1^a Lista de Exercícios - Geometria Analítica

Vetores

Vetores: abordagem geométrica

(1) Determine a soma dos vetores indicados em cada caso:

(2) Considere a figura abaixo formada por quadrados:

Determine representantes para os vetores abaixo, expressando-os com origem no ponto A.

(a)
$$\overrightarrow{AC} + \overrightarrow{CN}$$

(b)
$$\overrightarrow{AB} + \overrightarrow{BD}$$

(c)
$$\overrightarrow{AC} + \overrightarrow{DC}$$

(d)
$$\overrightarrow{AC} + \overrightarrow{AK}$$

(e)
$$\overrightarrow{AC} + \overrightarrow{EO}$$

(i) $\overrightarrow{MO} - \overrightarrow{NP}$

(f)
$$\overrightarrow{AM} + \overrightarrow{BL}$$

(j) $\overrightarrow{BC} - \overrightarrow{CB}$

$$(g) \overrightarrow{AK} + \overrightarrow{AN}$$

$$(k) \overrightarrow{LP} + \overrightarrow{PN} + \overrightarrow{NF}$$

(h)
$$\overrightarrow{AO} - \overrightarrow{OE}$$

(l) $\overrightarrow{BL} + \overrightarrow{BN} + \overrightarrow{PB}$

(3) Considere o paralelepípedo retângulo:

(i) Decida se é verdadeira ou falsa cada uma das afirmações:

$$(a) \overrightarrow{DH} = \overrightarrow{BF}$$

(b)
$$\overrightarrow{AB} = -\overrightarrow{HG}$$

(c)
$$\overrightarrow{AB} \perp \overrightarrow{CG}$$

(d)
$$\overrightarrow{AF} \perp \overrightarrow{BC}$$

(e)
$$\|\overrightarrow{AC}\| = \|\overrightarrow{HF}\|$$

$$(f) \|\overrightarrow{AG}\| = \|\overrightarrow{DF}\|$$

$$(g) \overrightarrow{BG} /\!\!/ \overrightarrow{ED}$$

(h)
$$\overrightarrow{AB}$$
, \overrightarrow{BC} e \overrightarrow{CG} são coplanares

$$(i)$$
 \overrightarrow{AB} , \overrightarrow{FG} e \overrightarrow{EG} são coplanares

$$(j)$$
 $\overrightarrow{\mathsf{EG}},\overrightarrow{\mathsf{CB}}$ e $\overrightarrow{\mathsf{HF}}$ são coplanares

(k)
$$\overrightarrow{AC}$$
, \overrightarrow{DB} e \overrightarrow{FG} são coplanares

(1)
$$\overrightarrow{AB}$$
, \overrightarrow{BG} e \overrightarrow{CF} são coplanares

(m)
$$\overrightarrow{AB}$$
, \overrightarrow{DC} e \overrightarrow{CF} são coplanares

$$(n) \overrightarrow{AE}$$
 é ortogonal ao plano ABC

(o)
$$\overrightarrow{AB}$$
 é ortogonal ao plano BCG

$$(p)$$
 \overrightarrow{DC} é paralelo ao plano HEF

(ii) Determinar os vetores abaixo, expressando-os com origem no ponto A:

(a) $\overrightarrow{AB} + \overrightarrow{CG}$

(b) $\overrightarrow{BC} + \overrightarrow{DE}$

(c) $\overrightarrow{BF} + \overrightarrow{EH}$

(d) $\overrightarrow{EG} - \overrightarrow{BC}$

 $(e) \ \overrightarrow{CG} + \overrightarrow{EH}$

(f) $\overrightarrow{EF} - \overrightarrow{FB}$

(q) $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$

(h) $\overrightarrow{EG} + \overrightarrow{DA} + \overrightarrow{FH}$

(4) Decidir se é verdadeira ou falsa cada uma das afirmações:

-) Se $\vec{\mathbf{u}} = \vec{\mathbf{v}}$, então $||\vec{\mathbf{u}}|| = ||\vec{\mathbf{v}}||$.
- (b) () Se $\|\vec{\mathbf{u}}\| = \|\vec{\mathbf{v}}\|$, então $\vec{\mathbf{u}} = \vec{\mathbf{v}}$.
-) Se $\vec{u} /\!\!/ \vec{v}$, então $\vec{u} = \vec{v}$. (c) (
-) Se $\vec{\mathbf{u}} = \vec{\mathbf{v}}$, então $\vec{\mathbf{u}} /\!/ \vec{\mathbf{v}}$. (d) (
- (e) () Se $\vec{w} = \vec{u} + \vec{v}$, então $||\vec{w}|| = ||\vec{u}|| + ||\vec{v}||$.
- (f) () Se $||\vec{\mathbf{w}}|| = ||\vec{\mathbf{u}}|| + ||\vec{\mathbf{v}}||$, então $\vec{\mathbf{u}}, \vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$ são paralelos.
- $||5\vec{\mathbf{v}}|| = ||-5\vec{\mathbf{v}}|| = 5||\vec{\mathbf{v}}||.$ (g) (
-) Os vetores $3\vec{v}$ e $-4\vec{v}$ são paralelos e de mesmo sentido. (h) (
- (i) () Se $\|\vec{\mathbf{v}}\| = 3$, então o versor de $-10\vec{\mathbf{v}}$ é $-\frac{\vec{\mathbf{v}}}{3}$.

(5) Sabendo que o ângulo entre os vetores \vec{u} e \vec{v} é de 60°, determine o ângulo formado pelos vetores:

$$(\mathfrak{a})\vec{\mathfrak{u}} \; \mathrm{e} \; -\vec{\mathfrak{v}}$$

$$(b) - \vec{u} e 2\vec{v}$$

$$(c) - \vec{u} e - \vec{v}$$

 $(d)3\vec{u} e 5\vec{v}$

(6) Considere três vetores não nulos $\vec{u}, \vec{v} \in \vec{w}$, coplanares, representados graficamente com uma mesma origem comum, e de tal modo que:

- (i) o ângulo formado por \vec{u} e \vec{v} mede 45°;
- (ii) o ângulo formado por \vec{u} e \vec{w} mede 60°;
- (iii) o ângulo formado por \vec{v} e \vec{w} mede 105°.

- (a) o vetor $\vec{x} + \vec{y}$, sendo $\vec{x} = \vec{u} + 2\vec{v}$ e $\vec{y} = \vec{v} 2\vec{u}$ e o represente graficamente junto aos vetores \vec{u}, \vec{v} e \vec{w} .
- (b) a medida do ângulo determinado pelos vetores $-3\vec{v} \in \vec{w}$.
- (c) a medida do ângulo determinado pelos vetores $-3\vec{u} e -\vec{w}$.

(7) Demosntrar que o segmento cujos extremos são os pontos médios de dois lados de um triângulo é paralelo ao terceiro lado e igual à sua metade.

(8) Mostre que o segmento de extremos nos pontos médios dos lados não paralelos de um trapézio é paralelo às bases e igual à sua semi-soma.

Vetores: abordagem algébrica

(1) Determinar a extremidade do segmento que representa o vetor $\vec{v} = (2, -5)$, sabendo que sua origem é o ponto A = (-1, 3).

(2) Dados os vetores $\vec{\mathbf{u}} = (3, -1)$ e $\vec{\mathbf{v}} = (-1, 2)$, determine o vetor $\vec{\mathbf{w}}$ tal que $4(\vec{\mathbf{u}} - \vec{\mathbf{v}}) + \frac{1}{3}\vec{\mathbf{w}} = 2\vec{\mathbf{u}} - \vec{\mathbf{w}}$.

(3) Dados os pontos A=(-1,3), B=(2,5) e C=(3,-1), calcular os vetores $\overrightarrow{OA}-\overrightarrow{AB}, \overrightarrow{OC}-\overrightarrow{BC}$ e $3\overrightarrow{BA}-4\overrightarrow{CB}$. (4) Dados os vetores $\vec{u}=(2,-4), \vec{v}=\left(-\frac{9}{4},3\right)$ e $\vec{w}=(-12,6),$ determinar k_1 e k_2 tal que $\vec{w}=k_1\vec{u}+k_2\vec{v}.$

(5) Dados os pontos A = (2, -3, 1) e B = (4, 5, -2), determine o ponto P tal que $\overrightarrow{AP} = \overrightarrow{PB}$.

(6) Determinar o vetor \vec{v} sabendo que $(3,7,1) + 2\vec{v} = (6,10,4) - \vec{v}$.

(7) Determine os valores de a e b para que os vetores $\vec{u} = (4, 1, -3)$ e $\vec{v} = (6, a, b)$ sejam paralelos.

(8) Verificar se são colineares os pontos:

(a)
$$A = (-1, -5, 0), B = (2, 1, 3) e C = (-2, -7, -1)$$

(b)
$$A = (2, 1, -1), B = (3, -1, 0) e C = (1, 0, 4)$$

(9) Mostre que os pontos A = (4,0,1), B = (5,1,3), C = (3,2,5) e D = (2,1,3) são vértices de um paralelogramo.

(10) Determinar o simétrico do ponto P = (3, 1, -2) em relação ao ponto A = (-1, 0, 3).

(11) Calcular a distância do ponto A = (3, 4, -2):

(a) ao plano xu (b) ao plano xz(c) ao plano yz (d) ao eixo x(e) ao eixo y (f) ao eixo z

(12) Determinar os três vértices de um triângulo, sabendo que os pontos médios de seus lados são M = (5, 0, -2), $N = (3, 1, -3) \in P = (4, 2, 1).$

(13) Sendo A = (-2,1,3) e B = (6,-7,1) extremidades de um segmento. Determine os pontos C e D que dividem o segmento AB em três partes de mesmo comprimento.

(14) Determinar o valor de \mathfrak{n} para que o vetor $\vec{v} = (\mathfrak{n}, -\frac{1}{2}, \frac{3}{4})$ seja unitário.

Produto de Vetores

Produto escalar ou produto interno

(1) Dados os vetores $\vec{\mathfrak{u}}=(2,-3,-1)$ e $\vec{\mathfrak{v}}=(1,-1,4)$, calcule:

(a)
$$2\vec{\mathbf{u}} \cdot (-\vec{\mathbf{v}})$$

(b)
$$(\vec{u} + 3\vec{v}) \cdot (\vec{v} - 2\vec{u})$$

(c)
$$(\vec{\mathbf{u}} + \vec{\mathbf{v}}) \cdot (\vec{\mathbf{u}} - \vec{\mathbf{v}})$$

(d)
$$(\vec{\mathbf{u}} + \vec{\mathbf{v}}) \cdot (\vec{\mathbf{v}} - \vec{\mathbf{u}})$$

(2) Mostre que:

(a)
$$\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\|^2 = \|\vec{\mathbf{u}}\|^2 + 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \|\vec{\mathbf{v}}\|^2$$

(b)
$$||\vec{\mathbf{u}} - \vec{\mathbf{v}}||^2 = ||\vec{\mathbf{u}}||^2 - 2\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + ||\vec{\mathbf{v}}||^2$$

(c) Se $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$ são vetores não nulos, paralelos e de mesmo sentido, então $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = ||\vec{\mathbf{u}}|| ||\vec{\mathbf{v}}||$.

(d) Se $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$ são vetores não nulos, paralelos e de sentidos opostos, então $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = -\|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\|$.

(3) O quadrilátero ABCD da figura abaixo é um losango de lado medindo 2.

Calcular:

(a) $AC \cdot \overrightarrow{BD}$

(b) $\overrightarrow{AB} \cdot \overrightarrow{AD}$

(c) $\overrightarrow{BA} \cdot \overrightarrow{BC}$

(e) $\overrightarrow{AB} \cdot \overrightarrow{DC}$ (f) $\overrightarrow{BC} \cdot \overrightarrow{DA}$

(4) Prove que as diagonais de um losango são perpendiculares entre si.

- (5) Calcular $||\vec{\mathbf{u}} + \vec{\mathbf{v}}||, ||\vec{\mathbf{u}} \vec{\mathbf{v}}|| \in (\vec{\mathbf{u}} + \vec{\mathbf{v}}) \cdot (\vec{\mathbf{u}} \vec{\mathbf{v}})$, sabendo que $||\vec{\mathbf{u}}|| = 4$, $||\vec{\mathbf{v}}|| = 3$ e o ângulo entre $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$ é de 60°.
- (6) Os pontos A, B e C são vértices de um triângulo equilátero cujo lado mede 10 cm. Calcule o produto escalar dos vetores \overrightarrow{AB} e \overrightarrow{AC} .
- (7) Verificar para os vetores $\vec{u} = (4, -1, 2)$ e $\vec{v} = (-3, 2, -2)$ as desigualdades:
 - (a) $\|\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}\| \le \|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\|$ (Designaldade de Schwarz)
 - (b) $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$ (Designaldade Triangular)
- (8) Qual o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 2\vec{j} 4\vec{k}$ e $\vec{b} = 2\vec{i} + (1 2\alpha)\vec{j} + 3\vec{k}$ sejam ortogonais?
- (9) Dados os pontos A = (m, 1, 0), B = (m 1, 2m, 2) e C = (1, 3, -1), determine m de modo que o triângulo ABC seja retângulo em A. Calcule também a área desse triângulo.
- (10) Determinar o vetor $\vec{\mathbf{u}}$ tal que $||\vec{\mathbf{u}}|| = 2$, o ângulo entre $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}} = (1, -1, 0)$ é 45° e $\vec{\mathbf{u}}$ é ortogonal a $\vec{\mathbf{w}} = (1, 1, 0)$.
- (11) Determinar o ângulo entre os vetores:
 - (a) $\vec{u} = (2, -1, -1) \ e \ \vec{v} = (-1, -1, 2)$.
 - (b) $\vec{\mathbf{u}} = (1, -2, 1) \ \mathbf{e} \ \vec{\mathbf{v}} = (-1, 1, 0).$
- (12) Considere o triângulo de vértices A=(3,4,4), B=(2,-3,4) e C=(6,0,4). Determine os ângulos interno e externo ao vértice B.
- (13) Dados os vetores $\vec{\mathbf{u}} = (3,0,1)$ e $\vec{\mathbf{v}} = (-2,1,2)$, determinar:
- (a) $\operatorname{proj}_{\vec{v}}\vec{u}$
- (b) $\operatorname{proj}_{\vec{\mathbf{1}}} \vec{\mathbf{v}}$.
- (14) Sejam A = (2, 1, 3), B = (m, 3, 5) e C = (0, 4, 1) vértices de um triângulo.
 - (a) Determine o valor de m para que o triângulo ABC seja retângulo em A.
 - (b) Calcule a medida da projeção do cateto AB sobre a hipotenusa BC.
 - (c) Determine o ponto H, pé da altura relativa ao vértice A.
 - (d) Prove que \overrightarrow{AH} é ortogonal a \overrightarrow{BC} .

Produto vetorial

- (1) Dados os vetores $\vec{u} = (2, -1, 1), \vec{v} = (1, -1, 0)$ e $\vec{w} = (-1, 2, 2)$, calcule:
 - (a) $\vec{w} \times \vec{v}$
 - (b) $\vec{v} \times (\vec{w} \vec{u})$
 - (c) $(\vec{\mathbf{u}} + \vec{\mathbf{v}}) \times (\vec{\mathbf{u}} \vec{\mathbf{v}})$
- (2) Determinar um vetor simultaneamente ortogonal aos vetores $2\vec{a} + \vec{b}$ e $\vec{b} \vec{a}$, sendo $\vec{a} = (3, -1, -2)$ e $\vec{b} = (1, 0, -3)$.
- (3) Determinar o valor de \mathfrak{m} para que o vetor $\vec{w}=(1,2,\mathfrak{m})$ seja simultaneamente ortogonal aos vetores $\vec{v}_1=(2,-1,0)$ e $\vec{v}_2=(1,-3,-1)$.
- (4) Sejam os vetores $\vec{u} = (1, -2, 1), \vec{v} = (1, 1, 1)$ e $\vec{w} = (1, 0, -1)$.

- (a) Utilizar o produto escalar para mostrar que os vetores acima são, dois a dois, ortogonais.
- (b) Utilizar o produto vetorial para mostrar que o produto vetorial de quaisquer dois deles é paralelo ao terceiro vetor.
- (c) Mostrar que $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = \vec{\mathbf{0}}$.
- (5) Obter um vetor ortogonal ao plano determinado pelos pontos A = (2,3,1), B = (1,-1,1) e C = (4,1,-2).
- (6) Dados os vetores $\vec{u}=(3,-1,2)$ e $\vec{v}=(-2,2,1)$, calcular:
 - (a) a área do paralelogramo determinado por \vec{u} e \vec{v} .
 - (b) a altura do paralelogramo relativa à base definida pelo vetor \vec{v} .
- (7) Calcular o valor de \mathfrak{m} para que a área do paralelogramo determinado por $\vec{\mathfrak{u}}=(\mathfrak{m},-3,1)$ e $\vec{\mathfrak{v}}=(1,-2,2)$ seja igual a $\sqrt{26}$.
- (8) Calcular a área do triângulo ABC e a altura relativa ao lado BC, sendo dados:
 - (a) A = (-4, 1, 1), B = (1, 0, 1) e C = (0, -1, 3)
 - (b) A = (4, 2, 1), B = (1, 0, 1) e C = (1, 2, 0)
- (9) Resolver os sistemas (encontre \vec{x}):

$$(a) \begin{cases} \vec{x} \times \vec{j} = \vec{k} \\ \vec{x} \cdot (4\vec{i} - 2\vec{j} + \vec{k}) = 10 \end{cases}$$

(b)
$$\begin{cases} \vec{x} \times (2\vec{i} - \vec{j} + 3\vec{k}) = \vec{0} \\ \vec{x} \cdot (\vec{i} + 2\vec{j} - 2\vec{k}) = 12 \end{cases}$$

(10) Sejam $\vec{v_1} = (-2, 1, -1)$, $\vec{v_2} = (0, a, b)$ e $\vec{v} = \vec{v_1} \times \vec{v_2}$. Determine a e b de modo que $||\vec{v}|| = 4\sqrt{3}$ e que o vetor \vec{v} faça ângulos congruentes com os eixos x e y.

Produto misto

- (1) Dados os vetores $\vec{\mathbf{u}} = (3, -1, 1), \vec{\mathbf{v}} = (1, 2, 2)$ e $\vec{\mathbf{w}} = (2, 0, -3)$, calcule:
 - (a) $(\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}})$
- (b) $(\vec{w}, \vec{u}, \vec{v})$
- (2) Sabendo que $(\vec{u}, \vec{v}, \vec{w}) = -5$, calcular:
 - (a) $(\vec{w}, \vec{v}, \vec{u})$
- (b) $(\vec{v}, \vec{u}, \vec{w})$
- (c) $\vec{\mathbf{v}} \cdot (\vec{\mathbf{w}} \times \vec{\mathbf{u}})$
- (3) Verificar se são coplanares os vetores:
- (a) $\vec{u} = (1, -1, 2), \vec{v} = (2, 2, 1) \text{ e } \vec{w} = (-2, 0, -4)$
- (b) $\vec{u} = (2, -1, 3), \vec{v} = (3, 1, -2) \text{ e } \vec{w} = (7, -1, 4)$
- (4) Determinar o valor de k para que sejam coplanares os vetores $\vec{u} = (2, -1, k), \vec{v} = (1, 0, 2)$ e $\vec{w} = (k, 3, k)$.
- (5) Um paralelepípedo é determinado pelos vetores $\vec{u}=(3,-1,4), \vec{v}=(2,0,1)$ e $\vec{w}=(-2,1,5)$. Calcule seu volume.
- (6) Representar graficamente o tetraedro ABCD e calcular seu volume, sendo A = (1,1,0), B = (6,4,1), C = (2,5,0) e D = (0,3,3).

5

- (7) Considere um tetraedro de base ABC e vértice P.
- (a) Sendo $A=(2,0,0),\ B=(2,4,0),\ C=(0,3,0)$ e P=(2,-2,9), qual é o volume do tetraedro e sua altura (relativa ao vértice P)?
- (b) Sendo A = (-2, 4, -1), B = (-3, 2, 3), C = (1, -2, -1) e o volume do tetraedro igual a 6, determinar o vértice P sabendo que ele pertence ao eixo y.

Vetores

Vetores: abordagem algébrica

1) A extremidade de \vec{v} é o ponto (1, -2).

2)
$$\vec{w} = \left(-\frac{30}{4}, \frac{30}{4}\right)$$

3)
$$\overrightarrow{OA} - \overrightarrow{AB} = (-4, 1)$$

$$\overrightarrow{OC} - \overrightarrow{BC} = (2,5)$$

3)
$$\overrightarrow{OA} - \overrightarrow{AB} = (-4, 1)$$
 $\overrightarrow{OC} - \overrightarrow{BC} = (2, 5)$ $3\overrightarrow{BA} - 4\overrightarrow{CB} = (-5, -30)$

4)
$$k_1 = \frac{15}{2} e k_2 = 12$$

5)
$$P = (3, 1, -\frac{1}{2})$$

6)
$$\vec{v} = (1, 1, 1)$$

7)
$$a = \frac{3}{2} e b = -\frac{9}{2}$$

9) Considere um quadrilátero de vértices ABCD. Para mostrar que ABCD é um paralelogramo, basta mostrar que os lados opostos são paralelos, ou seja, que os pares de vetores \overrightarrow{AB} , \overrightarrow{DC} e \overrightarrow{AD} , \overrightarrow{BC} são paralelos.

10)
$$P' = (-5, -1, 8)$$

- **11)** (a) 2
- (b) 4
- (c) 3
- (d) $2\sqrt{5}$
- (e) $\sqrt{13}$ (f) 5

12) Considerando M ponto médio de AB, N ponto médio de AC e P ponto médio de BC, temos que A = (4, -1, -6), B = (6, 1, 2) e C = (2, 3, 0).

Produto de Vetores

Produto escalar ou produto interno

- 1) (a) -2
- (b) 21 (c) -4 (d) 4

- **3)** (a) 0
- (b) 2 (c) -2

- (d) 2 (e) 4 (f) -4

5)
$$\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\| = \sqrt{37}$$
, $\|\vec{\mathbf{u}} - \vec{\mathbf{v}}\| = \sqrt{13}$, $(\vec{\mathbf{u}} + \vec{\mathbf{v}})(\vec{\mathbf{u}} - \vec{\mathbf{v}}) = 7$

6)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 50$$

8)
$$\alpha = -5$$

9) m = 1 e a área do triângulo é
$$\frac{\sqrt{30}}{2}$$

11) (a)
$$\theta = 120^{\circ}$$
 ou $\frac{2}{3}\pi$ rad

(b) 150° ou
$$\frac{5}{6}\pi$$
 rad

12) Ângulo interno: 45°, ângulo externo: 135°

13) (a)
$$\frac{1}{9}$$
 (8, -4, 8)

(b)
$$\left(-\frac{6}{5}, 0, -\frac{2}{5}\right)$$

 $Produto\ vetorial$

- 1) (a) (2, 2, -1)
- (b) (-1, -1, 0)
- (c) (-2, -2, 2)

3)
$$m = -5$$

5)
$$(12, -3, 10)$$

Respostas

- **6)** (a) $3\sqrt{10}$
- (b) $\sqrt{10}$
- **7)** 0 ou 2
- 8) (a) área do triângulo: $\frac{140}{2}$, altura: $\sqrt{\frac{70}{3}}$ (b) área do triângulo: $\frac{7}{2}$, altura: $\frac{7\sqrt{5}}{5}$

- **9)** (a) $\vec{x} = (1, -3, 0)$
- (b) $\vec{\mathbf{x}} = (-4, 2, -6)$
- **10)** $a = b = \pm 2$

 $Produto\ misto$

- **1)** (a) -29 (b) -29
- **2)** (a) 5 (b) 5 (c) -5

- $\textbf{3)} \ (\mathfrak{a}) \ \text{n\~{a}o s\~{a}o coplanares} \qquad \qquad (\mathfrak{b}) \ \text{s\~{a}o coplanares}$

- **4**) 6
- **5**) 17
- 6) $\frac{19}{2}$
- 7) (a) V = 12 e h = 9 (b) P = (0, 2, 0)