BiANE: Bipartite Attributed Network Embedding

Wentao Huang, Yuchen Li, Yuan Fang, Ju Fan, Hongxia Yang

School of Information, Renmin University of China¹
School of Information System, Singapore Management University²
Damo Academy, Alibaba Group³

Outline

- Introduction & Challenge
- Methodology
- Experiment
- Conclusion & Future Work

Bipartite Attributed Network

- ✓ E-Commerce Websites
- Recommendation System
- ✓ Bibliometric Network Analysis
- ✓ Biological Community Detection
- Risk Assessment of Financial Systems

Bipartite Attributed Network

- E-Commerce Websites
- Recommendation System
- Bibliometric Network Analysis
- ✓ Biological Community Detection
- Risk Assessment of Financial Systems

Bipartite Attributed Network

- ✓ E-Commerce Websites
- Recommendation System
- Bibliometric Network Analysis
- ✓ Biological Community Detection
- Risk Assessment of Financial Systems

Characteristics

The Inter-Partition Proximity

Bipartite Attributed Network

- E-Commerce Websites
- Recommendation System
- Bibliometric Network Analysis
- Biological Community Detection
- Risk Assessment of Financial Systems

- The Inter-Partition Proximity
- The Intra-Partition Proximity

Bipartite Attributed Network

- ✓ E-Commerce Websites
- Recommendation System
- Bibliometric Network Analysis
- ✓ Biological Community Detection
- Risk Assessment of Financial Systems

- The Inter-Partition Proximity
- The Intra-Partition Proximity
 - 1) The Attribute Proximity

Bipartite Attributed Network

- E-Commerce Websites
- Recommendation System
- Bibliometric Network Analysis
- ✓ Biological Community Detection
- Risk Assessment of Financial Systems

- The Inter-Partition Proximity
- The Intra-Partition Proximity
 - The Attribute Proximity
 - 2) The Structure Proximity

Bipartite Attributed Network

- ✓ E-Commerce Websites
- Recommendation System
- Bibliometric Network Analysis
- ✓ Biological Community Detection
- Risk Assessment of Financial Systems

Characteristics

- The Inter-Partition Proximity
- The Intra-Partition Proximity
 - 1) The Attribute Proximity
 - The Structure Proximity

Goal:

Given a bipartite attributed network $G = (\mathcal{U}, \mathcal{V}, E, \mathbf{X}_{\mathcal{U}}, \mathbf{X}_{\mathcal{V}})$, we want to learn a mapping function to transform each node to a vector in a low-dimension space.

Technical Challenges

- The Attribute-Structure Correlation
 - Complementarity & Coherence

The Structure Information

The Attribute Information

- Negative Sampling Strategy
 - Static sampling strategies can not reflect the variation of embedding space.
 - Dynamic sampling strategies will result in the scalability issue.

Methodology

Example

Scholar-Publication Network

- Jiawei Han
- Gender: Male
- Institutions: UIUC, SFU
- Research Interests:
 - Data Mining
 - Database Systems
 - Data Warehousing
 - Information Networks

Scholar Partition:

WW Hwu: Wen-mei W. Hwu
D Chen: Deming Chen
Y Sun: Yizhou Sun
WF Wong: Weng-Fai Wong
W Zhu: Wenwu Zhu
J Han: Jiawei Han
BC Ooi: Beng Chin Ooi
T Chen: Ting Chen
P Cui: Peng Cui

Publication Partition:

TF-IPM: Topic-Factorized Ideal Point Estimation Model for Legislative Voting Network.

IFUHJ: Is FPGA Useful for Hash Joins?

AccDNN: An IP-Based DNN Generator for FPGAs.

PSL: Parallelizing Skip Lists for In-Memory Multi-Core Database Systems.

SDNE: Structural Deep Network Embedding.

H-tree: Index nesting – an efficient approach to indexing in object-oriented databases.

NetClus: Ranking-Based Clustering of Heterogeneous Information Networks with Star Network Schema.

☐ Compact Feature Learning

$$L_2 = \sum_{i} ||\hat{\mathbf{x}}_i - \mathbf{x}_i||^2 + \sum_{i} ||\hat{\mathbf{z}}_i - \mathbf{z}_i||^2$$

☐ Joint Modeling — Preserving the first-order proximity

$$L_{3} = -\sum_{a_{mn}>0} \log \sigma(\mathbf{x}_{m}^{\prime} \cdot \mathbf{x}_{n}^{\prime}) - \sum_{n'=1}^{\infty} \mathbb{E}_{v_{n'} \sim P_{n}^{\prime}(v)} \log \sigma(-\mathbf{x}_{m}^{\prime} \cdot \mathbf{x}_{n'}^{\prime})$$
$$-\sum_{a_{mn}>0} \log \sigma(\mathbf{z}_{m}^{\prime} \cdot \mathbf{z}_{n}^{\prime}) - \sum_{n'=1}^{\infty} \mathbb{E}_{v_{n'} \sim P_{n}^{\prime}(v)} \log \sigma(-\mathbf{z}_{m}^{\prime} \cdot \mathbf{z}_{n'}^{\prime})$$

Latent Correlation Training

Latent Correlation Training

☐ Transform encodings to latent representations via auxiliary kernels.

$$\tilde{\mathbf{X}} = \delta^{(k)}(\widetilde{\mathbf{W}}_x^{(k)}(\cdots \delta^{(1)}(\widetilde{\mathbf{W}}_x^{(1)}\mathbf{X}' + \widetilde{\mathbf{b}}_x^{(1)})\cdots) + \widetilde{\mathbf{b}}_x^{(k)})$$

$$\widetilde{\mathbf{z}} = \delta^{(k)} \big(\widetilde{\mathbf{W}}_z^{(k)} \big(\cdots \delta^{(1)} \big(\widetilde{\mathbf{W}}_z^{(1)} \mathbf{z}' + \widetilde{\mathbf{b}}_z^{(1)} \big) \cdots \big) + \widetilde{\mathbf{b}}_z^{(k)} \big)$$

Latent Correlation Training

☐ Enhance the attribute-structure correlation

$$L_4 = -\sum_{m=n} \log \sigma(\tilde{\mathbf{x}}_m^\mathsf{T} \cdot \tilde{\mathbf{z}}_n) - \sum_{n'=1} \mathbb{E}_{v_{n'} \sim P_n'(v)} \log \sigma(-\tilde{\mathbf{x}}_m^{\phantom{\mathsf{T}}} \cdot \tilde{\mathbf{z}}_{n'})$$

Scholar-Publication Network

Dynamic Positive Sampling

Scholar-Publication Network

Dynamic Positive Sampling

□ Build up HNSW index for each vector (\tilde{x}, \tilde{z}) in the latent space (time complexity: $O(n \log n)$)

Scholar-Publication Network

Dynamic Positive Sampling

- Build up HNSW index for each vector (\tilde{x}, \tilde{z}) in the latent space (time complexity: $O(n \log n)$)
- Perform *k*NN approximate search for each vector (\tilde{x}, \tilde{z}) via HNSW (time complexity: $O(n \log n)$)

Scholar-Publication Network

Dynamic Positive Sampling

- Build up HNSW index for each vector (\tilde{x}, \tilde{z}) in the latent space (time complexity: $O(n \log n)$)
- Perform *k*NN approximate search for each vector (\tilde{x}, \tilde{z}) via HNSW (time complexity: $O(n \log n)$)

$$L_4 = -\sum_{\substack{m=n \\ or \\ u_m, u_n \sim \tilde{p}(m,n)}} \log \sigma(\tilde{\mathbf{x}}_m^{\mathrm{T}} \cdot \tilde{\mathbf{z}}_n) - \sum_{n'=1} \mathbb{E}_{v_{n'} \sim P_n'(v)} \log \sigma(-\tilde{\mathbf{x}}_m^{\mathrm{T}} \cdot \tilde{\mathbf{z}}_{n'})$$

Scholar-Publication Network

Dynamic Positive Sampling

- Build up HNSW index for each vector (\tilde{x}, \tilde{z}) in the latent space (time complexity: $O(n \log n)$)
- Perform *k*NN approximate search for each vector (\tilde{x}, \tilde{z}) via HNSW (time complexity: $O(n \log n)$)

$$L_4 = -\sum_{\substack{m=n \\ or}} \log \sigma(\tilde{\mathbf{x}}_m^{\mathrm{T}} \cdot \tilde{\mathbf{z}}_n) - \sum_{\substack{n'=1 \\ n' \sim P_n'(v)}} \mathbb{E}_{v_{n'} \sim P_n'(v)} \log \sigma(-\tilde{\mathbf{x}}_m^{\mathrm{T}} \cdot \tilde{\mathbf{z}}_{n'})$$

$$u_{m,u_n \sim \tilde{p}(m,n)} \longrightarrow \text{HNSW positive sampling probability distribution}$$

☐ Inter-Partition Proximity Modeling

$$h = [x', z']$$

$$L_{Inter} = \sum_{E} log(\sigma(h_u^T \cdot h_v))$$

☐ Inter-Partition Proximity Modeling

$$h = [x', z']$$

$$L_{Inter} = \sum_{E} log(\sigma(h_u^T \cdot h_v))$$

☐ Joint Training

$$L = L_{Intra} + L_{Inter}$$

☐ Intra-Partition Proximity Modeling

$$L_{Intra} = L_2 + L_3 + L_4$$

Experimental Setup

- Tasks:
 - Link Prediction & Node Classification
- Metrics:
 - AUC-ROC, AUC-PR
 - Micro-F1, Macro-F1
- Datasets:

Dataset	#user	#item	#link	#user- attr	#item- attr	sparsity(%)
MovieLens	6,000	3,069	225,344	3	1	0.9878
AMiner	80,461	66,107	168,525	1	1	0.9999
Alibaba	38,140	7,913	59,237	18	28	0.9998

$$sparsity = 1 - \frac{\#link}{\#user \times \#item}$$

Experimental Setup

Compared Methods:

Homogeneous Network Methods:

- DeepWalk [Perozzi et al SIGKDD 2014]
- node2vec [Grover et al SIGKDD 2016]
- SDNE [Wang et al SIGKDD 2016]

Heterogeneous Network Methods:

- metapath2vec++ [Dong et al KDD 2017]
- BiNE [Gao et al SIGIR 2018]
- NGCF [Wang et al SIGIR 2019]

Attributed Network Methods:

- AANE [Huang et al SDM 2017]
- ANRL [Zhang et al IJCAI 2018]
- FeatWalk [Huang et al AAAI 2019]
- STAR-GCN [Zhang et al IJCAI 2019]

Efficacy Study

Link Prediction

	MovieLens		AM	iner	Alibaba		
Model	AUC	AUC	AUC	AUC	AUC	AUC	
	(ROC)	(PR)	(ROC)	(PR)	(ROC)	(PR)	
DeepWalk	0.6583	0.6229	0.7730	0.8378	0.8074	0.8353	
node2vec	0.6597	0.6296	0.8169	0.8649	0.8605	0.8846	
SDNE	0.7454	0.7393	0.5638	0.5646	0.5863	0.6267	
metapath2vec++	0.7243	0.6736	0.6935	0.7480	0.8188	0.8346	
BiNE	0.7616	0.7297	0.5997	0.5812	0.6886	0.6411	
NGCF	0.7547	0.7117	0.7692	0.8290	0.8574	0.8856	
ANRL	0.5554	0.5449	0.8350	0.8251	0.6639	0.6429	
AANE	0.7010	0.6670	0.5943	0.5924	0.7142	0.6852	
FeatWalk	0.7117	0.7007	0.7589	0.8086	0.7948	0.8180	
STAR-GCN	0.7621	0.7405	0.6455	0.6587	0.5924	0.5721	
BiANE	0.7711	0.7409	0.8972	0.9054	0.8903	0.8997	

Efficacy Study

Node Classification

	AMiner				Alibaba				
Model	60%		80%		60%		80%		
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
DeepWalk	0.4427	0.2689	0.4440	0.2736	0.3800	0.1194	0.3866	0.1026	
node2vec	0.4587	0.2907	0.4583	0.2898	0.3661	0.0992	0.3879	0.1001	
SDNE	0.2833	0.1141	0.2842	0.1132	0.3800	0.0919	0.3765	0.0907	
metapath2vec++	0.3926	0.2183	0.3925	0.2199	0.3809	0.1122	0.3860	0.1030	
BiNE	0.2648	0.1074	0.2648	0.1067	0.4011	0.0828	0.3999	0.0828	
NGCF	0.3417	0.0968	0.3408	0.1094	0.4005	0.0818	0.3986	0.0850	
ANRL	0.7772	0.6777	0.7778	0.6779	0.4015	0.0818	0.3992	0.0815	
AANE	0.7574	0.6651	0.7550	0.6616	0.3986	0.0912	0.3967	0.0913	
FeatWalk	0.3779	0.1977	0.3819	0.2009	0.3759	0.1581	0.3910	0.1554	
STAR-GCN	0.2951	0.1278	0.2938	0.1276	0.4008	0.0818	0.3980	0.0814	
BiANE	0.8000	0.7137	0.7976	0.7115	0.4078	0.1866	0.4245	0.1795	

Ablation Setup

- BiANE-ATTR: BiANE without structure information
- BiANE-STRUC: BiANE without attribute information
- BiANE-INTER: BiANE with inter-partition proximity modeling only
- BiANE-CONCAT: Integrating attribute and structure encoding by concatenation
- BiANE-LAYER: Integrating attribute and structure encoding by sharing neural layers
- BiANE-IS: BiANE with the sampling distribution $\frac{\exp{(\tilde{p}(m,n))}}{\sum_{n'}\exp{(\tilde{p}(m,n'))}}$
- BiANE-ISL: BiANE with the sampling distribution $\frac{\exp{(\tilde{p}(m,n))}}{\sum_{n'}\exp{(\tilde{p}(m,n'))}}$ in the latent space

Ablation Study

Node Classification on AMiner and Alibaba Dataset

		AM	iner		Alibaba				
Model	60%		80%		60%		80%		
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
BiANE-ATTR	0.7931	0.7089	0.7925	0.7069	0.4062	0.1423	0.4024	0.1327	
BiANE-STRUC	0.3818	0.2047	0.3841	0.2077	0.3958	0.0888	0.3961	0.0851	
BIANE-INTER	0.7961	0.7083	0.7924	0.7059	0.3977	0.1691	0.4144	0.1673	
BiANE-CONCAT	0.7973	0.7063	0.7949	0.7032	0.4065	0.1798	0.4125	0.1646	
BiANE-LAYER	0.7967	0.7093	0.7947	0.7051	0.3986	0.1754	0.4087	0.1701	
BiANE-IS	0.7970	0.7118	0.7939	0.7075	0.4015	0.1786	0.4201	0.1755	
BiANE-ISL	0.7985	0.7079	0.7966	0.7057	0.4087	0.1849	0.4131	0.1726	
BiANE	0.8000	0.7137	0.7976	0.7115	0.4078	0.1866	0.4245	0.1795	

Performance w.r.t. #Sample

Link Predcition on MovieLens Dataset

(a) AUC-ROC w.r.t. #Sample

(b) AUC-PR w.r.t. #Sample

Efficiency Study

The Time Cost of a Single Round of Sampling

Conclusion & Future Work

Conclusion

- Propose a model for embedding bipartite attributed networks, which simultaneously preserves the intra-partition proximity and the inter-partition proximity
- Introduce a dynamic positive sampling strategy to ameliorate the representation learning process without loss of model scalability.

Future Work

- Reduce the space complexity for representation learning model.
- Extend the current work to model dynamic bipartite attributed networks.

THANK YOU FOR YOUR ATTENTION!

Q&A

