Probabilidade

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: <u>tetsu@imd.ufrn.br</u>

Slides e notebook em:

github.com/tetsufmbio/IMD0033/

Na aula passada...

- Subconjuntos de tamanho k de um conjunto de n elementos: diferentes combinações;
- Número de combinações distintos \rightarrow coeficiente binomial;
- Identidade de Pascal;
- Triângulo de Pascal;
- Binômio de Newton;
- Coeficientes de polinômios.

Probabilidade

Na vida existem algumas certezas...

SE EU PULAR PERTO DO SAGAT
VOU LEVAR UM-"TIGER ROBOCOP"

Outros processos são incertos → **fenômeno randômico**.

Fenômenos randômicos

Mas...

... Se repetirmos o processo muitas vezes, o resultado pode se tornar previsível!

50% = cara; 50% = coroa

Probabilidade

Termos em probabilidade

Experimentos → Cada ocasião onde observa-se um fenômeno randômico (jogar de uma moeda);

Ponto amostral → Um resultado de um experimento (cara);

Espaço amostral \rightarrow Conjunto de todos os possíveis resultados de um experimento, denotado como Ω ({ cara, coroa});

Exemplos

Pontos amostrais → minúsculo (h, t, x ...)

Elementos, conjuntos

Tipos de espaço amostral

Discreto → Espaço amostral finito ou infinito, mas contável;

 $\{\,h,t\,\}\quad \{\,1,\,2,\,...,\,6\,\}\quad N\quad Z\quad \{\,\text{palavras}\,\}$

Contínuo → Espaço amostral infinito incontável;

R { temperatura } { altura }

Notações

Em algebra:

Em probabilidade:

Um valor desconhecido $\rightarrow x$;

Valor randômico de um ponto amostral $\rightarrow X$;

2x - 4 = 0

X - resultado da jogada de uma moeda;

Antes da resolução: x ∈ R

Antes do experimento: $X \subseteq \Omega$;

Depois da resulução: x = 2

Depois do experimento: X = h (se cara), X = t (se coroa).

Probabilidade de um ponto amostral

A probabilidade do ponto amostral (resultado) $\mathbf{x} \in \Omega$ (P(x) ou P(X=x)) é a fração de vezes que x ocorre quando o experimento é repetido várias vezes.

Moeda justa:

A medida que # de experimento → ∞, fração de cara (ou coroa) = ½;
 Cara possui uma probabilidade de ½ P(h) = P(X=h) = ½

Dado justo:

• A medida que # de experimento $\rightarrow \infty$, fração da face $1 = \frac{1}{3}$; Face 1 possui uma probabilidade de $\frac{1}{3}$ P(1) = P(X=1) = $\frac{1}{3}$

Função de distribuição de probabilidade

P(x) é a fração de vezes que o ponto amostral x ocorre

Observando a probabilidade de todos os elementos do espaço amostral \rightarrow surge um padrão!

- Moeda: $P(h) = \frac{1}{2} P(t) = \frac{1}{2}$
- Dados: $P(1) = \frac{1}{6}$, $P(2) = \frac{1}{6}$, ..., $P(6) = \frac{1}{6}$
- Tempo: P(chuva) = 10%, P(sol) = 90%

$$P: \Omega \to R$$
 $P(x) \ge 0$ $\sum_{x \in \Omega} P(x) = 1$

Função de distribuição de probabilidade

Tipos de distribuição de probabilidade

- Uniforme
- Não uniforme

Distribuição de probabilidade uniforme

Normalmente os pontos amostrais (resultados) de um experimento possuem diferentes probabilidades.

No entanto, existem experimentos cujos resultados são igualmente prováveis de acontecerem.

$$P(h) = P(t) = \frac{1}{2}$$

$$P(1) = P(2) = ...$$

$$P(6) = \frac{1}{6}$$

Distribuição de probabilidade uniforme

Todos os pontos amostrais (resultados) são igualmente prováveis.

$$\forall x \in \Omega P(x) = p$$

$$1 = \sum_{x \in \Omega} P(x) = \sum_{x \in \Omega} p = |\Omega| \cdot p$$

$$p = 1/|\Omega|$$
•
$$P(h) = P(t) = p$$
•
$$1 = P(h) + P(t) = 2p$$
•
$$p = \frac{1}{2}$$

$$p = 1/|\Omega$$

Moeda:

Distribuição uniforme → todos os resultados possuem probabilidade de $1/|\Omega|$

Distribuição de probabilidade não uniforme

Exemplos:

- Chuva;
- Notas de prova;
- Palavras;
- Doença;
- Páginas da web;
- etc.

Lançamento de dois dados

Ω	=	36

$$P(X = 7)$$

$$P(X = 3)$$

Atenção na notação

$$P(X = 3) \rightarrow dado justo: \%$$

$$P(3) = P(X = 3)$$

 $P(x) \rightarrow \text{especifique o } x, \text{ para } \forall x, P(x) = \frac{1}{6} \text{ (dado justo)}$

 $P(1 = 3) \rightarrow Probabilidade do resultado 1 ser 3 (0)$

P(X) → Probabilidade de ocorrer um resultado aleatório

 $P(x = 3) \rightarrow x$ corresponde a um resultado do experimento, portanto ele é um valor.

Notação correta

Pouco comum, reveja se é isso que você quer dizer.

Provavelmente está errado.

Eventos

Até o momento nós lidamos com a probabilidade de um único ponto amostral (resultado):

- Se um determinado cavalo ganhará a corrida;
- Se um aluno tirará nota B+;

Mas normalmente estamos interessados na probabilidade de um conjunto de resultados:

- Se a temperatura > 25°;
- Se um aluno passará no curso;

Exemplos de eventos

Eventos → subconjunto do espaço amostral;

Dado: $Ω = {1,2,3,4,5,6}$ ⊇ Eventos

Eventos	Nome				
{ 1, , 6 }	Ω (certeza)				
{ 2, 4, 6 }	pares				
{ 1, 4 }	quadrados				
{ 5, 6 }	> 4				
{ 1, 2, 5 }	{ 1, 2, 5 }				

Quando consideramos que o evento E ocorre?

Resultados

Eventos	Nome	1	2	3	4	5	6		
{ 1, , 6 }	Ω (certeza)	0	0	0	0	0	0		Evento ocorre
{ 2, 4, 6 }	pares	X	0	X	0	X	0	0	
{ 1, 4 }	quadrados	0	X	X	0	X	X	X	Evento não ocorre
{}	vazio	X	X	×	×	×	X	• •	

Probabilidade dos eventos

Probabilidade do evento E P(E) Probabilidade do $P(X \in E)$ evento E ocorrer

Fração de experimentos onde E ocorre à medida que o número de experimento cresce.

$$P(Par) \approx fração = 6/14 = 0,4285$$

Desejável: - P(E) = fração \rightarrow # experimento \rightarrow ∞

- Escrever isso para eventos e distribuições de forma geral.

de vezes que Par ocorre = soma do # de vezes que 2, 4 e 6 ocorrem.

P(Par) = fração de vezes que Evento Par ocorre P(Par) = soma das frações do número de vezes que 2, 4, 6 ocorrem P(Par) = P(2) + P(4) + P(6)

Em geral:

- # de vezes que o evento E ocorre = soma do número de vezes que seus elementos ocorrem.
- P(E) = soma das probabilidades de seus elementos.

$$P(E) = P(X \subseteq E) = \sum_{x \in E} P(x)$$

Relacionando P(x) com P(E)

Resultados

Eventos	Nome	1	2	3	4	5	6	Probabilidades
{ 1, , 6 }	Ω (certeza)	0	0	0	0	0	0	P(1)+P(2)+ + P(6) = 1
{ 2, 4, 6 }	pares	X	0	X	0	X	0	$P(2)+P(4)+P(6)=\frac{1}{2}$
{ 1, 4 }	quadrados	0	X	X	0	X	X	$P(1)+P(4) = \frac{1}{3}$
{}	vazio	X	X	X	X	X	X	0

Revisão

Probabilidade

- Experimento;
- Espaço amostral;
- Ponto amostral;
 - o Probabilidade do ponto amostral
- Evento
 - Probabilidade do evento