Section 4A. Classification Statistics for Data Science

Victor M. Preciado, PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Classification Problem

Classification problem:

- ▶ Consider a discrete set C, which contains K class labels. In this problem, the output variable Y is *qualitative* and takes values from C
- ightharpoonup Our goal is to build a classifier $C(\mathbf{x})$ that assigns a class label in \mathcal{C} to an input \mathbf{x}
- Examples: Image classification, handwriting recognition, spam email detection, etc.

► Generative model:

- ▶ In our analysis, we assume that points in our dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ are generated using the following two steps:
 - 1. Sample an input $\mathbf{x}_i \sim f_X$, where f_X is a marginal PDF
 - 2. Sample the corresponding output $y_i \in C$ using this conditional PMF:

$$p_k(\mathbf{x}_i) = \Pr(Y = k | X = \mathbf{x}_i)$$
, for all $k \in \mathcal{C}$

where $p_k(\mathbf{x})$ is called the *conditional class probability...*

Classification Problem: Numerical Example

▶ Numerical example: We generate *N* = 100 random samples according to the following distributions:

$$X \sim \text{Unif}(-2,2) \text{ and } p_k(x) = \begin{cases} \frac{1}{1+e^{-2x}} & \text{for } k=1\\ \frac{e^{-2x}}{1+e^{-2x}} & \text{for } k=0 \end{cases}$$

Figure: Scatter plot of our dataset (blue dots) and the function $1/\left(1+e^{-2x}\right)$ (gray line).

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.