L-оптимальные планы для тригонометрической регрессии без свободного члена. 1

Шпилев П.В., доцент кафедры статистического моделирования СПбГУ, p.shpilev@spbu.ru

Аннотация

Работа посвящена исследованию задачи построения L оптимальных планов для тригонометрической модели без свободного члена. Для заданной диагональной матрицы L получены аналитические результаты для тригонометрических моделей без свободных членов сколь угодно большого порядка кратного 3 ($m=2k,\,k$ -натуральное число).

Введение

Тригонометрические регрессионные модели Фурье широко используются на практике для описания периодических процессов и до настоящего времени внимание исследователей было ограничено классической моделью в которой свободный член предполагается не равным нулю. Вместе с тем, на практике возникают ситуации, когда нулевой отклик, то есть начальное положение объекта экспериментирования, уже известен или эта информация не важна. В этих случаях целесообразнее использовать модели без свободного члена. Подобные модели до настоящего времени еще мало изучены. Для полиномиальной регрессионной модели без свободного члена недавно был получен ряд результатов для c- и e_k - критериев ([1], [2], [3]).

Для тригонометрической модели без свободного члена в статье [4] автором (совместно с Меласом В.Б.) были получены аналитические результаты, определяющие свойства информационных матриц для планов специального вида. В настоящей работе, данные результаты использованы для построения L-оптимальных планов для моделей порядка $m=3k,\ k=1,2,3,...$

 $^{^{1}}$ Работа частично поддержана грантом РФФИ: 20-01-00096-а.

Постановка задачи

Рассмотрим регрессионную модель Фурье без свободного члена:

$$y = \sum_{i=1}^{m} \theta_{2i-1} \sin(ix) + \sum_{i=1}^{m} \theta_{2i} \cos(ix) + \epsilon = \theta^{T} f(x) + \epsilon, \quad t \in \chi,$$
 (1)

где $f(x)=(\sin(x),\cos(x),\dots,\sin(mx),\cos(mx))^T$ вектор регрессионных функций, $\theta=(\theta_1,\dots,\theta_{2m})^T$ - вектор неизвестных параметров, ϵ - случайная величина, характеризующая ошибки наблюдения, $\chi=[-\pi,\pi]$ - интервал планирования. Результаты различных экспериментов предполагаются независимыми. Под (непрерывным) планом эксперимента мы будем понимать вероятностную меру ξ с конечным носителем на интервале планирования $[-\pi,\pi]$.

Информационной матрицей Фишера плана ξ называется матрица

$$M(\xi) = \left(\int_{-\pi}^{\pi} f(t)f(t)^T d\xi(t)\right) \in R^{2m \times 2m}$$

Вырожденным планом называется план, информационная матрица которого вырожденная.

Введем несколько специальных классов, которые будем использовать в дальнейшем, а также дадим определение L-оптимального плана в общем случае:

Определение 1 Для заданной матрицы

$$L = \sum_{i=1}^{k} l_i l_i^T$$

с векторами $l_i \in R^{2m}$, **класс** Ξ_L определим, как множество всех непрерывных планов эксперимента для которых линейная комбинация параметров $l_i^T \beta, i = 0, \ldots, k$ оцениваема, то есть вектор l_i принадлежит пространству столбцов матрицы $M(\xi): l_i \in \mathcal{R}(M(\xi)) \ i = 0, \ldots, k$.

Определение 2 Будем говорить, что непрерывный план η принадлежит **классу** Ξ_L^* , если $\eta \in \Xi_L$ и для любого непрерывного плана ξ существует предел

$$\lim_{\alpha \to 0} f^{T}(t) M^{+}(\xi_{\alpha}) L M^{+}(\xi_{\alpha}) f(t) = f^{T}(t) M^{+}(\eta) L M^{+}(\eta) f(t), \qquad (2)$$

где
$$\xi_{\alpha} = (1 - \alpha)\eta + \alpha\xi, \ \alpha \in [0, 1].$$

Определение 3 План ξ^* будем называть L-оптимальным, если $\xi^* \in \Xi_L$

$$\xi^* = \arg\min_{\xi \in \Xi_L} tr LM(\xi)^+,$$

где матрица L фиксированная неотрицательно определенная и $M(\xi)^+$ - обобщенно-обратная в смысле Мура-Пенроуза матрица для $M(\xi)$.

Определение 4 Будем говорить, что непрерывный план η является абсолютно симметричным (принадлежит классу абсолютно симметричных планов), если данный план имеет следующий вид:

$$\eta = \begin{pmatrix} \bar{t}_1 & \dots & \bar{t}_{4n+2} \\ \bar{\omega}_1 & \dots & \bar{\omega}_{4n+2} \end{pmatrix} = \begin{pmatrix} -\eta_{\frac{\pi}{2}} & \eta_{\frac{\pi}{2}} \end{pmatrix}, \quad \text{где}$$

$$-(-\eta_{\frac{\pi}{2}}) = \eta_{\frac{\pi}{2}} = \begin{pmatrix} t_1 & \dots & t_n & \frac{\pi}{2} & \pi - t_n & \dots & \pi - t_1 \\ \omega_1 & \dots & \omega_n & \omega_{n+1} & \omega_n & \dots & \omega_1 \end{pmatrix},$$

точки $t_i \in [0, \frac{\pi}{2}]$, а веса удовлетворяют равенству: $2\sum_{i=1}^n \omega_i + \omega_{n+1} = \frac{1}{2}$.

Удобным инструментом проверки плана на L-оптимальность, является следующая теорема (см. [5]):

Теорема 1 Пусть матрица $L \in R^{2m \times 2m}$ фиксированная, неотрицательно определенная матрица. Имеют место следующие утверждения:

(a) План $\xi \in \Xi_L$ тогда и только тогда, когда

$$l_i^T M(\xi)^- M(\xi) = l_i^T, \ i = 0, \dots, 2m,$$

где $M(\xi)^-$ - обобщенно-обратная для $M(\xi)$ матрица.

(b) План $\xi^* \in \Xi_L$ является L-оптимальным тогда и только тогда, когда существует такая матрица $M^-(\xi^*)$, что

$$\max_{t \in \chi} \varphi(t, \xi^*) = trLM^+(\xi^*),$$

где $\varphi(t,\xi)=f^T(t)M(\xi)^-LM(\xi)^-f(t)$ При этом в точках $t_i\in supp(\xi^*)$ имеет место равенство

(c)
$$\varphi(t_i) = trLM(\xi^*)^+.$$

Доказательство данной теоремы повторяет стандартные рассуждения для невырожденного случая и здесь приводиться не будет.

Замечание Отметим, что в случае, когда оптимальный план ξ^* является невырожденным, матрица $M^-(\xi^*)$ из условия (b) совпадает с $M^{-1}(\xi^*)$, а в случае, когда он вырожден и принадлежит классу Ξ_L^* , эта матрица совпадает с $M^+(\xi^*)$. Наиболее сложным для исследования является случай, когда оптимальный план $\xi^* \in \Xi_L$ и $\notin \Xi_L^*$. Для этого случая некоторые методы построения экстремального полинома $\varphi(t,\xi^*)$ рассмотрены в работе [5].

L-оптимальные планы для моделей порядка m=3k

Теоретические результаты, описывающие свойства информационной матрицы абсолютно симметричного плана, получены в работе [4] (Теоремы 3.1, 3.2). Нижеприведенная теорема является прямым следствием данных результатов:

Теорема 2 Рассмотрим абсолютно симметричный план $\eta^{(1)}$ следующего вида:

$$\begin{split} \eta^{(1)} &= \left(\begin{array}{cc} -\eta_{\frac{\pi}{2}}^{(1)} & \eta_{\frac{\pi}{2}}^{(1)} \end{array} \right), \quad \textit{ede} \\ &- \left(-\eta_{\frac{\pi}{2}}^{(1)} \right) = \eta_{\frac{\pi}{2}}^{(1)} = \left(\begin{array}{ccc} x_1 & x_2 & \pi/2 & \pi-x_2 & \pi-x_1 \\ \omega_1 & \omega_2 & 1/2 - 2\omega_2 - 2\omega_1 & \omega_2 & \omega_1 \end{array} \right). \end{split}$$

 $3a \; \eta_{\frac{\pi}{2} + t}^{(k)} \;$ обозначим следующую меру (не нормированную):

$$\eta_{\frac{\pi}{2}+t}^{(k)} = \left(\begin{array}{ccc} \frac{x_1+t}{k} & \frac{x_2+t}{k} & \frac{\pi/2+t}{k} & \frac{\pi-x_2+t}{k} & \frac{\pi-x_1+t}{k} \\ \frac{\omega_1}{k} & \frac{\omega_2}{k} & \frac{1/2-2\omega_2-2\omega_1}{k} & \frac{\omega_2}{k} & \frac{\omega_1}{k} \end{array} \right).$$

Для тригонометрической модели(1) третьего порядка (m=3) план $\eta^{(1)}$ является L-оптимальным планом для диагональной матрицы $L^{(1)}$ с произвольным сочетанием нулей и единиц на главной диагонали (значения точек x_1, x_2 и весов ω_1, ω_2 найденных, как решения соответствующей оптимизационной задачи, для всевозможных вариантов матрицы L, представлены в Таблицах 1,2,3). Для тригонометрической модели(1) произвольного порядка кратного 3 (m=3k, k=1,2,...) следующий план (для матрицы $L^{(k)}$ у которой все элементы нулевые, кроме диагональных элементов, стоящих на позициях кратных k (u совпадающих c соответствующими элементами матрицы $L^{(1)})$) является L-оптимальным:

$$\eta^{(k)} = \left(\begin{array}{cccc} -\eta_{\frac{\pi}{2}+(k-1)\pi}^{(k)} & \dots & -\eta_{\frac{\pi}{2}}^{(k)} & \eta_{\frac{\pi}{2}}^{(k)} & \dots & \eta_{\frac{\pi}{2}+(k-1)\pi}^{(k)} \end{array} \right)$$

Доказательство Теоремы 2: В том, что для тригонометрической модели (1) третьего порядка и диагональной матрицы $L^{(1)}$ (с произвольным сочетанием нулей и единиц на главной диагонали) L-оптимальный план принадлежит классу абсолютно симметричных планов (т.е. может быть представлен в виде $\eta^{(1)}$) легко убедиться непосредственно, решив соответствующую оптимизационную задачу и проверив, что для найденных точек и весов (см. Таблицы 1,2,3) выполнены условия Теоремы 1 (т.е. что найденное решение является глобальным минимумом). То, что для заданной матрицы $L^{(k)}$ (для тригонометрической модели порядка кратного 3 ($m=3k,\ k=1,2,\ldots$))) оптимальным является план $\eta^{(k)}$, следует из результатов, полученных в работе [4] (Теоремы 3.1, 3.2).

Замечание Отметим, что в таблицу не включены 2 случая:

1) диагональная матрица L содержит одну единицу (остальные нули); 2) матрица L является единичной. В первом случае L-оптимальный план называется e_k -оптимальным и для классической регрессионной модели порядка m в явном виде найден в работе [6] (Theorem 1,2). Несложно показать, найденные планы будут e_k -оптимальными и для модели без свободного члена. Во втором случае, как показано в работе [4] (Теорема 3.3), L-оптимальный план совпадает с D-оптимальным (вид которого хорошо известен).

Матрица <i>L</i>	ω_1	ω_2	x_1	x_2	$trLM^+$
$diag\{0,1,1,1,1,1\}$	0.0531	0.1242	0.1340	0.8354	9.8647
$diag\{1,0,1,1,1,1\}$	0.0576	0.1091	0.5234	0.5237	9.0000
diag $\{1,1,0,1,1,1\}$	0.0616	0.1334	0.1353	0.8013	9.8990
diag $\{1,1,1,0,1,1\}$	0.1423	0.1049	0.3733	1.1367	9.8647
diag $\{1,1,1,1,0,1\}$	0.0833	0.1667	0.0000	1.0472	9.0000
diag $\{1,1,1,1,1,0\}$	0.0850	0.1002	0.2079	0.8500	9.8990

Таблица 1: Значения весов и точек L-оптимальных планов из Теоремы 2 для вектора переупорядоченных регрессионных функций: $\widetilde{f}(t) = (\cos(t), \cos(3t), \dots, \cos(2t), \cos(4t), \dots, \sin(t), \sin(3t), \dots, \sin(2t), \sin(4t), \dots)^T$.

Литература

[1] H. Dette, V. B. Melas, and P. V. Shpilev, "Optimal designs for estimating individual coefficients in polynomial regression with no intercept.," *Statistics and Probability Letters*, vol. 158, p. 108636, 2020.

Матрица <i>L</i>	ω_1	ω_2	x_1	x_2	$trLM^+$
diag $\{0,0,1,1,1,1\}$	0.0000	0.1378	0.0819	0.6404	6.7062
$diag\{0,1,0,1,1,1\}$	0.0476	0.1402	0.1663	0.8433	7.6990
diag $\{0,1,1,0,1,1\}$	0.0858	0.1077	0.2550	0.8712	8.0000
diag $\{0,1,1,1,0,1\}$	0.0635	0.1865	0.0052	1.0472	6.8777
diag $\{0,1,1,1,1,0\}$	0.1064	0.1274	0.3870	1.1969	7.7692
diag $\{1,0,0,1,1,1\}$	0.0000	0.1792	0.5587	0.5236	6.9220
diag $\{1,0,1,0,1,1\}$	0.0108	0.1865	1.5704	0.5236	6.8780
diag $\{1,0,1,1,0,1\}$	0.1258	0.0822	0.4075	1.0695	8.0000
diag $\{1,0,1,1,1,0\}$	0.0601	0.0912	0.5238	0.5235	6.9102
diag $\{1,1,0,0,1,1\}$	0.1053	0.1108	0.3105	0.8685	7.6990
diag $\{1,1,0,1,0,1\}$	0.0708	0.1792	0.0000	1.0472	6.9220
diag $\{1,1,0,1,1,0\}$	0.0832	0.1095	0.2417	0.8600	8.0000
diag $\{1,1,1,0,0,1\}$	0.1122	0.1378	0.0000	0.9304	6.7062
diag $\{1,1,1,0,1,0\}$	0.1354	0.0870	0.3237	1.0707	7.7692
diag $\{1,1,1,1,0,0\}$	0.0988	0.1512	0.0007	1.0472	6.9138

Таблица 2: Значения весов и точек L-оптимальных планов из Теоремы 2 для вектора переупорядоченных регрессионных функций: $\widetilde{f}(t) = (\cos(t), \cos(3t), \dots, \cos(2t), \cos(4t), \dots, \sin(t), \sin(3t), \dots, \sin(2t), \sin(4t), \dots)^T$.

- [2] V. B. Melas and P. Shpilev, "Constructing c-optimal designs for polynomial regression without an intercept," *Vestnik St. Petersburg University: Mathematics*, vol. 53, pp. 223–231, 2020.
- [3] H. Dette, V. B. Melas, and P. V. Shpilev, "A note on optimal designs for estimating the slope of a polynomial regression.," *Statistics and Probability Letters*, vol. 170, p. 108992, 2021.
- [4] Мелас В. Б., и Шпилев П. В., "L-оптимальные планы для регрессионной модели Фурье без свободного члена," Вестник СПбГУ. Математика. Механика. Астрономия., Том 9(1), р. 64-75, 2022.
- [5] P. V. Shpilev, "Equivalence theorem for singular *l*-optimal designs," Vestnik St. Petersburg University. Mathematics, vol. 48, no. 1, p. 29–34, 2015.
- [6] H. Dette, V. B. Melas, and P. V. Shpilev, "Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models," Ann. Inst. Statist. Math., vol. 59, pp. 655–673, 2007.

				I	
Матрица <i>L</i>	ω_1	ω_2	x_1	x_2	$trLM^+$
diag $\{1,1,1,0,0,0\}$	0.1333	0.1167	0.0000	1.0169	4.4736
diag $\{1,1,0,1,0,0\}$	0.0833	0.1667	0.0005	1.0472	5.0000
diag $\{1,1,0,0,1,0\}$	0.0749	0.1271	0.0657	0.7553	5.8634
diag $\{1,1,0,0,0,1\}$	0.0851	0.1649	0.0000	0.8597	4.3935
diag $\{1,0,1,1,0,0\}$	0.1137	0.0847	0.3106	1.0365	5.8284
diag $\{1,0,1,0,1,0\}$	0.1667	0.0000	0.5236	1.4149	5.0000
$\operatorname{diag}\{1,0,1,0,0,1\}$	0.1176	0.1324	0.0000	0.7575	5.4861
$\operatorname{diag}\{1,0,0,1,1,0\}$	0.0302	0.1365	0.5245	0.5234	5.0000
diag $\{1,0,0,1,0,1\}$	0.0978	0.1146	0.3622	0.9434	5.8284
diag $\{1,0,0,0,1,1\}$	0.0104	0.1999	0.5225	0.5237	4.3981
diag $\{0,1,1,1,0,0\}$	0.0833	0.1667	0.0053	1.0472	5.0000
diag $\{0,1,1,0,1,0\}$	0.1186	0.0909	0.3281	1.1002	5.8284
diag $\{0,1,1,0,0,1\}$	0.0833	0.1667	0.0000	1.0472	5.0000
diag $\{0,1,0,1,1,0\}$	0.0915	0.1094	0.3764	1.0304	5.8634
diag $\{0,1,0,1,0,1\}$	0.0397	0.2103	0.0007	1.0472	4.3981
diag $\{0,1,0,0,1,1\}$	0.0518	0.1464	0.0150	0.7856	5.8284
diag $\{0,0,1,1,1,0\}$	0.0000	0.1167	0.4086	0.5539	4.4736
diag $\{0,0,1,1,0,1\}$	0.1225	0.0099	0.8133	0.8133	5.4861
$diag\{0,0,1,0,1,1\}$	0.1667	0.0000	0.5236	1.3961	5.0000
$diag\{0,0,0,1,1,1\}$	0.0000	0.1650	0.5226	0.7105	4.3935
$diag\{1,1,0,0,0,0\}$	0.1100	0.1400	0.0000	0.9242	2.7044
$diag\{1,0,1,0,0,0\}$	0.1563	0.0937	0.0001	0.9553	3.2500
$diag\{1,0,0,1,0,0\}$	0.0830	0.1174	0.2077	0.8988	4.0000
$diag\{1,0,0,0,1,0\}$	0.1147	0.0853	0.5234	0.5238	2.7778
$diag\{1,0,0,0,0,1\}$	0.2457	0.0043	0.5236	0.5207	2.6667
$diag\{0,1,1,0,0,0\}$	0.1022	0.1478	0.0000	1.1668	2.6180
$diag\{0,1,0,1,0,0\}$	0.0500	0.2000	0.0004	1.0472	2.7778
$diag\{0,1,0,0,1,0\}$	0.0626	0.1249	0.0164	0.7857	4.0000
$diag\{0,1,0,0,0,1\}$	0.1910	0.0590	0.9425	0.0000	2.6180
$diag\{0,0,1,1,0,0\}$	0.0857	0.0080	0.6155	0.6155	3.2500
$diag\{0,0,1,0,1,0\}$	0.1371	0.0108	0.4040	0.4040	2.6180
$diag\{0,0,1,0,0,1\}$	0.0032	0.1252	0.1224	0.8149	4.0000
$diag\{0,0,0,1,1,0\}$	0.1401	0.0056	0.6476	1.5708	2.7043
$diag\{0,0,0,1,0,1\}$	0.1896	0.0604	1.0471	1.0475	2.6667
diag $\{0,0,0,0,1,1\}$	0.1547	0.0363	0.6283	0.6283	2.6180

Таблица 3: Значения весов и точек L-оптимальных планов из Теоремы 2 для вектора переупорядоченных регрессионных функций: $\widetilde{f}(t) = (\cos(t), \cos(3t), \dots, \cos(2t), \cos(4t), \dots, \sin(t), \sin(3t), \dots, \sin(2t), \sin(4t), \dots)^T$.