MT09-TP5

1. Écrire une fonction Scilab

$$[f] = diffdiv(y, t)$$

qui, étant donnés $(t_1, t_2, ..., t_n)$, $(f(t_1) = y_1, f(t_2) = y_2, ..., f(t_n) = y_n)$, calcule les différences divisées $(f_1 = f[t_1], f_2 = f[t_1, t_2], ..., f_n = f[t_1, ..., t_n])$. On suppose que les t_i sont distincts.

Application: t = (1, 3, 4.5, 5, 6), y = (1, 5, 3, 7, -1), calculez le vecteur f.

2. (a) Écrire une fonction Scilab

[p, pprim] = horn(a, t,
$$\theta$$
)

qui, étant donnés $(a_1, a_2, ..., a_n)$, $(t_1, t_2, ..., t_{n-1})$, θ , nombres réels, calcule

$$p = P(\theta) = a_1 + a_2(\theta - t_1) + a_3(\theta - t_1)(\theta - t_2) + \dots + a_n(\theta - t_1)\dots(\theta - t_{n-1}), pprim = P'(\theta)$$

à l'aide de l'algorithme de Horner.

Application: $a = (1, 3, 5, -1), t = (0, 0, 1), \theta = 2$, calculez p et pprim.

(b) Écrire une fonction Scilab

$$[p] = hornv(a, t, \theta)$$

qui étant donnés les vecteurs $(a_1, a_2, ..., a_n)$, $(t_1, t_2, ..., t_{n-1})$, $(\theta_1, ..., \theta_m)$, calcule le vecteur $p = (p_1, p_2, ..., p_m)$ dont les termes sont définis par

$$p_i = a_1 + a_2(\theta_i - t_1) + a_3(\theta_i - t_1)(\theta_i - t_2) + ... + a_n(\theta_i - t_1)...(\theta_i - t_{n-1}), \text{ pour } j = 1, ..., m.$$

Application: $a = (1, 3, 5, -1), t = (0, 0, 1), \theta = (2, 4),$ calculez le vecteur p.

3. (a) Écrire une fonction Scilab

$$p = interpol(y, t, \theta)$$

qui, étant donnés $(y_1, y_2, ..., y_n)$, $(t_1, t_2, ..., t_n)$, θ réels, calcule $p = P(\theta)$ où P est le polynôme de degré inférieur ou égal à n-1 tel que $P(t_i) = y_i$.

Application: t = (1, 3, 4.5, 5, 6), y = (1, 5, 3, 7, -1), calculez p dans le cas $\theta = 3$, puis $\theta = 4$.

(b) Écrire une fonction Scilab

courbe(y, t, N,
$$\tau$$
)

qui, étant donné les vecteurs $(y_1, y_2, ..., y_n)$, $(t_1, t_2, ..., t_n)$, le réel τ trace

- la courbe d'équation $z = P(\theta), t_1 \le \theta \le t_n$ où P est le polynôme d'interpolation,
- les points de coordonnées $((t_i, y_i), i = 1..n)$,
- la droite tangente à la courbe au point d'abscisse τ .

N est le nombre de points utilisés pour tracer la courbe.

Application:
$$t = (1, 3, 4.5, 5, 6), y = (1, 5, 3, 7, -1), \tau = 4$$

- 4. On reprend le TP3 : on note g l'expression de la spline cubique qui interpole les points de coordonnées (t_i, y_i) .
 - (a) Reprenez la fonction calcg que vous avez écrite et modifiez la pour utiliser l'algorithme de Horner que l'on vient de voir.
 - (b) Tracez sur la même figure les courbes d'équation $z=P(\theta)$ et $z=g(\theta)$ ainsi que les points de coordonnées (t_i,y_i) dans les cas suivants :
 - t = (1, 3, 4.5, 5, 6), y = (1, 5, 3, 7, -1),
 - $t_i = (i-1)/10$, i = 1, ..., 11, y = (0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0).

Rappel du TP3:

On définit la fonction g par :

$$\begin{cases} g(\theta) &= cc_{i1} + cc_{i2}(\theta - t_i) + cc_{i3}(\theta - t_i)^2 + cc_{i4}(\theta - t_i)^2(\theta - t_{i+1}), \text{ pour } t_i \leq \theta < t_{i+1} \\ g(\theta) &= cc_{n-1,1} + cc_{n-1,2}(\theta - t_{n-1}) + cc_{n-1,3}(\theta - t_{n-1})^2 + cc_{n-1,4}(\theta - t_{n-1})^2(\theta - t_n), \text{ pour } \theta = t_n \end{cases}$$

$$\tag{1}$$

On veut tracer la courbe d'équation $z = g(\theta), t_1 \le \theta \le t_n$.

Écrire une fonction Scilab

$$[z] = calcg(\theta, t, cc)$$

qui, étant donné le nombre θ , le vecteur t et la matrice de coefficients cc, calcule $z=g(\theta)$ définie par la relation (1).