

THE JOURNAL OF GENERAL PHYSIOLOGY

Founded by Jacques Loeb

W J CROZIER JOHN H NORTHROP
W J V OSTERHOUT

VOLUME TWENTIETH
WITH 5 PLATES AND 286 FIGURES IN THE TEXT

NEW YORK
THE ROCKEFELLER INSTITUTE FOR MEDICAL RESEARCH
1937

Copyright, 1937, by The Rockefeller Institute for Medical Research WAVERLY PRESS, INC THE WILLIAMS & WILKINS COMPANY BALTIMORE, U S A

CONTENTS

No 1, September 20, 1936

December Transport of the form	PAGE
BONNER, JAMES The growth and respiration of the Arena coleoptile	1
OSTERHOUT, W J V Changes of apparent ionic mobilities in protoplasm I Effects of guaiacol on Valonia	13
WALD, GEORGE Pigments of the retina II Sea robin, sea bass, and scup	45
HECHT, SELIG, and SHLAER, SIMON The color vision of dichromats I Wave length discrimination, brightness distribu	
tion, and color mixture	57
HECHT, SELIG, and SHLAER, SIMON The color vision of dichro mats II Saturation as the basis for wave length dis	
crimination and color mixture	83
FERRY, JOHN D Statistical evaluation of sieve constants in	
ultrafiltration	95
CURTIS, HOWARD J Electric impedance of injured and sensitized	
red blood corpuscles	105
CROZIER, W. J., and PINCUS, G. Analysis of the geotropic orienta	100
tion of young rats \(\lambda\)	111
No 2, November 20, 1936	
CLOWES, G H A, and KRAHL, M E Studies on cell metabolism and cell division. I On the relation between molecular structures, chemical properties, and biological activities of the nitrophenols	145
KRAHL, M. E., and CLOWES, G. H. A. Studies on cell metabolism	110
and cell division II Stimulation of cellular oxidation and reversible inhibition of cell division by dihalo and trihalo	
	173
phenols	1/3
STEINHARDT, JACINTO Intensity discrimination in the human	105
eye I The relation of $\Delta I/I$ to intensity	185
CROZIER, W J, WOLF, ERNST, and ZERRAHN WOLF, GERTRUD	
On critical frequency and critical illumination for response	
to flickered light	211

VI CONTENTS

	PAGE
BLINKS, L R The effects of current flow on bioelectric potential III <i>Nitella</i>	229
Ponder, Eric, and Macleod, John The effect of hemolytic substances on white cell respiration Van Overbeek, J Growth substance curvatures of Avena in light and dark	267 283
No 3, January 20, 1937	
Skoog, Folke A deseeded Avena test method for small amounts of auxin and auxin precursors Herriott, Roger M Inactivation of pepsin by iodine and the	311
isolation of diiodo-tyrosine from iodinated pepsin	335
JACOBS, JOHN Serological reactions of azo proteins derived from aromatic hydrocarbons and diaryl compounds CROZIER, W J, WOLF, ERNST, and ZERRAHN-WOLF, GERTRUD	353
Critical illumination and critical frequency for response to flickered light, in dragonfly larvae CROZIER, W J, WOLF, ERNST, and ZERRAHN-WOLF, GERTRUD	363
Temperature and critical illumination for reaction to flickering light I Anav larvae	393
CROZIER, W J, WOLF, ERNST, and ZERRAHN-WOLF, GERTRUD Temperature and critical illumination for reaction to flicker- ing light II Sunfish Ponder, Eric, and Macleod, John The potential and respira-	411
tion of frog skin I The effect of the homologous car- bamates II The effect of certain lysins Craig, F N The respiratory quotient of seedlings of Lupinus	433
albus during the early stages of germination	449
Mirsky, A E Coagulation of myosin by dehydration	455
Mirsky, A E The coagulation of myosin in muscle	461
JAMESON, ELOISE, and ROBERTS, DOROTHY BROWN A phase rule study of the proteins of the blood serum a comparison	
*	475
WHITAKER, D M The effect of hydrogen ion concentration	
upon the induction of polarity in <i>Fucus</i> eggs I Increased hydrogen ion concentration and the intensity of mutual	
	491

Weiss, Joseph Some remarks on the photosynthesis of green plants	501
No 4, March 20, 1937	
Wolf, Ernst, and Zerrahn Wolf, Gertrud Thicker and the reactions of bees to flowers	511
WILDRANDT, W The effect of organic ions on the membrane potential of nerves	519
Eagle, Harry, and Harris, Tzvee N Studies in blood coagulation V The coagulation of blood by proteolytic enzymes	
(trypsin, papain)	543
Anson, M L The estimation of papain with hemoglobin Anson, M L The estimation of cathepsin with hemoglobin and	561
the partial purification of cathepsin	565
Anson, M L, and Northrop, John H The calibration of dif- fusion membranes and the calculation of molecular volumes	
from diffusion coefficients	575
HERČÍK, TERDINAND Action of ultraviolet light on spores and	
vegetative forms of Bacillus megalherium sp	589
CROZIER, W J, and ENZMANN, E V Concerning critical periods in the life of adult Drosophila	595
Simis, Henry S , and Stillman, Nettie P Substances affecting adult tissue $\imath n$ vitro I The stimulating action of trypsin	
on fresh adult tissue Plate 1 SIMMS, HENRY S, and STILLMAN, NETTIE P Substances affect-	603
ing adult tissue in vitro II A growth inhibitor in adult tissue	621
STERN, KURT G Spectroscopy of catalase	631
No 5, May 20, 1937	
SIMMS, HENRY S, and STILLMAN, NETTIE P Substances affecting adult tissue in vitro III A stimulant (the "A factor")	
in serum ultrafiltrate involved in overcoming adult tissue dormancy	649
Anson, M L Carboxypeptidase I The preparation of crys	
talline carboxypeptidase	663

VIII CONTENTS

	PAGE
FETCHER, E S, JR, LILLIE, R S, and HARKINS, W D A method for the investigation of electrostenolysis	
	671
OSTERHOUT, W J V Changes of apparent ionic mobilities in	
protoplasm II The action of guaiacol as affected by pH	685
Spiegel-Adolf, Mona Polarization studies in collodion mem-	
branes and in synthetic protein-lipoid membranes	695
FRENCH, C S The quantum yield of hydrogen and carbon di-	
oxide assimilation in purple bacteria	711
JACQUES, A G The kinetics of penetration XIV The pene-	
tration of iodide into Valonia	737
tration of found into 7 annua	151
No 6, July 20, 1937	
Wolf, Ernst, and Zerrahn-Wolf, Gertrud Reactions of	
Limilus to illuminated fields of different area and flicker	
frequency	767
Anson, M L Carboxypeptidase II The partial purification	101
	מממ
of pro-carboxypeptidase	777
Anson, M L Carboxypeptidase III The estimation of	
carboxypeptidase and pro-carboxypeptidase	781
BLAIR, H A The apparent distortion of brief rectangular elec-	
trical stimuli in nerve	787
SEASTONE, C V, and HERRIOTT, ROGER M Immunological	
studies on pepsin and pepsinogen	797
SMITH, EMIL L The influence of light and carbon dioxide on	
photosynthesis	807
HECHT, SELIG, HAIG, CHARLES, and CHASE, AURIN M The influ-	
ence of light adaptation on subsequent dark adaptation of	
the eye	831
•	001
PARKER, G H Do melanophore nerves show antidromic re-	051
sponses? Plates 2 to 5	851
JAMESON, ELOISE A phase rule study of the proteins of blood	~ = ^
serum the effect of changes in certain variables	859
PINCUS, GREGORY, and ZAHL, PAUL A The biogenesis of primary	
sex hormones I The fate of estrins injected into the	
rabbit	879
INDEX TO VOLUME 20	895
INDEX TO ACTOME 20	OYJ

THE GROWTH AND RESPIRATION OF THE AVENA COLEOPTILE

BY JAMES BONNER

(From the William G Kerckhoff Laboratories of the Biological Sciences, California Institute of Technology, Pasadena)

(Accepted for publication, November 25, 1935)

1

INTRODUCTION

In a previous paper (1) a relation was shown to exist between the respiration of the plant cell and its clongation under the influence of the plant growth hormone. A more extensive investigation of this relation was therefore undertaken with the hope that clongation would exhibit a close correlation with some relatively accessible property of the respiration, for example with the magnitude or the respiratory quotient of the latter. It may be said at once, however, that this was not the case, and that the work reported in the present paper, while revealing several points of interest and defining more clearly the dependence of clongation upon respiration, has not resulted in any explanation of the way in which respiration is essential to growth

п

Materials and Methods

Arena coleoptiles from seedlings of the pure line Sieges Hafer' were used throughout. They were grown under the usual controlled conditions (2). The measurements of respiration were made by the method of Warburg with the apparatus of Dr. Robert Emerson to whom the author is greatly indebted. Conical vessels possessing a central alkali well and side wells for reagents to be added during the course of an experiment were used. Twenty coleoptile sections (1) suspended in the desired solution were placed in each vessel. The measurements of elongation were carried out in the manner described in the previous paper (1).

TTI

Steps of the Growth Process Dependent upon Respiration

It was earlier shown that coleoptile sections do not clongate in growth substance solution when placed in an atmosphere of oxygen-free nitrogen. When such sections were subsequently placed in growth substance solution in air they clongated rapidly, showing that they had not been harmed. If they were, however, placed in water without growth substance they did not clongate, showing that they had not taken up and stored growth substance, that is, that the *transport* of the hormone into the sections does not take place in the absence of aerobic metabolism. In order to show that the action of growth

TABLE I
Inhibition of the Action of Growth Substance Already in the Plant

Agar block (2 hrs)	Subsequent solution	Subsequent elongation
		per cent in 8 hrs
Water agar	Distilled water	3 4
Water agar	10 u /cc	27 6
1200 plant units	Distilled water	12 8
1200 plant units	KCN, 3×10^{-3} N	2 1
1200 plant units	KCN, 1×10^{-3} N	3 7
1200 plant units	Phenylurethane, 0 05 per cent	4 9

substance already m in the section is also inhibited under these conditions, the following type of experiment was performed. Two lots of coleoptile sections were prepared. Upon the apical ends of one lot were placed agar blocks containing no growth substance. Upon the apical ends of the other set were placed agar blocks containing 1200 plant units of the hormone. The sections were left at 25°C in a saturated atmosphere for 2 hours. At the end of this time some of those which had had no growth substance were placed in water, the remainder in a solution containing 10 units of growth substance per cubic centimeter. The sections which had had 1200 plant unit blocks were distributed among the following solutions, KCN, 3×10^{-3} N, KCN, 1×10^{-3} N, phenylurethane, 0.05 per cent, water. Table I gives the results of a typical experiment. There is no question but that growth

substance passed into the sections which had had 1200 plant unit blocks, since these sections elongated more in water than did those which had had plain agar and were also placed in water. This elongation brought about by growth substance already in the plant is, however, clearly inhibited by both KCN and phenylurethane. We must conclude, therefore, that both growth substance transport and growth substance action are dependent upon aerobic metabolism.

1

Effect of Growth Substance upon the Magnitude of Respiration

In the earlier paper (1) it was shown that crude growth substance preparations cause an increase in the rate of respiration of coleoptile

TABLE II

Effect of Crystalline Auxine B on Colcoptile Respiration*

Solution	Qo before addition	Qo, after addition
00 units per cc	0 (0	0 60
10 units per cc	0 70	0 60

^{*}In this and in all subsequent tables, Q₀₂ denotes mm³ of oxygen consumed per section per hour, measured at standard conditions of temperature and pressure

sections It was suggested that although this increase might prove to be due to the hormone itself, it might on the other hand be due to associated impurities. The latter supposition can now be shown to be the correct one since, as has also been found by Kogl (3) the respiratory stimulant is absent from crystalline auxine and can be removed from crude hetero auxine (4) preparations by further purification. Table II shows that crystalline auxine B (kindly supplied by Professor T Kogl, Utrecht) does not affect coleoptile respiration. Table III shows that while a crude hetero auxine preparation (from cultures of Rhizopus sunnus (4)) having an activity of 500,000 plant units per milligram causes a considerable increase in respiration, a purification of this extract to 1,500,000 plant units per milligram removes most of the stimulating power.

The respiratory effect of the more impure hormone preparation is

probably due to a specific stimulating substance rather than to a nutritive action of the associated impurities for the following reasons, (a) it has been found that fructose, which should also have a nutritive action, has but little effect upon coleoptile respiration under the conditions used and (b) it has been shown (1) that the stimulating substance is destroyed by oxidation with H_2O_2

That growth substance does not influence the magnitude of the respiration may be demonstrated in another manner. As has been described elsewhere (2) the activity of growth substance in promoting cell elongation depends upon the undissociated growth substance present. However, the pH of the cell contents is such that only 4 to 5 per cent of the hormone present in the plant is in the active form. If the cell acidity is increased by placing the coleoptile section in an acid

TABLE III

Effect of Crude Helero-Auxine Preparations upon Respiration

Solution of	Qo ₂ before addition 1 hour	Qo2 after addition	
		1 hour	2 hours
10 units per cc (2500 units, or 500,000 plant units, per mg)	1 56	1 92	1 95
10 units per cc (7500 units, or 1,500,000 plant units, per mg)	1 53	1 63	1 43

buffer solution, more of the cell's own growth substance becomes active and its rate of elongation is increased even without the addition of more growth substance. If, on the other hand, the section is placed in a neutral or basic buffer solution, the acidity of the cell contents becomes less than normal, growth substance is dissociated, and the rate of elongation of the section is decreased. A comparison of the respiratory rates in buffer solutions of pH 4 1 and pH 7 2 was therefore made. Since the buffer of pH 7 retains a portion of the CO₂ given off by the respiring tissue it was necessary to add an excess of acid at the end of each experiment, in order to drive off all of the accumulated CO₂ into the gas space of the vessel, where it could be absorbed by the KOH of the alkali well. Table IV shows that there is no difference in the respiratory rates at the two pH values although the rates of

elongation are greatly different. It is clear, then, that growth substance has no effect upon the magnitude of coleoptile respiration, a conclusion also reached by Kogl (3)

Since changes in the growth rate of the coleoptile induced by growth substance are not paralleled by changes in the intensity of respiration

TABLE IV

Effect of pH upon the Elongation and the Respiration of Coleoptile Sections

	pH 4 1	pH 7.2
Llongation in 2 hrs per cert Qo2	9 4 1 53 ± 0 05	2 7 1 49 ± 0 05

Fig. 1 Changes in the growth rate and in the respiration rate of coleoptile sections with time
Curve A, respiration rate, Curve B, growth rate

it might be expected that changes in the growth rate induced by other causes should also be without effect. Fig. 1 compares graphically the changes with time of (a) the growth rate, and (b) the rate of respiration, of sections immersed in growth substance solution. The growth rate even in the presence of excess growth substance decreases steadily

until after 8 hours it practically reaches 0 At this time then, substances or conditions other than the growth hormone are limiting elongation. The rate of respiration, on the other hand, sinks only about 20 per cent in this time. Similarly, the distribution of growth rate and respiratory rate over the length of the coleoptile do not parallel one another markedly, as is shown in Fig. 2. Even when the

Fig 2 Distribution of growth rate and of respiration rate in the coleoptile Curve A, rate of respiration per milligram, Curve B, rate of respiration per milligram protein, Curve C, growth rate (after Went (9))

respiration per milligram protein is used as the basis of comparison, the respiration of the slowly growing base of the coleoptile is 80 per cent of that in the zone of maximum growth rate. Although there is in these two cases no strict parallelism between elongation and respiration, still it is to be noted that a slight decrease in respiratory rate is accompanied by a large decrease in growth rate.

١

Does Grouth Substance Change the Nature of the Respiration?

A search for qualitative differences in the nature of the respiration in the presence and in the absence of growth substance was next made. The respiratory quotient of sections under different conditions was determined by the method of Warburg. This method consists in the measurement of the gas which may be driven out of the tissue by acid at the beginning of the experiment ("preformed CO₂"), the net gas exchange, the gas driven off by acid at the end of the experiment, and the oxygen consumption during the experiment. The determination

TABLE V

Effect of Growth Substance upon the Respiratory Quotient

Solution	Total ga exchange mm.*	Oz uptake mm	≢ Q
pH 4 1	+51 3	175 0	1 29
pH 41 + growth substance	+51 2	175 0	1 29
pH 7 2	-41 1	243 0	0 83
pH 72 + growth substance	-43 5	243 0	0 82
1 per cent fructose	-91	228 0	0 96
1 per cent fructose + growth substance	-8 1	228 0	0 96

of the respiratory quotients revealed a peculiar fact which has, how ever, -so far as can be seen at present, -no relation to the action of growth substance, namely, that the respiratory quotient is markedly higher for sections suspended in an acidic buffer than for sections suspended in a neutral buffer In buffer of pH 4.1 the quotients are very constantly greater than one, in buffer of pH 72 they are more irregular but are markedly below one. It must be emphasized that the fact that during the main body of the experiment most of the CO2 is driven off by buffer of pH 4 1 and a portion of it retained by buffer of pH 7 2 does not affect directly the determination of the respiratory quotient since in both cases all of the CO2 is ultimately driven off with excess acid Moreover, this difference in respiratory quotient be tween acid and neutral solutions has no direct relation to growth, since, as is shown in Table V, in unbuffered fructose solution the quotient is the same irrespective of the elongation, and is practically

one, as would be expected — The sample experiment of Table V shows that in buffer of pH 4 1 the R Q is greater than one, in buffer of pH 7 2 less than one, and in unbuffered solution approximately one, and that in all three of these cases growth substance is without effect — In spite of the unexplained difference between acidic and neutral solutions it seems safe to believe that growth substance itself has no influence upon the respiratory quotient

Fig 3 Inhibition of growth and of respiration by HCN Curve A, inhibition of respiration, Curve B, inhibition of growth

Strugger (5) has suggested that fermentation favors elongation. The high quotient at pH 4 might indeed be interpreted as a kind of fermentation. However, this high quotient is not essential to growth. Moreover, if fermentation were conductive to cell elongation one might expect that anaerobiosis should stimulate growth, or that HCN in suitable amounts should, by inhibition of the "Pasteur reaction," increase elongation. An increase of growth rate by either anaerobic conditions or HCN has never been observed in the course of these experiments.

VI

Effect of HCN on Growth and on Respiration

Up to the present point the independence, both quantitative and qualitative, of cell elongation and respiration has been stressed. In Part III and in the earlier paper (1) it has, however, been pointed out that this independence is by no means complete, since, for example, HCN concentrations of about the same order are needed to inhibit the two processes. A more quantitative study of this relation has now been made and the results are presented in Fig. 3, in which per cent inhibition is plotted against HCN concentration. The two curves parallel one another very closely. A similar parallel inhibition of growth and of respiration was demonstrated earlier for phenylure thane (1)

VII

DISCUSSION

The experimental results which have been presented show that (a) during the growth of the cell, either in the normally growing coleoptile or in the excised coleoptile section, the rate of clongation decreases much more rapidly than does the rate of respiration, (b) HCN and phenylurethane decrease clongation and respiration to the same extent Low temperatures also slow down both processes, although respiration is somewhat more affected than is clongation (6) Neutral buffers, however, decrease clongation without exerting any effect upon respiration

From (a) and (b) it is necessary to conclude that decreases in respiration decrease elongation but not the reverse, ie, no considerable por tion of the respiration is the result of elongation processes. This dependence of growth upon a large respiration may be viewed in two ways, (1) the entire respiration is a "formal prerequisite" of growth (Pfeffer (7)), (2) one or more of the processes of growth is itself a respiratory process but one of small oxygen uptake. Calculations of the amount of mechanical work done during cell elongation have shown that only a small portion of the energy liberated during respiration can be used in this way, and many workers have shown that when the respiratory quotient is near one, the energy of respiration all

appears ultimately as heat (Algera (8)) (1) can give therefore no clear idea of why a reduction of respiration by HCN or phenylurethane should decrease elongation to even approximately the same extent. This brings up the question as to the way in which respiration might be a formal prerequisite of growth. It is clear that it is necessary only if it performs functions which are necessary for growth. The principal function which it performs is the production of heat, which it is difficult to visualize as useful for elongation. It seems more likely therefore that only a portion of the respiration is needed in the actual growth processes, and (1) would become identical with (2)

Experimentally also the distinction between (1) and (2) is difficult if not impossible (1) Growth is decreased when respiration is decreased because the whole respiration is essential (2) Growth is decreased when respiration is decreased because the two portions of the respiration have similar properties. Upon (1) elongation can cease and respiration continue because the latter is a "prerequisite" of the former. Upon (2) elongation can cease and respiration continue because of the inhibition of other portions of the growth process.

Concept (1) therefore cannot be either theoretically or experimentally strictly differentiated from concept (2). It would seem desirable then to avoid the ambiguity of meaning in statement (1), and to express the necessity of respiration for growth in the statement that a process of respiratory nature is one (or more) of the component processes of elongation

VIII

SUMMARY

- 1 Transport of the plant growth hormone into the Avena coleoptile as well as the action of the hormone on cell elongation in the coleoptile are shown to depend upon aerobic metabolism
- 2 Crystalline auxine, in contrast with impure preparations, affects neither the magnitude nor the respiratory quotient of coleoptile respiration
- 3 Increasing age of the coleoptile cell decreases its rate of elongation much more than its rate of respiration HCN or phenylurethane on the other hand decrease the two processes to the same extent, in spite

of the fact that only a small portion of the energy liberated by respiration can be used in the mechanical process of growth

4 From 2 and 3 it is concluded that processes of a respiratory nature but of relatively small magnitude form one or more integral steps in the chain of reactions by which the plant growth hormone brings about cell clongation

LITERATURL

- 1 Bonner, J , J Gen Physiol , 1933, 17, 63
- 2 Bonner J, Protoplasma, 1934, 21, 406
- 3 Kögl, F, Ber chem Ges, 1935, 68, 16 4 Thimann K \, J Biol Chem, 1935 109, 279
- 5 Strugger S Ber bot Ges , 1933, 51, 193
- 6 Bonner, J , and Thimann, K V , J Gen Physiol , 1935, 18, 649
- 7 Pfeffer W in Ewart, J., Plant physiology, Oxford, Clarendon Press, English edition, 1900
- 8 Algera, L. Rec trav bot neerl, 1932, 29, 47
- 9 Went, I , Rec trav bot neerl , 1928, 25, 1

CHANGES OF APPARENT IONIC MOBILITIES IN PROTOPLASM

I LIFFCTS OF GUALACOI ON VALONIA BY W. J. VOSTI KHOUT

(From the Latoratories of The Rockefeller Institute for Medical Research)

(Accepted for publication October 7 1935)

The order of apparent ionic mobilities in Valonia macrophisa Kutz is K > Cl > Na This can be changed to Na > Cl > K without injury to the cell, as is shown by experiments with guaracol

Preliminary experiments were made by adding to ser water various amounts of guarcol (called HG for convenience). Exposures of a few minutes at concentrations up to 0.03 m HG produced effects which were completely reversible. But 0.04 m HG was somewhat toxic and as a rule no concentration above 0.02 m was employed. Unless other wise stated the experiments described in this paper produced no signs of injury.

METHODS

The procedure of Damon³ was closely followed in all respects. Cells were impaled and left until the wound was healed. The PD was measured by leading off with calomel or Ag AgCl electrodes in the latter case one electrode was placed in a narrow cup filled with sea water which was immersed in the solution surrounding the cell thus keeping it in a constant concentration of Cl⁻ the other was inserted in the capillary which pierced the cell. The changes were recorded photographically by means of a camera and a Cambridge Type A galvanometer¹ with thermionic amplifier making the measurements essentially electrostatic in principle. Calibrations were in all cases made by means of a potentiometer in series with the cell.

¹ Damon E B J Gen Physiol 1932-33 16, 375 When V_{Cl} is taken as unity $U_{L} = 20$ and $U_{N} = 0.2$

For criteria of injury see Osterhout, W J V Ergebn Physiol 1933 35, 979 Kopac M J Carnegie Institution of Washington 1 car Book No 32 1932-33 273 No 33 1933-34 253

³ Damon E B J Gen Physiol 1931-32 15, 525 (Fig 1)

⁴ Cf Osterhout W J V and Hill S E J Gen Physiol 1933-34 17, 87

In making solutions of the pH of sea water indicator was added to the sea water which was then divided into two portions To one of these there was added HG, followed by enough NaOH to bring the sea water back to the color it had at the start

With hydrogen and glass electrodes the liquid junction introduces an error of unknown magnitude 5 It seemed best to neglect this Accordingly, concentrated sea water was added to the standard buffer solutions6 until their ionic strength was 0 721 which is the ionic strength of Bermuda sea water, according to Zscheile We thus avoid the salt error by making it approximately the same in the buffer and in the sea water After adding the concentrated sea water the

Fig. 1 Photographic record showing the effect of 0.01 M HG in sea water at The record starts with the cell in sea water. When it was lifted out the curve jumped down to the 'free grid' level, F, of the vacuum tube amplifier cell was then lowered into sea water plus 0 01 m HG at the instant it made contact with this solution the curve returned to its former level and there remained during the latent period (about 15 seconds), it then began to fall and became 26 my more positive, after which it slowly rose and in about 100 seconds reached approximately its original level (for convenience the rise is termed "recovery" but this term does not signify that the cell has returned to its original condition)

The vertical marks are 5 seconds apart Temperature 22°C

pH value of the buffer solution was determined by means of the hydrogen or glass electrode

Kahlbaum's guaiacol was used and the solutions were always freshly prepared No solutions were used in which color had developed Unless otherwise noted all experiments were made with a collection of cells called Lot B Lot C was not different in appearance but gave somewhat different results

⁵ It has been supposed that this could be rendered negligible by the use of saturated KCl but this has been called in question

⁶ The buffers were phosphate and borate buffers (according to Clark, W M, The determination of hydrogen ions, Baltimore, The Williams & Wilkins Company, 3rd edition, 1928) and were approximately 0.2 m

⁷ Zscheile, F P, Jr, Protoplasma, 1930, 11, 481

Experiments with Sea II ater

To word any complications due to the garacol ion (which may be called G^-) we begin with experiments at pH 6.4 where the concentration of G^- is negligible ⁶. This is desirable because in some cases the garacol ion appears to have considerable effect on the PD (by reason of its high mobility).

I ig 1 shows what happens when a cell is transferred from sea water (at pH 6 4) to sea water to containing 0.01 w HG (at pH 6 4). At the start, the r b was 7 ms negative to (about the usual value). The HG caused at to become more positive by 26 ms. (The mean of 33 measurements was 28 ms., see Table I.)

After this the curve returned to the previous level for convenience this will be referred to as "recovery" although it does not signify that the cell returned to its original condition. The time required for the curve to fall and rise (which will be called "recovery time) was variable, the mean was 64 seconds, which was less than at pH 8.2 (there the value was 127.4 see Table I)

- * At pH 64 the degree of dissociation of HG in ser water is less than 0.1 per cent. According to Shedlovsky and Uhlig (Shedlovsky, T. and Uhlig 11 H., J. Gen. Physiol. 1933-34 17, 567) the pk. at 25 is 10.1. Subtracting 0.375 from this on account of the ionic strength of sea water (cf. Jacques. A. G. J. Gen. Physiol. 1935-36 19, 397) gives 9.725
- ⁹ Fig. 1 is furly typical but the form of the curve showed great variation. In some cases the rise at the right end (comprising the last 10 to 15 ms.) was quite steep. In some cases (at pH 6.4 to 9.6) the curve dropped as usual, then rose a little and fell before commencing the long steady rise resulting in recovery.
- ¹⁶ The cell had previously been transferred from sea water at pH 6.4 which had practically no effect on the r p
- 11 I e the positive current tended to flow from the sea water across the proto plasm into the sap In some cases the PD was positive at the start but this seemed to make no difference in the behavior of the cells. Regarding the PD of the cells in sea water see Blinks L. R. J. Gen. Physiol. 1935-36 19, 633
- ¹ A few exceptional cells (not included in these measurements) give much higher values (up to 106 mv). I ots D and E gave average values of about 65 mv. Some cells in each lot give no response, but such cells sometimes responded on the following day.
- ¹² This time is measured from the instant when the curve starts to fall to the time when it has risen again to its final level which is usually not much below the level at the start and may coincide with it as in Fig. 1

TABLE I

Effects of Guaracol*

Lot B except as otherwise stated $\,$ (The number of observations is given in parentheses)

pН	Solutions (sea water = S W)	Intent period	Change in 1 p	Recovery † time
6 4	SW then SW + 001 MHG	sec 17 4 ±0 5 (35)	+28 0 ±2 1 (33)	sec 64 0 ±2 3 (26)
	SW then SW + 0005 MHG	23 4 ±0 5 (13)	+22 3 ±2 8 (15)	_
	SW then SW + 001 mHG	1	$+26^{\circ}2 \pm 1^{\circ}7$ (30)	127 4 ±9 5 (14)
	S W + 0 005 M HG then S W + 0 01 M HG	0	+17 9 ±2 6 (12)	
	SW + 001 M HG then SW + 002 M HG	0	$+17 \ 2 \ \pm 1 \ 8$ (15)	_
8 2	SW + 002 M HG then SW + 004 M HG	0	+8 8 ±0 8 (5)	_
!	SW then SW + 0005 m KG	21 3 ±0 3 (10)	+14 6 ±0 1 (5)	_
	SW + 0 005 M KG then SW + 0 01 M KG	0	+21 9 ±3 3	
	SW + 001 m KG then SW + 002 m KG	0	+26 6 ±2 0	_
	S W + 0 005 M HG then S W + 0 02 M HG	0	$+345 \pm 34$ (11)	_
6 4	06 m NaCl then 06 m NaCl + 001 m HG	22 0 ±0 9 (25)	+53 5 ±3 5 (25)	76 0 ±6 8 (5)
	Lot C			
6 4	SW then SW + 0005 MHG	12 1 ±0 7	+28 0 ±2 7	125 0 ±8 6 (6)
	SW then SW + 0.01 at HC	. , , , ,	160 4 12 03	

	B00 0	
6 4	S W then S W + 0 005 M HG	12 1 ±0 7 +28 0 ±2 7 125 0 ±8 6
	SW then SW + 001 mHG	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	SW then SW + 002 MHG	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		(4) (6) (6)

^{*}In making averages some extremely high and extremely low values were disregarded

[†] Includes time for fall of curve and rise to final level which may be the same as at the start or a little lower

In these experiments with 0.01 M HG it was observed that the greater the positive drop the longer is the recovery time. When the concentration of HG is increased the positive drop increases and recovery is slower (Iable I, I of C) and less complete. Recovery may act thus because increase of concentration does not affect. I as much as V in respect to speed or final effect. Similar considerations may apply when one cell shows a greater positive drop and recovery time than another though both are exposed to the same concentration of HG.

After applying HG there was a latent period 11 in Fig. 1 of about 15 seconds before the curve began to fall. The average of 35 measurements gave 17.4 (Iable I). This is also seen at pH 8.2 with 0.005 w at pH 8.2 the latent period was 23.4 seconds and with 0.01 w (at pH 8.2) the mean was 15.6 seconds. See also the measurements with I of C (Table I). Evidently the latent period shorters as the concentration increases.

There is practically no latent period when ser water $+~0.01~\mathrm{M}$ HG is substituted for sea water $+~0.005~\mathrm{M}$ HG. This is illustrated in Fig. 2. When ser water was replaced by sea water containing 0.003 M guaracol there was a positive movement of 15 my. Sea water containing 0.01 M guaracol was then applied making the PD 27.5 m more positive 15 Subsequent application of sea water containing 0.02 M guaracol made the PD still more positive by 14.5 my. When replaced in sea water the 1 D returned to the value it had at the start Fhere was no indication of latent period in applying 0.01 or 0.02 M HG.

An interesting feature is the threshold. Cells showing no effect with 0.005 m may respond when the concentration is rused to 0.01 m or higher (Γ_{1g} 3)

There was no evidence of injury

The cells when returned to sea water quickly regained their usual PD and many of them were used for several days in succession

¹⁴ In some cases bacteria form a gelatinous covering over the cell which delays the entrance of electrolytes. This was not the case with these cells as shown by the very prompt response when they were placed in ser-water containing 0.5 M KCl or when the solutions were diluted (Figs. 5.6, 9.11, and 12)

15 Some exceptional cells gave very high values (up to 106 mv) when 0.01 m guaracol was added directly to sea water

Fig. 2 Photographic record showing the effects of increasing concentrations of HG (all at pH 8.2) The cell was at first in sea water and was then transferred to 0 005 M HG in sea water. After a latent period of about 23 seconds the P D became 15 mv more positive and the curve then began to rise (recovery) Application of 0.01 is HG in sea water made the positivity greater by 27.5 ms, than the greatest value attained in 0 005 M a further increase in positivity of 14 5 mv occurred in 0 02 M HG in sea water Replaced in sea water the PD returned approximately to its value at the start

Time marks are 5 seconds apart Temperature 23°C Regarding F see Fig 1 (p 14)

Fig. 3 Photographic record showing that when 0.003 is IIC his been applied without effect, positivity can be produced changed It was then lifted out of the solution and the curve jumped down to the free grid level I of the vacuum tube amplifier The cell was then lowered into 0.01 M HC in sex water and the instant at touched this solution the curve jumped back to its former level (approximatels) and it once begin to fall thus showing that there was no latent period (compare with Fig 1) On transferring to 0 02 xt HG in sea water there was a further drop (unusually large see Table 1) Replaced At the start the cell was in ser water and when transferred to 0 000 M IIG in sea water its P D remained practically un by 0 01 M HG and there is no latent period (all solutions at pH 6 4) in sea water the P D returned approximately to its original value

In cells of this sort no positivity is produced by prolonging the exposure to 0 005 m 11G The vertical marks are 5 seconds apart | Temperature 22°C The most satisfactory way of dealing with these PD's is to regard them as diffusion potentials ¹ Hence when HG added to sea water or to NaCl produces positivity it is natural to inquire whether this depends on a decrease ¹⁶ in U_{Na} (the apparent mobility of Na+ in the outer protoplasmic surface) as compared with V_{Cl} (the apparent mobility of Cl⁻)

To answer this question experiments were made with 0.6 M NaCl which is nearly isotonic with Bermuda sea water

Experiments with NaCl17

The curve produced by exposure to 0.01 m HG in 0.6 m NaCl at pH 6.4 is much the same as that in Fig 1. Evidently the presence of the sea water ions, K⁺, Mg⁺⁺, Ca⁺⁺, and SO₄⁻, in the external solution is not necessary to produce this effect. The concentration of these ions in the outer part of the protoplasm is doubtless lessened, especially when the cell is left for 2 or 3 minutes in 0.6 m NaCl before HG is applied.

The next step was to measure the concentration effect in NaCl by transferring from 0.6 m NaCl¹⁸ to 0.6 m NaCl plus 1 volume of 8.7 per cent glycerol (by weight) which is nearly isotonic with 0.6 m NaCl¹ As seen in Fig. 4, in the dilute solution the P.D. becomes more

¹⁶ When I $_{\rm Cl}$ is greater than $U_{\rm Na}$, so that Cl⁻ tends to enter the protoplasmic surface more rapidly than Na⁺, the solution tends to become more positive (in the external circuit) the greater its concentration. Hence by diluting a solution of NaCl we can ascertain whether $V_{\rm Cl}$ is greater than $U_{\rm Na}$ for if it is the more dilute solution will be less positive (i c more negative). Cf Osterhout, W J V, J Gen Physiol, 1929–30, 13, 715

17 The experiments described in this section did not seem to produce any injury The cells remained normal in appearance and after replacement in sea water they quickly regained their normal PD Many of the impaled cells could be used for several days in succession

Changing from sea water to 0 6 m NaCl (with or without change of pH) has little or no effect 10 . The amount of K^+ in the sea water is too small to have much effect on the PD (Damon, E. B., unpublished results) and this applies to the other ions except Na $^+$ and Cl $^-$

¹⁸ In the case of dead cells (*i e* impaled cells killed in position) dilution of 0 6 M NaCl or of sea water or of 0 6 M KCl, or of "sea water with 0 5 M KCl" with an equal volume of 8 7 per cent glycerol produced only a negligible change in P D

negative by 6 my the average of 10 measurements was 8.4 my Since the more dilute solution is the more negative we conclude that $U_{Na} < V_{CI}$ (Table II)

After an exposure of 290 seconds to 0.01 M HG the concentration effect was reversed so that the dilute solution became positive, in dicating that $U_{\rm Na} > V_{\rm CI}$ (Fig. 5)

Fig. 4 I hotographic record showing normal concentration effect of NaCl (all solutions at pH 6.4) The record starts with the cell in sea water the cell was transferred to 0.6 M AaCl. On diluting this with an equal volume of 8.7 per cent glycerol the PD became 6 my more negative indicating that the apparent mobility of Na+ was less than that of Cl.— The cell was afterward returned to sea water (not shown on the record) and behaved normally

Fine marks are 5 seconds apart Temperature 24°C Regarding F see Fig. 1 (p. 14)

To minimize the danger of injury this longer exposure to HG was carried out in sea water at pH 6.4 (a curve similar to that in Fig. 1 was obtained during this process). The cell was then transferred to 0.6 m NaCl at pH 6.4 with the result shown in Fig. 5. When this NaCl was diluted with an equal volume of 8.7 per cent glycerol (con taining 0.01 m HG) the PD became 15 my more positive ¹⁹ In

¹⁹ This reversal could be obtained equally well regardless of whether the cells had previously been exposed to dilute solutions

Fig. 5 Photographic record showing reversal of the concentration effect of NaCl after exposure to HG (all solutions at pH 64). The record be-This solution was then diluted with an equal volume of 87 per cent glycerol + 0.01 if HG and the P D became 15 ms more positive (instead of negative as in Fig 4), indicating that the apparent mobility of Na + had become greater than that of Cl - I he cell was then returned to 0.01 v FIG gins with the cell in sea water +0.01 M HG in which it had already remained for 290 seconds. It was transferred to 0.01 M HG +0.6 M NaCl + 06 M NaCl and then to sea water

The vertical marks are 5 seconds apart Femperature 24°C Regarding F see Fig. 1 (p. 14)

some cases no change occurred $^{\circ}$ which may be taken as indicating that $U_{Na} = V_{CI}$, aside from these cases we have 9 observations showing an average positive movement of 11.1 m. (Table II) To calculate

TABLE II

Concentration Effects (1) Normal and (2) Reversal Due to Exposure to Cuanacol

I of B (The number of observations is given in parentheses)

(1) Normal		
Hq	Sclutions empl 13 ed	Change of r p
		m
8.2	SW then SW + equal volume glycerol 87 per cent	-10 2 ±0 4 (19)
64	SW then SW + equal volume glycerol 8" per cent	-10 6 ±0 5 (7)
6.4	06 u \aCl then same + equal volume glycerol 8 7 per cent	$-8.4 \pm 0.8 (10)$
(2) Reversal after 5 minutes or less in S W + 0.01 x HC		
64	SW + 001 M HG then same + equal volume glycerol 87 per cent containing 001 M HG	+13 0 ±1 7 (8)
6 4	06x \aCl + 001 x HG then same + equal volume giveerol 87 per cent containing 001 x HG	+11 1 ±1 7 (9)
6 4	8 / per cent containing 0 01 x HG	-8 2 ±1 1 (6)
8 2	SW with 05 m KCl + 001 m HG then same + 2 volumes SW + 001 m HG	-12 9 ±1 4 (6)
6 4	'S W with 05 m kCl + 001 m HG then same + 2 vol	
8 2	umes glycerol 87 per cent containing 001 м HG SW + 001 м HG then SW with 05м kCl + 001 м HG	-10 6 ±1 4 (8) +20 4 ±1 8 (6)

the value of U_{N_4} we may employ the formula 1

$$PD = 58 \frac{V - U}{V + U} \log \frac{C_1}{C_2}$$

where $U = U_{Na}$, $V = V_{Cl}$, and C_1 and C are concentrations (for our present purpose the activity coefficients may be left out of account)

⁰ When no change occurred the question arose whether the cell was in such condition as to be incapable of showing any immediate change of PD happen if the outer surface were destroyed or short-circuited by leaks ruled out in all cases by placing the cell in 0.6 in kCl which produced a prompt response

²¹ Damon E B, and Osterhout W J V J Gen Physiol 1929-30 13, 445

Before treatment with HG the change due to 0.3 M NaCl is -8.4 from which (putting $V_{\rm Cl}=1$) we get $U_{\rm Na}=0.35$ After treatment the P D is +11.1 from which $U_{\rm Na}=4.5$

The Concentration Effect with Sea Water17

Since the concentration effect of sea water is essentially that of NaCl²¹ it is not surprising that it can be reversed like that of NaCl Cells were first tested for the normal effect as shown in Fig. 6. Transferring from sea water to sea water plus 1 volume of 8.7 per cent glycerol gave as the average of 19 measurements at pH 8.2 a negative movement of 10.2 mv. (Table II). 7 measurements at pH 6.4 gave 10.6 mv. which is not far from Damon's²² value²³ of 11.4 mv. As the dilute solution is more negative we may conclude that $U_{N3} < V_{Cl}$

After being tested in this way the cells were allowed to remain in sea water for several hours. Then they were placed for 5 minutes in sea water containing 0.01 m HG. The concentration effect was then found to be reversed (Fig. 7), i.e., the more dilute solution was positive to the extent of 5 to 15 my. In a few cases no change of PD occurred which may be interpreted to mean that $U_{\rm Ng} = V_{\rm Cl}$ omitting these we have 8 observations (Table II) giving for the positive movement an average value of 13 my. (the highest was 27 my.) Before treatment with HG the PD of the dilute sea water was -10.6 from which we calculate $U_{\rm Ng} = 0.24$ after treatment the PD was +13.0, giving $U_{\rm Ng} = 7.0$

Experiments with KCl23

When cells are transferred from sea water at pH 8 2 or 6 4 to "sea water with 0 5 m KCl" (1 part sea water plus 5 parts of 0 6 m KCl) there is a rapid increase in negativity²⁴ (Fig 8) Replacing this solution with the same plus 1 part 8 7 per cent glycerol makes the PD less negative ²⁵ This is also true when we employ 0 6 m KCl in

²² The response was more rapid than in Damon's experiments

 $^{^{23}}$ Prolonged exposure to 0.6 \upmu KCl may produce injury but there was no sign of injury in these experiments

²⁴ The increase was more rapid than in Damon's experiments¹ but the amount of negativity was usually less

²⁵ This agrees with Damon's unpublished experiments

Fig. 6 Photographic record showing the normal concentration effect of sea water (all solutions at pH 9.2) The record starts with the call in sea water On dividing the sea water with 111 equal colume of 8 7 per cent gly cerol the PD became 6 ms more negative indicating that the apparent mobility of Na+ was less than that of Cl- The P D returned to its initial value when the cell was replaced in sea water The vertical marks are 5 seconds apart 1 emperature 24°C

Regarding I see Iig 1 (p 14)

Fig 7 Photographic record showing reversal of the concentration effect of sea water after exposure to HG (all solutions at pH 82) The record starts with the cell in sea water containing 0 01 vr HG in which it had been standing for 247 seconds. On diluting this with an equal volume of 87 per cent glycerol + 0.01 \times HG of Na+had become greater than that of Cl- The P D returned to the normal value when the cell was replaced the P D became 16 mv more positive (instead of more negative, as in Fig 6), indicating that the apparent mobility ın sea water

The vertical marks are 5 seconds apart Femperature 24°C Regarding F see Fig 1 (p 14)

place of 'sea water with 0.5 m KCl" Since the dilute solution is n positive we conclude that $U_k > I_{Cl}$

In order to ascertain the effect of HG on U_k the concentration effects was studied after exposure to HG – Lig 9 shows an experiment with cell which was transferred through a series of solutions (all at pH 6.4 On passing from sea water to 'sea water with 0.5 m KCl' the 1.D became 35 my more negative it returned to the original value when the cell

Fig. 8 Photographic record showing negativity produced by KCl (all solutions at pH 8 2) indicating that the mobility of K is greater than that of \a+ The record starts with the cell in sea water. When the cell was transferred to sea water with 0.5 m kCl (p. 24) the 1.0 became 25 m more negative. When the cell was replaced in sea water the P D began to fall The vertical marks are 5 seconds apart Temperature 22 C

was replaced in sea water. Then 0.01 M HG was added to the sea water with 0.5 v KCl and less negativity resulted (3) and when this was diluted (4) with 2 volumes of 8 7 per cent gly cerol (containing 0 01 $M \to G$ the $P \to G$ became 12 my more positive indicating that U_K was greater than VCI At (5) the cell was replaced in 0.01 M HG in 'sea water with 0.5 M KCl and lest for 4.5 minutes after which (6) the dilute solution made the PD more negative by 6 m, indicating that Un had become smaller than Ver which is the reverse of the condition obtaining before the long exposure to HG 19 As shown in Table II the average change due to dilution after treatment with HG was 129 my (dilute solution negative)

It is probable that the change is chiefly in $U_{\rm k}$ rather than in T cl because if $V_{\rm Cl}$ increased greatly it does not seem likely that $U_{\rm Na}$ could simultaneously become greater than T cl as described in the preceding section *6

A similar falling off in $U_{\rm K}$ is seen when 0.6 m KCl is employed in place of "ser water with 0.5 m KCl." Dilution of 0.6 m KCl with 1 volume of glycerol (8.7 per cent) made the 1 D 8.2 my more negative (See Table II.)

This falling off in $U_{\rm K}$ may be responsible in part for the fact that when we add HG to "sea water with 0.5 m KCl" we get less negativity as is evident in Figs. 9 and 10. (This also occurs with 0.6 m KCl.) The falling off in negativity is often greater than that shown in these figures

In view of this it is not surprising to find that after an exposure to see water plus 0.01 m HG of 3 minutes or more, "see water with 0.5 m KCl" (p. 24) can produce a positive "instead of a negative effect

The vertical marks are 5 seconds apart Temperature 21 C Regarding Γ see Γ ig 1 (p. 14)

Fig 9 Photographic record showing reversal of the concentration effect of KCl after exposure to HG (all solutions at pH 82) At the start the cell was in ser water at (1) the cell was transferred to sea water with 0.5 vt KCl (p. 24) making the PD about 35 my more negative at (2) it was replaced in sea water and the PD returned to the initial value at (3) it was placed in sea water with 0.5 M KCl '+001 M HG making the PD more negative but to a smaller extent than before HG was applied this being followed by increased positivity due to HG (see Fig. 10) When this solution was diluted at (4), with 2 volumes of 8.7 per cent glycerol containing 0.01 M HC the PD became more positive by 11.8 my, indicating that the apparent mobility of K+ was greater than that of Clbut this behavior was reversed after a longer exposure to HG which began at (5) During this exposure which was made in 0.01 m HG + sea water with 0.5 m the PD became more negative. At (6) this was diluted with 2 volumes of 8 7 per cent gly cerol containing 0 01 st HG the PD now became 6 my more nega tive (instead of more positive as happened previously) thus indicating that the apparent mobility of K+ had become less than that of Cl-, this was confirmed by replacing the cell at (7) in 0.01 m HG + 'sea water with 0.5 m KCl upon which the PD became 6 my more positive. The cell was subsequently returned to sea water (not shown in the record) and did not appear to be injured

⁶ This change in U_{NA} would tend to make the dilute solution positive but this is masked by the greater change occurring in U_{N} in the opposite direction

which it became 18 my more negative. After this the curve fell. On transferring to 0.01 in HG in sea water there was practically no tions at pH 82 The cell was in sea water at the start and was then transferred to 0.01 v HG in "sea water with 0.5 v LCl" (p 24), in change, indicating that the apparent mobility of K+ had become approximately equal to that of Na+ In sea water the PD went Fig. 10 Photographic record showing that KCl produces less negativity when 0.01 in HG is present (compare with Lig. 8) back approximately to the original value

The time marks are 5 seconds apart 1 lemperature 23° C Regarding F see Fig. 1 (p. 14)

more negative (instead of more positive) by 20 2 mv. The cell was then returned to 'sea water with 0 5 u KCl + 0 01 M HC and then On changing from sea water + 0.01 xt IIG to sea water with 0.5 xt ACI (p. 24) (containing 0.01 xt IIG) the probecame 7.7 ms more positive (instead of more negative) On diluting this with 2 volumes of 8.7 per cent glycerol (containing 0.01 xt HG) the P.D. became Fig. 11 Photographic record showing the reversal of the action of RCI after an exposure of 335 seconds to 0.01 M HG in ser writer to sea water in which the PD came back approximately to the original value it had at the start of the experiment

The time marks are 5 seconds apart Temperature 23 C Regarding I see Fig 1 (p 14)

Fig 12 Photographic record showing that after sufficient exposure to HG the change produced by "sea water with 05 M KCl" is positive instead of negative (compare with Figs 8, 9, and 10) All solutions at pH 82 The cell was at first in sea water it was transferred to 0.01 w HG in sea water After a latent period of about 16 seconds there was a positive drop of 28 mv followed by recovery, the total exposure to HG being 230 seconds The cell was then placed in 0 01 M HG in "sea water with 0 5 M KCl" (p 24) which instead of producing negativity, as happens After a rest of 4 hours in sea water it was placed in "sea water with 0 5 x KCl" (not shown on the record) which made the P D strongly negative, in when there has been no previous exposure to HG (or a short exposure as in Fig 9), made the P D more positive by 17 mv, indicating that the appricant mobility of K+ had become less than that of Na+ The cell was then replaced in sea water and the PD returned to the value it had at the start dicating that the apparent mobility of K^+ had become much greater than that of Na^+

The time marks are 5 seconds apart Temperature 22°C Regarding F see Fig 1 (p 14)

(Figs. 11 and 12), thus indicating that $U_h < U_{\lambda a}$. As shown in Table II, the average change was 20.4 my more positive

Putting $V_{\rm Cl}=1$, Damon' found $U_{\rm K}$ to be 20 but states that there was considerable variation. The cells used in the present investigation showed great variation, the value of $U_{\rm K}$ ranging from about 5 to 20. The value of $U_{\rm K}$ after treatment was calculated by using the formula given on p. 23 from the 1 D between 0.6 M and 0.3 M KCl which was 8.2 my. (Table II), we get $U_{\rm L}=0.36$

La periments with Potassium Guaracolate11

Since K^+ has a high apparent mobility and in some cases this applies also to G^- , it seemed desirable to add both together. Accordingly experiments were made by adding potassium guaiacolate to the sea water at pH 8.2. The results, as seen in Table I, were similar to those obtained by adding HG

These experiments indicate that a profound alteration of the properties of the protophismic surface may be brought about by undis sociated guaiacol (since at pH 6.4 the concentration of G^- is negligible)

DISCUSSION

It has been found in previous work that the most satisfactory way to deal with such PD measurements is to regard them as chiefly due to diffusion potentials 1.16. Let us now consider the behavior of potassium from this point of view.

The Potassium Ion—When Valouta is transferred from ser water to "sea water with 0.5 m KCl" (p. 24) there is a marked increase in negativity. When this solution is diluted with an equal volume of isotonic glycerol the PD becomes more positive. Since the more dilute solution is more positive we conclude that $U_{\rm K} > V_{\rm Cl}$. When the more dilute solution of KCl becomes more negative after the guaracol treatment we may conclude that $V_{\rm Cl} > U_{\rm K}$. Whether this is due to a falling off in $U_{\rm K}$ or to an increase in $V_{\rm Cl}$ cannot be decided but if the latter increased much it might not be possible for $U_{\rm NL}$ to become greater than $V_{\rm Cl}$ as apparently happens

Charged Complexes—These results are not in harmony with Wal den s rule which states that the ratio $U_{\rm K}-U_{\rm Na}$ should be approximately the same in all solvents

If the guaracol treatment caused K+ to become more solvated it

would lower the value of $U_{\rm K}$ but it does not seem probable that the observed changes could be accounted for on this basis 27

If under normal conditions the partition coefficient²⁸ of KCl exceeded that of NaCl and $U_{\rm k}$ was equal to $U_{\rm Na}$ our calculations would make it appear that $U_{\rm k}$ exceeded $U_{\rm Na}$ when the values were deduced from the "chemical effect" (i.e. the negativity produced by substituting KCl for NaCl), but not when deduced from the "concentration effect" (i.e. the change produced by diluting a solution of KCl or NaCl) But if it happened that the partition coefficient of KCl increased more rapidly with concentration than that of NaCl we should deduce too high a value of $U_{\rm k}$ from the concentration effect also

Some changes in activity partition coefficients may occur when alterations take place in one or both of the phases concerned, but changes of great magnitude are improbable. On the other hand it seems possible that the partition coefficient of K^+ might appear to increase more than that of Na^+ by the formation of charged complexes which are found, according to Kraus, 29 in media of low dielectric constant such as we suppose the non-aqueous surface layer of the protoplasm to be 30 . Thus if we have K^+ in the external solution we might have in the non-aqueous layer K^+ , $(KX_I)^+$, $(KX_{II})^+$, etc., all of which would count in our calculations as K^+ (X_I and X_{II} may be elements or radicals) and thus increase the apparent ionic partition coefficient

²⁷ Shedlovsky, T, and Uhlig, H H, J Gen Physiol, 1933-34, 17, 563 It should be said, however, that small differences may be due to solvation. Thus Kraus explains the order $U_{\rm Rb} > U_{\rm Cs}$ in liquid ammonia as due to solvation (in water $U_{\rm Cs} > U_{\rm Rb}$). It is of interest to note that we find $U_{\rm Rb} > U_{\rm Cs}$ in Nitella and in Valonia (unpublished results of E B Damon), but here the differences are much greater than in liquid ammonia

 28 This becomes evident from the following considerations. In the equation given on p 23 the actual value of the partition coefficient does not matter since only the ratio $(C_1 - C_2)$ counts and this will remain the same regardless of the value of the partition coefficient so long as the latter is the same for both concentrations. But if the partition coefficient increases with concentration so that the ratio $(C_1 - C_2)$ increases the calculated value of $U_{\rm h}$ will increase

For the chemical effect we employ Henderson's equation in which the actual concentrations become important and an increase in the apparent partition coefficient (due to formation of charged complexes) affects the result

²⁹ Kraus, C A, Tr Electrochem Soc, 1934, 66, 179

³⁰ Osterhout, W J V, Ergebn Physiol, 1933, 35, 1003

This apparent increase might be greater for K^+ than for Na^+ , thus changing the calculated ratio $U_k - U_{l,s}$. It stems possible that HGmight act by changing such charged complexes

This might also apply to the formation of chemical compounds in the non aqueous layer. If for convenience in discussion we use the same standard state for both phases, confining our attention to the thin layers on each side of the phase boundary which are assumed to be prictically in equilibrium we may say that the ionic activity product [k] [Cl] is the same in both But if in the non aqueous layer organic potassium compounds are formed so that we have not only KCl but KR, KRn, etc, which are not very soluble in water the ac tivity of k + may be very much greater in the non aqueous although the Product [k] [CI] remains the same Thus if we have for activities in the external solution $K^{+}=0.01$ and $Cl^{-}=0.01$ we may have in the non aqueous phase $K^+ = 0.1$ and $Cl^- = 0.001$ But if in the external solution the product [N 1] [Cl] equals [K]

[CI] we should expect this to hold also for the non aqueous phase and Since in the latter Cl = 0.001 we expect $Na^+ = 0.01 = K^+$ We thus have no difference between Na+ and K+ (but the dissociation constants and the undissociated molecules may not have the same values in both cases)

Although such assumptions might explain certain variations in the ratio $U_k - U_k$ at is not clear that they can account for the fact that There exposure to HG we get $U_{\text{ta}} > V$ V_{to} to produce this re sult actual changes in mobilities may be necessary

For convenience we may hereafter speak of Uk with the under standing that its value may depend in part on compleves or on chemical Combination This applies also to U.

Not much can be said about the nature of these charged compleves or compounds at present but it may be recalled that there are salts of sodium and of potassium which are said to be more soluble in non polar solvents than in water (Calcium salts of this sort have been Isolated from plants, and calcium oleate is more soluble in certain non aqueous solvents than in water 1) Hundeshagen F J prakt Chem 1883 h s 28, 219

Smith J A B and Chibnall A C Biochem J London 1932 26, 1345 Chibnall A C and Channon N J Biochem J London 1922 23, 176 Experiments in this laboratory by J W Murray showed that when a large

Chemical reaction in the non-aqueous protoplasmic surface appears to occur when ammonia and guanidine enter Valonia and may be characteristic of bases generally apparently this does not apply to acids to what extent Cl^- enters into the complexes may be left open for the present. In this connection it may be recalled that guaiacol forms not only salts but esters, some of the latter are said to be insoluble in water, eg, guaiacol oleate. It is possible that compounds of this sort may be formed in the protoplasmic surface

It is probable that p-cresol and phenol,³⁷ which are chemically related to guaiacol, will act like guaiacol since they affect the PD in somewhat the same way as guaiacol when added to sea water at pH 8.2. But this is not true of such acids as formic, acetic, valeric, benzoic, and salicylic (see p. 42)

It may be added that exposure of $Nitella^{38}$ to distilled water (which dissolves organic substances out of the cell) changes the order of apparent mobilities from K > Na to Na > K Here also charged complexes may be involved

Behavior of the Outer Protoplasmic Surface —It might be suggested that HG puts the outer surface out of commission³⁹ so that the observed

volume of an aqueous solution of 0 0012 M Ca(OH)₂ was shaken with a little isoamyl alcohol containing 0 1 M oleic acid the proportion of Ca⁺⁺ in the alcohol to that in the aqueous solution was as 16 8 to 1 (temperature about 25°C) See also Bancroft, W D, J Phys Chem, 1913, 17, 501, Clowes, G H A, J Phys Chem, 1916, 20, 667 According to Seidell, A, Solubilities of inorganic and organic compounds, New York, D Van Nostrand Co, 2nd edition, 1919, p 209, calcium oleate is much more soluble in glycerol than in water

- 34 Osterhout, W J V, Proc Nat Acad Sc, 1935, 21, 125
- 35 Jacques, A G, Proc Nat Acad Sc, 1935, 21, 488
- ³⁶ Jacques, A. G., J. Gen. Physiol., 1935-36, 19, 397

³⁸ Osterhout, W J V, J Gen Physiol, 1934-35, 18, 987

 $^{^{39}}$ E g by breaking down its structure or by increasing its permeability to all the ions concerned so that their apparent mobilities became nearly the same

I D s are those of the inner surface where the order of apparent mobilities may be quite different. If this were the case, sudden changes in the external solution could not produce sudden changes in I D since time would be required for the substituting ions to diffuse across the protoplasm to the inner surface. We find, however, that external changes continue to produce as rapid changes in PD (often beginning within 1 or 2 seconds) of as before. This applies to changes in the concentration of sea water (Fig. 6), of KCl (Figs. 9 and 11) and of NaCl (Fig. 5), as well as to the change from sea water to 0.6 m KCl (Fig. 12).

Moreover, Blinks' finds that p cresol (which is chemically close to guaricol) does not tend to destroy the outer surface but rather to conserve it

The Sodium Ion—In NaCl the more dilute solution is normally more negative because U_{Na} is less than V_{Cl} but after exposure to guaracol the more dilute solution may become the more positive indicating that U_{Na} has become greater than V_{Cl} (Fig. 5)

Since the concentration effect of sea water is essentially that of NaCl 1 it is not surprising that it can be reversed by guaracol (Fig. 7) just as in the case of NaCl

The Guardeol Cure a The Positive Drop - The curve shown in

⁴⁰ It seems extraordinary that the change is so rapid when the protoplasm is covered with a cellulose wall which may be as much as 10 microns thick. It is possible that there are protoplasmic processes passing more or less completely through the cellulose wall. The change in U_k and U_{N_k} which occurs in the outer surface layer requires an exposure to HG of 5 minutes to bring about the reason for this is not known.

41 The change in P D due to change in liquid junction as the result of change in concentration is of course instantaneous but this is so small as to be neg limible

With dead cells the change of PD was negligible 18. If it were large enough to appear on the record we should see at the start a sudden movement of the curve followed by an abrupt change in its course in case the alteration in the PD of the cell were relatively slow. As nothing of the sort is observed we may conclude that the PD of the cell changes rapidly from the start.

4 Blinks L R J Gen Physiol , 1935-36 19, 633

 43 In some cases transfer to the dilute solution does not change the r D , here $U_{\rm N,2}$ appears to be equal to 1 c1

Fig 1 can be obtained in 0.6 m NaCl ⁴⁴ We then have at the outer surface only Na+ and Cl- to consider. We have seen that HG increases the apparent mobility of Na+ as compared with Cl- so that the addition of HG to NaCl will tend to make the PD at the outer surface more negative. The increased positivity must therefore depend on other ions.

It seems probable that these are chiefly the organic⁴⁵ ions in the protoplasm which have been mentioned in previous papers ⁴⁶ They may be responsible for the normally negative P D for the inorganic ions of the sap and sea water would presumably produce a positive P D. The sap contains 0.5 m KCl + 0.1 m NaCl, which should produce an outwardly directed P D if the inner surface layer of the protoplasm (which we may call Y) has properties⁴⁷ at all resembling those of the outer surface layer (which we may call X). The action of the sea water on X would also produce an outwardly directed positive potential since $U_{\rm Na} < V_{\rm Cl}$ and the effect of the other ions of sea water is small

Between X and Y lies the main bulk of the protoplasm, forming an aqueous layer which we may call W We may suppose that organic ions in this layer are responsible for the fact that the normal PD

- ⁴⁴ The fact that a greater positive drop is obtained with 0.6 M NaCl + HG than with sea water + HG (Table I) may mean that the surface is affected differently in the two cases but in the absence of HG no difference is observable in such short experiments
- ⁴⁵ Little or no calcium, magnesium or sulfate passes through the protoplasm into the sap *Cf* Osterhout, W J V, *Eigebn Physiol*, 1933, **35**, 981
- 46 Osterhout, W J V, Bull Nat Research Council, No 69, 1929, 170, footnote 65, Biol Rev, 1931, 6, 382 Osterhout, W J V, and Hill, S E, J Gen Physiol, 1934-35, 18, 499
- ⁴⁷ Blinks has found evidence (Blinks, L. R., J. Gen. Physiol., 1934–35, 18, 409) which he regards as somewhat doubtful, indicating that K^+ does not greatly affect the PD of Y. The experiments were made by piercing the vacuole with two capillaries, one for the entrance and the other for the exit of a perfusing solution. The cell does not live well after this treatment and the capillaries are as a rule soon plugged with a gelatinous plug which stops perfusion (this is not the case with Halicistis where perfusion succeeds beautifully and the cell continues to live). When sea water was perfused in the vacuole there was not much change in PD (sea water contains 0.012 m K+ and sap about 0.5 m K+)
 - 48 Osterhout, W. J. V., Ergebn. Physiol., 1933, 35, 1013

is about 10 my inwardly directed. This can only be possible when I and I have different properties that this is the case is shown by placing sapoutside I so that we have the chain

This gives about 263 my showing that I and I are unlike

It therefore seems necessary to assume that organic ions in \mathbb{N} can produce an appreciable 1 \mathbb{N} by having unlike mobilities in \mathbb{N} and \mathbb{N} If \mathbb{N} can alter the apparent mobilities of these ions (as it does those of \mathbb{N} and \mathbb{N} + in \mathbb{N}) this may explain the guaracol curve

That the positive movement of this curve does not depend primarily on changes in the inorganicions is evident because the normal apparent mobilities of K+, Cl-, and Nn+ persist for some time after the positive drop of the curve as shown by the concentration effects. Why this is so is not clear. Perhaps the simplest suggestion is that a gradual organic reaction gives a compound which affects apparent mobilities according to its concentration, a higher concentration being required in the case of K+, Na+ and Cl- (whose apparent mobilities change gradually as would be expected on this basis)

b The Threshold and Latent Period — Apparently there is a critical concentration below which HG has little or no effect and the latent period is presumably the time required for HG to diffuse into λ and reach this concentration. Hence the latent period shortens as the external concentration of HG increases (p. 17) (The latent period will lengthen if chemical transformation in the protoplasm renders part of the HG ineffective.)

As might be expected we find practically no latent period when 0.01 \times HG is applied to a cell in contact with 0.005 \times or 0.0075 \times HG which has produced no response. For in this case the concentration of HG in \ \ \text{is already near the critical value before 0.01 \times HG is applied 49

One possible explanation of the threshold is suggested by the study of models in which HG is used to represent the non aqueous layer of the protoplasmic surface HG is employed because in many respects

⁴⁹ With phenol we find something resembling a latent period where none is found with guaiacol Possibly phenol penetrates more slowly (with a smaller ionic radius its partition coefficient may be smaller 7)

It behaves like the protoplasm of $Valonia^{50}$ but it is not probable that the non-aqueous surface layer of Valonia is homogeneous any more than it is in $Nitella^4$ and as a matter of fact we can imitate the behavior of Valonia more closely by mixing HG with certain other substances

We can, for example, cause the rate of entrance of potassium to fall off and thus to approach that observed in Valonia by mixing chloroform with HG At the same time the rate of entrance of the basic dye brilliant cresyl blue at low pH falls off and becomes more like that with $Nitella^{51}$ and Valonia as described by Irwin

Following up this suggestion we may imagine a model with a non-aqueous layer consisting of a mixture of organic solvents previously shaken with sea water containing 0 005 m HG. On placing this in contact with sea water we assume that HG goes out very slowly. If we add 0 005 m HG to the sea water none will be taken up but if we increase HG in the sea water to 0.01 m its concentration in the non-aqueous layer will at once increase. If this increase should raise the value of $U_{\rm Na}$ and lower that of $U_{\rm K}$ sufficiently we might get effects like those seen in Valonia

This suggestion encounters difficulties when we consider other substances For example, phenol and p-cresol have much the same action as HG on Valonia How are we to deal with these?

If the protoplasmic surface contains HG it must be formed in the cell and slowly pass out (as does R in $Nitella^4$). That its exit would be gradual is indicated by the fact that after an exposure of 2 minutes to 0.01 m HG it may require several hours to wash it out and restore the cell to its original condition. With 0.005 m HG added to the sea water this exit would presumably stop but the concentration of HG in the non-aqueous layer would increase very slowly since its production must be very slow to keep pace with its exit under normal conditions. But if the concentration of HG in the sea water is sufficiently increased it must increase in the protoplasmic surface

When we place $0.005~\mathrm{M}$ phenol in the sea water and obtain no more response than with $0.005~\mathrm{M}$ HG it becomes necessary to suppose that the surface already contains phenol or that the phenol is ineffective for some other reason. For the phenol in the protoplasmic surface is now added to the guaracol already present

 $^{^{50}}$ Osterhout, W $\,$ J $\,$ V , and Stanley , W $\,$ M , \it{J} $\,$ Gen $\,$ Physiol , 1931–32, 15, 667

⁵¹ Irwin, M, J Gen Physiol, 1922-23, 5, 727, 1925-26, 9, 561

A similar difficulty arises in general, whenever a variety of pene trating substances exhibit thresholds. But when substances produce their effects by dissolving out materials from the cell (as distilled water does in Nitellat) this difficulty does not arise because the threshold will be passed whenever the material is dissolved out more rapidly than it is produced in the cell

It would therefore seem that the question of the threshold must be left open

c The "Recovery — After the fall of the curve under the influence of 0.01 M HG it may return to its original value. For convenience this is called "recovery" although this term is not meant to imply that the cell returns to its original state. This behavior is understandable if the inwardly diffusing HG reaches I and there produces the same effect as in V for the change in PD in V would then be cancelled by an equal and opposite change in PD in I (owing to the fact that the organic ions are diffusing inwards through I and outward through V)

Possibly the apparent mobilities of Na and K in I' are also changed in such fashion as to aid recovery. Changes in acidity seem to be of little importance since a variety of organic acids failed to produce any effect (see p. 42).

The rise of the curve would, of course be slower than the fall because of the time required for HG to diffuse across λ and W (II is presumably much thicker than λ or Y) to reach Y. The form of the curve indicates that there is not much latent period for Y (perhaps because Y has a lower threshold)

E B Damon's suggests that the positive drop might be due to increased permerbility of Y, letting K+ move outward from the sap (which contains about 0.5 M KCl) until it comes in contact with the inner surface of \(\begin{array}{c}\) But it is questionable whether the inward diffusion of HG and the subsequent outward diffusion of K+ could take place within the short latent period of 15 to 25 seconds Moreover, it is

⁵ It might be supposed that these ions would reach the same concentration in the sap as in W so that inward diffusion would cease. But this would not be apt to happen in growing cells and even in cells which had ceased to grow these ioninght be chemically combined in the sap. In the absence of facts no conclusion can be reached.

⁴² Private communication

not clear how the behavior of the curve during recovery could be accounted for This scheme would not explain the reversal of the concentration effect with KCl, NaCl, and sea water

When the cell is replaced in sea water during or after recovery in HG it is possible that HG may diffuse out of X somewhat faster than out of Y. This would tend to make the PD temporarily more negative it is seen occasionally but as a rule is not perceptible

These effects are apparently not due to acidity alone for phenol, p-cresol, and p-amino phenol (chemically related to guaiacol) are the only organic acids thus far studied which appear to act like HG in our experiments. The following were tested in sea water⁵⁴ at pH 8 2 (at concentrations of 0 001, 0 005, 0 01, 0 02, 0 04, and 0 08 m) formic,⁵⁵ acetic, valeric,⁵⁵ benzoic, and salicylic. They had practically no effect on the PD

Variability — The cells showed great variability their behavior appeared to depend somewhat on the length of time after impalement and on external conditions. Perhaps this variability is related in some cases to the "stages" described by L. R. Blinks ⁴⁵. In some cases no response was obtained ²⁰ on adding HG (up to 0.03 m) to sea water at pH 8.2 or at 6.4. Evidently the outer protoplasmic surface is subject to considerable variation in composition. This is in line with the variation observed in applying KCl to Valonia¹ and in the concentration effect of sea water ²¹ with Valonia, and of KCl¹6 and NH₄Cl⁵6 with Nitella

In view of this variability it would seem that the protoplasmic surface can hardly be a monomolecular layer ⁵⁷ If it is a thicker layer it may have interesting possibilities ⁵⁸ of variation. It seems possible that great changes in the composition of such a layer might result from metabolism so that the apparent ionic mobilities might show con-

 $^{^{5\}pi}$ The acid was added to the sea water and NaOH was then added to produce a pH of 8 2

^{50 0 08} M was omitted

⁵⁶ Unpublished results

of Cf Osterhout, W J V, Physiol Rev, 1936, 16, 216

⁵⁵ Teorell (Teorell, T, Science, 1935, 81, 491) has shown that a diffusion potential across a membrane can produce great inequalities in the distribution of ions in the membrane. This distribution would change with changes of relative mobility and concentration of ions in the solutions in contact with the membrane.

siderable variation. It is also possible that physical factors (especially radiation) and chemical influences in the environment may act similarly

The foregoing discussion assumes that diffusion potentials play the chief rôle, a procedure which has proven useful in several cases $^{1.16}$ To what extent other potentials, especially phase boundary potentials enter in is an open question but it is difficult to see how phase boundary potentials can account for the fact that HG causes $U_{\rm Na}$ to increase and $U_{\rm h}$ to decrease

SUMMARY

In normal cells of I alonia the order of the apparent mobilities of the ions in the non aqueous protoplasmic surface is K>Cl>Na. After treatment with 0.01 M guaracol (which does not injure the cell) the order becomes Na>Cl>K

As it does not seem probable that such a reversal could occur with simple ions we may assume provisionally that in the protoplasmic surface we have to do with charged complexes of the type $(K\lambda_1)^+$, $(K\lambda_1)^+$, where λ_1 and λ_1 are elements or radicals, or with chemical compounds formed in the protoplasm

When 0 01 M gunacol is added to sea water or to 0 6 M NaCl (both at pH 64, where the concentration of the guaiacol ion is negligible) the ip of the cell changes (after a short latent period) from about 10 mv negative to about 28 mv positive and then slowly returns approximately to its original value (Fig. 1, p. 14). This appears to depend chiefly on changes in the apparent mobilities of organic ions in the protoplasm.

The protoplasmic surface is capable of so much change that it does not seem probable that it is a monomolecular layer. It does not be have like a collodion nor a protein film since the apparent mobility of Na^+ can increase while that of K^+ is decreasing under the influence of guaiacol

⁵⁹ For the combined effect of boundary' potentials and diffusion potentials see Teorell T, Proc Soc Exp Biol and Med, 1935-36 33, 282

PIGMENTS OF THE RETINA

II SEA ROBIN, SEA BASS, AND SCUP

By GFORGE WALD

(From the Woods Hole Oceanographic Institution, Woods Hole,* and the Biological Laboratories of Harvard University, Cambridge)

(Accepted for publication, November 21, 1935)

In the preceding paper of this series (Wald, 1935-36 b) the visual purple system of the bull frog was found to conform in part with the equations

in which all but the reaction starred occur in the isolated retina as well as in the intact eye

Identical processes are found in the retinas of the ser robin (Priono tus carolinus), the black sea bass (Centropristes striatus), and the scup or porgy (Stenotomus chrysops) In the pigment epithelium and choroid layer of these fishes pigments occur also which are either identical with or very closely related to those in frogs

Kottgen and Abelsdorff (1896) found the absorption spectrum of visual purple from amphibia, owls, and mammals to possess a maximum at about 500 m μ , while that from eight species of fresh water fishes, though of the same general form, is displaced so that its maximum occurs at about 540 m μ . This spectral peculiantly, if general, should lend special interest to an examination of the visual system in

Contribution No 83 I am greatly indebted to Professor Henry B Bigelon and Mr William C Schroeder of the Occanographic Institution for much friendly assistance in the preparation of these experiments

fishes However, visual purple solutions from the three marine species discussed in the present paper have been found to be almost identical spectroscopically with those of frogs, the maxima occurring in each case at about 500 m μ The apparent discrepancy between these and Kottgen and Abelsdorff's results is being investigated further

Retinas

Experiments performed in the examination of frog retinas have been repeated with fish tissues with identical results. The dark adapted retinas contain a small quantity of free vitamin A and a large amount of bound retinene. The latter is liberated by destroying the visual purple, either with light or with chloroform. Retinene liberated by light is subsequently converted to vitamin A by a thermal reaction, evidenced by the fading of the visual yellow retina to colorlessness.

I shall not describe the details of these experiments again, but instead record a simple procedure which has served to establish the nature of the visual purple system in a single experiment. To follow this one need only recall that both retinene and vitamin A yield blue colorations when mixed with antimony trichloride reagent, due in the case of retinene to an absorption band at 662–666 m μ , in that of vitamin A to one at 612–615 m μ

Figs 1 and 2 show the results of this type of experiment performed with scup and sea robin retinas, Fig 3 a slight variant of this procedure with bass tissues 1

Right and left retinas of five dark adapted fishes (scup and sea robin, 8 to 10 inches long) were prepared separately. One set of five retinas was extracted thoroughly in the dark with about 12 cc of benzine in 4 portions, shaking violently by machine for a total of 20 minutes. The extract brought into chloroform was colorless and when tested with antimony trichloride yielded blue solutions of which Curves a of Figs 1 and 2 are the absorption spectra. The dark adapted retina therefore contains a small quantity of vitamin A alone

The same tissues were bleached subsequently in daylight to an orange color ("visual yellow") and were immediately re-extracted

¹ All spectra shown in this paper were recorded automatically with a photoelectric spectrophotometer (Hardy, A. C., *J. Opt. Soc. America*, 1935, **25**, 305) at the Massachusetts Institute of Technology with benzine The extract, brought into chloroform, was bright yellow Tested with antimony trichloride it yielded Curves b of Γ igs 1 and 2 The bleaching of visual purple to yellow therefore liberates a large quantity of retinene

Fig. 1 Absorption spectra of the antimony trichloride reaction with benzine extracts of scup retinas a, Dark adapted retinas, the extract contains a small quantity of vitamin A (615 m μ chromogen) b, The same retinas, re-extracted immediately after bleaching A large quantity of retinene (664 m μ chromogen) has been liberated c, Retinas from the same fishes extracted 1 hour after bleaching The free retinene has been converted to vitamin A

The second set of five retinas was bleached in daylight and left at room temperature in moderate light for an hour During this period the retinas faded from orange to colorlessness They were extracted with benzine exactly as before The extract, brought into chloroform,

fishes However, visual purple solutions from the three marine species discussed in the present paper have been found to be almost identical spectroscopically with those of frogs, the maxima occurring in each case at about 500 m μ The apparent discrepancy between these and Kottgen and Abelsdorff's results is being investigated further

Retinas

Experiments performed in the examination of frog retinas have been repeated with fish tissues with identical results. The dark adapted retinas contain a small quantity of free vitamin A and a large amount of bound retinene. The latter is liberated by destroying the visual purple, either with light or with chloroform. Retinene liberated by light is subsequently converted to vitamin A by a thermal reaction, evidenced by the fading of the visual yellow retina to colorlessness.

I shall not describe the details of these experiments again, but instead record a simple procedure which has served to establish the nature of the visual purple system in a single experiment. To follow this one need only recall that both retinene and vitamin A yield blue colorations when mixed with antimony trichloride reagent, due in the case of retinene to an absorption band at 662-666 m μ , in that of vitamin A to one at 612-615 m μ

Figs 1 and 2 show the results of this type of experiment performed with scup and sea robin retinas, Fig 3 a slight variant of this procedure with bass tissues ¹

Right and left retinas of five dark adapted fishes (scup and sea robin, 8 to 10 inches long) were prepared separately. One set of five retinas was extracted thoroughly in the dark with about 12 cc of benzine in 4 portions, shaking violently by machine for a total of 20 minutes. The extract brought into chloroform was colorless and when tested with antimony trichloride yielded blue solutions of which Curves a of Figs 1 and 2 are the absorption spectra. The dark adapted retina therefore contains a small quantity of vitamin A alone

The same tissues were bleached subsequently in daylight to an orange color ("visual yellow") and were immediately re-extracted

¹ All spectra shown in this paper were recorded automatically with a photoelectric spectrophotometer (Hardy, A. C., J. Opt. Soc. America, 1935, 25, 305) at the Massachusetts Institute of Technology with benzine The extract, brought into chloroform, was bright yellow Tested with antimony trichloride it yielded Curves b of Figs 1 and 2 The bleaching of visual purple to yellow therefore liberates a large quantity of retinene

FIG 1 Absorption spectra of the antimony trichloride reaction with benzine extracts of scup retinas a, Dark adapted retinas the extract contains a small quantity of vitamin A (615 $m\mu$ chromogen) b, The same retinas re-extracted immediately after bleaching A large quantity of retinene (664 $m\mu$ chromogen) has been liberated c, Retinas from the same fishes, extracted 1 hour after bleaching The free retinene has been converted to vitamin A

The second set of five retinas was bleached in daylight and left at room temperature in moderate light for an hour During this period the retinas faded from orange to colorlessness They were extracted with benzine exactly as before The extract, brought into chloroform,

was colorless, and when tested with antimony trichloride yielded Curves c of Figs 1 and 2. The fading process converts retinene liberated in bleaching quantitatively to vitamin A.

Fig 2 Absorption spectra of the antimony trichloride reaction with benzine extracts of sea robin retinas Compare with Fig 1

At the time of these experiments only 3 bass about 14 inches long were available. The retinas of two of these were used to prepare a visual purple extract. The residual tissue from this procedure still contained visual purple, which was destroyed by extracting with

chloroform The extract was yellow, and with antimony trichloride yielded the upper curve of Fig 3, showing the presence of retinene and a small amount of vitamin A. The retinas from the single re-

Fig. 3 Absorption spectra of the antimony trichloride reaction with extracts of sea bass retinas *Upper curve* chloroform extract of dark adapted retinas *Lower curve*, benzine extract of bleached and faded retinas

maining fish were bleached in daylight and allowed to fade for an hour They were then extracted with benzine The colorless extract, tested with antimony trichloride, yielded the lower curve of Fig. 3, showing,

as in the other forms, the conversion of retinene liberated by light to vitamin A

Maximal quantities of vitamin A occur in retinas which have been bleached and allowed to fade completely in vitro. These quantities, estimated roughly by a colorimetric method (Wald, 1935–36 a) are sea robin, 14, scup, 28, and bass, 47 γ per retina. The retinal dimensions in the specimens used increased in the same order, so that it is possible that the quantity of vitamin A per unit weight of retina is approximately constant in all three species

Acid-Base Effects upon the Visual Yellow Retina—Characteristic responses of the visual yellow retina to acids and alkalies have been observed in frogs and fishes and examined in some detail in the sea robin—Chase (1935–36) has shown that a yellow product of the bleaching of visual purple in solution behaves as an acid-base indicator, turning colorless in alkaline solutions—This observation is closely related to those to be described—The behavior of the retinal pigments in situ, however, is much more complicated than in solution, and the precise connections between the two situations are still to be elucidated—At present certain features in the acid-base behavior of the sea robin retina may be indicated

The bleached, visual yellow retina is of a distinctly orange color When made sufficiently alkaline, it turns practically colorless, if made strongly acid, bright yellow—The change from yellow to colorless is freely reversible, the tissue behaving as an acid-base indicator—However, I have never succeeded in bringing such retinas back to the original orange color of visual yellow—Some irreversible change therefore accompanies these abnormal pH's

The bright yellow, comparatively photostable material which is formed when the retina is treated with strong acids has long been employed as a test for visual purple (Boll, 1877, van Genderen Stort, 1887) In reality it is a test for retinene or visual yellow. It is yielded by dark adapted and visual yellow retinas, but not by retinas which have been bleached and allowed to fade completely, that is, in which the retinene has been converted to vitamin A. Since the acid yellow color is considerably deeper than that of neutral visual yellow, it reveals the presence of retinene in retinas which when neutral may appear quite colorless. In this way the last traces of retinene in the fading retina may be distinguished.

Neutral visual yellow retinas, cooled to 0°C, retain their color for hours, even in bright daylight. Such retinas may be titrated on ice with alkalies to determine the pH at which the color change occurs. In 0 035 N NaOH or 0 35 N NH, the orange retina loses its color within about 10 minutes at 0°C in daylight. In more strongly alkaline solutions or at higher temperatures the reaction is more rapid. These time intervals are not needed primarily for penetration of the reagent, for a dark adapted retina soaked in 0 23 N NH, for ½ hour in the dark before being exposed to light on ice, first turns orange and then still requires about 12 minutes to fade to colorlessness. This period is apparently principally occupied by the irreversible reaction which transforms visual yellow to the yellow colorless pH indicator.

The pH at which the visual yellow retina is decolorized is well outside the physiological range. The concentrations of alkali cited above as approximately minimal correspond to pH's of about 11–12. In such solutions the tissue disintegrates rapidly. Dark adapted retinas, soaked for 10 minutes in phosphate buffers at pH 6 0 and 8 0 before being exposed to light, exhibited no detectable differences either in color before and after bleaching or in rates of bleaching, fading, and regeneration. A retina at pH 9 0 behaved similarly. The acid base changes discussed above are therefore decidedly abnormal.

In ammoniacal retinas (0 23N NH₃) the colorless derivatives of visual yellow are not removed to form vitamin A, nor do they regen erate visual purple in the dark. Even after 3 hours in the light at room temperature their presence is revealed by the strong yellow color which develops when the retina is acidified. On the other hand the reversion of visual yellow itself to purple is greatly accelerated in 0 23N NH₃. Ammoniacal retinas, returned to the dark immediately after bleaching, before the visual yellow has been appreciably decolorized by the alkali, regenerate considerable amounts of visual purple within ½ hour even at 0°C, though at this temperature neutral retinas do not change appreciably within a comparable period. Curiously, the ammoniacal visual yellow retina regenerates more visual purple at 0°C than at room temperature. It seems as though two reactions compete for the removal of visual yellow—reversion to purple, and the irreversible formation of the pH indicator, and that the former is relatively favored at low temperatures.

The accelerating effect of NH₃ upon the reversion process explains Kuhne's observation, which I have confirmed, that the ammoniacal retina bleaches more slowly than the neutral tissue (Kuhne, 1878) This difference cannot be ascribed to induced photostability in the visual purple itself, for ammoniacal visual purple solutions—in which appreciable reversion does not occur—bleach much more quickly than neutral solutions—This is true also of solutions buffered at pH 9 3 (Chase, 1935–36), so that it is a general alkaline effect and not one restricted specifically to ammonia

Pigmented Layers

The combined pigment epithelia and choroid layers of these marine fishes contain vitamin A, flavine, and an unidentified xanthophyll

Flavine was first found in fish pigment epithelia by von Euler and Adler (1934), nothing in the present investigation adds materially to the description of it given by these authors—The spectrum of flavine from bass pigmented tissue is shown in Fig. 4

Fish xanthophyll is spectroscopically different from that found in frogs, and so will be described in some detail. It occurs in the tissues as an ester when partitioned between 90 per cent methanol and benzine, it accumulates in the benzine layer before and in the methanol layer after saponification. It is readily extracted from strongly alkaline aqueous alcohol with benzine. The free pigment is strongly adsorbed on a column of calcium carbonate, forming a golden layer. These are general properties of the hydroxycarotenoids or xanthophylls.

In CS₂ the pigment possesses absorption maxima at 439, 470–472, and 500–501 m μ A scup preparation diverged slightly from this, showing bands at 439, 476, and 502 m μ , but this spectrum was unusually diffuse as though the pigment had deteriorated in solution The spectrum of free xanthophyll from bass is shown in Fig. 5

In general form these spectra resemble those of the dihydroxycarotenoids, $C_{40}H_{56}O_2$ The band positions, however, are closest to those of violaxanthin and taraxanthin, isomers of composition $C_{40}H_{56}O_4$ Violaxanthin yields a blue color when treated in ether with 25 per cent HCl A single trial of this test with a sea robin extract was negative, possibly due to low concentration of the pigment

Fig. 4 Spectrum of an aqueous solution of flavine from sea bass pigmented layers

Fig. 5 Spectrum of free xanthophyll in CS₂ from sea bass pigmented layers. The non saponifiable portion of the crude extract had been partitioned between benzine and 90 per cent methanol. The methanol fraction is shown

The distribution of the fish pigments between benzine and various concentrations of methanol is identical in all three species. No appreciable quantity of pigment leaves the benzine for 70 per cent methanol, a minor proportion does so for 80 per cent methanol, and practically all of it goes into 90 per cent methanol. This behavior is typical, and, indeed, roughly specific for the dihydroxycarotenoids

The relative solubilities of xanthophylls in polar solvents like methanol compared with non-polar solvents like benzine rise rapidly with the number of oxygen atoms in the molecule This relation is shown in Table I, compiled from various portions of Zechmeister's monograph (1934), the behavior of the $C_{40}H_{56}$ carotenes is included. The terms epiphasic and hypophasic refer respectively to pigment solubility in the upper, benzine, and in the lower, alcoholic layers

Carotenoid Partitioned between benzine and -Behavior $C_{40}H_{55}$ 90 per cent methanol Almost wholly epiphasic $C_{40}H_{56}O$ 95 per cent methanol Partly hypophasic C40H56O2 90 per cent methanol Almost wholly hypophasic 70 per cent methanol Almost wholly epiphasic C40H56O3 Slightly (1/9) hypophasic " " C40H56O4 More (1/6) hypophasic " C40H56O6 Almost wholly hypophasic

TABLE I

The fish pigment therefore resembles the $C_{40}H_{56}O_2$ xanthophylls Its spectrum, however, is almost uniformly displaced 4–7 m μ below that of lutein, the most similar known xanthophyll of this composition. More specific identification of the fish pigment, only very small quantities of which were available in impure condition, is at present impossible

Cunningham and MacMunn (1893) and Lonnberg (1933–34) have found carotenoids in the skins, fins, and other tissues of alarge number of species of marine fishes. The species investigated by Lonnberg form two groups, one in which the carotenoids resemble lutein spectroscopically, and an equally large group in which the spectra are displaced 4–6 m μ toward shorter wavelengths. It is not improbable that the second type of pigment is identical with that found in the present investigation

Summer and Fox (1933) have found that the carotenoid pigments of superficial and deep structures in four species of marine fishes are exclusively of the vanthophyll series. It seems that, as in the frog, these pigments are generally distributed about the organism, and that their presence in the pigmented layers of the eye is probably of no special significance.

Rough estimates of the quantities of xanthophyll, vitamin A, and flavine in the pigmented tissues are presented in Table II. These were measured with a Pulfrich photometer in the manner already described (Wald, 1935–36a, b). In the case of vanthophyll, the same factor for converting photometer readings into absolute units was used as in the frog, since Kuhn and Brockmann (1932) have shown

Lanthophy II Vitamin A Flavine Fish No of eyes per es e per eye per eye Y Sea robin 14 1.0 Trace 0 Scup 20 0.56 በጸ 18 Sea bass 3.0 5 28

TABLE II

that a number of vanthophylls have approximately the same depth of color

SUMMARY

- 1 Visual purple from the sea robin, sea bass, and scup is almost identical spectroscopically with that from frogs The interrelations of this pigment with vitamin A and retinene are also the same as in the frog
- 2 In strong acids or at pH > 11, the visual yellow of sea robin retinas is converted irreversibly into a pH indicator, yellow in acid and almost colorless in alkaline solution. Unlike neutral visual yellow, the indicator is not removed to form either vitamin A or visual purple. In the ammoniacal retina the reversion of visual yellow itself to purple is accelerated.
- 3 The combined pigment epithelium and choroid layer in these fishes contain vitamin A, flavine, and an unidentified xanthophyll

REFERENCES

- Boll, F, Zur Anatomie und Physiologie der Retina, Arch Anal u Physiol, Physiol Abt, 1877, 4
- Chase, A. M., Anomalies in the absorption spectrum and bleaching kinetics of visual purple, J. Gen. Physiol., 1935–36, 19, 577
- Cunningham, J. T., and MacMunn, C. A., On the colouration of the skins of fishes, especially of Pleuronectidae, *Phil Tr Roy Soc London*, *Scrics B*, 1893, 184, 765
- von Euler, H, and Adler, E, Über Flavin und einen blaufluorescierenden Stoff in der Netzhaut der Fischaugen, Z physiol Chem, 1934, 228, 1
- van Genderen Stort, A G H, Über Form und Ortsveranderungen der Netzhautelemente unter Einfluss von Licht und Dunkel, Arch Ophth, Leipsic, 1887, 33, Abt 3, 229
- Kottgen, E, and Abelsdorff, G, Absorption und Zersetzung des Sehpurpurs bei den Wirbeltieren, Z Psychol u Physiol Sinnesorgane, 1896, 12, 161
- Kuhn, R, and Brockmann, H, Bestimmung von Carotinoiden, Z physiol Chem, 1932, 206, 41
- Kuhne, W, Zur Photochemie der Netzhaut, Untersuch physiol Inst Heidelberg, 1878, 1, 1
- Lonnberg, E, Some observations on carotinoid colour substances of fishes, Ark Zool, 1933-34, 25A, No 2
- Sumner, F B, and Fox, D L, A study of variations in the amount of yellow pigment (\text{\text{anthophyll}}) in certain fishes, and of the possible effects upon this of colored backgrounds, J Exp Zool, 1933, 66, 263
- Wald, G, Carotenoids and the visual cycle, J Gen Physiol, 1935-36a, 19, 351 Wald, G, Pigments of the retina I The bull frog, J Gen Physiol, 1935-36b, 19, 781.
- Zechmeister, L., Carotinoide, Berlin, Julius Springer, 1934

THE COLOR VISION OF DICHROMATS*

I Wavelength Discrimination, Brightness Distribution, and Color Mixture

B1 SELIG HECHT AND SIMON SHLAER
(From the Laboratory of B10physics, Columbia University, New York)

(Accepted for publication, November 27, 1935)

3

Purpose of Investigation As a Whole

Our interest in colorblindness springs from the desire to determine the unknown spectral sensibilities of the retinal cones, and to correlate with them the quantitative properties of normal color vision. This is a complex task (cf. Hecht, 1930, 1931, 1932), because it involves the manipulation of nine variables. Of these only five or six have actually been measured, the others are hypothetical. Therefore the value of the theoretical treatment is always uncertain.

Colorblindness is a simpler form of color vision because the color blind recognizes fewer colors than the normal, and his spectrum may be matched with two primaries instead of the three required for the normal (Young, 1807) A complete description should therefore be possible in terms of four variables, obtained by measuring four independent aspects of colorblindness Moreover, since Thomas Young it has been generally recognized that the various types of colorblindness¹ are most probably derivatives of normal color vision Hence,

^{*} The measurements for this group of papers were begun in 1931 and finished in 1933 The main results were reported to the Optical Society in February, 1934 (Hecht and Shlaer, 1934) and in October, 1935 (Hecht and Shlaer, 1936), and to the XV International Physiological Congress in Leningrad, August, 1935

¹ In order that our references to different types of colorblindness be easily understood we give here a diagnostic classification of all kinds of color vision, based on the accumulated knowledge of a hundred years and not on any theory

I MONOCHROMATS are persons who confuse any part of the spectrum with any other part, and who can match any part with white There are (a) Scolopic

information obtained from such a study should serve as a critical supplement to the theoretical treatment of the data from color-normals

With certain exceptions, the measurements necessary for our purpose have not been available. We therefore began the study of color-blindness to supply them. Our aim has been to investigate as many properties as possible with a few selected individuals. The results so far obtained are presented in the present group of papers.

п

Apparatus

All our measurements were made either with a Helmholtz Color Mixer (Koenig and Dieterici, 1892) built by Schmidt and Haensch, or with an apparatus composed of two monochrometers A diagrammatic representation of the optical essentials of both arrangements is shown in Fig. 1 where A describes the Helmholtz Color Mixer and B the two-monochrometer apparatus

The Helmholtz Color Mixer is essentially a spectrometer having one telescope and two collimators each with a light source A 100 watt concentrated filament lamp L illuminates a finely ground glass G, placed 5 cm from it, which is then

Monochromats, who have a brightness distribution in the spectrum corresponding to rod vision, and (b) Photopic Monochromats, who have a brightness distribution in the spectrum corresponding to cone vision

II DICHROMATS are persons who confuse large sections of the spectrum, who can match a particular part of it (either in the blue-green or in the yellow) with white, and who can match any part of it with a mixture of two primaries. Of these the (a) Protanopes confuse green, yellow, and red, they match a point in the blue-green with white, in particular, their brightness distribution in the spectrum even at high intensities is depressed in the red, and they are therefore frequently called red-blind. They are to be distinguished from the (b) Deuteranopes, who also confuse green, yellow, and red, and similarly have a point in the blue-green which they match with white, by the fact that the deuteranopes have a brightness distribution in the spectrum much like the normal. These are often but incorrectly called green-blind. To be distinguished from both of these green-yellow-red confusers are the (c) Tritanopes, who confuse blue and green, and match a point in the yellow with white. These are often called violet-blind or blue-blind, but such names involve a theory of colorblindness which is probably incorrect

III ANOMALOUS TRICHROMATS are persons who confuse parts of the spectrum, but who still require three primaries to match the spectrum. They form intermediates of all grades between dichromats and color-normals, and may be (a) Protanomalous, or (b) Deuteranomalous, or (c) Tritanomalous, depending on which type of dichromat they resemble

IV TRICHROMATS possess normal color vision

focussed by a condenser through a Nicol prism N of the Glan Thompson variety on to the slit S of the collimator Between the slit and the collimator lens is a Rochon prism R whose position may be set anywhere in the collimator tube by a

Fig. 1 Diagrammatic representation of the optical arrangements. A shows the main features of the Helmholtz Color Mixer, while B shows the apparatus composed of two separate monochrometers and a photometric cube

rack and pinion sliding over a scale The eye at the exit pupil E of the telescope sees the two prism faces as contiguous semicircular fields, one from each collimator. The field as a whole has a diameter of 1.2°, and thus falls entirely in the rod free area of the fovea

The Rochon prism splits the beam of light into two components polarized at right angles. The ordinary beam passes through undeviated, the extraordinary beam is deviated at a constant angle. At the exit pupil of the telescope, the λ of the ordinary beam depends solely on the angular position of the collimator, while the λ of the extraordinary beam depends in addition on the position of the Rochon prism. The angular position of each collimator is set by a Brown and Sharpe micrometer screw which we added to the instrument, but which is not shown in the diagram. The light from the collimator slit is plane polarized by the Nicol prism, the angle of the prism then determines the fraction of each beam which passes to the exit pupil. In this way different amounts of light of two chosen wavelengths may be made to appear superimposed in each half of the visual field. Their combined intensity may then be controlled by the collimator slit which is symmetrical and whose width may be accurately set by an appropriate micrometer screw.

When only one band of homogeneous light is needed from the collimator at the exit pupil, the Rochon prism is placed close to the collimating lens, thus completely excluding the extraordinary beam at all positions of the collimator. The Rochon now acts like a Nicol prism and enables the ordinary beam to be varied in intensity by the Nicol prism, and the color mixer becomes an ordinary double spectrometer.

We have added an arrangement for reflecting white light of color temperature 5000° K from the left prism face, its intensity is controlled by a pair of Nicol prisms. The color temperature was achieved with a selected blue glass Bl, a piece of ground glass O, and a three-volt battery lamp whose amperage was adjusted by color-matching the combination against a lamp of standard color temperature plus a Davis-Gibson standard filter (Davis and Gibson, 1931)

The arrangement shown in B of Fig. 1 furnishes to the eye at the exit pupil E a bipartite, circular field also 12° in diameter, each part being illuminated by homogeneous light from a separate, constant deviation spectrometer. The circular field is produced by the photometer cube C. Each spectrometer is illuminated by a 100 watt lamp and ground glass G. The intensity of one field is varied by a neutral gelatine wedge and balancer

Both pieces of apparatus were calibrated with sources of known wavelength In particular, the Helmholtz Color Mixer was calibrated frequently, because it showed a tendency to vary over long periods

III

Wavelength Discrimination

(A) Previous Work

The color-normal can divide the visible spectrum into about 180 short stretches which differ in appearance even when their brightness differences have been eliminated. The size $(\Delta\lambda)$ of these spectral patches is not uniform, but shows two distinct minima found by all

observers,—in the blue green between 490 and 500 m μ , and in the yellow between 570 and 580 m μ , where $\Delta\lambda$ is about 1 m μ Nearly all observers show also one or two secondary minima in the violet at 440 m μ , and in the orange near 620 m μ , where $\Delta\lambda$ is between 2 and 3 m μ At the two ends of the spectrum $\Delta\lambda$ quickly rises to about 7 m μ (for a summary of the literature see Judd, 1932, Ladekarl, 1934, and Wright and Pitt, 1934)

Colorblinds possess only one minimum of $\Delta\lambda$ in the spectrum Brodhun (see Koenig, 1903 a) found this minimum near 500 mm for the deuteranope Here $\Delta\lambda$ is about the same as for the color normal, but to either side Δλ rapidly becomes large This has been confirmed by Steindler (1906), by us (Hecht and Shlaer, 1934), by Ladekarl (1934), and very recently by Pitt (1935) Steindler reported the same minimum near 500 m μ for deuteranopes and protanopes, and this has also been corroborated by later work (Laurens and Hamilton, 1923, Rosencrantz, 1926, Sachs, 1928, Hecht and Shlaer, 1934, Ladekarl. 1934, and Pitt, 1935) In addition, Steindler found a second minimum for protanopes at about 575 mu, this, however, was undoubtedly due to lack of brightness control, because it has not been found by those investigators who controlled this source of error (Laurens and Hamil ton, Sachs, Hecht and Shlaer, and Pitt) Measurements with an extreme case of tritanomaly by Engelking (1925) show a minimum between 575 and 600 mµ, and indicate that a tritanope would probably have a minimum in that region of the spectrum

With the exception of Steindler's measurements, which suffer be cause brightness differences were not eliminated, all of the published measurements are restricted to a small region of the spectrum covering about 30 m μ to either side of the neutral point near 500 m μ . For a complete description, it is obviously necessary to have data which cover the whole spectrum. We have measured two deuteranopes and one protanope² for this purpose

² The first deuteranope is Dr. Alan W. Greenwood (A.W.G.) of the Department of Genetics of the University of Edinburgh, a mature and skilled investigator, who at the time (1931) was in New York, and to whom we shall always be grateful for the time and patience he devoted to our work. The second deuteranope (S.R.F.) was a senior (1933) at Columbia College. The protanope (H.J.) was a high school senior (1932-33). In spite of our efforts of the last three years to find a tritanope so as to make this study complete, we have been unable to secure one for measurement.

(B) Method

In making the measurements we set the wavelength of both halves of the field, while the subject determined whether by varying the brightness of one side only he could match the two sides perfectly—Light of λ_1 was first put on one side, then lights of other wavelengths were successively put on the other side until the wavelength λ_2 was found beyond which the observer could not match with λ_1 —Each final observation was checked at least once before being recorded—The difference between λ_1 and λ_2 is $\Delta\lambda$ and represents the just discriminable interval

The subject was light-adapted throughout, and given a few minutes rest between each determination of $\Delta\lambda$ All judgments were made by looking freshly into the exit pupil, since differences which are apparent at once tend to disappear on prolonged examination Measurements never lasted more than 2 hours and were interrupted by two or three 15 minute periods of relaxation

All the measurements were made with the Helmholtz Color Mixer, except the November series for the protanope which was made with the two-monochrometer system. The exit slit in both arrangements was kept at 0.4 mm. This is a compromise involving the desire to have a high purity of spectrum which demands a narrow slit, the elimination of diffraction which requires a wide slit, and a good brightness which also requires a wide slit. Since the homogeneity of the spectrum at the exit slit is maximal when collimator slit and exit slit have the same width, it is useless to have a fine collimator slit with a wide exit slit as used by Pitt (1935). We kept the collimator slits at 0.5 mm. With the Helmholtz Color Mixer, the exit pupil contained a band 4 m μ wide at 500 m μ , with the monochrometer system it was somewhat less. The brightness at the eye under these conditions is equivalent to between 200 and 500 milhiamberts viewed through a 2 mm pupil, or between 2000 and 5000 photons

(C) Measurements

Table I gives the data for the two deuteranopes and the protanope The April data for A W G were secured at the beginning of his work After measuring a variety of visual properties, he made the May determinations S R F made only one set of measurements H J made two sets, the first at the very beginning, and the second several months later after having acquired skill, but after an absence of about 2 months from the laboratory Each item in the table is the average of at least two separate measurements, in the region between 540 and 580 m μ the daily variation was such that we made four or five, and occasionally more determinations for one point

The table shows that for an individually variable stretch of the spectrum between 480 and 550 m μ , $\Delta\lambda$ for the colorblind is of the

same magnitude as for the normal 10 either side of this stretch $\Delta\lambda$ rises very rapidly, reaching nearly 50 m μ at the two ends. The nature of the data is best illustrated in Fig. 2, where $\Delta\lambda$ is plotted against both λ_1 and λ_2 . The upper box of Fig. 2 also shows for comparison $\Delta\lambda$ for the normal eye of Laurens (Laurens and Hamilton, 1923)

TABLE I
Il arclength Discrimination of Dichromats

April 1931 May 1931 June 1931 Nay 1933 November 1933 λ ₁ λ ₁ λ ₂ λ ₃ λ ₄ λ ₁ λ ₁ λ ₂ λ ₃ λ ₄ λ ₁ λ ₁ λ ₂ λ ₃ λ ₄ λ ₁ λ ₁ λ ₂ λ ₃ λ ₄ λ ₁ λ ₁ λ ₂ λ ₄ λ ₁ λ ₁ λ ₂ λ ₄ λ ₄ λ ₁ λ ₁ λ ₂ λ ₄ λ ₄	Deuteranop	e A W G	Deuteranope S R F Protanope H J		
421 3 470 4	April 1931	May 1931	June 1931	May 1933	November 1933
428 7 470 5 41 8 434 1 475 6 41 5 440 0 471 8 31 8 450 0 473 6 23 6 458 1 469 5 11 4 442 6 476 4 33 8 443 8 1476 6 32 8 450 0 1471 8 12 8 458 8 14.7 3 18 5 1469 1 1473 0 3 9 455 2 1 480 3 25 1 453 6 477 8 12 2 2 460 0 1473 8 12 18 2 1485 2 1485 462 2 482 4 20 2 462 4 479 4 17 0 4 70 0 178 9 8 9 180 5 1485 4 4 9 185 2 185 8 186 5 0 7 463 1 481 6 13 5 472 8 182 9 10 1 1474 5 180 0 0 6 4 185 6 185 4 4 9 185 3 180 5 0 0 2 482 6 186 4 3 8 183 9 186 3 2 4 180 0 182 4 2 4 185 6 187 5 1 9 191 8 190 2 0 0 2 492 3 194 2 1 9 191 7 192 5 0 8 188 6 190 2 0 6 190 2 190 1 2 1 6 195 3 196 0 0 7 508 9 511 0 2 1 505 0 505 5 0 5 10 5 198 9 500 0 1 1 1999 6 501 1 1 5 1504 8 506 3 1 5 508 9 511 0 2 1 517 8 518 8 1 0 509 0 510 0 1 0 500 9 500 0 1 1 1999 6 501 1 1 5 504 8 506 3 1 5 533 16 537 3 5 7 530 3 533 4 3 1 1529 2 530 0 0 8 516 8 521 5 4 7 532 0 534 8 2 8 534 4 593 5 5 0 1547 1 550 0 32 9 553 0 554 9 500 0 2 3 538 6 153 3 1418 5 550 6 553 7 5 543 4 593 5 50 1547 1 550 0 32 9 553 2 559 0 5 8 549 7 576 0 26 3 560 0 561 8 1 8 570 2 580 0 9 8 570 1 562 6 125 573 0 593 0 20 0	λι λι Δλ	λ_1 λ_2 $\Delta\lambda$	λι λι Δλ	λι λι Δλ	λι λι Δλ
442 0 476 4 33 8 443 8 476 6 32 8 450 0 471 8 21 8 458 8 477 3 18 5 1469 1 473 0 3 9 455 2 180 3 25 1453 6 477 8 124 2 460 0 1474 5 14 5 1470 3 1479 9 6 6 181 2 1482 5 1 3 462 2 482 4 20 2 462 4 479 4 17 0 470 0 1478 9 18 9 480 5 185 4 84 4 9 185 8 186 5 0 7 488 1 181 6 13 5 1472 8 182 9 10 1 1474 5 180 0 6 4 1485 6 1487 5 1 9 19 19 18 19 2 0 0 0 2 482 6 186 4 4 2 19 19 19 17 19 19 19 19 19 19 19 19 19 19 19 19 19					
455 2 480 3 25 1 453 6 477 8 24 2 460 0 474 5 14 5 470 3 479 9 9 6 6 481 2 482 5 1 3 462 2 482 4 20 2 462 4 479 4 17 0 4 10 0 178 9 8 9 180 5 185 4 4 9 185 8 186 5 0 7 4 686 1 481 6 1 3 5 472 8 182 9 10 1 474 5 180 0 6 4 485 6 487 5 1 1 9 191 8 192 0 0 2 482 6 186 4 3 8 183 9 186 3 1 2 4 180 0 182 4 2 4 185 6 190 1 2 1 6 195 3 196 0 0 7 492 3 190 2 1 1 1910 7 192 5 0 8 188 6 190 2 0 6 190 2 1 0 6 190 2 1 0 6 195 3 196 0 0 7 8 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
462 2 482 4 20 2 462 4 479 4 17 0 470 0 478 9 8 9 480 5 485 4 4 9 485 8 886 5 0 7 468 1481 6 13 5 472 8 482 9 10 1 474 5 480 0 6 4 485 6 487 5 1 9 491 8 492 0 0 2 482 6 486 4 3 8 483 9 486 3 2 4 480 0 482 4 2 4 489 6 491 2 1 6 495 3 496 0 0 2 480 0 482 4 2 4 489 6 491 2 1 0 500 2 501 0 0 8 508 9 511 0 2 1 505 0 505 5 0 5 498 9 500 0 1 1 1499 6 501 1 1 5 504 8 506 3 1 5 508 9 511 0 2 1 517 8 518 8 1 0 509 0 510 0 1 0 500 9 500 0 1 1 1499 6 501 1 1 1 5 504 8 506 3 1 5 531 6 537 3 5 5 7 530 3 533 4 3 1 529 2 530 0 0 8 516 8 521 5 4 7 532 0 534 8 2 8 540 5 572 8 8 3 3 515 5 1 5 51 7 6 7 558 7 540 0 1 3 550 9 5 5 0 5 1 5 498 9 5 5 0 5 1 5 498 9 5 5 0 5 1 5 498 9 5 5 0 5 1 5 498 9 5 5 0 5 1 5 498 9 5 5 0 5 1 5 5 0 5 5 0 5 0 5 0 5 0 5 0 5					
482 6 486 4 3 8 483 9 486 3 2 4 480 0 482 4 2 4 489 6 491 2 1 6 495 3 496 0 0 7 492 5 0 3 502 4 2 1 505 0 55 5 0 5 498 9 500 0 1 1 499 6 501 1 1 5 504 8 500 2 501 0 0 8 8 1 5 1 0 509 0 510 0 1 1 6 508 7 511 1 2 4 523 7 525 2 1 5 531 6 537 3 553 6 2 5 5 5 1 5 5 1 1 5 19 4 5 5 5 1 1 5 1 5 5 1 1 5 5 5					
482 6 486 4 3 8 483 9 486 3 2 4 480 0 482 4 2 4 489 6 491 2 1 6 495 3 496 0 0 7 492 3 494 2 1 9 491 7 492 5 0 8 488 6 490 2 0 6 496 2 497 2 1 0 500 2 501 0 0 8 500 3 15 5 508 9 511 0 2 157 8 518 8 1 0 509 0 510 0 1 1 0 504 9 506 0 1 1 1513 3 515 2 1 9 523 3 525 8 2 5 524 4 525 5 1 1 519 4 520 0 0 6 508 7 511 1 2 4 523 7 525 2 1 5 531 6 537 3 5 7 4563 0 25 6 535 0 541 7 6 7 538 7 540 0 1 3 526 9 532 0 5 1 540 8 540 0 3 2 9 533 6 533 4 14 8 8550 6 553 3 2 7 543 4 593 5 5 0 1 547 1 580 0 3 2 9 553 2 559 0 5 8 549 7 576 0 26 3 560 0 561 8 1 8 550 2 608 3 58 1563 3 569 0 5 7 554 1 602 8 48 7 568 0 577 0 1 582 6 12 5 5 573 0 593 0 20 0 0 8					
492 3 494 2				485 6 487 5 1 9	491 8 492 0 0 2
508 3 502 4 2 1 505 0 505 5 0 5 498 9 500 0 1 1 409 6 501 1 1 5 504 8 506 3 1 5 503 8 511 0 2 1 517 8 518 8 1 0 509 0 510 0 1 0 504 9 506 0 1 1 1513 3 515 2 1 9 523 3 525 8 2 5 524 4 525 5 1 1 519 4 520 0 0 6 508 7 511 1 2 4 523 7 525 2 1 5 531 6 537 3 5 7 530 3 533 4 3 1529 2 530 0 0 8 516 8 521 5 4 7 532 0 534 8 2 8 537 4 503 0 2 5 6 535 0 541 7 6 7 538 7 540 0 1 3 526 9 532 0 5 1 540 8 534 0 3 2 5 6 535 0 541 7 6 7 538 7 540 0 1 3 526 9 532 0 5 1 540 8 534 0 3 2 7 543 4 593 5 5 0 1 547 1 580 0 32 9 553 2 559 0 5 8 549 7 576 0 26 3 560 0 561 8 1 8 550 2 608 3 58 1 563 3 569 0 5 7 554 1 602 8 48 7 568 0 577 7 3 7 570 2 580 0 9 8 570 0 59 8 570 0 59 0 24 0 570 0 593 0 20 0	482 6 486 4 3 8	3 483 9 486 3 2 4	480 0 482 4 2 4	489 6 491 2 1 6	495 3 496 0 0 7
508 9 511 0 2 1 517 8 518 8 1 0 509 0 510 0 1 0 504 9 506 0 1 1 1513 3 515 2 1 1 9 523 3 525 8 2 5 524 4 525 5 1 1 1519 4 520 0 0 6 508 7 511 1 2 4 523 7 525 2 1 5 531 6 537 4 563 0 2 5 6 535 0 541 7 6 7 538 7 540 0 1 3 526 9 532 0 5 1 1540 8 534 0 3 2 5 6 535 0 541 7 6 7 538 7 540 0 1 3 526 9 532 0 5 1 1540 8 534 0 3 2 540 5 572 8 32 3 541 7 555 2 13 5 547 1 550 0 2 3 538 6 553 4 14 8 550 6 553 3 2 7 543 4 593 5 5 0 1 547 1 1580 0 132 9 532 2 159 0 5 8 549 7 576 0 126 3 560 0 1561 8 1 8 550 6 553 3 1 1540 8 544 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	492 3 494 2 1 9	1		496 2 497 2 1 0	500 2 501 0 0 8
523 3 525 8 2 5 524 4 525 5 1 1 519 4 520 0 0 6 508 7 511 1 2 4 523 7 525 2 1 5 531 6537 3 5 7 530 3 533 4 3 1529 2 530 0 0 8 516 8 521 5 4 7 532 0 534 8 2 8 537 4 563 0 25 6 535 0 541 7 6 7 538 7 540 0 1 3 526 9 532 0 5 1 540 8 544 0 3 2 5 6 572 8 3 2 3541 7 555 2 13 5 554 7 1550 0 2 3 538 6 553 4 14 8 1550 6 553 3 2 7 543 4 593 5 5 0 1 547 1 1580 0 32 9 553 2 159 0 5 8 549 7 576 0 26 3 560 0 561 8 1 8 550 2 608 3 58 1 563 3 1560 0 5 7 554 1 1602 8 48 7 1568 0 1571 7 3 7 570 2 1580 0 9 8 571 0 1595 0 1 2 4 0 1 573 0 1593 0 120 0	500 3 502 4 2 1	1 505 0 505 5 0 5	498 9 500 0 1 1	499 6 501 1 1 5	504 8 506 3 1 5
531 6 537 3 5 7 530 3 533 4 3 1 529 2 530 0 0 8 516 8 521 5 4 7 532 0 534 8 2 8 535 540 557 2 8 32 3541 7 555 2 13 5547 1550 0 2 3 538 6 553 414 8 550 6 553 7 545 547 1550 0 2 3 538 6 553 414 8 550 6 553 7 3 554 1560 6 557 7 538 7 550 6 553 7 550 6 553 7 550 6 553 7 550 6 553 7 550 6 553 7 550 6 553 7 550 6 550 7 7 7 7 3 7 7 550 6 7 550 6 7 550 6 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	508 9 511 0 2 1	517 8 518 8 1 0	509 0 510 0 1 0	504 9 506 0 1 1	513 3 515 2 1 9
537 4 563 0 25 6 535 0 541 7 6 7 538 7 540 0 1 3 526 9 532 0 5 1 540 8 544 0 3 2 540 5 572 8 32 3 541 7 555 2 13 5 547 1 550 0 2 3 538 6 553 4 14 8 550 6 553 3 2 7 543 4 593 5 50 1 547 1 580 0 32 9 553 2 559 0 5 8 549 7 576 0 26 3 560 0 561 8 1 8 550 2 608 3 58 1 563 3 569 0 5 7 554 1 602 8 48 7 568 0 571 7 3 7 570 2 580 0 9 8 570 0 580 0 59 1 570 1 582 6 12 5 570 1 582 6 12 5 57 0 595 0 24 0	523 3 525 8 2 5	5 524 4 525 5 1 1	519 4 520 0 0 6	508 7 511 1 2 4	523 7 525 2 1 5
540 5 572 8 32 3 541 7 555 2 13 5 547 1 550 0 2 3 538 6 553 4 14 8 550 6 553 3 2 7 543 4 593 5 50 1 547 1 1580 0 132 9 553 2 1559 0 5 8 549 7 576 0 126 3 1560 0 1561 8 1 8 550 2 608 3 158 1 563 3 1569 0 5 7 1554 1 1602 8 48 7 1568 0 1570 1 1582 6 12 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	531 6 537 3 5 7	7 530 3 533 4 3 1	529 2 530 0 0 8	516 8 521 5 4 7	532 0 534 8 2 8
543 4 593 5 50 1 547 1 580 0 32 9 553 2 559 0 5 8 549 7 576 0 26 3 560 0 561 8 1 8 550 2 608 3 58 1 563 3 569 0 5 7 554 1 602 8 48 7 568 0 571 7 3 7 570 2 580 0 9 8 570 1 582 6 12 5 573 0 593 0 20 0	537 4 563 0 25 6	5 535 0 541 7 6 7	538 7 540 0 1 3	526 9 532 0 5 1	540 8 544 0 3 2
	540 5 572 8 32 3	3 541 7 555 2 13 5	547 1 550 0 2 3	538 6 553 4 14 8	550 6 553 3 2 7
	543 4 593 5 50	1 547 1 580 0 32 9	553 2 559 0 5 8	549 7 576 0 26 3	560 0 561 8 1 8
571 0 595 0 24 0 573 0 593 0 20 0		550 2 608 3 58 1	563 3 569 0 5 7	554 1 602 8 48 7	568 0 571 7 3 7
571 0 595 0 24 0 573 0 593 0 20 0	1 1	1 1 1			
the state of the s	1 1				573 0 593 0 20 0
[[] [] [] [] [] [] [] [] [] [572 5 610 0 37 5	1 1 1	5,3 5 604 2 30 7
575 1 620 0 44 9)))))	1 1 1 1 1 1))]]

The neutral points (A W G at 4950 m μ , S R Γ at 5001 m μ , and H J at 4915 m μ) are marked with a vertical line in Fig. 2. The part of the spectrum which the observer matches with white of 5000° K is usually a band less than 1 m μ wide, its midpoint is given by the line

Note that $\Delta\lambda$ is minimal near but not exactly at the neutral point. The colorblind thus distinguishes wavelength best near the region of the spectrum which to him resembles white. To either side of this, $\Delta\lambda$ increases with the distance from the neutral point, on one side more

Fig. 2. The data of wavelength discrimination for one normal (upper box) and for the two deuteranopes (A W G and S R F) and one protanope (H J) For the dichromats, $\Delta\lambda$ is plotted against both λ_1 and λ_2

rapidly than on the other The distribution of wavelength discrimination around the neutral point is not symmetrical, there is a more extensive stretch of moderately good discrimination toward the long wave end of the spectrum than toward the short end The data of Laurens and Hamilton's protanope and of Sach's protanope, though quite meager, also show an asymmetrical distribution of $\Delta\lambda$ around the neutral point, the asymmetry, however, is reversed in that the more extensive portion is on the blue side Pitt's recent data, which cover only about a third the spectrum, indicate a more restricted region of good discrimination, distributed nearly but not quite symmetrically about the neutral point. The symmetry is probably due to Pitt's method which uses an average of $\Delta\lambda$ to each side of a given λ is not a correct procedure, since $\Delta\lambda$ is not the same in the two direct tions, as is obvious from Sach's work and from our data in Fig 2 Ladekarl's data resemble ours in the small range which he measured They are less symmetrical than Pitt's, but more than ours and Laurens and Hamilton's and Sachs' Here again the method ob scures the measurements because Ladekarl used the average error of setting method which automatically averages the two directions

The sharply rising inner lines in the data of Tig 2 represent two regions of striking sensory change. Starting with any wavelength below 460 m μ , our colorblinds see no differences in the spectrum until they hit this region of discrimination at about 470 m μ . Similarly, starting at the red end, they make no discrimination in λ until the region at approximately 570 m μ . The position of the sharply rising inner portion on the short wave side varies much less from time to time and from individual to individual than the one on the long wave side.

From our measurements it appears that protanopes and deuteran opes show a very similar capacity for λ discrimination. It may be that when many individuals have been studied a consistent difference will appear over the whole spectrum similar to the very small and doubtful difference found by Pitt in the restricted region studied by him with six protanopes and six deuteranopes. However, the individual variation is so great that in terms of λ discrimination, either in a restricted region or over the whole spectrum, it is not possible to classify an individual as a protanope or a deuteranope

IV

Spectral Brightness Distribution

(A) Normals and Dichromats

Measurements of brightness distribution in the spectrum became of interest for colorblindness when it was found that the two classes of dichromat distinguished by Seebeck (1837) have a different brightness distribution in the spectrum. The deuteranope's brightness is much like the normal, whereas the protanope's is distinctly depressed in the red (Macé and Nicati, 1879, von Kries and Kuster, 1879, Donders, 1881). Actually the protanope's brightness maximum is shifted toward the blue compared to the normal or deuteranope (Brodhun, 1887, Koenig, 1903 b, Abney, 1913, Exner, 1921, Kohlrausch, 1931, Pitt, 1935)

Since Langley's (1888) introduction of energy distribution data into spectral brightness determinations, the visual effectiveness of the spectrum for the color-normal has been repeatedly determined, and has become an established datum (Gibson and Tyndall, 1923) Not so for the colorblind Energy measurements in the spectrum are not easy to make, and investigators have been content to record the relative brightness distribution in a particular spectrum for the colorblind in comparison with the color-normal, sometimes (see especially Pitt, 1935) going to extraordinarily circuitous lengths to find the real shape of the data without making the energy measurements

We have determined the spectral brightness distribution for the three colorblinds recorded in the previous section, making our own energy measurements in the spectrum, and using a method which does not involve heterochromic photometry

(B) Method

Fig 2 shows that for the two large, end-stretches of the spectrum, the dichromat sees no differences in wavelength Within these stretches the spectrum may therefore be compared in brightness without introducing any "color" differences ³ But even in the region between 470 and 570, the just perceptible step $\Delta\lambda$, though

³ We use the term "color" here to include everything but brightness—Actually, as the following paper shows, the differences between contiguous wavelengths which the colorblind distinguishes are not concerned with hue, but with saturation

small, is finite and brightness comparisons can be made between points which differ by less than $\Delta\lambda$. This step by step method resembles the procedure of Gibon and Tyndall for the normal eve, but in addition it avoids all color differences for the colorblind

The Helmholtz Color Mixer was used for these measurements. We set a reference \(\lambda\) in the left collimator, and the subject determined by means of the Nicol prism the relative brightness of the same \(\lambda\) in the right collimator further relative brightness measurements were then referred to this λ in the right collimator as a standard Keeping the reference \(\lambda \) in the left collimator constant, the brightness of a series of way elengths in the right collimator was then measured by the subject, until a complete match between the two sides became impossible The reference λ in the left collimator was then changed to a new reference λ , chosen so as to match the last λ measured in the right collimator—the brightness of the new reference was then determined relative to the last measured a new section of the spectrum in the right collimator was then measured against the new reference \(\lambda \) in the left until a complete match on both sides again became impossible. A new reference, chosen as before, was then introduced into the left collimator its brightness was calibrated as before, and a new section of the spec trum measured against it. The procedure was repeated as often as necessary to cover the spectrum For those regions where $\Delta\lambda$ is large, one reference λ easily served for 75 or 100 mu, and determinations were made every 10 mu. But be tween 470 and 570 mu the reference a had to be changed with increasing frequency until near 500 mu it was changed for every other measurement and frequently five readings were made for each determination of relative bright ness, for calibrating each new reference a five and often ten readings were taken About fifty steps were required to traverse the spectrum

We calibrated the energy distribution of the spectrum with a Hilger linear thermopile placed at the exit pupil of the telescope, and thus avoided corrections for the transmission of the prism and lenses, and for the dispersion of the spectrum With the low resistance thermopile we used a Paschen galvanometer supplied by the Cambridge Instrument Company. The deflection of the galvanometer was carefully calibrated with known voltages. To increase the energy at the exit pupil both collimators were used at the same time, and the telescope lens was kept at full aperture. The slits were opened to 0.5 mm. Six readings were made at each point at 10 mm intervals along the spectrum. The results secured were smooth so that a calibration curve could easily be drawn through them. The values necessary for correcting the measured, relative brightnesses were taken from the curve.

(C) Visibility Curves

Table II gives the data, which are also shown graphically in Γ ig 3 It is apparent that with minor exceptions they are regular and smooth

TABLE II

Brightness Distribution in Spectrum The Maximum in Each Case is Placed at 100

	Deut	eranopes		Pro	otanope
A	W G	S	RF	н Ј	
λın mμ	Brightness	λın mμ	Brightness	λın mμ	Brightness
422 8	4 72	404 2	0 11	404 3	0 39
433 4	5 94	414 6	0 26	414 5	1 24
442 9	5 91	425 3	0 35	425 3	2 76
453 0	7 52	435 0	0 46	435 2	4 26
463 3	10 82	445 3	0 58	445 4	5 34
470 4	17 33	454 7	0 75	454 6	7 54
476 4	20 72	464 8	1 22	464 7	10 26
479 4	23 56	476 1	2 15	480 0	17 04
482 6	27 29	472 2	1 61	485 0	21 76
484 3	24 85	484 1	2 65	487 4	25 84
485 8	31 02	488 2	3 12	489 8	29 52
487 5	38 28	491 7	4 29	492 4	32 00
489 2	39 93	495 2	5 79	494 0	32 96
490 8	42 14	497 8	7 76	495 5	34 48
494 4	48 44	499 7	7 66	497 6	37 76
497 1	60 19	501 0	7 47	499 6	41 92
498 7	66 63	502 6	8 64	501 2	43 68
501 7	62 30	504 0	10 71	503 3	49 04
505 4	60 19	505 2	12 27	506 3	57 12
509 1	62 80	507 2	13 86	510 2	64 48
514 0	68 94	509 1	17 41	514 2	71 44
519 1	82 27	512 1	20 61	518 2	80 00
527 6	84 05	514 1	23 96	523 7	88 40
536 5	84 74	516 0	29 44	536 4	99 36
546 1	97 48	518 2	34 97	546 2	99 20
556 6	99 00	520 4	39 80	557 9	92 48
567 9	100 25	523 7	47 83	568 1	85 84
579 9	99 55	531 8	66 48	578 6	66 6 4 51 92
589 6	81 05	536 4	83 45	588 5	34 16
599 7	73 49	546 1	84 62 93 08	600 5 609 6	24 16
608 5	65 54	558 0	93 08 89 63	618 6	16 64
619 6	47 19	568 1 578 7	100 00	630 3	8 32
629 3	35 61 25 77	588 7	96 03	640 4	4 74
639 5		600 6	78 57	649 4	2 88
650 4	16 50 8 88	609 6	81 76	660 5	1 36
662 1	4 69	618 6	53 07	670 0	0 72
674 5	1 91	630 3	36 23	680 5	0 40
690 4 701 7	0 92	640 4	21 68	691 5	0 24
101 1	"	649 4	16 69	1	
		660 7	8 64	{	
	[670 4	4 80	1	
	[680 6	2 81	j	
	}	691 3	1 33	}	
]	700 0	0 80	į	
	1 <u>_</u>				

Fig. 3 Brightness distribution in the spectrum for two deuteranopes (A W G and S R F) and one protanope (H J) The maximum for each has been arbitrarily placed at 100

Perhaps the best way of examining the visibility curves is to view them against the normal background. In Fig. 4 the stippled area represents the range of measurements for the 52 color normals investi gated by Gibson and Tyndall The protanope H J barely falls within the normal range on the blue side of his maximum, and is definitely outside the normal range on the red side. On the other hand, the deuteranope S R F barely falls within the normal range on the red side and is distinctly outside on the blue side. The deuteranope A W G has a rather wide visibility curve which falls within the normal range on both sides. Pitt's recent averages of six deuteranopes and six protanopes are included in Fig. 4. H I is an almost

Fig 4 Brightness distribution in the spectrum. The stippled background represents the range for fifty-two color-normals measured by Gibson and Tyndall (1923). A W G and S R F are our deuteranopes, and the crosses give the average of Pitt's (1935) deuteranopes. H J is our protanope, and the circles give the average of Pitt's protanopes.

perfect replica of the averaged protanope, his curve and the average curve are narrower than the normal and deuteranope curves A W G and S R F coincide with the averaged deuteranope on the red side, but lie to either side of the average on the blue side

The data show clearly that just as the protanope's curve is shifted toward the blue compared to the normal, so the deuteranope's curve is shifted toward the red, but not so much. This has already been noted by Pitt

The least variable part of the visibility curves seems to be the red side of the maximum, and this furnishes the only reliable means of telling when a given individual is a protanope or a deuteranope (Donders, 1884, von Knes, 1897). We have adopted this as a diag nostic routine test, making a brightness comparison between 550 and 650 m μ . The comparison is made in two steps, first measuring 550 against 600, and then 600 against 650, and thus avoids a heterochromic match. The ratio of 550/650 m μ is large, near 35 for the protanope, and small, near 4 for the deuteranope. Of the ten protanopes and twelve deuteranopes whose diagnostic brightness ratio we have measured, we have found no case falling far from these values

Neutral Point

The neutral point of a dichromat is that point in the spectrum which he can match with white light. Using white of 5000° K we have determined the position of the neutral point for the twenty two dichromats just referred to. The measurements were made exactly as with wavelength discrimination. Half the field of the Color Mixer contained white, while the other had a succession of wavelengths whose brightness the subject could control. He was required to state whether he could match the two halves or not. The band in the spectrum which the dichromat can match with white is usually about $1 \text{ m} \mu$ wide

The measurements are shown in Fig. 5, which includes not only our own data, but those of Koenig (1884) and of Pitt — The figure shows that the position of the neutral point for the deuteranope is more widely scattered than for the protanope — The extreme position of one neutral point at 525 m μ is authentic, we naturally questioned it, and repeated the determination

The average position of the neutral point for the twenty-one pro tanopes in Fig. 5 is 496.5 m μ , for the twenty five deuteranopes it is 504.3 m μ . The averages for our own cases are protanopes 498.2 m μ , and deuteranopes 510.2 m μ . In spite of this distinct difference between the averages of the two types, the individual variation is so large that the neutral point of any single person cannot be used to

identify the type of dichromat he is—This is possible only in terms of his brightness distribution in the spectrum

With our protanope H J we have carefully investigated the effect of brightness on the position of the neutral point. In the brightness range between 25 and 5000 photons we could find no change in its position. Obviously our lowest intensity was well above that for which Koenig (1884) had found a gradual shift in the neutral point

Fig 5 Distribution of neutral points for twenty-one protanopes (lower box) and twenty-five deuteranopes (upper box) The open circles are our own measurements, the crosses are from Pitt (1935) while the solid circles are from Koenig (1884)

VI

Color Mixture

(A) Uniqueness of Mixtures

The most revealing characteristic of the dichromat is his capacity to match the spectrum with mixtures of only two primaries. The common formulation of this fact has been that just as a color-normal can match the spectrum with unique mixtures of three primaries, so a dichromat can match the spectrum with unique mixtures of two primaries. Our experience, however, has shown that the dichromat cannot give unique values in gauging the spectrum with two primaries

The reason for this lies in the data of wavelength discrimination as already shown in Fig 2. For the dichromat between 460 and 520 m μ , $\Delta\lambda$ varies from 1 to 6 m μ , but for the rest of the spectrum it becomes rapidly larger. For the spectrum below 450 and above 550 m μ the interval $\Delta\lambda$ varies from 10 to 50 m μ . Thus, for example, since the dichromat cannot distinguish between 420 and 450 m μ , a mixture of two primaries made to match 450 m μ will also match 420 m μ provided

brightness differences are eliminated. The match for 450 m μ therefore cannot be unique. This is obvious for spectral regions where $\Delta\lambda$ is large, but it is equally true where $\Delta\lambda$ is small 4. The dichromat cannot usually discriminate 510 from 515 m μ . Hence a mixture of two primaries which matches 510 also matches 515 and cannot be considered unique for either

These considerations were forced upon us when we set out to gauge the spectrum of our dichromats with two primaries by the usual procedure which permits the subject to vary the combined brightness as well as the proportions of the two primaries. The results secured in this way were frequently indeterminate, depending on the brightness level, and forced us to adopt a wholly different procedure. We set a specified mixture of two primaries, and the subject determined the limits of λ which he could match with it by varying only the brightness of the mixture.

(B) Procedure

The primaries were 458 7 and 570 0 m μ and were located in the right collimator of the Helmholtz Color Mixer, the latter by the position of the collimator as a whole and the former by the position of the Rochon prism in it. The Nicol prism in the right collimator determined the value of the mixture which appeared in half of the field. In the other half, one wavelength after another was tested to define the boundaries λ_1 and λ_2 between which the dichromat could match the mixture of primaries merely by controlling their combined brightness

Essentially this is the technic of λ discrimination, except that the standard in half the field is a mixture of two primaries. Moreover the range of λ_1 and λ_2 obviously includes two steps in λ discrimination because we measured the extreme matching positions to the short wave end and to the long wave end for each mix ture. The width, however, is not twice that of a single step since the steps to either side are rarely equal

In this way we tested a series of mixtures, sufficient to cover the spectrum We maintained a roughly uniform brightness of between 2000 and 5000 photons throughout the spectrum by controlling the slit width and the Nicol prism of the homogeneous light in the left collimator. The collimator slit was no greater than 0.5 mm, the exit slit at the telescope was 0.4 mm. The energy content of the two primaries was determined as before with the Hilger thermopile and Paschen galvanometer, their relative brightness was then computed from the respective visibility curves in Fig. 3.

 $^{^4}$ It deserves to be pointed out that the uniqueness of trichromatic matches for color normals is subject to the same limitations in spectral regions where $\Delta\lambda$ is larger than 2 or 3 m μ

(C) Mixture Data

Table III gives the data for the deuteranope A W G and for the protanope H J We measured A W G twice, 1 month apart The two series are so similar that it would serve no useful purpose to print

TABLE III

Color Mixture of Deuteranope A W G and of Protanope H J Spectral Limits λ_1 and λ_2 Matched by Mixtures of Primaries 458 7 and 570 0 mm

Energy ratio of primaries 458 7 mµ/570 0 mµ	A W G		нј	
	λι	λ2	λ ₁	λ2
91 5	415 2	473 8	436 6	469 1
		-	439 1	478 5
67 1	422 9	472 0		1
51 4	436 1	475 4	431 5	469 2
	l	1	438 2	470 4
32 8	447 9	475 4	440 2	468 0
22 8	466 1	477 4	446 6	469 1
ì	464 8	478 6	j	1
12 7	474 6	482 2	451 9	474 2
8 08	481 6	485 4	454 4	474 8
3 99	489 9	492 5		}
3 50			473 0	478 6
1 90	496 8	498 7	479 5	482 2
0 754	504 6	506 9	489 5	490 4
0 357	512 6	514 2	496 1	497 4
}			495 1	496 8
0 243			502 0	504 1
0 177	519 1	520 3		
0 0837	525 2	528 8	509 3	511 4
0 0546	528 9	532 4	513 5	517 0
0 0333	531 4	541 0	518 5	522 7
0 0181	538 7	568 8	524 0	<i>5</i> 28 4
0 0114	537 1	606 1	527 5	532 8
0 00782	542 5	615 5	533 2	536 8
0 00497			533 2	542 4
0 00378			534 0	566 4
0 00277			535 6	581 3

them both The data here given are from the second series. The table records the energy ratio of the two primaries and the limits between which the dichromat matches each of the mixtures. The relative brightnesses of the two primaries 458 7 and 570 0 m μ are 8 6

and 79 5 for A W G, and 9 4 and 99 0 for H J as taken from their visibility curves in Fig 3 Therefore to convert energy ratios into brightness ratios in Table III, A W G's ratios are to be multiplied by 0 0950, and H J's by 0 108,—in both cases by very nearly 1/10

The data are plotted in Γ_{19} 6, with the logarithm of the energy ratio as ordinates, and the limits λ_1 and λ_2 as abscissas Because of the log plot, the shape of the relationship remains the same whether the ratio of the primaries is in terms of energy, or of brightness, or of arbitrary units For rough conversion into brightness ratios subtract 1 from the log values of the ordinates

The data for the two subjects are not very different. In both there is a stretch between about 480 and 530 m μ where the mixture changes quite sharply with λ , and where the wavelength band corresponding to a specific mixture is very small. This is in Leeping with the small values of $\Delta\lambda$ found here in measurements of λ discrimination. To either side of this central stretch the matching band widens very rapidly, and this also is in harmony with the data of λ discrimination. The region of rapidly changing and sharply defined mixtures extends over about 2 log units of ratio of the primaries

For both subjects the center of this sharp region is about the same distance to the right of the neutral point, the center is at 507 m μ for A W G, and at 503 m μ for H J For the deuteranope A W G the energy ratio corresponding to this point is 0 661, while for the protanope H J it is 0 191 In other words, for the protanope H J much less (in energy) of the 458 7 primary and much more of 570 0 primary are required than for the deuteranope A W G to match the region of sharpest discrimination This difference persists when relative energy

 5 Near the two extremes of the mixture data where the interval $\Delta\lambda$ is large, there are frequently found small patches of the spectrum perhaps 3 $m\mu$ wide, which the dichromat cannot match with the specific mixture of primaries used to match the spectrum to the right and left of the non matching patch. The position of these non matching islands is quite certain at any time, but is very variable from day to day. The data for these regions as given therefore represent the edges of the matching bands as found by starting from those wavelengths which the dichromat could not match, and working closer and closer until wavelengths were found which he could match. These non matching islands are not due to the apparatus or method because we did not eliminate them even after many variations in technic and apparatus

Fig 6 Color Mixture The ordinates give the ratio of the amounts of the two primaries 458 7 and 5700 m μ (shown on the abscissas) which are matched by regions of the spectrum included between the points A W G is the deuteranope, H J the protanope

is replaced by relative brightness, because the conversion factors are very nearly the same in the two cases, and may indicate a specific difference between the two types of dichromat. This difference is not to be confused with the minor difference in mixture ratios which Wright (1929) first failed to find and Pitt (1935) in his laboratory later did find between the two types of dichromat, Pitt's difference probably depends on the method of measurement which assumes the uniqueness already referred to

(D) Uniqueness and Brightness

Examination of Fig. 6 shows that in the central stretch between 480 and 530 m μ the matching range is small, and a reasonable uniqueness may be claimed for a certain mixture matching a given λ . Be yond this region no approach to uniqueness is possible, and the two edges of the matching band become more and more separated. For example, 475 m μ is near the best λ discrimination of H. J. Yet as Fig. 6 shows, the upper and lower limits for the matching mixture differ by over 0.3 log unit, that is by 100 per cent. So rapid is the change here, that for 470 m μ the upper and lower limits already differ by over 0.75 log unit, that is by 600 per cent.

This whole point has previously been overlooked and has resulted in the growth of certain false notions. For example, both Koenig (1887) and Brodhun (1893) were led astray by it and concluded that Newton's law for the addition of brightness was not valid for dichromats. They found, as had van der Weyde (1882) that for dichromats under certain conditions, color matches (mixtures we homogeneous light) did not remain valid at all intensities. This, if true, is surely a startling situation that must be interpreted and understood

Brodhun's work will illustrate the situation With the two prima ries 460 and 615 m μ Brodhun, who was a deuteranope, gauged parts of the spectrum at different brightnesses. For 480 and 490 m μ he found that the ratios of the primaries remained constant regardless of the illumination, while for 540 and 560 m μ the ratios varied strikingly with the illumination

We have repeated these experiments precisely as Brodhun made them, and there is no question of their truth. The only difficulty with them is that they are meaningless. They depend for their existence first on the non-uniqueness of color matches for dichromats except for very restricted regions of the spectrum, and second on the purely irrelevant fact that in most spectra the two primaries differ considerably in brightness

The method nearly always employed is to place homogeneous light in one side of a field, and two spectral primaries in the other side, and then to ask the subject to vary the relative amounts of the two primaries as well as their combined brightness in order completely to match the homogeneous light. The dichromat thus has two problems First, he must select a combination of the two primaries which will resemble the homogeneous light, and second, he must change their combined brightness to match it in brightness as well. The subject does first the one, and then the other, repeating the procedure until a match is secured.

It is apparent from Fig 6 that at 500 m μ the vertically recorded mixture range is very limited and, therefore, the ratio setting will be almost unique because a small change in the relative amounts of the two primaries will change the recognizable appearance of the At 540 m μ , however, the mixture range which will produce Since the relative brightness of the two a match is tremendous primaries is very different, varying the ratio of the primaries also varies the total brightness, and a match can be achieved by this means At low intensities, the match will be made mainly by reducing the brightness of the brighter long-wave primary, and the resulting ratio of long to short-wave primaries will be small At high intensities the match will be made mainly by increasing the brighter primary, and the ratio of long to short-wave primaries will be large what Brodhun found, but it is due basically to the great range of mixtures which can match 540 m μ , and not to the failure of the third law of color mixture

We have repeated Brodhun's measurements with our procedure, and the results are as expected. His primaries (416 and 615 m μ) were in the right collimator, and 560 m μ in the left. With the right Nicol prism we set a specific ratio of the two primaries which we knew easily matched 560 m μ for the dichromat, and this ratio remained undisturbed throughout the experiment. The brightness of 560 m μ was then set at a specified value by means of the left Nicol prism

The dichromat (A W G) was then asked to make the two fields match merely by adjusting the slit of the right collimator which controls the combined brightness of the two primaries. Three readings were made. The brightness of 560 m μ was then increased by changing the left Nicol prism, and A W G again matched it by in creasing the common slit of the two primaries. In this way we varied

Fig. 7 Brightness and color mixture. There is a linear relation between the combined brightness of the mixture of the two primaries and the brightness of the homogeneous light of 560 m μ which matches them

the brightness of 560 m μ in ten steps over a range of 1 to 14, the dichro mat making three separate readings at each intensity

The data are in Γ ig 7 The abscissas give the intensity of λ 560 as $\cos^2\theta$ of the Nicol angle, while the ordinates give the combined intensity of the primaries in terms of slit widths in millimeters. It is obvious that the two are related linearly, that as the brightness of 560 m μ is increased it is necessary to make a corresponding increase

in the brightness of the primaries without changing their relative proportions. We made this type of experiment three times using different primaries and different homogeneous lights, and the results all showed the same thing. In one experiment we even increased the intensity range by a factor of 10 without finding any different result. Therefore, a given mixture will match a given homogeneous light regardless of brightness of

SUMMARY

- 1 Protanopes and deuteranopes show one maximum of wavelength discrimination which occurs near their neutral point in the region of 500 m μ (blue-green for color-normal) The value of the just discriminable wavelength interval $\Delta\lambda$ is about 1 m μ at this point and is much like the normal To either side of this, $\Delta\lambda$ rises. It increases rapidly on the short-wave side, and slowly on the long-wave side, rising to about 50 m μ at the two ends of the spectrum
- 2 The brightness distribution in the spectrum for dichromats falls only partly outside the range established for color-normals. The protanope curve is narrower than normal, and its maximum lies nearly 15 m μ to the left of it. The deuteranope curves are about the same width as the normal, and their maxima lie slightly but definitely to the right of it. The main difference between protanope and deuteranope spectrum sensitivity lies on the red side of brightness curves, where the deuteranope is strikingly higher. This difference furnishes the only reliable diagnostic sign which may be applied to an individual dichromat for separating the two types
- 3 The average position for the neutral point of twenty-one protanopes is 4965 m μ , of twenty-five deuteranopes 5043 m μ . The range of variation in the position of neutral point is twice as great for the deuteranope as for the protanope
- 4 Dichromatic gauging of the spectrum cannot yield unique mixture values for any wavelength because of the large stretches of poor wavelength discrimination. Data have therefore been secured which locate the spectral ranges that can match specific mixtures of two primaries when brightness differences are eliminated. The form of

⁶ Obviously this is true only for strictly foveal fields where the Purkinje phenomenon is avoided, as has been done in all the measurements recorded here

the data is much the same for a protanope and for a deuteranope, the only difference is in the relative brightness of the primaries

5 Previously accepted anomalies in the spectral matching of dichromats which have led to the rejection of the third law of color mixture for them, have been eliminated. They are shown to have been due to the non-uniqueness of color matches and the usually disparate brightnesses of the primaries. Color mixture matches for dichromats are valid at all brightnesses.

RIBLIOGRAPHY

- Abney, W, Researches in color vision and the trichromatic theory, London, Longmans Green and Co, 1913, 418 pages
- Brodhun E, Beitrage zur Farbenlehre, Dissertation, Berlin 1887, 42 pages
- Brodhun, E., Die Gültigkeit des Newton schen Farbenmischungsgesetzes bei dem sogenannten grünblinden Farbensystem, Z. Psychol. u. Physiol. Sinnesorgane. 1893. 5, 323
- Davis, R, and Gibson K. S, Filters for the reproduction of sunlight and daylight and the determination of color temperature. Miscellaneous Publication, Bureau of Standards U. S. Department of Commerce. 1931, No. 114, 1
- Donders Γ C Ueber Farbensysteme Arch Ophth Leipsic, 1881, 27 (1), 155 Donders Γ C Farbengleichungen, Arch Anat w Physiol, Physiol Abt. 1884.
- Donders T C Farbengleichungen, Arch Anat u Physiol, Physiol Abt, 1884, p 518
- Engelking, E. Die Tritanomalie, ein bisher unbekannter Typus anomaler Trichromasie, Arch. Ophth. Leipsic, 1925, 116, 196
- Exner, F., Helligskeitsbestimmungen im protanopen Farbensystem Sit ungsber k 4kad Wissensch, Math naturwissensch Cl., II ien 1921, Abt IIa, 130, 355
- Gibson, K. S., and Tyndall E. P. T., The visibility of radiant energy, Bureau Standards Scient Papers, 1923, 19, 131
- Hecht, S., The development of Thomas Young's theory of color vision J Opt Soc America, 1930 20, 231
- Hecht, S, The interrelation of various aspects of color vision, J. Opt. Soc. America, 1931, 21, 615
- Hecht, S , A quantitative formulation of colour vision, Report of a Joint Discus sion on Vision Physical and Optical Societies, Cambridge, University Press, 1932 p 126
- Hecht, S and Shlaer, S The basis for wavelength discrimination by the color blind, J Opt Soc America 1934, 24, 163
- Hecht, S, and Shlaer S Saturation as the basis for color mixture in the color blind, J Opt Soc America, 1936, 26, 226
- Judd, D B, Chromaticity sensibility to stimulus differences, J Opt Soc America, 1932, 22, 72
- Koenig A, Zur Kenntniss dichromatischer Farbensysteme, Arch Ophth, Leipsic 1884 30 (2), 1

- Koenig, A, Ueber Newton's Gesetz der Farbenmischung und darauf bezugliche Versuche des Hrn Eugen Brodhun, Sitzungsber Akad Wissensch, Berlin, 1887, 311
- Koenig, A, Ueber die neuere Entwickelung von Thomas Young's Farbentheorie, reprinted in Gesammelte Abhandlungen zur Physiologischen Optik, Leipsic, J A Barth, 1903a, 88
- Koenig, A, Ueber den Helligkeitswerth der Spectralfarben bei verschiedener absoluter Intensitat, reprinted in Gesammelte Abhandlungen zur Physiologischen Optik, Leipsic, J A Barth, 1903b, 144
- Koenig, A, and Dieterici, C, Die Grundempfindungen in normalen und anomalen Farbensystemen und ihre Intensitatverteilung im Spektrum, Z Psychol u Physiol Sinnesorgane, 1892, 4, 241
- Kohlrausch, A, Tagessehen, Dammersehen, Adaptation, in Bethe, A, von Bergmann, G, Embden, G, and Ellinger, A, Handbuch der normalen und pathologischen Physiologie, Berlin, Springer, 1931, 12, pt 2, 1499
- von Kries, J, Über Farbensysteme, Z Psychol u Physiol Sinnesorgane, 1897, 13, 241
- von Kries, J, and Kuster, F, Ueber angeborene Farbenblindheit, Arch Physiol, 1879, 513
- Ladekarl, P. M., Über Farbendistinktion bei normalen und Farbenblinden, Acta Ophthalmologica, Copenhagen, 1934, 12, suppl III, pp 128
- Langley, S P, Energy and vision, Am J Sc, 1888, 36, 359
- Laurens, H, and Hamilton, W F, The sensibility of the eye to differences in wavelength, Am J Physiol, 1923, 65, 547
- Macé, J, et Nicati, W, Recherches sur le daltonisme, Compt rend Acad Sc, 1879, 89, 716
- Pitt, F H G, Characteristics of dichromatic vision With an appendix on anomalous trichromatic vision, Great Britain Med Research Council, Special Rep Series, No. 200, 1935
- Rosencrantz, C, Über die Unterschiedsempfindlichkeit für Farbentone bei anomalen Trichromaten, Z Sinnesphysiol, 1926, 58, 5
- Sachs, E, Die Unterschiedsempfindlichkeit für Farbentone bei verschiedenen Farbensystemen, Z Sinnesphysiol, 1928, 59, 243
- Seebeck, A, Ueber den bei manchen Personen vorkommenden Mangel an Farbensinn, Ann Phys u Chem, 1837, 42, 177
- Steindler, O, Die Farbenempfindlichkeit des normalen und farbenblinden Auges, Sitzungsber k Akad Wissensch, Math-naturwissensch Cl, Wien, 1906, Abt IIa, 115, 39
- van der Weyde, A J, Die Systeme der Farbenblinden, Arch Ophth, Leipsic, 1882, 28 (2), 1
- Wright, W D, A re-determination of the trichromatic mixture data, Great Britain Med Research Council, Special Rep Series, No 139, 1929
- Wright, W D, and Pitt, F H G, Hue discrimination in normal colour vision, Proc Phys Soc London, 1934, 46, 459
- Young, T, On the theory of light and colors, in Young, T, Lectures in natural philosophy, London, Joseph Johnson, 1807, 2, 613

THE COLOR VISION OF DICHROMATS

II SATURATION AS THE BASIS FOR WAVELENGTH DISCRIMINATION AND COLOR MIXTURE

BY SELIG HECHT AND SIMON SHLAER
(From the Laboratory of Biophysics, Columbia University, New York)

(Accepted for publication, November 27, 1935)

I

Wavelength Discrimination as Saturation

The three variables of color vision are hue, saturation, and bright ness. The characteristic color differences along the spectrum which the color normal sees are essentially concerned with hue. In measure ments of wavelength discrimination the precise value of the just per ceptible difference in wavelength at constant brightness is no doubt influenced by saturation differences, but the major factor is hue. What determines wavelength discrimination in the colorblind? Since the best λ discrimination of protanopes and deuteranopes occurs near 500 m μ , which is a region matched with white, saturation may be a more important factor for them than for the color normal

A simple but striking experiment demonstrated to us that saturation is indeed the determining factor. One side of the field in the Helm

¹ Actually we arrived at this notion entirely from theoretical considerations Adopting the quantitatively formulated trireceptor idea of Young (1807) as a basis for color vision (Hecht, 1930–1934) and supposing that in colorblindness one of the cone primaries, say the red—is transformed into one of the other two, say the green then three things follow— First—near 500 m μ all three curves will inter sect in one point, the resulting sensation will be white and will correspond to the neutral point—Second—to the left of this neutral point, where the blue primary is higher than the other two—the sensation will be (a) white by virtue of those effects where the blue green, and red primaries have the same height, and (b) blue by virtue of the excess effect of the blue primary—Different portions of the spectrum between the neutral point and the short wave end will then differ only in the relative amounts of blue and white—that is, in saturation—Third, on the right side of the neutral point, the now similar red and green primaries are higher than the

holtz Color Mixer is set for 520 m μ (green to us) while the other side is set for 650 m μ (red) The colorblind cannot match these two fields merely by adjusting their brightness differences. However, when a little white light is added to 650 m μ , the colorblind at once reports the two fields to be very nearly matched, and further slight additions of white remove all differences between the two fields to the colorblind, though to us they are almost as widely different as before. The same experiment may be made with 480 (blue-green) and 420 m μ (violet), but it is not so striking because these two wavelengths are not so sharply different to us as red and green

Though we made this discovery quite independently on the basis of theoretical argument, examination of the literature showed that the phenomenon had already been found by von Kries and Kuster (1879) However, no quantitative investigation has ever been made of it We therefore measured the situation throughout the spectrum with our protanope H J in the hope of supplying a new type of data for the color vision of the colorblind

II

Procedure

For matching the short-wave side of the spectrum, we used mixtures of 440 m μ with white of 5000°K. For the long-wave side, we used 650 m μ with the same white, for which on some occasions we substituted the white of the neutral point at 491 6 m μ

The procedure was essentially the same as with measurements of λ discrimination described in the preceding paper. A mixture of white and 440 m μ or of white and 650 m μ was placed in half the field of the Helmholtz Color Mixer. In the other half, light of a given wavelength was placed, and the subject reported whether he could match the two fields merely by varying the brightness of this light alone. Successive wavelengths were tried until the values of λ_1 and λ_2 were located between which the subject could match the mixture of 440 m μ (or of 650 m μ) and white in the other half of the field. We found it convenient to locate the two edges of this matching band by working from non-matching regions on each side to the matching region between them. The readings were clearer than by

blue Everything below the blue curve represents white, everything between the blue curve and the identical red and green curves is yellow. The different wavelengths then produce merely different relative effects of yellow and white, again this means differences in saturation only

working steadily across the matching region until reaching the non matching portion this has already been referred to in the preceding paper

A sense of known mixtures were measured in this way covering the spectrum. We always set the mixture and the wavelength of the spectral light, while the subject controlled the brightness of the spectral light and made the judgment of match or no match.

In order to record the data quantitatively it was necessary to determine the relative brightnesses of the 5000°K white, of the neutral point white, of 440 m μ , and of 650 m μ . These were measured by H J himself. The 5000 K white light was put into the left half of the field, and homogeneous light of the neutral point (4916 m μ) into the other, and their relative brightness measured. The whole white light was then removed and 4916 m μ from the right collimator placed in its stead and its brightness measured in terms of the 4916 in the other field. From this we found the relative brightness of the white and the 4916 on the same side of the field. The relative brightnesses of 4916, 440, and 650 m μ as they occur in the Color Mixer were taken from H J's measurements of brightness distribution in the spectrum already recorded in the preceding paper. Knowing these values we were able to make mixtures corresponding to any desired brightness ratio

TTT

Saturation Distribution

The data are in Table I, and record the two positions in the spectrum, λ_1 and λ_2 , between which H J was able to match the specific mixtures of white and 440 m μ or of white and 650 m μ given in terms of the brightness ratio of color to white Those mixtures which were made with 650 m μ plus the neutral point (491 6 m μ) instead of whole white light, are printed in italics The four measurements in paren theses were made by the method of working through the matching band rather than from both sides of the band

The best way to grasp the meaning of the data is to examine Fig. 1 in which λ_1 and λ_2 are plotted against the logarithm of the brightness ratio of the mixtures, and to compare this figure with Figs. 2 and 6 of the preceding paper. There is at once evident a close correlation between these data and those of λ discrimination and of color mixture. The horizontal distance between the pairs of lines to the left and right of the neutral point is really a measure of $\Delta\lambda$ (including two discrimination steps), because a mixture which matches a given λ will naturally also match those values of λ which fall within the band $\Delta\lambda$ previously found. In Fig. 1 the $\Delta\lambda$ band is narrow near the neutral point, to the

TABLE I

Limits (λ_1 and λ_2) of Spectral Bands Matched by Protanope H J with Mixtures of

White Light Plus Either 440 mm or 650 mm

	440 mμ and white			550 mµ and white	
Brightness ratio 440/white	λι	λι	Brightness ratio 650/white	λι	λ ₂
70 8		473 3	166 0	572 9	
36 3		472 5	129 0	573 0	637 7
17 8		475 2	110 0	569 0	1
9 12		473 2	79 4	560 1	1
5 50		474 0	55 0	545 2	}
3 16		473 6	43 7	563 2	629 0
1 59	j	474 0	38 9	538 6	1
1 59	1	474 0	38 0	<i>525 3</i>	
0 759		475 7	27 5	<i>521 0</i>	j
0 741	424 6	(467 4)	26 9	524 4	}
0 380		476 1	26 9	526 0	ĺ
0 372	443 3	(466 4)	20 9	<i>523 1</i>	1
0 324		478 0	20 4	517 3	554 0
0 246	459 0	(470 7)	15 5	515 0	
0 246	j	478 8	13 5	515 4	
0 246	Į	480 4	10 7	512 0	524 9
0 135	464 6	(474 7)	9 33	<i>511 2</i>	
0 135		478 0	8 91	510 7	513 8
0 0589	473 1	483 0	5 50	<i>507 3</i>	
0 0589	-	480 4	4 37	506 0	509 2
0 0589	į	483 3	4 37	504 2	506 3
0 0219	4S2 S	486 0	3 16	502 7	503 <i>6</i>
0 0219	ļ	486 0	2 95	501 3	503 3
0 00977	486 0	488 8	2 19	499 8	500 8
0 00407	488 8	489 7	1 91	500 S	501 O
0 00148	489 6	491 3	1 26	496 5	497 4
ļ	ļ		0 977	495 9	497 8
į	ļ		0 724	495 6	497 0
İ	ļ		0 589	493 5	494 3
1			0 316	491 3	493 3
	}		0 295	492 9	493 5
	}		0 295	492 2	493 3
	1		0 138	491 6	492 6
	j		0 107	488 8	490 7
			0 0851	491 2	493 0
}	1		0 0550	491 2	493 5
Ì	1		0 0302	490 7	491 6

left it widens rapidly, while to the right it spreads only slowly up to about 570 m μ , beyond which it also widens rapidly This is precisely what happens to $\Delta\lambda$ for H J in the wavelength discrimination meas urements shown in Fig 2 of the preceding paper. Notice that the region between 470 and 570 m μ is one of sharply changing saturation for the colorblind, and that this same region is one of high wavelength

Fig. 1 Relative saturation in the spectrum for the protanope H J Mixtures of 440 m μ and white are to the left of the neutral point mixtures of 650 m μ and white are to the right. The points give the limits of the band $\Delta\lambda$ which H J matches with each particular mixture. To the right of the neutral point the mixtures using white of color temperature 5000°K are open circles while those using the white of the neutral point (491 6 m μ) are solid circles. No difference is apparent in the results. The dotted circles are the ones in parentheses in Table I and were secured by working continuously across the matching band from left to right instead of from each side

discrimination Since at the neutral point the spectrum appears white and therefore completely unsaturated, the change of the spectrum to either side of the neutral point must be in the direction of increasing saturation, the maximum saturation being reached at the two ends

Some estimate of the degree of saturation at the two ends of the spectrum may be made in terms of the data. Fig. 1 shows that to match a just perceptible step from the white of the neutral point, it is

necessary to have a mixture of one part of 440 m μ to about 100 parts of white. This means that H J can tell the difference between white, and white containing about 1 per cent of 440 m μ . The least perceptible colorimetric purity of 440 m μ is therefore 0.01 for the colorblind Priest and Brickwedde (1926, see their data in Hecht, 1932) give 0.0022 as the average least perceptible colorimetric purity of 440 m μ for their normal eyes. Assuming the saturation of a spectral color to be inversely proportional to its least perceptible colorimetric purity, then 440 m μ appears about five times as saturated to the normal eye as it does to the colorblind eye

A similar computation may be made for 650 m μ H J can just differentiate the neutral point from a mixture of white containing about 10 per cent of 650 m μ This gives 650 m μ a least perceptible colorimetric purity of about 0.1 Priest and Brickwedde's average for this wavelength is 0.0059 which makes 650 m μ about twenty times as saturated for the normal as for the colorbind

Evidently, the spectrum for the colorblind is reduced in saturation to different degrees in its different parts, so much so that at the neutral point it is completely unsaturated

It is worth pointing out a curious paradox in this connection. From Fig. 1 it can be seen that the addition of 10 per cent white to 650 m μ enables H J to match it with about 520 m μ , a really large shift in λ On the other hand, the addition of 10 per cent white to 440 m μ produces hardly any change in the λ which it will match, to match 440 m μ with 470 m μ —a comparatively small shift—requires the addition of 10 parts of white to 1 part of 440 m μ . Thus the protanope H J is much more sensitive to the addition of white to 650 m μ than to 440 m μ . If the addition of white to a saturated color is more easily perceptible than the same addition to an unsaturated one, this means that 650 appears more saturated to H J than does 440 m μ . However, judging by the least perceptible colorimetric purity computation, 440 is about ten times as saturated as 650 m μ

This apparent contradiction is one of interpretation only. It may mean that the colorblind is more sensitive to changes in an unsaturated color than in a saturated one, or that least perceptible colorimetric purity in the colorblind is no measure of saturation, or something different from either. It leaves untouched the main point to be made

from the present measurements, which is that saturation is the basis on which the colorblind discriminates wavelength on either side of the neutral point

τv

Color Mixture as Saturation

We have referred to the gauging of the spectrum with two primaries by the dichromat as color mixture. It is important to point out that this is strictly incorrect, that, just as the basis of wavelength discrimination is not hue (that is, color) but saturation, so the basis of spectrum gauging is also not hue but saturation.

The dichromat cannot distinguish his neutral point from white Moreover, a specific mixture of two primaries also matches the neutral Therefore all other mixtures of the two primaries consist of two parts one part made up of the whole of the first primary plus the necessary fraction of the second to make white, and the other part made up of the excess of the second primary. To the left of the neutral point, the short wave primary dominates and the variation along the spectrum consists merely in the ratio of its luminosity to that of the associated white made up of the neutral point mixture, while to the right of the neutral point the long wave primary similarly dominates and the spectrum there is matched by the variation in rela tive amount of primary and white The situation is precisely the same as that just presented in which the spectrum on either side of the neutral point was matched with mixtures of white and either 440 m μ or 650 m μ In the case of the color mixture data the two primaries happen to be 458 7 and 570 0 mu, and the white is made of a mixture of the two equivalent to the neutral point

If this reasoning is correct, it should be possible to derive from the spectrum gauging (color mixture) data of Table III and Fig. 6 of the preceding paper, the amount of white and of excess primary for each mixture data, and a plot of the ratio of primary luminosity to white luminosity for the spectrum should yield a set of curves very similar to Fig. 1 in which the relative saturation was measured directly

 $^{^2}$ Because saturation is so essential a factor in determining λ discrimination for the colorblind it is important to investigate its contribution to similar measurements for the color normal

The computations involve several steps, and may be best explained by an example. Take the primary brightness ratio 22.5/1 whose matching limits for H J are 446.6 and 469.1 m μ . When the bright-

Fig 2 Relative saturation in the spectrum computed from the color mixture data in Table III and Fig 6 of the preceding paper A W G is a deuteranope, H J a protanope Compare this figure with Fig 1 Even though the primaries (shown as short vertical lines) in the two figures are different, the computed saturation distribution resembles the measured saturation so strikingly as to leave little doubt of their essential identity

ness of $\lambda 570~0$ is 1, the total brightness of this mixture is 23.5 The ratio of the same primaries to match the neutral point at 491.6 m μ is 0.063/1, so that when the brightness of $\lambda 570~0$ is 1 the total bright-

ness is 1 063 and is white Since the 22 5/1 mixture and the neutral point mixture of 0 063/1 both contain 1 part of 570 0 m μ , the 22 5/1 mixture therefore contains 1 063 parts of white, while the rest, 22 4 parts, is 570 0 m μ alone The fraction 22 4/1 063 therefore gives the ratio of primary to white, and is the information required

We have made these computations for the mixture data of H J in Table III of the preceding paper, and the results are incorporated in $\Gamma_{\rm IS}$ 2. The results for A W G are also shown in Fig. 2. If $\Gamma_{\rm IS}$ 2 is compared with $\Gamma_{\rm IS}$ 1 showing the saturation distribution as actually measured, it is obvious that the two are of the same form and appear ance and yield the same information. The two are not identical because the primaries used are not the same, in Fig. 1 they are 440 and 650 m μ , while in $\Gamma_{\rm IS}$ 2 they are 458 7 and 570 0 m μ . But in spite of this the quantitative similarities are so apparent as to leave scant doubt that on each side of the neutral point the property which determines color mixture for the colorblind is the same which determines wavelength discrimination, and is saturation

It is worth emphasizing this point because it illustrates the fact that properties of color vision which for the color normal are independent, become non independent for the colorblind. In the present case, mixture data and saturation distribution data were secured separately and by an independent technic. Nevertheless, they turn out to be related so that one may be derived from the other. Very likely least perceptible colorimetric purity is a property which is also derivable from the same data.

We began our work with the recognition that the quantitative determination of only four independent conditions is necessary in order to describe the color vision of colorblinds and to derive the spec tral distributions of the basic cone primaries. Considering that five or six independent conditions were known for color normals, it seemed a simple matter to find four for colorblinds. However, the four are not so easily forthcoming for the reason that several conditions which are independent for the color normal become dependent and identical for the colorblind.

What has come out of the work so far is the recognition of saturation as the factor which determines the quantitative properties of the color blind in the spectrum on either side of the neutral point. In terms of

this, protanopes and deuteranopes see the spectrum as white at the neutral point, shading off on the short-wave side to a color (possibly blue) with decreasing amounts of white in it, and on the long-wave side to a color (possibly yellow) also with decreasing amounts of white in it. The spectrum to the dichromat thus appears made up of only two hues, one at each end, these hues gradually become less saturated in the middle portion of the spectrum, reaching complete unsaturation at the neutral point.

SUMMARY

- 1 Wavelength discrimination for the colorblind is entirely determined by saturation differences in the spectrum. From the neutral point to the short-wave end, his spectrum may be completely matched by 440 m μ plus white, to the long-wave end by 650 plus white. The proportion of color to white, hence the relative saturation, changes rapidly in the region of small $\Delta\lambda$ at the center, and slowly in regions of large $\Delta\lambda$ at the ends
- 2 The data of spectrum gauging with two primaries (color mixture) by the dichromat are shown to contain the saturation distribution in the spectrum for the dichromat. This is because each mixture of primaries may be considered as composed of a mixture which matches white and of an excess of one primary. The data when so computed yield saturation distributions almost identical with those found by direct measurement, and show that on each side of the neutral point the basis of color mixture for the colorblind lies in saturation and not in hue differences
- 3 To judge by these measurements, the spectrum for the protanope and deuteranope is composed of only two hues, themselves probably of low saturation, situated one at each end Toward the center these hues decrease still more in saturation until they completely disappear in the white of the neutral point

BIBLIOGRAPHY

- Hecht, S, The development of Thomas Young's theory of color vision, J Opt Soc America, 1930, 20, 231
- Hecht, S, A quantitative formulation of colour-vision, Report of a Joint Discussion on Vision, Cambridge, University Press, 1932, 126

- Hecht, S, Vision II The nature of the photoreceptor process, in Murchison, C, A handbook of general experimental psychology, Worcester Clark University Press, 1934, 704
- von Kries J, and Küster, F, Ueber angeborene Farbenblindheit, Arch Physiol, 1879, 513
- Priest I G and Brickwedde, F G, The minimum perceptible colorimetric purity as a function of dominant wave length with sunlight as a neutral standard, J Opt Soc America 1926, 13, 306
- Young, T, On the theory of light and colors, in Young T, Lectures in natural philosophy, London Joseph Johnson, 1807, 2, 613

STATISTICAL EVALUATION OF SIEVE CONSTANTS IN ULTRAFILTRATION

By JOHN D FERRY

(From the Laboratories of the Hopkins Marine Station, Pacific Grove)

(Accepted for publication, November 30, 1935)

It is generally agreed that the principal process involved in ultra filtration is one of sieve action, complicated by adsorption and other effects arising from the extremely large ratio of pore length to pore diameter in all ultrafilter membranes (1–5)

The present paper discusses the rôle of sieving when a monodisperse system is forced through a perfectly isoporous filter membrane, under conditions of "normal" filtration (5), when the primary adsorbing capacity of the membrane has been satisfied, and blocking effects are Under such conditions, it has often been implicitly assumed that the disperse phase either passes the filter in undiminished concentration or is completely retained Thus, when filtration of a disperse system through membranes of different porosities yields filtrates of different concentrations, it appears that there are different sizes of particles in the suspension or solution. On this basis, it has been concluded, for example, that certain lyophobic hydrosols (6) and sus pensions of urease (7) and bacteriophage (8) are polydisperse ever, while some of these systems probably do contain particles of varying sizes, the occurrence of a sieving effect (i e, partial retention of the disperse phase in ultrafiltration) is not a criterion of polydis As a matter of fact, sieving occurs in the ultrafiltration of proteins (9) which are known through the results of ultracentrifugal analysis to be virtually monodisperse (10, 11) The semi quantitative theoretical treatment outlined below shows that such sieving in the filtration of a monodisperse system may be anticipated on statistical grounds, on the basis of simple steric limitations in the penetration of filter pores 1

¹ The interpretation of sieving on a statistical basis has been suggested in a previous paper (5)

Definition of the Sieve Constant

Manegold and Hofmann (12) defined a "sieve constant" (φ) for the process of ultrafiltration, as follows

$$\frac{c_f}{c_a} = \varphi \tag{1}$$

where c_f is the instantaneous concentration of a small sample of filtrate, and c_s is the simultaneous concentration of the filtering solution. For complete retention of the solute or disperse phase (i e, for the case of a semi-permeable membrane), $\varphi=0$, when the solute passes in undiminished concentration, $\varphi=1$. These authors suggested the possibility that, in certain cases, the sieve constant may be neither 0 nor 1, even when the membrane is isoporous and the solution (or dispersion) monodisperse

Assuming the sieve constant to be independent of c_f , Manegold and Hofmann (12, 13) calculated various expressions for the concentrations of the total filtrate and of the residue at any point in the course of filtration, depending on the manner in which the filtration was carried out (in a closed system, or in a system where the volume of residue was kept up by continuous or intermittent addition of the suspension medium) Application of these equations to data for the ultrafiltration of colloidal chromium hydroxide (14) indicated that, for membranes of a certain porosity, at least some of the particulate species in the sol filtered with a sieve constant neither 0 nor 1, unless the membranes were heteroporous

We shall employ the definition of Manegold and Hofmann, and proceed to evaluate the sieve constant in terms of microscopical quantities

Scales for Expressing Membrane Porosity

The usual method of calibrating an ultrafilter membrane, by the measurement of the rate of flow of water through it and the application of Poiseuille's law to an assumed structure of cylindrical capillaries of circular cross-section, probably gives a figure for the average pore diameter which is, if anything, too small, especially for a membrane of

low porosity, while the size of the largest particles retained by the membrane is smaller still $(4,15,5)^2$. The continuous scale of porosity grading provided by rate of flow calibrations, calculated in terms of average pore diameter (j), is the most convenient for comparative purposes (5). For statistical evaluation of the sieve constant, how ever, the pore size will be at first expressed in terms of the diameter effective in filtration (j'), defined equal to the radius of the largest particulate species which absolutely fails to pass the filter under given experimental conditions. This diameter j' will be expressed later in terms of the calibrated average pore diameter

Evaluation of the Sieve Constant in Terms of j'

If a monodisperse system of particle diameter J is filtered through isoporous filters of different porosities, the sieve constant for filters of j' < J will be 0 For filters of j' > J, φ will be between 0 and 1, for j' > J, $\varphi \cong 1$

It is assumed that the membrane structure consists of parallel cylindrical cipillanes of circular cross section, a model whose plaus ibility as a working basis is indicated by studies of water content, diffusion, and conductivity (15, 5), and that, when the membrane is in adsorption equilibrium with the filtering solution, the pore diameter j' effective in the filtration of the disperse phase is also effectively the diameter of the cylinder through which the dispersion medium flows. The difference between j and j' is thus attributed to primary adsorption of the disperse phase or of some other capillary active substance (cf. (4)). It is further assumed that the solution above the membrane remains homogeneous throughout filtration, local concentration of the disperse phase immediately above the membrane surface being prevented

The filtering solution, considered from a hydrodynamic standpoint, follows streamlines which far above the membrane are uniformly distributed over the membrane area, but in the plane of the membrane surface are concentrated opposite the pore openings and distributed

² These statements refer to ether alcohol collodion membranes and in particular to those of Elford (23, 24–16)

according to Poiseuille flow, i e, at the mouth of any pore, the velocity of flow at a distance ρ from the center is given by

$$v(\rho) = v_1 \left(1 - \frac{\rho^2}{r'^2}\right) \tag{2}$$

where v_1 is the velocity at the center of the pore, and $r' = \frac{1}{2}j'$ The volume of suspension medium entering the pore in time dt is accordingly

$$dV = dt \int_0^{r'} 2\pi \rho v(\rho) d\rho = \frac{\pi v_1 r'^2}{2} dt$$
 (3)

A particle of the disperse phase, carried by the flow of suspension medium toward the pore mouth, will have a certain probability of penetrating the latter, depending on how closely it approaches the rim of the opening. For the purposes of this calculation, it is reasonable to take that probability as unity for all particles falling entirely within the opening, that is, those whose centers strike a circle of radius r' - R, where $R = \frac{1}{2}J$. The probability of penetration is taken as zero for all those whose centers strike outside such a circle. It is this steric limitation which introduces a statistical sieving. If the velocity of each particle is the hydrodynamical velocity corresponding to the point occupied by its center, Brownian movement being neglected, the number of particles entering the pore in time dt is

$$dn = c_{s}dt \int_{0}^{r'-R} 2\pi \rho v(\rho) d\rho = c_{s}\pi v_{1} \left[(r'-R)^{2} - \frac{(r'-R)^{4}}{2r'^{2}} \right] dt$$
 (4)

so that the concentration of the filtrate is

$$c_f = \frac{dn}{dV} = c_s \left[2 \left(\frac{r' - R}{r'} \right)^2 - \left(\frac{r' - R}{r'} \right)^4 \right]$$

and, replacing radii by diameters, the sieve constant is

$$\varphi = \frac{c_f}{c_s} = 2\left(\frac{J' - J}{J'}\right)^2 - \left(\frac{J' - J}{J'}\right)^4 \tag{5}$$

Expression of the Sieve Constant in Terms of Experimentally Measured Quantities

The end point porosity is defined as the average pore diameter of the most highly porous filter which apparently completely retains the disperse phase (4) At the end point, equation (5) becomes

$$\varphi = 2\left(\frac{J-J}{J}\right)^2 - \left(\frac{J-J}{J}\right)^4 \tag{6}$$

where φ_{\bullet} is the smallest relative concentration of the disperse phase which can be detected by the analytical methods employed, and j'_{\bullet} is the end point porosity measured on the filtration effective scale (only very slightly greater than J). The end point porosity in terms of the calibrated average pore diameter, j_{\bullet} , may be substantially greater than J, and the relationship between the two may be determined for a given type of suspension by filtration of suspensions of known particle size (4, 5), to evaluate an experimental correction factor

$$q = J/j \tag{7}$$

The difference between j_* and j'_* , attributed to primary adsorption of the disperse phase (or of a capillary active substance) within the pores, is now assumed to represent a constant difference between the two porosity scales, thus

$$j-j = j-j = j - \frac{J}{1-\sqrt{1-\varphi}}$$
 (by equation (6))

and

$$j = j - j + Jf \tag{8}$$

where

$$f = \frac{1}{1 - \sqrt{1 - \sqrt{1 - \varphi}}}$$

Substituting (8) into (5) we obtain

$$\varphi = 2 \left\{ \frac{j - j + J(f - 1)}{j - j + Jf} \right\}^{2} - \left\{ \frac{j - j + J(f - 1)}{j - j + Jf} \right\}^{4}$$
(9)

in terms of experimentally measured quantities—the calibrated porosity j_e , the calibrated end-point porosity j_e , and the particle diameter J

Factors Ignored in the Above Treatment

It is possible that the above criterion for penetration of a pore is too restricted, a particle may strike the surface of the membrane so that it does not quite fall entirely within the pore opening, and yet may glance off the rim and be carried into the pore by the flow of dispersion Such a particle, however, would probably be delayed by a drag from the membrane surface, so that the resulting enrichment of the filtrate would be minimized Another factor in the penetration of pore openings which has not been considered is the influence of the electrical charges of membrane and disperse particles however, the most serious objection to the calculations outlined above lies in the fact that penetration of a particle into a pore does not assure its emergence at the bottom of the membrane. The ratio of pore length to pore diameter is seldom less than a thousand to one, and, although the tortuosity of pores as pictured by some authors has perhaps been exaggerated (15, 5), it is likely that many particles become lodged in the membrane in the course of filtration standpoint, values of the sieve constant calculated from equation (9) may be too large The discrepancy, however, should be the least in the range of sieve constants approaching unity This is found to be the case when equation (9) is compared with experimental data for ultrafiltration of viruses (see below)

Comparison of Equation (9) with Experimental Data

For suitable experimental data with which equation (9) may be compared, reference is made to the work of Elford and collaborators, who have employed graded collodion membranes of a high degree of isoporosity in ultrafiltration studies under standard conditions of normal filtration. Their data give the maximum relative concentration of filtrate, u_{max} , as a function of the membrane porosity j (the "end-point curve" (9) or "filtrability curve" (16)). While u differs somewhat from φ , being the ratio of filtrate concentration to the initial, rather than the instantaneous, concentration of filtering solu-

tion, the curves for u_{max} (experimental) and φ (equation (9)) should be qualitatively comparable. The experimental u_{max} should in general be higher than φ , since the residue becomes concentrated in the course of filtration, this concentrating effect is, however, opposed by the primary adsorption of the membrane

Comparisons are made for the ultrafiltration of suspensions of horse serum albumin in water at two pH's (9), of hemocyanin (Helix) in Hartley's broth (17), and foot and mouth disease virus in broth (18) For the proteins, the values of J are taken from Svedberg's data (10), on the basis of spherical particles (ignoring the slight anisodimension ality in the case of serum albumin), the value for foot and mouth

TABLE I
Constants Employed for Calculation of Theoretical Curies

	j	J		ſ
Serum albumin dispersed in water pH 8 8	11 mµ	5 4 mµ	0 01	1 08
Serum albumin dispersed in water pH 4 1	12 mu	5 4 mμ	0 01	1 08
Hemocyanın (Helix) di persed in Hartley s broth pH 7.3	55 mu	24 mu	0 01	1 08
I oot and mouth disease virus dispersed in			001	1
Hartley's broth pH 76	25 mμ	10 mμ*	10-6	1 00

^{*} Calculated by application of the correction factor q=0.41 (reference (5))

disease virus is calculated by equation (7) (cf. (4,5)) — The constants required for equation (9) are summarized in Table I — The experimental and theoretical curves are compared in Fig. 1

Serum Albumin — The theoretical curves for serum albumin, which do not differ much from each other, fall between the experimental curves for pH 8 8 and pH 4 1. This situation might seem attributable to the effect of the charge of the protein (negative in one case and positive in the other), which was not taken into account in the theoretical considerations. However, such an interpretation would mean an enhanced probability of penetration in the case of negatively charged particles, whereas much experimental evidence (19, 20) shows that collodion membranes are less readily penetrated by negatively than by positively charged particles. The fact that the experimental

curve for pH 8 8 is high is probably due to the nature of the comparison between u_{max} and φ , as explained above—The experimental curve for pH 4 1 is low, probably owing to the fact that filtration at this pH does not proceed under quite "normal" conditions, some blocking occurring (9)—The slight degree of anisodimensionality of the serum albumin molecule probably has little influence on the statistics of pore penetration

Hemocyanın (Helix) — The agreement between theoretical and experimental curves for hemocyanın, which is practically within

Fig. 1 Comparisons of theoretical and experimental filtrability curves. The sieve constant (theoretical) and maximum relative concentration of filtrate (experimental) are plotted against the logarithm of calibrated average pore diameter in $m\mu$

experimental error, is probably due to a counterbalancing of the two factors mentioned in the preceding paragraph. The filtration of hemocyanin was, in fact, not quite "normal" (17)

Foot-and-Mouth Disease Virus — The theoretical curve for foot-and-mouth disease virus rises much faster from the end-point than does the experimental curve — This effect is still more marked for other viruses and bacteriophages, so that it is impossible to reconcile their end-point curves with curves calculated by equation (9) — Thus, for membranes of porosity only slightly above the end-point value, the probability for transmission of virus is apparently much lower than that derived from the simple steric considerations of equation (4)

This situation may be ascribed to the difficulty of saturating the primary adsorbing capacity of the membrane in dilute virus suspen sions (4, 5) However, the general agreement of the end point curve for foot and mouth disease with the theoretical curve is sufficient to suggest that the shape of the former may be due to statistical sieving alone, without the necessity of postulating the existence of aggregates held back at high porosities, or of a certain degree of heteroporosity in the filters employed

DISCUSSION

This formulation of statistical sieving supports the viewpoint that the appearance of sieve action is not a criterion for heterodispersion in the system filtered nor heteroporosity in the filters employed Heterodispersion may be demonstrated by the appearance of sieving over a much wider range of porosities than is the case for a monodisperse system (as was shown by Grabar and Riegert (21) for urease). or by ultrafiltration of fractions separated by centrifugation or previ ous filtrations (as was shown by Bechhold (22) for a silver sol)

The applicability of equation (9), considering the excessive simpli fications employed in its derivation, lends encouragement to the possibility of attacking the problems of osmosis and penetration on a microscopical basis

SUMMARY

The partial retention of the disperse phase in the ultrafiltration of a monodisperse system through an isoporous filter is interpreted on a statistical basis, and a simple expression for the sieve constant is evaluated in terms of the calibrated membrane porosity and the particle size Curves calculated from this expression are in reasonable agreement with experimental data for the ultrafiltration of serum albumin, hemocyanin (Helix), and foot and mouth disease virus

The author desires to thank Professor J W McBain of Stanford University for his interest and helpful criticism

REFURENCES

- Duclaux, J, and Errera, J Kolloid Z, 1926, 38, 54
 Collander, R Soc Sc Fennica Comm Biol, 1926, series 6 2, 1

- 3 Manegold, E, and Hofmann, R, Kolloid-Z, 1930, 50, 22
- 4 Elford, W J, Proc Roy Soc London, Series B, 1933, 112, 384
- 5 Ferry, J D, Chem Rev, 1936, 18, 373
- 6 Zsigmondy, R, and Carius, C, Ber chem Ges, 1927, 60, 1047
- 7 Jacoby, M, Brochem Z, Berlin, 1926, 167, 21
- 8 Wollman, E, and Suarez, E, Compt rend Soc biol, 1927, 96, 15
- 9 Elford, W J, and Ferry, J D, Brochem J, London, 1934, 28, 650
- 10 Svedberg, T, Kolloid-Z, 1930, 51, 10
- 11 McFarlane, A S, Brochem J, London, 1935, 29, 407
- 12 Manegold, E, and Hofmann, R, Kolloid-Z, 1930, 51, 220
- 13 Manegold, E, and Hofmann, R, Kolloid-Z, 1930, 52, 19
- 14 Manegold, E, and Hofmann, R, Kolloid-Z, 1930, 52, 201
- 15 Elford, W J, and Ferry, J D, Brit J Exp Path, 1935, 15, 1
- 16 Grabar, P, Bull Soc chim biol, 1935, 17, 1245
- 17 Elford, W J, and Ferry, J D, Brochem J, London, 1936, 30, 84
- 18 Galloway, I A, and Elford, W J, Brit J Exp Path, 1931, 12, 407
- 19 Michaelis, L, Kolloid-Z, 1933, 62, 4
- 20 Erschler, B, Kolloid-Z, 1934, 68, 289
- 21 Grabar, P, and Riegert, A, Compt rend Acad, 1935, 200, 1795
- 22 Bechhold, H, Z phys chem, 1907, 60, 257
- 23 Elford, W J, J Path and Bact, 1931, 34, 505
- 24 Bauer, J. H., and Hughes, T. P., J. Gen. Physiol., 1934, 18, 143

ELECTRIC IMPEDANCE OF INJURED AND SENSITIZED RED BLOOD CORPUSCLES

By HOWARD J CURTIS

(From the Walter B James Laboratory for Biophysics, The Biological Laboratory, Cold Spring Harbor, Long Island)

(Accepted for publication, December 4, 1935)

INTRODUCTION

In a recent paper on the electric impedance of hemolyzed suspensions of mammalian erythrocytes (Fricke and Curtis, 1935a), it was shown that even after a red cell is hemolyzed it still offers a high resistance to the passage of an electric current, or, in other words, that the mem brane is still relatively impermeable. It was further shown that for normal cells the membrane capacity and resistivity at low frequency increase only slightly with decreasing frequency, while they change quite rapidly with the frequency in the hemolyzed suspensions. Moreover, in the case of a chemical lysin such as saponin the increase becomes more marked as stromatolysis proceeds.

It was pointed out that a polarization capacity due to selective ionic permeability could account for this increase and the more marked increase in the case of the hemolyzed cells could be explained as due to an increased permeability. However, another explanation was advanced, namely, that the increase might be due to a polarization of the current passing through the double layer, such as has been observed in aqueous suspensions of non conducting particles like powdered glass or paraffin oil (Fricke and Curtis, 1935b). On this hypothesis, the change on hemolysis would be due to some sort of a change in the double layer. The former of these two possibilities seemed the most likely.

Thus it appeared as though the electrical method presented a new way to measure changes in the cell membrane. In order to test this, it was decided to make a series of measurements on red cell suspensions which had been treated in various ways to produce changes in the

membrane, to see if the low frequency variation of capacity is affected by any of these changes

EXPERIMENTAL PROCEDURE

The method of measurement was the same as that previously described (Fricke and Curtis, 1935a) except that the measuring cells were of a different size. The ones used were 20 cm long and had a cross-sectional area of 1 3 cm². The method consists essentially in using a Wheatstone bridge to indicate the electrical equivalence of a measuring cell filled with the suspension and an exactly similar cell filled with a salt solution with a variable air condenser in parallel to it. The resistance of the suspension is then the resistance of the salt solution and its capacity is the capacity of the condenser plus the static capacity of the comparison cell. The greatest single error in such measurements at low frequencies is due to electrode polarization. Because of this and other errors which will be discussed in a subsequent paper, it has not been found possible to make these measurements with sufficient accuracy for the present purpose at frequencies below 2 kilocycles per second.

Rabbit blood or washed rabbit cells was used in all the experiments. To obtain lecithinated cells, just enough lecithin was added to the plasma to make the cells completely spherical. The complete change of shape presumably corresponds to some important change at the cell surface (Ponder, 1936). In the case of systems containing glucose, the cells were suspended in 5.6 per cent glucose, their permeability is presumably modified in such a medium, for they lose salts (Joel, 1915, Kerr, 1929), and they may eventually hemolyze (Yeager, 1929). In the case of saponin, half as much saponin was added as would cause hemolysis in 30 minutes. In the colloidal silicic acid, amboceptor, and tannic acid systems, enough sensitizing agent was added in each case to sensitize the cells completely to guinea pig complement, but not enough to cause agglutination. It is not known whether permeability changes are associated with sensitization or not, but the nature of the cell surface must be considerably modified. In no case was there any hemolysis at the end of the experiment.

RESULTS

The results are shown in Fig. 1, the membrane capacity in μ f per cm² being plotted against the frequency. Since the absolute value of the membrane capacity cannot be measured with as great an accuracy as the variation of this capacity with the frequency, and since we are interested primarily in this variation, the capacity values have arbitrarily been made to agree at 32 kilocycles. There is no discernible systematic variation in the absolute values

It will be seen that the largest variation is exhibited by the leci-

thinated corpuscles, but even here it is somewhat doubtful if the experimental accuracy is good enough to enable us to say definitely that the increase is greater than that for normal cells—The dotted curve is a reproduction of a typical curve obtained for a suspension of hemolyzed red cells, and is included to give an idea of the relatively

Fig. 1 Membrane capacity is log frequency for normal, injured, and sensitized red cells The dotted curve represents hemolyzed red cells

enormous increases encountered in these cases, and to show that the present increases do not in any way approach them

It was not possible in all cases to measure the variation of resistivity with frequency, but where such measurements were made it was found that, within the experimental error, the variation was the same as for normal cells

DISCUSSION

The results show conclusively that there is no marked increase in the frequency variation of the membrane capacity of rabbit red cells when they are "injured" or sensitized up to the point of hemolysis or agglutination. While it is not possible to state exactly what sort of changes in the membrane have taken place in each case, it can certainly be said that marked changes in permeability have taken place at least in the cases of glucose and saponin, and in all cases the membrane is far from being unchanged. This, therefore, is not a sensitive method for measuring changes in membrane properties, although a prolonged and careful investigation might show a statistical difference between normal and injured cells

The result may mean that the form of the frequency variation is an extremely insensitive measure of permeability and other membrane changes, and capable only of disclosing the very great changes associated with hemolysis, or it may mean that the change in the frequency variation at low frequencies has nothing to do with permeability, as has been already pointed out

The author is indebted to Drs Eric Ponder and Hugo Fricke of this Laboratory for assistance and cooperation in this work, and to Dr L Reiner of Burroughs Wellcome & Co for preparing the anti-rabbit amboceptor

SUMMARY

On the basis of previous work on the electrical properties of hemolyzed red cells, it might be supposed that the variation of the capacity with frequency at low frequencies is an indication of membrane permeability. To test this, rabbit red cells were subjected to treatment with lecithin, tannic acid, glucose, saponin, amboceptor, and colloidal silicic acid, each in sub-lytic doses. No change in any of the electrical properties of any of the suspensions could be detected. The result may mean that the form of the frequency variation is an extremely insensitive measure of permeability and other membrane changes, and capable only of disclosing the very great changes associated with hemolysis, or it may mean that the change in the frequency variation at low frequencies has nothing to do with permeability

BIBLIOGRAPHY

Fricke, H, and Curtis, H J, J Gen Physiol, 1935a, 18, 821 Phys Rev., 1935b, 47, 974 Joel, A , Arch ges Physiol , 1915, 161, 5 Kerr, S E . J Biol Chem , 1929, 85, 47

Ponder, E J Exp Zool , 1936, 13, 298 Yeager, J F, Am J Physiol, 1929, 98, 484

ANALYSIS OF THE GEOTROPIC ORIENTATION OF YOUNG RATS X

BY W J CROZIER AND G PINCUS

(From the Biological Laboratories Harvard University Cambridge)

(Accepted for publication November 18, 1935)

1

The investigation of the inheritance of physiological characters requires that aspects of the performance of individual organisms be measured as quantitative functions of relevant variables sibility of demonstrating in this way the heritable character of elements of behavior has a very special importance. We have been led to an examination of this matter (Crozier, 1929, Crozier and Pincus, 1929-30a. Crozier and Pincus, 1931-32d) partly from the standpoint that, in the first place, a peculiarly significant procedure is thus made available for the testing of quantitative formulations of behavior in particular instances It has also been pointed out that a type of pro cedure is thus illustrated which makes possible the recognition and the genetic use of traits otherwise obscure or unrecognized, and which may be taken to provide a schema for the interpretation of breeding results which could otherwise easily be regarded as confused or theo retically unmanageable. An important part of this procedure in volves the analytical use of measures of the capacity of the organism to vary the expression of the estimated performance under controlled, measured inciting conditions

The specific element of performance extensively utilized has been the geotropic orientation of young rats of several different inbred lines (Crozier and Pincus, 1926, 1926–27, 1929–30a, etc.) The extent of upward orientation (angle θ) during creeping upon an inclined surface is a characteristic function of the slope of surface (angle α) for each inbred line. Three of these lines have been employed in genetic tests of the assumptions (1) that the quantitative differences observed are "real," and (2) that the forms of the relationships between θ and α

are in a biological sense significantly and properly expressed by the curves drawn to describe them The results obtained from the breeding of lines A and K have already been considered (Crozier and Pincus, $1929-30\,a$, b), the outcome of crossing lines A and B has also been dealt with so far as concerns the F_1 generation and the backcross of F_1 with B (Crozier and Pincus, $1931-32\,d$) We now discuss the result of backcrossing $F_{1(A\times B)}$ with line A

In none of these tests could the quantitative features of the outcome be predicted with certainty, the situation is essentially complex, and the whole procedure is to a degree still in an exploratory stage of de-Yet the body of results to the present has given a most encouragingly consistent picture This internal consistency is perhaps its strongest feature The nature of the case investigated has placed physical limitations upon the numbers of individuals it has been possible to examine, the present paper, for example, has been based upon the consideration of approximately 10,000 orientation angles interpretation of the variability of performance has thus a special importance for the verification of the classification of individuals assumed to represent diverse classes of segregates
In any case, the crucial thing about the present material is that it was predicted (Crozier and Pincus, 1931–32d) that in the backcross $F_{1(A \times B)}$ with B the progeny were expected to be all of one type, and essentially indistinguishable from the B stock as regards θ vs α , since the F_1 individuals appeared to show dominance of the B condition, whereas with $F_1 \times A$ the progeny should show marked diversity among the individual The data demonstrate abundantly that this expectation $\theta - \alpha$ curves is realized. There is also obtained a very striking illustration of the quantitatively reproducible character of specific indices of variability

 \mathbf{II}

Young rats of our races A and B (Crozier and Pincus, 1927–28, 1929–30a, 1931–32a, b, d) give characteristic, reproducible relationships between angular extent of upward orientation (θ) and inclination of substratum (α) during geotropic progression. The F_1 individuals from cross-matings of these races show in quantitative features of their geotropic behavior an essential dominance of the type of performance given by the B parents. The diagrammatic quality of this

dominance is only slightly upset by a kind of "heterosis" effect which we have interpreted (Crozier and Pincus, 1931-32e) as due to a particular sort of disharmony of developmental processes in the F1 rats The relationship is further complicated, however, by disturbances of the variability of the orientation angles, although these are not pronounced, the total observed variation of θ is not affected, but the variability uncontrolled by the magnitude of $\sin \alpha$ is increased, so that the percentage modifiable variation is reduced. This effect disappears in the adult Γ_1 's (Crozier and Pincus, 1935-36) relatively minor differences between the young F₁ individuals and B rats largely disappear in the backcross generation $(\Gamma_1 \times B)$ so that these backcross rats are distinguishable from their B grandparents only by a slightly lower percentage of modifiable variation of θ This is the result to be expected if the increase of the "proportion of the variation of θ not a function of $\sin \alpha$ " is determined by the influence of 'modifiers' not directly linked with the determination of θ as related to α , and perhaps not primarily of a genetic character The $(F_1 \times B)$ generation should then show, as a group, a percentage modifiable variation intermediate between that for Γ_1 and for B, and this was found In $(\Gamma_1 \times B)$ rats the slight distortion of the fundamental B curve (θ vs $\log \sin \alpha$) which the F_1 individuals show, is not certainly detectable This was attributed to the practical suppression of the "developmental disharmony" which in Γ_1 rats makes it appear as if a posterior region of the body grows to a certain extent faster than the multiplication of the correlated complement of tension receptor units in the posterior legs (Crozier and Pincus, 1931-32e)

When the results of the opposite backcross $(F_1 \times A)$ are to be considered, the situation is expected to be much more involved. We have pointed out that the contrast to be looked for in the behavior of $(F_1 \times A)$ and $(F_1 \times B)$ rats supplies a searching test of the competence of the whole analysis (of Crozier and Pincus, 1931–32 e). The A and the F_1 and B lines show differences as regards (1) threshold $\sin \alpha$, (2) θ at threshold, (3) the θ vs α curve, at all points, the measures of variability (4) V N and (5) V N $_{\sin \alpha}$, (6) total observable variability of θ , and (7) percentage modifiable variation

We have indicated that the threshold $\sin \alpha$ appears to be connected with the shape and dimensions of the population curve for sensory

thresholds in "receptor group" 1, but that there is no apparent necessary relationship between $sin \alpha threshold$, in various races of rats, and θ at this threshold, whereas total variation of θ is determined by the total number of receptor units (cf Crozier and Pincus, 1931-32e, Crozier, 1935) We have no reason to expect that the magnitude of θ at threshold $\sin \alpha$ will be determined in the same way as threshold $\sin \alpha$, and we may well expect that it should be of quite independent nature through its involvement with central nervous properties oretically, the magnitude of $\sin \alpha$ normally appearing as threshold slope should measure the force necessary to excite tension receptors in the legs to an extent such that an oriented response appears magnitude of the orientation angle presumably measures the corresponding excitation, if orientation means that tension-excitation is sensorially equivalent (within a threshold difference) on the two sides of the body This is thoroughly substantiated by suitable experimental modification of the units in which $\sin \alpha$, and the response, are measured (Crozier and Pincus, 1931-32 d) The amount of excitation at threshold slope of surface, on the other hand, will depend upon the "central resistance" which this form of excitation must overcome before it can dominate behavior and lead to orientation "amount of excitation" just below the threshold of course appears graphically as zero, since it cannot be expressed in the coordinates used Hence the properties of the response which interest us may be expressed by a curve which lies at one or another position, vertically, on the θ — α grid, depending upon conditions affecting the threshold response, although the *slopes* of the θ — α relationship (indicating the way in which increasing $\sin \alpha$ brings into action additional tension receptor units) may or may not remain the same The fact that intercepts and slopes of the θ — α relationship differed independently in sundry pure lines of rats, in our initial experiments led us to suspect that at least two kinds of genetic differences must be concerned in the characterization of distinct types of curves of geotropic response (Crozier and Pincus, 1929-30a)

We have been concerned primarily with a method of discovering whether it is possible to demonstrate, by independent, non-ambiguous criteria, that quantitative formulations of the performance of a biological system are valid, competent, real Two steps in this procedure

are (1) the reduction of the variation of performance to rational meas urement and dissection, (2) the testing of the biological reality of equations expressing performance through the genetic behavior of their characteristic constants. The two steps are interrelated, and require the use of estimates of the functional dependence of performance upon a known, measured, governing variable. It has been emphasized (Crozier and Pincus, 1929–30a, 1931–32a, e, 1932) that the converse use of such systems of relationships, as a means of genetic analysis, is not merely desirable, but necessary, although we cannot expect to encounter at first situations entirely simple

From breeding experiments with races A and K (Crozier and Pincus. 1929-30 b) we know that the three main groups of tension receptors implicated in the orientation of geotropic creeping, as defined by the frequency distributions of their receptor threshold, are inherited inde pendently Two of these groups (A_1, A_2) were dominant over their K homologs (K_1, K_2) , the third group (A_2) being recessive to K_2 But B_1 , B_2 , B_3 are dominant over A_1 , A_2 , A_3 . This is not alone attested by the correspondence of the θ - α curves for B, F₁, and (F₁ × B) as regards the absolute magnitudes of θ , but by the threshold slope for significant orientation and by the orders of magnitude of the indices of variation of θ The way in which the two latter quantities appear to be determined by the form of the frequency distributions of thresh olds for excitation of the receptor units, and by the total number of these units, has been given preliminary consideration in earlier papers In the cross $A \times B$ it was recognized, however (Crozier and Pincus, 1931-32e), that there appeared in F₁ the effect of influences decreasing the proportion of the modifiable variability of θ On this general basis we have reason to expect that the offspring of matings of F1 individuals with A rats will be of several distinct classes at least, in which all possible combinations of 'large" and "small" assemblages of receptor unit groups 1, 2, and 3 will be phenotypically exhibited, with equal frequencies of occurrence This is without making allowance for any possible effect of differences in the threshold slope of surface for geo tropic orientation, or of orientations at threshold slopes

We have seen reason to regard the threshold slope for orientation as signifying the magnitude of gravitational pull (sin α) adequate to enforce significant excitation to an extent which dominates behavior,

in the sense that statistically recognizable orientation is apparent. and that this threshold slope is determined by (1) the form and area of the group I receptor frequency distribution and (2) the magnitude of the "central" threshold for geotropic response (Crozier and Pincus, 1931-32 c, d) If the latter element in the situation is governed by independent factors which may or may not be subject to unitary inheritance, and may be connected or not in a genetic or a developmental way with the sensory units given by the method of estimation we necessarily employ, a very confused condition may result in the population with which we now deal We might then encounter some ten or more distinct classes of individuals, since a "B" group 1 might or might not be associated with an "A" —or a non-B—threshold α The fact that threshold α increases with increasing age of individual, in a pure line, might make it desirable to use a still further coordinate, age, for adequate analysis of the curves The argument against the occurrence of this particular phenomenon, however, is based in part upon the fact that the extreme upper value for θ in the B stock is, at $\alpha = 20^{\circ}$, about $\theta = 62^{\circ}$, the extreme lower θ for A rats being $\theta = 51^{\circ}$, this gives a zone, 51° to 62°, within which, in fact, all the determinations for $(F_1 \times A)$ individuals are found to fall at this slope of surface

The converse possibility, nevertheless, does exist A rat with A group 1 and B threshold θ would be expected to show, at $\alpha = 20^{\circ}$, a much lower orientation angle than $\theta = 51^{\circ} \pm 1^{\circ}$, since we have reason to hold that excitation of sense organs below threshold θ does not affect the magnitudes of higher angles of orientation (cf. Crozier and Pincus, 1931-32d), none of the actual determinations are below At the other end of the θ — α curve we would find, on the this limit basis of this possibility, that there should occur B type individuals with A threshold θ , this combination would result, it must be presumed, in rats with θ at $\alpha = 70^{\circ}$ above the $\theta = 84^{\circ} \pm 0.5^{\circ}$ characteristic of the B stock In fact the entire lot of determinations of θ at $\alpha = 70^{\circ}$ for 41 (F₁ \times A) individuals examined range from $\theta = 76.3^{\circ} \pm 1.09^{\circ}$ to 85.9° \pm 0.53°, while the limits given by the performance of A and B grandparents are 79° to 84° The occurrence of occasional low individual mean θ 's at $\alpha = 70^{\circ}$, through slipping, is understandable, and is recognizable by the behavior of σ_{θ} , the notable fact is that no values are greatly above that for the B race The test is more rigorous at

 $\alpha=55^{\circ}$ The range expected in the absence of any heritable "threshold factor" is from a little below $\theta=78^{\circ}\pm0.8^{\circ}$ to somewhat above $82^{\circ}\pm0.5^{\circ}$, that found is from $\theta=76.5^{\circ}\pm1^{\circ}$ to $83^{\circ}\pm0.9^{\circ}$ Remembering that the θ 's for $(\Gamma_1\times A)$ rats are for individual animals, the correspondence is extraordinarily good

We may then proceed to an attempted analysis of the individual $\theta-\alpha$ curves obtained for $(\Gamma_1\times A)$, with the following possibilities in view that the receptor groups I, 2, 3 should be inherited alternatively as B type or A, with B dominant, that a B_1 type curve should show the threshold α and the mean θ characteristic of that type, that an A_1 type curve should show the threshold α characteristic of that type of curve, with or without an increase in the mean θ as compared with that for pure line A individuals, and that differences in the variability of θ should appear in both B_1 and A_1 type rats, such that some of each should exhibit a greater proportion of uncontrollable variation of θ in the low α portion of the $\theta-\alpha$ graph The "disharmony effect" (Crozier and Pincus, 1931–32d) we do not expect to encounter in pronounced form, for reasons earlier discussed These expectations are based directly upon the immediately foregoing considerations, and do not exclude the possibility of other complications

A relatively large number of cases would be required for final demon stration of the details of a workable factorial basis for such a scheme, or of its limitations, since some 10 or 12 classes of $(\Gamma_1 \times A)$ individuals would be expected

Our primary purpose now will be served if we can succeed in obtaining demonstration that genetic segregation of the factors responsible for the magnitudes of θ in A and B stocks does indeed occur. The possibility of such demonstration is at once given by the facts of observation. A very considerable diversity of orientation angles is obtained with the $(F_1 \times A)$ individuals, a state of affairs quite unlike that in the $(\Gamma_1 \times B)$ population. To this extent the expectation of a pronounced difference between the $(F_1 \times B)$ and the $(F_1 \times A)$ backcross is thor oughly realized. We regard this as a very striking phenomenon, and as one incomprehensible save upon some such basis of theory as that we have been encouraged to use, it excludes the possibility of incompetent observation

Orientation data were obtained from forty-one individuals, in mat

ings $F_1 \times A$ and $A \times F_1$, which are summarized in Table I The procedure has been described (Crozier and Pincus, 1931–32 a)

The fact that the constancy of $\Delta(P \to \theta/\theta)/\Delta\theta$ is not affected by experimental modification of the conditions of excitation, as by the carrying of additional loads (Crozier and Pincus, 1931-32d), makes it possible to deal with this index of variation (V N ,) as a check upon the classification of individuals Such use is predicated upon the finding that the relative variation of θ is controlled by the conditions of excitation in the same manner as is the extent of the orientation itself (Crozier and Pincus, 1926-27b), and that the two are organically interdependent (Crozier and Pincus, 1931-32d) It is to be remembered, however, that we are here dealing with data from single individuals, not with figures applicable to litters, and that PE of PE & is thus relatively high $(n = 20 \text{ at each } \alpha)$, so that it may be rather difficult to determine the slope of the line connecting $P \to \theta/\theta$ with θ , in any one instance, owing to the greater scatter of θ 's at low slopes of Moreover, we have seen reason to believe (Crozier and Pincus, 1931-32e) that influences affecting variation of θ , without materially influencing mean θ , may be involved in the cross-breeding result

ПТ

The classification of individuals arising in the backcross progeny of matings between F_1 and race A presents a number of difficulties. In the light of previous experiments we might assume that the rats possessing a (dominant) B group 1 of excitation elements should orient at $\alpha=15^\circ$ (cf. Crozier and Pincus, 1931–32 a), those exhibiting A_1 not until about $\alpha=20^\circ$. We have already found, however, that neither the threshold slope of surface nor the extent of response (θ) at this threshold gives a thoroughly adequate basis for comparison of geotropic reactiveness among diverse pure lines (Crozier and Pincus, 1931–32 b). We must in addition expect to encounter possible slight shifts of the maxima in the distribution curves for excitation groups 1, 2, and 3 (cf. Crozier and Pincus, 1929–30 b), as well as slight shifts of the $\theta-\alpha$ curve upward or downward on the θ axis, the latter effect is to some extent apparent in pure lines, with rats of fixed age, particularly in comparing different litters. And with advancing growth

(at 24 days, or thereabouts, in race A, for example), the apparent threshold α is increased. A technical difficulty possibly inheres in the fact that in taking observations at low slopes of surface the tendency inevitably is to impute orientation if possible, the probable errors of the mean θ s of course serve to check this, the fact that the observed threshold α varies a little from time to time is given added significance by the finding that threshold α for significant upward orientation is easily modified by certain experimental treatments—for example, by suitable injection of caffein solution subcutaneously, added weights (Crozier and Pincus, 1929–30 b), or the injection of adrenin (Crozier

TABLE I

Mean angles of orientation (θ) for all individuals in the backcross generation $(F_1 \times A)$ as a function of inclination of surface (α) Average orientation angles for lines A and B with these values of α are included for comparison See Fig. 1

		θ degrees	
a degrees	â	(F₁ × A)	В
15		54 4	55 2
20	52 8	58 2	60 4
25	57 3	61 5	64 5
30	60 6	64 4	68 5
35	63 9	70 0	72 3
45	71 7	75 0	77 7
55	77 5	79 5	82 0
70	79 8	81 3	83 7

and Pincus, 1932–33 a, etc.) The final test for segregation of B vs. A groups 1, 2, 3 must be made independently of threshold effects, and must be based upon the shapes of the individual curves, but in applying this test it must be remembered that the general slope of the $\theta-\alpha$ curve may be affected by the initial amplitudes of orientation—since a high initial θ may necessarily require a lower tilt of the θ —log sin α curve when the upper limit of maximum orientation is relatively fixed. When diverse races of rats are compared (cf. Crozier and Pincus, 1926–27 b, 1931–32 a, etc.) there is, however, no necessary correlation between lowness of threshold θ and steepness of the $\theta-\alpha$ curve. The presence with some individuals of the increased scatter of mean

 θ 's at low α 's (cf Crozier and Pincus, 1931–32 e), makes it necessary to employ all possible criteria

The mean angles of orientation (θ) for all ($F_1 \times A$) individuals are given in Table I The ($F_1 \times B$) rats (Crozier and Pincus, 1931-32 e) agree quantitatively with grandparental line B, but the average values

Fig 1 Orientation angle (θ) as a function of inclination of surface (log sin α) for young rats of lines A and B, based on weighted means of various series of observations (data for several slopes of surface in single series of observations are omitted), and for the total population of young rats produced in the backcross generation $F_{1(A \times B)} \times A$ The backcross generation includes a number of individuals (see text) which did not orient at $\alpha = 15^{\circ}$, the curve between $\alpha = 15^{\circ}$ and $\alpha = 20^{\circ}$ is accordingly dashed. In a general way the curve for the lumped data of the backcross generation is intermediate in position between that for the two rat grandparental strains, its form indicates, in the light of experience with various races of rats, that the $F_1 \times A$ group is heterogeneous

for $(F_1 \times A)$ are strictly intermediate between those found for A and for B pure lines. The value at $\alpha = 15^{\circ}$ ought to be, as it is, if anything a little lower than for B, since we do not expect A_1 type rats to orient at $\alpha = 15^{\circ}$, but only at about $\alpha = 20^{\circ}$. Fig. 1 shows that the curve has a character differing from that for pure lines A and B, with a signifi-

cant irregularity at $\theta=70^\circ$, this is equally demonstrated in the behavior of the mean variation of θ , for lines A and B, P E, is a declining rectilinear function of $\sin \alpha$, for the combined data (forty one individuals) in $(F_1 \times A)$ P E, at $\alpha=35^\circ$ is "too high," and the curve $(F_{19} \ 2)$ is broken, the relative variation of θ is also too high. Precisely the same sorts of indications are given by the averaged measurements for the members of single litters, the means agree with those given for the total $(F_1 \times A)$ population, and the relative and the absolute variations of θ show corresponding discontinuities

Fig. 2 PE $_{\theta}$ as a function of sin α for the lumped observations from rats produced in the backcross $F_1 \times A$ as in the case of the $F_1 \times A$ curve in Fig. 1, the discontinuity indicates a population which is heterogeneous as concerns the manner of dependence of the probable error of mean θ upon sin α

These facts all indicate (1) that the $(F_1 \times A)$ individuals differ from those produced by the backcross $(F_1 \times B)$, and (2) that the $(F_1 \times A)$ population is heterogeneous

On the most direct assumptions we expect to find only some of the $(F_1 \times A)$ rats orienting at $\alpha = 15^\circ$, and mean θ at $\alpha = 15^\circ$ unimodally distributed, whereas all the rats should orient at $\alpha = 20^\circ$, with mean θ 's not distributed unimodally, and the P E 's of the mean θ 's should show similar distributions (cf Crozier and Pincus, 1931-32 a, b) Twenty one oriented at $\alpha = 15^\circ$, three others were rather "doubtful," but gave no definite and reliable evidence of orientation below $\alpha = 20^\circ$

All the rats oriented typically at $\alpha = 20^{\circ}$ It will be noted that this is just about the proportion to be expected if lower threshold α is associated with B_1 , higher threshold α with A_1

In the absence of complications affecting threshold slope of surface, such as we have already referred to, we would expect a slope $\alpha = 15^{\circ}$

Fig. 3 There occur two rather clearly defined classes of young rats in the backcross $F_1 \times A$ as regards the type of scatter of mean θ as a function of $\sin \alpha$, this is shown in typical example both for rats which do not orient at $\alpha = 15^{\circ}$ and for those which do The subsequent analysis indicates the basis upon which the particular individuals for which data are here plotted are assigned the respective genetic compositions indicated, individuals Nos 5 and 25 illustrate the type of scatter which is labelled R (rough), individuals Nos 1 and 48 the much closer adherence to a smooth curve which is labelled type S (smooth)

to be characteristic of the B type lower portion of the $\theta-\alpha$ curve, a slope $\alpha=20^{\circ}$ to be characteristic of the A type. We would expect the appearance of these two classes with equal frequencies, and without intermediates, if B_1 and A_1 are inherited alternatively and if no important "modifiers" are operative. It is to be emphasized that it is not

intended to imply that $\alpha=15^\circ$ and $\alpha=20^\circ$ are peculiarly "absolute" threshold slopes both in A and in B pure lines of rats the threshold slope varies slightly, and is difficult to determine within $\pm 2^\circ$, but all A rats orient at $\alpha=20^\circ$, and do not at 15°, and all B rats (and $F_{1(B\times A)}$) and $F_1\times B$) orient at 15°, it is probable that in the cross bred progeny small modifications of statistically recognizable threshold slopes could be found if sought for, but we are concerned only with the large difference which is unmistakable. Of the forty-one $\Gamma_1\times A$ individuals tested, twenty-one showed definite orientation at $\alpha=15^\circ$, twenty only at $\alpha=20^\circ$. On the basis we have thus far indicated, this corresponds quantitatively with the expectation that there is a clean cut segregation of B_1 and A_1 factors in the backcross progeny. Of the twenty-one orienting at $\alpha=15^\circ$, ten are female and eleven male. Of the twenty orienting at 20°, but not at 15°, six are female, fourteen male

The case is in reality more complex We have also to deal with the fact that in $F_{1(A \times B)}$ there was evident a broadening of $\theta - \alpha$ plot in the low α zone corresponding to the activity of excitation units of group 1. An effect of this sort must be recognized in certain of the individuals in the present backcross population. It is illustrated in Fig. 3, and is recognized as an enhanced lateral scatter of the determinations of mean θ . The individual curves exhibiting this scatter have been labelled "rough," R, those not exhibiting it are by contrast "smooth," S. Of the forty-one tested individuals, twenty two and possibly two others, gave curves plainly showing the R type of spread (Fig. 3), seventeen definitely showed the S character (these are indicated in Table II). The occurrence of these two types, S and R, in relation to threshold α and to sex, is as follows

Type of curve		R		5
Threshold a	15	20	15	20
No of cases	12	12	9	8
ರ"ರ"	6	6	5	7
9 9	6	6	4	1

It is to be noted that any "accidental" irregularities in the determination of mean θ 's would lead to an over-estimate of the R group

The R effect was attributed (Crozier and Pincus, 1931–32 b) to a developmental disharmony, in the $F_1 \times B$ population it was not de

tectable On this basis about half the B_1 type rats in the $F_1 \times A$ generation should show the effect, the others not

The frequency distribution of mean θ for $F_1 \times A$ rats at $\alpha = 15^{\circ}$, consequently of those assumed to be of B_1 type, is sharply monomodal (Fig 4), the peak coinciding with the θ already known for $F_{1(A \times B)}$ and

Fig. 4 Frequency distribution of mean θ for various types of individuals produced in matings of strains A and B— F_1 , $F_1 \times B$, and $F_1 \times A$ Of the latter there are two categories, those which orient at $\alpha = 15^\circ$, and which show a modal θ agreeing essentially with that obtained with F_1 and with pure B, of the latter, orienting at threshold $\alpha = 20^\circ$, but not at 15°, the majority show a mean θ agreeing with that already known for race B Of the individuals orienting at 15°, something more than one-half show a mean θ at $\alpha = 20^\circ$ which corresponds with that found for race B, the remainder a modal mean θ corresponding to that known for race A The reasons for this are discussed in the text, where the symbols are explained

for $F_1 \times B$ (Crozier and Pincus, 1931–32 b) The S and R types do not differ in this, in Fig. 4 the R type is shown in solid squares, the S open. The distribution of P E $_{\theta}$ is similarly like that for F_1 and for $F_1 \times B$, though for $F_1 \times A$ its mode is a little higher, like that for $F_{1(A \times B)}$ with $B \circ P$ parent

At $\alpha=20^\circ$ the B_1 type rats—those already seen to orient at $\alpha=15^\circ$,—show two modal θ s, one is rather close to that typical of pure A, the other is equivalent to that for pure B—Closer inspection indicates that the individuals as subsequently classified on the basis of the shapes of their orientation curves exhibit a significant correlation with these findings—The young rats thus presumed to have the phenotypic composition $B_1A_1B_3$ have a lower mean θ at $\alpha=20^\circ$ than do the others, the presence of an A_2 group (homozygous) lowers the B_1 graph, whereas with A_1 individuals, all those not $A_1A_2A_3$ in composition show a B

Fig. 5 Integrals of populations of receptor units in terms of thresholds, receptor groups 1, 2, and 3 for races A and B See text

modal θ at $\alpha=20^{\circ}$, a B_2 or B_3 group (or both) serving to raise the A_1 graph. In the right hand histograms of Γ_{12} 4, the solid squares are from R type curves, the \times indicates B_1B B_3 . Consequently, the classification of the $\Gamma_1 \times A$ population must be based primarily upon the shapes of the individual $\theta-\alpha$ curves

71/

The simplest method of dealing with the degree of correspondence between expectation and the observed $\theta - \alpha$ curves would be to construct theoretically the curves for the classes of segregates to be looked for, on the assumption that the several groups of excitation units are

Mean orientation angles for progeny obtained in the cross ${
m F_1} imes A$, the individuals are grouped according to the slopes of their θ — log sin α curves into eight categories, as discussed in the text In each class the individual mean θ 's have been The P E's of the individual mean θ 's are given, n=20 in each case—At each slope of surface, within each class of rats, these P E's have been averaged The subscript number attached to the identifying number of each individual indicates The symbols S and R are referred to in the text the litter of which it was a member averaged

Ħ

Br Bo As

				D1D2A3				
				a, degrees				
	15	20	25	30	35	45	55	70
\$ ¢	46 5±2 57	49 8土2 21	6±1	3±1	7±1	6±1	76 6±1 08	79 4±1 01
\$	54 4±2 06	0 ± 2	7 ± 1	0 ± 1	0 ± 1	2 ± 1	026 0∓9 62	4±0
σR	54 7±2 42	9±2		67 3±1 79	64 7±1 63	70 3±1 26	74 8土1 59	7±1
S	56 0±2 08	60 8±2 10	7±1	1±1	2 ± 1	76 6±1 66	3 ± 1	82 0土0 776
Sro	55 2±2 30	58 5±3 12	62 7±1 97	63 4±2 00	68 8±1 87	72 8土1 42	78 4土1 08	0∓0
	53 4±0 922	67 6±1 06	61 4±0 844	65 4±0 731	69 9±0 682	73 5±0 558	77 5±0 488	81 1±0 362
Mean P E g	2 28	2 38	2 03	89 I	1 52	1 26	I 18	t06 0
* Nursed by F ₁ No 7	1 No 7							
	i			${ m B_1B_2B_3}$				
No				α, degrees				
	15	20	25	30	35	45	55	70
_ ₽.R	± 2	63 0 ±1 91	64 1 ±2 09	63 8 ±1 98	71 5 ±1 85	77 2 ±1 30	81 7 +1 07	82 4 +1 00
₽ R	1 1	9 ±2	60 6 ±2 38	9 ±1 39		+1 48	1 +0 83	7 + 0
S.S	∓5	∓ 5	5 ±1	6 ±1 78	0 ±1 16	8 ±0 959	873	1 +
4 R		4 ±2	4 ±1		$3 \pm 1 \ 29$	$4 \pm 0 912$	5 ±0 862	0
s.	56 5 ±2 72	62 0 ±2 12	65 8 ±1 70	9 ±1 97	70 6 ±1 58	77 1 ±1 26	07	7
	55 76±0 922	61 46±0 911	63 44±0 776	66 62±0 710 72	72 55±0 574 76	76 46±0 488 81	81 76±0 383 82	82 98土0 373
Mean P E g	2 18	2 21	I 88	1 72	1 39	1 18	0 940	906 0

¥.	
BiA	

							٠															•
		70	2±1	80 6±1 06	5±1	3¥0	79 1±1 12	8±1	80 8±0 318	1 03			20	76 3±1 09	3+0		2 ± 0	7±0	85 9±0 533	81 3±0 258	0 5016	
		55	5±1		8±1	82 2±0 892	9	79 9±1 04	79 5±0 349	1111			55	76 7±1 12	+	79 4±1 04	#	341	10	78 8±0 336	1 08,	
		\$	75 6±1 20	0∓9		0±1	72 2±1 28	0±1	76 2±0 329	1 06			\$	73 5±0 921	3±1	-	8±1	7±1	8±1	74 6±0 373	1 204	
		35	2±1	7±1	0 H	0±1	67 7±1 72	7 ± 2	69 2±0 532	1 72			35	170	3 ± 2	71 3±1 42	1#1	9±1	2 ± 1	69 1±0 497	1 60,	
	qethes	30	7±1	7±1	Ŧ	3∓1	62 6±2 16	Ŧ	64 2±0 689	1 90	B _l A B ₃	d trees	30	63 9±1 51	5±3	62 5±2 34	3±1	2±1	2∓5	62 3±0 635	2 05	
		25	0±2	0±2	9±2	2±1	57 1±1 67	2=2	61 4±0 634	2 05			25	4±2	1 ± 2	65 1±2 24	4 ± 2	5±2	9∓1	61 1±0 659	2 13	
		20	0±1	4∓7	S±1	0¥2	55 4±2 33	3∓5	929 0∓9 29	21 2			20	# #∓1	8±2	55 2±2 66	1±2	€¥2	7±3	54 0±0 764	2 45	
		15	4±2	7±2	0¥7	1 ± 1	53 8±2 25	9∓2	65 0±0 694	2 24			15	1±2	9 ± 3	55 6±1 81	4 ±2	2 ± 2	53 3±2 15	62 9±0 773	2 49	
			S ² O	\$	Sis	SS	Q.R.	4 ¥						o'R	g R	o'R	s S	S S	o'R.			
İ	ď		27.	32,	34	38,	6	52,	Меав в	Mean P E	i	No		72	ጜ	22	Ö,		53	Меап в	Mean P E	

TABLE II—Concluded

 $A_1A_2A_3$

o _N				α, degrees			
	20	25	30	35	45	55	02
	58		61 6±2 34	68 4土1 36	70 6±1 92	76 6±1 77	80 3±1 27
	61 0±2	60 1±1	66 8±1 87	7 ± 1	75 5±1 58	1±1	9±1
	22	56 9±2	9±2	69 3±1 15	73 4±1 05	5十0	1±0
367 9	9R 549±26		61 4±1 91	64 8±1 91	69 3±1 22	76 5±0 57	80 1±0 70
	09	0 567±230	63 1±2 12	71 3±1 48	77 4±1 19	2∓0	079
Mern 0	67 1±1 00	0 58 8±0 853	63 4±0 866	68 8±0 593	73 2±0 612	78 2±0 426	81 0±0 414
Mean P E 9	2 23	2 05	2 10	1 43	1 39	1 02	096 0
			A ₁ A ₂ B ₃	33			
No				α, degrees			
	20	25	30	35	45	55	70
	57 1±2		63 6±2 54	69 2±1 54	77 4+0 843	78 1+0 050	80 5 ± 0 012
4. 4	o ² R 61 1±1 71	66 1±1	62 4±1 78	66 5土1 68	74 6±1 13	81 3±0 853	81 2+1 14
	63 2±1	65 5土1	66 6±1 74	68 6±1 75	77 1±1 11	2±1	82 0±0 991
\$ 15°	S	5 62 5±2 70	68 6±1 60		77 6±1 22	2±0	81 6±0 873
Mean 0	60 2±1 07	7 64 2±0 898	65 3±0 949	69 2±0 752	76 7±0 533	80 5±0 447	
Mean P E o	2 14	1 82	1/92	1 52	1 08		
* Murcod has D. M.	N. 7			-			

A₁B₂B₃

	70	83 3±0 853	81 2±0 804	8±0	1±0	82 4±0 416	0.79			52	80 2±1 30	0∓9	79 4±1 10	79 7±0 892	1	8∓0	82 0±0 295	0 951
	\$3	82 1±0 668		81 4±1 03	1 ± 0	81 3±0 474	0 95			ss	976	80 1±1 16	<u>7</u> ∓1	070	7±0	8±1	79 0±0 303	0860
	13	/9 1±0 640		77 8±1 13		76 9±0 553	11 11			27	0∓ †	17 6±0 941	₹3	1#1	#		73 6±0 402	1 29
qelices	35	1#	70 6±0 582	1+0	9±1	72 3±0 532	1 07	,	dez ees	35	Ŧ	68 9±2 05	2±1	3 ± 1	9±1	70 3±1 88	69 9±0 468	1 51
	30	5±1	65 7±1 50	2±2	65 5±1 98	65 8±0 86	175	1 ₁ B-A ₃		30	66 0±1 45 70 7±1 29 62 3±2 04 66 5±1 14 71 2±1 45 61 8±1 88			8±1	66 4±0 478	1 54		
	2.5	0±2	62 9±1 74	0±2	61 0±1 45	63 1±0 950	1 92			25	6±1	63 6±1 91	0∓2	Z.	4 ±2	4∓1	63 1±0 569	1 84
	•	7,77	60 4±2 34	4±2	9±2	69 6±1 16	2 +2			20	0±1	61 8±2 33	∓	7∓1	2 ∓5	61 1±2 14	69 6±0 610	1 97
	·	S'S	Sò	S	ors.						Q*S	9.R	٠ ۲	S.S.	g'R	4 R		9
N.	ŧ.	20, 0.5 26, 9.5 28, 0.5 56, 0.5 Mean 9				2		17	νς	24,	& &	47.	£	Mean θ	Mean P E			

transmitted independently The three components of the curve $\Delta\theta/\Delta$ log sin α vs sin α for each of the grandparental strains (Crozier and Pincus, 1929-30 b, etc) might be integrated separately and the various possible phenotypic combinations constructed by suitable addition of B_1 with A_2 , A_1 with B_2 , and so on, thus producing $\theta - \alpha$ curves for the several types of individuals expected to exhibit the corresponding assortments of genetic units The integral forms of the component receptor groups are given in Fig 5 Six such combinations are in prospect, in addition to the grandparental types Two obstacles, however, prevent the precise use of such a method, even were the available data much more extensive We do not know precisely enough the exact threshold slopes of surface This means that even with the pure lines A and B there is an uncertainty about the absolute values of the ordinate scales (θ) in terms of a common standard, a common standard must be employed if B_1 and A_2 are to be added For example, B_1 as given by its differential plot (cf. Crozier and Pincus, 1929-30 b) corresponds to 14 4 θ units, in the B stock for which θ increases 29° above the threshold response $\theta = 55^{\circ}+$, A_1 , in corresponding units = 7 94 above a threshold θ of 52 8° for the A race But in the backcross individuals we apparently have some A_1 type with a B_1 type threshold θ , which gives the second obstacle to the sug-These integrations have been carried through, howgested treatment ever, for their suggestive value, various assumptions regarding the nature of the measurable threshold response have been tested, but need not be given here since they do not necessarily add anything to the classification later made by rougher means, the curves in Fig 5 are useful as indicating merely the kinds of $\theta - \alpha$ curves to be expected We have already commented upon the fact that in the data from crossbred populations slight shifts are apparent in the modes of the receptor This may be taken to suggest that certain of the subsidiary modifications of the slopes of the θ —log sin α curve could be due to changes in the relation of frequency of stepping to $\sin \alpha$, the frequency of leg movements (speed of progression) is involved in the logarithmic differentiation of θ by $\sin \alpha$ from which the frequency distribution of receptor thresholds is deduced (Crozier and Pincus, 1929-30 a) may also be taken to indicate that even in the case of rats from inbred lines (A, B, etc) a more elaborate determination of the θ —log sin α

curve, employing a larger number of slopes of surface, might reveal detectable discontinuities of small magnitude

Confining attention to the slopes of the $\theta-\alpha$ curves, and particularly to the regions where the relatively uncomplicated effects of groups 1, 2, and 3 might be looked for, the classification outlined in Table II is arrived at

It need not be emphasized that there are various pitfalls We can not as yet be entirely clear as to the effect upon an A_1A_2 type curve

Fig. 6 θ as a function of log sin α for pure line B is essentially reproduced in the behavior of individuals extracted from the backcross $F_1 \times A$ taken to have the composition $B_1B_2B_3$. The curve is also shown for individuals assigned the composition $B_1B_2A_3$ this curve is lower than the foregoing (see text)

when it has a B_1 type threshold α But with reference to their shapes, the individual curves do, however, fall into certain definite categories. It is simplest to begin with those curves which appear to be of B type throughout, since experience with F_1 progeny of $A \times B$ has already demonstrated certain sources of confusion which effectively disappear when these are backcrossed to the B stock. Such individuals are found in Nos. 6, 21, 23, 33, and 48. For these the variation data (Figs. 8, 9, and 10) also show internal concordance. For those indi-

viduals taken to be $B_1B_2B_3$ the percentage modifiable variation is 65.5 per cent, identical with that for the phenotypically $B_1B_2B_3$ type obtained by crossing F_1 with the B line, $V N_{\log \sin \alpha}$ and $V N_{\sin \alpha}$ are a little less, as is also the total mean variation of θ , the latter is about as in the B stock. This is entirely in agreement with what we have already had reason to expect (cf. Crozier and Pincus, 1931–32 e) on the basis of evidence published before the present data were reduced

Fig. 7 Mean orientation angles (θ) for groups of individuals assigned the compositions $B_1B_2A_3$, $B_1A_2A_3$, $B_1A_2B_3$

As seen in Fig. 6, the $B_1B_2B_3$ group gives mean θ 's agreeing very precisely with data from a group of great-grandparent pure B's, the plotted points are of about the same statistical weight in the two sets compared. Whereas the $B_1B_2A_3$ group gives a curve definitely lower at all points, and of different shape (Fig. 6), $B_1A_2A_3$ and $B_1A_2B_3$ mean curves differ as expected (Fig. 7), the decided changes of slope occur in the regions where the separate curves in Fig. 5 require if the total effect is an additive one. The agreement of $B_1B_2B_3$ with its B progenitors in the matter of variation is striking. In Fig. 8 there have been plotted data on the variation of θ as a function of $\sin \alpha$ for four

assemblages of young rats independently assigned the phenotypic composition $B_1B_2B_2$ pure B's (great grandparents), $\Gamma_{1(A\times B)}$, $F_1\times B$, and the present lot $(B_1B_1B_2)$ in Table II) The data are given as mean $P\to C$ computed from $P\to C$ is for n=20 in each case. It is obvious that the capacity to exhibit variation of θ is identical in the four groups. This kind of invariance is also evident in the case of the $A_1A_2A_3$ lot and its homologs (cf. Fig. 12, etc.), and is all the more strik.

Fig. 8 The variation of mean θ as a function of sin α for four groups of individuals recognized as of the phenotypic composition B_1BB_3 solid circles, extracted $B_1B_2B_3$ in the present experiment open circles, Series B II (Crozier and Pincus 1931-32 a) open squares $F_{1(A \times B)}$ (Crozier and Pincus, 1931-32 d) solid squares, $F_1 \times B$ (Crozier and Pincus, 1931-32d) The ordinates are mean probable errors of mean θ s for twenty observations on each individual at each slope of surface the numbers of individuals differ in the several sets. It is apparent that the iariability of θ is identical in these phenotypically similar groups of individuals.

ing when the variability of θ is examined in the case of the other groupings, where definite discontinuities appear. Fig. 9 contains the variation data for the several groups of B_1 type rats, $B_1B_2B_3$, $B_1B_2A_3$, $B_1A_2B_3$, $B_1A_2A_4$. The individuals are separately distinguished. It is apparent that on the basis of variation of θ alone, the recognition of the four sorts of B_1 type rats would be necessary and that the result of this segregation agrees in a very striking manner with that already

It is apparent that there is essential coherence among the variabilities of the several individuals in each class, and that discontinuities in the suctypic categories Each P E θ is computed as the P E of the mean of twenty observations cession of B and A receptor groups are clearly reflected in the variation of θ

given in Figs 6 and 7 The *relative* variation of θ (Fig 10) shows corresponding discontinuities

The peculiar discontinuities in Fig. 9 have not been encountered in pure stocks A, B, K, or P, nor in $F_{1(A \times B)}$, failure of material has prevented our re-examination of this point for R rattus (Crozier and Pincus, 1926–27 b) It would be of more than passing interest to learn why $P \to 0$ is smoothly related to $\sin \alpha$ in the pure stocks, and if long

Fig. 11 Mean orientation angles (θ) for four groups of young rats assigned the phenotypic compositions indicated, together with the curve for the A line great-grandparents

inbreeding of the heterozygotes (eg, $B_1A_2A_3$) would modify the effect seen in Fig 9. The possible rôle of influences affecting the frequency of stepping we have already commented upon

The four classes of A_1 type rats grouped by use of the same criteria as those used for the B_1 rats give mean θ 's plotted in Fig. 11. In fitting curves to these they have been made to pass as smoothly as possible and in such a manner that the departure of any point from its curve is

less than the probable error of its mean. Again the form of each curve is that which would be expected from the association of receptor groups indicated. All four curves are above that for pure A stock,

Fig. 12 The PE of mean θ twenty observations for each point, for individuals of line A (Series IV) and for individuals produced in the backcross $F_1 \times A$ to which have been assigned the phenotypic composition $A_1A_2A_3$

Fig. 13 The mean P.E θ (from samples of twenty observations) for young rats of line 4 and for $F_1 \times A$ extracted individuals assigned the phenotypic composition $A_1A_2A_3$

Fig. 14. P.E. of mean θ for individuals allocated to four phenotypic categories. As in the case of B_1 individuals (Fig. 9), the discontinuities in curvature of the θ -log sin α plot find corresponding representation in the behavior of P E $_{\theta}$

this presumably is due to the action of accessory influences introduced by the B stock, of the type to which reference was made in the introductory account The argument here is a duplication of that already outlined for the interpretation of the data in the B_1 assemblage of rats The variation of θ for $A_1A_2A_3$ rats agrees quantitatively with that for pure A, as shown in Figs 12 and 13, the modifiable variation is less (60 per cent) than for $B_1B_2B_3$, for the other three groups discontinuities appear in the relation of P E θ to sin α which are of precisely the same character as those exhibited in the four B_1 groups (Figs 14 and 15, cf Figs 9 and 10) The coherence of the complex system of indications provided by these figures is strong evidence that their suggestions are significant. The discontinuities apparent in the graphs of variation of θ as a function of $\sin \alpha$, and of θ , are of course consistent with the general idea that the total variation of performance (in an inbred line) is determined by the total number of excitation units available Discontinuity of variability appears in the region of transition from one receptor group (Fig 5) because the marginal receptors in use determine the rate of change of variation of θ

v

We are thus in a position to conclude that a consistent picture of the inheritance of geotropic performance in crosses of rats of lines A and B is given by the theory that the three recognizable receptor groups concerned in each race are inherited independently, and allelomorphically as concerns the members of homologous pairs in the two races. The shapes of the curves produced by the backcross progeny are understandable in this way, as well as the thresholds for oriented response and the peculiar properties of the variation of orientation. To this simple picture of the genetic basis for phenotypic segregation must be added, however, certain comparatively minor modifying effects which have been characterized as disharmony due to heterozygosis (factors introduced by the B stock) and the influence of association between B and A factors phenotypically exhibited upon the magnitude of response at threshold intensity of excitation

It is of interest to make a direct test of the validity of the grouping of individuals in the $F_1 \times A$ generation which has appeared consistent with this interpretation. To this end rat 24 \circ (cf. Table II) was

TABLE III
Progeny of 24 $\,\varphi\,\,({\rm F_1}\times A)\times A$

			Albea	P3			
å				deg ces			
	20	52	30	35	S)	SS	7.0
19	53 0±2 28	60 1±2 12	66 3±1 99	73 3±1 22	71 2±1 29	79 0±0 912	80 3±0 941
20 30	56 1±2 87 56 3±2 02	62 9±2 43 59 8±2 15	67 8±1 76 66 0±2 06	70 8±1 42 72 4±1 02	75 2±1 20 72 6±0 989	78 6±1 05 78 7±0 922	79 9±1 04 80 5±1 15
Mean θ	55 1	6 09	2 99	72.2	73 0	787	80 2
Mean P E 9	2 39	2 23	1 94	1 22	1 16	096 0	1 04
			A1A A5	As			
40	53 9±2 52 53 9±2 45	58 5±2 34 60 9±2 02	62 4±2 31 64 2±1 66	66 9±2 02 60 6±1 81	71 7±1 85 72 8±1 63	77 9±0 941 78 9±0 883	79 3±0 940 77 3±1 07
Mean 0	62 9	2 69	83	66 5	72.3	78 4	78.3
Mean P E	2 49	2.18	1 99	1 92	174	0 912	101

Fig. 16 Curves exhibiting θ as a function of log sin α for two recognizably distinct groups in the progeny from a mating of No 24 female $(F_1 \times A) \times A$ (see text)

Fig. 17 PE's of mean θ for individuals produced in the mating of $(F_1 \times A)$ No 24 female with an A male, the solid circlets referring to those individuals recognized as of the type $A_1A_2A_3$, the open circlets referring to those individuals recognized as $A_1B_2A_3$ See text

raised to maturity and mated to an A line male. The five young were examined for geotropic orientation. This particular rat was chosen because she had been assigned the composition $A_1B_2A_3$, with group 2 heterozygous (since No 24 had resulted from $F_{1(A \times B)} \times A$). The progeny were thus necessarily expected to be of two types only— $A_1A_2A_3$ and $A_1B_2A_3$. The data are given in Table III. There are clearly enough two classes of young. Mean θ 's for each are plotted in Fig. 16, they correspond well with the two types so labelled in Fig. 11. The variation of θ shows (Fig. 17) a concordant separation into two types, the $A_1B_2A_3$ group exhibiting breaks of the sort already seen in Fig. 14, a larger series would permit the treatment of certain minor differences in these figures which are presumably due to the continuation of backcrossing

VΤ

STRIMARY

The inheritance of elements of geotropic performance in lines of rats (A and B) has been investigated by examining the orientation of young offspring produced in matings of $F_{1(A \times B)}$ with A Previous studies had shown that the three recognizable groups of receptor elements concerned in geotropic orientation in each of these lines appeared to be inherited in such a way that B groups were dominant with respect to A groups, although this was to a minor extent complicated by influ ences affecting the variation of orientation as well as the exact form of the curve relating orientation angle (θ) to slope of surface backcross $F_1 \times A$, therefore, at least eight different types of curves were to be expected These are in fact identifiable among the fortyone individuals carefully studied Their classification is concordant with the behavior of the respective indices of variation of θ , for which an interpretation has been provided. The basic result is, therefore, that the three receptor groups of excitation units are inherited inde pendently, and alternatively as regards the members of a homologous pair, and that rather simple dominance relations obtain between homo logous groups from the two races, namely that a B effect is dominant over the homologous A effect This interpretation has been tested in various ways, and is in principle completely consistent with the results of a similar experiment involving races A and K

CITATIONS

- Crozier, W J, 1929, The study of living organisms in Murchison, C, A handbook of general experimental psychology, Worcester, Clark University Press, 3
- Crozier, W J, 1935, Déterminisme et variabilité dans le comportement des organismes, Paris, Hermann & Cie
- Crozier, W J, and Pincus, G, 1926, Proc Nat Acad Sc, 12, 612, 1926-27 a, J Gen Physiol, 10, 257, 1926-27 b, 10, 519, 1927-28, 11, 789, 1929-30 a, 13, 57, 1929-30 b, 13, 81, 1931-32 a, 15, 201, 1931-32 b, 15, 225, 1931-32 c, 15, 243, 1931-32 d, 15, 421, 1931-32 e, 15, 437, 1932, Proc 6th Int Cong Genetics, 2, 31, 1932-33 a, J Gen Physiol, 16, 801, 1932-33 b, 16, 883, 1935-36, 19, 211

Agents G F STECHERT & Co New York DAVID NUTT London NICOLA ZANICHELLI Belogua FÉLIT ALCAN PARIS AKADEMISCHE VERLAGSGESELLSCHAFT IN 5 H Leipzig RUIZ HERMANOS Madrid F MACHADO & Cia. Porto THE MARUZEN COMPANY Tokyo

1936

SCIENTIA

INTERNATIONAL REVIEW OF SCIENTIFIC SYNTHESIS
Published every month (ach number contenuing 100 to 150 pages)
Editors F BOTTAZZI - G BRUNI - F ENRIQUES
General Secretary Paglo Bonetti

IS THE ONLY REVIEW the contributors to which are really international

IS THE ONLY REVIEW that has a really world wide circulation

30th Year

- IS THE ONLY REVIEW of scientific synthesis and unlification that deals with the fundamental questions of all sciences mathematics setronomy geology physics chemistry biology psychology ethnology illn guilties bistory of science philosophy of science
- IS THE ONLY REVIEW that by means of inquiries among the most eminest scientists and authors of all counties (on its philosophical pranciples of its entrous scenes on its most (undamendal astronom col and physical questions of current's treat on its contribution that the signered countries have given to the development of various branches of homelege on its most important biological custions et one of the color and the most important biological custions ets etc.) studies all the main piblicum discussed in intellectual circles all over the world and represents at the same time the first attempt at an international organization of philosophical and escentistic progress.
- IS THE ONLY REVIEW that smong its contributors can boast of the most illustrious men of science in the whole world
- The articles are published in the language of their authors, and every number has a supplement containing the French translation of all the articles that are not French. The review is thus completely accessible to those who know only French. (Write for a fre copy to the General Secretary of Scient a Milan sending 16 cents in stamps of your country ments to core packing and postage)

SUBSCRIPTION \$13.50 post free

Substantial reductions are granted to those who take more than one year a subscription Fer information apply to SCIENTIA, Via A De Togni, 12 - Milano 116 (Italy)

STUDIES ON CELL METABOLISM AND CELL DIVISION

I On the Relation between Molecular Structures, Chemical Properties, and Biological Activities of the Nitrophenois*

BY G H A CLOWES AND M E KRAHL

(From the Lilly Research Laboratories, Marine Biological Laboratory Woods Hole)

(Accepted for publication, December 2 1935)

INTRODUCTION

In the course of an investigation (5, 6, 13) in which the eggs of the

CORRECTION

In Vol 19, No 6, July 20, 1936 page 993, the fifth line from the bottom of the page, for 'Filtered. Filter cake dissolved "read Filtered Filtrate brought to 07 saturated ammonium sulfate and filtered Filter cake dissolved"

extremely small concentrations of 4,6-dimitro o cresol induce a division block, third, that the block to division appears to occur most readily at the prophase of mitosis, and fourth, that the block to division is fully reversible over a wide range of concentrations

That the dinitrophenols exert an adverse effect on growing organisms at relatively high concentrations is by no means a new observation since the toxicity and insecticidal properties of these substances have

^{*} For preliminary reports of the data in this and the following paper see refer ences 26, 29, 30

been recognized for some years (9, 19) However, the fact that a reversible block to cell division commences at the point where respiration is stimulated to a maximum suggests that an intensive and systematic study of the means whereby this respiratory stimulus is effected should lead not only to a more comprehensive understanding of the factors underlying the metabolism of normal and pathological cells and possible means of controlling the therapeutic application of metabolic stimulants, but might also throw light on the mechanism of cell division and afford some indication as to how cell division might be controlled

In a further series of experiments, conducted on yeast, 4,6-dinitro-occresol was found to markedly decrease the time of reduction of cytochrome (14) and to be capable of producing a stimulating effect on anaerobic systems fully equal to that exerted on aerobic systems (15). These findings make it clear that the dinitrophenols do not, like methylene blue and other reversible dyes, function in the cell as oxidation-reduction systems which supplement the normal oxygen activating enzymes. A similar conclusion has been reached by DeMeio and Barron (7)

The mability of Greville and Stern (10) to demonstrate that dinitrophenols are capable of reversible oxidation-reduction in the range of potentials characteristic of the living cell raises a doubt as to whether the oxidation-reduction of nitrophenols plays any rôle in the metabolic and division effects produced by these reagents

The experiments to be presented in the present and succeeding papers are concerned with the effects exerted by a series of nitro and other derivatives of phenols on the respiration and cell division of *Arbacia* and other marine eggs. To differentiate between the effects on resting and dividing cells, a few experiments were carried out on unfertilized eggs.

An effort has been made to determine what chemical groupings and what variation in configuration of given chemical groupings are required for the production of a substantial respiratory stimulation and a reversible block to division in fertilized *Arbacia* eggs, and, in particular, to determine whether either the hydroxyl or nitro groups, or both, are indispensable. The three isomeric mononitrophenols, and several dinitrophenols were employed. Then substituent groups

derived from the nitro group by partial and complete reduction were used in place of the nitro group, keeping the phenol nucleus intact Following this, the nitrobenzene nucleus was retained while other substituents were used in place of the hydroxyl Finally, for purposes of comparison, a series of oxidation reduction indicators was employed

EXPERIMENTAL PROCEDURE

Measurements of oxygen consumption were made with simple Warburg manometers and flash sby the direct method, using essentially the technique described by Dixon (8) For determination of respiratory quotient, CO₂ was first absorbed in saturated Ba (OH)₂ and then liberated by 2.5 n HCl The respiratory CO₂ was calculated as the difference between the total amount present at the end of an experiment, and the initial amount as determined by liberating CO₂ from a sample of egg suspension at the beginning of the experimental period The shaking rate was sixty five complete cycles per minute at an amplitude of 7 cm

The eggs were obtained and handled in the usual manner Fertilization was performed before the egg suspension was transferred to the Warburg flasks. An egg suspension of 2 per cent by volume in sea water was used. If the volume of one egg is taken to be 212 000 μ^2 (12), a 2 per cent volume corresponds to approximately 90 000 to 100 000 eggs per cc. The egg volume was determined by the hematocrit method (20), using a centrifugal force of approximately twenty six hundred times gravity for 10 minutes. Repeated comparisons between egg volumes determined by the hematocrit and hemocy tometer methods showed that the former method gave, on the average, results about 8 per cent higher than the latter. This agrees with the recently reported results of Shapiro (21). Since the magnitude of this difference is known and reproducible, and since a considerable saving of time is effected the hematocrit method was employed through the seasons of 1934 and 1935. The values for oxygen consumption in both fertilized and unfertilized eggs are based on original unfertilized egg volumes in order to eliminate the fluctuations in volume which follow fertilization.

In considering the suitability of these methods of handling and measurement, several facts may be emphasized (1) The rate of oxygen consumption in the control samples of eggs both fertilized and unfertilized, did not significantly increase or decrease during the usual 2 or 3 hour period of measurement. This indicates that gaseous equilibrium was maintained and that no partial cytolysis of the eggs occurred (2) The rates of unit oxygen consumption obtained in different experiments did not deviate greatly from their average value even though they were obtained at different times during the seasons of 1934 and 1935 (3) Control samples of unfertilized eggs returned to sea water at the end of the period of measurement and then fertilized showed a high percentage of fertilization and subsequent development (4) Control samples of fertilized eggs, gave, during the course of respiratory measurement, 90 to 100 per cent regular cleavage.

return to sea water at the end of an experiment, almost all of the fertilized and dividing eggs in each control sample developed to normal swimming larvae

The data on division were obtained and expressed essentially by the method described by Smith and Clowes (22) According to this scheme, the unit is divisions per egg. An egg which has divided to two cells has performed one division, an egg divided to four cells, two divisions, an egg divided to eight cells, three divisions, an egg divided to sixteen cells or more, four divisions. Since, for eggs in optimum condition, about 65 minutes elapsed between fertilization and first cleavage, and about 30 minutes elapsed between successive subsequent cleavages, control eggs will have a division rate of about three at the end of a 2 hour experiment, and the maximum division rate of four, as defined above, at the end of a 3 hour experiment at 20°C. After September 1st the division rates observed were somewhat smaller than these even when the temperature was maintained at 20°C.

Each chemical was dissolved in fresh sea water just before use and the solution adjusted, if necessary, to the desired pH — In all cases excepting those specifically mentioned the solutions were brought to pH 8 2, that of normal sea water — In dissolving the phenols, it was found to be advantageous to add a few tenths of a cubic centimeter of normal sodium hydroxide directly to the weighed sample, to dilute with sea water almost to the required volume, and then to adjust the acidity Usually the solutions were added from the side arms of the manometer vessels to give the final concentrations shown in the experimental data — Where the solubility of the chemical was too limited for the use of this method the solutions were added directly to the concentrated egg suspension before transfer to the Warburg vessels, using the necessary precautions to insure the experiments being comparable with those made at greater dilutions

The authors are indebted to Professor L F Fieser for generous supplies of 2,4-dimitro- α -naphthol and tetramethyl-p-phenylene diamine All other chemicals were prepared in the Lilly Research Laboratories or obtained in the purest available marketed form and suitably purified

Explanation of Figures

In Figs 1 and 2 the unit of oxygen consumption is cubic millimeters of O_2 per 10 c mm of eggs. The unit of cell division is divisions per egg as defined in the previous section. When the values for hourly oxygen consumption and the values for cell division are plotted against the logarithm of the concentration it is impossible to make the control points fall on the experimental curve. Accordingly, these control values are represented by horizontal lines and labelled respectively, control O_2 and control division

For simplicity, and to bring out the relative effectiveness of various treatments, the data, in each figure subsequent to the first two, are presented on a relative basis. The values of the two ratios,

Or consumed in treated eggs and Cell division in treated eggs Cell division in control eggs

are expressed on the ordinate and the logarithm (base 10) of the molar concentration × 106 on the abscissa The oxygen consumption data in all figures subsequent to the first two may be converted to an abso lute basis by noting that when the ratio is one, the oxygen consump tion is equal to the control value For all experiments given here, the control O value for fertilized Arbacia eggs at 20°C, and pH 8 2 may be taken as 31 ± 0 3 c mm per hour per 10 c mm of eggs, this being the average of many experiments during the seasons of 1934 and 1935 At pH 65 and pH 7 (20°C) the control O2 values are in the range 28 ±03 c mm per hour per 10 c mm of eggs At other temperatures than 20°C, the control O values for fertilized eggs are At 12°C. 1.7 ± 0.2 , at 27° C, 5.5 ± 0.5 cmm per hour per 10 cmm of eggs The values at 12° and 27° are taken from duplicate determinations in a single experiment and are therefore subject to a greater possible variation than the control values at 20°C, which have been repeatedly determined

To compare the absolute and relative methods of presentation, it should be noted that the same set of data is plotted on an absolute basis in Fig. 2, Part II, and on a relative basis in the 20°C curve of Fig. 3

In all figures except Part I of Figs 1 and 2 circles are used for oxygen consumption data and crosses for cell division data. When the re agent has little or no effect on oxygen consumption or cell division (o nitrophenol, for example) the values for the two ratios given tend to fall at the unit level, when both crosses and circles are coincident, only one line is used to connect the points. In the cell division curves a distinction is made between reversible and irreversible division block, a solid line being used to denote the first and a dotted line being used to denote the second type of action

EXPERIMENTAL RESULTS

Action of Dimitrocresol on Unfertilized Eggs -4,6-dimitro o cresol produces a rise in the rate of oxygen consumption by unfertilized Arbacia eggs (Γ ig 1) The magnitude of this rise is dependent on the concentration of reagent, the optimum stimulation to some 600

per cent of the normal is obtained at a concentration of about 8×10^{-6} molar. There is a slight time lag before the optimum rate is established, but once reached, it is maintained for several hours without appreciable decrease.

Although the cells are using their reserve material at a rate far in excess of the normal, these stimulated unfertilized eggs are not seriously injured by the reagent, and remain fertilizable for more than 24 hours (Table I), in fact, eggs treated with 10⁻⁴ molar 4,6-dinitro-ocresol remain fertilizable for a longer period than the controls. When treated and untreated unfertilized eggs, which have been slowly shaken for many hours are transferred to sea water and fresh sperm added,

TABLE I

The Percentage Cleavage after Fertilization with Normal Sperm in Normal Sea Water of Eggs of Arbacia punctulata Which Have Previously Been Exposed to 4,6Dinitro-o-Cresol at 20°C in the Following Molar Concentrations

Exposure	None	10-6	5 × 10 ⁻⁶	10~5	10~4
hrs					
4	95	95	95	95	95
8	95	95	95	95	95
12	85	90	95	95	95
15	68	70	90	90	94
18	23	45	45	60	90
21	20	20	20	40	60
24	5	5	5	20	20
28	0	0	0	0	10
32	0	0	0	0	0

the time elapsing between fertilization and first cleavage is nearly the same for the control and for the 4,6-dinitro-o-cresol treated eggs

It is known that many substances which induce artificial parthenogenesis can also stimulate the oxidative rate of unfertilized *Arbacia* eggs (see reference 24 for review). Attempts to use the dinitro compounds as agents for inducing artificial parthenogenesis were unsuccessful

In view of the marked block to cell division described below for fertilized eggs, it should be recorded that the fertilization by sperm, as evidenced by successful membrane formation, can apparently take place in a concentration of 2.5×10^{-3} molar 4,6-dimitro-o-cresol

Action of Nitrophenols and Related Compounds on Fertilized Eggs -The nature of the respiratory and division effects produced by nitro phenols and the environmental factors which influence the magnitude of these effects may be illustrated by the typical results obtained with 4,6 dinitro o cresol The first group of experiments is concerned with the effect of various concentrations of reagent when added at a suitable fixed time after fertilization The oxygen consumption in any unit of time is progressively increased up to concentrations of 5×10^{-6} to 10-5 molar (Fig. 2) In the presence of concentrations greater than these oxygen is taken up at a rate which is below the optimum, and, at sufficiently high concentrations, below the normal When the data of Fig 1 for unfertilized eggs are compared with those of Fig 2 for fertilized eggs, the following facts are noted (1) The optimum concentration of dinitrocresol is nearly the same in both cases (2) At this optimum the relative respiratory stimulation is greater for the unfertilized than for fertilized eggs, the respective values being ap proximately 600 and 300 per cent Since the oxygen consumption of normal fertilized Arbacia eggs is four times that of normal unfertilized eggs, the optimum absolute rate in 4,6-dinitro o cresol treated fer tilized eggs is approximately two and one half that of similarly treated unfertilized eggs (3) The oxygen consumption of fertilized eggs is depressed below the normal at concentrations of dinitrocresol above 2.5 × 10-4 molar That of unfertilized eggs is almost twice the normal at 5 × 10-4 molar, and, at considerably higher concentrations, does not fall below the normal until the eggs are destroyed. The significance of the falling ovegen consumption with increasing concentra tion of reagent will be considered at a later point in this paper

In eggs treated, at $20^{\circ}\mathrm{C}$, with 4,6 dimitro o cresol within 25 minutes after fertilization the first and subsequent cell divisions are unimpaired until that concentration of reagent which is optimum for respiration is attained. At this concentration of dimitrocresol, the number of divisions performed by the eggs is less than the number of divisions in the control eggs. In a slightly higher concentration of dimitrocresol, the eggs do not divide at all. As shown by the continuous line of the division curve this block to division is reversible after many hours exposure to concentrations almost 500 times those which first produced the division block. On return to sea water, the eggs resume division

at the normal rate and develop, after the usual interval, to swimming larvae In this, and all subsequent experiments with stimulating nitrophenols, the block to division invariably commences at or near

Fig 1 Part I Oxygen consumption, at 20°C, of unfertilized Arbacia eggs for various periods of time in the following molar concentrations of 4,6-dinitro-ocresol A, none-control, B, 4 \times 10⁻⁶, C, 8 \times 10⁻⁶, D, 3 2 \times 10⁻⁵, E, 1 28 \times 10⁻⁴, F, 5 12 \times 10⁻⁴

Part II Hourly oxygen consumption, at 20°C, of unfertilized Arbacia eggs in various concentrations of 4,6-dinitro-o-cresol

the peak and continues throughout the down curve of oxygen consumption

Shortly after these experiments were first reported (6), Martin and Field (31) described experiments showing that, in concentrations greater than the respiratory optimum, 2,4-dimitrophenol had an adverse effect on the multiplication of yeast (see also references 9, 19)

A second group of experiments is concerned with the effect of a fixed concentration of reagent added at various times after fertilization. The effect on oxygen consumption is nearly independent of the time

Fig 2 Part I Oxygen consumption at 20 C, of fertilized Arbacia eggs for various periods of time in the following molar concentrations of 4 6-dinitro-ocresol A none-control B 2 \times 10⁻⁶ C, 4 \times 10⁻⁶ D 1 6 \times 10⁻⁸ E, 1 28 \times 10⁻⁴ F, 5 12 \times 10⁻⁴

Part II Hourly oxygen consumption and cell division, at 20°C, of fertil ized Arbacia eggs in various concentrations of 4 6-dinitro-o-cresol

elapsing between fertilization and addition of reagent, while the block to division is sharply dependent on this factor (Table II) At 20°C, there is a critical point 20 to 25 minutes before first cleavage is scheduled to occur If dinitrocresol in appropriate concentration is added prior to this time relatively few eggs divide, if the reagent is added after this time, a normal proportion of the eggs proceeds to the two cell stage, where most of the eggs are arrested in development A similar change in sensitivity is observed shortly before the second and third cleavages

From data concerning the effect of various concentrations of dinitrocresol at temperatures of 12°C, 20°C, and 27°C (Fig 3), it may be seen that (1) The concentration which is optimum for oxidative stimulation and critical for initial division block does not vary greatly as the temperature is changed, (2) at the optimum concentration the

TABLE II

The Effect of 8 × 10⁻⁶ Molar 4,6-Dinitro-o-Cresol on Oxygen Consumption and Division in Fertilized Eggs of Arbacia punctulata at Various Times after Fertilization Temperature 21°C pH 8 2

Time of addition after fertilization	O ₂ consumed c mm per hr per 10 c mm eggs	Divisions per egg 140 min after fertilization
min		
20	10 7	0 10
30	10 8	0 20
40	10 7	0 95
50	10 8	0 95
55	10 7	0 95
No addition	2 9	2 95

Control 50 per cent divided to 2 cell at 62 minutes Eggs 98 per cent fertilized

oxygen consumption of the treated eggs, as compared with that of the untreated control eggs, decreases as the temperature is raised, while the absolute number of units of excess oxygen consumed is least at 12°C, rises somewhat between 12°C and 20°C, and remains practically constant between 20°C and 27°C, (3) the curves relating the oxygen consumption and the logarithm of concentration are the same in general form and differ only slightly as to the slope of their ascending and descending portions

The 4,6-dinitro-o-cresol effect on respiration and cell division in Arbacia eggs is not particularly sensitive to changes in hydrogen ion concentration (Fig 4) At 20°C, the optimum concentration of

dinitrocresol is slightly greater at pH 8 2 and pH 7 than at pH 6 5 The blocking effect of any given concentration on cell division is slightly greater at pH 65 than at lower acidity

Accompanying the increase in oxygen consumption, there is a simul taneous and nearly equivalent increase in CO2 production The ratio

LOG (MOLAR CONCENTRATION x 104) Fig. 3 Stimulation of oxygen consumption and block to cell division in fer tilized Arbacia eggs produced by various concentrations of 4 6-dimitro-o-cresol at Reagent added 15 minutes after fertilization 12 C 20 C, and 27°C

In Figs 3-10 $\begin{array}{l} \text{O - O} = \frac{O_1 \text{ consumed in treated eggs}}{\text{O consumed in control eggs}} \\ \text{X - X} = \frac{\text{Cell division in treated eggs}}{\text{Cell division in control eggs}} \end{array}$

CO₂ produced/O₂ consumed is not significantly influenced by dinitrocresol, even when the oxygen consumption is raised to three or more times the normal level The values of the respiratory quotient for dinitrocresol treated eggs (Table III) are slightly higher than the

Fig 4 Stimulation of oxygen consumption and block to cell division in fertilized Arbacia eggs produced by various concentrations of 4,6-dimitro-o-cresol at pH 65 and pH 7 Temperature, 20°C Reagent added 25 minutes after fertilization

normal values obtained in the present work and the normal values for eggs of sea urchins of other species (20, 23)

If, with a constant concentration and volume of 4,6-dinitro-o-cresol solution, varying numbers of eggs are employed, the unit oxygen con-

Respiratory Quotient of Fertili ed Legs of Arbacia punctulata When Stimulated by 8×10^{-8} Molar, 4 6 Dinitro-o Cresol Temperature 21 C

Flask No.	CO2 (initial)	CO2 (total)	CO ₂ (produced)	O2 (consumed)	≇ Q
	c mm	c mm	c mm	c mm	
1	297]		
2		499		218	i
3	290	FOG		224	
5	294	508		221	
6	271	497		217	
Average	294	501	207	219	0 94

TABLE IV

Respiratory Stimulation in Fertili ed Eggs of Arbacia punctulata with Fixed Concentration and Volume of 4,6 Dinitro o Cresol Solution and Varying Concentrations of Eggs Temperature 20°C

	O: Consumed (c.mm per hr per 10 c.mm eggs)			
No of eggs	Control	8 × 10-4 m lar 4 6-dmitro-s cresol		
per cc				
58 000	3 14	9 04		
116 000	2 94	9 03		
232 000	2 83	9 09		

TABLE V

Block to cell division in fertilized eggs of Arbacia punctulata with a fixed concentration and volume of 4 6-dinitro o cresol solution and varying concentrations of eggs. The reagent was added at 25 minutes after fertilization and the eggs were not shaken. Temperature 20 C

	Divisions per gg after 3 hrs exposure			
No feggs	Coatrol	16 × 10-6 molar 4 6-dinitro-o cresol		
per c				
300	> 4	3 38		
600	> 4	3 41		
1200	> 4	2 88		
2400	> 4	1 83		

sumption in the normal and in the treated eggs does not vary significantly with the egg concentrations (Table IV) Furthermore, under these conditions, a partial division block is not made more complete

Fig 5 Stimulation of oxygen consumption and block to cell division of fertilized *Arbacia* eggs produced by various concentrations of o-nitrophenol (I), m-nitrophenol (II), and p-nitrophenol (III) at 20°C Reagents added 15 minutes after fertilization

as the number of eggs is decreased (Table V) In fact, the division block is somewhat less when smaller numbers of eggs are used, possibly due in part to the less rapid accumulation of metabolic products in the more dilute suspensions. In this fact there is some support for

the hypothesis that the division block by 4,6-dinitro-o cresol may be due, in some degree, to the ability of this reagent to stimulate anaero bic production of metabolic intermediates unfavorable for divi-

FIG 6 Stimulation of oxygen consumption and block to cell division of fer tilized Arbacia eggs produced by various concentrations of 4 6-dimitrocarvacrol (I), 2 4-dimitrothymol (II) p introsophenol (III) and p aminophenol (IV) at 20°C Reagents added 15 minutes after fertilization

sion (15) The rate of intracellular accumulation of such intermediates, and the division block resulting therefrom, may decrease as the egg concentration is made smaller

The simplest compounds containing the phenol nucleus and a nitro group are the three isomeric mononitrophenols. The o-nitrophenol does not stimulate oxygen consumption or block division in the eggs until very high and permanently injurious concentrations are reached

Fig. 7 Stimulation of oxygen consumption and block to cell division of fertilized Arbacia eggs produced by various concentrations of 2,4-dimitro- α -naphthol (I), 2,4-dimitro-ar-tetrahydro- α -naphthol (II), p-nitroanisole (III), and p-nitrobenzyl alcohol (IV) at 20°C Reagents added 15 minutes after fertilization

The m- and p-nitrophenols stimulate oxygen consumption and block division in the same general way, but to a lesser degree than 4,6-dinitro-o-cresol. The p-nitrophenol is considerably more active than the m-nitrophenol in raising respiration, and in suppressing division

(Fig. 5) The p introphenol is more active than any compound in which the nitro group in the para position has been replaced by another atom or radical. For example, p nitrosophenol and p aminophenol, derived from the p introphenol by reduction, have no marked ability

FIG 8 Stimulation of oxygen consumption and block to cell division of fer tilized Arbacia eggs produced by various concentrations of 2,4-dinitrophenol (I) 2 6-dimitrophenol (II), 2 4-dinitrophenol (II), and 2 4 6-trinitrophenol (IV) at 20°C Reagents added 15 minutes after fertilization

to stimulate oxygen consumption or reversibly block division in the range of concentrations effective for nitro compounds (Fig 6) When other groups are substituted for hydroxyl, even in the favorable para position to the nitro group, the ability to stimulate respiration and

I

block division is lost. The substitution of a methyl group for the phenolic hydrogen, as in p-nitroanisole (Fig. 7), or the separating of the hydroxyl from the ring by a $-CH_2$ group, as in p-nitrobenzyl alcohol, destroys the activity (Fig. 7)

Proceeding from the mononitrophenols and their derivatives to the dimitro compounds, it is found that 2,4-dimitrophenol is more active than 2,6-dimitrophenol in stimulating oxygen consumption and blocking division (Fig. 8)

Field, Field, and Martin (27) have found that the relative effectiveness of these compounds in producing stimulation of oxygen consumption in yeast is as follows p-nitrophenol > m-nitrophenol > o-nitrophenol, 2,4-dinitrophenol > 2,6-dinitrophenol

Introduction of the methyl group into the nitrophenol nucleus in the ortho position to the OH results in greater effectiveness at lower concentrations, for example, the optimum for 4,6-dinitro-o-cresol is 8×10^{-6} molar as compared with the optimum of 32×10^{-5} molar for 2,4-dinitrophenol

If two aliphatic side chains are introduced into the 2,4-dimitrophenol molecule the activity of the resulting compound depends on the relation of the alkyl groups to the hydroxyl and to the nitro groups instance there is a remarkable difference between 4,6-dinitrocarvacrol (1-methyl, 2-hydroxy, 4-isopropyl, 3,5-dinitrobenzene), which stimulates oxygen consumption and blocks division in the same way as 2,4-dinitrophenol, and 2,4-dinitrothymol (1-methyl, 3-hydroxy, 4-isopropyl, 2,6-dinitrobenzene) which blocks division in extremely low concentrations with only a slight stimulation of oxidation (Fig. 6) A full discussion of the significance of this difference must be reserved for a later paper The fact that 2,4-dinitrothymol fails to stimulate respiration and yet blocks division in a concentration of 10-6 molar, added to the fact that 4,6-dimtrocarvacrol and other nitrophenols blocking division at a concentration of 10-5 molar or more exhibit respiratory stimulus with a down curve of oxygen consumption coinciding with the block to division, suggests that the biological effects of these agents may be the result of two factors One factor leads to stimulation of oxygen consumption and does not affect cell division The other factor leads to a limitation of the rate of oxygen consumption and suppression of cell division

Enlarging the carbocyclic grouping to which the hydroxyl and nitro groups are attached tends, in some cases, to increase the activity at low concentrations As examples, 2,4 dinitro α naphthol and 2,4-dinitro α tetrahydro α naphthol may be compared with 2,4-dinitro phenol (Fig. 7)

TABLE VI

Nitro and related compounds which have little or no effect on the cell division of fertilized eggs of *Arbacia punctulata* when the eggs are first exposed at either 15 or 40 minutes after fertilization at 20°C

Compound	Concentration giving the following results after a 3 hrs exposure				
	Cytolyma	Irreversible block	Reversible block	No effect	
	moles per l	moles per l	moles per l	moles per l	
o-Aminophenol	10-3	10⊸		10-5	
o Nitroanisole	Ì	}		10-*	
p-Nitrophenetole	t]	10-3	10~4	
p-Nitrobenzonitrile	ĺ		ĺ	10~₃	
p Nitroacetonitrile	})		10-3	
p-Nitrophenylacetic acid	}]	10-2	
p Nitrobenzamide	{			10-2	
p Nitrophenylisocyanate	ł			10-2	
o Nitroanilme	ł	}		10-1	
p-Nitroaniline				10-3	
p-Nitrodimethylaniline	Į.	{		10-3	
p-Nitrodiethylaniline	Į	10-3		10~4	
p-Nitrosodimethylamline	10~3	i i		10-4	
p-Nitrosodiethylaniline	10-3	10-4		10~⁵	
o-Dinitrobenzene	Insoluble	[
p-Dmitrobenzene	10~1	į .		10~	
o-Nitrochlorobenzene	ł	[.	10⁻³	10⊶	
m Nitrochlorobenzene	1			10~1	
p-Nitrochlorobenzene			10-1	10⁴	

As in the mononitro derivatives, replacement of the hydroxyl in 2,4-dinitrophenol by an amino group to give 2,4 dinitroaniline results in almost complete loss of activity (Fig. 8)

It is particularly interesting to note that when a third nitro group is introduced into the highly active 2,4-dinitrophenol or 2,6 dinitrophenol to form 2,4,6 trinitrophenol (picnic acid) there is a total loss of activity (Fig. 8)

Other nitro and related compounds found to be ineffective in producing a marked respiratory stimulation or a division block are listed in Table VI It should be particularly noted that dinitrobenzene and other nitro compounds which do not contain the phenolic hydroxyl group evert no effect on cell division until very high and usually lethal concentrations are reached

Action of Reversible Dyes on Fertilized Eggs —Certain substances capable of being reduced in the cell and reversibly reoxidized by oxidiz-

Fig 9 Stimulation of oxygen consumption and block to cell division of fertilized Arbacia eggs produced by various concentrations of o-cresol indophenol (I), methylene blue (II), and neutral red (III) at 20°C The dotted division lines denote irreversible injury Reagents added 15 minutes after fertilization

ing agents, including oxygen, produce, when present in relatively low concentrations, a rise in rate of oxygen consumption of marine eggs

Methylene blue, o-cresol-indophenol, and neutral red, three oxidation-reduction indicators of potentials ranging from $E_0'=+200$ mv to -300 mv at pH 7 (the intracellular pH) and 30° C (4, 16), raise oxygen consumption to varying degrees. With none of these reagents is the stimulation of oxygen consumption as great as with the nitro and dinitrophenols (Fig. 9). In relatively high concentration the

reversible dyes block division This division block is, to a large extent, irreversible, since the eggs do not recover on return to sea water It

FIG 10 Stimulation of oxygen consumption and block to cell division of fer tilized Arbacia eggs produced by various concentrations of dimethyl p phenylene diamine (I), tetramethyl p phenylene diamine (II) and pyocyanine (III) at 20 C. The dotted division lines denote irreversible injury Reagents added 15 minutes after fertilization.

is desired to emphasize the fact that fertilized eggs of Arbacia subjected to optimum respiratory stimulating concentrations of these dyes are, so far as subsequent division is concerned, dead cells

When a fixed concentration of each of the three above reagents is added separately to samples of the fertilized eggs at varying times during the first and later mitotic cycles no particular variation in intensity of division block is observed. If the concentration is large enough to produce a total block to division the eggs do not perform further divisions regardless of the time in the division cycle at which the reagent is added. This is in marked contrast to the action of 4,6-dimitro-o-cresol and certain other respiratory stimulating nitrophenols, to which Arbacia eggs are particularly sensitive prior to one certain point in each mitotic cycle.

Three two step reversible oxidation-reduction indicators, dimethyl-\$p\$-phenylene diamine, tetramethyl-\$p\$-phenylene diamine, and pyocyanine also increase respiration and irreversibly block division in higher concentration (Fig 10). The first two have values for E0' at pH 7 and 30°C, in the range $+250~\rm mv$ to $+350~\rm mv$. The latter has an E0' at pH 7 and 30°C, of the order of $-30~\rm mv$ (17)

After immersion of the eggs in dimethyl-p-phenylene diamine there is a marked decrease in the intensity of color of the dye solution. Since the eggs produce a similar decrease in the color of o-cresol-indophenol it may safely be assumed that, under the present experimental conditions, the eggs can reduce these two dyes of high potential (see Chambers, Pollack, and Cohen (2)). This reduction, when the dye concentration is 10^{-4} molar or less, results in no interference with the division rate of the eggs.

DISCUSSION

The conclusion has been reached that the mode of action of nitrophenols and related substances differs essentially from that of methylene blue, pyocyanine, or other oxidation-reduction indicators. The most significant facts bearing on this point may be summarized as follows

1 4,6-dinitro-o-cresol and other active nitro compounds give optimum stimulation of respiration and initial reversible block to division at concentrations as low as 10^{-6} molar, while the oxidation-reduction dyes exert their maximum effect on oxygen consumption in the range 5×10^{-4} to 5×10^{-3} molar, a concentration one hundred to one thousand times as great as that at which most of the active nitro compounds are effective

- 2 The block to division exerted by nitrophenol derivatives close to the peak of respiratory stimulus is fully reversible, the eggs developing in a normal manner when returned to sea water. This block to division remains fully reversible until concentrations one hundred to five hundred times those required for initial division block are reached. The oxidation reduction dyes, when present in sufficient concentration to produce significant rises in oxygen consumption, exert a destructive effect since the eggs so treated do not divide when returned to sea water after a 3 hour exposure
- 3 The partial reduction products of nitro compounds such as p nitrosophenol and p nitrosophenol and p nitrosophenol are in no way comparable to the nitro compounds in their ability to stimulate respiration or reversibly block cell division
- 4 No effect on oxygen consumption or cell division results from the intracellular reduction of an amount of reversible dye more than ten times the equivalent of the amount of nitro compound present in a respiratory stimulating and division blocking solution of the latter
- 5 The optimum concentration of 4,6-dimitro o cresol and the absolute amount of excess oxygen consumed at this optimum concentration change only slightly with temperature
- 6 The Arbacia eggs show a cyclic sensitivity to reversible division block by certain nitro compounds, the division block by dyes, which in any case is irreversible, appears to be equally intense at all points in the mitotic cycle
- 7 4,6-dinitro o cresol ruses oxygen consumption in both fertilized and unfertilized eggs of Arbacia punctulata. Under optimum stimula tion the absolute level in fertilized eggs is two and one half to three times that in unfertilized eggs. This result contrasts with that obtained by Runnstrom (20) with dimethyl p phenylene diamine, one of the two step oxidation reduction indicators. This latter substance raises the rate of oxygen consumption to approximately the same level in both fertilized and unfertilized Arbacia eggs.

In forming a working hypothesis to replace or supplement the one based on oxidation reduction, there are several suggestive facts to consider First, the division blocking effect of 4,6-dimitro σ cresol is rapidly and completely reversible Second, little or no destructive action results from long exposure of the unfertilized eggs to the

reagent Third, there is no evidence of a direct relationship between egg numbers and the respiratory stimulating and division blocking effects produced by a given amount of a given concentration of reagent. The reversible combination of the 4,6-dinitro-o-cresol with some cellular constituent, or the adsorption of the reagent on and displacement of substrate from one or more enzymatic surfaces might well be associated with such a dependence on the concentration and independence of the total amount of reagent employed. A fourth point is that the decrease in 4,6-dinitro-o-cresol stimulation of respiration with rising temperature is in harmony with a concept involving reversible combination or adsorption.

A fifth point in favor of accepting such a concept as a working hypothesis is found in the fact that the nitrophenols are known to form molecular addition compounds with nitrogen containing substances similar to those which are known to play a rôle in cellular metabolism (18) In the case of the isomeric mononitrophenols, the tendency toward the formation of such addition compounds parallels the ability to stimulate respiration and block division, being greatest for p-nitrophenol and least for o-nitrophenol. In this connection, the possibility of formation of nitrophenol-metal complexes may also be of importance. It has also been suggested that the dinitrophenols may combine with a substance acting as a regulating factor for respiration (7) or may bring new, previously unused, respiratory centers into play (1)

Handovsky and coworkers (28) have emphasized the reduction of nitro compounds by cells and have also stressed the effects of these compounds on the reducing activity of tissues and tissue extracts Alwall (25) has suggested that the dinitrophenols act as reversible oxidation-reduction systems which aid in the transport of hydrogen to the cytochrome-oxidase system

If some reversible combination of the sort mentioned here does occur, the experiments presented in this paper may perhaps be used to indicate by analogy the type of attractive forces involved (a) Combination cannot be due to any unsaturated affinity associated with the nitro groups, since pictic acid is inactive in raising respiration or blocking division at pH 8 2 (b) The acidity of the phenol group is not an important factor, since o-nitrophenol has a pK of approximately 7 2, p-nitrophenol a pK of approximately 7 2, 2,4-dinitro-

phenol a pK of approximately 4 0 (3) The former substance is inactive up to very high concentrations and the latter two substances are very active in stimulating respiration and blocking division (c) The high dipole moment, and consequent additive properties of the entire molecule are not likely to be involved, since p introaniline and p intro somethylaniline, which have no effect on respiration or division, have dipole moments equal to or greater than that of p introphenol (11) (d) Any compounds formed are not likely to be of the oxonium type, since the mixed ether, p introanisole, produces in low concentrations no rise in oxygen consumption or block to division

Since the phenol hydroxyl, from the experiments to date, appears to be indispensable, the free hydroxyl group is suggested as the principal center of combination

When the effects of a given compound on respiration are compared with the effect of the same compound on cell division, it is observed that the range of concentration in which the reversible division block is produced coincides with the range of concentration in which the rate of respiration is decreasing from the optimum value. This relation ship holds for a single compound at different temperatures and for a wide variety of compounds at a single temperature. Hence, the reversible division block seems to be associated with a limitation, dis turbance, or block of an aerobic phase of metabolism rather than with an actual oxygen lack The behavior of the two isomers, 4,6 dinitrocarvacrol and 2.4-dinitrothymol supports this view The former gives a block to division and a respiratory stimulation to some 350 per cent of the normal at a concentration of about 10-5 molar, the latter gives a reversible block to division at an extraordinary dilution of about 10-6 molar with little or no previous or coincident rise or fall in respiratory rate

The coincidence of the down curve of respiration and the reversible block to division by mitro compounds in Arbacia eggs might well be the result of (1) Activation or inactivation by the nitro compound of one or more substances concerned with metabolism and cell division, or (2) accumulation, in high local concentration, of an intermediate metabolite unfavorable to division. From the evidence available, the former of these two hypotheses appears the more probable

1

The authors desire to thank Miss A K Keltch for her valuable assistance during this investigation, particularly for procuring the data given in Table I

BIBLIOGRAPHY

- 1 Borsook, H, Ergebn Enzymforsch, 1935, 4, 1
- 2 Chambers, R, Pollack, H, and Cohen, B, Brit J Exp Biol, 1929, 6, 229
- 3 Clark, W M, Determination of hydrogen ions, Baltimore, The Williams & Wilkins Co, 3rd edition, 1928, 76
- 4 Clark, W M, and coworkers, Studies on oxidation-reduction I-X, Bull Hyg Lab, U S P H S, No 151, 1928, 105, 174
- 5 Clowes, G H A, and Krahl, M E, Science, 1934, 80, 384
- 6 Clowes, G H A, and Krahl, M E, Lilly Research Laboratories dedication volume, Indianapolis, 1934, page 73
- 7 DeMeio, R H, and Barron, E S G, Proc Soc Exp Biol and Med, 1934, 32, 36
- 8 Dixon, M, Manometric methods, Cambridge, University Press, 1934
- 9 Gimingham, C T, Masse, A M, and Tattersfield, F, Ann Appl Biol, 1926, 13, 446
- 10 Greville, G D, and Stern, K G, Biochem J, London, 1935, 29, 487
- 11 Hampson, G C, and Marsden, R J B, Tr Faraday Soc, 1934, 30, appendix
- 12 Harvey, E N, Biol Bull, 1932, 62, 141
- 13 Krahl, M E, and Clowes, G H A, Biol Bull, 1934, 67, 332
- 14 Krahl, M E, and Clowes, G H A, Proc Soc Exp Biol and Med, 1934, 32, 226
- 15 Krahl, M E, and Clowes, G H A, J Biol Chem, 1935, 111, 355
- 16 Michaelis, L, Oxydations-Reductions-Potentiale, Berlin, Julius Springer, 2nd edition, 1933
- 17 Michaelis, L, Chem Rev, 1935, 16, 243
- 18 Pfeiffer, P, Organische Molekulverbindungen, Stuttgart, Ferdinand Enke, 2nd edition, 1927, 332
- 19 Plantefol, L, Compt rend Soc biol, 1922, 174, 123
- 20 Runnstrom, J, Protoplasma, 1930, 10, 106
- 21 Shapiro, H, Biol Bull, 1935, 68, 363
- 22 Smith, H W, and Clowes, G H A, Am J Physiol, 1924, 68, 183
- 23 Warburg, O, Arch ges Physiol, 1915, 160, 324
- 24 Whitaker, D M, J Gen Physiol, 1933, 16, 497
- 25 Alwall, N, Über die Wirkung der Dinitrophenole auf die Tierischen Oxydationsprozesse, Berlin and Leipsic, Walter de Gruyter and Co, 1935
- 26 Clowes, G H A, and Krahl, M E, Proc Soc Exp Biol and Med, 1936, 34, 565
- 27 Field, S. M., Field, J., 2nd, and Martin, A. W., J. Pharmacol and Exp. Therap., 1935, 53, 314

- 28 Handovsky, H, Casier, H, and Schepens, Ch, Arch internat pharmacod et thérap, 1935, 50, 397
- 29 Krahl, M É, and Clowes, G H A, Proc Soc Exp Biol and Med, 1935, 33, 477
- 30 Krahl, M E, and Clowes, G H A, Proc Soc Exp Biol and Med, 1936, 34, 567
- 31 Martin, A W, and Field, J, 2nd, Proc Soc Exp Biol and Med, 1934, 32, 54

STUDIES ON CELL METABOLISM AND CELL DIVISION

II STIMULATION OF CELLULAR OVIDATION AND REVERSIBLE INHIBITION OF CELL DIVISION BY DIHALO AND TRIBALOPHENOLS

BY M E KRAHL AND G H A CLOWES

(From the Lilly Research Laboratories, Marine Biological Laboratory, Woods Hole)

(Accepted for publication, December 2, 1935)

Two types of reagents have previously been known to produce large increases in the rate of oxygen consumption by living cells. These are, first, certain oxidation reduction indicators (2), and, secondly, certain intro and dinitro derivatives of phenols (7). (See also Krahl and Clowes (6) and Alwall (1) for numerous other references.) In this paper it will be shown that certain dihalo and tinhalophenols produce, in fertilized sea urchin eggs (Arbacia punctulata), a rise in oxygen consumption and a reversible block to cell division comparable to those effected by nitro and dinitrophenols and differing from those obtainable with the oxidation reduction indicators of the type of methylene blue

On the basis of experimental results presented in a previous paper (4), it was tentatively concluded that the metabolism stimulating and reversible division blocking properties of the introphenols were not the consequence of reduction or reversible oxidation of the nitrophenol molecule. Since the dihalo and trihalophenols display the same oxidation promoting quality and nearly the same reversible division suppressing ability as the nitro and dimitrophenols, it is reasonable to believe that all these phenol derivatives have a common mode of action on the cell

In a dihalo or trihalophenol molecule there are no substituent groups capable of reduction, or reversible oxidation reduction, and the entire halogen substituted phenol molecule is oxidized only irreversibly and at very high positive potentials (5) Hence the present experiments provide further confirmation of the hypothesis previously advanced

According to this view, the dinitrophenols and the dihalophenols derive their intense biological activity from the presence of the phenolic OH group, as modified by suitable substitution in the benzene ring

Fig 1 Part I Oxygen consumption, at 20°C, of fertilized Arbacia eggs for various periods of time in the following molar concentrations of 2,4-dichlorophenol A, none-control, B, 16 \times 10⁻⁵, C, 32 \times 10⁻⁵, D, 128 \times 10⁻⁴, E, 256 \times 10⁻⁴, F, 1024 \times 10⁻³

Part II The hourly oxygen consumption and the cell division, at 20°C, of fertilized *Arbacia* eggs in various concentrations of 2,4-dichlorophenol Reagent added 25 minutes after fertilization

Although this concept can be made to explain all of the experimental facts available, and although it has led to the realization that the dihalophenols should and do act as cellular oxidative stimulants, further elaboration of the idea will be reserved until the theoretical

consequences of such a concept can be tested by further experiments

The present experiments were performed and the results expressed by the use of the methods described in a previous paper (4) Fertilized eggs of the sea urchin (Arbacia punctulata) were employed

Fig 2 Stimulation of oxygen consumption and block to cell division of fer tilized *Arbacia* eggs produced by various concentrations of 2 4-dichlorophenol (I), 2 4-dibromophenol (II), and 2 6-dibromophenol (III) at 20 C Reagent added 15 minutes after fertilization

In Figs 2-6

$$\begin{array}{l} \text{O} - \text{O} = \frac{O_2 \text{ consumed in treated eggs}}{O \text{ consumed in control eggs}} \\ \text{X} - \text{X} = \frac{\text{Cell division in treated eggs}}{\text{Cell division in control eggs}} \end{array}$$

EXPERIMENTAL RESULTS

To illustrate the behavior of the dihalo and trihalophenols, the results with 2,4-dichlorophenol may be cited in detail When, at a

 \mathbf{II}

Within a short time after the addition of a suitable single stimulating concentration of the reagent, the rate of oxygen consumption by the eggs is increased to more than twice the normal value. This increased rate is maintained for at least 3 hours (Fig. 1)

The rate of oxygen consumption (which is here expressed as the hourly average of a 2 hour observation) depends on the concentration of reagent. As this concentration is increased from zero, the rate of oxygen consumption by the treated eggs increases until an optimum rate is attained. At still higher concentrations the rate of oxygen consumption is less than at this optimum

If a concentration of 2,4-dichlorophenol slightly greater than the optimum for respiration is added within 30 minutes after fertilization, at $20^{\circ}\mathrm{C}$, the eggs do not divide while the untreated control eggs proceed to the 16 cell stage

90 to 100 per cent of all fertilized eggs which have been completely blocked in division by 2,4-dichlorophenol resume their mitotic activity immediately after return to sea water and develop to swimming larvae. This holds true for exposures of 3 hours and concentrations up to 10^{-3} molar, the latter concentration being ten to twenty times the optimum for respiration. This reversibility of the division blocking effect in concentrations greater than the respiratory optimum deserves particular emphasis because it is displayed by the respiratory stimulating nitro compounds and is not shown by any of the respiratory stimulating oxidation-reduction dyes which have so far been investigated (4)

A second general question of interest, in view of the results previously obtained with nitro compounds (3, 4) is that of variation in intensity of block to cell division obtainable by varying the time after fertilization at which a suitable fixed concentration of reagent is added to a sample of eggs. As in the case of the nitro compounds, it is found that the division block is greatest when the reagent is added within thirty minutes after fertilization. If the reagent is added at subsequent times during the first mitotic cycle, the eggs can complete the first division but do not perform the second division (Table I). This

cyclic variation in sensitivity to 2,4-dichlorophenol is repeated in the second mitotic cycle of fertilized *Arbacia* eggs

An experimental survey of a number of other dihalophenols and their derivatives brings out the following data concerning the depen dence of biological activity on the type and arrangement of the sub stituent groups in the phenol molecule

First, the introduction of a methyl group into dichlorophenol does not markedly affect the activity, since 4,6 dichloro o cresol is approximately equal to 2,4-dichlorophenol in regard to its effective concen

TABLE I

The Effect of 10⁻⁴ Molar 2 4-Dichlorophenol on Division in Fertili ed Eggs of Arbacia
punctulata at Various Times after Vertili ation Temperature
19°C, and pH 8 2

Time of addition after fertilization	Divulons per egg at additi n of reagent	Divisions per egg 180 min after fertilization		
m s				
10	0	0 02		
20	0	0 12		
30	0	0 14		
40	0	0 43		
50	0	0 83		
60	0 05	0 90		
65	0 30	0 94		
70	0 90	0 95		
75	0 97	1 00		
No addition	_	4 00		

tration and in regard to the percentage effect produced (Fig 3) The presence of aliphatic side chains in addition to the methyl group lowers the aqueous solubility of the halogenated phenols and, perhaps partially as a result of this lower solubility, lowers the activity For instance, 2,4-dibromothymol and 4,6 dibromocarvacrol (Fig 4) are much less active than 2,4-dichlorophenol or 2,4-dibromophenol

Certain types of enlargement of the central ring nucleus also de crease the aqueous solubility and lower the activity of the dihalo phenols. This may be seen by comparing the results obtained with 2,4-dichloro a naphthol (Fig. 3) and 5,7 dibromo 8 hydroxyquino-

line (Fig 4) with the results obtained with 2,4-dichloro and 2,4-dibromophenol

Second, with a fixed arrangement of halogen and alkyl substituents in relation to the phenol group, the dibromo substituted molecule appears to be slightly more effective than the dichloro compound

Fig 3 Stimulation of oxygen consumption and block to cell division of fertilized Arbacia eggs produced by various concentrations of 4,6-dichloro-o-cresol (I), 4,6-dibromo-o-cresol (II), and 2,4-dichloro α -naphthol (III) at 20°C The dotted division lines denote irreversible injury Reagent added 15 minutes after fertilization

The phenols, cresols, and thymols may be cited as examples (Figs 2, 3, and 4)

Third, 2,6-dibromophenol is less effective than 2,4-dibromophenol (Fig. 2)

Fourth, 2,4-dichloroaniline and the dichloro benzenes, compounds containing respectively an amino and a hydrogen in place of the OH,

FIG 4 Stimulation of oxygen consumption and block to cell division of fer tilized Arbacia eggs produced by various concentrations of 2 4-dichlorothymol (I) 2 4-dibromothymol (II) 4 6-dibromocarvacrol (III) 2 4 5 trichlorophenol (IV) a nitro-p-chlorophenol (V) and 5 7 dibromo 8-hydroxyquinoline (VI) at 20°C Dotted division lines denote irreversible injury Reagents added 15 minutes after fertilization

have no ability to stimulate oxidation or block division in fertilized Arbacia eggs

Since p-chlorophenol and p-chlorothymol were found to possess no respiratory stimulating or reversible division blocking ability, no other monohalophenols were investigated

Fig 5 Stimulation of oxygen consumption and block to cell division of fertilized Arbacia eggs produced by various concentrations of 2,4,6-trichlorophenol (I), 2,4,6-tribromophenol (II), 2,4,6-tribromophenol (III) at 20°C Dotted division lines denote irreversible injury Reagent added 15 minutes after fertilization

Of the trihalophenols investigated 2,4,5-trichlorophenol gives the highest percentage rise in oxygen consumption. It also produces a reversible block to cell division at very great dilution. According to both of these criteria, 2,4,5-trichlorophenol compares favorably with any of the nitrophenols (Fig. 4)

The 2,4,6-trichlorophenol produces a smaller optimum percentage rise in oxygen consumption and, in order to produce this rise and to

block cell division, requires a higher concentration than its 2,4,5 isomer (Fig 5). The 2,4,6-tribromophenol and 2,4,6 tribromophenol and 2,4,6 tribromophenol and cell division block in smaller concentrations than those required for the two trichlorophenols first mentioned, but with the iodo compound the increase in oxygen consumption is small (Fig 5).

Fig 6 Stimulation of oxygen consumption and block to cell division of fer thized Arbana eggs produced by various concentrations of 2 6-dinitro-4-chloro phenol (I), 2 6-dichloro-4-nitrophenol (II), 2,6-dibromo-4-nitrophenol (III) at 20°C Reagents added 25 minutes after fertilization

High concentration of 2,4,6 tribromo and 2,4,6 tribromol, and, to a lesser extent, of 2,4-dibromophenol and 2,4-dichloro α naphthol produces some cytolysis of fertilized Arbacia eggs. For this reason, eggs blocked in division by high concentration of these agents show a relatively low percentage of recovery when returned to sea water.

In general, phenols which contain both mitro and halo substituents

TT

have respiratory stimulating and division blocking properties very similar to those of the phenols containing only nitro groups and those of the phenols containing only halo groups. An example having one nitro and one chloro group is o-nitro-p-chlorophenol. This compound (Fig. 4) is much more active than either o-nitro or p-chlorophenol, somewhat more active than 2,4-dichlorophenol, almost equal in activity to p-nitrophenol, and slightly less active than 2,4-dinitrophenol

A phenol containing two nitro substituents and one halogen, or a phenol containing two halogen substituents and one nitro has nearly the same respiratory stimulating and division blocking effects as the trihalophenols (Fig. 6)

For comparison, the optimum levels of respiratory stimulation produced in fertilized Arbacia eggs by representative nitro and halophenols may be expressed in the following order as percentages of normal p-nitrophenol, 342, 4,6-dinitro-o-cresol, 300, 2,4-dinitro-phenol, 292, 2,4,5-trichlorophenol, 264, 2,4-dichlorophenol, 236, 2,6-dichloro-4-nitrophenol, 232, 2,4,6-tribromophenol, 227, 2,6-dibromo-4-nitrophenol, 222, 2,4,6-trichlorophenol, 214, 2,6-dinitro-4-chlorophenol, 205, 2,4,6-trindophenol, 175, 2,4,6-trinitrophenol, none

The molar concentrations of these reagents required to produce the optimum respiratory rise and initial division block fall in the following order 2,4,6-triodophenol, 2×10^{-6} , 4,6-dinitro-o-cresol, 8×10^{-6} , 2,4,6-tribromophenol, 10^{-5} , 2,4,5-trichlorophenol, 2×10^{-5} , 2,6-dibromo-4-nitrophenol, 2×10^{-5} , 2,4-dinitrophenol, 3×10^{-5} , 2,4,6-trichlorophenol, 6×10^{-5} , 2,6-dichloro-4-nitrophenol, 6×10^{-5} , p-nitrophenol, 10^{-4} , 2,4-dichlorophenol, 10^{-4} , 2,6-dinitro-4-chlorophenol, 3×10^{-4} Using these values as a key, other relationships may be found by referring to the figures in this and a previous paper (4)

In having a high division blocking activity associated with a small stimulation of respiration 2,4,6-triiodophenol is similar to 2,4-dinitrothymol

It was obviously desirable to determine whether the dihalo and trihalophenols produced respiratory effects in mammals similar to those described here for single cells. From experiments carried out in collaboration with Dr K K Chen, it appears that injection or oral administration of 2,4 dichlorophenol, 2,4,5 trichlorophenol, and other halophenols does not produce significant increases in the body temperature or the respiratory rate of rats or dogs

DISCUSSION AND SUMMARY

The dihalo and trihalophenols, and phenols containing both halo and nitro substituents in the same molecule, produce, in fertilized eggs of Arbacia punctulata, a rise in rate of oxygen consumption and a reversible block to cell division. To define the conditions which affect the degree of this activity, the following factors have been varied the arrangement of substituents in the molecule, the concentration of reagent, and the time after fertilization at which the reagent is added

The stimulation of oxygen consumption and reversible block to cell division produced by the dihalophenols are qualitatively the same as those previously produced in fertilized Arbacia eggs by certain dinitro phenols. To yield optimum respiratory effect and maximum division block, it usually requires a higher concentration of dihalo than of the corresponding dinitrophenol. For example, with fertilized Arbacia eggs at 20°C, 2,4 dinitrophenol, in optimum concentration of 3 × 10⁻⁵ molar, raises oxygen consumption to 292 per cent of normal (4). The corresponding values for two dihalo analogues are 2,4 dichlorophenol, 10⁻⁴ molar and 236 per cent, 2,4 dibromophenol, 6 × 10⁻⁵ molar and 282 per cent

The halophenols differ from the nitrophenols in two interesting respects (a) The monohalophenols produce little or no oxidative stimulation or division block in fertilized *Arbacia* eggs, p nitrophenol is very active in both respects (b) The symmetrical trihalophenols have an appreciable ability to stimulate oxygen consumption and block division, symmetrical trinitrophenol is mactive in both respects (4)

The increases in oxygen consumption produced in fertilized Arbacia eggs by 2,4-dichloro and 2,4 dinitrophenol are larger than the per centage increases given by methylene blue and o cresol indophenol under the same experimental conditions. The dihalo and dinitrophenols produce a reversible block to the cell division of fertilized

N II

marine eggs The oxidation-reduction indicators, in contrast to the dihalo and dinitrophenols, block cell division irreversibly and fertilized eggs of *Arbacia* do not recover from optimum respiratory stimulating concentrations of these oxidation-reduction dyes

The present experiments with halophenols are in harmony with and lend considerable support to the hypothesis (4) that nitro and similarly substituted phenols derive their biological activity from the presence and properties of the phenolic OH group, as modified by proper substitution in the phenolic benzene ring

BIBLIOGRAPHY

- 1 Alwall, N, Über die Wirkung der Dinitrophenole auf die Tierischen Oxydationsprozesse, Berlin and Leipsic, Walter de Gruyter and Co, 1935
- 2 Barron, E S G, J Gen Physiol, 1930, 13, 483
- 3 Clowes, G H A, and Krahl, M E, Science, 1934, 80, 384
- 4 Clowes, G H A, and Krahl, M E, J Gen Physiol, 1936, 20, 145
- 5 Fieser, L F, J Am Chem Soc, 1931, 52, 5204
- 6 Krahl, M E, and Clowes, G H A, J Biol Chem, 1935, 111, 355
- 7 Magne, H, Mayer, A, and Plantefol, L, Ann physiol et physicochim biol, 1931, 7, 269

INTENSITY DISCRIMINATION IN THE HUMAN EVE.

I THE RELATION OF $\Delta I/I$ TO INTENSITY

By JACINTO STEINHARDT

(From the Laboratory of Biophysics, Columbia University New York)

(Accepted for publication, December 14, 1935)

I

INTRODUCTION

A uniformly illuminated visual field becomes inhomogeneous in appearance when the light intensity of a part of it is sufficiently changed. The just perceptible difference in intensity ΔI depends primarily on the intensity I secondarily, it is determined by many other variables as well. Because of the relation of ΔI to I, it is customary to use the Weber fraction $\Delta I/I$ as a measure of contrast sensibility. The present investigation is concerned first with the relationship between $\Delta I/I$ and I, and second, with the dependence of this relationship on the area of the test field

Although the systematic variation of $\Delta I/I$ with I has been fre quently determined (Aubert 1865, Helmholtz, 1866, Koenig and Brodhun, 1888, 1889, Blanchard, 1918, Lowry, 1931) the data of different investigators differ in important details, as for example, in the behavior of $\Delta I/I$ at high intensities. In view of the theoretical importance of this function for the photoreceptor process (Hecht, 1935), it is desirable to establish the function definitively, under unambiguous experimental conditions

The effect of the area of the test field on the capacity to discriminate intensities has been previously studied only at single fixed bright nesses (Lasareff, 1911, Heinz and Lippay, 1928) or over a narrow range of intensities (Cobb and Moss, 1928) The existence of this dependence implies a definite relationship between the intensity difference threshold and the total number of visual receptors stimulated. Its

precise form, and its variation over a wide range of intensities is therefore important for theoretical analyses of the statistical aspects of sensory functions (Hecht, 1928) By exploring the entire course of the function relating $\Delta I/I$ and I for each of a series of test-fields of widely different areas, it was possible to attain both objectives of the present research simultaneously

 \mathbf{II}

Apparatus

Two different forms of apparatus have been used Both presented the same aspect to the subject—a test-field of variable size divided either centrally or otherwise into two parts and surrounded by a large peripheral field. The instruments provided independent control of both parts of the test-field and of the surround over wide ranges of intensity of illumination.

Apparatus A—The first arrangement is shown schematically in side view in Fig 1A—Light from a 250 watt projection Mazda lamp L, regulated at 2 20 amperes, after passing through a condenser C, two ground-glass screens S, and a biprism, illuminates two rectangular windows w_1 and w_2 —A neutral gelatin wedge and balancer WG (perpendicular to the plane of the figure) covers w_2 —Over w_1 a neutral filter F matches a point near the thick end of the wedge—The second biprism B and lens L direct the light in such a way that light from w_1 reaches the eye at the artificial pupil P only through the lower half of the biprism, while light from w_2 reaches it only through the upper half—The apical edge of the biprism furnishes a dividing line which is invisible when the fields are matched in hue and brightness. The exit pupil P is a circular opening of 20 mm diameter—It serves to fix the position of the observer's eye and to eliminate the effect of variations in the natural pupil—Wratten neutral filters F in front of the exit pupil control the brightness in discrete steps

Diaphragms D_1 of various apertures placed beyond the lens control the size of the bipartite field D_2 is a larger diaphragm with an outside diameter of 20° and a fixed aperture of $5^\circ 37'$, slightly less than the full aperture of L Diaphragms D_2 and D_1 are covered with a layer of MgO. The surfaces of D_1 and D_2 furnish the surrounding field, they are illuminated by a 500 watt projection lamp LS fitted with condensers, wide aperture projection lens, and mirror M Since the light intensity is controlled by filters at the observer's eye, the surround illumination bears a constant ratio to that of the test-field. In most experiments this ratio was 0.14, and will be called the standard surround brightness

The wedge at w_2 , controlled by the observer with a rack and pinion, governs the brightness of the variable half of the test-field It is 15 cm long, and its position can be read to 0 1 mm on an attached scale It was calibrated with a vacuum thermocouple and a Leeds and Northrup HS galvanometer, infrared radiation being excluded with a solution of copper sulfate Empirical justification for this

Fig. 1. A diagrammatic side view of the optical arrangements used in the measurement of intensity discrimination with Apparatus A is shown in the upper portion marked A, while the arrangements of Apparatus B are shown in top view in B

method was obtained with decimal neutral filters which had been calibrated visually with a Martens polarization photometer. Within the error of the determinations, the logarithm of the wedge transmission was a linear function of the scale readings. Wedge and balancer together covered a total range of transmissions of approximately 2 5 to 1

The decimal filters in front of the pupil are mounted in two movable frames, each containing five squares transmitting, respectively, approximately 1, 1/10, 1/100, 1/1000, and 1/10,000 of the incident light. Two filters, one from each of the two frames, are in front of the observer's eye simultaneously. An additional filter transmitting either 1/2 or 1/4 can be inserted, thus making possible 27 different light intensities over a range of about 1 to 400,000,000. The filters were calibrated with a Martens polarization photometer, using the method described by Hecht, Shlaer, and Verrijp (1933). These authors have also described the method used for measuring the absolute brightness of the field. The highest brightness was close to 16,000 millilamberts. To convert this to photons, that is, to units of retinal illumination, it is multiplied by $10r^2$ where r is the radius of the exit pupil in millimeters. Here r=1, and the highest intensity therefore is about 160,000 photons

To translate the wedge readings into $\Delta I/I$, the wedge-setting at which both halves of the field have the same brightness must be known. This matchpoint which changed with the age of the apparatus, was determined for every experiment, the average of at least 10 settings being taken as the day's value. Errors in this value may affect the smaller ratios of $\Delta I/I$ very considerably

The apparatus described above proved inadequate in several important respects. The maximum intensity was too low, the test-field was too rigid in pattern, small errors in matchpoint determination weighed heavily in the computations, and, above all, the two halves of the field showed hue differences which were impossible to exclude, and which, though imperceptible at low illuminations, were a source of annoyance and uncertainty at high intensities. Apparatus B was constructed to circumvent these difficulties

Apparatus B—In this apparatus one light of intensity I illuminates the entire visual field, while another light ΔI adds its illumination only to that portion of the field which constitutes the test-spot I Thus, small hue differences between the two lights are diluted and disappear I Higher illuminations are achieved by an optical system in which diffusion screens are unnecessary and have been omitted

In Fig 1B the lamps S_1 and S_2 are 100 watt concentrated-filament projection Mazdas, operated at 0.86 amperes. The relative brightness of the lamps is followed by measurement of the wedge matchpoint as described below, changes in absolute brightness are measured by comparison with a standard lamp, using a Weston photronic cell screened by a solution of copper sulfate. No significant change was noted in the duration of the experiments

An enlarged image of the filament S_1 is produced by the condenser C_1 on the achromatic lens L_1 A slightly enlarged image of the diaphragm at C_1 is produced, by L_1 and L_3 and the half-platinized mirror M, at the focus of the $10 \times Ramsden$

ocular O The observer, looking through the 3 mm artificial pupil P sees an en larged, intensely illuminated image of the aperture of C_1 If the apparatus is carefully aligned, this illumination is critically uniform. The field size is controlled by diaphragms cut in a metal slide D_4 at the focus of the ocular

The optics of the beam from S_2 are similar to those of S_1 except that the size and shape of its image in the field are regulated by the diaphragm λ_1 , which is so mounted that it may be rotated manually or with a motor, by the attached disc D_3

The wedge WG in the path of the light from S_2 covers a transmission interval of about 1 to 50. When its dense end covers the lens, the light added to the large field illuminated by S_1 is too small to be perceptible. When its clear end is before the wedge, the added light ΔI is about 60 per cent of I. Values of $\Delta I/I$ up to about 0 60 are therefore directly measurable. Higher values are obtained by reducing I relative to ΔI with a neutral filter (transmitting 1/2) inserted between the mirror and L_1 . Similarly, values of $\Delta I/I$ smaller than about 0 012 are obtained by inserting the filter between the mirror and L_2 .

The wedge was calibrated by two different methods, without removal from the apparatus. The first time a Weston photronic cell, screened from infrared and ultraviolet light, was connected to a sensitive low resistance millivoltimeter provided with a shunting ar angement that gave different ranges of sensitivity with a constant total circuit resistance. 6 months later, a visual calibration was made with a Macbeth illuminometer. Both methods showed a linear relation between the logarithm of the transmission and wedge scale readings the slopes agreeing within 2 per cent. The slope obtained visually has been used in most of the computations.

The filters in front of the ocular control the intensity as in Apparatus A and were similarly calibrated Experiments with monochromatic" filters were per formed by inserting Wratten filters in the space between the mirror M and the lens L₂ where they intercept light from both beams

It is not possible to measure the apparent brightness of the visual field as directly as in the case of Apparatus A owing to the use of a short focus ocular However, an approximately correct value was obtained binocularly, both eyes being fitted with artificial pupils The maximum apparent brightness, with all filters removed was about 2,000 000 photons

When a fixation point was required, a neutral filter transmitting 1/4 of the light and having a very fine hole punctured through it was placed at D_4 . The result was a shift of 0 60 log units in the intensity scale and the production of a small bright spot in any desired part of the field

To calculate $\Delta I/I$ it is necessary to determine the wedge setting at which the brightnesses of S_1 and S_2 have some known ratio This was done by careful dia phragming at C_1 and at X to obtain a divided field each half of which received light from one of the two beams only With a neutral filter of known transmission inserted at L_1 the wedge was then moved until a match was obtained

One advantage of the present apparatus is that the per cent error in $\Delta I/I$ caused by error in setting the wedge is the same at all wedge positions likewise small errors

in estimating the matchpoint will affect the accuracy of all values of $\Delta I/I$ by the same factor. Another advantage is that it provides a flexible test-field pattern, in this way it can be set so that the recognition of a pattern is required of the observer, here the lack of a physical counterpart to the dividing line increases the definiteness of this requirement. Against these advantages must be noted the aberrations produced by the ocular, noticeable with extremely small test-spots, and the difficulty of providing a large surround when a bipartite field is used

III

Procedure

Before each experiment, the observer was dark-adapted for 25 minutes, occasionally, when using small test-areas falling within the fovea, shorter periods were allowed, special experiments having shown that $\Delta I/I$ did not change after 6 minutes dark adaptation, when small fields were used Measurements were always begun at the lowest intensities Before beginning a setting, the observer, protected from all stray light, allowed about a minute for adaptation to the prevailing intensity, at very high intensities, 5 minutes were sometimes allowed. The setting occupied 3 minutes or longer and consisted in gradually adding light to one part of the field until the difference in intensity became perceptible

The magnitude of $\Delta I/I$ is affected by the procedure and by the criterion of certainty adopted In this paper the criterion was the appearance of a distinct boundary between the fields With the first apparatus the fields were stationary, with the second apparatus the test-field was rotated slowly at constant speed (10 RPM), and the observer was required to name the direction of rotation latter procedure gave reproducible averages with two or three settings, and made it possible to measure all the intensities in a single day Each experiment made in Curves obtained on different days vary somethis way was repeated at least once what, but the differences are consistent throughout With the first apparatus, the entire intensity interval could be covered in one day only by measuring at fewer (alternate) intensities, points in between were then determined on subsequent Four such complete sets were made for each size of field slow, moreover, averaging different days' work tends to obscure certain disconti-However, the averaged data are more independent of the nuities in the data time element, and comparisons of results with different areas may be made with confidence

An assistant, Miss Dorothy Pope, controlled the current in the lamps, and read and recorded the wedge settings. With the second instrument, she also changed the position or direction of rotation of the test-area. The author is greatly indebted to Mr. Simon Shlaer of the Biophysics Laboratory for practical advice and assistance in the design and construction of the two instruments described in the preceding section.

11

Results of the Measurements

(A) Main Data

During 3 years, over 6000 measurements of $\Delta I/I$ have been made on the right eye of the author at intensities between 0 02 and 2,000,000

TABLE I

Relation of $\Delta I/I$ to log I for different size of field, standard surround present All data represent averages of 10-20 determinations on 4 days, except the two fields 3 44' and 16 which were obtained each on a single day

Log I in	ΔI	/!	Log I in				ΔΙ/Ι	
photons	5 36 4 40	3 44 2 14	photons	56	41	31	23 5 16 1	12 2 9 1
5 212	0 014 0 014	0 011 0 015	4 991	0 027	0 054	0 043	0 053	0 144 0 525
4 892	0 012 0 013	0 0090 015	4 671	0 023	0 040	0 041	0 030 0 100	0 123 0 252
4 595	0 015 0 010	0 0090 014			0 050			0 127 0 315
4 256	0 014 0 016	0 0160 020	4 035	0 025	0 055	0 045	0 050	0 139 0 304
3 963	0 016 0 015	0 015 0 021	3 715	0 025	0 045	0 048	0 045 0 157	0 1660 331
3 639	0 016 0 015	0 014 0 017	3 418	0 028	0 052	0 048	0 060	0 1610 471
3 175	0 015 0 012	0 0140 019	2 954	0 028	0 061	0 055	0 072	0 1780 499
2 855	0 015 0 017	0 013 0 020	2 634	0 034	0 056	0 058	0 066 0 141	0 190 0 452
2 558	0 019 0 013	0 014 0 023	2 337	0 037	0 063	0 061	0 080	0 185 0 524
2 168	0 015 0 018	0 016 0 027	1 947	0 045	0 071	0 072	0 105	0 211 0 498
1 848	0 019 0 020	0 017 0 032	1 677	0 054	0 068	0 085	0 109 0 270	0 274 0 465
1 551	0 023 0 021	0 0050 038	1 330	0 070	0 102	0 099	0 147	0 294 0 549
1 124	0 028 0 031	0 0360 056	0 903	0 095	0 127	0 178	0 315	0 3880 690
0 804	0 036 0 042	0 0370 076	0 583	0 139	0 218	0 236	0 405 0 498	0 6200 813
0 507	0 055 0 047	0 057 0 112	0 286	0 242	0 304	0 379	0 579	1
0 168	0 089 0 098	0 100 0 168	-0 053	0 322	0 540	0 621	i]]
-0.152	0 141 0 163	0 1800 306	-0 373	0 587		į	1	l (
-0 449	0 221 0 243	0 313 0 521	1	1)]	ì	i	1 1
-0.896	0 313 0 400	0 462 0 854		[[li	ĺ	- 1	! [
-1216	0 408 0 452	0 594	ļ	1 1	1 1	- 1	- 1	} }
-1513	0 444 0 540	0 664		(((- {	-	
-1888	0 577 0 766	0 858	Į		1 [[- 1	
-2 208	0 764			[]]	}		

photons, using test fields with diameters between $24^{\circ}4'$ and 9' In this communication the chief concern will be with the relation of $\Delta I/I$ to the intensity, though the results can hardly be presented without describing the more general aspects of the area effects

The main data are in Tables I, II, and III Those in Table I were

obtained with a surround of constant size (Apparatus A) kept at an illumination approximately 1/7 that of the test-field. Those in Table II were obtained under similar conditions but with no surround Table III (Apparatus B) deals with large fields and presents the data of individual experiments singly. Because of the large fields, no surround was necessary, as will be shown later. Fig. 2 represents a

TABLE II

Relation of ΔI/I to Log I for Different Size of Field, No Illuminated Surround

Average of 15–20 Readings on 4 Days

$\operatorname{Log} I$ in	ΔΙ/Ι	Log I in			$\Delta I/I$		
photons	4°40′	photons	56′	41'	31'	23 5'	16 1'
5 212	0 014	4 991	0 041	0 049	0 058	0 168	0 588
4 892	0 011	4 671	0 030	0 034	0 065	0 128	0 383
4 595	0 013	4 374	0 031	0 041	0 065	0 135	0 373
4 256	0 017	4 035	0 027	0 044	0 060	0 149	0 438
3 936	0 016	3 715	0 031	0 047	0 079	0 160	0 388
3 639	0 015	3 418	0 030	0 046	0 072	0 143	0 340
3 175	0 015	2 954	0 040	0 053	0 075	0 168	0 312
2 855	0 016	2 634	0 033	0 055	0 088	0 158	0 259
2 558	0 017	2 337	0 041	0 061	0 089	0 158	0 248
2 168	0 021	1 947	0 054	0 071	0 090	0 165	0 233
1 848	0 022	1 627	0 050	0 085	0 112	0 182	0 239
1 551	0 029	1 330	0 066	0 105	0 136	0 200	0 282
1 124	0 038	0 903	0 109	0 150	0 185	0 289	0 377
0 804	0 050	0 583	0 138	0 210	0 297	0 372	0 588
0 507	0 066	0 286	0 247	0 380	0 469	0 671	0 928
0 168	0 126	-0 053	0 393	0 624	0 860		
-0 152	0 183	-0 373	0 604		ļ	į	
-0 449	0 284	-0 670	1 211	}	}	i	
-0 896	0 475	-1 117]	[ì	
-1 216	0 507	-1 437			}	}	
—1 513	0 660	-1 734	Ì	1	j		
-1 987	0 821	-2 208			1	1	

portion of these data, a selection having been made to avoid crowding. The two largest fields are from Table III (two sets of data for the largest field are shown), the others from Table I — It is apparent that the measurements though made at different times, with different apparatus, and different light sources, are homogeneous and represent essentially the same phenomena — This is best shown by the

TABLE III

Relation of \(\Delta I I \) to Log I for Large Slowly Rotating Fields The Columns Represent

Specimen Averages of Readings Made on Single Days

6 300 0 0169 0 0202 5 707 0 0174 0 0276 5 980 5 980 5 980 5 980 6 040 6 0 0163 5 981 5 982 6 0 0163 6 0 0202 5 707 0 0 0174 0 0155 5 024 0 0158 6 0 0202 4 741 0 0166 0 0161 0 0276 4 264 0 0 0136 6 0 0202 4 741 0 0166 0 0161 0 0276 4 264 0 0136 6 0 0205 4 4 007 0 0173 0 0139 0 0200 3 257 0 0135 0 0147 6 036 0 0160 0	Log I in		Δ	1/1		Log I in		ΔΙ/Ι	
5 980 0 0163 0 0202 5 707 0 0174 0 0276 5 643 0 0163 5 707 0 0174 0 0276 5 024 0 0158 5 688 0 0176 0 0154 4 677 0 0202 4 741 0 0166 0 0161 0 0272 4 264 0 0136 4 007 0 0173 0 0169 0 0143 0 0169 0 0143 0 0202 3 943 0 0147 3 670 0 0168 0 0160 0 0160 0 0202 0 0168 0 0169 0 0143 0 0202 0 0168 0 0169 0 0143 0 0202 0 0169 0 0143 0 0202 0 0169 0 0143 0 0202 0 0169 0 0169 0 0161 0 0202 0 0202 0 0169 0 0160 0 0160 0 0160 0 0160 0 0202 0 0169 0 0168 0 0160 0 0202 0 0160 0 0168 0 0160 0 0214 0 0214 0 0157 2 663 0 0160 0 0155 0 0214 0 0155 0 0185 0 0185 0 0185 <	photons		24		5 38	photons	1	7	5 38
5 643 0 0163 0 0231 5 707 0 0174 0 0275 5 345 0 0158 0 0231 5 409 0 0174 0 0155 5 024 0 0158 0 0202 4 741 0 0166 0 0161 0 0274 4 264 0 0136 4 328 0 0169 0 0143 0 0205 4 007 0 0173 0 0139 0 0206 3 257 0 0135 0 0127 0 0196 3 321 0 0172 0 0140 0 0226 2 599 0 0137 0 157 2 663 0 0160 0 0125 0 0214 2 213 0 0154 0 0192 2 277 0 0168 0 0155 0 0215 1 893 0 0164 0 0124 0 0207 1 619 0 0217 0 0189 1 555 0 0185 0 0214 0 0207 1 619 0 0217 0 0189	6 300		0 0169						[
5 345 0 0158 0 0231 5 409 0 0174 0 0155 0 0154 5 024 0 0158 5 088 0 0176 0 0154 0 0164 0 0274 4 677 4 264 0 0136 4 328 0 0169 0 0143 0 0202 4 007 0 0173 0 0139 0 0203 3 943 0 00147 3 670 0 0168 0 0160 0 0139 0 0205 4 007 0 0173 0 0139 0 0205 2 937 0 0127 0 0196 3 301 0 0160 0 0130 0 0220 2 599 0 0137 0 157 2 663 0 0160 0 0125 0 0211 2 183 0 0164 0 0192 1 957 0 0168 0 0155 0 0215 1 833 0 0164 0 0207 1 619 0 0217 0 0189 0 0282 1 555 0 0185 0 0214 0 0207 1 619 0 0217 0 0189	5 980	1			0 0202	ļ			
5 024 0 0158 0 0202 4 741 0 0166 0 0154 0 0272 4 677 4 264 0 0136 4 328 0 0169 0 0143 0 0202 4 741 0 0169 0 0143 0 0272 3 943 0 0147 3 670 0 0168 0 0160 0 0202 3 670 0 0168 0 0160 0 0226 2 937 0 0127 0 0127 3 001 0 0160 0 0130 0 0226 2 599 0 0137 0 157 2 663 0 0160 0 0125 0 0215 2 13 0 0154 0 0192 1 957 0 0168 0 0155 1 893 0 0164 0 0207 1 619 0 0217 0 0189 1 555 0 0185 0 0214 0 0207 1 619 0 0217 0 0189 1 257 0 0232 0 0246 0 0782 1 619 0 0217 0 0189	5 643)	0 0163				ļ		0 0276
4 677					0 0231)			l
4 264 0 0136 0 0205 4 328 0 0169 0 0143 0 0205 3 943 0 0205 4 007 0 0173 0 0139 0 0206 3 606 0 0147 0 0169 3 370 0 0168 0 160 0 0206 3 257 0 0135 0 0127 3 301 0 0172 0 0140 0 0202 2 599 0 0137 0 157 2 63 0 0160 0 0130 0 0216 2 213 0 0154 2 277 0 0168 0 0155 0 0215 1 893 0 0164 0 0192 1 957 0 0197 0 0159 0 0282 1 555 0 0185 0 0214 0 02207 1 619 0 0217 0 0189 1 257 0 0232 0 0246 0 0782 1 619 0 0217 0 0189			0 0158						!
3 943 3 606 0 0147 0 0205 3 670 0 0168 0 0169 0 0205 3 670 0 0168 0 0160 0 0220 0 0205		1			0 0202				0 0272
3 606 0 0147 0 0196 3 3670 0 0168 0 0160 3 257 0 0135 0 0127 0 0196 3 321 0 0172 0 0140 0 0226 2 937 0 0137 0 0157 2 663 0 0160 0 0130 2 2 213 0 0154 2 277 0 0168 0 0155 1 893 0 0164 0 0196 0 0197 0 0159 1 555 0 0185 0 0214 0 0207 1 619 0 0217 0 0189 1 257 0 0232 0 0246 0 0782 1 619 0 0217 0 0189	4 264		0 0136						[
3 257 0 0135 0 0196 3 321 0 0172 0 0140 0 0226 2 937 0 0127 3 001 0 0160 0 0130 0 0160 0 0130 2 599 0 0137 0 157 2 630 0 0160 0 0125 0 0215 2 213 0 0154 2 277 0 0168 0 0155 0 0155 1 893 0 0164 0 0192 1 957 0 0197 0 0159 0 0282 1 555 0 0185 0 0214 0 0207 1 619 0 0217 0 0189 0 0282 1 257 0 0232 0 0246 0 0782 1 619 0 0217 0 0189 0 0218					0 0205				0 0206
2 937 0 0127 3 001 0 0160 0 0130 2 599 0 0137 0 157 2 663 0 0160 0 0125 0 0213 2 213 0 0154 2 277 0 0168 0 0155 0 0151 1 893 0 0164 0 0192 1 957 0 0197 0 0159 0 0282 1 555 0 0185 0 0214 0 0207 1 619 0 0217 0 0189 1 257 0 0232 0 0246 0 0782 1 619 0 0215		Į	0 0147						l
2 559 0 0137 0 0154 2 277 0 0168 0 0155 1 893 0 0160 0 0124 0 0192 1 957 0 0197 0 0159 1 255 0 0185 0 0214 0 0207 1 619 0 0217 0 0189 1 257 0 0232 0 0246 0 0782 1 619 0 0217 0 0189		0 0135			0 0196				0 0226
2 213		ļ	0 0127						
1 893 0 0164		0 0137			0 157				0 0211
1 555 0 0185 0 0214 0 0207 1 619 0 0217 0 0189 1 257 0 0232 0 0246 0 0782 1 619 0 0215			0 0154						
1 257 0 0232									0 0282
			0 0214					0 0189	
		0 0232		0 0246					
	0 936		0 0285		0 0318	1 321		0 0218	0 0347
			0 0422				0 0352	0 0344	0 0434
		0 0396		0 0423	0 0547	l			0 0528
0 286 0 0548 0 663 0 0447 0 0484			0 0548				0 0447	0 0484	
								0.0000	0 0910
-0 120 0 0780 0 0893 0 157 0 257 0 0666 0 0779		0 0780	0 0893				0 0000	0 0/79	
-0 120 0 151 -0 184 0 168		ļ			0 151	-0 184			0 168
-0 128 0 0875				0 0875					ļ
-0 441 0 106 0 114 0 227 -0 192 0 100 0 113			0 114		0 227		0 100	U 113	
0 316] U 114		0.400	}		0 174	0.451	0 316
-0 465 0 120 -0 529 0 134 0 151		1		0 120	i		0 134		ĺ
-0 465 -0 529 0 145 -0 778 0 162 0 150 0 343 -0 842 0 477		0.460	0.450		0.242	1 .		0 145	0.477
		0 102	0 150	0.162	0 343		0 174	0.202	0 4//
		0.100	0.470	0 102	0.462		0 1/4	0 203	0 556
-1 112 0 189 0 179 0 463 -1 176 0 556 -1 119 0 177 -1 183 0 195 0 227		0 109	0 1/9	0 177	0 403		0 105	0 227	0 550
-1 119 -1 432 0 197 0 202 0 536 -1 496 0 193 0 227		0 107	0.202	0 177	0 526		0 193	0 221	0.702
-1 457 0 202 0 333 -1 450 0 222 0 253 0 302		0 197	0 202	0.216	0 330	1	0 222	0.253	0 702
-1 770 0 240 0 244 -1 834 -1 834		0.240	0 244	0 210	1		0 222	0 200	
-1 866 0 244 0 244 -1 930 0 294 0 324 0 324		0 240	0 244	0 281	ì		0 294	0.324	
-1 800		0.331	0.330	- 202	}			- 0	
-2 186 0 317		5552	0 007	0.317			0 469	0 407	
-2 499 0 419 -2 563		0 419			1	į			
-2 523 0 711		" "		0 711	ŀ		0 542		
-2 836 0 702 0 756 -2 900 1 188		0 702			[1 188	!

curves drawn through them, these have all been traced from the same stencil, and are the theoretical curves derived by Hecht (1934, 1935) for the general relation between $\Delta I/I$ and I Their applicability will be discussed later

Fig 2 Intensity discrimination in the human eye as influenced by illumination and size of field. The data for all except the two largest fields are taken from Table I and represent averages of 15 or 20 readings on four different days. The data for the two largest fields are taken from Table III and represent averages of 3 to 5 readings in single experiments. All the curves are identical in form, merely shifted in position on the ordinates.

Several characteristics of the data in Fig 2 require particular attention. In confirmation of Aubert, of Koenig and Brodhun, and of Blanchard, $\Delta I/I$ is large at low intensities, and diminishes rapidly

as I is increased. The decrease becomes more gradual at high values of I until there is practically no further change beyond about 1000 photons. Above this intensity, the points scatter noticeably cor responding to increased variability of the individual readings, and to greater subjective difficulty with criteria. With the two largest fields there are apparently systematic discrepancies in this high intensity interval, the data lying above the curve. The individual experiments with these fields show this deviation, but its extent varies. They were all made with Apparatus B and may represent an experimental artefact. The largest field of Table I (Apparatus A) is the same size as the smallest of Table III (Apparatus B), and it does not show this discrepancy. In all but these very large fields, $\Delta I/I$ be comes practically constant at the highest intensities, there is consequently no optimum intensity for discrimination

These data are in disagreement with the findings of Koenig and Brodhun (1889) in a number of ways In particular, these investigators record a systematic and substantial increase in $\Delta I/I$ at high intensities The secondary rise in $\Delta I/I$ has already been questioned by Guild (1932), and is not confirmed by the careful measurements of Lowry (1931) who reports an almost insignificant rise of doubtful validity (smaller even than shown by the data of Table III) Lowry's high intensities and our own are easily as high as and very likely higher than those achieved by Koenig and Brodhun Their rise may depend on incomplete light adaptation (cf Hecht, 1935 and experiments on the effect of a surround, below) Neither Wolf's measurements with the honey bee (1933a,b) nor the data of Hecht and Wald (1934) on Drosophila show an upturn of $\Delta I/I$ at high in tensities Measurements with Mya arenaria (Hecht, 1924, 1935) show minima in some experiments, but these depend on single high points only, and are therefore uncertain

At low intensities the curves approach a limiting straight line with a slope of -1 This means that ΔI becomes constant, independent of I Thus, although Weber's generalization $\Delta I/I=k$ is true as a

¹ The rise at high intensities in the data for very small fields in Table I is shown below to be the result of incomplete retinal adaptation

limiting condition at one end of the curve, at the other end the contrary limit is attained, and $\Delta I = k^2$

(B) Area

Discrimination is better in large fields than in small ones. The entire relation between $\Delta I/I$ and I is displaced with area. The displacement is principally upward, but there is probably also a slight shift along the abscissa. This is contrary to what Wolf (1933b) found with the honey-bee by the moving stripe method. There the displacement of the data caused by reducing the stripe width was mainly horizontal, toward higher intensities. Careful replotting of his data (Hecht, 1935) shows some vertical displacement also

The data for the different areas fall sharply into two groups Those below 2° are continuous and are best represented by one curve. Those above 2° show an obvious discontinuity and are best represented by two curves. The transition occurs at about 0.3 photons, and is responsible for the low values of $\Delta I/I$ which are obtained with large fields at intensities far below those at which discriminating capacity practically vanishes in smaller areas. The smaller the test-field the higher the level on the lower curve at which the break occurs. Slight changes in the position of the break occur in individual experiments with the same size field, the two curves which intersect at the break may thus be affected independently in day-to-day variations, and hence probably correspond to distinct visual processes

As Hecht (1935) has shown, this break is clearly present in the original data of Aubert (1865), and in the measurements of Blanchard (1918) Neither Koenig and Brodhun's data with white, blue, and violet light, nor the rather sparse measurements by Holladay (1926) with white light show the presence of a break, but it is strikingly present in the orange, yellow, and green (Brodhun's eye) light data of Koenig and Brodhun (1888) It is probably significant that all previous data which show a break are easily fitted with the theoretical curves drawn in Fig 2 (cf Hecht, 1935), whereas the others are not

² Fechner's modification of the Weber law (Fechner, 1860), $\Delta I/(I+C)=k$ possesses these two limits, and is in fact algebraically identical with another of Hecht's theoretical equations which describes intensity discrimination in *Droso-phila*

In the absence of a break, the points in that region are lower, and act as if they represent a summation of the two component curves. This is equivalent to saying that even the steep descending portion of these data cannot be described by Hecht's equation. Thus the data of Koenig and Brodhun stand apart from the data of all other careful investigators on three major counts.

Numerous studies of human visual phenomena have demonstrated the general applicability of von Kries' Duplicity theory (1929) The relations between visual acuity and intensity (Hecht, 1928), between critical fusion frequency of flicker and intensity (Hecht and Verrijp, 1933a,b), and between threshold and time of dark adaptation (Kohl ruusch, 1931, Hecht, Haig, and Wald, 1935) show two parts corresponding to the two parts of von Kries' dual mechanism, the rods and cones The virious changes in the relation between $\Delta I/I$ and I brought about by differences in experimental procedure are entirely consonant with von Kries' hypothesis of the separate functions and sensibilities of the retinal rods and cones.

(C) Color

Two methods of differentiating rod and cone function (Hecht, 1921, Kohlrausch, 1931, Hecht and Verrijp, 1933a) are (1) to alter the spectral composition of the stimulating light, and (2) to control the position of the test image on the retina. The first depends on the fact that different regions of the spectrum have widely different stimulating efficiencies for the rods and cones. Light from the red end of the spectrum is especially useful because it gives a maximum ratio of cone to rod sensibility. The second method depends on the fact that the center of the human retina is practically rod free while peripheral regions contain increasingly more rods than cones. The

 3 Certain of the measurements with very large fields obtained with Apparatus B show a persistent elevation above the theoretical curve at high intensities which may possibly mean that a third receptor system takes over discrimination at the highest intensities in the same way that the cones take it over from the rods at more moderate brightnesses. Since this involves the assumption that $\Delta I/I$ would otherwise use at high intensities and since the possible evidence for it both physiological and histological (Rochon Duvigneaud 1907) is dubious, no further consideration will be taken of this possibility here

measurements to be described in this connection are incomplete, but conclusive in their meaning

Wratten filters Nos 70, 88, and 89A were used to isolate the red end of the spectrum, they transmit light of wavelengths longer than 670, 680, and 690 m μ respectively. In Fig. 3 the measurements with No 70 filter for 24° and 5°38′ fields are compared with typical white light curves for the same areas. The brightness scale for the

Fig. 3 Intensity discrimination as affected by use of red light with two different sizes of test-field. For comparison, data obtained with white light for the two fields are also included in the figure. The points represent averages in a single experiment. White light data for the larger field are not strictly comparable to the others since they were obtained with a somewhat lower criterion of judgment.

red and white lights is the same, having been adjusted by means of factors determined in previous flicker measurements with the identical filter (Hecht and Verrijp, 1933a) 4 With the smaller field, the red

⁴ The appropriate factor appears to be a function of the field size Thus, the adjustment for the smaller field results in almost perfect superposition of the lower components, while the same factor does not quite produce this effect with the data for the larger field The correction factor used was actually determined in flicker experiments with a small (2°) field

light data differ strikingly from those with white light by the complete absence of the upper curve There is also a small vertical shift in the curves The red light data fit the standard curve closely, even

Fig. 4. Intensity discrimination in a field of 5.38 as affected by the position of the retinal image. The points represent averages obtained in a single experiment. The open circles are measurements with central fixation, the solid circles measurements with fixation 4 days.

TABLE IV

The Relation of $\Delta I/I$ to Log I for a Field with a Diameter of 5-38 Placed 4-Off Center

Log I in photons	ΔΙ/Ι
1 611	0 0547
1 291	0 0729
0 953	0 104
0 655	0 136
0 334	0 224
-0 003	0 366
-0 409	0 427
-0 730	0 690
-1 067	0 986

better than do the data for white light which exhibit slight deviations just below the intersections of the two curves (though these deviations appear only in experiments with Apparatus B, and are hence

of secondary significance) The differences between the two sets of data obtained with red and white light are very similar to differences brought about by changes in the size of the field

Fig 5 Intensity discrimination in the human eye as affected by the presence of a surround. The surround brightness is approximately 0.14 times the test-field brightness. The data are taken from Tables I and II and represent averages on four different days. The curves are the same as in Fig. 1. No curve is drawn through data for 23.5' field obtained without surround.

These differences are even more apparent for the 24° field Here the difference between the two curves is not entirely due to the spectral composition of the stimulus because the white light data were

gotten with a criterion which yielded values of $\log \Delta I/I$ about 0.15 units lower than those usually obtained. There remains nevertheless a large vertical displacement. The greatest change is shown at low intensities where the white light data extend almost two log units below the red. The absence of the break and of the low intensity component is obviously due to the low stimulating efficiency of red light for rods. It should be noted, in confirmation of this interpreta

Fig 6 Intensity discrimination data for a field of 23 5' as affected by the brightness of the surround. The lines connecting two of the sets of points have no significance other than aiding the reader to separate the data. The points represent averages obtained on four different days.

tion, that there is very little difference between the white light data for the small field and the red light data for the large

These results confirm the conclusions drawn by Hecht (1935) from the red, orange, and yellow light data of Koenig and Brodhun, and already referred to For 670 m μ their measurements fall on a single curve representing cone function, while for 605, 575, and (for Brodhun's eye) 505 m μ , the low intensity, rod section becomes increasingly larger, as would be expected from the relative sensibilities of the rods

and cones to these different portions of the spectrum The blue and violet data, like their white data, do not show any break, and may indicate summation of the two functions under particular experimental conditions

(D) Excentric Fields

The method of testing the duplicity theory by varying the retinal position of the test-field helps to distinguish between effects of area due to

Fig 7 Data for a test-field of 31' as affected by surround brightness. For comparison, measurements obtained with a 23 5' field with no surround and with a strong surround are included. The points represent averages obtained on four different days.

size and those due to kinds of retinal element dominant in the different areas. The data show that it is possible to imitate some features of centrally fixated large area data with smaller areas viewed excentrically. Table IV presents measurements with a 5°38′ field placed 4° below the center. They are compared in Fig. 4 with central fixation data. In the peripheral data, the rod curve is displaced downward 0.34 units, and the cone curve upward about the same amount. Sec-

ondarily, there is a horizontal displacement of the rod curve, as well Obviously in the periphery the cones are a less sensitive system than in the center. The reverse is true for the rods though the secondary horizontal displacement partly obscures this. The position as well as the size of the retinal image determines the nature of the results Measurements by Kravkov (1931) are consistent with this conclusion.

TABLE V

The Lifect of Surround Brightness on the Relation of ΔI/I to Log I The Data Represent Averages of 10-20 Determinations on 4 Days

	23	31 66	ld				
Surround 4 times standard Surround 1/4 of standard			standard	Surrou d 4 times standard			
Log I in photons	ΔΙ/Ι	Log I in photons	ΔΙ/Ι	Log I In photons	ΔΙ/Ι		
4 610	0 0378	5 212	0 145	4 610	0 0453		
4 290	0 0412	4 892	0 108	4 290	0 0553		
3 993	0 0397	4 595	0 122	3 993	0 0403		
3 654	0 0432	4 256	0 124	3 654	0 0421		
3 334	0 0470	3 936	0 120	3 334	0 0498		
3 037	0 0548	3 639	0 124	3 037	0 0467		
2 573	0 0617	3 175	0 131	2 573	0 0634		
2 253	0 0739	2 855	0 143	2 253	0 0717		
1 952	0 0798	2 554	0 147	1 952	0 0660		
1 566	0 115	2 168	0 153	1 566	0 0976		
1 246	0 138	1 848	0 150	1 246	0 121		
0 949	0 164	1 551	0 167	0 949	0 124		
0 522	0 280	1 124	0 193	0 522	0 248		
		0 804	0 303	0 202	0 451		
		0 507	0 420	1			
		0 168	0 758				

(E) Surround

The measurements given in Table I were made with the test field surrounded by an area the brightness of which was 0 14 of the test field. The absence of such a surround affects the data with small test fields considerably more than those with large fields. Data obtained with out surround scatter more widely, especially at high intensities. Fig. 5, constructed from Tables I and II, shows that with the possible exception of the smallest field, absence of a surround does not change the form of the relation between the variables. The position of the

curves, however, is distinctly shifted upward to an increasing extent as the fields are reduced. With the 31' field the differences are considerable, while with the 23 5' field they are so great that merely shifting the curve does not suffice to describe it. There appears also to be a smaller, and much more variable displacement toward higher intensities, the average for all the curves without a surround is about 0.2 log units.

Since absence of a surround has so marked an effect in small fields, it is natural to ask whether the surrounds used in obtaining the data of Table I were sufficient. Fig. 6 shows the data for a 23 5' field without a surround, with the standard surround of 0 14 of the test-field, and with 1/4 of and 4 times the brightness of the standard surround. It is apparent that with this small field even a weak surround influences the position of the data. The difference between the standard and 4 times the standard surround is not very large, but is probably real. Fig. 7 shows the data for the 31' field. For this area there is no difference between the standard and 4 times the standard, the effect is therefore maximal. The points in Figs. 6 and 7 are from Tables I, II, and V

In Fig. 7, data for the 23 5' field is introduced for comparison. It is apparent that the values of $\Delta I/I$ with the two fields are almost identical when determined with a proper surround. There appears a possible slight horizontal displacement, but no vertical one. These measurements show that below a field size of 30' diameter wholly erroneous impressions would result from comparing measurements with fields of various sizes without a surround of the same order of brightness as the test-field intensity. For this reason areas smaller than this were not included in Fig. 2 although given in Table I

ν

Interpretation

The data have shown that visual intensity discrimination may be regarded as a function of two distinct groups of receptors which differ in retinal distribution, in spectral sensibility, and in intensity threshold. The group predominating at low intensities is more peripherally distributed and has its maximum spectral sensibility further to the blue than the group which discriminates at high intensities. These

three differences, among others, identify the former as rods, the latter as cones

Because of the break in the data for all fields larger than 2° it is supposed that these two types of receptors function practically independently of each other over their distinctive intensity ranges. This supposition is strengthened by the fact that the data for fields below 2°, the data for all fields with red light, and the large field data to the right of the break are all described by the same curve. Moreover, the effects of area, surround brightness, wavelength, and fixation can all be described on the basis of these particular curves which change in position but not in form

It is possible that this independence of rod and cone function is not absolute, and that due to a limited kind of summation under certain conditions, the capacity to discriminate is better than it would be if either of the two systems were functioning alone. This appears to occur, if at all, only at intensities near the break and only for the largest fields used, with Apparatus B. Summation may be invoked to explain the absence of a break in the blue and violet data of Koenig and Brodhun, yet the fact that the break is also absent in their white data, whereas our own white data and those of Aubert and of Blanchard show the break strikingly (Hecht, 1935) speaks against such an interpretation. Nevertheless certain aspects of the quantitative relation between $\Delta I/I$ and area, to be reported in another communication, tend to support the idea of a limited, additive effect under certain conditions

The curves drawn through the data in all of the figures are theoretical ones and are taken from the equations recently derived by Hecht (1934, 1935) as a basis for the intensity discrimination of a variety of photosensory systems. This assumes that in order to discriminate between two intensities I and $I+\Delta I$ there must be produced a constant difference in the rate of photochemical decomposition at the moment when the receptor is exposed to the just perceptible increment ΔI after adaptation to I. If the first step in the photosensory process is assumed to be a cyclical, pseudoreversible photochemical reaction, Hecht (1934, 1935) has shown that for the cones, intensity discrimination may be described by the equation

When plotted on logarithmic coordinates this equation gives the curves used in this paper. Only the position of the curves on the ordinates will be affected by changes in the constants K and C. Hence, the values of some of these constants must be different under varying experimental conditions, and the effects of area, surround, wavelength, fixation, and criterion can probably be understood in terms of their effects upon these constants. This is the point of departure for further analysis of such effects

It is necessary to add that only the cone data in our measurements are adequate for judging the validity of equation (1) The rod data cover too small a range for a critical decision between it and the simpler form

$$\Delta I/I = C(1+1/KI) \tag{2}$$

The curves here drawn for the rods are the same as for the cones

Equation (1) is noteworthy not only because it describes the data for the human eye, but also because together with the related equation (2) it may be used equally well to express intensity discrimination for the bee, for *Drosophila*, and for *Mya* (Hecht, 1935)

The fundamental assumption that a difference in rates rather than in equilibrium quantities is the determining factor in intensity discrimination is reasonable if the photoreceptor system is a cyclical process, rather than self-contained and completely reversible. In such a process at least one of the photolytic products will be continually dissipated, either in the secondary reaction which follows excitation, or by diffusion away from the place where it is effective. The effective rate at which such a material is supplied is the rate of the photochemical part of the reaction system, and the kinetics of the dark process and the stationary state condition merely control the concentration of the sensitive substance which absorbs the light

The least satisfactory part of the derivation is the dependence on *initial* difference in rates rather than the final adapted difference between two rate levels. When the data are obtained by the method of moving stripes, as they are with insects, the assumption that these initial rates are important is realistic enough. However, data with the human eye, obtained with persistent awareness of a difference in brightness, does not easily seem to represent the result of momentary,

impermanent changes Against this feeling one may advance the argument, as Hecht has done, that persistent ocular movements renew the sensation continually. In the absence of an adequate surround, these same ocular movements prevent the attainment of complete retinal adaptation, as we have seen

These conclusions are strengthened by the fact that efforts to de scribe the data by equations in terms of a constant difference of adapted rather than instantaneous rate levels have been consistently unsuccessful. Moreover, all attempts to derive a theoretical photo chemical basis for the data on a variety of different assumptions yielded distinctly unsatisfactory functions, and have emphasized the peculiar adequacy of equation (1) for describing the greater part of the measurements

VΙ

SUMMARY

New measurements of the brightness difference sensibility of the eye corroborate the data of previous workers which show that $\Delta I/I$ decreases as I increases. Contrary to previous report, $\Delta I/I$ does not normally increase again at high intensities, but instead decreases steadily, approaching a finite limiting value, which depends on the area of the test field and on the brightness of the surrounding field

On a logarithmic plot, the data of $\Delta I/I$ against I for test fields below 2° are continuous, whereas those for test fields above 2° show a sharp discontinuity in the region of intensity in which $\Delta I/I$ decreases rapidly. This discontinuity is shown to divide the data into predominantly rod function at low intensities, and predominantly cone function at high intensities. Fields below 2° give higher values of $\Delta I/I$ at all intensities, when compared with larger fields. Fields greater than one or two degrees differ from one another principally on the low in tensity side of the break. Changes in area above this limit are there fore mainly effective by changing the number of rods concerned. This is confirmed by experiments controlling the relative numbers of rods and cones with lights of different wavelength and with different retinal locations

At high intensities $\Delta I/I$ is extremely sensitive to changes in bright

ness of surrounding visual fields, except for large test-fields which effectually furnish their own surrounds. This sensitivity is especially marked for fields of less than half a degree in diameter. Although the effect is most conspicuous for high intensities, the surround brightness seems to affect the relation between variables as a whole, except in very small fields where absence of a surround of adequate brightness results in the distortion of the theoretical relation otherwise found.

The theoretical relationship for intensity discrimination derived by Hecht is shown to fit practically all of the data. Changes in experimental variables such as retinal image area, wavelength, fixation, and criterion may be described as affecting the numerical quantities of this relationship

It is a pleasure for me to acknowledge my indebtedness for advice and assistance received from Professor Selig Hecht throughout the course of this research. I also wish to express my obligation to all those who have worked in the Laboratory of Biophysics at Columbia University during the time that this research has been in progress

BIBLIOGRAPHY

Aubert, H, Physiologie der Netzhaut, Breslau, E Morgenstern, 1865

Blanchard, J, Phys Rev, 1918, 11, series 2, 81

Cobb, P W, and Moss, F K, J Franklin Inst, 1928, 205, 831

Fechner, G T, Elemente der Psychophysik, Leipsic, Breitkopf, 1860

Guild, J, Report of a joint discussion on vision, Physical and Optical Societies, Cambridge, University Press, 1932, 167

Hecht, S, J Gen Physiol, 1921, 4, 113

Hecht, S, J Gen Physiol, 1924, 6, 355

Hecht, S, J Gen Physiol, 1928, 11, 255

Hecht, S, Proc Nat Acad Sc, 1934, 20, 644

Hecht, S, J Gen Physiol, 1935, 18, 767

Hecht, S, Haig, C, and Wald, G, J Gen Physiol, 1935, 19, 321

Hecht, S, Shlaer, S, and Verrijp, C D, J Gen Physiol, 1933, 17, 237

Hecht, S, and Verrijp, C D, Proc Nat Acad Sc, 1933a, 19, 522

Hecht, S, and Verrijp, C D, J Gen Physiol, 1933b, 17, 251, 269

Hecht, S, and Wald, G, J Gen Physiol, 1934, 17, 517

Heinz, M, and Lippay, F, Arch ges Physiol, 1928, 218, 437

Helmholtz, H, Handbuch der physiologischen Optik, Hamburg and Leipsic, Leopold Voss, 1866

Holladav, L. L. J. Opt. Soc. America, 1926, 12, 271

Koenig, A. and Brodhun, E., Sit ungsber Akad Wissensch. Berlin, 1888, 917

Koenig, A., and Brodhun, E., Sit ungsber Akad Wissensch. Berlin, 1889, 641

Kohlenusch, A., Tarassahan, Dammarahan, Adaptatun, in Batha, A., 1988.

Kohlrausch, A, Tagessehen, Dammersehen, Adaptation, in Bethe, A., von Berg mann G Embden, G, and Ellinger, A., Handbuch der normalen und path ologischen Physiologie Berlin, Springer, 1931, 12, pt 2 1499

Kravkov, S W, Arch Ophth, Berlin 1931, 127, 88

von Kries, J. Zur Theorie des Tages und Dammerungssehens, in Bethe A. von Bergmann. G., Embden, G., and Ellinger, A., Handbuch der normalen und pathologischen Physiologie Berlin, Springer, 1929, 12, pt. 1, 678

Lasaress, P , Arch ges Physiol 1911 142, 235

Lowry E M , J Opt Soc America, 1931, 21, 132

Rochon Duvigneaud, A, Arch anat micr 1907, 9, 315 Wolf, E, J Gen Physiol, 1933a 16, 407

Wolf E. J Gen Physiol 1933b, 16, 773

ON CRITICAL FREQUENCY AND CRITICAL ILLUMI-NATION FOR RESPONSE TO FLICKERED LIGHT

By W J CROZIER ERNST WOLF AND GERTRUD ZERRAHN WOLF (From the Biological Laboratories, Harvard University, Cambridge)

(Accepted for publication, December 18, 1935)

I

The examination of the data of intensity discrimination has demon strated that a just detectable increase of illumination, $\Delta I = I_2 - I_1$ $(I_1 \text{ fixed}, I_2 \text{ adjusted})$, is directly proportional to its standard devia tion in all homogeneous series of measurements for which data are available (Crozier, 1935-36) This fact is of fundamental consequence for the interpretation of the meaning of measurements of intensity discrimination It has been shown that with suitable experimental procedures the data of visual acuity and of flicker fusion may be re garded from the same standpoint, both are based upon phenomena of intensity discrimination and σ_I here has the properties of σ_{I_1} (= $\sigma_{\Lambda I}$) One consequence of these considerations leads (Crozier, 1935-36) to the prediction (Crozier, 1935-36) that a curve relating flicker frequency to mean critical illumination for threshold response to flicker will not be duplicated, with the same organisms, by the curve relating illumination to mean critical flicker frequency for the same response This results from the fact that the regression of mean flicker frequency (F) upon illumination (I), as obtained from measurements of F as a function of I, is not of the same character as that for mean I upon Another way of stating this is, that the law according to which variation in flicker frequency depends upon I (or F) is not the same as the law according to which variation in I depends upon F (or I) Neither curve based upon averages gives an adequate formulation of the observed probability that a determination of F or of I at any point will possess the mean value recorded in the curve

The importance of this situation for the theoretical utilization of measurements of intensity discrimination requires a direct examina

tion of this particular case, which can be made more easily than that presented by direct tests of simple intensity discrimination, for purely technical reasons. The essential point concerned is that in the use to which the quantity ΔI must be put in deriving a physical theory of the excitatory process the actual dimensions of this quantity, as they arise in the experimental procedures employed, must not be lost sight of A development of this matter will be found in a succeeding paper

It is to be borne in mind that the predicted lack of agreement between the "flicker curves" determined in the two ways indicated involves not only the mere fact of their different positions upon the F, I grid, the curve for mean values of F being expected to fall above that for mean I's (Crozier, 1935–36), but implies also certain specific quantitative features of relationships between the indices of dispersion of the measurements These we may consider more advantageously after the technical procedures have been discussed

П

The reaction of a fish to a movement of a stripe system surrounding its container has been described previously (Lyon, 1904, Grundfest, 1931-32 a, b, Wolf and Zerrahn-Wolf, 1935-36) and has been used for the determination of sensitivity to visual stimulation

For observation a fish is placed in a cylindrical glass jar, 10 cm in diameter, containing 220 cc of water. The container with the fish stands on a glass-topped table. It is surrounded by a glass cylinder on which black opaque paper stripes are pasted, leaving translucent spaces of equal width between them. The striped screen is mounted on an axle which can be driven by a motor at various speeds (cf. Fig. 1, Wolf and Zerrahn-Wolf, 1935-36)

The striped screen is viewed by the fish against a white reflecting surface. This is a hollow 45° cone made of sheet metal and painted with zinc oxide. The cone is illuminated from below. The light comes from a source consisting of 100, 500, 1000, or 1500 watt concentrated filament lamps, according to the brightnesses desired, and placed at different distances on an optical bench. The positions of the sources are fixed distances from a diffusing screen (D) at the end of the optical bench. Behind the diffusing screen there is placed a disphragm which controls the size of the radiating area of the screen. The light then falls on a mirror which is inclined at an angle of 45° and reflects upward through the glass top of the table to the cone. The intensities of illumination at the eye of the fish are measured by a Macbeth illuminometer. With the different light sources and various distances from the screen, and the disphragm, the brightness can be varied over a range of 5.

logarithmic units — For low intensities we had to place in front of a 100 watt lamp in a fixed position Eastman Kodal neutral filters with transmissions of 1/10 1/100 1/1000 and 1/10 000 thus enabling us to have a total range of 9 logarithmic units of intensity

In a previous paper (Wolf and Zerrahn Wolf 1935–36) the reaction of the sun fish Lepomis to flicker was studied by adjusting the speed of rotation of the striped screen so that certain constant flicker frequencies were obtained A given flicker frequency was kept constant and the intensity of illumination was changed by in creasing I until a threshold reaction of the fish became evident For the present

Fig. 1 Diagram of connections of driving motor with shaft for rotation of striped cylinder and with magneto for measurement of speed

study it was desirable to take as the fixed intensities the mean values for thres hold intensity of reaction from the previous experiments. The flicker frequencies were varied by decreasing the flicker frequency until a threshold response of the fish is obtained. The temperature throughout was $21 \pm 1^{\circ}$

For determination of threshold flicker frequencies at fixed intensities it is essential that (1) the transmission of motion to the striped screen be rigid, so that no slippage of belts in the transmission system may influence the flicker frequencies in an uncontrollable manner and (2) instantaneous readings of flicker frequencies can be taken

The striped cylinder is driven by a D C motor (1800 R P M.) the speed of which

is controlled by a rheostat (Fig 1) The motor is belted to a reduction gear. The drive shaft of the gear box transmitting the reduced speed of rotation is on one side connected by a set of gears of ratio 1.1 to a shaft which transmits the motion through another set of gears of ratio 4.1 to the shaft turning the striped cylinder. The gears at the gear box junction can be interchanged for another set of ratio 2.1, to produce higher flicker frequencies in case they are needed. The gear transmission has no free play, and accurate settings of speeds of rotation are thus possible

Fig 2 Typical calibration curve—voltmeter readings from magneto as related to speed of rotation of striped cylinder

The other end of the gear box shaft is connected with a second set of gears of ratio 4 1, transmitting the rotation to a magneto speed indicator system. The magneto is connected with a millivoltmeter from which by means of calibration curves the flicker frequencies can be read. In the tables the voltages have been rounded to the nearest 0 01 volt.

For calibration of the speed indicator the rheostat is set at a given position, the time for ten revolutions of the striped cylinder is determined by means of a stopwatch, and the voltmeter reading taken. Such determinations are made for a great many rheostat settings covering the entire range of speeds. The voltmeter

readings then are plotted as ordinates against the times for ten revolutions as abscissae (Fig. 2). We thus obtain a smooth calibration curve from which the flicker frequencies can be computed. Since for the entire range of flicker frequencies required, different striped cylinders have to be used (10. 20, and 40 stripes each) the total number of stripes passing in front of the fish's eye during ten revolutions must be divided by the values from the calibration curve read on the abscissa for any given mean volumeter reading to give the flicker frequency. For each set of gear ratios used a separate calibration curve is of course required. Only one of these is illustrated (Fig. 2). The different gear ratios are so chosen as to permit readings from the calibration curves in the region of maximum precision, rather than at either end of the curve (Fig. 2). In this way an approximately equal accuracy of instrumental estimate of flicker frequency is obtained over the whole range of frequencies used.

For experimentation twelve individuals which gave rather good reactions to moving stripes were selected. They were of the same batch from which the animals for the previous experiments (Wolf and Zerrahn Wolf. 1935.36) were taken Each animal is kept in a separate glass jar. For tests they are transferred into culture dishes 10 cm. in diameter and 5 cm. high. Each dish is filled with 220 cc. of clean tap water which was at room temperature before the fishes were put into it.

Before experimentation the fish are dark adapted for at least 2 hours The first animal is then placed on the glass top of the table and left in the dark for a short time, so as to avoid any interference with our first reading by any effect of the handling. Then the striped screen is set into motion at a speed which is con siderably higher than that at which the fish could be stimulated by the flicker pro-The light is turned on giving an illumination previously adjusted to the desired intensity. As soon as the light is turned on the fish shows a slight light 'shock' which consists in a sudden backward motion after a few seconds it be comes quiet again Then the position of the rheostat is changed (decreasing the flicker frequency) until the fish shows the first noticeable response. At this in stant the voltmeter reading is taken by another observer. Since the fish now is swimming forward with the stripes or backward against them a shutter is closed reducing the light to a minimum Then the speed is brought back to the original maximum level and as soon as the fish has become quiet again a second and a third test is made. With all animals and at all levels of intensity we took three successive readings which agreed very closely one with another

Since the transmission of rotation to the striped screen was done by a rigid gear system there is naturally some vibration of the jar in which the fish is kept. The fish therefore is never so quiet as when the transmission is by a belt system. The fish always shows active motions of the fins. It stays reasonably quiet however, and the first jerk it gives with the visual stimulus produced by flicker is sharp enough to give repeatedly accurate settings for critical flicker frequencies. The various intensity settings were made in random order.

III

The analysis of the data obtained by measurements of mean critical illumination intensities (I_m) at fixed flicker frequencies showed that the dispersion of intensities (I_1) was related in a simple way to I_m , σ_{I_1} is directly proportional to I_m in the lower (rod) region of the curve, and directly proportional to $(I_m$ -const) in the upper (cone) section of the curve (Crozier, 1935-36) This result was brought into harmony with the results in tests of intensity discrimination, where in general σ_{I_2} (= $\sigma_{\Delta I}$) is directly proportional to I_2 , on the basis that reaction to flicker involves an "intensity discrimination" between I_x and I_x - ΔI_x , where $I_x - \Delta I_x$ (the brightness effect of the dark stripe) $\equiv I_1$, and $I_x \equiv I_2$ The data are properly described not by a curve but by a band, the width of which measures the probability that repetitive determinations of critical I will fall in a particular area, the margins of the band may be fixed by $I_m \pm \sigma_{I_1}$, or by $I_m \pm P \to I_1$, or by σ_{I_m} or P E I_m , since for each value of I_m the number of observations is kept constant. For the present purpose it is convenient to use $I_m \pm P E_{I_1}$ The data are summarized in Table III horizontal width of the band has the properties of $k \sigma_I$ Its vertical width should predict the properties of σ_F if the experiment is made by determining F as a function of I It is also apparent (Crozier, 1935–36) that the curve for mean F as a function of I should lie above that for mean I as a function of F (cf Fig 3)—unless the frequency distribution of measured F's or I's should be found to be of quite unexpected shape

This might easily happen if it were correct to regard the observed variation of I as in the crude sense due to "experimental error", error, that is, in the sense of variation introduced by the manipulation of the apparatus and of the organism with which the measurements are made. If this were correct, σ_I should be greater, absolutely, at low I's, and there would be no reason whatever for assuming that σ_I should be directly proportional to I, particularly since at high flicker frequencies (and high I) the reaction of the fish which is the basis of measurement is sharper, "cleaner", and easier to recognize quickly. The instrumental errors are thus in general to be expected to produce a type of dependence of σ_I upon I_m which is in fact the reverse of that actually encountered

It might also be suggested, in line with a certain more or less traditional conception of the "interval of uncertainty", that at any moment a given tested individual fish will exhibit a zone of intensities within which it cannot distinguish intensities at fixed F, and vice versa, and that in consequence any single determination of critical I or of critical F represents an accidental overshooting of the true margin of this zone. Several considerations dispose of this view. If this were in fact the essence of the situation then the distribution of measured F's at fixed F, or of measured F's at fixed I, should be quite definitely shewed, heaped up at the low intensity side and at the lingle F side, owing to the way in which the end point is approached. And it would be impossible to foretell from knowledge of the properties of σ_I anything whatever as to the properties of σ_I

In opposition to this idea is the one which we employ, namely that a single determination of F_1 measures a state of the reacting system of the fish, which has a certain probability under the conditions imposed The basis for this position requires brief consideration

Prediction of the properties of σ_r is not to be confused with prediction of its absolute magnitudes. The manipulative process whereby critical I is measured is not the same as that by which critical F is ascertained. Each process must involve its own characteristic factor of procedural uncertainty. The method whereby I_1 , F_1 and mean I, F are obtained reduces to a relative degree of insignificance the systematic distortions otherwise introducible from this source

It is to be noticed, in the first place, that critical I is determined by increasing I to the point where reaction is obtained, while critical F is gotten by reducing F until reaction is given. The important feature of this is that the same reaction serves as indicator in both sets of measurements, and the same end point is in each case approached in an equivalent manner. Using the terminology already employed, reaction is evidenced when I_x , the direct excitatory effect ("brilliance") of the illuminated stripe, reaches a critical value in relation to $I_x - \Delta I_x$. This effect is a function of I and of I, the duration of exposure to a stripe (=k/F). In measuring critical I, I is constant, in measuring critical I, I is fixed. Since $I_x = \phi(I, I)$, the critical excitation can be approached by increasing I or by decreasing F. It does not follow, however, that the mode of depend

ence of the critical effect upon F is independent of I, and indeed there is good reason to expect that change of F would be less significant at fixed high intensities than at low (so that the *precision* of mean F at the highest intensities would be comparatively less than otherwise expected)

In these experiments, as already outlined, three determinations of critical flicker frequency were made with each fish at each intensity The average of these was then taken, and the mean of the twelve

TABLE I

To illustrate nature of the data upon which mean critical flicker frequencies are calculated The illumination I is fixed, cylinder with 40 stripes, the variation in mean flicker frequency from fish to fish greatly exceeds the variation in repeated determinations (voltmeter readings) with any single fish

log I (millilamberts)	Fish No		Flicker frequency			
		•			mean	
ī 8118	1	0 39	0 37	0 37	0 377	30 19
	2	0 38	0 38	0 37	0 377	30 19
1	3	0 35	0 38	0 36	0 363	29 20
	4	0 39	0 37	0 39	0 383	30 89
1	5	0 38	0 39	0 39	0 387	31 13
}	6	0 37	0 39	0 38	0 380	30 53
ł	7	0 39	0 39	0 40	0 393	31 62
i	8	0 40	0 40	0 39	0 397	32 13
	9	0 40	0 41	0 41	0 407	32 92
	10	0 38	0 39	0 40	0 390	31 50
	11	0 39	0 40	0 39	0 393	31 62
ì	12	0 39	0 40	0 39	0 393	31 62

individual averages used as the mean critical F This procedure tends to eliminate the purely instrumental errors, and is manifestly a legitimate procedure since the scatter of the readings with any one fish is quite markedly less than the variation from fish to fish. Neither the raw single determinations of F_1 , nor the individual means, are skewed in distribution. There is no basis for supposing that the readings represent "overshooting" of the margin of a zone of uncertainty. One set of typical results is given in Table I. An examination of the data on critical I's (cf. Wolf and Zerrahn-Wolf, 1935–36)

shows an entirely similar situation. The necessary presumption is that the different individuals represent, at any one time, an essentially random distribution of the capacity to be excited by the flickered light, as evidenced by the respective critical flicker frequencies obtained for each. This is amply substantiated by an examination of the relative positions of the twelve in tests at different intensities and at different times. The mean rank position (1 to 12) in terms of increasing critical flicker frequency for response was determined from

TABLE II

Relative sensitivities of twelve *Lepomis* in terms of mean relative position in the series (1 to 12) of increasing critical flicker frequencies in twenty three sets of determinations at various times and at different intensities

Individual No.	Mean position		
1	4 55		
2	4 69		
3	5 14		
4	6 86		
5	6 76		
6	6 76		
7	8 42		
8	6 76		
9	8 01		
10	5 76		
11	6 91		
12	7 12		
Mean	6 48 ± 0 846		

twenty three sets of measurements such as the one shown in Table I The mean of these means was 648 (completely random = 65), the PE of a mean rank position 0846, the maximum departure from the mean being 196 (see Table II) The difference between the extreme mean rank positions = 23×1 ts PE This is the relationship to be expected from a fluctuating chance distribution of relative reactiveness. The time fluctuation of reactiveness in one fish is of a totally different order of magnitude from that concerned in the narrower range of variation of F apparent in successive determinations with one individual at one intensity. The situation here is like that encountered

in measurements of geotropic orientation of rats (cf Crozier and Pincus, 1931-32, Crozier, 1935) different individuals of one genetic composition represent at a given moment different states of performance of the same reacting mechanism, the fluctuation of reactivity is random in each of the several individuals, over a range of which the properties may be measured by the performance of the several representative states of reactivity in the sample taken at one time For our present purpose the importance of this lies in the demonstration that the variation dealt with in the measurements is not instrumental error but is a property of the organisms and of the system of processes determining the effects measured The use of a homogeneous population of tested individuals for all determinations in a series is merely a short-cut to the data which would be obtained by more protracted investigation of a single individual, involving an equal number of determinations The variation indices secured therefore measure an essential aspect of the performance of the system under scrutiny

It is of particular interest to examine experimentally the behavior of the index of dispersion of F_1 as it may be affected by purely instru-Four independent sets of determinations illustrate mental errors (1) The first determination of mean critical flicker frequency was made at an intensity of antilog $\overline{4}$ 9850, it gave mean F = 8 33, but $P \to F_1 = 0.336$ Subsequent determinations, after skill had been attained in repeated measurements, gave $F_m = 838$, with P E $_{P1}$ = 0.188 As pointed out subsequently, the latter determination is concordant with the position of this intensity in the whole series In a similar way, at a later date, it became necessary to change the gear ratio in the transmission system driving the striped cylinder, this entailed a new kind of practice on the part of the observer in using the rheostat controlling the speed of the driving motor, mean F from this series was 46 55 \pm 0 929, after adequate training in the handling of the apparatus, a redetermination (Table III) gave $F_m =$ 46.46 ± 0.436 , there is no question that the latter determination is a real measure of the variation effect (3 and 4) We have described how in order to obtain an adequate range of flicker frequencies it was necessary to use cylinders with different numbers of opaque stripes, in two cases we have determined that when the number of stripes is

just barely inadequate to provide a sufficiently high flicker frequency to cover the range desired in the test, the mean flicker frequency ob tained is, as would be expected, a little too low—for example at in-

Fig. 3 Critical I_n as a function of F (data from Wolf and Zerrahn Wolf, 1935–36) plotted as $I_n \pm P \to I_1$ to show form of the plot from which $2 P \to I_1$ (the vertical width of the band) may be predicted as a function of I, see text For convenience, the curve is shown in two sections which are continuous (cf. Fig. 5) each point is the average of three determinations upon each of the same twelve individuals. The mid vertical points on this band give the expected 'values of F_n as a function of I

tensity antilog $\overline{3}$ 7980, F_m was 9 14 with a 10 stripe cylinder, known to be just barely inadequate, instead of 9 32, and at intensity antilog $\overline{1}$ 2591, F_m was 20 51 with a 20 stripe cylinder, rather than 21 26 with an adequate (40 stripe) cylinder. Yet in each of these cases

P E r_1 was definitely low when the cylinders contained too few stripes,—in the first case P E $r_1 = 0.244$ rather than 0.253, and in the second case 0.210 rather than 0.388. The point is, that when the readings cannot be made by beginning with a flicker frequency definitely too high, and approaching the end-point by a sufficient decrease of flicker frequency, the only reactions which can be recorded as reactions to flicker are those of animals definitely in the less sensitive portion of their possible range, thus the effect of using a not sufficiently high

Fig. 4 The half-width of the band shown in Fig. 3, based upon P E I_1 , is taken as a measure of the expected dispersion (P E I_2) of I_3 . The solid circlets are the experimentally determined values of P E I_3 , each point is the average of three determinations upon each of the same twelve individuals

range of possible flicker frequency is to produce an artificial kind of overshooting of the real critical frequency such as we have already commented upon in another connection, and it is significant that under such circumstances the index of dispersion of F_1 should be, as it is found, too small

On this basis we may expect to be able to predict certain of the properties of the observable variation of F In Fig. 3 the band drawn embraces $I_m \pm P \to I_1$ as a function of F The PE's have been adjusted to the smooth curve by means of the relationships discussed

in the preceding paper (Crozier, 1935–36) One half the vertical width of this band, as a function of $\log I$, is shown in Fig. 4, it exhibits a minor and a major maximum. If the variation of I in determinations of critical illumination for response to flicker as a function of frequency reflects an organic property of the system excited, then the curve in Fig. 4 should be in all essentials duplicated by the direct determinations of the variation of Γ in measurements of critical flicker frequency as a function of intensity. In the analysis of the data now secured it is manifest that the prediction has been successful

IV

The results of the determination of F as a function of fixed I are given in Table III The curve of F_m (Fig. 5) is manifestly of the same general form as that secured by measuring I_m as a function of F, but it is definitely displaced upward, and the amount of the displacement is a function of I (or of F) The form of the displacement can be predicted by computation from Fig 3 From Fig 5 the extent of the dis placement can be gotten directly (The original plots are of course very much larger) The two are compared in Fig 6 Slight as the dif ference between the two curves may appear to be, it is thus none the less real and significant, since its somewhat peculiar major properties may be predicted. The separation of the two curves in Fig. 5 is of the order of $-P \to I_1$ at all intensities, but is about $-2.5 \times P \to I_1$, its consistency, however, removes this from the realm of accident over the form of the band (Fig 4) given by the dispersion of F1 (measured by $\pm k \sigma_{r_1}$) is clearly like that already found from the measurements of σ_{I1} (Fig. 3) This is to be examined carefully, since it involves the prediction of the form of σ_{r_1} from the data of σ_{r_1} and reciprocally From Fig 3 the vertical width of the band may be computed, this should have the meaning of 2 or, In Fig 4 it is compared with σ_{F_1} as found experimentally (It is obvious that the converse calculation must also give agreement with the form of the measurements of PE,)

The chief source of disagreement between the curves drawn in Fig. 4 may quite reasonably be found in the general fact that the F_m curve was determined some time later than the I_m curve. It has been pointed out, however, that an additional feature was recognized in

the fact that the method of securing a variable flicker frequency introduced the possibility of arousing the fishes through slight vibration, this would be expected to make F_m a little higher than in the absence of vibration. It can be pointed out, however, that at the high intensity end of the curve $P \to F_m$ may be higher than predicted

TABLE III

Mean critical flicker frequency per second (F_m) and the P E of a determination of $F (= P E_{F_1})$ as a function of intensity (I), for the sunfish *Lepomis* These determinations are compared with the data for the same organisms in which mean critical illumination (I_m) has been determined as a function of flicker frequency (F) (cf Wolf and Zerrahn-Wolf, 1935–36, Crozier, 1935–36) Each mean F and mean I is the average of three determinations upon each of twelve individuals

log I millilamberts	F _m	PE _{F1} ±	F	log I _m millilamberts	<i>P E I₁</i> ±
	per sec		per sec		}
7 6550	3 70	0 0981	3	7 6555	0.694×10^{-7}
ē 1750	4 09	0 240	4	6 1784	0.520×10^{-6}
ē 3701	5 22	0 196	5	6 3701	0.399×10^{-6}
5 2300	6 42	0 239	6	5 2385	0.303×10^{-5}
4 1800	7 41	0 165	7	<u>4</u> 1855	0.279×10^{-4}
4 9900	8 38	0 188	8	<u>4</u> 9954	0.190×10^{-3}
3 7980	9 32	0 253	9	3 7983	0.124×10^{-2}
2 2000	9 79	0 311		_	
2 5600	10 69	0 327	10	2 5600	0.743×10^{-2}
2 7600	13 02	0 408			
2 9550	16 12	0 471	15	2 9543	0.126×10^{-1}
ī 2591	21 26	0 388	20	<u>1</u> 2591	0.177×10^{-1}
ī 5630	26 68	0 764	25	1 5631	0.630×10^{-1}
ī 8118	31 13	0 683	30	ī 8118	0.731×10^{-1}
0 1418	36 54	0 445	35	0 1418	0 129
0 4601	41 12	0 40 4	40	0 4601	0 281
Ì	41 17	0 475		4 0465	0.445
1 0465	46 46	0 436	45	1 0465	0 415
1 6454	49 16	0 425		0.0064	44 52
2 2265	50 68	0 460	50	2 2264	11 53

because with high intensity and high flicker frequency a small change in F would be relatively less significant for excitation. One method of showing this is to consider the empirical equation which in general describes the course of such data, Hecht (1934) pointed out that the equation which may be written

mean critical illumination

describes well the relation between intensity and flicker frequency for flicker fusion (cones), when I is large, a given change in apparent K calls for a relatively larger change in F than in I, this means that measurements of F_m at the highest intensities would be relatively less precise. It is a curious fact, however, that within the limits of the curves, the areas under the two graphs in Fig. 4 agree to within 5 per cent. The only real agreement to be looked for, with regard to $P \to F$ observed and expected, is in the form of this quantity as a

Fig. 6 Expected (calc) and measured (meas) divergences of the two curves shown in Fig. 5

function of I (or of F), the different procedures necessarily involved upon the one hand in obtaining F_m and on the other in getting I_m must be expected to result in minor differences in absolute amounts of variation. It is a reasonable surmise that this may be the origin of the effect noticed in certain other series of measurements, in which changes in the dispersions of the data appear to be correlated with the use of different procedures in attaining the end-point (eg, ef Hecht and Verrijp, 1933-34, Fig. 1, and description in Hecht, Shlaer, and Verrijp, 1933-34)

ν

These considerations impose important restrictions upon the process of interpreting the theoretical meaning of a curve of thresholds for response to flickered light In the first place, it is not correct to say that the same curve describes with sufficient precision the two sets of data obtained respectively by measuring mean flicker frequencies and by determining mean intensities The quantities which may be cal culated from such data and which may be used to test a theory of the visual excitatory process possess, and must retain, dimensions which describe properties of the reactions of the organism which are the basis of the measurements The sensory phenomena, in terms of the index responses used for their estimation, are properly to be de scribed by a formulation which embraces simultaneously the proper ties of σ_{F_i} and of σ_{I_i} , the dispersions of the measurements are proper ties of the reacting organism and not of experimental error A quite general method of expressing this is to state that the law connecting flicker frequency and intensity, for threshold response, as found in the data, is to be represented as a band, not as a line or curve of this band exhibits an essential property of the event whereby in tensity discrimination is achieved. The use of this type of formula tion in dealing with the prediction and the interpretation of other phenomena of photic excitation, and of comparable features of other kinds of excitation, will be considered in a following paper feature of the data for response to flicker in the case of such a verte brate as Lepomis is found in the superposition of effects due to excitation of cones upon those due to excitation of rods The separation of these two effects presents certain complications The whole situation may with profit be re examined in the case of an organism in which these complications do not arise A subsequent paper deals with the treatment of an analogous set of measurements made with such an organism

VI

SUMMARY

The curve of mean critical flicker frequency as a function of illumination has been determined for the reaction of the sunfish *Lepomis* to flicker. It exhibits expected quantitative disagreements with the

curve of mean critical illumination as a function of flicker frequency in the same organism. The form of the dependence of the variation of critical frequency of flicker upon illumination can be predicted from a knowledge of the way in which variation of critical illumination depends upon flicker frequency. It is pointed out that these findings have an important bearing upon the interpretation of the data of intensity discrimination.

CITATIONS

Crozier, W J, Déterminisme et variabilité dans le comportement des organismes, Paris, Hermann & Cie, 1935

Crozier, W J, 1935-36, J Gen Physiol, 19, 503

Crozier, W. J., and Pincus, G., 1931-32, J. Gen. Physiol., 15, 201

Grundfest, H, 1931-32 a, J Gen Physiol, 15, 307 1931-32 b, J Gen Physiol, 15, 507

Hecht, S 1934, Vision II The nature of the photoreceptor process, in Murchison, C, A handbook of general experimental psychology, Worcester, Clark University Press, 704

Hecht, S., Shlaer, S., and Verrijp, C. D., 1933-34, J. Gen. Physiol., 17, 237

Hecht, S, and Verrijp, C D, 1933-34, J Gen Physiol, 17, 251

Lyon, E P, 1904, Am J Physiol, 12, 149

Wolf, E, and Zerrahn-Wolf, G, 1935-36, J Gen Physiol, 19, 495

THE EFFECTS OF CURRENT FLOW ON BIOELECTRIC POTENTIAL

III NITELLA

Ry I. R RLINKS

(From the Laboratories of The Rockefeller Institute for Medical Research, New York and the School of Biological Sciences, Stanford University)

(Accepted for publication, January 11, 1936)

The effects of the flow of direct current on the bioelectric potential of *Nitella* include (a) polarization, (b) stimulation, (c) recovery or restoration. Some of these have been described, directly or implicitly, in a previous paper dealing with the direct current resistance of *Nitella* cells.

It was there noted that the high apparent DC resistance of the protoplasm is accompanied by, and is probably largely due to, a counter EMF built up by the current flow, which means that the previously existing bioelectric potential has been altered to that extent Such regular counter EMF's will be designated "polarizations" for convenience, without prejudice as to their real nature (*ve* whether their time course corresponds to a static capacity or a polarization capacity, although evidence points to the latter)

The profound changes of P.D occurring during stimulation were also briefly described, and have been the subject of many papers by Osterhout and co workers? The present emphasis will be upon the current flow characteristics (threshold density, duration, direction, etc.) which initiate stimulation, and the changes of polarizability which occur during its course

Finally, when the bioelectric potential has been greatly lowered, and polarizability lost, either briefly during stimulation or more permanently by treatment with KCl, current flows of proper direction and density restore the normal PD and polarizability. These may be called restorative effects

These phenomena will be shown as changes of the normal bioelectric potential recorded continuously from string galvanometer deflections before, during, and after current flows of designated value, much as with *Valonia*³ and *Halicystis*,⁴ as published previously Many of the phenomena are common to all these organisms and will be compared as a basis for discussion of the mechanism of current flow effects

Methods

The electrical circuit was the modified Wheatstone bridge previously described ⁵ This balances the purely ohmic resistances of the system, while allowing potentials originating in the bridge (such as bioelectric potentials) to be recorded by the vacuum-tube detector feeding into the string galvanometer

Two differences of technique from the Valonia and Halicystis procedures may (1) Owing to the extremely high resistances of the delicate glass capillaries necessary for insertion in Nitella cells, and the difficulty of maintaining a supply of cells with these in place long enough for recovery to occur, impalement Two external contacts of fixed dimensions (1 cm long) were employed, consisting either of agar blocks imbibed with the desired solutions, as in the resistance measurements previously described, 1 or of solutions in the open ends of small glass U-tubes, slightly notched to hold the cells When, as in most cases. it was desired to study the passage of current across only a single layer of protoplasm, one contact was treated with chloroform This has been shown by Osterhout2 to reduce the PD at that point approximately to zero, leaving that at the other end to record alone, and usually unaltered, for some time (15 minutes or While a shunting path around this potential source is offered by the cellulose wall, the latter is very thin and is imbibed with tap water or distilled water so that its resistance between contacts is high—often 10 megohms or more 1. The discharge of the bioelectric potential (100 to 200 mv) through this resistance amounts to some 0 01 or 0 02 μ a (2) Aside from this leakage, which is unavoidable with external contacts, there remains the possibility of discharge of the bioelectric potential through the bridge itself, which is of course a completed circuit This was found of negligible importance in Valonia and Halicystis, even through the low resistances ordinarily employed with these cells, but in Nitella the danger is more serious, since the discharge can itself easily become large enough to produce Two methods are at hand to control it higher resistances in the stimulation bridge, or compensation of the potential The former was simpler and was accomplished by using as ratio arms radio "gridleaks" of 1 or 10 megohms each the latter value the leakage through the bridge was reduced to the same magnitude

² Blinks, L R, J Gen Physiol, 1935-36, 19, 633

⁴ Blinks, L R., J Gen Physiol, 1935-36, 19, 867

⁵ Blinks, L R., J Gen Physiol, 1929-30, 13, 361

as that along the cell wall between contacts, making the total discharge, or residual current, not over 0.02 to 0.04 μa Since the surface of the protoplasm at the stand ard contact of 1 cm length was of the order of 0.1 to 0.2 cm², the residual current density was from 0.1 to 0.4 $\mu a/cm^2$ of cell surface, averaging about 0.2 $\mu a/cm^2$. This is usually insufficient to produce stimulation, although slight increments upon this value may be sufficient to do so, as will be seen

As a second method to reduce the residual current (that through the bridge) compensation of cellular EMF was produced with an equal and opposite EMF in series with the cell in its bridge arm. Sufficient records were taken in this way to show that there were no significant differences due to the extra current flow in the bridge over and above those through the wall. However, since such records no longer show the total PD, but only its changes they lose part of the advantage of working across a single layer of protoplasm. It is possible to correct this fault by introducing a second or pseudobioelectric" potential in series with the detector in the bridge diagonal This "decompensates' the first compensating EMF, with out introducing a new current flow because it is in series with an electrostatic in strument drawing no current But such an arrangement is cumhersome necessi tating frequent readjustment of both these EMF s to follow changing bioelectric potentials. If this adjustment is not made, current flow will be caused by the compensating E M.F at certain times eg as when the cells PD has been reduced to a low or zero value during stimulation, this might be more disturbing than the flow of residual current during normal conditions. All the records here published were therefore taken without compensation of the cell's potential just as with Valonia and Halicvstis

Unless otherwise noted records usually refer to the same cell throughout each figure, and with minor excisions to conserve space, are continuous

The experimental current density values are marked in µa/cm² below each exposure on the records, an upward arrow signifying positive current passing in ward across the protoplasm a downward arrow, positive current passing outward These are of course the experimental increments or decrements effected on the residual current as a base. They are furthermore the increments or decrements which would have been produced if there were no counter EMF developed te such as would have passed through the cell if dead or stimulated, or treated with KCl so that no counter E.M. F. appeared They are therefore only transient initial values which are instantly decreased as the counter EMF develops, and their final value in the steady state may be considerably less eg a tenth or even a hundredth of the original value depending on the amount of counter EM.F developed some cases, the outside EMF was not applied directly to the bridge but through a high external resistance in series with it (e.g. 10 megohms) This made charge and discharge conditions more nearly alike the charge occurring through this resistance the discharge through the ratio arms of equally high resistance results with this circuit were not appreciably different showing the time relations to be determined more by the cell itself than by the external resistances just as in Valonia 2 This may be taken as evidence of polarization rather than static ca pacity

The bridge detector was the one-stage vacuum tube electrometer previously employed ⁵ In its plate circuit was balanced a Cambridge portable string galvanometer, which gives essentially faithful recording of potential changes, its response being nearly linear over the field employed, and practically instantaneous at the recording speeds used (about 1 cm per second) The electrometer, working at the free-grid potential of the vacuum tube (earlier a 201-A type, more recently an 89 type, worked as a triode, for higher input resistance) drew practically no current and served as an electrostatic instrument responding to the potential drop along the part of the circuit which it tapped In the bridge balanced with equal ratio arms its sensitivity was therefore reduced to one half its open circuit value, with the 10-1 ratio mostly used with Nitella, it had about 90 per cent of its open circuit value

Calibrations were introduced frequently on the records by an EMF in series either with the cell, or with the electrometer in the bridge diagonal. Calibrations in the latter caused no flow of current, but had to be corrected by the sensitivity factor (i e they were about 10 per cent higher than would be given by the same potential in the position of the cells). Calibrations introduced in series with the cell caused of course a change of current through the bridge, hence altered the bio-electric potential, in the usual curved course. True series calibrations were obtained, however, at the end of each run when the cell was chloroformed, and from these are derived the millivolt ordinates inserted on each record. Here also the value of the basal, ohmic resistance could be checked, this was often about 50,000 ohms and was balanced by 500,000 ohms in the resistance arm. The absence of any deflection when currents were passed through dead cells (or a rectangular one if the balance was not quite exact), indicates that the charge and discharge curves obtained with living cells are really due to the protoplasm, and not to any spurious capacities in the electrodes or bridge circuit

The electrodes were non-polarizable, either Hg-calomel, or Ag-AgCl frequently recoated Suitable salt bridges connected them to the cell contacts

The source of experimental currents was a tapped battery of dry cells, from which equal steps of voltage could be derived, the values applied to the bridge being determined by a potential divider and voltmeter, as previously shown ⁵ With 10 cells in the battery, as much as 15 volts could be applied to the bridge, giving, through a dead cell of resistance 50,000 ohms, and a balancing resistance of 10 times this (due to the 10–1 ratio employed) a possible current of about 30 μ a, or a maximum current density of 300 μ a/cm ² of cell surface. This is much larger than is ever necessary to bring about the effects here described, for which a maximum of about one-tenth this density is adequate in the most extreme cases (e g in the presence of KCl). Usually not over 5 or 10 μ a/cm ² was passed, but this is some 10 to 50 times the normal residual current density

The temperature of the experiments ranged from 15 to 25° C, very few experiments being performed during the summer, when the cells are often difficult to stimulate 6

⁶ Osterhout, W J V, J Gen Physiol, 1934-35, 18, 987

A fall of effective resistance (disappearance of polarization) during the greatest depression of PD in stimulation was always found in the species of Nitella (mostly N flexilis) studied in New York with the technique described. This is in disagree ment with the findings of Umrath who reports that there is no change of effective resistance during stimulation of the European species N mucronata. Umrath s results were obtained across a single layer of protoplasm by direct connection to the interior of the cells (impalement). Current was passed from an inserted platinum electrode while a pair of non polarizable electrodes tapped the PD Although polarization at the platinum electrode dmittedly of scured the results. Umrath's Figs. 9. 10 and 11 show a clear increase of its current during stimulation. This increase is greater for larger currents, which would not be true if it were due solely to the PD change. Umrath's concurrent PD records are difficult to interpret since the purely ohmic IR drop of the system was not compensated.

Aside from these technical points it is possible that the resistance of Umrath's impaled cells was already low so that the change during stimulation was not as great as in the present cases. It was previously emphasized! that Nitella cells must he very carefully handled, to display their highest resistances. Impalement may therefore introduce an injury which is only slowly recovered from This is the case in both Valoria and Halicystis whose impaled cells for a long time display a much lower polarizability than intact cells. Recent measurements on the Cali forma species Aitella clarata have shown also that the effective resistance even of intact cells may sometimes be low so that little change of polarization occurs on stimulation although the PD still alters in characteristic fashion. Umrath's cells may have been like these. Polarizability and P.D. changes need not therefore always go together although they invariably did so in the records here presented and in hundreds of others like them. It is possible for example that polarization occurs largely at one surface of the protoplasm while the high PD originates at The two could be altered simultaneously or separately somewhat as the sources of P D in Halicistis may be individually affected 8

Another objection which might be fairly brought against the present technique is that electrolytes could diffuse out from the cell during stimulation, and lower the resistance of the shunting cell wall. While this is entirely possible, it would probably not occur as suddenly and completely as the observed changes, and be as rapidly reversed again on recovery. In any case if the electrolytes came from the cell sap, then the resistance of the protoplasm itself would probably be suddenly lowered to release them. The experiments of Sen 3 interpreted as showing such diffusion of electrolytes out of Nitella cells during repeated stimulation are ambiguous for the cells themselves were included in the measuring circuit and the observed resistance changes may have occurred in them, rather than in the adjacent

Umrath K Protoplasma 1932 17, 258

⁸ Blinks L R Rhodes R D and McCallum G A Proc Nat 1cad Sc 1935 21, 123

⁹ Sen B 4nn Bol 1931 45, 527

Frg 1 234

Fig. 1 String galvanometer records showing charge and discharge curves of counter EMF resulting from the flow of direct current through an intact cell of Nitella held between two aqueous contacts (tap water no chloroform). The bindge is balanced to the effective DC resistance of the cell here about 1 000 000 ohms (due mostly to the counter EMF). Current densities are designated in micro amperes per cm of cell surface (values at the beginning of current flow, before counter EMF develops). The duration of current flow is evident from the deflections at make and break since the curve records the PD of the right end of the cell in relation to the left end, upward movements represent increased relative negativity of the right end downward ones increased positivity. The arrows indicate the direction of current flow through the cell, in Fig. 1a the current flows from right to left and thus passes inward across the protoplasm at the right end out ward across that at the left. Increased positivity of the right end and decreased positivity of the left result from this as the counter EMF develops.

In Record a the first upward movement of the curve is due to the make of the current as the counter E M F builds up the curve comes back to the base line (of resistance balance) Since the current at the right end is inward the counter EMF is outward, making the PD more positive at the left end the current is out ward and reduces its positive P.D. When the current is broken the curve jumps downward and then comes back to the base line (of no current flow) as the counter EMF fades away The curve at break is nearly a mirror image of that at make successive makes and breaks of larger currents merely increase the size of the de flections (there is an increasing unbalance of the bridge toward the end of Record a) makes and breaks of current from left to right in Record b give similar curves except for reversed directions the left end is here becoming more positive and the right end less positive as counter EMF develops. Up to about 3.0 µa/cm² only such regular make and break curves appear (Records a and b) density however stimulation (s) occurs on Record c at the left end of the cell (where current flow is outward) The positive P D of the protoplasm at that point largely disappears leaving that at the right end to record unopposed at break amounts here to some 120 my at disappears during the course of 15 seconds as the positive P D is regained at the other end. Upon this altered P D as a new base current flows now produce different effects. At make there is a large deflection away from the base and the counter EMF developed is insufficient to bring the circuit back to balance the effective resistance is lowered about 50 per cent P D recovers and the base approaches zero the counter E M F becomes larger and restores the bridge balance The counter EMF s in the early part of the curve develop entirely at the right unstimulated end of the cell as the left end recovers they develop also there

Record d shows stimulation at the opposite (right) end of the cell, due to passage of current from left to right hence outward at the right end. The effects are the mirror image of those in c. In both c and d some polarizability (about 50 per cent) remains because only one end is stimulated in each case without propagation down the cell. In e f and g another more sensitive cell is recorded where stimu

film of vater intended to receive the electrolytes. In addition Sen applied repeated and severe induction shocks, which, as Umrath¹⁰ comments, may have seriously injured or killed the cells, instead of merely stimulated them, without concurrent PD measurements this cannot be ascertained

More direct evidence is also available that such a mechanism cannot account quantitatively for the observed changes in the present technique. A cell was immersed for several minutes in 0.1 m NaCl, which does not stimulate the cells, like KCl, yet has nearly the same conductivity as the vacuolar sap (about 10 per cent less). During this time the salt must have diffused thoroughly into the wall. The cell was then removed, drained and measured in the usual way. While its effective resistance was lowered, the decrease was only some 10 or 20 per cent (instead of 90 to 95 per cent occurring during stimulation) showing that the cross-section of the cell wall is too small to offer such a low shunting resistance, even when fully imbibed with a salt solution nearly like that of the sap. Polarizations remained prompt and large, disappearing as usual only on stimulation, and reappearing on recovery. Unless, therefore, the electrolytes released during stimulation have a far higher specific conductivity than the cell sap itself, this explanation must be ruled out

Legend for Fig 1-Continued -

lation (s_1) passes rapidly down the cell (s_2) and both ends lose their PD and polarizability to recover nearly in phase, so that the base line remains close to zero Here, however nearly all counter EMF is absent for 2 or 3 seconds, at make of current the image deflects well away from zero, due to unbalance of the bridge, in a nearly rectangular course, without curvature then as recovery occurs, counter EMF develops and causes the deflections to approach, and eventually reach, the In each make the deflection is at first identical, thus in f the curve shows that the deflection drops to the lower edge of the record each time the current is made but lingers there less and less time as recovery occurs, back EMF developing and bringing the curve quite to the base line. This is difficult to see in the latter part of the record because the curve rises so rapidly This cell had a lower threshold for stimulation in one direction than the other (as often occurs) hence the first rectangular and later transient deflections away from base line in Record g are about 2/3 as large as in f, corresponding to the current densities employed (as marked)

On close inspection of the actual records, the momentary transient deflection at make is seen to go to the same spot as in the rectangular deflections during stimulation. A large current thus begins to flow at make but is quickly reduced by the developing counter EMF

Sensitivity about 10 my per horizontal division as marked. Time marks 1 second apart. Current densities as marked in $\mu a/cm^2$, refer to the large transient values at the instant of male before decrease by counter E MF. Repeated flows of the same current density are designated in f and g by bars of proper duration

¹⁰ Umrath K, Protoplasn a 1932 16, 631

Experiments with Intact Cells

Very regular curves characterize the building up of counter EMF during current flow, and its disappearance on the break of current A few examples of these were included in a paper on the resistance of Nitella 1 Fig. 1 gives a wider range of the same sort taken with both contacts uninjured (tap water, no chloroform), and with the bridge balanced to the steady state, or effective resistance, here about 1 meg The curves therefore deflect sharply away from zero at make ohm of current and approach the zero line as the counter EMF builds up. to remain there as long as the current flows (steady state) At break they deflect again to the same extent as at make, but in the opposite direction, approaching the zero line in a regular curve as the counter EMF disappears Deflections resulting from 9 or 10 equal incre ments of current are shown, first in one direction through the cell, and then reversed. A marked regularity and similarity of charge and dis charge curves, during successive exposures, and with different current densities, may be noted

Finally, however, at sufficiently high current densities, a stimulation (S) occurs (at the contact where the current passes outward across the protoplasm) Not only is the PD altered, giving the characteristic negative variation", but the effects of current flow also become quite different. With the bridge maintained at the original balance (1 megohm), the "charge curve no longer fully approaches the base line (now the altered PD of the action current) during current flow, but firttens out somewhat above or below it depending on the direction of current flow, and only tends to come back fully as the PD itself Still more strikingly, if the stimulation is not confined to its point of origin (cathode) but succeeds in passing down the cell to the other contact, there is for a moment no counter EMF whatever developed during current flow, as shown in Fig. 1f. The deflection is abruptly rectangular, with no curve at make or break, showing that the resistance of the cell is purely ohmic, and much lower than the high resistance employed to balance the effective resistance of the un Then as the cell recovers from the stimulus at both stimulated cell contacts the deflections become more curved, approach closer and closer to the (balanced) base line during current flow and eventually reach it again

Fig 2

Records of somewhat different appearance but of essentially the same sort are obtained if the bridge is balanced, not to the effective resistance (which includes polarization) but to the true or ohmic resist ance alone which is largely that of the vacuolar sap between the con-Γig 2 shows records of this sort, still using an intact cell with both contacts normal Instead of starting as a sharp deflection away from zero, and then approaching it as the counter EMF builds up, the latter now starts at zero, and reaches a value above or below this base line corresponding to the direction and density of the current The curves, as regular and symmetrical as in Fig. 1, are merely moved up or down in the field They show more clearly the proportionality of counter EMF to current density, up to the threshold for stimula Here again the base line becomes distorted, due to loss of P D at one contact, and during this time the polarizations become of smaller magnitude if the stimulation spreads to the other contact they may become momentarily suppressed Since the bridge is balanced to the ohmic resistance of the cell, the loss of polarizability is shown by the decrease (or loss) of all deflection eg, Fig 2c Polarizability reap pears as the cells recover from stimulation in the figure it appears to be slower than the recovery of PD, but this results from recording two intact regions, whose opposing potentials recover nearly in phase and so cancel each other Pictures truer in this regard, as well as in

FIG 2 Records showing charge and discharge curves of counter EMF developed by flow of direct current through an intact cell of Nitella much as in Fig 1 except that the bridge is now balanced to the true or obmic resistance value (here about 50 000 obms, largely due to the vacuolar sap). The counter EMF therefore builds up to its full value above or below the zero line depending on the direction of current flow and is nearly proportional to current density up to stimulation values when it is decreased, to build up again on recovery (here quicker than in Fig 1).

Current densities in $\mu a/cm$ upward arrows signifying passage of current from right to left downward arrows from left to right. The potential is that of the right end which becomes positive to the left during the flow of inward current negative during outward flow and stimulates at a threshold of 0 8 to 10 $\mu a/cm$ (one stimulation occurs at 0 $3\mu a/cm^2$ in Record a). The bars in c and d signify the duration of repeated flows of current of the same density as the last previously marked

Sensitivity about 10 mv per horizontal division as indicated. Time marks 1 second apart. No residual current (except during stimulation) both ends being intact.

 Γ IG

showing other directional effects without confusion, are obtained by recording only one protoplasmic PD, the other having been destroyed by chloroform

Experiments with One Contact Chloroformed

Fig. 3 shows the characteristic change which occurs when chloro form has been applied to one end of the cell, owing to the disappear ance of potential at this point, the recorded PD rises from zero (now moved near the top of the record), to the full positive values of 100 to 200 mv which characterize the potential across the protoplasm of Nitella The cusp (C) is to be noted, it is almost invariably found both during the chloroform injury, and the action current or negative variation

Current is now passed, with the bridge balanced as before to the ohmic resistance of the cell. The same regular reproducible curves are found as before, but these now show definitely as increases or decreases of the original bioelectric potential, and it is possible to dis

Fig. 3. Records showing directional effects across one intact layer of protoplasm in Nitella. The zero has been moved to near the top of the records. Chloroform is then applied (CHCl₃ Record a) at the left end of the cell abolishing its potential and illowing that at the right to record in its entirety (about 120 my.). The cusp (c) may be noted during this process. It corresponds closely to that occurring during stimulation (s). A current now passes continuously due to discharge of the bio electric potential through the bridge circuit this residual current is about 0.2 μ a/cm. at the beginning and falls to about 0.13 μ a/cm. in Record c

Record a shows the result of causing an inward current to enter at the intact region (right end) counter E M.F develops nearly proportionally to current density raising the total P D to 150 mv. Record b shows outward currents (superimposed upon the residual current) these produce polarizations also but at a threshold of $0.4\,\mu a$ /cm. (total $0.6\,\mu a$) a stimulation occurs the P D drops to about 30 mv, and polarization entirely disappears slowly reappearing. No further stimulation occurs at this density but at $0.6\,\mu a$ superimposed in Record c another stimulation occurs with the same characteristics. d and e show further increases of threshold with finally a second stimulation occurring at $1.0\,\mu a$ in e

Current densities in $\mu a/cm^2$ as marked bars indicating the duration of repeated current flows Sensitivity about 8 mv per horizontal division with calibrations as marked (a series calibration in a shows polarization charge and discharge due to current flow in the cell) Time marks, I second apart

tinguish between the effects of currents passing inward and outward across the protoplasm. These may be taken up separately

Inward Currents -The counter EMF, opposing the flow of such current increases the existing potential, making it still more positive The amount of increase is nearly proportional to the current density up to fairly high values, sometimes to some 8 or 10 μa/cm of cell surface although usually only up to 4 or 5 $\mu a/cm$ The PD may be increased thereby as much as 100 or 200 my above its normal value, or to a total of some 300 or 400 my (This enhanced value is appar ently the highest bioelectric potential yet measured in a single cell That in Halicystis seldom exceeds 100 my, positive or negative,4 and the small negative PD of Valonia may be reversed to 200, or at most 300 my positive by the flow of current inward 2) This appears to be an upper limit above which the PD cannot be further increased, even by much higher currents proportionality of deflections falls off above this, with the characteristic cusps and recessions shown in Figs 6 and (Much the same situation holds for large inward current flows in Valonia 3)

Another effect of large current density, stimulation at the break of inward current flow, is best discussed after consideration of outward currents, since it is probably to be referred to the same mechanism

Outward Currents —These decrease the existing P D in regular curves comparable to the increases produced by inward currents — Examples are shown in Figs 3 and 4 —The magnitude of change is again propor

FIG. 4. Records showing characteristics of stimulation and polarization much like those of Fig. 3, except that the PD here goes to zero or slightly negative during stimulation. One end of the cell has been previously chloroformed incompletely at first, leaving a small PD which is responsible for the apparent negativity at the other end when stimulated. The threshold, at first $0.6~\mu a/cm$ (and here showing a long delayed response) rises to 1.8, 2.7, and finally to $3.0\mu a/cm$ (Record d) where a second stimulation occurs rather promptly. Finally, after about 1 minute between Records d and e stimulation occurs again at $1.5~\mu a/cm$.

Note the disappearance of polarization during the maximum depression of P D and its reappearance during recovery

Currents are as marked in $\mu a/cm$ all outward across the intact protoplasm (downward arrows) except four flows of inward current in c (upward arrows) Sen sitivity about 8 mv per horizontal division with values as marked Time marks 1 second apart Duration of currents indicated by bars

Fig 5

tional to current density over a limited range, but the proportionality ceases at a much lower value than with inward currents, and with an opposite effect, since a much larger, instead of smaller, change of PD then occurs ("stimulation") The extent of proportional PD change varies from cell to cell, but is seldom over 50 or 60 mv (produced by a current of not over 0.5 or 1 μ a/cm) With larger outward currents the curve inflects, instead of flattening out to a steady value, and the potential falls away to low values (as in Fig. 3) or to zero

This curve is much like that produced by the flow of outward current upon the potential of *Halicy stis,* which also has a sigmoid course, and a cusp near the apex. It differs, however, in the following respects

- (a) The PD of Ntella seldom actually reverses in sign during stimulation, this may only mean, however, that in Halicystis there is a second (negative) source of potential (e g at the inner surface of the protoplasm) which is not affected by current flow, while in Ntella this either does not exist or is affected by current flow nearly simul taneously with the positive source
- (b) In normal Halicystis a continued flow of current is necessary to carry the effects to completion, and to maintain reversed P.D. Stimu lation in Nitella, once initiated beyond a certain point by the threshold current density, goes on to completion even if the current is stopped. This is shown in Figs. 3. 4. and 5. where the current is interrupted at

Sensitivity about 8 mv per horizontal division as marked and as shown by the 50 mv calibration in c (in series with the cell therefore producing current flow and polarization with a curved course) Time marks I second apart Bars indicate duration of current flows of the density previously marked

FIG. 5. Records showing stimulation and recovery in Aitella with particular reference to the increase of threshold and the effect of inward current flow in speeding recovery. The cell has been previously chloroformed at one end so that the PD is that across one contact. This is proportionally increased in regular counter E.M.F. is to about 150 my by the flow of positive current inward in Record a Prompt stimulation then occurs with $1 \mu a/cm$ outward flow in b succeeding flows of this current produce at first no polarization (rectangular deflections being due to an ohmic unbalance (corrected at the arrow in d) then an increase. The threshold rises to $12 \mu a/cm$ in c 14 in d and e and 16 in f. In the latter record the current is reversed from outward to inward at the arrow and with it the direction of counter E.M.F. Note here that the recovery of positive PD is somewhat faster than in the preceding Record ϵ where successive outward flows were passed

various points along the curve. This is more like the situation in *Halicvistis* which has been treated with ammonia in concentrations close to the critical reversal value ⁴

(c) Recovery is also largely independent of the flow of current in Nitella, often occurring even though the original stimulating current continues to flow. In Halicvitis the PD remains reversed as long as the exciting current flows (or even if it is considerably decreased in value) positivity being regained only with much lower or zero outward currents.

The most striking change occurring during stimulation is the dis appearance of counter EMF noted before with intact cells. Tigs 3, 4, and 5 show that is the PD reaches its lowest value, just after the cusp, renewed passage of outward current produces little or no deflection away from the base line, although the same current had just previously produced a typical "charge' curve which preceded and passed over into stimulation. This absence of polarizability continues to hold for a second or two, then as the PD begins to build up again, charge and discharge curves also reappear, becoming larger as recovery

FIG 6 Records showing polarization and stimulation in Nitella largely by in ward currents with special reference to stimulation at break of the latter. The cell has been previously chloroformed at one contact so that the record is that of the PD across the protoplasm at one contact only. Small inward and outward currents produce very regular polarizations in a. At the break of 0.75 μ a/cm inward a very slight overshooting is evident this becomes more pronounced at break of 1.0 μ a/cm and passes over into characteristic stimulation at break of 1.25 μ a/cm . Succeeding currents of this density elicit at first small then increasing polarizations with finally an incomplete stimulation at the end of a (as shown by the lessened polarization in b). In b at the increased threshold of 1.5 μ a/cm true stimulation again takes place on break of inward flow. Increasing polarizations mark recovery but the threshold is now raised to 2.25 μ a/cm in Record c, where a break of 2.5 μ a/cm finally causes a quick, rather incomplete stimulation

Outward currents are now passed again in d resulting in slight stimulation at 0.75 $\mu a/cm^{\frac{1}{2}}$ and again at 2.0 $\mu a/cm^{\frac{1}{2}}$ but otherwise only in cusped polarizations with overshooting on the break these occur both with inward and outward currents in Record e

Sensitivity about 8 mv per horizontal division as indicated. Time marks 1 second apart. Bars indicate repeated flows of current of the density previously marked.

proceeds, and eventually reach their original size and shape Polar izability to inward currents is recovered pari passii, as shown in Fig. 5f

Polarizability and a large bioelectric potential are thus closely parallel in time, and may even have the same structural or metabolic basis. This recalls the situation in *Valonia*, where very slight polar izability is often displayed by cells in their normal low and slightly negative PD level, while if this is made positive by acid sea water, cresol, or the flow of inward current itself, more regular polarizations also appear.

A further interesting behavior of Nitella is also shown in Figs 3, 4, and 5 where a succession of identical currents were passed during and after stimulation. It is seen that a second stimulation does not occur with the same current density which produced the first, even some 30 seconds to a minute after recovery seems complete (1 c, after the PD has reached a constant high value) Renewed stimulation occurs only when a slightly larger outward current is passed, and this process may be repeated several times with increasing current density. This appears to be a real increase of the threshold for stimulation, for although the PD itself may recover to a slightly lower positive value each time, thereby decreasing the residual outward current which is additive to the imposed currents in producing stimulation, this reduc tion of residual current is not usually as great as the rise of additional current necessary It appears instead that the PD must be driven to successively lower levels (te, larger polarizations produced) by out ward currents before stimulation occurs Only at rather high current density (10 µa/cm² in Fig 3, 30 µa/cm in Fig 4), does a second stimulation occur within 20 or 30 seconds

It is conceivable that the increased threshold for stimulation after recovery is due to the same compensatory mechanism which causes recovery itself (even during continued outward current flow). There might be produced a substance (e.g. an acid) which only slowly diffuses away or reacts, hence accumulates and requires a progressively larger current to counteract its effects. This period of enhanced threshold may be called a relative refractory period. There is also an absolute refractory period, covering the greatest depression of PD, but also extending into part of the recovery phase, when even extremely large outward currents do not produce typical stimulation,

Fic 8 250

only an irregular polarization, with cusps (Figs 6 and 7). This may occur more and more as the result of repeated stimulation (Fig 6), and probably is correlated with the low positive PD reached in this condition, so that action currents of normal magnitude become impossible. It is therefore to be distinguished from those cells reported by Oster hout and Hill, which are either naturally or experimentally not capable of stimulation, yet which may be rendered sensitive by treatment (Such cells have a high positive PD)

In contrast to the behavior of nerve, there appears to be no hyper sensitive period in *Nitella* during which excitability is heightened, following an action current

Special Effects of Inward Currents

These include in addition to the regular polarizations considered above, stimulation at break, and restoration of positive potentials

Break Effects —It was mentioned above that at the break of inward currents, stimulation sometimes occurred — Examples are shown in Fig. 6. There is nothing startling about this, which should be expected as a result of a temporarily greater residual outward current, due to discharge of the heightened positive potential produced by inward current. It would be expected in those cells with the lowest threshold for stimulation by outward currents, and this was generally found to be true. Fig. 6 also shows again that recovery of polariza bility after stimulation occurs for inward as well as outward currents indeed it may be aided by such current flows. Before taking up this restorative function, two other points may be noted. One is that a second stimulation does not usually follow on breaks of successive

FIG 8 Records showing polarization and partial stimulation by current flow in Nitella Particularly are to be noted the quick spike like response either to break of inward current or during outward flow followed by rapid recovery a second upward movement and recovery and even a third the series dying away in decremental fashion like a damped oscillation. NiCl solutions tend to produce this effect.

Currents in $\mu a/cm$ direction being indicated by arrows inward current upward and outward current downward. Sensitivity about 7 my per horizontal division the PD being that of one contact only (the other contact chloroformed). Time marks 1 second apart

later inward currents of the density originally effective ($\Gamma_{\rm ig}$ 6), showing an increase of threshold analogous to that for outward currents. This does not always hold, however, as shown in Fig. 7, where it appears that large outward flows may sensitize the cell to break stimulations to a greater degree than to normal outward flow. A second point is that stimulation at break may be incomplete, just as at make, the depolarization curve beginning to "overshoot" beyond the original P.D. line, but recovering without complete stimulation. Examples are shown in Fig. 6. This is probably due to too short a flow of the augmented residual current, which falls to a subthreshold value before stimulation is thoroughly initiated.

Sometimes a second or even a third partial stimulation of this sort occurs, either during outward flow, or at the break of inward current making a decremental ("die away") series as shown in Fig. 8. There is no fully satisfactory explanation of these "damped oscillations' which probably represent the interaction of the stimulated and nearby regions, without a true action current occurring. Osterhout has recently suggested that they represent effects at only one (probably the inner) surface, the circuit being completed through the proto plasmic interior without the participation of the other (outer) surface.

Γιο 9 Effects of current flow on Nutella cell exposed to kCl The cell was previously chloroformed at one contact 0.05 m kCl was then applied at the intact end giving the decrease (and slight reversal) of PD shown in Record a Currents were then passed as shown densities up to 15 μ a/cm 2 producing only slight counter EMF At 15 μ a/cm inward current however a large polarization results with sigmoid course and a marked rise to a sharp cusp followed by a recession. On cessation of current flow the counter EMF drops away abruptly. Larger densities now produce more rapid polarizations which however do not rise to appreciably higher values and do not show the cusp. After these flows a return to 15 μ a/cm is ineffective only at 25 μ a/cm does a good polarization again appear and here again a third flow is ineffective (Record c). These curious alternations of response are probably due to breakdown after the cusps which requires some time for repair in fact finally as in Record c the polarization may entirely die away during the flow of current

Current densities in $\mu a/cm$ as marked inward flows being designated by upward arrows outward current (only once in a) by a downward arrow Sensitivity about 8 my per horizontal division as marked on each record and shown by calibrations of 50 my in Records a and b Time marks 1 second apart

¹¹ Osterhout W J V and Hill S E J Gen Physiol 1934-35 18, 499

Somewhat analogous rhythmic effects have been found in *Halicystis* so far unpublished there they suggest a delayed response (possibly metabolic) to the stimulus resulting in temporary overcompensation, followed by recovery, then a renewed stimulation, etc

Restorative Effects—It was mentioned above that recovery of PD after stimulation may be speeded up by a continued or even an inter rupted, flow of current inward across the protoplasm. Examples suggesting this are included in Fig. 5, although the normal recovery varies sufficiently in speed to make it somewhat uncertain

More striking evidence of the restorative action of inward currents comes from experiments with cells which have been exposed to a threshold concentration of KCl (0.01 m or higher). Reasons have been previously given for regarding such cells as permanently stimulated, since the KCl appears to produce its more profound effects largely by inhibiting recovery from stimulation (whether induced electrically, mechanically, or as often happens, by the KCl itself, either immediately on application, or after a delay). The PD now remains permanently depressed (or even reversed) and the cells are

The resemblance of these curves to those taken with Valoma previously published is striking

Fig. 10. Records showing further characteristics of response to inward current under KCl treatment. The Λ ttella cell has previously been chloroformed at one end and exposed to 0.05 m KCl at the recorded end. Inward current is then passed. Small though regular polarizations are evoked by currents up to $8\mu \tau/\mathrm{cm}^2$. At 10 $\mu a/\mathrm{cm}$ a sigmoid polarization produces over 200 my positive PD. A repetition of this produces a slightly faster response while higher currents greatly accelerate the time course which becomes very abrupt at 20 $\mu a/\mathrm{cm}$ with out however greatly increasing the positive PD reached. Record b shows a second series of inward currents at first increasing in density then decreasing c is a record of another cell similarly treated and d and c of a third cell showing the general similarity of responses. In c note particularly that the response to successive flows of 12.5 $\mu a/\mathrm{cm}$ becomes somewhat laster, and that to higher densities much faster but the positive PD reached is somewhat less apparently due to an injury following rapidly on the sharp cusp

Sensitivity about 13 my per horizontal division (50 my calibration in d). Time marks 1 second apart. Current densities in $\mu a/cm$ all inward (as indicated by upward arrows).

¹ Blinks L R Proc Soc Exp Biol and Med 1932-33 30, 756

practically non-reactive to currents of the magnitudes ordinarily evoking polarizations (e g up to 5 μ a/cm²) The effective resistance consequently falls nearly (though not quite) to that of dead cells (cf However, if sufficiently large currents be passed inward (e g, about 10 μ a/cm²) polarizations begin to appear, at first with a very slow rise, an inflection, and then a rapid rise to high positive values Examples are shown in Figs 9 and 10 (100 to 200 my) PD drops off again to low values almost instantly on the cessation Successive inward currents of the same density of current flow produce the effects more rapidly, as do greater densities, they do not, however, greatly increase the magnitude of total change, indeed, the higher densities may produce smaller PD's, probably due to injury The sharp cusp almost invariably appearing with larger currents is probably to be explained as a recession due to injury following the abrupt rise Return to smaller densities sometimes produces polarizations which were lacking before the larger current flow, causing a hysteresis much like that in Valonia³ and Halicystis,⁴ but there is always a point at which polarization again disappears—again a real threshold effect

That this striking behavior in the presence of KCl is not due to permanent injury is shown by the almost immediate restoration of normal polarizations, and eventually of stimulations, on re-exposure of the cells to NaCl or tap water. On the other hand polarizations are entirely lacking, even to very large inward current densities, when the cells are chloroformed

Practically no polarizations occur to outward currents in the presence of KCl, even at very high current densities. This is very like the situation in "variable" Valonia³ (except that in the latter, polarizations due to temporary "conditioning" by previous inward flow may occur). In Valonia, however, KCl does not influence the behavior

COMPARISONS AND DISCUSSION

Several comparisons have already been made between the behavior of Nitella and that of Valonia and Halicystis. On the whole, the same phenomena may be found in each, although the conditions vary considerably. Regular counter E v F 's (polarizations) occur in all, being

most marked in Nitella, less pronounced in Halicystis (especially in impaled cells, where they are very slow, and rather small in magnitude), and almost entirely absent in the variable state of Valonia, where they appear only on recovery from injury, or by specific treatments. They disappear in Nitella during stimulation, and as long as recovery is inhibited by KCl, they are suppressed in Valonia by exposure to ammonia in sufficient concentration, while in Halicystis they persist, or become even greater and faster, during reversal of PD by ammonia, etc. They may be restored in Nitella and Valonia by the passage of sufficiently large inward currents, which also restore the positive PD

On the other hand, the positive P.D of both Nitella and Halicystis is either destroyed or reversed by the passage of sufficient outward current, with definite threshold effects in each case, and very similar time curves. Differences occur in recovery, this process in Nitella being powerful enough to occur in spite of a continued flow of outward current which had initiated stimulation, while in Halicystis, recovery occurs only on cessation or considerable reduction of the original outward current flow. (In the presence of critical concentrations of ammonia, however, its P.D may remain permanently reversed after cessation of outward current.)

Another common characteristic is the thresholds, which tend to carry the potentials from one level abruptly to another without inter mediate values. These are found not only in the stimulation of Nitella, the reversal of potential in Halicystis, and in the production of positive potentials in Valonia, by current flow, but also in the potential changes in KCl treated Nitella, and ammonia treated Halicystis There is an all or none character to these potential levels, about which, as a base, the more regular counter EMF's build up (when present) Such levels occur near zero and at 100 my positive or more in Nitella, at some 50–60 my positive and 20–30 my negative in Halicystis, and at 8 or 10 my negative and some 50–100 my positive in Valonia Very seldom are intermediate levels found, if the potential is carried by current flow or otherwise to these values, it usually goes beyond them to the other level, where it is again more stable

How may these facts be fitted into one picture? The simplest assumption is that current flow produces two effects, the first, regular

counter EMF's, dependent upon the presence of some structure (surface film or membrane) but not altering it, the second, a direct alterative effect upon the structure itself, either destructive or restorative For the present, it is unimportant whether the counter EMF is due to a polarization, dependent on the differential mobility of two species of ions, or to a static capacity resulting from impermeability (or equal permeability) to all ions It is reasonable to suppose, however, that polarization is involved, since the bioelectric potential itself probably depends upon a differential mobility of ions, and we have seen that on the whole counter EMF's occur when there is also a large, usually positive PD displayed across the protoplasm Current flows of moderate density would presumably also produce counter EMF's by setting up across the surface a new concentration gradient of ions either of those normally responsible for the bioelectric potential itself, or of any others having appreciable mobility in that surface

Even up to considerable inward currents, such polarizations are all that occur, although the counter EMF is finally limited, either by establishment of a maximum ionic gradient (which would be some million-fold, to give a potential of 300 to 400 mv), or by "breakdown" of the surface film (We might here picture the opening of minute holes or pores, which promptly repair on cessation of current, since the injury due even to rather large inward current is not great) Indeed the contrary holds for we have seen that inward currents have a strong restorative effect, producing positive PD and polarizability when these are lacking, as in Valonia or KCl-stimulated Nitella

Outward currents, on the other hand, produce much less counter EMF before the more drastic changes of stimulation or potential reversal come into action. Here we must postulate no minor breakdown but a profound alterative effect on the surface film, causing its temporary disappearance or non-functioning, either with loss of both PD and polarizability in Nitella, or of positive PD in Halicystis (where a second, non-affected surface maintains the negative potential and continued polarizability). Only in Valonia, where the PD is already negative, and polarizations are either absent or small, does outward current produce no further effect, we may assume this is because such Valonia cells are already "permanently stimulated." When polarizability has been temporarily restored by inward currents, however, it

is destroyed again by outward currents, more rapidly than it dis appears spontaneously

Mechanism of Current Flow Effects

What can cause this destructive action of outward currents, and the restorative effects of inward ones? "Dielectric breakdown" ought to occur equally well with inward as with outward currents. Differ ential concentration effects due to ionic movement and changes of ionic gradients can be expected to occur however. These might include (a) hydrogen (or hydroxyl) ions, (b) other inorganic ions, especially potassium, (c) organic ions of the protoplasm (including constituents of the surface film itself). These will be discussed in order

Hydrogen Ion -A change of acidity with current flow across mem branes or other surfaces has been postulated at least since the experiments of Bethe,12 who definitely found it to occur with various models, and believed he demonstrated it in living plant cells. The latter has been called into question by the present author, who found that the more obvious of the color effects in living cells containing a natural indicator, was due to migration of the latter, rather than to a change of acidity 14 This does not preclude, however, a change of acidity in addition, in a layer too thin to be seen, adjacent to the protoplasm, such is in fact all that might be expected, and all that would be necessary to produce the effects on the surface itself Here, as often, the wrong experiment may have pointed to the right conclu-For there is much indirect evidence to support the hypothesis of acidity changes due to current flow Some of this has been dis cussed in the papers on Valonia and Halicystis, where it was shown that not only by the similarity of their effects, but actually by their combination in the same experiment, outward currents resembled and assisted treatments with ammonia and other penetrating bases, while

¹³ Bethe H Arch ges Physiol 1916 163, 147

¹⁴ Blinks L R Proc Soc Exp Biol and Med 1931-32, 29, 1186 The results given here have been recently confirmed in the author's laboratory on still more favorable material by Mr R D Rhodes, who has obtained objective photographic and spectrographic evidence of the effects. This is shortly to be arranged for publication.

inward ones opposed their effects, resembling and assisting treatments with dilute acids, and certain very active though weakly acidic substances like phenol, cresol, etc³ So far, there is not much evidence of this sort available for *Nitella*, but a similar situation may be postulated

There remain two questions concerning the physical and chemical mechanism of such acidity changes. Is it justified on the basis of known ionic mobilities? And what effect could acidity changes have on the surface? Concerning the first, there is not very positive evidence, for pH changes are in most cases rather ineffective in altering the PD. Only in the case of *Halicystis*, and there in only one species, is there evidence of a high mobility of hydrogen ion in the protoplasm. The general absence of its effect may, however, be due to the necessarily low concentrations of H ion which can be safely applied to cells, in comparison with the other ionic concentrations present.

Granted that the mobility of H ion might give rise to acidity changes, it is quite reasonable to postulate effects of such changes on the surface through, for example, the influence of pH upon the ionization of its constituents, whether these were ampholytes such as proteins, or weak acids such as fatty acids It has been mentioned before that the sharply critical all-or-none levels in the cells scarcely coincide with the long smooth dissociation curves of proteins, which show no very abrupt and complete change of sign with a small pH shift in keeping with various facts is a lipoid layer, which gives rise to the observed electrical effects (PD, polarization) while intact, but ceases to function when interrupted or removed A monomolecular arrangement might contribute to the all-or-none nature of its disruption but this is not necessary, since the effects of a thicker layer would probably also persist until it was disrupted, the latter occurring by saponification when alkalinity was sufficiently high That an inner layer, or the inner side of an outer layer is involved seems indicated by the action of ammonia which apparently penetrates as NH3 across the outer surface to reach the sensitive region on the inner side, while other alkalies such as sodium and potassium are less effective, because

¹⁵ Blinks, L R, J Gen Physiol, 1933-34, 17, 109

they do not penetrate as readily (When potassium is once admitted, however, as by stimulation of *Nitella*, it appears to be very tenacious in its effects ¹²)

Restoration of the film might occur by increased acidity, whether produced by current flow inward, or by metabolic processes. The latter apparently come spontaneously into prompt and powerful play immediately after stimulation in Nitella so that recovery occurs in spite of a continued outward current flow of a density which caused the original stimulation. They are less powerful in Halicystis, where recovery occurs only on cessation or diminution of outward current And, finally, they are too weak even to maintain the surface, in the variable state of Valonia, in Nitella treated with KCl, or in Halicystis treated with ammonia, unless assisted in each case by inward current

Other Inorganic Ions—Potassium, by virtue of its usual apparently high mobility in the protoplasm, would presumably be moved from the sap across the surface by outward currents, to reduce both PD and resistance when its concentration on the outer side of the surfaces approached that in the sap—This has been made the basis of a theory of the action current by Osterhout 16—There are, however, several objections to this—(1) Why should stimulation, once initiated, go on to completion even though current flow ceases (Figs. 3, 4, 5)?—(2) Why should the cells recover from stimulation even though the stimulating current continues to flow, presumably still carrying out potas sium ions from the sap across the protoplasm?—(3) Why should inward currents have a restorative effect in the presence of KCl, since here potassium ions would be brought continuously into contact with the outer surface?—(Similar restoration also occurs in the presence of KCl with Valonia)

Nevertheless, it is perfectly clear that potassium produces profound electrical effects in *Nitella*, which are aided and duplicated by out ward currents and are opposed and counteracted by inward currents. If they are not due to the high mobility of the K ion, then to what? The author has suggested that this may also be through an acidity effect within the protoplasm, potassium entering the cell either as

¹⁶ Osterhout, W J V J Gen Physiol , 1934-35, 18, 215

KOH, by formation of an organic salt KX, or by exchange of K for H ions, but in any case increasing the alkalinity in some critical region. The surface film is thereby altered or destroyed and recovery from stimulation is inhibited (unless an inward current is passed). Too great emphasis is not placed upon this theory, which is supported mostly by analogy with the ammonia effects in $Halicystis^{15}$, in view of recent experiments by Jacques and Osterhout, and by Collander it may be questioned whether potassium enters Nitella in this manner

Organic Ions—Another aspect has been recently given to the potassium effects by the experiments of Osterhout and Hill¹⁹ which show that stimulation as well as potassium effects can be abolished by various treatments, such as long exposure to distilled water, and again restored by various substances. This they explain by the leaching out of a substance "R" from the cell surface. It is possible that current flow acts upon R, moving it from the cell interior to the surface during outward current flow, or back from the surface into the interior during inward flow, depleting it in the surface, and so causing loss of the potassium effects. Whether R is therefore a cation, and acts by sensitizing the surface in some way to potassium, remains to be seen

The simplest hypothesis of all, would be that the surface itself is composed of an ionic species, capable of migrating in an electric current. If these ions had a negative charge (e.g. were fatty acid radicals) they would be attracted to the outer side of the protoplasm by the flow of positive current inward, or driven back from the surface into the protoplasm by outward currents. The observed threshold might represent the point at which the applied electrical gradient just overcomes the forces holding the ions in the surface (surface activity, or chemical affinity for the protoplasmic matrix)

No choice can yet be made between these several hypotheses of the mechanism of current flow effects, which are suggested for future testing. On the whole, there is the most evidence in favor of a change of acidity, but this does not preclude other effects, or a combination of them.

¹⁷ Jacques, A. G., and Osterhout, W. J. V., J. Gen. Physiol., 1934-35, 18, 967

¹⁸ Collander, R, abstract in Proc 6th Int Bot Cong, Amsterdam, 1935, 2, 289

¹⁹ Osterhout, W J. V, and Hill, S E, J Gen Physiol, 1933-34, 17, 87, 99, 105

Comparisons with Animal Tissues -The results with Nitella are in agreement with the work of McClendon20 and others 1 who have found a decrease of effective resistance to accompany the stimulation of muscle On the other hand Bozler²² has recently found an increase of impedance during the stimulation and contraction (isometric) of frog sartorius muscle. It is possible that the latter result finds a parallel in the behavior of Halicystis In this organism the passage of out ward current produces a reversal of P D bearing much resemblance to the Nitella stimulation curve During the course of reversal, small increments or decrements of this current have a much larger effect upon the P.D than they do at either fully positive or fully negative values The same is true of Valonia during restoration of the positive potential by inward currents 3 Since the changes of P.D. are always in the direction of a counter E.M.F (opposing the flow of current) they would have the effect of an increased impedance or effective resistance, and could not be dis tinguished from such, even though they might be rather due as here suggested to the extreme lability of the cell surface or other structure responsible for the PD. which was being destroyed or reconstituted by the flow of current It may be that the muscle under proper conditions of stimulation shows a similar lability and sensitivity to current flow which was reflected in Bozler's measurements

SUMMARY

String galvanometer records show the effect of current flow upon the bioelectric potential of *Nitella* cells Three classes of effects are distinguished

- I Counter EMF's, due either to static or polarization capacity, probably the latter. These account for the high effective resistance of the cells. They record as symmetrical charge and discharge curves, which are similar for currents passing inward or outward across the protoplasm, and increase in magnitude with increasing current density. The normal positive bioelectric potential may be increased by inward currents some 100 or 200 mv, or to a total of 300 to 400 mv. The regular decrease with outward current flow is much less (40 to 50 mv) since larger outward currents produce the next characteristic effect.
- 2 Simulation This occurs with outward currents of a density which varies somewhat from cell to cell, but is often between 1 and 2 μ a/cm² of cell surface At this threshold a regular counter EMF

²⁰ McClendon J F Am J Physiol 1912, 29, 302 1929 91, 83 Protoplasma 1929 7, 561

²¹ Cf especially the recent work of Dubusson M Arch Int Physiol 1933 37, 35, 1934 38, 85, 460, 468, 1935, 41, 177 511

²² Bozler E , J Cell and Comp Physiol , 1935 6, 217

starts to develop but passes over with an inflection into a rapid decrease or even disappearance of positive PD, in a sigmoid curve with a cusp near its apex. If the current is stopped early in the curve regular depolarization occurs, but if continued a little longer beyond the first inflection, stimulation goes on to completion even though the current is then stopped. This is the "action current" or negative variation which is self propagated down the cell

During the most profound depression of PD in stimulation, current flow produces little or no counter EMF, the resistance of the cell being purely ohmic and very low. Then as the PD begins to recover, after a second or two, counter EMF also reappears, both becoming nearly normal in 10 or 15 seconds. The threshold for further stimulation remains enhanced for some time, successively larger current densities being needed to stimulate after each action current. The recovery process is also powerful enough to occur even though the original stimulating outward current continues to flow during the entire negative variation, recovery is slightly slower in this case however.

Stimulation may be produced at the break of large inward currents, doubtless by discharge of the enhanced positive PD (polarization)

3 Restorative Effects — The flow of inward current during a negative variation somewhat speeds up recovery This effect is still more strikingly shown in cells exposed to KCl solutions, which may be regarded as causing "permanent stimulation" by inhibiting recovery Small currents in either direction now from a negative variation produce no counter EMF, so that the effective resistance of the cells With inward currents at a threshold density of some 10 is very low to 20 $\mu a/cm^2$, however, there is a counter EMF produced, which builds up in a sigmoid curve to some 100 to 200 mv positive PD This usually shows a marked cusp and then fluctuates irregularly during current flow, falling off abruptly when the current is stopped Further increases of current density produce this PD more rapidly, while decreased densities again cease to be effective below a certain threshold

The effects in Nitella are compared with those in Valonia and Halicystis, which display many of the same phenomena under proper conditions. It is suggested that the regular counter EMF's (polarizations) are due to the presence of an intact surface film or other struc-

ture offering differential hindrance to ionic passage. Small currents do not affect this structure, but it is possibly altered or destroyed by large outward currents, restored by large inward currents. Mechanisms which might accomplish the destruction and restoration are discussed. These include changes of acidity by differential migration of H ion (membrane "electrolysis"), movement of inorganic ions such as potassium, movement of organic ions, (such as Osterhout's substance R), or the radicals (such as fatty acid) of the surface film itself Although no decision can be yet made between these, much evidence indicates that inward currents increase acidity in some critical part of the protoplasm, while outward ones decrease acidity

THE EFFECT OF HEMOLYTIC SUBSTANCES ON WHITE CELL RESPIRATION

BY ERIC PONDER AND JOHN MACLEOD

(From The Biological Laboratory, Cold Spring Harbor Long Island)

(Accepted for publication February 19, 1936)

Substances such as saponin, the bile salts, the soaps, etc, which are generally classified as hemolysins, have a much wider cytolytic effect than is usually recognized. The purpose of this paper is to show that these hemolytic substances affect white cells in much the same way as they affect red cells, the arbitrary criterion of their cytolytic effect being their ability to depress white cell respiration

Preparation of Material

The white cell suspensions were prepared from rabbit peritoneal exudates, obtained by a method similar to that of Mudd Lucké McCutcheon, and Strumia (1929) Some 18 hours before the suspension is required each rabbit receives about 300 cc of sterile 0 95 per cent NaCl intrapentoneally the resulting exudate is very rich in leucocytes, and can be drawn off without any further introduction of NaCl and without the use of citrate. About 0 25 cc of leucocytes is obtained for each 15 cc of exudate and at least 95 per cent of the cells are polymorphs

The exudate is transferred to centrifuge tubes, and spun at the rate of about 1000 R P M for 2 minutes the supernatant fluid is then replaced by buffered NaCl in sufficient quantity to make a suspension containing from 60,000 to 100,000 cells per mm³¹. The exact number present is found by making a count in the usual manner. Barron and Harrop (1929) have found very irregular results for the respiration of leucocytes from rabbit peritoneal exudates, and have attributed the irregulanty to centrifuging, Fujita (1928) is of the same opinion, and also says that changes of temperature have a similar harmful effect on the respiration. Our results for white cell respiration, on the other hand are very regular and consistent from one exudate to the other nor does the cell respiration appear to be appreciably

¹ This buffered NaCl is prepared by adding 25 cc. of a mixed phosphate buffer (72 cc M/15 Na₂HPO₄ and 28 cc M/15 KH₂PO₄) to 75 cc of 12 per cent NaCl The resulting solution is isotonic for the rabbit and has a pH of 7 1 Mammalian Ringer's solution (Bayliss) can be used instead of this buffered NaCl, but without any appreciable advantage

affected by successive centrifuging, even if the cells are spun as many as three times at high speeds. At the same time, our results do not confirm Fujita's in showing that changes in temperature produce a harmful effect, for suspensions of cells used directly after preparation do not show any greater respiration than do suspensions kept in the ice box for intervals up to 12 hours

In the case of the respiration of leucocytes in whole blood, Barron and Harrop (1929) and Soffer and Wintrobe (1932), have pointed out that cell concentration has a marked influence on metabolic activity, the O₂ consumption varying roughly inversely with the concentration, it is therefore necessary to find the effect of (a) cell number, and (b) the "crowding" of cells, on the O₂ consumption in the suspensions prepared from peritoneal evudates. The effect of cell number is shown in Table I, in which the number of cells per mm³ is shown in the first column, the O₂ consumption in mm³/hr in the second, and the ratio of the number to the O₂ consumption in the third. In these experiments, the cells were contained in 5 cc of saline

Cells/mm 2 - 102	O ₂	Ratio
	rım */fr	
125	136	1 09
75	80	1 07
37 5	42	1 12
18 75	20	1 07

TABLE I

The figures in the last column are substantially constant, and so the O₂ consumption is very nearly proportional to the number of cells within the experimental range. Cell suspensions containing more than about 125,000 cells per mm³ are very viscous, and homogeneous samples are almost impossible to obtain because of agglutination. The effect of crowding the cells within this concentration range can be dismissed briefly, for we have found that it is immaterial whether one suspends a given number of cells in 5 cc. of fluid or in a volume twice as great. Speaking generally, the effect of cell concentration appears to be very different in the case of leucocytes in these suspensions from what it is in the case of the leucocytes of whole blood (cf. Barron and Harrop (1929), Soffer and Wintrobe (1932))

Respirometry

The measurements of O_2 consumption were made in Fenn respirometers with 35 cm capillaries of about 0.9 mm bore, and with cups of capacity about 25 cc. The respirometers were contained in a water bath at 37.5°C, controlled to within 0.01°C, and were rocked to and fro through an arc of 70° at the rate of 100 per minute

In order to investigate the effect of lysins such as saponin, the bile salts etc, on O consumption of white cells, 2 cc. of a suspension containing about 70 000 cells per mm² are placed in one of the cups of the respirometer, and in the other cup is placed the same volume of saline. In both side cups is placed 1 cc of the lysin in the concentration desired, so that on tipping the respirometer the lysin can be added to the cell suspension and the balancing volume of saline respectively. The respirometer is equilibrated in the water bath for 30 minutes at the end of which time the O_2 consumption of the suspension is measured at 10 minute intervals for a second period of 30 minutes. The respirometer is then tipped so that the lysin is added to the cells and the O_2 consumption measured at 10 minute intervals for 110 minutes this is in some respects, an arbitrarily selected time but after the cells have been in the respirometer at 37°C for more than about 3 hours their rate of O_2 consumption is apt to decrease spontaneously even in the absence of lysin

In experiments on the effect of hypotonicity on white cell respiration the proce dure was slightly modified. It is technically unsatisfactory to add volumes of water from a side cup in order to produce various degrees of hypotonicity, and so the cells were suspended in saline of various degrees of hypotonicity before being introduced into the respirometers. After 30 minutes for equilibration, readings of the O_2 consumption were made for a further 30 minutes. The O_2 consumptions during this period in the case of each hypotonic system are expressed as a per centage of the O_2 consumption in a system made up with isotonic saline

The Normal O2 Consumption of the White Cells

When suspensions of leucocytes are obtained in the manner described above, the irregularities in O_2 consumption described by Barron and Harrop (1929) are not observed, in fact, the O_2 consumption is remarkably constant from one exudate to another, and the rate of O_2 consumption is very constant over a period of hours. Our Q_{O_4} 's vary between -4.5 and -7.0, with a mean value of -5.5, which is considerably lower than the value of -9.0, given by Fujita (1928) for rat leucocytes obtained from blood. Calculating Barron and Harrop's constant A, we find a mean value of 0.7, which compares very well with their value of 0.8 found for the white cells of leukemic blood, it is doubtful, however, if a comparison can properly be made

The Effect of Lysins on the O2 Consumption

1 Saponin—The typical effect of saponin (and, probably, of most lysins) on white cell respiration is shown in Fig 1, in which 1 cc of 1 in 1000 saponin is added to 2 cc of the white cell suspension (68,000

cells per mm³) The O₂ consumption over any 10 minute period is expressed as a percentage of the average O₂ consumption per 10 minute period found before the addition of the lysin at the point marked in the figure—Since the tipping of the respirometer itself causes a movement of the drop in the capillary, 5 minutes are allowed for equilibration, and readings are made every 10 minutes thereafter

This typical curve shows the following characteristics (a) The addition of the lysin is followed by an increase in O_2 consumption which lasts about 20 minutes. This increase is not due to a specific effect of the lysin, for it can be obtained in control experiments in which

Fig 1 Ordinate, O₂ consumption as a percentage of that occurring before the addition of the lysin, which was added at point marked A Abscissa, time in minutes

Ringer's solution only is added to the cell suspension, in such experiments, indeed, the increase is of much longer duration (b) The curve then falls off roughly exponentially towards a new level, which it reaches about 100 minutes after the addition of the lysin. When large amounts of lysin are added, this new level may correspond to only some 5 per cent of the initial respiration, under which circumstances it is reached relatively quickly and is steadily maintained, when smaller quantities of lysin are added, on the other hand, the new level is reached more slowly and may correspond to quite a considerable fraction of the initial respiration, under which circumstances

it is generally not steadily maintained, principally because white cell respiration tends to decrease spontaneously after about 3 hours at 37°C.

These points are well shown in Fig. 2, in which curves are plotted for dilutions of saponin from 1 in 300 to 1 in 1250. It will be noticed that there is no temporary increase in O_2 consumption corresponding to the addition of large quantities of saponin (1 in 300 and 1 in 500), any increase which occurs being masked by the almost immediate decrease which follows the addition of the lysin. A curve showing the effect of the addition of Ringer only is given for comparison

Fig 2 Ordinate and abscissa as in Fig 1 The figures opposite each curve show the dilution of saponin added at the point marked A. In the case of the curve marked "Ringer", Ringer's solution only was added

Using the same data as that from which Fig 2 was constructed, we can tabulate the percentage of the original O₂ consumption remaining 110 minutes after the addition of the saponin against the quantity of saponin added, and the result is shown in Table II — As has already been remarked, the period of 110 minutes is in some respects an arbitrarily selected time, it is, however, as long a time as we can allow, spontaneous decreases in respiration being taken into consideration For the purpose of interpreting the results, we shall take it that after 110 minutes of action of the saponin, a new steady state has been reached

These results are plotted in Fig. 3, with the residual respiration as the ordinate. The curve presents several features (a) When 0.5 mg of lysin or less is added to the system, there is no observable effect on the O_2 consumption. This quantity of saponin is very much greater than that required to hemolyze red cells under comparable

TABLE II	

Dilution of saponin, 1 in	Saponin added	Residual respiration
	mg	per cent
300	3 33	2
500	2 00	4
750	1 33	18
1000	1 00	38
1250	0 80	44
1500	0 67	54
2000	0 50	100

Fig 3 Ordinate, residual respiration 110 minutes after the addition of the lysin, abscissa, quantity of saponin added, in milligrams

conditions, thus to produce 50 per cent diminution in the O_2 consumption of the white cells, we require about 0.7 mg, or 700 microgm, of saponin, whereas to produce 50 per cent lysis of the same number of red cells only about 20 microgm would be needed. This is not remarkable, for lysis of the red cell is an effect on a surface layer, whereas

the material involved in white cell respiration is no doubt distributed throughout the cell volume (b) It is difficult to decide whether or not a sufficiently great amount of saponin would abolish the O_2 con sumption entirely, and the point is not of much importance, the addition of 10 mg of the lysin, however, results in the residual respiration being less than 1 per cent of the initial (c). The most interesting point about the curve is that a small increase in the amount of saponin above 0.5 mg produces a relatively very great effect, a factor of 3.0, indeed, in the amount of saponin added makes the difference between 100 per cent and 20 per cent residual respiration. A similar situation is met with in the case of the hemolysis of red cells, where an increase in the concentration of lysin by a factor of 3.0 makes the difference between just commencing hemolysis and about 80 per cent lysis

Sodium ta	urocholate	Sodium gl	ycocholate
Lysın added	Respiration	Lysin added	Respiration
mg	per cent	mç	per cent
10 0	30	10 0	25
5 0	51	5 0	50
3 3	77	3 3	72
2 5	100	2 5	95

TABLE III

(d) In the case of the corresponding curve for the lysis of red cells, the relation between the percentage hemolysis and the amount of lysin added is a sigmoid one (Ponder, 1934a) It is impossible to decide, however, whether the curve in Fig. 3 is sigmoid or not, since the points at the upper end of the curve are subject to very considerable experimental error, and since any sigmoid relation which might be found would almost certainly be an extremely asymmetrical one ²

2 The Bile Salts - Sodium taurocholate and sodium glycocholate,

 $^{^2}$ The respiration of the cells before the addition of the lysin or the '100 per cent respiration, can be relied upon to be maintained for at least 3 hours with no greater variation than ± 5 per cent. The respiration for any 10 minute period after the addition of the lysin can be measured with about the same accuracy. Thus a point towards the upper end of the curve might be affected with a ± 10 per cent error

in suitable concentrations, produce effects very similar to those of saponin Table III shows the relation between the quantity of bile salt added to the systems and the amount of residual respiration

If plotted, the figures in Table III give curves similar to that in Fig 3 for saponin. So far as their effect on white cell respiration is concerned, the two bile salts are apparently about equally effective, and about one-eighth as effective as saponin. In the case of hemolysis of red cells, sodium taurocholate is usually a little more active than is the glycocholate, and saponin about ten times as effective as the bile salts (Ponder, 1934a). The order of effectiveness in reducing white cell O₂ consumption is accordingly much the same as that for producing hemolysis

A further point about the action of the bile salts as compared with that of saponin ought to be remarked upon—Instead of the residual respiration falling off roughly exponentially with time after the addition of the lysin, a new level of respiration is attained very quickly after the addition of the bile salts (within 10 minutes), and tends to be steadily maintained—This suggests that the course of reaction between saponin and the white cells is different from that between the bile salts and the white cells, the former reaction being steady and continuous, while the latter is more immediate—A similar difference is met with in the case of the "absorption" of these lysins at red cell interfaces, the bile salts becoming rapidly concentrated at the surfaces, while saponin is not "initially absorbed" at all (Ponder, 1934b)—There is difficulty in investigating the point fully because of the instability of the bile salts as lysins

- 3 Sodium Oleate This very unstable lysin is effective in reducing white cell O₂ consumption in a dilution of 1 in 100 or less, but we have not obtained quantitative relations
- 4 Digitonin —This hemolysin produces hemolysis only in solutions which are nearly saturated, and, white cell respiration being affected only by concentrations much greater than are necessary to cause hemolysis, it is not surprising that even a saturated solution of digitonin (about 1 in 100,000) produces no observable effect on respiration
- 5 Amboceptor and Complement The addition of guinea pig complement to white cells sensitized with anti-rabbit amboceptor pro-

duces no diminution in the O₂ consumption of the system In these experiments the cells received 50 hemolytic doses of amboceptor, and the complement-containing scrum added was undiluted

6 Freezing and Thawing—Treezing and thawing the white cell suspension three times results in the O2 consumption being reduced

TABLE	IV
-------	----

NaCi	Respiration
per cent	per cent
0 95	100
0 85	85
0 75	78
0 60	60
0 45	45
0 15	10
	T .

Fig 4 Ordinate respiration as a percentage of that in 0.95 per cent NaCl, abscissa NaCl concentration per cent

to about 5 per cent of its initial value This small residual respiration may be due to the presence of cell or nuclear fragments

7 Hypotonic Saline—Placing white cells in hypotonic solutions reduces their O₂ consumption, and Table IV shows the O₂ consumption, expressed as a percentage of that in 0.95 per cent NaCl, in systems of various tonicity

The points lie very nearly on a straight line (Fig 4) The curve

bears no resemblance to the sigmoid relation between percentage hemolysis and tonicity, which is scarcely surprising, for white cell metabolism is not an all-or-none property like the maintenance of the integrity of the red cell membrane. The possibility that the reduction in O₂ consumption in hypotonic media is due to some of the less resistant cells being cytolyzed while others are unaffected can easily be disposed of on the grounds of microscopical evidence. The white cells in a system in 0.5 per cent NaCl, in which there is about 50 per cent reduction in the O₂ consumption, are all greatly swollen and obviously partially cytolyzed, granules in the cytoplasm show Brownian movement, and the nuclei are very prominent ³

The Quantity of Lysin Combined with the Cells

The remainder of this investigation is concerned with relating the effect of a lysin on white cell O_2 consumption with the quantity of lysin actually combined with the cells. It will be clear that the total quantity of lysin introduced into the system is not necessarily a measure of the quantity which reacts with the leucocytes, for the lysin may be concentrated at the cell surfaces, just as it often is in the case of red cell suspensions (Ponder, 1934b). An investigation of the extent of the concentration, however, is possible with saponin only, for the other lysins referred to in this paper are too unstable to be used in quantitative work

Methods

These are substantially the same as methods which have been described already (Ponder, 1934b), and the principle underlying them is as follows. A known concentration of saponin is added to the white cell suspension, and the cells and lysin are allowed to react at constant temperature (37°C) for a known time, the cells are then thrown down, the supernatant fluid removed, and the concentration of saponin in it found by adding red cells and observing the time required for their complete hemolysis. The difference between the amount of lysin introduced into

³ After the addition of saponin, the bile salts, and the soaps, the cells show obvious cytolytic changes The cytoplasm shows no structure, and one gets the impression that it has disappeared, leaving a very prominent nucleus inside an apparently empty space bounded by the cell envelope There does not seem to be any diminution in the number of the cells Suspensions of these injured cells show very marked agglutination, both microscopically and macroscopically

the system and that found in the supernatant fluid gives the quantity which has been used up in the time allowed for the reaction, principally by "combining with" the cells

In practice, the first step is to plot a time-dilution curve at 37 C showing the time required for complete lysis of 0.4 cc of a "standard red cell suspension" by 1.6 cc of various dilutions of saponin starting with a dilution of about 1 in 1000. One dilution of saponin is then selected, and 1 cc of it is added to each of a number of tubes containing 2 cc of the white cell suspension. The lysin and cells are allowed to react for various times (1 minute 5 minutes, 30 minutes, etc.), and at the end of the time the tube is spun gently so as to throw down the cells 1.6 cc of the supernatant fluid is then removed 0.4 cc of the standard red cell suspension added and the time for complete lysis determined. Reference to the time-dilution curve gives the quantity of saponin present in the supernatant fluid. In this way we can find out how the lysin disappears from the fluid surrounding the cells with the passage of time, and by repeating the experiment with different dilutions of saponin, we can construct curves showing the course of the disappearance for many different initial quantities of lysin.

Unfortunately this procedure is complicated by the fact that the supernatant fluid obtained from a white cell suspension contains substances (probably of a protein nature) which react with saponin, and so the amount of saponin Δ_1 which disappears when the lysin is added to a white cell suspension is made up of two quantities an amount Δ_2 which has combined with the cells and an amount Δ_4 which has combined with the inhibitory substances in the fluid surrounding the cells. The latter amount can be found by adding 1 cc of a known dilution of saponin to 2 cc of supernatant fluid obtained from the white cell suspension and then finding the amount of lysin rendered mert by taking 1 6 cc. of the mixture adding 0 4 cc. of the standard red cell suspension, finding the time for complete hemolysis and referring to the time-dilution curve for the amount of lysin present Subtraction from the amount originally introduced gives Δ_3 and subtraction of Δ_3 from Δ_1 gives Δ_2 the amount of lysin combined with the cells under the particular conditions of the experiment

RESULTS

Fig 5 shows the course of the disappearance of saponin for three lysin dilutions reacting with the cells of a suspension containing 68,000 white cells per mm³. The range of lysin dilutions over which such curves can be obtained with any pretense to accuracy is unfortunately very small, for if the initial amount of lysin is too great there may be

⁴ This is a suspension prepared by suspending the thrice washed cells of 1 cc of rabbit blood in 20 cc. of 1 per cent NaCl For further details of technique see Ponder, 1934a

so much left after absorption that it is impossible to determine it accurately because the added red cells hemolyze so rapidly, while if the amount is too small so much may be absorbed that the remainder is insufficient to hemolyze the added red cells at all

The curves show a striking resemblance to those shown in Fig 1 of a previous paper (Ponder, 1935) dealing with the disappearance of

Fig 5 Ordinate, lysin disappearing from the system, in milligrams, abscissa, time in minutes. The figures opposite the curves show the amount of saponin initially added

saponin during stromatolysis and the absorption of the lysin at the surfaces of ghosts. The disappearance of lysin is rapid at first, and tends to reach a final value asymptotically, the particular amount which finally disappears being a function of the amount initially present, the time, moreover, which it takes for the final value to be reached increases as the initial concentration increases. An important point is that the disappearance apparently ceases while there is yet a large amount of saponin free in the system, and this, together with all

the other properties of the reaction, indicates that the combination of saponin with white cells is essentially similar to its combination with red cell stromata, and of the nature of a "pseudo adsorption" or "anomalous" adsorption (see Ponder, 1935)

It will be observed that, in the case of these quantities of saponin at least, the disappearance of lysin is virtually complete after 30

TABLE V

Saponin added	Δ1	Δ1	Δι	Residual respiration
mg				per cent
10 0	4 100	3 800	(0 300)	0
20	1 767	1 434	0 333	9
10	0 884	0 509	0 375	32
0.5	0 448	0 148	0 300	64

Fig. 6 Ordinate, residual respiration 30 minutes after addition of saponin, abscissa lysin combined with the cells after 30 minutes. The curve is the hyper bola $R.\Delta$ = 120

minutes at 37°C At the end of the same time, there is also a con siderable reduction in the O₂ consumption of the systems, and so, as a final step, we can relate the O₂ consumption of the cells to the quantity of saponin combined with them This is done by carrying out, on the same white cell suspension, an experiment divided into two parts the first part consists in finding the effect of the lysin on the

 O_2 consumption 30 minutes after its addition, and the second consists in finding the quantity of lysin absorbed after 30 minutes under the same conditions as regards temperature, concentration, etc. Table V shows the results of such an experiment

The figures in the columns for Δ_3 show that the quantity of saponin rendered mert by the substances in the fluid surrounding the cells does not depend on the initial lysin concentration (the value in brackets could not be found experimentally), and these values, when subtracted from Δ_1 , the total amount of saponin which has disappeared, give Δ_2 , the quantity of saponin combined with the cells—This value, in milligrams, can then be plotted against the residual respiration R to give Fig. 6—Although there are so few points, there is no doubt as to the general shape of the curve, which is so close to that of the rectangular hyperbola

$$R \Delta_2 = \text{constant}$$
 (1)

that it would be almost impossible to discover a difference experimentally. Without unduly stressing the point, it may be remarked that such a relation would be expected if the saponin were adsorbed at surfaces which were the seat of oxidative processes.

SUMMARY

Substances such as saponin, the bile salts, etc., which produce lysis of red cells also produce cytolysis of white cells from rabbit peritoneal exudates, the arbitrary criterion of their cytolytic effect being their The amount ability to depress the O₂ consumption of the leucocytes of cytolysis increases regularly as the amount of the added lysin is increased, and sufficiently large quantities of saponin, sodium taurocholate, sodium glycocholate, or sodium oleate are capable of virtually abolishing the O2 consumption altogether At the same time, it can be shown that a lysin such as saponin is used up in combining with the white cells in much the same way as it is used up in combining with red cells, and the reduction in oxygen consumption appears to be The action of roughly proportional to the amount so combined these lytic substances on white cells, in fact, is very similar to their action on red cells, due allowance being made for the fact that the

cytolysis of the white cell is probably not an all-or none process like hemolysis

White cell respiration is also depressed in hypotonic solutions, the respiration being virtually linear with the tonicity

We have to thank Dr L Reiner for preparing the anti-rabbit amboceptor for us

REFERENCES

Barron, E S G, and Harrop G A J Biol Chem 1929, 84, 89

Tujita, A Klin Woch , 1928, 7, 897

Mudd S, Lucké B McCutcheon M, and Struma M J Exp Med, 1929, 49, 779

Ponder E The mammalian erythrocyte and the properties of haemolytic systems Protoplasma Monographien Berlin, Borntraeger, 1934a 6

Ponder E, Proc Roy Soc London, Series B 1934b 116, 282

Ponder, E Biochem J London 1935, 29, 1263

Soffer, L J, and Wintrobe, M M J Clin Inv, 1932 11, 661

GROWTH SUBSTANCE CURVATURES OF AVENA IN LIGHT AND DARK

By J VAN OVERBEEK

(From the William G Kerckhoff Laboratories of the Biological Sciences, California Institute of Technology Pasadena)

(Accepted for publication January 13, 1936)

1

INTRODUCTION

Since it had been shown (Van Overbeek, 1932, 1933) that growth substance curvatures of *Raphanus* hypocotyls offered an easy way to study light growth responses, the question arose whether this was true for *Avena* coleoptiles too By growth substance curvatures are meant such curvatures as appear when growth hormone is applied unilaterally to a coleoptile, hypocotyl, etc If the growth substance curvatures of *Raphanus* hypocotyls which have occurred in the dark are compared with those that have occurred in the light (exposed from all sides), the former (dark) are always the larger The ratio of the curvatures in dark and light depends on the amount of light, on the concentration of the hormone applied, etc Furthermore it has been shown clearly that the difference in growth in light and dark has an important part in the explanation of the phototropic curvature of *Raphanus*

In Avena, on the other hand, the light growth responses seem to have a minor part, if any, in the explanation of the phototropic curva ture. Went (1928) was able to show that an unequal distribution of the growth substance, caused by unlateral exposure to light, is sufficient to explain the entire phototropic curvature of the Avena coleoptile. This unequal distribution occurs in the tip, which is solid, and, therefore, more fit for lateral transport of the growth substance than the hollow lower parts of the coleoptile. Cholodny (1933) was able to show that it was possible to obtain a phototropic curvature in

Avena under circumstances which did not cause a light growth response

The growth substance curvatures of *Avena* coleoptiles in light and dark may not be important for the problem of phototropism, but it certainly is worth while to study them in order to increase our knowledge of the physiology of the coleoptiles

On the basis of the present investigations, moreover, it has become possible to answer practical questions which had never before been answered satisfactorily (1) Do decapitated coleoptiles such as those used in the growth substance test react in the same way to a given amount of growth substance after they have been photographed, i.e., exposed to a small amount of light? The answer is no, their sensitivity is higher because the formation of new growth substance in the decapitated coleoptiles is inhibited by light. This "regeneration" of the growth substance formation decreases the sensitivity of the coleoptiles to growth hormone. Skoog (1937), however, has developed a method to obtain "regeneration free" plants. These plants can be exposed hourly to a small amount of light without the slightest difference in sensitivity to growth substance.

(2) Another question is answered by the present investigations on the growth substance curvatures in dark and light, viz can heteroauxin be used without limit as a substitute for auxin-a and auxin-b? Hetero-auxin is a substance produced by fungi as shown by Kogl and Kostermans (1934) and by Thimann (1935a) Auxin-a and auxin-b are present in higher plants (Kogl, Haagen-Smit, and Erxleben In a recent study by Haagen-Smit and Went (1935) and by Thimann (1935a) it has been shown that in addition to hetero-auxin a large number of other substances which are not the natural growth substance of Avena and pea plants do stimulate the growth apparently in the same way as auxin-a, the only difference being that these other substances require a higher concentration to act in the same way that auxin-a does Furthermore it has been shown by Skoog and Thimann (1934) that both hetero-auxin and auxin-b are able to inhibit the development of lateral buds Went (1934) and Thimann and Went (1934) have shown that the root formation of pea cuttings can be increased greatly by application of hetero-auxin as well as of auxin-a Cooper (1935) obtained a stimulation of root formation in lemon and

other woody cuttings after application of hetero auxin. All these facts seemed to indicate that hetero auxin can act as a substitute for auxin a in every sense. Below, however, it will be shown that if in Atena coleoptiles auxin a is replaced by hetero auxin, growth is not inhibited after exposure to light. It will be shown, furthermore, that there are considerable differences in the destruction of both hormones

The present investigations were started at the Ryks Universiteit in Utrecht, Holland in the early part of 1934

They were continued, after an interval of about a year, at the California Institute of Technology in Pasadena

π

A Experiments Carried out in Utrecht

Method —A detailed description of the experimental set up is given in an earlier paper (Van Overbeek 1933)). Binefly the circumstances under which the experiments were carried out were as follows. Temperature 21 C and humidity about 90 per cent. The experiments in the dark were carried out in a dark room with controlled conditions. The room was lighted with orange yellow light of wave lengths larger than 546 m μ . The experiments in the light were done in an incubator which was kept at the same constant temperature and humidity as the dark room. In order to expose the plants uniformly on all sides, they were placed on a disk revolving in a horizontal plane. The light source consisted of two incan descent lamps of 500 watts each which were placed at 80 cm distance from the objects. The plants were shelded from the heat of the lamps by a set of glass plates and water containers. Under these conditions one lamp radiates an amount of energy of 200 erg/cm. per second upon the plants.

The Avena plants used were Victory oats from Svalof They were grown under standard conditions (see for example Went 1935a)

The auxin used was pure auxin- σ supplied by Prof F Kogl and Dr A J Haagen Smit

1 Continuous Exposure Starting at the Second Decapitation —When the coleoptiles were about 3 cm long they were prepared in the following way. The tip of the coleoptiles was cut off (first decapitation) and $1\frac{1}{2}$ hours later a fresh cut surface was made (second decapitation) and the primary leaf was pulled loose. Immediately after this an agar block containing auxin a was applied on one side of the cut surface of each coleoptile. After this preparation one set of plants was exposed

on all sides to the light, and another set was kept in the dark room. The curved plants were photographed 110 minutes after the blocks had been put on and the experiment was stopped. Later the curvatures of these plants were measured ²

Fig 1 shows the results of three experiments carried out as described above. In these experiments the concentration of the auxin-a is plotted on the abscissa. It is clear that the growth substance curvature of the coleoptiles which were exposed on all sides to light is smaller than those of the non-exposed plants.

Fig 1 Auxin-a curvatures of twice decapitated Avena coleoptiles in dark (black dots) and exposed on all sides to light (circles) Abscissa relative concentration of the hormone Each point is the average of the curvatures of twelve plants 3

2 Continuous Exposure Starting at the First Decapitation —In order to see what will happen if the plants are exposed immediately after the first decapitation until the end of the experiment, the following experiment was made Plants were decapitated and immediately after this decapitation one set of plants was exposed to the light

² To secure subjective measurements the photographic records were measured out "blindly" (without knowing to what the record referred)

³ All figures in the graphs and tables of this publication represent average values of twelve plants, unless the contrary is stated

(without growth substance being applied) $1\frac{1}{2}$ hours later the plants were decapitated again and auxin a blocks were applied. Photographs were made 110 minutes after this and the experiment finished. The results, shown in Table I, show that the exposed plants have on an average the same curvature as the non exposed controls. Table I also shows the results of experiments similar to those described in the section entitled Continuous exposure starting at the second decapitation.

To study the different behavior of Raphanus as compared to Avena, the same experiments which were carried out and described in this section for Avena were repeated with Raphanus The preparation of

TABLE I

Auxin A Curvatures of Twice Decapitated Avena Coleopiiles

Auxin application after second decapitation. Three sets of plants (1) Exposed continuously from the first decapitation, (2) exposed from the second decapitation, and (3) control in dark. Temperature 21°C 2 lamps of 500 watts at 80 cm. Photographed 110 minutes after the growth substance was applied

No	(1) Exposed from first decapitation until end of experiment	(2) Exposed from second decap tation until end of experiment	(3) Dark
40 416	10 5	6 4	10 5
	1 -	5 8	11 8
	_		13 0
40 614	11 6	1	94
	14 2		13 9
40 625	4 3		3 6
	4 8	}	40
Average	9 7	61	10 2

the Raphanus hypocotyls was the same as has been described in the earlier paper Table II shows the results Whether the hypocotyls were exposed 2 hours before and 2 hours during the growth substance action, or the plants were exposed during the action of the hormone only, did not have any influence upon the growth substance curvature. In both cases the average value of the growth substance curvatures in the dark was 12, and 5 in the exposed ones. The same value was found during the experiments described in Fig. 27 in the earlier paper.

3 Plants Exposed between the First and Second Decapitation Only—After the first decapitation one set of plants was exposed $1\frac{1}{2}$ hours later the plants were brought back into the dark room and decapitated again, where upon auxin-a was applied on one side of the cut surface

TABLE II

Auxin-A Curvatures of Raphanus Hypocotyls

Auxin applied 2 hrs before the end of the experiments before the end of the experiment Temperature 21°C 2 lamps of 500 watts at 80 cm Photographed 2 hrs after application of auxin Nos 40,606, 40,611, and 40,613

	
4 hrs exposed (average of 9 x 12 plants)	49 ± 0 26
2 hrs exposed (average of 7 x 12 plants)	52 ± 0.60
Not exposed (average of 8 x 12 plants)	$ \begin{array}{c} 5 \ 2 \pm 0 \ 60 \\ 12 \ 1 \pm 0 \ 44 \end{array} $
	,

TABLE III

Auxin-A Curvatures of Avena Coleoptiles

Auxin applied after second decapitation. One set of plants exposed between the first and second decapitation (before growth substance application), other set is dark controls. Temperature 21°C 2 lamps of 500 watts at 80 cm. Photographed 110 min after growth substance application. No 40,423. Average of 6×12 plants for each set

	1
Exposed (between first and second decapitation only)	89 ± 033
Not exposed	68 ± 031
	I

TABLE IV

Auxin-A Curvatures of Raphanus Hypocotyls

2 hrs before the growth substance was applied one set of plants had been exposed for 2 hrs, another set was kept in the dark room all the time. Growth substance application 2 hrs before the end of the experiment. Temperature 21°C 2 lamps of 500 watts at 80 cm. No 40,612. Average of 4×12 plants for each set

	1
Exposed (2 hrs before growth substance application only)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Non-exposed	12.5 ± 0.63
1101 diposition	'

of the coleoptiles The controls, which had not been exposed, were treated in the same way. The curvatures were photographed 110 minutes after the blocks had been put on. The results are shown in

Table III The plants that had been pre exposed show a larger cur vature than the non exposed controls

In one further respect Raphanus also reacts differently from Avena coleoptiles It does not show an effect of exposure to light before the auxin a had been applied as Table IV shows Raphanus obviously reacts only (with a growth inhibition) if the growth substance acts during the exposure

B Experiments Carried out in Pasadena

- 4 Method—We have tried to carry out these experiments under conditions resembling those in Utrecht as closely as possible. The experiments in light were carried out in a room with controlled conditions. The lamps were placed in the room itself and were cooled by running water. Two to four lamps of 200 watts each were used at a distance of 125 cm. from the objects. The oats were Victory oats from Svalof. Two important differences, however, had to be made. (1) Due to the instability of auxin-a which is made only at Prof. Kogl's laboratories in Holland, the active pure substance could not be obtained here. Therefore pure synthetic hetero auxin was used which was supplied by Drs. K. V. Thimann and J. Koepfli. (2) Due to the hot summers in Pasadena, it was impossible to maintain a constant temperature below 27 C. in the experimental rooms, which are not equipped with a cooling system.
- 5 Continuous Exposure Starting at the Second Decapitation, No Difference between the Hetero Auxin Curvatures in Light and Dark -If the experiments of the section entitled Continuous exposure starting at the second decapitation were repeated, but at 27°C and with hetero auxin instead of auxin a, no difference between the curvatures in light and dark could be found. In order to find which one of the two factors was responsible for the non-occurrence of the smaller curvature in the light, the temperature of the rooms was lowered By bringing ice into the rooms and stirring the air by means of electric fans a fairly constant temperature around 23°C could be main tained The experiment was then repeated The Avena coleoptiles were decapitated, and after 11 hours again decapitated Agar blocks containing hetero auxin were put on one side of the cut surface of the coleoptile stumps One set of the plants treated in this way was exposed on all sides and a control set was kept in the dark room experiments were stopped 110 minutes later and the plants photo graphed Fig 2 shows the results. The curvature in the light is

still not smaller than in the dark Hence the kind of growth hormone used must be an important factor in these experiments

6 Continuous Exposure Starting at the Second Decapitation, the Auxin-A and B Curvature is Smaller in the Light Than in the Dark—As no pure auxin-a was available a less refined product had to be used In order to obtain such a product a method was followed similar to that used by Kornmann (1935) who extracted corn starch with water Coarse corn meal was extracted with distilled water for about 12 hours at 3°C Plain agar blocks were soaked in the extract for a few hours

Fig 2 Hetero-auxin curvatures of twice decapitated Arena coleoptiles in dark and exposed on all sides to light

If these agar blocks were diluted twice, blocks of $1 \times 2 \times 2$ mm gave a curvature of about 10° in the standard test. From the experiments of Kogl, Erxleben, and Haagen-Smit (1934) it is known that corn oil contains a large quantity of auxin-a and b. It is very probable therefore that the growth hormone which we extracted from corn meal consists of a mixture of the auxins-a and b. The growth hormone extracted from corn meal will be called in this paper auxin-a and b and the curvature caused by this hormone an auxin-a and b curvature

If now the experiments described in the last section were repeated again with this auxin-a and b as growth hormone, results similar to those obtained with pure auxin-a (Section 1) were obtained Fig 3

shows two of these experiments, the curvature in light is smaller than in the dark. Figs 4a and 4b show similar results with deseeded (regeneration free) plants. In the experiment of Fig. 4a auxin a and

Fig. 3 Auxin-a and b curvatures of twice decapitated Avena coleoptiles in dark and exposed on all sides to light

FIG 4 Growth substance curvatures of twice decapitated and deseeded Avena coleoptiles (a) Auxin-a and b curvatures (b) Hetero auxin curvatures, but with auxin a controls The black dots indicate the hetero-auxin curvatures in the dark. The open circles indicate the hetero auxin curvatures in the light. The black squares indicate the auxin a curvatures in the dark and the open squares indicate the auxin a curvatures in the light.

b was used, while in the one of Fig. 4b hetero auxin was used. In the latter experiment, however, a control with auxin a and b was made at the same time. The black squares show the curvatures with corn meal auxin in the dark, the open squares show the same in the light

7 Continuous Exposure Starting at the First Decapitation, and Exposure between the First and Second Decapitation only, in Both Cases the Hetero-Auxin Curvature is Larger in the Light Than in the Dark—In Section 2 it has been shown that if Avena coleoptiles are exposed continuously from the first decapitation and the auxin-a blocks are put on after the second decapitation, the curvatures obtained are the same in the light as in the dark. If the experiment is repeated, however, with hetero-auxin instead of auxin-a, the curvature is larger in the light than in the dark as is shown in Table V. In this table the results of experiments similar to those described in Section 3 are also given. The experiments described there were with plants which were exposed on all sides between the first and second

TABLE V

Hetero-Auxin Curvatures of Twice Decapitated Avena Coleoptiles

Three sets of plants, (1) exposed continuously from first decapitation, (2) exposed between first and second decapitation only, (3) controls in dark. Temperature 23°C 4 lamps of 200 watts at 125 cm. Photographed $1\frac{1}{2}$ hrs after growth substance application. Nos 51,125, 51,126. Average of 7×12 plants for each set

1	(Exposed from first and after second decapitation)	9 6 ± 0 81 8 9 ± 0 61 6 6 ± 0 30
2	(Exposed between first and second decapitation only)	89 ± 0.61
3	(Dark)	6.6 ± 0.30

decapitation ($1\frac{1}{2}$ hours) only After the second decapitation auxin-a blocks were put on the cut surface of the coleoptile stumps and 110 minutes later the pre-exposed plants had a larger curvature than the non-exposed controls Table V shows that this experiment can be repeated with hetero-auxin with the same result

8 Growth Substance Curvatures of Once Decapitated Avena Colcoptiles, Explanation —Van der Wey (1931) in a detailed investigation on the influence of decapitation upon the growth substance curvature, showed that the growth substance curvature obtained with the same amount of growth hormone is larger in plants that had been decapitated two or three times than in plants which had been decapitated only once, especially if the agar blocks containing the hormone are applied right after the first decapitation. If the tip of a coleoptile is

cut off the stump still contains a large amount of hormone which dis appears gradually $1\frac{1}{2}$ hours after the tip has been cut off almost all the hormone in the stump has disappeared, but at the same time the stump is starting to produce growth hormone again. This regeneration, however, can be suppressed by the second decapitation. There fore if the cells of the stumps are empty as far as growth substance is concerned a larger growth substance curvature occurs than if the cells have a high growth substance content though in both cases the same amount of growth substance is used

Let us analyze now the results obtained from the following experiment Avena plants are divided into four groups The coleoptiles

TABLE VI

Hetero Auxin Curvatures of Once and Twice Decapitated Avena Coleoptiles

Temperature 27 C 4 lamps of 200 watts at 125 cm Photographed 110 min after growth substance application

No	Once deci	apitated	Twice decapitated	
140	Exposed	Dark	Exposed	Dark
50 902	6 7	3 0	5 8	6 6
	-	38	5 3	60
	_	3 0	5 3	_
50 909a	7 7	28	76	60
	5 0	2 2	67	78
Average	6 5	3 0	61 /	6 6

of two of them are decapitated, the remaining groups are left intact After 1½ hours the first two groups are decapitated again and agar blocks containing hetero auxin are applied on one side of the cut surfaces. One of these groups is placed in the light, the other one remains in the dark room. The two other groups are now decapitated also, but for the first time, and hetero auxin of the same concentration and in the same way is applied to these groups right after the first decapitation. One of these groups is placed in the light too, whereas the other one stays in the dark room. The plants were photographed 110 minutes after the blocks were put on. Table VI shows the sur prising result that the curvatures of twice decapitated plants and the just once decapitated but exposed plants are the same. The

curvatures of the just once decapitated plants in the dark have a smaller curvature than the twice decapitated plants in the dark. As has been shown above, this is due to the fact that during the period between the first and second decapitation the growth hormone left behind in the plant after the tip is cut off, has disappeared. It is reasonable to suppose that the growth hormone left behind in the plant after first decapitation, has disappeared also in the plants that have been exposed to light. This growth hormone is very probably auxin-a or (and) its close relatives, because Kogl, Haagen-Smit, and Erxleben have shown that the hormone present in Avena coleoptiles has the same molecular weight and other properties as auxin-a Another interesting fact which can be concluded also from Table VI, is that hetero-auxin apparently is much less affected by light than

TABLE VII

Auxin-A and B Curvatures of Once Decapitated Plants

Temperature 23°C 4 lamps of 200 watts at 125 cm Photographed 1 $\frac{1}{2}$ hrs after growth substance application No 51,127 Average of 3 \times 12 plants for each set of plants

Exposed	86±064
Dark	103 ± 071

which auxin-a and b is applied must show a smaller $\frac{\text{Light}}{\text{Dark}}$ ratio than the once decapitated plants to which hetero-auxin has been applied (Table VI). Table VII gives the answer. The curvature of the plants which have been exposed to light and to which auxin-a and b has been applied is even smaller than that of the non-exposed controls. Apparently also a part of the auxin-a and b which was added to the plants has disappeared before it could accelerate the growth of the cells of the coleoptile stump, therefore the auxin-a and b probably is inactivated (destroyed) in the light. Another support for the idea that the auxin-a is destroyed in the light, is the fact that it is much more easily destroyed by enzymes of the plant than hetero-auxin, as

will be shown below The results of the preceding sections are summarized in the following scheme

On the left hand side of the scheme is indicated whether the plants between the first and second decapitation were in the light or in the dark. On the right hand side is indicated whether after the second decapitation the plants were in the light or in the dark. There are two groups of dark plants (1) and (4), each of which has a different previous history. The group (4) has been exposed before the second decapitation, the group (1) has not. The same holds for the "light groups" (3) and (6). In each group the hetero auxin curvature (a) and auxin a or auxin a and b curvatures (b) are indicated. Each figure in this scheme is directly comparable with any other figure in the scheme. The values for the hetero auxin curvatures are obtained directly from the tables as indicated in each group, the (1) group serv

ing as a "standard" The auxin-a curvatures, however, are reduced to this standard (1a)

In Table I for example for the twice decapitated plants which were not exposed, a value 10 2 is found. This value is reduced to 6 6 in order to make the auxin-a curvatures directly comparable to the hetero-auxin curvatures. The value 6 1 of Table I must be multiplied with the factor $\frac{66}{102}$ in order to be comparable with the standard values of group (1) and, therefore, 3 9 is obtained for (3b). The same is done for the 9 7 value of Table I which gives 6 3 in group (6) under (b). In Table III we find a dark value of 6 8 which has to be reduced to 6 6. Therefore the value in group (4b) will be $\frac{66}{68}$ 8 9 = 8 6. At last the value 10 3 (Table VII) was reduced to 3 0 of group (2a) and, therefore, the value 8 6 of Table VII is reduced to $\frac{3}{103}$ 8 6 = 2 5 of group (5b)

In the beginning of this section the conclusion was drawn that auxin-a and closely related substances (which are stable to light by themselves) are destroyed within the plant on exposure to light. The hetero-auxin is not destroyed, or more probably is much less destroyed than the auxin-a. These conclusions were drawn from experiments on once decapitated plants

The experimental data summarized in the scheme may now be considered in regard to these conclusions. If the groups (1) and (3) are compared, we find the hetero-auxin curvature in the light slightly lower than that in the dark. This may indicate that indeed a small amount of hetero-auxin is destroyed in the exposed plant. The auxin-a curvature of group (3), however, is much smaller than that of group (1). This is caused according to the conclusions mentioned above by the destruction of auxin-a in the exposed plants.

If group (4) is compared with group (1) a higher curvature in group (4) is obvious. Both the hetero-auxin and auxin-a curvatures are higher in the plants which had been exposed previously. Because, during the growth substance action the plants were in the dark, no auxin-a was destroyed and therefore the value (4a) is practically the same as the value of (4b). The results show another aspect, however, if the plants are exposed to light during the action of the growth substance. This is manifest if the groups (1) and (4) are compared with

group (6) The values of (4a) and (6a) are practically the same (mean error rather high, Table V) The auxin a curvature of group (6), how ever, is considerably lower than in group (4) This is easy to understand if it is assumed that the auxin a is destroyed in plants which are exposed to light. Why the response to growth hormone is higher in the groups (4) and (6) than in the group (1) can also be explained in terms of destruction of growth substance by light. The plants of groups (4) and (6) have been pre exposed and hence have a smaller growth hormone content than group (1) which has been kept in the dark all the time. Consequently the plants of groups (4) and (6) are more sensitive to growth substance than the ones of group (1) as is explained at the beginning of this section.

The following general conclusions can be drawn from these considerations (1) The response of the plant to growth hormone (both types of auxins) can be shown by the hetero auxin curvature (2) Superimposed upon this response is the destruction of auxin-a in exposed plants

If the hetero auxin curvature in the dark is Hd, the one in the light Hl, and the auxin a curvature in the dark Ad, then according to these general conclusions the auxin a curvature of exposed plants can be expressed $\frac{Hl}{Hd}$ (Ad-Dl) In which Dl is the destruction of the auxin a in the exposed plant

9 The Destruction of Hetero Auxin and Auxin A and B—In an earlier paper dealing with dwarfs of corn (Van Overbeek (1935)) a method was developed to determine the destruction of growth sub stance by sections of plants in agar blocks. Sections of coleoptiles, mesocotyls, etc were placed with their basal cut surface on agar blocks containing growth hormone. If after a certain time the sections were removed and the blocks analyzed, some of the hormone had disappeared from the blocks. Since then Kornmann (1935) has published similar results. It is certain that enzymes set free from the cells at the cut surface have at least a part in the destruction of the hormone, because missing of the cut surface with water reduces the destruction. The following evidence indicates that this inactivation of the growth hormone is due to an ordative process. Sections (about 5 mm long) were cut from the apical part

and from the basal part of a mesocotyl of corn These sections were placed with their basal cut surface on wet filter paper for $1\frac{1}{2}$ hours in order to set free the growth hormone they might contain. These sections were then placed on blocks containing hetero-auxin for 1 hour. After the sections were removed, the blocks were analyzed and it could be shown that more hormone was destroyed in the blocks with which the basal sections had been in contact than in the blocks on which apical sections had been put (Table VIII). If with similar sections a peroxidase test was made, the peroxidase activity was proved to be higher in the basal sections than in the apical sections. This peroxidase test was carried out as follows. Agar blocks were soaked in a benzidine solution to which a small amount of H_2O_2 had been added. If peroxidase is present in the cut surface of the sections the benzidine in the block will be oxidized when the sections are

TABLE VIII

Inactivation of Hetero-Auxin by Apical and Basal Mesocotyl Sections

No of experiment Concentration of hormone started with	41,201 9 0	41,130 18 0	41,204 16 0
Left over in blocks with,			
Mesocotyl tips	7 2	11 3	15 0
Mesocotyl bases	1 5	38	60

brought into contact with the blocks. Since the oxidized benzidine is colored, the darker the color in the block is, the higher the peroxidase activity on the cut surface of the section was. Fig. 5 shows a photograph of such a peroxidase test. The picture is a negative and therefore the whiter the spots (places where the sections made contact with the agar block) are, the higher the peroxidase activity was

If the destruction of auxin-a and hetero-auxin are compared by the method mentioned in the beginning of this section, a higher percentage of the auxin-a and b than of the hetero-auxin is destroyed Table IX shows the results of these experiments for Avena coleoptiles In Experiment 51,029a 5 day old plants were used. The coleoptile was cut off and decapitated and placed with its basal cut surface in water for $1\frac{1}{2}$ hours. Then from the apical part of the coleoptiles two sections 5 mm long were cut, which were placed with their basal

cut surface on blocks containing hormone. After 2 hours the sections were removed and the hormone content of the blocks was determined. The result of this experiment was that the sections placed in the dark on blocks containing awan a and b had lost 16 per cent of the original amount of hormone, whereas in the experiment in which the sections were placed in the light 42 per cent of the original amount had disappeared from the blocks. If the sections were placed on blocks containing hetero awain, no growth hormone disappeared from the blocks, but 23 per cent was added to the amount originally present in the block. This growth hormone obviously came from the sections. If the sections contain growth hormone

Fig. 5. The result of a peroxidase test, showing the higher peroxidase activity in the mesocotyl base (below) as compared to the mesocotyl tip

this hormone is auxin a or b II this hormone is destroyed in the exposed sections, the result will be that less hormone is given off by the exposed sections than by the sections in the dark. The amount of hormone left over in the block on the basal cut surface is determined by the amount destroyed in the block, and by the amount given off bp the sections into the block. The amount of hormone destroyed in the blocks is the same in the light as in the dark. This is shown by Experiment 51,030, which is the same as the other experiment of Table IX, but the coleoptiles were put overnight with their basal cut surface in water after they had been cut off By this procedure sections free from hormone are obtained From Experiment 51,029a

therefore it can be concluded that the hormone in the sections themselves is destroyed if the sections are exposed to light

Evidence in favor of the assumption that the inactivation of the growth hormone in plants that are exposed to light is also an oxidative process is as follows. Skoog (1935) showed that if a small amount of eosin was added to a growth hormone solution the hormone was inactivated if this mixture was exposed to the light. He showed that this was due to oxidation. Boas (1933) showed that if a seedling is infiltrated with eosin it is unable to show phototropic curvatures. Boysen-Jensen (1934) showed that if roots are infiltrated with ery-

TABLE IX

Destruction of Auxin-1 and B and Hetero-Auxin by Sections of Ivena Colcoptiles

11 Light and Dark

Twenty sections per block of 8 x 6 x 1 mm

Temperature 23°C Time 2 hrs

No	Hormone	Hormone Concentra		Lest over		Disappeared	
7.0	Hormone	with	Light	Dark	Light	Dark	
					per cent	per cent	
51 029a	Auxin-a	90	5 5	7 7	42	16	
		7 7	4 3	6 4	42	10	
	Hetero-auxin	6.0	******	8.0	_	-23	
		6.4		7 1		-23	
51,030	Auxin-a	10 2	58	4.5	43	48	
1		10 3	60	6 3	40	40	
	Hetero auxin	12 1	8 0	88	27	18	
		11 3	92	10 3	21	10	

throsin (yellow eosin) they fail to respond geotropically. He was able to show that eosin treated roots give off a smaller amount of growth hormone than normal ones.

If in Table IX the figures for the destruction of hetero-auxin are compared with the ones for auxin-a, we find in the dark a destruction of 18 per cent for hetero-auxin to 48 per cent for auxin-a and b In the light these figures are 27 per cent for hetero-auxin to 43 per cent for auxin-a and b

Table X shows the same for Raphanus sections If the sections are exposed and the blocks contain auxin-a and b the amount of hormone left over in the blocks is even more than in the dark. In ex-

planation of this fact is lacking as yet One thing, however, is shown clearly in these experiments, viz that the percentage of hormone which disappeared from the blocks is in every case larger for auxin a and b than for hetero auxin

The fact that hetero auxin is more difficult to destroy than hor mones of the type of auxin a is not surprising if the results recently obtained by Kogl and Kostermans (1935) are considered 'They measured the activity of hetero auxin as compared to the auxins a and b and found that the activity of hetero auxin is about half that of

TABLE X

Destruction of Auxin A and B and Hetero Auxin by Sections of Raphanus Hypocolyls

Temperature 23°C Time 4 hrs Twenty sections per block of 8 x 6 x 1 mm

No	Hormone	Concentra tion started	Left over		Disappeared	
-10	Ногмож	with	Light	Dark	Light	Dark
					per cens	per cent
51 025	Auxin-a	80	6 1	4 2	36	50
		1 - 1	50	40		
	Hetero-auxin	10 5	63	6.5	34	30
	ĺ		75	8 1	34	30
51 026	Auxin-a	8 2	66	5 3	15	40
	l	73		4 3		
	Hetero-auxin	66	_	7 4	Į į	-10
	J	67		7 1		-10
51 028	Auxin &	8 9	4 2	3 6	46	64
	İ	93	5 5	3 0		
	Hetero auxin	87	5 3	5 6	23	20
		7 4	7 1	7 4	23	20

auxin a When they took the molecular weight into account, the difference was still larger. The "molecular activity" of hetero auxin is 3.75 times smaller than that of auxin a. This means that in order to get the same curvature with hetero auxin as with auxin a 3.75 times more molecules of the former substance are required. As suming, for instance, that in the process of destruction 1 molecule of

⁴After this article was in press, it came to my attention that Thimann and Went (1934) had shown that auxin b is more easily inactivated by hydrogen peroxide than hetero-auxin (p. 459)

hetero-auxin is as easily oxidized as 1 molecule of auxin-a, it is clear that under the same conditions the activity of the auxin-a will decrease 3 75 times as fast as that of the hetero-auxin

10 The Light Growth Responses of the Avena Coleoptile -From studies by Van Dillewyn (1927), Went (1925), and a recent study by Haig (1935) we know that two types of light growth responses can occur in Avena coleoptiles One of them is called the tip response because it occurs only when the tip is exposed to light Even a very small amount of light is able to produce a tip response Went proved that amounts of light able to produce a tip response also decrease the amount of growth substance given off by the tip He assumes very logically that this decreased amount of hormone given off is the direct cause of the tip response Since in the present investigations the tips were cut off, tip responses should be excluded be shown, however, in the next section that the formation of growth substance in the decapitated coleoptile (regeneration) is inhibited by small amounts of light in the same way as the production of growth substance in the tip In a coleoptile stump growing on regenerated growth substance it must be possible therefore to produce a tip response even though the tip of the plant has been cut off experiments described in the previous sections the regeneration has been suppressed by decapitations

Besides the tip response a base response can occur in the coleoptile To produce a base response the base (which means here any part of the coleoptile but the extreme tip) must be exposed to relatively high amounts of light. The base response under conditions of continuous exposure consists of two parts. (1) Almost immediately after the plants are exposed the growth rate decreases and about three-quarters of an hour after the exposure was started the growth rate has reached a minimum. (2) Then the growth rate increases again, but stays lower than before the exposure started. Koningsberger (1923) considers this increase in growth rate following on the growth inhibition only indirectly linked to the growth inhibition. According to him the latter is superimposed on the former one.

It is not difficult to draw a comparison between this base response and the results obtained with growth substance curvatures in dark and light 5 The first part of the base response, the inhibition, can be compared with the experiments (1b) and (3b) of the scheme. The inhibition is caused by the destruction of auxin a under influence of the light. The second part of the base response, the increase, can be paralleled with (6b) and (3b) of the scheme. The increase in growth rate (and increase in curvature) as it is measured in the intact plant (or plant with auxin a blocks) is the result of 2 antagonistic processes (1). The response to growth hormone itself is larger after a long exposure (as can be shown with hetero auxin curvatures (6a) and (3a) (2). Superimposed on this is the destruction of auxin-a under influence of the light. This confirms Koningsberger's (1923) point of view, which does not consider the light growth response as a whole, but discriminates strongly between the inhibition and the "anti reaction"

Besides the tip response and the base response a third type of response in Avena has been described (Tollenaar, 1923, Van Dillewyn, 1927) This third type of light growth response is the so called "dark growth response" which occurs if the exposure of a plant which has been exposed to light for a long time, is stopped The response is an increase in growth rate A parallel between this response and the experiments (4b) and (1b) of the scheme can be drawn sponse is due to the increased response to growth hormone. It must be borne in mind, however, that this dark growth response has nothing to do with the bringing back of the plants into the dark because if the plants are continuously exposed they show the response too as can be shown by using hetero auxin instead of auxin a (6a) By bringing back the plants into the dark the destruction of the aurun a stops, whereas the higher response to growth hormone lasts, which results in an increased growth rate in the intact plant and an increased curvature if it is an auxin-a curvature

11 The Regeneration and Its Influence upon the Growth Substance in Light and Dark Curvature—This section is more or less independent of the previous ones in this paper. If the tip of a coleoptile is cut off the ability of the coleoptile to produce growth hormone is not damaged beyond repair, because about $1\frac{1}{2}$ hours after the tip

⁶In the meantime it has been proved that they are identical (Van Overbeek (1936))

has been removed the cells in the apical part of the stump start to produce the hormone. This is called in botanical literature the "regeneration of the physiological tip" or briefly the regeneration. Van der Wey (1931) showed that if the regeneration was suppressed by repeated decapitations the growth substance curvature was larger than if regeneration occurred. Regeneration therefore inhibits the growth substance curvature. Tsi-Tung Li (1930) investigated the effect of temperature upon the regeneration. According to his figures

Fig 6 Growth substance curvatures with (b) and without (a) the interference of regeneration in dark and exposed hourly to 25 mcs Abscissa, hours after application of growth hormone Black dots, dark Open circles, exposed to light Mean values of twenty-four plants for each point

the regeneration starts 210 minutes after the tip has been removed at 15°C At 25°C, however, this time is only 100 minutes. The newest contribution to the knowledge of regeneration has been made by Skoog (1937). At a certain stage of development of the seedlings he removes the seeds. Such plants do not regenerate as he proves. In using these plants it is possible to study the growth substance curvatures without the interference of regeneration. In Fig. 6 the difference in growth substance curvature with and without the interference of the regeneration can be seen. The abscissa represents the time in hours after the blocks containing auxin-a had been applied

to the twice decapitated plants Fig 6b shows that after $1\frac{1}{2}$ hours the curvature in the dark (black dots) in non-deseeded plants does not increase any more, but decreases Fig 6a, however, shows that in deseeded plants the curvature increases with time

What effect does light have upon the regeneration? Tsi Tung Li (1930) tried to answer this question by measuring the growth rate of decapitated coleoptiles with a horizontal microscope One set of his plants had been exposed to 44 m c for 30 minutes After about 140 minutes at 20°C and after 100 minutes at 25°C the growth rate in creased, without showing a noticeable difference between the exposed and non exposed coleoptiles Tsi Tung Li concludes that "light exerts no effect on the moment for the appearance of the physiological tip" This conclusion, however, is not justified because the growth rate of the decapitated plants depends upon two factors at least The amount of growth substance regenerated (2) The response of the plant to growth hormone According to Sections 3, 7, and 10 of this paper, the plants with which Tsi Tung Li worked were pre-exposed, and, therefore, very probably had a higher response to growth hormone than the non exposed controls As will be shown below, in three different ways it can be proved that light inhibits the regeneration

1 As Gorter (1927) has pointed out, the positive curvature (which is towards the block) appearing when plain agar blocks are put on one side of decapitated coleoptiles, is due to the formation of growth sub stance in the decapitated plants. If such plants are exposed to amounts of light smaller than are required for base responses, the positive curvature is smaller in the exposed plants than in the controls Table XI shows the results Plain agar blocks were put on the cut surface of twice decapitated plants $1\frac{1}{2}$ hours later the plants already showed a small positive curvature The plants were photographed with a small amount of light (25 m c s) This amount is sufficient to produce a tip response and insufficient for a base response (Van Dillewyn (1927)) 1 hour after the photograph had been taken, and hence 21 hours after the plants had been decapitated and the agar blocks put on, these plants show a curvature of only 05° whereas the controls which had been kept in the dark all the time show a curva ture of about 2° This proves that regeneration is inhibited by light

even in such small amounts as reduce the amount of growth substance given off by the tip of the coleoptile (Went) and as produce a tip response only (Van Dillewyn)

2 If a set of plants to which a small amount of growth substance has been applied is exposed hourly to an amount of light of about 25 m c s, the growth substance curvature of these plants appears to be larger than those of non-exposed controls. The experiment is as follows eight rows of twelve plants were decapitated twice and growth substance blocks of a concentration of 7° were applied. The plants were then divided into four groups of twenty-four plants each. One group was exposed (and photographed at the same time) $1\frac{1}{2}$ hours after the blocks had been applied. After an hour this group was photo-

TABLE XI

Positive Curvatures of Twice Decapitated Avena Coleoptiles to Which Plain Agar

Was Applied on One Side One Set of Plants Has Been Exposed to 25

MCS, 1½ Hrs after the Agar Was Applied

Curvature 1½ hrs after the agar was applied	1 1
Same plants 1 hr later	05
Curvature of non-exposed plants, 23 hrs after agar was applied	0.5
Curvature of non-exposed plants, 23 ms after agai was applied	2 3

graphed again and another group which had not been exposed before was also photographed. Again an hour later the first group was photographed and so was a third group, which therefore had been in the dark for $3\frac{1}{2}$ hours. The next hour the first group was exposed again as well as the last group which had not yet been exposed. In Fig. 6b the open dots represent the first group, whereas the black dots represent the non-exposed controls. It is obvious that the curvatures of the plants which had been exposed are larger than those of the non-exposed ones. The explanation must be that the inhibition of the growth substance curvatures is less in the case where the plants are exposed, which point of view is justified by the next experiment (Fig. 6a). The same experiment as described above was repeated with plants which had been prepared according to Skoog's method

In such regeneration free plants exposure to 25 m c s does not have any effect upon the growth substance curvature

3 A direct proof that light inhibits the regeneration can be given as follows coleoptiles were decapitated and were exposed either to a large amount of light (first two experiments of Table XII) or to a small amount of light (last two experiments of Table XII) After about 4 hours the tips of the coleoptile stumps were cut off, and twenty of them were placed on plain agar blocks of $8\times 6\times 1$ mm for $2\frac{1}{2}$ hours. The extraction of the hormone took place in the dark in order to eliminate possible transport and destruction differences between the exposed tips and the non exposed controls. Later the blocks were tested on deseeded plants, because the amounts of hormone

TABLE XII

Amount of Regenerated Growth Substance Given Off by Top Sections of Decapitated

Avena Coleoptiles in Dark and Light Analysis on Deseeded Plants Photoeraphed 5 Hrs. after the Blocks Were Put on Temperature 23°C

Amount of light	Amount given off		
Amount of agat	Light	Dark	
500 m.c. during 2 hrs	2 5	5 4	
	28	6 2	
25 m c.s each hour (4×)	3 5	5 6	
Same	3 2	5 4	
	25 m c.s each hour (4×)	Amount of light 500 m.c. during 2 hrs 2 5 2 8 25 m c.s each hour (4×) 3 5	

given off by the sections are in general too small to be analyzed by the standard method In every case the amount of hormone given off by the exposed plants was less than the amount given off by the tips of non exposed coleoptile stumps

If Figs 2 and 3 of this paper are compared with Figs 1 and 4 a striking difference is obvious. The curve of the latter figures starts at the origin (zero point) and is similar to the concentration curves published by Went (1928) and Van der Wey (1931). The curves of Figs 2 and 3, however, cross the abscissa. This means that the curvatures measured are not proportional to the concentration of the hormone in the block. Scores of other tests made at temperatures between 27 and 23°C showed the same. Since the

deseeded plants, which do not show regeneration, show a normal curve an explanation of the abnormal curve may be the early start of the regeneration at higher temperatures. In favor of this point of view is the fact that exposed plants more than the non-exposed ones (Fig 2) show a curve which approximates the regular curve (starting at zero). Against it, however, can be said that Went's experiments are carried out at 25°C. He used much smaller agar blocks though than the ones in these experiments, which may have an effect upon regeneration and growth substance curvature.

III

SUMMARY

An attempt has been made to analyze the base response, one of the light growth responses of Avena coleoptiles, by means of growth sub-The decrease in growth rate (first part of the stance curvatures base response) after exposure to light does not show if hetero-auxin is substituted for auxin-a (Sections 5, 6, and 10) This decreased growth after exposure very likely is due to an oxidative inactivation of auxin-a (Sections 8 and 9) Hetero-auxin can be inactivated too but in a much lesser degree than auxin-a (Section 9) The increase in growth rate following on the decreased growth (second part of the base response) is due to an increase in response of the plant to growth hormone which is independent of the type of hormone (Sections 1, 2, 7, 8, and 10) Under conditions of continuous exposure to light, however, the mactivation of the auxin-a under influence of the light is superimposed on this increased response to growth hor-This inactivation can be eliminated from the light growth response by replacing the auxin-a by hetero-auxin More detailed information on this subject can be found in Section 10 A review of the experiments and their results can be obtained from the scheme in Section 8

In Section 11 it is shown that light inhibits the formation of growth hormone in the decapitated coleoptile (regeneration). Very small amounts of light (25 m c s) inhibit the regeneration markedly

LITERATURE CITED

Boas, F 1933, Ber bot Ges 51, 274

Boysen Jensen P, 1934, Planta, 22, 404

Cholodny, N , 1933 Planta 20, 543

Cooper W C, 1935 Plant Physiol, 10, 789

Gorter C J, 1927, Proc Kon Akad Wetensch Amsterdam, 30, 728

Haagen Smit, A J, and Went, F W, 1935, Proc Kon Akad Wetensch Amster dam, 38, 852

Haig C , 1935, Biol Bull , 69, 305

Kogl F Erxleben, H, and Haagen Smit, A J, 1934 Z physiol Chem, 225, 215

Kögl, F Haagen Smit, A. J, and Erxleben, H, 1934, Z physiol Chem 228, 104

Kögl, F, and Kostermans, D G F R, 1934, Z physiol Chem, 228, 113

Kögl, F, and Kostermans, D G F R, 1935, Z physiol Chem, 235, 201 Koningsberger, V J, 1923, Rec trav bot neerl, 20, 257

Kornmann, P 1935, Ber bot Ges, 53, 523

Skoog F, 1935 J Cell and Comp Physiol, 7, 227

Skoog, F., 1937, J Gen Physiol 20, in press

Shoog F, and Thimann, K V, 1934, Proc Not Acad Sc, 20, 480

Thimann K V, 1935a, J Biol Chem, 109, 279

Thimann, K V, 1935b, Proc Kon Akad Wetensch Amsterdam 38, 896

Thunann, K. V, and Went, F W, 1934 Proc Kon Akad Wetensch Amsterdam, 37, 456

Tollenaar D, 1923, Proc Kon Akad Wetensch Amsterdam, 26, 378

Tsi Tung Li, 1930 Proc Kon Akad Wetensch Amsterdam 33, 1201

Van Dillewyn, C, 1927, Rec trav bot neerl 24, 307

Van der Wey H G, 1931, Proc Kon Akad Wetensch Amsterdam, 34, 875 Van Overbeek, J 1932, Proc Kon Akad Wetensch Amsterdam 35, 1325

Van Overbeek, J., 1933, Rec trav bot néerl 30, 1325

Van Overbeek, J 1935, Proc Nat Acad Sc, 21, 292

Van Overbeek, J 1936 Proc Nat Acad Sc, 22, 421

Went F W 1925, Versl Kon Akad Wetensch Amsterdam 29, 185

Went F W, 1928 Rec trav bot néerl 25, 1

Went F W 1934 Proc Kon Akad Wetensch Amsterdam, 37, 445

Went F W 1935a, Bot Rev , 1, 162

Went F W 1935b, Proc Kon Akad Wetensch Amsterdam 37, 445

Agente G E STECHERT & Co New York DAVID NUTT London NICOLA ZANICHELLI Bologna FÉLIX ALCAN Paris ARADEMISCHE VERLAGSGESELLSCHAFT m b H. Leipiig RUIZ HERMANOS Madrid F MACHADO & Cis Porto THE MARUZEN COMPANY Tokyo

1936

30th Year

SCIENTIA

INTERNATIONAL REVIEW OF SCIENTIFIC SYNTHESIS
Published every month (each number contains no 100 to 120 pages)
Editors F BOTTAZZI - G BRUNI - F ENRIQUES
General Secretary Paolo Bonetti

IS THE ONLY REVIEW the contributors to which are really international.

IS THE ONLY REVIEW that has a really world wide circulation

- IS THE ONLY REVIEW of scientific synthesis and unification that deals with the fundamental questions of all sciences mathematics astronomy geology physics chemistry biology psychology ethnology lin guistics history of science philosophy of science.
- IS THE ONLY REVIEW that by means of inquiries among the most eminent scientists and authors of all countries (on the philosophical principles of the various sciences on the most fundamental astronom cal and physical questions of current interest on the contribution that the strength sprinciple is given the descipance of various branches of knowledge on the most mportant biological questions etc. I studies all the main problems discussed in intellectual circles all over the world and represents at the same time the first attempt at an international organization of philosophical and cointilio progress.
- IS THE ONLY REVIEW that among its contributors can beast of the most illustrious men of science in the whole world
- The articles are published in the language of their authors and every number has a supplement containing the French translation of all the articles that are not French. The review is thus completely accessible to those who know only French. (Write for a free copy to its General Secretary of Secretary, billian send g 18 cents an stamps of your country merely to cover packing and postope.)

SUBSCRIPTION \$13.50 post free

Substantial reductions are granted to those who take more than one year's subscription For information apply to SCIENTIA, Via A De Togni 12 - Milano 116 (Italy)

A DESCEDED AVENA TEST METHOD FOR SMALL AMOUNTS OF AUXIN AND AUXIN PRECURSORS

By FOLKE SKOOG

(From the William G Kerckhoff Laboratories of the Biological Sciences, California Institute of Technology, Pasadena)

(Accepted for publication, January 29, 1936)

INTRODUCTION

In 1927 Went isolated the growth promoting hormone, auxin, from the tip of the Avena coleoptile, and worked out the now well known Avena test method for its quantitative determination By the use of this method the chemistry and many phases of the physiological action of auran have been studied. In physiological work, however, the amounts of hormone involved are frequently so small that quantitative or even qualitative work has often been very difficult or impossible In this article is presented a supplementary procedure with deseeded Avena seedlings whereby smaller concentrations of the hormone not detectable by the standard method can be quantitatively determined By the use of this method it has also been possible to demonstrate directly the existence of substances capable of being converted into auxin by the plant Some data relative to the presence of a precursor of auxin in Avena and synthetic precursors of hetero auxin are inchided

Description of Materials and Methods

I The Standard Method —Since the deseeded method involves only changes in technique, it need not be described in detail but rather in relation to the standard method which will first be reviewed. Oats of the pure line 'Sieges Hafer of Svalov are dehusked, soaked in water for 2 hours and laid out on wet filter paper in a moist dish in the dark room kept at 25 C. 90 per cent humidity, and free from any phototropically active light or toxic gases. The following day the seeds are planted in individual glass holders (Fig. 1) and placed with the roots in water, twelve plants in a tray 2 days later when the coleoptiles are about 3 to 4 cm long, they are ready to be used for tests. The plants are decapitated, about 0.5 cm of the tips being removed and the primary leaves are pulled loose from the

base The plants are then allowed to stand for 40 minutes, so that the upper portions of the coleoptiles will become largely free from hormone, and so that any individual plants that might show curvatures due to handling can be detected and removed. At this time small agar blocks of standard size containing the hormone solution to be tested are applied to the cut surface on one side of the coleoptiles. After 110 minutes of application the plants are photographed as shadow pictures on bromide paper. The curvatures produced by the unilateral application of the hormone can then be measured with a goniometer from the pictures. For a single test the mean value of the curvatures of one row of twelve test plants is used. A complete description of the technique is given by Went (1928) and also in some detail (1935a)

It has been established by van der Weij (1932) and by Thimann and Bonner (1932) that under the conditions of the standard test the curvature is proportional to the concentration of hormone in the blocks of a given size in the range of concentrations from 1 to 15 or 25 degrees depending on the daily variation in the The amount of hormone diffusing from the block into the plant maximum angle in the given 110 minutes of application, however, varies with the size and hormone concentration of the agar block in two respects through the difference in contact surface and through the decrease in concentration gradient during the time of The point is illustrated in the original experiments by Went in which small agar blocks were used and from which 90 per cent of the hormone disappeared during the test, and those by Thimann and Bonner in which standard (eight times larger) blocks were used and from which only about 15 per cent disappeared in the Thus in the former experiments the curvatures were indeed roughly a linear function of both the concentration and the amount of hormone applied, and therefore, also with these blocks smaller amounts of hormone could be deter-For other reasons, however, such as ease of manipulation and especially less susceptibility to change in volume by drying out, larger blocks are superior and have been adopted for standard tests. In this work in accordance with the specifications and units defined by Dolk and Thimann (1932) 15 per cent agar

blocks of the dimensions $\frac{8}{3} \times \frac{10.7}{4} \times 1.5$ mm = 10.7 ml have been used. The amount of hormone in one such block that will give a curvature of 1° under the above conditions corresponds to 0.4 A E. (Avena Einheiten) and is therefore about 1×10^{-8} mg.

It should be noticed that under the above conditions only a fraction of the hormone applied has been utilized by the plant in the test, which must be completed within 2.5 hours after decapitation. After this time synthesis of auxin is resumed in the new physiological tip of the coleoptile, and since regeneration takes place especially on the side not in contact with the agar block (see page 330), the rate of bending of the coleoptile no longer remains proportional to the concentration of auxin applied. Hence changes in the procedure have been introduced. Most notable are those described by van der Weij (1931), who has developed special tools for decapitation and has introduced the use of a second decapitation.

1 hour after the first one This technique has also been used in the experiments below. It has been shown by Dolk (1926) that successive decapitations at 2 hour intervals prevent the regeneration of auxin in the plant. In accordance with this effect the double decapitation delays regeneration of auxin, and makes it possible to work with a larger number of plants. But the actual time of application of the blocks cannot be markedly increased by this method.

2 The Desceded Method —It has long been assumed, and will be shown here, that the auxin synthesized in the tip of the coleoptile is derived from a precursor transported from the seed By deseeding, the

Fig. 1 Diagrams of steps in deseeded test showing plant A, ready to be de seeded B, deseeded and replaced in holder, C, after second decapitation, D, after application of blocks and ready to be photographed

source of auxin is removed, thus regeneration is prevented, and as a result more sensitive test plants are obtained. Hence, the changes in the standard procedure, briefly illustrated in Fig. 1, are as follows on the 2nd day after germination, when the coleoptile is about 1.5 cm long, the plant is taken from the holder, and the entire seed, with the exception of the lower half of the scutellum, is removed. A small piece of cotton is wound around the lower portion of the seedling, which is then reinserted in the holder with a pair of bent forceps (eye forceps). The cotton serves both to hold the plant and to insure a good water supply to the coleoptile. 12 to 18 hours later, as in the standard pro

cedure, the plants are ready to be used for tests Photographs may be taken singly or repeatedly at intervals at any time up to 5 or 7 hours after application of the blocks A comparison of the curvatures obtained with this method and with the standard method is shown in Fig 4

Physiological Factors Affected by Deseeding

The effects of the removal of the seed on the subsequent development of the coleoptile are manifold. They will be discussed here mainly in relation to the growth response to auxin

I Effect of Deseeding on Linear Growth — The effect of deseeding on linear growth has been studied by Went (1935b) He finds that the growth rate in deseeded plants is decreased about 40 per cent, and that this decrease is due to the lack of two factors, auxin and food Furthermore, the application of high concentrations of auxin to intact deseeded plants causes about the same percentage increase in growth as in normal plants, but in deseeded plants the growth is more limited to the upper part of the coleoptile. In accordance with this behavior is the fact that in deseeded, decapitated coleoptiles, much sharper apical curvatures are obtained by the unilateral application of the hormone, i e, the basal parts do not grow and thus remain straight even after long times of application of the hormone

The effect of deseeding on regenerative linear growth is shown in Fig 2, in which is represented one of five similar experiments urements of growth were made with a horizontal microscope on plants which had been marked with India ink into three zones is the mean of three or four plants. The ordinates represent the sum of the total increase in length of two zones, which include almost the entire coleoptile in the decapitated plants and the corresponding two zones in the intact plants Measurements were started 1 hour Curves I A and B represent intact and decapitated after decapitation control plants respectively Curves II and III A and B represent corresponding sets of plants which had been deseeded 1 and 10 hours respectively before the time of decapitation From these curves the following facts are clear By deseeding, growth is decreased both in intact and in decapitated plants The amount of decrease is a function of the time after deseeding In plants that were deseeded only 1

hour before decapitation, the regenerative growth in decapitated plants is only slightly reduced. In plants that were deseeded 10 hours before decapitation, regenerative growth is markedly inhibited. However, how far the decrease in regenerative growth depends on the lack of auxin alone or in addition on the lack of other factors, food, cannot be safely determined from the above curves.

FIG 2 Linear growth of normal and deseeded intact (solid line A) and decapitated (broken line, B) plants Curves I normal, curves II and III deseeded 1 and 10 hours before decapitation respectively Measurements started 1 hour after decapitation

2 Effect of Deseeding on Geotropic and Auxin' Curvatures —It will be shown that curvature growth, i.e. the difference in the relative growth of the two sides of the coleoptile, in deseeded and non-deseeded plants under the conditions described for the deseeded test, is independent of food and is a function only of the amount of auxin present

in the coleoptile The following three types of experiments demonstrate this conclusion

a Decrease in Auxin Synthesis after Deseeding—Beginning on the 2nd day after germination, plants were deseeded, thirty-six at a time, at successive intervals—Then at a given time, 3 mm long coleoptile tips were cut off and placed on standard agar blocks, 15 tips per 12

Fig 3 Effect with time of deseeding on sensitivity to auxin, I, synthesis of auxin in tips, II, geotropic response in intact, III, in decapitated, IV, coleoptiles All values are expressed as per cent of normal controls

blocks, for 2 hours The amount of hormone diffusing out from the different sets of tips was determined by the standard *Avena* method All the blocks were tested at the same time with twenty-four test plants for each set of deseeded tips and forty-eight plants for the controls The amount of hormone produced by deseeded plants expressed as per cent of that produced by normal plants is plotted against time after deseeding in curve II of Fig. 3, which represents the mean values

of several experiments The curve shows that there is a continuous decrease in the rate of auxin synthesis after deseeding, and at least for a considerable period this decrease is closely a linear function of time

b Sensitivity to Auxin -The relative sensitivity to auxin of deseeded plants at different times after deseeding, ie the capacity to produce curvatures in response to auxin applied unilaterally in blocks of moderate concentrations (5 to 20°) for 110 minutes as in the standard test, and compared with the curvatures produced by the applica tion of the same concentrations of hormone in normal plants of the same group, is shown in curve I of Fig 3 In this curve. which represents the mean values of many experiments with over 600 plants, the curvatures of deseeded plants, expressed as per cent of the curvatures obtained in corresponding control plants, are plotted against time after deseeding It is clear that the sensitivity of deseeded plants is at least as great as that of normal plants. Only when the interval between deseeding and the test is made very long (not included in the graph) and also, which is probably more important, when the plants are deseeded in a very early stage of development, is there evidence of a distinct decrease in sensitivity. It appears from the curve that the sensitivity of deseeded plants may be slightly higher than that of normal plants If this increase be real, it is probably due to the fact that in normal plants regeneration has begun less than 2 5 hours after the second decapitation (see also below) However, it should be pointed out that for moderate concentrations of hormone, this differ ence is so small that unless a very large number of tests are made, it is well within the experimental error

c Decrease in Geotropic Curvatures in Desceded Plants —It has been shown by Dolk (1926) that the geotropic curvature in normal intact and decapitated coleoptiles is controlled by the amount and relative distribution of auxin in the organ. Coleoptiles not producing auxin, as for example freshly decapitated plants, show no geotropic response. But similar coleoptiles to which auxin has been applied over the entire cut surface produce geotropic curvatures which are proportional to the concentration of hormone applied. Furthermore, the amount of hormone obtainable by diffusion from the upper and lower sides of geo tropically stimulated coleoptiles is proportional respectively to the growth of the two sides. Since it was shown in section 2 b that the

sensitivity to auxin is not decreased by deseeding, it can be said with fair certainty that the relations between auxin and geotropic curvature, established by Dolk for normal plants, hold also in deseeded plants. Thus in conjunction with the experiments of sections a and b, a large number of determinations were made of the relative geotropic response in deseeded plants. At definite times after deseeding, de-

Fig 4A

seeded and normal plants of the same group were placed horizontally. The geotropic curvatures produced in a given time, 1 hour for intact plants and 4 hours immediately after decapitation for decapitated plants, were measured from photographs taken at the end of the specified times. The curvatures of deseeded plants expressed as per cent of those of normal plants and plotted against time after deseeding are

shown in curves III and IV of Fig 3, representing intact and decapitated plants respectively The curves demonstrate that in both in tact and decapitated coleoptiles of deseeded plants there is a decrease in geotropic response proportional to the decrease in auxin synthesis Thus, if the plants are decapitated about 15 hours after deseeding, subsequent regeneration of auxin is nearly completely prevented

Figs 4, A and B Comparison of deseeded (solid lines) and standard (broken lines) tests for different concentrations of hormone

Curves correspond to concentrations of 1 1/2 1/6 1/18 1/54 1/108 and 0 respectively

From a consideration of the data in Fig. 3 as a whole it is possible to draw one further conclusion Since the decrease in geotropic curva ture in deseeded plants is independent of the sensitivity of the coleop tiles and thus depends only on the decrease in auxin synthesis, and since the relative decrease in auxin synthesis in regenerating decapi tated coleoptiles is very nearly the same as that in decapitated tips and proportional to that in intact tips, it follows that the mechanism of auxin synthesis in the tip of the intact coleoptile and the mechanism of regeneration of auxin in the new physiological tip of the decapitated coleoptile are identical

- 3 Comparison of the Deseeded and the Standard Tests —We are now in a position to consider the relations between the deseeded and the standard tests in terms of physiological factors affected by deseeding. The curves in Fig. 4 A and B, obtained in one of six experiments with practically identical results, represent curvatures in degrees plotted against time in hours of unilateral application of hormone of different concentrations to deseeded and to normal plants. For the sake of clearness the lower concentrations are plotted separately on a larger scale in B. In this experiment the deseeding was done 15 hours before the time of the first decapitation. Photographs were taken after 110 minutes of application as in the standard test and then at successive intervals.
- a Regeneration and Temperature Effects -By companing each continuous line (deseeded plants) with its corresponding broken line (normal plants), it becomes clear that for moderate concentrations of hormone above 3°, the curvatures are the same in both tests for the first 2 hours However, after this time regeneration sets in result, in normal plants the rate of bending is decreased, so that the curvatures recede, remain constant, or continue to increase at a slower rate, according to the concentration of hormone applied plants, where regeneration is practically completely lacking, the curvatures continue to increase linearly with time for several hours, or if the concentration of hormone is smaller, until the supply of auxin from the blocks has been largely depleted As a matter of fact, in normal plants a small amount of regeneration takes place earlier than 25 hours after the second decapitation Thus in the standard test, when blocks of low concentrations are applied, practically no curvatures will appear, when blocks of very low concentrations or pure agar blocks are applied, positive curvatures, ic in the direction towards the blocks, will occur The cause of these positive curvatures will be clear from a consideration of the precursor of auxin, which diffuses out into the agar blocks and is not immediately converted into auxin Also in desceded plants small positive curvatures may be obtained by the unilateral application of pure agar blocks, but the effect is much

less than in non deseeded plants Thus for determinations of small concentrations of hormone, deseeded plants are relatively even more sensitive than for higher concentrations. This additional sensitivity appearing already within the first 2 hours of application is clearly brought out in Figs. 5 and 6, in which the curvatures obtained in two experiments as determined by deseeded and standard tests are plotted

Fig. 5 Comparison of curvatures obtained by deseeded (solid line) and stand and (broken line) tests plotted against concentration of hormone applied A, photos taken after 110 minutes B, after 390 minutes application

against concentration of hormone applied. The curves obtained by the use of normal plants intersect the abscissa some distance away from the origin, whereas the curves obtained with deseeded plants come very close to the origin. The distance from the origin to the point of intersection of the curve with the abscissa for normal plants increases very rapidly with increase in temperature as does regeneration. But the question whether regeneration is the entire cause of the

decreased sensitivity or whether there is in addition a small destruction of auxin by the plant (see Van Overbeek (1936)) must be left open, because the curvatures involved are so small that the two effects cannot be clearly differentiated in these experiments. At higher temperatures (27°) autotropism, perhaps due to regeneration, becomes

Fig 6 Experiment similar to Fig 5 showing lower concentrations on a larger scale A, photos taken after 110 minutes, B, photos taken after 300 minutes of application

noticeable also in deseeded plants, so that after about 4 hours the linear relationship between curvatures and time of application becomes less pronounced

b Less Physiological Aging —Also contributing to the higher sensitivity of deseeded plants, especially long times after decapitation, is

the decrease in physiological aging — Du Buy (1933) and Went (1935b) have shown that decapitated coleoptiles prevented from synthesizing auxin and not supplied with auxin for several hours, gradually become less sensitive to subsequently applied auxin — This effect, "physiological aging," is due to the increase in thickness and loss of plasticity of the cell walls — By deseeding, the materials for secondary cell wall formation are largely removed, and the walls of the coleoptiles remain thin and plastic even though the actual amount of auxin in them is less than in normal plants

c Limits for Concentrations and Amounts of Hormone -In general it can be said that with the deseeded method about ten times as small concentrations can be determined as can be detected with the standard This fact is readily understood, if we consider that in the standard test only 15 per cent of the auxin passes from the agar block into the plant, whereas in the deseeded test, if photographs are taken after about 5 hours, nearly all the auxin in the block is utilized. For example, if two blocks containing very low concentrations are placed one on top of the other on a deseeded test plant about twice as large curvature is obtained as by a single block. In the standard test on the other hand, van der Weij found the curvature to be independent of the size of the block However, it is clear that in the desceded as in the standard test there is a distinct limit to the concentration of auxin that can be detected. If the limit for the standard method is taken as 1×10^{-8} mg per block, then the limit for the deseeded method is about 1 × 10-9 mg per block

d Effect of Light—Since white light has a marked effect on the growth of the Avena coleoptile, its influence on curvatures when successive photographs are taken must also be considered. These experiments, which have a bearing on the light growth reaction, have been done by Van Overbeek, and the data given in Fig. 7 have been kindly contributed by him. In the standard test the plants are not exposed until the end of the experiment. In the deseeded test, however, it is often desirable to make a series of estimations of the curvatures of a given set of plants. Van Overbeek (1936) has shown that the amounts of light necessary for taking photographs partially inhibit regeneration. In accordance with this as shown by curves A, Fig. 7, the increase in curvature with time obtained from a series of photo

graphs at consecutive intervals of a given set of normal plants is greater than that obtained from plants of the same group, but of which a different set of plants, not previously exposed to light, is used at each corresponding interval Curves B of the figure represent the identical

Fig 7 Effect of light on curvatures in normal (curves A, open points) and desceded (curves B, solid points) plants. Values represented by circles (solid lines) are from repeatedly exposed plants. Values represented by triangles (broken line) are from different sets of plants of the same group and not previously exposed.

experiment with similar plants deseeded 20 hours before the auxin was applied. From the close agreement between the curvatures of successively exposed and not exposed plants, it is clear that the amount of white light necessary for photographing has no effect on the rate of bending of deseeded plants.

Application of the Desected Test for Auxin Determinations

As illustration of the deseeded test, two examples will be given which include some data previously not easily obtainable

1 Determination of Auxin in Primary Leaves of Avena—Primary leaves of 4 day old plants grown in the dark room were pulled out of the coleoptiles and placed with their bases on agar blocks, twelve leaves per twelve blocks, for 2 5 or 4 0 hours—The blocks were then tested on deseeded plants—Control agar blocks on which no leaves had been placed were tested at the same time—For comparison one standard test was also made—The results of three experiments with

TABLE I

Auxin from Primary Leaves

	Tir	ne of	Mean curvatures from						
Exp No	Diffus on into	Application in	Blocks with d	Plain agar in					
	block	desceded test	Deseeded	Standard	desceded test				
	k s	krs							
1	2 5	8 0	-3 9	00	+01				
2	4 0	60	-4 5		+0 4				
3*	3 5	50	-2 3]				
]		-2 1	}	į.				
		1	-2 6	+07 +07	+07				
	1 1	' /	-28	+07	ľ				

^{*}In Exp 3 18 leaves per 12 blocks were used but values are divided by 1 5 to give degrees in terms of 12 leaves per 12 blocks

leaves grown under different conditions, and which are therefore not comparable with each other, are summarized in Table I With the deseeded test the presence of auxin is clearly demonstrated, whereas with the standard test none can be found, and, in fact, has been thought to be absent Furthermore, the close agreement between the values obtained in different tests of the same experiment shows that the method gives quantitative results

2 Determination of Auxin in Coleoptile Sections —It has been shown by Thimann (1934) by the use of chloroform extractions from a large number of plants that in coleoptile sections auxin is present in small amounts This finding has been confirmed by placing 0.3 cm long

coleoptile cylinders on agar blocks, which were subsequently tested with deseeded plants — As shown in Table II, the amounts of auxin obtained are large enough to give quantitative measurements — Comparable experiments with the standard test give at best only a perceptible curvature

For a computation of the actual amounts of hormone obtained in the above experiments, it is best to compare the curvatures directly with those obtained in similar tests with successive dilutions of an

TABLE II

Auxin from Coleophile Sections

3 Mm Long Sections Placed 20 Sections Per 12 Blocks

·		М	Time after			
Exp No	Time of diffusion	Diffusat	te blocks	Plain agar	application of blocks to 2nd photo	
		1st photo	2nd photo	2nd photo		
	hrs				hrs	
1 <i>a</i>	40	-23	-59	}	1	
b		-27	-6 2	+12	5	
2	3 2	-1 2	-48	+14	8	
3	3 5	-04	-3 4	+18	7	
4a	40	-16	-5 7			
Ъ	}	$-1 \ 3$	-3 5	+16	10	
5 <i>a</i>	40	-1 0	-4 1			
b	1 1	-0 7	-27	+2 2	5	
6a	40	-0 5	-30			
ь	1	-0 5	-3 4	+2 6	9	

auxin solution of known, relatively low concentration. From such a comparison it was estimated that the auxin obtained from the primary leaf is of the order of 0 05 A E per leaf per hour, and that from sections about 0 03 A E per section per hour. These amounts are only 5 or less per cent of the amount obtainable from the coleoptile tip per hour.

The above experiments, although not carried out in detail, indicate the possibilities of the application of the deseeded test to work concerned with the presence and relative distribution of the growth hormone in plant tissues. They also bring out the fact that the high sensitivity of the deseeded test holds for auxins in general and is not

limited to synthetic hetero auxin, which was used above exclusively in the development of the method

Precursors of Auxin

Another use of the deseeded method and for which purpose it was originally designed is the detection of precursors of auxin

1 Demonstration of a Precursor of Auxin in the Coleoptile -It has been shown above that there is a limit to the concentrations of hormone that can be detected by the deseeded test If the concentrations of hormone are so small that they will not cause distinct curvatures to appear within the first 5 to 6 hours after application, curvatures will not appear at any time later Furthermore, it is well known that the transport of auxin in the Avena coleoptile is strictly polar in the direction from the tip towards the base Even with the deseeded test. no detectable concentration of hormone has been found to be actively transported in the opposite direction. In accordance with this fact when coleoptiles are decapitated, the primary leaves removed, and agar blocks are placed over the entire cut surface of the stumps for 2 or more hours, and these blocks are then tested on deseeded plants, as expected, no curvatures are obtained within the first 5 or 6 hours of application However, some time later, 10 to 20 hours after application, distinct negative curvatures are obtained Results of some determinations are given in Table III In the determinations made so far, the curvatures have varied considerably from one experiment to the next, but frequently the mean curvatures have been between 4 and 8° The variability in the magnitude is to be expected, since the optimal experimental conditions must be governed by several factors, whose nature is as yet unknown

Perhaps a more striking way of demonstrating the precursor, which brings out the difference between it and auxin itself, is by the following arrangement. Sets of twenty coleoptile sections of given lengths, 5 or 3 cm, are placed with the bases either down or up, but all of a given set in the same direction, between two 12 times standard size agar blocks. After a given time, varying between 2 and 4 hours, the agar blocks are removed, cut each into twelve standard blocks, and tested on deseeded plants. The curvatures produced are measured

from photographs taken at intervals Results will not be given in detail, but the mean values of some fifteen separate determinations are presented by curves I, II, and III of Fig 8 These curves represent the curvatures plotted against time of application obtained from blocks previously applied to the basal (I) and apical (II) ends of sections and from control agar blocks (III) respectively A comparison of the curves shows that the material diffusing out at the apical surface is different from that diffusing out at the basal surface in that it will only cause curvatures a long time after application From the data

TABLE III

Precursor of Auxin from Coleoptiles

	Tim	ne of	Mean curvatures from				
Exp No	Diffusion into blocks	Application in test	Apically applied blocks	Plan agar blocks			
	hrs	hrs					
1	5 0	17	-2 6	1			
	1	20	-60	}			
		20	-40	}			
	Į	20	-70	+04			
2	3 to 4	24	-60				
	{	1	-7 2				
		}	-4 6	+0 3			
3	1 5 or 3 5	16	-6 5				
	}	i i	-49				
			-40				
		1	-59	+0 2			
4	3	?	-1 6				
			-2 3	+08			

in Table III and curve II of Fig 8 the conclusion is drawn that the growth promoting substance from the "apical" blocks is a precursor of auxin capable of being transported in the apical direction in the plant and capable of gradually undergoing a chemical change into auxin, whereas auxin itself can be transported in the plant only in a basipetal direction

The Relation between Positive Curvatures and the Precursor —It was shown above that by unilateral application of plain agar blocks to decapitated plants small positive curvatures are produced As early

as 1927 Gorter pointed out that these curvatures are not due to growth inhibiting substances, but are correlated with the regeneration of auxin in the new physiological tip. Why and by what mechanism regeneration is affected has not been made clear. From a determination of the amount of regeneration in coleoptiles with and without agar blocks, and from a consideration of the precursor of auxin, these questions will be answered. About 150 plants were decapitated. To half this

Fig. 8 Illustration of curvatures obtained in deseeded plants by the application of blocks containing auxin from coleoptile sections (curve I), precursor of auxin from coleoptile sections (curve II) pure agar (curve III), tryptophane (curve IV) and indolethyl amine (curve V)

number plain agar blocks were applied to the entire cut surface of the coleoptiles immediately after decapitation, the other half was used for controls. Between 2 and 3 hours later 1 5 to 20 mm long apical sections were cut off and placed on agar blocks, twenty four sections per twelve blocks, for 2 hours. The amount of auxin produced by the sections was determined by testing these blocks on deseeded plants. The results (Table IV) show that in the apices of plants on which agar

blocks had been placed, the production of auxin was significantly less than in the controls without agar blocks. Furthermore, tests of the agar blocks which had been placed on the apical surfaces showed no trace of auxin, but on the other hand indicated the presence of the precursor. The mechanism of the formation of positive, differential regeneration, curvatures is therefore as follows. On the side of the coleoptile in contact with the agar block a considerable fraction of the precursor of auxin diffuses out into the agar block and will not be immediately converted into auxin. On the opposite side of the coleoptile precursor accumulates and is converted into auxin. The relatively larger auxin production on this side makes possible a corresponding increase in growth, which causes a positive curvature.

TABLE IV

Regeneration in Decapitated Coleoptiles with and without Agar Blocks Applied to the Cut Surface

Time of application of blocks	Mean curvatures with i	Difference in degrees		
	With blocks	Without blocks		
hrs				
3 0	-41±12	-94 ± 12	-53 ± 17	
2 5	-28 ± 08	-98 ± 12	-70 ± 14	
2+	-49 ± 06	-7 1 ± 1 2	$-2\ 2\ \pm\ 1\ 3$	

Curvatures from plain agar blocks $+14 \pm 03$

2 Precursors of Hetero-Auxin —Since the chemistry of the auxin occurring in the Avena seedling is exceedingly complicated, because of the complex structure and instability of the active substance, no data on the chemical nature of the precursor have been obtained. However, independent evidence, the chemical nature of which is better understood, will now be presented in support of the conclusions drawn from the experiments in section 1

It has been shown by Thimann that chemically pure tryptophane will not produce curvatures when tested by the standard Avena method But when tryptophane is applied to sections in solution, it will promote elongation Furthermore, from experiments on the synthesis of hetero-auxin by Rhizopus surnus Thimann (1935a) has

shown that tryptophane is a precursor of hetero auxin. The mechanism of the transformation is an oxidative deamination and decarboxylation

What happens when very dilute tryptophane blocks are applied unilaterally to deseeded plants? It is evident from curve IV of Fig. 8 that tryptophane behaves in exactly the same manner as the precursor from the plant, curve II, with the exception that the effect of trypto phane is greater By choosing the proper concentration of tryptophane, the same type of curve can also be obtained with normal test plants, ie the amounts of hetero auxin formed from tryptophane are large enough to more than balance the effects of regeneration and autotropism, and may, in fact, cause the plants to be in a state of active bending for more than 36 hours It has been shown by Kogl and Kostermans (1935) that indolpyruvic acid has auxin activity Thus the possibility exists that this acid rather than hetero auxin (8 indolacetic acid) is formed from tryptophane. However, these authors point out that the apparent activity of indolpyruvic acid might likely be due to its breakdown into indolacetic acid. They calculate that 1 per cent breakdown will account for the measured activity

Another substance, indolethyl amine, kindly synthesized by Dr J Koepfli, has been found to be very suitable for precursor experiments. This compound is completely lacking in growth promoting activity, but in contact with the cut surface of the plant it can become activated and will then produce curvatures, see Fig. 8, curve V. It is superior to tryptophane in that it is more slowly activated, does not contain a carboxyl group which is possessed by all known active substances, and its only active degradation product is hetero auxin. All lower degradation products are known to be inactive. It has further been found that by placing agar blocks containing either tryptophane or β indol ethyl amine in contact with the apical surfaces of a large number of coleoptile cylinders for a short time they become activated, so that when the blocks are subsequently applied to test plants, they will cause large auxin curvatures, which start to appear almost immediately after application

The experiments described in this section, although dealing with substances evidently not identical with the precursor of auxin obtained

from Avena, nevertheless lend strong support for the evidence given above for its existence and behaviors They show that the delayed curvatures obtained above are due to an activation through chemical changes in the substances applied, and are not merely the result of any possible differences in the rates of transport in the plant of these substances and the auxins The activation of the precursor takes place most likely in the agar block in contact with the plant or extracellularly at the cut surface, since if the activation took place exclusively intercellularly, active substance would not be recoverable in the apical blocks Other experiments, not described here, exclude the possibility of activation through bacterial action Considerable evidence indicates that in the case of the synthetic precursors of heteroauxin the nature of the activation process is fairly certainly an oxidative deamination How far the relationship existing between these synthetic precursors and hetero-auxin can be extended to explain the relationship between the precursor and auxin in the plant is as yet a speculative matter A more complete study of the chemical nature, specific physiological activities of the precursor of auxin, and the mechanism of its transport and activation in the plant is in progress

It has been pointed out by Thimann (1935b) and by Haagen-Smit and Went (1935) that a clear distinction must be made between true auxins and such substances as may promote growth but are not capable of being polarly transported in the plant. It has further been shown by Michener (1935) that auxins must be distinguished from such substances as may indirectly affect the physiological activity of auxin in the plant. In addition to these two groups must now also be considered a third group of substances capable of becoming activated by the plant into true auxins.

SUMMARY

The main results presented in this article may be summarized as follows

- 1 A test method with deseeded Avena seedlings for small concentrations of auxin and precursors of auxin has been described
- 2 This method makes possible quantitative determinations of about ten times as low concentrations of hormone as can be obtained with the standard method (a) Through an increase in the time of the

test, so that nearly all the hormone applied can be utilized (b) Through an increase in sensitivity of deseeded plants to unilaterally applied small concentrations of hormone

- 3 The effect of deseeding in relation to curvature growth is pri marily the prevention of auxin regeneration through the removal of the material for auxin synthesis, and in addition the prevention of physiological aging
- 4 The mechanism of auxin synthesis in the tip of the coleoptile and the mechanism of auxin regeneration in the new physiological tip have been shown to be identical
- 5 The application of the deseeded method is illustrated by determinations of auxin in primary leaves and coleoptile sections of Avena seedlings
- 6 The deseeded method has been used as a test method for pre cursors of auran obtainable from the coleoptile and from other sources. The method further makes possible a distinction between auxins and these substances which may become activated by the plant
- 7 Evidence for the existence of a precursor of auxin in the plant is given (a) indirectly by determinations of the decrease in auxin synthesis in deseeded plants (b) Directly by its isolation from the plant
- 8 Precursors of hetero auxin are demonstrated, their chemical nature and activation are briefly considered

LITERATURE CITED

Buy H G du 1933, Rec. trav bot néerl, 30, 798

Dolk H E 1926, Proc k Akad Wetensch Amsterdam 29, 1113

Dolk H E and Thimann K. V 1932 Proc Nat Acad Sc, 18, 30

Gorter C J 1927, Versi k Akad Wetensch Amsterdam, 36, 418

Haagen Smit A J and Went F W, 1935 Proc k Akad Wetensch Amsterdam, 38, 852

Kógl, F and Kostermans, D G F R 1935 Z physiol Chem, 235, 201

Michener D 1935, Science 82, 551

Van Overbeek, J., 1936, J. Gen. Physiol. 20, 283

Thimann K. V, 1934 J Gen Physiol 18, 23

Thimann, K. V 1935a J Biol Chem, 109, 279 Thimann K V 1935b Proc k 4kad Wetensch Amsterdam, 38, 896

Thimann K. V and Bonner, J, 1932, Proc Not Acad Sc, 18, 692 van der Weii H G, 1931 Proc k Akad Wetensch Amsterdam 34, 875

van der Weij, H. G., 1932, Rec. trav. bot. néerl., 29, 379 Went, F. W., 1927, Dissertation, Wuchsstoff und Wachstum, Utrecht. Went, F. W., 1928, Rec. trav. bot. néerl., 25, 1 Went, F. W., 1935a, Bot. Rev., 1, 162 Went, F. W., 1935b, Proc. k. Akad. Wetensch. Amsterdam, 38, 752

INACTIVATION OF PEPSIN BY IODINE AND THE ISOLATION OF DIIODO TYROSINE FROM IODINATED PEPSIN

By ROGER M HERRIOTT

(From the Laboratories of The Rockefeller Institute for Medical Research,

Princeton, N J)

(Accepted for publication, February 4 1936)

The previous work of the writer on the acetylation of pepsin (1, 2) points to a close relationship between the tyrosine of pensin and the proteolytic activity of the protein molecule An acetyl derivative of pepsin was prepared which had 60 per cent of the activity of pepsin. contained three labile acetyl groups, and gave a tyrosine phenol color value lower by three tyrosine equivalents than that of pepsin these and other reasons it seemed probable that the labile acetyl groups were attached to the phenolic hydroxyl groups of tyrosine in pepsin Attempts to isolate an acetylated tyrosine were unsuccessful due probably to the lability of the acetyl radical In the hope of obtaining direct and decisive evidence concerning the rôle played by tyrosine in pepsin it was decided to study the action of iodine on pepsin dine is supposed to react with the benzenoid part of tyrosine in pro teins (3, 4) and since this type of iodine linkage is known to be rela tively stable, it seemed likely that an iodine tyrosine compound could be isolated from iodinated pepsin

Under certain conditions solutions of native pepsin readily absorb iodine and the proteolytic activity decreases gradually. Pepsin is practically inactive when the number of iodine atoms per molecule of pepsin is 35-40. There is no appreciable oxidation of pepsin or of glycyl tyrosine by iodine under the conditions used for iodination. The rates of iodination of pepsin and of glycyl tyrosine are affected by a variation of pH in a like manner. The effect of pH is nearly identical with that already noted for acetylation of these two materials.

Completely iodinated pepsin was hydrolyzed and the products of hydrolysis containing iodine were fractionated A solution containing

82 per cent of the total iodine was obtained from the iodinated pepsin. The analyses of this solution were similar to those of a solution of diiodo-tyrosine. Also present in this solution was a dark material which prevented crystallization of the diiodo-tyrosine and which could be removed only with difficulty and at the expense of the yield of crystalline diiodo-tyrosine. The yield of crystalline diiodo-tyrosine finally obtained represented 53 per cent of the original iodine.

That the iodine is attached to the tyrosine in the intact iodinated pepsin protein is further indicated from the titration curve of the iodinated protein. The groups in pepsin which titrate between pH 10 0 and 12 0, in the iodinated pepsin titrate between pH 8 0 and 10 0. These are probably the phenolic hydroxyl groups of tyrosine.

EXPERIMENTAL RESULTS

Conditions for Iodination of Pepsin

Many experiments were performed to determine the effect of the numerous variables on the iodination of pepsin. The results of some of these experiments are dealt with in detail in this paper but a large part of this work has been omitted. It will suffice, however, to say that the most reproducible and apparently uncomplicated results were obtained by observing the following conditions the concentration of free or molecular iodine in the reaction medium should not be over one-tenth normal, the protein concentration is optimal at 2–5 mg protein nitrogen per ml and the pH kept at 50–60. The temperature seems to affect only the rate of iodination. Alcoholic iodine can be used in place of iodine-potassium iodide solution without any apparent difference in the result unless the alcohol content of the final solution rises above 10–15 per cent in which case the temperature should be kept nearly 0°C and the time the protein is in contact with this medium kept at a minimum

Effect of Iodine on the Proteolytic Activity

Under the conditions outlined above for the iodination of pepsin, the specific activity of pepsin gradually decreases as iodine is introduced into the protein molecule. Fig. 1 shows the effect graphically. The specific activity is reduced practically to zero when the iodine content is 35–40 atoms of iodine per molecule of pepsin. Of course

the solutions analyzed were reaction mixtures and in all probability not solutions of single compounds, nevertheless, the general effect of introduced iodine on the enzymatic activity of pepsin is indicated

Experimental Details

The procedure used in the experiment indicated in Fig. 1, by the open circles o is as follows to 65 ml of a dialyzed 2 × crystallized Parke, Davis pepsin solution in 0.2 mpH 60 acetate buffer was added 4 ml of 1 n iodine in potassium iodide solution. The final concentration free iodine equals 0.06 n and protein mitrogen per ml equals 4 mg. The experiment was carried out at 5 C. At suit able intervals of time samples were removed the free iodine destroyed by adding

Fig 1 Effect of bound iodine on the specific activity of pepsin.

dropwise a solution of 10 per cent sodium bisulfite The sample was then dialyzed in a rocking dialyzer (5) for 20 hours against 11/2,000 pH 50 acetate buffer after which it was analyzed for protein introgen, proteolytic activity, and total iodine by methods outlined in the section of this paper devoted to Experimental methods

The procedure used in the experiment indicated in Fig. 1 by the triangles, \triangle is as follows to a solution of dialyzed 2 × crystallized Parke. Davis pepsin containing 4 mg of protein introgen per ml was added an equal volume of 0.1 m iodine in potassium iodide solution. Aliquots were removed at intervals of time, treated, and analyzed as described above for the other part of this experiment.

Oxidation and Substitution

Thus far in this paper only the "introduced" or "bound" iodine has been considered as the cause of the effects noted with regard to

enzymatic activity. Iodine may be acting in the present instance as an oxidizing agent as well as one of substitution. There exists, therefore, the possibility that the effect noted on the specific activity of pepsin is caused, not by the bound or substituted iodine, but by a simultaneous oxidation of some group in the protein molecule. The experiments shown in Table I were designed to determine to what extent oxidation by iodine takes place during the iodination of pepsin. When iodine acts as an oxidizing agent it is itself reduced from molecular iodine Io to iodide ion I— The extent of oxidation may then be determined by estimating the production of iodide ion. It must be remembered, however, that in the iodine substitution reaction, as illustrated,

an amount of iodide ion is produced equal to that amount which substitutes. The iodide ion resulting from any oxidation by iodine must then be determined as that quantity of iodide ion over and above the iodide ion produced as a result of substitution. The iodide ion formation in the control experiment must, of course, be deducted

The writer was not able, unfortunately, to determine the iodide ion directly in the presence of iodinated pepsin and was forced to resort to estimating the extent of oxidation by an indirect method If no oxidation takes place during iodination the organically bound iodine should equal one-half of the decrease in free iodine, as may be seen from the illustrated reaction If oxidation does occur then the organic iodine will be less than one-half of the decrease in free iodine for some of the free iodine will be consumed in the oxidation. Thus a comparison of the organic iodine determined and the organic iodine calculated as one-half of the decrease in free iodine will serve as a measure of the oxidation Free iodine and therefore the loss in free iodine can be determined precisely by the usual iodimetric titrations The figure for the organically bound iodine was obtained after dialyzing a sample of material free of all uncombined iodine the nitrogen analysis before and after dialysis and iodine analysis after dialysis the organic iodine existing before dialysis may be calculated, assuming no loss of organically bound iodine during dialysis Column (f) of Table I shows the difference between the organic

iodine determined and that calculated from the loss of free iodine. The results of these experiments are not as decisive as had been hoped but the differences noted are small, indicating that little oxidation occurs, and they seem to bear no relationship to the specific activity of pepsin. It may be pointed out that using three different concentrations of iodine in Nos. 2, 4, and 10 of Table I and obtaining solutions with three quite widely different specific proteolytic activities,

TABLE I

Oxidation of Pepsin by Indine at pH 5 6 and 5°C

						Dete	ermined	Calculated	Differ ence		
No	Material	Onginal concen- tration	Time	z	I	odine/m	ıl.	Atoms I	Decrease in	(e) — (c)	
No Material		of iodine	lime	IP U JAB, P N	Total	Free	Or ganic	per mol pepsin	free lodine 2	(e) — (c)	
				a l	(a)	(b)	(c)	(d)	(e)	(1)	
_		normality	hrs		mt	mţ	mt	mg	mg/ml	mz./ml	
1	Pepsin	0 000	1	0 22						l	
2	Pepsin	0 005	1	0 15	0 63	0 00	0 23	5	0 32	0 09	
3	Control (buffer)	0 005	1			0 65					
4	Pepsin	0 010	1	0 086	13	0 17	0 46	10	0 52	0 06	
5	Control	0 010	1			12			1	'	
6	Pepsin	0 020	1	0 039	2 54	0 75	0 73	16	0 92	0 19	
7	Control	0 020	1			26					
8	Pepsin	0 050	1	0 002	63	3 1	13	29	1 65	0 35	
9	Control	0 050	1			64	i	- 1			
10	Pepsin	0 03	1	0 02	3 7	18	0 85	19	0 95	0 10	
11	Pepsin	0 03	24	0 006	38	10	11	23	1 40	0 30	

practically the same differences between calculated and determined organic iodine may be seen in column (f)

Experimental Details

Materials —Dialyzed 2 × crystallized Parke, Davis pepsin in m/2 sodium acetate pH 5 6, the solution contained 4 mg protein nitrogen per ml

Starting with 0.5 \times 10dine in 50 per cent ethyl alcohol, solutions of various concentrations were made up by diluting this 10dine solution with 50 per cent alcohol. By dissolving the 10dine in alcohol the presence of potassium 10dide in the solvent was eliminated

Procedure -With the solutions at 5°C, 15 ml of pepsin solution was mixed

with 15 ml of iodine solution and allowed to remain for 1 hour at 5°C Aliquots were then analyzed for protein nitrogen, activity by the hemoglobin method, total iodine, free iodine (direct titration), and the remainder of the solution treated with sodium bisulfite to destroy the free iodine remaining. After treatment with sodium bisulfite these solutions were dialyzed for 20 hours at 5°C and then analyzed for total iodine and protein nitrogen. A control on the pepsin activity was made by adding 15 ml of 50 per cent alcohol to the pepsin solution instead of the iodine solution. A control on the oxidation of iodine was made for each concentration of iodine by adding 15 ml of iodine solution to 15 ml of M/2 pH 5 6 acetate buffer and then analyzing after 1 hour for total and free iodine

TABLE II
Oxidation during Iodination of Glycyl Tyrosine

		Mg I/ml (determined)											M	1				
No	рĦ	Time	·	Total		Free	}	Total frae	Total Hee	Tod.de	Todine		Organic	Organic		Iodide	Extent of iodina tion	
				(a)		(b)	(0	:)	(0	1)	(e)	(f)	(g)		(h)	(1)
		hrs					_							(c) _A – (d) _A	(c) _A -		(d)A - (d)B	per cent
1A	4 0	0.	5 1	18 (14	5	3	8	3	0	0	8	0 8	0	8	0 8	13
1B	-	0.	5			16	5	2	3	2	2	0	0	0 1	l			
2A		72 (וכ		1	8	3	10	5	6	4	4	0	4 1	3	9	3 9	65
2B		72 (0			15	5	2	7	2	5	0	1	0 2	ļ			
3A	5 6	0 .	5 1	8.		6	9	10	3	6	2	4	5	4 1	4	1	5 1	73
3B		0 .	5		1:	15	7	2	2	1	1	0	2	11)		
4A		72 (o[Į	2	3	13	6	7	7	4	9	5 9	4	9	5 2	84
4B		72 (1	15	4	2	8	2	5	0	1	0 3				

In studying the iodination of glycyl tyrosine the iodide ion formed could be determined directly by a gravimetric method. It may be worth noting that even in this case with direct methods of analysis and dealing with pure simple substances the results to be found in Table II are not perfectly constant. There can be little doubt, however, that oxidation by iodine plays no part in this reaction.

Experimental Details

Materials —1 5 gm of 81 per cent dry weight Hoffmann-La Roche glycyl tyrosine = 1 19 gm (1/200 mol) dissolved in water with the aid of 3 ml N/1 sodium hydroxide and diluted to 105 ml 0 8 gm glycyl glycine dissolved in water plus 3 ml N/2 sodium hydroxide and diluted to 105 ml

Procedure —To 50 ml of glycyl tyrosine solution was added 25 ml of 16 m acetate buffer in one case pH 40 in another pH 56, followed by 25 ml of 05 m todine in 50 per cent alcohol As controls, equimolar solutions of glycyl glycine were substituted for glycyl tyrosine In Table II the glycyl tyrosine is indicated as the 'A' experiments, while the control glycyl glycine experiments, are denoted by B" The entire experiment was carried out at 5°C

At various intervals of time samples were removed and analyzed for the following properties (a) total iodine, (b) free iodine, (c) iodide ion plus organic iodine, (d) iodide ion, and (e) organic iodine

Analysis for the total iodine (a) was carried out by the procedure outlined in the section of this paper devoted to Experimental methods. The free iodine (b) was titrated with standardized thiosulfate. The iodide ion plus organic iodine (c) was determined by analyzing for total iodine after extracting the free iodine out of solution by shaking with several aliquots of carbon tetrachloride. The iodide ion (d) was estimated gravimetrically as the silver salt which is the only material pre cipitated in N/10 nitric acid solution. After removal of the iodide ion as silver iodide by filtration, the organic iodine was determined on the filtrate after first removing the excess silver ion by addition of an aliquot of N/10 sodium chloride. Knowing the volumes used calculation back to the original aliquot was made.

Effect of pH on Iodination of Pepsin and of Glycyl Tyrosine

In the studies on the acetylation of pepsin (1, 2) it was brought out that the phenolic hydroxyl group of tyrosine in pepsin and of pure glycyl tyrosine are both readily acetylated by ketene at pH 60 whereas at pH 40 acetylation is slow. Since iodine reacts with quite a different part of the tyrosine molecule than does the acetyl group it was of interest to see if the effect of pH was the same for iodination as had been observed for acetylation and the same for pepsin and glycyl tyrosine

Experimental Details

 $\it Materials$ —A dialyzed 2 \times crystallized preparation of pepsin containing 6.3 mg of protein nitrogen per ml was used With the exception of the buffer (citric acid) used to obtain pH 2.5 all the buffers were acetate buffers of molar concentration made up to give the indicated pH The iodine was 0.15 normal in potassium iodide solution

Procedures —5 ml pepsin solution plus 5 ml 1 n buffer plus 5 ml 0 15 n iodine solution let stand at room temperature for 1 hour after which 1 ml was removed and ittrated with standard thiosulfate to determine the free iodine remaining. To the remainder of the solution was added dropwise 10 per cent sodium bisulfite solution until the free iodine was destroyed. The solution was then dialyzed for 20 hours against M/2,000 pH 50 acetate buffer at 5 C. Appropriate controls

were run at different pH in the absence of iodine to determine the extent of inactivation of pepsin, also in the absence of pepsin to determine the extent of oxidation of iodine by products other than pepsin

After dialysis the solutions were analyzed for protein nitrogen, activity by the hemoglobin method, and total iodine as described in the section devoted to Experimental methods

The results recorded in column (1) of Table II and Fig 2 show that, in general, during iodination of pepsin or of glycyl tyrosine a

Fig 2 Effect of pH on the iodination of pepsin

change in pH of the medium alters the rate of iodination in much the same way as was noted for acetylation of these materials. According to the titration curve of glycyl tyrosine, determined by Greenstein (6) the carboxyl group is in the salt or zwitter ion condition at pH 5 0-7 0 but below pH 5 0 the carboxyl group ionizes as an acid

The results in Fig 2 bring out the fact that when free iodine is consumed iodine appears in the protein as bound iodine and the specific activity of the enzyme is depressed proportionally. If the decrease in specific activity were depressed as a result of oxidation by iodine, which cannot be completely excluded from the work of the

previous section of this paper it must then be supposed that the oxidation is affected by pH in an exactly parallel manner as is the introduction of iodine into the protein molecule. It should also be pointed out that since, as will be demonstrated later in this paper, at least 80 per cent of the iodine that is absorbed by the protein is attached to the tyrosine, to account for the depression of the proteinly cativity on the hypothesis of iodination of some component of the protein other than tyrosine, one must again assume that the union of iodine with this hypothetical component is affected by pH in a manner parallel to that of tyrosine in pepsin

Isolation of Dirodo Tyrosine from Iodinated Pepsin

For the most part the work carried out in the isolation of diodo tyrosine from iodinated pepsin is described in Table III However, space would not permit inclusion of all the details and some points need explanation

Pepsin contains approximately 10 per cent tyrosine (7) which if completely iodinated (2 atoms of iodine per molecule of tyrosine) would result in a protein with 14 per cent iodine. The material used in this isolation experiment had 13 4 per cent iodine.

It was found in preliminary experiments that pancreatic extract would digest the iodinated pepsin. Since this is a much less violent treatment than boiling in alkali it was decided to carry out the enzymatic digestion before treatment with alkali. It might be noted that the Bristol pancreatic extract used carries the digestion of the iodinated pepsin only one third as far as it does pepsin, as measured by the increase in Van Slyke amino nitrogen

Refluxing for 30 hours with barium hydroxide was necessary to complete hydrolysis even after the preliminary enzymatic hydrolysis By cooling to 5°C a large part of the barium hydroxide crystallized out and was separated by filtration

The butyl alcohol extraction proved to be an efficient and satis factory method of purification

The writer is indebted to Dr G L Foster for this suggestion

In No 11 of Table III the basic lead acetate precipitate was sus pended in about 75–100 ml of water and glacial acetic acid added. The suspension was warmed to 50°C to aid in the solution of the

TABLE III

Isolation of Diiodo-Tyrosine from Iodinated Pepsin

			- X 0 P			
	9		Т	otal	odine	olor atio
Materials and procedures	Solution No	Volume	Nitrogen	Iodine	Original iodine	Phenol color iodine ratio
		ml	mg	mg	ţer cent	
Dialyzed iodinated pepsin No 13 of 8/2/35 13 4 per cent iodine Dialyzed Bristol pancreatic extract No 1 + No 2 + alkali to pH 9 0-10 0 at 37°C for 48 hrs 104 gm crystalline Ba(OH) ₂ (making	1 2	515	2800 27	1	100	0 57
a 20 per cent solution) added and refluxed for 30 hrs, placed at 5°C for 24 hrs, residue filtered and washed with cold water, residue discarded, combined filtrates and washings No 3 + 70 ml concentrated HCl (pH = approximately 07), shaken in separatory funnel seven times with 100 ml quantities of butyl alcohol (re-	3	720	2200	2300	96	0 58
agent grade)	4					1
Acid-water solution of No 4 after last extraction with butyl alcohol	5	710		113	5	1 3
Butyl alcohol solutions of No 4 extracted two times with 150 ml quantities of 0.25 n NaOH and once with 0.1 n NaOH	6					
Butyl alcohol solution of No 6 after last extraction with alkali	7	380	1	38	16	
Alkalı-water solution of No 6 after separation from the butyl alcohol No 8 + 20 ml of 50 per cent (by weight) PbAc ₂ + 5	8	858	515	2400	100	0 46
ml glacial acetic acid, left at 5°C for 20 hrs, filtered and residue washed on funnel with 0 1 N acetic acid	9					
Filtrates + washings of No 9 No 10 + concentrated NH ₄ OH to pH 8 0-9 0, let settle 24 hrs, filtered, residue washed by grinding in a mortar with 0 1 per cent NH ₄ OH and filtered Residue stirred with H ₂ O and 12 ml glacial acetic acid, warmed to 50°C stirred, filtered, residue	10	1370		2250	94) 40
washed with 01 N acetic acid Residue No 11 (crystals) dissolved in dilute NH ₄ OH	11† 12	300		780	33 0	25
	<u>-</u> -	<u>`</u> _	<u>-</u> -			

^{*}See section on Experimental methods for a discussion of these figures †See text for discussion of the procedures from No 11 on

TABLE III-Concluded

	ي		To	sta)	dine	olor
Materials and procedures	Solution No	Volume	Nitrogen	Iodine	Original sodine	Phenol color iodine ratio
		en!	m£	mţ	per cent	
Solution No 11 + No 12 + NH ₄ OH to pH 8 0-9 0 allowed to stand 24 hrs filtered residue washed with water Residue suspended in 4-6 liters water at 40 C H ₅ S bubbled in till completely saturated Suspension stirred 6-10 hrs filtered residue re suspended in water H ₅ S bubbled in as before filtered, filtrates combined evaporated under reduced pressure at 40 C	13	800		1980	82	0 29
Solution No 13 evaporated to 50 ml very poor crystallization solution very dark—became black on addition of NH ₂ OH to pH 8 0 Precipitated with PbAc ₂ at pH 8 0 and dissolved by acetic acid or by decomposition by H ₂ S repeated several times Fractional precipitation from dilute NH ₂ OH solution by addition of dilute acetic acid resulted in a tan colored crystalline product. A yield of 2 1 gm of dired material was obtained	14				53	0 25- 0 29
No 15 on recrystallization came down as bundles of needles at room temperature and as whet stones when the mother liquor was placed in the ice box From 50 per cent acetic acid the crystals were platelets or flat prisms After drying in vacuo at 100°C the crystals melted 204 C	16					

precipitate The precipitate was almost completely dissolved when a fine white precipitate began to form and became quite heavy. A microscopic examination showed this precipitate to be very small crystals—too small to identify. The crystals were filtered off, washed several times with N/10 acetic acid, and a sample of the residue analyzed. It gave the color with the phenol reagent and iodine analysis expected of diiodo tyrosine and dissolved instantly in dilute ammonia. The ammoniacal solution was combined with the mother liquor in solution No. 11 in the hope of crystallizing the entire amount of iodine compound in the next step. This, however, was not to be

the case After the second precipitation with lead acetate at pH 80 and decomposition of the precipitate with hydrogen sulfide the solution was evaporated to 50 ml Crystallization did not take place as had been hoped The solution was cooled and even seeded with a few crystals of duodo-tyrosine A small precipitate appeared in 24 hours but the amount was insignificant Precipitation as the lead salt and subsequent solution was repeated several times precipitates came out but they were always incomplete and dark brown or black in color It soon became evident that there was some extraneous black material present in the solution which precipitated under the conditions for crystallization of diiodo-tyrosine and that its removal was difficult That this black material prevented crystallization was proven to the writer's satisfaction when on adding acetic acid slowly to a dark ammoniacal solution of the unknown there appeared at first a black flocculent precipitate which settled leaving the supernatant liquor water clear Almost immediately after the black material settled crystals formed in the supernatant liquor a few moments the container was nearly solid with a white crystalline Separation of the flocculent black material from the crystalline product was not so easily accomplished as might be supposed, for solution and precipitation conditions of both materials were almost The separation was, therefore, for the most part fractional precipitation from dilute ammoniacal solutions by the addition of acetic acid followed by rapid filtration before crystallization occurred These procedures were very costly to the yield of crystalline product as may be seen from Table III Although the solution No 13, just before the final fractionations were performed, contained 82 per cent of the original iodine and gave a color-iodine ratio nearly that of known diodo-tyrosine, yet only 53 per cent of the original iodine was finally obtained in crystalline form, the difference being lost for reasons already stated The black flocculent material contained no 10dine and gave no color with the phenol reagent. No other analyses were made on it

The iodine product after recrystallization from dilute ammonia by the addition of a few drops of acetic acid and drying in vacuo had a melting point of 203°C uncorrected Hoffmann-La Roche diiodotyrosine dried in a similar fashion melted at 204°C while a mixed

melting point of the two materials was 204°C. The phenol reagent color iodine ratio of the crystalline product was the same as that for the Hoffmann La Roche diiodo tyrosine

Titration Curve of Iodinated Pepsin

Although a large part of the iodine in iodinated pepsin was identified as diiodo tyrosine this in itself is not proof that the iodine was attached to the tyrosine in the intact iodinated pepsin. The vigorous treatment to which the protein was subjected in the process of isolation of diiodo tyrosine could conceivably cause the rearrange ment or migration of iodine from some other position to the tyrosine

From the work of Neuberger (3) and others it is believed that when the tyrosine of proteins is iodinated the titration of the phenolic hydroxyl group of the tyrosine is shifted toward the acid region. If then tyrosine in pepsin is iodinated by the methods used, the titration curve of iodinated pepsin should be quite different from that of pepsin. It is to be expected that the curve of iodinated pepsin will show a rise in the curve between pH 80 and 100 instead of pH 100-120 as in pepsin. As may be seen in Fig. 3 this is exactly as expected

Experimental Procedure

Materials —Iodinated pepsin 150 ml dialyzed 2 \times crystallized Parke Davis pepsin, 14 mg protein nitrogen per ml plus 50 ml 4 ms sodium acetate plus 300 ml water plus 500 ml n/10 iodine solution Mixture left 72 hours at 37 C Protein precipitated completely by acidification to pH 30, filtered and residue dissolved with the aid of sodium hydroxide This solution was then dialyzed 36 hours against pH 60 acetate buffer at 5 C The solution contained 40 mg protein nitrogen per ml and the protein was 16 per cent iodine

Pepsin Dialyzed 2 × crystallized Parke Davis pepsin dialyzed 36 hours against pH 60 acetate buffer at 5 C The solution contained 43 mg protein nitrogen per ml

Procedure — The hydrogen and calomel electrodes were standardized before and after each experiment with pH 40 acetate buffer prepared as recommended by Clark (8) To 50 ml of protein solution was added 1 ml saturated potassium chloride and 1 drop of octyl alcohol and the hydrogen electrode saturated with hydrogen introduced The solution was stirred throughout 005 ml quantities of 3 05 n alkali were run in through a capillary tube leading underneath the surface of the solution A total of approximately 1 ml of the alkali was added The E.M.F. was read from the bridge of the Leeds and Northrup potentiometer and the pH calculated Correction was made for the quantity of alkali required to produce the same pH in a similar volume of distilled water

In Fig 3 the curve for iodinated pepsin does not meet the pepsin curve beyond pH 12 0 and there are several rises in the curve beyond pH 9 0. This was very disconcerting until it was remembered that hydrogenation of diiodo-tyrosine to give tyrosine is carried out under conditions (9) somewhat similar to those occurring during measurement of pH by the hydrogen electrode. That there was actual liberation of iodine from iodinated pepsin was shown by the fact that the nitrogen content of the titrated solution remained practically unchanged during dialysis whereas the iodine content was lower after

Fig 3 Titration curves of pepsin and iodinated pepsin

dialysis The liberated iodine would be in the form of hydriodic acid and would therefore require additional alkali and make the total alkali per gram of protein appear to be greater in the case of iodinated pepsin than with pepsin

Neuberger (3) titrating zein and iodinated zein with a hydrogen electrode obtained curves which, although separated between pH 80 and 120 in the same way as herein demonstrated for pepsin and iodinated pepsin, nevertheless found that the two curves converged at pH 120 The time allowed for establishing equilibrium is probably responsible for the difference in the two cases. The writer

without considering the possibility of hydrogenation of the combined iodine consumed at least 2 hours in the measurements of each curve

It is interesting to note that from Fig 3 the amount of tyrosine iodinated in pepsin may be estimated. The difference between the pepsin curve I and the iodinated pepsin curve II at pH 100 is, roughly, 0.6 millimols of alkali per gram of pepsin or, in terms of tyrosine, is 11 per cent of the protein. The figure is remarkably close to the amount of tyrosine found (7) to exist in pepsin.

DISCUSSION

The work on the acetylation of pepsin showed that the free amino groups of pepsin, which are probably the ϵ amino groups of lysine, could be acetylated without a detectable change in the enzymatic activity. On the other hand, acetylation of two or three tyrosine phenol groups caused a loss of 40–50 per cent of the enzymatic activity. The present work further indicates that alteration of the tyrosine of pepsin results in a change of the proteolytic activity. Whereas the acetyl group was attached to the phenolic hydroxyl group of the tyrosine in pepsin, the iodine substitutes in the benzenoid part of tyrosine, a quite different position, yet the effect of both additions is to reduce the peptic activity of the protein. It appears, therefore, that at least part of the tyrosine of pepsin is so arranged in the mole cule as to be essential for normal activity. The writer does not mean to imply that any part or all of the tyrosine is the hypothetical active group of the enzyme

Other proteins contain tyrosine and the other amino acids which have been found in pepsin and yet no other protein has the properties peculiar to pepsin. Since there is no evidence for the existence of a prosthetic group which, when separated from the rest of the molecule retains the proteolytic activity, the peptic action cannot then be attributed exclusively to any particular part of the protein molecule but must be due to the arrangement of its component parts. The work thus far reported by this writer indicates that in the arrangement of component parts the tyrosine plays an important rôle

Experimental Methods

Pepsin Activity —Measurement of the peptic activity was made by the hemo globin method of Anson and Mirsky (10)

Protein Nitrogen —This estimation was made as the difference between the total nitrogen and the non-protein nitrogen, the details being described in a previous paper (1)

pH—pH determinations were for the most part made colorimetrically using the indicators recommended by Clark (8)

Total Iodine—The total iodine estimations were made by a method which for the most part is the procedure of Kendall (11) with some additions or modifications. In order that the changes may be scrutinized the entire scheme is included here

An aliquot of material to be analyzed containing 0 1-20 mg of iodine was introduced into a 6 × 6 cm nickel crucible 5 ml of saturated sodium hydroxide and approximately 5 gm of solid sodium hydroxide and a few alundum chips are added and the mixture heated on an electric hot plate, care being taken in the heating to prevent spattering of the boiling solution When a crust begins to form on the hot alkalı mıxture the crucible is placed into a 7×7 cm nickel crucible over a Bunsen burner A tripod is a convenient support for the larger crucible and the bottoms of the two crucibles should be separated by a few millimeters of If the larger or outside crucible is then heated by the Bunsen burner until the lower third of it is red, the inner crucible will be about the right tempera-A gas (probably carbon dioxide) is given off from the alkali solution as small bubbles and upon their ceasing to appear a few small crystals of potassium nitrate are added and usually the evolution of gas commences again Addition of a few crystals of potassium nitrate is repeated several times or until no gas appears on addition of the potassium nitrate By means of crucible tongs the crucible is then lifted out and the melt poured onto a crucible cover The crucible is held over the cover until that melt clinging to the crucible has solidified, this is usually The solidified melt on the crucible cover is then put into a 500 only a moment ml wide mouth Erlenmeyer flask and the cover and crucible washed free of the melt, the washings all being introduced into the flask The volume of the solution in the flask should be between 200-300 ml When the melt is entirely dissolved 2 drops of 0 1 per cent methyl orange and 1 ml of 10 per cent sodium bisulfite are added to the flask and the solution titrated to a pink color with 85 per cent reagent grade phosphoric acid A few drops in excess should be added. With the introduction of a few alundum chips the solution is then boiled on a hot plate for 2-3 The flask is removed from the hot plate and while still hot but not boiling 3 ml of saturated bromine water is added The solution should remain yellow 3 ml is sufficient for up to after mixing if enough bromine water has been added 3 mg of rodine in the original sample If the solution is not yellow more bromine water should be added after which the solution is boiled until colorless and then The flask is then set in running cold water and 4 drops of about 2 minutes longer a 10 per cent solution of sodium salicylate are added to the solution to room temperature a drop or two of 85 per cent phosphoric acid is added followed by 5 ml of a 10 per cent potassium iodide solution. It was found desirable to then add another drop or two of 85 per cent phosphoric acid to bring the full and rapid liberation of iodine This solution was then immediately titrated with standard

001 N thiosulfate, each ml of which is equivalent to 021 mg of iodine in the original sample due to the nature of the reaction 3 ml of 05 per cent starch solution aids in determining the end point. The thiosulfate was prepared as recommended by Leland and Foster (12) in 0005 N alkali. This solution was found to be perfectly stable for at least a month

Phenol Color Value —The phenol color value of solutions was obtained by use of the following procedure an amount of material which gave approximately the color produced by 0 15 mg of tyrosine was alluted with water to 19 ml 3 ml of 1 28 N sodium hydroxide was added followed by 3 ml of a 1 3 dilution of Folin's phenol reagent The solution was allowed to stand 5 minutes for the color to develop after which it was compared in a colorimeter against 0 15 mg of tyrosine treated in a like manner

Since the reference or standard was tyrosine the values of all solutions analyzed were calculated in terms of tyrosine

The ratio found in Table III was obtained by dividing the color value of a solution in terms of milligrams of tvrosine by the milligrams of iodine of the same solution

SUMMARY

In the presence of iodine at pH 5 0-6 0 a solution of pepsin absorbs iodine and the specific proteolytic activity of the solution decreases. The activity is less than 1 per cent of the original activity when the number of iodine atoms per mol of pepsin is 35-40

If the pH is 45 or less, iodine reacts very slowly and there is a correspondingly slower loss in activity Glycyl tyrosine reacts with iodine in a manner similar to pepsin

Experiments were performed to determine the extent to which oxidation of pepsin by iodine occurs during iodination, and if such oxidation were responsible for the loss in enzymatic activity. Although the results were not absolutely decisive, there seems to be no appreciable oxidation taking place during iodination and no relationship between the slight oxidation and loss in peptic activity.

From a dialyzed preparation of completely iodinated pepsin which was inactive and contained 13 4 per cent bound iodine, 82 per cent of the iodine was obtained in a solution which analyzed as a solution of diodo tyrosine. Because of the presence of a material which con tained no iodine and prevented quantitative crystallization, only 53 per cent of the iodine containing substance could be crystallized. This 53 per cent was, however, identified as diiodo tyrosine.

The part of the titration curve which in pepsin and most proteins

represents the phenolic group of tyrosine was, in the curve for iodinated pepsin, shifted toward the acid region as expected

From these results, it appears that the loss in proteolytic activity of pepsin, when treated with iodine under the specified conditions, is due to the reaction of the iodine with the tyrosine in pepsin

BIBLIOGRAPHY

- 1 Herriott, R M, and Northrop, J H, J Gen Physiol, 1934, 18, 35
- 2 Herriott R M, J Gen Physiol, 1935, 19, 283
- 3 Neuberger, A, Biochem J, London, 1934, 28, 1982
- 4 Wormall, A, J Exp Med, 1930, 51, 295
- 5 Kunitz, M, and Simms, H S, J Gen Physiol, 1928, 11, 641
- 6 Greenstein, J P, J Biol Chem, 1931, 93, 479
- 7 Calvery, H O, Herriott, R M, and Northrop, J H, J Biol Chem, 1936, 113, 11
- 8 Clark, W M, Determination of hydrogen ions, Baltimore, The Williams and Wilkins Co, 3rd edition, 1928
- 9 Harington, C R, Biochem J, London, 1926, 20, 293
- 10 Anson, M L, and Mirsky, A E, J Gen Physiol, 1932, 16, 59
- 11 Kendall, E C, J Biol Chem, 1914, 19, 251, 1920, 43, 149
- 12 Leland, J. P., and Foster, G. L., J. Biol. Chem., 1932, 95, 165

SEROLOGICAL REACTIONS OF AZOPROTEINS DERIVED FROM AROMATIC HYDROCARBONS AND DIARYL COMPOUNDS*

By JOHN JACOBS

(From the Laboratories of The Rockefeller Institute for Medical Research)

(Accepted for publication February 19 1936)

The present study deals in part with the serological specificity of azoproteins derived from aromatic hydrocarbons other than benzene, namely the polynuclear compounds p aminodiphenyl, β naphthyla mine and β anthramine, in addition, a number of substances containing two benzene rings—azoproteins from p aminodiphenyl ether, p aminodiphenyl methane, p aminobenzophenone (and p aminophenylazo benzene)—, were examined because their reactions have been used to substantiate certain theoretical conclusions concerning serological specificity (Erlenmeyer and Berger (2))

Technique - Preparation of antigens To 4 millimols of the finely ground sub stances were added 10 cc N HCl and diazotization carried out at 0-5 C by addi tion of 4 cc N NaNO: With 8 naphthylamine and 8 anthramine diazotization was carried out in 5 N acid and the excess acid nearly neutralized by addition of a requisite amount of NaOH to the serum before coupling. The solutions were filtered added to a cold mixture of 70 cc normal serum and half that volume of N Na₂CO₃, coupled for 10 minutes at a reaction alkaline to phenolphthalein and precipitated if not already out of solution with 10 per cent HCl After washing three times with saline and passing through gauze to break up lumps the azo proteins were dissolved in saline solution by adding at once enough N NaOH to bring the solution to N/20, (and in some cases a very small quantity of alcohol), the solution neutralized within a few minutes by cautious addition of N/10 HCl, and diluted with saline to a concentration of approximately 10 per cent of protein With some antigens, to have clear solutions for the tests the stock solution was clarified by a drop of N NaOH, which was subsequently diluted with saline to the proper concentration

Immunizations -Rabbits were given intravenous courses of 6 daily injections of

^{*} The results have previously been mentioned briefly (1)

20 mg each on alternate weeks and bled 1 week after the last injection. The antigens were prepared from horse serum. In several cases difficulty was encountered in obtaining sufficiently potent antisera, particularly with β -anthramine, for which only one serum was obtained.

Tests—Antigens were prepared from chicken serum, except as specified Antigen dilutions are given in terms of a 5 per cent solution. The intensity of reactions is indicated as follows 0, f tr (faint trace), tr (trace), \pm , \pm , +, $+\pm$, etc

The reactions of antisera for azoproteins from β -anthramine, p-aminodiphenyl, p-aminodiphenyl methane and aniline were tested with the homologous antigens and others made from β -naphthylamine and p-toluidine. The results are given in Table I. It will be observed that the azoproteins from aniline and toluidine were rather well differentiated from the polycyclic compounds aminodiphenyl methane, aminodiphenyl, β -naphthylamine, and β -anthramine. Naphthylamine antigen reacted with antiserum to β -anthramine as well as with the antisera to the other two polycyclic compounds, which appeared to be quite similar when tested with a diphenyl serum. In general, differences were greater with increasing disparity in structure, thus only a slight cross reaction was observed between aniline and β -anthramine azoproteins

The reactions of the other antisera and antigens are summarized in Table II According to Erlenmeyer and Berger antisera to amino-diphenyl methane and aminodiphenyl ether antigens were identical in their serological reactions, due to the similarity of CH₂ and O in electronic structure, whereas the antigen from aminobenzophenone containing, instead, the group C=O, not related to CH₂ and O in this respect, would react with "diphenyl methane antiserum" not at all, and but slightly with antiserum to diphenyl ether antigen This, along with other of their observations, was used as an argument for the hypothesis that compounds isosteric in the sense of Grimm (3) (which replace each other in crystals) are serologically equivalent

Not quite in accordance with this our results showed that when the test antigens were prepared with another protein (chicken serum) than that used for immunization several diphenyl methane sera, eg serum I, were found to show a definite difference between the diphenyl methane and diphenyl ether antigens. Some diphenyl ether and diphenyl methane antisera gave no or weak reactions with benzo-

phenone antigen but others gave quite distinct precipitation with this azoprotein, and the benzophenone antisera reacted with diphenyl ether and diphenyl methane antigens although markedly less than with the homologous one

While, as mentioned above, diphenyl methane and diphenyl ether sera were found which reacted strongly with the two corresponding antigens and weakly or not at all with benzophenone antigen after 1 hour, in later readings definite reactions were mostly seen. Antiscra to p aminodiphenyl gave distinct reactions of similar strength with all three compounds, contrary to the assumption that the -O-, $-CH_2-$, and -CO- groups are decisive for the specificity of these compounds. Thus it would appear that the serological difference between diphenyl ether and diphenyl methane is definitely, but not very much, less than that between these two compounds and benzophenone

Since Erlenmeyer and Berger (2) used antigens prepared from horse serum both for immunization and testing it was thought that the discrepancies might be accounted for by this technique Accordingly, p-aminodiphenyl ether and p aminodiphenyl methane antisera were tested against the homologous antigens and that of p aminobenzophenone all prepared with horse serum, with the result shown in Table III Now the difference between diphenyl ether and diphenyl methane was obliterated for the most part as in Erlenmeyer and Berger's experi ments and some of these sera failed to react with p aminobenzophenone antigen with the small amount of antiserum used, although others gave distinct reactions However in experiments where the protein used is the same in the test as in the immunizing antigens the reactions will partially depend on this common com ponent 1 With this in mind tests were made with immune sera to substances that would not be expected to react with these compounds to any considerable extent and here again the benzophenone antigen was found to be less reactive with some sera (Table IV), a result which cannot be explained on the basis of the difference between the CO O and CH2

On account of an error due to a mislabelled commercial preparation (since mentioned by Landsteiner (5)) another of the cases advanced by Erlenmeyer and Berger to support their theory namely the reactions of two aminobromosulfonic acids can no longer serve as an example. Here it appeared that the interchange of the substituents NH₂ and Br did not affect their specificity. However, the two preparations considered to be 4-bromoaniline-2 sulfonic acid and 4-bromoaniline 3 sulfonic acid were later found to be the same substance namely 4-bromoaniline 2 sulfonic acid. On testing azoproteins from preparations of the two acids

¹ A criticism concerning this point was made al o by Heidelberger (4)

named, made in this laboratory, they proved to be serologically different (Table V), moreover a clear distinction between the two acids was obtained in inhibition reactions as shown in Table VI. Thus from the inhibition reactions NH_2 and Br or Cl appear to be serologically not equivalent, the evidence from precipitation tests with azoproteins does not, of course, serve to compare these substituents, since NH_2 groups have been changed to N=N

Returning to experiments on the specificity of hydrocarbons, it may be said that, so far, they have been made on a small scale only. They seem to indicate that considerable differences exist, especially between benzene and its derivatives and some of the polynuclear rings. The continuation of these experiments would be desirable, especially from the point of view of whether or not the specificities which are recorded in Table I indicate that the carbon rings as such take part in the union with antibodies and are the directly determining factor in the reactions

SUMMARY

Serological reactions of azoproteins from p-aminodiphenyl, β -naphthylamine, β -anthramine and some compounds containing two benzene rings (aminodiphenyl methane etc.) have been described, the last mentioned substances having been the subject of theoretical discussion on serological specificity

REFERENCES

- 1 Landsteiner, K, The specificity of serological reactions, Springfield, Illinois, Charles C Thomas, 1936, 108, 139
- 2 Erlenmeyer, H, and Berger, E, Brochem Z, Berlin, 1932, 252, 22
- 3 Grimm, H. G., Gunther, M., and Tittus, H., Z. phys. Chem., Abt. B, 1931, 14, 169
- 4 Heidelberger, M, Immunochemistry, in Luck, J M, Annual review of bio chemistry, Stanford University, Stanford University Press, 1933, 2, 507
- 5 Landsteiner, K, The specificity of serological reactions, Springfield, Illinois, Charles C Thomas, 1936, 106 Die Spezifizität der serologischen Reaktionen, Berlin, Julius Springer, 1933, 79

TABLE I

2 drops of the nmune sera from aminochphenyl and aminochphenyl methane and 4 drops of the one from

authramine were used Dilution of checken antigen was 1 100 Readings were taken after 1 hour at room temperature—first line—and after standing overnight in the 10e box—second line Combined table	lution of ch	ncken antigen w	as 1 100 Readings	were taken after bined table	1 hour at re	r at room temperature
			Antigens from	from		
Impute sera	Anillne	p-Tolardine H C NH,	F-Aminodiphenyl methene	p-Aminod phenyl	β-Naphthyl amine	β Anthramae
Aniine	++++++	#+++	f tr #	0 11	0#	0 tr
p-Aminodiphenyl methane	e 13	0 #1	‡ † † †	0 +	4 +	0 #
p-Amunodiphenyl I	ft	1 41	+++	++ ++	#+	+ t
₽-Ammodiphenyl II	##	#‡	#++	##+		
β Anthramne	00	00	00	۵ ټـ	##	+‡

TABLE II

2 drops of immune serum used in all cases Dilution of chicken antigen 1 500 Readings were taken after 1 hour at room temperature-first line-and after standing overnight in the ice box-second line Combined table

-	
Ī	Ammodiphenyl ether

TABLE III

Horse serum used in preparation of antigens. Antigen dilutions 1 500 1 drop of immune serum used in each case. First reading taken after 30 minutes at room temperature (first line), second reading made after 1 hour at room temperature with sera I and after standing overnight in the ice box with sera II (second line)

			Antigens from	
Immune sera	No	p-Aminodiphenyl ether	p Aminodiphenyl methane	p-Aminobenzophenone
		-0NH ₂	C-C-WH ₂	C-C-NHs
p Aminodi phenyl	I	+	+++	++
ether	п	+± +++	± +++	0 tr
Aminodi phenyl	1	+ +±	+ +±	士 十生
methane	п	+± +++	+± +++	0

TABLE IV

Antigen (horse) dilutions 1 500 2 drops of immune serum used except in the case of anthranilic acid antiserum of which 1 drop was used Readings were taken after 1 hour at room temperature—first line—and after standing overnight in the ice box—second line

	Antig	ens prepared from horse seru	m and
Immune sera	p Aminodiphenyl ether	p Aminodiphenyl methane	p Aminobenzophenone
		NII2	C-C-NIII
Normal horse se-	0	0	0
rum	tr	f tr	0
Aniline	+	+±	0
	+±	++	±
Aminodiplicnyl	++	++	0
	++±	++±	tr
Aminophenylazo	++	+-	1 2
benzene	++±	++	+
Anthranilic acid	++	+±	f tr
	++-	+=	±

TABLE V

Antigen (chicken) dilutions 1 500 2 drops of immune serum used in each case Readings taken after 1 hour at room temperature

		Antipe	ens from	
Immune sera	NII2 SOJII	NII2 SOJII	NH ₂ SO ₃ H	NII ₂ SO ₃ II
NII ₂ SO ₂ II	47	0	++	0
NII ₂ SO ₂ II	+	十生	f tr	++±

TABLE VI

To 005 cc of each solution containing 1 millimol in 10 cc was added 0.2 cc of a 1 500 dilution of the homologous chicken antigen, followed by 2 drops of immune serum Readings were taken after 15 minutes—first line—and after standing overnight in the ice box-second line

			Substances test	Substances tested for inhibition			
	-	7	n	-	5	۰	
Immune sera	NH ₁ SO H	NH, SO H	NH ₄ SO ₄ H	NII4 SO,H	NH ₁ SO ₁ H	NH ₁ SO ₃ H	Control
NH,	0	Ħ	0	ftr	0	++	+
⊃å	, H	#+	0	# +	+1	#	# + +
, HV	Þ	0	Ħ	0	#	Ħ	# + +
од Зодн Вг	# +	ft	# +	0	‡	# +	+ + + +

CRITICAL ILLUMINATION AND CRITICAL FREQUENCY FOR RESPONSE TO FLICKERED LIGHT, IN DRAGONFLY LARVAE

By W J CROZIER ERNST WOLF AND GERTRUD ZERRAHN WOLF (From the Biological Laboratories, Harvard University, Cambridge)

(Accepted for publication, February 13, 1936)

1

The interpretation and the theoretical implications of measurements of reaction to flickered light have been given preliminary con sideration in the case of data obtained with the honey bee and with the sunfish Lepomis (Crozier (1935-36), Crozier, Wolf, and Zerrahn Wolf (1936-37)) For a variety of reasons it was desirable to extend the observational foundation for the proposed development expressing critical illumination as a function of flicker frequency (Wolf (1933-34), Wolf and Zerrahn Wolf (1935-36b)) have been ob tained from homogeneous data for Apis and for Lepomis, and for critical frequency as a function of illumination with Lepomis (Crozier, Wolf, and Zerrahn Wolf (1936-37)) The reciprocal curves for the same organism. Lebomis, are not identical their differences have been in certain essential respects predicted (of Crozier (1935-36), Crozier, Wolf, and Zerrahn Wolf (1936-37)) The meaning of these differ ences is of prime significance for the attempt to utilize such measurements for a theory of the mechanism of excitation, one important aspect of their meaning concerns the propriety of utilizing averages of measurements of reactiveness, in the way which has become almost axiomatic but which seems to be incorrect. We have proposed to test further the reality of these differences, and the capacity to pre dict their interrelations, by means of additional experiments with another animal For this purpose we chose the larvae of a dragon fly, Anax junius In the present paper we describe the results se cured when the relationship between flicker frequency and illumina tion for threshold response is concurrently measured in each of the

two ways conveniently and necessarily open to examination, namely by (1) determining mean critical flicker frequency (F_m) as a function of illumination (I), and (2) mean critical illumination (I_m) as a function of frequency of flicker (F) The two curves differ in predictable ways, entirely consistent with the results we have already analyzed in the case of Lepomis, moreover, they are also concordant with the interpretation to which the data on Apis have been submitted. It has seemed to us important to carry through this experiment with two organisms (Apis, Anax) in which the eyes are of the same general sort, and which presumably possess but a single type of visual cell, the duplex composition of the typical vertebrate retina presents a special problem, since the respective contributions of rods and cones are to be separated in the analysis of the result when the whole eye is open to excitation A following paper deals with the use of these findings in devising an interpretive theory of response to visual excitation as it involves the discrimination of intensities

The predictive requirements of the situation are derived from the view that threshold response to flickered light is a matter of intensity discrimination (Crozier (1935-36)), and involves the statistical comparison of groups of effects (1) The curve for F_m as a function of I should lie above that for I_m as a function of F, (2) the shape of the two curves should not be the same, and the discrepancy between them (measured by $F_m - F$) should pass through a maximum as I increases, at the inflection of the $F_m - \log I$ curve, (3) the variation of I ($=\sigma_I$) should be directly proportional to I_m , when the critical illuminations are measured at fixed flicker frequencies, (4) the variation of F, when F_m is determined at fixed illuminations, should pass through a distinct maximum near the inflection point of the F — $\log I$ curve

We have already considered some of the evidence proving that the variation of the measured quantities in such experiments is, under suitable conditions, a property of the system of which the performance is under examination as an index of excitability (Crozier (1935), (1935–36), Crozier, Wolf, and Zerrahn-Wolf (1936–37)) This being the case, serious obstacles confront any attempt to pass from a series of homogeneous averages, as of intensity to produce a certain effect, to a mechanism for the basis of the effect. One conclusion emerging

from this is, that the mean increment of intensity ΔI just recognizable as greater than a given intensity (I_1) is primarily a statistical quantity, a property of a parameter of a frequency distribution, which possesses certain novel characteristics. In a succeeding paper it is shown that the practical recognition of these characteristics apparently brings about a unifying interpretation of all available relevant data pertaining to tests in which phenomena of intensity discrimination are the basis of the measurements

The investigation of these matters is confronted by certain intrinsic difficulties which it is believed can be circumvented by a procedure of the general sort which we have developed It is obvious that in any quantitative investigation of the reactive capacity of a given organism one is concerned with sources of variation ansing in (1) the nature and use of the instrumental aids to measurement, their ultimate precision and structural inadequacies and (2) the intrinsic variability of the reacting organism. The procedural scheme we have adopted based largely upon experience (of Crozier (1929) (1935)), is in outline this to obtain at each of a number of magnitudes of an independent variable the same number of estimations (of the same or as nearly as possible the same inherent precision so far as the adjunctive measuring devices are concerned) of the reactive capacities of the same individuals. Means of these measurements for these individuals are then aver aged, thus minimizing the instrumental errors" and the dispersion of the individual means gives an estimate of the individual variability when this index of dispersion is considered as a function of the independent variable a measure is obtained of the organism's capacity to vary its performance as a function of the fixed conditions (Crozier (1929) (1935)) The adequacy of this is attested chiefly by (1) the consistent account thus empirically secured of the capacity to vary per formance-and the incidentally demonstrated absurdity of the idea that organic variability is complex and indeterminate -and (2) by the demonstration which we shall illustrate that a given group of individuals of one type enables one to sample the capacity for variance which one single individual of these can exhibit The experimental difficulty here is, that to obtain adequate data for direct proof of (2) would involve tests over a length of time which is in general prohibitive and impracticable partly because the single tested individual might be expected to change in a significant way during the tests. The proof is thus neces sarily in part statistical but appears to be reasonable and adequate We do not give any extensive account of the application to these data of the method of analysis of variance (Fisher and Mackenzie (1923)) largely because the consist ent use of the same individuals introduces an unknown restriction upon degrees of freedom in comparing the different tables of data, the limitation here is properly termed organic "and is not of the sort contemplated in routine statistical practice (cf Crozier and Pincus (1935-36)) It should be said however that the general cor

relation method (variance analysis) has been applied to these data, without yielding any additional information or guidance beyond that given by the methods here used

п

The 12 individuals employed for these tests were selected from a lot secured in November, 1935, they were numbered and kept in separate aquaria fed at regular intervals 2 hours before the start of an experiment they were transferred to cylindrical jars, 10 cm in diameter and holding 220 cc of water, and put into darkness The temperature was 22° ± 0 5°, during an experimental run the temperature was 21 5° \pm 0 4° A jar was placed on the glass-topped table, surrounded by a striped screen, in the apparatus illustrated in our preceding papers (Wolf and Zerrahn-Wolf (1935-36b), Crozier, Wolf, and Zerrahn-Wolf Screens with 5, 10, 20, and 40 opaque vertical stripes (alternating with transparent stripes of equal widths) were used to produce various controlled flicker frequencies (F) The method of control and measurement of F has been described in the preceding paper, the method of controlling and estimating the intensity of illumination was also the same as that previously used, in the present experiments light sources of 100 and 1000 watts were used, without neutral filters, no properties of the data are correlated with a difference in the primary source of light

After being dark adapted, and subsequent to an interval of adjustment to allow for any disturbance due to handling, the striped cylinder is set into motion at a speed of rotation giving a certain fixed flicker frequency (F) The light is then turned on, with the diaphragm closed The diaphragm is then slowly opened (by a gear transmission) until the first response to the moving stripes is apparent The diaphragm opening is then noted, by means of calibration charts the illumination I is obtained from this reading. At each flicker frequency, with each animal, three such determinations are made in succession From these three a mean intensity (I_1) is gotten for each individual, at each F The average of the twelve values of I_1 gives the mean intensity I_n This procedure is used (Crozier, Wolf, and Zerrahn-Wolf (1936-37), and page 367) because it minimizes errors of estimation of I due to the technique and permits an examination of the intrinsic variability of response With the diaphragms set to give fixed illumination = I_m , the larvae are again examined to determine the critical frequency of flicker for reaction The striped cylinder is set into rotation at a speed giving a flicker frequency much higher than the critical, the light is then turned on, the larva remains quiet, the flicker frequency is then reduced slowly, until a response is obtained, at this instant the voltmeter connected with the magneto actuated by the driving shaft is read by another observer, and a shutter interrupts the light while the flicker frequency is again set at a high level A second and a third reading are then tal en These are averaged for each individual, as in the case of the in the same way intensity readings

The reaction taken to signify excitation by the flickered light consists typically in a swimming movement in the direction of the moving stripes. In certain cases the larva does not swim but lifts the head, turns toward the stripes, and after a few

seconds extends the labum toward the stripes ("catching reaction") This response occurs at the same levels of F and I as does the swimming movement The readings used, however, are based upon the occurrence of the initial swimming movement. It is very important that the larva should be quiet before a new reading is attempted any movement influences the apparent value of the critical I or F.

TTT

The observations have been treated in the same manner as in our experiments with Lepomis (Crozier, Wolf, and Zerrahn Wolf (1936-The three diaphragm readings at each fixed F are averaged to obtain from the calibration curves the critical intensity for response in each individual The intensity figures for the twelve individuals are then averaged to give Im, and the PE of the set of twelve is computed This is done to reduce the adventitious errors of making and reading the intensity settings The mean PE of the separate deviations for the twelve individuals from their respective means is quite small, and amounts to 1 3 to 1 6 per cent of the mean diaphragm reading, this is precisely the mean error of a setting of intensity in the original determination of the calibration curves of the apparatus, and is independent of the intensity and of the individual animal The individual means differ among themselves to a much greater extent and their dispersions exhibit an orderly relation to the in tensity The use of mean standard deviations of individual de partures from individual means of performance, for the analysis of data in genetically homogeneous material, has been illustrated in another case (Crozier and Pincus (1935-36)) where the number of measurements with each individual was larger and each datum was, in the nature of the measurement itself, an "internal average" just as in the case of response to flickering light

Any one individual does vary from time to time in reactiveness, and it is a major aim to investigate this variation because its properties give a clue to the real meaning of the average critical intensity for the threshold response (movement), but this variation, as will be proved, is at a much slower pace (as a rule) than could be reflected in measurements made in rapid succession. It is quite clear, however, that repeated sets of determinations of I_m at any fixed F, with one individual, would show over a long time precisely the sort of variation

given by the different individuals used at one time. The behavior of the dragonfly larvae differs from that of the fishes used in our previous experiment in one significant detail—the fish is predominantly quiet up to the moment of definitive reaction, whereas the Anailarvae are often in slight motion,—perhaps crawling, perhaps propelled by the rectal pump. This might be expected to make the readings more variable, since the occasional state of slight motion, or incipient movement could modify the apparent threshold for excitation. There is no evidence in the data, however, that this is a recognizable factor.

It is of some importance that there is no relationship between rankorder position as to relative sensitivity or mean sensitivity and chronological sequence of the tests over the period involved in the experiment. The time-order of intensities used in securing the data of Table V was essentially random. It is given here

```
Order of sequence in time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Flicker frequency tested 10 5 25 30 35 20 16 12 5 8 6 72 3 33 2 45 55 60 61 58 50 40 25
```

It is more important that the readings show no progressive change during the three determinations at each setting. This rules out any disturbance due to adaptation during a test. As the data in Table V show, altering the gear ratio or the stripe system on the rotated cylinder has no influence upon I_m , F_m , or the dispersions of I_1 or of F_1

It might be thought better to employ the dispersions of the sets of 36 measurements. We have preferred to utilize the method of "internal averaging" because it conveniently minimizes the influence of adventitious errors of measurement. The values of I_m , however, and of $P \to I_1$, computed on this basis, have exactly the same general properties as those given in Table V

The data on critical flicker frequency have been treated in a precisely analogous way Both sets of data demonstrate that there

has been no change of mean sensitivity during the course of the series of measurements, there is thus no evidence for progressive change in the animals, nor in the observer's use of his criteria for the occurrence of response. An interesting subsidiary point has to do with the fact that on two occasions a larva moulted several hours before a test was made, there was no change in its sensitivity before or after this occurrence.

TABLE I

Average rank-order positions (R_I, R_F) of relative sensitivity in 20 sets of determinations of mean critical intensity and of mean critical flicker frequency for response for 12 individual larvae of Anax The rank-order numbers in any one set of measurements (see text) are assigned in the order of increasing intensities (I) required to evoke response, and in the order of decreasing flicker frequency (F)

	Mean relate	ve sensitivity
Animal No	RI	R _F
1	7 42	6 41
2	7 17	7 23
3	8 07	7 35
4	6 92	5 95
5	8 17	7 45
6	4 10	5 96
7	4 72	5 68
8	6 36	7 48
9	6 51	6 55
10	7 00	5 75
11	5 15	4 85
12	6 85	6 86
ean	6 53 ± 0 781	6 46 ± 0 612

In order to show the necessity for considering the measurements of I separately for each individual we may examine the *relative* sensitivities of the 12 individuals in the various sets of measurements. This is best done by means of a rank-order scale. In any one set of tests the individual reacting with the lowest value of I_o is numbered 1, the next 2 and so on. From the group of 20 sets of tests a mean rank-order position is then computed for each individual. In the same way, from the determinations of F at fixed values of I rank

order numbers are assigned (in the sequence of decreasing magnitudes of F_c) and mean rank-order numbers again obtained. These are listed in Table I. The mean rank-order index of relative sensitivity is distributed in a completely random manner, for R_I and for R_F , the extreme deviates are $3 \times$ the PE of the dispersion, and the ex-

TABLE II

Correlation of mean rank-order positions from intensity determinations (R_I) with mean rank-order positions from flicker frequency determinations (R_F) for 12 individual larvae of Anax

			Meas	n R _F	
		4 0-4 9	5 0-5 9	60-69	7 0-7 9
Mean R _I	4 0-4 9 5 0-5 9 6 0-6 9	1	2	2	1
	7 0–7 9 8 0–8 9		1	1	2

TABLE III

Correlation between rank-order positions from intensity determinations (R_I) and rank-order positions from F_m determinations (R_F) made shortly afterward (same afternoon) (See Fig 1)

					R_F			
		1 5	3 5	5 5	7 5	9 5	11 5	Mean R _F
R_I	1 5 3 5 5 5 7 5 9 5 11 5	6 50 10 00 10 00 6 50 6 00 4 00	10 00 12 50 4 50 5 50 5 00 5 00	6 00 8 75 12 25 9 50 7 50 2 50	9 25 7 00 7 00 6 00 7 50 3 50	4 75 3 75 5 25 8 00 10 50 11 50	5 25 	5 08 4 64 5 76 6 71 7 14 8 31

treme differences are = 23 PE $_{Diff}$ in each case. However, mean R_I shows positive correlation with mean R_I (Table II). But this does not signify that certain individuals are consistently more sensitive than others. Determinations of I_1 and of the associated F_1 were made at one intensity on each day (in one afternoon). When the relation of I_1 to I_2 rank-order positions is studied in the data of the

same day, the correlation is marked (Table III), and the regression of mean R_{I_1} upon R_{I_1} is definite and significant (Fig. 1). The correlation completely disappears when the intensity sensitivity order on one day is related to the intensity sensitivity order on the *next* day,

TABLE IV

Exhibiting absence of correlation between rank-order position for intensity determinations (R_I) on one day and rank-order position from flicker frequency determinations (R_F) made on the *next* day

		Ţ	R	P	
		2	5	8	11
	2	12	15 50	14 50	16
	5	18 50	10 75	14 75	11 50
R_{I}	8	13	11 50	19 50	14 50
	11	16 50	15 75	9 25	13 50

Fig. 1 Mean rank-order number from determinations of F_1 associated with rank-order classes of the same individuals based on determinations of I_1 in tests made within 2 hours on the same day See text

or to the flicker frequency sensitivity order on the next day (Table IV) The same general relationship appears in two other series of measurements made in a subsequent experiment. This means that the relative sensitivities of the 12 individuals are adequately indicated by their respective averages of I_1 and F_1 , and that the individual sensitivities tend to be maintained for a period of several hours, but not for 24 hours. The form of the regression of F_1 rank-order position

upon I_1 position shows that the relatively most sensitive condition of an individual is maintained longer than its least sensitive state This can be pictured as due to fluctuation of an individual's relative sensitivity with time, in which the cycle of changing sensitivity is not sinusoidal but asymmetrical and rather flat-topped, the rising phase being more abrupt, and with briefer depressions to minimum sensitivity, thus the more sensitive individuals after a given interval which is not too long are found to preserve more distinctly their rank-order positions than do the less sensitive
It is easily seen that if the interval between them is not too long two determinations of sensitivity (R) with a single individual will then be related, on the average, in such a way that for a high value of sensitivity in the first measurement (R') there will be found a slightly lower mean value in the second (R''), for the lowest value in the first determination a distinctly higher value in the second, but that for an intermediate value (on the low R side) R'' must pass through a minimum

The change in sensitivity with time is completely out of phase in the several individuals—as proved by the random distributions of the mean rank-order positions Therefore it is not due to the time of day or to other events which might control the individuals as a group The absolute amplitude of the cycle of changes in sensitivity which must be assumed depends upon the intensity of the light, since the ordinate span of units of sensitivity (1 to 12) has the same kind of meaning as PE, and is proportional thereto. One is consequently justified in supposing that there must exist a connection between the fluctuation in sensitivity (on the rank-position scale) and the variation in I_1 for threshold response to flicker A line of reasoning has already been suggested according to which response to flickered light depends upon a discrimination between E_x , the effect of a light flash, and $E_x - \Delta E_x$, the persisting effect in the dark interval (Crozier (1935-36)) In the nature of the case both E_x and $(E_x - \Delta E_z)$ are averages, and are functions of I_x , with equal dark and light sectors I_x may be assumed to be about 0.5 I, or at least = nI, where I is the acting intensity of the light flash From the directly ascertained data of intensity discrimination ΔI is proportional to $P \to \Delta I$, and so to $P \to I_{(2)}$ (Crozier (1935–36)) Hence the fineness of the discrimination which can be made to meet a fixed criterion (threshold response to

flicker) is related to the frequency distribution of the effects produced by the acting intensity, and particularly to the dispersion of these effects. Consequently PE_{I_1} calculated from the 12 values of I_1 at each intensity measures the dispersion of "effects" produced by I_m in the states of the reacting organic system open to detection or measurement under the conditions of the present tests. The coherence of the data shows that using these 12 individuals at one time merely amounts to a convenient way of examining 12 randomly distributed reactive states of this system at about the same moment. The behavior of PE_{I_1} for example, as a function of I_{m_1} is precisely

Fig. 2 Frequency distribution of 95 determinations of I_1 , the critical illumination for response to flickered light with flicker frequency fixed at $F=25~\rm per$ second. The distribution is not skewed, shows no preponderance of low intensity readings.

the same as that obtained in cases where single measurements are made upon each of a large number of individuals from a homogeneous population (cf. Crozier (1935–36))

The index of dispersion of I_1 or of F_1 is a reproducible property. The two sets of determinations at F=25 illustrate this. We have also made a series of 12 additional sets of determinations of I_m and of P.E. I_1 at F=25, using 6 individuals, the mean values of I_m from these sets was 0 03943 milliambert, agreeing admirably with the values 0 03998 and 0 04061 previously obtained at F=25 (see Table V), P.E. I_1 was found to be 0 002735, the previous values (Table V) being 0 002095 and 0 002939. The various determinations of I_1

at F=25 total in all 95 The frequency distribution of these is quite random (Fig 2), there is no evidence to support the notion that the data are influenced by an "interval of uncertainty" in the flicker effect—as, if this were the case, the mode of the distribution should be well to the left

The points at the lowest intensities used are from the standpoint of the observer the most difficult to obtain 6 weeks after the data for mean I at F = 2 and F = 3.33 were secured the determinations were repeated with the same individuals This was done primarily because there was a reasonable suspicion that at the times when the first measurements at these frequencies were made the intensity of the source may have been actually too high, by a small amount (due to battery charging on the same circuit), or too variable. It was also desired to see if the observer's technique had improved or changed in the course of several months' day by day occupation with the taking of such readings, so that P E n might conceivably be affected if this quantity does reflect precision of observation rather than primarily the variation in the excitability of the Anar larvae determined values of I_m , and of PE I_1 , at F=2 and 3 33, are entered in Table V, and are given in Figs 3 and 6 (solid circlets with "tags") The indication is that the intensity of the light source was really a little high (hence, read as too low) in the case of the figures first determined at these particular flicker frequencies, this is strengthened by the findings in two other series of measurements discussed in the succeeding paper The slight displacement given by the second set of measurements does not in any way affect the treatment of the data The variation of I is in excellent agreement (Fig. 6) with the requirements of the plot drawn before these last determinations were made, and shows the absence of any influence upon the magnitude of P E_{I_1} due to change in the properties of the observer

We are interested chiefly in discussing the rational basis for our method of treating the primary data. It is to be noted that the procedure used, based on the properties of the measurements, results in a picture of the variation of performance which is astonishingly consistent with that already obtained in the case of other organisms (cf. Crozier (1935–36), Crozier, Wolf, and Zerrahn-Wolf (1936–37))

IV

The determinations of mean critical illumination (I_m) and of mean critical flicker frequency (F_m) are given in Table V, and in Fig 3 It is apparent that the F_m curve is continuously higher than that for I_m at fixed F This is the relationship predicted as a necessary consequence of the fact that the law connecting F and I for threshold

response, as given by the determinations, is not a curve, but a band with limits defined by a measure of the probability of the departures

TABLE V

Mean critical illuminations (I_m) at fixed frequencies of flicker (F), with PE I_1 (computed as in text) and mean critical frequencies of flicker $(F_m) \pm P \to F_1$ at these mean intensities, three determinations on each of the same 12 individuals (Anax junus) at each point

F	log I _m	P.E I1	P _m	P.X F ₁
per sec	mil'lamberis	≠ milislamberts	per sec	per sec.
20	4 4882	0 000,017 52	2 144	0 046,22
	4 5884*	0 000 020 94	ĺ	1 '
3 33	4 9005	0 000 036 85	3 589	0 058,37
	4 9784°	0 000 050,80	1	1
5 0	3 3367	0 000 301 8	5 200	0 108 9
6 72	3 5376	0 000,188 9	6 918	0 074 19
8.0	3 7308	0 000,435,9	8 168	0 059,47
10 0	3 8982	0 000 847 5	10 25	0 118 5
12 5	2 0649	0 000 453 4	13 00	0 139 1
16 0	2 2830	0 001,443	16 73	0 278 2
20 0	2 4881	0 001 678	20 80	0 310 6
25 0	2 6019	0 002 095	26 22	0 356 2
	2 6086†	0 002 939	26 24	0 363 1
	2 5958t	0 002 735	{	[
30 0	2 7449	0 002 729	31 06	0 346 7
35 0	2 8592	0 002,616	35 99	0 396 7
40 0	2 9696	0 004 881	41 04	0 357 8
45 0	I 0874	0 004 644	46 09	0 295 1
50 0	I 3438	0 010 58	51 19	0 277 5
55 O	1 7356	0 028 43	56 05	0 232 3
58 0	0 1252	0 073 08	58 69	0 230 4
60 0	0 5759	0 173 4	60 62	0 178 1
61 0	1 8407	6 825	61 42	0 201 7

 $[\]Gamma = 2.5$ stripe cylinder

F = (3 3-10) 10 stripe cylinder

F = (125-16), and † 20 stripe cylinder

F = (20-61), 40 stripe cylinder

^{*} Repetition of the experiment the lower values of I_m at F=2, 3 33 probably due to a fluctuation in lamp current (see text)

F=(2-35) inclusive, with gear ratio 1 1, \dagger and (40-61) inclusive, with ratio 2 1

of the individual determinations from the means The relation be tween the two curves (Fig 3) is of exactly the same sort as that

expected from an analysis of the data on Apis (Crozier (1935–36)) and found in the experiments on Lepomis (Crozier, Wolf, and Zerrahn Wolf (1936–37)) The present data are superior in the sense that the two curves were obtained concurrently Calculation from the width of the band describing $I_m \pm P \to I_1$ as a function of F shows that the discrepancy between them $(F_m - F)$ must be expected to pass through a maximum at the inflection point of the F — $\log I_m$ curve Fig 4 shows that this is found The intrinsic lack of precision in the determinations of critical flicker frequency at the highest intensities

Fig. 4 The vertical separation $(F_m - F)$ of the curves based upon (a) determinations of mean critical frequency of flicker (F_m) and (b) on determinations of mean critical illumination (I_m) at fixed values of F The experimental findings follow a curve which passes through a maximum in the expected way

causes the discrepancy to be larger than expected beyond F= about 80 per cent of maximum F, just as in the data on Lepomis (Crozier, Wolf, and Zerrahn Wolf (1936-37)) The difference (F_m-F) is almost exactly $3 \times$ the size of PE $_{I_1}$, and (see Figs 3, 4, 5 and Table V) is consistent, the horizontal separation is similarly related to PE $_{I_1}$

We have already referred to the fact that PE_I is lawfully related to I_m . The data of earlier experiments with Apis, and other relevant material, show that PE_I is directly proportional to I_m . Fig. 6 exhibits this relationship for the measurements on Amax. The several determinations of PE_{I1} are of the same statistical weight, hence

each is subject to a PE proportional to its own magnitude, consequently a plot of PE I_1 vs I_m should be in the form of a band with straight margins which diverge as PE I_1 increases (cf Crozier (1929), (1935), etc) For the lower values only of I_m it is mechanically

Fig 5 The separation of the curves based upon F fixed and F_m measured (Fig 3) is constantly = $3 \, \text{PE}_{P_1}$ Points above the inflection point in the $F - \log I$ plot (Fig 3) carry tags. This separation at any one point could happen once in 20 trials by chance, for the 20 sets of determinations the chance of the separation being accidental is $1 (20)^{20}$

possible to show this graphically in Fig 7 As is generally the case (Crozier (1935-36)) the band, regarded as straight, does not quite go through the origin, as theoretically it should, the line of central tendency in Fig 5 being

The "correction," 0 000,008, presumably indicates the magnitude of the constantly present contribution of a source of "error" which is due to the nature of the measurements and is independent of the magnitude

Fig. 6 The dispersions of the measurements of I_1 , as a function of $\log I_m$ data in Table V 3 additional determinations not included in Table V are plotted as open circlets. The points are expected to form a band of constant width. The central line divides the band drawn into two arithmetically equivalent zones (bisecting the abscissa dimension) seven observations are above the line eight below it eight on it, this demonstrates a random scatter.

of I The correction is so small that its effect is not representable in Fig 6. The proportionality of $\sigma P E_I$ to $P E_I$ brings it about that in a logarithmic plotting (Fig 6) the values of $P E_{I_1}$, given a large

number of them, should be distributed in a band with parallel edges. The inflection of the log $I_m - F$ curve (Fig. 2) leads to a central concentration of the plotted points in Fig. 6, but the random distribution of the determinations is attested by the fact that when the band in Fig. 6 is divided into two arithmetically equivalent strips by a line through the mid-abscissa of its breadth (I_m being the independent variable) the points are found to be equally distributed on either side of it (Fig. 4). The reproducibility of the determinations of $P \to I_1$ is shown by the "repeat" determination of the point at F = 25, already referred to in Section II, as well as by three supplementary

Fig. 7 PE II as a rectilinear function of I_m Only the lowest intensities used can be given on an arithmetic plot—The best fitting line misses the origin by not more than I = -0.00008 See Fig. 6

determinations indicated in Fig 6 by open circlets (not listed in Table V)

Just as, from a knowledge of the values of I_m and of PE I_1 , it is possible to predict the nature of the curve relating F_m to log I, it is also possible to predict the form of the dependence of PE I_1 upon I_m (or log I) (Crozier (1935), Crozier, Wolf, and Zerrahn-Wolf (1936-37)) This is given by one-half the vertical extent of the band formed by the plotting of $I_m \pm PE I_1$, it rises to a maximum in the region of the inflection of the log I curve, then falls (this is not dependent on the inflection, since no inflection occurs when I is plotted as a function of I), the high I end is not so low as the left hand limb, because

of the inherent lack of precision, relatively, in the determinations at this end—which means that there is less difference among the meas urements with the several individuals, but lower reliability than there "should" be in the averages for a single individual. The curve in Fig. 8 shows the dependence of $P = r_1$, as measured, upon log I, and Fig. 9 shows the relation to F_m . Two supplementary determinations, not entered in Table V, are shown as open circlets. The vertical scatter of the points also goes through a maximum, as it should, for reasons identical with those already mentioned in connection with the properties of $P = r_1$. (It has sometimes been supposed that in

Fig. 8 The dispersion of the measurements of F_1 as a function of $\log I$ The form of the band delimited by $\log (I_m \pm P \to I_1)$ as a function of F predicts that $P \to I_1$ must pass through a maximum near $\log I = 2.85$. The descending limb of the curve falls to a level higher than that of the left hand end of the curve, for reasons discussed in the text. Two determinations not included in Table V are plotted as open circlets.

measurements with a biological system the P.E. of the measurement should increase with the magnitude measured, a vague and essentially irrational analogy being made with the process of repeatedly applying a foot rule in ascertaining a length. The fact is, of course, that no such relationship is generally found at all. It is of some value, however, to point to the behavior of P.E. r_1 as an instance.)

The correlative behavior of $P \to I_1$ and $P \to I_2$ shows that the variation in I_2 respectively are two aspects of the fundamental organic variation in capacity for exhibiting the threshold response to flicker A theory of the mechanism of excitation cannot be based upon the

consideration merely of mean critical illuminations as a function of flicker frequencies, or upon measurements of mean critical flicker frequencies, the fact that these two curves are not the same, and differ in the ways we have discussed, suffices in itself to show that the relation between intensity and flicker frequency, for threshold response, must be stated in terms recognized as preserving the primarily statistical properties of the data. Otherwise dimensional incongruities are inevitable

Fig 9 The dispersions of the measurements of F_1 as a function of F_m See Fig 8

v

The reactions of larval Odonata to flickering illumination have been utilized by Salzle (1932) His data of Aeschia exhibit in a general way the sort of relationship between F and I_m which we have described for Anax The curve is much steeper, however. The reaction employed as test of excitation was the "catching motion" of the labium, directed at a moving spot of light on a revolving dark circle. The recognition of (that is, reaction to) flicker involves therefore in this case not equal durations of light and dark periods, as in our experiments, but a much greater relative duration of the dark interval. It will be shown that this may be expected to make the curve of $\log I_m$ as a function of F very much steeper. The shape of Salzle's curve, consequently, is not primarily due to a difference in the species used nor in the criterion of excitation. Our curve of I_m for Anax

is of precisely the same form as that secured in measurements with Apis (Wolf (1933-34)) when the light and dark intervals are also equal

Hecht ((1934), Hecht and Verrijp (1933–34), Hecht, Shlaer, and Smith (1935)) has given a provisional theoretical derivation of the equation for flicker fusion with equal dark and light periods. It is obtained on the assumption that the change of light adaptation proceeding during the light flash and the change of dark adaptation proceeding unopposed during the equally long interruption of light are brought into equality at flicker fusion. This cannot be made applicable to flicker fusion specifically without the introduction of an additional assumption, namely that the flicker frequency at fusion is proportional to the amount of photoproduct during a light flash. The relation of f, the critical fusion frequency, to intensity should accordingly be given by

$$\frac{2k_1}{k_2} = KI = \frac{f}{(c - f)^m} \tag{1}$$

where k_1 = the photochemical velocity constant, k_1 = the velocity constant of the regenerative dark reaction, c = a constant, the maximum flicker frequency, and n and m are exponents signifying the orders of the dark and of the light processes respectively

These equations do not fit the measurements with Anax, nor those There should be no significant difference due to the use of F, the frequency for marginal recognition of flicker, instead of f for flicker fusion The fit can be tested by means of Fig 10, we use only the measurements of I_m at fixed flicker frequencies in this illustra tion Log F should be a smoothly increasing function of log I, with continually diminishing slope. The slope at the lower end defines exponent n in equation (1), the form of the bend defining mcannot be said that with n = 2, m = 1, there is even an approxima tion to the data Increasing m makes the departure worse with n = 2 the fit at the lower end is not satisfactory. It is to be remembered that (Fig. 3) there are really two essentially concordant sets of measurements, the departures even at the low end of the graph in Fig. 10 are quite significant. Moreover, the data on Apis have the same properties This cannot be the result of the difference between

"fusion of flicker" as used in obtaining the data described by equation (1) and "marginal recognition of flicker" used in the present cases. This is definitely shown by the fact that our data on *Lepomis* (Wolf and Zerrahn-Wolf (1935–36a), Crozier (1935–36), Crozier, Wolf, and Zerrahn-Wolf (1936–37)), based on marginal reaction to flicker, not fusion, are quite well described by equation (1), as Fig. 11 demon-

Fig. 10 Mean critical illuminations for response to flicker, as a function of fixed flicker frequencies, for Anax larvae and for the bee (cf. Wolf (1933-34)). A logarithmic grid is used to exhibit the way in which the data behave with reference to the applicability of the equation $KI = F^n/(C - F)^m$. The continuous curve is drawn with n = 2, m = 1. The data for Anax and for the bee clearly exhibit the same general properties

strates, in this case, somewhat unusually (cf Hecht, Shlaer, and Smith (1935)), n = 2 and m = 1 for the cone portion

The failure of equation (1) to describe the data from the responses of insects to flickered light might be due to a real mechanical difference in the conditions. The curve in Fig. 10 might be regarded as in a measure resulting from the inability of low intensities to stimulate a certain proportion of the ommatidia—say those at the periphery of the eye—within the times permitted even at low flicker frequencies

Higher intensities might therefore recruit additional elements. The intensity discrimination data on the bee (Wolf (1932-33), of Crozier (1935-36)) contain no hint of such a complication (of Hecht (1935), where n=m=2), it is very doubtful that there is any difference in the technic in the two cases—for example, in the relation of the striped field to the bee's eye—which could account for this, and no obvious trace of any such effect appears in the data on dark adaptation as followed by means of tests involving intensity discrimination

Fig. 11 The data on Leponis (Wolf and Zerrahn Wolf (1935-36b)) are quite well described by equation (1) see text

(Wolf and Zerrahn Wolf (1935-36a), of Crozier (1935-36)) The visual acuity data on the bee, however, with normal eyes and with partially covered eyes (Hecht and Wolf (1928-29)), show an identical break at precisely the intensity at which it occurs in the logistic plot (Fig 13) of the bee flicker data The difference in the shape of the eye in Apis and Anax also renders this doubtful In any case, the possibility is open to test by means of experiments with only parts of the eye functioning, the visual acuity data do not include measure

ments with only the central area of the eye functioning. It is scarcely desirable to assume more than one class of excitable elements. Perhaps the strongest evidence against this is found in the absence of any indications in the data that the variation of I is a discontinuous function of I_m , in the case of Leponis (rods and cones) this evidence is provided (Crozier (1935–36)), but with Anax, as with Apis, there is no sign of it. We are therefore reluctant to consider that here there are two kinds of receptor elements with organically distinct ranges of thresholds for excitation

Even if by means of a correction for an effect of this sort the measurements with Anax and with Apis could be made to conform to equation (1) it would not of necessity follow that the assumptions leading to this formula are really efficient. It is implicit in our discussion of these matters that an adequate theory of the situation cannot in fact be based upon measurements of average intensities, because the organism's responses exhibit intrinsic variation (cf. Crozier (1935-36)). The deduction from other cases involving intensity discrimination is (Crozier (1935-36), and a subsequent paper) that discrimination results from the comparison of the effects produced by two populations of excited elements, or in one population at successive times. Curves of $\log I_m$ as a function of F might therefore be expected to have certain of the properties of population curves. The most generally useful such curve is perhaps the "logistic,"

$$Y = \frac{A}{B + De^{-px}} \tag{2}$$

Equation (1), with n = m, is in fact this equation, with

$$F = \frac{F_{\text{max}}}{1 + be^{-p \log I_m}},\tag{3}$$

as then

$$p \ln I = \ln \frac{bF}{(F_{\text{max}} - F)},$$

in each case K in $(1) = (1/b)^p$ For cone critical frequencies in the human subject Hecht (Hecht, Shlaer, and Smith (1935)) found $KI = f^2/(c-f)^2$, so that p = 0.5 When equation (1) describes the flicker curve, as in the case of Lepo mis, the logistic does so equally well (Fig. 12). For the cone portion of these data, where we have made n=2, m=1 in (1), the upper portion at least (all that is open to inspection) is well fitted (Fig. 12) with p in (3) = 0.82 (cf. Crozier (1935-36), for the rod portion, n=m=2. For the asymmetrical case, n=2, m=1, we write $F=F_{-}/(1+Fe^{-1} \log I)$

Fig. 12 The data on Lepomis are adequately described by the logistic equation, F (as percentage of maximum F) is plotted on a logistic grid (cf. Wilson (1921)) as a function of $\log I$. The rod and cone sections are regarded as separate populations, the departure of the highest point could be reduced by adjustment of the assumed value of F_{max} here taken as the highest F observed. The highest point on the rod curve presumably is a result of overlapping of rod and cone populations

With the data for Anax, and for Apis, the case is not quite so simple (Fig. 13). There is again indication of a change in the relation ship with increasing intensity (incidentally, the transition does not coincide with, and thus seems not to determine, the maximum in the curve of σF_1). This means that the required form of curve is

asymmetrical, for example, if in the lower portion of Fig 13, up to $\log I_m = \bar{1} 0$, \sqrt{F} is substituted for F the logistic relationship is obeyed very well

Fig. 13 The data on Anax show in terms of a logistic grid a separation into two sections, the upper may be regarded as a passable fit (p = 2), the lower becomes so if for F/F_{max} there is substituted $\sqrt{F/F_{max}}$ See text

There is thus no reason to suppose that applicability of equation (1) justifies the conception that critical illumination for flicker, as

a function of flicker frequency, depends upon the equality of average rates (or amounts) of change of photoproducts in the retina during light adaptation and dark adaptation respectively occurring in the periods of illumination and of no light. It necessarily involves such equality, as in any steady state. What is really made questionable by the "population curve" character of equation (1) is the idea that F (= 1/l) corresponds to the amount of photochemical change in a light flash. In fact, however, it can be shown in another way, quite in keeping with the requirements of the basic notion of comparison between "populations of effects" during the periods of light and of no light, that the formal adequacy of equation (1) does not signify the propriety of the reasoning whereby it was arrived at

The constants k_1 and k have the meaning of velocity constants, k_1 for the photochemical change (Hecht (1919-20)) must have a low temperature coefficient (even with allowance for effects upon absorption of light), whereas ke must have a much larger temperature coeffi cient (cf. Hecht (1926-27), Crozier and Wolf (1928-29)) If we lower the temperature certain specific predictions can be made on the basis of (1) When the maximum value of F is independent of tem perature, and this is the experimentally determined fact in the case we shall discuss, then at fixed flicker frequency F the right hand side of (1) will stay constant, but k_1/k_2 must increase with falling tem perature, consequently at fixed F the critical illumination must de crease Our investigation of this situation is described in a suc ceeding paper, the general result is that instead of decreasing, the critical intensity rises with falling temperature Consequently k_1 and k2 (and thus K) cannot have the meanings called for in the derivation of equation (1) It may also be noted that, from the standpoint of (1), the animal at higher temperatures should be less light adapted on exposure to light, consequently, at fixed I, F should fall (cf also Lythgoe and Tansley (1929)), actually it rises facts thus far considered are, however, in agreement with the require ments of the idea that for flicker fusion there must be established a relationship between F and I such that the average effect of a light flash (or the total effect during the light interval) just fails to be distinguishable from the effect due to or expressed as the after image of the flash Hecht has pointed out (Hecht, Shlaer, and Smith

(1935)) that the interval between flashes may be occupied with the effects governed by removal of photoproducts produced during the flash, not to be confused with the process governing the rate of dark adaptation. It is known that in a general way, and over an interval of some seconds, the brilliance of an after image declines, these phenomena are complex, but measurements at least show that when the intensity is gauged by contrast with measured intensities (cf Lasareff (1923), Kravkov (1924)) the brilliance declines logarithmically with time

These measurements involve time intervals longer than those concerned in critical flicker frequencies Data do exist, however, making it possible to push back the decay curve to very brief time intervals Fry (1934) measured the photic energy required in the human eye to match the after image of a flash of fixed energy as a function of time after cessation of the flash His figures show that the energy required for a "match," under such conditions that the after image of the first flash persists, declines logarithmically as a function of time (0 0025 to 0 125 second), also that it declines less rapidly when twice the area is initially excited Fry (1934) interpreted his data as indicating inhibition of the effect of a flash by the action of a succeeding flash, this seems to be an unnecessary assumption and indeed without any real foundation These measurements have been utilized by Piéron (1935) to support the theory of "meta contrast" Stigler appealed to Exner's conception of the metaphotic (Stigler (1910), (1918)) image, which Piéron rejects because of the delay in subjective recognition of the onset of a luminous flash, it does not appear to have been realized that these delays in recognition play no part where successive flashes are involved—as indeed the clear demonstration (Rubin (1929), Piéron (1935)) of the erroneous nature of the interpretation of the measurements of "Empfindungszeit" (Frolich, 1929) makes evident

There are phenomena of photic response in insects which indicate at least delay in the expression of the effect of a flash (Mast (1912)) It may also be safely assumed that the establishment of the effect produced by a flash does not instantaneously attain its full value, particularly when the flash involves movement of a bar or sector of light. For purposes of qualitative illustration and exploration, then, we may assume a scheme of the possible relationships which calls for a decay of the after effect of a flash which is dependent upon (1) the level of effect attained by a flash, a function of its intensity and of its duration, and (2) the control of the rate of decay by temperature, and which regards the establishment of a certain difference between the integrated effect of a flash and of its after effect as necessary for

marginal recognition of flicker The increase of I at fixed F, when the temperature is lowered, is a necessary outcome of this formulation Certain other consequences of this position, akin to that advocated by Exner (1870) and by Grunbaum (1897–98), will also be dealt with in a succeeding paper

VI

SUMMARY

Curves relating flicker frequency (F) to mean critical illumination (I_m) for threshold response to flickered light, with equal durations of light and no light intervals, and relating illumination (I) to mean critical flicker frequency (F_m) for the same response, have been obtained from homogeneous data based upon the reactions of dragonfly larvae $(Anax\ junius)$ These curves exhibit the properties already described in the case of the fish Lepomis The curve for F_m lies above the curve of I_m by an amount which, as a function of I_m or of F_m . The law of the observable connection between F and I is properly expressed as a band, not as a simple curve

The variation of I_m (and of \bar{P}_m) is not due to "experimental error," but is an expression of the variable character of the organism's capacity to exhibit the reaction which is the basis of the measurements. As in other series of measurements, P.E. is a rectilinear function of I_m , P.E. passes through a maximum as F (or I) increases. The form of P.E. as a function of I can be predicted from the measurements of P.E.

It is pointed out that the equations which have been proposed for the interpretation of curves of critical flicker frequency as a function of intensity, based upon the balance of light adaptation and dark adaptation, have in fact the character of "population curves," and that their contained constants do not have the properties requisite for the consistent application of the view that the shape of the F-I curve is governed by the steady state condition of adaptation

These curves can, however, be understood as resulting from the achievement of a certain level of difference between the average effect of a light flash and its average after effect during the dark interval

CITATIONS

Crozier, W J, 1929, The study of living organisms, in Murchison, C, The foundations of experimental psychology, Worcester, Clark University Press

Crozier, W J, 1935, Déterminisme et variabilité dans le comportement des organismes, Paris, Hermann & Cie

Crozier, W J, 1935-36, J Gen Physiol, 19, 503

Crozier, W J, and Hoagland, H, 1934, The study of living organisms, in Murchison, C, A handbook of general experimental psychology, Worcester, Clark University Press

Crozier, W J, and Pincus, G, 1935-36, J Gen Physiol, 19, 111

Crozier, W J, and Wolf, E, 1928-29, J Gen Physiol, 12, 83

Crozier, W J, Wolf, E, and Zerrahn-Wolf, G, 1936-37, J Gen Physiol, 20, 411 Exner, S, 1870, Arch ges Physiol, 3, 214

Fisher, R A, and Mackenzie, W A, 1923, J Agric Sc, 13, 311

Frohlich, F W, 1929, Die Empfindungszeit, Jena, Gustav Fischer, 2nd edition Fry, G A, 1934, Am J Physiol, 108, 701

Grunbaum, O F F, 1897-98, J Physiol, 22, 433

Hecht, S, 1919-20, J Gen Physiol, 2, 229, 1926-27, 10, 781

Hecht, S, 1934, Vision II The nature of the photoreceptor process, in Murchison, C, A handbook of general experimental psychology, Worcester, Clark University Press

Hecht, S, 1935, Intensity discrimination, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 3, 230

Hecht, S, Shlaer, S, and Smith, E L, 1935, Intermittent light stimulation and the duplicity theory of vision, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 3, 237

Hecht, S, and Verrijp, C D, 1933-34, J Gen Physiol, 17, 269

Hecht, S, and Wolf, E, 1928-29, J Gen Physiol 6, 727

Kravkov, S W, 1924, Arch ges Physiol, 202, 112

Lasareff, P, 1923, Arch ges Physiol, 201, 333

Lythgoe, R J, and Tansley, K, 1929, The adaptation of the eye its relation to the critical frequency of flicker, Great Britain Med Research Council Special Rep Series, No. 134

Mast, S O, 1912, J Animal Behavior, 2, 256

Piéron, H, 1935, J Psychol, 31, 5

Rubin, E, 1929, Psychol Forsch, 13, 101

Salzle, K, 1932, Z vergleich Physiol, 18, 347

Stigler, R, 1910, Arch ges Physiol, 134, 365, 1918, 171, 296

Wilson, E B, 1921, Proc Nat Acad Sci, 11, 925

Wolf, E, 1932-33, J Gen Physiol 16, 773, 1933-34, 17, 7

Wolf, E, and Zerrahn-Wolf, G, 1935-36a, J Gen Physiol, 19, 229, 1935-36b, 19, 495

TEMPERATURE AND CRITICAL ILLUMINATION FOR REACTION TO FLICKERING LIGHT

I ANAX LARVAE

By W J CROZIER ERNST WOLF, AND GERTRUD ZERRAHN WOLF (From the Biological Laboratories, Harvard University, Cambridge)

(Accepted for publication March 6, 1936)

I

Properties of measurements of the relationship between illumination and flicker frequency for response ("recognition of flicker") show that the theory of the relationship must be based upon something more than curves of critical frequency or of critical intensity Such measurements are not adequately described by their average values 1. The data really describe the probability that, with a given illumination (I) a certain flicker frequency (F_m) will be found, for a given organism, or conversely, with a given value of F, the probability that a certain critical illumination (I_m) will be found to obtain. The probabilities may be measured by the standard deviations of the observed values of F_1 or of I_1 The indices of dispersion of the observations, with constant numbers of observations, are expressions of a property of the reacting system, and under suitable conditions are not in any sense measures of "experimental error" as ordinarily understood, their pri mary properties show them not to result from inadequacies or irregu larities of technic or of observation From a knowledge of (1) $I_m \pm \sigma_{I_1}$ as a function of F, the curve (2) of $\Gamma_m \pm \sigma_{I_2}$ as a function of I can be predicted in its essential differences from (1) The law con necting F and I for critical response is thus to be regarded not as a curve, but as a band defining a region within which there is a certain probability that observations of marginal recognition of flicker will occur This band may not be very broad, so that it might be con sidered that a curve could be put through it which adequately char

 $^{^{1}}$ Crozier (1935–36), Crozier, Wolf and Zerrahn Wolf (1936–37a $\,b)$

acterizes the underlying processes responsible for the occurrence of response to flicker. The nature of σ_{I_1} and of σ_{F_1} as functions of I (or of F) makes it impossible, however, to employ the same method of determining an adequate fit of curve to data in the 2 cases (determinations of $F_m = \phi_1(I)$ and of $I_m = \phi_2(F)$, respectively), so a choice becomes arbitrary, and since a number of curves may be made to fit a given set of measurements equally well any final decision must rest upon the dimensional properties of the constants which the selected curve contains. This applies with the same force to equations derived from any relevant theory and to purely empirical curves

Equations have been derived which describe with admirable formal fidelity the relationship between mean values of I_1 as a function of F(cf Hecht, Shlaer, and Smith (1935)) We have found it necessary to inquire into this matter, because it is important for the theory which seeks to provide a generally applicable procedure for the unifying treatment of the data of sensory discrimination (Crozier (1935-36)) The position taken is that discrimination depends upon comparison of effects in two excited populations of nervous elements These elements may be centrally situated or peripheral, presumably they are central, at least in the meaning that primary receptor cells are not immediately concerned in the comparison upon which the manifestation of response (reaction or recognition) rests The comparison or competition which results in the signaling reaction is essentially upon a statistical basis and behaves as if dependent upon the standard deviations of the effects produced by these populations of elements The two sets of effects may originate in two discrete sensory fields, or may correspond to successive states of the same peripheral field and its central nervous representation

With flickered light, at the level of marginal recognition of flicker, a distinction is just made between the effects of light flashes and the effects associated with the alternating intervals in which no light is delivered (cf Fick (1879), Grunbaum (1897–98)) We deal with cases in which the light and the dark interval are equal. In an interval of no light the after effect (positive after-image) of a flash decays. The rapid cycle of flashes and interruptions provides a large number of these intervals. Critical response to flicker involves marginal discrimination between the two "populations" of effects. The action of a

light flash, in terms of the effect produced as concerned in the deter mination of response, unquestionably fluctuates, it must be supposed that the after effect also fluctuates, in part independently. In this way it can be understood that I_m and σ_{I_1} , at various fixed levels of F, are rectilinearly proportional and depend upon phenomena of intensity discrimination (Crozier (1935–36))

The equations describing flicker fusion as a function of intensity, for human visual effects, have approached the matter in another fashion, assuming that the critical frequency f is proportional to the concentration x of photoproduct at the steady state determined by the intensity I, and that at flicker fusion the velocity of formation of x is balanced by the velocity of its "dark" removal Hence

$$2Ik_1/k_2 = x^n/(\alpha - x)^m = f^n/(f_{md} - f)^m$$
 (1)

where

 $k_1 =$ velocity constant for photochemical production of x_i

 k_2 = velocity constant for thermal regeneration of photosensitive material from x

m =order of the photochemical reaction

n - order of the dark process

m and n = 2 for human cones,

m=2 or 1, n=1 for human rods

The descriptive adequacy of this conception for the human reactions (Hecht, Shlaer, and Smith (1935)) and for those of the fish *Lepomis* (Crozier, Wolf, and Zerrahn Wolf (1936–37 b)), successful also in giving an explanation of the basis of Talbot's law (Hecht and Wolf (1931–32)), does not necessarily justify the assumptions leading to its derivation, as we have already pointed out (Crozier, Wolf, and Zerrahn Wolf (1936–37 b)) When n=m, equation (1) is in fact identical in form with the logistic

$$F = \frac{F_{ma}}{1 + ce^{-s \log t}}$$

with z = 0.5 for n = m = 2, for n = m = 1, z = 1.0, for m = 2, n = 1, $c = 1/\sqrt{F}$ and the curve of F vs $\log I$ is asymmetrical

While this could be made consistent with the population no tion, the significance of equation (1) must be determined by the

Ι

properties of its contained constants. The simplest test of their meaning is obtained by varying the temperature. In this case we must expect from (1) that since the temperature coefficient of k_1 must be small while the critical increment for k_2 should be large, the effect of lowering the temperature must be to decrease critical I if f is fixed and if f_{max} is not affected (Crozier, Wolf, and Zerrahn-Wolf (1936–37 b)). The actual result is quite the opposite. Moreover, if in a vertebrate the rod and cone portions of a flicker curve require different values of k_1/k_2 and of m and n, a change of temperature should not affect the two portions in the same way or to the same extent, but experiment shows us that they are affected in just the same degree 2

This experimental finding is readily reconciled with the intensity discrimination theory of recognition of flicker, and is indeed predicted by it. This interpretation also accounts rather fully for the phenomena of variation, which the customary method of treatment ignores completely or dismisses as an unfortunate concomitant of observation. As has been indicated, however, the variation of I_1 and of F_1 is an essential property of the reacting organism, and the lawful character of this capacity to exhibit variation in the magnitude of critical I_1 or

² In the formulation originally proposed (Hecht and Verrijp (1933-34)), where the case $m=1,\,n=2$ was discussed, the stationary state conception led to the expression

$$\frac{KI}{2c} = \frac{f}{\frac{a}{c} - \sqrt{f}},$$

where $K = k_1/k_2$, a = total amount of photosensory material (100 per cent), f = critical frequency, and $c = \sqrt{2c'/k_2}$, where $c' = \Delta x = \text{the constant quantity of } x$ involved in the fluctuation from dark to light at flicker fusion This, rewritten, is

$$\frac{k_1I}{\sqrt{8c'k_2}} = \frac{f}{\sqrt{\frac{ak_2}{2c} - \sqrt{f}}},$$

which gives an increase of I at constant f if the temperature falls, but it necessarily implies a value of f_{max} which is a function of temperature, for which there is no evidence. On the other hand, if c' is also taken as a function of temperature, f_{max} should still rise with rising temperature but one is further left in doubt as to the kind of function to assume for c', no definite prediction v ould be possible concerning the direction of change of I_m with change of temperature

 F_1 must be accounted for, after all, the dispersions of the meas urements are one of their primary attributes—to ignore them is scarcely just, and may be simply willful

We discuss first the relation between temperature and the shape and position of the curve for mean critical illumination as a function of flicker frequency with the larva of the dragonfly Anax numus The measurements have been restricted to determinations of In and of σ_{I_1} , we have earlier described the relation between these measure ments and those of F_m and of σ_R , as a function of I for these larvae, at one temperature, 21 5° ± 0 4° (Crozier, Wolf, and Zerrahn Wolf (1936-37 b)) The new determinations were made at 124° ± 04° and at 27 3° ± 0 2° Physical limitations precluded for the moment making concurrent determinations of F_m Our main purpose was to investigate the change in position of the $F - I_m$ curve with altered temperature in an animal with which the complication of two sets of receptor elements (rods and cones) would not be encountered presumptive effect of the "mechanical disadvantage" of the marginal ommatidia of the eye in the reception of photic excitation (Crozier. Wolf, and Zerrahn Wolf (1936-37 b)) should not in this respect inter fere with simplicity of outcome, although it introduces complications in the use of equation (1) for this animal

The results are also of interest as indicating how an obscure and peculiar relationship to temperature may be obtained in the case of a biological process the measurements of which are intrinsically complex from this standpoint and unsuitable for the determination of tempera ture characteristics (cf. Crozier (1935)). A subsequent paper contains the outcome of similar experiments with the sunfish Leponis (cf. Wolf and Zerrahn Wolf (1935–36 b), Crozier (1935–36), Crozier, Wolf, and Zerrahn Wolf (1936–37 a))

п

Procedure and technic have been described in our preceding papers (Wolf and Zerrahn Wolf (1935-36 a b) Crozier (1935-36) Crozier, Wolf and Zerrahn Wolf (1936-37a, b)) We have used the larvae of Anax junius employed in the earlier work (Crozier Wolf and Zerrahn Wolf (1936-37b)) One of the 12 individuals used died at the beginning of this experiment. Another died in the course of it The previous determination of the relationship between critical illumination (I) and critical flicker frequency (I) was made at temperature 21 $S \pm 0.4$ At

T

fixed flicker frequencies (F) mean values of I_c , labelled I_m , were now found at $t=12.4^{\circ}\pm0.4^{\circ}$ and at 27.3° $\pm0.2^{\circ}$. The average value of I_c was obtained for each larva from three readings of the intensity just required to force it to move with the direction of the system of revolving stripes, the mean of these values, I_1 , was then averaged for all individuals and recorded as I_m $P \to I_1$ is the $P \to I_2$ of the dispersion of the individual values I_1 , and is independent of the number of individuals if this number is large enough and if the relative sensitivities of the individuals are distributed at random. The reasons for this procedure have been considered at some length (Crozier, Wolf, and Zerrahn-Wolf (1936-37b))

The relative sensitivities of the larvae used are examined by considering their rank-order numbers in the various sets of measurements. The mean values for the 10 individuals used throughout the experiment are randomly distributed and have the same properties as in the series previously analyzed. Tests were made usually with two flicker frequencies on one day. The correlation between individual rank-order position class in the first of two such tests and the mean value of the rank position in the second test is of the sort already found in comparing sensitivities in successive determinations of relative sensitivity among larvae of one lot in which I_1 and F_1 were found on the same day (Crozier, Wolf, and Zerrahn-Wolf (1936-37b)). Rank-order positions on successive days show no correlation whatever, as found previously. We are justified in regarding the populations of I_1 at the various F's as indicating fluctuations in a property of the reacting system responsible for the larva's reaction

The larvae were kept at a desired temperature, for 27 3°, 0 5° above and for 12 4°, 0 5° below that at which a determination of I_m was to be made, in individual jars in a well regulated thermostat. With some control of the temperature of the dark room only a slight change of temperature occurred in a jar when it was placed upon the exposure stage of the apparatus for the length of time required for a measurement. This was ascertained by control runs in which the jar contained a thermometer. The series at 12 4° was run first, then that at 27 3°. These are at about the most extreme temperatures with which it is possible to obtain reliable results.

ш

The data are collected in Table I In Fig 1 the curves of I_m as a function of F at $t^\circ = 12.4^\circ$ and 27.3° are compared with that gotten with these larvae at $t^\circ = 21.5^\circ$ It is to be noticed that points on the curve at 21.5° are repeatable after an interval of some weeks

The data show, rather surprisingly, that the maximum flicker frequency, where the $F-I_m$ curve has flattened off, is independent of temperature. They also indicate that the intensity at which threshold response occurs is practically independent of temperature when maximum flicker frequency is attained

The direction of the orderly shift in the $F-I_m$ curve with change of temperature is not that which the use of the stationary state equation calls for (cf Crozier, Wolf, and Zerrahn Wolf (1936–37 b)) The animal should be relatively in a more dark adapted state the higher the temperature, since it must be presumed that the temperature coefficient of the "dark" process, k_2 in equation (1), is greater than that for the photochemical velocity constant k_1 Hence at given intensity I_m F should on this basis be found lower the higher the temperature, but

TABLE I

Mean critical illuminations at various frequencies of flicker (F) at three temperatures Anax larvae Each mean is derived from the average of three determinations on each of the same 12 or 10 larvae (At 21.5° a number of values of I_m were determined at other frequencies, these are given in our preceding paper (Crozier Wolf, and Zerrahn Wolf (1936–37b)) and are plotted in Fig. 1)

F	$\log I_m$ milliamberts, with $\log P_* E_{I_1}$							
•	124 土04		21.5 ±04		273 ±02			
per sec						<u> </u>		
2	4 8530	5 4433	4 5884	5 3209	4 4153	6 9744		
5	3 5267	4 3462	3 3367	4 4797	3 0997	5 5904		
10	2 1173	4 6830	3 8982	4 9282	3 7160	4 3111		
16	2 5437	3 2573	2 2830	3 1593	2 0795	4 8849		
25	2 8461	3 5250	2 6019	3 4682	2 4613	3 1790		
35	Ī 0795	3 9446	2 8592	3 4166	2 6885	3 4732		
45	ī 3109	3 6035	1 0874	3 6669	ſ	ĺ		
50	ī 5417	2 4440	1 3438	2 0245	ī 1501	3 7608		
55	ī 9751	2 6973	1 7356	2 4538	l	j		
60	0 6106	ī 2586	0 5759	1 2390	0 5339	2 9784		
61	1 8532	0 0738	1 8407	0 8341	J	J		

the reverse is true From equation (1), moreover, if F_{max} is independent of I, then at fixed F, I must decrease when k_1/k_2 is increased by lowering the temperature. Since the shift is in the opposite direction the constant k_1/k cannot have the meaning which equation (1) calls for We have obtained a precisely similar result in experiments with the fish *Lepomis*, discussed in a following article. The finding has therefore an apparently general significance

The shape of the $F - I_m$ curve is not greatly different at the several

temperatures Without undue violence to the data the portion of the curve from F=2 to F=20+ may be regarded as rectilinear upon a loganthmic grid (Fig 2), the slope is about the same at each tempera ture ($F=AI_{m_0}^{0.22}$) The small deviations from this rule, suggested by the continuous lines drawn through the plotted points, are con ceivably consistent and are perhaps real Above F=20 the curva ture is of a different sort and depends upon the temperature, being less

Fig 2 Log I_n as a function of $\log F$ The broken lines indicate that up to about F=25 the data may be regarded as signifying that $d \log F/d \log I_n=0.524$ As the continuous lines suggest however, the deviations may be systematic Above F=20 the curvature depends on the temperature

abrupt the lower the temperature These relationships also appear when F is plotted against I arithmetically

In the analysis of these effects it might be tempting to regard re sponse at a fixed value of F as corresponding to a constant level of effect achieved by the stimulating agent. It is clear, however, that this is not permissible in any simple sense. The complexity of the matter is shown by the fact that the temperature coefficient of I_m is a

I

function of F above F=20 and declines as F increases, below this level it is approximately constant, with an apparent temperature characteristic for $1/I_m$ of $\mu=11{,}000$, but a value of μ for F at constant I is only 6,000. The temperature characteristic plot, moreover, is not rectilinear in any case, and the apparent temperature characteristic is a function of the temperature

At constant I, F is increased as the temperature rises, the time required for a given intensity to build up an effect such that its decay in an equal period of no light is not detectable, is thus reduced Similarly, at fixed F, I is reduced as the temperature is increased. But this is not to be taken as evidence that the effect produced by light of given intensity in a fixed time has an appreciably high temperature coefficient. The basis for a delectable difference between light flashes and intervals of no light is also a function of the temperature

That up to $F=25\pm$, $d\log F/d\log I$ is approximately constant (Fig 2), with the value 0.52, independent of temperature, follows simply from the fact that the logistic formulation of the curve (Crozier, Wolf, and Zerrahn-Wolf (1936-37b)) fails in this portion although

approximately obeyed if
$$\left(\frac{100 \ F}{F_{\text{max}}}\right)^{0.5}$$
 be substituted for 100 F/F_{max}

This disturbance we have suggested as due to the fact that at low intensities, up to F = 20, within the time allowed for reaction to flicker according to the activity of the most effective ommatidia, the marginal ommatidia are perhaps at a disadvantage in the reception of light, owing to their angular separation (cf Baldus (1926)) ing F and using the same criterion for the value of I_e results in using higher intensities, the assumption is that then the effective area of ommatidia involved in the threshold recognition of flicker is increased, because, even with the same duration of a flash, the higher intensity employed can act upon a sufficient number of ommatidia in such a way as to be significant for the determination of the response portion of the flicker curve, then, for which $F = AI_m^{0.52}$, the value of A may well appear as a function of the temperature, it increases as the temperature falls, because the thresholds for photic excitation for the marginal and other ommatidia at fixed F presumably rise with lowering of temperature—since this must bring about a relative enhancement of the stationary state condition in terms of light adaptation

The magnitude of $\frac{dI}{dF} = k \frac{F}{I}$ (Fig. 2) should be inversely proportional to I at constant F and independent of I^o if the action of the light depends upon a purely photochemical effect

FIG 3 The variation of I_1 measured by PE I_1 , is a rectilinear function of I_m at each temperature (the slope on the logarithmic grid = 1). The value of the constant B in PE I_1 = BI_m changes slightly as the temperature is altered this scatter of the determinations which is proportional to σ_{PE} I_1 is discussed in the text

w

The variation of I_1 obeys the same general rules as in our earlier series $P \to I_1$ is a rectilinear function of I_m , log $P \to I_1$ is a straight line

function of log I_m , with a slope of 1 (Fig 3) The value of B in the equation $P \to I_1 = BI_m$ depends to some extent upon the temperature, estimated from the lines of central $P \to I_1$ at log $I_m = 0$, B is 23 4 at 27 3°, 40 5 at 21 5°, 21 0 at 12 4°, and thus appears to go through a maximum at intermediate temperature. The spread of the values of $P \to I_1$, estimated from the vertical widths of the bands in Fig 3, is a measure proportional to $P \to P \to I_1$, and is thus equivalent to $a \to I_1$, where a is a constant and a is the number of a (constant at each temperature). With correction for a, this spread has at a 1 the

Fig. 4 PE I_1 as a function of F See text

approximate values 0 107 at 27 3°, 0 222 at 21 5°, 0 204 at 12 4°. The proportionality constant for the relation of PEPEI, to PEI has therefore values in the ratios 4 22 8 99 2 52 at these temperatures. With all allowance for the difficulty of accurately determining the widths of the bands in Fig. 3 it is apparent that the "spread coefficient" is less at the highest and lowest temperatures. In consequence of this, PEI is also an inverse function of temperature at constant flicker frequency (Fig. 4), but the displacement of the curve of PEI is F with change of F is not quite of the same form. In this respect also, then, the law of the connection between F and F is equally apparent in the relation of PEI to F (Crozier (1935–36))

In addition to demonstrating anew the lawful character of the variation in the determinations of I_1 the additional features suggested by the complex relationships to temperature will require consideration in any theoretical discussion of the basis for discrimination of flicker This is reinforced by the fact that similar relationships appear also in our data on *Lepomis*

We have already commented upon the fact that at higher intensities of illumination the sharper reactions of the animals do not reduce $P \to I_1$ (Crozier, Wolf, and Zerrahn Wolf (1936-37 a, b)) A similar conclusion is apparent from the examination of the data at high and low temperature. At any given intensity the movement of the larva which constitutes the threshold response is less sharp and easy to note promptly the lower the temperature, this is in no way correlated with the changes in $P \to I_1$ at constant I. The relation $P \to I_1$ to the 2 variables I and I therefore gives no support to the idea that $P \to I_1$ is an expression of "error of observation," it is consistent with the idea that $P \to I_1$ measures the fluctuating capacity of a larva to exhibit the discrimination of flicker, and that this fluctuating capacity is an elementary property of the mechanism of the discrimination

٧

The change in the curve of I_m as a function of F when the temperature is altered can be accounted for qualitatively on the basis that distinction of flicker requires a discrimination between (1) the effects of flashes and (2) the after effects consequent upon the action of these flashes. It cannot be accounted for quantitatively from the form of the $F-I_m$ curve alone, although progress in this direction can be made by taking into account the variation of I_1 , additional information is required as to the effect of varying the proportion of "light time" to "dark time" in a flicker cycle, to be obtained in subsequent experiments

We assume that the building up of the effect of a single flash of light does not occur instantaneously, but with a speed which is significant and is a function of I and of the level of light adaptation (cf. Bills (1920)), that the magnitude of the effect produced at the termination of the flash is essentially a function of the intensity and of the duration of the light period, and that the I process is primarily photochemical and has a small temperature coefficient. The after effect of a flash

is assumed to be the result of a "dark" process with typically large temperature coefficient for its velocity of decay (Fig 5). It is not required at the moment to correlate these assumptions (Crozier, Wolf, and Zerrahn-Wolf (1936-37 b)) with the suggestive and presumably relevant observations on the building up and decay of retinal potentials, optic nerve discharges, and cortical potentials (cf Adrian and Matthews (1928), Hartline (1925), Granit and Davis (1931), Granit

Fig 5 When flicker is just recognized (A) the action of a flash (a-d) of intensity I' is represented by the curve a-b, (a-d)=1/2 F seconds, E is a scale of effect produced. In the succeeding dark interval, of equal length, the effect at b decays. Recognition of flicker is assumed due to a certain proportionate difference between areas a b d and b d c. The curves a b and b c are assumed first order for convenience. If F is kept constant and I' is increased to I'' (B), a condition is attainable in which E fluctuates between the same levels (dotted lines, C), but only at the expense of a larger discrepancy between the "light" and "dark" areas—the flicker is more pronounced. This can be brought back to a condition of marginal response to flicker only by reducing 1/2 F—that is, by increasing F (as at D), when a new condition of balance is attained (at F) the same kind of difference between a'b'd' and b'd'c' can be established as in the base of a b d and b d c at A. This corresponds diagrammatically to the fact that as F is increased, I increases also

(1935), Bartley (1934), etc.) The apparently fixed character of the maximum flicker frequency, and its comparative independence of intensity at different temperatures, presents a special problem. It is a curious fact that in various forms which have been investigated (man, Lepomis, bee, Anax) F_{max} has values which range only from about 50 to 61 per second. This suggests an interval of about 0 009 second as a general minimum time for photochemical action of a repeated flash permitting recognition of flicker when the light and dark

intervals are equal, above an intensity characteristic of the type of eye briefer flashes are not then reacted to as flickering. The value of F_{max} is, however, dependent upon the area of the flicker field on the retina (Hecht and Smith (1935)) and upon wave length (Hecht and Shlaer (1935)), so that interpretation in terms of anything resembling "implicit time" would appear to be quite dubious. Two additional assumptions are required for the formulation of a mechanism to account for the observed effects. These are (1) that the "after image

Fig. 6 At A a relation between I' and F is depicted at a higher temperature such that (gf Fig. 5) flicker is just reacted to on the basis of the difference between the light" area and the 'dark (as a function of the "light" area). The tempera ture is then lowered (at B), the velocity constant of the dark process governing the decay of E is then lowered, giving a curve of form ii in contrast to i keeping I' the same a new condition of constant rise and fall of E (dotted lines) can be attained (at D) but the areal difference is then insufficient for recognition of (reaction to) flicker. If, however, the intensity is increased to a value I'' (at C) a condition of balance is obtainable in which the difference between ij n and j n k is great enough, in terms of ij k to permit recognition of the difference. (If I' were retained the same result is to be obtained by lowering the flicker frequency.) These relationships are consistent with the experimental findings

process" does not proceed during a light flash, but that its decay begins when delivery of light is interrupted, and (2) that for marginal recognition of flicker only the increase and decrease of effect are significant. These ideas are embodied in the diagrams given in Figs. 5 and 6. Fig 5 shows how for marginal recognition of flicker on this basis, a balance between the effect of a flash (the area $a \ b \ d$) and the effect during the dark interval (area $d \ b \ c$) requires a certain difference between the two areas. We may consider that the difference should be a certain fraction of $a \ b \ d$. If now the intensity be increased from I' to I'', the

areal difference at balance (C) will be too large, unless $(at\ F)$ the flicker frequency is raised (time of a flash shortened). The curves are assumed to be first order, for simplicity, the rate constant for the I curve must be assumed less (in these cases only very slightly less) the higher the level of E, to account for the effect of the state of adaptation

In Fig 6 the effect of change of temperature is illustrated. There is necessarily demanded by this formulation an increase of intensity at constant flicker frequency if the temperature is lowered, if the average integrated effect of a flash is just to be distinguished from the average integrated after effect.

With higher intensity (and F), at fixed temperature, a given small change of intensity will produce a smaller absolute and relative change in the area a b d (Fig. 5) and in the difference (a b d) -(b d c), consequently a larger variation in I will be tolerated and will appear in the measurements

When the temperature is lowered, at fixed F, I_m is higher—But the natural fluctuation in the decay constant of the after effect process will be expected to be less the lower the temperature—as measurements of velocities of biological processes as a function of temperature uniformly show (Crozier (1935))—Hence with fall of temperature we expect at constant I_m (and thus with falling F) that the tolerated variation of I_1 for recognition of flicker will pass through a maximum, as we have seen is indicated, with decreasing F (= increasing time of a flash), the area $a \ b \ d$ will increase, and a given change of I will produce a larger absolute effect, but as the temperature falls this will stand less and less chance of being cancelled by intrinsic variation in the velocity of the after effect decay

It is not difficult, on this basis, to account for the behavior of PE r_1 as a function of I (Crozier, Wolf, and Zerrahn-Wolf (1936–37 a, b)), but this need not be gone into in detail here, since we do not yet have direct information as to the changes of PE r_1 , as a function of I, as the temperature is altered. But we may point out that at fixed t^o as I is increased, and F, PE r_1 passes through a maximum (Crozier, Wolf, and Zerrahn-Wolf (1936–37 a, b)), consequently a fixed deviation in F, δF , must be relatively constant in its effect in a mid-range of I and of F and must be of relatively greater consequence at the two ends, at high I and F (brief time) it should be easier to detect since it would

(in terms of its influence upon the area a b d in Fig 5) be more sig mificant and less likely to have its effect cancelled by the action of spontaneous variation in the velocity constant of the light excitatory process, and at low I and F we should expect to find δF more influential owing to its there producing an effect comparable to slight change in I With information to be obtained from experiments in which the proportion of light time to dark time in a cycle is varied, it should be possible to make a closer approximation to the forms of the curves in Figs 5 and 6, and thus to account precisely for the variability relation ships discovered

ν

STIMMARY

The curve of mean critical illumination (I_m) for response to flicker as a function of flicker frequency (F) for the larvae of the dragonfly Anax jumins is progressively shifted toward higher intensities the lower the temperature. The maximum flicker frequency (one half the cycle time of light and no light) and the maximum intensity with which it is associated are very little if at all affected by change of temperature.

These facts are in agreement with the requirements of the conception that recognition of critical illumination for reaction to flicker involves and depends upon a kind of intensity discrimination, namely between the effects of flashes and the after effects of these flashes during the intervals of no light. The shift of the $F-I_m$ curve with change of temperature is quite inconsistent with the stationary state conception of the determination of the shape of the curve

The dispersion (P E $_{I_1}$) of the measurements of I_1 is directly proportional to I_m , but the factor of proportionality is less at high and at low temperature than at an intermediate temperature, the scatter of the values of P E $_{I_1}$ is also a function of the temperature. These facts can also be shown to be concordant with the intensity discrimination basis for marginal recognition of flicker

CITATIONS

Adrian, E D and Matthews, R, 1928 J Physiol, 65, 273
Baldus K 1926 Z vergleich Physiol, 3, 475
Bartley, S H 1934 Am J Physiol, 108, 397

Bills, M A, 1920, Psych Mon, 28, 101

Crozier, W J, 1935, Determinisme et variabilité dans le comportement des organismes, Paris, Hermann & Cie, 56 pp

Crozier, W J, 1935-36, J Gen Physiol, 19, 503

Crozier, W J, Wolf, E, and Zerrahn-Wolf, Gertrud, 1936-37a, J Gen Physiol, 20, 211

Crozier, W J, Wolf, E, and Zerrahn-Wolf, Gertrud, 1936-37b, J Gen Physiol, 20, 363

Exner, S, 1868, Sitzungsber k Akad Wissensch, Math-naturwissensch Cl, Wien, 58, 601 1870, Arch ges Physiol, 3, 214

Fick, A, in Hermann, L, Handbuch der Physiologie, 3, pt. 1, Leipsic, F. C. W. Vogel, 1879, 3, 215

Granit, R, 1935, J Physiol, 85, 421

Granit, R, and Davis, WA, 1931, Am J Physiol, 98, 644

Grunbaum, O F F, 1897-98, J Physiol, 22, 433

Hartline, H K, 1925, Am J Physiol, 73, 600

Hecht, S, Intensity discrimination, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935, 3, 230

Hecht, S, and Shlaer, S, 1935, J Opt Soc America, 25, 199

Hecht, S, Shlaer, S, and Smith, E L, Intermittent light stimulation and the duplicity theory of vision, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935,3, 237

Hecht, S, and Smith, E L, 1935, J Opt Soc America, 25, 199

Hecht, S, and Vernjp, C D, 1933-34, J Gen Physiol, 17, 269

Hecht, S, and Wolf, E, 1931-32, J Gen Physiol, 15, 369

Wolf, E, and Zerrahn-Wolf, Gertrud, 1935-36a, J Gen Physiol, 19, 229 1935-36b, J Gen Physiol, 19, 495

TEMPERATURE AND CRITICAL ILLUMINATION FOR REACTION TO FLICKERING LIGHT

II SUNFISH

By W J CROZIER ERNST WOLF AND GERTRUD ZERRAHN WOLF (From the Biological Laboratories, Harvard University, Cambridge)

(Accepted for publication, April 4 1936)

I

The relationship between frequency of interruption (F) and intensity of illumination (I) for threshold response indicating discrimina tion of non-continuous light (flicker) exhibits in the case of the sunfish. as in the human (Hecht and Verrijo (1932-33 a, b), Hecht (1934), Hecht, Shlaer, and Smith (1935)), two distinct sections a rather flat low intensity portion assigned to the exclusive or predominant activ ity of rods, and a steeper portion, rising abruptly from the former. reflecting the involvement of cone vision (Wolf and Zerrahn Wolf (1935-36), Crozier, Wolf, and Zerrahn Wolf (1936-37 a)) The curve of I_m as a function of F differs from that of F_m as a function of I in a manner predictable on the basis (Crozier (1935-36)) that the law of the relationship is properly to be described not by a curve, but as a band based upon the observable dispersions of the measurements (Crozier (1935-36), Crozier, Wolf, and Zerrahn Wolf (1936-37 a)) curve of I_m as a function of F is quite well fitted, however, by the logistic

$$F = F_m /(1 + e^{-\mu \log I}),$$
 (1)

where the value of ρ differs for the rod and cone sections, or by a log probability integral, or at 21 5° by another form of this equation, with theoretical implications, which has been used to describe the flicker extinction curve in the case of man (Hecht, Shlaer, and Smith (1935))

$$KI = \frac{F^n}{(F_m - F)^n} \tag{2}$$

The equation does not really fit in a satisfactory way at the extreme lower (rod) end. The question arises as to whether this stationary state equation ((2), with $F \equiv x$, the stationary state concentration of photoproduct derived from decomposition of photosensitive material) correctly formulates the theory of the mechanism whereby flicker extinction is attained. There should be no essential difference in the properties of data based upon (a) marginal recognition of flicker and (b) upon marginal extinction of flicker.

The K in equation (2), on the basis that (2) is the stationary state equation, is the ratio of two velocity constants (Hecht, Shlaer, and Smith (1935)),

$$K=2k_1/k_2,$$

 k_1 = the photochemical velocity constant concerned with the production of ι , k_2 = the velocity constant of the thermal "dark" process whereby ι is removed

Equation (2) thus requires that with increase of temperature k_2 will increase much faster than k_1 , and consequently that if F_{max} is not affected by temperature then at any fixed F the mean critical illumination must increase

We have tested this in the case of the larvae of the dragon fly Anav *junius* Instead of increasing with rise of temperature, I_m decreases This result is quite consistent, however, with the requirements of the idea that a certain type of difference between the effect of a light flash and the after effect of its action is required for recognition of flicker (Crozier (1935-36), Crozier, Wolf, and Zerrahn-Wolf (1936-37 b, c)), and was indeed predicted by the use of this conception, it also gives a reasonable account of the properties of the variation of I_1 been desirable to extend these observations to deal with the visual If the same type of dependence of I_m reactions of a vertebrate and of σ_{I_1} upon temperature should be apparent, as is the case, the possibility of a general theoretical treatment is thereby greatly im-And the real meaning of equation (1) and particularly of equation (2), will be clearer if in the case of the vertebrate the rod and cone portions of the flicker curve (with their necessarily different magnitudes of K) are found to be influenced by change of the temperature in just the same manner or in different ways

п

The experiments were made with the sunfish previously called Lepomis Enneacanthus gloriosus (Holbrook), using exactly the procedure in our earlier work. We are indebted to Mr W C Schroeder of the Museum of Comparative Zoology for the identification of these 'little sunfish" and their separation from the very closely similar Lepomis We had previously determined I_m as a function of F at 215 \pm 05 (Wolf and Zerrahn Wolf (1935-36)) This curve was re-determined

TABLE I

Mean rank-order positions (R_I) , indicating mean comparative values of I_1 in a series of tests at various values of F, for different individual sunfish $R_F =$ a series based on determinations of F_m the same individuals were used in all tests at 12 4° and 27 3°, another lot at 21 5° Increasing R_I in order of in creasing I_1

	Temperature					
	12 4	21	27.3			
Sunfish No.	N = 10 fish	N =	N = 10 fish			
	n = 26 sets	R _P n = 23 sets	R _I s = 15 sets	# = 18 sets		
1	6 13	4 55	6 57	5 94		
2	5 87	4 69	4 87	6 88		
3	6 13	5 14	7 40	6 53		
4	6 75	6 86	7 10	6 14		
5	5 27	6 76	7 87	5 03		
6	4 02	6 76	7 30	5 28		
7	5 50	8 42	4 20	4 97		
8	4 61	6 76	5 33	3 92		
9	5 17	8 01	7 47	5 50		
10	5 15	5 76	7 07	4 47		
11)	6 91	6 03			
12	ł	7 12	7 23			
Mean ± P.E.1	5 46 ± 0 549	6 48 ± 0 846	624 ± 0915	5 47 ± 0 652		

at $12.4 \pm 0.4^\circ$ and at $27.3^\circ \pm 0.3$ These temperatures were chosen for convenient comparison with the results given by Anax larvae at the same temperatures (Crozier Wolf, and Zerrahn Wolf (1936–37c)) Several points on the curve at 21.5 were re-determined, and found to agree very precisely with the figures in the earlier series

Ten individuals were employed, the same fish being used throughout the tests With each fish, at each flicker frequency (F), three readings of critical intensity (I) were made, the average of these $3 = I_1$ for this individual From the 10 values of I_1 at each F the mean (I_m) was computed and the P.E. of I_1

The procedure was that which we have already described (Wolf and Zerrahn-Wolf (1935-36), Crozier, Wolf, and Zerrahn-Wolf (1936-37b, c)) We desired to see how the variation of I_1 would behave at the several temperatures. The variation of F_1 is less easy to study in this respect, since the law of σ_F as a function of fixed values of I is not so simple as that of σ_I as a function of I_m (cf Crozier (1935-36), Crozier, Wolf, and Zerrahn-Wolf (1936-37a, b)). Our use of PL I_1 is based upon the fact that, as I_1 has been determined, it reflects in our population of individuals a fluctuating capacity to exhibit the index response. The relative sensitivities of the 10 individuals are randomly distributed in the successive tests at different values of F, this is taken to indicate that each fish gives, at any time, an independently random level of I_1 , the several individuals exhibit, at one time, levels of sensitivity such as any one fish would show if examined repeatedly, in combination with the lawful behavior of PE I_1 as a function of I_m we are thus

TABLE II

Showing the absence of correlation between relative sensitivities of individual sunfish in successive sets of determinations of I_1 . The individual rank-order numbers (R_I) are assigned in order of increasing values obtained for I_c . The mean values of $R_{I'}$ in the second of two determinations (same afternoon) associated with $R_{I'}$ classes in the first determinations were

$R_{I'}$	15	3 5	5.5	7.5	95
12 4° (24 sets, 10 fish) R ₁₁ , 21 5°	5 72	6 25	5 30	5 38	4 75
(23 sets, 12 fish) 27 3°	6 47	7 01	5 80	6 93	6 80
(18 sets, 10 fish)	4 94	5 41	5 21	5 61	5 56

enabled to regard the indices of dispersion as measuring a primary property of the capacity to give the response to flicker. This has been indicated already for our measurements at 21.5° It is substantiated by the data at the other two temperatures, as Table I demonstrates. It is apparent in Table I that the average position of an individual, as regards relative sensitivity, does not differ by more than is to be expected by chance from the mean of its set, or from that of any other individual, the extreme difference between entries in any column of Table I = 2.3 $P = D_{U/I}$ In successive sets of trials on the same day (Table II) there is no correlation between the two rank-order numbers for the same individual

Ш

The data are given in Table III, the measurements of I_n at 21 5° (Wolf and Zerrahn-Wolf (1935-36), Crozier (1935-36), Crozier, Wolf, and Zerrahn-Wolf (1936-37 a)) are included for comparison. They

are exhibited graphically in Fig. 1. The range of intensities covered is so great that in a plot upon this scale it is difficult to do justice to the figures

TABLE III

Mean critical intensities (log I_m , and PE I_n) for reaction of sunfish to flicker ing light as a function of flicker frequency F, at three temperatures (Data at 21 5 from Wolf and Zerrahn Wolf (1935–36) Crozier, Wolf and Zerrahn Wolf (1936–37a) See text

F	log Im + PE. I1 mill lamberts							
•		12 4		21 5	Ī	27.3		
per sec								
3	7 9201	± 0 536 × 10 ⁻⁷	7 6555	± 0 694 × 10-7	1			
4	6 3392	0 106 × 10 ⁻⁴	6 1784	0 520 × 10 ⁻⁴		± 0 372 × 10 ⁻⁷		
5	6 5594	0 154 × 10 ⁻⁴	6 3701	0 399 × 10 ⁻⁴		0 378 × 10 '		
6	6 3693	0 211 × 10-4	0 0,02	0 000 // 10	0 2110	0 510 % 10		
U	5 3784	0 931 × 10 ⁻⁴	5 2385	0 303 × 10 ⁻⁸	5 0253	0 281 × 10→		
7	4 3738	0 165 × 10 ⁻⁴	4 1855	0 279 × 10 ⁻⁴		0 217 × 10-4		
8	3 1844	0 357 × 10 ⁻¹	4 9954	0 190 × 10 ⁻¹		0 133 × 10-4		
9	2 0060	0 152 × 10 ⁻²	3 0302	0 170 X 10	1	0 100 X 10		
,	2 0047	0 361 × 10 ⁻³			i			
	2 0132	0 624 × 10 ⁻³	3 7983	0 124 × 10 ⁻²	3 6732	0 274 × 10 ⁻³		
10	2 7638	0 175 × 10 ⁻²	2 5600	0 743 × 10 ⁻²	2 3665	0 846 × 10 ⁻²		
12	2 9560	0 339 × 10 ⁻¹	2 0000	0 /43 × 10 -	2 5419	0 124 × 10 ⁻²		
15	1 1735	0 239 × 10 ⁻²	1		2 0419	0 124 × 10 -		
15	1 2375	0 146 × 10 ⁻¹	2 9543	0 126 × 10 ⁻¹	2 7440	0 236 × 10 ⁻²		
20	1 4637	0 160 × 10 ⁻¹	1 2591	0 177 × 10 ⁻¹	1 0592	0 319 × 10 ⁻³		
20 25	1 7755	0 268 × 10 ⁻¹	1 5631	0 630 × 10 ⁻¹	1 3609	0 166 × 10-1		
25	1 7700	0 208 X 10 ·	1 0031	0 030 × 10 .	1 3603	0 715 × 10 ⁻¹		
20	0 0453	0 278 × 10 ⁻¹	ī 8118	0 731 × 10 ⁻¹	1 6249	0 162 × 10 ⁻¹		
30	0 3465		0 1418	0 129	1 9444	0 291 × 10 ⁻¹		
35		0 120	0 1419	0 129	1 5444	0 291 X 10 ·		
40	0 7308	0 168	0 4601	0 281	0 2423	0.630 \(\cdot \cdo		
	0 7383	0 151	0 4601	0 281	0 2423	0 620 × 10-1		
45	1 2748	0 571	4 0405	0.415	0.0500	0.466		
	1 2728	0 465	1 0465	0 415	0 8532	0 166		
48			1		1 3056	0 558		
50	2 2751	1 844						
	2 2817	1 933	2 2264	11 53	2 1898	2 994		

We have indicated that the measurements at 21 5° are described rather well by the equation (Hecht, Shlaer, and Smith (1935))

$$KI_m = F^n/(F_{max} - F)^m$$
 (2)

where n=2, m=2 for the lower (rod) segment and n=2, m=1 for the upper (cone) portion (Crozier, Wolf, and Zerrahn Wolf (1936–37 b)) The extent to which this is true of the data at the other two temperatures (Fig 2) may be most conveniently shown in a plot of log F vs $\log I_m$ The fit may be considered acceptable for the "cone portion," although with these values of the exponents it is not really adequate at 12 4° or at 27 3°, the curvature is a function of tempera ture. The deviation at the lowest frequencies is real and significant

Fig. 2 Log I_m as a function of log F See text

(The arrangement of the data at the lower end has earlier been treated as due to chance variation (Crozier, 1935-36)) On the basis of a possible separation of the rod and cone contributions which is discussed subsequently (page 424), the region from F=7 to $\Gamma=10$ represents a zone of intensities in which the two contributions are added, one could then fit equation (2) to the points at F=3 to F=7 (215°) with n=2, m=1 as in the case of the cone section (dotted line in Fig 2) The deviations from this at the other two tempera tures are similar to those in the case of the cone segments. The devia

tions appear to be systematic, and are also found in a series of measurements in which F_m was determined at fixed I (Crozier, Wolf, and Zerrahn-Wolf (1936–37 a)) They may be due to the use of "neutral" filters with slightly different properties in obtaining the low intensities of illumination, the intensities at F=3, 4, 5 were gotten with a 1 10,000 filter, at F=6 a 1 1,000, at F=7, 8 a 1 100, at F=9 a 1 10 filter The variation data, however (Fig 4), contain no indication of qualitative differences

It is to be noticed (1) that as the temperature is lowered I_m is increased at constant F, and (2) by about the same proportion at all intensities until the maximum F is approached, (3) that the change in I_m is proportionately about the same for both rod and cone sections of the curve, and (4) that the maximum F is independent of temperature and practically independent of intensity Points (1), (2), and (4) agree precisely with those already established for the flicker response We have discussed the way in which these phenomena appear to support the "intensity discrimination" conception of recognition of flicker (Crozier, Wolf, and Zerrahn-Wolf (1936-37 c)) need only call attention here to the fact that the similar shift of the rod and of the cone portion of the curve (Fig 1) is also consistent with Since in equation (2) m (at 21 5°) may be taken to differ for the rod and cone sections, and since the k_2 's might not therefore (or in any case) be expected to have the same temperature coefficients, we might not expect that if the theory leading to this equation were applicable change of temperature would lead to the same kind of shift in the positions of the two portions of the entire curve But if we deal with the operation of a mechanism of discrimination, based upon the involvement of a decay process governing the after effect of a light flash, this is not altogether unexpected. The constancy of F_{max} at different temperatures, and the inconstant curvature of the upper portions of the $F-I_m$ curves, leads one to expect that equation (2) could not apply unless the exponents n and m (apparent orders of reaction in equation (2)) are functions of temperature Fig 2 shows that the equation used for the curve at 21 5°, with n = 2, m = 1 for the cone portion, n = 2 = m for the rods, does not really give a fit for the cones at the other two temperatures Plotted in terms of equation (1), on a logistic grid (the modulus has been neglected), the exponent p is practically constant and is independent of temperature (Fig 3) The form of the function is not affected by temperature, its parameters there fore measure a property of the reacting organism, and make possible an investigation of the nature of this property

It is of some interest to consider briefly the difficulties arising if one attempts to estimate temperature characteristics for the underlying processes which might be presumed to be involved in determining the

Fig. 3 The data of Fig. 1 on a logistic grid $F/F_{max} = 1/(1 + e^{-\rho \log t})$, with $\rho_- = 1$ 37 for the cone portion (F > 10), $\rho = 0$ 5 for F < 10

effects shown in Fig 1 As in the case of Anax (Crozier, Wolf, and Zerrahn Wolf (1936–37 c)), the temperature coefficient of intensity at constant F is negative and is a function both of F and of temperature (T). This is scarcely consistent with the idea that a constant amount of photoproduct is involved in the light dark cycle at each F and at constant temperature I_m is a declining and practically rectilinear function of FC, the slope constant being a function of F. The temperature coefficient of F (= 1/2t) at constant I is positive, and is a

function of I and of T, its values differ for the rod and cone sections, and are not the same as that for I at constant F The conclusion necessarily is that the immediate basis for recognition of flicker is quantitatively a function of F, of I, and of T

ΙV

The connection between I_m and PE n was discussed in considering the sunfish flicker data at 21.5° (Crozier (1935-36), Crozier, Wolf, and Zerrahn-Wolf (1936-37 a)) It was pointed out that for the lower section of the curve these two quantities are rectilinearly proportional Above a certain intensity the logarithmic plot of I_m vs PE n, however, may be regarded as rectilinear but with a slope (exponent) = 1 A slope of 1 was obtained for this upper portion of the curve by plotting log PE n against log (I + 0.10). The idea was tentatively entertained that this might signify, for the cone section of the curve, the necessity for a subtraction of the variability due to the continuing participation of rod excitation. This notion must now be somewhat revised. At the other two temperatures used the same type of connection between I_m and PE n is again observed, but with a lateral shift in the position of the graph and a change in its breadth (Fig. 4)

The shift of position is such that the lines for 12 4° and for 27 3° are to the right of those for 21 5° The best fitting central line has, for the lower portion, the equation

```
PE I_1 = I_m(0 182) at 21 5°
= I_m(0 0314) at 27 3°
= I_m(0 0562) at 12 4°
```

At given intensity PE n_1 increases in the order 27 3°, 12 4°, 21 5°, while F increases directly as T increases, at given F, PE n_1 goes through a maximum at 21 5°. This is precisely the relationship encountered in the case of the experiments with Anax (Crozier, Wolf, and Zerrahn-Wolf (1936-37 c)). If one considers PE n_1 as a function of F, curves are obtained of the same general character as for I_m as a function of F (Crozier (1935-36)), but the order of increasing PE n_1 at the three temperatures puts the curves in the sequence 27 3°, 12 4°, 21 5°

These facts substantiate the lawful character of the behavior of PE_n as a function of intensity. They are quite inconsistent with any idea to the effect that PE_n measures an "error of experiment," the

precision of the mere judgment of the occurrence of the index response depends on the sharpness and clarity of the animal's movements, this increases with increasing I and with elevation of temperature and should lead to a decrease of PE I_1 , but there is no correlation of this sort

Fig. 4 The variability of I_1 for response to flicker $\log PE_{I_1}$ or $\log I_m$. See text. The slope up to $\log P.E_{I} = 2$ i is 1. The vertical breadth of the plot is a function of temperature. The position of the graph is moved laterally as a function of temperature.

This may be investigated by a procedure already used in principle for the analysis of variation of geotropic behavior of rats (Crozier and Pincus (1931–32a and b) (1932–33) (1934–35)) In those instances variation of performance was measured not variation of intensity giving threshold performance. The principle

however, is that the relation between variation and mean may be of the same form, although the variation index at a given level of the inciting variable may be changed by altering conditions. On one particular day, for reasons which are obscure, all our fishes used in the present experiments were unusually "restless" and gave quite violent responses to flicker at the thresholds for reaction. The mean intensities obtained on this day, at 12 4°, were

F	$\log I_m$	$P \to I_1$
40	0 7340	0 424
50	2 2774	7 146

Reference to Table III shows that these values of I_n each agrees admirably with the results of two other determinations spaced some days apart, and in fact are indistinguishable from the means of these pairs. But $P \in I_1$ was 2.5 to 3.8 times as great as in the sets obtained from the same individuals when not in this excited state. The slope of the line connecting $\log P \in I_1$ with $\log I_m$, however, agrees precisely with that given by the acceptable measurements. It will be of some importance to investigate the action of general excitatory conditions upon the properties of $P \in I_1$, since this may permit a quantitative separation of the rôle of variation due to the reacting mechanism from that due specifically to the mechanism of intensity discrimination. We suggest in another connection (page 430) the importance of a genetic test of the character of the flicker curve which should also give information as to the functional basis of the variability

We have already indicated how the changes in variability appear to be consistent with a theory of response to flicker (Crozier, Wolf, and Zerrahn-Wolf (1936–37 c)), in the case of the Anar data, and this need not be repeated here—Further data leading to a more extensive test of the "intensity discrimination" conception will be given by experiments in which the relation of light time to dark time is systematically altered

A noteworthy additional feature of the data has to do with the spread of the band encompassing or describing $P \to I_1$ as a function of I_m . As found with Anax, the "spread coefficient" of $P \to I_1$, which may be taken as B in the formula

$$PE_{PE}_{I_1} = BPF_{I_1}/\sqrt{N}$$

is also a function of temperature. The scatter of the determinations of PE I_1 is greater at the lowest temperature. This may be estimated from $\sqrt{N}(PE''_{I_1} - PF'_{I_1})/PE_{I_1}$ at fixed I_m , where PE''_{I_1} is the upper limit of the band, PE' $_{I_1}$ the lower limit. Approximate values for this fraction are 12 3° 3 32, 21 5°, 0 906, 27 4°, 177, for the lower

section of the graphs in Fig 4, for the upper section the proportionate spread is 266, 305, 184. These values are better established at 123° and at 274° than at 215°, and the latter series was made with a different series of individuals, a larger number of determinations in the rod region at 215° would undoubtedly give a wider spread. The

Fig 5 Log PE I_1 25 log $(I_m + c)$, for values of PE I_1 > antilog 2 1, to give a slope = 1

general implication, as in the Anax case, is to the effect that the spread coefficient for PE $_{I1}$ is less the higher the temperature, corresponding to an increase in the speed (hence "precision") of the processes leading to reaction when the excitation is adequate

The change of slope of the logarithmic graph of PE I_1 against I_m occurs at a higher value of I_m in the order 21 5°, 12 4°, 27 3°, but the

level of PE 11 at which the transition is apparent is substantially the same (antilog $\bar{3}$ 9) The upper portions of the bands can be described as straight, with slope = 083 (Fig 4), or, by addition of a constant to I_m , as rectilinear with a slope of 1 (Fig. 5) Adding a constant to I_m is equivalent to subtracting a constant (0 00745) from PE $_{II}$ have suggested (Crozier, Wolf, and Zerrahn-Wolf (1936-37 c)) that this might signify the correction for "full excitation of rods". The values of $\log I_m$ at which the correction for this purpose becomes necessary are approximately 12 4°, $\bar{1}$ 15, 21 5°, $\bar{2}$ 5, $\bar{2}$ 7 3°, $\bar{1}$ 5 levels show no exact correspondence with the order of positions of the transitions to the cone portions of the flicker curves (Fig. 1), the outof-place value is that at 273° If we suppose, however, that the approximately constant level of log PE $I_1 = 385$ corresponds to the full effect of excitation of rods, we can perhaps believe that with lower absolute values of PE I_1 at given I_m , this contribution to the total variation should be more effective. It is possibly not without sigmissions at F = 25 (27 3°) and the two at F = 15 (12 4°) show a wide difference at precisely the level (Fig. 4) which is assumed to mark transition to the lower slope

v

A special problem arises in dealing with the flicker measurements with eyes of vertebrates
It has to do with the separate functioning of rods and of cones (Hecht and Verryp (1932-33b), Hecht, Shlaer, and Smith (1935)), reflected in the two segments of the curves of Fig. 1 This double type of curve is not obtained with animals in which there is no evidence of duplex constitution of the excitable retinal fields, such as Anax and the bee (Crozier, Wolf, and Zerrahn-Wolf (1936-37 b), Wolf (1933-34)) The immediate question is, From the curves in Fig. 1 is it possible to deduce properties of the mechanism of excitation? A practical aspect of this concerns the precise mode of superposition of the cone effect upon that assignable to the rods extreme positions are possible either the response to flicker is determined by the most sensitive excitable elements, or it is due to a critical value of the summated excitation of all the elements excitable under the conditions For diverse visual functions one or the other view might be necessary. And a still different theoretical position is

possible—if not indeed required. The point has been made that it is inadmissible to deduce a theory of mechanism from measurements of average critical excitation energies alone, since, in view of the varia tion of performance inherent in biological systems, an essentially arbitrary procedure must be adopted if theory is to be tested by curve fitting (Crozier (1935-36)) The functional connection between flicker frequency and fluctuation of intensity to give the end point is conditioned by the fluctuating effect produced by a given intensity To assume that this fluctuation is governed by peripheral events, in the eye, is arbitrary and unnecessary. We must deal solely with "effects," defined in the only manner in which they can be defined. namely in terms of the result by which we recognize them dealt with marginal response to flicker in terms of intensity discrimina tion, considering that a discrimination must be possible between the effects of flashes of light and the effects of their after action (after image) (Crozier (1935-36)) This view is required by the relation of flicker recognition curves to temperature, and it accounts satis factorily for the variability functions (Crozier, Wolf, and Zerrahn Wolf (1936-37 c)) The total direct effect of a light flash within a fixed time interval must be the result of the total of nerve impulses to which it gives rise There is enough general evidence to show that at least two important elements are to be recognized as taking part in this total the number of active retinal elements, and the number of impulses proceeding from each (cf Hecht (1934)) The particular aspect of performance selected for measurement will determine whether (1) number of active elements, governed by the relation between threshold distribution and intensity, or (2) total density of nervous effect, is the limiting variable. The intensity discrimination view of marginal response to flicker calls for a form of the integrated density of effect idea, the total effect of a flash is just discriminated from the total effect in the interval after the flash. It must be presumed that different nervous elements of any one type (e g, cones) will vary, at a given time, in the magnitude of the direct effect produced in them by the light flash and in the associated after effect, and consequently in their ability to participate in the activity of discrimination phrase "nervous element" is used deliberately, to include peripheral sense cell and its central nervous representation, the ultimate decision

as to the effective locus, very possibly central, is not prejudiced by this terminology, and the problems of detail are kept more fairly in It is to be conceived that the variation of capacity to participate in the discrimination of flicker, under constant external conditions, is analogous to the change in this capacity produced by altering the temperature At constant temperature, with increasing I and F. an intensity is ultimately reached beyond which, at still higher intensities, a longer time must be allowed for the decay of after effect in the dark interval if the effects in the light and dark intervals are to be just discriminated This is not to be confounded with the requirements of minimum time for threshold excitation of a sensory cell Diagrammatically, this may be represented in a manner similar to that used in our preceding paper, in which the action of temperature was considered (Crozier, Wolf, and Zerrahn-Wolf (1936-37 c)) sufficiently high intensity of flash little change in the decay curve of the after effect is to be produced by further increase in intensity, so that comparison of the areas under the light flash curve and the decay curve, using the criterion of marginal recognition of difference, will require longer time intervals for increases of intensity beyond this point, this means that for a given F, beyond the maximum, as I increases a smaller and smaller number of excitable elements will be able to contribute to the recognition of flicker

Precisely this finding has been made at the upper end of the flicker curve for man, with small test fields (Hecht and Verrijp 1932-33 a)), the curve bends, and the function is no longer monotonic Anar, and sunfish this would in all probability be found if, with our apparatus, sufficiently precise measurements could be made with much higher intensities than we are able to use The drop in the cone curve is pushed to higher intensities when a flickered area is surrounded by a non-flickering field (Hecht, Shlaer, and Smith (1935)), when the whole eye is exposed to flicker the failure of rods to be involved at high intensities may in effect provide a kind of steady surround at the periphery of the retina, this may result in the absence of a drop in the curve for the whole eye until very high intensities are reached proper conditions its counterpart might well be detectable in connection with the rod curve Certain human flicker curves, but not all, do show a significant depression at or slightly before the onset of the

cone use (Ives (1912), Hecht and Vernjp (1932-33 a)), which tends to be more extensive in the case of retinal areas further toward the periphery and (data of Lythgoe and Tansley (1929)) with more complete light adaptation. In the data on the sunfish (Fig. 1) there is no dip, but a distinct and significant upward trend starting at about $\log I_m = \overline{4}$ 0 or above. This is shown in all four independent sets of measurements (cf. also Crozier, Wolf, and Zerrahn Wolf (1936-37 a)). The beginning of this use is at progressively higher intensity as the temperature falls (Fig. 1). It provides anchor points by which to judge the results of an attempt at downward extrapolation of the cone

Fig. 6 The result of extrapolating the logistic curves for the cone portions of the flicker response curves (Fig. 3) The extrapolation cuts the $\log I_m$ axis at each temperature at a point appropriate to account for the rise near $\log I_m = 40$ in Fig. 1 The difference curve (dotted) is discussed in the text (only that for 27.3° is shown)

portion of the curve Any such extrapolation is somewhat dubious at best, its outcome is to be evaluated by the usefulness and coherence of its predictions. The rectilinear character of the cone curve on a logistic grid (Fig. 3), down to F=10, invites backward extrapolation to lower flicker frequencies by means of this relationship. The extent of the extrapolation is only 20 per cent of the total range of F. The outcome, shown in Fig. 6, indicates that the extrapolated origin of the cone curve comes at a value of I_m which at each temperature coincides with the location of the "bump" on the original $F = \log I_m$ curve. The logistic plot of F_m as a function of I at 21.5° (data in Crozier, Wolf, and Zerrahn Wolf (1936-37 a)) agrees precisely with that for

 I_m at this temperature Accepting this extrapolation we may then determine by difference the contribution made by rod excitation at flicker frequencies $\langle F = 10 \rangle$ to the total effect upon which response to flicker is based Above F = 6.3, a level apparently not influenced by temperature (just as with the cone maximum), this contribution The decline is associated with higher values of I_m the lower This is consistent with our view that as the temperthe temperature ature is lowered the velocity constant for after effect decay is less, as then at a given F a higher intensity should be permissible if a given kind of difference is to be obtained between effect of light flash and its decay We therefore regard the results of this analysis as consistent with the indications provided by the human flicker data They lead to the view that in the region of intensities where both rods and cones function to contribute to the effect determining response to flicker the contributions of the two are additive, but that the rod contribution fades out of the picture as higher and higher intensities (and therefore higher flicker frequencies for the cone curve) are used On this basis also the photostationary state character of the shape of the flicker curve is clearly illusory

This mode of separation of rod and cone curves involves arithmetic addition of flicker frequencies in the region of overlapping, a procedure which raises a number of questions The logistic formulation of the cone curve implies that critical flicker frequency measures an additive property of some feature of excitation which is governed by log I Why it should be so is another matter A suggestion is given by data on critical flicker frequency as a function of area of retina determinations of the flicker curve for equal areas at various locations on the human retina show that F increases as the total number of active elements involved at the given intensity becomes greater (Hecht and Vernjp (1932-33 a)) The relation between F and wave length is of the same kind (Hecht, Shlaer, and Smith (1935)) At a constant I, F increases as the area is made greater at a given location (Granit and Harper (1930)) For the range of intensity where F is very nearly proportional to log I, it is nearly proportional to log area at If increase of area at fixed I means increase in number of elements of effect, and increase of I with constant area has the same sort of significance, then the relationship between them (at least over

this range) is expressible as a simple power function In equation (1) we can then write

$$F = F_{max}/(1 + e^{-h \log cN})$$

where h and c are constants and N signifies the variable by means of which the number of active elements of the effect determining F is increased For N may be inserted either area (A) or intensity (I). on the basis that $A \equiv q I^B$ Essentially this situation has been pointed out by Hecht altering the area of an excited field merely shifts the position of the log F vs log I curve without changing its shape (Hecht. Shlaer, and Smith (1935)) Wald has been able to show that the dependence of various visual functions upon area is quite satisfactorily accounted for on the assumption of a population distribution of excitabilities as a function of $\log I$ Accepting this, F corresponds simply to number of excitation elements entering into the determination of critical flicker. Its additive character in the case of contributions from rods and from cones is therefore not mysterious the dimensions of a frequency, we must consider that the speed of the process as a whole, due to the totality of excitation given by equal light and dark intervals (i.e., its central nervous representation), which achieves reaction to flicker depends upon and is directly propor tional to the number of excitation elements (units of excitation) involved This is a reasonable result despite the complexity of the comparisons apparently concerned in the intensity discrimination which we have conceived to be basic to the response to flicker consistent with the relationship of F to temperature at fixed I, F increases as T increases

In another way the additive property of critical flicker frequency is also shown by its behavior at various retinal locations during the progress of dark adaptation, in the data of Lythgoe and Tansley (1929) The evidence there given indicates addition of the effects respectively due to rods and cones as these are changing during adaptation in the fovea, F at given intensity falls as dark adaptation proceeds, with declining rate of fall, while at the periphery F rises

 $^{^{1}\,\}mathrm{We}$ are indebted to Dr George Wald for the opportunity to consider his results in advance of their publication

during dark adaptation, at intermediate locations it goes through a minimum, an effect not detected in a night-blind subject

The conception here arrived at, of the essential proportionality of critical F to magnitude of sensory effect, has certain important consequences when combined with the intensity discrimination theory of response to flicker. These we shall attempt to utilize in a later paper

If this mode of dissection of the rod and cone contributions to the flicker response curve is correct in principle, then it will be observed that there is provided a case in which it might be argued by some that the coming into action of retinal cones progressively "inhibits" the effective performance of rods—one type of "retinal interaction" But the argument would be pointless because (1) the cone curve, at sufficiently high intensities, also bends over, and (2) the effect is less obscurely accounted for by consideration of the basis of recognition of flicker

There are two rather different tests which can be made of predictions called for by our view (1) The flicker curve for a cone-free human subject should be found to rise to a low maximum and then to decline (2) It should be possible to find fishes in which the separation of the rod and cone curves is in one way or another more pronounced, so that several forms of transition to the cone section of the flicker curve could be measured The data on several human subjects (Hecht and Verrip (1932–33 a)) suggest individual differences Fresh water teleosts have the advantage for this purpose that hybridization is possible with suitably selected material A genetic test of the basis for differences in flicker curves could then be made in the manner employed for the analysis of geotropic response (Crozier and Pincus (1931-32 b)) It is to be expected also that by this procedure the capacity to exhibit variation in critical intensity for response to flicker may be submitted to functional dissection, since this must be in part determined, as to absolute amount, by properties of the reaction system of the species and in further part by the active mechanism of discrimination of flicker

١I

SUMMAPY

The curve connecting mean critical illumination (I_m) and flicker frequency (F) for response of the sunfish Lepomis (Lineaeanthus

gloriosus) to flicker is systematically displaced toward lower intensities by raising the temperature. The rod and cone portions of the curve are affected in a similar way, so that (until maximum F is approached) the shift is a nearly constant fraction of I_m for a given change of temperature. These relationships are precisely similar to those found in the larvae of the dragonfly Anax. The modifications of the variability functions are also completely analogous. The effects found are consistent with the view that response to flicker is basically a matter of discrimination between effect of flashes of light and their after effects,—a form of intensity discrimination. They are not consistent with the stationary state formulation of the shape of the flicker curve.

An examination of the relationships between the cone portion and the rod portion of the curves for the sunfish suggests a basis for their separation, and provides an explanation for certain "anomalous" features of human flicker curves It is pointed out how tests of this matter will be made

CITATIONS

Crozier, W J , 1935-36, J Gen Physiol 19, 503

Crozier, W J, and Pincus, G, 1931-32 a J Gen Physiol 15, 421 1931-32b, 15, 437, 1932-33, 16, 883 1934-35, 19, 211

Crozier W J, Wolf, E, and Zerrahn Wolf G, 1936-37a, J Gen Physiol 20, 211 1936-37b 20, 363, 1936-37c 20, 393

Granit, R., and Harper, P., 1930 Am J Physiol, 95, 211

Hecht, S., 1934 Vision II The nature of the photoreceptor process in Murchison C., A handbook of general experimental psychology, Worcester Clark University Press 704

Hecht S, Shlaer S, and Smith E L 1935 Intermittent light stimulation and the duplicity theory of vision in Cold Spring Harbor symposia on quantita tive biology, Cold Spring Harbor Long Island Biological Association, 3, 237

Hecht S and Vernjp C D 1932-33a J Gen Physiol, 17, 251 1932-33b, 17, 269

Ives H E, 1912, Phil Mag 24, series 6 352

Lythgoe, R J and Tansley K. 1929 The adaptation of the eye its relation to the critical frequency of flicker Great Britain Med Research Council Special Rep Series No 134

Wolf E, 1933-34 J Gen Physiol, 17, 7

Wolf, E, and Zerrahn Wolf, G, 1935-36 J Gen Physiol 19, 495

THE POTENTIAL AND RESPIRATION OF FROG SKIN

I THE EFFECT OF THE HOMOLOGOUS CARBAMATES II THE EFFECT OF CERTAIN LYSINS

By ERIC PONDER AND JOHN MACLEOD
(From The Biological Laboratory Cold Spring Harbor, Long Island)
(Accepted for publication, April 28, 1936)

INTRODUCTION

The subject of the relation between metabolism and the spontaneously occurring potential differences observed in certain tissues has been extensively investigated by means of experiments which fall into two general categories The first type of experiment consists in showing that regions which have a higher metabolic rate, either because they are actively growing, or because their O2 consumption or CO2 output is greater, or because they reduce methylene blue more quickly, are positive to regions where the metabolism is lower has been done for stems of Obelia and for several varieties of growing root tip (Lund (1926), Lund and Kenyon (1927)), and Lund interprets the potential difference in general as due to "the flux equilibrium of the oxidation reduction systems" in the cells, the experiments, however, are inconclusive in that differences in metabolism or in oxidationreduction potential are not the only factors which can give rise to the potential differences The second type of experiment seeks to show that the O2 consumption of a tissue in which spontaneously occurring potential differences can be measured is depressed by O2 lack or by the addition of various substances in the same way as are the observed potential differences More specifically, Lund (1928 a) has shown that KCN depresses the O2 consumption and the potential difference to the same extent in the case of frog skin, and Francis (1934) agrees with the conclusion in a general sort of way. The results of experiments on the effect of varying the O2 tension to which the skin is exposed are very conflicting, probably because of the different methods used Lund (1928 b) finds both O2 consumption and potential to be reduced when

the O_2 tension is diminished, although not to the same extent, indeed, he says that the same increase in O_2 tension may stimulate respiration as much as 1600 per cent and yet increase potential by 100 per cent only. His method for measuring O_2 concentration and consumption (the Winkler method for dissolved O_2) is open to criticism, however, and both Adolph (1929) and Francis (1934) find a different relation between O_2 tension and O_2 consumption from that described by Lund Francis (1934) concludes that the potential and respiration depend in the same way on the O_2 concentration, but Taylor (1935) says that the lowering of potential is usually about 20 per cent greater than the lowering in O_2 consumption when the skin is exposed to N_2/O_2 or CO/O_2 mixtures, finally, there is disagreement as to the effect of high concentrations of O_2 on the respiration and potential (Lund (1928 b), Francis (1934), Taylor (1935))

No quantitative work has yet been done on the effect of narcotics on potential and O₂ consumption when these are measured simultaneously, although Boell and Taylor (1933a) have investigated the effect of the homologous carbamates on frog skin potential and shown that they depress it, the purpose of the first part of this paper is accordingly to show that the effect of the carbamates on frog skin potential is not closely related to the effect on O₂ consumption. In the second part of the paper it will be shown that several lysins, which have certain properties in common with the carbamates, abolish the skin potential without reducing the respiration.

I The Effect of the Homologous Carbamates

Materials and Methods

- 1 Frog Skin—The frogs (Rana pipiens) were used during the winter months (December-March), kept in the cold, and acclimatized at 20°C for 72 hours before the skin was removed. For the measurement of respiration, pieces of skin about 200 mg in weight were taken from the ventral surface, the dorsal surface, and from the upper part of the legs, but for the potential measurements only skin from the ventral surface and from the legs was used, as dorsal skin usually gives small potentials. In all cases the measurements of O2 consumption and of potential vere begun within a few minutes after the skin vas removed
- 2 Respirance'ry—The measurements of O2 consumption vere made at 25°C in Fenn respirameters with side cups from which the carbamates, etc., could be added by tipping the instrument. One piece of slin via sused in each respirameter cup, which also contained 0.5 cc. of frog Ringer (vithout carbonate), and

1 cc of the carbamate solution to be added was placed in the corresponding side cup. After 30 minutes for equilibration, the normal O_2 consumption was measured over a period of 30 minutes, this normal O_2 consumption remains remarkably constant for a period of at least 2 hours

It is convenient here to give the values for O_2 consumption which we have obtained. These can be given either in terms of the wet weight of the skin (mm 3 /gm /hr), or in terms of dry weight (Q_{O_3}) and vary with the part of the body from which the skin is taken. The results of some 400 determinations are shown in Table I

These values are about the same as those obtained by Francis (1934), who finds a Q_{0_1} of -1 08, but lower than those of Taylor (1935), who gives 330 mm 4 /gm /hr for wet skins and higher than those of Adolph (1929) and of Lund and Moorman (1931) whose values for wet skins are 125 mm 4 /gm /hr and 139 mm 4 /gm /hr respectively The only investigators who seem to have noticed that the O_2 consumption depends on the region from which the skin is taken are Williams and Sheard (1932)

TABLE I

Location	Wet skin, mm³./gm /kr	Dry skin Q ₀₂
Dorsal	185	-0 87
Ventral	236	—0 97
Leg	265	-1 15

After the normal Ω_2 consumption has been observed for 30 minutes, the apparatus is tilted and the narcotic thus added to the skin in the respirameter vessel Readings are made each 10 minutes for another 30 minutes, at the end of which time a new and steady rate of Ω_2 consumption is always attained, the effect of the narcotic on the respiration being complete within 20 minutes irrespective of the narcotic concentration. The rate of Ω_2 consumption at the end of this time is then expressed as a percentage of the normal rate and, to allow for small variations in the effect the results of eight experiments are averaged for each concentration of narcotic. The extent to which any given concentration of carbamate depresses the skin respiration may vary by ± 10 per cent, and the average depression of respiration observed in eight experiments with one narcotic concentration varies by ± 3 per cent at most

3 Potential Measurements —These were made by the use of very simple appa ratus The skin is stretched over the end of a small glass tube, and secured in

 $^{^1\,}Q_{O_1}$ is defined as mm $^2\,O_2$ consumed per hr per mg of dry tissue. The O_2 consumption in mm $^1/gm$ /hr for wet skin, when divided by 213, gives the Q_{O_2} with great exactness

position with rubber bands, the tube is then inverted, so that the skin dips below the surface of Ringer's solution contained in a small flat receptacle. A small amount of Ringer is placed in the tube, so as to bathe the inner surface of the skin and equalize the hydrostatic pressure, and calomel half-cells, prepared with 0 6 per cent NaCl, dip into the fluid in the tube and in the receptacle respectively. We have found agar-silver-silver chloride electrodes very unsatisfactory. The potentials are measured in the usual way, with a high resistance galvanometer as a null instrument, and at a temperature of 25 $\pm 1^{\circ}$ C

The skin potentials are observed at 15 minute intervals for periods from 1 to 3 hours, and only if a steady potential is finally attained is the experiment continued. The final potential attained is very variable from frog to frog, and, as Williams and Sheard (1932), Boell and Taylor (1933a), and Francis and Pumphrey (1933) have observed, the ventral skin gives consistently higher potentials than the dorsal skin. The skin of the leg usually gives a potential between the two. In view of this variability, we have made it a rule to use only skins which give a potential of between 25 and 40 my at equilibrium. There seems to be no relation between the O2 consumption of the skin and its potential at equilibrium, as follows from the fact that the former is very constant, whereas the latter is exceedingly variable

When a steady potential is attained, the Ringer's solution on both sides of the skin is removed and replaced by a solution of the narcotic in Ringer change in potential is followed, and at the end of 30 minutes a new and steady, or sometimes slowly falling, potential is reached. In order that the determination may be comparable to the determination of the effect of the narcotic on the O2 consumption, the potential at the end of 30 minutes is taken as the final one, and is expressed as a percentage of the equilibrium potential before the addition of the narcotic The variability in the effect of the carbamates on skin potential is much greater than the variability in their effect on respiration, and so the results have to be based on the average of a number of experiments, The number of individual experiments required and a standard error attached for the determination of the effect of a given concentration of carbamate depends, in fact, on the magnitude of the effect itself, thus, it is easy to show that there is no diminution in potential or that the potential is completely abolished, but

² Boell and Taylor (1933a) appear to be satisfied that the effect of a carbamate on frog skin potential is independent of the original potential difference observed across the skin, provided the effect is expressed as a percentage of the original equilibrium potential, even if this varies from 5 to 75 my. This has not been our experience, for skins with a low initial potential are frequently affected by the addition of a carbamate to a greater extent than are skins with high initial potentials. The percentage effect of a carbamate, however, seems to be rightly independent of the initial potential when the latter is betteen 25 and 40 my. The same kind of difficulty does not arise with respect to the O₂ consumption, for this is subject to much less variation.

a large number of individual experiments are required when the reduction in potential is only partial

RESULTS

The results obtained with four carbamates, ethyl, isopropyl, n butyl, and isoamyl, are shown in Table II ² The first column gives the molar concentration of the narcotic, the second the O₂ consumption 30 minutes after the application of the carbamate, expressed as a percentage of the normal O₂ consumption, and the third the potential

TABLE II

Carbamate	Concentration	O2 consumption	Potential
	и	per cent	per ceni
Ethyl	0 2	100	50
	0.3	67	20
	0 4	50	0
	0.8	20	0
	1 5	18	0
Propyl	0 04	100	100
	0 07	58	70
	0 10	35	37
	0 15	20	2
	0 19	19	0
Butyl	0 02	80	100
	0 04	36	98
	0 06	20	37
	0 08	17	10
	0 10	20	0
Amyl	0 006	80	90
	0 01	48	41
	0 0125	34	23
	0 018	19	0

attained 30 minutes after the addition of the carbamate, also expressed as a percentage of the normal equilibrium potential of the skin. In all cases the concentration of narcotic is that actually present in the fluid bathing the skin in the respirometer vessel, for the 1 cc. of narcotic

² All the carbamates used were obtained from the Eastman Kodak Co In some of the earlier experiments we found that ethyl carbamate obtained from another source had less narcotic effect Boell and Taylor use the words car bamate' and "urethane synonymously

added from the side cup is diluted with the 0.5 cc of Ringer in the vessel containing the skin

These results are shown graphically in Figs 1-4, the O₂ consumption being shown by the line passing through crosses and marked A, and

Fig 1 Ethyl carbamate Curve P, effect on potential, curve A, effect on O_2 consumption (Curve B shows results obtained in the experiments on adsorption of the carbamate, see text for explanation) Ordinate, potential or O_2 consumption as a percentage of initial potential or O_2 consumption, abscissa, concentration of carbamate in the system

Γις 2 Propyl carbamate Ordinate and abscissa, etc., as in Γig 1

the potentials by the dotted line marked P. In the case of the curve for the potentials, the line is drawn through the means for a variable number of experiments with each narcotic concentration, and the vertical lines show the size of the standard errors

Speaking generally, the curve for the reduction of potential by in creasing quantities of narcotic pursues a course different from that of the curve for the reduction of O₂ consumption. In the case of propyl, butyl, and amyl carbamates, the respiration is first reduced in a concentration which does not affect the potential, and the potential is abolished in a concentration which reduces the O₂ consumption to

Fig. 3 Butyl carbamate. Ordinate and abscissa, etc., as in Fig. 1

Fig 4 Amyl carbamate. Ordinate and abscissa, etc., as in Fig 1

about 20 per cent, a point beyond which it does not seem possible to reduce it further ' The curve for the reduction of the potential thus

⁴ In the case of all the carbamates the curve relating residual respiration to concentration shows a tendency to rise when the carbamate concentration is very great. Thus the O_2 consumption is reduced to 18 per cent by the addition of 15 M ethyl carbamate, but only to 26 per cent by the addition of 225 M. This point is not shown in the figures.

crosses the curve for the reduction of the O₂ consumption. The difference between the two curves is very marked in the case of ethyl carbamate, where the potential is reduced to zero in a concentration which reduces the respiration to 50 per cent only.

Traites Rule and the Effective Concentration of the Certanetes

The data obtained in the foregoing experiments can be used to test the validity of Traube's rule for members of a homologous series, this rule stating in its simplest form that the ratio between the isometive concentrations of any two adjacent members of a homologous series is 3.1. Boell and Taylor (1933a) conclude that the carbinnates conform to Traube's rule in depressing the potential of frog skin, and

TABLE III

	e0 Les cen	forercents n al		
Cu 1 sma e	C nen tat n	Fat	tratin	Fit
	(M		M	
I ** v.	0.2	2 4	0 ;	5.2
Prop 1	003	1.7	0.075	2 1
B. M	0.610	5.6	0.032	3 3
A= 1	0 an		0 0000	

the concentration of narcotic actually present in the regions of the cells affected than to the concentration added to the system as a whole The quantity of narcotic "adsorbed" by the skin at the end of any given time from a solution of any given concentration of carbamate can be found in the following way

A piece of frog skin of the size ordinarily used in obtaining the curves marked A in Figs 1-4 (about 200 mg in weight) is placed in 15 cc of a selected concen tration ci of carbamate contained in a respirometer vessel which is rocked to and fro for 30 minutes at 25 C The respiration is not recorded the only purpose of the respirometer being to duplicate the conditions under which the standard curves marked A were obtained At the end of 30 minutes 1 cc of the fluid surrounding the skin is transferred to the side cup of another respirometer con taining a fresh piece of skin in 0.5 cc of Ringer, the normal respiration of this piece of skin is recorded for 30 minutes and then the fluid from the side cup is tipped into the respirometer vessel The residual O2 consumption at the end of another 30 minutes is found and expressed as a percentage of the normal O2 consumption of the skin, already measured Since a relation exists between the residual respiration at the end of 30 minutes and the concentration of a carbamate this relation being shown in the curves marked A the concentration c2 of the carbamate added from the side cup can be read off from the standard curves The difference $\Delta = (c_1 - c_2)$ obviously gives the quantity of carbamate adsorbed by the first piece of skin at the end of 30 minutes

The results obtained for various concentrations of different carbamates are shown in the curves marked B in Figs 1-4, these showing the relation between the residual respiration of the second piece of skin and c_1 , the concentration of carbamate added to the first piece of skin. Each point is an average of six experiments, and the values found show a variation not exceeding ± 5 per cent. Table IV shows the relation between Δ , the quantity of carbamate adsorbed by the first piece of skin, and c_2 , the quantity left free, both Δ and c_2 being given in molar concentrations. To convert them to milligrams of carbamate adsorbed or left free in the experimental systems, it is only necessary to multiply the figures in the table by 1.5 times the molecular weight of the carbamate

When $\log \Delta$ is plotted against $\log c_2$, a good straight line results for each carbamate, the quantity of carbamate taken up by the skin is accordingly related to the amount left free by the expression

which is the same as that for the adsorption isotherm. The slope of the lines, which determines the constant n, is substantially the same for each of the carbamates, but the numerical value of n is exceptionally small (0.2 approximately), this makes one reluctant to accept the

TABLE IV

Carbamate	c ₃	۵
Ethyl	0 27	0.03
	0 36	0 14
	0 46	0 29
	0 52	0 58
Propyl	0 056	0 0065
••	0 080	0.0080
	0 115	0 0350
	0 125	0 10000
Butyl	0 024	0 0000
,	0 035	0 0100
	0 042	0 0180
	0 050	0 0400
Amyl	0 0060	0 0015
	0 0078	0 0032
	0 0020	0.000
	0 0105	0 0120

linear relation of $\log \Delta$ and $\log c_2$ as evidence of the carbamates being concentrated in the neighborhood of the skin by an adsorption process alone ϵ

The quantities of the carbamates taken up by the skin when the O₂ consumption is reduced to 50 per cent, or to 20 per cent, do not conform to Traube's rule any better than do the quantities which are present in the system as a whole The quantities of adsorbed carbamates which correspond to a 50 per cent reduction in O₂ consumption,

Fig 5 Adsorption of the carbamates Curve E ethyl P, propyl, B, butyl and A, amyl Log Δ plotted against log c_2

for example, are in the ratios 1 8 7 11 6 58 for the successive homo logues, instead of in the ratios 1 3 9 27, as Traube's rule requires

II The Effect of Certain Lysins

The effect of the carbamates on the potential and O₂ consumption of frog skin shows that these two properties are not affected identically,

but does not supply evidence that they can be affected independently. We have therefore studied the effect of another class of surface active substances, i.e. the simple lysins particularly as Boell and Taylor's work (1933 a, 1933 b) suggests a relation between the effect of the carbamates on skin potential and their surface activity. The lysins which we have used are saponin, sodium taurocholate, and sodium glycocholate, and the methods employed are identical with those described above.

Quite unlike the carbamates, these simple lysins in proper concentration completely abolish the skin potential, but leave the O₂ consumption either unaltered or slightly increased. The first column of Table V gives the dilution of the lysin, the second the O₂ consumption 30 minutes after the addition of the substance, and the third the poten-

TABLE \

124 =	Dilution 1 in	O en timpt o	I tential
		per cent	fer cen'
p. 1 Dound	50	100	0
	100	140	15
	500	100	50
Tours' Cate	100	100	0
GI con infate	100	140	0
1	200	135	20

returns to its normal rate and continues at this rate for hours, whereas the skin potential is entirely abolished

DISCUSSION

In interpreting these results, it must be borne in mind that frog skin is a heterogeneous tissue, and that the potential differences may depend on properties which are spatially defined, for example, they may arise in the neighborhood of the skin surfaces only. When one measures the O2 consumption of the whole skin, one is not necessarily measuring the O2 consumption in the regions which determine the potential difference, and so it is not remarkable that substances such as the carbamates or the simple lysins should affect the O2 consumption and the potential differently, particularly as the substances themselves are in all probability heterogeneously distributed To take an extreme case in the lysins which abolish potential but leave respiration un changed, these substances may be concentrated in the neighborhood of the skin surfaces, and while these may be regions responsible for the maintenance of potential, their contribution to the total O₂ consump tion of the skin may be very small Even if one were to admit that the potential difference observed across a tissue had its origin in metabolic processes of which O2 consumption was a measure, it would be impossible, strictly speaking, to determine the nature of the relation except in a tissue in which there was no spatial separation of the seat of the potential and of the respiration respectively

Bearing this in mind, the results can be considered in relation to two theories regarding the origin of the potential difference across frog skin. The first is the general theory most clearly expressed by Francis (1934), which requires two things only (a) a respiratory process affording a constant source of diffusible ions, and (b) a partial separation of oppositely charged ions, which may result from there being a concentration gradient, a distribution of dissolved salts between two

the apparent increase in the O_2 consumption. There are two reasons why we think that it may not. The first is that there is a very poor relation between the pH of the added lysin and the apparent increase in O_2 consumption, and the second is that the apparent increase sometimes lasts as long as 2 hours. There may thus be a real stimulating effect on the O_2 consumption, such as undoubtedly occurs in the case of ethyl carbamate

immiscible solvents, or the presence of a semipermeable membrane, the interrity of which may also depend on metabolic processes. There are a sufficient number of possible ways in which a narcotic may act in such a system to account for all the experimental results, the effect of a carbamate, for instance, need not be such as to depress potential and respiration equally, and in an extreme case a lysin might destroy the integrity of a semipermeable membrane or other barrier to equal ionic diffusion without affecting the metabolic process which gives rise to the diffusible ions, and which is measured in terms of the O₂ consumption

The second theory is that of Lund (evidence for which is well summarized in Lund (1930)), which accounts for the potential difference in terms of the "flux equilibrium potential of oxidation-reduction sys-The supporters of this theory would have little tems" in the cells difficulty in accounting for the results contained in this paper in so far as they concern the unequal effect on O2 consumption and potential difference produced by the carbamates, for they have used the conception of "flux equilibrium" to account for the similar disparity in effect on O2 consumption and potential observed with reduced tensions of O_2 (see Lund (1928 b)) The abolition of the potential by the lysins, without there being any reduction in O2 consumption, cannot be explained in this way, but even this result does not disprove Lund's hypothesis if the frog skin is recognized as a heterogeneous tissue, for it can be argued that the potential differences are due to oxidationreduction processes in spatially delimited regions of the skin, these being affected by the lysins, but not contributing appreciably to the total O2 consumption of the bulk of the skin The idea of heterogeneity, however, is essential, and it ought to be remarked that a theory such as Lund's, which postulates a specific relation between O2 consumption and potential difference and yet is sufficiently elastic not to be disproved by a type of experiment which shows that the variables can be affected independently (the foregoing), cannot derive substantial support from similar experiments (those involving variations in O2 tension) which show that, under other circumstances, the variables are affected in a like manner

SUMMARY

Measurements of the O₂ consumption and of the potential of frog skin, made under comparable conditions, show that the homologous carbamates (ethyl, propyl, butyl, and amyl) reduce both the O₂ consumption and the potential, but not in a similar manner. In this respect, the effect of the carbamates is like the effect of reduction in O₂ tension. The simple lysins (saponin and the bile salts), on the other hand, abolish the potential without reducing the O₂ consumption at all

Irrespective of whether one considers the concentration of carbamate in the entire system or the amount of carbamate adsorbed by the frog skin, Traube's rule relating the effect of a carbamate to its position in the homologous series does not seem to apply

REFERENCES

Adolph E F, J Exp Zool 1929 53, 313

Boell, E J, and Taylor, A B, J Cell and Comp Physiol, 1933a, 3, 355, 1933b, 3, 385

Francis W L , J Exp Biol , 1934 11, 35

Francis, W L and Pumphrey, R J J Exp Biol, 1933, 10, 379

Lund E J, J Exp Zool, 1926 44, 383, 1928a, 51, 327 1928b 51, 291 Protoplasma, 1930 13, 236

Lund E J and Kenyon, W A, J Exp Zool, 1927 48, 333

Lund E J, and Moorman J B, J Exp Zool 1931, 60, 249

Taylor A B, J Cell and Comp Physiol, 1935, 7, 1

Wilhams M M D and Sheard, C, Protoplasma, 1932, 15, 396

THE RESPIRATORY QUOTIENT OF SEEDLINGS OF LUPINUS ALBUS DURING THE EARLY STAGES OF GERMINATION

By F N CRAIG

(From the Biological Laboratories Harvard University, Cambridge)

(Accepted for publication, February 27, 1936)

I

In the ungerminated seeds of Lupinus albus there is a fat oxidation system which becomes active on the addition of a sufficient quantity of water (Craig (1936)) The question arises as to whether this system is the first to become activated when germination is begun tions of the respiratory quotient with age for a number of seedlings with different food reserves, among them being Lupinus luteus, suggest that the respiratory quotient is to a certain extent an indication of the rela tive intensities of utilization of fats and carbohydrates (Stiles and Leach (1933)) Consequently it is desirable to have data for L albus as to oxygen consumption and carbon dioxide production at the beginning of germination The procedure followed was to make determinations with the Warburg microrespirometer on single seedlings chosen from groups brought to successive stages in germination under identical It has been found that the respiratory quotient 1 hour after putting the seeds to soak in water was 1 00 The quotient then fell to 0 76 in 9 hours, rose to 0 90 at 12, and fell gradually to 0 64 at 60 hours An initial respiratory quotient of unity removes the fat oxidation from consideration as the first source of energy, but in view of the sharp drop during the first few hours, it is probable that it does come into play soon after germination has begun

TT

The seeds used in these experiments came from a strain of *Lupinus albus* L inbred for 3 years by Dr A E Navez Following the method of Tang (1930-31) the seeds were germinated by soaking them in water for 12 hours removing the testas, and incubating them in moist boiled maple sawdust at 20° in the dark

The 21, 36, 48, and 60 hour seedlings were treated in this manner, but the 6, 9, and 12 hour seedlings were souled in vater for those periods and after the removal of the testas, placed directly in the respirometer vessels. In the case of the 1 hour seedlings, the testas were removed before the seeds were put to soal

Oxygen consumption and carbon dioxide production were measured on six reeds in each age proup with the apparatus described by Tang (1931-32). The net pressure change due to both oxygen consumption and carbon dioxide production, with no all all in the vessel, was measured at 15 minute intervals for an hour, 0.2 ml of 10 per cent NaOH was then placed in the side arm, and the pressure change due to oxygen consumption alone measured at 15 minute intervals for an hour. The pressure change due to carbon dioxide production is the difference between the two 1-hour readings. The assumption underlying this

TABLE I
Successive 15 Mir ute Readings

		9	hr scedlings			
	1	2	3	4	5	1 6
	11	12	12	13	12	13
Δh O _z	10	10	10	9	8	9
15 min	12	12	13	13	12	13
	8	8	9	9	8	9
		36	hr seedlings			
	1	2	3	4	5	6
	21	20	26	26	25	19
$\Delta h O_r$	22	20	25	26	25	19
15 min	20	18	25	25	24	17
20 3	22	20	26	27	25	20

method is that oxygen consumption continues at the same rate in both periods. This is justified to a certain extent by the small amount of the variation in the 15 minute readings. Data from the experiments on the 9 and 36 hour seedlings are given in Table I in terms of millimeters of Brodie solution. All measurements were made in the dark at $20^{\circ} \pm 0.05$

III

The average rate of oxygen consumption after the seeds have soaked in water 1 hour with the testas removed was 29 mm³ per hour per seed From this point, the rate rose to an average of 246 at 60 hours. The rate of carbon dioxide production did not follow closely that of oxygen consumption, so that there were fluctuations in the respiratory quotient For the 1 hour seedlings the respiratory quotient had a value of 10 with an average deviation of 6 per cent The value then

Fig. 1 Large circles represent respiratory quotients, small circles, rates of oxygen consumption as mm² per hour per seed. The bars indicate the maximum deviations from the mean

fell to 0.76 for the 9 hour seedlings There was more variation in the 6 and 9 hour stages and the two values above unity in these two groups are not regarded as significant and do not appear in the means plotted in the figure After a rise to 0.90 at 12 hours, the respiratory quotient

fell again to 0.61 at 60 hours. The means and limits of variation for both oxygen consumption and the respiratory quotient are plotted as functions of time from the beginning of soaking, in Fig. 1.

IV

As Stiles (1935) has remarked in connection with the respiration of the potato tuber, "— if only sugar or some other carbohydrate is utilized, and if this is oxidized completely to carbon dioxide and water, and if there is no internal source of oxygen, and if all the carbon dioxide produced escapes from the tissues, then the respiratory quotient should be unity." The observation of an initial respiratory quotient of 10 does not prove that these conditions have been satisfied. Nevertheless, it is a good indication that the first substrate utilized in the germination of Lupinus albus seeds is a carbohydrate.

A comparison of the data on L luleus (Stiles and Leach (1933)) and L albus shows that the variations of the respiratory quotient with age are of the same type. The earliest observed values are about unity, in the first 12 hours, the respiratory quotient falls and rises again to a slightly lower level, for the next 48 hours, it slowly declines. There is, however, a distinct difference between the two lupines, although the values of the respiratory quotient nearly coincide at the onset of germination and at the 12 hour stage, the quotient of L albus is lower than that of L luleus at other points. In the 9 and 48 hour stages, the respiratory quotients were 0.76 and 0.64 respectively in L albus and 0.9 and 0.76 respectively in L luleus. Such a result would be expected on the theory that the respiratory quotient depends in great part on the relative intensities of utilization of carbohydrates and fats, for according to the data of Guillaume (1923) the fat contents of seeds of L albus and L luleus are 8.88 per cent and 4.17 per cent respectively

In discussing the respiration of germinating seeds it should be remembered, as Kostychev (1927) points out, that simultaneously with oxygen respiration there is also an independent absorption of oxygen for other purposes. For example, McKie (1931) has shown that in the 8th day of germination of L luteus seeds, 20 per cent of the nitrogen present in the ungerminated seeds has been converted into asparagine, which is not found in the ungerminated seeds. According to Palladin (1889), this is formed only in the presence of oxygen, so that

F N CRAIG 453

utilization of fat may not account entirely for the low respiratory quotient in the later stages

SHMMARY

In germinating seedlings of *Lupinus albus*, the initial respiratory quotient was found to be unity. After a drop to 0.76 at 9 hours, the value rose to 0.90 at 12 hours, and then fell to 0.64 at 60 hours. It is improbable that the fat oxidation system is the first to become activated.

CITATIONS

Craig, F N , J Biol Chem , 1936, 114, 727

Guillaume, A, Bull sc pharm, 1923, 30, 529

McKie, P, Biochem J London 1931, 25, 2181

Kostychev, S, translated by C J Lyon, Plant respiration, Philadelphia, P Blakiston Son and Co, 1927

Palladin, W Ber bot Ges , 1889, 7, 126

Stiles, W Bot Rev , 1935, 1, 249

Stiles W, and Leach, W, Proc Roy Soc London, Series B, 1933, 113, 405

Tang, P S, J Gen Physiol, 1930-31, 14, 631

Tang P S J Gen Physiol, 1931-32, 16, 571

COAGULATION OF MYOSIN BY DEHYDRATION

BY A E MIRSKY

(From the Hospital of The Rockefeller Institute for Medical Research)

(Accepted for publication, May 19, 1936)

The coagulation of myosin that occurs when muscle contracts, or when it stiffens in rigor, differs from the coagulation of myosin and other proteins produced by denaturing agents, such as heat, acid, alkalı, urea, ultraviolet light, and surface action (Mirsky, 1935-36) When proteins become insoluble due to the effect on them of any of these agents, there is an accompanying change in their sulfhydryl and disulfide groups (Mirsky and Anson, 1935-36) Groups that are not detectable in the native state become detectable when the protein is denatured, that is, when after being treated with certain agents it becomes insoluble under conditions under which it was previously soluble No change in its SH groups takes place, however, when myosin becomes insoluble in rigor. It has recently been found that in fertilization a similar change occurs in the proteins of the egg (Mirsky, 1936), as in muscle a protein becomes insoluble without a change in groups. In muscle and in the egg as much as a third of the total protein may coagulate. It is important for an understanding of the changes that take place in muscle and in the egg to find a type of coagulation that occurs in vitro in which loss of solubility is not accompanied by changes in SH and S S groups

In the coagulation of myosin caused by dehydration, it will be shown in this paper, loss of solubility occurs without a change in groups, and in this respect coagulation by dehydration is, of all the many ways of coagulating a protein in vitro, the only change in protein known to resemble that which has been observed to occur in the cell Water is removed from the protein by both freezing and drying, that is, by subjecting the protein to a low temperature in a vacuum desiccator which is continually evacuated. The kinetics of the coagulation process have not been studied

There are in the literature a few scattered references to the effect of

drying on the properties of protein Some proteins lose their solubility by being dried, many do not The reason for this difference is Hemoglobin and the serum proteins can be dried without becoming insoluble (Hardy and Gardiner, 1910) but thyroglobulin becomes insoluble if it is dried (Heidelberger and Pedersen, 1935-36) In some proteins, the yellow oxidizing ferment and the "Zwischenferment" of Warburg, if there is any change in configuration on drying, it must be very small, for after drying these proteins cannot only be re-dissolved, but it is found that their enzymatic activities are unimpaired (Theorell, 1935, Negelein and Gerischer, 1936) the other hand, if a casein preparation observed to be monodisperse in the ultracentrifuge is dried and then re-dissolved, it is found to be polydisperse (Carpenter) The effect of dehydration on the x-ray diffraction photographs obtained from proteins has been investigated by Bernal and Crowfoot (1934), by Astbury and Lomax (1935), and by Astbury, Dickinson, and Bailey (1935)

Dehydrated myosin is dissolved less readily than is myosin which has been denatured by acid. Myosin denatured by acid readily dissolves in 0.01 n hydrochloric acid and, on the other side of the isoelectric point, in 1.2 m potassium chloride solution at pH 8. If dehydrated myosin is kept in these solutions in the cold for as long as 4 weeks no more than a trace dissolves. When myosin coagulates in muscle, it too is insoluble at pH 8 and in 0.01 n hydrochloric acid.

The SH groups of the following soluble and insoluble preparations of myosin were investigated native soluble myosin, myosin denatured by acid, myosin coagulated by dehydration, myosin coagulated by dehydration, and then treated with acid—SH groups were estimated by their reaction with iodoacetate, using a method that has been previously described (Mirsky and Anson, 1934-35)—In this procedure myosin is treated with an excess of iodoacetate, subsequently hydrolyzed, and the cysteine content of the hydrolysate estimated. The decrease in cysteine content as compared with that of protein not treated with iodoacetate is a measure of the number of "active" SH groups detectable in the protein before it was hydrolyzed—In a native protein the number of detectable groups depends upon the pH All estimations were made at pH 7 6 because in this region slight variations in acidity do not affect SH groups and because at pH 7 6

iodoacetate reacts with all the SH groups of myosin denatured by acid. The coagulum obtained by dehydrating a frozen myosin solution is of such a delicate, filmy texture that it is unlikely that any serious barrier is offered to iodoacetate as it penetrates the protein

TABLE 1
SH Groups, Expressed As Percentage of Cysteine, of the Various Myosin
Prebarations

Protein	Cysteine content before treating with iodoacetate	Cysteine content after treating with lodoacetate	Active SH groups. (1) m nus (2)	Cysteine content after denaturing with trichloracetic acid and then treating with iodoscetate	Active SH groups after denaturing with trichloracetic acid (1) minus (4)
	1	2	3	4	5
Soluble myosin	0 47	0 24	0 23	Practically none	0 47
Myosin coagulated l freezing	0 47	0 23	0 24	Practically none	0 47
Myosin coagulated i drying	0 44	0 23	0 21	Practically none	0 44

EXPERIMENTAL

The myosin used in these experiments was prepared from cow muscle. The method of preparation differed only slightly from that described by Howe (1924) and Edsall (1930). Instead of precipitating myosin by dilution with water, it was found more convenient to precipitate it by placing the solution in a cellophane tube and dialyzing against distilled water. The final precipitate was washed with 0.1 m NaCl to shink its volume. Part of the precipitated myosin was placed in a chamber at $-25\,$ for 3 days. Another part was placed in a desiccator at $-3\,$ where it was continually evacuated with a pump for 36 hours. A sample subsequently dried in an oven at 110° lost 7 per cent of its weight. A swollen, salt free precipitate of myosin was placed in the cold evacuated desiccator. This prepara tion clung very tenaciously to its water, and only after a week did the myosin appear to be dry. It was found to be insoluble. When the salt free myosin which appeared to be dry was heated to 110° it lost 50 per cent of its weight within a few minutes and no more on more prolonged heating.

To test the solubility of both the myosin frozen at -25° and that dried at -3 samples were placed in 001 n HCl and in 12 m KCl brought to pH 80 by addition of m K₂HPO₄ These suspensions were kept at 0 for 4 weeks The super

natant fluids at the end of this time gave only a slight turbidity on addition of an excess of trichloracetic acid, indicating that only a trace of protein dissolved Soluble native myosin coagulated by trichloracetic acid quickly re-dissolved in both 0.01 HCl and in alkaline 1.2 m KCl

The method of estimating SH groups of myosin by their reaction with iodo-acetate has previously been described (Mirsky and Anson, 1934-35). All reactions with iodoacetate were in pH 7 6 phosphate buffer. The results of the final measurement can be known qualitatively after the reaction with iodoacetate by testing the various protein samples with nitroprusside and ammonia. Preparations that were treated with acid and then with iodoacetate gave no color with nitroprusside, dehydrated myosin gave a fairly intense color, although not as intense as before the reaction with iodoacetate.

RESULTS

The conclusion to be drawn from these results is that, despite a certain resemblance, coagulation by dehydration is a distinctly different phenomenon from the coagulation produced by such agents as heat and acid Wherein the difference lies has recently been indicated in a general theory of denaturation and coagulation (Mirsky and Pauling, 1936) In denaturation the configuration of the molecule is profoundly changed, and as a consequence the protein becomes less soluble, readily forming a coagulum In dehydration, when the shell of water surrounding the protein particle is removed, the outer groups of the particle unite with the outer groups of other particles restoring water these bonds may be readily broken so that the protein re-dissolves, as in methemoglobin and the serum proteins, and in some proteins (such as the yellow ferment) if there is any disturbance at all in the configuration of the molecule, it is trivial In myosin the bonds formed between protein particles by dehydration remain even when water is restored, and, although there is probably some change in internal configuration, the behavior of SH groups shows that the change is far less pronounced than after the action of heat or acid native myosin, like other native proteins, is considered to have a special configuration, it would appear that after dehydration myosin still has a special configuration, possibly somewhat different, however, from that of native myosin, whereas after treatment with heat or acid only the "debris of the original special configuration" remains

The importance of coagulation by dehydration for an understanding of coagulation in the egg and in muscle is that by an exceedingly simple

procedure there is produced a change in the isolated protein which resembles the change that occurs in protein while it is still part of the living cell. The significance of this resemblance will be discussed in a paper on the coagulation of myosin in muscle.

SUMMARY

When myosin is dehydrated it becomes insoluble. The number of detectable SH groups in myosin coagulated by dehydration is the same as in native soluble myosin. In this respect coagulation by dehydration differs from coagulation brought about in any of the other ways now known, but resembles the coagulation that occurs in muscle during rigor and in the egg after fertilization.

REFERENCES

Astbury, W T, Dickinson, S, and Bailey, K., Biochem J, London, 1935, 29, 2351

Astbury, W T, and Lomax, R, J Chem Soc 1935, 846

Bernal J D, and Crowfoot, D, Nature, 1934, 133, 794

Carpenter, D C, personal communication

Edsall, J T, J Biol Chem , 1930, 89, 289

Hardy, W B and Gardiner, S, J Physiol, 1910, 40, lxviii

Heidelberger, M and Pedersen, K O, J Gen Physiol, 1935-1936, 19, 95

Howe, P E, J Biol Chem, 1924 61, 493

Mirsky, A E , J Gen Physiol , 1935-36 19, 571

Mirsky A E, Science 1936, 84, 333

Mirsky A E, and Anson, M L, J Gen Physiol, 1934-35, 18, 307

Mirsky, A E, and Anson M J, J Gen Physiol 1935-36 19, 427

Mirsky, A E, and Pauling, L, Proc Nat Acad Sc 1936, 22, 439

Negelein, E, and Gerischer, W, Biochem Z, Berlin 1936, 284, 289

Theorell H, Biochem Z Berlin, 1935, 278, 263

THE COAGULATION OF MYOSIN IN MUSCLE

BY A E MIRSKY

(From the Hospital of The Rockefeller Institute for Medical Research, New York, and the California Institute of Technology, Pasadena)

(Accepted for publication, May 19 1936)

The coagulation of myosin is one of the few changes in the proteins of muscle known to take place during contraction and rigor under certain conditions as much as one third of the total protein of muscle may become insoluble, the significance of this change for the shortening of muscle is not understood. And yet the recognition of a definite transformation in the substance of muscle should be of value in investigating the mechanism of contraction, especially when one recalls that nearly all of those abortive theories of contraction that have been formulated since the time of Descartes have been based on knowledge of systems supposed to be analogous to muscle, rather than on a knowledge of the properties of living muscle itself. As a step towards an understanding of the chemical properties of the "living machinery" of muscle (as distinguished from the metabolic trans formations in muscle) I have, accordingly, investigated the coagulation of myosin I have already shown how the coagulation of myosin in muscle is related to the denaturation and coagulation of isolated myosin (Mirsky, 1935-36 and 1936-37) By measurements of protein sulfhydryl groups it was found that the coagulation of myosin in muscle differs from the coagulation of myosin and other proteins brought about by the usual denaturing agents (such as heat and acid) but resembles the coagulation of myosin caused by dehydration At this point it is important to recall that when myosin is said to coagulate in muscle it is not supposed that myosin actually precipi tates from solution In muscle probably only a very small part of the myosin present is dissolved (Smith, 1934) That there is a change in myosin in muscle is inferred from the fact that at one time the pro tem can be dissolved in certain media in which at another time it

cannot be dissolved, the myosin is said to have coagulated Apparently myosin in muscle can pass from one gel state to another How these states differ will be considered in this paper

Powdered Muscle -The first need is to find a method by which coagulation can be investigated under conditions more subject to control than those obtaining in intact muscle
It was formerly supposed that a rapid and spontaneous coagulation of myosin occurs in the juice expressed from minced muscle (Kuhne, 1864) however, Smith (1930) showed that the myosin precipitated under these conditions re-dissolves on adding salt and maintaining the solution faintly alkaline When, however, myosin coagulates in muscle it cannot be dissolved in a faintly alkaline salt solution coagulation resembling that which occurs in muscle does not spontaneously occur in juice expressed from muscle, I decided to begin with a preparation much closer to intact muscle Muscle in the form of a dry powder was made in the following way, the hind legs of a frog were cooled to 0°, the muscles were then removed, finely minced, placed in a vacuum desiccator at about -8° and dried in vacuo while frozen, the dried material was ground to a powder in a mortar dry powder has some of the properties of live muscle The myosin in it is still soluble, as in intact muscle, and, more important still, under certain conditions the myosin can be caused to suddenly coagulate Furthermore, the myosin in this preparation is stable, it can be kept for several months, at least, without undergoing more than slight It is therefore convenient to prepare large quantities of the material, a uniform powder being obtained from many different frog legs

If a quantity of water equal to that previously removed is added to the dry muscle powder, the myosin in it instantly coagulates Deuticke (1930) has observed that myosin loses its solubility after a normal contraction as well as after rigor. The speed with which coagulation occurs in my preparation indicates that probably a similar change takes place in it as in the contraction of intact muscle. Further evidence that the change in myosin which takes place on wetting the powder is substantially the same as that which occurs in contraction is provided by an observation made by Hurthle twenty-seven years ago (1909) in his classical paper on the minute anatomy of muscle

Hurthle observed that in dried insect muscle the anisotropic layer is of the thickness characteristic of resting muscle, but that on wetting, this layer diminishes in thickness as it does during contraction. The properties of powdered muscle which I have described are sufficient to

TABLE I

Percentage of Soluble Protein in Various Preparations of Powdered Muscle

	Residual protein	Extracted protein	Percentage extracted	
	£m	£m.		
Preparation 3 dry powder extracted with		1	1	
KCl	0 30	0 67	69 0	
Preparation 4 dry powder extracted with		J	J	
KCl	0 25	0 655	72 4	
Preparation 6 dry powder extracted with		ſ	ĺ	
KCl ,	0 252	0 597	70 3	
Preparation 3 5 cc water added and the mix ture allowed to stand at 20 for 30 min				
Extract with KCl	0 47	0 37	44	
Preparation 3 5 cc water added and the mix ture allowed to stand at 20 for 30 min			l	
Extract with 0 01 n HCl	0 45	0 402	47 3	

TABLE II

Fractionation of Protein Extracted from Preparation 3 before and after Coagulation,
Using Approximately 1 Gm of Powder for Each Experiment

	Resid usi prot in	Myosin	Myogen	Total ex tracted protein	Total protein	Protein ex tracted	Myosin	Myogen
Before coagulation After coagulation Add 5 cc.	gm. 0 237	em 0 305	sm 0 163	em. 0 468	sm. 0 705	I =	pe cent 43 2	per cent 23 1
water and stand at 20 for 30 mm	0 482	0 096	0 203	0 299	0 781	38 3	12 3	26 0

show the usefulness of this preparation, its limitations will appear as it is used

Wetting the powder causes an immediate change in myosin, but this change does not occur in the presence of much salt. The system remains stable, therefore, when wetted by a concentrated salt solution, and on this depends the method of estimating the relative quantities of soluble and coagulated myosin. The procedure for estimating the quantity of soluble protein is to add a large volume of cold 12 M KCl, make the suspension slightly alkaline with a little K₂HPO₄ and stir in the cold for several hours. More protein is not extracted by more prolonged stirring. After centrifuging, the quantity of the protein in the supernatant is estimated. The soluble protein can also, of course, be fractionated and the several constituents estimated separately. In one experiment the quantity of soluble protein after coagulation was estimated by extraction with 001 n HCl, the result being about the same as after extraction with KCl

The fact that muscle can be dried without thereby coagulating the myosin in it is surprising if one recalls that isolated myosin is coagulated merely by drying (Mirsky, 1936-37) Apparently myosin in muscle differs in some way from isolated myosin, and the difference is important for an understanding of the coagulation of myosin in intact Fibres of dried isolated myosin have been made by Weber muscle (1934) and after allowing them to swell in a physiological salt solution he considers them to be an exact model of the fine structure of the muscle fibre, or rather of its anisotropic band The similarities between a muscle fibre and a myosin fibre observed by Weber are certainly noteworthy, but the difference discovered when dried, live muscle is compared with dried myosin is significant for this difference is not observed if muscle in rigor is dried and compared with dried myosin The difference (which is detected when muscle is dried) between the states of myosin in living muscle and in a fibre made of isolated myosin is important because it is associated with the irritability of muscle

Nature of Myosin Coagulation - Various characteristics of the

¹ Dilute HCl was used because, according to Smith, it extracts more protein from minced resting muscle than does salt. Smith states that he has been unable to detect any coagulation of myosin as a consequence of rigor mortis. His results, which I have seen in abstract only (Chem Abstr., 1936, 30, 496), contradict the results reported in this paper and elsewhere. He attributes the contradiction either to the strict maintainance of a low temperature during storage of the muscle or the absence of antiseptics in his experiments. In most of my experiments, however, the muscle was kept at 0° or below, and no antiseptics were used

coagulation of myosin have been investigated, using preparations of powdered muscle

1 The Kinetics of Coagulation—This was studied by restoring to the muscle powder the water removed in drying and estimating at various intervals of time thereafter the quantities of soluble protein present. The speed of the process is striking, at 20° more than one half of the myosin in muscle coagulates within a minute. At lower temperatures the change occurs more slowly. The temperature coefficient, approximately 2, is more characteristic of a chemical than

TABLE III

Coagulation Produced by Adding to 1 Gm of Powdered Muscle 5 Cc of Water,
Allowing the Mixture to Stand for Various Lengths of Time and Subsequently

Extracting with 12 M KCl

	Percentage of soluble protein							
Time	0	10*	20*	0° adding 5 cc. of 0 02m NasCrO4 instead of water				
Dry powder extracted immediately	70 0							
1 min	70 0		52 8					
21 mm	66 0	54 5	498	1				
5 min	61 6	53 6	45 4	59 8				
15 min	56 1	51 0						
30 min	54 3			54 9				
60 min	52 6	ļ						
120 mm	51 2		44 0	48 9				
240 mm	47 4	[[-				
22 hrs	44 8							

of a physical process But when water is added to dry muscle many factors are involved, and it is unlikely that the resulting change can be described in terms of a single chemical reaction

Another way of bringing about coagulation is to add the powder to a large volume of dilute saline 1 gm of powder may be stirred into 500 cc of solution. If no salt is present coagulation does not occur under these conditions (the myosin remains in the muscle but it can be subsequently extracted) and if too much salt is present, myosin does not coagulate because it is extracted. Within these two limits there

Is room for considerable variations in salt concentration. In 0 006 M NaCl not much coagulation occurs, in 0 02 M NaCl more occurs, and in 0 1 M about the same amount occurs. Other salts can be used. In a 0 02 M phosphate buffer practically all the myosin coagulates. Varying the pH from 6 15 to 7 35 made no apparent difference in the amount of coagulation. At 0° under these conditions the change is

TABLE IV

Myosin Coagulated by Adding 1 Gm of Powdered Muscle to 500 Cc of Dilute Salt

Solution and Subsequently Extracting with 1 2 m KCl

	Time	First extraction	Extracted subse quently with 12 M KCl	Residual protein	Percent- age of total protein extracted	Percentage of protein extracted by 1 2 m KCl (first protein extracted not reckoned in total)
	mın	}	gm	gm		
Water	60	0 247	0 282	0 296	64 2	48 8
0 006 м NaCl	5	0 133	0 325	0 341	57 3	48 8
0 02 м NaCl	5	0 135	0 263	0 414	49 0	38 9
0 02 m KCl	5	0	344	0 345	49 9	
0 1 m NaCl	5	0:	322	0 305	51 4	
0 1 m KCl	5	0 :	343	0 339	50 4	
0 02 M KHPO4 buffer	5	0 119	0 232	0 423	45 4	35 4
pH 6 15			Ì	}	Ì	
pH 6 15	30	0 142	0 238	0 438	46 5	35 4
pH 6 55	5	0 121	0 216	0 420	44 7	34 0
pH 6 55	30	0 160	0 190	0 430	44 9	30 7
pH 7 05	15	0 172	0 206	0 451	45 6	31 4
pH 7 35	5	0 141	0 207	0 431	44 7	32 4
First add 20 cc of 15 M	5	0 215	0 302	0 234	68 9	56 5
KCl and stand for 40	t	}	}		1	
mın Then add 480	1	[ļ		1	
cc H ₂ O Final con-]	}	}	f	j	
centration 0 06 M KCl	1	}	į	}	}	

practically complete in less than 5 minutes This is much more rapid than when the powder at 0° is moistened with a quantity of water equal to that removed in drying

2 The Effect of Oxalate — This was investigated because the coagulation of myosin suggests comparison with the clotting of fibrinogen In the formation of fibrin the rôle of calcium is concerned with the activation of thrombin— It has frequently been supposed that calcium

plays a similar rôle in the coagulation of myosin Experiment shows, however, that myosin readily coagulates in the absence of free calcium When a dilute oxalate solution is added to powdered muscle, coagula tion occurs just as it does when water is added (see Table III)

- 3 Removal of Water-Soluble Constituents -It is possible to thor oughly extract powdered muscle with water without thereby coagulating more than a fraction of the myosin. Although restoring to the powder the quantity of water removed in drying results in rapid coagulation of myosin, if the powder is stirred into a large volume of cold water, most of the myosin remains within the muscle undissolved but still soluble When the residue, after extraction with water, is extracted with 12 M KCl more than half of the myosin dissolves Extraction with water can be prolonged, lasting for several hours, and the extracted material can be kept for at least 8 hours without any further change taking place in the myosin than occurred when the powder was first stirred into water Ouantitatively the most important constituent of muscle extracted by water is the protein myogen, and all the myogen is extracted (along with a small amount of myosin) Myogen extracted in this manner constitutes 24 per cent of the total protein in muscle If, using 12 m KCl, myogen is extracted along with myosin from powdered muscle, and if the two proteins are then separated by dialysis, the same quantity of myogen is obtained as by simple extraction with water (see Table II) If, after extraction with water, the muscle is suspended in a dilute phosphate solution for a moment, quickly centrifuged, and then extracted with 12 M KCl, myosin is found to be coagulated
- 4 The Significance of Structure for Coagulation —Myosin must be in its proper place in the structure of the muscle fibre if the rapid coagulation described above is to occur, as the following experiment shows. If to some muscle powder a small volume of relatively con centrated salt solution is added (to 1 gm of powder 20 cc of 15 m KCl) no coagulation occurs, for the salt is concentrated enough to dissolve myosin. The mixture can be kept at 0° for at least an hour without any change in the quantity of soluble myosin. The salt is now diluted by addition of a large volume of cold water (480 cc so that the final concentration of KCl is 0.06 m). If muscle powder is added directly to this volume of such a dilute salt solution coagulation occurs

immediately In the diluted suspension of muscle, however, myosin does not coagulate, nor is it dissolved in the dilute saline, it is simply precipitated and can be dissolved by adding salt. Once myosin has been removed from its place in the muscle fibre, it does not coagulate as it previously did even if it is mixed with the rest of the muscle from which it was displaced (see Table IV)

5 The Rôle of Water in Coagulation —When muscle powder is treated with a volume of water, so large that no coagulation occurs,

TABLE V

1 gm of powdered muscle extracted with 500 cc of water and subsequently with 12 $\,\mathrm{M}$ KCl . In one experiment the water-extracted material was coagulated by freezing and in another experiment it was coagulated by mixing with a dilute phosphate buffer

	Protein extracted with water	Protein extracted with KCl	Residual protein	Total protein extracted	Protein extracted with KCl (not reckoning water extracted protein)
	gm	gm	gm	per cent	per cent
Experiment 1	0 247	0 282	0 296	64 2	48 8
Experiment 2	0 235	0 320	0 257	68 4	55 4
Experiment 3	0 240	0 288	0 330	61 7	46 6
Experiment 4	0 203	0 225	0 259	62 2	46 5
Freezing at -8° after extraction with water	0	340	0 295	53 6	
Mixing the water-extracted material with 0 02 m pH 6 55 phosphate buffer for 5 min at 0°	0 203	0 174	0 312	54 8	35 8

the muscle swells to a considerable volume When a little salt solution is added coagulation occurs and there is at the same time a striking shrinkage in volume 1 gm of muscle powder swells to about 25 cc and then shrinks to about 7 cc. The correlation between loss of water and coagulation of myosin may be explained by supposing that as long as the myosin particle is enveloped by a shell of water as in swollen muscle it can be dissolved, but when that shell is removed the groups of one particle unite with those of neighboring particles to form an insoluble coagulum. It has already been shown that simply dehydrating isolated myosin by drying or freezing causes it to become

insoluble. On the other hand, myosin in intact muscle is not coagulated by freezing and drying. Experiments on swollen muscle show that when this is frozen at -8° , the myosin in it is coagulated (see Table V). In this respect, then, myosin in swollen muscle behaves like isolated myosin and unlike the myosin of intact muscle. But myosin in swollen muscle can be coagulated simply by adding a little neutral salt, and this extreme instability recalls the myosin of intact muscle rather than isolated myosin.

DISCUSSION

On the basis of the new information presented in this paper and of other knowledge of myosin in muscle, it is perhaps possible to conceive of how the particles of myosin are arranged in muscle and what change occurs during coagulation

The coagulation of myosin in muscle bears a certain resemblance to coagulation of myosin caused by dehydration. In neither is there that change in sulfhydryl groups characteristic of coagulation due to the familiar denaturing agents, such as heat, acid, urea, etc. In neither is the coagulum soluble in dilute HCl, in which, however, myosin denatured by acid readily dissolves. And in swollen muscle prepared by extracting powdered muscle with a large amount of water, in which myosin appears to be still placed somewhat as it is in intact muscle, myosin coagulates when dehydrated. When myosin coagulates dehydrated when myosin coagulates due to dehydration the profound change in internal configuration caused by the usual denaturing agents does not occur. The groups of one myosin particle combine with those of its neighbors to form a coagulum without causing more than a relatively slight alteration in internal configuration.

The way in which myosin is imbedded in the structure of muscle is important for coagulation. If myosin is dislodged from this position (as it is by addition of concentrated salt solution), that rapid coagulation characteristic of muscle no longer occurs. The significance of structure is also indicated by the fact that myosin in intact muscle does not coagulate on dehydration.

A fairly satisfactory picture of the arrangement of myosin particles in muscle can be formed. One of the layers of cross striated muscle has long been known to be doubly refractive. On the basis of Wiener's

theory and the conceptions of Ambronn and Frey (1926), Stubel (1923) has shown that the anisotropic layer contains a multitude of minute rod-shaped particles (small compared with the wave-length of light) oriented with their long axes parallel to the axis of the muscle fibre. The anisotropic properties of myosin discovered by von Muralt and Edsall (1930) and by Weber (1934), make it probable that rod-shaped particles in muscle consist, in part at least, of myosin. The linear arrangement of myosin particles in muscle is also indicated by the observations of Rubner (1922) and Hurthle (1931) on the changes in dimensions of muscle on drying. When a muscle, such as the frog's sartorius, is dried there is a pronounced shrinkage in volume but its length diminishes only slightly, the great decrease occurring transversely to the axis of the fibres. The great mass of water in muscle appears to be located between longitudinally arranged strips of protein

If this picture of the fine structure of the anisotropic layer is accepted and if coagulation in muscle resembles the coagulation of myosin caused by dehydration, then it may be supposed that when myosin coagulates in muscle, the myosin particles join to each other end to end. In resting muscle the rod-shaped myosin particles are loosely arranged in a line end to end, and when coagulation occurs they string together to form a thread of myosin. This can be accomplished with speed because although there is much water separating the particles laterally, the ends of the particles are close to each other. If the particles are dislodged from their longitudinal arrangement, they are enveloped on all sides by water so that rapid coagulation can no longer occur.

It is now necessary to consider why the myosin in intact muscle can be dried without coagulating. Possibly this myosin has a different configuration from myosin prepared by the present methods, however carefully they are carried out. Gorter (1936) has recently shown how the properties of myosin are markedly changed by a slight enzymatic hydrolysis. Some such change, it may be imagined, takes place during the extraction of myosin, and even in the moment when powdered myosin is merely moistened with water, and this modified myosin then coagulates. Another explanation would postulate a change not in the configuration of myosin but in the substance lying

between the ends of myosin particles — In intact muscle and in frozen and dried muscle the substance in this region prevents the ends of the particles from joining, but when powdered muscle is moistened this substance is changed, so that it no longer acts as a barrier between the ends of myosin particles — This substance must be in the form of a thin film, and the freezing of muscle, preceding drying, would probably change its structure so that subsequent wetting might destroy it Whatever the explanation of the stability of soluble myosin in muscle may be, it seems likely that a similar change occurs both in intact muscle during contraction and in muscle powder on wetting, a change which causes myosin to coagulate

EXPERIMENTAL.

1 Preparation of Muscle in the Form of a Dry Powder —Muscles of the hind legs of frogs Rana catesbiana, were used —The hind legs were severed by one cut with a heavy cleaver just above the pelvis, and kept at 0° for 5 hours —The muscles were then rapidly dissected and finely minced in a cold room at 0° —The minced muscle spread in a thin layer on a large watch glass—was frozen at —8°, and the rest of the procedure was carried out at this temperature —The frozen muscle was placed in a vacuum desiceator, containing anhydrous calcume chloride which was in the form of a fairly dry solid cake —This was removed from the watch glass broken up and then replaced in the desiceator —At the end of another 24 hour period the muscle was as dry as it can be made by this procedure —It was ground to a fine powder in a mortar and stored at —8° —This powder lost 3 6 per cent of its weight when dried in an oven at 110

The effect of the various steps in the procedure after mincing on the quantity of extractable protein was determined. The myosin in minced muscle is quite stable the quantity of protein extracted from muscle immediately after mincing is the same as after the minced muscle has stood at 0 for 2 hours. Freezing of minced muscle causes a slight change a few more per cent protein were extracted after freezing probably because the frozen tissue was more completely disintegrated Drying had no further effect. In eleven different preparations, all however made at the same time of the year—in March April and May the quantities of soluble protein varied from 69 0 to 72 8 per cent of the total protein. In the course of 3 months (from May 25, to September 4) the quantity of soluble protein in one preparation dropped from 70 0 to 68 per cent. How the other properties of pow dered muscle change with time is not known, since most of the experiments described in this paper were performed on a large single preparation over a period of 3 months and there was no opportunity at that time of maling a fresh preparation It is possible, therefore, that some of the properties of powdered muscle described

in this paper are due to the fact that the powder had been stored for some time, even though storage was at a low temperature

It was at first thought that a preparation more like that of intact resting muscle would be made if the tissue were frozen before mincing and then minced while frozen. Muscles were accordingly frozen at -8° and then finely minced without thawing. The minced frozen tissue was added to the extraction fluid which was rapidly stirred so that only a short time intervened between thawing of a particle and penetration of it by concentrated saline. Only 59 to 60 per cent of the total protein dissolved. It is well known that freezing a muscle serves as a stimulus to contraction, apparently the effect of freezing is much greater on intact than on minced muscle.

Extraction —1 gm of powder was extracted at 0° with 240 cc of 1 2 m KCl and 4 cc of 1 m K₂HPO₄ in a 250 cc centrifuge flask. This solvent was used because Howe found that of the various salts he tried, potassium salts of this concentration were the most effective extractants. Extraction was aided by continual stirring and lasted 2 hours. No more protein was extracted in 6 hours. The pH of the mixture was about 80, just red to cresol red. After extraction under these conditions, stirring the residue for an hour in a 0.25 m pH 9.4 borate buffer failed to extract any more protein. The extracted and residual material were separated by centrifuging at high speed, a residue of less than 10 cc and a perfectly clear supernatant being obtained.

Estimation of Protein —The extracted protein was precipitated by adding 20 cc of a 50 per cent trichloracetic acid solution (trichloracetic acid dissolved in an equal weight of water) The suspension was centrifuged and the protein precipitate was freed of salt by washing twice, each time with 250 cc of a 5 per cent trichloracetic acid solution. The protein was dehydrated by stirring with 250 cc acetone and the suspension was centrifuged after adding to it 1 cc of concentrated HCl. Most of the acetone adhering to the precipitate was removed by suction, and lipoids remaining with the protein were extracted with 250 cc of a mixture containing two parts of alcohol and one of ether. The precipitate was transferred to a tared crystallizing dish and dried to constant weight at 110°. Since it was found that the relative quantities of extracted and residual protein were the same if the protein were dried after washing with acetone, in most experiments the treatment with alcohol-ether was omitted. The proteins in the residue after extraction were washed in the same way and then dried and weighed.

In several experiments extracted protein was fractionated by dialysis. The supernatant fluid, after centrifuging, was poured into a long cellophane tube, I inch in diameter, which was placed in a rocking dialyzer. Inside the tube was a marble ball which rolled from one end to the other and thus stirred the contents. The extract was dialyzed in the cold against a continually flowing 0.01 m pH 6.6 phosphate buffer, for 16 hours. The contents of the cellophane tube, now partly precipitated, were centrifuged. The precipitate, which readily dissolved in 1.2 m KCl at pH 8 was considered to be myosin. The supernatant, which remained clear on more prolonged dialysis, was considered to be myogen. A search was made for globulin X, a protein in mammalian muscle described by Weber as being

insoluble in absence of salt but requiring for solution much less salt than does myosin. None however was found

Coagulation —To 1 gm of powdered muscle was added 5 cc of water. The powder was readily wetted by the water, and by mixing with a glass rod, the muscle was in a few moments of the consistency of a dough. In experiments at definite temperatures both powder and muscle were cooled, the powder being kept in a stoppered tube to prevent condensation of moisture on it. At any given time coagulation was interrupted by adding 235 cc of cold 1 2 M KCl

In experiments on the effect of oxalate, to 1 gm of powder was added 5 cc of 0.02 m sodium oxalate at 0. The calcium content of frog muscle is less than 0.0025 m

When muscle was stirred into 500 cc. of a dilute salt solution, the solution was at 0°. The mixture was stirred for 2 minutes and then centrifuged the total time taken from adding the powder to pouring off the supernatant fluid being 5 minutes. The residue was extracted with 1 2 \times KCl in the usual manner. The protein in each of the two extracts (in dilute saline and 1 2 \times KCl) was precipitated and estimated separately

Extraction with Water —1 gm of powder was stirred into 500 cc. of water at 0°, and the stirring was continued for an hour After centrifuging, the residue was observed to be greatly swollen, volume 25 to 35 cc By stirring with another 500 cc of water, no more protein was extracted In some experiments the residue was extracted with 12 m KCl, in another it was frozen at —8° for 12 hours, and then extracted with 12 m KCl And in others it was suspended in 225 cc of a 0 02 m pH 6 55 phosphate buffer, stirred for 5 minutes so that the myosin present coagulated centrifuged and the residue extracted with 12 m KCl all the extracted protein being precipitated and estimated

An attempt was made to measure the speed with which coagulation occurs when dilute phosphate is added by suspending the washed muscle in 225 cc. of water adding a little phosphate and then immediately thereafter sufficient concentrated KCl to make the final concentration of KCl 1 2 m and so extract soluble protein It was found that even without adding dilute phosphate, addition of concentrated KCl to the suspended muscle caused coagulation. Coagulation also occurred if the aqueous suspension of washed muscle was poured into concentrated KCl solution. In the experiments described above for extraction 225 cc. of 1 2 m KCl is added to water-extracted muscle compressed to 25 cc. by centrifuging, and under these conditions much less coagulation occurs. This curious situation requires further investigation.

The quantities of myosin and myogen extracted from muscle with water were estimated after dialysis as described above

SUMMARY

1 Muscle can be prepared in the form of a dry powder in which myosin exists in a state similar to that in intact muscle As in intact

muscle, myosin in powdered muscle is soluble and can be caused to rapidly coagulate

- 2 Restoring to powdered muscle the quantity of water previously removed causes coagulation of myosin The rate of coagulation is considerably slower at 0° than at 20°
- 3 Adding the powder to a large volume of dilute salt solution also results in coagulation
- 4 The water soluble constituents of muscle can be removed from the powder without thereby causing coagulation Coagulation occurs in water extracted muscle when it is suspended in a dilute salt solution
- 5 Coagulation of myosin in muscle resembles the coagulation of myosin caused by dehydration
- 6 Myosin coagulates readily only when it is imbedded in the structure of muscle The significance for coagulation of the arrangement of myosin particles in muscle has been indicated

REFERENCES

Ambronn, H, and Frey, A, Das Polarisationsmikroskop und seine Anwendungen, Leipsic, Akademische Verlagsgesellschaft, 1926

Deuticke, H J, Arch ges Physiol, 1930, 224, 1

Gorter, E, Nature, 1936, 137, 502

Howe, P E , J Biol Chem , 1924, 61, 493

Hurthle, K, Arch ges Physiol, 1909, 125, 1, 1931, 227, 610

Kuhne, W, Untersuchungen uber das Protoplasma und die Contractilitat, Leipsic, Engelmann 1864

Mirsky, A E, J Gen Physiol, 1935-36, 19, 571, 1936-37, 20, 455

von Muralt, A, and Edsall, J T, J Biol Chem, 1930, 89, 351

Rubner, M, Abhandl preuss Akad Wissensch Math-naturwissensch Kl, 1922, No 1, p 3

Smith, E C, Proc Roy Soc London, Series B, 1930, 105, 579

Smith, E C, Proc Roy Soc London, Series B, 1934, 114, 494

Stubel, H, Arch ges Physiol, 1923, 201, 629

Weber, H H, Ergebn Physiol, 1934, 36, 109

A PHASE RULE STUDY OF THE PROTEINS OF THE BLOOD SERUM A COMPARISON OF THE PROTEINS OF HUMAN, RAT. AND HORSE SERUM*

By ELOISE JAMESON AND DOROTHY BROWN ROBERTS
(From the Department of Medicine, Stanford University School of Medicine
San Francisco)

(Accepted for publication, May 19, 1936)

In the course of the present investigation an effort has been made to ascertain whether the protein fractions of blood serum may be considered individual proteins. They have been studied in various mammals and in both sexes

Previous attempts to separate individual proteins from blood serum by classical methods, even when taking the precaution to handle them quickly and at a low temperature, had led to the conclusion that the fractions, with the exception of crystalline serum albumin and possibly one globulin, were either not single proteins or were too unstable to behave as individuals. In order to investigate individual unchanged proteins it seemed necessary to study the whole of the salting-out curve of fresh serum at 0° and to interpret it in the light of the phase rule

The fixing of pH and temperature are necessary prerequisites for the analysis of this question of the individuality of the proteins, since only after eliminating a sufficient number of variables can the phase rule be applied in answering this question ¹

For the application of the phase rule in its usual form to protein solutions certain assumptions are necessary. Let us consider the mathematical statement C plus 2 = P plus F where C = the number of components, P = the number of phases, and F = the number of degrees of freedom or variance. If the pressure is left at barometric pressure throughout, we have as variables only the composition of the

^{*} This work was aided by The Rockefeller Foundation Fluid Research Fund

1 See the work on egg albumin of Sørenson, S. P. L., Compt. rend. trav. Lab.

Carlsberg, No. 12

liquid phase and the temperature There are as possible variables or degrees of freedom one less than the number of components in the liquid phase plus the temperature. In case the pH is left constant, the components are salt, H₂O, and protein. We have then three components and, if we assume one solid protein phase, three phases which give us then, two degrees of variance or freedom. If the protein is a single component and we fix two variables, such as the temperature and the concentration of the salt in the liquid phase, then according to the phase rule the concentration of the protein will be fixed regardless of the amount of protein in contact with the solution

If, however, more than a single protein is present, fixing the salt content will not fix the composition of liquid until there are as many solid protein phases in contact with the liquid as there are protein components

Thus, each new solid phase appearing when the salt concentration is increased will give a break in the continuity of the curve representing the liquid Several such breaks appear on the diagram

These solid phases must be individual proteins, solid solutions of one or more proteins in another, or continuous series of compounds

Method

All experiments were carried out at 0° and at a constant pH (6 8 except where otherwise noted) which was checked by the glass electrode in the equilibrium liquid

Many previous qualitative experiments had raised misgivings as to the advisability of using (NH₄)₂SO₄ because of evidence of denaturation as indicated by the gradual clouding of the supernatant liquid and a progressive insolubility of the protein when the solutions are repeatedly brought from 0° to room temperature. Of other salts, potassium citrate, was most satisfactory in that a solution saturated with respect to protein at 0°, remained clear for at least a week, and any protein which separated upon repeated warming to room temperature dissolved when the solution was cooled to 0°. Previous experience in the extraction of pectin from fruit had impressed one of the authors with the specific effect of ions in causing an alteration in a colloidal substance. Such acids as citric or sulfurous could be used to extract an unchanged pectin, while hydrochloric or sulfuric acids at the same pH brought about a loss of its original properties. Potassium citrate is an excellent buffer. It is also sufficiently soluble at 0° to provide nearly complete salting out of the protein

The pH was brought to 68 by the addition of N/2 solution of citric acid. This pH is well within the stability range as found by Svedberg and not too far from the pH of blood. Then, the serum was dialyzed against a cold 5 per cent potassium citrate solution of pH 68, and was finally brought to the same pH by further addition of citric acid if necessary. Rapid dialysis was carried out as suggested by Simms and Northrop in rocking Visking cellulose membranes in which a marble was included to stir the serum, until the dialyzing liquid gave no test for chloride and then for at least an half hour more. Usually about 18 liters of dialysate were used for 50 cc of serum.

All measurements were by weight The protein was determined by the gravimetric method of Barnett, Jones, and Cohn² with the modification that the salt was removed from the heat coagulated samples by washing well with the hot buffer solutions before adding ether and alcohol washes

Potassium was determined as potassium sulfate by adding an excess of sulfuric acid to the sample of serum, heating to dryness slowly on a hot plate to avoid spattering agniting at a low red heat in a muffle furnace to remove organic matter, and weighing

Known quantities of potassium citrate (Kahlbaum's) were added to weighed portions of serium in sufficient amounts to bring the total composition into the range of precipitation. From these values the per cents of protein and potassium citrate in the mixtures were calculated. Both the citrate and the citric acid added to maintain the same pH were finely ground to avoid mechanical occlusion of coated undissolved particles in the precipitate, and care was taken that the mixtures were very thoroughly stirred. The tubes were agitated 3 hours at 0 in an ice water mixture to assure complete precipitation. Previous experiments with (NH4)2SO4 had shown that the equilibrium satisfied the most stringent test, it is the same whether it is attained by adding salt to the protein solution or by salting out the whole of the protein in a solution, separating and discarding the mother liquor and adding water and salt to the precipitated protein provided in both cases the final total composition is the same

Because of the instability of the protein solutions all processes were carried out as speedily as possible. The solutions were filtered on funnels which were tightly covered with watch glasses or ground glass plates. Weighed samples of filtrate were analyzed for potassium and protein. The precipitated solid phases which separated at each point were rapidly pressed between filter paper to remove excess liquid, mixed as thoroughly and quickly as possible with a spatula, and preserved in glass stoppered bottles. Samples were weighed dissolved in water and analyzed for protein and potassium.

The results on the solid phases were necessarily inaccurate because of the difficulty of avoiding evaporation and of mixing the samples properly However, the fact that the plotted points of solid phase,

² Barnett, C W, Jones, R B, and Cohn R. B, J Exp Med, 1932, 55 633

total composition, and liquid phase, so nearly fulfill the theoretical requirement that they fall on a straight line when plotted according to per cent composition makes it impossible to disregard their significance. The probable error of the variation from the mean of two determinations of protein as found from about three hundred duplicate analyses of protein solutions is 0 007 parts per part of protein present

The complete reproducibility of the results is shown in Fig 3 where the data from two samples of serum, from different groups of 40 rats under the same dietary conditions, are plotted in the same diagram

All data are recorded upon the Gibb's triangle3 in terms of per cent

³ The Gibb's equilateral triangle was employed in which the three corners represent the three pure components. Any point within the triangle denotes a substance or mixture containing all three components

The perpendicular from each corner (100 per cent of the component) to the side opposite representing substances or mixtures containing none of that component may be used as a scale for measuring the per cent of the said component The geometrical theorem which states that the sum of all perpendiculars from any point in an equilateral triangle to its sides is equal to the altitude of the triangle, offers the means of measuring the per cents of all three components the sum is then equal to 100 per cent For instance 100 per cent protein is found at the apex of the triangle A point representing 10 per cent protein would fall on a line parallel to the base and cutting the altitude and the two sides 1/10th of their lengths from the base Similarly, if the analysis showed 10 per cent salt, the point would have to be on a line 10 per cent of the distance from the left hand edge of the triangle to the right corner, measured either on the perpendicular to the side opposite or on one of the two sides which it cuts In practice the protein in per cent by weight is measured along the left edge and the salt along the base The graph may then be viewed and the per cents of protein and salt read off just as if rectangular coordinates were used The per cent of H₂O may be similarly located on a line parallel to the right side of the triangle

The X's on each diagram represent the per cents by weight of the components in the composition of each mixture of serum, dry potassium citrate, and citric acid Each point is calculated from an analysis of the serum and the added salt and acid. The boldly drawn curves in the lower parts of the diagrams represent the solubilities of protein at definite salt concentrations, since the curve separates the homogeneous liquid between it and the lower boundary of the diagram from the heterogeneous mixture of liquid and solid above. The distance, then from the X representing the total composition of a mixture and the corresponding O representing the analysis of the liquid separating from it is a measure of the protein precipitated at that point. The triangles represent the analyses of the

potassium citrate, per cent total protein, dried at 110° , and per cent H_2O (including any added citric acid)

In some cases, to show detail by increasing the scale, only a small portion of the diagram is included in the figure

Lines parallel to the left hand side of the triangle represent equal percentages of potassium citrate. Hence it is evident that in every case the salt content of the liquid is quite different from that of the total system and that of the solid phase. In no case are the tie lines parallel to the left hand side of the triangle.

EXPERIMENTAL.

The following experiments were carried out (a) with horse serum, (b) with serum from male rats, (c) from female rats, and (d) with human serum

The Results for Horse Serum

Six different samples of horse serum were obtained from the Cutter Laboratory, Berkeley The blood was freshly drawn, defibrinated, the red blood corpuscles centrifuged off and the serum chilled immediately and kept at 0° All six gave the same type of curve, and in two they coincided Typical sets of analyses are given in Tables I and II

It will at once be noted that where the potassium citrates have gone fully into solution the analyses check admirably Where the duplicates in the last column are different, it is seen that this corresponds

solid phases separating from the mixtures. All the lines connecting phases in equilibrium that is the corresponding O and triangle must be straight and pass through the λ representing the total original composition of the system.

It is important to note that the angle at the corner representing H_2O may be changed to a right angle making a rectangular diagram where protein concentration is plotted against salt concentration and the scales of the ordinates and abscissas may be changed without altering this property of the tie lines and without losing the advantage of being able to plot all possible compositions of the entire system on such rectangular graphs

Any discontinuities or changes of direction of the solubility curve in the triangular graphs on any of these diagrams are not straight lines on other diagrams by other authors where composition is not expressed in total weight per cent. Their significance, however, remains the same

TABLE I

Horse Serum Precipitation with Polassium Citrate—0°C—pH 6 9

Total composi	tion by weight	Solid phase by weight		Liquid pha	se by weight
Potassium citrate	Protein	Potassium citrate	Protein	Potassium citrate	Protein
per cens	per cent	per cens	per cent	per cent	per cent
12 20	7 753			12 57	7 641
14 02	7 592			14 07	7 532
15 85	7 429			16 14	6 926
17 68	7 264			17 95	6 596
19 51	7 094			19 72	6 104
21 36	6 926	15 15	28 37	22 02	5 171
23 21	6 758	16 82	26 05	24 73	4 047
25 07	6 587	19 42	23 24	25 59	3 748
27 55	6 363	21 63	21 70	28 59	3 223
28 80	6 246	22 41	21 73	29 75	2 906
30 68	6 073	25 30	18 66	31 85	2 452
32 55	5 898	26 80	19 30	34 33	2 080
34 41	5 720	27 63	18 20	35 11	1 744
36 28	5 541	31 34	16 90	38 42	0 952
38 12	5 358		l	40 60	0 513
39 94	5 172	36 90	12 66	43 10	0 0567

TABLE II

Horse Serum Precipitation with Potassium Citrate 0°C—pH 6 8

Total composi	tion by weight	Solid phase	Solid phase by weight		Liquid phase by weight		
Potassium citrate	Protein	Potassium citrate	Protein	Potassium citrate	Protein		
per cent	per cent	per cent	per cent	per cent	per cent		
15 12	5 60	' ·		15 16	5 44		
15 32	5 60	1		15 27	5 56		
20 74	5 22	13 37	29 56	21 10	4 32		
20 74	5 22	13 51	29 37	21 07	4 32		
23 87	5 01	13 10	30 98	21 03	4 34		
23 87	5 01	16 29	26 82	24 63	3 06		
1	4 30	26 76	18 84	35 48	1 09		
34 18	4 30	27 06	18 65	34 86	1 10		
23 18		34 75	16 95	43 73	0 059		
41 84	3 76			43 45	0 045		
41 84	3 76	35 21	14 77	43 43	0 035		

with the difference in the next to the last column, and upon plotting the data are found to be upon the same equilibrium curve

Fig. 1 gives the complete diagram for sample VI of horse serum which had been slightly concentrated by freezing. Some of the detail of this diagram is found in Fig. 2

Fig. 1 Horse serum, sample VI Phase rule diagram at 0°C at pH 68 In Figs. 1 2 and 4-6

x = total composition

O = liquid phase

△ = solid phase

The most obvious feature of the phase rule diagrams is that the tie lines definitely do not point toward anhydrous protein but tend to converge at a protein containing between 21 and 25 per cent of H₂O and quite possibly some salt. For the general shape of the diagram reference should be made to the more elaborately annotated diagram

in the preliminary study of purified horse serum globulin and $(NH_4)_2SO_4\,^4$

The general nature of the equilibrium is surprisingly similar to the liquid boundaries found with soap solutions and gelatin

The discontinuities in all the solubility curves are taken up in the discussion

Fig 2 Horse serum, sample VI Phase rule diagram at 0°C at pH 68

Results with Male and Female Rat Serum

The serum was obtained from pools of 30 or more rats of the same sex and age. The blood was allowed to clot and the serum separated by centrifuging. A control experiment with horse serum showed no difference between serum prepared.

⁴ McBain, J W, and Jameson, E, Tr Faraday Soc, 1930, 26, 769

ELOISE JAMESON AND DOROTHY B ROBERTS

sentative of three similar experiments, two with individuals and one with a pool of serum from six persons Figs 5 and 6 show the results at pH 6 8 and pH 5 5 respectively

Fig 4 Diet — stock. Blood serum from 40 female rats Phase rule diagram at 0°C at pH 68

DISCUSSION

(a) There are four kinds of protein As may be seen from Figs 1 to 6, the curves separating the homogeneous and heterogeneous areas are of a similar type

The first section of the curve before the break at 22–23 per cent salt with horse serum and 24–25 per cent with rat serum may be assumed to represent an equilibrium of the liquid phase in contact with a phase which is probably another liquid, protein A

The break which follows seems at first to be absent in human

serum and in female rat serum. When the temperature or pH at which precipitation takes place is changed, this break may be made to

TABLE III

Stock Diet

Blood Serum from 40 Male Rais—100 Days Old 6°C —pH 68 Precipitation
with Polassium Citrate

Total composition by weight		Liquid phase	Liquid phase by weight		
Potassium citrate	Protein	Potassium citrate	Protein		
	Expe	enment 1			
per cant	per cent	per cent	per cent		
19 61	5 412	19 85	5 314		
23 58	5 135	24 03	4 529		
25 57	4 997	25 84	3 883		
26 57	4 925	27 22	3 605		
27 56	4 857	27 84	3 616		
29 54	4 718	30 17	2 881		
31 51	4 580	32 19	2 371		
32 49	4 510	33 69	1 765		
34 46	4 372	36 02	1 088		
35 43	4 301	37 10	0 734		
37 36	4 160	39 54	0 1472		
	Expe	riment 2			
20 63	5 339	20 30	5 056		
21 58	5 271	21 78	4 778		
22 62	5 221	22 30	4 745		
23 49	5 140	23 55	4 623		
24 45	5 071	24 53	4 135		
25 41	5 006	23 02	4 601		
27 30	4 872	27 58	3 502		
29 24	4 737	29 83	3 062		
31 16	4 602	32 13	2 467		
33 07	4 468	34 15	1 646		
34 97	4 330	36 37	0 883		
36 86	4 191	38 99	0 2051		
37 81	4 122	39 78	0 0963		

appear in the female rat serum ⁵ In Fig 6 showing human serum at pH of 5 5 in a small range of salt concentration, this break is seen to

⁵ Unpublished

occur This second protein phase, B, appears at about 23 per cent salt. The shape of the curve as it falls abruptly to the curve C has not been determined. The curve C again becomes a straight line showing equilibrium with a third phase, C, containing 20 to 25 per cent water and possibly some salt.

The third change in direction and appearance of yet a different fourth solid phase, D, is obvious in human serum and in the rat serum

TABLE IV

Human Blood Serum from a Normal Person Precipitation with Potassium

Citrate—0°C —pH 68

Total composi	tion by weight	Solid phase by weight		Liquid phase by weight	
Potassium citrate	Protein	Potassium citrate	Protein	Potassium citrate	Protein
per cent	per cent	per cent	per cent	per cent	per cens
17 94	6 422			18 14	6 252
19 93	6 264	13 78	28 7	20 22	5 814
21 91	6 101	17 32	21 0	22 27	5 284
22 90	6 021	17 54	23 85	23 26	5 157
23 89	5 941	21 15	20 55	24 30	4 934
24 88	5 862	20 22	20 65	25 41	4 655
25 87	5 782	22 16	18 7	26 43	4 601
27 85	5 622	Ì		28 61	4 138
29 82	5 462	23 04	19 2	30 51	3 674
31 78	5 302	25 70	17 4	32 29	3 335
32 76	5 220	20 33	18 5	33 39	2 976
33 74	5 141	28 36	15 95	34 73	2 491
35 68	4 978	30 81	17 0	36 51	1 726
37 61	4 815	32 90	19 1	39 82	0 558
39 52	4 652	33 43	20 3	43 30	0 014

(especially in the male) but not in any of the six horse serum samples It is evident from the work of others that this change does appear in horse serum after dilution and in the presence of $(NH_4)_2SO_4$ at room temperature

(b) There is a straight line relationship between the protein and salt concentration except where fraction D appears when it becomes a curve asymptotic to the base of the triangle

There is a rough proportionality between amount of protein in a

mixture and that remaining in solution, as may be shown by plotting all the horse serum curves on one diagram

One fraction does not cease to precipitate when another begins The question as to whether the fractions are individual proteins or not cannot be answered from these curves The straight line relationship

Fig 5 Human serum Phase rule diagram at 0 C at pH 68

and continuous curve of D would indicate that they must either be single proteins or continuous series of compounds or solid solutions

The existence in the case of a rat serum of a high salt concentration where there is a definite solubility regardless of the amount of protein in the original mixture supports the view that the protein fractions are definite individuals ⁵ However, it is probable that the high concentrations of the salt used may break existing labile bonds. Also

the salt concentration is so high that only the solubility of the D fraction is appreciable. Further work is necessary to definitely decide this question

(c) The convergence of the tie lines at the upper left side of the diagram indicates that all the solid protein phases contain from 20 to

Fig 6 Human serum Phase rule diagram at 0°C at pH 5 5

25 per cent of water Consequently, they have a definite hydration even when separating from a wide range of concentrated salt solutions

(d) The salt concentrations at which the different protein fractions begin to be precipitated vary for different species. The relative per cents of the four fractions not only vary for different species but also for the two sexes

When plotted on a single diagram all of the solubility curves of a single species tend to converge at the same concentration of salt,

namely, about 45 per cent with horse serum, 38 per cent with rat serum, and approximately 40 per cent with human serum

SUMMARY AND CONCLUSIONS

There are four different kinds of protein in blood serum as shown by the solubility curves

They must be either single proteins, several continuous series of compounds, or solid solutions

The solid protein phases are hydrated

There are definite sex and species differences

Throughout the duration of this borderline study of the application of the phase rule to a physiological problem, I have been indebted to Dr T Addis and Dr J W McBain for helpful criticism

THE EFFECT OF HYDROGEN ION CONCENTRATION UPON THE INDUCTION OF POLARITY IN FUCUS EGGS

I Increased Hydrogen Ion Concentration and the Intensity of Mutual Inductions by Neighboring Eggs of Figure furgatus*

By D M WHITAKER

(From the School of Biological Sciences, Stanford University)
(Accepted for publication, May 14 1936)

INTRODUCTION

The egg of the marine brown alga Fucus is spherical. Many hours after fertilization (about 17 hours, in Fucus furcatus in thin cultures at 15°C in the dark (1)) a protuberance begins to bulge at one side of the egg, involving softening and extension of the cellulose cell wall. This protuberance extends, usually in the plane of the substrate, and at the completion of the first mitosis it is cut off by a cell plate as a more or less conical shaped cell (see Fig. 1). The first two cells are thus of very different shape, and their developmental fate or potentiality is entirely different. The protuberance cell extends and divides for some time in filamentous fashion and gives rise to the rhizoid of the new plant. The other cell gives rise to the thallus Therefore, when the point of origin of the rhizoid protuberance is determined, the polarity and the whole developmental pattern of the embryo is determined.

Several external agencies have been shown to determine the polarity of the Fucus egg These are unilateral illumination (Kniep, Hurd, Whitaker (2-4)), electric current (Lund (5)), a pH gradient (Whitaker (6)), and the presence of near by neighboring eggs (Kniep, Hurd, Whitaker (2, 3, 7)) There are reasons for supposing that at least some of these actions resolve into a common underlying action, but

^{*} This work has been supported in part by funds granted by The Rockefeller Foundation

for the present purpose attention will be chiefly confined to the last, namely, the inductive effect of cells upon each other

Kniep (2), working on several species of Fucus on the Norwegian coast, reported that rhizoids tend to form on the sides of eggs toward neighbors and he credits Rosenvinge with having made the observa-He found further that the rhizoids tend to form on the tion earlier sides of eggs toward a near-by piece of adult thallus of the same or of another species of Fucus Hurd (3) found that the tendency of rhizoids to form toward neighboring egg cells was so strong as to overcome the directive effect of light if the eggs were within two or three egg diameters distance Whitaker (7) found that the directive effect of neighboring eggs was not specific and not dependent upon mitotic activity or growth in the directing cells, since unfertilized resting eggs of Fucus vesiculosus directed the developmental pattern of near-by fertilized eggs of Fucus evenescens It was further found that two fertilized eggs alone in a dish did not develop rhizoids on the sides toward each other, but that an appreciable mass or group of eggs was necessary to act as a directing agency

Purpose

The purpose of these experiments has been to determine the relations of (a) egg concentration, and (b) increased hydrogen ion concentration, and their interrelationships, to the intensity of the mutual inductive effect

Method

Eggs of the hermaphroditic Fucus furcalus f luvurians have been used Professor N L Gardner has been so kind as to identify living samples of the material The experiments were carried out on material collected at Moss Beach, about 20 miles south of the Golden Gate, in February and March, 1935 The material and its gametes were cared for and treated in the manner described in an earlier report (1) In the present experiments the eggs were in the dark from before fertilization until the end of the experiments except for brief exposure to red light, which does not affect the phenomenon under consideration, and furthermore these exposures were confined to the period preceding 2 hours after fertilization, when the eggs have not yet become sensitive even to white light (4) All work was carried out in a constant temperature room at $14\frac{3}{4} \pm \frac{1}{4}$ °C

The media used were filtered normal sea water on the one hand, and filtered sea water acidified and buffered on the other Measurements of pH were made

with a glass electrode The initial pH of the normal sea water ranged from 7 8 to 8 0. This of course does not represent the pH which came to occur at the surfaces of developing eggs where acid metabolites presumably lower the pH to an undetermined extent. Supernatant sea water poured off egg cultures which had been reared 24 hours in the dark was always at least several tenths of a unit more acid than the initial sea water.

Ser water was acidified with MacIlvaine's citric acid-secondary sodium phosphate buffer. The buffer was made up by mixing 0.2 M phosphate and 0.1 M citric acid in such proportion as to give the desired pH A minimal amount of this was then added to the sea water to give what might be called marginal buffer capacity. More specifically different amounts of buffer were added to sea water to find how much was necessary to hold a sample, in equilibrium with air constantly at pH 60 within about 01 unit for 24 hours even with cultures of eggs growing in the mixture. It was found that 4 parts of buffer to 96 parts of sea water or 5 parts to 95 would just do this while if less buffer was used the pH would climb. In the experiments 5 parts to 95 were used. In this concentration the eggs develop perfectly. This minimal buffer capacity was selected so that it did not necessarily preclude some degree of pH gradient about an egg or a group of eggs. The buffer capacity was considerably greater than that of normal sea water, however The buffer sea water mixtures were clear between pH 50 and 64. Above 64 precipitation took place, but no experi ments were carried out in the precipitation range

After the results had been obtained it was thought advisable to repeat with another buffer system involving no phosphate or citrate ions to rule out the possibility that the effects were due to these rather than to hydrogen ions. For this purpose a mixture of HCl and NaHCO3 was added in sufficient amount to yield a buffer capacity which was empirically found to be approximately the same as that of 5 parts of MacIlvaine's buffer to 95 parts of sea water. The mixture was equilibrated with atmospheric CO2 by vigorous aeration with a heavy shower of minute air bubbles from a sintered glass filter. This equilibration took about 2 days. Triple glass distilled water was added to compensate for evaporation.

Eggs were never placed in acidified media until 40 minutes after fertilization, to rule out any effects which acid might have on fertilization and entrance of the sperm. All egg groups were arranged before an hour and forty minutes after fertilization.

RESULTS AND DISCUSSION

An initial test of the acid tolerance of the Fucus eggs was made by rearing cultures in sea water acidified with citric acid-phosphate buffer. They develop perfectly at pH 60, are retarded at 55, and at 50 practically no eggs develop although they do not cytolize. In

view of this result, the experiments to follow were all carried out at or very nearly at pH 60, with controls in normal sea water initially at pH 78–80 $\,$

As has been noted, it was found several years ago (7) that eggs of Fucus vesiculosus do not develop rhizoids toward each other when there are only two eggs in a dish, but in larger masses of eggs the peripheral ones, having no neighbors on one side, develop rhizoids on the side which is in the resultant direction of the neighbors. These observations have been repeated and confirmed on Fucus furcatus, and samples of the results are shown in Fig 1 A, G, H, I, J Fig. 1 all cultures marked with capital letters are in normal sea water Cultures marked with small letters are in acidified sea water at pH Fig. 1A shows a small sector of a large mass in which the same relations held throughout, among thousands of eggs Many other similar mass cultures showed the same thing. It will be noticed that somewhat above and to the left of the center of Fig. 1A there is a space free from eggs and that here as well the eggs lining the space have developed the rhizoids toward the resultant direction of neigh bors (2 e, pointing outward toward the mass in this case)

To find out how many eggs must be in a group in normal sea water to bring about the group effect, aggregations of different sizes, from two eggs up, were tested. It soon became evident that groupings of two, five, ten eggs, and large masses covered the significant range for an answer, and a considerable number of each were made up and reared in the dark. Comparable aggregations were arranged in sea water at pH 60 for comparison. The aggregations of two and five eggs respectively were reared in small 1 cc. Syracuse dishes in 1 cc. of solution 5 mm deep. No other eggs were in the dish. The aggre

Fig 1 Photomicrographs of developing Fucus eggs in aggregations of different sizes Groups marked with capital letters are in normal sea water (initial pH 78-80) Groups marked with small letters are in sea water addified to pH 60 In normal sea water rhizoids tend to form in resultant direction of neighbors only in larger groups of ten or more (A, note peripheral eggs, B C) and not in smaller groups of five or two (D, E F, G H, I J) In acidified sea water intensified mutual inductions occur not only in aggregations of ten (b c) or more but also when only five or two eggs are alone in a dish (d, e f, g, h i j k l m). See text

gations of ten eggs were in Petri dishes in the same depth of solution, and when there were several aggregations in the same dish they were at least 2 cm apart to avoid mutual influences. One exception to this is shown in Fig. 1B which is an aggregation of ten in the same dish with the large mass A, as a result of which it shows an especially strong group effect.

The distance between eggs in an aggregate is of course as important as the number of eggs, or more so if the inverse square law holds. The distance factor will be considered in the simpler case of only two eggs in a dish. An inspection of the typical cases shown in Fig. 1 (capital letters) shows convincingly that in normal sea water the group effect operates in large masses, and at least to a considerable extent in aggregates as small as ten eggs, especially if the eggs are not far apart. It is not present in aggregates of five eggs or less. In sea water acidified to pH 60 on the other hand, the mutual inductions occur not only in large masses, but also (Fig. 1, small letters) in aggregations of ten eggs more strikingly and over greater distances than in normal sea water, and in groups of five eggs, and even between two eggs alone in a dish provided they are not more than about 4 egg diameters apart

To obtain a quantitative comparison, while also avoiding the complications of resolving components with variable egg distances in the patterns, some hundreds of eggs were set up in the weakest combination, namely with two eggs in a dish Some were in normal sea water, others were in sea water acidified to pH 60 with citric acid-phosphate buffer, and still others were in sea water acidified to pH 60 with hydrochloric acid and sodium bicarbonate The distance between eggs was 4 egg diameters or less Typical results are shown in Fig 1 G, H, I, J (normal sea water) and g, h, i, j, k, l, m (acidified sea water) Imaginary perpendiculars were erected to an imaginary line joining the centers of the two eggs, and the eggs were classified as having the rhizoid originate on the side of the egg either toward or away from the neighbor Cases in which the rhizoid was within 10° of the line to the center of the other egg were also recorded It is seen that in the medium acidified sults are shown in Table I

¹ The diameter of the eggs ranges from 65 to 90 microns

with citric acid-phosphate buffer 92 per cent of the rhizoids originate on the sides of the eggs toward the single neighbor, and a third of them do so within 10° Essentially the same result is found, slightly less marked, in the medium acidified with HCl-bicarbonate. The controls in normal sea water on the other hand show no rhizoid attraction whatsoever between the eggs. Less than a random 50 per cent of the rhizoids form on the side toward the neighbor. It is clear that the group effect is very greatly intensified at pH 6.0

Eggs developing in thinly spaced cultures in normal sea water develop the rhizoid protuberance on the side of the egg, as viewed from above, but usually with some degree of downward component,

TABLE I

Results of Rearing Two Eggs Alone in a Dish, 4 Egg Diameters or Less Apart, in

Normal Sea Water and in Sea Water Acidified to pH 60 by Tuo Different

Buffer Systems

Medium	Total number of eggs	Rhizoids on sides of eggs away from neighbor	Rhizoids on sides of eggs toward neighbor	Rhizo da toward neighbor 0 to 10	
		per cent	per cent	per cent	
Normal sea water pH 7 8 to 8 0	133	59	41	5	
Citric acid—sodium phosphate buffered sea water pH 60	97	8	92	33	
Bicarbonate—HCl buffered sea water pH 60	104	12	88	26	

te, statistically the rhizoid protuberance develops somewhat below the equator. In medium at pH 60 the origin of the rhizoid is shifted further downward quite strikingly, and its elongation continues down ward in many cases until the cell body has been lifted up until it falls to one side. This may be an increased if not a created geotropism, intensified by acidity just as the group effect is intensified. Another possibility is that the acid sensitization has caused the egg to respond to the slight gradient of substances diffusing from itself which must be created by the block to diffusion at the bottom of the dish. Eggs were reared at pH 60 with an agar gel substrate 15 mm thick, in stead of glass, to lessen the block to diffusion beneath. These eggs also developed rhizoids with strong downward components. In

normal sea water, eggs in heavily crowded masses also show increased downward components of rhizoid origin and extension

Since lowering the pH of the medium intensifies the inductive influence among eggs, we have an adequate explanation of why, in normal sea water, the influence exists only among eggs in aggregates of appreciable size. These aggregates probably lower the pH of their immediate vicinity to an intensifying level by the production of CO₂ or other acid metabolites. It can further be supposed that after sufficient general lowering of the pH the developmental pattern is organized or induced by the residual pH gradients which follow the patterns of diffusion from the eggs of acid substances. It has been shown directly (6) that the rhizoid forms on the acid side when the egg is in an artificially established pH gradient

It should be noted that the mutual inductions have been intensified at lowered pH in spite of the fact that, due to the increased buffer capacity used in the acidified medium, the steepness of pH gradients following diffusion of acid substances from the eggs must be opposed and reduced, although not abolished This fact, together with numerous others, some of which are even more suggestive, point to the possibility that one of the auxins (plant growth hormone) may be involved in the Fucus responses, and that its action may underlie or be the common means of action of a number of the effective agencies Since auxin is a dissociating acid which is physiologically active in the undissociated molecular form, increased hydrogen ion concentration increases the activity of auxin (8-10) Gradients of hydrogen ion concentration and the general level of hydrogen ion concentration would therefore act in linkage with the action of auxin the present time no proof that Fucus eggs contain auxin, and it is not profitable to discuss its possible rôle pending the outcome of further experiments

Since acidifying sea water liberates free CO₂, there is always some danger of ascribing effects to increased acidity which might actually be due specifically to increased CO₂ tension. The guard against this of course consists in re-equilibrating with the atmosphere, causing the excess CO₂ to escape. This often takes surprisingly long in sea water so that it is difficult to completely rule out the possibility. The equi-

librations in the present instance were of long duration after very stable pH had been attained (0 1 pH unit change or less in 24 hours) especially in the carbonate runs, so that it appears quite improbable that the effects ascribed to hydrogen ions can be due to CO₂

SUMMARY AND CONCLUSIONS

- 1 The eggs of Fucus furcatus develop perfectly in sea water acid ified to pH 60 They are retarded at pH 55 At pH 50 they do not develop, nor do they cytolize
- 2 In normal sea water in the dark at 15°C, eggs develop rhizoids on the sides in the resultant direction of a mass of neighboring eggs. The polarity and the whole developmental pattern of the embryo is thereby induced. This inductive effect does not operate, however, unless the directing mass is an appreciable aggregation of cells (10 or more), or unless there are numerous other eggs in the dish. A group of five eggs alone in a dish do not carry out mutual inductions. Two eggs alone in a dish do not develop rhizoids toward each other
- 3 When the sea water is acidified to pH 60 all sizes of aggregations carry out mutual inductions. Two eggs alone in a dish now develop rhizoids on the sides toward each other, provided they are not more than about 4 egg diameters apart.
- 4 Increased hydrogen ion concentration thus augments or intensifies the mutual inductive effect
- 5 This may explain why only larger masses of eggs show inductions in normal sea water, since presumably the larger masses considerably increase the hydrogen ion concentration locally
 - 6 The nature of the inductive action is discussed
- 7 In acidified sea water at pH 60, compared with normal sea water at pH 78-80, the rhizoids originate and extend with a strongly increased downward component. The substrate then forces further extension or growth of the rhizoid to be in the plane of the substrate

The author is indebted to Mr Edward Lowrance for assistance in carrying out the experiments

² It is possible, if not probable, that in the egg an earlier polarity exists which is superseded by the new induced polarity

BIBLIOGRAPHY

- 1 Whitaker, D M, 1936, The effect of white light upon the rate of development of the rhizoid protuberance and the first cell division in *Fucus furcatus*, Biol Bull, 70, 100
- 2 Kniep, H, 1907, Beitrage zur Keimungs-Physiologie und Biologie von Fucus, Jahrb wissensch Bot, 44, 635
- 3 Huid, A M, 1920, Effect of unilateral monochromatic light and group orientation on the polarity of germinating Fucus spores, Bot Gaz, 70, 25
- 4 Whitaker, D M, and Lowrance, E W, 1936, On the period of susceptibility in the egg of Fucus furcatus when polarity is induced by brief exposure to directed white light, J Cell and Comp Physiol, 7, 417
- 5 Lund, E J, 1923, Electrical control of organic polarity in the egg of Fucus, Bot Gaz, 76, 288
- 6 Whitaker, D M, 1936, Induction of polarity in Fucus funcatus by a localized concentration of hydrogen ions, Proc Soc Exp Biol and Med, 33, 472
- 7 Whitaker, D M, 1931, Some observations on the eggs of *Fucus* and upon their mutual influence in the determination of the developmental aus, *Biol Bull*, 61, 294
- 8 Went, F W, 1935, Auxin, the plant growth hormone, Bot Rev, 1, 162
- 9 Thimann, K V, 1935, Growth substances in plants, in Luck, J M, Annual review of biochemistry, Stanford University, Stanford University Press, 4, 545
- 10 Bonner, J, 1934, The relation of hydrogen ions to the growth rate of the Avena coleptile, Protoplasma, 21, 406

SOME REMARKS ON THE PHOTOSYNTHESIS OF GREEN PLANTS

By JOSEPH WEISS

(From the Sir William Ramsay Laboratorics of Inorganic and Physical Chemistry, University College, London)

(Accepted for publication, April 15, 1936)

I

Of recent years there have been considerable contributions to the literature of the photosynthesis in plants. One must mention here the papers of Franck (1) and Stoll (2), who developed the theory pro posed by Willstatter (3), the interesting considerations of van Niel and Müller (4), and the detailed discussions by Gaffron and Wohl (5) and Emerson (6)

The most important of recent experimental discoveries in this field is the "photosynthetic unit" of Emerson and Arnold (7). These authors have shown that only a small fraction, about 1/2000, of the total amount of chlorophyll present takes part directly in the assimilation process. It seems that the chlorophyll is entering into photo synthesis only in certain photosynthetic units containing a few hun dred molecules. Gaffron and Wohl (5) also concluded from the previous assimilation experiments of Willstätter and Stoll (8) that about 1000 chlorophyll molecules must cooperate to bring about the reduction of one molecule of CO₂, during the experimentally determined time of the "Blackman period"

Another important point is the rôle of iron in the assimilation of green plants. Although the need for iron in the photosynthesis of green plants has been known for a long time and the presence of iron in the chloroplasts was established by Moore (9) yet the rôle of iron has not been considered in the modern theories. It is not only that the plants grown in the absence of iron remain pale or colorless (chlorosis) and therefore show a low photosynthetic activity due to their

low chlorophyll content, but also, as Willstatter and Stoll (8) have shown, in these chlorotic plants some other important part of the photosynthetic mechanism must be imperfectly developed (10). It is conceivable that iron salts catalyze the oxidation of the colorless protochlorophyll, from which, according to Noack and Kiessling (11), chlorophyll is formed. Noack (12) has recently found a relatively large amount of ionic iron in the chloroplasts of different green plants. This suggests that iron salts may take a direct part in photosynthesis. It has been shown experimentally (13) that it is possible to reduce different fluorescent substances (e.g. chlorophyll) in the presence of ferrous salts by the action of light, which is absorbed by these substances in the visible region of the spectrum. Similarly the ferrous salts may reduce the CO₂ in the plants under the action of sunlight, a point which will be discussed more fully later.

II

It is well known that the assimilation process of the green plants can be represented by the following stoichiometric equation

$$CO_2 + H_2O = \frac{1}{6}C_6H_{12}O_6 + O_2 - 112 K \text{ cal}$$
 glucose

Warburg (14) has shown experimentally that 4 quanta must be absorbed for the reduction of one molecule of CO_2 In the case of red light ($\lambda \sim 660 \text{ m}\mu$) this corresponds to about 168 K cal (per mol), ie, with the small reserve energy of about 50 K cal the plant is able to provide for the activation energies of all the processes in the hydrogenation of the CO_2 Every individual process involved must possess a high quantum efficiency and a small heat of activation, and the intermediate products must have a long lifetime. The last two conditions will be fulfilled with radicals as intermediate products and the high quantum efficiency is also compatible with this assumption, if the light reaction is followed by a sufficiently fast thermal reaction

Willstatter and Stoll (8) have shown experimentally that a complex between chlorophyll and CO₂ is easily formed in the presence of water It is possible that the Fe⁺⁺ ions present are able to reduce a chlorophyll-CO₂-complex in the plant under the influence of sunlight

The decomposition of water into H and OH in the assimilation

process has previously been assumed by van Niel and others (4) However, the direct splitting of H_2O with a red quantum of energy ($\sim 50~K$ cal/mol) is impossible because of the high binding energy (115 K cal/mol) of the H—OH bond. This can only be accomplished with the help of Fe++ (or possibly another reducing agent) by sensitization with a substance which absorbs in the red region of the spectrum, as has been proved experimentally (16). The hydrogen formed hydrogenates the sensitizing substance. (The direct photo chemical decomposition under the influence of Fe++ with the accompanying formation of hydrogen gas requires an energy of at least 90 K cal ($\lambda \sim 2900~\text{Å}$) (17))

In this connection the behavior of the green sulfur bacteria is of particular interest. According to van Niel and Muller (4) no cata lase and most probably no iron are present in these bacteria. Conse quently they should not be able to reduce (assimilate) CO₂ with $\rm H_2O$ alone. Actually they are only enabled to assimilate in the presence of $\rm H_2S$ which, in the course of the process is oxidized to elementary sulfur. In view of the much smaller binding energy of the S—H bond (\sim 88 K cal.) one realizes how these bacteria can produce H atoms from $\rm H_2S$ (even in the near infrared), by using the quanta absorbed by the sensitizing bacterio chlorophyll present. These conclusions are in good agreement with recent investigations on the photochemistry of SH compounds in solution (18)

771

It seems at first very difficult to understand how the plant accumulates the 4 quanta necessary to reduce one molecule of CO₂ with practically no loss of energy — It is easy to show by a simple statistical calculation that if only those molecules of chlorophyll, which under the given conditions have absorbed at least 4 quanta of light, can take an active part in the assimilation, the quantum efficiency would be very small indeed — The quantum efficiency is, however, a relatively high one (14)

An explanation of this complete utilization of the absorbed energy is to be found in the peculiar structure of the chloroplasts and in the state of the chlorophyll in the living plastids. According to the in vestigations of Liebaldt (19) and Mencke (20) the chloroplast, which

is optically anisotropic, consists of a lipoid phase, in which the chlorophyll is dissolved, which is itself dispersed in an aqueous "hydroid phase"

It seems that the chlorophyll has to fulfill two different functions, depending on its situation in the chloroplasts. The chlorophyll molecules on the surface of the lipoid phase (in contact with an aqueous phase containing Fe⁺⁺) combine with CO₂ to form a light absorbing chlorophyll-CO₂-complex and in this way take part in the reduction of the CO₂

The greater part of the chlorophyll molecules is dissolved in the interior of the lipoid phase and absorbs the energy of the light which is then stored in the form of electronic excitation energy. It is well known that electronic excitation energy is practically never directly transferred into kinetic energy (heat) (21). Therefore the quanta absorbed in the interior of the lipoid phase will be handed over from one chlorophyll molecule to another by a sort of resonance effect and eventually reach the chlorophyll molecules on the surface. In this way all the energy absorbed in the interior can ultimately be used for the assimilation process on the surface. This process implies that the chlorophyll molecules in the lipoid phase are in a state of strong mutual interaction. The observed shift of the absorption maximum of chlorophyll in the living plastids by 150–200 Å towards the red region as compared with chlorophyll in solution or in the colloidal state (22) may be due to interaction forces of this kind

The above considerations require that the lifetime of the excited chlorophyll molecule in the lipoid phase shall be of the same order of magnitude as the average time of reaction necessary for the complete reduction of one CO2 molecule (the so called Blackman period) The lifetime of the excited chlorophyll molecule in solution is about 001 second at 25°C (Kautsky (23)) and the Blackman period was found to be 0 02 second at 25°C (Emerson (29)) Both the lifetime of excited chlorophyll and the Blackman period increase considerably It is also possible to explain Kautsky's with falling temperature observation that strongly assimilating leaves show a considerably In the case of weaker fluorescence than in the normal state (24) non-assimilating leaves the energy coming from the interior of the lipoid phase is not captured on the surface and is eventually given up

as fluorescent light On the basis of these arguments the photosyn thetic unit of Emerson and Arnold is determined by the ratio surface/volume of the lipoid globules in the plastid

(Active) chlorophyll in the surface of the lipoid phase Chlorophyll dissolved in the interior of the lipoid phase

The obvious implication is that for every chlorophyll molecule on the surface (actively reducing CO₂) there are about 500 molecules in the interior which provide it with the necessary 4 quanta

This assumption does not seem to be in contradiction to the recent considerations of Kohn (25), which on the other hand are unable to explain the accumulation of energy

With regard to the size of such a structure, there seems to be no par ticular restriction, as may be clear from the following remarks

Assuming, for example that the globules (in the chloroplast) are small spheres (radius r), the chlorophyll molecule can be regarded (to a first approximation) as a cylinder, constituted by the porphine ring as the base of about 100Å^2 (radius ρ) and the phytol chain lying on top of it, the height of the cylinder being about $h \sim 3\text{Å}$ These dimensions are taken from measurements on surface films by Gorter (26) and A Hughes (27)

We then have for the ratio

$$\frac{\text{Surface of the sphere} \times \alpha_*}{\text{Volume of the sphere} \times \alpha} = \frac{\text{(porphine) surface of one chlorophyll molecules}}{\text{volume of 500 chlorophyll molecules}}$$

where α denotes the fraction of the (total) surface occupied by the chlorophyll and α_v denotes the fraction of the (total) volume occupied by the chlorophyll

From the above equation we obtain

$$\frac{4\pi r^3 \times \alpha}{\frac{1}{3}\pi r^3 \times \alpha} = \frac{\rho^3 r}{500 \, \rho^3 \pi \, h}$$

$$r = 3 \, 500 \, 3 \, 10^{-6} \frac{\alpha_4}{\sigma} \, \text{cm} \sim 4 \, 5 \, 10^{-6} \frac{\alpha_4}{\sigma} \, \text{cm}$$

We do not know the value of the ratio $\frac{\alpha}{\alpha}$, but even assuming this to be about unity, we obtain for the radius of the little sphere repre

senting the structural unit $r \sim 0$, 4μ , which is of the order of 1/10 to 1/20 of the radius of a plastid — It is possible that the dark globules shown by photographs of chloroplasts in red light (28) represent this photosynthetic unit, the size of these globules being of the same order of magnitude as suggested above

IV

The processes discussed above can be represented by a system of simple reactions showing the step-wise reduction of CO_2 to the CH_2O stage (The asterisks in the following equations denote excited forms of molecules)

(Complex formation)

- (a) Chlorophyll (surface) + CO_2 + $H_2O \rightarrow Chl$ — CO_2 -complex (Light absorption)
 - (b) $Chl-CO_2 + h\nu \rightarrow Chl-CO_2^*$ (b') $Chl-CO_2^* \rightarrow Chl-CO_2 + h\nu$
- 1 (Reduction step) Chl—CO₂* + Fe⁺⁺ → Chl—CO₂⁻ + Fe⁺⁺⁺, Chl—CO₂⁻ + H⁺ → Chl—COOH 2COOH → H₂C₂O₄ oxalic acid (by product)
 (Light absorption)
 - (c) Chlorophyll (lipoid phase) $+ h\nu \rightarrow \text{Chl}^*$ (c') $\text{Chl}^* \rightarrow \text{Chl} + h\nu$
 - (d) (Energy transfer) Chl—COOH + Chl* \rightarrow Chl—COOH* + Chl
- 2 (Reduction step) Chl—COOH* + H₂O → Chl—H COOH + OH
 - (e) (Energy transfer) Chl—H COOH + Chl* \rightarrow Chl—H COOH* + Chl
- 3 (Reduction step) Chl—H COOH + Fe⁺⁺ \rightarrow Chl—H COOH⁻ + Fe⁺⁺⁺, Chl—H COOH⁻ + H⁺ \rightarrow Chl HC = O + H₂O
 - (f) (Energy transfer) Chl—HCO + Chl* \rightarrow Chl—HCO* + Chl
- 4 (Reduction step) Chl—HCO* + H₂O → Chl—H CHO + OH

Reactions analogous to (1) and (3) have been observed experimentally, therefore the energy relations need not be considered in detail here. For reactions (2) and (4) the total energy, Q, is given by $Q = Nhv + E_{C-H} - D_{H,0}$ where $D_{H,0}$ (115 K cal) is the energy (per mol) required to split H_2O into H and OH, Nhv (~ 42 K cal) the excitation energy of chlorophyll and E_{C-H} (~ 94 K cal) the energy of the C-H bond. We therefore have $Q \sim 25$ K cal , so that both reactions (2) and (4) can be regarded as sufficiently exothermal

This scheme is but one of several alternative representations of the theory. In this case all processes, except reaction (1), are taking place during the Blackman period. The formation of oxygen is considered to take place with the help of catalase from hydrogen peroxide formed according to $2OH = H_2O_2$. Two OH radicals are formed

directly in reaction (2) and (4), whereas two additional OH radicals must be formed in the reduction of Fe⁺⁺⁺ formed in reaction (1) and (3) $2H_2O_2$ yield finally 1 mol O_2 One might assume that the Fe⁺⁺⁺ ions formed in the assimilation process are reduced to Fe⁺⁺ in the course of the respiration process and that the augmented respiration is thus connected with assimilation (30). It is possible that the carotenoids of the chloroplast also enter into this process. For the stationary state and constant illumination one can derive some conclusions with regard to the kinetics which are in good agreement with experiment (31)

- (a) For small light intensities, when the rate of formation of the Chl—CO₂-complex (reaction a) is fast with respect to the subsequent reactions, the rate of assimilation is determined solely by the amount of light absorbed per second (I_{aba}) and therefore the temperature coefficient in this region must be unity. For complete absorption (rate $\sim I_{aba} \sim I$) the rate varies linearly with the intensity of the incident light (I_o) . For small absorption (rate $\sim I_{aba} \sim I_o$. [Chl] [CO₂]) the rate is also a linear function of the [Chl] and [CO₂] concentrations in the stationary state
- (β) For high light intensities the formation of the complex (Reaction a) is the time determining factor. In the case of sufficiently small CO₂ concentrations this can also occur at smaller light intensities. The rate is then given by rate \sim const $e^{-Q/RT}$ [Chl] [CO₂], where Q is the heat of activation of reaction (a). In this case the rate is independent of the light intensity, in agreement with the experiments of Blackman (34), Warburg (14), and others. The dependence on temperature is given by $\log \text{rate} \sim -\frac{Q}{RT}$ in agreement with the experiments of Emerson (33). Using intermittent light the kinetics are in some respects more complicated, because we cannot assume stationary conditions. In fact, the time required to establish a stationary state is of the same order as the light period.

The above discussion could readily be extended to provide some other conclusions which, however, for the present seem to be of little interest

SUMMARY

- 1 It is suggested that in the assimilation process of green plants the reduction of the CO₂ takes place with the help of Fe⁺⁺ ions (present in the chloroplast) under the influence of light, which is absorbed by a sensitizing chlorophyll-CO₂-complex
- 2 It seems that the chlorophyll has to fulfill two different functions depending on its situation in the chloroplast. The chlorophyll molecules on the surface of the lipoid phase (in contact with an aqueous phase containing Fe⁺⁺) combine with CO₂ to form a light absorbing chlorophyll-CO₂-complex and in this way take part in the reduction of the CO₂

The light energy is also absorbed by the greater portion of the chlorophyll, which is dissolved in the interior of the lipoid phase, and eventually handed over to the chlorophyll molecules on the surface

3 The photosynthetic unit of Emerson and Arnold may be determined by the ratio

(Active) chlorophyll in the surface of the lipoid phase Chlorophyll dissolved in the interior of the lipoid phase

so that for every chlorophyll molecule on the surface there are about 500 molecules in the interior, which provide it with the necessary quanta

I would like to express my sincere gratitude to Professor F G Donnan for his continuous help and encouragement, and to Professor H Freundlich for many valuable discussions

BIBLIOGRAPHY

- 1 Franck, J, Naturwissenschaften, 1935, 23, 226
- 2 Stoll, A, Naturwissenschaften, 1936, 24, 53
- 3 Willstatter, R, Naturwissenschaften, 1933, 21, 252
- 4 van Niel, C B, and Muller, F M, Rec trav bot neerl, 1931, 28, 245
- 5 Gaffron, H, and Wohl, K, Naturwissenschaften, 1936, 24, 81, 103
- 6 Emerson, R, Ergebn Enzymforsch, 1936, 5, 305
- 7 Emerson, R, and Arnold, W, J Gen Physiol, 1932, 16, 191
- 8 Willstatter, R, and Stoll, A, Untersuchungen uber die Assimilation der Kohlensaure, Berlin, Julius Springer, 1918
- 9 Moore, B, Proc Roy Soc London, Series B, 1914, 37, 556

نبدو

- 10 Cf Spoehr, H A, Photosynthesis, New York, The Chemical Catalog Co, 1926
- 11 Noack, K, and Kiessling, A, Z angew Chem, 1931, 44, 93
- 12 Noack, K., Z Bot , 1930 23, 957
- 13 Weiss, J., Nature 1935, 136, 794
- 14 Warburg O Ueber die katalytischen Wirkungen der lebendigen Substanz, Berlin, Julius Springer, 1928, 336
- 15 van Niel, C B and Müller F M Rec trav bot neerl, 1931, 28, 135
- 16 Weiss J Nature 1935 136, 794, Weiss J, Naturunssenschaften, 1935, 23, 64 see also Weiss J, and Fishgold, A, Z phys Chem Abi B 1936, 52, 135
- 17 Weiss, J. Nature 1935 136, 794 See also Potterill, R. H., Walker, O. J., and Weiss J., Proc. Roy. Soc. London. Scriet A. 1936, 156, 561
- 18 Weiss, J., and Fishgold H., Nature, 1936 137, 71
- 19 Liebaldt E , Z Bot , 1913, 5, 65
- 20 Mencke W Protoplasma 1934 21, 279
- 21 Cf Franck, J and Levi H Z phys Chem, Abt B 1935 27, 409
- 22 Hubert B Rec trav bot neerl, 1935, 32, 364
 Baas Becking L G M and Konig H. C Proc Kon Akad Amsterdam, 1934 37, 674
- 23 Kautsky, H Hirsch, A and Flesch W, Ber chem Ges 1935 68, 152
- 24 Kautsky H and Hirsch A, Naturwissenschaften 1931, 19, 964
- 25 Kohn H I Nature, 1936, 137, 706
- 26 Hubert B, Rec trav bot neerl 1935 32, 364
- 27 Private communication
- 28 Hubert B Rec trav bot neerl 1936 32, 369
- 29 Emerson R Ergebn En-ymforsch, 1936, 5, 305
- 30 Spochr H A and McGee J M Carnegie Institution of Washington, Pub No 325 1923 76
- 31 Warburg O Ueber die Lataly uschen Wirkungen der lebendigen Substanz, Berlin 1928 336 Spoehr H A, and McGee, J M, Carnegie Institution of Washington, Pub No 325 1923 76
- 32 Emerson R and Green R Nature 1934 136, 289
- 33 Emerson R J Gen Physiol 1929 12, 623
- 34 Blackman, F F Ann Bot 1905 19, 281, Proc Roy Soc London Series B, 1905 76, 29

Ag nit G E STECHERT & Co New York DAVID NUTT London NICOLA ZANICHELLI Bologna FÉLIX ALCAN Paris AKADEMISCHE VERLAGSGESELLSCHAFT in b II Le pa g RUIZ HERMANOS Madrid F MACHADO & Cia Porto THE MARUZEN COMPANY Tokyo

1937

SCIENTIA

31st Year

INTERNATIONAL REVIEW OF SCIENTIFIC SYNTHESIS
Published etery month (ach number containing 100 to 120 pages)
Editors F BOTTAZZI - G BRUNI - F ENRIQUES
General Secretary Paolo Bonetti

IS THE ONLY REVIEW the contributors to which are really international

IS THE ONLY REVIEW that has a really world-wide circulation

- IS THE ONLY REVIEW of scientific synthesis and unification that deals with the fundamental questions of all sciences mathematics satronomy geology physics chemistry bology psychology ethnology lin guistics history of secience philosophy of science
- IS THE ONLY REVIEW that by means of inquiries among the most eminent scientists and authors of all countries (on the ph losophead principles of the various sciences on the most fur domental ast onomical and physical quad not of current interest on the contribution that the different countries tare on to the determent of rannous branches of k couledge on the more important biological questions etc. etc.) studies all the main problems discussed in intellectual circles all over the world and represents at the same time the first attempt at an international organization of philosophical and examilia progress.
- IS THE ONLY REVIEW that among its contributors can boast of the most illustrious men of science if
- The articles are published in the language of their authors and avery number has a supplement containing the French transition of all the articles that are not French. The ories is thus completely accessible to those who know only French. (Write for a fee copy to the General Secretary of Scientia Milan send g 18 cents in stamps f your cout by merely to corn pack my and postage.)

SUBSCRIPTION \$13.50 post free

Substantial reductions are granted to those who take more than one year a subscription For informali n apply to SCIENTIA, Via A De Togni, 12 - Milano 116 (Italy)

FLICKER AND THE REACTIONS OF BEES TO FLOWERS

BY ERNST WOLF AND GERTRUD ZERRAHN WOLF

(From the Biological Laboratories, Harvard University, Cambridge)

(Accepted for publication, June 10, 1936)

The quantitative evidence secured thus far about the visual functions of the eye of the honey bee is based upon the fact that a bee will respond to a displacement of a pattern within its visual field Whether we are dealing with visual acuity tests (Hecht and Wolf (1928-29)), intensity discrimination (Wolf (1932-33 a,b)), dark adaptation (Wolf and Zerrahn Wolf (1935-36)), or marginal recognition of flicker (Wolf (1933-34)), the reaction of the bee always depends upon the transition of visual elements from one state of excitation into another Even when confronting a bee with the task of distinguishing patterns of different design and coarseness the same is true. If bees are to choose between a series of patterns of the same area but different in design, the number of choices of each pattern is proportional to the lengths of the contours within each pattern (Zerrahn (1933)) again indicates that the transitory stimulation produced during the bee's flight over the patterns by reason of the edges separating black from white, arouses the response A different proof for this kind of reaction to patterns can be given by conditioning bees to flickering fields of equal size but different flicker frequencies Under such condi tions the bee's choices are directly proportional to the flicker frequen cies, provided the frequencies are below fusion (Wolf (1933)) At the same time we have evidence that only the numbers of alternating stimuli reaching the ommatidia are responsible for a choice, since patterns different in area and coarseness of design can be combined in such a way that equal numbers of choices are obtained (the number of elements stimulated by transition being equal for the patterns prosented for choice) (Wolf and Zerrahn Wolf (1934-35)) On the other hand, two flickering fields will have the same stimulating effect upon bees if for both the product of flicker frequency X area is the same (Wolf and Zerrahn Wolf (1934-35))

We therefore come to the conclusion that recognition and distinction of patterns by the bee is based upon the transitory stimulation produced by a pattern and that the pattern as such is of no importance This theory is in disagreement with the experimental evidence and the conclusions of Hertz (1930, 1931, 1933, 1934 a,b,c, 1935), who claims that pattern discrimination by the bee is based upon recognition of the pattern as such, upon the distinction of patterns as patterns, and a memory of form

If we recall the fact that the bee's visual acuity is only about 1/100 of ours, its intensity discrimination only 1/25, we hardly can assume that the bee's vision is a priori sufficient for any higher visual perception such as distinction of patterns and forms. In only one respect is the function of the bee's eye equal to the human, namely in the recognition of flicker. For the human eye the maximum critical flicker frequency is between 45 and 53 per second (Hecht, Shlaer, and Verrijp (1933–34)). At very high illuminations the bee will still respond to 55 flickers per second, so that its recognition of flicker is certainly as good as in man, if not even better. It seems generally true that flicker perception in Arthropods is higher than in mammals. So far we know that dragon fly larvae can react to slightly over 60 flickers per second (Salzle (1932), Crozier, Wolf, and Zerrahn-Wolf (1936–37)), and Eupagurus to 56 flickers per second (Brocker (1935))

It seems probable therefore that flicker may play an important rôle in the vision of the bee, and the question arises whether reactions to intermittent stimulation might play a part in nature. It was pointed out in earlier papers (Wolf (1933, 1935)) that perhaps flickering effects produced by the relative motion of the bees and flowers while collecting nectar might have an effect upon the bees' settling on the flowers. The finding of small blossoms closely spaced, even if their particulars of flower formation are below threshold visibility, might be facilitated by the relative motion of the flowers in regard to the bee's eye, and thus through the production of flicker cause the bee's reaction to the flower.

We had made the observation that the number of bees settling on particular flower beds on quiet and on windy days is greater when the flowers are slightly moved by the air There is no question that with an air current odors from the flowers might drift over a greater area and thus attract more bees. It can be shown, however, that the intermittent optical stimulation has a considerable effect upon the bee's reaction when odors are excluded

By studying the bec's reaction to natural and artificial flower beds which can be moved, evidence can be brought about for the effect of flicker upon the bee's reaction toward the experimental arrangement

Fig. 1 Arrangement of 25 flower pots planted with *Phlor sabulata alba* Any one of the pots can be put on a turntable and rotated. By the increase in flicker produced by the rotation more bees are attracted to the moving flowers.

For test purposes bees from one of our colonies are conditioned to collect a sugar solution from Petri dishes about 50 meters from the hive. The dishes are placed in between an arrangement of 5 x 5 flower pots making a flower bed one square meter in size in which there are planted *Phlox sabulata alba*, a flower which has no particular odor very small white blossoms and which is rarely visited by bees. After a constant stream of bees visits our flower bed and settles with cer tainty on the dishes which are frequently shifted around among the pots so as to avoid conditioning to a particular location in the flower bed the dishes are re moved for test and the bees observed. The bees search over the flowers and will gradually settle on the flowers in bunches in the manner observed when bees spontaneously or after conditioning react to patterns. The arrangement of the

flower pots is such that each one can be placed on a turntable and can thus be rotated at a slow speed. A turntable is attached to a kymograph motor which has been adjusted in such a way that ½ to 1 rotation is obtained per second. We therefore have the possibility of increasing the intermittent stimulation produced by the flower bed by rotating one pot. Under these conditions the bees do not settle at various places over the whole field but follow the rotating pot in a circling cloud. Unfortunately the bees do not settle down on the flowers, but gradually disappear and return to the hive. It would be of great importance to obtain some quantitative measure for the bee's reaction. We therefore changed the

Γισ 2 Artificial flowers arranged in flower pots Each pot can be rotated to increase the flicker effect produced by the flowers

arrangement by covering the whole bed with a glass plate on which the bees are fed. This arrangement has great advantages since the glass plate can be washed before test so that all traces of odors which might cause reactions are removed, and the food can be spread over the whole surface of the glass plate so as to avoid conditioning to a certain place. Then under these conditions, after removing the food and cleaning the covering glass plate, one of the flower pots is rotated. A slight reaction to the rotating section can be observed, but it is not as clear as in the previous case. It seemed that the reflection of light from the glass greatly disturbed the bees and that possibly the distance of the flowers from the bee's eye reduced the visibility to a degree which interfered with a proper reaction.

In another test we employed artificial flowers instead of the small white blos soms of Phlox The flowers were cut out of white cardboard 7 cm in diameter and with 6 flower leaves leaving spaces of about 8 mm between them at the margin These artificial flowers were fixed on top of thin wooden sticks and 3 of them were placed in each of 16 flower pots. The whole arrangement was covered with a glass plate on which the bees were fed. One of the pots can be rotated During test when the food is removed and a section of 3 blossoms is in motion the bees during their search for food react to the motion but again the precision of the reaction is not very great. Much better results are obtained if during test

Fig. 3 Artificial flower bed on which bees are fed. One half can be moved back and forth. By the increase in flicker produced by the motion the number of bees visiting the moving section is increased.

the glass plate is removed. The bees then follow the rotation in a cloud, and occasionally settle down. The reaction in general is clearer than with the *Phlov* but is not yet satisfactory. It seemed that for clear results a close association between flowers and food was desirable.

In a further experiment we made use of an artificial flower bed 1 x 1 meter in size on which there were placed 10 rows of artificial flowers evenly spaced. The flower bed is divided into two halves one of which rests on rails so that it can be moved forward and backward over a length of 20 cm. The speed of movement is such that a forward motion takes 1 second then the section stays quiet for

1 second, then the backward motion takes 1 second again. The flowers on the bed consist of glass tubes 6 cm high, 8 mm in diameter, around the upper end of which the flower leaves (7 cm in diameter) are fitted. The flowers are set into holes in the base of the bed so that they stay rigid during the motion. Each tube is filled two thirds full with paraffin so as to prevent the collecting bees from creeping too deeply into the tubes. For conditioning the bees all the flowers are filled with a sugar solution. The bees which come to the bed spread rather evenly over the whole surface of the bed and take the sugar solution. The bees show a tendency to cross over the field in a certain direction, which is due to the location of the hive and the easiest way of access to the feeding place. If,

TABLE I

Data on the visits of bees in a 5 minute period to a flower bed consisting of two sections, one of which stays quiet (q) while the other is moving (m). In the top row the relative positions of the quiet and the moving sections are shown. The arrow indicates the direction in which the bees from the hive approach the artificial flower bed

No of test	q m		q m				q m	
	m	q	m	q	m	q	m	q
1	129	80	123	73	130	73	110	77
2	142	67	119	69	106	69	107	67
3	160	89	173	87	194	81	175	89
4	158	102	139	84	133	60	160	86
5	164	97	189	83	168	98	176	97
Total	753	435	743	396	731	381	728	416
Mean	151	87	149	79	146	76	146	83
Ratio	1 7 1		1 9 1		1 9 1		1 8 1	

however, one of the flowers is occupied by one or two bees, the newcomer goes on searching until it finds a proper place for feeding. The evenness of the distribution permits a quantitative study of the bees collecting if one section of the flower bed is moved.

For test we filled all tubes up to the margin with sugar solution. During this process the bees are kept away from the flowers. We then set one half of the bed into constant motion for 5 minutes. During that time the bees settling on either half are counted, one observer watching the moving section, the other the quiet one. Since we observed that there was a certain direction in which the bees crossed the field, for each new test we turned our arrangement through 90°, so

that the bees would meet the quiet and moving parts at different angles By going through the whole cycle five times a picture of the bee's reactions can be given (Table I)

The data show that without doubt the number of bees is greater on the moving half of the flower bed compared with the quiet half The ratios are almost 2 1 One might expect that the frequency of visits to the moving section should even he higher, on account of the flicker effect. If we consider, however, that the moving section as a whole is shifted and thus the distance between the flowers stays the same, the flicker effect is not very great. One should expect a greater number of bees to collect on the moving flowers if one could introduce an irregu larity of motion such that each row of flowers is moved independently. Since this procedure would involve great technical difficulties, we have to rely on the data as they are presented here There is one striking fact which permits the assump tion that the relative shift of the flowers within a certain area of the field induces more bees to settle down. The two rows at the dividing line between the quiet and moving sections are more frequently visited than the rest of our arrangement. and the row on the moving and on the quiet part obtain about equal numbers of bees Due to this fact a great many bees are counted in favor of the quiet section. even while their reaction has been induced by the shifting of the flowers, and thus the observed ratio of visits to the two halves of the field is not greater than 2 1

With these results it seems justifiable to assume that flicker plays a rôle in nature while bees are visiting flowers. With a reaction to flicker the finding of flowers by the bee can be understood easily, whereas the low visual acuity and intensity discrimination could not support an adequate interpretation (Wolf (1933, 1935))

SUMMARY

Bees were conditioned to collect food on natural and artificial flower beds, parts of which could be set into rotation or side to side movement. Through the relative motion of the flowers the number of alternating stimuli upon the bee's eye is increased. Due to the fact that bees show a strong reaction to intermittent optical stimulation, the proportion of bees settling on the moving section of the flower bed is increased. It seems probable therefore that the visual reaction of bees to flowers in nature is largely due to the flicker effect produced through the motion of the bees relative to the flowers.

CITATIONS

Brocker, H, Zool Jahrb abt allg Zool 1935 55, 399 Crozier, W J Wolf E and Zerrahn Wolf, G, J Gen Physiol, 1936-37 20, 363

- Hecht, S, Shlaer, S, and Verrijp, C D, J Gen Physiol, 1933-34, 17, 237
- Hecht, S, and Wolf, E, J Gen Physiol, 1928-29, 12, 727
- Hertz, M, Z vergl Physiol, 1929, 8, 693, 1930, 11, 107, 1931, 14, 629, 1934a, 20, 436, 1934b, 21, 579, 1934c, 21, 604 Biol Zentr, 1933, 53, 10 Naturwissenschaften, 1935, 23, 618
- Salzle, K, Z vergl Physiol, 1932, 18, 347
- Wolf, E, J Gen Physiol, 1932-33a, 16, 707, 1932-33b, 16, 773, 1933-34, 17, 7 Z vergl Physiol, 1933, 20, 151 An analysis of the visual capacity of the bee's eye, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935, 3, 255
- Wolf, E, and Zerrahn-Wolf, G, J Gen Physiol, 1934-35, 18, 853, 1935-36, 19, 229
- Zerrahn, G, Z vergl Physiol, 1933, 20, 117

THE EFFECT OF ORGANIC IONS ON THE MEMBRANE POTENTIAL OF NERVES

By W WILBRANDT*

(From the Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia and the Marine Biological Laboratory, Wood's Hole)

(Accepted for publication, July 10, 1936)

The phenomenon of the injury potential of nerve and muscle is generally explained by the assumption of a membrane surrounding the individual cell and separating two different electrolyte solutions inside and outside of the cell. The potential, then, is due to the particular properties of the membrane, and to the fact that the ionic composition of the cell content differs widely from that of the inter cellular fluid

As to the first point, different views are held (1) The membrane acts as a molecular sieve (Ostwald (1890), Bernstein (1902), Höber (1905), Michaelis (1926), Netter (1928)) and the potential is essentially a diffusion potential (2) The membrane is a homogeneous non aqueous layer and the potential is a phase boundary potential (Beutner (1920)) (3) The membrane is a homogeneous non aqueous layer and the potential is a diffusion potential (Osterhout (1933))

The purpose of the present paper is not primarily to furnish evidence for one of these views. Part of its results are, however, best under stood, as will be shown, by the assumption of a porous structure Also for reasons discussed in another paper we prefer the first interpretation, assuming that an oriented molecular structure rather than a homogeneous phase constitutes the membrane. Investigations on x ray patterns of nerves, in which definite interferences could be attributed to the myelin sheath (Boehm (1933)), seem to justify this assumption, at least for the myelin sheath

As to the second point, several workers have shown that the ionic content of the nerve fibers is very different from the intercellular

^{*} Fellow of The Rockefeller Foundation

fluid, especially with respect to potassium. Since this ion has a particular effect on the injury potential of muscle and nerve the assumption was made that the potential is mainly due to the unequal distribution of potassium.

Recent work, however, seems to indicate that this view is incomplete. A connection between metabolism and nerve potential was suggested by the work of Gerard (1929) and Furusawa (1930), who found a reversible decrease of the injury potential in absence of oxygen. Also the after potentials during activity seem to be connected with the metabolism of the nerve (Levin (1927), Gerard (1929), Amberson and Downing (1929–30), Furusawa (1930), Gerard (1930), Amberson, Parpart, and Sanders (1931)) It may be argued that the membrane itself is injured by the asphyxia, losing temporarily its characteristic properties, in terms of the theory of Bernstein and Hober, its selective cation permeability or its selective potassium permeability. It is, however, hard to explain how the effect can be reversible, since no force seems to be present to drive back the potassium which left the cell during the time of increased permeability.

Some dynamic factor, related to the metabolic activity of the cell, seems to be lacking in the present picture of the potential mechanism A different kind of connection may be suggested, therefore metabolism furnishes ionized metabolites which, without necessarily affecting the membrane, act on the potential The recent excellent work of Teorell may be mentioned here He has worked out both theoretically and experimentally a more general type of Donnan equilibrium, in which a constant diffusion gradient of diffusing ions (diffusion agent) keeps up an unequal distribution of originally equally distributed ions (passive ions), the potential being related to the distribution of passive ions in the same logarithmic way as in the original Donnan equilibrium It seems possible that in some similar way the continuous metabolism of the nerve cell is, by means of diffusing ionized metabolites, related to the nerve membrane potential

We know the reversible influence of inorganic ions on the potential To judge the probability of a relation as discussed above, it seems first of all necessary to know whether organic ions can exert a similar reversible influence, and if so, whether relations between such an

influence and the physical properties of the ions in question can be found

The present paper deals mainly with this question. It shows a distinct, and to a certain degree reversible, influence of organic ions on the nerve injury potential, and, for the homologous series of the dialkylamines, a relation of the efficacy of an ion to its position in the series. The interpretation of this relation will be discussed

Furthermore the results obtained on myelinated nerves are compared to those on non myelinated nerves, to test, in how far they are due to the specific nature of the myelin sheath and in how far to a nerve membrane, common to all types of nerves

Method

The nerves used were the sciatic nerve of Rana pipiens and the non myelinated limb nerve (mostly of the first and second leg, sometimes of the claw) of the spider crab, Maia squinado They were carefully prepared and usually immersed in oxygenated Ringer or sea water for about ½ or 1 hour before the experiment

The active lead was made in Ringer or sea water, the inactive instead of using a cut, in isotonic KCl solution. This yields a potential of 20-40 my, which does not decrease due to recovery as in the case of a cut nerve. The slow fall of the potential which still takes place is due to a decrease of the potential at the active (Ringer or sea water) lead. With good frog nerves it was sometimes only a few millivolts in 24 hours, with crab nerves more

A chamber of paraffin wax was used as shown in Fig 1 The nerve was drawn through four compartments, connected by hollow glass beads at the bottom Two were filled with purest mercury (redistilled, for use with electrodes) and served as seals (Control experiments with vaseline seals showed that the presence of mercury does not affect the potential during 24 hours) Of the other two which could be filled with solutions by means of an inlet and outlet, one contained isotonic KCl solution, the other Ringer (for frog nerves) or sea water (for crab nerves)

Leads were made through the inlets as shown in Fig 1C. By means of agar bridges the calomel half cells could be connected successively with several cham bers so that several nerves could be used simultaneously. The calomel half cells were connected to a Leeds and Northrup student potentiometer and readings made with a box galvanometer (No 2420) of Leeds and Northrup, whose sensitivity was 1.3×10^{-3} amp/mm scale, after focussing the image of the galvanometer out of the box on a scale at about 3/4 meter distance

To test the effect of a salt, the Ringers solution (or sea water) was replaced by an isotonic solution of the salt, mixed with Ringer (or sea water) in a ratio

B KCI Hg Sea water Hg
Nerve

 Γ is 1 Chamber of parafiin v as used in the experiments

Side view

varied according to the activity of the salt 1/10 KCl in the records means, for instance that Ringer was replaced by a mixture of 1/10 isotonic KCl and 9/10 Ringer. The salt solutions were neutralized to a pH of 7-75, when applied in Ringer, and about 8, when applied in sea water. The Ringer solution was buffered with phosphate. Tresh filtered sea water was used. After a certain time pure Ringer or sea water was introduced again to test the reversibility of the effect. In the case of frog nerves, this time was about 1 hour, in the case of crab nerves about 10-15 minutes. Diffusion in frog nerves is very slow, due to the great amount of connective tissue around the nerve and between the fibers, whereas the crab nerves have little connective tissue and the nerves split into fine bundles as soon as they are immersed in sea water. Thus in the latter the nerve fibers are reached by the electrolyte much faster than in frog nerves. By splitting the connective tissue of frog nerves under the microscope with a quartz needle the diffusion time could be shortened considerably. The nerves seemed, however, to be damaged by the procedure and it was not used in the experiments.

The salts used were the purest available preparations of Merck and Eastman Kodak They were not further purified

Since the nerves showed considerable individual variations as to their response to ions several electrolytes were always tested on the same nerve and, especially between ions of about equal efficacy, comparisons were made only on the same nerve. Fven then, however, the comparison was sometimes difficult due to the fact that the response of a nerve decreases with time.

Effect of Inorganic Ions on the Potential of the Non Myelinated Nerve of the Spider Crab

Netter has investigated the effect of inorganic ions on the membrane potential of the sciatic nerve of the frog (Netter (1928)) He found that cations only affected the potential, the effect decreasing in the series $L_1 = Na < Cs < NH_4 < Rb < K$ Amons had no effect He concluded that the nerve membrane is solely cation permeable and consists of a pore system since the series he found was about that of the ionic sizes

As far as cations are concerned, the results in crab nerves agree fairly well with Netter's, as Fig 2 shows Rb and K lower the potential in very high dilution, (1/40 was still found to be effective), Rb slightly more than K (Fig 2A) NaCl in high concentrations (1/4-3/4 was mostly used) raises the potential a few millivolts (Fig 2B) This is due to the dilution of the highly active K, as could be shown in experiments with artificial sea water, in which a corresponding lowering of the K concentration yielded the same result.

e e

Fig 2 Effect of inorganic cations on the potential of crab nerves

has about the same effect as Na (Fig 2B) Both, however, although much less active than K and Rb, do also have a slight lowering in fluence on the potential. This is shown when instead of NaCl or LiCl an isotonic solution of a non electrolyte (saccharose) equally diluted with sea water is applied. Then, with equal dilution of the potassium, the potential rises considerably higher (Fig 2B), which shows the lowering effect of Na and Li

Fig. 3 Effect of morganic amons on the potential of crab nerves

The cations thus act in the series Rb > K > Na = Li, which agrees with Netter's results except the position of Rb

Anions, however, in contrast to Netter's results, were found to have a distinct, if slight, effect on the potential Since they have the opposite sign their effect, if they are active, must of course be to raise the potential NaBr, NaNO₂, and NaSCN were used The dilution

of the potassium was taken into account by comparing the effect in each case with that of NaCl in the same concentration. Fig. 3 shows, that, whereas NaCl and NaBr have about the same effect, NaNO₃ and, more definitely, NaSCN, raise the potential higher than NaCl does

Since the effect was only a few millivolts the possible interference of diffusion potentials was checked. A silk thread was used instead of the nerve in the same arrangement, and the effect of the salts tested in the same concentrations as on the nerve. The potential did not change by more than 3/10 mv. In the presence of 1/2 sea water diffusion potentials are depressed considerably.

The series of activity of the anions is

 $Cl = Br \le NO_3 < SCN$ Their efficacy is about comparable to that of L1 and Na, but much lower than that of K and Rb tion of a completely anion impermeable membrane, therefore, cannot be made for the non-myelinated nerve Whether it is strictly true for the myelinated nerve should be tested again The very slow diffusion in the latter, together with the slightly injurious effect of SCN, might conceal a slight rise of the potential It may be noted, that in Netter's paper evidence against the assumption of complete anion impermeability can be found. He found that the concentration effect of K was considerably higher than that of Na and Li, which is not possible for an exclusively cation permeable membrane for thermodynamic reasons Accordingly collodion membranes with high concentration effect, i e nearly exclusive cation permeability, were shown to have the same concentration effect for all cations (Michaelis (1926)) The concentration effect on nerves is, of course, lowered by the intercellular short circuit, but this effect should be about the same for all cations

The Effect of Organic Ions on the Potential of Frog Nerves and Crab Nerves

A Cations—To avoid complications by hydrolysis only salts of strong bases were chosen dialkylamines, tetraalkylamines, guanidine, and choline

Fig 4 shows the effect of dialkylamines (from dimethylamine to diamylamine) on the potential of crab nerves Under the influence of the lower members in high concentration, from dimethylamine to

dipropylamine, the potential changes very little, which means taking into account the dilution of potassium (of Γ ig 2B), that their lowering effect is weak, but a little stronger than that of Na The effect decreases slightly from dimethylamine to dipropylamine From the next member on, dibutylamine, the tendency is reversed Dibutyl

Fig. 4 Effect of dialkylamines on the potential of crab nerves

amine has a strong effect, with the concentration 3/4 the potential falls in a few minutes by 10 mv but the fall is not completely reversible (Fig 4C) In a lower concentration, 1/8, a reversible effect can be obtained (Fig 4D) Diamylamine is still more active, even 1/20 lowers the potential rapidly and considerably, the efficacy being about

the same as that of K In higher concentrations the reversibility is incomplete for this salt, too This is a common feature of the active organic ions

Fig 5 Effect of dialkylamines on the potential of the frog sciatic nerve

Thus, ascending in the homologous series, there appears a decrease first, and then an increase in the effect on the potential The same is

true for the effect of the same salts on the potential of frog nerves, but the reversing point is different, dibutylamine is still inactive, only diamylamine shows a strong effect. This is shown in Fig. 5. Dipro pylamine and dibutylamine are here nearly as inactive as a non electrolyte, glucose, dimethylamine and diethylamine a little more active, diamylamine very strongly active.

The following interpretation of this striking behavior may be suggested. In a porous system the ionic size determines the effect of an ion on the potential. Thus, ascending in the series, a decrease of the effect would be expected in such a system. This is what is true for the lower members. Then, with increasing length of the hydrocarbon chain, another property prevails, the hydrophobic character of the ions. This leads to their accumulation in the interface and thereby increases their activity, so to speak, by superposition of a concentration effect (Hober (1936))

This interpretation may seem arbitrary to those who like to regard the cell membrane as a homogeneous non aqueous layer and the objection may be made that instead of accumulation in the interface of a porous system, lipoid solubility may be assumed with equal justifi cation, and the interpretation based on partition coefficients along the lines of either Osterhout's or Beutner's views The latter interpreta tion fails, however, to explain the decreasing effect of the lower mem bers, for the hydrophobic character alone would lead to an increase of effect throughout the whole series The interfacial tension between an aqueous solution of dialkylamine and paraffin oil for instance, that may be taken as a measure of the hydrophobic character, decreases from the first member on This is shown in Table I, where the number of mm 2 per drop of dialkylamine solution formed from a stalagmometer in paraffin oil are listed. The assumption, therefore, that partition coefficients determine the effect of the ions, seems not adequate to account for the results described, unless the assumption of a mosaic membrane is made to explain the behavior of the lower members Damelli (1935) has discussed the possible stability of such systems and found that their existence is not probable

An accidental observation made when measuring the interfacial tensions shown in Table I may be mentioned shortly If, instead of the non-ionized interface water / paraffin oil, the ionized interface

water / olive oil + oleic acid is used, the interfacial tension increases with increasing length of the hydrocarbon chain, instead of decreasing, as Table II shows The explanation seems to be, that the interface active cations exert a discharging effect on the negatively charged interface, and that the increase of interfacial tension due to this discharge is greater than the decrease due to the molecular attraction

TABLE I

Interfacial Tension between Dialkylamine Solutions and Paraffin Oil
The salt solutions were N/50 in phosphate buffer N/72, pH 7 3

Salt	mm ³/drop				
NaCl	234				
Dimethylamine	231				
Diethylamine	219				
Dipropylamine	201				
Dibutylamine	168				
Diamylamine	151				

TABLE II

Interfacial Tension between Dialkylamine Solutions and a Mixture of Olive Oil
and Oleic Acid 4 1

The salt solutions were N/50 in phosphate buffer N/72, pH 7 3

Salt	mm */drop
KCl Dimethylamine Diethylamine Dipropylamine Dibutylamine Diamylamine	78 5 80 5 80 5 99 114 127

across the interface Since biological interfaces are probably mostly ionized, similar phenomena may have some biological importance

If the interpretation given above is correct, it should be possible to test it on a porous model. Michaelis has shown that the dried collodion membrane is, in some respects, a useful model of the cell membrane. That it is a porous system was shown in several ways. Non-electrolytes that do not disrupt the structure of the membrane,

Fig. 6 Potential differences across collodion membranes between organic salts N/100 and NaCl N/100 (in per cent of the potential difference across the same membrane between KCl N/100 and NaCl N/100) Sign positive on the side of NaCl in the external circuit.

penetrate through the dried membrane according to their molecular sizes (Michaelis and Weech (1928)), and the transition from incompletely dried membranes, that doubtless contain pores, to the completely dried membranes is steady (Wilbrandt (1935)) The porous nature of this membrane may be regarded as certain, therefore

Fig 6 shows potential differences across dried collodion membranes between organic salts n/100 and sodium chloride n/100, in percentage of the potential difference measured between KCl n/100 and NaCl n/100. The dialkylamines show qualitatively the same behavior as on the nerve, in the lower part of the series the effect decreases with increasing length of the hydrocarbon chain, in the upper part from dipropylamine on, it increases (Fig 6A)

It should be noted that the results obtained on collodion membranes with organic ions, are not as reversible as those obtained with inorganic ions. Only fresh membranes were used, therefore, in which case the results were reasonably reproducible. On each membrane, to obviate individual differences, the potential difference between KCl and NaCl was first measured and then the potential difference between the organic salt and NaCl. (Therefore the values in Fig. 6 are listed in percentage of the potential difference between KCl and NaCl.)

Of tetraalkylamines only tetramethylamine and tetraethylamine Tetramethylamine had no lowering effect even in could be tested the concentration 3/4 It raised the potential by dilution of the potassium, less than a non-electrolyte (Fig 7A), but more than dimethvlamine (Fig. 7B) Thus, it is about as active as Na Tetraethylamine is more active, it lowers the potential, (Fig 7C and 7D), thus being more active than the corresponding dialkylamine, diethylamine (in contrast to the methyl-compounds) This is of some interest, because in his work on chemical stimulation J Loeb (Loeb and Ewald (1906)) also found tetraethylamine effective but tetramethylamine In his interpretation of chemical stimulation he assumed a primary effect of the stimulus on the membrane potential, which is in accordance with our results It is, however, striking that Netter found no effect of tetraethylamine on the potential of frog nerves On the other hand, our results on dialkylamines show that the effect of these ions is in general weaker on frog nerves than on crab nerves dipropylamine and dibutylamine, on frog nerves are about as inactive as a non-electrolyte (Fig 5B), whereas on crab nerves the first has a weak effect (but stronger than a non-electrolyte), the latter a rather

Fig. 7 Effect of tetraalkylamines on the potential of crab nerves

strong effect (Fig 4C) The reason for this difference will be discussed later

Guanidine has a strong effect, it lowers the potential even in the concentration 1/8 (Fig 8A) Choline is about as active as Na It raises the potential in the concentration 3/4 by dilution of potassium (Fig 8B), but not as much as a non-electrolyte

Also the tetraalkylamines, guanidine and choline, act very similarly on a collodion membrane, as Fig. 6B shows tetraethylamine is stronger than tetramethylamine, guanidine very strong, choline very weak

Fig. 8 Effect of guanidine and choline on the potential of crab nerves

Summarizing the results with organic cations, we may state that an influence of such ions on the nerve potential is definite. The effects range between that of Na and K, according to the approximate series Li = Na = choline = tetramethylamine < dipropylamine < dimethylamine = diethylamine < dibutylamine < diamylamine = K < Rb

The effects are, however, not as reversible as those of the inorganic cations. Only after a very short application and in the lowest effective

Fig. 9 Effect of fatty acids on the potential of crab nerves 535

concentrations is it possible to restore the original level of the potential. The effects resemble in a rather striking way those obtained on a porous model, the dried collodion membrane

B Anions—Since an effect of inorganic anions on the potential could be shown, and since the formation of acids during metabolism is more frequent than that of bases, it appeared necessary for our problem also to test the influence of organic anions on the potential

Sodium salts of fatty acids from acetate to butyrate were used,

Fig 10 Effect of lactate and pyruvate on the potential of crab nerves

furthermore lactate and pyruvate Fig 9 shows some records of the effect of these salts. They exhibit a weak, but definite effect. In high concentration they raise the potential more than is due to the dilution of potassium as a comparison with the effect of NaCl in the same concentration shows. The effect, thus, is similar to that of the active inorganic ions, NO₃ and SCN. A definite series among the fatty acids could not be established, their action was about equal. Higher acids could not be tested because they are too insoluble in sea water.

Fig. 11 Effect of varied osmotic pressure on the potential of the frog sciatic nerve

Lactate and pyruvate were similarly active in high concentrations as Fig. 10 shows

Summarizing we may state, that from the results also obtained with organic ions the assumption of a completely anion impermeable membrane around the nerve fiber cannot be supported Organic amons have a weak, but definite effect on the potential

The Effect of Varied Osmotic Pressure on the Potential of Frog Nerves

Netter (1926-27) found that the frog sciatic nerve behaves like an osmometer, following the Boyle-Mariotte law This finding seemed to furnish a possibility to test the fundamental assumption that the potential is a membrane potential due to the difference of ionic composition on the two sides of the membrane If this is the case, osmotic compression of the nerve should raise the ion concentration inside, and, if it remains unaltered outside, i e if the surplus osmotic pressure outside is exerted by a non-electrolyte, the potential should rise decrease of the outside osmotic pressure brought about by dilution of the outside medium should, on the other hand, be followed by an expansion of the nerve and a dilution of the inside ions to the same extent that the outside solution has been diluted Since the inside cations are mainly or exclusively potassium ions and the outside ions mainly sodium, and since the concentration effect of potassium on nerve has been shown by Netter (1928) to be greater than that of sodium, the potential should fall Previous to the fall, however, before the water shift is completed, the potential should, of course, rise, due to a mere concentration effect Fig 11 shows that both occur This seems to indicate that the assumption of a membrane potential is correct

It should be noted, that a similar effect on crab nerves could not be obtained. Since we know nothing about the osmotic properties of this nerve it is hard to interpret this negative result.

DISCUSSION

The results of this paper show a definite effect of organic ions, both cations and anions, on the membrane potential of the crab nerve The efficacy of organic cations ranges between that of Na and K, that of anions is considerably weaker, but definite The same is true for

inorganic anions The membrane of crab nerves seems to be predominantly, but not exclusively, cation permeable similar to the findings of Hober for the membrane of muscles The effects of organic ions are not as completely reversible as those of inorganic ions. If the ions are applied in the lowest effective concentration and only over a short time, however, the reversibility is complete

A relation of parts of the electrical disturbance to the metabolism of the nerve by means of ionized metabolites therefore seems possible

Whether the effect of ions formed inside the nerve fiber agrees with the effects described in this paper, where the ions were applied from outside, depends on whether the membrane is symmetric mostly been tacitly assumed, for instance, when the effect of potassium from outside was used to interpret the resting potential as due to the high potassium concentration inside. The striking observations of Osterhout on the asymmetry of the membrane of Valonia and other large plant cells, however, have raised doubts. It should be pointed out, that in the latter case potential differences were measured across two cell membranes, whereas in the case of the nerve only one mem brane is involved The two cell membranes of Valonia are different and therefore the whole wall is asymmetric, but whether either of the two membranes is symmetric or not, we cannot judge from the expenments Thus far there seems to be no evidence to indicate an asymmetry of a single cell membrane as far as the author knows

Assuming the membrane to be symmetric, we may briefly discuss the possibilities of a connection between electrical disturbance and metabolism. It is not probable that the spike is due to the formation of metabolites. Formation of active amons in very high concentration would have to be assumed to explain the direction of the change, but quantitatively their efficacy would have to be so considerably greater than those reported in this paper, that the assumption seems improbable. Formation of acids, however, might be related to the negative after potential, disappearance of acids or formation of bases to the positive after potential, especially since the after potentials seem to have a connection with the metabolism.

The comparison of the non myelinated and the myelinated nerve showed large agreement, but definite differences in some details. The effect of organic cations, as far as it was studied, was in general stronger

Particularly striking is the case of dipropylamine and on crab nerves dibutylamine, also tetraethylamine, which seems entirely ineffective on frog nerves The same is true for the effect of inorganic anions It should be pointed out, however, that these differences are not necessarily due to differences of the cell membranes involved entirely possible, that they are merely due to the fact that the salts are applied in one case in the presence of Ringer, in the other in the presence of sea water The results reported here furnished some evidence that the hydrophobic character of the ions is important for their This property is in general increased in a salt rich medium, for instance the solubilities of organic salts in sea water are mostly lower than in Ringer It seems very likely, therefore, that the stronger effects of some organic ions on crab nerves in sea water are due to their increased hydrophobic character in this medium, in terms of our interpretation, to their increased interfacial accumulation

We may state that a difference between the membranes that are the seat of the potential of non-myelinated nerves and myelinated nerves could not be shown definitely Non-myelinated nerves of land animals should be investigated to clear up this point

SUMMARY

- 1 The effect of osmotic pressure on the nerve resting potential of frog sciatic nerve is in accordance with the assumption of a membrane potential, increased osmotic pressure raises, decreased osmotic pressure lowers the potential
- 2 The potential of crab nerves is affected by organic and inorganic cations in the approximate series
- Rb > K = diamylamine > dibutylamine > guanidine > tetraethylamine > diethylamine = dimethylamine > dipropylamine > tetramethylamine = choline = Na = Li
- 3 The response of the potential to the series of dialkylamines (first decrease, then increase of response ascending in the series) is best understood by the assumption that the nerve membrane is a porous structure
- 4 With respect to these salts as well as to other organic cations the dried collodion membrane as a model of a porous membrane shows a striking parallelism to the nerve membrane

- 5 Both morganic and organic amons (NO₁, SCN, acetate, propio nate, butyrate, lactate, pyruvate) have a definite, if slight, effect in raising the potential of crab nerves. This effect of amons indicates that the nerve membrane is not completely amon impermeable
- 6 The effect of organic ions is, with certain restrictions, reversible Its possible relation to the resting potential and to the after potentials of the electrical disturbance is discussed
- 7 The response of the myclinated sciatic nerve of the frog and of the non myclinated nerve of the spider crab show considerable agreement. There are some definite differences which are, however, not necessarily due to differences of the cell membranes involved, but may be ascribed to the difference of ionic conditions in Ringer and sea water.

My sincere thanks are due to Prof R Hober, in whose laboratory this work was carried out, for the stimulation to the problem and for his continuous help and advice during the course of the work

LITERATURE

Amberson, W R, and Downing, A C, J Physiol, 1929-30, 68, 1

Amberson, W R. Parpart A, and Sanders G Am J Physiol, 1931, 97, 154

Bernstein J Arch ges Physiol, 1902 92, 521

Beutner R, Die Entstehung elektrischer Strome in lebenden Geweben, Stuttgart, Ferdinand Enke 1920

Boehm, G, Kolloid Z, 1933, 62, 22

Cowan S L , Proc Roy Soc London Series B, 1934 115, 216

Danielli J F , J Cell and Comp Physiol , 1935, 7, 393

Furusawa, K. J Physiol, 1930, 67, 325

Gerard R W, Am J Physiol 1929, 92, 498 1930, 93, 337

Höber, R, Arch ges Physiol 1905, 106, 599 Physikalische Chemie der Zellen und Gewebe Leipsic, Wilhelm Engelmann, 6th edition, 1926 J Cell and Comp Physiol, 1936 7, 367

Levin, A., J Physiol, 1927, 63, 113

Loeb, J and Ewald, W F , J Biol Chem , 1906, 25, 377

Michaelis, L., Naturwissenschaften 1926 14, 33

Michaelis L, and Weech, A A J Gen Physiol, 1928, 12, 55

Netter, H, Arch ges Physiol, 1926-27, 215, 373, 1928, 218, 310

Osterhout W J, Ergebn Physiol, 1933, 35, 967

Ostwald W Z phys Chem , 1890 6, 71

Teorell, T, Proc Nat Acad Sc 1935 21, 152

Wilbrandt W, J Gen Physiol 1935 18, 933

STUDIES IN BLOOD COAGULATION

V THE COAGULATION OF BLOOD BY PROTEOLYTIC ENZYMES (TRYPSIN, PAPAIN)

BY HARRY EAGLE AND TZVEE N HARRIS

(From the Department of Bacteriology, School of Medicine University of Pennsyl vania, Philadelphia)

(Accepted for publication, June 19, 1936)

In 1916, Douglas and Colebrook noted that blood coagulation was accelerated by the addition of trypsin. A year later, Heard reported that trypsin could actually coagulate oxalated blood, and ascribed the phenomenon to a hypothetical disturbance in the Ca and P content of the fibrinogen, induced by the enzyme. These two reports were apparently overlooked by workers in the field. In 1928, Wald schmidt Leitz and his coworkers also reported that trypsin accelerated blood coagulation. They considered their experiments to prove that thrombin was a proteolytic enzyme either identical with or closely related to trypsin, that coagulation was due to the enzymic hydrolysis of fibrinogen to an insoluble modification, and that trypsin accelerated coagulation insofar as it hastened this hydrolysis. They found other proteolytic enzymes, including papain, to be inactive

Mellanby (1935b) re investigated the action of trypsin on blood plasma and concluded that the coagulation observed by Heard was due simply to traces of calcium in the commercial preparations of trypsin, and was wholly unrelated to the enzyme as such

The present observations grew out of a chance re-discovery of Heard's observation certain mixtures of citrated horse plasma and trypsin were found to have clotted when examined after several hours. The participation of calcium could be excluded. Human, guinea pig, dog, horse, and rabbit plasma or blood could be similarly coagulated, provided only that one used the correct concentration of trypsin. Since the phenomenon promised to throw considerable light on the mechanism of physiological coagulation, it was studied in some detail.

In addition to trypsin, papain was also found capable of initiating coagulation, but by a different mechanism. The latter is a true thrombin, insofar as it acts directly on fibrinogen to form an insoluble modification resembling fibrin. Trypsin, however, does not coagulate fibrinogen, but apparently reacts with plasma prothrombin to form the physiological coagulant thrombin.

Methods and Materials

We are indebted to the Mulford Biological Laboratories at Glenolden for the citrated horse blood used in most of the experiments. The crude trypsin was the Digestive Ferments Company's "Trypsin 1 110," and the papain was a powder supplied by Merck. Both preparations were quite acid, and the suspensions in salt solution had to be cautiously neutralized before using. The suspended solids in such neutralized preparations were found to be relatively inert and could be removed by centrifugation.

We are deeply indebted to Dr John H Northrop of The Rockefeller Institute for Medical Research at Princeton for a most generous supply of crystalline trypsin for use in these experiments. It is to be noted that the concentrations mentioned in the text are those of the dry powder, and this contains approximately 60 per cent $MgSO_4$

Preparation of Prolirombin — The precipitation of water-diluted plasma with acetic acid as described by Mellanby (1931) proved to be simple and to yield a more active product than the similar precipitation with CO₂ described by Eagle (1935a) in ignorance of the former procedure

Plasma was diluted with 15 volumes of cold (0-5°) water, and n/1 acetic acid was added until the precipitate became visibly granular. Usually, an amount of acid corresponding to 1/20 the original plasma volume sufficed

The centrifuged precipitate was dissolved in 0.85 per cent NaCl up to the original plasma volume, and neutralized cautiously with either N/1 Na₂ CO₃ or NaOH solution The resultant opalescent solution contained fibrinogen, which could be removed by heating at 56° for 3-5 minutes, with little or no decrease in prothrombin activity of the solution (Eagle (1935a))

Alternatively, the prothrombin was purified by the Mellanby technic The original acetic acid precipitate was suspended in water in a volume corresponding to 1/2 the original plasma volume, and this suspension then diluted with an equal volume of a 1/10 dilution of saturated Ca (OH)₂ previously brought to pH 70 with CO₂ After 10 minutes, the mixture was centrifuged and the supernatant fluid, containing a large proportion of the prothrombin and little or no fibrinogen, was rendered isotonic by the addition of 1/20 volume of 17 per cent NaCl

Preparation of Fibrinogen—Repeated precipitations (three to four) with 15 volumes of saturated NaCl yielded a satisfactory product which failed to coagulate on the addition of Ca and tissue extracts, but was promptly coagulated on the

addition of thrombin The final product was brought to a concentration of 0.9 per cent with respect to NaCl by proper dilution

Quantitative Estimation of Thrombin Activity —The time required for a given solution of thrombin to cause the coagulation of fibrinogen under standard conditions of temperature, volume, and salt concentration, was used as a criterion of its activity, and could be compared with the activity of other solutions by interpolation on a curve correlating coagulation time with thrombin concentration (Eagle (1935 a))

TABLE I

The Coagulation of Citrated Plasma by Trypsin

Coagulation time of 0.6 cc. plasma + varying quantities of trypsin solution in a total volume of 1 cc.

	Trypsin			Amoun	of trypsi	a solution	¢¢.		
Plasma	solution	04	02	01	0 05	0 025	0 0125	0 0062	0 0031
	per cent			min	min	m n	min	78 N	
Rabbit	10	∞†	∞ !	1	1	1	5	35	}
Guinea pig	10	, so	8 min	7	4	5}	~	 	ļ
Human	10	∞	∞	8	5	3	43	14	1
Horse	7	∞	, s	71	6	6	16	60	Ì

^{* &#}x27;Difco 110' dissolved in salt solution The results were unaffected by pre liminary dialysis of the enzyme solution to remove possible calcium

The Coagulation of Blood or Plasma by Trypsin

A typical experiment which illustrates the fact that coagulation is observed only within a comparatively narrow optimum zone of trypsin concentration is given in Table I That the clot results from the precipitation of the fibrinogen as a fibrillar gel resembling fibrin is clearly indicated by the following observations (1) plasma from which the fibrinogen is removed by heating for 5 minutes at 56°, or by half saturation with NaCl, can no longer be coagulated by the enzyme, (2) the supernatant fluid expressed from the clot contains no fibrinogen, as shown by heating to 56°, or by half saturation with NaCl, moreover, it no longer clots on the addition of either Ca or

[†] No clot in 24 hrs

thrombin in sufficient concentration to coagulate the original plasma, (3) the clot is microscopically indistinguishable from that which forms physiologically

The participation of calcium in the coagulation of plasma by trypsin was rendered improbable by the fact that coagulation was observed in trypsin plasma mixtures containing so much citrate and so little trypsin that even had the latter consisted solely of CaCl₂, no coagulation would have been observed Moreover, the coagulating activity of the trypsin was quantitatively unaffected by previous dialysis

Definitive proof that the observed coagulation was due to the trypsin per se, rather than adventitious substances such as Ca, was furnished by the fact that crystalline trypsin (Northrop and Kunitz) also caused coagulation of citrated blood or plasma, and was approximately 20 to 50 times as active in this respect as the crude trypsin. It is true that the crystalline enzyme preparation contained MgSO₄, but the latter, in any concentration, failed to cause coagulation of citrated horse plasma, and if the trypsin was dialyzed against distilled water until it contained no demonstrable free SO₄, its coagulating activity was found to have been quantitatively unaffected

The Mechanism of the Trypsin Effect—Physiological coagulation involves two consecutive reactions. In the first of these, a plasma factor (prothrombin) is activated by Ca and platelets (or tissue extracts) to form thrombin, subsequently, this thrombin reacts with fibringen to form fibrin. It becomes of interest to ascertain how trypsin causes coagulation whether it replaces one or more of these physiological reagents, or whether the phenomenon is wholly unrelated to the physiological transformation of fibringen to fibrin

Trypsin was found to have no direct coagulative action on purified fibrinogen. In sufficient excess, the enzyme digested the protein, and rendered it incoagulable even by thrombin but no clots were produced when trypsin in any concentration was mixed with fibrinogen (cf. Table IV). Contrary to the thesis of Waldschmidt-Leitz and coworkers, trypsin is therefore not analogous to thrombin.

Instead, the coagulating action of trypsin was found to rest on the fact that it reacts with prothrombin to form thrombin, and this thrombin then acts on fibrinogen to form fibrin If one adds varying

amounts of trypsin to a solution of prothrombin, and tests the coagulating properties of the mixture at intervals by adding aliquot portions to purified fibrinogen, one obtains results similar to those illustrated in Fig. 1. With too little trypsin, there is no formation of thrombin. There follows an intermediate range of concentrations, in which a relatively slight increase in the amount of trypsin causes a

Fig. 1 The formation of thrombin from prothrombin by trypsin Varying amounts of 1/15 per cent crystalline trypsin were added to 2 cc of prothrombin solution. Aliquot portions were withdrawn at intervals and tested for thrombin content. A similar experiment was carried out, using CaCl₂ and tissue extract instead of trypsin as the activating agent.

disproportionate increase in the amount of thrombin formed. At a sharply defined optimum there is the rapid formation of a large amount of thrombin. This is usually between $\frac{1}{2}$ and $\frac{1}{5}$ the amount formed from the same prothrombin by Ca and tissue extract, but in some experiments the two thrombins are of approximately the same activity. With an excess of the enzyme, no thrombin formation can

Protocol 1

Thrombin is rapidly destroyed by the concentrations of trypsin necessary for the activation of prothrombin (Fig. 2)

To 16 cc of horse thrombin (prothrombin + Ca + lung extract) were added 04 cc of M/10 phosphate buffers and varying amounts of trypsin. The thrombin activity of the mixtures was tested at intervals by adding aliquot portions to 04 cc fibrinogen and noting the coagulation time. The curves given in Fig. 2 represent the amount of residual thrombin after 5 minutes. The results at pH 65, 62, 59,

Fig 2 Thrombin is rapidly destroyed by the concentrations of trypsin necessary for the activation of prothrombin

and 5 6 are not given, as they are practically identical with the curve at pII 6 8. The dotted curve in the figure represents the amount of thrombin formed from the same prothrombin in 15 minutes by varying amounts of trypsin and it is apparent that at the effective concentrations, thrombin is being destroyed almost as fast as it is formed

In this experiment, as in that of Protocol 2, the pK' of the phosphate buffer was arbitrarily taken as 68. The pH values given in the figures and tables are therefore in error to the extent that the pK' of the several buffer-salt mixtures deviates from 68 because of their varying ionic strength

be demonstrated, because of the digestion of prothrombin, thrombin, or both — It is to be noted that the thrombin formed at the optimum trypsin concentration is eventually similarly digested, and is often no longer demonstrable after 1 or 2 hours

The formation and destruction of thrombin proceed simultaneously (Protocol 1 and Γ_{IG} 2), and the amount of thrombin demonstrated at any one time is a resultant of the two processes. As is shown in Fig 1, Table III, and Γ_{IG} 2, this destruction is quite rapid at the

FIG 3 The reaction between prothrombin and trypsin to form thrombin Showing the linear correlation between the amount of prothrombin used, the optimum concentration of trypsin, and the amount of thrombin formed at the optimum trypsin/prothrombin ratio

optimum concentrations of trypsin, and explains the fact that the amount of thrombin elaborated by trypsin is usually only a fraction of that formed on the addition of Ca and tissue extract to the same prothrombin solution

The quantitative relationships between the amount of prothrombin solution used, the amount of thrombin formed, and the optimum concentration of trypsin are illustrated in Fig 3. As is there shown, there is a linear relationship between all three factors. The more

prothrombin used, the more thrombin is formed, and the greater is the amount of trypsin necessary to effect the transformation Because of the progressive digestion of thrombin at the higher concen-

TABLE II

The Formation of Thrombin from Prothrombin by Trypsin Is Independent of the Presence or Absence of Tissue Extracts, Unlike the Physiological Transformation by Ca

To 2 cc of prothrombin prepared from Berkefeld-filtered horse plasma were added varying quantities of lung extract* and of crystalline trypsin, as indicated in the table. The numbers in the body of this table represent the relative amounts of thrombin formed. A control experiment using CaCl₂ instead of trypsin is also included.

			Relativ	e amount o	of thrombin	formed on a	ddition of	
Tissue extract	Time of incubation		Crysta	illine trypsi	n, 1/15 per	cent cc		CaCl, 02
		0 3	02	0 15	01	0 075	0 05	solution
EC	min							
0 2		0	100	60	6	3	<2	125
0 04	10	0	100	50	6	3	<2	50
0 008		0	100	50	10	3	<2	10
0		0	100	50	8	3	<2	0
0 2		0	35	60	6	3	<2	90-100
0 04	20	0	25	60	6	3	<2	60
0 008		0	25	60		3	<2	15
0		0	25	60	6	3	<2	2-3
0 2		0	10	50	4	3		90
0 04	60	0	3	50	4	3	-	80
0 008		0	1-2	50	4	3	-	25
0		0	1-2	50	4	3	-	3

^{*}An aqueous extract of rabbit lung tissue, previously washed free of blood, minced, and kept frozen until needed Such extracts contained no demonstrable prothrombin or fibrinogen The tissue extract could be replaced by a washed platelet suspension, which yielded the same results a marked acceleration of thrombin formation in the presence of Ca, but no effect on thrombin formation by trypsin

trations of trypsin, the exact shape of the curves will vary according to the time interval allowed. Thus, if the experiment of Fig. 3 were terminated after 15 minutes instead of 90 minutes, each of

the curves would be higher, and would be shifted to the right (less destruction of thrombin by the trypsin) but the relationships be tween prothrombin, thrombin, and trypsin there indicated would still hold

The optimum concentration of trypsin is determined largely by the protein content of the prothrombin solution. The addition to the latter of mert serum, containing no demonstrable thrombin or prothrombin, causes a proportionate shift in the amount of trypsin necessary for thrombin formation. The important factor is apparently the amount of trypsin per unit protein, and the progressive shift in the optimum trypsin concentration as the amount of prothrombin solution is increased (Fig. 3) is an expression of this fact

The reaction between trypsin and prothrombin is independent of the presence of either Ca, platelets, or tissue extractives. Pro thrombin prepared from Berkefeld filtered plasma, and which con tains neither Ca nor tissue extractive, is readily activated by trypsin, moreover, the rate of activation and the amount of thrombin formed are not affected by the addition of even large amounts of tissue extract (Table II)

An attempt to determine the optimum pH for the trypsin pro thrombin reaction is summarized in Protocol 2 and Table III. As is there shown, the higher the concentration of trypsin, the more acid is the apparent pH optimum and this dependence on the trypsin concentration is accentuated if the trypsin prothrombin mixture is allowed to incubate for some time before the thrombin content is determined. The discrepancy is explained by the data of Fig. 2. Thrombin is rapidly destroyed only by the higher concentrations of trypsin, and this destruction proceeds more rapidly in the alkaline range than it does at pH 6.8 or 6.5, causing an acid shift in the apparent optimum pH for thrombin production. The experiment of Table III therefore offers no clue as to the true pH optimum for thrombin production by trypsin, but indicates instead how the amount of net free thrombin varies with pH, trypsin concentration, and time

That the coagulant produced by the interaction of trypsin and solutions of prothrombin is actually thrombin would seem to require no proof. It is nevertheless of interest to note that if one adds trypsin

Protocol 2

The effect of pH on the trypsin-prothrombin reaction (Table III)

To 16 cc of horse prothrombin solution (heated at 56°C for 5 minutes to remove fibrinogen) were added 04 cc of M/10 phosphate buffers and 04 cc of varying concentrations of crystalline trypsin as indicated in Table III At the intervals there shown, aliquot portions of each solution were withdrawn and tested for thrombin activity by adding varying quantities to a fixed amount of similarly buffered fibrinogen and noting the coagulation time (cf page 545)

TABLE III

The Effect of pH on the Formation of Thrombin from Prothrombin by Trypsin

Crystalline trypsin,	Time		R	elative am	ount* of tl	rombin fo	rmed at p	H.	
1/15 per cent	ınterval	8 3	7 4	71	68	6.5	6 2	5 9	56
cc	min								
0 4		0†	0	0	0	<3‡	<8	0	0
0 35		0	0	2 5	3	30	15	0	0
03	5	0	0	12 5	26	25	18	<8	0
0 25	J	15	8	12 5	35	20	17 5	<8	<10
0 2		9	13	10	12	10	8	<7	<10
0 175		4	3 5	3	3	15	20	ot	0
					1	1			
0 4		0	0	0	0	0	<5	0	0
0 35		0	0	0	0	26	27 5	0	0
0 3	15	0	0	7 5	30	45	50	40	<20
0 25	10	3	10	15 0	60	68	25	30	<20
02		12 5	18	17 5	16	17 5	12	6	
0 175		3 5	3	2 5	2 5	20	20	0	0
							_		
0 4		0	0	0	0	0	0	0	0
0 35		0	0	0	0	0	0	0	0
03	90	0	0	0	1 5	3	10	15	<20
0 25	70	0	15	2 5	15	30	22	50	42
02		15	22 5	22 5	25	25	22 5	12	<20
0 175						-		3	0

^{*}The amount formed from the same prothrombin by Ca and tissue extract is taken as 200

In estimating the thrombin content of the solutions, it was necessary to take into consideration the fact that the coagulation time obtained with a given amount of thrombin varies with the pH. Accordingly, a series of reference curves was constructed, correlating the coagulation time with thrombin concentration at the various pH levels used in the actual experiment, and the thrombin content of a given solution was obtained by interpolating the observed coagulation time on the appropriate reference curve.

[†] Less than 1 on the arbitrary scale

[†] Soft clots or shreds form instead of a solid clot

in less than optimum concentrations to some prothrombin, and obtains, e g a 20 per cent yield of coagulant, and if one then adds Ca and tissue extractive, the total amount of coagulant formed is exactly the same as would have been formed by the Ca and tissue factor alone. Conversely, trypsin added to formed Ca thrombin (a prothrombin Ca tissue extract mixture) has no effect other than to direct the coagulant if added in excess.

Clearly, trypsin and the Ca tissue (or Ca platelet) system are mutually supplementary, and affect the same substrate, prothrombin, to form as end products coagulants which are qualitatively indistinguishable. As has already been shown, the fact that the amount

Protocol 3

The coagulation of blood in vivo by trypsin

- 1 10 cc of a 5 per cent solution of crude trypsin were injected intravenously into a rabbit weighing approximately 2 kg. The animal died in convulsions in 2 minutes, and large clots were found in the great veins 2 minutes after death
- 2 1 cc. portions of a 5 per cent solution of crude trypsin were injected into a rabbit at 10 minute intervals 1½ minutes after the fourth injection it began to convulse, and was dead 1 minute later On autopsy 6 minutes later the right ventricle and both auricles were found filled with a solid clot
- 3 10 cc of 5 per cent trypsin were injected intravenously into a rabbit 5 sec onds later, the animal began to convulse, and died within 2 minutes. The heart, opened 3½ minutes after death, contained a solid clot in every chamber except the left ventricle, which was fibrillating. Blood obtained from the great veins would not clot and no precipitate was obtained either on heating the plasma at 56 C for 5 minutes, or on the addition of 15 volumes of saturated NaCl

of thrombin formed from prothrombin at the optimum trypsin concentration is usually less than that elaborated by the addition of Ca is due to the rapid digestion of the formed thrombin by the trypsin

The implications of this analogy are discussed on page 557 Whether trypsin, as a proteolytic enzyme, hydrolyzes prothrombin to form thrombin, or whether trypsin combines with prothrombin to

form a new enzyme, thrombin, must be left unanswered for the present (cf page 557)

As is described in Protocol 3, trypsin injected intravenously into rabbits causes almost immediate death. Large blood clots are found in the heart and large vessels, the free fluid is non-coagulable, and contains no demonstrable fibrinogen. Trypsin thus seems to initiate blood coagulation in vivo as readily as it does in vitro.

2 per cent papara solution
Amount added to 12cc horse prothrombin preparation

FIG 4 Papain converts prothrombin to thrombin only because of its Ca content but the enzyme as such coagulates fibrinogen. The prothrombin used in this experiment was the acetic acid precipitate heated at 56°C to remove fibrinogen (cf page 544), and contained sufficient platelet material to be activated to thrombin by the addition of Ca alone. The oxalated papain solution contained 0.016 M sodium oxalate, and was centrifuged free of the precipitated Ca oxalate. The citrated papain contained 0.15 M sodium citrate.

The Coagulation of Blood or Plasma by Papain

In view of the results obtained with trypsin, it became of interest to ascertain whether other proteolytic enzymes had a similar effect Papain, the enzyme present in the juice of the papaw, was accordingly tested, and was found to be active Unlike trypsin, however, papain

4 4 4 4 4

1

Į

TABLE IV

Showing That Papain Unitke Trypsin Coagulates Fibrinogen 1s Such

Fibrnogen was precapitated from horse plasma by the addition of 1 5 volumes of saturated NaCl, the precapitate was redis-The figures solved in H₂O and reprecipitated for a total of 5 to 7 precipitations Aliquot portions of each successive solution were re moved and tested for coagulability by trypsin papain Ca Ca + platelets, and Ca + platelets + prothrombin in the body of the table indicate the coagulation time in minutes

						İ					I				
		ğ	ulabil	ty by	Congulability by trypsin	و		Coagu	Coagulability by		Coast	Coagulability by papain	by par	gi	
No of precipita tons of fibrinogen	2 to 9	Varying amounts of 0 I per cent stalline tryps if in a total volum) 4 cc. + 0 4 cc. fibrinogen solutu	tryps 0 4 cc	ote of a in a	total rogen	r cent volum	Varying amounts of 0 1 per cent crystaline tryps a ling total volume of 0.4 cc. 40 thinogen solution CaCls	0+4 0+4	CaCl, CaCls + Formed + plat lets + formed plate prothrom blnf	Formed throm blus	0	14 cc. of fibringen + var. ing quantities of 5 per cent papain in a total vol	28 of 5	12 72 TE	Interpretation
	0031	0 016	000	80.8	00 0	0 031 0 016 0 008 0 004 0 002 0 001	1	Jetst Tetst	in in			0 025 0 0125 0 0062 0 0031	3 0062	0 0031	
3 2 2	<u> </u>	32	37	8 33	1 11	8 8 8 1	4	25 120	8 8 4	222	3.32.22	5 5	9 213	22 16 16	Traces of residual prothrombu in the fibranegen account for coagulabilit by trypsin and by CaCl, plus plate lets
4 W Q		X 			No clot in 240 min		No 6	No clot un 240 min	60 45 Not done	777	20	losus	11 51	15	No residual prothrombin in fibrinoges no coagulation by trypism, or B CaCl, + platelets The fibrinog remains unchanged as regards i coagulability by papain or thrombin

*04 cc fibnnogen + 01 cc. CaCl2, 1 per cent

¹⁰⁴ cc fibrinogen + 01 cc CaCl₂ + 01 cc platelet suspension + 01 cc. prothrombin †04 cc. fibrnogen + 01 cc 1 per cent CaCl₂ + 01 cc. platelet suspension \$04 cc fibringen + 01 cc thrombin solution

as such does not activate prothrombin to thrombin, but does act directly on fibrinogen to form a fibrillar gel resembling fibrin. As one repeatedly precipitates and redissolves fibrinogen, it becomes progressively less coagulable by either Ca + platelets or by trypsin, because of the rapid and eventually complete removal of prothrombin, but its coagulability by papain is unaffected (Table IV). It should be pointed out that the crude enzyme powder contains large quantities of calcium, and accordingly activates prothrombin to thrombin. However, if the Ca is removed by the addition of oxalate or citrate, papain no longer activates prothrombin, but retains its coagulative action on fibrinogen quantitatively (Fig. 4)

The clots formed by the action of papain are relatively soft, particularly when high concentrations of the enzyme are used, and in that range one observes a rapid re-solution of the clot analogous to the slow fibrinolysis occasionally observed after physiological coagulation

DISCUSSION

- 1 Crystalline trypsin has been found to activate prothrombin to thrombin The available data offer no clue as to whether the prothrombin is merely hydrolyzed, or whether the enzyme actually combines with prothrombin to form a modified enzyme, thrombin The minute amounts of trypsin which suffice are wholly compatible with a theory of stoichiometric combination. Thus, 0 003 cc. of a 0.04 per cent solution of crystalline trypsin activated 1 cc. of a prothrombin solution containing 0.04 per cent protein. The trypsin protein ratio was approximately 1.300, but since the actual prothrombin in a so called prothrombin solution is probably a very small fraction of the total solids present, the trypsin prothrombin ratio in this experiment may well have been 1.50, 1.5, or even 1.1
- 2 The terms cytozyme, thrombozyme, and thrombokinase which have been applied to the platelet (or tissue) factor by various investigators express their belief that this factor functions as an enzyme in the activation of prothrombin to thrombin. The only objective evidence hitherto presented in support of this hypothesis is (a) the minute amount of platelets or tissue extractive which suffices to produce a maximum yield of thrombin, and (b) the fact that further

increase in the amount of platelets merely accelerates thrombin production and does not affect the quantity formed (Eagle (1935 a))

The present experiments show that trypsin has the same activating effect on prothrombin as the physiological system, Ca + platelets (or Ca + tissue extracts). It is difficult to conceive of so specific a phenomenon as the transformation of prothrombin to thrombin being effected by two wholly dissimilar mechanisms. We therefore suggest as a tentative working hypothesis that Ca + platelets to gether constitute a proteolytic enzyme analogous to trypsin, which reacts with prothrombin to form thrombin. As in the case of trypsin, there is no experimental evidence which justifies a choice between the theory that the platelets combine with prothrombin to form thrombin, and the alternative possibility that the transformation merely involves enzymic hydrolysis

We have been unable to demonstrate any proteolysis (formol titration) during the Ca platelet prothrombin reaction but it is entirely possible that such proteolysis occurs and escapes detection because of the minute molecular concentration of actual prothrombin in the preparations used

3 The effect of trypsin here described has several other important implications. Howell and Fuchs maintain that prothrombin is present in circulating blood as an inactive heparin prothrombin compound, that platelets combine with heparin and thus release free prothrombin, and that this free prothrombin then reacts with Ca to form thrombin. The present experiments clearly show that Ca is not necessarily an intrinsic part of thrombin, for trypsin reacts directly with prothrombin to form thrombin in its complete absence Again, according to the theory of Howell and Fuchs, platelets or tissue extracts mobilize prothrombin from its hypothetical union with heparin, and should therefore increase the rate and degree of thrombin production, whether one uses Ca or trypsin as the activating agent As is illustrated in Table II, however, tissue extracts have no demonstrable effect on the rate or degree of thrombin formation by

¹ The postulated platelet enzyme is clearly not trypsin as such for trypsin rapidly digests formed thrombin, while Ca and platelets have little or no effect

² According to Fuchs, platelets function both in the hypothetical mobilization of prothrombin, and in the subsequent reaction with calcium

trypsin, and similar results have been obtained on using platelets instead of tissue extracts. It would therefore seem that the latter reagents do not function physiologically by freeing prothrombin from a hypothetical union with heparin. It is significant in this connection that trypsin injected intravenously coagulates circulating blood as readily as it coagulates plasma in vitro, the prothrombin of circulating blood is apparently free and reactive. There are other reasons to doubt that heparin is of physiologic significance in preventing intravascular coagulation (Quick, Mellanby (1935 a), Eagle, in preparation), and taken in conjunction with the experiments cited, they render the heparin theory improbable

By the same token, the fact that trypsin can cause intravascular coagulation, seems to invalidate the theory of Bordet that circulating blood contains, not prothrombin as such, but an inactive precursor which becomes reactive only on contact with some foreign surface, such as glass

4 A second proteolytic enzyme, papain, was found to have no effect on prothrombin other than its digestion, but was found to act directly on fibrinogen to form a fibrillar gel resembling fibrin. If one considers this product to bear only a superficial resemblance to fibrin, then the phenomenon is of no significance as regards physiological coagulation, but if the clot formed by papain is identified as fibrin, it becomes probable that thrombin, like papain, is a proteolytic enzyme

This was the theory originally proposed by Schmidt in 1872, and the present experiments indicate that it is still the most satisfactory working hypothesis as to the mechanism of thrombin action (of Eagle (1935 b))

- 5 Experiments now in progress indicate that the coagulating activity of proteolytic enzymes offers an adequate and simple explanation for the well known but hitherto unexplained observations that certain bacteria and certain snake venoms can cause plasma to coagulate and they suggest a new attack (leucocytic enzymes) on the mechanism of fibrin deposition at sites of inflammation
- 6 It is to be noted that the recently discovered activation of chymo-trypsinogen by trypsin, with the formation of chymo-trypsin

(Kunitz and Northrop), offers a complete analogy for the mechanism of physiological coagulation as here suggested

Substrate		Acti ating proteolytic enzyme	Product, a proteolytic enzyme
Chymo trypsinogen	+	Trypsin	 Chymo-trypsin
		Trypsin Ca platelets	
Prothrombin	+	Ca tissue extracts Snake venoms* Bactenal proteases*	 Thrombin a proteolytic enzyme analogous to papain and certain snake venoms* in that it con verts fibringen to fibrin

^{*} To be discussed in following papers

SUMMARY

Crude or crystalline trypsin in proper concentration causes the blood or plasma of human beings, dogs, rabbits, guinea pigs, and horses to coagulate. It does not clot the fibrinogen directly, but reacts with prothrombin to form thrombin. Since trypsin thus has the same effect as the physiological system Ca plus platelets (or Ca plus tissue extracts), it is suggested as a tentative working hypothesis that the latter system contains a proteolytic enzyme with a specific affinity for prothrombin. Other implications of this trypsin effect with respect to the mechanism of physiological coagulation are discussed in the text (pages 557–558)

The proteolytic enzyme papain also coagulates blood. In this case the enzyme does not activate prothrombin, but acts directly on fibrinogen to form a fibrillar gel resembling fibrin. If one admits this clot to be fibrin, this constitutes strong evidence that thrombin, the physiological coagulant, is also a proteolytic enzyme with a specific action on fibrinogen

BIBLIOGRAPHY

Bordet, J Ann Inst Pasteur, 1920, 34, 561 Douglas S R and Colebrook L, Lancet, 1916 2, 180 Eagle, H, J Gen Physiol, 1935a 18, 531 Eagle H, J Gen Physiol, 1935b 18, 547 Fuchs, H J, Ergebn Enzymforsch, 1933, 2, 282

Heard, W N, J Physiol, 1917, 51, 294

Howell, W H, Am J Physiol, 1912, 31, 1

Kunitz, M, and Northrop, JH, J Gen Physiol, 1935, 18, 433

Mellanby, J, Proc Roy Soc London, Series B, 1931, 107, 271

Mellanby, J, Proc Roy Soc London, Series B, 1935a, 116, 1

Mellanby, J, Proc Roy Soc London, Series B, 1935b, 117, 352

Northrop, J H, and Kunitz, M, J Gen Physiol, 1932, 16, 267

Quick, A J, Am J Physiol, 1936, 115, 317

Schmidt, A, Arch ges Physiol, 1872, 6, 445

Waldschmidt-Leitz, E, Stadler, P, and Steigerwaldt, F, Naturwissenschaften, 1928, 16, 1027 Z physiol Chem, 1929, 183, 39

THE ESTIMATION OF PAPAIN WITH HEMOGLOBIN

By M L ANSON

(From the Laboratories of The Rockefeller Institute for Medical Research,

Princeton, N J)

(Accepted for publication, September 15, 1936)

Papain, like trypsin, digests proteins such as hemoglobin and casein most rapidly in slightly alkaline solution. The hemoglobin method used to estimate trypsin (Anson and Mirsky (1933–34)) can be used without change to estimate papain, provided papain is properly activated with cyanide and there is sufficient cyanide in the hemoglobin solution. Denatured hemoglobin at pH 74 is digested for 5 minutes at 25°C and the split products not precipitated by trichlor acetic acid are estimated colorimetrically with the phenol reagent which gives a blue color with tyrosine, tryptophane, and cysteine By this method only the first stage of digestion, due to proteinase, is measured, for hemoglobin needs to be only slightly digested for the digestion products to be not precipitable by trichloracetic acid

The digestion of hemoglobin by papain, as measured by the trichloracetic acid method, is increased by cyanide and cysteine and abolished by iodoacetate, even in the presence of cyanide. Thus the effect of iodoacetate on the digestion of protein by commercial papain, unlike the effect of iodoacetic acid on digestion by liver extract (Anson (1936–37)) is an effect on the proteinase. In the procedure to be described papain is activated by cyanide in strongly alkaline solution. In neutral or acid solutions, such as have hitherto been used, activation is less rapid and complete

Activation —To 0.5 ml enzyme solution are added 5 drops of 2 m sodium cyanide and after the solution has stood 3 minutes at 25 C 9.25 ml water 1 ml of this solution is usually used for estimation. If the solution is diluted further the dilution is carried out with a solution containing 5 drops of 2 m sodium cyanide in 10 ml. Increasing the time papain is incubated with sodium cyanide to 10 minutes, increasing the amount of sodium cyanide to 10 drops, or raising the temperature to 37°C does not change the activity of the papain more than 3 per

cent If cyanide is not added the activity is negligible. If 5 drops of $1.8\ \mathrm{m}$ potassium acid phosphate are added in addition to 5 drops $2\ \mathrm{n}$ sodium cyanide the activity is 40 per cent of the activity obtained with the cyanide alone. I have not studied the activation of purified or modified papain

If 10 gm of commercial papain is stirred with 100 ml of water and the suspension is filtered, the filtrate is diluted 20–25 times before the 5 drops of sodium cyanide are added. That is, the extract of about 0.2 mg papain is used for estimation. If the 20–25 times dilution is carried out with water, the 5 drops of 2 N sodium cyanide are added immediately since the enzyme slowly becomes destroyed

Fig 1 Relation of amount of papain used for 5 minutes digestion of hemoglobin at 25°C and color value of trichloracetic acid filtrate

in dilute solution If the dilution is carried out with dilute cyanide, the enzyme is stable

Estimation —The preparation of the hemoglobin solution, the carrying out of the estimation, and the calculation of the results, are exactly the same as in the estimation of trypsin by hemoglobin (Anson and Mirsky (1933-34)) Digestion is for 5 minutes at 25°C The extent of digestion produced by a given amount of papain in 5 minutes is the same within 3 per cent as that by one-fourth the amount of papain in 20 minutes Fig 1 gives the curve relating the extent of digestion to the amount of enzyme used

Definition of Activity Unit [Pa u] ^{IIIb}—The symbol [P u] ^{IIIb} is not used because it stands for pepsin unit (Anson and Mirsky (1932–33)). The initial rate of digestion at 25°C by 1 ml of papain solution con taining 1 [Pa u] ^{IIIb} of papain is such that there is produced per minute in 6 ml of digestion mixture an amount of color producing substance not precipitable with trichloracetic acid which gives the same color with the phenol reagent as 1 milliequivalent of tyrosine

Influence of Various Factors —To test the influence of the various factors on the extent of digestion, after activation with 5 drops of 2 N sodium cyanide, the papain solution is diluted to 5 ml instead of 10 ml and 0.5 ml is used for digestion instead of 1 ml. The addition of 0.5 ml of the following solutions has, within 3 per cent, the same effect on the extent of digestion in 5 minutes as the addition of 0.5 ml water 0.2 N sodium hydroxide, 0.1 N hydrochloric acid, 9 M urea, 0.1 M ammonium sulfate, and glycerine. The addition of 0.5 ml 0.02 M iodoacetic acid makes the digestion negligible. The extent of digestion as measured in the standard way is the same whether 5 ml hemoglobin solution is used or 4 ml hemoglobin solution plus 1 ml water.

REFERENCES

Anson, M. L., 1936-37, J. Gen. Physiol., 20, 565 Anson M. L., and Mirsky, A. E., 1932-33, J. Gen. Physiol. 16, 59 Anson M. L. and Mirsky, A. E. 1933-34 J. Gen. Physiol., 17, 151

THE ESTIMATION OF CATHEPSIN WITH HEMOGLOBIN AND THE PARTIAL PURIFICATION OF CATHEPSIN

By M L. ANSON

(From the Laboratories of The Rockefeller Institute for Medical Research, Princeton, N J)

(Accepted for publication, September 15, 1936)

An account of previous work on cathepsin may be found in the monograph of Pozzi (1935)

In the hemoglobin method for the estimation of proteinase, denatured hemoglobin is digested and the digestion products not precipitable by trichloracetic acid are estimated colonmetrically. Hemoglobin, unlike commercial casein, edestin, and gelatin, is a reproducible substrate. Only the very first stages of digestion are measured by the trichloracetic acid method, for only a small amount of digestion is needed to make hemoglobin not precipitable by trichloracetic acid. Thus, only true proteinase is estimated by the hemoglobin method.

Almost all the estimations of proteinase recorded in the literature have been made with substrates that are not reproducible. As a result, the values of proteinase activity obtained in different laboratones, or in the same laboratory with different batches of substrate, are not quantitatively comparable Furthermore, most of the values of proteinase activity recorded, in particular those obtained by the Willstatter school, were obtained by methods which estimate not proteinase activity alone but the activity of proteinase plus other proteolytic enzymes As a result, the values obtained by different investigators are not even qualitatively comparable. The hemoglobin trichloracetic acid method estimates proteinase alone, yields reproducible results, and has now been applied to the four known types of proteinase, pepsin (Anson and Mirsky (1932-33)), trypsin (Anson and Mirsky (1933-34)), papain (Anson (1936-37)), and cathensin It would seem desirable that if some other method is used, either independent evidence be given that the method estimates proteinase

alone and yields reproducible results, or that the results obtained by the other method be compared with those given by the hemoglobin method

The hemoglobin solution used for the estimation of cathepsin (2 per cent denatured hemoglobin in 0.2 N acetic acid) has a pH of 3.7 The rate of digestion can be decreased but not increased by the addition of acid or alkali. Pepsin has at pH 3.7 only a small portion of its activity at pH 2.5 At pH 2.5 cathepsin is rapidly destroyed

The activity of liver cathepsin, as measured by the hemoglobin-trichloracetic acid method, is not affected by the addition to 6 ml of digestion mixture of 1 ml of 0.1 m cysteine, 0.02 m copper sulfate or 0.01 m iodoacetic acid. Cathepsin is not a proteinase of the papain type. There is no reason to believe that proteinase action in living cells or the first stages of proteolytic autolysis is regulated by heavy metal and sulfhydryl compounds

If the hemoglobin solution used for the estimation of cathepsin is too acid, cathepsin is destroyed in the hemoglobin solution. Cysteine slows but does not stop this destruction. In an acid solution in which cathepsin is unstable, therefore, cysteine increases the rate of digestion. This cysteine effect is neither activation of the enzyme nor removal of an inhibitor.

In the standard hemoglobin solution cathepsin is stable—Although to estimate cathepsin digestion has, in the past, usually been carried out for 24 hours at 37°C , in general the stability of cathepsin in the substrate solutions used has not been tested

Liver extract contains, in addition to the proteinase (or group of proteinases) called cathepsin, other proteolytic enzymes which digest further the split products produced by cathepsin. The rate of this further digestion is increased by cysteine and decreased by iodoacetic acid. The incorrect conclusion that cathepsin is a proteinase of the papain type was based on supposed estimations of proteinase which were in reality estimations of cathepsin plus other proteolytic enzymes

The digestion of globin by liver extract can be followed either by the trichloracetic acid method or by formol titration. As measured by the trichloracetic acid method, which estimates only proteinase, the rate of digestion of globin, like that of hemoglobin and casein, is not influenced by cysteine or iodoacetic acid. As measured by the formol

titration method, which estimates the total action of all the proteolytic enzymes, the rate of digestion of globin in the same solution is in creased by cysteine and decreased by iodoacetic acid, even when the increase in formol titration for 6 ml of digestion mixture is only 1 ml of 0.02 N sodium hydroxide

In the presence of iodoacetic acid, liver extract produces no detect able increase in the formol titration of a cysteine containing gelatin solution of pH 3.2. Gelatin, the most commonly used substrate for the estimation of cathepsin, is digested by cathepsin only slightly, if at all. It is generally assumed that iodoacetic acid inhibits enzyme action by combining with SH groups. The combination of iodoacetic acid with SH groups at pH 3.2, however, has not yet been demonstrated.

In the estimation of cathepsin by the hemoglobin method not only is the digestion solely due to proteinase, but only the first stages of digestion by proteinase are measured, for two reasons. First, the greater the extent of digestion, the less is the percentage increase in the extent of digestion due to a given increase in the amount of enzyme used or in the time of digestion. Secondly, the greater the extent of digestion, the greater the inhibition by split products and the greater the possibility of other proteolytic enzymes influencing the rate of digestion by destroying inhibitory split products.

Before the hemoglobin method is used for the estimation of any proteinase of the cathepsin type, the optimum pH, the shape of the digestion curve, and the effect of iodoacetic acid should first be deter mined. For instance, the cathepsin of bakers' yeast digests hemoglobin most rapidly at a pH more alkaline than that at which liver cathepsin digests hemoglobin most rapidly. For the estimation of yeast cathepsin, 0.6 ml of 1 n sodium hydroxide is added to each 10 ml of the standard hemoglobin solution used for the estimation of liver cathepsin. The digestion by yeast cathepsin, like that by liver cathepsin, is not affected by iodoacetic acid.

Preparation of Hemoglobin —Whipped beef blood is centrifuged, the serum and white blood corpusdes are siphoned off, the red corpusdes are stirred with an equal volume of cold 1 per cent sodium chloride solution centrifuged again and stored frozen The corpuscles are dialyzed overnight against cold distilled water in cellophane tubing in a shaking dialyzer to remove dialyzable color producing

substances On one occasion hemoglobin dialyzed against running tap water in a large jar gave satisfactory results. The concentration of the dialyzed hemoglobin is estimated by the color it gives with the phenol reagent. Water is added to give a solution containing 10 gm hemoglobin in 100 ml of solution, and the solution is stored at 5°C with toluol as a preservative. 15 mg of hemoglobin gives the same color as 0.15 mg of tyrosine.

Preparation of Substrate Solution—First 40 ml of 5 N acetic acid and then 200 ml of 10 per cent dialyzed hemoglobin are added to 760 ml of distilled water previously heated to boiling. The solution is cooled with tap water, shaken with toluol, allowed to come to 5°C in a refrigerator, filtered with suction with the aid of Standard Super-Cel (Johns-Manville) and the filtrate is stored at 5°C with toluol as a preservative

The experiments described in this paper were carried out with hemoglobin substrate prepared as just described The substrate solution, like the other hemoglobin substrate solutions, contained a little toluol as a preservative Dr M Kunitz found that a large amount of toluol decreases the rate of digestion of the hemoglobin substrate by trypsin There is a similar but smaller effect of toluol on the digestion of hemoglobin by pepsin and cathepsin cathepsin can be diminished but not completely abolished by a preliminary removal of the stromata with ether and sodium chloride. As a result of these observations toluol is no longer used at any stage of the preparation of any of the hemoglobin substrates The washed red blood corpuscles are dialyzed as soon as they are prepared and then frozen In the preparation of the cathepsin substrate after the hemoglobin is added to the hot acetic acid solution, the solution is promptly cooled and then can be used immediately the preservative, merthiolate (Lilly), is added to each 50 ml solution cording to the manufacturer, this small amount of preservative suffices to prevent bacterial growth Larger amounts of merthiolate give an appreciable color with the phenol reagent

For the estimation of purified spleen cathepsin with hemoglobin I now use 2 per cent hemoglobin dissolved in 0.4 N acetic acid. The use of the stronger acid does not change the rate of digestion but it makes the rate of digestion less sensitive to the addition of alkali

Estimation—1 ml of enzyme solution is added to 5 ml of hemoglobin solution Digestion is carried out at 37°C for a length of time depending on the amount of enzyme used, but never for less than 10 minutes—Digestion is stopped by the addition of 10 ml of 0.3 m trichloracetic acid—(Trichloracetic acid should be titrated rather than weighed, for commercial samples of trichloracetic acid contain varying amounts of water)—The suspension is filtered—To 5 ml of filtrate is added rapidly 10 ml of 0.5 m sodium hydroxide and in fast drops, with shaking, 3 ml of the phenol reagent of Folin and Ciocalteau (1927) diluted with twice its volume of water—The resulting blue solution is estimated colorimetrically after 1–5 minutes in the fairly monochromatic light transmitted by the Corning glass

filter No 241, with a blue glass as a standard The blue glass is calibrated with the blue solution obtained by the reaction of the phenol reagent with 0.15 mg tyrosine For the color development with tyrosine 5 minutes are allowed

If copper sulfate is present in the digestion mixture, then 15 ml of trichloracetic acid filtrate is used for estimation. To this 15 ml are added 49 ml of water, 1 drop of 0.1 m copper sulfate, and 8 6 ml of 0.5 m sodium hydroxide. The smaller amount of filtrate is used because copper sulfate increases the color given by the phenol reagent (Hernott (1935-36)). One drop of copper sulfate solution is added to assure the maximum copper effect. Less sodium hydroxide is added because there is less trichloracetic acid to neutralize. When there is no acid other than the phenol reagent to be neutralized, 8 ml of sodium hydroxide is used in the colorimetric procedure.

When cysteine is present, 1 ml of 38 per cent formaldehyde and 10 ml of 0.5 m sodium by droxide are added to 5 ml filtrate and the phenol reagent is added 5 minutes later. The formaldehyde diminishes the color due to the hemoglobin split products but almost abolishes the color given by cysteine. As a control, when the effect of cysteine on digestion is being tested, the amount of cysteine present during digestion is added just before the addition of trichloracetic and

Definition of Cathepsin Unit $[Cu]^{ns}$ —The initial rate of digestion by 1 unit of cathepsin is such that there is produced per minute at 37°C in 6 ml of digestion mixture an amount of color producing substance not precipitable by trichloracetic acid which gives the same color as 1 millientivalent of tyrosine

Calibration Curves —To 10 ml of hemoglobin solution are added 20 ml of trichloracetic acid and then 2 ml of enzyme solution. The suspension is filtered To 5 ml of filtrate are added 1 ml of tyrosine solution, 10 ml of 0.5 x sodium hydroxide, and 3 ml of phenol reagent. Three samples are treated in this way, the tyrosine solutions containing 0.075 of 15, and 0.225 mg tyrosine. The colors are compared with the color given by 0.15 mg tyrosine dissolved in 8 ml of water plus 8 ml of 0.5 x sodium hydroxide. When the results are plotted it will be found that they fall in a straight line which gives the relation between the color given by various amounts of tyrosine in pure solution and in the trichloracetic acid filtrate.

Digestion is carried out for various lengths of time with 1 ml enzyme solution and the colors are read as previously described. Doubling the time is taken to be equivalent to doubling the amount of enzyme. From the straight line already obtained, the tyrosine equivalents of 5 ml samples of filtrate are read. These values are converted into milliequivalents (0.15 mg = 0.00083 milliequivalent) and multiplied by 16/5 to give the tyrosine equivalents of the whole 16 ml of filtrate. From such data the curve of Fig. 1 is plotted.

Recently, using cathepsin from spleen and using substrate and enzyme solutions having a very small blank. I obtained a curve slightly different from the curve of Fig. 1. For the present, therefore, the validity of the curve used for the estimation of any cathepsin should always be checked.

Water Blank -To obtain a water blank, 1 ml of water and 10 ml of trichlor

acetic acid are added to 5 ml of hemoglobin solution. The color given by 5 ml of filtrate plus 1 ml of tyrosine solution containing 0 15 mg tyrosine is measured. If this color value changes either a correction should be made or the hemoglobin solution rejected.

If there is much difference between the water blank and the enzyme blank, the enzyme solution should be purified or diluted

Fig. 1 Relation of amount of cathepsin used for 10 minutes digestion of hemoglobin at 37°C and color value of trichloracetic acid filtrate

If there is not much difference between the water blank and the enzyme blank, calculations can be avoided by using a curve giving the cathepsin unit corresponding to various colorimeter readings

Effect of Various Substances on Digestion — The addition of 1 ml of the following solutions to 6 ml of digestion mixture has the same effect, within 3 per cent, as the addition of 1 ml water 0.1 n hydrochloric acid, 0.1 n sodium hydroxide, glycerine, 0.05 m ammonium sulfate, 1 n sodium chloride, 0.01 m iodoacetic acid, 0.02 copper sulfate, 1 m urea 1 ml 0.1 m cysteine has the same effect on the color value

of the trichloracetic acid filtrate in formaldehyde solution whether the cysteine is added before the enzyme or at the end of digestion just before the addition of trichloracetic acid

Effect of Temperature—The amount of digestion of hemoglobin produced by cathepsin in 10 minutes at 37°C is the same as that produced in 18 minutes at 25°C

Stability—The stability of cathepsin in the standard hemoglobin solution is shown by the experiments given in Table I Were the enzyme not stable, there would be more digestion in 10 minutes by 3.8×10^{-4} [C u]^{H5} than in 60 minutes by one sixth that amount of enzyme

TABLE I

Stability of Cathepsin in Hemoglobin Solution

1 ml enzyme solution plus 5 ml hemoglobin solution — 25°C

Eazyme solution	Digestion	Color value 5 ml. trichlor acetic acid filtrate
	1818	mg tyrosine
(1) 1 ml cathepsin solution 3 8 × 10 ⁻⁴ [C u]Hb	10	0 198
(2) 1 ml cathepsin solution 3 8 × 10 ⁻¹ [C u]Hb	60	0 193
(3) 1 ml digestion mixture (1) removed after 10 min at 25 C		[
contains some split products	60	0 207

Destruction in Acid —The experiments given in Table II show that the addition of 0.5 ml of 0.4 n hydrochloric acid to 5 ml of hemoglobin solution (pH of mixture, 2.3) causes a decrease in the rate of digestion which is due to destruction of the enzyme and that the rate of digestion in the hydrochloric acid hemoglobin solution is higher and the destruction of enzyme less if cysteine is added

Effects of Iodoacetic Acid and Cysteine on Digestion of Globin, Casein, and Gelatin as Measured by Trichloracetic Acid and Formal Titration Methods—The experiments given in Table II show that (1) the digestion of globin and casein, as measured by the trichloracetic method, is not affected by cysteine and iodoacetic acid, (2) the digestion of globin, as measured by formal titration, is increased by cysteine and decreased by iodoacetic acid, and (3) in the presence of both

cysteine and iodoacetic acid, liver extract causes no increase in the formol titration of gelatin

The globin solution was a 2 per cent solution of acid acetone beef globin (Anson and Mirsky (1929-30)) The pH (by glass electrode) was 2 7

TABLE II

Instability of Cathepsin in Acid Solution Partial Protection by Cysteine

Enzyme solution	Substrate solution	Diges tion at 25°C	Color value 5 ml trichlor acetic acid filtrate	Color value 5 ml trichlora cetic acid filtrate + 1 ml form aldehy de
		min	mg lyrosine	mg tyrosine
(1) 1 ml cathepsin 2 3 × 10 ⁻⁴ [C u] ^{Hb}	5 ml hemoglobin	10	0 137	0 093
(2) " "	5 ml hemoglobin + 05 ml 04 N hydrochloric acid	10	0 06	
(3) " "	" "	20	0 062	
(4) 1 ml digestion mix- ture (3) removed after 10 min	5 ml hemoglobin	60	Negligible	
(5) 1 ml cathepsin 4 6 × 10 ⁻⁴ [C u] ^{Hb}	To 5 ml (5 ml hemoglobin + 0 5 ml 0 4 n hydrochloric acid) add 0 5 ml 0 1 m cysteine hydrochloric + 0 5 ml 0 1 n sodium hydrocide	10		0 111
(6) ""	Like (5) but cysteine and sodium hydroxide added just before trichloracetic acid	10		0 006
(7) 1 ml digestion mix- ture (5) removed after 10 min	5 ml hemoglobin	45		0 088
(8) 1 ml digestion mix- ture (6) removed after 10 min after addition of cys- teine and sodium hydroxide	5 ml hemoglobin	45		0 055

The gelatin solution was a 2 5 per cent solution of isoelectric gelatin (Northrop and Kunitz (1927-28)) in water The pH of 10 ml gelatin solution plus 0 5 ml 0 2 M cysteine hydrochloride was 3 2

To prepare the casein solution 2.5 gm Hammarsten's casein and 15 gm urea

are shaken together and dissolved by the addition first of 18 ml $\,0.1\,\mathrm{n}$ hydrochloric acid and then of 82 ml water, pH by glass electrode, $3.2\,\mathrm{m}$ With more or less urea the rate of digestion is less

TABLE 111

Effect of Iodoacetic Acid and Cysteine on Digestion by Liver Cathepsin as Measured by

Trichloracetic Acid and Formol Titration Methods

1 rol. cathepsia (C. u JHb X	Substrate solution	Diges tion at 37 C.	Increase in formol titration of 6 ml digestion mixture	Color value 5 ml trichlor acetic acid filtrate	Color value 5 ml trichlor acetic acid filtrate + 1 ml form aldehyde
		min	mi 00 m sod um hydroxide	mg Isrosine	mg Igrossne
(1) 1 5	5 ml globin + 05 ml 01 m cysteine hydrochloride + 04 ml 01 n so- dium hydroxide	20	:		0 115
(2) 1 5	Like (1) but cysteine and sodium hy droxide added just before trichlor acetic acid	20			0 109
(3) 1 5	5 ml globin + 1 ml water	20		0 135	
(4) 1 5	5 ml globin + 1 ml 0 01 iodoacetic	20		0 135	
(5) 7 5			0.00		
	5 ml. of (10 ml globin + 1 ml water)	20	0 65		
(6) 7 5	5 ml of (10 ml globin + 1 ml 001 rodoacetic acid)	20	0 45		
(7) 7 5	5 ml of (10 ml globin + 05 ml 0.2 ii cysteine hydrochlonde + 08 ml 0 1 n sodium hydroxide)	20	1 25		
(8) 3 75	5 ml casem + 1 ml 0 01 n hydrochloric acid	10		0 143	
(9) 3 75	5 ml casem + 1 ml 0 01 N iodoacetic acid	10		0 138	
(10) 7 5	5 ml of (10 ml gelatin + 0.5 ml, 0 2 n hydrochloric acid	20	0 05		
(11) 7 5	5 ml of (10 ml gelatin + 0 5 ml 0 2 m cysteine hydrochloride)	20	0 55		
(12) 7 5	5 ml of (10 ml gelatin + 0 5 ml 0 2 m cysteine hydrochlonde + 0 2 ml 0 1 m iodoacetic acid)	20	0 05		

The trichloracetic acid procedure is that described for the hemoglobin method, the formal titration procedure that described by Northrop (1932–33)) except that the entire titration is carried out with 0.02 \upphi sodium hydroxide

Preparation of Ensyme -Frozen beef liver is ground, stirred with twice its

ESTIMATION OF CATHERSIN WITH HEMOGLOBIN weight of water and 15 per cent its weight of toluol (Eastman practical), allowed weight of water and 13 per cent its weight of toldor (Eastman practical), anowed to stand overnight at room temperature, and filtered through gauze to stand overnight at room temperature, and intered through gauze I with not of columns of columns. If so among the proper amount being first determined there added with stirring, the proper amount being first determined the columns of columns. If so among the columns of col chioric acid is then added with surring, the proper amount being first determined by trial with a small sample of solution by trial with a small sample of solution in 33 gm of annionium sunate is acted in minediately per liter of acidified sample and the suspension filtered, the hemoglo-An hour after the pin-iree nitrate should be onve green to brom cresor green. An nour after the proper amount of hydrochloric acid has been added to the bulk of the solution 55. bin-free filtrate should be olive green to brom cresol green proper amount or nydrocmoric acid has been added to the bulk of the solution 55 mm ammonium sulfate is added per liter of acidified solution gm ammonium sunate is added per mer of acidined solution. The precipitate formed is filtered off and the filtrate is made purple to brom cresol purple by the 364 gm of ammonium sulfate is added to each The precipitate is dialyzed overnter or solution and the suspension is intered a shaking dialyzer. The amount night against cold 2 per cent sodium chloride in a shaking dialyzer. ingin against cold 2 per cent sodium chioride in a snaking dialyzer 1 ne amount of enzyme preparation used for estimation (10 minutes digestion at 37°C) his shout 0.2 are accounted to the control of th liter of solution and the suspension is filtered addition of 1 N sodium hydroxide or enzyme preparation used for estimation (10 minutes digestion at 51 °C) miss about 0.2 mg protein nitrogen

This has about the same activity as the autol-

The purification of cathepsin will be discussed in detail in a later paper Since the experiments described in this paper were carried paper once the experiments described in this paper were carried in the paper were carried in this paper were carried in the paper were carried and the out, the procedure for the purification has been changed and the ysate from 70 mg of liver out, the procedure for the purification has occur changed and the present.

The specific activity of the present purification carried further. purmeation carried ruriner the specific activities of the crystalline preparation is of the order of the specific activities of the crystalline This very active cathepsin causes no appreciable inproteinases the very active cathepsin causes no appreciable increase in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in formol titration when added to an acid gelatin solution concrease in the concr Such a result was expected since the experiments described in this paper showed that the digestion of gelatin which can be measured by formol titration and which is increased by cysteme proteinases and decreased by iodoacetic acid is due not to cathepsin but to pertidases which accompany cathepsin in crude or partially purified taining cysteine REFERENCES

Anson, M. L., and Mirshy, A. E., 1929-30, J. Gen. Physiol., 18, 469.

Anson, M. L., and Mirshy, A. E., 1929-322, J. Con. Physiol., 18, 469.

Anson, M. L., and Mirshy, A. E., 1929-322, J. Con. Physiol., 18, 469. Anson, M. L., 1936-37, J. Gen. Physiol., 20, 561 extracts Anson, M. L., and Mirsh), A. E., 1922-33, J. Gen. Physiol., 16, 59 Anson, M. L., and Mirshy, A. E., 1932-33, J. Gen. Physiol., 17, 151

Tolin O. and Ciccoltean J. 1927 J. P. al. Chem. 72 (27) Tolin, O, and Ciocalteau, V, Con Blood to 202 Herriott, R. M., 1935-36, J. Gen. Physiol., 19, 283 Northrop, J. H., and Kunitz, M., 1927-28, J. Gen. Physiol., 11, 477 Northrop, J. H., and Kunitz, M., 1927-28, J. Gen. Physiol., 11, 477 Northrop, J. H., 1932-33, J. Gen. Physiol., 16, 41 Pozzi, L., 1935, Mem accad Italia, 6, 193

THE CALIBRATION OF DIFFUSION MEMBRANES AND THE CALCULATION OF MOLECULAR VOLUMES FROM DIFFUSION COEFFICIENTS

BY M L ANSON AND JOHN H NORTHROP

(From the Laboratories of The Rockefeller Institute for Medical Research, $Princeton, N \mid J$)

(Accepted for publication, September 15 1936)

INTRODUCTION

In the membrane method for measuring diffusion coefficients (Northrop and Anson (1928–29)) diffusion takes place through a porous disc. Under these conditions convection currents which usually make diffusion measurements difficult are avoided, the time required for a measurement is greatly shortened, and it becomes possible to remove the diffused substance for estimation. Under suitable conditions the rate of diffusion of one substance is independent of other substances present. To calculate the diffusion coefficient it is necessary to know only the per cent, not the absolute amount, of the original material which passes through the disc in a given time. The method can be applied, therefore, even to impure biological substances which can be estimated only by activity measurements. Since the dimensions of the pores are unknown, the membrane is calibrated by measuring the rate of diffusion through it of a substance of known diffusion coefficient.

The first part of this paper describes the calibration of diffusion membranes with sodium chloride, potassium chloride, and hydro chloric acid and summarizes the evidence that the membrane method yields correct diffusion coefficients. The second part of this paper states the assumptions made in calculating molecular volumes from diffusion coefficients by Linstein's law, states the consequences if these assumptions are not valid, and discusses the possible reasons why molecular volumes of various proteins calculated from their diffusion coefficients are higher than the molecular volumes calculated from osmotic pressures and sedimentation data. The third part

outlines the uses to which diffusion measurements can be put despite the limitations in the application of Einstein's law

Our original paper was primarily concerned with the technical problems involved in diffusion measurements and a detailed discussion of the limitations and possibilities in the use of the method was omitted. This omission gave rise, on the part of some wishing to use the method for biological materials, to a certain amount of confusion which we hope will now be avoided.

1 The Validity of the Membrane Method for Measuring Diffusion Coefficients

Before discussing the validity of calculations made from diffusion rates measured by the membrane method we shall first state the evidence that the diffusion data themselves are correct. First, it has been shown by special experiments that there is no important disturbance from convection currents, that there is adequate stirring of the solutions above and below the membrane, and that the results are independent of the material, structure and, within certain limits, of the dimensions of the membrane (Northrop and Anson (1928-29)) Secondly, the assumption that there is a linear concentration gradient across the membrane, while not strictly correct, does not lead to any significant error (Barnes (1934)) Lastly, the diffusion coefficients of various salts and non-electrolytes and of hemoglobin are the same, within the experimental error, whether measured by the membrane method or by the classical method which does not involve the use of a membrane Thus, the measurements given in this paper show that the membrane and the classical methods give the same results for the effect of temperature on the rate of diffusion of sodium chloride and for the ratio of the diffusion coefficients of sodium and potassium Similar data can be found in the paper of McBain and Liu chlorides The value of Northrop and Anson (1928-29) for the diffusion coefficient of 2 per cent hemoglobin at 5°C is 0 034 cm 2/day (assuming the diffusion coefficient of 0.1 N hydrochloric acid at 5°C to be 1 45 cm²/day) The value of Tiselius and Gross (1934) for 1 per cent hemoglobin at 20°C obtained by the classical method is 0 0542 Extrapolated to 5°C by Einstein's equation it is 0 0332 cm ²/dav Lamm and Polson (1936) have recently obtained a value cm ²/day

for the diffusion coefficient of hemoglobin which is 9 per cent higher than that obtained by Tiselius and Gross. As yet there has not been a sufficiently detailed study of the diffusion of any protein by both the classical and the membrane methods to prove that the two methods when applied to proteins yield exactly the same results. In particular, the comparison of the two methods has not been made in any case in which the diffusion coefficient is known to be independent of concentration. Most of the values of diffusion coefficients of proteins obtained by the membrane method, furthermore, were obtained from experiments incidental to other work, so that each value is based on only a small number of measurements

The Calibration of Diffusion Membranes

Sodium Chloride - Sodium chloride is a suitable substance for the standardization of diffusion membranes because its diffusion coefficient is not sensitive to concentration. As measured by the membrane method at 5°C the diffusion coefficients of 02 N, 10 N, and 20 N sodium chloride are the same within the experimental error of 2 per In practice 20 N sodium chloride is used for calibration because the greater the amount of diffused sodium chloride available for estimation the easier and more accurate is the titration with silver nitrate When the diffusion coefficient is sensitive to concentration the results obtained by different methods are not comparable because the changes of concentration involved in the different procedures are The differences in concentration changes are more serious the more concentrated the solution Very few of the diffusion coeffi cients in the literature are true diffusion coefficients, i.e. diffusion coefficients which really apply to the concentrations to which they are supposed to apply and are not averages of the diffusion coefficients corresponding to various concentrations

The rate of diffusion of 2 N sodium chloride has been measured by the membrane method at 5°, 10°, 18°, 20°, and 25°C See Table I The data fit within 2 per cent the straight line equation

$$\frac{D_{i_1} - D_{i_1}}{I_1 - I_1} = 0.0275 \text{ cm}^2/\text{day per degree}$$
 (1)

Taking D to be 0.72 cm 2 /day for $t_2 = 5$ (Oholm (1905)) equation (1) becomes

$$D = 0.588 + 0.0263 t \tag{2}$$

On this basis $D_{18} = 106$ cm 2 /day, which agrees within the experimental error with the results of Oholm (1905) and Clack (1917, 1921, 1924) See Table I It must not be assumed that the equation holds for temperatures lower than 5°C or higher than 25°C The data fit the Nernst (1888) equation ¹

The diffusion cells used in most of the measurements given in this paper were of about 50 ml capacity 50 ml of water was in outside vessels similar to the one pictured in the paper of Scherp (1932-33) The membranes were of Jena sintered glass, porosity G 4, and about 4 cm in diameter and 15 mm in thickness. At 25°C about 1 per cent of the sodium chloride diffused through the membranes in an hour

As an indicator for the titration of sodium chloride with silver nitrate, 4 drops of 5 per cent potassium chromate are added to 50 ml of solution and the titration

$$\frac{D_{l_1}-D_{l_1}}{D_{l_2}} \quad \frac{1}{t_1-t_1}=\alpha \qquad l_2>t_1$$

The value of α as given by this equation is not the same for different temperature ranges unless the calculations are made from a constant D_{t_i} as a base If D_{t_i} is taken to be constant, the equation becomes identical with equation (1)

² Diffusion cells with fused in membranes can be obtained from Schott and Company, Jena, Germany (American agents, Fish-Schurman Corporation, New York City)

In the catalogue of the Jena Glass Company our diffusion apparatus is pictured in the form used by McBain. This differs in two unessential details from the form now used by us. First, the membrane is several times thicker than ours. The thicker membrane may be an advantage for very accurate measurements of the rate of diffusion of small molecules. When the rate of diffusion of slowly diffusing biological molecules is being measured thinner membranes which permit more rapid diffusion are more desirable. Secondly, we have the stop-cock immediately above the wide part of the diffusion cell, whereas McBain has it higher on the tubing attached to the wide part, as in our original apparatus. The purpose in placing the stop-cock lover is to avoid a dead space in which convection currents may not produce adequate stirring. The manufacturers will make diffusion cells of any desired design and dimensions

¹ The temperature coefficient, α , of diffusion is usually defined as

is carried to a definite brown Since the greater the amount of silver chloride in suspension the more silver nitrate is needed to turn the indicator brown, known amounts of sodium chloride are titrated to obtain a calibration curve

Potassium Chloride —McBain and his associates have used our membrane method extensively. They calibrate their membranes with 0.1 n potassium chloride at 20°C taking for the diffusion coeffi-

TABLE I

Diffusion Coefficients at Various Temperatures — Cm²/Day

	-	5		10*	1	12	1	16	1	18*	:	10°	2	25
2 N sodium chloride		720 720)		848 851)	[-			04 06)	1	12	_	27
1 N sodium chloride (Oholm)		720	(0	651)				i		06	١,	**,	1	23,
2 N sodium chloride (Scheffer)	lo	72	((-		ł		l	
1 N sodium chloride (Clack)	l		1		Į		1		1	04	1		l	
•	({		(-	ĺ		1	07	ĺ		ĺ	
0 5 n potassium chloride	1		1		1						ĺ		1	56
0.5 N potassium chloride (McBain and Dawson)	İ												1	57
1 n hydrochloric acıd	1	60	(1	85	ĺα	96)	2	16	(2	27)	ĺ		2	65
•] (1	59)	(1	85)	ľ	•	(2	17)	ľ	•	1		(2	64)
1 N hydrochloric acid (Oholm)	ľ		ľ		lı	96	ľ	-	ĺ		1		1	•
04 - 05 N hydrochloric acid (Scheffer)	1	55	1	78					ĺ					
0 1 n hydrochloric acid	1	45	l 1	68	α	77)	1	94	i		ì		2	38
•	(t	45)	la	68)	ľ			96)			Ì		(2	37)
0 1 n hydrochlone acid (Oholm)	(ľ	•	1	98	2	13			ì		`	

The values are diffusion coefficients expressed in cm 2/day

The values in parenthesis are calculated from the equations given in the text

The membranes were calibrated with 2 N sodium chloride, taking $D_5 = 0.72$ from Oholm

cient the accurately determined value of Cohen and Bruins (1924), 1 249 cm ²/day The diffused salt is estimated with an interferometer 0 1 n potassium chloride has two disadvantages as a substance for calibration First, the accurate estimation of very small amounts of potassium chloride is, in the absence of suitable optical equipment, not convenient Secondly, according to McBain and Dawson (1935) the rate of diffusion of dilute potassium chloride is not independent of the concentration so that the results obtained by the membrane method

are not strictly comparable to those of Cohen and Bruins The possible error here is only a few per cent

Using membranes calibrated with 0.1 N potassium chloride McBain and Dawson (1935) found the diffusion coefficient of 0.5 N potassium chloride at 25°C to be 1.57 cm ²/day Using membranes calibrated with 2 N sodium chloride, we find the diffusion coefficient of 0.5 N potassium chloride to be 1.56 cm ²/day

Hydrochloric acid — The rate of diffusion of 0 1 n and of 1 0 n hydrochloric acid through membranes calibrated with 2 n sodium chloride has been measured at 5°, 10°, 16°, and 25°C The results (Table I) within 1 per cent are expressed by the equations

$$D_{\text{o IN HCl}} = 122 + 0046 t$$

 $D_{\text{I oN HCl}} = 133 + 00525 t$

Our results with 1 N hydrochloric acid agree with Oholm's Our results with 0 1 N hydrochloric acid do not Oholm's value for the diffusion coefficient of 0 1 N hydrochloric acid is 11 per cent higher than ours at 12°C , 9 per cent higher at 16°C

Scheffer measured the diffusion coefficient of 0.5 n hydrochloric acid at 5°C and 10°C. His values are between our values for 0.1 n hydrochloric acid and 1 n hydrochloric acid. See Table I

It should be pointed out that if the diffusion coefficient of hydrochloric acid is dependent on the concentration, then the results obtained by Oholm's method and the membrane method are not strictly comparable. The deviation from the true diffusion coefficient is more serious when Oholm's method is used. Furthermore, Oholm regarded his experiments with hydrochloric acid as less accurate than those with sodium chloride. In his more concentrated acid solutions visible precipitates were formed by the reaction of the acid with the mercury supporting the solutions.

Correction of Old Calibration—The diffusion coefficient of 0.1 N hydrochloric acid at 5°C, as measured with a membrane calibrated sodium chloride, is 1.45 cm ²/day. In our original use of the membrane method we calibrated our membranes with 0.1 N hydrochloric acid at 5°C and took the diffusion coefficient as 1.85 cm ²/day. This value was obtained by extrapolation from Oholm's data. Zeile (1933) pointed out that we made a numerical error in calculation and that

the effect of temperature on the rate of diffusion of hydrochloric acid is greater than that given by Oholm We have now found, in addition, a discrepancy between Oholm's absolute values and the absolute values obtained by the membrane method with membranes calibrated with sodium chloride Since from the data in the literature, one cannot be certain what the absolute diffusion coefficient of hydrochloric acid is at any given temperature or what the effects of temperature and concentration are on the diffusion coefficient, it is clear that hydrochloric acid is not at present a suitable fundamental standard for the calibration of diffusion membranes

The Assumptions Involved in the Calculation of Molecular Weights from Diffusion Coefficients

Although the measurement of rates of diffusion by means of the membrane method is simple, the calculation of molecular weights from diffusion constants involves many uncertainties. These uncertainties have nothing to do with the validity of the diffusion data themselves. They are, for the most part, independent of the technique used in making the diffusion measurements. According to Einstein (1908) the diffusion coefficient D is related to the friction coefficient F as follows.

$$D = \frac{RT}{N} \frac{1}{F} \tag{1}$$

This equation states that the rate of diffusion of a substance from one part of a solution to another is directly proportional to the difference in osmotic pressure due to the difference in concentrations of the substance in the two parts of the solution, and inversely proportional to the coefficient of friction, which is the force needed to produce unit rate of motion. The assumptions made are (1) that D is a true diffusion constant independent of the concentration of the diffusing substance, (2) that van't Hoff's osmotic pressure law is obeyed, which again means that D is independent of the concentration of the diffusing substance, and (3) that D is not influenced by other diffusing substances. The diffusion of protein from hydrochloric acid solution into water, for instance, is much faster than the diffusion of isoelectric protein into water. The small negatively charged chloride ions diffuse

rapidly and drag with them the large protein ions of opposite charge from which they cannot be separated. This accelerating effect can be abolished by salt just as Donnan effects can be abolished in osmotic pressure experiments. If diffusion experiments are carried out with dilute solutions containing salt, and if D is independent of the concentration of the diffusing substance and of the salt, then the assumptions made in deriving equation (1) may be considered as experimentally justified and F may safely be calculated from D

Einstein takes F to be related to the radius of the diffusing particle r and the viscosity of the solvent, n, by Stokes' law

$$F = 6\pi r \eta \tag{2}$$

Combining equations (1) and (2) one obtains

$$D = \frac{RT}{N} \frac{1}{6\pi r \eta} \tag{3}$$

which is Einstein's law The assumptions involved in Stokes' law are that the diffusing particles are large and few in number in comparison with the molecules of the solvent and that they are spherical

If the diffusing particles are not spherical the calculated radius is too great. It is impossible to find out from diffusion experiments alone whether the diffusing particles are spherical or how great an error is made in making the assumption that they are spherical Theoretical calculations have been made for particles of certain definite shapes (Svedberg (1928)). For instance, the coefficient of friction of an ellipsoid whose long axis is ten times its short axis is about 20 per cent greater than the coefficient of friction of a sphere of the same volume.

Finally, the friction which, other things being equal, determines the rate of diffusion is the friction between the whole kinetic unit and the solvent. If the diffusing molecule is hydrated then the radius given by Einstein's law is the radius of the hydrated molecule and the molecular volume calculated from the radius is the volume of the hydrated molecule. In contrast, osmotic pressure measurements yield information about the volume of the unhydrated molecule. There is no way of telling from diffusion experiments alone whether a molecule is hydrated or not, or to what extent it is hydrated.

If the diffusion has been accelerated by ionic effects then the calculated radius is too low. This acceleration is easily abolished by salt. If, on the other hand, any of the other assumptions made in arriving at Einstein's law is not justified in any particular case, then the calculated radius is too high.

We have seen that some of Einstein's assumptions, in particular those involved in the equation relating D to F, can be tested experimentally by diffusion measurements. Others cannot. Even if all the possible tests have been carried out, the molecular weight of the unhydrated molecule calculated from D may be higher than that obtained from osmotic pressure data because the molecule is either hydrated or non-spherical or both

Comparison of Molecular Volumes Calculated from Osmotic Pressures, Sedimentation Data, and Diffusion Coefficients

Table II shows that the volumes of various protein molecules calculated from osmotic pressure and sedimentation data agree but are lower than the volumes calculated from diffusion coefficients. The volumes calculated from osmotic pressure and sedimentation data do not include any water of hydration. The calculations do not involve any assumptions about the shapes of the molecules. The volumes calculated from diffusion data, as we have seen, do include water of hydration and are based on all the assumptions involved in Linstein's law. There are three possible reasons why the volumes calculated from diffusion coefficients are higher than those from osmotic pressure.

- 1 The diffusion coefficients are too low. We have already presented the evidence for the correctness of the diffusion coefficients
- 2 The molecules are hydrated and the difference between the volume calculated by the other two methods represents water of hydration. This hypothetical water of hydration, however, is higher than the hydration of these proteins calculated from viscosity data by the empirical equation of Kunitz (1925–26). This disagreement is not conclusive proof that hydration is not responsible for the high volumes calculated from diffusion coefficients because the application of Kunitz's equation may not be valid.

In a previous paper (Kunitz, Anson, and Northrop (1933-34)) the

TABLE II Molecular Volumes

	Cylculated from osmotic pressures	Calculated from sedimentation data	Calculated from diffusion coefficients
Hemoglobin	50,200 (Adaır (1925))	52,000 (Lamm and Polson (1936))	104,500* (Northrop and Anson
Pepsin Trypsin	26,300 (Northrop (1929–30)) 27,500 (Kuntz and Northrop	26,000 (Philpot and Eriksson-Quensel (1933))	(1928–29)) 56,000* (Northrop (1929–30)) 92,400* (Scherp (1932–33))
	(1934-35)) 17,100 (Kunitz and Northrop (1934-35))		56,100† (Kunitz and Northrop
Chymo trypsın	30,700 (Kunitz and Northrop (1934-35))		(1934–35)) 56,100† (Kuntz and Northrop (1934–35))

* Membrane calibrated with 0 1 n hydrochloric acid $-D_6$ ° = 145 cm ²/day † Membrane calibrated with 0 23 n sodium chloride $-D_5$ ° = 0 72 cm ²/day

hydration calculated from viscosity data was found to agree with the difference between the volumes calculated from diffusion coefficient and osmotic pressure. This result must be rejected, however, because the diffusion coefficients used were based on a wrong value for the diffusion coefficient of 0 1 N hydrochloric acid at 5°C.

- 3 Einstein's equation is not valid
- (a) The relation between the coefficients of diffusion and friction

$$D = \frac{RT}{NF}$$

is not correct when applied to proteins. Lamm and Polson (1936), however, have shown that the molecular weight calculated from sedimentation equilibrium agrees with the molecular weight calculated from sedimentation velocity using the coefficient of friction obtained from the diffusion coefficient. This agreement would not exist were not the coefficient of friction calculated from the diffusion coefficient correct.

(b) Stokes' law

$$F = 6\pi rn$$

is not valid when applied to protein molecules. As we have already pointed out, if the molecule is not spherical the radius and hence the volume calculated from the diffusion coefficient by Einstein's law which includes Stokes' law is too high

Polson (1936) has assumed that the molecular weights calculated from diffusion coefficients are higher than those calculated from sedimentation data because the molecules are ellipsoids and not spheres, and that corrections for the non sphericity of the molecules can be calculated from viscosity data, using the equations of Kuhn and Arrhenius. When such corrections were made he found that the molecular weights of a number of proteins calculated from diffusion and viscosity data were about 70 per cent of those calculated from sedimentation data

(c) Einstein assumes that the viscosity, η , in Stokes' equation is the viscosity of the solvent and that the viscosities of the solvent and the solution are the same. We have used the viscosity of the solvent in calculating the molecular volume from the diffusion coefficient but

the viscosities of the solutions were, in general, higher than the viscosities of the solvents. The volumes calculated from diffusion coefficients, however, would still be high even if the viscosities of the solutions were used in the calculations.

In general, it may be said that the molecular volumes calculated from diffusion coefficients are higher than those calculated from osmotic pressure and sedimentation data, but that it cannot be decided whether these high values are due to hydration or non-spherical shape or both because there is no reliable information at present about the hydration and shapes of protein molecules

The Kinds of Information Which Can Be Obtained from Diffusion Measurements

Since Einstein's law involves assumptions which in practice may not be valid, there is some doubt as to the significance of the molecular volumes calculated from diffusion coefficients. Useful information, however, can be obtained from the diffusion measurements despite this limitation

In the first place, by assuming Einstein's law to be correct one can obtain a rough notion of the maximum molecular size from a knowledge of the diffusion coefficient. The membrane method, in fact, was originally devised to obtain rough information about molecular size of biologically active substances when the ordinary methods of measuring molecular size cannot be applied at all. By means of the membrane method one can measure the diffusion coefficient of, for instance, bacteriophage whose presence is known only by its biological activity and which is available only in low, unknown absolute concentration in impure solution (Hetler and Bronfenbrenner (1930–31))

In the second place, by making only assumptions which can be tested experimentally, one can calculate the coefficient of friction, F, from the diffusion coefficient, D. Knowing F one can calculate the molecular weight of a particle from the rate at which it moves in a gravitational field, as has been done by Svedberg, or the charge on a particle from the rate at which it moves in an electrical field, or in general, add to the information which can be obtained from a knowledge of the rate at which a particle moves under the influence of a given force

In the third place, several different kinds of useful information can be obtained from suitable diffusion experiments without any calcula tion of friction coefficient or molecular size, without any assumptions whatever about the shape of the molecule or its degree of hydration First, diffusion experiments can, under suitable conditions, give some information about the constitution of a substance. If the rate of diffusion of a substance in the absence of salt is not affected by acid or base, then the substance is a non-electrolyte. If the rate of diffu sion is at a minimum at a given pH and is increased by both acid and base, then the substance is amphoteric Secondly, diffusion experi ments can be used to test the homogeneity with respect to particle size of the diffusing substance If the first part of the substance which has diffused through the membrane is removed and the rate at which this diffusate diffuses through a membrane is measured in a separate experiment, and if the diffusion coefficient of the first diffusate is the same as that of the original substance, then the original substance is homogeneous Thirdly, when an active material has been supposedly isolated diffusion experiments can be used to test whether the substance isolated is actually the active substance. If the active substance and the isolated substance are of similar size and constitution. then the rate of diffusion under all circumstances, even in the absence of salt and in the presence of acid or base, should be the same whether the amount diffused is measured by activity measurements or by direct estimation of the substance, for instance, by nitrogen determination

Finally, by means of diffusion substances which diffuse at different rates can be separated. Large differences in rate of diffusion may exist between two substances of similar size if one substance is ionized and the other is not

REFERENCES

Adair G S, 1925, Proc Roy Soc London, Series A, 108, 627
Barnes C, 1934, Physics, 5, 4
Clark B W, 1917, Proc Phys Soc London, 29, 49 1921, 33, 259 1924, 36, 313
Cohen E, and Bruns, H R, 1924 Z phys Chem, 113, 159
Einstein A 1908, Z Elektrochem 14, 235
Hetler D M, and Bronfenbrenner J, 1930-31 J Gen Physiol, 14, 547
Kunitz, M, 1925-26, J Gen Physiol, 9, 715

Kumtz, M, Anson, M L, and Northrop, J H, 1933-34, J Gen Physiol, 17, 365

Kunitz, M, and Northrop, JH, 1934-35, J Gen Physiol, 18, 433

Lamm, O, and Polson, A, 1936, Brochem J, London, 30, 528

McBain, J W, and Dawson, C R, 1935, Proc Roy Soc London, Scries A, 148, 32

McBain, J W, and Liu, T H, 1931, J Am Chem Soc, 53, 59

Nernst, W, 1888, Z phys Chem, 2, 613

Northrop, J H, 1929-30, J Gen Physiol, 13, 739

Northrop, J H, and Anson, M L, 1928-29, J Gen Physiol, 12, 543

Oholm, L W, 1905, Z phys Chem, 50, 309

Philpot, J, and Eriksson-Quensel, I B, 1933, Nature, 132, 932

Polson, A, 1936, Nature, 137, 740

Scheffer, J D R, 1888, Z phys Chem, 2, 390

Scherp, H W, 1932-33, J Gen Physiol, 16, 795

Svedberg, T, 1928, Colloid chemistry, New York, The Chemical Catalog Company, Inc., 2nd edition, 148

Tiselius, A, and Gross, D, 1934, Kolloid-Z, 66, 11

Zeile, K., 1933, Brochem Z., Berlin, 258, 347

ACTION OF ULTRAVIOLET LIGHT ON SPORES AND VEGE-TATIVE FORMS OF B MEGATHERIUM SP

By FERDINAND HERČÍK

(From the Laboratories of The Rockefeller Institute for Medical Research)

(Accepted for publication, June 30, 1936)

These experiments have been made to determine the survival ratios of vegetative forms and spores of *B megatherium sp* under the influence of monochromatic ultraviolet light. As such they are an extension of previous irradiation studies made in this laboratory

Technique

A strain of B megatherium sp has been used which, besides being an exception ally good spore former, produces vegetative forms that hold together only weakly in chains. Microscopic examination demonstrated that these chains could be broken up by moderate shaking to furnish the suspension of single organisms essential to good quantitative studies. The bacteria were cultivated at 25°C and stock cultures for spores were incubated at 37°C for 2 months in sealed tubes. The experimental methods for irradiation were similar to those previously described, the bacteria being irradiated after spreading on an agar surface. To do this 1 cc of a 24 hour old broth culture was diluted with 10 cc of nutrient broth and left 60 minutes in 26°C. This fresh culture was then diluted ten times with saline, shaken mechanically for 10 minutes, and spread in 0.5 cc portions on nutrient agar, poured 24 hours previously into 7.5 cm. Petri dishes. This bacterial suspension was left on the agar for 3 minutes, drained for 10 minutes at the room temperature, and put immediately in the ice box.

The old cultures containing spores were placed for 10 minutes in a 60°C water bath before dilution, it having been found that this time and temperature were sufficient to kill all vegetative forms. The suspension was then diluted tenfold with saline, shaken for 10 minutes, and spread in the manner just described

After irradiation the plates were put in a thermostat at 14 C. This low in cubation temperature was needed to give single colonies. At higher temperatures long chains of bacteria are formed which, spreading widely over the agar, give a confluent growth before the colonies can be counted.

The arrangement for irradiation was the same as that previously used \tau The source was a powerful quartz mercury arc, the monochromator was a large one,

¹ Wyckoff, Ralph W G, J Gen Physiol, 1931-32, 16, 351

having 6 inch fused quartz lenses and prisms The current for the lamp, which was operated at either 100 or 119 volts, was drawn from a 200 volt storage battery Irradiations were made only after the arc had been running of large capacity Its output was controlled by an attached quartz sodium for at least 2 hours Single spectral lines were selected and the monochromator was photoelectric cell adjusted till the irradiation slit, 29 x 3 mm, was uniformly filled with light of one wave length The sharp edges of the slit were used to mark the irradiated and standard areas on the surface of the agar, several areas being irradiated on a Before and after each experiment the energy flux at the point of irradiation was measured by a thermocouple calibrated with a carbon lamp standardized by the U S Bureau of Standards Survival ratios were determined from counts after incubation of the number of colonies on the irradiated and control areas

TABLE I
Survival Ratio of Vegetative Forms of B megatherium sp

Time	Wave	length	Time	Wave length
Time	2536 Å	2803 Å	Time	3132 Å
sec			min	
5	0 873	0 819	1	0 947
10	0 800	0 683	2	0 689
20	0 729	0 586	3	0 650
30	0 692	0 455	4	0 582
40	0 609	0 371	5	0 597
60	0 346	0 232	6	0 476
80	-	0 130	8 .	0 317
Energy incident per mm² per				
sec	2 9 ergs	5 5 ergs		64 0 ergs

EXPERIMENTAL RESULTS

The vegetative forms and spores of *B megatherium* were irradiated by light of the wave lengths 2536 Å, 2803 Å, and 3132 Å. The results are tabulated in Tables I and II and graphically represented by Figs 1 and 2. The survival ratios are averages of many counts, the mean number of control colonies for every point being 1580 Large counts are essential, especially for small survival ratios after prolonged irradiations, when the variations in the number of survivors influence the ratio very strongly

TABLE II
Survival Ratio of Spores of B megatherium sp

	Wave length				
Time	2536.Å	2803 Å			
zec					
30	0 814	0 689			
40		0 773			
60	0 700	0 546			
90	0 397	0 304			
120		0 306			
180	0 296	0 076			
240	0 209	0 051			
nergy incident per mm."					
per sec	2 6 ergs	5 7 ergs			

Fig. 1. Survival ratio of the vegetative forms of B megatherium sp irradiated with ultraviolet light of wave lengths 2536 Å 2803 Å, and 3132 Å.

From the figures, it is evident that within the limits of experimental error (which amounts to ca 10 per cent) the results on both vegetative forms and spores are semilogarithmically linear. This conclu-

Fig. 2. Survival ratio of the spores of B megalherium irradiated with ultraviolet light of wave lengths 2536 Å and 2803 Å

sion, though agreeing with the data on most other bacteria, conflicts with some recent experiments² in which it was found that the vegetative forms and spores of B subtilis and the spores of B megalherium

² Duggar, B M, and Hollaender, A, J Bact, 1934, 27, 241

sp have the survival ratios following a multiple hit curve These results showed a wide range of variation, however, and it seems probable that single cell suspensions were not obtained

Incident energies necessary for 50 per cent killing (Table III) were calculated by multiplying the incident energies per second by the time of irradiation giving the survival ratio 0.5 Spores evidently are destroyed by about twice as much energy as is required for the vegetative forms. Sensitivities are of the same order of magnitude as those prevailing with B coli except that the 3132 Å energy is much greater for B megatherium. It would be interesting to determine from spectrophotometric studies whether this was due to differences in absorption spectrum.

TABLE III

Energies for 50 Per Cent Killing of Bacteria

j	B coli		B megatherium					
Wave length	Incident	Energy absorbed	Vege	tative forms	Spotes			
	energy	per bacterium	Incident energy	Energy absorbed per bacterium	Incident energy			
	ergs/mm ²	6723	ergz/mm 1	ergs	ergs/mm 1			
2536 Å	200	2 75 × 10→	113	6 2 × 10 ⁻⁴	273			
2803 Å	240	2 50 × 10 ⁴	149	59×10→	342			
3132 Å	5200	10 9 × 10-1	21,150	18 × 10-4				

By making the assumption, which may or may not be true, that the spectra of B megatherium and B coli³ are the same, an estimate can be formed of the energy absorbed per bacterium for 50 per cent death. The results, computed on the basis of measurements indicating that the average bacillus irradiated is a rod 22μ long and 09μ in diameter, are listed in Table III. Ultraviolet microphotography points to a very different absorption for spores, therefore no effort has been made to calculate the energy absorbed in them

SUMMARY

Spores and vegetative forms of a strain of B megatherium were irradiated by ultraviolet light of the wave lengths 2536 Å, 2803 Å,

³ Gates, F L , J Gen Physiol , 1930-31, 14, 31

Wyckoff, Raiph W G and Ter Louw A L , J Exp Med , 1931, 54, 449

and 3132 Å The killing rate of both bacteria and spores is exponential, in agreement with irradiation results on other bacteria. Twice as much incident energy is needed to kill the spores as the vegetative forms (50 per cent death)

The absorbed energy per bacterium for 50 per cent killing has been calculated on the assumption that the absorption of the vegetative cells is the same as that of colon bacilli. These results are compared with previous measurements on other bacteria.

I am indebted to Dr R W G Wyckoff for his kind interest in this work

CONCERNING CRITICAL PERIODS IN THE LIFE OF ADULT DROSOPHILA

BY W J CROZIER AND E V ENZMANN

(From the Biological Laboratories, Harvard University, Cambridge)

(Accepted for publication, July 1, 1936)

1

To provide an explanation for systematic fluctuations in the re sistance of Drosophila to alcohol with advancing age it was suggested (crozier, Pincus, and Zahl (1935-36)) that periodic metabolic ad justments occur at fairly definite ages, in genetically uniform stock under reasonably constant conditions They might be said to mark These adjustments were conceived to have the metabolic instars character of "suppressed moults," or rather of ecdyses which do not materialize, -- in other words, to be of the nature which in Orthoptera for example result in successive ecdyses. It was pointed out that the life duration data on inbred lines of Drosophila indicated that the death rate appears to pass through successive accelerations at ages which differ in the various stocks and which are also influenced by The sharpness of appearance of such recurrent periods of ac centuated susceptibility should be blunted or obscured by lack of real genetic uniformity in a stock considered, and in a life duration experiment their exhibition should vary with the severity of the conditions affecting survival

The reality of such critical metabolic conditions, superimposed upon the fundamental progression toward sensity, can be tested by examining the rate of occurrence of deaths in the stock we have already tested for resistance to alcohol. The chief evidence for periodic changes in resistance to the toruc action of alcohol was derived from the slopes of the straight lines relating survival time to vapor pressure of alcohol (Crozier, Pincus, and Zahl (1935–36)). The reciprocals of these slopes, taken as appropriate measures of resistance to diffusive penetration of alcohol, are related to age in

such a way that the resistance increases with age but on a curve for which the first derivative (ie, the rate of change of resistance) shows maxima at several ages, with intervening minima, differing for the two sexes. These maxima coincide with maxima of change in the vapor pressures of alcohol independently calculated to kill instantly. Maxima and minima of changing resistance to alcohol should be expected to show some definite correspondence with minima and maxima in the curve of rate of occurrence of deaths in a survivor-ship experiment with the same stock grown under the same reasonably constant conditions

π

The stock of *Drosophila* used was started from a Florida wild type strain given us by Dr Demerec and maintained in inbred condition for several years under uniform conditions of culture at $25-26^{\circ}$ C (cf Crozier, Pincus, and Zahl (1935-36)) We shall refer to this as line F Our stock contains a recessive white-eyed mutation which apparently arose some time before our experiments were performed

Females were permitted to lay eggs for about 3 hours on a drop of culture medium on a 5 cm glass square. Drops were then peeled off and transferred to culture bottles (half-pint bottles), or the flies were permitted to deposit eggs for about 3 hours in new cultures. The culture medium contained 40 gm agar, 200 gm cornmeal, 280 cc molasses, 2000 cc water (or enough to give such a consistency that the medium settled in 15 minutes). Each culture bottle received 1½ cm depth of the medium, and after cooling was inoculated with 2-4 drops of a 20 per cent yeast suspension and left standing overnight. A square of filter paper on top of the culture medium prevented accumulation of excess moisture

Newly hatched unmated flies were etherized, the sexes assorted, and transferred to empty bottles until recovery from the ether 35 to 60 individuals were placed in a single culture bottle for the determination of death rates

At 26°C the minimum time from egg laying to emergence of flies is 9 days. The culture media were changed to prevent possible contamination from accidentally fertilized flies. Bottles were changed routinely at intervals of 5-7 days, or when the medium became too moist, or when the mortality was unusually high and counting became difficult

The experiment was made in such a way that not all the bottles of the total population examined were initiated on the same day, but over a period of a week. This was done in order to make certain that no systematic rhythm of changing culture bottles could influence the occurrence of deaths in a systematic way. When the numbers of individuals in the bottles fell to 35 or less, the population in several bottles was combined so as to maintain the population in a single bottle between 35-45 at all times, the intention was to remove the influence of a density of population factor upon occurrence of deaths.

The first experiment was made with 971 females and 962 males. On its completion the whole experiment was repeated with 938 females and 898 males. Dead flies were counted each day, at about the same time. Agreement in the results of such repetitive tests is of course more significant than would be the increased formal precision to be obtained by enlarging the total numbers in any one run.

In addition, we have made runs with mixed populations of strain F, and also with an eosin stock which has been inbred in this laboratory. In a mixed population of males and females, where the proportion of the two fluctuates the temporary accelerations of the death rate are largely obscured.

ш

The running totals of observed deaths at successive ages $(\Sigma d_z')$ are plotted in Fig 1. It is apparent that the rate of occurrence of deaths is not uniform. It is also clear that the peculiarities of the curve for each sex are specifically exhibited in repetitions of the experiment. The d_z' s for the two experiments have been added for purposes of further treatment of the curves for the two sexes. The changes in rate of change of the death rate and the participation of a sex factor are of the type already indicated in previously available data upon other inbred lines of *Drosophila* (cf. Crozier, Pincus, and Zahl (1935–36))

From measurements with line F of the time to-death in various partial pressures of alcohol vapor an invasibility coefficient S was calculated for files of different ages (Crozier, Pincus, and Zahl (1935–36)) S was found to have a rather complex relationship to age of fly, and to differ for the two sexes The data are reproduced in Fig 2. Changes in the shape of the S age curve were found to be correlated with fluctuations in the vapor pressure P_0 of alcohol computed to kill instantly. Alterations in -dS/dt were also found to be associated with maxima in the variation (σ_{11}) of time to-death

We may regard the rate of change of S as an index of the rate of underlying metabolic events. To make the notion specific, the increase of resistance to diffusive penetration of alcohol from its vapor, with advancing age of fly, may be conceived due to the superficial deposition of cuticular materials, or to the progressive removal of materials favoring penetration, this being a result of general metabolic events. Alterations in -dS/dt should therefore be correlated

with changes in the rate of progression of the underlying metabolic processes. Where dS/dt changes least rapidly, P_0 is at a maximum. Where dS/dt exhibits rapid changes, P_0 is at a minimum. The determinations of S were based upon observations with flies of ages spaced at intervals of 1 day from 1 to 10 days inclusive, at intervals of 5

Fig 1 The summated number dead as a function of age in days at death, for or or and or populations of *Drosophila* The results in two separate experiments show corresponding accelerations for each sex (For or or, the origin has been raised—scale at the right)

days thereafter up to 50 days. The death rate data were obtained for intervals of 1 day throughout, we might thus reasonably expect greater complexity in the latter. Nonetheless, if ages of minimum and maximum resistance to the penetration of alcohol and to its toxic action are determined by the incidence of surges in metabolic progress.

toward death, then there should be apparent rather definite correspondences between rate changes in -dS/dt (i.e., in dS/dt^2) and in the rate of accumulation of deaths. These maxima are deducible from Fig 3 as easily as from tabulated daily death rates (q'_*) , which have been computed, the fluctuations are statistically significant, as well as being essentially coincident (for each sex) in independent repetitions of the experiment. It is also true that minima in q' coincide with regions of the S-age curve which show practical con stancy of dS/dt These correspondences are perhaps most simply made clear by a plot of log $(1/\Sigma d_*)$ as a function of age Corre spondences of changes in the slopes of this curve with those of the curve of S, as a function of age, would mean that AS per unit time (under constant conditions) has the same kind of meaning, so far as the aging function is concerned, as $d'_{1}/\Sigma d'_{1}$, d'_{1} signifies the number dying in 1 day at age t and $\Sigma d'_{st}$ is the total dead up to and including that day-in other words, the percentage of the total deaths (up to that point) occurring at that particular age. The curves are given in Fig 3, where $\log (1/\Sigma d_z)$ is plotted against age. The correspond ence with Fig 2 may fairly be considered close, if not indeed remark-The slope of the log $(1/\Sigma d_z)$ curve is $-\Delta(\Sigma d_z)/\Delta t \Sigma d_z$, this has been assumed to be parallel to $-\Delta S/\Delta t$ With $\Delta t = 1$ day, this is identical with the statement that $d_z'/2d_z' \approx dS$ Examination shows that within each of the intervals between sharp changes in the slopes of the curves in Figs 2 and 3 there is a rectilinear relationship between $\log (1/\Sigma d_*)$ and S, but that the proportionality constant changes size from one such interval to another

The alcohol experiments demonstrate that all the individuals of one sex of the inbred strain F pass through critical periods at the same ages. The incidences of deaths under the conditions of the present tests show merely that the occurrence of the termination of life is increasingly probable at the particular intercycle ages. It is entirely justifiable to conclude that under uniform conditions of greater severity (e.g., less food, more crowding, higher temperature) the changes of curvature in the $\Sigma d_z'$ curves would be more accentuated

The evidence shows that at these ages the resistance to alcohol (P_0) is at a minimum, that the rate of decrease of invasibility by alcohol vapor is changing most rapidly, and that the death rate goes

through a maximum. We may consequently take these particular ages as defining the time limits of metabolic instars, under the present conditions. It should be of interest to ascertain the manner of

Fig 2 The invasibility of *Drosophila*, stock F, for alcohol from its vapor, as a function of age and sex of imago, see text. The invasion coefficient S is computed as $-\Delta t/(\Delta P=40 \text{ mm})$, where t is time-to-death (minutes) and P is vapor pressure of ethyl alcohol

modification of these periods in other inbred lines and under conditions affecting life duration. Such information would seem essential to the interpretation of the effects encountered under various experi-

mental conditions It is clear that in the data of egg production similar surges of activity are to be detected, and it has been shown

Fig. 3 Changes in the rate of accumulation of deaths in male and female Drosophila populations, stock F, as a function of age. At any age $\Sigma d' =$ the total observed deaths up to and including that day. The slope of the curve gives the rate of change of $d'/\Sigma d$. Changes in this rate faithfully parallel changes in the rate of alteration of the index of invasibility for alcohol

that cross-over frequencies as a function of age fluctuate in a definitely analogous manner (d Bridges (1927), (1929))

SUMMARY

Periodic accelerations in the decreasing resistance of adult *Droso-phila* (pure line) to the penetration of alcohol vapor are specifically paralleled by changes in the rate of accumulation of deaths in a life duration experiment with the same line. The necessary interpretation is that there occur under constant conditions periodic fluctuations in the speed of general metabolic events, marking the limits of what may be termed metabolic instars

CITATIONS

Alpatov, W W, 1932, J Exp Zool, 63, 85

Bridges, C B, 1927, J Gen Physiol, 8, 689 1929, Carnegic Institution of Washington, Pub No 399, 63

Crozier, W. J., Pincus, G., and Zahl, P. A., 1935-36, J. Gen. Physiol., 19, 523

SUBSTANCES AFFECTING ADULT TISSUE IN VITRO

I THE STIMILATING ACTION OF TRYPSIN ON FRESH ADULT TISSUE

BY HENRY S SIMMS AND NETTIE P STILLMAN

(From the Department of Pathology, College of Physicians and Surgeons, Columbia
University, New York)*†

PLATE 1

(Accepted for publication, September 15, 1936)

INTRODUCTION

Previous workers (1-5) have grown various normal adult tissues in vitro and have found that these cultures resemble those from embryo tissue, but are harder to maintain

In this and subsequent papers a study of dormant adult tissue will be described. The dormancy is characterized by the lag period preceding the onset of growth in vitro. Adult chicken agree has a lag period of 3 to 5 days before the first new fibroblasts can be seen, while embryo tissue starts to grow in a few hours (6). In this paper it will be shown that digestion of the tissue with trypsin not only shortens thus lag period (i.e., overcomes the dormancy) but also increases the growth rate.

EXPERIMENTAL

Our methods differed from the standard tissue culture technique (7-12) in the following details. In each experiment a chicken was bled aseptically from the carotid artery (aided by suction) and was then killed either by clamping the trachea or with ether. Using sterile technique the thoracic aorta was removed,

^{*}This investigation has been aided by a grant from the Josiah Macy, Jr Foundation

[†] The portion of this paper dealing with the stimulation of cultures by trypsin represents data obtained in 1931-32 in the Kerckhoff Biological Laboratories, California Institute of Technology, Pasadena, California, with financial aid from The Rockefeller Institute for Medical Research, and with the technical assistance of Miss Persis Griffin

and sometimes other tissues These tissues were placed temporarily in "glucosal" solution (containing neither NaHCO₃ nor phenol red) until the aorta had been stripped of its adventitia and examined for fatty areas The tissue could be stored 3 or 4 days, if desired, in the ice box in pH 7 4 Tyrode solution (containing 0 7 gm of NaHCO₃ and 0 05 gm of phenol red per liter) providing the aorta had not been split (see below) but it gave best results when fresh

Treatment of Tissues with Trypsin—The portion of the thoracic aorta which was to be used on a given day was split through the media. The outer media was discarded. The piece containing the inner media and intima was used. It was cut into strips about 1.5×2.0 mm. Four of these strips were used for each part of an experiment and were placed in a 1.3×100 mm stoppered tube with 1.5 ml (or 2.0 ml.) of sterile trypsin solution. The pH was adjusted to 7.6 as indicated by phenol red in the solution. This adjustment was made with sterile CO₂-air mixtures (about 3 per cent) with the addition, if necessary, of a little 0.15 w NaOH (or NaHCO₃) during the digestion. Usually 0.1 per cent Fairchild's trypsin was allowed to act 3 hours at 3.7°C or, better, 2.4 hours at 2.2°C. The experiments were controlled by tissue treated with Tyrode solution under the same conditions. As a further control fresh tissue was planted without treatment.

Planting the Tissue—After this treatment the four strips of tissue from each tube were cut into pieces 0.6 mm in diameter and were planted in two special 32 mm Carrel flasks, 16 pieces in a flask—Before the tissue was introduced about 0.08 ml of chicken plasma (which had been diluted with two parts of Tyrode solution, containing phenol red) was spread over the bottom of each flask—The sixteen pieces of tissue were then planted in even rows with the aid of a metal guide. The flasks were corked and allowed to stand ½ to 1 hour until the plasma clotted. The surface was then rinsed with Tyrode solution which was drawn off by gentle suction—0.7 ml of diluted plasma was added, spread over the surface, and allowed to clot—The pH was adjusted to about 7.3 with 5 per cent CO₂-air mixture introduced with a sterile gas injector (see Text-fig. 1)—The flasks were placed at 37°C Fresh CO₂-air was added each day

Evaluation of Growth ¹ Each colony was examined daily under the microscope. The nature of the growth was such that the following system of evaluation was found most satisfactory (see Text-fig 2)

```
0 = no growth

1--(= 0 25) = 1 to 6 new cells

1-(= 0 5) = about 10 new cells

1 = about 30 new cells

2 = growth extended into medium (about 90 new cells)

3 = abundant growth but not visible to naked eye

4 = new growth clearly visible to naked eye

5 = colony 1 cm or more in diameter
```

¹ The word "growth" is used to indicate the production of new cells visible under the microscope

Text Fig 1 A sterile gas injector for introducing CO--air mixtures into flasks or tubes. Steam from boiler tube H, keeps nozzle E, sterile. The gas mixture from bottle, A, is sterilized by passing through sterile cotton, D, and is injected into the culture flask through E. The stopper of the flask can be placed in the sterile cup, J

TEXT Fig 2 Amount of growth corresponding to the indicated ratings

Intermediate ratings of 1+, 2+, 3+, and 4+ (equalling 15, 25, 35, and 45 respectively) were also used

The sum of the ratings of the sixteen colonies in a flask gave the "growth value" of that flask Each value in this paper is the mean of two duplicate flasks (thus representing 32 pieces of tissue)

Enzyme Solutions

The trypsin solutions were prepared as described below and were then sterilized by Berkefeld filtration and stored in the refrigerator

Fairchild's trypsin was made up as a 1 per cent suspension, filtered through paper, then through a Berkefeld filter, and kept as a stock solution This "1 per cent" solution was diluted with 9 volumes of Tyrode solution before using

A "purified trypsin" was prepared from Fairchild's trypsin by fractionation with ammonium sulfate. It was dialyzed against water, then against Tyrode, and used without further dilution

Northrop's crystalline trypsin and chymotrypsin² were made up to 1 per cent solutions in 0 003 M HCl and dialyzed against water, against saturated sodium chloride, then against water, and finally against 0 003 M HCl They were diluted with Tyrode before use

Papain solution was prepared as a 15 per cent solution. This was activated by adding one-fifth volume of a neutralized 1 per cent solution of cysteine hydrochloride and heating 1 hour at 36°C. In using this on a tissue a sufficiently low pH was obtained by introducing a 40 per cent CO₂-air mixture. This did not materially injure the tissue.

Activity of Trypsin—The proteolytic activities of the trypsin solutions were determined by digestion of casein solution using the procedure of Northrop and Kunitz (13)

50 ml of 5 per cent casein solution was warmed to 35 5°C 10 ml of enzyme solution (or 05 ml diluted to 10 ml) was added. The mixture was maintained at 35 5°C for 20 minutes. Trichloracetic acid was then added and the non-protein nitrogen was determined. The weight of non-protein nitrogen liberated per milliliter of the enzyme solution was taken as the measure of activity.

Treatn ent of Cultures with Trypsin—To each flask culture 1 ml, or less, of 0.1 per cent Fairchild's trypsin solution (in Tyrode) was added. The flasks were placed at 37°C and observed at frequent intervals. Is soon as the digestion in a given flask had reached the cells the fluid was quickly drawn off and fresh plasma was added. Sometimes when the digestion was slow, the fluid was replaced with serum at the end of 4 hours, and the treatment repeated the next day Caution was then necessary to prevent complete liquefaction of the clot

² These crystalline enzymes were obtained through the Lindness of Dr. John H. Northrop

Stimulation of Fresh Tissues by Trypsin

There is a lag period of 3 to 5 days before the first growth of fibro blasts can be seen from adult chicken thoracic aorta which has been planted in a medium of diluted plasma and kept at 37°C But if the

TABLE 1

Stimulation of Abdominal Aorta with Trypsin

The digestion was followed by 2 days at 4 C in Tyrode solution (Exp. 61C)

Treatment before planting		Growth values after planting				Relative growth on
Treatment or or planting	1 day	2 days	3 days	4 days		
Tyrode control	0	0	0.5	20	30	1
Trypsin 3 hrs 37 C	0	07	20	5 7	8 5	3

TABLE II

Stimulation of Adult Chicken Liver (Exp. 30A and B)

Tissue treatment before planting	Growth values after planting					
	i day	2 days	3 days	4 days	5 days	
Untreated	0	1 2	5	8	11	
Trypsin 3 hrs 24 C	0	30	8	10	19	

TABLE III

Dog Granulation Tissue, Stimulated by Trypsin

(2 hours at 37°C and 22 hours at 0), planted in chicken plasma (Exp. 49)

Tissue	Treatment before planting	Growth values after planting		
10000	areactical actors bigging	1 day	3 days	5 days
Vascular area (newer growth)	Tyrode control Trypsin treated	0 2 5	0	0
Fibrous area (older growth)	,		0 12	0 19

tissue is first treated with trypsin its lag period is definitely reduced Furthermore (see Text figs 5, 7, 8, 9, and 10, discussed below) the growth rate is greatly accelerated

Other adult tissues are similarly stimulated. These include the

abdominal aorta (Table I), adult liver fibroblasts and epithelial cells (Table II), adult theroid (Text fig 3), muscle fibroblasts (Text fig 4), and dog granulation tissue³ (Table III)

Rous sarcoma tissue was stimulated by trypsin treatment (Text-fig 4) even though the untreated tissue had no lag period. Of a number of human brain tumors which were studied one meningioma grew 15 per cent faster after 25 hours in trypsin at 37°C, and one glioma was slightly stimulated (not evaluated)

The stimulation of initial growth of dormant tissue seemed to depend upon obtaining just sufficient digestion of the tissue. Too much digestion killed the tissue. At the optimum point the tissue was perceptibly softer (but we do not believe this softness caused the stimulation) and was more translucent as seen under the microscope. It sometimes contained visible round cells which later developed into fibroblasts. The digested agric tissue, when stained with hema toxylin, was seen to have lost its mucoid material. The digestion removed 10 to 20 per cent of the mitrogen from the tissue with a corresponding increase in the mitrogen of the digestion fluid. There was considerable variability between chickens in the susceptibility of their tissues to digestion and this did not seem to be related to age, sex, or breed.

TEXT FIG 3 Stimulation of thyroid tissue by trypsin (Exp 65A)

TEXT FIG 4 Stimulation of Rous sarcoma, and of breast muscle fibroblasts, by trypsin digestion (2 hours at 37°C) (Exp 48)

TEXT FIG 5 Relative growth after trypsin treatment under different conditions (Exp 63B)

Text Fig. 6 Relative digestion of aorta tissue and of casein by trypsin at different temperatures. The solid line represents an experiment (65D) in which the digestion fluids were maintained at pH 76. The duration of the digestions were 24 hours at 5°C and at 22 C, and 4 hours at 36°C. The broken line represents a similar experiment (64A) in which the pH of the tissue digestion fluids dropped to lower values.

³ Kindly furnished us by Dr Margaret Murray It was prepared by planting small tubes in dog muscle for 12 days

⁴ Surgical material obtained with cooperation of Dr Abner Wolf

⁵ Rous and Jones (14) obtained similar round cells by drastic digestion of embryo cultures We likewise observe a retraction of fibroblast processes during partial digestion of our cultures (as in Fig. 1, Plate 1)

The control tissues in Text-figs 3, 5, 7, 8, 9, 10, and 11 were treated with Tyrode solution under the same conditions as the trypsin treatment. Most of the experiments were also controlled with fresh untreated tissue (as in Text-fig 4). There was no significant difference between the Tyrode controls and the untreated controls.

Temperature of Treatment —Usually a slow action at a low temperature stimulated better than the faster digestion at higher temperature. In Text-fig 5 the relative stimulations under different conditions are compared

The degree of stimulation at 0°C was somewhat surprising. It seemed strange that sufficient digestion could occur at that temperature. This is explained by the results in Text-fig 6 in which the amounts of nitrogen liberated from aorta tissue and from casein are compared under different conditions. If the relative susceptibility

TEXT-Fig 7 Stimulation produced by 3 days incubation of the tissue in serum ultrafiltrate before digestion with trypsin (Exp 55C)

(to tryptic digestion) of aorta and of casein were independent of temperature then the three points of each experiment would lie in a horizontal line. (The height of the line is not important.) If we take 22°C as a standard then the experimental results show that the susceptibility to digestion was relatively greater for aorta than for casein at 36°C and considerably greater at 5°C. In other words,

aorta was more readily digested at refrigerator temperatures than would be expected from observations on casein

Incubation of tissue in serum ultrafiltrate (or serum) before trypsin digestion produced a much better stimulation than the same treatment after the digestion (Text fig 7) The serum ultrafiltrate contains a stimulant (the 'A factor', see later paper (17)), needed for the initial growth of adult tissue The A factor may render the cells more susceptible to the stimulating action of trypsin. The presence of this agent during the digestion increased the stimulation only 10 per cent. However, the presence of serum in the trypsin solution prevented digestion and gave a stimulation only equal to that of serum alone.

Stimulation of Tissue Cultures by Trypsin

Flask cultures of adult chicken aorta fibroblasts which have reached a state of partial degeneration and retarded growth have been treated with trypsin until the plasma clot has been digested sufficiently to expose some of the cells. Fresh plasma was added and allowed to clot. There was an immediate vigorous stimulation to renewed growth (while control cultures failed to grow appreciably whether they were washed with hepann plasma, serum, serum ultrafiltrate, Tyrode solution, or embryo extract, or if untreated.) Plate 1 illustrates one of many such cultures. This untreated 11 day culture had not grown for 3 days and was partly degenerated when treated with trypsin. Fig. 1 was taken immediately after digestion, Fig. 2 after 20 hours, and Fig. 3 after 3 days.

Similar stimulation has been obtained with cultures of Rous sarcoma, Walker rat sarcoma 319 cultures, and a human meningioma culture

Weekly digestion with trypsin (and intermediate washings with serum or serum ultrafiltrate) has made it possible to maintain adult cultures in the same flasks for long periods, but this is not recommended owing to the difficulty of controlling the digestion

The gentle digestion, by leaving the colonies more or less intact, has made it possible to study the stimulating mechanism (see below)

⁶These pure sarcoma cultures had been grown in vilro over a year and a half by Dr Warren H Lewis who furnished them to Dr Joseph Victor, of this de partment It has no similarity to the drastic digestion of embryo cultures by Rous and Jones (14) and by Rous, McMaster, and Hudack (15)

Mechanism of the Trypsin Stimulation of Fresh Tissues

Considering first the action of trypsin on fresh tissues (rather than on cultures) three explanations suggest themselves ⁷ First, the stimulation might be due to protein split products which Baker and Carrel (16) showed would stimulate active cultures of embryo fibroblasts. Second, the stimulation might be due to lipase or some other impurity in the Fairchild's trypsin, and not due to its proteolytic action. Third, the trypsin might stimulate solely because of its proteolytic action on the tissue.

Protein Digestion Products—Our use of trypsin was originally intended to stimulate growth by virtue of the protein split products produced by the digestion (16) However, we obtained results which could not be explained on this basis. In several experiments tissues were thoroughly washed after trypsin treatment, previous to planting

TEXT-Fig 8 Comparison between the growth stimulation of tissue washed before, and of tissue washed after trypsin treatment (Exp 51A) The tissues were washed 1 day in Tyrode solution at 0°C

Text-Fig 9 Stimulation produced by three trypsin solutions of different purity but equal activity toward casein (Exp 27A)

TEXT-Fig 10 Stimulation produced by equally active solutions of Northrop's crystalline trypsin and chymo-trypsin compared with commercial trypsin (Exp 59B)

TEXT-LIC 11 Growth stimulation produced by papain compared with trypsin (Exp. 60C)

It might be thought that the softening of the tissue is mechanically responsible for the stimulation of growth. We do not believe this plays an important rôle. Hardness cannot account for the dormancy of adult tissues, hence softness cannot account for the onset of growth. Soft tissues such as liver or brain have as long a lag period as the firm aorta tissue. It may be seen in Pable III that none of the dog granulation tissue grey without the action of trypsin, in which case the firmer tissue grey faster.

Furthermore, the dormant cells in an old culture flash are surrounded, before digestion, with a medium much softer than the aorta tis ue after digestion. What is more growth is generally better in firm plasma clots than in soft ones.

These tissues grew as well as, and sometimes better than, the unwashed ones Fig 8 gives an example 8 Note the growth on the 4th day. It is seen that both of the trypsin treated tissues were markedly stimulated (as compared with the control) but the tissue which was washed after the digestion grew much faster in spite of the

TABLE IV

Determination of Trypsin Activities

50 ml of 5 per cent casein digested with enzyme solution for 20 minutes at 355°C (Exp 27A)

Trypsin solution	Volume of enzyme solution	Concen tration of enzy me	Non protein nitrogen liberated	Relative activity	Calculated concen tration for equal activity
	ml	per cent	mg per mi of en_3me		per cent
Fairchild's (11 mos) Fairchild's (1 mo) Purified	1 0 0 50 0 50	0 1 0 1 X*	0 49 2 2 0 87	100 453 174	0 100 0 022 0 58%

^{*} X equals the unknown concentration of trypsin in the purified solution

TABLE V

Determination of Trypsin Activities

5 0 ml of 5 per cent casein digested with 1 ml of 0 2 per cent enzyme solution for 20 minutes at 35 5°C (Exp. 59B)

Trypsin solution	Non protein nitro _h en liberated	Relative activity	Calculated concentration for equal activity	
	mg fer ml ef en yme		fer cent	
I airchild's	3 0	υ0	0 100	
Crystalline trypsin A	6.0	200	0 050	
Crystalline trypsin B	5 4	180	0 055	
Crystalline chymo trypsin	6 6	220	0 045	

removal of digestion products. Had the stimulation been due to the digestion products the reverse effect would have been observed. It might be supposed that some of the digested proteins remained

^{*}Text-fig 8 should not be confused with Text fig 7. In one case the tissue was asked in Tyrode solution at 0°C. In the other case the tissue was incubated at 37°C in the presence of the stimulating "A factor."

in the tissue despite the washing. However, we have found that the digestion fluid does not stimulate, but on the contrary is slightly inhibitory (see the following paper). The possibility of stimulation due to trypsin retained by the tissue is remote, since trypsin incorporated in the clot of a culture does not stimulate, and furthermore tissue which has been insufficiently digested has a good opportunity to adsorb enzyme—but is not stimulated. Hence we may discard the idea that the trypsin stimulated the initial growth of adult tissue because of protein split products.

Impurity Versus Proteclytic Action —The suggestion that the crude trypsin, which we first used, contained an impunity (such as lipase¹⁰ or another enzyme, or some non-enzymatic substance) which produced the stimulation, is untenable in view of the results obtained by comparing enzymes of different degrees of purity. In Table IV are the relative activities of three trypsin solutions, as tested on casein. The values in the last column indicate what concentrations of the three enzymes should have equal proteolytic activity ¹¹

The three enzyme solutions were then diluted to these (equally active) concentrations and tested on adult acrta tissue. The subsequent growth of these tissues, as indicated in Fig. 9, shows that the three enzyme solutions produced about equal stimulation. The first trypsin solution had been kept 11 months and contained 4.5 times as much solid matter per unit of activity as did the second solution. The third was a purified trypsin. Hence the amounts of impurities were quite different in the three solutions, but since the activities were about equal, and the stimulations were practically equal, it would appear that the stimulation depends upon proteolytic activity

⁹ We have found (in unpublished experiments) that protein digestion products prepared by the methods of Baker and Carrel (16) do produce a mild stimulation of the initial growth of adult aorta tissue under favorable conditions. However, under the conditions of the experiments reported in this paper, these products appear to play a negligible rôle in the stimulation of digested tissue. On the other hand there is evidence that digestion products do play a small, but minor rôle in the stimulation of digested cultures (see text)

¹⁰ Evidence is also given in a later paper (17) that the stimulating effect of serum is not due to the lipase contained in it

¹¹ This calculation assumes that the activity was proportional to the concentration of enzyme. This was roughly true in this range of concentrations

Similar results were obtained in another experiment in which Northrop's crystalline trypsin and some of his crystalline chymotrypsin were compared with commercial trypsin. In Table V the activities of these solutions toward casein were compared. The concentrations for equal proteolytic activity are given in the last column. These concentrations of the enzymes when used on aorta tissue produced about equal stimulation as seen in Fig. 10. The two solutions of Northrop's crystalline trypsin were prepared separately from the same solid material.

Papain—In Fig 11 it will be seen that papain stimulates the growth of adult tissue in the same manner that trypsin does. Hence the stimulation seems to be purely one of proteolysis. Owing to the necessity of treating the tissue at a lower pH with papain than with trypsin it was not attempted to compare their activities quantitatively.

Inhibitor—If we accept the above data as indicating that these enzymes stimulate because of their proteolytic activity we are confronted with a new question, namely, why the digestion of tissue protein should stimulate growth. We suggest that the enzymes digest away an inhibitory protein material, and thus remove it from the environment of the cells. The following paper will show that the digestion fluid contains an inhibitor.

Mechanism of Trypsin Stimulation of Tissue Cultures

Returning now to the stimulation of tissue cultures (see Plate 1) several explanations suggest themselves. It might be supposed that the stimulation resulted from the products of protein digestion (16). However, washing away the digestion fluid before adding the new clot resulted in only a slight decrease in the stimulation. This indicated that the digested proteins did aid the growth slightly but that they played only a minor rôle? Furthermore, the addition of digested plasma¹² to cultures in an advanced state of growth failed

12 This digested plasma was obtained by digesting plasma clots in Carrel flasks under conditions identical with digestion of the plasma medium of cultures (except that no tissue was present). The enzyme in this digest was not heat killed but control experiments showed that the enzyme could not have been toxic to these cells.

to produce any conspicuous stimulation (although similar cultures were definitely stimulated by digestion to immediate and prolific growth)

These conclusions are further substantiated by many observations on partly digested cultures. Within a given culture marked stimulation was obtained only in those portions where the digestion had removed the clot in close proximity to the cells. Had the digestion products been the sole cause of this stimulation then these products should have also diffused through the slightly thicker clot in other parts of the same culture—but in reality these other portions were only slightly stimulated, if at all

It might also be supposed that renewal of the plasma clot added some needed material, but washing the cultures with serum (or heparin plasma) failed to stimulate in the way that trypsin did Hence if serum (or plasma) contains such a needed material it must be too slowly diffusible to pass through the medium. The only poorly diffusible stimulant in plasma that we know of is globulin (17), and this is only mildly active, especially in the presence of albumin Renewal of the fibrin cannot be essential since the new growth can extend into unused portions of the old clot to some extent

We have found only one explanation which fits our observations, namely that the old clot immediately surrounding each cell contained inhibitory material which was too poorly diffusible to be washed away. The trypsin in digesting the clot dissolved the inhibitor with it

It seems unlikely that such an inhibitor could have been produced by the plasma Aging of plasma (in the ice box) for a year does not materially affect its ability to support growth (unpublished data) and plasma that had been incubated several days before use was still stimulating Hence this inhibitor, if it exists, is a product of the cells

STIMMARY

Adult tissue is characterized by a lag period of several days preceding the onset of growth in vitro

Treatment of fresh adult tissues with trypsin before planting them in culture flasks stimulated the tissues to grow sooner and more rapidly Best stimulation was obtained by slow digestion at low temperature. The tissues lost nitrogen during the digestion. Lowering the temperature from 22°C to 5°C reduced the digestion of aorta tissue much less than it reduced the digestion of casein.

Washing the tissue after trypsin treatment resulted in better stimulation

Trypsin solutions of different degrees of purity, when diluted to equal activity toward casein, gave equal stimulation to the tissue growth. These included solutions of Northrop's crystalline trypsin and chymo-trypsin

Papain also stimulated growth in a similar manner

The results indicate that this stimulation of tissue growth is due entirely to proteolytic action

Cultures of adult fibroblasts (and some tumor cultures) having reached a state of retarded growth have been treated with trypsin to digest away most of the plasma clot (used as a medium) Fresh plasma has been added to renew the clot This treatment has resulted in an immediate renewal of growth

Reasons are given for supposing that the cells produce an inhibitor in vitro which they deposit in the surrounding clot, and which is removed by the action of trypsin

REFERENCES

- 1 Carrel, A, and Burrows, M T, J Am Med Assn, 1910, 55, 1379
- Walton, A. J., J. Path. and Bact., 1913, 18, 319. Proc. Roy. Soc. London, Scries B, 1914, 87, 452, 1915, 88, 476. J. Exp. Med., 1914, 19, 121, 20, 554, 1915, 22, 194.
- 3 Lambert, R A, Proc Soc Exp Biol and Med, 1916, 13, 100 J Exp Med, 1916, 24, 367
- 4 Gandolfo, S., Atti r. 1ccad fisiocrit Siera, 1922. Arch. ital Ematologia e. Sierologia, 1924, 5, 1
- 5 Geiling, E M K, and Lewis, M R, 1m J Physiol, 1935, 113, 534
- 6 Cohn, A E, and Murray, H A, J Exp Med, 1925, 42, 275
- 7 Harrison, R G, Proc Soc Exp Biol and Med, 1907, 4, 110
- 8 Carrel, A, and Burrov s, M T, J Exp Med, 1911, 13, 387, 14, 224
- 9 Strangevays, T. S. P., The technique of tissue culture in intro, Cambridge, England, W. Hesser and Sons, Ltd., 1924
- 10 Fischer, A, Tissue culture textbook, Copenhagen, Levin and Munl sgaard, 1925

- 11 Craciun, E. C., La culture des tissus en biologie experimentale, Paris, Masson et Cie, 1931
- 12 Cameron, G, Essentials of tissue culture technique, New York, Farrar and Rinehart, 1935
- 13 Northrop, J H, and Kunitz, M, J Gen Physiol, 1932, 16, 313
- 14 Rous, P and Jones, F S, J Exp Med, 1916, 23, 549
- 15 Rous, P, McMaster, P D, and Hudack, S S, J Exp Med, 1935, 61, 657
- 16 Baker L E, and Carrel, A, J Exp Med, 1928, 47, 353, 371, 48, 533
- 17 Simms, H S, and Stillman, N P, J Gen Physiol, 1937, 20, in press

EXPLANATION OF PLATE 1

- Fig 1 An 11 day culture of adult chicken agree fibroblasts after digestion with trypsin The dark area is part of the original tissue (culture colony 2779 14, F7 11), ×180
 - Fig 2 The same field after 20 hours (F7 18), ×180
 - Fig 3 The same field after 3 days (F9-8), ×180

SUBSTANCES AFFECTING ADULT TISSUE IN VITRO

II A GROWTH INHIBITOR IN ADULT TISSUE

BY HENRY S SIMMS AND NETTIC P STILLMAN

(From the Department of Pathology, College of Physicians and Surgeons, Columbia University, New York)*

(Accepted for publication, September 15, 1936)

INTRODUCTION

In another paper (1) it was shown that the initial growth of adult chicken aorta tissue was greatly accelerated if the tissue had been digested with trypsin (or papain) previous to being planted in a culture medium. It was suggested that this stimulation resulted from the removal of an inhibitor from the adult tissue by the action of the enzyme.

In the same paper it was shown that dormant tissue cultures (in addition to fresh tissues) could be stimulated to renewed growth by the action of trypsin, and it was suggested that this resulted from the removal of an inhibitor which had been produced by the cells and deposited in the medium

This paper will show that an inhibitor can be separated from the fluid in which adult aorta tissue has been digested

Selection of Tissue

In choosing a suitable adult tissue for studying dormancy, as described in this and other papers, it was necessary to select one of simple structure which gives a clearly distinguishable growth in vitro, with a suitable lag period and growth rate and which gives reproducible results. Adult heart, liver, thyroid, skin, muscle, and brain were all unsatisfactory. Arteries were better but it will be seen in Figs. 1 and 2 that these vary considerably. The thoracic norta gave the best results. Different layers of the thoracic norta are seen in Fig. 2 to differ in their growth. The inner layer of the thoracic norta has been used in most of our work with satisfactory results. This consists of the inner half of the media together with the intima.

*This investigation has been aided by a grant from the Josiah Macy, Jr Foundation

EXPERIMENTAL

In the previously described stimulation of growth, the volume of dilute trypsin solution was considerably greater than that of the tissue—In attempts to obtain the inhibitor larger amounts of tissue in proportion to the fluid were used

In the first experiments the digestion fluid was tested directly without fractionation. It was prepared by digesting strips of chicken acrta with 0.1 per cent trypsin solution at 20°C for 18 hours under sterile conditions. Part of the fluid thus obtained was tested without heating. Part was heated at 58°C for 20 minutes and part was heated at 100°C for 5 minutes.

Fig. 1 Comparison of growth of various artery tissues (freed from adventitia) from the same adult chicken. The same relation was found in other chickens.

Fig. 2 Comparison of three layers of the thoracic aorta (also a sample of

abdominal aorta)

In later experiments the digestion fluids from dog or sheep aortas were used 1 typical preparation (17) was made from 15 gm of sheep aorta (intima and media). This was minced with scalpels and treated with 20 ml of 0.2 per cent

¹ The latter were obtained from experimental sheep by the courtesy of the Physiology Department

solution of Fairchild's trypsin² at 37°C for 3 hours ³ The pH was kept at about 7 6 by occasional additions of 0 1 ml of 0 5 m NaOH Near the end of the diges tion the pH was allowed to drop to 6 8 (a little HCl was added in other experiments) The fluid was then removed by centrifuging and filtering It contained 0 15 per cent non protein nitrogen and 0 12 per cent protein nitrogen (equivalent to 0 76 per cent proteins)

This fluid was treated with an equal volume of absolute alcohol and was allowed to stand at 4°C overnight. The precipitate was dried in a desiccator and half of it was then taken up in 3 ml of "Na K. G" solution. This fraction (17A1) was pasteurized at 58 C for 20 minutes and was found to be quite inhibitory (Fig. 4) when mixed with serum (as compared with the serum control and with a portion of the inhibitor which had been heated at 100°C for 5 minutes)

The above precipitate was produced by the addition of alcohol The remaining fluid (45 ml) was next treated with 1 ml of 5 per cent CaCl, plus 16 ml of 0 1 ml NaOH The resulting precipitate was allowed to settle at 4 C for 3 hours, was centifized off, and was taken up in Na K G solution It (17B) was also found to be active (Fig. 5)

A number of fractions were dialyzed For example, a CaCl₂ precipitate (I8B, prepared like I7B, above) was taken up in 5 ml of "Na₀ eH₀ 4Ac" solution ⁶ This was dialyzed 5 hours in a rocking dialyzer (2) against flowing water and 1 hour against 30 ml of Na K G solution in a swirling shaker, with the gradual addition of 1 ml of 0.5 m NaOH to the outside solution, to adjust the pH

The method of testing the activity of the inhibitors consisted in incubating adult aorta tissue in the presence of these materials previous to planting the tissue in a plasma medium. The inner layer of fresh adult chicken aorta was cut into pieces 1.5×2 mm in size, as previously described (1). Four pieces were placed in each of 10 or 11 sterile 1.3×100 mm tubes. To these tubes 1.5 ml portions of various test fluids, including controls, were added. The inhibitor fractions were mixed with one third volume of serum. The pH was kept about 7.4 with CO₂-air mixture for 4 days while the tubes were incubated at 37°C CO₂ is needed

² The trypsin was dissolved in an isotonic solution containing 8 gm of NaCl, 0 2 gm of KCl, and 50 mg of phenol red, per liter The purpose of this solution was to avoid the presence of divalent cations

^{*}In some experiments this 3 hours incubation was divided into two 15 hour periods on successive days, the flash being kept in the refrigerator in the interim

⁴The Na K G" solution contained, per liter 8 gm of NaCl, 0 2 gm of KCl, 1 gm of glucose, and 50 mg of phenol red The absence of calcium and mag nesium made the inhibitor fractions more soluble

 $^{^5}$ This is a 7 molar acetate buffer containing 0.6 equivalent of sodium acetate It is made up with 570 gm of NaC₂H₄O₂ 3H₂O, 159 ml of glacial acetic acid plus 54 ml of H₂O

by the tissue The tissue was then cut into 0 6 mm pieces and planted as already described (1)

All test solutions were made up so that they contained glucose and the morganic constituents of serum. The osmotic pressure was always about isotonic (0.29 osmolar) it having been found that a 40 per cent decrease or increase (to 0.18 or to 0.40 osmolar) could be tolerated but that greater changes are harmful, growth stopping at 0.5 osmolar (70 per cent increase)

DISCUSSION

An inhibitor has been found in the fluid after adult aorta tissue has been digested with trypsin. In Fig. 3 the unheated digestion fluid itself (mixed with serum) is seen to inhibit growth of fresh tissue (as compared with the serum control), although it lost this inhibitory power upon heating, and became somewhat stimulating to fresh tissue (perhaps due to the protein digestion products). The loss of inhibitory power upon heating is attributed to the destruction of an inhibitory material which the tryptic digestion removed from the tissue. That this inhibitor could not be the trypsin itself was shown by experiments in which active trypsin was added in various proportions to serum (to duplicate conditions of testing). It was never inhibitory

Inhibitory Precipitates — When such a fluid is treated with an equal volume of alcohol it gives a precipitate which is inhibitory (see Fig 4)

The remaining fluid upon the addition of CaCl₂, plus a little NaOII, gives a second precipitate which is also inhibitory as can be seen in Fig. 5

Since both these precipitates are active and appear to contain the same material, it is not necessary to separate them. The digestion fluid can be treated with alcohol followed by calcium chloride (and NaOH) and the whole precipitate separated. This is active as shown in Fig. 6

Dialysis—Several of the preparations were dialyzed. Two of these lost all their activity. Two others seemed to be active but the boiled controls were lost by accident or infection. However, a fraction is seen in Fig. 7, to have been inhibitory after dialysis.

Sterility and Sensitivity—In some experiments, such as the one illustrated in Fig. 3 aseptic technique was followed throughout. The

Fig. 3 Fluids from tryptic digestion of aorta, mixed with serum and used to treat fresh aorta previous to planting. Two portions of the digest were heated as indicated (Exp. 34B)

Fig 4 An alcohol precipitate is seen to be completely inhibitory while a portion heated at 100°C permitted growth (Inhibitor 7A1, Exp 50)

FIG. 5. A CaCl₂ precapitate (from the fluid after alcohol precapitation) is strongly inhibitory as compared with a portion heated at 100°C, and with a serum control (17B, Exp. 50)

Fig 6 Inhibitory action of a precipitate produced by the addition of both alcohol and CaCl₂ (I4B, Exp 41A)

chicken aorta was sterile at the start. However, in all the experiments using dog or sheep aortas the tissue was not sterile. In these experiments the material was usually pasteurized at 58°C for 20 minutes at some time during the procedure. The inhibitory fractions in Figs. 4, 5, and 6 were all sterilized in this way.

However, this amount of heating can destroy the inhibitory activity. It will be seen that the fractions in Figs. 3 and 7 which were

tor and lactenin (a substance in milk (3) which produces bacterio stasis) This similarity is confirmed by our observations on the tissue inhibitor which are described in this paper

Both these inhibitors withstand moderate heating at 58°C but are destroyed at 100°C. They are both precipitated by the addition of one volume of alcohol, and by addition of the calcium ion. Both are dissolved again under conditions favorable for the solution of calcium phosphate. They both withstand a moderate digestion with trypsin and are thereby liberated from much of the accompanying proteins. Both survive dialysis (i.e., they do not pass through the collodion bag) for a limited time providing the action of the trypsin has not gone too far. Furthermore, both inhibitors often lose their activity for some unaccountable reason when conditions seem to be carefully controlled

It was therefore decided to test for their identity by seeing if each would perform the function of the other

First it was found that whey (containing lactenin) would inhibit adult tissue growth. In Fig. 8 it will be seen that pasteurized whey incorporated in the medium in which aorta tissue was planted, caused a reduction of growth as compared with the boiled whey control

However, the reverse test gave a negative result A preparation of tissue inhibitor failed to inhibit the growth of scarlet fever strepto coccus. This has not yet been repeated

The Inhibitor in Tissue Cultures—Observations on cultures from adult tissues (1) led us to suppose that the cells produce an inhibitor in vitro, which is deposited in the surrounding medium, and which can be removed by digestion with trypsin—This inhibitor, if it exists, may be identical with the inhibitor in dormant adult tissue

Tumor Inhibitors —Sittenfield, Johnson, and Jobling (4) found that Rous tumor extract contained an inhibitory protein fraction which could be separated from other proteins and from the causative agent, by precipitation — It mitigated the potency of the tumor agents—but not of tumor cells

Murphy and Sturm (5) have worked with an extract from desiccated chicken

^{*}This was the same strain of streptococcus which the late Dr Frederic S Jones had used in our previous studies. It was found to be still susceptible to lactenin Dr Charles A Slanetz was kind enough to test the action of the tissue inhibitor on this organism.

sarcoma tissue which restrained sarcomas in chickens and mice—but not a carcinoma. Furthermore, extracts from desiccated embryo skin placentas and mammary glands inhibited some mouse carcinomas, but not sarcomar. There extracts withstand 55°C but not 65°C, and in this respect recemble both lacten r and our adult tissue inhibitor. Whether there is further similarity remains to be determined.

Morton and Beers (6) found that an extract of human rectus sheath sometimes restrained rat carcinoma transplants. Unsaturated fatty acids and pancreas extracts have been claimed to retard the growth of chicken sarcomas and tat tumors (7)

Significance—We believe that the tissue inhibitor described in this paper plays a large rôle in restraining growth in the adult animal body, thereby Leeping the cells in their normal dormant state. It is suggested that the cells elaborate the inhibitor and deposit it in the surrounding intercellular space where it remains because of it insolubility.

KAMMAKI

Digestion of adult tissue with trypsin has been shown to stimulate its initial growth in ritro. This stimulation appeared to result from the removal of an inhibitory material from the tissue due to the proteolytic action of the trypsin.

REFERENCES

- 1 Simms, H S, and Stillman, N P, J Gen Physiol, 1936-37, 20, 603
- 2 Kunitz, M, and Simms, H S, J Gen Physiol, 1927-28, 11, 641 Simms, H S, J Exp Med, 1930, 51, 319
- 3 Jones, F S, and Simms, H S, J Exp Med, 1929, 50, 279, 1930, 51, 327
- 4 Sittenfield, M J, and Johnson, B A, Proc Soc Exp Biol and Med, 1928, 31, 206 Sittenfield, M J, Johnson, B A, and Johling J W, Proc Soc Exp Biol and Med, 1928, 31, 517 Johling, J W, Sittenfield, M J, and Johnson, B A, Proc Soc Exp Biol and Med, 1928, 31, 796
- Murphy, J B, and Sturm, E, Science, 1931, 74, 180, 1932, 75, 540, 1933, 77,
 631 J Exp Med, 1932, 56, 107, 483, 705, 1934, 60, 293, 305 Murphy,
 J B, Bull Johns Hopkins Hosp, 1935, 56, 1 MacFadyen, D A, and
 Sturm, E, Science, 1936, 84, 67
- 6 Morton, J J, and Beers, D N, J Exp Med, 1935, 61, 59
- Nakahara, W., J. Exp. Med., 1922, 35, 493, 1924, 40, 363, 1925, 41, 347
 Lecloux, J., Le Cancer, 1931, 8, 37, 59
 Begg, A. M., and Aitken, H. A. A., Brit J. Exp. Path, 1932, 13, 479
 Pirie, A., Biochem. J., London, 1933, 27, 1894
 Brit J. Exp. Path, 1935, 16, 497
 Baker, S. L., and McIntosh, J., Brit J. Exp. Path, 1927, 8, 257
 Sugura, K., Proc. Soc. Exp. Biol. and Med., 1932, 29, 459
 Helmer, O. M., J. Exp. Med., 1936, 64, 333

SPECTROSCOPY OF CATALASE

BY KURT G STERN

(From the Courtauld Institute of Biochemistry, Middlesex Hospital Medical School, London, England and the Laboratory of Physiological Chemistry, Yale University, New Haven)

(Accepted for publication, August 29, 1936)

Catalase is a hemin containing enzyme. This fact was rendered very probable by the discovery of a modified hemin spectrum in purified enzyme solutions from animal and plant tissues by Zeile and Hellstrom (1, 2). They found that the ratio between catalytic activity and porphyrin bound iron in a given preparation remained constant in the course of fractionation and inactivation experiments. This ratio may, however, vary considerably in different preparations, even from the same type of tissue. Besides the approximate position of the absorption bands of the enzyme in the visible region, the spectrum of the cyanide and sulfo-complex and that of the pyridine hemochromogen derived from the enzyme hemin were described

That the compound responsible for the hemin spectrum in catalase preparations is identical with the enzyme, was proven by the observation that it undergoes a cyclic spectroscopic change during the decomposition of ethyl hydrogen peroxide (3). The prosthetic group of the enzyme has been isolated in crystalline form and its identity with protohematin IX has been demonstrated by conversion into dimethyl IX mesoporphyrin ester (4).

The object of the present study was to gain further information concerning the absorption spectrum of the enzyme and to study the effects of certain reagents on this spectrum. It was hoped to arrive at a decision concerning the state of valency of the iron contained in the enzyme

EXPERIMENTAL

Enzyme Preparations

Purified catalase solutions were prepared from horse liver¹ in the manner de scribed by Zeile and Hellström (1) The activity of the solutions employed in

¹ The author is indebted to Messis Chappel Brothers Rockford Illinois, and to the Hill Packing Company, Topeka, Kansas, for furnishing some of the horse liver required for these preparations

this study, as expressed by the monomolecular velocity constant obtained under standard conditions was from k = 1610 to 7125

The enzyme solutions are brown in incident light and brown-red in transmitted light. They show the spectrum of the enzyme in layers of 1 to 5 cm, depending on their catalytic activity. In addition to catalase, these solutions contain traces of biliverdin and hepatoflavin. These two pigments do not interfere with observations of the enzyme spectrum in the range of 650 to 400 m μ . Furthermore, the solutions contain colorless proteins and electrolytes

Technique

The preliminary experiments were carried out with the aid of pocket spectroscopes (Brown, Zeiss) The scale of the Brown instrument was calibrated with the aid of a number of emission lines of the mercury arc and of impregnated carbons The Zeiss instrument has a scale permitting direct reading of the wave-length The use of such instruments with small dispersion makes possible the detection of indistinct or faint absorption bands which would be difficult to observe with large instruments. Well defined absorption bands were then measured more accurately with a Hilger wave-length spectrometer. In case of the comparison of two absorption spectra, they were projected simultaneously into the instruments by means of comparison prisms. The Hilger spectrometer was frequently standardized with the aid of an electric sodium burner (Zeiss) and of the mercury As light sources tungsten filament lamps, ranging in intensity from 60 to 750 cp, were used, depending on the transparency of the objects under study The solutions were contained either in absorption cells of definite layer of thickness, ranging from 05 to 30 cm, or in a Baly cuvette graduated to a length of 50 cm in millimeters. For the experiments dealing with the effect of gases on the enzyme, capillary stopper cells of 20 cm thickness of the type described by Warburg et al. (5) were used. For observations in layers from 10 to 50 cm polarimeter tubes were used

Position of the Absorption Bands of Catalase

The most conspicuous absorption band of catalase solutions, upon direct examination in the visible range, is seen in the red region Besides, two indistinct bands may be seen in the green region. Zeile and Hellstrom (1) have photographed the band in the red, and they have also determined the position of the two bands in the green. They give the following positions for these three bands.

I 650
$$\underbrace{646 - 620}_{629}$$
 610, II $\underbrace{550 - 530}_{540}$ 520 $\underbrace{510 - 490}_{500}$ ma

According to these authors, the maximum of extinction in the first band is not situated symmetrically between 646 and 620, but shifted

towards the blue range, at about 629 m μ They did not measure beyond 463 m μ

The absorption band of greatest extinction of hematin protein compounds is situated in the far violet region, near 400 mm (Soret's band) In the case of hemochromogens like cytochrome, this band may be directly observed if the red region is shut off by a suitable light filter (6) Inasmuch as the observation of a strong absorption band of catalase in this region would constitute additional proof for its hemin nature, the present author has attempted to locate this Direct observations in the manner described by Warburg were not successful, principally because of the great decrease of luminous intensity of the tungsten filament lamps in this range and because the spectrum of the carbon arc appears no longer continuous in this range. But when various catalase solutions were analyzed by the recording, photoelectric spectrophotometer of Hardy at the Massachusetts Institute of Technology,2 the Soret band of the enzyme was clearly recorded in diluted solutions. The peak of this band is at 409 mu, as compared with 436 mu for the oxygen transferring enzyme No 1 of Warburg and Negelein (7) From these records the position of the maxima of the three bands in the visible region is taken as follows

Though there is general agreement with the values given by Zeile and Hellstrom, slight differences exist, as shown above

Effect of pH on the Enzyme Spectrum

The appearance of the enzyme spectrum is the same in the pH range from about 5 to 10 Below and above this hydrogen ion con centration, the spectrum fades and the enzyme is destroyed. The first step in this irreversible process appears to be the detachment of the prosthetic group of the enzyme from its protein carrier. In

² These measurements were carried out by Mr O Barstow, Color Measurement Laboratory, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts

acid solution, the protein is precipitated, in alkaline solution it is denatured. By the latter process a new compound, exhibiting a characteristic spectrum, is formed. It shows two absorption bands in the green, one at approximately 575 and the other at 545 m μ . The conversion of the enzyme into this compound is slow in 0.05 n NaOH, being complete after 1 hour. In 0.125 n NaOH the transformation takes place instantaneously

Zeile and Hellstrom found a similarity between the spectrum of catalase and that of alkaline hematin
It appears to the writer that a perhaps still closer resemblance exists between the spectra of catalase and methemoglobin Whereas the band of alkaline hematin in the red is at 616 m μ compared with 622 m μ for catalase, the corresponding band of methemoglobin is centered at 630 mm (8, 9) Upon visual observation this band has been found between 630 and 620 m μ (10) The similarity finds its explanation in the fact that catalase and methemoglobin have an identical prosthetic group, parahematin, and differ only in respect to their protein carrier (4) It is desirable to obtain reliable criteria for distinguishing these two substances in solution. A number of such criteria have been found in the course of this work. One of them is the fact that the spectrum of the enzyme is the same between pH 5 and 10. The spectrum of methemoglobin is known to change from the neutral or acid type to the alkaline type at pH 8 5 to 9 Whereas the main bands of neutral or acid hemoglobin in the visible are at 630 and 500 m μ , the bands of alkaline methemoglobin are at 589-579 and 558-535 m μ , with a faint band near 600 mm (8, 10) The Soret band of methemoglobin is at 415 mµ

Experiments on the Valency of the Enzyme Iron

The remarkable stability of the catalase spectrum against hydrosulfite and ferricyanide, which are known to react with all other porphyrin iron complexes yet studied, prevented Zeile and Hellstrom (1) from arriving at a definite conclusion concerning the state

³ The only other exception known to the writer is the modified cytochrome—a component of certain bacteria. According to Fujita and Kodama (11), the band of this hemochromogen in the red region may be abolished by ammonium sulfide

of valency of the iron in catalase In preliminary experiments this observation could be confirmed. With ferricyanide, no change in the enzyme spectrum could be detected even after standing for 30 minutes at room temperature. In order to obtain more conclusive evidence the effect of a variety of reducing agents and of compounds, forming stable complexes with either ferric or ferrous iron, on the enzyme was studied.

Effect of Reducing Agents on Catalase

Stokes' reagent, alkaline cysteine hydrochloride solution, and hydrogen, activated by colloidal palladium, did not produce any change in the enzyme spectrum. These agents reduce methemoglobin rapidly to hemoglobin

Freshly prepared ammonium sulfide caused the appearance of a new band at $560-590 \text{ m}\mu$ The band in the red increased in intensity and showed a shift to $640 \text{ m}\mu$ The solution became black green This phenomenon is probably due not to a reduction of the enzyme but to the formation of a compound corresponding to sulfo-catalase, which was produced by Zeile and Hellstrom by adding hydrogen sulfide

Interesting observations were made when hydrazine hydrate was tried. The addition of comparatively large quantities of 50 per cent hydrazine hydrate to a neutral catalase solution of k = 2092 caused a decrease in the intensity of the enzyme band in the red and the appearance of a new band in the yellow. The final spectrum after 30 minutes was

The order of intensity of these bands was III, II, I When this solution was saturated with carbon monoride, the solution appeared

or hydrazine hydrate but not by hydrosulfite It is possible that the band, which these authors describe, is the α band of the oxidized form of the respiratory enzyme which according to Warburg (12), is directly visible in microorganisms of high respiratory activity

cherry red in layers of 5 cm The spectroscope revealed the presence of two absorption bands

I
$$\underbrace{586 - 570}_{578}$$
, II $\underbrace{554 - 531}_{542}$ m μ

Band I was stronger than band II

At first the writer was inclined to interpret these observations as follows The enzyme is reduced to the ferrous form by the hydrazine hydrate The ferrous form in turn combines with carbon monovide Control experiments, however, which were partly suggested by Professor D Keilin, Cambridge, to whom the author is indebted for his valuable advice, showed that such an interpretation cannot be correct If the compound formed by the action of hydrazine hydrate were the ferrous form of the enzyme, it should be possible to reoxidize it to the original ferric form of the enzyme Neither treatment with air nor with ferricyanide effected such a reoxidation Ferricyanide caused a fading of the absorption bands in the visible region, air was without effect. Furthermore, the hydrazine hydrate solution proved to be so strongly alkaline that the phosphate buffer concentration of the enzyme solution was not able to prevent a shift to the alkaline side Inasmuch as it was observed that comparatively large amounts of hydrazine hydrate had to be used to produce the new compound, it is to be concluded that the latter is not merely the reduced form of the enzyme but an hemochromogen in which hydrazine acts as the nitrogenous base chromogens form complexes with carbon monoxide

Photodissociation of Carbon Monoxide Complexes of Catalase Derivatives

The photodissociation of hemochromogen-carbonyl complexes may be directly observed with the aid of a spectroscope and of two light sources. A light source of low intensity is arranged in line with the spectroscope and the absorption cell. Its intensity is sufficient to see the absorption spectrum of the CO-complex but not sufficiently strong to cause photodissociation. A 60 cp tungsten filament lamp (110 volts) is satisfactory for this purpose. The second light source is arranged at a right angle to the optical axis. It must be of high

intensity and its light must be concentrated on the side wall of the absorption cell A 750 cp projection lamp (110 volts) with concentrated filament was used A similar arrangement has been used by Warburg in a demonstration at the Conference on Biological Oxidations in Heidelberg in 1932 (13)

In preliminary experiments with CO pyridine hemochromogen from blood hemin it was ascertained that on observation with the weak light source, the absorption spectrum of the undissociated CO complex was visible. When the strong light source was turned on, at first the long wave band split up into two components and then both bands shifted towards the blue. In the stationary state the spectrum of the free pyridine hemochromogen was alone visible. The process could be reversed by turning off the strong light source.

When the same experiment was tried with the carbon monoxide complex of the hydrazine derivative of catalase, no change in its spectrum could be observed upon illuminating with the strong light source. There was a suggestion that the long wave band gained a little in intensity.

If solutions showing the catalase spectrum are treated with hydro sulfite in the presence of NaOH and pyridine, the hematin group of the enzyme is detached from the protein carrier and a pyridine hemo chromogen is formed (1). This hemochromogen combines reversibly with carbon monoxide. The free hemochromogen and the CO complex show the same absorption spectrum as the corresponding protohem derivatives prepared from blood hemin. To 10 cc of a catalase preparation of k = 2092, 2 cc n NaOH, 5 cc pyridine, water to make up a volume of 20 cc, and a small amount of solid sodium hydrosulfite were added. After flushing for 5 minutes with carbon monoxide the solution assumed a pink color. It showed the bands

when examined in the light of the 60 c.p lamp in the arrangement described above. When the 750 c.p lamp was turned on, photodissociation was complete within about 1 second. The maxima of the bands of the free hemochromogen are at 557 and 527 m μ . Re-

versal of the process began when the strong lamp was turned off, for completion of the recombination a longer period than for that of dissociation was required (about 3 seconds). The experiment shows that the pyridine hemochromogen obtained from catalase is subject to photodissociation as is also the corresponding derivative from blood hemin (15)

Effect of Carbon Monoride on Catalase

If catalase were an hematin compound containing ferrous iron, it would be expected to form a complex with carbon monoyide should be mentioned, however, that cytochrome-c, which in the reduced form is a true hemochromogen, will combine with CO only in rather alkaline solutions (14) If, on the other hand, catalase in the normal state were a ferric compound, but would undergo reversible reduction in the course of its catalytic action on peroxides, such an intermediary ferrous form might be expected to combine with carbon monovide and to accumulate in the form of this complex cases CO would inhibit the enzymatic reaction in a manner similar to the inhibition of the respiratory enzyme No 1 (Warburg (15)) Sometime ago the writer observed an inhibition of the catalase of leucocytes by carbon monoxide (16) Shortly afterward, however, this inhibition was explained in terms of an unspecific damage to the enzyme by treating the solutions with a gas This was indicated by the observation that even hydrogen when bubbled through enzyme solutions may cause a decrease of the activity (17) The so called inhibition by CO of perovidase, which appears to be another enzyme with a hemin group (18), has found a similar explanation (19) cently, however, Califano (20) in a short note has reported that catalase is specifically inhibited by CO and that the inhibition may be relieved by illumination of the reaction system. This situation made a reinvestigation desirable

Effect of CO on the Catalase Spectrum —When a solution of catalase is saturated with carbon monoxide, no change in the enzyme spectrum is detectable. Since in some hemin compounds CO will produce merely a slight change in the position of the absorption bands or even only a change in intensity of one band (21), the spectra of solutions of catalase in air and in carbon monoxide vere projected

simultaneously into the spectroscope Both spectra appeared identical in every respect. The iron of the enzyme therefore appears not to be in the bivalent state. In other experiments, a catalase solution of k=1610 was saturated with carbon monoxide and treated with small amounts of 30 per cent hydrogen peroxide while CO flushed the solution. There occurred a violent decomposition of the substrate, the spectrum of the enzyme remained apparently unchanged. This experiment makes it improbable that the ferrous form of the enzyme is an intermediate in the catalysis.

Effect of CO on the Activity of the Enzyme — The experiments were arranged under conditions favorable for an inhibition of the enzyme reaction by carbon monoxide. A low substrate concentration was selected in order to facilitate a combination of the enzyme with CO. The experiments were carried out at low temperatures because this increases the stability of hemin complexes with CO. The rapid decrease of the dissociation constant of CO hemochromogens and of the CO compound of the respiratory enzyme with decrease in temperature has been demonstrated by Warburg and Negelein (22) and Kubowitz and Haas (23). The enzyme concentration was kept small compared with the carbon monoxide concentration. The experiments were performed in an atmosphere of pure CO. During the reaction with the substrate the system was flushed with CO in order to remove any oxygen formed which might interfere with the inhibition effect (20).

A chamber was constructed which was similar to the vessels used in potentiometric titrations. It was provided with in and outlets for carbon monoxide and nitrogen, with a syphon system permitting the addition of reagents without introducing air and the removal of fluid from the vessel. A stirrer with a mercury seal and a microburette completed the equipment. The chamber was cooled by running ice water. The temperature was kept within 5 to 65°C. The apparatus was shielded against direct light to prevent the photo dissociation of a carbonyl complex. The chamber was filled with 10 cc. M/15 phosphate buffer, pH 68 35 cc. 002 n H₂O₂, and 4 cc. water. While the solution was cooled, it was saturated with pure CO. In order to avoid mechanical damage of the enzyme, the rate of gas flow was kept low (7 to 22 cc. CO per minute). A catalase

preparation of k=2092 was diluted 1 2000 4 1 cc of this solution was added to the substrate-buffer system. After 10 minutes the reaction was stopped by adding 5 cc 33 per cent H_2SO_4 . The solution was withdrawn from the chamber and the amount of remaining hydrogen peroxide determined by iodometric titration. The zero value was determined in a similar mixture by adding the sulfuric acid before the enzyme. Control experiments were conducted with air and nitrogen instead of carbon monoxide. A total of 45 experiments were performed. A few results are given in Table I

Little, if any, inhibition by CO was observed in these experiments. This inhibition was smaller than that produced by flushing the solution with nitrogen. These results, then, lend no support to Califano's claim that catalase is specifically inhibited by CO. Califano's worked under conditions which were less conducive to an inhibition effect than those just described. He used a manometric method. Although he states that oxygen will prevent the inhibition, oxygen accumulated in his vessels during the catalysis, and it was by the amount of evolved oxygen that he measured the progress of the reaction. The temperature (20°) and the substrate concentration (0.17 N) in his experiments were much higher than in those here reported. He states that the inhibition was around 35 per cent and the reactivation by light around 15 to 20 per cent. At present no satisfactory explanation can be offered for the discrepancy in the results of Califano and of the writer.

Effect of Fluoride on the Catalase Spectrum

The experiments with oxidizing and reducing agents or with carbon monoxide allow no final decision as to whether catalase contains ferric or ferrous iron. Fluoride has a marked affinity for ferric but not for ferrous iron. It reacts with catalase to form a stable compound with a characteristic absorption spectrum.

The absorption band of the enzyme in the red is centered around 622 m μ When neutral catalase solutions are made weakly acid by

It is advisable to use ice cold distilled vater for the preparation of the diluted enzyme solution. Fresh dilutions must be prepared each day

Professor L Califano was I ind enough to supply the writer vith information concerning these details of his experiments

adding primary potassium phosphate, the spectrum remains un changed. When neutral sodium fluoride is added to the acid solution, the enzyme band in the red splits into two components. The new bands are better defined and thinner than the original band.

25 cc. of a catalase solution of k=2092 were saturated with solid KH PO₄ 1 gm of pure sodium fluoride was added and the solution was filtered The solution appeared greenish in incident and orange

TABLE I

Effect of Carbon Monoxide on the Activity of Catalase

Experimental series No	Atmosphere	Substrate decomposed	Notes
I	Aır	1 89 cc. 01 N	Air at rest
		1 86	
VI	Air	3 93	Air at rest
	Nitrogen	19	Flushed with Na
	Air	3 93	Air at rest
	co	3 16	Flushed with CO
vii	Air	3 65	Air at rest
	co	3 53	Flushed with CO
	Air	3 23	
	co	3 35	
	co	3 36	
VIII	Air	3 26	
	CO	2 99	7 cc CO per min
	Air	2 88	
'	CO	3 05	22 cc CO per min
У	Air	50	
	CO	4.6	26 cc. CO per min
	Air	5 3	
	CO	4 52	
	Air	5 15	

red in transmitted light. The long wave bands were measured in 5 cm layer with the Hilger spectrometer

Band I is better defined than band II, but the latter is stronger Besides these bands the bands of the enzyme at 540 and 500 $m\mu$ could be seen The pH of the final mixture was 588

The complex between catalase and fluoride is stable for several days at room temperature

The reaction of catalase with fluoride is evidence for its constitution as a ferric compound. It also affords a simple means of differentiating the enzyme from methemoglobin. The red band of methemoglobin is not split by fluoride but merely shifted from 630 to 610 m μ (24, 25). The exact position of the band of fluorimethemoglobin depends on the pH (26).

Effect of Nitric Oxide on the Catalase Spectrum

Catalase reacts with NO in neutral solution. The color of the enzyme solution changes from green-brown to red. The NO compound has a characteristic spectrum with two bands in the visible range.

Catalase solution (k=2092) was placed in a capillary stopper cell. The air was displaced by pure nitrogen. Nitric oxide was prepared in the apparatus described by Warburg (27). The enzyme solution was saturated with NO and protected against oxygen by the capillary stopper. The measurement with the Hilger spectrometer had the following result

I
$$\underbrace{581 - 572}_{576}$$
, II $\underbrace{549 - 534}_{541}$ m μ

Band I is much stronger and better defined than Band II The short wave edge of II was difficult to ascertain. There is a shadow at 610 m μ , but this is only visible with a pocket spectroscope

The NO-catalase compound has a higher extinction than the free enzyme 3 to 4 cm layers of the enzyme solution are required to clearly see the absorption band in the red but the bands of the nitric oxide complex are already distinct in 0.5 cm layer of thickness. This fact may be used to detect catalase in comparatively dilute solutions. A catalase preparation obtained from pumpkin seedlings by the method of Zeile (2) showed a low activity (k = 10). Consequently the enzyme spectrum, which has been found in similar preparations of higher activity by Zeile, could not be seen directly with a pocket spectroscope in layers up to 50 cm. But after saturation with NO

the solution appeared red in 50 cm layers and showed the spectrum of the catalase NO complex given above. The extinction of the NO complex is also greater than that of the fluoride catalase compound described in the preceding section. The combination of the enzyme with NO is reversible. By removing the NO from the solution by prolonged flushing with nitrogen, the spectrum of the free enzyme was completely restored. The regenerated enzyme was active. The linkage between the enzyme and nitric oxide may also be dissolved by the substrate. When hydrogen peroxide is added to the solution of NO catalase complex, the substrate is actively decomposed and the spectrum of the free enzyme is partially restored.

The reaction between catalase and nitric oxide cannot be used to distinguish the enzyme spectrum from that of methemoglobin. The spectrum of NO methemoglobin is identical with the spectrum of NO-catalase, with the exception of an additional very faint band of the enzyme complex at 610 m μ . Neither complex is appreciably dissociated by illumination with a 750 cp tungsten lamp

Effect of Acetylene

Acetylene does not combine with catalase. When a neutral enzyme solution of k=3410 was saturated with pure acetylene, the spectrum appeared unchanged. Methemoglobin, at pH 69, was likewise found not to combine with acetylene. The same applies to hemoglobin prepared by reduction of methemoglobin with hydrosulfite at pH 69. A hemoglobin complex with acetylene has been described but its existence is doubtful (28)

Effect of Hydroxylamine

To 9 cc of a catalase solution of k=7125 there was added 1 cc of 20 per cent hydroxylamine hydrochloride solution. When the spec trum of this solution in 2 cm layer was projected into the pocket spectroscope simultaneously with that of an untreated enzyme solution, no change in the spectrum could be detected within 20 hours. A fine turbidity appeared and settled to form a colorless precipitate. The stability of the enzyme spectrum toward hydroxylamine is of interest in view of the observation that this substance inhibits the activity of the enzyme (29)

Effect of Substrates on the Enzyme Spectrum

The formation of an unstable intermediate in the catalase-monoethyl hydrogen peroxide reaction and its absorption spectrum consisting of two bands in the green region have recently been described (3)

Attempts to observe a similar intermediate in the catalase-hydrogen peroxide reaction have so far been unsuccessful

There is no visible change in the spectrum of the enzyme when it is adsorbed on aluminum hydroxide gel or on silicic acid particles (30). It has been shown that in these adsorbates the prosthetic group of the enzyme is free. It is available for the catalysis of hydrogen peroxide and of ethyl hydrogen peroxide. In the latter case the spectrum of the intermediate is observed. Furthermore, cyanide will produce the spectrum of the inactive catalase-HCN complex which has previously been observed in solution (1)

A few experiments were conducted in which the catalase-silicic acid adsorbates were suspended in non-aqueous solvents. It was hoped that the catalysis of hydrogen perovide by this arrangement would be slowed down to such an extent as to render the spectrum of the hypothetic intermediate in this reaction visible. Acetone, ether, and glycerol were used for suspending the dried enzyme adsorbates. The spectrum of the enzyme appeared unchanged. On addition of ethyl hydrogen perovide the spectral cycle already described could be observed. But with hydrogen perovide as the substrate no change in the enzyme spectrum could be detected, although in some cases the rate of the catalysis seemed to be less than in the homogeneous system.

Although these experiments did not have the result desired, they are of interest. They suggest that water as a solvent may not be indispensable for the enzymatic catalysis. In one experiment the dry adsorbate was suspended in anhydrous ether and the hydrogen peroxide-ether solution was likewise dried over sodium sulfate, but the possibility that a small amount of water was still present in the silicic acid gel cannot be excluded

On the Vasibility of the Enzyme Spectrum in Liver Tissue

The absorption band of catalase in the red at 622 m μ (α -band) does not coincide with absorption bands of other normal constituents

of living mammalian tissues The absorption bands of cytochrome a and the \alpha band of Warburg's respiratory enzyme are situated near 600 mu The catalase concentration in the liver of some animals. eg horse and rat, is so high that an attempt was made to see the a hand of catalase in these tissues. The main difficulty that pre sented itself is the high concentration of oxyhemoglobin in the liver Though the two main absorption bands of the blood pigment are centered at about 540 and 575 mu, the latter band will stretch into the red region in high concentrations. Though it was possible to make slices of fresh horse liver of 1 cm, sufficiently transparent for spectroscopic examination by the use of carbon arc lamps (25 amperes), the absorption of the blood pigment made an observation of the enzyme band impracticable The liver of a rat was therefore freed from blood as much as possible by perfusion with Ringer solu tion in situ 6 The whole liver, which had assumed a vellow pink color, was placed in a 3 cm absorption cell and examined with a pocket spectroscope in the concentrated beam of a 500 watt projection lantern The bands of oxyhemoglobin were still visible, but no band of the enzyme in the red region could be seen. The liver was then ground up and placed in a 1 cm absorption cell Under these conditions, there was a faint band visible near 630 mu Upon add ing neutralized sodium cyanide solution, the band disappeared, and two bands at 600-590 and 560 mu appeared instead. To another sample primary potassium phosphate and sodium fluoride were added The band in the red was shifted to about 610 mu As has been shown above, the catalase fluoride complex has two bands in the red, one at 620 and the other at 600 mm But in crude liver extracts, where the enzyme spectrum may be observed (1), it was found that upon adding fluoride only the stronger short wave band of the two was visible. It is therefore not impossible that the band observed in liver tissue is the \alpha band of catalase

DISCUSSION AND CONCLUSIONS

Catalase is resistant to oxidizing agents, $e\,g$, ferricyanide It is also resistant to reducing agents, $e\,g$, catalytically activated hydro-

⁶ The writer wishes to thank Dr Walter E Hambourger for his assistance in this experiment

gen, hydrosulfite, ferrotartrate, cysteine The hemin group of the enzyme will combine with cyanide, sulfides, nitric oxide, fluoride It will not combine with carbon monoxide Catalase is therefore a ferric complex. The stability of the ferric iron in the enzyme toward reducing agents is not due to the structure of the porphyrin with which it is combined. This porphyrin is the protoporphyrin of the blood pigment. In combination with globin (methemoglobin) the ferric iron is readily reduced by the same reagents which have no effect on catalase. The stability of the ferric iron in the enzyme is

TABLE II

Absorption Maxima of Catalase aid Derivatives

Compound	Pesition of absorption maxima	Reference
	7 *#	
Catalase	622, 540, 505, 409	
HF-catalase	620, 600, 540, 505	
NO-catalase	576, 541	Į.
HCN-catalase	589, 557	(1)
H S-catalase	640, 580	(1)
C-H ₅ OOH-catalase	570, 534	(3)
Pyridine hemochromogen, derived from catalase	557, 527	(32)
CO pyridine hemochromogen	565, 530	}
Hy drazine hemochromogen, derived from catalase	(622), 588, 545	
CO hydrazine hemochromogen	578, 542	

The spectra for which no reference is given have been determined in the present study

The Soret band in the far violet region has so far only been determined for the unmodified enzyme. It is very probable that the derivatives of the enzyme possess maxima in the same region.

therefore due to the protein component. It may be that the type of hematin-protein linkage in catalase is the reason for this phenomenon. The suggestion of Bersin (31), that sulfur may participate in this linkage is interesting but as yet, has no experimental basis.

Hydrazine or pyridine and hydrosulfite convert catalase into hemochromogens containing ferrous iron. But in these hemochromogens the hematin is no longer attached to the protein. This has been replaced by the nitrogenous bases hydrazine and pyridine. Both hemochromogens combine revers bly with carbon monovide. Photo-

dissociation has only been demonstrated in the case of the pyridine hemochromogen

The positions of the absorption bands of catalase and its derivatives are listed in Table II

The main absorption band (Soret's band) of hemin complexes with nitrogenous substances (nitrogen bases, proteins) is situated at the border between the visible and the ultraviolet region of the spectrum It has now been found that the spectrum of purified liver catalase has a well defined maximum of high extinction in this range, at 409 m μ . This is further evidence for the hemin nature of the enzyme

The writer wishes to thank Professor E C Dodds for providing working facilities at the Courtauld Institute of Biochemistry, where the greater part of the experiments was carried out

Acknowledgment is made by the author to his wife for assistance in the preparation and in the determination of the activity of the enzyme solutions

BIBLIOGRAPHY

- 1 Zeile, K, and Hellström H., Z physiol Chem, 1930, 192, 171
- 2 Zeile, K., Z physiol Chem , 1931, 195, 39
- 3 Stern, K G, Nature, 1935 136, 335 J Biol Chem , 1936, 114, 473
- 4 Stern, K G, Nature, 1935, 136, 302 J Biol Chem, 1936, 112, 661
- Warburg O Negelein, E, and Haas, E, Biochem Z, Berlin, 1930, 227, 171
 Warburg O and Negelein, E, Biochem Z, Berlin, 1931, 233, 486 238, 135
- 7 Warburg O, and Negelein, E, Brochem Z, Berlin, 1929, 214, 64
- 8 Hart P , Brochem Z , Berlin, 1920, 103, 271
- 9 Austin, J H, and Drabkin, D L, J Biol Chem, 1936, 112, 67
- 10 Ziemke, E , and Müller, F , Arch Anat u Physiol , Physiol Abt , 1901, suppl , 177
- 11 Fujita, A and Kodama K, Biochem Z, Berlin 1934, 273, 186
- 12 Warburg, O, Negelein E, and Haas, E, Biochem Z, Berlin, 1933, 266, 1
- 13 Report on Heidelberg Conference Naturussenschaften, 1932, 20, 467
- 14 Keilin D, Ergebn En ymforsch, 1933, 2, 239 15 Cf Warburg O, Z angew Chem, 1932, 45, 1
- 16 Stern, K. G., Z. physiol Chem., 1932, 204, 259
- 17 Stern K. G , Z physiol Chem , 1932 209, 188
- 18 Kuhn R Hand, D B and Florkin, M, Z physiol Chem, 1931, 201, 255
- 19 Elliott K A C and Sutter, H, Z physiol Chem, 1932 205, 47
- 20 Cahiano L Naturwissenschaften, 1934 22, 249

- 21 Warburg, O, and Negelein, E, Biochem Z, Berlin, 1932, 244, 9
- 22 Warburg, O, and Negelein, E, Biochem Z, Berlin, 1928, 200, 414
- 23 Kubowitz, F, and Haas, E, Biochem Z, Berlin, 1932, 255, 247
- 24 Menzies, J A, J Physiol, 1894, 17, 402
- 25 Ville, J, and Derrien, E, Compt rend Acad sc, 1905, 140, 390
- 26 Haurowitz, F, Z physiol Chem, 1935, 232, 159
- 27 Warburg, O, Brochem Z, Berlin, 1927, 189, 354
- 28 Cf Reinbold, B, Blutfarbstoffe, in Abderhalden, E, Biochemisches Handlerikon, Berlin, Springer, 1911, 6, 214
- 29 Jacobson, J, Z physiol Chem, 1892, 16, 340
- 30 Stern, K G, Science, 1936, 83, 190
- 31 Bersin, T, Ergebn Enzymforsch, 1935, 4, 68
- 32 Euler, H, Zeile, K, and Hellstrom, H, Svensk Kem Tidskr, 1930, 42, 74

DAVID NUTT London NICOLA ZANICHELLI Bol Agents G E STECHERT & Co New York FÉLIX ALCAN Paris ALADEMISCHE VERLAGSGESELLSCHAFT m b H Leipzig RUIZ HERMANOS Madrid F MACHADO & Cla Porto THE MARUZEN COMPANY Tokyo

1937

31st Year SCIENTIA

INTERNATIONAL REVIEW OF SCIENTIFIC SYNTHESIS Published every month (each number containing 100 to 120 pages) Editors F BOTTAZZI - G BRUNI - F ENRIQUES General Secretary Paolo Bonetti

IS THE ONLY REVIEW the contributors to which are really international

IS THE ONLY REVIEW that has a really world wide circulation

- IS THE ONLY REVIEW of scientific synthesis and unification that deals with the fundamental c tions of all sciences mathematics, astronomy geology physics, chemistry biology psychology ethnology guistics history of science philosophy of science
- IS THE ONLY REVIEW that by means of inquiries among the most eminent scientists and author all countries (on the philosophical principles of the various sciences on the most fu damental astronomical and 1 scal questions of current enterest on the contribut on that the different countries have given to the development of pa branches of k owledge on the more important biological questions etc etc) studies all the main problems disci in intellectual circles all over the world and represents at the same time the first attempt at an internati organization of philosophical and scientific progress
- IS THE ONLY REVIEW that among its contributors can boast of the most illustrious men of science the whole world
- The articles are published in the language of their authors, and every number has a supplement containing the Err translation of all the articles that are not French. The review is thus completely accessible to those who know (Write for a free copy to the General Secretary of Scientia Milan sending 16 cents in stamps of your try merely to cover packing and postage)

SUBSCRIPTION \$13.50 post free

Substantial reductions are granted to those who take more than one year a subscription For information apply to SCIENTIA, Via A De Togni, 12 - Milano 116 (Italy)

SUBSTANCES AFFECTING ADULT TISSUE IN VITRO

III A STIMULANT (THE "A FACTOR") IN SERUM ULTRAFILTRATE INVOLVED IN OVERCOMING ADULT TISSUE DORMANCY

BY HENRY S SIMMS AND NETTIE P STILLMAN

(From the Department of Pathology College of Physicians and Surgeons, Columbia
University, New York)*

(Accepted for publication, September 15, 1936)

INTRODUCTION

Pieces of adult thoracic chicken aorta planted in a medium of diluted plasma will, after a lag period of 3 to 5 days, begin to grow (1). It is not known why there is a lag period, nor is it known why this tissue should grow in vitro when imbedded in the same plasma to which it had been exposed, without growing, in the animal. No embryo extract or other foreign material need be present (dilution of the plasma is also unnecessary). The stimulus to growth might result from one or more of the following injury to the tissue, or the presence of clotted fibrin, or the presence of some stimulant contained in the serum portion of the plasma clot.

This paper will show that the plasma contains an agent (the "A factor") which plays a rôle in overcoming the dormancy of fresh adult tissue.

EXPERIMENTAL

Details of our methods for testing the effects of substances on the initial growth of adult tissue are discussed elsewhere (1-2) The experiments were controlled with tissue incubated in Tyrode solution, and usually also with fresh untreated tissue

- *This investigation has been aided by a grant from the Josiah Macy, Jr Foundation
- During the 3 day incubation of tissues in various fluids (previous to planting in a plasma medium) it was found necessary to keep the pH at about 74 by use of CO₂ air mixtures (in a stoppered tube) Adjustment of the pH with HCl resulted in less than one-quarter the stimulation obtained in the presence of CO₂

is placed over the bag holder A and onto the No 2 rubber stopper Three No 8 rubber bands are used to hold the bag in place These are first placed on a piece of glass tubing which can be slid over the bag, and are then slipped into place. Bag holder A (with the bag) is then placed on tube B 50 to 75 ml of dog seruis poured into cylinder C, then permitted to run into B by opening stop-cock D The rubber tubing from mercury trap F is connected to E Stop-cock D is closed, G and H are opened and the pressure is raised, with leveling bulb I, to about 50 cm of Hg (If the air capacity of the apparatus is too great for the volume of mercury, G should be closed while I is first lowered to let air enter through manometer J, then raised until the mercury rises in the manometer) The motor? is then started and stop-cock H is closed

The motor serves to rock the mercury trap Γ ten times a minute This causes the serum to surge violently along the surface of the membrane, thus preventing accumulation of proteins on the membrane. As the ultrafiltrate is collected through tube L escape of CO_2 is impeded by the aluminum cover M. Since the serum is under positive pressure it does not lose enough CO_2 to cause precipitation of the A factor.

More serum can be added after closing stop-cock G, opening H, opening D carefully, then disconnecting rubber tubing at E One bag can be used for 150 ml of serum

The ultrafiltrate is placed in a stoppered flask. 1/100 volume of 0.5 per cent phenol red is added. The pH is made slightly acid with CO₂. For sterilization a cotton plug is substituted for the stopper and the flask is placed in boiling water 10 minutes. It is then cooled, the neck flamed, a sterile rubber stopper is introduced, and more CO₂ is added, aseptically, to bring the pH to 7 0 or 7 2. The ultrafiltrate is then kept in the refrigerator.

Electrodialysis—The electrodialysis of the serum ultrafiltrate was performed in the apparatus shown in Fig 2 10 ml. of dog serum ultrafiltrate was placed in the neutral compartment. The anode and cathode compartments each contained 25 ml of Tyrode solution in a collodion bag. These two compartments were each connected by an agar (2 per cent agar in Tyrode) bridge to an electrode cup. Tyrode solution containing phenol red was placed in the electrode cups. The anode was a platinum wire and the cathode a nichrome wire. Current from a 110 volt D C circuit was passed for 15 hours through a 10 watt lamp in series with the outfit. During the electrolysis 1 it NaOH was added to the anode cup and 1 it HCl was added to the cathode cup, a little at a time to keep the cup solutions neutral

After electrodialysis for 1 5 hours samples were drawn from each compartment, sterilized at 100 $\,$ C for 5 minutes, and tested

Preparation of Copper Precipitates of the A Factor -1 2 ml of a 75 per cent

² The same motor is used simultaneously on this machine and on the membrane machine and dialyzer. It is a 1/500 n.p. reduction gear motor with reduced speed of 10 n.p. m., sold by the Bodine Electric Co., Chicago.

precipitations was treated with copper acetate giving 16 gm of precipitate. This, when freed from the copper, was mactive

The A Factor from Urine —20 ml of human urine was treated with 16 ml of 5 per cent CaCl₂ solution, plus 0 25 ml of 0 5 per cent phenol red, plus 6 0 ml of 0 1 M NaOH The precipitate was separated by centrifuging, and dissolved in 10 ml H₂O plus 1 ml. 0 1 M HCl (The solution was cloudy and was still cloudy after adding 0 5 ml more HCl)

TABLE 1

Stimulating Activity of Dog Lymph (Diluted with Two Parts and with Eight Parts of
Tyrode Solution Respectively) (Exp 61D)

	Growth	Relative		
Chicken acrta incubated 4 days before planting in	1 day	2 days	3 days	3rd day
Tyrode (control)	0	0	6	1
Dog lymph plus 2 parts Tyrode	10	13	32	5
Dog lymph plus 8 parts Tyrode	01	4	18	3

TABLE II

Stimulating Action of Dog Serum Euglobulin (Separated by Dialysis and Concentrated
Ten Times) As Compared with Chicken Serum (Diluted to One Third) (Exp. 35C)

Tissue incubated J days before planting in		th values	Relative growth	Growth divided		
		2 days	3 days	4 days	on 4th	by con ce tra tion
Chicken serum (X) Dog serum euglobulin (X10)	0	0	5 5	13 14	1 1	28

The A factor was re precipitated with 16 ml CaCl₂ solution plus 15 ml NaOH, and centrifuged This precipitate was suspended in 4 ml Tyrode solution and adjusted to pH 70 with 10 per cent CO₂ A precipitate which formed was centrifuged off, suspended in Tyrode solution, and tested It was found to be stimulating, but the fluid from this last precipitation was found to be even more stimulating. Neither appeared to contain toxic substances

Since the A factor is heat resistant the various fractions were sterilized by heating at 100 C for 5 minutes after making the pH acid with CO₂

DISCUSSION OF RESULTS

Serum Stimulation —The action of serum in overcoming adult tissue dormancy was tested by incubating pieces of adult chicken aorta in

chicken serum for 3 days previous to planting the tissue in a dilute plasma medium. Fig. 3 shows that the lag period after this serum treatment was much less than that of the control tissue, which was incubated in Tyrode solution. The reduction in lag period is accompanied by an increased initial growth rate. This has been repeated many times with the same result. Apparently part of the change in the tissue taking place during the lag period is brought about in serum, but not in Tyrode solution, at 37°C. This suggested that serum contains a substance involved in overcoming adult tissue dormancy 3

It should be emphasized that this paper is concerned with the process of *overcoming the dormancy* of fresh adult tissue—not with the growth of active cells, as in embryo cultures, or in cultures of adult cells after growth is under way

Serum diluted with two parts of Tyrode solution often stimulated better than undiluted serum. Daily renewal of the serum in which the tissue was incubated gave no better stimulation than the use of the same serum continuously for 3 days. There would appear to be an adequate supply of the supposed stimulant in serum. The volume of fluid was about 100 times that of the tissue. Addition of heparin to serum decreased its activity.

The stimulating action of serum is not species specific Dog serum stimulated chicken tissue as well as chicken serum did, in spite of the foreign proteins (Fig. 3)

Lymph and Ventricular Fluid —Dog lymph was found to be highly stimulating to the growth of adult chicken aorta, even when diluted with eight parts of Tyrode solution (Table I) Human ventricular fluid showed some stimulative activity when undiluted The activities of these fluids withstood sterilization at 100°C for 5 minutes

Scrum Proteins — The stimulating effect of serum on dormant adult tissue cannot be due to the serum albumin since this protein is inhibitory to growth, as is shown in Fig 4—It is also seen that concentrated whole globulin, precipitated with ammonium sulfate, then dialyzed, is somewhat stimulating—The same is true of euglobulin (separated by dialysis and concentrated ten times (Table II))—However, in normal concentration the globulin can account for only a fraction of the stimulating action of whole serum on dormant tissue—See last column of Table II

³ No embryo extract was present in these cultures—It had little effect on dormant adult tissue (6), in fact it was sometimes inhibitory

Fig. 3 Stimulation produced by incubating chicken aorta tissue in serum (from dog or chicken) for 3 days previous to planting in chicken plasma. The control tissue was incubated in Tyrode solution (Exp. 34A)

Fig. 4. Slight stimulating action of concentrated serum globulin, and inhibitory action of serum albumin (Exp. 36A)

Fig. 5 The stimulating activity of serum after keeping it at pH 3 9 for 24 hours at either 4 C or 37°C (Exp. 33B)

Fig 6 Stimulation of chicken tissue incubated 3 days in dog serum ultra filtrate (Exp 39B) Note that ultrafiltrate reduced the lag period to 1 day while the Tyrode treated tissue (solid line) was almost identical with the untreated fresh tissue (dotted line)

Scrum Lipase—The stimulating action of trypsin on fresh adult tissue (1) suggested that some enzyme in serum might act on dormant tissue. The anti-tryptic action of serum would preclude trypsin, but serum lipase remained as a possibility

The lipase in serum is largely destroyed (4) at pH 3 9 at 37°C for 1 day We treated serum in this manner, readjusted it to pH 7 5, and diluted it with Tyrode solution to three times its original volume Fig 5 shows but slight difference between this and a control serum kept at 4°C. This slight decrease of activity can be accounted for by loss of the A factor (see below). If serum lipase does exert a stimulating effect on dormant tissue it is very slight.

This conclusion is supported by experiments with lipase purified from raw pancreas. Tissue treated with this lipase failed to grow. It was prepared and tested by the methods of Willstatter and Leitz (5)

Further evidence against the involvement of serum enzymes is the resistance of the stimulating activity to heat—Serum heated at 60° C—for an hour lost none of its activity—At 100° C—for 30 minutes there was only a slight loss in activity providing the pH was kept below 7 8 by use of CO₂-air mixtures

Serum does not act at ice box temperature as does trypsin (1)

Ultrafiltrate from Serum —Since the action of serum in overcoming adult tissue dormancy appeared not to be associated with the proteins or enzymes of serum it remained to test the ultrafiltrate. The ultrafiltrate from serum (obtained by forcing serum under positive pressure through a collodion bag) was found to be highly stimulating to the growth of fresh adult chicken aorta tissue (Fig. 6). Its activity seemed to be sufficient to account for all the stimulation by the serum Furthermore the residue, largely serum proteins, which does not pass through the collodion membrane was not stimulating (after thorough dialysis followed by equilibration against Tyrode solution)

Electrodialysis —Serum ultrafiltrate was subjected to electrodialysis using collodion bags to separate the anode and cathode fluids from

In Fig 6 it will be noted that there are two control tissues, one incubated in Tyrode solution, the other was fresh untreated tissue. The growth was almost identical in both cases, showing that incubation in Tyrode solution preserved the dormancy of the tissue with little damage. That this tissue was well preserved in Tyrode solution was also shown by histological sections. Hence the stimulation produced by the ultrafiltrate as in Fig. 6 certainly cannot be ascribed to more preservation of the tissue.

To avoid confusion, the fresh tissue control v as not plotted in every case. It is inserted in Fig. 10, where there v as no Tyrode control. In general the two controls were nearly alike (Fig. 6)

Fig. 7 Stimulating activity of the anode fluid, as contrasted with the cathode fluid (Exp. 37B)

 $F_{\rm IG}$ 8 Stimulating activity of material recovered from a copper precipitate (Exp. 39B)

Fig. 9. Stimulating activity of a calcium precipitate from serum ultrafiltrate (Exp. 42A)

FIG 10 Stimulating activity of the CO₂ soluble fraction of a calcium precipitate (Note that the diluted ultrafiltrate was more stimulating than the undiluted (Exp 46D))

the ultrafiltrate in the central compartment, as shown in Fig 2 The anode fluid was shown to be quite stimulating to dormant tissue while the cathode fluid gave a negligible stimulation (Fig 7) This was repeated with similar results. It was therefore concluded that the substance is an acid

Copper Precipitate of the A Factor —A copper precipitate from serum ultrafiltrate was prepared as described above—It was freed from the copper, giving a water-soluble material which was quite stimulating to the initial growth of adult tissue (Fig. 8)—Accurate estimation of the activity is difficult but that recovered from the precipitate appeared to be about 50 per cent of the original total activity—However, the possible toxicity of remaining traces of H₂S made it advisable to try other methods of precipitation

Calcium Precipitation —A precipitate was obtained from serum ultrafiltrate by adding calcium chloride in slightly alkaline solution. This precipitate when suspended in Tyrode solution was definitely stimulating to dormant aorta tissue, as shown in Fig. 9. Here too the yield is hard to estimate. We can merely say that "20 per cent or more" of the original total activity was recovered (although contained in a smaller volume). The presence of calcium, unlike the copper, did not appear to interfere with the testing

Attempted Purification —Attempts to obtain more active fractions were not satisfactory. When the ultrafiltrate was treated with calcium chloride, 85 per cent of the precipitate formed at pH 7 3 and the remaining 15 per cent precipitated at pH 8. The first precipitate seems to contain more activity per gram than the second. This warranted discarding the latter. When the first precipitate was suspended in Tyrode solution and this was made acid with pure CO₂, most of the precipitate went into solution. The "CO₂ soluble" fraction contained most of the activity (Fig. 10) but we are not certain that its activity on a dry weight basis is greater than that of the insoluble portion.

Distillation of Ultrafiltrate —Several attempts were made to concentrate the A factor by vacuum distillation of the ultrafiltrate —The distillate contained no activity—Various fractions obtained from the residue were mostly inactive—No activity was obtained from alcoholsoluble or from acetone-soluble fractions—The water-soluble fractions

TABLE III

Stimulating Activity of Material from	m Urine Twice Precipitated as Described in Text				
(Exp 42B)					
	Relative				

Tissue incubated 3 days before planting in	Growth values after planting					Relative growth
This de life absect a dry's perore pariting in	1 day	2 days	3 days	4 days	5 days	on 5th day
Tyrode (control)	0	0	0 1	0.5	2 5	1
Unne fraction (×5)	0_	0	3	9	17	7

TABLE IV

Effect of Heating Dog Serum Ultrafiltrate at 100°C for Different Intervals, with and tothout the Presence of Air (Exp 36B)

Tissue incubated 3 days in ultrafiltrate previously heated as	Growth values after planting						
indicated	1 day	2 days	3 days	4 days			
Ultrafiltrate 100 C 10 min	0	1	9	22			
Ultrafiltrate 100 C 3 hrs in COrair	0	0	0.8	3			
Ultrafiltrate 100 C 3 hrs in COr-N2	0	0	0 3	4			

TABLE V

Destruction of Serum Ultrafiltrate Activity by Heating at 100°C 5 Minutes with 1/30th Volume 1 m HCl (Afterwards Neutralized) (Exp. 38B)

Tissue incubated 3 days, before planting in	Gra	Relative growth			
The provided and a period planting in		2 days	3 days	4 days	on 4th day
Serum (×1)	0	1	4	13	9
Ultrafiltrate heated with HCl	0	0	0	15	1

TABLE VI

Destruction of Serum Ultrafiltrate Activity by Heating at 100°C 5 Minutes with 1/30th Volume 1 is NaOH (Afterwards Neutrali ed) (Exp 39C)

Tissue incubated 3 days before planting in	Gre	Growth values after planting					
	1 day	2 days	3 days	4 days	on 4th day		
Tyrode solution	0	0	0 2	2	1		
Serum (×1)	0	1	7	15	10		
Ultrafiltrate heated with NaOH	0	0	06	1 5	1		

were also mactive In one experiment, however, a suspension of an insoluble residue was slightly stimulating

In view of the stability of the A factor this apparent loss of activity may seem surprising. However, a sample of ultrafiltrate which had been concentrated to dryness by vacuum distillation was dissolved in its original volume of water and found to have nearly its original activity. The apparent inactivity of the various fractions mentioned above may have been due to our failure to test these fractions in solutions having the correct concentrations of electrolytes and glucose as well as suitable pH, osmotic pressure, and CO₂ tension

The A Factor from Urine—Because the A factor passes so readily through a collodion bag, it should be expected to pass through the kidneys into the urine—Urine was not tested directly but was partially purified as described above, by precipitating twice as the calcium salt. The portion of this product which was soluble at pH 70 (in the presence of bicarbonate) was found to be fairly stimulating in a volume one-fifth that of the original urine sample (Table III)

Although urine may later prove to be the best source of the A factor, we find it more convenient at present to use serum ultrafiltrate, without purification, as a stimulating fluid with which to treat our tissues, or to wash our cultures—It also serves as a basic medium in our sterile perfusion pump

Properties of the A Factor —From the above data it may be seen that the A factor has a small molecular size (since it passes through a collodion membrane) and furthermore the first and last portions of ultrafiltrate seemed to have about equal activities. It is an acid. It can be precipitated as a copper or calcium salt.

The A factor is not appreciably inactivated at 100°C for 10 minutes (providing it is kept neutral), but 100°C for 3 hours caused loss of activity even in the absence of O₂ (Table IV) Heating 5 minutes at 100°C at about pH 2 or pH 12 destroyed all the activity (Tables V and VI)

It is not species specific, chicken tissue being stimulated by serum ultrafiltrate from chickens, dogs, and rabbits

If kept neutral in the ice box, ultrafiltrate remains active at least 10 months Chicken plasma has induced growth of fresh tissue after 11 months storage

COMMENTS

The A factor seems to be the principal one of the stimulating agents in adult blood plasma by virtue of which plasma serves to overcome the dormancy of adult tissue in vitro. It is not claimed that the A factor is the only agent in serum which is involved in this process, nor that it is a single substance. This action of the A factor on dormant tissue must not be confused with the stimulation of active cells (although the A factor seems to aid them also). It will be brought out in a later paper (6) that substances which stimulate embryo cell cultures do not necessarily affect the dormant state of adult tissue (but may stimulate the adult cells once growth is under way)

Tests have been made on numerous known substances (6), including hormones, vitamins, amino acids, proteins, protein digestion products, urea, uric acid, glutathione, allantoin, etc. Not any of the substances so far tested have the properties of the A factor, or can take its place. Some of them (such as amino acids and thyroglobulin, but not thyroxin) augment the action of the A factor

We do not know whether the A factor acts directly upon the tissue inhibitor (2) There is evidence both for and against this explanation. We have been able to induce growth in adult tissue only in the presence of the A factor, and therefore consider it essential for growth. But we do not feel that it alone is responsible for overcoming dormancy. Some other change in the tissue must be involved—perhaps as a result of mechanical injury or necrosis.

SUMMARY

- 1 The growth of fresh adult tissue in plasma medium suggested that plasma contained a substance active in overcoming the dormancy of adult tissues
- 2 Incubation of adult chicken aorta in serum (from chickens or other species) before it was planted in a plasma medium, resulted in a much shorter lag period and a faster initial growth than that of control tissue incubated in Tyrode solution (or of fresh untreated tissue). In other words, serum helped overcome the dormancy of adult tissue while Tyrode solution preserved the tissue in a dormant state. This activity of serum was shown to be due neither to its albumin or globulin nor to its lipase or other enzymes.

- 3 The ultrafiltrate from serum was highly active in overcoming adult tissue dormancy, while the dialyzed residue was mactive. The ultrafiltrate was not species specific. It withstood 100°C in neutral solution for 10 minutes, but not for 3 hours, and was destroyed at pH 2 and pH 12. It was active after 10 months in the ice box. It does not affect tissues in the cold.
- 4 Copper acetate precipitated a fraction from serum ultrafiltrate which, when freed from copper, was stimulating to the initial growth of adult aorta tissue
- 5 Calcium chloride precipitated fractions from serum ultrafiltrate (and also from urine) which were stimulating
- 6 Attempts to concentrate the A factor, the active agent, by vacuum evaporation and subsequent fractionation with different solvents were not satisfactory
- 7 Lymph was highly stimulating and ventricular fluid slightly stimulating
- 8 No growth was obtained in the absence of the A factor, but we doubt that it is alone responsible for overcoming the dormancy of adult tissue

REFERENCES

- 1 Simms, H S, and Stillman, N P, J Gen Physiol, 1936-37, 20, 603
- 2 Simms, H S, and Stillman, N P, J Gen Physiol, 1936-37, 20, 621
- 3 Kunitz, M, and Simms, HS, J Gen Physiol, 1927-28, 11, 641 Simms, HS, J Exp Med, 1930, 51, 319
- 4 Falk, K G, and McGuire, G, J Biol Chem, 1934, 105, 379
- 5 Willstatter, R, and Waldschmidt-Leitz, E, Z physiol Chem, 1922, 125, 132 Willstatter, R, Waldschmidt-Leitz, E, and Menner, Γ, Z physiol Chem, 1922, 125, 93
- 6 Simms, H S, and Stillman, N P, unpublished data

CARBOXYPEPTIDASE

I THE PREPARATION OF CRYSTALLINE CARBOXYPEPTIDASE*

By M L ANSON

(From the Laboratories of The Rockefeller Institute for Medical Research,

Princeton, N J)

(Accepted for publication, September 15, 1936)

Carboxypeptidase (CP) splits the amide linkages of certain amino acid compounds such as chloracetyl tyrosine, tyrosyl tyrosine, and leucyl glycyl tyrosine. In each case an amino acid is liberated which in the intact compound has a free carboxyl group Since chloracetyl tyrosine,

CI CH;CO—NH | HOC;H;H;C CHCOOH

is attacked, it is clear that the substrate of carboxypeptidase need not have a free amino group nor need it, despite the name of the enzyme, be a peptide. It has been assumed, but not proven experimentally, that chloracetyl tyrosine is attacked by only a single enzyme and that the same enzyme which attacks chloracetyl tyrosine also attacks the other supposed substrates of carboxypeptidase. It may be, however, that what has hitherto been called carboxypeptidase is in reality a mixture of enzymes. The previous work on carboxypeptidase has been reviewed by Waldschmidt-Leitz (1931) and Bergmann (1934)

The present paper (Part I) describes the preparation from autolyzed beef pancreas of a crystalline, water insoluble protein which attacks chloracetyl tyrosine and peptic digests of proteins. This crystalline carboxypeptidase is active even in the presence of formaldehyde which abolishes the free amino groups of both enzyme and substrate.

* A brief account of the preparation of crystalline carboxypeptidase has been published in Science (Anson (1935))

boxypeptidase is the only proteolytic enzyme of those which have been crystallized which attacks simple substrates of known structure. The two following papers describe (Part II) the extraction from fresh pancreas of the inactive precursor of carboxypeptidase, pro-carboxypeptidase, its partial purification, and its activation by trypsin, and (Part III) the estimation of carboxypeptidase and of its inactive precursor

Two sources of material have been used for the preparation of crystalline carboxypeptidase, the turbid fluid which exudes when sliced frozen bovine pancreas is thawed overnight at 5°C, which is not always available in large quantities from commercial sources, and ordinary commercial frozen pancreas, which can be obtained from any of the large meat packers. The turbid fluid is by far the more convenient starting material. I liter of this fluid yields roughly a gram of crystals.

The turbidity of the fluid which exides when frozen pancreas is thawed is due to a small amount of dark, slimy material which at the pH of the fluid cannot readily be removed by filtration. If the fluid is acidified (green to brom cresol green) and warmed, the dark, slimy material clots and can then readily be filtered off. The filtrate on dilution with water yields a precipitate which contains most of the carboxypeptidase and most of the proteinase of the original fluid. This precipitate is only partially soluble in barium hydroxide in slightly alkaline solution (pink to phenolphthalein). When the soluble part, which contains all the carboxypeptidase, is neutralized (orange to phenol red) a protein crystallizes out which attacks chloracetyl-tyrosine (Fig. 1). On repeated recrystallization this protein becomes free of proteinase but retains all its original carboxypeptidase activity.

When crystalline carboxypeptidase is prepared directly from commercial frozen pancreas the early stages of the preparation are modified. An acidified sodium chloride extract is filtered, the filtrate is 0.6 saturated with ammonium sulfate, and the precipitate formed is dialyzed against water. The fraction which remains precipitated after dialysis is treated with barium hydroxide.

¹ This same material was originally used for the isolation of trypsin (Northrop and Kunitz (1932-33))

The specific activity of crystalline cyrbotypeptidase is 0.081 [CP u]_{m_{N}}^{CT} and 0.103[CP u]_{m_{S}}^{PDF}

The specific activity of twice crystallized carboxypeptidase is not

Γις 1 Carboxypeptidase crystals × 85

changed by repeated or fractional recrystallization. If crystalline carboxy peptidase is partially denatured and precipitated, the surviving

² Part III (*J Gen Physiol* in press) will describe the estimation of carboxy peptidase and define the carboxypeptidase unit (CP u) Two substrates are used for the estimation of carboxypeptidase chloracetyl tyrosine (CT) and a for molized peptic digest of edestin (PDE)

soluble protein has the same specific activity as the original crystalline material

Recrystallized carboxypeptidase gives no test for proteinase, dipeptidase, amino polypeptidase, and amylase

The elementary analysis of carboxypeptidase is C, 526 per cent, N, 144 per cent, H, 72 per cent, S, 047 per cent, P, 000 per cent, ash, 068 per cent

An amount of carboxypeptidase containing 0 20 mg N gives the same color with the phenol reagent as 0 15 mg tyrosine

Preparation from Pancreatic Fluid

The Starting Material — The pancreatic fluid which exides when frozen pancreas is thawed consists mainly of proteins and protein split products and is highly variable in composition. As a result the absolute amount of crystalline carboxypeptidase that is obtained finally, and the yields of carboxypeptidase at each step, are also highly variable. If the directions are followed, however, a large crop of crystals is obtained without fail. It is not necessary to measure the carboxypeptidase content of the original fluid which is usually around 0.07 [CP u] $^{PDL}_{pl}$

The First Globulin Precipitate -5 N acetic acid is added with stirring to the crude fluid until the solution is definitely green to brom cresol green solution in 4 liter Erlenmever flasks is left in a 37°C bath for 2 hours and then The filtrate contains all the carboxypeptidase Ten volumes of tap water are added to each volume of filtrate in large glass vessels. A precipitate forms which settles At the end of the day the supernatant fluids are siphoned off and rejected and the precipitates are collected in a single vessel morning the supernatant is again siphoned off and rejected and the precipitate is filtered on Schleicher and Schull folded filter paper No 588, 50 cm diameter smaller and also thinner paper of the same number is less satisfactory the precipitate is evenly suspended in enough water to give a volume roughly one-fifth of the original volume of pancreatic fluid. A sample is dissolved with a little di-potassium phosphate and sodium chloride and its activity is measured From 35 to 90 per cent of the original activity is recovered in the first globulin precipitate

Barium Hydroxide Extraction — The suspension of the first globulin precipit its diluted to have roughly $0.25 \, [\mathrm{CP} \, \mathrm{u} \,]_{\mathrm{ml}}^{\mathrm{PDL}} = 0.2 \, \mathrm{m}$ barium hydroxide is added with vigorous stirring until the solution is definitely pink to phenolphthalein and the suspension is immediately filtered with Standard Super-Cel³ on a Buchner

³ Standard Super-Cel is the trade name of a particular Celite filter aid of medium porosity. Hyflo Super-Cel is a coarser grade, Lilter Cel a finer. Celite filter aids are made from diatomaceous earth (kieselguhr) by Johns Manville, 22 I ast 40th Street, New York City. The names of the Furopean sales agents and booklets describing the Celite filter aids may be obtained from the manufacturer.

funnel or centrifuged Barium hydroxide dissolves only a part of the globulin precipitate whereas sodium hydroxide at the same pH dissolves it completely If not enough barium hydroxide has been added the supernatant solution obtained by centrifugation is turbid and does not contain all the carboxypeptidase. If too much barium hydroxide is added the carboxypeptidase activity is slowly de stroyed. As a precaution, when a large batch of material is being worked up, the barium hydroxide extraction is first carried out on a small scale, the amount of barium hydroxide added is recorded, and the activity of the solution is meas ured after removal of the undissolved protein. The solution should be clear and its activity should be the same as that of a complete solution of the globulin precipitate obtained by adding di potassium phosphate and sodium chloride instead of barium hydroxide.

Crystallication —Immediately after centrifugation, 1 N acetic acid is added to the barium hydroxide solution with vigorous stirring until the solution becomes just turbid (orange to phenol red). Crystals appear slowly if the solution is simply allowed to stand. In practice the solution is heavily seeded, allowed to stand the rest of the day at room temperature with occasional stirring and finally left in the refrigerator overnight. The next morning the supernatant solution is sphoned off and rejected and the crystals which have settled to the bottom of the vessel are centrifuged. The supernatant solution is rejected, the crystals are again suspended in water and again centrifuged. 40 to 80 per cent of the car botypeptidase of the barium hydroxide extract is obtained in crystalline form.

At the pH used for crystallization carboxypeptidase is stable, its crystalline form is insoluble and its amorphous form is soluble. At a more acid pH (green to brom cresol green) both the crystalline and amorphous forms are insoluble and so since precipitation of the amorphous form is rapid compared with crystallization, carboxypeptidase is immediately and completely precipitated in the amorphous form. If the amorphous precipitate is dissolved at the acid pH with a solution of sodium chloride, the carboxypeptidase is insoluble over a wide range of pH and that the proper pH for crystallization is far on the alkaline side of the pH of minimum solubility.

Recrystalls at non—To a suspension of crystals having about 10 [CP u] PDE (the exact concentration is not important) 0.1 n sodium hydroxide is added slowly with vigorous stirring until almost all the material is dissolved. The undissolved material is removed immediately by centrifugation and 1 n acetic acid is immediately added to the supernatant solution until the first turbidity appears. The solution is then seeded and allowed to stand several hours and the crystals centrifuged. The total activity of the recrystallized protein is 80 to 100 per cent of the activity of the protein used for recrystallization. The crystals are stored in the cold with toluol as a preservative and so far as I know are stable indefinitely in aqueous suspension. If pure carboxypeptidase is dried more or less of the protein is converted into an insoluble, inactive form, even if the protein is dried while frozen or if the water is removed with sodium sulfate. Impure carboxypeptidase, however can be dried with sodium sulfate without any loss of solubility or activity

I

This protective action of impurities has been noted with pepsin and many other proteins

It is important when adding sodium hydroxide not to make the solution too alkaline. The crystals sometimes dissolve very slowly and the process of solution should not be hurried by adding sodium hydroxide in excess. After the carboxypeptidase has been once recrystallized it usually dissolves completely when the solution is definitely alkaline to phenolphthalein. This pH is entirely safe. It is not important that the crystals be completely dissolved. Undissolved crystals can be saved and added to the supply of once crystallized material.

Changes in Specific Activity —In general the variable specific activities ([CP u]_{mg} $_{N}$) of the various fractions were not measured since they need not be known for preparative purposes Typical values are given in Table I

Alternative Method of Preparation —If the first globulin precipitate is dissolved with basic potassium phosphate and heated to 60°C under

	Pancreatic fluid	Acetic acid filtrate	Dilution precipitate	Barium hydroxide extract	Once crystallized CP	Twice crystallized CP
[CP u] PDE mg N	0 00277	0 00265	0 0128	0 0222	0 0814	0 103

TABLE I

suitable conditions much of the protein is digested and the remaining protein has a very high carboxypeptidase and a very low proteinase activity. But I have never succeeded in obtaining crystals or in obtaining a preparation of carboxypeptidase completely free of proteinase without a fractionation with barium hydroxide.

Preparation from Frozen Pancreas

Prozen beef pancreas is ground and stirred up with 3 times its weight of 2 per cent sodium chloride and 20 per cent of its weight of toluol (Eastman practical), and allowed to stand at room temperature. The next morning the fat and toluol are skimmed off and the suspension is filtered through gauze, 5 N acetic acid is added to the filtrate until it is green to brom cresol green. The acid solution is filtered on a Buchner funnel with the aid of Standard Super-Cel (Johns-Manville) and 390 gm ammonium sulfate are added to each liter of filtrate. The precipitate formed is filtered off and dialyzed overnight against cold water in a shaking dialyzer (Kunitz and Simms (1927-28)). The dialyzed solution is centrifuged,

the supernatant is discarded, and the precipitate is then treated like the precipitate obtained from the fluid which exudes when frozen pancreas is thawed

Recrystallization and Fractional Crystallization —A sample of twice crystallized carboxypeptidase had a specific activity of 0.082[CP u $| \mathbb{D}_{k}^{T} |_{N}$, of six times crystal lized, 0.083[CP u $| \mathbb{D}_{k}^{T} |_{N}$]. A sample of twice crystallized carboxypeptidase had a specific activity of 0.095[CP u $| \mathbb{D}_{k}^{TD} |_{N}$]. It was recrystallized The first 25 per cent which crystallized out had a specific activity of 0.104[CP u $| \mathbb{D}_{k}^{TDE} |_{N}$].

Fractional Heat Coagulation —A test tube containing a solution of twice crystal lized carboxypeptidase in half saturated sodium chloride solution containing 1.84 mg introgen per ml was placed in 52°C water for 3 minutes and the suspension was then cooled and filtered. The filtrate contained 1.26 mg introgen per ml. The specific activity of the carboxypeptidase in the filtrate was 0.104[CP u.] FDE mg K.

Fractional Denaturation by Acid —To a solution of twice crystallized carboxy peptidase in 5 per cent sodium chloride containing 1 06 mg nitrogen per ml was added an equal volume of a solution containing 3 parts 0 2 m sodium acetate to 1 part 0 2 m acetic acid The solution was kept 90 minutes at 37°C, cooled, and the denatured and precipitated protein filtered off The filtrate contained 0 26 mg nitrogen per ml The specific activity of the carboxypeptidase in the filtrate was 0 092[CP u]^{PDE}_{mg N}

Other En.ymes—Six times crystallized carboxypeptidase contains a trace of proteinase which can be detected by long digestion of hemoglobin (Anson and Mirsky (1933–34)) with a large amount of carboxypeptidase This slight activity could be accounted for by an impurity of 1 part trypsin to 30,000 parts carboxy peptidase

Three crystallized carbotypeptidase is free of dipeptidase and amino poly peptidase Fruton found that 1 mg carbotypeptidase per ml produced no detectable digestion of 0.05 m dl leucyl glycine or dl leucyl glycyl glycine at pH 7.8 in 23 hours at 40 C

Six times crystallized carboxypeptidase is free of amylase A 1 per cent neutral solution of starch gave almost the original color with iodine after 24 hours at 37°C despite the presence of 0.7 mg per ml of carboxypeptidase

REFERENCES

Anson M L, 1935, Science, 81, 467 Anson, M L and Mirsky, A E, 1933-34, J Gen Physiol, 17, 151 Bergmann M, 1934, Science, 79, 439 Kunitz M, and Simms, H, 1927-28 J Gen Physiol 11, 641 Northrop J H and Kunitz M, 1932-33, J Gen Physiol, 16, 267 Waldschmidt Leitz E, 1931, Physiol Rev 11, 358

Dr Joseph Fruton, private communication

A METHOD FOR THE INVESTIGATION OF CLECTROSTENOLYSIS*

BY F S FETCHER JR, R S LILLIE, AND W D HARKINS
(From the George Herbert Jones Laboratory of the University of Chicago, Chicago)
(Accepted for publication, December 2, 1936)

INTRODUCTION

The essential structural and physicochemical conditions underlying the electrical sensitivity of living protoplasm are still imperfectly understood. It is known that when an irritable tissue is traversed by an electric current, chemical reactions are set up in the tissue. these reactions furnish the free energy for the response The general physicochemical problem has reference to the conditions under which the passage of current through a polyphasic system, consisting of a combination of aqueous solutions and non aqueous phases in certain structural relationships, gives rise to chemical change There are two conspicuous classes of such systems (A) batteries or electrolytic cells, and (B) imitable living systems Certain artificial systems of the type considered below form a third class (C) In general we find that no reaction occurs (apart from possible effects dependent on temperature) during the passage of a current through a homogeneous conductor. metallic or electrolytic. In the systems of class A, consisting in a combination of the two types of conductor, reaction does occur, but only when electric current passes between the two phases The reaction is a boundary phenomenon, oxidation occurs where the current (positive stream) passes from the metallic phase (electrode) to the solution, and reduction where it passes in the reverse direction. For continuous electrolysis a certain critical potential (decomposition potential) is required, and a definite quantity of chemical change is associated with a definite quantity of current (Faraday's law) Inliving systems (class B) electrical sensitivity is bound up with a special type of structure in which electrolyte solutions containing oxidizable mate

^{*} This research was aided by a grant from The Rockefeller Foundation

rials are separated from one another by thin partitions or membranes, apparently mainly non-aqueous in composition, having semi-permeability and high electrical resistance 1 These physical properties imply high electrical polarizability, and the connection between polarization and electrical stimulation has long been recognized A similar connection between polarization and activation exists in the system, passive iron in nitric acid (belonging in class A), here activation is a simple case of electrolysis 2 In the living system also under certain conditions (brief duration of stimulating current) there is a connection between activation and the passage of a definite quantity of electricity through the irritable element 3 Living systems, however, have no metallic conductors, unless we admit the speculation that carbon chains set side by side may act as such conductors and so build up structures having the properties of electrodes It seems more likely that the living system responds to electrical stimulation essentially because its type of structure furnishes conditions favorable to electrostenolysis or processes of a related kind In stimulation a change in the electrical polarization of membranes is the critical event, in some way this initiates chemical reactions The rules of polarity, of critical or threshold potential, of critical duration of flow, apply to both the living and the non-living types of electrically responsive system² Because of the possible relation of electrostenolysis to the general problem of stimulation it has seemed desirable to make a further and as far as possible quantitative study of this phenomenon

The phenomenon of electrostenolysis consists of the oudation and reduction of a solution at the opposite surfaces of a high resistance membrane, which separates the two electrodes of an electrolytic cell Reduction of the solution takes place at the surface of the membrane facing the anode, oudation at the surface facing the cathode, and the process occurs only if there is a steep potential gradient across the membrane. Some of the effects of the membrane are the same as those of a metallic conductor in the same position, in so far as ions are oudized and reduced at the surfaces of both. The definition

¹ Cf Blinks, L R, J Gen Physiol, 1929-30, 13, 361, 495 Osterhout, W J V, Biol Rev, 1931, 6, 369 (pp 397 ff)

² Lillie, R S, J Gen Physiol, 1935-36, 19, 109

³ Cf Hill, A V, Proc Roy Soc Lordon, Series B, 1936, 119, 305 (cf p 317)

stated above is more general than any so far given. Hitherto most workers have been interested in the formation of metallic deposits on the membrane surface, and have defined the phenomenon in terms of these. However, as will be shown, these deposits are not its only manifestations, and the above broader definition is needed.

Although many workers have experimented with this phenomenon, hitherto no one has applied quantitative methods to it,4 consequently such data as exist are of relatively little value. The present investigation was undertaken in order to obtain quantitative information on the efficiency of the process under varying conditions. Because of the very small amounts of material transformed, the difficulty of obtaining satisfactory results has been great, hence so far few data have been obtained. However, a method has been developed which, on further application, promises to give reliable quantitative results.

EXPERIMENTAL

The first experimental requirement for a quantitative study of this phenomenon is that the oxidation or reduction to be measured in the solution should take place only at the membrane surface. This means that the experiments must be per formed in a closed system in the absence of oxygen and hydrogen, that the solution be free from any other impurities which would tend to oxidize or reduce it and finally that the electrodes of the cell be not too near the membrane and that diffusion of solution from their neighborhood be minimized. Secondly, the membrane must be mert in the sense that it must not oxidize or reduce the solu tion without the passage of current. It should also be electrically stable : e. its resistance should not vary excessively during the course of an experiment Further it should not entrap products of the stenolysis which means that the membrane must be thin Since the potential gradient across it must be com paratively high to produce any oxidation or reduction the conductivity of the material used for making the membrane should be low with as high a break down potential as possible. Other general requirements for a suitable apparatus are that there should be, adjacent to the membrane, a small volume of solution, separable from the remainder of the solution in the cell which it is possible to

⁴There is a summary and bibliography in Freundlich II, Colloid and capillary chemistry, New York E P Dutton 3rd edition, 1926, 271 Also see Grot thuss Tv, Ann Phys u Chem 1819, 61, 65 Recent papers which emphasize especially the polar nature of the phenomenon are Lillie, R S, and Pond, S E, Am J Physiol 1922 63, 415, Guastalla, L, and Urbain, G Compt rend Acad 1934, 198, 1679, 1935, 201, 268 For a recent theoretical discussion of Söllner, K. Z Elektrochem, 1929 35, 789

analyze Provision must also be made for the easy and positive installation of the membrane in such a manner that, when in place, all of the current shall pass through, and none leak around it

The use of a potentiometric method of analysis was, from previous experience with colorimetric analysis, judged to be the best method for a determination of the amount of material transformed at the membrane. If, for example, in the ferrous-ferric oxidation, before and after a known quantity of current is passed, the potentials of the solution are measured against an inert platinum electrode, the change in ratio of reduced to oxidized ions can be calculated from the equation

$$E_h = E_0 - \frac{RT}{nF} \ln \frac{(\Gamma e^{++})}{(\Gamma e^{++})}$$

If the volume and concentration of the solution are known, the number of moles of material so changed per unit current may be computed. The solution to be used as an indicator must be in a reduced state for two reasons. first, to make sure of the absence of oxygen, and secondly, to take advantage of the slope of the $E_h vs$ (Reductant)/(Oxidant) curve, so that a small change in ratio may produce a large change in potential 5

The final form of the apparatus is shown in Fig 1 This cell and the earlier cells were designed with a view to the investigation of compounds which would form no deposit on the membrane The chamber B in this cell is equipped with three platinum wire electrodes, sealed into soft glass tubes, and contains also the terminus of a saturated calomel cell, connected to it by a ground joint and stopcock, which can be filled with oxygen-free potassium chloride solution from the reservoir One of the platinum electrodes is used, in conjunction with a similar one on the other side of the plate A, to measure the voltage drop across the The drop of potential in the centimembrane which is fastened on this plate meter of solution which separates them is negligible in comparison in B is kept stirred, while the potential measurements are in progress, by moist nitrogen bubbled into it through a tube at the base of the chamber, attached to the nitrogen supply and pump line The principal connection of this line is through the left-hand electrode, or cathode, chamber The glass springs make allowance for slight differences in the position of the cell when it is set up, they allow the connections to be readily resealed, and the ground joint of the calomel cell to be put together with very little strain The "square helix" used was found to be far more flexible than an ordinary helix The cell is tightly clamped at the cathode chamber only and loosely supported elsewhere mounted, it was found that it was impossible to eliminate strains sufficiently to prevent its cracking The large stop-cock, the core of which is shown enlarged (c), combines several simple cocks, thus facilitating the manipulation of the

⁵ See Clark, W. M., Studies on oxidation-reduction, I-X, Bull Hyg. Lab., U. S. P. H. S., No. 151, 1928

solution The reducing flash is two flasks in one the outer contains platinized asbestos and in this the reduction takes place, the inner one provided with a linea filter at the bottom, serves to store the solution out of contact with the platinized

asbestos To be able to increase the hydrogen pressure in the outer flask without blowing apart the joint it is sealed with Picein cement The flask is supported in position on a jack and is connected to the introgen and hydrogen lines with

flexible copper tubing (Bendix Aviation Corporation) sealed on to the glass tubes with de Khotinsky cement — This tubing was used in preference to rubber because of the noticeable diffusion of oxygen through the latter

For the measurement of the voltage drop across the membrane, a 40 volt potentiometer with 1/10 volt steps was used, the insertion of 80,000 ohms in the circuit minimized the possibility of error from electrolysis at these electrodes. The current which passed through the cell was measured with a milliammeter, and the oxidation-reduction potential with a Leeds and Northrup student potentiometer. This circuit contains two galvanometers, one, a small desk type, for the rapid voltage drop measurements and for the rough adjustment of the other, more sensitive one, used for the determination of oxidation-reduction potentials.

The most satisfactory membrane of several tried appeared to be that made from cellulose acetate A 1 to 3 per cent solution in acetone was spread on mercury and allowed to dry very slowly This gave a stable membrane of high resistance Its mean apparent thickness could be determined from the volume and concentration of the solution used, the area of the dry film, and the density of cellulose This type of membrane was used throughout these experiments was fastened to the cell with glyptal cement (General Electric Co) This was very satisfactory masmuch as it has excellent insulating properties and is entirely unaffected by the solution even after 10 days, provided, of course, it is allowed to dry thoroughly before use Solutions of 0.1 molal ferric chloride and ferrous ammonium sulfate were used A sample of the best grade of these salts obtainable was weighed out to 1 mg without further purification, for although impurities might influence the potential measured, this error would be virtually cancelled, as only the difference between two potentials is used in the calculations tanked hydrogen and nitrogen were effectively freed of oxygen, the former by passing it over hot platinized asbestos, the latter over hot copper Both gases were moistened, to reduce evaporation of the solutions, by bubbling through oxygen-free water The platinized asbestos used in the reducing flash was prepared by the ordinary method, and was washed with great care The platinum electrodes in B were cleaned by electrolysis in strong hydrochloric acid, washed in water, then in dilute ammonium hydroxide, and finally in water again could also be removed and heated to white heat

The solution, in the outer part of the reducing flask, was boiled at reduced pressure to free it and the flask from oxygen, hydrogen was introduced and the process repeated several times. A pressure of about 15 cm of mercury was applied to both inner and outer containers, and the flask shaken mechanically until the reduction was complete. The pressure on the inner flask was released and the solution forced through the filter up into it, enough pressure being maintained in the outer flask to support the solution therein. Nitrogen was then passed through it for 3 or 4 hours to remove dissolved hydrogen. With the reducing flask in place under the cell, the system was freed of oxygen by alternately evacuating with an oil pump and filling it with pure nitrogen. The cell

was then filled with solution and allowed to stand overnight to soak the membrane and to be certain of the absence of orygen (Its presence could be detected by a change of the potential of the solution) Saturated potassium chloride was run into the end of the calomel electrode, and while the solution was stirred measure ments of its oxidation reduction potential were made until the readings became constant. After the stop-cocks were properly adjusted, current was passed between the two platinum coils in the electrode vessels, its direction being such that oxidation took place in B Readings were made, as nearly simultaneously as possible, of the current, the voltage drop across the membrane, the time and the temperature. Cotton plugs inserted in the bores of the two large stop-cocks which lead to the electrode vessels and which were necessarily open during the passage of the current, reduced diffusion from these vessels to the vicinity of the membrane After a known interval of time, the current was shut off, these same two stop-cocks closed the cock in the vent above B opened, and the solution therein stirred The oxidation reduction potential was then measured until the readings became constant the constant value serving for the final reading of the first experiment and the initial reading for the second, which was carried out immediately

RESULTS

Fig 2 shows the results of some rather inaccurate colonmetric experiments on methylene blue The efficiency of the process in terms of equivalents oxidized per faraday passed, is plotted against the voltage drop per centimeter across the membrane Each symbol corresponds to a series of experiments. The broken line was drawn without regard to the points designated as belonging to the 3-21 or 3-27 series It would not be wise to attempt to draw definite conclusions from these data because of their uncertainty However, there does seem to be a minimum potential gradient necessary to oxidize the dve in the neighborhood of 6700 volts per centimeter. It will also be noticed that most of the above mentioned points (of the 3-21 and 3-27 series) show a relatively high efficiency, in these runs ferrous iron was present in small quantities If this greater efficiency is real, the iron seems to act as a catalyst for the oxidation This is of special interest in view of the rôle played by iron as oxidation catalyst in living tissues where it (or other similar elements) is invariably found. The most important and most certain conclusion which may be drawn is that methylene blue is subject to stenolytic decomposition. No organic molecule has previously been shown to be affected by this process

It was found that not only was the leuco-methylene blue oxidized, but that the insoluble methylene white base was often deposited on the surface of the membrane facing the anode

The results obtained by the use of the potentiometric method are all for the ferrous-ferric system The number of moles of ferrous ion oudized is given by the equation

$$E_h = E_0 - \frac{RT}{nF} \ln \frac{(\Gamma e^{++})}{(\Gamma e^{++})}$$

 E_h is the potential measured referred to the hydrogen electrode (The voltage of the calomel cell used was taken as +0.2458 at 25° C) E_0 is the normal oxidation-reduction potential, taken as +0.7434 at 25° C s R is the gas constant, T the absolute temperature, n the number of electrons involved in the change from one state to the other,

⁶ Popoff, S, and Kunz, A H, J Am Chem Soc, 1929, 51, 382

and F is the faraday constant. The number of moles of ferric ion present can be calculated by the following relation from the ratio (r) of the electrode equation, if the volume in cubic centimeters (v) of the solution in the chamber and its molal concentration (M) are known

$$\frac{m}{r+1} = \text{moles Fe}^{+++} \text{ where } m = \frac{vM}{1000}$$

Since E_{λ} was measured before and after the passage of the current through the membrane, the initial and final number of moles of ferric ion could be calculated. The difference between these quantities is the number of moles of ferrous ions oxidized to ferric The area under the time current curve was measured in order to evaluate the number of coulombs passed The ratio of the number of moles of Fe++ oxidized, to this quantity, gives the efficiency. The potential drop across the membrane was measured directly, the mean apparent thickness of the latter was calculated from its area, the volume and concentration of the solution used to make it, and the density of cellu lose acetate,-1 26 gm/cc The data of a typical experiment are given in Table I t is the time, I, the current in milliamperes, PD is the potential drop across the membrane in volts, E_1 and E_2 are the potentials of the two electrodes used to measure the oxidation. T is the temperature in degrees Centigrade. The solution used was 01 M FeCl2

In Table II the data obtained by this method are summarized, arranged in order of increasing voltage drop across the membrane. The majority of the experiments are not represented in the table, for as many as fifteen were made in one series. When the results were examined, it was found that the later experiments of each series seemed to be far more efficient than the earlier ones, irrespective of the potential across the membrane. After the first few experiments the effect increased with the time elapsed after the series was started, and with the total current passed during the series. These latter quantities are closely related. The curve was flat for the first few hours, then rose very steeply, and finally started to level off. A rough calculation showed that it would take about 8 hours for a ferric ion to be carried from the anode to the membrane, this time is decreased by the agitation of solution caused by the turning of stop-cocks, diffusion,

etc Apparently then, transference of the ferric ion formed at the anode through the membrane into the chamber where the analysis was

TABLE I

Experiment Q₁ of Table II Solution 0.1 M FeCl₂

	I	P.D	<i>E</i> ₁	E2	T
8 33	_		+0 2402	+0 2402	23 8
8 41			0 2402	0 2402	23 7
8 50	-		0 2402	0 2402	23 9
8 57			+0 2402	+0 2402	23 9
9 00	17 6	1 7			_
9 03	17 3	24			24 0
9 05	17 15	2 7			
9 07	17 1	28			
9 10	17 05	28			24 0
9 15	17 0	28			
9 20	17 0	2 7			24 0
9 25	17 0	2 7			
9 30	16 9	2 7			24 1
9 35	16 8	2 7			
9 40	16 8	2 7			24 0
9 45	16 8	2 7			
9 50	16 8	2 7			24 1
9 55	16 8	2 7			
10 00	16 75	2 7			
10 04			+0 2443	+0 2440	24 2
10 10			0 2440	0 2438	24 2
10 15		[0 2437	0 2436	24 1
10 21	_	- 1	0 2436	0 2435	24 1
10 30		-	0 2435	0 2435	24 1
10 40	-		+0 2435	+0 2435	24 2
Average	potential dro	p		5 33 × 10	70 volts

Average potential drop Thickness of membrane Potential drop/cm	2 70 volts 5 33 \times 10 ⁻⁴ cm 5 07 \times 10 ³ v /cm
No moles oxidized No faradays passed No moles oxidized/faraday	$\begin{array}{c} 1 \ 30 \times 10^{-8} \\ 6 \ 34 \times 10^{-4} \\ 2 \ 05 \times 10^{-5} \end{array}$

made was the cause of the anomalously great efficiency observed after the first experiments
After a time the ferric ions should enter the chamber B through the membrane at the same rate they leave it, this approach to equilibrium is observed in the "efficiency" time curve referred to above. On the basis of this reasoning, all runs after the first three were discarded. At the start of a series, transference across the membrane could not cause important errors because the solution on both sides was the same. The effect (in the opposite direction) of diffusion through the membrane was likewise minimized by the selection of only the first runs, and the rejection of runs in which the potential did not become rapidly constant. Runs were also discarded when the potentials of the two oxidation reduction electrodes differed by

TABLE II

Experiment No.	No faradays	No m les oxidized	No laradays	* 10 / cm. X 10 7	PD (Obs.)
P 1	4 44 × 10 ⁻⁴	0	0	1 27	11 9
P 2	4 92	0	0	1 45	13 2
T 2	1 99	43×10	2 16 × 10-	1 83	2 65
T 3	2 83	4 1	1 45	2 21	3 20
P 3	6 42	0	0	2 32	17 2
Ti	3 87	6.6	1 71	3 24	4 70
Q 1	6 34	13 0	2 05	S 07	2 70
Q 3	8 29	21 0	2 5	7 88	4 20
Q 2	8 44	15 0	18	8 03	4 30
Ŭ-4	2 24	30	[23	13 3	193
U 3	1 36	30	2 2	15 8	22 7
U 2	1 64	4 0	2 4	16 4	23 8

more than 0.1 mv, usually it was not possible to read any difference between them on the student potentiometer. The greatest accuracy is realized only when the order of magnitude of the number of moles of ferrous ion oxidized is the same as the number of moles of ferric ion present. If this condition is not fulfilled, one, or even two decimal places will be lost when the difference is taken between the initial and final values of the latter. Another error is caused by the too large volume (20 cc) of the chamber where the analysis is made, however, if this is reduced too far, the errors of diffusion and transference become much more important. The errors relative to the determination of the number of faradays, the average potential drop,

and the thickness of the membrane are negligible compared to those mentioned above

The data of Table II are plotted in Fig 3 which gives the efficiency of the process in terms of moles oxidized per faraday passed, against the potential drop per centimeter across the membrane. It seems from the shape of the curve that there is a minimum potential gradient below which no oxidation occurs, this minimum falls at about 2150 v/cm. Lillie and Pond4 estimated 2000 v/cm as the minimum at which they could effect any oxidation of ferrous ion at the surface of a rubber membrane. Considering the inaccuracies involved in the determination of the thickness of the membrane, this is excellent agreement. Whether the actual curve follows in detail the one in

the figure must be determined by further experiment, for not enough data are available to make this curve certain in every respect. Although no data are presented, and those available are of doubtful accuracy, there is some evidence that the efficiency begins to fall off above about 17,000 v/cm possibly falling again to zero in the neighborhood of 22,000 v/cm

Any extensive theoretical treatment of this subject, based on data at present available, must necessarily belong largely in the realm of speculation. Nevertheless, a few suggestions of possible mechanisms concerned in this reaction seem not inappropriate. First, the possibility that electrostenolysis is due to capillary-electrical fields, as Coehn⁷ suggested, seems remote, inasmuch as these fields become

⁷ Coehn, A, Z Elektrochen, 1898, 4, 501, Z physik Chem, 1898, 25, 651

negligible at the salt concentrations used In this connection it would be interesting to investigate the change in the effect with the concen-It is not beyond the range of possibility that an induced charge on the membrane, acting in conjunction with the relatively high velocity of the ions (approximately 1.3 cm /sec. at 2000 v /cm for ferrous ion) which pass through the membrane pores, would serve to discharge some of them, by some such hypothesis, the minimum potential could be explained, and, if it exists, probably also the maximum potential A study of the change of the efficiency and of the possibly more significant quantity, the minimum stenolytic potential, would show whether the membrane acts in some special capacity, or whether it merely serves to concentrate the ionic flow into several minute pores in which the stenolysis is effected On the basis of the agreement between the minimum stenolytic potential found in this investigation and that found by Lillie and Pond with a very different membrane, although this agreement may be purely coincidental, the tial found for methylene blue (6700 y /cm) is approximately correct. the difference between this value and that for iron indicates a variation of this quantity with the ion involved, most probably a connection not only between the size of the ion, but also its normal oxidation reduc tion potential

No purpose could be served by further speculation, since the main object of this paper has been to present a method, with sufficient data secured by its use to demonstrate its feasibility

SUMMARY

A quantitative method for the investigation of electrostenolysis has been developed Electrostenolysis is redefined in the light of the discovery that organic molecules are subject to it The experimental requirements for a quantitative study are enumerated, and the apparatus and procedure described

It is found that with ferrous and ferric ions and a cellulose acetate membrane, the potential drop across the membrane must be above about 2150 v/cm in order to effect any oxidation and reduction With the present apparatus and conditions the ratio of equivalents oxidized or reduced to faradays passing the membrane is low,— of the order of one to several thousand

CHANGES OF APPARENT IONIC MOBILITIES IN PROTOPLASM

II THE ACTION OF GUAIACOL AS AFFECTED BY pH

B₁ W J V OSTERHOUT

(From the Laboratories of The Rockefeller Institute for Medical Research)

(Accepted for publication September 21 1936)

Under the influence of guaiacol the PD of Valonia becomes more positive within 30 seconds' and the effect of the guaiacol ion appears to be much the same as that of the undissociated molecule. But after longer exposure (5 minutes or more) the cell seems to become sensitized to the guaiacol ion whose effect then appears to be much greater than that of the undissociated molecule

Fig 1 shows the P.D across the protoplasm of a ccll (impaled on a capillary¹) in sea water at pH 8.2. At the start it was slightly positive. On transferring to sea water at pH 6.4 there was practically no change in P.D.¹. On adding 0.01 M guaiacol (called for convenience HG) the PD became about 75 mv positive (the pH was kept³ at 6.4). When the pH was raised³ to 9.6 there was little change in PD although the concentration of the guaiacol ion (called for convenience G^-) was thereby raised³ from about 0.000007 M to about 0.0043 M

In Fig 1 we see that at pH 9 6 there is a tendency for the curve to rise. This is sometimes absent but in some cases it is much more pronounced than in Fig 1. (After a longer exposure to HG we see the opposite effect since a rise in pH then causes the curve to fall as in Fig 2.)

Positive means that the positive current tends to flow from the vacuole across the protoplasm to the sea water. The cells are usually slightly negative in the sea water but a slight positivity such as we see here seems to be without significance.

¹ Osterhout W J V J Gen Physiol 1936-37 20, 13

³ This is done by adding NaOH The technique and material were the same as in the previous paper ¹

⁴ See page 689

Lie 1 Photographic record showing effect of replacing servator at pH 6.4 by sea water + 0.01 M HG at pH 6.4 (where the concentration of the guincol ion is negligible). In sex water the cell was slightly positive. When the cell case lifted out of the servater the curve jumped up to I, the free grid of the vacuum

Tig 1 shows that when the cell is replaced in sea water (at pH 8 2) it recovers its original P D. This also happens when the pH of the sea water is 6 4. If the cell is not replaced in sea water the curve slowly rises and the P D may reach the original value 5 for convenience we speak of this as "recovery" but without implying that the cell returns to its original state (this has been discussed in a previous paper!)

Let us now see what happens after a longer exposure to HG (such observations were first made in 1931 by L R Blinks, who kindly tested the effect of guaiacol at the request of the writer). Fig. 2 shows a typical result. The cell, which had a PD at the start of 3 mv negative, was placed in HG 0.01 m at pH 6.4 for 300 seconds during which time the curve fell to 55 mv positive and then rose nearly to zero where it remained fairly steady. This is the condition shown in the figure at the start. The pH was then raised to 9.6 and the curve began to fall after approximately 2 seconds, which is hardly long enough to be regarded as a latent period.

tube amplifier, when it was placed in sea water $+0.01 \,\mathrm{M\,IIG}$ it jumped back again and after a latent period¹ of about 14 seconds began to descend. After it reached its lowest level the pH was raised to 9.6 which produced very little change Changing back to pH 6.4 left the P.D. practically unaltered

Time marks 5 seconds apart Temperature 22 C

The positive drop in this case was larger than the average reported in the previous paper ¹ The amount was quite variable in this lot of cells

Fig 2 Photographic record showing the effect of a rise in pH (and hence in the concentration of the guaiacol ion) on a cell of Valonia which had been previously exposed to sea water +0.01~M HG for 300 seconds during which time the p.D became about 50 my more positive than at the start and then returned to the original value

At the start of the curve shown in the figure the cell was in sea water at pH 6 4 containing 0 01 m guaiacol. When it was lifted out the curve jumped to the free grid (F) of the vacuum tube amplifier. When it was again placed in the same solution with its pH raised to 9 6 the curve began to descend after about 2 seconds

The fall in the first part of the curve (about 30 mv) may be attributed to the effect of the guaiacol ion on the outer protoplasmic surface, the remainder (after the letter E, amounting to 34 mv) may be due to other causes

Time marks 5 seconds apart Temperature 20°C

 $^{^5}$ This happens in sea water + 001 μ HG at pH 64 or 96 The "recovery" in this case is much slower than in sea water and is much more apt to be incomplete

116. 3 Reproduces approximately the curve shown in Fig 2 with a much smaller time scale and shows the subsequent behavior of the cell At 1 the cell was transferred from sea water containing 0 01 x guanacol at pII 64 to the same solution with the pH rused to 96 At 2 the pH was lowered to 64 and this alternation continued throughout the curve until at 8 the cell was placed in sea water Temperature 20°C

When the pH is lowered to 64 the curve rises $\,$ By changing the pH several times we obtain the effects shown in Fig. 3

It may be added that in these experiments there was as a rule no evidence of permanent injury ¹ The impaled cells lived on for several days after the experiment

DISCUSSION

The positive drop in Fig 2 coincides with the increase in the concentration of the guaiacol ion (G^-) from about 0 000007 M to about 0 00429 M due to the change in pH

The concentration of G^- was calculated as follows. According to Shedlovsky and Uhlig⁷ the pK of HG at 25°C is 10 1. Subtracting 0 375 for the ionic strength of sea water⁸ gives pK = 9725. Accordingly⁹ at pH 6 4 the degree of dissociation is 0 07 per cent and if the concentration of HG is 0 01 μ the concentration of G^- is 0 000007 μ . At pH 9 6 the degree of dissociation is 42 9 per cent and the concentration of G^- is 0 00429 μ .

During the first part of its course the form of the curve in Fig. 2 is just what we should expect if G^- had a high mobility and were brought suddenly in contact with the outer protoplasmic surface, ze there is little or no latent period and the curve is steep at first and gradually flattens out just as when an ion $(eg~K^+)^{10}$ which has a high mobility is applied to $Valonia^{11}$ or to Nitella~12

After becoming horizontalis the curve begins to descend again. It

- 6 If any sign of injury appeared the experiment was rejected
- ⁷ Shedlovsky T, and Uhlig, H H, J Gen Physiol, 1933-34, 17, 567
- 8 Jacques A. G J Gen Physiol , 1935-36, 19, 397
- ⁹ This is obtained by means of the formula pH = pK + $\log \frac{a}{1-a}$, where a is the degree of dissociation CI Clark, W M, The determination of hydrogen ions,
- Baltimore The Williams and Wilkins Company 3rd edition 1928, pp 15 and 677

 10 In the case of K+ the curve uses instead of falling because of the opposite
- charge on the ion
- ¹¹ Damon, E B, J Gen Physiol, 1932-33, 16, 375 Osterhout, W J V, J Gen Physiol 1936-37 20, 13 (Figs 8 and 9)
 - 12 Osterhout W J V J Gen Physiol , 1929-30 13, 715 (Fig 2)
- ¹³ In some cases the horizontal part of the curve is very short or in place of the horizontal part of the curve there is a gradual descent as if the second process had begun before the first was over
 In a few cases there was no indication of two

seems possible that this second descent is due to an alteration of the protoplasm by G^- somewhat analogous to that produced by undissociated HG $^{\rm I}$

If we adopt this as a working hypothesis for the time being and regard the first descent of the curve as the result of a change in diffusion potential due to the high mobility of G^- we can calculate the apparent mobility of G^- by means of Henderson's equation

This may be written (for 20°C)

$$PD = 58 \frac{(U_{I} - V_{I}) - (U_{II} - V_{II})}{(U_{I} + V_{I}) - (U_{II} + V_{II})} \log \frac{U_{I} + V_{I}}{U_{II} + V_{II}}$$

Since the concentration of H^+ is very small it may be neglected and then we have $U_I = U_{II}$ so that the equation becomes

$$PD = 58 \log \frac{U_I + V_I}{U_{II} + V_{II}}$$

where

$$U_{\rm I} = U_{\rm II} = C_{\rm Na} U_{\rm Na} + C_{\rm K} U_{\rm K}$$

= (0 488)(0 2) + (0 012)(20)
= 0 388

We also have (putting for convenience $V_{\rm Cl}=1$) at pH 96

$$V_{\rm I} = C_{\rm Cl} V_{\rm Cl} + C_{\rm G} V_{\rm G}$$
$$= (0.5)(1) + 0.00429 V_{\rm G}$$

and at pH 64

$$V_{\rm II} = (0.5)(1) + 0.000007 V_G$$

When a rise of pH from 64 to 96 causes a change of PD of 30 mv (as in the first descent of the curve in Fig 2) we have

$$30 = 58 \log \frac{0.338 + 0.5 + 0.00429 \, V_G}{0.338 + 0.5 + 0.000007 \, V_G}$$

whence $V_G = 450$

steps but the curve fell somewhat as in Fig 1 (perhaps because the exposure was too short)

Occasionally after the first descent of the curve we find instead of a short horizontal stretch a rise (as though recovery had begun) followed by a fall of the curve

14 Regarding the numerical values see Damon, E B, J Gen Physiol, 1932-33, 16, 375

We thus arrive at a very large value (450) for the apparent mobility of G^- (when that of Cl^- is taken as unity) which is the more surprising since it does not appear to exist after a brief exposure to HG^- . At that time G^- appears to have much the same mobility as Cl^- as shown by the fact that increasing the concentration of G^- does not increase the positive drop¹¹ (Fig. 1)—(It seems rather to have somewhat the opposite tendency, at least in some cases)

This raises the question whether the effect of pH on the first part of the positive drop in Fig 2 may be due to something else than a change in the apparent mobility of G⁻ (as is probably the case with the second part of the drop in the curve). It might be suggested, for example, that injury is responsible but injury would be expected to carry the PD toward zero rather than away from it

If we adopt as a working hypothesis the suggestion that exposure to HG increases the apparent mobility of G^- in the protoplasmic surface we may ask how this comes about. As stated in a former paper such great changes can hardly be due to alterations in partition coefficients or in formation of compounds in the protoplasm. It is more plausible to assume that they are the result of the formation of charged complexes

In conclusion it seems desirable to say something about "recovery" Recovery at pH 6.4 in sea water + HG, after a brief exposure, has been attributed to the penetration of undissociated HG producing on the inner protoplasmic surface much the same effect as on the outer but opposite in sign, so that the PD returns toward its normal value is

After the cell has been sensitized by a long exposure to HG and the concentration of G^- is then suddenly raised the change of PD occurs so quickly that we may ascribe the first drop in the curve to a change in diffusion potential at the outer non aqueous protoplasmic surface. This will tend to disappear as G^- penetrates and lowers the concentration gradient across the non aqueous layer at the protoplasmic surface. In consequence the curve would tend to rise and produce recovery

In addition to this phenomenon we have the positive drop following

 $^{^{15}}$ It was stated in a former paper that the positive drop was 280 mv at pH 64, and 262 at pH 82 (see Table I, p 16)

¹⁶ Of course if the pH in the protoplasm is higher than 6.4 there would be a corresponding change in the dissociation of HG

the horizontal stretch of the curve in Fig. 2. This may perhaps be due to alteration of the non-aqueous surface layer which brings about a change in the diffusion potential set up by organic ions in the aqueous layer of the protoplasm as they diffuse outward through the outer surface. When G^- reaches the inner protoplasmic surface and alters it there may be a corresponding change in the diffusion potential which will be opposite in sign because in this layer the organic ions are diffusing inward. This would tend to produce recovery

These are merely suggestions which must await further tests before any definite conclusion can be reached. The situation is complicated by other variables. For example we should expect ions to penetrate more slowly than undissociated molecules, 17 but on the other hand CO_2 would pass out rapidly when the pH of the sea water was raised and this would raise the pH of the protoplasm and consequently increase the concentration of G^- in the protoplasm. This might change the PD since the apparent mobility of G^- may not be the same in the inner and outer protoplasmic surfaces 18. Moreover the concentration gradient of G^- across the two protoplasmic surfaces would not be affected in the same way in both cases

It must be remembered that during the exposure to HG the apparent mobility of K^+ and of Na+, as well as that of G^- , appears to change so that a complicated set of variables is in play

In a former paper it was found that after a brief exposure recovery in sea water + HG was slower at pH 8 2 than at 6 4 but in the present experiments (with longer exposure) it was sometimes slower and sometimes more rapid at 9 6 than at 6 4. After an exposure of 5 minutes it was on the whole much slower at 9 6 and the degree of recovery was highly variable

It may be added that when the PD has become normal after recovery in sea water $+0.01 \, \mathrm{m} \, \mathrm{H}G$ at pH 6.4 or 9.6 (after long exposure) a change to normal sea water at pH 8.2 (containing no HG) usually has little or no effect on the PD. This may mean that the HG and G^- come out of the cell in such fashion as to affect both protoplasmic surfaces in much the same manner

Likewise after a brief exposure to HG recovery at pH 9 6 may bring

¹⁷ Osterhout, W J V, Ergebn Physiol, 1933, 35, 967, Bot Rev, 1936, 2, 283

¹⁸ Damon, E B , J Ger Pl ystol , 1931-32, 15, 525

the curve back to normal and it is then found that lowering the pH to 64 does not raise it above normal

SUMMARY

The normal PD across the protoplasm of Valonia macrophysa is about 10 mv negative (inwardly directed) On adding 0 01 m guaiacol to the sea water the PD becomes positive and then slowly returns approximately to the normal value

In many cases this behavior is not much affected by raising the pH and so increasing the concentration of the guaiacol ion but in other cases such an increase makes the PD somewhat more negative

But if we wait until the exposure to guaiacol has lasted 5 minutes (and the P.D. has returned to its normal value) before we raise the pH, the result is very different. The cell then behaves as though it had been sensitized to the action of the guaiacol ion which appears to be far more effective than undissociated guaiacol in making the PD more positive. This may be due in part to the high apparent mobility of the guaiacol ion and in part to alterations which it produces in the protoplasm (such alterations increase the PD across the protoplasm whereas ordinary injury would be expected to lower it and the cells live on after this treatment and show no signs of injury)

This action of the guaiacol ion is in marked contrast to the behavior of other anions whose effect resembles that of Cl-

POLARIZATION STUDIES IN COLLODION MEMBRANES AND IN SYNTHETIC PROTEIN-LIPOID MEMBRANES*

By MONA SPIEGEL-ADOLF

(From the Department of Colloid Chemistry, D. J. McCarthy Foundation, Temple University School of Medicine, Philadelphia)

(Accepted for publication, October 31, 1936)

While investigating the polarization of brain tissue (1) adequate tissue models became desirable. Some experiments along this line have been published before (2) with the method used for measuring the polarization.

The method consisted briefly in measuring the conductivity of a membrane at various frequencies (560–5000 cycles). For this purpose the membrane was inserted in a three cell apparatus which was filled with a salt solution. In case of polarization of the membrane there is a difference between the conductivity at high and at low frequency. This difference expressed in percentage of the conductivity at low frequency (Δ) has been used as a measure of polarization. The determinations of Δ require exact minimum positions on the bridge. These can be much more quickly determined than the exact capacity necessary for absolute silence. Therefore when studying experimental changes on living brain the former method seemed preferable. To make direct comparisons possible the same method has been used here A mica decade condenser was used to determine the parallel capacities necessary to obtain a distinct minimum on the bridge

The experiments reported here deal mainly with three problems methods of preparing polarizable collodion membranes of low resistance and some of their properties, relations between polarization and permeability, methods of building a synthetic protein lipoid membrane which shows polarization, and its reaction to different substances

^{*} Parts of this paper have been presented before the meeting of the Federation of American Societies for Experimental Biology, at Washington, D C, March 26, 1936

I

It has been reported previously (2) that addition of lipoids to collodion causes polarizability in membranes, while membranes made under similar conditions from pure collodion are not polarizable. No explanation has been offered up to this time, but at least three possible interpretations have commanded consideration specific effects of

TABLE 1*

Influence of Holes on the Polarization of Lecithin-Collodion Membranes (I) and

Pure Collodion (II) Membranes

	Lecithin-collodion						Collodion	
No of holes	Kim 10-4	С	Kion 10-4	С	Δ	Kim 10-4	Kers 10-4	Δ
					per cent			per cent
0	4 50	0 066	8 28	0 014	84	3 62	7 94	119 3
i	5 21	0 05	8 31	0 013	59 5			
2	5 87	0 036	8 59	0 010	46 4	7 62	11 28	48 5
3	6 85	0 023	8 80	0 008	28 4			
4	7 22	0 029	9 18	0 010	27 1	13 80	16 20	17 7
5	7 46	0 027	9 16	0 011	22 8	17 38	19 22	12 9
6	7 70	0 027	9 42	0 009	22 3	21 52	23 04	7 2
7	7 83	0 025	9 44	0 008	20 6	25 24	26 52	5
12						30 76	32 22	48
29		0 015		0 005	12 0	42 12	42 84	1 7
No mem-	}		}			}	}	
brane	-		-			90 96	90 96	0

^{*} In all the tables, K = specific conductivity,

Indices 560 and 5000 = frequencies in cycles,

$$\Delta = \frac{K_{8000} - K_{860}}{K_{860}} 100,$$

 $C = \text{capacity in } \mu F$

lipoids, changes in the degree of dispersion, and displacement of the solvent. Therefore, the following experiments were undertaken

The specific action of lecithin for inducing polarizability can be interpreted as due to a formation of a continuous thin layer with high polarizability, as recently suggested by Bungenberg and Bonner (3). In order to test this assumption, a wire of 0.012 inch diameter was used to punch holes consecutively into a polarizable lipoid-collodion membrane. If the polarizability is due to the intactness of the lecithin

film, an impairment of the film must destroy the polarizability. The results of such a series of experiments are summarized in Table I. The figures indicate that interruptions of the continuity of the membrane only partly destroy the polarization of a lecithin collodion membrane. The decrease is marked after the first 3 holes. Nevertheless, the decrease does not run parallel to the number of holes. In fact, from the 5 to 7th hole the polarizability remains nearly stable and 22 more holes are required to reduce it again by half. The total area of the holes amounts to about 16 sq. mm., while the surface of

TABLE II
Influence of Various Substances on the Polarizability of Collodion Membranes

Dry ing time	Material of membranes	Kın	10-4	6	,	K 1000	10-	,	.	Δ	_
อาไท										per cen	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
60	Pure collodion (Merck)	17	20	0	005	17	20	lo	001	0	
	Collodion Merck 2 per cent egg lecithin	11	7	0	025	12	4	0	005	14	2
	USP 2 per cent mastix	23	0	0	005	23	1	<0	001	0	
	Merck 5 per cent olive oil	8	68	0	012	9	24	0	009	6	2
75	Pure collodion USP	22	8	<0	001	22	8	 <0	001	0	
	U.S.P. 2 per cent gum benzoin	5	65	0	080	10	90	0	025	92	9
	USP, 2 per cent mastix	1	54	0	020	1	58	0	010	2	9
90	Pure collodion U S P	20	4	<0	001	20	4	<0	001	0	
	Collodion USP 2 per cent camphor	6	27	<0	001	6	27	<0	001	0	
t	USP 1 per cent cholesterm	23	0	0	010	23	0	0	010	0	
	USP 2 per cent mastix	1	39	0	027	1	77	0	010	27	б

the membrane is about 452 sq mm. In view of these results it does not seem probable that the entire polarization of the lipoid collodion membrane depends upon the existence of a continuous lecithin film. This opinion gains additional support through the fact that a polarizable membrane of pure collodion shows almost a similar behavior when submitted to the same treatment.

In view of a former observation (2) and of the recent investigations of Fricke and Curtis (4), changes in the degree of dispersion of the membrane colloids had to be considered as possible causes of polariz

ability No direct proof to the contrary can be given, but there are some facts that make this assumption improbable, at least, for the range of frequencies used

It was shown before (2) that it was not possible to produce polarizability by adding phosphatides to gelatin membranes. Neither were attempts successful to induce polarizability in collodion membranes by introducing other colloids, e.g. proteins. Finally it could be shown that lecithin sol containing the same amount of lipoid as the polarizable lecithin-collodion membrane, when placed in the middle cell of a three cell apparatus between two parchment membranes, did not show differences in conductivity when measured at different frequencies of the alternating current (Table VIA)

Experiments were begun in order to determine whether the action of the lipoids in rendering collodion polarizable was due to their action on one of the solvents of the collodion. Alcohol and ether are contained in both Merck collodion and USP collodion. Since cephalin effects the polarizability of membranes quantitatively in the same way as lecithin and since it is insoluble in alcohol, its effect upon the ether was considered. The permeability of collodion membranes depends largely upon the ratio between ether and alcohol (5) and therefore, experiments were started in order to ascertain if additions of ethersoluble, non-volatile substances would act on the polarizability in the same way as lipoids (Table II)

The results summarized in Table II show that substances of different chemical character, such as olive oil, mastix, and gum benzoin when added to collodion are able to induce polarizability. Camphor and cholesterin which separate from solution when the collodion membranes solidify do not have this effect, or only to a very small degree. These results seem to support the view that the influence of the addition of lipoids to collodion is upon the solvent.

Through the information gained by these experiments the preparation of membranes of low resistance and marked polarizability is greatly incilitated. Nevertheless, this introduction of other substances into the collodion complicates the understanding of the mechanism underlying polarizability.

Experiments were therefore started with the purpose of intercepting an intermediate between the wet and the dry stages in the preparation

of collodion membranes Wilbrandt (6) has given evidence that there is a steady transition from highly permeable wet to completely dried membranes The dry collodion membranes which have been

TABLE III

Effects of Drying under Pressure on Resistance and Polarizability of Collodion
Membranes

(Apparatus filled with 0 02 n KCl, capacitance = 0.4 resistance of apparatus without membranes = 165 ohm = R_0 C_{660} = 0.015, C_{6000} <0.001)

Total time	Dried only		Δ	Dried for 1 hr and pre- rest of time	ssed for	Δ
	ĸ	R-R		X	R-Rs	
			per cent			per cens
1 hr 30 mm	At 560 cycles 1 90 10 ⁻³	43	0	At 560 cycles 1 28 10-2		
	C <0 001			C = 0.014	132	58
	At 5000 cycles			At 5000 cycles		
	1 92 10-1	1		1.35 10-1	1	!
	C < 0 001	1 :		$C \sim 0.007$		l
	At 560 cycles	ł	1	1	}	ł
1 hr 35 min	1 10 10-1				1	
	C = 0.020		59	_		-
	At 5000 cycles	l :			1	!
	1 74 10 ⁻⁴ C = 0 010					
		1		At 560 cycles	1	İ
1 hr 45 min.	1			6.36 10-4	407	10 1
	ì	Ì		C = 0.014	İ	ŀ
	Not measurab	le on	[At 5000 cycles	[ļ
	account of h	igh	[7 00 10-4	[
	resistance	i	ĺ	C = 0.007	ĺ	1
	İ	-		At 560 cycles	i ·	İ
2 hrs	j		,	4 04 10-4	ŀ	}
)			C = 0.100	498	496
	1			At 5000 cycles		!
	1		ļ	6 04 10-4	j	j
	1		[C = 0.020	1	}

thoroughly investigated by Michaelis (7) and Northrop (8) are not adapted to the kind of investigations intended. Although it was possible to duplicate the results found by Rein (9) with membranes made according to Michaelis by directly measuring the membrane potential, the conductivity method which is successful in tissue measurements failed. This failure is probably due to the high resistance of the membrane. Michaelis (10) using the data of Fricke (11) and McClendon (12) came to the conclusion that the membranes of red blood cells have little permeability. However, the aim of this investigation was only to find models comparable to brain tissue in polarizability. After several attempts the following method was used 10 cc of collodion were allowed to fill a glass dish of 39 8 sq cm. After 60 minutes drying at room temperature the adherent membrane

TABLE IV

Influence of Electrolytes on Polarization

Electrolytes	Non pola	rızable membrane		Polan	zable membrane	
15 ophoretic with 0 02 v LCl	K } 560	K 35000	Δ	K 3560	K } 5000	Δ
			per cent			fer cent
KCl	2 82 10-3	2 82 10-3	0	1 75 10-3	2 01 10-3	15 0
	$C \approx 0.001$	C = 0.001		C = 0.050	C=0.015	1
HCl	2 91 10-3	2 91 10-2	0	1 74 10-3	2 02 10-3	16 4
	C = 0.01	C = 0.001		C = 0.014	C = 0.006	
MgCl ₂	2 82 10-3	2 82 10-1	0	8 24 10-4	1 08 10-1	29 9
-	C < 0 001	C < 0 001		C = 0.054	C = 0.013	1
La(VO):	1 13 10-2	1 13 10-3	0	5 54 10-4	7 48 10-4	35 1
	C < 0 001	C < 0 001		C = 0.04	C = 0.008	

was detached from its glass support and pressed for varying intervals of time between sheets of filter paper under a pressure of 50 gm /sq cm. The results are summarized in Table III

USP collodion and Merck collodion behaved in practically the same way. The results show that the membranes made as described above are of moderate resistance and high polarizability. Furthermore, the superiority of this method over that of complete drying is evident. These "medium" dry collodion membranes show towards electrolytes many of the particular features of dry collodion membranes and living tissue. Their polarizability is increased when in coullibrium with isophoretic salt solutions of bi- and trivalent cations

or with HCl, but is decreased by isophoretic NaOH, collodion mem branes containing the same amount of collodion but showing no polarizability are apparently uninfluenced by the higher valency of the ions or by the acidity of the solution (Table IV)

Ħ

As the resistances of the polarizable membranes were in every comparable instance higher than the resistances of non polarizable membranes, it was natural to assume that they were less permeable for electrolytes than the non polarizable membranes. Under this as sumption polarizability has previously (1-2) been used as a measure

TABLE V

Permeability and Polari ation

Time	1 per cent lecit	hin-collodion membrane Δ = 0	4 per cent lecithin-collodion membrane Δ ≈ 29 5
hes	-		
0	1 11 10	* reciprocal ohm	6 4 10-4 reciprocal ohm
1	8 40 10		1 33 10-4
2	1 98 10	4 " '	2 11 10-4
4	2 24 10	4 1 1	2 20 10-5 "
22 5	8 00 10	4 (1	4 80 10-5 "
48	11 4 10	4 (7 90 10-

of permeability — In order to ascertain this fact in a quantitative way, the following experiments were started

Two collodion membranes were made in exactly the same way, both containing the same amount of collodion, but different quantities of egg leathin, namely the first 1 per cent and the second 4 per cent. The respective resistances were 480Ω and 635Ω when measured in 0 02 n KCl. After a similar exposure to $CaCl_2\,\Delta$ was 0 and 29 5 per cent respectively. Each of the membranes was then inserted into a three cell apparatus. On one side of the membrane there was 0 02 n KCl and the compartment on the other side of the membrane was filled with distilled water. At frequent intervals the electric conductivity of samples of the water were measured. The results of this experiment are summarized in Table V, indicating that the perme-

ability of the membrane showing polarization was approximately only one-fifteenth of that of the non-polarizable membrane

Another clue as to a relationship between permeability and polarization can be found in the behavior of a single membrane (Table VI), upon ageing

III

For the studies of some physicochemical problems the collodion membranes described above proved to be adequate tissue models But their shortcomings became manifest when the influence of biologically active substances was investigated. Therefore, the attempt was made to build up polarizable membranes in which the reactive

TABLE VI
Ageing of a 4 Per Cent Lecithin-Collodion Membrane

	Condu	ctivity apparat	us filled with 0 0	N KCI	Resistance of	
Time	Kin 10-1	С	K1000 10-1	С	membrane	Δ
days					ohms	per cent
0	4 99	0 06	6 46	0 025	636 6	29 5
3	7 32	0 025	7 95	0 011	381 5	86
6	10 91	0 017	11 28	0 008	202 6	3 4

parts consisted solely of substances occurring in animal and human tissues

No such investigations have so far been successful. Fricke and Curtis (4) could not find polarization in a solution of gelatin, and Abramson and Gray (13) were unable to detect changes in permeability in collodion membranes containing up to 50 per cent lecithin

Therefore, the problem was attacked from different angles. In the first series of investigations collodion was used as a supporting medium, and different proteins (serum, egg albumin) were introduced into it in the same way as in the membranes used in electrodialysis by Ettisch and Ewig (14). By thoroughly shaking (2 hours on a shaking machine) a certain homogeneity was reached. The membranes were dried in such a way that pure collodion under similar treatment would not yield a polarizable membrane. No trace of polarizability could be

TABLE VI A

Unsuccessful Attempts to Render Membranes Polars able by Introducing Biological

Colloids or to Build Membranes with These Colloids

Blood albumin 0 2 gm shaken in 10 ml col lodion dried for 60 min 1 94 <0 001 1 94 <0 001 0	Supporting material	Introduced material	Ksee 10-1	С	Ks∞ 10-3	С	Δ
Shaken in 10 ml col lodion dried for 60 min min ml col min ml col min ml col min ml col min ml col min ml col 2 per cent blood albumin in collodion mechan ically shaken for 60 min ml col n ml col	Collection	Blood albumin 02 cm					
Min	Collodioa		i		1 1		Ì
As above, treated for 10 min with 0 2 N CaCl; 2 06 <0 001 2 06 <0 001 0 2 per cent blood albumin in collodion mechan ically shaken for 60 min, im 0 0 2 N KCl As above in 0 01 N HCl As above in 0 01 N HCl As above in 0 01 N KOH		lodion dried for 60			1 1		}
min with 0 02 N CaCl; 2 06			1 94	<0 001	1 94	<0 001	0
2 per cent blood albumm 1 collodion mechan 1 cally shaken for 60 mm , m 002 n kCl 1 78 0 004 1 78 0 001 0 0 0 0 0 0 0 0	•				0.00	40.004) .
In collodion mechan ically shaken for 60 min , in 002 N kCl 1 46 <0 001 1 46 <0 001 0 As above in 0 01 N KI 1 78 0 004 1 78 <0 001 0 As above in 0 01 N KI 1 78 0 004 1 78 <0 001 0 As above in 0 01 N KI 1 78 0 004 1 78 <0 001 0 As above in 0 01 N KI 2 69 0 005 2 69 <0 001 0 As above electrodia lyzed for 40 min Egg albumin 2 per cent in collodion mechan ically shaken for 3 hrs dired for 60 min 2 31 <0 001 2 31 <0 001 0 30 per cent gela time egg albumin 2 03 <0 001 2 03 <0 001 0 As above after elec trodialysis 3 55 <0 001 3 55 <0 001 0 Solid gelatin Treated 24 hrs with form aldehyde pressed 0 02 N KCl + form aldehyde ressed for 2 hrs 0 02 N KCl + form aldehyde 1 gm casein in 5 ml 0 1 N N30H spread 3 days in 10 per cent formaldehyde 2 00 0 010 2 56 0 001 0 Filter paper 1 gm casein in 5 ml 0 1 N N30H spread 3 days in 10 per cent formaldehyde 2 56 0 010 2 56 0 001 0 0 Farchment paper Eleween two membranes 2 per cent lecithin solu tion in 0 02 N KCl 1 31 <0 001 1 31 <0 001 0 0 0 0 0 0 0 0	4		2 06	<0.001	2 00	<0.001	} "
1 1 1 1 1 1 1 1 1 1	,			İ	1		!
mn , in 0 0 2 N KCl			1		'		
As above in 001 N NaOH As above electrodia lyzed for 40 min Egg albumin 2 per cent in collodion mechan ically shaken for 3 hrs dired for 60 min As above after electrodiallysis Solid gelatin As above after electrodiallysis Treated 24 hrs with form aldehyde pressed for 2 hrs 0 02 n KCl + form aldehyde pressed for 2 hrs 0 02 n KCl + formaldehyde Filter paper Tilter paper As above in 0 01 N NaOH spread 3 days in 10 per cent formaldehyde for 2 hrs 0 02 n KCl + formaldehyde for 2 hrs 0 02 n			1 46	<0 001	1 46	<0 001	0
NaOH		As above in 0 01 N HCl	1 78	0 004	1 78	<0 001	0
As above electrodia lyzed for 40 min Egg albumn 2 per cent in collodion mechan ically shaken for 3 hrs dried for 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent tent dendror 60 min 2 per cent dendror 60 min 60 m		1					
Seed for 40 min Egg albumin 2 per cent in collodion mechan ically shaken for 3 hrs dired for 60 min 2 2 31 <0 001 2 31 <0 001 0	,		2 69	0 003	2 69	<0 001	0
Egg albumin 2 per cent in collodion mechan ically shaken for 3 hrs driedfor 60 min 1 71 <0 001 1 71 <0 001 0	•		2 21	-n m	2 21	-0 mi	
In collodion mechan In collodion mechan In collodion mechan In collodion mechan In collodion mechan In collodion mechan In collodion mechan In collodion mechan In collodion mechan In collodion I			1 - 31	\ \0 001	2 31	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ľ
hrs driedfor 60 min 2 per cent heat denatured egg albumn 2 03 <0 001 2 03 <0 001 0			ĺ	{	1	(ĺ
30 per cent gela tin		scally shaken for 3	(ĺ	f '		ĺ
tin As above As above after elec trodulysis Solid gelatin Treated 24 hrs with form aldehyde pressed 0 02 N KCl + form aldehyde Treated with 36 per cent formaldehyde pressed for 2 hrs 0 02 N KCl + formaldehyde 1 gm casein in 5 ml 0 l N NaOH spread 3 days in 10 per cent formaldehyde As above in 0 02 N KCl As above in 0 0) -	,	<0 001	1 71	< 0 001	0
As above As above after elec trodulysis Solid gelatin Treated 24 hrs with form aldehyde pressed 0 02 n KCl + form aldehyde pressed for 2 hrs 0 02 n KCl + formaldehyde pressed for 2 hrs 0 02 n KCl + formaldehyde pressed for 2 hrs 0 02 n KCl + formaldehyde pressed for 2 hrs 0 02 n KCl + formaldehyde Filter paper I gm casein in 5 ml 0 1 n NaOH spread 3 days in 10 per cent formaldehyde As above in 0 012 n HCl 2 56 0 001 2 56 0 001 0 As above in 0 02 n KCl 2 3 85 0 010 3 85 0 001 0 Parchment paper Parchment paper Between two membranes 2 per cent lecithin solution in 0 02 n KCl 1 1 31 <0 001 1 31 <0 001 0 No difference in conductivity at low and high frequencies detectable Capacity at both frequencies 0 001 until n = 0 028 At highest concentration							١ ـ
Solid gelatin			2 03	<0.001	2 03	<0 001	יי
Treated 24 hrs with form aldehyde pressed 0 02 N KCl + form aldehyde pressed for 2 hrs 0 02 N KCl + form aldehyde pressed for 2 hrs 0 02 N KCl + formaldehyde pressed 1 41 <0 001 1 41 <0 001 0	As above		3 55	<0.001	3 55	<0.00t	i n
aldehyde pressed 0 02 × KCl + form aldehyde 7 Treated with 36 per cent formaldehyde pressed for 2 hrs 0 02 × KCl + formaldehyde 1 gm casen in 5 ml 0 l N NaOH spread 3 days in 10 per cent formaldehyde 1 m NaOH spread 3 days in 10 per cent formaldehyde 1 As above in 0 012 × HCl 2 56 0 001 0 2 56 0 001 0 As above in 0 012 × CaCl ₂ Service 1 2 per cent lecithin solution in 0 02 × CaCl ₃ As above in 0 02 × CaCl ₄ Service 1 2 per cent lecithin solution in 0 02 × CaCl ₅ Service 1 1 31 0 001 1 31 0 001 0 000 000 000 0	Solid gelatin		1 55	1 00.	1 000	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ľ
aldehyde Treated with 36 per cent formaldehyde pressed for 2 hrs 0 02 N KCl + formaldehyde 1 gm casein in 5 ml 0 l N NaOH spread 3 days in 10 per cent formaldehyde 2 00 0 010 2 00 0 001 0 3 85 0 001 0 3 8			ţ	į.	()		į
3 gm gelatin Treated with 36 per cent formaldehyde pressed for 2 hrs 0 02 n kCl + formaldehyde Filter paper 1 gm casein in 5 ml 0 1 n NaOH spread 3 days in 10 per cent formaldehyde As above in 0 012 n HCl As above in 0 02 n CaCl; Parchment paper Between two membranes 2 per cent lecithin solution in 0 02 n KCl As above in CaCl; of 0 005-0 068 n No difference in conductivity at low and high frequences detectable Capacity at both frequences <0 001 until n = 0 028 At highest concentration			1	i	1	[i
Filter paper formaldehyde for 2 hrs 0 02 n KCl			2 18	<0 001	2 18	<0 001	0
Filter paper for 2 hrs 0 02 N KCl	3 gm gelatin		ł	}	{	ì	}
Filter paper + formaldehyde 1 gm casein in 5 ml 0 l N NaOH spread 3 days in 10 per cent formaldehyde 2 00 0 010 2 00 0 001 0 0 As above in 0 012 N HCl As above in 0 002 N CaCl; 2 56 0 010 3 85 0 001 0 Between two membranes 2 per cent lecithin solution in 0 02 N KCl As above in CaCl; of 0 005-0 068 N No difference in conductivity at low and high frequencies detectable Capacity at both frequencies <0 001 until N = 0 028 At highest concentration			ł	}	}	1	}
Filter paper 1 gm casein in 5 ml 0 1			1 41	<0.001	1 41	<0.001	0
days in 10 per cent formaldehyde 2 00 0 010 2 00 0 001 0	Filter paper]]	j
formaldehyde 2 00 0 010 2 00 0 001 0 0 0 0 0 0 0			ļ	1)	j
As above in 0 012 N HCl As above in 0 02 N CaCl ₂ 2 56 0 010 2 56 0 001 0 2 56 0 001 0 2 56 0 001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				l			} .
As above in 0 02 N CaCl ₂ 3 85 0 010 3 85 0 001 0	·			,	,		1 -
Parchment paper 2 per cent lecithin solution in 0 02 N KCl As above in CaCl ₂ of 0 005-0 068 N No difference in conductivity at low and high frequencies detectable Capacity at low frequences <0 001 until N = 0 028 At highest concentration							
tion in 0 02 N KCl As above in CaCl ₂ of 0 005-0 068 N No difference in conductivity at low and high frequencies detectable Capacity at both frequencies <0 001 until N = 0 028 At highest concentration	Parchment paper			1	1 0 05	0 001	, ,
As above in CaCl; of 0005-0068 N No difference in conductivity at low and high frequencies detectable Capacity at both frequencies <0001 until N = 0028 At highest concentration]	Ì])	}
0 005-0 068 N No difference in conductivity at low and high frequences detectable. Capac ity at both frequences <0 001 until N = 0028. At highest concentration			1 31	<0.001	1 31	<0 001	0
high frequencies detectable Capac ity at both frequencies <0 001 until N = 0 028 At highest concentration				ļ	Ι,		Ι.
ity at both frequencies <0 001 until N = 0 028 At highest concentration		0 002-0 008 K					
N = 0 028 At highest concentration		}					
,							
C560 = 0.02, C5000 = <0.001		{	1				

detected in these protein-collodion membranes even when treated with CaCl₂, HCl, or NaOH or electrodialyzed

In the second series of investigations gelatin was used for preparing membranes or as a medium for blood proteins, genuine or heat-denatured. It has been mentioned previously that 20 per cent gelatin membranes treated according to Collander (15) with 10 per cent formaldehy de and containing up to 2 per cent lipoids were not polarizable. These results could not be modified by using a thicker gelatin membrane, a membrane containing less water, or one hardened ultimately in 36 per cent formaldehy de. Formaldehy de was added to the fluid used in the conductivity measurements. Furthermore, a membrane consisting of a homogeneous layer formed by a concentrated solution of sodium cascinate on filter paper, did not show any polarizability even when treated with HCl or formaldehy de (Table VIA)

On account of these numerous failures, a fundamental change in the method of preparing the membranes was advisable

It is well known that certain colloids are adsorbed on surfaces, this process being sometimes followed by reversible or irreversible denaturation as in the case of proteins (16) Experiments were instituted in which protein (egg albumin) was adsorbed on the sintered glass plate of a Jena glass crucible Sintered glass crucibles No 3 and No 4 were used in which the sizes of the pores were, according to the manufacturers, respectively 20–30 μ and 5–10 μ

In preliminary experiments it was shown that the insertion of a sintered glass plate into the pathway of an alternating current did not lead to polarization after the whole system had been filled with 0.1 x KCl

With suction a 1 per cent solution of egg albumin was filtered through the glass plate. The filtration rate decreased very soon. In one experiment the interval between two drops was 720/5 seconds after 30 minutes, 1310/5 seconds after 1 hour and 20 minutes, practically nothing for the protein solution as well as for distilled water after 2 more hours.

In order to measure the polarizability of such a prepared filter plate, the following apparatus v as devised. A wire gauze platinum electrode (diameter = 20 mm) v as introduced into a funnel in such a v.ay that the electrode plate "as tightly fixed in a position parallel to the glass

plate of the crucible The funnel was then filled to the brim with 0.1 N KCl The crucible was inserted tightly into the funnel with the help of a rubber band. In order to exclude air bubbles, the bottom of the crucible had been filled previously with a 10 per cent gelatin solution containing 0.1 N KCl. The crucible itself was filled with 0.1 N KCl, and an electrode similar to the one described was immersed in the crucible. A clamp held the electrode fixed so that its plate remained parallel to the first electrode and to the glass plate. The distance between the plates was 30 mm. The conductivity of such a system was about 1.45 10-2 reciprocal ohm. No trace of polarization could be detected with the usual conductivity measurements.

These experiments were repeated with different proteins, serum albumin, and casein, and with samples of these proteins acidified to increase the adsorption or treated with absolute alcohol or heat congulated Still no polarization of the filter plate was obtained

Furthermore, it was not possible to render the sintered glass plate polarizable by treatment with colloid aqueous lecithin solutions or with alcoholic lecithin solutions, even if it was allowed to remain in the crucible for 12 hours. Even under the coagulating influence of HCl, CaCl₂ or La(NO₁), it was impossible to cause a noteworthy choking of the glass plate (Table VI B)

Finally experiments were begun in which biological conditions were imitated by using membranes containing both proteins and lipoids. Sintered glass plates prepared with egg albumin in the manner already described were treated with alcoholic egg lecithin solutions. The crucibles were filled with 0.1 n KCl and allowed to stand for 12 hours. After this time, measurements of the conductivity disclosed a decided increase in resistance and capacitance and a definite polarization of the plate, corresponding to a Δ of 5.8 per cent

The difference in pore size of the original sintered glass plate seemed to be of no importance

Confirmation of these results was sought by a different method According to Loeb (17), every impediment to the movement of an ion calls forth a potential difference. To test in this respect the action of the original glass plate and one containing adsorbed protein and lipoid, measurements of potential across those plates were made Since direct current was to be used, non polarizable silver silver

chloride electrodes prepared according to Langelaan (18) replaced the platinum electrodes, and the crucible containing one of the electrodes was fixed with a clamp and dipped into a glass vessel which contained the other electrode. The crucible and the glass vessel were filled with 01 n KCl. The air bubble under the crucible was removed by aspiration. A compensation box and a string galvanometer as zero-point instrument were used in measuring the potential necessary to

TABLE VI B
Various Agents Which Did not Render the Sintered Glass Plate Polarizable

Adsorbed material	Conductivity at 560 cycles	c	Conductivity at 5000 cycles	С	Δ
I egg albumin II " " I after heating to 100°	4 82 10 ⁻³ 1 53 10 ⁻³ 4 42 10 ⁻³	0 005 0 005	4 82 10 ⁻³ 1 53 10 ⁻³ 4 42 10 ⁻³	0 001	0 0 0
I + HCl II treated vith alcohol	7 23 10-3	<0 001	7 23 10-3	<0 001	0
Casein in NaOH neutralized on filter plate As above, treated with formalde-	1 27 10-3	<0 001	1 27 10~3	<0 001	0
hyde Casein in HCl	5 43 10-4	<0 001	5 43 10-4	<0 001	0
Casein in HCl treated with alcohol Serum albumin	2 28 10 ⁻³ 1 45 10 ⁻³	<0 001 <0 001	2 28 10 ⁻³ 1 45 10 ⁻³	<0 001	0
Legithin in aqueous solution Same as above + 0.1 \ CaCl ₂ Legithin solution + 0.02 \ La(\O ₁) ₁		ging of gla			
Lecitlun solution + 0 006 · HCl Alcohol e lecitlun solution	6 03 10-4	0 002	6 03 10~1	<0 001	0

compensate that of the system—The results of a series of investigations are summarized in Table VII, indicating that the potential called forth by the protein-lipoid-glass membrane amounts to 4 mv

These results confirm the results obtained by the measurements of the Δ and point to the usefulness of the latter method

With crucibles prepared in the aforesaid way, some experiments of basic interest for biological problems were made

Inc KCl was replaced by other solutions of the same normality

The Δ was measured after equilibrium had been reached. The results are summarized in Table VIII. According to these figures, the polarization is much increased if potassium is replaced by magnesium. The narcotic effects of magnesium salts are as well known as their precipitating effect upon lecithin sol which is used for analytical

TABLE VII

Polarization of a Protein Lipoid-Glass Filter Plate

	Ag AgCl-electrodes		Platic	stinum electrodes		
	Gaiva nometer readings	mv	Conductivity at 560 cycles	Conductivity at 5000 cycles	۵	
	-				per cent	
Electrodes alone (= A)	25-15	2	_	_	-	
A + glass filter plate (= B)	30-15	3	4 42 10 ⁻³ C = 0 001	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	
B + adsorbed protein lipoid	50-15	7	2 74 10 ⁻³ C = 0 028	2 89 10 ⁻³ C = 0 005	58	

TABLE VIII
Action of Various Ions on the Polarizability of Protein Lipoid-Glass Filter Plate

0 1 N concentra	At 560 c	yeles	At 5000 c	ycles	Δ
tion of	Conductivity	С	Conductivity	C	^
					per cens
KCl	2 52 10-2	0 028	2 65 10-1	0 005	5 13
KBr	2 60 10-1	0 030	2 77 10-1	0 010	6 50
MgCl ₂	1 72 10-1	0 038	1 88 10~3	0 005	9 25
AlCl ₃	6 03 10-4	0.010	6 46 10-4	0 001	7 05
La(NO2)2	6 81 10-4	0 017	7 42 10-4	0 003	90
HCl	9 94 10-4	0 011	1 05 10-3	0 003	5.8
NaOH	1 21 10-3	0.003	1 23 10-3	0 001	16

purposes Narcotics generally call forth a decrease in permeability of cell surfaces (19) From valency alone the effect of an ion on the polarization of these plates cannot be predicted, lanthanum proving more effective than aluminum A similar observation has already been made in in vitro experiments on brain tissue Hydrochloric acid

affected the polarizability only slightly more than potassium chloride, while sodium hydroxide decidedly caused a drop in polarization Analogous observations have been made on animal brain tissue in vitro (1). Furthermore, the specific effects of bromides were studied. The effectiveness of bromides in restoring the polarizability of swollen brains in in vitro experiments has been ascertained before (1). In another paper (20) a direct action of the bromide on the lecithin molecule was demonstrated. In a series of experiments it was shown that the polarizability of a protein-lipoid-glass plate in equilibrium with potassium chloride was further increased when potassium chloride was replaced by an equinormal solution of potassium bromide

TABLE IX

Influence of Various Adsorbed Material on the Polarizability of Glass Filter Plate

Material	Conductivity at 560 cycles	С	Conductivity at 5000 cycles	С	Δ
					per cent
Starch	1 29 10-2	0 030	1 29 10-3	< 0 001	0
Starch + protein	1 28 10-2	0 022	1 28 10-2	0 002	0
Starch + lecithin	6 04 10-3	0 030	6 29 10-3	0 008	4 2
Protein + alcohol soap solution	1 14 10-2	0 020	1 14 10-1	< 0 001	0

Finally the influence of a lipoid-soluble agent on polarizability was determined. If ethyl alcohol was replaced by amyl alcohol as a solvent for lecithin, protein-glass filter plates prepared with the amylic solution showed a higher Δ than the ones prepared with the ethylic solution. The narcotic effect of amyl alcohol is twelve times greater than that of ethyl alcohol. In recent experiments (21) it was shown that the salt-binding capacity of lecithin was reduced by ethyl alcohol and practically abolished by amyl alcohol.

In most of these experiments the reaction of the composite membrane appears to be determined by the reactions of the lipoid component. The rôle of proteins seems to be of a more mechanical nature, $\epsilon_{\rm S}$ that of decreasing the size of the pores in the sintered glass plates. This view is supported by experiments showing that proteins can be replaced by soluble starch. The molecular veight of starch is 100,000

according to Samec (22) Starch alone does not cause polarization of the sintered glass plate

It has not been possible so far to accomplish these results, if the lipoids were replaced by soluble starch or salts of fatty acids (Table IX). This failure is interesting in view of the many theories stressing the importance of lipoids in biological membranes.

SUMMARY

- 1 Collodion membranes of high polarizability and low resistance can be obtained either by addition of certain ether soluble substances such as phosphatides, olive oil, mastix, and gum benzoin, to the collodion or by drying collodion membranes for a limited time under pressure
- 2 The permeability of membranes of different polarization has been measured by means of conductivity methods
- 3 Sintered glass filter plates of Jena glass crucibles on which proteins and lipoids have been adsorbed show polarization. It could be shown that some narcotics which react with lecithin cause an increase in polarization of the protein lipoid glass system. Substitutions of the protein but not of the lipoid were possible, without causing a decrease in the polarizability of the membranes.

REFERENCES

- 1 Spiegel E, and Spiegel Adolf M, Am J Psychiat, 1936, 92, 1145
- 2 Spiegel Adolf, M, and Spiegel, E, Proc Soc Exp Biol and Med, 1934, 32, 139
- 3 Bungenberg de Jong H G, and Bonner, J Proc Acad Sc Amsterdam, 1935, 38, 797 Chem Abstr., 1936, 30, 354
- 4 Fricke, H, and Curtis, H J, Phys Rev , 1935, 47, 974
- 5 Thomas, A W, Colloid chemistry New York and London, McGraw Hill Book Co, 1934
- 6 Wilbrandt, W , J Gen Physiol 1934-35, 18, 933
- 7 Michaelis L, Kolloid Z, 1933 62, 2, and coworkers, J Gen Physiol, 1926-27, 10, 575, 671 685, 1927-28, 11, 147 1928-29 12, 55, 221 473 487
- 8 Northrop J H , J Gen Physiol 1927-28, 11, 233, 1928-29, 12, 435
- 9 Rein H , Z Biol , 1926 85, 217
- 10 Weech A A and Michaelis L J Gen Physiol , 1928-29, 12, 221
- 11 Fricke, H , J Gen Physiol , 1925-26, 9, 137
- 12 McClendon J F , J Biol Chem , 1926, 69, 733
- 13 Abramson, H A and Gray, S H , J Biol Chem , 1927, 73, 459

- 14 Ettisch, G, and Ewig, W, Brochem Z, Berlin, 1928, 195, 175
- 15 Collander, R, Protoplasma, 1927, 3, 213
- 16 Spiegel-Adolf, M., Biochem Z., Berlin, 1932, 252, 37
- 17 Loeb, J, Proteins and the theory of colloidal behavior, New York and London, McGraw-Hill Book Co, 1922
- 18 Langelaan, J W, Arch neerl physiol, 1929, 14, 592
- 19 Spiegel, E, and Spiegel-Adolf, M, Proc Soc Exp Biol and Med, 1936, 34, 799
- 20 Spiegel-Adolf, M, Biochem J, London, 1935, 29, 2413
- 21 Spiegel-Adolf, M, Proc Soc Exp Biol and Med, 1936, 35, 263
- 22 Samec, M, Kolloidchemie der Starke, Dresden-Leipsic, Steinkopff, 1927

THE QUANTUM YIELD OF HYDROGEN AND CARBON DIOXIDE ASSIMILATION IN PURPLE BACTERIA

By C S FRENCH

(From the Kasser Wilhelm Institut für Zellphyssologie, Berlin Dahlem Germany)

(Accepted for publication, December 10, 1936)

INTRODUCTION

Photochemical carbon dioxide reduction in the purple bacteria differs from the process of photosynthesis in green plants in that a reducing substance other than water is required (van Niel and Muller (1931)). Sulfur compounds (van Niel (1931)), organic acids (Gaf fron (1933, 1934, 1935 b), Muller (1933)), and gaseous hydrogen (Roelofsen (1934, 1935), Gaffron (1935 a) and van Niel (1935)) may be used. The present discussion concerns the reaction which takes place in suspensions of Streptococcus varians when irradiated in the presence of H_2 and CO_2

For the quantitative study of a photochemical reaction the amount of chemical change produced by a known quantity of light absorbed by the reacting substance or sensitizing pigment must be measured. The investigation of quantum yields of processes in live cells has three aspects the optical, the chemical, and the physiological. The optical side of the problem is concerned with the determination of the amount of light absorbed per unit time under the experimental conditions by the reacting substance or by the sensitizing pigment, and with making certain that scattering and absorption by other colored substances do not obscure the result. In the classical experiments of Warburg and Negelein (1922, 1923) on photosynthesis in the alga Chlorella vulgaris, thick suspensions of cells were used so that absorption was complete. For the present work it was found impossible to use this arrangement so thin suspensions of measured transmissions were employed (Wurmser (1926))

The amount of chemical change was measured with a slightly modified differential manometer

On the physiological side it is essential to insure that the cells are

all actively metabolizing and that the experimental conditions are so chosen that the maximum possible chemical change is produced for a given amount of light

As there is little free energy change in going from the gases $2H_2 + CO_2$ to the probable product (presumably similar to a carbohydrate), it is of especial interest to compare the quantum yields of this reaction with photosynthesis in algae where the bound energy is large

EXPERIMENTAL

Physiology of the Hydrogen and Carbon Dioxide Assimilation

Before quantum efficiency can be measured and considered to have a real meaning it must be established that the rate of reaction under the conditions of the experiment is limited by the light intensity and by that alone. Preliminary experiments were made to determine the most favorable methods of growing and handling the bacteria so that essentially all the bacteria were alive and active at the time of the experiment. The factors of H₂ pressure, CO₂ pressure, pH, temperature, light intensity, and time interval of the experiment were studied and the effects will be summarized here

A pure culture of *Streptococcus varians* designated as C11 was obtained through the courtesy of Professor C B van Niel Stock cultures were maintained as stabs in agar with peptone or in the yeast extract medium here described. The cultures for daily use were grown overnight at 35°C over an Osram show-case lamp immersed in the thermostat. Flasks of the type used by Warburg for Chlorolla cultures were filled with 100 cc. of sterile medium and inoculated with 2 cc. of a similarly grown inoculating stock culture kept under pure culture conditions at 0°C. The air was blown out of the flask with a stream of 5 per cent CO₂ in argon and it was sealed by attaching the same rubber tube to both openings which were plugged with cotton. Such anaerobic cultures were brown while aerobic ones were red. The medium had the following composition.

KHCO ₃	0 5 per cent (0 05m)
NH ₄ Cl	0 1 " "
KH ₂ PO ₄	0 05 " "
MgCl ₂	0 02 " "
Yeast autolysate ¹	20 ""

In the morning the suspension was centrifuged half an hour at 6,000 RPM (radius about 25 cm) and the culture solution decanted off The bacteria were

¹ Yeast autolyzed 2 days at 50°C with an equal volume of water, then boiled, centrifuged, decanted, and sterilized

then taken up in 5 cc of tap water and centrifuged at 10,000 R P M (radius about 10 cm) for 1 minute, which threw down a sediment produced by the culture medium, leaving the bacteria suspended 10 minutes sufficed to pack the bacteria down, then they were resuspended in the desired medium for the experiment, generally 0 05 M KHCO₃ in tap water Control experiments demonstrated that the rate of assimilation by centrifuged and non-centrifuged cells was identical and

TABLE I

The Homogeneity of the Bacterial Culture

Fractions separated after 12 minutes of centrifuging at 3000 R F M.

Fraction	Relative rate of H ₂ assimilation per c.mm cells
1	0 82
2 3	0 98 0 84
4	0 99

TABLE II

Utilization of H₂ in the Light

Conical Vessels over Show-Case Lamp at 25°C

Main space 35 cc. 0 033m KHCO₂ containing 240 c mm bacteria in each Side arm 0 1 cc. 0 1m K butyrate in each

Gas space	,	5 per cent CO ₃ /H ₃	5 per cent CO ₂ /A
min		59 29	##
5	Light	-22	0
5	7	-22	0
5	Dark	+2	+3
5	{	+2	+2
	Butyrate added	from side arm	
5	Dark	+1	+2
5	Light	29	-4
5		27	-3

that bacteria of differing activity could not be fractionated by partial packing, as is illustrated by the data in Table I — Cell volumes of suspensions were measured in hematocrit tubes after 10 minutes of rotation at 10 000 g p m

That assimilation of CO₂ and H₂ takes place in the light but not in the dark is apparent in Table II The assimilation of CO₂ in the presence of butyrate is also shown Throughout this work it was assumed that two molecules of hydrogen were used for one of CO₂, as was shown to be the case with related bacteria by Gaffron (1935 a)

FIG 1 Effect of H₂ tension on rate of H₂ assimilation Conical vessels with 3 cc yeast extract mineral growth medium 0.02 M KHCO₃ 114 c mm cells Osram show-case lamp below vessels Temperature 25°C Various amounts of H₂ in argon 5 per cent CO₂ present in all Rate in 95 per cent H₂ taken as 100

TABLE III

Effect of CO₂ Tension on Rate of Assimilation in Phosphate Buffers

Various amounts of CO₂ in H₂ in gas phase Conical vessels over show-case lamp at 25°C

CO ₂	pH	Rate
per cens		
(0)	7 35	3 9
1	7 55	27 1
5	7 35	34 8
10	7 25	32 3

On this basis pressure readings were translated to cubic millimeters of hydrogen

In Fig 1 we see the relation between rate of assimilation and H₂

pressure Half the maximal rate is reached at a tension of 27 mm H₂, equivalent to roughly 4 per cent of H₂ in the gas phase The quantum yield experiments were done with 95 per cent H₂, that is a pressure of 700 mm Hg corrected for water vapor From Table III,

Fig. 2 Rate of H₂ assimilation at different pH values as a function of time Conical vessels temperature 25°C show-case lamp 5 per cent CO₂ in H₂, pH controlled by various dilutions of KHCO₂ and measured with a glass electrode

it is seen that 5 per cent CO_2 is more than adequate for saturation with CO_2

Fig 2 shows the rate of assimilation at different pH values with 5 per cent CO₂/H₂ as a function of time. The marked increase of rate with time in the favorable range pH 7 5 to 7 9 led to the two experiments shown in Figs 3 and 4. The former indicates that a dense

Fig. 3 Rate of H_2 assimilation as a function of time in thick and thin suspensions

	Cell volumes	Initial rate	Slope
Top curve Bottom curve Ratio, top/bottom	216	27	5 5
	72	7	1 5
	3 0	3 9	3 7

Both these suspensions show a decrease in rate at the same time whereas the amount of assimilation and amount of light absorbed is widely different in the two vessels. This suggests that the changes may be due to something like an osmotic or salt effect rather than CO₂ exhaustion or accumulation of photosynthetic products. There was practically no change in cell volume during the experiment

culture increases in rate just as rapidly as a thin one. The effect is not due to growth of bacteria as the cell volume does not increase during the experiment. This increase of rate is dependent on the salt content (Fig. 4) as well as the pH. Still more striking time effects influenced by salts have been found by van Niel (1936) with Thiorho daceae. The nature of this phenomenon is not yet clear, although its implications are serious when absolute measurements are needed

The interesting behavior of the assimilation process with respect to light intensity is shown in Figs 5, 6, and 11 where it is seen that the

Fig. 4. Rate of H_2 assimilation in various media. After the experiment the two upper curves had more motile bacteria than the lower ones

curve is sigmoid and more markedly so at high temperatures Over thirty experiments confirmed this relationship

It follows from these curves that dense suspensions absorbing all the light cannot be used for efficiency experiments because in a totally absorbing suspension different cells receive greatly different intensities. However, for the curves of Fig. 6 a dense suspension was used and total absorption assured by silvering the outside of the vessel. It is seen that the near infrared is much more effective per caloric absorbed. This is consistent with more detailed work on the spectral

sensitivity of a photochemical reaction in *Spirillium rubrum* not yet published. It was therefore evident that light in this region and a partial absorption method would have to be used

Fig. 5 Rate of H_2 assimilation at different temperatures as a function of light intensity. Large silvered differential manometer, total absorption. Open circles, 250 c mm cells in 25 cc of growth medium. Filled circles, 500 c mm cells, 700-900 m μ isolated from filament lamp with Schott filters, BG3 + RG2 + 6 cm water. Factor of 0.5 taken for the transmission of the 15 cm of thermostat water. Intensity scale indicates total incident light in cals/min over the vessel area of 21.2 cm². At 9.5° $K_H = 2.84$. Apparent $\gamma = 11.5$ quanta/ H_2

Measurement of Light Absorption by Bacterial Suspensions

It was not possible in the spectral region used to estimate the absorption of a suspension of cells by measuring the absorption of the extracted pigment because the main band in the infrared is shifted very greatly in alcohol Therefore, we have used simply the absorp-

tion of the dilute suspension as measured directly with a photocell behind a thin absorption vessel Various experiments described here appear to justify the conclusion that one obtains, under the specified

Fig. 6 Rate of $\rm H_2$ assimilation with different spectral regions as a function of light intensity. Large silvered differential manometer, total absorption, 25 cc. bacterial suspension as grown 42 amp. Osram Kino lamp. Intensity scale as in Fig. 5

Approxi mate wave length region	Filters
700-900	Schott BG3 + RG2 + 6 cm water
425-680	3 cm 25 per cent FeSO, in 10 per cent H2SO, + 6 cm, water
425-560	1 cm 2 5 per cent CuSO4 - NH2 + 6 cm 25 per cent CuSO4

conditions, an approximation to the light taken up by the active pigment

In a rectangular vessel filled with a dilute suspension of colored cells, let

- Io = total entering light (corrected for glass reflection),
- I = total light emerging from the opposite face
- I = total light emerging from the four sides,

 I_r = light reflected from the face of incidence,

 I_{α} = total light absorbed,

 I_p = light absorbed by the photochemically active pigment Evidently,

$$I_0 = I + I_s + I_s + I_s$$

When the conditions are such that scattering and reflection from the suspension, I_{\bullet} and I_{τ} , are vanishingly small the absorbed light is simply

$$I_a = I_0 - I$$

and if only the photochemically active pigment absorbs in the wave length region considered

$$I_p = I_0 - I$$

This simple state of affairs is believed to have been realized in the efficiency experiments done with infrared light

Control experiments with visible light were made in thick vessels to see if the scattering of light was significant in relation to pigment absorption The bacteria have a sharp absorption band at 590 m μ due to the green pigment

For the purpose of measuring the light coming out the different faces of rectangular vessels, sodium light, 589 m μ , was measured with a flat surface photocell placed in contact with the glass wall of the vessel. As visible light was used the reflection due to the cells could be approximately determined by comparison with a magnesium oxide surface illuminated by a beam which was dimmed by filters till it appeared equal in brightness to the suspension viewed at a small angle from the direction of the light. The transmission of the filter combination was then determined with the photocell

Table IV shows the approximate percentage of visible light emerging from the various faces of the vessel and hence the absorption within the suspension. In the large vessel, an appreciable absorption by the bleached cells is noticed but this is smaller in the thinner vessel. The greater apparent scattered light in the bleached suspension is attributed to its lack of absorbing pigment.

The amount of scattered light lost at the sides is about 10 per cent under these conditions. In thinner vessels—0 1, 0 2, and 0 5 cm—as used for the measurements described below it would be only a few per cent and with infrared vanishingly small.

Evidence of far less scattering in infrared (852 m μ + 894 m μ) than in sodium light was obtained by varying the distance from vessel to photocell. With visible light the photocell current fell rapidly as the distance was increased, so all readings had to be made with the glass vessel in contact with the photocell. With infrared the cell could be moved a centimeter away before a fall in readings was obtained

Small but regular deviations from Lambert's and Beer's laws are shown in Table V for visible light passing through cell suspensions. Light from a monochromator, wave length band 580-600 mµ, was used

Fig 7 shows the apparatus with which absorption measurements were made in the infrared

TABLE IV

The Distribution of Light Leaving a Bacterial Suspension Illuminated from One Side (589 mm)

Vessel $20 \times 20 \times 20$ cm c mm per cc c = 10 c =

	Normal	Bleached	Normal	Blesched
Incident Io	100	100	100	100
Transmitted I	15	36	37	54
Reflected I	2	5	2	j 4
Scattered I	16	38	11	20
Absorbed* I	67	21	50	22

Vessel $1.5 \times 1.58 \times 0.8$ cm t c mm per cc c = 10 c =

	Normal	Bleached	Normal	Bleached
Incident Io	100	100	100	100
Transmitted I,	51	67	72	83
Reflected I	2	4	2	4
Scattered I	10	19	7	9
Absorbed* I	37	10	19	4

^{*} Absorbed was taken as I = 100 - I - I - I

 \hat{I}_0 has been reduced 4 per cent to allow for air glass reflection of entering light No reflection correction was applied for partial reflection of the light leaving the suspension since it is mainly absorbed

In Tables VI and VII are sample measurements of transmissions of bacterial suspensions in the concentrations used for the manometric experiments. Beer's and Lambert's laws are followed within the rather large error. Transmissions of the suspensions used in the manometer were always measured in three vessels of 0.097, 0.202, and 0.50 cm. and plotted against the thickness. As the average thickness of the liquid in the manometer vessel was 0.293 cm. the transmission at this value was determined by interpolation and the fraction absorbed, $F_r = (1-T_{0.223})$. With the density and thickness of suspensions used, the absorption of a suspension of bleached bacteria was identical with that of water for infrared

[†] Light enters 1 5 × 1 58 face

"Sperrschicht" photocells were used, one with a maximum in the visible for the work with 589 m μ , and another of far less sensitivity with a maximum at about 850 m μ for the work in that region, from Dr B Lange, Berlin-Dahlem

Fig. 7 Apparatus for absorption measurements with 852 + 894 m μ

TABLE V Approximate Applicability of Beer's and Lambert's Laws to Cell Suspensions β^* value for various thicknesses and cell concentrations for 580–600 m μ

Concentration		4	3	
Coaccintation	1 93 cm	1 07 cm	0 49 cm	0 202 cm
c mm /cc				
20 2		0 0247	0 0232	0 0213
10 1	0 0253	0 0232	0 0222	0 0205
5 05	0 0242	0 0224	0 0222	}
2 52	0 0232	0 0236		

^{*} $\beta = \frac{\log_{10} I_0/I}{cd}$ The spectral region was isolated by a monochromator

The Light Source and Optical System

An Osram² caesium tube was used for a line source When operated at 3 amperes in series with a choke coil and a resistance on the 220 volt A C circuit it

² Through the kindness of Dr Teissing of the Physikalisch-Technische Reichanstalt an Osram caesium tube was placed at our disposal

Various sources with appropriate filters for isolation of single lines in the near

gave the spectrum shown in part D of Fig 8 Nearly all the intensity is in the lines at 852 m μ and at 894 m μ Schott filters BG3 and RG2 with 6 cm of water were used to remove the visible and far infrared If desired Agfa filter No 85 may be used to remove completely the weak lines of shorter wave length than 840 m μ Didymium glass also has useful bands in this region Fig 9 shows the spectrogram of the bacterial suspension From a comparison of Figs 8 and 9, it appears that 852 m μ and 894 μ are absorbed to roughly the same extent

TABLE VI

Sample Measurements of Absorption of a Cell Suspension with 852 \pm 892 mm

Thickness	Io Bleached	1 Normal	βc
(m			
0 50	9 1	4 8	0.56
0 202	91	6 7	0 65
0 097	9 2	8 0	0 63
0 56	9 3	4 4	0.58
0 202	9 4	7 3	0 55
\vcrage		·	0 595

TABLE VII

Sample Measurements of Absorption of Cell Suspensions with 852 + 894 mm

Th ckness	Co centration	Io Bleached	I Normal	T	β = 0 080	β
CTN	mm /cc				1	
0 50	10	8.5	36	0 47	0 40	0 074
0 202	10	8.5	5.4	0 64	0 69	0 097
0 097	10	8.5	7 2	0 85	0.83	0 074
0 50	5	10 5	66	0 63	0 63	0 081
0 202	5	10 5	84	0 80	0 83	0 096
0 097	5	10 4	97	0 93	0 92	0 062
Average						0 080

by the bacteria and both lines fall within the same absorption band. It is felt that this tube is a satisfactory source for work in this region which falls between the much studied visible spectrum and the now popular longer wave infrared

When used with the optical system shown in Fig. 10 the available energy was 200×10^{-3} cals/min when the tube was new but decreased to one third of this

infrared visible and ultraviolet spectrum are described in pamphlets issued by the Osram Studiengesellschaft. Berlin

Fig. 8 Near infrared spectrogram of the caesium lamp. Taken with Zeiss spectrograph for chemists converted for infrared work with the grating. The wave length region has been shifted 300 m μ in relation to the scale on the plate. The number at the bottom shows correct wave length. Plate, Agfa "850" Schott filter RG2 used to cut off second order spectrum

==			Dın phragm	Slit width	Lamp amper age	Ex posure
			cm	mm		mın
A	Filament	lamp		02	10	1
В	Caesium	"	1 5	0 1	3 0	5
C	"	"	1 5	0 1	3 0	20
D	"	41		0 1	3 0	15
Γ	"	ч	-	0 1	20	15
Г	"	"	-	0 1	10	75
G	Na tube,	just started, showing A lines	1 5	0 1	20	10

after running between 50 and 100 hours. It was allowed to warm up at least half an hour before use to prevent intensity change during the measurements. Large energies were necessary because the sigmoid character of the intensity curve made

Fig 9 Infrared absorption bands of Streptococcus varians Plate 950 Agfa A Filament lamp Sht = 015 mm Pyposures 4 2 1 min for comparison with spectra B and C

- B Same with 0.2 cm bacterial suspension in tap water before slit 70 c mm cells per cc Lxposures 16.8, 4.2, 1 min
- C Same with 01 cm of same suspension Exposure 16 8 4 2 1 min
- D 0.5 cm bacterial suspension in yeast extract as grown Exposures 16, 8 4 2, 1 min
- E Filament lamp as used for spectra D 1 vposures 4 2 1 0 5 min

it essential to carry out measurements over a large range in order to find the maximum slope

Quantum Yield Experiments

7 cc of the suspension of bretern in 0.05 m KHCO₂ in tap water was placed in one vessel of a differential manometer and some of the same suspension set aside for the transmission determinations. The control vessel contained 7 cc of the bicarbonate solution without bacteria. On the assumption that the pressure change was due to 2H + CO

disappearing, the cathetometer readings were reduced to cubic millimeters of H_2 by the following formulae

h = pressure change in mm B rodie solution $X_{\text{H}_2} = \text{c mm } H_2$ $k_{\text{H}_2} = \text{vessel constant for } H_2$ $k_{\text{CO}_2} = \text{vessel constant for } CO_2$ $X_{\text{H}_2} = h \times K_{\text{H}_2}$ $K_{\text{H}_2} = \frac{k_{\text{CO}_2} \times k_{\text{H}_2}}{0.5k_{\text{H}_2} + k_{\text{CO}_2}} = 1.72$

Fig 10 Apparatus for photochemical measurements

The vessel constants, $k_{\rm H_2}$ and $k_{\rm CO_2}$, were obtained by the formula given by Warburg (1926)

The vessels (Fig 10) were thin and rounded on the bottom to keep the liquid from climbing up on the sides too much during shaking The dimensions were

Area of bottom of experimental vessel = 23 8 cm²

Volume of experimental vessel = 19 37 cc = 19,370 c mm

Volume of control vessel = $23 \cdot 15 \text{ cc} = 23,150 \text{ c mm}$

Area of capillary cross-section = 0.103 mm^2

All the experiments described in this section were done at 92°C, as

at higher temperatures the initial flat portion of the intensity rate curve was exaggerated and at lower temperatures the rates were too small to measure accurately

Readings were made for two 5 minute periods at each light intensity after 5 minutes adaptation

In Fig 10 is shown the arrangement for illuminating the vessel The single lens produces a round, sharp, evenly illuminated image of the condenser lens at the vessel plane, the area B of which is computed from the measured diameter. The thermostat was designed to give as short a light path as possible through the water which absorbs appreciably at 850 m μ . The dish of CaCl $_2$ keeps the air in the chamber dry, eliminating fogging of the glass surfaces. Absolute energy measurements were made either at the beginning or end of the experiment with a bolometer which measured all the light in the beam focussed upon it with a shorter focus lens than that used to illuminate the vessel. The intensity at the plane of the vessel is given by

$$I_1 = \frac{RT_w \times 21\ 300}{\Omega\ R} \times 10^{-2} = \text{cals/min/cm}^2$$

where

R = reflection correction for glass between bolometer and vessel

 $T_w = \text{transmission of 1 cm water for 852 m}\mu = 0.96$

B = area of light circle at vessel

21 300 × 10⁻³ = bolometer calibration factor determined with a Hefner lamp Ω = resistance in ohms in circuit to bring the galvanometer back to zero during illumination of bolometer

The intensity could be diminished to nearly any desired value with a set of neutral glass filters calibrated bolometrically with this light

Measured rates of assimilation in millimeters of Brodie solution per 5 minutes were plotted against light intensity (Fig. 11)

The Linstein, (mole quantum), is

1 Einstein =
$$Nh_V = \frac{Nh_c}{\lambda} = \frac{6.06 \times 10^{23} \times 6.55 \times 10^{-27} \times 3 \times 10^{10}}{852 \times 10^{-7}}$$

= 1.40 × 10¹⁰ ergs
= 33.500 cals
(1 cal = 4.18 × 10⁷ ergs)

Fig 11 Rate of assimilation as a function of light intensity. Data of sample experiment. The intensity scale represents cals /cm²/min falling of the vessel bottom.

TABLE VIII

Quantum Yield of Hydrogen + Carbon Dioxide Assimilation Summary of Data

Fraction absorbed F	Quanta per H ₂ γ	Intercept I1 at P = 0 (extrap)	Previous treatment of cells
0 58	7 2	0 29	None
0 43	79	0 36	None
0 45	4 5	0 27	25° light, 5 hrs, 5 per cent CO ₂ /H ₂
0 26	3 5	0 27	u u u u u u u
0 45	29	0 28	25° light, 2 hrs, 5 per cent CO ₂ /H ₂
0 36	8 1	0 39	Measurement in yeast extract growth medium
0 43	29	0 20	25° light, 1 hr, 5 per cent CO ₂ /H ₂
0 36	2 5	0 13	25° light, ½ hr, 5 per cent CO ₂ /Ar
Ì		1 1	½ hr, 5 per cent CO ₂ /H ₂
0 34*	29	0 11	25° light, 1½hrs, 5 per cent CO2/Ar
į		į l	10 min, 5 per cent CO ₂ /H ₂
0 17	2 2	0 05	23° dark, 1½ hrs, air

^{*} Complete data for this experiment given at the end of the paper

Fig. 12 The data of Table VIII The number of quanta required to assimilate one H₂, as calculated from the slope of the plots of rate of assimilation against light intensity, is shown as a function of the intercept of the extrapolated straight part of the curve on the intensity axis. Each point represents the results of one experiment. The point with the black dot is the sample experiment the data of which is given in full and plotted in Fig. 11.

This plot makes it evident that as the inhibiting effect seen at low light intensities is removed, the value approaches 2 quanta per H₂

We will designate by γ the number of mole quanta required to make 1 mole of H_2 disappear

$$\gamma = \frac{\text{Quanta}}{\text{Molecules}} = \frac{\text{Einsteins}}{\text{moles}} = \frac{\text{cals per min}}{\text{c mm per min}} \times \frac{2.24 \times 10}{33500}$$

$$\gamma = \frac{E}{P} \times 669$$

On the steepest part of the curves of rate of assimilation, h per 5 minutes against intensity, I_1 , two points are taken and values of h and I_1 taken as differences

$$h = h_2 - h_1$$
 and $I_1 = (I_1)_2 - (I_1)_1$

Rate of photosynthesis per minute then is

$$P = h \times \frac{K_{H_2}}{5} \text{ c mm per min}$$

and absorbed energy

$$E = I_1 q_1 F$$
 cals per min

where q_1 is the bottom area of the bacterial suspension exposed to light and F is the fraction absorbed

In Table VIII we have summarized the quantitative experiments made as described above. As a measure of the amount of the flattening at the bottom of the curve we have taken the intercept of the straight line portion with the zero axis. This value, as well as the quantum yield, varies with the previous treatment of the bacteria, it appears to approach zero and the number of quanta 2 per H_2 as more favorable handling is approached. That is, 4 quanta are required for the reduction of one CO_2 molecule

DISCUSSION

The main point of this paper is to show that the mechanisms of photosynthesis in the green plant and in purple bacteria are similar because both types take about 4 quanta to reduce one CO₂ molecule Green plants fix energy by making carbohydrate from CO₂ and H₂O while in the case of a reaction with 2H₂ and 1CO₂ there is little if any energy change in going to carbohydrate or similar substances Instead of reacting with water and splitting out O₂ the bacteria take in H₂

Green plants
$$H_2O + CO_2 \rightarrow (CH_2O) + O_2 - 114,000$$
 cals
Purple bacteria $2H_2 + CO_2 \rightarrow (CH_2O)$? $+ H_2O \pm 0$ cals

There is in these bacteria no reaction between H₂ and CO₂ in the dark as is the case in some species. The dark readings are very small and in the opposite direction, as though there were fermentation or acid production. Only with very dense cultures is this appreciable

In the quantum yield experiments the pressures were always negative. There is no need for assuming a constant rate of a predominating dark reaction as in the case with green plants where respiration goes on faster than photosynthesis at the low intensities used for efficiency measurements. As these experiments with bacteria were done anaerobically and no O_2 is produced there is no respiration. Quantum yield experiments on CO_2 reduction by butyrate in Spirillum rubrum (which does not use H_2) were not very successful, possibly because of the high fermentation rate

It should be pointed out that the shape of the intensity curves cannot be attributed to a reaction dependent on having 2 or more quanta hit the same place nearly simultaneously because the curve is very much influenced by temperature and previous treatment of the bacteria. As a working hypothesis not yet contradicted by any facts it is thought that at low light intensities another photochemical reaction involving possibly CO₂ and an organic substance takes place in preference to the hydrogen assimilation. With the hope of removing this hypothetical organic substrate the bacteria were treated in various ways as shown in Table VIII. Shaking with air made the back extrapolated straight portion of the curve very nearly go through the origin and gave the highest efficiency. Whatever the reason, this treatment considerably improved the yield. Bacteria left in H₂ at 25° in 0.05 m KHCO₃ in the light for 24 hours were not motile nor photosynthetically active.

The accuracy and number of the determinations is not yet as great as could be desired, but since the absorption measurements can be in error only in the direction corresponding to too large a number of quanta it seems fairly evident from Table VIII and Tig 12 that the probable value is 2 quanta per H₂ or 4 per CO₂

SUMMARY

- 1 The effect of H₂ tension, CO₂ tension, pH, time, light intensity, density of suspension, salt content of the medium, and certain spectral regions on the rate of photoassimilation of H₂ and CO₂ by Streptococcus varians has been studied
- 2 The method of making light absorption measurements with thin suspensions of bacteria is described
 - 3 A light source, optical system, and filter for isolating 852 $m\mu$ with

894 m μ in sufficient intensity for photochemical work and an improved design of thermostat are given

4 The photoassimilation of 2H₂ with 1CO₂ apparently involves little over all energy change but nevertheless requires 4 quanta

It is a pleasure to thank Professor Warburg for laboratory accommodations and for his constant help and interest in the work the workers in the Laboratory I am deeply indebted for suggestions, and particularly to Messrs Haas, Kubowitz, and Hartwig for much direct collaboration Grateful acknowledgment is due to Professor van Niel who gave me the bacteria, taught me pure culture methods, and generously shared his stimulating ideas

Protocol Sample Experiment

June 17, 1936

Streptococcus varians grown as described in the text

7	Γime	Treatment
9 0.	5-9 35	Centrifuged at 6,000 R P M
9 3	5	Suspended in 4 cc tap water, centrifuged 1 minute at 10,000
		RPM to remove sediment Diluted about 50 times with 0 05 M
		KHCO ₃ and shaken with argon 5 per cent CO ₂ , 70 cc put in
		manometer vessel
10 30	0-12 00	Put over show-case lamp at 25° with argon 5 per cent CO ₂
12 00	0-12 10	Passed 5 per cent CO ₂ /H ₂ through

12 20 Put at 92° in thermostat

1 03 Started readings

2 45 Experiment stopped

This time schedule is not typical Generally centrifuging was done later in the morning and measurements made in the late afternoon

Absorbtion Measurements

Vessel thickness	Deflection without vessel	Deflection with vessel	I I ₀ × 0 93*
d cm	I ₀	I	T
0 50	10 8	5 2	0 52
0 202	10 9	7 4	0 73
0 097	11 1	9 1	0 88

^{*} Separately determined transmission of all vessels with either bleached suspension or water

Dala Sheet of Sample Experiment June 17, 1936

June 11, 1930						
Temperature Beckman thermometer 3 02 = 9.2 C.	Time	Cathetomet	er readings	À	Average	
$I_1 = 1.20 \times 10^{-3} \text{ cals./cm}^{-3}/\text{min}$						
	min	m#s	mm	pim	mm	
3 02	0	4 19	22 23			
3 025	5 5	5 27 -1 09 6 30 -1 03	21 39 -0 84 20 55 -0 84	-1 95 -1 87	1 88	
3 025 3 00	5	7 25 -0 95	19 74 -0 81	-1 76	1 65	
		ter C(T = 0.360)	0 43 × 10 ⁻¹ cals	/min /cm ²		
3 22	0	8 41	18 71			
3 22	5	9 23 -0 82	17 99 -0 72	1 54	-1 47	
	5	9 97 -0 74	17 32 -0 67	1 41	-7 47	
		1 filters B + C 20 × 10 ⁻³ × 0.366	0 × 0 567 = 0 245	× 10 ⁻³		
3 01	0	11 30	16 12			
3 01	5	11 69 -0 39	15 78 -0 34	-0 73	-0 80	
3 02	5	12 15 -0 46	15 37 -0 41	-0 87	-0 00	
		$B' + C$ $I_1 = 0.24$	45 × 10 ⁻²			
3 01	0	12 88	14 70			
3 01	5	13 25 -0 37	14 31 -0 29	-0 66	0.74	
3 01	5	13 68 -0 43	13 92 -0 39	-0 82	-0 74	
	$B + B' + I_1 = 120$	<i>C</i> × 10⁻³ × 0 575 ×	0 567 × 0 360 = 0	139 × 10-1		
3 02	0	13 84	13 78			
3 02	5	13 95 -0 11	13 71 -0 07	-0 18	0.00	
	5	14 06 -0 11	13 61 -0 10	-0 21	-0 20	
	Dark I ₁ = 0					
3 02	0	14 15	13 54			
3 02	5	14 20 -0 05	13 49 -0 05	-0 10		
3 015	5	14 15 +0 05	13 54 +0 05	+0 10	0	
At beginni				After	experiment	
Ω = 322	$\Omega \approx 322 I_1 = \frac{387 \times 10^{-4}}{322} = 120 \times 10^{-3}$			Ω	~ 318	

1

The average thickness of the suspension in the manometer is taken as $\frac{70}{238} = 0293$ cm. The transmission of this thickness was determined by graphical interpolation, plotting T against d, in this case it amounted to 0.66. Therefore,

$$F = (1 - 0.66) = 0.34 =$$
fraction of incident light absorbed in manometer vessel

 $T_w = 0.96$ for 1 cm water at 852 m μ

First Second window Mirror window
$$R = 0.92 \times 0.95 \times 0.96 = 0.84$$

$$B = \left(\frac{7.5}{2}\right)^2 \pi = 44.4 \text{ cm}^2$$

$$I_1 = \frac{T_w R}{B} \times \frac{21,300}{\Omega} \times 10^{-3} = \frac{0.96 \times 0.84 \times 21,300 \times 10^{-3}}{\Omega.44.4}$$

$$= \frac{387}{\Omega} \times 10^{-3} \text{ cals /cm}^{-2/\text{min}}$$

This formula was used to calculate the intensities recorded in the data sheet and plotted in Fig. 11 against the pressure readings. The slope of the steep part of the curve is $h/I_1 \approx 5.5$. Therefore

$$E = I_1 \ q_1 \ F = 1 \times 10^{-3} \times 23.8 \times 0.34 = 8.1 \times 10^{-3}$$

$$P = h \times \frac{K_{\text{H}_2}}{5} = 5.5 \times \frac{1.72}{5} = 1.9$$

$$\gamma = \frac{E}{P} \times \frac{2.24 \times 10^{-7}}{33,500} = \frac{8.1 \times 10^{-3}}{1.9} \times 669 = 2.85 \text{ quanta per H}_2$$

CITATIONS

Gaffron, H, 1933, Biochem Z, Berlin, 260, 1, 1934, 269, 447, 1935a, 275, 301, 1935b, 279, 1

Muller, F M, 1933, Arch Mikrobiol, 4, 131

Roelofsen, P A, 1934, Proc Kon Acad v Wetenschappen Amsterdam, 37, 660 1935, On photosynthesis of the Thiorhodaceae, Thesis, Utrecht, 127 pp

van Niel, C B, 1931, Arch Milrobiol, 3, 1 Photosynthesis of bacteria, in Cold Spring Harbor Symposia on quantitative biology, Cold Spring Harbor,

Long Island Biological Association, 1935, 3, 138 1936, Arch Mikrobiol 7, 323

van Niel, C. B., and Muller, F. M., 1931, Rec trav bot néerl., 28, 245
Warburg O., 1926, Über den Stoffwechsel der Tumoren, Berlin, J. Springer
Warburg O., and Negelein E., 1922, Z. physikal. Chem., 102, 236
Warburg O., and Negelein E., 1923, Z. physikal. Chem., 106, 191
Wurmser, R., 1926, J. Physique et le Radium. 7, 33

THE KINETICS OF PENETRATION

XIV THE PENETRATION OF IODIDE INTO VALONIA

By A G JACQUES

(From the Laboratories of The Rockefeller Institute for Medical Research New York, and The Bermuda Biological Station for Research, Inc., Bermuda)

(Accepted for publication, December 21, 1936)

Former papers from this laboratory indicate that the penetration of a weak base, ammonia, and of a strong base, guanidine, is probably preceded by a chemical reaction with a constituent of the protoplasm. On the other hand the penetration of a weak acid, hydrogen sulfide, appears to take place by simple diffusion of molecular hydrogen sulfide through the non aqueous protoplasm.

What is the method of penetration of a strong acid? The present paper is an attempt to throw light on this problem by an investigation of the rate of entrance of iodide into Valonia macrophysa, Kütz

The choice of hydrogen iodide for this investigation was a practical necessity, since of the other available acids, nitric and hydrobromic, the former is already present in fairly large, but variable amounts, and the latter presents analytical difficulties in the presence of the high concentration of chloride ion in Valonia

Hydrogen iodide presents some theoretical difficulties owing to the possibility of oxidation or reduction in the cell. The reversible reaction, $I_2 + 2 e \rightleftharpoons 2I^-$, goes with the greatest ease in either direction according to conditions, while with much greater difficulty any free iodine produced may be oxidized to iodate. This will be discussed later

On the other hand, hydrodic acid is as strong an acid as hydrochloric, and with proper care it and its salts can be determined accu-

¹ Osterhout, W J V , Proc Nat Acad Sc , 1935, 21, 125

² Jacques, A G Proc Nat Acad Sc, 1935, 21, 488

Jacques, A G , J Gen Physiol , 1935-36, 19, 397

⁴ Unpublished results indicate that the concentration of nitrate ion in fresh Valonia sap is between 0 02 and 0 01 molar

rately in very small amounts Moreover with our method of analysis no iodide is detectable in normal *Valonia* sap

EXPERIMENTAL

The rate of entrance of iodide was studied from the standpoint of the effect of concentration, pH, and light

In most cases the cells were exposed to the modified sea waters in 125 ml bottles

Effective stirring was provided by means of stirrers described in previous papers 2 5

The modified sea waters were made up by adding appropriate quantities of 0 6 molar NaI solution. The pH was adjusted by adding either 0 6 n HCl or 0 6 n NaOH and aerating, as described previously, 6 and the pH of sea water and sap was determined by means of indicators and the Hellige double wedge colorimeter with the aid of calibration curves, as reported in another paper 7 After exposure the cells were washed in ordinary sea water, rinsed in distilled water, and dried on filter paper. The sap was then extracted by means of a tuberculin syringe with a steel needle

The sap was then analyzed for iodide by oxidizing the iodide to free iodine and extracting the latter by chloroform The concentration of iodine in the chloroform was then determined by means of the Zeiss-Pulfrich step-photometer, using the "S 53" or the "S 50" color filter 8

In spite of the great amount of work which has been done on the determination of small amounts of iodine in biological materials, no standardized procedure which meets all objections has yet been worked out. For this reason it was considered necessary to develop for this investigation a method which would give accurate results for known amounts of iodide added to aqueous solutions resembling Valonia sap and to sap itself. Many of the objections to previous methods deal with the difficulty of incinerating the biological material in such a way as to avoid

⁵ Jacques, A. G., and Osterhout, W. J. V., J. Gen. Physiol., 1929-30, 13, 695

⁶ Jacques, A. G., and Osterhout, W. J. V., J. Gen. Physiol., 1933-34, 17, 727

⁷ Jacques, A. G., and Osterhout, W. J. V., J. Gen. Physiol., 1931-32, 15, 537

⁸ Getman (Getman, F H, J Am Chem Soc, 1928, 50, 2883) finds that the absorption maximum for 0 0005 M iodine in chloroform lies between 540 and 530 m μ Waentig (Waentig, P, Z phys Chem, 1910, 68, 513) finds the absorption maximum at about the same point but his results were criticized by Ley and von Engelhardt (Ley, H, and von Engelhardt, K, Z anorg Chem, 1911, 72, 55), who found that for 0 05 to 0 005 N solutions the maximum was at 500 m μ

Recently for solutions between 0 005 and 0 3 molar, Chatelet (Chatelet, M, Ann chim, Paris, 1934, 2, series 11,5) has located the maximum at $508 \, \mathrm{m}\mu$. In our work with the Zeiss-Pulfrich spectrophotometer we have found about the same results with the light filters whose dominant wave lengths are 530 and 500 m μ ("S53" and "S50" in the manufacturers' nomenclature). We have, however, found the latter more comfortable to use

loss of iodine But fortunately Valonia sap is sufficiently free of organic material to make incineration unnecessary However, questions have also been raised on the following points, (a) the best agent to employ to oxidize the iodide to free iodine particularly when other salts are present, (b) the solvent to be used to extract the free iodine, and (c) the effect of salts on the completeness of the extraction and on the titrimetric determination with Na S-O₂

With respect to (a), most authors seem to have preferred nitrous acid, as the oxidizing agent, but kMinO4 has been used 10 Our own experience with nitrite sulfunc acid mixtures and nitrite hydrochloric acid mixtures was disappointing, probably because of the presence of a fairly high concentration, 0 6 x of chloride in the sap For this reason we selected another oxidizer, KIO2 This, of course, has been used extensively in macroanalysis but as far as we can ascertain not in micro work 11 The difficulty with this reaction which theoretically should go as follows,

is that if the solution is strongly and side reactions occur and part of the iodine from both the iodide and iodate appears as ICl, a compound which according to Philbrick, 12 is highly ionized in the presence of strong HCl, and is not extracted into carbon tetrachloride. It is therefore necessary to prevent the formation of ICl, by keeping the hydrogen ion activity low. This was done by using Richard's plan of acidifying with tartaric and as recommended by Kolthoff 13.

It seems not improbable that the large excess of chloride in the sap may favor side reactions when iodides are oxidized by k1O₂ in the presence of strong acids. The results given in Table I, dealing with the analysis of known iodide mixtures with and without the addition of sap salts, are significant in this connection. In

⁹ von Fellenberg T Ergebn Physiol, 1926, 25, 176 Reith, J F, Rectrav chim, 1929, 48, 254 Meerburg P A Z phys Chem, 1927 130, 105 Hercus C E, Benson, W N and Carter, C L, J Hyg, Cambridge England, 1925, 24, 321 These authors have also used a nitric sulfuric acid mixture as oxidizing agent McClendon (McClendon, J F J Biol Chem 1924, 60, 289) used nitrosyl sulfuric acid Allott, E N, Dauphinee, J A., and Hurtley, W H, Biochem J London, 1932, 26, 1665

¹⁰ Bose, A. C., and Bagchi K. N., Analyst 1935 60, 80

¹¹ The reverse procedure whereby the iodide is transferred to iodate by a powerful oxidizing agent and is subsequently reduced by the addition of an excess of potassium iodide has, of course, been used extensively in determining very small amounts of iodide

¹² Philbrick, F A , J Chem Soc , 1930, 2254

¹³ Kolthoff I M Volumetric analysis New York John Wiley and Sons, 1929, 2, 391 Kolthoff, I M. Z anal Chem., 1921 60, 403

these analyses each solution contained 0 0400 mg of iodine in the form of potassium iodide Group 1 solutions contained the sap salts, KCl and NaCl, at the concentration found in *Valonia* sap, while Group 2 solutions were made up in distilled water The iodide was oxidized to free iodine by the addition of KIO₃ and hydrochloric acid at the concentrations indicated at the heads of the vertical columns

In contrast with these results we found that when tartaric acid was used to acidify the oxidation mixture, the same result accurate to 5 per cent was obtained whether the sample was made up with sap salts or in distilled water. Furthermore the concentration of the tartaric acid seemed to be unimportant. In most of our determinations we estimate that it was between 0.01 and 0.05 normal.

Our attempts to use nitrite with hydrochloric acid gave very much poorer results even than the iodate-hydrochloric acid mixtures with or without salts

TABLE I Effect of Strong Acid on the Determination of 0.04 m Iodide by Oxidation to I_2 by KIO_3

	Soluti	Gro ons made u	up 1 ip with sa	p salts	Group 2 Solutions made up in distilled water					
Concn HCl, M	0 200	0 0400	0 0100	0 00333	0 200	0 0400	0 0100	0 00333		
Iodine found, mg	0 0025	0 0092		0 0417 0 0417 0 0400	0 0183	0 0417		0 0408 0 0400 0 0400		
			Av	0 04113			Av	0 04023		

But when tartaric acid was substituted for the strong acid fairly satisfactory results were obtained. However, in view of the fact that iodate has the slight advantage that only 5/6 of the total iodine comes from the unbound iodide, it seemed desirable to retain it as the oxidizer.

Other investigators have considered the effect of salts on the estimation of iodide. Thus Reith, 14 investigating von Fellenberg's colorimetric method in which the nitrite-sulfuric acid mixture is used as the oxidizer, found that large negative errors might occur in the presence of SO4, Cl', NO2, Br', BrO3, and ClO3. Reith indeed concludes that the method is only good for pure solutions of iodide. Maljaroff and Matskiewitsch15 have also had difficulty using the nitrite-hydrochloric acid mixture, but they have apparently attributed their losses to greater solubility of the iodine in the salt solutions, with consequent decrease in the partition coeffi-

¹⁴ Reith, J. F., Biochem. Z., Berlin, 1929, 216, 249

¹⁵ Maljaroff, K L, and Matskiewitsch, V B, Mikrochemie, 1933, 13, 85

cient between the aqueous phase and the chloroform ¹⁶ To us this seems very unlikely for while it is true that the solubility of iodine increases slightly in NaCl solution, the effect is certainly too small to account for 50 per cent or even 100 per cent losses of iodine — It seems much more probable that the failure of the method was due to side reactions

Weil and Sturm¹⁷ also point out that they found low values for iodine when using you Fellenberg's method in the presence of large salt concentrations ¹⁸

With respect to (b), Blum¹⁹ has objected to the use of chloroform to extract iodine when the nitrite sulfure acid mixture is used on the grounds that the color fades rather rapidly. However he states that this fading does not occur when pure iodine is dissolved in chloroform. Our experience has been somewhat similar to Blum's but we have found that the iodine-chloroform mixture extracted from a mixture with iodate tartaric acid as the ondizer does not fade in 24 hours. Moreover most of our determinations of the color (light absorption) of the extracts were made within 30 minutes of the extraction, so that errors from this source could scarcely occur.

Settim; has strongly recommended the use of CS2 in place of CHCl3 or CCl4 on the grounds that at low concentrations the color with CS2 is more intense, and that the distribution ratio strongly favors CS2. There are, however, certain objections to CS2 when the analysis is made by means of a spectrophotometer. Thus it is clear from the results of Coblenz* and Waentig* that the extinction coefficient is not a linear function of the concentration of iodine, which behavior may possibly be connected with the fact that the distribution coefficient increases steadily with increasing concentration of iodine. It is inconvenient from the standpoint of the photometer because it does not permit the use of a linear curve

¹⁸ In this connection, McClendon (McClendon, J F, J Biol Chem 1924 60, 289) has suggested that in order to obtain uniform distribution of the iodine between the phases the aqueous phase might be saturated with NaCl so that this salt might render negligible the effect of other salts which in most cases are present in much lower concentration

¹⁷ Weil, W H , and Sturm A , Deutsch Arch klin Med , 1925 147, 166

 $^{^{18}}$ These authors prefer to check the colorimetric method by a supplementary titration method (in which the iodide is oxidized to iodate treated with an excess of KI and titrated with Na₂SQ₃) when the amount of iodine involved is less than 3 γ . In the present experiments however, the amounts were usually above 10 γ and never below 5γ

¹⁹ Blum, F Schwer- med Woch 1927, 57, 808

²⁰ Settimj M , Ann chim applicata 1927, 17, 432 (quoted from Chem Absir , 1928 22, 654)

²¹ Coblenz W M , Phys Rev , 1903, 16, 35

²² Waentig, P , Z phys Chem , 1910, 68, 513

⁵ See Jakowkin, A. A , Z phys Chem , 1895, 18, 585 1899, 29, 613

for the interpolation of results With chloroform, on the other hand, the distribution ratio appears to be fairly constant. At any rate it shows no trend. However, recently Chatelet²⁴ has asserted that while solutions of iodine in carbon tetrachloride obey Beer's law those in chloroform do not. This leads him to the conclusion that there are present in the chloroform solution two forms of iodine. One of these, however, disappears when the solution is diluted sufficiently. This latter result is quite consistent with our own experience with iodine in chloroform. We have studied the concentration range from 0.1 mg. per ml. down to 0.005 mg per ml. with the Zeiss-Pulfrich spectrophotometer and have found that for the dominant wave length $\lambda = 500$ m μ (filter "S 50") the solutions follow Beer's law. A linear curve was therefore used in interpolating the results, and the size of the samples was so chosen that the amounts of iodine to be extracted into the chloroform fell between these limits

After consideration of all the factors involved the following analytical procedure Two equal samples of sap, usually colorless but occasionally colored green by chloroplasts, were delivered into two 12 ml centrifuge tubes each of which contained 2 ml of redistilled reagent grade chloroform A drop each of 4 per cent tartaric acid solution and 1 per cent potassium iodate solution were then added to the test mixture The second tube served as a blank The test mixture was then shaken gently to mix, and both tubes were capped and allowed to stand 2 to 5 minutes to complete the oxidation They were then shaken energetically In the blank, if the sap contained chloroplasts, the chloroform was colored slightly green, while in the test solution under these conditions the color was violet, modified slightly by the green color due to the extracted chlor-Both chloroform solutions were cloudy due to the inclusion of droplets Both samples were centrifugalized at 1500 R P M for 3 to 5 minutes form layers were then transferred by pipette to the absorption vessels In order to get a 50 mm layer for the determination of the light absorption with only 2 ml of chloroform solution, micro vessels were used The percentage absorption with the "S 50" filter was then determined, several settings being made for each determination and the vessels being interchanged to eliminate unequal lighting of the two halves of the photometer From the "per cent absorption" the "extinction coefficient" was read off the table and the corresponding quantity of iodine read off the calibration curve In a good many cases no chlorophyll was extracted so that the blank was colorless In many others the rather feeble absorption of chlorophyll in the green in comparison with the strong absorption of the violet iodine made the error due to the chlorophyll negligible
It was only in the case of very dilute iodine solutions that the compensation was needed It is possible to avoid the need for the chlorophyll compensation by first centrifugalizing the sap to remove chloroplasts And from time to time when extra amounts of sap were available this was done, and the analyses made on chlorophyllfree sap were compared with those made on the same sample with chlorophyll

²⁴ Chatelet, M., 4nn chim., Paris, 1934, series 11, 2, 5

present The results were invariably the same within the limits of error of the method

The accuracy to be expected was determined by applying the method to known mixtures made up in artificial Valonia sap (i.e. a mixture of KCl NaCl at the average concentrations found in sap) and also to known iodine mixtures in distilled water. The results indicate that the error is of the order of ± 4 per cent. Analyses on sap samples containing known amounts of iodide and varied amounts of chlorophyll indicated that the "chlorophyll compensation" method is valid, and finally that the error is of the order of ± 4 0 per cent.

RESULTS

Rate of Entrance at Constant pH — Table II and Fig 1 give the rate of entrance into the sap of Valonia of iodide from solutions with different concentrations of iodide at the normal pH of sea water The

TABLE II

Rate of Iodide Pen tration into Valonia at pH 8 2

No	Concu iod de	Concentration of iodide in sap at											
No	in S W	24 hrs.	48 hrs.	72 hrs	120 hrs	200 hrs.	320 hrs	416 hrs.					
	и	и	ч	и	ж	и	×	и					
1	0 0400	0 00148	0 00240	0 00338	0 00190	0 00622	0 00828	0 00902					
2	0 0200			0 00164									
3	0 00280	0 000184	0 000251	0 000328	0 000480	0 000604	0 000831	0 000920					

experiments were carried out in the rather feeble light of the labora tory and no change in pH due to photosynthesis was observed. Sepa rate experiments under the same conditions indicated that growth was negligible. The curves have been drawn in this and other cases free-hand to give an approximate fit. Each point on a curve represents the average of two or more analyses made on different samples of sap and, as usual, when large numbers of cells were available, cells of approximately the same size (0.2 to 0.4 ml.) and shape were used. The cells used in any one experiment were from the same collection and had been seasoned in the laboratory (for 2 weeks or more) under the same conditions.

pH Effect —Fig 2 shows that the external pH has little or no effect on the rate of entrance of iodide $\,$ As in previous experiments, the pH was adjusted by the addition of 0 6 n HCl or carbonate free 0 6 n

Fig. 1 Rate of entrance, dx/dt, of nodide into Valonia at various external iodide concentrations

Fig 2 Rate of entrance of iodide into Valoria at

NaOH, with aeration to bring the solutions into equilibrium with the CO₂ of the atmosphere—Some difficulty was experienced in keeping up the pH of the more alkaline solutions, probably because of the CO₂ production of the cells and absorption of CO₂ from the air, and to offset this the solutions were frequently renewed—Some falling off overnight, however, was inevitable ²⁵

Fig. 3 Rate of entrance of iodide into Valonia in darkness and illuminated

Light Effect—Fig 3 shows that light has little or no effect on the entrance of iodide In these experiments the cells were exposed to the solutions in 125 cc bottles The "dark" bottles were first covered with two coats of "black brushing lacquer," then with a layer of adhesive tape, and finally a coat of lacquer over the tape The light

⁵ The pH varied a little particularly at the high pH, but by changing the sea water frequently the effect of this was minimized. If there had been any evidence of a pH effect we should have resorted to flowing solutions as in previous experiments. But as there was not, this refinement seemed unnecessary.

was provided by a 500 watt concentrated filament projection lamp, placed about 18 inches from the bottles A half-inch layer of flowing water was interposed to absorb heat rays

TABLE III

Entrance of Iodide into Valonia macrophysa at Various External Concentrations of Iodide at pH 8 2

					_				_					
Етр	Molar concn of iodide in sea water	0 200	0 160	0 130		0 100		0 0800		0 0500		0 0200		0 0100
	Time			Mol	1r	concentra	tıc	n of 10d1	le	ın sap				
	hrs	1	1	1	T		Ī		Ī		Ī		1	
1	10	0 00152	0 00116	0 00094	C	00085	0	00070	10	00054	0	00028	C	00020
	65	0 00496	0 00407	0 000338	3 0	00293	0	00246	1	00183	0	00116	C	00068
	Molar concn of rodide in sea water	0 0800	0 0580	0 0400		0 0200		0 0143		0 0072		0 0029		0 0014
2	20	0 00109	0 000808	0 000565	0	000275	0	000254	c	000145	0	000123	o	000098
_	69	0 00295	0 00201	0 00120	0		1		1	000407			1	
	Molar concn of iodide in sca water	0 0570	0 0400	0 0285	[- 	0 0200		0 0143		0 0072	-	0 0032		0 0014
3	20	0 00112	0 000883	0 000608	o	000392	0	000267	Ю	000133	0	000075	0	000028
Ū	68	0 00380	0 00277	0 00212	0	00180	0	00125	0	000683	0	000410	0	000242
	88	0 00512	0 00377	0 00313	0	00210	0	00188	0	00114	0	000618	0	000315
	Molar concn of iodide in sea water	0 0400	0 0200	0 0143		0 0114		0 0086	-	0 0057		0 0029	-	0 0014
4	84	0 00233	0 00131	0 00107	0	00076	0	00066	0	00060	0	00033	0	00023
-	156	}	} -	0 00185	0	00158	0	00123	0	00093	0	00063	0	00035
	240	0 00485	0 00325	0 00223	0	00211	0	00173	0	00114	0	00087	0	00049

Effect of External Concentration — Table III and Fig 4 (a, b, c, and d) show the increase in rate as the external concentration increases By means of several experiments, concentrations from 0 2 to 0 0014 m were tested

DISCUSSION

As Fig 2 shows, the rate of entrance of iodide is affected little or not at all by the external pH of the sea water between 7 and 9. This is in marked contrast with the entrance of H_2S , which has a "rate" 6 which is a linear function of the external concentration of undissociated H_2S and therefore of f_{\pm}^2 [H+] [HS-] 27 28

We may therefore conclude that entrance by diffusion as HI through the protoplasm is negligible. It is true that a case might be made out for the hypothesis that the lack of pH effect is due to masking by other factors. For example, if as a necessary preliminary to entrance a reversible reaction HI + ZOH \rightleftharpoons H₂O + ZI must occur (where ZOH is a basic constituent of the protoplasm), the importance of the increase in the concentration of HI in accelerating the rate will become less as ZOH decreases in concentration, so that finally ZOH may be so limited in amount that any increase in the value of [HI] or of $f_{\rm H}$ [H+] $f_{\rm I-}$ [I-] becomes ineffective. In sea water where the ionic strength is high compared with [H+] and [I-] as used in our experiments we may regard the activity coefficients $f_{\rm H}$ and $f_{\rm I}$ as constant, and we may compare the effect of changing the product $f_{\rm H}$ [H+] [I-] (which is proportional to [HI]) by altering the pH, or by altering the product concentration

At pH 82, when the would concentration is 006 M, the product $f_{\rm H}$ [H+] [I-] is 10^{-9} and at pH 70 it is 10^{-8} This change had no effect on the rate. On the other hand in another experiment selected at random from the data of Table III, when the pH was 82

²⁶ 'Rate is used here to designate the function $\left(\frac{\partial x}{\partial a}\right)_{i}$ where x is the concentration of total sulfide in the sap and a the concentration of undissociated sulfide in the sea water

²⁷ Guggenheim (Guggenheim, E A, J Phys Chem 1930, 34, 1758) has shown that the single ionic activity coefficient has no physical significance. We shall therefore replace it as far as possible by the mean activity coefficient f_±.

[§] In this expression and hereafter square brackets refer to concentration in moles per liter, round brackets to activities in the same limits, and f is the mean activity coefficient when the concentration is expressed as moles/liter

²⁹ In this case it is convenient to speak of single ion activity coefficients, since the data available for calculation are the H ion activities which with reservations as to the liquid junction potential may be measured

Fig. 4, a, b, c, d Rate of increase of iodide in the sap plotted against concentrations of iodide in the external solution

Fig 4b

Experiment 4

graph of the property of the pro

Fig 4d 749 and the concentration of iodide 0 0580 M, the product was equal to 10^{-9} ⁴⁴, and when the concentration of iodide was 0 0400 M the product was equal to 10^{-9} ⁴⁰ This comparatively small change in the product had a pronounced effect on the rate If the entrance were accompanied by combination with ZOH it should make no difference whether we increase the product by changing H⁺ or by changing I⁻

Further evidence that HI is not an important factor in the entrance of iodide is obtained from a consideration of the gradients. We may assume that the rate of increase of iodide concentration in the sap depends on the flux of iodide-containing solutes in the inner and outer non-aqueous protoplasmic surface layers. And since the same principles apply to both²⁰ for convenience we shall assume that there is only one layer and that the intervening watery layer may be neglected

When steady state diffusion is established (for entrance solely as HI) we may write under certain conditions that

$$\frac{dQ}{dt} = K'_{HI} ([H^+], [I^-],) - ([H^+], [I^-],)$$

where o and ι refer to the sea water and sap, respectively, and Q is the quantity of HI which has passed into the sap in time t The derivation of this equation and the conditions involved will now be discussed

It can be shown³⁰ for the diffusion of a non-electrolyte that

$$vcf = D(fC_1 - fC_2)$$

where c is the concentration, v is the velocity of the solute, D is the diffusion constant, and C_1 and C_2 are respectively the concentrations of the solute at the boundaries of the diffusion layer But cv = Q, where Q is the quantity of solute diffusing through a plane in unit time, whence

$$Qf = D(fC_1 - fC_2)$$

This in terms of HI diffusing as molecules in the non-aqueous protoplasm becomes

$$Q_{\mathrm{HI}} f_{\mathrm{HI}}^{\flat} = D_{\mathrm{HI}} \left(f_{\mathrm{HI}}^{\circ \mathrm{p}} \left[\mathrm{HI} \right]_{\mathrm{op}} - f_{\mathrm{HI}}^{\mathrm{ip}} \left[\mathrm{HI} \right]_{\mathrm{ip}} \right)$$

where o p and 1 p refer to the sea water-protoplasm and sap-protoplasm interfaces and p to any plane in the protoplasm where the measurement is made But

²⁰ Osterhout, W J V, J Gen Physiol, 1932-33, 16, 529

owing to the inevitable presence of unstirred layers at the interfaces, we may write for the sea water protoplasm interface

$$f_{\text{m}}^{\circ,\text{p}}$$
 [HI]_{op} = $s f_{\text{HI}}^{\circ}$ [HI]

and for the sap protoplasm interface

$$f_{\text{HI}}^{i_{\text{p.}}}$$
 [HI]_{i.p.} = $S_i f_{\text{HI}}^i$ [HI],

where S is the partition coefficient and σ and s refer to the sea water and sap respectively. Because of the stirring of the sap and sea water it may be assumed that the unstirred aqueous layers in contact with the protoplasm are at approximately the same concentration as the stirred aqueous solutions of which they are a part

But

$$KS f_{\text{HI}}^{\circ}[\text{HI}] = S \left(f_{\pm}^{\circ}\right)^{\circ}[\text{H}^{+}][\text{I}^{-}]$$

and

$$K S_i f_{HI}^i [HI]_i = S_i \left(f_{\pm}^i \right)^i [H^i]_i [I^-]_i$$

and substituting these values above we have

$$Q_{\Pi I} \int_{\Pi I}^{\bullet} = \frac{D_{\Pi I}}{h} \left(\left(S \left(\int_{\pm}^{\bullet} \right)^{1} [\Pi^{+}] \left[[\Gamma^{-}] \right) - \left(S_{i} \left(\int_{\pm}^{\bullet} \right)^{1} [\Pi^{+}]_{i} \left[[\Gamma^{-}]_{i} \right) \right) \right)$$

In these equations under the experimental conditions f_{HI}^{A} the activity coefficient of HI in the non aqueous layer of the protoplasmic urface may be regarded as a constant ⁵⁰ And since the ionic strength of the sap and sea water are so nearly alike (about 0.7 m) the mean activity coefficients f_{\pm} and f_{\pm}^{\prime} may also be regarded as equal and constant, and S and S_i , the partition coefficients, may also be regarded as equal and constant so that collecting all constant terms we have

$$Q_{HI} = K'_{HI} (([H^+] [I^-]) - ([H^+]_i [I^-]_i))$$

or for diffusion with a gradient decreasing with time

$$\frac{dQ}{dt} = K'_{HI} (([H^+] [I^-]) - ([H^+]_t [I^-]_t))$$

In this equation $K'_{\rm HI}$ may be called the "permeability constant" since it includes in addition to the diffusion constant of Fick's law, a variety of other terms which according to the above discussion may also be regarded as constants under the experimental conditions

In these experiments also, since the cells did not grow, and since Q = VX, where V = volume and X is the concentration of iodide in the sap, we may write K = K' - V and

$$\frac{dx}{dt} = K_{HI} ([H^{+}], [I^{-}], - [H^{+}], [I^{-}],)$$

Unfortunately we cannot calculate either product from the available data, and we adopt the best possible expedient by using the equation in the form

$$\frac{dx}{dt} = K_{\rm HI} \left(\int_{\rm H^+}^{o} [{\rm H^+}]_{o} [{\rm I^-}]_{o} - \int_{\rm H^+}^{s} [{\rm H^+}]_{o} [{\rm I^-}]_{o} \right)$$

which introduces the indefinite single ion activity coefficient of H⁺ We do not have to know this value since we have from the measured pH of the sea water and sap the value of (H⁺), which with reservations with regard to the liquid junction involved in the measurement is equal to f_{H^+} [H⁻]

Fortunately this equation introduces practically no error since we are in all cases comparing these products in sap and sea water both of which have nearly the same ionic strength and hence the same value of $f_{\rm H^+}$

From an experiment where $[I^-]_o = 0.06$ M, Fig. 2, we derive the following values for the products $(H^+)_o$ $[I^-]_o$

The pH of the sap is approximately 60 Therefore when the external pH is 70 the gradient should vanish when [I-], becomes equal to 0 0060 m, at pH 82, when [I-], equals 0 00038 m, and at pH 90, when [I-], equals 0 00006 m But actually at pH's 82 and 9, iodide continued to enter even after the limiting concentrations were reached, and further, the rates at all pH's were the same in spite of the great difference in the gradients

If the iodide moves into the sap by a process involving the product (H⁻) [I⁻], our experiments indicate that accumulation has taken place at pH 8 2 and 9 against a gradient This can only happen if the cell itself supplies energy in some form capable of causing a predominantly

one way flow of the diffusing substance There is a tendency to consider this possible for the living cell because of its abundant supply of energy due to metabolism. In the case of the entrance of Cl', NO', Br', and I' into Nitella, for example, Hoagland and Davis¹¹ have expressed the opinion that the energy of the cell metabolism is involved and that in some way light aids in the necessary transfer of energy, since the accumulation of these ions is greatly accelerated by light. Our own experiments with the entrance of iodide into Valonia indicate that light is not an important factor, since we obtained no appreciable difference in rate between cells in total darkness and those strongly illuminated (Fig. 3). In this case it seems unnecessary to refer the entrance directly to the cell metabolism since, as will be shown later, favorable gradients for the entrance of iodide exist, so that in all probability diffusional energy only is involved. These will be discussed later

We now consider the nature of the function $\left(\frac{\partial x}{\partial t}\right)_a$ whose x and a are the concentrations of the diffusing substance in the sap and in the sea water. For the case of simple diffusion of a molecular species in the protoplasmic surface layer, with equal partition coefficients S at both interfaces and a linear gradient, the equation

$$\left(\frac{\partial x}{\partial t}\right) = k (a - x)$$

where k is a constant which includes the partition coefficient, should apply Actually, in the case of the entrance of sulfide, where apparently only the diffusion of molecular H_2S is involved, the relationship did not hold instead the value of k diminished with time. A number of reasons for this were suggested, and to these may now be added the possibility that diffusion gradients exist also in the sea water and in the sap. These will be discussed later. At the moment it is necessary to realize that the simple relationship can be applied only when a and a are known. In the case of iodide we know the external and internal concentration of iodide at any time t, but we do not know the diffusing species in the protoplasm. However, a calculation has been made, using for a and a the concentrations of iodide in the sea water and sap,

³¹ Hoagland D R and Davis, A R, J Gen Physiol 1923-24, 6, 47

and the data of Table IV for the case when a was 0.04 M. The result shows that k is falling steadily with time

It is unlikely that the diffusing species in the non-aqueous protoplasmic surface is iodide ion. It is probably an undissociated molecule and we therefore consider the gradients of these. If the diffusing species is sodium iodide we may assume that the rate of its flux through the protoplasm or, what amounts to the same thing, the rate of gain of NaI by the sap, is proportional to the gradient [NaI]_{0,p} — [NaI]_{1,p} where op and ip represent the layers of protoplasm in immediate contact with the sea water and the sap respectively. The direction of the flow of NaI between sea water and sap will be determined (in

TABLE IV

Calculations Concerning Rate of Iodide Penetration at $[I^-]_o = 0.040$ m

		(1)	(2)					
Time	[I-].	$k_{\rm I} = \frac{2.3}{t} \log \frac{[{\rm I}^{-}]_0}{[{\rm I}^{-}]_0 - [{\rm I}^{-}]_1}$	$\lambda_{\text{NaI}} = \frac{23}{I} \log \frac{[\text{Na+}]_0 [\text{I}^-]_0}{[\text{Na+}]_0 [\text{I}^-]_0 - [\text{Na+}]_1 [\text{I}^-]_0}$					
hrs								
24	0 00148	0 00160	0 000312					
48	0 00240	0 00129	0 000250					
72	0 00338	0 00122	0 000236					
120	0 00490	0 00108	0 000209					
200	0 00622	0 00084	0 000157					
320	0 00828	0 00073	0 000132					
416	0 00902	0 00061	0 000114					

the absence of the supply of energy from the cell) by the activity product gradient $(Na^+)_o(I^-)_o - (Na^+)_o(I^-)_o$. But under the conditions set above for the diffusion of HI in the protoplasm we may write for the rate of NaI

$$\frac{d[I^-]_{i}}{dt} = K_{NaI} ([Na^+]_{o} [I^-]_{o} - [Na^+]_{i} [I^-]_{i})$$

which may be integrated to give

$$K_{\text{NaI}} = \frac{23}{t} \log \frac{[\text{Na}^+]_o [\text{I}^-]_o}{[\text{Na}^+]_o [\text{I}^-]_o - [\text{Na}^+]_o [\text{I}^-]_o}$$
 (1)

The constant calculated on this basis was also found to decrease steadily with time (Table IV)

But if NaI can diffuse in the protoplasm as such it seems possible that KI can also $[K^+]_o = 0.012$ m in Bermuda sea water, and $[K^+]_i = 0.5$ m for the average cell, hence, assuming that the activity coefficients of $[K^+]_o$ and $[K^+]_o$ are equal in the experiment under discussion, where $[I^-] = 0.04$ m, when $[I^-]_o$ becomes 0.00096 m the concentration products are equal. Thereafter as $[I^-]_o$ increases, KI should come out of the cell. As Fig. 1 shows the exit of KI should occur comparatively early in the process.

For the situation when NaI is entering the cell and KI is emerging we may make the following calculation

$$\frac{d[\text{NaI}]_i}{dt} = k_1 ([\text{Na}^+] [\text{I}^-] - [\text{Na}^+]_i [\text{I}^-]_i)$$
 (2a)

and

$$\frac{d[KI]}{dt} = k_2 ([K^+] [I^-] - [K^+]_i [I^-])$$
 (2b)

We now assume that all the iodide which enters or leaves the cell does so as NaI or KI

[Na+], = 05 m in Bermuda sea water [I-] = 004 m

$$\frac{d[\text{NaI}]_{t}}{dt} = k_{t}(0.02 - [\text{Na+}]_{t} [\text{I-}]_{t})$$
 (2c)

$$\frac{d[KI]_i}{dt} = k_2(0\ 00048 - [K^+]_i\ [I^-])$$
 (2d)

$$\frac{d[I^-]_i}{dt} = \frac{d([NaI]_i + [KI]_i)}{dt} =$$

$$0.02 k_1 + 0.00048 k_2 - (k_1 [Na^+]_i + k_2 [K^+]_i) [I^-]_i$$
 (2e)

In the sap, as NaI enters and KI leaves [Na⁺], must increase and [K⁺], decrease However, Δ [Na⁺], and Δ [K⁺], are small compared with [Na⁺] and [K⁺], and may be disregarded

In the average cell [Na+], = 01 M Then

$$\frac{d[\Gamma]_i}{dt} = 0.02 \ k_1 + 0.00048 \ k_2 - (0.1 \ k_1 + 0.5 \ k_2) \ [\Gamma]_i$$
 (2f)

Integrating

$$\ln \frac{0.02 \ k_1 + 0.00048 \ k_2}{0.02 \ k_1 + 0.00048 \ k_2 - (0.1 \ k_1 + 0.5 \ k_2) \left[1\right]_i} = (0.1 \ k_1 + 0.5 \ k_2)t \qquad (2g)$$

Attempts to apply this equation by giving various values to k_1 and k_2 have proved to be unsuccessful. A pair of values which fit the upper part of the curve show large deviations at the lower part. This is scarcely surprising in view of the fact that the theory is oversimplified, particularly in neglecting the reversal of direction of movement of KI which should occur if this salt moves through the protoplasm at all

We now consider the "rate curve" defined as

$$\left(\frac{d[I^-]_{\iota}}{d[I^-]_{o}}\right)_{\iota}$$

Two possible diffusion processes will be considered

(a) Diffusion of sodium iodide alone leading to

$$\frac{d[I^-]_{\bullet}}{dt} = k_{\text{NaI}} ([Na^+]_{\bullet} [I^-]_{\bullet} - [Na^+]_{\bullet} [I^-]_{\bullet})$$

which on integration gives

$$[I^-]_{i} = [Na^+]_{o} [I^-]_{o} (1 - e^{-k}NaI^t)$$
 (3)

(b) Simultaneous diffusion of NaI and KI Under the simplest assumption discussed above this leads to

$$\frac{d[I^{-}]_{\bullet}}{dt} = k_1[Na^{+}]_{o} + k_2[K^{+}]_{o} [I]_{o} - k_1[Na^{+}]_{\bullet} - k_2[K^{+}]_{\bullet} [I^{-}]_{\bullet}$$

Putting

$$k_1 [Na^+]_o + k_2 [K^+]_o = m$$
 and $k_1 [Na^+]_o + k_2 [K^+]_o = n$

on integration we get

$$[I^{-1}]_{i} = \frac{m [I^{-}]_{o}}{n} (1 - e^{-nt})$$
 (4)

Each of these equations differentiated with respect to $[I^-]$, and $[I^-]$, at constant t gives

$$\left(\frac{\partial [I^-]_t}{\partial [I^-]_t}\right)_t = \text{const} *$$

* It is assumed, of course, that the concentrations of K and Na do not change seriously in either sap or sea water

In the penetration of H₂S the relationship

$$\frac{\partial [H_{\bullet}S]_{\bullet}}{\partial [H_{\bullet}S]_{\bullet}} = const$$

was true But in the present case the relationship does not appear to hold at lower concentrations However, after a certain concentration of $[I^-]$, is passed each curve becomes linear. The concentration at which this break occurs is not the same in all cases, but in general we may say that it lies between an external concentration of 0.01 and 0.02 molar.

Several ways of considering the observed facts suggest themselves as follows (a) The entrance of iodide takes place by diffusion of a molecular species in the protoplasm but part of the iodide in the cell is immobilized by combination with a constituent of the sap which is present in limited amount. Under these conditions the rate of entrance will be favored more at lower concentrations of I_e , since a greater portion of the entrance will take place according to the equation

$$\frac{d[I^-]_i}{dt} = k$$

te, without any back pressure However, this explanation is unten able in the present case for, as reference to Fig 4 shows, the points of inflection of the curves in a single experiment do not show any tendency to lie on a line parallel to the axis of abscissae, as would be required by the immobilization hypothesis

(b) The entrance of nodice is by diffusion of molecular species in the protoplasm but in addition to the gradients of the diffusing sub stances in the protoplasm there are also gradients in the aqueous solutions in contact with the protoplasm. The effect of these diffusion gradients has been studied by Lewis and others* for the absorption of gases and by Roughton* for the uptake of O₂ by blood corpuscles. The cell and its surroundings include the following regions, the sea water, the cellulose envelope, the protoplasm, and the sap. Fig. 5 shows schematically the possible unstirred regions in which concentration gradients may exist.

For the sake of simplicity Regions II and III in Fig 5 are considered as one layer. Since in the case under discussion the sea water was

 $^{^{\}rm ss}$ Lewis, W K and others, Absorption symposium, Ind and Eng Chem , 1924 16, 1215

Roughton F J W , Proc Roy Soc London Series B, 1932 111, 1

²⁴ There are practical grounds for this since all the bioelectric experiments on Valonia and Nitella indicate that the envelope is as permeable to electrolytes as the aqueous solution Thus when a cell is transferred from one solution to another the P.D. associated with its new environment is established within a few seconds

stirred the thickness of Region II may be very small and hence the diffusion gradient in it may be negligible. Region III, however, can scarcely be stirred under any conditions. Similarly we have no control over the amount of stirring in the protoplasm so that the thickness of IV and VI are uncontrolled ³⁵ Bioelectric measurements indicate ³⁶ that these two layers are dissimilar. Finally the thickness of Region VII depends on the amount of stirring in the sap. This

Γις 5 Schematic representation of diffusion layers involved in iodide entrance

depends on the stirring secured by the rolling of the cells as they fall through the sea water in the bottles, which was sufficient to keep in

³⁵ The picture of the protoplasm which best fits the numerous bioelectric measurements of Osterhout and his coworkers (Osterhout, W J V, Ergebn Physiol, 1933, 35, 967) consists of at least two dissimilar non-aqueous layers between which lies an aqueous layer. This might mean the introduction of more regions between IV and V, and V and VI, but inasmuch as the introduction of new layers does not alter matters essentially they are disregarded

³⁶ Osterhout, W J V, Damon, E B, and Jacques, A G, J Gen Physiol, 1927-28, 11, 193

brisk motion random dark particles occasionally seen in the vacuoles, and on the stirring due to convection. This may be considerable Nevertheless it is not inconceivable that the thickness of VII is appreciable and that a concentration gradient exists in it.

Jacobs³⁷ has indicated the method of deriving equations for the rate of flow $\frac{dQ}{dt}$ in the steady state of a solute through a series of dissimilar layers

According to Fig. 5 we have in the present case four possible layers, II-III, IV, VI, and VII Because V is adequately stirred, IV and VI are considered to be adjacent layers there being no concentration gradient in V. Moreover the customary assumption is made that the layers are so thin that the time for the establishment of steady state conditions is an inappreciable fraction of the total diffusion time.

Let the diffusion layers in the cell be D_1 D_2 , D_3 , D_4 the layer thicknesses h_1 , h_2 , h_3 h_4 and the partition coefficients be S_1 , S_2 , S_2 and S_4 and a and a the concentrations of the diffusing solute in the sea water and the sap. Then

$$\frac{dQ}{dt} = \frac{S_1D_1S_2D_2S_2D_4 (a-z)}{h_1S_2D_2S_2D_4S_4D_4 + h_2S_2D_1S_2D_3D_1 + h_2S_1D_1S_2D_2S_4D_4 + h_4S_1D_1S_2D_2S_2D_1}$$
(5)

This shows that the form of the diffusion curve is independent of the number of layers even when the thicknesses, the diffusion constants, and the partition coefficients are different $\left(\frac{\partial x}{\partial a}\right)$ remains constant

Hence if the entrance of I- takes place by diffusion under steady state conditions, the presence of diffusion gradients in several dissimilar layers cannot account for the observed shape of the curve where I is plotted against I.

If, however, the sap is completely unstirred, the vacuole becomes part of the diffusion layer VII Up to now we have assumed the total thickness of the diffusion system to be so small that the areas of the inner side of VII and the outer side of II-III are equal This is not

²⁷ Jacobs M H Ergebn Biol 1935 12, 1

⁴⁸ The partition coefficients are as follows S_1 between Regions I and II + III (Fig 5) S_2 between II + III and IV S_3 between IV and VI, S_4 between VI and VII Region V is, for convenience regarded as absent S_1 and S_2 are equal to 1 and S_2 might be equal to S_4 Moreover D_1 might equal D_4 but we put the equation in its most general form

true because diffusion is taking place into an enclosed space, but when the sap is adequately stirred we may deal with the diffusion as if it were taking place in a volume bounded by plane parallel surfaces. When the vacuole is wholly unstirred it is necessary to take the shape of the cell into account. The natural cell is unsymmetrical but for convenience it may be regarded as a sphere³⁹ with the diffusion region extending in a series of concentric layers from the stirred mass of the sea water to the center of the vacuole

For a homogeneous spherical system Jacobs has derived the equation

$$\frac{x}{a} = 1 - \frac{6}{\pi^2} \left(e^{-\frac{\pi^2 D t}{R^2}} + 1/4 e^{-\frac{4\pi^2 D t}{R^2}} + \right)$$
 (6)

where a is the constant concentration at the surface of the sphere, v is the average concentration in the sphere, and R is the radius of the sphere. The cell is not homogeneous but as has been shown the presence of several dissimilar layers affects the rate of diffusion but not the form of the diffusion equation

In this case also t is an exponential function of x and $\left(\frac{\partial x}{\partial a}\right)_t = \text{const}$

Under unstirred conditions, therefore, for a single cell the form of the curve, when x is plotted against t or against a, is unchanged. But in our experiments the vacuole was stirred so that the problem in our case becomes roughly that of diffusion through a thin closed curved membrane of spherical shape. As Fig. 5 shows, this is probably composed of several layers but, as Equation 5 (p. 759) indicates, this does not affect the form of the diffusion equation. Moreover if in Equation 5 one of the terms S_nD_n is much smaller than any of the others it will obviously control the rate and the diffusion system can be treated as homogeneous. The external concentration of the diffusing solute is a and the internal concentration in the vacuole at time

t = a, and if the concentration gradient is linear so that $\frac{dQ}{dt}$ is a con-

stant, we may write

$$dQ = V_1 dx = \frac{D' 4\pi r_1 r_2 (a - x)}{r_2 - r_1} dt^{**}$$
 (7)

** Cf Jacobs, M H, Ergebn Biol, 1935, 12, 125

³⁹ Some cells are rather more cylindrical but the same principles apply

where r_1 and r_2 are the radii of the inside and outside respectively of the spherical shell and V_1 is the volume of the stirred portion of the system in the vacuole. It should be noted that D' is not the D of Fick's equation but is a "permeability constant" including diffusion constants in the protoplasm, partition coefficients, etc

On integration

$$\ln \frac{a}{a-x} = \frac{D}{V_1(r_2-r_1)} = \frac{3D' r_1 t}{r_1^2(r_2-r_1)}$$
 (8)

But r_2 and r_1 are nearly equal Hence, as the equation shows, the time required for any degree of "saturation" of the sap is directly proportional to the radius of the cell and the thickness of the diffusion region. This gives a mathematical basis for the well authenticated fact that the rate of diffusion into dead cells of unequal sizes is not "exponential".

From the data of Table IV we can calculate by the use of the above equation values for D' for cells of various sizes and with different thicknesses of the diffusion layer 40 Under the following conditions $a=[\mathrm{Na^+}]~[\mathrm{I^-}]=0$ 02, $x=[\mathrm{Na^+}]_i~[\mathrm{I^-}]_i=0$ 00020, t=13, $r_1=0$ 25 cm , and $r_2=0$ 2505 corresponding to a thickness of 5 microns, D=322 \times 10⁻⁸ cm $^2/\mathrm{hr}$ If $r_2=0$ 255 corresponding to a thickness of 50 microns, D'=31 \times 10⁻⁷ cm /hr With the other conditions the same and $r_1=0$ 5 cm , $r_2=0$ 5005 cm , D'=64 \times 10⁻⁸ cm /hr 41

None of the cells used in the experiment was over 0.50 cm or less than 0.25 cm in radius. The thickness of the protoplasm was less than 10 microns 4. For this reason the extremely low value of D', the permeability constant, is probably significant, for the diffusion constant of NaI in water at 0.04 M is of the order of 0.03 cm ²/hr ⁴³ Assuming

⁴⁰ Since in the experiment the rate of entrance of iodide took place with a falling value for the 'monomolecular' constant, we have selected for the calcula tion values at the beginning of the experiment when the falling off was propor tionally less

⁴¹ In case the vacuole is not stirred $r_2 - r_1$ becomes greater and this would affect the value of D

 $^{^4}$ Doyle's results with Valonia macrophysa of Tortugas indicate that the protoplasm is from 5 to 8 μ thick. Doyle W L Papers from the Tortugas Labora tory of the Carnegie Institution 1936 29, 13

⁴³ Landolt H, and Bornstein R, Physikalisch-chemische Tabellen, Berlin, Julius Springer 5th edition, 1923, 1, 247

that this value in water corresponds to the permeability constant of NaI in the living cell it is clear that its entrance into the cell is impeded very greatly. The impediment must be either in the cellulose wall, or in the protoplasm. But the cellulose wall when wet with sea water appears to be so permeable that diffusion in it is as rapid as in water. Thus, as Blinks⁴⁴ found, a freshly killed cell of Valonia ventricosa, a closely related form, has the low resistance corresponding to the specific resistance of the extracted sap. The protoplasm must therefore be responsible for the slow entrance of iodide

In these calculations the cell is considered to be a sphere but other shapes give similar results 45

We may sum up by saying that if we take the value of D' to be of the order of 10^{-8} the passage of NaI through the protoplasm is about a million times as slow as it would be through water. The protoplasm is almost impermeable to MgSO₄, CaSO₄, and CsCl Since the protoplasm is mostly water we may suppose that the hindrance to the passage of these substances lies almost entirely in the non-aqueous surface layers. It does not seem probable that they could act thus if they were unimolecular

An interesting question now arises in connection with the penetration of H_2S which was studied previously 3 In that case the rate of entrance was very high compared with that of iodide Assuming, however, that the penetration involved only diffusion, use of data in

$$\ln \frac{a}{a-x} = \frac{tD}{H} \left(\frac{3}{2a} + \frac{3}{2cb} \arcsin e \right)$$

where H is the thickness of the diffusion layer, a and b are respectively the major and minor semi-axes of the ellipse which generates the solid, and e is its eccen-

tricity =
$$\frac{\sqrt{a^2-b^2}}{a}$$
 Taking an average cell $a=0.700~\mathrm{cm}$, $b=0.255~\mathrm{cm}$, and

 $H=0\,0005\,\mathrm{cm}$ which has almost the same volume as the sphere of radius 0.5 cm $D=3.58\times10^{-8}$ For the same volume of sap the calculated value of D will be inversely proportional to the area of the surface which encloses it

⁴⁶ Osterhout, W J V, Ergebn Physiol, 1933, 35, 981 (Table I), also Cooper, W C, Jr, Dorcas, M J, and Osterhout, W J V, J Gen Physiol, 1928-29, 12, 427

⁴⁴ Blinks, L R, J Gen Physiol, 1929-30, 13, 361

⁴⁵ A large number of cells are roughly prolate spheroids The corresponding equation for the calculating of the permeability constant is

Table II of the H₂S paper gives $a=0\,00625$, $x=0\,0009$, $t=1\,\text{min}$ ute. If we put $r_2-r_1=0\,0005\,\text{cm}$, and $r_1=0\,5\,\text{cm}$ in Equation 8 (p. 761) we arrive at $1\,29\,\times\,10^{-5}\,\text{cm}^2/\text{min}$, as the value of the permeability constant D'. But the diffusion constant of H₂S in water⁴⁷ is of the order of $1\,0\,\times\,10^{-2}\,\text{cm}^2/\text{min}$. From these results we may be confident that in the penetration of H₂S also the protoplasmic layer is the deciding factor ⁴⁸

A calculation for CO₂ leads to similar results In this case $D' = 1.46 \times 10^{-6}$ cm /min and D for the diffusion of CO₂ in sea water is of the order of 1.0×10^{-3} cm ²/min We conclude therefore that in this case also the protoplasm controls the rate of entrance

It is interesting to find that Collander and Barlunde have come to similar conclusions for the penetration of certain non-electrolytes into the cylindrical cells of Chara ceratophylla. They have compared the times required to half saturate the sap of dead cells with the calculated time required to half saturate "by diffusion" cylinders of the same dimensions as the cells. The two sets of figures agreed fairly well in that the actual time was about 4 times the theoretical time so that some impediment is offered by the cell wall. However, the times for half saturation in living cells were with two exceptions 70 to more than 50,000 times the theoretical

It is evident that H₂S enters *Valonia* at a rate enormously greater than that of NaI (according to the figures just given it enters more than 10,000 times as fast). Although permeability to H₂S and to CO₂ appears to be much greater than to NaI (and to HI) it might be misleading to generalize this by saying that weak electrolytes always enter more rapidly for this idea is contradicted by experiments with models which show that a strong electrolyte with a high partition coefficient may pass through a non aqueous layer more rapidly than a weak electrolyte or a non electrolyte with a lower partition coefficient

⁴⁷ Landolt, H, and Börnstein, R, Physikalisch chemische Tabellen Berlin, Julius Springer, 5th edition 1923, 1, 248

⁴⁸ In view of this we need not raise the question whether H₂S is more soluble in the non aqueous layer than in the aqueous part of the protoplasm

⁴⁹ Collander, R, and Bärlund, H, Acta bot fenn, 1933, 11, 1

⁵⁰ Methyl alcohol and trimethyl citrate penetrated almost as rapidly into living cells as into dead cells

But a weak acid or base may be expected to penetrate more rapidly than its salt 51

So far it has been assumed that steady state (linear gradient) diffusion between the sea water and sap is established at once. But obviously it requires finite time. Without knowing the value of the diffusion constant for NaI in the protoplasm we cannot evaluate the time required for the establishment of linear gradient diffusion by the recognized methods 52

The time required for approximate attainment of the steady state is given by the relationship

$$t = \frac{H^2}{\pi^2 D} \ln \frac{2}{\epsilon}$$

where ϵ is the fraction by which the system varies from the steady state

Putting H=10 microns and $D'=0\,0004$ cm² per hour and $\epsilon=0\,0001$, $i\,\epsilon\,1/100$ of D in aqueous solutions

$$t = 9$$
 seconds

Thus the time required to establish the steady state is so brief, even when the absolute rate of entrance is very slow, as to be negligible, 53 and can have no bearing on the observed falling off in the value of k for NaI penetration or the deviation of the $\left(\frac{\partial v}{\partial a}\right)_t$ curve from the linear form

(c) Finally the shape of the $\left(\frac{\partial \imath}{\partial a}\right)_i$ curve inevitably suggests that two processes are involved in iodide entrance. For example, as Fig. 6 shows, the iodide may be entering in part by diffusion, a process which gives a linear relationship between \imath and a (Curve I) and in part by a process which becomes less effective with time (Curve II). The

⁵¹ Osterhout, W J V, Bot Rev, 1936, 2, 303 (footnote 27)

⁵² Cf Jacobs, M H, Ergebn Biol, 1935, 12, 62

⁵³ It is not necessary to take into account the partition coefficient in calculating the time for the attainment of steady state diffusion since S is only concerned with the concentration of the diffusing substance in the unstirred protoplasmic layers in contact with the sea water and sap, and these terms do not enter into the equation

combination yields Curve III which is of the shape found We can only speculate as to the nature of the process responsible for Curve II Osterhout has shown that for the entrance of ammonia into Valonia a curve which has the required shape is obtained and that this is plausibly explained by assuming that a reversible reaction between NH₄OH and H λ , an acidic constituent of the protoplasm which is present in limited amounts, precedes penetration In the present case, however, it is difficult to see what the reaction can be, for as has been pointed

Fig. 6 Hypothetical curves for iodide entrance. Curve I, entrance by diffusion. Curve II, entrance by combination. Curve III, the resultant of the two processes.

out above, there is very little reason to assume that a reaction between HI and a basic constituent of the protoplasm can occur. The nature of the reaction if it takes place is therefore entirely unknown

SUMMARY

When 01 M NaI is added to the sea water surrounding Valonia iodide appears in the sap, presumably entering as NaI, KI, and HI As the rate of entrance is not affected by changes in the external pH we conclude that the rate of entrance of HI is negligible in comparison

with that of NaI, whose concentration is about 10⁷ times that of HI (the entrance of KI may be neglected for reasons stated)

This is in marked contrast with the behavior of sulfide which enters chiefly as H₂S It would seem that permeability to H₂S is enormously greater than to Na₂S Similar considerations apply to CO₂ In this respect the situation differs greatly from that found with iodide

NaI enters because its activity is greater outside than inside so that no energy need be supplied by the cell

The rate of entrance (ie) the amount of iodide entering the sap in a given time) is proportional to the external concentration of iodide, or to the external product $[N^+]_o[I^-]_o$, after a certain external concentration of iodide has been reached. At lower concentrations the rate is relatively rapid. The reasons for this are discussed

The rate of passage of NaI through protoplasm is about a million times slower than through water. As the protoplasm is mostly water we may suppose that the delay is due chiefly to the non-aqueous protoplasmic surface layers. It would seem that these must be more than one molecule thick to bring this about

There is no great difference between the rate of entrance in the dark and in the light

Publishers G E. STECHERT & Co. New York ~ DAVID NUTT London ~ NICOLA ZANICHELLI Bologna FÉLI'A ALCAN Patis ~ AKADEMISCHE VERLAGSGPSELISCHAFT m b II Leipnig RUIZ HERMANOS Madrid ~ F KILIAN 8 NACHFOLGER Budapest ~ GEORG & CO. Genève F MACHADO & Cia Porto ~ THE MARUZEN COMPANY Tokyo

1937

31st Year

SCIENTIA

INTERNATIONAL REVIEW OF SCIENTIFIC SYNTHESIS
Published every month (each number contain ng 100 to 120 pages)
Editors F BOTTAZZI - G BRUNI - F ENRIQUES
General Secretary Paolo Bonetti

IS THE ONLY REVIEW the contributors to which are really international

IS THE ONLY REVIEW that has a really world wide circulation

IS THE ONLY REVIEW of synthesis and unification of science that deals in its articles with the newest and most fundamental problems of all branches of knowledge scientific philosophy, hastory of science are entitle teaching and advancement mathematics astronomy geology physics chemistry biological sciences physiology psychology sociology law economics history of religions anthropology harustics articles sometimes constituting real and proper enquires such as those on the contribution given by the different nations to the ad ancement of science on determinism on the most fundamental physical and chemical questions and part cularly on retail ity on the physics of the atom and of radiations on visitism. Scientific most all the main problems interesting the intellectual circles of the whole world and represents at the same time the first successful realization of an international erranciation of the philosophical and scientific movement.

IS THE ONLY REVIEW that among its contributors can boast of the most illustrious men of science in the whole world

The articles are published in the language of their authors and every number has a supplement containing the French translation of all the articles that are not French. The review is thus completely accessible to those who know only French. (Write for a free copy to the General Secretary of Scientia Milan send ng a superice in one stamp of your country merely to cover packing and postage.)

SUBSCRIPTION \$11.50

Substantial reductions are granted to those who take up more than one year a subscription Por unformat on apply to SCIENTIA, Via A De Togni. 12 - Milano (Italy)

4 . 1.

REACTIONS OF LIMULUS TO ILLUMINATED FIELDS OF DIFFERENT AREA AND FLICKER FREQUENCY

BY ERNST WOLF AND GERTRUD ZERRAHN WOLF

(From the Marine Biological Laboratory, Woods Hole, and the Biological Laboratories,

Harvard University, Cambridge)

(Accepted for publication, January 22, 1937) 4

For the reaction of various Arthropods to stimulation by intermit tent light, the relation between illumination and critical flicker frequency has been well established (Salzle (1932), Wolf (1933-34), Crozier, Wolf, and Zerrahn Wolf (1936-37a, b), Brocker, (1935)) Intermittent stimulation at flicker frequencies below fusion produces an increased reactiveness compared with steady light. This was found for several insects (Mast and Dolley (1924, 1925), Wolf (1933), Zerrahn (1933)) It seems that under such conditions reaction depends upon the frequency and number of transitions of the retinal elements from one state of excitation into another (Wolf and Crozier (1932-33)) For vertebrates a pronounced effect of slow flicker as evidenced by the migration of retinal pigments has recently been described (Arev and Price (1936)) To obtain information about the effect of seen areas of different dimensions, illumination, and flicker frequency, and to establish quantitative relations, the honey bee has been used (Wolf and Zerrahn Wolf (1934-35)) For the bee as a fast moving insect, the strong reaction to intermittent stimulation seems of great importance (Wolf and Zerrahn Wolf (1936-37)) of low frequency was generally a strong stimulus for Arthropods, rela tions such as found with the bee should be found in other forms as In this study we used Limilus Limilus has been proved to give rather precise phototropic responses (Loeb (1893), Northrop and Loeb (1922-23), Cole (1922-23)) At the same time we possess a good deal of information about the action of the optic nerve fibers in Limilus (Graham (1932), Hartline (1929-30), Hartline and Graham (1932))

With the help of Fig 1 the experimental arrangement can be understood. In a vertical piece of ply-wood two openings 17.7×17.7 cm are cut. The distance between the centers of the two holes is 32 cm. Into each opening opal screens are fitted which are illuminated from behind. The areas of the illuminated fields can be varied by means of cardboard frames, reducing the original area. The ratios and areas of the test fields used are given in Table I. The frames

Fig 1 Apparatus for testing the reaction of Limitus to two illuminated fields differing in area and in flicker frequency

are made so that their lower edges coincide with the lower edge of the opening in the ply-wood, the illuminated fields are thus at "eye level" of our animals

In front of the wooden wall is a $tank 64 \times 45$ cm filled with sea water as high as the upper margin of the illuminated fields. The bottom of the tank is slate. Since the experiments are performed in a dark room, influences by outside light or reflections from the walls are minimal.

The opal screens are each illuminated by a 200 watt concentrated filament lamp. The light sources are set back 75 cm from the screens to secure an even illumination. The brightness of the lamps is determined and adjusted in such a way that the illuminations of both fields are equal. Tor intermittent stimula tion by light, sector discs can be inserted in front of the openings of the lamp houses. The axles for the discs are connected by a gear and chain drive which permits keeping the same flicker ratio of the two fields at any desired flicker frequency. The sector wheels are cut so that with every revolution 180° per mits light to pass through and 180° leaves the animals in darkness. The open half circle can be split into sectors. 1 \times 180°, 2 \times 90°, 3 \times 60°, 4 \times 45, and 5 \times 36°. The discs are driven by a 1800 R.P. M., D.C. motor, the speed of which can be controlled by a rheostat. Between the motor and the sector wheels a reduction gear box is inserted so that, by adjusting the rheostat, flicker fre

TABLE 1
Field Sizes Used for Comparison of Effects of Areas of Flickered Illumination

Size of field	Length of side	Area
	¢m (cm t
1/5	79	62 7
1/4	88	78 3
1/3	10 2	104 4
2/5	11 2	125 3
1/2	12 5	156 6
3/5	13 7	188 0
2/3	14.5	208 9
3/4	15 3	234 2
4/5	15 8	250 6
1/1	17 7	313 3

quencies between 2 and 20 per second can be obtained. We adjusted the flicker frequencies in such a way that the faster of the two fields gave flicker frequencies between 10 and 20 a second, by which we obtained the sharpest responses of our animals. Since it was shown for other Arthropods that the critical frequency for flicker fusion is a function of illumination and that the highest frequency of flicker which can be reacted to at all lies between 53 and 62 per second, we are certain that with the intensities and frequencies used we were far below the fusion point.

For test young Limilus were used varying in length from 4 to 8 cm Young animals freshly collected are in most cases positively phototropic. They are used for test as soon as they have been brought to the Laboratory If there are too many animals available at one moment they are kept in a tank with running sea water of low temperature, half shaded in the supply house If left in the

dark room over a longer period, all animals become negatively phototropic just as older ones do A change in the sign of phototropism can also occur as a result of handling the animals (Cole (1922–23)) With a sufficient number available it is possible, however, to have always as many positively phototropic animals as needed

One at a time the animals are brought into the tank in dim red light, and they are held in a position on the middle line between the two flickering fields To keep the Limilis in a position to start its run on a course on the bisecting line between the two fields, a slight pressure is exerted on the tip of its tail by means of a glass rod which has a piece of rubber tubing on its end The animal begins leg movements as soon as the two fields are illuminated and the sector discs It is released at a moment when its body axis is are set into motion exactly on the bisecting line
It now takes a course toward the two fields, and at about the middle of the tank turns to the right or to the left field toward which it proceeds with considerable speed Each arrival at one or at the other field is counted Each animal will give six to ten successive runs which are definite Pretty soon, however, the animal will during its course turn far to the right or to the left or run away from the lights just as if its phototropism was changed from positive to negative This could easily be due to the repeated handling during which the animal was brought back to the starting point As soon as there is any uncertainty about the conduct of an animal, it is eliminated. Before setting the sector discs into motion, the animal is tested several times and its reaction is observed is any tendency for response toward the field of one side which could be due to bodily asymmetry, the animal is at once excluded from tests with flickering fields For each ratio of flicker frequencies and areas, It was found that this number of runs about 60 to 70 tests are made is sufficient for quantitative treatment of the data. During each set of experiments carried out with a given flicker frequency and area ratio, the sector discs and diaphragms securing the respective areas were shifted from right to left and from left to right repeatedly so as to avoid any possible influence of the position of a field relative to the animals tested

In the first set of experiments the ratio of areas was kept 1 1 throughout (313 3 cm² 313 3 cm²), and the ratio of flicker frequen-

TABLE II

With equal areas equally illuminated having different frequencies of flicker below that critical for fusion $(F_1$ and $F_2)$ in the ratios given (F_1/F_2) , the number of times is given that animals went to F_1 and to F_2 and proceeded to the midregion (M) between the two flickening fields — The ratios of the numbers for F_1 and F_2 are given as N_1/N_2

	Field			N	o of anima	ıls			N1/N9
F1/F2	Field	1	2	3	4	5	6	Total	N1/N1
0 20	1 5 M	1 7 3	2 7 2	0 12 0	2 13 0	1 5 1	1 3 0	7 47 6	0 149
0 25	1 4 M	1 8 1	3 2 1	2 12 2	2 11 1	3 11 0		11 44 5	0 250
0 33	1 3 M	0 3 0	2 5 2	2 8 0	5 7 3	3 10 3	1 5 1	13 38 9	0 368
0 40	2 5 M	2 4 1	3 10 0	1 5 1	4 10 3	3 7 1	2 3 1	15 39 7	0 385
0 50	1 2 M	2 4 0	6 13 3	4 6 2	3 6 1	1 7 1	=	17 36 7	0 472
0 60	3 5 M	3 7 0	8 10 0	2 4 2	4 7 1	5 8 4	- -	22 36 7	0 611
0 66	2 3 M	5 9 6	6 6 5	4 6 2	5 8 4	- - -	_ _	20 29 17	0 690
0 75	3 4 M	5 6 1	4 6 5	5 7 5	6 8 4	1 2 3	_ _	21 29 18	0 759
0 80	4 5 M	5 7 7	5 5 2	5 4 3	3 4 3	3 5 7	 	21 25 22	0 840

cies was varied. It soon appeared that the number of animals going to the faster flickering field is always greater than to the slower field. In fact the ratios of the numbers of animals counted at each field are proportional to the ratios of the flicker frequencies (Table II)

Fig. 2 Relations between flicker frequencies of two illuminated fields of equal areas and the number of animals reacting to the fields. The slope of the line is slightly above one

If we plot the ratios of numbers of animals at each field, N_1/N_2 , against the ratio of flicker frequencies, F_1/F_2 , we obtain a rectilinear relationship (Fig 2) The same has been found earlier in the honey bee (Wolf (1933), (Wolf and Zerrahn-Wolf (1934-35)) It is interesting, however, to note that the slope of the line in Fig 2 is slightly

above 1 This indicates that the faster flickering field always has a slightly greater effect than the slower field

Since it has been found that between two slickering fields of equal brightness and area but differing in slicker frequency the stimulating effect of the fields is proportional to the slicker frequencies, the question arises whether two fields differing in slicker frequency can be equalized in their stimulating effect by reducing the area of the faster slickering field. From experiments with the honey bee we know that such an equalization can be arrived at. It might be possible also to obtain it by reducing the brightness of the faster flickering field Experiments with the bee showed, however, that the range of variation in this respect is very great before any effect can be noticed.

For tests with Limilus the area of one field is kept constant (17.7) cm x 17 7 cm), and a sector disc is inserted to provide a given flicker frequency The area of the other field is made smaller, and its flicker frequency is adjusted so that the ratio of the two areas is in versely proportional to the respective flicker frequencies Limitlus the same is true as for the bee, we expect a ratio of 1 in the number of animals seeking either field. The results of our tests are given in Table III and in Fig 3 By studying Fig 3 we notice that the mean ratio, for which theoretically we would expect 1, is slightly above 1 The calculated mean = 1028 If we indicate 3 × PE 1 in the graph, all the points are within the limits of this band difference between the theoretical mean and the one experimentally found seems just barely significant since P E u (mean ratio) = 0 0086 It seems therefore that in this series of tests, just as in the previous ones, we have a slightly greater stimulating effect of the faster flickering field

With the new results for the eyes of Limilus another piece of evidence for the strong reaction of an Arthropod to flicker below fusion is given. Mast and Dolley (1924, 1925) pointed out that for the photic response of Eristlis the effect of intermittent stimulation of low frequency (between 10 and 25 per sec.) is considerably greater than with higher flicker frequencies or with continuous illumination Quantitative evidence for reaction to flicker of low frequency was given in the honey bee (Wolf (1933), Wolf and Zerrahn Wolf (1934–35)). In all the Arthropods tested the relations of area, intensity of

TABLE III

The ratio N_1/N_2 of animals going respectively to illuminated fields 1 and 2, flickered at frequencies F_1 and F_2 , is shown for different ratios of the areas of the fields (M records, as in Table II, the number of journeys to the region between the two fields)

Ratio of	Ratio		<u> </u>		N	o of ann	nals			
areas	F1/F2	Field	1		3	4	5	6	Total	N1/N2
1 5	5 1	1 5 M	5 6 1	5 5 2	4 6 4	7 6 3	6 5 1		27 28 11	0 964
1 4	4 1	1 4 <i>M</i>	5 5 2	4 3 5	4 6 2	5 5 2	7 5 0	4 4 2	29 28 13	1 036
1 3	3 1	1 3 M	4 6 2	6 4 2	3 1 4	5 6 1	6 5 3	5 5 0	29 27 12	1 074
2 5	5 2	2 5 M	6 6 0	3 4 0	6 5 0	8 5 4	3 6 3	6 5 0	32 31 7	1 032
1 2	2 1	1 2 M	8 8 2	3 4 0	7 8 0	5 5 2	5 3 2	6 5 1	34 33 7	1 030
3 5	5 3	3 5 M	6 9 1	4 4 0	5 4 3	8 6 2	6 4 2		29 27 8	1 074
2 3	3 2	2 3 M	6 4 2	3 5 2	4 5 3	5 6 1	2 2 2	7 6 1	27 28 11	0 964
3 4	4 3	3 4 M	6 5 1	5 6 3	4 3 5	5 6 3	4 3 4		24 23 16	1 043
4 5	5 4	4 5 M	6 3 3	4 4 4	7 8 1	5 7 2	6 5 5		28 27 15	1 037

light, and flicker frequency lead to the conclusion that by the visual fields certain numbers of retinal elements are stimulated which give rise to impulses to the central nervous system and thus cause definite action of the motor mechanism. In case of areas differing in size and illumination, it was found that the product of area and intensity has to be constant to give equal stimulating effects. With varying areas and flicker frequencies, equivalent stimulating effects are obtained if for two fields the areas are inversely proportional to their flicker frequencies. It therefore seems that for equality of stimulation it is

Fig. 3 Ratios of number of animals turning to one of two illuminated fields differing in area and in flicker frequency. The theoretical mean for equal effect should be 1. It was found to be 1.028, suggesting a slightly superior effect of flicker as such

irrelevant whether a greater number of elements is stimulated by a large area which is weakly illuminated or has a low flicker frequency, or a smaller number of elements is stimulated by a smaller area of stronger illumination or high flicker frequency. For the coordination of motion during a tropistic response it seems that the same effect is obtained when few impulses due to low illumination or low flicker frequency are coming from a greater number of receptor elements or when more frequent impulses due to stronger illumination or faster flicker are sent out from a smaller number of receptor elements

SUMMARY

In phototropic tests with young Limilus, the phototropic reactions to flickering fields were studied. If the two fields are equal in area and brightness but different in flicker frequency, the number of animals going to the two fields is proportional to their flicker frequencies. Equal stimulating effects of two fields differing in flicker frequency are obtained by reduction of the area of the faster flickering field. The areas for equal effect must be inversely proportional to their flicker frequencies. It seems that equal effects are dependent upon equality of the number of active excitation elements per unit of time.

CITATIONS

Arey, L B, and Price, R. G, J Exp Zool, 1936, 74, 303 Brocker, H, Zool Jalirb, Abt Allg Zool, 1935, 55, 399

Cole, W H, J Gen Physiol, 1922-23, 5, 417

Crozier, W J, Wolf, E, and Zerrahn-Wolf, G, J Gen Physiol, 1936-1937a, 20, 363, J Gen Physiol, 1936-37b, 20, 393

Graham, C. H., J. Cell and Comp. Physiol, 1932, 2, 295

Graham, C H, and Hartline, H K., J Gen Physiol, 1934-35, 18, 917

Hartline, H K., J Gen Physiol, 1929-30, 13, 379

Hartline, H. K., and Graham, C. H., J. Cell and Comp. Physiol., 1932, 1, 277

Loeb, J, Arch ges Physiol, 1893, 54, 81

Mast, S. O., and Dolley, W. L., Jr., Am. J. Physiol., 1924, 71, 163, 1925, 72, 84 Northrop, J. H., and Loeb, J., J. Gen. Physiol., 1922-23, 5, 581

Sälzle, K., Z vergl Physiol, 1932, 18, 347

Wolf, E, Z vergl Physiol, 1933, 20, 152 J Gen Physiol, 1933-34, 17, 7 An analysis of the visual capacity of the bee's eye, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935, 3, 255

Wolf, E, and Crozier, W J, J Gen Physiol, 1932-33, 16, 787

Wolf, E, and Zerrahn-Wolf, G, J Gen Physiol, 1934-35, 18, 853, 1936-37, 20, 511

Zerrahn, G, Z vergl Physiol, 1933, 20, 117

CARBOXYPEPTIDASE

II THE PARTIAL PURIFICATION OF PRO CARBOLYPEPTIDASE

By M L ANSON

(From the Laboratories of The Rockefeller Institute for Medical Research, Princeton $N \ J$)

(Accepted for publication, September 15, 1936)

Extracts of autolyzed pancreas contain carboxypeptidase which even in the presence of formaldehvde can digest chloracetyl tvrosine and peptic digest of edestin. Part I¹ described the isolation of this carboxypeptidase in crystalline form. If fresh pancreas is extracted with cold salt solution, the extract does not attack a formalized peptic digest of edestin. On standing at 37°C, however, the extract slowly becomes active. The activation is enormously hastened by the addition of trypsin. Thus, fresh pancreas contains not active carboxypeptidase (CP) but an inactive precursor, pro carboxypeptidase (PCP). The nature of this precursor is not known. It may be a protein which is different from carboxypeptidase. It may be carboxypeptidase combined with an inhibitor.

Pro carboxypeptidase can be partially purified by fractionation with ammonium sulfate. Most of the pro-carboxypeptidase in the extract is precipitated by 0.35 saturated ammonium sulfate but not by 0.2 saturated ammonium sulfate. The protein can be freed of ammonium sulfate by precipitation by ferric chloride or by dialysis under carefully controlled conditions.

The pro carboxypeptidase in the partially purified preparation, like the pro carboxypeptidase in the crude pancreatic extract, is ac tivated by trypsin Partially purified pro carboxypeptidase contains trypsinogen, which trypsin can convert into trypsin. The activation of impure pro carboxypeptidase by trypsin, therefore, is partially due to the added trypsin and partially due to trypsin formed from the trypsinogen present. Until pro carboxypeptidase is prepared free from trypsinogen, experiments on the kinetics of activation of pro carboxypeptidase by trypsin are of dubious significance.

Enterokinase can activate pro-carboxypeptidase This activation may be due to the trypsin formed from trypsinogen by enterokinase In the presence of sufficient trypsin inhibitor no activation takes place. From this result alone one cannot decide whether the inhibitor acts by eliminating activation by trypsin or by interfering with direct activation by enterokinase. The inhibitor does not affect the activity of activated carboxypeptidase.

Pro-carboxypeptidase is not activated by a small amount of chymotrypsin If a large amount of chymotrypsin is used there is in time a partial activation which may be due to a slight impurity of trypsin

In general the results agree with but do not prove the hypothesis that pro-carboxypeptidase, like chymo-trypsinogen (Kunitz and Northrop (1934–35)) is activated only by trypsin. More conclusive experiments are not possible with the impure pro-carboxypeptidase now available.

To estimate pro-carboxypeptidase, trypsin is added and the resulting carboxypeptidase is estimated. Part III² describes the activation and estimation of pro-carboxypeptidase and defines the pro-carboxypeptidase unit [PCP u]

Partial Purification of Pro-Carboxypeptidase -Bovine pancreas is trimmed of fat, and rapidly frozen immediately after removal from the animal, and stored If it is impossible to freeze the pancreas immediately it should at least be promptly chilled in ice water To each kilogram of ground frozen pancreas are added 3 liters of 5 per cent sodium chloride solution and 150 ml of toluol (East-The suspension is stirred and allowed to stand overnight at 5°C In the morning the toluol and fat are skimmed off the top and the suspension is filtered through very fine gauze 114 gm of ammonium sulfate are added to each liter of solution which makes the solution 02 saturated with ammonium sulfate 40 gm of Filter-Cel and 20 gm of Standard Super-Cel (Johns-Manville) are added to each liter of solution and the solution is filtered on a large Buchner funnel through a filter bed of Standard Super-Cel To each liter of filtrate are added 89 4 gm ammonium sulfate, which makes the solution 0 35 saturated with The suspension is filtered on large folded papers in the cold, ammonium sulfate the precipitate is hardened on a Buchner funnel, and stored frozen rated ammonium sulfate precipitates only 10 per cent more pro-carboxypeptidase than 0 35 saturated ammonium sulfate

The extraction of fresh pancreas is less efficient than that of autolyzed pan-

¹ Page 781

creas In a typical case, the sodium chloride extract contained 0 012 [PCP u] ml and 3 5 mg mitrogen per ml

The specific activity of crystalline carbovypeptidase is 0.01 [CP u] $_{mf}^{PDE}$ N. The specific activity of the ammonium sulfate precipitate after activation is 10 per cent that of crystalline carbovypeptidase and 2.5 times that of the sodium chloride extract. Before activation the carbovypeptidase activity of the ammonium sulfate precipitate is less than 3 per cent of its activity after activation

The procedure outlined can be applied to unfrozen fresh pancreas

The specific activity of the product obtained is a quarter to a third less than that of the product obtained from frozen pancreas

TABLE I
Activation Experiments

Activator	Time activation	Time digestion	Increase in for mol titration
	min	min.	ml 002 n sodium hydroxide
Trypsin	5	10	0.6
Chymo-trypsin	5	30	00
	60	30	0.3
Enterokinase	5	10	0 45
Enterokinase plus inhibitor inhibitor added before enterokinase	5	20	0 05
Enterokinase, inhibitor added after activation but before estimation	5	10	0 40

Pro-carboxypeptidase solution, final concentration in all cases 1 gm un hardened ammonium sulfate precipitate per 100 ml 5 per cent sodium chloride

Trypsin 0.5×10^{-4} hemoglobin units (Anson and Mirsky (1933–34)) crystal line trypsin (Kunitz and Northrop (1935–36)) per ml

Chymo-trypsin 0.3 × 10⁻⁴ hemoglobin units crystalline chymo trypsin (Kunitz and Northrop (1935–36)) per ml

Enterokınase 1 drop of concentrated solution (prepared by Dr M Kunitz) per 2 ml

Inhibitor 5 drops of concentrated solution of protein free crude trypsin in hibitor (prepared from pancreas by Dr. Kunitz) per 2 ml

Activation carried out for various times at 37 C 0 5 ml used for digestion of peptic digest of edestin (see Part III) for various times

It is not possible to purify or crystallize pro-carboxypeptidase by the technique used to isolate carboxypeptidase. The ammonium sulfate precipitate is completely soluble in barium hydroxide

Precipitation with Ferric Chloride —Pro-carboxypeptidase is very easily de natured by acid One can, however, precipitate 80 per cent of the partially

purified pro-carboxypeptidase with ferric chloride (which is acid) without any change in specific activity. To each gram of ammonium sulfate filter cake are added 10 ml of a cold solution of 5 per cent sodium chloride containing enough ferric chloride to make the solution green to brom cresol green. The precipitate is filtered off in the cold. It is completely soluble at pH 8 0

Dialysis —1 gm of ammonium sulfate filter cake is dissolved by the addition of 16 ml of 0.1 m acid potassium phosphate and 4 ml of 0.1 m di-potassium phosphate. The solution is dialyzed overnight at 10°C in a shaking dialyzer (Kunitz and Simms (1927–28)) against a solution containing 2 per cent sodium chloride, 0.008 m acid potassium phosphate, and 0.002 m di-potassium phosphate. Under these conditions pro-carboxypeptidase can be dialyzed without destruction or activation

Activation Experiments — The experiments and their results are given in Table I

REFERENCES

Anson, M. L., and Mirsky, A. E., 1933-34, J. Gen. Physiol., 17, 151 Kunitz, M., and Northrop, J. H., 1934-35, J. Gen. Physiol., 18, 433 Kunitz, M., and Simms, H. S., 1927-28, J. Gen. Physiol., 11, 641 Kunitz, M., and Northrop, J. H., 1935-36, J. Gen. Physiol., 19, 991

CARBOXYPEPTIDASE

III THE ESTIMATION OF CARBOXYPEPTIDASE AND PRO

By M L ANSON

(From the Laboratories of The Rockefeller Institute for Medical Research,
Princeton, N J)

(Accepted for publication, September 15, 1936)

This paper describes the estimation of carboxypeptidase, CP, by formol titration, with chloracetyl tyrosine or a peptic digest of edestin as substrate. To estimate the inactive precursor of carboxypeptidase, pro carboxypeptidase [PCP], the precursor is activated with trypsin and the resulting carboxypeptidase is estimated.

Peptic digests have not hitherto been used as substrates of car boxypeptidase because they are digested not only by carboxypeptidase but also by other proteolytic enzymes of the pancreas. I have found, however, that carboxypeptidase activity is not stopped by formaldebyde and that the digestion of a peptic digest by a crude pancreatic extract is due entirely to the carboxypeptidase in the extract, if the digestion is carried out in the presence of formaldebyde. If a crude extract of pancreas and a given solution of crystalline carboxypeptidase have the same activity as measured with chloracetyl tyrosine, they likewise have the same activity as measured with a formolized peptic digest of edestin

The peptic digest is much cheaper than chloracetyl tyrosine, which is important when many thousands of analyses have to be made Furthermore, the peptic digest is stable at the pH used for estimation, whereas a fresh chloracetyl tyrosine substrate solution has to be made every day

Preparation of Chloracetyl Tyrosine Substrate—To 2 gm of chloracetyl tyrosine (Hoffman La Roche) are added 50 ml of 002 m di potassium phosphate, 15 ml of 36-38 per cent formaldehyde solution, 2 ml of 05 per cent phenol phthalem in 50 per cent alcohol, enough 05 N sodium hydroxide to dissolve the

chloracetyl-tyrosine and make the solution just detectably pink, and finally enough water to make the total volume 100 ml

Preparation of Formalized Peptic Digest of Edestin -To 100 gm of edestin (Pfanstiehl) are added 200 ml 1 N hydrochloric acid, 500 ml of water, 4 gm pepsin (Parke, Davis), and a little toluol The solution is kept at 37°C overnight and is then filtered To each 100 ml of filtrate are added 3 gm of decolorizing charcoal (Norit) and 1 gm of the filter aid Standard Super-Cel (Johns-Manville), and the suspension is filtered on a Buchner funnel through a bed of Standard 5 N sodium hydroxide is added to the filtrate until the solution is alkaline to thymolphthalein and the resulting precipitate is filtered off with the aid of Standard Super-Cel The further addition of sodium hydroxide should cause no further precipitation It might be thought that the three steps which have just been described could better be combined but the charcoal removes more color if the residue not dissolved by pepsin is first removed and if the solution is To each 50 ml of the clear alkaline solution are added 15 ml of formaldehyde, 2 ml of 0 5 per cent phenolphthalem, enough 5 0 N sodium hydroxide to make the solution just detectably pink, and enough water to make the total The solution is stored at room temperature and is not used until it has stood overnight If the solution ceases to be pink more sodium hydroxide is added

Preparation of Standards—The standard pink solutions are kept in tightly stoppered, lipless 50 ml centrifuge tubes. They contain roughly 0 0007 per cent phenolphthalein completely converted into the colored form by an excess of sodium hydroxide. The total volume is roughly 7.5 ml, which is about the volume of the titration mixture. The edestin standard contains 2.5 ml of the peptic digest which has been made alkaline and filtered but to which the water, formaldehyde, and indicator have not yet been added. Thus, both the pink standard and the digestion mixture contain the same amount of brown peptic digest in the same volume and a good match is obtained at the end point of the titration. When the colorless chloracetyl-tyrosine is used as a substrate, the standard is simply an alkaline solution of phenolphthalein.

Technique of Formol Titration—In the estimation of proteolytic enzymes by formol titration the usual procedure is to add enzyme to a substrate solution, to stop the digestion after a given time by the addition of formaldehyde, and finally to add phenolphthalein and find out how much sodium hydroxide is needed to make the solution as pink as a standard pink solution. A blank titration is done on a solution to which formaldehyde has been added before the addition of enzyme, i.e., on a solution in which no digestion has taken place. The increase in titration due to digestion is a measure of the number of amide linkages split. This usual procedure has to be slightly modified for the estimation of carboxypeptidase because carboxypeptidase activity, unlike tryptic activity, is not stopped by formaldehyde. A slightly alkaline substrate solution is used which already contains formaldehyde and phenolphthalein. The blank is obtained by titrating immediately after the addition of enzyme.

titrating 10 minutes after the addition of enzyme — Since the formaldehyde and the indicator are not added separately and since the acid groups "liberated" from the peptic digest are already neutralized in the substrate solution, the modified procedure for formal titration is even simpler than the ordinary procedure

The Blank Titration —1 ml of enzyme solution is added to 5 ml of substrate solution in a tube like that in which the standard is kept, the tube is whirled to mix the solutions, and the mixture immediately titrated with 002 x sodium hydroride until its color matches that of the standard. It is important that the titration be carried out rapidly because digestion goes on and carbon dioxide is absorbed during the titration.

The Digestion Titration —If the blank titration with enzyme added is more than 0.2 ml more than the blank titration with water added, then, in order that the digestion mixture should have the proper pH, an amount of 0.02 n sodium hydroxide is added to the substrate solution sufficient to make the blank with enzyme plus sodium hydroxide the same as that with water alone without enzyme or added sodium hydroxide. After the enzyme is added the tube is stoppered and titrated after 10 minutes. The substrate solution is brought to 25°C before the enzyme is added and the digestion mixture is kept in a 25°C water bath during the direction.

If the increase in formol titration is more than 1.8 ml with chloracetyl tyrosine as substrate or 0.8 ml with the peptic digest as substrate then the digestion is repeated with less enzyme or with a shorter digestion time. If the increase in titration with chloracetyl tyrosine as substrate is more than 1.2 ml but less than 1.8 ml then after 6 minutes of digestion 0.7 ml of sodium hydroxide is added to the digestion mixture and the titration is completed after 10 minutes as usual

Estimation of Pro-Carboxypeptidase—The pro-carboxypeptidase is activated with crystalline trypsin (Kunitz and Northrop (1935-36)) and the resulting car boxypeptidase is estimated as already described. The concentration of pro-car boxypeptidase to be estimated should be such that 1 ml of the activated solution can be used directly for the estimation of carboxypeptidase.

The trypsin is dissolved in 0.02 N hydrochloric acid to give a solution having 2 × 10⁻³ hemoglobin units (Anson and Mirsky (1933–34)) per ml 1 drop of this solution is used for each milliliter of pro carboxypeptidase solution. First the trypsin is put in a test tube, then an equal volume of 1 x di potassium phosphate, then the pro-carboxypeptidase. Usually this solution is red to phenol red if it is not, 0.1 x sodium hydroxide is added until the solution is red to phenol red and the volume of sodium hydroxide added is recorded. The test tube is left for 5 minutes in a water bath kept at 37°C

The final solution is slightly alkaline because trypsin acts most rapidly in slightly alkaline solution. The alkali is added after the trypsin and before the enzyme in order to protect the enzyme from the acid in the trypsin solution.

Doubling the amount of trypsin or the activation time does not affect the results

The Activity Units —A solution of carboxypeptidase by definition has 1 carboxypeptidase unit per ml ([CP u]_{m1}) when it causes an increase in formol titration under standard conditions at the initial rate of 1 milliequivalent of sodium hydroxide per minute (cf. Northrop (1932–33)) An amount of crystalline carboxypeptidase which has 1 mg nitrogen has 0 081 [CP u]^{CT} when the substrate is chloracetyltyrosine and 0 103 [CP u]^{PDE} when the substrate is a peptic digest of edestin. Thus 1 [CP u]^{CT} is equivalent to 1 27 [CP u]^{PDE} Initially the peptic digest is digested by a given amount of carboxypeptidase 1 27 times more rapidly than is chloracetyl-tyrosine.

A solution of pro-carboxypeptidase has 1 pro-carboxypeptidase unit [PCP u] if after activation with trypsin it has 1 carboxypeptidase unit

Activity Curve -Fig 1 shows the extent to which chloracetyltyrosine and a peptic digest of edestin are digested by increasing amounts of crystalline carboxypeptidase in 10 minutes under the standard conditions described The digestion of chloracetyl-tyrosine is proportional to the amount of enzyme until the increase in formol titration is 16 ml of 002 N sodium hydroxide. In the case of the digestion of a peptic digest of edestin the deviation from proportionality begins with very small amounts of digestion and the peptic digests of other easily available proteins are even less satisfactory than the peptic digest of edestin If the substrate concentration is increased then the extent of digestion is proportional to the amount of enzyme for greater extents of digestion This advantage, however, is more than outweighed by the disadvantage that with higher concentrations of substrate the substrate solutions are more highly buffered With the concentrations of and hence the titration is less sensitive substrate used the titrations are sensitive to 0 05 ml of 0 02 N sodium hydroxide

Calculations —If the digestion is carried out with 1 ml of enzyme solution, then the carboxypeptidase units of the carboxypeptidase in 1 ml of solution are read directly from Fig 1. If the digestion time is 5 minutes instead of 10 minutes, then the carboxypeptidase units values must be doubled. If the digestion time is 20 minutes, then the carboxypeptidase units values must be halved.

Specificity of Formalized Peptic Digest as Substrate — The evidence that in the presence of formaldehyde carboxypeptidase alone is re-

sponsible for the digestion of a peptic digest of edestin by a crude extract of pancreas is that the same values for the carboxypeptidase activity of a crude extract are obtained whether chloracetyl tyrosine or the peptic digest is used as a substrate. It may be that there are proteolytic enzymes other than carboxypeptidase which attack peptic digests in the presence of formaldchyde. If there are, their quantitative importance in crude pancreatic extracts is small compared with that of carboxypeptidase. None of the known proteolytic enzymes of the pancreas other than carboxypeptidase has been shown to be active in the presence of formaldehyde.

Reproducibility of Formalized Peptic Digest as Substrate —Trypsin digests different proteins, even samples of edestin prepared in different ways, at quite different rates. In order to obtain reliable absolute values for tryptic activity it is necessary to use a highly reproducible substrate such as hemoglobin. Carboxypeptidase in contrast attacks the peptic digests of widely different proteins at about the same initial rate, and in the case of edestin small differences in the preparation of the peptic digest do not cause any change in the rate at which the digest is attacked by carboxypeptidase. Since, however, the reproducibility of peptic digests is always suspect, every batch is checked

by means of an enzyme solution whose activity has been measured with chloracetyl-tyrosine as a substrate

Stability of Substrates —The chloracetyl-tyrosine solution changes slowly—It should be kept cold and used the day it is prepared—The formalized peptic digest of edestin does not change in a month when kept at room temperature

Effect of Tyrosine and Glycerine—The digestion of chloracetyl-tyrosine or a peptic digest of edestin by crystalline carboxypeptidase is not changed by the addition to the digestion mixture of 1 ml of 4 per cent glycerine or 1 ml of 0 02 m tyrosine

Effect of Acid —Since acid slows digestion by carboxypeptidase any acid introduced with the enzyme solution is neutralized before digestion is begun. The amounts of acid produced during the digestion of the peptic digest which causes an increase in formol titration of less than 0.8 ml of 0.02 n sodium hydroxide do not affect the rate of digestion. In the digestion of chloracetyl-tyrosine the acid formed is important if it causes an increase in formol titration of more than 1.2 ml of sodium hydroxide. If the final increase in formol titration is to be more than 1.2 ml of sodium hydroxide part of the acid formed by the digestion should therefore be neutralized with sodium hydroxide during the digestion, as has been described

REFERENCES

Anson, M. L., and Mirsky, A. E., 1933-34, J. Gen. Physiol., 17, 151 Kunitz, M., and Northrop, J. H., 1935-36, J. Gen. Physiol., 19, 991 Northrop, J. H., 1932-33, J. Gen. Physiol., 16, 41

THE APPARENT DISTORTION OF BRIEF RECTANGULAR ELECTRICAL STIMULI IN NERVE

By H A BLAIR

(From the Department of Physiology, The University of Rochester School of Medicine and Dentistry, Rochester, $N \mid Y$)

(Accepted for publication, January 2, 1937)

It has been shown previously (Blair (1932 a, b, c), (1935 a, b), (1936 a)) that the strength-duration curves of medullated nerve and of numerous other tissues are represented quite well by the equation,

$$\log \frac{V}{V-R} = kt + \log \frac{K+k\alpha}{K} \tag{1}$$

in which V is the stimulating voltage, R the rheobase, t the duration of the stimulus, and t, K, and α are constants The kinetics assumed for the excitatory state, ρ , in order to give this result were,

$$\frac{dp}{dt} = KV - kp \tag{2}$$

with the additional assumption that ordinarily the excitatory state, p, need not be built up to a constant threshold value, h, but only to a value $h-\alpha V$, α being a constant. In a few cases a threshold, $h+\alpha V$, was required. It appears that this state, αV , which has been assumed to be a lowering of the threshold but may equally well be any kind of excitatory condition, is ordinarily attained by kinetics which are so fast that most strength-duration data do not enable them to be evaluated. Some recent data on muscle, however, extend to times which are relatively short enough so that the kinetics of the fast process may be investigated. In this case, the assumption is justified fairly well (Blair (1936 b), data by Colle (1933)) that the fast process may be written,

$$\frac{dh}{dt} = AV - ah \tag{3}$$

in which h is the alteration of the threshold, V is the stimulus, and A and a are constants. For these data are represented by the equation,

$$p + h = h_0 = \frac{KV}{k} (1 - e^{-kt}) + \frac{AV}{a} (1 - e^{-at})$$
 (4)

 h_0 being the real threshold of the excitatory state Or, on putting in the condition for the rheobase, R,

$$\frac{V-R}{V} \times \frac{K+k\alpha}{K} = e^{-kt} + \frac{k\alpha}{K} e^{-\alpha t}$$
 (5)

It appears from this point of view that the constant, a, is so large in stimulating most nerve trunks, that e^{-at} is negligible, even with the briefest stimuli, so that the second member of equation (4) appears only at the equilibrium value, AV/a, or αV Data by Sakamoto (1933) from the stimulation of single nerve fibers with micro-electrodes give, however, values of a which are sufficiently small to enable the fast component of equation (4) to be followed. Four sets of these data are given in Table I, with both the observed voltages and those calculated from equation (4), using the constants given

The method used in applying equation (5) is illustrated in Fig 1 Since this equation, for large values of t, reduces to equation (1), plotting $\log V/(V-R)$ against t for the longer times gives k from the slope of the line obtained and $(K+k\alpha)/K$ from the intercept. In Fig 1, the straight line from the upper part of the curve is continued as a broken line over to this intercept in each case. Having determined these constants, it will be seen that a is the only undetermined constant remaining. Its mean value may be obtained by substituting each datum at short durations and averaging the results

It will be observed in Table I that with only two data do the observed and calculated voltages diverge by as much as 5 per cent. This indicates that equation (4) is valid to within the limit of error usually allowed in this type of measurement.

The durations corresponding to the least voltages in Table I are the measured utilization times of the rheobases. These data enable a determination of the completeness of the components represented by $\frac{KV}{k}$ (1 - e^{-rt}) at these times. In Experiment 10, for example,

 $1 - e^{-kt} = 0.94$, approximately, and in Experiment 2, 0.996, approximately These are the extreme cases, the least and the most complete, respectively Since the other component of equation (4) is entirely complete at these times and since it is an appreciable part of

Fig 1 The data of Experiments 3 and 9 (Table I) upper and lower curves, respectively, plotted according to equation (1)

 h_0 , it will be evident that even in Experiment 10, the apparent incompleteness corresponds to only about 4 per cent of the value of R. Therefore, any neglected factor, such as accommodation, cannot be considered to have an appreciable effect in these cases

It will be seen from Table I that a=8k, approximately The component in $(1-e^{-at})$ of equation (4) will therefore be sensibly complete in one-eighth of the utilization time of the rheobase, ie, in about 0.15 millisecond. At shorter durations, the incompleteness of this component causes the points in Fig. 1 to diverge from the linear

TABLE I

Examples of Sakamoto's Data Using His Numbering for the Experiments

The calculated voltages are obtained from equation (4) using the given constants, k, etc

Exp	9	Етр	10	Evi	2	Ex	р 3
V	,	V		v		ν	
Observed	Calculated	Observed	Calculated	Observed	Calculated	Observed	Calculated
				!			
30 1	28 4					23 8	23 4
	}	33 5	33 2	29 4	28 6		}
20 9	20 2	23 4	23 9	21 6	22 2	17 6	18 1
15 3	15 0	18 2	18 3	18 6	17 8	14 5	14 7
10 9	10 8	13 5	13 7	14 6	14 4	11 9	12 2
8 49	8 25	11 0	11 1	12 2	12 3	10 9	10 8
6 75	6 75	9 42	9 42	11 0	11 1	99	99
5 64	5 65	8 22	8 00	9 95	10 0	9 26	9 25
4 96	4 98	6 94	7 09	9 78	9 48	8 88	8 85
4 37	4 37	6 21	6 25	9 39	9 05	8 93	8 50
			}	!		8 34	8 35
4 00	4 08	5 44	5 76	8 97	8 95	8 34	8 34
	·		,	8 90	8 90		
Ì		5 42	5 42				
3 88	3 88						
k =	= 2700	λ =	= 2400	k =	4800	k =	- 440 0
a =	= 20,000	a =	= 24,200	a =	33,000	<i>a</i> =	32,000
$\frac{K + k\alpha}{K} = \frac{K + k\alpha}{K}$	= 1 28	$\frac{K + k\alpha}{F} =$	= 1 38	$\frac{K + k\alpha}{K} =$	1 76	$\frac{K + k\alpha}{K} =$	2 26
	Observed 30 1 20 9 15 3 10 9 8 49 6 75 5 64 4 96 4 37 4 00 3 88 k = a = K + ka	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V T Observed Calculated Observed 30 1 28 4 33 5 20 9 20 2 23 4 15 3 15 0 18 2 10 9 10 8 13 5 8 49 8 25 11 0 6 75 6 75 9 42 5 64 5 65 8 22 4 96 4 98 6 94 4 37 4 37 6 21 4 00 4 08 5 44 5 42 3 88 3 88 k = 2700 k = a = 20,000 k = K + k\alpha = 1 28 K + k\alpha =	V V Observed Calculated Observed Calculated 30 1 28 4 33 5 33 2 20 9 20 2 23 4 23 9 15 3 15 0 18 2 18 3 10 9 10 8 13 5 13 7 8 49 8 25 11 0 11 1 6 75 6 75 9 42 9 42 5 64 5 65 8 22 8 00 4 96 4 98 6 94 7 09 4 37 4 37 6 21 6 25 4 00 4 08 5 44 5 76 5 42 5 42 5 42 3 88 3 88 5 42 5 42 k = 2700 k = 2400 k = 2700 k = 2400 k + $k\alpha$ = 1 28	V V V Observed Calculated Observed Calculated Observed 30 1 28 4 33 5 33 2 29 4 20 9 20 2 23 4 23 9 21 6 15 3 15 0 18 2 18 3 18 6 10 9 10 8 13 5 13 7 14 6 8 49 8 25 11 0 11 1 12 2 6 75 6 75 9 42 9 42 11 0 5 64 5 65 8 22 8 00 9 95 4 96 4 98 6 94 7 09 9 78 4 37 4 37 6 21 6 25 9 39 4 00 4 08 5 44 5 76 8 97 3 88 3 88 5 42 5 42 8 90 3 88 3 88 5 44 5 76 8 97 8 90 5 42 5 42 6 25 6 25 8 90 5 42 5 42 6 25 6 25	V V V Observed Calculated Observed Calculated Observed Calculated 30 1 28 4 33 5 33 2 29 4 28 6 20 9 20 2 23 4 23 9 21 6 22 2 15 3 15 0 18 2 18 3 18 6 17 8 10 9 10 8 13 5 13 7 14 6 14 4 8 49 8 25 11 0 11 1 12 2 12 3 6 75 6 75 9 42 9 42 11 0 11 1 12 2 12 3 6 75 6 4 5 65 8 22 8 00 9 95 10 0 11 1 1 1 <td>V V V V Observed Calculated Calculated Calculate</td>	V V V V Observed Calculated Calculated Calculate

relations Existing data from exciting nerve trunks do not show this type of divergence, indicating that the factor, a, in the trunk is much larger so that the component $(1 - e^{-at})$ attains its limiting value, 1, in close approximation even with the briefest stimuli. The probable values of a in these cases are discussed later

With regard to the meaning of equation (4), it may be supposed that instead of the states, p and h, there is only the one, p, given by,

$$p = \frac{KV}{k} (1 - e^{-kt}) + \frac{AV}{a} (1 - e^{-at})$$
 (6)

or, on differentiating,

$$\frac{dp}{dt} = V(K + Ae^{-at}) + \frac{AkV}{a}(1 - e^{-at}) - kp \tag{7}$$

If now it is assumed that the process of excitation proper is given simply by,

$$\frac{dp}{dt} = K'I - kp \tag{8}$$

the first terms of equation (7) will represent the distortion of the current in passing through the tissue, in other words, the application of a constant voltage, V, will give rise to a current of the form,

$$I = V(K + Ae^{-at}) + \frac{AkV}{a} (1 - e^{-at})$$
 (9)

From this it will be seen that I decreases according to

$$\frac{dI}{dt} = a(I_0 - I) \tag{10}$$

 I_0 being the final value of I on long application of V. Therefore, instead of assuming as before (Blair (1936 b)) a fast excitatory process in addition to the ordinary excitatory process, it can equally well be assumed that there is only the one process but that the exciting cur rent undergoes a rapid exponential diminution from its initial to its final value

This transient in the current is probably due to the electrical capacity of some structure which is not the site of excitation. Its time constant may appear, therefore, in purely physical measurements of the electrical properties of the tissue

Physical measurements on excitable tissue have not as yet been related satisfactorily to excitation phenomena. It is well known,

however, that there are transients in nerve trunks These have been recorded directly, eg, by Bishop (1928) Other measurements with alternating currents (eg Lullies (1930)) show also that the nerve trunk is a complex structure electrically It is, of course, not necessary that there should be any simple correspondence between the total current through the tissue and the actual exciting current, but there may be simple relations between the time constants of the transients of the one and the other Bishop (1928) concluded that the transient he measured was complete at about the same time as that at which the excitatory state became adequate Consequently, he supposed that the polarization of the tissue and the state of excitation might be simply related This transient had a time constant about the value, One difficulty with this interpretation, however, k, of equation (6) is that k is quite definitely not a property of the trunk but of the fiber, since the k of each fiber may be separately determined from the intact trunk (Blair and Erlanger (1933), Blair (1934)) without changing the The constant, a, which probably is a property of the trunk when the whole trunk is being stimulated, may appear in alternating current measurements These measurements have been interpreted by Cole (1932) as indicating that the nerve trunk has a variable impedance element of constant phase angle. It appears, however (Cole and Curtis (1936)), that an alternative interpretation is that each fiber has only simple capacities and resistances but that the combination of fibers in the trunk may appear to have properties corresponding to the earlier interpretation

In any case, it is concluded by Cole from these measurements (Blair (1936 b), discussion) that there is a factor in the frog's nerve trunk analogous to a time constant of the order of 10^6 sec $^{-1}$ According to the data considered here, a=30,000 sec $^{-1}$, approximately, for single sciatic fibers, but the strength-duration curves for sciatic trunks require values at least as great as 10^5 sec $^{-1}$, because in them the term e^{-at} of equation (6) is negligible at times as short as about 3×10^{-5} sec It appears, therefore, that if the transients are due to capacities, in stimulating the trunk, the capacities of the single fibers are encountered in a series arrangement since the effective capacity of the whole is less than that of the elements There appears to be some indication, therefore, that both the physical measurements and the physiological

measurements will give a similar result with respect to this fast transient

It will be seen that equation (7) is unnecessarily complex in order to conform to previous notations (Blair (1936 b)) It may be written,

$$\frac{dp}{dt} = V(M + Ne^{-t}) - kp \tag{11}$$

M and N being constants When the stimulus is stopped, the transient will probably be reversed so that the excitatory state will disappear according to,

$$\frac{dp}{dt} = -NVe^{-at} - kp \tag{12}$$

 $\imath\,e$, the transient will be contra excitatory at the cathode, and the excitatory state will disappear faster than its spontaneous rate, kp

According to the data considered here, the sign of A/a in equation (4) is positive always, indicating a rapid decrease in the exciting current, due perhaps to a series capacitance. There are cases, par ticularly in the α excitability of muscle (Blair (1936 b)) however, in which the sign of this constant is negative, corresponding to a transient increase in the exciting current, possibly due to a parallel capacitance with respect to the exciting circuit proper. Considerations of this kind may be of value in determining the locus of the excitatory state.

It cannot be concluded without considerable investigation that the current transient is accurately exponential. This is in fact rather unlikely, but it may be that it is sufficiently nearly exponential that no great divergence will be detected by strength duration data. Also it seems likely, according to Bishop's observations (1928) that the excitatory state itself has an external electrical sign. Consequently, the excitatory state and the transient in the current will probably appear in a combination of some sort in purely physical measurements.

This transient, or rather the last term in equation (1) has been discussed by Rushton (1934) and Hill (1936) from separate points of view

Hill assumes that it does not exist and asserts that the first two terms of equation (1) are entirely sufficient in representing strength duration curves There are some few data for which this is true, i.e., the transient is unimportant. Most data, and those considered here are examples, do not conform, however, to Hill's assumption even in rough approximation. With their own data, using alternating currents as stimuli, Hill, Katz, and Solandt (1936) conclude in agreement with the writer (1932 b) that the formula corresponding to equation (1) is not valid for high frequencies. It cannot be said without further investigation that the neglect of the transient is the only reason for this, but its inclusion accounts qualitatively for the experimental results

Rushton (1934) did not question the existence of the third term of equation (1) but criticized it, first on the ground that it had been assigned no physical meaning, and second on the ground that the state represented by it (called change of threshold then) would disappear instantaneously on the removal of the stimulus so that it should not effect the data at all in certain specified cases

Regarding the first point, Rushton may be satisfied by considering the effect concerned to be a current transient

Regarding the second point, Rushton's assumption, which, as he showed, leads to absurdities, is entirely his own. For it is quite clear Blair $(1932\ b))^1$ that no such idea was entertained by the writer, although he was unable then to state explicitly an exponential decay as is done now by the first two terms of equation (12)

SUMMARY

If it is assumed that the kinetics of the process of excitation in nerve is given by dp/dt = KI - kp, I being the actual exciting component of the current, p the state of excitation, and K and k constants, it is necessary to postulate that on application of a rectangular stimulus of voltage, V, the current, I, undergoes a transient exponential variation, usually a decrease, in order that the integral of the differential equation (above) may fit the strength-duration data in V and t. This hypothesis is substantiated by data by Sakamoto on single fibers of the sciatic nerve of the frog. The time constant of the postulated current transient is of the order of 10^{-4} sec. for single fibers and of the order of 10^{-5} sec. or less in the sciatic nerve trunk. The latter value is

¹ Page 723, third sentence

about the same as that found by Cole in the same tissue by purely physical measurements. Some criticisms by Rushton (1934) are discussed

BIBLIOGRAPHY

Bishop, G H, Am J Physiol, 1928, 84, 417

Blair, E A., and Erlanger, J, Am J Physiol, 1933, 106, 524

Blair, H. A., Proc. Soc. Exp. Biol. and Med., 1932 a, 29, 615 J. Gen. Physiol., 1932 b, 15, 709, 1932 c, 16, 165

Blair, H A , J Gen Physiol , 1934 18, 125

Blair, H. A., Am. J. Physiol. 1935 a, 111, 515. J. Gen. Physiol., 1935 b, 18, 755.
 Blair, H. A., Proc. Soc. Exp. Biol. and Med., 1936 a, 33, 563. The Linetics of the excitatory process, in Cold Spring Harbor symposia on quantitative biology, Cold. Spring. Harbor., Long. Island. Biological. Association, 1936 b, 4, 63. Am. J. Physiol., 1936 c, 116, 11.

Cole, K S, J Gen Physiol, 1932, 15, 641

Cole, K. S., and Curtis, H. J., Electric impedance of nerve and muscle, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1936, 4, 73

Colle J. Arch internat physiol, 1933, 37, 410

Hill, A V, Proc Roy Soc London, Series B, 1936 119, 440

Hill, A. V., Katz, B., and Solandt, D. Y., Proc. Roy. Soc. London, Series B., 1936, 121, 74

Lullies H, Arch ges Physiol, 1930 225, 69, 87 Rushton W A H, J Gen Physiol, 1934 17, 481 Sakamoto, S, Arch ges Physiol, 1933, 231, 489

IMMUNOLOGICAL STUDIES ON PEPSIN AND PEPSINOGEN

By C V SEASTONE AND R M HERRIOTT

(From the Department of Animal and Plant Pathology, and the Laboratories of The Rockefeller Institute, Princeton, N J)

(Accepted for publication, February 9, 1937)

The experiments to be described were carried out in the attempt to distinguish by serological methods the pepsins from several different animal species, as well as to compare the serological behavior of pepsin and its precursor, pepsinogen

The concept of organ specificity was established by Uhlenhuth (1) who showed that the lens protein of one species would give rise to antibodies having no relation to the serum proteins of the same species, although these antibodies would react with lens proteins from unrelated species. Enzyme proteins have been shown to be antigenic. Sumner and Kirk (2, 3) were able to produce a precipitating serum with crystalline urease, and to demonstrate the protective effect of such antibodies against the toxicity of the enzyme in vivo. Although the anti-urease would completely remove the urease from solution, the resulting precipitate apparently retained most of its activity. Northrop (4) found that crystal line swine pepsin protein gave rise to pepsin precipitating antibodies. By means of the Dale technique. TenBrocek (5) was able to differentiate pig and beef trypsin, as well as chymotrypsin and its precursor, chymotrypsinogen, each of which had been purified by five crystallizations.

Pepsin presents a special problem since, according to Northrop (4), it is inactivated above pH 6, as a more alkaline condition is approached the enzyme is converted into a typical denatured protein. At 37°C and pH 7 6, almost all of the pepsin is inactivated or denatured imme diately, and on being returned to pH 2-3, the denatured pepsin precipitates. It is therefore most likely that active pepsin cannot exist in the body fluids, and that inactive, denatured pepsin is responsible for antibodies developed following the injection of active pepsin. North rop (4) and Kirk and Sumner (3) have commented on this likelihood, and it must be borne in mind in the interpretation of these experiments, since the denaturation of a protein may produce a new specificity very different from that of the original native protein (8-11)

797

Attempts to carry out precipitin reactions in the acidity range at which pepsin is native revealed the fact that between pH 4 and 6 both pepsin and pepsinogen precipitate normal serum proteins. For example, if a normal rabbit serum is adjusted to pH 5, and pepsin at pH 5 is layered over it, there will be a definite ring formation, even at a pepsin dilution of 1 1,000,000. This is also true of normal chicken, bovine, swine, and horse sera, and of the purified albumin and globulin fractions of normal horse serum. At the normal serum pH of 7 6 no precipitation occurs

The coagulation of milk by pepsin, one of the most delicate tests for peptic activity, is carried out at pH 6. Using this test to demonstrate antipeptic activity of pepsin precipitating sera, it was observed that several normal rabbit sera showed a greater inhibition of activity than did the pepsin antisera. It is possible that this nonspecific inhibition is related to the nonspecific precipitation, since both take place in about the same range of acidity. Apparently it is impossible to study specific serological reactions with active pepsin as such, the limitations imposed by its denaturation at pH 7 6 must be accepted

EXPERIMENTAL

Rabbits weighing about 2 kg were given three intraperitoneal injections at weekly intervals of 50 cc of a 1 per cent solution of swine pepsin This material had been twice crystallized, and dialyzed It was injected at pH 5 after the last injection, the rabbits were bled and serum collected prepared for the precipitin reaction by adjusting a concentrated solution to pH 7 6, and diluting to 1 per cent on the basis of dry weight of pepsin referred to as 1×10^{-2} was diluted 1 10 serially to 1×10^{-6} Precipitin reactions were done by the ring test, layering antigen dilutions over the undiluted antiserum, and reading after 12 hours at room temperature. Of four rabbit sera prepared as described above, two showed no pepsin precipitins, one precipitated pepsin at a concentration of 1×10^{-3} , and one at 1×10^{-5} Although the two positive sera gave similar results, the experiments presented will deal only with Antisera precipitating swine serum proteins were prepared the stronger serum by injecting rabbits intramuscularly with swine serum adsorbed onto alumina according to the method of Heltoen (6) The strongest serum so obtained, which precipitated a 1 imes 10⁻⁵ concentration of swine serum protein (on the basis of dry weight), was used

Pepsinogen (7) gives rise to precipitating antibodies more readily than does pepsin. At pH 76 it is a stable native protein. Four rabbits were given three intraperitoneal injections at weekly intervals, of 50 cc. of a 1 per cent solution.

of pepsinogen at pH 76 2 weeks after the last injection, two sera showed a precipitate at 1×10^{-6} (1 gm enzyme protein in 100 000 cc salt solution) con centration of pepsinogen two sera reacted at 1×10^{-6} 3 weeks after the last injection the titers were the same at which time the animals were exsan guinated, and serum collected The pepsinogen preparation used in these rabbits was later shown to contain a certain amount of swine protein other than pepsinogen

Pepsin

Through the kindness of Dr. Northrop samples of cattle, rabbit, guinea pig, chicken, and shark pepsin were available. These were tested for precipitation at pH 76 in swine pepsin antiserum. The results appear in Table I. Only the swine and bovine pepsins were crystallized, the amount of pepsin in the other preparations was estimated by activity measurements and expressed in Table I as rennet units. The amount of enzyme in 10 cc. which will clot 10 cc of 20 per cent "Klim" (pH 6) in 1 minute is defined as 1 rennet unit. In the case of the crystallized swine pepsin, 1 rennet unit per cubic centimeter represents a concentration of about 2 × 10-5 gm per cubic centimeter on the basis of dry weight of pepsin protein.

It is apparent that swine and bovine pepsin react equally well, guinea pig considerably less so, and the other pepsins not at all in the swine pepsin antiserum. The same swine pepsin antiserum was absorbed with these heterologous pepsins, and tested thereafter with swine pepsin.

In the homologous absorption using swine pepsin, a solution containing 100 rennet units per cubic centimeter was added to an equal amount of undiluted antiserum, incubated overnight at 37 C, and the precipitate removed in the centrifuge. The supernatant fluid no longer precipitated swine pepsin in the range of dilutions tested. If a smaller absorbing dose was used, 30 to 10 rennet units per cubic centimeter, the titre of the serum was reduced about 100 times

Table Π shows the extent to which swine pepsin precipitins were removed by heterologous pepsins. In this and the following tables, each symbol represents one tube, the first, an antigen dilution of 1×10^{-2} (1 gm enzyme protein in 100 cc salt solution), the second, 1×10^{-4} , and so on, the highest dilution being 1×10^{-4} . Tubes showing a definite ring after 1 1/2 hours at room temperature are designated +, those with a faint ring \pm . Thus, +++- indicates a titer of 1×10^{-4} .

It appears that bovine and guinea pig pepsins completely remove the swine pepsin precipitins—Rabbit, chicken, and shark pepsins do not affect these antibodies, nor does swine serum—In addition to native swine serum proteins, HCl (pH 2) denatured serum proteins were also used and found to be unreactive in swine pepsin antisera

TABLE I
Reaction of Heterologous Pepsins in Swine Pepsin Antiserum

Pepsin tested*		Rennet units per co						
	100	30	10	3	1	03	01	
Swine pepsin Bovine pepsin	++	++	++	++	++	± +	_ +	
Guinea pig pepsin Rabbit pepsin	+	+	=	<u> </u>		-	_	
Chicken pepsin	_	-	_	-	_	-	_	
Shark pepsin			-	_	-	-	_	

^{*} All negative in normal rabbit serum

TABLE II
Absorption of Swine Pepsin Antiscrum with Heterologous Pepsins

Absorbed with	Rennet units per co	Subsequent titer with swine pepsin	
Saline* Swine pepsin Bovine pepsin	100	++++-	
Guinea pig pepsin	100		
Chicken pepsin	100	++++-	
Shark pepsin	30	++++-	
Rabbit pepsin	10	++++-	
Swine serum		++++-	

 $^{^*}$ Serum diluted 1 2 with physiological salt solution as a control on the serum dilution effected by absorption

It is true that the rabbit and shark pepsins in the highest concentrations available would be expected only to reduce the titer of the serum, but no evidence of such a reduction could be detected. These findings confirm the direct precipitation reactions. Bovine and guinea pig pepsins cross-react with swine pepsin precipitins, while rabbit, chicken, and shark pepsins probably do not. According to Nuttall (12) there

is some serological relationship between the serum proteins of swine and cattle, and none whatever between swine and the other species tested, including the guinea pig—By means of an antiserum precipitating swine serum proteins, similar results were obtained—Bovine serum precipitated and absorbed swine serum precipitins incompletely, guinea pig and chicken sera not at all—It was also found that swine pepsin was not reactive with the swine serum protein precipitins—The use of a 1 per cent solution of swine pepsin in salt solution as a diluent did not alter the reaction of swine serum protein with its homologous antiserum

Pepsinogen

The undiluted antisera prepared with swine pepsinogen reacted with that material in a concentration of 1×10^{-6} (1 gm pepsinogen protein in 1 million cc of salt solution). Tested with swine pepsin, there was a faint reaction at 1×10^{-6} and 1×10^{-6} , the lower dilutions being negative. Swine serum proteins also precipitated in pepsinogen antiserum at a dilution of 1×10^{-1} . The absorption method was used to determine whether these cross-reactions were due to the known impurity of the injected pepsinogen, or whether the three antigens, pepsin, pepsinogen, and swine serum, were serologically related. The data are presented in Table III. The pepsinogen preparations used here had been more thoroughly purified.

It may be seen that the faint reaction of pepsin in undiluted pepsin ogen serum described above is eliminated by dilution of the pepsin ogen serum 1 2. Moreover, the addition of pepsin to the pepsinogen antiserum left both the pepsinogen and swine serum precipitins un altered. Complete pepsinogen precipitin absorption did not affect the swine serum protein precipitins. The removal of the swine serum protein precipitins did not affect the pepsinogen titer.

The reaction of swine pepsinogen in a swine serum protein precipitating serum was also investigated. It was found that swine pepsin ogen reacted with such an antiserum in proportion to its purity, indeed this reaction was useful to a certain extent as a criterion of purity. The cruder preparations often precipitated in a dilution of 1×10^{-4} , as purification proceeded the titer would drop, without loss of enzyme activity, to 1×10^{-2} , an end point corresponding to

 1×10^{-5} concentration of swine serum proteins. In some preparations, no precipitation occurred. Several attempts to absorb or inhibit swine serum precipitins with such purified pepsinogen were negative

Reaction of Pepsinogen in Pepsin Antiserum

It has been shown that pepsin reacts only feebly and with a marked prozone in undiluted pepsinogen antiserum, and that dilution of the serum 1 2 is sufficient to eliminate the reaction in the range of dilutions tested. In addition (Table III) pepsin fails to inhibit the reaction of pepsinogen in such a pepsinogen antiserum. However, when pepsinogen was tested in pepsin antiserum, it was found that pure pepsinogen not only precipitated at a concentration of 1×10^{-3} , but

TABLE III

Absorption of Swine Pepsinogen Antiserum

Absorbed with	Subsequently tested with				
	Pepsinogen	Pepsin	Swine serum		
Saline* Pepsinogen Pepsin	+++++		+++		
Swine serum	+++++				

^{*} Serum diluted 1 2 as a control on the serum dilution effected by absorption

also absorbed pepsin precipitins as well as pepsin itself. Absorption of the serum with pepsin eliminated the pepsinogen reacting component as well. These results appear in Table IV. They indicate a true cross-reaction between pepsinogen and antipeptic antibodies. The fact that pepsinogen, however purified, absorbs pepsin precipitins is less significant than the removal of the pepsinogen precipitins by pepsin, for it is difficult to be certain that the pepsinogen preparations are free from small amounts of alkali-denatured pepsin.

It has been impossible by chemical means, including three crystal-lizations, to bring the precipitation end-point of pepsinogen in pepsin antiserum below a concentration of 1×10^{-3} In addition to other fractionation methods, calculated to remove alkali-denatured pepsin, advantage was taken of the fact that the heat denaturation of pepsin-

ogen is reversible by cooling, while that of alkali denatured pepsin is practically irreversible. A solution of purified pepsinogen was heated to 80°C for 5 minutes and cooled at 35°C for 1 minute, followed by the addition of an equal volume of half saturated NaCl solution. After removal of the precipitate, the clear supernatant contained 50 per cent of the original pepsinogen. From the properties of the substances involved, complete removal of denatured pepsin might be expected. However, the "reversed" pepsinogen still precipitated at a concentration of 1 × 10-7 in pepsin antiserum.

TABLE IV

Absorption of Swine Pepsin Antiserum

	Absorbed with	Subsequently tested with			
Visitord Afti		Pepsin	Pepsinogen		
Saline		++++-	++		
Pepsin					
Pepsinogen					

Pepsin from Purified Pepsinogen

The experiments so far described have dealt with swine pepsin purified by two crystallizations. The serological behavior of a pepsin formed from pure pepsinogen but not subsequently purified was investigated. Table V shows the reactions of a pepsinogen solution before and after activation to pepsin, tested in both pepsin and pepsinogen antisera. Precipitin reactions after two crystallizations are also given.

From the fact that twice crystallized pepsin fails to react with a 1 2 dilution of pepsinogen antiserum, one might expect pepsin from puri fied pepsinogen to behave similarly. However, after the pepsinogen was converted to pepsin, the titer of the resulting solution was only 10 times less than that of the original pepsinogen. Two crystallizations of this pepsin from pepsinogen eliminated the precipitating substance.

It was also possible to remove the precipitating substance by the previously described heat denaturation of pepsinogen and subsequent reversal by cooling Experimental conditions were such that only 10 per cent of the heat-denatured pepsinogen reversed to the native form. Separation of native from the denatured proteins was effected by salting out and filtering off the denatured protein. The soluble native pepsinogen so obtained precipitated at a concentration of 1×10^{-3} in the pepsinogen antiserum, after activation no precipitation could be detected in any concentration

These experiments indicate the presence of an antibody for a material other than pepsinogen in the pepsinogen antisera. Its presence was further confirmed by the fact that absorption of pepsinogen antisera with activated pepsinogen did not affect the pepsinogen precipitins. The nature of this material is not known. It cannot be sero-

TABLE V
Activation of Pepsinogen

Solution tested	Titer in pepsin antiserum 1 2	Titer in pepsinogen antiserum 1 2
Pepsinogen before activation Activated pepsinogen (pH 2 18 hrs, re-	++	+++++
adjusted to pH 7 6)	++++-	++++-
After one crystallization	++++-	+
After two crystallizations	++++-	

logically identified with the serum proteins, nor with proteins extracted from the muscle wall of the stomach. Since the fractionation after heat denaturation failed to alter the enzyme activity per milligram of protein nitrogen, it may be concluded that there is probably less than 5 per cent of the material present, the activity and nitrogen estimations are accurate to within about 5 per cent.

DISCUSSION

The broad specificity possessed by the swine pepsin antiserum, reacting with the pepsin of an animal species whose serum proteins are unrelated to swine serum proteins, may be due to the necessary use of alkali-denatured pepsin. It has been shown (8–11) that denaturation of a protein brings about a loss of its original specificity. Antisera prepared with such denatured materials have a wider range of reactivity than native protein antisera. Thus denatured horse serum

albumin antiserum reacts with similarly treated albumin from ox and

The absence of serological cross-reaction between swine pepsinogen and swine serum proteins, both native proteins, is parallel to the ab sence of cross reaction between the lens and serum proteins of the same species (1) In the serological relationship between pepsin and pensingen, another analogy to the behavior of denatured proteins may be found Antisera made with native proteins do not generally react with denatured proteins, whereas denatured protein antisera react with both the denatured and native materials tutes pensingen for the native, and pensin for the denatured protein, the situation is the same. In such experiments it is never certain that all of the protein has been denatured, or if it has, that reversal of denaturation has not occurred Possibly enough native protein remains to produce native protein antibodies. This does not explain the fact that pepsin, containing less than a millionth part of pepsin ogen, will absorb the pepsinogen reacting component from a pepsin antiserum, and leave the same component of a pepsinogen antiserum intact. It seems reasonable to assume that pepsin stimulates the production of a group of antibodies reacting more or less indiscrimi nately with pepsin and pepsinogen. The antibodies developed to pepsinogen, however, react only with that substance Of especial interest in this connection are experiments of Michaelis (13) and Land steiner and van der Scheer (14) who found that proteins treated with pepsin and HCl failed to precipitate in native protein antisera, although they would cause the formation of antibodies reacting with both the pensinized and native proteins

After conversion of pepsinogen to pepsin, the persistence of a material reacting with pepsinogen antisera has been observed. It probably is due not to incomplete activation of pepsinogen, but to a serologically distinct substance which can be separated from the resulting pepsin by two crystallizations, and from pepsinogen by heat denaturation and reversal. Its nature is not known

SUMMARY

1 Alkalı (pH 7 6) denatured pepsins from swine, cattle, and guinea pigs precipitate in swine pepsin antiserum Similarly treated pepsins from the rabbit, chicken, and shark do not

- 2 Pepsin antisera react with both pepsin and pepsinogen, but do not react with the serum proteins from the homologous species
- 3 Pepsinogen antisera react with pepsinogen, but not with twice crystallized pepsin, nor with the serum proteins from the homologous species. Positive reactions between activated pepsinogen and pepsinogen antiserum have been observed. It was possible to remove the reacting material from either the pepsinogen or the activated pepsinogen mixture.
- 4 Antisera made with serum proteins do not react with the homologous pepsin or pepsinogen

REFERENCES

- 1 Uhlenhuth, P, Festschrift Robert Koch, Fischer, Jena, 1903
- 2 Kirk, J S, J Biol Chem., 1933, 100, 667
- 3 Kirk, J S, and Sumner, J B, J Immunol, 1934, 26, 495
- 4 Northrop, J H, J Gen Physiol, 1930, 13, 739
- 5 TenBroeck, C, J Biol Chem, 1934, 106, 729
- 6 Hektoen, L, and Walker, W H, J Infect Dis, 1933, 53, 309
- 7 Herriott, R M, and Northrop, J H, Science, 1936, 83, 469
- 8 Furth, J, J Immunol, 1925, 10, 777
- 9 Uwazumi, S, Arb med Fak Okayama, 1934, 4, 53
- 10 Landsteiner, K, and Prášek, E, Z Immunitatsforsch, 1913, 20, 211
- 11 Wu, S, TenBroeck, C, and Li, C P, Chinese J Physiol, 1927, 1, 277
- 12 Nuttall, G H F, Blood immunity and blood relationship, Cambridge University Press, 1904
- 13 Michaelis, L, Deutsch med Woch, 1904, 34, 1240
- 14 Landsteiner, K, and van der Scheer, J, Proc Soc Exp Biol and Med, 1931, 28, 983

THE INFLUENCE OF LIGHT AND CARBON DIOYIDE ON PHOTOSYNTHESIS*

BY EMIL L SMITH

(From the Laboratory of Biophysics, Columbia University, New York)

(Accepted for publication April 1, 1937)

1

INTRODUCTION

Abundant evidence has accumulated to show that the primary reactions in the photosynthetic mechanism involve a cyclical process consisting of a photochemical reaction and a temperature sensitive reaction ("dark" or "Blackman reaction") This concept has been based on the studies made by Blackman (1905) on the effect of temperature and light intensity on the rate of photosynthesis and expressed by him as "the law of limiting factors" But it was the studies later made by Warburg (1919) which definitely showed the need for interpreting the properties of the system as a two reaction process Emerson and Arnold (1932 a, b) using intermittent illumination have made a thorough study of these cyclical reactions, and have con tributed much to our knowledge of them. Thanks to the work of these investigators and others, this concept serves as one of the main bases for further progress in the understanding of the photosynthetic mechanism.

Starting with the system as a cyclical process, several investigators (Stoll, 1932, 1936, Franck, 1935, Gaffron and Wohl, 1936) have recently considered certain reactions as possibly being involved in photosynthesis. These discussions have revolved for the most part about the properties shown by chlorophyll in vitro and on quantum yields and the energies involved in possible reactions, and have neglected quantitative treatment of the reaction kinetics. On the other hand, many schemes have been proposed for the kinetics of the

^{*} A preliminary account of this work has been presented (Smith 1936)

process, particularly in relation to light and carbon dioxide (e g, Baly, 1935, Burk and Lineweaver, 1935, Arnold, 1935)

In order to evaluate the many suggestions regarding mechanism and kinetics, it is necessary to have definitive measurements of the kinetic relationships covering a range sufficient to render them critical. The existing data do not cover the necessary range or are of inadequate precision. Moreover, it has not been demonstrated that measurements made with one plant show fundamentally the same properties as with another. We have therefore made extensive measurements with one plant for the effect of CO₂ concentration and light intensity, and have compared them with the previous data for other plants under conditions which show their basic similarities and differences

 \mathbf{II}

Apparatus and Procedure

One of the principal difficulties connected with previous studies on the effect of light intensity has been the inability to achieve a high intensity of illumination without serious temperature disturbance. Emerson (1929) records a maximum intensity of about 100,000 meter candles, which was just about sufficient to reach the maximum rate of photosynthesis under the conditions of his experiments. However, in order to be really certain of the form of the intensity-photosynthesis curves, it is necessary to have measurements which definitely indicate the maximum rate of photosynthesis. An arrangement was therefore set up whereby a maximum intensity of 282,000 meter candles (Lux) was achieved. It is shown diagrammatically in vertical section in Fig. 1

The source was a 500 watt projection lamp. A condenser consisting of two plano-convex lenses 4½ inches in diameter and 5½ inches focal length formed an image of the filament approximately in the plane of a projection lens 18 inches This lens was also plano-convex of 7½ inches focal length from the condenser and 4½ inches in diameter, it formed an image of the condenser in the plane of the bottom of the manometer vessel The condenser was suitably diaphragmed in order to reduce the amount of stray light so that the illuminated area at the bottom of the vessel was just sufficient to cover it when the manometer was being The amount of light was approximately doubled by the use of a spherical mirror behind the lamp Since the thermostat was constructed of solid opaque walls, the entire apparatus had to be mounted at an angle in a copper tray and a plane surface mirror mounted in the bath to reflect the light upward ment of the surface water produced by the shaking of the manometers did not affect the beam of light, since the light entered the water of the thermostat some inches below the surface To prevent deterioration of the mirror mounted in the

water, it was necessary to place it in a brass case protected with aquarium cement on the silvered surface

The intensity of the light was varied with neutral filters made by uniformly exposing 5 by 7 inch photographic plates. Calibrations were made by placing an opal glass plate at the level of the bottom of the manometer vessel and measuring the transmitted light directly with a Macbeth illuminometer. The absolute total brightness was determined in the same way by correcting for the transmission of the opal glass plate. In order to be certain that the filters used were neutral with regard to the visible spectrum, check calibrations were made using a filter (Corning No. 246) which transmitted only wave lengths longer than about 580 m μ . The values so obtained were identical with the white light values

Fig 1 A diagram in vertical section of the apparatus

Photosynthesis was determined as oxygen produced using the Warburg mano metric method (Dixon, 1934). Since this method is now well known, only details of importance in this research are described. One experimental vessel was used with two thermobarometric controls containing the same solution as in the experimental vessel. The volume of the experimental vessel used in all the experiments was 9 858 cc. to the level of the Brodie's fluid, and was determined with the mercury method described by Dixon. 4 or 5 cc. of buffer solution were used and the vessel constants computed were always corrected for the volume of plant tissue in the particular experiment. In all of the experiments described below, the temperature was kept constant at 25 3. C. \pm 0.005°

The sources of carbon dioxide were the carbonate bicarbonate mixtures described by Warburg (1919) using the potassium salts as recommended by Emerson and Arnold (1932a) The carbon dioxide concentrations were recomputed using the

more recent data of MacInnes and Belcher (1933) for the change in the dissociation constants with ionic strength at 25°C From the law of mass action (Warburg)

$$[CO_2] = \frac{[KHCO_3]^2}{[K_2CO_3] K_1'/K_2'}$$
 (1)

In logarithmic form, this equation becomes

$$\log [CO_2] = 2 \log [KHCO_3] - \log [K_2CO_3] + pK_1' - pK_2'$$
 (2)

where $pK_1' = -\log K_1'$, and $pK_2' = -\log K_2'$ According to MacInnes and Belcher, the following empirical expressions hold at 25°C

$$pK_1' = pK_1 - k_1\mu pK_2' = pK_2 - k_2\mu^{\frac{3}{2}}$$
(3)

where μ is the ionic strength and the experimentally determined values are $pK_1=6343$, $pK_2=10252$, $k_1=0119$, and $k_2=0382$ Although their determinations of pK_1' cover a range of ionic strengths below those used here, the change of pK_1' with μ is so small that the extrapolation to higher values is probably justified. Their determinations of pK_2' are within the range of values used here. In Table I are presented the values computed using the above equations and data. Warburg's values are presented for comparison. The CO₂ concentrations computed from the data of MacInnes and Belcher are from 0042 to 0073 log units lower than those found by Warburg, which is not a very serious difference considering that all of the data are displaced in the same direction

In order to obtain a solution giving a higher CO₂ concentration than anyof these buffer mixtures, tenth molar KHCO₃ was used — Its CO₂ concentration was computed from the following formula which gives a very close approximation (Clark, pp. 562–563, 1928)

$$\log [CO_2] = pK_1' + \log [HCO_3^-] - pH$$

[HCO₃-] was regarded as equal to [KHCO₃], and pK_1' was obtained from the formula of MacInnes and Belcher given above. A glass electrode was used to measure the pH, which is somewhat variable even with the freshly prepared solution always used in these experiments. An average value for log [CO₂] equal to -3 0 was obtained, a value which is probably not in error by more than a tenth of a log unit. None of the data are seriously affected, since in this solution the rate of photosynthesis is so high that it does not change significantly with the CO₂ concentration

In all of the experiments described, the common aquarium plant Cabomba caroliniana was used Small fronds of about 100 mg wet weight were sufficiently active to give good measurements. It was found that after an equilibration period the same piece of tissue would give constant readings for many hours as

long as the buffer mixtures were renewed often enough to prevent an effective decrease in CO₂ concentration This enabled us to make entire runs with either CO₂ or light intensity as the variable on the same piece of tissue Although smaller pieces of tissue (taken nearer the apex) were more active per milligram (wet weight), identical curves were obtained regardless of the amount of tissue used

Measurements of the rate of respiration made at the beginning of a run were always lower than those made after the plant had been carrying on a high rate of photosynthesis. Since a small change in respiration rate has a large effect on measurements made at low photosynthesis rates, the respiration value used in correcting rate of photosynthesis was that obtained at the beginning of a run

TABLE 1

Carbon Dioxide Concentrations of Carbonate Bicarbonate Mixtures

No of muture	Concentration in moles per liter		Ionic strength	Moles of CO2	Log CO ₂	Log CO1 concentration	
	K2CO2	KHCO3		,		(Warburg)	
1	0 085	0 015	0 27	0 481	-6 318	-6 276	
2	0 080	0 020	0 26	0 902	-6 045	-6 000	
3	0 075	0 025	0 25	1 49	-5 826	-5 770	
4	0 070	0 030	0 24	2 29	-5 640	-5 585	
5	0 060	0 040	0 22	4 48	-5 349	-5 276	
6	0 050	0 050	0 20	8 67	-5 062	-5 009	
7	0 035	0 065	0 17	20 5	-4 689	-4 638	
8	0 025	0 075	0 15	37 5	-4 426	-4 366	
9	0 015	0 085	0 13	78 7	-4 104	~4 041	
10	0 010	0 090	0 12	131	-3 882	-3 824	
11	0 005	0 095	0 11	290	→3 537	-3 481	

The correction for respiration does not significantly change the values obtained at high rates of photosynthesis

Plants kept in the dark for some time before the beginning of an experiment gave more reproducible respiration values than plants taken directly from the aquaria where they were kept under a moderate illumination. The plant was therefore kept in the dark in buffer for at least 1 hour before beginning an experiment. After equilibration for 15 minutes, the respiration was determined for one half hour. At low photosynthetic rates, measurements were made for 20 or 30 minutes at high rates, duplicate 5 minute readings were taken. Before each new determination 10 to 15 minutes were allowed for the plant to attain the new stationary state. During a light intensity run, fresh buffer mixture was used often enough to prevent an effective decrease in CO concentration. With carbon dioxide concentration as the variable two readings were made with each buffer,

the plant was then rinsed and placed in a mixture of higher CO_2 concentration Runs were always made starting with the lowest CO_2 concentration or intensity

III Measurements

1 Light Intensity —In Fig 2 and Table II are presented the data for photosynthesis in relation to intensity obtained on two successive

Fig 2 Two runs made on the same frond of Cabomba on successive days. There is no systematic difference between the two runs. The data are given in Table II. The curve is that of equation (4)

days using the same piece of tissue for both runs. It is clear from these data that individual runs yield data of good precision and that the tissue does not change significantly over a period of 24 hours. Similar results have been obtained on many occasions. Although the data of the individual runs are sufficiently critical for the type of equation which represents them, in order to achieve greater certainty

TABLE II

Photosynthesis at Different Intensities Two Runs on Same Tissue

Data of Fig 2 CO concentration constant at 1 31 × 10⁻⁴ moles per liter Vessel constant = 0 535 Wet weight of tissue = 116 5 mg Temperature = 25 3°C. Photosynthesis given as c mm of oxygen evolved per hour per 100 mg wet weight of material corrected for respiration Respiration measured initially for 30 minutes

Duration of each reading	Intensity	Rate of photosynthesis				
Duration of each resume	Intensity	March 26 1936	March 27 1936			
min	meter condles					
20	166	2 52	2 25			
20	407	5 56	5 42			
10	1 740	21 1	21 7			
10	3 310	39 4	40 9			
5	6 310	74 0	67.5			
5	11,800	112	109			
5	21 900	131	135			
5	41 700	138	142			
5	123 000	139	150			
5	282,000	147	149			

TABLE III

Photosynthesis and Light Intensity Detailed Data of Fig. 3

Each set of data represents the averages of 5 similar experiments. Photo synthesis given as c mm of oxygen evolved per hour per 100 mg wet weight of tissue, corrected for respiration. White light used. Temperature $= 25.3^{\circ}\text{C}$

	Rate of photosynthesis								
Intensity	[CO ₂] = 2 05 × 10 ⁻⁶ moles per liter	[CO ₂] = 7.87 × 10-6 moles per liter	[CO ₂] = 1.31 × 10 ⁻⁴ moles per liter	[CO ₂] = 2 90 × 10- moles per liter					
meter candles									
166	1 42	2 99	2 48	2 44					
407	4 42	5 41	4 96	5 84					
1,740	16 2	27 5	22 2	27 4					
3,310	23 2	43 1	42 0	47 4					
6 310	31 1	74 3	72 7	913					
11 800	37 8	104	108	136					
21 900	41 3	128	135	164					
41 700	41 9	127	145	186					
123 000	44 5	140	152	193					
282 000	45 2	136	153	192					

at low rates of photosynthesis five runs were made with each buffer and the data averaged

In Table III and Fig 3 are given the average data for rate of photosynthesis as a function of intensity for four different carbon dioxide

Fig 3 Photosynthesis as a function of light intensity for Cabomba The data are given in Table III The photosynthesis scale is correct only for curve A. The others have been shifted downwards in order to keep the curves distinct B by 0.2, C by 0.4, and D by 0.4 of a log unit The CO₂ concentrations in moles per liter were A, 2.90 \times 10⁻⁴, B, 1.31 \times 10⁻⁴, C, 7.87 \times 10⁻⁵, D, 2.05 \times 10⁻⁵. The same curve is drawn through all of the data and is from equation (4)

concentrations The data are plotted as log photosynthesis against log I with the same curve drawn through all four sets of data. It will be observed that the curves for different CO₂ concentrations differ in the intensity at which the maximum rate of photosynthesis is attained,

in accord with Blackman's idea of limiting factors This is also shown by the measurements of Harder (1921), and of Hoover, Johnston, and Brackett (1933)

The curve drawn through the data in Figs 2 and 3 has the equation

$$KI = \frac{p}{(p^2_{max} - p^2)^2}$$
 (4)

where p is the rate of photosynthesis at light intensity, I, K is a constant which indicates the position of the curve on the I axis and p_{max} is the asymptotic maximum rate of photosynthesis Equation (4) solved for $\log p$ gives

$$\log p = \log p_{\text{max}} - 1/2 \log (1 + 1/K^2 P^2)$$
 (5)

If $\log p$ is plotted against $\log I$, the shape of the curve is independent of the constants K and $p_{m,k}$. This property of the equation facilitates comparison with the data. Curves similar to those in Figs. 2 and 3, but differing in slope and in inflection, result from changing the exponents in equation (4). An equation which yields a curve very similar to that of equations (4) and (5) may be written as

$$KI = \frac{p}{(p_{ma} - p)!} \tag{6}$$

Equation (6) solved for log p yields

$$\log p = \log KI + \log \left[(K^2I^2 + 4 p_{\text{max}})^2 - KI \right] - \log 2 \tag{7}$$

The curves described by equations (5) and (7) differ slightly only in the rate at which they become parallel to the $\log I$ axis at high illumnations. The three upper sets of data in Fig. 3 fit equation (5) better, while the lowest set of data fit (7) with higher precision. Since no extain choice is at present possible and because a majority of the individual data decide for (5) the same curve has been drawn through all four series. Exponents other than those in (4) and (6) are definitely excluded, as for example, in the equation

$$KI = \frac{p}{p_{\text{max}} - p} \tag{8}$$

or in logarithmic form

$$\log p = \log p_{\text{max}} - \log (1 + 1/KI) \tag{9}$$

Equations (5), (7), and (9) have all been drawn to the same maximum in Fig 4 for comparison. It will be observed that all three equations have the same slope at low intensities

It is interesting to note the similarity between the above equations and those derived by Hecht (1923, 1935) for the photosensory process which have been used so successfully to describe many of the proper-

Fig 4 The relation between photosynthesis and intensity in terms of equations (4), (6), and (8) Plotted on double logarithmic scale, the shape of these curves is independent of the constants in the equation. These equations are similar to those which describe the photostationary state for the photosensory process (Hecht, 1935)

ties of photoreception In fact, this study began as the result of a comparison between the basic processes of photoreception and photosynthesis. Both are of a cyclical pseudo-reversible character, consisting of a photochemical reaction with a low temperature coefficient and a dark reaction with a high Q_{10} which restores the light absorbing substances to their original condition. The subsequent properties of the reactions are quite different. In one case, nerve endings are stimulated, in the other, carbohydrate is formed

2 Carbon Dioxide — Measurements were made of the effect of CO₂ concentration on photosynthetic rate at constant intensity Since respiration rate was independent of CO concentration, an initial measurement made in the buffer of lowest CO₂ concentration was

Fig. 5 Measurements on Cabomba with different carbon dioxide concentrations at constant light intensity. The data are given in Table IV. The scale is correct for curve A, curve B has been moved down 0.4, and curve C, 0.6 of a log unit. No 246 Corning filter was used. The relative intensities were A, 282,000, B, 21.900, and C, 6,310. These are the intensities in meter candles of the un filtered light. The curve drawn through the data is from equation (4).

used in correcting all the photosynthesis rates determined for a given piece of tissue

Because of the time necessary for changing buffers and allowing for equilibration to light and temperature with each new mixture, the

duration of a run was about 5 hours. A continuous exposure to the high light intensities used in these experiments for such a long period occasionally caused a small decrease in rate to take place after 3 or 4 hours. It was found that this decrease could be virtually eliminated by using the long wave lengths of the visible spectrum. Therefore, in all of these experiments Corning filter No. 246 was used. This filter is of the sharp cut-off type transmitting 40 per cent of the energy at 588 m μ and 5 per cent at 579 m μ . The effective energy was not decreased by more than half, which with the highest intensity avail-

TABLE IV

Photosynthesis and CO₂ Concentration Data of Fig 5

Each value represents the averages of 5 similar experiments Red light used, obtained with Corning filter No 246 Intensities are the values in meter candles as determined for the unfiltered light Photosynthesis as c mm of oxygen evolved per hour per 100 mg wet weight of tissue, corrected for respiration Temperature = 25 3°C

[CO ₂] × 10 ⁵ moles	Rate of photosynthesis						
per liter	I = 6,310	I = 21,900	I = 282,000				
2 29	5 65	5 33	5 75				
4 48	8 79	11 0	8 59				
8 67	17 7	23 2	16 4				
20 5	31 2	49 2	33 7				
37 5	<i>3</i> 8 0	75 1	68 0				
78 7	44 8	115	109				
131	50 5	131	152				
290	51 9	136	195				
1000	50 1	138	212				

able did not decrease the rate of photosynthesis measurably. On the other hand, those portions of the spectrum which contribute little energy for photosynthesis but which are injurious to the photosynthetic mechanism were eliminated (cf Emerson, 1935). The use of this red filter changes the intensity values obtained with the white light calibrations. The intensities given are those for white light and may be regarded as only relative values.

Fig 5 and Table IV present the rate of photosynthesis as a function of CO₂ concentration for three different illuminations Each curve

represents the averages of five similar runs. Intensity curves cannot be derived accurately from these data since the absolute rate of photosynthesis varies somewhat with the weight of the tissue as mentioned above. For example, in the runs with I=21,900, the average weight of the tissue was considerably lower than in the run with I=282,000. The former therefore gave higher rates per 100 mg, than the latter at low $\rm CO_2$ concentrations. However, this does not affect the shape of the curve describing photosynthesis as a function of carbon dioxide concentration.

The curve drawn through the data in Fig 5 is the one used in Figs 2 and 3 and is from equation (4) with carbon dioxide substituted for light intensity. Apparently the rate of photosynthesis for *Cabomba* varies in the same way with both light intensity and CO₂ concentration.

īν

Data of Other Intestigators

1 Light Intensity -What relation is there between the data pre sented in this paper and the data obtained by other investigators? Early experiments over a small range of intensities indicated a linear relation between photosynthesis and intensity Reinke (1883) showed with the bubble counting method on *Llodea* that at high light intensities a maximum rate of photosynthesis is attained which is not affected by subsequent increases in the intensity of the light ages of his measurements as well as the later ones of Pantanelli (1903) show good agreement with equation (4) in spite of the crudity of the method used. The first modern measurements made under satis factory conditions and with a correction for respiration are those of Willstatter and Stoll (1918) Their measurements with several different species and with both green and vellow leaves also show excellent agreement with equation (4) In Fig 6C are drawn two representative curves from their data In Fig 6 are also presented the data of several other observers. None of these is adequately represented by equation (8), but those of Warburg fit equation (6) a little better than they do (4) Other measurements which cover a smaller range of intensities are those of Van den Honert (1930) made with Hormidium which are omitted as they are identical with the later ones of Van der Paauw (1932) on the same material The data of Emerson and Green (1934 a) on the marine alga Gigartina show good agreement with equation (4)

Fig 6 Photosynthesis as a function of light intensity, the data of various investigators A—Warburg on Chlorella, B—Emerson and Green on Gigarlina, C—Willstatter and Stoll on Ulmus yellow leaves (open circles), and on Ampelopsis (solid circles), D—Van der Paauw on two varieties of Hormidium, Pringsheim's strain (open circles) and Van den Honert's strain (solid circles) The data are given in the original units of the various authors The curve drawn through the data is from equation (4)

The data of Emerson (1929) on two strains of *Chlorella* with different amounts of chlorophyll are drawn in Fig. 7. It may be noted that on this double logarithmic plot these two curves are evidently of similar shape, whereas on the basis of a semilogarithmic plot Emerson stated

that these curves "are quite dissimilar, and the upper one cannot be produced by multiplying the bottom one by a constant" These data are adequately represented only by equation (4) with K having approximately the same value for both chlorophyll concentrations. The point so obviously off the lower curve is a measurement in the region where photosynthesis is smaller than respiration, the pressure

Fig. 7 Emerson's data on two strains of Chlorella one of high (open circles) and the other (solid circles) of low chlorophyll concentration. The same curve has been drawn through both sets of data and is from equation (4)

change is very small and the measurements are therefore of low precision

The intensity measurements of Hoover, Johnston, and Brackett (1933) on young wheat covering a small range of low intensities at various carbon dioxide concentrations are consistent with all the other data discussed above The data of Harder (1921) on Fontinalis as well as numerous other observations in the literature mainly made

from an ecological point of view have too high an experimental error to be critical

Considering the variety of plants, of experimental conditions, and of method, it is remarkable that all of these data give such a good fit with respect to an equation as specific in form as the one drawn through them

2 Carbon Dioxide—Comparison of previous results with ours is difficult because the method of supplying CO₂ influences the results Warburg supplied CO₂ from buffer mixtures similar to those used here,

Tic 8 A The data of Hoover, Johnston, and Brackett on young wheat The numbers on the curves give the light intensity in foot candles B Warburg's data on Chlorella C Those of Emerson and Green on Gigartina The same curve as in the preceding figure has been drawn through these data

his data can therefore be compared directly with ours. This is done in Fig. 8B. The agreement with equation (4) is not so good as desired, this may be because the data represent only single experiments. The data fit equation (6) better but do not exclude (8). The work of Emerson and Green on Gigartina (Fig. 8C) is complicated by the use of buffers with a high salt content and a different piece of tissue for each determination. The small range of concentrations makes impossible a choice between the various equations although the data

are not inconsistent with equation (4) The data of Harder on Fontinalis are omitted as we cannot be certain that a constant CO₂ supply is provided at low CO₂ concentrations by proportionate dilutions of a bicarbonate solution Moreover, there are too few points available for testing these data

Fig 8A gives some of the data obtained with young wheat by Hoover, Johnston, and Brackett These three curves as well as their others give a good fit with equation (4) and cannot be adequately described by equation (6) or (8) In these experiments, CO_2 was supplied in gas mixtures circulated rapidly through an enclosed chamber However, the data of Van den Honert and Van der Paauw on Hormidium using gas mixtures do not resemble the other measure ments cited above External diffusion rate is probably limiting in these experiments since at low CO tensions Q_{10} is unity, whereas in the experiments of Warburg and of Emerson (1936) with Chlorella using buffer mixtures Q_{10} is high

v

General Considerations

It has been suggested (Hoover, Johnston, and Brackett, 1933, Brackett, 1935) that shading by the plastids may produce a gradation of light intensities at different plastids and thus affect the shape of the curve relating intensity and photosynthesis. While the light intensity is certainly not the same at all the different chlorophyll centers in the plant, it does not seem likely that the intensity photosynthesis relation is determined by such an effect, particularly since the curve is the same for many different species, and the size and number of chloroplasts must be very different for unicellular algae such as Chlorella and Hormidium and higher plants like wheat and Cabomba. The fact that Emerson's data for two widely different chlorophyll concentrations in Chlorella give the same curve, lends support to the idea that these curves represent some other mechanism than shading

The argument has also been advanced that the CO₂ photosynthesis curves may be affected by unequal CO concentrations at different photosynthetic centers. When diffusion rate limits photosynthesis, this is certainly true, but when CO₂ is supplied at a rapid rate this

situation probably does not occur In those cases where diffusion is non-limiting, the curves relating photosynthesis with both CO2 and intensity are identical It does not seem likely that two such effects on different variables should produce identical equations

The effect of both CO2 and intensity may be expressed in an equation of the type used by Baly (1934, 1935) and by Emerson and Green (1934 b), where p is the rate of photosynthesis and

$$p = k_1 I(a - x)^{\frac{1}{2}} = k_2 [CO_2] x^{\frac{1}{2}}
 p = k_1 I(a^2 - x^2)^{\frac{1}{2}} = k_2 [CO_2] x$$
(10)

$$p = k_1 I (a^* - x^2)^{\frac{1}{2}} = k_2 [CO_2] x$$
 (11)

a may be regarded as representing the total concentration of chlorophyll, and x the amount of chlorophyll activated by light eliminated and equation (10) or (11) is solved for p, equations are obtained relating p and either I or $[CO_2]$, which describe curves identical with that of equation (5)

Similarly, the equation

$$p = k_1 I(a - x)^2 = k_2 [CO_a] x$$
 (12)

with i eliminated and solved for p, yields curves identical with (7) It is assumed that CO₂ cannot enter in the same term as the light intensity, since this would result in low temperature coefficients at low CO2 concentrations, which is not true when the external diffusion rate is non-limiting (Emerson and Green, 1934 b, Emerson, 1936)

The CO2 does not appear to be bound by the unilluminated chlorophyll If it were, the concentration of the CO2-chlorophyll compound would be at a maximum after a period of darkness maximum rate of photosynthesis would then be obtained at the beginning of illumination Actually the measurements of Warburg, 1920) (also see Baly, 1934) show that after a period of darkness the rate of photosynthesis slowly rises to a maximum indicating that the dark reaction follows the photochemical reaction

The above equations (10, 11, and 12) may be derived on the assumption that two reactions are involved in the cycle, a photochemical reaction during which light is absorbed, and a dark process which accomplishes a transfer of energy for the reduction of CO2 o' photosynthesis (p) is equal to the rate of the dark reaction because this appears to be the reaction during which CO2 is reduced and

oxygen is liberated But there is apparently a third reaction which is involved in the cycle since CO₂ appears to be taken up in the dark by some protoplasmic constituent, as shown by Willstätter and Stoll It is not the purpose of the present paper to develop a kinetic scheme including this third reaction. This has already been considered by Briggs (1935) and others. We merely wish to indicate that equation (10) or (11) will give a quantitative description of the data relating rate of photosynthesis with CO₂ concentration and light intensity. Including the third reaction will not change the properties of these equations but the interpretation. The velocity of the dark reaction will depend not on the CO₂ concentration directly but on the concentration of the CO₂-containing compound

The equations of Ghosh (1928), Emerson and Green (1934 b), Baly (1935), Burk and Lineweaver (1935), and Arnold (1935) describing photosynthesis as a function of intensity may all be put into the same form as equation (8) i Ghosh, and Burk and Lineweaver used Harder's data, which have so high an experimental error that they are not critical Baly used only the intensity data of Warburg and did not obtain a satisfactory agreement with them Emerson and Green, and Arnold (1935) have not published any tests of their equations with the data of intensity and CO concentration. The fact that the data presented in this paper, both original and from others, do not fit equations derived by the above investigators provides a specific criticism of their equations

Arnold's kinetic scheme is based on studies made with intermittent illumination, which indicate that both the Blackman reaction (Arnold, 1933) and the photochemical reaction (Emerson and Arnold, 1932 b) are first order.

¹ Since it is not the purpose of this paper to present a critique of the various kinetic schemes which have been suggested, the equations of these authors are considered together. It is realized that the various formulations differ in many important respects, but we are concerned here only with the quantitative treat ment of the variables studied in this research.

² Briggs has pointed out that equations similar to (8) are inadequate but does not give any quantitative test of his own scheme for photosynthesis rate as a function of I and $[CO_1]$

We are not entirely satisfied with the assumptions inherent in both of these

It may be that the Blackman reaction is first order, as in equation (11) or (12), but the data relating intensity and photosynthesis are such that the photochemical reaction must be half order. However, by squaring the stationary state equation (10) we obtain

$$k_1^2 I^2(a-x) = k_1^2 [CO_2]^2 x$$
 (13)

which will describe the data if p remains proportional to a^{\dagger} , as in equation (10) Such a mechanism might be correct as it would yield first order photochemical and Blackman reactions, but I and $[CO_2]$ would now enter as the square Emerson and Arnold also state that the yield per flash of light is independent of the intensity if the total energy per flash of light is constant, ie, the product of intensity and time is constant. From this it is concluded that I must enter as the first power. But the product of intensity and time could still be equal to a constant if both intensity and time were squared. It is difficult to understand why p should be proportional to a^{\dagger} in such a system, but it may be necessary if the findings of Arnold and of Emerson and Arnold are correct

The fact that photosynthetic rate is the same function of both CO₂ concentration and intensity is a simplifying feature of the kinetic scheme. Still, the presence of a fractional exponent or of intensity as the square indicates a complex system. There is no difficulty in accepting an equation in which CO₂ enters as the square, but in simple photochemical systems intensity enters as the first power, or in some reactions, such as those involving halogens, as the square root (Grifiith and McKeown, p. 407, 1929). We are not aware of any photochemical reactions for which there has been accepted an equation in which I enters as a power above one. Nevertheless, such may

proofs, and Emerson (1936) is likewise inclined to be skeptical of Arnold's proof of the first order character of the Blackman reaction

The evidence indicating that the light reaction is first order depends upon measurements made by varying the light intensity of short flashes of red light. The total intensity range used was 1 to 10 or 1 log unit. Over this small range, the data are just as easily satisfied by assuming a half-order reaction. To be certain of the proof, it would be necessary to reinvestigate this problem over a satisfied or range of light intensities making certain that a condition of light saturation had been reached.

be the case for photosynthesis and would perhaps indicate a chain process with more than one light reaction. This would be in keeping with the discovery of Warburg and Negelein (1923) that 4 quanta are necessary for the reduction of a single CO₂ molecule

Recent attempts to formulate a chemical mechanism for photo synthesis involve the postulation of several light reactions (Stoll, 1932, 1936, Willstatter, 1933, Tranck, 1935) Gaffron and Wohl (1936) have reviewed these efforts, and have shown that these 4 light reactions would have to be concurrent rather than consecutive Support for this idea has come from Kohn (1936) who has pointed out that 4 quantic could not be absorbed by the same chlorophyll molecule during a short light flash and still yield the amount of oxygen actually produced per flash

Such considerations indicate the necessity for a revision of our ideas concerning the cyclical process involved in photosynthesis. A scheme would have to be developed in which several light reactions take place concurrently with the absorption of quanta by different chlorophyll molecules. Subsequent dark reactions would restore the chlorophyll to its original condition, and the energy released used for the reduction of CO₂ and water. However, for a description of the data of CO₂ and intensity, the simple two part cycle appears to be adequate, provided that the equation has the exponents given above. The accumulation of more kinetic data will determine the further utility of the two-reaction cycle.

It is a real pleasure for the author to acknowledge his indebtedness to Professor Selig Hecht for the constant advice and encouragement freely given during the course of this research, and to Dr Simon Shlaer for much help in the design and construction of the apparatus used

SUMMARY

1 An optical system is described which furnishes an intensity of 282,000 meter candles at the bottom of a Warburg manometric vessel With such a high intensity available it was possible to measure the rate of photosynthesis of single fronds of Cabomba caroliniana over a large range of intensities and CO₂ concentrations

- 2 The data obtained are described with high precision by the equation $KI = p/(p^2_{max} p^2)^{\frac{1}{2}}$ where p is the rate of photosynthesis at light intensity I, K is a constant which locates the curve on the I axis, and p_{max} is the asymptotic maximum rate of photosynthesis. With CO_2 concentration substituted for I, this equation describes the data of photosynthesis for Cabomba as a function of CO_2 concentration
- 3 The above equation also describes the data obtained by other investigators for photosynthesis as a function of intensity, and of CO₂ concentration where external diffusion rate is not the limiting factor. This shows that for different species of green plants there is a fundamental similarity in kinetic properties and therefore probably in chemical mechanism.
- 4 A derivation of the above equation can be made in terms of half-order photochemical and Blackman reactions, with intensity and CO₂ concentration entering as the first power, or if both sides of the equation are squared, the photochemical and Blackman reactions are first order and intensity and CO₂ enter as the square. The presence of fractional exponents or intensity as the square suggests a complex reaction mechanism involving more than one photochemical reaction. This is consistent with the requirement of 4 quanta for the reduction of a CO₂ molecule

BIBLIOGRAPHY

- Arnold, W, The order of the Blackman reaction in photosynthesis, J. Gen Physiol, 1933, 17, 145
- Arnold, W, Kinetics of photosynthesis in *Chlorella*, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935, 3, 124
- Baly, E C C, Kinetics of photosynthesis, Nature, 1934, 134, 933
- Balv, E C C, The kinetics of photosynthesis, Proc Roy Soc London, Series B, 1935, 117, 218
- Blackman, F. F., Optima and limiting factors, Ann. Bot., 1905, 19, 281
- Brackett, F S, Light intensity and carbon diovide concentration as factors in photosynthesis of wheat, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935, 3, 117
- Briggs, G. E., Photosynthesis in intermittent light, in relation to current formulations of the principles of the photosynthetic mechanism, *Biol. Rev.*, 1935, 10, 460

- Burk, D, and Lineweaver, H, The kinetic mechanism of photosynthesis, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935, 3, 165
- Clark, W M, The determination of hydrogen ions, Baltimore, The Williams and Wilkins Co., 3rd edition, 1928
- Dixon, M., Manometric methods, Cambridge, University Press. 1934
- Emerson, R, Photosynthesis as a function of light intensity and of temperature with different concentrations of chlorophyll, J Gen Physiol, 1929, 12, 623
- Emerson, R, The effect of intense light on the assimilatory mechanism of green plants and its bearing on the carbon dioxide factor, in Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 1935, 3, 128
- Emerson R, A review of recent investigations in the field of chlorophyll photosynthesis, Ergebn Ensymforsch, 1936, 5, 305
- Emerson, R., and Arnold, W., A separation of the reactions in photosynthesis by means of intermittent light, J. Gen. Physiol., 1932 a, 15, 391
- Emerson, R, and Arnold, W, The photochemical reaction in photosynthesis, J Gen Physiol 1932b, 16, 191
- Emerson, R, and Green, L, Manometric measurements of photosynthesis in the marine alga Gigartina, J Gen Physiol, 1934 a, 17, 817
- Emerson, R, and Green, L, Kinetics of photosynthesis, Nature 1934b, 134, 289 Franck, J, Beitrag zum Problem der Kohlensaure Assimilation, Naturwissenschaften, 1935, 23, 226
- Gaffron, H and Wohl, K, Zur Theorie der Assimilation, Naturwissenschaften, 1936, 24, 81, 103
- Ghosh, J. C., Photosynthesis in plants, J. Dept. Sc., Unit. Calculta, 1928 9, 12
- Griffith, R. O, and McKeown, A, Photo processes in gaseous and liquid systems, London Longmans, Green and Co, 1929
- Harder, R, Kritische Versuche zu Blackmans Theorie der 'begrenzenden Fak toren' bei der Kohlensäurenssimilation Jahrb wissensch Bot, 1921, 60, 531 Hecht, S, Sensory adaptation and the stationary state, J Gen Physiol, 1923, 5,
- 555
 Hecht, S, A theory of visual intensity discrimination, J Gen Physiol, 1935, 18,
- 767 Hoover, W H , Johnston E S , and Brackett, Γ S , Carbon dioxide assimilation
- in a higher plant, Smillsoman Misc Coll, 1933, 87, No 16
- Kohn, H I, Number of chlorophyll molecules acting as an absorbing unit in photosynthesis Nature, 1936, 137, 706
- MacInnes, D. A, and Belcher, D, The thermodynamic ionization of carbonic acid J Am Chem Soc. 1933, 55, 2630
- Pantanelli, E, Abhangigkeit der Sauerstoffausscheidung belichteter Pflanzen von äusseren Bedingungen, Jahrb wissensch Bot, 1903, 39, 167

- Reinke, J, Untersuchungen über die Einwirkung des Lichtes auf die sauerstoffausscheidung der Pflanzen, Bot Z, 1883, 41, 697, 713, 732
- Smith, E L, Photosynthesis in relation to light and carbon diovide, *Proc Nat Acad Sc*, 1936, 22, 504
- Stoll, A, Über dem chemischen Verlauf der Photosynthese, Naturwissenschaften, 1932, 20, 955
- Stoll, A, Zusammenhange zwischen der Chemie des Chlorophylls und seiner Funktion in der Photosynthese, *Naturwissenschaften*, 1936, 24, 53
- Van den Honert, T H, Carbon diovide assimilation and limiting factors, Rec trav bot néerl, 1930, 27, 149
- Van der Paauw, F, The indirect action of external factors on photosynthesis, Rec trav bol néerl, 1932, 29, 497
- Warburg, O, Über die Geschwindigkeit der photochemischen Kohlensaurezersetzung in lebenden Zellen, Biochem Z, Berlin, 1919, 100, 230
- Warburg, O, Über die Geschwindigkeit der photochemischen Kohlensaurezersetzung in lebenden Zellen II, Biochem Z, Berlin, 1920, 103, 188
- Warburg, O, and Negelein, E, Über den Einfluss der Wellenlange auf den Energieumsatz bei der Kohlensaureassimilation, Z phys Chem, 1923, 106, 191
- Willstatter, R, Zur Erklarung der Photoreduktion von Kohlensaure durch Chlorophyll, Naturwissenschaften, 1933, 21, 252
- Willstatter, R, and Stoll, A, Untersuchungen über die Assimilation der Köhlensaure, Berlin, Julius Springer, 1918

THE INFLUENCE OF LIGHT ADAPTATION ON SUBSEQUENT DARK ADAPTATION OF THE EYE*

BY SELIG HECHT, CHARLES HAIG, AND AURIN M CHASE (From the Laboratory of Brophysics, Columbia University New York)

(Accepted for publication April 9, 1937)

1

Rod and Cone Adaptation

Human dark adaptation, though described by Aubert in 1865 and first measured by Piper in 1903, is still inadequately known. The early data of Piper seemed to show that dark adaptation was an exclusive function of the rods. Only after the measurements of foverl cone adaptation had been made (Hecht, 1921) was the reason for this apparent cone adaptation is so fast that Piper missed it completely. The confirmation and extension of these results by Kohlrausch (1922) emphasized the existence of both cone and rod dark adaptation, and showed that the two are to a certain extent sharply separated in time

Following adaptation to ordinarily bright lights, dark adaptation occurs in two parts. The first begins at once, it is rapid, and is due to cone function. The second part shows up somewhat later, it is slow, and is due to rod function. Under these circumstances, cone adaptation is over in 3 or 4 minutes, whereas rod adaptation takes at least 30 minutes. The intensity range covered by the rods and by the cones during dark adaptation depends on the color of the measuring light (Kohlrausch, 1922, 1931), on its area and retinal location (Hecht, Haig, and Wald, 1935), and on the duration and intensity of the preceding light adaptation (Müller, 1931, Wald and Clark, 1936, Winsor and Clark, 1936, Hecht and Haig, 1936)

^{*} A preliminary account of these measurements was presented to the Optical Society of America in February, 1936 (*J Opt Soc America*, 1936 26, 304), and to the American Physiological Society in March, 1936 (*Am J Physiol*, 1936, 116, 72)

In this paper we shall describe in detail the effects of the intensity of light adaptation on the dark adaptation which follows it, and show what bearing this information has on other data of visual function

II

Apparatus and Method

There are five special points in our arrangements for making the measurements. First, the eye is light adapted with the observer in place so that measurements of dark adaptation can begin immediately. Second, the optical system gives a constant pupil size without the inconvenience of an artificial pupil. Third, violet light is used for measurement to secure the largest range of rod adaptation, and red light to secure the smallest. Fourth, each exposure to the measuring light is a flash of 0.2 second. Fifth, the measurements represent not quite the threshold of vision but a brightness about 3 times as high, secured by using the appearance of a black cross as criterion.

The data obtained in this way are only slightly more accurate than those usually made with a diffuse threshold criterion, indefinite time for determining the threshold, an artificial pupil as ordinarily used, and even without an artificial pupil at all. However, the arrangements make the work easier for the observer, and give him a feeling of certainty in making the measurements

The observer sits in a dark box in a dark room, with his head fixed in a chin and head rest, facing a fixation point which is so circumscribed by diaphragms as to place his eye with precision at a given spot in space. This spot is at the focus of two lenses, one for light adaptation and the other for dark adaptation.

The source for light adaptation is a 3 8 volt flash-light bulb running on 0 3 amp, and placed 9 cm from a pair of 11 diopter lenses 5 cm in diameter each. The arrangement is shown in the lower right of Fig. 1. The eye is placed at the conjugate focus at an equal distance on the other side of the lenses, and sees the nearer lens evenly illuminated as a large field 30° in diameter. Its brightness is 400,000 photons, as determined by a binocular photometric match. In front of the lens, filters may be inserted to reduce the brightness. To save space a mirror is introduced between the lamp and the lens. In these experiments light adaptation is always with whole (white) light

The light adaptation arrangement is mounted on a small board sliding on rails, and can be moved into the dotted position shown in Fig. 1 in front of the eye. At the close of light adaptation, it can be instantly slid out of the way so

as to permit view of the second lens which focusses the measuring light on the same spot just inside the cornea of the eye at the pupil

The light for measuring dark adaptation is a 3 8 volt flash light lamp, carefully maintained at 0 28 amp, and placed 31 cm from a 6 5 diopter lens, 3 6 cm. in diameter. The pupil of the eye is at the conjugate focus, at an equal distance on the other side of the lens, so that the lens appears as an evenly illuminated field. The image of the filument produced by the lens is less than 1 sq. mm, and therefore falls entirely within even the smallest dimensions assumed by the pupil of the eye. This arrangement avoids the necessity for an artificial pupil to keep

Fig. 1 Arrangement for adapting the eye to different intensities of light, and for measuring the course of the subsequent dark adaptation. In the set up for light adaptation in the lower right only one lens has been drawn in, actually there are two

constant the area of the beam as it enters the eye A circular diaphragm cuts the lens to form a field whose diameter is 5° visual angle Extending over the entire field is an opaque cross, the width of whose arms occupies a visual angle of 30° and thus corresponds to a visual accuty of 0 033, which is perceptible almost at the threshold of vision. The intensity of the measuring light is controlled by decimal neutral filters manipulated by the recorder, and by a neutral wedge moved by the observer. The color is secured either with a violet filter (Corning No 511) which transmits light below 480 mµ only, or with a red filter (Wratten No 88) which transmits light above 690 mµ only. The exposure is made with a photo.

graphic shutter by a cable in the hands of the observer — The arrangements are shown diagrammatically in Fig. 1

The center of the light-adapting field and that of the measuring field are at 30° nasally on the retina. Note that the light-adapted area is 36 times the size of the measuring area. The fixation point is central, of course. Its intensity is varied by a rheostat controlled by the observer so as to be adequate for fixation but not too bright.

Light adaptation is for precisely 2 minutes. It is always preceded by a 10 to 15 minute stay in the dim light of the dark room in order to remove the effects of the variable conditions to which the observer has been exposed. Measurements are made at definite intervals after light adaptation, the observer determining the minimum brightness at which he can just see the black cross silhouetted against the field. He does this by moving the wedge to a position below the threshold, then turning it up in steps, and testing at each step by a flash until he can see the cross. The observer allows at least 20 seconds and frequently more between flashes in making a determination. In the first 2 minutes after light adaptation, dark adaptation is so rapid that a slightly different procedure is required. The wedge is brought to a given position which is maintained until the observer, who tests for its visibility at 10 or 15 second intervals, announces that he can see the field

TTT

Measurements with Violet Light

Our measurements were made with the right eye only, and we three served as observers S H and A M C are emmetropes, C H is a myope, and used a minus 6 diopter lens in front of his eye as a cor-Five intensities of light adaptation were chosen after preliminary trials in order to cover the main range of the phenomenon Each observer made two runs for each light adaptation and for each The data in Table I are the averages of the two runs using violet light for measurement. The intensities are in microphotons, that is, millionths of a photon A photon is the retinal illumination produced when the eye looks through a 1 sq mm pupil at a surface whose brightness is $\pi/10$ millilamberts. The individual runs are nearly as regular and precise as the averages, but we use the averages because of day to day variations in threshold, the data are thus more homogeneous as a whole The measurements for S H are shown graphically in Fig 2 The data for the other two observers are the same in all essentials, and Fig 2 will serve as a description for them as well

TABLE I

Dark adaptation measured with violet light following adaptation to different intensities of white light. Time is in minutes intensity in microphotons. The heavy values show color at the threshold

Observer	400 000 ph	100 000 photons 35 900 photons		19 500 photons		3 800 photons		263 photons		
	Time 1	Log I	Time	Log I	Time	Log I	Time	Log I	Time	Log
S H	0 19 8	8 26	0 10	7 16	0 17	6 96	0 18	6.22	0 14	4 78
		7 58	0 57	6 53	0 42	6 41	0 42	5 60	0 36	4 38
		7 07	10	6 11	0 97	6 11	0 67	5 25	0 50	
		6 80	2 5	5 90	17	5 94	1.3	4 92	0 90	3 88
		6 37	33	5 81	27	5 75	21	4 72	14	3 71
		6 19	41	5 76	41	5 59	29	4 54	29	3 5
		6 00	53	5 75	51	5 42	38	4 41	4 1	3 4
		5 92	61	5 67	63	5 17	49	4 15	5 3	3 3.
		5 80	71	5 61	76	4 81	5 9	3 96	6 2	3 24
		5 73	78	5 45	9 2	4 38	77	3 60	7 2	3 0
		5 68	89	5 26	10 7	3 98	94	3 40	8 9	3 03
		5 66 5 34	99	4 99	11 9 13 0	3 70 3 50	10 6 13 5	3 16 2 89	10 5 11 5	2 9
		4 78	12 5	4 28	14 4	3 28	15 0	2 80	13 1	2 8
		4 28	14 3	3 81	16 1	3 07	16 4	2 77	15 1	2 7
		4 11	15 4	3 57	17 8	2 92	18 2	2 62	17 3	2 6
		3 79	16 8	3 29	18 8	2 83	21 9	2 56	19 7	2 5
		3 55	18 6	3 13	20 0	2 79	23 7	2 49	23 5	2 5
		3 27	20 5	2 99	21 1	2 78	25 4	2 46	25 8	2 5
	1 6	3 20	22 5	2 92	24 5	2 64	28 8	2 47	27 5	2 5
		3 13	23 9	2 88	26 1	2 57]]		29 6	2 5
	25 9	3 08	26 0	2 79	27 7	2 57	i			
	28 5	2 97	29 3	2 69	298	2 58	1			
		2 88	32 0	2 55						
		2 84								
		2 78					1			
	38 6	2 72								
C H.		8 26	0 19	7 06	0 12	6 87	0 19	6 08	0 12	4 9
		7 12	0 66	6 47	0 42		0 64	5 28	0 30	4 45
		6 65	13	6 05	0 74		12	5 08	0 74	3 97
		6 31	18	5 86	14	5 87	20	4 82	17	3 80
		5 99	28	5 76	2 3	5 75	2 5	4 70	24	3 5
		5 78 5 64	4 3	5 59	3 2	5 66	3 3	4 59	3 3	3 42
	1 1	5 57	63	5 57 5 54	4 3 5 2	5 54 5 40	4 3 5 6	4 45	4.5	3 37
	1 1	5 55	7.5	5 50	5 9	5 17	68	4 30	5 6 7 0	3 22
	1 1	5 54	8 1	5 27	68	4 98	79	4 06 3 82	81	3 11 3 02
		5 48	9 2	5 02	7 9	4 68	92	3 67	98	2 98
									, ,	
	12 4	5 48	10 3	4 64	190	4 45	10 4	3 51	10 7	2 93

TABLE I—Concluded

Following light adaptation to 400,000 photons, dark adaptation as measured with extreme violet light shows a striking separation into two sections, obvious in Fig 2 Judging by all that is already known about dark adaptation (Kohlrausch, 1931, Hecht, Haig, and Wald, 1935), intensity discrimination (Hecht, 1935), and flicker (Hecht and Shlaer, 1936), the first section must be identified as predominantly cone adaptation and the second section as predominantly rodulation. This identification is immensely strengthened by the

Tie 2 The course of dark adaptation as measured with violet light following different degrees of light adaptation The filled in symbols indicate that a violet color was apparent at the threshold, while the empty symbols indicate that the threshold was colorless

fact that all the measurements comprising the first section are reported by the observer as distinctly showing a violet color at the threshold of observation, whereas all the measurements comprising the second section are reported as colorless at the threshold. The points reported as colored are shown as black circles in Fig. 2 and are printed in heavier type in Table I, while those reported as colorless are the clear circles in Fig. 2. The transition between colored primary

section and the colorless secondary section is quite sharp, occasionally the last colored point is less saturated than the others

This description of the events in dark adaptation holds also for the measurements which follow light adaptation to 38,900 and to 19,500 photons. In all three, cone and rod adaptation are separate and are distinctly associated with colored and colorless sensations at the threshold. There are, however, certain obvious quantitative differences. As the light adaptation intensity increases, so also does the range of cone dark adaptation. Following the highest light adaptation, the cone dark adaptation range is about 3 log units, which compares favorably with the rod adaptation range. The range of rod dark adaptation, however, remains unchanged, but its appearance is more delayed the higher the light adaptation. This is an important point, and is also apparent in Muller's measurements in which he varied the duration of the preceding light adaptation.

After 263 photons light adaptation, the dark adaptation threshold never shows any color. A M C occasionally records the first point as possibly colored. On the other hand, dark adaptation following exposure to 3,800 photons shows a course which is midway between high and low light adaptation. The first few measurements are definitely reported as violet, and are indicated as such by the use of filled-in symbols in Fig. 2. After a few minutes, the threshold becomes colorless and the transition between the two is fairly gradual

The color response in this case is not too certain near the transition, but above it it is quite clear. What is startling, however, is that color is definitely associated with threshold intensities well below those which show no color following adaptation to the high intensities. We do not know what this means, and whether it is a special property of violet light, we are therefore investigating other colors as well

11

Displacements in Time

Looking at Fig 2 as a whole, it is apparent that the higher the initial light adaptation, the longer does the eye require to reach a given threshold during dark adaptation. This is true for the colored primary portion as well as for the colorless secondary portion, but shows more strikingly for the latter. For the three high light adapta-

tions, where the range of the colorless portion is the same, it is as if the rod curve as a whole were moved so as to appear later the higher the light adaptation

In order to compare the time of appearance of the two sections at the different adapting intensities, we have determined the time in the dark which has to elapse for the eye to reach a specific threshold intensity level following each of the light adapting intensities. For the colored primary portion, the level selected is $\log I = 6.25$, while for the colorless secondary portion the level selected is $\log I = 3.75$. The determinations were made graphically from the data in Table I. They are given in Table II and are shown graphically in Fig. 3, where

TABLE II

Relation between intensity of adapting light and time of appearance of a specific threshold during durk adaptation Threshold for colored portion is $\log I = 6.25$, threshold for colorless portion is $\log I = 3.75$ Time is in minutes

Adaptation	j ,	Coloted portio	a	Colorless portion			
Intensity	SH	C. H.	AMC.	s II	C. H	A M. C.	
photons							
263	1		1	14	17	0.5	
3 800	0 20	0 18	0 20	69	8.5	7 6	
19 500	0 65	0 35	0 55	11 7	12 1	13 5	
38 900	0 75	0.90	1 10	14 5	160	16 3	
400 000	2 45	1 45	1 80	18 3	22 5	20 3	

the colored portion is in the upper, smaller figure, while the colorless portion is in the lower, larger figure

It is clear that the colorless secondary portion appears later as the adapting light intensity is increased, the relation between the time of appearance and the logarithm of the adapting intensity is sigmoid

The measurements for the colored primary portion show that for it too the time in the dark required to arrive at a specific threshold increases with the logarithm of the adapting intensity. However, whereas the relationship for the colorless rod section is nearly completely covered by the range of intensities used, the relationship for the colored cone section begins to be effective only at the higher light adaptations. It is likely that the relation here would also be sigmoid if we explored adapting intensities still higher than those used.

The meaning of these shifts in the time of appearance of a given

threshold with the intensity of the adapting light is fairly clear Blanchard (1918) has shown that as the light adapting intensity increases, the threshold at zero time in the dark also increases. Dark adaptation therefore has a larger range to cover, and a given threshold will be reached later and later. To a certain extent, it is as if the curve of dark adaptation for each portion were shifted to the right on the time axis. Since the rods and cones are different sensory systems.

Fig. 3 The relation between the intensity of light adaptation and the time required for the eye to reach a given threshold in the dark. The lower data are for a colorless threshold, indicating rod function, while the upper data are for a color threshold indicating cone function

with different sensibilities and different rates of dark adaptation, it is not surprising that the amount of shift is different for each system

Fig 3 shows that the time displacements for the cones are short, of the order of 1 or 2 minutes, while for the rods they are about 10 times as long. The time for complete dark adaptation of the two systems also differs in about the same ratio cone adaptation is nearly complete in 4 or 5 minutes, while rod adaptation takes about 10 times as long. Thus the time shifts shown by the cones and by the rods are about the same fractions of the total adaptation time for each

ν

Similarities among Individuals

Dark adaptation has usually been considered a fairly variable property of vision, and Matthey (1932) has felt it necessary to meas ure over 50 people in order to arrive at an average or standard curve of dark adaptation useful for clinical purposes. In our experience of over 10 years, we have found that most of the variations in the data arise from the failure to specify conditions of measurement. The major differences may be eliminated by fixing the intensity and dura tion of light adaptation, and the position, area, and color of the light used for measuring dark adaptation.

With all these specified, there is nevertheless a slight day to day variation even in a single experienced investigator. The final thresh old varies and the time of appearance of the two parts of adaptation varies. What is specially significant is that the variations may be different in sign and in extent for the two parts of dark adaptation.

In spite of these slight differences, the shapes of the data are identical at different times for the same observer, and even for the three observers. For example, although the time of appearance of the rod curve following the highest light adaptation differs by about 2 minutes for A M C and S H, nevertheless the rod curves for the two investing gators are identical if the data of one are shifted 2 minutes along the time axis. To show this, we have superimposed in Fig. 4 the data for the three observers, but have kept the colored and colorless portions of the data separate. We have included in Fig. 4 only the highest three light adaptations, because in them the two sections of the subsequent dark adaptation are easily separable. For each person there has been made the necessary time shift, and whenever required, a small vertical intensity shift. It is apparent that the three observers show identical curves under these circumstances.

Because of the individual differences in time of appearance of the transition from cone section to rod section, a simple averaging of data of different individuals is bound to yield an erroneous appearance of the dark adaptation curve. The region of transition, from being a reasonably abrupt change for each individual, will become smooth and gradual in the average, and may indeed almost disappear. This is

actually the case with Matthey's average curve for 54 individuals, which shows almost no sign of transition, though the measurements were made with the apparatus and specified conditions worked out by Muller (1931) whose measurements on his own eye clearly show the usual fairly abrupt transition (cf Hecht, 1937 a) If it is necessary to have an average dark adaptation curve for clinical purposes, the cone sections and the rod sections should be averaged separately, and

Fig 4 Dark adaptation following the highest three intensities of light adaptation. The colored cone thresholds are plotted separately from the colorless rod thresholds. The abscissas are the same for all the data, the ordinate scale, however, applies only to the upper data because the two other sets have been displaced 0.5 and 1.0 log units respectively downward.

the two combined at a point which is the average transition time for the same observers

The curves drawn through the cone portions in Fig. 4 are the same for the three adapting intensities. By making the time shifts indicated in Fig. 3 the data themselves may be superimposed, showing that they fall on the same curve of which more and more becomes available as the light adaptation intensity increases. The three curves for the colorless portions in Fig. 4 are very nearly but not quite the same. The slope of the rising branch becomes just percep-

tibly faster the higher the light adaptation. However, the difference is so slight that it is possible to superimpose the three sets of points, and to draw one curve through them. Apparently then, above a light adaptation intensity of 20,000 photons, the subsequent dark adaptation has a fixed shape but a variable position on the time axis

٧I

Measurements with Red Light

In terms of the visibility curves of cone vision and rod vision (cf. Hecht, 1937 a), we may expect the difference in threshold between rods and cones to be greatest with violet light, and least with red light. In fact, with extreme red light (Hecht, 1921, Kohlrausch, 1922, 1931) the difference in threshold may disappear entirely, so that the resulting dark adaptation curve records only the more rapidly acting cone function

Using such extreme red light we repeated our measurements of dark adaptation following different intensities of light adaptation. The data are in Table III, and are the averages of two runs for each of the three observers. We used only four intensities of light adaptation, the fifth was too low to cause any dark adaptation measurable with red light.

Γig 5 shows the measurements of A M C and brings to light several interesting things. The data behave much like the primary cone sections with violet light shown in Fig 2, except that the red threshold remains at the level it reaches after the first 5 minutes. Clearly this is pure cone adaptation. Nevertheless, even with red light, rod adaptation makes its appearance. Following light adaptation to 400,000 photons, the threshold during dark adaptation is red in appearance for over 35 minutes. This is shown by the solid circles in Γig 5. After 35 minutes there appears a slight drop in threshold, and this new threshold is characterized by being either very dilute pink or quite colorless (open circles). Moreover, just as with violet light, the drop in threshold and the loss of color come sooner the lower the intensity of preceding light adaptation. Fig 5 shows this quite clearly and leaves no doubt that the change records the belated appear ance of the bottom of the rod adaptation curve.

TABLE III

Dark adaptation measured with red light following adaptation to different intensities of white light Time is in minutes, intensities in microphotons

0.	400 000	photons	38,900	photons	19,500	photons	3,800	photons
Observer	Time	Log I	Time	Log I	Time	Log I	Time	Log I
SH	0 55 1 0 1 7 2 3 2 9 3 8 4 5 5 7 7 1 9 0 10 8 14 4 16 9 18 5 20 0 21 6 23 9 27 7 29 6 33 3 36 0	7 87 7 15 6 71 6 34 6 22 5 98 5 89 5 86 5 84 5 81 5 83 5 76 5 76 5 76 5 76 5 77 5 78 5 75	0 28 0 53 1 1 1 7 2 3 3 0 3 9 5 2 6 5 10 3 14 0 16 1 18 0 20 7 22 2 24 9 29 6 32 5 37 5	7 85 7 44 6 91 6 63 6 38 6 12 5 98 6 01 5 99 6 00 6 01 5 97 5 94 5 92 5 93 5 91 5 89 5 84 5 78	0 15 0 40 0 68 1 3 1 8 2 9 4 7 9 3 11 5 13 7 16 6 19 4 21 6 24 5 27 5 30 6 33 1 36 4	7 63 7 14 6 97 6 56 6 34 6 00 5 99 6 04 5 98 5 98 5 92 5 93 5 87 5 80 5 76 5 77 5 68 5 67	0 08 0 25 0 48 0 99 3 0 4 3 7 4 9 5 11 4 13 0 15 4 19 9 24 0 27 0 30 6 34 7	6 93 6 50 6 25 6 07 6 03 5 94 5 90 5 92 5 89 5 87 5 77 5 78 5 75 5 75
СН	39 5 0 36 0 90 1 3 2 0 3 0 4 2 5 4 6 8 9 0 10 9 14 8 16 2 20 6 26 8 33 0	5 79 7 85 7 48 7 27 6 85 6 54 6 22 6 09 6 06 6 05 6 04 6 08 6 04 6 07 6 17 6 22	0 14 0 41 0 81 1 5 2 9 4 2 7 6 9 0 10 6 14 2 18 1 21 0 26 1 31 1 36 8	7 63 7 14 6 73 6 21 6 05 5 98 6 03 6 02 6 03 6 01 6 06 6 02 6 04 5 98 5 98	0 07 0 35 0 93 1 7 3 0 4 0 5 8 8 5 10 9 14 2 21 2 23 0 26 4 30 5 33 8	7 37 6 64 6 28 6 11 6 05 6 00 5 97 6 09 6 02 6 00 5 86 5 83 5 82 5 79 5 77	0 10 0 48 0 83 1 9 3 5 4 9 6 6 9 2 14 5 20 2 22 0 27 5 30 8	7 28 6 50 6 38 6 25 6 18 6 19 6 13 6 10 6 06 5 83 5 77 5 77 5 73

TABLE III-Concluded

			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Observer	400 000 photons		38 900 photons		19 500	19 500 photons		3,800 photons	
OBSERVER	Time	Log I	Time	Log I	Time	Log I	Time	Log I	
A. M C	0 30	7 85	0 15	7 71	0 19	7 28	0 09	6 58	
	0 60	7 33	0 35	7 27	0 35	6 96	0 36	6 10	
	0 93	7 02	0 76	6 71	0.80	6 57	0 81	5 78	
	14	6 69	12	6 48	11	6 36	2 2	5 68	
	18	6 41	17	6 26	15	6 22	3 2	5 63	
	26	6 12	2.5	5 91	19	6 04	44	5 63	
	3 4	5 88	3 5	5 78	26	5 86	61	5 62	
	4.4	5 81	5 2	5 73	40	5 73	70	5 54	
	5 9	5 72	6.8	5 66	5.8	5 67	80	5 46	
	76	5 70	8 2	5 62	67	5 67	8.8	5 49	
	86	5 60	128	5 69	8 1	5 67	119	5 48	
	10 2	5 61	14 3	5 69	93	5 63	14 2	5 43	
	12 5	5 66.	16 6	5 65	11 2	5 66	15 8	5 29	
	14 1	5 66	19 4	5 60	12 6	5 60	18 4	5 21	
	17 3	5 66	22 1	5 61	14 2	5 56	21 4	5 22	
	19 4	5 66	26 1	5 56	16 4	5 59	23 8	5 23	
	24 9	5 67	28 3	5 55	17 9	5 61	27 2	5 19	
	27 4	5 64	30 6	5 55	199	5 54	288	5 16	
	31 7	5 64	33 0	5 55	21 0	5 54	31 4	5 16	
	37 0	5 56	[22 0	5 51			
	40 0	5 57]	1	24 6	5 50]]		
	\	}	\	}	27 1	5 52	\		
	}	ļ	J	ţ	30 5	5 43) .		
		1	1		33 1	5 48			

To the first three curves in Fig. 5, we have added as crosses the cone portions of the measurements with violet light made by A. M. C. It is apparent that they correspond reasonably well with the red light measurements, and thus furnish additional evidence of their character as cone function. After the highest light adaptation the violet light measurements tend to drop below the red light measurements as the former approach the transition point for rod appearance.

As with the cone portions of the violet light data, the same curve may be drawn through the three series. It is merely its vertical extent and its position on the time axis which change. The displacement along the time axis is also much as with the violet light data. In fact the average shift plotted against the logarithm of the adapting

ε

intensity has precisely the same slope and appearance as the violet light data in Fig 3. All this confirms the conclusion that the two series of measurements record the same phenomenon, namely cone adaptation

Fig. 5 The course of dark adaptation as measured with red light following different degrees of light adaptation. Here too the filled-in symbols indicate that the threshold was colored red, and the empty symbols indicate that the threshold was colorless.

VII

Two Types of Rod Adaptation

These data are of theoretical interest in a way that has already been emphasized by Winsor and Clark (1936) and by Wald and Clark (1936) from a different point of view. Rod dark adaptation apparently can follow two different courses depending upon the intensity of the light used for preadaptation. Fig. 2 shows that following low intensities of light adaptation, rod dark adaptation begins at once and changes its rate so that the points leave the log I axis gradually and approach the final threshold on the time axis asymptotically Following high intensities of light adaptation, rod dark adaptation

does not show itself at once, and when it does appear, its speed seems to remain roughly constant for some time so that its curve on a $t \log I$ plot begins in an almost linear fashion. It leaves the $\log I$ axis sharply and only after several minutes does it begin to slow up and approach the t axis asymptotically. We may refer to these two kinds of rod dark adaptation as the rapid type and the delayed type. Data at intermediate intensities present a combination of the two, in Fig. 2 showing the data for S. H., the two are just apparent even in the lowest curve.

To judge by these two courses of dark adaptation, it is justifiable to conclude, as have Winsor and Clark, and Wald and Clark, that the accumulation of sensitive material, which dark adaptation undoubt edly represents, may occur in two ways. It is important to recognize precisely when these two types of adaptation appear. Examination of Fig. 2 shows that the delayed type is definitely established above 20,000 photons, and that the rapid type is clearly established below 200 photons. Between these two values, the adaptation shows both characteristics.

It is significant that even the lowest preadaptation intensity here used is many times higher than that required to achieve a maximum effectiveness of the rods in all the other functions in which they have been studied. For example, the maximum flicker frequency shown by the rods is achieved between 01 and 1 photon (Hecht and Smith, 1936) Similarly, the maximum visual acuity attained by the rods is also apparent below 1 photon (of Hecht, 1937 a) and so is the maximum intensity discrimination of the rods (Hecht, 1935), and the maximum instantaneous threshold (Blanchard, 1918. Hecht, 1937 b) In other words, at a stationary state produced by a retinal illumination of 1 photon, the visual functions of the rods are at Therefore the delayed type of dark adaptation first their maximum appears only after adaptation to intensities 200 times as great as those which are known to produce the maximum visual effectiveness in the rods and becomes established only at intensities 20,000 times as great Thus, what we call dark adaptation following preadaptations above 20,000 photons is probably a different phenomenon than dark adapta tion following preadaptations below 200 photons, though in both cases the same sensitive material, visual purple, accumulates in the rods

Kuhne (1879) first showed that visual purple in the retina may be regenerated by two methods after being bleached from the products of decomposition, and de novo This has been confirmed and developed by Wald (1935 a, b) in a series of excellent researches with various retinas, moreover, Wald has been able to identify components of this visual cycle as vitamin A and a carotenoid, retinene, and has shown that retinene is the first product of bleaching in the retina and becomes converted later into vitamin A. We have recently been able to regenerate visual purple in solution from the products of its bleaching by light (Hecht, Chase, Shlaer, and Haig, 1936)

It is quite likely that the two modes of formation of visual purple have different courses and different velocities Wald and Clark (1936) have suggested that the faster course is the regeneration by way of photoproducts, and the slower by way of fresh substances from the retina or from the blood stream. These would then correspond to the rapid and the delayed types of dark adaptation which we find here. We are now engaged in measurements which will formulate this correspondence more precisely.

SUMMARY

The course of dark adaptation of the human eye varies with the intensity used for the light adaptation which precedes it. Preadaptation to intensities below 200 photons is followed only by rod adaptation, while preadaptation to intensities above 4000 photons is followed first by cone adaptation and then by rod adaptation

With increasing intensities of preadaptation, cone dark adaptation remains essentially the same in form, but covers an increasing range of threshold intensities. At the highest preadaptation the range of the subsequent cone dark adaptation covers more than 3 log units

Rod dark adaptation appears in two types—a rapid and a delayed The rapid rod dark adaptation is evident after preadaptations to low intensities corresponding to those usually associated with rod function. The delayed rod dark adaptation shows up only after preadaptation to intensities which are hundreds of times higher than those which produce the maximal function of the rods in flicker, intensity discrimination and visual acuity. The delayed form remains essentially

constant in shape following different intensities of preadaptation However, its time of appearance increases with the preadaptation intensity, after the highest preadaptation, it appears only after 12 or 13 minutes in the dark

These two modes of rod dark adaptation are probably the expression of two methods of formation of visual purple in the rods after its bleaching by the preadaptation lights

BIBLIOGRAPHY

- Aubert, H, Physiologie der Netzhaut, Breslau E Morgenstern, 1865, 394
- Blanchard, J The brightness sensibility of the retina, Phys Rev , 1918, 11, series 2 81
- Hecht, S, The nature of fovcal dark adaptation J Gen Physiol, 1921, 4, 113
 Hecht, S, A theory of visual intensity discrimination, J Gen Physiol, 1935, 18, 767
- Hecht, S, Rods, cones, and the chemical basis of vision, Physiol Rev, 1937a, 17, 239
- Hecht, S., The instantaneous visual threshold after light adaptation, Proc Nat Acad Sc 1937b, 23, 227
- Hecht, S., Chase, A. M., Shlaer, S., and Haig, C., The regeneration of visual purple in solution, Science, 1936, 84, 331
- Hecht, S, and Haig, C, Dark adaptation as influenced by intensity of light adaptation, J Opt Soc America, 1936, 26, 304
- Hecht, S., Haig, C., and Wald G., The dark adaptation of retinal fields of different size and location, J. Gen. Physiol., 1935, 19, 321
- Hecht S, and Shlaer, S, Intermittent stimulation by light V The relation between intensity and critical frequency for different parts of the spectrum J Gen Physiol, 1936, 19, 965
- Hecht, S, and Smith, E L, Intermittent stimulation by light VI Area and the relation between critical frequency and intensity, J. Gen. Physiol., 1936, 19, 979
- Kohlrausch A, Untersuchungen mit farbigen Schwellenprüflichtern über den Dunkeladaptationsverlauf des normalen Auges, Arch ges Physiol, 1922, 196, 113
- Kohlrausch, A, Tagessehen, Dammerschen, Adaptation, in Bethe, A, von Bergman, G
 Embden G
 Ellinger, A, Handbuch der normalen und path ologischen Physiologie
 Berlin J
 Springer, 1931, 12, pt 2, 1499
- Kühne W, Chemische Vorgange in der Netzhaut, in Hermann, L, Handbuch der Physiologie Leipsic, Vogel, 1879 3, pt 1 235
- Matthey G Eine Standardkurve' der Dunkeladaptation für klinische Unter suchungen, Arch Ophih, Berlin, 1932, 129, 275

- Muller, H K, Über den Einfluss verschieden langer Vorbelichtung auf die Dunkeladaptation und auf die Fehlergrosse der Schwellenreiz-bestimmung wahrend der Dunkelanpassung, Arch Ophth, Berlin, 1931, 125, 624
- Piper, H, Über Dunkeladaptation, Z Psychol u Physiol Sinnesorgane, 1903, 31, 161
- Wald, G, Vitamin A in eye tissue, J Gen Physiol, 1935 a, 18, 905
- Wald, G, Carotenoids and the visual cycle, J Gen Physiol, 1935b, 19, 351
- Wald, G, and Clark, A B, Sensory adaptation and chemistry of the retinal rods, Am J Physiol, 1936, 116, 152
- Winsor, C. P., and Clark, A. B., Dark adaptation after varying degrees of light adaptation, *Proc. Nat. Acad. Sc.*, 1936, 22, 400

DO MELANOPHORE NERVES SHOW ANTIDROMIC RESPONSES?

BY G H PARKER

(From the Biological Laboratories, Harvard University, Cambridge)

Plates 2 to 5

(Accepted for publication, February 18, 1937)

Antidromic responses and axon reflexes both imply that under experimental conditions or even under certain unusual natural conditions nerve impulses may flow over nerve fibers in a direction the reverse of the usual one This is perhaps most clearly seen in the The axon of a vertebrate motor neurone, as it ap motor system proaches and enters its muscle, branches many times till its final ramifications end each in a cross-striped muscle fiber. The ultimate branches of such an axon may number a hundred or so and with each branch carrying at its end a muscle fiber the whole system collectively constitutes what Sherrington has called a motor unit Such a unit is believed to act as a whole in the ordinary contraction of a skeletal muscle and under usual circumstances it represents the smallest functional aggregate of active muscular elements. The contraction of any vertebrate skeletal muscle is made up of the combined con tractions of its various motor units each of which represents an irreducible element in this operation If instead of stimulating the single motor axon of a given motor unit, the stimulus is applied to one of the peripheral branches of this axon, an interesting condition presents itself Under such circumstances not only do the muscle fibers sup plied by the stimulated branch contract, but those in the rest of the unit also shorten, showing that from the point of stimulation impulses not only flow peripherally in the normal direction into the attached muscle fibers but impulses also pass centrally, that is, antidromically, till they meet other penpheral branches whereupon they make their way peripherally to the other muscle fibers of the unit. An antidromic or backward flowing of impulses is quite consistent with what is known of general nerve physiology within the limits of a single

neurone and affords the basis for the so called axon reflexes. If on stimulating an axon branch of a motor neurone there is this anti-dromic flow of impulses, may we not expect a similar condition in vertebrate melanophore nerve fibers? This question, which was raised very forcibly by Hoagland in his discussion of my recent paper on "The reaction of chromatophores as evidence for neurohumors" (Parker (1936 a)) given at the Cold Spring Harbor Symposium for 1936, is the subject of the present communication

The melanophore system upon which it is convenient to test this question is that of the common killifish, Fundulus heteroclitus. This system, however, is not so simple as the skeletal motor system of vertebrates. In Fundulus as in other teleosts each melanophore receives several nerve fiber branches instead of only one as with crossed-striped muscle fibers and of these branches at least one is concentrating in function inducing a central migration of the melanophore pigment and at least one other is dispersing in function bringing about a scattering of the pigment. These melanophores, then, unlike skeletal muscle fibers, have a double innervation and this must be kept in mind in the following discussion.

It has been known for over a decade (Wyman (1924)) that when a bundle of melanophore nerve fibers is cut in the tail of a pale Fundulus, the melanophores thus denervated form a dark band leading from the cut toward the periphery of the tail. This phenomenon has been shown (Parker (1934)) to be due to an excessive stimulation of the dispersing nerve fibers and may persist for several days. Many students of this subject have recorded the striking appearance of this band peripheral to the cut, but no one, so far as I am aware, has made any comment on its possible extension in a central direction from the cut. Such an extension would be indicative of antidromic action and from the analogy with skeletal muscle it should be expected to occur. The first question to be answered is whether there really is any evidence of this central extension?

When a single branched fin-ray in the caudal fin of a very pale Fundulus is severed a few millimeters distal from the root of the tail, the dark band already noticed begins to form within half a minute and is very fully developed in the course of 5 minutes. A most careful scrutiny with the unaided eye of the region of the cut after

the band has reached full formation reveals a well defined dark area that starts exactly at the cut and reaches pempherally to near the edge of the tail, but no band extends centrally from the cut scopic examination of these regions, however, shows a slightly differ-The position of such a cut is shown in Figs 1 and 2 ent condition (4) and a view of the cut itself as seen under the microscope is given in Fig. 4 As is shown in Fig. 1 each ray starts at the base of the tail as a single bony axis A short distance from this point it divides into two. then farther on into four and finally as a rule near the margin of the tail into eight subrays The cut shown enlarged in Fig 4 was made in a region where the ray had divided into four. As can be seen in the figure the cut failed to sever all four subrays, the pair above and the upper member of the lower pair being the only ones fully cut branches of the nerves in these subrays undoubtedly suffered a corre sponding fate and consequently the axis of the denervated dark band does not correspond exactly to that of the group of four subravs but centers more toward what in Fig. 4 is the upper pair. This is clearly seen in the state of the melanophores distal to the cut (to the right in Fig 4) where above the upper pair of subrays they are fully dispersed and below the lower pair fully concentrated. This is more obvious in Fig. 5, a photograph taken somewhat more distal to the cut than Fig 4 and showing fully dispersed melanophores above the upper pair and fully concentrated ones below the lower pair

These are the conditions of the melanophores peripheral to the cut What is their state central to it? This can be seen in the left half of Fig 4 and in all of Fig 3 which includes the left part of Fig 4 and still more in the basal direction of the ray. A comparison of the upper and the lower parts of these two figures shows indubitably that the melanophores above the upper pair of subrays have their pigment more dispersed than those below the lower pair do. The lower melanophores are indeed almost punctate, the upper ones almost stellate. The melanophores the central to a cut have slightly more dispersed pigment than those of the adjoining regions though the dispersion is by no means so pronounced as that of the denervated melanophores peripheral to the cut. This is clearly seen by a comparison of the upper part of Fig 3 with the upper part of Fig 5. The condition in Fig 3 is naturally explained by assuming antidromic impulses from

the cut It is not clear, however, why the nerve impulses are not as effective centrally as peripherally. This question, however, can be elucidated by further experimentation

It has already been pointed out that in Fundulus the melanophore nerves include two sets of opposing fibers, dispersing and concen-These fibers differ physiologically one from the other in that those concerned with dispersion are much more easily stimulated by being cut than those concerned with concentration, in other words, the dispersing fibers have a much lower threshold for stimulation by cutting than the concentrating ones do Hence in a pale Fundulus these two sets of fibers are in very different states on the peripheral and the central sides of a denervating cut Peripheral to the cut the dispersing fibers are highly excited and the concentrating ones are cut off from their normal centers of excitation Central to the cut the dispersing fibers also highly excited antidromically must, however, oppose the concentrating fibers which in a pale fish are at a high degree of efficiency from their natural centers Consequently the action of the dispersing fibers is felt by the melanophores less on the central side of a cut than on its peripheral side and this contrast is so marked in a pale Fundulus that scarcely any dark band at all is perceptible on the central side of the cut The correctness of this view can be demonstrated by the following experiment

In carrying out a test to this end it is necessary to exclude from the central side of a given cut the activity of the concentrating nerve fibers and yet to maintain a pale condition in the fish as a whole. This can be attained by a double operation. If a denervating cut is made near the root of the tail of a pale Fundulus a peripheral dark band will develop as usual and if the fish is now kept in a white, illuminated tank for a few days, this band will fade almost to extinction. The conditions of the melanophores in such a faded band are shown in Fig. 7 taken just peripheral to the cut and in Fig. 8 from a position half way between that of the cut and the edge of the tail. The melanophores in these two regions are in an approximately stellate or stellate-punctate condition and in this respect agree essentially with those immediately central to the cut as shown in Fig. 6. The band having attained this condition of semi-blanching is now cut for a second time and in a region midway between the first cut and the edge

of the tail (11-12 in Fig 2) Such a new cut in the position described will, as is well known, revive the peripheral part of the old band and since the central part of this band, at least as far as to the first cut, is now protected by that cut from the action of the concentrating fibers, this part of the band may be expected also to be revived provided the new cut calls forth antidromic impulses. The results of the reviving cut thus favorably placed for the purpose of determining the presence of antidromic activities are shown in Figs 9 to 12 whose positions are indicated in Fig 2 (9 to 12) As is apparent in Fig 9 the melano phores central to the first cut have remained much as they were before the new cut was made (compare Fig 9 with Fig 6) Those peripheral to the new cut and shown in Fig 12 have again dispersed their pigment as was to have been expected But this renewed dispersion not only affects the melanophores of the band peripheral to the new cut. it also affects those central to it both next the new cut (Fig. 11) and throughout the part of the band that hes between this cut and the first one (Fig. 10) This region, between the two cuts, is the critical region It is now protected from the action of the concentrating fibers and if antidromic influences are present they should show themselves by a dispersion of pigment. Such a dispersion is abundantly present Tests of this kind were made not only on the fish from whose tail the photographs shown in Figs 9 to 12 were taken, but on four other fishes all of which yielded similar results I, therefore, conclude that in the action of dispersing melanophore nerve fibers antidromic activi ties can be clearly demonstrated particularly if in advance these fibers are freed from the opposing action of the associated concentrating nerve fibers

To ascertain whether the concentrating melanophore nerve fibers show antidromic responses an entirely different procedure from that used with the dispersing fibers must be employed. The concentrating fibers have a very low threshold for faradic stimulation as contrasted with the dispersing fibers. Moreover there is no reason to suppose that after electric stimulation concentrating fibers remain active for any protracted length of time as the dispersing fibers do after having been cut. From this standpoint concentrating fibers are much like ordinary motor fibers whose responses to electric stimulation are extremely brief. Consequently illustrative photographs of the effects

of concentrating fibers in melanophores cannot easily be made because of the transitoriness of these effects. Such effects, however, can be very clearly demonstrated to the observer's eye

In order to test concentrating fibers in this respect it is desirable to use killifishes that are only slightly dark. If they are fully dark their skins are so filled with the dispersing neurohumor that the concentrating humor from the concentrating nerves cannot compete with the Hence it is desirable to have only enough dispersing opposing humor humor present to give through its action on the melanophores only a slightly dark tone to the skin When on a Fundulus of appropriate tint platinum electrodes from an inductorium are placed across one of its caudal rays at the position seen in the cross line between A and B in Fig. 2, the electrodes may remain there indefinitely without exciting any change in the fish
If now a faradic current is started through them within a few seconds a pale spot will begin to appear under the electrodes and spread rapidly as a band peripherally and centrally over the ray A quick inspection of the band under the microscope shows that the pigment of the melanophores in the band has become concentrated till each melanophore is in the punctate state directions taken by the resulting blanching would apparently indicate that the concentrating nerve fibers not only transmit peripherally but also centrally, that is, that they exhibit antidromic activities objection, however, might be urged against this interpretation of the response in that it might be claimed that the blanching was not nervous but due to a spread of the electric current, for, as a stimulus, this is known to induce concentration of pigment. To check this possibility slightly pale fishes were prepared by making denervating cuts in their caudal rays and after the resulting dark bands had largely faded out they were tested electrically as in the preceding trial When in such a preparation electric stimulation was applied on the peripheral side of the cut, the blanched area that resulted began at the cut and extended peripherally from that region (Fig. 2, B) and was not to be seen central to the cut If on the other hand the electrodes were applied centrally to the cut, the blanched area started at that point and spread centrally but not peripherally (Fig 2, A) As the cut in the ray interrupts the nerves but not the electrical conductivity of the tissue, the spread of the blanching in these tests is to be attributed to nervous action and not to electric overflow I, therefore, conclude that in *Fundulus* the concentrating melanophore nerve fibers, as well as the dispersing ones, exhibit antidromic activities and in this respect agree with other motor and sensory nerve fibers of the vertebrate body

SUMMARY

- 1 In Fundulus heteroclitus the dispersing melanophore nerve fibers have a relatively high threshold for faradic stimulation and a low one for stimulation by cutting. When they are protected from the competing action of the concentrating fibers, they show through the responses of their melanophores well marked antidromic activities which can also be seen to a slight degree even where the concentrating fibers are active
- 2 The concentrating melanophore nerve fibers in this fish have a relatively low threshold for faradic stimulation and a high one for stimulation by cutting. They also exhibit clear antidromic responses as shown by their associated melanophores.

REFERENCES

- Parker, G. H., 1934, The prolonged activity of momentarily stimulated nerves, Proc. Nat. Acad. Sc., 20, 306
- Parker, G H, 1936 a, The reactions of chromatophores as evidence for neuro humors, Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor, Long Island Biological Association, 4, 358
- Parker, G. H., 1936 b. Are there antidromic responses in the melanophore system?

 Anat. Rec. 67, suppl. 1, 37
- Wyman, L. C., 1924. Blood and nerve as controlling agents in the movements of melanophores, J. Exp. Zool., 39, 73

EXPLANATION OF PLATES

The diagram and all photographs are from the killifish, Fundulus helerochius The photographs were taken by Dr $\,\Gamma\,$ M $\,$ Carpenter

PLATE 2

Fig. 1 Cleared preparation of a tail of Fundulus showing two bands, the one in the lower part of the tail came from a single cut, the other in the upper part originally from a single cut near the root of the tail reactivated by a second cut made near the middle of the length of the band and some days later than the first one

Fig 2 Diagram of a tail of Fundulus showing the positions of denervating cuts and also the positions at which the photographs in Plates 3, 4, and 5 were taken. The numbers on this diagram refer to the figures on the succeeding plates. The uppermost band indicates the blanched area, A-B, due to stimulation of the concentrating nerve fibers by electrodes applied at the position of the cut but before it was made. Area B resulted from the application of the stimulating current peripheral to the cut, and area A when it was applied central to the cut

PLATE 3

Conditions of melanophores in a denervated band in the tail of *Fundulus* immediately after the band had been formed See Fig. 2

- Fig. 3 Immediately central to the denervating cut
- Fig 4 At the cut
- Fig 5 Immediately peripheral to the cut

PLATE 4

Conditions of melanophores in a denervated band in the tail of *Fundulus* some days after the band had been formed and shortly after it had faded See Fig 2

- Fig 6 Immediately central to the denervating cut
- Fig 7 Immediately peripheral to the cut
- Fig. 8 On the band and midway between the cut and the edge of the tail

PLATE 5

Conditions of melanophores in a denervated band in the tail of *Fundulus* The band had been allowed to fade and was then revived by a new cut See Fig 2

- Fig 9 Central to the first cut
- Fig 10 Peripheral to the first cut but after the second cut had been made
- Fig 11 Central to the second cut
- Fig 12 Peripheral to the second cut

(Parker Melanophore ner es and antid om c

(Parker Melanophore nerves and antidromic re ponses)

(Parker M lanoph e per es and a tidr mic respon.es)

A PHASE RULE STUDY OF THE PROTEINS OF BLOOD SERUM THE EFFECT OF CHANGES IN CERTAIN VARIABLES*

By ELOISE JAMESON

(From the Department of Medicine, Stanford University School of Medicine, San Francisco)

(Accepted for publication, January 29, 1937)

The quantitative measurements presented in the preceding communication (1) made with potassium citrate as a precipitant at pH 6 8 and 0°C on undiluted serum, differ greatly from the usual results found elsewhere in the literature. The following experiments are now adduced to show that these differences arise from the circumstance that in most of the previous work not all of the essential variables, namely, the pH, temperature, kind of salt, and protein concentration, were controlled in the same manner.

As a standard, curves made at pH 68 and 0°C with composite samples of blood serum from 30 or more male rats 100 days old were used, since different series were found to be reproducible and coincident. Individual biological differences had thus been eliminated. Any deviation from this standard could then be demonstrated. In two cases a standard of females was substituted.

In these solubility curves several fractions, A, B, C (C_1 and C_2), and D may be distinguished (1) The effect of change in each essential variable on these fractions has been determined

EXPERIMENTAL.

Change in pH

The methods of procedure and analyses were the same as those described in a preceding paper unless otherwise mentioned

Previously, a pH of 68, as determined by the glass electrode, was used 55 was chosen for comparison with this because it is the pH used by Svedberg (2) as the isoelectric point of globulin

^{*} This work was aided by The Rockefeller Foundation Fluid Research Fund

Serums from two different lots of 30 female rats were used The per cent of protein in the dialyzed serum, 6 62 per cent at a pH of 5 5,

TABLE I

Stock Diet

Blood Scrum from Female Rats—5 Months Old, 0°C

pH 68

Total compositi	on by weight	Liquid phas	se by weight
Potassium citrate	Protein	Potassium citrate	Protein
per cent	per ceni	per cent	per cent
19 86	5 770	20 00	5 666
23 82	5 473	24 50	4 527
25 78	5 326	26 95	3 937
26 79	5 252	27 70	3 556
27 78	5 177	28 96	3 218
29 75	5 030	31 07	2 608
31 72	4 883	33 23	1 876
32 70	4 808	34 45	1 592
33 78	4 727	35 95	0 935
34 66	4 660	36 87	0 869
35 63	4 585	37 70	0 511
37 55	4 437	39 75	0 133
	pH	5 50	
18 85	5 24	19 00	5 226
20 60	5 086	20 72	5 02
22 30	4 925	25 91	3 778
24 00	4 768	24 76	4 274
25 67	4 610	26 42	3 663
27 31	4 453	28 19	3 086
28 13	4 377	29 42	2 945
28 30	4 352	29 68	2 678
29 74	4 222	30 99	2 338
30 51	4 141	32 05	1 965
31 30	4 063	32 38	1 790
32 08	3 987	31 97	1 972
32 84	3 908	34 11	1 301
33 59	3 830	34 90	1 054

was less than in the standard experiment, 695 per cent protein at pH 69

The whole range of precipitation was not covered by the curve at

pH 55, since the curve at that pH did not take the shift to the left to be expected from the literature, a shift which would have shown a decrease in solubility of the protein fractions at the isoelectric point of globulin

Fig. 1. Comparison of curves at pH 5.5 and pH 6.9 . Blood serum from 30 female rats . Phase rule diagram at 0 $\,$ C

★ = total composition pH 5 5

A = total composition pH 69

O = liquid phase pH 5 5 A = liquid phase pH 6 9

Table I and Fig 1 give the results of the precipitation of protein of rat serum at 0° by potassium citrate at the two different hydrogen ion concentrations, the standard curve at pH 6 8, the experimental curve at pH 5 5 As may be seen, in general the two curves follow the same slope except in the extreme left part If lines are drawn connecting

the points of total composition in the two experiments and a ruler is placed across all four lines in their middle sections, the proportionality of the protein in solution to that of the total composition may be seen. The conclusion may then be drawn that at 0°C the solubility of protein as denoted by the middle section of the curve is independent of the pH but dependent solely upon the total amount of protein present

There is less of the first fraction, A, and more of the second fraction, B, separating at a pH of 5.5. The break which is not apparent at a pH of 6.9 becomes visible at a pH of 5.5. This might be explained by the fact that part of the first fraction of protein is combined with lipoids by means of a bond which may be easily broken at the iso-electric point of the protein, changing its apparent solubility. A study of the solubility of this fraction in potassium citrate solutions is in progress.

The qualitative effect of pH at room temperature is reported later in this article in the paragraph on salting out of proteins from diluted serum by $(NH_4)_2SO_4$ A distinct decrease in solubility from that shown in the standard curve occurs in the albumin end, at room temperature and probably even at $0^{\circ}C$

As may be seen from a comparison of the curves, the precipitation is not related to the citric acid in solution. In the experiments represented by points at pH 5.5 the citric acid was as much as 20 per cent of the amount of citrate when concentrations of citrate were highest. In the curve for pH 6.8 the maximum is about 3 per cent.

There are many observations in the literature upon the importance of pH control. In general it is known that the single proteins (3) are less soluble at their isoelectric points than at either higher or lower concentrations of H ions. In curves with whole serum very little change in solubility has been found between the pH's of 4 8 and 9 0(4). Butler, Blatt, and Southgate (5) have made a study of the effect of changing the pH on the complete salting out curve of serum with potassium phosphate. They find a parallelism between their curves at 39° with increasing solubility from pH 5 4 to 6 5 and to 7.7. However, they do not compare the curves at 0° where the effect of the salt on the proteins is minimal, but at 39° where the solubilities of the protein fractions have already been altered by the elevated tempera-

ture Butler, Blatt, and Southgate have diluted the serum 1 to 16 or 1 to 31 with phosphate solution while in the experiments reported here it is undiluted

The works of McFarlane (6) show clearly that existing bonds or complexes are broken apart on dilution. Consequently, it is only in undiluted serum that the proteins as they occur naturally, may be studied.

Change in Temperature

Two experiments were carried out as nearly simultaneously as possible, on the same composite sample of female rat serum at the two temperatures 0°C and 23°C. In each case the pH was 6.8

Table II gives the results, which are plotted in Fig. 2

In general less protein remains in solution at 23° than at 0°C at a definite salt concentration. The fraction A proves an exception to this statement since the first portions of the two curves almost coin cide. The solubility of A is, therefore, not as greatly affected by temperature as by the change in pH just discussed.

The quantity of fraction B becomes larger at 23° than at 0° It is not visible in female rat serum at 0°C. In the middle section of the 23° curve between the salt concentrations 24.5 per cent to 27.5 per cent, approximately, there is almost no further precipitation of protein with added increments of salt. For the first time, in this work, the flat place so often described in the literature may be seen The protein which precipitates gradually at 0° along the curve from 23 per cent to 27.5 per cent potassium citrate has come down suddenly at 23° from 23 per cent to 24.5 per cent salt. It has become less soluble, possibly due to aggregation

From 27 5 per cent of salt to the most concentrated solutions, there is a gradual increase in the distance between the curves, indicating a growing rate of precipitation at 23° until the protein is practically out of solution at 36 per cent salt. The difference in solubility of proteins with temperature is most marked in the albumin fraction, D. The rise in temperature also increases the amount of fraction D as meas ured by the difference between an extension of C and the base line

The effect of raising the temperature is, then, to cause a splitting apart in the complex denoted by C with the simultaneous increase in both fractions B and D

Many investigations have been carried out at low temperatures (7) as only by so doing may proteins be preserved unchanged for even a short time. The increase of solubility of proteins with decreased

TABLE II

Comparison of Influence of Temperature on Precipitation of Blood Serum from 60 Female Rats—5 Months Old—pH 6 8

Total composition	on by weight	Liquid phase	by weight
Potassium citrate	Protein	Potassium citrate	Protein
	()°C	
per cent	per cens	per cent	per cent
19 86	5 770	20 00	5 666
23 82	5 473	24 50	4 527
25 78	5 326	26 95	3 937
26 79	5 252	27 70	3 556
27 78	5 177	28 96	3 218
29 75	5 030	31 07	2 608
31 72	4 883	33 23	1 876
32 70	4 808	34 45	1 592
33 78	4 727	35 95	0 935
34 66	4 660	36 87	0 869
35 63	4 585	37 70	0 511
37 55	4 437	39 75	0 133
	Room to	emperature	
17 86	5 916	18 60	5 953
19 86	5 770	20 66	5 444
21 84	5 620	23 11	4 796
23 82	5 471	24 60	3 892
24 82	5 399	25 73	3 727
25 80	5 325	27 40	3 465
27 78	5 178	29 41	2 819
29 75	5 030	32 32	1 765
30 74	4 956	33 95	1 250
31 72	4 882	34 10	1 006
33 68	4 734	35 84	0 226
35 63	4 585	38 65	0 0143

temperature is also a matter of record (8) The 23° curve shows a similarity to those of Butler and Montgomery (9) with phosphate solutions, and Howe's (10) with Na₂SO₄, for it might be drawn as a

series of curved lines. In Butler and Montgomery's work, room temperature and in Howe's work a temperature of 37°C was chosen. Butler, Blatt, and Southgate's curves (5) show an increase in solu bility of every fraction from 39° or 20° to 0° and a parallelism between

Fig. 2. Companison of curves at 0 C and 23°C. Blood serum from 60 female rats. Phase rule diagram

⊗ = total composition 0°C

O = hquid phase 0°C

△ = total composition 23 C

△ = liquid phase 23°C

the curves In their experiments complexes had already been split apart by dilution. It was then impossible to show the effect of a rise in temperature in accomplishing this alteration in the original state of the serum proteins.

Changes in Nature of the Salt

Precipitation of male rat serum was carried out at 0° with $(NH_4)_2SO_4$ instead of potassium citrate as the precipitant without regard to keeping the pH constant. The pH changed from pH 6.9 in 15 per cent $(NH_4)_2SO_4$ solution to 6.3 in 29 per cent $(NH_4)_2SO_4$ solution (1). The results of the experiment are shown in Table III and graphed in Fig. 3.

The curve is of the same type as that made at pH 5 5 with potassium citrate in which the fraction A is lessened and fraction B is increased. The same straight line relationship of protein concentration to salt solution exists as with potassium citrate.

TABLE III

Blood Serum from 30 Male Rats—100 Days Old—Precipitation by (NH₄)₂SO₄—

0°C—pH from 6 88 to 6 25

Total composition by weight		Liquid phase by weight	
(NH ₄) ₂ SO ₄	Protein	(NH ₄) ₂ SO ₄	Protein
per cent	per cent	per cent	per cent
14 86	5 847	15 11	5 510
15 80	5 782	15 66	5 388
17 70	5 652	17 92	4 550
19 60	5 521	19 93	3 840
21 50	5 391	22 14	3 020
23 41	5 260	24 40	2 105
25 32	5 128	26 77	1 072
27 24	4 997	29 02	0 260
29 16	4 865	31 09	Trace

Several different salts have been mentioned in the literature as suitable for salting out proteins. Sørensen (8) used (NH₄)₂SO₄ and acetates, Butler and Montgomery (9) used phosphates, Howe (10), Na₂SO₄. Hardy (7) found as early as 1910 that (NH₄)₂SO₄ is not suitable as a precipitant for euglobulin since the latter does not retain its original properties after being precipitated by that salt. In previous work, potassium citrate appeared to the author to be most satisfactory as a precipitant (1)

Change in Concentration of Protein

Table IV gives the data for the precipitation by potassium citrate of the proteins of rat serum at two different concentrations. The

data are plotted in Figs 4 and 5 $\,$ The part of Fig 4 which shows the fusion of the curves is enlarged in Fig 5

Curve I, which is a composite made from two different lots of male rat serum under the standard conditions, is compared with curve II made from the same rat serum diluted 1 part serum to 2 parts 5 per

Fig. 3 Diet—stock. Blood serum from forty 100 day old male rats. Phase rule diagram at 0°C.

x = total composition

O = liquid phase

cent potassium citrate solution. Except for the break which is not visible in curve II (possibly because its concentration is not great enough) the curves represent solubilities of proteins which are in proportion to the total compositions on the same tie lines until the change in direction occurs in curve I at 32 5 per cent salt. From that point to between 37 5 per cent and 38 per cent salt, where the two

curves meet, curve I approaches curve II At the latter point very little protein except the albumin fraction D is still in solution Within the limits of error of the experiment the protein in solution is constant from 38 per cent salt to 41 per cent salt whether a concentrated or diluted serum is used for precipitation Possibly enough solid phases are present to determine the protein content of the liquid phase It is

TABLE IV

Comparison of Undiluted and Diluted Blood Serum from 40 Male Rats—100 Days Old

Precipitated by Potassium Citrate 0°C—pH 68

Total composi	tion by weight	Liquid pha	se by weight
Potassium citrate	Protein	Potassium citrate	Protein
	Undi	luted	
	Expeni	ment 1	
per cent	per cent	per cent	per cent
19 61	5 412	19 85	5 314
23 58	5 135	24 03	4 529
25 57	4 997	25 84	3 883
26 57	4 925	27 22	3 605
27 56	4 857	27 84	3 616
29 54	4 718	30 17	2 881
31 51	4 580	32 19	2 371
32 49	4 510	33 69	1 765
34 46	4 372	36 02	1 088
35 43	4 301	37 10	0 734
37 36	4 160	39 54	0 1472
	Expeni	nent 2	
20 63	5 339	20 30	5 056
21 58	5 271	21 78	4 778
22 62	5 221	22 30	4 745
23 49	5 140	23 55	4 623
24 45	5 071	24 53	4 135
25 41	5 006	23 02	4 601
27 30	4 872	27 58	3 502
29 24	4 737	29 83	3 062
31 16	4 602	32 13	2 467
33 07	4 468	34 15	1 646
34 97	4 330	36 37	0 883
36 86	4 191	38 99	0 205
37 81	4 122	39 78	0 096
38 74	4 052	40 56	0 026

TABLE IV-Concluded

Total composition	n by weight	Liquid phase i	Liquid phase by weight		
Potassium citrate	Protein	Potassium citrate	Protein		
Diluted 1	part scrum to 2 p	parts potassium citrate sol	ution		
	Expe	riment I			
per cent	per cent	f perce l	per cent		
21 82	1 712	21 95	1 595		
23 81	1 667	23 85	1 392		
25 83	1 616	26 08	1 348		
26 78	1 600	26 97	1 241		
27 77	1 577	27 86	1 139		
29 74	1 533	30 29	0 940		
31 68	1 487	32 31	0 786		
32 68	1 464	33 66	0 727		
33 66	1,432	34 32	0 627		
34 68	1 419	35 11	0 593		
35 61	1 396	36 18	0 496		
37 53	1 351	38 47	0 268		
38 49	1 328	39 17	0 1797		
	Expe	riment 2			
37 07	1 358	37 76	0 352		
38 02	1 336	38 88	0 221		
38 98	1 313	39 97	0 114		
39 92	1 290	40 73	0 065		

also possible, however, that the greater solubility of the fraction, D, may mask the small differences in solubility of some other protein fractions which are not single substances. The albumin, D, must exist as an independent protein of definite solubility, although its solubility is probably influenced by the presence of other proteins

Many studies on the solubility of the precipitated fractions of serum or plasma as individual proteins in respect to the effect of protein concentration have been carried out. Sørensen (8) showed a definite solubility in salt solution independent of the original protein concentration in the case of crystalline egg albumin, but found a fractionation when the solubility of globulin was investigated (11). Fibrinogen and hemoglobin have definite solubilities, also, as proved by the excellent work of Florkin (12) and Green (13).

It should be noted that curve II made from diluted serum is not

comparable to those of Butler and his coworkers for the dilution has not been great enough to break the continuity of the curve C

Fig 4 Diet—stock Effect of dilution Blood serum from 40 male rats Phase rule diagram at $0^{\circ}\mathrm{C}$

Total composition

♦ = undiluted samples

⊗ = undiluted samples∆ = diluted samples

□ = diluted samples

Liquid phase

= undiluted samples

O = undiluted samples

 Δ = diluted samples

 \Box = diluted samples

Effect of Change in Protein Concentration and Nature of the Salt

Proteins of male rat serum, diluted 1 to 10 with 5 per cent (NH₄)₂SO₄ solution were precipitated with (NH₄)₂SO₄ at 0°C The pH of samples

changed from 7.1 in the more dilute to 7.0 in the concentrated solution Table V and Ing 6 present the data B is not visible, C has moved to

Blood serum from 40 male rats Fig 5 Diet--stock. Effect of dilution Phase rule diagram at 0°C

Total composition

⊗ = undiluted samples

A = diluted samples

M = diluted samples

Liquid phase

⇔ undiluted samples

O = undiluted samples

△ = diluted samples □ ≈ diluted samples

the left, and a flat place comes into view between C and D At this dilution no overlapping of C and D is discernible An albumin

TABLE V

Blood Serum from 100 Male Rats—100 Days Old Diluted 1 to 10—Comparison of Precepitation by (NH₄)₂SO₄ at 0°C and at Room Temperature

Total composi	tion by weight	Liquid phase by weight						
(NH4):SO4 Protein		(NH ₄) ₂ SO ₄	Protein					
	0°C —Average pH 7 10							
per cent	per cert	per cent	per cent					
15 71	0 6001	15 65	0 6155					
16 70	0 5930	16 61	0 5788					
17 70	0 5859	17 59	0 5424					
21 70	0 5575	21 57	0 3830					
23 69	0 5432	23 78	0 3025					
25 69	0 5290	25 60	0 2235					
27 69	0 5148	27 59	0 1572					
28 69	0 5077	28 80	0 1330					
29 69	0 5006	29 90	0 0701					
30 69	0 4935	30 51	0 0415					

Fig. 6 Diet—stock. Serum diluted 1–10. Blood serum from 30 male rats. Phase rule diagram at 0°C.

x = total composition

O = liquid phase

TABLE VI

Blood Serum from 100 Male Rals—100 Days Old Diluted 1 to 10—Comparison of Precipitation by (NH)2SO₄ at 0°C and at Room Temperature—

23°C -Average pH 7 01 Total composition by weight Liquid phase by weight (NRJ)SO₄ (NIL):SO: Protein Protein ber cent ber cent per cent per cent 14 71 0 6071 14 53 0 607 15 71 0 6001 15 50 0 606 17 70 0 5859 17 69 0 550 19 70 0.5718 19 58 0 440 21 70 21 57 0 5575 0 369 23 69 0 5432 23 75 0 296 25 82 25 85 0.5281 0 199 27 69 27 71 0 5148 0 129 28 69 28 68 0 0741 0 5077 29 69 0 5006 29 62 0 04902

0 4935

30 72

0 01960

30 69

Fig. 7 Diet—stock. Serum diluted 1–10 Blood serum from 30 male rats Phase rule diagram at 23°C

x = total composition
O = liquid phase.

873

globulin ratio made by means of half saturation with $(NH_4)_2SO_4$ at this dilution would manifest a larger globulin and consequently a smaller ratio than one made with undiluted serum, a fact noted by Butler and coworkers

In determining the protein, the clear samples of the liquid phase were brought colorimetrically to a pH of 55 at room temperature. In the tubes, more concentrated with respect to salt, a heavy precipitation of protein took place. It was almost completely resoluble at 0°C indicating, qualitatively, that at room temperature a change of pH affects the solubility of the albumin fraction conspicuously

Effect of Change in Protein Concentration, Nature of Salt and Temperature

With $(NH_4)_2SO_4$ as the precipitant of serum, diluted 1 to 10 with 5 per cent $(NH_4)_2SO_4$ solution, at room temperature the expected curve materialized. The curve in Fig. 7 is plotted from the data in Table VI. A is largely missing, B is increased, probably at the expense of both A and C. A break in C becomes visible. There is present, then, both the effect of the raised temperature on C and the curve to the right of it and the effect of the $(NH_4)_2SO_4$ on A. Again, this curve could be drawn as a series of curved lines.

DISCUSSION

The effect of changes in the variables on each protein fraction will be discussed separately

Fraction A (Probably Euglobulin) —Hardy and Gardiner (7) and Chick and Martin (3), found that the first fraction separating on adding salt was a combination of a protein and lipoid Hardy observed that the solubility of this protein fraction in saturated NaCl solution could be decreased in two ways, namely by extraction with ether and by previously salting it out with (NH₄)₂SO₄ In the experiments described above its solubility curve has been reduced from that in potassium citrate solution at 0° and pH 6 8, by the use of (NH₄)₂SO₄ and by changing the pH to 5 5 It is possible that the solubility of fraction A has been changed by splitting off some of its combined

lipoid 1 Neither the change in temperature from 0° to 23°, nor dilution had any appreciable effect on A

Fraction B—The amount of fraction B, as indicated in the standard curves, may be augmented either when the solubility of A is changed to the isoelectric point of globulin, pH 5 5, or when (NH₄)₂SO₄ is used, or when the fraction, C, is decreased at room temperature These additions to fraction B may or may not be identical

Traction C-When the temperature of precipitation is changed from 0° to room temperature, not only is the production of B and possibly D at the expense of C apparent but there is a break in the ordinarily straight line denoting the separation of phase C Since fraction C has been broken up into two or more constituents or com ponents it is probably a complex substance. This hypothesis is in accord with all of our results The curve in Fig 6 gives an explana tion for McFarlane's (6) observation that the globulin fraction in creases on dilution of serum The two components of C have sepa rated from each other in part That these components may recombine is suggested by his experiments in which there is an increase in the number of molecules of the size of albumin on mixing albumin and globulin solutions The globulin particles may be aggregated when uncombined with albumin and redispersed when albumin is added Hardy's (14) observation that globulin present in serum will pass through a porous pot which holds it after precipitation and resolution in alkali or salt solution, is further confirmation of this conception

Fraction D—The last fraction to separate on salting out, D, is definitely a single protein in high concentrations of salt, as proved by its constant solubility regardless of the amount of protein in the original mixtures

Its solubility is definitely less at room temperature than at 0°

In this work we have been concerned with the number of the protein fractions and whether they are individuals or not. We have determined that each of at least four different fractions, A, B, C, and D may be altered independently of the others. This fact is an indication

¹ The combination may be disturbed in some cases of glomerular nephritis where an alteration in the cholesterol content of the serum occurs At least the fraction A is largely missing although the total globulin is not reduced

of the individuality of the fractions although not a proof that one or more of them may not be a combination of two or more proteins or even continuous series of compounds

The charges of the proteins as well as the salt concentrations enter into the solubilities of the individual fractions as Cohn's formula indicates. The effect of charge on solubility is negligible in those cases in which the pH can be changed without altering the solubility.

CONCLUSIONS

Changes were studied in the standard solubility curve of fresh serum proteins by alterations in pH, temperature, concentration of protein, and nature of the salt used for precipitation

The principal factor affecting the precipitation of protein fractions was a change in temperature. In order to investigate the proteins in their original states low temperatures are necessary

Protein fraction A is altered by a change in pH and with the use of (NH₄)₂SO₄ as a precipitant, fraction B by a change in pH and temperature, and use of (NH₄)₂SO₄, C by a change in temperature and concentration of the protein, and D by a change in temperature and pH

The solubility of D is independent of the amount of protein in solution in high concentrations of salt

Throughout the duration of this border line study of the application of the phase rule to a physiological problem, I have been indebted to Dr T Addis and Dr J W McBain for helpful criticism

BIBLIOGRAPHY

- 1 Jameson, E, and Roberts, D B, J Gen Physiol, 1937, 20, 475
- 2 Svedberg, T, and Sjogren, B, J Am Chem Soc, 1928, 50, 3318
- 3 Chick, H, and Martin, C J, Biochem J, London, 1913, 7, 380 Sørensen, S P L, and Høyrup, M, Compt -rend trav Lab Carlsberg, 1915-17, 12 Csapo, I, and von Klobusitsky, D, Biochem Z, Berlin, 1924, 151, 90
- 4 Wu, H, Chinese J Physiol, 1923, 7, 125
- 5 Butler, A. M., Blatt, H., and Southgate, H., J. Biol. Chem., 1935, 109, 755
- 6 McTarlane, A S, Biochem J, London, 1935, 29, 407, 660, 1175
- 7 Hardy, W B, and Gardiner, P, J Physiol, 1910, 40, lxviii Florkin, M, J Biol Clem, 1930, 87, 629 and others
- 8 Sørensen, S. P. L., and Høyrup, M., Compt-rend trav Lab Carlsberg, 1915-17, 12, and others

- 9 Butler, A M , and Montgomery , H , J Biol Chem , 1932 99, 173
- 10 Howe P E , J Biol Chem , 1921, 49, 93 and others
- 11 Sørensen, S P L , J Am Chem Soc , 1925, 47, 457
- 12 Florkin, M , J Biol Chem , 1930, 87, 629
- 13 Green, A A, J Biol Chem, 1931, 93, 495
- 14 Hardy, W B , J Physiol , 1905, 33, 330

THE BIOGENESIS OF PRIMARY SEX HORMONES

I THE FATE OF ESTRINS INJECTED INTO THE RABBIT*

BY GREGORY PINCUS AND PAUL A ZAHL

(From the Biological Laboratories, Harrard University, Cambridge)

(Accepted for publication, March 12, 1937)

The rabbit normally excretes scarcely detectable quantities of estro genic material (Pincus, Wheeler, Young, and Zahl (1936)), but in jected estrin may be recovered in the urine (Smith and Smith (1931)) Smith and Smith have in fact shown that 600–700 r u (rat units) of theelin injected into non pregnant rabbits results in the excretion of about 30 r u over a period of 4 days after injection, whereas the simultaneous injection of 600–700 r u of theelin plus progestin into an ovariectomized rabbit doe results in the recovery of about 500 r u of estrogenic material in the urine. This difference may be due to the transformation of theelin (estrone) into a more active estrogen in the progestin treated animal, or to a greater destruction of the estrone in the non premant animal with no change in its chemical constitution

Estrone might conceivably be converted into four native estrogenic compounds in the organism, estradiol, estriol, equilin (and its isomer hippulin), and equilenin (Fieser (1936)) Of these, by ordinary test, estradiol is more active than estrone, estriol and equilenin less active, equilin and hippulin about as active. Since estradiol is the ovarian hormone and estrone a urine component it seems likely that the latter is an excretion product and not normally converted to the former, furthermore, estradiol has been recovered from the urine of mares in small amount only (Wintersteiner, Schwenk, and Whitman (1935)) while estrone is obtained in large amount. The equilinic compounds have been obtained from members of the horse family only, so that it seems unlikely that rabbits would produce them. Nonetheless since the nature of rodent estrogens is unknown we cannot ignore the possibility.

Fortunately there exists a specific color test for estriol which should

^{*} This investigation was aided by a grant from Parke, Davis and Company

make possible its detection in urine extracts This is the production of a blue color when the hormone is heated with concentrated H₂SO₄ followed by cooling, dilution, and further heating with arsenic acid (David (1934)) In a previous paper (Pincus, Wheeler, Young, and Zahl (1936)) we demonstrated that when human urines are separated into estrone and estriol fractions after the method of Cohen and Marrian (1934) the David test cannot be employed for estriol determinations because of the presence of inactive interfering substances Furthermore, due to the mactive materials in rabbit urines all ordi nary colorimetric tests give a positive value for both estrone and estrol when neither are in fact present By modifying the extraction pro cedure we are now able to free rabbit urines from the interfering chromogens so that the David test can be employed as a quantitative measure of estriol and other tests as a measure of the hormone content of the estrone fraction

Methods

Urine collections have been made from rabbits (1) in heat, (2) pseudopregnant, (3) pregnant, (4) hysterectomized in heat, (5) hysterectomized pseudopregnant, (6) ovariectomized 48 hour samples are taken since we have found that these Two 48 hour urine samples are taken preceding the give comparable volumes injection of estrogenic material and urine is collected after injection as long as The urine is extracted and fractionated according to the hormone is excreted following procedures

1 Acadified to pH 2 0 with HCl and placed in an autoclave at 15 lbs pressure for 15 to 30 minutes

2 Extracted three times with ethyl ether Ether extract washed three times with 20 3 Ether evaporated and residue dissolved Washings per cent Na₂CO₃ solution in toluol discarded Α В Washed three times with 1 N NaOH to Washed three times with N/10 NaOH to remove the "estriol" fraction remove the "estrone" fraction Hydroxide solution acidified with CO: Hydrovide solution acidified with CO2 Extracted three times with ethyl ether Extracted three times with ethyl ether Washed with 20 per cent Na₂CO₃ solution Washed with 20 per cent Na₂CO₃ solution until interface between Na₂CO₄ solution until interface between Na₂CO₃ solution and ether is perfectly clean and ether is perfectly clean Ether evaporated and residue taken up in Ether evaporated and residue taken up in

95 per cent ethanol (estrone)

95 per cent ethanol (estriol)

This is essentially the procedure of Cohen and Marrian (1934) except that the hydrolysis under pressure is carried on for a very short interval of time. Washing is made twice with 20 per cent Na₂CO₂ rather than once with 10 per cent Na₂CO₃ and fractionation is made from a toluol extract (A) rather than the ethereal extract they use. And hydrolysis for the 2 hours they employ almost completely destroys the hormone in rabbit unines. The washing with 20 per cent Na₂CO₃ removes interfering chromogens and pigmented materials, so that our final solutions are colorless (Schmulovitz and Wylie (1935)). The fractionation is made from toluol because this reagent retains certain pigmented chromogens that are not retained by ethylether.

For rapid determinations of hormone content we employ the red color obtained by diazotization with sulfamilic acid. The reagents are (1) 5 gm sulfamilic acid. dissolved in 50 cc. concentrated HCl diluted to 500 cc with distilled H₂O, (2) 25 gm NaNO; in 500 cc distilled HO (3) 15 per cent NaOH in aqueous solution The color reagent is made up by adding 1 5 cc of the NaNO, solution to 5 cc of the sulfamilie acid solution and diluting to 50 cc with H.O. This reagent gives a constant color reaction with the hormones at between 1/4 and 2 hours after it is made up Tresh reagent must be made after 2 hour intervals or longer The color reaction is obtained by adding exactly 2 cc of the color reagent to 2 cc of alcoholic hormone extract After thorough mixing 3 drops of 15 per cent NaOH are added The red color resulting remains constant for 1/2 hour and then grows somewhat more intense, so that readings of color absorption are made within 1/2 hour using the S 51 filter of the Pulfrich photometer The hormone content is determined from a standard curve made with crystalline hormone. We make up a new standard curve for each set of determinations since the color reaction varies from day to day These standard curves do not differ by more than 25 per cent, but this is too wide a variation to justify the use of a single standard

The colorimetric assay of the estriol fraction is checked by the David test (Table II) We do not employ this test for rapid determination since it is much more time-consuming. It should be used however, to make certain of the estriol content since the sulfamilic acid test will reveal the presence of phenolic compounds other than the hormone. There is no specific test for estrone comparable to the David test, but the sulfamilic acid determinations have been checked by the modified Cohen and Marrian phenolsulfonic acid test described by Pincus, Wheeler, Young and Zahl (1936). This test is about five times as sensitive as the sulfamilic acid test and will reveal small quantities of material not detectable by the sulfamilic acid test. On the other hand it will give positive tests for mactive materials not revealed by the sulfamilic acid test.

Equilenin is determined by the color reaction described by Sandulesco, Tschung and Girard (1933)

¹ It should be noted that inactive chromogens are rarely encountered in our extracts. Their presence is always denoted by slight pigmentation of the extracts. Removal of the pigment results in correct colorimetric titers.

TABLE.

The Estrogen Content of Various Rabbit Urines before and after the Injection of Estrone Benzoale, Using the ...

(1)	(2)	(3)		(4)	(5)	(6)	(7)	(8)		{10}	(11)	(12)	(13)	
					Estrone content							Estriol	l coatest	
Rabbit No	Condition of rabbit	1		Days 4-3 before injection	Days 2-1 before injection	Days 1-2 niter injection	Days 3-4 after injection	Days 5-6 after injection	Ds 4	Pape 1 3 tefore Exchan	Days 2-1 before injection	aiter	Days J-4 after injectra	Ì
				micrograms	micrograms	micrograms	mscrograms	micrograms	MIO.	arregress	nicrograms	micrograms		, ,
1	Estrus	300 microgi	rams es-	0	0	20	20	0		0	0	37	0	-
2	Pseudopregnant (1st 10 days of pseudopregnancy)	u	и	0	0	38	20	0		0	0	100*	40•	-
3	Pregnant (1st 10 days of pregnancy)	"	u	0	0	55	20	0		0	0	45	35	-
4	Pregnant (last 10 days of pregnancy)	"	u	0	0	35	20	0		8	0	25	Ø	-
5	Hysterectomized (unmated)	"	tt	0	0	35	0	0		0	0	0		ì
6	Hysterectomized (mated 1st 10 days of pseudopregnancy)	66	"	0	0	105	38	20		0	Ö	0	0	
7	Ovariectomized (1st 10 days after ovariectomy)	"	**	0	0	35	10	0	•	0	0	33*	0	
8	Ovariectomized (2 mos after ovariectomy)	••	"	_		55	0	0	-	-		0†	0†	
9	Estrus	300 microgi	rams es-	0	0	0	0	0		0	0	33	0	
10	Pseudopregnant (1st 10 days of pseudopregnancy)	"	"	0	0	0	0	0		0	0	110*	42	
11	Hysterectomized (unmated)	"	tt .	0	0	0	0	0	-	0	0			
12	Hysterectomized (mated 1st 10 days of pseudopregnancy)	"	**	0	0	0	0	0	-	0	0	33 125*	15 50	
13	Ovariectomized (1 mo after ovariectomy)	"	"	0	0	0	0	0		0	0	45	15	
14	Pseudopregnant (1st 12 days of pseudopregnancy)	600 microg		0	0	130	51	37	,	0	0	126*	62	
15	Hysterectomized (mated)	"	"	0	0	168	125	75	- 1	0		-	02	
16	Ovariectomized (1½ mos after ovariectomy)	"	11	0	0	110	100	75		0	0	0† 0	0	
* T	os.tive David test	,		•	•	· •				}	}		J	

^{*} Positive David test

[†] Negative David test

ol, and Estrone Ben.oate, Using the Sulfamlic Acid Test for Urinary Hormone

(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
		Estriol	content			Total l	ormone eted	Total estrin	Injected
Days 4-3 before injection	Days 2 1 before injection	Days 1 2 after injection	Days 3-4 after injection	Days 5-6 alter injection	Days 7 8 after injection	Estrone	Estriol	(estrone plus estriol)	hormone tecovered
mkrograms	micrograms	microtrams	rucraframs	micros ams	micrograms	micrograms	micrograms	micrograms	per cent
0	0	37	0	0	-	40	37	77	25 7
0	0	100	40*	0	_	58	140	198	66 0
0	0	45	35	0	-	75	80	155	51 7
0	0	25	60	0	-	55	85	140	46 7
0	0	0	0	0		35	0	35	11 7
0	0	0	0	0	_	163	0	163	54 3
			·						
o	0	33	0	0	-	45	33	78	26 0
-	-	0†	0†	0†	-	55	0	55	18 3
0	0	33	0	0	-	0	33	33	11 0
0	0	110	42	0	-	0	152	152	50 7
0	0	33	15	0	_	0	48	48	16 0
0	0	125*	50	8(?)		0	183	183	64 3
ļ	l	}						ì	
0	0	45	15	0	-	0	60	60	20 0
0	0	126*	62	0	0	218	188	406	93 8
0	0	Ot	0	0	0	423	0	423	97 9
Ŏ	ŏ	o'	o	o '	0	340	0	340	78 7
	<u> </u>	<u> </u>	<u> </u>						

RESULTS

The data on urmary estrin as determined by the sulfamilic acid test are presented in Table I It is immediately deducible that estrone as such or in the form of the benzoate is converted to estriol in the rabbit and that estriol is not converted but excreted unchanged the conversion of estrone does not occur in hysterectomized rabbits (Nos 5, 6, 15), nor in rabbits long ovariectomized (Nos 8, 16) Shortly after ovariectomy a limited amount of conversion occurs (No 7) This implies that the conversion takes place in the uterus, but that it will not take place in a uterus lacking ovarian control Since in no instance have detectable amounts of hormone been obtained before injection (Table II) it seems safe to conclude that the excreted material is derived from the injected material unless one postulates that the injected estrogens stimulate the endogenous production of excretion products Such stimulation is scarcely credible in view of the excretion by ovariectomized animals since the ovary is presumably the hormone precursor, secondly, one would have to assume further that estriol stimulates only estriol excretion and estrone the excretion of both in certain animals and not in others, a most unlikely situation

The data demonstrate also that a two- to fourfold increase in excretion of injected estrone and estriol excretion products occurs in animals with corpora lutea in the ovaries (Nos 2, 3, 4, 6, 12) This may occur if the presence of a corpus luteum (1) prevents destruction or (2) hastens excretion

The injections of estrone monobenzoate were undertaken to test this point. That the benzoylation of the estrone prevents its destruction in the liver has been demonstrated by Zondek (1934) working with mice. The estrone benzoate-injected animals received 600 micrograms of the compound of which 433 micrograms were estrone. The data demonstrate again that the conversion to estriol occurs only in an animal with a functional uterus. The mean percentage of hormone recovered for the three animals of this group is 90.1 with the lowest value (78.7 per cent) for the ovariectomized animal (No. 16). This lowest value in the ovariectomized female would indicate that the corpus luteum may prevent destruction, since about 21 per cent of the protected molecules in this case disappeared in this animal compared with 6 per cent in the pseudopregnant female (No. 14), and 2 per cent in the hysterectomized pseudopregnant animal (No. 15).

It will be noted, however, that the complete excretion of the estrone took place within 6 days in the pseudopregnant animal (No 14) and in 8 days in the other two (Nos 15 and 16) This would indicate more rapid excretion by the pseudopregnant animal. It seems possible, therefore, that the presence of a corpus luteum increases the excretion of injected hormone and thus prevents its destruction conclusion is not especially supported by the data on the "free" hormone injections, since excretion is ordinarily completed in 4 days in animals without as well as with corpora lutea, the sole difference seeming to reside in the absolute quantities of hormone excreted Thus in the estriol injected animals the mean quantity of hormone excreted during the second 48 hour period after injection is 10 micro grams per animal for the three animals without corpora lutea, the ratio of excreted hormone in the two groups is 1 46, whereas for the preceding 48 hour period it is 1 32. The corresponding quantities in the estrone injected series are 7.5 and 58 micrograms for the second 48 hours and 53 and 98 micrograms for the first 48 hours with ratios of 1 7 7 and 1 1 8 respectively, indicating in both estrone and estrol recipients relatively more hormone excretion in the second 48 hour period, e.g., therefore less destruction

In Table II we present the data on a number of these extracts. comparing the hormone content as determined by various colori metric tests and by bioassay Since the David test is specific for estriol the presence of other materials giving a positive sulfamilic acid test will be revealed by the sulfamilic acid test, giving a higher titer than the David test In five extracts (Nos 1, 3, 10, 12, 18) the sulfamilic acid test gives a higher titer, in three (Nos 2, 2, 11) the David test titer is higher On the average the sulfamilic acid test gives a slightly higher titer This may be due to (1) inactive chromo gen. (2) small amounts of estrone in the estriol fraction, (3) small amounts of estradiol The bioassays should reveal the presence of the latter since by our tests it is many times as active as estriol three estriol fractions (Nos 2, 14, B2) titered by bioassay indicate more hormone than either the sulfamilic acid or David tests reveal If we deduce that there is estradiol present in these extracts the amounts of estradiol would be 6, 14, and 2 micrograms respectively

In the case of the estrone fractions the sulfanilic acid titers and phenolsulfonic acid titers agree fairly well, except that the

Ι

TABLE II

The Hormone Content of Various Rabbit Urine Extracts As Determined by Several

Colorimetric Tests and by Bioassay

					
Rabbit No	Extract* No	By sulfamilie acid test	By phenolsul fonic acid test	By bioassay	By David test
		micrograms	micrograms	micrograms	
1	5	0	0		1
1	6	20	31		
2	4	0	0		
5	5	0	0		
6	4	0	0		
6	6	105	164	154	[
7	4	0	0		
8	6	55	42		Estrone
10	4	0	0		
13	4	0	0		
14	6	130		150	
15	4	0	0		1 1
16	9	55	50		
B.†		0		0)
1	11	0	0	-	0)
1	12	37			25
2	10	o	0		_
2	12	100		167	120
2	13	40	_		45
3	10	0	0		_
3	12	45			30
5	11	0	0	_	_
6	10	0	0		
7	10	0	0	_	- Estriol
10	10	0	0		
10	12	110			105
11	12	33		-	40
12	12	125			105
13	10	0	0		_
14	12	126		233	
15	10	0	0	_	
Bit				0 120	0 102
B-†				120	102)

^{*}The extract No refers to the column number of Table I, eg rabbit No 1, extract No 6, refers to the estrone determination made on rabbit No 1 extract tal en 1-2 days after estrone injection

These extracts are not included in the data of Table I, B₁ is the unheated extract from a rabbit receiving 300 micrograms of estrone, B₂ is from the same batch of urine heated according to our regular technique

to give slightly higher values This is to be expected since the phe noisulfonic acid test reveals small amounts of mactive materials that act as chromogens Comparison of colorimetric values with bioassay values reveals an excess of activity in one case (No 14) and approximate equivalence in two others (Nos 6 and B₂) If the excess is due to estradiol, No 14 contains less than 4 micrograms of estradiol

We have tested a number of these extracts for equilenin by the Girard test. The result is invariably negative. Therefore the rabbit produces no equilenin. Since equilenin in urine is invariably accompanied by equilin or hippulin (Fieser (1936)) we may deduce that these compounds are not formed.

The conversion of estrone to estriol that these experiments demonstrate occurs only in a functional uterus. Two possibilities seem evident (1) the ovary produces an hitherto unidentified hormone which acts upon the uterus to effect the conversion, or (2) the corpus luteum hormone stimulates the uterus in such a way as to make this conversion possible. It can scarcely be estrogenic hormone since we would expect a larger conversion than observed from the estrus female (No 1) and conversion in the ovariectomized animal No 8 which received estrogen. The second alternative mentioned above is on the face of it rendered unlikely by the conversion observed in the estrus rabbit (No 1), and in the recently ovariectomized rabbit (No 7), unless we postulate that the estrus rabbit's ovary produces corpus luteum hormone in the absence of formed corpora lutea and that in the recently ovariectomized animal the effect of this luteal hormone on the uterus lasted for some days after ovariectomy

To test these alternatives we performed the experiments the data of which are given in Table III. The five rabbits of these experiments were given a preliminary injection of 300 micrograms of estrone. The first 48 hour collection was made from the end of the 2nd to the end of the 4th day after this injection in order to determine the hormone excretion occurring just before a second injection of 300 micrograms of estrone given simultaneously with 0.5 mg of progesterone in oil. The first injection of estrone served also to prime the uterus of the ovariectomized females. In one ovariectomized rabbit (No 21) the second injection contained no progesterone, so that it might

^{*}We are indebted to Dr Erwin Schwenk of the Schenng C for this progesterone (Proluton synthetic)

TABLE III

300 microgrums of estrone were injected 48 hours before the collection of urine was begun, and 48 hours after the first col-The Effect of the Injection of Progesterone upon the Exerction of Urmary Estrin in Estrone-Injected Ammals lection an additional 300 micrograms of estrone were injected simultaneously with 0.5 mg of progesterone

Increase of excretion over animal not	progestin	per cent	75 3	25 3*	65 7	95 7	14.5*
Total estrogen (estrone +	estrioi)	micrograms	135	148	58	92	47
Total hormone ex creted after injection	Estriol	micro grams	85	06	0	45	0
Total hormone ex creted after injectio	Estrone	micro- grams	70	58	28	47	47
men	4	micro- grams	0	0	0	0	0
Estriol content in wrine specimen	3	micro grams	0	0	0	0	0
ol content 11	2	micro grams	82	06	0	45	0
Estr	1	micro grams	0	65	0	0	0
ımen	Ŧ	micro- grams	0	0	0	12	0
n urine spec	3	micro grams	25	20	25	15	0
Estrone content in unne specimen	2	raicro grams	35	38	33	20	47
Estro	1	micro grams	20	15	0	25	15
Condition			17 Estrus	Pseudo	pregrunt 19 IIy ster- ectom-	mrted) 20 Ovariectomized (4 mos.)	21 Ovariec- tomized† (2 mos)

* Per cent decreased excretion † No progesterone in second injection

serve as a control for animal No 20 Urine specimens Nos 2, 3, and 4 in Table III represent urines wherein the effect of progesterone is evidenced. The estriol data of Table III were checked by the David test so that there can be no doubt that animal No 20 did convert estrone to estriol whereas its control did not. This supports the notion that the conversion takes place in a uterus influenced by progesterone. The data on the hysterectomized rabbit (No 19) in which no conversion occurred indicate again that the uterus is necessary

In addition we see from these data that progesterone facilitates the excretion of additional estrogen—In the last column of Table III the increased percentage excretion is based upon the data of Table II Thus animal No 17 (Table III) excreted a total of 135 micrograms of estrin whereas animal No 1 (Table I) excreted 77 micrograms, indicating an increase of 75 3 per cent in the former over the latter—The increase in the hysterectomized rabbit (No 19) was 65 7 per cent, in the ovariectomized rabbit (No 20) 95 7 per cent (over No 21)—The pseudopregnant female (No 18) showed small decrease when comparison is made with the control rabbit (No 5) but this is comprehensible when we consider that the initial estrone injection presumably inhibited or suppressed the effect of the animal's own corpus luteum secretion—The decrease in animal No 21 (compared with No 8) is within the limit of error of these determinations

DISCUSSION

The data of these experiments support the scheme of estrogenic hormone conversion in vito that follows

The step from II to III is an irreversible hydration, and is the chief result of estrone injection. The step from II to I occurs presumably only in limited amount, if at all, or if this is an extensive conversion only small amounts of the diol are excreted. The former statement would seem most probable since the animals receiving estrone benzoate and excreting most of the injected hormone excrete chiefly estrone and estriol (see Nos. 14, 15, 16 especially, in Table II)

The conversion II to III has not been accomplished in the laboratory, although Butenandt and Hildebrandt (1931) have obtained estrone by the dehydration of estriol. The conversion II to I has been made by Schwenk and Hildebrandt (1933) and Girard, Sandulesco, and Fridenson (1933) by catalytic reduction. According to MacCorquodale, Thayer, and Doisy (1936) estradiol is the ovarian hormone and we would therefore expect I to II to occur more easily than the reverse since estrone is an excretion product, estradiol not

These data leave no doubt that the conversion II to III requires a functional uterus, and that the action of progesterone on the uterus facilitates the reaction. That corpus luteum secretion normally promotes the conversion is somewhat indicated by the fact that estrone-injected animals with corpora lutea and uteri (Nos. 2, 3, 4) excreted more estriol (305 micrograms total) than estrone (188 micrograms total), whereas those in that group without corpora lutea (Nos. 1 and 7) excreted more estrone (85 micrograms total) than estriol (70 micrograms total). Animal No. 14, however, reverses the expected excretion on this basis. This may be due to the possibility that estrone benzoate has a low kidney threshold compared to the

kidney threshold of the bound form of extrone excreted by estrone injected animals or to a lesser reactivity of the molecule in the ben zoate compound

It should be clearly understood that the actual nature of the compound involved in the steps II to III or II to I is not known, eg, whether "free" or "bound" hormone is the reactant—Since we must employ a mild hydrolysis to obtain full recovery from the urine we know that bound hormone is excreted and to judge by analogy with human urines probably as a glycuronic acid compound (Cohen and Marrian (1936))—But the binding appears to be different than in the compounds in human urine since the rabbit urines require a much less drastic hydrolysis

These experiments support the notion that corpus luteum hormone causes increased estrin excretion by preventing destruction of the hormones rather than by lowering the Lidney threshold, and lend credence to the opinion of Smith and Smith (1936) that "there is no renal threshold for estrin" We are thus led to the apparently paradoxical situation in which one of two competing hormones protects its competitor At the same time it should be noted that progesterone facilitates the conversion of estrone into the less active estriol During early pregnancy, for example, when a high concentration of estrin might very well lead to abortion the sterilizing potency of estriol is about one fourth to one fifth that of estrone (Pincus and Kirsch (1936)) Furthermore, we do not know just what chemical form these hormones take in wwo, and it may well be possible that the protection afforded by progesterone action involves the production of an estrin compound which is physiologically inactive. Since the liver is the presumable site of estrin destruction, and the liver enzyme system presumably acts chiefly upon the phenolic portion of the estrin molecule (2 e, benzoylation prevents destruction) progesterone might act to induce something like benzovlation of the phenolic ring Alternatively (or perhaps at the same time) progesterone might replace estrin in the liver system due to a higher partition coefficient of the progesterone for the particular system involved That progesterone may be more quickly destroyed than the estrins is indicated by the data of Table III which show no excretion of estriol in urine specimens 3 and 4 whereas the estrone continues to be excreted 48 to 96 hours after estriol excretion is completed If the estriol excretion be taken

as an index of the presence of active progesterone (particularly in animals Nos 17 and 20), it would seem that the 0.5 microgram progesterone injected was more rapidly destroyed than the 0.3 microgram of estrone injected at the same time

SUMMARY

- 1 A method is given for the extraction and fractionation of rabbit urines which frees these urines of inactive chromogens but permits a quantitative recovery of estrone and estriol for the colorimetric determination of these compounds
- 2 Estrone and estrol content of rabbit urine extracts can be determined by the concentration of the colored compound they form upon diazotization with sulfamilic acid and by the modified phenolsulfonic acid test of Cohen and Marrian Estrol can be determined by the specific reaction first described by David The technique for these tests is presented
- 3 Estriol (300 micrograms) injected into rabbits (a) in heat, (b) pregnant, (c) pseudopregnant, (d) hysterectomized in heat, (c) hysterectomized pseudopregnant, (f) ovariectomized, is excreted in the urine as estriol. Rabbit does in the luteal phase (b, c, and c) excrete 3 to 4 times the amount of estriol excreted by females without corpora lutea (a, d, and f)
- 4 When estrone (300 micrograms) is injected into the same types of rabbit does types a, b, and c excrete both estrone and estriol, type f excretes both estrone and estriol shortly after ovariectomy, but only estrone at 2 months after castration. Hysterectomized animals (types d and c) never excrete estriol after estrone injection. The total urinary estrin (estrone plus estriol) in estrone-injected animals is increased 2 to 3 times in animals in the luteal phase (b, c, and c)
- 5 It is concluded that the uterus is the site of conversion of estrone to estriol, and that the conversion cannot take place in a uterus completely free of ovarian control (eg, in long time ovariectomized animals)
- 6 In neither estrone-injected nor estriol-injected females is all the injected hormone recovered in the urine. The maximum recovery is 66 per cent. When estrone-benzoate (600 micrograms) is injected 94–98 per cent of the hormone is recovered from animals in the luteal phase (types c and c) and about 79 per cent in an ovariectomized

female (type f) These data are taken to indicate that luteal secre tions give partial protection against destruction to the hormones

7 The observation that in certain of the urine extracts the hormone titer by bioassay is somewhat higher than the colorimetric titer may indicate that there is a slight conversion of estrone to estradiol, particularly since no equilenin was found in any of the extracts by colori metric test

8 The simultaneous injection of 300 micrograms of estrone and 500 micrograms of progesterone 4 days after an initial injection of 300 micrograms of estrone results in (1) an increased estrin excretion in females in heat, hysterectomized unmated, and ovariectomized, and a slight decrease in the pseudopregnant female, (2) the appearance of estriol in the urine of the long time ovariectomized animal with no urnary estriol in a control ovariectomized animal receiving no proges terone These findings are taken to prove that the conversion of estrone to estriol occurs in the uterus under the influence of progesterone Since animals in heat produce small amounts of estriol after estrone injection it is inferred that the ovaries of estrus rabbits produce small amounts of corpus luteum hormone in the absence of formed corpora lutea

RIBLIOGRAPHY

Butenandt, A, and Hildebrandt, F, 1931, Z physiol Chem, 199, 243 Cohen, S L, and Marrian, G T, 1934, Biochem J, London 28, 1603 Cohen, S L, and Marrian, G F, 1936 Biochem J, London, 30, 557 David, K., 1934, Acta brev Neerland , 4, 64

Fieser, L F, 1936 The chemistry of natural products related to phenanthrene. New York, Reinhold Co

Girard, A., Sandulesco, G, and Fridenson, A, 1933, Compt rend Soc biol. 112.

MacCorquodale, D W, Thayer, S A, and Doisy, E A, 1936, J Biol Chem. 115.

Pincus, G, and Kirsch, R E, 1936, Am J Physiol, 115, 219

Pincus, G, Wheeler, G, Young, G, and Zahl, P A, 1936, J Biol Chem, 116, 253 Sandulesco, G, Tschung W, and Girard, A, 1933, Compt rend Acad 196, 137

Schmulovitz, M J, and Wylie H B, 1935 J Lab and Clin Med . 21, 210

Schwenk, E, and Hildebrandt, F, 1933, Naturwissenschaften, 21, 177

Smith, G van S, and Smith, O W, 1931, Am J Physiol, 98, 578 Smith, G van S, and Smith, O W, 1936, New England J Med, 215, 908

Wintersteiner, O, Schwenk, E, and Whitman, B, 1935, Peac See Each Biol at Med , 32, 1087

Zondek, B , 1934, Skand Arch Physiol , 70, 133

INDEX TO AUTHORS

during the early stages of germina

JOHN

ultrafiltration,

stenolysis,

evaluation of sieve constants in

FETCHER, E S, JR., LILLIE, R S

and HARKINS, W D A method

for the investigation of electro-

D

Statistical

95

671

Carboxypeptidase

NSON, M L

I The preparation of crystalline	tion, 449
carboxypeptidase, 663	CROZIER, W J, and ENZMANN, E V
- II The partial purification of	Concerning critical periods in the
pro-carboxypeptidase, 777	life of adult Drosophila. 595
- III The estimation of carboxy	life of adult Drosophila, 595 and Pincus, Grigori Analysis
peptidase and pro-carboxypepti	of the geotropic orientation of
dase, 781	young rats λ , 111
- The estimation of cathepsin with	-, Wolf, Ernst, and Zerrahn
hemoglobin and the partial purifi	WOLF, GERTRUD Critical illumi
cation of cathepsin, 565	nation and critical frequency for
- The estimation of papain with	response to flickered light, in
hemoglobin, 561	dragonfly larvae, 363
- and Northrop, John H The	-, -, and - On critical frequency
calibration of diffusion membranes	and critical illumination for re
and the calculation of molecular	sponse to flickered light, 211
volumes from diffusion coefficients,	-,-, and - Temperature and
575	critical illumination for reaction to
	flickering light I Anax larvae,
BLAIR, H A The apparent distortion of brief rectangular elec	393
tortion of brief rectangular elec	-, -, and - II Sunfish,
trical stimuli in nerve, 787	411
BLINKS, L R The effects of current	CURTIS, HOWARD J Electric im
flow on bioelectric potential III	pedance of injured and sensitized
Nitella, 229	red blood corpuscles, 105
DONNER, JAMES The growth and	
respiration of the Avena coleoptile,	EAGLE, HARRY, and HARRIS, TZVEE N Studies in blood
CHACE A M. C. II	TZVEE IN Studies in blood
CHASE, AURIN M See HECHT,	coagulation V The coagulation
CHASE, AURIN M See HECHT, HAIG, and CHASE, 831 CLOWES, G H A, and KRAHL, M	of blood by proteolytic enzymes
Chowes, G II A, and KRAHL, M	(trypsin, papain), 543 Enzmann, E V See Crozier and
E Studies on cell metabolism and	ENZMANN. 595

structures,

145

173

molecular

activities of the nitrophenols,

See KRAHL and Clowes,

CRAIG, F N The respiratory quotient of seedlings of Lupinus albus

chemical properties, and biological

896 INDEX

FRENCH, C S The quantum yield of hydrogen and carbon dioxide assimilation in purple bacteria, 711	JAMESON, ELOISE, and ROBERTS, DOR- OTHY BROWN A phase rule study of the proteins of the blood serum a comparison of the proteins of hu- man, rat, and horse serum, 475
HAIG, CHARLES See HECHT, HAIG, and CHASE, 831 HARKINS, W D See FETCHER, LILLIE, and HARKINS, 671 HARRIS, TZVEE N See EAGLE and HARRIS, 543 HECHT, SELIG, HAIG, CHARLES, and CHASE, AURIN M The influence of light adaptation on subsequent dark adaptation of the eye, 831 — and SHLAER, SIMON The color vision of dichromats I Wave length discrimination, brightness distribution, and color mixture, 57 — and — II Saturation as the basis for wave length discrimina- tion and color mixture, 83 HERČÍK, FERDINAND Action of ultraviolet light on spores and vegetative forms of Bacillus mega- lherium sp, 589 HERRIOTT, ROGER M Inactivation of pepsin by iodine and the isolation	KRAHL, M E, and CLOWES, G H A Studies on cell metabolism and cell division II Stimulation of cellular oxidation and reversible inhibition of cell division by dihalo- and trihalophenols, 173 — See Clowes and Krahl, 145 LILIE, R S See Fetcher, LILIE, and Harkins, 671 MACLEOD, John See Ponder and Macleod, 267, 433 Mirsky, A E Coagulation of myosin by dehydration, 455 — The coagulation of myosin in muscle, 461 NORTHROP, John H See Anson and Northrop, 575 OSTERHOUT, W J V Changes of apparent ionic mobilities in protoplasm I Effects of guaracol
of diiodo-tyrosine from iodinated pepsin, 335 — See Seastone and Herriott, 797	on Valonia, 13 — II The action of guaracol as affected by pH, 685
JACOBS, John Serological reactions of azo proteins derived from aromatic hydrocarbons and diaryl compounds, 353 JACQUES, A G The kinetics of penetration XIV The penetration of iodide into Valonia, 737 JAMESON, ELOISE A phase rule study of the proteins of blood	PARKER, G H Do melanophore nerves show antidromic responses? 851 Pincus, Gregory, and Zahl, Paul A The biogenesis of primary sex hormones I The fate of estrins injected into the rabbit, 879 — See Crozier and Pincus, 111 Ponder, Eric, and Macleod, John The effect of hemolytic substances
serum the effect of changes in certain variables, 859	on white cell respiration, 267—and— The potential and respi-

ration of frog skin I The effect ! of the homologous carbamates II The effect of certain lysins,

ROBERTS, DOROTHY BROWN
JAMESON and ROBERTS. See 475

SEASTONE, C V, and HERRIOTT, ROGER M Immunological stud ies on pepsin and pepsinogen,

SHLAER, SIMON See HECHT and 57.83 SHLAER. SIMMS, HENRY S, and STILLMAN,

NETTIE P Substances affecting adult tissue in vitro I The stimu lating action of trypsin on fresh adult tissue.

-and - II A growth inhibitor in adult tissue.

- and - III A stimulant (the "A factor') in serum ultrafiltrate involved in overcoming adult tissue dormancy,

SKOOG FOLKE A desceded Arena test method for small amounts of auxin and auxin precursors,

SMITH, EMIL L The influence of light and carbon dioxide on photo

synthesis.

Spiegel Adolf, Mona Polarization studies in collodion membranes and in synthetic protein lipoid mem 695 branes,

STEINHARDT, JACINTO Intensity discrimination in the human eye I The relation of $\Delta I/I$ to intensity, 185

STERN, KURT G Spectroscopy of catalase. 631

and Stillman. 603, 621, 649 433

\[/AN OVERBEEK,] Growth substance curvatures of Avena in light and dark. 283

STILLMAN, NETTIE P See SIMMS

X/ALD, GEORGE Pigments of the retina II Sea robin, sea bass, and scup, WEISS, JOSEPH Some remarks on

the photosynthesis of green plants,

WHITAKER, D M The effect of hydrogen ion concentration upon the induction of polarity in Fucus eggs I Increased hydrogen ion concentration and the intensity of mutual inductions by neighboring eggs of Fucus furcatus,

WILBRANDT, W The effect of or ganic ions on the membrane poten-

tial of nerves,

WOLF, ERNST, and ZERRAHN WOLF, GERTRUD Flicker and the reac tions of bees to flowers, - and - Reactions of Limitlus to illuminated fields of different area and flicker frequency,

See CROZIER, WOLF, and ZER-RARN WOLF,

211, 363, 393, 411

ZAHL, PAUL A See PINCUS and 879 ZERRAHN WOLF. GERTRUD See CROZIER, WOLF, and ZERRAHN Wolf, 211, 363, 393, 411 See Wolf and ZERRAHN WOLF, 511, 767

INDEX TO SUBJECTS

A NAX larvae temperature and	ARBAMATES, homologous, ef
critical illumination for reaction	fect on potential and respiration
to flickering light, 393	of frog skin, 433
Antidromic responses shown by mel	Carbon dioxide and by drogen assimi
anophore nerves, 851	lation in purple bacteria, quantum
Auxin and auxin precursors, small	yield, 711
amounts, deseeded Ivena test	- dioxide and light, influence on
method for, 311	photosynthesis, 807
Arena coleoptile, growth and respira	Carbovypeptidase, crystalline, prep
tion, 1	aration, 663
-, growth substance curvatures in	—, pro-, partial purification 777
light and dark, 283	— and pro-carboxypeptidase, estima
- test method, desecded, for small	tion, 781
amounts of auxin and auxin pre	Crtalase, spectroscopy, 631
cursors 311	Cathepsin, estimation with hemo
Azo proteins derived from aromatic	globin, and partial purification,
hydrocarbons and diaryl com	565
pounds, serological reactions,	Cell, blood, red See Erythrocyte
353	-, blood white See Leucocyte
	- metabolism and cell division,
BACILLUS megatherium sp , spores	145, 173
Band vegetative forms, action of	Cellular oxidation stimulated and cell
ultraviolet light, 589	division reversibly inhibited by
Bacteria, purple, hydrogen and car	dihalo- and trihalophenols,
bon dioxide assimilation, quantum	173
yield. 711	Chemical properties, molecular struc
Bees flicker and reactions to flowers,	tures and biological activities of
511	nitrophenols, relation, 145
Bioelectric potential in Nuella, ef	Coagulation blood, by trypsin and
fects of current flow, 229	papain, 543
Biogenesis of primary sex hormones,	-, myosin, by dehydration,
fate of estrins injected into rabbits,	455
879	-, myosin in muscle, 461
Biological activities molecular struc	Coleoptile, Avena, growth and respi
tures, and chemical properties of	ration, 1
nitrophenols, relation, 145	Collodion membranes and synthetic
Blood, cell, red See Erythrocyte	protein lipoid membranes, polari
- cell, white See Leucocyte	zation, 695
- coagulation by trypsin and	•
papain, 543	EHYDRATION, coagulation of
- serum See Serum	D myosin by 455

Diaryl compounds and aromatic hydrocarbons, serological reactions of drocarbons, serological from, 353 Through the service of
Diaryl compounds and aromatucous of drocarbons, serological reactions of azo proteins derived from, azo proteins derived from, azo proteins derived from, as assis for wave length discrimination, and color mixture, color vision, brightness distribuction, and color mixture, color vision, brightness distribuction, and color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color mixture, color diffusion coefficients, from diffusion coefficients, from diffusion of ated pepsin, and inactivation of ated pepsin, and inactivation of ated pepsin, and inactivation of ated pepsin, and inactivation of alternation, consisting persons to flickered pepsin by larvae, response to flickered

Hydrogen and carbon dioxide assimi lation in purple bacteria, quantum yield,

- ion concentration, effect on ac tion of guarreol on ionic mobilities

in protoplasm,

- ion concentration effect upon in duction of polarity in Fueus furea tus eggs,

IMMUNOLOGICAL studies on pensin and pensinogen, 797 Todide, kinetics of penetration into Valonta. 137 Iodine, mactivation of pepsin by, and isolation of diodo-tyrosine from iodinated pepsin, 335 mobilities in protoplasm, Tonic 13, 685 changes. lons, organic, effect on membrane potential of nerves, 519

INETICS of pentration, inclide K into Valonia, 737

ARVAE, Anax, temperature and driver illumination for reaction to flickering light, -, dragonfly, response to fixkered Lght, entical illumination and ent 363 real frequency for, Leucocyte respiration, effect of him civic substances. light adaptation of eye, inf me en subsequent darl adaptains, 811 -2.d carbon diovide, infin

ززغ phonograthesis, - and dark, growth substanter

Z3 ares of Arena in

-, Extered, critical frequent 2.4 croral illumination for response 10

Light, flickering temperature and crit ical illumination for reaction to, in sunfish.

-, ultraviolet, action on spores and vegetative forms of Bacillus mega therrum sp .

589 Limilus, reactions to illuminated fields of different area and flicker frequency.

767 Lipoid protein membranes, syn thetic, and collodion membranes 695

nolarization,

Lupinus albus seedlings, respiratory quotient during early stages of germination, Lysins, effect on potential and respi

ration of frog skin, 433

AN, eye, intensity discrimina tion. -, rat, and horse serum proteins, comparison, phase rule study,

Melanophore nerves, antidromic re sponses, 851

Membrane potential of nerves, effect of organic ions, 519

Membranes, collodion, and synthetic protein lipoid, polarization,

695 - diffusion, calibration, and calculation of molecular volumes from diffusion coefficients. 575 Metabolism, cell, and cell division. 145, 173

Molecular structures, chemical properties, and biological activities of nitrophenols, relation, - volumes, calculation from diffunon coefficients

575 Muscle, myosin, coagulation, 461^e

Il Mosin, coagulation by dehydrat

902 INDEX

Nerves, melanophore, antidromic responses, 851 —, membrane potential, effect of organic ions, 519 Nitella, effects of current flow on bioelectric potential, 229	Polarity in Fucus furcatus eggs, induction, effect of hydrogen ion concentration, 491 Polarization, collodion membranes and synthetic protein-lipoid membranes, 695 Potential hydrogentric in Notella of
ORGANIC ions, effect on membrane potential of nerves, 519	Potential, bioelectric, in Nitella, effects of current flow, 229 —, membrane, of nerves, effect of organic ions, 519
Orientation, geotropic, of young rats,	— and respiration of frog skin,
Oxidation, cellular, stimulation by dihalo- and trihalophenols, 173	Protein-lipoid membranes, synthetic, and collodion membranes, polarization, 695
PAPAIN, coagulation of blood by, 543	Proteins, azo, derived from aromatic hydrocarbons and diaryl compounds, serological reactions,
—, estimation with hemoglobin, 561	353 —, serum, human, rat, and horse,
Penetration, kinetics, iodide into Valonia, 737	comparison, phase rule study, 475
Pepsin, inactivation by iodine, and isolation of diiodo-tyrosine from iodinated pepsin, 335	—, serum, phase rule study, effect of changes in variables,
— and pepsinogen, immunological studies, 797	Proteolytic enzymes, coagulation of blood by, 543
Pepsinogen and pepsin, immuno- logical studies, 797	Protoplasm, ionic mobilities, changes, 13, 685
Phase rule study of serum proteins, effect of changes in variables,	RESPIRATION and growth of Avena coleoptile,
— rule study, serum proteins, human, rat, and horse, 475	— and potential of frog skin, 433
Phenols, dihalo- and trihalo-, stimu- lation of cellular oxidation and reversible inhibition of cell divi-	—, white cell, effect of hemolytic substances, 267 Respiratory quotient of <i>Lupinus albus</i>
sion, 173 , nitro-, relation between molecular	seedlings during early stages of germination, 449
structures, chemical properties, and biological activities, 145	Retina, pigments, sea robin, sea bass, and scup, 45
Photosynthesis, influence of light and carbon dioxide, 807 — of green plants, 501	SCUP, retina, pigments, Sea bass, retina, pigments, 45 45
,	Oca Dass, reema, p.5em
Pigments, retina, sea robin, sea bass, and scup. 45	— robin, retina, pigments, 45 Seedlings, Lupinus albus, respiratory
and scup, 45 Plants, green, photosynthesis,	quotient during early stages of
Figures, green, photosynthesis,	germination. 449

589

Serology, reactions of azo proteins derived from aromatic hydrocar bons and diaryl compounds,

Serum proteins, human, rat, and horse, comparison, phase rule study,

-, proteins, phase rule study, effect of changes in variables, 859

 ultrafiltrate, stimulant, A factor, involved in overcoming adult tissue dormancy,
 649

Sex hormones, primary, biogenesis, fate of estrins injected into rabbits,

Skin, frog, potential and respiration, 433 Spectroscopy of catalase, 631

Spores and vegetative forms of Bacil lus megatherium sp, action of ultraviolet light, 589

Violet light, 589
Statistical evaluation of sieve con
stants in ultrafiltration, 95
Sunfish, temperature and critical

illumination for reaction to flicker ing light, 411

TEMPERATURE and critical il lumination for reaction to flicker ing light in Anax larvae, 393 and critical illumination for reaction to flickering light in sunfish,

Tissue, adult, in vitro, growth in hibitor, 621

Tissue dormancy, adult, stimulant, A factor, in serum ultrafiltrate involved in overcoming, 649

-, fresh adult, stimulating action of trypsin in vitro, 603

Trypsin, coagulation of blood by,

-, stimulating action on fresh adult tissue in vitro, 603

Tyrosine, diiodo-, isolation from iodin ated pepsin, and inactivation of pepsin by iodine, 335

ULTRAFILTRATE, serum, stimu lant, A factor, involved in over-coming adult tissue dormancy,

Ultrafiltration, sieve constants, statistical evaluation, 95
Ultraviolet light, action on spores and vegetative forms of Bacillus mega

therium sp ,

VALONIA, effects of guaracol,

-, kinetics of penetration of iodide,

Vision, color, dichromats, saturation as basis for wave length discrimination and color mixture, 83—, color, dichromats wave length

discrimination, brightness distribution, and color mixture, 57—, intensity discrimination in human

-, intensity discrimination in human eye, 185

Publishers G E. STECHFRT & Co New York - DAVID NUTT London - NICOLA ZANICHELLI Bolozna FÉLIX ALCAN Paris - AKADEMISCHE VERLAGSGESELLSCHAFT m b H Leidsig RUIZ HERMANOS Madrid - F LILIAN S NACHFOLGER Budapest - GEORG & CO Genève P MACHADO & C is Porto - THE MARUZEN COMPANY Tokyo

1037

31st Year SCIENTIA

INTERNATIONAL REVIEW OF SCIENTIFIC SYNTHESIS Published every month (each number conta nino 100 to 120 naces) Editors F BOTTAZZI - G BRUNI - F ENRIOUES Ex-editor Eugenio Rignano General Secretary Paolo Bonetti

IS THE ONLY REVIEW the contributors to which are really international.

IS THE ONLY REVIEW that has a really world wide circulation

- IS THE ONLY REVIEW of synthesis and unification of science that deals in its articles with the newest and most fundamental problems of all branches of knowledge accentific philosophy, battory of science sei entific teaching and advancement mathematics astronomy reclosy physics chemistry biological sciences et entific teaching and advancement mathematics astronomy reclosy physics chemistry biological sciences physicology psychology sociology law economies history of religious anthropology linguistics, articles sometimes constituting real and proper enquires, such as those on the contribution given by the different nations to the ad ancement of science on determinism on the most fundamental physics and and chemical questions and particularly on relativity on the physics of the atom and of radiations, on vitalism. Scientia thus studies all the main problems interesting the intellectual circles of the whole world and represents at the amentional organization of the philosophical and scientific movement.
- IS THE ONLY REVIEW that among its contributors can boast of the most illustrious men of science in
- The articles are published in the language of their authors and every number has a supplement containing the French transition of all the articles that are not French. The review is thus completely accessible to those who know only French. (What for a free copy to the General Secretary of Secretica Milan send ng a surpence in one stamp of your country merely to cover pucking and package)

SUBSCRIPTION \$11.50

Substantial reductions are granted to those who take up more than one year a subscription For information apply to SCIENTIA, Via A De Togni, 12 - Milano (Italy)