Note: Always assign 0 for left (or lower) branch in any binary tree.

Information Theory

Suppose that X is a random variable that takes on values from an M-letter alphabet. Show that $0 \le H(X) \le \log_2 M$

-	riment has 2 b		P(X,Y)						
	the shown joint probabilities. Calculate the amount of information								Y
gained, o	r expected, fr	om knowing	each of the f	ollowing:				0	1
a)	Y = 1.			{2 }			1	U	1
b)	The valu	ue of X.		{2 }		X	0	0.2	0.1
				,		Λ	1	0.1	0.6
c)	The valu	ue of Y, Give	n that $X = 0$.		•		{2}		
d)	The valu	ues of both X	, Y.				{1}		
e)	The ave	rage commoi	n information	n between X a	nd Y.		{1}		
		a	b	C	d		\mathbf{E}		Units
	Info =						•		

Markov finite state Model

II • • • • • • • • • • • • • • • • • •	A source emits iid symbols form the alphabet {a, b, & c}, with the					C
following probabilities. Calculate the entropy of that sour	ce.	Pro	b.	0.25	0.25	0.5
		Entrop	py =			Bytes
The probability of the current symbol, X_n , emitted form			$\mathbf{P}(X_n)$	$/X_{n-1}$		
the previous source, is found to be related to the				X_n		
previous symbol, X_{n-1} , as shown in table. Recalculate the			A		b	C
entropy of the source.		0	1		1	3
		a	$\overline{2}$		8	$\frac{-}{8}$
	X_{n-1}	b	1		1	3
		b	8		2	$\frac{-}{8}$
			1		1	3
		c	$\frac{-}{8}$		8	$\frac{\overline{4}}{4}$
	Entro	py =				Bytes

The bases of a genomic sequence have the	Base	. A		С	G	Т	
probabilities shown. Calculate the self-inform	probabilities shown. Calculate the self-information						0.5
of "C", and the entropy of the sequence.	{8 }	Self-	Informa	tion	of C		
	The	Entropy	of th	e Seq.			
The probability of the any base, B_n , in the				P(B _n	/ B _{n-1})		
previous sequence, is found to be related to					Bn		
its previous base, B_{n-1} , by the probabilities			Α	С		G	Т
given in the following table. Recalculate the		Α	0.4	.0).2	0.1	0.3
entropy of the sequence. {12}	B _{n-1}	С	0.2	0.	.4	0.2	0.2
		G	0.1	0.	.1	0.3	0.5
		Т	0.05	0.	.05	0.275	0.625

Decodability

Determine whether each of the following codes is uniquely decodable (UD), prefix, instantaneous, or near instantaneous:

Code	UD	Prefix	Instantaneous	Near-Instant.
{0,01,11,111}				
{0,01,110,111}				
{0,10,110,111}				
{1,10,110,111}				

	ns of 2, 2, 3, 3, 3, 3, & 3 bits. Is this code uniquely
decodable? Why?	{4}
Answer:	
Reasons:	

What the largest number is of symbols that can be coded using a ternary (i.e. 3 symbols) code, while the code length of each symbol does not exceed 3? Why? {3}
Answer:
Reasons:

14 symbols are coded using a ternary (i.e. 3) code. The code lengths are 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,

3, 3, & 3. Is this code uniquely decodable? Why? {2}			
Answer:			
Reasons:			
An alphabet of 7 symbols, had code lengths of 2, 2, 3, 3, 3, 3, decodable? Why? {2}	& 3 bits. Is	this code uniq	uely
Answer:			
Reasons:			
Using Kraft's Inequality, check the decidability of the		Prob	Code
following code table. Next, check the code table. Is the code decodable? Why? Calculate the entropy, the average	a	0.125	0
code length, and the redundancy	b	0.125	10
	c	0.25	110
	D	0.5	101
Kraft's inequality result:			
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Decodability based on Kraft's inequality:			
Is the code decodable?			
Is the code decodable?			

Assume a 5-symbol alphabet {A, B, C, D, & E}. Build a prefix code for the symbols.

Redundancy =

Symbol	A	B C D				D	E			
Code										
Code the follo	Code the following sequence: CBABAA									
Symbol	Symbol C B A B A A									
Code										

Huffman Coding

17/5/2004

- 2. Design each of the following codes, and then calculate its average coding length, and redundancy, per symbol.
- a) A minimum variance Huffman code for the alphabet $\{A, B, C, D\}$, with probabilities, 0.1, 0.2, 0.3, & 0.4, respectively.
- b) A minimum variance extended Huffman code for the binary alphabet $\{0, 1\}$, with probabilities 0.1 and 0.9, respectively. Generate a code word for every block of 3 symbols.

c) A 3-bit Tunstall code for the above binary alphabet.

Min-Var	Huffman	Huff	man	Extended	Extended Huffman		tall
Symbol	Code	Symbol	Code	Symbol	ymbol Code		Code
_						_	
L _{Average}		L _{Average}		L _{Average}		L _{Average}	
Red		Red		Red		Red	

An alphabet is composed of the 6 symbols $\{A, C, N, T, Y, \Delta\}$. Design a minimum length code for the alphabet. Assign short codes for small index symbols. Use this code as a starting code during next problems. index **Code Tree** Code Sym 1 \mathbf{A} 2 \mathbf{C} 3 N 4 \mathbf{T} 5 \mathbf{Y} 6 $\boldsymbol{\Delta}$

a) code	Using adaptive Huffman coding, a) code the following: "ACACTAN". Show the development of the coding tree, and the code generated for each symbol							
Adaptive	Symbol	A	C	A	C	T	A	N
Huffman	Code							
· ·	b) Decode the first 5 symbols of the same alphabet, form the stream "0111011001011001111011000011110110001010							
	Symbol							
	Code							

Use the Go	Use the Golomb code, with m=2, to code the above sequence.							
Colomb	Symbol	A	C	A	C	T	A	N
Golomb	Code							
Code the a	bove sequenc	e using Mo	ve-To-Fro	nt.				
	Symbol	A	C	A	C	T	A	N
	Code							

Code the number 7 using

- a) Golomb code, with m=3.
- b) Rice code, fundamental sequence.
- c) Rice code, split sample option, with m=3, and k=5.

Tech	Golomb	Rice, Fund.	Rice, Split
Code			

Code the nun	nber 6. First, use Golomb code with	VLC Tree
m=3. Next us	e Recursive indexing, with a	
_	on alphabet of size 3. Use variable	
	or entropy coding, with smaller	
	ing short length. Draw the VLC tree. nt parts of each code.	
Laber uniteres	in parts of each code.	
	Golomb Code:	Recursive indexing
Code		
Labels		
		COCOAC". Show the development of the
		y the 3 characters A, C, and O. Use VLC to for
new characte	r coding.	
code:		n
	Coding T	rees

<u>Arithmetic</u>

G.												
Given			nts shown:									
	Symbol			Α			G					
	Count			9			2		17			
What	is the wor	d length	required fo	or a	digital ari	thmetic e	ncoder to	unambi	guously encode the			
above	symbols?											
Word	ord Length = bits											
Calcul	late the cu	mulative	e count and	the	total cour	nt for the	above sy	mbols.				
	Symbol		Α		(3		G	Total Count			
Cı	umCount											
Using	a word lei	ngth of 8	bits, encod	le th	e symbols	"CACG"	. Use the	table giv	en below to report			
									n. Assume the given			
			initial scale			·		-	<u> </u>			
Step	Symbol		L		и	Е	(Scale)	Code				
n-1		001	.11111		1100000	1		4				
n	С											
n+1												
n+2												
n+3												
n+4												
n+5												
n+6												
n+7												
n+8			-									
n+9			-									
n+10												
n+11												
n+12				1								

0		/				
Step	Symbol	L	и	Tag	E(Scale)	scale3
n-1		00111111	11000001			4
n	С					

Dictionary

Given the sequence {1010110100100010011010101011111111000000															
encode/decode the first 7 phrases. Show the generated phrases, the corresponding code, and the															
encoder tree after each coding/decoding cycle. Use suppression, excision and prefix coding. {21}															
Phrase 1															
Code 1															
Phrase 2															
Code 2															
Phrase 3															
Code 3															
Phrase 4															
Code 4															
Phrase 5															
Code 5															
Phrase 6															
Code 6															
Phrase 7															
Code 7															
				Coc	ding T	rees									
Init	ial Tree			,	Tree	1					Tre	e 2			
									_	_				_	
т	Tree 3 Tree 4 Tree 5														
•		Tree 3 Tree 4 Tree 5													

T	I		
Tree 6	<u> </u>	Tree 7	

Using LZ77 (Tail biting, Future), encode, in binary, the first four phrases following the
underlined window. Indicate the meaning of each part of the code, e.g. new character, Length,
etc. <u>01100100111101000100111111011001110111</u>
1000100111111001100111011101001110001001111
First Phrase:
Second Phrase:
Third Phrase:
Fourth Phrase:

Code the first	6 phrases	of the s	eanence	{1011	01101	1100	1001	0111	1110	001.	}. I	Jse L Z77 , Sho	w
the generated]	_		-	-							-		
{10}	1 1	<u> </u>											
Phrase 1													
Code 1													
Window1													
Phrase 2													
Code 2													
Window2													
Phrase 3													
Code 3													
Window3													
Phrase 4													
Code 4													
Window4													
Phrase 5													
Code 5													
Window5													
Phrase 6													
Code 6													
Window6													

Predictive

Use p	-	n technique, and the following probabilities: Show the different context tables after coding the											С		G	Т
•						text of 2		g tile	Pro	Prob. 0.125		125	0.125		0.25	0.5
•											ı		1			ı
a)	The se	equen	ce "CA	GT"	is enco	ded. Sh	ow the	genera	ted co	unt	s ai	nd t	he c	umu	lative (counts.
Modi						g codin										
Base	-	С				A			G						Т	
	Count	Cu	m Cour)+ (Count	Cum C	`ount	Count	Cur	n C	Oun		Cou	ınt	Cum	Count
	Count Count Count Count Count							Count	Cai		Jan	`			Cam	

Using Burrows-Wheeler transform, and the alphabet $\{A, C, T, N, \& \Delta\}$: a) Code the sequence $\{ACACAT\}$. Let row index start at 0. $\{4\}$																		
0																		
1																		
2																		
3																		
4																		
5																		
Code	e:	•		·	·	·			·									
Find	the I	Move	to Fro	ont co	de for	the	sequ	enc	e {N]	ΝΔΔ	ΔΝ	}.			{2}			
Code	e:																	
b) at th		nd the most			ırrows	s Wh	neele	r tra	ansfo	rm (of {	3, C	NAC	AAA}.	Row {4	mbei	rs are	given
0																		
1																		
2																		
<u>3</u>																		
4																		
5																		
6																		
Deco	Decoded Sequence:																	

Associative Coder of Buyanovsky (ACB)

Assume that the underlined part of the sequence "ACGACGACATGCGA" has already been encoded Encode next 2 phrases using the Associative Coder of Buyanovsky (ACB) {16}												
Lincode Heat 2 pillases using the Associative t	couel of buy	yallovsky (ACD)	(10)									