# Binary Search Tree

IT5003: Data Structures and Algorithms (AY2019/20 Semester 1)

### Lecture Overview

- Motivation
  - Table ADT

- Binary Search Tree
  - Definition
  - Major Operations

### Motivation: Why Table?

- List ADT, Stack ADT and Queue ADT manipulate data in a collection by index (position) of the data
  - The position is implicit in the case of stack and queue
- In real life, it is more common to manipulate item based on the value of the data
  - e.g. "Look for the student record with matriculation number A0201234X", "Remove the library record for the book Happy Coding"
  - Value used to locate a specific record is commonly known as key

### Table ADT: Real Life Example

- Phone books
  - Key = Phone#
- Street directories
  - Key = Shop name
- Dictionaries
  - Key = word
- Class schedule
  - Key = Module Code
- Observation:
  - The key is usually unique
  - There can be one or more pieces of information attached with each key

| Key   | Data               |  |  |
|-------|--------------------|--|--|
| 911   | Emergency Call     |  |  |
| 61345 | Uncle Soo's Office |  |  |
| 62768 | Technical Service  |  |  |
| 41616 | Campus Security    |  |  |
|       |                    |  |  |

### Table ADT: Operations

- The defining operations of a Table ADT are:
  - insert( key, data )
    - Add a pair of (key, data) into the table
  - delete( key )
    - Delete the key and its associated data from the table
  - data = search( key )
    - Find key in the table and return its associated data
- Since position is not indicated explicitly:
  - The implementation is free to organize the information for best performance

#### Table ADT: Our choices so far....

Using covered data structures to implement table, we can achieve the following efficiency:

|        | Unsorted<br>Array/List | Sorted<br>Array       | Sorted<br>LinkedList |
|--------|------------------------|-----------------------|----------------------|
| insert | 0(1)                   | O(N)                  | O(N)                 |
| delete | O(N)                   | O(N)                  | O(N)                 |
| search | O(N)                   | O(log <sub>2</sub> N) | O(N)                 |

#### Note:

 The cost for sorted linked list includes the traversal cost

#### Table ADT: Can we do better?

- Data structure we learned so far is not very good at table operations ☺
- Some new data structures to help:
  - a. BST and AVL Tree
  - b. Hashing

### **BINARY SEARCH TREE (BST)**

# Definition: Binary Search Tree

#### **Binary Search Tree (BST)**

- is a binary tree that is
  - 1) Empty **OR**
  - 2) A node with key k such that
    - Nodes in left subtree have keys < k</li>
    - Nodes in right subtree have keys > k



- BST is a variant of binary tree
  - → all binary tree definitions/operations are applicable, e.g. height, size, complete, etc...

## Check: Which Binary Tree is BST?



# BST: Other Data Type

BST of names (i.e. strings):



Oh, they are mostly recursive ©

#### **BST OPERATIONS**

#### General Guideline

- Most of the BST operations are recursive
  - Iterative version can be written but usually harder to understand
- We use reference/pointer-based pseudocode
  - Array based code is similar!
- Each TreeNode contains:
  - Key and Data
  - Only Key is used for manipulation
  - We use T→key and T→data in the pseudo-code

### Finding Minimum Element

```
def findMin( T ):
    if T is empty:
        return None #or error

if T→leftT is empty:
        return T

return findMin( T→leftT )
```



Q: How to find maximum values?

Q: How to find top-k (or bottom-k) values? e.g. find top-3 values

### Search for a Key

```
def search( T, key ):
    if T is empty:
        cannot find key!

    if T→key == key:
        return T→data
    elif T→key < key:
        return search( T→rightT, key )
    else:
        return search( T→leftT, key )</pre>
```

#### Question:

- See the similarity with binary search?
- What is the efficiency of BST search then?

### Insertion Check: How to Insert 6?



### Insertion Check: How to Insert 6?



#### Insertion: Idea

- Behaviour of insertion:
  - a. Takes key and data as parameter
  - Returns the modified binary search tree after insertion
- Base case:
  - a. Insert into empty BST
  - b. Return BST with one node
- General cases:
  - Compare key with x
  - key < x: insert into leftT</p>
  - key > x: insert into rightT



#### Insertion: Pseudo-Code

```
def insert( T, key, data ):
   if T is empty:
                                               Create a new
       return TreeNode( key, data )
                                                TreeNode
   if T→key == key:
      Duplicate Key Error!
                                  Pay attention to the
                                     assignment
   elif T→key < key:
      T→rightT = insert( T→rightT, key, data )
   else:
      T→leftT = insert( T→leftT, key, data )
   return T
```

#### Deletion Check: How to delete?



#### Deletion: Idea

- Behaviour of deletion:
  - a. Takes key as parameter
  - Returns the modified binary search tree after deletion
- Deletion is more involving:
  - Simple when the target node is a leaf node
  - What if the target node is an internal node?



### Deletion: 3 Different Cases (1/2)

- Case 1: Leaf node
  - return empty tree



- Case 2: node with 1 child
  - return the child as result





# Deletion: 3 Different Cases (2/2)

- Case 3: node with 2 children
  - Get immediate successor S
    - key that is immediately after in the sorted sequence
  - 2. Replace target key with **S**
  - 3. Delete **S** from child tree

#### Question:

What if "8" has two children?



#### **Deletion**: Pseudo-Code

```
def delete( T, key ):
    if T is empty:
       Cannot Find Key Error!
    if T \rightarrow \text{key} < \text{key}:
       T→rightT = delete( T→rightT, key )
   elif T \rightarrow \text{key} > \text{key}:
       T→leftT = delete( T→leftT, key )
   else:
        if T has no child:
            return Empty Tree
                                             Case 1
        elif T has left child ONLY:
            return T→leftT
                                            Case 2s
       elif T has right child ONLY:
            return T→right
       else:
            successor = findMin( T→rightT)
            T→key = successor→key
                                                        Case 3
            T→data = successor→data
            T→rightT = delete( T→rightT, successor→key )
        return T
```

#### **BST** Traversals

As mentioned, all binary tree traversals are

applicable to BST:

Pre-, In-, Post- Order

Level Order



- Some traversals are more useful than others:
  - In-order traversal: What do you get?
  - Pre-order traversal: Useful for saving / restoring
     BST

Just how good is the BST?

### **BST COMPLEXITY**

### Binary Search Tree: Analysis

- Operations are dependent on BST Height
  - $\Box$  findMin = O(h)
  - $\Box$  search = O(h)
  - □ insert = O(h)
  - delete = O(h)
- Height can differs greatly:





# Binary Search Tree: Complexity

- The BST height:
  - O(log<sub>2</sub> N): Best Case
  - O(log<sub>2</sub> N): Average Case
  - □ O(N): Worst Case
- Informal argument for Average Case:
  - If we insert N numbers in random order, it is much more often that we can get a more balanced tree than a badly skewed one at the end
- Proving average case complexity is beyond the scope of this course ©

#### **BST APPLICATIONS**

# TreeSort: Another Sorting Algorithm

#### Key Idea:

- Take the unsorted numbers and insert into a BST
- Perform an in-order traversal after all numbers are inserted

#### Complexity:

■ Average case: O(n \* log n)

■ Worst case:  $O(n^2)$ 

### BST in Storage

- Algorithms for saving a binary search tree
  - Saving a binary search tree and then restoring it to its original shape
    - a. Save the **preorder traversal** to a file
    - When restoring the tree: just read from the file and insert
  - 2. Saving a binary search tree and then restoring it to a **balanced shape** 
    - a. Uses inorder traversal to save the tree to a file
    - b. When restoring the tree:
      - Read the middle item as root
      - ii. Then recursively construct left / right subtrees by the left/right halves of sequence

## Summary

- Binary Search Tree property
- Major operations
  - Find the minimum, search, insert, delete
  - Traversals
- Complexity of BST operations
- BST Applications

### **END**