17 January 2019

Homework: Regents Pretest

- 1. When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
 - (1) vertical angle

- (2) supplementary angles
- (3) linear pair of angles
- (4) adjacent angles
- 2. The graphs of the lines represented by the equations $y = \frac{1}{3}x + 7$ and $y = -\frac{1}{3}x 2$ are
 - (1) horizontal
 - (2) parallel
 - (3) perpendicular
 - (4) intersecting, but not perpendicular
- 3. The lines 3y 6x = 4 and 2y = x 9 are
 - (1) the same line
 - (2) neither parallel nor perpendicular
 - (3) parallel
 - (4) perpendicular
- 4. In the diagram below, \overline{RCBT} and ΔABC are shown with $m_{\rm m} \angle A = 60$ and $m \angle ABT = 125$.

What is $m \angle ACR$?

- (1) 125
- (2) 115
- (3) 65
- (4) 55

10th Grade

5. In the accompanying figure, $\angle 1 = (60 + x)^{\circ}$

Which equation shows how to calculate the value of $\angle 6$?

(1) $(60+x)^{\circ}+180$

(2) $180 + (60 + x)^{\circ}$

(3) $180 - (60 + x)^{\circ}$

(4) $(60+x)^{\circ}-180$

6. What is the slope of a line parallel to the line whose equation is 2y = -6x + 8?

- $(1) \frac{1}{3}$
- (2) -3
- (4) -6

7. A 20-foot support post leans against a wall, making a 70° angle with the ground. To the *nearest tenth of a foot*, how far up the wall will the support post reach?

- (1) 18.7
- (2) 18.8
- (3) 6.9
- (4) 68

8. Which equation represents a line that is perpendicular to the line whose equation is 3x - 2y = 7?

(1) $y = \frac{3}{2}x - 5$

(3) $y = -\frac{2}{3}x + 4$

(2) $y = \frac{2}{3}x - 4$ (4) $y = -\frac{3}{2}x + 5$

9. In the diagram below, $\triangle ABC \sim \triangle ADE$

Which measurements are justified by this similarity?

- (1) AD = 3, AB = 9, AE = 5, and AC = 10
- (2) AD = 2, AB = 6, AE = 5, and AC = 15
- (3) AD = 5, AB = 8, AE = 7, and AC = 10
- (4) AD = 3, AB = 6, AE = 4, and AC = 12

10As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

- (1) 29.7
- (2) 16.6
- (3) 13.5
- (4) 11.2
- 11. Which equation represents a line that is perpendicular to the line represented by $y = \frac{2}{3}x + 1$?

(1) $y = \frac{3}{2}x + 2$ (3) 3x - 2y = 12

(2) $y = -\frac{2}{3}x + 4$ (4) 3x + 2y = 12

12. In the diagram below, \overline{AD} intersects \overline{BE} at C, and $\overline{AB} \parallel \overline{DE}$

If CD = 6.6 cm, DE = 3.4 cm, CE = 4.2 cm, and BC = 5.25 cm, what is the length of \overline{AC} , to the nearest hundredth of a centimeter?

- (1) 5.28
- (2) 8.25
- (3) 3.34
- (4) 2.70
- 13. Given the right triangle in the diagram below, what is the value of *x*, to the *nearest foot*?

- (1) 18
- (2) 22
- (3) 11
- (4) 17
- 14. In the diagram of $\triangle ABC$ below, \overline{DE} is parallel to \overline{AB} , CD = 15, AD = 9, and AB = 40.

The length of \overline{DE} is

- (1) 25
- (2) 30
- (3) 15
- (4) 24

15. As shown in the diagram below of $\triangle ABC$, \overline{BC} is extended through D, $m\angle A = 70$, and $m\angle ACD = 115$.

Which statement is true?

- (1) AB > BC (2) BC < AC (3) AC < AB (4) AC > AB

- 16. In scalene triangle ABC shown in the diagram below, $m\angle C = 90^{\circ}$.

Which equation is always true?

(1) $\cos A = \cos B$

(2) $\sin A = \cos B$

(3) $\sin A = \sin B$

- (4) $\cos A = \sin C$
- 17. What is an equation of the line with y-intercept 6 and is parallel to the line whose equation is $y = \frac{3}{2}x - 4$?
 - (1) $y = \frac{-2}{3}x + \frac{5}{3}$ (3) $y = \frac{3}{2}x + 6$

(2) $y = \frac{3}{2} x$ (4) $y = \frac{-2}{3} x$

18. In the accompanying diagram, line a intersects line b.

What is the value of x?

- (1) 90
- (2) -10
- (3) 5
- **(4)** 10

19. In the accompanying figure, $a \parallel b$, $f \parallel g$, and $m \angle x = 75$.

What is the value of $m \angle y + m \angle z$?

- (1) 75
- (2) 105
- (3) 150
- (4) 180

20. What is an equation of the line with y-intercept -15 and is perpendicular to the line whose equation is $y = \frac{1}{3}x + 6$?

(1)
$$y = -3x + 27$$

(2)
$$y = \frac{1}{3}x + 15$$

(4) $y = \frac{1}{3}x - 13$

(3)
$$y = -3x - 15$$

(4)
$$y = \frac{1}{3}x - 13$$

21. In the diagram below of $\triangle ABC$, \overline{CDA} , \overline{CEB} , $\overline{DE} \parallel \overline{AB}$, DE = 4, AB = 10, CD = x, and DA = x + 3.

What is the value of x?

- (1) 2
- (2) 5.5
- (3) 0.5
- (4) 6

22. As shown in the diagram below, \overline{AB} and \overline{CD} intersect at E, and $\overline{AC} \parallel \overline{BD}$.

Given $\Delta AEC \sim \Delta BED$, which equation is true?

- (1) $\frac{EC}{AE} = \frac{BE}{ED}$ (2) $\frac{CE}{DE} = \frac{EB}{EA}$ (3) $\frac{ED}{EC} = \frac{AC}{BD}$ (4) $\frac{AE}{BE} = \frac{AC}{BD}$

23. In the diagram shown below, \overline{AC} is tangent to circle O at A and to circle Pat C, \overline{OP} intersects \overline{AC} at B, OA = 4, AB = 5, and PC = 10.

What is the length of \overline{BC} ?

- (1) 6.4
- (2) 8
- (3) 12.5
- (4) 16

24. Given $\triangle MRO$ shown below, with trapezoid *PTRO*, MR = 9, MP = 2, and PO = 4.

What is the length of \overline{TR} ?

- (1) 5
- (2) 4.5
- (3) 3
- (4) 6