V301

EMK und Innenwiderstand von Spannungsquellen

Lukas Rolf

Yannik Brune lukas.rolf@tu-dortmund.de yannik.brune@tu-dortmund.de

Durchführung: DATUM

Abgabe: DATUM

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	4
3	Durchführung	4
4	Auswertung4.1 Gleichspannungsquelle4.2 Sinusspannungsquelle4.3 Rechteckspannungsquelle4.4 Mit Gegenspannung	5
5	Diskussion	9
Lit	teratur	10

- a) 1+1=2
- b) 1 1 = 0
- c) $\boldsymbol{M}^{\top} \cdot \boldsymbol{M}$

Lukas ist nicht anwesend!

- 1. hallo
- 2. ich
- 3. bin
- 4. nicht
- 5. da
- 6.!
- 7. mist
- 8. steve Hello i'm stupid 3 7

Hello i'm stupid 2 s. [1]

$$\begin{pmatrix} 1 & 1 & -4 \\ -2 & 2 & 5 \\ 1 & -3 & 6 \\ -1 & 3 & -4 \\ -1 & -45 & -3 \end{pmatrix}$$

Tabelle 1: Eine schöne Tabelle mit Messdaten.

\overline{f}	$l_{ m start}$	l_1	$l_{ m kor,1}$	B_1
100	1,14	3,51	0,00	4,30
200	1,30	4,99	0,06	25,98
300	$1,\!27$	1,42	$0,\!13$	41,14
400	1,28	1,47	$0,\!20$	54,76
500	1,21	1,70	$0,\!25$	168,73

1 Zielsetzung

Es sollen die Leerlaufspannung, sowie der Innenwiderstand verschiedener Spannungsquellen ermittelt werden.

2 Theorie

Ein Gerät, welches eine konstante Leistung über einen endlichen Zeitraum erzeugen kann, beschreibt eine Spannungsquelle. Es wird von einer Leerlaufspannung U_0 an den Ausgangsklemmen gesprochen, falls der Spannungsquelle kein Strom entnommen wird. Sobald es zu einer Leistungsabnahme durch einen äußeren Widerstand R_a kommt, sinkt die an den Klemmen gemessene Spannung, die "Klemmenspannung", unter den von U_0 . Erklärt wird dies durch einen Eigenwiderstand der Spannungsquelle. In der Theorie wird die reale Spannungsquelle durch eine ideale Spannungsquelle in Reihe mit einem Widerstand R_i ersetzt.

Abbildung 1 aus Skript einfügen

Aus dem zweiten kirchhoffschen Gesetz folgt dann gemäß Abb. 1

$$U_0 = IR_i + IR_a$$
 bzw. $U_k = IR_a = U_0 - IR_i$

Zur Messung der Leerlaufspannung wird deshalb ein hochohmiges Voltmeter verwendet, sodass der Strom I gegen 0 läuft und man mit $U_0 \sim U_k$ nähern kann.

3 Durchführung

- a) Es wird die Leerlauflaufspannung einer Monozelle mit einem Spannungsmesser ermittelt. Es wird der Eingangswiderstand des Voltmeters notiert.
- b) Es wird die Klemmenspannung U_k in Abhängigkeit des Belastungsstroms I mithilfe der Schaltung aus Abb. 2 gemessen. Hierzu wird der Belastungswiderstand R_a im Bereich von $0-50\Omega$ variiert.
- c) Es wird eine Gegenspannung wie in Abb. 3 an die Monozelle angelegt, welche ca. 2V grösser als U_0 ist. Der Strom fliesst nun in umgekehrter Richtung und es gilt:

$$U_k = U_0 + IR_i \tag{1}$$

Es wird wiederum U_k in Abhängigkeit von I gemessen.

- d) Es soll die Messreihe aus b) nochmals mit dem Sinus bzw. dem Rechteckausgang eines RC-Generators durchgeführt werden. Für den Variationsbereich von R_a soll gelten:
 - 1 V Sinusausgang: $R_a \in [0, 1-5k\Omega]$
 - 1 V Rechteckausgang: $R_a \in [20-250\Omega]$

Es ist zu beachten das die Messgeräte nur für einen engen Frequenzbereich geeicht sind.

4 Auswertung

4.1 Gleichspannungsquelle

Abbildung 1: Gleichstrom.

4.2 Sinusspannungsquelle

4.3 Rechteckspannungsquelle

4.4 Mit Gegenspannung

Soweit so gut

Tabelle 2: Gleichstrom

I/mA	U/V
23,0	1,2
25,0	1,2
27,0	1,15
30,0	1,1
33,0	1,1
36,5	0,95
41,0	0,9
46,5	0,8
55,0	0,65
69,5	0,4
93,0	0,1

Abbildung 2: Sinus.

Tabelle 3: Sinus

I/mA	U/V
0,16	0,99
$0,\!17$	0,98
0,18	0,97
0,2	0,96
$0,\!23$	0,95
$0,\!26$	0,92
$0,\!32$	0,88
$0,\!42$	0,82
$0,\!56$	0,72
0,83	$0,\!55$
$1,\!15$	$0,\!33$

Abbildung 3: Rechteck.

Tabelle 4: Rechteck

I/mA	U/V
0,8	0,52
0,9	$0,\!51$
1,0	0,5
1,2	$0,\!49$
1,5	$0,\!47$
1,8	$0,\!45$
2,1	$0,\!42$
2,5	$0,\!39$
3,2	$0,\!31$
4,3	$0,\!25$
5,1	$0,\!19$

Abbildung 4: GleichstromR.

Tabelle 5: GleichstromR

I/mA	U/V
32,0	2,1
$33,\!5$	2,2
$36,\!5$	$2,\!25$
40,0	2,3
44,0	$2,\!38$
48,0	2,45
$55,\!5$	$2,\!58$
64,0	2,7
74,0	2,9
89,0	$3,\!25$
130,0	3,7

5 Diskussion

Literatur

[1] Zhaofeng Liu u.a. A lattice calculation of B \to K^(*) form factors. 14. Jan. 2011. arXiv: 1101.2726v1 [hep-ph].