Computer Graphics

Lecture 17

Curve Fitting

Circle Drawing

Properties of a circle

- Set of points that are distance r from given center point (x_c, y_c)
 - Center (x_c, y_c)
 - Distance r radius

y-y_c { y y_c

At any point (x,y)

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

Circle Drawing

Solve for y

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

$$(y - y_c)^2 = r^2 - (x - x_c)^2$$

$$y - y_c = \sqrt{r^2 - (x - x_c)^2}$$

$$y = y_c \pm \sqrt{r^2 - (x - x_c)^2}$$

Like wise solve for x

$$x = x_c \pm \sqrt{r^2 - (y - y_c)^2}$$

Drawing algorithm to plot a circle?

Problems with Circle Drawing

Number of computational operations

More spaces between plotted pixel position

Better solutions?

Consider the center of the circle is (0,0)

Using Symmetry property of the circle

- Calculate values for the one octant
- Generate the rest of the 7 octant

Let's start in first octant starting value (0,r)

Let the current position is (x_k, y_k)

Then

$$x_{k+1} = x_k + 1$$

$$y_{k+1} = y_k \text{ or } y_k - 1$$

When x move from x_k to x_{k+1} , y_{k+1} have two choices $(y_k \text{ or } y_k - 1)$

Consider

$$p_k = f(x, y) = x^2 + y^2 - r^2$$

 $= \langle \langle 0 (x, y) \text{ inside the circle } | = 0 (x, y) \text{ on the circle } | > 0 (x, y) \text{ outside the circle} \rangle$

$$p_k \rightarrow (x_k + 1, y_k - \frac{1}{2})$$
 Taking midpoint in y axis

If $p_k < 0$ the next point $(x_k + 1, y_k)$

else $(p_k > 0)$ the next point $(x_k + 1, y_k - 1)$

Mid point
$$y_k - (y_k - y_k - 1)/2$$

 $y_k - 1/2$

$$p_k = f(x_k + 1, y_k - \frac{1}{2})$$

$$p_k = f(x_k + 1, y_k - \frac{1}{2})$$

$$p_k = (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2 \rightarrow (2)$$

Since

$$p_k = f(x, y) = x^2 + y^2 - r^2$$

in k+1 step

$$p_{k+1} = (x_{k+1} + 1)^2 + (y_{k+1} - \frac{1}{2})^2 - r^2$$

Replace
$$x_{k+1} = x_k + 1$$

$$p_{k+1} = ((x_k + 1) + 1)^2 + (y_{k+1} - \frac{1}{2})^2 - r^2$$

$$p_{k+1} = (x_k + 1)^2 + 1 + 2(x_k + 1) + (y_{k+1} - \frac{1}{2})^2 - r^2 \rightarrow (3)$$
(3)-(2)

$$p_{k+1} - p_k = (x_k + 1)^2 + 1 + 2(x_k + 1) + (y_{k+1} - \frac{1}{2})^2 - r^2$$
$$- (x_k + 1)^2 - (y_k - \frac{1}{2})^2 + r^2$$

$$p_{k+1} - p_k = 1 + 2(x_k + 1) + (y_{k+1} - \frac{1}{2})^2 - (y_k - \frac{1}{2})^2$$

$$p_{k+1} = p_k + 2(x_k + 1) + (y_{k+1} - \frac{1}{2})^2 - (y_k - \frac{1}{2})^2 + 1 \rightarrow (4)$$

If $p_k < 0$ the next point $(x_k + 1, y_k)$

$$p_{k+1} = p_k + 2(x_k + 1) + (y_k - \frac{1}{2})^2 - (y_k - \frac{1}{2})^2 + 1$$

$$p_{k+1} = p_k + 2(x_k + 1) + 1$$

Since $x_{k+1} = (x_k + 1)$

$$p_{k+1} = p_k + 2x_{k+1} + 1 \rightarrow (5)$$

else $(p_k > 0)$ the next point $(x_k + 1, y_k - 1)$

$$p_{k+1} = p_k + 2(x_k + 1) + ((y_k - 1) - \frac{1}{2})^2 - (y_k - \frac{1}{2})^2 + 1$$

Calculations

$$p_{k+1} = p_k + 2(x_k + 1) + ((y_k - 1) - \frac{1}{2})^2 - (y_k - \frac{1}{2})^2 + 1$$

$$= p_k + 2(x_k + 1) + ((y_k - 1)^2 + \frac{1}{4} - (y_k - 1)) - (y_k - \frac{1}{2})^2 + 1$$

$$= p_k + 2(x_k + 1) + ((y_k - 1)^2 + \frac{1}{4} - (y_k - 1)) - (y_k^2 + \frac{1}{4}$$

$$= p_k + 2(x_k + 1) + (y_k^2 + 1 - 2y_k + \frac{1}{4} - (y_k - 1)) - (y_k^2 + \frac{1}{4}$$

$$= p_k + 2(x_k + 1) + (y_k^2 + 1 - 2y_k + \frac{1}{4} - (y_k - 1)) - (y_k^2 + \frac{1}{4}$$

$$= p_k + 2(x_k + 1) + y_k^2 + 1 - 2y_k + \frac{1}{4} - y_k + 1 - y_k^2 - \frac{1}{4} + y_{k+1}$$

$$= p_k + 2(x_k + 1) + 1 - 2y_k + 1 + 1$$
Since
$$= p_k + 2(x_k + 1) + 2 - 2y_k + 1$$

$$= p_k + 2(x_k + 1) + 2 - 2y_k + 1$$

$$= p_k + 2(x_k + 1) - 2(y_k - 1) + 1$$

$$= p_k + 2(x_k + 1) - 2(y_k - 1) + 1$$

Initial point

Initial point (0,r)

$$x_{k+1} = x_k + 1 = 1$$

$$y_{k+1} = y_k - \frac{1}{2} = r - \frac{1}{2}$$

$$p_1 = f(1, r - \frac{1}{2})$$

$$p_1 = 1^2 + (r - \frac{1}{2})^2 - r^2$$

$$= 1 + r^2 + \frac{1}{4} - r - r^2$$

$$= \frac{5}{4} - r$$

Since we calculating in pixel level $p_1 = 1 - r$

Algorithm with example

Midpoint Circle Drawing Algorithm

Step 1: Input Radius r and circle centre (x_c,y_c) and plot the first point (0,r)

Step 2: Calculate the Initial value of the Decision Parameter

$$p_1 = 1 - r$$

Step 3: At Each x point perform the following test

If $p_k < 0$ the next point is $(x_k + 1, y_k)$ and

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

Otherwise $(p_k > 0)$ the next point is $(x_k + 1, y_k - 1)$ and

$$p_{k+1} = p_k + 2x_{k+1} - 2y_{k+1} + 1$$

Step 4: Repeat step 3 until x>=y

Step 5: Calculate other octant values by using symmetry property of the circle

Step 6: Add Centre value with the calculated x,y value

$$x = x + x_c$$

$$y = y + y_c$$

Problem: Draw a circle with radius 5 with centre (2,2) by using Midpoint Circle Drawing Algorithm

Solution

$$r=5$$
 centre= $(2,2)$

To use the Symmetry property of the circle consider the centre as (0,0)

To Find

$$p_1 = 1 - r$$

=1-5 = -4

 $p_1 < 0$ the next point is $(x_k + 1, y_k) \rightarrow (1,5)$

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

x	y	p_k
0	5	-4
1	5	-1
2	5	4
3	4	3
4	3	

Let k=1

$$p_2 = p_1 + 2x_2 + 1$$

= -4 + 2.1 + 1 = -1

 $p_2 < 0$ the next point is $(x_k + 1, y_k) \rightarrow (2,5)$

$$p_{k+1} = p_k + 2x_{k+1} + 1$$

Let k=2

$$p_3 = p_2 + 2x_3 + 1$$
 = -1 + 2.2 + 1 = 4

$$p_3 > 0$$
 the next point is $(x_k + 1, y_k - 1) \rightarrow (3,4)$

$$\mathbf{p_{k+1}} = \mathbf{p_k} + 2\mathbf{x_{k+1}} - 2\mathbf{y_{k+1}} + 1$$

Let k=3

$$p_4 = p_3 + 2x_4 - 2y_4 + 1$$

= $4 + 2 \cdot 3 - 2 \cdot 4 + 1 = 3$

$$p_4 > 0$$
 the next point is $(x_k + 1, y_k - 1) \rightarrow (4,3)$

Now x>y. it's the end of 1st octant

1st O	ctant
X	y
0	5
1	5
2	5
3	4
2nd O	ctant
X	y
4	у 3
5	2
5	1
5	0

X	У
5	0
5	-1
5	-2
4	-3
3	-4
2	-5
1	-5
0	-5

3rd Qu	adrant
X	у
0	-5
-1	-5
-2	-5
-3	-4
-4	-3
-5	-2
-5	-1
-5	0

4th Qu	adrant
X	у
-5	0
-5	1
-5	2
-4	3
-3	4
-2	5
-1	5
0	5

Linier translation

Add the centre value (2,2)

1st Qu	adrant	2nd Qu	uadrant	3rd Qu	adrant	4th Qu	adrant
2	7	7	2	2	-3	-3	2
3	7	7	1	1	-3	-3	3
4	7	7	0	0	-3	-3	4
5	6	6	-1	-1	-2	-2	5
6	5	5	-2	-2	-1	-1	6
7	4	4	-3	-3	0	0	7
7	3	3	-3	-3	1	1	7
7	2	2	-3	-3	2	2	7