Mid-Term

- Remote exams:
 - Should already be arranged via **IIT-Online** or other IIT dept.
 - Email questions to Charles (Chuck) Scott at IIT-Online
- Covers readings and lecture slides (with focus on material in that appears in both)
- Format:
 - Closed Book No printouts or cheat sheet, no calculator (not needed)
 - Multiple Choice, True/False, or similar
 - "Bubble" answer sheet (Fill in circles)
 - Bring pencils (with erasers)!

Mid-Term

How can I prepare this weekend?

- Buy pencils (with erasers)!
- Catch up on readings (see syllabus on Blackboard)
- Revisit slides can you explain concepts to a friend?
- Formulas:
 - What is being defined or modeled?
 - How and where would it be applied?
 - For measures: What does a high and low value represent? What is a valid range (and why)?

Unsupervised Learning

CS-585

Natural Language Processing

Sonjia Waxmonsky

REVISITING UNSUPERVISED METHODS

Latent semantic analysis

From Session 6

- The idea is to "compress" the representation of a word, using only M « |D| dimensions for each vector
 - Compress for more efficient representation (smaller memory footprint)
 - Compress for generalization: retain only most important information, and allow distinctions between similar words to be obscured
- How to do this automatically?

Singular value decomposition

From Session 6

For a term-by-document matrix M, based on documents D and vocabulary V, we approximate

U is an orthogonal matrix with one row per document W is an orthogonal matrix with one column per word Σ is a diagonal matrix of "singular values"

word2vec

Continuous Bag of Words (CBOW)

UNSUPERVISED CLASSIFICATION

Clustering

Clustering

Clustering on Text

FOR SALE: CHEAP LOGIC BOARDS!!! (update)	3	
Ampex 456 2" Recording Tape For Sale	3	
The Bob Dylan Baseball Abstract	1	
Patient-Physician Diplomacy	2	
Defensive Averages 1988-1992, Third Base	1	
Dana-Faber Cancer Institute	3	← 2 or 3?
Ryan rumor	1	
MS-Windows graphics viewer?	3	
Jack Morris	1	
Candida Albicans: what is it?	2	

Clustering

- Unsupervised: Input is features, or vector representation of data, rather than (feature, label) pair
- Identify the underlying structure of the observed data, such that there are a few clusters of points, each of which is internally coherent [Eisenstein-NLP]
- Hierarchical Clustering nested clusters
- Non-hierarchical clusters do not overlap

Non-Hierarchical Clustering

• Iterative clustering:

- Start with initial (random) set of clusters
- Assign each object to a cluster (or clusters)
- Recompute cluster parameters
- Stop when clustering is "good"

- Q: How many clusters?
 - A: Who knows??

K-means Algorithm

Input:

- Set $X = \{x_1, ..., x_n\}$ of objects
- Distance measure $d: X \times X \rightarrow \mathbb{R}$
- Mean function µ

```
Select k initial cluster centers f_1, ..., f_k
while not finished do:
for all clusters c_j do:
c_j \leftarrow \{x_i \mid f_j = \operatorname{argmin}_f d(x_i, f)\}
for all means f_j do:
f_i \leftarrow \mu(c_i)
```


K-means as EM (ish)

E: Calculate cluster assignments given current centroid locations

Data point	Location	Closest cluster centroid
1	(-1,1)	2
2	(-1,-1)	3
3	(1,2)	1
4	(2,2)	1
5	(-2,1)	2
6	(-2,-2)	3
7	(-3,-1)	3
8	(4,2)	1
9	(-1,0)	2

Can this be a "soft" assignment? (Soft K-means)

K-means as EM (ish)

M: Move the cluster centroids to the center of their associated data points (making the data more "likely")

Data point	Location	Closest cluster centroid
1	(-1,1)	2
2	(-1,-1)	3
3	(1,2)	1
4	(2,2)	1
5	(-2,1)	2
6	(-2,-2)	3
7	(-3,-1)	3
8	(4,2)	1
9	(-1,0)	2

Cluster	New centroid
1	(2.33,2)
2	(-1.33,0.67)
3	(-2,-1.33)

EXPECTATION MAXIMIZATION

Expectation-Maximization

- Combines generative modeling of Naïve Bayes with latent variable modeling of soft K-means
- Review:
 - Generative model Models joint probability of class labels and observations
 - Discriminative model Models conditional probability of labels given observations
- E-M framework (not a single algorithm) is iterative framework to find maximum likelihood estimate given a set of latent variables

The EM Algorithm

Soft clustering method to solve

$$\theta^* = \arg \max_{\theta} P_{model}(X \mid \theta)$$

Note: Any occurrence of the data consists of:

- Observable variables: The objects we see
 - Bags of words
 - Word sequences in tagging tasks
- Hidden variables: Which cluster generated which object
 - Document categories
 - Underlying tag sequences

Two Principles

Expectation: If we knew θ we could compute the expected values of the hidden variables (e.g, probability of x belonging to some cluster)

Maximization: If we knew the hidden structure, we could compute the maximum likelihood value of θ

Iterative Solution

Initialize: Choose an initial θ_0

Then iterate until convergence:

- E-step: Compute $(X, Z_i) = \text{Exp}[X, Z \mid \theta_i]$
- M-step: Choose θ_{i+1} to maximize $P(X, Z_i, \theta_{i+1})$

M-step sometimes cannot be computed, but moving along its gradient also works

EM for Naive Bayes Text Classification

E-step: Compute $P(c_k \mid d_i)$ for each document d_i and category c_k given current model

M-step: Re-estimate the model parameters $P(w_j | c_k)$ and $P(c_k)$

Continue as long as log-likelihood of corpus increases:

$$\log \prod_{i} \sum_{k} P(d_i \mid c_k) P(c_k) = \sum_{i} \log \sum_{k} P(d_i \mid c_k) P(c_k)$$

E-Step

• For each document d_i and each category c_k , estimate the posterior probability $h_{ik} = P(c_k \mid d_i)$:

$$h_{ik} = \frac{P(d_i | c_k) P(c_k)}{\sum_{k'} P(d_i | c_{k'}) P(c_{k'})}$$

• To compute $P(d_i | c_k)$, use naive Bayes:

$$P(d_i \mid c_k) = \prod_{w_j \in d_k} P(w_j \mid c_k)$$

M-Step

Re-estimate parameters using maximumlikelihood estimation:

$$P(w_j|c_k) = \frac{\sum_{d_i:w_j \in d_i} h_{ik}}{\sum_{d_i,\forall w_{j'} \in d_i} h_{ik}}$$
$$P(c_k) = \frac{\sum_i h_{ik}}{\sum_k \sum_i h_{ik}}$$

Decision Procedure

Assign categories by:

$$cat(d_i) = \operatorname{arg\,max}_{c_k} \left[\log P(c_k) + \sum_{w_j \in d_i} \log P(w_j \mid c_k) \right]$$

- Can adjust number of categories k to get finer or coarser distinctions
- If adding more categories doesn't increase log-likelihood of data much, then stop

Applications of E-M

Clustering based on local context applicable to many NLP tasks:

- Word-sense induction Overcome limitations of hand-annotation
- Part-of-speech tagging For low-resource languages (limited annotated data)
- ... and other NLP tasks