

B1 - Analysis

1.1 ▶ Parameter nennen

Die Parameter T_R und T_0 kannst du aus dem Aufgabentext ablesen. Die Raumtemperatur ist $T_R=30$ und zu Beginn, also nach Entnahme aus dem Kühlschrank, hat das Wasser die Temperatur $T_0=8$.

► Parameter k berechnen

Setze T_R und T_0 , sowie die Temperatur w(t) und die Zeit t nach T_0 Minuten, also t=10 und T_0 und T_0 in die Gleichung ein und löse nach T_0 und T_0 und

$$21,9 = 30 - (30 - 8) \cdot e^{-k \cdot 10}$$
 $21,9 = 30 - 22 \cdot e^{-10k}$ | -30
 $-8,1 = -22 \cdot e^{-10k}$ | : (-22)
 $\frac{8,1}{22} = e^{-10k}$ | In()
 $\ln\left(\frac{8,1}{22}\right) \approx -10k$ | : (-10)
 $\frac{\ln\left(\frac{8,1}{22}\right)}{-10} \approx k$
 $0,0999 \approx k$

Für die Funktionsgleichung gilt somit:

$$w(t) = 30 - 22 \cdot e^{-0.0999k}$$

1.2 Prozentuale Zunahme berechnen

Das Wasser hat sich in den ersten 10 Minuten um 21, 9 - 8 = 13, 9 Grad erwärmt. Berechne also 13, 9 von 8 in Prozent:

$$\frac{13,9}{8} = 174 \%$$

1.3 Integral berechnen und erläutern

Für das Integral gilt:

$$\frac{1}{10} \cdot \int_{0}^{10} \left(30 - 22 \cdot e^{-0.1t}\right) dt = \frac{1}{10} \cdot \left[30t + \frac{22}{0.1} \cdot e^{-0.1t}\right]_{0}^{10}$$

$$= \frac{1}{10} \cdot \left(300 + 220 \cdot e^{-1} - 220\right)$$

$$\approx 16,09$$

Das Wasser hatte in den ersten 10 Minuten eine durchschnittliche Temperatur von 16,09°C.

1.4 Frenzwert begründen und erläutern

Betrachte den Funktionsterm für $t \to \infty$. Da

$$\lim_{t o \infty} e^{-t} = 0$$

gilt, gilt für die gesamte Funktion

$$\lim_{t o \infty} \left(30 - 22 \cdot e^{-0.1t}\right) = 30 - 22 \cdot 0 = 30$$

Im Sachzusammenhang gibt der Grenzwert die Temperatur des Wassers nach unendlich langer Zeit an. Das Wasser passt sich also der Raumtemperatur an und wird nach genügend langer Zeit näherungsweise 30° C annehmen.

1.5 Halbierte Erwärmungsgeschwindigkeit berechnen

Die Erwärmungsgeschwindigkeit kannst du mithilfe der ersten Ableitung berechnen:

$$w'(t) = -22 \cdot (-0, 1 \cdot e^{-0,1t}) = 2, 2 \cdot e^{-0,1t}$$

Zu Beginn, bei t=0, beträgt die Erwärmungsgeschwindigkeit:

$$w'(0)=2,2~rac{{
m ^{\circ}C}}{\min}$$

Berechne jetzt den Zeitpunkt, bei welchem $w^\prime(t)=1,1$ ist:

$$egin{array}{lll} 1,1&=&2,2\cdot e^{-0,1t}&&|:2,2\ 0,5&=&e^{-0,1t}&&|\ln(0)\ \ln(0,5)&=&-0,1t&&|:(-0,1)\ \end{array}$$

$$6,93 \approx t$$

Nach 6,93 Minuten hat sich die Erwärmungsgeschwindigkeit halbiert.

▶ Verlauf der Erwärmungsgeschwindigkeit zeigen

Weil die e-Funktion immer positiv ist $(e^x>0)$ muss auch die Ableitungsfunktion w'(t) immer positiv sein:

$$w'(t) = 2, 2 \cdot e^{-0,1t} > 0$$

Damit hast du gezeigt, dass die Erwärmungsgeschwindigkeit nie null wird.

Die Ableitung w'' beschreibt die Änderungsrate der Erwärmungsgeschwindigkeit. Da

$$w''(t) = -0,22 \cdot e^{-0,1t} < 0$$

ist, nimmt w' streng monoton ab. Die Erwärmungsgeschwindigkeit nimmt also immer ab, bleibt aber positiv.

1.6 ▶ Begrenztes Wachstum zeigen

Setze k=0,1, die Schranke S=30 und die Funktion f(t)=w(t) in die Gleichung ein:

$$f'(t) = 0, 1 \cdot (30 - (30 - 22 \cdot e^{-0.1t}))$$

$$= 2, 2 \cdot e^{-0.1t}$$

$$= w'(t)$$

Da du die richtige Ableitung erhältst, hast du gezeigt, dass die Funktion w ein begrenztes Wachstum beschreibt.

Im Sachzusammenhang beschreibt k=0,1=10~% die Erwärmungsgeschwindigkeit zu jedem Zeitpunkt mit jeweiliger Temperaturdifferenz zwischen Wasser- und Raumtemperatur. Das Wasser erwärmt sich also immer um 10~% dieser Temperaturdifferenz.

2.1

Zeigen, dass alle Graphen dieselbe Nullstelle haben

$$f_n(x) = 0$$
 $(x+1)^n \cdot \mathrm{e}^x = 0$ $(x+1)^n = 0$ $x = -1$

Die Nullstelle ist also unabhängig von n.

$$f_n(0)=1^n\cdot \mathrm{e}^0=1$$

Der y-Achsenabschnitt ist also unabhängig von n.

Schnittpunkte angeben

$$S_x(-1 \mid 0), S_y(0 \mid 1)$$

2.2 ▶ Begründen

Es gilt $\lim_{x\to -\infty} {\bf e}^x = {\bf 0}$. Da der Faktor ${\bf e}^x$ das Verhalten der Graphen der Funktionenschar für $x\to -\infty$ dominiert, nähern sich die Graphen der x-Achse an.

▶ Unterschied erklären

Ob die Annäherung eines Graphen der Funkionenschar an die x-Achse aus dem zweiten oder aus dem dritten Quadranten erfolgt, hängt vom Faktor $(x+1)^n$ ab.

Für gerade n strebt für $x \to -\infty$ der Faktor $(x+1)^n$ gegen ∞ ; somit erfolgt die Annäherung aus dem zweiten Quadranten.

Für ungerade n strebt für $x \to -\infty$ der Faktor $(x+1)^n$ gegen $-\infty$; somit erfolgt die Annäherung aus dem dritten Quadranten.

2.3
$$f'_n(x) = n \cdot (x+1)^{n-1} \cdot e^x + (x+1)^n \cdot e^x$$

$$= n \cdot (x+1)^{n-1} \cdot e^x + (x+1) \cdot (x+1)^{n-1} \cdot e^x + (x+1)^{n-1} \cdot e^x + (x+1)^{n-1} \cdot e^x$$

$$= (n+x+1) \cdot (x+1)^{n-1} \cdot e^x$$

$$= (x+1+n) \cdot f_{n-1}(x)$$

2.4 Mögliche Extremstellen bestimmen

$$f_n'(x) = 0$$
 $(x+1+n)\cdot(x+1)^{n-1}\cdot \mathrm{e}^x = 0$ $x+1+n = 0 \quad \lor \quad (x+1)^{n-1} = 0$

Also muss $x=-n-1 \lor x=-1$ sein. Die möglichen Extremstellen von f_n sind also $x_1=-n-1$ und $x_2=-1$.

Skalierung angeben

▶ Parameter *n* bestimmen

Die x-Koordinaten des Hochpunktes und des Tiefpunktes kannst du ablesen.

Hochpunkt bei
$$x=-3$$
, damit gilt: $-n-1=-3 \Leftrightarrow n=2$
Tiefpunkt bei $x=-4$, damit gilt: $-n-1=-4 \Leftrightarrow n=3$

Graph I gehört zum Parameterwert n=2, Graph II gehört zu n=3.

2.5 ► Aussage begründen

Der Funktionsterm der ersten Ableitungsfunktion lautet:

$$f_n'(x)=(n+x+1)\cdot(x+1)^{n-1}\cdot\mathrm{e}^x$$

In der Nähe von x=-1 ist der Faktor (n+x+1) positiv, da n>0. Ebenfalls ist ${\rm e}^x>0$, also positiv. Somit genügt es, den Faktor $(x+1)^{n-1}$ zu betrachten.

Dieser Faktor hat an der Stelle x=-1 für gerade Werte von n eine Nullstelle mit Vorzeichenwechsel (Extrempunkt) und für ungerade Werte von n eine Nullstelle ohne Vorzeichenwechsel (Sattelpunkt).