Optimizacijske metode, domača naloga 2

Janez Justin

April 15, 2020

1. Naloga

a) Razložite, kaj so čiste strategije (oziroma izbire) za vsakega od igralcev in zapišite plačilno matriko za gornjo matrično igro. Pri tem si pomagajte z računalnikom (Mathematica, R, Matlab, python...).

Vsak igralec izbere strtegijo oblike: (v, x_1, x_2, x_3) , kjer je $v \in \{2, 3, 4\}$ število, ki ga igralec izbere pred popravljanjem, in $x_i \in \{-1, 0, 1\}$ število, ki ga prišteje prvotni izbiri, če nasportnik izbere število i + 1. Vsak igralec ima tako na razpolago 81 strategij.

Matrika: «Glej priložen program v Mathematici»

b) Poiščite optimalni strategiji za oba igralca. Ali je igra poštena? Napišite še preprosta navodila za igranje igre z optimalno strategijo

Optimalna strategija za oba igralca je ista. <Za postopek glej priložen program v Mathematici >. V 23 igrah igramo:

- $4 \times \text{strategijo} (2, -1, -1, -1)$
- $6 \times \text{strategijo} (2, 0, -1, -1)$
- 8 × strategijo (3, -1, 1, -1)
- $5 \times \text{strategijo} (4, -1, -1, 1)$

Ker je vrednost igre enaka 0, je igra poštena.

Navodila:

V 23 igrah

- 4 krat izberi 2, ne glede na nasprotnikovo izbiro ga zmanjšaj za 1.
- 6 krat izberi 2 in ga ne spreminjaj, če je nasprotnik izbral 2. Sicer ga zmanjšaj za 1.
- 8 krat izberi 3 in ga povečaj za 1, če je nasprotnik izbral 3. Sicer ga zmanjšaj za 1.
- 5 krat izberi 4 in ga povečaj za 1, če je nasprotnik izbral 4. Sicer ga zmanjšaj za 1.

2. Naloga

a) Formulirajte gornji problem kot problem razvoza s parametrom

Imamo linearni program:

$$\begin{array}{ll} \max & 5x_1+7x_2+6x_3+2x_4+3x_5+5x_6\\ \text{p.p.} & x_1+x_4=50\\ & x_2+x_5\geq 30-k\\ & x_3+x_6\geq 20+k\\ & x_1+x_2+x_3=60\\ & x_4+x_5+x_6=40\\ & x_1,..,x_6,k\geq 0 \end{array}$$

kjer so:

- x_1 izdelki iz A prodani kupcu 1
- \bullet x_2 izdelki iz A prodani kupcu 2
- $\bullet \ x_3$ izdelki iz A prodani kupcu 3
- $\bullet \ x_4$ izdelki iz B
 prodani kupcu 1
- $\bullet \ x_5$ izdelki iz B prodani kupcu 2
- x_6 izdelki iz B prodani kupcu 3
- \bullet k izdelki prodani kupcu 3 kot nepogodbeni nakup
- 30 k je 30 izdelkov, ki jih ne prodamo s pogodbo kupcu 1 in 3, minus k izdelkov, ki so bili prodani kupcu 3.

Za pretvorbo na problem razvoza potrebujemo minimizacijo in enakosti v pogojih. Potrebno bo preurediti naš linearni program. To lahko storimo z množenjem funkcije z -1, da dobimo minimizacijo.

Zadnji dve enačbi množimo z -1. S tem zagotovimo, da se x_{1-6} pojavi enakokrat s plusom in minusom, brez, da bi spremenili "vrednost" programa.

Dobimo linearni program:

$$\begin{array}{ll} \max & -5x_1-7x_2-6x_3-2x_4-3x_5-5x_6\\ \text{p.p.} & x_1+x_4=50\\ & x_2+x_5=30-k\\ & x_3+x_6=20+k\\ & -x_1-x_2-x_3=-60\\ & -x_4-x_5-x_6=-40\\ & x_1,..,x_6,k\geq 0 \end{array}$$

Kar se pretvori v sledeči problem razvoza:

b) Kako mora podjetje porazdeliti prodajo, da bo imelo največji dobiček?

Če rešimo zgornji problem razvoza, bomo dobili optimalno porazdelitev za maksimalni dobiček. Poiščemo dopustno drevesno rešitev in ji določimo cene:

Lahko dodamo povezavo $-40 \rightarrow 50$, ker -4-2 < -5. $t = min\{50, 20-k\} = 20-k$, $0 \le k \le 20$, ker mora biti vrednost na povezavi večja ali enaka 0.

Ni več mogoče dodati povezave, ker za vsak $y_i + c_{ij} \geq y_j.$

$$-Profit = (30+k) \cdot (-5) + (30-k) \cdot (-7) + (20+k) \cdot (-5) + (20-k) \cdot (-2) = -500-k$$

Kar je pri danem pogoju za k najmanj -520, če vzmame
ok=20. Torej je max profit pri tej izbiri 520k evrov. Torej je rešitev:

$$x_1 = 50$$
 $x_2 = 10$ $x_3 = 0$ $x_4 = 0$ $x_5 = 0$ $x_6 = 40$

Porazdelitev prodaje:

Če preberemo rešitev vidimo, da za največji dobitek iz tovarne A pošljemo 50 izdelkov prvemu kupcu in 10 izdelkov drugemu kupcu. Iz tovarne B pa pošljemo tretjemu kupcu 40 izdelkov.