在產鄉電大灣

学生实验实习报告册

子干子别:			
课程名称:	信号处理实验		
学生学院:	通信与信息工程学院		
专业班级:	01011803		
学生学号:	2018210129		
学生姓名:	张海怡		
联系电话:			

重庆邮电大学教务处制

诽	果程名称	信号处理实验	课程编号	
乡	产验地点	YF304	实验时间	周二 12 节
杉	交外指导		校内指导	邵凯
孝			教师	TH 라니
乡	毕验名称	z 变换及离散时间 LTI 系统的 z 域分析		
兯	平阅人签		成绩	
与	7		从 须	

一、实验目的

学会运用 MATLAB 求离散时间信号的有理函数 z 变换的部分分式展开;

- z 学会运用 MATLAB 分析离散时间系统的系统函数的零极点;
- z 学会运用 MATLAB 分析系统函数的零极点分布与其时域特性的关系;
- z 学会运用 MATLAB 进行离散时间系统的频率特性分析。

二、实验原理

MATLAB 信号处理工具箱提供了一个对 进行部分分式展开的函数 residuez, 其语句格式为 zX)([R,P,K]=residuez(B,A) 其中,B,A 分别表示 X(z)的分子与分母多项式的系数向量;R 为部分分式的 系数向量;P 为极点向量;K 为多项式的系数。若 X(z)为有理真分式,则 K 为 零。

在 MATLAB 中系统函数的零极点就可通过函数 roots 得到,也可借助函数 tf2zp 得到,tf2zp 的语句格式为 [Z,P,K]=tf2zp(B,A) 其中,B 与 A 分别表示 的分子与分母多项式的系数向量。它的作用是将 H (z) 的有理分式表示式转换为零极点增益形式。

MATLAB 提供了求离散时间系统频响特性的函数 freqz,调用 freqz 的格式 主要有两种。一种形式为 [H,w]=freqz(B,A,N) 9 其中,B 与 A 分别表示 的分子和分母多项式的系数向量;N 为正整数, 默认值为 512;返回值 w 包含 zH)(π],0[范围内的 N 个频率等分点;返回值 H 则是 离散时间系统频率响应)(在 $j\omega$ eH ~ 0π 范围内 N 个频率处的值。另一种形式为 [H,w]=freqz(B,A,N,'whole')。

三、实验程序及结果分析

B=[2,16,44,56,32];

A=[3,3,-15,18,-12];

[R,P,K]=residuez(B,A);

Name 🔺	Value	
A B	[3,3,-15,18,-12] [2,16,44,56,32]	
K	-2.6667	
R R	[-3.2361 + 0.0000i; [-0.0177 + 0.0000i;	

B=[2,-1.6,-0.9];

A=[1,-2.5,1.96,-0.48];

zplane(B,A),grid on

legend('零点','极点')

title('零极点分布图')

B=[1,-1];

A=[1,-0.9,-0.65,0.873];

zplane(B,A),grid on

legend('零点','极点')

title('零极点分布图')

b=[1];

a=[1 -0.75 0.125];

[H,w]=freqz(b,a,400,'whole');

Hm=abs(H);

Hp=angle(H);

subplot(211)

plot(w,Hm),grid on

xlabel('\omega(rad/s)'),ylabel('Magnitude')

title('离散系统幅频特性曲线')

subplot(212)

plot(w,Hp),grid on

 $xlabel(\'\la$

title('离散系统相频特性曲线')

Name 🔺	Value
⊞ a	[1,-0.9000]
⊞ A	[1,-0.9000]
⊞ b	[1,-1]
Ⅱ B	[1,-1]
⊞H	400x1 complex do
⊞ Hm	400x1 double
Hp	400x1 double
⊞ K	-2.6667
⊞ P	[-3.2361 + 0.0000i;
⊞ R	[-0.0177 + 0.0000i;
₩	400x1 double

四、思考题

A=[1,-0.9];

B=[1,-1];

zplane(B,A),grid on

legend('零点','极点')

title('零极点分布图')

figure

b=[1 -1];

a=[1 -0.9];

[H,w]=freqz(b,a,400,'whole');

Hm=abs(H);

Hp=angle(H);

subplot(211)

plot(w,Hm),grid on

 $xlabel(\'\la$

title('离散系统幅频特性曲线')

subplot(212)

plot(w,Hp),grid on

xlabel('\omega(rad/s)'),ylabel('Phase')

title('离散系统相频特性曲线')

[xn,fs]=audioread('motherland.wav');

n=0:30;

x=(n==0);

b1=[1 0];a1=[1 0.8];

y1=filter(b1,a1,xn);

b2=[1 0];a2=[1 -1];

y2=filter(b2,a2,xn);

b3=[1 0];a3=[1 1.2];

```
y3=filter(b3,a3,xn);
subplot(221);
plot((1:length(xn))/fs,xn(1:length(xn)));axis([0 length(xn)/fs min(xn) max(xn)]);
xlabel('t');ylabel('x');grid on;title('原音频信号
');
subplot(222);
plot((1:length(y1))/fs,y1(1:length(y1)));axis([0 length(y1)/fs min(y1) max(y1)]);
xlabel('t');ylabel('y1');grid on;title('经系统 1 滤
波后音频信号');
subplot(223);
plot((1:length(y2))/fs,y2(1:length(y2)));axis([0 length(y2)/fs min(y2) max(y2)]);
xlabel('t');ylabel('y2');grid on;title('经系统2滤
波后音频信号');
subplot(224);
plot((1:length(y3))/fs,y3(1:length(y3)));axis([0 length(y3)/fs min(y3) max(y3)]);
xlabel('t');ylabel('y3');grid on;title('经系统3滤
波后音频信号');
```

