Limites infinitos e no infinito

Limites infinitos

Dizemos que f tende para $-\infty$ quando x tende para a e escrevemos

$$\lim_{x \to a} f(x) = -\infty$$

se

$$\forall M \in \mathbb{R} \ \exists \, \delta > 0 \, \forall x \in D \setminus \{a\} : |x - a| < \delta \Rightarrow f(x) < M.$$

Exemplos

- (a) Seja $f:]0, +\infty[\to \mathbb{R}$ a função dada por $f(x) = \frac{1}{x}$. Então $\lim_{x \to 0} f(x) = +\infty$.
- (b) Seja $f:]-\infty,0[\to\mathbb{R}$ a função dada por $f(x)=\frac{1}{x}$. Então $\lim_{x\to 0}f(x)=-\infty$.

Limites infinitos

Sejam $f: D \to E$ uma função e $a \in \mathbb{R}$ um ponto de acumulação de D. Dizemos que f tende para $+\infty$ quando x tende para a e escrevemos

$$\lim_{x \to a} f(x) = +\infty$$

se

 $\forall M \in \mathbb{R} \ \exists \, \delta > 0 \, \forall x \in D \setminus \{a\} : |x - a| < \delta \Rightarrow f(x) > M.$

Cálculo com limites infinitos

Sejam $f\colon D\to\mathbb{R}$ e $g\colon D\to\mathbb{R}$ duas funções e $a\in\mathbb{R}$ um ponto de acumulação de D.

- 1. Se $\lim_{x\to a}f(x)=L$, $L\in\mathbb{R}$, e $\lim_{x\to a}g(x)=+\infty$, então $\lim_{x\to a}(f(x)+g(x))=+\infty$.
- 2. Se $\lim_{x\to a} f(x)=L,\ L\in\mathbb{R},\ \mathrm{e}\ \lim_{x\to a} g(x)=-\infty,\ \mathrm{ent}$ ão $\lim_{x\to a} (f(x)+g(x))=-\infty.$
- 3. Se $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = +\infty$, então $\lim_{x\to a} (f(x)+g(x)) = +\infty$.
- 4. Se $\lim_{x\to a} f(x) = -\infty$ e $\lim_{x\to a} g(x) = -\infty$, então $\lim_{x\to a} (f(x)+g(x)) = -\infty$.
- 5. Se $\lim_{x\to a}f(x)=+\infty$ e c>0 é um número real, então $\lim_{x\to a}cf(x)=+\infty.$
- 6. Se $\lim_{x\to a} f(x) = +\infty$ e c < 0 é um número real, então $\lim_{x\to a} cf(x) = -\infty$.

Cálculo com limites infinitos

- 7. Se $\lim_{x\to a}f(x)=-\infty$ e c>0 é um número real, então $\lim_{x\to a}cf(x)=-\infty.$
- 8. Se $\lim_{x\to a} f(x)=-\infty$ e c<0 é um número real, então $\lim_{x\to a} cf(x)=+\infty$.
- 9. Se $\lim_{x\to a}f(x)=L,\ L>0$ real, e $\lim_{x\to a}g(x)=+\infty,$ então $\lim_{x\to a}f(x)g(x)=+\infty.$
- 10. Se $\lim_{x\to a}f(x)=L,\ L<0$ real, e $\lim_{x\to a}g(x)=+\infty$, então $\lim_{x\to a}f(x)g(x)=-\infty$.
- 11. Se $\lim_{x\to a}f(x)=L,\ L>0$ real, e $\lim_{x\to a}g(x)=-\infty$, então $\lim_{x\to a}f(x)g(x)=-\infty$.
- 12. Se $\lim_{x\to a}f(x)=L,\ L<0$ real, e $\lim_{x\to a}g(x)=-\infty$, então $\lim_{x\to a}f(x)g(x)=+\infty$.

Indeterminações

Se $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to a}g(x)=-\infty$, não é possível dizer alguma coisa de geral sobre o limite $\lim_{x\to a}(f(x)+g(x))$. Exprimimos este facto dizendo que $+\infty+(-\infty)$ é uma indeterminação. Outras indeterminações são:

$$0 \cdot \infty, \ \frac{\infty}{\infty}, \ \frac{0}{0}, \ 1^{\infty}, \ 0^{0}, \ \infty^{0}.$$

Exemplo: indeterminação $+\infty + (-\infty)$

Sejam $f, g:]0, +\infty[\to \mathbb{R}$ definidas por

(a)
$$f(x) = \frac{1}{x}$$
, $g(x) = -\frac{1}{x}$. Então $\lim_{x \to 0} f(x) + g(x) = 0$.

(b)
$$f(x) = \frac{1}{x}, g(x) = -\frac{1}{x^2}$$
. Então

$$\lim_{x \to 0} f(x) + g(x) = \lim_{x \to 0} \frac{1}{x} - \frac{1}{x^2} = \lim_{x \to 0} \frac{1}{x} (1 - \frac{1}{x}) = -\infty.$$

Cálculo com limites infinitos

- 13. Se $\lim_{x\to a}f(x)=+\infty$ e $\lim_{x\to a}g(x)=+\infty$, então $\lim_{x\to a}f(x)g(x)=+\infty$.
- 14. Se $\lim_{x\to a} f(x) = -\infty$ e $\lim_{x\to a} g(x) = -\infty$, então $\lim_{x\to a} f(x)g(x) = +\infty$.
- 15. Se $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = -\infty$, então $\lim_{x\to a} f(x)g(x) = -\infty$.
- 16. Se $\forall x \in D \ f(x) \neq 0$ e $\lim_{x \to a} f(x) = +\infty$, então $\lim_{x \to a} \frac{1}{f(x)} = 0$.
- 17. Se $\forall x \in D \ f(x) \neq 0$ e $\lim_{x \to a} f(x) = -\infty$, então $\lim_{x \to a} \frac{1}{f(x)} = 0$.
- 18. Se $\lim_{x\to a} f(x) = +\infty$ (resp. $-\infty$) e se existir r>0 tal que, para todo o $x\in D\setminus\{a\}$,

$$|x - a| < r \Longrightarrow g(x) \ge f(x)$$
 (resp. $g(x) \le f(x)$),

então $\lim_{x \to a} g(x) = +\infty \ \ (\text{resp.} \ -\infty).$

Funções compostas

Sejam $f\colon A\to B$ e $g\colon B\to C$ duas funções, a um ponto de acumulação de A e b um ponto de acumulação de B tais que

- \bullet $b \notin B$;
- $\blacksquare \lim_{x \to a} f(x) = b;$
- $\blacksquare \lim_{y \to b} g(y) = +\infty \ (-\infty).$

Então $\lim_{x \to a} g(f(x)) = +\infty \ (-\infty).$

Exemplo

Pretende-se calcular $\lim_{x \to \frac{\pi}{2}} \log_2 \cos x$. Consideremos as fun-

ções $f\colon]-\frac{\pi}{2},\frac{\pi}{2}[\to]0,+\infty[,\quad f(x)=\cos x\quad {\rm e}\quad g\colon]0,+\infty[\to\mathbb{R},\ g(y)=\log_2 y\ {\rm e}\ {\rm os}\ {\rm pontos}\ {\rm de}\ {\rm acumulação}\ \frac{\pi}{2}\ {\rm de}\]-\frac{\pi}{2},\frac{\pi}{2}[\ {\rm e}\ 0\ {\rm de}\]0,+\infty[.\ {\rm Como}\ 0\not\in]0,+\infty[,\ \lim_{x\to\frac{\pi}{2}}\cos x\ =\ 0\ {\rm e}\ \lim_{y\to 0}\log_2 y\ =\ -\infty,$

temos

$$\lim_{x \to \frac{\pi}{2}} \log_2 \cos x = -\infty.$$

A notação 0^+ e 0^-

Sejam $f:D\to E$ uma função e $a\in\mathbb{R}$ um ponto de acumulação de D. Escrevemos

$$\lim_{x \to a} f(x) = 0^{+}$$
 (resp. 0⁻)

se $\lim_{x \to a} f(x) = 0$ e se existir r > 0 tal que, para todo o $x \in D \setminus \{a\}$,

$$|x - a| < r \Longrightarrow f(x) > 0$$
 (resp. $f(x) < 0$).

Limites laterais infinitos

Sejam $f:D\to E$ uma função e $a\in\mathbb{R}$ um ponto de acumulação do conjunto

$$A = D \cap]a, +\infty[= \{x \in D \mid x > a\}.$$

Se $\lim_{x\to a} f|_A(x) = +\infty$, dizemos que o limite lateral à direita de f em a é $+\infty$ e escrevemos $\lim_{x\to a^+} f(x) = +\infty$. Se $\lim_{x\to a} f|_A(x) = -\infty$, dizemos que o limite lateral à direita de f em a é $-\infty$ e escrevemos $\lim_{x\to a^+} f(x) = -\infty$.

Seja $b \in \mathbb{R}$ um ponto de acumulação do conjunto

$$B = D \cap]-\infty, b[= \{x \in D \mid x < b\}.$$

Se $\lim_{x\to b} f|_B(x) = +\infty$, dizemos que o limite lateral à esquerda de f em b é $+\infty$ e escrevemos $\lim_{x\to b^-} f(x) = +\infty$. Se $\lim_{x\to b} f|_B(x) = -\infty$, dizemos que o limite lateral à esquerda de f em b é $-\infty$ e escrevemos $\lim_{x\to b^-} f(x) = -\infty$.

A notação 0^+ e 0^-

Proposição

Sejam $f:D\to E$ uma função e $a\in\mathbb{R}$ um ponto de acumulação de D. Suponha que f nunca se anula em D. Então

(i)
$$\lim_{x \to a} f(x) = 0^+ \Longrightarrow \lim_{x \to a} \frac{1}{f(x)} = +\infty;$$

(ii)
$$\lim_{x \to a} f(x) = 0^- \Longrightarrow \lim_{x \to a} \frac{1}{f(x)} = -\infty.$$

Exemplos

(i) Consideremos a função $f\colon]-\frac{\pi}{2},\frac{\pi}{2}[\to\mathbb{R},\,f(x)=\cos x.$ Temos $\lim_{x\to\frac{\pi}{2}}f(x)=0^+$ e então $\lim_{x\to\frac{\pi}{2}}\frac{1}{f(x)}=+\infty.$

(ii) Consideremos a função $f\colon]\frac{\pi}{2},\frac{3\pi}{2}[\to\mathbb{R},\ f(x)=\cos x.$ Temos $\lim_{x\to \frac{\pi}{2}}f(x)=0^-$ e então $\lim_{x\to \frac{\pi}{2}}\frac{1}{f(x)}=-\infty.$

10

Limites laterais infinitos

Exemplo

Seja $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ a função dada por $f(x) = \frac{1}{x}$.

Então
$$\lim_{x\to 0^+} f(x) = +\infty$$
 e $\lim_{x\to 0^-} f(x) = -\infty$.

12

Limites no infinito

Sejam $f:D\to E$ uma função e $L\in\mathbb{R}$.

(a) Suponhamos que o conjunto D é não majorado. Dizemos que f tende para L quando x tende para $+\infty$ e escrevemos

$$\lim_{x \to +\infty} f(x) = L$$

se

$$\forall \varepsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall x \in D \quad x > N \Rightarrow |f(x) - L| < \varepsilon.$$

Dizemos que f tende para $+\infty$ quando x tende para $+\infty$ e escrevemos

$$\lim_{x \to +\infty} f(x) = +\infty$$

se

$$\forall M \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall x \in D \quad x > N \Rightarrow f(x) > M.$$

Dizemos que f tende para $-\infty$ quando x tende para $+\infty$ e escrevemos

$$\lim_{x \to +\infty} f(x) = -\infty$$

se

$$\forall M \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall x \in D \quad x > N \Rightarrow f(x) < M.$$

Limites no infinito

Exemplos

- $\lim_{x \to +\infty} \sin x$ não existe

Nota

As regras de cálculo com limites continuam válidas se substituirmos $x \to a$ por $x \to +\infty$ ou por $x \to -\infty$.

Limites no infinito

(b) Suponhamos que o conjunto D é não minorado. Dizemos que f tende para L quando x tende para $-\infty$ e escrevemos

$$\lim_{x \to -\infty} f(x) = L$$

se

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall x \in D \quad x < -N \Rightarrow |f(x) - L| < \varepsilon.$$

Dizemos que f tende para $+\infty$ quando x tende para $-\infty$ e escrevemos

$$\lim_{x \to -\infty} f(x) = +\infty$$

se

$$\forall M \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall x \in D \quad x < -N \Rightarrow f(x) > M.$$

Dizemos que f tende para $-\infty$ quando x tende para $-\infty$ e escrevemos

$$\lim_{x \to -\infty} f(x) = -\infty$$

se

$$\forall M \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall x \in D \quad x < -N \Rightarrow f(x) < M.$$

17

Teorema do confronto

Teorema

Sejam D um conjunto não majorado e $f,g,h\colon D\to\mathbb{R}$ três funções. Suponhamos que existe $N\in\mathbb{N}$ tal que

$$\forall x \in D : x > N \Rightarrow f(x) \le g(x) \le h(x).$$

Nestas condições, se $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} h(x)$, então $\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} f(x)$.

Corolário

Sejam D um conjunto não majorado e $f,g:D\to\mathbb{R}$ duas funções. Se f for limitada e $\lim_{x\to+\infty}g(x)=0$, então $\lim_{x\to+\infty}f(x)g(x)=0$.

Exemplo

 $\lim_{x\to +\infty}\frac{\sin x}{x}=0$ pois o seno é limitado e $\lim_{x\to +\infty}\frac{1}{x}=0.$

Funções compostas

Proposição 1

Sejam D um conjunto não majorado e $f:D\to E$ e $g:E\to F$ duas funções.

- (a) Seja $L\in E$ tal que $\lim_{x\to +\infty}f(x)=L$. Se g for contínua em L, então $\lim_{x\to +\infty}g(f(x))=g(L)$.
- (b) Se $\lim_{x\to +\infty} f(x) = +\infty$, então $\lim_{x\to +\infty} g(f(x)) = \lim_{y\to +\infty} g(y)$.
- (c) Se $\lim_{x\to +\infty} f(x) = -\infty$, então $\lim_{x\to +\infty} g(f(x)) = \lim_{y\to -\infty} g(y)$.

Exemplos

- (i) Como $\lim_{x\to +\infty}\frac{1}{x}=0$ e sen é contínua, $\lim_{x\to +\infty}\sin\frac{1}{x}=\sin 0=0$.
- (ii) Como $\lim_{x \to +\infty} -x = -\infty$, $\lim_{x \to +\infty} 2^{-x} = \lim_{y \to -\infty} 2^y = 0$.

17

Funções monótonas

Proposição

Seja $f:D\to E$ uma função cujo domínio é um conjunto não majorado. Se f for crescente e majorada ou decrescente e minorada, então existe um número real L tal que $L=\lim_{x\to +\infty}f(x)$.

Funções compostas

Proposição 2

Sejam E um conjunto não majorado, $f:D\to E$ e $g:E\to F$ duas funções e a um ponto de acumulação de D. Suponhamos que $\lim_{y\to +\infty}g(y)$ existe (finito ou infinito) e que $\lim_{x\to a}f(x)=+\infty$. Então

$$\lim_{x \to a} g(f(x)) = \lim_{y \to +\infty} g(y).$$

Exemplo

Temos
$$\lim_{x\to 0} 2^{\frac{1}{x^2}} = \lim_{y\to +\infty} 2^y = +\infty.$$

18

Sucessões

Uma sucessão é uma função $n\mapsto a_n$, a valores reais, cuja domínio é um subconjunto de $\mathbb N$ da forma $\{n\in\mathbb N\,|\,n\geq q\}$ onde $q\in\mathbb N$ é um número natural fixo.

Em vez de usar uma frase da forma "Seja $f:D\to E$ a sucessão dada por $f(x)=\dots$ " costuma-se definir uma sucessão dizendo, por exemplo, "Seja $(a_n)_{n\geq 3}$ a sucessão de termo geral $a_n=\dots$ ".

Dizemos que uma sucessão $(a_n)_{n\geq q}$ converge para $a\in\mathbb{R}$ se $\lim_{n\to +\infty}a_n=a$. Uma sucessão diz-se convergente se existir $a\in\mathbb{R}$ tal que a sucessão converge para a. Este número a diz-se o limite da sucessão. Uma sucessão que não é convergente diz-se divergente. Dizemos que uma sucessão $(a_n)_{n\geq q}$ diverge para $+\infty$ (resp. $-\infty$) se $\lim_{n\to +\infty}a_n=+\infty$ (resp. $\lim_{n\to +\infty}a_n=-\infty$).

20

10

Sucessões

Exemplos

(a) A sucessão $(a_n)_{n>0}$ de termo geral $a_n=n$ diverge para $+\infty$.

	a_0	a_1	a_2	a_3	a_4	
-1	0	1	2	3	4	

(b) A sucessão $(a_n)_{n\geq 1}$ de termo geral $a_n=\frac{1}{n}$ converge para 0.

	a_4a_3	a_2	a_1
0	$\frac{1}{4}$ $\frac{1}{3}$	$\frac{1}{2}$	1

(c) A sucessão $(a_n)_{n\geq 0}$ definida por $a_{2k}=0$ e $a_{2k+1}=1$ é divergente.

a_4	a_5	
a_2	a_3	
a_0	a_1	
0	i	,

21

Funções hiperbólicas

A função seno hiperbólico $\operatorname{sh}\,:\mathbb{R}\to\mathbb{R}$ é definida por

$$sh(x) = \frac{e^x - e^{-x}}{2}.$$

Proposição

A função sh é impar, continua e estritamente crescente. A imagem de sh é \mathbb{R} .

Sucessões

Como sucessões são funções especiais, todos os conceitos e resultados sobre funções aplicam-se às sucessões. Por exemplo:

Teorema

Toda a sucessão limitada e monótona é convergente.

Proposição

A sucessão $(a_n)_{n>1}$ de termo geral

$$a_n = (1 + \frac{1}{n})^n$$

é convergente.

$$a_1 = (1 + \frac{1}{1})^1 = 2$$
, $a_2 = (1 + \frac{1}{2})^2 = \frac{9}{4} = 2.25$, $a_3 = \frac{64}{27} \approx 2.37$, ..., $a_{1000000} = 2.71828$...

Definição

O limite desta sucessão é o *número de Euler e*. O logaritmo na base e é indicado por \ln , assim $\ln x = \log_e x$.

22

Funções hiperbólicas

A função $cosseno\ hiperbólico\ {
m ch}\ : \mathbb{R} \to \mathbb{R}$ é definida por

$$ch(x) = \frac{e^x + e^{-x}}{2}.$$

Proposição

A função ché par, contínua, estritamente decrescente em $]-\infty,0]$ e estritamente crescente em $[0,+\infty[$. A imagem de ché o intervalo $[1,+\infty[$.

Funções hiperbólicas

A função tangente hiperbólica th $:\mathbb{R}\to\mathbb{R}$ é definida por

$$\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}.$$

Proposição

A função thé impar, contínua e estritamente crescente. A imagem de thé o intervalo]-1,1[.

Funções hiperbólicas

Proposição

As funções sh, ch e th têm as seguintes propriedades:

(a)
$$\operatorname{ch} x + \operatorname{sh} x = e^x$$
;

(b)
$$\cosh^2 x - \sinh^2 x = 1$$
;

(c)
$$\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y;$$

(d)
$$\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y;$$

(e)
$$1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x}$$
.

2

25