In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
divorce_data = pd.read_csv('divorce_data.csv')
```

In [3]:

```
divorce_data.head()
```

Out[3]:

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7	Atr8	Atr9	Atr10	 Atr46	Atr47	Atr48	Atr49
0	2	2	4	1	0	0	0	0	0	0	 2	1	3	3
1	4	4	4	4	4	0	0	4	4	4	 2	2	3	4
2	2	2	2	2	1	3	2	1	1	2	 3	2	3	1
3	3	2	3	2	3	3	3	3	3	3	 2	2	3	3
4	2	2	1	1	1	1	0	0	0	0	 2	1	2	3

5 rows × 55 columns

→

In [4]:

```
divorce_data.tail()
```

Out[4]:

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7	Atr8	Atr9	Atr10	 Atr46	Atr47	Atr48	Atr4
165	0	0	0	0	0	0	0	0	0	0	 1	0	4	
166	0	0	0	0	0	0	0	0	0	0	 4	1	2	
167	1	1	0	0	0	0	0	0	0	1	 3	0	2	
168	0	0	0	0	0	0	0	0	0	0	 3	3	2	
169	0	0	0	0	0	0	0	1	0	0	 3	4	4	

5 rows × 55 columns

→

In [5]:

```
divorce_data.shape
```

Out[5]:

(170, 55)

In [6]:

```
divorce_data.columns
```

Out[6]:

In [7]:

```
divorce_data.duplicated().sum()
```

Out[7]:

20

In [8]:

divorce_data.isnull().sum()

Out[8]:

Out[8]	•
A+n1	a
Atr1	0
Atr2	0
Atr3	0
Atr4	0
Atr5	0
Atr6	0
Atr7	0
Atr8	0
Atr9	0
Atr10	0
Atr11	
	0
Atr12	0
Atr13	0
Atr14	0
Atr15	0
Atr16	0
Atr17	0
Atr18	0
Atr19	0
Atr20	0
Atr21	0
Atr22	0
Atr23	0
Atr24	0
Atr25	0
Atr26	0
Atr27	0
Atr28	0
Atr29	0
Atr30	0
Atr31	0
Atr32	0
Atr33	0
Atr34	0
Atr35	0
Atr36	0
Atr37	0
Atr38	0
Atr39	0
Atr40	0
Atr41	
	0
Atr42	0
Atr43	0
Atr44	0
Atr45	0
Atr46	0
Atr47	0
Atr48	0
Atr49	0
Atr50	0
	0
Atr51	
Atr52	0
Atr53	0
Atr54	0
Class	0
dtype:	int64

In [9]:

```
with open('divorce.txt') as f:
   contents = f.read()
   print(contents)
```

- 1. If one of us apologizes when our discussion deteriorates, the discussion ends
- 2. I know we can ignore our differences, even if things get hard sometime s.
- 3. When we need it, we can take our discussions with my spouse from the be ginning and correct it.
- 4. When I discuss with my spouse, to contact him will eventually work.
- 5. The time I spent with my wife is special for us.
- 6. We don't have time at home as partners.
- 7. We are like two strangers who share the same environment at home rather than family.
- 8. I enjoy our holidays with my wife.
- 9. I enjoy traveling with my wife.
- 10. Most of our goals are common to my spouse.
- 11. I think that one day in the future, when I look back, I see that my sp ouse and I have been in harmony with each other.
- 12. My spouse and I have similar values in terms of personal freedom.
- 13. My spouse and I have similar sense of entertainment.
- 14. Most of our goals for people (children, friends, etc.) are the same.
- 15. Our dreams with my spouse are similar and harmonious.
- 16. We're compatible with my spouse about what love should be.
- 17. We share the same views about being happy in our life with my spouse
- 18. My spouse and I have similar ideas about how marriage should be
- 19. My spouse and I have similar ideas about how roles should be in marria ge
- 20. My spouse and I have similar values in trust.
- 21. I know exactly what my wife likes.
- 22. I know how my spouse wants to be taken care of when she/he sick.
- 23. I know my spouse's favorite food.
- 24. I can tell you what kind of stress my spouse is facing in her/his lif e.
- 25. I have knowledge of my spouse's inner world.
- 26. I know my spouse's basic anxieties.
- 27. I know what my spouse's current sources of stress are.
- 28. I know my spouse's hopes and wishes.
- 29. I know my spouse very well.
- 30. I know my spouse's friends and their social relationships.
- 31. I feel aggressive when I argue with my spouse.
- 32. When discussing with my spouse, I usually use expressions such as â€~y ou always' or â€~you never' .
- 33. I can use negative statements about my spouse's personality during our discussions.
- 34. I can use offensive expressions during our discussions.
- 35. I can insult my spouse during our discussions.
- 36. I can be humiliating when we discussions.
- 37. My discussion with my spouse is not calm.
- 38. I hate my spouse's way of open a subject.
- 39. Our discussions often occur suddenly.
- 40. We're just starting a discussion before I know what's going on.
- 41. When I talk to my spouse about something, my calm suddenly breaks.
- 42. When I argue with my spouse, Ät only go out and I don't say a word.
- 43. I mostly stay silent to calm the environment a little bit.
- 44. Sometimes I think it's good for me to leave home for a while.
- 45. I'd rather stay silent than discuss with my spouse.
- 46. Even if I'm right in the discussion, I stay silent to hurt my spouse.
- 47. When I discuss with my spouse, I stay silent because I am afraid of no t being able to control my anger.
- 48. I feel right in our discussions.
- 49. I have nothing to do with what I've been accused of.
- 50. I'm not actually the one who's guilty about what I'm accused of.
- 51. I'm not the one who's wrong about problems at home.

- 52. I wouldn't hesitate to tell my spouse about her/his inadequacy.
- 53. When I discuss, I remind my spouse of her/his inadequacy.
- 54. I'm not afraid to tell my spouse about her/his incompetence.

In [10]:

divorce_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 170 entries, 0 to 169
Data columns (total 55 columns):

Data #	columns Column	(total 55 column Non-Null Count	-
			Dtype
	Atr1	170 non-null	int64
0 1	Atr2	170 non-null	int64
	Atr3		
2		170 non-null	int64
5 4	Atr4	170 non-null	int64
	Atr5	170 non-null	int64
5	Atr6	170 non-null	int64
6	Atr7	170 non-null	int64
7	Atr8	170 non-null	int64
8	Atr9	170 non-null	int64
9	Atr10	170 non-null	int64
10	Atr11	170 non-null	int64
11	Atr12	170 non-null	int64
12	Atr13	170 non-null	int64
13	Atr14	170 non-null	int64
14	Atr15	170 non-null	int64
15	Atr16	170 non-null	int64
16	Atr17	170 non-null	int64
17	Atr18	170 non-null	int64
18	Atr19	170 non-null	int64
19	Atr20	170 non-null	int64
20	Atr21	170 non-null	int64
21	Atr22	170 non-null	int64
22	Atr23	170 non-null	int64
23	Atr24	170 non-null	int64
24	Atr25	170 non-null	int64
25	Atr26	170 non-null	int64
26	Atr27	170 non-null	int64
27	Atr28	170 non-null	int64
28	Atr29	170 non-null	int64
29	Atr30	170 non-null	int64
30	Atr31	170 non-null	int64
31	Atr32	170 non-null	int64
32	Atr33	170 non-null	int64
33	Atr34	170 non-null	int64
34	Atr35	170 non-null	int64
35	Atr36	170 non-null	int64
36	Atr37	170 non-null	int64
37	Atr38	170 non-null	int64
38	Atr39	170 non-null	int64
39	Atr40	170 non-null	int64
40	Atr41	170 non-null	int64
41	Atr42	170 non-null	int64
42	Atr43	170 non-null	int64
43	Atr44	170 non-null	int64
44	Atr45	170 non-null	int64
44 45			
	Atr46		int64
46	Atr47	170 non-null	int64
47 40	Atr48	170 non-null	int64
48	Atr49	170 non-null	int64
49	Atr50	170 non-null	int64
50	Atr51	170 non-null	int64
51	Atr52	170 non-null	int64
52	Atr53	170 non-null	int64
53	Atr54	170 non-null	int64
54	Class	170 non-null	int64

dtypes: int64(55)
memory usage: 73.2 KB

In [11]:

divorce_data.describe()

Out[11]:

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7
count	170.000000	170.000000	170.000000	170.000000	170.000000	170.000000	170.000000
mean	1.776471	1.652941	1.764706	1.482353	1.541176	0.747059	0.494118
std	1.627257	1.468654	1.415444	1.504327	1.632169	0.904046	0.898698
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	2.000000	2.000000	2.000000	1.000000	1.000000	0.000000	0.000000
75%	3.000000	3.000000	3.000000	3.000000	3.000000	1.000000	1.000000
max	4.000000	4.000000	4.000000	4.000000	4.000000	4.000000	4.000000

8 rows × 55 columns

localhost:8888/notebooks/Divorce Prediction using Machine Learning.ipynb

In [12]:

divorce_data.nunique()

Out[12]:

5 Atr1 5 Atr2 5 Atr3 5 Atr4 Atr5 5 5 Atr6 Atr7 5 5 Atr8 5 Atr9 5 Atr10 Atr11 5 5 Atr12 5 Atr13 5 Atr14 Atr15 5 5 Atr16 Atr17 5 Atr18 5 5 Atr19 Atr20 5 5 Atr21 5 Atr22 5 Atr23 5 Atr24 Atr25 5 5 Atr26 5 Atr27 5 Atr28 Atr29 5 Atr30 5 Atr31 5 5 Atr32 5 Atr33 5 Atr34 Atr35 5 5 Atr36 5 Atr37 5 Atr38 5 Atr39 5 Atr40 5 Atr41 Atr42 5 5 Atr43 5 Atr44 5 Atr45 5 Atr46 Atr47 5 5 Atr48 5 Atr49 5 Atr50 5 Atr51 5 Atr52 5 Atr53 5 Atr54 Class 2 dtype: int64

```
In [14]:
```

```
for i in divorce_data.columns:
 plt.figure(figsize=(15,6))
 sns.countplot(divorce_data[i], data = divorce_data)
 plt.show()
60
50
30
20
10
60
In [15]:
divorce_data['Class'].values
Out[15]:
In [16]:
divorce data['Class'].unique()
Out[16]:
array([1, 0], dtype=int64)
In [17]:
divorce_data['Class'].value_counts()
Out[17]:
  86
1
  84
Name: Class, dtype: int64
```

In [39]:

```
plt.figure(figsize=(15,6))
sns.countplot('Class', data = divorce_data)
plt.xticks(rotation = 90)
plt.show()
```


In [18]:

In [19]:

```
plt.figure(figsize=(15,6))
sns.histplot(x=divorce_data['Class'],y=divorce_data.index)
plt.xticks(rotation = 90)
plt.show()
```


In [20]:

In [21]:

divorce_data.corr()

Out[21]:

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7	Atr8	1
Atr1	1.000000	0.819066	0.832508	0.825066	0.881272	0.287140	0.427989	0.802357	0.845
Atr2	0.819066	1.000000	0.805876	0.791313	0.819360	0.102843	0.417616	0.864284	0.827
Atr3	0.832508	0.805876	1.000000	0.806709	0.800774	0.263032	0.464071	0.757264	0.816
Atr4	0.825066	0.791313	0.806709	1.000000	0.818472	0.185963	0.474806	0.798347	0.829
Atr5	0.881272	0.819360	0.800774	0.818472	1.000000	0.297834	0.381378	0.877584	0.916
Atr6	0.287140	0.102843	0.263032	0.185963	0.297834	1.000000	0.424212	0.184019	0.301
Atr7	0.427989	0.417616	0.464071	0.474806	0.381378	0.424212	1.000000	0.412807	0.517
Atr8	0.802357	0.864284	0.757264	0.798347	0.877584	0.184019	0.412807	1.000000	0.915
Atr9	0.845916	0.827711	0.816653	0.829053	0.916327	0.301342	0.517522	0.915301	1.000
Atr10	0.790183	0.782286	0.753017	0.873636	0.823659	0.266076	0.498266	0.828031	0.852
Atr11	0.892253	0.823380	0.805915	0.808533	0.936955	0.340135	0.432479	0.889795	0.911
Atr12	0.794307	0.862835	0.780258	0.793992	0.846513	0.209801	0.511761	0.890338	0.869
Atr13	0.842996	0.791073	0.758969	0.751623	0.915033	0.305109	0.373361	0.840350	0.873
Atr14	0.817099	0.875800	0.750602	0.757000	0.845576	0.224459	0.491021	0.888822	0.868
Atr15	0.848754	0.801316	0.806909	0.794184	0.879461	0.323787	0.494110	0.873804	0.949
Atr16	0.831822	0.806497	0.775528	0.878416	0.853561	0.311056	0.573290	0.865680	0.893
Atr17	0.895970	0.822317	0.808161	0.809968	0.947429	0.377330	0.461450	0.881005	0.922
Atr18	0.853739	0.883856	0.797395	0.835296	0.894474	0.251856	0.544550	0.941084	0.925
Atr19	0.900446	0.829422	0.798999	0.832750	0.943349	0.365227	0.469995	0.873546	0.916
Atr20	0.840966	0.884176	0.807892	0.815896	0.892909	0.230486	0.544207	0.922465	0.902
Atr21	0.815708	0.790468	0.796069	0.775132	0.871994	0.273564	0.409827	0.861939	0.909
Atr22	0.785280	0.795406	0.727933	0.839534	0.840265	0.220010	0.378915	0.857010	0.849
Atr23	0.822534	0.773018	0.706585	0.744783	0.888584	0.246478	0.254912	0.845731	0.850
Atr24	0.813233	0.868240	0.740476	0.776640	0.833608	0.191458	0.446469	0.896841	0.851
Atr25	0.822084	0.769244	0.724506	0.736228	0.888740	0.291159	0.288867	0.809110	0.838
Atr26	0.803507	0.861421	0.728653	0.762765	0.836194	0.200634	0.443149	0.883414	0.850
Atr27	0.829037	0.817364	0.797595	0.767206	0.883768	0.283895	0.444643	0.848766	0.903
Atr28	0.762102	0.776943	0.689914	0.827847	0.809789	0.254858	0.351262	0.822361	0.818
Atr29	0.858139	0.789827	0.755491	0.781792	0.925601	0.309302	0.349379	0.860194	0.878
Atr30	0.792257	0.844007	0.752391	0.772562	0.837501	0.266464	0.448569	0.902820	0.854
Atr31	0.699223	0.661210	0.652188	0.661251	0.785038	0.247634	0.334308	0.716731	0.745
Atr32	0.739679	0.735763	0.747669	0.746677	0.832032	0.316605	0.442306	0.762425	0.803
Atr33	0.799735	0.757286	0.726481	0.764381	0.879037	0.292037	0.395764	0.818682	0.844
Atr34	0.749774	0.714360	0.702500	0.729022	0.827560	0.279789	0.328700	0.780778	0.810
Atr35	0.796413	0.753566	0.730290	0.770813	0.878289	0.276539	0.349076	0.827441	0.854
Atr36	0.812867	0.781295	0.744390	0.794636	0.887498	0.287708	0.370158	0.845435	0.871
Atr37	0.786890	0.747088	0.736984	0.760451	0.859581	0.281458	0.431979	0.800964	0.839

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7	Atr8	1
Atr38	0.804129	0.751705	0.740642	0.790350	0.852601	0.297791	0.401769	0.815830	0.849
Atr39	0.817035	0.787768	0.759820	0.763502	0.866293	0.296121	0.477063	0.797134	0.850
Atr40	0.838355	0.788200	0.781657	0.798520	0.871809	0.351433	0.501758	0.822302	0.875
Atr41	0.804182	0.780757	0.739967	0.768706	0.864434	0.329765	0.445483	0.821081	0.852
Atr42	0.642307	0.648539	0.569293	0.639671	0.737922	0.227993	0.333211	0.699571	0.737
Atr43	0.482223	0.503894	0.385152	0.452479	0.613142	0.171599	0.149930	0.555187	0.585
Atr44	0.752972	0.699765	0.661830	0.707212	0.799453	0.339918	0.425874	0.760016	0.808
Atr45	0.510160	0.489062	0.427409	0.446798	0.591656	0.094820	0.199548	0.542547	0.575
Atr46	0.400296	0.389519	0.308149	0.340240	0.470758	0.127759	0.069850	0.433541	0.434
Atr47	0.582693	0.616884	0.544863	0.552301	0.719899	0.212979	0.254225	0.675584	0.693
Atr48	0.633564	0.643762	0.638256	0.630205	0.659220	0.200673	0.311110	0.588531	0.611
Atr49	0.674843	0.659841	0.647961	0.699069	0.762257	0.201091	0.291325	0.674776	0.711
Atr50	0.725443	0.680538	0.663995	0.685263	0.795960	0.221100	0.332370	0.729668	0.755
Atr51	0.684143	0.636558	0.600603	0.624015	0.742664	0.179119	0.349920	0.690190	0.713
Atr52	0.575463	0.536294	0.491803	0.534264	0.663855	0.205056	0.243104	0.658613	0.652
Atr53	0.611422	0.610726	0.598749	0.588390	0.719493	0.258092	0.313725	0.705071	0.699
Atr54	0.768522	0.728897	0.673012	0.698264	0.836799	0.292428	0.347493	0.807911	0.810
Class	0.861324	0.820774	0.806709	0.819583	0.893180	0.420913	0.544835	0.869569	0.912

55 rows × 55 columns

In [22]:

```
plt.figure(figsize=(10, 8))
matrix = np.triu(divorce_data.corr())
sns.heatmap(divorce_data.corr(), annot=False, linewidth=.8, mask=matrix, cmap="rocket");
plt.show()
```


In [23]:

```
x = divorce_data.drop('Class',axis =1)
y = divorce_data['Class']
```

In [24]:

```
In [32]:
```

```
# importing module
from sklearn.linear_model import LogisticRegression
# creating an object of LinearRegression class
LR = LogisticRegression()
# fitting the training data
LR.fit(x_train,y_train)
```

Out[32]:

```
LogisticRegression
LogisticRegression()
```

In [33]:

```
y_prediction = LR.predict(x_test)
y_prediction
```

Out[33]:

```
array([0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1], dtype=int64)
```

In [34]:

```
print("Training Accuracy :", LR.score(x_train, y_train))
print("Testing Accuracy :", LR.score(x_test, y_test))
```

Training Accuracy : 1.0 Testing Accuracy : 1.0

In [35]:

```
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(x_train, y_train)
```

Out[35]:

```
v DecisionTreeClassifier
DecisionTreeClassifier()
```

In [36]:

```
y_prediction = dt.predict(x_test)
y_prediction
```

Out[36]:

```
array([0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0], dtype=int64)
```

In [37]:

```
print("Training Accuracy :", dt.score(x_train, y_train))
print("Testing Accuracy :", dt.score(x_test, y_test))
```

Training Accuracy : 1.0

Testing Accuracy : 0.9230769230769231

In [31]:

```
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from tensorflow.keras.models import Sequential # initialize neural network library
from tensorflow.keras.layers import Dense # build our layers library
```

In [38]:

```
def build_classifier():
    classifier = Sequential() # initialize neural network
    classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu',
    classifier.add(Dense(units = 4, kernel_initializer = 'uniform', activation = 'relu')
    classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoi
    classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['acc
    return classifier
```

In [39]:

```
classifier = KerasClassifier(build_fn = build_classifier, epochs = 50)
accuracies = cross_val_score(estimator = classifier, X = x_train, y = y_train, cv = 2)
mean = accuracies.mean()
variance = accuracies.std()
uracy: 0.5000
Epoch 12/50
3/3 [=============== ] - 0s 0s/step - loss: 0.6922 - accu
racy: 0.5000
Epoch 13/50
3/3 [================ ] - 0s 2ms/step - loss: 0.6919 - acc
uracy: 0.5000
Epoch 14/50
uracy: 0.5000
Epoch 15/50
3/3 [================ ] - 0s 3ms/step - loss: 0.6909 - acc
uracy: 0.5000
Epoch 16/50
uracy: 0.5000
Epoch 17/50
3/3 [================ ] - 0s 0s/step - loss: 0.6895 - accu
racy: 0.5000
```

In [40]:

```
print("Accuracy mean: "+ str(mean))
```

Accuracy mean: 0.9513888955116272

In [41]:

```
from sklearn.ensemble import RandomForestClassifier
```

In [42]:

```
clf = RandomForestClassifier()
```

In [43]:

```
clf.fit(x_train, y_train)
```

Out[43]:

```
RandomForestClassifier
RandomForestClassifier()
```

In [44]:

```
y_pred = clf.predict(x_test)
```

In [45]:

```
print("Training Accuracy :", clf.score(x_train, y_train))
print("Testing Accuracy :", clf.score(x_test, y_test))
```

Training Accuracy: 1.0

Testing Accuracy: 0.9615384615384616

In [46]:

```
from sklearn import metrics
print()

# using metrics module for accuracy calculation
print("ACCURACY OF THE MODEL: ", metrics.accuracy_score(y_test, y_pred))
```

ACCURACY OF THE MODEL: 0.9615384615384616