NEBaseChanger Summary - Mon May 15 2023

Input sequence:BRho-GFPII-1D4

Type of mutagenesis: substitution

Mutagenesis region: 389 to 389

Replace/insert: A

Result

Required Primers

Name (F/R)	Oligo (Uppercase = target-specific primer)	Len	% GC	Tm	Ta *
Q5SDM_5/16/2023_F	AACTCGTCTTaACCGTCAAAG	21	43	60°C	61°C
Q5SDM_5/16/2023_R	GTCCATAGCAGAAGAAAATAATTAC	25	32	60°C	61 C

^{*} Ta (recommended annealing temperature)

PROTOCOL

The full Q5 Site-Directed Mutagenesis Protocol can be found in the manual, which can be downloaded from: www.NEB.com/CN/E0554

For your convenience, a quick protocol is presented here:

Step I: Exponential Amplification (PCR)

	25 µl RXN	FINAL CONC.
Q5 Hot Start High-Fidelity 2X Master Mix	12.5 µl	1X
10 μM Forward Primer	1.25 µl	0.5 μM
10 µM Reverse Primer	1.25 µl	0.5 μM
Template DNA (1-25 ng/ µl)	1 µl	1-25 ng
Nuclease-free water	9.0 µl	

Cycling Conditions:

STEP	TEMP	TIME
Initial Denaturation	98 °C	30 seconds
	98 °C	10 sec
25 Cycles	61 °C*	10-30 sec
	72 °C	20-30 seconds/kb
Final Extension	72 °C	2 minutes
Hold	4-10 °C	00

^{*}The recommended annealing temperature of 61 °C is specific for the mutagenic primers listed above when amplified with Q5 DNA Polymerase.

Step II: Kinase, Ligase & DpnI (KLD) Treatment

10 μl RXN FINAL CC	ONC.

5/15/23, 4:03 PM about:blank

PCR Product	1 ul	
Orthoduot	. μ.	
2X KLD Reaction Buffer	5 ul	1X
ZX INED INCACTION DUTIES	5 μι	17
10X KLD Enzyme Mix	1 ul	1X
TOX KLD Elizyille iviix	ιμι	1/4
Nuclease-free water	3 ul	

Mix well by pipetting gently up and down, and incubate at room temperature for 5 minutes.

Step III: Transformation

- 1 Add 5 μl of the KLD reaction mixture directly from step II to 50 μl of chemically-competent cells.
- 2 Incubate on ice for 30 minutes.
- 3 Heat shock at 42 °C for 30 seconds.
- 4 Incubate on ice for 5 minutes.
- 5 Add 950 μl of SOC, gently shake at 37 °C for 1 hour.
- Spread 40-100 μl onto appropriate selection plate and incubate overnight at 37 °C (if necessary, make a 10-100 fold dilution of recovered cells before plating to avoid a lawn of colonies).

Sequence after Q5 SDM

 $\tt TTCACGCTTATTTTGTCTTTGGGCCGACAGGGTGCAACCTCGAAGGGTTCTTCGCAACACTT$ GGAGGAGATCGCACTCTGGTCTCTTGTAGTACTTGCTATAGAGAGGTATGTGGTAGTGTG TAAGCCAATGTCAAACTTCAGGTTTGGTGAGAATCACGCAATTATGGGACTTGCCCTGACTT GGATAATGGCGATGCGCGCGCCTCCCCTCTTGTGGGATGGTCAAGGTACATTCCGGAG GGGATGCAATGCAGTTGTGGAATCGATTATTATACTTCTAGGCAAGAGGTAAACAACGAGTC TTTTGTCATATATGTTCGTTGTGCATTTTACGATCCCACTCGTAATTATTTTCTTCTGCT ATGGACAACTCGTCTTAACCGTCAAAGAGGCGGCGCGCAGCAGCAGCAGAGTCAGCGACAACT CAAAAAGCCGAGAAAGAAGTAACTCGGATGGTAATCATAATGGTGGTCGCTTTCCTGATCTG CTGGGTCCCGTATGCCAGCGTCGCCTTTTATATTTTTACACATCAGGGGTCTGATTTTGGCC CGATCTTCATGACTATACCAAGTTTCTTTGCAAAAAGTTCTTCCATTTACAACCCTGTAATT $\verb|CCCCTTGGCGATGACGAAGCTAGTACAACCGCTAGCAAAACAGAGACATCCCAGGTCGCAC|\\$ CCGCATAAGCGGCCGCGACTACAAGGATGACGATGACAAGGATTACAAAGACGACGATGATA ${\tt AGGACTATAAGGATGATGACGACAAATAATAGCAATTCCTCGACGACTGCATAGGGTTACCC}$ CCCTCTCCCTCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTG $\tt CGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAA$ CCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCA AGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAACAACGT CTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCTCTGCGGCCAA AAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAGTGCCACGTTGTGAGTTG ${\tt GATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGTATTCAACAAGGGGCTGAAGGATG}$ CCCAGAAGGTACCCCATTGTATGGGATCTGATCTGGGGCCTCGGTGCACATGCTTTACATGT GTTTAGTCGAGGTTAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGA AAAACACGATGATAATGACCATGGTGAGCAAGCAGATCCTGAAGAACACCGGCCTGCAGGAG ATCATGAGCTTCAAGGTGAACCTGGAGGGCGTGGTGAACAACCACGTGTTCACCATGGAGGG $\verb|CTGCGGCAAGGGCAACATCCTGTTCGGCAACCAGCTGGTGCAGATCCGCGTGACCAAGGGCG|\\$ $\verb| CCCCCTGCCCTTCGCCTTCGACATCCTGAGCCCCGCCTTCCAGTACGGCAACCGCACCTTC| \\$ ${\tt ACCAAGTACCCCGAGGACATCAGCGACTTCTTCATCCAGAGCTTCCCCGCCGGCTTCGTGTA}$ CGAGCGCACCCTGCGCTACGAGGACGGCGGCCTGGTGGAGATCCGCAGCGACATCAACCTGA GTGATGAAGAAGACCATCACCGGCCTGCAGCCCAGCTTCGAGGTGGTGTACATGAACGACGG CGTGCTGGTGGGCCAGGTGATCCTGGTGTACCGCCTGAACAGCGGCAAGTTCTACAGCTGCC ACATGCGCACCTGATGAAGAGCAAGGGCGTGGTGAAGGACTTCCCCGAGTACCACTTCATC CAGCACCGCCTGGAGAAGACCTACGTGGAGGACGGCGGCTTCGTAGAGCAGCACGAGACCGC CATCGCCCAGCTGACCAGCCTGGGCAAGCCCCTGGGCAGCCTGCACGAGTGGGTGTAAGCTC GAGCATGCATCTAGAGGGCCCTATTCCCTTTAGTGAGGGTTAATTGCTAGAGCTCGCTGATC AGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCT TGACCCTGGAAGGTGCCACTCTCACTGTCCTTTCCTAATAAATGAGGAAATTGCATCGCAT TTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAAT CGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTT GGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTAT ${\tt CAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCG}$ ${\tt TAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGG}$ CGAACGTGGCGAGAAAGGAAGGAAGGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGT $\tt GTAGCGGTCACGCTGCGCGTAACCACCACCACCCGCCGCTTAATGCGCCGCTACAGGGCGC$ GTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATAC ATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAA AGGAAGAATCCTGAGGCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAG CAGCAACCATAGTCCCGCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGA $\tt CTAATTTTTTTTTTTTTTTTGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTA$ GCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGC $\tt CTGCAAGACGAGGCAGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGT$ GCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGG ATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGG CGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGA GCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAACATC AGGGGCTCGCCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGAT CTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTC TGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTA $\tt CCCGTGATATTGCTGAAGAACTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGT$

about:blank 2/3

ATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGC GGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGA TTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGA TGATCCTCCAGCGGGGGATCTCATGCTGGAGTTCTTCGCCCACCCTAGGGGGGAGGCTAACT GAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAA TAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACT CTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCA AAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTT ${\tt TCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTT}$ CGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCA ${\tt GGTTCGTGCACACGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCG}$ TGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCG GCAGGGTCGGAACAGGAGGGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTAT $\verb|GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGC|$ $\verb|CTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCC|\\$ $\tt AGGCGCGCGGATGTACGGGCCAGATTTACGCGTTGACATTGATTATTGACTAGTTATTAA$ TAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACT TACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGA $\tt CGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTA$ CGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGA $\tt CGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTC$ $\tt CTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAG$ TACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGA CGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACT CTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAG GGAGACCCAAGCTTCTGGAGGCCCGGGCTTTCAGGGTACCGAAGAAGGATCCATGAATGGGA CGGAGGGACTGAATTTCTATGTACCTTTTTCAAACAAGACGGGAGTCGTCCGAAGTCCGTTT GAATATCCCCAGTATTACCTGGCAGAGCCGTGGCAATTCAGTGTGCCTTGCCGCATATATGTT CCTTCTGATCGTATTGGGTTTCCCGATAAATTTCCTTACCCTCTATGTCACGGTGCAGCACA AGAAGCTGAGAACACCACTGAACTATATCCTCCTTAATCTGGCGGTTGCGAACCTTTTCATG GTATTCGGCGGATTTACAACAACATTGTACACATCAC

about:blank 3/3