Grundbegriffe der Informatik - Tutorium

- Wintersemester 2011/12 -

Christian Jülg

http://gbi-tutor.blogspot.com

01. Februar 2012

Quellennachweis & Dank an:
Martin Schadow, Susanne Putze, Tobias Dencker, Sebastian Heßlinger,
Joachim Wilke

Übersicht

- Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- Abschluss

Eine Turingmaschine...

- ... kann eine Typ-1 Sprache realisieren.
- 2 ... ist weniger mächtig als ein endlicher Automat
- ... befindet sich stets in einer Konfiguration.

Eine TM entscheidet eine Sprache *L*...

- ... gdw sie *L* akzeptiert.
- 2 ... gdw sie auf alle Eingaben stoppt.
- ... wenn sich für L ein Akzeptor angeben lässt.

- ... wenn ein Algorithmus existiert, der f berechnet.
- 2 ... wenn eine TM diese Funktion realisiert.
- 3 ... die TM für alle Eingaben terminiert.

Eine Turingmaschine...

- ... kann eine Typ-1 Sprache realisieren.
- 2 ... ist weniger mächtig als ein endlicher Automat
- ... befindet sich stets in einer Konfiguration.

Eine TM entscheidet eine Sprache L...

- ... gdw sie *L* akzeptiert.
- 2 ... gdw sie auf alle Eingaben stoppt.
- ... wenn sich für L ein Akzeptor angeben lässt.

- ... wenn ein Algorithmus existiert, der *f* berechnet.
- 2 ... wenn eine TM diese Funktion realisiert.
- 3 ... die TM für alle Eingaben terminiert.

Eine Turingmaschine...

- 1 ... kann eine Typ-1 Sprache realisieren.
- 2 ... ist weniger mächtig als ein endlicher Automat
- 3 ... befindet sich stets in einer Konfiguration.

Eine TM entscheidet eine Sprache L...

- ... gdw sie *L* akzeptiert.
- 2 ... gdw sie auf alle Eingaben stoppt.
- 3 ... wenn sich für L ein Akzeptor angeben lässt.

- ... wenn ein Algorithmus existiert, der f berechnet.
- 2 ... wenn eine TM diese Funktion realisiert.
- 3 ... die TM für alle Eingaben terminiert.

Eine Turingmaschine...

- ... kann eine Typ-1 Sprache realisieren.
- 2 ... ist weniger mächtig als ein endlicher Automat
- ... befindet sich stets in einer Konfiguration.

Eine TM entscheidet eine Sprache L...

- ... gdw sie *L* akzeptiert.
- 2 ... gdw sie auf alle Eingaben stoppt.
- 3 ... wenn sich für L ein Akzeptor angeben lässt.

- ... wenn ein Algorithmus existiert, der f berechnet.
- 2 ... wenn eine TM diese Funktion realisiert.
- 3 ... die TM für alle Eingaben terminiert.

- Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- 10 Abschluss

Aufgabenblatt 12

Blatt 12

Abgaben: 13 / 24

• Punkte: Durchschnitt 13,3 von 19

häufige Fehler:

• 1) Was soll bewiesen werden? nicht die Richtung verwechseln!

- 1 Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- Abschluss

Aufgabenblatt 13

Blatt 13

- Abgabe: 03.02.2012 um 12:30 Uhr im Untergeschoss des Infobaus
- Punkte: maximal 18

Themen

- Akzeptoren
- Äquivalenzrelationen
- Nerode Relationen

- Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- 10 Abschluss

Probeklausur

Termin

- Freitag den 03.02.2012 anstelle der Gbi-Übung
- Ort: je nach Matrikelnummer im HSaF, im HS -101 oder im HS37 (siehe GBI Seite)
- Teilnahme freiwillig
- Tutoren korrigieren die Abgaben, Rückgabe nächste Woche im Tutorium
- Ergebnis dient nur eurer Selbsteinschätzung
- Aufgaben werden von Tutoren erstellt, keine Garantie auf identische Aufgaben in der Klausur

- 1 Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- **5** WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- 10 Abschluss

Definition der TM

Ganz genau

Eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ ist festgelegt durch

- eine endlichen **Zustandsmenge** Z
- einen Anfangszustand $z_0 \in Z$
- ein endliches Bandalphabet X

Definition der TM

Ganz genau

Eine Turingmaschine $T = (Z, z_0, X, f, g, m)$ ist festgelegt durch

- eine endlichen **Zustandsmenge** Z
- einen Anfangszustand $z_0 \in Z$
- ein endliches Bandalphabet X
- eine partielle **Zustandsüberführung**sfunktion $f: Z \times X \longrightarrow Z$
- eine partielle **Ausgabe**funktion $g: Z \times X \longrightarrow X$ und
- eine partielle **Bewegung**sfunktion $m: Z \times X \longrightarrow \{-1, 0, 1\}$

Definiton der TM

Anmerkungen

• Die Funktionen **f**, **g** und **m** beschreiben zusammen, wie das aktuell eingelesene Zeichen verarbeitet werden soll (haben gemeinsamen Definitionsbereich).

Definiton der TM

Anmerkungen

- Die Funktionen f, g und m beschreiben zusammen, wie das aktuell eingelesene Zeichen verarbeitet werden soll (haben gemeinsamen Definitionsbereich).
- Bei der Bewegungsfunktion bedeutet -1 oder L eine Bewegung des Lese-/Schreibkopfes nach links, 1 oder R eine Bewegung nach rechts und 0 oder N ein Stehenbleiben.

Bekanntes Beispiel

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als Konfiguration $(z, b, p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als Konfiguration $(z, b, p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

• den aktuellen **Zustand** $z \in Z$ der Steuereinheit.

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als **Konfiguration** $(z, b, p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

- den aktuellen **Zustand** $z \in Z$ der Steuereinheit,
- die aktuelle **Beschriftung des gesamten Bandes**, die man als Abbildung $b: \mathbb{Z} \to X$ formalisieren kann, und

Eine Turingmaschine befindet sich zu jedem Zeitpunkt in einem Gesamtzustand, der als **Konfiguration** $(z, b, p) \in Z \times X^{\mathbb{Z}} \times \mathbb{Z}$ bezeichnet wird

Vollständig beschrieben durch...

- den aktuellen **Zustand** $z \in Z$ der Steuereinheit,
- die aktuelle **Beschriftung des gesamten Bandes**, die man als Abbildung $b: \mathbb{Z} \to X$ formalisieren kann, und
- die aktuelle **Position** $p \in Z$ **des Kopfes**.

Die Menge aller Konfigurationen bezeichnen wir als \mathbb{C}_t

Die Menge aller Konfigurationen bezeichnen wir als \mathbb{C}_t

Schritt einer TM

- $\Delta_X : \mathbb{C}_t \dashrightarrow \mathbb{C}_t$
- $\Delta_1(c)$ liefert direkte Nachfolgekonfiguration zu c

Die Menge aller Konfigurationen bezeichnen wir als \mathbb{C}_t

Schritt einer TM

- $\Delta_X : \mathbb{C}_t \dashrightarrow \mathbb{C}_t$
- ullet $\Delta_1(c)$ liefert direkte Nachfolgekonfiguration zu c

Endkonfigurationen einer TM

ist erreicht, falls $\Delta_1(c)$ nicht definiert ist

endliche Berechnung

- endliche Folge von Konfigurationen $(c_0, c_1, c_2, ..., c_t)$,
- wobei $0 < i \le t$ gilt $c_i = \Delta_1(c_{i-1})$

endliche Berechnung

- endliche Folge von Konfigurationen $(c_0, c_1, c_2, ..., c_t)$,
- wobei $0 < i \le t$ gilt $c_i = \Delta_1(c_{i-1})$

haltende Berechnung

- endliche Berechnung
- deren letzte Konfiguration eine Endkonfiguration ist

endliche Berechnung

- endliche Folge von Konfigurationen $(c_0, c_1, c_2, ..., c_t)$,
- wobei $0 < i \le t$ gilt $c_i = \Delta_1(c_{i-1})$

haltende Berechnung

- endliche Berechnung
- deren letzte Konfiguration eine Endkonfiguration ist

unendliche Berechnung

- unendliche Folge von Konfigurationen $(c_0, c_1, c_2, ...)$
- wobei für i > 0 gilt $c_i = \Delta_1(c_{i-1})$
- nicht haltend

analog zu endlichen Automaten

• Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt

analog zu endlichen Automaten

- Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt
- Teilmenge F ⊂ Z akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn

analog zu endlichen Automaten

- Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt
- Teilmenge $F \subset Z$ akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn
 - TM für Eingabe w hält und

analog zu endlichen Automaten

- Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt
- Teilmenge $F \subset Z$ akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn
 - TM für Eingabe w hält und
 - ullet der Zustand der Endkonfiguration $\Delta_*(c_0(w))$ akzepierend ist

Turingmaschinenakzeptoren

analog zu endlichen Automaten

- Erkennung formaler Sprachen: ein Bit akzeptiert/abgelehnt
- Teilmenge F ⊂ Z akzeptierender Zustände
- TM akzeptiert Eingabewort w, wenn
 - TM für Eingabe w hält und
 - ullet der Zustand der Endkonfiguration $\Delta_*(c_0(w))$ akzepierend ist
- L(T): Menge der akzeptierten Wörter

Ihr seid dran...

Aufgabe

Gebt ein TM-Akzeptor an, der die Sprache $L^{=}=\{0^{n}1^{n}:n\geq1\}$ akzeptiert

Ihr seid dran...

Lösung

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

● TM hält für Eingabe w, aber Endzustand nicht akzeptierend

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1 TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- TM hält für Eingabe w nicht

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1 TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2 TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1 TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

1 TM ist fertig und lehnt die Eingabe ab

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1 TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2 TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

- 1 TM ist fertig und lehnt die Eingabe ab
- 2 TM ist noch nicht fertig (Ob TM irgendwann w noch akzeptiert oder ablehnt, ist unklar!)

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2 TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

- TM ist fertig und lehnt die Eingabe ab
- TM ist noch nicht fertig (Ob TM irgendwann w noch akzeptiert oder ablehnt, ist unklar!)

Wir halten in zwei Definitionen fest

● L heißt entscheidbare Sprache, wenn es eine TM gibt, die immer hält und L akzeptiert.

Aufzählbare und entscheidbare Sprachen

zwei Möglichkeiten, wenn w von TM nicht akzeptiert wird

- 1 TM hält für Eingabe w, aber Endzustand nicht akzeptierend
- 2 TM hält für Eingabe w nicht

Was wissen wir über die Berechnung?

- TM ist fertig und lehnt die Eingabe ab
- TM ist noch nicht fertig (Ob TM irgendwann w noch akzeptiert oder ablehnt, ist unklar!)

Wir halten in zwei Definitionen fest

- L heißt entscheidbare Sprache, wenn es eine TM gibt, die immer hält und L akzeptiert.
- L heißt aufzählbare(semi-entscheidbar) Sprache, wenn es eine TM gibt, die L akzeptiert

- Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- Abschluss

Gödelisierung

• Ziel: Beschreibe jede Turingmaschine durch ein Wort

- Ziel: Beschreibe jede Turingmaschine durch ein Wort
- Verfahren: Durch-Nummerierung von Turingmaschinen
 - Triviales Alphabet zur Codierung wie z.B. $A = \{[,], 0, 1\}$

- Ziel: Beschreibe jede Turingmaschine durch ein Wort
- Verfahren: **Durch-Nummerierung** von Turingmaschinen
 - Triviales Alphabet zur Codierung wie z.B. $A = \{[,], 0, 1\}$
 - Codierung der Zustände, Symbole, Kopfbewegungen, Funktionen

- Ziel: Beschreibe jede Turingmaschine durch ein Wort
- Verfahren: **Durch-Nummerierung** von Turingmaschinen
 - Triviales Alphabet zur Codierung wie z.B. $A = \{[,], 0, 1\}$
 - Codierung der Zustände, Symbole, Kopfbewegungen, Funktionen
 - Codierung der gesamten Turingmaschine als Konkatentation aller codierten Bestandteile

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

universelle Turingmaschine U existiert

• erhält als Eingabe zwei Argumente als Wort $[w_1][w_2]$

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

- erhält als Eingabe zwei Argumente als Wort $[w_1][w_2]$
- prüft, ob w_1 Codierung einer Turingmaschine T ist

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

- erhält als Eingabe zwei Argumente als Wort $[w_1][w_2]$
- \bullet prüft, ob w_1 Codierung einer Turingmaschine T ist
- falls nein: hält mit NEIN

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

- erhält als Eingabe zwei Argumente als Wort $[w_1][w_2]$
- \bullet prüft, ob w_1 Codierung einer Turingmaschine T ist
- falls nein: hält mit NEIN
- falls ja:

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

- erhält als Eingabe zwei Argumente als Wort $[w_1][w_2]$
- ullet prüft, ob w_1 Codierung einer Turingmaschine T ist
- falls nein: hält mit NEIN
- falls ja:
 - U simuliert Schritt für Schritt die Arbeit, die T für die Eingabe w₂ durchführen würde

einfache Syntaxanalyse ist möglich

• TM konstruierbar, die für $w \in A^*$ feststellt, ob es die Codierung einer TM ist oder nicht.

- erhält als Eingabe zwei Argumente als Wort $[w_1][w_2]$
- ullet prüft, ob w_1 Codierung einer Turingmaschine T ist
- falls nein: hält mit NEIN
- falls ja:
 - U simuliert Schritt für Schritt die Arbeit, die T für die Eingabe w₂ durchführen würde
 - U liefert am Ende als Ergebnis, was T liefern würde (FALLS T hält!)

Das Halteproblem

Das Halteproblem ist die formale Sprache

 $H = \{ w \in A^* | w \text{ ist eine TM-Codierung und } T_w(w) \text{ hält. } \}$

Das Halteproblem

Das Halteproblem ist die formale Sprache

 $H = \{ w \in A^* | w \text{ ist eine TM-Codierung und } T_w(w) \text{ hält. } \}$

Satz

Das **Halteproblem ist unentscheidbar**, d. h. es gibt keine TM, die das Problem entscheidet.

Das Halteproblem

Das Halteproblem ist die formale Sprache

 $H = \{ w \in A^* | w \text{ ist eine TM-Codierung und } T_w(w) \text{ hält. } \}$

Satz

Das **Halteproblem ist unentscheidbar**, d. h. es gibt keine TM, die das Problem entscheidet.

Anmerkung

Aber: Das Halteproblem ist aufzählbar(semi-entscheidbar). Man zeigt das mittels Univeral-TM.

- Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- 10 Abschluss

Definition von Äquivalenzrelationen

Vorraussetzungen

reflexiv xRx transitiv Aus xRy und yRz folgt xRz symmetrisch Aus xRy folgt yRx

Definition von Äquivalenzrelationen

Vorraussetzungen

reflexiv xRx

transitiv Aus xRy und yRz folgt xRz

symmetrisch Aus xRy folgt yRx

Gelten alle diese Eigenschaften für alle x, y, handelt es sich um eine Äquivalenzrelation.

Äquivalenzrelationen

Relation als Graph

- Darstellung von Relationen als gerichtete Graphen: Woran sieht man
 - Reflexivität?
 - Symmetrie?
 - Transitivität?

Äquivalenzrelationen

Relation als Graph

- Darstellung von Relationen als gerichtete Graphen: Woran sieht man
 - Reflexivität?
 - Symmetrie?
 - Transitivität?
- Wie sieht der Graph einer Äquivalenzrelation aus:

Äguivalenzrelationen

Relation als Graph

- Darstellung von Relationen als gerichtete Graphen: Woran sieht man
 - Reflexivität?
 - Symmetrie?
 - Transitivität?
- Wie sieht der Graph einer Äquivalenzrelation aus: "Cliquen", in denen jeder mit jedem verbunden ist
- dazwischen nichts (die Cliquen heißen später Äguivalenzklassen)

Äquivalenzrelationen von Nerode

Definition

für alle $w_1, w_2 \in A^*$ ist $w1 \equiv_L w2 \Leftrightarrow (\forall w \in A^* : w_1w \in L \Leftrightarrow w_2w \in L)$

Äquivalenzrelationen von Nerode

Definition

für alle $w_1, w_2 \in A^*$ ist $w1 \equiv_L w2 \Leftrightarrow (\forall w \in A^* : w_1w \in L \Leftrightarrow w_2w \in L)$

das liest man besser mehrmals durch

Definition

für alle $w_1, w_2 \in A^*$ ist $w1 \equiv_L w2 \Leftrightarrow (\forall w \in A^* : w_1w \in L \Leftrightarrow w_2w \in L)$

- das liest man besser mehrmals durch
 - man nehme eine Sprache L, die von einem endlichen Akzeptor erkannt wird
 - man nehme zwei Wörter w_1 , w_2 die *nicht* \equiv_L -äquivalent sind
 - Was kann man über $f^*(z_0, w_1)$ und $f^*(z_0, w_2)$ sagen?

Definition

für alle $w_1, w_2 \in A^*$ ist $w1 \equiv_L w2 \Leftrightarrow (\forall w \in A^* : w_1w \in L \Leftrightarrow w_2w \in L)$

- das liest man besser mehrmals durch
 - man nehme eine Sprache L, die von einem endlichen Akzeptor erkannt wird
 - man nehme zwei Wörter w_1 , w_2 die *nicht* \equiv_L -äquivalent sind
 - Was kann man über $f^*(z_0, w_1)$ und $f^*(z_0, w_2)$ sagen?
 - Sie müssen verschieden sein, denn sonst $f^*(z_0, w_1) = f^*(z_0, w_2)$ und dann auch für jedes Suffix w: $f^*(z_0, w_1w) = f^*(z_0, w_2w)$, also werden für jedes Suffix entweder beide Wörter w_1w und w_2w oder keines akzeptiert, und dann wären w_1 und w_2 ja äquivalent.

Beispiele

aus dem Skript:

Sei
$$L = \langle a * b * \rangle \subset A^*$$

- $w_1 = aaa, w_2 = a$
- $w_1 = aaab, w_2 = abb$
- $w_1 = aa, w_2 = abb$
- $w_1 = aba, w_2 = babb$
- $w_1 = ab, w_2 = ba$

Beispiele

aus dem Skript:

Sei
$$L = \langle a * b * \rangle \subset A^*$$

- $w_1 = aaa, w_2 = a$
- $w_1 = aaab, w_2 = abb$
- $w_1 = aa, w_2 = abb$ nicht \equiv_L -äquivalent sind
- $w_1 = aba, w_2 = babb$
- $w_1 = ab$, $w_2 = ba$ nicht \equiv_L -äquivalent sind

- Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- 10 Abschluss

WDH: Definition von Äquivalenzrelationen

Vorraussetzungen

WDH: Definition von Äquivalenzrelationen

Vorraussetzungen

reflexiv xRx transitiv Aus xRy und yRz folgt xRz symmetrisch Aus xRy folgt yRx

WDH: Definition von Äquivalenzrelationen

Vorraussetzungen

reflexiv xRx

transitiv Aus xRy und yRz folgt xRz

symmetrisch Aus xRy folgt yRx

Gelten alle diese Eigenschaften für alle $x, y, z \in M$, handelt es sich um eine Äquivalenzrelation.

Vorraussetzungen

reflexiv xRx

transitiv Aus xRy und yRz folgt xRz

Vorraussetzungen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzantisymmetrisch Aus xRy und yRx folgt x = y

Vorraussetzungen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzantisymmetrisch Aus xRy und yRx folgt x = y

• Gelten alle diese Eigenschaften für alle x, y, handelt es sich bei $R \subseteq M \times M$ um eine **Halbordnung**.

Vorraussetzungen

reflexiv xRxtransitiv Aus xRy und yRz folgt xRzantisymmetrisch Aus xRy und yRx folgt x = y

- Gelten alle diese Eigenschaften für alle x, y, handelt es sich bei $R \subseteq M \times M$ um eine **Halbordnung**.
- Wenn R Halbordnung auf Menge M ist, nennt man M eine halbgeordnete Menge.

Untersuchung der Mengeninklusion

Untersuchung der Mengeninklusion

Handelt es sich bei der Relation \subseteq (Mengeninklusion) um eine Äquivalenzrelation oder Halbordnung auf Potenzmenge $P=2^M ?$

• relfexiv: $\forall A \in P$: $A \subseteq A$

Untersuchung der Mengeninklusion

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$

Untersuchung der Mengeninklusion

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: $\forall A, B \in P : A \subseteq B \Longrightarrow B \subseteq A$

Untersuchung der Mengeninklusion

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: ∀A, B ∈ P: A ⊆ B ⇒ B ⊆ A gilt nicht.
 ABER: Aus keiner Symmetrie folgt nicht notwendig die Antisymmetrie!

Untersuchung der Mengeninklusion

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: ∀A, B ∈ P: A ⊆ B ⇒ B ⊆ A gilt nicht.
 ABER: Aus keiner Symmetrie folgt nicht notwendig die Antisymmetrie!
- antisymmetrisch: $\forall A, B \in P : A \subseteq B \text{ und } B \subseteq A \Longrightarrow A = B$ (Analogie zur Mengengleichheit)

Untersuchung der Mengeninklusion

Handelt es sich bei der Relation \subseteq (Mengeninklusion) um eine Äquivalenzrelation oder Halbordnung auf Potenzmenge $P=2^M$?

- relfexiv: $\forall A \in P$: $A \subseteq A$
- transitiv: $\forall A, B, C \in P$: $A \subseteq B$ und $B \subseteq C \Longrightarrow A \subseteq C$
- symmetrisch: ∀A, B ∈ P: A ⊆ B ⇒ B ⊆ A gilt nicht.
 ABER: Aus keiner Symmetrie folgt nicht notwendig die Antisymmetrie!
- antisymmetrisch: $\forall A, B \in P : A \subseteq B \text{ und } B \subseteq A \Longrightarrow A = B$ (Analogie zur Mengengleichheit)

Die Mengeninklusion ist eine Halbordnung.

Aufgabe

Überprüft, ob es sich bei folgenden Relationen um Halbordnungen handelt:

• \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$?

Aufgabe

- \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$?
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_{\rho} w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1 u_1 = w_2$ und $w_2 u_2 = w_1$. Also ist $w_1 u_1 u_2 = w_2 u_2 = w_1$. Also muss $|u_1 u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - **Transitivität**: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.

Aufgabe

- \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$?
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_{\rho} w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1 u_1 = w_2$ und $w_2 u_2 = w_1$. Also ist $w_1 u_1 u_2 = w_2 u_2 = w_1$. Also muss $|u_1 u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - **Transitivität**: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1 u_1 = w_2$ und $w_2 u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.
- \sqsubseteq auf A^* mit $w_1 \sqsubseteq w_2 \Leftrightarrow |w_1| \leq |w_2|$?

Aufgabe

- \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$?
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1 u_1 = w_2$ und $w_2 u_2 = w_1$. Also ist $w_1 u_1 u_2 = w_2 u_2 = w_1$. Also muss $|u_1 u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.
- \sqsubseteq auf A^* mit $w_1 \sqsubseteq w_2 \Leftrightarrow |w_1| \leq |w_2|$?
 - Antisymmetrie ist verletzt.

Aufgabe

- \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \Leftrightarrow \exists u : vu = w$?
 - **Reflexivität**: gilt wegen $w_1 \epsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_{\rho} w_2$ und $w_2 \sqsubseteq w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1 u_1 = w_2$ und $w_2 u_2 = w_1$. Also ist $w_1 u_1 u_2 = w_2 u_2 = w_1$. Also muss $|u_1 u_2| = 0$ sein, also $u_1 = u_2 = \epsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1 u_1 = w_2$ und $w_2 u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq w_3$.
- \sqsubseteq auf A^* mit $w_1 \sqsubseteq w_2 \Leftrightarrow |w_1| \leq |w_2|$?
 - Antisymmetrie ist verletzt.
 - Reflexivität und Transitivität sind erfüllt.

Hassediagramm

Konstruktion

Zur **Veranschaulichung einer Halbordnung** lassen sich Hassediagramme folgendermaßen erstellen:

Hassediagramm

Konstruktion

Zur **Veranschaulichung einer Halbordnung** lassen sich Hassediagramme folgendermaßen erstellen:

Darstellung der Halbordnung als Graph

Hassediagramm

Konstruktion

Zur **Veranschaulichung einer Halbordnung** lassen sich Hassediagramme folgendermaßen erstellen:

- Darstellung der Halbordnung als Graph
- Entfernen aller reflexiven und transitiven Kanten

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

minimale und maximale Elemente

• $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \ne y$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \neq y$.

kleinstes und größtes Element

• $x \in T$ heißt **kleinstes Element** von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \neq y$.

kleinstes und größtes Element

- x ∈ T heißt kleinstes Element von T, wenn für alle y ∈ T gilt: x ⊑ y.
- $x \in T$ heißt **größtes Element** von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

minimale und maximale Elemente

- $x \in T$ heißt **minimales Element** von T, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \ne x$.
- $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \neq y$.

kleinstes und größtes Element

- $x \in T$ heißt kleinstes Element von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- $x \in T$ heißt **größtes Element** von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Eine Teilmenge T kann mehrere minimale (bzw. maximale) Elemente besitzen, aber nur ein kleinstes (bzw. größtes)!

Beispiel mit Hassediagramm

Beispiel

• Male das Hassediagramm zur Halbordnung $(\{\{\}, a, b, c, ab, bc, ac\}, \subseteq)$

Beispiel mit Hassediagramm

Beispiel

- Male das Hassediagramm zur Halbordnung $(\{\{\}, a, b, c, ab, bc, ac\}, \subseteq)$
- woran erkennt man Minima?

Beispiel mit Hassediagramm

Beispiel

- Male das Hassediagramm zur Halbordnung $(\{\{\}, a, b, c, ab, bc, ac\}, \subseteq)$
- woran erkennt man Minima?
- woran Maxima?

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Untere und obere Schranken

• $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Untere und obere Schranken

- x ∈ M heißt untere Schranke von T, wenn für alle y ∈ T gilt: x ⊑ y.
- $x \in M$ heißt **obere Schranke** von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Sei (M, \sqsubseteq) halbgeordnet und $T \subseteq M$

Untere und obere Schranken

- x ∈ M heißt untere Schranke von T, wenn für alle y ∈ T gilt: x ⊑ y.
- $x \in M$ heißt **obere Schranke** von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Also: Schranken von T dürfen außerhalb von T liegen.

Supremum und Infimum

 Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das Supremum von T (sup(T))

Supremum und Infimum

- Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das Supremum von T (sup(T))
- Besitzt die Menge aller unteren Schranken einer Teilmenge T ein größtes Element, so heißt dies das Infimum von T (inf(T))

Supremum und Infimum

- Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das Supremum von T (sup(T))
- Besitzt die Menge aller unteren Schranken einer Teilmenge T ein größtes Element, so heißt dies das Infimum von T (inf(T))
- Achtung: Existieren nicht, wenn
 - überhaupt keine oberen (unteren) Schranken vorhanden

Supremum und Infimum

- Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das Supremum von T (sup(T))
- Besitzt die Menge aller unteren Schranken einer Teilmenge T ein größtes Element, so heißt dies das Infimum von T (inf(T))
- Achtung: Existieren nicht, wenn
 - überhaupt keine oberen (unteren) Schranken vorhanden
 - keine eindeutig kleinste (größte) Schranke aller oberer (unterer) Schranken

aufsteigende Kette

wird definiert als

- abzählbar unendliche Folge $(x_0, x_1, x_2, ...)$ von Elementen
- mit Eigenschaft: $\forall i \in N_0$: $x_i \sqsubseteq x_{i+1}$

aufsteigende Kette

wird definiert als

- abzählbar unendliche Folge $(x_0, x_1, x_2, ...)$ von Elementen
- mit Eigenschaft: $\forall i \in N_0$: $x_i \sqsubseteq x_{i+1}$

vollständige Halbordnung

Eine Halbordnung heißt vollständig, wenn

- sie ein kleinstes Element ⊥ hat und
- jede aufsteigende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq ...$ ein Supremum x_i besitzt

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- D die halbgeordnete Potenzmenge $D=2^{T^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- D die halbgeordnete Potenzmenge $D=2^{T^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.
- Elemente der Halbordnung sind also Mengen von Wörtern, d.h. formale Sprachen.

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- D die halbgeordnete Potenzmenge $D=2^{T^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.
- Elemente der Halbordnung sind also Mengen von Wörtern, d.h. formale Sprachen.
- Kleinstes Element der Halbordnung ist die leere Menge ∅.

- Beispiel aus dem Skript
- Gegeben sei:
- Terminalzeichenalphabet $T = \{a, b\}$,
- D die halbgeordnete Potenzmenge $D = 2^{T^*}$ der Menge aller Wörter
- mit Inklusion als Halbordnungsrelation.
- Elemente der Halbordnung sind also Mengen von Wörtern, d.h. formale Sprachen.
- Kleinstes Element der Halbordnung ist die leere Menge ∅.
- Wie weiter vorne erwähnt, ist diese Halbordnung vollständig.

Beweis

- Es sei $v \in T^*$ ein Wort und $f_v : D \to D$ die Abbildung $f_v(L) = \{v\}L$, die vor jedes Wort von L vorne v konkateniert.
- Behauptung: f_v ist stetig.
- Beweis: Es sei $L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots$ eine Kette und $L = \bigcup L_i$ ihr Supremum.

$$f_v(L_i) = \{vw | w \in L_i\}, \text{ also } \bigcup_i f_v(L_i) = \{vw | \exists i \in N_0 : w \in L_i\} = \{v\}\{w | \exists i \in N_0 : w \in L_i\} = \{v\}\bigcup_i L_i = f(\bigcup_i L_i).$$

• analog für Konkatenation von rechts

- Guten Morgen...
- 2 Aufgabenblatt 12
- 3 Aufgabenblatt 13
- 4 Probeklausur
- 5 WDH: Turingmaschine
- 6 Unentscheidbare Probleme
- Äquivalenzrelationen
- 8 Halbordnungen
- Ordnungen
- Abschluss

Definition

Relation $R \subseteq M \times M$ ist eine Ordnung oder genauer **totale Ordnung**, wenn

• R Halbordnung ist

Definition

Relation $R \subseteq M \times M$ ist eine Ordnung oder genauer **totale Ordnung**, wenn

- R Halbordnung ist
- und gilt: $\forall x, y \in M$: $xRy \lor yRx$

Definition

Relation $R \subseteq M \times M$ ist eine Ordnung oder genauer **totale Ordnung**, wenn

- R Halbordnung ist
- und gilt: $\forall x, y \in M$: $xRy \lor yRx$

Anmerkungen

• ⇒ : Es gibt keine unvergleichbaren Elemente.

Beispiele

• (N_0, \leq)

- (N_0, \leq)
- $(\{a,b\}^*, \sqsubseteq_1)$ mit $w_1 \sqsubseteq_1 w_2$ "wie im Wörterbuch"

- (N_0, \leq)
- $(\{a,b\}^*, \sqsubseteq_1)$ mit $w_1 \sqsubseteq_1 w_2$ "wie im Wörterbuch"
- $(\{a,b\}^*, \sqsubseteq_2)$ mit $w_1 \sqsubseteq_2 w_2$ genau dann, wenn

- (N_0, \leq)
- $(\{a,b\}^*, \sqsubseteq_1)$ mit $w_1 \sqsubseteq_1 w_2$ "wie im Wörterbuch"
- $(\{a,b\}^*, \sqsubseteq_2)$ mit $w_1 \sqsubseteq_2 w_2$ genau dann, wenn
 - entweder $|w_1| < |w_2|$

- (N_0, \leq)
- $(\{a,b\}^*, \sqsubseteq_1)$ mit $w_1 \sqsubseteq_1 w_2$ "wie im Wörterbuch"
- $(\{a,b\}^*, \sqsubseteq_2)$ mit $w_1 \sqsubseteq_2 w_2$ genau dann, wenn
 - entweder $|w_1| < |w_2|$
 - oder $|w_1| = |w_2|$ und $w_1 \sqsubseteq_1 w_2$ gilt

Beispiele für \sqsubseteq_1 :

• Warum ist $aa \sqsubseteq_1 aabba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist *aaaaa* □₁ *bba*?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

• Warum ist $aa \sqsubseteq_2 aabba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

- Warum ist $aa \sqsubseteq_2 aabba$?
- Warum ist $aa \sqsubseteq_2 bba$?

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

- Warum ist $aa \sqsubseteq_2 aabba$?
- Warum ist $aa \sqsubseteq_2 bba$?
- Warum ist *bba* \sqsubseteq_2 *aaaaa*? (vergleiche \sqsubseteq_1 !)

Beispiele für \sqsubseteq_1 :

- Warum ist $aa \sqsubseteq_1 aabba$?
- Warum ist $aa \sqsubseteq_1 bba$?
- Warum ist $aaaaa \sqsubseteq_1 bba$?
- Warum ist $aaaab \sqsubseteq_1 aab$?

Beispiele für \sqsubseteq_2 :

- Warum ist $aa \sqsubseteq_2 aabba$?
- Warum ist $aa \sqsubseteq_2 bba$?
- Warum ist *bba* \sqsubseteq_2 *aaaaa*? (vergleiche \sqsubseteq_1 !)
- Warum ist $aab \sqsubseteq_2 aaaab$? (vergleiche \sqsubseteq_1 !)

Bleibt dran...

Aufgabe

Relation \sqsubseteq_p auf $\{a, b\}^*$ eine totale Ordnung?

Bleibt dran...

Aufgabe

Relation \sqsubseteq_p auf $\{a, b\}^*$ eine totale Ordnung?

Lösung

Es handelt sich um eine Halbordnung, allerdings mit unvergleichbaren Element wie z.B. a, b. Daher ist die Relation \sqsubseteq_p **keine** totale Ordnung.

- Abschluss

Was ihr nun wissen solltet!

• Was ist ein Algorithmus?

- Was ist ein Algorithmus?
- Welche Arten von Berechnung unterscheiden wir?

- Was ist ein Algorithmus?
- Welche Arten von Berechnung unterscheiden wir?
- Was zeichnet das Halteproblem aus? Gibt es noch andere Probleme, auf die dasselbe zutrifft?

- Was ist ein Algorithmus?
- Welche Arten von Berechnung unterscheiden wir?
- Was zeichnet das Halteproblem aus? Gibt es noch andere Probleme, auf die dasselbe zutrifft?
- Was besagt die Äquivalenzrelation von Nerode?

Was ihr nun wissen solltet!

- Was ist ein Algorithmus?
- Welche Arten von Berechnung unterscheiden wir?
- Was zeichnet das Halteproblem aus? Gibt es noch andere Probleme, auf die dasselbe zutrifft?
- Was besagt die Äquivalenzrelation von Nerode?

Ihr wisst was nicht?

Stellt jetzt Fragen!

