AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

1. (Withdrawn) A compound of formula (I):

$$R^{8}CFX \longrightarrow S(O)_{n} \longrightarrow NH_{2}$$

$$R^{4} \longrightarrow N$$

$$R^{5} - S(O)_{m} - A$$

$$R^{2} \longrightarrow W$$

$$R^{3}$$

$$R^{3}$$

wherein:

R1 is CSNH2;

W is C-halogen or N;

R2 is hydrogen or Cl;

R3 is CF3, OCF3 or SF5;

 R^4 is hydrogen, $(C_2\text{-}C_6)$ -alkenyl, $(C_2\text{-}C_6)$ -haloalkenyl, $(C_2\text{-}C_6)$ -alkynyl, $(C_2\text{-}C_6)$ -haloalkynyl, $(C_3\text{-}C_7)$ -cycloalkyl, $(C_3\text{-}C_6)$ -alkyl, CO_2 — $(C_3\text{-}C_6)$ -alkenyl, CO_2 — $(C_3\text{-}C_6)$ -alkynyl, CO_2 — $(C_3\text{-}C_6)$ -alkenyl, CO_2 — $(C_3\text{-}C_6)$ -alkynyl, CO_2 — $(C_1\text{-}C_2)$ -alkyl, CO_2 — $(C_1\text{-}C_2)$ -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, $(C_1\text{-}C_3)$ -alkoxy and $(C_1\text{-}C_3)$ -alkylthio; or $(C_1\text{-}C_6)$ -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, $(C_1\text{-}C_6)$ -alkoxy, $(C_1\text{-}C_6)$ -haloalkoxy, $(C_3\text{-}C_7)$ -cycloalkyl, $S(O)_pR^8$ and CO_2 — $(C_1\text{-}C_6)$ -alkyl;

A is (C1-C6)-alkylene or (C1-C6)-haloalkylene;

$$\begin{split} R^5 &: s(C_2-C_6)\text{-alkenyl, } (C_2-C_6)\text{-haloalkenyl, } (C_2-C_6)\text{-alkynyl, } (C_3-C_6)\text{-cycloalkyl or } --(CH_2)_qR^7; \\ &\text{or } (C_1-C_6)\text{-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, } (C_1-C_6)\text{-alkoxy, } (C_1-C_6)\text{-haloalkoxy, } (C_3-C_7)\text{-cycloalkyl, } S(O)_pR^8 \text{ and } CO_2--(C_1-C_6)\text{-alkyl; } \end{split}$$

X is F or Cl:

R6 is F. Cl or Br:

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkyl, (C_1-C_6)

R8 is (C1-C6)-alkyl or (C1-C6)-haloalkyl;

 R^9 is a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S, unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkyl, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkyl, (C_1-C_4) -haloalkyl, (

R¹⁰ and R¹¹ are each independently H or R⁵;

or the radical NR¹⁰R¹¹ forms a five- to seven-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl and CO₂—(C₁-C₆)-alkyl;

R12 and R13 are each independently H or (C1-C6)-alkyl;

m, n and p are each independently zero, one or two; and

q is zero or one;

or a pesticidally acceptable salt thereof.

2. (Withdrawn) A compound or a salt thereof as claimed in claim 1 wherein \mathbb{R}^6 and X are both F.

3. (Withdrawn) A compound or a salt thereof as claimed in claim 1 wherein

R1 is CSNH2;

W is C-Cl;

R2 is Cl:

R3 is CF3 or OCF3;

$$\begin{split} R^4 & \text{is } (C_2-C_4)\text{-alkenyl, } (C_2-C_4)\text{-alkynyl, } (C_3-C_7)\text{-cycloalkyl, } CO_2\text{---}(C_1-C_3)\text{-alkyl, } CO_2\text{---}(C_3-C_4)\text{-alkenyl, } CO_2\text{---}(C_3-C_4)\text{-alkynyl } \text{or } \text{---}CO_2\text{---}(CH_2)_q\text{---}R^7; \\ \text{or } (C_1-C_3)\text{-alkyl unsubstituted } \text{or substituted } \text{by one } \text{or } \text{more radicals selected } \text{from } \text{the } \text{group } \text{consisting } \text{of } \text{halogen, } (C_1-C_3)\text{-alkyl; } \text{alkoxy, } (C_1-C_3)\text{-haloalkoxy, } (C_3-C_7)\text{-cycloalkyl, } S(O)_pR^8 \text{ and } CO_2\text{---}(C_1-C_3)\text{-alkyl; } \text{or } \text{consistency } \text{consistency } \text{consistency } \text{or } \text{consistency } \text{con$$

A is (C₁-C₄)-alkylene or (C₁-C₄)-haloalkylene;

 R^5 is (C_3-C_6) -cycloalkyl or — $(CH_2)_qR^7$; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and CO_2 — (C_1-C_3) -alkyl;

X is F or Cl:

R6 is F or Cl:

R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂, S(O)₆R⁸, CO₂—(C₁-C₃)-alkyl, COR⁸, NR¹²R¹³ and OH:

R⁸ is (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl;

R¹² and R¹³ are each independently H or (C₁-C₃)-alkyl;

m, n and p are each independently zero, one or two; and

q is zero or one.

4. (Withdrawn) A compound or a salt thereof as claimed in claim 1 wherein

R1 is CSNH2;

W is C-Cl:

R2 is Cl;

R3 is CF3 or OCF3;

R4 is CO2-(C1-C3)-alkyl, CO2-(C3-C4)-alkenyl, CO2-(C3-C4)-alkynyl or

A is (C₁-C₄)-alkylene;

 R^5 is (C_3-C_6) -cycloalkyl or — $(CH_2)_qR^7$; or (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_3-C_6) -cycloalkyl, $S(O)_pR^8$ and CO_2 — (C_1-C_3) -alkyl;

X is F or Cl:

R6 is F or Cl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -haloalk

R8 is (C1-C3)-alkyl or (C1-C3)-haloalkyl;

m, n and p are each independently zero, one or two; and

q is zero or one.

- (Withdrawn) A process for the preparation of a compound of formula (I) or a salt thereof as defined in claim 1, which process comprises:
- a) when R^1 is CSNH2, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, m and n are as defined in claim 1, reacting a compound of formula (II):

$$R^5$$
CFX $S(O)_n$ CN R^4 N N N R^5 $S(O)_m$ A R^2 W

wherein R², R³, R⁴, R⁵, R⁶, W, A, X, m and n are as defined in formula (I), with an alkali or alkaline earth metal hydrosulfide; or

- b) when R^1 is CSNH₂, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, m and n are as defined in claim 1, reacting a compound of formula (II) as defined above with a bis(trialkylsilyl)sulfide, in the presence of a base; and
- (c) if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.

- 6. (Withdrawn) A pesticidal composition comprising a pesticidally effective amount of a compound of formula (I) or a pesticidally acceptable salt thereof as defined claim 1, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.
 - 7-8. (Cancelled).
- (Currently amended) A method for controlling pests at a locus which comprises
 applying to said locus a pesticidally effective amount of a compound of formula (I)

$$R^{6}CFX \longrightarrow S(O)_{n} \qquad NH_{2}$$

$$R^{4} \longrightarrow N$$

$$R^{5} - S(O)_{m} - A \qquad R^{2} \longrightarrow N$$

$$R^{3} \longrightarrow N$$

$$R^{5} - S(O)_{m} - A \qquad N$$

wherein:

R1 is CSNH2;

W is C-halogen or N;

R2 is hydrogen or Cl;

R³ is CF₃, OCF₃ or SF₅;

 R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, (C_3-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -alkyl, (C_2-C_6) -alkyl, (C_2-C_6) -alkyl, (C_2-C_6) -alkyl, (C_2-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl unsubstituted or substituted

by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_7) -cycloalkyl, $S(O)_0R^8$ and CO_2 — (C_1-C_6) -alkyl;

A is (C2-C6)-alkylene or (C2-C6)-haloalkylene;

R⁵ is (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₃-C₆)-cycloalkyl or —(CH₂)₀R⁷; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₂-C₇)-cycloalkyl, S(O)₀R⁸ and CO₂—(C₁-C₆)-alkyl;

X is F or Cl:

R6 is F, Cl or Br;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -haloalkoxy, (C_1-C_6) -haloalkyl, (C_1-C_6) -alkyl, (C_1-C_6)

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 is a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S, unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkoxy, (C

R10 and R11 are each independently H or R5;

or the radical NR ¹⁰R ¹¹ forms a five- to seven-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-alkyl, (C₁-C₆)-alkyl, and CO₂—(C₁-C₆)-alkyl;

R¹² and R¹³ are each independently H or (C₁-C₆)-alkyl;

m, n and p are each independently zero, one or two; and

g is zero or one:

or a salt thereof as claimed in claim 1.

(Currently amended) A method for controlling pests at a locus which comprises
applying to said locus a pesticidally effective amount of a composition as elaimed in claim 6
comprising a pesticidally effective amount of a compound of formula (I)

$$R^{\delta}CFX \longrightarrow S(O)_n \longrightarrow NH_2$$

$$R^{\delta} - S(O)_m - A \longrightarrow R^2 \longrightarrow W$$

$$R^{\delta} - S(O)_m - A \longrightarrow R^2 \longrightarrow W$$

wherein:

R1 is CSNH2;

W is C-halogen or N;

R2 is hydrogen or Cl;

R3 is CF3, OCF3 or SF5;

 R^4 is (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_7) -cycloalkyl, (C_3-C_7) -cycloalkyl, (C_3-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -alkyl, (C_2-C_6) -alkynyl, (C_2-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -alkyl;

A is (C2-C6)-alkylene or (C2-C6)-haloalkylene;

$$\begin{split} &R^5 \text{ is } (C_2\text{--}C_6)\text{-alkenyl, } (C_2\text{--}C_6)\text{-haloalkenyl, } (C_2\text{--}C_6)\text{-alkynyl, } (C_3\text{--}C_6)\text{-eycloalkyl or } \text{--}(\text{CH}_2)_{\text{R}}^{7};\\ &\text{ or } (C_1\text{--}C_6)\text{-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, } (C_1\text{--}C_6)\text{-alkoxy, } (C_1\text{--}C_6)\text{-haloalkoxy, } (C_3\text{--}C_7)\text{-eycloalkyl, } S(O)_{\text{R}}^8 \text{ and } \\ &\text{CO}_2\text{--}(C_1\text{--}C_6)\text{-alkyl; } \end{split}$$

X is F or Cl:

R6 is F, Cl or Br;

R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)₃R⁸, CO₂—(C₁-C₆)-alkyl, COR⁸, NR¹²R¹³ and OH;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 \mathbb{R}^9 is a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S, unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkyl, (C_1-C_4) -alkyl,

R¹⁰ and R¹¹ are each independently H or R⁵;

or the radical NR¹⁰R¹¹ forms a five- to seven-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-alkyl, and CO₂—(C₁-C₆)-alkyl;

R12 and R13 are each independently H or (C1-C6)-alkyl;

m, n and p are each independently zero, one or two; and

q is zero or one:

or a pesticidally acceptable salt thereof, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.

- 11. (Withdrawn) A veterinary medicament comprising a pesticidally effective amount of a compound of formula (I) or a salt thereof as claimed in claim 1, in association with a veterinarily acceptable diluent or carrier and/or surfact active agent.
- (Currently amended) A method for the control of pests in or on an animal which
 comprises administering to said animal a pesticidally effective amount of a compound of
 formula (I)

$$R^{\theta}CFX \longrightarrow S(O)_{h}$$
 NH_{2} NH_{2}

wherein:

R1 is CSNH2;

W is C-halogen or N;

R2 is hydrogen or Cl;

R3 is CF3, OCF3 or SF5;

 $\begin{array}{l} R^4 \text{ is } (C_2\text{-}C_6)\text{-alkenyl, } (C_2\text{-}C_6)\text{-haloalkenyl, } (C_2\text{-}C_6)\text{-haloalkynyl, } (C_3\text{-}C_7)\text{-}\\ \text{cycloalkyl, } (C_3\text{-}C_7)\text{-cycloalkyl-} (C_1\text{-}C_6)\text{-alkyl, } (C_2\text{--}(C_6)\text{-alkenyl, } CO_2\text{--}(C_3\text{-}C_6)\text{-alkenyl, } CO_2\text{--}(C_3\text{-}C_6)\text{-alkynyl, } \\ \text{CO}_2\text{--}(CH_2)_q\text{--}R^7, \text{--}CH_2R^9, \text{OR}^7, \text{OR}^8, \text{COCO}_2R^{10} \text{ or COCONR}^{10}R^{11}; \text{ or } CO_2\text{--}(C_1\text{-}C_6)\text{-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting} \end{array}$

of halogen, (C_1-C_3) -alkoxy and (C_1-C_3) -alkylthio; or (C_1-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_7) -cycloalkyl, $S(O)_0R^8$ and CO_2 — (C_1-C_6) -alkyl;

A is (C2-C6)-alkylene or (C2-C6)-haloalkylene;

R⁵ is (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₃-C₆)-cycloalkyl or —(CH₂)₆R⁷; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₇)-cycloalkyl, S(O)_BR⁸ and CO₂—(C₁-C₆)-alkyl;

X is F or Cl;

R6 is F, Cl or Br;

R⁷ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)₀R⁸, CO₂-(C₁-C₆)-alkyl, COR⁸, NR ¹²R ¹³ and OH;

R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

R⁹ is a heteroaromatic radical having 5 or 6 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S, unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkyl, S(O)_RR⁸ and OH;

R10 and R11 are each independently H or R5;

or the radical NR ¹⁰R ¹¹ forms a five- to seven-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl and CO₂—(C₁-C₆)-alkyl;

R12 and R13 are each independently H or (C1-C6)-alkyl;

q is zero or one;

or a salt thereof as claimed in claim 1.

- 13. (Cancelled).
- 14. (Withdrawn) A compound or salt thereof as claimed in claim 3 wherein R^6 and X are both F.
- 15. (Withdrawn) A compound or salt thereof as claimed in claim 4 wherein R^6 and X are both F.
- 16. (Withdrawn) A compound or salt thereof as claimed in claim 1 wherein R^1 is CSNH₂, W is C—C¹, R^2 is C¹, R^3 is CF₃ and R^4 is CH₃.
 - 17. (Withdrawn) The compound or salt thereof as claimed in claim 16, wherein:
 - (a) A is CH₂CH₂, R⁵S(O)_m is CH₃S and R⁶CFX—S(O)_n is CF₃S;
 - (b) A is CH₂CH₂, R⁵S(O)_m is CH₃SO and R⁶CFX—S(O)_n is CF₃S;
 - (c) A is CH₂CH₂, R⁵S(O)_m is CH₃SO₂ and R⁶CFX—S(O)_n is CF₃S;
 - (d) A is CH2CH2, R5S(O)m is CH3S and R6CFX-S(O)n is CF3SO;
 - (e) A is CH_2CH_2 , $R^5S(O)_m$ is CH_3SO and R^6CFX — $S(O)_n$ is CF_3SO ;
 - (f) A is CH₂CH₂, R⁵S(O)_m is CH₃SO₂ and R⁶CFX—S(O)_n is CF₃SO;
 - (g) A is CH₂CH₂, R⁵S(O)_m is CH₃S and R⁶CFX—S(O)_n is CF₃SO₂;
 - (h) A is CH2CH2, R5S(O)m is CH3SO and R6CFX-S(O)n is CF3SO2; or
 - (i) A is CH₂CH₂, R⁵S(O)_m is CH₃SO₂ and R⁶CFX—S(O)_n is CF₃SO₂.

- (New) The method according to claim 10 wherein the composition contains from about 0.0001ppm to about 20ppm of compound of formula (I).
- (New) The method according to claim 18 wherein the composition contains from about 0.001 ppm to about 5ppm of compound of formula (I).
 - 20. (New) The method according to claim 12, wherein the pests are fleas and ticks.
- 21. (New) The method according to claim 12, wherein the animal is a domestic companion animal such as a dog or a cat.