Section 1.A – \mathbb{R}^n and \mathbb{C}^n

Thus $-\alpha$ is the unique complex number such that $\alpha+(-\alpha)=0$. Subtraction on C is dear $a_0,a_1,\ldots,a_m\in \mathbf{F}$ with $a_m\neq 0$ such that fined by $\beta - \alpha = \beta + (-\alpha)$. For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that $\alpha(1/\alpha)=1$. Division on ${\bf C}$ is defined by $\beta/\alpha = \beta(1/\alpha)$ **list**, **length**: Suppose n is a nonnegative integer. A list of length n is an ordered collection of n el-

ements (which might be numbers, other lists, or more abstract entities) separated by commas and surfor all $z \in \mathbf{F}$. If p has degree m, we write deg p = mrounded by parentheses. A list of length n looks like this: (x_1, \dots, x_n) Two lists are equal if

The polynomial that is identically o is said to have degree $-\infty$.

The polynomial that is identically of is said to have degree $-\infty$.

The polynomial that is identically of is said to have degree $-\infty$.

The polynomial that is identically of is said to have degree $-\infty$.

The polynomial that is identically of is said to have degree $-\infty$.

The polynomial that is identically of is said to have degree $-\infty$.

 \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} $\{(x_1, ..., x_n) : x_j \in \mathbf{F} \text{ for } j = 1, ..., n\} \text{ For } (x_1, ..., x_n) \in \mathbf{F}^n$

and $j \in \{1, \ldots, n\}$, we say that x_j is the j^{th} coordinate of (x_1, \ldots, x_n) and $j \in \{1, \dots, n\}$, we say that x_j is the j^{th} coordinate of (x_1, \dots, x_n) inversely independent: A list v_1, \dots, v_m of vectors in V is called linearly independent if addition in \mathbb{F}^n : Addition in \mathbb{F}^n is defined by adding corresponding coordinates: the only choice of $a_1 \dots, a_m \in \mathbb{F}$ that makes $a_1v_1 + \dots + a_mv_m$ equal o is

 $-x \in \mathbf{F}^n$ such that x + (-x) = 0 In other words, if $x = (x_1, \dots, x_n)$, then v in other words, a list v_1, \dots, v_m of vectors in V is linearly dependent if there exist that are of the form Tv for some $v \in V$: $-x=(-x_1,\ldots,-x_n)$ scalar multiplication in \mathbb{F}^n : The product of a number λ and a vector in \mathbf{F}^n is computed by multi-

plying each coordinate of the vector by $\lambda:\lambda$ $(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$ here $\lambda \in \mathbf{F}$ and $(x_1, \dots, x_n) \in \mathbf{F}^n$

Section 1.B - Definition of Vector Space

addition, scalar multiplication: \cdot An addition on a set V is a function that assigns an element $u+v\in V$ to each pair of elements $u,v\in V\cdot$ A scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$

Vector Space: A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold: commutativity

$$u+v=v+u$$
 for all $u,v\in V$

associativity (u + v) + w = u + (v + w) and (ab)v = a(bv) for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$ additive identity there exists an element $0 \in V$ such that $v, v, w \in V$ and all $v \in V$ additive inverse for every $v \in V$, there exists $w \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ such that $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ and $v \in V$ and $v \in V$ and $v \in V$ such that $v \in V$ and $v \in V$ and $v \in V$ additive inverse for every $v \in V$, there exists $v \in V$ such that $v \in V$ and $v \in V$ such that $v \in V$ and $v \in V$ are $v \in V$ and $v \in V$ are $v \in$ v+w=0 multiplicative identity 1v=v for all $v\in V$ distributive properties

$$a(u+v)=au+av$$
 and $(a+b)v=av+bv$ for all $a,b\in {f F}$ and

all $u, v \in V$

vector, point: Elements of a vector space are called vectors or points.

vector space over C is called a complex vector space. \mathbb{F}^S : If S is a set, then \mathbf{F}^S denotes the set of functions from S to \mathbf{F} · For $f,g\in \mathbf{F}^S$, the sum $f+g\in \mathbf{F}^S$ is the function defined by (f+g)(x)=f(x)+g(x) for all S and S is the function defined by S is the function defined by S is the function S is the function S is the function defined by S is the function S is the $x \in S \bullet \text{ For } \lambda \in \mathbf{F} \text{ and } f \in \mathbf{F}^S$, the product $\lambda f \in \mathbf{F}^S$ is the function defined by list of vectors in V with length $\dim V$ is a basis of V $(\lambda f)(x) = \lambda f(x)$ for all $x \in S$

Unique Additive Identity: A vector space has a unique additive identity

Unique additive inverse: Every element in a vector space has a unique additive inverse.

The number o times a vector: 0v = 0 for every $v \in V$ A number times the vector o: a0 = 0 for every $a \in \mathbf{F}$

The number -1 times a vector: (-1)v = -v for every $v \in V$

Section I.C - Subspaces

 ${\it Subspace}$: A subset U of V is called a subspace of V if U is also a vector space (using the same addition and scalar multiplication as on V).

Conditions for a subspace: A subset U of V is a subspace of V if and only if U satisfies the following three conditions: additive identity $0 \in U$ closed under addition $u, w \in U$ implies homogeneity $u+w\in U$ closed under scalar multiplication $a\in \mathbf{F}$ and $u\in U$ implies $au\in U$ sum of subsets: Suppose U_1 , \ldots , \dot{U}_m are subsets of V. The sum of \dot{U}_1 , \ldots , U_m , denoted $U_1+\cdots+U_m$, is the set of all possible sums of elements of U_1,\ldots,U_m More pre-Sum of subspaces is the smalles containing subspace: Suppose $U_1,\ldots,u_m\in U_m\}$. Then $U_1+\cdots+U_m=\{u_1+\cdots+u_m:u_1\in U_1,\ldots,u_m\in U_m\}$ for the smalles containing subspace of V. Then $U_1+\cdots+U_m$ is the smallest subspace of V containing U_1,\ldots,U_m direct sum: Suppose U_1,\ldots,U_m are subspaces of V . The sum $U_1+\cdots+U_m$ is called a direct sum if each element of $U_1+\cdots+U_m$ can be written in only one way as a sum $u_1+\cdots+u_m$, where each u_j is in $U_j\cdot$ If $U_1+\cdots+U_m$ is a direct sum, then $U_1\oplus\cdots\oplus U_m$ denotes $U_1+\cdots+U_m$, with the \oplus notation serving as an indication

Condition for a direct sum: Suppose U and W are subspaces of V. Then U+W is a direct sum if and only if $U \cap W = \{0\}$

Direct sum of two subspaces: Suppose U and W are subspaces of V . Then U+W is a direct sum if and only if $U \cap W = \{0\}$

Section 2. A Span and Linear Independence

Span: The set of all linear combinations of a list of vectors v_1,\ldots,v_m in V is called the span of v_1,\ldots,v_m , denoted span (v_1,\ldots,v_m) . In other words,

$$span(v_1, ..., v_m) = \{a_1v_1 + ... + a_mv_m : a_1, ..., a_m \in \mathbf{F}\}\$$

The span of the empty list () is defined to be $\{0\}$.

Span is the smallest containing subspace: The span of a list of vectors in V is the smallest subspace Algebraic Properties of products of linear maps: associativity of V containing all the vectors in the list.

spans: If $\operatorname{span}\left(v_1,\ldots,v_m\right)$ equals V, we say that v_1,\ldots,v_m spans Val vector space: A vector space is called finite-dimensional if some list of vectors in i

vnomial over a field F: A function $p:\mathbf{F} o\mathbf{F}$ is called a polynomial with coefficients in \mathbf{F} if there exist $a_0,\ldots,a_m\in \mathbf{F}$ such that

 $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$

for all $z \in \mathbf{F}$. $\mathcal{P}(\mathbf{F})$ is the set of all polynomials with coefficients in \mathbf{F} .

 t_{i} , subtraction, $1/\alpha$, division: Let $\alpha, \beta \in \mathbf{C}$: Let $-\alpha$ denote the additive inverse of α . degree of a polynomial: Λ polynomial $p \in \mathcal{P}(\mathbf{F})$ is said to have degree m if there exist scalars map on W.). distributive properties

$$p(z) = a_0 + a_1 z + \cdots + a_m z^m$$

For m a nonnegative integer, $\mathcal{P}_m(\mathbf{F})$ denotes the set of all polynomials with coefficients in \mathbf{F} and degree at most m.

infinite-dimensional vector space: A vector space is called infinite-dimensional if it is not finite

 $a_1 = \cdots = a_m = 0$ The empty list () is also declared to be linearly independent.

linearly dependent: A list of vectors in V is called linearly dependent if it is not linearly indepen-

 $a_1, \ldots, a_m \in \mathbf{F}$, not all 0, such that $a_1v_1 + \cdots + a_mv_m = 0$ Linear Dependence Lemma: Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then there exists $j \in \{1, 2, \dots, m\}$ such that the following hold: (a) $v_j \in$ $\operatorname{span}\left(v_1,\ldots,v_{j-1}\right)\text{ (b) if the }j^{\operatorname{th}} \text{ term is removed from }v_1,\ldots,v_m, \text{ the span of } \\ \frac{\textit{The range is subspace.}}{\textit{surjective}}\text{ A function }T:V \to W \text{ is called surfective if its range equals }W$ the remaining list equals $\operatorname{span}\left(v_1,\ldots,v_m\right)$

Length of linearly independent list \leq length of spanning list: In a finite-dimensional vector $\mathcal{L}(V,W)$. Then range T is finite-dimensional and space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

Finite-dimensional subspaces: Every subspace of a finite-dimensional vector space is finite dimensional.

Section 2.B Bases

basis: A basis of V is a list of vectors in V that is linearly independent and spans V $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$ where **Homog** ${\it a}_{\,1}\,,\,\ldots\,,\,{\it a}_{\,n}\,\in\,\mathbf{F}$ Spanning list contains a basis: Every spanning list in a vector space can be reduced to a basis of the

dimensional vector space can be extended to a basis of the vector space.

dimension, dim V: The dimension of a finite-dimensional vector space is the length of any basis of the vector space. The dimension of V (if V is finite-dimensional) is denoted by $\dim V$. real vector space, complex vector space: • A vector space over R is called a real vector space. A Dimension of subspaces If V is finite-dimensional and U is a subspace of V, then dim $U \le$

> Linearly independent list of the right length is a basis: Suppose V is finite-dimensional. Then every linearly independent list of vectors in V with length $\dim V$ is a basis of V

Dimension of a sum: If U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2)$$

Section 3.A The Vector Space of Linear Maps

linear map: A linear map from V to W is a function T:V o W with the following proper- $\mathcal{M}\left(T,(v_1,\ldots,v_n),(w_1,\ldots,w_m)
ight)$ is used.

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$

$$T(\lambda v) = \lambda (Tv)$$
 for all $\lambda \in \mathbf{F}$ and all $v \in V$

Notation $\mathcal{L}(V, W)$: The set of all linear maps from V to W is denoted $\mathcal{L}(V, W)$ Linear maps and basis of domain: Suppose v_1, \ldots, v_n is a basis of V and equation: $w_1,\ldots,w_n\in W$. Then there exists a unique linear map T:V o W such

$$Tv_j = w$$

tiona nd scalar multiplication on linear maps: Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbf{F}$. The sum S + T and the product λT are the linear maps from V to W defined

$$(S+T)(v) = Sv + Tv$$
 and $(\lambda T)(v) = \lambda (Tv)$

for all $v \in V$

 $\mathcal{L}(V,W)$ is a vector space: With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space.

Product of Linear Maps: If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then the product $ST \in \mathcal{L}(U, W)$ is defined by

$$(ST)(u) = S(Tu)$$

for $u\,\in\, U$

$$(T_1 T_2) T_3 = T_1 (T_2 T_3)$$

whenever T_1 , T_2 , and T_3 are linear maps such that the products make sense (meaning that T_3 maps into the domain of T_2 , and T_2 maps into the domain of T_1). identity TI = IT = T

whenever $T \in \mathcal{L}(V, W)$ (the first I is the identity map on V, and the second I is the identity

$$(S_1 + S_2) T = S_1 T + S_2 T$$
 and $S(T_1 + T_2) = ST_1 + ST_2$

whenever T, T_1 , $T_2 \in \mathcal{L}(U,V)$ and S, S_1 , $S_2 \in \mathcal{L}(V,W)$ **Linear maps take o to o:** Suppose T is a linear map from V to W. Then T(0)=0

null space: For $T \in \mathcal{L}(V,W)$, the null space of T , denoted null T , is the subset of V consisting of those vectors that T maps to o:

$$\operatorname{null} T = \{v \in V : Tv = 0\}$$

injective: A function T:V o W is called injective if Tu=Tv implies u=vInjectivity is equivalent to null space equals $\{0\}$: Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$

range: For T a function from V to W, the range of T is the subset of W consisting of those vectors

$${\rm range}\, T \,=\, \{\, T\, v \,:\, v \,\in\, V\,\}$$

Fundamental Theorem of Linear Maps: Suppose V is finite-dimensional and $T \in \mathcal{C}$

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

A map to a smaller dimensional space is not injective: Suppose V and W are finite-dimensional vector spaces such that $\dim V > \dim W$. Then no linear map from V to W is injective. basis: A basis of V is a list of vectors in V that is linearly independent and spans VA map to a larger dimensional space is not surjective: Suppose V and W are finite-dimensional Vvector spaces such that Veneous system of linear equations: A homogeneous system of linear equations with more variables than equations has nonzero solutions.

Inhomogeneous system of linear equations: An inhomogeneous system of linear equations with more equations thavariables has no solution for some choice of the constant terms.

Every subspace V is part of a direct sum equal to V.: Suppose V is finite-dimensional and U is matrix, $A_{j,k}$: Let m and n denote positive integers. An m-by-n matrix A is a rectangular array a subspace of V. Then there is a subspace W of V such that $V = U \oplus W$ of elements of \mathbf{F} with m rows and n columns:

$$A = \left(\begin{array}{ccc} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{array} \right)$$

to the row number and the second index refers to the column number.

matrix of a linear map, $\mathcal{M}(T)$: Suppose $T \in \mathcal{L}(V,W)$ and v_1,\ldots,v_n is a basis of V and w_1, \dots, w_m is a basis of W. The matrix of T with respect to these bases is the m-by-n matrix $\mathcal{M}(T)$ whose entries $A_{i,k}$ are defined by

$$Tv_k = A_{1.k}w_1 + \cdots + A_{m.k}w_m$$

If the bases are not clear from the context, then the notation

 $\mathbb{F}^{m,n}$: For m and n positive integers, the set of all m-by-n matrices with entries in \mathbf{F} is denoted by $\mathbf{F}^{m,n}$

dim $\mathbb{F}^{m,n}=mn$; Suppose m and n are positive integers. With addition and scalar multiplication defined as above, $\mathbf{F}^{m,n}$ is a vector space with dimension mnmatrix multiplication: Suppose A is an m- by -n matrix and C is an n -by -p matrix. Then AC is defined to be the m-by-p matrix whose entry in row j, column k, is given by the following

$$(AC)_{j,k} = \sum_{r=1}^n A_{j,r} C_{r,k}$$

In other words, the entry in row j , column k , of AC is computed by taking row j of A and column k of C, multiplying together corresponding entries, and then summing.

, A k: Suppose A is an m-by -n matrix. If $1 \le j \le m$, then denotes the 1- by - n matrix consisting of row j of $A\cdot$ If 1< k< n, then A., k denotes the m- by -1 matrix consisting of column k of A

Entry of matrix product equals row times column: Suppose A is an m-by-n matrix and C is an n -by- p matrix. Then

$$(AC)_{j,k} = A_{j,.}C_{.,k}$$

for $1 \leq j \leq m$ and $1 \leq k \leq p$

Column of matrix product equals matrix times column: Suppose A is an m- by-n matrix and C is an n -by-p matrix. Then

$$(AC)_{.,k} = AC_{.,k}$$

Linear combination of columns: Suppose
$$A$$
 is an $m-by-n$ matrix and $c=\left(\begin{array}{c}c_1\\\vdots\\c_n\end{array}\right)$ is an n -by-1 matrix. Then

$$Ac = c_1 A_1 + \cdots + c_n A_n$$

In other words, Ac is a linear combination of the columns of A, with the scalars that multiply the columns coming from c.