

THE BEST WAYS TO SLICE A POLYTOPE

joint work with Chiara Meroni and Jesús A. De Loera. arXiv: 2304.14239

Marie-Charlotte Brandenburg

Nonlinear Algebra Seminar MPI MiS Leipzig June 05, 2023

JOINT WORK WITH

Chiara Meroni ICERM MPI MiS Leipzig

Jesús A. De Loera
UC Davis

MB, Chiara Meroni, and Jesús A. De Loera. *The Best Ways to Slice a Polytope*. 2023. arXiv: 2304.14239

$$\begin{split} P &= \mathsf{conv}(\ (\sigma(1), \sigma(2), \sigma(3), \sigma(4)) \ | \ \sigma \in S_4) \\ &= \mathsf{conv}(\ (1, 2, 3, 4), \ (1, 2, 4, 3), \ ..., \ (4, 3, 2, 1)\) \end{split}$$

Affine slice of maximum volume

Central slice of minimum volume

Affine slice with maximum number of vertices

WHY DO WE WANT TO COMPUTE (EXTREMAL) SLICES OF POLYTOPES?

• Maximal volume slice: What is the slice of P with maximal volume? [Ball '89, Meyer-Pajor '88, Pournin '22, Webb '96, ...]

- Maximal volume slice: What is the slice of P with maximal volume? [Ball '89, Meyer-Pajor '88, Pournin '22, Webb '96, ...]
- Bourgain's slicing problem: Does there exist c>0 such that for any convex body $K\subset\mathbb{R}^d$ with $\operatorname{vol}(K)=1$ there exist a hyperplane H such that $\operatorname{vol}(K\cap H)>c$? [Bourgain '84, Klartag '23, Koldobsky-Milman '22,...]

- Maximal volume slice: What is the slice of P with maximal volume? [Ball '89, Meyer-Pajor '88, Pournin '22, Webb '96, ...]
- Bourgain's slicing problem: Does there exist c>0 such that for any convex body $K\subset\mathbb{R}^d$ with $\operatorname{vol}(K)=1$ there exist a hyperplane H such that $\operatorname{vol}(K\cap H)>c$? [Bourgain '84, Klartag '23, Koldobsky-Milman '22,...]
- How does the h-vector of P compare with the h-vector of a generic hyperplane section of P?

 [Khovanskii '06]

- Maximal volume slice: What is the slice of P with maximal volume? [Ball '89, Meyer-Pajor '88, Pournin '22, Webb '96, ...]
- Bourgain's slicing problem: Does there exist c>0 such that for any convex body $K\subset\mathbb{R}^d$ with $\operatorname{vol}(K)=1$ there exist a hyperplane H such that $\operatorname{vol}(K\cap H)>c$? [Bourgain '84, Klartag '23, Koldobsky-Milman '22,...]
- How does the h-vector of P compare with the h-vector of a generic hyperplane section of P? [Khovanskii '06]
- Densest hemisphere problem: Given points on the sphere, how can we find the hemisphere with the most points?

[Johnson-Preparata '78,...]

- Maximal volume slice: What is the slice of P with maximal volume? [Ball '89, Meyer-Pajor '88, Pournin '22, Webb '96, ...]
- Bourgain's slicing problem: Does there exist c>0 such that for any convex body $K\subset\mathbb{R}^d$ with $\operatorname{vol}(K)=1$ there exist a hyperplane H such that $\operatorname{vol}(K\cap H)>c$? [Bourgain '84, Klartag '23, Koldobsky-Milman '22,...]
- How does the h-vector of P compare with the h-vector of a generic hyperplane section of P? [Khovanskii '06]
- Densest hemisphere problem: Given points on the sphere, how can we find the hemisphere with the most points?

[Johnson-Preparata '78,...]

• Slices of the permutahedron fixed under a certain group action

[Ardila-Schindler-(Vindas-Meléndez) '21,...]

HOW CAN WE COMPUTE THESE "EXTREMAL" SLICES?

ROTATIONAL APPROACH

1. Choose a position of the origin

ROTATIONAL APPROACH

1. Choose a position of the origin

- 1. Choose a position of the origin
- 2. Consider all hyperplanes through the origin

- 1. Choose a position of the origin
- 2. Consider all hyperplanes through the origin

ROTATIONAL APPROACH

- 1. Choose a position of the origin
- 2. Consider all hyperplanes through the origin

TRANSLATIONAL APPROACH

1. Choose a normal direction

ROTATIONAL APPROACH

- 1. Choose a position of the origin
- 2. Consider all hyperplanes through the origin

TRANSLATIONAL APPROACH

- 1. Choose a normal direction
- 2. Consider all affine translates of the orthogonal hyperplane

ROTATIONAL APPROACH

- 1. Choose a position of the origin
- 2. Consider all hyperplanes through the origin

TRANSLATIONAL APPROACH

- 1. Choose a normal direction
- 2. Consider all affine translates of the orthogonal hyperplane

KEY OBSERVATIONS:

• H generic hyperplane \Longrightarrow vertices of $P \cap H$ = intersections of H with edges of P

KEY OBSERVATIONS:

- H generic hyperplane \Longrightarrow vertices of $P \cap H$ = intersections of H with edges of P
- H, H' intersect the same set of edges of P
 - $\Longrightarrow P \cap H, P \cap H'$ have the same combinatorial type

KEY OBSERVATIONS:

- H generic hyperplane \Longrightarrow vertices of $P \cap H$ = intersections of H with edges of P
- H, H' intersect the same set of edges of P $\Longrightarrow P \cap H, P \cap H'$ have the same combinatorial type

MAIN IDEA FOR BOTH APPROACHES:

Collect all hyperplanes which intersect P in the same set of edges

→ regions of hyperplane arrangements

KEY OBSERVATIONS:

- H generic hyperplane \Longrightarrow vertices of $P \cap H$ = intersections of H with edges of P
- *H*, *H'* intersect the same set of edges of *P*
 - $\Longrightarrow P \cap H, P \cap H'$ have the same combinatorial type

MAIN IDEA FOR BOTH APPROACHES:

Collect all hyperplanes which intersect *P* in the same set of edges

---- regions of hyperplane arrangements

	Hyperplane Arrangement	Notation	Reference Object
Ø	central arrangement	$\mathcal{C}_{\circlearrowleft}$	intersection body
	cocircuit arrangement	$\mathcal{R}_{\circlearrowleft}$	oriented matroid
1	parallel arrangement	$\mathcal{C}^{\mathbf{u}}_{\scriptscriptstyle m \uparrow}$	fiber polytope
	sweep arrangement	$\mathcal{R}_{\scriptscriptstyle{ au}}$	sweep polytope

Fix the position of the origin.

 $u^{\perp} = \text{central hyperplane orthogonal to } u$

Fix the position of the origin.

 u^{\perp} = central hyperplane orthogonal to u

Consider the central hyperplane arrangement

$$\mathscr{C}_{\circlearrowleft}(P) = \{ v^{\perp} \mid v \text{ is a vertex of } P \}.$$

Fix the position of the origin.

 u^{\perp} = central hyperplane orthogonal to u

Consider the central hyperplane arrangement

$$\mathscr{C}_{\circlearrowleft}(P) = \{ v^{\perp} \mid v \text{ is a vertex of } P \}.$$

— The combinatorial type of $P\cap u^{\perp}$ is constant in each cell of $\mathscr{C}_{\circlearrowleft}(P)$.

We refer to the maximal cells of $\mathscr{C}_{\circlearrowleft}(P)$ as chambers.

Fix the position of the origin.

 u^{\perp} = central hyperplane orthogonal to u

Consider the central hyperplane arrangement

$$\mathscr{C}_{\circlearrowleft}(P) = \{ v^{\perp} \mid v \text{ is a vertex of } P \}.$$

 \longrightarrow The combinatorial type of $P \cap u^{\perp}$ is constant in each cell of $\mathscr{C}_{\mathfrak{O}}(P)$.

We refer to the maximal cells of $\mathscr{C}_{\circlearrowleft}(P)$ as chambers.

What happens if we translate P, i.e. vary the position of the origin?

$$\mathscr{C}_{\circlearrowleft}(P+t) = \{(v+t)^{\perp} \mid v \text{ is a vertex of } P\}$$

Translation $P+t\longleftrightarrow$ rotation of hyperplanes $(v+t)^{\perp}$ in central arrangement $\mathscr{C}_{\circlearrowleft}(P+t)$

Translation $P+t\longleftrightarrow$ rotation of hyperplanes $(v+t)^{\perp}$ in central arrangement $\mathscr{C}_{\circlearrowleft}(P+t)$

For which $t \in \mathbb{R}^d$ does $\mathscr{C}_{\circlearrowleft}(P+t)$ have the same combinatorics? (i.e. the same oriented matroid)

Translation $P+t\longleftrightarrow$ rotation of hyperplanes $(v+t)^{\perp}$ in central arrangement $\mathscr{C}_{\circlearrowleft}(P+t)$

For which $t \in \mathbb{R}^d$ does $\mathscr{C}_{\circlearrowleft}(P+t)$ have the same combinatorics? (i.e. the same oriented matroid)

Consider the affine hyperplane arrangement (called cocircuit arrangement)

$$\mathcal{R}_{\circlearrowleft}(P) = \{ \mathsf{aff}(-v_1, ..., -v_d) \mid v_k \text{ are vertices of } P \}$$

 \longrightarrow with each region of $\mathcal{R}_{\circlearrowleft}(P)$ the combinatorics of $\mathcal{C}_{\circlearrowleft}(P+t)$ are fixed

$$\mathcal{R}_{\circlearrowleft}(P) = \{ \operatorname{aff}(-v_1, ..., -v_d) \mid v_k \text{ are vertices of } P \}$$

$$\mathscr{C}_{\circlearrowleft}(P+t) = \{ (v+t)^{\perp} \mid v \text{ is a vertex of } P \}$$

$$\mathcal{R}_{\circlearrowleft}(P) = \{ \operatorname{aff}(-v_1, ..., -v_d) \mid v_k \text{ are vertices of } P \}$$

$$\mathscr{C}_{\circlearrowleft}(P+t) = \{(v+t)^{\perp} \mid v \text{ is a vertex of } P\}$$

THEOREM (B.-MERONI-DE LOERA '23):

Let $P \subseteq \mathbb{R}^d$ be a polytope, and $f(x) = \sum_{\alpha} c_{\alpha} x^{\alpha}$ be a polynomial in variables $x_1, ..., x_d$.

THEOREM (B.-MERONI-DE LOERA '23):

Let $P\subseteq\mathbb{R}^d$ be a polytope, and $f(x)=\sum_{\alpha}c_{\alpha}x^{\alpha}$ be a polynomial in variables x_1,\ldots,x_d . Fix a region $R\in\mathscr{R}_{\circlearrowleft}(P)$ of the cocircuit arrangement, a translation $t\in R$ and a chamber $C(t)\in\mathscr{C}_{\circlearrowleft}(P+t)$ of the central arrangement.

THEOREM (B.-MERONI-DE LOERA '23):

Let $P\subseteq\mathbb{R}^d$ be a polytope, and $f(x)=\sum_{\alpha}c_{\alpha}x^{\alpha}$ be a polynomial in variables x_1,\ldots,x_d . Fix a region $R\in\mathcal{R}_{\circlearrowleft}(P)$ of the cocircuit arrangement, a translation $t\in R$ and a chamber $C(t)\in\mathcal{C}_{\circlearrowleft}(P+t)$ of the central arrangement.

Restricted to $t \in R$ and $u \in C(t) \cap S^{d-1}$, the integral

$$\int_{(P+t)\cap u^{\perp}} f(x) \, \mathrm{d}x$$

is a rational function in variables $t_1, ..., t_d, u_1, ..., u_d$.

THEOREM (B.-MERONI-DE LOERA '23):

Let $P\subseteq\mathbb{R}^d$ be a polytope, and $f(x)=\sum_{\alpha}c_{\alpha}x^{\alpha}$ be a polynomial in variables x_1,\ldots,x_d . Fix a region $R\in\mathcal{R}_{\circlearrowleft}(P)$ of the cocircuit arrangement, a translation $t\in R$ and a chamber $C(t)\in\mathcal{C}_{\circlearrowleft}(P+t)$ of the central arrangement.

Restricted to $t \in R$ and $u \in C(t) \cap S^{d-1}$, the integral

$$\int_{(P+t)\cap u^{\perp}} f(x) \, \mathrm{d}x$$

is a rational function in variables $t_1, ..., t_d, u_1, ..., u_d$. (and we have an algorithm to compute it)

THEOREM (B.-MERONI-DE LOERA '23):

Let $P \subseteq \mathbb{R}^d$ be a polytope, and $f(x) = \sum_{\alpha} c_{\alpha} x^{\alpha}$ be a polynomial in variables x_1, \ldots, x_d . Fix a region $R \in \mathcal{R}_{\circlearrowleft}(P)$ of the cocircuit arrangement, a translation $t \in R$ and a chamber $C(t) \in \mathcal{C}_{\circlearrowleft}(P+t)$ of the central arrangement.

Restricted to $t \in R$ and $u \in C(t) \cap S^{d-1}$, the integral

$$\int_{(P+t)\cap u^{\perp}} f(x) \, \mathrm{d}x$$

is a rational function in variables $t_1, ..., t_d, u_1, ..., u_d$. (and we have an algorithm to compute it)

NOTE:

If
$$f(x) = 1$$
 then
$$\int_{(P+t)\cap u^{\perp}} f(x) \, dx = \text{vol}((P+t)\cap u^{\perp}).$$

$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$

$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$

If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$

If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

If
$$t \in R$$
 and $u \in C(t) \cap S^{d-1}$ then

$$\operatorname{vol}((P+t) \cap u^{\perp}) = \int_{(P+t) \cap u^{\perp}} 1 dx = \frac{-(t_1 u_1 + t_2 u_2 + 3u_1 - u_2)}{u_1 (u_1 - u_2)}$$

Let the computer find the biggest slice:

ROTATIONAL APPROACH

$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$

If $t \in R$ and $u \in C(t) \cap S^{d-1}$ then

If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$vol((P+t) \cap u^{\perp}) = \int_{(P+t) \cap u^{\perp}} 1 dx = \frac{-(t_1 u_1 + t_2 u_2 + 3u_1 - u_2)}{u_1 (u_1 - u_2)}$$

$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$

If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$vol((P+t) \cap u^{\perp}) = \int_{(P+t) \cap u^{\perp}} 1 dx = \frac{-(t_1 u_1 + t_2 u_2 + 3u_1 - u_2)}{u_1 (u_1 - u_2)}$$

Let the computer find the biggest slice:

maximize	$\frac{-(t_1u_1 + t_2u_2 + u_1 - u_2)}{u_1(u_1 - u_2)}$
s.t	$-t_{1} - t_{2} \ge 0,$ $t_{1} - t_{2} \ge 0$ $-3t_{1} + t_{2} \ge -2,$ $3t_{1} + t_{2} \ge -2$ $t_{2} \ge -1$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$u_1^2 + u_2^2 + u_3^2 = 1$$

$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$

If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

If $t \in R$ and $u \in C(t) \cap S^{d-1}$ then

$$vol((P+t) \cap u^{\perp}) = \int_{(P+t) \cap u^{\perp}} 1 dx = \frac{-(t_1 u_1 + t_2 u_2 + 3u_1 - u_2)}{u_1 (u_1 - u_2)}$$

Let the computer find the biggest slice:

maximize –	$\frac{-(t_1u_1 + t_2u_2 + u_1 - u_2)}{u_1(u_1 - u_2)}$
s.t	$-t_{1} - t_{2} \ge 0,$ $t_{1} - t_{2} \ge 0$ $-3t_{1} + t_{2} \ge -2,$ $3t_{1} + t_{2} \ge -2$ $t_{2} \ge -1$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$u_1^2 + u_2^2 + u_3^2 = 1$$

Compute this for all regions $R \in \mathcal{R}_{\circlearrowleft}(P)$ and chambers $C(t) \in \mathcal{C}_{\circlearrowleft}(P+t)$

→ largest slice!

$$(t_1, t_2) \in R \iff$$
 $-t_1 - t_2 \ge 0, \quad t_1 - t_2 \ge 0$
 $-3t_1 + t_2 \ge -2, 3t_1 + t_2 \ge -2$
 $t_2 \ge -1$

If
$$(t_1, t_2) \in R$$
 then $(u_1, u_2) \in C(t) \iff$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

If $t \in R$ and $u \in C(t) \cap S^{d-1}$ then

$$vol((P+t) \cap u^{\perp}) = \int_{(P+t) \cap u^{\perp}} 1 dx = \frac{-(t_1 u_1 + t_2 u_2 + 3u_1 - u_2)}{u_1(u_1 - u_2)}$$

Let the computer find the biggest slice:

maximize -	$\frac{-(t_1u_1 + t_2u_2 + u_1 - u_2)}{u_1(u_1 - u_2)}$
s.t	$-t_{1} - t_{2} \ge 0,$ $t_{1} - t_{2} \ge 0$ $-3t_{1} + t_{2} \ge -2,$ $3t_{1} + t_{2} \ge -2$ $t_{2} \ge -1$

$$2u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$-u_1 - u_2 + t_1u_1 + t_2u_2 \ge 0$$

$$u_1^2 + u_2^2 + u_3^2 = 1$$

Compute this for all regions $R \in \mathcal{R}_{\circlearrowleft}(P)$ and chambers $C(t) \in \mathcal{C}_{\circlearrowleft}(P+t)$

 \longrightarrow largest slice!

Fix a normal direction $u \in S^{d-1}$

$$H(\beta) = \{x \in \mathbb{R}^d \mid \langle x, u \rangle = \beta\}$$
 hyperplane parallel to u^{\perp}

Fix a normal direction $u \in S^{d-1}$

$$H(\beta) = \{x \in \mathbb{R}^d \mid \langle x, u \rangle = \beta\}$$
 hyperplane parallel to u^{\perp}

Consider the parallel hyperplane arrangement

$$\mathscr{C}^u_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}.$$

Fix a normal direction $u \in S^{d-1}$

$$H(\beta) = \{x \in \mathbb{R}^d \mid \langle x, u \rangle = \beta\}$$

hyperplane parallel to u^{\perp}

Consider the parallel hyperplane arrangement

$$\mathscr{C}^{u}_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}.$$

— The combinatorial type of $P \cap H(\beta)$ is constant in each cell of $\mathscr{C}^u_{\uparrow}(P)$.

Fix a normal direction $u \in S^{d-1}$

$$H(\beta) = \{x \in \mathbb{R}^d \mid \langle x, u \rangle = \beta\}$$

hyperplane parallel to u^{\perp}

Consider the parallel hyperplane arrangement

$$\mathscr{C}^{u}_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}.$$

— The combinatorial type of $P \cap H(\beta)$ is constant in each cell of $\mathscr{C}^u_{\uparrow}(P)$.

We refer to the maximal cells of \mathscr{C}^u_{\uparrow} as chambers.

Fix a normal direction $u \in S^{d-1}$

$$H(\beta) = \{x \in \mathbb{R}^d \mid \langle x, u \rangle = \beta\}$$

hyperplane parallel to u^{\perp}

Consider the parallel hyperplane arrangement

$$\mathscr{C}^{u}_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}.$$

 \longrightarrow The combinatorial type of $P \cap H(\beta)$ is constant in each cell of $\mathscr{C}^u_{\uparrow}(P)$.

We refer to the maximal cells of \mathscr{C}^u_{\uparrow} as chambers.

What happens if we vary the direction $u \in S^{d-1}$?

$$\mathscr{C}^{u}_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}$$

$$\mathscr{C}^u_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}$$

$$\mathscr{C}^u_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}$$

For which $u \in S^{d-1}$ does $\mathscr{C}^u_{\uparrow}(P)$ induce the same ordering of the vertices?

For which $u \in S^{d-1}$ does $\mathscr{C}^u_{\uparrow}(P)$ induce the same ordering of the vertices?

Consider the central hyperplane arrangement (called sweep arrangement)

$$\mathcal{R}_{\uparrow}(P) = \{ (v_i - v_j)^{\perp} \mid v_i, v_j \text{ are vertices of } P \}$$

For which $u \in S^{d-1}$ does $\mathscr{C}^u_{\uparrow}(P)$ induce the same ordering of the vertices?

Consider the central hyperplane arrangement (called sweep arrangement)

$$\mathscr{R}_{\uparrow}(P) = \{ (v_i - v_j)^{\perp} \mid v_i, v_j \text{ are vertices of } P \}$$

 \longrightarrow with each region of $\mathscr{R}_{\uparrow}(P)$ the induced ordering given by $\mathscr{C}^{\it{u}}_{\uparrow}(P)$ is fixed

$$\mathcal{R}_{\uparrow}(P) = \{(v_i - v_j)^{\perp} \mid v_i, v_j \text{ are vertices of } P\}$$

$$\mathscr{C}^u_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}$$

 $\mathcal{R}_{\uparrow}(P) = \{(v_i - v_j)^{\perp} \mid v_i, v_j \text{ are vertices of } P\}$

$$\mathscr{C}^u_{\uparrow}(P) = \{ H(\langle v, u \rangle \mid v \text{ is a vertex of } P \}$$

THEOREM (B.-MERONI-DE LOERA '23):

Let $P\subseteq\mathbb{R}^d$ be a polytope and $f(x)=\sum_{\alpha}c_{\alpha}x^{\alpha}$ be a polynomial in variables x_1,\ldots,x_d . Fix a region $R\in\mathcal{R}_{\uparrow}(P)$ of the sweep arrangement, a unit direction $u\in R\cap S^{d-1}$ and a chamber $C(u)\in\mathcal{C}_{\uparrow}^u(P)$ of the parallel arrangement.

Restricted to $u \in R \cap S^{d-1}$ and $H(\beta) \in C(u)$, the integral

$$\int_{P \cap H(\beta)} f(x) \, \, \mathrm{d}x$$

is a rational function in variables $u_1, ..., u_d, \beta$.

$$(u_1, u_2) \in R \iff u_1 \ge 0$$
$$u_1 - u_2 \le 0$$

$$(u_1, u_2) \in R \iff u_1 \ge 0$$
$$u_1 - u_2 \le 0$$

 $(u_1, u_2) \in R \iff u_1 \ge 0$

If
$$(u_1, u_2) \in R \cap S^{d-1}$$
 then $\beta \in C(u) \iff u_1 - u_2 \le \beta \le -u_1 + u_2$

If
$$u\in R\cap S^{d-1}$$
 and $H(\beta)\in C(u)$ then
$$\operatorname{vol}((P+t)\cap u^\perp)=\frac{-(\beta-u_1-3u_2)}{u_2(u_1+u_2)}$$

 $u_1 - u_2 \le 0$

$$(u_1, u_2) \in R \iff u_1 \ge 0$$
$$u_1 - u_2 \le 0$$

If
$$(u_1, u_2) \in R \cap S^{d-1}$$
 then $\beta \in C(u) \iff u_1 - u_2 \le \beta \le -u_1 + u_2$

maximize
$$\frac{-(\beta-u_1-3u_2)}{u_2(u_1+u_2)}$$
 s.t
$$(u_1,u_2)\in R\cap S^{d-1}$$

$$H(\beta)\in C(u)$$

If $u \in R \cap S^{d-1}$ and $H(\beta) \in C(u)$ then

$$(u_1, u_2) \in R \iff u_1 \ge 0$$
$$u_1 - u_2 \le 0$$

If
$$(u_1, u_2) \in R \cap S^{d-1}$$
 then $\beta \in C(u) \iff u_1 - u_2 \le \beta \le -u_1 + u_2$

If $u \in R \cap S^{d-1}$ and $H(\beta) \in C(u)$ then $\operatorname{vol}((P+t) \cap u^{\perp}) = \frac{-(\beta - u_1 - 3u_2)}{u_2(u_1 + u_2)}$

Let the computer find the biggest slice:

maximize
$$\frac{-(\beta-u_1-3u_2)}{u_2(u_1+u_2)}$$
 s.t
$$(u_1,u_2)\in R\cap S^{d-1}$$

$$H(\beta)\in C(u)$$

$$(u_1, u_2) \in R \iff u_1 \ge 0$$
$$u_1 - u_2 \le 0$$

If
$$(u_1, u_2) \in R \cap S^{d-1}$$
 then $\beta \in C(u) \iff u_1 - u_2 \le \beta \le -u_1 + u_2$

If
$$u \in R \cap S^{d-1}$$
 and $H(\beta) \in C(u)$ then
$$\operatorname{vol}((P+t) \cap u^{\perp}) = \frac{-(\beta - u_1 - 3u_2)}{u_2(u_1 + u_2)}$$

Let the computer find the biggest slice:

maximize
$$\frac{-(\beta-u_1-3u_2)}{u_2(u_1+u_2)}$$
 s.t
$$(u_1,u_2)\in R\cap S^{d-1}$$

$$H(\beta)\in C(u)$$

ROTATION VS TRANSLATION COMPARISON OF THE APPROACHES

COMPARISON

Running time of the algorithm \longleftrightarrow number of chambers in the arrangements n=# vertices of P

Running time of the algorithm \longleftrightarrow number of chambers in the arrangements n = # vertices of P

ROTATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM. CELLS)

$$\mathscr{C}_{\circlearrowleft}(P)$$
 $O(n^d 2^d)$

$$\mathscr{R}_{\circlearrowleft}(P)$$
 $O(n^{d^2}2^d)$

$$\mathcal{R}_{\circlearrowleft}(P)$$
 $O(n^{d^2}2^d)$ Total $O(n^{d^2+d}2^d)$

Running time of the algorithm \longleftrightarrow number of chambers in the arrangements n = # vertices of P

ROTATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM. CELLS)

$$\mathscr{C}_{0}(P)$$
 $O(n^d 2^d)$

$$\mathscr{R}_{0}(P)$$
 $O(n^{d^2}2^d)$

$$\mathscr{R}_{\circlearrowleft}(P)$$
 $O(n^{d^2}2^d)$ Total $O(n^{d^2+d}2^d)$

TRANSLATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM.)

$$\mathscr{C}_{\uparrow}(P)$$
 $O(n)$

$$\mathscr{R}_{\uparrow}(P)$$
 $O(n^{2d}2^d)$

$$\mathscr{R}_{\uparrow}(P)$$
 $O(n^{2d}2^d)$ Total $O(n^{2d+1}2^d)$

Running time of the algorithm \longleftrightarrow number of chambers in the arrangements n = # vertices of P

ROTATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM. CELLS)

$$\mathscr{C}_{0}(P)$$
 $O(n^d 2^d)$

$$\mathscr{R}_{0}(P)$$
 $O(n^{d^2}2^d)$

$$\mathscr{R}_{\circlearrowleft}(P)$$
 $O(n^{d^2}2^d)$ Total $O(n^{d^2+d}2^d)$

TRANSLATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM.)

$$\mathscr{C}_{\uparrow}(P)$$
 $O(n)$

$$\mathscr{R}_{\uparrow}(P)$$
 $O(n^{2d}2^d)$

$$\mathcal{R}_{\uparrow}(P)$$
 $O(n^{2d}2^d)$ Total $O(n^{2d+1}2^d)$

If $d \in \mathbb{N}$ is fixed then all of these are polynomials in n

→ both approaches yield algorithms in polynomial running time

Running time of the algorithm \longleftrightarrow number of chambers in the arrangements n = # vertices of P

ROTATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM. CELLS)

$$\mathscr{C}_{0}(P)$$
 $O(n^d 2^d)$

$$\mathscr{R}_{0}(P)$$
 $O(n^{d^2}2^d)$

$$\mathscr{R}_{\circlearrowleft}(P)$$
 $O(n^{d^2}2^d)$ Total $O(n^{d^2+d}2^d)$

TRANSLATIONAL APPROACH

ARRANGEMENT #CHAMBERS (INCL. LOWER-DIM.)

$$\mathscr{C}_{\uparrow}(P)$$
 $O(n)$

$$\mathscr{R}_{\uparrow}(P)$$
 $O(n^{2d}2^d)$

$$\mathcal{R}_{\uparrow}(P)$$
 $O(n^{2d}2^d)$ Total $O(n^{2d+1}2^d)$

If $d \in \mathbb{N}$ is fixed then all of these are polynomials in n

- → both approaches yield algorithms in polynomial running time
- → Translational approach runs much faster

MAXIMUM VOLUME SLICES OF PLATONIC SOLIDS

VARIATIONS

WITH THE SAME METHODS WE CAN UNDERSTAND...

- Intersections with half-spaces
- Projections onto hyperplanes
- Combinatorial types

WITH THE SAME METHODS WE CAN UNDERSTAND...

- Intersections with half-spaces
- Projections onto hyperplanes
- Combinatorial types

WE CAN OPTIMIZE FOR...

- volume
- Integral of a polynomial
- Number of *k*-dimensional faces

WITH THE SAME METHODS WE CAN UNDERSTAND...

- Intersections with half-spaces
- Projections onto hyperplanes
- Combinatorial types

WE CAN OPTIMIZE FOR...

- volume
- Integral of a polynomial
- Number of k-dimensional faces

WE CAN COMPUTE ALL OF THIS IN POLYNOMIAL TIME IN FIXED DIMENSION

(! MOST OF THESE PROBLEMS ARE KNOWN TO BE (AT LEAST)

NP-HARD IN NON-FIXED DIMENSION!)

WITH THE SAME METHODS WE CAN UNDERSTAND...

- Intersections with half-spaces
- Projections onto hyperplanes
- Combinatorial types

WE CAN OPTIMIZE FOR...

- volume
- Integral of a polynomial
- Number of k-dimensional faces

WE CAN COMPUTE ALL OF THIS IN POLYNOMIAL TIME IN FIXED DIMENSION

(! MOST OF THESE PROBLEMS ARE KNOWN TO BE (AT LEAST)

NP-HARD IN NON-FIXED DIMENSION!)

COMBINATORIAL TYPES OF SECTIONS OF THE CROSS-POLYTOPE

$$P = \operatorname{conv}(\pm e_i \mid i \in [d])$$

$$d = 3$$

COMBINATORIAL TYPES OF SECTIONS OF THE CROSS-POLYTOPE

$$P = \operatorname{conv}(\pm e_i \mid i \in [d])$$

H

$$d = 4$$

$P\cap H$					
f-vector	(4, 6, 4)	(6, 12, 8)	(8, 18, 12)	(8, 17, 11)	(9, 19, 12)
H	$x_1 + x_2 + x_3 + x_4 = 1$	$2x_1 = 1$	$x_1 + x_2 + x_3 = 0$	$2x_1 + 2x_2 + x_3 + x_4 = 1$	$2x_1 + 2x_2 + x_3 =$
$P\cap H$					
f-vector	(8, 18, 12)	(10, 21, 13)	(12, 24, 14)	(12, 24, 14)	

 $x_1 + x_2 + x_3 = 0$ $+2x_2 + 2x_3 + x_4 = 1$ $x_1 + x_2 + x_3 + x_4 = 0$ $2x_1 + 2x_2 + 2x_3 = 1$

COMBINATORIAL TYPES OF SECTIONS OF THE CROSS-POLYTOPE

$$P = \operatorname{conv}(\pm e_i \mid i \in [d])$$

$$d = 5$$

$P\cap H$								
f-vector	(5, 10, 10, 5)	(8, 24, 32, 16)	(10, 34, 48, 24)	(11, 36, 48, 23)	(12, 39, 51, 24)	(13,41,52,24)	(14, 42, 52, 24)	(14, 48, 62, 28)
H	$\begin{vmatrix} x_1 + x_2 + x_3 \\ +x_4 + x_5 = 1 \end{vmatrix}$	$2x_1 = 1$	$ \begin{aligned} x_1 + x_2 \\ +x_3 &= 0 \end{aligned} $	$\begin{vmatrix} 2x_1 + 2x_2 + x_3 \\ +x_4 + x_5 = 1 \end{vmatrix}$	$ 2x_1 + 2x_2 \\ +x_3 + x_4 = 1 $	$2x_1 + 2x_2 + x_3 = 1$	$2x_1 + 2x_2 = 1$	$\begin{vmatrix} x_1 + x_2 \\ +x_3 + x_4 = 0 \end{vmatrix}$
$P\cap H$								
f-vector	(14, 46, 59, 27)	(16, 51, 63, 28)	(17, 54, 66, 29)	(18, 54, 64, 28)	54, 64, 28) (20, 60, 70, 30)		(20, 60, 70, 30)	
Н	$ 2x_1 + 2x_2 + 2x_3 +x_4 + x_5 = 1 $	$ 2x_1 + 2x_2 \\ +2x_3 + x_4 = 1 $	$ 2x_1 + 2x_2 + 2x_3 +2x_4 + x_5 = 1 $	$2x_1 + 2x_2 $ $+2x_3 = 1$			$x_1 + x_2 + x_3 + x_4 + x_5 = 0$	

