Simplex Presentation - EE5327

Srujana B - MA17BTECH11001 J Sai Vyshnavi - MA17BTECH11005

28/02/2019

Question

 Consider the linear programming problem Maximize 3x + 9y,
 Subject to

$$2y - x \le 2$$
,
 $3y - x >= 2$,
 $2x + 3y \le 10$,
 $x, y >= 0$.

Then the maximum value of the objective function is

Solution using CVXPY

```
import cvxpy as cvx
from numpy import matrix, round, eve
import numpy
X = cvx.Variable()
Y = cvx.Variable()
constraints = [-X + 2 * Y \le 2,
             3 * Y - X >= 0.
              2 * X + 3 * Y \le 10.
              X >= 0.
              Y > = 01
obj = cvx.Maximize(3*X+9*Y)
prob = cvx.Problem(obj,constraints)
prob.solve()
print("Status:", prob.status)
print("Optimal value", prob.value)
print("Optimal var", X.value, Y.value)
```

Solution using CVXPY

Status: optimalOptimal value 24.00Optimal var 2.00 2.00

```
Step 1 : Introduce Slack variables \mu_1, \mu_2, \mu_3.

Step 2 : Transform the given LPP

After transformation given problem turns into :

Maximize 3x + 9y + 0\mu_1 + 0\mu_2 + 0\mu_3,

Subject to

2y - x + \mu_1 = 2,
x - 3y + \mu_2 = 2,
2x + 3y + \mu_3 = 10,
x, y, \mu_1, \mu_2, \mu_3 >= 0.
Step 3 : Construct the tabulae
```

c_i	3	9	0	0	0		
	Х	ightarrowy	μ_1	μ_2	μ_{3}	RHS	θ
\rightarrow 0 μ ₁	-1	2	1	0	0	2	(1)
$0\mu_2$	1	-3	0	1	0	0	-
$0\mu_3$	2	3	0	0	1	10	5
$c_i - z_i$	3	9	0	0	0	$Z_{RHS}=0$	

Swap the variables μ_1 and y

Here the pivot element is 2,

Make it 1 and other elements in its column 0 using elementary row transformations.

$$R_1 = R_1/2$$

 $R_2 = R_2 + 3R_1$
 $R_3 = R_3 - 3R_1$

c_i	3	9	0	0	0		
	ightarrowx	у	$\mu_{\mathtt{1}}$	μ_2	μ_{3}	RHS	θ
$0\mu_1$	-1	(2)	1	0	0	2	(1)
$0\mu_2$	1	-3	0	1	0	0	-
$0\mu_3$	2	3	0	0	1	10	5
$c_i - z_i$	3	9	0	0	0	$Z_{RHS}=0$	
9y	-1/2	1	1/2	0	0	1	-
$0\mu_2$	-1/2	0	3/2	1	0	3	-
$ ightarrow$ 0 μ 3	7/2	0	-3/2	0	1	7	2
$c_i - z_i$	15/2	0	-9/2	0	0	$Z_{RHS}=9$	

Swap the variables μ_3 and x

Here the pivot element is 7/2,

Make it 1 and other elements in its column 0 using elementary row transformations.

	c_i	3	9	0	0	0		
		ightarrowx	у	μ_1	μ_2	μ_{3}	RHS	θ
	$0\mu_1$	-1	(2)	1	0	0	2	(1)
	$0\mu_2$	1	-3	0	1	0	0	-
	$0\mu_3$	2	3	0	0	1	10	5
_	$c_i - z_i$	3	9	0	0	0	$Z_{RHS}=0$	
_	9y	-1/2	1	1/2	0	0	1	-
	$0\mu_2$	-1/2	0	3/2	1	0	3	-
	$ ightarrow$ 0 μ_3	7/2	0	-3/2	0	1	7	2
_	$c_i - z_i$	15/2	0	-9/2	0	0	$Z_{RHS}=9$	
_	9y	0	1	2/7	0	1/7	2←	
	_	_	^	0 /7	-1	1 /7	4	
	$0\mu_2$	0	0	9/7	1	1/7	4	
	0μ ₂ 3x	1	0	9/7 -3/7	0	1/7 2/7	2 ←	

Solution

Since the values of $c_i - z_i$ are all non positive, we can end the iterations.

Thus, the optimal values are as follows

$$x = 2$$

$$y = 2$$

Objective Function = 3x+9y = 24.