

### **UNIVERSIDAD PRIVADA DE TACNA**

# **FACULTAD DE INGENIERÍA**

# Escuela Profesional de Ingeniería de Sistemas

# Sistema de Monitoreo y Gestión de Red para Laboratorios UPT (SIMGR-UPT)

Curso: Inteligencia de Negocios

Docente: Mag. Patrick Cuadros Quiroga

# Integrantes:

- Escobar Rejas, Carlos Andrés (2021070016)
  - Apaza Ccalle, Albert Kenyi (2021071075)
  - Cutipa Gutierrez, Ricardo (2021069827)
  - Churacutipa Blass, Erick (2020067578)
- Huallpa Maron, Jesús Antonio (2021071085)

Tacna - Perú

2024

# Sistema de Monitoreo y Gestión de Red para Laboratorios UPT (SIMGR-UPT)\*

# Documento de Especificación de Requerimientos de Software

Versión {1.0}

# **CONTROL DE VERSIONES**

| Versión | Hechapor | Revisada por | Aprobada por | Fecha      | Motivo           |
|---------|----------|--------------|--------------|------------|------------------|
| 1.0     | CER      | RDCG         | AAC          | 18/11/2024 | Versión Original |

#### **NDICE GENERAL**

#### 1. INTRODUCCIÓN

- o 1.1. Propósito (Diagrama 4+1)
- o 1.2. Alcance
- o 1.3. Definición, siglas y abreviaturas
- o 1.4. Organización del documento

# 2. OBJETIVOS Y RESTRICCIONES ARQUITECTÓNICAS

- o 2.1. Requerimientos Funcionales
- o 2.2. Requerimientos No Funcionales Atributos de Calidad

# 3. REPRESENTACIÓN DE LA ARQUITECTURA DEL SISTEMA

- o 3.1. Vista de Caso de uso
  - 3.1.1. Diagramas de Casos de uso
- o 3.2. Vista Lógica
  - 3.2.1. Diagrama de Subsistemas (paquetes)
  - 3.2.2. Diagrama de Secuencia (vista de diseño)
  - 3.2.3. Diagrama de Colaboración (vista de diseño)
  - 3.2.4. Diagrama de Objetos
  - 3.2.5. Diagrama de Clases
  - 3.2.6. Diagrama de Base de datos (relacional o no relacional)
- o 3.3. Vista de Implementación (vista de desarrollo)
  - 3.3.1. Diagrama de arquitectura software (paquetes)
  - 3.3.2. Diagrama de arquitectura del sistema (Diagrama de componentes)
- 3.4. Vista de procesos
  - 3.4.1. Diagrama de Procesos del sistema (diagrama de actividad)
- o 3.5. Vista de Despliegue (vista física)
  - 3.5.1. Diagrama de despliegue

#### 4. ATRIBUTOS DE CALIDAD DEL SOFTWARE

- o Escenario de Funcionalidad
- o Escenario de Usabilidad
- o Escenario de Confiabilidad
- o Escenario de Rendimiento
- o Escenario de Mantenibilidad
- Otros Escenarios

### INTRODUCCIÓN

### 1.1 Propósito (Diagrama 4+1)

Con la incorporación de nuevas tecnologías y servicios, el propósito del sistema SIMGR-UPT evoluciona para incluir capacidades de procesamiento y análisis de datos basadas en la nube. Estas adiciones permiten:

Automatización del flujo de datos: Desde la extracción de datos hasta la generación de reportes listos para análisis en Power BI. Escalabilidad en el procesamiento: Uso de servicios como AWS Lambda y Athena para manejar grandes volúmenes de datos de red sin afectar el rendimiento. Integración continua: La incorporación de AWS IAM Roles, Lambda y S3 garantiza la interoperabilidad entre los servicios, mientras que Power BI permite una visualización interactiva y dinámica de los datos. El nuevo flujo incluye:

- Repositorio (IAM Role): Los archivos CSV se almacenan en un repositorio.
- Procesamiento (Lambda): Los scripts en Python se ejecutan automáticamente en AWS Lambda para procesar los datos.
- Almacenamiento (S3 Bucket): Los datos procesados se almacenan en un bucket
  S3.
- Configuración (Glue Crawler): AWS Glue configura automáticamente los datos recibidos y genera tablas de metadatos.
- Consulta (Athena): Las tablas se consultan mediante SQL en Athena.
- Visualización (Power BI): Los resultados procesados se integran con Power BI para una visualización avanzada y generación de informes.

Estas mejoras refuerzan la funcionalidad del sistema y lo alinean con estándares modernos de arquitectura de datos, asegurando un flujo continuo desde la recopilación hasta el análisis.

### 1.2 Alcance

El sistema ahora incluye los siguientes componentes clave:

**Repositorio inicial**: Recepción de datos en formato CSV desde distintas fuentes. **AWS Lambda**: Ejecución automatizada de scripts en Python para procesar los datos de red.

**AWS S3 y Glue**: Almacenamiento y configuración automática de los datos, generando tablas para consulta y análisis.

**AWS Athena**: Plataforma de consulta para procesar los datos mediante SQL y generar métricas clave.

Power BI: Visualización avanzada e interactiva de los datos.

El alcance sigue centrado en el análisis del desempeño de la red en los laboratorios, pero ahora abarca:

Automatización del flujo de datos en la nube. Mayor capacidad para manejar volúmenes crecientes de datos y nuevos requisitos. Se omiten vistas o componentes que no estén

alineados con este enfoque, como integraciones directas con hardware físico o desarrollo de aplicaciones móviles.

# 1.3 Definición, siglas y abreviaturas

| Término/Acrónimo | Definición                                                                                     |  |
|------------------|------------------------------------------------------------------------------------------------|--|
| IAM Role         | Rol de identidad y acceso en AWS que otorga permisos pa interactuar con recursos en la nube.   |  |
| Lambda           | Servicio sin servidor de AWS que ejecuta scripts en respuesta a eventos.                       |  |
| S3 Bucket        | Servicio de almacenamiento en la nube de AWS utilizado para guardar y recuperar datos.         |  |
| Glue Crawler     | Herramienta de AWS Glue que escanea datos y genera automáticamente metadatos para su análisis. |  |
| Athena           | Servicio de consultas SQL sin servidor en AWS que permite explorar datos almacenados en S3.    |  |
| Power BI         | Herramienta de Microsoft para la visualización interactiva y generación de informes.           |  |
| CSV              | Formato de archivo que almacena datos tabulares separados por comas.                           |  |

# 1.4 Organización del documento

El documento incluye ahora los nuevos flujos y tecnologías integrados en el sistema, con la siguiente estructura:

- INTRODUCCIÓN: Contexto del proyecto, propósito, alcance y definiciones clave.
- OBJETIVOS Y RESTRICCIONES ARQUITECTÓNICAS: Actualizado para incluir los nuevos servicios y tecnologías implementados.
- REPRESENTACIÓN DE LA ARQUITECTURA DEL SISTEMA: Diagramas UML actualizados, como diagramas de flujo de datos, vistas lógicas, de procesos y físicas.
- ATRIBUTOS DE CALIDAD DEL SOFTWARE: Evaluación del impacto de las nuevas tecnologías en la funcionalidad, confiabilidad y rendimiento.
- CONCLUSIONES Y RECOMENDACIONES: Beneficios de la integración con AWS y sugerencias para futuras mejoras.

### **OBJETIVOS Y RESTRICCIONES ARQUITECTÓNICAS**

### 2.1 Requerimientos Funcionales

| ID  | Descripción                                                           | Prioridad |  |
|-----|-----------------------------------------------------------------------|-----------|--|
| RF- | Monitorear el uso del tráfico de red de los equipos.                  | Alta      |  |
| 01  |                                                                       |           |  |
| RF- | Generar reportes detallados y personalizables sobre el rendimiento    |           |  |
| 02  | de los equipos y patrones de uso.                                     |           |  |
| RF- | Detectar, notificar y registrar anomalías en el rendimiento de los    | Alta      |  |
| 03  | recursos tecnológicos.                                                |           |  |
| RF- | Exportar datos en formatos compatibles con Tableau (CSV, Excel) y     | Alta      |  |
| 04  | JSON.                                                                 |           |  |
| RF- | Almacenar datos históricos para análisis a largo plazo y comparativas | Alta      |  |
| 05  | de rendimiento.                                                       |           |  |
| RF- | Proporcionar un panel de control interactivo para visualizar datos    | Alta      |  |
| 06  | clave.                                                                |           |  |
| RF- | Permitir la integración con otros sistemas de gestión de la           | Media     |  |
| 07  | universidad mediante API REST.                                        |           |  |

# 2.2 Requerimientos No Funcionales – Atributos de Calidad

| ID         | Descripción                                                                                                     | Prioridad |
|------------|-----------------------------------------------------------------------------------------------------------------|-----------|
| RNF-<br>01 | El sistema debe ser compatible con sistemas operativos Windows y distribuciones de Linux.                       | Alta      |
| RNF-<br>02 | La interfaz debe ser intuitiva y accesible desde navegadores web modernos.                                      | Alta      |
| RNF-<br>03 | Los datos recolectados deben estar protegidos mediante protocolos de seguridad.                                 | Alta      |
| RNF-<br>04 | La solución debe ser escalable para nuevos laboratorios sin comprometer el rendimiento.                         | Alta      |
| RNF-<br>05 | El tiempo de respuesta para operaciones críticas debe ser menor a 2 segundos.                                   | Alta      |
| RNF-<br>06 | El almacenamiento debe incluir respaldo automático y procedimientos de recuperación ante fallos.                | Alta      |
| RNF-<br>07 | El consumo de recursos del sistema debe ser mínimo para no afectar el rendimiento de los equipos monitorizados. | Media     |

#### 2.3 Restricciones

### Restricciones Tecnológicas

- El sistema debe ser implementado utilizando servicios de AWS, como Lambda, S3, Glue, y Athena, para el procesamiento y almacenamiento de datos.
- El script de monitoreo debe desarrollarse en Python y ejecutarse en un entorno sin servidor (AWS Lambda).
- Las métricas y reportes generados deben ser compatibles con herramientas de visualización como Power BI y Tableau.
- El sistema debe ser compatible únicamente con sistemas operativos Windows y distribuciones de Linux en los laboratorios de la universidad.

#### Restricciones de Infraestructura

- El almacenamiento de datos debe estar centralizado en un bucket S3 de AWS y seguir las políticas de gestión de datos definidas por la UPT.
- Las computadoras de los laboratorios deben tener conectividad constante con la red universitaria para garantizar la recolección continua de datos.
- La infraestructura de red existente en los laboratorios debe soportar el flujo de datos requerido para la recolección y transmisión hacia AWS.

### Restricciones de Seguridad

- El acceso al sistema debe estar limitado a personal autorizado, utilizando autenticación basada en IAM Roles de AWS.
- Los datos recolectados y procesados deben cumplir con la Ley de Protección de Datos Personales de Perú (Ley N° 29733).
- Todas las transmisiones de datos entre los componentes del sistema deben estar cifradas mediante HTTPS y TLS.

### **Restricciones Financieras**

- El presupuesto asignado debe contemplar el uso de servicios en la nube de AWS bajo el modelo de pago por uso, evitando costos innecesarios.
- No se debe adquirir infraestructura física adicional; el proyecto debe operar completamente sobre soluciones en la nube.

#### Restricciones de Tiempo

- La implementación inicial del sistema debe completarse en un período de seis meses, incluyendo el desarrollo, pruebas y despliegue.
- Las fases de pruebas deben garantizar un tiempo máximo de inactividad de los servicios menor al 5% del tiempo total del proyecto.

#### **Restricciones Operativas**

- El sistema debe operar sin interrupciones en horarios laborales (de 8:00 AM a 8:00 PM), con disponibilidad mínima del 95%.
- El panel de control y reportes deben estar disponibles con un tiempo de respuesta rápido para consultas críticas.

#### Restricciones de Escalabilidad

- El sistema debe ser capaz de integrar nuevos laboratorios o áreas sin necesidad de rediseñar la arquitectura base.
- El flujo de datos debe manejar un crecimiento del 50% en el volumen de métricas recolectadas durante los próximos dos años.

# REPRESENTACIÓN DE LA ARQUITECTURA DEL SISTEMA

#### 3.1 Vista de Caso de uso

La vista de caso de uso describe las principales funcionalidades del sistema desde la perspectiva de los actores involucrados y las interacciones con el sistema. Estos casos de uso representan el núcleo funcional del sistema SIMGR-UPT (Sistema de Monitoreo y Gestión de Red de la UPT).

#### **Actores**

### 1. Técnico de Soporte:

- o Responsable del monitoreo de las métricas de red.
- o Detecta y soluciona problemas de conectividad utilizando las alertas generadas por el sistema.
- o Genera reportes personalizados para analizar tendencias y patrones de uso.

### 2. Administrador del Sistema:

- Configura y administra el sistema, incluyendo usuarios, permisos y parámetros operativos.
- Supervisa el almacenamiento de datos históricos y la integración con otros sistemas.
- Utiliza reportes analíticos para planificar mejoras y estrategias de mantenimiento.

#### 3. Estudiante/Usuario Final:

- Beneficiario indirecto de un sistema de red optimizado.
- Reporta problemas de conectividad al técnico de soporte.

#### Casos de Uso Principales

### 1. CU01: Monitorear Estado de la Red

 Descripción: El técnico de soporte accede al sistema para monitorear las métricas de red, como velocidad, uso de ancho de banda y conexiones activas.

### Flujo Principal:

- a. El técnico inicia sesión en el sistema.
- b. Accede al dashboard para visualizar las métricas de red.
- c. Identifica posibles problemas mediante alertas visuales.
- d. Realiza acciones correctivas según sea necesario.
- o Actor Principal: Técnico de Soporte.
- Precondición: El sistema debe estar operativo, y las métricas de red deben ser accesibles.

### 2. CU02: Generar Reportes de Uso

 Descripción: Permite al técnico o administrador generar reportes detallados sobre el desempeño de la red.

### Flujo Principal:

- a. El usuario selecciona el rango de fechas y las métricas deseadas.
- b. El sistema procesa los datos y genera un informe personalizado.
- c. El usuario descarga el informe en formato CSV o Excel.
- o **Actor Principal:** Técnico de Soporte, Administrador del Sistema.
- Precondición: Los datos históricos deben estar almacenados y organizados.

### 3. CU03: Configurar Dashboard

 Descripción: El administrador personaliza el dashboard seleccionando las métricas y visualizaciones a mostrar.

#### Flujo Principal:

- a. El administrador accede a la configuración del dashboard.
- b. Selecciona y organiza los widgets y gráficos.
- c. Guarda los cambios y visualiza una vista previa.
- o Actor Principal: Administrador del Sistema.
- Precondición: El administrador debe tener permisos suficientes para realizar cambios en el sistema.

### 4. CU04: Exportar Datos

 Descripción: Permite exportar datos procesados a formatos estándar para integrarlos con otras herramientas, como Power BI.

### Flujo Principal:

- a. El usuario selecciona los datos y el formato de exportación (CSV, JSON, Excel).
- b. El sistema genera el archivo y lo descarga en el dispositivo.
- o **Actor Principal:** Técnico de Soporte, Administrador del Sistema.
- Precondición: Los datos deben estar disponibles en el sistema.

### 3.1.1 Diagramas de Casos de uso

El siguiente diagrama muestra una visión global de las interacciones entre los actores principales (Técnico de Soporte, Administrador del Sistema y Estudiante) y las funcionalidades clave del sistema **SIMGR-UPT**:



### Descripción de los Escenarios

### 1. Monitorear Estado de la Red (CU01):

- o Actor Principal: Técnico de Soporte.
- Descripción: Permite supervisar las métricas de red y recibir alertas sobre posibles problemas.
- Relaciones: Incluye casos de uso secundarios, como detección de anomalías y generación de alertas automáticas.

### 2. Generar Reportes de Uso (CU02):

- o **Actor Principal:** Técnico de Soporte, Administrador del Sistema.
- Descripción: Generación de informes detallados sobre métricas de red y patrones históricos para análisis posterior.
- Relaciones: Extiende la funcionalidad del monitoreo con la opción de analizar datos históricos.

### 3. Configurar Dashboard (CU03):

o Actor Principal: Administrador del Sistema.

- Descripción: Permite personalizar la visualización del sistema seleccionando métricas clave y gráficos relevantes.
- Relaciones: Relacionado con la vista y manipulación de datos del sistema.

### 4. Exportar Datos (CU04):

- o **Actor Principal:** Técnico de Soporte, Administrador del Sistema.
- Descripción: Permite exportar los datos en formatos como CSV, Excel o JSON para análisis externo.
- o **Relaciones:** Complementa los reportes y análisis con opciones de integración con otras herramientas.

# 3.2 Vista Lógica

El siguiente diagrama de paquetes muestra los límites del sistema, organizando los componentes principales y las entidades que interactúan con él:



### Descripción

### 1. Capa de Presentación:

 Contiene la interfaz del usuario, como el dashboard interactivo para monitorear métricas y generar reportes. o Incluye la integración con Power BI para la visualización de datos.

### 2. Capa de Aplicación:

- Gestiona la lógica de negocio y las interacciones entre los usuarios y el sistema.
- o Procesa solicitudes para monitorear métricas y ejecutar scripts.

### 3. Capa de Datos:

- o Responsable del almacenamiento y manejo de datos históricos en AWSS3.
- o Incluye Glue y Athena para la configuración y consulta de datos.

#### 4. Servicios Externos:

- o AWS Lambda para ejecutar scripts en Python.
- o IAM Roles para gestionar permisos y accesos.

### 3.2.1 Diagrama de Subsistemas (paquetes)

El diagrama de subsistemas ilustra los límites del sistema **SIMGR-UPT** y las entidades internas y externas que interactúan con él. Esta vista ayuda a delimitar claramente las responsabilidades de cada componente y su interacción con los servicios externos.

### Descripción del Diagrama

#### 1. Límite del Sistema:

- El sistema está compuesto por tres capas principales:
  - Capa de Presentación: Interfaz de usuario que incluye el dashboard y Power BI para visualización de datos.
  - Capa de Aplicación: Gestión de la lógica del negocio y coordinación de operaciones mediante AWS Lambda.
  - Capa de Datos: Manejo de datos utilizando S3 para almacenamiento, Glue para configuración y Athena para consultas.

#### 2. Interacción con Entidades Externas:

- Servicios Externos (IAM Roles): Autorizan el acceso seguro entre los componentes del sistema.
- Usuarios Finales: Técnicos, administradores y herramientas de análisis interactúan con el sistema mediante Power BI y el dashboard.

# 3. Componentes Principales:

- o **Dashboard:** Proporciona un punto de acceso para usuarios finales.
- AWS Lambda: Ejecuta scripts para procesar los datos recibidos.

### 3.2.2. Diagrama de Secuencia (vista de diseño)



# 3.2.3. Diagrama de Colaboración (vista de diseño)



3.2.4. Diagrama de Objetos



### 3.2.5. Diagrama de Clases



### 3.2.6. Diagrama de Base de datos (relacional o no relacional)

### 3.3 Vista de Implementación (vista de desarrollo)

[Mapa de los subsistemas, paquetes y clases de la Vista Lógica.]

### 3.3.1 Diagrama de arquitectura software (paquetes)

[Descripción de la arquitectura del sistema, distribución y funciones.]

### 3.3.2. Diagrama de arquitectura del sistema (Diagrama de componentes)

### 3.4 Vista de procesos

La vista de procesos descompone el sistema en procesos críticos y describe su interacción. Este enfoque permite identificar las operaciones pesadas y cómo se manejan en el flujo general del sistema.

### 3.4.1 Diagrama de Procesos del sistema



### 3.5 Vista de Despliegue (vista física)

La vista de despliegue muestra la distribución física de los componentes del sistema y la comunicación entre nodos. Refleja cómo los contenedores interactúan dentro de la infraestructura de la nube.

### 3.5.1 Diagrama de despliegue



### ATRIBUTOS DE CALIDAD DEL SOFTWARE

### Escenario de Funcionalidad

#### Evaluación:

El sistema debe cumplir con los requerimientos funcionales, proporcionando monitoreo, generación de reportes y alertas automáticas.

### Descripción:

- 1. Característica: Monitoreo de métricas de red.
- 2. Capacidad: Generar reportes personalizados basados en datos históricos.
- 3. **Requerimiento clave:** Detectar anomalías en el rendimiento y notificar automáticamente a los técnicos.

#### Criterios de éxito:

- Visualización en el Dashboard en menos de 2 segundos.
- Generación de alertas sin retrasos perceptibles.
- Exactitud del 99% en los datos procesados.

#### Escenario de Usabilidad

#### Evaluación:

El sistema debe ser fácil de usar, con una interfaz intuitiva y un tiempo de aprendizaje mínimo para los usuarios.

#### Descripción:

- Facilidad: El Dashboard debe presentar gráficos interactivos y opciones claras para generar reportes.
- 2. **Accesibilidad:** Compatible con navegadores modernos y ajustable para distintos tamaños de pantalla.
- 3. **Soporte:** Incluir documentación y tutoriales básicos para el uso inicial.

#### Criterios de éxito:

- Tiempo de aprendizaje para nuevos usuarios: Menor a 15 minutos.
- Fluidez en la navegación validada por pruebas de usabilidad.
- Acceso a todas las funcionalidades principales en menos de 3 clics.

#### Escenario de Confiabilidad

#### Evaluación:

El sistema debe garantizar la disponibilidad, integridad y confidencialidad de los datos recolectados.

#### Descripción:

- 1. **Disponibilidad:** Mínimo 95% del tiempo operativo.
- Confidencialidad: Uso de IAM Roles y cifrado de datos.
- 3. **Integridad:** Garantizar que los datos recolectados no sean alterados durante el procesamiento.

# Criterios de éxito:

- Respuesta del sistema garantizada incluso durante picos de tráfico.
- Recuperación automática ante fallos en menos de 5 minutos.
- Validación de autenticación para cada acceso crítico.

#### Escenario de Rendimiento

#### Evaluación:

El sistema debe procesar grandes volúmenes de datos rápidamente y sin afectar el rendimiento general.

### Descripción:

- 1. **Velocidad:** Procesar hasta 10 GB de datos en menos de 10 segundos.
- 2. Eficiencia: Uso óptimo de los recursos de AWS, como Lambda y Glue.

3. **Escalabilidad:** Adaptarse al crecimiento de métricas y usuarios sin pérdida de rendimiento.

### Criterios de éxito:

- Respuesta para consultas en Athena en menos de 2 segundos.
- Uso de recursos menor al 75% en condiciones normales.
- Incremento en capacidad de hasta 50% sin reconfiguración.

#### Escenario de Mantenibilidad

#### Evaluación:

El sistema debe ser fácil de mantener, con soporte para actualizaciones y extensiones.

# Descripción:

- 1. **Extensibilidad:** Permitir agregar nuevos laboratorios sin modificar la estructura base.
- 2. Adaptabilidad: Ajustarse a cambios en los requerimientos de red.
- 3. Servicialidad: Posibilidad de aplicar correcciones y mejoras sin interrupciones.

### Criterios de éxito:

- Aplicación de actualizaciones críticas en menos de 30 minutos.
- Cero interrupciones durante actualizaciones programadas.
- Compatibilidad con nuevas configuraciones sin rediseñar la arquitectura.

### **Otros Escenarios**

[Otros atributos de calidad, como rendimiento o performance.]