Bleeding segmentation of surgical images

Tian Zhao Technical University Dresden Faculty of Computer Science Dresden, Germany

NATIONAL CENTER
FOR TUMOR DISEASES
PARTNER SITE DRESDEN
UNIVERSITY CANCER CENTER UCC

Supported by:

German Cancer Research Center University Hospital Carl Gustav Carus Dresden Carl Gustav Carus Faculty of Medicine, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Project introduction

Main purpose

Fig 1. Segmentation process

Evaluation methods
 dice loss, precision, recall, specificity, f₁

Dataset

Origional images

Fig 2. original surgical images

In form of:
$$[(x_0, y_0), (x_1, y_1), \dots (x_n, y_n)]$$

Generated masks

Fig 3. generated masks

Dataset

- Size
 - Number of surgeries: 9
 - Number of images **WITH** blood: 946 (70%)
 - Number of images **WITHOUT** blood: 405 (30%)
- K-Ford validation (k=5) grouping rules
 - Absolutely separated training and evaluation sets
 - Minimum difference between size of groups
- Validation group size
 - [250, 250, 250, 250, 250]

Pre-Process

Random-crop and flip (all models)

Fig 4. random crop

RandomResizedCrop((256, 256), scale=(0.5, 1.0))

Normalisation (ResNet only)

Fig 6. normalization

Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]

Fig 5. random flip

RandomHorizontalFlip()

Evaluation methods

Dice loss

$$DiceLoss(I_m, I_e) = 1 - \frac{2 \times TP(I_m, I_e) + s}{Positiv(I_m) + Positiv(I_e) + s}$$

•
$$TP(I_m, I_e) = \sum_{x, y \in (0,255)} I_m(x, y) \times I_e(x, y)$$

• Positiv(I)=
$$\sum_{x,y \in (0,255)} I(x,y)$$

 $Positiv(I_{\rho}) \uparrow$

 $DiceLoss(I_m, I_e) \uparrow$

ground truth

$$\begin{array}{ccc} Positiv(I_{e}) & \downarrow \\ TP(I_{m}, I_{e}) & \downarrow \downarrow \end{array}$$

 $DiceLoss(I_m, I_e) \uparrow$

Evaluation methods

Confusion matrix

		Real category		
		Positive	Negative	
Estimation	Positive	TP	FP	
	Negative	FN	TN	

Measurments

$$precision = \frac{TP}{TP + FP}$$

$$specificity = \frac{TN}{TN + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$f_1 = \frac{2 \times precision \times recall}{precision + recall}$$

Convolution unit

Fig 8. down sampling unit

Fig 9. down sampling unit

UNet

Fig 10. UNet model structure.

Adapted from: [1] Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation.

$$Loss(I_m, I_e) = DiceLoss(I_m, I_e)$$

Multi-Output UNet

Fig 11. Multi-OutputUNet model structure.

Idea from: [2] Sun, Tao, et al. "Stacked U-Nets With Multi-Output for Road Extraction." CVPR Workshops. 2018.

$$Loss(I_m, I_i \in [0, 4]) = \frac{\sum_{i \in [0, 4]} DiceLoss(I_m, I_i)}{5}$$

Learning rate

Fig 12. Curve of loss with different learning rate

Training curve

Fig. 13: Evaluation curve of UNet

Fig. 15: Evaluation curve of FCN ResNet50

Fig. 14: Evaluation curve of Multi-Output UNet

Fig. 16: Evaluation curve of DeepLabV3 ResNet50

Model estimations

Fig. 17: Evaluation curve of UNet

Fig. 19: Evaluation curve of FCN ResNet50

Fig. 18: Evaluation curve of Multi-Output UNet

Fig. 20: Evaluation curve of DeepLabV3 ResNet50

Evaluation data and statistic

	loss	precision	recall	specificity	f_1
cross_val 1	0.1865	0.8739	0.7618	0.9896	0.8135
cross_val 2 cross_val 3	0.3727 0.3065	0.7479 0.8558	0.5571 0.5912	0.9848 0.9956	0.6273 0.6935
cross_val 4 cross_val 5	0.1958 0.2897	0.7421 0.7781	0.8942 0.6560	0.9672 0.9918	0.8042 0.7103
average	0.2702	0.7996	0.6920	0.9858	0.7298

Fig. 21: Evaluation curve of UNet

	loss	precision	recall	specificity	f_1
cross_val 1	0.1582	0.9062	0.7875	0.9917	0.8418
cross_val 2 cross_val 3	0.3586 0.3576	0.7570 0.8517	0.5697 0.5684	0.9850 0.9954	0.6414 0.6424
cross_val 4	0.1856	0.7889	0.8818	0.9745	0.8144
cross_val 5	0.3386	0.7830	0.6201	0.9925	0.6614
average	0.2797	0.8173	0.6855	0.9878	0.7203

Fig. 23: Evaluation curve of FCN ResNet50

	loss	precision	recall	specificity	f_1
cross_val 1	0.1806	0.8042	0.8409	0.9782	0.8194
cross_val 2	0.3637	0.7276	0.5727	0.9824	0.6363
cross_val 3	0.3284	0.8490	0.5691	0.9954	0.6716
cross_val 4	0.2144	0.7159	0.8763	0.9644	0.7856
cross_val 5	0.3107	0.8441	0.5859	0.9955	0.6892
average	0.2796	0.7882	0.6890	0.9832	0.7204

Fig. 22: Evaluation curve of Multi-Output UNet

	loss	precision	recall	specificity	f_1
cross_val 1	0.1395	0.8891	0.8406	0.9892	0.8605
cross_val 2	0.3478	0.6894	0.6597	0.9754	0.6522
cross_val 3	0.2772	0.8508	0.6857	0.9942	0.7228
cross_val 4	0.1630	0.8296	0.8807	0.9811	0.8370
cross_val 5	0.2662	0.8358	0.6541	0.9939	0.7338
average	0.2387	0.8189	0.7442	0.9868	0.7613

Fig. 24: Evaluation curve of DeepLabV3 ResNet50

Response time

	CPU (i7-6700k)	GPU (GeForce RTX 2070)
UNet Multi-Output UNet FCN_ResNet50 DeepLabV3_ResNet50	110ms (9.09 fps) 110ms (9.09 fps) 270ms (3.70 fps) 440ms (2.27 fps)	2.5ms (400 fps) 2.8ms (357 fps) 5.8ms (172 fps) 6.2ms (161 fps)

Fig. 25: Response time of different model

Conclution

	Loss	Stability	Response Time
UNet	medium	medium-low	short
Multi-Out UNet	medium	medium	short
FCN ResNet	medium	medium	long
DeepLab ResNet	medium	medium	long

Reference

- [1] Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation.
- [2] Sun, Tao, et al. "Stacked U-Nets With Multi-Output for Road Extraction." CVPR Workshops. 2018.

