Computer Architecture and system programming

Kristoffer Klokker 2022

Contents

1	Exe	ercises	4
	1.1		4
		1.1.1 Find the average CPI	4
		1.1.2 Execution time	4
		1.1.3 MIPS	4
	1.2	Explain how a negative number is represented in the following	
		representation	
	1.3	Represent the following in 8 bit two compliment and sing	
		magnitude	
	1.4	Convert from twos compliment to decimal	
	1.5	Show the calculations in 8 bit two compliment	
		1.5.1 6+12	
		1.5.2 -6+12	
		1.5.3 6-12	6
		1.5.4 -6-12	6
	1.6	Fill out the table for the most two compliment addition	6
	1.7	Convert 23 and 29 to 6 bit two compliment and multiply	
		using Booths algorithm	7
2	Exe	ercises	8
	2.1	Convert from IEE 754 floating point to decimal	8
		2.1.1 1 1000 0010 0010 0000 0000 0000 00	8
		2.1.2 0 0111 1110 0000 1100 1100 1100 11	Ć
		2.1.3 0 1000 0000 1100 1100 1100 1100 110	Ć
	2.2	Convert from decimal to IEEE 754 floating point	Ć
		2.2.1 -720	(
		2.2.2 0.645	Ć
	2.3	Which numbers can be exactly represented in IEE 754	Ć
	2.4	Let C and D denote two number in IEEE 754 single-precision	
			L(
		9 -	1(
			1
	2.5		1
3	Exe	ercises 1	. 1
	3.1		[]
	3.2	Consider the cache with an access time of 5 ns and a hit ratio	
			12
		· · · · · · · · · · · · · · · · · · ·	19

	3.2.2	Suppose the cache access time is increased to 6 ns.	
		What is the minimum hit raio needed in order to not	
		increase the average access time?	12
	3.2.3	Suppose the cache access time is instead increased to	
		10 ns. What is the minimum hit ratio needed in order	
		to not increase the average access time?	12
3.3	What	is the average time in the following system	12
3.4	A cacl	he has a line size of 64 bytes. To determine which byte	
	within	a cache line an address points to, how many bits are in	
	the O	ffset field?	13
3.5	A two-	-way set-associative cache in a word addressable machine	
	consis	t of 128 cache lines divided into several sets. The main	
	memo	ry contain 8 K (8192) block of size 256 words. Show and	
	explai	n the format of main memory addresses	13
3.6	Calcul	late the cache	13
3.7	Using	the same cache system from last exercise check if the	
	follow	ing gives a hit or miss	14

1 Exercises

1.1 Benchmark

For the 40MHz processor which performed the instructions

Instruction type	Instruction count	Cycles per instruction
Integer artihemtic	41,000	1
Data transfer	28,000	2
Floating point	25,000	2
Control transfer	6,000	2

1.1.1 Find the average CPI

$$\frac{1 \cdot 41000 + 2 \cdot 28000 + 2 \cdot 25000 + 2 \cdot 6000}{100000} = 1.59$$

CPI is the average cycles pr instruction. Therefore 4.5

1.1.2 Execution time

$$CPI = 1.59$$

$$I_c = 100000$$

$$\tau = \frac{1}{f} = \frac{1}{40000000Hz}$$

$$T = I_c \cdot CPI \cdot \tau$$

$$= 1.59 \cdot 100000 \cdot \frac{1}{40000000Hz}$$

$$T = 0.003975s$$

1.1.3 MIPS

$$MIPS = \frac{f}{CPI \cdot 10^{6}}$$

$$CPI = 1.59$$

$$f = 40000000Hz$$

$$MIPS = \frac{40000000Hz}{1.59 \cdot 10^{6}}$$

$$MIPS = 25.16\frac{1}{s}$$

1.2 Explain how a negative number is represented in the following representation

- Sign-magnitude The left most bit must be 1 which result in the rest being interpretated as negative
- Two compliment The left most bit is 1 to subtract the maximum value from the rest
- Biased Bias is most usually half the range therefore a negative value is simply less half the maximum value

1.3 Represent the following in 8 bit twos compliment and sing magnitude

- 64 00100000
- -28 twos 11100100 sign 10011100

1.4 Convert from two compliment to decimal

• 1100110 : -26

• 1011101 : -35

1.5 Show the calculations in 8 bit twos compliment

$1.5.1 \quad 6+12$

$$6 = 00000110$$

$$12 = 00001100$$

$$00000110 + 00001100 = 00010010$$

1.5.2 -6 + 12

$$-6 = 11111010$$
$$12 = 00001100$$
$$11111010 + 00001100 = 00000110$$

Overflow is ignored

1.5.3 6-12

$$6 = 00000110$$
$$-12 = 11110100$$
$$00000110 + 11110100 = 11111010$$

1.5.4 -6-12

$$-6 = 11111010$$

 $-12 = 11110100$
 $11111010 + 11110100 = 11101110$

Overflow is ignored

1.6 Fill out the table for the most two compliment addition

	Input			Output	
x_{n-1}	y_{n-1}	c_{n-2}	z_{n-1}	c_{n-1}	V
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	1	1

Here x_{n-1} and y_{n-1} is the most significant bits of the two addends. c is the carry bit and z_{n-1} is the results most significant bit. v is a bit singular overflow.

If can be seen in row 2 and the last row that:

Overflow occurs if and only if the carry into the addition of the MSBs is different from the carry out of that addition

1.7 Convert 23 and 29 to 6 bit twos compliment and multiply using Booths algorithm

$$23 = 010111$$

$$29 = 011101$$

$$A = 0$$

$$Q_{-1} = 0$$

$$M = 010111$$

$$Q = 011101$$

$$count = 5$$

$$Q_{0}, Q_{-1} = 10$$

$$A = A - M = 101001$$

$$shift A = 101001 Q = 011101 Q_{-1} = 0$$

$$A = 110100$$

$$Q = 101110$$

$$Q_{-1} = 1$$

$$count = 4$$

$$Q_{0}, Q_{-1} = 01$$

$$A = A + M = 110100 + 010111 = 001011$$

$$shift$$

$$A = 000101$$

$$Q = 110111$$

$$Q_{-1} = 0$$

$$count = 3$$

$$Q_{0}, Q_{-1} = 10$$

$$A = A - M = 000101 - 011001$$

$$A = 000101 + 101001 = 101110$$

$$shift A = 101110 Q = 110111 Q_{-1} = 0$$

$$A = 110111$$

$$Q = 011011$$

$$Q_{-1} = 1$$

$$count = 3$$

$$Q_{0},Q_{-1}=11$$

$$shift\ A=110111\ Q=011011\ Q_{-1}=1$$

$$A=111011$$

$$Q=101101$$

$$Q_{-1}=1$$

$$count=2$$

$$Q_{0},Q_{-1}=11$$

$$shift\ A=111011\ Q=101101\ Q_{-1}=1$$

$$A=111101$$

$$Q=110110$$

$$Q_{-1}=1$$

$$count=1$$

$$Q_{0},Q_{-1}=01$$

$$A=A+M=111101+011001$$

$$A=010100$$

$$shift\ A=010100\ Q=110110\ Q_{-1}=1$$

$$A=001010$$

$$Q=011011$$

$$Q_{-1}=0$$

$$count=0$$

$$010111\times011101=AQ=001010011011$$

2 Exercises

2.1 Convert from IEE 754 floating point to decimal

$2.1.1 \quad 1 \ 1000 \ 0010 \ 0010 \ 0000 \ 0000 \ 0000 \ 0000 \ 000$

$2.1.2 \quad 0 \ 0111 \ 1110 \ 0000 \ 1100 \ 1100 \ 1100 \ 1100 \ 110$

$$= (-1)^{0} \cdot 2^{(011111110)_{2} - 127} \cdot (1.00001100110011001100110)_{2}$$

$$= 1 \cdot 2^{126 - 127} \cdot 1.04999995231628417969$$

$$\approx 0.5249999760$$

$2.1.3 \quad 0 \ 1000 \ 0000 \ 1100 \ 1100 \ 1100 \ 1100 \ 1100 \ 110$

$$= (-1)^{0} \cdot 2^{(10000000)_{2} - 127} \cdot (1.11001100110011001100110)_{2}$$

$$= 1 \cdot 2^{128 - 127} \cdot 1.79999995231628417969$$

$$\approx 3.599999904$$

2.2 Convert from decimal to IEEE 754 floating point

2.2.1 - 720

$$720 = 1011010000_{2}$$

$$1.011010000_{2} \cdot 2^{9_{10}+127}$$

$$1.011010000_{2} \cdot 2^{136}$$

$$10001000_{2} = 117_{10}$$

$$110001000011010000$$

$2.2.2 \quad 0.645$

$$\begin{aligned} 0.645 &= 0.1010010100011110101110_2\\ 1.010010100011110101110_2 \cdot 2^{-1_{10}+127}\\ 1.010010100011110101110_2 \cdot 2^{126}\\ 01111110_2 &= 126_{10}\\ 0011111110010010100011110101110 \end{aligned}$$

2.3 Which numbers can be exactly represented in IEE 754

- 17.0 representable inside the range
- -1 representable inside the range

- $\bullet~\frac{7}{16}$ representable inside range since equal 0.4375
- $\frac{1}{3}$ not representable due to infinite
- π not representable due to infinite
- $5.4321 \cdot 10^6$ representable inside range
- $6.022 \cdot 10^{23}$ representable inside range

2.4 Let C and D denote two number in IEEE 754 single-precision floating point format

2.4.1 What are the decimal values of C and D

C = 85.000000

$$D = -1 \cdot 2^{132 - 127} \cdot 1.984375$$

$$D = -63.500000$$

2.4.2 Make the addition of floating points

2.5 Create a truth table for the following algebra expression

A	B	C	$(A + \neg B + C)$	$(\neg A + B + \neg C)$	$(A + \neg B + C)(\neg A + B + \neg C)$
1	0	0	1	1	1
1	1	0	1	1	1
0	0	0	1	1	1
0	1	0	0	1	0
1	0	1	1	0	0
1	1	1	1	1	1
0	0	1	1	1	1
0	1	1	1	1	1

3 Exercises

3.1 Consider these two programs

```
01 | for (i=1; i<n; i++) {
02 | z[i]=x[i]-y[i]
03 | z[i]=z[i]*z[i]
04 | }</pre>
```

```
01 | for (i=1; i<n; i++) {
02 | z[i]=x[i]-y[i]
03 | }
04 | for (i=1; i<n; i++) {
05 | z[i]=z[i]*z[i]
06 | }</pre>
```

The function of the programs are finding the elemental difference between list x and y and squaring it.

This is done most efficient by the first program since the list can stay in cache unlike the second program which loads the list x, y and z and then loads z again.

- 3.2 Consider the cache with an access time of 5 ns and a hit ratio of H=0.9. The memory access time alone is 100ns.
- 3.2.1 What is the average access time for this system?

$$0.9 \cdot 5ns + 0.1 \cdot (100ns + 5ns) = 15ns$$

3.2.2 Suppose the cache access time is increased to 6 ns. What is the minimum hit raio needed in order to not increase the average access time?

$$x \cdot 6ns + (1 - x) \cdot (100ns + 6ns) = 15ns$$
$$x = 0.91$$

3.2.3 Suppose the cache access time is instead increased to 10 ns. What is the minimum hit ratio needed in order to not increase the average access time?

```
x \cdot 10ns + (1-x) \cdot (100ns + 10ns) = 15nsx = 0.95
```

3.3 What is the average time in the following system

9ns cache 80ns main memory 8ms from disk to main memory cache miss rate 9% main memory mis rate 30% $0.91 \cdot 9ns + 0.09 \cdot ((0.7 \cdot 80ns + 0.3 \cdot (80ns + 8ms)) + 9ns) = 0.216ms$

3.4 A cache has a line size of 64 bytes. To determine which byte within a cache line an address points to, how many bits are in the Offset field?

```
\log_2(64) = 6
```

3.5 A two-way set-associative cache in a word addressable machine consist of 128 cache lines divided into several sets. The main memory contain 8 K (8192) block of size 256 words. Show and explain the format of main memory addresses

```
cache size: 128 lines
```

MM size: $8192 \cdot 256 = 2097152$ words

block size: 256 words

block size = $2^x = 256 \rightarrow x = \text{offset} = 8$

MM size = $2^z = 2097152 \rightarrow z = \text{physical address bits} = 21$

Since the set contains 2 lines since it is a two-way set

Number of lines = $128 = 2^y \rightarrow y = 7$

Therefore set number is line number $/2 \ 2^7/2 = 2^6$ making the set number equal to 6.

Tag size = physical address bits - offset - set number = 21 - 8 - 6 = 7

3.6 Calculate the cache

En 32-bit maskine har en cache med 32 indgange ("cache lines"), hver på 16 bytesdata. En adresse er på 32 bit og adresserer de enkelte bytes. Cachen er organiseretsom en 2-vejs cache (2-way set associative).

Line numbers: $32 \text{ lines} = 2^5$

MM address: $32 \text{ bit system} = 2^3 2$

Block size: 16 byte = 2^4

offset = log(blocksize = 4 bit)

set number bits = index = $\log(\text{line numbers})/2=4$ bit

tag = log(MM) - offset - index = 24

3.7 Using the same cache system from last exercise check if the following gives a hit or miss

indeks	V	\mathbf{T}	D	V	${ m T}$	D
0	1	2	X	1	AA	X
1	1	29FF	\mathbf{x}	1	7600	\mathbf{x}
2	0	F5	\mathbf{X}	1	4	\mathbf{x}
3	1	39E0	\mathbf{x}	1	1210	\mathbf{x}
4	1	2221	\mathbf{x}	0	443B	\mathbf{x}
5	1	60	\mathbf{X}	0	1BBB	\mathbf{x}
6	0	60	\mathbf{X}	0	61	\mathbf{x}
7	1	1210	\mathbf{x}	0	61	\mathbf{x}
8	0	60	\mathbf{X}	0	61	\mathbf{x}
9	0	76	\mathbf{x}	1	61	\mathbf{x}
10	0	76F	\mathbf{x}	1	D59	\mathbf{x}
11	0	0	\mathbf{X}	0	0	\mathbf{x}
12	1	1210	\mathbf{x}	1	7701	\mathbf{x}
13	1	1210	\mathbf{x}	0	222A	\mathbf{x}
14	1	1210	\mathbf{x}	0	223C	\mathbf{x}
15	1	1210	\mathbf{x}	1	100A	\mathbf{x}

Tilfælde	Læs/skriv	Antal byte	Adresse
A:	læs	4	00076FA4
B:	skriv	4	00121070
C:	læs	2	000D59C6
D:	læs	4	00000428
E:	læs	2	00021080

A index 10 no longer

valid hit

B index 7 still valid hit

C index 12 miss

D index 2 still valid

E index 8 miss