Summary

- M-Machine makes better use of silicon area
 - Instruction Level Parallelism: Processor Coupling
 - Coarser grained parallelism
 - * Protection: Guarded Pointers
 - * Communication: Send instruction
- Clean Sheet Design: Be careful what you wish for!
 - Difficult to predict area, critical path, effort...
- Why build it?
 - -Because it is *not* there
- $\bullet \ http://www.ai.mit.edu/projects/cva$

Steve Keckler CVA group

MAP Team Accomplishments

- 5 Million transistor, 64-bit custom microprocessor
- Fully characterized standard cell library
- Composable datapath cell library
- 5 SRAM arrays
- Radix 8 multiplier array w/ domino logic
- IEEE format FPU
 - -4 cycle pipelined MULA
 - -20 cycle DIV/SQRT
- 7 ported register file
- 64 bit custom adder
- Low voltage simultaneous bidirectional pads

Steve Keckler CVA group 12

The MIT MAP Chip

Lessons from the Implementation

- 1. Custom Cell Placement vs. Full Custom datapaths
 - Cost: 40% increased area
 - Benefit: Creation and modification flexibility
- 2. Architecture greatly affects estimation accuracy
 - 55% utilization in arithmetic control
 - \bullet 40% utilization in pipeline control
- 3. Cadence Spectrum Design was critical
 - Reality check for density
 - Tool flow and physical design
 - Expertise with the fabrication process

Steve Keckler CVA group

Node Compilation

- Multiflow Compiler port
 - C Compiler
 - Optimized single cluster code
 - Statically scheduled code across clusters
- Runtime System
 - C Library
 - Lightweight threads (local and remote)
- SCP Group Caltech/Syracuse
 - Steve Taylor, Daniel Maskit, Bryan Chow

Steve Keckler CVA group

8

The MIT MAP Chip

MAP Chip Implementation

- The Goals
 - Validate mechanisms
 - -4 clusters/1600MFlops
 - -13 million transistors, 100MHz
- The Resources
 - $-0.5\mu m,$ 5-metal process; 18mm × 18mm die
 - -MIT personnel: average 8 students and staff
 - * Architecture, logic/circuit design
 - Cadence Spectrum Design
 - * Chip assembly, layout
 - * Design flow
 - \ast Clock distribution design and analysis

Steve Keckler CVA group

Processor Coupling

- Compile-time scheduling (across clusters)
 - Instruction Level Parallelism
 - Independent cluster execution
 - Register-register communication
 - Tolerates slip between clusters
- Runtime multithreading (each cluster)
 - Hides variable latencies
 - Exploits slip between clusters

Steve Keckler CVA group 6

The MIT MAP Chip

Addressing and Communication

- Guarded Pointers
 - Capability based addressing
 - -No table lookup
 - Independent addressing and protection
- Send Instruction
 - $-{\bf Register\text{-}register\ transmit}$
- Fast message handling
 - -Dedicated thread

Steve Keckler CVA group

The Multi-ALU Node

Highly integrated node (6 chips) containing:

- 8 MBytes of external memory
- MAP Processor
 - -44KB cache (D+I)
 - -4 register files
 - -6 Integer units, 1 FPU
 - -NI + Router

Steve Keckler CVA group 4

The MIT MAP Chip

Multiple ALUs

Problem: Current multi-ALU control is inadequate

- $\bullet \; {\rm Superscalar}$
 - Issue logic and register file at scaling limits
 - -Empty issue slots
- VLIW
 - Variable latency
 - Empty issue slots
- $\bullet \ {\bf Multiprocessor}$
 - -Long interaction latency

Steve Keckler CVA group

What to Do?

- Increase processing per unit memory
 - $-\,16\%$ of 256MB system
 - -96 times peak performance
 - -1.5 times silicon area cost

Steve Keckler CVA group

2

The MIT MAP Chip

Outline

- 1. Motivation
- 2. M-Machine Architecture
 - Instruction Level Parallelism
 - Communication
- 3. MAP Chip Implementation
- 4. Summary

Steve Keckler CVA group

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY
Concurrent VLSI Architecture Group

THE MIT MULTI-ALU PROCESSOR

Stephen W. Keckler

William J. Dally, Andrew Chang, Nicholas P. Carter, Whay S. Lee

August 25, 1997

The MIT MAP Chip

The Vanishing Processor

64 bit processor w/ pipelined FPU (R4600) = $400M\lambda^2$

- $\lambda = 1/2$ feature size, process independent
- 4% of today's die
- 0.13% of today's system (256MB)

Steve Keckler CVA group