2012 级微积分 A (2) 期中考题 A

系名______ 班级_____ 姓名_____ 学号__

- 一. 填空题(每空3分,共15分)(请将答案直接写在横线上!)
- 1. $\lim_{(x,y)\to(0,+\infty)} \frac{xy}{x^2+y} = \underline{\hspace{1cm}}_{\circ}$
- 2. 函数 $f(x,y) = \begin{cases} y \ln(x^2 + y^2), & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$ 在 (0, 0) 点是否连续? ______。(填"是"或"否")。
- 3. 设 $f(x,y) = (x + y) \sin \frac{1}{x^2 + y^2}$, $(x^2 + y^2 \neq 0)$, 则 $\frac{\partial f}{\partial x}(1,0) =$ _______。
- 4. 函数 f(x,y)可微,且在点 P_0 处沿 $I_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ 的方向导数为 $\frac{\sqrt{2}}{2}$,沿 $I_2 = (\frac{3}{5}, \frac{4}{5})$ 的方向导数为 $\frac{1}{5}$,则 $\frac{\partial f}{\partial x}|P_0 = _______$ 。
- 5. 二元函数 x² + xy + y² 在点 (-1,1) 处增长最快的方向为 _____。
- 6. 设 $z(x,y) = e^{x^2y}$,则 $dz = ______$ 。
- 7. 设 $y(x) = f(2x, x^2)$,其中 f 为可微函数,则 $y(x) = _____$ 。
- 9. 设 z = z(x,y) 是由方程 x^2 + y + z = e^{-z} 所确定的隐函数,则 $\frac{\partial z}{\partial x}$ (1,e) = 。
- 10.函数 $f(x,y) = \frac{1}{x+y}$ 在点(1,0)处带 Peano 余项的二阶 Taylor 展式为_____。
- 11.曲面 $(x+y+z)e^{xyz}$ = 3e 在点(1,1,1)处的切平面方程为_____。
- 12.曲面 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x^2 + y^2 + z^2 = 4 \end{cases}$ 在点(2,1,1)处的切向量为_____。

- 13.曲线 x = 3t, $y = 3t^2$, $z = t^3$ 上一点 P_0 的切线与平面 x+y+z = 3 平行,则 P_0 的坐标为_____。
- 14. 设函数 F(x,y) = $\int_{1}^{\infty} t^{x-1} e^{-yt} dt$,(x,y>0),则 $\frac{\partial^{2} F}{\partial x \partial y}$ = _______。

15. 设
$$\varphi$$
 (t) = $\int_{2t}^{t^2} \frac{\sin tx}{x} dx$, t > 0,则 φ (t) = ________。

- 二. 计算题(每题 10 分, 共 40 分)
- 1. 讨论函数 $f(x,y) = \begin{cases} \frac{\sin(x^2y)}{x^2+y^2}, x^2+y^2 \neq 0 \\ 0, x^2+y^2 = 0 \end{cases}$,在(0,0)点连续性,偏导的存在性以及可微性。
- 2. 设 $\varphi \in C^{(2)}(R)$,函数 z=z(x,y)由 $x+y-z=\varphi(x+y+z)$ 给出,求 $\frac{\partial^2 z}{\partial x^2}$ 。
- 3. 求函数 $f(x,y) = x^2 + y^2 xy x y$ 在闭单位圆盘 $x^2 + y^2 \le 1$ 上的最大值和最小值。
- 4. 设 b > a > 0 为任意实数,计算广义积分 $\int_0^{+\infty} \frac{e^{-ax} e^{-bx}}{x} \cos x dx$ 。
- 三.证明题
- 1. (6分) 设 $\lim_{y \to y_0} \varphi(y) = a(a \in R)$, $\lim_{x \to x_0} \Psi(x) = 0$, 且 $|f(x,y) \varphi(y)| \le \Psi(x)$, $(x,y) \in R^2$, 证明: $\lim_{(x,y) \to (x_0,y_0)} f(x,y) = a$.
- 2. (9分)设 f (x,y) $\epsilon C^{(2)}(R^2)$,且 \forall (x,y) ϵR^2 ,f(x,y)>0, $f_{xy}^{"}(x,y)$ f(x,y) $\equiv f_x'(x,y)f_y'(x,y)$

证明: (1)
$$\frac{\partial}{\partial x} \left\{ \frac{f_x}{f} \right\} \equiv 0$$
;

(2) $\exists \varphi$, $\Psi \in C^2(R)$, 使得 $f(x,y) = \varphi(x)\Psi(y)$, $(x,y) \in R^2$ 。