Architetture degli elaboratori	Matricola:
Prova pratica 07-Set-2018 (90 minuti)	Cognome:Nome:
I) Siano A = $(a_1 \ a_0)$ e B = $(b_1 \ b_0)$ due numeri bina funzione booleana F(A,B) che è vera se $(A \times B) + C$ ritmetici e non logici). Si scriva la tabella di verità espressione booleana e si disegni il relativo circuito digi	$1 \ge 4$ (dove i simboli \times , + rappresentano operato di F, si determini e si semplifichi la corrispondent
Procedimento	
	Espressione booleana semplificata
	Circuito digitale semplificato
	Circuito digitale semprimento
2) Siano x , y e z le ultime tre cifre della propria matrico	ola in base 10 (esempio: matricola $3465 \rightarrow x = 5$, y
6 e z = 4). Calcolare il tempo impiegato (in <u>nanosecor</u>	ndi) da una CPU operante a 4, x GHz per eseguire u
frammento di programma composto da: $(y + 1)$ son	
sapendo che i tre tipi di istruzioni richiedono rispettiva (CPI).	amenie $(x + 3)$, $(y + 9)$ e $(z + 13)$ eich un datapa
Risultato (in ns) Procedimento	

ponendo nelle caselle x, y, w e z le α matricola 3465 $\rightarrow x=5$, y=6, w=4, z=3).

Numero formato IEEE (in esadecimale)

4	5	w	x	z	у	0	0	=															
---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

4) Dato il seguente programma in linguaggio assembly, indicare (in esadecimale) il valore delle variabili Ris1, Ris2, Ris3, Ris4 e Ris5 al termine dell'esecuzione. Il programma è suddiviso in 5 frammenti tra loro indipendenti.

```
unsigned short int Mat=...;
                               //INSERIRE QUI LE 4 CIFRE MENO SIGNIFICATIVE DELLA
                                 PROPRIA MATRICOLA (trattandole come numero decimale)
                                              // Vettore di 100 BYTE
unsigned char Vet [100];
unsigned short Ris1, Ris2, Ris3, Ris4, Ris5;
                                              // WORD
     XOR ECX, ECX
     MOV CX, Mat
     MOV AX, CX
     AND CX,0007h
     ADD CX,8
     SUB DX, DX
     DEC DX
L1:
     XOR AX, DX
     LOOP L1
                                                                 Ris1=
     INC AX
     MOV Ris1, AX
// -----
     MOV AX, Mat
     AND AL, AH
     AND AL,0100b
     JNZ L2
     INC AL
     JMP L3
L2:
     SUB AL, -7
                                                                 Ris2=
     MOV Ris2, AX
L3:
// -----
     MOV AX, Mat
     LEA ESI, Vet
     MOV [ESI+10], AX
     SHL AX, 4
     MOV [ESI+12], AX
     MOV ECX, 4
L4:
     MOV AH, [ESI+ECX+9]
     MOV [ESI+ECX+20], AH
     LOOP L4
     MOV AH, [ESI+24]
                                                                 Ris3=
     XOR AL, AL
     MOV Ris3, AX
     MOV AX, Mat
     AND AX,00FFh
     OR AX,0100h
     MOV BL, 7
     DIV BL ; Divis. senza segno di AX per r/m8: ris. in AL, resto in AH
     MOV Ris4, AX
                                                                 Ris4=
     MOV AX, Mat
     MOV BL, -2
     AND BL, 6Fh
     XOR BL, OF6h
     SHR AX,4
     OR AL, 7
     AND AX,007Fh
     MOV BL, -3
     IMUL BL
                 ; Moltiplic. con segno di AL per r/m8: ris. in AX
     MOV Ris5, AX
                                                                 Ris5=
```

Architetture degli elaboratori	Matricola:	
Prova teorica 07-Set-2018 (30 minuti)	Cognome:	Nome:
1) Descrivere brevemente la codifica digitale di	un'immagine a live	lli di grigio.
2) Una CPU moderna (es. Intel Core I7) che e termini di prestazioni?	ordine di grandezza	a (GigaFlops) raggiunge in
termin di prestazioni:		
3) Elencare i tipi di RAM e per ciascuno indicar	re l'utilizzo tipico.	

4) Quali sono le principali tipologi	e di architetture parall	lele?	
	P. C.		
5) Descrivere (eventualmente med	iante un esempio) che	cos'à il fatch della i	struzioni
5) Descrivere (eventualmente med.	iance un esempio) ene	cos e il letell delle l	SHUZIOIII.
6) L'onda quadra in figura è il se lavoro del sistema in MHz.	egnale di clock di un	calcolatore. Indicar	re la frequenza di
T1	T1 = (200 nanosecon	+ ultima cifra vostra m ndi	atricola)
2×T1	Frequenza =		MHz