

Science on Tap

The organization of human cerebral cortex estimated by functional PET-FDG: the promise and controversy of "metabolic connectivity"

23 Feb 2024, Penghui Du

About Myself

Undergraduate

Southern University of Science and Technology

August 2020 - June 2024 · Shenzhen, China

Visiting Student

University of Zurich

February 2023 - June 2023 · Zurich, Switzerland

Undergraduate Research Assistant

Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School

July 2023 – February 2024 · Charlestown, Unites States

Content

- Background
- Methods & Results
 - **Promises:** Could fPET-FDG-based "Metabolic Connectivity" provide complementary insights into the local/global organization of the human brain?
 - Controversies in interpretation: Is "Metabolic Connectivity" primarily driven by instantaneous, short-term changes in glucose uptakes?
- Take Home Message

Functional MRI (fMRI) based functional connectivity has shed enormous insights into the functional organization of the cerebral cortex

Resting-state networks

- Idea: Voxels within the same network tend to have synchronized fMRI dynamics.
- Method: Clustering, Independent Component Analysis, Community Detection, etc.

Functional parcel boundaries can be delineated by abrupt changes in the connectivity patterns

Boundary Mapping

- Idea: Different brain regions have different connectivity patterns. There is a sharp transition in connectivity when crossing the boundaries separating different regions.
- Method: Calculate correlation of connectivity, then do edge-detection

Emerging interests in mapping the cerebral architecture using metabolic information "Metabolic networks" using static PET FDG: across-subject metabolic covariance

Exemplar "metabolic" networks identified by static PET-FDG based acrosssubject metabolic covariance

Functional PET-FDG (fPET): Mapping dynamic, functional changes in brain metabolism in a manner akin to fMRI

"Metabolic Connectivity" (MC) derived from the intra-subject temporal synchrony of fPET-based metabolic dynamics

Content

- Background
- Methods & Results
 - **Promises:** Could fPET-FDG-based "Metabolic Connectivity" provide complementary insights into the local/global organization of the human brain?
 - Controversies in interpretation: Is "Metabolic Connectivity" primarily driven by instantaneous, short-term changes in glucose uptakes?
- Take Home Message

Monash resting-state PET-MR Dataset

- Publicly available
- 26 Healthy Young Subjects
- fMRI: (60 min)
 - TR = 2450ms
 - Voxel size: 3x3x3 mm³
- fPET: (90 min)
 - Reconstructed nominal resolution:

16 s/frame, 2.09x2.09x2.09 mm³

Local-Global approaches for brain parcellation

Scheme of Analysis

Connectivity, Boundaries and Networks:

Scheme of Analysis

Size = (360, 360)

Principal Gradients of Connectivity:

Principal Component Analysis:

Get N <u>dominant connectivity patterns</u> that explains the <u>largest percent of variance</u>

Size = (360, N)

fPET-based MC results in robust network patterns and cortical parcellations that deviate from those derived from fMRI-based FC

Principal Gradients of connectivity

Content

- Background
- Methods & Results
 - **Promises:** Could fPET-FDG-based "Metabolic Connectivity" provide complementary insights into the local/global organization of the human brain?
 - **Controversies in interpretation:** Is "Metabolic Connectivity" primarily driven by instantaneous, short-term changes in glucose uptakes?
- Take Home Message

Low frequency component (>5min) dominates MC

Low frequency component (>5min) dominates MC

Alternative, non-metabolic mechanism underlying "metabolic connectivity?"

fPET time activity curves, after 3rd order detrending

Besides metabolism changes, low-frequency fluctuations of fPET timeactivity curves (TACs) also reflect the accumulating effect of FDG

Irreversible 2-tissue compartment model

Rate constants vary across brain regions, resulting in spatially-varying TACs

Testing the influence of accumulating FDG kinetics on "metabolic connectivity"

Sham dataset: no functional changes in metabolism over time

22

Accumulating FDG kinetics may contribute partly to characterized "metabolic connectivity"

Resting state "metabolic connectivity" may also be partly caused by similar scanning experiences

Content

- Background
- Methods & Results
 - **Promises:** Could fPET "Metabolic Connectivity" provide complementary insights into local / global organization of human brain?
 - Challenges: Is "Metabolic Connectivity" really driven by synchronized neuronal activities? What are other potential mechanisms and potential caveats?
- Take Home Message

Take Home Message

- fPET "Metabolic Connectivity" shows robust spatial features distinct from FC, which could potentially provide complementary insights into the cortical organization.
- The interpretation of "Metabolic Connectivity" is challenging—not necessarily driven by rapid spontaneous changes in glucose metabolism, because:
 - Low-frequency component (>5min) is main contributor to fPET "Metabolic Connectivity".
 - At low frequencies, apparent fPET dynamics may arise from alternative mechanisms, such as tracer kinetics (imperfect baseline removal) and slower-state changes coupled to scanning experiences.
- Promising but needs further investigation!

Acknowledgements

Jingyuan Chen

Sean Coursey

Quanying Liu

Ting Xu

Jonathan Polimeni

Hsiao-Ying Wey

Dakota Fan

Shirley Feng

Wenxin Che

Email: duph2020@mail.sustech.edu.cn

Funding

K99/R00-NS118120 R21-MH135201

