Nested Monte Carlo for Log-Variance-Gamma model

Auguste Crabeil et Gaëtan Narozniak

31 mars 2025

Génération des données - Monte Carlo

$$C(T, K, \kappa, \theta, \sigma) = \mathbb{E}\left[(Y_T - K)^+\right] \approx \frac{1}{N_{\text{traj}}} \underbrace{\sum_{N_{\text{traj}}} (Y_T^i - K)^+}_{\text{one thread}}$$

- Boucle CPU sur la durée des trajectoires T
- Parallélisation sur les 4 autres hyperparamètres sur GPU: chaque thread génère N_traj trajectoires pour un jeu de paramètres donné (pour limiter l'utilisation de cudaDeviceSynchronize)

Trois réalisations d'un processus Variance-Gamma

Notre génération de données :

strike 🕞	T	kappa 💂	sigma 🔻	theta -	benchmark 🕞	our price
1.000000	0.250000	0.035000	0.045000	-0.355000	0.015687	0.015804
1.000000	0.250000	0.035000	0.045000	-0.305000	0.014248	0.014169
1.000000	0.250000	0.035000	0.045000	-0.255000	0.012848	0.012766
1.000000	0.250000	0.035000	0.045000	-0.205000	0.011572	0.011738
1.000000	0.250000	0.035000	0.045000	-0.155000	0.010485	0.010414
1.000000	0.250000	0.035000	0.045000	-0.105000	0.009620	0.009593
1.000000	0.250000	0.035000	0.045000	-0.055000	0.009043	0.009014

- Génération de 320.000 données pour l'entraînement sur 10.000 trajectoires
- Génération de 1024 données pour le testing sur 500.000 trajectoires

Entraînement d'un modèle de prix

• On entraîne un réseau de neurones sur les prix obtenus par méthode de Monte Carlo :

$$\phi = \arg\min_{\phi} \mathbb{E} \left[(f_{\phi} - \hat{C}(T, K, \kappa, \theta, \sigma))^2 \right]$$

On utilise un MLP à 4 couches cachées de taille 256

Modèle arbitrage-free?

• Un modèle arbitrage-free doit être croissant en T, décroissant en K, et convexe en K

Régularisation du modèle

• Tirage aléatoire de 1.000.000 de points à l'intérieur de notre hypercube (T, K, kappa, sigma, theta) et calcul des gradients avec torch.autograd.grad() :

Points où la dérivée par rapport à T est négative (%)	Points où la dérivée par rapport à K est positive (%)	Points où la dérivée seconde par rapport à K est négative (%)
19.53	0	0

• On pénalise l'irrégularité du modèle lors de l'entraînement avec une nouvelle perte :

$$\mathcal{L}(\phi) = \left(f_{\phi} - \hat{C}\right)^2 + \lambda_1 \left(\frac{\partial f_{\phi}}{\partial T}\right)^- + \lambda_2 \left(\frac{\partial f_{\phi}}{\partial K}\right)^+ + \lambda_3 \left(\frac{\partial^2 f_{\phi}}{\partial K^2}\right)^-$$