#### 中山大学计算机学院研究生人工智能应用基础系列课程

# Hidden Markov Model 隐马尔可夫模型

# 杨猛,郑伟诗

https://cse.sysu.edu.cn/content/2970

**SUN YAT-SEN University** 



机器智能与先进计算教 育部重点实验室

声明:该PPT只供非商业使用,也不可视为任何出版物。由于历史原因,许多图片尚没有标注出处,如果你知道图片的出处,欢迎告诉我们 at wszheng@ieee.org.

# 语言模型

- □ 我在中山大学读
- □ 我在中山大学读研
- □ 我在中山大学读研究
- □ 我在中山大学读研究生
- □ 我在中山大学读研究生......

# 下面模型存在什么问题

□ 滑窗法: 例如利用卷积神经网络处理, 输入端 的数据进行加窗后输入到网络

□ n-gram模型: 例如在自然语言中, 利用统计方法统计n个连续文字出现的频次

## 时间序列Times Series

- □ 随机过程 $\{X_1, X_2, ...\}$ ,  $X_i \in \mathcal{X}$ 
  - o X称为状态空间,我们假设 $X = \{1,2,...,N\}$
  - $\circ$  假设对所有的i,  $\mathcal{X}$ 都相同
  - 。假设只处理时间序列,即i代表时间
  - o 随机性
- □ 目的是希望"过去"对"现在"有帮助
  - o 即如果有对 $X_1,...,X_{t-1}$ 的了解,能帮助确定 $X_t$
  - o Formally,  $P(X_t|X_{1:t-1})$  vs.  $P(X_t)$

#### Markov Property

- Curse of dimensionality
  - o  $P(X_2|X_1)$ 需要多少存储空间才能指定?
  - o  $P(X_3|X_2,X_1)$ 需要多少存储空间才能指定?
  - P(X<sub>t</sub>|X<sub>1:t-1</sub>)需要多少存储空间才能指定?
     ❖ N<sup>t</sup>!
- □ Markov Property马尔科夫性质
  - o 限定:  $P(X_t|X_{1:t-1}) = P(X_t|X_{t-1})$ , 含义是?
  - o 无记忆性memoryless
  - 。这个假设有效吗?
  - 好处是什么?

# 人物介绍

Andrey Markov



https://en.wikipedia.org/wiki/Markov\_chain

Computational finance Speech synthesis Cryptanalysis Speech recognition
Part-of-speech tagging
Handwriting recognition

Speech synthesis Single-molecule kinetic analysis Machine translation

# Markov Chain马尔科夫链

Markov chain (discrete-time Markov chain or DTMC)



# Markov Chain马尔科夫链

Markov chain (discrete-time Markov chain or DTMC)



状态空间中有A和B两种状态。共4种可能的转换。

- 1. 在A时,可以过渡到B或留在A。
- 2. 在B时,可以过渡到A或者留在B。

在图中,从任意状态到任意状态的转移概率是0.5。

**人们会通过使用"转移矩阵"来计算转移概率。**状态空间的每个状态都会出现在表格中的一列或者一行中。矩阵的每个单元格指明了从**行状态**转换到**列状态**的概率。

状态空间新增一个状态,矩阵将对应增加一行和一列,向现有的列和行中添加一个单元格。 **这意味着当我们向马尔可夫链添加状态时,单元格的数量会呈二次方增长。**因此,**转换矩阵**就起到了很大的作用。

# 可视化和形式化

□ 可视化:



- 注意填充的变量表示观察值(即随机变量值已知)
- □ 那么,如何形式化定义DTMC?需要哪些量?
  - o 系统初始化Initialization:  $P(X_1)$ 或者 $X_1 = x_1$
  - o Transition probability:  $A = P(X_{t+1}|X_t)$
  - 还需要别的吗?
  - 两次运行结果会一样吗?

# 转移概率矩阵

- □ Transition probability matrix转移概率矩阵
  - o A是一个 $N \times N$ 的矩阵
  - o  $A_{ij} = P(X_t = j | X_{t-1} = i)$
  - o 行和为1!

- □ 如果运行足够久( $t \to \infty$ ),那么 $X_t$ 的分布在很多情况下将稳定下来,叫Stationary distribution,记为 $\pi$ 
  - $\sigma \pi = A\pi$

# 隐马尔可夫模型HMM



# 形式化

- □ Q: 隐变量(hidden variable),不可观测的状态
- □ N: number of states 状态数, N个可能的状态为  $\{S_1, ..., S_N\}$
- O(o): 观察值(observations), M个可能的观察值  $\{V_1, V_2, ..., V_M\}$
- □ *T*: 时间序列的长度
- $\square$   $\pi$ : 初始化,  $\pi_j = P(Q_1 = S_j)$
- lacksquare A: transition probability matrix,  $A_{ij} = P(Q_{t+1} = S_j | Q_t = S_i)$
- □ B: emission probability 发出观察值的概率
  - $o b_j(k) = \Pr(O_t = V_k | Q_t = S_j)$
  - 。假设B不随时间变化,当未知状态为j时观察到为k的概率
  - 那么, *j*, *k*的取值范围是? *B*的行和是?

# HMM中要解决的问题

- □ 怎样设计状态? -- 自动学习?
- □ 怎样设计观察值? ──根据问题的特点和实践反 复设计
- □ 与具体问题无关的
  - o 指定一个HMM需要的所有参数:  $\lambda = (\pi, A, B)$
  - o 问题1: Evaluation估值
  - o 问题2: Decoding解码
  - o 问题3: Learning学习

- □ 输入
  - o 一个完全指定的HMM模型, 即 $\lambda = (\pi, A, B)$ 已知
  - 一个完全观测的输出序列 $O_1O_2\cdots O_T$ ,或  $\boldsymbol{O} = O_{1:T}$
- □ 输出
  - o P(**0**|λ) 含义是?
  - $\circ$  在这个模型 $\lambda$ 中观察到特定输出O的概率
- □ 作用是?
  - o 可以看出此模型对该观察序列的成绩score
  - 可以用来从多个模型中选择最适合的模型

### 假设状态已知

- □ 已知 $\lambda$ ,  $o_{1:T}$ , 求 $P(o_{1:T}|\lambda)$
- $lacksymbol{\square}$  若假设oracle已告知所有的隐变量的值 $q_{1:T}$ 
  - o  $\Pr(o_{1:T}|\lambda, q_{1:T}) = \prod_{i=1}^{T} \Pr(o_t|q_t, \lambda) = \prod_{i=1}^{T} b_{q_i}(o_i)$
  - 证明? 含义?
  - λ的存在只是表明概率的大小是基于该模型参数 计算的,可以去除而不影响计算

### 一种naïve的计算方法

- □ 那么隐变量序列 $q_{1:T}$ 的可能性多大呢?
  - o  $Pr(q_{1:T}|\lambda) = \pi_{q_1} A_{q_1 q_2} A_{q_2 q_3} \cdots A_{q_{T-1} q_T}$
  - o 含义?
- □ 用全概率公式对所有可能的 $q_{1:T}$ 求和可以得到  $Pr(o_{1:T}|\lambda)$ 
  - o  $\Pr(o_{1:T}|\lambda) = \sum_{all \ Q} \Pr(o_{1:T}|\lambda, q_{1:T}) \Pr(q_{1:T}|\lambda)$ ,复杂度?
  - o  $O(T \times N^T)$

### 那么,如何快速计算?

#### 动态规划!

只看最后一步 (t = T), 该如何计算?

- 1. 最后一步(t = T)时一共可能有N种状态:  $q_T = S_1, ..., S_N$ ,其概率 $\Pr(o_{1:T-1}, Q_T = S_i | \lambda) = ?$
- 2. 若最后一步状态为 $S_i$ ,那么观察到输出 $o_T$ 的概率是多少?
- 3. 所求的值是多少?√(全概率公式)

$$Pr(o_{1:T}|\lambda) = \sum_{i=1}^{n} Pr(o_{1:T-1}, Q_T = S_i|\lambda) b_i(o_T)$$

只限于最后一步吗?

如何计算
$$Pr(o_{1:T-1}, Q_T = S_i | \lambda)$$
?

- o 有N种可能,即T-1时刻状态为 $q_{T-1}=S_j$ , j=1,2,...,N,然后通过概率 $A_{ji}$ 转移
- o 全概率公式, again!

$$\Pr(o_{1:T-1}, Q_T = S_i | \lambda)$$

$$= \sum_{j=1}^{N} \Pr(o_{1:T-1}, Q_{T-1} = S_j | \lambda) A_{ji}$$

# 快速计算小结

- $Pr(o_{1:T}|\lambda) = \sum_{i=1}^{N} Pr(o_{1:T-1}, Q_T = S_i|\lambda) b_i(o_T) = \sum_{i=1}^{N} \left(b_i(o_T) \sum_{j=1}^{N} Pr(o_{1:T-1}, Q_{T-1} = S_j|\lambda) A_{ji}\right)$
- □ 红色部分是什么?
  - $\circ$  一个规模小一点的相同问题(T-1)
  - 。 但是需要对所有j的可能取值计算
  - 。正如DTW中一样,可以通过动态规划解决,但是需要解决比原问题更多数目的小规模子问题
  - o 但是,复杂的是,目前牵涉两个数值而不是一个: $Pr(o_{1:T-1},Q_T=S_i|\lambda)$ 和 $P(o_{1:T}|\lambda)$
  - 计算的方向应该是什么?

#### 动态规划算法(前向forward算法)

- $P(o_{1:T}|\lambda) = \sum_{i=1}^{N} \Pr(o_{1:T-1}, Q_T = S_i|\lambda) b_i(o_T) = \sum_{i=1}^{N} \left(b_i(o_T) \sum_{j=1}^{N} \Pr(o_{1:T-1}, Q_{T-1} = S_j|\lambda) A_{ji}\right)$
- □ 定义
  - o  $\alpha_t(i) = P(o_{1:t}, Q_t = S_i | \lambda)$  -含义是?
  - o Initialization:  $\alpha_1(i) = \pi_i b_i(o_1), \quad 1 \leq i \leq N$

o Induction: For 
$$1 \leq t \leq T-1$$
 
$$\alpha_{t+1}(i) = \left[\sum_{j=1}^N \alpha_t(j) A_{ji}\right] b_i(o_{t+1}), \quad 1 \leq i \leq N$$
 o Termination (output):  $\Pr(o_{1:T}|\lambda) = \sum_{i=1}^N \alpha_T(i)$ 

## 后向算法backward algorithm

- □ 定义 $\beta_t(i) = \Pr(o_{t+1:T}|Q_t = S_i, \lambda)$ ◦ 若在时刻t状态为 $S_i$ ,将来观测到 $o_{t+1:T}$ 的概率
- □ 初始化:  $\beta_T(i) = 1$ ,  $1 \le i \le N$
- □ 反向更新: t = T 1, T 2, ..., 2, 1

$$\beta_t(i) = \sum_{j=1}^{\infty} A_{ij} b_j(o_{t+1}) \beta_{t+1}(j), \quad 1 \le i \le N$$

$$P(o_{1:T}|\lambda) = \sum_{i=1}^{N} \pi_i b_i(o_1) \beta_1(i)$$

- □ 输入
  - o 一个完全指定的HMM模型, 即 $\lambda = (\pi, A, B)$ 已知
  - 一个完全观测的输出序列 $O_1O_2\cdots O_T$ ,或  $\boldsymbol{O} = O_{1:T}$
  - o 某个标准criterion
- □ 输出
  - $\circ$  一个完全指定的隐变量序列 $X_{1:T}$ 的值
- □ 作用是?
  - 如,语音识别中状态可能有实际意义(各音节)◆唯一吗?
  - 可以用来观察模型结构,优化模型

# 发现"最好"的隐变量值

- □ 标准1:对于每个时刻,发现其后验概率最大的状态
  - o 定义 $\gamma_t(i) = \Pr(Q_t = S_i | o_{1:T}, \lambda)$ ,当观测到输出为  $o_{1:T}$ 时,时刻t时隐变量为第i个状态的后验概率
  - 。 那么,对于一个输出序列 $o_{1:T}$ ,选择  $q_t = \operatorname{argmax} \gamma_t(i)$ , t = 1,2,...,T  $1 \le i \le N$
  - 可能出现什么问题?
  - o 不存在这样的路径 $q_{1:T}$

# 怎样计算γ

- □ 贝叶斯定理

$$\gamma_t(i) = \Pr(Q_t = S_i | o_{1:T}, \lambda) = \frac{\Pr(o_{1:T}, Q_t = S_i | \lambda)}{\Pr(o_{1:T} | \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\Pr(o_{1:T} | \lambda)}$$

- o  $\Pr(o_{1:T}|\lambda) = \sum_{i=1}^{N} \alpha_t(i)\beta_t(i)$  for any t!
- o 三种计算方法计算 $P(o_{1:T}|\lambda)$ 了
- □ 或者 1)  $\gamma_i = \alpha_t(i)\beta_t(i)$  2) L1 normalize:  $\gamma_i \leftarrow \frac{\gamma_i}{\sum_i \gamma_i}$

## 寻找最大概率的路径

- $\Box$  一共有 $N^T$ 种可能的路径,有些的概率可能为0
  - 。 比如通过准则1得到的路径
  - o 那么,如果寻找所有可能路径里面概率最大的那个呢?  $q_{1:T} = \operatorname{argmax} \Pr(Q_{1:T} | o_{1:T}, \lambda) = \operatorname{argmax} \Pr(Q_{1:T}, o_{1:T} | \lambda)$   $Q_{1:T}$
- □ Na"ive的方法复杂性是 $N^T$ ,有没有更好的方法?
  - o Viterbi方法

#### Viterbi decoding

- $q_{1:T} = \underset{Q_{1:T}}{\operatorname{argmax}} \Pr(Q_{1:T}, o_{1:T} | \lambda)$
- □ 定义更多的子问题  $\delta_t(i) = \max_{Q_{1:t-1}} \Pr(Q_{1:t-1}, Q_t = S_i, o_{1:t} | \lambda)$ 
  - 含义: 当限定两个条件1)前t个时刻的输出为 $o_{1:t}$ , 2)第t个时刻的隐状态为第i个状态的时候,最佳路径所能取得的最大概率
  - o 怎么取得 $q_t$ ?
    - ❖用另外一个变量 $\psi_t(i)$ 做记录
  - 怎么从t进展到t + 1?

# 两个步骤

- □ 从*t*进展到*t* + 1
  - $o \delta_{t+1}(i) = \max_{i} \left( \left[ \delta_{t}(j) A_{ji} \right] b_{i}(o_{t+1}) \right)$
  - o  $\delta_{t+1}(i)$ 是概率,如果只需要发现概率最大那个状态, $b_i(o_{t+1})$ ?
- □ 所以在时刻t+1,需要用另外一个变量 $\psi_t(i)$ 记录最大概率的路径在时刻t是哪一个状态
  - $\psi_{t+1}(i) = \underset{1 \le j \le N}{\operatorname{argmax}} \left( \left[ \delta_t(j) A_{ji} \right] \right)$

### Viterbi算法

- □ 初始化:  $\delta_1(i) = \pi_i b_i(o_1)$ ,  $\psi_1(i) = 0$ ,  $1 \le i \le N$
- D 递归:  $2 \le t \le T$ ,  $1 \le i \le N$   $\delta_t(i) = \max_{1 \le j \le N} \left( \left[ \delta_{t-1}(j) A_{ji} \right] b_i(o_t) \right)$   $\psi_t(i) = \operatorname{argmax} \left( \left[ \delta_{t-1}(j) A_{ji} \right] \right)$   $1 \le j \le N$
- □ 输出:
  - 最大概率:  $P^* = \max_{1 \leq i \leq n} \delta_T(i)$
  - o 时刻T的最佳路径变量:  $q_T^* = \operatorname*{argmax}(\delta_T(i))$   $1 \le i \le N$
  - o 时刻T-1, T-2, ..., 2, 1的最佳路径变量:  $q_t^* = \psi_{t+1}(q_{t+1}^*)$

# 分析

- □ 问题1的动态规划 $\alpha_{t+1}(i) = \sum_{j=1}^{N} \alpha_t(j) A_{ji}$
- □ 问题2的动态规划 $\delta_t(i) = \max_j \left( \left[ \delta_{t-1}(j) A_{ji} \right] b_i(o_t) \right)$
- □ 最重要的操作分别是sum-product和max-product
  - o 其复杂性均为 $N^2T$
  - o 和na"ive方法的 $TN^T$ 比较,极其巨大的速度提高

#### Problem 3: Learning

# 学习系统的参数

□ 发现 $\lambda = (A, B, \pi)$ ,使得对于固定的N, T,和观察值 $\mathbf{0}$ ,似然(LikeLihood)  $P(\mathbf{0}|\lambda)$ 最大

- 目前没有方法能发现全局最优的解
- 。常用的方法是Baum-Welch算法,发现一个局部最优的解

### Problem 3: Learning

- □ 输入
  - 网络结构,状态数、输出数
  - 若干观测序列{**0**}
- □ 输出
  - 。 最优的参数 $\lambda = (\pi, A, B)$ 使得 $P(\{O\}|\lambda)$ 最大
- □ 作用
  - 。 显而易见
  - 最重要的问题
  - 有时候一个足够长的观测序列就够了

$$\xi_t(i,j) = Pr(Qt = Si, Qt + 1 = Sj | o1:T, \lambda) = \frac{\alpha_t(i)A_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\Pr(o1:T|\lambda)}$$

### Baum-Welch算法

10: end while

Baum-Welch算法 1:初始化参数 $\lambda^{(1)}$ (例如随机地) 2:  $r \leftarrow 1$ 3: while 似然尚未收敛 do 对所有  $t(1 \le t \le T)$  和所有  $i(1 \le i \le N)$ , 使用前向过程基于  $\lambda^{(r)}$ 计算  $\alpha_t(i)$ 4: 5: 对所有  $t(1 \le t \le T)$  和所有  $i(1 \le i \le N)$ , 使用后向过程基于 $\lambda^{(r)}$ 计算  $\beta_t(i)$ 6: 对所有  $t(1 \le t \le T)$  和所有  $i(1 \le i \le N)$ , 根据公式计算  $\gamma_t(i)$ 对所有  $t(1 \le t \le T - 1)$  和所有i, j ( $1 \le i, j \le N$ ), 根据表 12.1中的公式计算 $\xi_t(i, j)$ 7: 更新参数为 $\lambda^{(r+1)}$ 8:  $\pi_i^{(r+1)} = \gamma_1(i)$ 1 < i < N $A_{ij}^{(r+1)} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$  $1 \le i, j \le N$  $b_j^{(r+1)}(k) = \frac{\sum_{t=1}^{I} [[o_t = k]] \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$  $1 \le j \le N$   $1 \le k \le M$ 9:  $r \leftarrow r + 1$ 

32

# 怎样在模式识别中发挥更大作用

□ 语音识别

语音识别的目的是将声音信号映射为文字信息,如何 实现这种映射?

**分帧:** 声音实际上是一种波,要对声音进行分析,需要对声音分帧,也就是把声音切开成一小段一小段,每小段称为一帧。分帧操作一般不是简单的切开,而是使用移动窗函数来实现,帧与帧之间一般有交叠。

# 怎样在模式识别中发挥更大作用

- □ HMM用于NLP词性标注
- □ 对句子"教授喜欢画画"进行词性标注,分词之后的结果可能是"教授/喜欢/画/画","教授"词性可以是名词和动名词,"喜欢"词性可以是动词和动名词,"画"词性可以是名词和动词,画成图可以表示为:



# 怎样在模式识别中发挥更大作用

# "教授喜欢画画"



- □ 隐马是个生成模型,生成的过程是先生成状态节点,根据状态节点再生成观测节点。
- □ 首先生成**"教授"**词性是**"名词"**,然后生成词**"教授"**;
- □ 根据"教授"的词性节点"名词"生成"喜欢"的词性节点 "动词",然后生成词"喜欢";
- □ 根据"**喜欢"**的词性"动词"生成"画"的词性"动词",然后生成词"画"。

# 基于HMM的中文词性标注

- 数据处理: 收集带有词性标注的中文语料(如 1998人民日报词性标注语料库)
- □ 模型训练:根据数据估计HMM的模型参数:全部的词性集合、全部的词集合、初始概率向量、词性到词性的转移矩阵、词性到词的转移矩阵。可直接采用频率估计概率的方法,对于模型参数中大量的0,可采用拉普拉斯平滑处理。
- 模型预测:基于维特比算法进行解码,获得中 文句子的词性标注。