

Machine Learning 101 - an introduction

Inhalt

- Wer bin ich / wer sind wir?
- Machine Learning?
- Problemstellungen & Lösungsmöglichkeiten ©
 - Wie ähnlich bzw. unähnlich sind Menschen?
 - Wie kann man vorhersagen, wie viele Besucher zum nächsten DEVTREFF kommen werden?
- Ausblick

Wer bin ich/wer sind wir?

- Laurenz Gröbner
 - Ausbildung
 - HTL Hochbau
 - BWL, Spezialisierung auf Operations Management
 - Diplomarbeit
 - Fuhrparkplanung in der Autovermietung
 - Preis- und Mengensteuerung
 - Doktorat
 - Geschäftsführer von helloCash

- Erklärende Variablen (x1, x2,...)
 - Wintersaison
 - Feiertage
 - Bereits bekannte Reservierungen
 - Vergangene Nachfrage
 - Mietdauern (zwischen 2 Stunden und 30 Tagen)
 - •

- Erklärte Variable (y)
 - Benötige Fahrzeugmenge pro Kategorie x in Station y zum Zeitpunkt z

- (Predictive-Analytics)-Modelle
 - Prognosemodelle
 - Optimierungsmodelle
- Programmiersprache
 - SAS
- Ergebnisse

sorgen Europcar-Geschäftsführer Erich Windisch und sein Team dafür, dass alles reibungslos funktioniert und sämtliche Kundenwünsche erfüllt werden. Seit Ende des Vorjahres liefert dafür die SAS Software den optimalen logistischen Treibstoff.

"Unser wichtigstes Ziel ist es, das richtige Auto zur richtigen Zeit am richtigen Ort zu haben - und das natürlich immer mit Blick auf Kosten und Erträge." Erich Windisch, Geschäftsführer für Österreich und die Slowakei, bringt das Kernthema auf den Punkt. Wobei das, was aus dem Mund des Europear-Chefs so simpel klingt, keineswegs einfach zu bewerkstelligen ist. Schließlich müssen unzählige Transaktions- und Kundendaten so gezielt analysiert werden, dass alle Europear Stationen mit genau jenen Fahrzeugen bestückt sind, die auch tatsächlich von den Kunden vor Ort benötigt werden.

Bei einem Fuhrpark mit rund 2.000 Fahrzeugen, die in 20 Gruppen nach Größenordnung geclustert sind, ist dies eine durchaus komplexe logistische Herausforderung. Langfristige Reservierungen gilt es dabei ebenso abzudecken wie kurzfristige Nachfragen, die oft erst einen Tag vor dem gewünschten Datum eintreffen. Hinzu kommen unterschiedlichste Tarifmodelle, die nicht zuletzt auch davon abhängig sind, wie lange im Vorhinein ein Kunde bucht.

"Es geht um Fahrzeuge, Kunden und Tarife. Eine Unmenge an Daten also, die so abgebildet werden müssen, dass sie uns in die Lage versetzen, die Planung zu verbessern und die Erträge zu optimieren – und das immer mit größtem Fokus auf die Kundenzafriedenheit",

6 Jahre später kam ... helloCash

Wir arbeiten europaweit

6 Länder

Österreich (Headquarter)

Deutschland

Tschechien

Polen

Spanien

Frankreich

Machine Learning?

- What?
 - Datenaufbereitung
 - Datenanalyse
 - Datenverarbeitung
 - Erstellen analytischer Modelle
 - Bessere Entscheidungen

Übersicht

Übersicht

- Beispiele aus dem Alltag
 - Spam: Ja/nein
 - Outlook
 - Recommender Systems
 - Netflix
 - Amazon
 - Forecasting-Modelle
 - Flug buchen
 - Kundensegmentierung
 - Bonusclubs...
 - Siri, Alexxa

Machine Learning?

- Was haben alle Modelle gemeinsam?
 - Fehler ©
 - Darum ist die Beurteilung der Modellqualität so wichtig...

Ablauf einer ML-Aufgabe?

- Daten erheben
- Features vorbereiten
- Explorative Datenanalyse
- Modellbildung
- Modellqualität
- Modellbildung...

Modellqualität

• Trainings- vs. Test-Daten → Fehlermaße

Was macht der Nutzer in der Kassa?

- Problemstellung
 - Sehr viele Nutzer mit unterschiedlichem Nutzungsverhalten
 - Wer nutzt was?
 - Wer nutzt was nicht?
 - Was sollen wir entwickeln, damit mehr Nutzer noch mehr nutzen (mehr Mehrwert haben)?
 - Welchen Newsletter senden wir an wen?
 - •
 - → JÖ-Bonusclub → die stellen sich die gleichen Fragen

Lösungsansatz

- Man bildet Kundensegmente
 - Kunden mit ähnlichem
 - Nutzungsverhalten
 - Demographischen
 - Geographischen Merkmalen
- Ideale Situation
 - Jeder Nutzer ist ein Segment!
 - Herausforderung
 - Dann hätten wir viele tausende Segmente → das ist nicht handelbar...

- ML-Modell
 - K-Means Clustering
 - Klassifikation (unsupervised)
 - zu welcher Klasse gehört welche Beobachtung?
 - Funktionsweise

https://towardsdatascience.com/k-means-data-clustering-bce3335d2203

- #1 Data Cleansing
 - URL Aufrufe von Nutzern
 - Branchen
 - Akquisitionskanal
 - •
- #2 Feature Preparation
 - Wie müssen wir die Daten aufbereiten, dass wir diese verwendbar machen können?

• #3 - EDA

• #3 – EDA

		Correlation-Heatmap: FIRST-LOGIN URL-Movements											
number_of_DASHBOARD_url_calls	1	0.25	0.29	0.62	0.75	0.77	0.016	0.42	0.022	0.091	0.57	0.62	0.73
number_of_CRM_url_calls	0.25	1	0.33	0.06	-0.056	-0.14	0.086	0.61	0.061	-0.18	0.32	0.35	-0.034
number_of_ARTICLE_url_calls	0.29	0.33	1	0.012	0.21	-0.069	0.71	0.73	-0.22	0.66	0.59	0.48	0.23
number_of_PART_PAYMENT_url_calls	0.62	0.06	0.012	1	0.61	0.83	-0.28	0.2	-0.26	-0.18	0.15	0.3	0.69
number_of_EMPLOYEES_url_calls	0.75	-0.056	0.21	0.61	1	0.75	0.019	0.23	-0.25	0.2	0.44	0.46	0.79
number_of_VOUCHER_url_calls	0.77	-0.14	-0.069	0.83	0.75	1	-0.096	0.1	-0.24	-0.01	0.16	0.25	0.83
number_of_STATISTICS_url_calls	0.016	0.086		-0.28	0.019	-0.096	1	0.22	0.88	0.91	0.27	-0.016	-0.025
number_of_SERVICES_url_calls	0.42	0.61	0.73	0.2	0.23	0.1	0.22		-0.23	0.15	0.66	0.6	0.28
number_of_CALENDAR_url_calls	0.022	0.061	-0.22	-0.26	-0.25	-0.24	0.88	-0.23	1	-0.025	-0.23	-0.094	-0.22
number_of_INVENTORY_url_calls	0.091	-0.18	0.66	-0.18	0.2	-0.01	0.91	0.15	-0.025	1	0.21	0.061	0.16
number_of_COMPANY_url_calls	0.57	0.32	0.59	0.15	0.44	0.16	0.27	0.66	-0.23	0.21	1	0.86	0.32
number_of_PRODUCT_url_calls	0.62	0.35	0.48	0.3	0.46	0.25	-0.016	0.6	-0.094	0.061	0.86	1	0.37
number_of_CASHBOOK_url_calls	0.73	-0.034	0.23	0.69	0.79	0.83	-0.025	0.28	-0.22	0.16	0.32	0.37	1
	number_of_DASHBOARD_url_calls	rumber_of_CRM_url_calls	number_of_ARTICLE_url_calls	umber_of_PART_PAYMENT_url_calls	rumber_of_EMPLOYEES_url_calls	number_of_VOUCHER_url_calls	rumber_of_STATISTICS_unl_calls	rumber_of_SERVICES_unf_calls	number_of_CALENDAR_url_calls	rumber_of_INVENTORY_url_calls	rumber_of_COMPANY_uri_calls	number_of_PRODUCT_url_calls	number_of_CASHBOOK_url_calls

- 0.75

- 0.50

- 0.25

- 0.00

• #4 – Modellbildung

1187 non-null float64

698 non-null float64

397 non-null float64

934 non-null float64

164 non-null float64

961 non-null float64

1690 non-null float64

1496 non-null float64

1224 non-null float64

prepare dataframe print(df_URL_movements_by_group_first_login_CORR.info()) <class 'pandas.core.frame.DataFrame'> Int64Index: 2366 entries, 0 to 2365 Data columns (total 13 columns): number_of_DASHBOARD_url_calls 2366 non-null int64 number_of_CRM_url_calls 1005 non-null float64 number_of_ARTICLE_url_calls 1721 non-null float64 number of PART PAYMENT url calls 854 non-null float64

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 3)
kmeans.fit(df_URL_movements_by_group_first_login_CORR)
kmeans.cluster_centers_
```


number of EMPLOYEES url calls

number of STATISTICS url calls

number of SERVICES url calls

number of CALENDAR url calls

number of COMPANY url calls

number of PRODUCT url calls

number of CASHBOOK url calls

dtypes: float64(12), int64(1)

number of INVENTORY url calls

number of VOUCHER url calls

- #4 Modellbildung
 - Ergebnisse mit 3 Clustern
 - Verteilung der URL-Bewegungen pro Cluster

• #4 - Modellqualität

- #4 Modellbildung
 - Ergebnisse mit 4 Clustern

• #4 – Modellbildung

Cluster	Nutzungsverhalte n	Clustergröße	Maßnahme
Heavy Users	jede Funktion einmal pro Woche		
Heavy CRM-Users	jede kundenrelevante Funktion einmal pro Woche + Rechnungen	•••	•••
Invoice-Only Users	erstellen nur Rechnungen		
•••			

- Ergebnis & nächste Schritte
 - 4 Kundensegmente
 - ähnliche Nutzer innerhalb
 - Unterschiede zwischen den Segmenten
 - Tests, ob andere Variablen zu einem niedrigeren SSE (Fehlermaß) führen und gleichzeitig eine handelbare Clusteranzahl gefunden werden kann
 - Branche
 - Mitarbeiteranzahl
 - •
 - Ausreißerbereinigung

Wie viele Besucher kommen zum nächsten DEVTREFF?

- Erklärende Variablen (x1, x2,...)
 - Newsletter
 - Social Media Kanäle
 - Fans, Likes,...
 - Themen über die referiert wird
 - Außentemperatur
 - •

- Erklärte Variable (y)
 - Anzahl der Besucher beim nächsten DEVTREFF

Wie viele Besucher kommen zum nächsten DEVTREFF?

- ML-Modell
 - Multiple Regression
 - Supervised Learning

Ziel:
 Anzahl DEVTREFF-Besucher = y + x * FB-Fans - y * Temperatur + ...

Wie viele Besucher kommen zum nächsten DEVTREFF?

Modell-Vergleich

Modell 1:

1 erklärende Variable: Anzahl Facebook Fans Anzahl DEVTREFF-Besucher = -20,3573 + 0,135614 * FB_Fans Durchschnittlicher Fehler = 52 Besucher

Hinweis:

fiktive und zuwenig Input-Daten Modellvoraussetzungen? Residuen-Analyse? Ist Modell 2 klüger?

. .

Modell 2:

> 10 erklärende Variablen: (siehe unten)
Anzahl DEVTREFF-Besucher = -161,71 + 0,12401 * FB_Fans + ...
Durchschnittlicher Fehler = 18 Besucher

	Feature	Coefficients
0	temperature	-1.240108
1	Facebook_Fans	0.126521
2	Mostviertel_TV	-49.779601
3	topic_CSS	127.632475
4	topic_HTML	184.310695
5	topic_IOT	-14.751623
6	topic_JAVA	-175.201833
7	topic_KOTLIN	-145.359549
8	topic_LARAVEL	160.956605
9	topic_MYSQL	155.515596
10	topic_NUXT	218.047898
11	topic_PHP	165.517811
12	topic_PYTHON	65.210745

AUSBLICK & JOBS & DANKE ©

Bewerbungen an nina@hellocash.at