A Deep Learning approach for Time Series Imputation on Photovoltaic data

Nicolò Vescera November 9th, 2023

Università degli Studi di Perugia

Intro

Problem Introduction

The growing need for generating clean energy from renewable sources has resulted in extensive data collection.

However, these data often contain gaps and deficiencies.

Accurate imputation of these gaps is essential to ensure the reliability of analyses and predictions based on this data.

Problem Definition

Given a set of N time series $S = \{S_1, S_2, ..., S_N\}$, where each $S_i = (t_i, v_i)$, represents the moment t_i when v_i was recorded, $S^* \in S$, a specific target series that represent the *Total* generated energy,

The objective of the **imputation problem** is to **estimate eventual missing values** $v_j, \ldots, v_{j+h} \in S^*$, using other time points temporally adjacent to t_j and t_{j+h} .

Photovoltaic Implant

Original Dataset

Files

- **2**022_02_02_inverter.csv
- 2022_02_02_meter.csv
- 2022_02_02_platDevice.csv
- 2022_02_02_stringbox.csv

:

- **1** 2023_06_16_inverter.csv
- **2**022_06_16_meter.csv
- 🖹 2022_06_16_platDevice.csv

Start Date	Feb. 02, 2022
End Date	June 16, 2023
Files	2,814
File Type	6
Size	54.3 MB

Target Feature

Data Preprocessing

Monolithic Table

V.NAME ₁ _FEAT ₁		$DEV.NAME_n$ _ $FEAT_n$
:	:	÷
		• • •
:	:	:
		: : : : : : : : : : : : : : : : : : :

Rows (#)	143,430
Columns (#)	733
Size (MB)	463.9

Timestamp Cyclical Encoding

We cyclically encoded timestamps using sine and cosine values to capture time patterns for minutes, hours, days, and years.

Historical Weather

Target feature

Re-sampling

Feature Selection

Correlation Matrix

Power Predictive Score (PPS)

Resulting Dataset

	Resulting Dataset	Pre-processed Dataset
Rows (#)	46,537	143,430
Columns (#)	33	763
Size (MB)	14.5	543.7

	Start	End	Rows
Train	June 01, 2022	February 28, 2023	24,864
Val	March 01, 2023	March 31, 2023	2,880
Test	April 01, 2023	April 30, 2023	2,880

Deep Learning Models

MLP-based Model Architecture

Training Phase

RNN-based Model Architecture

Training Phase

Transformer-based Model Architecture

Training Phase

CPU Utilization

GPU Utilization

Model Evaluations & Comparisons

MLP-based Model

Prediction vs Target (11-4, 2 d)

MLP-based Model

AVG MAE	(kW)	14.11	\pm	3.81
AVG MAPE	(%)	70.98	±	27.99
AVG MAPE@20	(%)	53.01	±	20.10
AVG R ²		0.69	±	0.17

RNN-based Model

Prediction vs Target (11-4, 2 d)

RNN-based Model

AVG MAE	(kW)	6.86	\pm	1.87
AVG MAPE	(%)	28.83	\pm	10.02
AVG MAPE@20	(%)	21.02	±	8.67
AVG R ²		0.92	士	0.06

Transformer-based Model

Transformer-based Model

AVG MAE	(kW)	3.76	\pm	0.39
AVG MAPE	(%)	18.14	±	6.76
AVG MAPE@20	(%)	11.18	±	3.33
AVG R ²		0.98	±	0.02

Comparisons

MLP vs RNN vs Transformer Errors

Comparisons

Gain (%)

	MLP vs RNN	RNN vs Trans.	
MAE	51.38	45.18	
MAPE	59.38	30.07	
MAPE@20	60.34	46.81	
R^2	25.00	6.12	
AVG	49.03	32.05	

Final Conclusions

In this thesis, we introduced 3 different deep learning models to address the time series imputation problem on photovoltaic data.

1. Transformer:

PRO: Better performance overall

CONS: Computationally complex training phase

2. RNN:

PRO: Able to train on low-performing machines

CONS: Quite high errors

3. MLP:

CONS: Not able to solve the problem, very high errors

The end