Robust Probabilistic Imitation Learning

Connections to Robust Maximum Entropy Behavior Cloning

Brendan Crowe

University of New Hampshire Department of Mathematics and Statistics Department of Computer Science

TABLE OF CONTENTS

- 1 Imitation Learning
- 2 Motivation
- Optimization
- 4 Results

Imitation Learning

General Definition: Imitation learning (IL) techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions.[3]

- Teaching robots new tasks
- Domain experts can train agents without knowledge of machine learning
- Less explicit programming

Framework

- States
- Actions
- Transitions
- Rewards
- Policy: solution
- Expert
- Demonstrations

Imitation Learning Paradigms

- Behavior Cloning (BC): Methods learn a mapping from states to actions as a supervised learning problem [5]
- Feature Expectation Matching (FEM) is employed to generate a policy; however there is non uniqueness
- Inverse Reinforcement Learning (IRL): Attempt to recover the reward function the agent is trying to optimize. Then optimize that reward function.
- Generative Adversarial Imitation Learning (GAIL) has achieved great results [2]

Motivation: Adversarial Demonstrations

Assumption that demonstrations are correct

Sample inefficient

Model dependent

• Use of simulators

My Approach

1. Model an adversary using likelihoods

2. Solve non convex optimization using Expectation Maximization

3. Remove demonstrations from the training set

Behavioral Cloning as Logistic Regression

- $a_k \in \mathcal{A}$ $k = 1, \ldots, K$
- $s_n \in \mathcal{S}$ $n = 1, \dots, N_d$
- N_d for $d_m \in \mathcal{D}$ d = 1, ..., M
- Features f_i j = 1, ..., J that define a state
- Learnable parameters λ

$$p_{\lambda}(a_k|s_n) = \frac{e^{\sum_{j=1}^N f_{nj}\lambda_{jk}}}{\sum_{a' \in \mathcal{A}} e^{\sum_{j=1}^N f_{nj}\lambda_j'}}$$

Now we want to maximize the likelihood of the parameter given our expert data

$$L(\lambda|\mathcal{D}) = \prod_{m=1}^{M} \prod_{i=1}^{N_d} \prod_{k=1}^{A} p_{\lambda}(a_k|s_i)^{\widetilde{p}(s_i, a_k|d_m)}$$

Where A is the size of the action space and $\widetilde{p}(s_i, a_k | d_m)$ observed probability distribution of state-action pairs for a given demonstration. In real data $\widetilde{p}(s_i, a_k | d_m) \in \{0, 1\}$, whether that state action pair was observed.

Connections to RM-ENT BC

10

- Robust Maximum Entropy Behavior Cloning (RM-ENT BC) [4]
- Connection between the dual and logistic regression

$$L(\lambda|\mathcal{D}) = \prod_{m=1}^{M} \prod_{n=1}^{N_d} (p(a_n|\text{expert}) + p(a_n|\text{adversary}))$$

$$L(\lambda|\mathcal{D}) = \prod_{m=1}^{M} \prod_{n=1}^{N_d} (p(a_n|\text{expert}) + p(a_n|\text{adversary}))$$

1.
$$p(a_n|adversary) = 1$$

$$L(\lambda|\mathcal{D}) = \prod_{m=1}^{M} \prod_{n=1}^{N_d} (p(a_n|\text{expert}) + p(a_n|\text{adversary}))$$

- 1. $p(a_n|adversary) = 1$
- 2. $p(a_n|adversary) = p_{\psi}(a_k|s_i)^{\widetilde{p}(s_i,a_k|d_m)}$

$$L(\lambda|\mathcal{D}) = \prod_{m=1}^{M} \prod_{n=1}^{N_d} (p(a_n|\text{expert}) + p(a_n|\text{adversary}))$$

- 1. $p(a_n | adversary) = 1$
- 2. $p(a_n|adversary) = p_{\psi}(a_k|s_i)^{\widetilde{p}(s_i,a_k|d_m)}$
- 3. $p(a_n|adversary) = 1 p_{\lambda}(a_k|s_n)^{\widetilde{p}(s_n,a_k|d_m)}$

$$L(\lambda|\mathcal{D}) = \prod_{m=1}^{M} \prod_{n=1}^{N_d} (p(a_n|\text{expert}) + p(a_n|\text{adversary}))$$

- 1. $p(a_n|adversary) = 1$
- 2. $p(a_n|adversary) = p_{\psi}(a_k|s_i)^{\widetilde{p}(s_i,a_k|d_m)}$
- 3. $p(a_n|adversary) = 1 p_{\lambda}(a_k|s_n)^{\widetilde{p}(s_n,a_k|d_m)}$

$$L(\lambda|\mathcal{D}) = \prod_{m=1}^{M} \prod_{n=1}^{N_d} \prod_{k=1}^{A} \left(p_{\lambda}(a_k|s_n)^{\widetilde{p}(s_n,a_k|d_m)} \right) + \left(1 - p_{\lambda}(a_k|s_n)^{\widetilde{p}(s_n,a_k|d_m)} \right)$$

Latent Variable

• Need a latent variable Z to represent expert or adversary

•
$$Z = 1 \rightarrow \Lambda \rightarrow Expert$$

•
$$Z = 0 \rightarrow \Psi \rightarrow \text{Adversary}$$

• Prior distribution $\sim p(Z)$

Formulation and non-convexity

$$L(\lambda, Z|\mathcal{D}) = \prod_{m=1}^{M} \prod_{n=1}^{N_d} \prod_{k=1}^{A} \sum_{z \in Z} p(z) p_z(a_k|s_n)^{\widetilde{p}(s_n, a_k|d_m)}$$

$$\ell(\lambda, Z|\mathcal{D}) = \sum_{m=1}^{M} \sum_{n=1}^{N_d} \sum_{k=1}^{A} \log \left(\sum_{z \in Z} p(z) p_z(a_k|s_n)^{\tilde{p}(s_n, a_k|d_m)} \right)$$

Expectation Maximization

"An elegant and powerful method for finding maximum likelihood solutions for models with latent variables is called the expectation-maximization algorithm, or EM algorithm" [1]

© Brendan Crowe

The EM algorithm is as follows:

- 1. Initialize the parameters of our model λ^{old}
- 2. Evaluate $p(Z|\mathcal{D}, \lambda^{\text{old}})$
- 3. Evaluate $\lambda^{\text{new}} = \operatorname{argmax}_{\lambda} Q(\lambda, \lambda^{\text{old}})$ where $Q(\lambda, \lambda^{\text{old}}) = \sum_{Z} p(Z|\mathcal{D}, \lambda^{\text{old}}) \ell(\lambda|\mathcal{D}, Z)$
- 4. Check if parameters have converged, if not $\lambda^{\text{old}} \leftarrow \lambda^{\text{new}}$ and return to step 2

What does EM actually do?

Figure: Visual Representation of EM

Expectation Step

- 1. Initialize λ^{old}
- 2. Evaluate $p(Z|\mathcal{D}, \lambda^{\text{old}})$:

$$\begin{split} & p(Z|\mathcal{D},\lambda) = \frac{p(z)p(d_m|z)}{\sum_{z' \in \{\lambda,\psi\}} p(z')p(d_m|z')} \quad \text{for} \quad z \in \{\Psi,\Lambda\} \\ & p(d_m|\Lambda) = \prod_{n \in d_m} p_\lambda(a_n|s_n) \\ & p(d_m|\Psi) = \prod_{n \in d_m} \left(1 - p_\lambda(a_n|s_n)\right) \end{split}$$

3. $p(\Lambda)$ represents the prior distribution over the latent variable. It is set by the modeler to capture how much of the Expert data is belived to be correct.

$$p(\Psi) = 1 - p(\Lambda)$$

Maximization Step

1. Use $p(Z|\mathcal{D}, \lambda)$ found in E-Step to computer $Q(\lambda, \lambda^{\text{old}})$

$$\begin{split} Q(\lambda, \lambda^{\text{old}}) &= \sum_{Z} p(Z|\mathcal{D}, \lambda^{\text{old}}) \ell(\lambda|\mathcal{D}, Z) \\ Q(\lambda, \lambda^{\text{old}}) &= \sum_{m=1}^{D} \sum_{i=1}^{N_d} \sum_{k=1}^{A} \sum_{z \in Z} \left(\widetilde{p}(s_n, a_k|d_m) \log(p_z(a_k|s_n)) \right) p(Z|\mathcal{D}, \lambda^{\text{old}}) \end{split}$$

- 2. The above function Q is now convex and can be optiized directly $\lambda^{\text{new}} = \operatorname{argmax}_{\lambda} Q(\lambda, \lambda^{\text{old}})$
- 3. Now set $\lambda^{\text{old}} = \lambda^{\text{new}}$
- 4. Repeat this until convergence. Convergence could either be a non increasing likelihood, or once all $p(Z|\mathcal{D},\lambda)\approx 1$ or 0

Figure: Expert Data

Figure: Left: Half Random Policy; Right: Half Corrupted

Figure: Left: Logistic Regression; Right: R-PIL

Table: Average Reward Mountain Car

Adversary Type	Random Policy	Corrupted Data
Expert	-103.9 ± 6.04	-103.9 ± 6.04
R-PIL	-106.25 ± 6.00	-104.45 ± 8.50
LogReg	-119.5 ± 1.75	-132.0 ± 14.36

Results: Mountain Car


```
Expert weight for demonstration 0: [1.]
                                                  Expert weight for demonstration 0: [1.]
                                                   Expert weight for demonstration 1: [1.]
Expert weight for demonstration 1: [1.]
                                                   Expert weight for demonstration 2: [1.]
Expert weight for demonstration 2: [1.]
                                                   Expert weight for demonstration 3: [1.]
Expert weight for demonstration 3: [1.]
Expert weight for demonstration 4: [1.]
                                                   Expert weight for demonstration 4: [1.]
Expert weight for demonstration 5: [1.]
                                                   Expert weight for demonstration 5: [1.]
Expert weight for demonstration 6: [1.]
                                                   Expert weight for demonstration 6: [1.]
Expert weight for demonstration 7: [1.]
                                                   Expert weight for demonstration 7: [1.]
                                                   Expert weight for demonstration 8: [1.]
Expert weight for demonstration 8: [1.]
Expert weight for demonstration 9: [1.]
                                                   Expert weight for demonstration 9: [1.]
                                                   Expert weight for demonstration 10: [0.]
Expert weight for demonstration 10: [0.]
                                                   Expert weight for demonstration 11: [0.]
Expert weight for demonstration 11: [0.]
                                                   Expert weight for demonstration 12: [0.]
Expert weight for demonstration 12: [0.]
Expert weight for demonstration 13: [0.]
                                                   Expert weight for demonstration 13: [0.]
Expert weight for demonstration 14: [0.]
                                                   Expert weight for demonstration 14: [0.]
Expert weight for demonstration 15: [0.]
                                                   Expert weight for demonstration 15: [0.]
                                                   Expert weight for demonstration 16: [0.]
Expert weight for demonstration 16: [0.]
                                                   Expert weight for demonstration 17: [0.]
Expert weight for demonstration 17: [0.]
Expert weight for demonstration 18: [0.]
                                                   Expert weight for demonstration 18: [0.]
Expert weight for demonstration 19: [0.]
                                                   Expert weight for demonstration 19: [0.]
                                                                (b) label 2
             (a) label 1
```

Figure: Left: Corrupted Weights; Right: Random Weights

© Brendan Crowe 2

Table: Average Reward Lunar Lander

-	Adversary Type	Random Policy	Corrupted Data
	Expert	254.45 ± 57.09	254.45 ± 57.09
	R-PIL	226.49 ± 49.52	195.06 ± 64.45
	LogReg	-342.64 ± 35.53	-22.24 ± 48.51

Table: Average Reward Acrobot

Adversary Type	Random Policy	Corrupted Data	
Expert	-80.65 ± 3.49	-80.65 ± 3.49	
R-PIL	-92.85 ± 23.81	-102.7 ± 22.62	
LogReg	-397.65 ± 85.18	-102.05 ± 31.67	

Summary

Probabilistic framework that is robust to adversarial demonstrations

Sample and time efficient

Could be generalized to other frameworks

Citations

- [1] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN: 0387310738.
- [2] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. 2016. arXiv: 1606.03476 [cs.LG].
- [3] Ahmed Hussein et al. "Imitation Learning: A Survey of Learning Methods". In: ACM Comput. Surv. 50.2 (Apr. 2017). ISSN: 0360-0300. DOI: 10.1145/3054912. URL: https://doi.org/10.1145/3054912.
- [4] Mostafa Hussein et al. Robust Maximum Entropy Behavior Cloning. Dec. 2020. URL: http://www.robot-learning.ml/2020/files/D1.pdf.
- [5] Dean A Pomerleau. "Efficient training of artificial neural networks for autonomous navigation". In: Neural computation 3.1 (1991), pp. 88–97.
- [6] David Rosenberg. Expectation Maximization Algorithm. URL: https://encrypted-tbn0.gstatic.com/images?q=tbn: ANd9GcTusXjopOMwInOcJNCeNOn8POa7GyWYfVeufg&usqp=CAU.

© Brendan Crowe