

Aprendiz de Descritores de Mistura Gaussiana

Defesa de Mestrado

Candidato: Breno Lima de Freitas

Orientador: Prof. Dr. Tiago Agostinho de Almeida

14 de Dezembro de 2017

Programa de Pós-graduação em Ciência da Computação - Universidade Federal de São Carlos

Agenda

- 1. Introdução
- 2. O Princípio da Descrição mais Simples
- 3. Aplicações do MDL em Aprendizado de Máquina
- 4. Motivação & Objetivos
- 5. Estimativa de f.d.p.
- 6. Construindo um método de classificação baseado no MDL
- 7. Avaliação experimental
- 8. Conclusão

Introdução

Classificação

Classificação

Figura 2: Hipóteses de classificadores ©

A Navalha de Occam

Figura 3: William de Occam @

"ENTIDADES NÃO
DEVEM SER
MULTIPLICADAS ALÉM
DO NECESSÁRIO"

Complexidade de Kolmogorov

```
(1..50).each{|x| print '110'}; exit!
```

Complexidade de Kolmogorov

Simples

O Princípio da Descrição mais

Origem

- Rissanen [19] em 1978 definiu o Princípio da Descrição mais Simples (MDL);
- Formalizou a Navalha de Occam;
- Enraizado na Complexidade de Kolmogorov;
- Quanto mais temos conhecimento de um dado, mais podemos comprimi-lo.

Definições

- \mathcal{X} é alfabeto finito de símbolos:
- Xⁿ representa o conjunto de todas as sequências finitas de n símbolos;
- x^n abrevia $(x_1, x_2, ..., x_n)$;
- Uma fonte de probabilidade é uma sequência $P^{(1)}, P^{(2)}, \ldots$ definida em $\mathcal{X}^1, \mathcal{X}^2, \ldots$

Procuramos por uma codificação binária, de um conjunto de dados, que consiga descrevê-lo de maneira única da menor forma possível

Figura 4: Relação entre diferentes classes de codificação

Inequalidade de Kraft

Teorema (Inequalidade de Kraft)

Existe uma codificação livre de prefixos de aridade D com tamanho de códigos l_1, \ldots, l_n se e somente se $\sum_{i=1}^n D^{-l_i} \leq 1$.

Inequalidade de Kraft

Teorema (Inequalidade de Kraft)

Existe uma codificação livre de prefixos de aridade D com tamanho de códigos l_1, \ldots, l_n se e somente se $\sum_{i=1}^n D^{-l_i} \leq 1$.

$$\mathcal{L}_{\mathcal{Z}} := \left\{ L : Z \to [0, \infty) \mid \sum_{z \in Z} 2^{-l_z} \le 1 \right\}$$
 (1)

• L_C representa o tamanho esperado dos dados codificados por C em uma f.d.p. P_C

- L_C representa o tamanho esperado dos dados codificados por C em uma f.d.p. P_C
- $L_C := \sum_i x_i \cdot p(x_i)$

- L_C representa o tamanho esperado dos dados codificados por C em uma f.d.p. P_C
- $L_C := \sum_i x_i \cdot p(x_i)$
- $E[X] = \sum_{i=1}^{\infty} x_i \cdot p_i$

- L_C representa o tamanho esperado dos dados codificados por C em uma f.d.p. P_C
- $L_C := \sum_i x_i \cdot p(x_i)$
- $E[X] = \sum_{i=1}^{\infty} x_i \cdot p_i$

$$L := \arg\min_{L \in \mathcal{L}_Z} E_P[L(Z)]$$
 (2)

- L_C representa o tamanho esperado dos dados codificados por C em uma f.d.p. P_C
- $L_C := \sum_i x_i \cdot p(x_i)$
- $E[X] = \sum_{i=1}^{\infty} x_i \cdot p_i$

$$L := \underset{L \in \mathcal{L}_Z}{\text{arg min } E_P[L(Z)]} \tag{2}$$

Teorema (Lei dos grandes números)

Se X é uma variável aleatória, então

$$\lim_{|X|\to\infty}\frac{1}{|X|}\sum_{i=1}^{|X|}x_i=E[X]$$

Mas qual é o tamanho mínimo ideal para *L*?

Teorema

Seja C uma codificação de um conjunto de símbolos S. Seja P a distribuição associada a C e I_i o tamanho da codificação do símbolo x_i . A menor codificação possível para um símbolo x_k é limitada inferiormente por $-\log P(x_k)$.

É possível mostrar que o tamanho ótimo é limitado inferiormente por $-\log P(x)$ para um dado símbolo x.

Como sabemos qual *P* eleger?

Proposição (Inequalidade da informação)

Se P e Q são distribuições de massa de probabilidade tal que $P \neq Q$, então $E_P[P(X)] < E_P[Q(X)]$.

Proposição (Inequalidade da informação)

Se P e Q são distribuições de massa de probabilidade tal que $P \neq Q$, então $E_P[P(X)] < E_P[Q(X)]$.

- A partir da Inequalidade de Kraft podemos garantir a existência de uma codificação livre de prefixos;
- Pela Lei dos Grandes Números, quanto mais amostra obtivermos, mais próximo da distribuição ótima estaremos;
- Se P for a distribuição ótima, pela Inequalidade da informação, então $L_C(z) = \lceil -\log P(z) \rceil$.

MDL em duas partes

$$M_{MDL} := \underset{M \in \mathcal{M}}{\operatorname{arg min}} [L(M) + L(D|M)]$$

MDL em duas partes

$$M_{MDL} := \underset{M \in \mathcal{M}}{\operatorname{arg\,min}} [L(M) + L(D|M)]$$

MDL Refinado

É possível utilizar-se de duas partes, mas codificações universais são computacionalmente proibitivas

Aplicações do MDL em

Aprendizado de Máquina

Árvores de Decisão

Figura 5: Árvore de Decisão para classificar sobreviventes do *Titanic* @

- Quinlan & Rivest [18]: Geração de árvores de decisão, com construção bottom-up, substituindo nós folha com nós de decisão que não aumentem o custo de transmissão da informação;
- Kononenko [14]: MDL em duas partes para poda de árvores de decisão, removendo um nó de decisão baseando-se na entropia.

Redes Bayesianas

Figura 6: Rede Bayesiana simples ⊚

- Lam & Bacchus [16]:
 Treinamento de redes
 Bayesianas para decisão sob incertezas
- Friedman et al. [13]: MDL para o treinamento de redes
 Bayesianas para classificação.

Figura 7: Enlatado *Spam* ⊚

- Bratko et al. [7]: Compressão dinâmica de Markov com MDL, e outro combinando entropia mínima cruzada;
- Braga & Ladeira [6]: MDL e codificação de Huffmann foi abordada;
- Almeida [4] e Almeida & Yamakami
 [1, 2, 3]: MDL e fatores de confidência, chamado de MDL-CF.
- Silva et al. [22, 23]: Extensão do método de Almeida [4] para que trabalhasse com dados textuais quaisquer e deram um primeiro passo na tentativa de categorizar atributos contínuos.

Motivação & Objetivos

Motivação

- A extensão do método por Silva et al. [22, 23] foi benéfica para textos, mas não tão boa para dados contínuos;
- O método perdeu sua propriedade de treinamento incremental;

Motivação

- A extensão do método por Silva et al. [22, 23] foi benéfica para textos, mas não tão boa para dados contínuos;
- O método perdeu sua propriedade de treinamento incremental;
- Foi a discretização a raiz do problema?

Perguntas de pesquisa

- 1. É possível estimar de maneira incremental uma função de distribuição de probabilidade de um atributo contínuo, para assim evitar discretização offline?
- 2. Como podemos adaptar o método apresentado em Almeida [4] e Silva *et al.* [22, 23] para que seja capaz de processar amostras representadas também por atributos contínuos?

Estimativa de f.d.p.

Estimativa de densidade de kernel

$$p(X) := \sum_{i=1}^{G} w_i \cdot \mathcal{N}(X \mid \mu_i, \Sigma_i), \tag{3}$$

Estimativa de densidade de kernel

$$p(X) := \sum_{i=1}^{G} w_i \cdot \mathcal{N}(X \mid \mu_i, \Sigma_i), \tag{3}$$

- Um método clássico para estimar f.d.p. é assumir uma distribuição Gaussiana;
- Estimar parâmetros não é trivial [17, 27];
- Silverman [25] cunhou a estimativa de densidade de Kernel (EDK).

Estimativa de densidade de kernel

Figura 8: Kernel Gaussiano

- O kernel Gaussiano é uma escolha clássica;
- O EDK evita a necessidade de discretização;
- O número de componentes para distribuição cresce linearmente para cada amostra.

Estimativa de densidade de kernel online

Figura 9: Gráficos de uma função Delta-Dirac (azul sólido) de $\mu=0$ e uma distribuição Gaussiana (vermelho cerrilhado) de $\sigma^2=\frac{1}{2}$ e $\mu=0$.

- Kristan *et al.* [15] propuseram um EDK online (oKDE);
- Utiliza-se de uma distribuição amostral (funções Delta-Dirac);

Estimativa de densidade de kernel online

Figura 9: Gráficos de uma função Delta-Dirac (azul sólido) de $\mu=0$ e uma distribuição Gaussiana (vermelho cerrilhado) de $\sigma^2=\frac{1}{2}$ e $\mu=0$.

- Kristan *et al.* [15] propuseram um EDK online (oKDE);
- Utiliza-se de uma distribuição amostral (funções Delta-Dirac);
- Como manter uma distribuição por ponto é inviável, há uma compressão de amostras;
- Para computar a largura de banda, utiliza-se a divergência de Kullback-Leibler;
- Ferreira et al. [12] cunharam o xokde++, uma versão melhorada do oKDE.

classificação baseado no MDL

Construindo um método de

Predição de amostras

$$\hat{L}(\vec{x}|c) := \sum_{i=1}^{n} \lceil -\log p_{(i,c)}(\vec{x}_i) \rceil \tag{4}$$

Predição de amostras

$$\hat{L}(\vec{x}|c) := \sum_{i=1}^{n} \lceil -\log p_{(i,c)}(\vec{x}_i) \rceil \tag{4}$$

onde

$$p_{(i,c)} := \begin{cases} 2^{-\Omega} & p'_{(i,c)} \to \infty \ \lor \ p'_{(i,c)} = 0 \\ p'_{(i,c)} & c.c. \end{cases}$$
 (5)

Complexidade do modelo

- p' é um distribuição Gaussiana;
- Quanto mais componentes na distribuição, menos conhecimento temos da distribuição;

Complexidade do modelo

- p' é um distribuição Gaussiana;
- Quanto mais componentes na distribuição, menos conhecimento temos da distribuição;
- Logo, $|p'_{(\cdot,c)}| = G_c$ é uma boa escolha para a complexidade do modelo.

Primeiro versão do método de classificação

Podemos obter, então, a primeira versão do Aprendiz de Descritores de Mistura Gaussiana:

$$GMDL'(\vec{x}, K) := \underset{c \in K}{\arg\min} [\hat{L}(\vec{x}|c) + G_c]$$
 (6)

Primeiro versão do método de classificação

Podemos obter, então, a primeira versão do Aprendiz de Descritores de Mistura Gaussiana:

$$GMDL'(\vec{x}, K) := \arg\min_{c \in K} [\hat{L}(\vec{x}|c) + G_c]$$
 (6)

e normalizando:

$$GMDL(\vec{x}) := \begin{bmatrix} GMDL'(\vec{x}, \{c_1\}) \\ GMDL'(\vec{x}, \{c_2\}) \\ \vdots \\ GMDL'(\vec{x}, \{c_k\}) \end{bmatrix} / \sum_{k=1}^{|K|} GMDL'(\vec{x}, \{c_k\})$$
 (7)

Suavição de funções Delta-Dirac

- Uma distribuição é degenerada se tem baixa variância;
- O oKDE é suscetível a tais distribuições dependendo da ordem em que as amostras eram apresentadas;

Suavição de funções Delta-Dirac

- Uma distribuição é degenerada se tem baixa variância;
- O oKDE é suscetível a tais distribuições dependendo da ordem em que as amostras eram apresentadas;
- O GMDL mitiga esse problema adicionando um ruído Gaussiano de média zero e desvio padrão σ̃²;
- Computa-se a variância populacional incrementalmente com o método proposto por Welford [26].

Podemos tornar o GMDL mais flexível?

Ponderação de Atributos

- Seleção de atributos é uma técnica clássica da área de aprendizado de máquina;
- Engenharia de atributos busca sanar problemas como a maldição da dimensionalidade e a alta variância em um conjunto;
- Muitos trabalhos na área: PCA, Ganho de Informação, Informação Mútua, etc.;
- Assim como o Naïve Bayes, o GMDL assume que as distribuições são independentes.

Ponderação de Atributos

Figura 10: Ilustração do funcionamento do Gradiente Descendente em um conjunto de pontos v.

- Para aliviar essa suposição, adicionamos um expoente a cada atributo, para limitar sua influência na predição;
- Além disso, tais atributos são atualizados utilizando-se SGD;
- A atualização é dada por:

$$\nabla J_{\theta_i} = -\sum_{j=1}^{m} \sum_{k=1}^{|K|} (\delta_{y^{(j)}c_k} - L(\vec{x}^{(j)}|c_k)) \cdot \varphi_{ik}^{\theta_i} \cdot \ln \theta_i \cdot (1 - L(\vec{x}^{(j)}|c_k))$$
(8)

Separação de margem

- A margem de uma barreira de decisão é a distância da barreira até os dados separados;
- O SVM é amplamente conhecido por procurar por uma função que otimiza a separação da margem;
- Silva et al. [24] utilizaram-se também de um fator para separar amostras do que chamaram de protótipos de classe.

Separação de margem

Utiliza-se a distância de Mahalanobis com o valor esperado das médias e a variância obtida a partir da médias:

$$D(\vec{x}, f) := \sqrt{(\vec{x} - \mu_f) \cdot \Sigma_f^{-1} \cdot (\vec{x} - \mu_f)^T}$$

Separação de margem

Utiliza-se a distância de Mahalanobis com o valor esperado das médias e a variância obtida a partir da médias:

$$D(\vec{x}, f) := \sqrt{(\vec{x} - \mu_f) \cdot \Sigma_f^{-1} \cdot (\vec{x} - \mu_f)^T}$$

Defini-se então o parâmetro de penalidade, com zero, para a classe menos similar:

$$\hat{S}(ec{x}, \widetilde{c}) := -\log\left(rac{1 - D(ec{x}, \widetilde{c}) + 2^{eta}}{2}
ight)$$

GMDL

Equação do GMDL

$$\hat{L}(\vec{x}|c) := \hat{S}(\vec{x}, \tilde{c})^{\tau} \cdot \sum_{i=1}^{n} \left[-\log p_{(i,c)}(\vec{x}_i) \right]^{\theta_i} \qquad (9)$$

Complexidade do GMDL

- Complexidade no treinamento é $O(\frac{G^2-G}{2+G})$ (G costuma ser baixo [15]);
- Complexidade na predição é $O(n \cdot |K|)$;

Complexidade do GMDL

- Complexidade no treinamento é $O(\frac{G^2-G}{2+G})$ (G costuma ser baixo [15]);
- Complexidade na predição é $O(n \cdot |K|)$;
- Adiciona-se $O(n^{2\cdot(1-\delta_{0\tau})})$ quando utiliza-se a distância ao protótipo.

Avaliação experimental

Cenários

• Dois grandes cenários: Offline e Incremental.

Cenários

- Dois grandes cenários: Offline e Incremental.
- Offline:
 - Amostras apresentadas em batelada;
 - Não há correção, apenas classificação.
- Incremental:
 - Correção imediata: retroalimentação imediata;
 - Correção limitada: retroalimentação com uma probabilidade de 50%:
 - Correção atrasada: retroalimentação em tempo que cresce exponencialmente em 1,1, arredondado para baixo.

Bases de dados

		Tamanho		Composição das classes			
#	Base de dados	m	n	K	Amostras por classe		
1	adult	32.561	109	2	7.841; 24.720		
2	contrac	1.473	21	3	333; 511; 629		
3	covertype	581.012	10	7	2.747; 9.493; 17.367; 20.510; 35.754; 211.840; 283.301		
4	fertility	100	40	2	12; 88		
5	hill-valley	1.212	100	2	600; 612		
6	ht-sensor	928.991	11	3	276.967; 305.444; 346.580		
7	iris	150	4	3	50; 50; 50		
8	letter	20.000	16	26	734; 736; 739; 747; 748; 752; 753; 755; 758; 761; 764; 766; 768; 773; 775; 783; 783; 786; 787; 789; 792; 796; 803; 805; 813		
9	libras	360	90	15	24; 24; 24; 24; 24; 24; 24; 24; 24; 24;		
10	miniboone	130.064	50	2	36.499; 93.565		
11	skin	245.057	3	2	50.859; 194.198		
12	susy	5.000.000	18	2	2.287.827; 2.712.173		
13	wdbc	569	30	2	212; 357		
14	wine	178	13	3	48; 59; 71		
15	wine-red	1.599	11	6	10; 18; 53; 199; 638; 681		
16	wine-white	4.898	11	7	5; 20; 163; 175; 880; 1.457; 2.198		

Cenário Offline

Avaliação

Os métodos avaliados foram:

- 1. Naïve Bayes gaussiano (GNB) [11];
- 2. Florestas aleatórias (RF) [8];
- 3. Máquinas de vetores de suporte (SVM) [9];
- 4. k-vizinhos mais próximos (kNN) [21].

Avaliação

Os métodos avaliados foram:

- 1. Naïve Bayes gaussiano (GNB) [11];
- 2. Florestas aleatórias (RF) [8];
- 3. Máquinas de vetores de suporte (SVM) [9];
- 4. k-vizinhos mais próximos (kNN) [21].

Utilizou-se os seguintes parâmetros:

1. GMDL

- 1.1 $\tilde{\sigma}^2$: 2; 5; 10;
- 1.2 τ : 0: 5: 10.

2. **RF**

- 2.1 n_estimators: 10; 20; 30; 40; 50; 60; 70; 80; 90; 100;
- 2.2 criterion: "gini"; "entropy".

3. **SVM**

- 4 kNN
 - 4.1 n neighbors: 3; 5; 7; 9; 11; 13; 15; 17; 19.

Resultados

	GMDL	GNB	RF	SVM	kNN
adult	1,000	1,000	1,000	1,000	0,916
contrac	0,477	0,468	0,489	0,484	0,445
covertype	0,411	0,401	0,629	0,273	0,492
fertility	0,567	0,656	0,688	0,599	0,468
hill-valley	0,480	0,521	0,582	0,726	0,532
ht-sensor	0,549	0,537	0,480	0,499	0,458
iris	0,948	0,953	0,940	0,954	0,967
letter	0,703	0,648	0,962	0,694	0,936
libras	0,586	0,603	0,741	0,623	0,628
miniboone	0,847	0,556	0,920	0,885	0,871
skin	0,917	0,880	0,999	0,887	0,999
susy	0,745	0,737	0,000	0,000	0,000
wdbc	0,938	0,928	0,960	0,962	0,970
wine	0,979	0,957	0,962	0,984	0,958
wine-red	0,299	0,305	0,274	0,251	0,268
wine-white	0,267	0,279	0,281	0,238	0,242

Considerações

- RF obteve o melhor desempenho na maioria dos experimentos;
- Demais métodos também mostram bom desempenho em algumas bases;
- RF, SVM e kNN não terminaram a computação em 48 horas – Teorema dos Grandes Números na prática no GMDL;
- GMDL foi mal em bases de alta cardinalidade (hill-valley e libras);
- Não houve evidência estatística de diferença entre os métodos.

Figura 11: Ranqueamento médio de cada método avaliado no cenário *offline*.

Cenário Incremental

Avaliação

Três cenários (×2, considerando normalização):

- 1. Correção imediata
- 2. Correção limitada
- 3. Correção atrasada

Os métodos avaliados foram:

- 1. Perceptron multinível (MLP) [20];
- 2. Passivo-Agressivo (PA) [10];
- 3. Gradiente Descendente Estocástico (SGD) [5].

Avaliação

Com parâmetros padrões para os métodos, e o GMDL com:

- 1. $\tilde{\sigma}^2$: 2;
- 2. *τ*: 0;
- 3. α : 0,001;
- 4. *f*: 1;
- 5. η : 0,9.

Correção Imediata

	GMDL	MLP	PA	SGD
adult	1,000	0,989	1,000	0,999
contrac	0,465	0,449	0,393	0,410
covertype	0,400	0,526	0,294	0,377
fertility	0,537	0,477	0,626	0,650
hill-valley	0,492	0,487	0,639	0,528
ht-sensor	0,587	0,943	0,463	0,482
iris	0,947	0,590	0,795	0,843
letter	0,670	0,726	0,446	0,569
libras	0,514	0,471	0,373	0,291
miniboone	0,817	0,833	0,756	0,765
skin	0,835	0,996	0,811	0,802
susy	0,687	0,667	0,677	0,703
wdbc	0,924	0,906	0,938	0,944
wine	0,969	0,755	0,947	0,934
wine-red	0,299	0,251	0,238	0,251
wine-white	0,243	0,232	0,199	0,200

Correção Imediata - Considerações

- GMDL obteve o melhor resultado na maioria das bases de dados – nenhuma menor F-medida;
- MLP também mostrou bom desempenho em algumas bases como miniboone e letter;
- MLP e o SGD tiveram desempenho mais baixo em bases com menos amostras e desbalanceadas;
- Wilcoxon mostrou que o GMDL foi superior ao SGD e ao PA, em uma análise par-a-par.

Figura 12: Ranqueamento médio de cada método avaliado no cenário de correção imediata.

Correção Limitada

	GMDL	MLP	PA	SGD
adult	1,000	0,989	1,000	0,999
contrac	0,453	0,383	0,375	0,396
covertype	0,413	0,521	0,283	0,315
fertility	0,492	0,477	0,607	0,518
hill-valley	0,497	0,493	0,627	0,525
ht-sensor	0,563	0,943	0,430	0,459
iris	0,939	0,566	0,789	0,747
letter	0,670	0,710	0,402	0,560
libras	0,392	0,392	0,328	0,258
miniboone	0,770	0,831	0,749	0,762
skin	0,800	0,995	0,801	0,800
susy	0,690	0,672	0,668	0,703
wdbc	0,924	0,906	0,929	0,944
wine	0,932	0,755	0,947	0,934
wine-red	0,306	0,252	0,231	0,240
wine-white	0,235	0,208	0,198	0,226

Correção Limitada - Considerações

- O GMDL só obteve o pior desempenho na base skin – como o SGD;
- MLP teve o melhor resultado na skin, o que demonstra eficiência em baixa dimensionalidade;
- Ambos o GMDL e o PA atingiram predição perfeita na base adult;
- Wilcoxon mostrou que o GMDL foi superior ao SGD e ao PA, em uma análise par-a-par.

Figura 13: Ranqueamento médio de cada método avaliado no cenário de correção limitada.

Correção Atrasada

	GMDL	MLP	PA	SGD
adult	1,000	0,907	1,000	0,999
contrac	0,444	0,403	0,402	0,432
covertype	0,307	0,382	0,288	0,401
fertility	0,482	0,480	0,568	0,565
hill-valley	0,520	0,525	0,541	0,507
ht-sensor	0,347	0,714	0,522	0,549
iris	0,947	0,468	0,767	0,740
letter	0,308	0,074	0,493	0,537
libras	0,207	0,159	0,310	0,271
miniboone	0,558	0,810	0,756	0,779
skin	0,917	0,911	0,684	0,456
susy	0,672	0,734	0,656	0,782
wdbc	0,940	0,908	0,930	0,936
wine	0,906	0,713	0,947	0,928
wine-red	0,281	0,221	0,235	0,236
wine-white	0,232	0,174	0,145	0,251

Correção Atrasada - Considerações

- Todos os métodos avaliados tiveram uma distribuição quase uniforme de melhor desempenho pelas bases;
- O GMDL e o PA obtiveram predição perfeita na base adult;
- A maioria dos piores desempenhos foram obtidos pelo MLP;
- O GMDL, na base hill-valley, foi consistentemente melhor que os demais métodos com as amostras não normalizadas;
- Wilcoxon mostrou que o GMDL foi superior ao MLP e ao PA, em uma análise par-a-par, no cenário não normalizado.

Figura 14: Ranqueamento médio de cada método avaliado no cenário de correção atrasada.

Conclusão

Conclusão

- O problema de se determinar o modelo para uma tarefa de classificação é muito estudado, mas não existe um guia direto de como se fazer;
- O GMDL é multiclasse, multinomial, naturalmente incremental e robusto ao sobreajuste e normalização dos dados;
- O GMDL baseia-se no MDL, uma formalização da ideia da Navalha de Occam: provendo ao método uma troca benéfica entre acurácia e sobrejuste dos dados;

Conclusão

- O GMDL é equivalente aos métodos GNB, RF, SVM, kNN no cenário offline;
- O GMDL se mostrou superior aos métodos SGD e PA no cenários de correção imediata e limitada;
- O GMDL é robusto à normalização e obteve resultados superiores ou equiparáveis aos métodos comparados no cenário incremental atrasado;
- Dada a versatilidade e robustez, o GMDL é um candidato a grandes problemas do mundo real.

Trabalhos futuros e melhorias

- Cálculo do tamanho da descrição;
- Demora na computação da distância ao protótipo;
- O tamanho de descrição da classe impactou negativamente no desempenho do GMDL em alguns casos;
- Utilizar o GMDL em outros problemas.

Obrigado!

Referências

- Almeida, T. A. & Yamakami, A. (2012a). Advances in spam filtering techniques. Computational Intelligence for Privacy and Security, 394(2012), 199–214.
- [2] Almeida, T. A. & Yamakami, A. (2012b). Facing the spammers: A very effective approach to avoid junk e-mails. Expert Systems with Applications, 39(7), 6557–6561.
- [3] Almeida, T. A. & Yamakami, A. (2016). Compression-based spam filter. *Security and Communication Networks*, **9**(4), 327–335.
- [4] Almeida, T. A. D. (2010). SPAM: do Surgimento à Extinção. Ph.d. thesis, State University of Campinas.
- [5] Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. In 19th International Conference on Computational Statistics (COMPSTAT'10), 177–186, Paris, França. Springer.

- [6] Braga, I. A. & Ladeira, M. (2008). Filtragem adaptativa de spam com o princípio minimum description length. In Anais do XXVIII Congresso da Sociedade Brasileira de Computação (SBC'08), 11–20, Belém, Brasil.
- [7] Bratko, A., Cormack, G. V., Filipič, B., Lynam, T. R., & Zupan, B. (2006). Spam Filtering Using Statistical Data Compression Models. *Journal of Machine Learning Research*, 7(12), 2673–2698.
- [8] Breiman, L. (1996). Bagging predictors. *Machine learning*, **24**(2), 123–140.
- [9] Cortes, C. & Vapnik, V. (1995). Support-vector networks. *Machine learning*, 20(3), 273–297.
- [10] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online Passive-Aggressive Algorithms. *Journal of Machine Learning Research*, 7(Mar), 551—585.
- [11] Duda, R. O. & Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley, 1 edition.

- [12] Ferreira, J., Matos, D. M., & Ribeiro, R. (2016). Fast and Extensible Online Multivariate Kernel Density Estimation. CoRR, abs/1606.0(1), 1–17.
- [13] Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers. *Machine Learning*, 29(2), 131–163.
- [14] Kononenko, I. (1998). The minimum description length based decision tree pruning. In *Pacific Rim International Conference on Artificial Intelligence (PRICAI'98)*, 228–237, Singapura, Singapura. Springer.
- [15] Kristan, M., Leonardis, A., & Skočaj, D. (2011). Multivariate online kernel density estimation with Gaussian kernels. *Pattern Recognition*, 44(10-11), 2630–2642.
- [16] Lam, W. & Bacchus, F. (1994). Learning Bayesian Belief Networks: An Approach Based on the Mdl Principle. Computational Intelligence, 10(3), 269–293.

- [17] McLachlan, G. & Peel, D. (2004). Finite mixture models, volume 1. John Wiley & Sons, Inc.
- [18] Quinlan, J. R. & Rivest, R. L. (1989). Inferring decision trees using the minimum description length principle. *Information and Computation*, 80(3), 227–248.
- [19] Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.
- [20] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in Psychological Review, 65(6), 386–408.
- [21] Salton, G. & McGill, M. J. (1986). Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA.
- [22] Silva, R. M., Almeida, T. A., & Yamakami, A. (2016a). Detecção Automática de SPIM e SMS Spam usando Método baseado no Princípio da Descrição mais Simples. Technical report, Universidade Estadual de Campinas, Campinas, Brasil.

- [23] Silva, R. M., Almeida, T. A., & Yamakami, A. (2016b). Towards Web Spam Filtering Using a Classifier Based on the Minimum Description Length Principle. In 15th IEEE International Conference on Machine Learning and Applications (ICMLA'16), 470–475, Anaheim, CA, EUA. IEEE.
- [24] Silva, R. M., Almeida, T. A., & Yamakami, A. (2017). MDLText: An efficient and lightweight text classifier. *Knowledge-Based Systems*, **118**, 152–164.
- [25] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, volume 26. Springer, Boston, MA, 1 edition.
- [26] Welford, B. P. (1962). Note on a Method for Calculating Corrected Sums of Squares and Products. *Technometrics*, 4(3), 419.
- [27] Zivkovic, Z. & van der Heijden, F. (2004). Recursive unsupervised learning of finite mixture models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(5), 651–6.