		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 113,2113 (2012)	1-May-2012

 $Q(\beta^{-})=-3.62\times10^{3}$ 6; S(n)=7667 8; S(p)=5572 6; $Q(\alpha)=5992.7$ 7 2012Wa38

Note: Current evaluation has used the following Q record -3621 52 7667 7 5573 5 5992.7 7 2011AuZZ

Additional information 1.

Level energies for one-phonon octupole-vibrational states, and B(E3) values for the excitation of these octupole-vibrational bands were calculated by 1970Ne08 and 1975Iv03. See 1975Iv03 for calculated components of the K=0, 1, 2, 3 octupole-vibrational state wave functions. See 1988Na08 for calculated energies of K=0⁺ g.s. and K=0⁻ octupole-vibrational levels. Others: 2011Na24, 2008Ch15.

The first quadrupole state with $K=2^+$ (γ -vibrational state) and B(E2) value for the excitation of this state were calculated by 1965Be40 and 1975Iv03. See 1965Be40 and 1975Iv03 for the calculated components of the γ -vibrational state wave function. Equilibrium deformation parameters were examined and calculated by 1970Ga12, 1981Gy03, 1982Du16, 1983Ro14, 1984Na22. For calculations of quadrupole and hexadecapole moments, see 1970Ga12, 1978Ne13, and 2010Vr01.

Cluster Decay: measured ²²Ne clusters using glass/polyester track detectors. Source from ²³⁰Pa decay. Others: 2010Zh51, 2004Tr10, 2001St29, 1999Pa22, 1997Tr17.

Nuclear reactions: ²³¹Pa(d,3n), measured cross section (2012Av02,2009Mo37,2008Mo11).

Cluster Decay: ¹⁴C clusters: 2005Ku04, 2005Ku32, 1999De51.

Cluster Decay: ²⁴Ne clusters: 2008Ni12, 2005Ku32, 2005Ku04.

Cluster Decay: ²²Ne clusters: 2012Qi01, 2012Si01, 2011Si13. Calculated half-life: 2011Sh13, 2010Ni13, 2010Sa29, 2010Si12, 2009Ar05, 2009Ar11, 2009Do16, 2009Ro16, 2009Zh28, 2008Bh05.

2007A103, 2007A111, 2007D010, 2007K010, 2007Zii20,

Cluster Decay: ²⁰O clusters: 2011Wa30.

Spontaneous fission: Calculated half-life: 2010Sa09, 2008Xu06. Second fission barrier: 2012Ja08.

Alpha decay: 2011Si14, 2011Zh36, 2010Wa23, 2010Wa31, 2009De32, 2009Ni06, 2009Wa01, 2008Xu06, 2008Zh12, 2007Pe30. Calculated half-life: 2011Qi06, 2009Qi07.

Rotational states: Calculated nuclear masses, rotational bands, single-particle level energies: 2011Ne09, 2011No04, 2010Bu02.

²³⁰U Levels

Cross Reference (XREF) Flags

- A 234 Pu α decay
- B 230 Pa β^- decay
- C 232 Th(α ,6n γ)
- D 231 Pa(p,2n γ), 230 Th(α ,4n γ)

 $\frac{\text{E(level)}^{\ddagger}}{0.0^{\textcircled{@}}}$ $\frac{\text{J}^{\pi^{\dagger}\#}}{0^{+}}$ $\frac{\text{T}_{1/2}}{20.23 \text{ d } 2}$ $\frac{\text{XREF}}{\text{ABCD}}$

Comments

 $\%\alpha = 100$ $\%^{22}$ Ne= 4.8×10^{-12} 20

 $%^{22}$ Ne/%α from 2001Bo11, measured using glass track detectors. Other: 1.3×10^{-12} 8 (2000Pa54) measured using polyester detectors. Both used source from 230 Pa decay.

E(level) [‡]	$J^{\pi\dagger\#}$	T _{1/2}	XREF	Comments
				$%\alpha$ =100 $%^{22}$ Ne=4.8×10 ⁻¹² 20 $%^{22}$ Ne/ $%\alpha$ from 2001Bo11, measured using glass track detectors. Other: 1.3×10 ⁻¹² 8 (2000Pa54) measured using polyester detectors. Both used source from 230 Pa decay. 2001Bo11 claim much lower $α$ background. Branchings for possible decays by 22 Ne, 24 Ne and 14 C clusters are predicted as 1×10 ⁻¹² %, 1×10 ⁻¹⁴ %, and 1×10 ⁻¹⁶ %, respectively, from lifetime calculations of 1991Bl07 for $α$, 22 Ne, 24 Ne and 14 C decays. See 1979Po23 also for theoretical calculations of $T_{1/2}(α)$. $T_{1/2}$: from 2012Po12. Other: 20.8 d (1948St42).
51.727 [@] 23	2+	0.26 ns <i>3</i>	ABCD	$T_{1/2}$: From $(\beta)(51.7\gamma)(t)$ in ²³⁰ Pa β^- decay (1960Be25). J^{π} : 51.72 γ E2 to 0 ⁺ .
169.34 [@] 5	4+		ABCD	J^{π} : 117.8 γ E2 to 2 ⁺ , α hindrance factor.
346.95 [@] 21	6+		CD	J^{π} : 177.6 γ E2 to 4 ⁺ .
366.649 ^{&} 19	1-		B D	Additional information 2. J^{π} : 366.6 γ E1 to 0^{+} .
435.19 ^{&} 3	3-		B D	Additional information 3. J^{π} : 265.8 γ E1 to 4 ⁺ , 383.5 γ E1 to 2 ⁺ .
558.1 <mark>&</mark> 8	(5^{-})		D	
578.0 [@] 3	8+		CD	J^{π} : 231 γ E2 to 6 ⁺ .
733.9 <mark>&</mark> 11	(7^{-})		CD	
856.3 [@] 4	10 ⁺		CD	
958.6 <mark>&</mark> 7	(9^{-})		CD	
1175.6 [@] 4	12+		CD	
1229.0 <mark>&</mark> 7	(11^{-})		CD	
1531.5 [@] 5	14+		CD	
1539.7 ^{&} 7	(13^{-})		CD	
1885.9 ^{&} 5	(15^{-})		CD	
1921.1 [@] 6	16+		CD	
2266.7? <mark>&</mark>	(17^{-})		CD	
2337.8? [@]	(18^{+})		CD	
2779 [@] 3	(20^{+})		С	
3243 [@] 4	(22^{+})		С	

[†] Additional information 4.

 $^{^{\}ddagger}$ Deduced by evaluators from a least-squares fit to adopted γ -ray energies. $^{\sharp}$ Spin/parity assignments are based on rotational and vibrational structures. Specific arguments based on γ -ray multipolarities are given for individual levels.

[@] Band(A): $K^{\pi}=0^{+}$ g.s. rotational band. See 1989Xu04 and 1989Hu05 for calculations of g.s. band states by four-parameter and three-parameter fits to the experimental energies.

[&]amp; Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band.

γ (²³⁰U)

		- +	- +	-		+	&r	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α <mark>&</mark>	Comments
51.727	2+	51.72 4	100	0.0	0+	E2	308	B(E2)(W.u.)=222 27 $\alpha(L)=224$ 4; $\alpha(M)=62.0$ 9; $\alpha(N+)=21.3$ 3 $\alpha(N)=16.82$ 25; $\alpha(O)=3.85$ 6; $\alpha(P)=0.624$ 9; $\alpha(Q)=0.001587$ 23 E _y : From ²³² Th(α ,6ny) (2010Ni01). For theoretical calculations of B(E2)(2 ⁺ to
169.34	4+	117.8 2	100	51.727	2+	E2	6.43 11	0 ⁺), see 1981Su13. $\alpha(K)=0.189 \ 3; \ \alpha(L)=4.55 \ 8; \ \alpha(M)=1.261$ 21; $\alpha(N+)=0.434 \ 7$ $\alpha(N)=0.342 \ 6; \ \alpha(O)=0.0787 \ 13;$ $\alpha(P)=0.01293 \ 21; \ \alpha(Q)=6.15\times10^{-5} \ 10$
346.95	6+	177.6 2	100	169.34	4+	E2	1.174	$\alpha(K) = 0.184 \ 3; \ \alpha(L) = 0.722 \ 11;$ $\alpha(M) = 0.199 \ 3; \ \alpha(N+) = 0.0687 \ 11$ $\alpha(N) = 0.0541 \ 8; \ \alpha(O) = 0.01248 \ 19;$ $\alpha(P) = 0.00208 \ 3; \ \alpha(Q) = 1.735 \times 10^{-5} \ 25$
366.649	1-	314.92# 2	100# 5	51.727	2+	E1 [#]	0.0353	$\alpha(K)=0.0281\ 4;\ \alpha(L)=0.00540\ 8;$ $\alpha(M)=0.001301\ 19;\ \alpha(N+)=0.000447\ 7$ $\alpha(N)=0.000348\ 5;\ \alpha(O)=8.31\times10^{-5}\ 12;$ $\alpha(P)=1.535\times10^{-5}\ 22;\ \alpha(Q)=9.93\times10^{-7}$ 14
		366.65# 2	81# 5	0.0	0+	E1 [#]	0.0254	$\alpha(K)$ =0.0204 3; $\alpha(L)$ =0.00383 6; $\alpha(M)$ =0.000920 13; $\alpha(N+)$ =0.000317 5 $\alpha(N)$ =0.000246 4; $\alpha(O)$ =5.90×10 ⁻⁵ 9; $\alpha(P)$ =1.096×10 ⁻⁵ 16; $\alpha(Q)$ =7.31×10 ⁻⁷ 11
435.19	3-	265.85 [#] 3	38# 4	169.34	4+	E1 [#]	0.0513	$\alpha(K)$ =0.0407 6; $\alpha(L)$ =0.00801 12; $\alpha(M)$ =0.00193 3; $\alpha(N+)$ =0.000665 10 $\alpha(N)$ =0.000517 8; $\alpha(O)$ =0.0001233 18; $\alpha(P)$ =2.26×10 ⁻⁵ 4; $\alpha(Q)$ =1.410×10 ⁻⁶ 20
		383.46# 2	100# 5	51.727	2+	E1 [#]	0.0232	$\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00347 \ 5;$ $\alpha(M)=0.000833 \ 12; \ \alpha(N+)=0.000287 \ 4$ $\alpha(N)=0.000223 \ 4; \ \alpha(O)=5.34\times10^{-5} \ 8;$ $\alpha(P)=9.94\times10^{-6} \ 14; \ \alpha(Q)=6.68\times10^{-7} \ 10$
558.1	(5^{-})	211.1		346.95	6+			, , , , , , ,
578.0	8+	388.9 231.1 2	100	169.34 346.95	4 ⁺ 6 ⁺	E2	0.444	$\alpha(K)$ =0.1211 17; $\alpha(L)$ =0.236 4; $\alpha(M)$ =0.0646 10; $\alpha(N+)$ =0.0223 4 $\alpha(N)$ =0.0175 3; $\alpha(O)$ =0.00406 6; $\alpha(P)$ =0.000683 10; $\alpha(Q)$ =8.60×10 ⁻⁶ 13
733.9	(7^{-})	387.0	100	346.95	6+			
856.3	10+	278.2 2	100	578.0	8+			
958.6 1175.6	(9 ⁻) 12 ⁺	380.8 319.3 2	100 100	578.0 856.3	8 ⁺ 10 ⁺			
1229.0	(11 ⁻)	270.4 2	35.7	958.6	(9 ⁻)			
1229.0	(11)	372.6	≈100	856.3	10+			
1531.5	14 ⁺	355.9 2		1175.6	12 ⁺			
1539.7	(13^{-})	310.7 2	28.6	1229.0	(11^{-})			
	-	364.0	≈100	1175.6	12+			
1885.9	(15 ⁻)	346 [@] 354.4 2		1539.7 1531.5	(13 ⁻) 14 ⁺			
1921.1	16 ⁺	389.6 <i>3</i>	100	1531.5	14+			
2266.7?	(17^{-})	345.5 2		1921.1	16 ⁺			
		380 [@]		1885.9	(15 ⁻)			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2337.8?	(18^+)	416.6 ^a 2	100	1921.1	16 ⁺
2779	(20^+)	442 [@]	100	2337.8?	(18^{+})
3243	(22^{+})	464 [@]	100	2779	(20^+)

[†] From ²³¹Pa(p,2nγ), ²³⁰Th(α ,4nγ), unless otherwise specified. [‡] From ce measurements in ²³⁰Pa β ⁻ decay and in (α ,4nγ) reaction. [#] From ²³⁰Pa β ⁻ Decay. [@] From ²³²Th(α ,6nγ).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

0.26 ns *3* 20.23 d 2

 $^{230}_{\ 92}\mathrm{U}_{138}$

$$^{230}_{92}\mathrm{U}_{138}$$

0.0

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne	NDS 107,2579 (2006)	1-Nov-2004

 $Q(\beta^-)=-2.75\times10^3 \ syst; \ S(n)=7268 \ 3; \ S(p)=6104.1 \ 20; \ Q(\alpha)=5413.63 \ 9$ 2012Wa38 Note: Current evaluation has used the following Q record -2750 syst $7268.0 \ 28 \ 6104 \ 2 \ 5413.63 \ 9$ 2003A $^{233}U(\gamma,n)$: measured cross-section (1993De36).

 $T_{1/2}(^{24}\text{Ne}): Others \ (mostly \ theoretical \ papers \ and \ systematic \ studies \ of \ cluster \ decay): 2004Re22, 2004He16, 2004Ba64, 2002Sa25, 2002Du16, 2002Ba80), 2001St29, 1998Ro11, 1997Tr17, 1997Ro24, 1997MiZP, 1997Bu20, 1995Ar33, 1993Si26, 1993Ka21, 1993Go18, 1993Bu05, 1992Sa30, 1992Lu07, 1992Gu10, 1992Ar02, 1991Ro03, 1991Bu01, 1991Bl07, 1990Sh01, 1990Ka15, 1990Bu13, 1990Ba20.$

²³²U Levels

Cross Reference (XREF) Flags

```
A ^{232}Pa \beta^- decay D ^{232}Th(\alpha,4n\gamma), ^{230}Th(\alpha,2n\gamma) B ^{232}Np \varepsilon decay E ^{234}U(p,t)
```

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
0 ^a	0+&	68.9 y <i>4</i>	ABCDE	%α=100; %SF=2.7×10 ⁻¹² 6 % ²⁴ Ne=8.9×10 ⁻¹⁰ 7 $T_{1/2}$: Average of 69.00 y 40 (specific activity) and 68.81 y 38 (activity ratio relative to $T_{1/2}$ =1.592×10 ⁵ y for ²³³ U, mass spectrometry (1979Ag04, 1986Ag01). Others: 73.6 y 10 (2π a counting, specific activity) (1954Se26); 71.4 y 6 (calorimetry) and 72.1 y 5 (2π a counting, specific activity)(1964Ch05). Others: 1949Go01, 1949Ja01). Analysis of alpha spectra: 2003Ba64, 1999Sa15, 1999Go26, 1999De51, 1996Ca30, 1994To17, 1993Ba72, 1991Kr18, 1990Ca43. %SF: From $T_{1/2}$ (SF)=2.6×10 ¹⁵ y 5 (solid-state track detection corrected for cluster decay (2000Bo46). Other values: $T_{1/2}$ (SF)>6.84×10 ¹⁵ y (1990Bo16); $T_{1/2}$ (SF)=0.080×10 ¹⁵ y 55 (1957Hy90), this value may have been affected by detection of ²⁴ Ne (1990Bo16); $T_{1/2}$ (SF)>0.008×10 ¹⁵ y (1952Se67). % ²⁴ Ne: From 1991Bo20. Other values: % ²⁴ Ne=8.5×10 ⁻¹⁰ 7, from $T_{1/2}$ (²⁴ Ne)=8.1×10 ¹² y 7 (1990Bo16); % ²⁴ Ne=2.0×10 ⁻¹⁰ 5, from $T_{1/2}$ (²⁴ Ne)=3.4×10 ¹³ y 8 (1985Ba18).
47.573 ^a 8	2+&	245 ps 20	ABCDE	J^{π} : 47.57 γ E2 to 0 ⁺ .
156.566 ^a 10	4 ⁺ &		ABCDE	
322.69 ^a 7	6+&		ABCD	
541.1 ^a 1	8+ &		CDE	
563.194 ^b 7	1-@		A CD	J^{π} : 563.197 γ E1 to 0 ⁺ . J^{π} : E1 to g.s.
628.965 ^b 8	3-@		A CD	J^{π} : 581.398 γ E1 to 2 ⁺ , 472.39 γ E1 to 4 ⁺ . J^{π} : E1 to 2 ⁺ ,4 ⁺ .
691.42 ^c 9	0^{+}		A CDE	J^{π} : 691.3 γ E0 to 0 ⁺ , L=0 in ²³⁴ U(p,t).
734.57 ^c 5	2+		A CDE	J^{π} : 687.04 γ E0 to 2 ⁺ .
746.8 <mark>b</mark> 1	$(5^{-})^{@}$		CD	
805.88 ^a 16	10 ⁺ &		D	
833.07 ^c 20	4+		A CDE	J^{π} : 676.5 γ E0 to 4 ⁺ .
866.790 ^d 8	2+		ABC E	J^{π} : 866.760 γ E2 to 0 ⁺ .
911.49 ^d 4	$(3)^{+}$		AB	J^{π} : 176.3 γ M1, E2 to 2 ⁺ , 754.8 γ E2 to 4 ⁺ .
915.2 ^b 4	$(7^{-})^{\textcircled{0}}$		D	

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$	XREF	Comments
927.3 <mark>8</mark> 1	(0 ⁺)		СЕ	J^{π} : HF=15 in ²³⁶ Pu (J^{π} =0 ⁺) α Decay.
967.6 ⁸ 1	$(2)^{+}$		CE	J^{π} : 920.23 γ M1+E2 to 2 ⁺ , 967.9 γ to 0 ⁺ .
970.71 ^d 7	(4^{+})		AB E	J^{π} : Rotational structure, 923.1 γ to 2 ⁺ , 814.2 γ to 4 ⁺ .
984.9 ^c 2	6 ⁺	50	D	J^{π} : 662.2 γ E0 to 6 ⁺ .
1016.850 ^e 8	2-	<50 ps	AB	J^{π} : 1016.4 γ M2 to 0 ⁺ . Additional information 1.
1050.90 ^e 1	3-	<50 ps	AB E	J ^π : 1003.28γ E1 to 2 ⁺ , 894.351γ E1 to.4 ⁺ .
1098.2 ^e 4	(4^{-})		В	Additional information 2.
1111.6 ^a 2	12+&		D	J^{π} : 305.7 γ E2 to 10 ⁺ .
1131.1 ^b 6	$(9^{-})^{@}$		D	
1132.97 <i>10</i>	(2^{+})		AB	J ^π : 1085.4 γ E1,E2 to 2 ⁺ , and 1132.7 γ E1,E2 to 0 ⁺ suggests J ^π =1 ⁺ , 1 ⁻ , or 2 ⁺ . Level feeding from ²³² Np ε decay suggests J ^π =2 ⁺ .
				Additional information 3.
1173.06 ^f 17	$(2)^{-}$		AB	J^{π} : 1125.48 γ E1 to 2^{+} , no γ -ray decay observed to 0^{+} , 4^{+} .
				Additional information 4.
1186.6 ^c 4	8+		D	J^{π} : 645.5 γ E0 to 8 ⁺ .
1194.0 2	$(3^+,4^+)$		В Е	J^{π} : log ft =5.2 in ²³² Np ε decay suggests an allowed ε transition, thus J^{π} =3 ⁺ ,4 ⁺ ,5 ⁺ . 327.3 γ to 2 ⁺ suggests J^{π} ≤4.
				Additional information 5.
				2-neutron level from low $\log ft$ in 232 Np ε decay; possible configuration=((ν 5/2[633])(ν 3/2[631])) resulting in J^{π} =4+ (suggesting that the 1193.9 γ is misplaced). It compares with $\log ft$'s \approx 5.3 for analogous transitions in the decays of 233 Np and 235 Pu (π 5/2[642]) to (ν 5/2[633]). No other $\log ft$'s in the actinide
_				region are that low.
1211.3 ^f 3	3-		A E	Additional information 6.
1225			_	J^{π} : 1054.5 γ E1 to 4 ⁺ , 1164.5 γ E1 to 2 ⁺ .
1227 [‡] 1277.2 [‡] <i>4</i>	0^{+}		E	J^{π} : L=0 in ²³⁴ U(p,t).
1301‡	0.		E E	J^{-1} : L=0 in J^{-1} O(p,t).
1301 [‡]			E	
1349. ^b 6	11-@		DE	
1434.3 ^c 5	10 ⁺		DE	J^{π} : 628.4 γ E0 to 10 ⁺ .
1438 [‡]	10		E	V 1 32011/ 20 to 10 1
1453.8 a 3	14+ <mark>&</mark>		D	J^{π} : 342.2 γ E2 to 12 ⁺ .
1482.0 [‡] 4	0^{+}		E	J^{π} : L=0 in ²³⁴ U(p,t).
1489 [‡]			E	
1520 [‡]			E	
1569.0 [‡] 4	0_{+}		E	J^{π} : L=0 in ²³⁴ U(p,t).
1600 [‡]			E	
1646 5			E	
1746 [‡]			E	
1772 [‡]			E	- 224
1797.0‡ 4	0+		E	J^{π} : L=0 in 234 U(p,t).
1822.1 [‡] 4	0+		E	J^{π} : L=0 in 234 U(p,t).
1828.2^{a} 4	16 ⁺ &		D	J^{π} : 374.4 γ E2 to 14 ⁺ .
1861.5 [‡] 4	0+		E	J^{π} : L=0 in ²³⁴ U(p,t).
1872 [‡] 1931.8 [‡] 4	0+		E	J^{π} : L=0 in $^{234}U(p,t)$.
1931.8 [#] 4	0.		E	J^{-} : L=0 in $^{-}$ $U(p,t)$.

E(level) [†]	$J^{\pi \#}$	XREF	Comments
1972 [‡]		E	
1979 [‡]		E	
1998 [‡]		E	
2023.2 ^b 1	$(15^{-})^{\textcircled{@}}$	D	
2043 [‡]		E	
2061‡		E	
2072 [‡]		E	
2147 [‡]		E	
2172 [‡]		E	
2204 [‡]		E	
2231.6 ^a 6	18+ <mark>&</mark>	DE	J^{π} : 403.4 γ E2 to 16 ⁺ .
2284 [‡]		E	
2333 [‡]		E	
2659.8 ^a 9	$(20^+)^{\&}$	D	J^{π} : 428.2 γ (E2) to 18 ⁺ .

 $[\]dagger$ Deduced by evaluator from a least squares fit of adopted γ -ray energies, unless otherwise specified.

[‡] From ²³⁴U(p,t).

[#] Most J^{π} assignments are based on rotational band structure. For some individual levels additional arguments based on γ -ray multipolarities are given.

[@] Rotational band structure, γ -ray deexcitation.

[&]amp; Rotational band structure, γ -ray cascade of stretched E2 transitions in 232 Th(α ,4n γ) and Coulomb excitation.

^a Band(A): $K^{\pi}=0^{+}$ g.s. rotational band.

^b Band(B): $K^{\pi}=0^{-}$ Octupole vibrational band.

^c Band(C): $K^{\pi}=0^+$ Beta vibrational band.

^d Band(D): $K^{\pi}=2^{+}$ Gamma vibrational band.

^e Band(E): $K^{\pi}=2^{-}$.

 $^{^{}f}$ Band(F): K^π=(1)[−].

^g Band(G): $K^{\pi}=(0^+)$ Two-phonon octupole vibrational band.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f J	\mathbf{J}_f^{π}	Mult.	α&	$I_{(\gamma+ce)}$	Comments
47.573	2+	47.57 [‡] 2	100 [‡]	0 (O+	E2	464		B(E2)(W.u.)=241 21
156.566	4+	108.95 [‡] 2	100 [‡]	47.573 2	2+	E2	9.15		
322.69	6+	166.09 [‡] 7	100 [‡]	156.566	4 ⁺	E2	1.58		
541.1	8+	218.4 [#] <i>1</i>	100#	322.69	5 ⁺	E2	0.554		
563.194	1-	515.607 [†] 9	100 [†] 3	47.573 2	2+	E1	0.01274		
		563.197 [†] 7	69 [†] 2	0 (0+	E1	0.01074		
628.965	3-	472.390 [†] 6	64 [†] 2	156.566	4 +	E1	0.01516		
		581.398 [†] 8	100 [†] 3	47.573 2	2+	E1	0.01010		
691.42	0_{+}	643.87 [‡] <i>a</i> 3	‡	47.573 2	2+	[E2]	0.027		
		691.3 [‡] <i>1</i>	‡	0 (0^+	E0		100	
734.57	2+	577.95 [‡] 10	39 [‡] 7	156.566	4 ⁺				
		687.04 [‡] <i>10</i>	75 [‡] 3	47.573	2+	E0+[E2]		100	
		(734.55 [‡] <i>10</i>)	100 [‡] 4	0 (0^+	[E2]		<60	
746.8	(5^{-})	423.85 [‡] 20	35 [‡] 2	322.69	5 ⁺				
		590.28 [‡] <i>10</i>	100 [‡] 6	156.566	4 ⁺				
805.88	10+	264.8 [#] 1	100 [#]	541.1	8+	E2	0.286		
833.07	4+	676.5 [#] 2	#	156.566	4 ⁺	E0+[E2]			
866.790	2+	132.5 [†] 2	0.13 [†] 6	734.57	2+	M1,E2	7 3		
		174.9 [†] 2	0.13 [†] 3	691.42 (0+	[E2]	1.268		
		710.1 [†] <i>3</i>	2.8 1	156.566	4 ⁺	E2	0.02206		
		819.187 [†] <i>13</i>	100 [†] <i>1</i>	47.573	2+	E2	0.017		
		866.760 [†] <i>19</i>	77 [†] 2	0 (0^+	E2	0.01484		
911.49	$(3)^{+}$	176.3 [†]	$0.2^{\dagger} I$	734.57	2+	M1,E2	3.0 17		
		754.8 [†] 2	28 [†] 2	156.566	4 +	E2	0.01950		
		863.89 [†] 4	100 [†] 4	47.573	2+	E2	0.01494		
		911.4 [†] a	0.60 5	0 (O+	[M3]	0.2282		
915.2	(7^{-})	374.2 [#] 5	#	541.1 8	8+				
		592.4 [#] 5	#	322.69	5 ⁺				
927.3	(0^{+})	364.0 [‡] 1	100 [‡] 14	563.194	1-	[E1]	0.0260		$\alpha(K)$ =0.0208; $\alpha(L)$ =0.00392; $\alpha(M)$ =0.00094; $\alpha(N+)$ =0.00033
		879.9 [‡] <i>1</i>	0.19 [‡] <i>1</i>	47.573 2	2+	[E2]	0.0144		$\alpha(K)=0.0106; \ \alpha(L)=0.00284$
967.6	$(2)^{+}$	338.5 [‡] 1	100‡ 2	628.965	3-	[E1]	0.0304		$\alpha(K)$ =0.0243; $\alpha(L)$ =0.00462; $\alpha(M)$ =0.00110; $\alpha(N+)$ =0.00039
		404.46 [‡] <i>10</i>	76 [‡] 2	563.194		[E1]	0.0209		$\alpha(K)=0.0168$; $\alpha(L)=0.00310$; $\alpha(M)=0.00074$; $\alpha(N+)=0.00026$

γ (232U) (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α <mark>&</mark>	$I_{(\gamma+ce)}$	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	967.6	$(2)^{+}$		13.0 [‡] 2	156.566 4 ⁺	[E2]		0.0169		$\alpha(K)=0.0123; \ \alpha(L)=0.00348$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					47.573 2 ⁺	M1+E2	1.14 20	0.030 4		$\alpha(K)=0.024 \ 3; \ \alpha(L)=0.0049 \ 6$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$0 0^{+}$	[E2]		0.0120		$\alpha(K)=0.0090; \ \alpha(L)=0.00226$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	970.71	(4^{+})			156.566 4+					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					47.573 2+					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	984.9	6+				E0			100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1016.850	2-				[E1]				
$387.884^{\dagger} 4 15.2^{\dagger} 3 \qquad 628.965 3^{-} E2+M1 4.6.5 \qquad 0.111.5 \\ 453.655^{\dagger} 5 19.7^{\dagger} 5 \qquad 563.194 1^{-} E2+M1 2.8.3 \qquad 0.093.7 \\ 969.315^{\dagger} 11 100^{\dagger} 1 \qquad 47.573 2^{+} E1 \qquad 0.00397 \\ 1016.4^{\dagger} 4 \qquad 0.030^{\dagger} 5 \qquad 0 \qquad 0^{+} M2 \qquad 0.0915 \\ 0.90 3^{-} \qquad 80.23^{\dagger} 10 \qquad 2.7^{\dagger} 4 \qquad 970.71 (4^{+}) [E1] \qquad 0.2255 \\ 139.2^{\dagger} 1 \qquad 4.7^{\dagger} 3 \qquad 911.49 (3)^{+} [E1] \qquad 0.2327 \\ 184.101^{\dagger} 9 \qquad 11.8^{\dagger} 3 \qquad 866.790 2^{+} [E1] \qquad 0.1208 \\ 421.932^{\dagger} 7 \qquad 12.7^{\dagger} 10 \qquad 628.965 3^{-} E2+M1 1.96.15 0.145.1 \\ 894.351^{\dagger} 12 \qquad 100.0^{\dagger} 15 \qquad 156.566 4^{+} E1 \qquad 0.00373 \\ 1003.28^{\dagger} 4 \qquad 0.80^{\dagger} 4 \qquad 47.573 2^{+} E1 \qquad 0.00373 \\ 1003.28^{\dagger} 4 \qquad 0.80^{\dagger} 4 \qquad 47.573 2^{+} E1 \qquad 0.00373 \\ 1051.4^{\dagger} 1 \qquad 0.087^{\dagger} 10 \qquad 0 \qquad 0^{+} [E3] \qquad 0.026 \\ 3.2 (4^{-}) \qquad 941.6^{\dagger} 4 \qquad 100^{\dagger} \qquad 156.566 4^{+} \qquad 1.96.15 \\ 1.11 (9^{-}) \qquad 590.0^{\dagger} 5 \qquad 100^{\dagger} \qquad 805.88 10^{+} E2 \qquad 0.182 \\ 1.11 (9^{-}) \qquad 590.0^{\dagger} 5 \qquad 100^{\dagger} \qquad 805.88 10^{+} E2 \qquad 0.182 \\ 2.97 (2^{+}) \qquad 1085.4^{\dagger} 1 \qquad 100^{\dagger} \qquad 87.573 2^{+} E1 \qquad 0.003 \\ 3.6 (2)^{-} \qquad 1125.48^{\dagger} 17 \qquad 100^{\dagger} \qquad 47.573 2^{+} E1 \qquad 0.003 \\ 3.6 (3^{+},4^{+}) \qquad 143.4^{\oplus} 5 \qquad 0.8^{\oplus} 2 \qquad 1050.90 3^{-} [E1] \qquad 0.22 \\ 223.6^{\oplus} 4 \qquad 4.3^{\oplus} 3 \qquad 970.71 (4^{+}) [E2] \qquad 0.51 \\ 282.0^{\oplus} 4 \qquad 38^{\oplus} 2 \qquad 911.49 (3^{+}) [E2] \qquad 0.51 \\ 327.3^{\oplus} 3 \qquad 100^{\oplus} \qquad 866.790 2^{+} [E2] \qquad 0.148 \\ 1037.4^{\oplus} 5 \qquad 6.3^{\oplus} 4 \qquad 156.566 4^{+} \qquad 100^{\dagger} \qquad 100^{\oplus} \qquad 100^{$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2.8 3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	050.90	3-	80.23 10		` ,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1.96 <i>15</i>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
3.2 (4^{-}) 941.6 [†] 4 100 [†] 156.566 4 ⁺ 1.6 12 ⁺ 305.7 [#] 1 100 [#] 805.88 10 ⁺ E2 0.182 1.1 (9^{-}) 590.0 [#] 5 100 [#] 541.1 8 ⁺ 2.97 (2^{+}) 1085.4 [†] 1 100 [†] 8 47.573 2 ⁺ (E2) Mult.: E1 or E2. Decay scheme requires E2. 1132.7 [†] 7 38 [†] 12 0 0 ⁺ (E2) Mult.: E1 or E2. Decay scheme requires E2. 3.06 $(2)^{-}$ 1125.48 [†] 17 100 [†] 47.573 2 ⁺ E1 0.003 5.6 8 ⁺ 645.5 [#] 3 # 541.1 8 ⁺ E0 100 4.0 $(3^{+},4^{+})$ 143.4 [@] 5 0.8 [@] 2 1050.90 3 ⁻ [E1] 0.22 223.6 [@] 4 4.3 [@] 3 970.71 (4 ⁺) [E2] 0.51 282.0 [@] 4 38 [®] 2 911.49 (3) ⁺ [E2] 0.23 327.3 [@] 3 100 [@] 866.790 2 ⁺ [E2] 0.148 1037.4 [@] 5 6.3 [®] 4 156.566 4 ⁺										
1.6 12^{+} $305.7^{\#}$ I $100^{\#}$ 805.88 10^{+} $E2$ 0.182 1.1 (9^{-}) $590.0^{\#}$ 5 $100^{\#}$ 541.1 8^{+} 2.97 (2^{+}) 1085.4^{\dagger} I 100^{\dagger} 8 47.573 2^{+} $(E2)$ $Mult.$: E1 or E2. Decay scheme requires E2. 1132.7^{\dagger} 7 38^{\dagger} $I2$ 0 0^{+} $(E2)$ $Mult.$: E1 or E2. Decay scheme requires E2. 8.06 $(2)^{-}$ 1125.48^{\dagger} $I7$ 100^{\dagger} 47.573 2^{+} $E1$ 0.003 6.6 8^{+} $645.5^{\#}$ 3 4 541.1 8^{+} $E0$ 100 4.0 $(3^{+},4^{+})$ $143.4^{@}$ 5 $0.8^{@}$ 2 1050.90 3^{-} $[E1]$ 0.22 $223.6^{@}$ 4 $4.3^{@}$ 3 970.71 (4^{+}) $[E2]$ 0.51 $282.0^{@}$ 4 $38^{@}$ 2 911.49 $(3)^{+}$ $[E2]$ 0.23 $327.3^{@}$ 3 $100^{@}$ 866.790 2^{+} $[E2]$ 0.148 $1037.4^{@}$ 5 $6.3^{@}$ 4 156.566 4^{+}					-	[E3]		0.026		
1.1 (9^{-}) $590.0^{\#}$ 5 $100^{\#}$ 541.1 8^{+} 2.97 (2^{+}) 1085.4^{\dagger} 1 100^{\dagger} 8 47.573 2^{+} (E2) Mult.: E1 or E2. Decay scheme requires E2. Mult.: E1 or E3. Decay scheme requires E3. E3. Decay scheme requi	1098.2									
2.97 (2 ⁺) 1085.4^{\dagger} I 100^{\dagger} 8 47.573 2^{+} (E2) Mult.: E1 or E2. Decay scheme requires E2. 1132.7^{\dagger} 7 38^{\dagger} $I2$ 0 0^{+} (E2) Mult.: E1 or E2. Decay scheme requires E2. 8.06 (2) ⁻ 1125.48^{\dagger} $I7$ 100^{\dagger} 47.573 2^{+} E1 0.003 6.6 8^{+} 645.5^{\sharp} 3 4 541.1 8^{+} E0 100	111.6					E2		0.182		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131.1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132.97	(2^{+})								• • • • • • • • • • • • • • • • • • • •
5.6 8 ⁺ 645.5 [#] 3 # 541.1 8 ⁺ E0 100 4.0 (3 ⁺ ,4 ⁺) 143.4 [@] 5 0.8 [@] 2 1050.90 3 ⁻ [E1] 0.22 223.6 [@] 4 4.3 [@] 3 970.71 (4 ⁺) [E2] 0.51 282.0 [@] 4 38 [@] 2 911.49 (3) ⁺ [E2] 0.23 327.3 [@] 3 100 [@] 866.790 2 ⁺ [E2] 0.148 1037.4 [@] 5 6.3 [@] 4 156.566 4 ⁺										Mult.: E1 or E2. Decay scheme requires E2.
4.0 (3 ⁺ ,4 ⁺) 143.4 [@] 5 0.8 [@] 2 1050.90 3 ⁻ [E1] 0.22 223.6 [@] 4 4.3 [@] 3 970.71 (4 ⁺) [E2] 0.51 282.0 [@] 4 38 [@] 2 911.49 (3) ⁺ [E2] 0.23 327.3 [@] 3 100 [@] 866.790 2 ⁺ [E2] 0.148 1037.4 [@] 5 6.3 [@] 4 156.566 4 ⁺	1173.06							0.003	100	
223.6 [@] 4 4.3 [@] 3 970.71 (4 ⁺) [E2] 0.51 282.0 [@] 4 38 [@] 2 911.49 (3) ⁺ [E2] 0.23 327.3 [@] 3 100 [@] 866.790 2 ⁺ [E2] 0.148 1037.4 [@] 5 6.3 [@] 4 156.566 4 ⁺	186.6							0.25	100	
282.0 [@] 4 38 [@] 2 911.49 (3) ⁺ [E2] 0.23 327.3 [@] 3 100 [@] 866.790 2 ⁺ [E2] 0.148 1037.4 [@] 5 6.3 [@] 4 156.566 4 ⁺	1194.0	$(3^+,4^+)$	143.4 5							
327.3 [@] 3 100 [@] 866.790 2 ⁺ [E2] 0.148 1037.4 [@] 5 6.3 [@] 4 156.566 4 ⁺			223.6 4	4.3 3						
$1037.4^{\textcircled{0}}$ 5 $6.3^{\textcircled{0}}$ 4 156.566 4 ⁺			282.0 4							
						[E2]		0.148		
$1146.3 = 5$ $0.7 = 1$ $47.573 = 2^{+}$				6.3 4						
			1146.3 5	0.7 I	47.573 2+					

$\gamma(^{232}\text{U})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α &	$I_{(\gamma+ce)}$
1194.0	$(3^+,4^+)$	1193.9 [@] a 6	0.7 2	0	0_{+}			
1211.3	3-	1054.5 [†] 3	100 [†] 6	156.566	4+	E1	0.00342	
		1164.5 [†] 5	23 † 4	47.573	2+	E1	0.00289	
1390.9	11-	585.0 [#] 5	100 [#]	805.88	10 ⁺			
1434.3	10 ⁺	628.4 [#] 4	#	805.88	10^{+}	E0		100
1453.8	14 ⁺	342.2 [#] 2	100 [#]	1111.6	12+	E2	0.1297	
1828.2	16 ⁺	374.4 [#] 2	100 [#]	1453.8	14+	E2	0.1007	
2023.2	(15^{-})	569.4 [#]	100#	1453.8	14+	[E1]		
2231.6	18 ⁺	403.4 [#] 5	100#	1828.2	16 ⁺	E2		
2659.8	(20^{+})	428.2 [#] 6	100 [#]	2231.6	18+	(E2)		

[†] From 232 Pa β^- decay. ‡ From 236 Pu α decay. # From 232 Th(α ,4n γ), 230 Th(α ,2n γ). @ From 232 Np ε decay.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

$^{232}_{92}\mathrm{U}_{140}$ -10

Adopted Levels, Gammas

 $Band(G)\text{: }K^{\pi}\text{=}(0^{+})$ Two-phonon octupole vibrational band

(2)+ 967.6

(0⁺) 927.3

 $^{232}_{92}\mathrm{U}_{140}$

1996Bu05 (²⁸Mg). 1997Bu20 (24Ne). 1997Ku01 (²⁰Ne).

1997MiZP

1997Ro24

 $(^{24}Ne,$

 $(^{24}\text{Ne},$

 28 Mg).

²⁸Mg).

Adopted Levels, Gammas

```
History
                                    Type
                                                           Author
                                                                                     Citation
                                                                                                         Literature Cutoff Date
                              Full Evaluation
                                                  E. Browne, J. K. Tuli
                                                                             NDS 108,681 (2007)
                                                                                                               1-Jun-2006
Q(\beta^{-})=-1810 9; S(n)=6844.7 21; S(p)=6632.2 12; Q(\alpha)=4857.7 7
                                                                              2012Wa38
Note: Current evaluation has used the following Q record -1810
                                                                            8 6844.6 21 6632.4 12 4858.7 7
                                                                                                                    2003Au03.
Additional information 1.
Other reactions:
^{235}U(\gamma,n): 2006Gi01.
<sup>235</sup>U(n,2n): 2005YoZZ, 2005Ha23, 2005BrZW, 2002KoZO, 2000YoZS, 1999CaZV.
<sup>234</sup>U(p,p'): 2005LeZU.
<sup>234</sup>U(n,n'): 2003YoZY.
^{233}U(n,\gamma): 2005MaZT, 2005Ha23, 2003YoZZ, 2003KaZM, 2000MoZZ, 1999YuZT.
Level energies and two-quasiparticle structures of K^{\pi}=0^-, 2^+, 1^-, 2^-, 3^- collective states were calculated by 1964So02, 1975Iv03.
For calculated energies of odd-parity states, see also 1969B113, 1970Da16, 1970Ne08, 1971Ko31, 1975Iv03, 1976Iv01, 1976Iv04,
    1986Da03, 1989Ch07; for calculated energies of even-parity states, see, 1971Ko31, 1973Gu09, 1975Sa19, 1976Iv01, 1976Iv04,
    1978To13, 1981Su13, 1982Ca07, 1983Ge05, 1984Dr08, 1985Zh08, 1986Da03, 1989Ch07,
For energy calculations and discussions on the nature of K_{*}J^{\pi}=0.0^{+} collective state at 809.88 keV, see 1972Ch12, 1973Ch04,
    1973Im02, 1975Iv03, 1976Ra12, 1979Ch02, 1985Zh08, 1987Le17.
Based on multiphonon-method calculations, 1987Le17 concluded that the J^{\pi},K=1<sup>-</sup>,0 state at 1237 keV, as well as the 0<sup>+</sup>,0 state at
    1044 keV, cannot be interpreted as a two-phonon state.
For calculations of B(E2) values for excitation of various 2<sup>+</sup> collective states, see 1965Be40, 1975Iv03, 1981Ma35, 1984Dr08,
    1987Ca31, 1988Le14, 1988Ri07.
For calculations of B(E3) values for excitation of 3<sup>-</sup> collective states, see 1970Ne08, 1971Ko31, 1975Iv03, 1988Le14, 1989Ch07.
Deformation parameters were deduced from Coulomb excitation by 1973Be44, 1977Mi11; from (\alpha, \alpha') inelastic scattering by
    1976Da17 and 1979Es06; from (p,p') data by 1981Ro09; from muonic x rays by 1984Zu02. For calculated deformation parameters
    see 1970Ga12, 1971Bo54, 1975Iv03, 1981Kr21, 1982Eg01, 1982Du16, 1982Li01, 1983Ro14, 1984Eg01, 1988Mi17.
For calculated electric quadrupole- and hexadecapole-moments, see 1970Ga12, 1975Iv03, 1978Ne13, 1982Eg01, 1982Li01,
Half-life for pionic decay was calculated by 1988Io02.
For theoretical calculations of moment of inertia, and discussions, see 1980Du07, 1982Eg01, 1982Pl02, 1987Mi26, 1991Ba09,
    1991Pi05.
From measured isotope shift, change in mean-square charge radius was deduced by 1990Ga28: (\Delta < r^2 > \text{ for } ^{234}\text{U})/(\Delta < r^2 > \text{ for } ^{234}\text{U})/(\Delta < r^2 > \text{ for } ^{234}\text{U})
    ^{236}U)=1.994 8; \Delta < r^2 > \text{ for } ^{234}U=0.293 34, if \Delta < r^2 > = 0.147 17 for ^{236}U (1990Ga28). See also 1992An17, 2002Ob01, 2005Bh02.
Fission barrier parameters were calculated by 1971Pa33, 1972Bl18, 1972Ma11, 1972We09, 1973Ba19, 1974Ba28, 1976Iw02,
    1976Ra02, 1978Li06, 1980Li19, 1980Ku14, 1982Ru02, 1984Ku05, 1987Gu03, 1997Du14, 1995Ta01.
The energy and \Gamma of the giant octupole resonance were calculated by 1976Ma42, and of the quadrupole resonance by 1977Ky01.
 Exotic decays studied via heavy-particle emission (cluster decays)
 and decay rates calculated:
                                       ^{28}{
m Mg};
 1984Po08 (<sup>24</sup>Ne,
                           ^{26}Ne,
                                                                             ^{26}\mathrm{Ne},
                                                                                         ^{28} \mathrm{Mg});
                                                    1986Ir01 (<sup>24</sup>Ne,
                           ^{25}{\rm Ne},
                                       ^{26}\mathrm{Ne},
                                                   ^{28}Mg);
                                                                                         ^{26}Ne);
 1986Ka46 (<sup>24</sup>Ne,
                                                               1986Po15 (<sup>24</sup>Ne,
              (^{24}Ne,
                           ^{28} \mathrm{Mg});
                                       1989Ci03 (<sup>20</sup>Ne,
                                                                 ^{24}Mg);
 1989Ba18
                                       1990Bu09 (<sup>28</sup>Mg);
 1989Si13 (<sup>24</sup>Ne,
                           ^{28}Mg);
                                                                  1990Ka15 (24Ne,
                                                                                            ^{28}Mg);
                           <sup>28</sup>Mg),

<sup>26</sup>Ne, <sup>28</sup>Mg);

<sup>28</sup>Mg).
 1990Ba20 (<sup>24</sup>Ne,
                                                  1990Sh01 (<sup>26</sup>Ne,
                                                                            <sup>28</sup>Mg);
                                                                                        1991Bu01 (<sup>28</sup>Mg);
 1992Gu10 (<sup>24</sup>Ne,
 1993Bu05 (<sup>28</sup>Mg).
 1993Go18 (<sup>24</sup>Ne).
 1993Ka21 (^{24}Ne).
              (^{24}Ne,
                                       ^{28}{\rm Mg}) .
                           ^{26}Ne,
 1993Si26
              (<sup>24</sup>Ne,
                           ^{28}{
m Mg}) .
 1994Bu07
 1994Mi18 (<sup>28</sup>Mg).
                           ^{28}{
m Mg}) .
 1995Ar33 (<sup>24</sup>Ne.
                           ^{26}Ne,
                                       ^{28}{\rm Mg}) .
 1995Si05 (<sup>24</sup>Ne,
```

```
1997Tr17 (<sup>24</sup>Ne,
                                     ^{26}Ne.
                                                     <sup>28</sup>Mg).
                                     ^{28}{
m Mg}) .
1998Ro11 (<sup>24</sup>Ne,
1999Mill (<sup>24</sup>Ne,
                                     ^{28}Mg).
                 (^{24}Ne,
                                     ^{28}{
m Mg}) .
2001St29
                                    ^{26}\mathrm{Ne},
                                                     ^{28}{\rm Mg} ,
                                                                    ^{30}{\rm Mg}) .
                 (^{24}Ne,
2002Ba80
2002Du16 (<sup>24</sup>Ne,
                                    ^{28}{\rm Mg}) .
2002Sa55 (<sup>26</sup>Ne,
                                    ^{28}{\rm Mg}) .
2004Ba64 (<sup>24</sup>Ne,
                                     ^{26}\mathrm{Ne},
                                                     ^{28}{\rm Mg}) .
2004Re22 (<sup>28</sup>Mg).
                                  ^{28}{\rm Mg} ,
                                                 ^{30}{\rm Mg}) .
2005Bh02 (<sup>24</sup>Mg,
                                    ^{26}{\rm Ne},
                                                     ^{28}Mg).
2005Bu38 (<sup>24</sup>Ne,
2005Ku04 (<sup>26</sup>Ne).
2005Ku32 (<sup>26</sup>Ne).
Other: 2000Gu28.
```

²³⁴U Levels

Band(α) K=0⁺ g.s. rotational band.

Cross Reference (XREF) Flags

```
^{235}U(d,t)
^{238}Pu \alpha decay
                                             E
                                                       Coulomb excitation
                                                       ^{232}Th(\alpha,2n\gamma),^{232}Th(^{9}Be,\alpha3n\gamma)
^{234}Pa \beta^{-} decay (6.70 h)
                                                                                                                  ^{236}U(p,t)
                                             F
                                                                                                         J
                                                      ^{234}U(d,d')
^{234}Pa \beta^{-} decay (1.159 min)
                                             G
                                                                                                         K
                                                                                                                  (HI,xn\gamma)
                                                      <sup>233</sup>U(d,p)
^{234}Np \varepsilon decay
                                                                                                                 ^{237}Np(p,\alpha)
                                                                                          Comments
                                       \%\alpha=100; %SF=1.64×10<sup>-9</sup> 22
                                       %Ne=9×10<sup>-12</sup> 7; %Mg=1.4×10<sup>-11</sup> 3
                                       Intrinsic electric-quadruple moment: Q(0)=10.61 6 and intrinsic
                                          electric-hexadecapole moment: H(0)=2.49 14 were deduced by 1984Zu02
                                          from muonic x rays. Other measurements: Q(0)=13.7 20 (1978Ge10,
                                          from optical isomeric shift); Q(0)=10.47 5, H(0)=3.3 5 (1973Be44, from
                                          Coulomb excitation).
                                       T_{1/2}: recommended in 1989Ho24. Measured half-lives: 2.475×10<sup>5</sup> y 16
                                          (1952F120), 2.520\times10^5 y 8 (1952Ki19), 2.47\times10^5 y 3 (1965Wh05),
                                          2.439\times10^5 y 24 (1970MeZN), 2.450\times10^5 y 8 (1971DeYN, 1981VaZR), 2.459\times10^5 y 7 (1980Ge 13), 2.458\times10^5 y 12 (1971LoZL, corrected for
                                      T_{1/2}(^{235}U,^{236}U,^{238}U) in 1981HoZI).
Early T_{1/2} measurements: 1939Ni03, 1949Ba41, 1949Go18.
                                       SF half-life recommended in 2000Ho27: 1.5×10<sup>16</sup> y 2, fr om
                                          T<sub>1/2</sub>(SF)=1.42×10<sup>16</sup> y 8 (1981Vo02), and 1.90×10<sup>16</sup> y 15 (1987Sh27). Other values: 1.6 \times 10^{16} y 7 (1952Gh27), \geq 0.6 \times 10^{16} y (1952Se6 7). Systematic T<sub>1/2</sub>(SF): 2005Xu01. Others: 1997Ro12, 1998Du05.
                                      Measurements for partial half-life of Ne decay: T_{1/2}(Ne)=3.7\times10^{17} \text{ y} +12-9 \text{ (1987Sh27)},
                                      =6.3\times10^{17} \text{ y } +21-13 \text{ (1989Tr11)},
=2.7\times10^{18} \text{ y } 20 \text{ from } T_{1/2}(\alpha)/T_{1/2}(\text{Ne})=9.1\times10^{-14} 66 \text{ (1991Bo20)} \text{ and.}
                                       T_{1/2}(total)=2.455\times10^5 y 5.
                                       T_{1/2}(\alpha)/T_{1/2}(Ne)=4.4\times10^{-13} 5 (1989Mo07),
                                       =9.1\times10^{-14} 66 (revised in 1991Bo20 from data in 1989Mo07).
                                       Measurements for partial half-life of Mg decay:
                                       T_{1/2}(Mg)=1.1\times10^{18} \text{ y} +13-6 \quad (1987\text{Sh}27),
                                       =1.1\times10^{18} \text{ y } +4-3 (1989Tr11),
```

234U Levels (continued)

E(level) [†]	J π‡	T _{1/2}	XREF	Comments
43.4981 <i>10</i>	2+	0.252 ns 7	ABCDEFGHIJK	T _{1/2} (α)/T _{1/2} (Mg)=1.4×10 ⁻¹³ <i>3</i> (1989Mo07), T _{1/2} (Mg)/T _{1/2} (Ne)=0.66 <i>5</i> (1991Bo20). %SF is from T _{1/2} (SF)=1.5×10 ¹⁶ y 2 and T _{1/2} =2.455×10 ⁵ y 6. %Ne and %Mg are from 1991Bo20. Q(²³⁴ U):Q(²³⁶ U):Q(²³⁸ U)=1:1.13 <i>9</i> :1.13 <i>10</i> , by γ resonance (1974Me18). Q(²³⁴ U):Q(²³⁶ U):Q(²³⁸ U)=1:0.99 <i>5</i> :1.11 7; change in nuclear radius between the g.s. and the 2 ⁺ state Δ <r<sup>2>/(r²)=4.7×10⁻⁶ <i>13</i>, deduced by nuclear γ-ray resonance following ²³⁸Pu α decay; Δ<r<sup>2>/(r²)=-12.2×10⁻⁶ <i>59</i> by comparing isomeric shifts for ²³⁴U and ²³⁷Np, if Δ<r<sup>2>=-27×10⁻³ <i>5</i> fm² for ²³⁷Np (1974Mo12). J^π: 43.48γ to 0⁺ is E2.</r<sup></r<sup></r<sup>
143.352 4	4+		ABCDEFGHIJK	$T_{1/2}$: from (α) (ce)(t) in ²³⁸ Pu decay. See also Coulomb excitation. B(E4) \uparrow =1.96 56 (1973Be44) J^{π} : 99.8 γ to 2 ⁺ state is E2; Coulomb excitation; (d,p) and (d,t) data.
296.072 <i>4</i>	6+		AB EFGHIJK	J^{π} : 152.7 γ to 4 ⁺ is E2; Coulomb excitation; (d,p), (d,t), and (d,d') data.
497.04 <i>3</i>	8+		AB EFGHIJK	J^{π} : 200.9 γ to 6 ⁺ is E2; Coulomb excitation (d,p), (d,t), and (d,d') data.
741.2 5	10^{+}		EF K	
786.288 [#] 16	1-		ABCD FGH J	J^{π} : 742.81 γ to 2 ⁺ is E1, 786.27 γ to 0 ⁺ is (E1). Ratio of their reduced transition intensities is in good agreement with Alaga rule for K=0.
809.907 [@] 18	0+	<0.1 ns	ABCD FG J	J ^{π} : 810-keV transition to 0 ⁺ is E0. T _{1/2} : from βce(t) in 1.17-min ²³⁴ Pa β ⁻ decay.
849.266 [#] 18	3-		ABCDEFGH J	B(E3) $\uparrow \le 0.59$ 7 (1974Mc15) J^{π} : Coulomb excitation; (d,p), (d,d') data; reduced transition intensity ratio of γ rays to 2^+ and 4^+ states.
851.74 [@] 3	2+	≥1.74 ps	ABCDEF IJ	J ^{π} : 808 γ to 2 ⁺ level is E0+E2. T _{1/2} : calculated by the evaluators from B(E2) \leq 0.098 <i>13</i> (1974Mc15), using a branching ratio of I γ (851 γ)/total I(γ +ce) from level=0.2.
926.720 ^{&} 15	2+	1.38 ps <i>17</i>	ABCDE GHIJ	J ^π : Coulomb excitation; γ rays to 0 ⁺ and 4 ⁺ . T _{1/2} : calculated by the evaluators from measured B(E2)=0.123 <i>13</i> and I γ (926 γ)/total I(γ +ce) from level=0.415 <i>23</i> .
947.64 [@] 6	4+		AB F J	J^{π} : 804.4 γ to 4 ⁺ state is E0+E2.
962.546 [#] 23	5-		B FG	J^{π} : reduced transition intensity ratio of γ rays to 4 ⁺ , 6 ⁺ levels; (d,d') data.
968.425 ^{&} 21 989.430 ^a 13	3 ⁺ 2 ⁻	0.76 ns <i>4</i>	B HIJ ABCD F I	J^{π} : γ rays to 2^+ and 4^+ levels; (d,p) and (d,t) data. J^{π} : 140 and 203 γ rays to 3^- and 1^- levels are M1+E2. $T_{1/2}$: by $\gamma\gamma(t)$ in 6.70-h ²³⁴ Pa decay.
1023.77 ^{&} 3 1023.8 7	4 ⁺ 12 ⁺		AB F H J EF K	J^{π} : γ rays to 2^+ and 6^+ states.
1023.826 ^a 19	3-		AB E G I	J^{π} : Coulomb excited with B(E3)=0.22 5 (1974Mc15).
1044.536 ^b 23 1069.281 ^a 16	0 ⁺ 4 ⁻		A CD F J B I	J^{π} : 234.6-keV transition to 0^+ state is E0. J^{π} : 45.45 γ to 3^- is M1+E2, 106.68 γ decays to 5^- ; (d,t) reaction, and fit to the band.
1085.26 ^b 4	2+		ABCD F J	J^{π} : γ rays to 0^+ and 4^+ levels.
1090.89 ^{&} 4	5+		B HIJ	J^{π} : γ rays to 6^+ and 4^+ states; energy fit to the band; (d,p) and (d,t) data.
1096.12 [@] 8	6+		B F	J^{π} : 799.7 γ to 6 ⁺ is E0+E2.
1125.28# 4	7-		B F J	J^{π} : γ rays to 8^+ and 6^+ ; energy fit to the band.
1126.626 ^c 25	2+		BC H J	J^{π} : γ rays to 0^+ , 4^+ states; (d,p) reaction.
1127.552 ^a 19	5-		B GI	J^{π} : 103.77 γ to 3 ⁻ is (E2); 831.5 γ decays to 6 ⁺ , energy fit to the band; (d,t) and (d,d') data.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
1150 2			G	
1165.44 ^c 3	3+		В Н Ј	J^{π} : 196.8 γ to 3 ⁺ is E0+E2+M1.
1172.043 ^{&} 19	6+		B F HI	J^{π} : γ rays to 4^+ and 8^+ states.
1174.1 4	(1,2 ⁺)		C G	The levels seen in (d,d') and in 1.159-min ²³⁴ Pa β^- decay at 1174±2 and 1174.2±0.6 keV, respectively, are listed here as the same level solely on the basis of their energy. No structure information is available; level seen in (d,d') may be a different state than the state populated in the 1.159-min ²³⁴ Pa β^- decay. J^{π} : γ' s to 0 ⁺ , 1 ⁻ , 2 ⁻ levels.
1194.748 ^a 17	6-		В І	J^{π} : 67.1 γ to 5 ⁻ is M1+E2, 125.46 γ to 4 ⁻ is E2; γ rays to 6 ⁺ and 7 ⁻ states; energy fit to the band.
1214.71 ^c 5 1218 2	4+		B H J G	J^{π} : γ rays to 2^+ and 6^+ states.
1237.256 ^d 19	1-		BCD G	J^{π} : 1237.22 γ to 0 ⁺ is E1. Ratio of reduced transition intensities of 1237 γ and 1194 γ is consistent with Alaga rule for K=0.
1261.782 ^{&} 25	7+		В	J^{π} : γ rays to 6^+ , 8^+ ; energy fit to the band.
1274.29 ^c 8	(5+)		В Н	J^{π} : (d,p) data; γ ray to 6^+ state and γ ray from 3^+ state; energy fit to the band.
1277.461 ^a 23	7-		B GI	J^{π} : γ rays to 5 ⁻ , 8 ⁺ levels; energy fit to the band; (d,t) data.
1292.75 [@] 21	8+		F	J^{π} : 795.7 γ to 8 ⁺ state is E0+E2.
1312.18 ^d 9	3-		B E G	B(E3) \uparrow =0.22 7 (1974Mc15) J ^{π} : Coulomb excitation and (d,d') data.
1335.6? [#] 5 1339 2	9-		F G	J^{π} : energy fit to the band.
1340.5 12	14 ⁺		EF K	
1341.33 ^c 9	(6^{+})		В Н	J^{π} : γ rays to 5 ⁻ , 6 ⁺ states; (d,p) data.
1365.8 ^{&} 3	(8^{+})		F	
1421.257 ^e 17	6-	33.5 μs 20	В І	J^{π} : 351.9 γ to 4 ⁻ level is E2; 143.78 γ to 7 ⁻ is not quadrupole. (d,t) data support this assignment.
C				$T_{1/2}$: from $\gamma\gamma(t)$ in 6.70-h ²³⁴ Pa decay.
1435.380^{f} 23	1-		CD I	J^{π} : 1435.0 γ to 0 ⁺ is E1.
1447.52 ^d 7 1451.4	5-		B G I	J^{π} : (d,d') data.
1457.16 ^f 8	(2-)		BCD I	J^{π} : γ ray only to 2^+ member of the g.s. band, probable γ rays to 1^- of the K=0 band and to 2^- of the K=2 band may suggest J^{π} =1,2 $^-$. The authors in 1968Bj05 identified the 2^- state of the K=1, ν 7/2[743], ν 5/2[633] band at 1464 keV in their (d,t) spectrum. The 1457-keV level populated in 234 Pa β^- decay might be the same 2^- state, as suggested in 1975Ar23. The 475.5 and 453.6 γ rays from the 1911 level is consistent with this assignment.
1473			Н	C
1486.16 ^f 12	(3-)		B GI	B(E3) \uparrow =0.04 I B(E3) \uparrow : From (d,d') data. J^{π} : (d,t) and (d,d') data; γ rays to 2^+ and 4^+ .
1486.7 ^e	(7-)		I	J^{π} : (d,t) data.
1496.111 <i>8</i> 21	3+		В Н	J^{π} : 1352.9- and 369.5-keV γ rays to 4 ⁺ and 2 ⁺ levels are M1; (d,p) reaction.
1500.99 <i>10</i>	(1)		CD I	J^{π} : γ' s to 0^+ , 2^+ levels limit J^{π} to $1\pm$ and 2^+ ; ε decay from (0^+) 234 Np suggests J^{π} Ne 2^+ .
1502.38 7	3,4+		В	J^{π} : γ rays to 2^+ and 4^+ ; β decay from 4^+ ²³⁴ Pa.
1510.23 <i>12</i>	1		D	J^{π} : γ rays to 0^+ and 2^+ ; ε feeding from 0^+ ²³⁴ Np.
1533.31 ^f 7	(4-)		B I	J^{π} : γ rays to 2^- , 4^- and 4^+ levels; β decay from 4^+ ²³⁴ Pa; (d,t) data.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		KREF	Comments
1537.228 ^g 21	4+		В	Н	J^{π} : 372.4 γ to 3 ⁺ level is M1+E2; γ rays to 2 ⁺ , 6 ⁺ levels; (d,p) data.
1543.69 5	4+		В		J^{π} : γ rays to 2^+ and 6^+ levels.
1548.28 <i>10</i>	(5)		В		J^{π} : γ ray to 6^+ state and probably to 4^- , γ ray from 4^+ suggest
					$J^{\pi}=4^{+},5\pm$. Nonobservations of γ -ray transitions to lower spin levels
					may imply $J=5$.
1552.555 ^h 18	5 ⁺	2.20 ns 25	В	H	J^{π} : 131.3 γ to 6 ⁻ is E1; 584.1 γ to 3 ⁺ ; (d,p) data.
					$T_{1/2}$: $\beta \gamma(t)$ in 6.70-h ²³⁴ Pa β^- decay.
1553.60 20	(1)		C	G	J^{π} : γ rays to 0^+ , 2^+ levels; log ft for the β^- feeding from 1.159-min
					234 Pa β^- decay.
1567.7 ^e	(8-)			I	J^{π} : (d,t) data.
1570.690^{i} 23	1+		CD		J^{π} : 1570.7 γ to 0 ⁺ is M1.
1581.59 ^f 11	(5^{-})		В	GΙ	J^{π} : γ rays to 3 ⁻ , 5 ⁻ states; (d,t), (d,d') data.
1588.819 ^g 22	5 ⁺		В	H	J^{π} : 1292.8 γ to 6 ⁺ is M1; 565.2 γ to 4 ⁺ is mixed E2; (d,p) data.
1589.0? [#]	11-			F	J^{π} : energy fit to the band.
1592.29 6	(1)		C	F	J^{π} : γ rays to 0^+ , 2^+ levels; log ft for the β^- feeding from (0^-) ,
					1.159-min 234 Pa β^- decay.
1601.0	1+		CD	I	III 1550 7 4 2+ 44 1 M1 55(0 4 0+ 1 1 1 1 1 1 2
1601.826 <i>21</i>	1+		CD		J^{π} : 1558.7 γ to 2 ⁺ state is M1; 556.0 γ to 0 ⁺ is mixed E2. A possible configuration is K=1, $\nu\nu$ 7/2[624],5/2[633].
1619.58 ^h 10	(C+)		ъ.	**	•
1619.58" 10 1624.4	(6^{+})		В	H I	J^{π} : (d,p) data.
1649.99 ^f 11	((=)		ъ.		TT (14) 14
1649.99 ³ 11 1651.2 ^e	(6 ⁻) (9 ⁻)		В	G I I	J^{π} : (d,t) data. J^{π} : (d,t) data.
1653.30 7	(3^+)		В	1	J^{π} : 629.4 γ to 4 ⁺ state is (M1); γ ray to 2 ⁻ .
1653.9 ⁸	(6^+)		-	Н	J^{π} : (d,p) data.
1667.4 <i>4</i>	(1^{-})		С		J^{π} : γ rays to 0^+ , 3^- levels; log ft for the β^- feeding from (0^-) ,
	. ,				1.159-min 234 Pa β^{-} decay.
1675 2				G	, ,
1687.8 <i>16</i>	16 ⁺			EF K	
1690.5 ^h	(7^{+})			H	J^{π} : (d,p) data.
1693.453 ^j 24	5-		В	I	J^{π} : γ rays to 3^{-} , 7^{-} states; (d,t) data.
1693.7? <i>6</i>	(1^{-})		C		J^{π} : γ rays to 0^+ , 1^- , 3^- levels and log ft for the β^- feeding from
					1.159-min ²³⁴ Pa β^- decay suggest $J^{\pi}=1^-$.
1696 2				G	
1718.5 ^f	(7^{-})			HI	J^{π} : (d,p) and (d,t) data.
1722.87 ^k 4	3-		В	G	J^{π} : 733.0 γ to 2 ⁻ is M1; γ ray to 5 ⁻ state.
1723.402 ^l 17	4+		В		J^{π} : M1 γ -ray transitions to 3 ⁺ and 5 ⁺ levels.
1730.7				I	
1736.5 ⁸	(7+)			Н	J^{π} : (d,p) data.
1737.43 7	3+		В		J^{π} : 1594.0 γ to 4 ⁺ state is M1,E2; γ ray to 2 ⁻ state; β decay from ²³⁴ Pa
1720 17 6	(2+)		D.		g.s. rules out $J^{\pi}=2^+$. J^{π} : 612.0 γ to 2 ⁺ is (M1); β^- feeding from ²³⁴ Pa g.s. suggests J^{π} Ne
1738.17 <i>6</i>	(3^{+})		В		1^+ , 2^+ .
1747.1 ^j	(6-)			т	J^{π} : (d,t) data.
1747.13	(6-)			I H	J . (u,i) uata.
1749.0 1761.79 ^k 6	(4-)		D	11	J^{π} : (M1) γ -ray transitions to 3 ⁻ , 4 ⁻ levels.
1761.79° 6 1770.79° 9	(3^+)		B B		J^{π} : (M1) γ -ray transitions to 3, 4 levels. J^{π} : γ rays to 2^+ , 4^+ states, and β feeding from 234 Pa g.s. suggest $3\pm$,
1110.17 7	(3)		ע		4 ⁺ . Spin-parity of 3 ⁺ was proposed in 1986Ar05 from intensity ratio of
					γ rays to the g.s. band.
1779.4				I	, , ,
1780.2 ^h	(8^{+})			Н	J^{π} : (d,p) data.
	` /				

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1781.22 7	$(0^+,1)$	С	J^{π} : γ rays to 2^+ , 1^+ , 1^- levels and $\log ft$ for the β^- feeding from 1.159-min ²³⁴ Pa suggest $J^{\pi}=0^+$, $1\pm$.
1782.554 ^l 23	5 ⁺	B G	J^{π} : 245.37 γ to 4 ⁺ is M1; γ ray to 6 ⁻ state.
1784.18 <i>13</i>	4+	В	J^{π} : γ rays to 2^+ and 6^+ states.
1793.01 6	4 ⁺	В	J^{π} : γ rays to 2^+ and 6^+ states.
1796.3 6	(1)	C	J^{π} : γ rays to 0^+ , 1^- levels and log ft for the β^- feeding from 1.159-min 234 Pa β^-
1807.2	(1)	н	decay.
	(1-)		77
1809.73 4	(1-)	С	J ^{π} : γ rays to 0 ⁺ , 2 ⁺ , 3 ⁻ levels; log ft for the β ⁻ feeding from 1.159-min ²³⁴ Pa β ⁻ decay.
1810.0 ^j	(7^{-})	I	J^{π} : (d,t) data.
1811.62 ⁿ 5	4+	В	J^{π} : γ rays to 2^+ and 6^+ states.
1838.9		I	
1843.86 <i>17</i>	$3,4,5^{-}$	В	J^{π} : γ rays to 3 ⁻ and 4 ⁺ states; β feeding from ²³⁴ Pa g.s.
1849.7 <mark>8</mark>	(8+)	Н	J^{π} : (d,p) data.
1860.6	(-)	I	
1863.07 ⁿ 15	(5^+)	В	J^{π} : γ rays to 4 ⁺ and 6 ⁺ states; β feeding from ²³⁴ Pa g.s.; energy fit to the band.
1863.16 9	(1)	C G	The level observed in (d,d') at 1863 keV is assumed by the evaluators not to be the 5^+ member of the K=3 ⁺ band seen in 234 Pa ground state β^- decay at 1863.1 keV, since the 3 ⁺ and 4 ⁺ members of this band are not populated in (d,d'). The level populated in (d,d') might be a completely different state than the one populated in 1.159-min 234 Pa β^- decay.
			J ^{π} : γ rays to 0 ⁺ , 2 ⁺ levels; log ft for the $β$ ⁻ feeding from 1.159-min ²³⁴ Pa $β$ ⁻ decay.
1875.3 <i>4</i>	(1)	C	J^{π} : γ rays to 0^+ , 2^+ levels; log ft for the β^- feeding from 1.17-min ²³⁴ Pa β^- decay.
1881.74 ^m 7	4+	B I	J^{π} : γ rays to 2^+ and 6^+ levels; (d,t) data.
1891.3 ^h	(9^+)	Н	J^{π} : (d,p) data.
1911.09 5	(1^{-})	C	J^{π} : γ rays to 0^+ , 3^- levels; $\log ft$ for the β^- feeding from (0^-) , 1.159-min 234 Pa β^- decay.
1916.26 9	3,4+	В	J^{π} : γ rays to 2^+ and 4^+ states; β feeding in 4^+ ²³⁴ Pa g.s. decay.
1927.52 11	4 ⁺	В	J^{π} : γ rays to 2^+ and 6^+ states.
1927.32 11 1931.2 ^m	(5 ⁺)	I	J^{π} : (d,t) data.
	(3)		J'. (u,t) uata.
1932.1	(1)	Н	77
1937.01 7	(1)	C	J ^π : γ rays to 0 ⁺ , 2 ⁺ levels; log ft for the β ⁻ feeding from (0 ⁻), 1.159-min ²³⁴ Pa β ⁻ decay.
1940.50 9	4+	В	J^{π} : γ rays to 2^+ and 6^+ states.
1955.8°	(3^{+})	I	J^{π} : (d,t) data.
1955.8		H	
1958.77 <i>3</i>	3-	В	J ^{π} : γ rays to 1 ⁻ , 4 ⁺ , and 4 ⁻ states; β feeding from 4 ⁺ ²³⁴ Pa ground state. K=3, with ν 7/2[743]- ν 1/2[631] configuration was suggested in 1986Ar05.
1968.84 <i>10</i>	$4^{+},5$	В	J^{π} : γ rays to 4 ⁺ and 6 ⁺ ; β feeding from 4 ⁺ , ²³⁴ Pa g.s
1969.9 5	(1-)	С	J^{π} : γ rays to 0^+ , 3^- levels; log ft for β^- feeding from (0^-) , 1.159-min 234 Pa β^- decay.
1981.26 7	4+	В	J^{π} : γ -ray transitions to 2^+ and 6^+ states.
1985.2 ^m	(6^+)	I	J^{π} : (d,t) data.
2000.44° 13	(4 ⁺)	B I	J^{π} : 3 ⁻ ,4 ⁺ from γ rays to 2 ⁺ and 5 ⁻ states; (d,t) data suggest $J^{\pi}=4^+$.
2019.81 13	4+	В	J^{π} : γ -ray transitions to 2^+ and 6^+ states.
≈2026.0	•	I	
2033.52 <i>5</i> 2033.8	3+,4+	В	J^{π} : γ -ray transitions to 2^+ and 5^+ states.
2037.05 17	4+,5	В	J^{π} : γ -ray transitions to 4^+ and 6^+ states; β feeding from 4^+ , 234 Pa g.s.
≈2038.6	. ,5	I	or just denotions to i and o states, preceding from +, i a g.s.
2058.7		I	
2030.1		1	

E(level) [†]	$J^{\pi \ddagger}$	XR	EF	Comments
2062.8 17	18+	E	K	
2066.24 9	$4^{+},5$	В		J^{π} : γ -ray transitions to 4^- and 6^+ levels; β feeding from 4^+ , from 234 Pa g.s.
2068.81 11	$3,4,5^{+}$	В		J^{π} : γ rays to 3 ⁺ and 4 ⁺ states; β feeding from 4 ⁺ , ²³⁴ Pa ground state.
2095.8			I	
2097.4			H	
2101.43 9	5 ⁺	В		J^{π} : γ -ray transitions to 4^- and 7^+ levels.
2115.66 <i>11</i>	4+	В		J^{π} : γ -ray transitions to 2^+ and 6^+ states.
2144.01 9	$3^{+},4^{+}$	В	I	J^{π} : γ -ray transitions to 2^+ and 5^+ .
2163.3			I	
2184.1			I	
2213.7			I	
2464.0 18	20^{+}	E	K	
2889.5 18	22 ⁺	E	K	
3338.5 21	24 ⁺	E	K	
3807.5 <i>23</i>	26 ⁺	E	K	
4296.5 25	(28^{+})	E	K	
4807?	(30^+)		K	

[†] The energies of levels deexcited by γ rays have been deduced by evaluators from a least-squares fit to adopted γ -ray energies. Levels seen in $^{237}\text{Np}(p,\alpha)$ reaction are assumed to include more than a single state; therefore, no identification of the levels observed in this reaction with those from other sources has been made here.

 $^{^{\}ddagger}$ J^{π} assignments from (d,p), (d,t) reaction data are based on spectroscopic factors (ratio of observed to calculated cross sections) at 90° and 125°; assignments from (d,d') inelastic scattering are based on intensity patterns, ratios of cross sections at 90° and 125°, and β (EL) values deduced from (observed cross section)/ (calculated DWBA cross section) ratios. See sections for these reactions for more detail.

[#] Band(A): $K^{\pi}=0^{-}$ octupole-vibrational band.

[@] Band(B): $K^{\pi}=0^{+}$ β -vibrational band.

[&]amp; Band(C): $K^{\pi}=2^{+}$ γ-vibrational band. Squared amplitude of νν 5/2[633],1/2[631] was obtained as 0.37 7 from (d,p) data, squared amplitude of νν 7/2[743],3/2[761] was obtained as 0.27 14 from (d,t) data by 1968Bj05. See 1965Be40 and 1975Iv03 for the calculated νν and $\pi\pi$ wave-function amplitudes in γ-vibrational state.

^a Band(D): $K^{\pi}=2^{-}$ octupole-vibrational band. Squared amplitude of $\nu\nu$ 7/2[743],3/2[631] was obtained as 0.58 10 from (d,t) data by 1968Bj05. See 1975Iv05 for the calculated $\pi\pi$ and $\nu\nu$ wave-function amplitudes.

^b Band(E): $K^{\pi}=0^{+}$ band.

^c Band(F): K^{π} =2+ band. Squared amplitude of $\nu\nu$ 5/2[633],1/2[631] was obtained as 0.30 7 from (d,p) data by 1968Bj05. Two phonon, (β + γ)- vibrational character was suggested by 1968Bj05 on the basis of strong γ -ray feedings to β - and γ -vibrational bands

^d Band(G): $K^{\pi}=(0^{-})$ band. From (d,d') data, 1973Bo27 deduced that it was strongly collective.

^e Band(H): $K^{\pi}=6^{-}$ band: Configuration=((v 7/2(743))(v 5/2(633)).

^f Band(I): $K^{\pi}=1^{-}$ band: Configuration=((v 7/2(743))(v 5/2(633)) The amplitude square of this configuration in a probable octupole vibration was deduced by 1968Bj05 from (d,t) data to be 100% 20.

^g Band(J): $K^{\pi}=3^{+}$ band: Configuration=((v 5/2(633))(v 1/2(631)).

^h Band(K): $K^{\pi}=5^{+}$ band: Configuration= $((v \ 5/2(622))(v \ 5/2(633))$.

ⁱ Band(L): K=1 state: Configuration= $((\pi 3/2(651))(\pi 5/2(642)))$.

^j Band(M): $K^{\pi}=5^{-}$ band: Configuration=((v 7/2(743))(v 3/2(631)).

^k Band(N): $K^{\pi}=3^{-}$ band: Configuration= $((\pi 5/2(642))(\pi 1/2(530))$ Configuration was proposed by 1968Bj06 from ²³⁴Pa g.s. β decay.

¹ Band(O): $K^{\pi}=4^{+}$ band: Configuration=((ν 5/2(633))(ν 3/2(631)) + ((π 3/2[631])(π 5/2[642]) Configuration was proposed by 1968Bj06 on the bases of strong M1 transition to K=3 $\nu\nu$ 5/2[633],1/2[631] band and of β⁻ feeding from ²³⁴Pa g.s.

^m Band(P): $K^{\pi}=4^{+}$ band: Configuration= $((\nu 7/2(743))(\nu 1/2(501))$.

ⁿ Band(Q): $K^{\pi}=3^{+} \pi \pi 1/2[530]$, 5/2[525] configuration was suggested by 1986Ar05 from two-quasiparticle states' energy

²³⁴U Levels (continued)

calculations of 1964So02.

^o Band(R): K^{π} =3⁺ band: Configuration=((ν 7/2(743))(ν 1/2(501)) J and configuration assignments were made by 1968Bj05 from (d,t) data.

For theoretical discussions and calculations of B(E2) values for γ rays deexciting 2^+ states of the γ - vibrational, β -vibrational and g.s. bands, see 1985Zh08.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	$\mathrm{I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	$\alpha^{\#}$	${\rm I}_{(\gamma+ce)}$	Comments
43.4981	2+	43.498 1		0.0	0+	E2	713		$\alpha(L)$ =520 8; $\alpha(M)$ =143.5 20; $\alpha(N+)$ =49.3 7 $\alpha(N)$ =38.9 6; $\alpha(O)$ =8.91 13; $\alpha(P)$ =1.441 21; $\alpha(Q)$ =0.00339 5
143.352	4+	99.853 <i>3</i>		43.4981	2+	E2	13.42		B(E2)(W.u.)=236 10 α (L)=9.77 14; α (M)=2.71 4; α (N+)=0.933 13
143.332	4	99.633 3		43.4901	2	EZ	13.42		$\alpha(N)=0.736 \ 11; \ \alpha(N)=0.1691 \ 24; \ \alpha(P)=0.0277 \ 4; \ \alpha(Q)=0.0001099 \ 16$
296.072	6+	152.720 2		143.352	4+	E2	2.14		$\alpha(K)$ =0.217 3; $\alpha(L)$ =1.404 20; $\alpha(M)$ =0.388 6; $\alpha(N+)$ =0.1338 19 $\alpha(N)$ =0.1055 15; $\alpha(O)$ =0.0243 4; $\alpha(P)$ =0.00402 6;
	- 1				- 1				$\alpha(Q) = 2.69 \times 10^{-5} 4$
497.04	8+	200.97 3		296.072	6+	E2	0.734		$\alpha(K)$ =0.1534 22; $\alpha(L)$ =0.424 6; $\alpha(M)$ =0.1166 17; $\alpha(N+)$ =0.0402 6
									$\alpha(N)=0.0317 \ 5$; $\alpha(O)=0.00731 \ 11$; $\alpha(P)=0.001223 \ 18$; $\alpha(Q)=1.237\times10^{-5} \ 18$
741.2	10+	244.2 5		497.04	8+				
786.288	1-	742.81 <i>3</i>	100 2	43.4981	2+	E1	0.00636		$\alpha(K)$ =0.00518 8; $\alpha(L)$ =0.000895 13; $\alpha(M)$ =0.000213 3; $\alpha(N+)$ =7.37×10 ⁻⁵ 11
									$\alpha(N)=5.71\times10^{-5} 8$; $\alpha(O)=1.378\times10^{-5} 20$; $\alpha(P)=2.61\times10^{-6} 4$; $\alpha(Q)=1.95\times10^{-7} 3$
		786.27 <i>3</i>	58 2	0.0	0+	(E1)	0.00573		$\alpha(K)$ =0.00467 7; $\alpha(L)$ =0.000804 12; $\alpha(M)$ =0.000191 3; $\alpha(N+)$ =6.61×10 ⁻⁵ 10
									$\alpha(N)=5.12\times10^{-5} 8$; $\alpha(O)=1.237\times10^{-5} 18$; $\alpha(P)=2.35\times10^{-6} 4$; $\alpha(Q)=1.766\times10^{-7} 25$
809.907	0+	766.38 2	100.0 7	43.4981	2+	(E2)	0.0187		$\alpha(K)$ =0.01336 19; $\alpha(L)$ =0.00396 6; $\alpha(M)$ =0.001003 14; $\alpha(N+)$ =0.000348 5
									$\alpha(N)=0.000271 \ 4; \ \alpha(O)=6.45\times10^{-5} \ 9; \ \alpha(P)=1.182\times10^{-5} \ 17;$
									$\alpha(Q)=6.25\times10^{-7} 9$
									B(E2)(W.u.)>0.067
		810.0 5		0.0	0+	E0		$2.7 \times 10^2 \ 10$	
849.266	3-	705.9 <i>1</i>	90 5	143.352	4 ⁺				
	- 1	805.80 5	100 7	43.4981					
851.74	2+	(41.82 11)	0.24 12	809.907	0+	[E2]	863 17		B(E2)(W.u.)<1.1×10 ⁴ α (L)=630 12; α (M)=174 4; α (N+)=59.6 12 α (N)=47.1 9; α (O)=10.79 21; α (P)=1.74 4; α (Q)=0.00403 8 E _γ : this γ-ray transition was not observed; its existence has been inferred in 6.70-h 234 Pa β ⁻ decay. Eγ is from level scheme.
		708.3 2	31 4	143.352	4+	[E2]	0.0219		B(E2)(W.u.)<1.0

γ (234U) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ	$\alpha^{\#}$	Comments
	_								$\alpha(K)$ =0.01537 22; $\alpha(L)$ =0.00489 7; $\alpha(M)$ =0.001246 18; $\alpha(N+)$ =0.000432 6 $\alpha(N)$ =0.000337 5; $\alpha(O)$ =8.00×10 ⁻⁵ 12; $\alpha(P)$ =1.458×10 ⁻⁵ 21; $\alpha(Q)$ =7.28×10 ⁻⁷ 11
851.74	2+	808.20 10	60 6	43.4981	2+	E0+E2	0.45 9	4.2	B(E2)(W.u.)<0.23 α : deduced in ²³⁴ Np ε decay.
		851.70 <i>10</i>	100 6	0.0	0+	[E2]		0.01513	B(E2)(W.u.)<1.3 α (K)=0.01109 16; α (L)=0.00302 5; α (M)=0.000759 11; α (N+)=0.000263 4 α (N)=0.000205 3; α (O)=4.89×10 ⁻⁵ 7; α (P)=9.03×10 ⁻⁶ 13; α (O)=5.10×10 ⁻⁷ 8
926.720	2+	783.4 1	3.1 3	143.352	4+	[E2]		0.0179	$\alpha(Q)=3.10\times10^{-8}$ B(E2)(W.u.)=0.285 $\alpha(K)=0.01285$ 18; $\alpha(L)=0.00374$ 6; $\alpha(M)=0.000946$ 14; $\alpha(N+)=0.000328$ 5 $\alpha(N)=0.000255$ 4; $\alpha(O)=6.08\times10^{-5}$ 9; $\alpha(P)=1.116\times10^{-5}$ 16; $\alpha(O)=5.99\times10^{-7}$ 9
		883.24 4	100 7	43.4981	2+	E2		0.01409	B(E2)(W.u.)=4.9 8 α (K)=0.01040 15; α (L)=0.00276 4; α (M)=0.000692 10; α (N+)=0.000240 4 α (N)=0.000187 3; α (O)=4.46×10 ⁻⁵ 7; α (P)=8.25×10 ⁻⁶ 12; α (O)=4.76×10 ⁻⁷ 7
		926.72 10	75 4	0.0	0+	(E2)		0.01284	B(E2)(W.u.)=2.9 5 α (K)=0.00956 14; α (L)=0.00245 4; α (M)=0.000613 9; α (N+)=0.000213 3 α (N)=0.0001653 24; α (O)=3.95×10 ⁻⁵ 6; α (P)=7.34×10 ⁻⁶ 11; α (Q)=4.34×10 ⁻⁷ 6
947.64	4+	804.4 <i>3</i> 904.37 <i>15</i>	100 <i>34</i> 55 <i>4</i>	143.352 43.4981		E0+E2		0.37	α : deduced in 6.70 ²³⁴ Pa β ⁻ decay.
962.546	5-	666.5 <i>1</i> 819.2 <i>1</i>	62 <i>4</i> 100 <i>6</i>	296.072 143.352	6 ⁺ 4 ⁺				
968.425	3+	825.1 2 925.0 <i>I</i>	24 <i>2</i> 100 <i>10</i>	143.352 43.4981	4 ⁺ 2 ⁺				
989.430	2-	62.70 1	12 3	926.720		E1		0.426	$\alpha(L)$ =0.320 5; $\alpha(M)$ =0.0791 11; $\alpha(N+)$ =0.0266 4 $\alpha(N)$ =0.0209 3; $\alpha(O)$ =0.00481 7; $\alpha(P)$ =0.000795 12; $\alpha(Q)$ =3.22×10 ⁻⁵ 5 B(E1)(W.u.)=7.0×10 ⁻⁵ 19
		140.15 2	3.8 4	849.266	3-	M1+E2	1.2 6	5.3 18	$\alpha(K)$ =2.9 22; $\alpha(L)$ =1.76 25; $\alpha(M)$ =0.47 9; $\alpha(N+)$ =0.16 3 $\alpha(N)$ =0.127 23; $\alpha(O)$ =0.030 5; $\alpha(P)$ =0.0051 6; $\alpha(Q)$ =0.00015 10 B(M1)(W.u.)=0.00010 8; B(E2)(W.u.)=2.2 13
		203.12 3	9.2 8	786.288	1-	M1+E2	1.5 4	1.4 4	B(E2)(W.u.)=1.0 3; B(M1)(W.u.)= 6×10^{-5} 3 α (K)=0.8 4; α (L)=0.422 10; α (M)=0.1113 16; α (N+)=0.0385 6 α (N)=0.0301 5; α (O)=0.00708 11; α (P)=0.00124 4; α (Q)=4.3×10 ⁻⁵ 15
		946.00 <i>3</i>	100 7	43.4981	2+	(E1)		0.00412	$\alpha(K)=0.00337$ 5; $\alpha(L)=0.000571$ 8; $\alpha(M)=0.0001355$ 19; $\alpha(N+)=4.69\times10^{-5}$ 7 $\alpha(N)=3.63\times10^{-5}$ 5; $\alpha(O)=8.78\times10^{-6}$ 13; $\alpha(P)=1.675\times10^{-6}$ 24;

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	$lpha^{\#}$	Comments
1085.26	2+	299.1 2	10 3	786.288	1-			
	_	941.94 10	100 5		4+			
		1041.7 2	48 <i>4</i>	43.4981				
		1085.4 2	20 6		0 +			
1090.89	5 ⁺	794.9 2	41 6	296.072	6+			
		947.7 2	100 10	143.352	4+			
1096.12	6+	799.7 2			6+	E0+E2		
		952.7 1			4+			
1125.28	7-	628.1 <i>I</i>	66 12	497.04	8+			
		829.3 2	100 <i>30</i>		6+			
1126.626	2+	137.23 5	5.3 21		2-			
		199.95 5	14 5	926.720	2+	(E0+E2+M1)	1.9 12	$\alpha(K)=1.3\ 12;\ \alpha(L)=0.456\ 25;\ \alpha(M)=0.1176\ 23;\ \alpha(N+)=0.0408\ 7$ $\alpha(N)=0.0318\ 8;\ \alpha(O)=0.00754\ 13;\ \alpha(P)=0.00136\ 11;\ \alpha(Q)=6.E-5\ 6$
		275.04 [@] 10	35 7	851.74	2+			
		316.7 <i>I</i>	20 2	809.907	0_{+}			
		340.2 <i>I</i>	8.0 17		1-			
		1083.2 <i>I</i>	100 7	43.4981	2+	(M1)	0.0317	$\alpha(K)$ =0.0254 4; $\alpha(L)$ =0.00477 7; $\alpha(M)$ =0.001147 16; $\alpha(N+)$ =0.000400 6 $\alpha(N)$ =0.000309 5; $\alpha(O)$ =7.51×10 ⁻⁵ 11; $\alpha(P)$ =1.450×10 ⁻⁵ 21; $\alpha(Q)$ =1.163×10 ⁻⁶ 17
		1126.8 <i>I</i>	59 <i>7</i>	0.0	0^{+}			
1127.552	5-	58.20 <i>6</i>	0.21 7	1069.281	4-	(E2)	174	$\alpha(L)=126.9\ 19;\ \alpha(M)=35.1\ 6;\ \alpha(N+)=12.06\ 18$
								$\alpha(N)=9.52\ 15;\ \alpha(O)=2.18\ 4;\ \alpha(P)=0.354\ 6;\ \alpha(Q)=0.000954\ 14$
		103.77 2	5.7 8	1023.826	3-	(E2)	11.22	$\alpha(L)=8.17 \ 12; \ \alpha(M)=2.27 \ 4; \ \alpha(N+)=0.780 \ 11$
								$\alpha(N)=0.615 9$; $\alpha(O)=0.1414 20$; $\alpha(P)=0.0232 4$; $\alpha(Q)=9.56\times10^{-5} 14$
		164.94 5	1.2 5		5-			
		278.3 <i>1</i>	1.0 3		3-			
		831.5 <i>I</i>	100 5		6+			
1165.44	2+	984.2 <i>I</i>	39 4		4 ⁺	E0 E0 141	20.12	(T) 1 4 12 (T) 0 402 21 (AB) 0 124 4 (AT) > 0.0422 11
1165.44	3+	196.80 5	29 9	968.425	3 ⁺	E0+E2+M1	2.0 13	$\alpha(K)=1.4\ 13;\ \alpha(L)=0.483\ 21;\ \alpha(M)=0.124\ 4;\ \alpha(N+)=0.0432\ 11$ $\alpha(N)=0.0337\ 11;\ \alpha(O)=0.00798\ 12;\ \alpha(P)=0.00144\ 10;\ \alpha(Q)=7.E-5\ 6$
		212 5 1	40.5	051 74	2+			α : deduced in ²³⁴ Pa g.s. decay.
		313.5 <i>I</i> 1021.8 2	42 <i>5</i> 58 <i>13</i>		2 ⁺ 4 ⁺			
		1021.8 <i>2</i> 1121.7 <i>1</i>	58 <i>13</i> 100 <i>13</i>	143.352 43.4981		M1	0.0289	$\alpha(K)=0.0232$ 4; $\alpha(L)=0.00434$ 6; $\alpha(M)=0.001045$ 15; $\alpha(N+)=0.000365$ 6
			100 13			IVII	0.0289	$\alpha(\text{N})=0.00252\ 4;\ \alpha(\text{L})=0.00454\ 6;\ \alpha(\text{M})=0.001045\ 15;\ \alpha(\text{N}+)=0.000505\ 6$ $\alpha(\text{N})=0.000281\ 4;\ \alpha(\text{O})=6.84\times10^{-5}\ 10;\ \alpha(\text{P})=1.321\times10^{-5}\ 19;$ $\alpha(\text{Q})=1.060\times10^{-6}\ 15;\ \alpha(\text{IPF})=6.86\times10^{-7}\ 1$
1172.043	6+	675.1 <i>1</i>	4.0 4	497.04	8+			
		876.0 <i>1</i>	100.0 9	296.072	6+	(E2)	0.01432	$\alpha(K)$ =0.01055 15; $\alpha(L)$ =0.00282 4; $\alpha(M)$ =0.000706 10; $\alpha(N+)$ =0.000245 4
								$\alpha(N)=0.000191$ 3; $\alpha(O)=4.55\times10^{-5}$ 7; $\alpha(P)=8.42\times10^{-6}$ 12; $\alpha(Q)=4.83\times10^{-7}$ 7

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	$\mathrm{J}^\pi_{_f}$	Mult.‡	δ	α#	Comments
					J	Muit.		<u> </u>	Comments
1172.043	6 ⁺	1028.7 <i>1</i>	22.4 13	143.352	4 ⁺				
1174.1	$(1,2^+)$	184.7 5	90 8	989.430	2 ⁻ 1 ⁻				
		387.6 <i>8</i> 1174.2 <i>10</i>	50 <i>9</i> 100 <i>10</i>	786.288 0.0	0+				
1194.748	6-	67.10 7	1.1 4	1127.552	5-	M1+E2	1.2 3	58 11	$\alpha(L)=42 8$; $\alpha(M)=11.6 22$; $\alpha(N+)=4.0 8$
1171.710	O	07.10 7	1.1 /	1127.332	5	1411 1 112	1.2 3	30 11	$\alpha(N)=3.1$ 6; $\alpha(O)=0.72$ 14; $\alpha(P)=0.120$ 21; $\alpha(O)=0.0014$ 4
		69.46 5	0.54 23	1125.28	7-				
		125.46 <i>1</i>	24 3	1069.281	4-	E2		4.89	$\alpha(K)$ =0.216 3; $\alpha(L)$ =3.41 5; $\alpha(M)$ =0.945 14; $\alpha(N+)$ =0.325 5 $\alpha(N)$ =0.257 4; $\alpha(O)$ =0.0590 9; $\alpha(P)$ =0.00971 14; $\alpha(Q)$ =4.98×10 ⁻⁵
		232.21 3	5.4 10	962.546	5-				,
		898.67 5	100 7	296.072	6+				
1214.71	4+	267.12 5	100 12	947.64	4+				
		365.0 [@] 3	10 4	849.266	3-				
		918.4 <i>1</i>	54 6	296.072	6+				
		1171.3 <i>1</i>	51 6	43.4981					
1237.256	1-	192.91 % 7	1.1 & 3	1044.536	0+				
		247.79 7	1.81 12	989.430	2-				
		310.52 <i>10</i> 387.94 <i>6</i>	0.65 <i>7</i> 3.46 <i>20</i>	926.720 849.266	2 ⁺ 3 ⁻				
		427.4 <i>4</i>	0.15 4	809.907	0+				
		450.93 4	20.7 16	786.288	1-	M1+E2	0.70	0.241	$\alpha(K)$ =0.187 3; $\alpha(L)$ =0.0400 6; $\alpha(M)$ =0.00980 14; $\alpha(N+)$ =0.00341
									$\alpha(N)=0.00264$ 4; $\alpha(O)=0.000638$ 9; $\alpha(P)=0.0001213$ 17;
									$\alpha(Q)=8.79\times10^{-6}\ 13$
		1193.77 <i>3</i>	100 4	43.4981	2+	E1		0.00277	$\alpha(K)=0.00226 \ 4; \ \alpha(L)=0.000377 \ 6; \ \alpha(M)=8.92\times10^{-5} \ 13;$
									α (N+)=4.12×10 ⁻⁵ 6
									$\alpha(N)=2.39\times10^{-5} 4$; $\alpha(O)=5.80\times10^{-6} 9$; $\alpha(P)=1.109\times10^{-6} 16$; $\alpha(Q)=8.70\times10^{-8} 13$; $\alpha(IPF)=1.027\times10^{-5} 15$
		1237.22 4	38.7 8	0.0	0^{+}	E1		0.00262	$\alpha(K)=0.00213 \ 3; \ \alpha(L)=0.000354 \ 5; \ \alpha(M)=8.38\times10^{-5} \ 12;$
									$\alpha(N+)=5.11\times10^{-5} 8$
									$\alpha(N)=2.25\times10^{-5} 4$; $\alpha(O)=5.44\times10^{-6} 8$; $\alpha(P)=1.042\times10^{-6} 15$;
									$\alpha(Q)=8.20\times10^{-8} \ 12; \ \alpha(IPF)=2.21\times10^{-5} \ 3$
1261.782	7+	764.8 2	41 9	497.04	8+				
1274.20	(5±)	965.8 1	100 7	296.072	6 ⁺				
1274.29 1277.461	(5 ⁺) 7 ⁻	978.2 <i>3</i> 149.88 <i>3</i>	8 3	296.072 1127.552	6 ⁺ 5 ⁻				
14/7.401	,	780.4 <i>2</i>	100 5	497.04	3 8 ⁺				
		981.6 <i>3</i>	80 23	296.072	6 ⁺				
1292.75	8+	795.7 2		497.04	8+	E0+E2			

						<i>y</i> (0) (cor	itiliaca)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	$_{\mathrm{I}_{\boldsymbol{\gamma}}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ	$\alpha^{\#}$	Comments
1312.18	3-	343.8 2	82 18	968.425 3+				
		365.0 [@] 3		947.64 4+				
1225 69	0-	385.4 1	100 25	926.720 2+				
1335.6?	9-	(594.7) 838.5 <i>5</i>		741.2 10 ⁺ 497.04 8 ⁺				
1340.5	14+	316.7		1023.8 12+				
1341.33	(6^{+})	379.1 <i>1</i>	100 25	962.546 5				
1265.0	(0±)	1044.4 2	≈75	296.072 6+				
1365.8 1421.257	(8 ⁺) 6 ⁻	868.8 <i>3</i> 143.78 2	7.6 8	497.04 8 ⁺ 1277.461 7 ⁻	(M1+E2)	≈1.0	≈5.31	$B(M1)(W.u.)\approx 1.6\times 10^{-9}$; $B(E2)(W.u.)\approx 2.3\times 10^{-5}$
1421.237	O	143.76 2	7.0 0	1277.401 7	(WIT+L2)	~1.0	~5.51	$\alpha(K) \approx 3.24$; $\alpha(L) \approx 1.532$; $\alpha(M) \approx 0.403$; $\alpha(N+) \approx 0.1394$
								$\alpha(N) \approx 0.1091$; $\alpha(O) \approx 0.0256$; $\alpha(P) \approx 0.00450$; $\alpha(Q) \approx 0.0001658$
		159.48 2	15.4 <i>18</i>	1261.782 7+	[E1]		0.1676	$\alpha(K)=0.1303 \ 19; \ \alpha(L)=0.0282 \ 4; \ \alpha(M)=0.00684 \ 10;$
								$\alpha(N+)=0.00234$ 4 $\alpha(N)=0.00182$ 3; $\alpha(O)=0.000431$ 6; $\alpha(P)=7.70\times10^{-5}$ 11;
								$\alpha(Q)=4.23\times10^{-6}$ 6
								$B(E1)(W.u.)=3.8\times10^{-11} 6$
		226.50 <i>3</i>	100 8	1194.748 6	M1+E2	1.0 + 3 - 1	1.33 22	$\alpha(K)$ =0.93 21; $\alpha(L)$ =0.297 12; $\alpha(M)$ =0.0759 18; $\alpha(N+)$ =0.0263 7
								$\alpha(N)=0.0205 \ 5; \ \alpha(O)=0.00488 \ 14; \ \alpha(P)=0.00089 \ 4;$ $\alpha(Q)=4.6\times10^{-5} \ 10$
								$B(M1)(W.u.)=5.4\times10^{-9}$ 19; $B(E2)(W.u.)=3.1\times10^{-5}$ 11
		249.22 <i>1</i>	59 8	1172.043 6 ⁺	E1		0.0594	$B(E1)(W.u.)=3.8\times10^{-11}$ 7
								$\alpha(K)$ =0.0470 7; $\alpha(L)$ =0.00935 13; $\alpha(M)$ =0.00226 4; $\alpha(N+)$ =0.000775 11
								$\alpha(N)=0.000604 \ 9; \ \alpha(O)=0.0001437 \ 21; \ \alpha(P)=2.63\times10^{-5} \ 4;$
								$\alpha(Q)=1.616\times10^{-6} \ 23$
		293.79 5	71 5	1127.552 5	M1+E2	1.7 +6-3	0.42 9	$\alpha(K)$ =0.28 8; $\alpha(L)$ =0.109 8; $\alpha(M)$ =0.0283 16; $\alpha(N+)$ =0.0098 6 $\alpha(N)$ =0.0076 4; $\alpha(O)$ =0.00181 11; $\alpha(P)$ =0.000323 24;
								$\alpha(Q)=1.4\times10^{-5}$ 4
								$B(M1)(W.u.)=9.E-10 5$; $B(E2)(W.u.)=9.0\times10^{-6} 21$
		295.91 8	3.4 5	1125.28 7	[M1+E2]		0.6 5	$B(M1)(W.u.)=8.0\times10^{-11} \ 14; B(E2)(W.u.)=2.7\times10^{-7} \ 5$
								$\alpha(K)=0.5 \ 4; \ \alpha(L)=0.12 \ 4; \ \alpha(M)=0.031 \ 8; \ \alpha(N+)=0.011 \ 3$
								$\alpha(N)=0.0084 \ 20; \ \alpha(O)=0.0020 \ 6; \ \alpha(P)=0.00037 \ 12;$ $\alpha(Q)=2.2\times10^{-5} \ 18$
		330.40 ^{&} 5	≈7 <mark>&</mark>	1090.89 5 ⁺	[E1]		0.0318	$a(Q)=2.2 \times 10^{-18}$ B(E1)(W.u.) $\approx 1.9 \times 10^{-12}$
		330. 4 0 3	~ /	1090.09 3	լեւյ		0.0510	$\alpha(K)=0.0254 \ 4; \ \alpha(L)=0.00484 \ 7; \ \alpha(M)=0.001165 \ 17;$
								α(N+)=0.000401 6
								$\alpha(N)=0.000312$ 5; $\alpha(O)=7.45\times10^{-5}$ 11; $\alpha(P)=1.379\times10^{-5}$ 20;
		351.9 <i>I</i>	9.8 8	1069.281 4-	E2		0.1175	$\alpha(Q)=9.01\times10^{-7}$ 13 $\alpha(K)=0.0555$ 8; $\alpha(L)=0.0455$ 7; $\alpha(M)=0.01222$ 18;
		551.7 1	7.0 0	1007.201 4	Li2		0.11/3	$u(\mathbf{K}) - 0.0333 \text{ O}, \ u(\mathbf{L}) - 0.0433 \text{ /}, \ u(\mathbf{M}) = 0.01222 \text{ 10},$

γ (234U) (continued)

						2	y(0) (continued)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ	$\alpha^{\#}$	Comments
1401.057	<u> </u>	207.7.2	0.62.15	1022 77	4+	EMO1		1 240	$\alpha(N+)=0.00422 6$ $\alpha(N)=0.00331 5; \alpha(O)=0.000773 11; \alpha(P)=0.0001335 19;$ $\alpha(Q)=3.15\times10^{-6} 5$ B(E2)(W.u.)=6.8×10 ⁻⁷ 8
1421.257	6-	397.7 3	0.63 15	1023.77	4+	[M2]		1.349	B(M2)(W.u.)= 2.9×10^{-6} 8 α (K)= 0.986 14; α (L)= 0.270 4; α (M)= 0.0687 10; α (N+)= 0.0242 4 α (N)= 0.0187 3; α (O)= 0.00454 7; α (P)= 0.000864 13; α (Q)= 6.46×10^{-5} 10
		458.68 5	26.8 15	962.546	5-	M1+E2	1.4 4	0.14 5	$\alpha(K)$ =0.11 4; $\alpha(L)$ =0.028 5; $\alpha(M)$ =0.0071 11; $\alpha(N+)$ =0.0025 4 $\alpha(N)$ =0.0019 3; $\alpha(O)$ =0.00046 8; $\alpha(P)$ =8.5×10 ⁻⁵ 15; $\alpha(Q)$ =5.1×10 ⁻⁶ 16
		1125.2 <i>I</i>	8.5 17	296.072	6+	[E1]		0.00305	B(M1)(W.u.)= 1.2×10^{-10} 5; B(E2)(W.u.)= 3.3×10^{-7} 8 α (K)= 0.00250 4; α (L)= 0.000418 6; α (M)= 9.91×10^{-5} 14; α (N+)= 3.56×10^{-5} 5 α (N)= 2.66×10^{-5} 4; α (O)= 6.43×10^{-6} 9; α (P)= 1.230×10^{-6} 18; α (Q)= 9.60×10^{-8} 14; α (IPF)= 1.278×10^{-6} 19 B(E1)(W.u.)= 6.0×10^{-14} 13
		1277.7 2	1.05 17	143.352	4+	[M2]		0.0473	B(E1)(W.u.)=0.0×10 × 13 B(M2)(W.u.)=1.4×10 ⁻⁸ 3 α (K)=0.0370 6; α (L)=0.00771 11; α (M)=0.00188 3; α (N+)=0.000665 10 α (N)=0.000509 8; α (O)=0.0001237 18; α (P)=2.38×10 ⁻⁵ 4; α (Q)=1.86×10 ⁻⁶ 3; α (IPF)=6.75×10 ⁻⁶ 10
1435.380	1-	197.91 <i>15</i> 445.91 <i>10</i> 625.66 <i>7</i> 649.12& <i>10</i>	0.28 7 0.31 7 1.19 11 0.42 9	1237.256 989.430 809.907 786.288	2-				
		1391.87 4	35.6 15	43.4981	2+	E1		0.00221	$\alpha(K)=0.001745\ 25;\ \alpha(L)=0.000288\ 4;\ \alpha(M)=6.82\times10^{-5}\ 10;$ $\alpha(N+)=0.0001116\ 16$ $\alpha(N)=1.83\times10^{-5}\ 3;\ \alpha(O)=4.44\times10^{-6}\ 7;\ \alpha(P)=8.51\times10^{-7}\ 12;$ $\alpha(Q)=6.76\times10^{-8}\ 10;\ \alpha(IPF)=8.79\times10^{-5}\ 13$
		1435.36 4	100 4	0.0	0+	E1		0.00213	$\alpha(K)=0.001658\ 24;\ \alpha(L)=0.000274\ 4;\ \alpha(M)=6.47\times10^{-5}\ 9;\ \alpha(N+)=0.0001355\ 19$ $\alpha(N)=1.734\times10^{-5}\ 25;\ \alpha(O)=4.21\times10^{-6}\ 6;\ \alpha(P)=8.07\times10^{-7}\ 12;\ \alpha(Q)=6.43\times10^{-8}\ 9;\ \alpha(IPF)=0.0001130\ 16$
1447.52	5-	275.04 [@] 10 320.4 1 1151.4 [@] 3	100 <i>12</i> 62 <i>18</i>	1172.043 1127.552 296.072					
1457.16	(2-)	468.0 [@] <i>a</i> 1 670.8 10	16 4	989.430 786.288	2-				

γ (234U) (continued)

							/(0)	(commuca)	
E_i (level)	J_i^{π}	E_{γ}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ	$\alpha^{\#}$	Comments
1457.16	(2^{-})	1414.0 4	100 5	43.4981	2+				
1486.16	(3^{-})	559.2 2	100 29	926.720	2 ⁺				
1 100.10	(5)	1342.9 2	17 6	143.352	4 ⁺				
		1442.8 2	43 9	43.4981					
1496.111	3 ⁺	221.83 10	0.87 25	1274.29	(5^{+})				
1470.111	5	330.40 4	≈5.6 ^{&}	1165.44	3+	M1+E2	0.7	0.560	(IZ) 0.421 (I) 0.0000 (M) 0.0040 (N) 0.00040
		330.40 4	≈3.6	1105.44	3.	MI+E2	≈0.7	≈0.562	$\alpha(K) \approx 0.431; \ \alpha(L) \approx 0.0980; \ \alpha(M) \approx 0.0242; \ \alpha(N+) \approx 0.00842$
		369.50 5	30.0 19	1126.626	2+	M1		0.565	$\alpha(N)\approx0.00653$; $\alpha(O)\approx0.001574$; $\alpha(P)\approx0.000297$; $\alpha(Q)\approx2.04\times10^{-5}$ $\alpha(K)=0.450$ 7; $\alpha(L)=0.0866$ 13; $\alpha(M)=0.0209$ 3; $\alpha(N+)=0.00729$ 11 $\alpha(N)=0.00563$ 8; $\alpha(O)=0.001370$ 20; $\alpha(P)=0.000264$ 4; $\alpha(O)=2.11\times10^{-5}$ 3
		426.95 5	5.5 4	1069.281	4-				w(Q) 2 .117/13
		472.3 1	4.4 3	1023.77	4 ⁺				
		506.75 5	15.6 <i>10</i>	989.430	2-				
		527.9 1	4.7 4	968.425	3 ⁺	(M1)		0.215	$\alpha(K)$ =0.1716 24; $\alpha(L)$ =0.0327 5; $\alpha(M)$ =0.00790 11; $\alpha(N+)$ =0.00275 4
									$\alpha(N)=0.00213 \ 3; \ \alpha(O)=0.000517 \ 8; \ \alpha(P)=9.98\times10^{-5} \ 14;$
									$\alpha(0)=7.96\times10^{-6}$ 12
		569.5 <i>1</i>	100 10	926.720	2+	M1		0.1754	$\alpha(Q) = 7.90 \times 10^{-12}$ $\alpha(K) = 0.1401 \ 20; \ \alpha(L) = 0.0267 \ 4; \ \alpha(M) = 0.00643 \ 9; \ \alpha(N+) = 0.00224$
		309.3 1	100 10	920.720	2.	IVI I		0.1734	4
									α (N)=0.001732 25; α (O)=0.000421 6; α (P)=8.12×10 ⁻⁵ 12; α (Q)=6.48×10 ⁻⁶ 9
		646.5 <i>1</i>	1.37 13	849.266	3-				
		1352.9 <i>I</i>	14.0 7	143.352	4+	M1		0.01766	$\alpha(K)$ =0.01412 20; $\alpha(L)$ =0.00263 4; $\alpha(M)$ =0.000633 9; $\alpha(N+)$ =0.000276 4
									$\alpha(N)=0.0001705 \ 24; \ \alpha(O)=4.15\times10^{-5} \ 6; \ \alpha(P)=8.01\times10^{-6} \ 12; \ \alpha(O)=6.44\times10^{-7} \ 9; \ \alpha(IPF)=5.49\times10^{-5} \ 8$
		1452.7 <i>1</i>	9.7 <i>7</i>	43.4981	2+				a(() a, a(==) a
1500.99	(1)	649.0 <mark>&</mark> 10	13 <mark>&</mark> 3	851.74	2+				
1300.77	(1)	691.08 10	100 10	809.907	0+				
		1458.5 <i>15</i>	24 6	43.4981					
		1501 ^a 2	≈16	0.0	0+				
1502.38	3,4+	1359.0 <i>I</i>	100 14	143.352	4 ⁺				
1302.30	5,4	1458.9 <i>I</i>	60 14	43.4981	-				
1510.23	1	1466.5 2	100 10	43.4981					
1310.23	1	1510.35 <i>15</i>	75 10	0.0	0+				
1533.31	(4^{-})	464.2 <i>1</i>	23 8	1069.281	4 ⁻				
1333.31	(+)	543.8 <i>1</i>	100 16	989.430	2-				
		1389.6 2	54 16	143.352	2 4 ⁺				
1537.228	4+	372.0 <i>I</i>	34 10	145.552	3 ⁺	M1+E2	< 0.5	0.51 5	$\alpha(K)=0.40 \ 4; \ \alpha(L)=0.080 \ 5; \ \alpha(M)=0.0195 \ 11; \ \alpha(N+)=0.0068 \ 4$
1337.228	4	5/2.0 1	34 3	1103.44	3.	W11+E2	<0.3	0.51 3	$\alpha(K)$ =0.40 4; $\alpha(L)$ =0.080 5; $\alpha(M)$ =0.0195 11; $\alpha(N+)$ =0.0068 4 $\alpha(N)$ =0.0052 3; $\alpha(O)$ =0.00127 8; $\alpha(P)$ =0.000244 16; $\alpha(Q)$ =1.89×10 ⁻⁵ 18

γ (234U) (continued)

$E_i(level)$	J_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α#	Comments
1537.228	4+	409.8 1	9.3 9	1127.552	5-			
		446.6 [@] 1	3.1 3	1090.89	5 ⁺			
		468.0 [@] 1	6.0 6	1069.281	4-			
		513.4& 1	≈21&	1023.826	3-			I_{γ} : 513.4 γ has been assumed to be a doublet, feeding the 4 ⁺ and 3 ⁻ levels at 1023.7 and 1023.83 keV (both the 3 ⁺ , 5 ⁺ members of the K^{π} =2 ⁺ band, and the 4 ⁻ , 5 ⁻ members of the K^{π} =2 ⁻ band are populated from the 1537-keV level). See 6.70-h 234 Pa β^- decay data for the splitting of the measured intensity.
		513.4 <mark>&</mark> 1	≈11 ^{&}	1023.77	4+			
		568.9 2	100 12	968.425	3+	M1	0.1759	$\alpha(K)$ =0.1404 20; $\alpha(L)$ =0.0268 4; $\alpha(M)$ =0.00645 9; $\alpha(N+)$ =0.00225 4 $\alpha(N)$ =0.001737 25; $\alpha(O)$ =0.000422 6; $\alpha(P)$ =8.15×10 ⁻⁵ 12; $\alpha(Q)$ =6.50×10 ⁻⁶ 10
		590.3 10	1.0 3	947.64	4+			E γ =589.4 4 from adopted level energies.
		685.1 [@] 2		851.74	2+			
		1241.2 <i>I</i>	6.3 6	296.072	6+	(E2)	0.00740	$\alpha(K)=0.00573 \ 8; \ \alpha(L)=0.001252 \ 18; \ \alpha(M)=0.000307 \ 5; \ \alpha(N+)=0.0001132 \ 16$ $\alpha(N)=8.28\times10^{-5} \ 12; \ \alpha(O)=1.99\times10^{-5} \ 3; \ \alpha(P)=3.75\times10^{-6} \ 6; \ \alpha(Q)=2.52\times10^{-7}$ $4; \ \alpha(PF)=6.51\times10^{-6} \ 10$
		1393.9 <i>I</i>	57 3	143.352	4+	M1	0.01634	$\alpha(K)$ =0.01304 19; $\alpha(L)$ =0.00243 4; $\alpha(M)$ =0.000585 9; $\alpha(N+)$ =0.000279 4 $\alpha(N)$ =0.0001574 22; $\alpha(O)$ =3.83×10 ⁻⁵ 6; $\alpha(P)$ =7.39×10 ⁻⁶ 11; $\alpha(Q)$ =5.95×10 ⁻⁷ 9; $\alpha(IPF)$ =7.52×10 ⁻⁵ 11
		1493.6 <i>1</i>	2.9 3	43.4981	2+			, u()
1543.69	4+	474.2 2	21 6	1069.281	4-			
		575.5 1	15 5	968.425	3+			
		617.0 [@] 2	29 12	926.720	2+			
		1247.8 2	12 3	296.072	6 ⁺			
		1400.3 <i>I</i> 1500.0 2	100 <i>12</i> 6.5 <i>18</i>	143.352 43.4981	4 ⁺			
1548.28	(5)	452.4 3	100 31	1096.12	6 ⁺			
	(-)	478.6 [@] a 1		1069.281	4-			
		1252.6 2	65 27	296.072	6+			
1552.555	5+	131.30 <i>I</i>	100.0 15	1421.257	6-	E1	0.265	B(E1)(W.u.)= 2.8×10^{-5} 4 α (K)= 0.204 3; α (L)= 0.0463 7; α (M)= 0.01128 16; α (N+)= 0.00384 6
								α (N)=0.00300 5; α (O)=0.000706 10; α (P)=0.0001246 18; α (Q)=6.48×10 ⁻⁶ 9
		461.5 [@] 1	0.19 6	1090.89	5 ⁺	[E2,M1]	0.18 <i>13</i>	$\alpha(K)$ =0.14 11; $\alpha(L)$ =0.032 15; $\alpha(M)$ =0.008 4; $\alpha(N+)$ =0.0028 12 $\alpha(N)$ =0.0022 9; $\alpha(O)$ =0.00052 23; $\alpha(P)$ =0.00010 5; $\alpha(Q)$ =7.E-6 5
		529.1 [@] 3	0.51 18	1023.77	4+	[E2,M1]	0.13 9	$\alpha(K)$ =0.10 8; $\alpha(L)$ =0.022 11; $\alpha(M)$ =0.0054 25; $\alpha(N+)$ =0.0019 9 $\alpha(N)$ =0.0015 7; $\alpha(O)$ =0.00035 17; $\alpha(P)$ =7.E-5 4; $\alpha(Q)$ =5.E-6 4
		584.1 <i>I</i>	0.97 12	968.425	3+	[E2]	0.0331	B(E2)(W.u.)= 3.3×10^{-4} 6 α (K)= 0.0217 3; α (L)= 0.00845 12; α (M)= 0.00219 3; α (N+)= 0.000758 11

	\mathbf{J}_{i}^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.‡	$\alpha^{\#}$	Comments
					J			α (N)=0.000592 9; α (O)=0.0001399 20; α (P)=2.51×10 ⁻⁵ 4; α (Q)=1.069×10 ⁻⁶ 15
1552.555 5+	5+	604.6 3	0.29 12	947.64	4+	[E2,M1]	0.09 6	$\alpha(K)=0.07 5$; $\alpha(L)=0.015 8$; $\alpha(M)=0.0037 18$; $\alpha(N+)=0.0013 7$ $\alpha(N)=0.0010 5$; $\alpha(O)=0.00024 12$; $\alpha(P)=4.6\times10^{-5} 24$; $\alpha(Q)=3.3\times10^{-6} 23$
		1256.5 <i>1</i>	0.33 4	296.072	6+	[M1,E2]	0.014 8	$\alpha(K)$ =0.011 6; $\alpha(L)$ =0.0022 10; $\alpha(M)$ =0.00054 24; $\alpha(N+)$ =0.00020 9 $\alpha(N)$ =0.00014 7; $\alpha(O)$ =3.5×10 ⁻⁵ 16; $\alpha(P)$ =7.E-6 3; $\alpha(Q)$ =5.E-7 3; $\alpha(P)$ =1.5×10 ⁻⁵ 7
		1409.1 2	0.25 5	143.352	4+			
1553.60	(1)	468.1 5	18.1 <i>18</i>	1085.26	2+			
		509.2 8	16 <i>3</i>	1044.536	0_{+}			
		701.6 <i>3</i>	59 6	851.74	2+			
		1510.5 5	100 7	43.4981				
		1554.1 5	69 6	0.0	0_{+}			
1570.690	1+	135.32 8	0.18 2	1435.380	1-			
		485.44 7	0.79 7	1085.26	2+			
		526.02 <i>10</i>	0.38 5	1044.536	0+			
		581.19 <i>10</i>	3.3 4	989.430	2-			
		719.01 <i>7</i> 760.53 <i>15</i>	1.09 <i>7</i> 0.18 <i>4</i>	851.74 809.907	2 ⁺ 0 ⁺			
		1527.21 4	100 4	43.4981		E2+M1	0.009 4	$\alpha(K)$ =0.007 4; $\alpha(L)$ =0.0014 6; $\alpha(M)$ =0.00033 14; $\alpha(N+)$ =0.00022 10 $\alpha(N)$ =9.E-5 4; $\alpha(O)$ =2.1×10 ⁻⁵ 9; $\alpha(P)$ =4.1×10 ⁻⁶ 17; $\alpha(Q)$ =3.2×10 ⁻⁷ 15; $\alpha(PF)$ =0.00011 5
		1570.68 <i>4</i>	45.3 19	0.0	0+	M1	0.01204	$\alpha(K)$ =0.00951 14; $\alpha(L)$ =0.001769 25; $\alpha(M)$ =0.000425 6; $\alpha(N+)$ =0.000335 5 $\alpha(N)$ =0.0001145 16; $\alpha(O)$ =2.79×10 ⁻⁵ 4; $\alpha(P)$ =5.38×10 ⁻⁶ 8; $\alpha(Q)$ =4.33×10 ⁻⁷ 6; $\alpha(IPF)$ =0.000187 3
1581.59	(5^{-})	558.0 [@] 2	100 23	1023.77	4+			
	. ,	619.0 2	39 12	962.546	5-			
		634.3 [@] a 2		947.64	4+			
1588.819	5 ⁺	394.1 <i>I</i>	9 1	1194.748	6-			
		461.5 [@] 1		1127.552	5-			
		498.0 [@] 1	6 1	1090.89	5 ⁺			
		519.6 <i>1</i>	38 3	1090.89	3 4 ⁻			
		565.2 [@] 1	100 6	1023.77	4 ⁺	(M1)	0.170	-(V) 0.1420.20(I) 0.0272.4(M) 0.00656 10(N) 0.00220.4
		303.2 1	100 0	1023.77	4	(M1)	0.179	$\alpha(K)$ =0.1429 20; $\alpha(L)$ =0.0272 4; $\alpha(M)$ =0.00656 10; $\alpha(N+)$ =0.00229 4 $\alpha(N)$ =0.001768 25; $\alpha(O)$ =0.000430 6; $\alpha(P)$ =8.29×10 ⁻⁵ 12; $\alpha(Q)$ =6.62×10 ⁻⁶ 10
		1292.8 <i>I</i>	45 <i>3</i>	296.072	6+	M1	0.0199	$\alpha(K)$ =0.01592 23; $\alpha(L)$ =0.00297 5; $\alpha(M)$ =0.000715 10; $\alpha(N+)$ =0.000281 4 $\alpha(N)$ =0.000193 3; $\alpha(O)$ =4.68×10 ⁻⁵ 7; $\alpha(P)$ =9.04×10 ⁻⁶ 13; $\alpha(Q)$ =7.27×10 ⁻⁷ 11; $\alpha(IPF)$ =3.16×10 ⁻⁵ 5
		1445.4 <i>1</i>	31 3	143.352	4+			11, $u(\mathbf{n} \cdot \mathbf{r}) = 3.10 \times 10^{-3}$

γ (234U) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.‡	$\alpha^{\#}$	Comments
1589.0?	11-	565.4 ^a		1023.8	12+			-
1309.01	11	847.8 <mark>a</mark>		741.2	10 ⁺			
1592.29	(1)	507.5 ^a 10	13.3 14	1085.26	2+			
1392.29	(1)	739.95 10	100 3	851.74	2+			
		781.37 <i>10</i>	66.5 16	809.907	0^{+}			
		1550.0 <i>10</i>	15.7 <i>13</i>	43.4981				
		1593.88 <i>10</i>	23.0 9	0.0	0^{+}			
1601.826	1+	166.5 <i>1</i>	0.032 6	1435.380	1-			
		516.60 <i>6</i>	1.67 11	1085.26	2+	(M1)	0.228	$\alpha(K)$ =0.182 3; $\alpha(L)$ =0.0347 5; $\alpha(M)$ =0.00837 12; $\alpha(N+)$ =0.00292 4
		557.24 6	1.14 7	1044.536	0+	(M1)	0.186	$\alpha(N)=0.00226$ 4; $\alpha(O)=0.000548$ 8; $\alpha(P)=0.0001058$ 15; $\alpha(Q)=8.44\times10^{-6}$ 12 $\alpha(K)=0.1485$ 21; $\alpha(L)=0.0283$ 4; $\alpha(M)=0.00682$ 10; $\alpha(N+)=0.00238$ 4
		337.24 0	1.14 /	1044.330	U	(IVII)	0.160	$\alpha(N)=0.0184$ 3; $\alpha(O)=0.000447$ 7; $\alpha(P)=8.62\times10^{-5}$ 12; $\alpha(Q)=6.88\times10^{-6}$ 10
		750.12 6	2.35 14	851.74	2+	(M1)	0.0841	$\alpha(K) = 0.0672 \ 10; \ \alpha(L) = 0.01272 \ 18; \ \alpha(M) = 0.00306 \ 5; \ \alpha(N+) = 0.001067 \ 15$
						` /		$\alpha(N)=0.000825$ 12; $\alpha(O)=0.000201$ 3; $\alpha(P)=3.87\times10^{-5}$ 6; $\alpha(Q)=3.09\times10^{-6}$
		791.94 <i>5</i>	1.36 8	809.907	0^{+}			
		1558.31 4	100.0 11	43.4981	2+	M1	0.01228	$\alpha(K) = 0.00971\ 14;\ \alpha(L) = 0.00181\ 3;\ \alpha(M) = 0.000434\ 6;\ \alpha(N+) = 0.000330\ 5$
								α (N)=0.0001169 17; α (O)=2.84×10 ⁻⁵ 4; α (P)=5.49×10 ⁻⁶ 8; α (Q)=4.43×10 ⁻⁶
								7; α (IPF)=0.0001783 25
		1601.80 <i>4</i>	48.9 20	0.0	0_{+}	(M1)	0.01146	$\alpha(K)$ =0.00902 13; $\alpha(L)$ =0.001679 24; $\alpha(M)$ =0.000403 6; $\alpha(N+)$ =0.000351
								α (N)=0.0001086 16; α (O)=2.64×10 ⁻⁵ 4; α (P)=5.10×10 ⁻⁶ 8; α (Q)=4.11×10 ⁻⁶ 6; α (IPF)=0.000210 3
1619.58	(6^+)	357.9 <i>1</i>	100 29	1261.782	7+			
		446.6 [@] a 1		1172.043	6+			
		529.1 [@] a 3		1090.89	5 ⁺			
		657.4 ^a 1		962.546	5-			
		1475.8 2	23 9	143.352	4+			
1649.99	(6^{-})	553.7 1	33 12	1096.12	6+			
		1354.6 2	100 24	296.072	6+			
1653.30	(3^{+})	629.4 <i>1</i>	65 10	1023.77	4+	(M1)	0.1342	$\alpha(K)$ =0.1072 15; $\alpha(L)$ =0.0204 3; $\alpha(M)$ =0.00491 7; $\alpha(N+)$ =0.001711 24
		((2.0.1	100 14	000 420	2-			$\alpha(N)=0.001322\ 19;\ \alpha(O)=0.000322\ 5;\ \alpha(P)=6.20\times10^{-5}\ 9;\ \alpha(Q)=4.95\times10^{-6}$
		663.9 <i>I</i>	100 14	989.430	2-			
1667.4	(1^{-})	1510.1 2 818.2 5	<1.7 26 8	143.352 849.266	4 ⁺ 3 ⁻			
	(1)	818.2 5 880.9 5	20 o 100	786.288	3 1-			
		1667.6 <i>10</i>	21 5	0.0	0+			
1687.8	16 ⁺	347.3	21 3	1340.5	14 ⁺			
1693.453	5-	140.91 3	29 3	1552.555	5+			
1093.433	-	272.28 5	100 10	1421.257	6-	(M1)	1.310	$\alpha(K)=1.042\ 15$; $\alpha(L)=0.202\ 3$; $\alpha(M)=0.0487\ 7$; $\alpha(N+)=0.01699\ 24$
						` '		
								$\alpha(N)=0.01313 \ 19; \ \alpha(O)=0.00319 \ 5; \ \alpha(P)=0.000616 \ 9; \ \alpha(Q)=4.91\times10^{-5} \ 7$

							/()	(Commuca)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ	$\alpha^{\#}$	Comments
1693.453	5-	478.6 [@] a 1	<u>≤11</u>	1214.71	4 ⁺				
1093.433	5	498.0 [@] 1	<u> </u>	1194.748	- 6-				
		521.4 <i>I</i>	69 5	1172.043	6 ⁺				
		565.2 [@] 1	09.3	1172.043					
		602.6 <i>1</i>	50.2		5 5+				
		624.2 <i>1</i>	50 <i>3</i> 32 <i>3</i>	1090.89 1069.281	3 · 4 ·	(M1+E2)	0.7	0.1015	$\alpha(K) \approx 0.0799$; $\alpha(L) \approx 0.01627$; $\alpha(M) \approx 0.00396$; $\alpha(N+) \approx 0.001378$
		024.2 1	32 3	1009.281	4	(M11+E2)	≈0.7	≈0.1013	$\alpha(N) \approx 0.00799$; $\alpha(L) \approx 0.01027$; $\alpha(M) \approx 0.00390$; $\alpha(N+) \approx 0.001378$ $\alpha(N) \approx 0.001067$; $\alpha(O) \approx 0.000258$; $\alpha(P) \approx 4.94 \times 10^{-5}$; $\alpha(Q) \approx 3.71 \times 10^{-6}$
		669.7 <i>1</i>	91 5	1023.77	4+				$\alpha(N) \approx 0.001067; \alpha(O) \approx 0.000258; \alpha(P) \approx 4.94 \times 10^{-3}; \alpha(Q) \approx 5.71 \times 10^{-3}$
		730.9 2	58 8	962.546	5 ⁻				
		730.9 <i>2</i> 745.9 <i>1</i>	30 <i>3</i>	902.540	3 4 ⁺				
		844.1 <i>I</i>	30 <i>3</i>	849.266	3-				
		1397.5 2	7.6 19	296.072	6 ⁺				
		1550.1 <i>I</i>	7.0 1	143.352	4+				
1693.7?	(1^{-})	456.7 10	66 14		1-				
	(-)	844.1 8	100 22	849.266	3-				
		1694.1 <i>10</i>	42 8	0.0	0_{+}				
1722.87	3-	595.4 2	1.3 3	1127.552	5-				
		653.7 [@] 1	6.7 9	1069.281	4-	M1		0.1213	$\alpha(K)$ =0.0969 14; $\alpha(L)$ =0.0184 3; $\alpha(M)$ =0.00443 7; $\alpha(N+)$ =0.001545
									22
									$\alpha(N)=0.001194\ 17;\ \alpha(O)=0.000290\ 4;\ \alpha(P)=5.60\times10^{-5}\ 8;$
									$\alpha(Q)=4.47\times10^{-6} 7$
		699.03 [@] 5	52 <i>3</i>	1023.826	3-	M1		0.1015	$\alpha(K)=0.0811$ 12; $\alpha(L)=0.01537$ 22; $\alpha(M)=0.00370$ 6;
									$\alpha(N+)=0.001290 \ 18$
									$\alpha(N)=0.000997 \ 14; \ \alpha(O)=0.000242 \ 4; \ \alpha(P)=4.68\times10^{-5} \ 7;$
									$\alpha(Q)=3.74\times10^{-6} 6$
		733.39 5	100 6	989.430	2-	M1		0.0893	$\alpha(K)=0.0714 \ 10; \ \alpha(L)=0.01351 \ 19; \ \alpha(M)=0.00325 \ 5;$
									α(N+)=0.001134 <i>16</i>
									$\alpha(N)=0.000876\ 13;\ \alpha(O)=0.000213\ 3;\ \alpha(P)=4.11\times10^{-5}\ 6;$
									$\alpha(Q)=3.29\times10^{-6} 5$
		761.0 2	1.0 4	962.546					
		874.0 <i>3</i>	0.52 11	849.266					
		1679.5 <i>1</i>	1.1 3	43.4981					
1723.402	4+	134.61 2	2.0 4	1588.819	5+	M1		9.50	$\alpha(K)=7.54$ 11; $\alpha(L)=1.480$ 21; $\alpha(M)=0.358$ 5; $\alpha(N+)=0.1249$ 18
		45005.0	0 = 0		~ .	3.54		4.00	$\alpha(N)=0.0965$ 14; $\alpha(O)=0.0235$ 4; $\alpha(P)=0.00453$ 7; $\alpha(Q)=0.000362$ 5
		170.85 2	8.7 9	1552.555	5™	M1		4.83	$\alpha(K)=3.84 \ 6; \ \alpha(L)=0.749 \ 11; \ \alpha(M)=0.181 \ 3; \ \alpha(N+)=0.0632 \ 9$
		179.80 8	0.8 3	1542.60	4+				α (N)=0.0488 7; α (O)=0.01188 17; α (P)=0.00229 4; α (Q)=0.000183 3
		179.80 8	0.8 3 30.5 <i>18</i>	1543.69 1537.228	4 · 4 +	M1		3.79	$\alpha(K)=3.02\ 5;\ \alpha(L)=0.587\ 9;\ \alpha(M)=0.1420\ 20;\ \alpha(N+)=0.0495\ 7$
		100.13 2	30.3 10	1331.440	+	1411		3.17	$\alpha(N)=0.0383$ 6; $\alpha(O)=0.00931$ 13; $\alpha(P)=0.00180$ 3; $\alpha(Q)=0.0001433$ 20
		227.25 3	100 6	1496.111	3+	M1		2.17	$\alpha(N)=0.0363$ 6, $\alpha(O)=0.00931$ 13, $\alpha(1)=0.00160$ 3, $\alpha(Q)=0.0001433$ 20 $\alpha(K)=1.724$ 25; $\alpha(L)=0.335$ 5; $\alpha(M)=0.0809$ 12; $\alpha(N+)=0.0282$ 4
		221.23 3	100 0	11/0.111	5	1,11		2.17	(ii) 1.72 1 23, a(1) -0.000 3, a(11) -0.000 7 12, a(11 1.7 -0.0202 7

γ (234U) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	<u>α</u> #	Comments
								α (N)=0.0218 3; α (O)=0.00530 8; α (P)=0.001022 15; α (Q)=8.15×10 ⁻⁵ 12
1723.402	4+	558.0 [@] 2		1165.44	3 ⁺			
		596.9 [@] 1		1126.626	2+			
		632.6 2	0.62 18	1090.89	5+			
		699.03 [@] 5		1023.826	3-			
		755.0 [@] 1	21.1 11	968.425	3+	(E2,M1)	0.05 4	$\alpha(K)=0.04$ 3; $\alpha(L)=0.008$ 5; $\alpha(M)=0.0020$ 10; $\alpha(N+)=0.0007$ 4 $\alpha(N)=0.0005$ 3; $\alpha(O)=0.00013$ 7; $\alpha(P)=2.5\times10^{-5}$ 13; $\alpha(Q)=1.8\times10^{-6}$ 12
		796.1 <i>1</i>	45 <i>4</i>	926.720	2+			
		1426.9 <i>1</i>	2.9 4	296.072	6+			
		1579.9 <i>1</i>	1.2 4	143.352	4+			
1737.43	3 ⁺	713.7 [@] 1	21 3	1023.826	3-			
		748.1 <i>3</i>	15 <i>3</i>	989.430	2-			
		1594.0 <i>1</i>	45 3	143.352	4+	M1,E2	0.008 4	$\alpha(K)=0.006\ 3;\ \alpha(L)=0.0012\ 5;\ \alpha(M)=0.00029\ 12;\ \alpha(N+)=0.00025\ 10$ $\alpha(N)=8.E-5\ 4;\ \alpha(O)=1.9\times10^{-5}\ 8;\ \alpha(P)=3.7\times10^{-6}\ 15;\ \alpha(Q)=2.9\times10^{-7}\ 13;$ $\alpha(IPF)=0.00015\ 6$
		1693.8 2	100 11	43.4981	2+			
1738.17	(3+)	612.0 <i>I</i>	100 9	1126.626	2+	(M1)	0.1447	$\alpha(K)$ =0.1156 17; $\alpha(L)$ =0.0220 3; $\alpha(M)$ =0.00530 8; $\alpha(N+)$ =0.00185 3 $\alpha(N)$ =0.001426 20; $\alpha(O)$ =0.000347 5; $\alpha(P)$ =6.69×10 ⁻⁵ 10; $\alpha(Q)$ =5.34×10 ⁻⁶ 8
		811.5 <i>1</i>	32 <i>3</i>	926.720	2+			
		1695.0 <i>3</i>	70 <i>17</i>	43.4981	2+			
1761.79	(4^{-})	634.3 [@] 2	≤12	1127.552	5-			
		692.6 1	100 6	1069.281	4-	(M1)	0.1040	$\alpha(K)$ =0.0831 <i>12</i> ; $\alpha(L)$ =0.01575 <i>22</i> ; $\alpha(M)$ =0.00379 <i>6</i> ; $\alpha(N+)$ =0.001322 <i>19</i> $\alpha(N)$ =0.001022 <i>15</i> ; $\alpha(O)$ =0.000249 <i>4</i> ; $\alpha(P)$ =4.79×10 ⁻⁵ 7; $\alpha(Q)$ =3.83×10 ⁻⁶
		738.0 1	93 6	1023.826	3-	(M1)	0.0878	$\alpha(K)$ =0.0702 10; $\alpha(L)$ =0.01329 19; $\alpha(M)$ =0.00320 5; $\alpha(N+)$ =0.001115 10 $\alpha(N)$ =0.000862 12; $\alpha(O)$ =0.000210 3; $\alpha(P)$ =4.04×10 ⁻⁵ 6; $\alpha(Q)$ =3.23×10 ⁻⁶ 5
		772.4 2	5.8 17	989.430	2-			
		792.8 <i>3</i>	3.6 9	968.425	3+			
	(0.1)	1618.3 2	0.75 25	143.352	4+			
1770.79	(3^{+})	802.3 ^a 2	41 11	968.425	3 ⁺			
		1627.3 <i>1</i>	100 11	143.352	4 ⁺			
1781.22	$(0^+,1)$	1727.8 2 209.9 <i>4</i>	26 <i>6</i> 6.2 <i>8</i>	43.4981 1570.690	2 1 +			
1/01.22	(0 ,1)	543.98 <i>10</i>	0.2 8 17.0 9	1237.256	1-			
		655.3 10	6.5 8	1126.626	2+			
		695.5 10	7.4 8	1085.26	2+			

γ (234U) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	J_f^π	Mult.‡	$\alpha^{\#}$	Comments
1781.22	$(0^+,1)$	1737.73 10	100 2	43.4981				
1782.554	5 ⁺	59.19 <i>5</i>	4.2 14	1723.402	4+			
		193.73 3	66 9	1588.819	5 ⁺	(M1+E2)	2.1 13	$\alpha(K)$ =1.4 13; $\alpha(L)$ =0.510 16; $\alpha(M)$ =0.132 6; $\alpha(N+)$ =0.0457 16 $\alpha(N)$ =0.0356 16; $\alpha(O)$ =0.00844 18; $\alpha(P)$ =0.00152 9; $\alpha(Q)$ =7.E-5 6
		245.37 2	100 11	1537.228	4+	M1	1.749	$\alpha(K)$ =1.392 20; $\alpha(L)$ =0.270 4; $\alpha(M)$ =0.0652 10; $\alpha(N+)$ =0.0227 4 $\alpha(N)$ =0.01757 25; $\alpha(O)$ =0.00427 6; $\alpha(P)$ =0.000824 12; $\alpha(Q)$ =6.57×10 ⁻⁵ 10
		360.6 <i>3</i>	2.3 9	1421.257	6-			(() (100) 100)
		617.0 [@] a 2		1165.44	3 ⁺			
		655.2 2	18 <i>3</i>	1127.552	5-			
		758.9 <i>1</i>	33 3	1023.77	4 ⁺			
		814.2 <i>I</i>	41 3	968.425	3 ⁺			
		1485.4 2		296.072	6 ⁺			
		1485.4 <i>Z</i> 1638.1 <i>I</i>	4.0 <i>9</i> 27.4 <i>14</i>	143.352	4 ⁺	(M1)	0.01083	$\alpha(K)$ =0.00850 12; $\alpha(L)$ =0.001581 23; $\alpha(M)$ =0.000380 6; $\alpha(N+)$ =0.00037
								$\alpha(N)=0.0001023\ 15;\ \alpha(O)=2.49\times10^{-5}\ 4;\ \alpha(P)=4.81\times10^{-6}\ 7;$ $\alpha(O)=3.88\times10^{-7}\ 6;\ \alpha(IPF)=0.000238\ 4$
1784.18	4+	857.7 2	100 20	926.720	2+			
		1488.0 2	37 15	296.072	6 ⁺			
		1640.5 3	29 9	143.352	4+			
1793.01	4+	240.20 10	28 12	1552.555	5 ⁺			
1775.01	•	769.1 <i>I</i>	100 6	1023.77	4 ⁺			
		1496.0 2	19 5	296.072	6 ⁺			
		1650.2 2	<2.8	143.352	4 ⁺			
		1750.0 <i>I</i>	34 4	43.4981				
1796.3	(1)	338.1 8	100 21	1457.16	(2^{-})			
1790.3	(1)	362.8 <i>10</i>	61 13	1437.10	1-			
					0+			
1000.72	(1=)	1796.2 10	28 6	0.0				
1809.73	(1-)	572.0 10	10 2	1237.256	1- 2+			
		683.4 10	6.6 14	1126.626	2 ⁺			
		883.24 <i>4</i>	20 6	926.720	2+			
		960.0 10	10 4	849.266	3-			
		1765.44 <i>10</i>	100.0 15	43.4981				
		1809.04 <i>10</i>	42.5 10	0.0	0_{+}			
1811.62	4+	596.9 [@] 1	26 <i>3</i>	1214.71	4+			
		683.9 2	20 4	1127.552	5-			
		685.1 [@] 2	19 4	1126.626	2+			
		848.9 2	3.5 10	962.546	5 ⁻			
		863.2 2	9 3	902.540	3 4 ⁺			
		960.0 <i>1</i>	9.5 <i>14</i>	851.74	4 2+			
					_			
		1515.6 2	9.5 14	296.072	6 ⁺	(M1)		
		1668.4 <i>1</i>	100 7	143.352	4+	(M1)		

γ (234U) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	${\rm J}_f^\pi$
1811.62	4+	1768.0 <i>3</i>	2.6 6	43.4981	2+	1940.50	4+	916.5 ^a 2	10 3	1023.826	3-
1843.86	3,4,5	994.6 3	60 20	849.266	3-	1710.50	•	1644.9 2	4.3 13	296.072	6 ⁺
	-, -,-	1700.5 2	100 10	143.352	4+			1797.1 <i>I</i>	100 9	143.352	4+
1863.07	(5^{+})	1567.0 2	65 12	296.072	6+			1896.7 2	43 9	43.4981	2+
	, ,	1719.7 2	100 30	143.352	4+	1958.77	3-	221.15 10	45 19	1737.43	3+
1863.16	(1)	936.3 10	100 23	926.720	2+			235.11 3	100 <i>19</i>	1723.402	4+
		1819.69 <i>10</i>	50 4	43.4981				502.0 <i>1</i>	24 8	1457.16	(2^{-})
		1863.09 <i>15</i>	67 <i>4</i>	0.0	0_{+}			890.1 <i>4</i>	24 7	1069.281	4-
1875.3	(1)	1831.5 5	100 4	43.4981				935.8 2	58 7	1023.77	4+
		1875.5 5	49 5	0.0	0+			1110.6 <i>I</i>	55 10	849.266	3-
1881.74	4+	716.5 2	21 6	1165.44	3 ⁺			1173.1 <i>I</i>	40 7	786.288	1-
		755.0 [@] 1		1126.626	2+			1815.3 <i>3</i>	8 3	143.352	4+
		1585.9 <i>1</i>	100 7	296.072	6+			1915.5 <i>3</i>	17 <i>4</i>	43.4981	2+
		1737.7 2	51 6	143.352	4+	1968.84	$4^{+},5$	1672.8 <i>1</i>	100 <i>30</i>	296.072	6+
		1838.0 [@] a 2		43.4981	2+			1825.1 <i>3</i>	27 9	143.352	4+
1911.09	(1^{-})	357.5 10	6.2 14	1553.60	(1)	1969.9	(1^{-})	732.5 10	76 9	1237.256	1-
		453.58 10	15.0 <i>13</i>	1457.16	(2^{-})			1120.6 8	100 9	849.266	3-
		475.75 10	18.0 <i>12</i>	1435.380	1-			1926.5 <i>10</i>	26 5	43.4981	2+
		673.9 10	5.0 11	1237.256	1-			1970.0 <i>15</i>	33 7	0.0	0+
		825.6 5	11 3	1085.26	2+	1981.26	4+	257.2 1	17 7	1723.402	4+
		866.8 10	8.4 18	1044.536	0+			433.1 <i>I</i>	30 4	1548.28	(5)
		921.70 <i>10</i>	100.0 11	989.430	2-			1685.7 <i>1</i>	100 7	296.072	6+
		1059.4 8	8.6 18	851.74	2+			1838.0 [@] 2	13 <i>3</i>	143.352	4+
		1061.86 <i>10</i>	18.0 10	849.266	3-			1937.7 <i>3</i>	13 4	43.4981	2+
		1125.7 5	28 5	786.288	1-	2000.44	(4^{+})	1037.9 2	17 6	962.546	5-
		1867.68 <i>10</i>	72.3 11	43.4981	2+			1073.6 2	100 10	926.720	2+
		1911.17 <i>10</i>	49.5 8	0.0	0+			1151.4 [@] 3		849.266	3-
1916.26	$3,4^{+}$	989.5 <i>1</i>	100 10	926.720	2+	2019.81	4+	1051.4 2	100 17	968.425	3+
		1773.0 2	65 15	143.352	4+			1057.8 <i>3</i>	≈28	962.546	5-
100= 50	4.1	1872.8 2	34 8	43.4981				1723.2 2	25 5	296.072	6+
1927.52	4+	165.61 ^a 5	100 29	1761.79	(4^{-})	2022.52	2+ 4+	1977.4 <i>4</i>	27 7	43.4981	2+
		308.6 ^a 2	29 8	1619.58	(6^+)	2033.52	3+,4+	310.2 <i>I</i>	23 4	1723.402	4 ⁺
		586.3 <i>1</i>	100 15	1341.33	(6 ⁺)			481.0 <i>I</i>	100 7	1552.555	5+
		653.7 [@] a 1		1274.29	(5^{+})			537.2 1	27 4	1496.111	3 ⁺
		713.7 [@] a 1		1214.71	4+			1009.9 [@] 3	21 4	1023.77	4+
		1783.7 2	34 9	143.352	4+			1065.1 <i>I</i>	8.7 24	968.425	3+
		1884.1 <i>3</i>	21 4	43.4981	2+			1106.9 2	27 4	926.720	2+
1937.01	(1)	699.0 <i>10</i>	27 6	1237.256	1-			1182.1 2	≈3.0	851.74	2+
		1893.50 <i>10</i>	75 3	43.4981	2+			1890.1 2	47 4	143.352	4+
		1937.01 <i>10</i>	100 3	0.0	0_{+}			1989.6 <i>4</i>	2.3 10	43.4981	2+

γ (234U) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
2037.05	4+,5	1741.1 2	100 13	296.072 6+	2115.66	4+	562.8 <i>3</i>	44 13	1552.555	5+
		1893.4 <i>3</i>	≈13	143.352 4+			1019.5 <i>4</i>	33 9	1096.12	6+
2062.8	18 ⁺	375.0 5		1687.8 16 ⁺			1153.5 <i>3</i>	55 9	962.546	5-
2066.24	$4^{+},5$	975.1 <i>1</i>	40 11	1090.89 5+			1819.8 <i>3</i>	5.0 13	296.072	6+
		997.7 <i>3</i>	68 16	1069.281 4-			1971.2 <i>4</i>	≈3.2	143.352	4+
		1770.8 2	100 24	296.072 6+			2072.2 4	5.0 25	43.4981	2+
2068.81	$3,4,5^{+}$	331.4 <i>I</i>	24 <i>4</i>	1737.43 3 ⁺	2144.01	$3^{+},4^{+}$	869.7 <i>1</i>	90 10	1274.29	(5^{+})
		1925.4 2	100 14	143.352 4+			1217.3 <i>1</i>	100 10	926.720	2+
2101.43	5 ⁺	839.5 1	100 24	1261.782 7+	2464.0	20^{+}	401.2 5		2062.8	18 ⁺
		1009.9 [@] 3		1090.89 5+	2889.5	22 ⁺	425.5 5		2464.0	20^{+}
		1032.8 2	57 14	1069.281 4-	3338.5	24+	449 <i>1</i>		2889.5	22+
		1805.8 <i>3</i>	17 <i>7</i>	296.072 6+	3807.5	26 ⁺	469		3338.5	24 ⁺
		1958.0 <i>4</i>	32 9	143.352 4+	4296.5	(28^+)	489		3807.5	26 ⁺
2115.66	4+	534.1 <i>1</i>	100 13	1581.59 (5-)	4807?	(30^+)	510 ^a		4296.5	(28^{+})

[†] Relative photon intensity deexciting each level, adopted from 6.70-h 234 Pa β^- decay, 1.159-min 234 Pa β^- decay, and 238 Pu α decay. ‡ From ce data measured in 6.70-h 234 Pa, 1.159-min 234 Pa, and 238 Pu decays. γ -ray multipolarities, deexciting levels with measured half-lives, have been included in square brackets with the purpose of calculating γ -ray transition rates.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

 $^{234}_{\ 92}\mathrm{U}_{142}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{234}_{\ 92}\mathrm{U}_{142}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{234}_{92}\mathrm{U}_{142}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain) 1693.453 16⁺ (1⁻) (3⁺) 1687.8 1667.4 1653.30 $\frac{(6^{-})}{(6^{+})}$ 1649.99 1619.58 1⁺ (1) 1601.826 1592.29 1589.0 1552.555 11__ 2.20 ns 25 1435.380 1421.257 33.5 μ s 20 14+ 1340.5 7⁻ 7⁺ 1277.461 1261.782 1214.71 4+ 1194.748 6-1172.043 $\frac{5^{-}}{6^{+}}$ $\frac{5^{+}}{2^{+}}$ 1127.552 1096.12 1090.89 1085.26 4⁻ 0⁺ 12⁺ 1069.281 1044.536 1023.8 $\frac{\frac{4^{+}}{2^{-}}}{\frac{5^{-}}{4^{+}}}$ $\frac{2^{+}}{3^{-}}$ 1023.77 989.430 0.76 ns 4 962.546 947.64 ≥1.74 ps 851.74 849.266 809.907 0^+ <0.1 ns 786.288 10+ 741.2 296.072 143.352 43.4981 0.252 ns 7 0.0 2.455×10⁵ y 6

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided Level Scheme (continued) Legend γ Decay (Uncertain)

Band(A): K^{π} =0 $^-$ octupole-vibrational band

11- _ _ _ 1589.0

Band(K): $K^{\pi}=5^+$ band: Configuration=((v 5/2(622))(v 5/2(633)) Band(J): $K^{\pi}=3^+$ band: Configuration=((ν (9^{+}) 1891.3 5/2(633))(v 1/2(631)) (8^{+}) 1849.7 Band(I): $K^{\pi}=1^-$ band: Configuration=((v 7/2(743))(v 5/2(633)) The amplitude square of this configuration in a (8^{+}) 1780.2 probable octupole vibration was deduced by 1968Bj05 from (d,t) data to be $100\,\%\,\,20$ (7^{+}) 1736.5 (7^{-}) 1718.5 Band(H): $K^{\pi}=6^{-}$ band: Configuration=((ν (7^{+}) 1690.5 7/2(743))(v 5/2(633)) (6^+) 1653.9 1651.2 1649.99 (6^{+}) 1619.58 Band(L): K=1 state: $\textbf{Configuration=}((\pi$ $3/2(651))(\pi \ 5/2(642))$ 1588.819 (5^{-}) 1581.59 1570.690 (8^{-}) 1567.7 1552.555 1537.228 <u>(4</u>⁻) 1533.31 1496.111 (7^{-}) 1486.7 (3^{-}) 1486.16 Band(G): $\mathbf{K}^{\pi} = (\mathbf{0}^{-})$ band (2^{-}) 1457.16 1447.52 1-1435.380 1421.257

3- 1312.18

1- 1237.256

Band(R): $K^{\pi}=3^+$ band: Configuration=((v 7/2(743))(v 1/2(501)) J and configuration assignments were made by 1968Bj05 from (d,t) data

2000.44

1955.8

 (4^{+})

Band(P): $K^{\pi}=4^+$ band: Configuration=((v 7/2(743))(v 1/2(501))

 (6^{+}) 1985.2

 (3^{+})

 (5^{+}) 1931.2

Band(Q): $K^{\pi}=3^{+} \pi \pi$ 1/2[530], 5/2[525] configuration was suggested by 1986Ar05 from two-quasiparticle 1881.74 states' energy calculations of 1964So02

 (5^{+}) 1863.07

Band(M): $K^{\pi}=5^-$ band: Configuration=((v 7/2(743))(v 3/2(631))

(7⁻) 1810.0

Band(N): $K^{\pi}=3^-$ band: Configuration= $((\pi$ $5/2(642))(\pi \ 1/2(530))$ from 234 Pa g.s. β

Configuration was proposed by 1968Bj06 decay

1761.79

1722.87

1747.1

 (4^{-})

1693.453

 (6^{-})

Configuration=((v 5/2(633))(v 3/2(631)) + $((\pi \ 3/2[631])(\pi$ 5/2[642]) Configuration was proposed by 1968Bj06 on the bases of strong M1 transition to K=3 vv

5/2[633],1/2[631] band and of β^- feeding from 234 Pa g.s 1782.554

Band(O): $K^{\pi}=4^+$ band:

1811.62

 (3^{+}) 1770.79

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Shaofei Zhu	NDS 182, 2 (2022).	1-Apr-2022

 $Q(\beta^-)=-9.3\times10^2$ 5; S(n)=6545.5 3; S(p)=7133 14; $Q(\alpha)=4573.0$ 9 2021Wa16 S(2n)=11843.0 3, S(2p)=12746.3 24 (2021Wa16).

Spontaneous fission: 2005Xu01, 2004Ro01, 2001Vl04, 1997Ro12, 1993Mo16, 2001Po31 and 1994Pi12 (ternary fission accompanied by emission of light charged particles); 2000Gu28 (fission fragments distribution, theory).

 α : Additional information 1.

²³⁶U Levels

Cross Reference (XREF) Flags

	A B C D E F	²³⁶ Pa $β$ ⁻ decay ²³⁶ Np $ε$ decay (15 ²³⁶ Np $ε$ decay (22 ²⁴⁰ Pu $α$ decay ²³⁴ U(t,p) ²³⁵ U(d,p)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(x,y) E=thermal N (x,y) E=2 keV O Coulomb excitation (x,y) Inelastic scattering
E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0@	0+	2.342×10 ⁷ y 4	ABCDE GH JK MNOPQR	%α=100; %SF=9.4×10 ⁻⁸ 4 $T_{1/2}$: recommended value in 1989Ho24, based on measured values of 2.45×10 ⁷ y 7 (1951Ja09), 2.391×10 ⁷ y 18 (1952Fl20) and 2.3415×10 ⁷ y 39 with uncertainty adjusted from 0.06% to 0.25% (1972Fl03). %SF: from $T_{1/2}$ (SF)=2.49×10 ¹⁶ y 11, the weighted average of 2.0×10 ¹⁶ y 16 (1949JaZZ), 2.7×10 ¹⁶ y 3 (1971Co35 taking $T_{1/2}$ (SF)(238 U)=8.2×10 ¹⁵ y 1 in 2000Ho27), 2.43×10 ¹⁶ y 13 (1981Vo02) and 2.7×10 ¹⁶ y 4
45.2431 [@] 20	2+	235 ps 6	ABCDE GHIJK MNOPQR	(1982BeYI,1983Be66). $Q_0=13.8 \text{ b}^2 2 \text{ from Isotope shifts (1978Ge10)}.$ $B(E2)\uparrow=11.60 15$ $T_{1/2}$: from $^{240}\text{Pu }\alpha$ decay; other: 218 ps 4 deduced using measured B(E2) \uparrow value from Coul. ex. J^{π} : E2 γ to 0+ and g.s. band member. $Q(^{236}\text{U})/Q(^{234}\text{U})=1.13 9 (1974\text{Me18}), 0.99 5 (1974\text{Mo12}).$ Ratio of gyromagnetic factors g-factor $(^{236}\text{U})/g$ -factor $(^{234}\text{U})=0.98 6 (1974\text{Me18}).$ Measured isotopic shift, gyromagnetic factors. $\Delta < r^2 > / < r^2 > = -21 \times 10^{-6} 21 (1974\text{Mo12}), < 6 \times 10^{-6} $ (1974Me18).
149.480 [@] 5	4+	130 ps 9	ABCDE GHIJK MNOP R	B(E2) \uparrow : from Coul. ex.; other: 12.2 6 from ²³⁶ U(d,d'). J ^{π} : E2 γ to 2 ⁺ and g.s. band member. T _{1/2} : weighted average of 124 ps 7 (1976Gu06) from Coul. ex. and 142 ps 10 (1970ToZZ) from ²⁴⁰ Pu α decay. B(E4) \uparrow =1.7 e ² b ⁴ 6 (1973Be44) from Coul. ex.
309.788 [@] 6	6+	58 [‡] ps <i>3</i>	B DE GH JK MNOP R	J^{π} : E2 γ to 4 ⁺ and g.s. band member.
522.26 [@] 4	8+	23.9 [‡] ps <i>19</i>	D G JK MNOP R	B(E2) \uparrow =6.1 8 B(E2) \uparrow : from Coul. ex. J ^{π} : E2 γ to 6 ⁺ and g.s. band member.
687.56 ^{&} 4	1^{-k}	3.78 ns 9	ABCD FGH JK M O	$T_{1/2}$: from ²³⁶ Np ε decay (22.5 h).

236U Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF	Comments
				J^{π} : E3 γ to 4 ⁺ , E1 γ to 0 ⁺ .
744.18 ^{&} 7	3- k		AB DEFGH JK O	B(E3) \uparrow =0.70 5 B(E3) \uparrow : from (d,d'); other: 0.53 7 from Coul. ex. J ^{π} : γ to 4 ⁺ , γ to 1 ⁻ , member K^{π} =0 ⁻ band.
782.4 [@] 5	10+	11.6 [‡] ps <i>11</i>	K M O R	B(E2) \uparrow =5.0 4 B(E2) \uparrow : from Coul. ex. J ^{π} : E2 γ to 8 ⁺ and g.s. band member.
848.3 ^{&} 10 919.18 ^c 12	5 ⁻ 0 ⁺		B GHJK O A D HJ N	J^{π} : (E2) γ to 3 ⁻ , member of K^{π} =0 ⁻ band. J^{π} : from L(p,t)=0.
957.90 ^d 15	2+		A D H J NO	B(E2) \uparrow =0.195 <i>14</i> B(E2) \uparrow : from (d,d'); other: 0.18 2 from Coul. ex. J ^{π} : γ to 2 ⁺ , γ to 0 ⁺ , L(p,t)=(2), Coul. ex. and (d,d'), probable bandhead of K^{π} =2 ⁺ .
960.05 ^c 20	$(2^{+})_{t}$		D HI	J^{π} : (E0+M1) γ to 2 ⁺ .
966.58 ^e 9	$(1^{-})^{k}$		A D FGH	J^{π} : (E1) γ to 0^+ , (E1) γ to 2^+ and γ to 1^- .
987.66 ^e 8	2^{-k}		A FGH	J ^π : (E1) γ to 2 ⁺ , M1+E2 γ to 3 ⁻ , γ to 1 ⁻ , log ft =8.0 from J=1 in ²³⁶ Pa β ⁻ decay.
999.8 <mark>&</mark> 12	7-		JK O	J^{π} : from Coul. ex., E2 γ to 5 ⁻ , member of K^{π} =0 ⁻ band.
1001.6 ^d 3	(3+)		HI	J^{π} : γ to 4 ⁺ , γ to 3 ⁻ , γ to 2 ⁺ . Strongly populated in (n, γ) E=2 keV.
1035.6 ^e 22	3 ^{-k}		FHJ О	B(E3) \uparrow =0.35 2 XREF: O(1040). B(E3) \uparrow : from (d,d'); other: 0.31 8 from Coul. ex. J^{π} : from (d,d').
1050.86 ^c 15	(4^+)		HI	J^{π} : strong population in (n,γ) , γ to 2^+ , $(E0+E2)$ γ to 4^+ .
1052.9 ^f 4	4-1	101 ns 6	FGH	J ^{π} : (E1) γ to 4 ⁺ , M1+E2 γ to 3 ⁻ , (d,p) favors 4 ⁻ . T _{1/2} : weighted average of 97 ns 6 (1979McZP, 1978CIZR), 103 ns 6 (1980Bu13) and 125 ns 20 (1973Br05). Configuration=((ν 1/2[631])+(ν 7/2[743])) from (d,p) strength.
1058.8 ^d 3	(4 ⁺)		HIJ	J^{π} : M1 γ to 4 ⁺ , γ to 2 ⁺ , strongly populated in (n,γ) ; probable member of $K^{\pi}=2^+$ band.
1066.1 <i>10</i>	$(3^+,4^+)$		I	J^{π} : strongly fed in (n,γ) .
1070.0 ^e _10	$(4^{-})^{k}$		EF H	J^{π} : γ to 4^+ , (d,p) favors 4^- .
1085.4 [@] 7	12+	5.5 [#] ps +18-33	K O R	B(E2) \uparrow =4.1 6 B(E2) \uparrow : from Coul. ex. J ^{π} : E2 γ to 10 ⁺ and g.s. band member.
1104.4 ^f 14	$(2^+,5^+)$ $(5^-)^k$		I	J^{π} : from strength of average resonance (n, γ) capture.
1104.47 14 1110.66 ^g 8	(2-)		F A H M	J^{π} : (d,p) favors 5 ⁻ . J^{π} : γ to 2 ⁺ ; γ to 1 ⁻ ; γ to 3 ⁻ ; log ft =7.6 from J=1 in ²³⁶ Pa β ⁻ decay.
1127.38 ^d 20 1147.0 10	(5 ⁺) (3 ⁺ ,4 ⁺)		HI I	J^{π} : γ to 4 ⁺ , fed strongly in (n,γ) . J^{π} : strongly fed through E1 γ in resonance (n,γ) E=2 keV capture states with J^{π} =3 ⁻ ,4 ⁻ .
1149.4 ^g 10	(3 ⁻)		н Ј О	B(E3) \uparrow =0.26 3 B(E3) \uparrow : from (d,d'), other: 0.16 6 from Coul. ex. J ^{π} : γ to 3 ⁻ , (d,d') favors (3 ⁻);
≈1164? ^e	$(5^{-})^{k}$		F	J^{π} : from (d,p), possible member of $K^{\pi}=1^{-}$ band.
1164 ^f 3 1171.8 2	$(6^{-})^{k}$		F H	J^{π} : from (d,p), possible member of $K^{\pi}=4^{-}$ band.

236U Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		XREF			Comments
1191.6 ^a 10	(3-)			7			J^{π} : from (d,p), possible member of $K^{\pi}=3^-$ band.
1198.6 ^{&} 12 1221.4 10	9 ⁻ (2 ⁺ ,5 ⁺)		E	HI K	0		J^{π} : from Coul. ex. E2 γ to 7 ⁻ , member of K^{π} =0 ⁻ band. J^{π} : from the feeding strength of E1 γ in resonance (n,γ) E=2 keV capture states with J^{π} =3 ⁻ ,4 ⁻ .
≈1232 ^f	$(7^{-})^{k}$		I	7			J^{π} : from (d,p), possible member of $K^{\pi}=4^-$ band.
1232.2 <mark>a</mark> 10	$(4^{-})^{k}$		I				J^{π} : from (d,p), possible member of $K^{\pi}=3^-$ band.
1240 2	,			J	N		(*/1/) [
1249.3 <i>10</i>	$(2^+,5^+)$			I			J ^{π} : from the feeding strength of E1 γ in resonance (n, γ) E=2 keV capture states with J ^{π} =3 ⁻ ,4 ⁻ .
1265.2 10	$(3^+,4^+)$		E	IJ			J ^{π} : strongly fed through E1 γ in resonance (n, γ) E=2 keV capture states with J ^{π} =3 ⁻ ,4 ⁻ .
1271.10 8	$(1^-,2,3)$		A				J^{π} : γ to 2 ⁺ , γ to 3 ⁻ , log ft =8.3 from J=1 in ²³⁶ Pa β ⁻ decay.
1282.2 <mark>a</mark> 10	$(5^{-})^{k}$		I	7			J^{π} : from (d,p), possible member of $K^{\pi}=3^-$ band.
1320 ^f 4	$(8^{-})^{k}$		I	7			J^{π} : from (d,p), possible member of $K^{\pi}=4^{-}$ band.
1320.4 10	$(2^+,5^+)$			I			J ^{π} : from the feeding strength of E1 γ in resonance (n, γ) E=2 keV capture states with J ^{π} =3 ⁻ ,4 ⁻ .
1329.0 <i>10</i>	$(3^+,4^+)$			I			J ^{π} : strongly fed through E1 γ in resonance (n, γ) E=2 keV capture states with J^{π} =3 ⁻ ,4 ⁻ .
1332.8 10	$(3^+,4^+)$			HIJ			J ^{π} : strongly fed through E1 γ in resonance (n, γ) E=2 keV capture states with J ^{π} =3 ⁻ ,4 ⁻ .
1342.8 <mark>a</mark> 10	$(6^{-})^{k}$		I	7			J^{π} : from (d,p), possible member of $K^{\pi}=3^-$ band.
1347.5 10	$(3^+,4^+)$			HI			J ^{π} : strongly fed through E1 γ in resonance (n, γ) E=2 keV capture states with J ^{π} =3 ⁻ .4 ⁻ .
1351.3 10	$(3^+,4^+)$		E	I			J^{π} : strongly fed through E1 γ in resonance (n,γ) E=2 keV capture states with $J^{\pi}=3^{-},4^{-}$.
1381.3 10	$(3^+,4^+)$			I			J ^{π} : strongly fed through E1 γ in resonance (n, γ) E=2 keV capture states with J^{π} =3 ⁻ ,4 ⁻ .
1392 5			Е				States with 0 = 3 ,1 .
1399.8 <i>10</i>	$(2^+,5^+)$			I			J ^{π} : from the feeding strength of E1 γ in resonance (n, γ) E=2 keV capture states with J ^{π} =3 ⁻ ,4 ⁻ .
1413.3 ^a 19	$(7^{-})^{k}$		I	7			J^{π} : from (d,p), possible member of $K^{\pi}=3^{-}$ band.
1426.4 [@] 9	14+	2.8 [#] ps 3		K	0	R	B(E2)↑=4.5 5
		1					B(E2)↑: from Coul. ex.
							J^{π} : E2 γ to 12 ⁺ and g.s. band member.
1443.6 <mark>&</mark> <i>13</i>	11-			K	0		J^{π} : from Coul. ex. E2 γ to 9 ⁻ , member of K^{π} =0 ⁻ band.
1471.7 <mark>b</mark> 10	$(6^{-})^{k}$		I	7			J^{π} : from (d,p), possible member of $K^{\pi}=6^-$ band.
1541.8 ^b 13	$(7^{-})^{k}$		I	7			J^{π} : from (d,p), possible member of $K^{\pi}=6^-$ band.
1572.2 6				H			
1580? <i>13</i>	(1,2)		I	FG			J^{π} : populated by 1170 γ from 2750-keV (J^{π} =0 ⁺) fission isomer. E(level): Possible but unlikely the order of 1580 and 1170 are reversed which would result instead with a level at
1604.00.7	(1= 0±)						E(level)=1170.
1604.80 7	$(1^-,2^+)$		A I	•			XREF: F(1600.8). J^{π} : γ to 0^{+} , γ to 2^{+} , γ to 3^{-} .
1621.8 ^b 12	$(8^{-})^{k}$		I				J^{π} : from (d,p), possible member of $K^{\pi}=6^-$ band.
1642.5 <i>20</i> 1662.36 <i>8</i>	$(1,2^+)$		A I	H F H			J^{π} : γ to 0^+ , γ to 2^+ , $\log ft = 7.1$ from $J = 1$ in 236 Pa β^- decay.
1689.6 <i>17</i>	(1,2)		A I				$J = I \cup J$, $I \cup J$
1732.6 <mark>&</mark> <i>17</i>	13-			K	0		J^{π} : from Coul. ex. E2 γ to 11 ⁻ , member of $K^{\pi}=0^-$ band.
1748 3			I	7			, , , , , , , , , , , , , , , , , , , ,
1775.9 22			I	7			
1791.3 7	$1^{(+)}$					Q	B(M1) \(\frac{1}{2} = 0.38 \) 5
							B(M1) \uparrow : from (γ, γ') .

²³⁶U Levels (continued)

E(level) [†]	J^π	T _{1/2}		XI	REF		Comments
		#					J^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
1801.0 [@] 10	16 ⁺	2.1 [#] ps 2			K	O R	B(E2)↑=3.8 <i>3</i> B(E2)↑: from Coul. ex.
							J^{π} : E2 γ to 14 ⁺ and g.s. band member.
1807.88 7	$(1,2^+)$		A	F		N	J^{π} : γ to 0 ⁺ , γ to 2 ⁺ and log ft =6.3 from J=1 in ²³⁶ Pa β ⁻
1854.8 20				F			decay.
1865.39 <i>15</i>	$(1,2^+)$		A	•			J^{π} : γ to 0 ⁺ and 1 ⁻ , log ft =7.3 from J=1 in ²³⁶ Pa β ⁻ decay.
1896.9 7				Н			
1912.0 <i>16</i> 1946.8 <i>20</i>				F F			
1972.62 9	$(1,2^+)$		A	-			J^{π} : γ to 0 ⁺ and 2 ⁺ , log ft =6.6 from J=1 in ²³⁶ Pa β ⁻ decay.
1979.15 8	$(1^-,2)$		A				J^{π} : γ to 1 ⁻ , 2 ⁺ and 3 ⁻ ; $\log ft$ =6.4 from J=1 in ²³⁶ Pa β ⁻ decay.
1981.04 <i>16</i>	$(1,2^+)$	‡	A				J^{π} : γ to 0 ⁺ and 2 ⁺ ; $\log ft$ =6.7 from J=1 in ²³⁶ Pa β ⁻ decay.
2054.2 7	$1^{(+)}$ <i>l</i>	+		F		Q	B(M1) \uparrow =0.25 4 B(M1) \uparrow : from (γ, γ') .
							J^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
2060.6 ^{&} 19	15-					0	J^{π} : from Coul. ex. E2 γ to 13 ⁻ , member of K^{π} =0 ⁻ band.
2086.54 9	1 ⁽⁻⁾		A			Q	B(E1)↑=2.7 7
							B(E1)↑: from (γ, γ') . J^{π} : (E1) γ to 0 ⁺ and 2 ⁺ ; log ft =6.3 from J=1 in ²³⁶ Pa β ⁻
							decay.
2095.7 7	$1^{(+)} jl$					Q	B(M1)↑=0.15 3
							B(M1) \uparrow : from (γ, γ') . J^{π} : (M1) γ to 0^+ and 2^+ .
2114 3				F			
2155.40 12	(0,1,2)		A	F			J^{π} : log ft =6.6 from J=1 in ²³⁶ Pa β ⁻ decay.
2176.9 <i>18</i> 2188.8 <i>7</i>	1(+) <i>jl</i>			F		Q	B(M1)↑=0.92 9
2100.0 /	1. 73					Q	$B(M1) \uparrow = 0.92 9$ $B(M1) \uparrow : \text{ from } (\gamma, \gamma').$
	(4 a+)						J^{π} : (M1) γ to 0^+ and 2^+ .
2190 <i>12</i> 2204.0 [@] <i>12</i>	(1,2 ⁺) 18 ⁺	1.17 [#] ps <i>12</i>		G		0 P	J^{π} : γ from 0 ⁺ (2750-keV fission isomer), 2190 γ to 0 ⁺ .
2204.0 - 12	18	1.17" ps 12		F		O R	B(E2)↑=4.7 5 B(E2)↑: from Coul. ex.
							J^{π} : E2 γ to 16 ⁺ and g.s. band member.
2226.9? <i>3</i> 2234 <i>4</i>	(0,1,2)		A	F			J^{π} : γ to 2 ⁺ , log ft =7.21 from J=1 in ²³⁶ Pa β ⁻ decay.
2243.9 10	1 <i>j</i>			г		Q	
2251.1 7	$1^{(+)}j$					Q	B(M1)↑=0.25 4
							B(M1) \uparrow : from (γ, γ') .
2260.4 10				F			J^{π} : γ to 0^+ and 2^+ .
2284.7 7	$1^{(+)}$ <i>jl</i>			-		Q	B(M1)↑=0.31 4
							$B(M1)\uparrow$: from (γ,γ') .
2426.6 <mark>&</mark> 22	17-					0	J^{π} : (M1) γ to 0^+ and 2^+ . J^{π} : from Coul. ex. E2 γ to 15 ⁻ , member of $K^{\pi}=0^-$ band.
2426.6 7	17 $1^{(+)}$ jl					Q	B(M1) \uparrow =0.25 3
2.22.07	-					~	$B(M1)\uparrow$: from (γ,γ') .
2440.6.7	1(±) <i>il</i>					•	J^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
2440.2 7	$1^{(+)}$ <i>jl</i>					Q	B(M1) \uparrow =0.19 3 B(M1) \uparrow : from (γ, γ') .
							J^{π} : (M1) γ to 0^+ and 2^+ .
2457.3 7	$1^{(+)} jl$					Q	B(M1)↑=0.21 3
							B(M1) \uparrow : from (γ, γ') .
				Co	ntinu	ied on ne	xt page (footnotes at end of table)

236U Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF		Comments
	. (. \ <u>21</u>				J^{π} : (M1) γ to 0^+ and 2^+ .
2494.5 7	1 ⁽⁺⁾ <i>jl</i>			Q	B(M1) \uparrow =0.21 3 B(M1) \uparrow : from (γ, γ') . J ^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
2498.5 7	1 ⁽⁺⁾ <i>jl</i>			Q	B(M1) \uparrow =0.20 3 B(M1) \uparrow : from (γ, γ') .
2631.8 [@] 13	20 ⁺	0.84 [#] ps 12		O B	J^{π} : (M1) γ to 0^+ and 2^+ .
2031.8 - 13	20	0.84 ps 12		O R	B(E2)↑=4.9 7 B(E2)↑: from Coul. ex. J^{π} : E2 γ to 18 ⁺ and g.s. band member.
2699.0 7	$1^{(+)} jl$			Q	B(M1) \uparrow =0.19 3 B(M1) \uparrow : from (γ, γ') .
2712.1 7	1 ⁽⁻⁾ <i>j</i>			Q	J^{π} : (M1) γ to 0^+ and 2^+ . B(E1) \uparrow =1.4 3
2,12.1	1			•	B(E1) \uparrow : from (γ, γ') . J π : (E1) γ to 0 ⁺ and 2 ⁺ .
2750 7	(0^{+})	67 ns <i>3</i>	G K		%IT=88 3; %SF=12 3
					%IT,%SF: deduced from weighted average of $\Gamma(\gamma)/\Gamma(f)=7$ 2 (1976An11) and $\Gamma_{\gamma}/\Gamma_{f}=8$ 3 (1989Sc30) with $\infty=0$. Others:
					$\Gamma_{\gamma}/\Gamma_{\rm f}\approx 6 \ (1978 \text{Guo2}), \ \Gamma_{\gamma}/\Gamma_{\rm f}< 4.5 \ (1980 \text{Bu}13), \ \Gamma_{\gamma}/\Gamma_{\rm f}= 8 \ 3$
					(1989Sc30), $\Gamma(\gamma)/\Gamma(f) < 1.5$ (1978Ba47), $\Gamma_{\gamma}/\Gamma_{f} = 6.6$ 6
					(2020Ba53) for En=0.2-1.2 eV and $\Gamma_{\gamma}/\Gamma_{\rm f}$ =12.5 18 (2020Ba53) for En=1.2-12 eV; %SF≈10 (1979Be33).
					%α: <10, quoted by 1989Sc30 from unpublished work, and no
					reported measurements.
					J^{π} : (E1) γ to 1 ⁻ ; interpreted as the g.s. in second minimum of the nuclear potential.
					$T_{1/2}$: weighted average of 68 ns 6 (2020Ba53), 66 ns 3
					(2020Ba53), 92 ns 15 (1972PiZR), 80 ns 20 (1971Bo61), 70
					ns 30 (1971Be62), 70 ns 14 (1970Re05) and 66.6 ns 87
					(1970El03). Others: 110 ns 50 (1969La14), 105 ns 20 (1970Wo06), 130 ns 15 (1971Br38), 130 ns 40 (1972Pe01),
					116 ns 7 (1975Ch09), 120 ns 15 (1977Bo09), 115 ns 5
					(1978Gu02,1980Gu20), 137 ns 18 (1982Go02), 125 ns 30
					(1989Sc30), 121 ns 2 (1989Ma57,1990Ma59), 144 ns 32 (1974HeZE), ≈110 ns (1972HoXQ), and 114 ns 46
					(1970Vi05). Data are clustered around two values, one
					approximately 70 ns and the other approximately 120 ns.
					Evaluator adopts the former, as 2020Ba53 note the possibility
					of contributions of higher lying states in measurements with longer lifetimes.
					E(level): from 235 U(d,p γ). Others: \approx 2400 keV (1968Ca23,1969Bj02), <2960 (1970El03), \approx 2350 (1970So06)
					and 2795 keV 5 (1987ScZP).
					ce's preceding fission observed, interpreted as g.s. cascade in second minimum with inertia constant A=3.54 (1974HeZE),
					and A=3.36 keV I (1977Bo09) following E=AJ(J+1).
					One ternary fission per 160 binary fissions observed by 1989Ma57, 1989Ma54.
2756.2 7	$1^{(+)} jl$			Q	B(M1)↑=0.08 2
					B(M1) \uparrow : from (γ, γ') . J^{π} : (M1) γ to 0^+ and 2^+ .
2770 ^h 7	$(2^+)^{i}$		G		
2817^{h}_{9} 7	$(4^+)^{i}$		G		
2823& 4	(19 ⁻)			0	J^{π} : from Coul. ex. (E2) γ to 17 ⁻ , member of $K^{\pi}=0^{-}$ band.
			Continue	ed on ne	ext page (footnotes at end of table)

²³⁶U Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
2823.3 7	1 ⁽⁺⁾ <i>jl</i>			Q	B(M1) \uparrow =0.11 3 B(M1) \uparrow : from (γ, γ') . J ^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
2838.3 7	1 ⁽⁺⁾ <i>jl</i>			Q	B(M1) \uparrow =0.09 3 B(M1) \uparrow : from (γ, γ') . J ^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
2877.8 7	$1^{(-)}j$			Q	B(E1) \uparrow =1.6 4 B(E1) \uparrow : from (γ, γ') . J ^{π} : (E1) γ to 0 ⁺ and 2 ⁺ .
2891 ^h 8	$(6^+)^{i}$		G		
2924.0 7	$(1,2^+)$			Q	J^{π} : γ to 0^+ and 2^+ .
2969.0 7	$1^{(+)} jl$			Q	$B(M1)\uparrow=0.12 \ 3$
					B(M1) \uparrow : from (γ, γ') . J ^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
2991 ^h 8	$(8^+)^{i}$		G		
3081.0 [@] 14	22+	0.65 [#] ps <i>15</i>	0	R	B(E2) \uparrow =4.9 <i>I1</i> B(E2) \uparrow : from Coul. ex. J ^{π} : E2 γ to 20 ⁺ and g.s. band member.
3143.8 7	$1^{(+)} jl$			Q	B(M1) \uparrow =0.15 3 B(M1) \uparrow : from (γ, γ') . J ^{π} : (M1) γ to 0 ⁺ and 2 ⁺ .
3434 7	(0+)	<20 ns	K		J^{π} : (E0) to 2750-keV, 0^{+} isomer; bandhead of β band in second minimum. $T_{1/2}$: from ²³⁶ U(d,pn γ).
3550.0 [@] 17	24 ⁺	0.41 [#] ps 8	0)	B(E2) \uparrow =6.3 12 B(E2) \uparrow : from Coul. ex. J ^{π} : E2 γ to 22 ⁺ and g.s. band member.
4039.0 [@] 20	26 ⁺	0.33 [#] ps 9	0)	B(E2) \uparrow =6.3 16 B(E2) \uparrow : from Coul. ex. J ^{π} : E2 γ to 24 ⁺ and g.s. band member.
4549.0 [@] 22	28+	0.17 [#] ps 7	0)	B(E2) \uparrow =10 4 B(E2) \uparrow : from Coul. ex. J ^{π} : E2 γ to 26 ⁺ and g.s. band member.
5077 [@] 4	(30^+)		0)	J^{π} : member of g.s. band member.

 $^{^{\}dagger}$ Deduced by evaluator from a least-squares fit to adopted $\gamma\text{-ray}$ energies.

[‡] From Recoil Distance Doppler Method (RDDM) in Coul. ex.

[#] From B(E2) in Coul. ex.

[@] Band(A): $K^{\pi}=0^{+}$ g.s. Rotational band.

[&]amp; Band(B): $K^{\pi}=0^{-}$ Octupole vibrational band.

^a Band(C): $K^{\pi}=3^{-}$ Configuration=((v 7/2(743))-(v 1/2(631))).

^b Band(D): $K^{\pi}=6^{-}$ Configuration=((v 7/2(743))+(v 5/2(622))).

^c Band(E): $K^{\pi}=0^+$.

^d Band(F): $K^{\pi} = (2^{+})$.

^e Band(G): $K^{\pi}=1^{-}$ Configuration=((ν 7/2(743))-(ν 5/2(622))). ^f Band(H): $K^{\pi}=4^{-}$ Configuration=((ν 7/2(743))+(ν 1/2(631))).

^g Band(I): $K^{\pi}=2^{-}$.

h g.s. band in second potential well with inertia constant A=3.36 keV 1 following E=AJ(J+1).

i From (d,pγ). Based on ce cascade interpreted as rotational band (in second minimum) built on fission isomer.

²³⁶U Levels (continued)

 $^{^{}j}$ J^{π} from $\gamma'(\theta)$ in 236 U(γ,γ'). k From cross section signature in 235 U(d,p). l (M1) γ rays to g.s. (J^{π} =0+) and 45.2-keV level (J^{π} =2+).

Mult.: from $\alpha(K)\exp=0.112\ 10$, $\alpha(K)/\alpha(L)=3.59\ 11$, $\alpha(L1)/\alpha(L2)=11\ 4$,

 ∞

0.31 2

 $\alpha(\text{L1+L2})/\alpha(\text{L3})=36+10-7$ (1969Le05); $\alpha(\text{K})\exp=0.11\ 3$, $\alpha(\text{L})\exp=0.031\ 9$, $\alpha(\text{K})/\alpha(\text{L})=3.56\ 50$ (1977Po05); $\alpha(\text{K})\exp=0.11\ 1$, $\alpha(\text{L1})\exp=0.032\ 3$, $\alpha(\text{L2})\exp=0.0034\ 4$, $\alpha(\text{L3})\exp=0.0016\ 11$, $\alpha(\text{M1})\exp=0.0058\ 7$, Anomalous conversion due to penetration effect. The M2 and E3 admixtures are smalls (1983Fa15).

E_γ: weighted average of 642.42 *10* (1969Le05), 642.06 *17* (1969BaZW), 642.48 *15* (1971Cl03,1972ClZS), 641.8 *1* (1972MaYR), 642.2 *1* (1973Gr20), 642.3 *3* (1973Or06), 642.33 *10* (1975OtZX), 642.24 *10* (1977Po05) and 642.3 *1* (1984Mi02).

 α : from the summation all subshell α s in 1983Fa15 with additional 5% uncertainty for higher shells; α (K)exp=0.111 10 from weighted average of 0.112 10 (1969Le05), 0.11 3 (1977Po05) and 0.11 1 (1983Fa15); α (L)exp=0.031 9 (1977Po05).

Mult.: from $\alpha(K)\exp=0.22$ 2, $\alpha(K)/\alpha(L)=3.26$ 16, $\alpha(L1)/\alpha(L2)=7$ 3, $\alpha(L1+L2)/\alpha(L3)=46$ +40-20 (1969Le05); $\alpha(K)\exp=0.219$ 14, $\alpha(L)\exp=0.069$ 9, $\alpha(K)/\alpha(L)=3.19$ 38 (1977Po05); $\alpha(L1)\exp=0.059$ 3, $\alpha(L2)\exp=0.0129$ 15, $\alpha(L3)\exp=0.0016$ 11, $\alpha(M1)\exp=0.0195$ 23, Anomalous conversion due to

From ENSDF

γ (236U) (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α	Comments
									penetration effects. The M2 and E3 admixtures are small (1983Fa15). E _γ : Weighted average of 687.71 <i>10</i> (1969Le05), 687.39 <i>17</i> (1969BaZW), 688.01 <i>15</i> (1971Cl03,1972ClZS), 687.5 <i>10</i> (1972MaYR), 687.5 <i>1</i> (1973Gr20), 687.6 <i>3</i> (1973Or06), 687.57 <i>16</i> (1975OtZX), 687.52 <i>10</i> (1977Po05) and 687.5 <i>1</i> (1984Mi02).
									α : from the summation all subshell α s in 1983Fa15 with additional 5% uncertainty for higher shells; $\alpha(K)$ exp=0.219 14 from weighted average of 0.22 2 (1969Le05) and 0.219 14 (1977Po05); $\alpha(L)$ exp=0.069 9 (1977Po05).
									I _γ : weighted average of 26.5 5 (1969Le05), 28.5 5 (1971GuZY,1976GuZN), 24.8 36 (1973Or06), 21 3 (1973Gr20), 26.2 7 (1975OtZX), 29.4 9
	744.18	3-	56.6 8	≈5	687.56	1-	[E2]	199 14	(1977Po05), 26.8 20 (1984Mi02) and 29 4 (1979McZP). $\alpha(L)=145$ 11; $\alpha(M)=40.1$ 29; $\alpha(N)=10.9$ 8; $\alpha(O)=2.50$ 18; $\alpha(P)=0.405$ 29; $\alpha(Q)=0.00107$ 7
									E_{γ} : from ²³⁶ U(d,pn γ), uncertainty deduced from level energy difference, I_{γ} : deduced from γ -ray intensity balance in ²³⁶ Pa β ⁻ decay; other: I_{γ} ≥5 from ²³⁶ U(d,pn γ).
			594.5 3	100	149.480	4+	[E1]	0.00964 14	$\alpha(K)=0.00781\ 1I;\ \alpha(L)=0.001381\ I9;\ \alpha(M)=0.000330\ 5;\ \alpha(N)=8.83\times10^{-5}\ I2$ $\alpha(O)=2.128\times10^{-5}\ 30;\ \alpha(P)=4.01\times10^{-6}\ 6;\ \alpha(Q)=2.91\times10^{-7}\ 4$ E_{γ} : from 236 Pa β^- decay.
	782.4	10 ⁺	260.1 5	100	522.26	8+	E2 b	0.297 5	$\alpha(K)$ =0.0979 14; $\alpha(L)$ =0.1456 23; $\alpha(M)$ =0.0397 6; $\alpha(N)$ =0.01078 17; $\alpha(O)$ =0.00250 4 $\alpha(P)$ =0.000423 7; $\alpha(Q)$ =6.40×10 ⁻⁶ 9
									$B(E2)(W.u.)=3.6\times10^2 4$ E_{γ} : from Coul. ex.
	848.3	5-	≈103.4 ^{&}	100 <mark>&</mark>	744.18	3-	(E2) b	11.41 16	$\alpha(L) \approx 8.31$; $\alpha(M) \approx 2.305$; $\alpha(N) \approx 0.626$; $\alpha(O) \approx 0.1438$; $\alpha(P) \approx 0.02355$ $\alpha(Q) \approx 9.69 \times 10^{-5}$
	919.18	0+	873.98 12	100	45.2431	2+	[E2]	0.01439 20	$\alpha(K)$ =0.01060 15; $\alpha(L)$ =0.00283 4; $\alpha(M)$ =0.000711 10; $\alpha(N)$ =0.0001917 27 $\alpha(O)$ =4.58×10 ⁻⁵ 6; $\alpha(P)$ =8.47×10 ⁻⁶ 12; $\alpha(Q)$ =4.85×10 ⁻⁷ 7 E _y : weighted average of 874.1 2 (1984Mi02) and 873.92 15 (1975OtZX).
ı			918.9 [‡] 3		0.0	0^{+}	(E0)€		L _γ . weighted average of 674.1 2 (1764, who 2) and 675.72 15 (1775 of 2A).
	957.90	2+	912.4 [‡] 3	≈71 [‡]	45.2431	-	[M1+E2]	0.032 18	$\alpha(K)=0.025\ 15;\ \alpha(L)=0.0050\ 25;\ \alpha(M)=0.0012\ 6;\ \alpha(N)=3.3\times10^{-4}\ 16;$ $\alpha(O)=8.E-5\ 4$ $\alpha(P)=1.5\times10^{-5}\ 8;\ \alpha(Q)=1.1\times10^{-6}\ 7$
			958.0 [‡] 2	100 [‡]	0.0	0+	[E2]	0.01204 17	$\alpha(F)=1.5\times10^{-8}$ 8; $\alpha(Q)=1.1\times10^{-8}$ 7 $\alpha(K)=0.00902$ 13; $\alpha(L)=0.002264$ 32; $\alpha(M)=0.000565$ 8; $\alpha(N)=0.0001522$ 21
١									

γ (236U) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
			·						$\alpha(O)=3.64\times10^{-5} 5$; $\alpha(P)=6.77\times10^{-6} 9$; $\alpha(Q)=4.08\times10^{-7} 6$
									E_{γ} : from ²³⁶ Pa β^- decay.
									I_{γ} : From ²³⁵ U(n, γ) E=thermal.
960.05	(2^{+})	≈810.9 [‡]	≈68 [‡]	149.480	4+				
		914.8‡ 2	100‡	45.2431		(E0+M1) [€]			
966.58	(1-)	≈959.9 [‡] 222.4 <i>1</i>	≈80 [‡] <23	0.0 744.18	0 ⁺ 3 ⁻				
900.38	(1-)	279.0 [†] 1	<23 58 [†] 3	687.56	3 1-				
		921.2 [†] 2	44 [†] 11	45.2431	-	(E1) [€]		0.00432 6	$\alpha(K)=0.00353\ 5;\ \alpha(L)=0.000599\ 8;\ \alpha(M)=0.0001423\ 20;$
		721.2 2	77 11	73.2731	2	(LI)		0.00432 0	$\alpha(N)=3.81\times10^{-5}$ 5; $\alpha(O)=9.22\times10^{-6}$ 13
									$\alpha(P)=1.757\times10^{-6} \ 25; \ \alpha(Q)=1.345\times10^{-7} \ 19$
		966.8 [†] 2	100 [†] 9	0.0	0_{+}	(E1) ^c		0.00397 6	$\alpha(K)$ =0.00325 5; $\alpha(L)$ =0.000549 8; $\alpha(M)$ =0.0001302 18;
									$\alpha(N)=3.49\times10^{-5} 5; \alpha(O)=8.44\times10^{-6} 12$
007.66	2-	243.6 [†] 2	26 [†] 3	744.10	2-	MILEOC	154	0.01.27	$\alpha(P)=1.610\times10^{-6} \ 23; \ \alpha(Q)=1.239\times10^{-7} \ 17$
987.66	2-	243.6 2	26 3	744.18	3-	M1+E2 ^c	1.5 4	0.81 <i>21</i>	$\alpha(K)$ =0.51 19; $\alpha(L)$ =0.216 13; $\alpha(M)$ =0.0564 23; $\alpha(N)$ =0.0153 6; $\alpha(O)$ =0.00360 17
									$\alpha(P)=0.00064 \ 4; \ \alpha(Q)=2.6\times10^{-5} \ 9$
									Mult., δ : from ce measurements in (n,γ) , E=thermal.
		300.0 [†] 1	17 [†] 3	687.56	1-	[M1+E2]		0.6 4	$\alpha(K)=0.4 4; \ \alpha(L)=0.12 4; \ \alpha(M)=0.030 7; \ \alpha(N)=0.0081 20;$
									$\alpha(O)=0.0019 \ 5; \ \alpha(P)=3.6\times10^{-4} \ 11$ $\alpha(O)=2.1\times10^{-5} \ 16$
		942.4 [†] 2	100 [†] 7	45.2431	2+	(E1) [€]		0.00415 6	$\alpha(K)=0.00339 \ 5; \ \alpha(L)=0.000575 \ 8; \ \alpha(M)=0.0001365 \ 19;$
		, .z z	100 /	13.2131	-	(EI)		0.00112 0	$\alpha(N) = 3.66 \times 10^{-5} \ 5; \ \alpha(O) = 8.85 \times 10^{-6} \ 12$
									$\alpha(P)=1.686\times10^{-6} \ 24; \ \alpha(Q)=1.294\times10^{-7} \ 18$
999.8	7-	151.5 ^a 5	100 ^a	848.3	5-	E2 b		2.21 4	$\alpha(K)=0.2183 \ 31; \ \alpha(L)=1.455 \ 30; \ \alpha(M)=0.403 \ 8; \ \alpha(N)=0.1093$
									22; α (O)=0.0252 5 α (P)=0.00417 8; α (Q)=2.75×10 ⁻⁵ 5
1001.6	(3 ⁺)	≈258.4 [‡]		744.18	3-				$u(1) = 0.00417$ 8, $u(Q) = 2.75 \times 10^{-5}$
1001.0	(5)	≈852.2 [‡]	≈13 [‡]	149.480	4 ⁺				
		956.3 [‡] 3	100‡ 12	45.2431	2+				
1035.6	3-	≈886.2 [‡]	100‡	149.480	4+	[E1]		0.00463 6	$\alpha(K) \approx 0.00378$; $\alpha(L) \approx 0.000643$; $\alpha(M) \approx 0.0001528$;
									$\alpha(N) \approx 4.09 \times 10^{-5}$
		4	+						$\alpha(O) \approx 9.90 \times 10^{-6}$; $\alpha(P) \approx 1.885 \times 10^{-6}$; $\alpha(Q) \approx 1.437 \times 10^{-7}$
		≈990.2 [‡]	≈88 [‡]	45.2431	2+	[E1]		0.00381 5	$\alpha(K) \approx 0.00311$; $\alpha(L) \approx 0.000526$; $\alpha(M) \approx 0.0001247$; $\alpha(N) \approx 3.34 \times 10^{-5}$
									$\alpha(N) \approx 3.34 \times 10^{-6}$ $\alpha(Q) \approx 8.09 \times 10^{-6}$; $\alpha(P) \approx 1.543 \times 10^{-6}$; $\alpha(Q) \approx 1.190 \times 10^{-7}$
1050.86	(4 ⁺)	901.25 [‡] <i>17</i>		149.480	4+	(E0+E2)			$u(Q)^{\sim 0.07 \wedge 10}$, $u(1)^{\sim 1.075 \wedge 10}$, $u(Q)^{\sim 1.170 \wedge 10}$
1000.00	(.,)	1006.0^{\ddagger} 3	100 [‡]	45.2431	-	(20.22)		0.01097 15	

						•	γ(0) (continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α	Comments
1052.9	4-	(≈65)		987.66	2-	(E2) [€]		102.4 14	$\alpha(L) \approx 74.6$; $\alpha(M) \approx 20.66$; $\alpha(N) \approx 5.61$; $\alpha(O) \approx 1.286$; $\alpha(P) \approx 0.2088$ $\alpha(Q) \approx 0.000597$
		204.6 10	100 15	848.3	5-	(E2) ^C		0.687 16	$\alpha(K)$ =0.1490 24; $\alpha(L)$ =0.393 10; $\alpha(M)$ =0.1080 27; $\alpha(N)$ =0.0293 7; $\alpha(O)$ =0.00678 17
		307.9 10	90 15	744.18	3-	M1+E2 ^c	1.3 5	0.46 18	$\alpha(P)=0.001134\ 29;\ \alpha(Q)=1.179\times10^{-5}\ 23$ $E_{\gamma}I_{\gamma}$: from delayed I γ in $^{235}U(n,\gamma)$ E=thermal. $\alpha(K)=0.32\ 16;\ \alpha(L)=0.100\ 16;\ \alpha(M)=0.0256\ 34;\ \alpha(N)=0.0069\ 9;$ $\alpha(O)=0.00165\ 24$ $\alpha(P)=0.00030\ 5;\ \alpha(Q)=1.6\times10^{-5}\ 7$
		903.6 4	41 7	149.480	4+	(E1) ^C		0.00447 6	E _γ ,I _γ : from delayed I _γ in ²³⁵ U(n,γ) E=thermal. Mult.,δ: from ce measurements in (n,γ), E=thermal. $\alpha(K)=0.00365$ 5; $\alpha(L)=0.000621$ 9; $\alpha(M)=0.0001474$ 21; $\alpha(N)=3.95\times10^{-5}$ 6; $\alpha(O)=9.55\times10^{-6}$ 13 $\alpha(P)=1.819\times10^{-6}$ 26; $\alpha(Q)=1.390\times10^{-7}$ 19
1058.8	(4 ⁺)	909.3‡ 3	100‡ 9	149.480	4+	M1 ^c		0.0505 7	I _{γ} : from delayed I _{γ} in ²³⁵ U(n, γ) E=thermal. $\alpha(K)$ =0.0404 6; $\alpha(L)$ =0.00760 11; $\alpha(M)$ =0.001830 26; $\alpha(N)$ =0.000493 7 $\alpha(O)$ =0.0001198 17; $\alpha(P)$ =2.313×10 ⁻⁵ 32; $\alpha(Q)$ =1.852×10 ⁻⁶ 26
		1014.1‡	≈69 [‡]	45.2431	2+				$u(O) = 0.0001198 \ 17, \ u(F) = 2.515 \times 10^{-5} \ 52, \ u(Q) = 1.652 \times 10^{-5} \ 20^{-5}$
1070.0	(4-)	920.5‡	100‡	149.480	4 ⁺				
1085.4	12+	303.0 [@] 5	100 [@]	782.4	10+	E2 ^b		0.1826 27	$\alpha(K)$ =0.0736 11; $\alpha(L)$ =0.0798 12; $\alpha(M)$ =0.02163 33; $\alpha(N)$ =0.00587 9; $\alpha(O)$ =0.001364 21 $\alpha(P)$ =0.000233 4; $\alpha(Q)$ =4.44×10 ⁻⁶ 6 B(E2)(W.u.)=4.1×10 ² 7
1110.66	(2^{-})	366.6 [†] 1	82 [†] 9	744.18	3-				
		423.1 [†] <i>I</i>	100 [†] 5	687.56	1-				
		1065.0 [†] 2	34 [†] 4	45.2431	2+				
1127.38	(5 ⁺)	977.9 [‡] 2	100‡	149.480	- 4 ⁺				
1149.4	(3 ⁻)	405.2 [‡]	100	744.18	3-				
1198.6	9-	198.8 ^a 3	100 ^a	999.8	7-	E2 ^b		0.764 12	$\alpha(K)$ =0.1561 22; $\alpha(L)$ =0.444 7; $\alpha(M)$ =0.1222 19; $\alpha(N)$ =0.0332 5; $\alpha(O)$ =0.00766 12 $\alpha(P)$ =0.001281 20; $\alpha(Q)$ =1.273×10 ⁻⁵ 19
1271.10	(1-,2,3)	526.7 [†] 2 1225.9 [†] <i>I</i>	39 [†] 4 100 [†] 8	744.18 45.2431	3 ⁻ 2 ⁺				
1426.4	14+	341.0 [@] 5	100 @	1085.4	12+	E2 ^b		0.1285 19	$\alpha(K)$ =0.0589 8; $\alpha(L)$ =0.0511 8; $\alpha(M)$ =0.01375 21; $\alpha(N)$ =0.00373 6; $\alpha(O)$ =0.000869 13 $\alpha(P)$ =0.0001497 22; $\alpha(Q)$ =3.38×10 ⁻⁶ 5 B(E2)(W.u.)=4.5×10 ² 5
1443.6	11-	245.0 ^a 5	100 <mark>a</mark>	1198.6	9-	E2 b		0.363 6	$\alpha(K)=0.1091 \ 16; \ \alpha(L)=0.1855 \ 30; \ \alpha(M)=0.0507 \ 8;$
					-				. (, , (-)

γ (236U) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α	Comments
								$\alpha(N)=0.01377\ 23;\ \alpha(O)=0.00319\ 5$
1580?	(1,2)	1580 ^{&} h 11	&	0.0	0+			$\alpha(P)=0.000538 \ 9; \ \alpha(Q)=7.42\times10^{-6} \ 11$
1604.80	(1,2) $(1^-,2^+)$	333.7 [†] <i>1</i>	37 [†] 2	1271.10	$(1^-,2,3)$			
1004.80	(1,2)	617.1 [†] 2	9.5 [†] 20	987.66	(1,2,3) 2^{-}			
		860.6 [†] <i>I</i>	35 [†] 1	744.18	3-			
		917.0 [†] 3	62 [†] 4	687.56	1 ⁻			
		1559.6 [†] <i>I</i>	100 [†] 9	45.2431				
		1604.9 2	18 [†] 5	0.0	0 ⁺			
1662.36	$(1,2^+)$	674.5 2	23 [†] 8	987.66	2-			
1002.50	(1,2)	975.0 [†] 2	21 [†] 5	687.56	1-			
		1617.1 [†] <i>I</i>	100 [†] 9	45.2431				
		1662.4 7	66 [†] 7	0.0	0 ⁺			
1732.6	13-	289 [@] 1	100 [@]	1443.6	11-	E2 <mark>b</mark>	0.211 4	$\alpha(K)$ =0.0805 12; $\alpha(L)$ =0.0959 19; $\alpha(M)$ =0.0260 5; $\alpha(N)$ =0.00706
1732.0	13	20) 1	100	1113.0	11	D2	0.211 /	14 ; $\alpha(O)=0.001641$ 32
								$\alpha(P)=0.000280 5$; $\alpha(Q)=4.97\times10^{-6} 8$
1791.3	1 ⁽⁺⁾	1746.1 [#] <i>10</i>	38 [#] 8	45.2431	2+	$(M1)^{d}$	0.00926 13	$\alpha(K)$ =0.00717 10; $\alpha(L)$ =0.001332 19; $\alpha(M)$ =0.000320 5;
								$\alpha(N)=8.61\times10^{-5}\ 12$
						1		$\alpha(O) = 2.096 \times 10^{-5} \ 30; \ \alpha(P) = 4.05 \times 10^{-6} \ 6; \ \alpha(Q) = 3.27 \times 10^{-7} \ 5$
		1791.3 [#] <i>10</i>	100 [#]	0.0	0^{+}	(M1) ^d	0.00870 12	$\alpha(K)$ =0.00669 9; $\alpha(L)$ =0.001243 18; $\alpha(M)$ =0.000299 4;
								$\alpha(N)=8.04\times10^{-5}$ 11 $\alpha(O)=1.957\times10^{-5}$ 28; $\alpha(P)=3.78\times10^{-6}$ 5; $\alpha(Q)=3.05\times10^{-7}$ 4
1801.0	16 ⁺	374.6 [@] 5	100 [@]	1426.4	14 ⁺	E2 b	0.0987 14	
1801.0	10.	3/4.6 3	100	1426.4	14	E2°	0.0987 14	$\alpha(K)$ =0.0493 7; $\alpha(L)$ =0.0363 5; $\alpha(M)$ =0.00971 14; $\alpha(N)$ =0.00263 4; $\alpha(O)$ =0.000614 9
								$\alpha(P)=0.0001179$ $\alpha(P)=0.0001066 \ 16; \ \alpha(Q)=2.74\times10^{-6} \ 4$
								$B(E2)(W.u.)=3.8\times10^2 4$
1807.88	$(1,2^+)$	1762.7 [†] <i>1</i>	100 [†] 5	45.2431	2+			
		1807.8 [†] <i>1</i>	37 [†] 2	0.0	0^{+}			
1865.39	$(1,2^+)$	1177.7 [†] 2	100 [†] <i>14</i>	687.56	1-			
		1865.5 [†] 2	67 [†] 8	0.0	0^{+}			
1972.62	$(1,2^+)$	1927.0 2	100 7	45.2431				
		1972.7 [†] <i>1</i>	100 9	0.0	0_{+}			
1979.15	$(1^-,2)$	1234.9 [†] <i>1</i>	100 8	744.18	3-			
		1291.6 [†] <i>1</i>	100 8	687.56	1-			
		1934.1 [†] 2	98 [†] 8	45.2431	2+			
	$(1,2^+)$	870.4 [†] 2	100 [†] 9					

γ (236U) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}^{π}_f	Mult.	α	Comments
1981.04	$(1,2^+)$	1023.1 [†] 3	84 [†] 8	957.90	2+			
		1981.0 [†] <i>3</i>	74 [†] 7	0.0	0^{+}			
2054.2	1 ⁽⁺⁾	2009.0# 10	75 [#] 14	45.2431	2+	(M1) ^d	0.00668 9	$\alpha(K)$ =0.00492 7; $\alpha(L)$ =0.000913 13; $\alpha(M)$ =0.0002193 31; $\alpha(N)$ =5.90×10 ⁻⁵ 8
		2054.2 [#] 10	100 [#]	0.0	0+	(M1) ^d	0.00637 9	α (O)=1.436×10 ⁻⁵ 20; α (P)=2.77×10 ⁻⁶ 4; α (Q)=2.243×10 ⁻⁷ 32 α (K)=0.00463 7; α (L)=0.000859 12; α (M)=0.0002065 29; α (N)=5.56×10 ⁻⁵ 8
								$\alpha(O)=1.352\times10^{-5}$ 19; $\alpha(P)=2.61\times10^{-6}$ 4; $\alpha(Q)=2.113\times10^{-7}$ 30
2060.6	15-	328 [@] 1	100 [@]	1732.6	13-	E2 ^e	0.1439 24	$\alpha(K)$ =0.0634 10; $\alpha(L)$ =0.0591 11; $\alpha(M)$ =0.01593 29; $\alpha(N)$ =0.00432 8; $\alpha(O)$ =0.001006 18
	.()	4	4			4		$\alpha(P)=0.0001729 \ 31; \ \alpha(Q)=3.70\times10^{-6} \ 6$
2086.54	1 ⁽⁻⁾	2041.3 [†] <i>1</i>	100 [†] 5	45.2431	2+	(E1) ^d	$1.66 \times 10^{-3} \ 2$	$\alpha(K)$ =0.000929 13; $\alpha(L)$ =0.0001512 21; $\alpha(M)$ =3.57×10 ⁻⁵ 5; $\alpha(N)$ =9.57×10 ⁻⁶ 13
			4			d		$\alpha(O) = 2.325 \times 10^{-6} \ 33; \ \alpha(P) = 4.48 \times 10^{-7} \ 6; \ \alpha(Q) = 3.64 \times 10^{-8} \ 5$
		2086.5 [†] 2	56 [†] 5	0.0	0+	(E1) ^d	$1.65 \times 10^{-3} \ 2$	$\alpha(K)$ =0.000896 13; $\alpha(L)$ =0.0001458 20; $\alpha(M)$ =3.44×10 ⁻⁵ 5; $\alpha(N)$ =9.22×10 ⁻⁶ 13
	(1)		. #					$\alpha(O) = 2.242 \times 10^{-6} \ 31; \ \alpha(P) = 4.32 \times 10^{-7} \ 6; \ \alpha(Q) = 3.52 \times 10^{-8} \ 5$
2095.7	1(+)	2050.5 [#] 10	47 [#] 15	45.2431	2+	(M1) ^d	0.00639 9	$\alpha(K)$ =0.00466 7; $\alpha(L)$ =0.000864 12; $\alpha(M)$ =0.0002075 29; $\alpha(N)$ =5.58×10 ⁻⁵ 8
		щ	ш					$\alpha(O)=1.359\times10^{-5} \ 19; \ \alpha(P)=2.63\times10^{-6} \ 4; \ \alpha(Q)=2.123\times10^{-7} \ 30$
		2095.7 [#] 10	100 [#]	0.0	0+	(M1) ^d	0.00610 9	$\alpha(K)$ =0.00439 6; $\alpha(L)$ =0.000814 11; $\alpha(M)$ =0.0001956 27; $\alpha(N)$ =5.26×10 ⁻⁵ 7
		4	4					$\alpha(O)=1.281\times10^{-5}\ 18;\ \alpha(P)=2.475\times10^{-6}\ 35;\ \alpha(Q)=2.002\times10^{-7}\ 28$
2155.40	(0,1,2)	550.6 [†] 1	100 [†]	1604.80	$(1^-,2^+)$	· · d		
2188.8	1(+)	2143.6 [#] 10	49 [#] 3	45.2431	2+	(M1) ^d	0.00582 8	$\alpha(K)$ =0.00413 6; $\alpha(L)$ =0.000766 11; $\alpha(M)$ =0.0001840 26; $\alpha(N)$ =4.95×10 ⁻⁵ 7
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1		$\alpha(O)=1.205\times10^{-5}\ 17;\ \alpha(P)=2.328\times10^{-6}\ 33;\ \alpha(Q)=1.884\times10^{-7}\ 26$
		2188.8 [#] 10	100 [#]	0.0	0+	(M1) ^d	0.00558 8	$\alpha(K)$ =0.00391 5; $\alpha(L)$ =0.000724 10; $\alpha(M)$ =0.0001738 24; $\alpha(N)$ =4.68×10 ⁻⁵ 7
		0	0					$\alpha(O)=1.139\times10^{-5}\ I6;\ \alpha(P)=2.200\times10^{-6}\ 3I;\ \alpha(Q)=1.781\times10^{-7}\ 25$
2190	$(1,2^+)$	2190 ^{&} 30	100	0.0	0_{+}			
2204.0	18+	403.0 [@] 5	100 [@]	1801.0	16 ⁺	E2 ^e	0.0811 12	$\alpha(K)$ =0.0430 6; $\alpha(L)$ =0.0280 4; $\alpha(M)$ =0.00746 11; $\alpha(N)$ =0.002021 30; $\alpha(O)$ =0.000473 7
								$\alpha(P)=8.25\times10^{-5} \ 12; \ \alpha(Q)=2.330\times10^{-6} \ 33$ B(E2)(W.u.)=4.9×10 ² 5
2226.9?	(0,1,2)	2181.6 3	100 [†]	45.2431				
2243.9	1	2243.9 [#] 10	100#	0.0	0_{+}			
2251.1	1 ⁽⁺⁾	2205.9 [#] 10	100 [#]	45.2431	2+			

$\gamma(^{236}\text{U})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	J_f^π	Mult.	α	Comments
2251.1	1(+)	2251.1 [#] <i>10</i>	96 [#] <i>13</i>	0.0	0_{+}			
2284.7	1 ⁽⁺⁾	2239.5 [#] 10	51 [#] 7	45.2431	2+	(M1) ^d	0.00533 7	$\alpha(K)=0.00367\ 5;\ \alpha(L)=0.000680\ 10;\ \alpha(M)=0.0001634\ 23;\ \alpha(N)=4.40\times10^{-5}\ 6$ $\alpha(O)=1.070\times10^{-5}\ 15;\ \alpha(P)=2.068\times10^{-6}\ 29;\ \alpha(Q)=1.674\times10^{-7}\ 24$
		2284.7 [#] 10	100 [#]	0.0	0+	$(M1)^{d}$	0.00512 7	$\alpha(K)$ =0.00348 5; $\alpha(L)$ =0.000644 9; $\alpha(M)$ =0.0001547 22; $\alpha(N)$ =4.17×10 ⁻⁵ 6 $\alpha(O)$ =1.014×10 ⁻⁵ 14; $\alpha(P)$ =1.959×10 ⁻⁶ 28; $\alpha(Q)$ =1.586×10 ⁻⁷ 22
2426.6	17-	366 [@] 1	100 [@]	2060.6	15-	E2 ^e	0.1052 <i>17</i>	$\alpha(K)$ =0.0515 8; $\alpha(L)$ =0.0394 7; $\alpha(M)$ =0.01057 18; $\alpha(N)$ =0.00286 5; $\alpha(O)$ =0.000669 12 $\alpha(P)$ =0.0001158 20; $\alpha(Q)$ =2.88×10 ⁻⁶ 4
2435.6	1 ⁽⁺⁾	2390.4 [#] <i>10</i>	34 [#] 7	45.2431	2+	(M1) ^d	0.00471 7	$\alpha(K)$ =0.00308 4; $\alpha(L)$ =0.000570 8; $\alpha(M)$ =0.0001368 19; $\alpha(N)$ =3.68×10 ⁻⁵ 5; $\alpha(O)$ =8.96×10 ⁻⁶ 13 $\alpha(P)$ =1.732×10 ⁻⁶ 24; $\alpha(Q)$ =1.404×10 ⁻⁷ 20
		2435.6 [#] 10	100 [#]	0.0	0+	(M1) ^d	0.00456 6	$\alpha(K)=0.00292 \ 4; \ \alpha(L)=0.000541 \ 8; \ \alpha(M)=0.0001300 \ 18; \ \alpha(N)=3.50\times10^{-5} \ 5; \ \alpha(O)=8.52\times10^{-6} \ 12 \ \alpha(P)=1.646\times10^{-6} \ 23; \ \alpha(Q)=1.334\times10^{-7} \ 19$
2440.2	1 ⁽⁺⁾	2395.0 [#] 10	26 [#] 7	45.2431	2+	(M1) ^d	0.00470 7	$\alpha(K)$ =0.00306 4; $\alpha(L)$ =0.000567 8; $\alpha(M)$ =0.0001361 19; $\alpha(N)$ =3.66×10 ⁻⁵ 5; $\alpha(O)$ =8.92×10 ⁻⁶ 13
		2440.2 [#] 10	100#	0.0	0+	(M1) ^d	0.00455 6	$\alpha(P)=1.723\times10^{-6}\ 24;\ \alpha(Q)=1.396\times10^{-7}\ 20$ $\alpha(K)=0.00291\ 4;\ \alpha(L)=0.000539\ 8;\ \alpha(M)=0.0001293\ 18;\ \alpha(N)=3.48\times10^{-5}\ 5;$ $\alpha(O)=8.47\times10^{-6}\ 12$
2457.3	1 ⁽⁺⁾	2412.1 [#] <i>10</i>	50 [#] 9	45.2431	2+	(M1) ^d	0.00464 7	$\alpha(P)=1.637\times10^{-6} \ 23; \ \alpha(Q)=1.328\times10^{-7} \ 19$ $\alpha(K)=0.00300 \ 4; \ \alpha(L)=0.000556 \ 8; \ \alpha(M)=0.0001335 \ 19; \ \alpha(N)=3.59\times10^{-5} \ 5;$ $\alpha(O)=8.75\times10^{-6} \ 12$
		2457.3 [#] 10	100#	0.0	0+	(M1) ^d	0.00449 6	$\alpha(P)=1.690\times10^{-6}$ 24; $\alpha(Q)=1.370\times10^{-7}$ 19 $\alpha(K)=0.00285$ 4; $\alpha(L)=0.000528$ 7; $\alpha(M)=0.0001269$ 18; $\alpha(N)=3.42\times10^{-5}$ 5; $\alpha(O)=8.31\times10^{-6}$ 12
2494.5	1 ⁽⁺⁾	2449.3 [#] 10	29 [#] 8	45.2431	2+	(M1) ^d	0.00452 6	$\alpha(P)=1.607\times10^{-6} \ 23; \ \alpha(Q)=1.303\times10^{-7} \ 18$ $\alpha(K)=0.00288 \ 4; \ \alpha(L)=0.000533 \ 7; \ \alpha(M)=0.0001280 \ 18; \ \alpha(N)=3.45\times10^{-5} \ 5;$ $\alpha(Q)=8.39\times10^{-6} \ 12$
		2494.5 [#] 10	100#	0.0	0+	(M1) ^d	0.00438 6	$\alpha(P)=1.621\times10^{-6} \ 23; \ \alpha(Q)=1.314\times10^{-7} \ 18$ $\alpha(K)=0.00274 \ 4; \ \alpha(L)=0.000507 \ 7; \ \alpha(M)=0.0001218 \ 17; \ \alpha(N)=3.28\times10^{-5} \ 5;$ $\alpha(Q)=7.98\times10^{-6} \ 11$
2498.5	1 ⁽⁺⁾	2453.3 [#] 10	66 [#] 12	45.2431	2+	(M1) ^d	0.00451 6	$\alpha(P)=1.542\times10^{-6} \ 22; \ \alpha(Q)=1.251\times10^{-7} \ 18$ $\alpha(K)=0.00287 \ 4; \ \alpha(L)=0.000531 \ 7; \ \alpha(M)=0.0001275 \ 18; \ \alpha(N)=3.43\times10^{-5} \ 5;$ $\alpha(Q)=8.35\times10^{-6} \ 12$
		2498.5# 10	100#	0.0	0+	(M1) ^d	0.00437 6	$\alpha(P)=1.614\times10^{-6}\ 23;\ \alpha(Q)=1.308\times10^{-7}\ 18$ $\alpha(K)=0.00273\ 4;\ \alpha(L)=0.000505\ 7;\ \alpha(M)=0.0001213\ 17;\ \alpha(N)=3.26\times10^{-5}\ 5;$ $\alpha(Q)=7.95\times10^{-6}\ 11$ $\alpha(P)=1.535\times10^{-6}\ 22;\ \alpha(Q)=1.245\times10^{-7}\ 17$

γ (236U) (continued)

E_i (level)	J_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
2631.8	20 ⁺	427.8 [@] 5	100 [@]	2204.0	18+	E2 ^e	0.0694 10	$\alpha(K)=0.0385\ 5;\ \alpha(L)=0.02281\ 33;\ \alpha(M)=0.00605\ 9;$ $\alpha(N)=0.001638\ 24;\ \alpha(O)=0.000384\ 6$ $\alpha(P)=6.73\times10^{-5}\ 10;\ \alpha(Q)=2.047\times10^{-6}\ 29$
								$a(F)=0.75 \times 10^{-10}$, $a(Q)=2.047 \times 10^{-29}$ B(E2)(W.u.)=5.1×10 ² 8
2699.0	1 ⁽⁺⁾	2653.8 [#] 10	62 [#] 10	45.2431	2+	(M1) ^d	0.00398 6	$\alpha(K)$ =0.002315 32; $\alpha(L)$ =0.000428 6; $\alpha(M)$ =0.0001028 14; $\alpha(N)$ =2.77×10 ⁻⁵ 4
		2600.0# 10	100#	0.0	0.4	and	0.00200.5	$\alpha(O) = 6.74 \times 10^{-6} \ 9; \ \alpha(P) = 1.302 \times 10^{-6} \ 18; \ \alpha(Q) = 1.057 \times 10^{-7} \ 15$
		2699.0 [#] 10	100 [#]	0.0	0+	$(M1)^d$	0.00388 5	$\alpha(K)=0.002210 \ 3I; \ \alpha(L)=0.000409 \ 6; \ \alpha(M)=9.82\times10^{-5} \ I4; \ \alpha(N)=2.64\times10^{-5} \ 4; \ \alpha(O)=6.43\times10^{-6} \ 9 \ \alpha(P)=1.243\times10^{-6} \ I7; \ \alpha(Q)=1.009\times10^{-7} \ I4$
2712.1	1(-)	2666.9 [#] 10	100# 12	45.2431	2+	(E1)	$1.67 \times 10^{-3} 2$	$\alpha(P)=1.243\times10^{-6} I/; \ \alpha(Q)=1.009\times10^{-7} I4$ $\alpha(K)=0.000603 \ 8; \ \alpha(L)=9.74\times10^{-5} I4; \ \alpha(M)=2.296\times10^{-5} 32;$
2/12.1	1	2000.9 10	100 12	75.2751	2	(L1)	1.07×10 2	$a(N)=6.15\times10^{-6}$ 9
								$\alpha(O)=1.497\times10^{-6}\ 21;\ \alpha(P)=2.89\times10^{-7}\ 4;\ \alpha(Q)=2.378\times10^{-8}\ 33$
		2712.1 [#] <i>10</i>	44 [#] 8	0.0	0+	(E1)	$1.68 \times 10^{-3} \ 2$	$\alpha(K)=0.000587 \ 8; \ \alpha(L)=9.47\times10^{-5} \ 13; \ \alpha(M)=2.234\times10^{-5} \ 31; \ \alpha(N)=5.99\times10^{-6} \ 8$
		87	&1			· · · a		$\alpha(O)=1.456\times10^{-6}\ 20;\ \alpha(P)=2.81\times10^{-7}\ 4;\ \alpha(Q)=2.315\times10^{-8}\ 32$
2750	(0+)	560 ^{&} 10	12&	2190	$(1,2^+)$	(E1) ^g	0.0108 4	$\alpha(K)$ =0.00875 33; $\alpha(L)$ =0.00156 6; $\alpha(M)$ =0.000372 15; $\alpha(N)$ =0.000100 4; $\alpha(O)$ =2.40×10 ⁻⁵ 10
								$\alpha(P)=4.52\times10^{-6} \ 18; \ \alpha(Q)=3.24\times10^{-7} \ 12$ B(E1)(W.u.)=5.6×10 ⁻¹⁰ 4
		1170 ^{&} 10	20 ^{&}	1580?	(1,2)	(E1) ⁸	0.00286 6	$\alpha(K)$ =0.00234 5; $\alpha(L)$ =0.000390 8; $\alpha(M)$ =9.25×10 ⁻⁵ 19; $\alpha(N)$ =2.48×10 ⁻⁵ 5; $\alpha(O)$ =6.00×10 ⁻⁶ 12
								$\alpha(P)=1.149\times10^{-6} \ 24; \ \alpha(Q)=9.00\times10^{-8} \ 18$ B(E1)(W.u.)=1.02×10 ⁻¹⁰ 5
		1783 <mark>&</mark> 10	100 &	966.58	(1-)	(E1)	$1.76 \times 10^{-3} \ 3$	$\alpha(K)$ =0.001159 <i>19</i> ; $\alpha(L)$ =0.0001895 <i>32</i> ; $\alpha(M)$ =4.48×10 ⁻⁵ <i>8</i> ; $\alpha(N)$ =1.200×10 ⁻⁵ <i>20</i>
								α (O)=2.91×10 ⁻⁶ 5; α (P)=5.60×10 ⁻⁷ 9; α (Q)=4.53×10 ⁻⁸ 8 B(E1)(W.u.)=1.45×10 ⁻¹⁰ 6
		2062 ^{&} 10	26 ^{&}	687.56	1-	(E1)	$1.66 \times 10^{-3} \ 2$	$\alpha(K)$ =0.000914 <i>15</i> ; $\alpha(L)$ =0.0001487 <i>24</i> ; $\alpha(M)$ =3.51×10 ⁻⁵ <i>6</i> ; $\alpha(N)$ =9.41×10 ⁻⁶ <i>15</i>
								$\alpha(O)=2.29\times10^{-6} \ 4; \ \alpha(P)=4.40\times10^{-7} \ 7; \ \alpha(Q)=3.58\times10^{-8} \ 6$
2756.2	1(+)	2711.0 [#] 10	55 [#] 16	45.0421	2+	$(M1)^{d}$	0.00206.5	B(E1)(W.u.)=2.43×10 ⁻¹¹ 10
2756.2	I(i)	2/11.0" 10	55" 16	45.2431	21	(M1) ^u	0.00386 5	$\alpha(K)=0.002184 \ 3I; \ \alpha(L)=0.000404 \ 6; \ \alpha(M)=9.70\times10^{-5} \ I4; \ \alpha(N)=2.61\times10^{-5} \ 4; \ \alpha(O)=6.36\times10^{-6} \ 9 \ \alpha(P)=1.228\times10^{-6} \ I7; \ \alpha(Q)=9.97\times10^{-8} \ I4$
		2756.2 [#] 10	100 [#]	0.0	0+	(M1) ^d	0.00377 5	$\alpha(K)=1.228 \times 10^{-17}$; $\alpha(Q)=9.97 \times 10^{-14}$ $\alpha(K)=0.002087$ 29; $\alpha(L)=0.000386$ 5; $\alpha(M)=9.27 \times 10^{-5}$ 13; $\alpha(N)=2.496 \times 10^{-5}$ 35
								$\alpha(O) = 6.08 \times 10^{-6} \ 9; \ \alpha(P) = 1.174 \times 10^{-6} \ 16; \ \alpha(Q) = 9.53 \times 10^{-8} \ 13$
2770	(2^{+})	$(20^{\&} CA)$	100 <mark>&</mark>	2750	(0^{+})	$(E2)^f$	1.96×10^4	$\alpha(L)=1.125\times10^4\ 16;\ \alpha(M)=6.23\times10^3\ 9;\ \alpha(N)=1686\ 24;\ \alpha(O)=385$

γ (236U) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
								6; $\alpha(P)=61.9 \ 9$; $\alpha(Q)=0.1021 \ 15$ $\alpha(N+)=2.13\times10^3 \ 3$ E _y : from level energy difference.
2817	(4 ⁺)	47.0 <mark>&</mark>	100 ^{&}	2770	(2+)	(E2) ^f	489 7	$\alpha(L)$ =357 5; $\alpha(M)$ =98.6 14; $\alpha(N)$ =26.7 4; $\alpha(O)$ =6.12 9; $\alpha(P)$ =0.990 14; $\alpha(Q)$ =0.002409 34
2823	(19-)	≈396 [@]	100 [@]	2426.6	17-	(E2) ^e	0.0849 12	$\alpha(K)\approx0.0444; \ \alpha(L)\approx0.0298; \ \alpha(M)\approx0.00794; \ \alpha(N)\approx0.002152; \ \alpha(O)\approx0.000503 \ \alpha(P)\approx8.77\times10^{-5}; \ \alpha(Q)\approx2.422\times10^{-6}$
2823.3	1 ⁽⁺⁾	2778.1 [#] 10	97 [#] 26	45.2431	2+	(M1) ^d	0.00373 5	$\alpha(K)$ =0.002042 29; $\alpha(L)$ =0.000378 5; $\alpha(M)$ =9.07×10 ⁻⁵ 13; $\alpha(N)$ =2.442×10 ⁻⁵ 34
		#	#		- 1	· · d		$\alpha(O)=5.94\times10^{-6} 8$; $\alpha(P)=1.149\times10^{-6} 16$; $\alpha(Q)=9.33\times10^{-8} 13$
		2823.3 [#] 10	100 [#]	0.0	0+	(M1) ^d	0.00365 5	$\alpha(K)$ =0.001954 27; $\alpha(L)$ =0.000361 5; $\alpha(M)$ =8.68×10 ⁻⁵ 12; $\alpha(N)$ =2.336×10 ⁻⁵ 33
2838.3	1(+)	2793.1 [#] <i>10</i>	100 [#]	45.2431	2+	(M1) ^d	0.00370 5	$\alpha(O)=5.69\times10^{-6} 8$; $\alpha(P)=1.099\times10^{-6} 15$; $\alpha(Q)=8.93\times10^{-8} 13$ $\alpha(K)=0.002013 28$; $\alpha(L)=0.000372 5$; $\alpha(M)=8.94\times10^{-5} 13$; $\alpha(N)=2.406\times10^{-5} 34$
								$\alpha(O) = 5.86 \times 10^{-6} 8$; $\alpha(P) = 1.132 \times 10^{-6} 16$; $\alpha(Q) = 9.19 \times 10^{-8} 13$
		2838.3 [#] 10	92 [#] 27	0.0	0+	(M1) ^d	0.00363 5	$\alpha(K)$ =0.001926 27; $\alpha(L)$ =0.000356 5; $\alpha(M)$ =8.55×10 ⁻⁵ 12; $\alpha(N)$ =2.303×10 ⁻⁵ 32
		ш	ш			1		$\alpha(O)=5.61\times10^{-6} 8$; $\alpha(P)=1.083\times10^{-6} 15$; $\alpha(Q)=8.80\times10^{-8} 12$
2877.8	1 ⁽⁻⁾	2832.6 [#] 10	100 [#]	45.2431	2+	(E1) ^d	$1.70 \times 10^{-3} \ 2$	$\alpha(K)$ =0.000547 8; $\alpha(L)$ =8.83×10 ⁻⁵ 12; $\alpha(M)$ =2.081×10 ⁻⁵ 29; $\alpha(N)$ =5.58×10 ⁻⁶ 8
		2877.8 [#] 10	45 [#] 12	0.0	0+	(E1) ^d	$1.71 \times 10^{-3} 2$	$\alpha(O) = 1.357 \times 10^{-6} \ 19; \ \alpha(P) = 2.62 \times 10^{-7} \ 4; \ \alpha(Q) = 2.161 \times 10^{-8} \ 30$
		2877.8" 10	45" 12	0.0	0,	(E1) ^u	1.71×10 ³ 2	$\alpha(K)$ =0.000534 7; $\alpha(L)$ =8.60×10 ⁻⁵ 12; $\alpha(M)$ =2.028×10 ⁻⁵ 28; $\alpha(N)$ =5.44×10 ⁻⁶ 8
2001	(C+)	73.9 <mark>&</mark>	100%	2017	(4±)	σf	55.5 D	$\alpha(O)=1.322\times10^{-6}\ 19;\ \alpha(P)=2.55\times10^{-7}\ 4;\ \alpha(Q)=2.108\times10^{-8}\ 30$
2891	(6 ⁺)	/3.9 ^{cc}	100 <mark>&</mark>	2817	(4+)	(E2) ^f	55.5 8	$\alpha(L)$ =40.4 6; $\alpha(M)$ =11.20 16; $\alpha(N)$ =3.04 4; $\alpha(O)$ =0.697 10; $\alpha(P)$ =0.1135 16; $\alpha(Q)$ =0.000352 5
2924.0	$(1,2^+)$	2878.8 10	100	45.2431				,,,
2060.0	1(+)	2924.0 <i>10</i> 2923.8 [#] <i>10</i>	60 <i>17</i> 50 [#] <i>12</i>	0.0	0+	(M1) ^d	0.00250.5	(II) 0.001775.25 (I.) 0.000200.5 (A.D. 7.00, 10-5.11
2969.0	L	2923.8" 10	50" 12	45.2431	2'	(M1) ⁴	0.00350 5	$\alpha(K)=0.001775 \ 25; \ \alpha(L)=0.000328 \ 5; \ \alpha(M)=7.88\times10^{-5} \ 11;$ $\alpha(N)=2.122\times10^{-5} \ 30$
		2969.0 [#] 10	100 [#]	0.0	0+	(M1) ^d	0.00344 5	$\alpha(O)=5.17\times10^{-6} \ 7; \ \alpha(P)=9.98\times10^{-7} \ 14; \ \alpha(Q)=8.11\times10^{-8} \ 11$ $\alpha(K)=0.001702 \ 24; \ \alpha(L)=0.000315 \ 4; \ \alpha(M)=7.56\times10^{-5} \ 11;$
		∠909.0° 10	100"	0.0	U.	(1111)	0.00344 3	$\alpha(N)=0.001702\ 24$; $\alpha(L)=0.000313\ 4$; $\alpha(M)=7.50\times10^{-5}\ 11$; $\alpha(N)=2.035\times10^{-5}\ 29$ $\alpha(O)=4.95\times10^{-6}\ 7$; $\alpha(P)=9.57\times10^{-7}\ 13$; $\alpha(Q)=7.78\times10^{-8}\ 11$
2991	(8+)	100.8&	&	2891	(6 ⁺)	(E2) ^f	12.84 18	$\alpha(O)=4.95\times10^{-6}$ /; $\alpha(P)=9.5/\times10^{-7}$ 13; $\alpha(Q)=7.78\times10^{-6}$ 11 $\alpha(L)=9.35$ 13; $\alpha(M)=2.59$ 4; $\alpha(N)=0.705$ 10; $\alpha(O)=0.1619$ 23; $\alpha(P)=0.0265$ 4 $\alpha(Q)=0.0001062$ 15

γ (236U) (continued)

E_i (level)	J_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	α	Comments
3081.0	22+	449.2 [@] 5	100 [@]	2631.8	20+	E2 ^e	0.0614 9	$\alpha(K)$ =0.0351 5; $\alpha(L)$ =0.01935 28; $\alpha(M)$ =0.00511 7; $\alpha(N)$ =0.001384 20; $\alpha(O)$ =0.000325 5 $\alpha(P)$ =5.72×10 ⁻⁵ 8; $\alpha(Q)$ =1.844×10 ⁻⁶ 26 B(E2)(W.u.)=5.2×10 ² 12
3143.8	1(+)	3098.6# 10	56 [#] 14	45.2431	2+	(M1) ^d	0.00330 5	$\alpha(K)$ =0.001514 21; $\alpha(L)$ =0.000280 4; $\alpha(M)$ =6.72×10 ⁻⁵ 9; $\alpha(N)$ =1.809×10 ⁻⁵ 25; $\alpha(O)$ =4.40×10 ⁻⁶ 6 $\alpha(P)$ =8.51×10 ⁻⁷ 12; $\alpha(Q)$ =6.92×10 ⁻⁸ 10
		3143.8# 10	100 [#]	0.0	0+	(M1) ^d	0.00326 5	$\alpha(K)$ =0.001454 20; $\alpha(L)$ =0.000269 4; $\alpha(M)$ =6.45×10 ⁻⁵ 9; $\alpha(N)$ =1.738×10 ⁻⁵ 24; $\alpha(O)$ =4.23×10 ⁻⁶ 6 $\alpha(P)$ =8.18×10 ⁻⁷ 11; $\alpha(Q)$ =6.65×10 ⁻⁸ 9
3434	(0^+)	684.5 7		2750	(0^+)	(E0)		E_{γ} , Mult.: from $^{236}U(d,pn\gamma)$.
3550.0	24+	469 [@] 1	100 [@]	3081.0	22+	E2 ^e	0.0552 8	$\alpha(K)=0.0324$ 5; $\alpha(L)=0.01678$ 26; $\alpha(M)=0.00442$ 7; $\alpha(N)=0.001196$ 19; $\alpha(O)=0.000281$ 4 $\alpha(P)=4.96\times10^{-5}$ 8; $\alpha(Q)=1.682\times10^{-6}$ 25
4039.0	26+	489 [@] 1	100 [@]	3550.0	24+	E2 ^e	0.0498 7	B(E2)(W.u.)=6.7×10 ² 13 α (K)=0.0300 4; α (L)=0.01465 23; α (M)=0.00385 6; α (N)=0.001041 16; α (O)=0.000245 4 α (P)=4.34×10 ⁻⁵ 7; α (Q)=1.541×10 ⁻⁶ 23 B(E2)(W.u.)=6.7×10 ² 19
4549.0	28+	510 [@] 1	100 [@]	4039.0	26+	E2 ^e	0.0451 7	$\alpha(K)=0.0278$ 4; $\alpha(L)=0.01281$ 20; $\alpha(M)=0.00335$ 5; $\alpha(N)=0.000907$ 14; $\alpha(O)=0.0002137$ 33 $\alpha(P)=3.80\times10^{-5}$ 6; $\alpha(Q)=1.411\times10^{-6}$ 21 B(E2)(W.u.)=1.1×10 ³ 5
5077	(30 ⁺)	≈528 [@]	100 [@]	4549.0	28+	(E2)	0.0416 6	$\alpha(K) \approx 0.0261$; $\alpha(L) \approx 0.01149$; $\alpha(M) \approx 0.00300$; $\alpha(N) \approx 0.000812$ $\alpha(O) \approx 0.0001913$; $\alpha(P) \approx 3.41 \times 10^{-5}$; $\alpha(Q) \approx 1.313 \times 10^{-6}$ Mult.: from in-band transition of ground-state band in Coul. ex.

 $^{^{\}dagger}$ From 236 Pa β^- decay. ‡ From 235 U(n, γ) E=thermal.

[#] From 236 U(γ,γ').

[@] From Coulomb excitation. [&] From $^{235}U(d,p\gamma)$.

From $C(d,p\gamma)$.

a From $2^{36}U(d,pn\gamma)$.

b From conversion electron subshell ratios in $2^{36}U(d,pn\gamma)$.

c From conversion electron data in $2^{35}U(n,\gamma)$ E=thermal.

d From $\gamma'(\theta)$ and systematics of branching ratios to the first $J^{\pi}=2^{+}$ excited states in $2^{36}U(\gamma,\gamma')$.

γ (236U) (continued)

- e From E2 matrix elements deduced in Coulomb excitation measurements. f From in-band transition of rotational band in the second well of the nuclear potential in 235 U(d,p γ). g From $\gamma\gamma$ angular correlations in 235 U(d,p γ). h Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend $\begin{array}{c|c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & \gamma \text{ Decay (Uncertain)} \end{array}$ Level Scheme Intensities: Type not specified 4 238 (2) 100 (30^{+}) 5077 + 510 R3 100 28^{+} 4549.0 0.17 ps 7 4039.0 0.33 ps 9 26+ 24+ 3550.0 0.41 ps 8 (0^{+}) 3434 $<\!20~\text{ns}$ 1(+) 3143.8 3081.0 0.65 ps 15 22+ (8⁺) 2991 1(+) 2969.0 $(1,2^+)$ 2924.0 (6^{+}) 2891 1(-) 2877.8 1(+) 2838.3 1(+) 2823.3 - 00- (19^{-}) 2823 (4^{+}) 2817 (2+) 2770 1(+) 2756.2 (0^{+}) 2750 67 ns 3 20^{+} 2631.8 0.84 ps 12 2426.6 17-45.2431 235 ps 6 0.0 2.342×10⁷ y 4 $^{236}_{92}\mathrm{U}_{144}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Type not specified

Legend

Adopted Levels, Gammas Legend $\begin{array}{c|c} & & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & & & & \gamma \text{ Decay (Uncertain)} \\ \end{array}$ Level Scheme (continued) Intensities: Type not specified $\frac{1^{(+)}}{(1,2^+)}$ $\frac{(1^-,2)}{(1,2^+)}$ 2054.2 1981.04 1.855 | 1.72,5 67 | 1.72,7 190 1979.15 1972.62 - 13/2 - 10 - 12/3 - 10 - 14/3 - 10 - 14/3 - 10 - 15/3 - 10/3 $\frac{(1,2^+)}{(1,2^+)}$ 1865.39 1807.88 -0°-1801.0 1791.3 16⁺ 1⁽⁺⁾ 2.1 ps 2 68.4 61.7 | 68 9.50 | 78 84.5 | 78 84.5 | 78 _ _ _ 13-1732.6 $(1,2^+)$ 1662.36 $(1^-, 2^+)$ 1604.80 + 34.0 E2 100 | - | (1,2) _ _ _1580 1443.6 $\frac{11^{-}}{14^{+}}$ 1426.4 2.8 ps 3 - 1/23.3 /00 | - 1/25.3 | - 1/25. 1/9881 12/100 $(1^-,2,3)$ 1271.10 1198.6 $\frac{\overline{(3^-)}}{(5^+)}$ 1149.4 1127.38 (2-) 1110.66 1085.4 5.5 ps +18-33 999.8 987.66 957.90 744.18 687.56 3.78 ns 9 149.480 130 ps 9 45.2431 235 ps 6 0.0 2.342×10⁷ y 4 $^{236}_{92}\mathrm{U}_{144}$

Adopted Levels, Gammas

Adopted Levels, Gammas

Band(H): K^π=4⁻ Configuration=((*v* 7/2(743))+(*v* 1/2(631)))

(8-) 1320

(7[−]) ≈1232

Band(G): $K^{\pi}=1^{-}$ Configuration=((ν 7/2(743))-(ν 5/2(622)))

 (5^-) _ _ _ ≈ 1164 (6^-) 1164 Band(I): K^{π} =2⁻

(3⁻) 1149.4

(4⁻) 1070.0 4⁻ 1052.9 2⁻ 987.66 (1⁻) 966.58

 $^{236}_{\ 92}U_{144}$

Adopted Levels, Gammas

```
History
                                                                                      Author
                                                                                                                             Citation
                                                                                                                                                           Literature Cutoff Date
                                                     Type
                                            Full Evaluation
                                                                         E. Browne, J. K. Tuli
                                                                                                                 NDS 127, 191 (2015)
                                                                                                                                                                    1-Jun-2014
Q(\beta^{-})=-147.4 \ 12; S(n)=6154.3 \ 13; S(p)=7507 \ 13; Q(\alpha)=4269.7 \ 29
                                                                                                                     2012Wa38
Additional information 1.
Discovery of <sup>238</sup>U: 2013Fr03.
<sup>238</sup>U double-beta decay: 2013St19, 2012Ko10, 2012Zu07, 2011Ba28, 2010Ba07, 2008RaZX, 2006Ba35, 2006BaZZ, 2005Tr01,
      2004Ra13, 2003Cr04, 2003Fi13, 2002Ba52, 2002Hi09, 2002Tr04.
Cluster decay:
<sup>238</sup>U(<sup>30</sup>Mg): 2012Ku29, 2010Ni13.
<sup>238</sup>U(<sup>20</sup>O, <sup>22</sup>Ne, <sup>24</sup>Ne, <sup>25</sup>Ne, <sup>26</sup>Ne, <sup>28</sup>Mg, <sup>29</sup>Mg, <sup>30</sup>Mg): 2012Sa31.
<sup>238</sup>U(<sup>34</sup>Si): 2013Ta07, 2012Ta10, 2010Si12, 2009Ar11.
<sup>238</sup>U(<sup>28</sup>Mg): 2011Wa30.
<sup>238</sup>U(p,p'): Measured \sigma (2010Ha06).
<sup>238</sup>U(p,p'): E=20, 26, 65 MeV (2005YuZZ).
<sup>238</sup>U(p,p'): E=20-65 MeV (2004Su12).
<sup>238</sup>U(p,p'): Others: 2011Ma89, 2008Li05.
<sup>238</sup>U(SF): 2010Sa09, 2008Sa24.
Nuclear Structure:
2014Lu01, 2014Ne03, 2014Vi01.
2013Af01, 2013Ag06, 2013Bo24, 2013Gi06, 2013Jo05, 2013Li30, 2013Ni02, 2013Ra05, 2013Se17, 2013To12, 2013Zo02.
2012Bu08, 2012Fr06, 2012Go13, 2012Hi11, 2012Is08, 2012Ja08, 2012Jo02, 2012Ko06, 2012Ku23, 2012Lu02, 2012Na10,
      2012Ne04, 2012Pr09, 2012Re06, 2012Ro29, 2012Ro34.
2011Af04, 2011Bo12, 2011Ch65, 2011Du30, 2011Hi13, 2011In03, 2011Ko35, 2011Le21, 2011Li44, 2011Li53, 2011Na24,
      2011Ni05, 2011No04, 2011Pe01, 2011Ri05, 2011Wa30, 2011Wu03, 2011Zh36.
2010Ab21,\ 2010Ab23,\ 2010Bo25,\ 2010Bu02,\ 2010Ko36,\ 2010Ku17,\ 2010Pi02,\ 2010Ra10,\ 2010To07,\ 2010Tr08,\ 2010Vr01,\ 2010Pi02,\ 2010Ra10,\ 2010To07,\ 2010Tr08,\ 2010Vr01,\ 2010Pi02,\ 2010Ra10,\ 2010Pi02,\ 2010Pi02,
      2010Wa13, 2010Zh09.
2009Bu09, 2009De32, 2009Go05, 2009Ku13, 2009Ni06, 2009Pa46, 2009Ru12, 2009So12, 2009Ve07, 2009Wa01.
2008Bh07, 2008Bu11, 2008Ch15, 2008Ju06, 2008Kl03, 2008Pr05, 2008Sh06, 2008Sk02, 2008So03, 2008Te01, 2008Us02.
2007Ad24, 2007Ba18, 2007Bo46, 2007Bu20, 2007Do03, 2007Do06, 2007Gh11, 2007Ne04.
2006De25, 2006Fr21, 2006Go07, 2006Ne10, 2006Ni17, 2006Ra21.
2005Al40, 2005Ch12, 2005Do10, 2005Du11, 2005En01, 2005Go03, 2005La04, 2005Ma41, 2005Na44, 2005Po01, 2005Sh05,
      2005Sh57, 2005Sw02, 2005Za02,
2004Ad15, 2004Ad30, 2004Ba16, 2004Ga03, 2004Hu05, 2004Is05, 2004Ja03, 2004Mo06, 2004Ne12, 2004Ro01, 2004Sa55,
      2004Sh47.
2003Ad31, 2003Ad32, 2003Ad34, 2003Bu11, 2003Bu27, 2003De20, 2003Li01, 2003Li25, 2003Mb02, 2003Ne06, 2003Po15,
      2003Ra17, 2003Sh02, 2003Za01.
2002Bu13, 2002Ga34, 2002Gi11, 2002Ka53, 2002Ma85, 2002Po16, 2002Ra25, 2002Tr12, 2002Ts01,
2001Af12, 2001Bu02, 2001De45, 2001Fa07, 2001Go07, 2001Ic02, 2001Ma66, 2001Mi34, 2001Mo13, 2001Mo28, 2001Sa54,
      2001Tr19, 2001Tr23.
Antineutrino calculated spectrum: 2012Fa12.
Compilations: 2011Ch65, 2011He12, 2001Be81.
X-ray energies: 2003De44, 2002Ob01.
Systematics of alpha decay: 2006De05, 2006Xu08.
Calculated nuclear moments: 2006Sh37, 2003Ho07.
Alpha decay theory: 2010Wa23, 2010Wa31, 2006De05.
Energies of vibrational states (K=0<sup>+</sup>,2<sup>+</sup>,4<sup>+</sup>,1<sup>-</sup>,2<sup>-</sup>,3<sup>-</sup>) were calculated in 1965So04, 1970Ne08, 1971Ko31, 1969B113, 1974Du09,
      1975IvZZ, 1975LeZR.
```

²³⁸U Levels

For calculations of levels see 1994Mi14,1994Tr09. For calculated rotational level energies, see 1976Az01, 1976Ra04, 1968Ho28, 1978BeYR, 1978To13, 1978Ba46 for example. High-spin rotational states were calculated in 1977Ma23.

Cross Reference (XREF) Flags

Octupole-vibrational band:

Ratios of reduced transition intensities are in agreement with Alaga rule for K=0:

```
B(E1)(680\gamma)/B(E1)(635\gamma)=0.60 5 observed in Coul. ex.
=0.50 theory for K=0
=2.0 theory for K=1.
B(E1)(687\gamma)/B(E1)(583\gamma)=0.78 3 observed in Coul. ex.
=0.75 theory for K=0
=1.33 theory for K=1.
```

Negative-parity yrast states were calculated by 1976VoO1. The states with low spin were interpreted as octupole states, but the higher spin states become two-quasiparticle decoupled states. Octupole-vibrational states were calculated by 1978KoO3. Levels in yrast band were calculated by 1977Ra25.

 $\frac{\text{E(level)}^{\dagger}}{0.0^{e}}$ $\frac{\text{J}^{\pi \ddagger}}{0^{+}}$ $\frac{\text{T}_{1/2}}{4.468 \times 10^{9} \text{ y } 6}$ $\frac{\text{XREF}}{\text{ABCDEFGHI}}$

Comments

```
%SF=5.45 \times 10^{-5} 7; %\alpha=100
%SF: from recommended T_{1/2}(SF) of 2000Ho27.
Intrinsic electric-quadruple moment: Q<sub>0</sub>=13.9 20 deduced by 1978Ge10 from
  optical isotope shift. Other measurement: Q<sub>0</sub>=11.12 7 (from Coulomb
   excitation). Other: 2002Ob01.
\Delta < r^2 > (^{233}U - ^{238}U) = -0.432 \text{ fm}^2 43 (1996El03).
T_{1/2}: Weighted average (CHI**/N-1=4.0) of 4.468×10<sup>9</sup> y 5, specific activity
  method (1971Ja07); 4.457×10<sup>9</sup> y 4, specific activity method (1959St45);
  4.51×10<sup>9</sup> y 2, specific activity of natural uranium (1955Ko13); and 4.495×10<sup>9</sup>
  y 18, specific activity of enriched uranium (1949Ki26), recommended in
T_{1/2}: Other values: 4.51 \times 10^9 y (1957Cl16), 4.56 \times 10^9 y 3 (1957Le21),
T_{1/2}: Half-life ratio T_{1/2}(^{238}\text{U})/T_{1/2}(^{235}\text{U})=6.351 31 (2008Po06). T_{1/2}(\text{SF})=9.86×10<sup>15</sup> y 15 (1968Ro15), 8.1×10<sup>15</sup> y 3 (1952Se67), 7.19×10<sup>15</sup> y
  4 (1967Is04), 8.23×10<sup>15</sup> y 10 (1967Sp12), 8.19×10<sup>15</sup> y 6 (1970Ga27),
  11 \times 10^{15} y 2 (1971Co35), 10.2 \times 10^{15} y 9 (1971Kl14), 9.50 \times 10^{15} y 21
  (1971Le11), 8.7×10<sup>15</sup> y 10 (1971Sa08), 8.0×10<sup>15</sup> y 4 (1971Th17), 9.9×10<sup>15</sup>
  y 5 (1972Ni19), 10.2 \times 10^{15} y 8 (1973Kh10), 9.73 \times 10^{15} y 44 (1974Iv04),
  9.6×10<sup>15</sup> y 3 (1975Em03), 8.0×10<sup>15</sup> y 6 (1975Wa37), 8.09×10<sup>15</sup> y 40
  (1976Th12), 8.43×10<sup>15</sup> y 21 (1978Ka40), 6.77×10<sup>15</sup> y 15 (1978Ri07),
  8.8×10<sup>15</sup> y 4 (1980Po09), 7.48×10<sup>15</sup> y 15 (1980Sp10), 10.5×10<sup>15</sup> y 3
  (1981Ba70), 5.9×10<sup>15</sup> y 4 (1982De22), 8.3×10<sup>15</sup> y 4 (1983Be66),
```

 8.42×10^{15} y 44 (1984Va35), 8.29×10^{15} y 27 (1985Iv01). 8.30×10^{15} y 16 (weighted average). 2000Ho27 recommend $T_{1/2}(SF)=8.2\times10^{15}$ y 1 based on

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
44.916 ^e 13	2+	206 ps <i>3</i>	ABCDEFGHI	a weighted average of a selected set of the above values. Other values: 8.00×10^{15} y 35 (2003Gu18); 8.15×10^{15} y 17 , "Solid State Nuclear Track Detectors (SSNTD)" (2005Yo12). Calculated $T_{1/2}(SF)$: 2005De44, 2005Re16, 2005Xu01, 1976Ra02. Other $T_{1/2}(SF)$ measurements: 2010Sa09, 2003Ha06, 1966Ra25, 1964Fl07, 1963Me14, 1959Ku81, 1959Ge30, 1984Va34. The effects of boron and lithium on the ratio of induced to spontaneous fission in natural uranium were measured by 1979At01. μ =0.51 3 (1998Ts13) μ : 1998Ts13 quote μ =0.254 15 in the abstract, but in the body of the paper, this same value is given as the g factor. $Q(^{238}U)/Q(^{234}U)$ =1.13 10 ; $\mu(^{238}U)/\mu(^{234}U)$ = 0.94 9 (1974Me18). $T_{1/2}$: from B(E2)=12.30 15 in Coul. ex. and α =609. Other: 225 ps 20 from (α) (ce 45γ)(t) in 242 Pu α decay (1960Be25).
148.38 ^e 3	4+		ABCDE GH	110m (a)(ce 137)(t) m 1 a a decay (1700Be23).
307.18 ^e 8	6 ⁺	22 2	ABCDE H	The Company of the Co
518.1 ^e 3	8+	23 ps <i>3</i>	CDE	$T_{1/2}$: from BE2=4.7 6 in Coulomb excitation.
680.11 ^f 4	1-	35 fs +19-9	A CDEF HI	$T_{1/2}$: from B(E1)=0.00049 <i>17</i> in Coulomb excitation and % $I\gamma$ (680 γ)=43 <i>3</i> .
731.93 ^{<i>f</i>} 3	3-		A CDEF H	B(E3)↑=0.570 36 (1994Mc03)
775.9 ^e 4	10 ⁺	9.0 ps <i>10</i>	CD	$T_{1/2}$: from BE2=5.6 2 in Coulomb excitation.
826.64 ^f 11	5-		A CDE H	
927.21° 19	0+		CD F	J^{π} : member of K=0 band.
930.559 9	(1^{-})		A CDEF H	J^{π} : gammas to $0^+, 2^+, 1^-$ levels, γ from 3^- level, fit to a band.
950.12 ^g 20 966.13 ^o 4	2 ⁻ 2 ⁺	2.4 ps + <i>I7</i> -7	A CD F A CD F	J^{π} : fit to a band. $T_{1/2}$: from B(E2)=0.017 7 and I γ (967 γ)=12.0% 5. J^{π} : 921.19 γ to 2 ⁺ is E0+M1+E2. The ratio of reduced transition intensities of 966, 818 gammas is in better agreement with the Alaga rule for K=0 than for K=1 or K=2: B(E2)(966 γ)/B(E2)(818 γ)=0.118 8 observed in Coul. ex., 0.389 theory for K=0, 0.875 theory for K=1, 14.0 theory for K=2.
966.31 ^f 21	7-		CD	
997.23 ^p 24 997.58 ^q 7	0+		CD H	J^{π} : E0 transition to g.s.
997.584 /	3-		A CDEF H	B(E3) \uparrow =0.184 <i>18</i> (1994Mc03) J ^{π} : from (d,d'), fit to a band.
1028 <mark>8</mark>	4-		CD	
1037.25 ^p 7	2+	1.13 ps <i>12</i>	A CDEF H	$T_{1/2}$: from B(E2)=0.0645 <i>64</i> in Coulomb excitation and %I γ (1037 γ)=30.8 δ . J^{π} : 993.0 γ to 2 ⁺ is E0+M1+E2.
1056.38° 21	4+		CD G	J^{π} : fit to a band. E2 γ to 6^{+} .
1059.66 ⁿ 17	(3^{+})		A C F	J^{π} : γ' s to $2^+,4^+$ levels; suggested as 3^+ bandhead in β^- decay.
1060.27 ^k 14	2+	0.64 ps 4	A CDEF H	$T_{1/2}$: from B(E2)=0.133 δ in Coulomb excitation and %I γ (1060 γ)=40.0 7. J^{π} : gammas to $0^+, 2^+, 4^+$ levels.
1076.7 ^e 5	12+	4.4 ps 4	D	$T_{1/2}$: weighted average of 4.5 ps 5 from B(E2) and 4.2 ps 6 from DSA in Coulomb excitation.
1105.71 ^{<i>j</i>} 7	3+		A CD	J^{π} : fit to a band.
1128.84 ^m 7	(2^{-})		A CD F	J^{π} : gammas to $2^+, 1^-, 3^-$ levels, fit to a band.
1130.75 ^p 24 1135.7? 4	4+		A CDE H A C	
1150.7 ^f 4	9-		D	
1151 <mark>8</mark>	6-		D	
1163 ^k	(4^{+})		D	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1167.99 9	4+		A CD gH	J^{π} : from $\gamma(\theta)$ and yield in Coulomb excitation. Assigned by 1994Mc04 as the 4 ⁺ member of the K=2 γ -vibrational band; however, 1996Wa11 show that this band member has an energy of 1163. J^{π} : fit to a band.
1168.88 ^m 23	3-		A CDE g	B(E3) \uparrow =0.166 23 J ^{π} : from (d,d'), fit to a band.
1209.3 <i>3</i>			C	(-)- ()
1223.78 14	2 ^{+d}	3.5 ps 4	A CD	$T_{1/2}$: from B(E2)=0.0123 12 in Coulomb excitation and %Iy(1224y)=41.6. The evaluators assume that the uncertainty in the branching is negligible compared with that in the B(E2) value.
1232 ^{<i>J</i>} 1239.3? 2 1242.9?	5+		D C A	
1260.9? 2			С	
1269.2 ^p 10	6+		CD	J^{π} : fit to a band.
1278.54 12	2+ <i>d</i>	2.9 ps <i>3</i>	A CD	B(E2) \uparrow =0.0043 4 T _{1/2} : from B(E2)=0.00428 43 in Coulomb excitation and %I γ (1278 γ)=15.0. The evaluators have assigned an uncertainty of 5% to this branching to get an uncertainty on T _{1/2} .
1311 ^k	6+		CD	
1318 ^g	8-		D	177 / , 0+ 2+ 1 1
1354.79 <i>24</i> 1375	$(1,2^+)$		C E	J^{π} : γ' s to $0^+, 2^+$ levels.
1378.8^{f} 5	11-		D	
1381.19 9	11		A C	Additional information 2.
1403 ^j	7+		CD	The existence of this level in $(n,n'\gamma)$ is not definite, since it is based on the observation of an 885.8 2 transition that is doubly placed.
1414.0 6	2 ^{+d}	1.18 ps <i>13</i>	A CD	$T_{1/2}$: from B(E2)=0.00549 55 in Coulomb excitation and %Iy(1413.3y)=12.9. The evaluators have assigned an uncertainty of 5% to this branching to get an uncertainty for $T_{1/2}$.
1415.5 ^e 6	14+	2.55 ps 20	D	$T_{1/2}$: weighted average of 2.54 ps 23 from B(E2) in Coul Ex and 2.56 ps 28 from DSA (1981Gr10).
1446.4 ¹ 9	(7^{-})		D	
1455.39 <i>18</i>			C	
1482.41 8			С	
1504 ^k	8+		D	
1516.5? 2 1528 ^g	10-		C D	
1530.2 4	2+ <i>d</i>	0.150 ps <i>15</i>	CDE	$T_{1/2}$: from B(E2)=0.0105 11 in Coulomb excitation and %I γ (1530 γ)=4.67. The evaluators have assigned an uncertainty of 5% to this branching to get an uncertainty for $T_{1/2}$.
1545.8 ^r 14	8+		D	· 12
1561.6			A C	
1594.80 <i>12</i> 1617.5	(4 ⁺)		C A	
1619 ^{<i>j</i>}	9+		D	
1630 ⁱ 1643.73 <i>12</i>			E C	
1644 ^{<i>l</i>}	(9-)		D	
1645.0			A E	
1649.2^{f} 5	13-		D	
1665 ⁱ			E	
1672.01 <i>15</i>			С	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1675.7 3			A C	
1712 ⁱ			E	
1741 ^k	10+		D	
1760.9 4	(4 ⁺)		CE	J^{π} : γ' s to $2^+,6^+$ levels.
1774.7 [#] 1778 ^g	(3 ⁻ ,4,5 ⁻) 12 ⁻		ACE	J^{π} : γ' s to 3 ⁻ ,5 ⁻ .
1778 ^a	12 1&	33 ^c fs 4	D F	
1782.3 ^a 4	$\frac{1}{2+d}$	0.39 ps 4	CD	$T_{1/2}$: from B(E2)=0.0179 18 in Coulomb excitation, and
	2	0.39 ps 4	CD	% $I_{\gamma}(1782.0\gamma)$ =44.8. The evaluators have assigned an uncertainty of 5% to the branching to get an uncertainty for $T_{1/2}$.
1786.7 ^r 15	10+	1.74	D	
1788.4 ^e 6	16 ⁺ 1&	1.74 ps <i>13</i>	D F	
1793	1& 1&	80 ^c fs +40-20 31 ^c fs 4	C F	
1846 1866		31° IS 4	C F	
1800° 1875 <i>j</i>	(11 ⁻) 11 ⁺		D	
1934.3	(3 ⁻)		D A C	
1959.2 ^f 6	15-		D	
1992.2	(3 ⁻)		A C	E(level): level proposed in β decay, but two common transitions suggest population in $(n,n'\gamma)$ also; however, the branchings are not in agreement. The evaluators have added several transitions from $(n,n'\gamma)$ based on energy fit alone.
1996.7 ^b 3	1-		F	
2017.7 ^b 4	1+		F	
2018 ^k	12 ⁺		D	
2033 ⁱ	(12^{+})		D	
2048.7 ^r 15	12+		D	
2063.9 2066 ^g	(2 ⁻) 14 ⁻		A D	
2079.3 ^b 4	1+		F	
2080.7^{b} 4	1-		F	
2093.3 ^b 4	1-		F	
2122 ^l	(13^{-})		D	
2125.3 6	2+		С	
2145.6 ^b 3	1-		F	
2163.5 <i>3</i>	4.0.1		C	
2171 ^j 2175.8 ^b 3	13 ⁺ 1 ⁺ @	0.0506 77.5	D _	
2175.8° 3 2191.1° 7	18 ⁺	0.058 ^c eV 5 1.18 ps <i>11</i>	F D	T _{1/2} : From DSA (1981Gr10).
2208.8^{b} 3	1+@	1.10 ps 11	C F	1/2. 11011 BBN (17010110).
2244.4^{b} 3	1+@	0.00142 ^c eV 3	F	
2294.1 ^b 3	1+@	$0.0040^{c} \text{ eV } 5$	F	
2306.7^{f} 7	17-		D	
2332.7 ^b 3	1-		F	
2333 ^k	14 ⁺		D	
2346.4 ^r 16	14 ⁺		D	
2356^{i}	(14^{+})		D	
2365.6 ^b 3	1-		F	
2389 ^g	16-		D	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
2410.0 ^b 3	1+@	0.011 eV 2	F	
2418 ^l	(15^{-})	0.011 0 . 2	D	
2422.8^{b} 3	1-@	0.0062 ^c eV 7	F	
2467.8^{b} 5	1+@	$0.048^{C} \text{ eV } 5$	F	
$2407.8^{\circ} 5$ $2491.5^{\circ} 5$	1-	0.048 67 3	F	
2491.3 3 2499.4 <i>b</i> 3	1 1 ⁺			
			F	
2502^{j}	15 ⁺		D	
2529.0 ^b 3 2557.9 5	1- 0+	280 ns 6	F C HI	0/ IT 07 4 4, 0/ SE 2 6 4
		260 lis 0		%IT=97.4 4; %SF=2.6 4 Intrinsic electric quadrupole moment=29 3 (1979Ul01). %ternary fission ≈0.1 (1989Ma54) % α <0.5 (1971Be62). J $^{\pi}$: 2558 γ to 0 ⁺ is E0. T _{1/2} : from IT DECAY.
2578.5 3	2+		C	
2593.7 ^b 6	1-		F	
2602.5^{b} 4	1-	0.01	F	
2619.1 ^e 8 2624.6 6	20 ⁺ 4 ⁺	0.91 ps 8	D C	$T_{1/2}$: from Coulomb excitation.
2638.3 ^b 3	1+		F	
2645 ^h	(14^{+})		D	
2647.3 <mark>b</mark> 8	1+		F	
2675.2 ^r 17	16 ⁺		D	
2683 ^k	16 ⁺		D	
2689.4 ^f 8	19-		D	
2702.2 ^b 3	1+		F	
2712 ⁱ	(16^{+})		D	
2738.9 ^b 9	1+		F	
2744 <mark>8</mark>	18-		D	
2751 ^l	(17^{-})		D	
2756.4 ^b 3	1+		F	Additional information 3.
2773.0^{b}_{b} 3	1+		F	
2816.8^{b}_{b} 4	1+		F	
2844.2 ^b 9	1-		F	
2862.2^{b} 5	1-		F	
2868 ^j	17+		D	
2877.1 ^b 3	1-		F	
2881.4^{b} 5	1+		F	
2896.6 ^b 3 2908.9 ^b 3	1-		F	
2908.9 ^b 3 2910.0 ^b 4	1 ⁻ 1 ⁻		F	
$2910.0^{b} 4$ $2932.6^{b} 6$	1 1 ⁺		F	
$2932.6^{\circ} 6$ $2951.2^{\circ} 3$	1 + 1 +		F F	
2963.9 ^b 8	1 1+		F	
2903.9 8 2991 ^h	(16^+)		D	
3005.9^{b} 4	1-		F	
3003.9° 4 3014.5° 3	1 1 ⁺		F	
3014.5 3	1 1-		F	
3010.9 3	1		r	

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
3030.6 ^b 3	1+	·	F	
3031.2 ^r 19	18 ⁺		D	
3037.7 ^b 3	1+		F	
3042.5 ^b 6	1+		F	
3043.6 ^b 3	1-		F	
3046.9 ^b 3	1-		F	
3051.7 ^b 3	1-		F	
3057.1 4	1-		F	
3060.6 ^b 3	1-		F	
3065 ^k	18 ⁺		D	
3068.1 ^e 9	22 ⁺	0.76 ps 10	D	$T_{1/2}$: from Coulomb excitation.
3086.7 ^b 5	1-	1	F	1) 2
3091.0 ^b 3	1-		F	
3095 ⁱ	(18^{+})		D	
3096.4 ^b 3	1-		F	
3101.7 ^b 4	1-		F	
3104.3^{f} 12	21-		D	
3117.7 ^b 4	1-		F	
3117.7 4 3120 ^l	(19 ⁻)		D	
3128 ^g	20-		D	
3135.0 ^b 3	1+		F	
3153.7 ^b 3	1+		F	
3172.9 ^b 3	1+		F	
3207.8 ^b 4	1-		F	
3217.6 ^b 6	1+		F	
3234.5 ^b 7	1+		F	
3239.6 ^b 3	1-		F	
3253.194 ^b 15	1-	0.24 ps 8	F	J^{π} : J=1 from angular correlation, π =– based on the relative intensities of the
2252	40+			deexciting γ transitions.
3265^{j}	19 ⁺		D	
3274.4 ^b 3	1-		F	
3297.2 ^b 4	1-		F	
3303.6^{b} 3	1-		F	
3307.32^{b} 3	1+		F	
$3329.1^{b}_{b}6$	1-		F	
3348.33 ^b 3	1+		F	
3366.0 ^b 5	1+		F	
3368 ^h	(18^{+})		D	
3384.3 ^b 3	1-		F	
3397.9 ^b 8	1-		F	
3411.2 ^r 22	20+		D _	
3416.0^{b} 4	1-		F	
3421.5^{b} 5	1-		F	
3441.0 ^b 9	1-		F	
3448.3 ^b 6	1+		F	
3454.1 ^b 4	1-		F	

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
3460.7 ^b 3	1+		F	
3467.8 ^b 6	1-		F	
3470.7 ^b 3	1-		F	
3474 ^k	20^{+}		D	
3475.2 ^b 3	1-		F	
3479.0 ^b 3	1-		F	
3489.0 ^b 3	1-		F	
3500.5 ^b 3	1-		F	
3502 ⁱ	(20^{+})		D	
3509.1 ^b 9	1-		F	
3521 ^l	(21^{-})		D	
3528.0^{b} 4	1-	0.51	F	
3535.3 ^e 12 3538 ^g	24 ⁺ 22 ⁻	0.51 ps 8	D D	$T_{1/2}$: from B(E2) in Coulomb excitation.
3547.7^{f} 13	23-		D	
$3548.0^{b} 6$	1-		F	
3562.8 ^b 3	1-		F	
3594.9 ^b 5	1-		F	
3608.7 ^b 3	1-		F	
3615.9 ^b 3	1-		F	
3623.9 ^b 3	1-		F	
3640.1 ^b 3	1-		F	
3650.5 ^b 3	1-		F	
3659.7 ^b 6	1-		F	
3673.7 ^b 6	1-		F	
3686 ^j	21+		D	
3728.0 ^b 9	1-		F	
3738.5 ^b 8	1-		F	
3759.9 ^b 3	1-		F	
3773 ^h	(20 ⁺) 1 ⁻		D	
3805.1 ^b 3 3809 ^b			F	
3809 ^s 3811.2 ^r 24	$(1,2^+)$ 22^+		F D	
$3819.0^{b} 6$	1-		F	
3828.7^{b} 3	1-		F	
3906 ^k	22+		D	
3947 ^{<i>l</i>}	(23^{-})		D	
3965.7 ^b 4	1-		F	
3971 ⁸	24^{-}		D	
3990.7 ^b 9	1-		F	
3995.8 ^b 3	1-		F	
4017 ^f 4018.1 ^e 16	25 ⁻ 26 ⁺	0.40 ps 7	D D	$T_{1/2}$: from Coulomb excitation.
4018.1^{b} 7	20 1-	0.40 ps /	Б F	11/2. Hom Coulomb Cacitation.
4023.7 7 4031.4 7	1-		F	
4046.7 ^b 3	1-		F	
1010.7 5	•		•	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
4065.3 ^b 3	1-		F	
4072.1 ^b 6	1-		F	
4088.9 ^b 7	1-		F	
4093.4 ^b 3	1-		F	
4100.2 ^b 3	1-		F	
4105.2 ^b 3	1-		F	
4122.9 ^b 5	1-		F	
4127 <i>j</i>	23 ⁺		D	
4138.9 ^b 7	1-		F	
4145.8 ^b 3	1-		F	
4151.3 ^b 6	1-		F	
4155.4 ^b 3	1-		F	
4175.8 ^b 4	1-		F	
4181.5 ^b 7	1-		F	
4205 ^h	(22^{+})		D	
4217.3 ^b 8	1-		F	
4232 ^r 3	24+		D	
4239.1 ^b 3	1-		F	
4358 ^k	24+		D	
4393 ^l	(25^{-})		D	
4424 ⁸	26-		D	
4495 ^b	$(1,2^+)$		F	
4504 ^f	27-	0.26	D	
4517 ^e 4586 ^j	28 ⁺ 25 ⁺	0.36 ps 9	D	$T_{1/2}$: from Coulomb excitation.
4580 ³ 4592 ^b	$(1,2^+)$		D F	
4392° 4677° 3	26+		D F	
4807 ^b	(1)		F	Additional information 4.
4825 ^k	26 ⁺		D	
4895 <mark>8</mark>	28-		D	
5003f	29-		D	
5035.1 ^e 21	30 ⁺	<0.9 ps	D	
5063 ^j	27+		D	
5140 ^b			F	
5144 ^r 3	28+		D	
5206 ^b	$(1,2^+)$		F	
5513 ^f 5581 ^e 3	31 ⁻ 32 ⁺		D D	
6037^{f} 3	33-			
6037 ³ 3 6146 ^e 4	33 34 ⁺		D D	
0110 7	<i>J</i> 1		D	

 $^{^{\}dagger}$ Level energies are from a least-squares fit to the γ energies.

 $^{^{\}ddagger}$ From excitation in Coulomb excitation, γ deexcitation pattern, and assignment to a rotational band. Band assignments are mainly from 1996Wa11.

Data are from 238 Pa β^- decay. This level may be populated also in $(n,n'\gamma)$; however, the agreement in branchings is poor. From

- $(n,n'\gamma)$ one has E γ =606.6 2, 647.7 4, 1043.0 10, and 1627.8 6 with I γ values of 100 12, 24 8, 4 4, and 12 4. The 1094.5 (placement in the decay scheme is uncertain) and 1730 γ 's have not been observed.
- [@] From $\gamma(\theta)$ in (γ, γ') and form factor in (e, e') (1988He02).
- & From $\gamma(\theta)$ in (γ, γ') (1995Zi02).
- a J=1 for a 1782 level in (γ, γ') , and J=2 for a 1782 level in Coulomb excitation, both spins determined by $\gamma(\theta)$. Both reactions report transitions to the 45 level and the g.s. It is possible that both reactions are exciting both levels, in which case the branching ratios may be incorrect.
- ^b From ²³⁸U(γ,γ').
- ^c From Γ data in (γ, γ') and adopted branching ratios.
- ^d Level is Coulomb excited and J=2 from $\gamma(\theta)$ in Coulomb excitation.
- ^e Band(A): $K^{\pi}=0^{+}$ ground-state band. Coulomb excitation. Member of ground-state rotational band based on γ-deexcitation pattern and energy fit to rotational formula.
- ^f Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band. Coulomb excitation. Member of octupole-vibrational band based on γ deexcitation pattern and energy fit.
- ^g Band(C): $K^{\pi}=1^{-}$, $\alpha=0$. Coulomb excitation. Member of $K^{\pi}=1^{-}$, $\alpha=0$ band based on γ deexcitation pattern and energy fit.
- ^h Band(D): Unassigned, but possibly built on the 1414 or 1530 2⁺ levels.
- ⁱ Band(E): Possibly associated with the 1037 2+ level, assigned by 1994Mc03 as the second K=0 β -vibrational bandhead.
- ^j Band(F): $K^{\pi}=2^{+}$ γ -vibrational band. $\alpha=1$.
- ^k Band(G): $K^{\pi}=2^{+}$ γ -vibrational band. $\alpha=0$.
- ¹ Band(H): Probably associated with the octupole band built on the 1129 2- level, and thus probably $K^{\pi}=2^-$ with $\alpha=1$.
- ^m Band(I): $K^{\pi}=2^{-}$.
- ⁿ Band(J): $K^{\pi}=3^{+} \nu 1/2(631)+\nu 5/2(622)$.
- ^o Band(K): $K^{\pi}=0^{+}$ band.
- ^p Band(L): $K^{\pi}=0^{+}$ second β-vibrational band.
- ^q Band(M): $K^{\pi}=1^{-}$. $\alpha=1$.
- ^r Band(N): Band based on $J^{\pi}=8^+$ (2010Zh09).

γ (²³⁸U)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f .	J_f^{π} M	ult.# α^r	Comments
44.916	2+	44.915 ^{&} 13	100	0.0	0 ⁺ E2	609	$\alpha(L)$ = 444; $\alpha(M)$ = 123 B(E2)(W.u.)=281 4 α : theoretical values of α , $\alpha(L)$, and $\alpha(M)$ are reduced by 2% (see 1987Ra01).
148.38	4+	103.50 ^{&} 4	100	44.916	2 ⁺ [E2]	11.6	$\alpha(L)=8.405$; $\alpha(M)=2.332$; $\alpha(N+)=0.878$
307.18	6+	159.018 <mark>&</mark> <i>16</i>	100	148.38	4 ⁺ [E2]	1.871	$\alpha(K) = 0.2135$; $\alpha(L) = 1.201$; $\alpha(M) = 0.333$; $\alpha(N+) = 0.1239$
518.1	8+	210.6 4	100	307.18	6 ⁺ [E2]	0.626	$\alpha(K)$ = 0.143; $\alpha(L)$ = 0.351; $\alpha(M)$ = 0.096; N+= 0.0357 B(E2)(W.u.)=410 60
680.11	1-	635.3 ^a 3	100.0 20	44.916	2 ⁺ [E1] ^d	p 0.020 4	α (K)exp=0.016 4; B(E1)(W.u.)=0.011 4 E _{γ} : From Coulomb excitation.
		680.2 ^a 5	79 <i>4</i>	0.0	0+ [E1] ^d	p 0.020 5	α (K)exp=0.016 5; B(E1)(W.u.)=0.0070 24 E _y : From Coulomb excitation.
731.93	3-	51.8 ^b		680.11	1-		
		583.55 <i>3</i>	81.4 16		4 ⁺ E1 ^p	0.01003	$\alpha(K)=0.00812; \ \alpha(L)=0.00144$
		686.99 <i>3</i>	100.0 20	44.916			
775.9	10+	257.8 ^a 4	100		8 ⁺ [E2]	0.313	$\alpha(K)$ = 0.101; $\alpha(L)$ = 0.154; $\alpha(M)$ = 0.0419; N+= 0.0156 B(E2)(W.u.)=480 60
826.64	5-	519.46 8	50 3		6 ⁺ [E1]		
027.21	0^{+}	678.3 ^a 3	100 6		4 ⁺ [E1]		
927.21 930.55	(1^{-})	882.3 <i>6</i> 251.2 <i>7</i>	100 13.1 <i>14</i>	44.916 2 680.11	2 ⁺ [E2] 1 ⁻		
930.33	(1)	885.46 ^a 10	13.1 14	44.916 2		0.00465	$\alpha(K)=0.00379$; $\alpha(L)=0.00065$
		931.1 2	25.2 13		0 ⁺ [E1]	0.00403	$\alpha(K)=0.00347; \ \alpha(L)=0.00005$ $\alpha(K)=0.00347; \ \alpha(L)=0.00059$
950.12	2^{-}	218.1 3	53 6		3-	0.00.20	a(12) 01000 17, a(2) 010000
		270.1 4	48 8		1-		
		905.5 5	100 6	44.916		0.00447	$\alpha(K)=0.00365; \ \alpha(L)=0.00062$
966.13	2+	234.5 ^a 10	13.9 <i>14</i>	731.93	3 ⁻ [E1]	0.0689	$\alpha(K)$ = 0.0544; $\alpha(L)$ =0.01092; $\alpha(M)$ =0.00263; $\alpha(N+)$ =0.00093
							$B(E1)(W.u.)=3.5\times10^{-4} 15$
		286.3 ^a 10	8.1 7	680.11	1- [E1]	0.0438	$\alpha(K) = 0.0348; \ \alpha(L) = 0.00679; \ \alpha(M) = 0.00163; \ \alpha(N+) = 0.00058$
					n		$B(E1)(W.u.)=1.1\times10^{-4} 5$
		818.06 <i>13</i>	100 4	148.38	4 ⁺ [E2] ^P	0.0166	$\alpha(K) = 0.0121; \ \alpha(L) = 0.00341$
							B(E2)(W.u.)=3.3 $I4$ α (K)exp=0.012 8
		921.19 ^a 3	60 <i>3</i>	44.916	2+ E2+1	$11 + E0^p$ 0.23 4	$B(M1)\downarrow=1.1\times10^{-4} 8$; B(E2)(W.u.)=1.0 4
		921.19" 3	00 3	44.910	Z EZ+IV	11+EU ^r 0.23 4	$\alpha(K) \exp[-0.191 \ 30]$
							α : from α (K)exp and α/α (K)=1.19 (E0 theory).
							δ : δ (E2/M1)=+4.1 +6–5 from Coulomb excitation (1994Mc03).
							ρ^2 =0.0099 18 from Coulomb excitation (2001Ga55).
		966.9 <i>3</i>	27.3 14	0.0	0 ⁺ [E2]	0.0120	$\alpha(K) = 0.0090; \ \alpha(L) = 0.00226$
							B(E2)(W.u.)=0.38 16
966.31	7-	449		518.1	8 ⁺		E_{γ}, I_{γ} : from Coulomb excitation. E=448.4 9 is reported in $(n, n'\gamma)$, but the

12

γ (238U) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@}$	α^{r}	Comments
1076.7	12+	300.6 ^a 9	100	775.9	10+	[E2]		0.191	$\alpha(K)$ = 0.0758; $\alpha(L)$ = 0.0841; $\alpha(M)$ = 0.0227; N+=0.00844 B(E2)(W.u.)=500 50
1105.71	3 ⁺	957.80 ^f 4	30 2	148.38	4 ⁺				
		1060.32 <i>fi</i> 2	100	44.916	2+				
1128.84	(2^{-})	68.1 ^h		1060.27	2+				
	, ,	68.8 ^h		1059.66	(3^{+})				
		130.7 <mark>h</mark>			3-				
		178.2 <mark>h</mark>	36		2-	[M1]		4.51	$\alpha(K)$ = 3.58; $\alpha(L)$ = 0.699; $\alpha(M)$ = 0.1692; $\alpha(N+)$ = 0.0616
		198.6 ^f 3	15		(1-)	. ,			I_{γ} : masked by an impurity line in Coulomb excitation. From $I_{\gamma}/I_{\gamma}(1084\gamma)=0.18$ in β decay.
		396.3 2	26.0 13	731.93	3-				1//1/(100.1/) onto imp accay.
		448.1 ^t 2	100 ^t 4		1-				
		1084.08 7	81 4	44.916					
1130.75	4+	982.44 ^a 24	100		4+				
1135.7?		$208.3 \frac{hfu}{10}$ 10	100 29		0_{+}				
		1090.9^{hfu} 2	71 6	44.916					
1150.7	9-	184 ^a 374.8 ^a 4			7-				
		632.6 ^a 4			10 ⁺ 8 ⁺				
1151	6-	123 ^a			4 ⁻				
		324 ^a			5-				
		843 ^a			6+				
1163	(4^{+})	855 ^a			6+				
1167.00	4+	1015 ^a 861 ^a	12.5		4 ⁺	Ε0		0.01504	(IV) 0.01105 (IV) 0.00200
1167.99	4+		13.5		6 ⁺	E2		0.01504	$\alpha(K) = 0.01105; \ \alpha(L) = 0.00300$
		1018.88^{fk} 3	100		4+	E2		0.01085	$\alpha(K)=0.00820; \ \alpha(L)=0.00200$
4460.00		1123 ^{ak}	6.8	44.916		E2		0.00904	$\alpha(K)=0.00691; \ \alpha(L)=0.00160$
1168.88	3-	41.4^{j}			(2^{-})				
		109.4 ^{hu} 172 ^a	44.2		(3^+)	DV(1)		5.05	-(V) 400. (I) 0.792. (M) 0.1904. (N) 0.0000
		202.6 ^a	44.3 16.8		3 ⁻ 2 ⁺	[M1] [E1]		5.05 0.0957	$\alpha(K)$ = 4.00; $\alpha(L)$ = 0.783; $\alpha(M)$ = 0.1894; $\alpha(N+)$ = 0.0690 $\alpha(K)$ = 0.0751; $\alpha(L)$ =0.01547; $\alpha(M)$ =0.00374;
		202.0	10.0	700.13	_	[LI]		0.0757	$\alpha(N+)=0.00132$
		436.9 3	100	731.93	3-	M1+E2	+0.23 +11-8	0.366 17	$\alpha(K)$ = 0.291 <i>15</i> ; $\alpha(L)$ = 0.0567 <i>20</i> ; $\alpha(M)$ = 0.0137 <i>5</i> ; $\alpha(N+)$ =0.00498 <i>17</i>
		489.0 ^a 10	23.4	680.11	1-	E2		0.0505	$\alpha(K)$ = 0.0303; $\alpha(L)$ =0.01482; $\alpha(M)$ =0.00389; $\alpha(N+)$ =0.00143
		1021 <i>ak</i>	49.6	148.38	4+	[E1]		0.00362	$\alpha(K)=0.00296; \ \alpha(L)=0.00050$
		1123 <i>ak</i>	27.0	44.916	2+	[E1]		0.00307	$\alpha(K)=0.00251; \alpha(L)=0.00042$

γ (238U) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{r}	Comments
1209.3		282.2 ^f 8	100 ^g 43	927.21	0+			
		1060.98 ^f 3	<1014 <mark>8</mark>	148.38	4+			
		1209.3 ^f 3	86 <mark>8</mark> 14	0.0	0^{+}			
1223.78	2+	258 ^a	4.7	966.13	2+	E2	0.312	$\alpha(K)$ = 0.1009; $\alpha(L)$ = 0.1537; $\alpha(M)$ = 0.0418; $\alpha(N+)$ =0.01552 B(E2)(W.u.)=32
		274 ^a	17.8	950.12	2-	E1	0.0483	$\alpha(K)$ = 0.0383; $\alpha(L)$ =0.00753; $\alpha(M)$ =0.00181; $\alpha(N+)$ =0.00064 B(E1)(W.u.)=1.8×10 ⁻⁴
		293 ^a	7.2	930.55	(1-)	E1	0.0416	$\alpha(K)$ = 0.0331; $\alpha(L)$ =0.00644; $\alpha(M)$ =0.00154; $\alpha(N+)$ =0.00055 B(E1)(W.u.)=6.0×10 ⁻⁵
		296 ^a	8.0	927.21	0^+	E2	0.2004	$\alpha(K) = 0.0781$; $\alpha(L) = 0.0893$; $\alpha(M) = 0.02414$; $\alpha(N+) = 0.00897$ B(E2)(W.u.)=27
		1076 ^a	3.2	148.38	4+	E2	0.00980	$\alpha(K)=0.00745$; $\alpha(L)=0.00176$ B(E2)(W.u.)=0.017
		1179.3 3	96	44.916	2+	M1+E2		E _γ : weighted average of 1179.2 <i>4</i> from Coulomb excitation, and 1179.4 2 from 1984BIZS, 1179.6 <i>3</i> from 1978De41, and 1179.0 2 from 1972Mc19 in
		1223.3 2	100	0.0	0+	E2	0.00770	$(n,n'\gamma)$. δ : δ =+7.0 +14-10 or -0.295 from $\gamma(\theta)$ in Coulomb excitation. $\alpha(K)$ =0.00594; $\alpha(L)$ =0.00132 B(E2)(W.u.)=0.29
1232	5 ⁺	69 ^a		1163	(4^{+})			D(L2)(W.u.)=0.29
		127 <mark>a</mark>		1105.71	3+			
		925 ^a		307.18	6+			
		1084 ^a		148.38	4+			
1239.3?		932.30 ^f 7	≤156 ⁸	307.18	6+			
		1090.9^{fu} 2	100	148.38	4+			
1242.9?		1094.5 <i>shu</i>	S	148.38	4+			
1260.9?		1112.0 ^u 5	29 3	148.38	4+			
		1215.31 ^u 5	100 6	44.916				
1269.2	6+	962.0^{f} 10	100		6+			
1278.54	2+	546.93 ^f 10	48	731.93	3-	E1	0.01136	$\alpha(K)=0.00917$; $\alpha(L)=0.00164$ B(E1)(W.u.)=4.8×10 ⁻⁵ 7
		1130.31 ^f 12	60 4	148.38	4+	E2	0.00893	$\alpha(K)=0.00684$; $\alpha(L)=0.00158$ B(E2) $\downarrow=0.29$ 3 E _y : from 1994Mc03.
		1233.65 ^f 7	82	44.916	2+	E2	0.00758	$\alpha(K)=0.00586$; $\alpha(L)=0.00130$ B(E2)(W.u.)=0.37 5 E _y : E=1233 in Coulomb excitation.
		1278.57 ^f 7	100 60	0.0	0+	E2	0.00709	$\alpha(K)$ =0.00550; $\alpha(L)$ =0.00120 B(E2)(W.u.)=0.098 9
1311	6+	79 ^a		1232	5 ⁺			D(D2)(11.41.)=0.070 7

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{r}	Comments
1311	6+	149 <mark>a</mark>		1163	(4^+)			
		793 <mark>a</mark>		518.1	8+			
		1004 <mark>a</mark>		307.18	6+			
1318	8-	167 ^a		1151	6-			
		352 ^a		966.31	7-			
1354.79	$(1,2^+)$	405.8 ^f 10	40 20	950.12	2-			
		423.8 ^f 3	100 20	930.55	(1^{-})			
		1310.5 ^f 4	50 10	44.916	2+			
		1354.5 ^{fl} 10	30 10	0.0	0^{+}			
1378.8	11-	228.1 ^a 4		1150.7	9-			
		302.3 <mark>a</mark> 4		1076.7	12+			
		602.9 ^a 4		775.9	10 ⁺			
1381.19		554.28 ^f 7	100	826.64	5-			
		1073.82 ^f 11		307.18	6+			
1403	7+	92 <i>a</i>		1311	6+			
		171 ^a		1232	5+			
1 4 1 4 0	2+	885 ^a	4.0	518.1	8+	T-2	0.1104	E _{γ} : E=885.8 2 is reported in $(n,n'\gamma)$ for a doubly-placed transition.
1414.0	2+	354 ^a	4.3	1060.27	2+	E2	0.1194	$\alpha(K)$ = 0.0562; $\alpha(L)$ = 0.0462; $\alpha(M)$ =0.01240; $\alpha(N+)$ =0.00460 B(E2)(W.u.)=36
		1370 ^a	100	44.916				
		1413.4 ^f 2	15.5	0.0	0+	E2	0.00589	$\alpha(K)$ =0.00461; $\alpha(L)$ =0.00096 B(E2)(W.u.)=0.125
1415.5	14 ⁺	338.8 ^a 4	100	1076.7	12+	[E2]	0.134	$\alpha(K)$ = 0.0605; $\alpha(L)$ = 0.0534; $\alpha(M)$ = 0.0143; N+=0.00533 B(E2)(W.u.)=491 38
1446.4	(7^{-})	480 <mark>a</mark>	100	966.31	7-			2(22)(\(\)\(\)\(\)
1455.39		1306.5 ^f 1	81 9		4 ⁺			
		$\frac{1410.1^f}{1}$	100 9	44.916				
1482.41		422.1^{f} 3	4	1060.27	2 ⁺			
1 102.71		551.63^{f} 8	21	930.55	(1^{-})			
		802.9^{f} 2	32	680.11				
		1437.39 ^f 8						
1504	8+	1437.39 ³ 8 102 ^a	100	44.916 1403	2† 7+			
1304	0	102 ^a 193 ^a		1311	6 ⁺			
1516.5?		1367.3 <i>sl</i> 2	95 <i>s</i>	148.38	4 ⁺			
1310.31		1470.56 10	100	44.916				
1528	10-	210 ^a	100	1318	8-			
		377 ^a		1150.7	9-			
1530.2	2+	400.6 <mark>a</mark>	8.5	1128.84	(2^{-})	E1	0.0213	$\alpha(K)=0.0171; \alpha(L)=0.00317$
								$B(E1)(W.u.)=6.4\times10^{-4}$
		564 ^a	17.8	966.13	2+	[E2]	0.0362	$\alpha(K)$ =0.02342; $\alpha(L)$ =0.00958 B(E2)(W.u.)=55

15

γ (238U) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\sharp}	E_f	\mathtt{J}_f^{π}	Mult.#	α^{r}	Comments
1530.2	2+	599 ^a	41.7	930.55	(1-)	[E1]	0.00955	$\alpha(K)=0.00773$; $\alpha(L)=0.00137$ B(E1)(W.u.)=9.4×10 ⁻⁴
		798.4 ^a	23.9	731.93	3-	[E1]	0.00560	$\alpha(K)=0.00456$; $\alpha(L)=0.00079$ B(E1)(W.u.)=2.3×10 ⁻⁴
		1382.11 ^f 12	100 8	148.38	4+	E2	0.00615	$\alpha(K)$ =0.00480; $\alpha(L)$ =0.00101 B(E2)(W.u.)=3.57 43 (1994Mc03)
		1485.3 ^f 3	35 6	44.916		M1+E2		δ : δ =-30 10 or -0.51 from $\gamma(\theta)$ in Coulomb excitation.
		1530 ^a	11.3	0.0	0+	E2	0.00401	α(K)=0.00401 B(E2)(W.u.)=0.240 24 (1994Mc03)
1545.8	8+	1028 ^q	100	518.1	8+			
1561.6		501.9 ^h	100	1059.66	(3^{+})			
		1413 ^h	12	148.38	4+			
		1516.5 ^h	<15	44.916	2+			
1594.80	(4^{+})	768.40 ^f 7	< 50	826.64	5-			
		1287.0^{f} 5	22 5	307.18	6+			
		1446.12 ^f 11	≤100	148.38	4+			
		1549.88 ^f 12	100 8	44.916				
1617.5		448.3 <i>thu</i>	≈7 ^t	1168.88	3-			I_{γ} : most of the intensity belongs with the 1129 level.
		489.0 ^h	100	1128.84	(2^{-})			
		557.9 ^h	≈25	1059.66	(3^{+})			I_{γ} : estimated by evaluators.
1619	9+	114 ^a		1504	8+			
		216 ^a 843 ^a		1403 775.9	7 ⁺ 10 ⁺			
1643.73		1336.34^{f} 12	100	307.18	6 ⁺			
1644	(9-)	197^{a}	100	1446.4	(7^{-})			
10	()	493 ^a		1150.7	9-			
1645.0		476.2 ^h	100 <mark>m</mark>	1168.88	3-			
		1496.6 <mark>h</mark>	42 <mark>m</mark>	148.38	4+			
		1600 <mark>h</mark>	16 <mark>m</mark>	44.916	2+			
1649.2	13-	234 ^a		1415.5	14 ⁺			
		270.5 ^a 4		1378.8	11-			
1.686.01		572.4 ^a 4	= 0	1076.7	12+			
1672.01		566.20^{f} 11	50	1105.71	3 ⁺			
		1523.63^{f} 15	100 8	148.38	4+			
		1627.0^{f} 2	<53	44.916				
1675.7		547.0 ^f 3	100 ^m	1128.84	(2^{-})			

Adopted	Levels,	Gammas	(continuea)

γ (²³⁸U) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{ \ddagger}$	E_f	J_f^π	Mult.#	$\delta^{@}$	α^{r}	Comments
1675.7		943.5 ^h	17.5 ^m	731.93	3-				
		995.4 ^h	25 ^m	680.11					
		1527.1 ^h	9 ^m		4+				
		1630.5^{h}	7.5 ^m	44.916					
1741	10 ⁺	1030.3	1.5	1619	2 9+				
1711	10	237 <mark>a</mark>		1504	8+				
1760.9	(4^{+})	655.3 <i>3</i>	<1.4	1105.71	3 ⁺				
		701.9 2	0.5	1059.66	(3^{+})				
		1454.8 2	< 0.4	307.18	6+				
		1613.2 3	0.6		4 ⁺				
		1716.2 <i>4</i>	100 15	44.916					
1774.7	$(3^-,4,5^-)$	605.7 ^h	100 ^m	1168.88					
		646.4 ^h	90 <mark>m</mark>	1128.84	(2^{-})				
		1042.4 ^h	80 <mark>m</mark>	731.93	3-				
		1094.5 <i>sh</i>	≤50 <i>sm</i>	680.11	1-				Placement in level scheme is uncertain.
		1626 ^h	30 <mark>m</mark>	148.38	4+				
		1730 ^h	30 <mark>m</mark>	44.916	2+				
1778	12-	250 <mark>a</mark>		1528	10-				
		399 <mark>a</mark>		1378.8	11^{-}				
1782	1	1737 ⁿ	55 ⁿ 5	44.916					
		1782 ⁿ	100 ⁿ	0.0	0_{+}				
1782.3	2+	1737.8 ^f 5	89 10	44.916	2+	M1+E2	11 +19-4		B(E2)(W.u.)=0.57 6
									$B(M1)(W.u.)=5\times10^{-5} +7-4$
		1782.3 ^f 4	100 11	0.0	0_{+}	E2			B(E2)(W.u.)=0.41 4
1786.7	10 ⁺	241 9		1545.8	8+				
		259 9		1528	10-				
		408 ^q		1378.8	11-				
		636 ^q		1150.7	9-				
1788.4	16 ⁺	1011 ^q 372.9 ^a 4	100	775.9 1415.5	10 ⁺ 14 ⁺	[E2]		0.102	$\alpha(K) = 0.0505$; $\alpha(L) = 0.0376$; $\alpha(M) = 0.0101$; N+=0.00373
1/00.4	10	312.9" 4	100	1413.3	14	$[\mathbf{E}Z]$		0.102	a(K) = 0.0303; a(L) = 0.0376; a(M) = 0.0101; N = 0.00373 B(E2)(W.u.)=490 21
1793	1	1748 <mark>**</mark>	100 <mark>n</mark>	44.916	2+				D(D2)(11.u.)-770 21
1.75	•	1793 ⁿ	90 ⁿ 23	0.0	0^{+}				
1846	1	1802 ⁿ	51 ⁿ 5	44.916					
		1846 <mark>n</mark>	100 <mark>n</mark>	0.0	0_{+}				
1866	(11^{-})	222 ^a		1644	(9-)				
		487 ^a		1378.8	11-				
1875	11+	134 ^a		1741	10+				
		256 ^a		1619	9+				

17

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
1875	11+	798 ^a		1076.7	12 ⁺	
1934.3	(3^{-})	289.1 ^h	9 <mark>m</mark>	1645.0		
		317.0 <mark>h</mark>	16 ^m	1617.5		
		373 <mark>h</mark>	≤14 ^m	1561.6		
		765.3 ^h	9 <mark>m</mark>	1168.88	3-	
		805.7 ^h	100 <mark>m</mark>	1128.84	(2^{-})	
		874.4 <mark>h</mark>	20 <mark>m</mark>	1059.66	(3^{+})	
		984.6 ^h	16 <mark>m</mark>	950.12	2-	
		1003.6 ^h		930.55	(1^{-})	
		1785.7 ^h		148.38	4+	
		1889.1 ^h	39 <mark>m</mark>	44.916	2+	
1959.2	15-	309.9 ^a 4		1649.2	13-	
		543.7 ^a 4		1415.5	14 ⁺	
1992.2	(3-)	375		1617.5 1223.78	2+	$E_{\gamma}I_{\gamma}$: reported only in β^- decay. $I_{\gamma}/I_{\gamma}(863.5\gamma) < 0.11$.
		768.3 2 823.2		1168.88	3-	$E_{\gamma}I_{\gamma}$: E=769 is seen in β^- with $I_{\gamma}/I_{\gamma}(863.5 \gamma) \approx 0.02$, unplaced by authors. $E_{\gamma}I_{\gamma}$: reported only in β^- decay. $I_{\gamma}/I_{\gamma}(863.5 \gamma) = 0.17$.
		863.7 2		1128.84	(2^{-})	E_{γ}, I_{γ} : from $(n, n'\gamma)$. E=863.3 in β^- decay.
		932.30 7		1059.66	(3^{+})	$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$, with $I_{\gamma}/I_{\gamma}(863.5\gamma)<10$. E=932.5 in β^- decay, with $I_{\gamma}/I_{\gamma}(863.5\gamma)<0.11$.
1996.7	1-	1951.8 ⁿ	18 ⁿ 2	44.916		
2017.7	1+	1996.7 ⁿ 3 1972.8 ⁿ	100 ⁿ 187 ⁿ 47	0.0 44.916	0+	
2017.7	1	2017.7 ⁿ 4	100 ⁿ	0.0	0 ⁺	
2018	12+	143 ^a	100	1875	11+	
		277 <mark>a</mark>		1741	10+	
2033	(12^+)	957 ^a	100	1076.7	12+	
2048.7	12 ⁺	262 ^q		1786.7	10 ⁺	
		271 ^q 400 ^q		1778 1649.2	12 ⁻ 13 ⁻	
		670^{q}		1378.8	11-	
		973 9		1076.7	12 ⁺	
2063.9	(2^{-})	1332.0 ^h	70	731.93	3-	
	,	1383.9 ^h	100		1-	
		2019 ^h	100	44.916		
2066	14-	288 a	100	1778	12-	
2079.3	1+	2079.3 ⁿ 4	100 ⁿ	0.0	0+	
2080.7	1-	2035.8^{n}	150 ⁿ 19	44.916		
2093.3	1-	2080.7 ⁿ 4 2093.3 ⁿ 4	100 ⁿ 100 ⁿ	0.0	0 ⁺	
2093.3	(13-)	2093.3** 4 257 ^a	100	1866	(11^{-})	

92 U₁₄₆-1

γ ⁽²³⁸U) (continued)

Adopted Levels, Gammas (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{r}	Comments
2122	(13^{-})	473 ^a		1649.2	13-			
2125.3	2+	1394.1 ^f 9	51 <mark>8</mark> 27	731.93	3-			
		1976.7 ^f 6	100 <mark>8</mark> 26	148.38	4+			
		2080.9 ^f 6	87 <mark>8</mark> 25	44.916				
		2124.9^{f} 6	40 ⁸ 11	0.0	0+			
2145.6	1-	2124.9^{3} 6 2145.6^{n} 3	100^{n}	0.0	0+			
	1	$1857.1^{f} 4$						
2163.5			100 ^g 13	307.18	6+			
		2015.8^{f} 2	78 <mark>8</mark>	148.38	4+			
2171	13+	153 ^a		2018	12+			
		296 ^a		1875	11+			
2175.0	1 +	755 ^a	5 4 N 2	1415.5	14 ⁺			
2175.8	1+	2130.9 ⁿ 2175.8 ⁿ 3	54 ⁿ 3 100 ⁿ	44.916	0+	DV(1)		D(M1)(W) 0.172.16
2191.1	18 ⁺	402.6 ^a 4	100	0.0 1788.4	16 ⁺	[M1] [E2]	0.0828	B(M1)(W.u.)=0.173 <i>16</i> α (K)= 0.0437; α (L)= 0.0286; α (M)=0.00763; N+=0.00283
2191.1	10	402.0 4	100	1/00.4	10	[E2]	0.0626	a(K) = 0.0437, $a(L) = 0.0280$, $a(M) = 0.00703$, $N = 0.00283B(E2)(W.u.)=480 30$
2208.8	1+	2163.9 ⁿ 3	21 ⁿ 8	44.916	2+			D(L2)(W.u.)=400 30
2200.0	1	2208.8 ⁿ 3	100^{n}	0.0	0+	[M1]		B(M1)(W.u.)=0.162 20
2244.4	1+	2199.5 ⁿ	14 ⁿ 1	44.916		[1111]		B(111)(11.d.) 0.102 20
		2244.4 ⁿ 3	100 ⁿ	0.0	0+	[M1]		B(M1)(W.u.)=0.087 9
2294.1	1+	2249.2 ⁿ	103 ⁿ 6	44.916		[]		_()(
		2294.1 ⁿ 3	100 ⁿ	0.0	0^{+}	[M1]		B(M1)(W.u.)=0.035 6
2306.7	17^{-}	347.5 <mark>a</mark> 4		1959.2	15-			
		518.3 ^a 4		1788.4	16 ⁺			
2332.7	1-	2287.8 ⁿ	132 n 9	44.916				
		2332.7 ⁿ 3	100 ⁿ	0.0	0_{+}			
2333	14+	162 ^a		2171	13+			
		315 ^a		2018	12 ⁺			
2346.4	14 ⁺	281 ^q		2066	14-			
		298 ^q		2048.7	12 ⁺			
		387 <i>q</i>		1959.2	15-			
		698 <i>q</i>		1649.2	13-			
2256	(1.4+)	931 ^q		1415.5	14+			
2356	(14^{+})	323 ^a 941 ^a		2033 1415.5	(12 ⁺) 14 ⁺			
2365.6	1-	2365.6 ⁿ 3	100 ⁿ	0.0	0+	[E1]		
2389	1 16 ⁻	323^a	100	2066	14 ⁻	[[1]		
2410.0	10 1 ⁺	2365.1 ⁿ	100 170 ⁿ 9	44.916				
∠+10.0	1	2410.0 ⁿ 3	170 9 100 ⁿ	0.0	0+	[M1]		B(M1)(W.u.)=0.061 7
2418	(15^{-})	296^{a}	100	2122	(13^{-})	[1411]		D(M1)(M.u.)=0.001 /
2422.8	1-	2422.8 ⁿ 3	100 <mark>n</mark>	0.0	0^{+}			

19

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{r}	$I_{(\gamma+ce)}$	Comments
2467.8	1+	2467.8 ⁿ 5	100 ⁿ	0.0	0+	[M1]			B(M1)(W.u.)=0.066 9
2491.5	1-	2446.6 <mark>n</mark>	66 <mark>n</mark> 28	44.916					
		2491.5 ⁿ 5	100 ⁿ		0_{+}				
2499.4	1+	2454.5 ⁿ	47 ⁿ 5	44.916					
		2499.4 ⁿ 3	100 ⁿ		0+				
2502	15 ⁺	169 ^a			14+				
		332 ^a			13+				
2520.0	1-	713^a	2011 0		16 ⁺				
2529.0	1-	2484.1 ⁿ 2529.0 ⁿ 3	28 ⁿ 9 100 ⁿ	44.916	0+				
2557.0	0^{+}	2329.0° 3 1879°	49° 13		1-	FF213			$B(E1)(W.u.)=3.1\times10^{-11} 8$
2557.9	0.	2512.7° 5	100° 19	680.11 44.916		[E1]			$B(E1)(W.u.)=3.1\times10^{-7} 8$ $B(E2)(W.u.)=1.54\times10^{-7} 19$
		2512.7 3	100° 19	0.0	0+	[E2] E0		0.34 6	$I_{(\gamma+ce)}$: from IT decay.
2579.5	2+	2430.0^{f} 3	07.10		4 ⁺	EU		0.34 0	$I_{(\gamma+ce)}$. Holli 11 decay.
2578.5	2+		97 18						
2502.7	1-	2533.6^{f} 3	100 15	44.916					
2593.7	1-	2548.8 ⁿ 2593.8 ⁿ 6	17 ⁿ 4 100 ⁿ	44.916	0+				
2602.5	1-	2593.8 ⁿ 6 2557.6 ⁿ	$38^{n} 9$	0.0 44.916					
2002.3	1	2602.5^{n} 4	100 ⁿ		0+				
2619.1	20 ⁺	427.9 ^a 4	100		18 ⁺	[E2]	0.0707		$\alpha(K)$ = 0.0390; $\alpha(L)$ = 0.0232; $\alpha(M)$ =0.00616; N+=0.00228
						[152]	0.0707		B(E2)(W.u.)=460 40
2624.6	4+	2317.3^{f} 9	62 23		6+				
		2476.2 ^f 6	100 23		4+				
2638.3	1+	2593.4 ⁿ	133 ⁿ 9	44.916					
2512		2638.3 ⁿ 3	100 ⁿ		0+				
2645	(14^{+})	857 ^a	100		16 ⁺				
2647.3	1+	2602.4 ⁿ 2647.3 ⁿ 8	80 ⁿ 8 100 ⁿ	44.916	0 ⁺				
2675.2	16 ⁺	$\frac{2647.3^{n}}{329^{q}}$	100		14 ⁺				
2073.2	10	368 9			17 ⁻				
		716 9			15-				
2683	16 ⁺	182 ^a			15 ⁺				
2003	10	350 ^a			14 ⁺				
2689.4	19-	382.7 ^a 4			17-				
		498.3 <mark>a</mark>		2191.1	18 ⁺				
2702.2	1+	2702.2 ⁿ 3	100 <mark>n</mark>		0_{+}				
2712	(16^{+})	356 ^a			(14^{+})				
		924 ^a			16+				
2738.9	1+	2694.0 ⁿ	143 ⁿ 48	44.916					
	1.0-	2738.9 ⁿ 9	100 ⁿ		0+				
2744	18-	355 ^a	100	2389	16-				

			,		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
2751	(17^{-})	333 <mark>a</mark>	100	2418	(15^{-})
2756.4	1+	2756.4 ⁿ 3	100 <mark>n</mark>	0.0	0+
2773.0	1+	2728.1 ⁿ 3	105 <mark>n</mark> 29	44.916	2+
		2773.0 ⁿ 3	100 <mark>n</mark>	0.0	0_{+}
2816.8	1+	2816.8 ⁿ 4	100 <mark>n</mark>	0.0	0^{+}
2844.2	1-	2844.2 ⁿ 9	100 ⁿ	0.0	0_{+}
2862.2	1-	2817.3 ⁿ	143 n 29	44.916	2+
		2862.2 ⁿ 5	100 ⁿ	0.0	0_{+}
2868	17 ⁺	184 <mark>a</mark>		2683	16 ⁺
		365 ^a		2502	15 ⁺
		677 ^a		2191.1	18 ⁺
2877.1	1-	2877.1 ⁿ 3	100 ⁿ	0.0	0_{+}
2881.4	1+	2836.5 ⁿ	134 ⁿ 29	44.916	2+
		2881.4 ⁿ 5	100 ⁿ	0.0	0_{+}
2896.6	1-	2851.7 ⁿ	76 <mark>n</mark> 19	44.916	2+
		2896.6 ⁿ 3	100 ⁿ	0.0	0_{+}
2908.9	1-	2864.0 ⁿ	76 <mark>n</mark> 19	44.916	2+
		2908.9 ⁿ 3	100 ⁿ	0.0	0_{+}
2910.0	1-	2865.1 ⁿ	105 ⁿ 10	44.916	2+
		2910.0 ⁿ 4	100 ⁿ	0.0	0_{+}
2932.6	1+	2887.7 ⁿ	143 ⁿ 38	44.916	2+
		2932.6 ⁿ 6	100 ⁿ	0.0	0+
2951.2	1+	2906.3 ⁿ	86 ⁿ 10	44.916	2+
		2951.2 ⁿ 3	100 ⁿ	0.0	0+
2963.9	1+	2963.9 ⁿ 8	100 ⁿ	0.0	0+
2991	(16^{+})	346 <mark>a</mark>		2645	(14^{+})
		800 ^a		2191.1	18+
		1203 ^a	n	1788.4	16+
3005.9	1-	2961.0 ⁿ	67 ⁿ 76	44.916	2+
2011 7		3005.9 ⁿ 4	100 ⁿ	0.0	0+
3014.5	1+	2969.6 ⁿ	38 ⁿ 10	44.916	2+
2010.0	1-	3014.5 ⁿ 3	100^{n}	0.0	0+
3018.9	1-	2974.0 ⁿ	96 ⁿ 29	44.916	2+
2020 6	1+	3018.9 ⁿ 3	100 ⁿ	0.0	0 ⁺
3030.6	1+	3030.6 ⁿ 3	100 ⁿ	0.0	
3031.2	18 ⁺	336 4 724 9		2675.2	16 ⁺ 17 ⁻
2027.7	1+	2992.8 ⁿ	115 ⁿ 19	2306.7	2 ⁺
3037.7	1.	2992.8 ⁿ 3037.7 ⁿ 3	115 ⁿ 19 100 ⁿ	44.916 0.0	0 ⁺
3042.5	1+	3037.7° 3 3042.5° 6	100^{n}	0.0	0+
3042.5 3043.6	1-	3042.5° 6	100 ⁿ	0.0	0+
3043.6 3046.9	1-	3045.6° 3	100^{n}	0.0	0+
3040.9	1	3040.97 3	100	0.0	U

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f .	\mathbf{J}_f^{π} Mult.	# α^r	Comments
3051.7	1-	3006.8 ⁿ	67 ⁿ 10	44.916 2	+		
		3051.7 ⁿ 3	100 n	$0.0 0^{-1}$	+		
3057.1	1-	3012.2 ⁿ	3 n 1	44.916 2	+		
		3057.1 ⁿ 4	100 n	$0.0 0^{-1}$	+		
3060.6	1-	3015.7 ⁿ	55 ⁿ 5	44.916 2	+		
		3060.6 ⁿ 3	100 n	$0.0 0^{-1}$	+		
3065	18 ⁺	197 <mark>a</mark>		2868 17	7+		
		382 <mark>a</mark>		2683 16	5 ⁺		
3068.1	22+	448.9 ^a 4	100	2619.1 20	O ⁺ [E2]	0.0626	$\alpha(K)$ = 0.0357; $\alpha(L)$ = 0.0198; $\alpha(M)$ =0.00522; N+=0.00193
							B(E2)(W.u.)=490 75
3086.7	1-	3041.8 ⁿ	28 ⁿ 3	44.916 2 ⁻¹			
		3086.7 ⁿ 5	100 ⁿ	$0.0 0^{4}$			
3091.0	1-	3046.1 ⁿ 4	23 ⁿ 2	44.916 2			
		3091.0 ⁿ 4	100 ⁿ	$0.0 0^{-1}$			
3095	(18^{+})	383 ^a			(6 ⁺)		
		904 ^a		2191.1 18			
3096.4	1-	3051.5 ⁿ	105 ⁿ 29	44.916 2 ⁻¹	+		
		3096.4 ⁿ 3	100 ⁿ	$0.0 0^{-1}$			
3101.7	1-	3056.8 ⁿ	62 ⁿ 6	44.916 2			
		3101.7 ⁿ 4	100 ⁿ	$0.0 0^{-1}$	+		
3104.3	21-	415.1 ^a 4	100	2689.4 19			
3117.7	1-	3072.8 ⁿ	96 ⁿ 10	44.916 2			
		3117.7 ⁿ 4	100 n	$0.0 0^{-1}$	+		
3120	(19^{-})	369 ^a	100		7-)		
3128	20-	384 <mark>a</mark>	100	2744 18			
3135.0	1+	3090.1 ⁿ	86 <mark>n</mark> 29	44.916 2 ⁻¹			
		3135.0 ⁿ 3	100 ⁿ	$0.0 0^{-1}$			
3153.7	1+	3108.8 ⁿ	37 ⁿ 5	44.916 2			
		3153.7 ⁿ 3	100 ⁿ	$0.0 0^{-1}$			
3172.9	1+	3128.0 ⁿ	105 ⁿ 10	44.916 2	+		
		3172.9 ⁿ 3	100 ⁿ	$0.0 0^{-1}$			
3207.8	1-	3162.9 ⁿ	40 ⁿ 6	44.916 2			
		3207.8 ⁿ 4	100 ⁿ	$0.0 0^{-1}$			
3217.6	1+	3172.7 ⁿ	58 ⁿ 19	44.916 2			
		3217.6 ⁿ 6	100 ⁿ	$0.0 0^{-1}$			
3234.5	1+	3189.6 ⁿ	163 ⁿ 38	44.916 2	H		
		3234.5 ⁿ 7	100 n	$0.0 0^{4}$	+		
3239.6	1-	3194.7 <mark>n</mark>	249 ⁿ 67	44.916 2	+		
		3239.6 ⁿ 3	100 <mark>n</mark>	$0.0 0^{-1}$			
3253.194	1-	2125 ⁿ	44 <mark>n</mark>		2-)		
		2217 ⁿ	9 ⁿ	1037.25 2			$B(E1)(W.u.)=4.2\times10^{-7}$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J_f^π	Mult.#	Comments
3253.194	1-	2256 ⁿ	8 ⁿ	997.58 3-	[E2]	B(E2)(W.u.)=0.0025 9
		2288 ⁿ	91 <mark>n</mark>	966.13 2 ⁺	[E1]	$B(E1)(W.u.)=3.8\times10^{-6}$ 13
		2303 ⁿ	16 ⁿ	950.12 2	. ,	()()
		2323 ⁿ	32 n	930.55 (1-)		
		2327 ⁿ	33 n	927.21 0+	[E1]	$B(E1)(W.u.)=1.3\times10^{-6} 5$
		2522 ⁿ	14 <mark>n</mark>	731.93 3-	[E2]	B(E2)(W.u.)=0.0025 9
		2574 ⁿ	28 <mark>n</mark>	680.11 1		
		3209 ⁿ	22 n	44.916 2 ⁺	[E1]	$B(E1)(W.u.)=3.3\times10^{-7}$ 12
		3253 ⁿ	100 <mark>n</mark>	$0.0 0^{+}$	[E1]	$B(E1)(W.u.)=1.5\times10^{-6} 5$
3265	19 ⁺	397 <mark>a</mark>	100	2868 17+		
3274.4	1-	3229.5 ⁿ	86 <mark>n</mark> 10	44.916 2+		
		3274.4 ⁿ 3	100 <mark>n</mark>	$0.0 0^{+}$		
3297.2	1-	3297.2 ⁿ 4	100 ⁿ	$0.0 0^{+}$		
3303.6	1-	3258.7 ⁿ	106 ⁿ 10	44.916 2+		
		3303.6 ⁿ 3	100 ⁿ	$0.0 0^{+}$		
3307.32	1+	3262.4 ⁿ	58 ⁿ 19	44.916 2+		
		3307.3 ⁿ 3	100 ⁿ	$0.0 0^{+}$		
3329.1	1-	3284.2 ⁿ	85 ⁿ 9	44.916 2+		
		3329.1 ⁿ 6	100 ⁿ	0.0		
3348.33	1+	3303.4 ⁿ	192 ⁿ 19	44.916 2+		
		3348.3 ⁿ 3	100 ⁿ	$0.0 0^{+}$		
3366.0	1+	3321.1 ⁿ	53 ⁿ 6	44.916 2+		
2260	(10+)	3366.0 ⁿ 5	100 ⁿ	$0.0 0^{+}$		
3368	(18^{+})	377 ^a		2991 (16+)	
		749 ^a		2619.1 20 ⁺		
2294.2	1-	1177 ^a 3339.4 ⁿ	41 ⁿ 5	2191.1 18 ⁺ 44.916 2 ⁺		
3384.3	1	3384.3 ⁿ 3	100^{n}	$0.0 0^{+}$		
3397.9	1-	3353.0 ⁿ	$37^{n} 4$	44.916 2 ⁺		
3391.9	1	3397.9 ⁿ 8	100^{n}	$0.0 0^{+}$		
3411.2	20 ⁺	380^{q}	100	3031.2 18 ⁺		
3416.0	1-	3371.1 ⁿ	384 ⁿ 38	44.916 2 ⁺		
3110.0	1	3416.0 <i>4</i>	100	$0.0 0^{+}$		
3421.5	1-	3421.5^n 5	100 ⁿ	$0.0 0^{+}$		
3441.0	1-	3396.1 ⁿ	48 ⁿ 19	44.916 2 ⁺		
		3441.0 ⁿ 9	100 ⁿ	0.0 0+		
3448.3	1+	3403.4 ⁿ	106 ⁿ 10	44.916 2 ⁺		
		3448.3 ⁿ 6	100 <mark>n</mark>	$0.0 0^{+}$		
3454.1	1-	3409.2 ⁿ	250 ⁿ 29	44.916 2 ⁺		
		3454.1 ⁿ 4	100 <mark>n</mark>	$0.0 0^{+}$		
3460.7	1+	3415.8 <mark>n</mark>	56 ⁿ 7	44.916 2+		
1						

	$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{r}	Comments
	3460.7	1+	3460.7 ⁿ 3	100 ⁿ	0.0	0+			
ı	3467.8	1-	3422.9 ⁿ	58 ⁿ 10	44.916				
ı			3467.8 ⁿ 6	100 ⁿ	0.0	0_{+}			
ı	3470.7	1-	3425.8 ⁿ	29 ⁿ 29	44.916				
ı			3470.7 ⁿ 3	100 ⁿ	0.0	0_{+}			
ı	3474	20^{+}	409 ^a	100	3065	18 ⁺			
ı	3475.2	1-	3430.3 ⁿ	58 n 29	44.916	2+			
ı			3475.2 ⁿ 3	100 n	0.0	0_{+}			
ı	3479.0	1-	3434.1 ⁿ	43 <mark>n</mark> 9	44.916	2+			
ı			3479.0 ⁿ 3	100 <mark>n</mark>	0.0	0^{+}			
ı	3489.0	1-	3444.1 <mark>n</mark>	144 ⁿ 58	44.916	2+			
l			3489.0 ⁿ 3	100 ⁿ	0.0	0^{+}			
l	3500.5	1-	3500.5 ⁿ 3	100 ⁿ	0.0	0^{+}			
l	3502	(20^+)	408 ^a		3095	(18^{+})			
l		. /	882 <mark>a</mark>		2619.1	20+			
l	3509.1	1-	3464.2 ⁿ	67 <mark>n</mark> 19	44.916				
l			3509.1 ⁿ 9	100 ⁿ	0.0	0^{+}			
l	3521	(21^{-})	401 ^a	100	3120	(19^{-})			
l	3528.0	1-	3528.0 ⁿ 4	100 ⁿ	0.0	0+			
l	3535.3	24+	467 ^a 1	100	3068.1	22+	[E2]	0.0568	$\alpha(K) = 0.0332; \ \alpha(L) = 0.0173; \ \alpha(M) = 0.00457; \ N = 0.00168$
l									B(E2)(W.u.)=530 85
	3538	22^{-}	410 ^a	100	3128	20^{-}			
l	3547.7	23-	443.6 ^a 4	100	3104.3	21-			
l	3548.0	1-	3503.1 ⁿ	193 ⁿ 29	44.916				
l			3548.0 ⁿ 6	100 ⁿ	0.0	0_{+}			
l	3562.8	1-	3517.9 ⁿ	125 ⁿ 29	44.916				
l			3562.8 ⁿ 3	100 ⁿ	0.0	0+			
l	3594.9	1-	3550.0 ⁿ	116 ⁿ 19	44.916				
l			3594.9 ⁿ 5	100 ⁿ	0.0	0+			
l	3608.7	1-	3563.8 ⁿ	48 ⁿ 8	44.916				
l		-	3608.7 ⁿ 3	100 ⁿ	0.0	0+			
l	3615.9	1-	3571.0 ⁿ	250 ⁿ 48	44.916				
l			3615.9 ⁿ 3	100 ⁿ	0.0	0+			
l	3623.9	1-	3579.0 ⁿ	144 ⁿ 29	44.916				
l		-	3623.9 ⁿ 3	100 ⁿ	0.0	0+			
l	3640.1	1-	3595.2 ⁿ	77 ⁿ 19	44.916				
l		-	3640.1 ⁿ 3	100 ⁿ	0.0	0+			
l	3650.5	1-	3605.6 ⁿ	87 ⁿ 10	44.916				
l		-	3650.5 ⁿ 3	100 ⁿ	0.0	0+			
l	3659.7	1-	3614.8 ⁿ	67 ⁿ 10	44.916				
l		-	3659.7 ⁿ 6	100 ⁿ	0.0	0+			
П	3673.7	1-	3628.8 ⁿ	193 ⁿ 39	44.916				

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α^{r}	Comments
3673.7	1-	3673.7 ⁿ 6	100 ⁿ	$0.0 0^{+}$			
3686	21+	421 ^a	100	3265 19 ⁺			
3728.0	1-	3683.1 ⁿ	87 <mark>n</mark> 29	44.916 2+			
		3728.0 ⁿ 9	100 ⁿ	$0.0 0^{+}$			
3738.5	1-	3693.6 ⁿ	77 ⁿ 19	44.916 2 ⁺			
3730.3	1	3738.5 ⁿ 8	100 ⁿ	$0.0 0^{+}$			
3759.9	1-	3715.0 ⁿ	87 ⁿ 19	44.916 2 ⁺			
3137.7	1	3759.9 ⁿ 3	100 ⁿ	$0.0 0^{+}$			
3773	(20^{+})	405 ^a	100	3368 (18 ⁺)			
3113	(20)	1154 ^a		2619.1 20 ⁺			
2005 1	1-	3760.2 ⁿ	87 <mark>n</mark> 10				
3805.1	1-			44.916 2+			
2000	(1.0±)	3805.1 ⁿ 3	100 ⁿ	$0.0 0^{+}$			
3809	$(1,2^+)$	2882 ⁿ	55 ⁿ 22	927.21 0+			
		3128 ⁿ	28 ⁿ 22	680.11 1			
		3764 ⁿ	96 ⁿ 14	44.916 2+			
		3809 ⁿ	100 ⁿ	0.0			
3811.2	22+	400 ^q	100	3411.2 20 ⁺			
3819.0	1-	3774.1 ⁿ	106 <mark>n</mark> 19	44.916 2+			
		3819.0 ⁿ 6	100 ⁿ	$0.0 0^{+}$			
3828.7	1-	3828.7 ⁿ 3	100 <mark>″</mark>	$0.0 0^{+}$			
3906	22+	432 ^a	100	3474 20 ⁺			
3947	(23^{-})	426 ^a	100	3521 (21 ⁻)			
3965.7	1-	3920.8 ⁿ	47 <mark>n</mark> 4	44.916 2 ⁺			
		3965.7 <mark>**</mark> 4	100 <mark>n</mark>	$0.0 0^{+}$			
3971	24-	433 a	100	3538 22-			
3990.7	1-	3945.8 <mark>n</mark>	116 <mark>n</mark> 10	44.916 2+			
		3990.7 ⁿ 9	100 <mark>n</mark>	$0.0 0^{+}$			
3995.8	1-	3950.9 ⁿ	58 ⁿ 39	44.916 2+			
	-	3995.8 ⁿ 3	100 ⁿ	$0.0 0^{+}$			
4017	25-	469 ^a	-00	3547.7 23-			
.017	23	481 ^a		3535.3 24 ⁺			
4018.1	26 ⁺	482.8 ^a 10	100	3535.3 24 ⁺	[E2]	0.0524	$\alpha(K)$ = 0.0312; $\alpha(L)$ = 0.0156; $\alpha(M)$ =0.00410; N+=0.00151
7010.1	20	402.0 10	100	3333.3 24		0.0324	B(E2)(W.u.)=585 60
4023.7	1-	3978.8 <mark>n</mark>	97 <mark>n</mark> 10	44.916 2+			D(DD)(11.01) 505 00
1023.1	1	4023.7 ⁿ 7	100 ⁿ	$0.0 0^{+}$			
4031.4	1-	3986.5 ⁿ	48 ⁿ 10	44.916 2 ⁺			
TUJ1.4	1	4031.4 ⁿ 7	100 ⁿ	$0.0 0^{+}$			
4046.7	1-	4031.4" / 4001.8 ⁿ	100 ⁿ 39	44.916 2 ⁺			
4040./	1	4001.8" 4046.7" 3	120 ⁿ 39				
1065.2	1-	4046.7" 3 4020.4"	100 ⁿ 164 ⁿ 39				
4065.3	1-		164 ⁿ 39	44.916 2+			
1070 1	1 -	4065.3 ⁿ 3		$0.0 0^{+}$			
4072.1	1-	4027.2 ⁿ	58 <mark>n</mark> 10	44.916 2+			

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{^{\ddagger}}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	α^{r}	Comments
4072.1	1-	4072.1 ⁿ 6	100 ⁿ	$0.0 0^{+}$			
4088.9	1-	4044.0 ⁿ	97 <mark>n</mark> 29	44.916 2+			
		4088.9 ⁿ 7	100 <mark>n</mark>	$0.0 0^{+}$			
4093.4	1-	4048.5 ⁿ	39 <mark>n</mark> 4	44.916 2 ⁺			
		4093.4 ⁿ 3	100 <mark>n</mark>	$0.0 0^{+}$			
4100.2	1-	4055.3 ⁿ	174 <mark>n</mark> 19	44.916 2 ⁺			
		4100.2 ⁿ 3	100 <mark>n</mark>	$0.0 0^{+}$			
4105.2	1-	4105.2 ⁿ 3	100 <mark>n</mark>	$0.0 0^{+}$			
4122.9	1-	4078.0 ⁿ	81 <mark>n</mark> 9	44.916 2 ⁺			
		4122.9 ⁿ 5	100 <mark>n</mark>	$0.0 0^{+}$			
4127	23 ⁺	441 <mark>a</mark>	100	3686 21 ⁺			
4138.9	1-	4094.0 <mark>n</mark>	40 ⁿ 7	44.916 2 ⁺			
		4138.9 ⁿ 7	100 ⁿ	$0.0 0^{+}$			
4145.8	1-	4100.9 ⁿ	58 ⁿ 58	44.916 2 ⁺			
		4145.8 ⁿ 3	100 ⁿ	$0.0 0^{+}$			
4151.3	1-	4106.4 ⁿ	97 <mark>n</mark> 29	44.916 2+			
		4151.3 ⁿ 6	100 ⁿ	$0.0 0^{+}$			
4155.4	1-	4155.4 ⁿ 3	100 ⁿ	$0.0 0^{+}$			
4175.8	1-	4130.9 ⁿ	27 ⁿ 3	44.916 2+			
		4175.8 ⁿ 4	100 ⁿ	$0.0 0^{+}$			
4181.5	1-	4136.6 ⁿ	97 ⁿ 10	44.916 2+			
		4181.5 ⁿ 7	100 <mark>n</mark>	$0.0 0^{+}$			
4205	(22^{+})	432 <mark>a</mark>	100	3773 (20 ⁴)		
4217.3	1-	4172.4 <mark>n</mark>	107 ⁿ 10	44.916 2+	,		
		4217.3 ⁿ 8	100 <mark>n</mark>	$0.0 0^{+}$			
4232	24+	421 9	100	3811.2 22+			
4239.1	1-	4239.1 ⁿ 3	100 ⁿ	$0.0 0^{+}$			
4358	24+	452 ^a	100	3906 22 ⁺			
4393	(25^{-})	446 ^a	100	3947 (23)		
4424	26-	453 ^a	100	3971 24	,		
4495	$(1,2^+)$	4450 ^{nu}	32 ⁿ 28	44.916 2+			
	(-,-)	4495 ⁿ	100 ⁿ	$0.0 0^{+}$			
4504	27-	487 <mark>a</mark>	100	4017 25			
4517	28 ⁺	499.3 ^a 8	100	4018.1 26+	[E2]	0.0483	$\alpha(K) = 0.0293$; $\alpha(L) = 0.0140$; $\alpha(M) = 0.00367$; N+=0.00135
		.,,,,	-00	20	[22]	0.0.00	B(E2)(W.u.)=540 130
4586	25 ⁺	459 <mark>a</mark>	100	4127 23+			_(,(,,
4592	$(1,2^+)$	4546 ⁿ	190 ⁿ	44.916 2+			
	(-,-)	4592 ⁿ	100 ⁿ	0.0 0+			
4677	26 ⁺	445 <mark>9</mark>	100	4232 24+			
4807	(1)	3840 ⁿ	47 ⁿ 17	966.13 2 ⁺			
.007	(1)	4807 ⁿ	100 ⁿ	$0.0 0^{+}$			
4825	26 ⁺	467 ^a	100	4358 24+			

γ (²³⁸U) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	α^{r}	Comments
4895	28-	471 ^a	100	4424	26-			
5003	29-	499 <mark>a</mark>	100	4504	27^{-}			
5035.1	30^{+}	517.7 <mark>a</mark> 10	100	4517	28+	[E2]	0.0436	B(E2)(W.u.)=185 2
5063	27+	477	100	4586	25 ⁺			
5140		5140 ⁿ	100 <mark>n</mark>	0.0	0_{+}			
5144	28+	467 <mark>9</mark>	100	4677	26+			
5206	$(1,2^+)$	4148 ^{nu}	33 <mark>n</mark> 26	1059.66	(3^{+})			
	. , ,	5160 <mark>n</mark>	90 <mark>n</mark> 28	44.916	2+			
		5206 ⁿ	100 <mark>n</mark>	0.0	0^{+}			
5513	31-	510 ^a	100	5003	29-			
5581	32 ⁺	542 <mark>a</mark>	100	5035.1	30 ⁺			
6037	33-	524 <mark>a</mark>	100	5513	31-			
6146	34+	565 <mark>a</mark>	100	5581	32 ⁺			

[†] Weighted average from Coulomb excitation and $(n,n'\gamma)$, except where noted otherwise.

[‡] From Coulomb excitation, except where noted otherwise.

[#] From $\alpha(K)$ exp, except where noted otherwise.

[®] From Coulomb excitation (1994Mc03).

[&]amp; From 242 Pu α decay.

^a From Coulomb excitation.

^b From Coulomb excitation. Transition not directly observed, but required to account for the yield of transitions from the J-2 member of this band.

^c E=1015.06 2 in $(n,n'\gamma)$ for a transition placed from the 1060 3⁺ and 1060 2+ levels. The division of the intensity between these two levels cannot be determined.

^d Anomalous E1 transition. $\alpha(K)$ exp is larger than E1 theory and agrees with E2 theory. Similar anomalous E1 transitions have been observed in ²³⁶U. See 1983Fa15

^e E=911.3 2 in (n,n'γ) for a transition placed from the 1060 3⁺ and 1060 2+ levels. From branching in Coulomb excitation, most of the intensity belongs with the 1060 3+ level.

^f From $(n,n'\gamma)$.

^g From $(n,n'\gamma)$.

^h From ²³⁸Pa β decay.

ⁱ From Coulomb excitation. E=1060.98 3 is reported in $(n,n'\gamma)$ for a transition placed from the 1060 2+ and 1106 3+ levels.

^j From Coulomb excitation. Transition not directly observed, but required to account for the yield of transitions from the J-1 member of this band.

 $[^]k$ E=1019.61 8 and 1123.1 2 in (n,n'γ) for transitions doubly placed from the 1169 4+ and 1169 3- levels. From branching in Coulomb excitation,most of the intensity of the 1019γ belongs with the 1169 4+ level. The 1123γ is more evenly divided between the two levels.

¹ The 1368.3 γ 2 is placed by 1984BIZS from the 1368 level. It may belong also with the 1414 and/or 1515 level, as suggested by 1978De41, all from $(n,n'\gamma)$.

^m Branching is from ²³⁸Pa β ⁻ decay.

^{*n*} From (γ, γ') .

^o From ²³⁸U IT decay.

Adopted Levels, Gammas (continued)

γ (238U) (continued)

- ^p From Coulomb excitation.
- ^q From Coulomb excitation (2010Zh09).
- ^r Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^s Multiply placed with undivided intensity.
- ^t Multiply placed with intensity suitably divided.
- ^u Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Type not specified

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued)

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued)

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued)

Intensities: Type not specified

Level Scheme (continued)

Intensities: Type not specified

Legend Level Scheme (continued) $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \text{ Decay (Uncertain)} \end{array}$ Intensities: Type not specified & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided 1782.3 0.39 ps 4 1782 33 fs 4 12⁻ (3⁻,4,5⁻) 1778 1774.7 (4⁺) 1760.9 1741 10+ 1675.7 1672.01 13-1649.2 -&-&-\$. 6 % 1645.0 (9-) 1644 1643.73 -55-8 -6.0.8 -6.0.8 9+ 1619 1617.5 10-1528 8+ 1504 (7^{-}) 1446.4 14+ 2.55 ps 20 1415.5 1403 $\begin{array}{r} 3^{-} \\ \hline 9^{-} \\ \hline \hline 2^{-}) \\ \hline 3^{+} \\ \hline 12^{+} \\ \hline (3^{+}) \end{array}$ 1168.88 1150.7 1128.84 1105.71 4.4 ps 4 1076.7 1059.66 <u>10</u>+ 775.9 9.0 ps 10 731.93 680.11 35 fs +19-9 307.18 148.38

0+

44.916 206 ps 3

0.0 4.468×10⁹ y 6

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

 $\begin{array}{ccc} & & & & I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ & & & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

@ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

@ Multiply placed: intensity suitably divided

 $\begin{array}{ll} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & \gamma \text{ Decay (Uncertain)} \end{array}$

Level Scheme (continued)

Legend

Intensities: Type not specified & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $\begin{array}{c|c} & & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & & & & \gamma \text{ Decay (Uncertain)} \\ \end{array}$

Level Scheme (continued)

Legend

Intensities: Type not specified & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Adopted Levels, Gammas (continued)

Adopted Levels, Gammas (continued)

Band(N): Band based on J^{π} =8 $^+$ (2010Zh09)

Band(L): $\mathbf{K}^{\pi} = \mathbf{0}^{+}$ second β -vibrational band

Band(K): $K^{\pi}=0^+$ band

4^{+}	1056.38
2+	966.13
0+	927.21

6+	1269.2
4+	1130.75
2 ⁺	1037.25
0+	997.23

Ban	d(M):	$\mathbf{K}^{\pi} = 1^{-}$
3-		997.58
(1^{-})	67	930.55

History					
Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh, E. Browne	NDS 109,2439 (2008)	31-Jul-2008		

 $Q(\beta^{-})=399\ 18;\ S(n)=5929\ 5;\ S(p)=7.91\times10^{3}\ syst;\ Q(\alpha)=4036\ 15$ 2012Wa38

Note: Current evaluation has used the following Q record \$ 400 16 5930 5 7910 syst 3840 syst 2003Au03.

 $\Delta S(p) = \Delta Q(\alpha) = 200 \text{ (syst,} 2003\text{Au}03\text{)}.$

Other reactions: 238 U(184 W, 182 W): 1983 Hi09. Additional information 1.

²⁴⁰U Levels

Cross Reference (XREF) Flags

 244 Pu α decay (8.11×10⁷ y) Α

Comments

 $T_{1/2}$: from 1981Hs02. Others: 14 h 2 (1948Hy61); 14.1 h 2 (1953Kn23). $%\alpha$ <10⁻¹⁰ (syst,1972El21), <10⁻¹⁶ (calculated,1997Mo25).

²³⁸U(t,p)

 $\%\beta^{-}=100$

 $^{238}\text{U}(^{18}\text{O},^{16}\text{O}\gamma)$

E(level)	$\frac{J^{\pi^{\dagger}}}{0^{+}}$	T _{1/2} 14.1 h <i>I</i>	XREF ABC
45 [‡] 1	(2 ⁺)		ABC
150.60 [‡] <i>10</i>	(4 ⁺)		BC
313.19 [‡] <i>14</i>	(6 ⁺)		С
528.69 [‡] 18	(8 ⁺)		С
792.9 [‡] <i>3</i>	(10^{+})		С
847.0 [#] <i>4</i>	(3^{-})		С
944.7 [#] <i>3</i>	(5^{-})		С
1040 5			В
1087.7 [#] 3	(7^{-})		C
1100.5 [‡] 4	(12^+)		C
1160 5			В
1276.1 [#] 4	(9^{-})		C
1545 <i>5</i>			В
1596 5			В
1670 5			В
1708 5			В
1756 5			В
1792 <i>5</i> 1893 <i>5</i>			B B
1893 3 1929 5			B B
2010 5			В
2010 3			ם

[†] From systematics and band assignments.

[‡] Band(A): g.s. band.

[#] Band(B): $K^{\pi}=0^{-}$, octupole band.

Adopted Levels, Gammas (continued)

$\gamma(^{240}\text{U})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^{\ddagger}$	Comments
45	(2+)	(45 1)		0	0+	[E2]	6.0×10 ² 7	$\alpha(L)=4.4\times10^2$ 6; $\alpha(M)=122$ 15; $\alpha(N+)=42$ 5 $\alpha(N)=33$ 4; $\alpha(O)=7.6$ 9; $\alpha(P)=1.22$ 15; $\alpha(Q)=0.0029$ 3
150.60	(4+)	105.6 <i>1</i>	100	45	(2+)	[E2]	10.34	$\alpha(Q)=0.0025$ $\alpha(M)=2.09$ 3; $\alpha(N+)=0.719$ 11 $\alpha(N)=0.567$ 9; $\alpha(O)=0.1304$ 20; $\alpha(P)=0.0214$ 4; $\alpha(Q)=8.98\times10^{-5}$ 13
313.19	(6 ⁺)	162.6 <i>I</i>	100	150.60	(4+)	[E2]	1.663	$\alpha(\text{Q})=0.50810$ 13 $\alpha(\text{K})=0.205$ 3; $\alpha(\text{L})=1.063$ 16; $\alpha(\text{M})=0.294$ 5; $\alpha(\text{N}+)=0.1012$ 15 $\alpha(\text{N})=0.0798$ 12; $\alpha(\text{O})=0.0184$ 3; $\alpha(\text{P})=0.00305$ 5; $\alpha(\text{Q})=2.23\times10^{-5}$ 4
528.69	(8+)	215.5 <i>I</i>	100	313.19	(6 ⁺)	[E2]	0.569	$\alpha(K)=0.1367\ 20;\ \alpha(L)=0.316\ 5;\ \alpha(M)=0.0867\ 13;$ $\alpha(N+)=0.0299\ 5$ $\alpha(N)=0.0235\ 4;\ \alpha(O)=0.00544\ 8;\ \alpha(P)=0.000912$ $13;\ \alpha(Q)=1.029\times10^{-5}\ 15$
792.9	(10+)	264.1 2	100	528.69	(8+)	[E2]	0.282	$\alpha(K)=0.0951$ 14; $\alpha(L)=0.1370$ 20; $\alpha(M)=0.0373$ 6; $\alpha(N+)=0.01288$ 19 $\alpha(N)=0.01013$ 15; $\alpha(O)=0.00235$ 4; $\alpha(P)=0.000398$ 6; $\alpha(Q)=6.17\times10^{-6}$ 9
847.0	(3-)	696.4 <i>5</i> 801.9 <i>5</i>	85 <i>19</i> 100 <i>19</i>	150.60 45	(4^+) (2^+)			u(c) 3333374 3, u(g) 3331112
944.7	(5 ⁻)	631.6 <i>5</i> 794.0 <i>3</i>	63 <i>12</i> 100 <i>15</i>	313.19 150.60	(-)			
1087.7	(7-)	558.9 <i>7</i> 774.5 <i>3</i>	24 <i>11</i> 100 <i>14</i>	528.69 313.19	(8+)			
1100.5	(12+)	307.6 3	100	792.9	(10+)	[E2]	0.174	$\alpha(K)$ =0.0716 11; $\alpha(L)$ =0.0754 11; $\alpha(M)$ =0.0204 3; $\alpha(N+)$ =0.00704 11 $\alpha(N)$ =0.00553 8; $\alpha(O)$ =0.001286 19; $\alpha(P)$ =0.000220 4; $\alpha(Q)$ =4.29×10 ⁻⁶ 6
1276.1	(9-)	482.5 <i>7</i> 747.5 <i>3</i>	35 <i>11</i> 100 <i>15</i>	792.9 528.69	(10^+) (8^+)			()

[†] From $^{238}U(^{18}O,^{16}O\gamma)$.

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

$$^{240}_{92}\mathrm{U}_{148}$$