Homework 5

1. (a) Three-point midpoint formula yields an error no greater than $\frac{h^2}{6}|f^{(3)}(\xi)|$, and five-point endpoint formula yields an error no greater than $\frac{h^4}{5}|f^{(5)}(\xi)|$. With an assumption that $f^{(3)}$ and $f^{(5)}$ are of the same scale, the five-point endpoint formula is better than the three-point midpoint formula in general. Using the five-point midpoint formula if it is possible and the five-point endpoint formula otherwise, we have (h=0.2)

•
$$f'(-3.0) \approx \frac{1}{12h}[-25f(-3.0) + 48f(-2.8) - 36f(-2.6) + 16f(-2.4) - 3f(-2.2)] = -19.08087$$
, (endpoint)

•
$$f'(-2.8) \approx \frac{1}{12h}[-25f(-2.8) + 48f(-2.6) - 36f(-2.4) + 16f(-2.2) - 3f(-2.0)] = -15.44088$$
, (endpoint)

•
$$f'(-2.6) \approx \frac{1}{12h} [f(-3.0) - 8f(-2.8) + 8f(-2.4) - f(2.2)] = -12.46303$$
, (midpoint)

•
$$f'(-2.4) \approx \frac{1}{12h} [f(-2.8) - 8f(-2.6) + 8f(-2.2) - f(2.0)] = -10.02259$$
, (midpoint)

•
$$f'(-2.2) \approx \frac{1}{-12h}[-25f(-2.2) + 48f(-2.4) - 36f(-2.6) + 16f(-2.8) - 3f(-3.0)] = -8.020973$$
, (endpoint, reversed)

•
$$f'(-2.0) \approx \frac{1}{-12h}[-25f(-2.0) + 48f(-2.2) - 36f(-2.4) + 16f(-2.6) - 3f(-2.8)] = -6.385728$$
, (endpoint, reversed)

(b)

x	f(x)	f'(x) (approx)	f'(x) (true)	$\int f'_{approx}(x) - f'_{true}(x)$
-3.0	16.08554	-19.08087	-19.08554	0.00467
-2.8	12.64465	-15.44088	-15.44465	0.00377
-2.6	9.863738	-12.46303	-12.46374	0.00071
-2.4	7.623176	-10.02259	-10.02318	0.00059
-2.2	5.825013	-8.020973	-8.025013	0.004040
-2.0	4.389056	-6.385728	-6.389056	0.003328

For those obtained by the midpoint formula, the error bound is $(h = 1/5, f^{(5)}(x) = -e^{-x})$

|absolute error|
$$\leq \frac{h^4}{30} \max_{x \in [-3, -2]} |f^{(5)}(x)| = e^3/(30 \cdot 5^4) \approx 0.0010712286.$$

For those obtained by the endpoint formula, the error bound is $(h = 1/5, f^{(5)}(x) = -e^{-x})$

|absolute error|
$$\leq \frac{h^4}{5} \max_{x \in [-3,-2]} |f^{(5)}(x)| = e^3/5^5 \approx 0.0064273718.$$

Both bounds are admissible, seeing the actual data.

2.

Now define $\tilde{N}(h)=(3^2-1)^{-1}[3^2N(\frac{h}{3})-N(h)]$ and

$$\tilde{K}_j = \frac{1}{3^2 - 1} (3^{-2(j-1)} - 1) K_j.$$

In a similar fashion, we have

Therefore,

$$\begin{split} \overset{\approx}{N}(h) &\coloneqq \frac{1}{3^4 - 1} \left(3^4 \tilde{N} \left(\frac{h}{3} \right) - \tilde{N}(h) \right) \\ &= \frac{3^6}{(3^4 - 1)(3^2 - 1)} \, N \left(\frac{h}{9} \right) \\ &\quad - \frac{3^4 + 3^2}{(3^4 - 1)(3^2 - 1)} \, N \left(\frac{h}{3} \right) + \frac{1}{(3^4 - 1)(3^2 - 1)} \, N(h) \\ &= \frac{1}{640} \left[729 N \left(\frac{h}{9} \right) - 90 N \left(\frac{h}{3} \right) + N(h) \right] \end{split}$$

is an $O(h^6)$ approximation to M.

3. (a)

$$\begin{array}{c|c} h & N(h) \\ \hline 0.01 & 2.718304481241747 \\ 0.02 & 2.718372444800622 \\ 0.04 & 2.718644377221238 \\ \end{array}$$

An $O(h^j)$ approximation of e can be obtained by the following recurrence formula: $N_1(h) = N(h) = e + O(h)$,

$$N_j(h) = N_{j-1}(h/2) + \frac{N_{j-1}(h/2) - N_{j-1}(h)}{2^{j-1} - 1},$$

and it gives

$$\begin{split} N_2(h) &= 2N(h/2) - N(h) = 2\left(\frac{4+h}{4-h}\right)^{2/h} - \left(\frac{2+h}{2-h}\right)^{1/h}, \\ N_3(h) &= N_2(h/2) + \frac{N_2(h/2) - N_2(h)}{3} = \frac{4}{3}N_2(h/2) - \frac{1}{3}N_2(h) \\ &= \frac{8}{3}N(h/4) - 2N(h/2) + \frac{1}{3}N(h) = e + O(h^3). \end{split}$$

Evaluating at h = 0.4, we have $N_3(0.4) = 2.718281852783827$.

(b) Since $e-N(h)=K_1h+K_2h^2+\cdots$ is an even function, every coefficient of an odd degree term should be vanished. Therefore, $K_j=0$ for every odd j. Then an $O(h^{2j})$ approximation \tilde{N}_j to e can be made as follows: $\tilde{N}_1(h)=N(h)=e+O(h^2)$,

i.e.,

$$\tilde{N}_j(h) = \tilde{N}_{j-1}(h/2) + \frac{\tilde{N}_{j-1}(h/2) - \tilde{N}_{j-1}(h)}{2^{2(j-1)} - 1} = e + O(h^{2j}).$$

We need to find \tilde{N}_3 :

$$\tilde{N}_2(h) = N(h/2) + \frac{N(h/2) - N(h)}{3} = \frac{4}{3}N(h/2) - \frac{1}{3}N(h),$$

$$\tilde{N}_3(h) = \tilde{N}_2(h/2) + \frac{\tilde{N}_2(h/2) - \tilde{N}_2(h)}{15}$$

$$=\frac{1}{45}\left[64N\left(\frac{h}{4}\right)-20N\left(\frac{h}{2}\right)+N(h)\right].$$

Evaluating at h = 0.4, we have $\tilde{N}_3(0.4) = 2.718281828459570$.

4. With $f(x) = x^k$ (k = 0, 1, 2, 3, 4),

$$\int_{-1}^{1} dx = 2 = a + b + c,$$

$$\int_{-1}^{1} x^{k} dx = \frac{1}{k+1} (1 - (-1)^{k+1}) = a \cdot (-1)^{k} + c + dk(-1)^{k-1} + ek. \quad (k > 0)$$

Thus, we have

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & -2 & 2 \\ -1 & 0 & 1 & 3 & 3 \\ 1 & 0 & 1 & -4 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2/3 \\ 0 \\ 2/5 \end{pmatrix},$$

which yields $(a, b, c, d, e) = \frac{1}{15}(7, 16, 7, 1, -1).$