Construction assignment

Mohamed Hamdan

September 2022

circumscribing a circle

Solution

Figure 1: Quadilateral circumscribing a circle

Select a point **P** from which two tangents are drawn to the circle with center \mathbf{O} and radius r. The direction vectors $\mathbf{m_i}$ satisfy the equation

$$\mathbf{m}_i^{\mathsf{T}} \mathbf{\Sigma} \mathbf{m}_i = 0 \tag{1}$$

Assuming the external point as h, Σ is given by

$$\Sigma = (\mathbf{V}\mathbf{h} + \mathbf{u})(\mathbf{V}\mathbf{h} + \mathbf{u})^{\top} - (\mathbf{h}^{\top}\mathbf{V}\mathbf{h} + 2\mathbf{u}^{\top}\mathbf{h} + f)\mathbf{V}$$
(2)

 Σ can be orthogonally diagonalized as

$$\mathbf{\Sigma} = \mathbf{\Gamma}^{\top} \mathbf{D} \mathbf{\Gamma} \tag{3}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},\tag{4}$$

$$\Gamma = (\mathbf{y}_1 \quad \mathbf{y}_2), \quad \Gamma^{\top} = \Gamma^{-1}$$
 (5)

Using (4) and (5) and substituting **h** as **P**, the normal vectors \mathbf{n}_i of the tangents drawn from \mathbf{P} can be written as

$$\mathbf{n}_i = \Gamma \begin{pmatrix} \sqrt{|\lambda_1|} \\ \pm \sqrt{|\lambda_2|} \end{pmatrix} \tag{6}$$

Problem Statement - Construct a quadilateral Using the vectors \mathbf{n}_i in (6), the direction vectors \mathbf{m}_i can be found in 2-dimensional space since they are orthogonal. The points of contact of the tangents are then given

$$\mathbf{T}_{i} = \mathbf{P} - \frac{\mathbf{m}_{i}^{\top} (\mathbf{V} \mathbf{P} + \mathbf{u})}{\mathbf{m}_{i}^{\top} \mathbf{V} \mathbf{m}_{i}}$$
(7)

Where T_i are the points of contact. Consider two direction vectors \mathbf{t}_1 and \mathbf{t}_2 as

$$\mathbf{t}_1 = \mathbf{T}_1 - \mathbf{P} \tag{8}$$

$$\mathbf{t}_2 = \mathbf{T}_2 - \mathbf{P} \tag{9}$$

The points \mathbf{Q} and \mathbf{S} can then be found as

$$\mathbf{Q} = \mathbf{P} + \mu_1 \mathbf{t}_1 \tag{10}$$

$$\mathbf{S} = \mathbf{P} + \mu_2 \mathbf{t}_2 \tag{11}$$

Where μ_i are the parameters for the distance of points \mathbf{Q} and \mathbf{S} from point \mathbf{P} .

Each of the vectors \mathbf{n}_i are also normal vectors to one of the tangents from \mathbf{Q} and \mathbf{S} from (10) and (11). By using (3) and (6), the normal vectors for tangents from \mathbf{Q} and \mathbf{S} and not passing through \mathbf{P} can be found by using the condition

$$\|\mathbf{k}_i \times \mathbf{n}_i\| \neq 0 \tag{12}$$

where \mathbf{k}_i are the normal vectors of interest. The point R can then be found as the intersection of lines given by

$$\mathbf{k}_{1}^{\top} \left(\mathbf{x} - \mathbf{Q} \right) = 0 \tag{13}$$

$$\mathbf{k}_{2}^{\top} \left(\mathbf{x} - \mathbf{S} \right) = 0 \tag{14}$$

Solving (13) and (14) with \mathbf{x} as point \mathbf{R} , we get

$$\mathbf{R} = \begin{pmatrix} \mathbf{k}_1^{\top} \\ \mathbf{k}_2^{\top} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{k}_1^{\top} \mathbf{Q} \\ \mathbf{k}_2^{\top} \mathbf{S} \end{pmatrix}$$
(15)