14/8038-5NY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-208873

(43) Date of publication of application: 26.07.2002

(51)Int.CI.

H04B 1/48

H01P 1/15

H04B 1/52

(21)Application number: 2001-000968

(71)Applicant: HITACHI METALS LTD

(22)Date of filing:

09.01.2001 (72)Inven

(72)Inventor: KENMOCHI SHIGERU

WATANABE MITSUHIRO

TADAI HIROYUKI TANAKA TOSHIHIKO

(54) ANTENNA SWITCH LAMINATED MODULE COMPOSITE PART

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a small antenna switch laminated module composite part, which does not require special matching circuits or an adjusting process at customer site and is compact and has high performance.

SOLUTION: The antenna switch laminated module composite part for selecting and operating a plurality of different transmission/reception system is constituted of a branching filter circuit dividing the signals of a plurality of the transmission/ reception systems, a transmission/reception change—over switch circuit for changing over the signal path of a reception signal from the branching filter circuit to a reception path and that of a transmission signal from a transmission circuit to the branching filter circuit, a low—pass filter circuit connected to the transmission circuit side of the transmission/reception change—over switch, a band pass filter connected to the reception circuit side of the transmission/reception change—over switch and an

antenna— sharing circuit separating the transmission signal and the reception signal by using the frequency difference, between the reception signal from the branching filter circuit and a transmission signal from the transmission circuit. The branching filter circuit, the transmission/reception change—over switching circuit and the low—pass filter circuit are integrated in a laminated substrate, in a plurality of dielectric layers are laminated.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-208873 (P2002-208873A)

(43)公開日 平成14年7月26日(2002.7.26)

(51) Int.Cl.'	識別記号	F I	テーマユード(参考)
H04B	1/48	H04B	1/48 5 J O 1 2
H01P	1/15	H01P	1/15 5 K O 1 1
H04B	1/52	H 0 4 B	1/52

		茶馆资	未謂求 謂求項の数7 OL (全 12 頁)
(21)出願番号	特顧2001 —968(P2001 —968)	(71)出願人	000005083 日立金属株式会社
(22)出顧日	平成13年1月9日(2001.1.9)		東京都港区芝浦一丁目2番1号
•		(72)発明者	劔持 茂埼玉県熊谷市三ヶ尻5200番地日立金属株式会社磁性材料研究所内
		(72)発明者	渡辺 光弘 埼玉県熊谷市三ヶ尻5200番地日立金属株式 会社磁性材料研究所内
		(72)発明者	但井 裕之 鳥取県鳥取市南栄町70番地2号日立金属株 式会社鳥取工場内
•			最終頁に続く

(54) 【発明の名称】 アンテナスイッチ積層モジュール複合部品

(57)【要約】

特別な整合回路の付加も不要で顧客における 調整工程も不要な小型で高性能なアンテナスイッチ積層 モジュール複合部品を提供する。

【解決手段】 異なる複数の送受信系を選択して取り扱 うアンテナスイッチ積層モジュール複合部品であって、 複数の送受信系の信号を分波する分波回路と、当該分波 回路からの受信信号の受信経路への信号経路と送信回路 からの送信信号の前記分波回路への信号経路を切替える 送受切替えスイッチ回路と、当該送受切替えスイッチの 送信回路側に接続されたローパスフィルタ回路と、前記 送受切替えスイッチの受信回路側に接続されたパンドパ スフィルタと、前記分波回路からの受信信号と送信回路 からの送信信号の周波数差を利用して送信信号と受信信 号を分離するアンテナ共用回路から構成され、前記分波 回路と前記送受切替えスイッチ回路と前記ローパスフィ ルタ回路は複数の誘電体層を積層してなる積層基板に一 体化されることを特徴とした。

【特許請求の範囲】

【請求項2】 前記パンドパスフィルタが積層基板に一体化されることを特徴とする請求項1に記載のアンテナスイッチ積層モジュール複合部品。

【請求項3】 前記アンテナ共用回路が積層基板に一体 化されることを特徴とする請求項1または2に記載のア ンテナスイッチ積層モジュール複合部品。

【請求項4】 前記アンテナ共用回路の少なくとも一部に同軸共振型誘電体フィルタを使用し、該同軸共振型誘電体フィルタを積層基板に搭載したことを特徴とする請求項1乃至3のいずれかに記載のアンテナスイッチ積層モジュール複合部品。

【請求項5】 前記アンテナ共用回路の少なくとも一部 に弾性表面波フィルタを使用し、該弾性表面波フィルタ を積層基板に搭載したことを特徴とする請求項1乃至3 のいずれかに記載のアンテナスイッチ積層モジュール複合部品。

【請求項6】 前記アンテナ共用回路の少なくとも一部にバルク波フィルタを使用し、該バルク波フィルタを積層基板に搭載したことを特徴とする請求項1乃至3のいずれかに記載のアンテナスイッチ積層モジュール複合部品。

【請求項7】 前記アンテナ共用回路の少なくとも一部に誘電体積層型フィルタを使用したことを特徴とする請求項1乃至3のいずれかに記載のアンテナスイッチ積層モジュール複合部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、異なるアクセス方式を利用できるデュアルモード、トリプルモード等のマルチモード移動体通信機に用いられる高周波切替え回路に関し、特にマルチチップモジュール化したアンテナスイッチ積層モジュール複合部品に関する。

[0002]

【従来の技術】本発明のマルチモード移動体通信機につ

いて、その一例として携帯電話を上げて説明する。携帯 電話は規格によってアクセス方法や無線伝送周波数が異 なっており、サービスを利用する国・地域に応じて各々 の規格に準拠した携帯電話機が必要である。複数の規格 を1台の携帯電話で利用可能になれば使用者の利便性が 大きく向上する。現在主流となっているアクセス方式の ーつとしてTDMA (Time Division M ultiple Access、時分割多元接続)方式 がある。日本のPDC (Personal Digit al Cellular)、欧州を中心としたEGSM (Extended Global System f orMobile Communications) や GSM1800 (Global System for Mobile Communications 180 O)、米国を中心としたDAMPS(Digital AdvancedMobile Phone Serv ice)などがTDMA方式を採用している。一方、近 年米国や韓国で普及し始めているアクセス方式にCDM A (CodeDivision Multiple A ccess、符号分割多元接続)がある。代表的な規格 として米国を中心としたIS-95(Interim Standard-95)がある。また、IS-95は PCS (Personal Communicatio ns Service)の周波数帯域でもサービスされ ている。CDMA方式は加入者容量の点でTDMA方式 より優れているため、今最も注目されている技術であ る。高度の送信電力制御を達成する技術が確立したた め、本来的に無線伝送路の長さや伝搬損失が大幅に変化 し得る移動通信システムに対しても適用が可能となりつ つある。また、高速度のデータ伝送を実現し得る第3世 代の携帯電話方式としてW-CDMA(Wide-ba nd CDMA)が提案されている。さらに、このよう なCDMA方式が適用された移動通信システムについて は、特に、TDMA方式に比べて、干渉や妨害に強く、 かつ秘匿性に富むと共に、多数の端末によって広い無線 周波帯域が共用されることによって周波数の再利用が不 要であるために、種々の方式の実用化および研究が進め られている。

【0003】次に、デュアルモード携帯電話を具体的に回路として構成するための従来例を説明する。例えば、特開平10-93473号公報の図5には、アンテナに接続される高周波スイッチ回路の後段に2つの複式フィルタ、即ち2つのアンテナ共用回路を接続するアンテナ切替え回路が開示される。また、例えば、特開2000-201097号公報の図1には、アンテナに接続されるダイプレクサの後段に2つの高周波スイッチを接続する複合高周波部品が開示される。

[0004]

【発明が解決しようとする課題】課題を用途がらみの課題と、回路がらみの課題に分けて説明する。

(1) 用途がらみの課題

一般に、移動通信システムについては、無線基地局の設置や交換係との連係を実現する機器等に多くの投資が行われ、かつ地理的に分散して位置して所在が一定しない多数の端末に通信サービスを提供し続けることが要くはきれるために、新たな方式の移動通信システムの多くは先行して稼働しているシステムと並行して運用される(場下、「非都市部」という。)では、都市部のようにおりでは、都市部のよって許容され難いために、先行してるのしている方式あるいは新たな方式のみが適用される。したがって、これらの都市部と非都市部との大における。したがって、これらの都市部と非都市部との大における。したがって、これらの都市部と非都市とでの人には、上述場による場合との人間、エロMA方式の各々に対応する端末を置の利用が必要であるという問題があった。

【0005】(2)回路がらみの課題

携帯電話等の移動通信機器は、益々小型化、高密度実装 化の傾向にあり、そのデジタル方式化が進展している。 こうした中で、これらの機器に使用される部品の小型 化、高密度実装化の要求がさらに増大している。ところ が、前記特開平10-93473号公報記載のアンテナ 切替え回路を、そのままデュアルモード、トリプルモー ド等のマルチモード携帯電話に転用すると、モードの数 と同数のアンテナ共用回路が必要であり、また、それぞ れの部品を回路基板上に個別に実装しなければならず各 部品間のインピーダンスマッチング用の回路部品まで必 要となるため、アンテナ切替え回路の占有面積が大きく なり、回路基板が大型化するという問題もあった。ま た、前記特開2000-201097号公報記載の複合 高周波部品送信経路と受信経路の分岐点に高周波スイッ チを用いているので、CDMA方式のような送信と受信 を同時に行わなければならないアクセス方式では使用で きないという問題点もあった。本発明の目的は、異なる アクセス方式に対応可能な小型で高性能な高周波切替え 回路を具備したアンテナスイッチ積層モジュール複合部 品を提供することである。

[0006]

【課題を解決するための手段】本発明は、下記の構成を 主旨とする。

(1) 異なる複数の送受信系を選択して取り扱うアンテナスイッチ積層モジュール複合部品であって、複数の送受信系の信号を分波する分波回路と、当該分波回路からの受信信号の受信経路への信号経路と送信回路からの送信信号の前記分波回路への信号経路を切替える送受切替えスイッチ回路と、当該送受切替えスイッチの送信回路側に接続されたローパスフィルタ回路と、前記送受切替えスイッチの受信回路側に接続されたバンドパスフィルタと、前記分波回路からの受信信号と送信回路からの送信号の周波数差を利用して送信信号と受信信号を分離

するアンテナ共用回路から構成され、前記分波回路と前 記送受切替えスイッチ回路と前記ローパスフィルタ回路 は複数の誘電体層を積層してなる積層基板に一体化され ることを特徴とするアンテナスイッチ積層モジュール複 合部品である。

- (2) 前記パンドパスフィルタが積層基板に一体化されることを特徴とする(1) 記載のアンテナスイッチ積層モジュール複合部品である。
- (3) 前記アンテナ共用回路が積層基板に一体化される ことを特徴とする(1) または(2) に記載のアンテナ スイッチ積層モジュール複合部品である。
- (4) 前記アンテナ共用回路の少なくとも一部に同軸共振型誘電体フィルタを使用し、該同軸共振型誘電体フィルタを積層基板に搭載したことを特徴とする(1)~
- (3) のいずれかに記載のアンテナスイッチ積層モジュール複合部品である。
- (5) 前記アンテナ共用回路の少なくとも一部に弾性表面波フィルタを使用し、該弾性表面波フィルタを積層基板に搭載したことを特徴とする(1)~(3)のいずれかに記載のアンテナスイッチ積層モジュール複合部品である。
- (6) 前記アンテナ用回路の少なくとも一部にバルク波フィルタを使用し、該バルク波フィルタを積層基板に搭載したことを特徴とする(1)~(3)のいずれかに記載のアンテナスイッチ積層モジュール複合部品である。
- (7) 前記アンテナ共用回路の少なくとも一部に誘電体 積層型フィルタを使用したことを特徴とする(1)~
- (3)のいずれかに記載のアンテナスイッチ積層モジュール複合部品である。

[0007]

【発明の実施の形態】本発明について、2つの異なるア クセス方式を扱うアンテナスイッチ積層モジュール複合 部品を例にとり、第1の送受信系をTDMA方式である EGSM900(送信周波数880~915MHz、受 信周波数925~960MHz)、第2の送受信系をC DMA方式であるW-CDMA (送信周波数1920~ 1980MHz、受信周波数2110~2170MH z)として、デュアルモード携帯電話機のRF回路のブ ロック図の一例を図1に示す。図1に示した例では、主 要部は点線で囲まれた部分であり、アンテナからの入力 部に分波回路DIPを接続し、前記分波回路DIPのE GSM900側の出力に送受信切替えスイッチ回路AS を接続し、前記送受信切替えスイッチ回路ASの送信経 路側にローパスフィルタ回路LPF1を接続し、前記送 受信切替えスイッチ回路ASの受信経路側にパンドパス フィルタBPF1を接続し、前記分波回路DIPのWー CDMA側の出力にアンテナ共用回路DUPを接続した 回路において、分波回路DIPと送受切替えスイッチ回 路ASとローパスフィルタ回路LPF1を積層基板に一 体化した。アンテナ共用回路DUPあるいはパンドパス フィルタBPF1は、積層基板に一体化しても良いし、これらを構成する高周波部品を前記積層基板が搭載される回路基板上に搭載しても良い。図2は図1に示したデュアルモード携帯電話機のRF回路のブロック図の変形例である。アンテナ共用回路DUPだけではローパスフィルタ特性あるいはパンドパスフィルタ特性が足らない場合に、前記アンテナ共用回路DUPの送信経路側にパンドパスフィルタBPF2を接続し、前記アンテナ共用回路DUPの受信経路側にバンドパスフィルタBPF2を接続する必要がある。また、電力増幅器PA2の誤動作防止のためにアイソレータISOをローパスフィルタレアF2と電力増幅器PA2の間に接続しても良い。図1、図2で各記号は下記の通りである。

ANT:アンテナ、DIP:分波回路、DUP:アンテナ共用回路、AS:送受切替えスイッチ、LNA:低雑音増幅器、LPF:ローパスフィルタ、BPF:バンドパスフィルタ、ISO:アイソレータ、PA:電力増幅器

【0008】まず受信の場合を説明する。図2におい て、アンテナで受信されたEGSM900あるいはW-CDMAの電波は、分波回路DIPで対応する送受信系 に分波される。EGSM900受信波は、送受切替えス イッチASでEGSM900の受信経路側に伝送され、 バンドパスフィルタBPF1で受信帯域外のノイズが減 **衰され、低雑音増幅器LNA1で増幅されて利用者の耳** に入る。W-CDMA受信波は、アンテナ共用回路DU PでW-CDMAの受信経路側に伝送され、その後はE GSM900受信波と同様に、バンドパスフィルタBP F2. 低雑音増幅器LNA2を経て受話される。次に送 信の場合を説明する。EGSM900送信波は、電力増 幅器 P A 1 で所定の出力パワーに増幅された後、ローパ スフィルタLPF1送受切替えスイッチAS、分波回路 DIPを経てアンテナから送信される。W-CDMA送 信波は、電力増幅器PA2で所定の出力パワーに増幅さ れる。CDMA方式の携帯電話では、同じ周波数を用い て、拡散符号を変えることで多重化を行っている。この 場合、各携帯電話機の端末から基地局への回線(上り回 線)においては、特定の端末からの電波の電力が他の端 末からの電力よりも強いと、電力の弱い方の電波の信号 がマスクされてしまい受信できないという問題がおこ る。この問題は、一般にCDMA方式の遠近問題と呼ば れている。この遠近問題を解決するためには、基地局に おいて受信される各端末からの電波の電力が等しくなる ように、各端末の送信電力を制御するようにしている。 電力増幅器PA2で所定の出力パワーに増幅されたWー CDMA送信波は、アイソレータISO、ローパスフィ ルタLPF2、アンテナ共用回路DUP、分波回路DI Pを経てアンテナから送信される。

【0009】次に、図1,2の各回路ブロック毎に、その機能をより詳細に説明する。分波回路(記号DIPで

表す)は、分波機能を有するEGSM900とW-CD MAの受信波を分離する3ポートのフィルタ素子であ る。単一のアンテナを用いてEGSM900およびW-CDMA信号の受信器への供給を行うことが可能にな る。常時、両方の送受信系の受信が可能となる。分波回 路DIPは、EGSM900の送信の際には送受切替え スイッチASからのEGSM900送信信号をアンテナ 共用回路DUPに漏洩させることなく、効率良くアンテ ナANTに伝送し、W-CDMA送信の際にはアンテナ 共用回路DUPからのW-CDMA送信信号を送受切替 えスイッチASに漏洩させることなく、効率良くアンテ ナANTに伝送する。また、EGSM900受信の際に はアンテナANTからのEGSM900受信信号をアン テナ共用回路DUPに漏洩することなく効率良く送受切 替えスイッチASへ伝送し、W-CDMA受信の際には アンテナANTからのW-CDMA受信信号を送受切替 えスイッチASに漏洩することなくアンテナ共用回路D UPへ伝送する役目を担う。

【0010】アンテナ共用回路(記号DUPで示す) は、送信側フィルタと受信側フィルタの2つのフィルタ から構成され、送信信号と受信信号とで異なる周波数を 使用する場合に、その周波数差を利用して送信経路と受 信経路を分離するものである。W-CDMA方式側で は、アンテナ共用回路DUPを分波回路DIPに接続す る。受信回路側では、アンテナ共用回路DUPにバンド パスフィルタBPF2を接続する。図1のようにアンテ ナ共用回路だけでバンドパスフィルタ機能が十分な場合 はバンドパスフィルタBPF2を省略できる。次に、バ ンドパスフィルタBPF2にLNA2を接続する。送信 回路側では、アンテナ共用回路DUPにローパスフィル タLPF2を接続する。図1のようにアンテナ共用回路 だけでローパスフィルタ機能が十分な場合はローパスフ ィルタLPF2を省略できる。次にローパスフィルタL PF2を一般的にはアイソレータISOに接続し、アイ ソレータISOを電力増幅器PA2に接続する。アンテ ナ共用回路は同軸共振型誘電体フィルタ、弾性表面波フ ィルタ、バルク波フィルタ、積層型誘電体フィルタを組 合わせて構成することもできる。同軸共振型誘電体フィ ルタを用いれば、アンテナスイッチ積層モジュール複合 部品の寸法は大きくなるが、電気的特性はより良い。弾 性表面波フィルタを用いれば、小型で高性能であり設計 自由度が拡大する。パルク波フィルタを用いれば、弾性 表面波フィルタより更に小型で耐電力性に優れているの で、設計自由度が拡大する。積層型誘電体フィルタを用 いれば、電気的特性はやや悪くなるが最も小型に構成で き、アンテナスイッチ積層モジュール複合部品の積層基 板内に形成できるので、安価に構成できる。

【 O O 1 1 】送信側フィルタ、受信側フィルタとして使用用途、電気的特性、形状、コスト等により同軸共振型 誘電体フィルタ、弾性表面波フィルタ、パルク波フィル タ、積層型誘電体フィルタの中からそれぞれ適宜選択してアンテナ共用回路を構成することができる。組合わせ例を挙げると下記のようになる。下記で記号*を付けた組合わせは、通常では稀である。

送信側:同軸共振型誘電体フィルター受信側:同軸共振 型誘電体フィルタ

送信側:同軸共振型誘電体フィルター受信側:弾性表面 波フィルタ

送信側:同軸共振型誘電体フィルター受信側:バルク波 フィルタ

*送信側:同軸共振型誘電体フィルター受信側:積層型 誘電体フィルタ

*送信側:弾性表面波フィルター受信側:同軸共振型誘 電体フィルタ

送信側:弾性表面波フィルター受信側:弾性表面波フィルタ

*送信側:弾性表面波フィルター受信側:バルク波フィルタ

*送信側:弾性表面波フィルター受信側:積層型誘電体 フィルタ

送信側:積層型誘電体フィルター受信側:同軸共振型誘 電体フィルタ

送信側:積層型誘電体フィルター受信側:弾性表面波フィルタ

送信側:パルク波フィルター受信側:同軸共振型誘電体 フィルタ

送信側:バルク波フィルター受信側:弾性表面波フィルタ

送信側:バルク波フィルター受信側:バルク波フィルタ *送信側:バルク波フィルター受信側:積層型誘電体フィルタ

送信側:積層型誘電体フィルター受信側:バルク波フィルタ

送信側:積層型誘電体フィルター受信側:積層型誘電体 フィルタ

【0012】送受切替えスイッチ(記号ASで表す)は、送信回路から入った送信信号をアンテナに出力すると共に、アンテナから入った受信信号を受信回路に出力する信号経路の切替え機能を有する。送受切替えスイッチASは、分波回路DIPのEGSM900側の出力端に接続される。送受切替えスイッチASの送信回路側には、ローパスフィルタLPF1を接続する。LPFの前段には電力増幅器PA1を接続する。送受切替えスイッチASの受信回路側にはパンドパスフィルタBPF1が接続され、更に低雑音増幅器LNA1が接続される。送受切替えスイッチASとしては、電圧制御可能なP1Nダイオード、あるいはGaAsスイッチ等を用いることができる。

【OO13】低雑音増幅器(記号LNAで表す)は、アンテナ共用回路DUPあるいはパンドパスフィルタBP

F1, BPF2の後段に接続され、受信信号を増幅する機能を有する。受信回路側で使用されるため、雑音指数が小さいことが重要である。

【0014】ローパスフィルタ(記号LPFで表す) は、電力増幅器PAや送受切替えスイッチASで発生し た送信信号の2倍高調波や3倍高調波等の不要な高調波 を除去するために挿入する。

【0015】バンドパスフィルタ(記号BPFで表す)は受信信号以外の不要な周波数成分を除去する為に用いられる。バンドパスフィルタとして、同軸共振型誘電体フィルタとして、同軸共振型誘電体フィルタを用いれば、アンテナスで、同軸共振型誘電体フィルタを用いれば、アンテナスを制力性はより良い。弾性表面波フィルタを用いれば、、小型で高性能であり設計自由度が拡大する。バルク波ので設計自由度が拡大する。積層型影電体フィルタを用いれば弾性表面波フィルタより更に小型で制力性に優れているので設計自由度が拡大する。積層型影電体フィルタを用いれば、電気的特性はやや悪くなるが最も小型に構成でき、アンテナスイッチ積層モジュール複合部品の積層基板内に形成できるので、安価に構成できる。

【OO16】アイソレータ(記号ISOで表す)は、非可逆回路素子であり、ある方向には円滑に信号を伝送さでるが、逆方向には阻止する機能がある。CDMA方式では出力電力を厳密に制御する必要がある。そのためにフロタISOを挿入する。CDMA方式の携帯電話でより増幅器PAの誤動作防止の為にその後段にアイソは数の端末が同じ周波数を用いて通信を行い、拡散符号を変えることで多重化通信を行っている。この場合、特定の端末からの電波の電力が他の端末からの電力がの電波の信号がマスクされてして受情できなくなることがあるので、基地局において受きれる各端末から電波の電力が等しくなるように、電力の弱い方の電波の信号がマスクされてして受ける。また、電力の影になるに、基力にしている。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を当場である。また、電力を対象に記号PAで表すと、送信信号を増幅する機能を有する

【〇〇17】次に、本発明に係るアンテナスイッチ積層 モジュール複合部品の積層基板との絡みで回路構成を説明する。本発明は、電極パターンの形成された誘電体グリーンシートを適宜積層し一体焼成した積層基板と、該積層基板に配置されたダイオード、チップコンデンンとがるがである。また、本発明は、前記送受切替えスイッチASを構成しまた、本発明は、前記送受切替えスイッチASを構成するに送線路、前記アンテナ共用回路DUPを構成する伝送線路、前記分波回路DIPを構成する伝送線路、前記ローパスフィルタLPFを構成する伝送線路、コンデンサを積層基板内に電極パターンにより構成 したものであり。この電極パターンは、Agを主体とする誘電ペーストをスクリーン印刷により、誘電体グリーンシート上に形成したものである。Agのみに限定されるものではなく、Cu、Pdなども用いることができる。

【〇〇18】また本発明において、前記積層基板は、ア 一ス電極に挟まれた領域に、前記送受切替えスイッチA S、アンテナ共用回路DUP用の伝送線路が形成され、 該アース電極の上側のさらに上部に、前記分波回路 DI P、前記ローパスフィルタ回路LPF用の容量成分が形 成され、さらにその上部に、前記分波回路DIP用、前 記ローパスフィルタLPF回路用のインダクタンス成分 が形成されて構成されている。前記送受切替えスイッチ AS、アンテナ共用回路DUP用の伝送線路用電極パタ 一ンと前記分波回路DIP、前記ローパスフィルタ回路 LPF用の伝送線路およびコンデンサ用の電極パターン の間にアース電極を配置することにより、各回路間が電 気的に干渉することを防止する。伝送線路をアースパタ 一ンの間に形成すると、浮遊容量の発生を防止でき、安 定した接地電位を得られる。さらに、線路を比抵抗の小 さい材料、例えば銀、銅等によって形成すると、アンテ ナスイッチ積層モジュール複合部品における電力損失等 を低減することができる。

【0019】図1のブロック図で示すアンテナスイッチ 積層モジュールのスイッチ動作について、図10、図1 1に示すアンテナスイッチ回路の等価回路を用いて説明 する。図10の場合、EGSM900の送信信号を送信 する場合には制御端子VC1に正の電圧を、制御電圧V C2にはOの電圧を印加する。制御端子VC1から印加 された正の電圧は、C1, C2, C5, C6, C8のコ ンデンサによって直流分がカットされ、ダイオードD1 およびダイオードD2がON状態となる。ダイオードD 1がON状態となることによって、電力増幅器PAと分 波回路DIPの間のインピーダンスが低くなる。一方、 ON状態となったダイオードD2およびコンデンサC6 によって、伝送線路 L 2が高周波的に接地されることに より共振して、ダイオードD1のカソードとコンデンサ C1と伝送線路L2との接続点からパンドパスフィルタ BPF側を見た場合のインピーダンスが非常に大きくな る。この時、電力増幅器PAからのEGSM900の送 信信号はパンドパスフィルタBPF側に漏洩することな く分波回路DIPへ伝送され、アンテナから送信され

【0020】EGSM900の受信信号を受信する場合には制御端子VC1に0の電圧を、制御端子VC2に正の電圧を印加する。この時、ダイオードD1およびダイオードD2がOFF状態となる。ダイオードD1がOFF状態となることによって、電力増幅器PAと分波回路DIPの間はインピーダンスが高くなり接続されない。またOFF状態になったダイオードD2によって、伝送

線路L2を介して、分波回路DIPとパンドパスフィルタBPFが接続される。この時アンテナから受信された EGSM900の受信信号は、分波回路DIPを介して、電力増幅器PA側に漏洩することなくパンドパスフィルタBPFに伝送される。

【0021】図11の場合、EGSM900の送信信号 を送信する場合には制御端子VC1に正の電圧を印加す る。制御端子VC1から印加された正の電圧は、C1. C2, C3, C4, C5, C6のコンデンサによって直 流分がカットされ、ダイオードD1およびダイオードD 2がON状態となる。ダイオードD1がON状態となる ことによって、電力増幅器PAと分波回路DIPの間の インピーダンスが低くなる。一方、ON状態となったダ イオードD2およびコンデンサC6によって、伝送線路 L2が高周波的に接地されることにより共振して、ダイ オードD1のカソードとコンデンサC1と伝送線路L2 との接続点からバンドパスフィルタBPF側を見た場合 のインピーダンスが非常に大きくなる。この時、電力増 幅器PAからのEGSM900の送信信号はBPF側に 漏洩することなく分波回路DIPへ伝送され、アンテナ から送信される。

【0022】EGSM900の受信信号を受信する場合には制御端子VC1に0の電圧を印加する。この時、ダイオードD1およびダイオードD2がOFF状態となることによって、電力増幅器PAと分波回路DIPの間はインピーダンスが高くなり接続されない。またOFF状態になったダイオードD2によって、伝送線路L2を介して、分波回路DIPとバンドパスフィルタBPFが接続される。この時、アンテナから受信されたEGSM900の受信信号は、分波回路DIPを介して電力増幅器PA側に漏洩することなくバンドパスフィルタBPFに伝送される。

【0023】図1、図2に示すアンテナスイッチ積層モジュール複合部品によれば、複合高周波部品をなす大田の路DIP、送受切替えスイッチAS、アンテナ共用回路DUP、ローパスフィルタLPFおよびバンドパスしている時間を基板に一体化するため、分波回路DIPとの間、送受切替えスイッチAS、アンテナ共用回路のLPとの間、送受切替えスイッチASとローパスファととの間、送受切替えスイッチASとローパスファと共用の路の上のと送回路DIPとの間、送受切替えスイッチASとローパスファンテナ共用の間、送受切替えスイッチASとローパンドパスレートの間、送受切替えスイッチASとローパンドパスレッチASとの間、送受切替えスイッチASとローパンドパスレッチASとの間の整合調整を行う整合回路が不要となる。後合高周波部品の小型化、高性能化が可能となる。

【0024】さらに、分波回路DIPが伝送線路及びコンデンサで構成され、送受切替えスイッチASが、ダイオード、伝送線路、及びコンデンサで構成され、アンテ

ナ共用回路 D U P が、同軸共振型誘電体フィルタあるいは弾性表面波フィルタ、バルク波フィルタ、伝送線路及びコンデンサで構成されるとともに、それらが誘電体積層基板に内蔵、あるいは搭載され、誘電体積層基板の内部あるいは外表面に形成される接続手段によって接続されるため、複合高周波部品が1つの誘電体積層基板で構成でき、小型化が実現できる。加えて、部品間の配線による損失を改善することができ、その結果、複合高周波部品全体の損失を改善することが可能となる。

【0025】また、伝送線路が誘電体積層基板に内蔵されているため、波長短縮効果により、伝送線路の長さを短縮することができる。従って、これらの伝送線路の挿入損失を向上させることができるため、複合高周波部品の小型化及び低損失化を実現することができる。その結果、この複合高周波部品を搭載する移動体通信装置の小型化及び高性能化も同時に実現できる。

【0026】次に、図1のブロック図に示した回路を積 層基板を用いた一実施例の斜視図を図3に示す。この実 施例では、分波回路DIP、ローパスフィルタLPF、 送受切替えスイッチASを構成する伝送線路、コンデン サ用の電極パターンを積層基板内に構成し、ダイオー ド、積層基板に内蔵できない大容量のチップコンデンサ およびチップ抵抗を積層基板上に搭載してワンチップ化 したアンテナスイッチ積層モジュール複合部品を構成し たものである。アンテナ共用器DUPおよびパンドパス フィルタBPFはアンテナスイッチ積層モジュール複合 部品が搭載される回路基板上に搭載される。図4は、図 1のブロック図に示した回路を積層基板を用いた別の実 施例の斜視図である。この実施例では、分波回路DI P、ローパスフィルタLPF、送受切替えスイッチAS を構成する伝送線路、コンデンサ用の電極パターンを積 層基板内に構成し、ダイオード、積層基板に内蔵できな い大容量のチップコンデンサ、チップ抵抗およびバンド パスフィルタBPFを積層基板上に搭載してワンチップ 化したアンテナスイッチ積層モジュール複合部品を構成 したものである。アンテナ共用器DUPはアンテナスイ ッチ積層モジュール複合部品が搭載される回路基板上に 搭載される。図5は図4の変形で、積層基板に段差を設 けてバンドパスフィルタBPFを丁度段差にはまり込む ように形成して更なる低背化を図ったものである。図6 は、図1のブロック図に示した回路を積層基板を用いた 別の実施例の斜視図である。この実施例では、分波回路 DIP、ローパスフィルタLPF、送受切替えスイッチ ASを構成する伝送線路、コンデンサ用の電極パターン を積層基板内に構成し、ダイオード、積層基板に内蔵で きない大容量のチップコンデンサ、チップ抵抗、アンテ ナ共用器DUPおよびパンドパスフィルタBPFを積層 基板上に搭載してワンチップ化したアンテナスイッチ積 層モジュール複合部品を構成したものである。図フは、 アンテナ共用回路DUPの送信側フィルタを積層型誘電 体フィルタで構成したものである。図8は、アンテナ共 用回路DUPを積層型誘電体フィルタで構成したもので ある。アンテナ共用回路DUPの送信側フィルタあるい は受信側フィルタを構成する積層基板部分の比誘電率は 80、また分波回路DIP、送受切替えスイッチAS、 ローパスフィルタLPFを構成する積層基板部分の比誘 電率は8の誘電体を使用し、異なる比誘電率の誘電体を 使用し、アンテナスイッチ積層モジュール複合部品を構 成した。アンテナ共用回路DUPの送信側フィルタある いは受信側フィルタを積層型誘電体フィルタで構成する 場合には、その部分に使用する誘電体積層基板の比誘電 率は30~100であることが好ましい。また分波回路 DIP、送受切替えスイッチAS、ローパスフィルタL PFを構成する誘電体積層基板の比誘電率は5~10が 好ましい。図6、図7、図8に示した実施例において も、図5の実施例に示すように積層基板に段差を設けて バンドパスフィルタBPFあるいはアンテナ共用回路D UPを丁度段差にはまり込むように形成して更なる低背 化を図っても良い。そして図9はアンテナ共用回路と送 受切替えスイッチASの後段のパンドパスフィルタBP Fも積層型誘電体フィルタで構成したものであり、極め て簡単な構成となる。

【0027】本発明は、アンテナスイッチ積層モジュール複合部品を積層基板の内外に複合化して特別な整合回路の外部付加を不要とし、顧客における調整工程を不要としたものである。この積層基板は、低温焼成が可能なセラミック誘電体材料からなるグリーンシートを用意し、そのグリーンシート上にAgを主体とする誘電ペーストを印刷して、所望の電極パターンを形成し、それを適宜積層し、一体焼成させて構成される。

【OO28】(実施例1)分波回路DIP、送受切替えスイッチAS、アンテナ共用回路DUP、ローパスフィルタLPF、パンドパスフィルタBPFとを積層基板の内外に複合化してアンテナスイッチ積層モジュール複合部品を作成した図1の例について、更に詳細に説明する。本発明のアンテナスイッチ積層モジュール複合部品を作成した図かの信号経路の信号経路を有するマイクロ波回路の一部を構成する複合電子部品であかまるマイクロ波回路の一部を構成する複合電子部品であかて、送信の際には前記複数の信号経路のそれぞれを送する分波回路と、前記複数の信号経路のそれぞれを送けまる分波回路とに分離する送り切替えスイッチASやアナ共用回路DUPと、前記信号経路中に接続された複数のフィルタとからなる。

【0029】本発明のアンテナスイッチ積層モジュール 複合部品は積層基板で構成する。これはグリーンシート を圧着し、一体焼成して積層基板を得る。この積層基板 の側面には端子電極を形成しても良いし、なくても良 い。この積層基板の上に、ダイオード、チップコンデン サ等を搭載した。ここで、送受切替えスイッチの伝送線 路を積層基板内に形成する際に、アース電極で挟まれた 領域内に配置すると、スイッチ回路と分波回路、ローパスフィルタ回路との干渉を妨げる。そして、このアース電極で挟まれた領域を積層基板の下部に配置すると、アース電位を取り易くできる。そして、アースとの間に接続されるコンデンサを構成する電極を、その上側のアース電極に対向させて形成できる。

【0030】また、この伝送線路部分を積層基板の下側に構成することにより、アース電極を積層基板の下側に配置することができ、実装基板の影響を少なくすることができる。さらに、アース電極と対向させるコンデンサ形成用の容量電極をその次に配置し、上部にローパスフィルタ回路と分波回路のインダクタンス成分を配置することにより、インダクタンス成分をアース電極から離すことができ、短い伝送線路長で必要なインダクタンス値を得ることができる。これにより、高周波スイッチモジュールの小型化を図れる。

【0031】また、この実施例の積層基板の側面に形成された端子電極において、アンテナ端子に対して積層基板を2分した反対側に、TDMA系の送信TX端子、受信RX端子、CDMA系の送信TX端子、受信RX端子をそれぞれ形成すると、この高周波スイッチモジュールは、アンテナと送受信回路の間に配置されるので、この端子配置により、アンテナと高周波スイッチモジュール、及び送信受信回路と高周波スイッチモジュールを最短の線路で接続することができ、余分な損失を防止できる。

【0032】さらにその反対側においても、その半分の 片側に、TDMA系の送信TX端子を形成し、もう一方 の片側に、TDMA系の受信RX端子、CDMA系の受 信RX端子を形成すると、2つの送信回路、2つの受信 回路は、それぞれ集合して配置されるので、高周波スイ ッチモジュールの送信端子同士、受信端子同士を近くに 配置して、最短経路での接続が可能となり、余分な損失 を防止できる。また、側面に形成されたアンテナANT 端子、TDMA系の送信TX端子、受信RX端子、CD MA系の送信TX端子、受信RX端子はいずれも、側面 の周回方向で見た場合、各端子間にはアース端子を形成 し、各端子はアース端子で挟まれるように配置してもよ い。各入出力端子をアース端子に挟まれた配置とする と、各端子間の信号の漏洩が遮断され、干渉がなくな り、信号端子間のアイソレーションが確実なものとな る。

【0033】(実施例2) 弾性表面波フィルタを用いたアンテナ共用回路DUPで構成した本発明の別実施例を図1を用いて説明する。複数の誘電体層を積層してなる積層基板と、この積層基板に搭載したダイオード、チップコンデンサ並びに前記積層基板に内蔵した伝送線路及びコンデンサからなる少なくとも1つの送受切替えスイッチASと、前記積層基板に搭載した少なくとも1つのSAWフィルタとで構成したアンテナ共用回路DUPを

用いることもできる。また、アンテナ共用回路は同軸共 振型のものを積層基板に搭載することもできる。この場 合には、より高性能が期待できる。このように、高周波 スイッチを構成する複数の誘電体層を積層してなる積層 基板に搭載し、分波回路、高周波スイッチ及びSAWフ ィルタの実装面積が削減でき、小型化及び軽量化が実現 できる。また、低コスト化も実現できる。一体化の効果 は大きく、従来の別々に形成した送受切替えスイッチな どの高周波部品とフィルタ等の部品を接続したものに比 べて、占有面積を大幅に縮減でき、全体の寸法を小さく できる。また、高周波部品の回路とフィルタの部品の回 路などを複合して同時設計することにより、両者のイン ピーダンスマッチングを施した設計が可能であり、両者 を積層基板に内蔵された信号ラインで接続できる。その 結果、インピーダンスマッチング用の回路を新たに付加 する必要がなく、回路的に簡略化できる。また、インピ ーダンスマッチング用の回路設計の時間が不要であるこ とは、設計変更の激しい携帯電話用のアンテナスイッチ 積層モジュール複合部品の技術分野ではその効果が甚大 である。

【0034】図2は、CDMAの送信系にアイソレータISOを挿入した別の実施例である。CDMAでは出力電力を厳密に制御する必要がある。従って、パワーアンプの誤作動防止の為に挿入する。アイソレータISOを内蔵して一体化されており、携帯電話等の機器の回路基板への実装が容易となり、実装コストを低減することができる。

【0035】以上、本発明を実施例によって説明した が、本発明の技術的思想は実施例に限定されるものでは ない。例えば、分波回路は2経路の分波に限定されるも のではなく、図12, 図13, 図14, 図15, 図1 6、図17に例示したように3経路以上の分波にも容易 に拡張できる。図12~図17において、GSM180 O (TDMA方式、送信周波数1710~1785MH z、受信周波数1805~1880MHz)、DAMP S(TDMA方式、送信周波数824~849MHz、 受信周波数869~894MHz)、IS-95(CD MA方式、送信周波数824~849MHz、受信周波 数869~894MHz)、PCS(CDMA方式、送 信周波数1850~1910MHz、受信周波数193 0~1990MHz)、GSM400(TDMA方式、 送信周波数450~458MHz、受信周波数460~ 468MHz)である。本発明の構成に必要に応じて、 更に電力増幅器PA、低雑音増幅器LNA等を追加して 機能を拡張できる。これらの各部品毎の機能を先に詳細 に説明してある。当業者は、これらの記載を参照すれ ば、このような回路・回路の追加・機能の追加が可能で ある。また、アンテナ共用回路をサーキュレータで置き 換えることもできる。

[0036]

【発明の効果】本発明によると、新規な回路ブロック構 成を積層基板の内外に複合化した挿入損失の小さいアン テナスイッチ積層モジュール複合部品を提供できる。従 って、特別な整合回路の付加も不要だし、顧客における 調整工程も不要となり産業上の利用性は大きい。また、 搭載する携帯電話などにおける占有面積・体積を小さく でき、回路配置の融通性を有すると共に、インピーダン スマッチング用回路、調整が不要になったアンテナスイ ッチ積層モジュール複合部品を提供できる。また、複合 高周波部品をなす分波回路、送受切替えスイッチ、アン テナ共用回路、ローパスフィルタおよびバンドパスフィ ルタを、セラミックスからなる複数のシート層を積層し てなるセラミック積層基板に一体化するため、分波回路 とアンテナ共用回路との間、分波回路と送受切替えスイ ッチとの間、送受切替えスイッチとローパスフィルタお よび送受切替えスイッチとバンドパスフィルタとの間な どに整合調整を行う整合回路を設ける必要がなくなる。

【図面の簡単な説明】

- 【図1】本発明の一構成例を示すブロック図である。
- 【図2】本発明の別の構成例を示すブロック図である。
- 【図3】本発明の一実施例を示す斜視図である。
- 【図4】本発明の別の実施例を示す斜視図である。
- 【図5】本発明の別の実施例を示す斜視図である。
- 【図6】本発明の別の実施例を示す斜視図である。
- 【図7】本発明の別の実施例を示す斜視図である。
- 【図8】本発明の別の実施例を示す斜視図である。
- 【図9】本発明の別の実施例を示す斜視図である。

【図10】本発明に係る送受切替えスイッチの一等価回路図である。

【図11】本発明に係る送受切替えスイッチの一等価回 路図である。

【図12】本発明の別の実施例を示すブロック図であ ス

【図13】本発明の別の実施例を示すブロック図であ ス

【図14】本発明の別の実施例を示すブロック図である。

【図 1 5】 本発明の別の実施例を示すブロック図であ

【図16】本発明の別の実施例を示すブロック図であ ス

【図17】本発明の別の実施例を示すブロック図であ る。

【符号の説明】

DIP:分波回路

DUP:アンテナ共用回路 AS:送受切替えスイッチ

LNA:低雑音増幅器

LPF:ローパスフィルタ BPF:バンドパスフィルタ

ISO: アイソレータ

PA:電力増幅器

TRI:3経路分波回路

【図1】

【図2】

GS**M4**00

【図16】

LPF1 PE

BPF1

【図17】

フロントページの続き

(72)発明者 田中 俊彦

東京都港区芝浦一丁目2番1号日立金属株 式会社内 Fターム(参考) 5J012 BA03 BA04 5K011 AA04 BA03 BA10 DA02 DA27 JA01 KA02 KA18