HIGH-ENERGY PHYSICS AND RADIOGLACIOLOGY

J. C. Hanson (CCAPP, The Ohio State University)

April 12, 2017

Colloquium for the Department of Physics and Astronomy, Whittier College

HIGH-ENERGY PHYSICS AND RADIOGLACIOLOGY

- I. Radioglaciology
 - A. Using radio waves (< 1000 MHz) to probe ice properties
 - B. RF properties of ice
 - i. Attenuation (absorption, scattering)
 - ii. Reflections
 - iii. Index of refraction profile
- II. Specific Results found as part of the ARIANNA program
 - A. Thickness
 - B. Attenuation
 - C. Reflection
- III. Surface Propagation

RF PROPERTIES OF ICE

RF PROPERTIES OF ICE

RF PROPERTIES OF ICE - BASIC FACTS

- I. Index of refraction, n: v = c/n, usually take n = n' + in''
- II. Dlelectric constant, ϵ : $\epsilon = \epsilon' + i\epsilon''$
- III. $n = \sqrt{\epsilon}$
- IV. Propagating E-field in free space: $\mathbf{E} = \mathbf{E}_0 \exp(i(kz \omega t))$
- V. The wavevector is $k = 2\pi\nu/c$ in free space
- VI. Propagating E-field in dielectric medium:

$$\mathbf{E} = \mathbf{E}_0 \exp\left(i(nkz - \omega t)\right)$$

VII. The wavevector is $k = 2n\pi\nu/c$ in dielectric medium

RF PROPERTIES OF ICE - DERIVATION OF ATTENUATION LENGTH

$$\epsilon = \epsilon' + i\epsilon'' \tag{1}$$

$$n \equiv \sqrt{\epsilon} = (\epsilon' + i\epsilon'')^{1/2} \tag{2}$$

$$n \approx \sqrt{\epsilon'} (1 + i/2 \tan \delta) \tag{3}$$

$$n'' = \Im\{n\} \approx \frac{1}{2} \sqrt{\epsilon'} \tan \delta \tag{4}$$

$$k = \frac{2\pi\nu}{c} \tag{5}$$

$$L^{-1} = n''k = \frac{\pi}{c}\sqrt{\epsilon'}(\nu \tan \delta)$$
 (6)

$$N_L(dBkm^{-1}) = 8686.0L^{-1} (7)$$

RF PROPERTIES OF ICE - THE DEBYE RELAXATION MODEL

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\Delta \epsilon}{1 + i\omega \tau} \tag{8}$$

$$\Delta \epsilon = \epsilon_{\rm S} - \epsilon_{\infty} \tag{9}$$

$$\tan \delta = \frac{\Delta \epsilon(\omega \tau)}{\epsilon_{\rm S} + \epsilon_{\infty}(\omega \tau)^2} \tag{10}$$

(11)

For high-frequencies such that ($\omega \tau \gg 1$)

$$\tan \delta \approx \frac{\Delta \epsilon}{\epsilon_{\infty}} (\omega \tau)^{-1} \tag{12}$$

$$\nu \tan \delta \propto \omega \tan \delta = const \tag{13}$$

RF PROPERTIES OF ICE - MATSUOKA, FUJITA, MAE (1996)

RF PROPERTIES OF ICE - u tan δ and the relaxation time

$$\tan \delta \approx \frac{\Delta \epsilon}{\epsilon_{\infty}} (\omega \tau)^{-1} \tag{14}$$

But the Debye relaxation time τ is inversely proprotional to a molecular transition rate, which depends on temperature via the Boltzmann distribution:

$$\tau = A \exp(E_a/k_B T) \tag{15}$$

Thus, attenuation length depends on ice temperature:

$$L \approx \frac{2cA}{\pi n} \frac{\epsilon_{\infty}}{\Delta \epsilon} e^{E_a/k_B T} \tag{16}$$

RF PROPERTIES OF ICE - $\nu an \delta$ and the re<u>laxation time</u>

RF PROPERTIES OF ICE - REFLECTIONS

Reflections occur when there are two different indexes of refraction:

$$|\sqrt{R}| = \frac{1 - n_2/n_1}{1 + n_2/n_1} \tag{17}$$

Let $\alpha = \epsilon_2''/\epsilon_1'$, tan $\delta_2 \gg$ 1, and tan $\delta_1 \approx$ 0. This yields:

$$|\sqrt{R}| \approx \left(\frac{1 + \alpha - \sqrt{2\alpha}}{1 + \alpha + \sqrt{2\alpha}}\right)^{1/2} \tag{18}$$

Thus, for a situation like ice over the ocean, $|\sqrt{R}| \sim 0.4 - 1$.

RF PROPERTIES OF ICE - INDEX OF REFRACTION PROFILE

To solve for the ice thickness in terms of the reflection time:

$$\frac{c\Delta t}{2} = \int_0^{d_{ice}} n(z)dz \tag{19}$$

The Schytt model:

$$n(z) = 1.78 \ z \ge D_f$$
 (20)

$$n(z) = n_{ice} - \Delta n \exp(z/z_0) \quad z < D_f$$
 (21)

$$\Delta n = n_{\rm s} - n_{\rm ice} \tag{22}$$

Knowing d_{ice} independently allows determination of attenuation length and reflection coefficient.

RF PROPERTIES OF ICE - PUTTING IT ALL TOGETHER

$$V_C(\nu) = V_0/d_C \tag{23}$$

$$V_{ice}(\nu) = \sqrt{R} \frac{V_0}{d_{ice}} \exp\left(-\frac{d_{ice}}{L(\nu)}\right)$$
 (24)

$$L(\nu) = \frac{d_{ice}}{\ln((V_C(\nu)/d_c)/(\sqrt{R}V_{ice}(\nu)/d_{ice}))}$$
(25)

SPECIFIC MEASUREMENTS MADE AS PART
OF THE ARIANNA PROGRAM

RF PROPERTIES OF ICE - INDEX OF REFRACTION PROFILE

EXPERIMENTAL SETUP

RF PROPERTIES OF ICE - INDEX OF REFRACTION PROFILE YIELDS ICE THICKNESS

Year	$\Delta t_{ m meas}$	Δt_{phys}	σ_{stat}	σ_{sys}	σ_{pulse}	$\sigma_{ m tot}$	$d_{\rm ice}$
	ns	ns					m
2006	_	6783	_	_	_	10	577.5 ± 10
2009	_	6745	_	_	_	15	572 ± 6
2010	7060	6772	5.0	8.0	10	14	576 ± 6
2011	6964	6816	4.0	5.0	10	12	580 ± 6

RF PROPERTIES OF ICE - THICKNESS YIELDS ATTENUATION LENGTH (AVERAGE)

RF PROPERTIES OF ICE - THICKNESS YIELDS ATTENUATION LENGTH (AVERAGE)

RF PROPERTIES OF ICE -AVERAGE \sqrt{r} CORRECTS ATTENUATION LENGTHS

ν	$\langle L_0 \rangle$	$\langle L \rangle$	$\langle L \rangle$	$\epsilon'' \times 10^3$	$ u \tan \delta \times 10^4$
GHz	m	m	$\mathrm{dB}\mathrm{km}^{-1}$		GHz
0.100	432	449	19.3	3.8	1.2
0.175	467	487	17.8	2.0	1.1
0.250	457	476	18.2	1.4	1.1
0.325	422	438	19.8	1.2	1.2
0.400	408	423	20.5	1.0	1.3
0.475	366	378	23.0	0.95	1.4
0.550	349	360	24.1	0.86	1.5
0.625	363	375	23.2	0.72	1.4
0.700	331	341	25.5	0.71	1.6
0.775	310	319	27.2	0.69	1.7
0.850	320	329	26.4	0.61	1.6
Ave.	380 ± 16	400 ± 18	22 ± 1	1.3 ± 0.3	1.37 ± 0.06

SURFACE PROPAGATION - POTENTIAL DETECTOR ENHANCEMENT

If RF waves are able to propagate along the firn boundary in two-dimdensions, then $V(\nu) \propto 1/\sqrt{d}$ (roughly). Also, the volume goes like $2\pi r dr$, because thickness isn't changing. Thus, the ratio of these two numbers goes like \sqrt{r} , meaning the farthest events are the most prevalent. Also,

$$\frac{V_{surf}}{V_{bulk}} \approx \left(\frac{\omega r}{c}\right)^{1/2} \tag{26}$$

Surface signals are larger because the lose amplitude less easily, and the effect is stronger for high-frequencies.

SURFACE PROPAGATION - EXPERIMENTAL TEST

SURFACE PROPAGATION - EXPERIMENTAL RESULTS

SURFACE PROPAGATION - ATTEMPT TO MODEL THE DATA

$$n\cos(\alpha) = const$$
 (27)

$$\frac{d\alpha}{dt} = \cos(\alpha) \frac{c_0}{n(z)^2} \frac{dn}{dz}$$
 (28)

The first equation is Snell's Law. The angle α is defined with respect to the horizontal. We can implement this in a model, with initial RF propgation conditions, and use our knowledge of n(z).

HIGH-ENERGY PHYSICS AND RADIOGLACIOLOGY

- Radio-echo sounding was the tool to do in-situ calibration of detection ice
- II. Quantified the ice thickness, attenuation length vs. RF, and basal reflection coefficient
- III. In agreement with laboratory and field data
- IV. Sets the scale of the full detector
- V. Journal of Glaciology, Vol. 61 No. 227, 2015
- VI. Explanation of surface propagation: RF channeling, no shadowing effect
 - A. Other examples of surface propagation being published
 - i. Single-frequency, 3km propagation at South Pole
 - ii. ARIANNA detector and independent pulser