Übung zu Datenbanken I Entity-Relationship Modell

WS 2019 / 2020

Organisatorisches I

Ablaufplan – Übungsgruppen:

- Gruppe 2: Montag, 13:30 15:00 Uhr in SR110
- Gruppe 1: Montag, 13:30 15:00 Uhr in SR110
- WInf: Mittwoch, 15:15 16:45 Uhr in SR101
- Gruppe 3: Freitag, 7:30 9:00 Uhr in HS037

	Ü1	Ü2	Ü3	Ü4	Ü5	Ü6
Gruppe 2	28.10.	11.11.	25.11.	09.12.	06.01.	20.01.
Gruppe 1	04.11.	18.11.	02.12.	16.12.	13.01.	27.01.
WInf	06.11.	20.11.	04.12.	18.12.	15.01.	29.01.
Gruppe 3	08.11.	22.11.	06.12.	20.12.	17.01.	31.01.

Organisatorisches II

Ablaufplan – Hausaufgaben:

- Hausaufgabenpunkte: 120 Punkte (je 20 Punkte pro Serie)
- Zulassung zur Klausur: 60 Punkte
- Abgabe/Rückgabe der Hausaufgaben: Donnerstags vor der Vorlesung (9:00 - 9:15 Uhr)
- Gruppengröße: 2-3 Personen
- Einzelabgaben sind nicht zulässig!
- Keine gruppenübergreifende Abgabe

Organisatorisches IV

Ablaufplan – Hausaufgaben:

Übung	Thema	Übungstermine	Abgabe
1	ER-Modell	28.10 06.11.	14.11.2019
2	Relationenmodell	11.11. – 20.11.	28.11.2019
3	Relationaler Entwurf	25.11. – 04.12.	12.12.2019
4	Relationaler Entwurf (Teil II),	09.12. – 18.12.	09.01.2020
	Datenbankentwurf		
5	Relationenalgebra-	06.01. – 15.01.	23.01.2020
	und SQL-Anfragen		
6	Relationenalgebra-	20.01. – 29.01.	31.01.2020 ¹
	und SQL-Anfragen (Teil II)		

¹Abgabe per Mail bis 31.01.2020

Organisatorisches III

Prüfung:

• Datum: 23.03.2020

• Zeit: 9:00 - 11:00 Uhr

Ort: Audimax, Arno-Esch-Hörsaalgebäude HS I + II

• Prüfungsanmeldung: 09.12.2018 - 06.01.2019

Organisatorisches IV

Vorlesung:

- Andreas Heuer
- Di. 7:30 9:00 Uhr, HS I Physik
- Do. 11:00 12:30 Uhr, HS I Physik

Übung:

- Tanja Auge
- Mo. 13:30 15:00 Uhr, SR 110 \Rightarrow Gruppe 1+2
- Mi. 15:15 16:45 Uhr, SR $101 \Rightarrow$ Gruppe WInf
- Fr. 7:30 9:00 Uhr, HS 037 ⇒ Gruppe 3
- Sprechstunden: Fr. 13:00 15:00 Uhr, R 240

Tutorium Rechnerübung:

- Datenbank erstellen: 09.12. + 16.12.2019
- Datenbankanfragen: 20.01. + 27.01.2019

Grundkonzepte des ER-Modells

Entity-Typ E_i : Zu repräsentierende Informationseinheit

Relationship- / Beziehungs-Typ R: Beschreibt Beziehungen zwischen verschiedenen Entity-Typen $E_1, ..., E_n$

Attribute A_i : Modelliert Eigenschaften von Entities oder Relationships

Schlüssel: Definiert eindeutige Identifizierung für Entities eines Entity-Typs

• Intervallnotation: Wie oft darf ein Entity an einer Beziehung teilnehmen? Angabe eines Intervalls [min, max].

Abbildung:
$$|E_1| = [0, 3], |E_2| = [1, 1]$$

- Häufig verwendete Intervalle: [0, 1], [0,*], [1, 1], [1,*].
- Falls nicht anders definiert, wähle [0,*].

Abhängiges Entity

Das Entity E₂ kann nicht unabhängig vom Entity E₁
 existieren. Im Text ist dies durch die Wörter teilweise oder
 niemals ohne gekennzeichnet.

Abbildung: links: $|E_1| = [0, *]$, $|E_2| = [1, 1]$; rechts: $|E_1| = [1, *]$, $|E_2| = [1, 1]$

• Der Schlüssel des abhängigen Entity ist durch gestrichelte Linie gekennzeichnet.

Ist-Beziehung

- Spezialisierungs-/Generalisierungseigenschaft
- Jedes Entity E_1 ist genau ein Entity E_2 , aber nicht umgekehrt.

Abbildung:
$$|E_1| = [1, 1], |E_2| = [0, 1]$$

• 1:1-Beziehung mit Teilmengenbeziehung (Identitätsfunktion)

Funktionale Beziehung

• Binäre Beziehungen, die eine Funktion beschreiben.

Tabelle: Funktionseigenschaften

• Jedem Entity des Typs E_1 wird maximal ein Entity des Entity-Typ E_2 zugeordnet.

Hotelanwendung I

- Hotels werden durch ihren Namen, Typ, Kategorie, Ausstattungen, Telefonnummer und Adresse gekennzeichnet. Es existieren eine Menge von Fotos sowie eine Beschreibung. Ausstattungen können von Hotels zu einem bestimmten Preis angeboten werden.
- Ein Hotel verfügt über eine Menge von Zimmertypen. Jedes Zimmer ist einem Zimmertyp zugeordnet, der durch Preis, Beschreibung, Foto und Ausstattungen charakterisiert wird. Zimmer werden mittles Zimmernummern sowie einem WLAN-Zugang beschrieben.
- Gäste sind Personen, die eine Adresse haben, und können bestimmte Zimmertypen reservieren.
- Gäste können Zimmer für einen Zeitraum belegen und erhalten dafür eine Rechnung.

Hotelanwendung II

- Hotels werden durch ihren Namen, Typ, Kategorie,
 Ausstattungen, Telefonnummer und Adresse gekennzeichnet.
 Es existieren eine Menge von Fotos sowie eine Beschreibung.
 Ausstattungen können von Hotels zu einem bestimmten Preis angeboten werden.
- Gäste sind Personen, die eine Adresse haben, und können bestimmte Zimmertypen reservieren.
- Gäste können Zimmer für einen Zeitraum belegen und erhalten dafür eine Rechnung.

Hotelanwendung III

- Hotels werden durch ihren (Namen), Kategorie Ausstattungen, Telefonnummer und Adresse gekennzeichnet. Es existieren eine Menge von (Fotos) sowie eine Beschreibung . Ausstattungen können von Hotels zu einem bestimmten (Preis) angeboten werden.
- Ein Hotel verfügt über eine Menge von Zimmertypen. Jedes Zimmer ist einem Zimmertyp zugeordnet, der durch (Preis), Beschreibung , (Foto) und Ausstattungen charakterisiert wird. Zimmer werden mittels Zimmernummern sowie einem (WLAN-Zugang) beschrieben.

Hotelanwendung IV

- Gäste sind Personen, die eine Adresse haben, und können bestimmte Zimmertypen reservieren.
- Gäste können Zimmer für einen Zeitraum belegen und erhalten dafür eine Rechnung.

- Hotels werden durch ihren (Namen) Kategorie Ausstattungen, Telefonnummer und Adresse ♦ gekennzeichnet ♦. Es existieren eine Menge von (Fotos) sowie eine Beschreibung. Ausstattungen können von Hotels zu einem bestimmten (Preis) ♦ angeboten ♦ werden.
- Ein Hotel ♦ verfügt ♦ über eine Menge von |Zimmertypen|. Jedes Zimmer ist einem Zimmertyp zugeordnet, der durch Preis), Beschreibung, (Foto) und Ausstattungen ♦ charakterisiert ♦ wird. Zimmer werden mittels Zimmernummern > sowie einem < WLAN-Anschluss beschrieben

Hotelanwendung VI

- Gäste ⋄ sind ⋄ Personen, die eine Adresse ⋄ haben ⋄, und können bestimmte Zimmertypen ⋄ reservieren ⋄.

Hotelanwendung VII

Grafische Notation des ER-Modells

