OSPF Protocol 1st TP

The goal is to solve the TP.

Activity 01

1. Replicate the network topology from the TP sheet into GNS3

2. Configurer les interfaces des routeurs

For this, I will connect to each router using telnet, and manage the windows using tmux

• Command for connecting to devices is:


```
telnet [OPTION...] [HOST [PORT]]
```

Command to configure the interfaces:

```
R1(config)#interface X
R1(config-if)#ip address y.y.y.y w.w.w.w
R1(config-if)#no shutdown
```

& Tip

To verify your commands type: show ip int b

3. Configurer les identifiants des appareils ex : R1 c'est 1.1.1.1

Used in DR/BDR/DROTHER assignment as the 2nd priority.

```
R1(config)#router ospf 1
R1(config-router)#router-id 1.1.1.1

R1(config-router)#do show ip ospf
Routing Process "ospf 1" with ID 1.1.1.1
```

& Tip

To update the router-id, use this command clear ip ospf process (it will lose the routing information for a while)

4. Configurer "OSPF"

```
R1(config)#router ospf 1
R1(config-router)#network 0.0.0.0 255.255.255.255 area 0
R1(config-router)#passive-interface f0/1

R1(config-router)#do show ip ospf int
FastEthernet0/1 is up, line protocol is up
...
Timer...
No Hellos (Passive interface)
```

5. Testez la connectivité entre PC1 et PC2

```
PC2> ping 11.11.11.10

11.11.11.10 icmp_seq=1 timeout

84 bytes from 11.11.11.10 icmp_seq=2 ttl=62 time=23.732 ms

84 bytes from 11.11.11.10 icmp_seq=3 ttl=62 time=26.307 ms

84 bytes from 11.11.11.10 icmp_seq=4 ttl=62 time=27.718 ms

84 bytes from 11.11.11.10 icmp_seq=5 ttl=62 time=26.608 ms
```

6. Consulter les tables de routage

```
R1#show ip route
Gateway of last resort is not set
     172.16.0.0/30 is subnetted, 1 subnets
        172.16.28.0 is directly connected, Serial1/1
C
     192.168.5.0/30 is subnetted, 1 subnets
C
        192.168.5.0 is directly connected, Serial1/0
     10.0.0.0/30 is subnetted, 1 subnets
0
        10.10.10.0 [110/128] via 192.168.5.2, 00:15:50, Serial1/0
                   [110/128] via 172.16.28.1, 00:14:41, Serial1/1
     11.0.0.0/24 is subnetted, 1 subnets
0
        11.11.11.0 [110/74] via 172.16.28.1, 00:14:41, Serial1/1
     12.0.0.0/24 is subnetted, 1 subnets
        12.12.12.0 is directly connected, FastEthernet0/1
C
     13.0.0.0/24 is subnetted, 1 subnets
        13.13.13.0 [110/74] via 192.168.5.2, 00:15:51, Serial1/0
0
```

5. Consulter les tables de voisinage

```
R1#show ip ospf neighbor
Neighbor ID
              Pri State
                                 Dead Time
                                                          Interface
                                            Address
3.3.3.3
              0
                   FULL/ -
                                 00:00:38
                                            172.16.28.1
                                                          Serial1/1
2.2.2.2
               0
                   FULL/ -
                                 00:00:38
                                            192.168.5.2
                                                          Serial1/0
```

Activity 02

1. Modifier la bande passante des interfaces séries à 64 kbit/s

This will not affect the actual speed of the interface, but rather the metric that is called *cost* to favor one route over another.

```
configure terminal
interface s1/0
bandwidth 64
exit

R1#show int s1/0
Serial1/0 is up, line protocol is up
   Hardware is M4T
   Internet address is 192.168.5.1/30
   MTU 1500 bytes, BW 64 Kbit/sec, DLY 20000 usec,
```

2. Spécifier un coût pour OSPF

This will overwrite the default calculated cost.

```
configure terminal
interface s1/0
ip ospf cost 50
exit

R1(config-if)#do show ip ospf int s1/0
Serial1/0 is up, line protocol is up
   Internet Address 192.168.5.1/30, Area 0
   Process ID 1, Router ID 1.1.1.1, Network Type POINT_TO_POINT, Cost: 50
```

3. Configurer l'authentification OSPF

OSPF sends a Hello packet; the neighbor validates authentication. If valid, adjacency forms; otherwise, the packet is discarded.

```
configure terminal
interface s1/0
ip ospf authentication message-digest
ip ospf message-digest-key 1 md5 SECRET
exit
```

Activer l'authentification dans OSPF

```
configure terminal router ospf 1 area 0 authentication message-digest exit
```


Type 1 Authentication makes it vulnerable to packet sniffing attacks, allowing an attacker to capture and read the password.

Activity 03

1. Configuration OSPF avec un switch

Exemple pour R1

```
configure terminal
interface GigabitEthernet0/0
ip address 192.168.3.1 255.255.255.0
no shutdown
exit
router ospf 1
network 192.168.3.0 0.0.0.255 area 0
exit
```

2. Configuration de la priorité OSPF

Exemple pour donner la priorité la plus haute à R1 :

```
configure terminal
interface GigabitEthernet0/0
ip ospf priority 255
exit
```

3. Contrôle du processus de sélection OSPF

show ip ospf interface

4. Vérification du rôle DR/BDR/DROTHER

Before it was like this:

Then it's this:

show ip ospf neighbor

The End.