Outline

- Introduction
- Memory Fault Model
- Memory Test Algorithms
- Memory Fault Simulation (*not in exam)
- Memory Test Generation (*not in exam)
- Memory BIST (*not in exam)

Memory Fault Simulation

- What is memory fault simulation?
 - Given test algorithm, memory architecture
 - find fault coverage of different fault models
- Why fault simulation?
 - Evaluate fault coverage efficiently,
 - especially when many fault models
 - Help test algorithm design and optimization
 - Fault dictionary can be constructed for easy diagnosis

Sequential Memory Fault Simulation

```
For each fault /* N² for 2-cell CF */
Inject fault;
For each test element /* N for March */
{
    Apply test element;
    Report error output
}
```

- Complexity is N³ for 2-cell CF
 - This is very slow

Parallel Fault Simulation [Wu 02]

- Random Access Memory Simulator for Error Screening (RAMSES)
- Consider all faults at a time
- Complexity N²

```
For each test operation
# S/1
AGR = w0
                                           If op is AGR then mark victim cells;
SPT := @
                /* Single-cell fault */
                                           If op is RCV then release victim cells;
VTM := r0
RCV = w1
                                           If op is VTM then report error;
# CFst <0;s/1>
AGR = v0
SPT := *
                /* All other cells are suspects */
VTM = r0
                    AGR=aggressor
RCV = w1
```

RAMSES Algorithm

```
For each fault opeartion
 set op_flags;
 if (ARG ⊂ op_flags) {
  for each victim cell {
    set victim flags;
    set aggressor address;
 if (OP eq RCV) {
  clear victim flag;
  clear aggressor entry;
 else if (OP eq VTM) {
   mark detected;
```

RAMESE Example

- CF_{in} <↑/ >
- March element ↑(r0, w1)

D = detect; A = aggressor; V=victim

Outline

- Introduction
- Memory Fault Model
- Memory Test Algorithms
- Memory Fault Simulation
- Memory Test Generation (* not in exam)
- Memory BIST

Memory Test Generation

- What is memory test algorithm generation
 - Given a set of target fault models and a test length constraint,
 - * generate a test with the highest fault coverage
- Priority setting for fault models

TAGS [Wu 00]

Test Algorithm Generation by Simulation (TAGS)

March template abstraction:

Template Set

- Template set
 - T(cN) = a set of march templates of c read or write
- Exhaustive generation of template set is very expensive
 - e.g., 6.7 million templates when N = 9
- Heuristics should be developed to select useful templates

TAGS Procedure

- 1. Initialize test length as 1 N, T(1 N) = {(w)};
- 2. Increase test length by 1 N: apply generation options;
- 3. Apply filter options;
- 4. Assign address orders and data backgrounds;
- 5. Fault simulation using RAMSES;
- 6. Drop ineffective tests;
- 7. Repeat 2-6 using the new template set until constraints met;

Template Generation and Filtering

- Generation heuristics:
 - (r) insertion
 - (...r), (r...) expansion
 - (w) insertion
 - (...w), (w...) expansion
- Filtering heuristics:
 - Consecutive read: (...rr...)
 - Repeated read: (r)(r)
 - Tailing single write: ...(w)

3N March Test

- 3N March Test generated by TAGS after step 3
 - WWW Table 8.7

	Test
1	↑ (w0) ↑ (w1, r1)
2	↑(w0) ↓(w1, r1)
3	↑(w0) ↑(w0, r0)
4	↑(w0) ↓(w0, r0)
5	↑(w0) ↑(r0, w1)
6	↑(w0) ↓(r0, w1)
7	↑(w0) ↑(r0) ↑(r0)
8	↑(w0) ↑(w1) ↑(r1)

- 3N March test selected by RAMSES
 - WWW Table 8.8

	Test
3	↑(w0) ↑(w0, r0)
5	↑(w0) ↑(r0, w1)
8	↑(w0) ↑(w1) ↑(r1)

TAGS Examples (1/2)

WWW Table 8.9

T(N)	Name	March algorithm
1N	M_1^1	ሰ (w0)
2N	M_1^2	ሰ (መ0) ሰ (೯0)
3.N	M_1^3	ሰ (w0) ሰ (w1) ሰ (r1)
3.N	M_2^3	\uparrow (w0) \uparrow (r0, w1)
3.N	M_1^3	介 (w0) ↓ (w1) 介 (r1)
3.N	M_2^3	\uparrow (w0) \downarrow (r0, w1)
4.N	M_2^3 M_1^3	$\uparrow (w0) \downarrow (r0, w1) \uparrow (r1)$
4.N	M_2^4	\uparrow (w0) \downarrow (r0, w1, r1)
5.N	M_1^5	\uparrow (w0) \uparrow (w1) \uparrow (r 1, w0) \uparrow (r 0)
5.N	M_2^3	\uparrow (w0) \downarrow (r0, w1) \uparrow (r1, w0)
5.N	M_3^5	\uparrow (w0) \uparrow (w1) \uparrow (τ 1, w0, τ 0)
6N	$M_1^{\mathbf{g}}$	\uparrow (w0) \uparrow (w1) \uparrow (r 1, w0) \downarrow (r 0, w1)
6N	$M_2^{f 5}$	$\uparrow (w0) \downarrow (r0, w1) \uparrow (r1, w0) \uparrow (r0)$
6N	$M_3^{\tilde{6}}$	\uparrow (w 0) \uparrow (r 0, w 1) \uparrow (r 1, w 0) \uparrow (r 0)
6N	M_4^{8}	$\uparrow \uparrow (w0) \uparrow \uparrow (r0, w1) \uparrow \uparrow (r1, w0, r0)$
6N	M_5^8	$\uparrow (w0) \downarrow (r0, w1) \uparrow (r1, w0, r0)$
7N	M_1^γ	介 $(w0)$ 介 $(r0, w1)$ 介 $(r1, w0)$ ψ $(r0, w1)$

TAGS Examples (2/2)

WWW Table 8.9 cont'd

7N	M_1^{r}	$\hat{\mathbf{h}}$ (w0) $\hat{\mathbf{h}}$ (r0, w1) $\hat{\mathbf{h}}$ (r1, w0) ψ (r0, w1)
7N	M_2^{γ}	介 $(w0)$ 介 $(w1)$ ψ $(r1, w0)$ 介 $(r0, w1, r1)$
7N	M_3^{77}	介 ($w0$) ψ ($r0$, $w1$) 介 ($r1$, $w0$, $r0$) 介 ($r0$)
7N	M_4^7	ሰ (መ0) ሰ (r0, w1) ሰ (r1, w0, r0) ሰ (r0)
8.N	M_1^8	介 (w0) 介 ($r0, w1$) 介 ($r1, w0$) ↓ ($r0, w1$)
	_	介 (r1)
8W	M_2^8	ሰ (w0) ሰ (r0, w1) ሰ (r1, w0)
	_	$\Downarrow (r0, w1, r1)$
9N	M_1^9	介 (w0) 介 (r0, w1) 介 (r1, w0) ↓ (r0, w1)
	_	↓ (r1, w0)
9N	M_2^0	介 $(w0)$ 介 $(r0, w1)$ 介 $(r1, w0)$
		$\Downarrow (r0, w1, r1) \Uparrow (r1)$
10.N	M_1^{10}	介 (w0) 介 (r0, w1) 介 (r1, w0) ↓ (r0, w1)
		↓ (r1, w0) ↑ (r0)
10.N	M_{2}^{10}	介 (w0) 介 (r0, w1) 介 (r1, w0) ↓ (r0, w1)
		$\Downarrow (r1, w0, r0)$
11 N	M_1^{11}	价 (w0) 介 (r0, w1) 介 (r1, w0) ↓ (r0, w1)
		$\Downarrow (r1, w0, r0) \Uparrow (r0)$

RAMSES Simulation Results

WWW Figure 8.13

RAMSES Simulation Results

- WWW Figure 8.14
 - Five different 6N tests

