CIS-2266 Pandas Lab v3

- Complete the exercise below
- Output completed notebook Browser print to PDF
- · Be sure code and results are in the output
- · Upload to the Dropbox for grading

Getting started

Before you start yoy need to import Pandas and NumPy

Note that Pandas is imported as pd

Run the following below.

```
In [2]: import numpy as np import pandas as pd
```

DataFrame basics (20 Points)

A few of the fundamental routines for selecting, sorting, adding and aggregating data in DataFrames

Difficulty: easy

Consider the following Python dictionary data and Python list labels:

1. Create a DataFrame df from this dictionary data which has the index labels (2 points)

2. Display a summary of the basic information about this DataFrame and its data. (2 points)

```
In [4]: df = pd.DataFrame(data)
In [5]: df.index = labels
In [6]: #display dataframe data
df
```

Out[6]:

	animal	age	visits	priority
а	cat	2.5	1	yes
b	cat	3.0	3	yes
С	snake	0.5	2	no
d	dog	NaN	3	yes
е	dog	5.0	2	no
f	cat	2.0	3	no
g	snake	4.5	1	no
h	cat	NaN	1	yes
i	dog	7.0	2	no
j	dog	3.0	1	no

In [7]: #display info about dataframe df.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 10 entries, a to j
Data columns (total 4 columns):
    Column Non-Null Count Dtype
    animal
 0
              10 non-null
                              object
 1
    age
              8 non-null
                            float64
              10 non-null
 2
    visits
                             int64
    priority 10 non-null
                              object
dtypes: float64(1), int64(1), object(2)
memory usage: 400.0+ bytes
```

3. Return the first 3 rows of the DataFrame df . (2 points)

In [8]: df.head(3)

Out[8]:

	animal	age	visits	priority
а	cat	2.5	1	yes
b	cat	3.0	3	yes
С	snake	0.5	2	no

4. Select just the 'animal' and 'age' columns from the DataFrame df. (2 points)

In [9]: df.iloc[:,0:2]

Out[9]:

	animal	age
а	cat	2.5
b	cat	3.0
С	snake	0.5
d	dog	NaN
е	dog	5.0
f	cat	2.0
g	snake	4.5
h	cat	NaN
i	dog	7.0
j	dog	3.0

5. Select only the rows where the number of visits is greater than 2. (2 points)

In [10]: df[df['visits'] > 2]

Out[10]:

_		animal	age	visits	priority
	b	cat	3.0	3	yes
	d	dog	NaN	3	yes
	f	cat	2.0	3	no

6. Select the rows where the age is missing, i.e. is NaN . (2 points)

```
In [11]: df[df['age'].isnull()]
```

Out[11]:

	anımaı	age	visits	priority
d	dog	NaN	3	yes
h	cat	NaN	1	yes

7. Select the rows where the animal is a cat and the age is less than 3. (2 points)

```
In [12]: df[(df['animal'] =='cat') & (df['age'] < 3)]</pre>
```

Out[12]:

	animal	age	visits	priority
а	cat	2.5	1	yes
f	cat	2.0	3	no

8. Calculate the sum of all visits (the total number of visits). (2 points)

```
In [13]: df.iloc[:,2].sum()
Out[13]: 19
```

9. Calculate the mean age for each different animal in df . (2 points)

```
In [14]:
    df.groupby("animal").age.mean()

Out[14]: animal
    cat    2.5
    dog    5.0
```

snake 2.5
Name: age, dtype: float64

10. Count the number of each type of animal in df . (2 points)

```
In [15]: df.groupby("animal").animal.count()
Out[15]: animal
    cat     4
    dog     4
    snake     2
    Name: animal, dtype: int64
```

Pandas: Charts and Graphs (10 poins)

Pandas offers great graphing functions that work in conjuncture with MatPlotlib. Run the import below

```
In [16]: # Be sure we import MapPlotLib as plt and NumPy as np to be used with Panda import matplotlib.pyplot as plt
```

16. Basic plotting: plot

(2 points) Create a basic Bar Plot with the following data frame 'df'

```
In [17]: #Use:
    df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
    #Code goes below:
```

17. Basic Plotting: Stacked Plots

(2 points) produce a stacked bar plot using the data frame 'df'

```
In [18]: #Use:
    df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
#Code goes below:
```

```
In [19]: stackBar = df.plot.bar( stacked = True)
    stackBar
```

Out[19]: <AxesSubplot:>

18. Plotting: Histograms

(2 points) Create a histogram with 20 bins using the data frame 'df'

In [21]: pandasHist = df.hist(bins=20)

19. Plotting: Scatter plots

(2 points) Create a scatter plot of columns b and d using the data frame 'df'

```
In [22]: # Use
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
#Code goes below:
scplot = df.plot.scatter(x = 'b', y = 'd')
scplot
```

Out[22]: <AxesSubplot:xlabel='b', ylabel='d'>

20. Plotting: Box Plots

(2 points) Create a Box Plot using the data frame 'df'

```
In [23]: # Use
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
#Code goes below:
boxPlot = df.boxplot(grid=True, rot=0, fontsize=15)
```


End of Lab