Assignment 5

Partial solutions for selected problems

- 1. (a) $\mathsf{E}(Z^3) = \frac{\mathrm{d}^3 e^{t^2/2}}{\mathrm{d}t^3} \Big|_{t=0} = 0 \text{ and } \mathsf{E}(Z^4) = \frac{\mathrm{d}^4 e^{t^2/2}}{\mathrm{d}t^4} \Big|_{t=0} = 3.$
 - (b) Expand and use linearity: $\mathsf{E}(X^3) = \mu^3 + 3\mu^2\sigma\mathsf{E}(Z) + 3\mu\sigma^2\mathsf{E}(Z^2) + \sigma^3\mathsf{E}(Z^3) = \mu^3 + 3\mu\sigma^2$. Similarly, $\mathsf{E}(X^4) = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$. [Note that the "units", whatever they may be, agree on both sides of each equation.]
- 2. (c) From the hint, $E(X) = E(\int_0^\infty 1_{X>x} dx) = \int_0^\infty E(1_{X>x}) dx = \int_0^\infty P(X>x) dx$.
- 3. (a) Split $\mathsf{E}(\mathrm{e}^{tX})$ into an integral below 0 plus an integral above 0 to get

$$M_X(t) = \frac{\lambda}{2(\lambda + t)} + \frac{\lambda}{2(\lambda - t)} = \frac{\lambda^2}{\lambda^2 - t^2}$$
 for $|t| < \lambda$.

- (b) $Q_X(p) = \frac{\log(2p)}{\lambda}$ for $p \le \frac{1}{2}$ and $Q_X(p) = \frac{-\log(2(1-p))}{\lambda}$ for $p \ge \frac{1}{2}$.
- 4. (a) $W \sim \text{negative binomial}(5,.032)$ with mean $\mathsf{E}(W) = \frac{5(1-.32)}{.32}$ and variance $\mathsf{Var}(W) = \frac{5(1-.32)}{.32}$.
 - (b,c) These are the same value (see Thm. 3.3 in the notes): 55.23%.
- 5. Exer. 3.24. (Thm. 3.9(i,iii) in the notes can help with some of the expectations.)
 - (b) Same as Weibull(2, 2). For moments, either compute $\mathsf{E}(Y^k)$ using the pdf for Y or compute $\mathsf{E}((2X/\beta)^{k/2})$ using the pdf for X: $\mathsf{E}(Y) = \sqrt{\pi/2}$, $\mathsf{Var}(Y) = 2 \pi/2$. For quantiles, it could be easiest to first get the quantiles for $X/\beta \sim \text{exponential}(1)$ and then convert: $y_{.5} = \sqrt{2\log(2)}$, $y_{.9} = \sqrt{2\log(10)}$. [Make sure all four of these values are positive!]
 - (e) $F_Y(y) = e^{-e^{-(y-\alpha)/\gamma}}$ and $f_Y(y) = \frac{1}{\gamma}e^{-(y-\alpha)/\gamma}e^{-e^{-(y-\alpha)/\gamma}}$, for y > 0. $Q_Y(p) = \alpha - \gamma \log(Q_X(1-p)) = \alpha - \gamma \log(-\log(p))$ (since Y is a decreasing function of X).
- 6. (a) Be careful with the j=0 term and consider what happens as $t\to 0$.
 - (b) Both are 0.86794.
- 7. $P(Z^2 \le x) = P(-\sqrt{x} \le Z \le \sqrt{x}) = \Phi(\sqrt{x}) \Phi(-\sqrt{x})$, where $\Phi(z)$ is the standard normal cdf. Taking a derivative and using symmetry,

$$f_{Z^2}(x) = \frac{\mathrm{d}(\Phi(\sqrt{x}) - \Phi(-\sqrt{x}))}{\mathrm{d}x} = \frac{2}{\sqrt{x}}\Phi'(\sqrt{x}) = \frac{1}{\sqrt{x}} \left(\frac{\mathrm{e}^{-z^2/2}}{\sqrt{2\pi}}\right)\Big|_{z=\sqrt{x}} = \frac{x^{-1/2}\mathrm{e}^{-x/2}}{\sqrt{2\pi}},$$

1

which must be the gamma($\frac{1}{2}$, 2) pdf. This is the same as chi-square(1).