7. Numerik Übungen 2017/18

a) Stellen Sie die Bedingungsgleichung für die Simpsonregel auf und bestimmen Sie damit aus den Knoten $c_1 = 0$, $c_2 = \frac{1}{2}$, und $c_3 = 1$ die Gewichte. Welche Ordnung besitzt die Simpsonregel? Untersuchen Sie dazu, ob eventuell noch weitere Bedingungsgleichun-

gen erfüllt sind.

- b) Gegeben seien die Knoten $c_1 = \frac{1}{6}$, $c_2 = \frac{1}{2}$, und $c_3 = \frac{5}{6}$. Stellen Sie die ersten s Bedingungsgleichungen auf und setzten Sie die Knoten c_1, c_2, c_3 ein. Berechnen Sie daraus die Gewichte. Wie groß ist die Ordnung dieser Quadraturformel?
- c) Bestimmen Sie alternativ die Gewichte b_1, b_2, b_3 durch Integration der zu den Knoten c_1, c_2, c_3 gehörigen Lagrange-Polynome l_1, l_2, l_3 .
- d) Welche Ordnung hat eine Quadraturformel mit Knoten wie in (T12b) und Gewichten $b_1 = \frac{1}{3}, b_2 = \frac{1}{3}, b_3 = \frac{1}{3}$?

T13

Berechnen Sie das Integral

$$\int_{-1}^2 \frac{1}{2+x} dx.$$

a) Exakt.

Substitution mit $\xi = 2 + x$ und $du = d\xi$, wodurch sich die Grenzen verschieben zu u = -1 + 2 = 1 und o = 2 + 2 = 4.

$$\int_{1}^{4} \frac{1}{\xi} d\xi = \log(\xi)|_{1}^{4} = \log(x+2)|_{-1}^{2} = \log(4) - \log(1) = \log\left(\frac{4}{1}\right) = \log(4) \approx 1.3863$$

- b) Mit der Quadraturformel aus Aufgabe (T12b) und Schrittweite h = 3.
- c) Mit der Quadraturformel aus Aufgabe (T12b) und Schrittweite $h=\frac{3}{2}$. Machen Sie eine Skizze mit den Knoten und Gewichten.