Fisika UMPTN Tahun 1987

UMPTN-87-01

Jika bayangan yang dibentuk oleh cermin cekung dengan jari-jari lengkungan 20 cm adalah nyata dan diperbesar dua kali, maka bendanya terletak di muka cermin sejauh ...

- A. 60 cm
- B. 30 cm
- C. 20 cm
- D. 15 cm
- E. 10 cm

UMPTN-87-02

Seorang yang bercacat mata myopia tak mampu meli-hat dengan jelas benda yang terletak lebih 50 cm dari matanya. Kaca mata yang dibutuhkannya untuk melihat benda jauh harus mempunyai kekuatan sebesar ...

- A. 4 dioptri
- B. 2 dioptri
- C. +3 dioptri
- D. +5 dioptri
- E. +2 dioptri

UMPTN-87-03

Cahaya mengenai salah satu permukaan kaca tebal dengan sudut datang 60° . Indeks bias kaca tersebut 1,50. Dengan sudut berapa (relatif terhadap garis normal) cahaya tersebut ke luar dari permukaan kaca lainnya?

- A. $20,5^0$
- B. $35,2^{0}$
- C. 60^{0}
- D. 75⁰
- E. 90^{0}

UMPTN-87-04

Sebuah partikel bergetar harmonik dengan periode 6 detik dan amplitudo 10 cm. Kelajuan partikel pada saat be rada 5 cm dari titik setimbangnya adalah ...

- A. 7,09 cm/s
- B. 8,51 cm/s
- C. 10,07 cm/s
- D. 11,07 cm/s
- E. 19,12 cm/s

UMPTN-87-05

Sebuah balok yang massanya 80,5 kg tergantung pada dua utas tali yang bersambungan seperti terlihat pada gambarJika percepat an gravitasi bumi g=9,8 m/s², maka besarnya tegangan tali hori sontal A adalah ...

- A. 80,5 N
- B. 385 N
- C. 598,5 N
- D. 643,7 N
- E. 788.9 N

UMPTN-87-06

Seorang yang bermassa 60 kg menaiki tangga yang tingginya 15 m dalam waktu 2 menit. Jika $g = 9.8 \text{ m/s}^2$ maka daya yang dikeluarkan orang itu adalah ...

- A. 73,5 W
- B. 75 W
- C. 147 W
- D. 450 W
- E. 4410 W

UMPTN-87-07

Dalam gelas berisi 200 cc air 40° C kemudian dimasukkan 40 gram es 0° C. Jika kapasitas kalor gelas 20 kal/°C dan kalor lebur es adalah 80 kal/gram suhu setimbangnya ...

- A. 0^{0} C
- B. $18,5^{\circ}$ C
- C. $12,6^{\circ}$ C
- D. $21,6^{\circ}$ C
- E. 28.0° C

UMPTN-87-08

Sebuah ammeter terdiri dari galvanometer yang dapat dilalui arus listrik maksimum 1 mA dengan resistansi 2 ohm dan dirangkai paralel dengan resistor sebesar 0,0002 ohm. Dengan demikian, ammeter dapat digunakan untuk mengukur arus listrik sampai ...

- A. 10 ampere
- B. 10,001 ampere
- C. 10,01 ampere
- D. 10,1 ampere
- E. 11 ampere

UMPTN-87-09

Tiga buah hambatan : 3Ω , 2Ω , dan 6Ω disusun paralel kemudian dipasang pada sumber tegangan, ternyata kuat arus yang keluar dari elemen 3 A. tetapi jika disusun seri dan dipasang pada elemen yang sama ternyata arus yang keluar 0,5A. Maka GGL elemen dan hambatan dalam elemen adalah ...

A. 4 volt, 1 ohm

B. 6 volt, 1 ohm

C. 3.6 volt, 0.4 ohm

D. 1,5 volt, 1,5 ohm

E. 8 volt, 1,5 ohm

UMPTN-87-10

Untuk mengukur hambatan (R) di pakai suatu rangkaian sebagaimana diperlihatkan pada gambar. Batere E dengan GGL 12 V yang hambatan dalamnya diabaikan, dihubung kan seri dengan hambatan yang dicari (R) dan voltmeter (V) yang hambatannya (R_V) 20 kΩ.

Jika pembacaan volt meter 2 volt besar hambatan yang dicari adalah ...

A. $20 \text{ k}\Omega$

B. $50 \text{ k}\Omega$

C. $75 k\Omega$

D. $100 \text{ k}\Omega$

E. $120 \text{ k}\Omega$

UMPTN-87-11

Kuanta energi yang terkandung di dalam sinar ultraungu yang panjang gelombang 3300A⁰, konstanta Plank 6,6 × 10^{-34} Js dan kecepatan cahaya 3×10^8 m/s ialah ... A. 2×10^{-19} J

B. $3 \times 10^{-19} \,\text{J}$

C. $3.3 \times 10^{-19} \text{ J}$

D. $6 \times 10^{-19} \,\text{J}$

E. $6.6 \times 10^{-19} \text{ J}$

UMPTN-87-12

Sebuah elektron dipercepat oleh suatu beda potensial V Jika e = muatan elektron, m = massa elektron, dan h = muatan elektronkonstanta Plank maka panjang gelombang λ de Broglie untuk elektron ini dapat dinyatakan dengan rumus ...

A. $\lambda = \frac{h}{\sqrt{meV}}$

B. $\lambda = \frac{2h}{\sqrt{\text{meV}}}$

C $\lambda = \frac{h}{\sqrt{2meV}}$

D. $\lambda = \frac{h}{2\sqrt{meV}}$

E. $\lambda = \frac{3 \text{ h}}{\sqrt{2 \text{meV}}}$

UMPTN-87-13

Persamaan gelombang transversal yang merambat sepan jang tali yang sangat panjang adalah

$$y = 6 \sin (0.02\pi x + 4\pi t)$$

y dan x dalam cm dan t dalam detik maka:

Amplitudo gelombang 6 cm (1)

Panjang gelombang 100 cm (2)

(3) Frekwensi gelombang 2 Hz

(4) Panjalaran gelombang ke x positif

UMPTN-87-15

Untuk suatu benda tegar (rigid body) dapat dipenuhi hal berikut:

- Energi kinetik rotasinya bergantung pada letak (1) poros putarnya
- (2) Pusat massa benda mungkin terletak di luar
- (3) Energi knetik rotasinya bergantung pada bentuk benda
- (4) Dengan massa, jari-jari, panjang, dan kecepatan putar sama, silinder berongga akan memiliki ener gi kinetik lebih kecil dibandingkan dengan silinder pejal

UMPTN-87-15

Besarnya tekanan gas terhadap dinding wadahnya diten-

- (1) gaya total gas terhadap dinding
- perubahan momentum molukul gas ketika me-(2) numbuk dinding wadah
- (3) energi kinetik rata-rata molekul-molekul gas
- kerapatan molekul-molekul gas di dalam wadah (4)