)(CDataCraft

Überblick

Datenvisualisierung mit Python

Erstellung von Präsentationen

Vor Erstellung einer Präsentation ist ein gezeichnetes Storyboard mit den Überschriften bzw. Hauptinhalten hilfreich

Executive Summary	Problem- story	Ist-Zustand	Soll-Zustand	Beleg für Ist- Zustand
Beleg für Soll-	Beleg für positive Effekte	Projekt-	Projekt-	Nächste
Zustand		vorschlag	details	Schritte

1

Gute vs. schlechte Datenvisualisierung

Grundprinzipien guter Charts

Sind diese Grafiken überzeugend?

Grundprinzipien guter Charts

Sind diese Grafiken überzeugend?

- https://viz.wtf/
- https://www.consultantsmind.com/2017/04/ 10/bad-charts
- https://www.quora.com/What-are-examplesof-bad-data-visualization-thats-misleadingand-confusing
- https://skepchick.org/2015/05/bad-chartthursday-uk-elections-edition
- https://www.businessinsider.com/the-27worst-charts-of-all-time-2013-6
- https://junkcharts.typepad.com

Gute Charts

Grundprinzipien guter Visualisierungen

- Die Grafik passt in den Kontext und unterstützt die Aussage
- Auswahl des richtigen Charttyps
- Weniger ist mehr (Verzicht auf 3D und überflüssigen "Chart-Junk")
- Keine Tricks wie abgeschnittene Skalen
- Titel und Achsen-Beschriftungen

Grundprinzipien guter Charts

Auswahl des passenden Charttyps

Beliebter Trick: Abgeschnittene Skalen

Was ist hier alles ungünstig?

Umsatz aller Produkte

- Produkt 1 Produkt 2 Produkt 3 Produkt 4 Produkt 5 Produkt 6
- Produkt 7 Produkt 8 Produkt 9 Produkt 10 Produkt 11 Produkt 12

Hier passen Aussage und Grafik zusammen

Wir sollten unsere Produktpalette verkleinern und uns auf die Umsatzbringer konzentrieren!

2 Visualisierungen / Charttypen

Visualisierungstypen

... und viele mehr

Grafikbibliotheken in Python

Für Python gibt es zahlreiche Grafikbibliotheken. Im Prinzip kann man die üblichen Grafiken mit all diesen Packages erstellen.

- matplotlib: Der Standard für Diagramme in Python (https://www.python-graph-gallery.com)
 - <u>pandas</u> bietet einige Diagrammtypen, die auf matplotlib basieren
 - <u>seaborn</u> setzt auf matplotlib auf und vereinfacht die Nutzung
- <u>plotly</u>: Für interaktive Charts, insbesondere zusammen mit dash, um Dashboards zu bauen
- bokeh: ebenfalls interaktive Charts.
- **plotnine**: Inspiriert von ggplot2 für R. Benutzt eine Grammar of Graphics
- altair: deklarative Grafikbibliothek, basiert auf Vega-Lite