20200625/Exercises1

1. MM01-value=8

In a summer camp there are 70 children to be allocated to 10 groups, each one with an educator that must supervise exactly 7 people. The age of each child is e_i , i = 1, ... 70.

We want to minimize the absolute value of the maximum difference between the average age of a group and the age of each child allocated to the group (example: if the 7 children of a group have ages 8,9,10,11,11,12,12 the maximum difference for this group is |73/7-8| = 10.428 - 8 = 2.428)

Write an integer linear programming model in order to decide how to allocate the children to the groups. Clearly define the variables used.

Notes: (not included in XML)

•

 $x_{ig} = 1$ if child i = 1, ..., 70 is in group $g = 1 \in 10, 0$ otherwise. Δ maximum difference of age.

•

$$\min \Delta$$

$$\Delta \ge \sum_{i=1}^{70} e_i x_{ig} / 7 - e_j x_{jg}, \quad j = 1, \dots, 70, g = 1, \dots, 10$$

$$\Delta \ge -\sum_{i=1}^{70} e_i x_{ig} / 7 + e_j x_{jg}, \quad j = 1, \dots, 70, g = 1, \dots, 10$$

$$\sum_{g=1}^{10} x_{ig} = 1 \quad i = 1, \dots, 70$$

$$\sum_{i=1}^{70} x_{ig} = 7 \quad g = 1, \dots, 10$$

$$x_{ig} \in \{0, 1\} \quad i = 1, \dots, 70, g = 1, \dots, 10$$

$$\Delta \ge 0$$

2. MM03-value=6

Consider this minimization problem:

min
$$8x_1 + 3x_2 + x_3$$

 $2x_1 + 7x_2 - 5x_3 = 4$
 $4x_1 - 3x_2 + x_3 \ge 8$
 $x_1 \ge 0$
 $x_2 \le 0$
 x_3 free

Write the corresponding canonical form.

Notes: (not included in XML)

•

$$\min 8x_1 - 3x_2 - x_3^- + x_3^+$$

$$2x_1 - 7x_2 + 5x_3^- - 5x_3^+ \ge 4$$

$$-2x_1 + 7x_2 - 5x_3^- + 5x_3^+ \ge -4$$

$$4x_1 + 3x_2 - x_3^- + x_3^+ \ge 8$$

$$x_1, x_2, x_3^-, x_3^+ \ge 0$$

20200625/Exercises2

1. MM02-value=6

Consider the graph below and the Shortest Path Problem from vertex 2. In the next table are reported the first iterations of the Bellman-Ford dynamic programming method to compute the shortest path. Continue to apply the method executing one iteration.

Report the labels of iteration 3.

Report the shortest path from 2 to 5 as results at the end of the third iteration

	f(j)										pred				
\overline{Iter}	1	2	3	4	5	6	1	2	3	4	5	6			
0	_	0	_	_	_	_	_	2	_	_	_				
1	2	0	6	4	8	_	2	2	2	2	2	_			
2	2	0	2	4	7	4	2	2	4	2	3	1			
_ 3															

Notes: (not included in XML)

	Iter	f(j)						pred					
		1	2	3	4	5	6	1	2	3	4	5	6
	0	-	0	-	-	-	-	-	2	-	-	-	-
_	1	2	0	6	4	8	-	2	2	2	2	2	-
•	2	2	0	2	4	7	4	2	2	4	2	3	1
	3	2	0	2	4	1	4	2	2	4	2	6	1
	4	2	0	2	2	1	4	2	2	4	5	6	1
	5	2	0	0	2	1	4	2	2	4	5	6	1

The shortest path at the end of iteration 3 has length 1 and is (2, 1, 6, 5)

2. MM04-value=4

Consider the following LP model and write an implementation in GLPK

or XPRESS

$$\max \sum_{i=2}^{n} \sum_{j \in R} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n-1} x_{ij} \le b_j, j \in R \setminus \{7\}$$

$$x_{ij} \ge 0, i = 1, \dots, n, j \in R$$

Notes: (not included in XML)

```
• param n integer > 0;
set I := 1..n;
set I2 := 2..n;
set In1 := 1..n-1;
set R;
param c{i in I, j in R} integer > 0;
param b{i in I} integer > 0;
var x { i in I, j in R } >= 0;
maximize z : sum {i in I2, j in R} c[i,j]*x[i,j];
C1{j in R: j <> 7} : sum {i in In1} x[i,j] <= b[j];
solve;
end;</pre>
```

3. MM04-value=6

Consider the following LP problem.

min
$$4x_1 + 5x_2 + 3x_3$$

 $3x_1 + 4x_3 \ge 1$
 $2x_1 + x_2 + x_3 \ge 3$
 $x_1, x_2, x_3 > 0$

We want to solve it with the two-phase method.

- Write the problem to be solved in the first phase (with auxiliary variables).
- Perform one iteration of the symplex algorithm on the tableau of the first phase problem, using the Bland's rule during the iteration.

• Is the obtained solution the optimal solution of the first phase problem? Justify your answer.

Notes: (not included in XML)

• First Phase problem:

$$\min a_1 + a_2$$

$$3x_1 + 4x_3 - x_4 + a_1 = 1$$

$$2x_1 + x_2 + x_3 - x_5 + a_2 = 3$$

$$x_1, x_2, x_3, x_4, a_1, a_2 \ge 0$$

x_1	x_2	x_3	x_4	x_5	a_1	a_2		
-5	-1	-5	1	1	0	0	-4	$-\xi$
3	0	4	1	0	1	0	1	<i>a</i> .
$\frac{3}{2}$	1	1	-1	-1	0	- T	1	a_1
	1	1	U	-1	U	1	3	a_2
x_1	x_2	x_3	x_4	x_5	a_1	a_2		
0	-1	$\frac{5}{3}$	$-\frac{2}{3}$	1	$\frac{5}{3}$	0	$-\frac{7}{3}$	$-\xi$
1	0	$\frac{4}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$	x_1
		5	<u>2</u>		9	_	7	

The solution after one iteration is: (1/3, 0, 0, 0, 0, 0, 7/3) with value 7/3.

This is not the optimal solution because, there is a negative reduced cost.