EIRBOT COUPE DE FRANCE DE ROBOTIQUE

Equipe Eirboat

1A 2019-2020

Table des matières

Ι	R	apports de réunion	2
II	Γ	Description des projets	12
1	De	scription générale de l'organisation	13
	1.1	Arbres des tâches à réaliser par le robot	13
	1.2	Répartition des tâches	15
	1.3	Points pour la coupe	17
2	Mécanique		
	2.1	Mécanique générale du robot	18
	2.2	Actionneurs	18
3	Ele	ectronique	19
	3.1	Alimentation	19
	3.2	Puissance	19
	3.3	Actionneur	19
4	Informatique		
	4.1	Asservissement	20
	4.2	Stratégie	20

Première partie

Rapports de réunion

Jeudi 24 Octobre

Ordre du jour.

- Définir les différentes tâches que doit remplir le robot
- Donner une première idée de ce que les gens doivent faire

est disponible en 1.1

- Se mouvoir (soft)
- Mécanique générale
- Détecter les adversaires
- Détecter les objets
- Lire la boussole
- Communiquer
- Elever le drapeau
- Actionner les manches à air
- Alimentation
- Phare

Objectifs de la prochaine réunion.

- Spécifier les robots
- Définir précisément les tâches
- Penser à la stratégie

Tâches à faire par le robot. Une version détaillée Répartition des tâches. Une version détaillé est disponible en 1.2

- Liam, Emile, Clément, SD
- Erwann, Valentin, Marion
- Martin, Liam
- Ø
- Maxime, Emile, Léo
- -- SD
- Filipe, Valentin, Erwann
- Filipe, Jeremy, Marius
- Ptit Lu, Yohann, Julien, Léo
- Marius, Marion

Jeudi 31 Octobre

Pas de réunion : vacances

Jeudi 7 Octobre

Ordre du jour.

- Définir les actions à faire
- Définir une hiérarchie de difficulté dans les actions
- Définir la mécanique du robot

Définition des méthodes.

Description du robot. Pour l'instant il se dessine selon 5 étages

- 1. Switch pour le côté de jeu, diode de vérification, porte balise, ON/OFF, Boutons d'arrêt d'urgence.
- 2. Porte pavillon, rasp
- 3. Porte pavillon, carte numérique
- 4. Détecteur IR, carte puissance, actionner manche à air, détecteur IR
- 5. moteur, batterie, moteur

Objectif de la prochaine réunion.

- Avancement table
- Avancement méca

- Lancer le phare
- Lancer l'asservissement

Jeudi 14 Novembre

Point mécanique. Erwann à produit un prototype du robot, il n'est pas complet mais nous donne une idée de ce que nous allons faire. La création du robot est donc en cours. Pour les premiers test, nous pouvons utiliser la base métallique.

Point phare. La mécanique du phare est au point, il faut rajouter un module de musique, l'actionneur sera identique à celui des manches à air. Sur le planning le phare pourrait être construit d'ici la prochaine réunion.

Point asservissement. Liam, Emile et Clément commencent à travailler dessus. Ils se sont familiarisés avec les encodeurs et chapterent sur la nucléo.

Un résumé de la formation de Mathieu sur l'odométrie :

On définit v_L , v_R comme la vitesse gauche et la vitesse droite.

- short $v = (\text{short } v_{old} \text{short } v_{new})$
- Soit d la distance infinitésimal

$$d = \frac{v_L + v_R}{2}$$

Soit α l'angle infinitésimal

$$\alpha = \frac{v_L - v_R}{2}$$

— Rafraichissement de la position du robot.

Soit x, y, θ les coordonnées du robot.

1.
$$\theta = \theta + \frac{\alpha}{2}$$

2.
$$\begin{cases} x = x + \cos(\frac{\alpha}{\text{TICKS}}) \times d \\ y = y + \sin(\frac{\alpha}{\text{TICKS}}) \times d \end{cases}$$

3.
$$\theta = \theta + \frac{\alpha}{2}$$

4. if $(aps(\theta) > \pi.TICKS PER RAD)$

$$a = a - sg(a) \times 2\pi \times TICKS$$

Toutes les codes et les explications sont disponibles sur le github: https://github.com/eirbot/eirbot2019-2A/tree/master/soft/include

Jeudi 21 Novembre

Open perdu

Jeudi 28 Novembre

Point Mécanique. La table est bien avancée, il ne reste plus qu'à fixer les derniers éléments (le meuble pour les gobelets c'est le feu). Emile n'a plus le droit de toucher au bois et à la découpe laser en même temps suite à ses exploits pour tenter de graver ma tête.

Niveau robot, le design du robot est acté, on chapter sur une base et un toit octogonal, les étages seront carré. On attend Nans pour la commande des profilés. La base avec les moteurs peut chapterir en production.

Point phare. Nous avons un doute sur l'homologation du premier phare, il sera donc transformé en canon quand on aura changé le moteur.

Concernant le nouveau phare l'idée était de chapterir sur un bras robot (Nans sera content).

Point Asservissement + Info. Le choix de l'odométrie à été posé, la table sera modélisée comme une grille. Le robot pourra se déplacer à chaque intersection de la grille sera un point où le robot pourra se déplacer.

Niveau software l'idée est de commencer par créer un serveur ssh entre une rasp et un ordinateur. Combiné à un protocole de communication entre une rasp et une nucléo on peut espérer pouvoir coder le robot à distance. L'interface de contrôle du robot commence à être pensée.

Suite à une discution avec Matthieu, un algorithme de path fouding commence à se dessiner sur un base Astar. Pour l'instant l'informatique à juste fait un phare en Ascii.

Point Alimentation. La carte d'Alimentation a été pensée, le groupe s'occupant de cette dernière recherche un moyen de travailler sur Kicad en groupe. Elle est où la carte ?.

FIGURE 1 – Schéma de principe de l'alimentation

Point Puissance. Nous réutilisons les moteurs des 2A, le groupe travaillant dessus commence à travailler.

Point actionneur. Cnf tenaq pubfr à qver

Jeudi 5 Décembre

C'est bientôt Noël

Point Table. Tous les éléments sont découpés et assemblés. Les manches à air sont montés et la boussole est en cours de montage. Il restera les balises et au un écueil.

Point Mécanique. L'étage du bas est modélisé, en attente de découpage. Nans a commandé les profilés, la base pourra donc être montée sous peu.

Point Phare. Le projet de l'ancien phare est correctement entéré. Marius est parti sur un nouveau phare avec une base de bras robot comme ci contre.

FIGURE 2 - Version 2 du phare

Point Asservissement + **Info.** Sébastien et Emile se battent avec le C++, Emile travaille sur les informations renvoyées par les encodeurs pendant que Sébastien réflechit aux structures qui permettrons au robot de correctement se déplacer.

Point Alimentation. La carte d'alimentation avance bien, le travail de conception est en cours le schéma de la carte d'alimentation sera disponible la semaine prochaine.

Point Puissance. Y'vqér rfg q'nggraqer Znegva , cnepr dh'vy nvzr znatre qrf enqvngrhef nanybtvdhrf

Point Actionneur. Les actionneurs sont au point morts pour l'instant, ce n'est pas l'urgence.

Deuxième partie

Description des projets

Description générale de l'organisation

1.1 Arbres des tâches à réaliser par le robot

1.2 Répartition des tâches

1.3 Points pour la coupe

Mécanique

- 2.1 Mécanique générale du robot
- 2.2 Actionneurs

Electronique

- 3.1 Alimentation
- 3.2 Puissance
- 3.3 Actionneur

Informatique

- 4.1 Asservissement
- 4.2 Stratégie