ME 543 Computational Fluid Dynamics presentation

Name:- Vivek Vijay Potdar

Roll No :- 224103330

Governing Equation:-

1)First Problem

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

2)Second Problem

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

Governing Equations :-

General PDE:

$$\frac{3^{2}\phi}{3\times^{2}+3y^{2}}=0$$

1. Jacobi iterative Method
$$\phi^{KH}_{i,j} = \frac{1}{2(1+\beta^{2})}\left[\beta^{2}\phi^{K}_{i,j-1} + \phi^{K}_{i-1,j} + \phi^{K}_{i+1,j} + \beta^{2}\phi^{K}_{i,j+1}\right]$$
2. Point gauss seidal Method
$$\phi^{KH}_{i,j} = \frac{1}{2(1+\beta^{2})}\left[\beta^{2}\phi^{KH}_{i,j-1} + \phi^{K}_{i-1,j} + \phi^{K}_{i+1,j} + \beta^{2}\phi^{K}_{i,j+1}\right]$$
3. Point succesive Over relaxation (PSOR) Method
$$\phi^{KH}_{i,j} = (1-\omega)\phi^{K}_{i,j} + \frac{\omega}{2(1+\beta^{2})}\left[\beta^{2}\phi^{KH}_{i,j-1} + \phi^{K}_{i-1,j} + \phi^{K}_{i+1,j} + \beta^{2}\phi^{K}_{i,j+1}\right]$$
4. Line gauss siedal iterative Method
$$\phi^{KH}_{i-1,j} - 2(1+\beta^{2})\phi^{KH}_{i,j} + \phi^{KH}_{i+1,j} = -\beta^{2}(\phi^{KH}_{i-1,j} + \phi^{K}_{i,j+1})$$

$$\beta^{2}\phi^{KH}_{i,j+1} - 2(1+\beta^{2})\phi^{KH}_{i,j} + \beta^{2}\phi^{KH}_{i,j-1} = -(\phi^{KH}_{i-1,j} + \phi^{K}_{i+1,j})$$
5. Alternating direction Implicit Method
$$\frac{Step1:-}{Hsignment-1}$$

$$\phi^{K+1}_{i,j} + \phi^{K}_{i+1,j} = -(\phi^{KH}_{i-1,j} + \phi^{K}_{i,j+1})$$

$$\frac{Step2:-}{Hsignment-1}$$

$$\phi^{K+1}_{i,j} - 2(1+\beta^{2})\phi^{K+1}_{i,j-1} = -\beta^{2}(\phi^{K+1}_{i-1,j} + \phi^{K}_{i,j+1})$$

$$\frac{Step2:-}{Hsignment-1}$$

$$\frac{Step2:-}{Hsignm$$

Results:-

Problem 1:-

Fig 1. Stream lines for grid 31*21

Fig 2. Comparison Study of Numbers of Iterations(grid size 31*21)

Results:-

Problem 2:-

Fig 3. Isotherms for grid 100*100

Fig 4. Comparison Study of Numbers of Iterations(grid size 100*100)

Fig 5. W vs Number of Iterations (PSOR Method) for grid 100*100

Sr. No.	Method	No. of Iterations	
1	Jacobi Method	1843	
2	Point Gauss Seidel Method	932	
3	Line Gauss Seidel Method	497	
4	PSOR Method at w opt =1.49	353	
5	ADI Method	225	

Problem 1 Table 1:- Numbers of Iterations(grid size 31*21)

Sr. No.	Method	No. of Iterations	
1	Jacobi Method	11371	
2	Point Gauss Seidel Method	6365	
3	Line Gauss Seidel Method	3523	
4	PSOR Method at w opt =1.94	218	
5	ADI Method	1765	

Problem 2 Table 2:- <u>Numbers of Iterations(grid size100*100)</u>

governing Equation:-

$$\frac{\partial u}{\partial t} = \frac{1}{\mathrm{Re}_H} \cdot \frac{\partial^2 u}{\partial y^2}$$

Fig.Geometry with Boundary conditions

Governing Equations :-

Assignment-2

PDE:-

$$\frac{\partial u}{\partial t} = \frac{1}{Re_H} \frac{\partial^2 u}{\partial y^2}$$

1. FTCS

 $u_i^{ntl} = Y_g u_{i-1}^n + Y_g u_{i+1}^n + (1-2Y_g) u_i^n$

2. BTCS

 $Y_g u_{i+1}^{n+1} + Y_g u_{i+1}^{n+1} - (1+2Y_g) u_i^{n+1} = -u_i^n$

3. Crank- Nicolson Scheme

Step1:- $n \rightarrow n + \frac{1}{2} = FTCS$ scheme.

 $u_i^{n+1/2} = Y_g u_{i-1}^n + Y_g u_{i+1}^n + (1-2Y_g) u_i^n$

Step2:- $n+1 \rightarrow n+1 = BTCS$ scheme.

 $Y_g u_{i-1}^n + Y_g u_{i+1}^n - (1+2Y_g) u_i^n = -u_i^n$

Velocity Profiles at Different time including Steady State

1. FTCS Scheme:-

2. Crank Nicolson Scheme:-

Velocity Profiles at Different time including Steady State

3. BTCS Scheme(Linear Solver Method):-

4. BTCS Scheme(TDMA):-

Velocity Profiles at Different time including Steady State

Convergence History (E vs t):-

Comparison Study of Number of Iterations:-

No	Scheme Name	No. of Iterations	Time(sec)
•		Iterations	
1	FTCS Scheme	10935	54.675
2	BTCS Scheme(Linear Solver Method)	6173	61.73
3	BTCS Scheme(TDMA Algorithm)	6178	61.779
4	Crank Nicolson Scheme	3095	30.945

Table 3:- Numbers of Iterations(grid size 100)

Non dimensional governing Equations :-

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega$$

$$u\frac{\partial\omega}{\partial x} + v\frac{\partial\omega}{\partial y} = \frac{1}{\text{Re}}\left(\frac{\partial^2\omega}{\partial x^2} + \frac{\partial^2\omega}{\partial y^2}\right)$$

$$u = \frac{\partial \psi}{\partial y}$$
, $v = -\frac{\partial \psi}{\partial x}$

Figure: Flow inside a lid-driven cavity

Centreline u and v velocity profiles :-

Stream lines contours :-

A) Re=100 B) Re=400

vorticity contours :-

A) Re=100 B) Re=400

Velocity vectors :-

A) Re=100

B) Re=400

Thank you!