		•
$(- \cap \cap)$		11117
Gee	NSU	/UIZ
	– –	

Computer science mock tests for geeks

Analysis of Algorithms (Recurrences)

Question 1

What is the value of following recurrence.

$$T(n) = T(n/4) + T(n/2) + cn^2$$

T(1) = c

T(0) = 0

Where c is a positive constant

O(n^3)

O(n^2)

O(n^2 Logn)

O(nLogn)

Discuss it

Question 2

What is the value of following recurrence. T(n) = 5T(n/5) + \sqrt{n} , T(1) = 1, T(0) = 0

A Theta (n)

B Theta (n^2)

Theta (sqrt(n))

Theta (nLogn)

Discuss it

Question 3

What is the worst case time complexity of following implementation of subset sum problem.

```
// Returns true if there is a subset of set[] with sun equal to given sum
bool isSubsetSum(int set[], int n, int sum)
{
   // Base Cases
   if (sum == 0)
    return true;
   if (n == 0 && sum != 0)
    return false;
   // If last element is greater than sum, then ignore it
   if (set[n-1] > sum)
    return isSubsetSum(set, n-1, sum);
   /* else, check if sum can be obtained by any of the following
      (a) including the last element
      (b) excluding the last element
   return isSubsetSum(set, n-1, sum) ||
          isSubsetSum(set, n-1, sum-set[n-1]);
```

O(n * 2^n)

B O(n^2)

O(n^2 * 2^n)

O(2^n)

Discuss it

Question 4

Suppose T(n) = 2T(n/2) + n, T(0) = T(1) = 1 Which one of the following is false. (GATE CS 2005)

- a) $T(n) = O(n^2)$
- b)T(n) = θ (nLogn)
- c)T(n) = Ω (n^2)
- d)T(n) = O(nLogn)
 - A
 - B i
 - C

Discuss it

Question 5

Consider the following recurrence:

$$T\left(n\right) =2T\left(\left\lceil \sqrt{n}\, \right\rceil \right) +1,T\left(1\right) =1$$

Which one of the following is true?

- (A) T(n) = θ (loglogn)
- (B) T(n) = θ (logn)
- (C) T(n) = θ (sqrt(n))
- (D) T(n) = θ (n)
 - A
 - Вв

C	C
D	D
Discuss i	t
Question	6
The runn	ing time of an algorithm is represented by the following recurrence relation:
	if n <= 3 then T(n) = n else T(n) = T(n/3) + cn
Which on (A) $ heta$ (n) (B) $ heta$ (n lo (C) $ heta$ (n^2	
A	A
В	В
C	c
D	D
Discuss i	t
Question	7

The running time of the following algorithm

```
Procedure A(n) If n <= 2 return(1) else return A(\lceil \sqrt{n} \rceil);
```

is best described by

- **A** O(n)
- B O(log n)
- O(1og log n)
- O(1)

Discuss it

Question 8

What is the time complexity of the following recursive function:

```
int DoSomething (int n)
{
  if (n <= 2)
    return 1;
  else
    return (DoSomething (floor(sqrt(n))) + n);
}</pre>
```

- (A) heta(n)
- (B) heta(nlogn)
- (C) heta(logn)
- (D) θ (loglogn)
 - A
 - Вв

Сс
D D
Discuss it
Question 9
The time complexity of the following C function is (assume n > 0 (GATE CS 2004) int recursive (mt n) { if (n == 1)
<pre>return (1); else return (recursive (n-1) + recursive (n-1)); }</pre>
A 0(n) B 0(nlogn)
O(n^2)
O(2^n)
Discuss it
Question 10
Consider the following recurrence T(n) = 3T(n/5) + $\log n$ what is the value of T(n)? (A) $\Theta(n^{\log_5 3})$ (B) $\Theta(n^{\log_3 5})$ (c) $\Theta(nLogn)$ (D) $\Theta(Logn)$

Which or = 1?	ne of the following correctly determines the solution of the recurrence relation with T(1)	
Question	12	
Discuss i	it	
D	D	
C	C	
В	В	
A	A	
recurren (A) $\Theta(L)$ (B) $\Theta(L)$ (B) $\Theta(n)$	$egin{align} LogLogn)^2) \ ogLogn) \ \end{array}$	
Question	11	
Discuss i	i t	
D	D	
С	C	
В	В	
A	A	

T(n) = 2T(n/2) + Logn

- **Δ** Θ(n)
- B O(nLogn)
- Θ(n*n)
- Θ(log n)

Discuss it

Question 13

$$T(1) = 1$$

$$T(n + 1) = T(n) + \lfloor \sqrt{n+1} \rfloor$$
 for all $n \ge 1$

Consider the following recurrence relation value of $T(m^2)$ for $m \ge 1$ is

The

- Α
- (m/6) (21m 39) + 4
- В
- $(m/6) (4m^2 3m + 5)$
- (m/2) (m^{2.5} 11m + 20) 5
- D
 - (m/6) (5m³ 34m² + 137m 104) + (5/6)

Discuss it

Question 14

The solution to the recurrence equation $T(2^k) = 3 T(2^{k-1}) + 1$, T(1) = 1, is:

A 2^k

 $(3^{k+1}-1)/2$

3log^{2k}

 $2^{\log^{3k}}$

Discuss it

Question 15

Select the correct asymptotic complexity of an algorithm with runtime T(n, n) where

$$T(x, c) = \Theta(x)$$
 for $c <= 2$,
 $T(c, y) = \Theta(y)$ for $c <= 2$, and
 $T(x, y) = \Theta(x+y) + T(x/2, y/2)$

A Θ(nLogn)

 $B \Theta(n^2)$

O(n)

Θ(n²Logn)

Discuss it

Question 16

Let f(n) = n and $g(n) = n^{(1+\sin n)}$, where n is a positive integer. Which of the following statements is/are correct?

I. f(n) = O(g(n))

II. $f(n) = \Omega(g(n))$

A Only I

B Only II

Both I and II

Neither I nor II

Discuss it

There are 16 questions to complete.

Tweet 0 8+1 0

Iconic One Theme | Powered by Wordpress