$\mathbb{R} eal\ Analysis$

Aryaman Maithani

https://aryamanmaithani.github.io/

Autumn Semester 2020-21

Contents

1	Sets and stuff	2
2	Topology	3
3	Continuity	5
4	Derivatives	8
5	Integrals	10
6	Sequence and series of functions	11

 $\S 1$ Sets and stuff 2

§1. Sets and stuff

- 1. Let $i:A\to B$ and $j:B\to A$ be injections. Show that there exists a bijection between A and B. Remark. This is known as the Schröder–Bernstein theorem. (The link has a proof of it as well.)
- 2. Show that if S is infinite, then there is an injection $i : \mathbb{N} \to S$.
- 3. Show that if S is infinite and if there exists an injection $j: S \to \mathbb{N}$, then S is countable.
- 4. Let C be a countably infinite set. Show that if S is infinite and if there exists an injection $j:S\to C$, then S is countable.
- 5. Show that \mathbb{Q} is countable.
- 6. Show that if A is at most countable, then so is $A \times A$. Conclude that A^n is countable for all $n \ge 1$.
- 7. Show that \mathbb{Q}^n is countable for all $n \geq 1$.
- 8. Let $\{0,1\}^{\mathbb{N}}$ be the set of all sequences with entries from $\{0,1\}$. In other words, $\{0,1\}^{\mathbb{N}}$ is the set of all functions from \mathbb{N} to $\{0,1\}$. Show that $\{0,1\}^{\mathbb{N}}$ is uncountable.
- 9. Show that [0,1] is countable. (Hence, so is \mathbb{R} .)
- 10. Show that there exists a bijection between any two of the following sets:

$$(0,1), [0,1], (0,1], \mathbb{R}, \mathbb{R} \setminus \mathbb{Q}.$$

11. Show that there exists a bijection between $\mathcal{P}(\mathbb{N})$ and \mathbb{R} , where $\mathcal{P}(\mathbb{N})$ is the power set of \mathbb{N} .

(You can use properties such as binary/ternary expansions.)

§2 Topology 3

§2. Topology

1. Let X be a metric space and let $U \subset X$. Define the boundary of U as

$$\partial U = \bar{U} \cap \overline{(U^c)}.$$

Show that $\partial U = U \setminus U^{\circ}$.

2. Prove or disprove that

$$(\partial U)^{\circ} = \varnothing$$

for any subset U of any metric space X.

HIDDEN: Disprove it. Even in the case that $X = \mathbb{R}^n$

3. Construct a set $A \subset [0,1] \times [0,1]$ such that A contains at most one point on each horizontal and vertical line but $\partial A = [0,1] \times [0,1]$.

HIDDEN: It suffices to ensure that A contains points in each quarter of the square $[0,1] \times [0,1]$ and also in each sixteenth, et cetera.

4. Let (X,d) be a metric space and $x \in X$. Let $\delta > 0$. Define the following sets:

$$B_{\delta}(x) := \{ y \in X \mid d(x, y) < \delta \},\$$

 $C_{\delta}(x) := \{ y \in X \mid d(x, y) \le \delta \}.$

Show that $\overline{B_{\delta}(x)} \subset C_{\delta}(x)$.

Can this inclusion be proper?

HIDDEN: Not if you stay in \mathbb{R}^n . Think about other spaces.

5. Topological Nim

You and your friend want to play Topological Nim. Here's how it works:

Let X be your favourite compact metric space and r>0 your favourite (positive) real number.

Each player removes an open disk of radius r from the space on their turn (only the center of the disk must not have been removed in a prior move), until one player—the winner—removes what remains of the space on his turn.

Show that no matter what moves are played, the game stops after a finite number of moves. (In other words, there is no infinite sequence of legal moves.)

Bonus: Fix $n \in \mathbb{N}$ and r > 0. Assuming optimal play, who will win the game if

$$X = S^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$$

§2 Topology 4

with the standard metric? (The answer will depend on r.)

Credits: https://puzzling.stackexchange.com/questions/99859/

6. Show that every open set U in \mathbb{R} can be written as a disjoint union of open intervals. Moreover, show that this set of open intervals is at most countable.

HIDDEN: First part: Consider an equivalence relation \sim on U where $x \sim y$ iff $[x,y] \subset U$.

Second part: Each open interval contains a rational

- 7. Let $I \subset \mathbb{R}$ be such that every $x \in I$ is an isolated point. Show that I is at most countable.
- 8. Let K be a compact subset of \mathbb{R}^n . Fix a constant r>0. Show that there exists a finite collection of points $x_1,\ldots,x_k\in K$ such that the collection of open balls $\{B(x_i,2r)\}_{i=1}^k$ forms an open cover of K while $B(x_i,r)$ are mutually disjoint.

§3 Continuity 5

§3. Continuity

1. Let $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the first projection map, that is,

$$\pi_1(x,y) = x.$$

Show that π_1 is an *open map*, that is, $\pi_1(U)$ is open in \mathbb{R} if U is open in \mathbb{R}^2 . Is it a closed map?

HIDDEN: No.

2. Pasting lemma.

Let X be a metric space and $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of X.

Let Y be an arbitrary metric space. Suppose that for each $\alpha \in I$, we have a continuous function

$$f_{\alpha}:U_{\alpha}\to Y.$$

Moreover, assume that whenever $x \in U_{\alpha} \cap U_{\beta}$, then $f_{\alpha}(x) = f_{\beta}(x)$. (That is, the functions agree on their common domains.)

Show the following:

(a) There exists a unique function $f: X \to Y$ such that

$$f|_{U_{\alpha}} = f_{\alpha}$$
 for all $\alpha \in I$.

(What the above means is that: for all $\alpha \in I$, for all $x \in U_{\alpha}$, $f(x) = f_{\alpha}(x)$.)

- (b) The above function f is continuous.
- 3. Show that the above is not true if we replace "open" with "closed." (In particular, observe very carefully where you used open-ness of U_{α} .)
- 4. Show that the above becomes true once again after replacing "open" with "closed" if we further impose that I be finite.

Remark. The above lemma for closed sets makes it especially easy to directly verify the continuity of "piece-wise" defined functions which agree on the intersections. A particular easy case is when the sets have empty intersection. (cf. 7)

- 5. Give a counterexample if we further drop "closed" completely, even if I is finite. (In fact, you can give one with $X = \mathbb{R}$ and |I| = 2.)
- 6. Given an example of a continuous bijection $f: X \to Y$ such that $f^{-1}: Y \to X$ is not continuous.

§3 Continuity 6

7. Justify that the following is an example for the above question: $f:[0,1]\cup(2,3]\to[0,2]$ defined by

$$f(x) := \begin{cases} x & x \in [0,1] \\ x-1 & x \in (2,3] \end{cases}.$$

- 8. Let $f: X \to Y$ be a function between metric spaces.
 - (a) f is said to be *open continuous* if $f^{-1}(U)$ is open in X whenever U is open in Y.
 - (b) f is said to be *closed continuous* if $f^{-1}(U)$ is closed in X whenever U is closed in Y.

Show that f is continuous iff f is open continuous iff f is closed continuous.

- 9. Let K be a compact metric space and Y an arbitrary metric space. Assume that $f:K\to Y$ is a continuous bijection.
 - (a) Let $C \subset K$ be closed. Show that C is compact.
 - (b) Show that f(C) is compact.
 - (c) Show that f(C) is closed.

Conclude that $f^{-1}: Y \to K$ is continuous.

10. The following question appeared on a test:

Given an example of a continuous bijection $f:X\to Y$ such that $f^{-1}:Y\to X$ is not continuous.

The lazy TA sees that a student has started their answer as

The following is example: Let $f: S^1 \to S^1$ be defined as...

The TA sees that and marks it wrong straight away. Was the TA justified (mathematically, not morally) in doing so? Why?

- 11. Let $I \subset \mathbb{R}$ and $f: I \to \mathbb{R}$ be continuous. We know that if I is compact, then f is bounded and it achieves (both) its bounds. Show that if I is not compact, then one can always construct:
 - (a) a continuous f which is not bounded,

§3 Continuity 7

(b) a continuous f which is bounded but fails to achieve one (or both) of its bounds.

12. Let $I \subset \mathbb{R}$ and $f: I \to \mathbb{R}$ be continuous. We know that if I is compact, then f is uniformly continuous.

Can we again do something like the previous case?

That is: if I is not compact, then can one always construct a continuous f which is *not* uniformly continuous?

HIDDEN: No. Show that every function $f: \mathbb{Z} \to Y$ is not only continuous but uniformly continuous.

13. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that

$$\lim_{x\to\infty}f(x) \text{ and } \lim_{x\to-\infty}f(x)$$

both exist and are finite.

Show that f is bounded.

14. Suppose f is continuous on [0,1] with f(0)=f(1)=0. For all $x\in (0,1)$, there exists h>0 with $0\leq x-h< x< x+h\leq 1$ such that $f(x)=\frac{f(x+h)+f(x-h)}{2}$.

Show that f(x) = 0 for all $x \in [0, 1]$.

(Note that given any x, the above only says that there's a particular h with the given property.)

§4. Derivatives

1. Prove or disprove:

Let $f : \mathbb{R} \to \mathbb{R}$ be continuously differentiable. If $f'(x_0) > 0$ for some $x_0 \in \mathbb{R}$, the there exists an interval I containing x_0 such that f is increasing on I.

8

HIDDEN: Prove.

2. Prove or disprove:

Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. If $f'(x_0) > 0$ for some $x_0 \in \mathbb{R}$, the there exists an interval I containing x_0 such that f is increasing on I.

HIDDEN: Disprove.

3. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function such that $\lim_{x \to \infty} f(x)$ exists and is finite.

Prove or disprove:

$$\lim_{x \to \infty} f'(x) = 0.$$

HIDDEN: The limit need not exist

4. Let $f:\mathbb{R}\to\mathbb{R}$ be a differentiable function such that $\lim_{x\to\infty}f(x)$ exists and is finite. Further assume that f' is uniformly continuous.

Prove or disprove:

$$\lim_{x \to \infty} f'(x) = 0.$$

HIDDEN: Prove

5. Let I be an open interval and $f:I\to\mathbb{R}$ be differentiable. Show that f' need not be continuous.

Show that f' has the intermediate value property. That is, if $a,b \in I$ with f'(a) < r < f'(b), then there exists $c \in (\min\{a,b\}, \max\{a,b\})$ such that f'(c) = r.

This is known as Darboux's Theorem.

6. Let I be an open interval and $f:I\to\mathbb{R}$ be differentiable. Prove that f' is continuous if and only if the inverse image under f' of any point is a closed set.

7. Let (X,d) be a complete metric space. (That is, every Cauchy sequence in X converges.)

Let $f: X \to X$ be a function with the following property:

There exists 0 < K < 1 such that

$$d(f(x), f(y)) \le Kd(f(x), f(y))$$
 for all $x, y \in X$.

§4 Derivatives 9

Show that:

(a) f is (uniformly) continuous.

- (b) f has a fixed point. (That is, f(x) = x for some $x \in X$.)
- (c) f has a unique fixed point.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that $|f'(x)| \leq K$ for all $x \in \mathbb{R}$, where K < 1 is some fixed positive constant. Show that \mathbb{R} has a unique fixed point.
- 9. Give an example of a differentiable function $f: \mathbb{R} \to \mathbb{R}$ with |f'(x)| < 1 such that f has no unique fixed point.

Contemplate on how this is different from the earlier question.

10. Show that $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) = \exp\left(-\cos^2(x)\right)$$

has a unique fixed point.

(How would you calculate it numerically? Was your proof of 7b "constructive"?)

§5 Integrals

§5. Integrals

1. Does there exist a function $f:[0,1]\to\mathbb{R}$ such that it takes only a finitely many values and is Riemann Integrable on [0,1] but is not locally constant?

HIDDEN: Yes. Find/show the existence of one

§6. Sequence and series of functions

1. (Non-)converse of Weierstrass M-test

Construct an example of a family $(f_n)_{n\in\mathbb{N}}$ of functions $f_n:\mathbb{R}\to\mathbb{R}$ such that $\sum f_n$ converges uniformly but $\sum M_n$ does not, where $M_n:=\sup_{x\in\mathbb{R}}|f_n(x)|$.

HIDDEN: Consider f_n such that f_n takes value 1/n at n and 0 otherwise.

2. Recall that if $f:K\to\mathbb{R}$ is a continuous function and K is compact, then there exists a sequence $(P_n)_{n\in\mathbb{N}}$ of polynomials such that $P_n\to f$ uniformly on K. Show that this need not be true if K is not compact.

HIDDEN: Consider $K = \mathbb{R}$ and $f = \exp$

- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Show that there exists a sequence $(P_n)_{n \in \mathbb{N}}$ of polynomials such that $P_n \to f$ **pointwise** on \mathbb{R} .
- 4. Let $K \subset \mathbb{R}$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of differentiable functions $f_n : K \to \mathbb{R}$. Suppose that $f_n \to f$ uniformly on compact subsets of K. Show that f is continuous.

Show that it is not necessary that f is differentiable (anywhere).

HIDDEN: Consider K to be compact and f to be a Weierstrass type function

Remark. The above is different from the case in Complex Analysis where one has the following theorem:

Montel's Theorem.

Let Ω be an open set in $\mathbb C$ and (f_n) a sequence of (complex) differentiable functions $f_n:\Omega\to\mathbb C$.

Suppose that $f_n \to f$ uniformly on compact subsets of Ω .

Then, f is also (complex) differentiable.

Further, $f'_n \to f'$ uniformly on compact subsets of Ω .

This is just one example of how much "better" things behave in $\mathbb C$ Analysis as compared to $\mathbb R$. In $\mathbb R$, not only can f fail to be differentiable but it can differentiable *nowhere*.

5. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined as

$$f_n(x) := \left(1 + \frac{z}{n}\right)^n$$
.

Show that f_n does not converge uniformly.