

Udine, 27 September 2025

popswap • BG

# PopSwap (popswap)

За дадено цяло число  $N,\,S_N$  е множеството от всички пермутации на числата (0,...,N-1). Освен това  $E_N$  е множеството от всички наредени двойки (p,q), за които:

- p и q са елементи на  $S_N$ ;
- р и q могат да бъдат получени една от друга чрез размяна на два съседни елемента.

Обърнете внимание, че ако  $(p,q) \in E_N$ , то и  $(q,p) \in E_N$ .

Вашата задача е да сложите етикет на всеки елемент на  $S_N$ , който да е уникално неотрицателно цяло число в интервала  $[0,2^{60})$ , т.е. да направите инективна функция  $\mathcal{L}$  (наричана още labeling или побългарено етикетиране) от  $S_N$  към множеството на неотрицателните цели числа по-малки от  $2^{60}$ .

Качеството на едно етикетиране се измерва с два параметъра, които трябва да бъдат минимизирани:

- магнитуд  $M(\mathcal{L})$ , определен като най-малкото неотрицателно цяло число k, таково че  $2^k > \mathcal{L}(p)$  за всички елементи p на  $S_N$ .
- близост, определена като:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

където  $\oplus$  е побитовото изключващо или, а popcount(x) е броят на set-натите (на чист български) битове в двоичното представяне на x.

Вашата задача е да намерите етикетиране  $\mathcal{L}$ , което постига малки стойности и за  $M(\mathcal{L})$ , и за  $C(\mathcal{L})$ . Обърнете внимание, че не се търси оптимално решение.

#### Имплементация

Тази задача е от вид output-only. Трябва да изпратите по един изходен файл за всеки входен файл. Входните и изходните файлове трябва да спазват следния формат.

#### Входен формат

Входните файлове съдържат единствен ред с по едно цяло число N и индекс G на входа.

#### Изходен формат

Изходните файлове трябва да съдържат N! реда, като i-тият от тях се състои от етикета на i-тата пермутация в лексикографски ред.<sup>2</sup>

#### Оценяване

Тази задача има точно 2 теста: input000.txt и input001.txt, за които N=10.

Резултатът на вашето решение на всеки тест се определя по следния митичен начин:  $S_M(\mathcal{L}) \times S_C(\mathcal{L})$ , където  $S_C(\mathcal{L})$  и  $S_M(\mathcal{L})$  са функции на вашето изходно етикетиране  $\mathcal{L}$ .

•  $S_C(\mathcal{L}) = \left(\min (1, 36 \cdot 10^6/C(\mathcal{L}))\right)^2$  за всеки вход.

рорѕwар Страница 1 от 2

¹Функция е инективна тогава и само тогава когато на различни елементи съпоставя различни елементи

 $<sup>^2</sup>$ Формално, ако имаме две пермутации  $p \neq q$ , ние считаме, че p е лексикографски по-малка от q тогава и само тогава, когато  $p_k < q_k$  за k - най-малкия индекс, такъв че  $p_k \neq q_k$ .

•  $S_M(\mathcal{L})$  е различно за всеки вход и се пресмята по следните таблици. Между посочените стойности в таблицата,  $S_M$  се променя линейно.

Не добре оформен изход винаги е с резултат нула точки.

| input000.txt     |                    |   | input001.txt     |                    |
|------------------|--------------------|---|------------------|--------------------|
| $M(\mathcal{L})$ | $S_M(\mathcal{L})$ |   | $M(\mathcal{L})$ | $S_M(\mathcal{L})$ |
| > 60             | 0                  |   | > 25             | 0                  |
| 60               | 6                  |   | 25               | 0                  |
| $\leq 25$        | 60                 | • | $\leq 22$        | 40                 |

Резултатът на задачата е сума от резултатите на тестовете.

## Примерни входове/изходи

| input | output |
|-------|--------|
| 3 -1  | 32     |
|       | 16     |
|       | 8      |
|       | 4      |
|       | 2      |
|       | 1      |

### Обяснение

Обърнете внимание, че **първият пример** не е истински тест, понеже  $N \neq 10$  и  $G \notin \{0,1\}$ . Примерният изход задава следното етикетиране:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ sa } p = (0,1,2) \\ 16 \text{ sa } p = (0,2,1) \\ 8 \text{ sa } p = (1,0,2) \\ 4 \text{ sa } p = (1,2,0) \\ 2 \text{ sa } p = (2,0,1) \\ 1 \text{ sa } p = (2,1,0) \end{cases}$$

Понеже  $2^5 \not > 32,$  но  $2^6 > 32,$  то магнитуда на етикетирането е  $M(\mathcal{L}) = 6.$ 

Понеже има  $3!\cdot(3-1)=12$  елемента в  $E_3$  и popcount $(\mathcal{L}(p),\mathcal{L}(q))=2$  за всяко  $p,q\in S_N,$  то близостта на етикетирането е  $C(\mathcal{L})=12\cdot 2=24.$ 

рорѕwар  $\,$  Страница 2 от 2