Abnormality Detection of Upper Extremity X-Rays

Gargee Jagtap, Ali Rivera, Anne Louise Seekford

Musculoskeletal Radiographs

"The AAMC (Association of American Medical Colleges) predicts there will be a shortage of 17,000 - 42,000 radiologists in the next decade"

Motivation

- Radiologist shortage
- 1.7 billion people worldwide are affected by musculoskeletal conditions
- X-Rays are the most common diagnostic technique
- Radiology imaging delays were an independent predictor of the length of a patient's hospital stay

Data

Image Info

patient No. study No. label image No.

Abnormality Label

Each image is labeled as either:

0: Normal

1: Abnormal

Body part

Elbow Finger Forearm Hand Humerus Shoulder Wrist

Data Preprocessing

- Nested folders
- Labels located in image file name

Transformations

- Resized: 256x256
- Random Horizontal Flip
- Normalized: $(\mu,\sigma) = (0.5, 0.5)$

Train29,583 images (74%)

Ualidation
3,197 images (8%)

Test 7,395 images (18%)

path	label	body_part
patient11511_study1_positive_image2.png	1	hand
patient11511_study1_positive_image1.png	1	hand
patient11371_study1_negative_image3.png	0	hand
patient11371_study1_negative_image2.png	0	hand
patient11371_study1_negative_image1.png	0	hand
		••••
patient11359_study1_positive_image3.png	1	forearm
patient11359_study1_positive_image1.png	1	forearm
patient11392_study1_positive_image3.png	1	forearm
patient11392_study1_positive_image2.png	1	forearm
patient11392_study1_positive_image1.png	1	forearm

Model Pipeline

Body Part Classification

HUMERUS

HAND

SHOULDER

Stage 2

Normal/Abnormal Classification

0: NORMAL

1: ABNORMAL

Stage 1

- Pretrained: DenseNet121
- Linear Layer input: 2048
- No. of predicted classes: 7
- Optimizer: Adam
- Loss Function: Cross Entropy
- Learning Rate: 0.001
- 15 Epochs

Stage 2

- Pretrained: DenseNet121
- Linear Layer input: 2048
- No. of predicted classes: 2
- Optimizer: Adam
- Loss Function: Cross Entropy
- Learning Rate: 0.001
- 15 Epochs

Previous Results

Agreement Measured using Cohen's Kappa Statistic

	Radiologist 1	Radiologist 2	Radiologist 3	Model
Finger	0.850 (0.830, 0.871)	0.710 (0.674, 0.745)	0.719 (0.685, 0.752)	0.710 (0.674, 0.745)
	0.304 (0.249, 0.358)	0.403 (0.339, 0.467)	0.410 (0.358, 0.463)	0.389 (0.332, 0.446)
	0.796 (0.772, 0.821)	0.802 (0.779, 0.825)	0.798 (0.774, 0.822)	0.737 (0.707, 0.766)
Hand	0.661 (0.623, 0.698)	0.927 (0.917, 0.937)	0.789 (0.762, 0.815)	0.851 (0.830, 0.871)
Humerus	0.867 (0.850, 0.883)	0.733 (0.703, 0.764)	0.933 (0.925, 0.942)	0.600 (0.558, 0.642)
Secretary and the second second	0.864 (0.847, 0.881)	0.791 (0.765, 0.816)	0.864 (0.847, 0.881)	0.729 (0.697, 0.760)
	0.791 (0.766, 0.817)	0.931 (0.922, 0.940)	0.931 (0.922, 0.940)	0.931 (0.922, 0.940)
Overall	0.731 (0.726, 0.735)	0.763 (0.759, 0.767)	0.778 (0.774, 0.782)	0.705 (0.700, 0.710)

Results

Stage 1 Flccuracy:

97.8%

Stage 2 Accuracy:

Body Elbow Finger Hand Shoulder Wrist **Forearm** Humerus Part 81.5% 76.6% 72.1% 79.9% 73.4% 76.6% 83.1% Accuracy

_ 10cm

Conclusion

Compare Performances:

	Their Model:	Our Model:
Best Performance:	Finger, Hand, Wrist	Wrist, Elbow
Worst Performance:	Forearm, Humerus, Elbow	Forearm, Humerus

Future Steps:

- Get more data for body parts
- Further customize models for each bodypart

11

References

- Alkoby. (2023, January). Alkoby/bone-fracture-detection: Bone Fracture Detection
 Using Deep Learning (RESNET50) final project in the fourth year of
 the degree. GitHub. Retrieved April 17, 2023, from
 https://qithub.com/Alkoby/Bone-Fracture-Detection
- Alzubaidi, M. S., Shah, U., Zubaydi, H. D., Dolaat, K., Abd-Alrazaq, A. A., Ahmed, A., & Househ, M. (2021). The Role of Neural Network for the Detection of Parkinson's Disease: A Scoping Review. *Healthcare*, 9(6). https://doi.org/10.3390/healthcare9060740
- American Academy of Orthopedic Surgeons. (2017, June). X-rays, CT scans, and MRI scans. Ortholnfo. Retrieved March 15, 2023, from https://orthoinfo.aaos.org/en/treatment/x-rays-ct-scans-and-mris/#:~:text=x%2Drays%20(radiographs)%20are.get%20an%20X%2Dray%20first
- MetaAl. (n.d.). Papers with Code MURA dataset. Papers With Code. Retrieved March 15, 2023, from https://paperswithcode.com/dataset/mura
- Mina S. Makary, M. D., &; Noah Takacs, B. S. (2022, January 20). Are We Prepared for a Looming Radiologist Shortage? Diagnostic Imaging. Retrieved March 15, 2023, from https://www.diagnosticimaging.com/view/are-we-prepared-for-a-looming-radiologist-shortage-

- Rajpurkar, P., Irvin, J., et al., (n.d.). MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs. Stanford ML Group. Retrieved March 15, 2023, from https://stanfordmlqroup.github.io/competitions/mura/
- Tsang, S.-H. (2018, November 25). Review: DenseNet Dense Convolutional Network (Image Classification). Medium. Retrieved March 15, 2023, from https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803
- Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., &; Summers, R. M. (2017, December 14). Chestx-Ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. arXiv.org. Retrieved March 15, 2023, from https://arxiv.org/abs/1705.02315
- World Health Organization. (2022, July 14). Musculoskeletal health. World Health Organization. Retrieved March 15, 2023, from <a href="https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions#:~:text=Musculoskeletal%20conditions%20are%20typically%20characterized.form%20of%20non%2Dcancer%20pain

Thanks!

Do you have any questions?

wra2jv@virginia.edu wat6sv@virginia.edu bng3be@virginia.edu

CREDITS: This presentation template was created by **Slidesgo**, including icons by Flaticon, and infographics & images by **Freepik**

