Mathematik III - Blatt 7

NAME

December 1, 2015

Aufgabe 1 - 4 Punkte

Sei V der von sin(x), cos(x), x und 1 erzeugt Unterraum des \mathbb{R} -Vektorraums $Abb(\mathbb{R}, \mathbb{R})$ und $\delta : V \to V, f \mapsto f'$ die lineare Abbildung, die eine Funktion V ihre Ableitung zuordnet.

- (a) Zeigen Sie, dass das Bild von δ tatsächlich in V liegt.
- (b) Bestimmen Sie die Darstellungsmatrix von δ bezüglich der Basis (sin(x), cos(x), x, 1), sowie den Rang von δ .
- (c) Bestimmen Sie Bild und Kern von δ und entscheiden Sie, ob δ injektiv, surjektiv oder bijektiv ist.

Aufgabe 2 - 7 Punkte

Die lineare Abb	oildung	$\alpha: \mathbb{R}^3$	$\to \mathbb{R}^3$	sei	durch
(a)					
(b)					

(d) (e) (f)

Aufgabe 3 - 2 Punkte

Sei V ein Vektorraum und $\alpha:V\to V$ linear.

- (a) Angenommen es gibt eine Basis $\mathbb B$ von V, so dass die Darstellungsmatrix $A_{\alpha}^{\mathbb B}$ die Einheitsmatrix ist. Ist α dann die Identität?
- (b) Wie verhält es sich, wenn für die Basis $\mathbb{C} \neq \mathbb{B}$ die Darstellungsmatrix $A_{\alpha}^{\mathbb{B},\mathbb{C}}$ die Einheitsmatrix ist?

Aufgabe 4 - 3 Punkte

Seen V, W K-Vektorräume

(a)

(c)

(b)

Aufgabe 5 - 4 Punkte

Sei α ...