```
import csv
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

/Users/shenstella/opt/anaconda3/lib/python3.9/site-packages/scipy/__init__.py:146: UserW
arning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (dete
cted version 1.26.0
    warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>
```

Load the data

```
data = pd.read_csv('data.csv', parse_dates=['Intake-DateTime', 'Outcome-DateTime'])
In [2]:
        data.dtypes
        AnimalID
                                           object
Out[2]:
                                           object
        Breed
                                           object
        Color
                                           object
        Gender
                                           object
        Name
                                           object
        Intake-DateTime
                                  datetime64[ns]
        Intake-Type
                                           object
        Intake-Condition
                                           object
        Intake-Age(days)
                                            int64
        Date-Of-Birth
                                           object
                                  datetime64[ns]
        Outcome-DateTime
        Outcome-Type
                                           object
        Outcome-Subtype
                                           object
        Outcome-Age(days)
                                            int64
        Age
                                           object
        IsAdopted
                                             bool
        Category
                                           object
        Intelligence-Ranking
                                            int64
        Intelligence-Category
                                           object
                                           object
        Size-Category
                                          float64
        Longevity
        Total-Cost($)
                                            int64
        Purchase-Cost($)
                                            int64
        Food-Cost($)
                                            int64
        Cost-Category
                                           object
        dtype: object
In [31:
        data['ReFoundByShelter'] = data['ID'].str.contains('\+')
        data
```

Out[3]:	AnimalID	ID	Breed	Color Gene	der Name	Intake-	Intake-	Intal
	AnimaliD	טו	Breed	Color Gene	der Name	DataTime	Time	Conditi

		AnimalID	ID	Breed	Color	Gender	Name	Intake- DateTime	Intake- Type	Intake- Condition	Intake- Age(days)
	0	A006100	A006100	Spinone Italiano	Yellow	Male	Scamp	2014-03- 07 14:26:00	Public Assist	Normal	2190
	1	A006100	A006100+	Spinone Italiano	Yellow	Male	Scamp	2014-12- 19 10:21:00	Public Assist	Normal	2555
	2	A006100	A006100++	Spinone Italiano	Yellow	Male	Scamp	2017-12- 07 14:07:00	Stray	Normal	3650
	3	A134067	A134067	Shetland Sheepdog	Brown	Male	Bandit	2013-11- 16 09:02:00	Public Assist	Injured	12190
	4	A141142	A141142	Labrador Retriever	Black	Female	Bettie	2013-11- 16 14:46:00	Stray	Aged	11825
85	5791	A893431	A893431	Chihuahua	Tricolor	Female	Chili	2023-11- 21 11:21:00	Public Assist	Normal	2920
85	5792	A893432	A893432	Chihuahua	Tan	Female	Coco	2023-11- 21 11:21:00	Public Assist	Normal	2920
85	5793	A893452	A893452	Maltese	White	Female	Sophie	2023-11- 21 13:38:00	Public Assist	Normal	2555
85	5794	A893529	A893529	Labrador Retriever	White	Female	Unknown	2023-11- 22 14:26:00	Owner Surrender	Normal	30
85	5795	A893585	A893585	German Shepherd	Black	Male	Unknown	2023-11- 23 20:19:00	Stray	Injured	30

85796 rows × 27 columns

```
In [4]: y = data.iloc[:,26:27]
```

Prepare the data, replace object data with numerical values

```
X = data.iloc[:,:].drop(columns=["IsAdopted", "ReFoundByShelter", "AnimalID", "ID", "Int
```

Out[5]:		Gender	Age	Intelligence- Ranking	Size- Category	Longevity	Total- Cost(\$)	Purchase- Cost(\$)	Food- Cost(\$)
	0	Male	Adult	27	Large	9.00	18062	1725	5679
	1	Male	Senior	27	Large	9.00	18062	1725	5679
	2	Male	Senior	27	Large	9.00	18062	1725	5679
	3	Male	Senior	6	Small	12.53	17469	465	3698
	4	Female	Senior	7	Medium	12.04	18422	810	4819
	85791	Female	Senior	67	Small	16.50	22640	588	4594
	85792	Female	Senior	67	Small	16.50	22640	588	4594
	85793	Female	Senior	59	Small	12.25	16073	650	2410
	85794	Female	Baby	7	Medium	12.04	18422	810	4819
	85795	Male	Baby	3	Large	9.73	15091	820	3895

85796 rows × 8 columns

```
In [6]: # Here we replace all the descriptive lable into numerical lable
    gender = X.groupby('Gender').size()
    X['Gender'].replace(['Female', 'Male'], [0,1], inplace=True)
    SizeCategory = X.groupby('Size-Category').size()
    X['Size-Category'].replace(['Large', 'Medium', 'Small'], [3,2,1], inplace=True)
    Age = X.groupby('Age').size()
    X['Age'].replace(['Baby', 'Young', 'Adult', 'Senior'], [1,2,3,4], inplace=True)
    X
```

Out[6]:		Gender	Age	Intelligence- Ranking	Size- Category	Longevity	Total- Cost(\$)	Purchase- Cost(\$)	Food- Cost(\$)
	0	1	3	27	3	9.00	18062	1725	5679
	1	1	4	27	3	9.00	18062	1725	5679
	2	1	4	27	3	9.00	18062	1725	5679
	3	1	4	6	1	12.53	17469	465	3698
	4	0	4	7	2	12.04	18422	810	4819
	85791	0	4	67	1	16.50	22640	588	4594
	85792	0	4	67	1	16.50	22640	588	4594
	85793	0	4	59	1	12.25	16073	650	2410
	85794	0	1	7	2	12.04	18422	810	4819
	85795	1	1	3	3	9.73	15091	820	3895

85796 rows × 8 columns

In [7]: # Split the data into training and testing sets

```
In [9]: # Choose the number of neighbors (you can experiment with different values)
         n_{neighbors} = 3
         # Create kNN classifier
         knn = KNeighborsClassifier(n_neighbors=n_neighbors)
         # Train the model
         knn.fit(X_train_scaled, y_train.values.ravel())
         # Make predictions
         y_pred = knn.predict(X_test_scaled)
In [10]:
         accuracy = accuracy_score(y_test, y_pred)
         report = classification_report(y_test, y_pred)
         print(f"Accuracy: {accuracy}")
         print("Classification Report:\n", report)
        Accuracy: 0.8052447552447553
        Classification Report:
                       precision recall f1-score
                                                     support
               False
                         0.85
                                  0.94
                                              0.89
                                                      14543
                         0.17
                                   0.07
                                             0.10
                True
                                                       2617
                                            0.81
0.50
            accuracy
                                                      17160
                       0.51
                                  0.50
                                                      17160
           macro avg
                         0.74
                                    0.81 0.77
        weighted avg
                                                      17160
```

Using Cross Validation to Get the Best Value of k

```
from sklearn.model_selection import cross_val_score
In [11]:
         k_values = [i for i in range (1,31)]
         scores = []
         # Convert y_train to a NumPy array and then use ravel()
         y_train_np = y_train.values.ravel()
         X = scaler.fit_transform(X)
         # Create kNN classifier
         knn = KNeighborsClassifier(n_neighbors=n_neighbors)
         # Train the model
         knn.fit(X_train_scaled, y_train_np)
         # Use cross_val_score
         scores = []
         for k in k_values:
             knn = KNeighborsClassifier(n_neighbors=k)
             score = cross_val_score(knn, X_train_scaled, y_train_np, cv=5)
             scores.append(np.mean(score))
```

We can plot the results with the following code

```
import seaborn as sns
sns.lineplot(x = k_values, y = scores, marker = 'o')
plt.xlabel("K Values")
plt.ylabel("Accuracy Score")
```


Since we know know what could be the best K value, we update the model with the best K

```
In [14]:
         best_index = np.argmax(scores)
         best_k = k_values[best_index]
         knn = KNeighborsClassifier(n_neighbors=best_k)
         knn.fit(X_train_scaled, y_train_np)
         KNeighborsClassifier(n_neighbors=26)
Out[14]:
In [15]: y_pred = knn.predict(X_test_scaled)
         accuracy = accuracy_score(y_test, y_pred)
         report = classification_report(y_test, y_pred)
         print(f"Accuracy: {accuracy}")
         print("Classification Report:\n", report)
         Accuracy: 0.8476689976689976
         Classification Report:
                         precision
                                      recall f1-score
                                                          support
                False
                             0.85
                                       1.00
                                                 0.92
                                                           14543
                 True
                             1.00
                                       0.00
                                                 0.00
                                                            2617
                                                 0.85
                                                           17160
             accuracy
                                                 0.46
            macro avg
                             0.92
                                       0.50
                                                           17160
         weighted avg
                             0.87
                                       0.85
                                                 0.78
                                                           17160
```

evaluate with accuracy, precision, and recall

```
In [16]: from sklearn.metrics import precision_score, recall_score

accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
    recall = recall_score(y_test, y_pred)

    print("Accuracy:", accuracy)
    print("Precision:", precision)
    print("Recall:", recall)
Loading [MathJax]/extensions/Safe.js
```

Accuracy: 0.8476689976689976

Precision: 1.0

Recall: 0.0011463507833397019

```
In [17]: y_pred = knn.predict(X_test_scaled)
```

Use each feature alone - to fit a KNN model on the training set.

```
import matplotlib.pyplot as plt
In [18]:
         from sklearn.model_selection import train_test_split
         from sklearn.neighbors import KNeighborsClassifier
         # Feature names
         names = ["Gender", "Age", "Intelligence-Ranking", "Size-Category", "Longevity", "Total-C
         plt.figure(figsize=(15, 10))
         # Iterate over each feature
         for i in range(len(names)):
             plt.subplot(3, 3, i + 1)
             # Extract the current feature
             x = X[:, i].reshape(-1, 1)
             # Split the data
             x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_stat
             # Convert y_train to a NumPy array and then use ravel()
             y_train_np = y_train.values.ravel()
             # Create KNN classifier
             knn = KNeighborsClassifier(n_neighbors=3)
             # Train the model
             knn.fit(x_train, y_train_np)
             y_pred = knn.predict(x_test)
             accuracy = accuracy_score(y_test, y_pred)
             precision = precision_score(y_test, y_pred)
             recall = recall_score(y_test, y_pred)
             print("Evaluation for the feature: ", names[i])
             print("Accuracy:", accuracy)
             print("Precision:", precision)
             print("Recall:", recall)
             # Visualize decision boundary
             plt.scatter(x_test, y_test, label='Actual')
             plt.scatter(x_test, knn.predict(x_test), label='Predicted', marker='o', alpha=0.5)
             plt.title(f"Classification Relationship: {names[i]}")
             plt.xlabel(names[i])
             plt.ylabel('IsReFound')
             plt.legend()
         plt.tight_layout()
         plt.show()
```

/Users/shenstella/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classificat ion.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.

Evaluation for the feature: Gender

Accuracy: 0.8474941724941725

Precision: 0.0 Recall: 0.0

Evaluation for the feature: Age Accuracy: 0.4244172494172494 Precision: 0.18489583333333334 Recall: 0.8139090561711884

Evaluation for the feature: Intelligence-Ranking

Accuracy: 0.8251165501165502 Precision: 0.17235494880546076 Recall: 0.03859380970576996

/Users/shenstella/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classificat ion.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due t o no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Evaluation for the feature: Size-Category

Accuracy: 0.8474941724941725

Precision: 0.0 Recall: 0.0

Evaluation for the feature: Longevity

Accuracy: 0.8374125874125874
Precision: 0.1685823754789272
Recall: 0.016813144822315627

Evaluation for the feature: Total-Cost(\$)

Accuracy: 0.813636363636363636 Precision: 0.18526543878656554 Recall: 0.06534199465036301

Evaluation for the feature: Purchase-Cost(\$)

Accuracy: 0.8057692307692308 Precision: 0.17395264116575593 Recall: 0.07298433320596102

Evaluation for the feature: Food-Cost(\$)

Accuracy: 0.7314685314685314 Precision: 0.12448132780082988 Recall: 0.12609858616736722

Visualization

```
In [19]: import matplotlib.pyplot as plt
    from sklearn.decomposition import PCA

# Apply PCA to reduce the data to 2 dimensions (you can adjust this based on the number
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train_scaled)

# Plot the data points in 2D space with color-coded classes
    plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=y_train_np, cmap='viridis')
    plt.title('PCA Visualization of Training Data')
    plt.xlabel('Principal Component 1')
    plt.ylabel('Principal Component 2')
    plt.show()
```


Conclusion & Discussion

From the Nearest Neighbor (kNN) Classifier model, we can see:

- 1. Age, Purchase cost, Food cost, Total-Cost do not affect if the pet will be refound by shelter.
- 2. Size, Gender, Longevity and Intelligence level have a high influence on whether this dog will be refound by shelter.
- 3. The model performs much better with all features rather than any individual ones. This quite makes sense since the model is better trained for classification.
- 4. The PCA plot suggests that to be refound by shelter is a complex decision that can't be easily predicted by one or two features alone.

```
In [ ]:
```