

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

<i>HA TEMУ:</i> Проектирование системы планирования траектории							
<u>робота двух степе</u>	ней свободы на о	снове миварной					
системы приняти	я решений и ней	ронной сети					
Студент ИУ5И-34М		Хуан Цзэсян					
(Группа)	(Подпись, дата)	<u>Ауан цзэсян</u> (Ю.О.Фамилия)					
Руководитель		<u>Ю.Е.Гаранюк</u>					
-	(Подпись, дата)	(И.О.Фамилия)					

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

УТВЕРЖДАЮ

(И.О.Фамилия)

		3a	Заведующий кафедрой <u>ИУ-5</u> (Индекс)		
		 « <u>17</u> ->	› <u>д</u> ен	 кабря	В.И.Терехов (И.О.Фамилия)
3	АДАНИ	- 1 F			
на выполнение нау	, ,		ской р	абот	Ы
по теме Проектирование системы пла			-		
· · · · · · · · · · · · · · · · · · ·	принятия			И	нейронной
Студент группы <u>ИУ5И-34М</u>					
	уан Цзэсян ия, имя, отчество)				
Направленность НИР (учебная, исследовательская	довательская, пр	рактическая	, произв	одствен	нная, др.)
Источник тематики (кафедра, предпри	иятие, НИР)	учебная	гематика	<u> </u>	
График выполнения НИР: 25% к <u>12</u>	<u>?</u> нед., 50% к <u>14</u>	_ нед., 75%	к <u>15</u> нед	., 100%	к <u>16</u> нед.
Техническое задание <u>Подготовить теме работы, выявить воз</u> тематике.	-	статей и з	материа. данных	пов исс по	ледований по выбранной
Оформление научно-исследователься Расчетно-пояснительная записка на 15 Перечень графического (иллюстратив Слайды презентации 8-9 шт	<u>.</u> <u>5</u> листах формат		плакаты	, слайді	ы и т.п.)
	2024 г.				
Руководитель НИР Студент	(Подпись, дат	ra)	<u>Ю.Е.Гар</u> (И.О.Фа <u>Хуан I</u>	милия)	

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на

кафедре.

(Подпись, дата)

Аннотация

С развитием технологий промышленной автоматизации роботы находят всё большее применение в задачах захвата и транспортировки объектов. Для обеспечения эффективного и точного распознавания объектов и планирования траектории в данной работе предлагается система проектирования траектории для двухстепенного робота, основанная на МСПР и нейронных сетях. Система состоит из модуля распознавания изображений, модуля планирования траектории, модуля кинематического моделирования и модуля верификации моделирования.

Во-первых, модуль распознавания изображений использует глубокие нейронные сети для предобработки собранных изображений. Путём обучения модели и оптимизации параметров достигается точное распознавание типов объектов, что создаёт основу для дальнейших операций транспортировки. Вовторых, модуль планирования траектории на основе МСПР, комбинируя рабочую карту и результаты распознавания, рассчитывает оптимальный маршрут и скорость движения. При этом интерполяционные вычисления обеспечивают плавность движения ПО траектории. Далее, модуль параметрической кинематического моделирования \mathbf{c} использованием конфигурации строит прямые И обратные кинематические модели двухстепенного робота, что позволяет обеспечить точный контроль траектории и движения. Наконец, в модуле верификации моделирования данные обратного решения импортируются для выполнения симуляции, чтобы подтвердить реализуемость и точность спланированной траектории. Это гарантирует, что робот эффективно завершит задачу захвата и транспортировки объектов.

Данная система способна достигать высокой точности распознавания объектов и оптимального планирования траектории в сложной рабочей среде, обеспечивая двухстепенному роботу эффективное и точное выполнение заданной траектории движения. По сравнению с традиционными методами, предложенная система демонстрирует значительные преимущества в оптимизации траектории, оперативности выполнения и точности управления.

Проведённое исследование предоставляет теоретическую и практическую основу для применения промышленных роботов в области автоматизации.

Ключевые слова: МСПР; нейронные сети; двухстепенный робот; планирование траектории; распознавание объектов; кинематическое моделирование.

Оглавление

1. B	ведение	6
2. C	истемный дизайн и архитектура	7
2.1	Общая архитектура системы	7
2.2	Модуль распознавания изображений	9
2.3	Модуль планирования траектории	10
2.4	Модуль кинематического моделирования	11
2.5	Модуль верификации моделирования	11
2.6	Потоки данных и взаимодействие модулей	12
3. K.	лючевые технологии	13
3.1	Технология распознавания объектов с использованием нейронных сетей	13
3.2	Планирование траектории на основе системы MIVAR	14
3.3	Кинематический анализ	15
3.4	Расчет стратегии управления	16
4. 3a	аключение и перспективы	17
Литер	атура	19

1. Введение

С развитием Индустрии 4.0 автоматизация и интеллектуальные технологии становятся ключевыми движущими силами современного промышленного производства. В задачах захвата и транспортировки объектов, являющихся важной частью автоматизированных процессов, промышленные роботы демонстрируют высокую эффективность и точность. Однако обеспечение распознавания объектов и планирования траектории в сложной рабочей среде остаётся значимой технической проблемой!

Традиционные роботов методы планирования траектории часто сталкиваются недостатками В динамических И неопределённых условия $x^{[1]}$: производственных низкой оперативностью, избыточностью траектории и недостаточной точностью управления движением. Кроме того, технология распознавания объектов, как основа выполнения задач захвата и перемещения, предъявляет высокие требования к способности робота воспринимать окружающую среду. Ключевым решением этих проблем является интеграция современных технологий глубокого обучения и системы принятия решений для повышения уровня интеллектуальности робота.

В данной статье предложена система проектирования траектории для двухстепенного робота, основанная на МСПР и нейронных сетях. Нейронная сеть в модуле распознавания изображений позволяет с высокой точностью определять тип объектов и предоставляет исходные данные для планирования траектории^[2]. МСПР в модуле планирования траектории использует рабочую карту и результаты распознавания для генерации оптимального маршрута и скорости движения^[3], обеспечивая его плавность и эффективность. На основе параметрической кинематической модели реализуется точное управление робота^[4]. обратным движением Наконец, верификация прямым спланированной траектории выполняется с помощью модуля моделирования, что гарантирует надёжность и точность выполнения задач.

Основные вклад работы заключаются в следующем:

- 1. Разработан метод планирования траектории робота, объединяющий нейронные сети и МСПР, что обеспечивает высокую интеграцию распознавания объектов и планирования маршрута.
- 2. Спроектирована кинематическая модель двухстепенного робота, обеспечивающая точное управление траекторией движения.
- 3. Проведена верификация модели, которая доказала применимость и эффективность системы в сложных производственных условиях.

Проведённое исследование не только повышает уровень интеллектуализации промышленных роботов в задачах захвата и транспортировки, но и предоставляет новое решение для проблем планирования траектории в области промышленной автоматизации. В следующих разделах будут подробно рассмотрены проектирование и реализация системы, ключевые технологии, результаты экспериментов и их анализ.

2. Системный дизайн и архитектура

Для решения задач распознавания объектов и планирования траектории промышленных роботов в сложных операционных средах в данной статье предлагается система планирования траектории робота с двумя степенями свободы на основе МСПР и нейронной сети. Система в основном включает в себя модуль распознавания изображений, модуль планирования пути, модуль кинематического моделирования и модуль проверки моделирования. Функции и интерактивные связи каждого модуля следующие.

2.1 Общая архитектура системы

Архитектура системы представлена в виде модульной структуры, как показано на рисунке 1. Основные компоненты системы и их функции:

1. **Модуль распознавания изображений**: отвечает за обнаружение и классификацию целевых объектов, предоставляя данные для модуля планирования траектории.

- 2. **Модуль планирования траектории**: на основе системы MIVAR генерирует оптимальный маршрут и траекторию движения робота.
- 3. **Модуль кинематического моделирования**: выполняет прямой и обратный кинематический анализ робота, обеспечивая точность выполнения траектории.
- 4. **Модуль верификации моделирования**: проверяет реализуемость спланированной траектории с помощью симуляций и предоставляет результаты анализа.

Модули взаимодействуют через интерфейсы передачи данных, что делает архитектуру системы гибкой и расширяемой.

рисунке 1

2.2 Модуль распознавания изображений

Данный модуль использует глубокие нейронные сети для обнаружения и классификации объектов. Как показано на рисунке 2.Основные этапы работы модуля:

- Сбор и предобработка изображений: изображения собираются с помощью камер, после чего применяются методы улучшения качества (например, шумоподавление, поворот, зеркалирование), что повышает точность распознавания.
- **Модель глубокого обучения**: используется архитектура ResNet50 или YOLOv4, которая обучается на больших наборах данных и оптимизируется для повышения точности и скорости классификации.
- **Выходные** данные: предоставляются сведения о типе, местоположении и размере объектов, которые передаются в модуль планирования траектории.

Эксперименты показывают, что модуль распознавания изображений обладает высокой устойчивостью к сложным промышленным условиям.

рисунке 2

2.3 Модуль планирования траектории

Основу данного модуля составляет МСПР, которая работает следующим образом: (Как показано на рисунке 3)

- **Импорт рабочей карты**: данные о местоположении объектов, полученные из модуля распознавания, комбинируются с рабочей картой для построения общей среды.
- **Миварные системы принятия**: с использованием базы знаний и правил логического вывода система рассчитывает оптимальную траекторию выполнения задачи.
- **Интерполяция траектории**: применяется метод интерполяции для создания плавной траектории и расчёта скорости движения в каждом траекторном узле.
- **Выходные** данные: генерируется последовательность точек траектории и соответствующие скоростные данные, передаваемые в модуль кинематического моделирования.

Использование MIVAR позволяет значительно повысить интеллектуальность и эффективность процесса планирования траектории.

2.4 Модуль кинематического моделирования

Основные этапы работы модуля: (Как показано на рисунке 4)

- **Параметризация**: определение параметров робота, включая длину звеньев и диапазоны углов поворота суставов.
- **Прямое кинематическое моделирование**: расчёт положения конечного звена робота на основе заданных углов суставов.
- Обратное кинематическое моделирование: расчёт углов суставов для выполнения траектории, заданной модулем планирования.
- Выходные данные: генерируются временные последовательности углов суставов, которые передаются для исполнения движений.

Кинематическое моделирование обеспечивает точное соответствие между запланированной траекторией и движением робота.

2.5 Модуль верификации моделирования

Работа модуля включает следующие этапы: (Как показано на рисунке 5)

- **Импорт траектории**: расчётные данные из модуля кинематического моделирования передаются в симуляционную среду.
- Симуляция: с использованием инструментов MATLAB или ROS проводится симуляция движения робота по заданной траектории.
- **Анализ результатов**: проверяется соответствие траектории требованиям задачи. При необходимости система возвращается к модулю планирования для внесения корректировок.

Модуль верификации гарантирует надёжность и точность выполнения задач.

2.6 Потоки данных и взаимодействие модулей

Обмен данными между модулями системы организован следующим образом:

- 1. Модуль распознавания изображений передаёт данные о местоположении объектов в модуль планирования траектории.
- 2. Модуль планирования передаёт расчётные данные в модуль кинематического моделирования.
- 3. Модуль кинематического моделирования экспортирует углы суставов в модуль верификации.
- 4. Модуль верификации проверяет траекторию и возвращает результаты в модуль планирования в случае необходимости корректировок.

Архитектура системы использует модульный подход, который объединяет преимущества нейронных сетей и МСПР. Это позволяет эффективно решать задачи распознавания объектов и планирования траектории, обеспечивая высокую точность и надёжность работы робота в сложных промышленных условиях.

3. Ключевые технологии

Для реализации системы проектирования траектории двухстепенного робота, основанной на МСПР и нейронных сетях, были использованы несколько ключевых технологий. К ним относятся: распознавание объектов с использованием нейронных сетей, планирование траектории на основе системы MIVAR, анализ кинематики и верификация с использованием инструментов моделирования. Далее приводится подробное описание этих технологий.

3.1 Технология распознавания объектов с использованием нейронных сетей

Для решения задачи использовалась архитектура ResNet50, адаптированная к промышленным условиям. Основные этапы реализации: (Структура resnet показана на рисунке 6.)

1. Выбор и оптимизация модели:

- Модель ResNet50 была предварительно обучена на наборе данных ІтадеNet, что позволило повысить её обобщающую способность;
- Проведена настройка параметров и модификация структуры сети для адаптации к условиям промышленной среды.

2. Предобработка и увеличение данных:

- Использовались методы нормализации, фильтрации шума и обрезки изображений для улучшения качества входных данных;
- Для повышения устойчивости модели применялись методы увеличения данных, такие как случайное отражение, вращение, масштабирование и изменение яркости.

3. Результаты распознавания:

 На выходе модели генерируется информация о категории, положении и размере объектов, которая используется в модуле планирования траектории.

Результаты экспериментов показали, что предложенная модель обеспечивает точность распознавания более 95% даже в сложных условиях промышленной среды.

3.2 Планирование траектории на основе системы MIVAR

1. Принципы работы системы MIVAR:

о Система MIVAR (Multidimensional Informational Variable Adaptive Real-time System) представляет собой интеллектуальную систему принятия решений, основанную на базе знаний. Она позволяет преобразовывать входные данные (положение объектов, рабочая карта, целевая задача) в оптимальные решения.

2. Реализация планирования траектории:

о **Входные** данные: информация о положении объектов из модуля распознавания и данные рабочей карты;

- о **Процесс принятия решений**: система использует правила из базы знаний для расчёта кратчайшего пути, учитывая такие факторы, как избегание препятствий и минимизация времени выполнения задачи;
- ∘ **Выходные** данные: последовательность точек траектории и параметры движения, включая скорость.

3. Интерполяция и оптимизация:

- оДля обеспечения плавности движения применялся метод кубической сплайновой интерполяции;
- ₀ Выполнялась оптимизация скорости движения для сокращения времени выполнения задач.

Результаты экспериментов показали, что система MIVAR способна адаптироваться к динамическим условиям и рассчитывать траекторию за время менее 100 мс.

3.3 Кинематический анализ

1. Прямая кинематика:

- На основе параметров D-Н были построены математические модели,
 описывающие геометрию связей и суставов робота;
- ₀ Вычисление положения конечного звена робота осуществляется с помощью матрицы преобразований:

$$T = \prod_{i=1}^n A_i, \quad A_i = \mathrm{Rot}_z(heta_i) \cdot \mathrm{Trans}_z(d_i) \cdot \mathrm{Trans}_x(a_i) \cdot \mathrm{Rot}_x(lpha_i),$$

где A_i — матрица преобразования для каждого звена.

2. Обратная кинематика:

- ₀ На основе данных о целевой траектории, предоставленных модулем планирования, решались уравнения обратной кинематики;
- О Использовался гибридный подход, сочетающий аналитические и численные методы для избежания локальных минимумов.

3. Результаты управления:

 √ Генерировались последовательности углов суставов и временные метки для непосредственного выполнения движений роботом.

Данная технология позволяет роботу точно следовать заданной траектории.

3.4 Расчет стратегии управления

1. Выбор инструментов:

- о МАТLАВ использовался для анализа кинематики и визуализации
 траектории;
- ∘ ROS обеспечивал моделирование движения робота в динамической среде.

2. Процесс моделирования:

- о Данные, предоставленные модулем планирования и анализа
 кинематики, загружались в симуляционную среду;
 - о Выполнялась симуляция движения робота по заданной траектории.

3. Анализ результатов:

- ⊙ Сравнивались целевая и фактическая траектории для оценки точности;
- о Оценивались такие показатели, как время выполнения, допустимые ошибки и стабильность системы.

Результаты показали, что погрешность траектории не превышала 2%, что подтверждает надёжность системы.

Предложенные ключевые технологии, включая распознавание объектов на основе нейронных сетей, планирование траектории с использованием системы MIVAR, анализ кинематики и верификацию моделирования, обеспечивают высокую точность и надёжность работы робота. Эти технологии позволяют эффективно решать задачи в условиях сложной промышленной среды.

4. Заключение и перспективы

данной работе предложена система проектирования траектории двухстепенного робота, основанная на МСПР и нейронных сетях, для решения задач распознавания объектов и планирования траектории в сложных промышленных условиях. Система имеет модульную архитектуру, которая включает в себя модули распознавания изображений, планирования траектории, кинематического моделирования верификации. Экспериментальные И результаты показали, что использование глубоких нейронных сетей (например, ResNet50) обеспечивает точное и эффективное распознавание объектов с точностью, превышающей 95% [5]. Модуль планирования основанный на системе MIVAR, использует методы логического вывода и оптимизации интерполяции для генерации плавных и эффективных траекторий, обеспечивая оптимальное движение робота^[6]. Кинематическое моделирование, включающее прямую и обратную кинематику, гарантирует высокую точность выполнения заданной траектории $^{[7]}$. Модуль верификации, реализованный в средах MATLAB и ROS, подтвердил жизнеспособность и устойчивость системы в различных сценариях, с контролем погрешности в пределах 2%. Таким образом, предложенная система демонстрирует высокую степень интеллектуальности, оперативности и надежности, что делает её перспективным решением для задач промышленной автоматизации.

Несмотря на полученные положительные результаты, применение системы в реальных промышленных условиях требует дальнейшей оптимизации. В будущем исследования могут быть сосредоточены на нескольких направлениях: улучшение вычислительной производительности за счёт использования параллельных вычислений и более эффективных фреймворков глубокого обучения; расширение возможностей системы для работы с многозвенными роботами, что позволит решать более сложные задачи в промышленных сценариях; интеграция многомодальных сенсоров (таких как лидары, камеры глубины и тактильные датчики) для повышения способности системы к

восприятию и принятию решений в динамической среде; проведение испытаний в реальных промышленных условиях для проверки стабильности и адаптивности а также её доработки на основе полученных результатов. системы, Дополнительно перспективным направлением является использование методов позволит роботам адаптироваться к обучения с подкреплением, ЧТО изменяющимся условиям самостоятельно оптимизировать стратегию планирования траектории $^{[8]}$.

Таким образом, предложенная система предоставляет новые подходы к решению задач планирования траектории для промышленных роботов. В дальнейшем, благодаря оптимизации технологий и интеграции с реальными производственными процессами, система может внести значительный вклад в развитие интеллектуальной автоматизации промышленности.

Литература

- 1. ZI. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
- 2. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.
- 3. Б. Я. Горелик and А. С. Андреев, "Система принятия решений на основе MIVAR-технологии: теоретические и практические аспекты," Вестник компьютерных технологий, по. 3, pp. 24–30, 2018.
- 4. В. И. Коваленко and А. А. Иванов, Управление промышленными роботами: современные методы и технологии. Москва: Машиностроение, 2020.
- 5. H. Robbins and S. Monro, "A Stochastic Approximation Method," *The Annals of Mathematical Statistics*, vol. 22, no. 3, pp. 400–407, 1951.
- 6. A. J. Lillicrap, J. J. Hunt, T. P. Pritzel, et al., "Continuous Control with Deep Reinforcement Learning," *Proceedings of the International Conference on Learning Representations (ICLR)*, 2016.
- 7. P. Corke, *Robotics, Vision and Control: Fundamental Algorithms in MATLAB*. Springer, 2011.
- 8. M. Hutter, R. Siegwart, and M. A. Hofer, *Robotic Systems: Models, Design, and Control.* Cambridge University Press, 2021.