FORMULES DE DÉRIVATION

FORMULES D'INTÉGRATION

1
$$c' = 0$$

2
$$(u+v)' = u' + v'$$

$$3 \quad (uv)' = uv' + vu'$$

$$4 \quad \left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}$$

5
$$\left[f(g(x))\right]' = f'(g(x))g'(x)$$

$$6 \quad (u^n)' = n \cdot u^{n-1} \cdot u'$$

7
$$(e^u)' = e^u \cdot u'$$

8
$$(a^u)' = a^u \cdot \ln a \cdot u'$$

9
$$(\ln |u|)' = \frac{1}{u} \cdot u'$$

$$\mathbf{10} \quad (\log_a |u|)' = \frac{1}{u \cdot \ln a} \cdot u'$$

11
$$(\sin u)' = \cos u \cdot u'$$

$$12 \quad (\cos u)' = -\sin u \cdot u'$$

13
$$(\operatorname{tg} u)' = \sec^2 u \cdot u'$$

14
$$(\cot u)' = -\csc^2 u \cdot u'$$

15
$$(\sec u)' = \sec u \cdot \operatorname{tg} u \cdot u'$$

16
$$(\csc u)' = -\csc u \cdot \cot u \cdot u'$$

17
$$(Arc \sin u)' = \frac{1}{\sqrt{1 - u^2}} \cdot u'$$

18
$$(\operatorname{Arc}\cos u)' = \frac{-1}{\sqrt{1-u^2}} \cdot u'$$

19
$$(\operatorname{Arc} \operatorname{tg} u)' = \frac{1}{1 + u^2} \cdot u'$$

20
$$(\operatorname{Arc} \sec u)' = \frac{1}{u \cdot \sqrt{u^2 - 1}} \cdot u'$$

$$1 \quad \int u \, dv = uv - \int v \, du$$

2
$$\int u^n du = \frac{1}{n+1} \cdot u^{n+1} + C, n \neq -1$$

$$3 \int \frac{1}{u} du = \ln|u| + C$$

$$4 \quad \int e^u \, du = e^u + C$$

$$\int a^u \, du = \frac{1}{\ln a} \cdot a^u + C$$

$$\int \sin u \, du = -\cos u + C$$

$$7 \quad \int \cos u \, du = \sin u + C$$

$$\mathbf{8} \quad \int \sec^2 u \, du = \operatorname{tg} u + C$$

9
$$\int \csc^2 u \, du = -\cot u + C$$

10
$$\int \sec u \cdot \operatorname{tg} u \, du = \sec u + C$$

11
$$\int \csc u \cdot \cot u \, du = -\csc u + C$$

$$12 \quad \int \operatorname{tg} u \, du = -\ln|\cos u| + C$$

13
$$\int \cot u \, du = \ln |\sin u| + C$$

14
$$\int \sec u \, du = \ln|\sec u + \operatorname{tg} u| + C$$

15
$$\int \csc u \, du = \ln|\csc u - \cot u| + C$$

16
$$\int \frac{1}{\sqrt{a^2 - u^2}} du = \operatorname{Arc} \sin \frac{u}{a} + C$$

17
$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \cdot \operatorname{Arctg} \frac{u}{a} + C$$

18
$$\int \frac{1}{u \cdot \sqrt{u^2 - a^2}} du = \frac{1}{a} \cdot \operatorname{Arc} \sec \frac{u}{a} + C$$

19
$$\int \frac{1}{a^2 - u^2} du = \frac{1}{2a} \cdot \ln \left| \frac{u + a}{u - a} \right| + C$$

20
$$\int \frac{1}{\sqrt{u^2 - a^2}} du = \ln \left| u + \sqrt{u^2 - a^2} \right| + C$$

FORMULES DE GÉOMÉTRIE

Aire A; périmètre p; volume V; aire de la surface latérale S; hauteur h; rayon r

TRIANGLE RECTANGLE

Théorème de Pythagore : $c^2 = a^2 + b^2$

TRIANGLE

$$A = \frac{1}{2}bh \quad p = a + b + c$$

TRIANGLE ÉQUILATÉRAL

$$A = \frac{1}{2}bh \quad p = a+b+c \qquad \qquad 1 \qquad \qquad h = \frac{\sqrt{3}}{2}s \quad A = \frac{\sqrt{3}}{4}s^2$$

RECTANGLE

$$A = lw$$
 $C = 2l + 2w$

PARALLÉLOGRAMME

$$A = bh$$

TRAPÈZE

$$A = \frac{1}{2}(a+b)h$$

CERCLE

$$A=\pi r^2 \quad p=2\pi r$$

SECTEUR CIRCULAIRE

$$A = \frac{1}{2}r^2\theta \quad S = r\theta$$

ANNEAU CIRCULAIRE

$$A = \pi (R^2 - r^2)$$

PARALLÉLÉPIPÈDE RECTANGLE

 $V = lwh \quad S = 2(hl + lw + hw)$

SPHÈRE

$$V = \frac{4}{3}\pi r^3 \quad S = 4\pi r^2$$

CYLINDRE CIRCULAIRE DROIT

 $V = \pi r^2 h$ $S = 2\pi r h$

CÔNE CIRCULAIRE DROIT

 $V = \frac{1}{3}\pi r^2 h$ $S = \pi r \sqrt{r^2 + h^2}$

TRONC DE CÔNE

$$V = \frac{1}{3}\pi h(r^2 + rR + R^2)$$

PRISME

V=Bhoù B est l'aire de la base

EXPOSANTS ET RADICAUX

$$a^m a^n = a^{m+n}$$

$$a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

$$(a^m)^n = a^{mn}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$(ab)^n = a^n b^n$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

$$\frac{a^m}{a^m} = a^{m-n}$$

$$a^{-n} = \frac{1}{a^n}$$

VALEUR ABSOLUE (d > 0)

$$|x| < d$$
 si et seulement si $-d < x < d$

$$-d < x < \epsilon$$

$$|x| > d$$
 si et seulement si $x > d$ ou $x < -d$

$$x > a$$
 ou $x < -a$

$$|a+b| \le |a| + |b|$$
 (Inégalité triangulaire)

$$-|a| \leqslant a \leqslant |a|$$

INÉGALITÉS

Si
$$a > b$$
 et $b > c$, alors $a > c$

Si
$$a > b$$
, alors $a + c > b + c$

Si
$$a > b$$
 et $c > 0$, alors $ac > bc$

Si
$$a > b$$
 et $c < 0$, alors $ac < bc$

TRINOME DU SECOND DEGRÉ

Si $a \neq 0$, les racines de $ax^2 + bx + c = 0$ sont

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

LOGARITHMES

$$y = \log_a x$$
 signifie $a^y = x \quad \log_a 1 = 0$

$$\log_a xy = \log_a x + \log_a y \qquad \log_a a = 1$$

$$\log a = 1$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y \qquad \log x = \log_{10} x$$

$$\log x = \log_{10} x$$

$$\log_a x^r = r \log_a x$$

$$\ln x = \log_e x$$

BINÔME DE NEWTON

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^2 +$$

$$\dots + \binom{n}{k} x^{n-k} y^k + \dots + y^n,$$

avec
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

FORMULE DE LA DISTANCE

ÉQUATION D'UN CERCLE

PENTE m D'UNE DROITE

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

ÉQUATION D'UNE DROITE EN FONCTION DE LA PENTE m ET D'UN POINT (x_1,y_1)

$$y - y_1 = m(x - x_1)$$

ÉQUATION D'UNE DROITE D'ORDONNÉE A L'ORIGINE b ET DE PENTE m

$$y = mx + b$$

GRAPHIQUE D'UNE ÉQUATION **DU SECOND DEGRÉ**

$$y = ax^2, \quad a > 0$$

$$y = ax^2 + bx + c, \quad a > 0$$

TRIGONOMÉTRIE

FONCTIONS TRIGONOMÉTRIQUES

D'ANGLES AIGUS

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} \quad \csc \theta = \frac{\text{hyp}}{\text{opp}}$$
$$\cos \theta = \frac{\text{adj}}{\text{hyp}} \quad \sec \theta = \frac{\text{hyp}}{\text{adj}}$$
$$\tan \theta = \frac{\text{opp}}{\text{adj}} \quad \cot \theta = \frac{\text{adj}}{\text{opp}}$$

D'ANGLES QUELCONQUES

$$\sin \theta = \frac{b}{r}$$
 $\csc \theta = \frac{r}{b}$

$$tg \theta = \frac{b}{a} \qquad \cot \theta = \frac{a}{b}$$

DE NOMBRES RÉELS

$$\sin t = y$$
 $\operatorname{cosec} t = \frac{1}{y}$

$$\cos t = x$$
 $\sec t = \frac{1}{x}$
 $\operatorname{tg} t = \frac{y}{x}$ $\cot t = \frac{x}{y}$

TRIANGLES PARTICULIERS

VALEURS PARTICULIÈRES

θ deg	θ rad	$\sin \theta$	$\cos \theta$	$\operatorname{tg}\theta$	$\cot \theta$	$\sec \theta$	$\operatorname{cosec} \theta$
0°	0	0	1	0	_	1	_
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	_	0	_	1

IDENTITÉS TRIGONOMÉTRIQUES

$$\csc t = \frac{1}{\sin t}$$
 $\operatorname{tg} t = \frac{\sin t}{\cos t}$ $\operatorname{sec} t = \frac{1}{\cos t}$ $\operatorname{cotg} t = \frac{\cos t}{\sin t}$

$$\cos t$$
 $\sin t$

$$\cot t = \frac{1}{\operatorname{tg} t}$$

$$\sin^2 t + \cos^2 t = 1$$

$$1 + \operatorname{tg}^2 t = \sec^2 t$$

$$\sin(-t) = -\sin t$$

$$\cos(-t) = \cos t$$

$$1 + tg^{2} t = sec^{2} t \qquad cos(-t) = cos t$$

$$1 + cotg^{2} t = cosec^{2} t \qquad tg(-t) = -tg t$$

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$

$$\cos(u+v) = \cos u \cos v - \sin u \sin v$$

$$tg(u+v) = \frac{tg u + tg v}{1 - tg u tg v}$$

$$\sin(u - v) = \sin u \cos v - \cos u \sin v$$

$$\cos(u - v) = \cos u \cos v + \sin u \sin v$$

$$tg(u - v) = \frac{tg u - tg v}{1 + tg u tg v}$$

$$\sin 2u = 2\sin u\cos u$$

$$\cos 2u = \cos^2 u - \sin^2 u = 1 - 2\sin^2 u = 2\cos^2 u - 1$$

$$\operatorname{tg} 2u = \frac{2\operatorname{tg} u}{1 - \operatorname{tg}^2 u}$$

$$\left|\sin\frac{u}{2}\right| = \sqrt{\frac{1-\cos u}{2}} \qquad \left|\cos\frac{u}{2}\right| = \sqrt{\frac{1+\cos u}{2}}$$

$$\operatorname{tg}\frac{u}{2} = \frac{1 - \cos u}{\sin u} = \frac{\sin u}{1 + \cos u}$$

$$\sin^2 u = \frac{1 - \cos 2u}{2}$$
 $\cos^2 u = \frac{1 + \cos 2u}{2}$

$$\sin u \cos v = \frac{1}{2} \left[\sin(u+v) + \sin(u-v) \right]$$

$$\cos u \sin v = \frac{1}{2} \left[\sin(u+v) - \sin(u-v) \right]$$

$$\cos u \cos v = \frac{1}{2} \left[\cos(u+v) + \cos(u-v) \right]$$

$$\sin u \sin v = \frac{1}{2} \left[\cos(u - v) - \cos(u + v) \right]$$