

TEMA 2. CRIPTOGRAFÍA T 2.6 FIRMA DIGITAL

Criptografía y seguridad informática Seguridad en las tecnologías de la información @ COSEC

Curso 2016-2017

Índice

- Introducción
- Propiedades
- Variantes
- Algoritmos:
 - DSS/ElGamal
 - RSA
- Representación y formatos
- Anexo

Definición según estándares

- ▶ [RFC 4949:2007]
 - Un valor calculado con un algoritmo criptográfico y que se asocia con un objeto de datos de tal manera que cualquier destinatario de los datos puede utilizar la firma para verificar el origen de los datos y la integridad
 - Norma ISO/IEC 7498-2:1989] Datos añadidos a un conjunto de datos, o transformación de éstos, que permiten al receptor probar el origen y la integridad de los datos recibidos, así como protegerlos contra falsificaciones
- ▶ [SP800-57:2007] El resultado de una transformación criptográfica de datos que, si se aplica correctamente, según la infraestructura y políticas, Ir ligada aun mensaje, si es voli de para uno proporciona los servicios de:
 - Autenticación del origen,
 - Integridad de los datos, y
 - No repudio del firmante

Universidad Carlos III de Madrid COSEC Lab · Dpto. Informática Solo piede ser exerita por la persono a la que legilieret
corresponde Publicaneule verificoste

Lo habitual es esor un enfrodor simetrico y una función resumen

novele paractro

Firma digital con clave pública

- Introducida por Diffie y Hellman en 1976
- Analogía electrónica de la firma manual
- Propiedades de una firma manual:
 - Fácil y barata de producir
 - Fácil de reconocer
 - Imposible de rechazar por el propietario
 - Infalsificable (teóricamente)
- La firma digital debería cumplir las mismas propiedades, pero:
 - No puede ser siempre la misma ya que sería fácilmente falsificable.

Propiedades de seguridad

- I. Autentica indubitablemente al signatario de una información.
- 2. Garantía de la **integridad** del mensaje recibido al imposibilitar su modificación fraudulenta.
- 3. Garantía de **no repudio**: medio de prueba en la resolución de disputas.

No asegura la confidencialidad.

Componentes

- Un esquema de firma digital comporta dos partes:
- Algoritmo de firma
- 2. Algoritmo de verificación de la firma

Firma digital: Determinista vs Aleatorio

- Un esquema de firma digital comporta dos partes:
- Algoritmo de firma
- 2. Algoritmo de verificación de la firma
- ▶ El algoritmo de firma puede ser:
 - Determinista: Dos firmas del mismo mensaje producen el mismo resultado (por ejemplo, las firmas basadas en el algoritmo RSA)
 - Aleatoria: dependiente de un conjunto de índices (por ejemplo las basadas en el algoritmo ElGamal)

Firma digital: Tipos (clasificación "local")

- TIPO I: La firma se vuelca en un apéndice. Se denomina firma separada del mensaje o con apéndice (se envían el apéndice F y M)
 - TIPO II: La firma está integrada en el propio mensaje transformado. Se denomina firma con recuperación del mensaje a partir de la firma (se envía Fúnicamente)
 - TIPO III: Esquema de firma con recuperación del mensaje transformado en esquema de firma separada con ayuda de una función resumen
 - ▶ Otros modelos (Basada en MAC con clave secreta, Firma opaca...)

Firma digital: Separada del mensaje

- TIPO I: La firma se vuelca en un apéndice. Se denomina firma separada del mensaje o con apéndice (se envían el apéndice F y M)
 - DSA y ElGamal 4 Aprendico Lamensaje
 - Requieren el mensaje original como entrada para la verificación de la firma
 - Se aplica al mensaje original una función resumen antes de firmar

Firma separada del mensaje

- Tipo I
- Protocolo de firma digital con apéndice F de un mensaje M:
 - Obtener el comprimido resumen R=H(M) y su firma F=S(R)(obtenida con el algoritmo de firma S y la clave privada del remitente K_A,
 - Enviar el par (M, F)
 - El receptor calcula R' = H(M) a partir del primer elemento del par (el mensaje M)
 - El receptor evalúa la validez de la firma recibida ejecutando el algoritmo de verificación de firma V con la clave pública del remitente K_{Au} y a partir del resumen calculado R' y la firma recibida F. Se acepta el mensaje si el resultado del algoritmo es verdadero y se rechaza en caso contrario

Firma separada del mensaje

$$R=H(M)$$
 $F=S(K_{Av}, R)$

Mensaje cifrado con firma separada

Firma digital: Con recuperación del mensaje

- TIPO II: La firma está integrada en el propio mensaje transformado. Se denomina firma con recuperación del mensaje a partir de la firma (se envía F únicamente)
 - RSA
 - El mensaje original se recupera durante el proceso de verificación de la firma

Firma con recuperación del mensaje

Tipo II

- Protocolo de firma digital con recuperación del mensaje M:
 - Obtener la firma F=S(M) (obtenida con la clave privada del remitente K_{Av})
 - 2. Enviar F
 - 3. El receptor calcula M a partir de F utilizando el algoritmo de verificación de firma V y la clave pública del remitente K_{Au}. Se acepta el mensaje si el resultado del algoritmo es correcto (el mensaje obtenido pertenece al espacio de mensajes permitidos)

Firma con recuperación del mensaje

$$F = S(K_{Av}, M)$$

Mensaje cifrado y firmado con esquema de firma con recuperación del mensaje

Si además de firmar, se necesita cifrar...

$$C = E(K_{Bu}, F) = E(K_{Bu}, S(K_{Av}, M))$$

Firma con recuperación del mensaje. Desventajas

- Las firmas con recuperación del mensaje tienen el inconveniente de tener que cifrar (dos veces si se desea garantizar secreto y autenticidad) todo el mensaje a autenticar, el cual puede ser muy largo, con clave pública (que es muy lenta)
- - Firma = concatenación de firmas
- No existe conexión entre los fragmentos No x sola si han llegado todos

 las Jroquenta y en coden correcto
 - El receptor no puede comprobar si han llegado todos y en orden correcto
- Hay que aplicar el algoritmo de firma n veces

Firma con recuperación del mensaje combinada con función resumen

- TIPO III: Esquema de firma con recuperación del mensaje transformado en esquema de firma separada con ayuda de una función resumen
 - 1. Obtener el resumen R = H(M) del mensaje M
 - 2. Firmar R con la clave privada del emisor $F = S(R, K_{Av})$
 - 3. A envía a B: (M, F)
 - 4. El receptor calcula el resumen del mensaje por dos caminos distintos:
 - R' = H(M)
 - 2. $R'' = V(K_{Au}, F)$
 - 5. El receptor compara R' con R'', aceptando el mensaje si coinciden y rechazándolo en caso contrario

Firma con recuperación del mensaje combinada con función resumen

$$R=H(M)$$
 $F=S(k_{\Delta v}, R)$

Firma opaca

- Permiten a una entidad A conseguir que otra B (cierta autoridad) firme un mensaje M sin que en el proceso B pueda conocer el contenido de M
- Pasos
 - A envía el mensaje M, encubierto, al Notario N, quien lo firma y remite a A
 - A invierte el encubrimiento y dispone del mensaje M firmado
 - El notario no ha conocido M
 - El encubrimiento debe ser compatible con el algoritmo de firma

Tipos de ataques

- El objetivo para un atacante a un proceso de firma digital es crear firmas que sean aceptadas como válidas.
 - Potura total: El atacante posee un algoritmo de firma funcionalmente equivalente al auténtico.
 - Rotura selectiva: El atacante es capaz de forjar una firma para un tipo particular de mensaje.
 - Rotura existencial: El atacante es capaz de forjar una firma para al menos un mensaje.

Algoritmos

- ▶ ElGamal (DSA, DSS)
 - Tipo I
- RSA
 - ▶ Tipo II
 - ▶ Tipo III

Firma digital ElGamal Sepural Fy M

- El NIST (National Institute of Standards and Technology) propone en 1991 el DSA (Digital Signature Algorithm), una variante de los algoritmos de ElGamal y Schnoor (problemas de autoría). En 1994 aparece el DSS (Digital Signature Standard) nombre dado por el NIST a su primer algoritmo DSA
- Esquema de firma digital aleatorio y con apéndice (separada del mensaje) (TIPO I):
- Inicialización:
 - ▶ Se ha elegido un primo adecuado p (con p ~ 200 bits) y un elemento primitivo g (generador de CG(p))
 - El firmante elige una clave secreta x_A , $I < x_A < p I$ y hace pública $y_A \equiv g^{XA}$ (mód. p)

Firma digital ElGamal

- Creación de la firma por A
 - A, con claves $x_A = y_A = g^{XA} \mod p$, para firmar M (ver Nota) elige un entero k (coprimo con p-1) y calcula la firma, el par (r,s):
 - $r = g^k \pmod{p}$
 - $> s = (M x_A.r) \cdot k^{-1} \text{ mód. (p 1)}$

 $M = x_A \cdot r + k \cdot s \pmod{p-1}$

- A envía a B: (M, r, s)
- Verificación de la firma por B
 - B, recibidos M y (r, s), acepta la firma si coinciden las dos expresiones:

 Debe concer η, η, ρ
 - $V_1 = y_A^r \cdot r^s \pmod{p}$
 - $V_2=g^M \text{ (mód. p)}$

Ejemplo Firma digital ElGamal

- Calcular y verificar la firma, mediante El Gamal, del mensaje M=5, con g=2, p=11, $x_A=8$, y k=9.
- Primero se comprueba:
 - g es raíz primitiva de CG(p)

 - $| < k < p 1 \rightarrow | < 9 < 10$
- $M = x_A \cdot r + k \cdot s \pmod{p-1}$
 - $r = g^k \text{ (mód. p)} = 2^9 \text{ mod } 11 = 6$
 - \rightarrow s=(M x_A . r) · k⁻¹ mód. (p 1)
 - $k^{-1} \mod (p-1) = 9^{-1} \mod 10 = 9$
 - \rightarrow s= (5 8 · 6) · 9 mod 10 = **3** mód 10
 - ▶ El emisor envía entonces (M, r, s): (5,6,3)

Ojo, el ejemplo no considera la aplicación de la función resumen sobre el mensaje

Ejemplo Firma digital ElGamal (cont.)

Verificamos la firma:

- $V_1 = y_A^r \cdot r^s \pmod{p}$;
- $y_A = g^{\times A} \text{ (mod p)} = 2^8 \text{ (mod II)} = 3 \text{ mod II}$
- $V_1 = y_A^r \cdot r^s \pmod{p} = 3^6 \cdot 6^3 \pmod{11} = 32 \mod 11 = 10$
- $V_2 = g^M \pmod{p} = 2^5 \pmod{11} = 10$

Como V_1 y V_2 coinciden, la firma es válida.

Firma digital con RSA (tipo II)

- Esquema de firma digital determinista y recuperación del mensaje (TIPO II):
 - Alicia guiere mandar un mensaje firmado a Benito:
 - Alicia crea una clave pública e (o $K_{A_{IJ}}$) y una privada d (o $K_{A_{V}}$)
 - 2. Generación de la firma:
- Alicia cifra el mensaje con su clave privada $F=D_{RSA}(M, d)$
 - 3. Alicia envía F a Benito
- 4. Verificación de la firma:

 Benito obtiene el mensaje utilizando la clave pública de Alicia $M=E_{RSA}(M, e)$

Ejemplo Firma digital con RSA

Sea un sistema RSA con p=13 y q=19, donde se desea firmar digitalmente el mensaje M=10. Supóngase e=11.

- Comprobación inicial:
 - $N = p \cdot q = 13 \cdot 19 = 247$
 - $\phi(N)=12\cdot18=216$
 - \rightarrow I<e<N \rightarrow I<II<247 Cierto
 - ► Mcd (e, $\phi(N)$) = 1 \rightarrow Mcd (11, 216)=1 Cierto
 - py q números primos grandes Falso, pero nos vale para el ejercicio
- ▶ Primero necesitamos calcular la clave privada para poder firmar:
 - ▶ $d \cdot e = I \mod (\phi(N))$
 - ► $11 \cdot d = 1 \mod (216)$ -> por euclides modif. -> d = 59

Ejemplo Firma digital con RSA (cont.)

▶ Firma

► F=S(M)=M^d (mód. N)=10⁵⁹ (mód. 247)=212 (mód. 247)

Verificación:

M=V(F)=Fe (mód. N)=212¹¹(mód. 247) =10 (mód. 247)

Firma digital con RSA (tipo III)

- En la práctica se usa siempre transformado en firma digital con apéndice mediante la aplicación de una función resumen inicial al mensaje (TIPO III)
 - I. A genera la firma
 - \perp A obtiene el resumen R = H(M) del mensaje M
 - 2. A firma con su clave privada el resumen; $F = D_{RSA}(R, K_{VA})$
 - 2. A envía a B: (M, F)
 - 3. B verifica la firma
 - Obtiene R" aplicando el algoritmo de cifrado E_{RSA} sobre F con la clave pública K_{Au} : $R'' = E_{RSA} (K_{Au}, F)$
 - 2. A partir del M recibido, calcula el resumen de nuevo R'
 - 3. Compara R' con R"

Mensaje cifrado y firmado con RSA (tipo III)

- ▶ Para mantener la confidencialidad (envío del mensaje cifrado):
 - I. A obtiene el resumen R = H(M) del mensaje M
- $f_{\text{res}}^{\text{true}} = 2$. A firma con su clave privada el resumen: $F = D_{RSA}(K_{Av}, R)$
- decree 3. A cifra M con la clave pública del receptor B: $C = E_{RSA}(K_{uB}, M)$
 - 4. A envía a B: (C, F) = $(E_{RSA}(K_{uB}, M), D_{RSA}(K_{Av}, R))$
 - 5. B descifra el mensaje y verifica la firma
 - Descifrando C con su clave publica, por lo que obtiene M
 - 2. Aplica el algoritmo de cifrado de E_{RSA} sobre F con la clave pública del emisor, por lo que obtiene R' (serifica)
 - 3. A partir del M obtenido al descifrar C, calcula de nuevo el resumen R"
 - 4. Compara R' con R"

Formatos de firmas digitales

- Existen diferentes formatos para almacenar una firma digital.
- La mayoría encapsula en un sobre los datos, la identidad del firmante y la firma.
- Algunos ejemplos de formatos son:
 - ▶ Privacy-Enhanced Mail (PEM) RFC 1421
 - PKCS#7
 - ▶ S/MIME RFC 2634
 - ISO 9796-2
 - XMLDsig
 - XAdES

Formato de Sobre PKCS#7

- ▶ PKCS #7: Cryptographic Message Syntax Standard
 - Estándar desarrollado por RSA Laboratories Inc.
 - Define varios formatos de mensajes:
 - Data, EnvelopedData, SignedData, etc.

```
Solo datos Datos pera cifrodosifirmor Para autenticar
sin (confidencial)
```


PKCS#7 SignedData

Firma Digital XML

- XMLDSIG: Propuesta conjunta de estándar IETF/W3C
 - RFC 3075 y http://www.w3.org/Signature/
- Define un mecanismo para firmar:
 - Documentos XML
 - Fragmentos de un documento XML
- Proporciona tres métodos de firma:
 - "Wrapped", el formato de firma incluye el contenido. Contien les dutes
 - "Detached", la firma está separada del contenido esta separada del contenido
 - "Embedded", la firma es parte del contenido firmado
- El formato XMLDsig no requiere infraestructura de certificados
 - Se incluye información de la clave
 - Se reserva espacio para proporcionar información del certificado

Formato de Firma XMLDsig

</X509Data>

```
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
<element name="Signature" type="ds:SignatureType"/>
<complexType name="SignatureType">
    <sequence>
              <element ref="ds:SignedInfo"/>
              <element ref="ds:SignatureValue"/>
              <element ref="ds:KeyInfo" minOccurs="0"/>
              <element ref="ds:Object" minOccurs="0" maxOccurs="unbounded"/>
    </sequence>
    <attribute name="Id" type="ID" use="optional"/>
</complexType>
```

```
<signature wmlns="http://www.wl.org/2000/09/xmldsig#">
  <SignedInfo>
    <CanonicalizationMethod Algorithm="http://www.w3.org/TR/20007..." />
   <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig@rsa-shal"/>
    <Reference URI="#PurchaseOrder">
      CDigestMethod Algorithm="http://www.w3.org/2000/09/mldsig#shal" />
      <DigestValue>gZk+nkcGcWg5p1VxeFdcbJzQZJ0~</DigestValue>
    </Reference>
  </signedInfo>
  <SignatureValue>
   TWI 1xQ1UrcXBYcGel4Qx1Wo9Kq8Dep9t1WoT4SdeRT87GHD3dqb
  </SignatureValue>
  <KeyInfo>
     <X509Data>
      <X509SubjectName>CN-Alice Smith, STREET-742 Park Avenue,
        L-New York, ST-NY, C-US</X509SubjectName>
```

<X509Certificate> MIID5jCCA0+gA...IVN </X509Certificate>

ANEXO

Criptografia y seguridad informática Seguridad en las tecnologías de la información @ COSEC

Curso 2016-2017