

ASK QUESTION LOG IN JOIN FOR FREE

Textbook Solutions > Linear Algebra: A Modern Introducti... > Chapter 6: Vector Spaces > Exercise 35

Exercise 35, Linear Algebra: A Modern Introduction, 4th

Solved by experts

NEXT QUESTION

Linear Algebra: A Modern Introduction, 4th Edition, Chapter 6: Vector Spaces

Exercise 35, Page 514

Exercise 35 Answer

Step by step explanation

HIDE ALL

In this question, we will find eigenvalue.

Explanation

Tip

• We will take β as the standard basis.

- As $[\mathsf{T}]_{\beta}$ is diagonalizable. We take $\,\beta=\mathsf{C}$ and $\,[\mathsf{T}]_{\beta}=[\mathsf{T}]_{c}$

Step 1 of 1

^

Let, $\beta = \{1, x\}$ be the standard basis of P_1

Then,

$$T(1) = 1$$

$$T(x) = 2x$$

Thus,

$$[\mathsf{T}]_\beta = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

Since, $[T]_{\beta}$ is diagonalizable.

 $C = \beta = \{1, x\}$ is the basis of P_1 such that $[T]_c$ is a diagonal matrix.

Therefore, T is diagonalizable.

$$\begin{aligned} \mathbf{C} &= \{1, x\} \\ \left[\mathbf{T}\right]_c &= \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \end{aligned}$$

Did you find what you were looking for?

ß

Related books SEE ALL