Quantum Computing for Science

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations Departments of Computer Science, Physics & Astronomy, and Quantitative & Computational Biology University of Southern California

Email: anakano@usc.edu

Supported by National Science Foundation, Award OAC-2118061

CyberMAGICS Workshop
July 1, 2022

Changing Computing Landscape for Science

Postexascale Computing for Science

Compute Cambrian explosion

Exa-quantum-AI nexus

Quantum Computing for Science

AI for Science

DOE readies multibillion-dollar Al push

U.S. supercomputing leader is the latest big backer in a globally crowded field

By Robert F. Service, in Washington, D.C.

Science 366, 559 (Nov. 1, '19)

Use all to advance science!

Quantum Computing (QC) for Science

Quantum computing utilizes quantum properties such as superposition & entanglement for computation

- U.S. Congress (Dec. 21, '18) signed National Quantum Initiative Act to ensure leadership in quantum computing & its applications
- Quantum supremacy demonstrated by Google
 F. Arute, *Nature* 574, 505 ('19)
- Quantum computing for science: Universal simulator of quantum manybody systems

R. P. Feynman, *Int. J. Theo. Phys.* **21**, 467 ('82); S. Lloyd, *Science* **273**, 1073 ('96)

- Success in simulating static properties of quantum systems (i.e., ground-state energy of small molecules)
 A. Aspuru-Guzik et al., Science 309, 1704 ('05)
- Challenge: Simulate quantum manybody *dynamics* on current-to-near-future noisy intermediate-scale quantum (NISQ) computers

J. Preskill, Quantum 2, 79 ('18)

54-qubit Google Sycamore

An Excellent Reading

 Second edition of Feynman Lectures on Computation will add a section on "Simulating quantum dynamics" by John Preskill

Preskill, arXiv:2106.10522 ('21)

Application: Emergent Magnetism

- Experiment at Rice shows 2H-to-1T' phase transformation by alloying MoSe₂ with Re
- QMD simulations at USC elucidate its electronic origin
- Simulation & experiment show novel magnetism centered at Re atoms

V. Kochat et al., Adv. Mater. 29, 1703754 ('17)

Quantum Computing of Magnetism

• Simulated quantum many-body dynamics on IBM's Q16 Melbourne & Rigetti's Aspen quantum processors

L. Bassman et al., Phys. Rev. 101, 184305 ('20)

Quantum Dynamics on NISQ Computers

 Quantum-dynamics simulations on NISQ computers show dynamic suppression of magnetization by THz radiation

L. Bassman *et al.*, *Phys. Rev. B* **101**, 184305 ('20)

• AI-inspired quantum compiler reduced the circuit size by 30% to mitigate environmental noise

L. Bassman *et al.*, Quantum Sci. Tech. **6**, 014007 ('21)

Full-stack, cross-platform software for quantum dynamics simulations on NISQ computers

C. Powers et al., SoftwareX 14, 100696 ('21) https://github.com/USCCACS/MISTIQS

Where to Go from Here

Extensive tutorial on quantum computing

• You will be ready for Learn quantum computation using Qiskit

Learning Opportunities at USC

- New MS degree in Quantum Information Science (MSQIS) started in 2021
- Phys 513: Application of Quantum Computing (co-taught with Prof. Rosa Di Felice) quantum simulations on quantum circuits & adiabatic quantum annealer (syllabus)

Research Topics

- Hybrid quantum-classical computing: Accelerate computation on a classical computer using exponentially faster but inaccurate quantum processing units (Li, PRX '20); cf. variational quantum eigensolver (VQE) & quantum approximate optimization algorithm (QAOA) in Qiskit tutorial
- Error-tolerant quantum computing: Quantum error correction & mitigation (LaRose, arXiv '21)

Next: Hands on at IBM Quantum

- Quantum computing basics: Qubits and quantum gates
- Advanced: Quantum computation of transverse-field Ising model

Do it yourself at https://quantum-computing.ibm.com

