

Variability of CH₄:CO₂ ratio at Science Park manholes

Group 2: Laura Portos Amill, Socorro Margarita Rodrigo, Foteini Stavropoulou, Yujie Ye under the guidance of Hossein Maazallahi 17 December 2020

Background

- CH₄ is a strong greenhouse gas
 - Direct and indirect effects
- Sources of methane in urban areas
 - Landfills
 - Wastewater
 - Leakage of natural gas pipeline
 - Sewer systems

Guisasola et al. (2007)

Background

• Importance of measuring CH₄ in sewer systems

Potential significant contribution

- to the greenhouse effect e.g. Gold Coast (Australia) Population: 540.000 40–250 tCH4 annually
- Health and safety risks (incidents of explosions)

Leaking methane gas led to French Quarter explosion and car fire, NOFD chief says

Guisasola et al. (2007)

Background

- Factors affecting methane production in sewer systems
 - Hydraulic retention time (HRT)
 - o Pipeline geometry (i.e. surface area to volume ratio, A/V)
 - Chemical oxygen demand (COD)
 - Atmospheric Temperature
 - Presence of Nitrogen-related compounds
 - o pH level

Foley et al. (2009); Guisasola et al. (2008); Gutierrez et al. (2013)

Objectives

- Characterize possible methane sources from CH₄:CO₂ ratios
- Quantify CH₄ emissions from manholes
 - Quantify CH4 emissions of manholes failed because no accumulation was observed in the bucket

Methods: Instrument used

One cavity ring-down spectroscopy (CRDS) analyzer Picarro Inc. model G2301

- CO₂, CH₄, and H₂O concentrations
- Integration time of approximately 1s
- Frequency of 0.3 Hz for each species

Methods:

Mobile atmospheric measurements

- Installed on the back seat of a 2012
 Volkswagen Transporter
- Measurements taken by directing a hose into the manhole opening
- Pumped into the CRDS machine

Additional info: Isotopic signatures

Isotope-ratio mass spectrometry

Manhole info

- 4 November 2020:
 Sampling date
- #1-4 and #6-8: Manholes
- #5: Storm drain

Isotope data

- #1, #3, and #5 have isotope measurements
- Background

CH₄ and CO₂ concentrations

	CO ₂ (ppm)	CH ₄ (ppm)
Background	420±5.00	2.00 ± 0.01
1	536±8.00	12.2±2.70
2	435±3.00	2.17 ± 0.01
3	546±13.0	32.8±2.40
4	444±7.00	2.07 ± 0.01
5	771±1.00	1.45
6	442 ± 13.0	4.30 ± 0.80
7	$103 \cdot 10^2 \pm 20.0$	1.56
8	802±21.0	28.1±0.90

- #s 1, 6, 8:CH4:CO2 = 65 ppb/ppm
- #3: CH4:CO2 = 246 ppb/ppm (corrected from presentation)
- #s 2, 4, 5, 7:CH4:CO2 ≅ 0 ppb/ppm
 - Microorganisms can oxidize methane in sewers
 - o Thought to be a weak sink

- #s 1, 6, 8:CH4:CO2 = 65 ppb/ppm
- #3: CH4:CO2 = 246 ppb/ppm (corrected from presentation)
- #s 2, 4, 5, 7:CH4:CO2 ≅ 0 ppb/ppm
 - Microorganisms can oxidize methane in sewers
 - o Thought to be a weak sink

- #s 1, 6, 8:CH4:CO2 = 65 ppb/ppm
- #3: CH4:CO2 = 246 ppb/ppm (corrected from presentation)
- #s 2, 4, 5, 7:CH4:CO2 ≅ 0 ppb/ppm
 - Microorganisms can oxidize methane in sewers
 - o Thought to be a weak sink

CH4:CO2 ratio -- This experiment vs. previous studies

Source	Combustion-related/ Open roads	Gas field
CH4:CO2 ratio (ppb/ppm)	Hamburg: 3.2±3.9 Maazallahi et al., 2020 Utrecht: 9.8 ±5.8 Maazallahi et al., 2020 4.6 x 10-2 Popa et al., 2014 0.41 Nam et al., 2004 0.3 Naus et al., 2018	13 Tait et al., 2013

- #s 1, 6, 8:CH4:CO2 = 65 ppb/ppm
- #3: CH4:CO2 = 246 ppb/ppm (corrected from presentation)
- #s 2, 4, 5, 7:CH4:CO2 ≅ 0 ppb/ppm
 - Microorganisms can oxidize methane in sewers
 - Thought to be a weak sink

Isotope data

Manholes 1, 3, and 5

- $\delta D = -264 \%$
- $\delta^{13}C = -51\%$
- Indicates bacterial source (*Fries et al., 2018*)

Conclusions

- Within close proximity, manhole CH₄:CO₂ indicates different sources/"families"
 - Interesting for future work
- CH₄ concentrations can be significantly lower than background
- Emissions indicate microbial/biogenic sources

References

- Fries A.E., Schifman L.A., Shuster W.D., Townsend-Small A.: Street-level emissions of methane and nitrous oxide from the wastewater collection system in Cincinnati, Ohio*, Environmental Pollution 236, 247-256, https://doi.org/10.1016/j.envpol.2018.01.076, 2018
- Guisasola A., Sharmaa K.R., Kellera J., Yuana Z.:Development of a model for assessing methane formation in rising main sewers, Water Research 43, 2874-2884, https://doi.org/10.1016/j.watres.2009.03.040, 2009
- Guisasola A., de Haas D., Keller J., Yuan Z.: Methane formation in sewer systems, WATER RESEARCH 42, 1421–1430, https://doi.org/10.1016/j.watres.2007.10.014, 2008
- Liu Y., Ni B., Sharma K.R., Yuan Z.: Methane emission from sewers, Science of the Total Environment 524-525, 40-51, https://doi.org/10.1016/j.scitotenv.2015.04.029., 2016
- Maazallahi H., Fernandez J. M., Menoud M., Zavala-Araiza D., Weller Z. D., Schwietzke S., von Fischer J.C., Denier van der Gon H., and Rockmann T.: Methane mapping, emission quantification, and attribution in two European cities: Utrecht (NL) and Hamburg (DE), Atmos. Chem. Phys., 20, 14717–14740, https://doi.org/10.5194/acp-20-14717-2020, 2020
- Tait D.R., Santos I.R., Maher D.T.: Atmospheric radon, CO2, and CH4 dynamics in an Australian coal seam gas field, AGU Fall Meeting abstracts A53H-06, 2013