DATS 6202 Machine Learning I

Final Project Proposal Group 5: Lianjie Shan, Xi Zhang

Problem Selection and Research Objectives

Description of the Question

We based our research on the subject of car insurance. The main problem is classifying customers by characteristics for insurers. The target is to provide more information to the car insurance market and make transactions more viable and efficient.

Research Overview

Because the content of automobile insurance needs to be considered is too complex, and the relationship between many variables cannot be directly and simply judged, we hope to train several models through machine learning. Our goal is to accurately judge whether the insurer will make a claim and the extent of the claim after the insurance is purchased from the insurance company through the personal information, family background, asset status, historical insurance records, and the insured vehicles. We can classify different insured persons and guide insurance companies. So that the insurance company can quickly determine the type of insured customers and claims probability, and thus avoid the loss of the insurance company. It can also provide customers with more targeted insurance plans.

Related Material and Background Supportive

To ensure that our ideas have a solid theoretical foundation and prove to be feasible, we looked at researches on deep learning in the insurance industry. In Sato's research, he pointed that "AXA, the large global insurance company, has used machine learning in a POC to optimize pricing by predicting "large-loss" traffic accidents with 78% accuracy" (Kaz Sato, 2017). This proves that in recent years the insurance industry has been using machine learning to optimize prices. He takes age range of the driver, region of the driver's address, annual insurance premium range and age range of the car as outputs to train the multilayer neural network model (Kaz Sato, 2017). I believe this practice can also implement our research.

By MACHINE LEARNING IN INSURANCE, we can also learn from that machine learning is changing the way insurance companies interact with customers. "Consumers are seeking personalized solutions—made possible by machine learning algorithms that review their profiles and recommend tailor-made products" (Ravi Malhotra, Swati Sharma, 2018). Malhotra and Sharma illustrate the huge value of machine learning in insurance and give examples of how it optimizes market matching. This is what our research is trying to achieve.

In the book Python Machine Learning, it provides most of the technical support. From theory to finding the right model and converting mathematics to the python language. This book will serve as a guide for our research.

Data Selection and Overview

Data Source

The data we chose was released by Kaggle, an open-source data site. The distributor xiaomengsun published it in 2018. It is made up of a record of 3,092,684 observations and 27 variables. This data can be downloaded from the following websites for study and research: https://www.kaggle.com/xiaomengsun/car-insurance-claim-data

Data Views:

#	Columns	Description	Data type
1	ID	Customers' ID	int
		Number	
2	KIDSDRIV	The number of kids	int
		the customers need to	
		drive for.	
3	BIRTH	Date of birth.	Factor
4	AGE	Age	int
5	HOMEKIDS	The number of kids	int
		the customers have.	
6	YOJ	Working age.	int
7	INCOME	Income.	int
8	PARENT1	Whether the	Factor
		customers' parents	
		pay for their	
		insurance.	
9	HOME_VAL	Property value.	Factor
10	MSTATUS	Marriage status.	Factor
11	GENDER	Gender.	Factor
12	EDUCATION	Education level.	Factor
13	OCCUPATION	Occupation.	Factor
14	TRAVTIME	Travel times.	int
15	CAR_USE	Whether customers'	Factor
		cars are used for	
		private or	
		commercial.	
16	BLUEBOOK	Blue Book is a	Factor
		guidebook that	
		compiles and quotes	
		prices for new and	
		used automobiles and	
		other vehicles of all	
		makes, models and	
		types.	

17	TIF	The insured vehicle.	int
18	CAR_TYPE	Car Type.	Factor
19	RED CAR	Red cars are more	Factor
	_	expensive to insure.	
20	OLDCALIM	Cumulative claim	Factor
		amount.	
21	CLM_FREQ	Claim frequency.	int
22	REVOKED	Revoked time.	Factor
23	MVR_PTS	Motor vehicle record	int
		points. The	
		Violation/Accident	
		Guidelines and Points	
		Columns on the right	
		are used to assign	
		points to each	
		accident or violation	
		over a three-year	
		period.	
24	CLM_AMT	Claim amount.	Factor
25	CAR_AGE	Car age.	int
26	CLAIM_FLAG	Claim flag.	int
27	URBANICITY	Car insurance varies	Factor
		according to the area	
		of activity.	

Initial Analysis and Procedure for Project

Data Preprocessing Section

To begin with, we will examine data to judge whether there exist missing values in a dataset. At the same time, we also test if there are outliers in the data and delete them from the original dataset. Since some features in our dataset are similar and have no meaning with our target, we will delete some features(columns) to reduce the dimension. After finishing the steps above, we will get a completer and more manageable dataset.

Target Division and Feature Selection Section

For target division, we will divide our target into four classes, which are no claim class, less claim class, medium claim class, and high claim class. And then, we will convert the value of four categories from continuous data to discrete data. In this way, we can provide insurance companies with a relatively accurate delineation of the insured, which has certain reference value for insurance companies to provide different insurance plans for different groups. For the feature selection, we test the correlations between the target and other features in the dataset. From this, we can filter out some insignificant parameters and further reducing dataset. And then, we can test the relationships between the rest of the features and target.

Classifier Selection and Framework Design Section

After data preprocessing, we split our dataset into a training set (70% of data) and testing set (30% of data). For the training set, we will apply the neural network and backpropagation algorithm to build a predictive model and use boosting technic to improve our results and model. For the testing set, we use our model to predict the outcome of the testing data to determine the feasibility of the model. Besides, we plan to set up four neurons and obtain four outputs.

Evaluation Section

To test the accuracy of the predictive model we built, we will use ROC and AOC methods. And then, we can analyze the feasibility of the model.

Summary and Further Development of the Project Section

From our final results and model, we can predict the relative size of the probability of needing a claim in the future based on the characteristics of the insured person and the car, which is helpful for the insurance companies. To improve our model and practical value, we can divide target into more categories and select more classifiers to provide a more detailed and accurate classification for insurance companies.

Schedule for Finishing the Project

Schedule	goals
July 25th – August 1st	Data processing section and Target division and feature selection section
August 2nd – 9th	Classifier selection and framework design section
August 10nd – 16th	Evaluation section
August 17nd – 20th	Summary and Presentation section

References

Sato, Kaz. "Using Machine Learning for Insurance Pricing Optimization | Google Cloud Blog." Google, Google Cloud Platform, 19 Mar. 2017, cloud.google.com/blog/bigdata/2017/03/using-machine-learning-for-insurance-pricing-optimization.

Malhotra, Ravi, and Swati Sharma. MACHINE LEARNING IN INSURANCE - Accenture.com. Accenture, 2018, www.accenture.com/t20180822T093440Z w /us-en/ acnmedia/PDF-84/Accenture-Machine-Leaning-Insurance.pdf.

Raschka, Sebastian, and Vahid Mirjalili. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow. Pack Publishing, 2018.