

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1

Principles of Magnetism

Permanent Magnet

A permanent magnet is a piece of metal with characteristics of attracting certain metals

Horseshoe Magnets

Principles of Magnetism

Permanent Magnet

Magnetic flux lines form closed paths that are close together where the field is strong and farther apart where the field is weak.

Flux lines leave the north-seeking end of a magnet and enter the south-seeking end.

When placed in a magnetic field, a compass indicates north in the direction of the flux lines.

Principles of Electromagnetism

Magnetic Field around a wire

Right Hand Rule

A current in a wire creates a magnetic field around the wire as shown in the following figure

Wrap your right hand fingers aroud the wire while your thumb finger points the direction of current flow

(b) Field around a straight wire carrying current *I*

Principles of Electromagnetism

Magnetic Field around a wire

A current in a wire creates a magnetic field around the wire as shown in the following figure

Electromagnet

If this wire is wound around an iron core, the field lines are superposed as shown in the following figure

(b) Field around a straight wire carrying current *I*

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 5

Application of Right Hand Rule to Electromagnets

Wire is grasped with the thumb finger pointing the direction of current flow, the fingers encircling the wire point the direction of the magnetic field

The coil is grasped with the fingers pointing the direction of current flow, the thumb finger points the direction of the magnetic field in the coil

Electromagnet

Electromagnet

Horseshoe Electromagnet

Consider again the coil wound around the iron core as shown

If the iron core is shaped as an "U" shape, we obtain a "horseshoe" electromagnet

Electromagnet

Iron Core may be closed to form a magnetic "Loop"

Magnetic Ohm's Law

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 9

Magneto Motive Force (mmf)

Definition

Please note that flux is proportional to both;

- Current I,
- Number of Turns, N, i.e. flux depends on the product: N x I, called Magneto Motive Force (mmf)

Electrical Resistance

Electrical Resistance

Resistance of a cable is proportional to the length and inversely proportional to the cross sectional area of the cable

$$R = \rho \ell / A$$

where, R is the resistance of conductor, ρ is the resistivity coefficient, $\rho = 1/56$ Ohm-mm²/m (Copper) 1/32 Ohm-mm²/m (Alumin.) I (m) is the length of the conductor A (mm²) is the cross sectional area of conductor

Magnetic Resistance (Reluctance)

Reluctance

The reluctance of a magnetic material is proportional to the mean length and inversely proportional to the cross sectional area, and the permeability of the magnetic material

$$\mathcal{R}$$
= $(1/\mu) \ell/A$

where, R is the resistance of conductor, µ is the magnetic permeability coefficient,

 $\mu_0 = 4 \pi 10^{-7}$ (Air)

(m) is the length of the material,

A (mm²) is the cross sectional area of the material

Magnetic Resistance (Reluctance)

Reluctance

The reluctance of a magnetic material is proportional to the mean length and inversely proportional to the product of the cross sectional area and the permeability of the magnetic material

Summary

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 14

Current Density

Current Density

Current density in a cable is the current flowing through per unit area in a plane perpendicular to the direction of current flow

 $J = I/A (Amper/m^2)$

A (Area- m²)

I (Amper)

Flux Density

Flux Density

Flux density in a magnetic material is the flux flowing through per unit area in a plane perpendicular to the direction of flux flow

 $B = \Phi/A$ (Weber/ m^2)

Magnetizing Force

Definition

Magnetic Ohm's Law may be rewritten as follows;

$$\mathcal{F} = \mathcal{R} \times \Phi$$
(Ampere x Turn) (Weber)

NI =
$$\ell / (\mu A) \times \Phi$$

NI = $\ell / \mu \times (\Phi / A)$
NI = $\ell / \mu \times B$

or

$$NI/\ell = 1/\mu \times B$$

 $H = 1/\mu \times B$

$$B = \mu \times H$$

Magnetizing Force

Definition

Please note that the μ coefficient in the following expression is not constant, but function of H.

ŧ

 $B = \mu \times H$

µ-H Characteristics

Magnetizing Force

Definition

Magnetizing Force is the mmf per unit length of the magnetic material

$$NI/\ell = H$$

or

$$H = \mathcal{F} / \ell$$
 (AT / meter)

Relation between B and H;

$$B = \mu \times H$$

B-H Characteristics

Definition

The importance of B-H characteristics is that, it is independent of the cross sectional area A and length \(\ell\), i.e. it is independent of the shape and volume of the material,

In other words, B-H characteristics exhibits the magnetic property of the material for per unit length and and cross sectional area,

Hence, it is provided by the manufacturer of the magnetic material

B-H Characteristics

B-H Characteristics

B-H Characteristics

Please note that B-H characteristics saturates at high values of H

µ-H Characteristics

Please note that μ is a function of H

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 21

B-H Characteristics of Free Air

B-H Characteristics

B-H characteristics of free air is linear exhibiting no saturation effect

μ₀-H Characteristics

Please note that μ_0 is constant

The ratio μ/μ_0 is called "Relative Permeability"

ϕ - \mathcal{F} Characteristics

• • • Characteristics

Vertical and horizontal axes in the B-H Characteristics may be multiplied by A and I, respectively yielding the Φ - 𝒯 Characteristics

$$H \times \ell = \mathcal{F}$$
 (AT)

$$B \times A = \Phi$$
 (Weber)

Please note that the shape of the B-H characteristics is unchanged, while only the figures on the axes are changed

Knee Point

Definition

Knee Point on the • - • Characteristics is the point below which the characteristics may be assumed to be linear

• • • Characteristics

An Alternative Definition of Reluctance

Definition

Reluctance is the inverse of the slope of the chord drawn by joining the origin and a point on the • - • Characteristics

• • • Characteristics

An Alternative Definition of Reluctance

Definition • • • Characteristics 2,00 Φ (Flux) (Weber) Please note that reluctance is **Knee Point** 1,80 constant in the region below the knee point 1.60 1,40 1,20 1,00 0,80 0,60 \mathcal{R} = $(1/\mu) \ell/A$ 0,40 0,20 0,00

500

1500

1000

2000

2500

3000

F (mmf) (AT)

3500

Magnetic Kirchoff's Laws

Kirchoff's First Law

Summation of fluxes entering in a junction is equal to that of leaving

$$\Phi_1 = \Phi_2 + \Phi_3$$
 (Weber)

Electrical Analog

$$I_1 = I_2 + I_3$$
 (Amper)

Magnetic Kirchoff's Laws

Kirchoff's Second Law

Summation of magneto motive forces in a closed magnetic circuit is zero

$$\mathcal{F} = NI = \mathcal{R}_1 \Phi + \mathcal{R}_2 \Phi + \mathcal{R}_0 \Phi + \mathcal{R}_3 \Phi$$

Electrical Analog

$$V = R_1 I + R_2 I + R_0 I + R_3 I$$

Magnetic Kirchoff's Laws: Application

Kirchoff's Second Law

Reluctance of the parts of the magnetic material

$$R_1 = \frac{1}{\mu} A$$

$$R_2 = \frac{1}{2} / \mu A$$

$$R_3 = l_3 / \mu A$$

Reluctance of the air gap

$$R_0 = l_0 / \mu_0 A$$
 $\mu_0 = 4 \pi 10^{-7}$

Total reluctance

$$R_T = R_1 + R_2 + R_3 + R_0$$

Magnetic Kirchoff's Laws: Application

Kirchoff's Second Law

Then flux may be calculated as;

$$\phi = \mathcal{F}/R_T$$

$$= NI/(R_1 + R_2 + R_3 + R_0)$$

or

Then flux may be calculated as;

$$\mathcal{F} = \Phi(R_1 + R_2 + R_3 + R_0)$$

$$= \Phi R_1 + \Phi R_2 + \Phi R_3 + \Phi R_0$$

$$= \mathcal{F}_1 + \mathcal{F}_2 + \mathcal{F}_3 + \mathcal{F}_0 \qquad \qquad \dots$$

KVL for magnetic circuits

Magnetic Kirchoff's Laws: Application

Kirchoff's Second Law

Then flux density may be written as;

$$B = \Phi / A$$

$$= (\mathcal{F}/(R_1 + R_2 + R_3 + R_0)) / A$$

$$= (NI/A)/(l_1/A\mu + l_2/A\mu + l_3/A\mu + l_0/A\mu_0)$$

$$= NI/(l_1/\mu + l_2/\mu + l_3/\mu + l_0/\mu_0)$$

Magnetomotive force may then be written as;

$$\mathcal{F} = NI = \mathcal{F}_1 + \mathcal{F}_2 + \mathcal{F}_3 + \mathcal{F}_0$$

= $H_1 l_1 + H_2 l_2 + H_3 l_3 + H_0 l_0$

Ampere's Law:
$$\oint \mathbf{H} \cdot d\mathbf{l} = \sum Ni$$

Example 1

Question

The magnetic circuit shown on the RHS is operated at saturated flux values, hence linear techniques can not be applied.

For a flux density of 1.6 Weber / m², determine the current / and flux /

Parameters

Cross sectional area = A = 10 cm² Mean length of flux path = ℓ_m = 30 cm Number of turns = N = 500

Example 1

Solution

The first thing to do, is to use B-H curve for finding the value of H coreesponding to flux density of 1.6 Weber / m²

Parameters

Cross sectional area = A = 10 cm² Mean length of flux path = $\ell_{\rm m}$ = 30 cm Number of turns = N = 500

 $B = 1.6 \text{ Wb/m}^2 \rightarrow H = 2400 \text{ AT / m}$

Flux Φ (Weber) $\mathcal{F} = N \times I$ Reluctance (\mathcal{R})

Example 1

$$B = 1.6 \text{ Wb/m}^2 \rightarrow H = 2400 \text{ AT/m}$$
 $\mathcal{F} = NI = H \ell_m \rightarrow I = H \times \ell_m / N$
 $= 2400 \times 0.3 / 500$
 $= 1.44 \text{ Amper}$
 $Φ = B \times A = 1.6 \times 10 \times 10^{-4} = 0.0016 \text{ Wb}$

Parameters

Cross sectional area = A = 10 cm^2 Mean length of flux path = ℓ_m = 30 cm Number of turns = N = 500

Example 2

Question

Determine the flux and mmf required to produce the flux in the toroid shown on the RHS wound around a certain ferromegnetic material called "Ferrite"

Outer diamater = 0.10 m Inner diameter = 0.08 m Dept = 0.02 m Flux density = B = 0.15 Wb / m² μ = 1000 x μ ₀ (B-H curve is linear)

The ratio μ/μ_0 is called <u>"Relative Permeability"</u>

Example 2

Solution

Thickness of the core = (0.10 - 0.08) / 2 = 0.01 mDiameter $_{mean} = (0.10 + 0.08) / 2 = 0.09 \text{ m}$

Cross sectional area = $0.02 \times 0.01 = 0.0002 \text{ m}^2$ Then, flux = ϕ = B x A = $0.15 \times 0.0002 = 0.00003 \text{ Wb}$

> Outer diamater = 0.10 m Inner diameter = 0.08 m Dept = 0.02 m

Cross sectional area A

Flux density = B = 0.15 Wb / m^2 μ = 1000 x μ_0 (B-H curve is linear)

Example 2

Solution

Let us now calculate the mmf necessary for producing this flux

Reluctance of the toroid = $\mathcal{R} = \ell_{mean} / \mu A$ Where ℓ_{mean} is the mean length defined as;

 ℓ_{mean} = diameter $_{mean}$ x π = 0.09 x π = 0.2827 m

Hence the reluctance becomes;

 $R = \ell_{mean} / \mu A$ = 0.2827 / (1000 x 4 π x 10⁻⁷)

= 224.97 AT / Wb

Thus, mmf becomes;

 $\mathcal{F} = \mathcal{R} \Phi = 224.97 \times 0.15 = 33.75 AT$

Flux density = B = 0.15 Wb / m^2 μ = 1000 x μ_0 (B-H curve is linear)

Load Line Technique

The need for the Load Line Technique

When the material is operated within the saturated region of the B-H characteristics, solution of the circuit when the mmf is given, but the flux is unknown is rather difficult, due to the fact that μ of the material is a function of flux ϕ , but flux is unknown, i.e. the equation;

$$\phi = \mathcal{F} / (\mathcal{R}_{total} + \mathcal{R}_0)
= \mathcal{F} / (\ell_{total} / (\mu(\Phi) \times A)) + \mathcal{R}_0$$

In other words, both sides of the above equation involve the unknown variable •

Implicit nonlinar equation

Question

B-H curve of the magnetic circuit shown on the RHS is given below. Fluxes in the branches are given as;

 $\emptyset_a = 0.003 \text{ Weber,}$ $\emptyset_b = 0.003 \text{ Weber,}$ $\emptyset_c = 0.003 \text{ Weber}$

find the direction and magnitudes of the currents

$$\ell_{BB'} = 0.1 \text{ m}$$
 $\ell_{BAA'B'} = \ell_{BCC'B'} = 0.4 \text{ m}$
 $A_{BB'} = 5 \text{ cm}^2$
 $A_{BAA'B'} = A_{BCC'B'} = 20 \text{ cm}^2$

Example 4

Solution

Solution

Writing down magnetic KVL for the loops of the magnetic circuit

$$\mathcal{F}_1 = N_1 I_1 = H_{BB}, \ell_{BB}, + H_{BAA'B'}, \ell_{BAA'B'}$$
 (1)

$$\mathcal{F}_2 = N_2 I_2 = H_{BCC'B'} \ell_{BCC'B'} + H_{BB'} \ell_{BB'}$$
 (2)

Solution

Solution

Now, flux densities

$$B_{BB'} = \emptyset_b / A_{BB'} = 0.0008 / (5 \times 10^{-4})$$

$$= 1.6 Wb/m^2$$

$$B_{BAA'B'} = \emptyset_a / A_{BAA'B'} = 0.0030 / (20 \times 10^{-4})$$

$$= 1.5 Wb/m^2$$

$$B_{BCC'B'} = \emptyset_c / A_{BCC'B'} = 0.0022 / (20 \times 10^{-4})$$

 $= 1.1 \text{ Wb/m}^2$

Now, find magnetizing forces by using the given B-H curve

$$B_{BB'} = 1.6 \text{ Wb/m}^2 \implies H_{BB'} = 3000 \text{ AT/m}$$

$$B_{BAA'B'} = 1.5 \text{ Wb/m}^2 \implies H_{BAA'B'} = 2000 \text{ AT/m}$$

$$B_{BCC'B'} = 1.1 \text{ Wb/m}^2 \implies H_{BCC'B'} = 400 \text{ AT/m}$$

Solution

Solution

Now, substitute the above magnetizing forces into equatins (1) and (2) $100 I_1 = 3000 \times 0.01 + 2000 \times 0.4 = 1100$ Thus, $I_4 = 1100 / 100 = 11.0$ Ampers

 $300 I_2 = 400 \times 0.4 - 3000 \times 0.1 = -140$ Thus $I_2 = -140.0 / 300 = -0.467$ Ampers

Please note that I_1 is in the same direction as shown in the figure, but I_2 is in the opposite direction

Graphical Solution (Load Line Technique)

Description

Writing Amper's equation for the magnetic circuit

$$\mathcal{F} = H_c \ \ell_c + H_0 \ \ell_0$$
 (1)
where, H_c and H_0 are the magnetizing
forces in the material (core) and
air gap,
 ℓ_c and ℓ_0 are the lengths of the
core and air gap, respectively

Now, noting that;

$$H_0 = B_0 / \mu_0 = B_c / \mu_0$$

And substituting this into (1)

Graphical Solution (Load Line Technique)

Derivation of the Load Line Equation

$$\mathcal{F} = NI = H_C \ell_c + (B_c/\mu_0) \ell_0 \tag{2}$$

or writing the above equation in terms of H_c

$$H_c = - \ell_0 / (\mu_0 \ \ell_c) \ B_c + NI / \ell_c$$
 (3)

Load Line Equation:

$$y = -ax + b$$

The Load Line is then drawn on the B-H characteristics and the intersection point of the two curves is found

Graphical Solution (Load Line Technique)

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 45

Magnetizing Force H (At/m)

Example 3

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 46

Example 3

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 47

Energy in Magnetic Circuits

Sinusoidally Excited Magnetic Circuits

Consider the sinusoidally excited magnetic circuit shown on the RHS

$$I(t) = -\hat{I}\cos wt$$

$$\mathcal{F}(t) = -\hat{N}\hat{I}\cos wt$$

$$\Phi(t) = \mathcal{F}(t) / \mathcal{R}_{total}$$

$$= -\hat{N}\hat{I}\cos wt / \mathcal{R}_{total}$$

$$= -\hat{\Phi}\cos wt$$

$$where \hat{\Phi} = NI / \mathcal{R}_{total}$$

Energy in Magnetic Circuits

Sinusoidally Excited Magnetic Circuits

$$I(t) = -\hat{I}\cos wt$$

$$\mathcal{F}(t) = -\hat{N}\hat{I}\cos wt$$

$$\Phi(t) = \mathcal{F}(t) / \mathcal{R}_{total}$$

$$= -\hat{N}\hat{I}\cos wt / \mathcal{R}_{total}$$

$$= -\hat{\Phi}\cos wt$$

$$where, \hat{\Phi} = NI / \mathcal{R}_{total}$$

Waveforms

Voltage Induced in the Coil

Sinusoidally Excited Magnetic Circuits

By using Lenz's law

 $e(t) = N d/dt \Phi(t)$

 $= - N d/dt \stackrel{\wedge}{\Phi} \cos wt$

 $= N \hat{\Phi} w \sin wt$

= ê sin wt

where $\hat{e} = N \hat{\phi} w$

Waveforms

Voltage Induced in the Coil

Sinusoidally Excited Magnetic Circuits

If we plot $\phi(t)$ and e(t) on the same scale

Please note that the shape of this waveform is not actually of pure sinusoidal shape, but a distorded form of sinusoidal waveform, due to nonlinearity of the B-H curve

Energy Stored in Magnetic Circuits

Electrical Energy Stored in a Magnetic Circuit

Time duration dt required for a change $d\phi$ in flux may be found on the $\phi - t$ curve

Energy Stored in Magnetic Circuits

Electrical Energy Stored in a Magnetic Circuit

Let us now calculate the instantaneous electrical energy stored in a magnetic circuit within a time duration dt

 $dW_{elect} = e(t) I(t) dt$ $= N d\Phi(t)/dt I(t) dt$ $= (NI) d\Phi(t) / dt^{*} x dt^{*}$ $= \mathcal{F} d\Phi$

Fringing Effect

Description

Fringing effect is the deviation of the flux trajectory to outside in the air gap

The effects of fringing;

- (a) increasing the cross sectional area of the air gap,
- (b) creating nonlinarity in the flux density in the air gap

Usual practice for handling the fringing effect is to increase the cross sectional area of the air gap in calculations by a factor, such as 20 %

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 67

Any Questions Please?

