2008~2009 学年第一学期 《复变函数与积分变换》课程考试试卷(B卷)

院(系)	专业班级		学号		姓名
	考试日期:	年月日		考试时间::~:	

题号	 _	Ш	四	五	六	七	总分
得分							

得 分	
评卷人	

一、填空题 (每空 2 分, 共 30 分)

- 1、复数(-1+√3i)的模为_____,辐角主值为______.
- 2、 $\sqrt{8}$ 的所有值分别为_____.
- 3、已知 $\arg z = \frac{\pi}{4}$,则点 z 的轨迹曲线是______.
- 4、Ln(1+√3 i)的值为______.
- 5、函数 $f(z) = x^2 + i y^2$ 在何处可导______,何处解析______.
- 6、设 $f(z) = x^3 3xy^2 + i(3x^2y y^3)$,则 f'(z) =
- 7、函数 $f(z) = \frac{1}{z-1}$ 在 z = i 处展开成泰勒级数的收敛半径为_____.
- $8 \cdot z = 0$ 为函数 $\frac{1}{z \sin z}$ 的何种类型的奇点______.

9、积分
$$\oint_{|z|=1} \frac{1}{(z-2)(z+3)} dz$$
 的值为_____.

- 10、映射 $f(z) = z^2 + 1$ 在 z = i 处的伸缩率为_____,旋转角为_____.
- 11、已知 f(t) 的傅氏变换为 $F(\omega) = \pi[\delta(\omega + \omega_0) + \delta(\omega \omega_0)]$,则 f(t) =_______.
- 12、函数 $f(t) = \frac{\sin at}{2a}$ 的拉氏变换为 $F(s) = \underline{\qquad}$

得 分	
评卷人	

二、计算题 (每题 5 分, 共 20 分)

$$1 \int_0^{2\pi} \frac{\mathrm{d}\theta}{2 + \sqrt{3} \cos \theta}$$

$$2 \int_{|z|=2} \frac{1}{z^2 - 1} \mathrm{d}z$$

$$3 \cdot \oint_{|z|=2} \frac{1}{1-z} e^{\frac{1}{z}} dz$$

$$4 \int_0^{+\infty} \frac{x^2}{x^4 + 1} \mathrm{d}x$$

得 分	
评卷人	

三、(10 分) 已知 $u(x,y) = x^2 - y^2 + 2x$,证明 u(x,y) 为调和函数,并求一满足条件 f(-2) = 0 的解析 函数 f(z) = u + iv.

得 分	
评卷人	

四、(10 分)将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z = 1点 展开为洛朗(Laurent) 级数.

得 分	
评卷人	

五、(10 分)求曲线 $(x-1)^2 + y^2 = 1$ 在映射 $w = \frac{i}{z}$ 下的像曲线.

得 分	
评卷人	

六、 $(10 \, \mathcal{G})$ 求把区域 $\mathbf{D} = \{z : \operatorname{Re} z < 0, \ 0 < \operatorname{Im} z < \pi\}$ 映射到单位圆内部的共形映射.

得 分	
评卷人	

七、(10分)利用 Laplace 变换求解微分方程组:

$$\begin{cases} x''(t) + y(t) = e^t, & x(0) = x'(0) = 0, \\ x'(t) - y'(t) = -e^t, & y(0) = 0. \end{cases}$$