Assignment -2

Assignment Date	17 September 2022
Team ID	PNT2022TMID38850
Project Name	EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES
Student Name	GOKUL U
Student Roll Number	421219104004
Maximum Marks	2 Marks

IMPORTLIBRARIES

import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seabom as sns

LOADING THE DATASET

 $df = pd.read_csv('Churn_Modelling.csv', encoding='latin-1')df$

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
Age 0 42	1	15634602	Hargrave	619	France	Female
1 41	2	15647311	Hill	608	Spain	Female
2 42	3	15619304	Onio	502	France	Female
3 39	4	15701354	Boni	699	France	Female
4 43	5	15737888	Mitchell	850	Spain	Female
	•••		•••		•••	
 9995 39	9996	15606229	Obijiaku	771	France	Male
9996 35	9997	15569892	Johnstone	516	France	Male
9997 36	9998	15584532	Liu	709	France	Female
9998	9999	15682355	Sabbatini	772	Germany	Male
42 9999 28	10000	15628319	Walker	792	France	Female
0 1 2	2 1 838	Balance Nu 0.00 807.86 660.80	mOfProducts 1 1 3	HasCrCard I 1 0 1	sActiveMember 1 1 0	\

3	1	0.00	2	0	0
4	2	125510.82	1	1	1
				•••	
9995	5	0.00	2	1	0
9996	10	57369.61	1	1	1
9997	7	0.00	1	0	1
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
		•••
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

10000 rows x 14 columns]

VISUALIZATIONS

#visualization of categorical features

```
fig, ax = plt.subplots(3, 2, figsize = (15, 12))plt.title("Visualization") sns.countplot('Geography', hue = 'Exited', data = df, ax = ax[0][0],palette='spring') sns.countplot('Gender', hue = 'Exited', data = df, ax = ax[0][1],palette='spring') sns.countplot('Tenure', hue = 'Exited', data = df, ax = ax[1][0],palette='spring') sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1][1],palette='spring') sns.countplot('HasCrCard', hue = 'Exited', data = df, ax = ax[2][0],palette='spring') sns.countplot('IsActiveMember', hue = 'Exited', data = df, ax = ax[2][1],palette='spring')
```

```
ax[0][0].set_title('Count Plot of Geography',color='red',fontsize=15)ax[0][1].set_title('Count Plot of Gender',color='red',fontsize=15) ax[1][0].set_title('Count Plot of Tenure',color='red',fontsize=15) ax[1][1].set_title('Count Plot of NumOfProducts',color='red',fontsize=15) ax[2][0].set_title('Count Plot of HasCrCard',color='red',fontsize=15)ax[2][1].set_title('Count Plot of IsActiveMember',color='red',fontsize=15)
```

plt.tight_layout()plt.show()

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in anerror or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and

passing other arguments without an explicit keyword will result in anerror or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

DESCRIPTIVE STATISTICS

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64

IsActiveMember int64EstimatedSalary float64Exited int64

dtype: object

 $df_num = df[['RowNumber', 'Tenure', 'CustomerId', 'CreditScore', 'Age', 'NumOfProduc', 'CreditScore', 'CreditScore', 'Age', 'NumOfProduc', 'CreditScore', 'Cr$

ts','HasCrCard','IsActiveMember','Exited']]

 $df_cat = df[['Surname', 'Geography', 'Gender']]df_num.head()$

RowNumber Tenure CustomerId CreditScore Age NumOfProductsHasCrCard \								
0	1	2	15634602	619	42	1		
1								
1	2	1	15647311	608	41	1		
0								
2	3	8	15619304	502	42	3		
1								
3	4	1	15701354	699	9 39	2		
0								
4	5	2	15737888	85	0 43	1		
1								
	IsActiveM	lember Exited						
0		1 1						
1		1 0						
2		0 1						
3		0 0	4	1 0 df	cat.head()			
Surnar	ne Geography G	ender						
0	0 Hargrave France Female							
1	Hill Spain F	emale						
2	Onio France	e Female						
3	Boni France	e Female 4	Mitchell	Spain Female				
df_nu	m.describe()							
	RowN	umber	Tenure	CustomerId	CreditScore			
Age \								
co	ount 10000.0000	00 10000.000	000 1.000000e	-04 10000.000000)			
100	000.000000							
me	an 5000.50	0000	5.012800 1.56	9094e+07	650.52880	00		
38.	921800							
std	2886.89	9568	2.892174 7.19	3619e+04	96.65329	99		
10.	487806							

min	1.00000	0.000000 1.556570e+07	350.000000				
18.0000	00						
25%	2500.75000	3.0000001.562853e+07	584.000000				
32.0000	00						
50%	5000.50000	5.000000 1.569074e+07	652.000000				
37.0000	37,000000						
75%	7500.25000	7.000000 1.575323e+07	718.000000				
44.0000	00						
max	10000.00000	10.000000 1.581569e+07	850.000000				
92.0000	00						

	NumOfProducts	HasCrCard	IsActiveMember	Exited
count	10000.000000	10000.00000	10000.000000	10000.000000
mean	1.530200	0.70550	0.515100	0.203700
std	0.581654	0.45584	0.499797	0.402769
min	1.000000	0.00000	0.000000	0.000000
25%	1.000000	0.00000	0.000000	0.000000
50%	1.000000	1.00000	1.000000	0.000000
75%	2.000000	1.00000	1.000000	0.000000
max	4.000000	1.00000	1.000000	1.000000

 $df_{cat.describe}(exclude = ['int64', 'float64'])$ Surname Geography Gender

count 10000 10000 10000 unique
2932 3 2 top Smith France Male

HfrAeNqDLETHEM32ISSINGV5A01L4UES5457

print("Column	Missing values")print("_") df.isnull().sum()
Column	Missing values
RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0

0

HasCrCard

```
IsActiveMember
                              0
  EstimatedSalary
                              0
  Exited
               0 dtype: int64
  print(f"Our target variable is Exited. We can observe that it has only two possible variables:
  {df['Exited'].unique().tolist()}")
  Our target variable is Exited. We can observe that it has only two possible variables: [1, 0]
  df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)
  new_names = {
        'CreditScore': 'credit_score', 'Geography':
        'country', 'Gender': 'gender',
        'Age': 'age',
        'Tenure': 'tenure', 'Balance': 'balance',
        'NumOfProducts': 'number_products', 'HasCrCard':
        'owns_credit_card', 'IsActiveMember': 'is_active_member',
        'EstimatedSalary': 'estimated_salary', 'Exited': 'exited'
  }
  df.rename(columns=new_names, inplace=True)df.head()
credit_score country gender age tenure balance number_products \
                            France
                                      Female
                                                                             0.00
  0
                    619
                                                    42
                                                                 2
  1
  1
                    608
                              Spain Female
                                                   41
                                                                         83807.86
                                                                 1
  1
  2
                    502
                              France Female
                                                    42
                                                                 8
                                                                        159660.80
  3
  3
                    699
                              France Female
                                                    39
                                                                 1
                                                                              0.00
  2
  4
                                                    43
                                                                 2
                    850
                             Spain
                                      Female
                                                                        125510.82
  1
       owns_credit_card is_active_member estimated_salary exited0
                                                                                            1
                                                      101348.88
                            1
  1
                            0
                                                      1
                                                                     112542.58
                                                                                            0
  2
                                                                                            1
                            1
                                                      0
                                                                     113931.57
  3
                            0
                                                      0
                                                                      93826.63
                                                                                            0
                            1
                                                      1
                                                                      79084.10
                                                                                            0
  REPLACE OUTLIERS
  def detect outlier(df):
  outlier = [] threshold = 3
  mean = np.mean(df)std =
  np.std(df) for i in df:
          z score = (i - mean)/std
   if np.abs(z_score)>threshold:
        outlier.append(i)
```

```
return outlier
 CreditScore_list = df['CreditScore'].tolist()Balance_list = df['Balance'].tolist()
 EstimatedSalary list=df cat['EstimatedSalary'].tolist()CreditScore outlier =
 detect_outlier(CreditScore_list) CreditScore_outlier
 Output-[359, 350, 350, 358, 351, 350, 350, 350]
 Balance_outlier = detect_outlier(Balance_list)Balance_outlier
 print("Shape of Data before removing outliers: { }".format(df.shape))Shape of Data before
removing outliers: (10000, 11)
ENCODING
# Encoding Categorical variables into numerical variables# One Hot Encoding
x = pd.get\_dummies(x)x.head()
x.shape
(10000, 13)
SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIALBLES
# splitting the dataset into x(independent variables) and y(dependent variables)
x = df.iloc[:,0:10]
y = df.iloc[:,10]
print(x.shape)
print(y.shape)
print(x.columns)
#print(y)
(10000, 10)
(10000,)
Index(['credit_score', 'country', 'gender', 'age', 'tenure', 'balance',
         'number_products',
                                'owns_credit_card',
                                                      'is_active_member','estimated_salary'],
        dtype='object')
SCALE THE INDEPENDENT VARIABLES
from sklearn.preprocessing import StandardScalersc = StandardScaler()
x_train = pd.DataFrame(x_train) x_train.head()
credit_score country gender age tenure balance number_products \
2967
                     579 Germany
                                       Female
                                                  39
                                                              5
                                                                    117833.30
```

3						
700	750	France	Female	32	5	0.00
2						
3481	729	Spain	Female	34	9	53299.96
2						
1621	689	Spain	Male	38	5	75075.14
1						
800	605	France	Male	52	7	0.00
2						

owns_credit_card		is_active_member		estimated_salary	
2967	0	0	5831.00	700) 1
	0	95611.47			
3481		1	1		42855.97
1621		1	1		8651.92
800		1	1		173952.50

SPLIT THE DATA INTO TRAINING AND TESTING

splitting the data into training and testing set

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =0.25, random_state = 0)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(7500, 10)
```

(7500, 10) (7500,) (2500, 10) (2500,)