Bayesian Variable Selection

Practical Workshop

Miquel Torrens

Barcelona Graduate School of Economics

January 13th, 2017

Basics

Notation:

- ▶ $\mathbf{t} \in \mathbb{R}^n$: outcome variable for *n* observations
- ullet $\Phi \in \mathbb{R}^{n \times p}$: design matrix with p input variables
- ▶ M_j : model $j \in \{1, ..., 2^p\}$ out of 2^p possible models. Each model has associated one (and only one) binary vector of predictor inclusion $\gamma_j \in \{0, 1\}^p$. All models lie in the model space \mathcal{M}_p , composed of linear models with at most p active predictors
- $ightharpoonup \Phi_i$: design matrix with only the active predictors under M_i
- ▶ θ : set of parameters of the model, for standard linear models this is equivalent to regression coefficients and residual variance, i.e. $\theta \equiv \{\mathbf{w}, q\} \in \mathbb{R}^{p+1}$

Bayesian model selection

For any given model $M_k \in \mathcal{M}_p$, BMS relies on computing:

$$\begin{split} \mathbb{P}(M_k \mid \mathbf{t}) &= \frac{\mathbb{P}(\mathbf{t} \mid M_k) \mathbb{P}(M_k)}{\mathbb{P}(\mathbf{t})} \quad \text{(Bayes' Theorem)} \\ &= \frac{\mathbb{P}(\mathbf{t} \mid M_k) \mathbb{P}(M_k)}{\sum_{j=1}^{2^p} \mathbb{P}(\mathbf{t} \mid M_j) \mathbb{P}(M_j)} \\ &= \frac{\int \mathbb{P}(\mathbf{t} \mid \boldsymbol{\theta}, M_k) \mathbb{P}(\boldsymbol{\theta} \mid M_k) \mathrm{d}\boldsymbol{\theta} \mathbb{P}(M_k)}{\sum_{i=1}^{2^p} \mathbb{P}(\mathbf{t} \mid M_i) \mathbb{P}(M_i)} \end{split}$$

This calculation poses (at least) four delicate issues to solve.

Computing posterior probabilities

Each part of the expression needs to be carefully specified:

Concerns:

- 1. Setting a prior on the parameter space: $\mathbb{P}(\boldsymbol{\theta} \mid M_k)$
- 2. Setting a prior on the model space: $\mathbb{P}(M_k)$
- 3. Computing the integrated likelihood, i.e. p+1 ugly integrals
- 4. Fully exploring \mathcal{M}_{p} , which has 2^{p} elements

Priors on parameters (I)

Consider the linear model with $\theta \equiv \{\mathbf{w}, q\}$. Then:

$$\mathbf{t} \mid \mathbf{w}, q, M_k \sim \mathcal{N}\left(\mathbf{\Phi}_k \mathbf{w}_k, q \mathbf{I}\right)$$

Usually, we seek conjugacy to compute the integrated likelihood easily:

$$\mathbb{P}(\mathbf{w}, q \mid M_k) = \underbrace{\mathbb{P}(\mathbf{w} \mid q, M_k)}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, q\mathbf{D})} \underbrace{\frac{\mathbb{P}(q \mid M_k)}{q^{-1} \sim \mathsf{Gam}\left(\frac{a_q}{2}, \frac{b_q}{2}\right)}}_{q^{-1} \sim \mathsf{Gam}\left(\frac{a_q}{2}, \frac{b_q}{2}\right)}$$

With conjugate priors, the integral is in closed form¹. And so:

- ► This is nice with 2^p models to deal with...
- ▶ ...but it requires to set hyperparameters: $\{a_q, b_q, \mathbf{D}\}$

Priors on parameters (II)

Generally, $\{a_q, b_q\}$ are not very influential for moderate n:

- ► Set them "small", but positive (to be proper)
- ► Say, $a_q = b_q = 10^{-3}$

The battle is with \mathbf{D} .

²See lecture on prior modelling

³Main advantage: they favour nested (smaller) models even as n is not "large", whenever they fit better

◆□→◆⑤→◆፮→◆፮→◆◎◆

Priors on parameters (II)

Generally, $\{a_q, b_q\}$ are not very influential for moderate n:

- ► Set them "small", but positive (to be proper)
- ► Say, $a_q = b_q = 10^{-3}$

The battle is with **D**.

Two families of priors:

- 1. Local priors
 - ► Zellner's g-prior²
 - ▶ Unit information prior: Zellner's with g = n
 - ٠..
- 2. Non-local priors³
 - ► MOM, eMOM, iMOM (all same idea, changing shape, tails)

Here we will work with Unit Information and iMOM priors as illustration.

²See lecture on prior modelling

Priors on models

Let:

- $lacktriangledown d_k := \|oldsymbol{\gamma}_k\|$ (number of active predictors in M_k)
- $\blacktriangleright \omega := \mathbb{P}(w_i \neq 0)$, for i = 1, ..., p uniformly (though not necessarily)

Common specifications on model priors:

- 1. Uniform for all models: $\mathbb{P}(M_k) = 1/2^p$
- 2. Binomial: $d_k \sim \text{Binom}(p, \omega)$
 - Models of size $\approx \omega p$ have higher probability
- 3. Beta-Binomial(1, 1): as if $d_k \sim \text{Binom}(p, \omega)$ and $\omega \sim \text{Unif}(0, 1)$
 - This gives equal probability to models of any size
 - ▶ If Beta-Binomial(1, p), then one would favour smaller models
- 4. Same but with other distributions on d_k : Beta-binomial, Poisson...

A large model space \mathcal{M}_p

When p grows, the set of models to explore gets **huge**:

$$1,024 = 2^{10}$$

$$1,073,741,824 = 2^{30}$$

$$1,152,921,504,606,846,976 = 2^{60}$$

$$1,267,650,600,228,229,401,496,703,205,376 = 2^{100}$$
...

To gain intuition: $2^{265} \approx \#$ particles in the observable Universe.

Therefore:

- ▶ For **small** p: enumerate all models and compute $\mathbb{P}(M_i \mid \mathbf{t})$, $\forall j$
- ▶ For large p: stochastic search within \mathcal{M}_p , i.e. MCMC, Gibbs...

Choosing a model

Comparing two models $\{k, l\}$ is easy, regardless (!) of the size of \mathcal{M}_p :

$$\frac{\mathbb{P}(M_k \mid \mathbf{t})}{\mathbb{P}(M_l \mid \mathbf{t})} = \frac{\mathbb{P}(\mathbf{t} \mid M_k)\mathbb{P}(M_k)/\mathbb{P}(\mathbf{t})}{\mathbb{P}(\mathbf{t} \mid M_l)\mathbb{P}(M_l)/\mathbb{P}(\mathbf{t})} = \frac{\mathbb{P}(\mathbf{t} \mid M_k)}{\mathbb{P}(\mathbf{t} \mid M_l)} \frac{\mathbb{P}(M_k)}{\mathbb{P}(M_l)}$$

And even evaluating a set of them⁴:

$$\left\{\frac{\mathbb{P}(M_{j_1}\mid \mathbf{t})}{\mathbb{P}(M_1\mid \mathbf{t})}, \frac{\mathbb{P}(M_{j_2}\mid \mathbf{t})}{\mathbb{P}(M_1\mid \mathbf{t})}, \dots, \frac{\mathbb{P}(M_k\mid \mathbf{t})}{\mathbb{P}(M_1\mid \mathbf{t})}\right\}$$

But to actually choose one, we need to either (a) compute them all, or (b) at least the most relevant candidates.

Common selection strategies for explanatory models:

- 1. Highest probability model (HPM)
- 2. Thresholding: fix $\alpha \in (0,1)$ and pick all $i : \mathbb{P}(\gamma_i = 1 \mid \mathbf{t}) > \alpha$
- 3. Bayesian false discovery rate (FDR)

⁴Say model M₁ is the null model, with no variables ↓ □ ▶ ↓♬ ▶ ↓ ፮ ▶ ᠀९♡

Bayesian model averaging

For **predictive** models, BMA is the most common choice.

Idea: take the weighted average with our posterior model probs.:

$$\mathbb{E}(t_{n+1} \mid \mathbf{t}) = \boldsymbol{\phi}_{n+1}^{\mathrm{T}} \mathbb{E}(\mathbf{w} \mid \mathbf{t})
= \boldsymbol{\phi}_{n+1}^{\mathrm{T}} \left(\sum_{j=1}^{2^{p}} \mathbb{E}(\mathbf{w} \mid M_{j}, \mathbf{t}) \mathbb{P}(M_{j} \mid \mathbf{t}) \right)
= \boldsymbol{\phi}_{n+1}^{\mathrm{T}} \left(\sum_{j=1}^{2^{p}} \left((\boldsymbol{\Phi}_{j}^{\mathrm{T}} \boldsymbol{\Phi}_{j})^{-1} \boldsymbol{\Phi}_{j}^{\mathrm{T}} \mathbf{t} \right) \mathbb{P}(M_{j} \mid \mathbf{t}) \right)$$

This prediction minimises error under ℓ_2 loss.

Because this is computationally costly, some approximations exist:

- ► Median probability model
- ► Model with closest prediction to BMA on average

Heuristics

A few methods on avoiding (sometimes utopic) computations:

- 1. Stepwise methods
 - ► Forward
 - Backward
 - ► Hybrid
- 2. Model space restriction
 - ► LASSO, SCAD, other penalised methods
 - ► DECO (Wang, Dunson and Leng, 2016)
 - ► Block-search (Papaspiliopoulos and Rossell, 2016)
- 3. Pre-screening variables
 - ► SIS (Fan and Lv, 2008)
 - ► HOLP (Wang and Leng, 2015)

(Switch to code now)

- ► Main code: bvsw.R
- ► Auxiliary functions: bvsf.R