Assignment 3 - Machine Learning Workforce Retention Analysis

Mohammad Hossein Basouli June 8, 2025

1 Introduction

In this analysis, we try to predict whether an employee leaves the company, based on some given attributes or not. *Institutional Attributes*.

2 Data

The training dataset contains 1341 rows and 35 columns. Features include information about employee's tenure time and duration, demographic, education, satisfaction & engagement factors and expertise.

3 Exploratory Data Analysis

• Data Imbalance: As we can see in the figure 1, the data is highly imbalanced between the two classes; only about %15 of the data is in the class 1 and the rest lies in the other class.

Figure 1: Data Imbalance: %15 Class 1 - %85 Class 0

• Redundant Features: By looking at the figure 2, we figure out that the feature is_adult is redundant.

```
frequent travel
                104
no travel
Name: count, dtype: int64
Unique Values for work_division:
work_division
       384
Name: count, dtype: int64
Unique Values for degree_field:
degree field
life_sci
medical
            436
marketing
             95
57
tech_deg
Name: count, dtype: int64
Unique Values for sex:
male
         849
female
Name: count, dtype: int64
Unique Values for job_title:
job_title
sales exec
research sci
lab_tech
mfg_dir
               164
manager
                83
research_dir
Name: count, dtype: int64
Unique Values for marital state:
marital_state
          621
single
           451
divorced 269
Name: count, dtype: int64
Unique Values for is_adult:
is_adult
yes 1341
Name: count, dtype: int64
Unique Values for overtime_status:
overtime_status
Name: count, dtype: int64
```

Figure 2: Redundant Features: the column is_adult takes on a single value, yes

• Correlated Features: The heatmap in the figure 3 shows that some of the features, such as <code>years_with_manager</code> and <code>tenure_years</code> are highly correlated, thus causing a potential multi-colinearity. But as we have exprimented with replacing them by a single one of them, it yielded poor prediction results, thus we decided not to touch these features.

Figure 3: Heatmap of Correlation Matrix of the Features

4 Data Transformation

We will encode the categorical features in our dataset using *One-Hot Encoding*.

5 Handling of the Data Imbalance

We have used two different techniques together, in order to address the issue of **Data Imbalance**:

- Oversampling of the majority class via **SMOTE**. This has significantly improved the training & validation f1-scores by tens of percentages.
- Class weighting in any model in our analysis, that supports class weighting. This has improved the training & validation f1-scores by only a few percentages.

6 Model Training & Evaluation

6.1 Hyperparameter Tuning:

After Hyperparameter Tuning, we get to the following result:

Table 1: Hyperparameter Tuning Results

Model	Val F1	Train F1	Time (s)	Best Parameters
LR	88.0 ± 13.4	91.8 ± 2.6	6.20	clfC: 0.01
SVM	89.9 ± 16.2	96.6 ± 1.5	12.36	clfC: 1, clfdecision_function_shape: ovo, clfkernel: rbf
LDA	87.6 ± 15.1	91.7 ± 2.5	2.89	clfshrinkage: 0.3, clfsolver: lsqr
RF	92.7 ± 7.7	99.6 ± 0.2	131.33	bootstrap: True, max_depth: 15, max_features: log2, min_samples_leaf: 2, min_samples_split: 4, n_estimators: 100, n_jobs: -1, oob_score: True
AdaBoost	88.2 ± 9.7	91.8 ± 2.3	38.93	learning_rate: 0.5, n_estimators: 200
XGBoost	91.5 ± 11.2	100.0 ± 0.0	20.97	learning_rate: 0.1, max_depth: 5, n estimators: 150, subsample: 0.8
LightGBM	92.3 ± 10.2	100.0 ± 0.0	159.86	colsample_bytree: 0.8, lambda_l2: 0.01, learning_rate: 0.1, max_depth: 10, min_child_samples: 5, n_estimators: 100, subsample: 0.8
CatBoost	92.1 ± 11.7	100.0 ± 0.0	204.58	depth: 6, iterations: 500, learning_rate: 0.1

6.2 Evaluation:

6.2.1 Accuracy & F1 Score:

Table 2: Accracy & F1 Scores for Training and Validation

Model	Dataset	F1 score Class 0	F1 score Class 1	Accuracy
SVM	Training	0.97	0.96	0.96
	Validation	0.93	0.20	0.88
LR	Training	0.92	0.91	0.92
	Validation	0.93	0.46	0.88
CatBoost	Training	1.00	1.00	1.00
	Validation	0.93	0.26	0.87
RF	Training	1.00	1.00	1.00
	Validation	0.93	0.35	0.88
XGBoost	Training	1.00	1.00	1.00
	Validation	0.93	0.28	0.87
LightGBM	Training	1.00	1.00	1.00
	Validation	0.92	0.24	0.86
LDA	Training	0.92	0.92	0.92
	Validation	0.93	0.39	0.87

6.2.2 ROC & AUC Scores:

Table 3: ROC AUC Scores Comparison

Model	Train AUC	Validation AUC
AdaBoost	0.9709	0.8409
CatBoost	1.0000	0.8332
LDA	0.9700	0.8097
LR	0.9706	0.8116
LightGBM	1.0000	0.7491
RF	1.0000	0.8265
SVM	0.9971	0.7543
XGBoost	1.0000	0.8172

Figure 4: ROC & AUC scores for each of the models

6.3 Conclusion:

As we saw in **Evaluation** section, **Logistic Regression**, **Linear Discriminant Analysis** and **Random Forests** obtain a significantly higher f1-score on the minority class, compared to others, thus these are the best models for this task.