Patent mining

Antonin Bergeaud, Yoann Potiron and Juste Raimbault

April 11, 2016

We define N the number of patents in the database. We let t_1, \dots, t_N their corresponding submission date by increasing-time order. For each patent $i=1,\dots,N$, we consider C_i the number of citations made by the ith patent as well as $C_i^{(tec)}$ the number of citations made to patents of its own technological class and $C_i^{(sem)}$ the number of citations made to patents of its own semantic class. Finally, we define respectively $N_i^{(tec)}$ and $N_i^{(sem)}$ the number of patents which belonged to the technological (semantic) class of the ith patent when it was submitted.

Let $z \in \{tec, sem\}$. If we assume that the type of citations made $C_i^{(z)}$ are independent of the technological or semantic classes, we can expect $C_i^{(z)}$ to follow a $Bin(C_i, \frac{N_i^{(z)}}{i-1})$ conditioned on C_i and $N_i^{(z)}$. This assumption is not satisfied in practice. Consequently, we define the parameter $0 < \theta^{(z)} < 1$ which indicates the propensity for any patent to cite patents of its own technological or semantic class. We assume that $C_i^{(z)}$ follows a $Bin(C_i, \min(1, \frac{N_i^{(z)}}{i-1} + \theta))$.

We assume that the number of citations are a sequence of IID random variables, and also independent of any other quantity. This will facilitate the likelihood analysis in the following. We have

$$\log \mathcal{L}(C_N, C_N^{(z)}, \cdots, C_1, C_1^{(z)}) = \sum_{i=2}^N \log \mathcal{L}(C_i, C_i^{(z)} | C_{i-1}, C_{i-1}^{(z)}, \cdots, C_1, C_1^{(z)}) + \log \mathcal{L}(C_1, C_1^{(z)})$$

and bla bla