

Grado en Ingeniería Informática ÁLGEBRA

TEMA 2. EL GRUPO SIMÉTRICO

Bibliografía básica:

- Ruiz J. F., Métodos computacionales en Álgebra. Matemática discreta: grupos y grafos. Edición: 2ª ed. revisada. Universidad de Jaén, 2012.
- Bujalance, E. y otros. *Elementos de Matemática Discreta*. Edición: 2ª ed., 3ª reimp. Sanz y Torres, 2001.
- Dorronsoro, J. Y Hernández, E. *Números, grupos y anillos*. Addison Wesley. Universidad Autónoma de Madrid, 1999.
- García Merayo, F. Matemática Discreta. Ed. Paraninfo. 2015

Bibliografía complementaria (Teoría):

Cohn, Álgebra. Volume I, J. WILEY&SONS, 1974.

Dubreil, P. y otros. Lecciones de álgebra moderna. Ed. Reverté.

Grimaldi, R.P. *Matemáticas discreta y combinatoria*. Addison Wesley Iberoamericana.

Sigler, L.G. Álgebra. Ed. Reverté.

Solman, Busby, Ross. *Estructuras de Matemática Discreta para la computación*. Ed. Prentice Hall. 1997 NUEVO

Vera López, A. y otros. Álgebra abstracta aplicada.

Bibliografía complementaria (Problemas):

Anzola, M. y otros. *Problemas de Álgebra: CONJUNTOS Y GRUPOS* (tomo 1). Ed. Autores, 1981/82

Bujalance, E. y otros. *Problemas Elementos de Matemática Discreta*. Sanz Torres, 1993.

García, F. Hernández, G., Nevot, A. *Problemas resueltos de Matemática Discreta*. Ed. Thomson. 2003.

García, C., López, J., Puigjaner, D. *Matemática Discreta. Problemas y ejercicios resueltos*. Ed. Prentice Hall. 2002.

ÍNDICE:

- 1. Generalidades sobre grupos.
- 2. Subgrupos.
- 3. Permutaciones, ciclos y trasposiciones.
- 4. Descomposición de una permutación.
- 5. Signatura de una permutación
- 6. El subgrupo alternado

Grado en Ingeniería Informática

1. GENERALIDADES SOBRE GRUPOS

Definición. Un grupo es un par (G,*) formado por un conjunto $G \neq \emptyset$ y una <u>ley de composición interna</u> $*: G \times G \to G$ verificando las siguientes propiedades:

- i. Elemento Neutro: Existe $e \in G$ tal que e * a = a * e = a para cada $a \in G$.
- ii. Elemento simétrico: Para cada $a \in G$, existe $a' \in G$ tal que a * a' = a' * a = e.
- iii. Asociativa: (a * b) * c = a * (b * c) para cada a, b, $c \in G$.

Se dirá que es un grupo <u>abeliano</u> o <u>conmutativo</u> si además verifica:

Ejemplo. Definimos un grupo (G,*)

$$(\mathbb{Z}, +)$$
 $G = \{2, 3, 4, 5\}$ + dada por: $3 + 4 = 7$ $3 + 4 = 5$

+	2	3	4	5
2	2	3	4	5
3	ന	2	5	4
4	4	5	3	2
5	5	4	2	3

$$In[]:=$$
 $G=\{2,3,4,5\};$ operacion= $\{\{2,3,4,5\},\{3,2,5,4\},\{4,5,3,2\},\{5,4,2,3\}\};$

Demostremos que es grupo:

Un grupo es un par (G,*) formado por un conjunto $G \neq \emptyset$ y una <u>ley de composición</u> interna $*: G \times G \to G$ verificando las siguientes propiedades:

- i. Elemento Neutro: Existe $e \in G$ tal que e * a = a * e = a para cada $a \in G$.
- ii. Elemento simétrico: Para cada $a \in G$, existe $a' \in G$ tal que a * a' = a' * a = e.
- iii. Asociativa: (a * b) * c = a * (b * c) para cada a, b, $c \in G$.

Se dirá que es un grupo <u>abeliano</u> o <u>conmutativo</u> si además verifica:

Ejemplo.

$$(\mathbb{Z},+)$$

- ℤ ≠∅
- + operación interna:

$$\forall a,b \in \mathbb{Z} \implies a+b \in \mathbb{Z}$$

$$G = \{2, 3, 4, 5\}$$

- G≠∅
- + operación interna:

$$\forall a,b \in G \Rightarrow a+b \in G$$

+	2	ന	4	5
2	2	3	4	5
3	3	2	5	4
4	4	5	3	2
5	5	4	2	3

```
In[]:= G=\{2,3,4,5\}; operacion=\{\{2,3,4,5\},\{3,2,5,4\},\{4,5,3,2\},\{5,4,2,3\}\};
```

$$In[]:=$$
 INTERNA

Out[]= True

UJa.es

Demostremos que es grupo:

Un *grupo* es un par (G,*) formado por un conjunto $G \neq \emptyset$ y una <u>ley de composición</u> interna $*: G \times G \to G$ verificando las siguientes propiedades:

- i. Elemento Neutro: Existe $e \in G$ tal que e * a = a * e = a para cada $a \in G$.
- ii. Elemento simétrico: Para cada $a \in G$, existe $a' \in G$ tal que a * a' = a' * a = e.
- iii. Asociativa: (a * b) * c = a * (b * c) para cada a, b, $c \in G$.

Se dirá que es un grupo <u>abeliano</u> o <u>conmutativo</u> si además verifica:

Ejemplo.

Elemento neutro: 0

$$0 \in \mathbb{Z}$$
 y verifica
 $a+0=0+a=a \quad \forall a \in \mathbb{Z}$
 $G = \{2, 3, 4, 5\}$

Elemento neutro: 2

 $2+2=2=2+2$
 $2+3=3=3+2$
 $2+4=4=4+2$
 $2+5=5=5+2$

```
      +
      2
      3
      4
      5

      2
      2
      3
      4
      5

      3
      3
      2
      5
      4

      4
      4
      5
      3
      2

      5
      5
      4
      2
      3
```

UJa.es

Demostremos que es grupo:

Un *grupo* es un par (G,*) formado por un conjunto $G \neq \emptyset$ y una <u>ley de composición</u> interna $*: G \times G \to G$ verificando las siguientes propiedades:

- i. Elemento Neutro: Existe $e \in G$ tal que e * a = a * e = a para cada $a \in G$.
- ii. <u>Elemento simétrico</u>: Para cada $a \in G$, existe $a' \in G$ tal que a * a' = a' * a = e.
- iii. Asociativa: (a * b) * c = a * (b * c) para cada a, b, $c \in G$.

Se dirá que es un grupo <u>abeliano</u> o <u>conmutativo</u> si además verifica:

Ejemplo.

Elemento neutro: 0
Para cada
$$a \in \mathbb{Z}$$
, $\exists -a \in \mathbb{Z}$
tal que $a - a = -a + a = 0$

Elemento neutro 2
Elemento simétrico:
$$a + \underline{\quad} = 2$$

$$2 + 2 = 2; \quad -2 = 2$$

$$3 + 3 = 2; \quad -3 = 3$$

$$4 + 5 = 2; \quad -4 = 5$$

$$5 + 4 = 5; \quad -5 = 4$$

In[]:=
$$G = \{2, 3, 4, 5\}$$

$$a + \underline{\quad} = 2$$

$$2 + 2 = 2; \quad -2 = 2$$

$$3 + 3 = 2; \quad -3 = 3$$

$$4 + 5 = 2; \quad -4 = 5$$

$$5 + 4 = 5; \quad -5 = 4$$
ELEMENTOSIMÉTRICO[G, operacion]

2 3 4 5 2 3 5 4

+	2	3	4	5
2	2	ന	4	5
3	3	2	15	4
4	4	5	3	2
5	5	4	2	3

Out[]=

Demostremos que es grupo:

Un *grupo* es un par (G,*) formado por un conjunto $G \neq \emptyset$ y una <u>ley de composición</u> interna $*: G \times G \to G$ verificando las siguientes propiedades:

- i. Elemento Neutro: Existe $e \in G$ tal que e * a = a * e = a para cada $a \in G$.
- ii. Elemento simétrico: Para cada $a \in G$, existe $a' \in G$ tal que a * a' = a' * a = e.
- iii. Asociativa: (a * b) * c = a * (b * c) para cada $a, b, c \in G$.

Se dirá que es un grupo <u>abeliano</u> o <u>conmutativo</u> si además verifica:

Ejemplo.

$$(\mathbb{Z},+)$$

 $(3+4)+4=7+4=11$
 $3+(4+4)=3+8=11$
Demostrarlo en general

$$G = \{2, 3, 4, 5\}$$

 $(3+4)+4=5+4=2$
 $3+(4+4)=3+3=2$
Hacer todas las
combinaciones

+	2	3	4	5
2	2	ന	4	5
3	3	2	5	4
4	4	5	3	2
5	5	4	2	3

In[]:=
$$G=\{2,3,4,5\}$$
; operacion= $\{\{2,3,4,5\},\{3,2,5,4\},\{4,5,3,2\},\{5,4,2,3\}\}$; **ASOCIATIVA**

Out[]= True

Demostremos que es grupo:

Un *grupo* es un par (G,*) formado por un conjunto $G \neq \emptyset$ y una <u>ley de composición</u> interna $*: G \times G \to G$ verificando las siguientes propiedades:

- i. Elemento Neutro: Existe $e \in G$ tal que e * a = a * e = a para cada $a \in G$.
- ii. Elemento simétrico: Para cada $a \in G$, existe $a' \in G$ tal que a * a' = a' * a = e.
- iii. Asociativa: (a * b) * c = a * (b * c) para cada a, b, $c \in G$.

Se dirá que es un grupo <u>abeliano</u> o <u>conmutativo</u> si además verifica:

Ejemplo.

$$(\mathbb{Z},+)$$

 $a+b=b+a \quad \forall a, b \in \mathbb{Z}$
 Demostrarlo en general

$$In[]:=$$
 $G=\{2,3,4,5\};$ operacion= $\{\{2,3,4,5\},\{3,2,5,4\},\{4,5,3,2\},\{5,4,2,3\}\};$ **CONMUTATIVA**

Otros ejemplos:

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} son grupos aditivos abelianos
- 2. \mathbb{Q}^* , \mathbb{R}^* y \mathbb{C}^* , son grupos multiplicativos abelianos
- 3. $(\mathbb{Z}_n, +)$ y $(\mathbb{Z}_p \{0\}, \cdot)$ son grupos conmutativos
- 4. Sea S conjunto no vacío, las transformaciones de S es un grupo no conmutativo, con la composición.

Notación:

- Si (G,+) grupo, entonces e= O y a'=-a
- Si (G,\cdot) grupo, entonces e=1 y a'= a^{-1}

Proposición. Sea (G,*) grupo. Entonces el elemento neutro y el elemento simétrico son únicos.

Proposición. Sea (G,*) grupo. Entonces se verifican:

- 1. $a*b=e \Rightarrow a=b' y a'=b$
- 2. $a*b=a*c \Rightarrow b=c$ y $b*a=c*a \Rightarrow b=c$
- 3. $a*b=b \Rightarrow a=e \ y \ b*a=b \Rightarrow a=e$
- 4. (a*b)'=b'*a'
- 5. (a')'=a

Grado en Ingeniería Informática

2. SUBGRUPOS

Definición. Sea (G,*) grupo. Llamaremos subgrupo de G a todo subconjunto de G,

 $H \neq \emptyset$, verificando las siguientes propiedades:

- i. $e_G \in H$
- ii. Para cada $a \in H \Rightarrow a' \in H$
- iii. Para todo a, $b \in H \Rightarrow a * b \in H$

Proposición. Sea (G,*) grupo, $H \subseteq G$, $H \neq \emptyset$. Entonces

H es subgrupo de G si y sólo si $\forall a, b \in H \Rightarrow a * b' \in H$

Ejemplos:

1. {e} y G son los subgrupos impropios

Grado en Ingeniería Informática 2. SUBGRUPOS

$$2. G = \{2, 3, 4, 5\}$$

+	2	3	4	5
2	2	3	4	15
3	3	2	5	4
4	4	5	3	2
5	5	4	2	3

- $H_1 = \{2,3\}$ es subgrupo
- $H_2=\{2,4\}$ no es subgrupo
- $H_3 = \{4,5\}$ no es subgrupo

3. *Teorema*. Todos los subgrupos de \mathbb{Z} son de la forma $n\mathbb{Z}$, para algún $n \ge 0$

Grado en Ingeniería Informática 2. SUBGRUPOS

CÁLCULO DE SUBGRUPOS:

Definición. Llamamos *orden* de un grupo G, finito, |G|, al número de elementos del mismo.

Teorema de Lagrange. Sea G un grupo finito. Si H subgrupo de G entonces |H| divide a |G|.

Observación: En el caso de un grupo finito, el teorema descarta aquellos subconjuntos que no pueden ser subgrupos (atendiendo al orden)

Grado en Ingeniería Informática 3. PERMUTACIONES, CICLOS Y TRASPOSICIONES

Definición. Sea $S=\{1, 2, ..., n\}$. Llamamos $S_n=(B(S), 0)$ el grupo simétrico o de las permutaciones de n elementos. A sus elementos los notaremos

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

y los llamaremos permutaciones.

Teorema. S_n es un grupo, no abeliano $(\forall n \ge 3)$ y $|S_n| = n!$

Definición. Llamamos *ciclo de longitud r*, a todo $\tau \in S_n$ para el que existe

$$\{i_1,...,i_r\}\subseteq\{1,2,...,n\}$$
 tal que:

$$\tau(i_1) = i_2; \tau(i_2) = i_3; ...; \tau(i_{r-1}) = i_r; \tau(i_r) = i_1$$

y $\forall j \in \{1, 2, ..., n\} - \{i_1, ..., i_r\}$ entonces $\tau(j) = j$. Lo notaremos $\tau = (i_1, ..., i_r)$.

Llamaremos trasposición a todo ciclo de longitud 2.

Grado en Ingeniería Informática 3. PERMUTACIONES, CICLOS Y TRASPOSICIONES

Proposición. Si τ es un ciclo de longitud r de S_n , entonces $\tau^r=I$

Definición. Dos *ciclos* se dicen *disjuntos* si los elementos que mueve cada uno quedan fijos por el otro.

Proposición. Ciclos disjuntos conmutan.

Teorema de estructura. Toda permutación de S_n, distinta de la identidad, descompone de forma única, salvo el orden, como composición de ciclos disjuntos.

Corolario. Toda permutación de S_n descompone como composición de trasposiciones

Grado en Ingeniería Informática 4. DESCOMPOSICIÓN DE UNA PERMUTACIÓN

Proposición. Si τ es un ciclo de longitud r de S_n , entonces $\tau^r=I$

Definición. Dos *ciclos* se dicen *disjuntos* si los elementos que mueve cada uno quedan fijos por el otro.

Proposición. Ciclos disjuntos conmutan.

Teorema de estructura. Toda permutación de S_n , distinta de la identidad, descompone de forma única, salvo el orden, como composición de ciclos disjuntos.

 $\it Corolario$. Toda permutación de S_n descompone como composición de trasposiciones

Grado en Ingeniería Informática 5. SIGNATURA DE UNA PERMUTACIÓN

Definiciones. Sea $\sigma \in S_n$. Diremos que i, $j \in \{1, 2, ..., n\}$ dan una *inversión* en σ si $i < j \Rightarrow \sigma(i) > \sigma(j)$

Notaremos $I(\sigma)$ al número de inversiones de σ .

Llamaremos *signatura de \sigma*, sign $(\sigma)=(-1)^{I(\sigma)}$

Una permutación $\sigma \in S_n$ se dice $par \Leftrightarrow I(\sigma)$ es par $\Leftrightarrow sign(\sigma)=1$

Una permutación $\sigma \in S_n$ se dice $impar \Leftrightarrow I(\sigma)$ es $impar \Leftrightarrow sign(\sigma)=-1$

Proposición. Toda trasposición de S_n es impar

Grado en Ingeniería Informática 5. SIGNATURA DE UNA PERMUTACIÓN

Lema 1. Si τ es una trasposición de S_n , entonces $sign(\tau \sigma) = -sign(\sigma)$.

Proposición 1. Si
$$\sigma \in S_n$$
 y $\sigma = \tau_1 \dots \tau_p$ donde τ_i son trasposiciones, entonces $sign(\sigma) = (-1)^p$

Lema 2. Si
$$\sigma \in S_n$$
 y $\sigma = \tau_1 \dots \tau_p = \tau'_1 \dots \tau'_q$ donde τ_i y τ'_j son trasposiciones, entonces p y q tienen la misma paridad

Proposición 2. Si
$$\sigma, \beta \in S_n$$
, entonces
$$sign(\sigma\beta) = sign(\sigma)sign(\beta)$$

Grado en Ingeniería Informática 6. EL SUBGRUPO ALTERNADO

Definición. Consideremos S_n el grupo simétrico.

Notaremos $A_n = \{ \sigma \in S_n : sign(\sigma) = 1 \}$

Proposición. A_n es un subgrupo de S_n y $|A_n| = \frac{n!}{2}$

 A_n se llama el subgrupo alternado de S_n

Grado en Ingeniería Informática ÁLGEBRA

TEMA 2. EL GRUPO SIMÉTRICO