

Understanding Ethernet

Local Area Network

LAN Components

Computers

- PCs
- Servers

Interconnections

- NICs
- Media

Network devices

- Hubs
- Switches
- Routers

Protocols

- Ethernet
- IP
- ARP
- DHCP

Functions of a LAN

- Data and applications
- Share resources
- Provide communication path to other networks

LAN Sizes

LAN Standards

OSI Layers

LAN Specification

IEEE (Institute of Electrical and Electronics Engineers)

Ethernet Frame Structure

SOF = Start-of-Frame Delimiter FCS = Frame Check Sequence

Communicating Within the LAN

MAC Address Components

OUI: Organizational Unique Identifier

Decimal-Hexadecimal-Binary Conversion

Decimal (Base 10)	Hexadecimal (Base 16)	Binary (Base 2)
0	0	0 0 0 0
1	1	0 0 0 1
2	2	0 0 1 0
3	3	0 0 1 1
4	4	0 1 0 0
5	5	0 1 0 1
6	6	0 1 1 0
7	7	0 1 1 1
8	8	1 0 0 0
9	9	1 0 0 1
10	A	1 0 1 0
11	В	1 0 1 1
12	C	1 1 0 0
13	D	1 1 0 1
14	E	1 1 1 0
15	F	1 1 1 1

MAC Addresses

00:00:0c:43:2e:08

 $00-00-0c-43-2e-08 \longrightarrow Windows, ...$

0000.0c43.2e08 → Cisco Devices, ...

LAN Segment Limitations

- Signals degrade with transmission distance.
- Each Ethernet type has a maximum segment length.

Extending LAN Segments

- Shares bandwidth
- Extends cable distances
- Repeats or amplifies signal
- Half-duplex

Collisions

CSMA/CD

Multiple Collision Domains

Collision & Broadcast Domains

- No. of Broadcast domains = No. of every active interface of the Routers
- No. of Collision domains = No. of every active interface of the Switches & Routers

Collision & Broadcast Domains (cont.)

This device:

- Continues Collision Domains
- Continues Broadcast Domains

Ethernet Hub

This device:

- Ends Collision Domains
- Continues Broadcast Domains

Ethernet Switch

These devices:

- End Collision Domains
- End Broadcast Domains

Router

Firewall

Collision & Broadcast Domains Counting Example

Host-to-Host Packet Delivery (1 of 22)

Host-to-Host Packet Delivery (2 of 22)

Layer 3 = 192.168.3.1

Sender

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Host-to-Host Packet Delivery (3 of 22)

(Address Resolution Protocol)

Layer 2: ARP, do you have a mapping for 192.168.3.2?

ARP: Is 192.168.3.2 in my ARP table? No, I guess Layer 2 will have to put the packet in the parking lot until I do an ARP.

SRC IP 192.168.3.1 DST IP 192.168.3.2 TCP SYN

Layer 3 = 192.168.3.1

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Receiver

Host-to-Host Packet Delivery (4 of 22)

Host-to-Host Packet Delivery (5 of 22)

Host-to-Host Packet Delivery (6 of 22)

Host-to-Host Packet Delivery (7 of 22)

Host-to-Host Packet Delivery (8 of 22)

Layer 3 = 192.168.3.1

Sender

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Receiver

Host-to-Host Packet Delivery (9 of 22)

Host-to-Host Packet Delivery (10 of 22)

Host-to-Host Packet Delivery (11 of 22)

Packet

Layer 2: I just got a frame with my MAC so I'll process it. The protocol ID indicates that it belongs to ARP. Let me strip the Layer 2 header and send it to ARP.

DST MAC 0800:0222:2222 SRC MAC 0800:0222:1111 ARP Reply

Receiver

Layer 3 = 192.168.3.1

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Host-to-Host Packet Delivery (12 of 22)

Host-to-Host Packet Delivery (13 of 22)

Parking Lot

Packet

ARP: I just got an ARP reply from 192.168.3.2. Let me add its IP and MAC to my ARP table.

ARP: Layer 2! I have 192.168.3.2 mapped to 0800:0222:1111.

IP Address	MAC	
192.168.3.2	0800:0222:1111	

ARP Request

Receiver

Sender

Layer 3 = 192.168.3.1

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Host-to-Host Packet Delivery (14 of 22)

Host-to-Host Packet Delivery (15 of 22)

Host-to-Host Packet Delivery (16 of 22)

Host-to-Host Packet Delivery (17 of 22)

192.168.3.2	192.168.3.1	ACK

DST MAC	SRC MAC	SRC IP	DST IP	SYN
0800:0222:2222	0800:0222:1111	192.168.3.2	192.168.3.1	ACK

Layer 3 = 192.168.3.1

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Host-to-Host Packet Delivery (18 of 22)

SRC IP 192.168.3.1

TCP ACK

> DST IP 192.168.3.2

TCP ACK

DST MAC 0800:0222:1111

SRC MAC 0800:0222:2222 SRC IP 192.168.3.1 DST IP 192.168.3.2 TCP ACK

TCP ACK DST IP 192.168.3.2 SRC IP 192.168.3.1 SRC MAC 0800:0222:2222

DST MAC 0800:0222:1111

Sender

Layer 3 = 192.168.3.1

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

301P_381

Receiver

Host-to-Host Packet Delivery (19 of 22)

Layer 2 = 0800:0222:2222

Layer 2 = 0800:0222:1111

Host-to-Host Packet Delivery (20 of 22)

Layer 2 = 0800:0222:1111

Layer 2 = 0800:0222:2222

Host-to-Host Packet Delivery (21 of 22)

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.1

DST MAC

Layer 2 = 0800:0222:1111

Layer 3 = 192.168.3.2

Host-to-Host Packet Delivery (22 of 22)

I need to send an ACK to the data that I received.

ACK = 4SEQ = 3

SRC IP DST IP ACK = 4SEQ = 3192.168.3.2 192.168.3.1

DST MAC SRC MAC SRC IP **DST IP** ACK = 4SEQ = 30800:0222:2222 0800:0222:1111 192.168.3.2 192.168.3.1

DST MAC 0800:0222:2222 0800:0222:1111

Sender

SRC MAC

SRC IP 192.168.3.2

DST IP 192.168.3.1 ACK = 4SEQ = 3

Receiver

Layer 3 = 192.168.3.1

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Default Gateway

OK, I have some data to send to 192.168.3.2.

That address is not in my ARP table and I cannot use ARP because it is on a different network.

I guess I have to send the data to the default gateway and let it forward it.

Layer 3 = 10.1.1.1

Layer 2 = 0800:0222:2222

Layer 3 = 192.168.3.2

Layer 2 = 0800:0222:1111

Sender

Cabling in Internetwork

Network Interface Card

Common Network Cable Types - Copper

- More susceptible to noise and crosstalk
- Cheaper
- Easily installed as cables are smaller, lighter, and flexible

- Less susceptible to noise and crosstalk
- Moderately expensive
- Installation of cables is difficult comparatively

Common Network Cable Types - Fiber Optic

- + Low cost sources
 - + 850 nm and 1310 nm LEDs
 - + 850 nm lasers at 1 & 10 Gb/s
 - + Low precision packaging
- + Low cost connectors
- + Lower installation cost
- Higher fiber cost
- + Lower system cost
- Higher loss, lower bandwidth
- Distance up to 2 km

Best for:

LAN, SAN, Data Center, CO

- High cost sources
 - 1310+ nm lasers 1 and 10 Gb/s
 - 1 Gb/s + w/ DWDM
 - High precision packaging
- Higher cost connectors
- Higher installation cost
- + Lower fiber cost
- Higher system cost
- + Lower loss, higher bandwidth
- + Distance to 60 km+

Best for:

· WAN, MAN, Access, Campus

UTP Category

UTP Category	Data Rate	Max. Length	Application
CAT1	Up to 1 Mbps	ı	Old Telephone Cable
CAT2	Up to 4 Mbps	ı	Token Ring Networks
CAT3	Up to 10 Mbps	100m	Token Ring & 10BASE-T Ethernet
CAT4	Up to 16 Mbps	100m	Token Ring Networks
CAT5	Up to 100 Mbps	100m	Ethernet, Fast Ethernet, Token Ring
CAT5e	Up to 1 Gbps	100m	Ethernet, Fast Ethernet, Gigabit Ethernet
CAT6	Up to 10 Gbps	100m	Gigabit Ethernet, 10G Ethernet (55 meters)
CAT6a	Up to 10 Gbps	100m	Gigabit Ethernet, 10G Ethernet (55 meters)
CAT7	Up to 10 Gbps	100m	Gigabit Ethernet, 10G Ethernet (100 meters)

Comparing Ethernet Media Requirements

Requirement	10 BASE-T	100 BASE-TX	100 BASE-FX	1000 BASE-CX	1000 BASE-T	1000 BASE-SX	1000 BASE-LX
Media	EIA/TIA Category 3, 4, 5 UTP 2 pair	EIA/TIA Category 5 UTP 2 pair	62.5/125 micron multimode fiber	STP	EIA/TIA Category 5 UTP 4 pair	62.5/50 micron multimode fiber	9 micron single-mode fiber
Maximum Segment Length	100 m (328 ft)	100 m (328 ft)	400 m (1312.3 ft)	25 m (82 ft)	100 m (328 ft)	275 m (62.5 micron) 550 m (50 micron)	3-10 km (1.86-6.2 miles)
Connector	ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	Duplex media interface connector (MIC) ST	ISO 8877 (RJ-45)	ISO 8877 (RJ-45)	_	_

Baseband: commonly used for digital transmission. Broadband: commonly used for analog transmission. The broadband systems can cover a bigger area than baseband systems.

31P_084

Unshielded Twisted-Pair Cable

- Speed and throughput: 10 to 1000 Mb/s
- Average cost per node: Least expensive
- Media and connector size: Small
- Maximum cable length: Varies

RJ45 Connector & RJ45 Jack

RJ45 Jack (Female)

RJ45 Connector (Male)

EIA/TIA T568A & T568B

Pin	T568A	T568B	Signal 10/100BaseTx		
1	Wht/Grn	Wht/Org	Tx+		
2	Grn	Org	Tx-		
3	Wht/Org	Wht/Grn	Rx+		
4	Blu 🚃	Blu 🚃	Unused		
5	Wht/Blu	Wht/Blu	Unused		
6	Org	Grn	Rx-		
7	Wht/Brn	Wht/Brn	Unused		
8	Brn	Brn	Unused		

UTP Implementation (Straight-Through)

UTP Implementation (Straight-Through)

UTP Implementation (Crossover)

UTP Implementation: Straight-Through vs. Crossover

Straight-Through Cable

Crossover Cable

Using Varieties of UTP

Fiber Optic Connectors

WAN—Multiple LANs

Physical Layer: WANs

Serial Point-to-Point Connections

WAN Devices

Setting up a Console Connection

Start → Program → Accessories → Communication → Hyper Terminal

#