Announcements

EXAM 2 is next Wednesday, Nov. 7

@ 8:00pm-9:30pm in ELLIOT HALL of MUSIC.

Physics Help Center Survey

PHYS Building, Rms. 11-12

How often do you use the Help Center on average?

- A. Never
- B. Once or at most twice a semester
- C. Several times in a semester
- D. Around once a week
- E. More than once a week

Physics Help Center Survey

PHYS Building, Rms. 11-12

How useful was your Help Center visit?

- A. I did not use the Help Center
- B. Useless
- C. Not very useful
- D. Useful
- E. Very useful

Magnetic Force on a Charge

$$\vec{F}_{magnetic} = q\vec{v} \times \vec{B}$$

Electron charge = -e:

The magnetic force on a moving electron is in opposite direction to the direction of the cross product $\vec{v} \times \vec{B}$

Right-Hand Rule

$$\vec{F}_{\text{mag}} = q\vec{v} \times \vec{B}$$

MAGNETIC FORCE point charge

Result of Cross Product $\vec{v} \times \vec{B}$ is Perpendicular to both \vec{v} and \vec{B}

Right-Hand Rule:

Motion in a Magnetic Field

$$\vec{F}_{magnetic} = q\vec{v} \times \vec{B}$$

What if we have large (infinite) area with constant $\overrightarrow{B} \perp \overrightarrow{v}$

$$\left| \frac{d\vec{p}}{dt} \right| = qvB$$

Determining the Momentum of a Particle

Position vector
$$r$$
: $\left| \frac{d\vec{r}}{dt} \right| = v = \omega r \longrightarrow \omega = \frac{v}{r}$ Circular motion

$$\left| \frac{d\vec{p}}{dt} \right| = \omega p = \left(\frac{v}{r} \right) p \qquad \left| \frac{d\vec{p}}{dt} \right| = |q| v B$$

$$\left(\frac{v}{r} \right) p = |q| v B$$

Used to measure momentum in high-energy particle experiments

Circular Motion at any Speed

$$\omega = \frac{|q|B}{m}\sqrt{1 - v^2/c^2}$$

Cyclotron Frequency

Circular Motion at Low Speed

$$\omega = \frac{|q|B}{m}\sqrt{1 - v^2/c^2}$$

if
$$v << c$$
: $\omega = \frac{|q|B}{m}$

independent of v!

Alternative derivation:

$$F = ma$$

$$|q|vB\sin 90^{\circ} = m\frac{v^{2}}{R}$$

$$|q|B = m\omega \longrightarrow$$

Circular motion:

$$a = \frac{v^2}{R} \qquad \omega = \frac{v}{R}$$

$$\omega = \frac{|q|B}{m}$$

Period T:
$$\omega = \frac{2\pi}{T} \longrightarrow T = 2\pi \frac{m}{|q|B} \longleftarrow$$
 Non-Relativistic

Biot-Savart Law

$$\vec{B} = \left(\frac{\mu_o}{4\pi}\right) \underbrace{\vec{q\vec{v}} \times \hat{r}}_{|r|^2}$$

BIOT-SAVART LAW point charge

We need to understand how these are related

$$\vec{B} = \left(\frac{\mu_o}{4\pi}\right) \frac{\vec{D} \cdot \vec{l} \cdot \hat{r}}{|r|^2}$$

BIOT-SAVART LAW current in a wire

 $\Delta \vec{l}$ = length of this chunk of wire

Magnetic Force on a charge or wire

$$\Delta \vec{l}$$
 = length of this chunk of wire

GOAL: Show $q\vec{v} \longrightarrow I\Delta\vec{l}$ (point charge) (wire)

(POSITIVE) **POINT CHARGE**

 $q\vec{v}$

 $q\vec{v}$

MANY POINT CHARGES

N particles

 $Nq\vec{v}$ $(n\Delta V)q\vec{v}$

CHUNK OF WIRE Blast from the Past:

$$\Delta \vec{l}$$
 = length of this chunk of wire

Move the vector symbol

$$q\vec{v}n\Delta V = q\vec{v}nA\Delta l$$

$$=\underline{q|v|nA}\Delta \vec{l}$$
 $I\Delta \vec{l}$ $\equiv I$

Magnetic Force on a charge or wire

 $\Delta \vec{l}$ = length of this chunk of wire

Magnetic Force on a Wire

$$\Delta \vec{F}_{\rm mag} = I \Delta \vec{l} \times \vec{B}$$

Current-carrying wire in an applied magnetic field B

Which way will the wire move?

Magnetic Field of a Straight Wire

$$|B_z| = \left(rac{\mu_o}{4\pi}
ight) rac{IL}{x\sqrt{x^2+(L/2)^2}}$$
 B in the bisecting plane

Which direction does B point?

→ Always along concentric circles

In cylindrical coordinates, it points in the " $\hat{\theta}$ " direction

Will the y axis look different from the x axis?

No, so we can trade $x \rightarrow r$

$$\vec{B} = \left(\frac{\mu_o}{4\pi}\right) \frac{IL}{r\sqrt{r^2 + (L/2)^2}} \hat{\theta}$$

B of a Long Straight Wire (cylindrical coord.)

Clast from the Past.

Very Close to the Wire

$$\vec{B} = \left(\frac{\mu_o}{4\pi}\right) \frac{IL}{r\sqrt{r^2 + (L/2)^2}} \hat{\theta}$$

Very close to the wire: r << L $\sqrt{r^2+(L/2)^2} pprox L/2$

$$\Rightarrow \vec{B} = \left(\frac{\mu_o}{4\pi}\right) \frac{IL}{r(L/2)} \hat{\theta} = \left(\frac{\mu_o}{4\pi}\right) \frac{2I}{r} \hat{\theta} = \vec{B} \quad \begin{array}{c} \text{CLOSE TO} \\ \text{THE WIRE} \end{array}$$

Force Between Parallel Wires

$$\Delta \vec{F}_{\text{mag}} = I \Delta \vec{l} \times \vec{B}$$
 $\vec{B} = \left(\frac{\mu_o}{4\pi}\right) \frac{2I}{x} \hat{\theta}$

B_{applied} = Magnetic field applied by the **red** wire. Blue wire feels a force down.

What about reciprocity? (Equal and opposite forces)

Force Between Parallel Wires

$$\Delta \vec{F}_{\text{mag}} = I \Delta \vec{l} \times \vec{B}$$
 $\vec{B} = \left(\frac{\mu_o}{4\pi}\right) \frac{2I}{x} \hat{\theta}$

B_{applied} = Magnetic field applied by the **red** wire. Blue wire feels a force down.

B_{applied} = Magnetic field applied by the **blue** wire. **Red** wire feels a force up.

Force Between (Anti) Parallel Wires

$$\Delta \vec{F}_{\text{mag}} = I \Delta \vec{l} \times \vec{B}$$
 $\vec{B} = \left(\frac{\mu_o}{4\pi}\right) \frac{2I}{x} \hat{\theta}$

B_{applied} = Magnetic field applied by the **red** wire. Blue wire feels a force up.

 $B_{applied}$ = Magnetic field applied by the **blue** wire. Red wire feels a force down.

Hall Effect

By measuring the Hall effect for a particular material, we can determine the sign of the moving particles that make up the current

Why would it be anything other than electrons? (Negative charges)

Semiconductors: sometimes current is carried by electrons, but sometimes it is carried by the "holes".

In **semiconductors**, "holes" (missing electrons) in the electron sea behave like positive charges.

ZEN KOAN

Water from a hose

Zen riddle: Is water coming out of the hose, or is the absence of water moving into the hose?

"Holes" not useful here

"Holes" useful here

In a semiconductor, "Holes" in the electron sea act like positive charges.

Hall Effect and Electrons

$$\Rightarrow$$

$$E_y = E_{\rm Hall}$$

 E_{Hall} points down due to buildup of charge.

Hall Effect and Holes

$$F = +|e|(\vec{E} + \vec{v} \times \vec{B})$$

$$\bullet \quad \mathsf{B}$$

$$+|e|\vec{v} \times \vec{B} \quad +e \quad +++++++$$

$$+HOLES$$

$$E_y = E_{\mathrm{Hall}}$$

$$E_y = E_{\rm Hall}$$
 E_{Hall} points up due to buildup of charge.

Hall Effect

Clicker Question

Voltmeter 1 reading is POSITIVE Voltmeter 2 reading is POSITIVE

Mobile charges are:

- A) Positive (holes)
- B) Negative (electrons)
- C) Not enough information