UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

半记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4v1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移 梢

机器学习基础

可视化

模仿学习 生成模型

元学习 卷积网络

梯度策略

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复「添砖加瓦]

Latent Variable Models

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine UC Berkeley

Latent variable models in general

Estimating the log-likelihood

expected log-likelihood:

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} E_{z \sim p(z|x_i)} [\log p_{\theta}(x_i, z)]$$

but... how do we calculate $p(z|x_i)$?

this is called probabilistic inference

intuition: "guess" most likely z given x_i , and pretend it's the right one

...but there are many possible values of z so use the distribution $p(z|x_i)$

The variational approximation

but... how do we calculate $p(z|x_i)$?
can bound $\log p(x_i)$!

$$\log p(x_i) = \log \int_z p(x_i|z)p(z)$$

$$= \log \int_z p(x_i|z)p(z)\frac{q_i(z)}{q_i(z)}$$

$$= \log E_{z \sim q_i(z)} \left[\frac{p(x_i|z)p(z)}{q_i(z)} \right]$$

what if we approximate with $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$

The variational approximation

but... how do we calculate $p(z|x_i)$?

can bound $\log p(x_i)!$

$$\log p(x_i) = \log \int_z p(x_i|z)p(z)$$

$$= \log \int_{z} p(x_i|z)p(z)\frac{q_i(z)}{q_i(z)}$$

$$= \log E_{z \sim q_i(z)} \left[\frac{p(x_i|z)p(z)}{q_i(z)} \right]$$

$$\geq E_{z \sim q_i(z)} \left[\log \frac{p(x_i|z)p(z)}{q_i(z)} \right]$$

Jensen's inequality

 $\log E[y] \ge E[\log y]$

maximizing this maximizes $\log p(x_i)$

$$\geq E_{z \sim q_i(z)} \left[\log \frac{p(x_i|z)p(z)}{q_i(z)} \right] = E_{z \sim q_i(z)} [\log p(x_i|z) + \log p(z)] + \mathcal{H}_{\mathbb{A}}(q_{i_l}(z)) [\log q_i(z)]$$

A brief aside...

Entropy:

$$\mathcal{H}(p) = -E_{x \sim p(x)}[\log p(x)] = -\int_{x} p(x) \log p(x) dx$$

Intuition 1: how random is the random variable?

Intuition 2: how large is the log probability in expectation under itself

what do we expect this to do?

$$E_{z \sim q_i(z)}[\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$$

this maximizes the first part

this also maximizes the second part (makes it as wide as possible)

A brief aside...

KL-Divergence:

$$D_{\text{KL}}(q||p) = E_{x \sim q(x)} \left[\log \frac{q(x)}{p(x)} \right] = E_{x \sim q(x)} [\log q(x)] - E_{x \sim q(x)} [\log p(x)] = -E_{x \sim q(x)} [\log p(x)] - \mathcal{H}(q)$$

Intuition 1: how different are two distributions?

Intuition 2: how small is the expected log probability of one distribution under another, minus entropy?

why entropy?

The variational approximation

$$\mathcal{L}_{i}(p, q_{i})$$

$$\log p(x_{i}) \geq E_{z \sim q_{i}(z)} [\log p(x_{i}|z) + \log p(z)] + \mathcal{H}(q_{i})$$

what makes a good $q_i(z)$? approximate in what sense? intuition: $q_i(z)$ should approximate $p(z|x_i)$ compare in terms of KL-divergence: $D_{KL}(q_i(z)||p(z|x))$

why?

why?
$$D_{\text{KL}}(q_{i}(z)||p(z|x_{i})) = E_{z \sim q_{i}(z)} \left[\log \frac{q_{i}(z)}{p(z|x_{i})} \right] = E_{z \sim q_{i}(z)} \left[\log \frac{q_{i}(z)p(x_{i})}{p(x_{i},z)} \right]$$

$$= -E_{z \sim q_{i}(z)} [\log p(x_{i}|z) + \log p(z)] + E_{z \sim q_{i}(z)} [\log q_{i}(z)] + E_{z \sim q_{i}(z)} [\log p(x_{i})]$$

$$= -E_{z \sim q_{i}(z)} [\log p(x_{i}|z) + \log p(z)] - \mathcal{H}(q_{i}) + \log p(x_{i})$$

$$= -\mathcal{L}_{i}(p, q_{i}) + \log p(x_{i})$$

$$\log p(x_{i}) = D_{\text{KL}}(q_{i}(z)||p(z|x_{i})) + \mathcal{L}_{i}(p, q_{i})$$

$$\log p(x_{i}) \geq \mathcal{L}_{i}(p, q_{i})$$

The variational approximation

$$\mathcal{L}_{i}(p, q_{i})$$

$$\log p(x_{i}) \geq E_{z \sim q_{i}(z)}[\log p(x_{i}|z) + \log p(z)] + \mathcal{H}(q_{i})$$

$$\log p(x_{i}) = D_{\mathrm{KL}}(q_{i}(z)||p(z|x_{i})) + \mathcal{L}_{i}(p, q_{i})$$

$$\log p(x_{i}) \geq \mathcal{L}_{i}(p, q_{i})$$

$$D_{\mathrm{KL}}(q_{i}(z)||p(z|x_{i})) = E_{z \sim q_{i}(z)} \left[\log \frac{q_{i}(z)}{p(z|x_{i})}\right] = E_{z \sim q_{i}(z)} \left[\log \frac{q_{i}(z)p(x_{i})}{p(x_{i}, z)}\right]$$

$$= -E_{z \sim q_{i}(z)}[\log p(x_{i}|z) + \log p(z)] - \mathcal{H}(q_{i}) + \log p(x_{i})$$

$$-\mathcal{L}_{i}(p, q_{i}) \qquad \text{independent of } q_{i}!$$

 \Rightarrow maximizing $\mathcal{L}_i(p,q_i)$ w.r.t. q_i minimizes KL-divergence!

How do we use this?

$$\mathcal{L}_{i}(p, q_{i})$$

$$\log p(x_{i}) \ge E_{z \sim q_{i}(z)} [\log p_{\theta}(x_{i}|z) + \log p(z)] + \mathcal{H}(q_{i})$$

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} \log p_{\theta}(x_i)$$

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} \mathcal{L}_{i}(p, q_{i})$$

how?

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$:

sample $z \sim q_i(z)$

 $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i|z)$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$$

update q_i to maximize $\mathcal{L}_i(p, q_i)$

let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$

use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$

gradient ascent on μ_i , σ_i

What's the problem?

```
for each x_i (or mini-batch):
```

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$:

sample $z \sim q_i(z)$

 $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i|z)$

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$

update q_i to maximize $\mathcal{L}_i(p, q_i)$

let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$

use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$

gradient ascent on μ_i , σ_i

How many parameters are there?

$$|\theta| + (|\mu_i| + |\sigma_i|) \times N$$

intuition: $q_i(z)$ should approximate $p(z|x_i)$

what if we learn a network $q_i(z) = q(z|x_i) \approx p(z|x_i)$?

Amortized Variational Inference

What's the problem?

```
for each x_i (or mini-batch):
```

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$:

sample $z \sim q_i(z)$

 $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i|z)$

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$

update q_i to maximize $\mathcal{L}_i(p, q_i)$

let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$

use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$

gradient ascent on μ_i , σ_i

How many parameters are there?

$$|\theta| + (|\mu_i| + |\sigma_i|) \times N$$

intuition: $q_i(z)$ should approximate $p(z|x_i)$

what if we learn a network $q_i(z) = q(z|x_i) \approx p(z|x_i)$?

Amortized variational inference

 $x = \begin{cases} 0 & \text{if } q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \end{cases}$

for each
$$x_i$$
 (or mini-batch):
calculate $\nabla_{\theta} \mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$:
sample $z \sim q_{\phi}(z|x_i)$
 $\nabla_{\theta} \mathcal{L} \approx \nabla_{\theta} \log p_{\theta}(x_i|z)$

$$\log p(x_i) \ge E_{z \sim q_{\phi}(z|x_i)} [\log p_{\theta}(x_i|z) + \log p(z)] + \mathcal{H}(q_{\phi}(z|x_i))$$

 $\mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$$

$$\phi \leftarrow \phi + \alpha \nabla_{\phi} \mathcal{L}$$

how do we calculate this?

Amortized variational inference

for each x_i (or mini-batch):

calculate
$$\nabla_{\theta} \mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$$
:

sample $z \sim q_{\phi}(z|x_i)$

$$\nabla_{\theta} \mathcal{L} \approx \nabla_{\theta} \log p_{\theta}(x_i|z)$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$$

$$\mathcal{L}_i = E_{z \sim q_{\phi}(z|x_i)}[\log p_{\theta}(x_i|z) + \log p(z)] + \mathcal{H}(q_{\phi}(z|x_i))$$

$$\mathcal{L}(\phi) = E_{z \sim q_{\phi}(z|x_i)}[r(x_i, z)]$$

can just use policy gradient!

What's wrong with this gradient?

$$\nabla J(\phi) \approx \frac{1}{M} \sum_{i} \nabla_{\phi} \log q_{\phi}(z_{j}|x_{i}) r(x_{i}, z_{j})$$

The reparameterization trick

Is there a better way?

$$J(\phi) = E_{z \sim q_{\phi}(z|x_{i})}[r(x_{i}, z)] \qquad q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$

$$= E_{\epsilon \sim \mathcal{N}(0,1)}[r(x_{i}, \mu_{\phi}(x_{i}) + \epsilon \sigma_{\phi}(x_{i}))] \qquad z = \mu_{\phi}(x) + \epsilon \sigma_{\phi}(x)$$
estimating $\nabla_{\phi}J(\phi)$:
$$\text{sample } \epsilon_{1}, \dots, \epsilon_{M} \text{ from } \mathcal{N}(0, 1) \quad \text{(a single sample works well!)} \qquad \epsilon \sim \mathcal{N}(0, 1)$$

$$\nabla_{\phi}J(\phi) \approx \frac{1}{M} \sum_{i} \nabla_{\phi}r(x_{i}, \mu_{\phi}(x_{i}) + \epsilon_{j}\sigma_{\phi}(x_{i})) \qquad \text{independent of } \phi!$$

most autodiff software (e.g., TensorFlow) will compute this for you!

Another way to look at it...

$$\begin{split} \mathcal{L}_i &= E_{z \sim q_\phi(z|x_i)}[\log p_\theta(x_i|z) + \log p(z)] + \mathcal{H}(q_\phi(z|x_i)) \\ &= E_{z \sim q_\phi(z|x_i)}[\log p_\theta(x_i|z)] + E_{z \sim q_\phi(z|x_i)}[\log p(z)] + \mathcal{H}(q_\phi(z|x_i)) \\ &\qquad \qquad - D_{\mathrm{KL}}(q_\phi(z|x_i) \| p(z)) &\longleftarrow \text{ this often has a convenient analytical form (e.g., KL-divergence for Gaussians)} \\ &= E_{z \sim q_\phi(z|x_i)}[\log p_\theta(x_i|z)] - D_{\mathrm{KL}}(q_\phi(z|x_i) \| p(z)) \\ &= E_{\epsilon \sim \mathcal{N}(0,1)}[\log p_\theta(x_i|\mu_\phi(x_i) + \epsilon \sigma_\phi(x_i))] - D_{\mathrm{KL}}(q_\phi(z|x_i) \| p(z)) \\ &\approx \log p_\theta(x_i|\mu_\phi(x_i) + \epsilon \sigma_\phi(x_i)) - D_{\mathrm{KL}}(q_\phi(z|x_i) \| p(z)) \end{split}$$

$$x_{i} = \begin{array}{c} \mu_{\phi}(x_{i}) \\ \downarrow \\ \phi \end{array} \qquad \begin{array}{c} \mu_{\phi}(x_{i}) \\ \uparrow \\ \epsilon \sim \mathcal{N}(0, 1) \end{array} \qquad \begin{array}{c} \mu_{\phi}(x_{i}) \\ \downarrow \\ \theta \end{array} \qquad \begin{array}{c} \mu_{\phi}(x_{i}) \\ \downarrow \\ \theta \end{array} \qquad \begin{array}{c} \mu_{\theta}(x_{i}|z) \\ \downarrow \\ \theta \end{array}$$

Reparameterization trick vs. policy gradient

- Policy gradient
 - Can handle both discrete and continuous latent variables
 - High variance, requires multiple samples & small learning rates
- Reparameterization trick
 - Only continuous latent variables
 - Very simple to implement
 - Low variance

$$J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi} \log q_{\phi}(z_{j}|x_{i}) r(x_{i}, z_{j})$$

$$\nabla_{\phi} J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi} r(x_i, \mu_{\phi}(x_i) + \epsilon_j \sigma_{\phi}(x_i))$$

Variational Autoencoders

The variational autoencoder

$$\max_{\theta,\phi} \frac{1}{N} \sum_{i} \log p_{\theta}(x_i | \mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i)) - D_{\mathrm{KL}}(q_{\phi}(z|x_i) || p(z))$$

Using the variational autoencoder

why does this work?

 $\mathcal{L}_i = E_{z \sim q_{\phi}(z|x_i)}[\log p_{\theta}(x_i|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x_i)||p(z))$

sampling:

$$z \sim p(z)$$

$$x \sim p(x|z)$$

Conditional models

$$\mathcal{L}_i = E_{z \sim q_{\phi}(z|x_i, y_i)} [\log p_{\theta}(y_i|x_i, z) + \log p(z|x_i)] + \mathcal{H}(q_{\phi}(z|x_i, y_i))$$

just like before, only now generating y_i and *everything* is conditioned on x_i

at test time:

$$z \sim p(z|x_i)$$
$$y \sim p(y|x_i, z)$$

can optionally depend on x

VAEs with convolutions

Question: can we design a fully convolutional VAE?

Yes, but be careful with the latent codes!

VAEs in practice

Common issue: very tempting for VAEs (especially **conditional** VAEs) to ignore the latent codes, or generate poor samples

the why?

Problem 1: latent code is ignored

$$p_{\theta}(x|z) \to p(x)$$

what does this look like? blurry "average" image when reconstructing

$$z \sim q_{\phi}(z|x) \quad x \sim p_{\theta}(x|z)$$

too low no info in z

$$D_{\mathrm{KL}}(q_{\phi}(z|x)||p(z))$$

need to control this quantity carefully to get good results!

Problem 2: latent code is not *compressed*

$$q_{\phi}(z|x)$$
 very far from $p(z)$

what does this look like? garbage images when sampling

$$z \sim p(z) \ x \sim p_{\theta}(x|z)$$

too high too much info in z

VAEs in practice

too low

Problem 1: latent code is ignored

no info in z

 $D_{\mathrm{KL}}(q_{\phi}(z|x)||p(z))$

Problem 2: latent code is not *compressed*

too high

too much info in z

·

need to control this quantity carefully to get good results!

$$\max_{\theta,\phi} \frac{1}{N} \sum_{i} \log p_{\theta}(x_i | \mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i)) - \beta D_{\mathrm{KL}}(q_{\phi}(z|x_i) || p(z))$$

multiplier to adjust regularizer strength

adjust β manually to get good reconstructions **and** good samples could **schedule** β start low (to get VAE to use z to reconstruct) end high (to get samples to be good)

Invertible Models and Normalizing Flows

A simpler kind of model

Why is this such a big deal?

change of variables formula:

$$p(x) = p(z) \left| \det \left(\frac{df(z)}{dz} \right) \right|^{-1}$$

where
$$z = f^{-1}(x)$$

correction for change in local density due to f

Basic idea: learn *invertible* mapping from **z** to **x** that makes determinant easy to compute

No more need for lower bounds! Can get exact probabilities/likelihoods!

Normalizing flow models

We need to figure out how to make an invertible layer, and then compose many of them to make a deep network

Normalizing flow models

$$\max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log p(f^{-1}(x_i)) - \log \left| \det \left(\frac{df(z)}{dz} \right) \right|$$

$$f(z) = f_4(f_3(f_2(f_1(z))))$$

If each layer is invertible, the whole thing is invertible

Oftentimes, invertible layers also have very convenient determinants

Log-determinant of whole model is just the sum of log-determinants of the layers

Goal: design an invertible layer, and then compose many of them to create a fully invertible neural net

NICE: Nonlinear Independent Components Estimation

Idea: what if we force **part** of the layer to keep all the information so that we can then recover anything that was changed by the nonlinear transformation?

Important: here I describe the case for **one** layer, but in reality we'll have many layers!

Question: if we have x, can we recover z? if so, then this layer is **invertible**

NICE: Nonlinear Independent Components Estimation

$$x_{1:d} = z_{1:d}$$

$$x_{d+1:n} = z_{d+1:n} + g_{\theta}(z_{1:d})$$

- 1. Recover $z_{1:d} = x_{1:d}$
- 2. Recover $g_{\theta}(z_{1:d})$
- 3. Recover $z_{d+1:n} = x_{d+1:n} g_{\theta}(z_{1:d})$

Question: if we have x, can we recover z?

if so, then this layer is **invertible**

What about the Jacobian?

$$\frac{df(z)}{dz} = \begin{bmatrix} \frac{dx_{1:d}}{dz_{1:d}} & \frac{dx_{1:d}}{dz_{d+1:n}} \\ \frac{dx_{d+1:n}}{dz_{1:d}} & \frac{dx_{d+1:n}}{dz_{d+1:n}} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & 0 \\ \frac{dg_{\theta}}{dz_{1:d}} & \mathbf{I} \end{bmatrix}$$

$$\left| \det \left(\frac{df(z)}{dz} \right) \right| = 1$$

This is very simple and convenient

But it's representationally a bit limiting

NICE: Nonlinear Independent Components Estimation

(a) Model trained on MNIST

(b) Model trained on TFD

Material based on Grover & Ermon CS236

NICE: Nonlinear Independent Components Estimation

(c) Model trained on SVHN

(d) Model trained on CIFAR-10

Material based on Grover & Ermon CS236

Real-NVP: Non-Volume Preserving Transformation

$$x_{1:d} = z_{1:d}$$

Inverse can be derived in the same way as before:

- 1. Recover $z_{1:d} = x_{1:d}$
- 2. Recover $g_{\theta}(z_{1:d})$ and $h_{\theta}(z_{1:d})$
- 3. Recover $z_{d+1:n} = (x_{d+1:n} g_{\theta}(z_{1:d})) / \exp(h_{\theta}(z_{1:d}))$

$$x_{d+1:n} = z_{d+1:n} \times \exp(h_{\theta}(z_{1:d})) + g_{\theta}(z_{1:d})$$

elementwise product
$$\left|\det\left(\frac{df(z)}{dz}\right)\right| = \prod_{i=d+1}^n \exp(h_{\theta}(z_{1:d})_i)$$

$$\frac{df(z)}{dz} = \begin{bmatrix} \mathbf{I} & 0\\ \frac{dx_{d+1:n}}{dz_{1:d}} & \operatorname{diag}\left(\exp\left(h_{\theta}(z_{1:d})\right)\right) \end{bmatrix}$$

This is significantly more expressive

Dinh et al. **Density estimation using Real-NVP**. 2016.

Real-NVP Samples

Concluding Remarks

- + can get exact probabilities/likelihoods
- + no need for lower bounds
- + conceptually simpler (perhaps)
- requires special architecture
- Z must have same dimensionality as X

UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4y1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移

机器学习基础

可视化

模仿学习

生成模型

梯度策略

元学习 ^{卷积网络} Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

机	.器学习	深度学习	自然语言处理	计算机视觉
Stanf	ord · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复「添砖加瓦]