2 Problem Formulation

2.1 Problem Description

Given a positive integer d and a graph G = (V, E), where V is set of locations including a designated starting point s and E is a set of weighted edges linking every location to every other location, find a route that:

- 1. Visits all nodes $V \setminus c$ once.
- 2. Starts and finishes at s, having visited it d times, without ever visiting consecutively.
- 3. Minimizes both the cumulative edge weights in the route and the variance in cumulative weight between each visit to s.

2.2 Inputs and Outputs

Inputs:

- d: The number of times s should be visited in a route. Contextually, d represents the number of days a tourist will spend on their trip. $d \in \mathbb{Z}, d > 0$
- G = (V, E): A pair comprising of:
 - V: A set of nodes representing locations the tourist would like to visit. $v \in V, v = (x, y, t)$, a triple comprising of:
 - x: Longitude, indicating the location's geographic east-west position on the earth¹.

$$x \in \mathbb{Q}, -180 \le x \le 180.$$

• y: Latitude, indicating the location's geographic north-south position on the earth².

$$y \in \mathbb{Q}, -90 \le y \le 90.$$

• t: Duration, in minutes, indicating how much time to spend at this location.

$$t \in \mathbb{Z}, t > 0.$$

• E: A set of edges $e \in E$ that connects every node to every other node, bidirectionally. $e = (v_1, v_2, w)$, a triple comprising of:

¹While the coordinates of our locations are included in V, they are not directly tied to the weight of our edges E, which are based on time and not distance.

²See footnote 1

- v_1 : A location representing the origin of the edge. $v_1 \in V$.
- v_2 : A location representing the destination of the edge. $v_2 \in V$.
- w: A weight indicating the sum of the time it takes to travel from v_1 to v_2 and the time the tourist wishes to spent at v_2 . $w \in \mathbb{Z}, w > 0$.
- s: Starting point that should be visited d times. Contextually, s represents where the tourist is staying and will return to at the end of each day. $s \in V$.

Outputs:

• R: A valid route satisfying all constraints, represented as an ordered sequence of locations.

$$R = [r_1, r_2, \dots, r_n], r_i \in V.$$

2.3 Optimisation

As previously mentioned in the Problem Description, our goal is to find a route that minimises the cumulative weight and the variance in route weight between each visit to s. To accomplish this the following cost function is applied to each route:

$$Cost(R) = W \times (\Box \sigma) \tag{1}$$

Where W is the sum of the weights of all edges traversed in the route and σ is the standard deviation of the sum of weights between each visit to s:

$$\sigma = \sqrt{\frac{\sum_{i=0}^{d} (x_i - \mu)}{d}}, x_i \in X$$
 (2)

Where R is divided into sections between each visit to s and X is a list of the sum of weights within these sections. μ is the mean cumulative weight of each x_i .