```
import numpy as np
import pandas as pd
```

import matplotlib.pyplot as plt

import seaborn as sns

data=pd.read_csv(r"C:\Users\CTTC\Downloads\Churn_Modelling (2).csv")

data

\Rightarrow		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
	0	1	15634602	Hargrave	619	France	Female	42	2	_
	1	2	15647311	Hill	608	Spain	Female	41	1	
	2	3	15619304	Onio	502	France	Female	42	8	1
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	1
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	
	9996	9997	15569892	Johnstone	516	France	Male	35	10	
	9997	9998	15584532	Liu	709	France	Female	36	7	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	
	9999	10000	15628319	Walker	792	France	Female	28	4	1
	10000 rows × 14 columns									

data.isnull().sum()

$\overline{\Rightarrow}$	RowNumber	0
	CustomerId	0
	Surname	0
	CreditScore	0
	Geography	0
	Gender	0
	Age	0
	Tenure	0
	Balance	0
	NumOfProducts	0
	HasCrCard	0
	IsActiveMember	0
	EstimatedSalary	0
	Exited	0
	dtype: int64	

data.dtypes

```
→ RowNumber
                         int64
                        int64
    CustomerId
    Surname
                       object
    CreditScore
                        int64
                       object
    Geography
                       object
    Gender
                        int64
    Age
                        int64
    Tenure
    Balance
                      float64
    NumOfProducts
                       int64
    HasCrCard
                        int64
    IsActiveMember
                        int64
    EstimatedSalary
                       float64
                         int64
    Exited
    dtype: object
for i in ['Surname', 'Geography', 'Gender']:
   print(i,':','\n',data[i].unique())
→ Surname :
     ['Hargrave' 'Hill' 'Onio' ... 'Kashiwagi' 'Aldridge' 'Burbidge']
    Geography:
     ['France' 'Spain' 'Germany']
    Gender:
     ['Female' 'Male']
data.shape
→ (10000, 14)
import warnings
warnings.filterwarnings('ignore')
sns.distplot(data.CreditScore[data.Exited==0],label='Not exited')
sns.distplot(data.CreditScore[data.Exited==1],label='Exited')
plt.legend()
plt.show()
```


sns.distplot(data.Age[data.Exited==0],label='Not_exited')
sns.distplot(data.Age[data.Exited==1],label='Exited')
plt.legend()
plt.show()

sns.countplot(x=data.Geography)

<Axes: xlabel='Geography', ylabel='count'>

sns.countplot(x=data.Geography,hue=data.Exited)

sns.countplot(x=data.Gender)

<Axes: xlabel='Gender', ylabel='count'>

sns.countplot(x=data.Gender,hue=data.Exited)

sns.swarmplot(x=data.Geography,y=data.Age,hue=data.Exited)

<Axes: xlabel='Geography', ylabel='Age'>


```
sns.distplot(data.Tenure[data.Exited==0],label='Not_exited')
sns.distplot(data.Tenure[data.Exited==1],label='Exited')
plt.legend()
plt.show()
```


sns.distplot(data.Balance[data.Exited==0],label='Not_exited')
sns.distplot(data.Balance[data.Exited==1],label='Exited')
plt.legend()
plt.show()


```
sns.distplot(data.EstimatedSalary[data.Exited==0],label='Not_exited')
sns.distplot(data.EstimatedSalary[data.Exited==1],label='Exited')
plt.legend()
plt.show()
```


sns.countplot(x=data.HasCrCard,hue=data.Exited)

<Axes: xlabel='HasCrCard', ylabel='count'>

sns.countplot(x=data.IsActiveMember, hue=data.Exited)

data1=data.drop(['Surname','RowNumber','CustomerId'],axis=1)

data1

→		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCarc
	0	619	France	Female	42	2	0.00	1	1
	1	608	Spain	Female	41	1	83807.86	1	(
	2	502	France	Female	42	8	159660.80	3	1
	3	699	France	Female	39	1	0.00	2	(
	4	850	Spain	Female	43	2	125510.82	1	1
	9995	771	France	Male	39	5	0.00	2	1
	9996	516	France	Male	35	10	57369.61	1	1
	9997	709	France	Female	36	7	0.00	1	(
	9998	772	Germany	Male	42	3	75075.31	2	1
	9999	792	France	Female	28	4	130142.79	1	1
	10000	rows × 11 colum	ins						

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

data1.Geography=le.fit_transform(data1.Geography)

le1=LabelEncoder()

data1.Gender=le1.fit_transform(data1.Gender)

data1

\Rightarrow		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCarc
•	0	619	0	0	42	2	0.00	1	1
	1	608	2	0	41	1	83807.86	1	C
	2	502	0	0	42	8	159660.80	3	1
	3	699	0	0	39	1	0.00	2	C