

SVS – Sicherheit in Verteilten Systemen

Einladung zum SVS-Sommerfest

- SVS-Sommerfest
 - am 12.07.16 ab 17 Uhr
 - Ihr seid eingeladen! :-)
- Es gibt
 - Thüringer Bratwürste im Brötchen oder Grillkäse
 - kalte Getränke
- Ort:
 - Campus Stellingen
 - voraussichtlich vor oder hinter Haus G

- Bitte mit E-Mail-Adresse anmelden
 - http://tinyurl.com/svsbbq16

Teilaufgabe 1: Unterschiedliche Chiffren (Optional)
 Was ist der Unterschied zwischen einem symmetrischen und einem asymmetrischen Kryptosystem?

Teilaufgabe 1: Unterschiedliche Chiffren (Optional)
 Was ist der Unterschied zwischen einem symmetrischen und einem asymmetrischen Kryptosystem?

Symmetrische Verschlüsselung

Teilaufgabe 1: Unterschiedliche Chiffren (Optional)
 Was ist der Unterschied zwischen einem symmetrischen und einem asymmetrischen Kryptosystem?

Symmetrische Verschlüsselung

Asymmetrische Verschlüsselung

Teilaufgabe 1: Unterschiedliche Chiffren (Optional)
 Was ist der Unterschied zwischen einem symmetrischen und einem asymmetrischen Kryptosystem?

Symmetrische Verschlüsselung

Asymmetrische Verschlüsselung

Teilaufgabe 1: Unterschiedliche Chiffren (Optional)
 Was ist der Unterschied zwischen einem symmetrischen und einem asymmetrischen Kryptosystem?

Symmetrisches Kryptosystem:

Sender und Empfänger haben 1 gemeinsamen Schlüssel, der sowohl zum Verschlüsseln als auch zum Entschlüsseln verwendet wird.

Asymmetrisches Kryptosystem:

Zum Verschlüsseln wird ein anderer Schlüssel verwendet als zum Entschlüsseln.

- Teilaufgabe 3: Hybride Kryptosysteme (Pflicht)
 - Warum werden hybride Kryptosysteme eingesetzt, wie werden sie benutzt und wie sehen Nachrichten in diesem Fall aus.

- Teilaufgabe 3: Hybride Kryptosysteme (Pflicht)
 - Warum werden hybride Kryptosysteme eingesetzt, wie werden sie benutzt und wie sehen Nachrichten in diesem Fall aus.
 - Asymmetrische Kryptosysteme sind wesentlich langsamer als symmetrische.
 - Bei symmetrischen Kryptosystemen ist das Schlüsselmanagement aufwändiger (bei n Teilnehmern müssen (n * (n-1)) / 2 gemeinsame Schlüssel erzeugt und ausgetauscht werden!).
 - Hybride Systeme vereinen die Vorteile beider Systeme und vermeiden dennoch ihre Nachteile.

- Teilaufgabe 3: Hybride Kryptosysteme (Pflicht)
 - Warum werden hybride Kryptosysteme eingesetzt, wie werden sie benutzt und wie sehen Nachrichten in diesem Fall aus.

- Teilaufgabe 3: Hybride Kryptosysteme (Pflicht)
 - Warum werden hybride Kryptosysteme eingesetzt, wie werden sie benutzt und wie sehen Nachrichten in diesem Fall aus.

- generiert sym. Schlüssel K_M
- verschlüsselt M symmetrisch mit K_M → M'
- verschlüsselt K_M asymmetrisch mit K^B_P → K_M`
- sendet (M', K_M') an Bob

- Teilaufgabe 3: Hybride Kryptosysteme (Pflicht)
 - Warum werden hybride Kryptosysteme eingesetzt, wie werden sie benutzt und wie sehen Nachrichten in diesem Fall aus.

- generiert sym. Schlüssel K_M
- verschlüsselt M symmetrisch mit $K_M \rightarrow M$
- verschlüsselt K_M asymmetrisch mit K^B_P → K_M`
- sendet (M', K_M') an Bob

- entschlüsselt K_M mit $K_S \rightarrow K_M$
- entschlüsselt M
 mit K_M → M

Teilaufgabe 1: Verschlüsselte Passwortübermittlung (Optional)

- Teilaufgabe 1: Verschlüsselte Passwortübermittlung (Optional) Nutzer u authentisiert sich bei einem Server mit einem Passwort p. Die Übertragung wird mit symmetrischem Schlüssel k verschlüsselt: $c = E_k(u,p)$ und c wird an den Server geschickt.
 - Welche Schwäche weist dieses Protokoll auf?

- Teilaufgabe 1: Verschlüsselte Passwortübermittlung (Optional)
 - Welche Schwäche weist dieses Protokoll auf?
 - Aktiver Angreifer kann Replay-Angriff durchführen und sich am Server anmelden

- Teilaufgabe 1: Verschlüsselte Passwortübermittlung (Optional)
 - Welche Schwäche weist dieses Protokoll auf?
 - Passiver Angreifer kann Verkehrsanalyse durchführen und Nachrichten verketten

- Teilaufgabe 1: Verschlüsselte Passwortübermittlung (Optional)
 - Welche Schwäche weist dieses Protokoll auf?
 - 3. Aktiver Angreifer kann sich **als Server ausgeben** und dadurch den Nutzer täuschen (und kann evtl. alle Nachrichten, die danach ausgetauscht werden, mitlesen)

Teilaufgabe 4: Sichere Challenge-Response-Auth. (Optional)

Sichere gegenseitige Challenge-Response-Authentisierung

- Teilaufgabe 1: Wie funktioniert RSA? Bei Lösung welcher Probleme gilt das RSA-Verfahren als gebrochen? Was ist die häufigste Anwendung in der Praxis? (Optional)
 - Für die Verschlüsselung wird die Nachricht in Zahlenwerte kleiner n umgewandelt
 - Verschlüsselung eines Zeichens (Block i)

$$c_i = m_i^e \mod n$$

Entschlüsselung von Block i

$$m_i = c_i^d \mod n$$

$$(m^e)^d = m^{e \cdot d} \equiv m \mod n$$
 falls $e \cdot d \equiv 1 \mod \Phi(n)$

 Teilaufgabe 1: Wie funktioniert RSA? Bei Lösung welcher Probleme gilt das RSA-Verfahren als gebrochen? Was ist die häufigste Anwendung in der Praxis? (Optional)

Schlüsselerzeugung

- 1. Erzeugung zweier ausreichend großer Primzahlen p und q
- 2. Berechnung des RSA-Moduls: n = p * q
- 3. Erzeugen des Eulerwertes von N: $\Phi(n)=(p-1)*(q-1)$
- 4. Es wird ein e teilerfremd und kleiner als $\Phi(n)$ gewählt, d.h. $ggT(e, \Phi(n)) = 1$
- 5. Bestimmung von d (= multiplikatives Inverses zu e): $e*d+k*\Phi(n)=1$

(mit dem erweiterten Euklidischen Algorithmus)

 Teilaufgabe 1: Wie funktioniert RSA? Bei Lösung welcher Probleme gilt das RSA-Verfahren als gebrochen? Was ist die häufigste Anwendung in der Praxis? (Optional)

Sicherheit des Verfahrens

- Gegeben einen öffentlichen Schlüssel (e,n) soll es schwierig sein, auf (d,n) zu schließen
- Um d zu berechnen ist Kenntnis der beiden Primzahlen p und q notwendig $(\Phi(n))$
- → Angriff durch Primfaktorzerlegung von n (zwei Primfaktoren)

"Faktorisierungsannahme":

- Primfaktorzerlegung großer Zahlen ist äußerst aufwändig
- derzeit gelten RSA-Schlüssel mit einer Länge ab 2048 bit als sicher

 Teilaufgabe 1: Wie funktioniert RSA? Bei Lösung welcher Probleme gilt das RSA-Verfahren als gebrochen? Was ist die häufigste Anwendung in der Praxis? (Optional)

Sicherheit des Verfahrens (Zusatz)

- Die Sicherheit des geheimen Schlüssels bedingt noch nicht die Sicherheit des RSA-Verfahrens selbst
- Effizientes Ziehen der e'te Wurzel bricht RSA
- Unbekannt: e'te Wurzel ziehen ohne geheimen Schlüssel möglich?

Stand der Forschung

- Ob Faktorisierung wirklich schwierig ist, ist unbekannt
- Wer aus dem öffentlichen Schlüssel den geheimen Schlüssel berechnen kann, kann auch faktorisieren
- Ziehen der e'ten Wurzel für kleines e vmtl. einfacher als Faktorisierung (einfacher ≠ einfach!)

• Teilaufgabe 2: Entschlüsseln Sie den gegebenen Schlüsseltext, unter Verwendung der Basiswerte $p=271,\,q=379,\,e=47.$ (Pflicht)

$$-\Phi(n)=(p-1)*(q-1)=270*378=102060$$

$$e \cdot d \equiv 1 \mod \Phi(n)$$

 $e \cdot d + k \cdot \Phi(n) = 1$
 $67 \cdot d + k \cdot 102060 = 1$

Hier nur Teilproblem "d ermitteln" dargestellt

Euklidischer Algorithmus zur Bestimmung des ggT

Erweiterter Euklidischer Algorithmus

$$47^{-1} \equiv 4343 \mod 102060$$

• Teilaufgabe 2: Entschlüsseln Sie den gegebenen Schlüsseltext, unter Verwendung der Basiswerte p=271, q=379, e=47. (Pflicht)

Ergebnis:

Fuer die GSS-Klausur sind folgende Themen wichtig:
Angreifermodelle, Schutzziele, Rainbow Tables, die
(Un-)Sicherheit von Passwoertern und dazugehoerige
Angriffe, Zugangs- und Zugriffskontrolle, Timing-Attack
und Power-Analysis, Biometrische Verfahren, Grundlagen
der Kryptographie, das RSA-Verfahren,
Authentifikationsprotokolle und natuerlich alle anderen
Inhalte, die wir in der Uebung und der Vorlesung
behandelt haben :-)