

Dr. rer. nat. Johannes Riesterer

Kann jeder Mathematik lernen?

Kann jeder Mathematik lernen?

• Mathematik hat ein Motivationsproblem

Kann jeder Mathematik lernen?

- Mathematik hat ein Motivationsproblem
- Jeder kann Mathematik, aber Mathematik unterrichten ist sehr schwer

Kann jeder Mathematik lernen?

- Mathematik hat ein Motivationsproblem
- Jeder kann Mathematik, aber Mathematik unterrichten ist sehr schwer
- Eigeninitiative ist nötig

Was ist Angewandte Mathematik?

• Algorithmen zum Lösen von Problemen.

Was ist Angewandte Mathematik?

- Algorithmen zum Lösen von Problemen.
- Abschätzungen, wie gut und genau die Algorithmen funktionieren.

Was ist Angewandte Mathematik?

- Algorithmen zum Lösen von Problemen.
- Abschätzungen, wie gut und genau die Algorithmen funktionieren.
- Mathematische Grundlagen, auf denen Algorithmen und Abschätzungen basieren.

Was ist Angewandte Mathematik?

- Algorithmen zum Lösen von Problemen.
- Abschätzungen, wie gut und genau die Algorithmen funktionieren.
- Mathematische Grundlagen, auf denen Algorithmen und Abschätzungen basieren.
- Softwaretechnische Aspekte in Bezug auf Implementierung der Algorithmen.

Mathematische Modellierung

Algorithmus Informell

Ein Algorithmus ist eine eindeutige Handlungsvorschrift zur Lösung eines Problems oder einer Klasse von Problemen. Algorithmen bestehen aus endlich vielen, wohldefinierten Einzelschritten.

Angewandte Mathematik Limes

Achilles und die Schildkröte

Figure: Quelle: Wikipedia:

Mehr hier im Video

Paradoxon der Antike

Obwohl Achilles schneller ist, kann er die Schildkröte niemals einholen.

Angewandte Mathematik Limes

Achilles und die Schildkröte infinitessimal betrachtet

Sei so der Vorsprung der Schildkröte zu Beginn des Rennens, to die Zeit, die Achilles benötigt, um so zurückzulegen. Die Schildkröte ist q-mal langsamer als Achilles. Dann holt Achilles die Schildkröte nach der Zeit $t_0 \cdot q$ ein weiteres Mal ein, nach der Zeit $(t_0 \cdot q) \cdot q = t_0 \cdot q^2$ ein drittes Mal usw. Mit $q^0 = 1$ ist die Summe aller von Zenon betrachteten Zeiten, die Achilles zurücklegt:

$$t = t_0 \cdot \sum_{n=0}^{\infty} q^n = t_0 \cdot \lim_{n \to \infty} \sum_{k=0}^n q^k = t_0 \cdot \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{t_0}{1 - q}.$$

Mehrdimensionale Differentialrechnung

Figure: Quelle: Wikipedia: https://commons.wikimedia.org/wiki/File:Epsilonschlauch_klein.svg

Mehrdimensionale Differentialrechnung

Konvergenz

Eine Folge (a_n) in \mathbb{R}^n heißt konvergent gegen den Grenzwert $a \in \mathbb{R}^n$, wenn gilt:

$$\forall \varepsilon > 0 \; \exists \; N \in \mathbb{N} \; \forall \; n > N : \; d(a, a_n) < \varepsilon$$

in Worten: Es gibt für jedes beliebige (noch so kleine) ε einen Index N derart, dass für alle Indizes n > N, alle weiteren Folgenglieder, gilt: der Abstand $d(a, a_n)$ ist kleiner als ε .

Normen

$$||x||_1 := |x_1| + |x_2| + \dots + |x_n|$$

$$||x||_2 := \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$||x||_{\infty} := \max_i |x_i|$$

Normen

$$x, y \in \mathbb{R}^n, \ a \in \mathbb{R}$$
$$||x|| = 0 \Leftrightarrow x = 0$$
$$||x + y|| \le ||x|| + ||y||$$
$$||a \cdot x|| = |a|||x||$$

Abstand

$$d(x,y) := ||x - y||$$

Abstand

$$d(x,y) = 0 \Leftrightarrow x = y$$

$$d(x,y) > 0 \Leftrightarrow x \neq y$$

$$d(x,z) \le d(x,y) + d(y,z)$$

Angewandte Mathematik Skalarprodukt

Skalarprodukt

$$\langle x, y \rangle = x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Skalarprodukt

$$||x|| = \sqrt{\langle x, x \rangle}$$

Abstand

$$d(x,y) = 0 \Leftrightarrow x = y$$

$$d(x,y) > 0 \Leftrightarrow x \neq y$$

$$d(x,z) \le d(x,y) + d(y,z)$$

Skalarprodukt

$$\langle x, y \rangle = \frac{\cos(\varphi)}{||x|| \cdot ||y||}$$

Gleitkommazahl

Eine Gleitkommazahl ist eine Zahl z der Form

$$z = ad^e$$
 $a = (\pm) \sum_{i=1}^{l} d^{-l}$ $e \in \{e_{min}, \cdots, e_{max}\} \subset \mathbb{Z}$

Auf einem Computer ist d = 2.

Gleitkommazahl

Beispiel mit d = 10

 $0.314156 \cdot 10^{1}$

Gleitkommazahl

Ist x eine reelle Zahl so gibt es eine Gleitkommazahl fl(x) mit

$$\frac{|x - fl(x)|}{|x|} \le eps := d^{1-l}/2$$

Gleitkommazahl

Für eine exakte Operation $\circ \in \{+,-,\cdot,:\}$ gilt für die entsprechende Ausführung \circ auf einem Computer

$$a \hat{\circ} b = (a \circ b)(1 + \epsilon), \ \epsilon \leq eps$$

Konditionszahl

Die Kondition beschreibt die Abhängigkeit der Lösung eines Problems von der Störung der Eingangsdaten. Die Konditionszahl stellt ein Maß für diese Abhängigkeit dar. Sie beschreibt das Verhältnis von $E:=\{\widetilde{x}\mid ||\widetilde{x}-x||\leq eps||x||\}$ zu $R:=\{f(\widetilde{x})\mid \widetilde{x}\in E\}.$

Kondition eines Problems

Die absolute Konditionierung eines Problems (f,x) ist die Kleinste Zahl κ_{abs} mit

$$||f(x) - f(\widetilde{x})|| \le \kappa_{abs}||x - \widetilde{x}||, \ \widetilde{x} \to x$$

Kondition eines Problems

Die relative Konditionierung eines Problems (f,x) ist die Kleinste Zahl κ_{rel} mit

$$\frac{||f(x) - f(\widetilde{x})||}{||f(x)||} \le \kappa_{rel} \frac{||x - \widetilde{x}||}{||x||}, \ \widetilde{x} \to x$$

Kondition eines Problems

Momentan können wir noch keine Konditionszahlen berechnen. Wir werden später lernen, wie wir sie in vielen Fällen abschätzen können.

Stabilität

Stabilität

Für eine Gleikommarealisierung \hat{f} eines Algorithmus zur Lösung des Problems (f,x) mit relativer Konditionszahl $\kappa_r el$ ist der Stabilitätsindikator definiert als die kleinste Zahl $\sigma \geq 0$ mit

$$\frac{||\hat{f}(\widetilde{x}) - f(\widetilde{x})||}{||f(\widetilde{x})||} \le \sigma \kappa_{rel} eps, \ eps \to 0$$

für alle $\widetilde{x} \in E$

Kondition eines Problems

Der Algorithmus \hat{f} heisst stabil, wenn σ kleiner ist als die Anzahl der hintereinander ausgeführten Elementaroperationen.