

计算机操作系统

Operating Systems

李琳

第四章存储器管理

分区式分配存在的问题:碎片(内外"零头")问题难以解决。

4.3 基本分页存储管理方式 4.3.1 设计思想

- 页表用来记录页号和页框的对应关系
- 页表存储在内存
- 页表起始地址保存在PCB

页号	页框号	存取控制
0	4	X
1	2	X
2	10	X
3	5	X
4	8	RW
5	9	X
6	3	RW

内存/主存

n

4.3 基本分页存储管理方式 4.3.1 设计思想

- · 页面/页框的划分问题
 - ✓页面太小:

内零头少,内存利用率高,页面数量增加,页表大;

✓页面太大:

内零头多,内存利用率低,页面数量减少,页表小;

✓正常尺寸:

2的整数次方,512-8K

- ✓分页的划分由系统定义
- ✓指令可能跨页
- · 分配问题
- 回收问题
- 地址映射问题

4.3.2 分配与回收

- 固定分区的分配与回收方法→分区表(容量大)
- ・位示图的方法 —>用一个bit位来表示一个页框(1/0)是否分配

第k个页框与位示图 行i列j的关系如下:

$$k=(i*n)+j$$

分配:遍历i和j,找若干 个值为0的页框号,将其 0→1

回收:知道页框号,反求i和j,将其1 →0

n=8的时候可以使用位运算符,1G用户空间、1K一页的位示图容量多大?

4.3.3 地位映射

- •逻辑地址空间
 - ✓例: 32位地址空间,页面4K
 - ✓十六进制表示
 - ✓连续编址,最后一页地址不满
 - ✓n页面最后一个地址+1= (n+1)页面的第一个地址
- •逻辑地址结构

4.3.3 地位映射

• 地址变换机构 (硬件实现)

4.3.3 地位映射

• 计算示例一

假设逻辑地址空间是32位,4K页面,页表如下,逻辑地址

0x00005064的物理地址是多少?

页号	页框号	存取控制
0	4	X
1	2	Х
2	10	Х
3	5	Х
4	8	RW
5	9	Х
6	3	RW

页表

4.3.3 地位映射

•问题:某虚拟存储器中的用户空间共有32个页面,每页1KB,主存16KB。假定某时候系统为用户的第0、1、2、3页分别分配的物理块号为5、10、4、7,虚拟地址0A6F对应的物理地址是多少?

换成十进制

问题:某虚拟存储器中的用户空间<=2400字节,每页80字节,主存2400字节。假定某时候系统为用户的第0、1、2、3、4页分别分配的物理块号为5、10、4、7、9,虚拟地址382对应的物理地址是多少?

页号: P=INT[A/L]

页内地址: d=[A]MOD L

382/80=4。。。62 4号页面对应9号物理块

9*80+62=782

弦一弦

- 1、页式存储管理中,页表的始地址存放在()中。
 - A. 内存 B. 存储页表 C. 快表 D. 寄存器
- 2、某页式存储管理系统中,地址寄存器长度为24位,其中页号占14位, 则主存的分块大小是()字节
 - A. 2¹⁰ B. 10 C. 2¹⁴ D. 2²⁴
- 3、一个16位地址的分页系统中,页面大小为1KB。逻辑地址为0x35F7在第()个页面中
 - A. 14 B. 13 C. 3 D. 10

4.3.3 地位映射

- 重新认识页表
 - ✓记录程序各个页面所在页框的位置
 - ✓支持进行地址映射
 - ✓实现页面访问控制
 - ✓存储保护:限制程序在OS指定的内 存区域执行
- 访问数据的性能
 - ✓首先访问页表 (在内存) 找到页框号
 - ✓再访问内存变量
 - ✓二次访问内存

优化方法?

- •解决方法:快表
 - ✓设置在CPU内部
 - ✓具有并行查找能力
 - ✓暂存使用频繁的页表项
 - ✓大小: 16-512字节,可达到90% 的命中率
 - ✓别名:联想存储器、TLB (Translation lookaside buffers)

4.3.3 地位映射

4.3 基本分页存储管理方式4.3.4 访存有龄时向

EAT (Effective Access Time)

• 基本分页
$$EAT = (t + t) = 2t$$

•引入快表
$$EAT = a \times \omega + (t + \omega)(1 - a) + t$$

• a是快表命中率, ω 是查找快表所需时间, t是访存时间

4.3.5两级和多级页表

· 页表过大(>4K)需要占用连续内存空间 —— 离散化页表

4.3.5两级和多级页表

· 两级页表的地址结构 (32位逻辑地址, 4K页面为例)

- 两级页表的地址映射
 - ✓先通过外层页号在外层页表中进行查找,找到小页表的内存地址
 - ✓再通过页号在小页表中进行查找,找到页框号 (20位)
 - ✓再将页框号和页内地址合并为物理地址

问题: (1) 需要访问几次内存? (2) 小页表的连续性?

斌一斌

- 1、一台计算机的进程在其地址空间有1024个页面,页表保存在内存中。 从页表中读取一个表项的开销是5ns。为了减小这一开销,该计算机使用了TLB,它有32个(虚拟页面,物理页框)对,能在1ns内完成查找。请问把平均开销降到2ns需要的命中率为()
- 2、某计算机采用二级页表的分页存储管理方式,按字节编址,页大小为2¹⁰字节,页表项大小为2字节,逻辑地址结构为(页目录号|页号|页内偏移量),逻辑地址空间大小为2¹⁶页,则表示整个逻辑地址空间的页目录表中包含表项的个数至少是()
 - A .64 B.128 C. 256 D. 512

4.4.基本分段存储管理方式 4.4.1设计思想

- 段表
 - ✓段表存储在内存
 - ✓段表起始地址保存在PCB

段号	段基址	段长	存取控制
0	20K	2K	Х
1	40K	1K	RW
2	120K	1.6K	X
3	230K	1.9K	X

4.4 基本分段存储管理方式 4.4.1 設計 思想

- 分段划分的问题
 - ✓分段是一段有意义的信息集合
 - ✓分段的划分由程序员完成
 - ✓分段的长度不定
 - ✓指令不存在跨分段情况
- · 分配问题

• 地址映射

4.4.基本分段存储管理方式 4.4.2 分配与回收

- 分段的分配与回收相似于动态分区分配
 - ✓每个段请求分配一个分区
 - ✓分区表与段表相关联
 - ✓进程创建时申请若干个分区
 - ✓进程撤销时释放若干个分区

4.4 基本分段存储管理方式

4.4.3 地位映射

•逻辑地址空间

• 逻辑地址结构

4.4.基本分段存储管理方式 4.4.3 地址映射

程序的逻辑地址空间

逻辑地址: 0x00030564

物理地址:230K+0x00000564=0x00039D64

内存/主存 **20K** 40K 120K 230K

4.4 基本分段存储管理方式

4.4.3 地位映射

4.4 基本分段存储管理方式

4.4.2 地位映射

• 计算实例

段表

段号	段基址	段长	存取控制
0	20K	2K	Х
1	40K	1K	RW
2	120K	1.6K	X
3	230K	1.9K	Х

物理地址: 230K+)0x00000564

实例一:某简单分段系统中,给定下列段表,试计算每个逻辑地址(段号,段内偏移)的物理地址。如果地址产生的分段错误,请指明。(a)0,300 (b)2,800 (c)1,600 (d)3,1100 (e)1,1111

段	基地址	长度
0	1100	500
1	2500	1000
2	200	600
3	4000	1200

4.4.4 信息共享

- 分页信息共享
 - ✓多个页号对应一个页框号
 - ✓共享页信息不明确
 - ✓如用于动态链接库,则可能 破坏了页式地址连续的特征

4.4 基本分段存储管理方式

4.4.4 信息共享

- 分段信息共享
 - ✓多个段对应一个 内存区域
 - ✓ 共享段有明确含 义
 - ✓可用于动态链接 库

A进程段表

段号	段基址	段长	存取控制	
0	230K	2K	X	
1	40K	1K	RW	
2	120K	1.8K	Χ .	
3	20K	1.6K	Х	

B进程段表

段号	段基址	段长	存取控制
0	160K	2K	X
1	140K	1K	RW
2	120K	1.8K	X
3	20K	1.6K	X

内存/主存

共享段

230K

120K

Sub1

分段和分页的区别

	分段	分页	
信息单位	信息的逻辑单位	信息的物理单位	
大小	不定	固定	
可见性	程序员确定,可见	系统确定,程序员不可见	
地址空间	二维地址空间	一维线性地址空间	
信息共享保护	方便	不方便	

- 分页系统存在的问题
 - √分页逻辑不明,难以共享
 - √页表太大——》多级页表
- 分段系统存在的问题
 - ✓碎片问题难以解决
 - ✓地址映射计算耗时
- •解决方案(分段+分页)
 - ✓分页系统:负责解决主存分配问题提高利用率——》内存按页框分割
 - ✓分段系统:负责解决逻辑地址空间管理提高共享性——》应用程序先按段分割再进行分页

4.5.1 沒分 忽 问题:逻辑地址是连续的还是不连续的?

· 段表和页表

问题: PCB中存储的进程内存信息是什么?

问题: 分配与回收是与段式管理一致还是与页式管理一致?

4.5.1 地位映射

·逻辑地址结构(32位逻辑地址,4K页面为例)

- 段页式管理的地址映射
 - ✓ 先通过段号在段表中进行查找,找到对应页表的内存地址
 - ✓ 再通过页号在页表中进行查找,找到页框号 (20位)
 - ✓ 再将页框号和页内地址合并为物理地址

问题:需要访问几次内存?

4.5.1 地位映射

• 地址变换机构

斌一斌

1、采用 不会产生内部	碎片。
---------------	-----

- A. 分页式存储管理 B. 分段式存储管理
- C. 固定分区式存储管理 D. 段页式存储管理
- 2、一个分段存储管理系统中,地址长度为32位,其中段号占8位,则最大段长是()
 - A. 28字节 B. 216字节 C. 224字节 D. 232字节
- 3、一段页式存储器,地址结构如下所示

该存储器最多容许16个段,请填写每个部分的含义,计算每一段所容纳的页数和最大长度

方 法	単一	分区式	页式	 	
功能	连续区	固定分区 可变分区	静态 动态	22	DAA
适用环境	单道	多道	多道	多道	多道
虚拟空间	一维	一维	一维	二维	二维
重定位方式	静态	静态 动态	动态	动态	动态
分 配方 式	静 态 分 配 连 续 区	静态动态分配连续 区	静态或动态页 为单位非连续	动态分配段为单 位非连续	动 态 分 配 页 位 单 连 续
释放		执行完成 分 区 后全部释 放 释 放	执行 完 淘 汰 与 成 后 释 执 行 完 放 后释放	一种坏与和行学员	淘汰与 执行 成 成 放
保护	越界保护 或没有	越界保护与保护键	越界保护与控制权保护	同左	同左
内存	覆盖与交换技	同左	外存、内存 统一	同去	同左
扩充	术	, , ,	管理的	,,	'
共 享	不能	不 能	较 难	方 便	方 便
硬 件 支 持	保护用 寄存器	保护用 同左 寄存器 加重定 位机构	地址变换机构 中断机构 保护机构	段式地址变换机, 保护与中断,动态 连接机构	同 左

1、某系统采用可变分区方式管理主存储器,在主存分配情况如图所示时,有4个作业要求装入主存,它们各自所需的主存空间为: J1:8KB, J2:15KB, J3:30KB, J4:115KB,系统不允许移动。请回答下列问题:

5KB 系统区 空闲区

JA

空闲区

 $^{\mathrm{JB}}$

(1) 采用首次适应分配算法分配主存,应按怎样的次序才能将4 30KB

180KB

190KB

200KB 空闲区

(2) 从上述作业装入次序中选择一种,描述作业装入内存后的情况

个作业同时全部装入主存?写出所有可能的装入次序。

- 2、一个分页存储系统, 页表存放在内存:
 - (1) 如果访问一次内存需要 200ns,则访问一个内存单元需要多少时间?
 - (2) 如果系统采用三级页表,则访问一个内存单元需要多少时间?
- (3) 如果系统引入联想寄存器,90%的页表项可以在快表中命中,则访问一个内存单元需要多少时间? (假设访问一次快表需要10ns)

传业

- 3、某计算机主存按字节编址,逻辑地址和物理地址都是32位,其中页内地址用 12位表示,请回答下列问题。
 - (1) 若使用一级页表的分页存储管理方式,则页的大小是多少字节?页表最大占用多少字节?(页表项为4个字节)
 - (2) 若使用二级页表的分页存储管理方式,页目录项最多有1024个,那么页表最大占用多少字节? (页表项为4个字节,页表包含主页表和二级页表)
 - (3) 采用(1)中的分页存储管理方式,一个代码段起始逻辑地址为00008000H,其长度 为8KB,被装载到从物理地址00900000H开始的连续主存空间中。页表从主存 00200000H开始的物理地址处连续存放,如下图所示(地址大小自下向上递增)。请 计算出该代码段对应的两个页表项的物理地址、这两个页表项中的页框号以及代码页 面2的起始物理地址。

