¹ Enhanced tunability in ferroelectric composites through local field ² enhancement and the effect of disorder

Benjamin Vial and Yang Hao¹

School of Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,

United Kingdom

We investigate numerically the homogenized permittivities of metamaterials made of low index dielectric inclusions in a feroelectric matrix under a static electric field. A refined model is used to take into account the coupling between the electrostatic problem and the electric field dependent permittivity of the ferroelectric material, leading to a local field enhancement and permittivity change in the ferroelectric. Periodic and pseudo-random structures in two dimensions are investigated and we compute the effective permittivity, losses, electrically induced anisotropy and tunability of those metamaterials. We show that the tunability of such composites might be substantially enhanced in the periodic case, wherehas introducing disorder in the microstructure weaken the effect of enhanced local permittivity change. Our results may be useful to guide the synthesis of novel composite ceramics with improved characteristics for controllable microwave devices.

6 I. INTRODUCTION

Ferroelectric materials play a crucial role in recon-8 figurable microwave devices, with typical applications 9 including antenna beam steering, phase shifters, tun-10 able power splitters, filters, voltage controlled oscillators and matching networks¹. Both bulk ceramics and thin films have been employed to design frequency agile components $^{2-4}$ and metamaterials 5,6 . The main reason of using ferroelectric materials is their strong dependence of their permittivity ε on an applied electric field E, which is measured by their tunability defined as $n = \varepsilon(0)/\varepsilon(E)$, along with a non hysteresis behaviour when used in their paraelectric state. The key requirements for antenna and microwave applications are large tunability and low losses. These two characteristics are correlated and one has to find a trade-off for optimal device performance, which can be quantified by the so called commutation quality factor $K = (n-1)^2/(n \tan \delta(0) \tan \delta(E))$, where $\tan \delta$ is the loss tangent.

These materials have usually high permittivity values even at microwave frequencies, often leading to slow response time and impedance mismatch, which can be an issue in some practical applications. Thus it has been considered to mix ferroelectric ceramics to low-index and low-loss non-tunable dielectrics in order to reduce both permittivity values and losses, or to use porous ceramics to achieve the same goals without unwanted chemical re-33 actions at the boundaries between dissimilar materials. The effective parameters of those composites have been investigated^{7–10} and it has been found that the permittivity can be greatly reduced while losses are much less sensitive to the dielectric phase addition, and in some situations lead to a small increase of the tunability of the mixtures. Analytical models based on the Bruggeman effective medium approach for low concentration of dielectrics were derived for different configurations (colum-42 nar, layered and spherical inclusions models) and have 43 successfully be compared with numerical simulations and ⁴⁴ experiments⁷. In the context of porous ferroelectrics, 45 the homogenized properties strongly depends on the size

46 and morphology of the pores^{11,12}. Recently, the con-47 cept of tailoring the nonlinear properties of ferroelectric 48 and dielectric structures by local field engineering has been introduced^{13–15}. It was shown through finite ele-50 ment calculation including the nonlinear coupling, that by employing composite materials made of linear dielec-52 tric inclusions into a ferroelectric matrix, one can lower 53 the permittivity while maintaining high tunability, due 54 to the local field in the ferroelectric phase which is tuned 55 by the linear dielectric phase. Moreover, the effect of 56 grain sizes in ferroelectric ceramics was studied using a 57 model taking the field enhancement into account at the 58 grain boundaries, and the predicted behavior succesfully $_{59}$ compared to experimental data $^{14}.$ Generally, there is a 60 need for refined theoretical and numerical models to ex-61 plain and design tunable materials and composites with 62 tailored nonlinear properties.

63 This study investigates numerically the effective per-64 mittivity of composites made of dielectric inclusions in 65 a ferroelectric matrix by using a two-scale convergence 66 method 16,17. The originality lies in the fact that a fully 67 coupling model is employed to calculate the electrostatic 68 field distribution when a uniform biasing field is applied 69 on the structures, which will result in a local modifica- $_{70}$ tion of the permittivity in the ferroelectric phase due 71 to the microstructure. As compared to a simple uncou-72 pled model where the ferroelectric phase is only modi-73 fied through the biasing field, the resulting effective per-74 mittivity, dielectric losses, tunability and anisotropy sig-75 nificantly differ. In contrast with earlier sudies in the ₇₆ litterature ^{13,14}, we account for the non-linear coupling 77 beyond the first iteration and use two-scale convergence 78 homogenization analysis to obtain the effective parame-79 ters at higher frequencies, instead of a capacitance-based 80 model. The model we developed has been implemented 81 with the finite element method (FEM) and we realise a 82 systematic computational study of ferroelectric-dielectric 83 mixtures. First, we consider metamaterials consisting of 84 a squarre array of parallel dielectric rods with circular 85 cross section in a ferroelectric host, and then investigate 86 the effect of random distribution of those rods within the

FIG. 1. Variation of the ferroelectric permittivity as a function of the applied electric field (dots: measurements, dashed lines: fit to formula (1)), for the static case (green) and at microwave frequencies (orange, f = 3.8 GHz). The fitting parameters are given in Table I.

87 unit cell.

116

THEORY AND NUMERICAL MODEL

We consider a composite made of a ferroelectric 90 material with anisotropic permittivity $\pmb{arepsilon}^{\mathrm{f}}(\pmb{E})$ that is dependent on an applied electric field E, and a non tunable dielectric of permittivity $\varepsilon^{\rm d}$, which are both non-magnetic. The structures under study are $_{94}$ invariant along the z direction, which leads to the 95 standard decomposition of the wave equation in the transverse electric case (TE, electric field parallel to 98 case (TM, magnetic field parallel to the direction of 123 ting parameters are given in Table I. As the norm of the 99 invariance). A uniform biasing field is applied in order 124 field increases, the permittivity decreases with a charac-101 homogenized properties of this type of mixtures can be 126 paraelectric state. Furthermore, assuming the crystalline 102 done by assuming that the electric field distribution is 127 principal axes of the ferroelectric material are oriented in value of the properties in the ferroelectric phase and 130 corresponding bias electric field components²⁰, we have: computing the effective permittivity of the composite. We refer this approach as to the uncoupled model in the following. However, a more accurate description is to take into account the change of the electric field by 110 the microstructure, if any. We therefore need to solve 111 an electrostatic equation to find the field distribution 131 where each of the diagonal components have the func-113 permittivities of both materials, and the permittivity in 133 static values of permittivity for the electrostatic mod-114 the ferroelectric phase depends on this induced electric 134 elling, while we are interrested in the homogenized values 115 field: this leads to a strongly coupled problem.

TABLE I. Fitting parameters to model (1) for the measured permittivity values as a function of applied electrc field shown

case	$\varepsilon^{\mathrm{f}}(0)$	$\alpha \; (\mu \mathrm{m}^2/\mathrm{V}^2)$	$\beta \ (\mu \text{m}^4/\text{V}^4)$
static	3050	0.120	0.024
f = 3.8 GHz	165	0.240	0.079

Permittivity model

We use barium strontium titanate (BST) as our ferroelectric material. Measurements have been carried out at electrostatics and at microwave frequencies, and the normalized permittivity value as a function of biasing field are reported on Fig. (1).

To describe the permittivity, we make use of the Landau potential given by $F(P, E) = F_0 + aP^2/2 + bP^4/4 +$ $cP^6/6 - EP$, where E is the applied electric field and P is the polarization 18,19. Variations of the permittivity with the temperature can be taken into account through the coefficients a, b and c, but we assume we are working at a constant room temperature. We further assume that the material is not subject to any stress, so that the variation of permittivity due to mechanical constraints is irrelevant. The equation of state

$$\frac{\partial F(P,E)}{\partial P} = aP_0 + bP_0^3 + cP_0^5 - E = 0$$

 $_{118}$ gives the dependence of the polarization on the applied $_{119}$ electric field, with P_0 being the equilibrium polarization. 120 Along the direction of a uniform applied electric field, the 121 relative permittivity is given by:

$$\varepsilon^{f}(E) = \left[\frac{\partial^{2} F(P, E)}{\partial P^{2}}\right]^{-1} = \frac{\varepsilon^{f}(0)}{1 + \alpha P_{0}^{2} + \beta P_{0}^{4}}, \quad (1)$$

the direction of invariance) and the transverse magnetic 122 where $\varepsilon^{f}(0) = 1/a$, $\alpha = 3b/a$ and $\beta = 5c/a$. The fitto be able to tune the effective permittivity. Modelling 125 teristic bell curve typical for a ferroelectric material in its uniform throughout the sample, so that the study of 128 the coordinate directions, and that the diagonal compothe tunability is essentially achieved by changing the 129 nents of the permittivity tensor are only function of the

$$\boldsymbol{\varepsilon}^{\mathbf{f}}(\boldsymbol{E}) = \begin{pmatrix} \varepsilon_{xx}^{\mathbf{f}}(E_x) & 0 & 0\\ 0 & \varepsilon_{yy}^{\mathbf{f}}(E_y) & 0\\ 0 & 0 & \varepsilon_{zz}^{\mathbf{f}}(E_z) \end{pmatrix}$$
(2)

within the material, but its solution depends on the 132 tional form given by Eq. (1). Note that we will use the 135 of permittivity at microwaves.

FIG. 2. Convergence of the coupled problem. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i=1 (c and d) and i = 12 (e and f).

Electrostatic model

The composites under study are made of two materi-140 als, thus their permittivity is represented by a piecewise defined tensor arepsilon(r,E) which is equal to $arepsilon^{\mathrm{f}}(E(r))$ in the 142 ferroelectric phase and $\operatorname{diag}(\varepsilon^{\mathrm{d}})$ in the dielectric phase. 143 In the following, we consider two different cases for the 144 biasing field. Because of the form (2) assumed for the 145 ferroelectric permittivity tensor, ε_{zz} will not be changing 172 C. Homogenization for a field in the plane orthogonal to the z axis. This is the only component being relevant for TE polarization, 148 so we consider in this case a uniform biasing electric field $_{150}$ the other hand, the in-plane components of $\boldsymbol{\varepsilon}^{\mathrm{f}}$ are tuned 151 by E_x and E_y , therefore, without loss of generality, we 152 consider a uniform applied electric field directed along 153 the x axis $E_0 = E_0 e_x$ for the TM polarization case. To 154 calculate the total electric field in the material, one has $_{155}$ to solve the electrostatic equation for the potential V:

$$\nabla \cdot (\varepsilon \nabla V) = 0 \tag{3}$$

156 Note that for the TE case, the solution is trivial since 157 the structures are invariant along z, so that the electric 158 field is equal to the uniform biasing field, and we will $_{159}$ thus not study it in the following. However in the $_{180}$ where $\langle . \rangle$ denotes the mean value over the unit cell. The $_{160}$ TM case, the situation is much more complex: this is $_{181}$ elements of the matrix $\boldsymbol{\phi}$ represent correction terms and 161 a coupled problem since the electric field $E=-\nabla V$ 182 are given by $\phi_{ij}=\langle \xi \nabla \psi_i \rangle_j$. Finally the effective per-162 derived from the solution of Eq. (3) depends on the 183 mittivity tensor can be calculated using $\tilde{\epsilon} = \tilde{\xi}^{\mathrm{T}}/\det(\tilde{\xi})$. 163 permittivity distribution, which itself depends on the 184 Note that the TE case, which we shall not study here 164 electric field. The coupled system formed of Eqs. (2) 185 as no coupling happens, is trivial since the homogenized 165 and (3) is solved iteratively until there is convergence 186 permittivity is simply the average of the permittivity in 166 on the norm of the electric field. Here we would like 187 the unit cell: $\tilde{\epsilon} = \langle \epsilon \rangle$.

167 to emphasise that the permittivity in the ferroelectric 168 material, although uniform initially, is spatially varying 169 due to the non-uniform distribution of the total electric field.

The effective permittivity for TM polarization is cal-174 culated using two scale homogenization technique ^{16,17}. applied along the direction of invariance $E_0 = E_0 e_z$. On 175 For this purpose, one has to find the solutions ψ_j of two 176 annex problems $\mathcal{P}_{j}, j = \{1, 2\}$:

$$\nabla \cdot [\xi \nabla (\psi_i + r_i)] = 0, \tag{4}$$

where $\boldsymbol{r}=(x,y)^{\mathrm{T}}$ is the position vector in the xy plane 178 and $\boldsymbol{\xi} = \boldsymbol{\varepsilon}^{\mathrm{T}}/\mathrm{det}(\boldsymbol{\varepsilon})$. The homogenized tensor $\tilde{\boldsymbol{\xi}}$ is ob-179 tained with:

$$\tilde{\boldsymbol{\xi}} = \langle \boldsymbol{\xi} \rangle + \boldsymbol{\phi},\tag{5}$$

FIG. 3. Effective parameters of the 2D metamaterials as a function of the applied electric field for various filling fraction of dielectric. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines correspond to the coupled model and the dashed lines to the uncoupled model.

NUMERICAL RESULTS

In the following numerical results, the dielectric phase is supposed to be lossless and non dispersive with $\varepsilon^{\rm d}=3$ while the ferroelectric material follows the permittivity described in section II A and has a constant loss tangent $\tan \delta^{\rm f} = 10^{-2}$. Equations (3) and (4) are solved with a Finite Element Method using the open source packages $Gmsh^{21}$ and $GetDP^{22}$. In both cases we use a square 196 unit cell Ω of length d with periodic boundary conditions along x and y. Second order Lagrange elements are used and the solution is computed with a direct solver 199 (MUMPS²³).

Two dimensional periodic metamaterial

radius r embedded in a ferroelectric matrix. 207 and 2(b) show the convergence of the real part and loss 241 tivity and so it is envisioned that the performance of the 208 tangent of the components of the homogenized permit- 242 composites might be enhanced by engineering their mi-213 distribution of the electrostatic field within the unit cell 247 mogeneity of the electric field, thus making the effective 215 electric field is still much stronger than the y component, 249 added to the anisotropy arising from the material proper-216 even if spatially varying in the ferroelectric medium. At 250 ties of the ferroelectric phase itself, and depending on the

217 equilibrium, the electric field is concentrated close to the y axis in between two neighbouring rods. This in turn ²¹⁹ affects the permittivity distribution (see Figs. (2.e) and (2.f)), and the homogenized properties of the composite. We computed the effective parameters of these metama-222 terial structures for different radii of the rods and stud-223 ied their behaviour when subjected to an external elec-224 trostatic field (see Fig. (3)). The results of our coupled 225 model differ significantly from the uncoupled one. In-226 creasing the dielectric fraction lowers the effective per-227 mittivity while the losses are slightly reduced but much 228 less sensitive. Due to the inhomogeneous redistribution 229 of the permittivity over the ferroelectric domain, the 230 overall tunability changes. In the case studied here, tak-231 ing into account the coupling leads to an effective tun-232 ability increase with higher dielectric concentration, and 233 that is larger than the tunability of bulk ferroelectric. 234 Two concurrent effects are at stake here: on the one hand Lets us now consider a periodc square array of in- 235 the dilution of ferroelectric makes the composite less tun-202 finitely long dielectric rods of circular cross section of 236 able, but on the other hand, the rearrangement of the 237 electrostatic field surrounding the inclusion and its con-We first study the convergence of the coupled prob- 238 centration in some region will cause a higher permittivity lem on the particular case with dielectric filling fraction 239 change locally. The relative strength of those phenomena $f = \pi r^2/d^2 = 0.5$ and $E_0 = 2$ MV/m. Figures 2(a) ²⁴⁰ is governed by the shape of the inclusion and its permittivity tensor, respectively. The yy components converge 243 crostructure. The geometry of the unit cell is symmetric quickly and are almost unaffected by the coupling process 244 so the homogenized material is isotropic when no field whereas the xx components change substantially from 245 is applied. But when the sample is biased, the permitthe initial conditions. This is due to the effect of the re- 246 tivity distribution becomes asymmetric due to the inho-(see Figs. (2.c) and (2.d)), where the x component of the 248 material properties anisotropic. This geometric effect is

FIG. 4. Effective parameters of the pseudo-random composites as a function of the applied electric field for various filling fraction of dielectric, when the coupling is taken into account. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation.

coupled model.

Pseudo-random case

268

identical filling fraction, the permittivity is lower as com- 312 is a substantial variability from sample to sample, on 280 pared to the periodic array, and the smaller the dielectric 313 average, the anisotropy factor decreases with increasing 281 concentration the larger is the difference. Losses decrease 314 dielectric concentration.

topology and permittivity of the rods, one effect would be 282 as well and the reduction is substantially larger than the predominant. In the case studied here, the equilibrium 283 periodic case, with higher variation from sample to sampermittivity distribution varies strongly along the bias $_{284}$ ple as f increases. The effective tunability is on average direction and much less orthogonally to it, which adds 285 smaller than that in the periodic case, and for low biasing anisotropy by diminishing the effective permittivity in 286 fields and for some particular samples can be greater than the x direction. This is local field induced effect is what 287 the bulk tunability. However, at higher applied electric makes the anisotropy stronger in our coupled model com- 288 fields, normalized tunability becomes smaller than unity pared to the uncoupled one (cf. Fig. (3.d)). Those subtle 289 and is reduced as one adds more dielectric. For compariphenomena can only be rigorously taken into account by 290 son, the homogenized parameters are plotted on Fig. (7) employing a coupling formalism and are responsible for 291 in the case where the coupling is neglected. One can see the difference observed when compared to a simple un- 292 that the coupled and uncoupled models give similar re-293 sults for the tunability whereas the losses are still smaller ²⁹⁴ for the coupled case at higher fields.

The redistribution of electric field, permittivity and con-296 vergence of the effective parameters are displayed in ²⁹⁷ Fig. (5). The effect of disorder plays an important 298 role here: the electrostatic field gets concentrated in be-We finally study the effect of random distribution of 299 tween neighbouring inclusions and the smaller the gap the inclusions within the unit cell on the effective pa- 300 the higher the field, hence a greater local permittivity rameters of the composites. This is an important point 301 change. In addition, even if the distribution is random, as fabrication of randomly dispersed inclusions is much 302 one expects that the anisotropy due to geometry would more easy from a technological perspective. For each fill- 303 cancel for a sufficiently large number of rods (which is ing fraction of the dielectric, we generated 21 numerical 304 the case as the mean anisotropy factor is close to 1 when samples with inclusions of circular cross section of aver- 305 no bias field is applied). However, the anisotropy due to age radius r = d/20 that can vary by $\pm 30\%$. Their centre 306 ferroelectric properties is important in this case as well, is chosen randomly and the rods are allowed to over- 307 as both the x and y components of the electrostatic field lap. An example of distribution for f=0.5 is given on 308 are playing a role. Because of the relative positions of Fig. (6). The effective material properties are plotted on 300 the rods, both ε_{xx} and ε_{yy} are affected by the coupling, Fig. (4). Similarly to the periodic case, the permittivity 310 so that the anisotropy factor for higher fields is reduced decreases with increasing dilution of ferroelectric, but for 311 as compared to the periodic case. However even if there

FIG. 5. Convergence of the coupled problem in the random case for one sample. Real part (a) and loss tangent (b) of the components of the homogenized permittivity tensor as a function of iteration step i. The distribution of the normalized electric field (colour map: magnitude in logarithmic scale, lines: equipotential contours) and of the xx component of the permittivity tensor are shown for i = 1 (c and d) and i = 12 (e and f).

315 IV. CONCLUSION

permittivity tensor. After convergence of the coupled 353 able effective permeability. problem, the effective permittivity tensor is calculated using two scale convergence homogenization theory. The 323 results obtained by this model differ significantly from a simple assumption that the permittivity of the ferroelectric respond just to the uniform biasing field. We have considered both periodic and random arrays of dielectric 355 rods in a ferroelectric matrix in 2D, and studied their efmore low index and low loss dielectric allows to decrease $_{359}$ tween Design and Manufacturing (AOTOMAT)'. than the bulk due to local field enhancement, whereas $_{362}$ used in this paper. 334 this effect is strongly suppressed when disorder is intro- 363 The codes necessary to reproduce the results in this induce an effective anisotropy that is added to the one $_{365}$ https://www.github.com/benvial/ferromtm. arising purely from the ferroelectric material. The properties of the composites are affected by multiple factors: geometry and the spatially dependent electric field that will induce locally a tunable, anisotropic response in the ferroelectric phase depending on its amplitude and di-342 rection. This suggest that the performances of the com-343 posites may be enhanced by distributing the two phases $_{344}$ in an optimal way to get high tunability and low losses. $_{370}$ 345 Further work in that direction is needed as well as ex- 371

346 tending this study to 3D media. Finally, because the 347 permittivity of the dielectric is much smaller than the 348 ferroelectric one, it would be of great interest to use high We have studied the homogenized properties of dielec- 349 contrast homogenization theory 24,25 to study this kind of tric/ferroelectric mixtures using a rigorous model that 350 mixtures. This would reveal the frequency dependant artake into account the coupling between the electrostatic 351 tificial magnetism due to "micro-resonances" in the high field distribution and the field dependant ferroelectric 352 index phase and potentially lead to composites with tun-

354 ACKNOWLEDGMENTS

This work was funded by the Engineering and Phys-356 ical Sciences Research Council (EPSRC), UK, under a fective properties for TM polarization as a function of di- $_{357}$ grant (EP/P005578/1) 'Adaptive Tools for Electromagelectric concentration and bias field. Importantly, adding 358 netics and Materials Modelling to Bridge the Gap bethe overall permittivity significantly and slightly lower 360 The authors would like to thanks Henry Giddens for per-

the losses. For the periodic case, the tunability is higher 361 forming the measurements of ferroelectric permittivity

duced. The assymetric redistribution of the permittivity 364 article are freely available online at this address:

¹Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N. 2018 Ferroelectric Materials for Microwave Tunable Applications. J. Electroceram. 11, 5–66.

 $^{^2\}mathrm{Vendik}$ O, Hollmann E, Kozyrev A, Prudan A. 1999 Ferroelectric tuning of planar and bulk microwave devices. Journal of Superconductivity 12, 325-338.

- ³⁷² Lancaster M, Powell J, Porch A. 1998 Thin-film ferroelectric 412
 ³⁷³ microwave devices. Superconductor Science and Technology 11, 413
 ³⁷⁴ 1323.
- ⁴Xi X, Li HC, Si W, Sirenko A, Akimov I, Fox J, Clark A, Hao J.
 ²⁰⁰⁰ Oxide thin films for tunable microwave devices. *Journal of Electroceramics* 4, 393–405.
- ⁵Hand TH, Cummer SA. 2008 Frequency tunable electromagnetic
 metamaterial using ferroelectric loaded split rings. *Journal of Applied Physics* 103, 066105.
- ⁶Zhao H, Kang L, Zhou J, Zhao Q, Li L, Peng L, Bai Y. 2008
 Experimental demonstration of tunable negative phase velocity
 and negative refraction in a ferromagnetic/ferroelectric composite metamaterial. Applied Physics Letters 93, 201106.
- TSherman VO, Tagantsev AK, Setter N, Iddles D, Price T. 2006 425
 Ferroelectric-dielectric tunable composites. Journal of Applied 426
 Physics 99, 074104. 427
- ⁸ Jylha L, Sihvola AH. 2008 Tunability of granular ferroelectric
 dielectric composites. Progress in Electromagnetics Research 78,
 189–207.
- ⁹Sherman VO, Tagantsev AK, Setter N. 2004 Tunability and loss
 of the ferroelectric-dielectric composites. In 14th IEEE International Symposium on Applications of Ferroelectrics, 2004. ISAF 04. 2004 pp. 33–38.
- Astafiev KF, Sherman VO, Tagantsev AK, Setter N. 2003 Can 435
 the addition of a dielectric improve the figure of merit of a tunable 436
 material?. Journal of the European Ceramic Society 23, 2381 437
 2386.
- 399 ¹¹Okazaki K, Nagata K. 1973 Effects of Grain Size and Porosity
 400 on Electrical and Optical Properties of PLZT Ceramics. *Journal* 401 of the American Ceramic Society 56, 82–86.
- ¹²Stanculescu R, Ciomaga CE, Padurariu L, Galizia P, Horchidan
 N, Capiani C, Galassi C, Mitoseriu L. 2015 Study of the role of
 porosity on the functional properties of (Ba,Sr)TiO3 ceramics.
 Journal of Alloys and Compounds 643, 79–87.
- ¹³Padurariu L, Curecheriu L, Galassi C, Mitoseriu L. 2012a Tailoring non-linear dielectric properties by local field engineering in anisotropic porous ferroelectric structures. *Appl. Phys. Lett.* 100, 252905.
- 410 ¹⁴Padurariu L, Curecheriu L, Buscaglia V, Mitoseriu L. 2012b
 411 Field-dependent permittivity in nanostructured BaTiO₃ ceram-

- ics: Modeling and experimental verification. *Phys. Rev. B* **85**, 224111.
- ⁴ ¹⁵Cazacu A, Curecheriu L, Neagu A, Padurariu L, Cernescu A,
 ⁵ Lisiecki I, Mitoseriu L. 2013 Tunable gold-chitosan nanocomposites by local field engineering. Appl. Phys. Lett. 102, 222903.
- ⁴¹⁷ ¹⁶ Allaire G. 1992 Homogenization and Two-Scale Convergence. ⁴¹⁸ SIAM Journal on Mathematical Analysis 23, 1482–1518.
 - ¹⁷Guenneau S, Zolla F. 2000 Homogenization of Three-Dimensional Finite Photonic Crystals. *Journal of Electromagnetic Waves and Applications* **14**, 529–530.
 - ² ¹⁸Landau LD, Bell J, Kearsley M, Pitaevskii L, Lifshitz E, Sykes
 J. 2013 Electrodynamics of continuous media vol. 8. elsevier.
 - ¹⁹Zhou K, Boggs SA, Ramprasad R, Aindow M, Erkey C, Alpay SP.
 ²⁰⁰⁸ Dielectric response and tunability of a dielectric-paraelectric composite. *Applied Physics Letters* 93, 102908.
- 427 ²⁰Krowne CM, Daniel M, Kirchoefer SW, Pond JA. 2002 428 Anisotropic permittivity and attenuation extraction from prop-429 agation constant measurements using an anisotropic full-wave 430 Green's function solver for coplanar ferroelectric thin-film de-431 vices. *IEEE Transactions on Microwave Theory and Techniques* 432 **50**, 537–548.
- ⁴³³ ²¹Geuzaine C, Remacle JF. 2009 Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. *In*ternational Journal for Numerical Methods in Engineering **79**, ⁴³⁶ 1309–1331.
- 437 ²²Dular P, Geuzaine C, Henrotte F, Legros W. 1998 A general
 438 environment for the treatment of discrete problems and its application to the finite element method. *IEEE Transactions on Magnetics* 34, 3395–3398.
- ⁴⁴¹ ²³Amestoy PR, Duff IS, Koster J, L'Excellent JY. 2001 A Fully
 ⁴⁴² Asynchronous Multifrontal Solver Using Distributed Dynamic
 ⁴⁴³ Scheduling. SIAM Journal on Matrix Analysis and Applications
 ⁴⁴⁴ 23, 15–41.
- ²⁴Bouchitté G, Felbacq D. 2004 Homogenization near resonances
 and artificial magnetism from dielectrics. Comptes Rendus
 Mathématique 339, 377 382.
- ²⁵Cherednichenko K, Cooper S. 2015 Homogenization of the system
 of high-contrast Maxwell equations. *Mathematika* 61, 475–500.

Random material samples, f = 0.5

FIG. 6. Permittivity distribution of the numerical samples used for f = 0.5. Dark colour indicates the ferroelectric material while light colour represents the dielectric inclusions.

FIG. 7. Effective parameters of the random 2D mixtures as a function of the applied electric field for various filling fraction of dielectric, when the coupling is neglected. (a): normalized permittivity, (b): normalized loss tangent, (c): normalized tunability and (d): anisotropy factor. The solid lines represent the average values over the 21 samples and the lighter error bands show a confidence interval corresponding to the standard deviation.