```
In [1]: import pandas as pd
   import warnings
   warnings.filterwarnings("ignore")
   import seaborn as sns
   import matplotlib.pyplot as plt
   sns.set(style="white",color_codes=True)
```

Out[10]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [16]: iris["Species"].value_counts()

Out[16]: Iris-versicolor 50 Iris-virginica 50 Iris-setosa 50

Name: Species, dtype: int64

In [17]: | iris.plot(kind="scatter",x="SepalLengthCm",y="SepalWidthCm")

'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really wan t to specify the same RGB or RGBA value for all points.

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x2020ba9f0c8>

In [20]: sns.jointplot(x="SepalLengthCm",y="SepalWidthCm",data=iris,size=7)

Out[20]: <seaborn.axisgrid.JointGrid at 0x2020bd50d08>


```
In [21]: sns.FacetGrid(iris, hue="Species", size=7) \
    .map(plt.scatter, "SepalLengthCm", "SepalWidthCm") \
    .add_legend()
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x2020c152548>

In [24]: sns.boxplot(x="Species",y="PetalLengthCm", data=iris)

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x2020c186688>


```
In [27]: ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris)
    ax = sns.stripplot(x="Species", y="PetalLengthCm", data=iris, jitter=True,
    edgecolor="red")
```



```
In [28]: sns.violinplot(x="Species",y="PetalLengthCm",data=iris,size=7)
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x2020c5cd308>


```
In [29]: sns.FacetGrid(iris, hue="Species", size=7) \
    .map(sns.kdeplot, "PetalLengthCm") \
    .add_legend()
```

Out[29]: <seaborn.axisgrid.FacetGrid at 0x2020c752d88>

In [31]: sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=6)

Out[31]: <seaborn.axisgrid.PairGrid at 0x2020e607fc8>

In [33]: sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=5, diag_kind="kd
e")

Out[33]: <seaborn.axisgrid.PairGrid at 0x2020ecd9588>

dtype=object)

Boxplot grouped by Species PetalLengthCm PetalWidthCm SepalLengthCm SepalLengthCm SepalWidthCm SepalWidthCm

Iris-virginica

Iris-setosa

Iris-versicolor

[Species]

Iris-virginica

0

Iris-setosa

Iris-versicolor

[Species]