Walmart_Sales_Forecasting

February 12, 2025

```
[428]: import pandas as pd
       import numpy as np
       import seaborn as sns
       import matplotlib.pyplot as plt
       %matplotlib inline
       import matplotlib as mpl
       import math
       from datetime import datetime
       from datetime import timedelta
       from sklearn.ensemble import RandomForestRegressor
       from sklearn.pipeline import make_pipeline, Pipeline
       from statsmodels.tsa.stattools import adfuller, acf, pacf
       from statsmodels.tsa.arima_model import ARIMA
       #!pip install pmdarima
       from pmdarima.utils import decomposed_plot
       from pmdarima.arima import decompose
       from pmdarima import auto_arima
       from statsmodels.tsa.holtwinters import ExponentialSmoothing
       import warnings
       warnings.filterwarnings("ignore")
 [3]: df_store = pd.read_csv("C:/Users/aryan/Downloads/archive (1)/stores.csv")
 [5]: df_features = pd.read_csv("C:/Users/aryan/Downloads/archive (1)/features.csv")
 [7]: df_train = pd.read_csv("C:/Users/aryan/Downloads/archive (1)/train.csv")
 [9]: df_store.head()
 [9]:
         Store Type
                        Size
                   A 151315
             1
              2
                   A 202307
       1
       2
             3
                      37392
```

```
[11]: df_features.head()
[11]:
         Store
                       Date
                              Temperature Fuel_Price
                                                         MarkDown1
                                                                     MarkDown2
                 2010-02-05
                                    42.31
                                                  2.572
                                                                NaN
                                                                            NaN
              1
                 2010-02-12
                                    38.51
                                                  2.548
                                                                NaN
                                                                            NaN
      1
              1
      2
                 2010-02-19
                                    39.93
                                                  2.514
                                                                NaN
                                                                            NaN
                 2010-02-26
                                    46.63
                                                  2.561
                                                                NaN
                                                                            NaN
                 2010-03-05
                                     46.50
                                                  2.625
                                                                NaN
                                                                            NaN
                                                                         IsHoliday
         MarkDown3 MarkDown4
                                 MarkDown5
                                                     CPI
                                                          Unemployment
                            NaN
                                             211.096358
      0
                NaN
                                        NaN
                                                                  8.106
                                                                              False
      1
                NaN
                            NaN
                                        NaN
                                             211.242170
                                                                  8.106
                                                                               True
      2
                NaN
                            NaN
                                        NaN
                                             211.289143
                                                                  8.106
                                                                              False
      3
                NaN
                            NaN
                                             211.319643
                                                                              False
                                        NaN
                                                                  8.106
      4
                NaN
                            NaN
                                             211.350143
                                                                  8.106
                                                                              False
                                        {\tt NaN}
[13]: df_train.head()
[13]:
         Store
                 Dept
                              Date
                                    Weekly_Sales
                                                    IsHoliday
      0
                    1
                       2010-02-05
                                         24924.50
                                                        False
              1
      1
              1
                    1
                       2010-02-12
                                         46039.49
                                                         True
      2
                       2010-02-19
                                         41595.55
                                                        False
      3
              1
                    1
                       2010-02-26
                                         19403.54
                                                        False
      4
              1
                       2010-03-05
                                         21827.90
                                                        False
[15]: df = df_train.merge(df_features, on = ['Store', 'Date'], how = 'inner').
        →merge(df_store, on = ['Store'], how = 'inner')
[17]: df.head()
                                                   IsHoliday_x Temperature \
[17]:
         Store
                 Dept
                              Date
                                    Weekly_Sales
                       2010-02-05
                                                          False
                                                                        42.31
      0
              1
                    1
                                         24924.50
      1
              1
                    2
                       2010-02-05
                                         50605.27
                                                          False
                                                                        42.31
      2
                       2010-02-05
                                         13740.12
                                                          False
                                                                        42.31
              1
                    3
      3
              1
                    4
                       2010-02-05
                                         39954.04
                                                          False
                                                                        42.31
      4
              1
                    5
                       2010-02-05
                                         32229.38
                                                          False
                                                                        42.31
         Fuel_Price
                      MarkDown1
                                  MarkDown2
                                              MarkDown3
                                                          MarkDown4
                                                                      MarkDown5
      0
               2.572
                             NaN
                                         NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      1
               2.572
                             NaN
                                         NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      2
               2.572
                             NaN
                                         NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
               2.572
      3
                             NaN
                                         NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
      4
               2.572
                             NaN
                                         NaN
                                                     NaN
                                                                 NaN
                                                                             NaN
```

3

4

Α

5

205863

34875

```
Unemployment IsHoliday_y Type
                 CPI
                                                          Size
        211.096358
                             8.106
                                           False
                                                        151315
                                                     Α
                              8.106
      1 211.096358
                                           False
                                                     Α
                                                        151315
      2 211.096358
                              8.106
                                           False
                                                        151315
      3 211.096358
                              8.106
                                           False
                                                        151315
                                                     Α
      4 211.096358
                              8.106
                                           False
                                                     Α
                                                        151315
[19]: df.drop(['IsHoliday_y'], axis = 1, inplace = True)
[21]: df.rename(columns = {"IsHoliday_x":"IsHoliday"}, inplace = True)
[23]:
     df.head()
[23]:
         Store
                Dept
                                    Weekly_Sales
                                                   IsHoliday
                                                               Temperature Fuel_Price
                             Date
                       2010-02-05
                                        24924.50
                                                       False
                                                                     42.31
                                                                                  2.572
                    1
                                                                     42.31
      1
              1
                       2010-02-05
                                        50605.27
                                                       False
                                                                                  2.572
      2
                       2010-02-05
                                                                     42.31
                                                                                  2.572
              1
                    3
                                        13740.12
                                                       False
                                                                     42.31
      3
              1
                    4
                       2010-02-05
                                        39954.04
                                                       False
                                                                                  2.572
      4
              1
                    5
                       2010-02-05
                                        32229.38
                                                       False
                                                                     42.31
                                                                                  2.572
         MarkDown1 MarkDown2
                                MarkDown3
                                                                            CPI
                                            MarkDown4
                                                        MarkDown5
      0
               {\tt NaN}
                           NaN
                                       {\tt NaN}
                                                   NaN
                                                               NaN
                                                                    211.096358
      1
               NaN
                           NaN
                                       NaN
                                                   NaN
                                                               NaN
                                                                    211.096358
      2
               NaN
                           NaN
                                       NaN
                                                   NaN
                                                                    211.096358
                                                               NaN
                           NaN
      3
               NaN
                                       NaN
                                                   NaN
                                                               NaN
                                                                    211.096358
      4
               NaN
                           NaN
                                       NaN
                                                   NaN
                                                               {\tt NaN}
                                                                    211.096358
         Unemployment Type
                               Size
                 8.106
      0
                          Α
                             151315
      1
                 8.106
                          A 151315
      2
                 8.106
                          A 151315
      3
                 8.106
                          Α
                            151315
      4
                 8.106
                            151315
[25]: df.shape
[25]: (421570, 16)
[27]: df['Store'].nunique()
[27]: 45
[29]: df['Dept'].nunique()
[29]: 81
```

There are 45 different stores and 81 different departments.

```
[32]: store_dept_table = pd.pivot_table(df, index='Store', columns='Dept', values='Weekly_Sales', aggfunc=np.mean) display(store_dept_table)
```

C:\Users\aryan\AppData\Local\Temp\ipykernel_23232\2681735725.py:1: FutureWarning: The provided callable <function mean at 0x000001AB201463E0> is currently using DataFrameGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.

store_dept_table = pd.pivot_table(df, index='Store', columns='Dept',

Dept	1	2	3	4	5	\
Store						
1	22513.322937	46102.090420	13150.478042	36964.154476	24257.941119	
2	30777.980769	65912.922517	17476.563357	45607.666573	30555.315315	
3	7328.621049	16841.775664	5509.300769	8434.186503	11695.366573	
4	36979.940070	93639.315385	19012.491678	56603.400140	45668.406783	
5	9774.553077	12317.953287	4101.085175	9860.806783	6699.202238	
6	23867.553776	50269.437273	16806.638811	34187.366503	34465.307622	
7	9542.801259	22603.690769	8633.536923	14950.518601	13860.350490	
8	14789.827343	35729.821748	10683.305105	21089.309301	19838.849231	
9	11846.558252	24969.477413	7497.356783	17165.947762	19282.746014	
10	39925.138951	109795.291469	32086.181469	48579.826364	58373.460280	
11	18860.911958	57114.326224	17628.778671	28837.744545	36663.363916	
12	17330.087622	74494.846224	17535.251678	26673.788182	27756.204615	
13	47020.455455	76339.960000	26116.623706	42563.275455	56786.934755	
14	30611.783357	77704.857972	19418.273986	52936.323287	33468.325035	
15	13845.747832	26317.410769	10470.811958	13082.172448	16465.706993	
16	11352.479371	23549.144965	7635.427273	14748.078112	13494.538671	
17	22801.609161	42231.844406	19278.955035	23961.357273	27082.325594	
18	21988.356224	63665.139510	16392.980490	26775.207203	22933.954965	
19	21504.029161	50841.072937	18414.224476	31365.545315	28759.223846	
20	40545.473217	78251.249930	15490.971259	51456.376643	41647.786503	
21	14950.049231	47780.599161	14607.126923	19354.728042	16090.874545	
22	21493.271119	53361.851888	13150.979510	32104.132378	23187.335105	
23	33186.460559	70522.580140	19912.564755	27324.303077	36895.869021	
24	18859.023357	40797.169301	11825.589021	29245.357552	29178.058811	
25	20145.897483	36871.310559	11788.130979	20351.455455	12422.996434	
26	19402.762937	27398.030979	7357.400769	24498.113846	17589.532587	
27	30437.976224	79001.049161	20226.734615	43596.933916	28059.038252	
28	20180.453986	57751.274336	12562.223287	27980.817203	28221.618392	
29	15504.699580	25181.662727	7995.955804	14326.216224	12931.821259	
30	9788.376643	12974.464476	739.981888	13216.100909	405.565944	
31	17356.652448	58512.131538	10616.675944	34848.899231	18715.630769	
32	22852.639510	50323.497343	15472.540140	28137.154965	20748.371888	
33	2379.086573	7471.425105	283.950140	6107.616014	112.728310	
34	19947.573077	34916.225874	8377.376434	19791.509021	21633.900559	
35	17082.647902	45578.456224	14308.382797	19495.631119	24858.433706	

36	2239.227413	13416.025664	381.324266	9873.505105	314.753982	2
37	11024.235874	16511.446224	1297.862028	17614.013636	1137.631189)
38	6923.538531	10986.172657	498.700210	10669.501329	397.418322	
39	21925.021189	67338.429371	20569.701608	44807.515105	24043.436783	
40	18794.578811	26702.705175	6489.030350	24386.750559	17689.671678	
41	23205.259930	48349.828951	17021.833357	30538.574895	25513.943776	
42	10375.148392	15976.902448	814.451189	14885.264755	1052.296783	
43	7549.109021	20722.851469	999.648881	18227.382168	575.417326	
44	8049.992308	9377.273007	571.016713	7403.959580	960.670490	
45	17745.916014	35800.912448	9508.014965	24229.873147	16107.063077	
40	17745.910014	33000.312440	9300.014903	24229.013141	10107.003077	
Don+	6	7	8	9	10	\
Dept	6	,	0	9	10	\
Store	4001 700140	04566 407412	25710 057600	00060 050000	21022 206264	
1	4801.780140	24566.487413	35718.257622	28062.052238	31033.386364	
2	6808.382517	40477.837063	58707.369441	34375.864476	38845.854476	
3	2012.411818	10044.341608	8310.254196	9062.007692	10871.944126	
4	8241.777692	50728.151399	62949.723776	34437.170979	37269.667413	
5	1191.057622	6124.484336	13735.709441	7919.805944	9783.395385	
6	7225.566643	34526.870420	47577.719790	48271.060140	47436.477902	
7	6329.928811	10925.757063	13970.619371	29722.736084	21136.560280	
8	3395.425455	20268.743776	26438.524336	11792.661678	20666.433776	
9	2806.416364	13826.694336	21424.470699	13196.569720	12810.480350	
10	10556.550769	58964.715664	86739.846643	64436.722517	48108.063497	
11	5925.281678	34844.108462	34415.449580	19056.162168	23449.992727	
12	6741.174895	34242.449161	42229.665035	19553.030490	17975.211119	
13	7886.826993	59896.738601	36238.867972	41236.445175	29431.879231	
14	7016.829790	53256.150280	53425.359860	22025.603497	20165.667133	
15	4244.143776	22267.220070	20416.967273	15954.692937	11524.856294	
16	5146.038951	11544.310140	14676.778322	28990.377343	12681.776643	
17	5944.435245	19474.770559	20110.270839	27293.658042	14165.000000	
18	5664.913077	33152.347203	32036.582098	18589.371259	16754.599860	
19	5948.962867	33882.926853	42613.662937	30645.018112	27622.457762	
20	8210.745734	49394.699231	76445.061259	38243.623916	41826.467552	
21	3988.656294	24456.825664	18238.059790	16387.963636	14695.978881	
22	5236.811329	29068.621608	37236.347692	23452.908881	19438.354266	
23	7393.499650	43624.067413	36710.240909	50178.361748	31155.170559	
24	4911.185804	28788.329441	49171.841748	23246.748322	27175.089231	
25	3760.045035	17971.439580	29858.353636	14636.113636	20202.701469	
26	4656.670490	16287.658531	28694.950909	16556.330769	10172.815734	
27	7730.729091	43272.914965	42181.469580	29315.697133	36757.327413	
28	5016.258671	29228.446923	33375.575524	17930.710070	21083.404825	
29	3289.884965	16854.082238	20680.465944	11370.866364	9400.183077	
30	27.303937	379.771958	11733.993776	76.845352	196.116923	
31	3489.809441	21012.438531	25277.976713	10815.516713	19911.584406	
32	4589.748392	25375.036993	24681.349580	20739.684685	22887.257483	
33	11.996538	392.912867	3679.792168	42.788348	80.301189	
34	3419.062028	18055.491608	27165.013147	17224.253497	16957.163566	
3 4	7256.417133	30267.589790	18416.401678	15657.032937	14818.443706	
30	1200.411133	30201.309190	10410.401010	10001.002901	14010.443/00	

36		26.291579	414.428322		17.64042		2.211739	175.05230	8
37		46.313630	824.978392	161	51.39790)2 15	1.233803	387.64468	5
38		37.014855	413.539021		85.39944		7.520350	365.36489	5
39	49	911.540420	40020.492867		30.64160		6.117692	14919.37391	6
40	40	003.068601	18898.214336	339	71.53223	38 1906	5.436294	19612.62930	1
41	52	267.832098	33711.105734	337	29.08167	78 3274	3.470140	15194.22370	6
42		3.333333	721.913846	182	38.58419	96 13	5.524056	404.59601	4
43		37.843246	516.772867	131	85.21167	78 14	7.694196	507.42671	3
44		34.648722	531.034895	49	63.96622	24 9	9.817273	153.79265	7
45	3!	554.222657	23757.771538	340	50.40958	30 1548	5.885804	14245.08699	3
Dept	•••	9	90	91		92		93 \	
Store	•••								
1	•••	82427.5478	32 64238.943	3427	135458	969510	71699.18	2378	
2	•••	97611.5371	33 80610.380	350	164840	.230979	70581.97	7063	
3	•••	1540.0491	318.685	594	7568	.280210		NaN	
4	•••	89248.9655	24 66535.407	203	159365	.107902	67815.16	3007	
5	•••	3059.52000	00 1457.221	678	7759	. 205594		NaN	
6		53715.36608	84 45270.405	175	99024	796503	41359.65	1189	
7		13858.4058	74 10263.880	000	26530	.890559	1328.17	3252	
8		39333.5661	54 31530.560	909	60465	.630000	27515.63	5315	
9	•••	2981.2495	10 869.273	287	14123	.063147	21.24	0000	
10	•••	14291.86979	90 12703.554	406	50450	731958	1420.41	3462	
11		48995.98419	96 42030.370	699	77392	741608	32623.85	3706	
12	•••	11060.1754	55 6779.841	469	24682	.599161	562.89	7203	
13		115592.10804	42 81272.990	979	162034	.099301	50024.93	7203	
14		107174.74398	36 91406.434	615	182527	956014	62088.62	2937	
15	•••	5345.2404	20 3414.740	909	18262	.376853	422.87	3252	
16		6922.74468	3331.204	965	20446	967832	997.03	2281	
17	•••	31293.3062	24 12033.678	951	53043	.348741	3646.95	5664	
18		18481.3942	66 14124.482	2517	50079	623636	2113.30	0147	
19	•••	67545.40643	34 54692.797	413	113720	212937	37087.93	7063	
20		95858.5873	43 78493.190	140	164633	741538	52818.58	3706	
21		10983.5987	41 6735.454	126	21915	.114965	663.38	4126	
22	•••	21413.4116	08 21405.250	629	51603	.339091	2531.66	3986	
23		20814.9921	68 19604.867	692	59604	.574615	2111.61	0780	
24	•••	72650.44286	67 52435.498	3252	121882	.073916	37876.83	6853	
25	•••	11932.59650	03 7767.272	2098	38854	460699	777.74	7483	
26	•••	57016.5892	31 39434.281	259	84988	.311818	25615.33	1469	
27	•••	96374.5365	73 66687.096	573	146518	. 141399	54910.69	3776	
28	•••	65285.95209	98 57575.601	119	98486	.960350	47923.50	3671	
29	•••	10950.3279				714266	1190.88		
30	•••	34622.9862	24 31576.583	986	53256	.041399	22409.69	3392	
31	•••	86167.26580			127010		57876.20		
32	•••	61639.6371				929021	30732.22		
33	•••	24899.92314				.662867	25648.05		
34	•••	44338.93678				.520909	29590.11		
35	•••	12960.4502				.032028	1528.45		
	•	· · · · -		-					

36	35474.191	958 11097.8758	74 44539.564	476 26103.315	664	
37	44144.428	112 30870.6770	63 59440.577	133 21599.851	049	
38	34765.576	783 25404.8604	20 45314.434	825 18868.919	091	
39	78649.534	685 60386.2860	14 110126.209	580 39684.510	000	
40	61258.202	867 43256.1568	53 96475.753	287 27532.751	189	
41	70852.021	818 52714.9284	62 115827.664	056 35415.340	000	
42	53384.897	902 42913.2212	59 83497.778	671 32852.632	308	
43	63668.895	594 34808.4421	68 83646.160	909 36196.693	217	
44	31182.601	818 18169.5100	70 39619.563	287 11029.915	734	
45	23674.035	245 16641.9273	43 48125.897	762 2728.627	133	
Dept	94	95	96	97	98	\
Store						
1	63180.568182	120772.062168	33251.831639	35207.348811	11827.770769	
2	70018.672517	143588.751888	34319.063846	40697.204056	14035.400839	
3	656.294444	15745.528252	3934.540000	343.437357	30.570833	
4	68159.106573	147236.473706	38346.573077	39339.238951	15009.249371	
5	411.431486	19340.693986	5985.671119	667.070315	29.976087	
6	41701.693497	89208.786294	30450.542238	20637.667063	9728.100629	
7	699.332522	34208.097273	1123.383217	4374.927902	260.886596	
8	25442.578042	62951.463706	16.986667	16978.366503	6880.466434	
9	599.112568	29575.050769	3596.107762	372.655556	27.930000	
10	393.833168	73344.654685	11079.676643	5323.506503	198.179091	
11	37474.038531	77487.279091	21685.298811	16596.197552	9570.351469	
12	355.264000	43405.853357	6.441176	2394.894755	747.609860	
13	75522.874406	136844.834056	9165.079930	27556.759231	14980.825385	
14	64541.165664	144446.932517	5.193846	25684.497762	17768.013706	
15	272.906250	27291.017133	2784.158881	2071.211888	273.504884	
16	673.280928	27385.769231	126.934126	2116.696993	42.618571	
17	855.782273	50614.958462	819.416458	7798.283427	169.379120	
18	4880.242248	57668.251748	0.481333	5350.500432	881.150853	
19	37643.786434	97240.503566	15860.814825	20370.269720	12884.229091	
20	63148.334965	150613.955385	15.266875	25836.062238	19284.377343	
21	537.663333	40379.295175	2.000000	3260.404685	111.680672	
22	857.190894	57868.571119	6.243000	4582.594755	177.560576	
23	374.898804	54199.088322	13168.146713	6149.684755	100.585083	
24	51850.045105	93927.992098	13623.074615	18597.824126	9878.970140	
25	2607.109754	43991.147692	-1.270000	2706.628252	665.919779	
26	42544.202028	70236.827622	18596.331888	14830.084825	8025.948601	
27	69638.930420	119519.410909	20806.990909	21268.805734	11524.137832	
28	36164.364615	96322.113846	26288.955734	23828.861329	10673.133077	
29	263.083012	30980.395594	11.800000	2131.676783	139.677971	
30	24522.622587	45456.508322	19163.112028	13172.531119	3207.034685	
31	68732.141818	106696.019231	30335.294266	31144.978112	10101.886713	
32	48650.040979	84695.234196	2308.411818	17160.310000	7939.262378	
33	29002.624476	27022.949161	9371.822168	5375.769510	7340.692168	
34	37428.096923	69245.187972	19154.212308	17570.577483	7775.998182	
35	200.270435	43286.536993	10.788333	3738.292517	68.284831	
	200.210400	10200.000000	10.100000	0,00.202011	50.204001	

36	47372.151119	39735.688741	15683.341818	6469.273636	9009.943776
37	33656.648112	51410.551119	20375.380769	13960.701399	5286.761119
38	21331.411259	41793.649021	11981.676643	9902.368182	4783.086713
39	59830.190280	103036.757133	27089.158601	23993.406853	9767.295734
40	38210.900699	66572.881259	15309.077972	17131.033497	8178.371049
41	47218.529161	88666.468392	2883.492238	19789.219231	9371.531608
42	35724.612098	61205.272308	15183.474196	17495.198811	6540.721259
43	50769.708322	72883.223287	25058.369371	19349.989930	9594.867483
44	23812.046993	31100.185175	2834.139580	6636.467413	3466.077063
45	3690 272090	52896 166643	2 970000	6466 961888	561 239037

Dept	99
Store	
1	306.091081
2	475.896905
3	NaN
4	623.182381
5	NaN
6	388.636750
7	15.000000
8	298.153714
9	NaN
10	NaN
11	520.938125
12	29.880000
13	732.604651
14	635.556047
15	29.880000
16	59.760000
17	2.290000
18	12.560000
19	440.374878
20	796.153864
21	29.880000
22	27.150000
23	29.880000
24	413.774211
25	NaN
26	221.950278
27	562.980000
28	316.605610
29	29.880000
30	-0.641818
31	218.742203
32	379.147250
33	0.022000
34	347.144324
35	NaN

```
36
              0.020000
     37
              15.000000
     38
              25.000000
     39
             334.869756
     40
             167.374167
             443.736512
     41
     42
                    NaN
     43
              26.250000
     44
               3.505000
     45
                    NaN
     [45 rows x 81 columns]
[34]: df.groupby(['Store', 'Dept'])['Weekly_Sales'].mean().reset_index()
[34]:
                   Dept Weekly_Sales
            Store
                          22513.322937
      0
                1
                       1
      1
                1
                       2
                         46102.090420
      2
                1
                       3
                         13150.478042
      3
                          36964.154476
                1
                       4
      4
                          24257.941119
                1
      3326
                      94
                           3690.272090
               45
      3327
                      95
                          52896.166643
               45
      3328
               45
                              2.970000
                      96
      3329
               45
                      97
                           6466.961888
      3330
               45
                      98
                            561.239037
      [3331 rows x 3 columns]
[36]: df.loc[df['Weekly_Sales']<=0]
              Store Dept
[36]:
                                  Date
                                         Weekly_Sales
                                                       IsHoliday
                                                                   Temperature \
      188
                   1
                        47
                            2010-02-19
                                              -863.00
                                                            False
                                                                          39.93
```

406		1 47	2010-	03-12	2	-698.0	00	False		57.79	
2549		1 47	2010-	10-08	3	-58.0	00	False		63.93	
3632		1 54	2011-	01-2	1	-50.0	00	False		44.04	
4132		1 47	2011-	03-1	1	0.0	00	False		53.56	
•••	•••	•••	•••		•••	••	•	•••			
420066	4	15 49	2012-	05-25	5	-4.9	97	False		67.21	
420403	4	15 49	2012-	06-29	9	-34.0	00	False		75.22	
420736	4	15 49	2012-	08-03	3	-1.9	91	False		76.58	
421007	4	15 54	2012-	08-3	1	0.0	00	False		75.09	
421142	4	15 49	2012-	09-14	1	-6.8	33	False		67.87	
	Fuel	_Price	MarkDo	wn1	MarkDo	wn2 Ma	arkDown3	3 MarkI	own4	MarkDown5	\
188		2.514		NaN	1	NaN	Nal	N	NaN	NaN	
406		2.667		NaN	1	NaN	Nal	N	NaN	NaN	

2549	2.633	NaN	N	aN	NaN	NaN	NaN
3632	3.016	NaN	N	aN	NaN	NaN	NaN
4132	3.459	NaN	N	aN	NaN	NaN	NaN
•••	•••				•••	•••	
420066	3.798	5370.39	N	aN	361.22	1287.62	2461.81
420403	3.506	3291.36	425.	60	NaN	314.88	2255.34
420736	3.654	24853.05	39.	56	17.96	11142.69	2768.32
421007	3.867	23641.30	6.	00	92.93	6988.31	3992.13
421142	3.948	11407.95	N	aN	4.30	3421.72	5268.92
	CPI	Unemployment	Туре	Size	e		
188	211.289143	8.106	Α	151315	5		
406	211.380643	8.106	Α	151315	5		
2549	211.746754	7.838	Α	151315	5		
3632	211.827234	7.742	Α	151315	5		
4132	214.111056	7.742	Α	151315	5		
•••	•••	*** ***	•••				
420066	191.002810	8.567	В	118221	L		
420403	191.099246	8.567	В	118221	L		
420736	191.164090	8.684	В	118221	L		
421007	191.461281	8.684	В	118221	[
421142	191.699850	8.684	В	118221	<u>[</u>		

[1358 rows x 16 columns]

There are total of 421570 rows in which 1358 rows are either zero or negative. This makes 0.3% of the rows negative/zero. We can drop these rows to get the dataframe with correct values.

```
[39]: df = df.loc[df['Weekly_Sales']>0]
[41]: df
[41]:
               Store
                      Dept
                                    Date
                                          Weekly_Sales
                                                          IsHoliday
                                                                      Temperature
                             2010-02-05
                                               24924.50
                                                              False
                                                                             42.31
      0
                   1
                          1
                          2
      1
                   1
                             2010-02-05
                                               50605.27
                                                              False
                                                                             42.31
      2
                   1
                          3
                             2010-02-05
                                                              False
                                                                            42.31
                                               13740.12
      3
                   1
                          4
                             2010-02-05
                                               39954.04
                                                                             42.31
                                                              False
      4
                   1
                          5
                             2010-02-05
                                                                             42.31
                                               32229.38
                                                              False
      421565
                  45
                         93
                             2012-10-26
                                                2487.80
                                                              False
                                                                             58.85
      421566
                  45
                             2012-10-26
                                                5203.31
                                                              False
                                                                             58.85
                         94
      421567
                  45
                         95
                             2012-10-26
                                               56017.47
                                                              False
                                                                             58.85
      421568
                  45
                         97
                             2012-10-26
                                                6817.48
                                                              False
                                                                             58.85
      421569
                  45
                             2012-10-26
                                                1076.80
                                                              False
                                                                             58.85
                         98
                            MarkDown1
               Fuel_Price
                                        MarkDown2
                                                    MarkDown3
                                                                MarkDown4
                                                                            MarkDown5
      0
                    2.572
                                   NaN
                                               NaN
                                                           NaN
                                                                       NaN
                                                                                   NaN
                    2.572
      1
                                   NaN
                                               NaN
                                                           NaN
                                                                       NaN
                                                                                   NaN
```

2	2.572	NaN	N	NaN		NaN	NaN
3	2.572	NaN	N	NaN		NaN	NaN
4	2.572	NaN	N	NaN		NaN	NaN
•••	•••					***	
421565	3.882	4018.91	58.	80	100.0	211.94	858.33
421566	3.882	4018.91	58.	80	100.0	211.94	858.33
421567	3.882	4018.91	58.	80	100.0	211.94	858.33
421568	3.882	4018.91	58.	80	100.0	211.94	858.33
421569	3.882	4018.91	58.	80	100.0	211.94	858.33
	CPI	Unemployment	Туре	Size			
0	211.096358	8.106	Α	151315			
1	211.096358	8.106	Α	151315			
2	211.096358	8.106	Α	151315			
3	211.096358	8.106	Α	151315			
4	211.096358	8.106	Α	151315			
•••	•••	*** ***	•••				
421565	192.308899	8.667	В	118221			
421566	192.308899	8.667	В	118221			
421567	192.308899	8.667	В	118221			
421568	192.308899	8.667	В	118221			
421569	192.308899	8.667	В	118221			

[420212 rows x 16 columns]

Now we will look at the Holidays in the dataset.

Now that we have the correct dataset, we can start working on it.

```
[45]: pd.concat([df['Date'].head(5), df['Date'].tail(5)])
[45]: 0
                 2010-02-05
      1
                 2010-02-05
      2
                 2010-02-05
      3
                 2010-02-05
      4
                 2010-02-05
      421565
                 2012-10-26
      421566
                 2012-10-26
      421567
                 2012-10-26
      421568
                 2012-10-26
      421569
                 2012-10-26
      Name: Date, dtype: object
     The date starts from 5th Feb 2010 to 26th October 2012
```

```
[48]: <Axes: xlabel='IsHoliday', ylabel='Weekly_Sales'>
```

[48]: sns.barplot(x = 'IsHoliday', y = 'Weekly_Sales', data = df)

[52]: 133

Here we have used unique() for Holidays as there are few dates, and nunique() for not holidays as there are many dates and we dont want the array, we just want the number of dates.

All holidays are not in the data. There are 4 holiday values such as;

Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13

Labor Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13

Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13

Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

```
[56]: #Taking all the Super Bowl Dates
      df['Super_Bowl'] = df['Date'].isin(['2010-02-12', '2011-02-11', '2012-02-12'])
[58]: #Taking all the Labor Days Dates
      df['Labor_Day'] = df['Date'].isin(['2010-09-10', '2011-09-10', '2012-09-07'])
[60]: #Taking all the Thanksgiving Dates
      df['Thanksgiving'] = df['Date'].isin(['2010-11-26', '2011-11-25', '2012-11-23'])
[62]: #Taking all the Christmas Dates
      df['Christmas'] = df['Date'].isin(['2010-12-31', '2011-12-30', '2012-12-28'])
[64]: df.head(5)
[64]:
         Store Dept
                            Date
                                   Weekly Sales IsHoliday Temperature Fuel Price \
      0
             1
                   1
                      2010-02-05
                                       24924.50
                                                     False
                                                                   42.31
                                                                               2.572
      1
             1
                   2 2010-02-05
                                       50605.27
                                                     False
                                                                   42.31
                                                                               2.572
                                                                   42.31
                                                     False
                   3 2010-02-05
                                       13740.12
                                                                               2.572
      3
             1
                   4
                      2010-02-05
                                       39954.04
                                                     False
                                                                   42.31
                                                                               2.572
             1
                   5 2010-02-05
                                       32229.38
                                                     False
                                                                  42.31
                                                                               2.572
         MarkDown1 MarkDown2 MarkDown3
                                          MarkDown4
                                                      MarkDown5
                                                                         CPI \
      0
                                      NaN
               NaN
                          {\tt NaN}
                                                 NaN
                                                            {\tt NaN}
                                                                 211.096358
      1
               NaN
                          NaN
                                      NaN
                                                 NaN
                                                            NaN
                                                                 211.096358
      2
               NaN
                          NaN
                                      NaN
                                                 NaN
                                                            NaN
                                                                 211.096358
      3
               NaN
                          NaN
                                      NaN
                                                 NaN
                                                            NaN
                                                                 211.096358
      4
               NaN
                          NaN
                                      NaN
                                                 NaN
                                                                 211.096358
                                                            NaN
         Unemployment Type
                                     Super_Bowl Labor_Day
                                                            Thanksgiving Christmas
                              Size
      0
                8.106
                         A 151315
                                          False
                                                     False
                                                                   False
                                                                               False
                8.106
                                          False
                                                     False
                                                                   False
                                                                               False
      1
                         A 151315
      2
                8.106
                         A 151315
                                          False
                                                     False
                                                                   False
                                                                               False
      3
                8.106
                         A 151315
                                          False
                                                     False
                                                                   False
                                                                               False
                8.106
                         A 151315
                                          False
                                                     False
                                                                   False
                                                                               False
[66]:
      sns.barplot(x = 'Super_Bowl', y = 'Weekly_Sales', data = df)
```

[66]: <Axes: xlabel='Super_Bowl', ylabel='Weekly_Sales'>


```
[68]: sns.barplot(x = 'Labor_Day', y = 'Weekly_Sales', data = df)
```

[68]: <Axes: xlabel='Labor_Day', ylabel='Weekly_Sales'>

[70]: <Axes: xlabel='Thanksgiving', ylabel='Weekly_Sales'>

[72]: <Axes: xlabel='Christmas', ylabel='Weekly_Sales'>

Here we see that the sales on Christmas and Labor Day does not increase the average sales. Super Bowl and Thanksgiving have an increase in the average sales. Thanksgiving has an increase because of the Black Friday sales. People buy christmas gift a week or two in advance, during the Thanksgiving sale.

```
[75]:
     df.groupby(['Super_Bowl', 'Type'])['Weekly_Sales'].mean()
[75]: Super_Bowl
                  Type
      False
                  Α
                           20144.507137
                  В
                           12289.697797
                  С
                            9540.026119
                  Α
                           20401.250063
      True
                  В
                           12350.174708
                  С
                           10239.943409
      Name: Weekly_Sales, dtype: float64
[77]: df.groupby(['Labor_Day', 'Type'])['Weekly_Sales'].mean()
[77]: Labor_Day
                 Туре
      False
                 Α
                          20149.353858
                 В
                          12293.264327
                 С
                           9542.417249
```

```
True
                 Α
                         20060.598111
                         12098.648882
                 В
                 C
                         10045.474040
      Name: Weekly_Sales, dtype: float64
[79]: df.groupby(['Thanksgiving', 'Type'])['Weekly_Sales'].mean()
[79]: Thanksgiving
                    Type
      False
                            20044.007801
                    Α
                    В
                            12197.717405
                    С
                             9547.377807
      True
                    Α
                            27397.776346
                    В
                            18733.973971
                    С
                             9696.566616
      Name: Weekly_Sales, dtype: float64
[81]: df.groupby(['Christmas', 'Type'])['Weekly_Sales'].mean()
[81]: Christmas
                 Type
      False
                 Α
                         20174.350209
                 В
                         12301.986116
                 С
                          9570.951973
                 Α
                         18310.167535
      True
                 В
                         11488.988057
                 C
                          8031.520607
      Name: Weekly_Sales, dtype: float64
[83]: store_counts = df['Type'].value_counts() # Count occurrences of each store type
      total_stores = store_counts.sum() # Total number of stores
      # Calculate percentages
      store_percentages = (store_counts / total_stores) * 100
      print(store_percentages)
     Type
     Α
          51.155369
     В
          38.739255
          10.105375
     C
     Name: count, dtype: float64
[85]: my_data = store_percentages #percentages
      my_labels = 'Type A', 'Type B', 'Type C' # labels
      plt.pie(my_data,labels=my_labels,autopct='%1.1f%%', textprops={'fontsize': 15})__
       →#plot pie type and bigger the labels
      plt.axis('equal')
      mpl.rcParams.update({'font.size': 20}) #bigger percentage labels
```


More than half of the stores belongs to Type A.

```
[88]: df.groupby('IsHoliday')['Weekly_Sales'].mean()
[88]: IsHoliday
      False
               15952.816352
               17094.300918
      True
      Name: Weekly_Sales, dtype: float64
[96]: # Plotting avg wekkly sales according to holidays by types
      plt.style.use('seaborn-v0_8-poster')
      labels = ['Super_Bowl', 'Labor_Day', 'Thanksgiving', 'Christmas']
      A_{means} = [20401.25, 20060.59, 27397.77, 18310.16]
      B_means = [12350.17, 12098.64, 18733.97, 11488.98]
      C_{means} = [10239.94, 10045.47, 9696.56, 8031.52]
      x = np.arange(len(labels)) # the label locations
      width = 0.25 # the width of the bars
      fig, ax = plt.subplots(figsize=(16, 8))
      rects1 = ax.bar(x - width, A_means, width, label='Type_A')
```

```
rects2 = ax.bar(x , B_means, width, label='Type_B')
rects3 = ax.bar(x + width, C_means, width, label='Type_C')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Weekly Avg Sales')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
def autolabel(rects):
    """Attach a text label above each bar in *rects*, displaying its height."""
   for rect in rects:
       height = rect.get_height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3), # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
autolabel(rects3)
plt.axhline(y=17094.30,color='r') # holidays avg
plt.axhline(y=15952.81,color='green') # not-holiday avg
fig.tight_layout()
plt.show()
```


The highest sales were in Thanksgiving. The highest sales among all the stores were from the Type A stores.

[99]:	df.sort	_values	(by='\	leekly_Sales'	,ascen	ding= Fa l	Lse).he	ead(5)				
[99]:		Store	Dept	Date	Weekl	y_Sales	IsHol	iday	Tempe	erature	\	
	90645	10	72	2010-11-26	693	3099.36		True		55.33		
	337053	35	72	2011-11-25	649	9770.18		True		47.88		
	94393	10	72	2011-11-25	630	0999.19		True		60.68		
	333594	35	72	2010-11-26	62	7962.93		True		46.67		
	131088	14	72	2010-11-26	474	4330.10		True		46.15		
		Fuel_P	rice	MarkDown1 M	arkDow	n2 Mark	Down3	MarkD	own4	MarkDo	wn5	\
	90645	3	.162	NaN	Na	aN	NaN		NaN		NaN	
	337053	3	.492	1333.24	Na	aN 585	63.24	2	20.97	6386	.86	
	94393	3	.760	174.72	329	.0 1416	30.61	7	9.00	1009	.98	
	333594		.039	NaN		aN	NaN		NaN		NaN	
	131088	3	.039	NaN	Na	aN	NaN		NaN		NaN	
			CPI	Unemployment	Туре	Size	Super	_Bowl	Labo	or_Day	\	
	90645	126.66	9267	9.003	В	126512		False		False		
	337053	140.42	1786	8.745	В	103681		False		False		
	94393	129.83	6400	7.874	В	126512		False		False		
	333594	136.68		8.763		103681		False		False		
	131088	182.78	3277	8.724	A	200898		False		False		
		Thanks	giving	Christmas								
	90645		True	e False								
	337053		True	e False								
	94393		True	e False								
	333594		True	e False								
	131088		True	e False								

All the top 5 sales were from Thannksgiving holidays.

SIZE_TYPE RELATION

```
[104]: df_store.groupby('Type').describe()['Size'].round(2)
                                                                                75% \
[104]:
                                                                     50%
             count
                          mean
                                      std
                                               min
                                                           25%
       Туре
       Α
              22.0
                     177247.73
                                49392.62
                                           39690.0
                                                     155840.75
                                                                202406.0
                                                                           203819.0
       В
              17.0
                     101190.71
                                32371.14
                                           34875.0
                                                      93188.00
                                                                114533.0
                                                                           123737.0
       С
               6.0
                      40541.67
                                 1304.15
                                           39690.0
                                                      39745.00
                                                                 39910.0
                                                                            40774.0
```

max

```
Type A 219622.0 B 140167.0 C 42988.0
```

```
[108]: plt.figure(figsize=(8,6)) # To see the type-size relation fig = sns.boxplot(x='Type', y='Size', data=df, showfliers=False)
```


Here we can see that, higher the number of stores, higher is the sales. The smallest size of Type A store, the Type B store begins and same for the Type C store. The smallest size of Type B store, the Type C store starts.

MARKDOWN SALES

[112]:	df.isna().sum()	
[112]:	Store	0
	Dept	0
	Date	0
	Weekly_Sales	0
	IsHoliday	0
	Temperature	0
	Fuel_Price	0

```
MarkDown2
                        309308
       MarkDown3
                        283561
       MarkDown4
                        285694
       MarkDown5
                        269283
       CPI
                             0
       Unemployment
                             0
       Туре
                             0
       Size
                             0
       Super_Bowl
                             0
       Labor_Day
                             0
       Thanksgiving
                             0
       Christmas
                             0
       dtype: int64
[114]: df = df.fillna(0)
[116]: df.isna().sum()
[116]: Store
                        0
       Dept
                        0
       Date
                        0
       Weekly_Sales
                        0
       IsHoliday
                        0
       Temperature
                        0
       Fuel_Price
                        0
       MarkDown1
                        0
       MarkDown2
                        0
       MarkDown3
                        0
       MarkDown4
                        0
       MarkDown5
                        0
       CPI
                        0
       Unemployment
                        0
       Туре
                        0
       Size
                        0
       Super_Bowl
                        0
       Labor_Day
                        0
       Thanksgiving
                        0
       Christmas
                        0
       dtype: int64
[118]: df.describe()
[118]:
                       Store
                                        Dept
                                               Weekly_Sales
                                                                Temperature \
       count 420212.000000 420212.000000 420212.000000 420212.000000
                                  44.241309
                                               16033.114591
       mean
                  22.195611
                                                                  60.090599
       std
                  12.787236
                                  30.508819
                                               22729.492116
                                                                  18.447857
```

MarkDown1

270031

```
min
                    1.000000
                                    1.000000
                                                    0.010000
                                                                  -2.060000
       25%
                   11.000000
                                   18.000000
                                                2120.130000
                                                                  46.680000
       50%
                  22.000000
                                  37.000000
                                                7661.700000
                                                                  62.090000
       75%
                   33.000000
                                  74.000000
                                               20271.265000
                                                                  74.280000
                   45.000000
                                  99.000000
                                              693099.360000
                                                                 100.140000
       max
                                  MarkDown1
                                                  MarkDown2
                                                                  MarkDown3
                 Fuel_Price
              420212.000000
                              420212.000000
                                              420212.000000
                                                              420212.000000
       count
                                2590.323565
                                                 878.905242
                                                                 468.845949
                    3.360890
       mean
       std
                    0.458519
                                6053.415601
                                                5076.928566
                                                                5534.069859
       min
                    2.472000
                                    0.000000
                                                -265.760000
                                                                 -29.100000
       25%
                    2.933000
                                    0.00000
                                                    0.00000
                                                                   0.00000
       50%
                    3.452000
                                   0.000000
                                                    0.000000
                                                                   0.00000
       75%
                    3.738000
                                2809.050000
                                                    2.400000
                                                                    4.540000
                    4.468000
                               88646.760000
                                                              141630.610000
                                              104519.540000
       max
                  MarkDown4
                                  MarkDown5
                                                         CPI
                                                               Unemployment
              420212.000000
                              420212.000000
                                              420212.000000
                                                              420212.000000
       count
                1083.534361
                                1662.805002
                                                 171.212496
                                                                   7.960000
       mean
                3896.068938
                                4206.209357
                                                  39.162445
                                                                   1.863879
       std
       min
                    0.000000
                                    0.00000
                                                 126.064000
                                                                   3.879000
       25%
                                                 132.022667
                    0.000000
                                   0.000000
                                                                   6.891000
       50%
                    0.000000
                                   0.00000
                                                 182.350989
                                                                   7.866000
       75%
                 425.290000
                                2168.040000
                                                 212.445487
                                                                   8.567000
               67474.850000
                              108519.280000
                                                 227.232807
                                                                  14.313000
       max
                        Size
              420212.000000
       count
       mean
              136749.732787
       std
               60993.084568
               34875.000000
       min
       25%
               93638.000000
       50%
              140167.000000
       75%
              202505.000000
              219622.000000
       max
[120]: x = df['Dept']
       y = df['Weekly_Sales']
       plt.figure(figsize=(15,5))
       plt.title('Weekly Sales by Department')
       plt.xlabel('Departments')
       plt.ylabel('Weekly Sales')
       plt.scatter(x,y)
       plt.show()
```



```
[122]: plt.figure(figsize=(30,10))
fig = sns.barplot(x='Dept', y='Weekly_Sales', data=df)
```


From graph 1, we see that one department between 60-80 has the higher sales values. This might be a seasonal department as when we check the graph 2 (average sales), we see that department 92 has higher weekly sales.

```
[125]: x = df['Store']
y = df['Weekly_Sales']
plt.figure(figsize=(15,5))
plt.title('Weekly Sales by Store')
plt.xlabel('Stores')
plt.ylabel('Weekly Sales')
plt.scatter(x,y)
plt.show()
```



```
[127]: plt.figure(figsize=(20,6))
fig = sns.barplot(x='Store', y='Weekly_Sales', data=df)
```


In the above two graphs, from graph 1, we see that store 10 has the higher value sales and from graph 2 we see that store 4 and store 20 have higher average sales. Store 20, 4 have best sales followed by store 14.

```
[134]: df["Date"] = pd.to_datetime(df["Date"]) # convert to datetime
df['week'] = df['Date'].dt.isocalendar().week # get ISO week
df['month'] = df['Date'].dt.month # get month
df['year'] = df['Date'].dt.year # get year
```

[136]: df

[136]:	Store	Dept	Date	Weekly_Sales	IsHoliday	Temperature	\
0	1	1	2010-02-05	24924.50	False	42.31	
1	1	2	2010-02-05	50605.27	False	42.31	
2	1	3	2010-02-05	13740.12	False	42.31	
3	1	4	2010-02-05	39954.04	False	42.31	

4	1	5	2010-02-05	32	2229	.38	Fa	alse		42.31		
				•••			_	- •••				
421565	45		2012-10-26		2487			lse		58.85		
421566	45		2012-10-26		5203			alse		58.85		
421567	45		2012-10-26	56017.			False			58.85		
421568	45		2012-10-26				False			58.85		
421569	45	45 98 2012-10-26			1076.80		False			58.85		
	Fuel_Pr	ice	MarkDown1	MarkDo	√n2	MarkDo	wn3		Unempl	oyment	Туре	\
0	2.	572	0.00	0	.00		0.0	•••		8.106	Α	
1	2.572		0.00	0.00			0.0			8.106	Α	
2	2.572		0.00	0.00		0.0		•••		8.106	Α	
3	2.572		0.00	0.00		0.0				8.106	Α	
4	2.572		0.00	0.00			0.0			8.106	Α	
•••	•••		•••									
421565		882	4018.91	58	.08	10	0.0	•••		8.667	В	
421566		882	4018.91		.08		0.0	•••		8.667	В	
421567	3.882		4018.91	58.08			0.0	•••		8.667	В	
421568	3.882		4018.91	58.08			0.0	•••		8.667	В	
421569	3.882 4018.91		58.08			100.0			8.667	В		
121000		002	1010.01			10		•••		0.001		
	Size	Supe	er_Bowl Lab	or_Day	Thar	nksgivi	ng	Chr	istmas	week	month	\
0	151315	_	False	False		Fal	se		False	5	2	
1	151315		False	False		Fal	se		False	5	2	
2	151315		False	False		Fal	se		False	5	2	
3	151315		False	False		Fal	se		False	5	2	
4	151315		False	False			False		False	5	2	
•••												
421565	118221		False	False		Fal	se		False	43	10	
421566	118221		False	False		Fal	.se		False	43	10	
421567	118221		False	False		False			False	43	10	
421568	118221		False	False		Fal			False	43	10	
421569	118221		False	False		False			False	43	10	
	year											
0	2010											
1	2010											
2	2010											
3	2010											
4	2010											
 421565	 2012											
421566	2012											
421567	2012											
421568	2012											
421569	2012											

[420212 rows x 23 columns]

```
[138]: df.groupby('month')['Weekly_Sales'].mean()
[138]: month
       1
             14182.239153
       2
             16048.701191
       3
             15464.817698
       4
             15696.435193
       5
             15845.556200
       6
             16397.605478
       7
             15905.472425
       8
             16113.800069
             15147.216063
       9
       10
             15279.182119
       11
             17534.964277
       12
             19425.798603
       Name: Weekly_Sales, dtype: float64
[140]: df.groupby('year')['Weekly_Sales'].mean()
[140]: year
       2010
               16318.648285
       2011
               16007.797985
       2012
               15748.265005
       Name: Weekly_Sales, dtype: float64
[142]: monthly_sales = pd.pivot_table(df, values = 'Weekly_Sales', columns = 'year', __
        →index = 'month')
       monthly_sales.plot()
[142]: <Axes: xlabel='month'>
```


In general, 2011 has lesser sales than 2012. Every year, November and December had the highest sale. Despite of 2012 has no last two months sales, it's mean is near to 2010. Most probably, it will take the first place if we get 2012 results and add them.

```
[145]: fig = sns.barplot(x='month', y='Weekly_Sales', data=df)
```


When we look at the graph above, the best sales are in December and November, as expected. The highest values are belongs to Thankgiving holiday but when we take average it is obvious that December has the best value.

Top 5 sales averages by weekly belongs to 1-2 weeks before Christmas, Thanksgiving, Black Friday and end of May, when the schools are closed.

[151]: <Axes: xlabel='week'>

The best sales were in week 51 and week 47. These are the weeks before christmas and Thanksgiving/Black Friday.

Fuel Price, CPI, Unemployment, Temperature Effects

```
[158]: fuel_price = pd.pivot_table(df, values = "Weekly_Sales", index= "Fuel_Price")
fuel_price.plot()
```

[158]: <Axes: xlabel='Fuel_Price'>


```
[160]: temp = pd.pivot_table(df, values = "Weekly_Sales", index= "Temperature")
temp.plot()
```

[160]: <Axes: xlabel='Temperature'>

[162]: <Axes: xlabel='CPI'>

[164]: <Axes: xlabel='Unemployment'>

From graphs, it is seen that there are no significant patterns between CPI, temperature, unemployment rate, fuel price vs weekly sales. There is no data for CPI between 140-180 also.

[167]: df.to_csv('clean_data.csv')

- There are 45 stores and 81 department in data. Departments are not same in all stores. Although department 72 has higher weekly sales values, on average department 92 is the best. It shows us, some departments has higher values as seasonal like Thanksgiving. It is consistant when we look at the top 5 sales in data, all of them belongs to 72th department at Thanksgiving holiday time.
- Although stores 10 and 35 have higher weekly sales values sometimes, in general average store 20 and store 4 are on the first and second rank. It means that some areas has higher seasonal sales.
- Stores has 3 types as A, B and C according to their sizes. Almost half of the stores are bigger than 150000 and categorized as A. According to type, sales of the stores are changing.
- As expected, holiday average sales are higher than normal dates.
- Christmas holiday introduces as the last days of the year. But people generally shop at 51th week. So, when we look at the total sales of holidays, Thankgiving has higher sales between them which was assigned by Walmart.
- Year 2010 has higher sales than 2011 and 2012. But, November and December sales are not in the data for 2012. Even without highest sale months, 2012 is not significantly less than 2010, so after adding last two months, it can be first.
- It is obviously seen that week 51 and 47 have higher values and 50-48 weeks follow them.

Interestingly, 5th top sales belongs to 22th week of the year. This results show that Christmas, Thankgiving and Black Friday are very important than other weeks for sales and 5th important time is 22th week of the year and it is end of the May, when schools are closed. Most probably, people are preparing for holiday at the end of the May.

- January sales are significantly less than other months. This is the result of November and December high sales. After two high sales month, people prefer to pay less on January.
- CPI, temperature, unemployment rate and fuel price have no pattern on weekly sales.

Generally, Rondom Forest Regressor gives good results when we tune it well. So, to find simple baseline model, I will use RandomForestRegressor in this notebook.

```
[179]:
       pd.options.display.max columns=100 # to see columns
       df = pd.read csv('C:/Users/aryan/Desktop/clean data.csv')
[181]:
[183]:
       df.drop(columns=['Unnamed: 0'],inplace=True)
[185]:
       df['Date'] = pd.to_datetime(df['Date']) # changing datetime to divide if needs
[187]:
      df
[187]:
                Store
                       Dept
                                          Weekly_Sales
                                                         IsHoliday
                                                                     Temperature
                                   Date
                           1 2010-02-05
                                              24924.50
                                                              False
                                                                            42.31
       0
                    1
       1
                    1
                           2 2010-02-05
                                              50605.27
                                                              False
                                                                            42.31
       2
                    1
                           3 2010-02-05
                                              13740.12
                                                              False
                                                                            42.31
       3
                    1
                           4 2010-02-05
                                              39954.04
                                                              False
                                                                            42.31
       4
                    1
                           5 2010-02-05
                                                                            42.31
                                              32229.38
                                                              False
                   45
                                                2487.80
       420207
                          93 2012-10-26
                                                              False
                                                                            58.85
       420208
                   45
                          94 2012-10-26
                                                5203.31
                                                              False
                                                                            58.85
                                                              False
       420209
                   45
                          95 2012-10-26
                                              56017.47
                                                                            58.85
       420210
                   45
                          97 2012-10-26
                                                6817.48
                                                              False
                                                                            58.85
       420211
                          98 2012-10-26
                                                                            58.85
                   45
                                                1076.80
                                                              False
                Fuel Price
                             MarkDown1
                                         MarkDown2
                                                     MarkDown3
                                                                 MarkDown4
                                                                             MarkDown5
       0
                     2.572
                                  0.00
                                              0.00
                                                            0.0
                                                                       0.00
                                                                                   0.00
       1
                     2.572
                                                                       0.00
                                  0.00
                                              0.00
                                                            0.0
                                                                                   0.00
       2
                     2.572
                                  0.00
                                              0.00
                                                            0.0
                                                                       0.00
                                                                                   0.00
       3
                     2.572
                                  0.00
                                              0.00
                                                            0.0
                                                                       0.00
                                                                                   0.00
       4
                     2.572
                                  0.00
                                              0.00
                                                            0.0
                                                                       0.00
                                                                                   0.00
       420207
                     3.882
                               4018.91
                                             58.08
                                                         100.0
                                                                    211.94
                                                                                858.33
       420208
                     3.882
                               4018.91
                                             58.08
                                                         100.0
                                                                    211.94
                                                                                858.33
       420209
                     3.882
                               4018.91
                                             58.08
                                                         100.0
                                                                    211.94
                                                                                858.33
       420210
                     3.882
                               4018.91
                                             58.08
                                                         100.0
                                                                    211.94
                                                                                858.33
                                                         100.0
       420211
                     3.882
                               4018.91
                                             58.08
                                                                    211.94
                                                                                858.33
                        CPI
                             Unemployment Type
                                                          Super_Bowl Labor_Day \
                                                    Size
```

0	211.096358	8.106	Α	151315		False	False
1	211.096358	8.106	Α	151315		False	False
2	211.096358	8.106	Α	151315		False	False
3	211.096358	8.106	Α	151315		False	False
4	211.096358	8.106	Α	151315		False	False
•••	•••	•••	•••			•••	
420207	192.308899	8.667	В	118221		False	False
420208	192.308899	8.667	В	118221		False	False
420209	192.308899	8.667	В	118221		False	False
420210	192.308899	8.667	В	118221		False	False
420211	192.308899	8.667	В	118221		False	False
	Thanksgiving	Christmas	week	month	year		
0	False	False	5	2	2010		
1	False	False	5	2	2010		
2	False	False	5	2	2010		
3	False	False	5	2	2010		
4	False	False	5	2	2010		
•••	•••						
420207	False	False	43	10	2012		
420208	False	False	43	10	2012		
420209	False	False	43	10	2012		
420210	False	False	43	10	2012		
420211	False	False	43	10	2012		

[420212 rows x 23 columns]

For preprocessing our data, I will change holidays boolean values to 0-1 and replace type of the stores from A, B, C to 1, 2, 3.

Firstly, I will drop the holiday columns (Christmas, Thanksgiving, Labor_Day and Super_Bowl) from my data and try without them. To keep my encoded data safe, I assigned my dataframe to new one and I will use for this.

```
[199]: drop_column = ['Super_Bowl', 'Labor_Day', 'Thanksgiving', 'Christmas'] df_new.drop(drop_column, axis = 1, inplace = True)
```

```
[201]: plt.figure(figsize = (12,10))
sns.heatmap(df_new.corr())
plt.show()
```


Temperature, unemployment, CPI have no significant effect on weekly sales, so I will drop them. Also, Markdown 4 and 5 highly correlated with Markdown 1. So, I will drop them also. It can create multicollinearity problem, maybe. So, first I will try without them.

```
[204]: drop_column = ['Temperature','MarkDown4','MarkDown5','CPI','Unemployment'] df_new.drop(drop_column, axis=1, inplace=True) # dropping columns
```

```
[208]: plt.figure(figsize = (12,10))
sns.heatmap(df_new.corr())
plt.show()
```


Size and type are highly correlated with weekly sales. Also, department and store are correlated with sales.

```
[213]:
      df_new = df_new.sort_values(by = 'Date', ascending = True)
[215]:
       df_new
[215]:
               Store
                       Dept
                                   Date
                                         Weekly_Sales
                                                        IsHoliday
                                                                   Fuel_Price
                                             24924.50
                    1
                          1 2010-02-05
                                                                         2.572
       329781
                   35
                          3 2010-02-05
                                             14612.19
                                                                0
                                                                         2.784
       329782
                   35
                          4 2010-02-05
                                             26323.15
                                                                         2.784
                                                                0
       329783
                   35
                          5 2010-02-05
                                             36414.63
                                                                0
                                                                         2.784
       329784
                   35
                          6 2010-02-05
                                             11437.81
                                                                0
                                                                         2.784
```

```
329722
                  34
                        14 2012-10-26
                                             8930.71
                                                                      3.514
                                                              0
       329723
                  34
                        16 2012-10-26
                                             4841.81
                                                              0
                                                                      3.514
       329724
                  34
                        17 2012-10-26
                                             7035.13
                                                              0
                                                                      3.514
       329726
                  34
                        20 2012-10-26
                                             2124.60
                                                              0
                                                                      3.514
       420211
                  45
                        98 2012-10-26
                                             1076.80
                                                                      3.882
               MarkDown1 MarkDown2 MarkDown3
                                                 Type
                                                         Size week
                                                                     month
                                                                            year
                    0.00
                                                                            2010
       0
                               0.00
                                            0.0
                                                      151315
                                                                  5
       329781
                    0.00
                               0.00
                                            0.0
                                                    2 103681
                                                                  5
                                                                         2
                                                                            2010
                    0.00
                               0.00
                                            0.0
                                                    2 103681
                                                                  5
                                                                         2
                                                                            2010
       329782
       329783
                    0.00
                               0.00
                                            0.0
                                                    2 103681
                                                                  5
                                                                         2 2010
       329784
                    0.00
                               0.00
                                            0.0
                                                    2 103681
                                                                  5
                                                                         2 2010
       329722
                              68.01
                                            3.0
                                                      158114
                                                                 43
                                                                        10 2012
                 1151.88
                                                    1
       329723
                 1151.88
                              68.01
                                            3.0
                                                    1 158114
                                                                 43
                                                                        10 2012
       329724
                 1151.88
                              68.01
                                            3.0
                                                    1 158114
                                                                        10 2012
                                                                 43
                 1151.88
                                                    1 158114
                                                                        10 2012
       329726
                              68.01
                                            3.0
                                                                 43
       420211
                 4018.91
                              58.08
                                          100.0
                                                    2 118221
                                                                 43
                                                                        10 2012
       [420212 rows x 14 columns]
      CREATING TRAIN-TEST SPLITS
[220]: train_data = df_new[:int(0.7*(len(df_new)))] # taking train_part
       test_data = df_new[int(0.7*(len(df_new))):] # taking test part
       target = 'Weekly_Sales'
       used_cols = [c for c in df_new.columns.to_list() if c not in [target]]
       X_train = train_data[used_cols]
```

```
X_test = train_data[used_cols]
Y_train = train_data[target]
Y_test = train_data[target]
```

```
[224]: X_train = X_train.drop(['Date'], axis = 1)
       X_test = X_test.drop(['Date'], axis = 1)
```

[222]: X = df_new[used_cols]

```
[230]: #Our metric is not calculated as default from ready models. It is weighed error
       ⇔so, I will use function below to calculate it.
      def wmae test(test, pred): # WMAE for test
           weights = X_test['IsHoliday'].apply(lambda is_holiday:5 if is_holiday else_
           error = np.sum(weights * np.abs(test - pred), axis=0) / np.sum(weights)
          return error
```

RANDOM FOREST REGRESSOR

```
→parameters each time and try to find the best result.
       rf = RandomForestRegressor(n_estimators=50, random_state=42, n_jobs=-1,_
        →max_depth=35,
                                  max_features = 'sqrt',min_samples_split = 10)
       from sklearn.preprocessing import RobustScaler
       scaler = RobustScaler()
       #making pipe tp use scaler and regressor together
       pipe = make_pipeline(scaler,rf)
       pipe.fit(X_train, Y_train)
       # predictions on train set
       Y_pred = pipe.predict(X_train)
       # predictions on test set
       Y_pred_test = pipe.predict(X_test)
[249]: wmae_test(Y_test, y_pred_test)
[249]: 4701.466772365683
      For the first trial, my weighted error is around 4701.
[252]: X = X.drop(['Date'], axis=1)
[254]: importances = rf.feature_importances_
       std = np.std([tree.feature_importances_ for tree in rf.estimators_],
                    axis=0)
       indices = np.argsort(importances)[::-1]
       # Printing the feature ranking
       print("Feature ranking:")
       for f in range(X.shape[1]):
           print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
       # Plotting the feature importances of the forest
       plt.figure()
       plt.title("Feature importances")
       plt.bar(range(X.shape[1]), importances[indices],
              color="r", yerr=std[indices], align="center")
       plt.xticks(range(X.shape[1]), indices)
```

[247]: | #To tune the regressor, I choose regressor parameters manually. I changed the

```
plt.xlim([-1, X.shape[1]])
plt.show()
```

Feature ranking:

- 1. feature 1 (0.732822)
- 2. feature 8 (0.110390)
- 3. feature 0 (0.054027)
- 4. feature 7 (0.038210)
- 5. feature 9 (0.021277)
- 6. feature 3 (0.018402)
- 7. feature 10 (0.009446)
- 8. feature 6 (0.005523)
- 9. feature 4 (0.003413)
- 10. feature 5 (0.002776)
- 11. feature 2 (0.002246)
- 12. feature 11 (0.001467)


```
[256]: #Dropping month as it is least important feature

X1_train = X_train.drop(['month'], axis=1) # dropping month
X1_test = X_test.drop(['month'], axis=1)
```

```
[260]: #Running model again without 'month'
       rf = RandomForestRegressor(n_estimators=50, random_state=42, n_jobs=-1,__
        ⇒max_depth=35,
                                  max_features = 'sqrt',min_samples_split = 10)
       scaler=RobustScaler()
       pipe = make_pipeline(scaler,rf)
       pipe.fit(X1_train, Y_train)
       # predictions on train set
       Y_pred = pipe.predict(X1_train)
       # predictions on test set
       Y_pred_test = pipe.predict(X1_test)
[262]: wmae_test(Y_test, Y_pred_test)
[262]: 4341.767849846648
      Better result than before
[265]: |# Now, I want to make sure that my model will learn from the columns which I_{\sqcup}
        •dropped or not. So, I will apply my model to whole encoded data again.
       # splitting train-test to whole dataset
       train_data_enc = df_encoded[:int(0.7*(len(df_encoded)))]
       test_data_enc = df_encoded[int(0.7*(len(df_encoded))):]
       target = "Weekly_Sales"
       used_cols1 = [c for c in df_encoded.columns.to_list() if c not in [target]] #_U
        →all columns except price
       X_train_enc = train_data_enc[used_cols1]
       X_test_enc = test_data_enc[used_cols1]
       Y_train_enc = train_data_enc[target]
       Y_test_enc = test_data_enc[target]
[267]: X_enc = df_encoded[used_cols1]
[269]: X_enc = X_enc.drop(['Date'], axis=1)
[271]: X_train_enc = X_train_enc.drop(['Date'], axis=1) # dropping date from train and_
       X_test_enc= X_test_enc.drop(['Date'], axis=1)
```

```
[275]: wmae_test(Y_test_enc, Y_pred_test_enc)
```

[275]: 2527.8371453807604

We found better results for whole data, it means our model can learn from columns which I dropped before.

```
[278]: importances = rf.feature importances
       std = np.std([tree.feature_importances_ for tree in rf.estimators_],
                    axis=0)
       indices = np.argsort(importances)[::-1]
       # Printing the feature ranking
       print("Feature ranking:")
       for f in range(X_enc.shape[1]):
           print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
       # Plotting the feature importances of the forest
       plt.figure()
       plt.title("Feature importances")
       plt.bar(range(X_enc.shape[1]), importances[indices],
              color="r", yerr=std[indices], align="center")
       plt.xticks(range(X_enc.shape[1]), indices)
       plt.xlim([-1, X_enc.shape[1]])
      plt.show()
```

Feature ranking:

- 1. feature 1 (0.744048)
- 2. feature 13 (0.067102)
- 3. feature 12 (0.052065)
- 4. feature 0 (0.031637)
- 5. feature 10 (0.028733)

```
6. feature 11 (0.015035)
```

- 7. feature 18 (0.012780)
- 8. feature 3 (0.011008)
- 9. feature 4 (0.009966)
- 10. feature 19 (0.005065)
- 11. feature 7 (0.004577)
- 12. feature 9 (0.003981)
- 13. feature 5 (0.003667)
- 14. feature 8 (0.003639)
- 15. feature 6 (0.002623)
- 16. feature 2 (0.001102)
- 17. feature 20 (0.001028)
- 18. feature 16 (0.000970)
- 19. feature 17 (0.000606)
- 20. feature 15 (0.000193)
- 21. feature 14 (0.000174)


```
[284]: #train-test splitting
       train_data_enc_new = df_encoded_new[:int(0.7*(len(df_encoded_new)))]
       test_data_enc_new = df_encoded_new[int(0.7*(len(df_encoded_new))):]
       target = "Weekly_Sales"
       used_cols2 = [c for c in df_encoded_new.columns.to_list() if c not in [target]]_
        ⇔# all columns except price
       X_train_enc1 = train_data_enc_new[used_cols2]
       X_test_enc1 = test_data_enc_new[used_cols2]
       Y_train_enc1 = train_data_enc_new[target]
       Y_test_enc1 = test_data_enc_new[target]
       #droping date from train-test
       X_train_enc1 = X_train_enc1.drop(['Date'], axis=1)
       X_test_enc1= X_test_enc1.drop(['Date'], axis=1)
[286]: rf = RandomForestRegressor(n_estimators=50, random_state=42, n_jobs=-1,__
        \rightarrowmax_depth=40,
                                  max_features = 'log2',min_samples_split = 10)
       scaler=RobustScaler()
       pipe = make_pipeline(scaler,rf)
       pipe fit(X_train_enc1, Y_train_enc1)
       # predictions on train set
       Y_pred_enc = pipe.predict(X_train_enc1)
       # predictions on test set
       Y_pred_test_enc = pipe.predict(X_test_enc1)
[290]: pipe.score(X_test_enc1, Y_test_enc1)
[290]: 0.7301163967714206
[294]: wmae_test(Y_test_enc1, Y_pred_test_enc)
[294]: 2000.840362122697
      Best results with doing feature selection from whole encoded dataset.
[297]: #With the same dateset before, I try to model again without month column.
       df_encoded_new1 = df_encoded.copy()
       df_encoded_new1.drop(drop_column, axis=1, inplace=True)
[299]: | df_encoded_new1 = df_encoded_new1.drop(['Date'], axis=1)
```

```
[301]: df_encoded_new1 = df_encoded_new1.drop(['month'], axis=1)
[303]: #train-test split
       train_data_enc_new1 = df_encoded_new1[:int(0.7*(len(df_encoded_new1)))]
       test_data_enc_new1 = df_encoded_new1[int(0.7*(len(df_encoded_new1))):]
       target = "Weekly Sales"
       used_cols3 = [c for c in df_encoded_new1.columns.to_list() if c not in_
        →[target]] # all columns except price
       X_train_enc2 = train_data_enc_new1[used_cols3]
       X_test_enc2 = test_data_enc_new1[used_cols3]
       Y_train_enc2 = train_data_enc_new1[target]
       Y_test_enc2 = test_data_enc_new1[target]
[305]: #modeling part
       pipe = make_pipeline(scaler,rf)
       pipe.fit(X_train_enc2, Y_train_enc2)
       # predictions on train set
       Y_pred_enc = pipe.predict(X_train_enc2)
       # predictions on test set
       Y_pred_test_enc = pipe.predict(X_test_enc2)
[307]: pipe.score(X_test_enc2, Y_test_enc2)
[307]: 0.7151872056567885
[309]: wmae_test(Y_test_enc2, Y_pred_test_enc)
[309]: 2054.609836290659
      Not better results than before.
[312]: df_results = pd.DataFrame(columns=["Model", "Info", 'WMAE']) # result df for_
        ⇔showing results together
[316]: # writing results to df
       df_results = pd.concat([df_results, pd.DataFrame([{
            "Model": 'RandomForestRegressor',
             "Info": 'w/out divided holiday columns',
              'WMAE': 4701
       }])], ignore_index=True)
[320]: df_results = pd.concat([df_results, pd.DataFrame([{
            "Model": 'RandomForestRegressor',
```

```
"Info": 'w/out month column',
              'WMAE': 4341}])], ignore_index=True)
       df_results = pd.concat([df_results, pd.DataFrame([{
            "Model": 'RandomForestRegressor',
             "Info": 'whole data',
              'WMAE' : 2527}])], ignore_index=True)
       df_results = pd.concat([df_results, pd.DataFrame([{
            "Model": 'RandomForestRegressor',
             "Info": 'whole data with feature selection',
              'WMAE' : 2000}])], ignore index=True)
       df_results = pd.concat([df_results, pd.DataFrame([{
            "Model": 'RandomForestRegressor',
             "Info": 'whole data with feature selection w/out month',
              'WMAE' : 2044}])], ignore_index=True)
[322]: df_results
[322]:
                          Model
                                                                           Info
                                                                                 WMAE
                                                 w/out divided holiday columns
       0 RandomForestRegressor
                                                                                 4701
       1 RandomForestRegressor
                                                             w/out month column 4341
       2 RandomForestRegressor
                                                                     whole data 2527
                                             whole data with feature selection 2000
       3 RandomForestRegressor
       4 RandomForestRegressor whole data with feature selection w/out month 2044
      TIME SERIES MODEL
[325]:
      df.head()
[325]:
          Store Dept
                            Date
                                  Weekly_Sales
                                                 IsHoliday
                                                            Temperature
                                                                         Fuel_Price \
                                                     False
       0
              1
                    1 2010-02-05
                                      24924.50
                                                                  42.31
                                                                               2.572
       1
              1
                    2 2010-02-05
                                      50605.27
                                                     False
                                                                  42.31
                                                                              2.572
       2
                    3 2010-02-05
                                                     False
                                                                  42.31
              1
                                      13740.12
                                                                              2.572
       3
                    4 2010-02-05
                                      39954.04
                                                     False
                                                                  42.31
                                                                              2.572
              1
       4
                    5 2010-02-05
                                                                  42.31
                                      32229.38
                                                     False
                                                                              2.572
          MarkDown1 MarkDown2 MarkDown3
                                           MarkDown4 MarkDown5
                                                                         CPI
       0
                0.0
                           0.0
                                      0.0
                                                  0.0
                                                             0.0
                                                                  211.096358
       1
                0.0
                           0.0
                                      0.0
                                                  0.0
                                                             0.0
                                                                  211.096358
       2
                0.0
                           0.0
                                      0.0
                                                  0.0
                                                             0.0
                                                                  211.096358
                                                                  211.096358
       3
                0.0
                           0.0
                                      0.0
                                                  0.0
                                                             0.0
       4
                0.0
                           0.0
                                      0.0
                                                  0.0
                                                                  211.096358
                                                             0.0
          Unemployment Type
                                     Super_Bowl
                                                 Labor_Day
                                                             Thanksgiving
                                                                           Christmas
                               Size
       0
                 8.106
                                           False
                                                      False
                                                                    False
                                                                               False
                          A 151315
                                                      False
                                                                    False
       1
                 8.106
                          A 151315
                                          False
                                                                               False
       2
                 8.106
                          A 151315
                                          False
                                                      False
                                                                    False
                                                                               False
       3
                 8.106
                          A 151315
                                          False
                                                      False
                                                                    False
                                                                               False
                 8.106
                          A 151315
                                          False
                                                                               False
                                                      False
                                                                    False
```

```
week month
                         year
       0
              5
                      2
                         2010
              5
                         2010
       1
       2
              5
                      2 2010
       3
              5
                      2
                         2010
       4
              5
                      2
                         2010
[327]: df['Date'] = pd.to_datetime(df['Date'])
[329]: df.set_index('Date', inplace=True) #seting date as index
       PLOTTING SALES
[332]: plt.figure(figsize=(16,6))
       df['Weekly_Sales'].plot()
       plt.show()
            700000
            600000
            500000
            400000
            300000
            200000
            100000
                                               2011-05
             2010.01
                      2010-05
                                       2011-01
                                                       2011-09
                                                                2012.01
                                                                        2012-05
                                                                                 2012.09
                              2010-09
                                                      Date
```

In this data, there are lots of same data values. So, I will collect them together as weekly.

```
[347]: df_week = df.resample('W').mean() #resample data as weekly
[337]:
      print(df.dtypes)
      Store
                         int64
      Dept
                         int64
      Weekly_Sales
                       float64
      IsHoliday
                          bool
      Temperature
                       float64
      Fuel_Price
                       float64
      MarkDown1
                       float64
      MarkDown2
                       float64
      MarkDown3
                       float64
```

```
MarkDown5
                      float64
      CPI
                      float64
      Unemployment
                      float64
      Type
                        object
      Size
                         int64
      Super Bowl
                         bool
      Labor_Day
                         bool
      Thanksgiving
                         bool
      Christmas
                         bool
      week
                         int64
      month
                         int64
                         int64
      year
      dtype: object
[339]: df_week = df.select_dtypes(include=['number']).resample('W').mean()
[341]: df = df.apply(pd.to_numeric, errors='coerce')
       df_week = df.resample('W').mean()
[343]: for col in df.columns:
           if df[col].dtype == 'object':
               print(f"Column: {col}, Unique Values: {df[col].unique()[:10]}")
[345]: df.replace({'AAAAA': np.nan, 'BBBBB': np.nan, 'CCCCC': np.nan}, inplace=True)
```

MarkDown4

[349]: plt.figure(figsize=(16,6))

plt.show()

df_week['Weekly_Sales'].plot()
plt.title('Average Sales - Weekly')

float64


```
[351]: df_month = df.resample('MS').mean() # resampling as monthly

[353]: plt.figure(figsize=(16,6))
    df_month['Weekly_Sales'].plot()
    plt.title('Average Sales - Monthly')
    plt.show()
```


When I turned data to monthly, I realized that I lost some patterns in weekly data. So, I will continue with weekly resampled data.

```
[356]: # finding 2-weeks rolling mean and std
roll_mean = df_week['Weekly_Sales'].rolling(window=2, center=False).mean()
roll_std = df_week['Weekly_Sales'].rolling(window=2, center=False).std()
```

```
[358]: fig, ax = plt.subplots(figsize=(13, 6))
    ax.plot(df_week['Weekly_Sales'], color='blue',label='Average Weekly Sales')
    ax.plot(roll_mean, color='red', label='Rolling 2-Week Mean')
    ax.plot(roll_std, color='black', label='Rolling 2-Week Standard Deviation')
    ax.legend()
    fig.tight_layout()
```


Adfuller Test to Make Sure

```
[365]: adfuller(df_week['Weekly_Sales'])
[365]: (-5.927107223737566,
        2.4290492082043256e-07,
        4,
        138,
        {'1%': -3.47864788917503,
         '5%': -2.882721765644168,
         '10%': -2.578065326612056},
        2261.596421168073)
[367]: train_data = df_week[:int(0.7*(len(df_week)))]
       test_data = df_week[int(0.7*(len(df_week))):]
       print('Train:', train_data.shape)
       print('Test:', test_data.shape)
      Train: (100, 22)
      Test: (43, 22)
[369]: target = "Weekly_Sales"
       used_cols = [c for c in df_week.columns.to_list() if c not in [target]] # all_
        ⇔columns except price
       # assigning train-test X-y values
       X_train = train_data[used_cols]
       X_test = test_data[used_cols]
       Y_train = train_data[target]
```

```
Y_test = test_data[target]
```


Blue line represents my train data, orange is test data.

```
[380]: decomposed = decompose(df_week['Weekly_Sales'].values, 'additive', m=20)__ 
#decomposing of weekly data
```

```
[382]: decomposed_plot(decomposed, figure_kwargs={'figsize': (16, 10)}) plt.show()
```


From the graphs above, every 20 step seasonality converges to beginning point. This helps me to tune my model.

2. SHIFT

```
[392]: df_week_lag = df_week['Weekly_Sales'].shift().dropna() #shifting the data

[394]: lag_roll_mean = df_week_lag.rolling(window=2, center=False).mean()
    lag_roll_std = df_week_lag.rolling(window=2, center=False).std()

[396]: fig, ax = plt.subplots(figsize=(13, 6))
    ax.plot(df_week_lag, color='blue',label='Difference')
    ax.plot(lag_roll_mean, color='red', label='Rolling Mean')
    ax.plot(lag_roll_std, color='black', label='Rolling Standard Deviation')
    ax.legend()
    fig.tight_layout()
```


3. LOG

```
[399]: logged_week = np.log1p(df_week['Weekly_Sales']).dropna() #taking log of data
[401]: log_roll_mean = logged_week.rolling(window=2, center=False).mean()
       log_roll_std = logged_week.rolling(window=2, center=False).std()
[403]: fig, ax = plt.subplots(figsize=(13, 6))
       ax.plot(logged_week, color='blue',label='Logged')
       ax.plot(log_roll_mean, color='red', label='Rolling Mean')
       ax.plot(log_roll_std, color='black', label='Rolling Standard Deviation')
       ax.legend()
       fig.tight_layout()
           10
            8
            6
                                                                    Logged
                                                                    Rolling Mean
                                                                    Rolling Standard Deviation
            4
            2
            0
```

2011-01

Auto-ARIMA MODEL

2010-01

2010-05

2010-09

I tried my data without any changes, then tried with shifting, taking log and difference version of data. Differenced data gave best results. So, I decided to take difference and use this data.

2011-05

2011-09

2012-01

2012-05

2012-09

```
error_action='ignore',approximation = False)
       model_auto_arima.fit(train_data_diff)
       ARIMA(0,0,0)(0,0,0)[1] intercept
                                          : AIC=1826.858, Time=0.06 sec
       ARIMA(0,0,1)(0,0,0)[1] intercept
                                          : AIC=1793.619, Time=0.07 sec
       ARIMA(0,0,2)(0,0,0)[1] intercept
                                          : AIC=1795.532, Time=0.21 sec
       ARIMA(0,0,3)(0,0,0)[1] intercept
                                          : AIC=inf, Time=0.25 sec
       ARIMA(0,0,4)(0,0,0)[1] intercept
                                          : AIC=inf, Time=0.42 sec
       ARIMA(0,0,5)(0,0,0)[1] intercept
                                          : AIC=inf, Time=0.26 sec
       ARIMA(1,0,0)(0,0,0)[1] intercept
                                          : AIC=1804.051, Time=0.02 sec
       ARIMA(1,0,1)(0,0,0)[1] intercept
                                          : AIC=inf, Time=0.16 sec
       ARIMA(1,0,2)(0,0,0)[1] intercept
                                          : AIC=1794.966, Time=0.14 sec
                                          : AIC=inf, Time=0.27 sec
       ARIMA(1,0,3)(0,0,0)[1] intercept
       ARIMA(1,0,4)(0,0,0)[1] intercept
                                          : AIC=inf, Time=0.35 sec
       ARIMA(2,0,0)(0,0,0)[1] intercept
                                          : AIC=1801.215, Time=0.03 sec
       ARIMA(2,0,1)(0,0,0)[1] intercept
                                          : AIC=inf, Time=0.25 sec
                                          : AIC=inf, Time=0.27 sec
       ARIMA(2,0,2)(0,0,0)[1] intercept
       ARIMA(2,0,3)(0,0,0)[1] intercept
                                          : AIC=inf, Time=0.55 sec
       ARIMA(3,0,0)(0,0,0)[1] intercept
                                          : AIC=1791.045, Time=0.06 sec
       ARIMA(3,0,1)(0,0,0)[1] intercept
                                          : AIC=1787.198, Time=0.11 sec
       ARIMA(3,0,2)(0,0,0)[1] intercept
                                          : AIC=1782.922, Time=0.10 sec
       ARIMA(4,0,0)(0,0,0)[1] intercept
                                          : AIC=1785.231, Time=0.06 sec
       ARIMA(4,0,1)(0,0,0)[1] intercept
                                          : AIC=1786.221, Time=0.18 sec
       ARIMA(5,0,0)(0,0,0)[1] intercept
                                          : AIC=1784.877, Time=0.07 sec
      Best model: ARIMA(3,0,2)(0,0,0)[1] intercept
      Total fit time: 3.963 seconds
[409]: ARIMA(maxiter=200, order=(3, 0, 2), scoring_args={},
             seasonal_order=(0, 0, 0, 1), suppress_warnings=True)
[432]: Y_pred = model_auto_arima.predict(n_periods=len(test_data_diff))
       Y_pred = pd.DataFrame(Y_pred,index = test_data.index,columns=['Prediction'])
       plt.figure(figsize=(20,6))
       plt.title('Prediction of Weekly Sales Using Auto-ARIMA', fontsize=20)
       plt.plot(train_data_diff, label='Train')
       plt.plot(test_data_diff, label='Test')
       plt.plot(Y_pred, label='Prediction of ARIMA')
       plt.legend(loc='best')
       plt.xlabel('Date', fontsize=14)
       plt.ylabel('Weekly Sales', fontsize=14)
       plt.show()
```


I do not like the pattern of predictions so I decided to try another model.

ExponentialSmoothing

I checked suitable Holt-Winters models according to my data. Exponential Smooting are used when data has trend, and it flattens the trend. The damped trend method adds a damping parameter so, the trend converges to a constant value in the future.

My difference data has some minus and zero values, so I used additive seasonal and trend instead of multiplicative. Seasonal periods are chosen from the decomposed graphs above. For tuning the model with iterations take too much time so, I changed and tried model for different parameters and found the best parameters and fitted them to model.

```
model_holt_winters = ExponentialSmoothing(train_data_diff, seasonal_periods=20,_u seasonal='additive', trend='additive',damped=True).fit()_u #Taking additive trend and seasonality.

Y_pred = model_holt_winters.forecast(len(test_data_diff)) # Predict the test data

#Visualize train, test and predicted data.
plt.figure(figsize=(20,6))
plt.title('Prediction of Weekly Sales using ExponentialSmoothing', fontsize=20)
plt.plot(train_data_diff, label='Train')
plt.plot(test_data_diff, label='Test')
plt.plot(Y_pred, label='Prediction using ExponentialSmoothing')
plt.legend(loc='best')
plt.xlabel('Date', fontsize=14)
plt.ylabel('Weekly Sales', fontsize=14)
plt.show()
```


[439]: wmae_test(test_data_diff, Y_pred)

[439]: 840.681060966696

At the end, I found best results for my data with Exponential Smoothing Model.

My best result for this project is 840. According to sales amounts this value is roughly around 5% error. If we can take our average sales and take percentage of 840 errors, it gives 5% roughly.

[]: