Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 1

Дисциплина: Низкоуровневое программирование

Тема: Машина Тьюринга-Поста

Вариант: 13

Выполнил студент гр. 3530901/00002	(по	дпись)	А.Д. Чешев	
Принял преподаватель	(под	пись)	Д.С. Степано	В
"	,, 		2021 г.	

Санкт-Петербург

Задача

Создать машину Тьюринга, реализующую алгоритм преобразования двоичного кода в код Грея.

Алфавит

1, 0

Начальное и конечное состояния

Изначально головка машины Тьюринга должна находиться над первым символом двоичного кода. По окончании работы головка должна находиться над первым символом полученного кода Грея.

Алгоритм

Сначала головка перемещается в конец двоичного кода. Потом она двигается влево на один шаг и меняет предыдущий разряд при условии, что в текущем стоит цифра «1». И так пока не переберет все цифры.

Диаграмма состояний

Рис. 1. Диаграмма состояний.

Описание работы

Машина начинает свою работу в состоянии Q1. Головка машины движется до первого пробела и дальше делает 1 шаг влево. Таким образом встает над последней цифрой двоичного числа и переходит в состояние Q2.

Состояние Q2 реализовано так, что если головка машины стоит на цифре «1», то она должна сдвинуться направо на 1 шаг, и машина попадет в состояние Q3. В противном случае делает шаг налево и попадает опять в состояние Q2 или, если головка достигла пробела, делает шаг направо и попадает в конечное состояние Q5.

В состоянии Q3 головка машины меняет число на «1» или «0» и делает шаг налево, попадает в состояние Q4, которое также реализует один шаг налево.

В состоянии Q5 машина Тьюринга завершает свою работу.

Пример выполнения программы на симуляторе

Дано число 88 в двоичной системе счисления (рис. 2). После работы машины Тьюринга получается число 1111100, представленное в виде кода Грея (рис. 3).

Рис. 2. Начальное состояние машины

Рис. 3. Состояние машины после завершения работы

Вывод

Была успешно реализована машина Тьюринга, преобразующая число в двоичном коде в код Грея. Изучены правила и методы реализации алгоритма, используя симулятор машины Тьюринга.

Список использованных источников

http://kspt.icc.spbstu.ru/media/files/2019/lowlevelprog/lab1.pdf

http://kpolyakov.spb.ru/prog/turing.htm