Dolgozat

Készítse el a weboldalt a minta alapján!

Feladatok:

Az oldal karakter kódolása legyen utf-8!

Az oldal nyelve legyen magyar!

Oldal címe: Dolgozat_vezetekneved_keresztneved_osztalyod

Hozza létre az index.html-t és a style.css-t. Kösse össze a style.css-t az

index.html-el!

Az oldal forrását a forras.txt-ben találja!

A keretezés a vonalak színe sötétkék

Az oldal háttérszíne szürke!

Az oldal tartalmát kitöltő keret háttérszíne világoskék!

Belső margó: minden oldalról 30px!

Külső margó: 0 automatikus!

Szélesség: 960px!

A szöveg legyen sor kizárt!

Az 1-es címsor alatt jelenjen meg egy dupla 6px vastag sötétkék vonal!

A 2-es címsor minden betűje legyen nagybetűs és a betűk színe sötétkék! Felső és alsó keretet használjon a példa alapján! (szimpla, pöttyözött). 40%os jobb oldali margót használjon!

A képek maximum 200px-esek legyenek szélességre! Figyeljen, hogy a képeknek legyen legalább 20px-es margója! (Ne ússzon rá a szöveg a képre!)

A felsoroláshoz használja a kukac.png-t

A forrás linkre ha rávisszük az egeret akkor a színe változzon sötétkékre! Forrás stílusa: italic

Informatika

DEFINÍCIÓ:

Az informatika önálló tudományág, amely a különböző eszközökkel – de különösen a számítógéppel – megvalósított információkezeléssel, azaz az információ megszerzésével, (gyűjtésével), feldolgozásával, tárolásával, sökszorosításával els továbbításával foglalkozik.

Az informatika az a diszciplina, interdiszciplináris szakterület, amely magába foglalja a szakterületi alkalma: struktúrált és jellegzetességeit, s olyan tudományágakra támaszkodik, mint a számítógép-tudomá információtudomány, információmenedzsment, rendszertervezés, matematika, statisztika, kölcsönhatás ember számítógép között, orvostudomány, nyelvtudomány, lelektan.

ÖNÁLLÓ TUDOMÁNYÁG

Az informatika, mint önálló tudományág megjelenését az 1950-es években a kibernetika és a rendszerelmélet-, majd az 1960-as évek elején a számítógép-tudomány előzte meg. A kibernetika tárgyát a különbőz endszerekben ervényesülő vezérlés, a rendszerelmélet tárgyát a különbőző rendszerek általános törvényszerűségei, mig a számítógép-tudomány tárgyát maga a számítógép-tudomány tárgyát kelyezte, leltéve képezi.

€0	sem a számítógép-tudománnyal (computer science), amelynek tárgyát
	maga a számítógép, mint eszköz képezi, szemben az informatikával,
	amely más információkezelő eszközőket (így például telefont, telefaxot
	stb.), sőt annak társadalmi hatásait is vizsgálja

sem a számítástudománnyal (computing science), amely az informatika matematikal alapjal köré csoportosul, és a számítások alapvető természetének megertésére irányul, mely számos alkalmazáshoz vezet a hatékony algoritmusok elemzésében és tervezésében, valamint a megbizható hardver- és szoftverrendszerek tervezésére és ellenőrzésére szolgáló formális módszerek fejlesztésében

60	sem a kibern	etikával, amely	nemcsak	az informatik	ai rendszerek-,	hanem minden	rendszertipus
			s amely a	szabályozás,	vezérlés, infor	mációfeldolgozás	és továbbítás
	általános törvé	nyeit kutatja					

sem az információtudománnyal, amelynek tárgya az emberi tudás változatos megjelenési formáinak gyűltése, válogatása, tömörítése, gyűjteménnyé szervezése, reprezentációjának elkészítése, tárolása, rendelkezésre bocsátása.

AZ INFORMATIKA RÖVID TÖRTÉNETE

Az informatika történetét a számolást segítő eszközök történetével azonosítják, amely gyakorlatilag egyidős az ember keletkezésével. Az ősember a számoláshoz eleinte az újjatt, később köveket, fonaldarabokat használt, az eredményt a barlang falaba, csontba vagy falapokba vésve rögíztete. Később, a nagyobb számértéskei negjelenésével kialakultak a számrendszerek, és megjelenésvel kialakultak a számrendszerek, és megjelenték a számolást segítő eszközök. Az első líyen eszköz az abakusz (más néven soroban) volt. A számolás történetében a tényleges áttörést a John Napier (1559–1617) által leitt logaritmustűggyény volt. A számolás történetében a tényleges áttörést a John Napier (1559–1617) által leitt logaritmustűggyény Napier-pálcikák, vagy más néven logarifec. Wilhelm Schickard thübingeni csillagász professzor 1623-ban egy egynáshoz illeszkédő fogaskerekekkel működő számológétet tervezett. Ezen – a mai fordulatszámálókhoz hasonló elvű gépen – elvégezhető volt mind a négy alapművelet, amely megkönnyítette a sok számolást lgénylő műveletek elvégzásést.

Az első – szériában gyártott – számológépet 1642–1644 között Blaise Pascal (1623–1662) készítette el, majd Pascal számológépet Gottfried Wilhelm Leibniz (1646–1716) fejlesztette tovább. Ez a gép volt az első, amely közvetlenűl végezte el az osztást és a szorzást, valamint kiegészítő művelte telkül a kivonást. 1833-ban Charles Babbage (1791–1871) belekezdett fő műve, az analítikus gép elkészítésébe. A lyukártya alkalmazásának amerikai üttörője Herman Hollerith (1860–1929) volt, aki egy adatrendező gépet dolgozott ki, melyet népszámláláshoz használt.

Herman Hollerith (1860–1929) volt, aki egy adatrendező gépet dolgozott ki, melyet népszámládshoz használt.

A kéttes számrendszer gondolatával már Leibniz is foglalkozott. A George Boole által kidolgozott Boole-algebrával (1847) együtt ezek a későbbi számolást segítő rendszerek matematikai alapjai. Az elméletben további lépest Jelentett a Turing-gép, amiroli Alan Turing cikke 1937-ben jelent meg. Az Itt leitt matematikai modéli még ma is nagy fortossággal bir az elmeleti niformatikában.

1939-ben készült el Konrad Zuse első nagy sikerű, jelfogókkal működő, mechanikus rendszerű számítógépe, a Z1. Ez a első gép, neyl már a bináris számrendszerre épült. Külön helyezkedett el benne a tár és az aritmetikai eleység, az utasítások bevitelére mikronyelvet alkalmazott. Az 1900-as években a számítógépek fejlődésenek meghatározó személyei közé soroljuk Walladca J. Eckert (1902-1911), valamint Howard H. Alkent (1900-1973). Alken kutatása a számítógépekben alkalmazott aritmetikai elemek számának jelentős növelésén kereszítű a ylukártyás gépek hatkoknyságának növelésére árányutt. Alken és az IBM 1939-ben megállapodást kötött a közős fejlesző murkára, amelynek eredményeképpen 1944-ben elkészült az elektromechanikus elven műkódó Harvard Mark I. A gépet egy papirszalagya sorosan felvítt utasításasoral iehetett vezéreint. A készülék ks. szászsor volt gyorosab, mint egy ő kéz számolókészülek, megállás nékül dolgozott, egy nap alatt hat honapnyi murkát végzett el.

Az első programozható, elektronikus, digitális számítógép az ENIAC (Electronic Numerical Integrator and Computer) volt. A gép 30 egységből állt, minden egység egy meghatározott funkciót végzett el. A főleg artimetikai műveletek égrehaltjására tervezett egységek között 20 ugynevezett akkumulátor volt az ősszeadáshoz és a kívonáshoz, továbbá egy szorzó, egy osztó és egy négyzetgyőkvonó egység is. A számokat egy IBM kártyaolvasóval összekapcsott ún. konstans ártvitel egységgel lehetett bevinni. Az eredményeket egy IBM kártyalvasztóval kártyárai pukasztova adta ki.

A mai értelemben vett számítógépek működési elvelt a hadítechnikában megszerzett tapasztalatok felhasználásával Neumann János (1903–1957), magyar származású tudós dolgozta ki. 1945. június 24-re készült el az a kivonat – First Draft of a Report on the EDVAC (Az EDVAC-Jelentés első vázalta) címmel –, amely teljes elemzését atla az EDVAC tervozett szerkezetének. Tartalmazta a számítógép javasolt felépítését, a részegységek megépítésére szükséges logikai árrankörket és a gép kódját. A legtöbb számítógép hapsjankban is a jelentésben megfogalmazott elvek alapján késztílt el. Fő tételeit ma Neumann-elvekként ismerjük. Ez volt az első, belső programvezérlésű, elektronikus, digitális, universális számítógép, Jelentős újtása, hogy (elődjétől, az ENIAC-től eltérően) bináris számábrázolást és aritmetikát használt. Tárolt programú számítógép volt.

Az 1950-es évekre az EDVAC mintájára elkészítették a UNIVAC-et (Universal Automatic Computer). 1956-ra az USA-ban egyre több intézet és még több iparvállalat fejlesztett ki elektronszóves számítógépeket. Ekkorra már az IBM sem elégedett meg a lyukkártyás egységek és nyomattók gyárásával, hanem belefegott számítógépesítési programjába, ami legalább 50 évre biztosította vezető szerepét. Megindult a számítógépek sorozatgyártása.

NEUMANN JÁNOS

Margittai Neumann János (John von Neumann, született: Neumann János Lajos; Budapest, Lipótváros, 1903. december 28. – Washington, 1957. február 8.) magyar születésű matematikus. Kvantummechanikai elméleti kultatásai mellett a digitális számítógép elvi alapjainak lefektetésével vált ismertté.

1903. december 28-án született Neumann Miksa és Kann Margit első gyermekeként Budapesten, a Váci körüt (ma Bajcyy-Szilinszky út) 62. sz. házban. Jánosnak később két őccse is született: Mihály (1907) és Miklós (1911). Az édesapja Péczől származott, és Budapesten diyyédként dolgozott, aztán a Magyar Jelzálog- és Hitlelbankhoz került előszer fő joghandácossi pozícióba, majd pedíg a bank igazgatól sz Margit a háztartást vezette és fiai nevelésével foglalatoskodott.

ALAN TURING

Alan Mathison Turing (1912. június 23. – 1954. június 7.) brit matematikus, a modern számítógép-tudomány egyik atyja. Nagy hatással volt az algoritmus és a számítógépes adattélolójozás hivátalos koncepciójának kidolgozására. Megalkotta az általa megfogálmazott Turing-épes pogalmát. Szabáyba foglalta a ma már széles körben elfogadott Church-Turing-étzist, ami szerint minden számítási modell és gyakorlát 1936-ban meglelent On Computable Nivmbers, with an Application to the Entscheldungsproblem című cikkében publikálta az elméletét. A második világháború alatt sikerse srőfeszféseket tett a nemet replieklódok feltőrésére. A háború után az egyik legkorábbi dígitális számítógép létrehozásán fáradzott, és közreadott több provokatív írást, péládul a Computing Machinery and Intelligence címűt, amelynek az elős sora újszerűen gondólatébresztő volt "Azt Javasiom megfontolásra, hogy tudnak-e a gépek gondólkodny.

forrás: Wikis