Singular Cohomology

March 4, 2021

1 Standard Simplicies

Let $n \in \mathbb{Z}_{\geq 0}$ and let $v_0, \ldots, v_n \in \mathbb{R}^{n+1}$ such that the vectors $v_1 - v_0, \ldots, v_n - v_0$ are linearly independent. The n-simplex $[v_0, \ldots, v_n]$ is the smallest convex set in \mathbb{R}^m which contains v_0, \ldots, v_n . The vectors v_i are called the **vertices** of the simplex. The n-dimensional standard simplex is

$$\Delta^n := \left\{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} \mid t_i \in [0, 1] \text{ and } \sum t_i = 1 \right\} = [e_0, \dots, e_n],$$

where the e_i are the standard coordinate vectors in \mathbb{R}^{n+1} (i.e. $e_i = (0, ..., 1, ..., 0)$ with 1 in the ith component and 0 everywhere else).

For purposes of homology it will be important to keep track of the order of the vertices of a simplex, so "n-simplex" will really mean "n-simplex with an ordering of its vertices". Specifying the ordering of the vertices also determines a canonical linear homeomorphism from the standard n-simplex Δ^n onto any other n-simplex $[v_0, \ldots, v_n]$, preserving the order of vertices, namely, $(t_0, \ldots, t_n) \mapsto \sum_i t_i v_i$. The coefficients t_i are the **barycentric coordinates** of the point $\sum_i t_i v_i$ in $[v_0, \ldots, v_n]$.

1.0.1 Delta Complex

A Δ -complex structure on a space X is a collection of maps $\sigma_{\alpha} \colon \Delta^n \to X$, with n depending on the index α , such that:

- 1. The restriction $\sigma_{\alpha}|_{\Delta^n \setminus \partial \Delta^n}$ is injective, and each point of X is in the image of exactly one such restriction $\sigma_{\alpha}|_{\Delta^n \setminus \partial \Delta^n}$.
- 2. Each restriction of σ_{α} to a face of Δ^n is one of the maps $\sigma_{\beta} \colon \Delta^{n-1} \to X$. Here we are identifying the face of Δ^n with Δ^{n-1} by the canonical linear homeomorphism between them that preserves the ordering of the vertices.
- 3. A set $A \subset X$ is open if and only if $\sigma_{\alpha}^{-1}(A)$ is open in Δ^n for each σ_{α} .

Among other things, this last condition rules out trivialities like regarding all the points of X are individual vertices.

1.1 Singular Homology

Let X be a topological space. A continuous map $\sigma \colon \Delta^n \to X$ is called a **singular** n-**simplex in** X. A continuous map $\widetilde{\sigma} \colon [v_0, \ldots, v_n] \to X$ determines a unique continuous map $\sigma \colon \Delta^n \to X$ via the canonical linear homeomorphism from Δ^n onto $[v_0, \ldots, v_n]$. Thus we can think of $\widetilde{\sigma}$ as a singular n-simplex via σ . We frequently use this convention without comment.

The set *n*-simplices in X is denoted by $\Sigma_n(X)$ and the free abelian group with basis the set of singular *n*-simplices in X is denoted $S_n(X) := \mathbb{Z}[\Sigma_n(X)]$. Elements in $S_n(X)$ are called **singular** *n*-chains. We also denote $\Sigma(X) := \bigcup_n \Sigma_n(X)$.

Let *R* a ring. For $n \in \mathbb{Z}_{>0}$, let

$$S_n(X;R) := \bigoplus_{\sigma \in \Sigma_n(X)} R$$
 and $S(X;R) := \bigoplus_{n \in \mathbb{Z}} S_n(X;R)$,

So S(X;R) is a graded R-module whose nth homogeneous piece is the free R-module $S_n(X;R)$. Let $\partial_R \colon S(X;R) \to S(X;R)$ be the unique graded endomorphism of degree -1 such that if $\sigma \in \Sigma_n(X)$, then

$$\partial_R(\sigma) = \sum_i (-1)^i \sigma_{|[e_0,...,\widehat{e}_i,...,e_n]},$$

where $[e_0,\ldots,\widehat{e_i},\ldots,e_n]=[e_0,\ldots,e_{i-1},e_{i+1}\ldots,e_n]$. By a direct calculation, we have $\partial_R^2=0$: Indeed

$$\begin{split} \partial_R^2(\sigma) &= \partial_R \left(\sum_{0 \leq i \leq n} (-1)^i \sigma_{|[e_0, \dots, \widehat{e_i}, \dots, e_n]} \right) \\ &= \sum_{0 \leq i \leq n} (-1)^i \partial_R \left(\sigma_{|[e_0, \dots, \widehat{e_i}, \dots, e_n]} \right) \\ &= \sum_{0 \leq i \leq n} (-1)^i \left(\sum_{0 \leq j < i} (-1)^j \sigma_{|[e_0, \dots, \widehat{e_j}, \dots \widehat{e_i}, \dots e_n]} + \sum_{i < j \leq n} (-1)^{j+1} \sigma_{|[e_0, \dots, \widehat{e_i}, \dots \widehat{e_j}, \dots e_n]} \right) \\ &= \sum_{0 \leq j < i \leq n} (-1)^{i+j} \sigma_{|[e_0, \dots, \widehat{e_j}, \dots \widehat{e_i}, \dots e_n]} + \sum_{0 \leq i < j \leq n} (-1)^{i+j+1} \sigma_{|[e_0, \dots, \widehat{e_i}, \dots \widehat{e_j}, \dots e_n]} \\ &= 0. \end{split}$$

Thus $(S(X;R),\partial_R)$ forms a chain complex over R; it is called the **singular chain complex of** X **over** R. The nth homology of $(S(X;R),\partial_R)$ is called the nth **singular homology of** X **over** R, and is denoted by $H_n^{\text{sing}}(X;R)$.

Note that if *A* is a ring and φ : $R \to A$ is a ring homomorphism, then we change our base ring *R* to the ring *A* by

$$A \otimes_{R} S_{n}(X;R) \cong A \otimes_{R} \left(\bigoplus_{\sigma \in \Sigma_{n}(X)} R \right)$$

$$\cong \bigoplus_{\sigma \in \Sigma_{n}(X)} (A \otimes_{R} R)$$

$$\cong \bigoplus_{\sigma \in \Sigma_{n}(X)} A$$

$$= S_{n}(X;A).$$

In particular, we have

$$A \otimes_R S(X;R) = A \otimes_R \left(\bigoplus_{n \in \mathbb{Z}_{\geq 0}} S_n(X;R) \right)$$

 $\cong \bigoplus_{n \in \mathbb{Z}_{\geq 0}} A \otimes_R S_n(X;R)$
 $\cong S(X;A),$

and so $A \otimes_R (S(X;R), \partial_R) \cong (S(X;A), \partial_A)$ and therefore $A \otimes_R H^n_{\text{sing}}(X;R) \cong H^n_{\text{sing}}(X;A)$. If the base ring R is understood from context, then we usually simplify notation by removing the label "R". For instance, we often replace S(X;R) with S(X), ∂_R with ∂_R and $H^{\text{sing}}_n(X;R)$ with $H^{\text{sing}}_n(X;R)$.

1.1.1 Reduced Homology

It is often very convenient to have a slightly modified version of homology for which a point has trivial homology groups in all dimensions, including zero. This is done by defining the **reduced homology groups** $\widetilde{H}_n(X)$ to be the homology groups of the augmented chain complex

$$\cdots \longrightarrow S_2(X) \xrightarrow{\partial_2} S_1(X) \xrightarrow{\partial_1} S_0(X) \xrightarrow{\varepsilon} R \longrightarrow 0$$

where R sits in degree -1 and $\varepsilon\left(\sum_i r_i \sigma_i\right) = \sum_i r_i$. Here we had better require X to be nonempty in order to avoid a nontrivial homology group in dimension -1. Since $\varepsilon \partial_1 = 0$, ε vanishes on $\operatorname{Im}(\partial_1)$ and hence induces a map $H_0(X) \to \mathbb{Z}$ with kernel $\widetilde{H}_0(X)$, so $H_0(X) \cong \widetilde{H}_0(X) \oplus R$. It is clear that $H_n(X) = \widetilde{H}_n(X)$ for all n > 0.

1.2 Homotopy Invariance

Let X and Y be topological spaces and let $f: X \to Y$ be a continuous map. Let $f_\#: S(X) \to S(Y)$ to be the unique graded homomorphism of R-modules such $f_\#(\sigma) = f \circ \sigma$ for all $\sigma \in \Sigma(X)$. We claim that $f_\#$ is more than just a

graded homomorphism: it is a chain map. Indeed, let $\sigma \in \Sigma_n(X)$ for some $n \in \mathbb{Z}_{>0}$. Then

$$\begin{split} \partial f_{\#}(\sigma) &= \partial (f \circ \sigma) \\ &= \sum_{0 \leq i \leq n} (-1)^{i} (f \circ \sigma)|_{[e_{0}, \dots, \widehat{e_{i}}, \dots, e_{n}]} \\ &= \sum_{0 \leq i \leq n} (-1)^{i} \left(f \circ \sigma|_{[e_{0}, \dots, \widehat{e_{i}}, \dots, e_{n}]} \right) \\ &= f_{\#} \left(\sum_{0 \leq i \leq n} (-1)^{i} \sigma|_{[e_{0}, \dots, \widehat{e_{i}}, \dots, e_{n}]} \right) \\ &= f_{\#} \partial(\sigma). \end{split}$$

It is easy to check that if $f: X \to Y$ and $g: Y \to Z$ are continuous maps, then $(f \circ g)_\# = f_\# \circ g_\#$. Thus we have a covariant functor $F: \mathbf{Top} \to \mathbf{Chain}_R$ from the category of topoligical spaces to the category of chain complexes over R, given by mapping a topological space X to the chain complex S(X) and mapping a continuous map $f: X \to Y$ to the chain map $f_\#: S(X) \to S(Y)$.

Proposition 1.1. Let $f: X \to Y$ and $g: X \to Y$ be continuous functions and suppose that f and g are homotopically equivalent as continuous functions. Then the chain maps $f_{\#}$ and $g_{\#}$ are homotopically equivalent as chain maps.

Proof. The essential ingredient is a procedure for subdividing $\Delta^n \times I$ into simplices. In $\Delta^n \times I$, let $\Delta^n \times \{0\} = [v_0, \ldots, v_n]$ and $\Delta^n \times \{1\} = [w_0, \ldots, w_n]$, where v_i and w_i have the same image under the projection $\Delta^n \times I \to \Delta^n$. We can pass from $[v_0, \ldots, v_n]$ to $[w_0, \ldots, w_n]$ by interpolating a sequence of n-simplices, each obtained from the preceding one by moving one vertex v_i up to w_i , starting with v_n and working backwards to v_0 . Thus the first step is to move $[v_0, \ldots, v_n]$ up to $[v_0, \ldots, v_{n-1}, w_n]$, then the second step is to move this up to $[v_0, \ldots, v_{n-2}, w_{n-1}, w_n]$, and so on. In the typical step $[v_0, \ldots, v_i, w_{i+1}, \ldots, w_n]$ moves up to $[v_0, \ldots, v_{i-1}, w_i, \ldots, w_n]$. The region between these two n-simplices is exactly the (n+1)-simplex $[v_0, \ldots, v_i, w_i, \ldots, w_n]$ which has $[v_0, \ldots, v_i, w_{i+1}, \ldots, w_n]$ as its lower face and $[v_0, \ldots, v_{i-1}, w_i, \ldots, w_n]$ as its upper face. Altogether, $\Delta^n \times I$ is the union of (n+1)-simplices $[v_0, \ldots, v_i, w_i, \ldots, w_n]$, each intersecting the next in an n-simplex face.

Given a homotopy $H: X \times I \to Y$ from f to g and a singular simplex $\sigma: \Delta^n \to X$, we can form the composition $H \circ (\sigma \times 1): \Delta^n \times I \to X \times I \to Y$. Using this, we can define **prism operators** $P: S_n(X) \to S_{n+1}(Y)$ by the following formula:

$$P(\sigma) = \sum_{0 \le i \le n} (-1)^i H \circ (\sigma \times 1)|_{[v_0, \dots, v_i, w_i, \dots, w_n]}.$$

We will show that these prism operators satisfy the formula

$$\partial P = g_{\#} - f_{\#} - P \partial$$
.

Geometrically, the left side of this equation represents the boundary of the prism, and the three terms on the right side represent the top $\Delta^n \times \{1\}$, the bottom $\Delta^n \times \{0\}$, and the sides $\partial \Delta^n \times I$ of the prism. To prove the relation, we calculate

$$\begin{split} \partial P(\sigma) &= \partial \left(\sum_{0 \leq i \leq n} (-1)^{i} H \circ (\sigma \times 1)|_{[v_{0}, \dots, v_{i}, w_{i}, \dots, w_{n}]} \right) \\ &= \sum_{0 \leq i \leq n} (-1)^{i} \partial \left(H \circ (\sigma \times 1)|_{[v_{0}, \dots, v_{i}, w_{i}, \dots, w_{n}]} \right) \\ &= \sum_{0 \leq i \leq n} (-1)^{i} \left(\sum_{0 \leq j \leq i} (-1)^{j} H \circ (\sigma \times 1)|_{[v_{0}, \dots, \widehat{v_{j}}, \dots v_{i}, w_{i}, \dots, w_{n}]} + \sum_{i \leq j \leq n} (-1)^{j+1} H \circ (\sigma \times 1)|_{[v_{0}, \dots, v_{i}, w_{i}, \dots, \widehat{w_{j}}, \dots, w_{n}]} \right) \\ &= \sum_{0 \leq j \leq i \leq n} (-1)^{i+j} H \circ (\sigma \times 1)|_{[v_{0}, \dots, \widehat{v_{j}}, \dots, v_{i}, w_{i}, \dots, w_{n}]} + \sum_{0 \leq j \leq i \leq n} (-1)^{i+j+1} H \circ (\sigma \times 1)|_{[v_{0}, \dots, v_{i}, w_{i}, \dots, \widehat{w_{j}}, \dots, w_{n}]}. \end{split}$$

The terms i = j in the two sums cancel except for $H \circ (\sigma \times 1)|_{[w_0,...,w_n]}$, which is $g \circ \sigma = g_\#(\sigma)$, and $-H \circ (\sigma \times 1)|_{[w_0,...,w_n]}$

 $|1|_{[v_0,\dots,v_n]}$, which is $-f\circ\sigma=-f_\#(\sigma)$. The terms with $i\neq j$ are exactly $-P\partial(\sigma)$ since

$$P\partial(\sigma) = P\left(\sum_{0 \leq j \leq n} (-1)^{j} \sigma|_{[v_{0},...,\widehat{v}_{j},...,v_{n}]}\right)$$

$$= \sum_{0 \leq j \leq n} (-1)^{j} P\left(\sigma|_{[v_{0},...,\widehat{v}_{j},...,v_{n}]}\right)$$

$$= \sum_{0 \leq j \leq n} (-1)^{j} \left(\sum_{0 \leq i < j} (-1)^{i} H \circ (\sigma \times 1)|_{[v_{0},...,v_{i},w_{i},...,\widehat{w}_{j},...,w_{n}]} + \sum_{j < i \leq n} (-1)^{i+1} H \circ (\sigma \times 1)|_{[v_{0},...,\widehat{v}_{j},...,v_{i},w_{i},...,w_{n}]}\right)$$

$$= \sum_{0 \leq i < j \leq n} (-1)^{i+j} H \circ (\sigma \times 1)|_{[v_{0},...,v_{i},w_{i},...,\widehat{w}_{j},...,w_{n}]} + \sum_{0 \leq j < i \leq n} (-1)^{i+j+1} H \circ (\sigma \times 1)|_{[v_{0},...,\widehat{v}_{j},...,v_{i},w_{i},...,w_{n}]}.$$

Therefore P is a homotopy from $f_{\#}$ to $g_{\#}$.

Corollary. If f and g are homotopically equivalent as continuous functions, then $f_{\#}$ and $g_{\#}$ induce the same map on homology.

1.3 Exact Sequences and Excision

Let X be a topological space and let A a subspace of X. Then the inclusion map $A \hookrightarrow X$ induces a chain map $(S(A), \partial) \hookrightarrow (S(X), \partial)$. Let $(S(X, A), \overline{\partial})$ denote the cokernel of this map. Thus, S(X, A) is the graded R-module S(X)/S(A) and $\overline{\partial}$ is the boundary map induced by ∂ . The homology of $(S(X, A), \partial)$ is called **relative homology** and is denoted H(X, A). By considering the definition of the relative boundary map we see that:

- Elements of $H_n(X, A)$ are represented by **relative cycles**: n-chains $\alpha \in S_n(X)$ such that $\partial \alpha \in S_{n-1}(A)$.
- A relative cycle α is trivial in $H_n(X, A)$ if and only if it is a **relative boundary**: $\alpha = \partial \beta + \gamma$ for some $\beta \in S_{n+1}(X)$ and $\gamma \in S_n(A)$.

The quotient $S_n(X)/S_n(A)$ could also be viewed as a subgroup of $S_n(X)$, the subgroup with basis the singular n-simplices $\sigma \colon \Delta^n \to X$ whose image is not contained in A. However, the boundary map does not take this subgroup of $S_n(X)$ to the corresponding subgroup of $S_{n-1}(X)$, so it is usually better to regard $S_n(X,A)$ as a quotient rather than a subgroup of $S_n(X)$.

Example 1.1. In the long exact sequence of reduced homology groups for the pair $(D^n, \partial D^n)$, the maps $H_i(D^n, \partial D^n) \to \widetilde{H}_{i-1}(S^{n-1})$ are isomorphisms for all i > 0 since the remaining terms $\widetilde{H}_i(D^n)$ are zero for all i. Thus we obtain the calculation

$$H_i(D^n, \partial D^n) \cong \begin{cases} \mathbb{Z} & \text{if } i = n \\ 0 & \text{otherwise.} \end{cases}$$

Example 1.2. Applying the long exact sequence of reduced homology groups to a pair (X, x_0) with $x_0 \in X$ yields isomorphisms $H_n(X, x_0) \cong \widetilde{H}_n(X)$ for all n since $\widetilde{H}_n(x_0) \cong 0$ for all n.

1.3.1 Excision

Theorem 1.1. Given subspaces $Z \subset A \subset X$ such that the closure of Z is contained in the interior of A, then the inclusion $(X \setminus Z, A \setminus Z) \hookrightarrow (X, A)$ induces isomorphisms $H_n(X \setminus Z, A \setminus Z) \rightarrow H_n(X, A)$ for all n. Equivalently, for subspaces $A, B \subset X$ whose interiors cover X, the inclusion $(B, A \cap B) \hookrightarrow (X, A)$ induces isomorphisms $H_n(B, A \cap B) \rightarrow H_n(X, A)$ for all n.

The translation between the two versions is obtained by setting $B = X \setminus Z$ and $Z = X \setminus B$. Then $A \cap B = A \setminus Z$ and the condition $\overline{Z} \subset \text{int}(A)$ is equivalent to $X = \text{int}(A) \cup \text{int}(B)$ since $X \setminus \text{int}(B) = \overline{Z}$.

For a spae X, let $\mathcal{U} = \{U_j\}$ be a collection of subspaces of X whose interiors form an open cover of X, and let $S_n^{\mathcal{U}}(X)$ be the subgroup of $S_n(X)$ consisting of chains $\sum_i r_i \sigma_i$ such that each σ_i has image contained in some set in the cover \mathcal{U} . The boundary map ∂ takes $S_n^{\mathcal{U}}(X)$ to $S_n^{\mathcal{U}}(X)$, so the groups $S_n^{\mathcal{U}}(X)$ form a chain complex. We denote the homology groups of this chain complex by $H_n^{\mathcal{U}}(X)$.

Proposition 1.2. The inclusion $\iota: S_n^{\mathcal{U}}(X) \hookrightarrow S_n(X)$ is a chain homotopy equivalence, that is, there is a chain map $\rho: S_n(X) \to S_n^{\mathcal{U}}(X)$ such that $\iota \rho$ and $\rho \iota$ are chain homotopic to the identity. Hence ι induces isomorphisms $H_n^{\mathcal{U}}(X) \cong H_n(X)$ for all n.

Proof. The barycentric subdivision process will be performed at four levels, beginning with the most geometric and becoming increasingly algebraic.

(1) Barycentric Subdivision of Simplices: The points of a simplex $[v_0, \ldots, v_n]$ are the linear combinations $\sum_i t_i v_i$ with $\sum t_i = 1$ and $t_i \in [0,1]$ for each i. The **barycenter** or 'center of gravity' of the simplex $[v_0, \ldots, v_n]$ is the point $b = \sum t_i v_i$ whose barycentric coordinates t_i are all equal, namely $t_i = 1/(n+1)$ for each i. The **barycentric subdivision** of $[v_0, \ldots, v_n]$ is the decomposition of $[v_0, \ldots, v_n]$ into the n-simplices $[b, w_0, \ldots, w_{n-1}]$ where, inductively, $[w_0, \ldots, w_{n-1}]$ is an (n-1)-simplex in the barycentric subdivision of a face $[v_0, \ldots, \widehat{v_i}, \ldots, v_n]$. The induction starts with the case n=0 when the barycentric subdivision of $[v_0]$ is defined to be just $[v_0]$ itself. It follows from the inductive definition that the vertices of simplices in the barycentric subdivision of $[v_0, \ldots, v_n]$ are exactly the barycenters of all the k-dimensional faces $[v_{i_0}, \ldots, v_{i_k}]$ of $[v_0, \ldots, v_n]$ for $0 \le k \le n$. When k=0 this gives the original vertices v_i since the barycenter of 0-simplex is itself. The barycenter of $[v_{i_0}, \ldots, v_{i_k}]$ has barycentric coordinates $t_i = 1/(k+1)$ for $i = i_0, \ldots, i_k$ and $t_i = 0$ otherwise.

The *n*-simplices of the barycentric subdivision of Δ^n , together with all their faces, do in fact form a Δ -complex structure on Δ^n , indeed a simplicial complex structure, though we shall not need to know this in what follows.

A fact we will need is that the diameter of each simplex of the barycentric subdivision of $[v_0, \ldots, v_n]$ is at most n/(n+1) times the diameter of $[v_0, \ldots, v_n]$. Here the diameter of a simplex is by definition the maximum distance between any two of its points, and we are using the metric from the ambient Euclidean space \mathbb{R}^m containing $[v_0, \ldots, v_n]$. The diameter of a simplex equals the maximum distance between any of its vertices because the distance between the points v and $\sum t_i v_i$ of $[v_0, \ldots, v_n]$ satisfies the inequality

$$\begin{vmatrix} v - \sum_{i=0}^{n} t_i v_i \end{vmatrix} | = \begin{vmatrix} \sum_{i=0}^{n} t_i (v - v_i) \end{vmatrix}$$

$$\leq \sum_{i=0}^{n} t_i |v - v_i|$$

$$\leq \sum_{i=0}^{n} t_i \max_{0 \leq j \leq n} |v - v_j|$$

$$= \max_{0 < j < n} |v - v_j|.$$

The significance of the factor n/(n+1) is that by repeated barycentric subdivision we can produce simplices of arbitrarily small diameter since $(n/(n+1))^r$ approaches 0 as r goes to infinity. It is important that the bound n/(n+1) does not depend on the shape of the simplex since repeated barycentric subdivision produces simplices of many different shapes.

To obtain the bound n/(n+1) on the ratio of diameters, we therefore need to verify that the distance between any two vertices w_j and w_k of a simplex $[w_0, \ldots, w_n]$ of the barycentric subdivision of $[v_0, \ldots, v_n]$ is at most n/(n+1) times the diameter of $[v_0, \ldots, v_n]$.

(2) Barycentric Subdivision of Linear Chains. The main part of the proof will be to construct a subdivision operator $S: S_n(X) \to S_n(X)$ and show that this is chain homotopic to the identity map. First we will construct S and the chain homotopy in a more restricted linear setting.

For a convex set Y in some Euclidean space, the linear maps $\Delta^n \to Y$ generate a subgroup of $S_n(Y)$ that we denote $L_n(Y)$, the **linear chains**. Note that L(Y) is ∂ -stable, so the linear chains form a subcomplex of $(S(Y), \partial)$. We can uniquely designate a linear map $\lambda \colon \Delta^n \to Y$ by $[w_0, \ldots, w_n]$ where w_i is the image under λ of the ith vertex of Δ^n . Indeed, by linearity we have $\lambda(\sum t_i e_i) = \sum t_i \lambda(e_i)$. To avoid having to make exceptions for 0-simplices, it will be convenient to augment the complex $(L(Y), \partial)$ by setting $L_{-1}(Y) = R$ generated by the empty simplex $[\emptyset]$, with $\partial[w_0] = [\emptyset]$ for all 0-simplices $[w_0]$.

Each point $b \in Y$ determines a graded homomorphism $b: L(Y) \to L(Y)$ of degree 1, defined on basis elements by $b([w_0, \ldots, w_n]) = [b, w_0, \ldots, w_n]$. Geometrically, the homomorphism b can be regarded as a cone operator, sending a linear chain to the cone having the linear chain as the base of the cone and the point b as the tip of the cone. Applying the usual formula for ∂ , we obtain the relation

$$\partial b([w_0,\ldots,w_n]) = \partial [b,w_0,\ldots,w_n])$$

= $[w_0,\ldots,w_n] - b(\partial [w_0,\ldots,w_n]).$

By linearity it follows that $\partial b(\alpha) = \alpha - b(\partial \alpha)$ for all $\alpha \in L(Y)$. This expresses algebraically the geometric fact that the boundary of a cone consists of its base together with the cone on the boundary of its base. The relation $\partial b(\alpha) = \alpha - b(\partial \alpha)$ can be rewritten as

$$\partial b + b\partial = 1$$
,

so b is a chain homotopy between the identity map and the zero map of the augmented chain complex $(L(Y), \partial)$. Now we define a graded homomorphism $S: L(Y) \to L(Y)$ by induction on n. Let $\lambda: \Delta^n \to Y$ be a generator of L(Y) and let b_{λ} be the image of the barycenter of Δ^n under λ . Then the inductive formula for S is

$$S(\lambda) = b_{\lambda}(S(\partial \lambda)),$$

where $b_{\lambda} \colon L(Y) \to L(Y)$ is the cone operator defined in the preceding paragraph. The induction starts with $\mathcal{S}([\emptyset]) = [\emptyset]$, so \mathcal{S} is the identity on $L_{-1}(Y)$. To get a feel for the map \mathcal{S} , let $[w_0] \in L_0(Y)$. Then

$$S[w_0] = w_0 (S(\partial[w_0]))$$

$$= w_0(S[\varnothing])$$

$$= w_0[\varnothing]$$

$$= [w_0].$$

Now let $[w_0, w_1] \in L_1(Y)$ with barycenter b_{01} . Then

$$S[w_0, w_1] = b_{01} \left(S(\partial[w_0, w_1]) \right)$$

$$= b_{01} \left(S[w_1] - S[w_0] \right)$$

$$= b_{01} \left([w_1] - [w_0] \right)$$

$$= [b_{01}, w_1] - [b_{01}, w_0].$$

Now let $[w_0, w_1, w_2] \in L_2(Y)$ with barycenter b_{012} . Then

$$\begin{split} \mathcal{S}[w_0,w_1,w_2] &= b_{012} \left(\mathcal{S}(\partial[w_0,w_1,w_2]) \right) \\ &= b_{012} (\mathcal{S}[w_1,w_2] - \mathcal{S}[w_0,w_2] + \mathcal{S}[w_0,w_1]) \\ &= b_{012} ([b_{12},w_2] - [b_{12},w_1] - [b_{02},w_2] + [b_{02},w_0] + [b_{01},w_1] - [b_{01},w_0]) \\ &= [b_{012},b_{12},w_2] - [b_{012},b_{12},w_1] + [b_{012},b_{02},w_0] - [b_{012},b_{02},w_2] + [b_{012},b_{01},w_1] - [b_{012},b_{01},w_0], \end{split}$$

where b_{12} , b_{02} , and b_{01} are the barycenters for the simplices $[w_1, w_2]$, $[w_0, w_2]$, and $[w_0, w_1]$ respectively. In general, when λ is an embedding, with image a genuine n-simplex $[w_0, \ldots, w_n]$, then $S(\lambda)$ is the sum of the n-simplices in the barycentric subdivision of $[w_0, \ldots, w_n]$, with certain signs that could be computed explicitly.

Let us check that $S: L(Y) \to L(Y)$ is a chain map, i.e. $\partial S = S\partial$. Since S = 1 on $L_0(Y)$ and $L_{-1}(Y)$, we certainly have $\partial S = S\partial$ on $L_0(Y)$. The result for larger n is given by the following calculation, in which we omit some parentheses to unclutter the formulas:

$$\begin{split} \partial \mathcal{S}\lambda &= \partial b_{\lambda}(\mathcal{S}\partial\lambda) \\ &= (1 - b_{\lambda}\partial)(\mathcal{S}\partial\lambda) \\ &= \mathcal{S}\partial\lambda - b_{\lambda}\partial(\mathcal{S}\partial\lambda) \\ &= \mathcal{S}\partial\lambda - b_{\lambda}\mathcal{S}(\partial\partial\lambda) \\ &= \mathcal{S}\partial\lambda, \end{split}$$

where $\partial S(\partial \lambda) = S\partial(\partial \lambda)$ follows by induction on n.

We next build a chain homotopy $\mathcal{T}\colon L(Y)\to L(Y)$ between \mathcal{S} and the identity. We define \mathcal{T} on $L_n(Y)$ inductively by setting $\mathcal{T}=0$ for n=-1 and let $\mathcal{T}\lambda=b_\lambda(\lambda-\mathcal{T}\partial\lambda)$ for $n\geq 0$. The induction starts with $\mathcal{T}[\emptyset]=0$. To get a feel for the map \mathcal{T} , let $[w_0]\in L_0(Y)$. Then

$$\mathcal{T}[w_0] = w_0 ([w_0] - \mathcal{T}\partial[w_0])$$

= $w_0 ([w_0] - \mathcal{T}[\emptyset])$
= $[w_0, w_0].$

Now let $[w_0, w_1] \in L_1(Y)$ with barycenter b_{01} . Then

$$\mathcal{T}[w_0, w_1] = b_{01} ([w_0, w_1] - \mathcal{T}\partial[w_0, w_1])$$

$$= b_{01} ([w_0, w_1] - \mathcal{T}[w_1] + \mathcal{T}[w_0])$$

$$= [b_{01}, w_0, w_1] - [b_{01}, w_1, w_1] + [b_{01}, w_0, w_0].$$

The geometric motivation for this formula is an inductively defined subdivision of $\Delta^n \times I$ obtained by joining all simplices in $\Delta^n \times \{0\} \cup \partial \Delta^n \times I$ to the barycenter of $\Delta^n \times \{1\}$. What \mathcal{T} actually does is take the image of this subdivision under the projection $\Delta^n \times I \to \Delta^n$.

The chain homotopy formula $\partial \mathcal{T} + \mathcal{T}\partial = 1 - \mathcal{S}$ is trivial on $L_{-1}(Y)$ where $\mathcal{T} = 0$ and $\mathcal{S} = 1$. Verifying the formula on $L_n(Y)$ with $n \geq 0$ is done by the calculation

$$\begin{split} \partial \mathcal{T}\lambda &= \partial b_{\lambda}(\lambda - \mathcal{T}\partial \lambda) \\ &= (1 - b_{\lambda}\partial)(\lambda - \mathcal{T}\partial \lambda) \\ &= \lambda - \mathcal{T}\partial \lambda - b_{\lambda}\partial \lambda + b_{\lambda}\partial \mathcal{T}\partial \lambda \\ &= \lambda - \mathcal{T}\partial \lambda - b_{\lambda}\partial \lambda + b_{\lambda}(1 - \mathcal{S} - \mathcal{T}\partial)\partial \lambda \\ &= \lambda - \mathcal{T}\partial \lambda - b_{\lambda}\partial \lambda + b_{\lambda}\partial \lambda - b_{\lambda}\mathcal{S}\partial \lambda - b_{\lambda}\mathcal{T}\partial \lambda \lambda \\ &= \lambda - \mathcal{T}\partial \lambda - b_{\lambda}\mathcal{S}\partial \lambda \\ &= \lambda - \mathcal{T}\partial \lambda - \mathcal{S}\lambda. \end{split}$$

where $\partial \mathcal{T} \partial \lambda = (1 - \mathcal{S} - \mathcal{T} \partial) \partial \lambda$ follows by induction on n. Now we discard $L_{-1}(Y)$ and the relation $\partial \mathcal{T} + \mathcal{T} \partial = 1 - \mathcal{S}$ still holds since \mathcal{T} was zero on $L_{-1}(Y)$.

(3) Barycentric Subdivision of General Chains. Define $S: S_n(X) \to S_n(X)$ by setting $S\sigma = \sigma_\# S\Delta^n$ for a singular n-simplex $\sigma: \Delta^n \to X$. Since $S\Delta^n$ is the sum of the n-simplices in the barycentric subdivision of Δ^n , with certain signs, $S\sigma$ is the corresponding signed sum of the restrictions of σ to the n-simplices of the barycentric subdivision of Δ^n . For example, if $\sigma \in S_1(X)$, then

$$S\sigma = \sigma_{\#}S[e_0, e_1]$$
= $\sigma \circ ([b, e_1] - [e_0, b])$
= $\sigma|_{[b, e_1]} - \sigma|_{[e_0, b]}$,

where $b = (e_0 + e_1)/2$ is the barycenter of $[e_0, e_1]$. The operator S is a chain map since

$$\begin{split} \partial \mathcal{S}\sigma &= \partial \sigma_{\#} \mathcal{S} \Delta^{n} \\ &= \sigma_{\#} \partial \mathcal{S} \Delta^{n} \\ &= \sigma_{\#} \mathcal{S} \partial \Delta^{n} \\ &= \sigma_{\#} S \left(\sum_{i} (-1)^{i} \Delta_{i}^{n} \right) \\ &= \sum_{i} (-1)^{i} \sigma_{\#} S \Delta_{i}^{n} \\ &= \sum_{i} (-1)^{i} S \left(\sigma |_{\Delta_{i}^{n}} \right) \\ &= S \left(\sum_{i} (-1)^{i} \sigma |_{\Delta_{i}^{n}} \right) \\ &= S (\partial \sigma). \end{split}$$

where Δ_i is the *i*th face of Δ^n .

In similar fashion we define $T: S_n(X) \to S_n(X)$ by $T\sigma = \sigma_\# T\Delta^n$, and this gives a chain homotopy between S and the identity, since the formula $\partial T + T\partial = 1 - S$ holds by the calculation

$$\partial T\sigma = \partial \sigma_{\#} T\Delta^{n}$$

$$= \sigma_{\#} \partial T\Delta^{n}$$

$$= \sigma_{\#} (\Delta^{n} - S\Delta^{n} - T\partial \Delta^{n})$$

$$= \sigma - S\sigma - \sigma_{\#} T\partial \Delta^{n}$$

$$= \sigma - S\sigma - T(\partial \sigma)$$

where the last equality follows just as in the previous displayed calculation, with S replaced by T.

(4) Iterated Barycentric Subdivision. A chain homotopy between 1 and the iterate S^m is given by the operator

 $D_m = \sum_{0 \le i \le m} TS^i$ since

$$\partial D_m + D_m \partial = \sum_{0 \le i < m} (\partial T S^i + T S^i \partial)$$

$$= \sum_{0 \le i < m} (\partial T S^i + T \partial S^i)$$

$$= \sum_{0 \le i < m} (\partial T + T \partial) S^i$$

$$= \sum_{0 \le i < m} (1 - S) S^i$$

$$= \sum_{0 \le i < m} (S^i - S^{i+1})$$

$$= 1 - S^m.$$

For each singular n-simplex $\sigma \colon \Delta^n \to X$ there exists an m such that $S^m(\sigma)$ lies in $S^{\mathcal{U}}_n(X)$ since the diameter of the simplices of $S^m(\Delta^n)$ will be less than a Lebesgue number of the cover of Δ^n by the open sets $\sigma^{-1}(\operatorname{int}(U_j))$ if m is large enough. (Recall that a Lebesgue number for an open cover of a compact metric space is a number $\varepsilon > 0$ such that every set of diameter less than ε lies in some set of the cover; such a number exists by an elementary compactness argument). We cannot expect the same number m to work for all σ 's, so let us define $m(\sigma)$ to be the smallest m such that $S^m(\sigma)$ is in $S^{\mathcal{U}}_n(X)$.

We now define $D: S_n(X) \to S_{n+1}(X)$ by setting $D\sigma = D_{m(\sigma)}\sigma$ for each singular n-simplex $\sigma: \Delta^n \to X$. For this D we would like to find a chain map $\rho: S_n(X) \to S_n(X)$ with image in $S_n^{\mathcal{U}}(X)$ satisfying the chain homotopy equation

$$\partial D + D\partial = 1 - \rho. \tag{1}$$

A quick way to do this is to simply regard this equation as defining ρ , so we let $\rho = 1 - \partial D - D\partial$. It follows easily that ρ is a chain map since

$$\partial \rho(\sigma) = \partial \sigma - \partial^2 D \sigma - \partial D \partial \sigma$$
$$= \partial \sigma - \partial D \partial \sigma$$
$$= \partial \sigma - \partial D \partial \sigma - D \partial^2 \sigma$$
$$= \rho(\partial \sigma).$$

To check that ρ takes $S_n(X)$ to $S_n^{\mathcal{U}}(X)$, we compute $\rho(\sigma)$ more explicitly:

$$\begin{split} \rho(\sigma) &= \sigma - \partial D\sigma - D(\partial \sigma) \\ &= \sigma - \partial D_{m(\sigma)}(\partial \sigma) - D(\partial \sigma) \\ &= S^{m(\sigma)}\sigma + D_{m(\sigma)}(\partial \sigma) - D(\partial \sigma). \end{split}$$

The term $S^{m(\sigma)}\sigma$ lies in $S^{\mathcal{U}(X)}_n$ by the definition of $m(\sigma)$. The remaining terms $D_{m(\sigma)}(\partial\sigma) - D(\partial\sigma)$ are linear combinations of terms $D_{m(\sigma)}(\sigma_j) - D_{m(\sigma_j)}(\sigma_j)$ for σ_j the restriction of σ to a face of Δ^n , so $m(\sigma_j) \leq m(\sigma)$ and hence the difference $D_{m(\sigma)}(\sigma_j) - D_{m(\sigma_j)}(\sigma_j)$ consists of terms $TS^i(\sigma_j)$ with $i \geq m(\sigma_j)$, and these terms lie in $S^{\mathcal{U}}_n(X)$ since T takes $S^{\mathcal{U}}_{n-1}(X)$ to $S^{\mathcal{U}}_n(X)$.

View ρ as a chain map $S_n(X) \to S_n^{\mathcal{U}}(X)$, the equation (1) says that $\partial D + D\partial = 1 - \iota \rho$ for $\iota \colon S_n^{\mathcal{U}}(X) \hookrightarrow S_n(X)$ the inclusion. Furthermore, $\rho \iota = 1$ since D is identically zero on $S_n^{\mathcal{U}}(X)$, as $m(\sigma) = 0$ if σ is in $S_n^{\mathcal{U}}(X)$, hence the summation defining $D\sigma$ is empty. Thus we have shown that ρ is a chain homotopy inverse for ι .

Let *R* be a ring and let *M* be an *R*-module. A derivation is a map $d: R \to M$ such that

1.4 Singular Cohomology

Let R be a ring and N and R-module. If M is a graded R-module, then we set $\operatorname{Hom}_R(M,N)_{\operatorname{gr}}$ to be the graded R-module whose homogeneous component in degree n is $M_n := \operatorname{Hom}_R(M_n,N)$. If (M,d) is a chain complex over R, where M is considered a graded R-module and d is considered a graded endomorphism $d: M \to M$ of degree -1, then we obtain a cochain complex over R given by $(\operatorname{Hom}_R(M,N)_{\operatorname{gr}},d_*)$, where if $\psi \in \operatorname{Hom}_R(M_{n-1},N)$ then $d_*(\psi) = \psi \circ d \in \operatorname{Hom}_R(M_n,N)$.

In particular, we obtain a cochain complex $(\operatorname{Hom}_R(S(X), N)_{\operatorname{gr}}, \partial_*)$ called the **singular cochain complex of** X **over** X **with values in** X. Elements in X are called **singular** X-cochains and the X-th cohomology, called

the **singular cohomology of** X **over** R, is denoted $H^n_{\text{sing}}(X,R)$. For notational purposes, we denote $\delta := \partial^{\vee}_{\text{gr}}$ and $S^n(X,R) := S_n(X,R)^{\vee}$. We can work out δ explicitly as follows: if $\psi \in S^n(X)$, then $\delta(\psi) \in S^{n+1}(X)$ is given by

$$\delta(\psi)(\sigma) = \psi(\delta(\sigma)) = \sum_{i} (-1)^{i} \psi(\sigma_{i})$$

for all $\sigma \in S_{n+1}(X)$.