Date:

EXPERIMENT NO. 5

AIM: Design, Implement and verify operation of 2-bit magnitude comparator circuit.

APPARATUS: connection wires, power supply, power project board, resistors, LED, ICs

Sr.No.	Component	Specification	Quantity
1	AND Gate	IC 7408	1
2	OR Gate	IC 7432	1
3	NOT Gate	IC 7404	1
4	XOR Gate	IC7486	1
5	Three input AND Gate	IC7411	1

SIMULATION WEBSITE: https://www.tinkercad.com/

THEORY:

Definition

A magnitude comparator is a combinational circuit that compares two numbers A & B to determine whether:

- A > B, or A = B, or
- > A < B

Inputs

First n-bit number A

Second n-bit number B

Outputs

3 output signals (GT, EQ, LT), where:

- 1. GT = 1IFF A > B 2. EQ = 1IFF A = B
- 3. LT = 1IFF A < B

Note: Exactly One of these 3 outputs equals 1, while the other 2 outputs are 0's

4-bit magnitude comparator

Inputs: 8-bits (A \Rightarrow 4-bits, B \Rightarrow 4-bits)

A and B are two 4-bit numbers

- > Let $A = A_3A_2A_1A_0$, and > Let $B = B_3B_2B_1B_0$ > Inputs have 2^{δ} (256) possible combinations
- Not easy to design using conventional techniques

A < B

0

0

2-Bit Magnitude Comparator:

A comparator used to compare two binary numbers each of two bits is called a 2-bit Magnitude comparator. It consists of four inputs and three outputs to generate less than, equal to, and greater than between two binary numbers.

The truth table for a 2-bit comparator is given below:

	INPUT		OUTPUT			
A1	A0	B1	В0	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

From the above truth table K-map for each output can be drawn as follows:

A>B:A1B1' + A0B1'B0' + A1A0B0'

A=B: A1'A0'B1'B0' + A1'A0B1'B0 + A1A0B1B0 + A1A0'B1B0'

: A1'B1' (A0'B0' + A0B0) + A1B1 (A0B0 + A0'B0')

: (A0B0 + A0'B0') (A1B1 + A1'B1')

: (A0 Ex-Nor B0) (A1 Ex-Nor B1)

A < B:A1'B1 + A0'B1B0 + A1'A0'B0

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

CE145 Digital Electronics

PROCEDURE:

- i. Make connections as per logic circuit diagram.
- ii. Apply proper input condition and observe the output information of led on/off.
- iii. Apply all possible combinations of input and verify correctness of circuit output as per truth tables.

OBSERVATION TABLE:

Serial No.	$\mathbf{A}_{\scriptscriptstyle 1}$	\mathbf{A}_{0}	$\mathbf{B}_{\scriptscriptstyle 1}$	\mathbf{B}_{0}	A≻B	A=B	A <b< th=""></b<>
1	0	0	0	0	0	1	0
2	0	0	0	1	0	0	1
3	0	0	1	0	0	0	1
4	0	0	1	1	0	0	1
5	0	1	0	0	1	0	0
6	0	1	1	0	0	0	1
7	0	1	1	1	0	0	1
8	1	0	0	0	1	0	0

OBSERVATION:

Obtained Marks: Faculty Sign: Date:

ASSIGNMENT:

1. Simulate 1 bit and 2-bit magnitude comparator experiment on http://vlabs.iitb.ac.in/vlabs-dev/labs/digital-electronics/experiments/verify-truth-table-of-one-bit-and-two-bit-comparator-iitr/simulation.html and show results.

Ans.

1-bit magnitude comparator:

2-bit magnitude comparator:

2. Draw pin diagram of IC 7485 and explain how it can be used for 4 bit magnitude comparison. Ans.

