Claims

- [01] 1. An electronic grip frame for a paintball marker, comprising:
 - a frame;

a trigger movably connected to the frame; the trigger being movable between a resting position and a firing position; the trigger including an optical interface portion, which is movable with the trigger, and a finger contact side and a rear side opposite thereof;

an optical sensor mounted onto the frame proximal to the optical interface portion of the trigger and being capable of sensing movement thereof;

an electrical output connected to the optical sensor; the electrical output being capable of generating a first electrical signal indicative of the trigger at the resting position and a second electrical signal indicative of the trigger at the firing position.

- [c2] 2. The electronic grip frame of Claim 1, wherein the optical interface portion of the trigger is a prong emanating therefrom.
- [03] 3. The electronic grip frame of Claim 2, wherein the prong emanates from the rear side of the trigger.

- [04] 4. The electronic grip frame of Claim 2, wherein the optical sensor includes a light emitter and a light detector to detect light from the light emitter; the optical sensor being capable of sensing a break in passage of light between the light emitter and the light detector; the prong being movable between a position not between the light emitter and the light detector and a position between the light emitter and the light detector.
- [c5] 5. The electronic grip frame of Claim 1, further comprising:a first adjustable stop connected to the trigger to limit positioning of the trigger relative to the frame when the trigger is in the resting position.
- [06] 6. The electronic grip frame of Claim 1, further comprising:
 a second adjustable stop connected to the trigger to limit positioning of the trigger relative to the frame when the trigger is in the firing position.
- [07] 7. The electronic grip frame of Claim 1, further comprising:
 means for biasing the trigger into the resting position.
- [08] 8. The electronic grip frame of Claim 7, wherein the means for biasing is a ferrous set screw mounted in the

- trigger and a magnet attached to the frame at a location aligned with the ferrous set screw.
- [09] 9. The electronic grip frame of Claim 1, wherein the frame and trigger are made of metal.
- [c10] 10. The electronic grip frame of Claim 1, wherein the frame and the trigger are made of plastic.
- [c11] 11. The electronic grip frame of Claim 1, wherein the trigger is pivotally connected to the frame.
- [c12] 12. An electronic grip frame for a paintball marker, comprising:

a frame;

a trigger movably connected to the frame; the trigger being movable between a resting position and a firing position; the trigger including a non-contact interface portion, which is movable with the trigger, and a finger contact side and a rear side opposite thereof; a non-contact sensor mounted onto the frame proximal to the non-contact interface portion of the trigger and being capable of sensing movement thereof; an electrical output connected to the non-contact sensor; the electrical output being capable of generating a first electrical signal indicative of the trigger at the resting position and a second electrical signal indicative of

- the trigger at the firing position.
- [c13] 13. The electronic grip frame of Claim 12, wherein the non-contact sensor is an optical sensor.
- [014] 14. The electronic grip frame of Claim 13, wherein the non-contact interface portion of the trigger is a prong emanating therefrom.
- [c15] 15. The electronic grip frame of Claim 14, wherein the prong emanates from the rear side of the trigger.
- [c16] 16. The electronic grip frame of Claim 14, wherein the optical sensor includes a light emitter and a light detector to detect light from the light emitter; the optical sensor being capable of sensing a break in passage of light between the light emitter and the light detector; the prong being movable between a position not between the light emitter and the light detector and a position between the light emitter and the light detector.
- [c17] 17. The electronic grip frame of Claim 12, further comprising:
 a first adjustable stop connected to the trigger to limit positioning of the trigger relative to the frame when the trigger is in the resting position.
- [c18] 18. The electronic grip frame of Claim 12, further com-

prising:

a second adjustable stop connected to the trigger to limit positioning of the trigger relative to the frame when the trigger is in the firing position.

- [c19] 19. The electronic grip frame of Claim 12, further comprising:means for biasing the trigger into the resting position.
- [020] 20. The electronic grip frame of Claim 18, wherein the means for biasing is a ferrous set screw mounted in the trigger and a magnet attached to the frame at a location aligned with the ferrous set screw.
- [c21] 21. The electronic grip frame of Claim 12, wherein the frame and trigger are made of metal.
- [c22] 22. The electronic grip frame of Claim 12, wherein the frame and the trigger are made of plastic.
- [c23] 23. The electronic grip frame of Claim 12, wherein the trigger is pivotally connected to the frame.
- [c24] 24. The electronic grip frame of Claim 12, further comprising:
 a microprocessor electrically connected to the electrical output of the non-contact sensor;
 a sear solenoid electrically connected to the micropro-

cessor;

a hammer mechanically connected to the sear solenoid: a pin valve mechanically connected to the hammer; and a source of gas fluidly connected to the pin valve.

[c25] 25. A method of firing a paintball marker, comprising the steps of:

providing a frame;

providing a movable trigger to the frame with the trigger being movable between a resting position and a firing position;

providing a non-contact interface portion on the trigger; providing a non-contact sensor mounted onto the frame proximal to the non-contact interface portion of the trigger and being capable of sensing movement thereof; providing an electrical output connected to the noncontact sensor; the electrical output being capable of generating a first electrical signal indicative of the trigger at the resting position and a second electrical signal indicative of the trigger at the firing position:

depressing the trigger;

sensing movement of the trigger to a firing position; and sending the second electrical signal indicating that the trigger is present in the firing position.

26. The method of Claim 25, wherein the non-contact [c26] sensor is an optical sensor.

- [c27] 27. The method of Claim 26, wherein the non-contact interface portion of the trigger is a prong emanating therefrom.
- [c28] 28. The method of Claim 27, wherein the prong emanates from the rear side of the trigger.
- [c29] 29. The method of Claim 27, wherein the step of sensing includes moving the prong in front of the optical sensor.
- [c30] 30. The method of Claim 25, wherein the frame and trigger are made of metal.
- [031] 31. The method of Claim 25, wherein the frame and the trigger are made of plastic.
- [c32] 32. The method of Claim 25, wherein the trigger is pivotally connected to the frame.
- [c33] 33. The method of Claim 25, further comprising the steps of:

 providing a microprocessor electrically connected to the electrical output of the non-contact sensor;

 providing a sear solenoid electrically connected to the microprocessor;

 providing a hammer mechanically connected to the sear solenoid;
 - providing a pin valve, with a pin, mechanically connected

to the hammer:

providing a source of gas fluidly connected to the pin valve:

providing a breech connected to the frame;

providing a paintball in the breech;

sending the electrical output of the non-contact sensor to the microprocessor;

initiating a firing cycle;

energizing the sear solenoid for a predetermined amount of time;

releasing the hammer;

impacting the hammer into the pin of the pin valve;

releasing the gas through the pin valve into the breech;

propelling the paintball.

and