Logística Urbana para Entrega de Mercadorias Plataforma Digital

Guilherme Sequeira, Pedro Ramalho, Tomás Pacheco

Faculdade de Engenheria Universidade do Porto

Desenho de Algoritmos, 2021/2022, 2º semestre

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- 5 Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Descrição do problema

O objetivo do projeto consiste em implementar a plataforma de uma empresa de logística urbana, de modo a tornar a sua operação o mais eficiente possível. Considera-se então a implementação de 3 cenários diferentes, cada um com o seu propósito.

A seguir apresenta-se uma explicação formal e detalhada sobre cada um destes cenários, bem como as análises temporais e espaciais da sua implementação.

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- 5 Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Formalização do problema

Descrição

Dado um conjunto de estafetas E, de tamanho m, cada um com volume máximo V_e e peso máximo W_e , e um conjunto de pedidos P, de tamanho n, cada um com volume v_p e peso w_p , pretende-se maximizar o número de pedidos entregues, minimizando o número de estafetas contratados.

Seja I_p a variável que representa a inclusão da entrega $p \in P$, C_e a variável que representa a contratação do estafeta $e \in E$, e x_{ep} a variável que determina se o pedido p é entregue pelo estafeta e.

① Objetivo maximizar $\sum_{p=1}^{n} I_p$

minimizar
$$\sum_{e=1}^{m} C_e$$

- 2 Restrições
 - $w_p, W_e, v_p, V_e \in \mathbb{Z}^+$
 - $C, I, x \in \{0, 1\}$
 - $W_e \ge \sum_{p=1}^n w_p x_{ep}, \ V_e \ge \sum_{p=1}^n v_p x_{ep}$

Descrição do algoritmo

Em baixo encontra-se pseudocódigo para o algoritmo usado no cenário 1:

```
sort(estafetas, ordem decrescente, por valor)
sort(pedidos, ordem decrescente, por valor)

for pedido in pedidos:
   for estafeta in estafetas:
      if pedido fits in estafeta:
            estafeta.add_pedido(pedido)
      break
```

Análise da complexidade

Relembrando que m indica o número de estafetas e n indica o número de pedidos, o algoritmo anterior possui complexidade:

$$O(nlog(n) + mlog(m) + mn)$$

Observação: para um valor n = k haverá 2^k estafetas e 9×2^k pedidos.

Resultados da avaliação empírica

Problema

É necessário atribuir um critério de prioridade aos estafetas e aos pedidos. Como obter tal critério?

Inicialmente, começamos por chamar a este critério de "valor". Assim, cada estafeta e pedido possui um valor associado. A primeira iteração do algoritmo definia o valor de um estafeta e pedido da seguinte forma:

$$val_e = min(w_e/w_t, v_e/v_t) \ val_p = min(w_p/w_t, v_p/v_t),$$

onde w_t e v_t representam o peso e volume ocupado por todos os pedidos, respetivamente.

Desta forma, o algoritmo seria capaz de ajustar a prioridade dada aos estafetas selecionados de acordo com a necessidade de peso ou volume mais predominante nos pedidos. Após várias iterações observou-se que $val_e = w_e + v_e$ e $val_p = w_p + v_p$ obteve os melhores resultados.

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- 5 Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Formalização do problema

Descrição dos algoritmos

Análise da complexidade

Resultados da avaliação empírica

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- 5 Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Formalização do problema

Descrição dos algoritmos

Análise da complexidade

Resultados da avaliação empírica

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Destaque de algoritmo

Algoritmo super broken goes here.

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- 5 Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Principais dificuldades

Dificuldades encontradas go here.

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Esforço do grupo

Esforço do grupo goes here.

- Descrição do problema
- 2 Cenário 1 minimização de estafetas
- 3 Cenário 2 maximização dos lucros
- 4 Cenário 3 minimização do tempo de entrega
- Destaque de algoritmo
- 6 Principais dificuldades
- Esforço do grupo
- Outras observações

Explicação do dataset gerado

Explicação sobre o dataset gerado goes here.

Referências

Referências go here.