PSAS Launch Tower Upgrade System Overview

Created By: Richard Witherspoon

Created On: April 19th, 2012

Last Updated By: Richard Witherspoon

Last Updated: June 18th, 2012

Launch Tower Goals

- Create system that can have any Linux computer put as controller.
- I/O management through USB external to control computer.
- Launch via relay interlock from rocket and ground control.
- Disconnect power to rocket
- Manage visual and auditory signaling.
- System should NOT function with loss of computer capabilities. Fail to Safety!
- Control computer physical access if lost through Wi-Fi
- Ample cooling and dust management
- Trigger video acquisition of takeoff.

TO DO

- FULL PUNCHLIST
- •
- Ignition Board -
- Select & Purchase the LIPO chargers
- Get dimensions of LIPO batteries
- Adapt Ignition board for LIPO on-board
- Select diodes and LEDs
- Power Board -
- Add circuitry for umbillical on power board
- Select and purchase 5v and 19v DC/DC converters
- Modify power board for DC/DC converters
- Select diodes and LEDs
- LTC Box -
- Dimension parts and figure layout in box
- Get dimensions for solar charger
- Figure out exact connections needed
- Figure out how to route wires
- Find a box that meets the dimension requirements
- BeagleBoard -
- BeagleBoard make script to launch webservice at boot instead of manual start
- BeagleBoard Remove apache
- Phidgets -
- Application add error handling and logging
- Get annemometer and wind vane to setup the environmental tacking
- Figure out wire lengths and mountings for sensors on the tower (wind and temp)
- Other -
- Wiki The setup of everything in progress

Block Level Design

Interlocks - CURRENT

Interlocks - NEW

Computer Steps

- Boots Up
- Connects to USB i/o interface
- Starts web server and SSH access
- Starts launch management software
- Starts drivers for webcam access
- Login from ground control (via SSH or web access)
- View program interface for status and ability to launch.

Software Goals

- Take input to begin countdown
- Allow halt/cancel of countdown
- Report on system status
 - Batteries
 - Solar Cell
 - Relays
 - Cameras
- Launch sequence
 - Start video collection via GPIO to 3rd-party board (and some form of validation back in)
 - Set relays
 - Sound horns
 - Visual alert
 - Send fire signal This last step must be done again by ground control NOT automatically in the loop
 - Send signal to disconnect shore power to rocket

Software Structure

Timeline

	May					June				July	
	1 - 5	6 - 12	13 - 19	20 - 26	28 - 31	3 - 9	10 - 16	17 - 1	23 2	4 - 30	COMPLET
I/O	Order Interface										
	Order Relays										
	Order Sensors										
	Graci Consons	Shipping									
		Chipping	Assembly								
				Programming	Programming	Programming					
			r rogramming	rrogramming	Test	Test					
					1630	1631					
CONTROL INTERFACE					Design Layout						
						Coding	Coding				
								Test			
					I			1000			1
VIDEO	Research Web Camera							1001			
VIDEO	Research Web Camera	Order									
VIDEO	Research Web Camera	Order	Shipping								
VIDEO	Research Web Camera	Order	Shipping	Programming	Programming						
VIDEO	Research Web Camera	Order	Shipping	Programming	Programming Test	Test					
VIDEO	Research Web Camera	Order	Shipping	Programming	Programming Test	Test					
	Research Web Camera	Order	Shipping	Programming	Programming Test	Test					
VIDEO	Research Web Camera	Order	Shipping	Programming	Programming Test	Test					
	Research Web Camera	Order	Shipping	Programming	Programming Test		Build				
	Research Web Camera	Order	Shipping	Programming	Programming Test		Build	Test		est	
	Research Web Camera	Order	Shipping	Programming	Programming Test		Build			est	
COOLING	Research Web Camera	Order	Shipping	Programming	Programming Test		Build			est	
	Research Web Camera	Order	Shipping	Programming	Programming Test Design Procedure		Build			est	

Possible I/O Interfaces

- Phigets
 - Website: http://www.phidgets.com/
 - Pros
 - Lots of libraries in many languages
 - Relays, IO, and webcams all with libraries
 - Lots of sensors with libraries (immersive heat up to 800*C in the plume)
 - Debian board for integrated development
- Electronics-DIY
 - Website: http://electronics-diy.com/USB_IO_Board.php
 - Pros
 - Super low-cost \$23
 - Access control/logging via PHP
 - 16 individual microcontroller I/O pins
 - 500mA for electronic projects
- Audrino
 - Website: http://www.trossenrobotics.com/p/arduino-duemilanove.aspx

Budget - \$500

- USB i/o interface
- Web Cameras
 - Under plume
 - Wider take-off shot
- Sensors
 - Plume Temperature
 - Power status
 - Thermal Status Electronics
 - Thermal Status Ambient Air
- Siren
- Lights
- Computer system
 - NetPC with cooling
 - Thermally hardened computer Ideal Range (30*F 150*F)
- Cooling
 - Some form of cooling for electronics
- Dust mitigation

Box Mounting

I/O Design - Phidgets

Electronics

A - in (1)

idity - Ambient

A - in (2)

A - in (3)

A - in (4)

Umbilical

A - in (5)

ge - Solar

A - in (6)

ge - Batts

A - in (7)

e – Ignition

A - in (8)

Accelerometer

USB - in (1)

Wind - Direction

USB – in (2)

Quad Relay

USB – in (3)

USB – in (4)

USB – in (5)

Web Camera (monitoring)

USB – in (6)

D – out (1)

D - out (2)

D - out (3)

D - out (4)

D - out (5)

D - out (6)

D - out(7)

D - out (8)

Wind - Speed

I/O - 8/8/8 + 6usb

Control Computer

IGNITION PATH & FEATURES

SYSTEM POWER

Possible Power Interface Card

