	Circle Theorems Mark scheme:	
1	$2x = 98^{\circ}$ $x = 49^{\circ}$	[1] Correct angle
	The angle at the centre is twice the angle at the circumference	[1]Correct reasoning
2	The angle opposite the diameter is a right-angle	[1] Correct reasoning
	$90^{\circ} + 32^{\circ} + x = 180^{\circ}$ $122^{\circ} + x = 180^{\circ}$ $x = 180^{\circ} - 122^{\circ}$ $x = 58^{\circ}$	[1]Correct angle
3	The angle opposite the diameter is a right-angle	[1] Correct reasoning
	Opposite angles in a cyclic quadrilateral add up to 180° $x = 90$	[1] Correct reasoning
4	AOC is an isosceles triangle. $ 0\hat{A}C = 0\hat{C}A \\ 0\hat{C}A = 22^{\circ} $	[1] Correct angle
	OBC is an isosceles triangle. $0\hat{C}D = 0\hat{A}D$ $67^{\circ} = 22^{\circ} + x$ $x = 67^{\circ} - 22^{\circ}$ $x = 45^{\circ}$	[1] Correct angle
5	Tangents to a circle meet the radius at a right angle. $0\hat{B}C = 0\hat{C}B = 90^{\circ}$ $C\hat{O}D + 90^{\circ} + 22^{\circ} = 180^{\circ}$ $C\hat{O}D + 112^{\circ} = 180^{\circ}$ $C\hat{O}D = 180^{\circ} - 112^{\circ}$ $C\hat{O}D = 68^{\circ}$	[1] $\hat{COD} = 68^{\circ}$ gains the mark
	COD and AOD are similar triangles $C\hat{O}D = A\hat{O}D = 68^{\circ}$	[1] Correct reasoning
	Angle at the origin $68^{\circ} + 68^{\circ} = 136^{\circ}$	[1] Correct angle
	Angle at the circumference is half of the angle at the centre. $x=136^{\circ} \div 2$ $x=68^{\circ}$	[1] Correct angle

	A 1 1/D0	
6(a)	Angle XBC $X\hat{B}C + 110^{\circ} + 23^{\circ} = 180^{\circ}$ $X\hat{B}C + 133^{\circ} = 180^{\circ}$ $X\hat{B}C = 180^{\circ} - 133^{\circ}$ $X\hat{B}C = 47^{\circ}$	[1] Correct angle
6(b)	Angle DAX $X\widehat{B}C = D\widehat{A}X = 47^{\circ}$	[1] Correct angle
	Angles in the same segment are equal.	[1] Correct reason
7	$D\hat{A}B = (2x + 28) \div 2$ = $x + 14$	[1] Logic of angle $D\hat{A}B$ given
	$D\hat{A}B + D\hat{C}B = 180^{\circ}$ $x + 14 + 3x - 70 = 180^{\circ}$	[1] Correct algebra equation set up
	$4x - 56 = 180$ $4x = 180 + 56$ $4x = 236$ $x = 59^{\circ}$	[1] Calculation of x
8	OBC is an isosceles triangle. $0\hat{C}B = 0\hat{B}C = 46$ $BOC = 180 - 46 - 46 = 88^{\circ}$	[1] Correct angle with reason
	Angle at the circumference is half the angle at the centre $C\hat{A}B = BOC \div 2$ $= 88^{\circ} \div 2$ $= 44^{\circ}$	[1] Correct angle with reason
	ABC is an isosceles triangle. $A\hat{B}O = A\hat{C}O = 22^{\circ}$ as $44^{\circ} + A\hat{B}O + 46^{\circ} + 46^{\circ} + A\hat{C}O = 180^{\circ}$	[1] Correct angle with reason
	$CAB = OCE = 44^{\circ}$	[1] Correct angle
	$DFC = 73^{\circ}$ (Angles around a point) $ACD = 68^{\circ}$ (Right angle $-A\hat{C}O$) Angles in a triangle add up to 180° $CDO = 180 - 73 - 68 = 39^{\circ}$	[1] Final answer