吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心質は

1×10.3+11

Equation

Ray Traci

Pass

Page

Progressive

Optiation

参传又\\\

Thank:

Progressive Photon Mapping

吴克文 梁家硕

2017年6月

吴克文 梁家硕

概过

效果展示

环境与使用

总流程

核心算法

Lighting Equation Ray Tracing Pass

Photon Tracin Pass Progressive

参考文献

Chanl

① 概述

- 2 效果展示
- 3 环境与使用
- 4 总流程
- 6 核心算法

Lighting Equation Ray Tracing Pass Photon Tracing Pass Progressive Updation

6 参考文献

吴克文 梁家硕

概述

双果展示

环境与使用

总流程

核心質法

.

Equation

Pass

Photon Tra

Progressiv

参考文献

Thanks

Section 1

概述

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心質器

Equation

Ray Traci Pass

Photon Tr

Progressiv

Updation

麥考乂\

$\mathrm{PPM}\ \mathrm{vs}\ \mathrm{PM}$

Photon Mapping 作为全局光照领域的主流算法,以其高效率,能处理多种光照效果等特点,一直受到广泛的关注。

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算》

Equation Ray Tracin Pass

Photon Traci Pass

Progressive Updation

参考文献

Thanl

PPM vs PM

Photon Mapping 作为全局光照领域的主流算法,以其高效率,能处理多种光照效果等特点,一直受到广泛的关注。然而,Photon Mapping 算法的一个主要问题在于,使用光子进行光能估计的过程引入了偏差。理论上,要完全消除偏差,需要存储无穷的光子,这从计算机存储角度来看是不可接受的。

吴克文 梁家硕

概述

女果展示

环境与使用

总流和

核心算法

Lighting Equation Ray Tracing Pass Photon Tracin

Photon Tracing Pass Progressive Updation

参考文献

Γhank

PPM vs PM

Photon Mapping 作为全局光照领域的主流算法,以其高效率,能处理多种光照效果等特点,一直受到广泛的关注。然而,Photon Mapping 算法的一个主要问题在于,使用光子进行光能估计的过程引入了偏差。理论上,要完全消除偏差,需要存储无穷的光子,这从计算机存储角度来看是不可接受的。

为此, Toshiya Hachisuka 提出了 Progressive Photon Mapping(又称渐进式光子映射),采用多遍的绘制流程,通过不断向场景中发射光子达到不断减小偏差的目的,亦解决了 Photon Mapping 的存储问题。

4 / 45

吴克文 梁家硕

概述

What's new

- 支持 Linux, 后推出 Windows 版本
- 使用扩展版 KD-Tree 维护场景
- 利用 KD-Tree 加速邻近点查找
- 多线程
- 同时支持 BRDF 参数和 Phong 方程
- 支持贴图
- 支持真球体

吴克文 梁家硕

概述

效果展示

总流程

核心質法

Lighting

Equation

Pass

Photon 1ra

Progressive

参考文献

Thank

Section 2

效果展示

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Trac

Pass

Progressiv

参孝 文献

Thank

图: PPM 原作者的场景 0

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Trac

1 400

Updation

参考文献

Thank

图: PPM 原作者的场景 1

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Trac

Photon Tv

Progressiv

会来立献

Thank

图: PPM 原作者的场景 5

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting Equation

Ray Tra

Photon Tr

Progressiv

猫女宝参

Thank

图: PPM 原作者的场景 10

吴克文 梁家硕

概试

效果展示

环境与使用

总流程

核心算法

Lighting

Equation

1 455

Pass

Updation

参考文献

Thank

图: PPM 原作者的场景 100 (33'13")

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Trac

Pass

Updation

参考文献

Thank

图: 镜面球体 0

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Equatio

Ray Tra

Photon Tra

- 400

Updation

图: 镜面球体 1

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Day Tea

Pass

Pass

Progressi

海女朱翁

Thank

图: 镜面球体 5

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Trac

Photon Tw

Pass

Updation

mı ı

图: 镜面球体 10

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Tra

Photon Tr

Progressi

Updation

mı ı

图: 镜面球体 100 (6'56")

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting Equatio

Ray Tra

Photon Tr

D......

Updation

....

图: 透明球体 0

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting Equatio

Ray Tra

Photon Tr

Progressi

会来立献

Thank

图: 透明球体 1

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Tra

Photon Tr

rass

Updation

mı . ı

图:透明球体 5

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Equatio

Ray Tra

Photon Tr

_ _

Updation

mı . ı

图: 透明球体 10

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Equation

Ray Tra

Photon Ti

Progressi

参考文献

Thank

图: 透明球体 100 (9'13")

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting

Ray Tra

Photon Tr

Drogressis

Updation

参考文献

Thank

图: 水 0

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Equation

Ray Tra

Photon Tr

Progressi

Updation

罗马人的

图: 水 1

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting Equation

Ray Tra

Photon Tr

rass

Updation

参传又\\\

Thonks

图: 水 5

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting Equation

Ray Tray

Photon T

Pass

Progressiv

参考文献

Thank

图: 水 10

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting Equation

Ray Trac

Photon Tv

Pass

Progressiv

参考文献

mı . ı

图: 水 100 (23'05")

吴克文 梁家硕

概述

环境与使用

总流程

核心質法

Lighting Equation

Ray Traci

Dhatas To

Pass

Updation

参考文献

Thanks

Section 3

环境与使用

吴克文 梁家硕

概述

女果展示

环境与使用

总流程

核心算剂

Lightin

Ray Traci

Pass Photon Tr

Pass

を 全 全 献

Thanl

编译与运行环境

Linux/Windows 支持 c++11 的编译器 GNU toolchain cmake >= 2.8

使用

- \$ raytracing <directory>
- \$ photontracing <directory>
- \$ updation < directory >

吴克文 梁家硕

概述

以水灰小

环境与使用

总流程

核心質量

Equation

Pass

Photon Tr

Progressiv

徳女 生参

Thank

Section 4

总流程

吴克文 梁家硕

概试

対里展示

环境与使 F

总流程

核心質?

12.0 37.1

Equatio

Ray Trac

1 400

Page

Progressive

総字 全蔵

Thanl

吴克文 梁家硕

概述

以未ಹ不

环境与使用

总流程

核心算法

Lightin

Equation

Pass

Pass

Progressive

おおりませる

Thank

Section 5

核心算法

吴克文 梁家硕

概述

双木胶小

总流程

核心質質

Lighting

Equation Ray Traci

Pass

Photon 1r Pass

Progressive

徳女 生参

Thank

Subsection 1

Lighting Equation

概述

效果展示

环境与使用

总流和

核心算:

Lighting Equation

Ray Tracir Pass

Photon Tracin Pass

参老文面

...

BRDF

BRDF(双向反射分布函数), 全称为 Bidirectional Reflectance Distribution Function, 用来定义给定入射方向上的辐射照度如何影响给定出射方向上的辐射率。更笼统地说,它描述了入射光线经过某个表面反射后在各个出射方向上的分布效果。

光照方程

$$L_o(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\Omega} BRDF(\mathbf{x}, \omega_i, \omega_o) L_i(\mathbf{x}, \omega_i) (\omega_i \cdot \mathbf{n}) d\omega_i$$
 (1)

其中, L_e 为直接光照,x 为空间坐标,n 为平面法向量, ω_o, ω_i 分别为出射和入射方向。

Ray Tracing

Subsection 2

Ray Tracing Pass

Ray Tracing

光线追踪

从观察点出发,通过光线追踪来获得可见点(hitpoints), 时计算直接光照的贡献。

注

在镜面较多的场景中可用反(折)射次数作为阈值强制结束 Ray Tracing Pass.

Ray Tracing

Photon Mapping

吴克文 梁家硕

Pass

Subsection 3

Photon Tracing Pass

吴克文 梁家硕

概过

双果展示

环境与使用

总流程

核心异広 Lighting

Equation
Ray Tracing
Pass

Photon Tracing Pass

Progressive Undation

参考文献

Thanl

光子追踪

每轮 Photon Tracing Pass, 从光源随机方向发射一批光子,追踪每个光子的运动轨迹,考虑到效率,将光子能量的衰减用随机被物体表面吸收(或达到折反射阈值)来控制,这样每个光子的能量即为定值,折反射仅改变其颜色向量(通过BRDF 计算)。

注

由于直接光源已在 Ray Tracing Pass 计算过,故每个光子与场景的第一个交点不必计入 photon map。

Subsection 4

Progressive Updation

更新模型

结束 Photon Tracing Pass 后,需要枚举每个 hitpoint,同时 统计其半径 R 内光子对其亮度影响。

推导

记 $N(\mathbf{x})$ 为上轮后在 hitpoint \mathbf{x} 半径 $R(\mathbf{x})$ 内的光子数, $M(\mathbf{x})$ 为本次新增光子数,同时 $\hat{N}(\mathbf{x})$, $\hat{R}(\mathbf{x})$ 分别为新累计光子数和 半径,则有如下更新,

$$\hat{N}(\mathbf{x}) = N(\mathbf{x}) + \alpha M(\mathbf{x}) \tag{2}$$

$$\hat{R}(\mathbf{x}) = R(\mathbf{x}) \sqrt{\frac{N(\mathbf{x}) + \alpha M(\mathbf{x})}{N(\mathbf{x}) + M(\mathbf{x})}}$$
(3)

推导

记 $\tau_N(\mathbf{x},\omega)$ 和 $\tau_M(\mathbf{x},\omega)$ 为在 \mathbf{x} 处,入射光方向为 ω 的前光 强和新增光强(未乘 BRDF 系数),则有

$$\tau_{\hat{N}}(\mathbf{x},\omega) = (\tau_N(\mathbf{x},\omega) + \tau_M(\mathbf{x},\omega)) \frac{N(\mathbf{x}) + \alpha M(\mathbf{x})}{N(\mathbf{x}) + M(\mathbf{x})}$$
(4)

其中, $\alpha \in (0,1)$ 是一常数。

再记总发射光子数为 $N_{emitted}$, ϕ 为光子光强,则最终辐照率 表达式为,

$$L(\mathbf{x}, \omega) \approx \frac{1}{\pi R(\mathbf{x})^2} \frac{\tau(\mathbf{x}, \omega)}{N_{emitted}}$$
 (5)

吴克文 梁家硕

概述

总流程

Lighting Equation Ray Tracing

Pass
Photon Tracin
Pass
Progressive

参考文献

Thank

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen.

Progressive photon mapping.

ACM Transactions on Graphics (TOG), 27(5):130, 2008.

Henrik Wann Jensen.

Realistic image synthesis using photon mapping, volume 364.

Ak Peters Natick, 2001.

- Ben Spencer and Mark W Jones.
 Progressive photon relaxation.
 ACM Transactions on Graphics (TOG), 32(1):7, 2013.
- 李睿, 陈彦云, and 刘学慧. 基于自适应光子发射的渐进式光子映射. 计算机工程与设计, 33(1):219-223, 2012.

吴克文 梁家硕

概述

效果展示

环境与使用

总流程

核心算法

Lighting Equation Ray Tracia

Photon Tra

Progressive

参考文献

Thank:

其它参考

BRDF 参数及代码来自网站 http://www.merl.com/brdf/png 图片相关代码来自 http://lodev.org/lodepng/

更多

更多技术细节详见 Equestrotopia.pdf 和 src 文件夹中的代码 以及 GitHub 仓库

https://github.com/liangjs/Equestrotopia

44 / 45

吴克文 梁家硕

概述

以不成小

环境与使用

总流程

1-2- 3 600 3-2

核心异花

Equation

Ray Trac

Photon Tra

Pass

会来立献

Thanks

Thanks!