

Project: Introduction To Robotics PROFESSOR: GIANLUCA ANTONELLI

Fakrul Islam Tushar

Medical Image Analysis and Applications (MAIA) 2nd Semester, University of Cassino.

Contents of The Presentation

- Project Goal
- **>** Kinematics
- > **DH Notations**
- Jaccobian
- Finding Initial Joint Value
- Inverse Kinematics Control Position only
- Inverse Kinematics Control Position and Orientation
- Inverse Kinematics Control Obstacle Avoiding
- Results
- Reference

Project Goal

Kinematics

Kinematic model given the relation between the endeffector(EE) position and orientation and special position of the joint links

Denavit-Hartenberg (DH) Notation

Set of conventions used to represent a robot.

- ✓ 4 values required to describe a combination of joints:
- **✓ Θ**: Rotation along z axis
- **✓ d:** Translation along z axis
- **✓** a: Translation along x axis
- ✓ α: Rotation along x axis

Link	a_i [m]	α_i [rad]	d_i [m]	θ_i [rad]
1	0	$\pi/2$	0.3105	$ heta_1$
2	0	$-\pi/2$	0	$ heta_2$
3	0	$\pi/2$	0.400	θ_3
4	0	$-\pi/2$	0	$ heta_4$
5	0	$\pi/2$	0.4	$ heta_5$
6	0	$-\pi/2$	0	θ_6
7	0	0	0.078	$ heta_7$

Fig.1: DH table.

Jaccobian

Jaccobian is a function of joints values. $J = \frac{df}{dq}$

- ✓ let X={ x, y, z, rx, ry, rz} represents the End Effector position and orientation, and q is the joint value
- \checkmark x= J*q, EE position.
- \checkmark q= $J^{-1} * x$, joint value.
- $\checkmark \dot{x} = J * \dot{q}$, EE velocity
- $\checkmark \dot{q} = J^{-1} * \dot{x}$, EE velocity

Finding The Initial Joint Value for Initial Position

Finding Initial Joint values

Fig.2: Block Diagram of finding joint values.

Finding Initial Joint values

Fig.3: GUI for computing joint values.

Inverse Kinematics Controller Position Only

Position Control

Fig.4: Inverse Kinematics Controller (Position only).

Position Control

Fig.5: Inverse Kinematics Controller (Position only).

Inverse Kinematics Controller Position and Orientation

Position and Orientation Control

Fig.6: Inverse Kinematics Controller (Position and Orientation).

Position and Orientation Control

Fig.7: Inverse Kinematics Controller (Position and Orientation).

Inverse Kinematics Controller Obstacle Avoiding

Obstacle Avoiding Control

the obstacle avoiding motion

$$\dot{\mathbf{q}} = \mathbf{J_{d_0}}^+ \nu_0 + (\mathbf{I} - \mathbf{J_{d_0}}^+ \mathbf{J_{d_0}}) \mathbf{J}^+ \dot{\mathbf{x}}.$$

Obstacle Avoiding Control

Fig.7: Inverse Kinematics Controller (Position and Orientation).

Results

Position only

Position only

Fig.9: Block diagram for manual Segmentation.

Position only

Fig.9: Block diagram for manual Segmentation.

Position and Orientation

Position and Orientation

Fig.9: Block diagram for manual Segmentation.

Position and Orientation

Fig.9: Block diagram for manual Segmentation.

Obstacle Avoiding

Obstacle Avoiding

Fig.9: Block diagram for manual Segmentation.

Obstacle Avoiding

Fig.9: Block diagram for manual Segmentation.

Project Outcomes

Reference

[1] Introduction to robotics Course Slides.

[2] Edx Introduction to Robotics Course [1-6 week]

Thank you !!!©

ANY Question ???©