Mini Lesson #2

Computer Number Systems & Recursive Functions

Octal & Hexadecimal Number System

Octal (Base 8)

The octal numeral system, characterized by a base 8 representation, uses the digits 0 through 7. In this system, a total of 8 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7) are used to construct different numbers. You call a number system with **base 8** an **octal number system**.

1	8	64	512	4096	32768	262144	2.1 × 10 ⁶	1.7×10^7	1.3 × 10 ⁸	1.1 × 10 ⁹
80	81	8 ²	8 ³	84	8 ⁵	86	87	88	8 ⁹	8 ¹⁰

[↑] Useful for when we convert from octal to decimal.

Counting in Octal

Counting in octal is like counting in decimal except you never use 8 and 9.

What do you think might come next?

Answer: 100!

When you want to multiply octals with each other, you have to convert them to decimal first and then multiply, and then convert it back to octal.

If you had 6×5 . In decimal that is still 6×5 . So that is 30 in decimal, and then you have to convert back to octal to get 36.

Converting from Octal to Decimal

Let's you are given the number $\mathbf{145}_8$ (Note: The '8' in the $\mathbf{145}_8$ is base 8, suggesting that this number is in octal).

- 1) Look at the rightmost digit first (5).
 - a) 5 is in the 8^0 place, so its value would be $5 \times 8^0 = 5$.
- 2) Look at the next digit after 5 (4).
 - a) 4 is in the 8^1 place, so its value would be $4 \times 8^1 = 32$.
- 3) Look at the leftmost digit (1).
 - a) 1 is in the 8^2 place, so its value would be $1 \times 8^2 = 64$.
- 4) Now add up all three numbers: 5 + 32 + 64 = 101.

Answer: 101₁₀

Converting from Decimal to Octal

Let's you are given the number 53_{10} .

- 1) Divide the decimal number 53 by 8.
 - a) $53 \div 8 = 6 \text{ r} \, \mathbf{5}$.
 - b) Another way to get remainder: 53 % 8 = 5
- 2) Divide the quotient (excluding the remainder) by 8 again.
 - a) $6 \div 8 = 0 \text{ r } 6$.
 - b) Alternative: 6 % 8 = 6
- 3) Take the last remainder you found and make it the leftmost digit.
 - a) 6_
- 4) Then include the other digit(s) in that order.
 - a) 65

Answer: 65₈

What is 1005_{10} in octal? What is 237_8 in decimal?

1005₁₀ (DECIMAL to OCTAL)

$$7 \times 8^0 = 7 \times 1 = 7$$

$$1005 \div 8 = 125 \text{ r}$$
 5
 $125 \div 8 = 15 \text{ r}$ 5
 $15 \div 8 = 1 \text{ r}$ 7

$$3 \times 8^1 = 3$$

$$2 \times 8^2 = 3$$

$$1 \div 8 = 0 \text{ r } \mathbf{1}$$
$$1 \rightarrow 7 \rightarrow 5 \rightarrow 5$$

$$237_8 \rightarrow 159_{10}$$

237_s (OCTAL to DECIMAL)

$$1005_{10} \rightarrow 1755_{8}$$
Answer: 1755₈

Answer: 159₁₀

What is 16₈ in binary? (Octal to Binary)

$$0 \rightarrow 0 \qquad 16 = 1 \text{ and } 6$$

$$1 \rightarrow 1 \qquad 1 \text{ (octal)} = 1 \text{ (binary)}$$

$$10 \rightarrow 2$$

$$6 (actal) = 110 (binary)$$

$11 \rightarrow 3$ **Answer: 1110**

Answer: 1110
$$\rightarrow$$
 4

$$101 \rightarrow 5$$

$$111 \rightarrow 7$$

$$1000 \rightarrow 10$$

Hexadecimal (Base 16)

The hexadecimal system, also referred to as hex, is a numerical system with a base value of 16. It uses 16 symbols, namely 0-9 and A-F, where each symbol represents a decimal value.

For example D in hex is equivalent to 13 in decimal.

Counting in Hex

0	В	16	21	2D	38	44	50	5B	66	71	7C	87	93	9F	AA	B7	C2
1	С	17	22	2E	39	45	51	5C	67	72	7D	88	94	Α0	AB	B8	C3
2	D	18	23	2F	3A	46	52	5D	68	73	7E	89	95	A1	AC AD	B9	C4
3	Ε	19	24	30	3B	47	53	5E	69	74	7F	A8		A2	AF	ВА	C5
4	F	1A	25	31		48	54	5F	6A	75	80	8B		А3	AF	BB	C 6
5	10	1B	26 27	32	2 E	49 4A	55		6B	76	81	8C 8D	98 99	A4	B0	BC	C 7
6	11	1C	28	33	3F		56	61	6C	77	82	8E	99 9A	A5	B1	BD	C8
7	12	1D	29	34						78	83	8F	9B	A6	B2 B3	BE	C 9
8	13	1E	2A	35	41		58	63	6E	79	84	90	9C	A7	B4	BF	CA
9	14	1F	2B	36	42	4E	59	64	6F	7A	85	91	9D	A8	B5	C0	СВ
Α	15	20	2C	37	43	4F	5A	65	70	7B	86	92	9E	A9	B6	C1	CC

Converting from Hex to Decimal (Multiplication)

Given 7C5.

- 1) What is 7 equal to in decimal?
 - a) 7 = 7
 - What is C equal to in decimal?
 - a) C = 12
- 3) What is 5 equal to in decimal?
 - a) 5 = 5
- 4) $5 \times 16^0 = 5$ $12 \times 16^1 = 192$
 - $7 \times 16^2 = 1792$
 - 1792 + 192 + 5 = 1989

Answer: 1989

U	U
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10

В

D

E

F

11

12

13

14

15

Λ

Converting from Decimal to Hex (Division)

Given 960₁₀.

- 1) Divide decimal number by 16.
 - a) $960 \div 16 = 60 \text{ r } \mathbf{0}$
- 2) Divide quotient by 16 till you get 0 as the quotient (excluding the remainder).
 - a) $60 \div 16 = 3 \text{ r} \, \mathbf{12}$
 - b) $3 \div 16 = 0 \text{ r } 3$
- 3) Convert the remainders to their corresponding hex value.
 - a) 0 = 0
 - b) 12 = C
 - c) 3 = 3
- 4) Put the last remainder you got as the first digit and continue: 3_ **Answer: 3C0**

Question 1: Convert 3A9B₁₆ to Octal

```
3A9B<sub>16</sub>
```

- Convert to decimal.
 - a) 3 = 3
 - A = 109 = 9
 - B = 11b) $11 \times 16^0 = 11$
 - $9 \times 16^1 = 144$ $10 \times 16^2 = 2560$

15003

- $3 \times 16^3 = 12288$

- Convert from decimal to octal.
 - $15003 \div 8 = 1875 \text{ r } 3$
 - b) $1875 \div 8 = 234 \text{ r } 3$
 - c) $234 \div 8 = 29 \text{ r } 2$
 - d) $29 \div 8 = 3 \text{ r} 5$
 - e) $3 \div 8 = 0 \text{ r } 3$
 - 35233

Answer: 35233₈

Question 2: Evaluate and express your answer in hex: $32_{8} + 1011_{2} + 352_{10} + AF_{16}$

$$32_8 + 1011_2 + 352_{10} + AF_{16}$$

$$32_8 1011_2 352_{10} AF_{16}$$

11

Already in decimal:
$$T$$

To decimal:
$$F = 15 \times 16^{0} = 15$$

$$2^{0} + 2^{1} + 2^{3}$$

1 + 2 + 8 = 11

$$A = 10 \times 16^1 = 160$$

175

To decimal:

 $2 \times 8^{0} = 2$

 $3 \times 8^1 = 24$

26

