- * A measurable set (event): a subset of the sample space.
 - The sample space is an event.
 - Complements of events are events.
 - Any finite or countably infinite union of events is an event.
- * The collection of all possible events forms an *algebra of events*, usually denoted F.

- * A measurable set (event): a subset of the sample space.
 - The sample space is an event.
 - Complements of events are events.
 - Any finite or countably infinite union of events is an event.
- * The collection of all possible events forms an *algebra of events*, usually denoted F.

Any finite or countably infinite number of set operations on events yields new events: \mathcal{F} is called a σ -algebra (the lower-case Greek σ is pronounced 'sigmə and transliterates into s)

- * A measurable set (event): a subset of the sample space.
 - The sample space is an event.
 - Complements of events are events.
 - Any finite or countably infinite union of events is an event.
- * The collection of all possible events forms an *algebra of events*, usually denoted F.

Any finite or countably infinite number of set operations on events yields new events: \mathcal{F} is called a σ -algebra (the lower-case Greek σ is pronounced 'sigmə and transliterates into s)

Notation and colloquial language:

- Upper-case letters to denote events: A, B, C, ... $\subseteq \Omega$.
- An event *A occurs* if the outcome ω of the chance experiment is in *A*.
- The sample space Ω : certain event.
- The empty set Ø: *impossible event*.
- If A and B are disjoint events, $A \cap B = \emptyset$, say that A and B are mutually exclusive.
- $A \cup B$: union, *disjunction* of events.
- $A \cap B$: intersection, *conjunction*.
- A^c: complement, negation.

- * A measurable set (event): a subset of the sample space.
 - The sample space is an event.
 - Complements of events are events.
 - Any finite or countably infinite union of events is an event.
- * The collection of all possible events forms an *algebra of events*, usually denoted F.

Any finite or countably infinite number of set operations on events yields new events: \mathcal{F} is called a σ -algebra (the lowercase Greek σ is pronounced 'sigmə and transliterates into s)

Notation and colloquial language:

- Upper-case letters to denote events: A, B, C, ... $\subseteq \Omega$.
- An event *A occurs* if the outcome ω of the chance experiment is in *A*.
- The sample space Ω : certain event.
- The empty set Ø: *impossible event*.
- If A and B are disjoint events, $A \cap B = \emptyset$, say that A and B are mutually exclusive.
- $A \cup B$: union, *disjunction* of events.
- $A \cap B$: intersection, *conjunction*.
- A^c: complement, negation.

- * A measurable set (event): a subset of the sample space.
 - The sample space is an event.
 - Complements of events are events.
 - Any finite or countably infinite union of events is an event.
- * The collection of all possible events forms an *algebra of events*, usually denoted F.

Any finite or countably infinite number of set operations on events yields new events: \mathcal{F} is called a σ -algebra (the lower-case Greek σ is pronounced 'sigmə and transliterates into s)

Notation and colloquial language:

- Upper-case letters to denote events: A, B, C, ... $\subseteq \Omega$.
- An event A *occurs* if the outcome ω of the chance experiment is in A.
- The sample space Ω : certain event.
- The empty set Ø: *impossible event*.
- If A and B are disjoint events, $A \cap B = \emptyset$, say that A and B are mutually exclusive.
- $A \cup B$: union, *disjunction* of events.
- $A \cap B$: intersection, *conjunction*.
- A^c: complement, negation.

)

- * A measurable set (event): a subset of the sample space.
 - The sample space is an event.
 - Complements of events are events.
 - Any finite or countably infinite union of events is an event.
- * The collection of all possible events forms an *algebra of events*, usually denoted F.

Any finite or countably infinite number of set operations on events yields new events: \mathcal{F} is called a σ -algebra (the lower-case Greek σ is pronounced 'sigmə and transliterates into s)

Notation and colloquial language:

- Upper-case letters to denote events: A, B, C, ... $\subseteq \Omega$.
- An event *A occurs* if the outcome ω of the chance experiment is in *A*.
- The sample space Ω : certain event.
- The empty set Ø: *impossible event*.
- If A and B are disjoint events, $A \cap B = \emptyset$, say that A and B are mutually exclusive.
- $A \cup B$: union, *disjunction* of events.
- $A \cap B$: intersection, *conjunction*.
- A^c: complement, negation.

