Package 'NMcalc'

August 26, 2024

Title Basic Calculations for PK/PD Modeling
Version 0.0.4
Maintainer Philip Delff <philip@delff.dk></philip@delff.dk>
Description Essentials for PK/PD (pharmacokinetics/pharmacodynamics) such as area under the curve, (geometric) coefficient of variation, and other calculations that are not part of base R. This is not a noncompartmental analysis (NCA) package.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Imports stats, data.table
Suggests testthat, ggplot2
BugReports https://github.com/philipdelff/NMdata/issues Language en-US NeedsCompilation no Author Philip Delff [aut, cre] Repository CRAN Date/Publication 2024-08-26 18:00:02 UTC
Contents
CV CVInorm invlogit logit means quantbin seqlog signif2 trapez
Index

2 CVInorm

 CV

Calculate coefficient of variation of data

Description

Calculate coefficient of variation of data

Usage

```
CV(x, log = FALSE)
```

Arguments

```
x The data log If TRUE, the geometric coefficient of variation is calculated. This is sqrt(exp(var(log(x))-1).
```

Details

This function is intended to be used on data. For a log-normal THETA1*EXP(ETA(1)) 'Nonmem' parameter, do CV=sqrt(exp(OMEGA[1,1])-1).

Value

A numeric

Examples

```
set.seed(139)
x1 <- rnorm(1000,mean=5)
CV(x1)
CV(x1,log=TRUE)
x2 <- exp(x1)
CV(x2)
CV(x2,log=TRUE)</pre>
```

CVlnorm

CV of log-normal dist baed on omega parameters CV based variance like provided in Nonmem's OMEGA metrix.

Description

CV of log-normal dist baed on omega parameters CV based variance like provided in Nonmem's OMEGA metrix.

invlogit 3 Usage CVlnorm(omega) Arguments omega A variance as provided in diagonal om the Nonmem OMEGA matrix **Details** This is a very simple function. All it does is sqrt(exp(omega)-1). Value CV of the distribution (numeric) ${\tt invlogit}$ Inverse logit function Description Inverse logit function Usage

invlogit(x)

A numeric

a number to transform

Arguments

Χ

Value

See Also

logit

4 means

logit

Logit function

Description

Logit function

Usage

logit(x)

Arguments

Х

a number to transform

Value

A numeric

See Also

invlogit

means

calculate arithmetic or geometric mean and confidence intervals

Description

calculate arithmetic or geometric mean and confidence intervals

Usage

```
means(
    x,
    type = "arithmetic",
    na.rm = FALSE,
    z.rm = FALSE,
    ci = FALSE,
    dist.ci = "t",
    p.ci = 0.95,
    colnames = c("est", "ll", "ul"),
    format = "df"
)
```

quantbin 5

Arguments

X	vector to calculate the geometric mean of
type	type of mean or median. Default is arithmetic, geometric and median are available as well. Only first letters needed, so say "geo" or even "g" is enough.
na.rm	Remove NA's before doing calculations?
z.rm	removes zeros before calculation? Default is FALSE. Can only be TRUE if $type="geometric".$
ci	if TRUE, a data.frame including point estimate and confidence interval returned. If FALSE, a numeric representing the mean value returned.
dist.ci	The distribution to use for the confidence interval. Default and only supported is "t". If type=geometric, this is applied after transformation to gaussian.
p.ci	probability covered by confidence interval. Default is 0.95
colnames	If ci, this defines the column names of the resulting data frame. Default is c("est","ll","ul").
format	The format of the result. Possible values are df and num.

Value

If ci=FALSE, a numeric. If ci=TRUE, a data.frame.

Examples

```
x <- 1:100
means(x, type="arithmetic", ci=TRUE)
means(x, type="geometric", ci=TRUE)
means(x, type="median", ci=TRUE)
library(data.table)
## CRAN requires examples to run on a single thread
data.table::setDTthreads(1)
data.table(x=x)[,append(means(x,ci=TRUE),list(N=.N))]</pre>
```

quantbin

Bin observations by quantiles. Label by bin number or by interval.

Description

This is simple stuff, but I can never remember the exact quantile and findInterval/cut commands to use. quantiln finds quantiles using quantile and then assigns bins using either findInterval or cut.

Usage

```
quantbin(x, nbins, probs, label = "num", ...)
```

6 quantbin

Arguments

X	The observations
nbins	Number of bins to use
probs	Quantiles for construction of bins (optional). The default is to spread nbins quantiles equi-distantly across the observed values.
label	label="num" gives a numeric bin number (findInterval). label="interval" gives a character representation of the interval (cut).
	additional arguments passed to quantile.

Details

quantile uses stats::quantile for quantile estimation. Except for x and probs, all parameters can be controlled using na.rm and ... arguments. See ?stats::quantile for details.

na.rm=TRUE is needed for quantile to be able to estimate the distribution if x contains NA's. Notice, if na.rm=T, an NA element in x will still result in an NA element in return. If na.rm=F and there are NA's in x, all elements will be NA in result (quantiles cannot be determined, nor can the binning of x by those quantiles).

If data is not continuous, this method may not lead to balanced distributions.

Value

If label="num", integers. If label="interval", factors.

Examples

```
set.seed(134)
library(data.table)
## CRAN requires examples to run on a single thread
data.table::setDTthreads(1)
dt1 <- data.table(x=rnorm(n=1000))</pre>
dt1[,bin:=quantbin(x,nbins=4,label="num")]
dt1[,int:=quantbin(x,nbins=4,label="interval")]
## perfect - flat distribution
dt1[,.N,keyby=.(bin,int)]
dt2 <- data.table(x=c(rnorm(n=100000),NA))</pre>
dt2[,bin:=quantbin(x,nbins=4,label="num",na.rm=TRUE)]
dt2[,int:=quantbin(x,nbins=4,label="interval",na.rm=TRUE)]
## perfect - flat distribution
dt2[,.N,keyby=.(bin,int)]
unique(dt2[,.(bin,int)])[order(bin)]
## we may not get a flat distribution in case of discrete observations
dt3 <- data.table(x=c(sample(1:3,100,replace=TRUE)))</pre>
dt3[,bin:=quantbin(x,nbins=2,label="num",na.rm=TRUE)]
dt3[,int:=quantbin(x,nbins=2,label="interval",na.rm=TRUE)]
## Not a flat distribution
dt3[,.N,keyby=.(x,bin,int)]
```

seqlog 7

seqlog

Log-scale equidistant sequences

Description

Useful for generating sequences to be plotted on log scale. This is really simple - seq is run on from and to after log transformation, then the exponential is reported.

Usage

```
seqlog(from, to, length.out)
```

Arguments

from start of sequence
to end of sequence
length.out length of sequence

Value

A numeric vector.

Examples

```
df <- data.frame(x=seqlog(1,100,100))
df <- transform(df, y=x/(10+x))
## Not run:
library(ggplot2)
## the points are equidistant on the log x scale
ggplot(df,aes(x,y))+geom_point()+scale_x_log10()
## End(Not run)</pre>
```

signif2

round to fixed number of significant digits

Description

Even if theoretically correct, the built-in 'R' functions 'round' and 'signif' can be confusing (see examples). 'signif2' is a simple solution that can be used for reporting results consistently.

Usage

```
signif2(x, digits = 1, add, ...)
```

8 trapez

Arguments

x a numeric vector.
 digits number of significant digits to round to. Must be an integer larger than 0.
 add pad with zeros where digits>nchar(x[i]). Currently not used.
 additional arguments passed to formatC.

Value

A character vector.

Examples

```
x <- c(1.24e-4,1.1334e6,1.1,22.00000,10.00,1)
data.frame(x,s.3=signif(x,3),sc.3=as.character(signif(x,3)),s2.3=signif2(x,3))
signif2(c(.2,11.84),2)
## digits has no effect when x==0
signif2(0,1)
signif2(0,3)</pre>
```

trapez

trapezoidal area under the curve on linear scale

Description

This is a numerical integration of y with respect to x by the trapezoidal method on linear scale.

Usage

```
trapez(x, y, cum = FALSE, na.rm = FALSE)
```

Arguments

X	The vector to integrate y with respect to (typically TIME to get area under the curve).
У	The variable to integrate.
cum	Return the cumulative trapezoidal area under the curve? If false (default) a single number is returned. If true, a vector is returned. Notice, the vector is one element shorter than x and y.
na.rm	Remove indexes in x and y wherever x or y are NA.

Value

a numeric

Index

```
CV, 2
CVlnorm, 2
invlogit, 3
logit, 4
means, 4
quantbin, 5
seqlog, 7
signif2, 7
trapez, 8
```