CS221 Section 7 Bayesian Networks

Roadmap

- Bayesian Networks Introduction
- Probabilistic Queries
- Conditional Independence
- Gibbs Sampling

Bayesian Networks

Definition: Bayesian network-

Let $X = (X_1, \dots, X_n)$ be random variables.

A **Bayesian network** is a directed acyclic graph (DAG) that specifies a joint distribution over X as a product of local conditional distributions, one for each node:

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i \mid x_{\mathsf{Parents}(i)})$$

<u>-</u>

Bayesian Networks

A Bayesian network represents a joint probability distribution.

A Bayesian network represents a joint probability distribution.

P(F=f, C=c, A=a, V=v, S=s, C=c, I=i) = p(f)p(c)p(a)p(v|a)p(s|f, c)p(h|c,a)p(i|a)

Roadmap

- Bayesian Networks Introduction
- Probabilistic Queries
- Conditional Independence
- Gibbs Sampling

$$P(F=1|V=1) = ?$$

$$P(F=1|V=1) = ?$$

1. Remove (marginalize) variables not ancestors of Q or E.

$$P(F=1|V=1) = ?$$

2. Convert Bayesian network to factor graph.

$$P(F=1|V=1) = ?$$

3. Condition on E = e. 3.1 shade nodes

$$P(F=1|V=1) = ?$$

3. Condition on E = e. 3.2 disconnect

$$P(F=1|V=1) = ?$$

4. Remove (marginalize) nodes disconnected from Q.

$$P(F=1|V=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	٧	p(v f)
0	0	0.70
0	1	0.30
1	0	0.20
1	1	0.80

$$P(F=f|V=1) \propto p(f) p(v=1|f)$$

$$P(F=1|V=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	f v p(v f)	
0	0	0.70
0	1	0.30
1	0	0.20
1	1	0.80

$$P(F=f|V=1) \propto p(f) p(v=1|f) = \begin{cases} (1-\alpha)*0.30, & f=0 \end{cases}$$

$$P(F=1|V=1) = ?$$

f	p(f)		
0	1-α		
1	α		

f	٧	p(v f)
0	0	0.70
0	1	0.30
1	0	0.20
1	1	0.80

$$P(F=f|V=1) \propto p(f) p(v=1|f) = \begin{cases} (1-\alpha)*0.30, & f=0\\ \alpha*0.80, & f=1 \end{cases}$$

$$P(F=1|V=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	٧	p(v f)
0	0	0.70
0	1	0.30
1	0	0.20
1	1	0.80

$$P(F=f|V=1) \propto p(f) p(v=1|f) = \begin{cases} (1-\alpha)*0.30, & f=0\\ \alpha*0.80, & f=1 \end{cases}$$

$$P(F=1|V=1) = \frac{\alpha * 0.80}{\alpha * 0.80 + (1-\alpha) * 0.30}$$

$$P(F=1|S=1) = ?$$

$$P(F=1|S=1) = ?$$

1. Remove (marginalize) variables not ancestors of Q or E.

$$P(F=1|S=1) = ?$$

2. Convert Bayesian network to factor graph.

$$P(F=1|S=1) = ?$$

3. Condition on E = e. 3.1 shade nodes

$$P(F=1|S=1) = ?$$

3. Condition on E = e. 3.2 disconnect

$$P(F=1|S=1) = ?$$

4. Remove (marginalize) nodes disconnected from Q.

$$P(F=1|S=1) = ?$$

$$P(F=1|S=1) = ?$$

$$p(s=1|f)$$

$$= \sum_{c} p(c)p(s=1|f,c)$$

$$= p(c=0)p(s=1 | f,c=0) + p(c=1)p(s=1 | f,c=1)$$

f	p(s=1,f)
0	,
1	?

$$P(F=1|S=1) = ?$$

$$p(s=1|f)$$

$$= \sum_{c} p(c)p(s=1|f,c)$$

$$= p(c=0)p(s=1|f,c=0) + p(c=1)p(s=1|f,c=1)$$

$$= \begin{cases} (1-\beta)*0 + \beta*0.75, & f=0 \end{cases}$$

5. Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle

filtering).

f	p(f)	
0	1-α	
1	α	

С	p(c)
0	1-β
1	β

S	f	C	p(s f,c)
0	0	0	1.00
1	0	0	0
0	1	0	0.30
1	1	0	0.70
0	0	1	0.25
1	0	1	0.75
0	1	1	0.10
1	1	1	0.90

f	p(s=1,f)
0	β*0.75
1	?

$$P(F=1|S=1) = ?$$

$$p(s=1|f)$$

$$= \sum_{c} p(c)p(s=1|f,c)$$

$$= p(c=0)p(s=1|f,c=0) + p(c=1)p(s=1|f,c=1)$$

$$= \begin{cases} (1-\beta)*0 + \beta*0.75, & f=0\\ (1-\beta)*0.70 + \beta*0.9, & f=1 \end{cases}$$

5. Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle

f	p(f)
0	1-α
1	α

filtering).

С	p(c)
0	1-β
1	β

S	f	С	p(s f,c)
0	0	0	1.00
1	0	0	0
0	1	0	0.30
1	1	0	0.70
0	0	1	0.25
1	0	1	0.75
0	1	1	0.10
1	1	1	0.90

f	p(s=1,f)
0	β*0.75
1	((1-β)*0.7+β*0.9)

$$P(F=1|S=1) = ?$$

f	p(f)
0	1-α
1	α

f	p(s=1 f)
0	β*0.75
1	((1-β)*0.7+β*0.9)

$$P(F=1|S=1) = ?$$

f	p(f)	
0	1-α	
1	α	

f	p(s=1 f)
0	β*0.75
1	((1-β)*0.7+β*0.9)

$$P(F=1|S=1) = ?$$

$$P(F = f \mid S = 1)$$

$$\propto p(f)p(s=1|f)$$

$$= \begin{cases} (1-\alpha)\beta * 0.75, & f = 0 \\ \alpha((1-\beta)* 0.70 + \beta * 0.9), & f = 1 \end{cases}$$

f	p(f)	
0	1-α	
1	α	

f	p(s=1 f)	
0	β*0.75	
1	(1-β)*0.7+β*0.9	

$$P(F=1|S=1) = ?$$

$$P(F = f \mid S = 1)$$

$$\propto p(f)p(s=1|f)$$

$$= \begin{cases} (1-\alpha)\beta * 0.75, & f = 0 \\ \alpha((1-\beta)* 0.70 + \beta * 0.9), & f = 1 \end{cases}$$

$$P(F=1|S=1) = \frac{p(f=1)p(s=1|f=1)}{p(f=1)p(s=1|f=1) + p(f=1)p(s=1|f=1)}$$
$$= \frac{\alpha((1-\beta)*0.70 + \beta*0.9)}{(1-\alpha)\beta*0.75 + \alpha((1-\beta)*0.70 + \beta*0.9)},$$

f	p(f)
0	1-α
1	α

f	p(s=1 f)
0	β*0.75
1	(1-β)*0.7+β*0.9

Probabilistic Queries – Cookbook

Given a query P(Q|E=e)

- 1. Remove (marginalize) variables not ancestors of Q or E.
- Convert Bayesian network to factor graph.
- Condition (shade nodes / disconnect) on E = e.
- 4. Remove (marginalize) nodes disconnected from Q.
- 5. Run probabilistic inference algorithm (manual, variable elimination, Gibbs sampling, particle filtering).

Roadmap

- Bayesian Networks Introduction
- Probabilistic Queries
- Conditional Independence
- Gibbs Sampling

Conditional Independence

Conditional Independence

Conditional Independence

 $C \perp A \mid W$? Yes $C \perp F \mid W$?

C ⊥ A | W? Yes C ⊥ F | W? Yes V ⊥ H | W? Yes C ⊥ V | W?

Explaining Away!

Patterns

Roadmap

- Bayesian Networks Introduction
- Probabilistic Queries
- Conditional Independence
- Gibbs Sampling

Sample 1M samples from joint distribution

Algorithm: Gibbs sampling-

Initialize x to a random complete assignment

Loop through $i = 1, \ldots, n$ until convergence:

for each v, compute weight of $\{X_i : v\} \cup x \setminus \{x_i\}$

Choose $\{X_i : v\} \cup x \setminus \{x_i\}$ with prob prop. to weight

-Gibbs sampling (probabilistic interpretation)-

Loop through $i=1,\ldots,n$ until convergence:

Set $X_i = v$ with prob. $\mathbb{P}(X_i = v \mid X_{-i} = x_{-i})$

(notation: $X_{-i} = X \setminus \{X_i\}$)

How do we sample a new value for W?

$$P(W=w|F=1, P=1, C=0, ..., I=0)$$

$$= P(W=w|F=1, C=0)$$

Markov Blanket!

w	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

V	С	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

w	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

W	С	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

$$P(W=w|F=1, P=1, C=0, ..., I=0)$$

- = P(W=w|F=1, C=0)
- $\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$

W	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

W	С	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

$$P(W=w|F=1, P=1, C=0, ..., I=0)$$

$$= P(W=w|F=1, C=0)$$

$$\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$$

$$= \begin{cases} 0.05*0.88*0.40, & W = 0 \end{cases}$$

w	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

8	C	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

$$P(W=w|F=1, P=1, C=0, ..., I=0)$$

$$= P(W=w|F=1, C=0)$$

$$\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$$

$$= \begin{cases} 0.05 * 0.88 * 0.40, & W = 0 \\ 0.20 * 0.70 * 0.60, & W = 1 \end{cases}$$

p(w)	8	f	p(f w)	
0.40	0	0	0.95	
0.60	0	1	0.05	
	1	0	0.80	•

>	C	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

$$= P(W=w|F=1, C=0)$$

$$\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$$

$$= \begin{cases} 0.05 * 0.88 * 0.40, & W = 0 \\ 0.20 * 0.70 * 0.60, & W = 1 \end{cases}$$

$$P(W = w \mid F = 1, C = 0)$$

$$= \begin{cases} 0.0176/(0.0176+0.084), & w = 0 \\ 0.084/(0.0176+0.084), & w = 1 \end{cases}$$

$$= \begin{cases} 0.173, & w = 0 \\ 0.827, & w = 1 \end{cases}$$

0.20

Sample a new w!

How do we sample a new value for C?

$$P(C=c \mid W=1, F=1, P=1, ..., I=0)$$

 $= P(C=c \mid W=1, F=1, S=0, H=1, A=1)$ Markov Blanket!

$$= P(C=c \mid W=1, F=1, S=0, H=1, A=1)$$

Gibbs Sampling From a Factor Graph Perspective

 $P(C=c \mid W=1, F=1, P=1, ..., I=0)$

- $= P(C=c \mid W=1, F=1, S=0, H=1, A=1)$
- $= p(w) p(f \mid w) p(c \mid w) p(s \mid f, c) p(h \mid c, a)$

Questions?