Reinforcement Machine Learning on OpenAl's Lunar Lander

By Amrit Banga, Cole Clark, and Grant Erickson

Problem

- How effectively could reinforcement machine learning models perform on OpenAl's Lunar Lander environment?
- How would this performance compare to pre existing ML algorithms and human testing?

Solution

- Develop Three ML algorithms:
 - Q-Learning
 - Deep Q-Network (DQN)
 - Advantage Actor-Critic (A2C)
- Train the models over the Lunar Lander environment
- Analyze each of the algorithms performance
- Compare that performance to pre existing algorithms and human performance
 - Proximal Policy Optimization (PPO)

Lunar Lander Environment

- Action space
 - Do nothing
 - Fire left engine
 - Fire main engine
 - Fire right engine
- Observation space
 - X and y coordinates
 - X and y velocities
 - Angle
 - Angular velocity
 - Booleans to indicate whether the legs are touching the ground

Lunar Lander Environment

Rewards

- Moving closer to the landing pad
- Moving slowly
- 10 points for each leg touching the ground
- 100 points for landing safely

Penalties

- Moving away from the landing pad
- Moving too fast
- Not staying horizontal
- -0.03 for firing side engine
- -0.3 for main engine firing
- -100 for crashing
- 200+ points is considered a successful landing

Q Learning Description

- Keeps weights for each state action pair
 - A state is the observation space (8 float values)
- Updates weights based on the result of taking an action
- Problems
 - Too many states since modifying one number by a small amount creates a new state
 - The agent may only try one action from a state without exploring
- Solutions
 - Round each value in the observation space to nearest whole number
 - Choose some random actions while training (decrease odds of random action over time)

Q Learning Results

DQN Description

- How does it work?
 - Interaction is made with the environment
 - Agent stores the its experiences in a replay buffer
 - Use a two neural network system
 - Main network
 - Target network
- Problems
 - Training is computationally expensive and therefore slow
- Solutions
 - Prioritized Experience Replay
 - Added Reward Scaling

DQN Results

A2C Description

How It Works:

- Actor chooses actions; Critic evaluates how good those actions are.
- Uses Advantage Estimation to decide if an action is better than average.

Problems:

- Actions can have high variance, making training unstable.
- Hard to balance exploring new actions vs. using what's already known.
- Sensitive to hyperparameters like learning rate.

Solutions:

- Use Advantage Normalization to stabilize training.
- Add Entropy to encourage exploration.
- Clip Gradients to prevent extreme updates.

A2C Results

PPO Description

- Our PPO is modified from Costa Huang's tutorial to work on the lunar lander environment
 - O https://github.com/vwxyzjn/ppo-implementation-details/blob/main/ppo.py
- Very similar to A2C but improves on it and other older methods
- Differences
 - o PPO always includes clipping when calculating loss while some A2C algorithms might not
 - A2C is often simpler than PPO
 - More stable and efficient

PPO Results

Algorithm Comparison

Link to Code

https://github.com/cole853/CPTS437_project