

JIBEBE: ELECTRIC VEHICLE PROJECT

Supervisors : Dr Shohei Aoki Mr Kipkorir Rono Mr Joseph Kimani

Mechanical Team

Alex Mburu

Emmanuel Njenga

Brian Muindi

Peter Nzioki

HUMAN POWERED TRICYCLE

Specifications

- Human powered tricycle
- Rubber brake shoes-operated by a brake lever

Limitations

- □ Tedious
- ☐ Ineffective brake system

Main Objective

Design fabrication and testing of an electric tricycle

Specific objectives

- i. Determine the power requirements for the e-tricycle
- ii. Design and fabricate the drive train
- iii. Implement mechanical disc brakes

JICA Key Content Activities

- Power requirements-max speed of 16km/h-1200W-BLDC Motor
- Drive train

Design of rear axle

At 600rpm for the 1200W, T_{max} =19.10Nm Using the maximum shear stress theory (Guest's theory)

$$\sqrt{M^2 + T^2} = \frac{\pi}{16} \times \tau_{max} \times d^3$$

Diameter= 15.62mm

Chain drive design

□ Design for the sprockets

Speed ratio=3.5

The larger sprocket=47T

Smaller sprocket = 15T

D=180mm

d=70mm

Center distance X = 170 mm

Chain length=
$$\pi(R+r) + 2x + \left(\frac{R-r}{X}\right)^2$$

L=760mm

3D modeling of the tricycle

Parts redesigned

- > Steering
- Braking mechanism
- Rear wheels
- Motor positioning

Fabrication and assembly of components

1. <u>Steering</u>-handle bars – easy steering and other attachments i.e throttle, brake shifters

Brake shifters

2. Braking mechanism

Mechanical brakes-both front and rear

Drive train

Chain

BLDC motor

Attachment on the motor

Chain

Assembly and testing of the e-tricycle

Recommendations

- 1. Implement a suspension system for better ride comfort
- 2. Centre alignment of the handle bars to improve steering and better handling

Main Objective

Design fabrication and testing of an electric tractor

Specific objectives

- i. Determine the power requirements for the e-shujaa tractor
- ii. Stress and vibrational analysis of the e-tractor chassis
- iii. Redesign the transmission system
- iv. Assembly and testing of the e-tractor

POWER REQUIREMENTS FOR THE SHUJAA E-TRACTOR

Case 1:Working mode

Power required when the tractor is accelerating(0-11km/h) and ploughing= 6.7923 kw

Case 2:Transport mode

Power required when the tractor is accelerating(0-30km/h) but NOT ploughing= 6.855kW

15kW motor

TORQUE REQUIREMENTS FOR THE SHUJAA E-TRACTOR

Case 1:Working mode

Working speed=11km/h
Torque from motor=27.28Nm
Torque required at the driving wheels=1800Nm

Gear ratio=47.98

Case 2:Transport mode

Working speed=30km/h
Torque from motor=27.28Nm
Torque required at the driving wheels=479.98Nm

Gear ratio=17.59

Static and vibration analysis of the tractor chassis

Static analysis

Name	Туре	Min	Max
Stress1	VON: von Mises Stress	11.819 N/m ² Node: 34237	23,419,480.000N/m^2 Node: 5663
Model na methract chausis Study name State c-li-with col Plot type: State: nodal stress:	eannel-As Madvined>-) trest		von Mises (94/m²/3) 2,449,480,000 21,448 (958 000 15,515,226,000 11,564,914,000 11,663,989,000 11,708,746,000 9,758,134,000 7,766,501,500 5,958,879,000
			. 3,903,256,500 . 1,951,634,250
			11.819
2			→ Yield strength: 351,571,000.000

Frequency analysis

Freq No	Rad/sec	Hertz
1	2986.7	475.34
2	5540.9	881.86
3	11383	1811.7
4	13137	2090.9
5	13327	2121.1

For a top speed of 3500rpm Operating frequency of the motor is 58.33Hz (366.52rad/s)

FOS=15

Thank you

