

	Standard Resistor Values (1%, 5% and 10% Tolerance)									
	1%							5	%	10%
1.00	1.02	1.05	1.07	1.10	1.13	1.15	1.18	10	11	10
1.21	1.24	1.27	1.30	1.33	1.37	1.40	1.43	12	13	12
1.47	1.50	1.54	1.58	1.62	1.65	1.69	1.74	15	16	15
1.78	1.82	1.87	1.91	1.96	2.00	2.05	2.10	18	20	18
2.15	2.21	2.26	2.32	2.37	2.43	2.49	2.55	22	24	22
2.61	2.67	2.74	2.80	2.87	2.94	3.01	3.09	27	30	27
3.16	3.24	3.32	3.40	3.48	3.57	3.65	3.74	33	36	33
3.83	3.92	4.02	4.12	4.22	4.32	4.42	4.53	39	43	39
4.64	4.75	4.87	4.99	5.11	5.23	5.36	5.49	47	51	47
5.62	5.76	5.90	6.04	6.19	6.34	6.49	6.65	56	62	56
6.81	6.98	7.15	7.32	7.50	7.68	7.87	8.06	68	75	68
8.25	8.45	8.66	8.87	9.09	9.31	9.53	9.76	82	91	82

Standard resistance value is obtained from the above chart by multiply by powers of 10. 5% example resistors: 51Ω , 510Ω , $5.1k\Omega$, $51k\Omega$, $510k\Omega$, $5.1M\Omega$. 1% example resistors: 1.21Ω , 12.1Ω , 12.1Ω , $1.21k\Omega$, $1.21k\Omega$, $1.21k\Omega$, $1.21M\Omega$

Capacitor Markings

Capacitance Conversion Calculator

1 F = 1 x 10 6 μ F = 1 x 10 9 nF = 1 x 10 12 pF $1 \mu F = 1 \times 10^{-6} F = 1 \times 10^{3} nF = 1 \times 10^{6} pF$ 1 nF = 1 x 10⁻⁹ F = 1 x 10⁻³ μ F=1 x 10³ pF 1 pF = 1 x 10^{-12} F = 1 x 10^{-6} μ F = 1 x 10^{-3} nF $F=Farad, \ \mu=micro, n=nano, p=pico$

1000 μ F = 1,000,000 nF = 10 x 10 8 pF 100 μ F = 100,000 nF = 10 x 10 7 pF $10 \mu F = 10,000 nF = 10 \times 10^6 pF$ $1 \mu F = 1,000 \text{ nF} = 10 \times 10^5 \text{ pF}$ $0.1 \mu F = 100 \text{ nF} = 10 \times 10^4 \text{ pF}$ $0.01 \mu F = 10 nF = 10 \times 10^{3} pF$ $0.001~\mu F = 1~nF = 10~x~10^2~pF$

Mylar (Polyester Film) Polypropylene Dipped Mica

Labels:

Ist digit, 2nd digit, multiplier in pF (or $\,\mu F$ if decimal before digits), and tolerance.

 $0.1 \mu F$, $\pm 1\%$

104F

Metallized Polyester Film

	<u>Label me</u>	aning
2µ2 100V Voltage Rating	Marking 2μ2 μ22 68n 4n7	Actual 2.2 μF 0.22 μF 68 nF 4.7 nF

Label:

"µ" place of decimal in microfarads "n" place of decimal in nanofarads

Surface Mount Capacitors

SMD Ceramic SMD Electrolytic Label meaning Label meaning 1 Marking Actual Marking Actual 10 μF, 6V 10 6V N1 33 pF Label meaning 2 Α4 0.01 μF **S6** 4.7 μF 4.7 μF, 10 V

Cha A B C	nificant ar. S. F. 1.0 1.1 1.2	Cha T U V	5.1 5.6 6.2	Multipli Numeric Characte	Decimal	below), 1	see table
D E F	1.3 1.5	X	6.8 7.5	1	10	Char.	Voltage
G H	1.6 1.8 2.0	Y Z a	8.2 9.1 2.5	2 3	100 1,000	e G	2.5 4
j' K	2.2 2.4	b d	3.5 4.0	4	10,000	J	6.3
Ĺ	2.7 3.0	e f	4.5 5.0	5 6	100,000 1,000,000	A C	10 16
N P	3.3 3.6	m n	6.0 7.0	7	10,000,000	D	20
Q	3.9	t	8.0	8 9	100,000,000 0.1	E V	25 35
R S	4.3 4.7	У	9.0			H	50

EIA Temperature Coefficient Color Codes

	Temp. Coeff.			
Color	Industry	EIA		
Black	NP0	C0G		
Brown	N030/N033	S1G		
Red	N075/N080	U1G		
Orange	N 150	P2G		
Ye ll ow	N 220	R2G		
Green	N 330	S2 H		
Blue	N 470	U2J		
Vio l et	N 750			
Gray				
White	P 100			
Red/Violet	P 100			

Practical Electronics for Inventors

ABOUT THE AUTHORS

Paul Scherz is a Systems Operation Manager who received his B.S. in physics from the University of Wisconsin. He is an inventor/hobbyist in electronics, an area he grew to appreciate through his experience at the University's Department of Nuclear Engineering and Engineering Physics and Department of Plasma Physics.

Dr. Simon Monk has a bachelor's degree in cybernetics and computer science and a Ph.D. in software engineering. He spent several years as an academic before he returned to industry, co-founding the mobile software company Momote Ltd. He has been an active electronics hobbyist since his early teens and is a full-time writer on hobby electronics and open-source hardware. Dr. Monk is author of numerous electronics books, including *Programming Arduino, Hacking Electronics*, and *Programming the Raspberry Pi.*

ABOUT THE TECHNICAL EDITORS

Michael Margolis has more than 40 years of experience developing and delivering hardware and software solutions. He has worked at senior levels with Sony, Lucent/Bell Labs, and a number of start-up companies. Michael is the author of two books, *Arduino Cookbook* and *Make an Arduino-Controlled Robot: Autonomous and Remote-Controlled Bots on Wheels*.

Chris Fitzer is a solutions architect and technical manager who received his Ph.D. in electrical and electronic engineering from the University of Manchester Institute of Science and Technology (UMIST) in 2003 and a first-class honors degree (B.Sc.) in 1999. He currently leads a global team developing and deploying Smart Grid technologies around the world. Previous positions have seen Chris drive the European interests of the ZigBee Smart Energy (ZSE) profile and lead the development of the world's first certified Smart Energy In Premise Display (IPD) and prototype smart meter. He has also authored or co-authored numerous technical journal papers within the field of Smarter Grids.

Practical Electronics for Inventors

Fourth Edition

Paul Scherz

Simon Monk

McGraw-Hill Education books are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Practical Electronics for Inventors, Fourth Edition

Copyright © 2016, 2013, 2007, 2000 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

McGraw-Hill Education, the McGraw-Hill Education logo, TAB, and related trade dress are trademarks or registered trademarks of McGraw-Hill Education and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. McGraw-Hill Education is not associated with any product or vendor mentioned in this book.

1234567890 ROV ROV 12109876

ISBN 978-1-25-958754-2 MHID 1-25-958754-1

This book is printed on acid-free paper.

Sponsoring Editor	Technical Editors	Indexer
Michael McCabe	Michael Margolis and	Cenveo Publisher Services
Editorial Supervisor Stephen M. Smith	Chris Fitzer Project Manager	Art Director, Cover Jeff Weeks
Production Supervisor Pamela A. Pelton	Apoorva Goel, Cenveo® Publisher Services	Composition Cenveo Publisher Services
Acquisitions Coordinator Lauren Rogers	Copy Editor Raghu Narayan Das, Cenveo Publisher Services	Illustration Cenveo Publisher Services
	Proofreader	

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

Cenveo Publisher Services

CONTENTS

	Preface Acknowl	edgments	xxiii xxv
CHAPTER 1	Introduc	tion to Electronics	1
CHAPTER 2	Theory		5
2.1	Theory of	Electronics	5
2.2	Electric C	urrent	6
	2.2.1	Currents in Perspective	9
2.3	Voltage		9
	2.3.1	The Mechanisms of Voltage	11
	2.3.2	Definition of Volt and Generalized Power Law	14
	2.3.3	Combining Batteries	15
	2.3.4	Other Voltage Sources	16
	2.3.5	Water Analogies	17
2.4		copic View of Conduction (for Those	
		Interested)	18
	2.4.1	Applying a Voltage	21
2.5		ee, Resistivity, Conductivity	23
	2.5.1		24
	2.5.2	Resistivity and Conductivity	25
2.6		s, Conductors, and Semiconductors	28
2.7	Heat and		31
2.8		Heat Conduction and Thermal Resistance	34
	2.8.1	Importance of Heat Production	37
2.9	Wire Gau	ges	39
2.10	Grounds		40
	2.10.1	Earth Ground	42
	2.10.2	Different Types of Ground Symbols	45
	2.10.3	Loose Ends on Grounding	47

2.11	Electric C	Circuits	49
2.12	Ohm's La	w and Resistors	50
	2.12.1	Resistor Power Ratings	51
	2.12.2	Resistors in Parallel	52
	2.12.3	Resistors in Series	55
	2.12.4	Reducing a Complex Resistor Network	58
	2.12.5	Multiple Voltage Dividers	61
2.13	Voltage o	and Current Sources	62
2.14	Measurin	g Voltage, Current, and Resistance	65
2.15	Combinir	ng Batteries	67
2.16	Open and	d Short Circuits	68
2.17	Kirchhoff	's Laws	69
2.18	Superpos	sition Theorem	74
2.19	Thevenin	's and Norton's Theorems	76
	2.19.1	Thevenin's Theorem	76
	2.19.2	Norton's Theorem	77
2.20	AC Circui	ts	80
	2.20.1	Generating AC	81
	2.20.2	Water Analogy of AC	82
	2.20.3	Pulsating DC	82
	2.20.4	Combining Sinusoidal Sources	83
	2.20.5	AC Waveforms	84
	2.20.6	Describing an AC Waveform	84
	2.20.7	Frequency and Period	85
	2.20.8	Phase	86
2.21	AC and R	esistors, RMS Voltage, and Current	87
2.22	Mains Po	wer	92
2.23	Capacito	rs	94
	2.23.1	Determining Capacitance	97
	2.23.2	Commercial Capacitors	99
	2.23.3	Voltage Rating and Dielectric Breakdown	99
	2.23.4	Maxwell's Displacement Current	100
	2.23.5	Charge-Based Model of Current	
		Through a Capacitor	102
	2.23.6	Capacitor Water Analogy	104
	2.23.7	Energy in a Capacitor	105
	2.23.8	RC Time Constant	105
	2.23.9	Stray Capacitance	108
	2.23.10	Capacitors in Parallel	108
	2.23.11	Capacitors in Series	109
	2.23.12	Alternating Current in a Capacitor	110
	2.23.13	Capacitive Reactance	111
	2.23.14	Capacitive Divider	113
	2.23.15	Quality Factor	113
2.24	Inductors		113
	2.24.1	Electromagnetism	114
	2.24.2	Magnetic Fields and Their Influence	117

	2.24.3	Self-Inductance	120
	2.24.4	Inductors	121
	2.24.5	Inductor Water Analogy	127
	2.24.6	Inductor Equations	128
	2.24.7	Energy Within an Inductor	133
	2.24.8	Inductor Cores	133
	2.24.9	Understanding the Inductor Equations	138
	2.24.10	Energizing RL Circuit	142
	2.24.11	Deenergizing RL Circuit	144
	2.24.12	Voltage Spikes Due to Switching	147
	2.24.13	Straight-Wire Inductance	147
	2.24.14	Mutual Inductance and Magnetic Coupling	148
	2.24.15	Unwanted Coupling: Spikes, Lightning, and Other Pulses	149
	2.24.16	Inductors in Series and Parallel	149
	2.24.17	Alternating Current and Inductors	150
	2.24.18	Inductive Reactance	151
	2.24.19	Nonideal Inductor Model	153
	2.24.20	Quality Factor	154
	2.24.21	Inductor Applications	155
2.25	Modeling	Complex Circuits	155
2.26		Numbers	159
2.27	Circuit wi	th Sinusoidal Sources	164
	2.27.1	Analyzing Sinusoidal Circuits with	
		Complex Impedances	165
	2.27.2	9	167
	2.27.3		175
2.28		AC Circuits (Apparent Power,	176
		er, Reactive Power) Power Factor	178
2.29		's Theorem in AC Form	186
2.30	Resonant		188
2.00	2.30.1	Resonance in RLC Circuits	191
	2.30.1	Q (Quality Factor) and Bandwidth	193
	2.30.3	` '	194
	2.30.4		174
	2.00.4	in RLC Resonant Circuit	195
	2.30.5	Capacitor Losses	195
	2.30.6	Parallel-Resonant Circuits	196
	2.30.7	The Q of Loaded Circuits	202
2.31	Lecture o	n Decibels	204
	2.31.1	Alternative Decibel Representations	207
2.32	Input and	d Output Impedance	207
	2.32.1	Input Impedance	207
	2.32.2	Output Impedance	208
2.33	Two-Port	Networks and Filters	210
	2.33.1	Filters	210
	2.33.2	Attenuators	221

χi

Contents

2.34	Transient	Circuits	223
	2.34.1	Series RLC Circuit	231
2.35	Circuits v	vith Periodic Nonsinusoidal Sources	235
	2.35.1	Fourier Series	236
2.36	Nonperio	odic Sources	243
2.37	SPICE		245
	2.37.1	How SPICE Works	246
	2.37.2	Limitations of SPICE and Other Simulators	249
	2.37.3	A Simple Simulation Example	249
CHAPTER 3	Basic El	ectronic Circuit Components	253
3.1	Wires, Co	ables, and Connectors	253
	3.1.1	Wires	253
	3.1.2	Cables	256
	3.1.3	Connectors	256
	3.1.4	Wiring and Connector Symbols	261
	3.1.5	High-Frequency Effects Within	
		Wires and Cables	262
3.2	Batteries		271
	3.2.1	How a Cell Works	272
	3.2.2	Primary Batteries	274
	3.2.3	, ,	275
	3.2.4	Secondary Batteries	279
	3.2.5	, , ,	287
	3.2.6	Note on Internal Voltage Drop of a Battery	289
3.3	Switches		290
	3.3.1	How a Switch Works	291
	3.3.2	9	291
	3.3.3	Kinds of Switches	292
	3.3.4	Simple Switch Applications	294
3.4	Relays		295
	3.4.1	,	297
	3.4.2	A Few Notes about Relays	298
	3.4.3	Some Simple Relay Circuits	299
3.5	Resistors		299
	3.5.1	Resistance and Ohm's Law	301
	3.5.2	Resistors in Series and Parallel	302
	3.5.3	Reading Resistor Labels	304
	3.5.4	Real Resistor Characteristics	306
	3.5.5	Types of Resistors	314
	3.5.6	Variable Resistors (Rheostats,	
	_	Potentiometers, Trimmers)	320
	3.5.7	Potentiometer Characteristics	322
3.6	Capacito		324
	3.6.1	Capacitance	326
	3.6.2	Capacitors in Parallel	326
	363	Canacitors in Series	327

		Contents	xiii
	3.6.4	RC Time Constant	327
	3.6.5	Capacitive Reactance	328
	3.6.6	Real Capacitors	329
	3.6.7	Capacitor Specifications	329
	3.6.8	Types of Capacitors	333
	3.6.9	Capacitor Applications	341
	3.6.10	Timing and Sample and Hold	347
	3.6.11	RC Ripple Filter	348
	3.6.12	Arc Suppression	350
	3.6.13	Supercapacitor Applications	352
	3.6.14	Problems	352
3.7	Inductors	3	355
	3.7.1	Inductance	357
	3.7.2	Constructing Inductors	357
	3.7.3	Inductors in Series and Parallel	357
	3.7.4	RL Time Constant	359
	3.7.5	Inductive Reactance	360
	3.7.6	Real Inductors	361
	3.7.7	Inductor Specifications	361
	3.7.8	Types of Inductors	363
	3.7.9	Reading Inductor Labels	367
	3.7.10	Inductor Applications	369
	3.7.11	EMI/EMC Design Tips	373
3.8	Transform		374
	3.8.1	Basic Operations	374
	3.8.2	Transformer Construction	385
	3.8.3	Autotransformers and Variable Transformers	387
	3.8.4	Circuit Isolation and the Isolation Transformer	389
	3.8.5	Various Standard and Specialized Transformers	390
2.0	3.8.6	Transformer Applications	392
3.9		d Circuit Breakers	397
	3.9.1	Types of Fuses and Circuit Breakers	398
CHAPTER 4	Semico	nductors	401
4.1		ductor Technology	401
77.1	4.1.1	What Is a Semiconductor?	401
	4.1.2	Applications of Silicon	406
4.2	Diodes	, pp. same or emeer.	407
	4.2.1	How p-n Junction Diodes Work	407
	4.2.2	Diode Water Analogy	409
	4.2.3	Kinds of Rectifiers/Diodes	409
	4.2.4	Practical Considerations	411
	4.2.5	Diode/Rectifier Applications	412
	4.2.6	Zener Diodes	420
	4.2.7	Zener Diode Applications	423
	4.2.8	Varactor Diodes (Variable Capacitance Diodes)	424

	4.2.9	PIN Diodes	426
	4.2.10	Microwave Diodes (IMPATT, Gunn, Tunnel, etc.)	426
	4.2.11	Problems	427
4.3	Transisto	r's	429
	4.3.1	Introduction to Transistors	429
	4.3.2	Bipolar Transistors	430
	4.3.3	Junction Field-Effect Transistors	449
	4.3.4	Metal Oxide Semiconductor Field-Effect Transistors	459
	4.3.5	Insulated Gate Bipolar Transistors (IGBTs)	468
	4.3.6	Unijunction Transistors	468
4.4	Thyristors	3	472
	4.4.1	Introduction	472
	4.4.2	Silicon-Controlled Rectifiers	473
	4.4.3	Silicon-Controlled Switches	476
	4.4.4	Triacs	477
	4.4.5	Four-Layer Diodes and Diacs	480
4.5	Transient	Voltage Suppressors	481
	4.5.1	Lecture on Transients	482
	4.5.2	Devices Used to Suppress Transients	483
4.6	Integrate	d Circuits	491
	4.6.1	IC Packages	492
CHAPTER 5	Optoele	ctronics	495
5.1	•	ecture on Photons	495
5.2	Lamps	sciale of Frioloffs	497
5.3	•	Itting Diodes	499
0.0	•	How an LED Works	500
		Kinds of LEDs	501
		More on LEDs	502
		LED Applications	505
		Laser Diodes	506
5.4	Photores		512
0.1	5.4.1	How a Photoresistor Works	512
		Technical Stuff	513
	0.4.Z		513
5.5		Applications	
	5.4.3	Applications des	514
	5.4.3 Photodio	des	514
	5.4.3 Photodio 5.5.1	des How a Photodiode Works	514 514
	5.4.3 Photodio 5.5.1	des	514
5.6	5.4.3 Photodio 5.5.1 5.5.2	des How a Photodiode Works Basic Operations Kinds of Photodiodes	514 514 515
5.6	5.4.3 Photodio 5.5.1 5.5.2 5.5.3	des How a Photodiode Works Basic Operations Kinds of Photodiodes	514 514 515 515
5.6 5.7	5.4.3 Photodio 5.5.1 5.5.2 5.5.3 Solar Cel	des How a Photodiode Works Basic Operations Kinds of Photodiodes Is Basic Operations	514 514 515 515 516
	5.4.3 Photodio 5.5.1 5.5.2 5.5.3 Solar Cel 5.6.1	des How a Photodiode Works Basic Operations Kinds of Photodiodes Is Basic Operations	514 514 515 515 516 517
	5.4.3 Photodio 5.5.1 5.5.2 5.5.3 Solar Cel 5.6.1 Phototrar	des How a Photodiode Works Basic Operations Kinds of Photodiodes Is Basic Operations asistors How a Phototransistor Works	514 515 515 516 517 517
	5.4.3 Photodio 5.5.1 5.5.2 5.5.3 Solar Cel 5.6.1 Phototrar 5.7.1	des How a Photodiode Works Basic Operations Kinds of Photodiodes Is Basic Operations asistors How a Phototransistor Works	514 514 515 515 516 517 517 518
	5.4.3 Photodio 5.5.1 5.5.2 5.5.3 Solar Cel 5.6.1 Phototrar 5.7.1 5.7.2 5.7.3	des How a Photodiode Works Basic Operations Kinds of Photodiodes Is Basic Operations nsistors How a Phototransistor Works Basic Configurations	514 515 515 516 517 517 518
	5.4.3 Photodio 5.5.1 5.5.2 5.5.3 Solar Cel 5.6.1 Phototrar 5.7.1 5.7.2 5.7.3 5.7.4	des How a Photodiode Works Basic Operations Kinds of Photodiodes Is Basic Operations nsistors How a Phototransistor Works Basic Configurations Kinds of Phototransistors	514 514 515 515 516 517 517 518 518

			Contents	XV
5.8	Photothy	rietore		521
0.0	5.8.1	How LASCRs Work		521
	5.8.2	Basic Operation		521
5.9	Optoisolo	•		522
0.7	5.9.1	Integrated Optoisolators		522
	5.9.2	Applications		523
5.10	Optical F	• •		524
0.10	opnour			024
CHAPTER 6	Sensors			525
6.1	General I	Principals		525
0.1	6.1.1	Precision, Accuracy, and Resolution		525
	6.1.2	The Observer Effect		526
	6.1.3	Calibration		526
6.2	Temperat			528
0.2	6.2.1	Thermistors		529
	6.2.2			531
	6.2.3	Resistive Temperature Detectors		532
	6.2.4	Analog Output Thermometer ICs		532
	6.2.5	Digital Thermometer ICs		533
		Infrared Thermometers/Pyrometers		534
	6.2.7	Summary		534
6.3		and Touch		535
	6.3.1			535
		Ultrasonic Distance		536
	6.3.3	Optical Distance		537
	6.3.4			539
	6.3.5	Summary		539
6.4		nt, Force, and Pressure		540
	6.4.1	Passive Infrared		540
	6.4.2	Acceleration		541
	6.4.3	Rotation		542
	6.4.4	Flow		543
	6.4.5	Force		544
	6.4.6	Tilt		545
	6.4.7	Vibration and Mechanical Shock		545
	6.4.8	Pressure		545
6.5	Chemica	I		546
	6.5.1	Smoke		546
	6.5.2	Gas		546
	6.5.3	Humidity		547
6.6	Light, Rad	diation, Magnetism, and Sound		547
	6.6.1	Light		547
	6.6.2	Ionizing Radiation		547
	6.6.3	Magnetic Fields		548
	6.6.4	Sound		549
6.7	GPS			549

CHAPTER 7	Hands-on Electronics		551
7.1	Safety		551
	7.1.1	Lecture on Safety	551
	7.1.2	Damaging Components with Electrostatic Discharge	555
	7.1.3	Component Handling Precautions	555
7.2		ting Circuits	556
7.2	7.2.1	Drawing a Circuit Schematic	556
	7.2.1		558
	7.2.2		558
	7.2.4	3 71	559
	7.2.5	Making a PCB	562
	7.2.6	Special Pieces of Hardware Used in Circuit Construction	567
	7.2.7		568
	7.2.8	•	569
	7.2.9	-	569
	7.2.10	9	570
	7.2.11	Troubleshooting the Circuits You Build	570
7.3	Multimet	_	571
,	7.3.1	Basic Operation	572
	7.3.2	•	573
	7.3.3	3	574
	7.3.4	A Note on Measurement Errors	574
7.4	Oscilloso		575
	7.4.1	How Scopes Work	576
	7.4.2	Interior Circuitry of a Scope	578
	7.4.3	Aiming the Beam	579
	7.4.4	Scope Usage	580
	7.4.5	What All the Little Knobs and Switches Do	581
	7.4.6	Measuring Things with Scopes	586
	7.4.7	Scope Applications	590
	7.4.8	Measuring Impedances	592
7.5	The Elect	The Electronics Laboratory	
	7.5.1	Work Area	594
	7.5.2	Test Equipment	595
	7.5.3	Multimeters	596
	7.5.4	DC Power Supplies	597
	7.5.5	Oscilloscope	598
	7.5.6	Oscilloscope Probes	600
	7.5.7	General-Purpose Function Generator	607
	7.5.8	Frequency Counter	608
	7.5.9	Computer	608
	7.5.10	Miscellaneous Test Equipment	609
	7.5.11	Multifunction PC Instruments	610
	7.5.12	Isolation Transformers	611
	7513	Variable Transformers or Variace	613

	Cor	ntents 2	xvii
	7.5.14 Substitution Boxes		614
	7.5.15 Test Cables, Connectors, and Adapters		616
	7.5.16 Soldering Equipment		618
	7.5.17 Prototyping Boards		621
	7.5.18 Hand Tools		622
	7.5.19 Wires, Cables, Hardware, and Chemicals		624
	7.5.20 Electronics Catalogs		626
	7.5.21 Recommended Electronics Parts		627
	7.5.22 Electronic CAD Programs		630
	7.5.23 Building Your Own Workbench		631
CHAPTER 8	Operational Amplifiers		635
8.1	Operational Amplifier Water Analogy		636
8.2	How Op Amps Work (The "Cop-Out" Explanation)		637
8.3	Theory		638
8.4	Negative Feedback		639
8.5	Positive Feedback		644
8.6	Real Kinds of Op Amps		645
8.7	Op Amp Specifications		647
8.8	Powering Op Amps		649
8.9	Some Practical Notes		650
8.10	Voltage and Current Offset Compensation		651
8.11	Frequency Compensation		652
8.12	Comparators		652
8.13	Comparators with Hysteresis		654
	8.13.1 Inverting Comparator with Hysteresis		654
	8.13.2 Noninverting Comparator with Hysteresis		655
8.14	Using Single-Supply Comparators		656
8.15	Window Comparator		656
8.16	Voltage-Level Indicator		657
8.17	Instrumentation Amplifiers		657
8.18	Applications		658
CHAPTER 9	Filters	(663
9.1	Things to Know Before You Start Designing Filters		664
9.2	Basic Filters		665
9.3	Passive Low-Pass Filter Design		666
9.4	A Note on Filter Types		670
9.5	Passive High-Pass Filter Design		670
9.6	Passive Bandpass Filter Design		672
9.7	Passive Notch Filter Design		674
9.8	Active Filter Design		675
	9.8.1 Active Low-Pass Filter Example		676
	9.8.2 Active High-Pass Filter Example		677
	9.8.3 Active Bandpass Filters		678
	9.8.4 Active Notch Filters		680
9.9	Integrated Filter Circuits		681

CHAPTER 10	Oscillators and Timers		683
10.1	RC Relax	ation Oscillators	684
10.2	The 555	Timer IC	686
	10.2.1	How a 555 Works (Astable Operation)	687
	10.2.2	Basic Astable Operation	688
	10.2.3	How a 555 Works (Monostable Operation)	689
	10.2.4	Basic Monostable Operation	690
	10.2.5	Some Important Notes about 555 Timers	690
	10.2.6	Simple 555 Applications	691
10.3	Voltage-C	Controlled Oscillators	692
10.4	Wien-Brid	dge and Twin-T Oscillators	693
10.5	LC Oscillo	ators (Sinusoidal Oscillators)	693
10.6	Crystal O	scillators	696
10.7	Microcon	troller Oscillators	698
CHAPTER 11	Voltage	Regulators and Power Supplies	699
11.1	Voltage-F	Regulator ICs	701
	11.1.1	Fixed-Regulator ICs	701
	11.1.2	Adjustable-Regulator ICs	702
	11.1.3	Regulator Specifications	702
11.2	A Quick L	ook at a Few Regulator Applications	702
11.3	The Trans	former	703
11.4	Rectifier I	Packages	703
11.5	A Few Sir	nple Power Supplies	704
11.6	Technica	Points about Ripple Reduction	707
11.7	Loose En	ds	709
11.8	Switching	g Regulator Supplies (Switchers)	710
11.9	Switch-M	ode Power Supplies (SMPS)	713
11.10	Kinds of 0	Commercial Power Supply Packages	714
11.11	Power Su	pply Construction	716
CHAPTER 12	Digital E	Electronics	717
12.1	The Basic	es of Digital Electronics	717
	12.1.1	Digital Logic States	717
	12.1.2	Number Codes Used in Digital Electronics	718
	12.1.3	Clock Timing and Parallel versus Serial	
		Transmission	725
12.2	Logic Gat	tes	726
	12.2.1	Multiple-Input Logic Gates	727
	12.2.2	Digital Logic Gate ICs	727
	12.2.3	Applications for a Single Logic Gate	728
	12.2.4	Combinational Logic	730
	12.2.5	Keeping Circuits Simple (Karnaugh Maps)	738
12.3	Combina	tional Devices	740
	12.3.1	Multiplexers (Data Selectors) and	
		Bilateral Switches	741

	12.3.2	Demultiplexers (Data Distributors) and Decoders	743
	12.3.3	Encoders and Code Converters	746
	12.3.4	Binary Adders	749
	12.3.5	Binary Adder/Subtractor	751
	12.3.6	Comparators and Magnitude Comparator ICs	751
	12.3.7	A Note on Obsolescence and the Trend	
		Toward Microcontroller Control	752
12.4	Logic Far	nilies	753
	12.4.1	CMOS Family of ICs	754
	12.4.2	I/O Voltages and Noise Margins	755
	12.4.3	Current Ratings, Fanout, and Propagation Delays	756
12.5	Powering	and Testing Logic ICs	756
	12.5.1	Power Supply Decoupling	756
	12.5.2	Unused Inputs	757
	12.5.3	Logic Probes and Logic Pulsers	757
12.6	Sequenti	al Logic	758
	12.6.1	SR Flip-Flops	759
	12.6.2	SR Flip-Flop ICs	763
	12.6.3	D-Type Flip-Flops	764
	12.6.4	Quad and Octal D Flip-Flops	768
	12.6.5	JK Flip-Flops	769
	12.6.6	Practical Timing Considerations with Flip-Flops	773
	12.6.7	Digital Clock Generators and	
		Single-Pulse Generators	774
	12.6.8	Automatic Power-Up Clear (Reset) Circuits	777
	12.6.9	Pullup and Pulldown Resistors	779
12.7	Counter I	Cs	780
	12.7.1	Asynchronous Counter (Ripple Counter) ICs	780
	12.7.2	Synchronous Counter ICs	782
	12.7.3	A Note on Counters with Displays	787
12.8	2.8 Shift Registers		789
	12.8.1	Serial-In/Serial-Out Shift Registers	789
	12.8.2	Serial-In/Parallel-Out Shift Registers	790
	12.8.3	Parallel-In/Serial-Out Shift Registers	790
	12.8.4	Ring Counter (Shift Register Sequencer)	791
	12.8.5	Johnson Shift Counter	791
	12.8.6	Shift Register ICs	792
	12.8.7	Simple Shift Register Applications	796
12.9	Analog/D	rigital Interfacing	799
	12.9.1	Triggering Simple Logic Responses	
	1000	from Analog Signals	799
	12.9.2	Using Logic to Drive External Loads	800
	12.9.3	Analog Switches	802
	12.9.4	Analog Multiplexer/Demultiplexer	802
	12.9.5	Analog-to-Digital and Digital-to-Analog	002
	100/	Conversion	803
	12.9.6	Analog-to-Digital Converters	811

Contents

xix