## SY31 - TD01: Introduction aux capteurs

## Exercice 1

On désire construire un dispositif qui mesure la différence de pression par rapport à la pression atmosphérique moyenne qui vaut  $P_0 = 1\ 013$  mbar. Pour cela on réalise le circuit ci-dessous, appelé pont de Wheatstone.



E est une source de tension fixe, on la fixe à E=12 V;

v est la tension en sortie du pont, le dispositif est réglé pour que le pont soit à l'équilibre (v = 0 V) sous la pression atmosphérique moyenne  $P_0$ ;

 $R_0$  sont des résistances ajustables réglées à l'identique;

 $R \,\,$  est un capteur résistif linéaire de caractéristiques définies ci-dessous :

| Pression $P$ (mb) | Résistance $R(\Omega)$ |
|-------------------|------------------------|
| 1 000             | 1 000                  |
| 5 000             | 3 000                  |

Avec ce circuit, la tension en sortie du pont vaut :

$$v = V_A - V_B = E\left(\frac{R}{R_0 + R} - \frac{1}{2}\right).$$

- 1. À l'aide du tableau caractérisant le capteur résistif, exprimer R en fonction de P.
- 2. Montrer qu'à l'équilibre du pont, on a  $R=R_0$ . En déduire la valeur des résistances réglables  $R_0$ .
- 3. Exprimer v en fonction de P et tracer la courbe d'étalonnage associée.
- **4.** Donner l'expression de P en fonction de v.
- 5. On suppose que le capteur donne une tension de sortie v entre -1 V et +1 V. Calculer l'étendue de mesure du capteur.
- **6.** En supposant naïvement un fonctionnement linéaire sur toute l'étendue de mesure, quelle erreur commet-on lors de la mesure de la pression atmosphérique moyenne?
- 7. Quelle est la valeur maximale de l'erreur de mesure de pression?

## Exercice 2

On étudie un capteur d'étendue de mesure  $[E_{\min} = 0 ; E_{\max} = 7]$  et dont la sortie S s'exprime linéairement par rapport à l'entrée :  $S = f(E) = a \times E$ . La valeur maximale de sortie théorique vaut  $S_{\max} = f(E_{\max}) = 10$ . On réalise plusieurs mesures afin d'étalonner le capteur. Les résultats des mesures sont présentés dans le tableau ci-dessous :

| Entrées $E$  | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Observations | 0.014 | 1.241 | 2.487 | 3.767 | 5.015 | 6.245 | 7.508 | 8.734 |

- 1. Calculer les sorties théoriques associées aux entrées du tableau.
- 2. Calculer les observations après réglage du zéro.
- 3. Calculer les observations après réglage du gain.
- 4. Calculer les erreurs de non-linéarité résultantes.