알고리즘

해시 테이블 (Hash Table)

교재: 쉽게 배우는 알고리즘: 관계 중심의 사고법

저자: 문병로

출판사: 한빛미디어, 2013년 발행

수업 목표

- ▶ 해시 테이블의 발생 동기를 이해한다.
- ▶ 해시 테이블의 원리를 이해한다.
- ▶ 해시 함수 설계 원리를 이해한다.
- ▶ 충돌 해결 방법들과 이들의 장단점을 이해한다.

저장/검색의 복잡도

- Array
 - **▶** *O*(*n*)
- Binary search tree
 - ▶ 최악의 경우 *Θ*(*n*)
 - ▶ 평균 *Θ*(log n)
- Balanced binary search tree (RB Tree)
 - ▶ 최악의 경우 *Θ*(log n)
- ► B-tree
 - ▶ 최악의 경우 *Θ*(log *n*)
 - ▶ Balanced binary search tree보다 상수 인자가 작다
- Hash table
 - **▶** 평균 *Θ*(1)

해시 테이블 (Hash Table)

- ▶ 원소가 저장될 자리가 원소의 <mark>값</mark>에 의해 결정되는 자 료구조
- ▶ 평균 상수 시간에 삽입, 삭제, 검색
- ▶ 매우 빠른 응답을 요하는 응용에 유용
 - ▶ 예:
 - ▶ 119 긴급구조 호출과 호출번호 관련 정보 검색
 - ▶ 주민등록 시스템
- ▶ Hash table은 최소 원소를 찾는 것과 같은 작업은 지원 하지 않는다.

주소 계산

크기 13인 Hash Table에 5 개의 원소가 저장된 예

입력: 25, 13, 16, 15, 7

0	13
1	
2	15
3	16
4	
5 6	
6	
7	7
8	
9	
10	
11	
12	25

Hash function $h(x) = x \mod 13$

해시 함수 (Hash Function)

- ▶ 입력 원소가 hash table에 고루 저장되어야 한다.
- ▶ 계산이 간단해야 한다.
- ▶ 여러가지 방법이 있으나 가장 대표적인 것은 division method와 multiplication method이다.

Division Method

- $h(x) = x \mod m$
- ▶ m: table 사이즈. 대개 prime number임.

Multiplication Method

- $h(x) = (xA \mod 1) * m$
- ▶ A: 0 < A < 1 인 상수
- ▶ m은 굳이 소수일 필요 없다. 따라서 보통 2^p으로 잡는다. (p 는 정수)

충돌 (Collision)

- ▶ Hash table의 한 주소를 놓고 두 개 이상의 원소가 자리를 다투는 것
 - ▶ Hashing을 해서 삽입하려 하니 이미 다른 원소가 자리를 차지하고 있는 상황
- ▶ Collision resolution 방법은 크게 두 가지가 있다.
 - Chaining
 - Open Addressing

Collision의 예

입력: 25, 13, 16, 15, 7

0	13
1	
2	15
3	16
4	
5	
6	
7	7
8	
9	
10	
11	
12	25

h(29) = 29 mod 13 = 3 29를 삽입하려 하자 이미 다른 원소가 차지하고 있다!

Hash function $h(x) = x \mod 13$

충돌 해결 (Collision Resolution)

Chaining

- ▶ 같은 주소로 hashing되는 원소를 모두 하나의 linked list 로 관리한다.
- ▶ 추가적인 linked list 필요

Open addressing

- ▶ Collision이 일어나더라도 어떻게든 주어진 테이블 공간 에서 해결한다.
- ▶ 추가적인 공간이 필요하지 않다.

Chaining을 이용한 Collision Resolution의 예

개방주소 방법 (Open Addressing)

- ▶ 빈자리가 생길 때까지 해시값을 계속 만들어낸다.
 - $\blacktriangleright h_0(x), h_1(x), h_2(x), h_3(x), ...$
- ▶ 중요한 세가지 방법
 - Linear probing
 - Quadratic probing
 - Double hashing

선형 조사 (Linear Probing)

 $h_i(x) = (h(x) + i) \bmod m$

예: 입력 순서 25, 13, 16, 15, 7, 28, 31, 20, 1, 38

0	13
1	
2	15
3	16
4	28
5 6	
6	
7	7
8	
9	
10	
11	
12	25

		_
0	13	
1		
2	15	
3	16	
5	28	
5	31	
6		
7	7	
8	20	¢
9		
10		
11		
12	25	

		-
0	13	
1	1	
2	15	1
3	16	
4	28	1
5	31	4
6	38	ľ
7	7	
8	20	
9		
10		
11		
12	25	ŀ

$$h_i(x) = (h(x) + i) \mod 13$$

Linear Probing은 Primary Clustering에 취약하다

Primary clustering: 특정 영역에 원소가 몰리는 현상

15
16
28
31
44
37

←

Primary clustering의 예

이차원 조사 (Quadratic Probing)

$$h_i(x) = (h(x) + c_1i^2 + c_2i) \mod m$$

예: 입력 순서 15, 18, 43, 37, 45, 30

0	
1	
2	15
3	
4	43
5	18
6	45
7	
8	30
9	
10	
11	37
12	

$$h_i(x) = (h(x) + i^2) \mod 13$$

$$30\%13 = 4$$
[(30%13)+1²]%13 = 5
[(30%13)+2²]%13 = 8

Quadratic Probing은 Secondary Clustering에 취약하다

_	
0	
1	
2	15
3	28
4	
5	54
6	41
7	
8	21
9	
10	
11	67
12	

Secondary clustering: 여러 개의 원소가 동일한 초기 해시 함수값을 갖는 현상

$$28\%13 = 2$$
 [(28%13)+1²]%13 = 3

—— Secondary clustering의 예

$$[(41\%13)+1^2]\%13 = 3$$
$$[(41\%13)+2^2]\%13 = 6$$

41%13 = 2

$$67\%13 = 2$$
[$(67\%13)+1^2$]%13 = 3
[$(67\%13)+2^2$]%13 = 6
[$(67\%13)+3^2$]%13 = 11

더블 해싱 (Double Hashing)

$$h_i(x) = (h(x) + i f(x)) \mod m$$

예: 입력 순서 15, 19, 28, 41, 67

$h(x) = x \mod 13$
$f(x) = (x \bmod 11) + 1$
$h(x) = (h(x) + i f(x)) \mod 13$

0	
1	
2	15
3	
4	67
5	
6	19
7	
8	
9	28
10	
11	41
12	

$$h_0(15) = h_0(28) = h_0(41) = h_0(67) = 2$$

$$h_1(67) = 4$$

$$h_0(19) = 6$$

$$h_1(28) = 9$$

$$h_1(41) = 11$$

삭제시 유의 (예: 선형 조사의 경우)

0	13
1	1
2	15
3	16
4	28
5	31
6	38
7	7
8	20
9	
10	
11	
12	25

(a)	원소 [l 삭제
\ /		

	٠.
13	
	¥
15	
16	
28	
31	
38	
7	
20	
25	•
	15 16 28 31 38 7 20

(b) 38 검색, 문제발생

		_ %
0	13	
1	DELETED	K
2	15	K
3	16	K
4	28	K
5	31	RARA
6	38	1
7	7	
8	20	
9		
10		
11		
12	25	•

(c) 표식을 해두면 문제없다

Question & Answer

