

Inspire...Educate...Transform.

Architecting ML Solutions

Dr. Manish Gupta

Principal Applied Scientist, Microsoft Adjunct Professor, IIIT Hyderabad

The process

Understand

Business
Problem
Current solution
What is the ROI

Analyze

Which bucket(s) the problem falls

What error metrics makes sense

What stories must be told (evolves)

Data

Define target (for supervised)

Derive relevant attributes through brainstorming hierarchically

Get what is available, preprocess and visualize

Engineering

Anybody can build a model. You should build the most efficient and accurate

Engineer features (transform data, PCA it. Create smaller number of classes for categorical). Did you derive at least 3 additional attributes? Can you do better?

Keep experimenting with various hyper parameters; Regularize

Try at least 3 models on 3 types of data sets with 3 sets of hyper parameters (27) before you pick the final choice.

Validation

Design validation strategy.

Divide the data into train, test and validation.

Plot the error metric for all data for all models and pick the best

Gaining acceptance

Tell stories from the beginning. Every slide you write must entertain, challenge. Work closely with the client. This tells you what they really are excited with.

Explicability or Accuracy?

Do they want highest possible accuracy? Go for RF, SVM etc.

Do they want to understand and get high level Patterns? Try LR, DT In doubt? Do both

Skills at a glance

Data related
Excel, SQL, Hadoop
(Hive/Pig/Spark)
Handle text

Math related
Stat analysis, LR (Linear and Logistic), clustering
Linear programming,

Business related
Visualize
Tell stories

What is the Machine Learning Process?

Convert Real world problem to a prediction task

A person will find

job in Microsoft

Develop a binary

classifier to

or not?

predict

Details of folks

Gather

training

data

who got selected for MS and who DID NOT make it # years of job experience

Create

Features

- previous companies
- keywords in resume

- Decision Trees

Train a

model,

tune

parameters

- SVM
- Random Forest
- Neural Networks
- Logistic Regression

the model

Evaluate

- Precision
- Recall
- AUC
- Accuracy
- F1

Practical Issues when applying Machine Learning Models

- Supervised, semi-supervised, unsupervised algorithms.
- Overfitting: Too much specialization on training data.
- Understanding data and acquiring clean data is the key.
- Various data transformations like normalization, discretization could be useful.
- It is important to handle missing values appropriately.
- If the data is imbalanced, it is important to oversample the minority or undersample the majority class.
- If certain mis-classification errors are more important than others, costsensitive learning should be done.
- Many times, selecting a set of good predictors as features is useful compared to throwing all possible features at the model.

Mayurbhani

Balasore

Bhadrak

LVPEI Network

Machine Learning

Predict the LASIK refractive surgery outcomes

- Given pre-surgery data about 404 patients
- Train a machine learning model to predict what would be the new "eye number" (Uncorrected Visual Acuity or UCVA) 1 day/1 week after the surgery
- Features: Gender, age, UCVA, Near vision, BCVA with glasses, Sphere, Cylinder, Axis, Spherical equivalent, Slit lamp, IOP, Retina, Topography machine, AR sphere, AR cylinder, AR Axis, Preop Corneal Thickness-Thinnest, steep-K, Flat-K, Axis@Flat K
- Overall we can predict the right "eye number" UCVA with an L1 error of 0.07 ± 0.0123) for day 1 and 0.06 ± 0.0085) for week 1 after the surgery.

Results Summary

- Missing values were replaced by average value for column for numeric features, and maximum value for column for categorical features.
- Categorical features were converted to numeric features by mapping them to consecutive integers.

10 fold cross validation over 747 instances that had the postsurgery UCVA for day 1 after surgery

Model L1(avg) RMS(avg) L2(avg) 0.0771 (0.0084) 0.0136 (0.0065) 0.1155 (0.026) **Linear Regression** Poisson Regression 0.0744 (0.008) 0.0128 (0.0049) 0.1108 (0.0217) **Boosted Decision Trees** 0.0695 0.1024 0.0108 (0.0123)(0.0051)Regression (0.0234)Neural Network 0.082 (0.0077) 0.0142 (0.0068) 0.1179 (0.027) Regression Day 1 UCVA

10 fold cross validation over 622 instances that had the postsurgery UCVA for week 1 after surgery

Model	L1(avg)	L2(avg)	RMS(avg)
		0.0138	
Linear Regression	0.0657 (0.0112)	(0.0068)	0.1138 (0.0303)
		0.0132	
Poisson Regression	0.0636 (0.0118)	(0.0107)	0.1102 (0.0374)
Boosted Decision Trees	0.0623		0.1008
Regression	(0.0085)	0.0111 (0.005)	(0.0229)
Neural Network		0.0149	
Regression	0.0673 (0.0121)	(0.0091)	0.1169 (0.0342)
	\N/OOK 1	Ι Ι (\ / Δ	

Week TUCVA

Practical Issues

- Interpreting Data and ensuring data quality
- Data privacy
- Safe data sharing
- Delays and formatting issues
- Domain understanding
- Deployment
- User acceptance
- Charging customers
- Data Size

HYDERABAD

Office and Classrooms

Plot 63/A, Floors 1&2, Road # 13, Film Nagar,

Jubilee Hills, Hyderabad - 500 033

+91-9701685511 (Individuals)

+91-9618483483 (Corporates)

Social Media

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.

BENGALURU

Office

Incubex, #728, Grace Platina, 4th Floor, CMH Road, Indira Nagar, 1st Stage, Bengaluru – 560038

+91-9502334561 (Individuals)

+91-9502799088 (Corporates)

Classroom

KnowledgeHut Solutions Pvt. Ltd., Reliable Plaza, Jakkasandra Main Road, Teacher's Colony, 14th Main Road, Sector – 5, HSR Layout, Bengaluru - 560102