Operator evolution from the similarity renormalization group and the Magnus expansion

A. J. Tropiano¹, S. K. Bogner², R. J. Furnstahl¹

¹Department of Physics, The Ohio State University, Columbus, OH 43210, USA
²National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,
Michigan State University, East Lansing, MI 48824, USA

(Dated: August 28, 2019)

Abstract

Ideas for Magnus / SRG operator evolution paper

- SRG/Magnus evolution in different potentials (non-local, local, semi-local). Universality. High cutoffs.
- Block-diagonal generator for high cutoff potentials and operator evolution. How the block-diagonal generator handles spurious bound states.
- Testing the Magnus expansion for high cutoff potentials using the potentials from Wendt 2011 for comparison. Spurious bound states and connection to intruder states in IMSRG calculations.
- Operator evolution for different potentials and generators.

I. INTRODUCTION

Background on modern nuclear potentials.

- Wide range of NN potentials: how do they change under SRG transformations?
- Implementation to many-body calculations and SRG decoupling.
- Motivate long list of unaddressed questions: regulator, generator dependence, universality, high cutoffs, the Magnus expansion.

SRG formalism

- The SRG decouples low- and high-momentum scales by applying a continuous unitary transformation U(s) where $s=0\to\infty$ is the flow parameter.
- The 'dressed' or evolved operator is given by

$$O(s) = U(s)O(0)U^{\dagger}(s), \tag{1}$$

where O(0) corresponds to the 'bare' operator.

- Because U(s) is unitary, the observables of the operator are preserved.
- In practice, the unitary transformation U(s) is not explicitly solved for; the evolved operator is given by a differential flow equation which is obtained by taking the derivative of Eqn. (1),

$$\frac{dO(s)}{ds} = [\eta(s), O(s)],\tag{2}$$

where $\eta(s) = \frac{dU(s)}{ds}U^{\dagger}(s) = -\eta^{\dagger}(s)$ is the anti-hermitian SRG generator.

- The generator is defined as a commutator,

$$\eta(s) = [G, H(s)],\tag{3}$$

where G specifies the type of flow or form of the decoupled operator.

- To drive the operator to band-diagonal form, set $G = H_D(s)$, the diagonal of the Hamiltonian.
- This choice was implemented by Wegner in condensed matter physics [1].
- For notational convenience, we write the Wegner choice without the s dependence in the rest of the paper.
- In a similar option used in nuclear physics, G is set to the relative kinetic energy, T_{rel} , which also drives to band-diagonal form.
- In this paper, we consider both choices.

- Add block-diagonal generator.
- Generally the flow equation (2) is solved up to some finite value of s with a high-order ODE solver.
- It is convenient to define $\lambda \equiv s^{-1/4}$ which roughly measures the width of the band-diagonal in the decoupled operator.

Operator evolution

- State how a potential and wave function changes: how does this affect other operators?
- How operators evolve from band- and block-diagonal SRG transformations.
- Operator evolution for different potentials (regulators, chiral order, etc.)

II. SRG EVOLUTION OF NN POTENTIALS

- Comparison of potential evolution with different regulators, orders, generators.
- Universality.
- Discussion of high cutoffs, block-diagonal generator at high cutoffs, and how it handles spurious bound states.
- Use high cutoffs to transition to Magnus test problem.
- Example figure. EM $\mathrm{N^3LO}$ potential.

FIG. 1: Matrix elements of the Entem-Machleidt N³LO non-local potential $V_{\lambda}(k, k')$ SRG-evolving in λ right to left under transformations with the Wegner generator (a) and block-diagonal generators decoupling at $\Lambda = 2$ and 3 fm⁻¹ (b and c).

III. THE MAGNUS EXPANSION

- Summary of Wendt high cutoff results and connection to IMSRG intruder state.

A. Formalism

- Motivation: simplifies computational problem for evolving multiple operators, exact unitarity.
- We now consider the Magnus implementation.
- Mathematically speaking, the Magnus expansion is a method for solving an initial value problem associated with a linear ordinary differential equation (ODE).
- Formal details of the Magnus expansion are discussed in [?].
- We will introduce the Magnus expansion in the context of SRG evolving any operator.
- In an intermediate step in deriving Eqn. (2), we have a linear ODE for U(s),

$$\frac{dU(s)}{ds} = \eta(s)U(s). \tag{4}$$

- Magnus showed that one can solve the following equation with a solution $U(s) = e^{\Omega(s)}$ where $\Omega(s)$ is expanded as a power series, $\sum_{n=0}^{\infty} \Omega_n$ (referred to as the Magnus expansion or Magnus series).
- The terms of the series are given by integral expressions involving $\eta(s)$ (again, see [? ?] for details).
- For our case, we focus on the formally exact derivative of $\Omega(s)$,

$$\frac{d\Omega(s)}{ds} = \sum_{k=0}^{\infty} \frac{B_k}{k!} a d_{\Omega}^k(\eta), \tag{5}$$

where B_k are the Bernoulli numbers, $ad_{\Omega}^0(\eta) = \eta(s)$, and $ad_{\Omega}^k(\eta) = [\Omega(s), ad_{\Omega}^{k-1}(\eta)]$.

- We integrate this differential equation to find $\Omega(s)$ and evaluate the unitary transformation directly.
- Then the evolved operator can be evaluated with the BCH formula:

$$O(s) = e^{\Omega(s)} O e^{-\Omega(s)} = \sum_{k=0}^{\infty} \frac{1}{k!} a d_{\Omega}^k(O).$$

$$(6)$$

- As $k \to \infty$ in both sums in Eqns. (5) and (6) the Magnus transformation matches the SRG transformation exactly.
- We investigate several truncations k_{max} in Eqn. (5) and take many terms, $k_{max} \sim 25$, in Eqn. (6).
- Here or earlier (for the following bullets)? Better to motivate the Magnus in the introduction or easier to explain given mathematical detail?

- There are significant advantages in the Magnus implementation.
- In the typical approach, the numerical error associated with solving the flow equation affects the accuracy of the observables for the evolved operator.
- Therefore, one must use a high-order ODE solver in integrating the flow equation (2).
- In the Magnus implementation, unitarity is guaranteed by the form of U(s); in fact, one could solve Eqn. (5) with a simple first-order Euler step-method keeping the same observables while decoupling the operator as desired.
- This offers a decent computational speed-up by avoiding a high-order solver.
- In this paper, we demonstrate this advantage by applying the Magnus implementation using the first-order Euler step-method.
- The second major advantage involves the evolution of multiple operators.
- In many other situations, one may be interested in evolving several operators at a time.
- In the SRG procedure, we would have another set of coupled equations in Eqn. (2), drastically increasing memory usage.
- Each additional operator increases the set of equations say N equations by another factor of N.
- In the Magnus, one only needs $\Omega(s)$ to consistently evolve several operators.
- We avoid the cost in memory by directly constructing $U(s) = e^{\Omega(s)}$.
- This is especially useful in IMSRG calculations where the model space can be very large.
- In the next section, we discuss results from Magnus-evolved large-cutoff potentials focusing on the flow of the potential, observables, and operator evolution.

B. Results

- Comparison to Wendt problem.
- Implications for IMSRG.
- Use discussion of operator evolution to transition to next section.

IV. EVOLUTION OF OTHER OPERATORS

- SRG operator evolution for different potentials and generators.

A. Building SRG unitary transformations

Diagonalize initial and evolved Hamiltonians which we will call H(0) and H(s), respectively. This gives $\psi_{\alpha}(0)$ and $\psi_{\alpha}(s)$ for each eigenvalue indexed by α . Then the SRG unitary transformation can be computed by taking a sum over outer products of the evolved and initial wave functions:

$$U(s) = \sum_{\alpha=1}^{N} |\psi_{\alpha}(s)\rangle \langle \psi_{\alpha}(0)|, \qquad (7)$$

where N is the dimension of the Hamiltonian matrix. Here the weights are factored into the wave functions, thus U(s) is unitless.

To evolve operators, we simply apply U(s):

$$O(s) = U(s)O(0)U^{\dagger}(s), \tag{8}$$

where O(0) is the bare operator.

B. Momentum projection operator: $a_q^{\dagger}a_q(k,k')$

Applying $a_q^{\dagger}a_q(k,k')$ to a wave function $\psi(k)$ returns $\psi(q)$. For the discrete case, $\psi(k_i)$ is an $N \times 1$ vector and $a_q^{\dagger}a_q(k_i,k_j)$ is an $N \times N$ matrix where $i,j=1\cdots N$. Then $a_q^{\dagger}a_q(k,k')$ acting on $\psi(k)$ is a matrix multiplication, implying a continuous integration over $d^3k/(2\pi)^3 = 2/(\pi k^2 dk)$ in spherical coordinates. Therefore, we include a factor of $\pi/(2k_ik_j\sqrt{w_iw_j})$ in $a_q^{\dagger}a_q(k_i,k_j)$ where w represents the momentum weights. In matrix form,

$$a_q^{\dagger} a_q(k_i, k_j) = \frac{\pi \delta_{k_i q} \delta_{k_j q}}{2k_i k_j \sqrt{w_i w_j}},\tag{9}$$

which has units fm³. To evolve operators, we apply U(s) at this point. For mesh-independent figures, we must divide by an additional factor of $k_i k_j \sqrt{w_i w_j}$. This operator is inherently mesh-dependent based off discretizing $\delta_{k_i q} \delta_{k_j q}$ above.

C. Momentum distribution function: $\phi^2(k)$

We diagonalize the Hamiltonian for eigenvectors ψ_{α} . In the 3S_1 - 3D_1 coupled channel, the S-component is given by $\psi_{\alpha}[:N]$ and the D-component by $\psi_{\alpha}[N:]$ where N is the length of

the momentum mesh. Then the momentum distribution of the state α is given by,

$$|\phi_{\alpha}(k)|^{2} = |\psi_{\alpha}[:N]|^{2} + |\psi_{\alpha}[N:]|^{2}.$$
(10)

This satisfies the normalization condition $\sum_{i=1}^{N} |\phi(k_i)|^2 = 1$, implying that the factor $k^2 dk$ (or in the discrete case, $k_i^2 w_i$) is factored into the wave function. For mesh-independent figures, divide by $k_i^2 w_i$.

V. CONCLUSION

- Summary.
- Outlook.

[1] F. Wegner, Annalen der Physik **506**, 77 (1994).