ODE Lesson 36: Phase Space and Trajectories: Geometric Theory of ODEs

ODE 1 - Prof. Adi Ditkowski

1 Phase Space Fundamentals

Definition 1 (Phase Space). For a system of n first-order ODEs:

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t)$$

where $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, the **phase space** is the n-dimensional space with coordinates (x_1, x_2, \dots, x_n) .

Key Insight: Phase space represents all possible states of the system. Each point corresponds to a unique state, regardless of time.

Definition 2 (Trajectory/Orbit). A **trajectory** (or **orbit**) is the curve traced out in phase space by a solution $\mathbf{x}(t)$ as t varies. Formally, it is the set:

$$\Gamma = \{\mathbf{x}(t): t \in I\}$$

where I is the interval of existence.

Critical Distinction:

- Solution: $\mathbf{x}(t)$ includes time parametrization
- Trajectory: The geometric curve no time information

Multiple solutions can give the same trajectory (time-shifted solutions)!

2 Direction Fields and Flow

Definition 3 (Direction Field). The direction field (or vector field) of the system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ assigns to each point \mathbf{x} the vector $\mathbf{f}(\mathbf{x})$, indicating the instantaneous direction and speed of motion.

Theorem 1 (Non-Intersection of Trajectories). If f(x) satisfies the conditions for existence and uniqueness, then trajectories cannot intersect except at equilibrium points.

Proof. Suppose two trajectories Γ_1 and Γ_2 intersect at point \mathbf{x}_0 which is not an equilibrium. By uniqueness, the solution starting at \mathbf{x}_0 is unique, so $\Gamma_1 = \Gamma_2$. Contradiction.

3 Equilibrium Points and Invariant Sets

Definition 4 (Equilibrium Point). A point \mathbf{x}^* is an equilibrium point (or critical point, fixed point) if:

$$f(\mathbf{x}^*) = \mathbf{0}$$

Finding Equilibria - Prof. Ditkowski's Method:

- 1. Set all derivatives equal to zero
- 2. Solve the resulting algebraic system
- 3. Check each solution carefully
- 4. State coordinates explicitly: "Equilibrium at $(x^*, y^*) = (a, b)$ "

Definition 5 (Invariant Set). A set $S \subset \mathbb{R}^n$ is **invariant** under the flow if:

$$\mathbf{x}(0) \in S \implies \mathbf{x}(t) \in S \text{ for all } t$$

4 Special Types of Trajectories

Definition 6 (Closed Orbit). A trajectory Γ is a **closed orbit** if it is homeomorphic to a circle and the solution is periodic:

$$\exists T > 0 : \mathbf{x}(t+T) = \mathbf{x}(t) \text{ for all } t$$

Dimension Restriction: Closed orbits cannot exist in 1D phase space! In 1D, trajectories are confined to the real line and cannot loop back without violating uniqueness.

Definition 7 (Heteroclinic and Homoclinic Orbits). • *Heteroclinic orbit: Connects two different equilibria*

• Homoclinic orbit: Starts and ends at the same equilibrium

5 Phase Portraits for 2D Systems

For a 2D autonomous system:

$$\frac{dx}{dt} = f(x, y) \tag{1}$$

$$\frac{dy}{dt} = g(x, y) \tag{2}$$

Construction Steps:

- 1. Find all equilibria: solve f(x,y) = 0 and g(x,y) = 0
- 2. Compute the direction field at selected points
- 3. Identify special trajectories (if any)
- 4. Sketch trajectories following the direction field
- 5. Add arrows indicating flow direction

6 Converting Higher-Order Equations

Example 1 (Second-Order to First-Order System). Convert $\ddot{x} + p(x)\dot{x} + q(x) = 0$ to phase space form:

Let $x_1 = x$ and $x_2 = \dot{x}$. Then:

$$\dot{x}_1 = x_2 \tag{3}$$

$$\dot{x}_2 = -p(x_1)x_2 - q(x_1) \tag{4}$$

Phase space is the (x_1, x_2) -plane, often relabeled as (x, \dot{x}) -plane.

7 Nullclines Method

Definition 8 (Nullclines). The **nullclines** are curves where one component of the vector field vanishes:

- x-nullcline: f(x,y) = 0 (vertical flow)
- y-nullcline: g(x,y) = 0 (horizontal flow)

Using Nullclines:

- Equilibria occur at nullcline intersections
- Trajectories cross nullclines vertically or horizontally
- Nullclines divide phase space into regions with consistent flow direction

8 Exam-Critical Formulas

Must-Know for Prof. Ditkowski's Exam:

Concept	Formula/Property
Equilibrium condition	$\mathbf{f}(\mathbf{x}^*) = 0$
Trajectory uniqueness	No intersections except at equilibria
Closed orbit period	$\mathbf{x}(t+T) = \mathbf{x}(t)$
Direction at point (x, y)	Vector $(f(x,y),g(x,y))$
Speed along trajectory	$ \mathbf{f}(\mathbf{x}) = \sqrt{f^2 + g^2}$