On certain Lagrangian subvarieties in minimal resolutions of Kleinian singularities

Mengwei Hu

Yale University

AMS 2024 Fall Eastern Sectional Meeting Special Session on Singularities in Commutative Algebra

Oct 19-20, 2024

Motivations

Kleinian singularities are the only normal Gorenstein singularities in dimension 2. Anti-Poisson involutions and their fixed loci appear naturally when we want to classify irreducible Harish-Chandra modules over Kleinian singularities.

Overview:

Goal: Describe X^{θ} and $\pi^{-1}(X^{\theta})$ as schemes.

2 Anti-Poisson involutions and their fixed loci

3 Preimage of fixed loci under minimal resolutions

Kleinian singularities are quotients of \mathbb{C}^2 by finite subgroups of $SL_2(\mathbb{C})$.

Let $\Gamma \subset \operatorname{SL}_2(\mathbb{C})$ be a finite subgroup. The algebra of invariant functions $\mathbb{C}[u,v]^{\Gamma}$ is finitely generated. *Kleinian singularities* are the quotient varieties $X:=\mathbb{C}^2/\Gamma=\operatorname{Spec}\mathbb{C}[u,v]^{\Gamma}$.

Example

When $\Gamma = \{\pm I_2\}$, we have $\mathbb{C}[u, v]^{\Gamma} = \text{even degree polynomials} = \mathbb{C}[x = u^2, y = v^2, z = uv] = \mathbb{C}[x, y, z]/(xy - z^2).$

Fact (Klein, 1884)

 $\mathbb{C}^2/\Gamma\hookrightarrow\mathbb{C}^3$ (one relation), and \mathbb{C}^2/Γ is a singular surface with the only singularity at 0.

Classification of finite subgroups of $SL_2(\mathbb{C})$:

- The cyclic group of order n+1. $xy-z^{n+1}=0$
- The binary dihedral group of order 4(n-2), n > 4. $x^{n-1} + xy^2 + z^2 = 0$
- The binary tetrahedral group of order 24. $x^4 + v^3 + z^2 = 0$
- The binary octahedral group of order 48. $x^3y + y^3 + z^2 = 0$
- The binary icosahedral group of order 120. $x^5 + v^3 + z^2 = 0$

McKay correspondence: Finite subgroups of $SL_2(\mathbb{C})$ are in bijection with ADE Dynkin diagrams.

How to attach a Dynkin diagram to a finite subgroup of $SL_2(\mathbb{C})$?

- McKay Correspondence [McKay, 1979].
- ② Minimal Resolution [Du Val, 1934]. By resolution we mean a smooth variety \widetilde{X} equipped with a projective birational morphism $\pi \colon \widetilde{X} \to X := \mathbb{C}^2/\Gamma$. The minimality condition means that any other resolution factors through \widetilde{X} . The exceptional locus

$$\pi^{-1}(0) = C_1 \cup \cdots \cup C_n, \ C_i \simeq \mathbb{P}^1$$

is a connected union of \mathbb{P}^1 's. We can construct the dual graph of $\pi^{-1}(0)$ by replacing each C_i by a vertex i and joining vertices i and j by an edge if C_i intersects with C_j .

Fact (Du Val, 1934)

The dual graph of $\pi^{-1}(0)$ is the corresponding type Dynkin diagram.

For example,

 A_1 singularity $xy - z^2 = 0$

$$D_4$$
 singularity $x^3 + xy^2 + z^2 = 0$

Anti-Poisson involutions

The algebra $\mathbb{C}[u,v]$ is a graded Poisson algebra with Poisson bracket

$$\{f_1, f_2\} = \frac{\partial f_1}{\partial u} \frac{\partial f_2}{\partial v} - \frac{\partial f_1}{\partial v} \frac{\partial f_2}{\partial u}.$$

The finite subgroup $\Gamma \subset \mathsf{SL}_2(\mathbb{C})$ preserves this Poisson bracket, making $\mathbb{C}[u,v]^\Gamma$ into a graded Poisson subalgebra of $\mathbb{C}[u,v]$.

Example

On type A_n : $\mathbb{C}[x,y,z]/(xy-z^{n+1})$ Kleinian singularity singularity. The Poisson brackets are given by

$$\{x,y\} = (n+1)^2 z^n, \{x,z\} = (n+1)x, \{y,z\} = -(n+1)y.$$

Anti-Poisson involutions

Definition

An anti-Poisson involution of a Kleinian singularity $X:=\mathbb{C}^2/\Gamma$ is a graded algebra involution $\theta\colon \mathbb{C}[X]\to \mathbb{C}[X]$ such that

$$\theta(\{f_1, f_2\}) = -\{\theta(f_1), \theta(f_2)\}, \ \forall \ f_1, f_2 \in \mathbb{C}[X].$$

Example

On type $A_n : \mathbb{C}[x, y, z]/(xy - z^{n+1})$ Kleinian singularity, $x \mapsto y, y \mapsto x, z \mapsto z$

is an anti-Poisson involution.

Proposition

There are finitely many anti-Poisson involutions on \mathbb{C}^2/Γ up to conjugation by Poisson automorphisms.

The fixed loci

The fixed locus $X^{\theta} := \operatorname{Spec} \mathbb{C}[X]/I$ where $I = (\theta(f) - f, f \in \mathbb{C}[X])$

Proposition (Description of X^{θ})

- **1** X^{θ} is a singular Lagrangian subvariety of X that contains 0.

Example (continued)

On type A_n : $\mathbb{C}[x,y,z]/(xy-z^{n+1})$ Kleinian singularity,

$$x \mapsto y, \ y \mapsto x, \ z \mapsto z$$

is an anti-Poisson involution. The fixed locus is

$$\operatorname{Spec} \mathbb{C}[x, y, z]/(xy - z^{n+1}, x - y) \simeq \operatorname{Spec} \mathbb{C}[x, z]/(x^2 - z^{n+1}),$$

which is a union of two \mathbb{A}^1 's when n is odd; a cusp when n is even.

Preimage of fixed loci under minimal resolutions

Recall $\pi \colon \widetilde{X} \to X$ denotes the minimal resolution. We would like to describe the preimage $\pi^{-1}(X^{\theta})$.

Proposition

- $\pi^{-1}(X^{\theta})$ is a Lagrangian subvariety of \widetilde{X} containing the exceptional locus $\pi^{-1}(0)$.
- Each irreducible component of $\pi^{-1}(X^{\theta})$ is either a \mathbb{P}^1 or an \mathbb{A}^1 .
- $\pi^{-1}(X^{\theta})$ is connected.
- $\pi^{-1}(X^{\theta})$ is usually non-reduced.

Preimage of fixed loci under minimal resolutions

Example: Consider type A_n singularities with θ swapping $x \leftrightarrow y$. The fixed loci and their preimages look like the following.

Notation: straight green line is \mathbb{A}^1 ; curly purple line is \mathbb{P}^1 ; doubled line reflects non-reduced component.

Question

How do the \mathbb{P}^1 's and \mathbb{A}^1 's in $\pi^{-1}(X^{\theta})$ intersect with each other in other cases?

To solve this in general, we need to find a good way to describe the minimal resolution. We will realize Kleinian singularities and their minimal resolutions as **Nakajima quiver varieties** in types *ADE*.

Example: We realize type A_n : $xy - z^{n+1}$ singularity as quiver variety.

Each V_i is a 1-dimensional vector space. The group $G:=\prod_{i=0}^n \operatorname{GL}(V_i)$ naturally acts on $M(V):=\bigoplus_{i=0}^n \operatorname{Hom}(V_i,V_{i+1})\oplus \bigoplus_{i=0}^n \operatorname{Hom}(V_{i+1},V_i)$ with moment map $\mu=(\mu_i)_{i=0}^n\colon M(V)\to \bigoplus_{i=0}^n \operatorname{\mathfrak{gl}}(V_i)$ where

$$\mu_i = a_{i-1}b_{i-1} - b_i a_i.$$

We have $\mu^{-1}(0)/\!/G\simeq \operatorname{\mathsf{Spec}}\nolimits \mathbb{C}[x,y,z]/(xy-z^{n+1})$ with

$$x := a_n a_{n-1} \cdots a_1 a_0, \ y := b_0 b_1 \cdots b_{n-1} b_n, \ z := a_0 b_0.$$

Fixing a character $\chi \colon G \to \mathbb{C}^*$, we can consider the stable locus $\mu^{-1}(0)^s \subset \mu^{-1}(0)$ with respect to χ .

Theorem (Kronheimer 1989, Nakajima 1994)

For χ generic, the action of G on $\mu^{-1}(0)^s$ is free. The projective morphism

$$\mu^{-1}(0)^s /\!/ G o \mu^{-1}(0) /\!/ G \simeq \mathbb{C}^2 / \Gamma$$

gives the minimal resolution of the Kleinian singularity.

Proposition (Nakajima 1998)

Fix the character $\chi(g) = \prod_{i=0}^n \det(g_i)$. Then $(a_i, b_i)_{i=0}^n \in \mu^{-1}(0)^s$ iff V_0 generates the entire $V = \bigoplus_{i=0}^n V_i$ under the action of $(a_i, b_i)_{i=0}^n$.

Example (continued): We describe $\mu^{-1}(0)^s$ for type A_n .

Set
$$U_i := \{(a_j, b_j)_{j=0}^n \in \mu^{-1}(0) | a_{i-1} \cdots a_1 a_0 \neq 0, b_{i+1} \cdots b_{n-1} b_n \neq 0\}.$$
 Then we have

- U_i is G-invariant and χ -stable.
- $\{U_i\}_{i=0}^n$ forms an affine open cover of $\mu^{-1}(0)^s$.
- $U_i/\!/G \simeq \operatorname{Spec} \mathbb{C}[u_i, v_i]$, where $u_i = \frac{b_i \cdots b_n}{a_{i-1} \cdots a_0}$, $v_i = \frac{a_i \cdots a_0}{b_{i+1} \cdots b_n}$.
- The morphism $U_i/\!/G \to \mu^{-1}(0)/\!/G \simeq \mathbb{C}^2/\Gamma$ is given by

$$(u_i, v_i) \mapsto (x = u_i^{n-i} v_i^{n-i+1}, y = u_i^{i+1} v_i^i, z = u_i v_i)$$

Thank you for your attention!