12. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 40) (Integration über kompakte Intervalle)

Man berechne die folgenden mehrfachen Integrale:

- a) $\int \int_A \frac{y}{1+xy} dx dy$ mit $A = [0, 2] \times [0, 3],$
- b) $\iint \int_A \frac{2z}{(x+y)^2} dx dy dz$ mit $A = [1,2] \times [2,3] \times [0,2]$,
- c) $\int \int_A \sin(x+y) dx dy$ mit $A = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right]$,
- d) $\int \int_A \frac{1}{(x+y)^2} dx dy$ mit $A = [a, b] \times [c, d]$, wobei 0 < a < b und 0 < c < d sind,
- e) $\iint \int_A \frac{1}{\sqrt{x+y+z+1}} dx dy dz$ mit $A = [0,1] \times [0,1] \times [0,1]$,
- f) $\int \int \int_A \frac{x^2 z^3}{1+y^2} dx dy dz$ mit $A = [0, 1] \times [0, 1] \times [0, 1]$.

(A 41) (Integration über Normalbereiche)

Sei

$$M := \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 1, \ -x^2 \le y \le 1 + x^2\}.$$

- a) Man stelle M in einem kartesischen Koordinatensystem dar.
- b) Man berechne $\int \int_M (x^2 2y) dx dy$.
- c) Ist M ein Normalbereich bezüglich der x-Achse?

(A 42) (Integration über Normalbereiche)

Sei M die beschränkte Teilmenge des \mathbb{R}^2 , die vom Dreieck mit den Eckpunkten (0,0), (1,0) and $(\frac{1}{2},\frac{1}{2})$ begrenzt wird.

- a) Man stelle M in einem kartesischen Koordinatensystem dar.
- b) Man zeige, dass M ein Normalbereich bezüglich der x-Achse ist.
- c) Man berechne $\int \int_M (x^2 + y^2) dx dy$.

(A 43) (Integration über Normalbereiche)

Sei $\emptyset \neq M \subseteq \mathbb{R}^2$ beschränkt und $f \colon M \to \mathbb{R}$ stetig. Man stelle M in einem kartesischen Koordinatensystem dar und bestimme $I := \int \int_M f(x,y) dx dy$ in den folgenden Fällen:

- a) $M = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1, -1 \le x \le y\}, f(x, y) = xy y^3,$
- b) $M = \text{jener Bereich im ersten Quadranten, der sich zwischen der Gerade } y = x \text{ und der Parabel } y = x^2 \text{ befindet, } f(x,y) = xy,$