Measure Theory & Probability

Sebastian Müksch, v1, 2019/20

Basic Notions and Notation

Example 1.1.

Simplest σ -algebra:

- $\{\emptyset, \Omega\}$, contained in every σ -algebra on Ω ,
- Family of all subsets of Ω , containing every σ -algebraon Ω .

Exercise 1.1.

Let \mathcal{F} be a σ -algebra. Then $A_n \in \mathcal{F}$ for every integer $n \geqslant 1 \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Proposition (Unknown).

Let $A, B \in \mathcal{F}$. Then $\mu(A \cap B) \leq \mu(A)$. $Hint: \sigma$ -additivity and $A = (A \cap B) \cup (A \setminus B)$.

Expectation Integrals

Proposition (Unknown).

Let $A, B \subset \Omega$. Then the following equalities hold:

- $\mathbf{1}_{A^C} = 1 \mathbf{1}_A$,
- $\mathbf{1}_{A}\mathbf{1}_{B} = \mathbf{1}_{A\cap B}$.

Lemma 3.3.

Let X be a **non-negative** random variable. Then there exists a sequence of **non-negative**, **simple** random variables X_n converging to X for every $\omega \in \Omega$.

Hint: $h_n(x) = \min\{\lfloor 2^n x \rfloor / 2^n, n\}$ is non-negative, simple and increasing, approaching x. Consider $X_n := h(X) \to X$.

Lemma (Simple Function Integral Properties). Let $f,g:\Omega\to\overline{\mathbb{R}}$ be a **non-negative**, simple functions and $a,b\geqslant 0$. Then the following holds:

- $\int_{\Omega} f \, d\mu \geqslant 0$,
- $\int_{\Omega} (af + bg) d\mu = a \int_{\Omega} f + b \int_{\Omega} g d\mu$.

Lemma 3.3 (General).

Let $f: \Omega \to \overline{\mathbb{R}}$ be a **non-negative**, measurable function. The there exists a sequence f_n of **non-negative**, simple functions such that:

$$\lim_{n \to \infty} f_n = f$$

Hint: : Use h_n from Lemma 3.3's hint.

Exercise 3.5.

Let $A \in \mathcal{F}$ s.t. $\mu(A) = 0$. Then for **any** measurable function $f : \Omega \to \overline{\mathbb{R}}$:

$$\int_A f \, d\mu = 0.$$

Theorem 3.8 (Monotone Convergence). Let $(f_n)_{n=1}^{\infty}$ be increasing sequence of non-negative, measurable functions $f_n: \Omega \to \overline{\mathbb{R}}$, converging to some f. Then:

$$\int_{\Omega} \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_{\Omega} f_n \, d\mu$$

Proposition 3.18 (Markov-Chebyshev's Inequality).

Let X be a **non-negative** R.V., then

$$P(X \ge \lambda) \le \lambda^{-\alpha} E(X^{\alpha}) \quad \forall \lambda > 0, \alpha > 0.$$

Remark 3.3.

Let $(\Omega, \mathcal{F}, \mu)$ be measure space, $f: \Omega \to \overline{\mathbb{R}}$ non-negative \mathcal{F} -measurable, then

$$\mu(f \geqslant \lambda) \leqslant \lambda^{-\alpha} \int_{\Omega} f^{\alpha} d\mu \quad \forall \lambda > 0, \alpha > 0.$$

Proposition (Restricted Expectation). Let X be a random variable and $A \in \mathcal{F}$, then:

$$E(X\mathbf{1}_A) = \int_A X \, dP.$$

Definitions

In the following, Ω is a set, \mathcal{F} a σ -algebra on Ω . If used, then μ is a measure. Otherwise, the measure is the probability measure P.

Definition 1.1.

Let \mathcal{F} be a family of subsets of set Ω . \mathcal{F} is called a σ -algebra if:

- Closed Under Complement: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$,
- Closed Under Arbitrary Union: $A_n \in \mathcal{F}$ for integer $n \geqslant 1$ $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$,

• Contains Entire Set: $\Omega \in \mathcal{F}$

Definition 1.2. Let \mathcal{C} be a family of subsets of Ω . There exists a σ -algebra which contains \mathcal{C} and which is contained in every σ -algebra that contains \mathcal{C} (take intersection of all σ -algebras. Such σ -algebra is unique and called smallest σ -algebra containing \mathcal{C} or σ -algebra generated by \mathcal{C} , denoted by $\sigma(\mathcal{C})$. Simplest example, let $A \subseteq \Omega$:

$$\sigma(A) = \{\emptyset, A, A^c, \Omega\}.$$

Definition 2.1.1.

Let $A \subseteq \Omega$ and $\mathbf{1}_A$ be defined as follows:

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}.$$

Then $\mathbf{1}_A$ is a R.V. and called the *indicator* (function) of (events) A.

 ${\bf Definition~(Indicator~Integral)}.$

Let $A \subset \Omega$, then:

$$\int_{\Omega} \mathbf{1}_A \, d\mu = \mu(A).$$

Definition (Simple Function).

Let $f:\Omega\to\mathbb{R}$ be a *simple function*, then f takes finitely many values. Formally, if I is a finite index set, $(A_i)_{i\in I}$ a famility of disjoint subsets of Ω and $(c_i)_{i\in I}$ a family of real numbers, then:

$$f(\omega) = \sum_{i \in I} c_i \mathbf{1}_{A_i}(\omega).$$

Definition (Lebesgue Integral for Expectation).

Let X be a random variable. Then we write:

$$EX = \int_{\Omega} X \, dP.$$

Definition (Unknown).

Let $A \in \mathcal{F}$ and $f : \Omega \to \overline{\mathbb{R}}$ is a measurable function, then we define:

$$\int_A f \, d\mu = \int_{\Omega} \mathbf{1}_A f \, d\mu,$$

when the integral of $\mathbf{1}_A f$ w.r.t μ exists.

Definition (Unknown).

Let X be a random variable. Then X has finite second moment if $EX^2 < \infty$.