

文献分享1

LT-Net: Label Transfer by Learning Reversible Voxel-Wise Correspondence for One-Shot

Medical Image Segmentation

贺珂

Motivation

- Voxelmorph系列, 监督信号有限. 尽可能的利用图像自带的信息进行监督.
- 文章的主题: 一致性, 分为两种 forward-backward consistency cycle-consistency
- 解释一下标题:

label transfer: atlas配准中利用atlas的标签经过变形得到其他图像标签

One-shot segmentation: atlas-based segmentation 只需要一个 label

reversible Voxel-wise correspondence: 变刑场逆变换的一致性

Overview

Explanation 1

Voxelmorph

Explanation 2

Explanation 3

CycleGAN

如何理解本文的两个网络以及cycle-loss:

用cyclegan框架看看

Loss function

$$\mathcal{L} = \mathcal{L}_{GAN} + \mathcal{L}_{sim} + \lambda_1 \mathcal{L}_{cyc} + \lambda_2 (\mathcal{L}_{anatomy_cyc} + \mathcal{L}_{smooth} + \mathcal{L}_{trans} + \mathcal{L}_{diff_cyc}),$$

 L_{gan} : 本文中的voxelmorph是用了GAN loss作为监督的:

$$\mathcal{L}_{GAN}(l, u, \bar{u}) = \mathbb{E}_{u \sim p_d(u)}[\|D(u)\|_2] + \mathbb{E}_{l \sim p_d(l), u \sim p_d(u)}[\|D(\bar{u}) - \mathbf{1}\|_2],$$

 $L_{similarity} + L_{smooth}$: 原始voxelmorph的loss

Cycle Loss

$$\mathcal{L}_{\text{cyc}}(l, \bar{l}) = \mathbb{E}_{l \sim p_d(l)}[\|\bar{l} - l\|_1].$$

$$\mathcal{L}_{\text{anatomy_cyc}}(l_s, \bar{l}_s) = 1 - \frac{2 \sum_{t \in \Omega} l_s(t) \bar{l}_s(t)}{\sum_{t \in \Omega} l_s^2(t) + \sum_{t \in \Omega} \bar{l}_s^2(t)}.$$

$$\mathcal{L}_{\text{diff_cyc}}(l_s, \bar{u}_s, \bar{l}_s) = \sum_{t \in \Omega} \rho(|l_s(t) - \bar{u}_s(t)| - |\bar{u}_s(t) - \bar{l}_s(t)|).$$

Forward-backward loss

$$\mathcal{L}_{\mathrm{trans}}(\Delta p_F, \Delta p_B) = \sum_{t \in \Omega} \rho(\Delta p_F(t) + \Delta p_B(t + \Delta p_F(t))),$$

../../seminar/2020-3-10.pptx

Ablation Study

	Mean (std)	Min	Max
VoxelMorph	76.0 (9.7)	61.7	80.1
+ $\mathcal{L}_{ ext{GAN}}$	79.0 (3.1)	72.7	81.9
+ $\mathcal{L}_{\mathrm{GAN}}$ + $\mathcal{L}_{\mathrm{cyc}}$		72.7	82.1

	Mean (std)	Min	Max
Baseline	79.2 (2.8)	72.7	82.1
+ $\mathcal{L}_{ ext{trans}}$	80.9 (2.7)	73.6	83.2
+ $\mathcal{L}_{ ext{anatomy_cyc}}$	80.5 (2.5)	74.2	83.1
$+ \mathcal{L}_{\mathrm{trans}} + \mathcal{L}_{\mathrm{anatomy-cyc}}$	81.4 (2.6)	74.4	83.8
$+\mathcal{L}_{ ext{trans}} + \mathcal{L}_{ ext{anatomy_cyc}} + \mathcal{L}_{ ext{diff_cyc}}$	82.3 (2.5)	75.6	84.2

Comparison to other methods

	Mean (std)	Min	Max
VoxelMorph	76.0 (9.7)	61.7	80.1
DataAug	80.4 (4.3)	73.8	84.0
LT-Net	82.3 (2.5)	75.6	84.2
U-Net (upper bound)	86.5 (6.3)	83.7	89.2

Fast Symmetric Diffeomorphic Image Registration with Convolutional Neural Networks

Diffeomorphic registration

 微分同胚变刑场 之前出现在: 2018年的这篇论文 Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration

ordinary differential equation (ODE)

$$rac{\partial oldsymbol{\phi}^{(t)}}{\partial t} = oldsymbol{v}(oldsymbol{\phi}^{(t)})$$

• 非常非常关键的假设: v 是一个静止速度场(stationary velocity

field)

Method	Avg. Dice	$\mathrm{GPU}\sec$	$\mathrm{CPU}\ \mathrm{sec}$	$ J_{\Phi} \leq 0$	Uncertainty
Affine only	0.567 (0.157)	0	0	0	No
ANTs (SyN)	$0.750 \ (0.135)$	-	9059 (2023)	6505 (3024)	No
VoxelMorph	$0.750 \ (0.137)$	0.554 (0.017)	144 (1)	18096 (4230)	No
Ours	0.753 (0.137)	0.451 (0.011)	51 (0.2)	0.7 (2.0)	Yes

13

Diffeomorphic registration

• 初始条件

$$\phi^{(1/2^T)} = x + v(x)/2^T$$

$$\phi^{(1/2^{t-1})} = \phi^{(1/2^t)} \circ \phi^{(1/2^t)}$$

• 对称性假设(这是voxelmorph v2没有的假设):

ods [31, 3, 23], we propose to learn the two separated time 0.5 deformation fields that warp both X and Y to their mean shape M in the geodesic path. After the model converges,

Diffeomorphic registration

• 由上一个假设可以得到

$$\phi_{XY}^{(1)} = \phi_{YX}^{(-0.5)}(\phi_{XY}^{(0.5)}(x))$$

Overview

Smooth loss function

$$J_{\phi}(p) = \begin{pmatrix} \frac{\partial \phi_{x}(p)}{\partial x} & \frac{\partial \phi_{x}(p)}{\partial y} & \frac{\partial \phi_{x}(p)}{\partial z} \\ \frac{\partial \phi_{y}(p)}{\partial x} & \frac{\partial \phi_{y}(p)}{\partial y} & \frac{\partial \phi_{y}(p)}{\partial z} \\ \frac{\partial \phi_{z}(p)}{\partial x} & \frac{\partial \phi_{z}(p)}{\partial y} & \frac{\partial \phi_{z}(p)}{\partial z} \end{pmatrix}$$

$$\mathcal{L}_{Jdet} = \frac{1}{N} \sum_{p \in \Omega} \sigma(-|J_{\phi}(p)|)$$