

Project VIBRO CONTROL BOARD

Title FUNCTIONAL SOFTWARE SPECIFICATION

Doc. Id. ASMR&D038

Revision 02

Issue date 18 March 2020

Author Maurizio Bonesi, Marco Toschi

Approver Marco Toschi

The documentation is © Sesotec ASM S.r.l., which holds all the rights of reproduction, disclosure and any other rights identified by current legislation on copyright. Assigned, copied, distributed or reproduced, nor quoted, summarized, or modified, even separated, without the explicit consent of Sesotec ASM S.r.l.

REVISION HISTORY

Rev.	Date	Paragraph	Description
01	31 January 2020		First issue
02	18 March 2020	§3	F1 updated
		§3.1	F17 added
		§4.1	F12 updated, F13 removed
		§4.2	F15, F16 updated
		§4.2.1	Updated
		§4.2.2	Updated

INDEX

1	IN	TRODUCTION	4
	1.1	Reference Documents	4
	1.2	Reference Standards	4
2	OV	/ERVIEW	5
	2.1	Scope and Key Objectives	5
	2.2	Functional Block Diagram	6
3	FU	INCTIONS	7
	3.1	Working Modes	7
	3.2	Finite State Machine for Automated Flow Control	8
	3.3	Alarms	9
4	IN	TERFACES	10
	4.1	Interface with Other Systems	10
	4.2	Interface Protocol	10
	4.2	2.1 Slave Holding Registers	11
	4.2	2.2 Slave Input Registers	11
5	GL	OSSARY	12
6	AN	INEXES	13
	6.1	Annex 1	13

1 INTRODUCTION

This document was generated under the authority of the Sesotec ASM S.r.l. company, for the purpose of developing the software that get control of Vibro Control Board.

1.1 Reference Documents

Document Code	Document Title

1.2 Reference Standards

Document Code	Document Title

2 OVERVIEW

The system consists on an electronic board that will be used to drive an external vibrating device.

2.1 Scope and Key Objectives

The system will provide proper current amplitude values to achieve a desired product flow rate on the tray connected to the vibrating device.

2.2 Functional Block Diagram

3 FUNCTIONS

Code	Function
F01	Constant Flow Delivery The system will deliver a constant product flow regardless of the weight load that insists on the vibrating tray, by tracking the RMS acceleration value.
F02	Similar Flow on Different Chutes The system will deliver similar product flow on chutes belonging to the same section that have been configured with the same setpoint.
F03	Proportional Flow as Chutes Width Vary The system will deliver proportional product flow on chutes when they are installed in different sizes: ¼, ½, ¾, 1 on the same section. This will be accomplished via correction factor that will scale the setpoint as needed.

3.1 Working Modes

Code	Function
	Resonance Frequency Tuning The system will allow the user to set the optimal vibrating frequency by:
F17	 executing a sequence of vibration trials from 40 to 240 Hz; calculating the maximum acceleration RMS value within that range.
	The results will be plot on a graph.
	Manual Flow Control
	The system will allow the user to set the flow between:
F04	 a minimum value of 0% (no product flows out); a maximum value of 100% (product flows out at full speed).
	The feature will be enabled by default. The user can select the operating mode.

Code	Function
	Automated Flow Control
F05	The system will be equipped with n. 3 level probe sensors (L1, L2, L3) which will be feed to the algorithm that will control the vibration setpoint %. The user will be able to enable/disable it at any time.

3.2 Finite State Machine for Automated Flow Control

Code	Function			
	Finite State Machine			
	When set to operate in Automatic flow control mode, the system will implement FSM to compute the proper value for the output signal to be fed to the vibrating unit.			
F06	The FSM will read the level probes sensors (L1, L2, L3) at regular intervals and compute the necessary output value to guarantee product flow control, also taking into consideration algorithm configuration parameters as defined in the following section.			
	The full states transition map and pseudo-C control code for the automatic flow control FSM is reported in <i>Table 1 - FSM states transitions map</i> .			
	Configuration Parameters			
	 interval: the time interval at which the algorithm is fed (input sampled, FSM processed, outputs driven); dly: number elapsed intervals; 			
F07	• setpoint: the user specified setpoint for vibration control (0÷100%);			
	 step: the increment/decrement step when increasing/decreasing output value; variation: a fixed amount that is added/subtracted to the output value in case coarse variation in the output value is needed. 			
	Internal Parameters			
F08	 currState: the current FSM state {A, B, C, D, E, F, G}; nextState: the state that the FSM is set to and will be used on next iteration {A, B, C, D, E, F, G}; counter: used internally to measure the number of time intervals that one state persists. 			

Code	Function			
	Input Parameters • level: a nume	erical mapping of the pro	bes readout lev	els according to the following table
		Probes Readout (L3 L2 L1)	Level	
		000	0	
F09		001	1	
		010	2	
		011	2	
		100	3	
		101	3	
		110	3	
		111	3	
F10	Output Parametersoutput: the v	ariation value that is app	lied to the vibra	ator control system (0÷100%).

3.3 Alarms

Code	Function
	Alarms The system will manage the following alarms via an internal management system and reporting strategy:
F11	 Power fault; Feeder accelerometer error; Faulty feeder; Level probes fault: odd configurations of three-probes setups will be detected (e.g.: if the rightmost signal is the machine infeed one, configurations like 101, 100, 110 will be treated as probes system failures).

4 INTERFACES

4.1 Interface with Other Systems

Code	Function
F12	Serial Port The system will be equipped with a RS485 port with DB9 connector.
F14	Synchronization If multiple systems are installed on the same machine and the vibrator frequency has been setup to grid frequency (50 or 60 Hz), they will synchronize their output signal with the rising edge of the input AC voltage.

4.2 Interface Protocol

Code	Function
F15	Modbus RTU
	Communication protocol will be based on Modbus RTU, configured as Master.
F16	Address
110	The system will allow to set the slave address/es as a software parameter.

4.2.1 Slave Holding Registers

Register	Address (hex)	Register Type	Description	
Frequency	0x1000	1 word	Vibration setpoint from 40 to 240.	
Amplitude	0x1001	1 word	Vibration setpoint from 0 to 255.	

4.2.2 Slave Input Registers

Register	Address (hex)	Register Type	Description			
RMS Accelerometer Status	0x4000	1 word	RMS value of current acceleration			
Vibration Amplitude Status	0x4001	1 word	Current amplitude setpoint of vibration			
Probes Status	0x4002	1 word	Probes bit mask			
	0x4003	1 word	0	No Alarm		
			1	Power section fault		
Alarms ¹			2	Accelerometer fault		
			4	Feeder fault		
			8	Level Probes Fault		

 $^{^{\}rm 1}$ The alarm signal can be OR'ed to indicate the presence of multiple failure.

5 GLOSSARY

Term	Description					
FSM	Finite State Machine					

6 ANNEXES

6.1 Annex 1

					currState		
level	A	В	С	D	E	F	G
0	<pre>counter=0; nextState=A; output=0;</pre>	<pre>counter=0; nextState=A; output=0;</pre>	<pre>counter=0; nextState=A; output=0;</pre>	<pre>counter=0; nextState=A; output=0;</pre>	<pre>counter=0; nextState=A; output=0;</pre>	<pre>counter=0; nextState=0; output=0;</pre>	<pre>counter=0; nextState=A; output=0;</pre>
1	<pre>counter=0; nextState=B; output=0;</pre>	<pre>counter++; if(counter>dly) { nextState=C; }</pre>	<pre>output=setpoint- variation;</pre>	<pre>output=output-step; if (output<(setpoint- variation)) { output=(setpoint- variation); nextState=C; }</pre>	<pre>output=setpoint; counter=0; nextState=D;</pre>	nextState=C;	<pre>output=setpoint+variation; nextState=D;</pre>
2	<pre>counter=0; nextState=B; output=0;</pre>	<pre>counter++; if(counter>dly) { nextState=C; }</pre>	<pre>counter=0; nextState=D; output=setpoint- variation;</pre>	<pre>output=output+step; if (output>setpoint) { output=setpoint; nextState=E; }</pre>	output=setpoint;	<pre>output=output-step; if (output<setpoint) nextstate="E;" output="Setpoint;" pre="" {="" }<=""></setpoint)></pre>	<pre>output=setpoint+variation; nextState=F;</pre>
3	<pre>counter=0; nextState=B; output=0;</pre>	<pre>counter++; if (counter>dly) { nextState=C; }</pre>	<pre>counter=0; nextState=E; output=setpoint- variation;</pre>	<pre>counter=0; nextState=F;</pre>	<pre>output=setpoint; counter=0; nextState=F;</pre>	<pre>output=output+step; if (output>(setpoint+variation)) { output=(setpoint+variation); nextState=G; }</pre>	output=setpoint+variation;

Table 1 - FSM states transitions map

© Sesotec ASM S.r.l. – Company Confidential