Contrôle de cours (correction)

Fonctions de référence

Exercice 1 (R.O.C., temps conseillé: 10 min):

On définit la fonction inverse comme $x\mapsto \frac{1}{x}$. Elle est définie sur \mathbb{R}^* . On montre que la fonction est décroissante $]0,+\infty[$: soit $0\leq a\leq b$ On a

 $a \leq b$

donc

 $\frac{a}{b} \le 1$ $\frac{1}{a} \frac{a}{b} \le \frac{1}{a}$

finalement

 $\frac{1}{b} \le \frac{1}{a}$

On montre maintenant que la fonction est croissante] $-\infty,0$ [: soit $b\leq a\leq 0$ On a

 $b \le a$

donc

 $\frac{b}{a} \ge 1$ $\frac{1}{1} \frac{b}{a} \le \frac{1}{1}$

finalement

 $\frac{1}{a} \le \frac{1}{b}$

Exercice 2 (Etude d'une fonction, temps conseillé : 15-18 min) :

1. On calcule le discriminant

$$\Delta = 12^2 - 4 \times 2 \times 16 = 16$$

 $\Delta>0$ donc le trinôme admet deux racines réelles distinctes qui sont

$$x_1 = \frac{12 - \sqrt{16}}{2 \times 2} = \frac{12 - 4}{2 \times 2} = 2$$

$$x_1 = 2$$

$$x_2 = \frac{12 + \sqrt{16}}{2 \times 2} = \frac{12 + 4}{2 \times 2} = 4$$

$$x_2 = 4$$

Contrôle chapitre 2 Yoann Pietri

2. Le coefficient dominant étant positif

x	$-\infty$		2		4		$+\infty$
g(x)		+	0	_	0	+	

- 3. On déduit le domaine de définition de $x\mapsto \sqrt{g(x)}$ est $]-\infty,2]\cup [4,+\infty[$ qui s'annule en x=2 et x=4 donc le domaine de définition de f est $]-\infty,2[\cup]4,+\infty[$
- 4. La racine garde le sens de variation donc $x \mapsto \sqrt{g(x)}$ est décroissante sur $]-\infty,2]$ et croissante sur $[4,+\infty[$
- 5. La fonction inverse le sens de variation (lol). Ainsi f est croissante sur $]-\infty,2[$ et décroissante sur $]4,+\infty[$
- 6. On a

$$f(-1) = \frac{1}{\sqrt{2(-1)^2 + 12 + 16}} = \frac{1}{\sqrt{30}}$$
$$f(-1) = \frac{1}{\sqrt{30}}$$
$$f(5) = \frac{1}{\sqrt{2(5)^2 - 12 \times 5 + 16}} = \frac{1}{\sqrt{6}}$$
$$f(5) = \frac{1}{\sqrt{6}}$$

7. Voici la représentation graphique de f

Exercice 3 (Valeur absolue, temps conseillé: 10 min):

1. On appelle valeur absolue la fonction définie par

$$|x| = \begin{cases} x \text{ si } x \ge 0\\ -x \text{ si } x \le 0 \end{cases}$$

Contrôle chapitre 2 Yoann Pietri

2. On étudie tous les cas

$a \ge 0; b \ge 0$	$a \le 0; b \ge 0$	$a \ge 0; b \le 0$	$a \le 0; b \le 0$
Alors	Alors	Alors	Alors
a = a	a = -a	a = a	a = -a
b = b	b = b	b = -b	b = -b
De plus	De plus	De plus	De plus
$ab \ge 0$	$ab \leq 0$	$ab \leq 0$	$ab \ge 0$
donc	donc	donc	donc
ab = ab	ab = -ab	ab = -ab	ab = ab
OK	OK	OK	ОК

3. On remarque une identité remarquable : $h(x) = (x-2)^2$. Donc pour tout $x \in \mathbb{R}$, $h(x) \ge 0$ donc pour tout $x \in \mathbb{R}$, |h(x)| = h(x)

Exercice 4 (Intersection de deux droites, temps conseillé: 17-20 min):

- 1. Pas de point en commun : droite parallèle non confondue (exemple : $d_1 : x = 1$ et $d_2 : x = 2$), un point en commun : droites non parallèles (exemple : $d_1 : x = 0$, $d_2 : y = 0$) et infinité de points en commun : droites confondues (exemple : $d_1 : x + y = 1$, $d_2 : x + y = 1$)
- 2. Si (x, y) est un point d'intersection, alors

$$y = ax + b$$

et

$$y = cx + d$$

donc

$$y - y = ax + b - (cx + d)$$

donc

$$0 = ax - cx + b - d$$

donc

$$\boxed{(a-c)x = d-b}$$

- 3. On suppose tout d'abord a-c=0. L'équation devient alors d-b=0Si d=b alors f=g et il y a une infinité de point en commun puisque les droites sont confondues Si $d \neq b$ alors il ne peut y avoir de point en commun donc les droites sont parallèles non confondues
- 4. On revient à l'équation

$$(a-c)x = d-b$$

vu que $a - c \neq 0$, on divise par a - c et on trouve

$$x = \frac{d-b}{a-c}$$

On réinjecte x dans y = ax + b pour trouver y:

$$y = a\frac{d-b}{a-c} + b$$

$$y = \frac{ad - ba + ba - bc}{a - c}$$

Contrôle chapitre 2 Yoann Pietri

$$y = \frac{ad - bc}{a - c}$$

On déduit que bien que le point d'intersection est

$$\left(\frac{d-b}{a-c}, \frac{ad-bc}{a-c}\right)$$

FIN DU SUJET