Geometry Pythagorean Triples

Project on geometry and Pythagorean Triples.

Exploration 1

Definition 1. A rational point is a point (x,y) whose coordinates x and y are both rational numbers.

Use rational points on the unit circle and trigonometry to derive the formula for generating Pythagorean triples.

Problem 1.1 Let (x,y) be a rational point on the unit circle. That is, there exists $a,b,c \in \mathbb{Z}$ such that $x = \frac{a}{c}$ and $y = \frac{b}{c}$.

Explain why we can write x and y with the same denominator.

Problem 1.2 Let (x,y) be any point on the unit circle, ie $x^2 + y^2 = 1$. Consider the line segment between (0,0) and (x,y). As long as (x,y) is not (-1,0), the slope of this line is

$$t = \frac{y}{1+x} = \tan \theta$$

where θ is the angle between the line segment and the x-axis.

(a) Show that

$$x = \frac{1 - t^2}{1 + t^2}, y = \frac{2t}{1 + t^2}$$

either using algebra or trig identities.

- (b) Show that (x, y) is a rational point not equal to (-1, 0) if and only if t is rational.
- (c) Let $t = \frac{m}{n}$. Prove that if x, y > 0, then m > n, (m, n) = 1, exactly one of m, n is even, and all nontrivial Pythagorean triples have the form $a = k(m^2 n^2)$, b = k(2mn), $c = k(m^+n^2)$, for some $k \in \mathbb{Z}$.

Hint: Use that $k = \frac{c}{m^2 + n^2}$.

Exploration 2 Fermat's Proof of the Right Triangle Theorem

Theorem 1 (Fermat's Right Triangle Theorem). The does not exist a right triangle with rational side lengths and area a perfect square.

Problem 2.1 Let x, y, z be positive integers be the side lengths of a triangle with hypotenuse z and the area of the triangle is a perfect square. Prove that if z is the smallest such integer, then (x, y, z) is a primitive Pythagorean triple.

Problem 2.2 Let x, y, z as in the previous problem. Then there exists $m, n \in \mathbb{Z}$ with m > n > 0, (m, n) = 1 and exactly one of m and n even such that $x = m^2 - n^2$, y = 2mn, and $z = m^2 + n^2$. Furthermore, m, n, m + n and m - n are perfect squares.

- (a) Prove that if $c, d \in \mathbb{Z}$ such that $c^2 = m + n$, and $d^2 = m n$, then exactly one of c + d and c d is divisible by 4.
- (b) If $4 \mid c + d$, prove that $\frac{b^2}{4} = \frac{c + d}{4} \frac{c d}{2}$, where the two factors on the right side of the equation are relatively prime.
- (c) Show that there exists $s, t \in \mathbb{Z}$ such that $\frac{c+d}{4} = s^2$ and $\frac{c-d}{2} = t^2$
- (d) Show that $(2s^2, t^2, a)$ is a Pythagorean triple and finish the proof of the right triangle theorem for this case.
- (e) Repeat parts (b)-(d) for $4 \mid c d$.

Exploration 3 (If presenting as a pair)

Definition 2. A positive integer n is a congruent number if there exists a right triangle whose sides are all rational numbers and whose area is n.

Problem 3.1 Show that the following are congruent numbers:

- 6.
- 5.

Problem 3.2 Prove that there is no right triangle with integer sides whose area is 5. There is no right triangle with integer sides whose area is 1.