材料科学基础实验报告

实验名称:	金属	材料力学、	热学性能	参数测量	
学 号: <u>2</u>	2301079	姓 名:	张展铭	班 级:	22 材化
合作者:		桌号:			
指导教师:		_			
实验日期:					

实验考核

项目	实验预习	实验过程	分析与讨论	总评
评价				

实验内容一 动态悬挂法测量金属材料杨氏模量

【实验目的】

- 1. 理解动力学振动法测量材料杨氏模量的基本原理;
- 2. 熟悉示波器的使用, 学会用示波器观察信号和识别共振;
- 3. 学会用外延法处理实验数据,理解本实验采用外延法的原因。

【实验原理】

- 1. 外力作用下,材料会发生弹性变形和塑性变形。弹性变形是最先发生的变形阶段,其在一定范围内满足胡克定律,即应力与应变成线性关系。塑性变形在超过材料的弹性极限后发生,此时材料不再能完全恢复原状。
- 2. 杨氏模量是衡量材料抵抗弹性形变能力的关键参数,常用的测量杨氏模量的方法有: 动态法、静态拉伸法、梁弯曲法等。其中,本实验通过动态法测量试样固有频率计算杨氏模量。固有频率只与试样本身有关,结果稳定,因此适用于不同形状和材料组成的试样。
- 3. 实验中使用的试样为圆柱形棒材。在实际实验中,试样悬挂在两个传感器下方,两个传感器分别用于激振和拾振。试样在振动时产生特定的振动模式,不同级次振动对应不同振动频率和波形。但由于试样的形状、尺寸和质量以及悬挂点的位置影响试样做无阻尼自由振动,使我们无法直接测量固有频率。因此我们通过测量试样受迫振动达到共振状态的共振频率,然后根据公式计算杨氏模量:

当试样试棒长度 L>>试棒直径 d 时, 其横振动方程为:

$$\frac{\partial^4 y}{\partial^4 x} = \frac{\rho S}{EI} \cdot \frac{\partial^2 y}{\partial t^2} \tag{1}$$

【式中 ρ 、S、E、J分别表示试样的材料密度、试样棒的截面积、试样材料的杨氏模量和试样棒某一截面的惯量矩($J=\int y^2ds$)】

 $\phi y(x,t) = X(x)T(t)$, 代入方程可得:

$$J = \int y^2 dS = S \left(\frac{d}{4}\right)^2 \tag{2}$$

假设等式两边常量为K4,即:

$$\frac{1}{X}\frac{d^4X}{dx} = -\frac{\rho S}{EJ} \cdot \frac{1}{T} \cdot \frac{d^2T}{dt^2} = K^4 \qquad (3)$$

解常微分方程得,通解为:

$$y(x,t) = (B_1 chKx + B_2 shKx + B_3 cosKx + B_4 sinKx) \cdot Acos(\omega t + \psi)$$
 (4)

其中:

$$\omega = \left(\frac{K^4 E J}{\rho S}\right)^{\frac{1}{2}} \tag{5}$$

我们称式(5)为频率公式。

对于两端自由能的匀质试样, 边界条件为待测试样两自由端所受垂直于轴的横向作用力 F 和弯矩 M 均为零, 即:

$$F = -\frac{\partial M}{\partial x} = -EJ\frac{\partial^3 y}{\partial x^3} = 0 \qquad (6)$$

其中弯矩 M 为:

$$M = EJ \frac{\partial^2 y}{\partial x^2} = 0 \qquad (7)$$

将式(4)代入边界条件得:

$$cosKl \cdot chKl = 1$$
 (8)

用数值法求解可得:

$$Kl = 0$$
, 4.730, 7.853, 10.966, 14.137,(9)

其中基频振动的本征值 $K_1 = \frac{4.730}{I}$ 。

将圆柱形棒材转动惯量 $J=\int y^2ds=s(\frac{d}{4})^2$ 和基频振动本征值 K_1 代入式(5)得:

$$E = 1.6067 \frac{l^3 m}{d^4} f^2 \qquad (10)$$

【式中1为棒长、d为圆形棒的截面直径; m为棒的质量; f为试样固有频率】

【实验仪器】

DY-A 型金属动态杨氏模量测定仪、金属动态杨氏模量测试台、待测金属试样、游标卡尺、螺旋测微计、天平、示波器等。

【实验过程】

- 1. 测量待测试样的长度 1、直径 d 和质量 m 并估算待测试样的固有频率 f。根据不锈钢棒和铜棒在室温下的杨氏模量标准值,预先计算出试样的固有频率,以便后续寻找共振点。
- 2. 在实际操作中,悬挂点无法直接在节点处实现试样的激发振动,因此无法做无阻尼自由振动。所以实验需选取偏离的悬挂点。在节点附近选择两个等距位置并记录位置 x。悬挂待测试棒并测量相应共振频率 f。调节信号频率时需缓慢进行,确保共振点的建立。
- 3. 在节点的两侧选择不同位置悬挂待测试棒,测量不同悬挂点处的共振频率。要求节点两侧各有两个及以上的悬挂点。
- 4. 绘制图表,得到悬挂点位置和共振频率之间的变化曲线。根据曲线规律,采用内插法或外延法处理数据,计算悬挂点在节点处的共振频率后代入式(10),得到待测试样棒材的杨氏模量 E 并与已知标准杨氏模量进行比较,分析和讨论实验误差。

【实验数据】

次数	1	2	3	4	5	平均值
长度 (mm)	150.06	150.00	150.06	150.10	150.02	150. 048
直径 (mm)	5.90	5.98	5.90	5.94	5.88	5.920
质量(g)	33. 300	33. 300	33. 300	33. 300	33. 300	33. 300

次数	1	2	3	4	5
端点距悬挂 点距离 x (mm)	15	20	25	40	50
共振频率 f (Hz)	1178.7	1176.7	1175.6	1174.6	1176.7

理论式样 1 固有频率值计算得: 1.165×10³ Hz

式样 2: _铜棒 节点位置 (距离端面): _33.604_mm

次数	1	2	3	4	5	平均值
长度 (mm)	150.02	150.00	150.06	150.00	150. 02	150.020
直径 (mm)	6.00	5.96	5.94	5.90	5.90	5.940
质量(g)	34.930	34.930	34.930	34.930	34.930	34.930

次数	1	2	3	4	5
端点距悬挂 点距离 x (mm)	15	20	25	40	50
共振频率 f (Hz)	833.4	831.8	831.1	830.8	832.1

理论式样 2 固有频率值计算得: <u>8.879×10² Hz</u>

【数据分析】

- 1. 根据公式 (10) 可以计算出,不锈钢棒的固有频率计算值为 1.165×10^3 ,铜棒的固有频率计算值为 8.879×10^2 。
- 2. 查阅资料得知: 共振频率用四次多项式拟合的相较其他而言更为准确。故本实验采用四次项进行拟合, 拟合公式如下:

$$y = Intercept + B1 \cdot x + B2 \cdot x^2 + B3 \cdot x^3 + B4 \cdot x^4$$

3. 不锈钢棒共振频率的拟合曲线图如下:

4. 铜棒共振频率的拟合曲线图如下:

5. 根据上述图可以得出:

不锈钢棒共振频率拟合曲线的方程为:

 $y = 1197.72 - 350.54x + 2174.76x^2 - 6478.06x^3 + 7623.06x^4$ 铜棒共振频率拟合曲线的方程为:

 $y = 851.32 - 339.34x + 2157.12x^2 - 6251.78x^3 + 6946.57x^4$ 进而对上述方程分别求偏导,令:

$$\frac{\partial y}{\partial x} = 0$$

便可得出曲线最小值点分别为: (0.254, 1174.563)(0.241, 830.751) 代入公式(10)可以得出:

不锈钢棒的杨氏模量 $E_1=2.0302\times10^{11}$

钢棒的杨氏模量 $E_2=1.0505\times10^{11}$

6. 根据相对误差公式可以得出:

$$\Delta E_1 = \frac{2.0302 \times 10^{11} - 2 \times 10^{11}}{2 \times 10^{11}} \times 100\% = 1.51\%$$

$$\Delta E_2 = \frac{1.2 \times 10^{11} - 1.0505 \times 10^{11}}{1.2 \times 10^{11}} \times 100\% = 12.46\%$$

【结果分析】

- 1. 在数据分析中我们可以得到曲线最小值点分别为:(0.254,1174.563)(0.241,830.751),这两个点与理论的 x/1=0.224 具有一定的差异。本人推测是因为拟合所采取的曲线为四次的,具有五个未知数,而本次实验只测量了五组数据,以至于无论如何拟合曲线的方差都为 1,看似拟合结果十分完美,实际是因为样本容量不足而得不到更为理想的拟合曲线。
- 2. 除此之外,我们还分别得到了不锈钢棒和铜棒的杨氏模量相对误差,分别为 1. 51%和12. 46%。由此可见不锈钢棒杨氏模量的计算结果是非常理想的,而铜棒 的相对误差虽在合理范围之内,但相较于不锈钢棒较大。由实验测得数据可知, 铜棒测量得到的共振频率值也在830Hz左右。因而本人推测可能是铜棒成分和工 艺与理论有所差异。以上在后续误差分析中也有叙述。

2. 误差分析:

(1) 系统误差

①环境:实验当天的温度、湿度所带来的误差。

②仪器: 仪器本身精度的影响,如本次仪器测量只能取到小数点后一位,存在一定的误差。

③材料:不锈钢棒和铜棒的加工工艺可能会对杨氏模量产生一定的影响,使不同的不锈钢棒和铜棒具有不完全相同的杨氏模量。由实验结果可以看出,铜棒的成分和工艺可能和理论有所差异,以至于测量得到的共振频率值在830Hz左右,与理论值887.9Hz差距较大。

④原理: 本实验计算的杨氏模量所需要的固有频率是由拟合曲线出来的,与事实存在误差。以及电流不恒定导致输入输出相位不一致所带来的误差。

(2) 偶然误差

①读数:在读取频率时,可能会由于主观取舍固有频率的波动值而产生一定的误差。在悬挂时,也难以完全准确地固定悬挂点在指定位置。

②计算: 在对数据进行四舍五入和拟合分析时,可能会产生偶然误差。

(3) 有关减小误差的改进方案

①仪器:可以使用测量精度更高的仪器来减小仪器所带来的测量误差。

②计算:本实验在数据处理过程中,尽可能用测量数据直接代入总计算式进行整体运算,减小了对中间数据四舍五入所带来的误差。

③原理:查阅文献可知,可以通过在输入端加上一个交流恒流源的方式,使输入 线圈的电流的有效值保持恒定,共振时输入和输出信号的相位的一致[1]。

【思考题】

1. 什么是杨氏模量?杨氏模量的意义?

答:杨氏模量是材料力学中的一个重要参数,指在材料受到拉伸或压缩时,单位面积内的应力与相应的应变之间的比值,通常用符号 E 表示。换言之,杨氏模量衡量了材料在受力时的刚度,即材料对外部应力的响应程度。

杨氏模量的意义在于:

①比较不同材料的应力应变性质:通过比较不同材料的杨氏模量,可以评估它们

在特定应力条件下的相对性能。这对于工程设计和材料选择至关重要,因为杨氏模量直接影响到材料在使用过程中的变形和稳定性。

- ②设计应用的指导:杨氏模量是工程设计中的重要参数之一。它用于计算结构在受力时的变形、应力分布等,有助于工程师设计出更加稳定和符合要求的结构。
- 2. 试讨论, 试样的长度 1、直径 d、质量 m、共振频率 f 分别应该采用什么规格的仪器测量? 为什么?

答:

- (1) 试样的长度 1 和直径 d 用最小刻度 0.02mm 的游标卡尺测量,这样可以使测量 尽可能准确,减少实验误差。
- (2) 质量 m 用最小刻度 0.001g 的电子天平测量,这样可以使测量尽可能准确,减少实验误差。
- (3) 共振频率 f 用最小刻度 0.1Hz 的示波器测量,这样可以使单次改变频率的值尽可能小,能更加准确的找到相应的共振峰。如果精度不够的话,可能会出现无论怎么变化都得不到共振峰的情况。

实验内容二 基于迈克尔逊干涉测量金属材料线膨胀系数

【实验目的】

- 1. 观察材料的线膨胀现象,了解测量材料线膨胀系数的基本原理;
- 2 了解光学干涉现象及迈克尔逊干涉的基本原理及调节方法;
- 3. 理解测量微小尺寸变化的方法。

【实验原理】

- 1. 线膨胀系数是固体材料每升高 1℃时单位长度的伸长量。通常情况下,在温度 变化不大的情况下,线膨胀系数可视为常量。
- 2. 当温度变化不太大时(由t₁变化至t₂),固体材料在确定方向上的长度变化量与温度变化量成正比,其关系可由线膨胀系数:

$$\alpha = \frac{\Delta L}{L_0 \cdot \Delta t} \qquad (1)$$

表示,这里, ΔL 是长度变化量, L_0 是初始长度, ΔT 是温度变化量。对于温度变化较大的情况,则线膨胀系数通常为:

$$\alpha = A + Bt + Ct^2 + \cdots$$
 (A, B, C 均为常数)

3. 迈克尔逊干涉是基于光的分振幅法实现干涉的波动现象。通过适当的装置,可以实现光程差的动态调节,观察干涉条纹的变化。在实验中,利用迈克尔逊干涉现象,通过测量干涉图样中干涉条纹的变化,可以推导出材料在一定温度范围内的线膨胀系数。原理图如下所示:

4. 实验中,将待测金属试样置于温控炉内,并对其进行加热,观察干涉图样中干

涉条纹的变化。通过测量干涉条纹冒出或消失的数量,并结合波动光学干涉基本理论得出:

$$\Delta L = N \frac{\lambda}{2} (N \epsilon Z) \qquad (2)$$

【 λ 为激光光源的光波波长: $\exists N$ 为奇数时, 两束光相干结果为干涉暗纹: $\exists N$ 为偶数时,

为干涉明纹】

将上式代入式(1)中即可计算出待测试样在此温度范围内的线膨胀系数:

$$\alpha = \frac{N\frac{\lambda}{2}}{L_0 \cdot (t - t_0)} \tag{3}$$

【实验仪器】

热膨胀实验仪、黄铜以及硬铝试样。

【实验过程】

- 1. 准备待测试样,使用游标卡尺在不同方位测量室温下待测试件的初始长度,记录多次测量结果并求平均值。
- 2. 小心轻放待测试样进入温控炉,确保测温孔洞对准温控炉,严禁直接松开待测金属试样以避免损坏。插入测温探头并固定,安装反射镜,注意反射镜的安装和取下过程,确保操作正确。
- 3. 打开氦氖激光器,调整光路使得两路光线在接收屏上产生干涉条纹。根据观察 到的干涉条纹微调反射镜,确保干涉条纹图案清晰且条纹中心位于接收屏中间。
- 4. 设置加热炉的最高温度并启动加热。记录试样的初始温度 t₁, 并观察干涉条纹 随温度变化的环数变化,测量过程中需等待试样均匀膨胀后再开始记录数据。
- 5. 记录此时干涉条纹环数随温度的变化量,达到预定的条纹变化数(建议: 10-15 条)的时候,记下此时温控表上的温度 t₂。
- 6. 停止加热,将温控表上的目标温度设置到室温以下,对加热炉进行冷却。

【实验数据】

式样: 铜棒

测量为料	式样长度		温度(℃)		干涉环
测量次数	L_1 (mm)	t ₀	t	Δt	变化数 N
1	150.00	25. 6	26. 7	1. 1	11
2	150.00	27. 5	28. 6	1. 1	11
3	150.00	29. 0	30. 1	1. 1	11
4	150.00	31. 0	32. 1	1. 1	11
5	150.00	32. 9	34. 0	1. 1	11

试样: 铝棒

测量次数	式样长度		温度(℃)		干涉环
例里 	L_1 (mm)	t ₀	t	Δt	变化数 N
1	150.00	30. 0	31. 0	1.0	11
2	150.00	31. 6	32. 6	1.0	11
3	150.00	33. 3	34. 3	1.0	11
4	150.00	35. 0	36. 0	1.0	11
5	150.00	36.8	37.8	1.0	11

【数据处理】

1. 将L = 150.00mm $\lambda = 632.8nm$ N = 11以及上述测量的温度代入公式(3),可以计算出每次测量的线膨胀系数,取平均值后得出:

铜棒的线膨胀系数平均值 $\overline{\alpha_1}=2.1093\times 10^{-5}(/\mathcal{C})$

铝棒的线膨胀系数平均值 $\overline{\alpha_2}=2.3203\times 10^{-5} (/\ C)$

2. 将实验数据代入下列不确定度计算公式并进行计算(计算结果详见 3): A 类不确定度:

$$U_A = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

不确定度传递公式:

$$U_u = \sqrt{\sum_{i=1}^n \left(\frac{\partial u}{\partial x_i}\right)^2 U_i}$$

不确定度:

$$U_x = \sqrt{(U_A)^2 + (U_B)^2}$$

3. 数据总结

综上所述,数据处理结果如下:

	数据	A类不确定度	B类不确定度	总不确定度
铜棒线膨胀系数 (/℃)	$2.\ 1093 \times 10^{-5}$	$3.\ 4740\times 10^{-5}$	0.25×10^{-5}	3. 54×10^{-5}
铝棒线膨胀系数 (/℃)	$2. 3203 \times 10^{-5}$	3.9453×10^{-5}	0.33×10^{-5}	4. 05×10^{-5}

【结果分析】

1. 数据分析

查阅讲义得知,铜棒的线膨胀系数参考值为 2.08×10⁵,铝棒的线膨胀系数参考值为 2.36×10⁵。根据相对误差公式可以得出:

$$\begin{split} \Delta\alpha_1 &= \frac{2.1093 \times 10^{-5} - 2.08 \times 10^{-5}}{2.08 \times 10^{-5}} \times 100\% = 1.41\% \\ \Delta\alpha_2 &= \frac{2.36 \times 10^{-5} - 2.3203 \times 10^{-5}}{2.36 \times 10^{11}} \times 100\% = 1.68\% \end{split}$$

可以看出,相对误差的值在合理范围之内而且相对较小,体现了实验操作的准确严谨。但不确定度值比数据值还要大,本人推测是因为温控仪的精度为 0.1℃,而测量范围只有1℃左右,因此系统误差特别大,使实验数据偏离真实值,从而使不确定性大小超过测量数据。如果可以,实验最好使用温度测量显示更为准确的温控仪,以减小不确定度。

2. 误差分析

(1) 系统误差

①环境:实验当天的温度、湿度所带来的误差。

②仪器: 仪器本身精度的影响,如温控仪本身只能取到小数点后一位,会产生一定的误差和较大的不确定度。

③材料:不锈钢棒和铜棒的成分和组分不均可能会对实验造成一定影响。

(2) 偶然误差

①读数:在读取温度时,由于较难界定何时达到与初始温度相同的干涉环状态,因此,何时读取最终的温度具有一定的主观性,进而产生偶然误差。

②计算: 在对数据进行四舍五入计算时,可能会产生偶然误差。

(3) 有关减小误差的改进方案

①仪器和试样:可以使用测量精度更高的仪器、更均匀的试样来减小误差。

②计算:本实验在数据处理过程中,尽可能用测量数据直接代入总计算式进行整体运算,减小了对中间数据四舍五入所带来的误差。

【思考题】

1. 测量材料线膨胀系数的意义并举例说明。

答:线膨胀系数是描述材料在温度变化下尺寸变化的参数,通常用于工程设计和材料选择中。以下是材料线膨胀系数在不同方面的意义:

- ①工程结构稳定性:在许多工程应用中,例如建筑、桥梁、管道系统等,材料的 尺寸稳定性对结构的安全和稳定至关重要。温度变化会引起材料的线膨胀或收缩, 如果这些变化没有被适当考虑,可能会导致结构的不稳定或者产生过度应力,最 终影响结构的性能和寿命
- ②材料选择和设计考虑:在工程设计过程中,了解材料的线膨胀系数可以帮助工程师选择合适的材料,并确保设计的结构在不同温度条件下保持稳定。在高温环境下工作的设备或构件,需要选择线膨胀系数较低的材料,以减少因温度变化引起的尺寸变化对结构的影响。除此之外,比如温度在夏季和冬季会发生较大变化,在构建桥梁时就需要考虑材料的线膨胀系数,以及长度可能会随着温度的变化而发生微小的变化。如果不考虑这种长度变化,可能会导致桥梁在不同温度下出现

过度应力或结构不稳定的问题。

- ③工程测量和校准: 许多测量设备和仪器在使用时需要考虑温度对其尺寸和性能的影响。了解材料的线膨胀系数可以帮助校准这些设备,以确保它们在不同温度下提供准确的测量结果。
- **④材料研究和开发:** 在材料科学和工程领域,研究材料的线膨胀系数可以帮助开发新的材料,以满足特定工程应用的需求。通过调整材料的成分和结构,可以改变其线膨胀系数,从而使其更适用于特定的温度环境下。
- 2. 分析实验中影响实验结果的因素有哪些。

答:

- ①光源稳定性:光源的频率或强度的微小变化可能导致测量误差,所以实验中使用的光源必须具有稳定的频率和强度,以确保干涉图样的稳定性和准确性。
- ②环境温度: 金属材料的线膨胀系数与温度密切相关,因此必须确保实验室环境的温度稳定。即使微小的温度变化也可能影响金属材料的尺寸,进而影响干涉图样的解释和测量结果。
- ③光路稳定性: 迈克尔逊干涉仪的光路必须保持稳定,以确保干涉条纹的清晰度和稳定性。任何光路中的微小振动或调整都可能导致干涉图样的变化。
- **④数据分析方法:** 对干涉图样的数据分析方法必须准确可靠。对干涉图样的解释可能会受到噪音、背景干涉以及其他干扰因素的影响,因此需要采用适当的数据处理和分析方法来提取所需的信息。