Department of Aerospace Engineering

Bangabandhu Sheikh Mujibur Rahman Aviation & Aerospace University



# Assignment Probability and Statistics MAT 4601

# Submitted By:

Md Ahad Israq

Student ID: 21014023

Date of submission: 26-11-2024

## **Submitted To:**

Associate Professor Md. Siddikur Rahman, PhD Department of Statistics, Begum Rokeya University, Rangpur

### **Assignment on Time Series Analysis & Forecasting**

1. Below are the net sales in \$ million for Home Depot, Inc. and its subsidiaries from 2015 to 2024.

| T 1 1  | •  | * T . | •     |                           | 11.00     |          |
|--------|----|-------|-------|---------------------------|-----------|----------|
| Table  | ١. | Net   | Sales | Ωt                        | different | vears    |
| I auto | 1. | 1100  | Saics | $\mathbf{o}_{\mathbf{i}}$ | uniterent | , y cars |

| Year | Net Sales (\$) | Year | Net Sales (\$) |
|------|----------------|------|----------------|
| 2015 | 50,600         | 2020 | 156,700        |
| 2016 | 67,300         | 2021 | 201,400        |
| 2017 | 80,800         | 2022 | 227,300        |
| 2018 | 98,100         | 2023 | 256,300        |
| 2019 | 124,400        | 2024 | 280,900        |

Note: Add last three digits of your ID with Net Sales

- i) Determine the least square equation. Based on this information, what are the estimated sales for 2030?
- ii) Plot Net Sales and Trend Line

### **Solution:**

| Sl no(x) | Year | Net Sales(\$)(Y) | XY          | XX  |
|----------|------|------------------|-------------|-----|
| 1        | 2015 | 50600023         | 50600023    | 1   |
| 2        | 2016 | 67300023         | 134600046   | 4   |
| 3        | 2017 | 80800023         | 242400069   | 9   |
| 4        | 2018 | 98100023         | 392400092   | 16  |
| 5        | 2019 | 124400023        | 622000115   | 25  |
| 6        | 2020 | 156700023        | 940200138   | 36  |
| 7        | 2021 | 201400023        | 1409800161  | 49  |
| 8        | 2022 | 227300023        | 1818400184  | 64  |
| 9        | 2023 | 256300023        | 2306700207  | 81  |
| 10       | 2024 | 280900023        | 2809000230  | 100 |
| 55       |      | 1543800230       | 10726101265 | 385 |

$$m = (n\sum xy - \sum y\sum x)/[n\sum x^2 - (\sum x)^2]$$
 Here,  $n=10$ ;  $\sum x=55$ ;  $\sum y=1543800230$ 

$$\sum xy = 10726101265$$
;  $\sum x^2 = 385$ 

$$m \!\!=\!\! (10*10726101265\text{-}1543800230*55) \! / \left[10*385\text{-}55^2\right]$$

$$=3*10^7$$

$$b = (\sum y - m \sum x)/n$$

$$=(1543800230 -3*10^7*55)/10$$

$$=5*10^{06}$$

$$y = 3*10^7x+5*10^{06}$$

For 
$$x=16(2030)$$
 we get  $y = 485,000,000$  \$



2. It appears that the imports of carbon black have been increasing by about 10 percent annually.

Table 2: Amount of Carbon Block imported in different years.

| Year | Imports of Carbon Block (thousands of tons) | Year | Imports of Carbon Block (thousands of tons) |
|------|---------------------------------------------|------|---------------------------------------------|
| 2011 | 124                                         | 2018 | 2463                                        |
| 2012 | 175                                         | 2019 | 3358                                        |
| 2013 | 306                                         | 2020 | 4181                                        |
| 2014 | 524                                         | 2021 | 5388                                        |
| 2015 | 714                                         | 2022 | 8027                                        |
| 2016 | 1052                                        | 2023 | 10587                                       |
| 2017 | 1638                                        | 2024 | 13537                                       |

Note: Add last three digits of your ID with imports of Carbon Block

- i) Determine the logarithmic trend.
- ii) Find the annual rate of increase.
- iii) Estimate imports for the year 2030.

Solution:

| Sl<br>no(X) | Year | Imports of Carbon<br>Block(Thousands of | log(Y)   |
|-------------|------|-----------------------------------------|----------|
|             |      | tons)(Y)                                |          |
| 1           | 2011 | 124023                                  | 5.093502 |
| 2           | 2012 | 175023                                  | 5.243095 |
| 3           | 2013 | 306023                                  | 5.485754 |
| 4           | 2014 | 524023                                  | 5.71935  |
| 5           | 2015 | 714023                                  | 5.853712 |
| 6           | 2016 | 1052023                                 | 6.022025 |
| 7           | 2017 | 1638023                                 | 6.21432  |
| 8           | 2018 | 2463023                                 | 6.391468 |
| 9           | 2019 | 3358023                                 | 6.526084 |
| 10          | 2020 | 4181023                                 | 6.621283 |
| 11          | 2021 | 5388023                                 | 6.731429 |
| 12          | 2022 | 8027023                                 | 6.904555 |
| 13          | 2023 | 10587023                                | 7.024774 |
| 14          | 2024 | 13537023                                | 7.131523 |
|             |      |                                         |          |



Here slope, m is the annual rate of increase. Which is m = 0.1571

The logarithmic trend equation is,

$$Log(y)=0.1571x +5.0335$$

For x = 20(2030) we get Log(y) = 8.1755

Thus, Imports of Carbon Block (thousands of tons) in 2030 = 149795925.3

**3.** The quarterly production of pine lumber, in millions of board feet, by Northwest lumber since 2018 is:

Table 3: Productions in different quarters of several years

| Year | Quarter | Production | Year | Production | Sales | Year | Quarter | Production |
|------|---------|------------|------|------------|-------|------|---------|------------|
|      |         |            |      |            |       |      |         |            |
| 2018 | Winter  | 90         | 2021 | Winter     | 201   | 2024 | Winter  | 265        |
|      | Spring  | 85         |      | Spring     | 142   |      | Spring  | 185        |
|      | Summer  | 56         |      | Summer     | 110   |      | Summer  | 142        |
|      | Fall    | 102        |      | Fall       | 274   |      | Fall    | 333        |
| 2019 | Winter  | 115        | 2022 | Winter     | 251   | 2025 | Winter  | 282        |
|      | Spring  | 89         |      | Spring     | 165   |      | Spring  | 175        |
|      | Summer  | 61         |      | Summer     | 125   |      | Summer  | 157        |
|      | Fall    | 110        |      | Fall       | 305   |      | Fall    | 350        |
| 2020 | Winter  | 165        | 2023 | Winter     | 241   | 2024 | Winter  | 290        |
|      | Spring  | 110        |      | Spring     | 158   |      | Spring  | 201        |
|      | Summer  | 98         |      | Summer     | 132   |      | Summer  | 187        |
|      | Fall    | 248        |      | Fall       | 299   |      | Fall    | 400        |

Note: Add last three digits of your ID with number of Productions

- i) Develop a seasonal index for each quarter and interpret it.
- ii) Project the production for 2030 and also find the base year production.
- iii) Plot the original data, deseasonalize data, and interpret.

### **Solution:**

| Sl | Year | Winter(production) | Spring(production) | Summer(production) | Fall(production) | Mean   |
|----|------|--------------------|--------------------|--------------------|------------------|--------|
| no |      |                    |                    |                    |                  |        |
| 1  | 2018 | 90023              | 85023              | 56023              | 102023           | 83273  |
| 2  | 2019 | 115023             | 89023              | 61023              | 110023           | 93773  |
| 3  | 2020 | 165023             | 110023             | 98023              | 248023           | 155273 |
| 4  | 2021 | 201023             | 142023             | 110023             | 274023           | 181773 |
| 5  | 2022 | 251023             | 165023             | 125023             | 305023           | 211523 |
| 6  | 2023 | 241023             | 158023             | 132023             | 299023           | 207523 |
| 7  | 2024 | 265023             | 185023             | 142023             | 333023           | 231273 |
| 8  | 2025 | 282023             | 175023             | 157023             | 350023           | 241023 |
| 9  | 2026 | 290023             | 201023             | 187023             | 400023           | 269523 |

Seasonal Index calculation: Divide seasonal value of each year with the mean of each year. Then we get,

| Year | Winter(production) | Spring(production) | Summer(production) | Fall(production) |
|------|--------------------|--------------------|--------------------|------------------|
|      |                    |                    |                    |                  |
| 2018 | 1.081058686        | 1.021015215        | 0.67276308         | 1.225163018      |
| 2019 | 1.226611071        | 0.949345761        | 0.650752349        | 1.173290819      |
| 2020 | 1.06279263         | 0.708577795        | 0.631294559        | 1.597335016      |
| 2021 | 1.105901316        | 0.781320658        | 0.605276911        | 1.507501114      |
| 2022 | 1.186740922        | 0.78016575         | 0.591061019        | 1.442032309      |
| 2023 | 1.16142789         | 0.761472222        | 0.636184905        | 1.440914983      |
| 2024 | 1.145931432        | 0.80001989         | 0.614092436        | 1.439956242      |
| 2025 | 1.170108247        | 0.726167212        | 0.651485543        | 1.452238998      |
| 2026 | 1.076060299        | 0.745847293        | 0.693903674        | 1.484188733      |

# Overall Seasonal Index:

| Seasonal Index | Winter      | Spring      | Summer      | Fall        |
|----------------|-------------|-------------|-------------|-------------|
| SI             | 1.135181388 | 0.808214644 | 0.638534942 | 1.418069026 |
| Sum of SI      | 4           |             |             |             |

### De-seasonalize data:

| Sl no | Year | Winter(production) | Spring(production) | Summer(production) | Fall(production) |
|-------|------|--------------------|--------------------|--------------------|------------------|
|       |      |                    |                    |                    |                  |
| 1     | 2018 | 79302.74486        | 105198.5393        | 87736.78045        | 71945.01688      |
| 2     | 2019 | 101325.657         | 110147.7196        | 95567.20549        | 77586.4912       |
| 3     | 2020 | 145371.4813        | 136130.9162        | 153512.3508        | 174901.9233      |
| 4     | 2021 | 177084.4749        | 175724.3587        | 172305.3709        | 193236.7149      |
| 5     | 2022 | 221130.2992        | 204182.1454        | 195796.646         | 215097.4279      |
| 6     | 2023 | 212321.1343        | 195521.0799        | 206759.2411        | 210866.3221      |
| 7     | 2024 | 233463.13          | 228928.047         | 222420.0912        | 234842.588       |
| 8     | 2025 | 248438.7103        | 216555.0962        | 245911.3663        | 246830.7209      |
| 9     | 2026 | 255486.0422        | 248724.7682        | 292893.9166        | 282089.9355      |









Production in 2030:

For winter

y = 22625x + 72867; for x = 12(2030) we get production = 344367

For spring,

y = 18312x + 88564; for x = 12(2030) we get production = 308308

For summer,

y = 24066x + 65551; for x = 12(2030) we get production = 354343

For fall,

| y = 24764  X + 65892; for $x = 12(2030)$ we get production = $363060$ |  |  |  |  |
|-----------------------------------------------------------------------|--|--|--|--|
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |
|                                                                       |  |  |  |  |