

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

mmn. Aremed Abers. com

1 hour 15 minutes

*	
0	
0	
2	
6	
9	
6	
4	
В	
7	
З	

CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/33
Paper 3 (Exten	ided)	1	May/June 2011

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 12 printed pages.

1	Choose	e an element from	the list belo	ow which be	st fits the de	escription.		
		Rb	Fe	Si	I	Р	Sr	
	(a) An	element which re	acts with co	old water				[1]
	(b) It is	s a solid at room to	emperature	and exists a	as diatomic	molecules,	X ₂	[1]
	(c) It o	an form two oxide	es, XO and	X ₂ O ₃				[1]
	(d) Th	is element has a h	nydride of th	ne type XH ₃ .				[1]
	(e) It h	nas a macromolec	ular structu	re similar to	that of carb	on		[1]
							[To	otal: 5]
2	Tin is a	n element in Grou	ıp IV.					
	(a) Th	e position of tin in	the reactivi	ity series is:				
				zinc iron tin copper				
	(i)	For each of the complete the equation $\operatorname{Cu} + \operatorname{Sn}^{2+} \rightarrow \operatorname{Cu}$	uation, othe	erwise write	no reaction		f there is a rea	action,
		Fe + $Sn^{2+} \rightarrow$.						
		Sn + $Zn^{2+} \rightarrow .$						[4]
	(ii)	Name the three	products fo	ormed when	tin(II) nitrat	e is heated.		
								[2]
		ueous tin(II) sulfat that of aqueous co					electrolysis is s	similar
	(i)	What is the prod	luct at the n	negative elec	trode (cath	ode)?		
								[1]
	(ii)	Write the equation	on for the re	eaction at the	e positive e	lectrode (an	ode).	
								[2]
	(iii)	Name the acid for	ormed in th	is electrolysi	S.			
								[1]

(c)	Steel articles can be plated with tin or zinc to prevent rusting. When the zinc layer is damaged exposing the underlying steel, it does not rust, but when the tin layer is broken the steel rusts. Explain.	Exa
	[4]	
	[Total: 14]	

For Examiner's Use

[1]

3 The equation for the reaction between sodium thiosulfate and hydrochloric acid is given below.

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + S(s) + SO_2(g) + H_2O(l)$$

The speed of this reaction was investigated using the following experiment. A beaker containing 50 cm³ of 0.2 mol/dm³ sodium thiosulfate was placed on a black cross. 5.0 cm³ of 2.0 mol/dm³ hydrochloric acid was added and the clock was started.

Initially the cross was clearly visible. When the solution became cloudy and the cross could no longer be seen, the clock was stopped and the time recorded.

(a) The experiment was repeated with 25 cm³ of 0.2 mol/dm³ sodium thiosulfate and 25 cm³ of water. Typical results for this experiment and a further two experiments are given in the table.

experiment	1	2	3	4
volume of thiosulfate/cm³	50	40	25	10
volume of water/cm ³	0	10	25	40
volume of acid/cm ³	5	5	5	5
total volume/cm ³	55	55	55	55
time/s	48	60	96	

(i)	Explain experim	it is	nece	essary	to	keep	the	total	volume	the	same	in	all	the
		 	•••••											[2]

© UCLES 2011 0620/33/M/J/11

(ii) Complete the table.

For Examiner's Use

(iii)	How and	d why does the speed of the reaction	vary fro	m experi	iment 1 to 4?
					[3]
		collisions between reacting particles is Use this idea to explain the following	s used to	explain	
		volume of sodium thiosulfate/cm³	25	25	
		volume of water/cm ³	25	25	
		volume of acid/cm ³	5	5	
		temperature/°C	20	42	
		time/s	96	40	
					[4]
					[Total: 10]

4 Iron is extracted from its ore, hematite, in the blast furnace.

Describe the reactions involved in this extraction. Include in your description an equation for a redox reaction and one for an acid/base reaction.
[5]
[Total: 5]

© UCLES 2011 0620/33/M/J/11

5 The diagram shows a simple cell.

(a)	Write an equation for the overall reaction occurring in the cell.	
(b)	Explain why all cell reactions are exothermic and redox.	[2]
(c)	Which electrode, zinc or iron, is the negative electrode? Give a reason for your choice	
(6)	william electrode, zinc or from, is the negative electrode? Give a reason for your choice	
(d)	Suggest two ways of increasing the voltage of this cell.	[2]
	ITotal:	

(a) Methanol can be made from a mixture of carbon monoxide and hydrogen.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The	e forward reaction is exothermic.
(i)	Explain why the concentration of methanol at equilibrium does not change.
	[2]
(ii)	Suggest conditions, in terms of temperature and pressure, which would give a high yield of methanol.
	[2]
(iii)	How would the conditions used in practice compare with those given in (ii)? Give an explanation of any differences.
	[2]
(b) Bio	diesel is made from a vegetable oil by the following reaction.
C,	$_{17}$ H $_{35}$ —CO $_2$ —CH $_2$
C,	$_{17}^{17}H_{35}$ — $_{17}^{$
C	$_{17}^{17} H_{35} - CO_2 - CH_2$
	vegetable oil methanol biodiesel glycerol
(i)	What type of compound are vegetable oil and biodiesel?
	[1]
(ii)	What other useful product is made from vegetable oil by heating it with aqueous sodium hydroxide?
	[1]
(iii)	Suggest an explanation why making and using biodiesel has a smaller effect on the percentage of carbon dioxide in the atmosphere than using petroleum-based diesel.

- **(c)** Petroleum-based diesel is a mixture of hydrocarbons, such as octane and octene.
 - (i) 'Oct' means eight carbon atoms per molecule. Draw a structural formula of an octene molecule.

[1]

(ii) Describe a test which would distinguish between octane and octene.

test

[Total: 14]

- 7 Chlorine reacts with phosphorus to form phosphorus trichloride.
 - (a) Draw a diagram showing the arrangement of the **valency** electrons in one molecule of the covalent compound, phosphorus trichloride.

Use x to represent an electron from a phosphorus atom.

Use o to represent an electron from a chlorine atom.

[2]

[1]

- (b) Phosphorus trichloride reacts with water to form two acids.
 - (i) Balance the equation for this reaction.

$$PCl_3 + \dots H_2O \rightarrow \dots HCl + H_3PO_3$$

(ii) Describe how you could show that phosphorus acid, H₃PO₃, is a weaker acid than hydrochloric acid.

.....[3]

For
Examiner's
1100

	(iii)	Two salts of phosphorus acid are its sodium salt, which is soluble in water, and its calcium salt which is insoluble in water. Suggest a method of preparation for each of these salts from aqueous phosphorus acid. Specify any other reagent needed and briefly outline the method.
		sodium salt
		[2]
		calcium salt
		[2]
		[Total: 10]
8	Hydroca	arbons are compounds which contain only carbon and hydrogen.
	Afte was	cm ³ of a gaseous hydrocarbon was burned in 120 cm ³ of oxygen, which is in excess. For cooling, the volume of the gases remaining was 90 cm ³ . Aqueous sodium hydroxide is added to remove carbon dioxide, 30 cm ³ of oxygen remained. All volumes were assured at r.t.p
	(i)	Explain why it is essential to use excess oxygen.
		[2]
	(ii)	Carbon dioxide is slightly soluble in water. Why does it dissolve readily in the alkali, sodium hydroxide?
		[1]
	(iii)	Complete the following.
		volume of gaseous hydrocarbon =cm ³
		volume of oxygen used =cm ³
		volume of carbon dioxide formed =cm ³ [2]
	(iv)	Use the above volume ratio to find the mole ratio in the equation below and hence find the formula of the hydrocarbon.
		$C_x H_y(g) +O_2(g) \rightarrowCO_2(g) +H_2O(I)$
		hydrocarbon formula =[2]

For
Examiner's
1100

[Total: 13]

- **(b)** Alkanes are hydrocarbons and are generally unreactive. Their reactions include combustion, substitution and cracking.
 - (i) Chlorine reacts with butane in a substitution reaction.

$${\rm CH_3 - CH_2 - CH_2 - CH_3} \ + \ {\rm C}l_2 \ \to \ {\rm CH_3 - CH_2 - CH_2 - CH_2 - C}l \ + \ {\rm HC}l$$

Give the structural formula of another possible product of this reaction.

	[1]
(ii)	What is the essential condition for this reaction?
	[1]
(iii)	Explain what is meant by <i>cracking</i> . Give an example of a cracking reaction and explain why the process is used.
	[4]

© UCLES 2011 0620/33/M/J/11

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon	40 Ar Argon	84 Kr Krypton 36		Radon 86	-	Lutetium 77	
	=		19 T Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	S S
	5		16 Oxygen 8	32 S Suffur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium		169 Tm Thulium	M
	>		14 Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51			167 Er Erbium 68	F
	2		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn 150	207 Pb Lead		165 Ho Holmium 67	
	=		11 Boron 5	27 A 1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T t Thallium		162 Dy Dysprosium 66	ರ
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	æ
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	
Group					59 Ä Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am
Gre					59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu
		T Hydrogen			56 Fe Iron 26	Rut Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	ď
					Mn Manganese	Tc echnetium	186 Re Rhenium		Neodymium 60	238 C
					52 Cr Chromium 24	96 Mo Molybdenum 7 42	184 W Tungsten 74		Pr Praseodymium 59	Pa
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tananam		140 Ce Cerium	232 Th
					48 T Titanium	91 Zr Zirconium 40	178 Hf Hafnium 72			iic mass ool
					45 Sc Scandium 21	89 ≺ Yttrium 39	139 La Lanthanum *	227 Ac Actinium 89	series eries	a = relative atomic massX = atomic symbol
	=		9 Be Beryllium 4	24 Mg Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	« ×
	_		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	58-71 L ²	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.