

ANALYSIS OF DISORDER DATASET SLEEP

An Exploratory and Predictive Study

Prepared by: Sahar Alshahrani
Data Science department
December 2024
Instructor: Dr. Ayman Qahmash

INTRODUCTION

• This statistical project aims to study the factors affecting sleep quality, which is a crucial element for overall health and daily performance. The project analyses diverse data, including age, gender, physical activity, stress level, and blood pressure, to achieve accurate predictions and clear insights into how these factors influence sleep quality. The findings will help identify the most impactful factors, enabling the development of effective recommendations to improve sleep patterns.

OBJECTIVES

- Explore and clean the Sleep Quality dataset.
- Conduct descriptive analysis of attributes.
- Investigate relationships between attributes and their effect on sleep quality.
- Build and evaluate predictive models.
- Identify key factors influencing sleep quality.

Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate	Daily Steps	Sleep Disorder
1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77	4200	NaN
2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	NaN
3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	NaN
4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	Sleep Apnea
5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	Sleep Apnea
6	Male	28	Software Engineer	5.9	4	30	8	Obese	140/90	85	3000	Insomnia
7	Male	29	Teacher	6.3	6	40	7	Obese	140/90	82	3500	Insomnia
8	Male	29	Doctor	7.8	7	75	6	Normal	120/80	70	8000	NaN
9	Male	29	Doctor	7.8	7	75	6	Normal	120/80	70	8000	NaN
10	Male	29	Doctor	7.8	7	75	6	Normal	120/80	70	8000	NaN

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
count	373.000000	373.000000	373.000000	373.000000	373.000000	373.000000	373.000000	373.000000
mean	187.000000	42.139410	7.129491	7.308311	59.128686	5.391421	70.171582	6816.353887
std	107.820066	8.640793	0.795139	1.195359	20.842589	1.772590	4.139704	1620.060932
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	3000.000000
25%	94.000000	35.000000	6.400000	6.000000	45.000000	4.000000	68.000000	5600.000000
50%	187.000000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	7000.000000
75%	280.000000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	8000.00000
max	373.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	10000.000000


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 373 entries, 0 to 372
Data columns (total 13 columns):
                          Non-Null Count Dtype
    Column
  Person ID
                          373 non-null
                                         int64
   Gender
                          373 non-null
                                         object
                          373 non-null
                                         int64
    Age
   Occupation
                          373 non-null
3
                                         object
4 Sleep Duration
                                         float64
                          373 non-null
  Quality of Sleep
                          373 non-null
                                         int64
   Physical Activity Level 373 non-null
                                         int64
   Stress Level
                          373 non-null
                                         int64
  BMI Category
                          373 non-null
                                         object
   Blood Pressure
                          373 non-null
                                         object
10 Heart Rate
                                         int64
                          373 non-null
                                         int64
    Daily Steps
                          373 non-null
12 Sleep Disorder
                          154 non-null
                                         object
dtypes: float64(1), int64(7), object(5)
memory usage: 38.0+ KB
None
```



```
#Missing Value: Replace nan values to (Unknown)
   df['Sleep Disorder'] = df['Sleep Disorder'].fillna('No Sleep Disorde')
   print(df['Sleep Disorder'])
 0.0s
       No Sleep Disorde
       No Sleep Disorde
       No Sleep Disorde
            Sleep Apnea
            Sleep Apnea
            Sleep Apnea
368
369
            Sleep Apnea
            Sleep Apnea
370
            Sleep Apnea
371
            Sleep Apnea
372
Name: Sleep Disorder, Length: 373, dtype: object
```


DATASET OVERVIEW

The dataset contains the following columns:

- Person ID (Unique Identifier)
- Gender, Age, Occupation
- Sleep Duration, Quality of Sleep, Sleep Disorder
- Physical Activity Level, Stress Level
- BMI Category, Blood Pressure, Heart Rate, Daily Steps

DESCRIPTIVE ANALYSIS

- Distribution of Age, Gender, and BMI Category analyzed.
- Boxplots and histograms plotted for numerical variables.
- Sleep Duration and Quality of Sleep distributions explored.

DISTRIBUTION OF AGE

• The age distribution shows a peak around the mid-40s, suggesting that the majority of the individuals in the dataset belong to this age group. The variability across other age ranges ensures a diverse representation, though the data is slightly skewed toward middle-aged participants. This distribution allows for meaningful insights into sleep quality trends across different age categories

DISTRIBUTION OF GENDER

• **Male:** 49.3%

• **Female:** 50.7%

DISTRIBUTION OF AGE BY GENDER

• Male:

The median age is slightly below 40.

• Female:

The median age is around 45.

DISTRIBUTION OF BMI CATEGORY

CATEGORY	вмі			
Normal				
Normal Weight	18.5-24.9			
Overweight	25-29.9			
Obese	30 or higher			

Use the Bar Plot to find out how many people are in each BMI category

DISTRIBUTION OF BMI CATEGORY

Use the Bar Plot to find out how many people are in each BMI category

DISTRIBUTION OF SLEEP DISORDER

 To understand the percentage of people who suffer from sleep apnea, whether insomnia or sleep disorder, compared to those who do not suffer

OUTLIERS:

Quartile was applied to identify and remove outliers.

CORRELATION ANALYSIS

- Investigated the relationship between:
- Stress Level and Sleep Quality.
- BMI Category and Sleep Disorders.
- Used heatmaps visualize correlations.

RELATIONSHIP BETWEEN STRESS LEVEL AND SLEEP QUALITY

 Scatter plot to investigate the relationship between Stress Level and Sleep Quality

RELATIONSHIP BETWEEN BMI CATEGORY AND SLEEP DISORDER

 Bar plot to investigate the relationship between BMI Category and Sleep Disorder

CORRELATION HEAT MAP

PREDICTIVE MODELS

- Models compared: Logistic Regression, Random Forest and Gradient Boosting.
- Logistic Regression showed the highest performance.
- Evaluations based on Accuracy, Recall, and F1-Score.

MODELS COMPARED

Model	F-Score	Recall	Accuracy
Random Forest	0.825543	0.815523	0.866071
Gradient Boosting	0.825543	0.815523	0.866071
Logistic Regression	0.883598	0.873330	0.901786

Logistic Regression is considered the best model because it has the highest values of precision, recall, and F-Score compared to Random Forest and Gradient Boosting.

CONCLUSIONS

- 1. Model Performance: Logistic Regression performed the best in terms of accuracy, recall, and F-score, indicating its superior ability to predict sleep disorders compared to Random Forest and Gradient Boosting, which showed slightly lower results.
- 2. Key Features: Factors like stress level, physical activity, and BMI category significantly impact sleep quality and sleep disorders. Additionally, age and gender play a role in predicting sleep outcomes.
- **3. Practical Implications**: Understanding these relationships can help design better interventions for improving sleep quality by addressing factors like stress and physical activity levels.
- **4. Future Recommendations**: Future models could benefit from incorporating additional features and exploring advanced algorithms or ensemble methods for enhanced accuracy.
- In summary, Logistic Regression is the most reliable model for predicting sleep disorders in this dataset, but further model refinement could improve predictions.

ANY QUESTION?

Prerped by: Sahar Alshahrani

