

## CLAIMS

What is Claimed is:

- 1        1. A method of preparing a pyrrole comprising the step of:
  - 2                reacting a donor-acceptor cyclopropane with a nitrile in the presence of an
  - 3                effective Lewis acid catalyst.
- 1        2. The method of claim 1, wherein the Lewis acid is trimethylsilyl  
2                trifluoromethanesulfonate.
- 1        3. The method of claim 1, wherein at least one substituent group is selectively  
2                positioned in the cyclopropane.
- 1        4. The method of claim 3, wherein the position of the substituent in the resulting  
2                pyrrole is optionally at the the 4-positon, the 5-position or both the 4 and 5 positions.
- 1        5. The method of claim 1, wherein the stereochemistry of the cyclopropane has  
2                no effect on reaction efficiency.
- 1        6. The method of claim 1, wherein the pyrrole preparation is compatible with at  
2                least one protective group.
- 1        7. The method of claim 6, wherein the protective group is optionally a silylene, a  
2                benzyl ether or an acetate.
- 1        8. The method of claim 1, wherein the pyrrole is unsymmetrical.
- 1        9. The method of claim 1, wherein the cyclopropane has a C(2) substituent that  
2                is an electron withdrawing group.
- 1        10. The method of claim 1, wherein the reaction is used to generate combinatorial  
2                libraries.

1           11. A synthesis reaction comprising:

2           a donor-acceptor cyclopropane;

3           an aliphatic, aromatic, branched,  $\alpha,\beta$ -unsaturated, aryl, or otherwise functionalized

4           nitrile; and

5           a Lewis acid activator, wherein the synthesis reaction requires cycloaddition,

6           dehydration and tautomerization.

1           12. The synthesis reaction of claim 12, wherein the cyclopropane has a substituent

2           at C(2) that is an electron withdrawing group.

1           13. The synthesis reaction of claim 12, wherein the pyrrole is formed without the

2           formation of multiple constitutional isomers.

1           14. A method for the synthesis of di-, tri- and tetrasubstituted pyrroles comprising

2           the following steps:



3           wherein RO is a carboxylate group; R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> are each independently aryl or

4           alkyl groups or hydrogen; the nitrile is aliphatic, aromatic, branched,  $\alpha,\beta$ -unsaturated, or

5           otherwise functionalized; X is an ester or ketone; and Y is a Lewis acid.

1           15. The method of claim 14, wherein compound 4 is unsymmetrical pyrrole.

1           16. The method recited in claim 14, wherein compound 4 is a 3,4-dihydro-2H-

2           pyrrole.