ExpandoRAM II OPERATIONS MANUAL

OPERATIONS MANUAL

EXPANDORAM II EXPANDABLE RANDOM ACCESS MEMORY

COPYRIGHT © 1979

BY SD SYSTEMS

LIMITED WARRANTY

All SD Systems products assembled by SD personnel and functionally tested at our facility are warranted for a period of ninety (90) days from date of purchase to be free from defects of material and workmanship. Kits or other products functionally unfinished or semi-finished at the time of shipment from our facility are warranted for the same period in regard to material defects only, with no warranty, expressed or implied, covering workmanship of others. Should an SD Systems product fail to perform to specifications, obtain a Returned Material Authorization number from your dealer or from SD Systems. Include this number in all correspondence and with the returned product. Ship the item prepaid to SD Systems and it will, at our option, be repaired or replaced free of charge, provided the unit is received during the warranty period. Testing or repair work performed upon returned kits or other products assembled wholly or partially by others will be subject to a \$35.00 minimum service charge unless such products are found to be non-functional due to defects in material purchased from SD Systems.

In order to validate this warranty, the enclosed warranty card must be returned to SD Systems. If no warranty card is on file at the time of product return, dated proof of purchase will be required.

This warranty is invalid if product has been misused or modified. Warranty is limited to replacement of defective parts and no responsibility is assumed for damage to other equipment.

THERE ARE NO UNDERSTANDINGS, AGREEMENTS, REPRESENTATIONS, OR WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY REGARDING FITNESS FOR A PARTICULAR PURPOSE, NOT SPECIFIED IN THE WARRANTY.

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
1 1-1 1-2	INTRODUCTION GENERAL DESCRIPTION PHYSICAL	1 1 2
2	FUNCTIONAL DESCRIPTION .	4
3 3-1 3-2	CONSTRUCTION ASSEMBLY PROCEDURE CHECK OUT PROCEDURE	6 6 7, 8, 9, 10
4 4-1 4-2 4-3 4-4	UTILIZATION 16K OR 64K DEVICE SELECTION JUMPERS PROM INFORMATION SWITCH SETTINGS USING THE EXPANDORAM II IN NON- SD SYSTEMS ENVIRONMENTS	11 11 11, 12 12, 13
APPENDICES		
A B C D	MEMORY DIAGNOSTIC SOFTWARE LISTING EXPANDORAM II TIMING DIAGRAM EXPANDORAM II ASSEMBLY DRAWING EXPANDORAM II SCHEMATIC EXPANDORAM II PARTS LIST	

SECTION I

1-0 INTRODUCTION

The EXPANDORAM II board provides a low cost means for expanding Random Access Memory capability for computers utilizing the S-100 bus structure.

The EXPANDORAM II is optimized for operation with SD Systems' SBC-100/200. The EXPANDORAM II uses the Z-80 refresh signal and will operate at 4 MHZ if sufficiently fast rams are used.

1-1 GENERAL DESCRIPTION

The EXPANDORAM II board is a high performance dynamic RAM board using state-of-the-art MOS dynamic memory devices. The EXPANDORAM II may be configured to have a memory capacity of 16K, 32K, 48K, or 64K bytes of memory using the MK 4116 (16,384X1 MOS dynamic RAM) or 64K, 128K, 192K, or 256K bytes of memory using the MK4164 (65,536X1 MOS dynamic RAM) memories. Other notable features of the EXPANDORAM II board include:

- (1) Phantom output disable or manual switch selectable output disable.
- (2) Typical power dissipation of 5 watts
- (3) 4 MHZ operation
- (4) Port Addressable board select for multi-user system
- (5) With 4164's, 4-64K banks are available

1-2 PHYSICAL

The EXPANDORAM II board is implemented on a single 5.25" x 10.0" x 0.65" Printed Circuit board. The board requires three DC voltages at levels of +7V to +10V, +14V to +18V, and -14V to -18V. The EXPANDORAM II board is interfaced to the system by connector J-1. Table 1-1 lists the overall specifications for the EXPANDORAM II board.

TABLE 1-1 SPECIFICATIONS

Memory Capacity	Up to 65,536 bytes (16K RAM) Up to 262,144 bytes (64K RAM)
Memory Access	200 ns max.
Memory Cycle	375 ns min.
Interface Levels	TTL Compatible
Power (2 us memory cycle)	+7V to +10V @ 400mA (max) +14V to +2-V @ 200mA (max) -14V to -20V @ 30mA (max)
Physical Dimensions	5.25" x 10.0" x .65"
Operating Temperature	O degree C to 50 degree C

TABLE 1-2 CONNECTOR J1 PIN OUT FOR 32K/64K EXPANDORAM II

PIN #	SIGNAL NAME	DIRECTION	DESCRIPTION
1,51 2 52 25 27	+8V to 10V +14V to 20V -14V to -20V Ø1 P WAIT	Input Input	Power Power Power Phase 1 clock Wait
79,80,81, 31,30,29, 82,83 84,34,37,	A C - A 7	Input	Address bus bits 0-7
87,33,85, 86,32 36,35,88,	A8-A15	Input	Address bus bits 8-15
89,38,39, 40,90 95,94,41,	D0-0 to D0-7	Input	Data bus in
42,91,92, 3,43 44 47 66 68 72 78 100,50 45	DI-0 to DI-7 SM1 MEMR RFSH MEMW PRDY PDBIN GROUND SOUT	Output Input Input Input Input Output Input Input	Data bus out Machine cycle one Memory read Refresh (Z80 CPU card) Memory write Ready Data bus in Port Output
99 67	POC PHANTOM	Input Input	Power on Clear Pha n tom Disable

SECTION 2

2-0 FUNCTIONAL DESCRIPTION

The major functions of the EXPANDORAM II board are shown in figure 2-1. The following functions make up the memory interface: memory array, memory decode and control, address multiplexer, and data buffer.

Memory Array - The memory array consists of up to 32 (16K or 64K) dynamic random access memory elements. Each 16K has a 16,384 x 1 bit capacity, while the 64K has a 65,536 x 1 bit capacity. The 32 (16K or 64K) RAMS are organized into four banks of eight RAMS each. The eight RAMS each contribute one bit to an addressable location. The total storage capacity of the EXPANDORAM II is 64,536 or 262,144 bytes, depending on the type of memory device used (16K or 64K).

Memory Decode and Control - The memory decode and control section is responsible for generating the timing signals for the memory array, address multiplexer, and data buffer. Timing within the memory decode and control section is generated by a TTL compatible delay line. An 82S130 PROM is used to select the proper banks according to the address lines, board select switches, and the board select latch. (See Section 4 for more details on Prons).

Address Multiplexer - The address multiplexer is responsibile for taking the address bits from the address bus buffers and multiplexing the proper row and column address into the memory array under control of the memory decode and control section.

Data Buffers - The data buffers, controlled by the memory decode and control section, isolate the memory array from the data bus.

Port FF Board Select - The port FF board select decodes port FF and latches the output data on the board.

EXPANDORAM II BLOCK DIAGRAM

Figure 2-1

PAGE 5

SECTION 3

3-0 CONSTRUCTION

The EXPANDORAM II board kit is intended for those persons who have had some prior experience with kit building and digital electronics. If you do not fall into this category, it is highly recommended that you find an experienced person to help you assemble and check out the board.

Appendix E shows the parts list for the EXPANDORAM II board. Double check all parts against the parts list.

3-1 ASSEMBLY PROCEDURE

(1)	Install	and	solder	the	IC	sockets	in	their	proper	locations
	as follo	ows:								

- () 14-Pin U1,U3-U7,U9,U10,U12,U17-U19,U21,U22,U58 () 16-Pin - U8,U11,U13,U15,U16,U26-U57
- () 20-Pin U14,U20,U23-U25

NOTE: No sockets for U2 or DIP switch S3.

- (2) Install and solder the resistors as follows:
 - () R1, R4 33 Ohm (Orange, Orange, Black)
 - () R2, R6, R8 1K Ohm (Brown, Black, Red)
 - () R3 3.3K Ohm (Orange, Orange, Red)
 - () R5 150 Ohm (Brown, Green, Brown)
 - () R7 10K Ohm (Brown, Black, Orange)
 - () R9 470 Ohm (Yellow, Violet, Brown)
 - () R10 200 Ohm (Red, Black, Brown)
 - () Resistor packs: RP1 3, 4, 5 10 Pin SIP 3.3K RP2 6 Pin SIP 3.3K

NOTE: Pin 1 of each SIP is designated by a notch or a dot on one end of the package.

- Install and solder diodes CR1, and CR2 with the banded end (3)as shown on the PC board. CR1 CR2 1N914 or 1N4148 (4)Install and solder the capacitors as follows: () C1, C5, C8, C12, C14, C16 10MF Tantalum (Note Polarity) C2, C4, C6, C7, C9, C10, C13, C17-64 . 1MF MICA () C15, C3 200PF MICA (5)Install and solder the two voltage regulators with the heatsink, using the 6-32 hardware supplies. NOTE: There are two types of voltage regulators, a +5V and a +12V. Be sure that the regulators are installed as shown on the Assembly Drawing. () VR1 +5V 7805 or LM 340T-5 () VR2 +12V 7812 or LM 340T-12 (6) Install two PCB ejectors using pins (See Assembly Drawing). (7)Install and solder DIP switch. S3 Observe the proper position of the PC board (the ON side should be toward the top of the board). (8) Install and solder the delay line (U2) observing the location of pin 1 (DDU-4-5250 or PE21214 or TTLDL250) Double check all solder connections for cold solder joints, (9)
- 3-2 CHECK OUT PROCEDURE
- (1) Install the board in the computer and measure the output of the

unsoldered connections, or shorted connections.

+5V and +12V regulators, VR1 and Vr2, () VR1 = 5 volts() VR2 = 12 volts(2) Measure the power supply voltages in the memory array. (Any of the memory array IC sockets can be used.) () Pin 1 U29 = -5V() Pin 8 U29 = +12V() Pin 9 U29 = +5VDO NOT PROCEED WITH BOARD CHECK-OUT UNTIL ALL POWER SUPPLY NOTE: VOLTAGES ARE CORRECT. The TTL logic and MOS memories can be permanently damaged if improper voltages are applied. Install the IC's in their sockets observing the Pin 1 designation (3)on each socket on the PC board. () U1 74LSØØ () U14 74LS244 () U3 74LS1Ø () U15 33 Ohm DIP () U4 74LS2Ø () U16 74LS162 () U5 74LSØØ () U17 74LSØØ () U6 74LS74 () U18 74LS14 () U7 74LSØ2 () U19 74LS3Ø () U8 82S130 () U20 74LS373 () U9 74LS393 () U21 74LS74 () U10 74LSØØ () U22 74LS14 () U11 74LS368 () U23 74LS244 () U12 74LS14 () U24 74LS244

() U25

() U58

74LS244

74LS122

() U13

74LS174

* ()	U26-33	(Bank	0)	RAM
* ()	U34-41	(Bank	1)	RAM
* ()	U42-49	(Bank	2)	RAM
* ()	U50-57	(Bank	3)	RAM

*NOTE: If less than 64K is being installed on the board then refer to Section IV under ADDRESSING SWITCH to determine in which Bank the memory should be installed.

- (4) Double check all IC's for proper orientation and location.
- (5) Refer to UTILIZATION SECTION for proper configuration of jumper options, and connect jumper options as required.
- (6) Install board into computer and turn on power.
- (7) By using front panel or monitor program, deposit data into a memory location that falls within the boundaries of the EXPANDORAM II board. Now examine the same location in which data was deposited. If the proper data is not read back, power the system down and double check the following:
 - (1) Check ADDRESSING DIP Switch and board Select Dip Switch for the correct settings.
 - (2) Check jumper options.
- (8) Reinstall the board and once again try to write and read data from the EXPANDORAM II board by the use of a front panel or monitor program. If some of the data bits appear to be stuck, power down the board and examine the memory array for bent pins, or a defective

memory device. If the board does not respond in any way to write or read data, then examine the TTL IC's for bent pins or improper insertions into the socket.

- (9) If the read/write test is successful, verify that memory on the EXPANDORAM II can be accessed in every bank of memory that is installed on the board.
- (10) If all banks can be written to and read back properly, complete check-out of the board by loading the memory test that is shown in Appendix A. Execute the test and verify that all locations within the memory array are functional.

NOTE: When executing the memory diagnostic, it is recommended that the memory board <u>not</u> be on an extender card. Use of an extender card may introduce external noise into the board.

SECTION 4

4-0 UTILIZATION

This section will explain the various options for the EXPANDORAM II memory card.

4-1 16K or 64K DEVICE SELECTION JUMPERS

Two types of RAMS may be used with the EXPANDORAM II. These are the 16K RAM (4116) and the 64K (4164). The board comes in a standard configuration that uses 16K RAMS. In order to use the 64K RAMS the following cuts and connections must be made:

- A. Cut etch between El and E2
- B. Cut etch between E4 and E5
- C. Cut etch between E6 and E8
- D. Connect E2 to E3

COMMEST 217- 27

E. Connect E6 to E7

4-2 PROM INFORMATION

There are two proms available for use with the EXPANDORAM II. These proms perform memory decoding. These are for use with 32K or 48K partition multi-user systems. If the board is used in a single-user environment, either Prom will work. In addition, other Proms may be configured if the user desires.

4-3 SWITCH SETTINGS

The information for the switch settings of S3 for the EXPANDORAM II is given in figure 4-1.

Port FF is used to select the Memory page (32K or 48K) to be accessed by the CPU. Up to 10 pages (0-9) may be in a system simultaneously, by using either 6 Expandoram II boards with a 32K Prom or 8 Expandoram II board with a 48K Prom (user ØAH has 16K positioned at @ CØØØH). The pages are accessed by outputting the page number to port FF. See Figure 4-2 for page mapping and Prom program information.

FIGURE 4-1

4-4 USING THE EXPANDORAM II IN NON-SD SYSTEMS ENVIRONMENTS

Some CPU boards supply a different phase of the system clock on pins 24 and 25. If one of these CPU boards are used with the Expandoram II, make the following change. Cut the etch on the back of the board between E22 and E23. Install a jumper between E23 and E24. Also cut the etch between E26 and E25 and install a jumper between E26 and E27. Install the phantom disable jumper between E9 and E10 if the system has other memory in conflict with the Expandoram II board. In addition, if the system is operated at

at 4 MHZ, install the jumper between E14 and E15 to enable M1 Wait States.

APPENDIX A MEMORY DIAGNOSTIC SOFTWARE LISTING

```
0001 :TRANSLATED FROM DEC 1976 INTERFACE MAGAZINE
                    0002 ;
                    9003 :THIS IS A MODIFIED ADDRESS STORAGE TEST WITH
                    0004 ; AN INCREMENTING PATTERN
                    0006 ;256 PASSES MUST BE EXECUTED BEFORE THE MEMORY
                    0007 ; IS COMPLETELY TESTED
                    0008 :
                    0009 ; IF AN ERROR OCCURS, THE PATTERN WILL BE STORED
                    0010 ; AT LOCATION '002C'H AMD THE ADDRESS OF THE
                    0011 ; ERROR LOCATION WILL BE STORED AT '002D'H
                    0012 ; AND '002E'H.
                    0013 ;
                    0014 ; THE CONTENTS OF LOCATIONS '000C'H AMD'001D'H
                    0015 ; SHOULD BE SELECTED ACCORDING TO THE FOLLOWING
                    0016 ; MEMORY SIZE TESTED
                    0017 ;
                    0018 ; TOP OF MEMORY TO
                    0019 ; BE TESTED
                                                            VALUE OF EPAGE
                    0020 ;
                    0021;
                                                                   110'8
                                4 K
                    0022;
                                                                   '20 'H
                                8K
                    0023;
                                                                   '40 'H
                               16K
                    0024 ;
                                                                   180 TH
                               32K
                    0025 ;
                                                                   'CO'H
                               48K
                                                                   'FF'H
                    0026 ;
                               64K
                    0027 ;
                    0028 : THE PROGRAM IS SET UP TO START TESTING AT
                    0029 :LOCATION '002F'H. THE STARTING ADDRESS FOR THE
                    0030 ; TEST CAN BE MODIFIED BY CHANGING LOCATIONS
                    0031 ;'0003'H-'0004'H AND '0011'H-'0012'H.
                    0032;
                    0033 :TEST TIME FOR A 16K BY 8 MEMORY IS APPROX. 4 MIN
                    0034 :
                    0035 ;
                                  PSECT
                                           ABS
>0000
                    0036 ;
                                  ORG
                                           0000H
0000
      0500
                    0037 ;
                                  LD
                                           B,0
                                                     ; CLEAR B PATRN MODIFIER
                    0038 ; LOAD UP MEMORY
0002
      212F00
                    0039 LOOP:
                                  LD
                                           HL, START ; GET STARTING ADDR
0005
      7D
                    0040 FILL:
                                  LD
                                           A,L
                                                    ;LOW BYTE TO ACCM
0006
      AC
                                                     ;XOR WITH HIGH BYTE
                    0041
                                  XOR
                                           H
0007
      A8
                    0042
                                  XOR
                                           В
                                                     :XOR WITH PATTERN
8000
      77
                    0043
                                  LD
                                           (HL),A
                                                     :STORE IN ADDR
0009
      23
                    0044
                                                     ; INCREMENT ADDR
                                  INC
                                           HL
A000
      7C
                                                     ;LOAD HIGH BYTE OF ADDR
                    0045
                                  LD
                                           A,H
000B
      FE10
                    0046
                                  CP
                                           EPAGE
                                                     ; COMPARE WITH STOP ADDR
000D
      C20500
                    0047
                                  JP
                                           NZ, FILL
                                                     ; NOT DONE, GO BACK
                    0048 ; READ AND CHECK TEST DATA
0010
      212F00
                    0049
                                           HL, START ; GET START ADDR
                                  LD
0013
      7D
                    0050 TEST;
                                  LD
                                           A,L
                                                     ;LOAD LOW BYTE
0014
      \Lambda C
                    0051
                                                     ; XOR WITH HIGH BYTE
                                  XOR
                                           H
9015
      AB
                                  XOR
                    0052
                                           В
                                                     :XOR WITH MODIFIER
0016
      BE
                    0053
                                  CP
                                           (HL)
                                                     :COMPARE WITH MEMORY LOC
0017
      C225000
                    0054
                                  JΡ
                                           NZ, EXIT ; ERROR EXIT
001A
      23
                    0055
                                  INC
                                           HL
                                                     ; UPDATE MEHORY ADDR
001B
      7C
                    0056
                                  LD
                                                     ;LOAD HIGH BYTE
                                           A,H
001C
      FE10
                    0057
                                  CP
                                           EPAGE
                                                     COMPARE WITH STOP ADDR
001E
      C21300
                    0058
                                                     ;LOOP BACK
                                  JP
                                           NZ, TEST
0021
      04
                                                     ;UPDATE MODIFIER
                    0059
                                  INC
                                           В
      C30200
0022
                    0060
                                  JP
                                           LOOP
                                                     ; RST WITH NEW MODIFIER
```

ST # SOURCE STATEMENT

ADDR OBJECT

0025 0028	222D00 322C00 .	0061 (0062 E 0063	; ERROR EXIT	EXIT LD LD	•	;SAVE ERROP ADDRESS ;SAVE BAD PATTERN
002B	76	0064		HALT	•	;FLAG OPERATOR
>002C		0065 I	PATRN:	DEFS	1	
>002D		0066 E	BYTE:	DEFS	2	
002F	2F00	0067 3	START:	DEFW	\$	
0031	3100	0068		DEFW	\$; PLACE FOR FIRST ADDR
>0010		0069 E 0070	EPAGE:	end End	10H	; SET UP FOR 4K TEST

APPENDIX B EXPANDORAM II TIMING DIAGRAM

INSTRUCTION OP CODE FETCH

MEMORY READ OR WRITE CYCLES

APPENDIX C
EXPANDORAM II
ASSEMBLY DRAWING

APPENDIX D EXPANDORAM II SCHEMATIC

APPENDIX E EXPANDORAM II PARTS LIST

SD Systems

P.O. Box 28810 • Oallas, Texas 75228 214-271-4667

BILL OF MATERIALS

Title		ANDORA	IM	PL No.	00160	Rev.			
	Rele		Approved: OP	· · · · · · · · · · · · · · · · · · ·					
item no	Qty	SD-P/N	Description	Unit Cost	Extension				
	1	7000012	PRINTED CIRCUIT BOARD OIC	00162					
2	4	7010160	74LS00 UI,U5,UI7 &UI0						
3	1	7010162	74LS02 U7						
4	1	7010168	74LS10 U3	•					
5	3	7010172	74L514 U12, U18 & U22						
6	1	70101 74	74L520 U4						
7	1	7010130	74L930 UI9						
æ	-	7010195	74L574 U21						
9	l	7010407	825130 U8 (EX2-48K)	325130 U8 (EX2- 48K)					
10	١	7010232	74LS162 U16						
11	1	7010241	74LS174 U13						
12	4	7010264	74L5244 U14, U23, U24 & U2	25					
13	1	7010303	74L5368 UII						
14	I	7010304	74LS373 U2O						
15	1	7010312	74LS393 U9						
16	15	7060002	14 PIN IC SOCKET UI, U3, U4, L	J5, U6,					
			U7, U9, U10, U12, U17, U18, U19, U2., C	J22 ¢U58					
17	37	7060003	16 PIN IC SOCKET UB, U11, U13,	J15,U16 &					
			U26 THRU U57						
18	15	7060005	20 PIN IC SOCKET U!4,U20,U23	JU24£U25					
13	56	7030045	.IMF CAPACITOR C2, C4, CG, C	7 , C9,					
			C10, C11, C13 & C17 THRU C64	4					
20	2	7030043	200 PF CAPACITOR CIS & CE	3					
21	6	7030009	10 MF CAPACITOR CI,C5,C8,C12,C	C14 ¢ C16					

SD Systems

P.O. Box 28810 • Dallas, Texas 75228 214-271-4657

BILL OF MATERIALS

Title	EXPANDORAM II OI							Rev.	
Date Released:			Approved:	Approved:		Sheet	3	of 4	
Item no	Qty	SD-P/N	Description	Unit C	ost	Extension			
22		7020037	331 5% 4 WATT RESISTOR	RRI	FR4		•		
23	I	7020056	20015% WATT RESIST	FOR	RIO		. 4		
24	١	7020065	4701 5% 1/4 WATT RESIST	TOR	R9				
25	3	7020073	IKA 5% 4 WATT RESISTOR F	32,R	6 £ R8				
26	١	7010346	331 16 PIN DIP RESISTOR P	ACK	UI5				
27	1	7010344	3.3K16PIN SIP RESISTOR	PACE	(RP2				
28	4	7010345	3.3KA 10 PIN SIP RESISTO	R PA	CK				
			RPI, RP3, RP4 & RP5						
29	1	7010213	74LS122 U58			-			
30	l	7010366	DELAY LINE UZ						
31	1	7050002	8 POSITION DIP SWITCH (16	6 PIN	OIP) 53		_		
32	١	7130003	HEAT SINK	HEAT SINK					
33	2	7130006	6-32 × 3/8 SCREW PHILLI	IPS H	HEAD				
34	2	7130007	6-32 HEX NUT						
35	١	7040003	IN751-5V ZENER DIODE	CRI		·			
36	İ	7160001	5 VOLT REGULATOR VRI						
37	1	7160003	12 VOLT REGULATOR VR	2					
38	2	7130072	PCB EJECTOR						
39	١	7020097	20KA 5% 4 WATT RESISTO	OR R	7				
40	1	7040001	IN914 DIODE CR2						
41	١	7020053	1502 5% 1/4 WATT RESIST	OR F	१5				
42	1	7020085	3.3KA 5% 4 WATT RESIS	TOR	R3				
43	3	7170004	JUMPER STRAP						
44	2	7170018	BERG HEADER 1X2			í			

SD Systems

P.O. Box 28810 • Dailas, Texas 75228 214-271-4667

BILL OF MATERIALS

Title	: ЕХ	FANDOF	MAS	п		PL No. Rev				
Date	Rele	ased:		Approved:				Sheet 4	of A_{t}	
Item no	Qty	SD-P/N		Des	cription			Unit Cost	Extension	
45	1	7010402	74 S	74 U6						
46	1	7170021	BEF	RG HEADER	Exl					
						· · · · · · · · · · · · · · · · · · ·				
										
 						· · · · · · · · · · · · · · · · · · ·				
				<u> </u>						
										
-										
									 	
			i							
	-			**************************************			·····			
					 	······································			-	
_										
					<u> </u>					
	-						<u> </u>			
I	1	Ī	1					Ī	ł	

Figure 2-4. PROM Program and Page Mapping.

