ICLAB, Spring 2024 (IEE 535224)

Chen-Yi Lee, cylee@nycu.edu.tw 2024/02/21, 13:20@ED415 Institute of Electronics, NYCU

TSMC Technology Roadmap (1/4)

- Paradigm Shift: from Intel to TSMC
- Who hits the 7nm Wall?
- Devices: Planar -> FinFET -> GAA -> ...

TSMC Technology Roadmap (2/4)

 Ax processors fabricated in tsmc for iPhones, Mac, Pads, ...

TSMC Technology Roadmap (3/4)

Top 10 customers in tsmc

			台積電前十大客戶營收貢獻 佔比		
Table 4 – TSMC Customer Share of Revenues 2019-2021			蘋果	25.93%	
	2019	2020	2021	聯發科	5.80%
Apple	24.0%	24.2%	25.4%	AMD	4.39%
Hi-Silicon	15.0%	12.8%	0.0%	高通	3.90%
Qualcomm	6.1%	9.8%	7.6%	博通	3.77%
NVIDIA	7.6%	7.7%	5.8%	Nvidia	2.83%
Broadcom	7.7%	7.6%	8.1%	Sony	
AMD	4.0%	7.3%	9.2%		1.39%
Intel	5.2%	6.0%	7.2%	Marvell	
Mediatek	4.3%	5.9%	8.2%	STM	1.38%
Source: The Information Network (www.theinformationnet.com)				ADI	1.06%
	•			Intel	■0.84%
				資料來源	: Bloomberg · DIGITIMES整理 · 2021/12

研調:台積電第3季可望超車三星首登全球半導體龍頭

♀ 1 中央社

Over \$20B in 2022/Q3

2022年9月8日 週四 下午12:42

TSMC Technology Roadmap (4/4)

- Silicon Wafer Cost
- Only a few players are qualified:
 - System/Service Companies: Apple, Google, Meta,
 MicroSoft, Telsa, ...
 - Fabless Houses: Nvidia, Qualcomm, AMD, Intel,
 MediaTek, ...

Course Outline

- Design Trend
- Lab Contents
- Lab Items
- Scoring Rules
- Other Issues

(source: MacRumors)

創新科技

顯示器採用全新工藝與科技,精準貼合機身弧度的設計,一直延伸至優雅圓潤的邊角。

Design Trend

1986~2000 Top-down (ASIC)

Sensing + Green Computing

+ Multi-Core

2011~2015

SiVi + Storage

(iSoC)

Transistor

Circuit

Chip Architecture

System and Application

2001~2010 2016->2020

Meet-in-IoT (Data)

the-middle AI (Learning)

Αl Everywhere

2024

(SoC)

Smart Sensing + Low Power + Low Energy

~1985

(IC)

Bottom-up

- Data generation (IoT) and processing (AI or Learning)
- **Toward Si-Civilization (GAI in 2023)**

Westmere: A Family of 32nm IA Processors (ISSCC'2010->2019)

- The 6-core design has 1.17B transistors including the 12MB shared L3 Cache
- supports new instructions for accelerating encryption/decryption algorithms,
- speeds up performance under virtualized environments, and contains a host of other targeted performance features.
- Al engines for data-driven applications

Westmere: A Family of 32nm IA Processors (ISSCC'2010)

Data Processor for AI-based Applications

AI Chip for training and inference (Tsai et.al.,

Image Recognition

Data Classification

Inference

Digit/Text Recognition

Data-Driven

Services

IEEE/JSSC, Oct. 2017).

Intelligent Processors for Bio (1/2)

 New Opportunities for Academic Research/Industrial Applications Toward Better Life

Intelligent Processor for BioMedical Applications (2/2)

ML-Assisted CSP (G3, Hsu et. al, IEEE/JSSC2014)

Lab-on-a-Chip (Li et.al., IEEE/TCAD, TBMCAS)

Deep Learning SoC's (AI)

- De-clouding: intelligence can be achieved in local devices, instead of cloud (data center)
 - See iLi technology.
- Various deep learning chips have been published in conferences/journals
- Performance depends on how many neurons and memory-bandwidth are allowed, especially dealing with real-time tests (inference).
- See iLi Wearable translator in Japan.

Lab Contents (Part-I)

- A Top-Down Design Flow
 - Design methodology
 - CAD tools
- Behavioral (Abstract) Level Design
 - System design
 - Architecture design
 - Logic design
- Front-end simulation and synthesis tools
 - Behavioral correctness in different levels
 - Performance indices
 - testability

Lab Contents (Cont'd)

- Physical Design
 - Floorplanning
 - Placement
 - Routing
- Back-end Simulation and Verification Tools
 - Back annotation
 - Timing closure
 - Manufacturability

– ...

Lectures on Design Issues

- Modern IC Design Flow
 - Learn the current design flow
 - Complete an IC project in reasonable time
- Low-Power Low-Voltage Design
 - Mainly driven by mobile devices due to limited battery life
 - Remain a critical design issue in complex IC's
- Power Integrity in System-Level Design
 - IC design should take package model into account
 - Ensure functional in working environment

Modern IC Design Flow

- Building blocks: IP-based/cell-based functional units, sensors, processors, storage units, I/O interfaces, ...
- Simulation: timing and power
- Verification: equivalence checking
- Testability: design for testing and manufacturing
- Exploit design tools efficiently and effectively

Low-Power Low-Voltage Design

- Mainly for mobile and sensing devices
- Exploit system behavior to reduce computational redundancy (i.e. switching activity)
- Explore architecture to reduce operational frequency and supply voltage
- Investigate circuit topology to save energy
- Innovate electron devices having better Ion/Ioff

Power Integrity in System-Level Design

- Voltage drop will affect timing and hence operational speed V(t) = I(t)*R + C*dv/dt*R + L*di/dt
- Package model should be included in design phase
- Decoupling circuits should be included to reduce dynamic voltage drop
- Apply a set of power pads to minimize transient currents through bonding wires

Scoring Rules and TA's

Grading Policy

Weekly Lab Exercise x 13 5*12+3=63%

Midterm Project 8%

Midterm Exam 8%

Online Test 5%

Final Project 8%

Final Exam 8%

Total 100%

Name	Email			
林文約	kenlin.ee09@nycu.edu.tw			
廖展儀	jhan.yi.ee12@nycu.edu.tw			
冉宜軒	game890921.ee12@nycu.edu.tw			
曹宗叡	stu312510150.ee12@nycu.edu.tw			
張成德	chengdez.ee12@nycu.edu.tw			
連紹華	eed0810766.ee108.ee08@nycu.edu.tw			
吳彧嘉	jabywu@gmail.com			
黃齊緯	i100486987@gmail.com			
蔡睿煌	erictsai.ee12@nycu.edu.tw			

Other Issues

- Lecture
 - In-Person at ED415 (On-line or Hybrid if needed)
- Circuit/Chip trend
 - Refer ISSCC and IEEE/JSSC
- EDA trend
 - Refer DAC/ICCAD and IEEE/TCAD
- Office Hours
 - Wed. 15:30~17:00 (ED538, via email booking)

Just a Reminder

哈佛圖書館的二十條訓言:

20 maxims at Harvard Library,

1.此刻打盹,你將做夢;而此刻學習,你將圓夢。

Fall asleep, you'll make a dream; study hard, the dream will be realized.

. . .