ECO 394M Homework 1

Steven Kim

Question 1

- (a) The model does not differentiate the effect of being legal to purchase alcohol on alcohol consumption from the relationship between alcohol and age that would exist even without a drinking age law.
- (b) i. $E(alcohol|age) = \beta_1 + \beta_3 overage$
 - ii. $E(alcohol|age) = \beta_1 + \beta_2 age + \beta_3 overage$
 - iii. when $\beta_2 = 0$, the model in (ii) becomes identical to the one in (i).
 - iv. The effect of the drinking age law is captured as β_3 . If $\beta_3 = 0$, it would imply that the drinking law has no effect.
 - v. $E(alcohol|age = 25) E(alcohol|age = 22) = \beta_2(25 22) + \beta_3(1 1) = 3\beta_2$ $E(alcohol|age = 22) - E(alcohol|age = 19) = \beta_2(22 - 19) + \beta_3(1 - 0) = 3\beta_2 + \beta_3$
- (c) $E(alcohol|age) = \beta_1 + \beta_2 age + \beta_3 overage + \beta_4 (overage * age)$ The effect of the drinking age law is captured in β_3 and β_4 . If $\beta_3 = \beta_4 = 0$, it would imply that the drinking law has no effect. $E(alcohol|age = 25) - E(alcohol|age = 22) = \beta_2 (25 - 22) + \beta_3 (1 - 1) + \beta_4 (25 - 22) = 3\beta_2 + 3\beta_4$ $E(alcohol|age = 22) - E(alcohol|age = 19) = \beta_2 (22 - 19) + \beta_3 (1 - 0) + \beta_4 (22 - 0) = 3\beta_2 + \beta_3 + 22\beta_4$
- (d) The model doesn't give more information than the data. The comparison I did for (b) and (c) also loses the meaning, as they would not have the common parts. It would just be numbers, hard to interpret.

(a)

$$S(b) = \sum_{i=1}^{n} (y_i - b_1 - b_2 x_{i2} - b_3 x_{i3})^2$$

first order conditions are

$$\frac{\partial S(b)}{\partial b_1} = \sum_{i=1}^n 2(y_i - b_1 - b_2 x_{i2} - b_3 x_{i3})(-1) = 0$$

$$\sum_{i=1}^n b_1 = \sum_{i=1}^n y_i - \sum_{i=1}^n b_2 x_{i2} - \sum_{i=1}^n b_3 x_{i3}$$

$$\frac{\partial S(b)}{\partial b_2} = \sum_{i=1}^n 2(y_i - b_1 - b_2 x_{i2} - b_3 x_{i3})(-x_{i2}) = 0$$

$$\sum_{i=1}^n y_i x_{i2} - \sum_{i=1}^n b_1 x_{i2} - \sum_{i=1}^n b_2 x_{i2} = 0$$

$$\frac{\partial S(b)}{\partial b_3} = \sum_{i=1}^n 2(y_i - b_1 - b_2 x_{i2} - b_3 x_{i3})(-x_{i3}) = 0$$

$$\sum_{i=1}^n y_i x_{i3} - \sum_{i=1}^n b_1 x_{i3} - \sum_{i=1}^n b_3 x_{i3} = 0$$

$$\sum_{i=1}^{n} b_2 x_{i2} = \sum_{i=1}^{n} y_i x_{i2} - \sum_{i=1}^{n} b_1 x_{i2}$$
$$\sum_{i=1}^{n} b_3 x_{i2} = \sum_{i=1}^{n} y_i x_{i3} - \sum_{i=1}^{n} b_1 x_{i3}$$

$$\sum_{i=1}^{n} b_{1} = \sum_{i=1}^{n} y_{i} - (\sum_{i=1}^{n} y_{i}x_{i2} - \sum_{i=1}^{n} b_{1}x_{i2}) - (\sum_{i=1}^{n} y_{i}x_{i3} - \sum_{i=1}^{n} b_{1}x_{i3})$$

$$\sum_{i=1}^{n} (1 - x_{i2} - x_{i3})b_{1} = \sum_{i=1}^{n} y_{i}(1 - x_{i2} - x_{i3})$$

$$\begin{split} b_1 &= \frac{\sum_{i=1}^n y_i (1 - x_{i2} - x_{i3})}{\sum_{i=1}^n (1 - x_{i2} - x_{i3})} = \frac{\sum_{i \in C} y_i}{n_C} \\ b_2 &= \frac{\sum_{i=1}^n y_i x_{i2} - \sum_{i=1}^n b_1 x_{i2}}{\sum_{i=1}^n x_{i2}} = \frac{\sum_{i \in A} y_i - \frac{\sum_{i \in C} y_i}{n_C} \sum_{i=1}^n x_{i2}}{n_A} \\ &= \frac{\sum_{i \in A} y_i - \frac{\sum_{i \in C} y_i}{n_C} n_A}{n_A} = \frac{\sum_{y \in A} - \sum_{i \in C} n_C}{n_C} \end{split}$$
 Similarly,

$$b_3 = \frac{\sum_{y \in B}}{n_B} - \frac{\sum_{i \in C}}{n_C}$$

Therefore, the estimates we're looking for are

$$\widehat{\beta}_1 = \frac{\sum_{i \in C} y_i}{n_C}$$

$$\widehat{\beta}_2 = \frac{\sum_{y \in A} - \sum_{i \in C} n_C}{n_C}$$

$$\widehat{\beta}_3 = \frac{\sum_{y \in B} - \sum_{i \in C} n_C}{n_C}$$

(b) Yes. $\hat{\beta}_2 = \frac{\sum_{y \in A}}{n_A} - \frac{\sum_{i \in C}}{n_C}$, which means the difference of sample mean when c = A (which means $x_2 = 1$) and when c = C (which means $x_4 = 1$).

- (c) No. We get the results that consist of sample means because we only have indicator variables in the model. if there were other variables like age, the form would likely be more complicated.
- (d) Yes. We can expect it to expand in the similar way. For example, if we had one more categories, the estimates would look like this:

$$\widehat{\beta}_1 = \frac{\sum_{i \in D} y_i}{n_D}$$

$$\widehat{\beta}_2 = \frac{\sum_{y \in A} - \sum_{i \in D}}{n_D}$$

$$\widehat{\beta}_3 = \frac{\sum_{y \in B} - \sum_{i \in D}}{n_D}$$

$$\widehat{\beta}_4 = \frac{\sum_{y \in C} - \sum_{i \in D}}{n_D}$$

Question 3

(a) Let $\mathbf{X_2} = \mathbf{X_1}\mathbf{a}$. Then, by the partition regression method, $\widehat{\beta}_2 = ((M_{X_1}X_2)'(M_{X_1}X_2))^{-1}(M_{X_1}X_2)'(M_{X_1}y)$. However, since $M_{X_1}X_2 = M_{X_1}X_1a = 0$, the inverse does not exist. Therefore, we would not be able to obtain the estimate.

(b)

$$\mathbf{X_1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \quad \mathbf{X_2} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \beta_1 \text{ and } \beta_2 \text{ are scalars.}$$

From the partitioned regression method, we know that $\widehat{\beta}_2 = ((M_{X_1}X_2)'((M_{X_1}X_2))^{-1}(M_{X_1}X_2)'(M_{X_1}y)$.

$$P_{X_{1}} = X_{1}(X'_{1}X)^{-1}X'_{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} (\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix})^{-1} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} n^{-1} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} = \frac{1}{n} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

$$M_{X_{1}} = I - P_{X_{1}}$$

$$M_{X_{1}}X_{2} = I_{n}X_{2} - P_{X_{1}}X_{2} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} - \frac{1}{n} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} - \frac{1}{n} \begin{bmatrix} \sum_{i=1}^{n} x_{i} \\ \vdots \\ x_{n} - \bar{x} \end{bmatrix}$$

$$M_{X_{1}}y = Iy - P_{X_{1}}y = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} - \frac{1}{n} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} - \frac{1}{n} \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \vdots \\ \sum_{i=1}^{n} y_{i} \end{bmatrix} = \begin{bmatrix} y_{1} - \bar{y} \\ \vdots \\ y_{n} - \bar{y} \end{bmatrix}$$

$$\hat{\beta}_{2} = ((M_{X_{1}}X_{2})'((M_{X_{1}}X_{2}))^{-1}(M_{X_{1}}X_{2})'(M_{X_{1}}y)$$

$$= ([(x_{1} - \bar{x}) \quad \cdots \quad (x_{n} - \bar{x})] \begin{bmatrix} x_{1} - \bar{x} \\ \vdots \\ x_{n} - \bar{x} \end{bmatrix})^{-1} [(x_{1} - \bar{x}) \quad \cdots \quad (x_{n} - \bar{x})] \begin{bmatrix} y_{1} - \bar{y} \\ \vdots \\ y_{n} - \bar{y} \end{bmatrix}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{s_{y_{i}, x_{i}}}{s_{\pi}^{2}}$$

(c) Since X_1 and X_2 are not correlated at all, there would be nothing to be filtered out and therefore $\hat{\beta}_2$ would stay the same. More specifically,

$$\begin{split} M_{X_1} &= I - P_{X_1} \\ M_{X_1} X_2 &= (I - P_{X_1}) X_2 \\ &= X_2 - P_{X_1} X_2 \\ &= X_2 \text{ (as } X_1 \text{ and } X_2 \text{ have zero correlation)} \end{split}$$

$$\widehat{\beta}_2 = ((M_{X_1} X_2)' ((M_{X_1} X_2))^{-1} (M_{X_1} X_2)' (M_{X_1} y)$$
$$= (X_2' X_2)^{-1} X_2' y$$

This is the slope estimate in the simple regression model $E(y|x) = \beta_1 + \beta_2 X_2$.

Question 4

- (a) . clear
 - . use "/Users/steven_unique/My Drive/FALL 2021/ECO 394M ECONOMETRICS/Problem Set
 - > s/PS1/HTV.DTA"
 - . regr educ motheduc fatheduc

Source	SS	df	MS		r of obs	=	1,230
Model Residual	1697.9676 5114.31207	2 1,227	848.983 4.168143	5 R-squ	> F ared	=	203.68 0.0000 0.2493
Total	6812.27967	1,229	5.5429452		-squared MSE	=	0.2480 2.0416
educ	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
motheduc fatheduc _cons	.3041971 .1902858 6.964355	.0319266 .0222839 .3198205	9.53 8.54 21.78	0.000 0.000 0.000	.241560 .146566 6.33689	9	.366834 .2340046 7.59181

- i) The slope estimate of **motheduc** indicates that holding **fatheduc** constant, when **motheduc** increases by 1, **educ** would increase by 0.3041971. Similarly, the slope estimate of **fatheduc** indicates that holding **motheduc** constant, when **fatheduc** increases by 1, **educ** would increase by 0..1902858.
- ii) 0.3041971 + 0.1902858 = 0.4944829. educ is expected to increase by 0.4944829 years.
- iii) Yes. It means that with 0 education of both mother and father, a person would have at least 6.964355 years of education.
- iv) The R-squared is 0.2493, so the correlation between y and \hat{y} is $\sqrt{0.2493} = 0.49929951$. This serves as an upper bound on the magnitude of the correlation between y and **motheduc** beceause if all the correlation comes from motheduc which means all the variation in the model is captured by motheduc only, the correlation between y and motheduc would be the same as the one we get from the model.
 - . gen parenteduc = motheduc + fatheduc
 - . regr educ parenteduc

Source	SS	df	MS	Number		1,230
				- F(1, 12	28) =	400.43
Model	1675.13029	1	1675.1302	9 Prob > 1	F =	0.0000
Residual	5137.14938	1,228	4.183346	4 R-squar	ed =	0.2459
				- Adj R-s	quared =	0.2453
Total	6812.27967	1,229	5.5429452	2 Root MS	Ē =	2.0453
educ	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
parenteduc _cons	.2346699 7.258604	.0117272	20.01 24.64	0.000	.2116623 6.6806	.2576775
	L					

- v) The new R-squared is 0.2459 < 0.2493. The R-squared has declined because it captures less variation of the y variable, as two covariates have been collapsed. The magnitude of the parenteduc slope estimate, which is .2346699, seems sensible because it lies between the magnitude of matheduc, which is .3041971, and that of fatheduc, which is .1902858. An implicit restriction this model is facing is that, by only using the sum, it assumes that mother's and father's length of education have an equal effect on a child's years of education when Model 1 shows that **motheduc** has more effect than **fatheduc**.
- (b) . gen educinteraction = motheduc*fatheduc
 - . regr educ motheduc fatheduc educinteraction

Source	SS	df	MS	Number of obs	=	1,230
				F(3, 1226)	=	138.39
Model	1723.29513	3	574.431709	Prob > F	=	0.0000
Residual	5088.98455	1,226	4.15088462	R-squared	=	0.2530
				Adj R-squared	=	0.2511
Total	6812.27967	1,229	5.54294522	Root MSE	=	2.0374
educ	Coefficient	Std. err	. t	P> t [95% d	onf.	interval]
motheduc	.1408771	.0733931	1.92	0.05500311	.29	.2848672
motheduc fatheduc	.1408771 .0285246	.0733931	1.92	0.05500311 0.68010715		.2848672
					79	
fatheduc	.0285246	.0691587	0.41	0.68010715	79 .63	.1642071

- i) It might be expected that the partial effect of on variable changes as another variable changes.
- ii) The partial effect of **motheduc** grows by 0.013201 when **fatheduc** grows by 1 and vice versa.
- iii) It is 0.1408771 + 0.013201*fatheduc. It depends on the value of fatheduc.

- iv) 0.1408771 + 0.013201*fatheduc + 0.0285246 + 0.013201*motheduc = 0.1694017 + 0.013201(fatheduc + motheduc)
- v) The R-squared is 0.2530 > 0.2459. It was expected because we added an additional variable.
- (c) . regr educ motheduc fatheduc abil

Source	SS	df	MS	Number	r of obs	=	1,230 305.17
Model Residual	2912.30705 3899.97262	3 1,226	970.769018 3.18105434	B Prob R-squ	> F ared	=	0.0000 0.4275
Total	6812.27967	1,229	5.54294522		-squared MSE	=	0.4261 1.7836
educ	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
motheduc fatheduc abil _cons	.1891314 .1110854 .5024829 8.44869	.0285062 .0198849 .025718 .2895407	6.63 5.59 19.54 29.18	0.000 0.000 0.000 0.000	.1332053 .0720733 .4520268 7.88064	3	.2450578 .1500976 .552939 9.01674

- i) When abil increases by one, holding other variables constant, educ is expected to increase by .5024829.
- ii) The slope estimates of **motheduc** and **fatheduc** have declined from Model 1. This is expected because it is likely that longer education is correlated with higher **abil** and it is now included in the model to capture its effect.
- iii) . sum abil

Variable	Obs	Mean	Std. dev.	Min	Max
abil	1,230	1.796596	2.184406	-5.631463	6.263742

- . gen abilstd = abil/2.184406
- . regr educ motheduc fatheduc abilstd

Theule Tatheu	uc abiistu				
SS	df	MS	Number of obs	3 =	1,230
			F(3, 1226)	=	305.17
2912.30706	3	970.769019	Prob > F	=	0.0000
3899.97262	1,226	3.18105434	R-squared	=	0.4275
			Adj R-squared	1 =	0.4261
6812.27967	1,229	5.54294522	Root MSE	=	1.7836
Coefficient	Std. err.	t	P> t [95% d	conf.	interval]
1001214	0005060	6 62	0.000 13300)E 1	. 2450578
.1110854	.0198849	5.59	0.000 .07207	733	.1500976
1.097627	.0561785	19.54	0.000 .98741	L01	1.207843
8.44869	.2895407	29.18	0.000 7.880	064	9.01674
	SS 2912.30706 3899.97262 6812.27967 Coefficient .1891314 .1110854 1.097627	SS df 2912.30706 3 3899.97262 1,226 6812.27967 1,229 Coefficient Std. err. .1891314 .0285062 .1110854 .0198849 1.097627 .0561785	2912.30706 3 970.769019 3899.97262 1,226 3.18105434 6812.27967 1,229 5.54294522 Coefficient Std. err. t .1891314 .0285062 6.63 .1110854 .0198849 5.59 1.097627 .0561785 19.54	SS df MS Number of observations of the State of	SS df MS Number of obs = F(3, 1226) = F(3, 1226) = 912.30706 3 970.769019 Prob > F = 3899.97262 1,226 3.18105434 R-squared = Adj R-squared = 6812.27967 1,229 5.54294522 Root MSE = Coefficient Std. err. t P> t [95% conf. 1891314 .0285062 6.63 0.000 .1332051 .1110854 .0198849 5.59 0.000 .0720733 1.097627 .0561785 19.54 0.000 .9874101

The slope estimate of abilstd is larger than that of abil, because the regression is done on smaller values now. It is easier to interpret the slope estimate of abilstd than that of abil because we can see the relation between a standard deviation change of ability instead of the raw numbers of ability. None of the other estimates, including R-squared, change.

- iv) . replace abilstd = abilstd 1.796596 (1,230 real changes made)
 - . regr educ motheduc fatheduc abilstd

Source	SS	df	MS Number of (F(3, 1226)		=	1,230
Model Residual	2912.30706 3899.97262	3 1,226	970.76902 3.18105434	Prob > F R-squared	= =	305.17 0.0000 0.4275 0.4261
Total	6812.27967	1,229	5.54294522	- Adj R-squared 2 Root MSE	=	1.7836
educ	Coefficient	Std. err.	t	P> t [95% c	onf.	interval]
motheduc fatheduc abilstd _cons	.1891314 .1110854 1.097627 10.42068	.0285062 .0198849 .0561785 .3306905	6.63 5.59 19.54 31.51	0.000 .13320 0.000 .07207 0.000 .98741 0.000 9.77	33 01	.2450578 .1500976 1.207843 11.06946

The only change happens here is the intercept. It is because **abilistd** is now centered at an average ability, instead of an ability of zero.

V) . regr abilstd motheduc fatheduc

	Source	SS	df	MS	Number of obs	=	1,230
_					F(2, 1227)	=	134.56
	Model	221.069505	2	110.534753	Prob > F	=	0.0000
	Residual	1007.93094	1,227	.821459609	R-squared	=	0.1799
_					Adj R-squared	=	0.1785

Total	1229.00045	1,229	1.00000036	Root	MSE =	.90634
abilstd	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
motheduc fatheduc _cons	.1048314 .072156 -3.14891	.0141734 .0098927 .1419803	7.40 7.29 -22.18	0.000 0.000 0.000	.0770245 .0527475 -3.427461	.1326382 .0915644 -2.870359
. predict uhat	-					
Source	SS	df	MS		er of obs =	1,200
Model Residual	1214.33946 5597.94022	1 1,228	1214.33946 4.55858324	Prob R-sq	uared =	0.0000 0.1783
Total	6812.27967	1,229	5.54294522	U	R-squared = MSE =	0.1110
educ	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
uhat _cons	1.097627 13.0374	.0672511	16.32 214.16	0.000	.9656869 12.91796	1.229567 13.15684

It can be verified that the coefficient of the abilstd in this regression is the same as in the previous model. This shows that the partitioned regression approach works.

- vi) To account for different effects of **abilstd** depending on **motheduc**, I would introduce an interaction variable of **motheduc** and **abilstd**. If the hypothesis was correct, I would expect the coefficient of **motheduc*abilstd** would be positive.
 - . gen mothabil = motheduc*abilstd
 - . regr educ motheduc fatheduc abilstd mothabil

Source	SS	df	MS		er of obs	=	1,230
Model Residual	2999.70914 3812.57053	4 1,225	749.927285 3.11230248	Prob R-sq	1225) > F uared R-squared	= =	240.96 0.0000 0.4403 0.4385
Total	6812.27967	1,229	5.54294522	2 Root	MSE	=	1.7642
educ	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
motheduc	.2978231	.0348672	8.54	0.000	.2294171	L	.3662292
fatheduc	.1081562	.0196766	5.50	0.000	.0695527	7	.1467597
abilstd	1101569	.2345894	-0.47	0.639	5703984	1	.3500845
mothabil	.104223	.0196672	5.30	0.000	.0656378	3	.1428082
_cons	9.103226	.4108515	22.16	0.000	8.297175	5	9.909276

In the new regression, the estimated partial effect of ability is -0.110157 + 0.104223 * **motheduc**. The estimated partial effect of changing **motheduc** by a year is 0.2978231 + 0.104223 * **abilistd**.

(d) . gen abilstd_squared = abilstd^2

. regr educ motheduc fatheduc abilstd abilstd_squared

Source	SS	df	MS	Number o	of obs	; =	1,230
				F(4, 122	25)	=	244.91
Model	3027.03707	4	756.759267	Prob > F	,	=	0.0000
Residual	3785.24261	1,225	3.08999397	R-square	ed	=	0.4444
				Adj R-sc	luared	l =	0.4425
Total	6812.27967	1,229	5.54294522	Root MSE	1	=	1.7578
educ	Coefficient	Std. err	. t	P> t	[95%	conf.	interval]
motheduc	.1901261	.0280957	6.77	0.000	.1350	ΩE1	.2452472
fatheduc	.1089387	.0196014	5.56	0.000	.0704	827	.1473946
abilstd	1.744496	.1197306	14.57	0.000	1.509	596	1.979396
abilstd_squ~d	.2414397	.0396232	6.09	0.000	.163	703	.3191765
_cons	10.59507	.3271771	32.38	0.000	9.953	183	11.23696

- i) The relationship between a covariate and the dependent variable might be expected to have a non-linear but possibly quadratic relationship.
- ii) 1.744496 + 2 * 0.2414397**ablistd**.
- iii) The estimated partial effect of **abilstd** in Model 3 is 1.097627, no matter the value of **abilstd** is. On the other hand, the estimated partial effect of **abilstd** in Model 4 depends on the value of **abilstd**. It increases by 0.4828794 when **abilstd** increases by 1.
- (e) i) . regr west18 ne18 nc18 south18

Source	SS	df	MS		er of ob	s =	1,230
Model Residual	152.950407 0	3 1,226	50.9834688	Prob R-squ	F(3, 1226) Prob > F R-squared Adj R-squared Root MSE		1.0000
Total	152.950407	1,229	.124451104				1.0000
west18	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
ne18	-1	•					•
nc18	-1						
south18	-1						
_cons	1	•	•	•		•	·

Yes, I get the expected results. It is because every observation belongs to one of the regions. Because of this perfect colinearity, we get R-squared of 1.

••\			
ii)	regr	educ	west18

Source	SS	df	MS		er of obs	=	1,230
Model Residual	6.9886564 6805.29102	1 1,228	6.9886564 5.54176793	4 Prob 3 R-sq	F(1, 1228) Prob > F R-squared Adj R-squared Root MSE		1.26 0.2617 0.0010
Total	6812.27967	1,229	5.54294522				0.0002 2.3541
educ	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
west18 _cons	2137576 13.06851	.1903482 .0726144	-1.12 179.97	0.262 0.000	58720 12.926		.1596862 13.21097

Compared to all the other regions, years of education was lower by 0.2137576 on average if the child was in the west when 18.

iii) . regr educ west18 ne18 nc18

Source	SS	df	MS		Number of obs F(3, 1226) Prob > F R-squared Adj R-squared Root MSE		1,230 7.38
Model Residual	120.814836 6691.46484	3 1,226	40.271611 5.457964	8 Prob 8 R-sc			0.0001 0.0177
Total	6812.27967	1,229	5.5429452				0.0153 2.3362
educ	Coefficient	Std. err.	t	P> t	[95%	conf.	interval]
west18 ne18 nc18 _cons	.2729996 .9129506 .5014193 12.58175	.2263717 .200097 .1776529 .144058	1.21 4.56 2.82 87.34	0.228 0.000 0.005 0.000	1711 .5203 .1528 12.29	801 818	.7171184 1.305521 .8499567 12.86438

Compared to the south, years of education was higher by 0.2729996 on average if the child was in the west when 18.

iv) . regr educ motheduc fatheduc abilstd abilstd_squared west18 ne18 nc18

6	omoudo ruomoda					-
Source	SS	df	MS	Number	of obs =	1,230
				F(7, 12	(22) =	141.80
Model	3053.34975	7	436.192822	Prob >	F =	0.0000
Residual	3758.92992	1,222	3.0760474	R-squar	ed =	0.4482
				Adj R-s	quared =	0.4451
Total	6812.27967	1,229	5.54294522	Root MS	-	1.7539
educ	Coefficient	Std. err	. t	P> t	[95% conf.	interval]
motheduc	.1955234	.0281776	6.94	0.000	.1402415	.2508053
fatheduc	.1053686	.0196234	5.37	0.000	.0668693	.1438679
abilstd	1.718812	.1198295	14.34	0.000	1.483718	1.953907
abilstd_squ~d	.2362144	.039619	5.96	0.000	.1584855	.3139432
west18	1507768	.1713097	-0.88	0.379	4868705	.1853169
ne18	.3056072	.151779	2.01	0.044	.0078309	.6033835
nc18	.1415781	.134219	1.05	0.292	1217471	.4049033
_cons	10.45244	.3389361	30.84	0.000	9.78748	11.1174

Holding motheduc, fatheduc and abilstd constant, years of education was lower by 0.1507768 on average if the child was in the west when 18 compared to the south.

- v) If the region did not matter, the slopes of west18, ne18, nc18 would be all 0.
- vi) . regr educ motheduc fatheduc abilstd_squared south18 ne18 nc18

Source	SS	df	MS	Numb	er of obs	=	1,230
				F(7,	1222)	=	141.80
Model	3053.34975	7	436.192822	Prob	> F	=	0.0000
Residual	3758.92992	1,222	3.0760474	R-sq	uared	=	0.4482
				Adj 1	R-squared	=	0.4451
Total	6812.27967	1,229	5.54294522	Root	MSE	=	1.7539
educ	Coefficient	Std. err	. t	P> t	[95%	conf.	interval]
motheduc	.1955234	.0281776	6.94	0.000	.1402	415	.2508053
fatheduc	.1053686	.0196234	5.37	0.000	.0668	693	.1438679
abilstd	1.718812	.1198295	14.34	0.000	1.483	718	1.953907
abilstd_squ~d	.2362144	.039619	5.96	0.000	.1584	855	.3139432
south18	.1507768	.1713097	0.88	0.379	1853	169	.4868705
ne18	. 456384	.1682742	2.71	0.007	.1262	457	.7865223
nc18	.2923549	.1536704	1.90	0.057	0091	322	.593842
_cons	10.30166	.3609697	28.54	0.000	9.593	476	11.00985
	·						

Now, the west is captured in the intercept. Therefore, the slopes of **motheduc**, **fatheduc** and **abilstd** would stay the same while the coefficients of the indicator variables would change, now showing the difference between the corresponding region and the west. The results show that the slopes for **motheduc**, **fatheduc** and **abilstd** stay the same.

Question 5

- . clear
- . use "/Users/steven_unique/My Drive/FALL 2021/ECO 394M ECONOMETRICS/Problem Set
- > s/PS1/FERTIL2.DTA"
- . gen heducmissing = (heduc==.)
- . replace heduc = 0 if heducmissing

(2,405 real changes made)

- (a) . $gen age2 = age^2$
 - . regr children age age2 educ evermarr heduc heducmissing

-					•		
Source	SS	df	lf MS Nu		per of obs	=	4,361
				F(6	, 4354)	=	1048.85
Model	12723.9061	6	2120.65102	2 Prol	o > F	=	0.0000
Residual	8803.27023	4,354	2.02188108	R-so	quared	=	0.5911
				Adj	R-squared	=	0.5905
Total	21527.1763	4,360	4.93742577	7 Root	t MSE	=	1.4219
children	Coefficient	Std. err.	t	P> t	[95% con	nf.	interval]
age	.2786184	.0170281	16.36	0.000	. 2452347	7	.3120021
age2	0020174	.0002739	-7.36	0.000	0025544	1	0014803
educ	0612256	.0065688	-9.32	0.000	0741039	9	0483474
evermarr	.1754812	.1356173	1.29	0.196	0903978	3	.4413601
heduc	0646732	.007649	-8.46	0.000	0796692	2	0496772
heducmissing	8460843	.1369495	-6.18	0.000	-1.11457	5	5775937
_cons	-2.809784	.2781238	-10.10	0.000	-3.355048	3	-2.26452

- i) .2786184 + -2 * 0.0020174age
- ii) 0.1754812
- (b) . regr children age age2 educ heduc heducmissing if evermarr == 1

Source	SS	df	MS	Numb	er of obs	=	2,079
				F(5,	2073)	=	300.63
Model	4563.36644	5	912.673289	Prob	> F	=	0.0000
Residual	6293.42144	2,073	3.03590036	R-sq	uared	=	0.4203
				Adj	R-squared	=	0.4189
Total	10856.7879	2,078	5.22463324	Root	MSE	=	1.7424
children	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
	.5254392	.0390565	13.45	0.000	.44884	E 1	.6020333
age							
age2	0054568	.000581	-9.39	0.000	00659	61	0043175
educ	0759259	.0118672	-6.40	0.000	09919	88	052653
heduc	0551317	.0106142	-5.19	0.000	07594	72	0343162
heducmissing	8397852	.1683276	-4.99	0.000	-1.1698	94	5096763
_cons	-6.777208	.6338617	-10.69	0.000	-8.020	28	-5.534136

. regr children age age2 educ heduc heducmissing if evermarr == 0 note: heduc omitted because of collinearity.

note: heducmissing omitted because of collinearity.

~	. ~~						
Source	SS	df	MS		of obs	s =	2,282
				F(3, 2	2278)	=	972.55
Model	2956.05077	3	985.350258	Prob 3	> F	=	0.0000
Residual	2307.97026	2,278	1.01315639	R-squa	ared	=	0.5616
				- Adj R-	-square	d =	0.5610
Total	5264.02103	2,281	2.30776898	Root 1	ISĒ	=	1.0066
children	Coefficient	Std. err.	t	P> t	[OE% /	conf	intervall
children	Coefficient	sta. eff.	t	P/	[95% (coni.	Interval
age	. 2290825	.0176561	12.97	0.000	. 1944!	587	.2637062
age2	0014574	.0003161		0.000	00207		0008375
educ	0549112	.0064503	-8.51	0.000	06756		042262
			-0.51	0.000	00750	304	042202
heduc	0	(omitted)					
heducmissing	0	(omitted)					
_cons	-2.87956	.2326078	-12.38	0.000	-3.3357	706	-2.423415

The effects of age and education are different in the two regressions. They look larger in the first regression where **evermarr** is 1. Stata drops **heduc** and **heducmissing** because when **evermarr** is 0, **heduc** is 0 and **heducmissing** is 1, which means these three are perfectly correlated in which case the inverse of X'X cannot be calculated and therefore an unique OLS estimator cannot be calculated.

Source	SS	df	MS		Number of obs F(4, 4353)		4,358 1451.87
Model Residual	12294.619 9215.41316	4 4,353	3073.6547 2.1170257	4 Prob 7 R-sq	> F uared	=	0.0000 0.5716
Total	21510.0321	4,357	4.9368905		R-squared MSE	=	0.5712 1.455
children	Coefficient	Std. err.	t	P> t	[95% co	nf.	interval]
age age2 educ electric _cons	.3370397 0026696 0788944 3777901 -4.247568	.0165166 .0002718 .0062513 .0673176 .2406003	20.41 -9.82 -12.62 -5.61 -17.65	0.000 0.000 0.000 0.000 0.000	.304658 003202 091150 509766 -4.71926	5 2 9	.3694206 0021367 0666387 2458133 -3.775869

The estimated partial effect of electric is -0.3777901. Since it is not reasonable to assume that having electricity would negatively affect the number of children a woman would have, we should not think of the estimated partial effect as the true causal effect but rather think that there would be a cofounder.

- (d) . gen ageelectric = age*electric (3 missing values generated)
 - . gen age2electric = age2*electric
 - (3 missing values generated)
 - . gen educelectric = educ*electric
 - (3 missing values generated)
 - . regr children age age2 educ electric ageelectric age2electric educelectric

Source	SS	df	MS		Number of obs F(7, 4350) Prob > F R-squared		4,358 844.60
Model Residual	12392.2517 9117.78038	7 4,350	1770.32168 2.09604147	3 Prob			0.0000 0.5761
Total	21510.0321	4,357	4.93689055	- Adj I	R-squared	= =	0.5754 1.4478
children	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
age age2	.3271644 0023715	.0177036 .0002912	18.48 -8.14	0.000 0.000	.29245 00294	24	.3618723 0018006
educ electric	0687357 599813	.0069977 .695946	-9.82 -0.86	0.000 0.389	08245 -1.9642		0550165 .7645958
ageelectric	.0754904 0020197	.0482619	1.56 -2.56	0.118	01912 00356		.1701083

The estimated partial effect of electric is $-0.599813 + 0.0754904 * \mathbf{age} - 0.0020197 * \mathbf{age}^2 + -0.0212059 \mathbf{educ}$.

0.194

0.000

. gen pe_electric = _b[electric] + _b[ageelectric]*age + _b[age2electric]*age2 +

-1.30

-16.45

.0163257

.25999

- _b[educelectric]*educ
- . hist pe_electric

_cons

educelectric

(bin=36, start=-2.1105685, width=.06155454)

-.0212059

-4.27699

-.0532126

-4.786703

.0108008

-3.767277

Source	SS	df	MS		er of obs	=	3,747		
					3743)	=	1746.95		
Model	11334.5009	3	3778.16697		=	=	0.0000		
Residual	8095.04807	3,743	2.16271656		uared	=	0.5834		
					R-squared	=	0.5830		
Total	19429.549	3,746	5.18674559	9 Root	MSE	=	1.4706		
children	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]		
age	.3271644	.0179829	18.19	0.000	.291907	1	.3624216		
age2	0023715	.0002958	-8.02	0.000	0029514	1	0017916		
educ	0687357	.0071082	-9.67	0.000	0826719	9	0547994		
_cons	-4.27699	.2640927	-16.20	0.000	-4.79477	7	-3.75921		
-	. regr children age age2 educ if electric == 1								
Source	SS	df	MS		er of obs	=	611		
					607)	=	190.12		
Model	960.976371	3	320.325457		=	=	0.0000		
Residual	1022.7323	607	1.68489671	1	uared	=	0.4844		
					R-squared	=	0.4819		
Total	1983.70867	610	3.25198143	B Root	MSE	=	1.298		
children	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]		
age	.4026547	.0402541	10.00	0.000	.3236006	3	.4817089		
age2	0043912	.000658	-6.67	0.000	005683	5	0030989		
educ	0899416	.0132244	-6.80	0.000	1159128	3	0639704		
_cons	-4.876803	.5787919	-8.43	0.000	-6.013483	1	-3.740125		

The coefficient estimates for \mathbf{age} , $\mathbf{age2}$, and \mathbf{educ} in the regression for the electric = 0 are the same as in the model with interactions in part (d).