Week 3 Video 2

Data Synchronization and Grain-Sizes

You have ground truth training labels...

How do you connect them to your log files?

The problem of synchronization

 Turns out to be intertwined with the question of what grain-size to use

Grain-size

What level do you want to detect the construct at?

Orienting Example

- Let's say that you want to detect whether a student is gaming the system, and you have field observations of gaming
- Each observation has an entry time (e.g. when the coder noted the observation), but no start of observation time

 The problem is similar even if you have a time for the start of each observation

Data

Data

Orienting Example

What grain-size do you want to detect gaming at?

- Student-level?
- Day-level?
- Lesson-level?
- Problem-level?
- Observation-level?
- Action-level?

Student level

 Average across all of your observations of the student, to get the percent of observations that were gaming

Student level

Student level

Monday 8am

Monday 3pm

5 Gaming

10 Not Gaming

This student is 33.33% Gaming

Friday 3pm

Notes

 Seen early in behavior detection work, when synchronization was difficult (cf. Baker et al., 2004)

- Makes sense sometimes
 - When you want to know how much students engage in a behavior
 - To drive overall reporting to teachers, administrators
 - To drive very coarse-level interventions
 - For example, if you want to select six students to receive additional tutoring over the next month

Day level

 Average across all of your observations of the student on a specific day, to get the percent of observations that were gaming

Day level

Notes

Affords finer intervention than student-level

Still better for coarse-level interactions

Lesson level

 Average across all of your observations of the student within a specific level, to get the percent of observations that were gaming

Lesson level

Notes

- Can be used for end-of-lesson interventions
- Can be used for evaluating lesson quality

Problem level

 Average across all of your observations of the student within a specific problem, to get the percent of observations that were gaming

Problem level

Monday 8am

Monday 3pm

Friday 3pm

Notes

- Can be used for end-of-problem or betweenproblem interventions
 - Fairly common type of intervention
- Can be used for evaluating problem quality

Challenge

- Sometimes observations cut across problems
- You can assign observation to
 - problem when observation entered
 - problem which had majority of observation time
 - both problems

Observation level

Take each observation, and try to predict it

Observation level

Notes

"Most natural" mapping

- Affords close-to-immediate intervention
- Also supports fine-grained discovery with models analyses

Challenge

- Synchronizing observations with log files
- Need to determine time window which observation occurred in
 - Usually only an end-time for field observations;
 you have to guess start-time
 - Even if you have start-time, exactly where in window did desired behavior occur?
 - How much do you trust your synchronization between observations and logs?
 - If you don't trust it very much, you may want to use a wider window

Challenge

- How do you transform from action-level logs to time-window-level clips?
 - You can conduct careful feature engineering to create meaningful features out of all the actions in a clip
 - Or you can just hack counts, averages, stdev's, min, max from the features of the actions in a clip (cf. Sao Pedro et al., 2012; Baker et al., 2012)

Action level

- You could also apply your observation labels to each action in the time window
- And then fit a model at the level of actions
 - Treating actions from the same clip as independent from one another
- Offers the potential for truly immediate intervention

Action level

- Unfortunately, building detectors at the actionlevel has not worked particularly well for my group
- We've tried it a few times

- Maybe you'll find a clever way to make it work great
- And then you can make fun of me in a talk at some future academic conference...

Bottom-line

- There are several grain-sizes you can build models at
- Which grain-size you use determines
 - How much work you have to put in (coarser grainsizes are less work to set up)
 - When you can use your models (more immediate use requires finer grain-sizes)
- It also influences how good your models are, although not in a perfectly deterministic way

Next Lecture

Feature Engineering