$00110011 \qquad (77) = 01001101$

$$(51) = 00110011$$
 $(77) = 01001101$

$$= (128)_{10}$$

+00000000

$$35+(-23) = 00100011$$

$$+ 11101001$$

$$-(12)$$

$$-(12)$$

$$-(12)$$

87 + 12 = c	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
= (99) = (99) = (99) = (10000 / 100	12 = 0000 /100 12 = 0000 /100

-54 = 11001010

$$(-75)+(-54) = 10110101$$

 $+11001010$
 $(-54)+(-54)=$
 $(-54)+(-54)=$
 $(-54)+(-54)=$
 $(-54)+(-54)=$
 $(-54)+(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 $(-54)=$
 (-54)

The onswer show Should be -129
but it connot be represented in
8-bit form because it has
ronge of -128 to 127

$$(32)$$
 $(1) = (00000001) = 1.0x2°$

montissa: 000----0

(2)
$$(12.375)_{0} = (00001100.01)_{1}$$

= 1.100011×2^{3}

Sign :- +ve : 0

Exponent --
$$127+3:(130)_{10}$$

= $(10000010)_{2}$

montina: 10001100 ___ 0

Output: 0-10000010-10001100--0

(3)
$$(0.25)_{10} = (00000000.01)_{2}$$

= 1.0×10^{-12}
matrix a

matina => 000 - - 0
23 zerov.
3 utant -> 1 - 01111101 -

23