

We Claim:

1. A transmitter comprising
a plurality of m antennas, where m greater than one; and
an encoder handling m blocks of incoming symbols at a time, each block
containing N of said incoming symbols, and encoding said N blocks of incoming symbols
into m streams of symbols, each being applied to a different one of said m antennas,
where said encoding involves modulo arithmetic.
2. The transmitter of claim 1 where said encoding follows an orthogonal
encoding design.
3. The transmitter of claim 1 where said encoding is FD-DC encoding.
4. The transmitter of claim 1 where said encoding also involves negations and
complex conjugations.
5. The transmitter of claim 1 where $m=2$, and where
in frame k said encoder generates
a stream of symbols, $x_1^k(n)$, $n=0, 1, 2, \dots N-1$, that is applied to a first one
of said antennas, preceded by a cyclic prefix sequence of symbols $x_1^k(t)$,
 $t= -1, -2, -v$, where v equals to symbol memory of channel through which
said transmitter communicates with a receiver, where a cyclic prefix
sequence is one where $x_1^k(i)$ in the prefix sequence equals $x_1^k(N-i)$ in the
succeeding sequence, and
a stream of symbols, $x_2^k(n)$, $n=0, 1, 2, \dots N-1$, that is applied to a second
one of said antennas, preceded by a cyclic prefix sequence of symbols
 $x_2^k(t)$, $t= -1, -2, -v$, and
in frame $k+1$ said encoder generates

a stream of symbols $x_1^{k+1}(t)$ that is equal to $-\bar{x}_2^k((-n)_N)$, that is applied to said first one of said antennas, preceded by a cyclic prefix sequence of symbols $x_1^{k+1}(t)$, $t = -1, -2, -v$, and

a second stream of symbols $x_2^{k+1}(t)$ that is equal to, $\bar{x}_1^k((-n))$, that is applied to said second one of said antennas, preceded by a cyclic prefix sequence of symbols $x_2^{k+1}(t)$, $t = -1, -2, -v$.

6. A receiver comprising:

a time-domain to frequency-domain converter responsive to a signal received by an antenna in frames k and $k+1$, for developing signals \mathbf{Y}^k in frame k and signals \mathbf{Y}^{k+1} in frame $k+1$;

a linear combiner for creating a first linear combination signal, $\tilde{\mathbf{Y}}^k$, from signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , and a second linear combination signal, $\tilde{\mathbf{Y}}^{k+1}$, from signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , where said first linear combination is different from said second linear combination;

an equalizer that pre-multiplies signal $\tilde{\mathbf{Y}}^k$ by a diagonal matrix \mathbf{W} to form signal $\tilde{\mathbf{Z}}^k$, and pre-multiplies signal $\tilde{\mathbf{Y}}^{k+1}$ by said diagonal matrix \mathbf{W} to form signal $\tilde{\mathbf{Z}}^{k+1}$;

a frequency-domain to time-domain converter for converting signals $\tilde{\mathbf{Z}}^k$ and $\tilde{\mathbf{Z}}^{k+1}$ to time-domain signals; and

a slicer responsive to said time domain signals.

7. The receiver of claim 6 where said time-domain to frequency-domain converter implements a Fast Fourier Transform algorithm.

8. The receiver of claim 6 where said frequency-domain to time-domain converter implements an inverse Fast Fourier Transform algorithm.

9. The receiver of claim **6** where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^k$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , multiplies at least one of said component signals by a diagonal matrix.

10. The receiver of claim **6** where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^k$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , multiplies each of said component signals by a different diagonal matrix.

11. The receiver of claim **6** where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^k$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , employs diagonal matrices Λ_1 and Λ_2 where diagonal matrix Λ_1 is related to characteristics of transmission medium between a first antenna of a transmitter of signals received by said receiver, and Λ_2 is related to characteristics of transmission medium between a first antenna of a transmitter of signals received by said receiver.

12. The receiver of claim **11** where said linear combiner, in creating signal $\tilde{\mathbf{Y}}^{k+1}$ from component signals related to \mathbf{Y}^k and \mathbf{Y}^{k+1} , employs diagonal matrices that are related to said matrices Λ_1 and Λ_2 through operations taken from a set that includes negations and complex conjugations.

13. The receiver of claim **6** where said linear combiner creates signal $\tilde{\mathbf{Y}}^k = \Lambda_1^* \mathbf{Y}^k + \Lambda_2 \bar{\mathbf{Y}}^{k+1}$, and signal $\tilde{\mathbf{Y}}^{k+1} = \Lambda_2^* \mathbf{Y}^k - \Lambda_1 \bar{\mathbf{Y}}^{k+1}$, where $\bar{\mathbf{Y}}^{k+1}$ is a complex conjugate of \mathbf{Y}^{k+1} .

14. The receiver of claim **13** where elements of said diagonal matrix \mathbf{W} are related to matrices Λ_1 and Λ_2 .

15. The receiver of claim **13** where said diagonal matrix \mathbf{W} has elements

$$\mathbf{W}(i,i) = \frac{1}{\tilde{\Lambda}(i,i) + \frac{1}{SNR}}, \text{ where } \tilde{\Lambda}(i,i) = \Lambda_1(i,i)\Lambda_1^*(i,i) + \Lambda_2(i,i)\Lambda_2^*(i,i), \text{ and } (\cdot)^*$$

represents a complex conjugate operation, and SNR is a computed value.

16. A receiver comprising:

a time-domain to frequency-domain converter responsive to a signal received by an antenna in frames $k, k+1, \dots k+m$, where m is a selected integer greater than 0, for developing signals $\mathbf{Y}^k, \mathbf{Y}^{k+1}, \dots \mathbf{Y}^{k+m}$, in frames $k, k+1, \dots k+m$, respectively;

a linear combiner for creating signals $\tilde{\mathbf{Y}}^k, \tilde{\mathbf{Y}}^{k+1}, \dots \tilde{\mathbf{Y}}^{k+m}$ from linear combinations of signals related to $\mathbf{Y}^k, \mathbf{Y}^{k+1}, \dots \mathbf{Y}^{k+m}$;

an equalizer that pre-multiplies each signal $\tilde{\mathbf{Y}}^j, j=k, k+1, \dots k+m$ by a diagonal matrix \mathbf{W} to form signals $\tilde{\mathbf{Z}}^j, j=k, k+1, \dots k+m$;

a frequency-domain to time-domain converter for converting signals $\tilde{\mathbf{Z}}^j$ to time-domain signals; and

a slicer responsive to said time domain signals.

17. The receiver of claim 17 where said signals related to signals $\mathbf{Y}^k, \mathbf{Y}^{k+1}, \dots \mathbf{Y}^{k+m}$ are related to said signals $\mathbf{Y}^k, \mathbf{Y}^{k+1}, \dots \mathbf{Y}^{k+m}$ through operations from a set that includes negations and complex conjugations.

18. A receiver comprising:

p antennas, where p is an integer greater than 1;
a time-domain to frequency-domain converter responsive to a signal received by each of said antennas in frames $k, k+1, \dots k+m$, where m is a selected integer greater than 0, for developing signals $\mathbf{Y}_j^k, \mathbf{Y}_j^{k+1}, \dots \mathbf{Y}_j^{k+m}$, in frames $k, k+1, \dots k+m$, respectively, where subscript j identifies a j^{th} antennas of said p antennas;

a linear combiner for creating groups of signals $\tilde{\mathbf{Y}}_n^k, \tilde{\mathbf{Y}}_n^{k+1}, \dots \tilde{\mathbf{Y}}_n^{k+m}$ for each value of subscript $j=1, 2, \dots p$, from linear combinations of signals related to said signals $\tilde{\mathbf{Y}}_n^k,$

$\tilde{\mathbf{Y}}_n^{k+1}, \dots, \tilde{\mathbf{Y}}_n^{k+m}$, when n is an index designating a transmitting unit that supplies signals to said p antennas;

an equalizer that pre-multiplies each signal $\tilde{\mathbf{Y}}_n^q$, $q=k, k+1, \dots, k+m$ by a diagonal matrix \mathbf{W} to form signals $\tilde{\mathbf{Z}}_n^q$, $q=k, k+1, \dots, k+m$;

a frequency-domain to time-domain converter for converting signals $\tilde{\mathbf{Z}}_n^q$ to time-domain signals; and

a slicer responsive to said time domain signals.

19. The receiver of claim **18** where $p=2$, and where said linear combiner obtains signals $\tilde{\mathbf{Y}}_n^k$ and $\tilde{\mathbf{Y}}_n^{k+1}$ by computing

$$\begin{bmatrix} \hat{\mathbf{Y}}_1^k \\ \hat{\mathbf{Y}}_2^k \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\Lambda_{2-1}\Lambda_{1-2}^{-1} \\ -\Lambda_{2-2}\Lambda_{1-1}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1^k \\ \mathbf{Y}_2^k \end{bmatrix}$$

where $\hat{\mathbf{Y}}_1^k$ represents signal received at said receiver, in frame k , from transmitting unit 1, and $\hat{\mathbf{Y}}_2^k$ represents signal received at said receiver, in frame k , from transmitting unit 1, Λ_{1-1} is a diagonal matrix representing transmission medium between transmitting unit 1 and a first one of said two antennas, Λ_{2-1} is a diagonal matrix representing transmission medium between transmitting unit 2 and said first one of said two antennas Λ_{1-2}^{-1} is a diagonal matrix representing transmission medium between said transmitting unit 1 and a second one of said two antennas Λ_{2-2} is a diagonal matrix representing transmission medium between said transmitting unit 1 and said second one of said two antennas.

20. A method carried out in a receiver for decoding received frame signals of a unit that transmits over p antennas, comprising the steps of:

converting each received frame signal to frequency domain;

in groups of p consecutive converted frame signals, combining said converted frame signals to form p intermediate signals;

multiplying said intermediate signals by values related to transfer characteristics between said p antennas and said receiver, to obtain thereby equalized signals;

converting said equalized signals to time domain, to obtain time domain estimate signals; and

carrying out a decision regarding information symbols transmitted by said unit, based on said estimate signals.

21. The method of claim **20** where said combining is linear combining.

22. The method of claim **20** where said transfer characteristics employed in said step of multiplying are frequency domain characteristics of transmission channel between said p antennas and said receiver.