Metody probabilistyczne

5. Zmienne losowe: wprowadzenie

Wojciech Kotłowski

Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/

31.10.2017

Motywacja

Często bardziej niż same zdarzenia losowe interesują nas pewne wartości liczbowe z nimi związane:

- Rzucamy n razy monetą, ale interesuje nas tylko liczba wyrzuconych orłów
- Rzucamy kostką aż do wyrzucenia szóstki; interesuje nas liczba wykonanych rzutów
- Strzelamy do tarczy na strzelnicy; interesuje nas nie tyle dokładna pozycja lotki na tarczy, co liczba zdobytych punktów
- Jaś i Małgosia umawiają się na spotkanie; interesuje nas czas oczekiwana na siebie

Interesuje więc nas nie tyle przestrzeń Ω , co pewne wartości z $\mathbb R$ przypisane zdarzeniom elementarnym

Zmienne losowe

Zmienne losowe to funkcje z Ω do \mathbb{R} , przyporządkowujące zdarzeniom elementarnym liczby.

W probabilistyce zmienne losowe oznacza się dużymi literami, np. $X,\,Y,\,Z.$

Zmienne losowe

Zmienne losowe to funkcje z Ω do \mathbb{R} , przyporządkowujące zdarzeniom elementarnym liczby.

W probabilistyce zmienne losowe oznacza się dużymi literami, np. X,Y,Z.

Interesują nas tylko wartości przyjmowane przez X oraz ich prawdopodobieństwa

Rzucamy 3 monetami, ale interesuje nas tylko liczba orłów:

 $\Omega = \{\textit{OOO}, \textit{OOR}, \textit{ORO}, \textit{ORR}, \textit{ROO}, \textit{ROR}, \textit{RRO}, \textit{RRR}\}$

Rzucamy 3 monetami, ale interesuje nas tylko liczba orłów:

$$\Omega = \{OOO, OOR, ORO, ORR, ROO, ROR, RRO, RRR\}$$

$$X: \Omega \rightarrow \{0, 1, 2, 3\}$$

$$X(OOO) = 3, \quad X(OOR) = 2, \quad X(ORO) = 2, \quad X(ORR) = 1,$$

$$X(ROO) = 2, \quad X(ROR) = 1, \quad X(RRO) = 1, \quad X(RRR) = 0$$

Rzucamy 3 monetami, ale interesuje nas tylko liczba orłów:

$$\Omega = \{OOO, OOR, ORO, ORR, ROO, ROR, RRO, RRR\}$$

$$X \colon \Omega \to \{0, 1, 2, 3\}$$

$$X(OOO) = 3, \quad X(OOR) = 2, \quad X(ORO) = 2, \quad X(ORR) = 1,$$

$$X(ROO) = 3$$
, $X(OOR) = 2$, $X(ORO) = 2$, $X(ORO) = 1$
 $X(ROO) = 2$, $X(RRO) = 1$, $X(RRO) = 1$, $X(RRR) = 0$

Każdy wynik X = 0, 1, 2, 3 jest związany z pewnym zdarzeniem w Ω :

- $\{\omega : X(\omega) = 3\} = \{OOO\}$
- $\{\omega : X(\omega) = 2\} = \{OOR, ORO, ROO\}$
- $\{\omega \colon X(\omega) = 1\} = \{ORR, ROR, RRO\}$
- $\{\omega : X(\omega) = 0\} = \{RRR\}$

Rzucamy 3 monetami, ale interesuje nas tylko liczba orłów:

$$\Omega = \{OOO, OOR, ORO, ORR, ROO, ROR, RRO, RRR\}$$

$$X: \Omega \rightarrow \{0,1,2,3\}$$

$$X(OOO) = 3, \quad X(OOR) = 2, \quad X(ORO) = 2, \quad X(ORR) = 1,$$

$$X(ROO) = 2, \quad X(ROR) = 1, \quad X(RRO) = 1, \quad X(RRR) = 0$$

Każdy wynik X = 0, 1, 2, 3 jest związany z pewnym zdarzeniem w Ω :

- $\{\omega : X(\omega) = 3\} = \{OOO\}$
- $\{\omega : X(\omega) = 2\} = \{OOR, ORO, ROO\}$
- $\{\omega \colon X(\omega) = 1\} = \{ORR, ROR, RRO\}$
- $\{\omega : X(\omega) = 0\} = \{RRR\}$

Możemy zatem zapytać o prawdopodobieństwo uzyskania danego wyniku.

np.
$$P(\{\omega : X(\omega) = 2\}) = \frac{3}{8}$$

Rzucamy 3 monetami, ale interesuje nas tylko liczba orłów:

$$\Omega = \{OOO, OOR, ORO, ORR, ROO, ROR, RRO, RRR\}$$

$$X \colon \Omega \to \{0, 1, 2, 3\}$$

$$X(OOO) = 3$$
, $X(OOR) = 2$, $X(ORO) = 2$, $X(ORR) = 1$, $X(ROO) = 2$, $X(RRR) = 0$

Każdy wynik X = 0, 1, 2, 3 jest związany z pewnym zdarzeniem w Ω :

- $\{\omega : X(\omega) = 3\} = \{OOO\}$
- $\{\omega : X(\omega) = 2\} = \{OOR, ORO, ROO\}$
- $\{\omega \colon X(\omega) = 1\} = \{ORR, ROR, RRO\}$
- $\{\omega : X(\omega) = 0\} = \{RRR\}$

używamy skróconego zapisu P(X = 2)

Możemy zatem zapytać o prawdopodobieństwo uzyskania danego wyniku.

np.
$$P(\{\omega : X(\omega) = 2\}) = \frac{3}{8}$$

Rzucamy 3 monetami, ale interesuje nas tylko liczba orłów:

$$\Omega = \{000, 00R, 0R0, 0RR, R00, R0R, RR0, RRR\}$$

$$X: \Omega \to \{0, 1, 2, 3\}$$

$$X(OOO) = 3$$
, $X(OOR) = 2$, $X(ORO) = 2$, $X(ORR) = 1$, $X(ROO) = 2$, $X(RRO) = 1$, $X(RRO) = 1$, $X(RRO) = 0$

Każdy wynik X = 0, 1, 2, 3 jest związany z pewnym zdarzeniem w Ω :

- $\{\omega : X(\omega) = 3\} = \{000\}$
- $\{\omega : X(\omega) = 2\} = \{OOR, ORO, ROO\}$
- $\{\omega : X(\omega) = 1\} = \{ORR, ROR, RRO\}$
- $\{\omega : X(\omega) = 0\} = \{RRR\}$

używamy skróconego zapisu P(X=2)

Możemy zatem zapytać o prawdopodobieństwo uzyskania danego wyniku.

np.
$$P(\{\omega : X(\omega) = 2\}) = \frac{3}{8}$$

Podobnie możemy spytać o dowolny podzbiór wyników, np:

$$P(X \le 1) = P(\{RRR, ORR, ROR, RRO\}) = \frac{4}{8}$$

$$\Omega = \{(i,j) : i,j \in \{1,2,3,4,5,6\}\} = \{(1,1),(1,2),\ldots,(6,5),(6,6)\}$$

$$\Omega = \{(i,j): i,j \in \{1,2,3,4,5,6\}\} = \{(1,1),(1,2),\ldots,(6,5),(6,6)\}$$

$$X: \Omega \to \{2,3,\ldots,12\}$$

$$X(i,j) = i+j$$

$$\Omega = \{(i,j) : i,j \in \{1,2,3,4,5,6\}\} = \{(1,1),(1,2),\ldots,(6,5),(6,6)\}$$

$$X : \Omega \to \{2,3,\ldots,12\}$$

$$X(i,j) = i+j$$

•
$$P(X = 3) = P(\{\omega : X(\omega) = 3\}) = P(\{(1,2),(2,1)\}) = \frac{2}{36}$$

Rzucamy 2 kostkami, interesuje nas suma oczek

$$\Omega = \{(i,j): i,j \in \{1,2,3,4,5,6\}\} = \{(1,1),(1,2),\ldots,(6,5),(6,6)\}$$

$$X: \Omega \to \{2,3,\ldots,12\}$$

$$X(i,j) = i+j$$

•
$$P(X = 3) = P(\{\omega : X(\omega) = 3\}) = P(\{(1,2),(2,1)\}) = \frac{2}{36}$$

•
$$P(9 \le X \le 11) = P(X = 9) + P(X = 10) + P(X = 11) = \frac{4+3+2}{36}$$

5 / 40

$$\Omega = \{(i,j): i,j \in \{1,2,3,4,5,6\}\} = \{(1,1),(1,2),\ldots,(6,5),(6,6)\}$$

$$X: \Omega \to \{2,3,\ldots,12\}$$

$$X(i,j) = i+j$$

- $P(X = 3) = P(\{\omega : X(\omega) = 3\}) = P(\{(1,2),(2,1)\}) = \frac{2}{36}$
- $P(9 \le X \le 11) = \underbrace{P(X = 9) + P(X = 10) + P(X = 11)}_{\text{zdarzenia rozłączne}} = \underbrace{\frac{4+3+2}{36}}$

•
$$P(X < 5) = P(X = 2) + P(X = 3) + P(X = 4) = \frac{1+2+3}{36}$$

Rzucamy n nieuczciwymi monetami, w których orzeł wypada z prawd. p, a reszka z praw. 1-p; interesuje nas tylko liczba orłów

$$\Omega = \{\omega = (b_1, \dots, b_n) \colon b_i \in \{0, 1\}\}$$
$$X \colon \Omega \to \{0, 1, \dots, n\}$$

Rzucamy n nieuczciwymi monetami, w których orzeł wypada z prawd. p, a reszka z praw. 1-p; interesuje nas tylko liczba orłów

$$\Omega = \{\omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\}\}$$
 $X \colon \Omega \to \{0, 1, \ldots, n\}$
 $X((b_1, \ldots, b_n)) =$

Rzucamy n nieuczciwymi monetami, w których orzeł wypada z prawd. p, a reszka z praw. 1-p; interesuje nas tylko liczba orłów

$$\Omega = \{\omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\}\}$$

$$X \colon \Omega \to \{0, 1, \ldots, n\}$$

$$X((b_1, \ldots, b_n)) = b_1 + b_2 + \ldots + b_n$$

Rzucamy n nieuczciwymi monetami, w których orzeł wypada z prawd. p, a reszka z praw. 1-p; interesuje nas tylko liczba orłów

$$\Omega = \{\omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\}\}$$
 $X \colon \Omega \to \{0, 1, \ldots, n\}$
 $X((b_1, \ldots, b_n)) = b_1 + b_2 + \ldots + b_n$
 $P(X = k) =$

Rzucamy n nieuczciwymi monetami, w których orzeł wypada z prawd. p, a reszka z praw. 1-p; interesuje nas tylko liczba orłów

$$\Omega = \{\omega = (b_1, \dots, b_n) \colon b_i \in \{0, 1\}\}$$
 $X \colon \Omega \to \{0, 1, \dots, n\}$
 $X((b_1, \dots, b_n)) = b_1 + b_2 + \dots + b_n$
 $P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), (4,2,6), (5,5,2,4,3,6), \dots$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), (4,2,6), (5,5,2,4,3,6), \dots$$

$$\Omega = \{\omega = (b_1, \dots, b_k) \colon b_i \in \{1, \dots, 5\} \text{ dla } i < k, \ b_k = 6, \ k = 1, 2, \dots \}$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), (4,2,6), (5,5,2,4,3,6), \dots$$

$$\Omega = \{ \omega = (b_1, \dots, b_k) \colon b_i \in \{1, \dots, 5\} \text{ dla } i < k, \ b_k = 6, \ k = 1, 2, \dots \}$$

$$X:\Omega \to \{1,2,\ldots\}$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), (4,2,6), (5,5,2,4,3,6), \dots$$

$$\Omega = \{\omega = (b_1, \dots, b_k) \colon b_i \in \{1, \dots, 5\} \text{ dla } i < k, b_k = 6, k = 1, 2, \dots\}$$

$$X:\Omega \to \{1,2,\ldots\}$$

$$X(b_1,\ldots,b_k) =$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), (4,2,6), (5,5,2,4,3,6), \dots$$

$$\Omega = \{ \omega = (b_1, \dots, b_k) \colon b_i \in \{1, \dots, 5\} \text{ dla } i < k, \ b_k = 6, \ k = 1, 2, \dots \}$$

$$X: \Omega \rightarrow \{1, 2, \ldots\}$$

$$X(b_1,\ldots,b_k) = k$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), \ (4,2,6), \ (5,5,2,4,3,6) \ , \ldots$$
 $\Omega = \{\omega = (b_1,\ldots,b_k)\colon b_i \in \{1,\ldots,5\} \ {\sf dla} \ i < k, \ b_k = 6, \ k = 1,2,\ldots\}$ $X\colon \Omega \to \{1,2,\ldots\}$

$$X(b_1,\ldots,b_k) = k$$

$$P(X = 1) =$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), \ (4,2,6), \ (5,5,2,4,3,6) \ , \ldots$$
 $\Omega = \{\omega = (b_1,\ldots,b_k)\colon b_i \in \{1,\ldots,5\} \ {\sf dla} \ i < k, \ b_k = 6, \ k = 1,2,\ldots\}$ $X\colon \Omega \to \{1,2,\ldots\}$

$$X(b_1,\ldots,b_k) = k$$

$$P(X=1) = \frac{1}{6},$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), \ (4,2,6), \ (5,5,2,4,3,6) \ , \dots$$

$$\Omega = \{\omega = (b_1,\dots,b_k) \colon b_i \in \{1,\dots,5\} \ \text{dla} \ i < k, \ b_k = 6, \ k = 1,2,\dots\}$$

$$X \colon \Omega \to \{1,2,\dots\}$$

$$X(b_1,\ldots,b_k) = k$$

$$P(X=1) = \frac{1}{6}, \qquad P(X=2) =$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), \ (4,2,6), \ (5,5,2,4,3,6) \ , \ldots$$
 $\Omega = \{\omega = (b_1,\ldots,b_k)\colon b_i \in \{1,\ldots,5\} \ {\sf dla} \ i < k, \ b_k = 6, \ k = 1,2,\ldots\}$ $X\colon \Omega \to \{1,2,\ldots\}$

$$X(b_1,\ldots,b_k) = k$$

$$P(X = 1) = \frac{1}{6}, \qquad P(X = 2) = \frac{5}{6} \cdot \frac{1}{6},$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), (4,2,6), (5,5,2,4,3,6), \dots$$

$$\Omega = \{\omega = (b_1, \dots, b_k) : b_i \in \{1, \dots, 5\} \text{ dla } i < k, b_k = 6, k = 1,2,\dots\}$$

$$X : \Omega \to \{1,2,\dots\}$$

$$X(b_1, \dots, b_k) = k$$

$$P(X = 1) = \frac{1}{6}, \qquad P(X = 2) = \frac{5}{6} \cdot \frac{1}{6}, \qquad P(X = 3) = \frac{1}{6}$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), \ (4,2,6), \ (5,5,2,4,3,6) \ , \ldots$$
 $\Omega = \{\omega = (b_1,\ldots,b_k)\colon b_i \in \{1,\ldots,5\} \ {\sf dla} \ i < k, \ b_k = 6, \ k = 1,2,\ldots\}$ $X\colon \Omega \to \{1,2,\ldots\}$

$$X(b_1,\ldots,b_k) = k$$

$$P(X = 1) = \frac{1}{6}, \qquad P(X = 2) = \frac{5}{6} \cdot \frac{1}{6}, \qquad P(X = 3) = \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}$$

Rzucamy kostką aż do wyrzucenia szóstki, interesuje nas tylko liczba rzutów

$$(1,6), (4,2,6), (5,5,2,4,3,6), \dots$$

$$\Omega = \{\omega = (b_1, \dots, b_k) \colon b_i \in \{1, \dots, 5\} \text{ dla } i < k, b_k = 6, k = 1,2,\dots\}$$

$$X:\Omega \to \{1,2,\ldots\}$$

$$X(b_1,\ldots,b_k) = k$$

$$P(X = 1) = \frac{1}{6},$$
 $P(X = 2) = \frac{5}{6} \cdot \frac{1}{6},$ $P(X = 3) = \frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}$

$$P(X=k) = \left(\frac{5}{6}\right)^{k-1} \cdot \frac{1}{6}$$

Rzucamy lotką do tarczy, ale interesuje nas tylko liczba zdobytych punktów

Zakładamy model prawdopodobieństwa geometrycznego

• $\Omega = K(0,10) = \{(x,y) : \sqrt{x^2 + y^2} \le 10\}$

Rzucamy lotką do tarczy, ale interesuje nas tylko liczba zdobytych punktów

Zakładamy model prawdopodobieństwa geometrycznego

- $\Omega = K(0,10) = \{(x,y) : \sqrt{x^2 + y^2} \le 10\}$
- $X: \Omega \rightarrow \{1, 2, \ldots, 10\}$

Rzucamy lotką do tarczy, ale interesuje nas tylko liczba zdobytych punktów

Zakładamy model prawdopodobieństwa geometrycznego

- $\Omega = K(0,10) = \{(x,y) : \sqrt{x^2 + y^2} \le 10\}$
- $X: \Omega \to \{1, 2, ..., 10\}$
- X(x,y) = 1 jeśli $9 \leqslant \sqrt{x^2 + y^2} \leqslant 10$

Rzucamy lotką do tarczy, ale interesuje nas tylko liczba zdobytych punktów

Zakładamy model prawdopodobieństwa geometrycznego

•
$$\Omega = K(0,10) = \{(x,y) : \sqrt{x^2 + y^2} \le 10\}$$

•
$$X: \Omega \to \{1, 2, \dots, 10\}$$

•
$$X(x,y) = 1$$
 jeśli $9 \le \sqrt{x^2 + y^2} \le 10$

•
$$X(x,y) = 2$$
 jeśli $8 \leqslant \sqrt{x^2 + y^2} \leqslant 9$

Rzucamy lotką do tarczy, ale interesuje nas tylko liczba zdobytych punktów

Zakładamy model prawdopodobieństwa geometrycznego

- $\Omega = K(0,10) = \{(x,y) : \sqrt{x^2 + y^2} \le 10\}$
- $X: \Omega \to \{1, 2, \dots, 10\}$
- X(x,y) = 1 jeśli $9 \le \sqrt{x^2 + y^2} \le 10$
- X(x,y) = 2 jeśli $8 \le \sqrt{x^2 + y^2} \le 9$
- X(x,y) = k jeśli $10-k \le \sqrt{x^2 + y^2} \le 11-k$

Rzucamy lotką do tarczy, ale interesuje nas tylko liczba zdobytych punktów

Zakładamy model prawdopodobieństwa geometrycznego

- $\Omega = K(0,10) = \{(x,y) : \sqrt{x^2 + y^2} \le 10\}$
- $X: \Omega \to \{1, 2, \dots, 10\}$
- X(x,y) = 1 jeśli $9 \le \sqrt{x^2 + y^2} \le 10$
- X(x,y) = 2 jeśli $8 \le \sqrt{x^2 + y^2} \le 9$
- X(x,y) = k jeśli $10-k \le \sqrt{x^2 + y^2} \le 11-k$

$$P(X = k) = \frac{|K(0, 11 - k)| - |K(0, 10 - k)|}{|K(0, 10)|}$$

Rzucamy lotką do tarczy, ale interesuje nas tylko liczba zdobytych punktów

Zakładamy model prawdopodobieństwa geometrycznego

- $\Omega = K(0,10) = \{(x,y) : \sqrt{x^2 + y^2} \le 10\}$
- $X: \Omega \to \{1, 2, \dots, 10\}$
- X(x,y) = 1 jeśli $9 \le \sqrt{x^2 + y^2} \le 10$
- X(x,y) = 2 jeśli $8 \le \sqrt{x^2 + y^2} \le 9$
- X(x,y) = k jeśli $10-k \le \sqrt{x^2 + y^2} \le 11-k$

$$P(X = k) = \frac{|K(0, 11 - k)| - |K(0, 10 - k)|}{|K(0, 10)|}$$
$$= \frac{\pi(11 - k)^2 - \pi(10 - k)^2}{100\pi} = \frac{21 - 2k}{100}$$

Jaś i Małgosia przychodzą na spotkanie w losowym czasie między 10:00 a 11:00. Interesuje nas tylko czas oczekiwania na siebie.

Zdarzenia elementarne: pary (j, m) określające czas przybycia Jasia i Małgosi licząc od 10:00; $\Omega = [0, 60] \times [0, 60]$

Jaś i Małgosia przychodzą na spotkanie w losowym czasie między 10:00 a 11:00. Interesuje nas tylko czas oczekiwania na siebie.

Zdarzenia elementarne: pary (j, m) określające czas przybycia Jasia i Małgosi licząc od 10:00; $\Omega = [0, 60] \times [0, 60]$

$$X(j,m) = |j-m|$$

Jaś i Małgosia przychodzą na spotkanie w losowym czasie między 10:00 a 11:00. Interesuje nas tylko czas oczekiwania na siebie.

Zdarzenia elementarne: pary (j, m) określające czas przybycia Jasia i Małgosi licząc od 10:00; $\Omega = [0, 60] \times [0, 60]$

$$X(j,m) = |j-m|$$

Wyznaczmy P(X < a) dla dowolnego $a \in [0, 60]$

Zdarzenie $\{X < a\} = \{(j, m) \in \Omega \colon |j - m| < a\}$ oznaczone kolorem czerwonym

$$P(X < a) = 1 - P(X \ge a)$$

$$= 1 - \frac{(60 - a) \cdot (60 - a)}{60 \cdot 60}$$

$$= \frac{a}{30} - \left(\frac{a}{60}\right)^{2}$$

$$P(X \in A) = P(\{\omega : X(\omega) \in A\})$$

Prawdopodobieństwo zajścia zdarzenia w Ω , składającego się ze zdarzeń elementarnych $\omega \in \Omega$, dla których $X(\omega) \in A, \ A \subseteq \mathbb{R}$

$$P(X \in A) = P(\{\omega : X(\omega) \in A\})$$

Prawdopodobieństwo zajścia zdarzenia w Ω , składającego się ze zdarzeń elementarnych $\omega \in \Omega$, dla których $X(\omega) \in A$, $A \subseteq \mathbb{R}$

przeciwobraz

$$P(X \in A) = P(\{\omega : X(\omega) \in A\}) = P(X^{-1}(A))$$

Prawdopodobieństwo zajścia zdarzenia w Ω , składającego się ze zdarzeń elementarnych $\omega \in \Omega$, dla których $X(\omega) \in A$, $A \subseteq \mathbb{R}$

przeciwobraz

$$P(X \in A) = P(\{\omega : X(\omega) \in A\}) = P(X^{-1}(A))$$

$$P(X \in A) = P(X^{-1}(A))$$

Aby uniknąć zbiorów niemierzalnych, wyznaczamy $P(X \in A)$ tylko dla podzbiorów $A \in \mathcal{B}$, gdzie \mathcal{B} jest σ -ciałem zbiorów borelowskich na \mathbb{R}

$$P(X \in A) = P(X^{-1}(A))$$

Aby uniknąć zbiorów niemierzalnych, wyznaczamy $P(X \in A)$ tylko dla podzbiorów $A \in \mathcal{B}$, gdzie \mathcal{B} jest σ -ciałem zbiorów borelowskich na \mathbb{R}

Nadal może się jednak zdarzyć, że przeciwobraz $X^{-1}(A) \subseteq \Omega$ nie jest zdarzeniem, tzn. $X^{-1}(A) \notin \mathcal{F}$, gdzie \mathcal{F} to σ -ciało zdarzeń w Ω

$$P(X \in A) = P(X^{-1}(A))$$

Aby uniknąć zbiorów niemierzalnych, wyznaczamy $P(X \in A)$ tylko dla podzbiorów $A \in \mathcal{B}$, gdzie \mathcal{B} jest σ -ciałem zbiorów borelowskich na \mathbb{R}

Nadal może się jednak zdarzyć, że przeciwobraz $X^{-1}(A) \subseteq \Omega$ nie jest zdarzeniem, tzn. $X^{-1}(A) \notin \mathcal{F}$, gdzie \mathcal{F} to σ -ciało zdarzeń w Ω

Aby temu zapobiec, zakładamy, że jeśli $A \in \mathcal{B}$ (A jest zbiorem borelowskim), to $X^{-1}(A) \in \mathcal{F}$.

$$P(X \in A) = P(X^{-1}(A))$$

Aby uniknąć zbiorów niemierzalnych, wyznaczamy $P(X \in A)$ tylko dla podzbiorów $A \in \mathcal{B}$, gdzie \mathcal{B} jest σ -ciałem zbiorów borelowskich na \mathbb{R}

Nadal może się jednak zdarzyć, że przeciwobraz $X^{-1}(A) \subseteq \Omega$ nie jest zdarzeniem, tzn. $X^{-1}(A) \notin \mathcal{F}$, gdzie \mathcal{F} to σ -ciało zdarzeń w Ω

Aby temu zapobiec, zakładamy, że jeśli $A \in \mathcal{B}$ (A jest zbiorem borelowskim), to $X^{-1}(A) \in \mathcal{F}$.

Funkcje spełniające ten warunek nazywamy mierzalnymi.

$$P(X \in A) = P(X^{-1}(A))$$

Aby uniknąć zbiorów niemierzalnych, wyznaczamy $P(X \in A)$ tylko dla podzbiorów $A \in \mathcal{B}$, gdzie \mathcal{B} jest σ -ciałem zbiorów borelowskich na \mathbb{R}

Nadal może się jednak zdarzyć, że przeciwobraz $X^{-1}(A) \subseteq \Omega$ nie jest zdarzeniem, tzn. $X^{-1}(A) \notin \mathcal{F}$, gdzie \mathcal{F} to σ -ciało zdarzeń w Ω

Aby temu zapobiec, zakładamy, że jeśli $A \in \mathcal{B}$ (A jest zbiorem borelowskim), to $X^{-1}(A) \in \mathcal{F}$.

Funkcje spełniające ten warunek nazywamy mierzalnymi.

Z własności σ -ciała wynika, że wystarczającym warunkiem mierzalności jest, aby dla dowolnego przedziału $(-\infty,a]$ zachodziło $X^{-1}((-\infty,a]) \in \mathcal{F}$.

Definicja zmiennej losowej

Definicja

Zmienną losową nazywamy dowolną mierzalną funkcję $X: \Omega \to \mathbb{R}$

Rozkładem prawdopodobieństwa zmiennej losowej X nazywamy miarę prawdopodobieństwa P_X zdefiniowaną jako:

$$P_X(A) = P(X \in A) = P(X^{-1}(A))$$

dla dowolnego zbioru borelowskiego $A \in \mathcal{B}$

Zmienne losowe a odwzorowanie przestrzeni probabilistycznej

Zmienne losowe a odwzorowanie przestrzeni probabilistycznej

Mierzalność X gwarantuje, że każde zdarzenie w przestrzeni probabilistycznej $(\mathbb{R}, \mathcal{B}, P_X)$ jest przeciwobrazem pewnego zdarzenia w przestrzeni (Ω, \mathcal{F}, P) .

Dwie równoważne notacje

$$P_X(A) \iff P(X \in A)$$

$$P_X(\{a\}) \iff P(X = a)$$

$$P_X((-\infty, a]) \iff P(X \leqslant a)$$

$$P_X([a, b)) \iff P(a \leqslant X < b)$$

- Notacja niebieska dotyczy przestrzeni probabilistycznej $(\mathbb{R}, \mathcal{B}, P_X)$ indukowanej przez zmienną losową X
- Skrótowa notacja czerwona odwołuje się do bazowej przestrzeni probabilistycznej (Ω, \mathcal{F}, P) ; jest dużo wygodniejsza, stąd prawie zawsze będziemy jej używać

$$P_X(A) = P(X^{-1}(A))$$

$$P_X(A) = P(X^{-1}(A))$$

Własność 1.
$$P_X(A) = P(X^{-1}(A)) \ge 0$$

(wynika ze spełnialności własności 1 przez miarę P)

$$P_X(A) = P(X^{-1}(A))$$

Własność 1. $P_X(A) = P(X^{-1}(A)) \ge 0$ (wynika ze spełnialności własności 1 przez miarę P)

Własność 2.
$$P_X(\mathbb{R}) = P(X^{-1}(\mathbb{R})) = P(\Omega) = 1$$

$$P_X(A) = P(X^{-1}(A))$$

- Własność 1. $P_X(A) = P(X^{-1}(A)) \ge 0$ (wynika ze spełnialności własności 1 przez miarę P)
- Własność 2. $P_X(\mathbb{R}) = P(X^{-1}(\mathbb{R})) = P(\Omega) = 1$
- Własność 3. Dla dowolnego ciągu A_1, A_2, \ldots zdarzeń parami rozłącznych przeciwobrazy $X^{-1}(A_1), X^{-1}(A_2), \ldots$ są również parami rozłączne, zatem:

$$P_X(A_1 \cup A_2 \cup \ldots) = P(X^{-1}(A_1 \cup A_2 \cup \ldots))$$

$$\stackrel{(*)}{=} P(X^{-1}(A_1)) + P(X^{-1}(A_2)) + \ldots$$

$$= P_X(A_1) + P_X(A_2) + \ldots,$$

gdzie (*) wynika ze spełnialności własności 3 przez miarę P.

Dystrybuanta zmiennej losowej

Definicja

Dystrybuantą zmiennej losowej X nazywamy funkcję $F\colon \mathbb{R} \to \mathbb{R}$ zdefiniowaną jako:

$$F(x) = P_X((-\infty, x]) = P(X \le x)$$

Dystrybuanta zmiennej losowej

Definicja

Dystrybuantą zmiennej losowej X nazywamy funkcję $F\colon \mathbb{R} \to \mathbb{R}$ zdefiniowaną jako:

$$F(x) = P_X((-\infty, x]) = P(X \le x)$$

- Dystrybuanta jest funkcją niemalejącą
- Mamy $P(X \in (a, b]) = F(b) F(a)$
- $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$
- $F(\infty) = \lim_{x \to \infty} F(x) = 1$
- F(x) jest prawostronnie ciągła

 ω_{4}

 ω_5

$$P(X = x) \qquad \frac{1}{6}$$

$$\frac{1}{6}$$

$$\omega_2$$

$$\omega_6$$

$$\frac{1}{6}$$

3

<u>2</u>

 $\frac{1}{6}$

Przykład: losowanie punktu z odcinka

Zmienna losowa $X \in [0,1]$ jest zadana rozkładem prawdopodobieństwa:

$$P(X \in A) = |A|, \quad dla \quad A \subseteq [0,1]$$

gdzie |A| jest długością A (np. $P(X \in [a,b]) = b - a$)

Przykład: losowanie punktu z odcinka

Zmienna losowa $X \in [0,1]$ jest zadana rozkładem prawdopodobieństwa:

$$P(X \in A) = |A|, \quad dla \quad A \subseteq [0,1]$$

gdzie |A| jest długością A (np. $P(X \in [a, b]) = b - a)$

• Jeśli
$$x < 0$$
 to $F(x) = P(X \le x) = 0$

Przykład: losowanie punktu z odcinka

Zmienna losowa $X \in [0,1]$ jest zadana rozkładem prawdopodobieństwa:

$$P(X \in A) = |A|, \quad dla \quad A \subseteq [0,1]$$

gdzie |A| jest długością A (np. $P(X \in [a,b]) = b - a)$

- Jeśli x < 0 to $F(x) = P(X \le x) = 0$
- Jeśli $x \in [0,1]$ to $F(x) = \underbrace{P(X < 0)}_{=0} + \underbrace{P(X \in [0,x])}_{=x} = x$

Przykład: losowanie punktu z odcinka

Zmienna losowa $X \in [0,1]$ jest zadana rozkładem prawdopodobieństwa:

$$P(X \in A) = |A|, \quad dla \quad A \subseteq [0,1]$$

gdzie |A| jest długością A (np. $P(X \in [a, b]) = b - a$)

- Jeśli x < 0 to $F(x) = P(X \leqslant x) = 0$

• Jeśli
$$x \in [0,1]$$
 to $F(x) = \underbrace{P(X < 0)}_{=0} + \underbrace{P(X \in [0,x])}_{=x} = x$
• Jeśli $x > 1$ to $F(x) = \underbrace{P(X \leqslant 1)}_{=1} + \underbrace{P(X \in (1,x])}_{=0} = 1$

Przykład: losowanie punktu z odcinka

Zmienna losowa $X \in [0,1]$ jest zadana rozkładem prawdopodobieństwa:

$$P(X \in A) = |A|, \quad dla \quad A \subseteq [0,1]$$

gdzie |A| jest długością A (np. $P(X \in [a, b]) = b - a$)

- Jeśli x < 0 to $F(x) = P(X \le x) = 0$
- Jeśli $x \in [0,1]$ to $F(x) = \underbrace{P(X < 0)}_{=0} + \underbrace{P(X \in [0,x])}_{=x} = x$ Jeśli x > 1 to $F(x) = \underbrace{P(X \leqslant 1)}_{=1} + \underbrace{P(X \in (1,x])}_{=0} = 1$

Zmienną losową X przyjmującą co najwyżej przeliczalną liczbę możliwych wartości $\mathcal{X} = \{x_1, x_2, \ldots\}$ nazywamy zmienną dyskretną (typu skokowego)

Dla dowolnego $A \in \mathcal{B}$ zachodzi:

$$P_X(A) = P(X^{-1}(A)) = \sum_{i: x_i \in A} P(X^{-1}(x_i)) = \sum_{i: x_i \in A} P_X(\{x_i\})$$

Zmienną losową X przyjmującą co najwyżej przeliczalną liczbę możliwych wartości $\mathcal{X} = \{x_1, x_2, \ldots\}$ nazywamy zmienną dyskretną (typu skokowego)

Dla dowolnego $A \in \mathcal{B}$ zachodzi:

$$P_X(A) = P(X^{-1}(A)) = \sum_{i: x_i \in A} P(X^{-1}(x_i)) = \sum_{i: x_i \in A} P_X(\{x_i\})$$

lub w uproszczonej notacji:

$$P(X \in A) = \sum_{i: x_i \in A} P(X = x_i)$$

Troszkę ogólniejsza definicja:

Mówimy, że zmienna losowa X jest dyskretna (typu skokowego) jeśli istnieje zbiór przeliczalny $\mathcal{X} \subset \mathbb{R}$ taki, że $P(X \in \mathcal{X}) = 1$

Czyli prawdopodobieństwo przyjęcia wartości spoza ${\mathcal X}$ wynosi zero.

Troszkę ogólniejsza definicja:

Mówimy, że zmienna losowa X jest dyskretna (typu skokowego) jeśli istnieje zbiór przeliczalny $\mathcal{X} \subset \mathbb{R}$ taki, że $P(X \in \mathcal{X}) = 1$

Czyli prawdopodobieństwo przyjęcia wartości spoza $\mathcal X$ wynosi zero.

Przykład: Zmienna X przyjmująca dowolne wartości z \mathbb{R} taka, że:

$$P(X \in A) = \begin{cases} 1 & \text{jeśli } 0 \in A \\ 0 & \text{w przeciwnym przypadku} \end{cases}$$

Czyli
$$P(X = 0) = 1$$
.

Rozkład jednopunktowy

Zmienna X ma rozkład jednopunktowy, jeśli istnieje taki $x \in \mathbb{R}$, że P(X=x)=1

Cały rozkład zmiennej X jest skoncentrowany w jednym punkcie Taka zmienna losowa to efektywnie stała

Rozkład jednostajny

Zmienna X ma rozkład jednostajny, jeśli $X \in \{x_1, x_2, \dots, x_n\}$ oraz:

$$P(X = x_i) = \frac{1}{n}, \quad i = 1, ..., n$$

Rozkład jednostajny

Zmienna X ma rozkład jednostajny, jeśli $X \in \{x_1, x_2, \dots, x_n\}$ oraz:

$$P(X = x_i) = \frac{1}{n}, \quad i = 1, ..., n$$

Przykład: wynik rzutu kostką, $X \in \{1, 2, 3, 4, 5, 6\}$,

$$P(X = i) = \frac{1}{6}, \quad i = 1, ..., 6$$

Rozkład dwupunktowy

Zmienna X ma rozkład dwupunktowy jeśli $X \in \{x_0, x_1\}$ Oznaczamy:

$$p = P(X = x_1),$$
 a więc $P(X = x_0) = 1 - p$

Zwykle przyjmuje się $x_0 = 0$ i $x_1 = 1$, wtedy p = P(X = 1) jest prawdopodobieństwem sukcesu

Rozkład dwupunktowy oznaczamy przez B(p)

Rozkład dwupunktowy

Zmienna X ma rozkład dwupunktowy jeśli $X \in \{x_0, x_1\}$ Oznaczamy:

$$p = P(X = x_1),$$
 a więc $P(X = x_0) = 1 - p$

Zwykle przyjmuje się $x_0 = 0$ i $x_1 = 1$, wtedy p = P(X = 1) jest prawdopodobieństwem sukcesu

Rozkład dwupunktowy oznaczamy przez B(p)

Przykład: wynik rzutu nieuczciwą monetą dla której orzeł (X=1) wypada z prawdopodobieństwem p, a reszka (X=0) z prawd. 1-p.

Uwaga: jeśli p = 0 lub p = 1, to X ma rozkład jednopunktowy

Rozkład dwumianowy

Zmienna $X \in \{0, 1, 2, \dots, n\}$ ma rozkład dwumianowy z parametrem p jeśli:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, ..., n$$

Rozkład dwumianowy

Zmienna $X \in \{0, 1, 2, \dots, n\}$ ma rozkład dwumianowy z parametrem p jeśli:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, ..., n$$

Zmienna X określa więc liczbę sukcesów w n próbach, jeśli prawdopodobieństwo sukcesu wynosi p (schemat Bernoulliego).

Rozkład dwumianowy oznaczamy przez B(n, p)

Uwaga: jeśli n = 1, to X ma rozkład dwupunktowy

Rozkład dwumianowy

Rozkład dwumianowy – przykład

Zadanie 1

Mamy urnę z 10 białymi i 20 czarnymi kulami. Wybieramy losowo ze zwracaniem 9 kul. Niech X określa liczbę wylosowanych białych kul. Jaki rozkład ma X?

Zmienna $X \in \{1, 2, \ldots\}$ ma rozkład geometryczny z parametrem p jeśli:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

Zmienna $X \in \{1, 2, \ldots\}$ ma rozkład geometryczny z parametrem p jeśli:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

Zmienna X określa więc liczbę prób do uzyskania pierwszego sukcesu w nieskończonym ciągu Bernoulliego, jeśli prawdopodobieństwo pojedynczego sukcesu wynosi p.

Zmienna $X \in \{1, 2, \ldots\}$ ma rozkład geometryczny z parametrem p jeśli:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

Zmienna X określa więc liczbę prób do uzyskania pierwszego sukcesu w nieskończonym ciągu Bernoulliego, jeśli prawdopodobieństwo pojedynczego sukcesu wynosi p.

Rozkład geometryczny oznaczamy przez $G_1(p)$

Zmienna $X \in \{1, 2, \ldots\}$ ma rozkład geometryczny z parametrem p jeśli:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

Zmienna X określa więc liczbę prób do uzyskania pierwszego sukcesu w nieskończonym ciągu Bernoulliego, jeśli prawdopodobieństwo pojedynczego sukcesu wynosi p.

Rozkład geometryczny oznaczamy przez $G_1(p)$

Przykład: rzucamy kostką aż do uzyskania szóstki. Liczba rzutów X ma rozkład $G_1(p=\frac{1}{6})$

Zmienna $X \in \{1, 2, \ldots\}$ ma rozkład geometryczny z parametrem p jeśli:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, ...$$

Zmienna X określa więc liczbę prób do uzyskania pierwszego sukcesu w nieskończonym ciągu Bernoulliego, jeśli prawdopodobieństwo pojedynczego sukcesu wynosi p.

Rozkład geometryczny oznaczamy przez $G_1(p)$

Przykład: rzucamy kostką aż do uzyskania szóstki. Liczba rzutów X ma rozkład $G_1(p=\frac{1}{6})$

Uwaga: Istnieje wersja rozkładu geometrycznego $G_0(p)$ określająca liczbę porażek do uzyskania pierwszego sukcesu:

$$P(X = k) = (1 - p)^{k} p, \qquad k = 0, 1, 2, ...$$

Rozkład geometryczny – przykłady

Kupujemy losy na loterii, dopóki nie wygramy. Szansa wygrania wynosi p=1/1000. Niech X określa liczbę kupionych losów na loterii: X ma rozkład $G_1(p)$.

Rozkład geometryczny – przykłady

Kupujemy losy na loterii, dopóki nie wygramy. Szansa wygrania wynosi p=1/1000. Niech X określa liczbę kupionych losów na loterii: X ma rozkład $G_1(p)$.

Na lotnisku próbujemy złapać wolną taksówkę, ale 9 na 10 taksówek przyjeżdża już zarezerwowana/zajęta. Niech X określa liczbę zajętych taksówek, które zaobserwujemy; X ma rozkład $G_0(1/10)$.

$$X$$
 ma rozkład $G_1(p)$

$$P(X > k) = P(X = k + 1) + P(X = k + 2) + \dots$$

$$X$$
 ma rozkład $G_1(p)$ $P(X>k) = P(X=k+1) + P(X=k+2) + \dots$ $= \sum_{k=0}^{\infty} (1-p)^{k-1}p$

$$X$$
 ma rozkład $G_1(p)$
 $P(X > k) = P(X = k + 1) + P(X = k + 2) + \dots$
 $= \sum_{i=k+1}^{\infty} (1-p)^{i-1}p$
 $= (1-p)^k p \sum_{i=0}^{\infty} (1-p)^i$

$$X$$
 ma rozkład $G_1(p)$
 $P(X > k) = P(X = k + 1) + P(X = k + 2) + \dots$
 $= \sum_{i=k+1}^{\infty} (1-p)^{i-1}p$
 $= (1-p)^k p \sum_{i=0}^{\infty} (1-p)^i$
 $= (1-p)^k p \frac{1}{p} = (1-p)^k$

$$P(X > k + \ell | X > k) = \frac{P(\{X > k + \ell\} \cap \{X > k\})}{P(\{X > k\})}$$

$$P(X > k + \ell | X > k) = \frac{P(\{X > k + \ell\} \cap \{X > k\})}{P(\{X > k\})}$$
$$= \frac{P(\{X > k + \ell\})}{P(\{X > k\})}$$

$$P(X > k + \ell | X > k) = \frac{P(\{X > k + \ell\} \cap \{X > k\})}{P(\{X > k\})}$$

$$= \frac{P(\{X > k + \ell\})}{P(\{X > k\})}$$

$$= \frac{(1 - p)^{k + \ell}}{(1 - p)^k} = (1 - p)^{\ell} = P(X > \ell)$$

Niech X ma rozkład $G_1(p)$. Oblicz $P(X > k + \ell | X > k)$ ("pierwszy sukces pojawił się po więcej niż $k + \ell$ próbach, jeśli nie pojawił się w pierwszych k próbach")

$$P(X > k + \ell | X > k) = \frac{P(\{X > k + \ell\} \cap \{X > k\})}{P(\{X > k\})}$$

$$= \frac{P(\{X > k + \ell\})}{P(\{X > k\})}$$

$$= \frac{(1 - p)^{k + \ell}}{(1 - p)^k} = (1 - p)^{\ell} = P(X > \ell)$$

Brak pamięci: jeśli sukces nie pojawił się w pierwszych *k* próbach, możemy zapomnieć o przeszłości i wyznaczyć prawdopodobieństwa jakbyśmy dopiero zaczynali losować

Rozkład ujemny dwumianowy (Pascala)

Rozważmy nieskończony ciąg prób Bernoulliego z prawd. sukcesu p. Losujemy, dopóki nie uzyskamy r porażek. Jakie jest szansa zaobserwowania do tego momentu k sukcesów?

Rozkład ujemny dwumianowy (Pascala)

Rozważmy nieskończony ciąg prób Bernoulliego z prawd. sukcesu p. Losujemy, dopóki nie uzyskamy r porażek. Jakie jest szansa zaobserwowania do tego momentu k sukcesów?

Zdarzenia elementarne: ciągi binarne $(b_1, b_2, ..., b_n)$, n = 1, 2, ..., zawierające r zer, przy czym $b_n = 0$. Liczba sukcesów to k = n - r.

Rozważmy nieskończony ciąg prób Bernoulliego z prawd. sukcesu p. Losujemy, dopóki nie uzyskamy r porażek. Jakie jest szansa zaobserwowania do tego momentu k sukcesów?

Zdarzenia elementarne: ciągi binarne $(b_1, b_2, ..., b_n)$, n = 1, 2, ..., zawierające r zer, przy czym $b_n = 0$. Liczba sukcesów to k = n - r.

$$P(b_1, b_2, \ldots, b_n) = (1-p)^r p^{n-r}$$

Rozważmy nieskończony ciąg prób Bernoulliego z prawd. sukcesu p. Losujemy, dopóki nie uzyskamy r porażek. Jakie jest szansa zaobserwowania do tego momentu k sukcesów?

Zdarzenia elementarne: ciągi binarne $(b_1, b_2, ..., b_n)$, n = 1, 2, ..., zawierające r zer, przy czym $b_n = 0$. Liczba sukcesów to k = n - r.

$$P(b_1, b_2, \ldots, b_n) = (1-p)^r p^{n-r}$$

Ile jest takich ciągów o długości n?

Rozważmy nieskończony ciąg prób Bernoulliego z prawd. sukcesu p. Losujemy, dopóki nie uzyskamy r porażek. Jakie jest szansa zaobserwowania do tego momentu k sukcesów?

Zdarzenia elementarne: ciągi binarne (b_1, b_2, \ldots, b_n) , $n = 1, 2, \ldots$, zawierające r zer, przy czym $b_n = 0$. Liczba sukcesów to k = n - r.

$$P(b_1, b_2, \ldots, b_n) = (1-p)^r p^{n-r}$$

lle jest takich ciągów o długości n? $\binom{n-1}{r-1}$

Rozważmy nieskończony ciąg prób Bernoulliego z prawd. sukcesu p. Losujemy, dopóki nie uzyskamy r porażek. Jakie jest szansa zaobserwowania do tego momentu k sukcesów?

Zdarzenia elementarne: ciągi binarne $(b_1, b_2, ..., b_n)$, n = 1, 2, ..., zawierające r zer, przy czym $b_n = 0$. Liczba sukcesów to k = n - r.

$$P(b_1, b_2, \ldots, b_n) = (1-p)^r p^{n-r}$$

lle jest takich ciągów o długości n? $\binom{n-1}{r-1}$

Stąd prawdopodobieństwo uzyskania k sukcesów do momentu uzyskania r porażek:

$$\binom{n-1}{r-1}(1-p)^r p^{n-r} = \binom{r+k-1}{r-1}(1-p)^r p^k$$

Zmienna $X \in \{0, 1, ...\}$ ma rozkład ujemny dwumianowy z parametrami r i p jeśli:

$$P(X=k) = \binom{r+k-1}{r-1} (1-p)^r p^k$$

Zmienna $X \in \{0, 1, ...\}$ ma rozkład ujemny dwumianowy z parametrami r i p jeśli:

$$P(X = k) = {r+k-1 \choose r-1} (1-p)^r p^k$$

Rozkład ujemny dwumianowy oznaczamy przez NB(r, p)

Zmienna $X \in \{0,1,\ldots\}$ ma rozkład ujemny dwumianowy z parametrami r i p jeśli:

$$P(X=k) = \binom{r+k-1}{r-1} (1-p)^r p^k$$

Rozkład ujemny dwumianowy oznaczamy przez NB(r, p)

Przykład: Bezzałogowy samolot wraca z misji rozpoznawczej z prawdopodobieństwem p. Ile misji uda się nam wykonać mając do dyspozycji r samolotów?

Podsumowanie

- Rozkład dwupunktowy modeluje prawdopodobieństwo sukcesu w pojedynczej próbie
- Rozkład dwumianowy modeluje prawdopodobieństwo k sukcesów w n próbach
- Rozkład geometryczny modeluje prawdopodobieństwo k prób do uzyskania pierwszego sukcesu
- Rozkład ujemny dwumianowy modeluje prawdopodobieństwo k sukcesów przed uzyskaniem r porażek

Rozważmy ciąg *n* prób Bernoulliego z prawd. sukcesu *p*, gdzie:

- n jest bardzo duże,
- p jest bardzo małe (bliskie zeru) ...
- ... ale $n \cdot p$ jest umiarkowane (ani małe, ani duże)

Rozważmy ciąg n prób Bernoulliego z prawd. sukcesu p, gdzie:

- n jest bardzo duże,
- p jest bardzo małe (bliskie zeru) ...
- ... ale $n \cdot p$ jest umiarkowane (ani małe, ani duże)

Przykłady

• Szansa rozpadu atomu promieniotwórczego w ciągu sekundy wynosi $p=10^{-14}$. Mając $n=10^{15}$ atomów wyznacz rozkład prawdopodobieństwa liczby rozpadów w danej sekundzie.

Rozważmy ciąg n prób Bernoulliego z prawd. sukcesu p, gdzie:

- n jest bardzo duże,
- p jest bardzo małe (bliskie zeru) ...
- ... ale $n \cdot p$ jest umiarkowane (ani małe, ani duże)

Przykłady

- Szansa rozpadu atomu promieniotwórczego w ciągu sekundy wynosi $p=10^{-14}$. Mając $n=10^{15}$ atomów wyznacz rozkład prawdopodobieństwa liczby rozpadów w danej sekundzie.
- Mamy artykuł z n = 8 000 słów. Szansa literówki w danym słowie to p = 1/1000. Znaleźć rozkład liczby literówek.

Rozważmy ciąg n prób Bernoulliego z prawd. sukcesu p, gdzie:

- n jest bardzo duże,
- p jest bardzo małe (bliskie zeru) ...
- ... ale $n \cdot p$ jest umiarkowane (ani małe, ani duże)

Przykłady

- Szansa rozpadu atomu promieniotwórczego w ciągu sekundy wynosi $p=10^{-14}$. Mając $n=10^{15}$ atomów wyznacz rozkład prawdopodobieństwa liczby rozpadów w danej sekundzie.
- Mamy artykuł z n = 8 000 słów. Szansa literówki w danym słowie to p = 1/1000. Znaleźć rozkład liczby literówek.
- DNA człowieka składa się z $n=6.4\times 10^9$ par zasad (w pojedynczej komórce). Szansa mutacji na parę zasad na rok wynosi $p=0.5\times 10^{-9}$. Wyznacz rozkład liczby mutacji w ciągu roku.

Rozważmy ciąg n prób Bernoulliego z prawd. sukcesu p, gdzie:

- n jest bardzo duże,
- p jest bardzo małe (bliskie zeru) ...
- ... ale $n \cdot p$ jest umiarkowane (ani małe, ani duże)

Przykłady

- Szansa rozpadu atomu promieniotwórczego w ciągu sekundy wynosi $p=10^{-14}$. Mając $n=10^{15}$ atomów wyznacz rozkład prawdopodobieństwa liczby rozpadów w danej sekundzie.
- Mamy artykuł z n = 8 000 słów. Szansa literówki w danym słowie to p = 1/1000. Znaleźć rozkład liczby literówek.
- DNA człowieka składa się z $n = 6.4 \times 10^9$ par zasad (w pojedynczej komórce). Szansa mutacji na parę zasad na rok wynosi $p = 0.5 \times 10^{-9}$. Wyznacz rozkład liczby mutacji w ciągu roku.
- Szansa katastrofy lotniczej wynosi 1 na 11 mln lotów (rocznie).
 Wyznacz rozkład liczby katastrof na rok, jeśli w ciągu roku odbywa się n = 16 mln lotów.

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\lim_{n\to\infty} P(X=k) = \lim_{n\to\infty} \underbrace{\frac{n\cdot (n-1)\cdot \ldots \cdot (n-k+1)}{k!} \underbrace{\frac{\lambda^k}{n^k}}_{p^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-p)^{n-k}}$$

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\lim_{n \to \infty} P(X = k) = \lim_{n \to \infty} \underbrace{\frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k!} \underbrace{\frac{\lambda^k}{n^k}}_{p^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-p)^{n-k}}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{n^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-\lambda/n)^k}$$

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\lim_{n \to \infty} P(X = k) = \lim_{n \to \infty} \underbrace{\frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} \underbrace{\frac{\lambda^k}{n^k}}_{p^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-p)^{n-k}}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-\lambda/n)^k}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-\lambda/n)^k}$$

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\lim_{n \to \infty} P(X = k) = \lim_{n \to \infty} \underbrace{\frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k!} \underbrace{\frac{\lambda^k}{n^k}}_{\binom{n}{k}} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-p)^{n-k}}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{n^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-\lambda/n)^k}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \cdot \ldots \cdot \left(1 - \frac{k-1}{n}\right) \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{\binom{n}{k}}$$

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\lim_{n \to \infty} P(X = k) = \lim_{n \to \infty} \underbrace{\frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} \underbrace{\frac{\lambda^k}{n^k}}_{p^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-p)^{n-k}}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-\lambda/n)^k}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{0}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n$$

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\lim_{n \to \infty} P(X = k) = \lim_{n \to \infty} \underbrace{\frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} \underbrace{\frac{\lambda^k}{n^k}}_{p^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-p)^{n-k}}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k} \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{(1-\lambda/n)^k}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \underbrace{\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k}}_{0}$$

$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = \frac{\lambda^k}{k!} e^{-\lambda}$$

Zmienna $X \in \{0,1,\ldots\}$ ma rozkład Poissona z parametrem λ jeśli:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Zmienna $X \in \{0, 1, \ldots\}$ ma rozkład Poissona z parametrem λ jeśli:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Rozkład Poissona oznaczamy przez $Pois(\lambda)$

Zmienna $X \in \{0, 1, ...\}$ ma rozkład Poissona z parametrem λ jeśli:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Rozkład Poissona oznaczamy przez $Pois(\lambda)$

Sprawdzamy, czy rozkład poprawnie się normalizuje:

$$\sum_{k=0}^{\infty} P(X=k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Zmienna $X \in \{0, 1, \ldots\}$ ma rozkład Poissona z parametrem λ jeśli:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Rozkład Poissona oznaczamy przez $Pois(\lambda)$

Sprawdzamy, czy rozkład poprawnie się normalizuje:

$$\sum_{k=0}^{\infty} P(X = k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Zadanie 2

Odszukaj dlaczego $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Zadanie 3

Wyznacz rozkład prawdopodobieństwa dla wszystkich wymienionych poprzednio przykładów. Oblicz kilka pierwszych prawdopodobieństw.

Rozkład Poissona a dwumianowy

Rozkład Poissona a dwumianowy

