CHƯƠNG II (Tiếp sau phần KTGK) TOA ĐÔ CỦA MÔT VÉCTƠ:

ĐINH NGHĨA:

Trong kgyt X, cho trước cơ sở $E = \{e_1, e_2, ..., e_n\}$ được sắp thứ tự.

Khi đó với mỗi vécto u tùy ý trong X, u luôn biểu diễn được một cách duy nhất qua các véctơ trong E. Nói một cách khác, với mỗi véctơ u, luôn có 1 bộ số duy nhất (a_1, a_2, \dots, a_n) sao cho $\mathbf{u} = \mathbf{a_1} \mathbf{e_1} + \mathbf{a_2} \mathbf{e_2} + \dots + \mathbf{a_n} \mathbf{e_n}$. Ta nói tọa độ của vécto u đối với cơ

$$\mathbf{s\mathring{o}} \to \mathbf{l\grave{a}} \ \mathbf{u}|_{E} = \left(\mathbf{a}_{1}, \ \mathbf{a}_{2}, \ \ldots, \mathbf{a}_{n}\right) \ \mathsf{hay} \ \left[\mathbf{u}\right]_{E} = \begin{pmatrix} a_{1} \\ a_{2} \\ \ldots \\ a_{n} \end{pmatrix}.$$

Về mặt thực hành: trong Rⁿ, nếu viết [E] là ma trận mà các cột lần lượt là tọa độ các véctor trong cơ sở E và [u] ma trận cột tọa độ của véctor u thì [E]. $[u]_{E}$ = [u] hay $[u]_E = [E]^{-1}[u]$.

MA TRÂN CHUYỂN CƠ SỞ:

ĐịNH NGHĨA: Trong kgvt X, xét cơ sở $E = \{ e_1, e_2, ..., e_n \}$ và cơ sở $B = \{ b_1, b_2, ..., b_n \}$. Ta gọi ma trận $S_{E \to B} = ([b_1]_E \quad [b_2]_E \quad ... \quad [b_n]_E)$ là ma trận chuyển cơ sở từ E sang B. Khi đó ma trận chuyển cơ sở từ B sang E sẽ là S^{-1} .

Chúng ta lưu ý có các cách xây dựng định nghĩa ma trận chuyển cơ sở khác nhau giữa các tài liêu.

 $V\hat{e}$ mặt thực hành: trong kgvt \mathbb{R}^n thì ma trận $S_{E\to B} = [E]^{-1}[B]$ (do $[b_i]_E = [E]^{-1}[b_i]$).

Từ các biểu thức: $[u]_E = [E]^{-1}[u]^{\frac{BOI HCMUT}{CNCP}}$ suy ra mối liên hệ giữa các tọa độ của cùng một véctơ u đối với các cơ sở E và B là: $[u]_E = S_{E \to B}[u]_B$.

BÀI TÂP:

1. Trong kgyt R³, xét các cơ sở sau:

$$\begin{split} E &= \{ \ e_1 = (1,0,0); \ e_2 = (0,1,0); \ e_3 = (0,0,1) \ \} \\ B_1 &= \{ \ x_1 = (-1,1,1); \ x_2 = (1,-1,1); \ x_3 = (1,1,-1) \ \} \\ B_2 &= \{ \ y_1 = (2,1,4); \ y_2 = (3,2,1); \ y_3 = (1,2,3) \ \} \end{split}$$

- a) Tìm ma trận S chuyển cơ sở từ E sang B_1 , (kí hiệu $S_{E \to B_1}$), nhận xét ma trận S.
- (Lưu ý sử dụng định nghĩa về ma trận chuyển cơ sở trong bài giảng lý thuyết).
- b) Tìm ma trận Q chuyển cơ sở từ B_1 sang E. Kiểm tra $Q=S^{-1}$.
- c) Tìm ma trận P chuyển cơ sở từ B_1 sang B_2 .
- d) Cho vécto u=(3,4,5). Tìm các tọa độ của u đối với 3 cơ sở trên theo định nghĩa, sau đó kiểm tra lại các đẳng thức:

$$+ \ \left[u \right]_E = S_{E \to B_1}. \left[u \right]_{B_1} \\ + \ \left[u \right]_{B_1} = P_{B_1 \to B_2}. \left[u \right]_{B_2}$$

e) Biết véctơ v có tọa độ đối với cơ sở B₁ là (6,7,8). Hãy tìm tọa độ của v đối với cơ sở B₂ (làm theo nhiều cách).

KHÔNG GIAN CON:

Cho (X,+,.) là một không gian véctơ và $U \subset X, U \neq \emptyset$.

(U,+,.) là một không gian con của $X \stackrel{DN}{\longleftrightarrow} U$ là một không gian vécto.

$$\overset{\mathit{TC}}{\longleftrightarrow} \ \, \forall x,y \in U; \, \forall k_1,\!k_2 \in \! R \text{ thì } k_1.x\!+\!k_2.y\!\in\! U$$

Hai dạng không gian con thường gặp trong Rⁿ:

Dạng 1: Không gian con sinh bởi một hệ véctơ:

 $U = \langle x_1, x_2,...,x_m \rangle \longleftrightarrow M = \{ x_1, x_2,...,x_m \}$ là tập sinh của U

$$\longleftrightarrow$$
 $U = \left\{ u = \sum_{i=1}^{m} \alpha_{i} X_{i}, \alpha_{i} \in R \right\}$

Goi A là ma trân các toa đô viết theo dòng của hê vécto M.

Dim U = Hạng của hệ vécto $M = r(A) = r(A^{T})$.

Cơ sở của U có thể chon:

- một hệ véctơ con độc lập tuyến tính tối đại của M.
- một hệ vécto đltt trong U có số vécto = dim U.
- hệ các véctơ dòng khác 0 trong ma trận bậc thang được bđsc từ A.

Dạng 2: Không gian nghiệm của một hệ phương trình tuyến tính thuần nhất:

Kí hiệu ma trận $A_{m,n}$ và $X = (x_1, x_2, ..., x_n)^T$

$$U = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n, A.X = 0\}$$

Dim $U = s \hat{o}$ ẩn tự do của hệ phương trình = n - r(A).

Cơ sở của U chính là một hệ nghiệm cơ bản của hệ phương trình.

Quan hệ giữa các không gian con:

Kí hiệu U, V là các không gian con của không gian véctơ X. Khi đó:

- + {0} là không gian con nhỏ nhất của X. Mọi kg con của X đều chứa véctơ 0.
- $+0 \le \dim U \le \dim X$
- + Nếu $U \subset V$ thì $\dim U \leq \dim V$.
- + Nếu $U \subset V$ và dim U = dim V thì U = V.
- $+\;U\cap V=\{x,\,x\in U\;v\grave{a}\;x\in V\}\;\;l\grave{a}\;kh\^{o}ng\;gian\;con\;\;c\mathring{u}a\;X.$
- $+ \; U {\cup} V$ nói chung không phải là không gian con của X.
- + U+V ={ $x = x_1 + x_2$; $x_1 \in U$ và $x_2 \in V$ } là kg của X. Lưu ý: U \cup V \subset U+V.
- $+ \, D \tilde{\tilde{e}} \, \, th \hat{\tilde{a}} y \quad U \cap V \, \subset \, \, U \, \subset \, \, U + V.$
- $+ \dim (U+V) = \dim U + \dim V \dim(U\cap V)$

Bài toán: Cho 2 không gian con U,V trong R^n . Tìm cơ sở và chiều của kgvt $U \cap V$; U+V.

Giả thiết:	U+V	U∩V
$U = \langle x_1, x_2,, x_m \rangle$	U+V=	?
$V = \langle y_1, y_2,, y_k \rangle$	$< x_1, x_2,, x_m, y_1, y_2,, y_k >$	
U là kg nghiệm của hệ A.X=0	?	$\left[A.X = 0 \right]$
V là kg nghiệm của hệ B.X=0		$U \cap V = \left\{ X \in \mathbb{R}^n : \begin{cases} A.X = 0 \\ B.X = 0 \end{cases} \right\}$
$U = \langle x_1, x_2,, x_m \rangle$?	?
V là kg nghiệm của hệ B.X=0		

BÀI TẬP

2. Trong kgvt R^3 , cho $A = \{ (x,y,z) : 2x - 3y + 5z = 0 \}$ $B = \{ (x,y,z) : 2x - 3y + 5z = 1 \}$

Chứng minh A là một không gian con của R³.

Vì sao B không phải là một không gian con của R³?

- 3. Trong kgvt R^3 , cho $U = \langle x=(2,1,3); y=(1,2,1); z=(3,3,4) \rangle$.
 - a) Tìm dim U và một cơ sở của U.
 - b) Có thể coi hệ véctơ {(2,1,3); (1,1,1)} là một cơ sở của U hay không?
 - c) Tìm điều kiện của m để hệ vécto {(0,3,-1),(1,m,1)} là một cơ sở của U.
 - d) Tìm m để hệ vécto $\{(0,3,-1),(1,m,1),(1,1,0)\}$ là một hệ sinh của U.
- **4.** Trong kgvt R⁴, cho $U = \langle x_1 = (1,2,1,1); x_2 = (2,0,-1 3); x_3 = (1,-6,-5,3) \rangle$ và $V = \langle y_1 = (3,-2,-3,5); y_2 = (-2,m,7,-5) \rangle$.

Tìm điều kiện của m để 2 không gian con U và V là bằng nhau.

- 5. Trong R^4 cho U=<(1,2,1,1); (2,1,1,2), (0,3,1,0)> và <math>V=<(2,1,1,0), (1,m,0,1)>. Tìm m để U+V có chiều là nhỏ nhất. Hãy chỉ ra 1 cơ sở của U+V khi đó.
- **6.** Trong R³, xét 2 không gian con: U = $\{(x,y,z) : 3x+2y+z=0 \text{ và } 2x+5y+3z=0 \}$ V = $\{(x,y,z) : x + my - 2z = 0 \}$

 - b) Biện luận chiều và cơ sở của kg U∩V theo m.
 - c) Biện luận chiều và cơ sở của kg U+V theo m.
 - d) Với m nào thì ta nói $R^3 = U \oplus V$?
- 7. Trong R^3 , cho $U=< x_1=(1,0,0); x_2=(1,-1,0)> và <math>V=<(0,1,0), y_2=(0,0,1)>$. Tìm chiều và cơ sở của $U\cap V$.
- **8.** Trong R⁴, cho U= $\langle x_1$ = $(1,0,1,2); x_2$ = $(1,-1,0,1) \rangle$ và V = $\langle (0,1,0,1), y_2$ = $(1,0,0,2) \rangle$. Tìm chiều và cơ sở của U \cap V, U+V.
- **9**. Trong R^3 , cho $U = \langle x_1 = (1,0,2), x_2 = (2,1,1) \rangle v$ v $V = \{ (x,y,z): y z = 0 \}$. Tìm chiều và cơ sở của $U \cap V$.

HD bài 9:

Cách 0: Trong bài này ta thấy $x_1 \notin V$ và $x_2 \in V$.

Vì $x_1 \notin V$ nên [dim V = 2] < [dim U+V] \le [dim $R^3 = 3$] nên suy ra dim U+V = 3.

Theo công thức liên hệ số chiều thì dim $U \cap V = 2 + 2 - 3 = 1$.

Mặt khác $x_2 \in V$ nên $x_2 \in U \cap V$, nên $U \cap V = \langle x_2 \rangle$. Cơ sở của $U \cap V$ là $\{(2,1,1)\}$

 $\textit{Cách 1:} \qquad \text{Viết lại:} \quad V = < x_3 = (1,0,0); \ x_3 = (0,1,1) >$

Lấy u bất kỳ, u
$$\in$$
 U \cap V \Rightarrow
$$\begin{cases} u \in U \rightarrow u = ax_1 + bx_2 & (1) \\ u \in V \rightarrow u = cx_3 + dx_4 & (2) \end{cases}$$

 $(1)(2) \Rightarrow ax_1 + bx_2 - cx_3 - dx_4 = 0$

$$\Rightarrow \begin{pmatrix} 1 & 2 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 2 & 1 & 0 & -1 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 2 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 2 & -4 & 0 \end{pmatrix} \Rightarrow \begin{cases} a; b \dots & \stackrel{(2)}{\Rightarrow} u = \alpha(2x_3 + x_4) \\ c = 2\alpha & \Rightarrow = \alpha(2, 1, 1) \\ d = \alpha \in \mathbb{R} \end{cases}$$

Suy ra $U \cap V = \{ \alpha(2,1,1); \alpha \in \mathbb{R} \}$ hay $U \cap V = \langle \alpha(2,1,1) \rangle$. Dim $U \cap V = 1$; Co sở của $U \cap V$ là $\{(2,1,1)\}$

Viết lai: $V = \langle x_3 = (1,0,0); x_3 = (0,1,1) \rangle$ Cách 2:

Lấy u bất kỳ, $u \in U \cap V$. Do $u \in U \rightarrow u = ax_1 + bx_2 = (a+2b, b, 2a+b)$.

Đồng thời $u \in V$ nên rank $(x_3, x_4, u) = \text{rank}(x_3, x_4) = 2$, tức là:

$$rank \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ a+2b & b & 2a+b \end{pmatrix} = rank \begin{pmatrix} 1 & 0 & a+2b \\ 0 & 1 & b \\ 0 & 1 & 2a+b \end{pmatrix} = rank \begin{pmatrix} 1 & 0 & a+2b \\ 0 & 1 & b \\ 0 & 0 & 2a \end{pmatrix} = 2 \Rightarrow a=0$$

Suy ra u = (2b, b, b) = b(2,1,1) và $U \cap V = \langle b(2,1,1) \rangle$

Dim $U \cap V = 1$; Co sở của $U \cap V$ là $\{(2,1,1)\}$

(Có thể làm ngắn hơn khi nhân xét rằng $b \neq 0$, nên có thể chon luôn b=1)

Viết lại U ở dạng $U=\{(x,y,z): ax+by+cz=0\}$ như dạng của V. Cách 3: Dùng tích có hướng hay lập hệ pt thì tìm được a=-2; b=3; c=1.

Vậy
$$U \cap V = \left\{ (x, y, z) \in \mathbb{R}^3 : \left\{ \begin{array}{c} -2x + 3y + z = 0 \\ y - z = 0 \end{array} \right\} = <(2,1,1) >.$$

Dim $U \cap V = 1$; Cơ sở của $U \cap V$ là $\left\{ (2,1,1) \right\}$

(Hạn chế của cách này là sẽ không dễ nhẩm U nếu gặp kgyt R⁴)

Cách 4: Lấy u bất kỳ, $u \in U \cap V$. Do $u \in U \rightarrow u = ax_1 + bx_2 = (a+2b, b, 2a+b)$.

Đồng thời $u \in V$ nên u là nghiệm của pt y-z = 0, tức là b- (2a+b)=0, suy ra a=0.

Vậy
$$u = (2b, b, b) = b(2,1,1)$$
 và $U \cap V = \langle b(2,1,1) \rangle$.

Dim $U \cap V = 1$; Co sở của $U \cap V$ là $\{(2,1,1)\}^{CP}$

Cách 5:....

KHÔNG GIAN VÉCTO EUCLIDE

KHÁI NIÊM KGVT EUCLIDE:

* Giả sử X là một kgyt trên R và x, y, $z \in X$. Ta định nghĩa tích vô hướng của 2 vécto

trong X là 1 số thỏa:

- i) (x,y) = (y,x)
- ii) (x+y,z) = (x,z) + (y,z)
- iii) a(x,y) = (ax,y) = (x,ay)
- iv) $(x,x) \ge 0$ và $(x,x) = 0 \Leftrightarrow x = 0$.

Tính chất (iv) có thể phát biểu tương đương: Dạng toàn phương (x,x) xác định dương \Leftrightarrow Mọi định thức con chính của dạng toàn phương đều xác định dương.

(Sẽ học ở chương sau).

Kgvt X hữu hạn chiều có tích vô hướng được gọi là không gian Euclide.

- * Tích vô hướng chính tắc trong Rⁿ chính là tích vô hướng đã học ở THPT.
- * Độ dài của một vécto: $||x|| = \sqrt{(x,x)}$
- * Khoảng cách giữa 2 vécto x,y: $d(x, y) = ||x y|| = \sqrt{(x y, x y)}$
- * Góc giữa 2 véctor x,y: $\cos \varphi = \frac{(x, y)}{\|x\| \|y\|} A C N C$
- * Bất đẳng thức Cauchy-Schwarz, bất đẳng thức tam giác (TL)

CÁC KHÁI NIỆM TRỰC GIAO và TÍNH CHẤT

- * $x \perp y \Leftrightarrow (x,y) = 0$. Mọi véctơ đều trực giao với véctơ không.
- * Hệ vécto M trực giao ⇔ Các vécto trong hệ trực giao đôi một.
- * Hệ véctơ M trực giao + M không chứa véctơ không ⇒ M độc lập tuyến tính.
- * Hệ véctơ M trực chuẩn \Leftrightarrow M trực giao + các véctơ đều có độ dài bằng 1.
- * Vécto x \perp kgc U \Leftrightarrow x \perp tất cả các vécto trong U
 - \Leftrightarrow x \perp tất cả véctơ trong 1 cơ sở của U.
- * Kgc U \perp kgc V \iff mỗi véctơ trong U \perp tất cả các véctơ trong V.
 - \Leftrightarrow mỗi véctơ trong 1 cơ sở của U \perp tất cả véctơ trong 1 cơ sở của V.
 - $\Rightarrow U \cap V = \{0\}.$

(Khác với khái niệm 2 mặt phẳng vuông góc ở toán PT)

- * $U^{\perp} = \{ x \in X : x \perp U \}$. Dễ thấy $U^{\perp} \perp U$ và $U^{\perp} \oplus U = X$.
- * Quá trình trực giao hóa một hệ véctơ đltt:

$$\{x_1, x_2, ..., x_m\}$$
 độc lập th $\xrightarrow{C1: Gram-Schmidt}$ $\{y_1, y_2, ..., y_m\}$ trực giao và

$$< x_1, x_2,...,x_m > = < y_1, y_2,...,y_m >$$

Công thức Gram-Schmidt với hệ 3 véctơ:

$$y_{1} = x_{1}$$

$$y_{2} = x_{2} + \alpha.y_{1}$$

$$\alpha = -\frac{(x_{2}, y_{1})}{(y_{1}, y_{1})}$$

$$y_{3} = x_{3} + \beta_{1}.y_{1} + \beta_{2}.y_{2}$$

$$\beta = -\frac{(x_{3}, y_{1})}{(y_{1}, y_{1})}$$

$$\beta_{2} = -\frac{(x_{3}, y_{2})}{(y_{2}, y_{2})}$$

Bài tập KGVT

HÌNH CHIẾU VUÔNG GÓC CỦA MỘT VÉCTƠ XUỐNG MỘT KG CON

Giả sử U là một kg con của kgyt X, và vécto x tùy ý, $x \in X$.

Ta luôn biểu diễn được một cách duy nhất $\mathbf{x} = \mathbf{u} + \mathbf{h}$; $\mathbf{u} \in \mathbf{U}$ và $\mathbf{h} \in \mathbf{U}^{\perp}$.

Hình chiếu vuông góc (gọi tắt là hình chiếu) của x xuống U là $pr_{U}x = u$;

Khoảng cách từ x đến U là d(x,U) = $\|h\| = \|x - u\|$

Đương nhiên $pr_{U^{\perp}} x = h$; $d(x, U^{\perp}) = \|\mathbf{u}\|$ và $\mathbf{x} = pr_{U} x + pr_{U^{\perp}} x$

Cách tìm **u**:

Giả sử $\{y_1, y_2, y_3\}$ là 1 cơ sở của U. Vì $\mathbf{x} = \mathbf{u} + \mathbf{h}$ nên ta tìm $pr_U x = \mathbf{u} = \mathbf{a} \cdot \mathbf{y}_1 + \mathbf{b} \cdot \mathbf{y}_2 + \mathbf{c} \cdot \mathbf{y}_3$

với a,b,c là nghiệm của hệ:
$$\begin{cases} a(y_1, y_1) + b(y_2, y_1) + c(y_3, y_1) = (x, y_1) \\ a(y_1, y_2) + b(y_2, y_2) + c(y_3, y_2) = (x, y_2) \\ a(y_1, y_3) + b(y_2, y_3) + c(y_3, y_3) = (x, y_3) \end{cases}$$

* Trường hợp riêng: nếu $\{y_1, y_2, y_3\}$ là 1 cơ sở trực giao của U.

Ta được
$$pr_U x = u = a.y_1 + b.y_2 + c.y_3$$
 với $a = \frac{(x, y_1)}{(y_1, y_1)}$; $b = \frac{(x, y_2)}{(y_2, y_2)}$; $c = \frac{(x, y_3)}{(y_3, y_3)}$

* Trong một số trường hợp, việc tìm $pr_{U^{\perp}} x$ lại nhanh hơn, thì ta sử dụng công thức:

$$pr_{U} x = x - pr_{U^{\perp}} x.$$

- $pr_U x = x pr_{U^{\perp}} x$. **BÀI TẬP 10.** (ĐCK) Trong kgvt R^2 , xét tích của 2 vécto $x=(x_1, x_2)$ và $y=(y_1, y_2)$ được định nghĩa $(x, y) = x_1y_1 + 2x_1y_2 + 2x_2y_1 + mx_2y_2$ như sau:
 - a) Với giá trị nào của m thì tích đã cho là một tích vô hướng?
 - b) Cho x=(1,-2). Tính ||x|| theo tích vô hướng ở câu a)
 - c) Tìm giá trị của p để vécto y=(2, p) trực giao với x=(1, -2) theo tvh câu a).
- 11. Trong R^3 , cho $U = \langle (1,1,-1); (1,2,3); (2,3,2) \rangle$. Tìm tất cả các véctơ x vuông góc với U và có độ dài bằng 2.
- **12.** (ĐCK) Trong kgvt R^4 cho 2 không gian con: $U = \langle x_1 = (1,-2,2,1); x_2 = (2,0,3,-1) \rangle$ $V = \langle x_3 = (1,3,0,m); x_4 = (0,5,1,n) \rangle$. Tìm giá trị m,n để $U \perp V$.
- **13.** (ĐCK) Trong không gian véc tơ \mathbb{R}^4 , xét hệ vécto $\{(-1,2,1,3); (2,1,-3,1)\}$. Hãy bổ sung thêm các vécto vào hệ để hệ trở thành 1 cơ sở trực giao của R⁴.
- **14.** Trong kgvt R^3 , cho không gian con $A = \{(x,y,z) : 2x 3y + 5z = 0\}$.
 - a) Tìm một cơ sở trực giao và cơ sở trực chuẩn của A.
 - b) Tìm một cơ sở trực giao và cơ sở trực chuẩn của A^{\perp} .
 - c) Tìm hình chiếu vg của vécto x=(1,2,3) xuống A và khoảng cách từ x đến A.
- **15.** Trong kgvt R^4 cho không gian con: $U = \{(x,y,z,t): x_+ 2y 3z t = 0 \text{ và } 2x y 3z = 0\}$.
 - a) Tìm một cơ sở trực giao và cơ sở trực chuẩn của U.
 - b) Tìm một cơ sở trực giao và cơ sở trực chuẩn của U^{\perp} .
 - c) Tìm hình chiếu vg của véctơ x=(1,2,3,4) xuống U và khoảng cách từ x đến U.
- **16.** (ĐCK-Tham khảo)
 - a) Tính thể tích tứ diện ABCD với các đỉnh A(2,2,2); B(4,5,4); C(5,5,6); D(4,3,3).
 - b) Tính đô dài đường cao ha từ A của tứ diên ABCD trên.
 - c) Tìm đỉnh thứ 4 của tứ diện ABCD nếu biết D nằm trên trục Oy; A(0,1,1); B(4,3,-3); C(2,-2,1) và thể tích tứ diện bằng 2.