A Framework for Dynamic Matching in Weighted Graphs

Aaron Bernstein, Aditi Dudeja, Zach Langley

Rutgers University

Maximum Weight Matching

In Dynamic Setting:

- 1. Process a sequence of changes, maintain a large matching with a small update time.
- 2. Optimize for update time and approximation ratio.

Ingredient 1

Bipartite graphs: $mwm(G) = mcm(\phi(G))$

 $\mathsf{mwm}(G) = \mathsf{mwm}(\mathcal{R}(\phi(G)))$

Our Results

For bipartite graphs, a black box reduction:

 α -approximate T-time bipartite MCM algorithm

 $(1-\epsilon)\cdot \alpha$ -approximate O(T)-time bipartite MWM algorithm

For non-bipartite graphs:

MCM (known)		MWM (known)		MWM (Our results)	
Approx	Time	Approx	Time	Approx	Time
$\frac{1}{2} - \varepsilon$	$\tilde{O}(1)$	$\frac{1}{4} - \varepsilon$	$\tilde{O}(1)$	$\frac{1}{2} - \varepsilon$	$\tilde{O}(1)$
$\frac{2}{3} - \varepsilon$	$O(m^{\frac{1}{4}})$	$\frac{1}{3} - \varepsilon$	$ ilde{O}ig(m^{rac{1}{4}}ig)$	$\frac{2}{3}-\varepsilon$	$ ilde{O}ig(m^{rac{1}{4}}ig)$
$\frac{1}{2} + \Omega(1)$	$Oig(\Delta^\deltaig)$	$\frac{1}{4} + \Omega(1)$	$ ilde{O}ig(\Delta^\deltaig)$	$\frac{1}{3} + \Omega(1)$	$ ilde{O}ig(\Delta^\deltaig)$

Ingredient 2

Assumption: The edge weights are in $\{1,2,3,\cdots,W\}$ where $W=\varepsilon^{-O(\varepsilon)}$.

Ingredient 3

Theorem: Algorithm \mathcal{A}_b that maintains a $(1-\varepsilon)$ -approximation to MWM in time $o(\frac{\Delta \cdot W^2}{\varepsilon^2})$.

Ingredient 4: For Non-Bipartite Graphs

Kernels (unweighted graphs):

- 1. Constant degree subgraphs.
- 2. $\left(\frac{1}{2} \varepsilon\right)$ approximate MCM.
- 3. $\tilde{O}(1)$ update time.

Theorem: If H is a kernel of $\phi(G)$, $\operatorname{mwm}(\mathcal{R}(H)) \geq \left(\frac{1}{2} - \epsilon\right) \cdot \operatorname{mwm}(G).$

Non-Bipartite Algorithm \mathcal{B}_{u} $\begin{array}{c} & & & \\ & &$

Open Questions

- 1. Can we improve dependence on epsilon?
- 2. Can kernels be maintained deterministically?