Project: Model Selection & Analysis

- The analysis is based on the mean squared error (MSE), Akai information criterion (AIC), Bayesian information criterion (BIC), and Pham's criterion (PC).
- The examination involves a list of nine distributions, namely exponential, uniform, lower-bound truncated exponential (2-parameter exponential), normal, lognormal, gamma, beta, Weibull, and Rayleigh.

Please demonstrate all your calculations and workings in detail:

Table 1. A suumary of some criteria model selection [Pham, 2020a]

No.	Criteria	Formula	Brief description
0	SSE	$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	Measures the total deviations between the estimated values and the actual data.
1	MSE	$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - k}$	Measures the difference between the estimated values and the actual data. $k = \text{number of parameters}$
2	AIC	$AIC = -2\log(L) + 2k$ $L = \text{the likelihood function}$ $AIC = n \log\left(\frac{SSE}{n}\right) + 2k$	Measure the goodness of the fit considering the penalty of adding more parameters.
3	BIC	$BIC = -2\log(L) + k\log(n)$ OR $BIC = n\log\left(\frac{SSE}{n}\right) + k\log(n)$	Same as AIC but the penalty term will also depend on the sample size.
4	PC	$PC = \left(\frac{n-k}{2}\right)log\left(\frac{SSE}{n}\right) + k\left(\frac{n-1}{n-k}\right)$	Increase slightly the penalty each time adding parameters in the model when there is too small a sample.

Table 2. A summary of some distribution functions

No.	Distribution	pdf
1	Exponential	$f(x) = \lambda e^{-\lambda x}$ $x \ge 0, \lambda > 0$
2	2-parameter	$f(x) = \lambda e^{-\lambda(x-t0)}$ $x \ge t0$, $\lambda > 0$
	exponential	
3	Uniform	$f(x) = \frac{1}{b-a} \qquad a \le x \le b$
4	Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} - \infty < x < \infty$
5	Log-normal	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln x - \mu}{\sigma}\right)^2} \qquad 0 < x < \infty$
6	Weibull	$f(x) = \frac{\alpha x^{\alpha - 1}}{\beta^{\alpha}} e^{-(\frac{x}{\beta})^{\alpha}} \qquad x \ge 0, \ \alpha, \beta > 0$
7	Gamma	$f(x) = \frac{x^{\alpha - 1}}{\beta^{\alpha} \Gamma(\alpha)} e^{-\frac{x}{\beta}} \qquad x \ge 0, \ \alpha, \beta > 0$
8	Rayleigh	$f(x) = \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}$
9	Beta	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} 0 \le x \le 1, \alpha > 0, \beta > 0$