世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 317/44, 323/62, C07D 209/18, 409/12, 405/12, 413/12, 263/57, 307/79, 333/24, A61K 31/405, 31/42, 31/34, 31/195, 31/165, 31/38

(11) 国際公開番号

WO97/49679

(43) 国際公開日

1997年12月31日(31.12.97)

(21) 国際出願番号

PCT/JP97/02200

IP

A1

(22) 国際出願日

1997年6月25日(25.06.97)

(30) 優先権データ 特願平8/185370

1996年6月27日(27.06.96)

(81) 指定国 JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(71) 出願人(米国を除くすべての指定国について)

小野薬品工業株式会社

(ONO PHARMACEUTICAL CO., LTD.)[JP/JP]

〒541 大阪府大阪市中央区道修町2丁目1番5号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

高橋寬治(TAKAHASHI, Kanji)[JP/JP]

杉浦恒行(SUGIURA, Tsuncyuki)[JP/JP]

〒618 大阪府三島郡島本町桜井3-1-1

小野薬品工業株式会社: 水無瀬総合研究所内 Osaka, (JP)

(74) 代理人

弁理士 大家邦久, 外(OHIE, Kunihisa et al.)

〒103 東京都中央区日本橋人形町2丁目2番6号 堀口第2ビル7

大家特許事務所 Tokyo, (JP)

ARYL (SULFIDE, SULFOXIDE AND SULFONE) DERIVATIVES AND DRUGS CONTAINING THE SAME AS (54) Title: THE ACTIVE INGREDIENT

アリール(スルフィド、スルホキシド、スルホン)誘導体およびその誘導体を有効成分として含有する医薬 (54)発明の名称

(57) Abstract

Novel aryl (sulfide, sulfoxide and sulfone) derivatives represented by general formula (I) or salts thereof; and drugs containing the same as the active ingredient wherein R¹ represents H or alkyl; R2 represents COOR7 or CONHOR⁸; E represents -CONR9 -, -NR9 CO-, -OCO-, -COO-, -CH₂ -O-, -(CH₂)₂ -, vinylene or ethynylene; J represents a single bond or alkylene; A represents H, alkyl, Ar or alkyl -OH; R³ and R⁴ represent each H, alkyl, COOR¹⁹, hydroxy, -NR²⁰ R²¹, (a), Ar¹, etc.; and R5 and R6 represent each H or methyl. compounds inhibit These matrix metalloproteinases and are useful in preventing and/or treating various diseases such as rheumatism, osteoarthritis, pathologic bone

$$A-J-E$$
 R^{1}
 $(O)_{n}$
 R^{3}
 R^{4}
 (I)

$$-NH+CO \stackrel{R^a}{\longrightarrow} R^b$$
 (a)

resorption, osteoporosis, periodontal diseases, interstitial nephritis, arteriosclerosis, pulmonary emphysema, hepatic cirrhosis, corneal injury, autoimmune diseases, diseases caused by the liberation or infiltration of leukocytic cells into blood vessels, and neovascularization.

(57) 要約

$$A-J-E \xrightarrow{R^1} (0)_n R^3 R^4$$

$$R^5 R^6 R^2$$
(1)

式(I)で示される化合物はマトリックスメタロプロテイナーゼを阻害し、 リュウマチ、骨関節炎、病的骨吸収、骨粗鬆症、歯周病、間質性腎炎、動脈硬 化、肺気腫、肝硬変、角膜損傷、自己免疫疾患、白血球系の細胞の血管遊出や 浸潤による疾患、血管新生等種々の疾患の予防および/または治療に有用であ る。

明 細 書

アリール (スルフィド、スルホキシド、スルホン) 誘導体およびその誘導体を 有効成分として含有する医薬

5

技術分野

本発明は、アリール(スルフィド、スルホキシド、スルホン)誘導体、その 製造方法、およびアリール(スルフィド、スルホキシド、スルホン)誘導体を 有効成分として含有するマトリックスメタロプロテイナーゼ阻害剤に関する。

10 さらに詳しくは、一般式 (I)

$$A-J-E \xrightarrow{R^1} (0)_n \quad R^3 \quad R^4$$

$$R^5 \quad R^6 \quad R^2 \qquad (I)$$

(式中、すべての記号は後記と同じ意味を表わす。)で示されるアリール (スルフィド、スルホキシド、スルホン)誘導体、それらの非毒性塩を有効成分として含有するマトリックスメタロプロテイナーゼ阻害剤、および前記一般式(I)で示される新規なアリール (スルフィド、スルホキシド、スルホン)誘導体、それらの非毒性塩、およびそれらの製造方法に関する。

20

25

背景技術

マトリックスメタロプロテイナーゼ(以下、MMPと略記する。)は活性中心に亜鉛(以下、Zn²+と略記する。)を有する中性メタロプロテイナーゼであり、生理的状況下においてはコラーゲン、ラミニン、プロテオグリカン、フィブロネクチン、エラスチン、ゼラチン等を分解することにより関節組織、骨組織、結合組織などの成長および組織改築などに関与している。MMPは、現在までに一次構造の異なる10種類以上の分子種が同定されている。

それら各酵素に共通した性質として、

- (1) 活性中心に $Z n^{2+}$ を有し、酵素活性にカルシウム($C a^{2+}$)を必要とすること、
- (2) 潜在型酵素として分泌され、細胞外で活性化を受けること、
- 5 (3) アミノ酸配列に高い相同性を有すること、
 - (4) 生体内に存在する種々の細胞外マトリックス成分分解能をもつこと、
 - (5) 共通のインヒビターである組織メタロプロテイナーゼインヒビター (TIMP) によって活性が阻害されることなどが知られている。

MMPの阻害剤は、MMPの分泌および活性が異常亢進した場合に生ずる 種々の疾患の予防および/または治療に有用と考えられる。このような疾患と しては、例えばリュウマチ、骨関節炎、病的骨吸収、骨粗鬆症、歯周病、間質 性腎炎、動脈硬化、肺気腫、肝硬変、角膜損傷、ガン細胞の転移浸潤や増殖の 疾患、自己免疫疾患(クローン病、シュグレン病等)白血球系の細胞の血管遊 出や浸潤による疾患、血管新生等が挙げられる。

マトリックスメタロプロテイナーゼ阻害作用を有する化合物はいくつか知られている。なかでも、コラーゲンの切断点近傍の基質(Gly-Ile-Ala-GlyまたはGly-Leu-Ala-Gly)が、コラゲナーゼと高い親和性を有することが知られている。この基質の切断部位に亜鉛親和性基をもつ、化学修飾を行なった基質アナログマトリックスメタロプロテイナーゼ 阻害剤が、数多く研究されている [Inhibitors of matrix metalloproteinases (MMP's), Nigel RA Beeley, Phillip RJ Ansell, Andrew JP Docherty ら Curr. Opin. Ther. Patents., 4, 7-16 (1994), Current Drugs Ltd ISSN 0962-2594 参照]。しかし、これらの基質アナログ阻害剤は、ペプチドアナログであるために種々の問題点があることが予想される。このため、これらの阻害剤を非ペプ チド化することが望まれており、いくつか報告されている。

例えば、(1) EP公開606046号の明細書には一般式(X)

$$\begin{array}{c|c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

((a)式中、Ar[×]は、炭素環式または複素環式アリール;R[×]は、水素、低級アルキル、炭素環式アリールー低級アルキル等;R^{1×}は、水素、低級アルキル、炭素環式アリールー低級アルキル等;R^{2×}は、水素または低級アルキルであるか;あるいは(b)R[×]およびR^{1×}はそれらが付加されている鎖と一緒になって、1,2,3,4ーテトラヒドローイソキノリン、ピペリジン環等を形成;Ar[×]およびR^{2×}は(a)で定義した意味を有しているか;あるいは(c)R^{1×}およびR^{2×}はそれらが付加されている炭素原子と一緒になって、未置換もしくは低級アルキルにより置換されているC3~7シクロアルカン、オキサーシクロヘキサン、チアーシクロヘキサン等;そしてAr[×]およびR^{2×}は(a)で定義した意味を有する。)で示されるアリールスルホンアミド誘導体がマトリックスメタロプロテイナーゼ阻害作用を有していることが開示されている。

15 (2) WO9535276号明細書には一般式 (Y)

(式中、 X^Y はCOOH、CONHOH基; R^{1Y} は α -アミノ酸; R^{2Y} は Z^{1Y} 20 Q^YW^Y ; Z^{1Y} は水素原子、アリール基等; (i) Q^YW^Y が一緒になって単結合、(ii) Q^Y は Q^Y 0、 Q^Y 1、 Q^Y 2 は単結合、 Q^Y 3、 Q^Y 4 は Q^Y 4 は Q^Y 4 は Q^Y 6 は Q^Y 6 は Q^Y 6 は Q^Y 7 は Q^Y 8 は Q^Y 9 に Q^Y

(3) WO9615096号明細書には一般式(Z)

$$(T^{z})$$
 $x^{z}A^{z}-B^{z}-D^{z}-E^{z}-G^{z}$ (2)

5

(式中、(T²) x²A²は無置換または置換された各種の芳香族環基または芳香族複素環基;B²は各種の芳香族環基または芳香族複素環基;D²は一CO-基、一CH (OH) -基、 -CH₂-基等 ; E²は R 6²基 (基中、 R 6²は、 - (CH₂) v²Z²R 8²基 (基中、 v²は、 0、1~4の整数; Z²は、-S-10 基、-SO-基、-SO₂-基等; R 8²は、置換されてもよいC 6~10アリール基等))を有してもよいC n の炭素鎖; G²は、カルボキシル基、アルコキシカルボニル基等を表わす。)で示される化合物がマトリックスメタロプロティナーゼ阻害作用を有していることが開示されている。

15 (4) WO9509841号明細書には一般式 (E)

(式中、R^{1E}は、置換基を有してもよいフェニル基等; R^{2E}は水素、C1~6 20 アルキル等; R^{3E}は置換基を有してもよいアミノ酸残基; R^{4E}は水素、C1~6アルキル等; R^{5E}は水素、メチル; n^Eは、0、1、2; A^Eは、C1~6炭化水素鎖を表わす。) で示される化合物がTNF遊離阻害作用およびマトリックスメタロプロテイナーゼ阻害作用を有していることが開示されている。

25 (5) WO9324449号明細書には一般式 (F)

PCT/JP97/02200

WO 97/49679

$$R^{F} \xrightarrow{R^{2F}} R^{3F} O$$
 $R^{1F} O_{R^{4F}} R^{5F} X^{F}$ (F)

(式中、R[®]は、-CONHOH、カルボキシル、エステル化カルボキシル等;R^{1F}は、水素、任意に置換されたアルキル、アルケニル、アリール、アラアルキル、ヘテロアラアルキル、ヘテロアリールチオアルキル;R^{2F}は任意に置換されたアリールチオ、アリールチオアルキル等;R^{3F}は、水素、アルキル;R^{4F}は、水素、アルキル;R^{5F}は、任意に置換されたアルキル等を表わす。)で示される化合物がマトリックスメタロプロテイナーゼ阻害作用を有していることが開示されている。

10

20

5

(6) WO9616027号明細書には一般式(G)

$$R^{1G}$$
 X^{G}
 $X^{$

15 (式中、 R^{1G} は、-CONHOH、カルボキシル、アルコキシカルボニル、アリールオキシカルボニル、ベンジルオキシカルボニル等; R^{2G} はアリール等; R^{3G} は、アルキル等; R^{7G} は、アリール等;

 X^{c} は、 $-(CH_{2})$ $m^{c}Y^{c}(CH_{2})$ n^{c} (基中、 Y^{c} は、S等; m^{c} 、 n^{c} 、 p^{c} は、 $0\sim4$ を表わす。)で示される化合物がマトリックスメタロプロテイナーゼ阻害作用を有していることが開示されている。

また、(7)特開平4-226939および(8)同4-283576号明 細書には、それぞれ一般式(W-1) 5

10

15

20

$$R^{1W-1}$$
 R^{2W-1} R^{4W-1} R^{4W-1}

(式中、 R^{1W-1} 、 R^{2W-1} は水素、 $C1\sim6$ アルキル基、 $C3\sim6$ シクロアルキル基、または一緒にメチレン、エチレン、ポリメチレン基; R^{3W-1} は水素、ハロゲン、ハロアルキル、 $C1\sim1$ 2 アルコキシ等; R^{4W-1} は水素、ハロゲン、ニトロ、-C (O) CH_3 、S (O) pR^{9W-1} (p は 0、1、2 であり、 R^{9W-1} はヒドロキシ、-ON a、置換されていてもよい $C1\sim1$ 2 アルキル基、シクロアルキル基)を表わす。)で示される化合物および一般式(W-2)

(式中、R^{1W-2}、R^{2W-2}は水素、C1~4アルキル基、C3~6シクロアルキル基、または一緒にメチレン、エチレン、ポリメチレン基;Ar^{W-2}は置換されていてもよいフェニル;HET^{W-2}は1以上の窒素、硫黄または酸素原子を含有している複素環である。)で示される化合物がエラスターゼの阻害作用を有していることが開示されている。

(9) EP公開0173516号の明細書には一般式 (J)

 R^{1J} A^{J} R^{2J} R^{4J} R^{4J}

(式中、 B^J は、 $-SCH_2$ ー等; T^J は、酸素等; R^{1J} は、 R^{5J} 、 R^{6J} で任意に置換されたフェニル、ナフチル等または $C1\sim20$ アルキル、アルケニル、アルキニル; R^{2J} は水素、 $C1\sim6$ アルキル; R^{3J} は、水素、アルキル等; R^{4J} は、 $-(CH_2)$ p^J - $COOR^{8J}$ (基中、 p^J は、 $0\sim10$; R^{8J} は、水素、 $C1\sim6$ アルキルを表わす。)で示される化合物がSRS拮抗作用または 5α -U9クーゼ阻害作用を有していることが開示されている。

(10) 英国特許 2031408号の明細書には一般式 (K)

10
$$N = N^{-1K} - Z^{K} - (A^{2K})m^{K} - COOR^{K}$$
 (K)

(式中、R^Kは、水素、アルキル; A^{1K}、A^{2K}は、アルキレン、アルケニレン;
 m^Kは、0、1; Z^Kは、 - c-s 等; R^{1K}、R^{2K}は、水素、アルキルを表わす。) で示される化合物がTXA₂合成酵素阻害作用を有していることが開示されている。

(11)英国特許2039903号の明細書には一般式(L)

$$\begin{array}{c|c}
 & R^{5L} \\
\hline
 & II \\
 & A^{L} - E^{L} - B^{L} - Z^{L} - D^{L} - R^{1L}
\end{array} (L)$$

20

(式中、A^Lは、水酸基で置換されてもよいC1~5アルキレン; E^Lは、 — (式中、A^Lは、水酸基で置換されてもよいC1~5アルキレン; E^Lは、 等; B^Lは、硫黄等; Z^Lは、単結合、 C≡C、 R^{2L} A^{3L}; D^Lは、単結合、C1~5アルキレン; R^{1L}は、COOR^{4L}等; R^{4L}は水素、C1 ~12アルキル等を表わす。) で示される化合物がTXA₂合成酵素阻害作用を

有していることが開示されている。

(12) アメリカ特許4461905号の明細書には一般式 (M)

(式中、A^M、B^MはC1~8アルキレン、アルケニレン; D^Mは、C2~10 アシル、C2~7アルコキシカルボニル等; Q^Mは、C2~7アルコキシカルボニル等; X^Mは、ハロゲン; n^Mは、0、1; Z^Mは、-Y^M、E^M;
 E^Mは、水素、C1~6アルキル等; Y^Mは硫黄等を表わす。) で示される化合物がTXA2合成酵素阻害作用を有していることが開示されている。

(13) WO865779号の明細書には一般式 (N)

15
$$A^{N} - (CH_{2})n^{N} - O \xrightarrow{i} X^{1N} \xrightarrow{B^{N}} X^{2N} - D^{N}$$
 (N)

(式中、X¹Nは、-CH₂CH₂-、 -CH=CH-、 -CH₂-Y¹N-、 -Y¹N-CH₂-、-COY²N-、-Y²N-CO- (Y¹Nは、酸素等; Y²Nは、 -NH-、-CH₂Y¹N-、-Y¹NCH₂-); (BN) は、フェニレン等; X²N
 は、-Y³N-Y⁴N- (Y³Nは、硫黄等; Y⁴Nは、C1~6アルレン); DNは、 -COOH、低級アルコキシカルボニル等; R¹Nは、水素、低級アルキル; nNは、3~10; ANは水素、フェニル、フェノキシを表わす。)で示される化合物がSRS拮抗作用を有していることが開示されている。

(14) EP公開181568号の明細書には一般式(P)

$Ar_1^p - X^p - Ar^p - z^p - (R^p)n^p$ (P)

15

5 (式中、ArPは、フェニル等; ZPは、0-2個の二重結合を含みうるC1~10アルキレンで、ArPとは、硫黄等と介してもよく; RPは、カルボキシ、アルコキシカルボニル等; nPは、0、1; XPは-CH=CH-、エチニレン、-COO-、-CONR^{1P}-等; Ar₁Pは、フェニル、N、S、O原子を含有する複素環を表わす。)で示される化合物が5-リポキシゲナーゼ阻害作用を
 10 有していることが開示されている。

また、下記の化合物がすでに知られている。しかし、いずれの化合物もマト リックスメタロプロテイナーゼ阻害活性を有する旨の記載はなく、またこれら の化合物がその活性を有することを示唆する記載はない(かっこ内はケミカル アブストラクトの番号である。)。

- (1) 3-(4-メチルフェニルスルホニル) プロピオン酸 イソプロピルエステル(122-323393)、
- (2)3-(4-メチルフェニルスルホニル) プロピオン酸 フェニルエステル (095-006058)、
- 20 (3) 3-(4-メチルフェニルスルホニル) プロピオン酸ナトリウム (094-174529)、
 - (4) 3 (4-メチルフェニルスルホニル) プロピオン酸 メチルエステル <math>(122-323393)、
- (5) 3 (4 メチルフェニルスルホニル) プロピオン酸 エチルエステル (122-323393)、
 - (6) 3-(4-メチルフェニルスルホニル)プロピオン酸(121-009456)、
 - (7) 3-(4-エチルフェニルスルホニル)プロピオン酸(100-200853)、
 - (8)3-(4-メトキシフェニルスルホニル)プロピオン酸 フェニルエス

テル(095-006058)、

- (9) 3-(4-メトキシフェニルスルホニル)プロピオン酸、
- (10)3-(4-ニトロフェニルスルホニル)プロピオン酸 メチルエステル (122-323393)、
- 5 (11)3-(4-ニトロフェニルスルホニル)プロピオン酸 イソプロピル エステル(122-323393)、
 - (12) 3 (4-ニトロフェニルスルホニル) プロピオン酸、
 - (13)3-(4-アミノフェニルスルホニル)プロピオン酸 エチルエステル <math>(115-072840)、
- 10 (14)3-(4-アミノフェニルスルホニル)プロピオン酸(085-048254)、
 - (15) 3-(4-ヒドロキシフェニルスルホニル) プロピオン酸、
 - (16)3-(4-ヒドロキシフェニルスルホニル)プロピオン酸 フェニルエステル <math>(111-164337)、
- (17)3-(4-プロモフェニルスルホニル)プロピオン酸 メチルエステ 15 ν (066-104778)、
 - (18)3-(4-プロモフェニルスルホニル)プロピオン酸 エチルエステル (066-104778)、
 - (19)3-(4-プロモフェニルスルホニル)プロピオン酸 フェニルエステル <math>(095-006058)、
- 20 (20)3-(4-クロロフェニルスルホニル)プロピオン酸 メチルエステル (066-104778)、
 - (21)3-(4-クロロフェニルスルホニル) プロピオン酸 エチルエステル (066-104778)、
- (22) 3-(4-クロロフェニルスルホニル) プロピオン酸 <math>t-ブチルエ 25 ステル (122-323393)、
 - (23)3-(4-クロロフェニルスルホニル)プロピオン酸 イソプロピル エステル (122-323393)、
 - (24) 3-(4-クロロフェニルスルホニル) プロピオン酸(101-006755)、

3

(25)3-(4-)0ロロフェニルスルホニル)プロピオン酸 フェニルエステル (095-006058)、

- (26)3-(4-ヨードフェニルスルホニル) プロピオン酸 エチルエステル (066-104778)、
- 5 (27)3-(4-ヨードフェニルスルホニル)プロピオン酸 メチルエステル (066-104778)、
 - (28)3-(4-アセチルアミノフェニルスルホニル) プロピオン酸 メチルエステル (114-014686)、
- - (30) 3 (4-ビュルフェニルスルホニル) プロピオン酸ナトリウム <math>(094-174529) 、
 - (31) 3-(4-カルボキシフェニルスルホニル) プロピオン酸、
- (32) 3-(4-シアノフェニルスルホニル) プロピオン酸 エチルエステ 15 $_{\nu}$
 - (33) 3 (4-ホルミルフェニルスルホニル) プロピオン酸 エチルエステル、
 - (34)3-(4-ビフェニルスルホニル)プロピオン酸 メチルエステル (093-061046)、
- 20 (35) 2-アミノ-3-(2-メチルフェニルスルホニル) プロピオン酸 (53-14959g)、
 - (36) 2 -アミノ-3 (3 メチルフェニルスルホニル) プロピオン酸 (53-14959g) 、
- - (38) 2 -アミノ-3 (4 フルオロフェニルスルホニル) プロピオン酸 (53-14959g) 、
 - (39) 2-t-ブトキシカルボニルアミノ-3-(4-フルオロフェニルス

ルホニル) プロピオン酸(124-289512)、

- (40)2 -アミノ-3 (4 0
- $ig(4\ 1ig)\ 2-t-プトキシカルボニルアミノー<math>3-ig(4-2)$ ロロフェニルスル ホニル)プロピオン酸(124-117961)、
 - (42)2ーアミノー3ー(3-トリフルオロメチルフェニルスルホニル) プロピオン酸(53-14959h)、
 - (43) 2 -アミノ-3 (4 -ニトロフェニルスルホニル) プロピオン酸 (119-95106) 、
- (44) 2-アミノー3-(2-ニトロフェニルスルホニル)プロピオン酸 (119-95106)、
 - (45) 2 -アミノ-3 (4 -アミノフェニルスルホニル) プロピオン酸 (119-95106) 、
- (46) 2-アミノ-3-(2-アミノフェニルスルホニル) プロピオン酸 (119-95106) 、
 - (47)2,2-ジメチルー3-(4-ヒドロキシフェニルチオ)プロピオン酸、
 - (48)4-(2-カルボキシ-2-メチルプロピルメルカプト)フェニル 2-フェニルプチレート、
- 20 $(49) 4 (2- \pi n \pi + 5 2 3 \pi n \pi + 5$
 - (50)4-(2-)ルボキシー2-メチルプロピルスルホニル)フェニル 2-フェニルプチレート、
- (51)4-(2-カルボキシー2-メチルプロピルメルカプト)フェニル 2
- **25** -(4-メトキシフェニル) イソブチレート、
 - (52)4-(2-カルボキシ-2-メチルプロピルメルカプト) フェニル 2<math>-(3, 4-ジェチルフェニル) イソ酪酸、
 - (53) 4-(2-カルボキシー2-メチルプロピルメルカプト) フェニル 2

-(1, 2, 3, 4-r) = (1, 3, 4-r) = (1,

(54)4-(2-)ルボキシー2-メチルプロピルメルカプト)フェニル 2 - (1-)メチルー2-ピロール) プチレート、

(55) 4-(2-n) (2-n) (2-n)

(56) 3-(4-プロモフェニルチオ)プロピオン酸

(57) N-t-プトキシ-3-(4-プロモフェニルチオ) プロピオンアミド

(58) N-t-プトキシー3-(4-ビフェニルチオ) プロピオンアミド

10

5

化合物 (47) ~ (49) および化合物 (50) ~ (55) は、それぞれ先述した (7) 特開平 4 - 226939および (8) 同 4 - 283576号明細書に記載されている。

15

発明の開示

本発明者らは、マトリックスメタロプロテイナーゼ阻害作用を有する化合物 を見出すべく鋭意研究を行なった結果、一般式(I)で示されるアリール(ス ルフィド、スルホキシド、スルホン)誘導体が目的を達成することを見出した。

一般式(I)で示されるアリール(スルフィド、スルホキシド、スルホン)

20 誘導体の多くは、今まで知られていない新規な化合物である。

さらに、本発明化合物がマトリックスメタロプロテイナーゼ、特にゼラチナーゼ類に特異的な阻害作用を有することをも見出した。

本発明は、

1) 一般式(I)

25

$$A-J-E \xrightarrow{R^1 \atop |Q|_{n} \atop |R^5 \atop |R^6 \atop |R^2} R^4$$
 (I)

(式中、R¹は、水素原子、またはC1~4アルキル基を表わし、

R²は、-COOR⁷基または-CONHOR⁸基を表わし、

R⁷は、水素原子、C1~8アルキル基、フェニル基、あるいはフェニル基、

5 -OCOR²³基(基中、R²³はC1~4アルキル基を表わす。) または -CONR²⁴R²⁵基(基中、R²⁴およびR²⁵はそれぞれ独立して、水素原子ま たはC1~4アルキル基を表わす。) で置換されたC1~4アルキル基を表わ し、

 R^8 は、水素原子、 $C1\sim8$ アルキル基、フェニル基、またはフェニル基で置換 2 かた $C1\sim4$ アルキル基を表わし、

Eは、-CONR⁹-基、-NR⁹CO-基、-OCO-基、-COO-基、 -CH₂-O-基、-CO-CH₂-基、-(CH₂)₂-基、-CH=CH-基 または-C=C-基(基中、R⁹は水素原子、C1~4アルキル基、フェニル基、 またはフェニル基で置換されたC1~4アルキル基を表わす。また、各基にお いて左側の結合手がJ基に結合するものとする。)を表わし、

Jは、単結合またはC1~8アルキレン基を表わし、

Aは、

15

- 1) 水素原子、
- 2) C1~8アルキル基、
- 20 3) Ar基(Arは、炭素環または複素環を表わし、1から3個の、
 - i) C1~15アルキル基、
 - ii) C1~15アルコキシ基、
 - iii) ハロゲン原子、
 - iv) ニトロ基、
- 25 v) シアノ基、
 - vi) グアニジノ基、
 - vii) アミジノ基、
 - viii) 水酸基、

ix) ベンジルオキシ基、

, \$

- x) $NR^{12}R^{13}$ 基(基中、 R^{12} および R^{13} はそれぞれ独立して、水素原子、 $C1\sim4$ アルキル基または $-COOR^{14}$ 基(基中、 R^{14} は $C1\sim4$ アルキル基またはベンジル基を表わす。) を表わす。)、
- 5 xi) COOR 15基 (基中、R 15は水素原子、C 1~4 アルキル基、フェニル基、またはフェニル基で置換されたC 1~4 アルキル基を表わす。)、
 - xii) トリフルオロメチル基、
 - xiii) 炭素環基、
 - xiv) 複素環基または
- 10 xv) 水酸基、C 1 ~ 4 アルコキシ基、N R ¹² R ¹³ 基 (基中、R ¹² および R ¹³ は前記と同じ意味を表わす。)、 C O O R ¹⁵ 基 (基中、R ¹⁵ は前記と同じ意味を表わす。)、 炭素環または複素環で置換されたC 1 ~ 4 アルキル基で置換されていてもよい。)または
- 4) 水酸基またはC1~4アルコキシ基で置換されたC1~4アルキル基を表 15 わすか、あるいは

A、JおよびE基が一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹⁶R¹⁷基(基中、R¹⁶およびR¹⁷はそれぞれ独立して、水素原子、C1~4アルキル基、-COOR¹⁸基(基中、R¹⁸はC1~4アルキル基またはベンジル基を表わす。)を表わす。)または複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)でCONR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)で

25 置換されてもよい。)を表わし、

R³およびR⁴は、それぞれ独立して、

- (1) 水素原子、
- (2) C1~8アルキル基(ただし、基中のC1~8アルキル基の炭素原子1

個は硫黄原子1個に置き換わっていてもよいものとする。)、

- (3) $-COOR^{19}$ 基(基中、 R^{19} は水素原子、 $C1\sim8$ アルキル基、フェニル基、またはフェニル基で置換された $C1\sim4$ アルキル基を表わす。)、
- (4) A r ₁基(A r ₁は炭素環または複素環を表わし、1 から3 個のC 1 ~ 4 アルキル基、C 1 ~ 4 アルコキシ基、ハロゲン原子、水酸基またはトリフルオロメチル基で置換されていてもよい。)、
 - (5) 水酸基、
- (6) -NR²⁰R²¹基(基中、R²⁰およびR²¹はそれぞれ独立して、水素原子、C1~4アルキル基、-COOR²²基または-COR²²基(基中、R²²はC1
 10 ~4アルキル基またはベンジル基を表わす。)、
 - (7) → NH+CO → NH+p R^b 基 (基中、R^aは、水素原子またはフェニル 基を表わし、R^bは、水素原子、一COOR²²基または一COR²²基 (基中、R²²は前記と同じ意味を表わす。)を表わし、pは、1または2を表わす。)または
- 15 (8) 置換基として、
 - (a) COOR¹⁹基(基中、R¹⁹は前記と同じ意味を表わす。)、
 - (b) C1~4アルコキシ基、
 - (c) 水酸基、
 - (d) ペンジルオキシ基、
- 20 (e) -NR²⁰R²¹基 (基中、R²⁰およびR²¹は前記と同じ意味を表わす。) または、
 - (f) Ar₁基(基中、Ar₁は前記と同じ意味を表わす。)

からなる群から選ばれる基で置換されたC1~8アルキル基(ただし、基中のC1~8アルキル基の炭素原子1個は硫黄原子1個に置き換わっていてもよい

25 ものとする。)を表わすか、もしくはR³およびR⁴が結合する炭素原子と一緒になってC3~7シクロアルキル基を表わし、

R⁵およびR⁶は、水素原子またはメチル基を表わすか、もしくは

R³およびR⁵が一緒になって単結合を形成し、R⁴およびR⁶は前記と同じ意味を表わし、

nは0、1または2を表わす。ただし、A、JおよびEが一緒になって、フェニル基を表わし、かつ R^2 がCONHOH基を表わす時、nは1または2を表わす。)

で示されるアリール(スルフィド、スルホキシド、スルホン)誘導体、または それらの非毒性塩を有効成分として含有するマトリックスメタロプロテイナー ゼ阻害剤、

2) 一般式(I)

10

5

$$A-J-E \xrightarrow{R^{1}} (0)_{n} R^{3} R^{4}$$

$$R^{5} R^{6}$$
(1)

(式中、 R^1 は、水素原子、または $C1\sim 4$ アルキル基を表わし、

R²は、-COOR⁷基または-CONHOR⁸基を表わし、

- R^7 は、水素原子、 $C1\sim 8$ アルキル基、フェニル基、あるいはフェニル基、 $-OCOR^{23}$ 基(基中、 R^{23} は $C1\sim 4$ アルキル基を表わす。)または $-CONR^{24}R^{25}$ 基(基中、 R^{24} および R^{25} はそれぞれ独立して、水素原子または $C1\sim 4$ アルキル基を表わす。)で置換された $C1\sim 4$ アルキル基を表わし、
- R^8 は、水素原子、 $C1\sim8$ アルキル基、フェニル基、またはフェニル基で置換された $C1\sim4$ アルキル基を表わし、

Eは、 $-CONR^9-基$ 、 $-NR^9CO-基$ 、-OCO-基、-COO-基、 $-CH_2-O-基$ 、 $-CH_2-E$ または-C=C-E(基中、-E0は水素原子、-E1 ないまいま、フェニル基、

25 またはフェニル基で置換されたC1~4アルキル基を表わす。また、各基において左側の結合手が J 基に結合するものとする。)を表わし、

Jは、単結合またはC1~8アルキレン基を表わし、 Aは、

- 1) 水素原子、
- 2) C1~8アルキル基、
- 5 3) Ar基(Arは、炭素環または複素環を表わし、1から3個の、
 - i) C1~15アルキル基、
 - ii) C1~15アルコキシ基、
 - iii) ハロゲン原子、
 - iv) ニトロ基、
- 10 v) シアノ基、
 - vi) グアニジノ基、
 - vii) アミジノ基、
 - viii) 水酸基、
 - ix) ベンジルオキシ基、
- x) NR¹²R¹³基(基中、R¹²およびR¹³はそれぞれ独立して、水素原子、C1~4アルキル基または-COOR¹⁴基(基中、R¹⁴はC1~4アルキル基またはペンジル基を表わす。)を表わす。)、
 - xi) $-COOR^{15}$ 基(基中、 R^{15} は水素原子、 $C1\sim4$ アルキル基、フェニル基、またはフェニル基で置換された $C1\sim4$ アルキル基を表わす。)、
- 20 xii) トリフルオロメチル基、
 - xiii) 炭素環基、
 - xiv) 複素環基または
 - xv) 水酸基、C 1~4 アルコキシ基、N R 12 R 13 基(基中、R 12 および R 13 は前記と同じ意味を表わす。)、-C O O R 15 基(基中、R 15 は前記と同じ意
- 25 味を表わす。)、炭素環または複素環で置換されたC1~4アルキル基で置換 されていてもよい。)または
 - 4) 水酸基またはC1~4アルコキシ基で置換されたC1~4アルキル基を表わすか、あるいは

A、JおよびE基が一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹⁶R¹⁷基(基中、R¹⁶およびR¹⁷はそれぞれ独立して、水素原子、C1~4アルキル基、-COOR¹⁸基(基中、R¹⁸はC1~4アルキル基またはベンジル基を表わす。)を表わす。)または複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)またはCONR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)で置換されてもよい。)を表わし、

R³およびR⁴は、それぞれ独立して、

(1) 水素原子、

5

10

- (2) C1~8アルキル基(ただし、基中のC1~8アルキル基の炭素原子1個は硫黄原子1個に置き換わっていてもよいものとする。)、
- (3) -COOR¹⁹基(基中、R¹⁹は水素原子、C1~8アルキル基、フェニル基、またはフェニル基で置換されたC1~4アルキル基を表わす。)、
 - (4) A r_1 基(A r_1 は炭素環または複素環を表わし、1 から 3 個のC $1\sim 4$ アルキル基、C $1\sim 4$ アルコキシ基、ハロゲン原子、水酸基またはトリフルオロメチル基で置換されていてもよい。)、
- 20 (5) 水酸基、
 - (6) $-NR^{20}R^{21}$ 基(基中、 R^{20} および R^{21} はそれぞれ独立して、水素原子、 $C1\sim4$ アルキル基、 $-COOR^{22}$ 基または $-COR^{22}$ 基(基中、 R^{22} は $C1\sim4$ アルキル基またはベンジル基を表わす。)、
- 25 基を表わし、R^bは、水素原子、-COOR²²基または-COR²²基(基中、R²²は前記と同じ意味を表わす。)を表わし、pは、1または2を表わす。)
 または

٠,

- (8) 置換基として、
- (a) COOR 19基(基中、R 19は前記と同じ意味を表わす。)、
- (b) C1~4アルコキシ基、
- (c) 水酸基、
- ⁵ (d) ペンジルオキシ基、
 - (e) -NR²⁰R²¹基 (基中、R²⁰およびR²¹は前記と同じ意味を表わす。) または、
 - (f) Ar₁基(基中、Ar₁は前記と同じ意味を表わす。)

からなる群から選ばれる基で置換されたC1~8アルキル基(ただし、基中の C1~8アルキル基の炭素原子1個は硫黄原子1個に置き換わっていてもよい ものとする。)を表わすか、もしくはR³およびR⁴が結合する炭素原子と一緒 になってC3~7シクロアルキル基を表わし、

R⁵およびR⁶は、水素原子またはメチル基を表わすか、もしくは

R³およびR⁵が一緒になって単結合を形成し、R⁴およびR⁶は前記と同じ意味 15 を表わし、

nは0、1または2を表わす。

ただし、

- (a) A、JおよびEが一緒になって、フェニル基を表わし、かつ R^2 が CONHOH基を表わす時、nは1または2を表わす。
- **20** (b) 下記(1)~(5 8)の化合物は表わさないものとする:
 - (1) 3-(4-メチルフェニルスルホニル) プロピオン酸 イソプロピルエステル、
 - (2) 3 (4 メチルフェニルスルホニル) プロピオン酸 フェニルエステル、
- 25 (3) 3-(4-メチルフェニルスルホニル) プロピオン酸ナトリウム、
 - (4) 3-(4-メチルフェニルスルホニル) プロピオン酸 メチルエステル、
 - (5) 3-(4-メチルフェニルスルホニル) プロピオン酸 エチルエステ

PCT/JP97/02200

· WO 97/49679

ル、

- (6) 3-(4-メチルフェニルスルホニル)プロピオン酸、
- (7) 3-(4-エチルフェニルスルホニル)プロピオン酸、
- (8) 3-(4-メトキシフェニルスルホニル) プロピオン酸 フェニルエ 5 ステル、
 - (9) 3-(4-メトキシフェニルスルホニル) プロピオン酸、
 - (10)3-(4-ニトロフェニルスルホニル)プロピオン酸 メチルエステル、
- (11) 3 (4 -ニトロフェニルスルホニル) プロピオン酸 イソプロピ 10 μ エステル、
 - (12) 3 (4-ニトロフェニルスルホニル) プロピオン酸、
 - (13)3-(4-アミノフェニルスルホニル) プロピオン酸 エチルエステル、
 - (14) 3-(4-アミノフェニルスルホニル) プロピオン酸、
- (15) 3 (4-ヒドロキシフェニルスルホニル) プロピオン酸、
 - (16)3-(4-ヒドロキシフェニルスルホニル)プロピオン酸 フェニルエステル、
 - (17)3-(4-プロモフェニルスルホニル) プロピオン酸 メチルエステル、
- 20 (18)3-(4-プロモフェニルスルホニル)プロピオン酸 エチルエス テル、
 - (19)3-(4-ブロモフェニルスルホニル) プロピオン酸 フェニルエステル、
- (20)3 $-(4-クロロフェニルスルホニル) プロピオン酸 メチルエス 25 <math>_{FN}$ 、
 - (21)3-(4-クロロフェニルスルホニル)プロピオン酸 エチルエステル、
 - (22) 3-(4-クロロフェニルスルホニル) プロピオン酸 tープチル

エステル、

(23)3-(4-クロロフェニルスルホニル)プロピオン酸 イソプロピルエステル、

- (24) 3-(4-クロロフェニルスルホニル) プロピオン酸、
- 5 (25)3-(4-クロロフェニルスルホニル)プロピオン酸 フェニルエステル、
 - (26)3-(4-ヨードフェニルスルホニル)プロピオン酸 エチルエステル、
- - (28)3-(4-アセチルアミノフェニルスルホニル)プロピオン酸 メチルエステル、
 - (29)3-(4-アセチルアミノフェニルスルホニル) プロピオン酸 エチルエステル、
- 15 (30)3-(4-ビニルフェニルスルホニル)プロピオン酸ナトリウム、
 - (31) 3-(4-カルボキシフェニルスルホニル) プロピオン酸、
 - (32) 3 (4-シアノフェニルスルホニル) プロピオン酸 エチルエステル、
- (33)3-(4-ホルミルフェニルスルホニル)プロピオン酸 エチルエ 20 ステル、
 - (34) 3-(4-ビフェニルスルホニル) プロピオン酸 メチルエステル、
 - (35) 2-アミノー3-(2-メチルフェニルスルホニル) プロピオン酸、
 - (36) 2-アミノ-3-(3-メチルフェニルスルホニル) プロピオン酸、
 - (37) 2-アミノー3-(4-メチルフェニルスルホニル) プロピオン酸、
- 25 (38) 2 7 2 3 4 7 1 2 1 -
 - (39) 2-t-プトキシカルボニルアミノー3-(4-フルオロスルホニル) プロピオン酸、

- (40) 2-アミノー3-(4-クロロフェニルスルホニル) プロピオン酸、
- (42) 2-アミノ-3-(3-トリフルオロメチルフェニルスルホニル)プロピオン酸、
 - (43) 2-アミノー3-(4-ニトロフェニルスルホニル) プロピオン酸、
 - (44) 2-アミノー3-(2-ニトロフェニルスルホニル) プロピオン酸、
 - (45) 2-アミノ-3-(4-アミノフェニルスルホニル) プロピオン酸、
 - (46) 2-アミノー3-(2-アミノフェニルスルホニル) プロピオン酸、
- (47) 2, 2-ジメチルー3-(4-ヒドロキシフェニルチオ) プロピオン酸、
 - $(48) 4-(2-\pi \nu \ddot{x}+\dot{v}-2-\dot{x}+\nu \ddot{x}-2\nu \ddot{x}-\nu \ddot{x}+\dot{y}-2\nu \ddot{x}+\dot$
- - (50)4-(2-カルボキシー2-メチルプロピルスルホニル)フェニル2-フェニルプチレート、
 - (51)4-(2-カルボキシ-2-メチルプロピルメルカプト)フェニル <math>2-(4-メトキシフェニル)イソプチレート、
- 20 (52) 4 (2-カルボキシ-2-メチルプロピルメルカプト) フェニル <math>2- (3.4-ジエチルフェニル) イソ酪酸、
- - (55) 4-(2-n) (55) 4-(2-n) (55) 4-(2-n) (55)
 - (56) 3-(4-ブロモフェニルチオ) プロピオン酸、

(57) N-t-プトキシー3-(4-プロモフェニルチオ) プロピオンアミド、

- (58) N-t-ブトキシ-3-(4-ビフェニルチオ) プロピオンアミド。) で示されるアリール (スルフィド、スルホキシド、スルホン) 誘導体、または それらの非毒性塩、および
- 3) 一般式(I) で示されるアリール (スルフィド、スルホキシド、スルホン) 誘導体およびそれらの非毒性塩の製造方法に関する。

発明の詳細な説明

- 本発明においては、特に指示しない限り異性体はこれをすべて包含する。例えば、アルキル基、アルコキシ基およびアルキレン基には直鎖のものおよび分枝鎖のものが含まれる。アルケニレン基中の二重結合は、E、ZおよびEZ混合物であるものを含む。また、分枝鎖のアルキル基、アルコシキ基およびアルキレン基が存在する場合等の不斉炭素原子の存在により生ずる異性体も含まれる。
 - 一般式(I)中、R¹、R⁹、R¹⁰、R¹¹、R¹²、R¹³、R¹⁴、R¹⁵、R¹⁶、R¹⁷、R¹⁸、R²⁰、R²¹、R²²、R²³、R²⁴、R²⁵によって表わされる C1~4アルキル基または、Ar₁およびA、J、Eが一緒になって複素環を表わす場合の置換基中のC1~4アルキル基とは、メチル、エチル、プロピル、プチル基およびこれらの異性体である。
 - 一般式(I)中、 R^2 、 R^3 、 R^4 、 R^7 、 R^8 、 R^{19} 、Aによって表わされる $C1\sim8$ アルキル基とは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基およびこれらの異性体である。
- 一般式(I)中、Ar基の置換基中のC1~15アルキル基とは、メチル、**25** エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル基およびこれらの異性体である。

20

一般式 (I) 中、R⁷、R⁸、R⁹、R¹⁵、R¹⁹によって表わされるフェニル

. 3

10

15

基が置換したC1~4アルキル基とは、フェニル基1個によって置換されているメチル、エチル、プロピル、ブチル基およびこれらの異性体である。

一般式(I)中、 R^3 または R^4 中に含まれる $C1\sim 4$ アルコシキ基またはA、 J、Eが一緒になって複素環を表わす場合の置換基としての $C1\sim 4$ アルコキシ シ基とは、メトキシ、エトキシ、プロポキシ、ブトキシ基およびこれらの異性体である。

一般式(I)中、Ar基の置換基中のC1~15アルコキシ基とは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘブチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシ、テトラデシルオキシ、ペンタデシルオキシ基およびこれらの異性体である。

一般式(I)中、Ar基またはAr」基の置換基中のハロゲン原子またはA、 JおよびEが一緒になって表わされるハロゲン原子またはA、J、Eが一緒に なって複素環を表わす場合の置換基としてのハロゲン原子とは、フッ素原子、 塩素原子、臭素原子およびヨウ素原子である。

一般式(I)中、R³およびR⁴が結合する炭素原子と一緒になって表わされるC3~7シクロアルキル基とは、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシルおよびシクロヘプチル基である。

一般式(I)中、Ar、Ar1によって表わされる炭素環とは、 $C5\sim10$ 炭 20 素環アリールまたは先述した $C3\sim7$ シクロアルキル基を表わす。例えば、 $C5\sim10$ 炭素環アリールとしては、ベンゼン、ベンタレン、インデン、ナフタレン、アズレン等が挙げられる。

一般式(I)中、Ar、Ar₁、R³またはR⁴基によって表わされる複素環、A、JおよびEが一緒になって表わされる複素環およびArの置換基としての 複素環とは、1~2個の窒素原子、1個の酸素原子、1個の硫黄原子を含む5~15員の単環または二環式複素環を表わす。この様な複素環としては、1~2個の窒素原子、1個の酸素原子、1個の硫黄原子を含む5~15員の単環または二環式複素環アリールまたは、その一部または全部が飽和したものが含ま

れる。例えば1~2個の窒素原子、1個の酸素原子、1個の硫黄原子を含む5 ~15員の単環または二環式複素環アリールとしては、ピロール、イミダゾー ル、ピラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、アゼピン、 ジアゼピン、フラン、ピラン、オキセピン、オキサゼピン、チオフェン、チア 5 イン(チオピラン)、チエピン、オキサゾール、イソオキサゾール、チアゾー ル、イソチアゾール、オキサジアゾール、オキサジアジン、オキサアゼピン、 オキサジアゼピン、チアジアゾール、チアジアジン、チアジアゼピン、インド・ ール、イソインドール、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、 イソベンゾチオフェン、インダゾール、キノリン、イソキノリン、フタラジン、 10 ナフチリジン、キノキサリン、キナゾリン、シンノリン、ベンゾオキサゾール、 ベンゾチアゾール、ベンゾイミダゾール環等が挙げられる。また、1~2個の 窒素原子、1個の酸素原子、1個の硫黄原子を含む5~15員の単環または二 環式複素環、アリールの一部または全部が飽和したものとしては、ピロリン、 ピロリジン、イミダゾリン、イミダゾリジン、ピラゾリン、ピラゾリジン、ピ 15 ペリジン、ピペラジン、テトラヒドロピリミジン、テトラヒドロピリダジン、 ジヒドロフラン、テトラヒドロフラン、ジヒドロピラン、テトラヒドロピラン、 ジヒドロチオフェン、テトラヒドロチオフェン、ジヒドロチアイン (ジヒドロ チオピラン)、テトラヒドロチアイン(テトラヒドロチオピラン)、ジヒドロ オキサゾール、テトラヒドロオキサゾール、ジヒドロイソオキサゾール、テト 20 ラヒドロイソオキサゾール、ジヒドロチアゾール、テトラヒドロチアゾール、 ジヒドロイソチアゾール、テトラヒドロイソチアゾール、モルホリン、チオモ ルホリン、インドリン、イソインドリン、ジヒドロベンゾフラン、パーヒドロ ベンゾフラン、ジヒドロイソベンゾフラン、パーヒドロイソベンゾフラン、ジ ヒドロベンゾチオフェン、パーヒドロベンゾチオフェン、ジヒドロイソベンゾ 25 チオフェン、パーヒドロイソペンゾチオフェン、ジヒドロインダゾール、パー ヒドロインダゾール、ジヒドロキノリン、テトラヒドロキノリン、パーヒドロ キノリン、ジヒドロイソキノリン、テトラヒドロイソキノリン、パーヒドロイ ソキノリン、ジヒドロフタラジン、テトラヒドロフタラジン、パーヒドロフタ

ラジン、ジヒドロナフチリジン、テトラヒドロナフチリジン、パーヒドロナフチリジン、ジヒドロキノキサリン、テトラヒドロキノキサリン、パーヒドロキノキサリン、ジヒドロキナゾリン、テトラヒドロキナゾリン、パーヒドロシンノリン、ジヒドロシンノリン、テトラヒドロシンノリン、パーヒドロシンノリン、ジヒドロベンゾオキサゾール、パーヒドロベンゾオキサゾール、ジヒドロベンゾイミダゾール、パーヒドロベンゾイミダゾール環等が挙げられる。

[塩]

25

10 本発明における非毒性塩とはすべての塩を包含する。例えば、一般的な塩、酸付加物塩、水和物塩等が挙げられる。

一般式(I)で示される本発明化合物は、公知の方法で相当する塩に変換される。塩は、毒性のない、水溶性のものが好ましい。適当な塩としては、アルカリ金属(カリウム、ナトリウム等)の塩、アルカリ土類金属(カルシウム、

- マグネシウム等)の塩、アンモニウム塩、薬学的に許容される有機アミン(テトラメチルアンモニウム、トリエチルアミン、メチルアミン、ジメチルアミン、シクロペンチルアミン、ベンジルアミン、フェネチルアミン、ピペリジン、モノエタノールアミン、ジエタノールアミン、トリス(ヒドロキシメチル)アミノメタン、リジン、アルギニン、NーメチルーDーグルカミン等)の塩が挙げるの
 - 一般式 (I) で示される本発明化合物は、公知の方法で相当する酸付加塩に変換される。塩は毒性のない、水溶性のものが好ましい。適当な酸付加塩としては、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩、硝酸塩のような無機酸塩、または酢酸塩、トリフルオロ酢酸塩、乳酸塩、酒石酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、クエン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、イセチオン酸塩、グルクロン酸塩、グルコン酸塩のような有機酸塩が挙げられる。

また、一般式(I)で示される本発明化合物またはその塩は、公知の方法に

より、水和物に変換することもできる。

一般式(I)で示される本発明化合物のうち、好ましい化合物としては、一般式(I-1)

$$\begin{array}{c|c}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

5

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式 (I-2)

$$\begin{array}{c|c}
0 & R^3 & R^4 \\
\hline
S & R^5 & R^6
\end{array}$$
(I-2)

10 (式中、すべての記号は前記と同じ意味を表わす。)、一般式 (I-3)

$$\begin{array}{c|c}
O & S & R^3 & R^4 \\
\hline
O & R^5 & R^6
\end{array}$$
(I-3)

(式中、すべての記号は前記と同じ意味を表わす。)、

15 一般式 (I-4)

$$\begin{array}{c|c}
R^3 & R^4 \\
R^5 & R^6
\end{array}$$
(I-4)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式 (I-5)

$$\begin{array}{c|c}
O & R^3 & R^4 \\
R^5 & R^6 & R^2
\end{array}$$
(I-5)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-6)

$$\begin{array}{c|c}
 & O \\
 & S \\
 & R^5 \\
 & R^6
\end{array}$$
(I-6)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-7)

$$\begin{array}{c|c}
R^3 & R^4 \\
R^5 & R^6
\end{array} (I-7)$$

10

(式中、すべての記号は前記と同じ意味を表わす。)、一般式 (I-8)

$$A^{-0} \xrightarrow{R^5 R^6} R^4$$
(I-8)

15 (式中、すべての記号は前記と同じ意味を表わす。)、一般式 (I-9)

$$A^{-0} = R^{5} + R^{6}$$

$$R^{5} + R^{6}$$
(I-9)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-10)

5 $R^3 R^4$ (I-10)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式 (I-11)

10

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-12)

$$O_{R^{5}} = O_{R^{2}} = O_{R$$

15 (式中、すべての記号は前記と同じ意味を表わす。)、一般式 (I-13)

$$R^{5}$$
 R^{6} R^{2} (I-13)

(式中、すべての記号は前記と同じ意味を表わす。)、

一般式 (I-14)

(式中、すべての記号は前記と同じ意味を表わす。)、

5 一般式 (I-15)

$$O > S \neq O$$
 R^3 R^4 R^2 (I-15)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-16)

10

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-17)

15

(式中、すべての記号は前記と同じ意味を表わす。)、一般式 (I-18)

20 (式中、すべての記号は前記と同じ意味を表わす。)、

· WO 97/49679

PCT/JP97/02200

一般式 (I-19)

(式中、すべての記号は前記と同じ意味を表わす。)、一般式 (I-20)

$$\begin{array}{c|cccc}
O & R^3 & R^4 \\
S & R^5 & R^6 & R^2
\end{array}$$
(1-20)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-21)

10

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-22)

15

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式(I-23)

$$\begin{array}{c|c}
O & R^3 & R^4 \\
S & R^5 & R^6
\end{array}$$
(I-23)

(式中、すべての記号は前記と同じ意味を表わす。)、 一般式 (I-24)

$$O \approx S^{O} + R^{3} + R^{4}$$
 $R^{5} + R^{6}$
(I-24)

5

(式中、すべての記号は前記と同じ意味を表わす。)、一般式(I-25)

$$R^3$$
 R^4 (1-25)

10 (式中、すべての記号は前記と同じ意味を表わす。)、一般式 (I-26)

(式中、すべての記号は前記と同じ意味を表わす。)、

15 一般式 (I-27)

$$O_{S} = O_{R^{3}} = R^{4}$$
 R^{2} (I-27)

(式中、すべての記号は前記と同じ意味を表わす。)、

· WO 97/49679

一般式 (I-28)

$$S = R^3 - R^4$$
 $R^2 = (I-28)$

(式中、A、JおよびE基は一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹⁶R¹⁷基(基中、R¹⁶およびR¹⁷は前記と同じ意味を表わす。)、複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)またはCONR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)で置換されてもよい。)を表わし、その他の記号は前記と同じ意味を表わす。)、

一般式 (I-29)

15

20

(式中、A、JおよびE基は一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹⁶R¹⁷基(基中、R¹⁶およびR¹⁷は前記と同じ意味を表わす。)、複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)またはCONR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)で置換されてもよい。)を表わし、その他の記号は前記と同じ意味を表わす。)、

一般式 (I-30)

$$R - J - E$$
 $S = 0 - R^3 - R^4$
 R^2
(I-30)

(式中、A、JおよびE基は一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹⁶R¹⁷基(基中、R¹⁶およびR¹⁷は前記と同じ意味を表わす。)、複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)またはCONR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)で置換されてもよい。)を表わし、その他の記号は前記と同じ意味を表わす。)で置換されてもよい。)を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物が挙げられる。

より好ましくは、nが2である化合物、すなわち先述した一般式 (1-3)、 (1-6)、 (1-9)、 (1-12)、 (1-15)、 (1-18)、 (1-21)、 (1-24)、 (1-27) および (1-30) で表わされる 化合物である。そのうち特に好ましくは、さらにEが一CONHー、一CH2ーOー、一CH=CHー、エチニレン基である化合物およびA、JおよびE基が一緒になって複素環基である化合物、すなわち先述した一般式 (1-3)、 (1-15)、 (1-24)、 (1-27) および (1-30) (式中、A、JおよびE基が一緒になって複素環基を表わす場合)で表わされる化合物である。

また、具体的な化合物としては、以下の表に示される化合物および実施例に記載された化合物が挙げられる。

表 1	
P ⁴ R ²	(I-1a)
A N N	(1 14)

番号	Α	R⁴	R ²
1	C ₅ H ₁₁ -	Н	СООН
2	C ₅ H ₁₁ -	н	соинон
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C CH ₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	CONHOH
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОИНОН
9	C ₅ H ₁₁ -		СООН
1 0	C ₅ H ₁₁ -		СОМНОН

表 1(続き)

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

番号	A	R ⁴	R ²
1 1		Н	соон
1 2		Н	сопнон
1 3		H₃C CH₃	соон
1 4		H ₃ C CH ₃	соинон
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	соинон
1 9		N	соон
2 0			соинон

WO 97/49679

表 1(続き)

$$\begin{array}{c|c}
 & R^4 \\
 & R^2
\end{array}$$
(I-1a)

番号	Α	R ⁴	R ²
2 1	H₃CO- () -	н	соон
2 2	н₃со-{_}	Н	соинон
2 3	H ₃ CO-	H ₃ C ← CH ₃	соон
2 4	H ₃ CO-	H ₃ C ← CH ₃	СОМНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	CONHOH
2 7	Н₃СО-		соон
2 8	Н₃СО-	H	соинон
2 9	н₃со-{_}	N	СООН
3 0	Н₃СО-		соинон

表 1(続き)

$$R^4$$
 R^2
(I-1a)

•	П	_	
番号	Α .	R ⁴	R ²
3 1	S	н	соон
3 2	S	н	CONHOH
3 3	S	H₃C CH₃	соон
3 4	(S)	H ₃ C ← CH ₃	CONHOH
3 5	(S)	ОН	соон
3 6	(S)	ОН	соинон
3 7	S		соон
3 8	S	H	соинон
3 9	S		соон
4 0	S		сопнон

_表 2	
A N R ²	(I-2a)

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	н	соинон
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H₃C CH₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОИНОН
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		СОМНОН

表 2(続き)

番号	Α	R⁴	R ²
1 1		Н	соон
1 2		Н	соинон
1 3		H₃C CH₃	соон
1 4		H ₃ C CH ₃	соинон
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	соинон
1 9			соон
2 0			соинон

- WO 97/49679

表 2(続き)

番号	A	R ⁴	R ²
2 1	н₃со-⟨у	н	соон
2 2	н₃со-{_}	н	соинон
2 3	н₃со-	H₃C CH₃	соон
2 4	Н₃СО-	H₃C CH₃	СОМНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	соинон
2 7	н₃со-€		соон
2 8	Н₃СО-	H	соинон
2 9	H ₃ CO-		соон
3 0	H₃CO- ()		СОИНОН

表 2(続き)

番号	Α	R ⁴	R ²
3 1	S	н	соон
3 2	$\langle s \rangle$	н	CONHOH
3 3	(S)	H ₃ C CH ₃	соон
3 4	(S)	H₃C CH₃	соинон
3 5	S	ОН	соон
3 6	(S)	ОН	соинон
3 7	(S)		соон
3 8	(S)		соинон
3 9	(s)	N	соон
4 0	(S)		соинон

表 3	
O P ⁴	
A N	(I-3a)

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	соон
2	C ₅ H ₁₁ -	Н	СОМНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C ← CH ₃	СОИНОН
5	C ₅ H ₁₁ -	ОН	СООН
6	C ₅ H ₁₁ -	ОН	СОМНОН
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОИНОН
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -	THE STATE OF THE S	соинон

表 3(続き)

番号	Α	R⁴	R ²
1 1		н	соон
1 2		н	CONHOH
1 3		H ₃ C CH ₃	соон
1 4		H₃C CH₃	соинон
1 5		СОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	CONHOH
1 9		₹N N	соон
2 0			соннон

表 3(続き)

番号	Α	R ⁴	R ²
2 1	н₃со-{_}	Н	СООН
2 2	Н₃СО-	Н	соинон
2 3	Н₃СО-	H ₃ C ← CH ₃	соон
2 4	н₃со-{_}	H ₃ C CH ₃	CONHOH
2 5	H₃CO—	ОН	соон
2 6	Н₃СО-	ОН	CONHOH
2 7	H ₃ CO-		соон
2 8	H ₃ CO-	H	CONHOH
2 9	H ₃ CO-	TN N	СООН
3 0	н₃со-{_}		соинон

表 3(続き)

	•••		
番号	Α	R⁴	R ²
3 1	S	н	COOH
3 2	(S)	н	соинон
3 3	(S)	H₃C CH₃	соон
3 4	(S)	H₃C CH₃	соинон
3 5	(S)	ОН	соон
3 6	(S)	ОН	соинон
3 7	S		соон
3 8	S		соинон
3 9	S	N	соон
4 0	(S)	L'A	соинон

表 4

$$A \xrightarrow{R} B^{2}$$
(I-4a)

番号	A	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	СООН
2	C ₅ H ₁₁ -	Н	СОМНОН
3	C ₅ H ₁₁ -	H ₃ C ← CH ₃	соон
4	C ₅ H ₁₁ -	H₃C ← CH₃	сопнон
5	C ₅ H ₁₁ -	Сон	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		соинон

表 4(続き)

2 0

CONHOH

表 4(続き)

番号	Λ		
	Α	R ⁴	R ²
2 1	H ₃ CO-	Н	СООН
2 2	H ₃ CO-	Н	СОИНОН
2 3	Н₃СО-{}	H ₃ C ← CH ₃	СООН
2 4	H₃CO-	H ₃ C CH ₃	СОИНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	CONHOH
2 7	H ₃ CO-		СООН
2 8	H ₃ CO-	H	СОИНОН
2 9	H ₃ CO-	N	СООН
3 0	H₃CO— () —		СОИНОН

表 4(続き)

$$A = \begin{pmatrix} R^4 \\ R^2 \\ (I-4a) \end{pmatrix}$$

番号	Α	R ⁴	R ²
3 1	(S)	н	соон
3 2	S	Н	CONHOH
3 3	(S)	H ₃ C ← CH ₃	соон
3 4	(S)	H₃C CH₃	CONHOH
3 5	(S)	ОН	соон
3 6	(S)	ОН	соинон
3 7	(S)		соон
3 8	(S)	H	соинон
3 9	(S)		соон
4 0	(S)	The state of the s	соинон

		表 5	
	A-N-	O R⁴ S R	² (I-5a)
番号 	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	СООН
2	C ₅ H ₁₁ -	Н	СОИНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C	СОИНОН
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	СОИНОН
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОИНОН
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		СОМНОН

表 5(続き)

$$A = \begin{pmatrix} 0 & R^4 \\ S & R^2 \end{pmatrix}$$
 (I-5a)

	U		
番号	Α	R ⁴	R ²
1 1		н	соон
1 2		н	CONHOH
1 3		H ₃ C CH ₃	соон
1 4		H ₃ C CH ₃	соинон
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	соинон
1 9			соон
2 0		T T T T T T T T T T T T T T T T T T T	соинон

	0		
番号	А	R⁴	R ²
2 1	н₃со-{_}	Н	соон
2 2	H ₃ CO-	н	СОМНОН
2 3	Н₃СО-	H ₃ C CH ₃	соон
2 4	Н₃СО-СУ-	H ₃ C ← CH ₃	СОМНОН
2 5	H₃CO—	ОН	соон
2 6	H ₃ CO-	ОН	CONHOH
2 7	H ₃ CO-		соон
2 8	н₃со-	H	соинон
2 9	H ₃ CO-		соон
3 0	H ₃ CO-		СОИНОН

表 5(続き)

$$A^{-N} = \begin{pmatrix} O & R^4 \\ S & R^2 \end{pmatrix}$$
 (I-5a)

	0		
番号	Α	R ⁴	R ²
3 1	S	н	соон
3 2	S	н	CONHOH
3 3	(S)	H ₃ C CH ₃	соон
3 4	(S)	H₃C CH₃	CONHOH
3 5	(S)	ОН	соон
3 6	(S)	ОН	соинон
3 7	S		соон
3 8	S		соинон
3 9	(S)		соон
4 0	(S)	T T	соннон

•		表 6	
		O R ⁴	(I-6a)
番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	Н	СОИНОН
3	C ₅ H ₁₁ -	H₃C → CH₃	СООН
4	C ₅ H ₁₁ -	H₃C ←CH₃	СОМНОН
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	СОИНОН
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -		СОИНОН
9	C ₅ H ₁₁ -		СООН
1 0	C ₅ H ₁₁ -	Z	СОИНОН

- WO 97/49679 PCT/JP97/02200

$$A = \begin{bmatrix} O & R^4 \\ R^2 & (I-6a) \end{bmatrix}$$

番号	Α	R ⁴	R ²
1 1		н	соон
1 2		Н	CONHOH
1 3		H ₃ C CH ₃	соон
1 4		H₃C CH₃	соинон
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	соинон
1 9		N	соон
2 0			солнон

表 6(続き)

番号	Α	R ⁴	R ²
2 1	H ₃ CO-	н	соон
2 2	H ₃ CO-	н	СОИНОН
2 3	H ₃ CO-	H ₃ C ← CH ₃	соон
2 4	H ₃ CO-	H₃C ← CH₃	СОИНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	СОМНОН
2 7	H3CO-		соон
2 8	H ₃ CO-	H	СОМНОН
2 9	н₃со-⟨_у_		соон
3 0	н₃со-		соинон

表 6(続き)

	0		
番号	Α	R ⁴	R ²
3 1	S	н	соон
3 2	S	н	CONHOH
3 3	S	H ₃ C CH ₃	соон
3 4	(S)	H₃C ← CH₃	соинон
3 5	S	ОН	соон
3 6	S	ОН	соинон
3 7	S		соон
3 8	(S)	H	соинон
3 9	(S)		соон
4 0	S		CONHOH

	Ö		
番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	н	СОМНОН
3	C ₅ H ₁₁ -	H ₃ C ← CH ₃	соон
4	C ₅ H ₁₁ -	H₃C CH₃	СОМНОН
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОМНОН
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		СОМНОН

表 7(続き)

表 7(続き)

表 7(続き)

Α΄		S R ⁴	(I-7a)
番号	Α	. R ⁴	R ²
3 1	S	н	соон
3 2	S	н	CONHOH
3 3	(S)	H ₃ C CH ₃	соон
3 4	(s)	H ₃ C CH ₃	соинон
3 5	(S)	ОН	соон
3 6	(S)	ОН	CONHOH
3 7	(S)		соон
3 8	(S)		соинон
3 9	S	N	соон
4 0	(S)	Ti N	CONHOH

		表 8	
	A-0	O R⁴ S R	2 (I-8a)
番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	СООН
2	C ₅ H ₁₁ -	Н	соинон
3	C ₅ H ₁₁ -	H₃C ←CH₃	соон
4	C ₅ H ₁₁ -	H₃C CH₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	, H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		СОИНОН

	0		
番号	Α	R⁴	R ²
1 1		Н	соон
1 2		н	соинон
1 3		H₃C CH₃	соон
1 4		H ₃ C CH ₃	CONHOH
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	соинон
1 9			соон
2 0			CONHOH

$$A^{O} = \begin{pmatrix} O & R^4 \\ S & R^2 \end{pmatrix}$$

$$(I-8a)$$

	0		
番号	Α	R ⁴	R ²
2 1	H ₃ CO-	Н	СООН
2 2	H ₃ CO-	Н	СОМНОН
2 3	H ₃ CO—	H ₃ C ← CH ₃	соон
2 4	H ₃ CO-	H₃C CH₃	СОМНОН
2 5	H ₃ CO-	ОН	СООН
2 6	H ₃ CO-	ОН	соинон
2 7	H ₃ CO-		СООН
2 8	Н₃СО-{	H	СОИНОН
2 9	н₃со-{_}	N	соон
3 0	Н₃СО-		СОМНОН

	O		
番号	Α	R⁴	R ²
3 1	(S)	Н	соон
3 2	S	Н	соинон
3 3	S	H₃C CH₃	соон
3 4	(S)	H ₃ C ← CH ₃	соинон
3 5	(S)	ОН	СООН
3 6	(s)	ОН	соинон
3 7	(S)		СООН
3 8	(S)		соинон
3 9	(S)	, in	COOH
4 0	(S)		CONHOH

表 9(続き)

$$A \stackrel{O}{\longrightarrow} S \stackrel{R^4}{\longrightarrow} R^2 \qquad (1-9a)$$

	0		
番号	Α	R ⁴	R ²
2 1	H ₃ CO-	H	соон
2 2 💲	н ₃ со-	H	СОИНОН
2 3	H ₃ CO-	H ₃ C ← CH ₃	СООН
2 4	н ₃ со-	H ₃ C ← CH ₃	СОИНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	CONHOH
2 7	Н ₃ СО-		соон
2 8	H ₃ CO-	H	СОИНОН
2 9	H ₃ CO-	TN TN	соон
3 0	Н₃СО-		соинон

$$A \xrightarrow{O} A \xrightarrow{S} R^{2} \qquad (I-8a)$$

	0		
番号	Α	R ⁴	R ²
3 1	(S)	н	соон
3 2	(S)	н	соинон
3 3	S	H ₃ C → CH ₃	соон
3 4	(S)	H ₃ C ← CH ₃	CONHOH
3 5	S	ОН	соон
3 6	S	ОН	соинон
3 7	S		соон
3 8	(S)		соинон
3 9	(S)	N	соон
4 0	(S)	Z,	CONHOH

		表 9	
A		O R ⁴	(I-9a)
番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	СООН
2	C ₅ H ₁₁ -	н	СОИНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H³C ←CH³	СОИНОН
5	C ₅ H ₁₁ -	ОН	СООН
6	C ₅ H ₁₁ -	ОН	СОИНОН
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		СОИНОН

表 9(続き)

表 9(続き)

$$A \xrightarrow{O \times S} R^4$$

$$R^2 \qquad (I-9a)$$

	0		
番号	A	R ⁴	R ²
2 1	H ₃ CO-	Н	соон
2 2	H³CO-	н	СОИНОН
2 3	H ₃ CO-	H ₃ C CH ₃	СООН
2 4	H ₃ CO-	H₃C CH₃	СОМНОН
2 5	H ₃ CO-	ОН	СООН
2 6	H ₃ CO-	OH	CONHOH
2 7	H ₃ CO-		СООН
2 8	H ₃ CO-	H	СОИНОН
2 9	H ₃ CO-	N	СООН
3 0	H₃CO—	The state of the s	СОИНОН

- WO 97/49679 PCT/JP97/02200

表 9(続き)

$$A \stackrel{O}{\longrightarrow} S \stackrel{R^4}{\longrightarrow} R^2 \qquad (I-9a)$$

	0		
番号	Α	R⁴	R ²
3 1	S	н	соон
3 2	(S)	н	соинон
3 3	S	H₃C CH₃	соон
3 4	(S)	н₃сүсн₃	соинон
3 5	S	ОН	соон
3 6	S	ОН	CONHOH
3 7	S		соон
3 8	S	H	CONHOH
3 9	S	TN TN	соон
4 0	S	L'Z	соинон

表10
$$R^4$$
R² (I-10a)

番号	Α	R⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	Н	соинон
3	C ₅ H ₁₁ -	H₃C ← CH₃	соон
4	C ₅ H ₁₁ -	H₃C CH₃	сомнон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	CONHOH
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -		соинон
9	C ₅ H ₁₁ -	N	соон
1 0	C ₅ H ₁₁ -	The state of the s	соинон

表10(続き)

$$\begin{array}{c} & & & \\ & &$$

番号	A	R ⁴	R ²
1 1		Н	соон
1 2		н	CONHOH
1 3		H ₃ C CH ₃	соон
1 4		H ₃ C CH ₃	соинон
1 5		ОН	соон
. 1 6		ОН	соинон
1 7			соон
1 8		H	соинон
1 9		TN N	соон
2 0			соннон

表10(続き)

番号	Α	R ⁴	R ²
2 1	н₃со-{_}_	Н	соон
2 2	H ₃ CO-	н	СОМНОН
2 3	Н₃СО-	H ₃ C ← CH ₃	соон
2 4	н₃со-{_}	H ₃ C ← CH ₃	СОИНОН
2 5	H₃CO—	ОН	соон
2 6	H ₃ CO-	ОН	СОМНОН
2 7	H ₃ CO-		соон
2 8	H ₃ CO-	H	СОИНОН
2 9	н₃со-{}	N	соон
3 0	H ₃ CO-		СОМНОН

表10(続き)

番号	Α	R⁴	R ²
3 1	S	н	соон
3 2	S	Н	соинон
3 3	S	H₃C CH₃	соон
3 4	(S)	H₃C CH₃	соинон
3 5	(S)	ОН	соон
3 6	(S)	ОН	соинон
3 7	(S)		соон
3 8	(S)	H	СОМНОН
3 9	S		соон
4 0	S	The state of the s	CONHOH

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	н	соинон
3	C ₅ H ₁₁ -	H ₃ C → CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C CH ₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -	N	СОМНОН

表11(続き)

 番号	Α	R ⁴	R ²
1 1		Н	СООН
1 2		н	CONHOH
1 3		H ₃ C CH ₃	СООН
1 4		H₃C CH₃	CONHOH
1 5		ОН	соон
1 6		ОН	CONHOH
1 7			соон
1 8		H	CONHOH
1 9			соон
2 0		T T	сопнон

表11(続き)

番号	Α.	54	
	A	R ⁴	R ²
2 1	H ₃ CO—	н	СООН
2 2	H₃CO-	Н	СОМНОН
2 3	Н₃СО-{	H ₃ C CH ₃	СООН
2 4	н₃со	H ₃ C CH ₃	соинон
2 5	H₃CO-	ОН	соон
2 6	H ₃ CO-	OH	СОМНОН
2 7	H ₃ CO-		соон
2 8	Н₃СО-⟨у		СОИНОН
2 9	н₃со-€	TN O	соон
3 0	H ₃ CO—	T T T T T T T T T T T T T T T T T T T	СОМНОН

表11(続き)

		 R⁴	R ²
番号	A		<u> </u>
3 1	(S)	н	соон
3 2	S	н	CONHOH
3 3	(S)	H₃C ← CH₃	соон
3 4	S	H₃C CH₃	сопнон
3 5	s S	ОН	соон
3 6	S	ОН	соинон
3 7	(S)		соон
3 8	S	H	CONHOH
3 9	(S)	N	соон
4 0	S		CONHOH

表12

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	Н	соинон
3	C ₅ H ₁₁ -	H₃C CH₃	соон
4	C ₅ H ₁₁ -	H ₃ C CH ₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -	, in the second	соинон

表12(続き)

番号	Α	R ⁴	R ²
1 1		Н	соон
1 2		Н	CONHOH
1 3		H₃C CH₃	соон
1 4		H₃C CH₃	CONHOH
1 5		ОН	соон
1 6		ОН	CONHOH
1 7			СООН
1 8		Н	CONHOH
1 9			COOH
2 0			соинон

表12(続き)

番号	Α	R ⁴	R ²
2 1	H ₃ CO-	Н	СООН
2 2	H3CO-	Н	СОИНОН
2 3	H ₃ CO-	H ₃ C ← CH ₃	СООН
2 4	H₃CO-	H ₃ C ← CH ₃	СОМНОН
2 5	H₃CO-	OH	СООН
2 6	H ₃ CO-	ОН	СОИНОН
2 7	Н₃СО-{_}		соон
2 8	Н₃СО-		СОИНОН
2 9	H ₃ CO-	N	соон
3 0	H ₃ CO-	H	СОИНОН

表12(続き)

			
番号	Α	R⁴	R ²
3 1	S	н	соон
3 2	S	H .	CONHOH
3 3	S	H₃C CH₃	соон
3 4	S	H₃C CH₃	CONHOH
3 5	S	ОН	соон
3 6	S	ОН	сопнон
3 7	S		соон
3 8	S	H	CONHOH
3 9	S		соон
4 0	S		соинон

表13

番号	Α	R⁴	R ²
1	C ₅ H ₁₁ -	Н	соон
2	C ₅ H ₁₁ -	Н	соинон
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H₃C ← CH₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -	N	соон
1 0	C ₅ H ₁₁ -	H	CONHOH

表13(続き)

$$R^4$$
 R^2
(I-13a)

番号	Α	R ⁴	R ²
1 1		н	соон
1 2		н	соинон
1 3		H₃C CH₃	соон
1 4		H ₃ C CH ₃	CONHOH
1 5		ОН	соон
1 6		OH	соинон
1 7			соон
1 8		Н	соинон
1 9			соон
2 0			CONHOH

表13(続き)

番号	Α	R⁴	R ²
2 1	н₃со-{_}	Н	соон
2 2	Н₃СО-{_}	н	СОИНОН
2 3	H₃CO-	H ₃ C ← CH ₃	соон
2 4	H₃CO—	H ₃ C ← CH ₃	СОМНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	CONHOH
2 7	H3CO-		соон
2 8	H3CO-	H	СОМНОН
2 9	H ₃ CO-		соон
3 0	н₃со-⟨		соинон

表13(続き)

番号	Α	R ⁴	R ²
3 1	S	н	соон
3 2	(S)	н	CONHOH
3 3	(S)	H₃C CH₃	соон
3 4	(S)	H₃C CH₃	CONHOH
3 5	(S)	ОН	соон
3 6	S	ОН	соинон
3 7	(S)		соон
3 8	(S)		CONHOH
3 9	(S)	N	соон
4 0	(S)	The state of the s	соинон

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	СООН
2	C ₅ H ₁₁ -	Н	соинон
3	C ₅ H ₁₁ -	H₃C CH₃	соон
4	C ₅ H ₁₁ -	H₃C CH₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОИНОН
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		соинон

表14(続き)

番号	Α	R ⁴	R ²
1 1		н	соон
1 2		Н	соинон
1 3		H₃C CH₃	СООН
1 4		H₃C	соинон
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	соинон
1 9			соон
2 0			CONHOH

表14(続き)

番号	Α	R ⁴	R ²
2 1	H ₃ CO-	Н	соон
2 2	H ₃ CO-	Н	СОИНОН
2 3	H₃CO-	H ₃ C ← CH ₃	соон
2 4	H ₃ CO-	H³C CH³	СОМНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	соинон
2 7	H ₃ CO-		соон
2 8	H ₃ CO-	H	СОИНОН
2 9	Н₃СО-	TN TN	соон
3 0	H ₃ CO-		СОМНОН

表14(続き)

番号	A	R ⁴	R ²
3 1	(S)	Н	соон
3 2	(S)	н	CONHOH
3 3	(S)	H₃C CH₃	соон
3 4	S	H₃C CH₃	CONHOH
3 5	S	ОН	соон
3 6	S	ОН	соинон
3 7	S		соон
3 8	(S)		CONHOH
3 9	S	N	соон
4 0	S		соинон

表15

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	соон
2	C ₅ H ₁₁ -	н	СОИНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C	СОИНОН
5	C ₅ H ₁₁ -	ОН	СООН
6	C ₅ H ₁₁ -	ОН	СОИНОН
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОИНОН
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		CONHOH

表15(続き)

番号	Α	R ⁴	R ²
1 1		н	соон
1 2		н	CONHOH
1 3		H₃C CH₃	соон
1 4		H₃C CH₃	CONHOH
1 5		ОН	соон
1 6		ОН	CONHOH
1 7			соон
1 8		H	соинон
1 9		~	соон
2 0			соинон

表15(続き)

$$\begin{array}{c}
O \\
S
\end{array}$$

$$\begin{array}{c}
O \\
R^2
\end{array}$$
(I-15a)

番号	Α	R ⁴	R ²
2 1	H₃CO—	н	соон
2 2	H ₃ CO-	н	СОИНОН
2 3	H ₃ CO-	H₃C ← CH₃	соон
2 4	H ₃ CO-	H₃C ← CH₃	соинон
2 5	H ₃ CO-	ОН	соон
2 6	H³CO-	OH	CONHOH
2 7	H3CO-		соон
2 8	H3CO-	H	соинон
2 9	Н ₃ СО-		соон
3 0	н₃со-{_}		СОМНОН

表 1 5 (続き)

番号 A R ⁴ 3 1	R ²
3 1 S H	СООН
3 2 S H C	оинон
3 3	соон
3 4 5 6 6 6 6 6	оинон
3 5 S OH	соон
3 6 S OH	ОNНОН
3 7 S	соон
3 8 S C	оинон
3 9 S	соон
4 0 S C	оинон

表16

番号			
一	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	СООН
2	C ₅ H ₁₁ -	н	СОИНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C CH ₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОМНОН
9	C ₅ H ₁₁ -	N	соон
1 0	C ₅ H ₁₁ -		СОИНОН

表16(続き)

$$R^4$$
 R^2
(I-16a)

 番号	Α .	R ⁴	R ²
1 1		Н	соон
1 2		н	CONHOH
1 3		H₃C CH₃	соон
1 4		H₃C ← CH₃	соинон
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	CONHOH
1 9		N	соон
2 0		TI TI	CONHOH

表16(続き)

番号	Α	R ⁴	R ²
2 1	H3CO-	Н	СООН
2 2	H ₃ CO-	Н	соинон
2 3	H ₃ CO-	H ₃ C ← CH ₃	соон
2 4	Н₃СО-	H ₃ C ← CH ₃	СОМНОН
2 5	H₃CO—	ОН	соон
2 6	H ₃ CO-	ОН	соинон
2 7	H ₃ CO-		соон
2 8	Н₃СО-{		соинон
2 9	н₃со-{}_	N	СООН
3 0	H ₃ CO-		CONHOH

表16(続き)

$$R^4$$
 R^2
(I-16a)

番号	Α	R ⁴	R ²
3 1	(S)	н	соон
3 2	(S)	н	соинон
3 3	S	H ₃ C ← CH ₃	соон
3 4	S	H₃C CH₃	CONHOH
3 5	S	ОН	соон
3 6	S	ОН	соинон
3 7	(S)		соон
3 8	(S)	H	соинон
3 9	(S)		соон
4 0	(S)		соинон

表17

番号	A	R ⁴	
1	C ₅ H ₁₁ -	Н	соон
2	C ₅ H ₁₁ -	Н	соинон
3	C ₅ H ₁₁ -	H ₃ C ← CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C ← CH ₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁		СОИНОН

表17(続き)

番号	Α	R ⁴	R ²
1 1		н	соон
1 2		н	CONHOH
1 3		H₃C CH₃	соон
1 4		H₃C CH₃	CONHOH
1 5		ОН	соон
1 6		ОН	CONHOH
1 7			соон
1 8		H	соинон
1 9			соон
2 0			соинон

表17(続き)

番号	Α	R ⁴	R ²
2 1	H ₃ CO-	н	СООН
2 2	H ₃ CO-	н	соинон
2 3	H₃CO- ()	H ₃ C ← CH ₃	соон
2 4	H ₃ CO	H ₃ C CH ₃	CONHOH
2 5	H ₃ CO-	ОН	соон
2 6	н₃со-€	ОН	CONHOH
2 7	H ₃ CO		соон
2 8	H ₃ CO—	H	CONHOH
2 9	H ₃ CO	N	соон
3 0	H ₃ CO-	HZ HZ	соинон

表17(続き)

番号	Α	R ⁴	R ²
3 1	S	н	соон
3 2	S	Н	солнон
3 3	S	H ₃ C ← CH ₃	соон
3 4	S	H₃C CH₃	соинон
3 5	S	ОН	соон
3 6	S	ОН	соинон
3 7	S		соон
3 8	S	H	соинон
3 9	S	N	соон
4 0	(S)		соинон

表18

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	соон
2	C ₅ H ₁₁ -	н	соинон
3	C ₅ H ₁₁ -	H₃C → CH₃	соон
4	C ₅ H ₁₁ -	H ₃ C CH ₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	сомнон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -	N	соон
1 0	C ₅ H ₁₁ -		СОИНОН

表18(続き)

番号	Α	R ⁴	R ²
1 1		н	соон
1 2		н	соинон
1 3		H₃C CH₃	соон
1 4		H₃C CH ₃	CONHOH
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	солнон
1 9		N	соон
2 0			соинон

表18(続き)

番号	Α	R⁴	R ²
2 1	H ₃ CO-	Н	СООН
2 2	Н₃СО-{	Н	СОИНОН
2 3	H ₃ CO-	H ₃ C ← CH ₃	соон
2 4	H ₃ CO-	H ₃ C CH ₃	СОИНОН
2 5	H ₃ CO-	ОН	СООН
2 6	H ₃ CO-	ОН	CONHOH
2 7	H ₃ CO-		соон
2 8	H ₃ CO-	H	СОМНОН
2 9	H ₃ CO-	N	соон
3 0	H ₃ CO-		соинон

表18(続き)

番号	Α	R⁴	R ²
3 1	(S)	Н	соон
3 2	(S)	Н	CONHOH
3 3	(S)	H ₃ C ← CH ₃	соон
3 4	(S)	H ₃ C ← CH ₃	CONHOH
3 5	S	ОН	соон
3 6	S	ОН	соинон
3 7	(S)		соон
3 8	S	H	соинон
3 9	S	N	соон
4 0	(S)		СОМНОН

表19

			
番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	н	СОМНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H ₃ C CH ₃	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -	Hz.	СОМНОН

表19(続き)

$$R^4$$

$$R^2 \qquad (I-19a)$$

 番号	A	R ⁴	H ²
1 1		Н	соон
1 2		Н	CONHOH
1 3		H₃C CH₃	соон
1 4		H₃C CH₃	соинон
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	CONHOH
1 9		N	соон
2 0			CONHOH

表19(続き)

	Α	R ⁴	R ²
2 1	H₃CO—	Н	СООН
2 2	Н₃СО-	Н	СОМНОН
2 3	H ₃ CO-	H ₃ C ← CH ₃	соон
2 4	н₃со-{_}	H ₃ C ← CH ₃	CONHOH
2 5	H ₃ CO-	OH	соон
2 6	H ₃ CO-	ОН	CONHOH
2 7	H ₃ CO-		соон
2 8	H3CO-	H	СОИНОН
2 9	H ₃ CO-	N	СООН
3 0	H ₃ CO-	T T	соинон

表19(続き)

$$R^4$$

$$R^2 \qquad (I-19a)$$

 番号	Α	R ⁴	R ²
3 1	(S)	Н	соон
3 2	S	н	соинон
3 3	(S)	H₃C CH₃	COOH
3 4	(S)	H₃C ←CH₃	CONHOH
3 5	(S)	ОН	соон
3 6	S	ОН	соинон
3 7	(S)		соон
3 8	(S)	H	CONHOH
3 9	(S)	N	соон
4 0	S		соинон

表20

番号	A	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	соон
2	C ₅ H ₁₁ -	н	соинон
3	C ₅ H ₁₁ -	H ₃ C ← CH ₃	соон
4	C ₅ H ₁₁	H³C CH³	соинон
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -	No.	соинон

表20(続き)

番号	Α	R ⁴	R ²
1 1		н	соон
1 2		н	соинон
1 3		H₃C CH₃	соон
1 4		H₃C CH₃	соинон
1 5		ОН	соон
1 6		OH	солнон
1 7			соон
1 8		H	соинон
1 9		N	соон
2 0			солнон

表20(続き)

番号	Α	R ⁴	R ²
2 1	н₃со-	Н	СООН
2 2	н₃со-	н	СОМНОН
2 3	H ₃ CO-	H ₃ C ← CH ₃	соон
2 4	H ₃ CO-	H₃C CH₃	СОМНОН
2 5	H ₃ CO-	ОН	соон
2 6	H ₃ CO-	ОН	CONHOH
2 7	H ₃ CO-		СООН
2 8	Н₃СО-	H	СОМНОН
2 9	н₃со-{_}		СООН
3 0	н₃со-{_}		СОМНОН

表 2 0(続き)

番号	Α	R⁴	R ²
3 1	S	н	соон
3 2	(S)	Н	CONHOH
3 3	(S)	H₃C CH₃	соон
3 4	(S)	H₃C CH₃	CONHOH
3 5	(S)	ОН	соон
3 6	(S)	ОН	CONHOH
3 7	(S)		соон
3 8	(S)		соинон
3 9	(S)	, ii	соон
4 0	(S)		соинон

表21

番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	Н	соон
2	C ₅ H ₁₁ -	Н	СОМНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H₃C ← CH₃	соинон
5	C ₅ H ₁₁ -	ОН	СООН
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		СООН
8	C ₅ H ₁₁ -	H	соинон
9	C ₅ H ₁₁ -	N	соон
1 0	C ₅ H ₁₁ -	H	СОМНОН

WO 97/49679 PCT/JP97/02200

表21(続き)

$$\begin{array}{c}
O \\
S \\
\end{array}$$

$$\begin{array}{c}
O \\
R^4
\end{array}$$

$$(I-21 a)$$

番号 A R ⁴ R ² 1 1				
1 2 \longrightarrow H CONHOH 1 3 \longrightarrow H ₃ C \longrightarrow CH ₃ COOH 1 4 \longrightarrow H ₃ C \longrightarrow CH ₃ CONHOH 1 5 \longrightarrow OH COOH 1 6 \longrightarrow OH CONHOH 1 7 \longrightarrow COOH 1 8 \longrightarrow CONHOH 1 9 \longrightarrow COOH	番号	Α	R⁴	R ²
13 \longrightarrow H_3C \longrightarrow $COOH$ 14 \longrightarrow \longrightarrow H_3C \longrightarrow $CONHOH$ 15 \longrightarrow \longrightarrow OH $COOH$ 16 \longrightarrow OH $COOH$ 17 \longrightarrow OH $COOH$ 18 \longrightarrow OH OH OH OH OH OH OH OH	1 1		- Н	соон
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2		н	соннон
15 OH COOH 16 OH CONHOH 17 COOH 18 CONHOH 19 COOH	1 3		H ₃ C CH ₃	соон
15 COOH 16 CONHOH 17 COOH 18 CONHOH 19 COOH	1 4		H ₃ C CH ₃	соинон
1 6 CONHOH 1 7 COOH 1 8 CONHOH 1 9 COOH	1 5		ОН	соон
18 CONHOH 19 COOH	1 6		ОН	соинон
1 9 — Н СООН	1 7			соон
H H	1 8		H	соинон
_N	1 9		N	соон
	2 0			соинон

表21(続き)

番号	Α	R⁴	R ²
2 1	H₃CO- ()-	н	соон
2 2	H ₃ CO-	н	соинон
2 3	H ₃ CO-	H ₃ C CH ₃	соон
2 4	H ₃ CO-	H ₃ C ← CH ₃	СОМНОН
2 5	H ₃ CO-	ОН	СООН
2 6	H ₃ CO-	ОН	СОИНОН
2 7	H ₃ CO-		соон
2 8	H ₃ CO-	H	СОМНОН
2 9	H ₃ CO-	N	соон
3 0	H ₃ CO-		соинон

表21(続き)

 番号	A	R ⁴	R ²
3 1	(S)	н	соон
3 2	(S)	н	соинон
3 3	(S)	H₃C CH₃	соон
3 4	(s)	H ₃ C	CONHOH
3 5	(S)	ОН	соон
3 6	(S)	OH	соинон
3 7	(S)		соон
3 8	(S)	H	соинон
3 9	(S)		СООН
4 0	(S)		соинон

表 2 2(続き)

表22(続き)

			表23	
	A		O R ⁴ S R ²	(I-23 a)
_	番号	Α	R⁴	R ²
	1	C ₅ H ₁₁ -	н	соон
	2	C ₅ H ₁₁ -	н	CONHOH
	3	C ₅ H ₁₁ -	H₃C ← CH₃	СООН
	4	C ₅ H ₁₁ -	H₃C CH₃	СОМНОН
	5	C ₅ H ₁₁ -	ОН	соон
	6	C ₅ H ₁₁ -	ОН	CONHOH
	7	C ₅ H ₁₁ -		СООН
	8	C ₅ H ₁₁ -	H	CONHOH
	9	C ₅ H ₁₁ -	N	соон
	1 0	C ₅ H ₁₁ -		СОМНОН

表 2 3(続き)

Α		O R ⁴ S R ²	(I - 23 a)
番号	Α	R ⁴	R ²
1 1		Н	соон
1 2		н	соинон
1 3		H₃C CH₃	соон
1 4		H ₃ C CH ₃	CONHOH
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8			соинон
1 9		N	соон
2 0			соинон

表23(続き)

表23(続き)

$$\frac{}{}$$
 表 $\frac{}{}$ $\frac{}{}$

A			
番号	Α	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	н	СОИНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H₃C ← CH₃	СОМНОН
5	C ₅ H ₁₁ -	ОН	соон
6	C ₅ H ₁₁ -	ОН	соинон
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -		соинон
9	C ₅ H ₁₁ -	N	соон
1 0	C ₅ H ₁₁ -		соинон

表24(続き)

Α		SSO R4	(I-24 a)
番号	Α	R ⁴	R ²
1 1		Н	соон
1 2		н .	соинон
1 3		H ₃ C ← CH ₃	соон
1 4		H₃C CH₃	CONHOH
1 5		ОН	соон
1 6		ОН	соинон
1 7			соон
1 8		H	CONHOH
1 9			соон
2 0			CONHOH

- WO 97/49679 PCT/JP97/02200

表24(続き)

A^		R ²	(I-24a)
番号	Α	R⁴	R ²
3 1	S	н	соон
3 2	S	н	сопнон
3 3	(S)	H₃C CH₃	соон
3 4	(S)	H₃C ← CH₃	соинон
3 5	(S)	ОН	соон
3 6	(S)	ОН	сопнон
3 7	(S)		соон
3 8	(S)		солнон
3 9	(S)	N	соон
4 0	s	The state of the s	соинон

表2 5

本子 A R⁴ R²

1
$$C_5H_{11}$$
 H COOH

2 C_5H_{11} H CONHOH

3 C_5H_{11} H CONHOH

4 C_5H_{11} H COOH

5 C_5H_{11} OH CONHOH

6 C_5H_{11} OH CONHOH

7 C_5H_{11} COOH

8 C_5H_{11} COOH

9 C_5H_{11} COOH

1 0 C_5H_{11} COOH

表 2 5 (続き)

表25(続き)

表25(続き)

表 2 6

O R⁴

R²

1
$$C_5H_{11}$$
 H COOH

2 C_5H_{11} H CONHOH

3 C_5H_{11} H COOH

4 C_5H_{11} H COOH

5 C_5H_{11} COH

6 C_5H_{11} OH CONHOH

7 C_5H_{11} COOH

8 C_5H_{11} COOH

9 C_5H_{11} COOH

10 C_5H_{11} COOH

表 2 6 (続き) (I-26a) R^4 \mathbb{R}^2 番号 Α Н COOH 1 1 CONHOH 1 2 СООН 1 3 соинон 1 4 COOH 1 5 CONHOH 1 6 СООН 1 7 CONHOH 18 СООН 1 9 CONHOH 2 0

表26(続き)

表27 (I-27a) 番号 R^4 Α R^2 C5H11-1 Н СООН 2 C₅H₁₁-CONHOH 3 СООН CONHOH C₅H₁₁-5 COOH 6 C₅H₁₁-CONHOH C₅H₁₁-СООН CONHOH СООН 1 0 CONHOH

表 2 7(続き)

2 8

2 9

3 0

表27(続き)

СОИНОН

СООН

CONHOH

表28

番号	A-J-E	R ⁴	R ²
1	C ₅ H ₁₁ —	Н	СООН
2	C ₅ H ₁₁ -	Н	СОМНОН
3	C ₅ H ₁₁ -	H ₃ C CH ₃	соон
4	C ₅ H ₁₁ -	H₃C	солнон
5	C ₅ H ₁₁ -	OH	соон
6	C ₅ H ₁₁ -	OH	СОИНОН
7	C ₅ H ₁₁ -		СООН
8	C ₅ H ₁₁ -	H	CONHOH
9	C ₅ H ₁₁ -		соон
1 0	C ₅ H ₁₁ -		CONHOH

番号	A-J-E	R ⁴	R ²
1 1		н	СООН
1 2		н	CONHOH
13.		H₃C CH₃	СООН
1 4		H ₃ C CH ₃	СОМНОН
1 5		ОН	СООН
1 6		ОН	СОМНОН
1 7			соон
1 8		H	CONHOH
1 9		N	СООН
2 0		T N	CONHOH

番号	A-J-E	R⁴	R ²
2 1	H ₃ CO —	Н	СООН
2 2	H ₃ CO —	н	CONHOH
2 3	Н₃СО —	H ₃ C	СООН
2 4	H ₃ CO —	H₃C CH₃	CONHOH
2 5	H ₃ CO —	ОН	СООН
2 6	H ₃ CO —	ОН	СОИНОН
2 7	H₃CO —		СООН
2 8	H₃CO <i>—</i>	H	CONHOH
2 9	H₃CO —	N	соон
3 0	H ₃ CO —		СОИНОН

$$S \longrightarrow \mathbb{R}^4$$
 $A-J-E \longrightarrow \mathbb{R}^2$
(I-28 a)

番号	A-J-E	R⁴	R ²
3 1	(S)	н	СООН
3 2	S	Н	CONHOH
3 3	S	H ₃ C	СООН
3 4	S	H₃C CH₃	CONHOH
3 5	S	ОН	COOH
3 6	S	OH	CONHOH
3 7	S		соон
3 8	(S)	H	CONHOH
3 9	S		соон
4 0	S	The second secon	CONHOH

番号 ———	A-J-E	R ⁴	R ²
4 1		н	СООН
4 2		н	CONHOH
4 3		H ₃ C	СООН
4 4		H ₃ C CH ₃	СОМНОН
4 5		OH	СООН
4 6		OH	CONHOH
4 7			СООН
4 8			CONHOH
4 9			СООН
5 0			CONHOH

$$S \longrightarrow R^4$$
 R^2
(I-28 a)

番号	A-J-E	R ⁴	R ²
5 1	H ₃ C N	Н	COOH
5 2	H ₃ C N	н	CONHOH
5 3	H ₃ C N	H₃C ←CH₃	соон
5 4	H ₃ C N	H ₃ C CH ₃	CONHOH
5 5	H ₃ C N	OH	соон
5 6	H ₃ C N	OH	CONHOH
5 7	H ₃ C N		СООН
5 8	H ₃ C N	H	CONHOH
5 9	H ₃ C N		СООН
6 0	H ₃ C N		CONHOH

表29

	····		
番号	A-J-E	R⁴	R ²
1	C ₅ H ₁₁ -	Н	СООН
2	C ₅ H ₁₁ -	Н	СОИНОН
3	C ₅ H ₁₁ -	H₃C ←CH₃	соон
4	C ₅ H ₁₁ -	H ₃ C CH ₃	СОМНОН
5	C ₅ H ₁₁	ОН	соон
6	C ₅ H ₁₁ -	ОН	СОИНОН
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	СОИНОН
9	C ₅ H ₁₁ -	N	СООН
1 0	C ₅ H ₁₁ -		CONHOH

表29(続き)

J-E	R⁴	R ²
<u></u>	Н	СООН
	Н	CONHOH
<u></u> '	H ₃ C CH ₃	СООН
<u></u> '	H₃C \CH₃	CONHOH
<u></u>	ОН	СООН
<u></u>	OH	CONHOH
<u></u>		СООН
<u></u>	H	CONHOH
<u></u>	N	СООН
—	T N	CONHOH
	> > > '	H H H ₃ C \ CH ₃ H ₃ C \ CH ₃ OH

表29(続き)

番号	A-J-E	R⁴	R ²
2 1	H₃CO —	Н	СООН
2 2	H₃CO —	Н	CONHOH
2 3	H₃CO —	H ₃ C → CH ₃	СООН
2 4	H₃CO —	H ₃ C CH ₃	CONHOH
2 5	H₃CO —	ОН	СООН
2 6	H ₃ CO —	ОН	CONHOH
2 7	H ₃ CO —		СООН
2 8	H3CO —	H	CONHOH
2 9	н₃со-€	N	СООН
3 0	H ₃ CO —	Z Z	CONHOH

表 2 9 (続き)

 番号	A-J-E	R ⁴	R ²
3 1	s s	Н	СООН
3 2	(S)	Н	сомнон
3 3	S	H₃C CH₃	СООН
3 4	S	H ₃ C ← CH ₃	CONHOH
3 5	S	ОН	соон
3 6	S	ОН	CONHOH
3 7	S		СООН
3 8	S	H	СОИНОН
3 9	(S)		СООН
4 0	(S)		CONHOH

表 2 9(続き)

番号	A-J-E	R ⁴	R ²
4 1		Н	СООН
4 2		н	СОМНОН
4 3		H ₃ C CH ₃	СООН
4 4		H ₃ C CH ₃	CONHOH
4 5		ОН	СООН
4 6		OH	СОМНОН
4 7			СООН
4 8	()°		CONHOH
4 9			COOH
5 0		The state of the s	СОМНОН

表 2 9(続き)

番号	A-J-E	R ⁴	R ²
5 1	H ₃ C N	Н	СООН
5 2	H ₃ C N	н	CONHOH
5 3	H ₃ C N	H ₃ C	соон
5 4	H ₃ C N	H ₃ C → CH ₃	CONHOH
5 5	H ₃ C N	OH	СООН
5 6	H ₃ C N	OH	CONHOH
5 7	H ₃ C N		СООН
5 8	H ₃ C N	H	CONHOH
5 9	H ₃ C N		соон
6 0	H ₃ C N		CONHOH

表30

番号 	A-J-E	R ⁴	R ²
1	C ₅ H ₁₁ -	н	соон
2	C ₅ H ₁₁ -	Н	СОИНОН
3	C ₅ H ₁₁ -	H₃C CH₃	СООН
4	C ₅ H ₁₁ -	H ₃ C CH ₃	СОИНОН
5	C ₅ H ₁₁ -	OH	СООН
6	C ₅ H ₁₁ —	ОН	СОИНОН
7	C ₅ H ₁₁ -		соон
8	C ₅ H ₁₁ -	H	CONHOH
9	C ₅ H ₁₁ -		СООН
1 0	C ₅ H ₁₁ -	, the state of the	СОИНОН

番号	A-J-E	R ⁴	R ²
1 1		н	COOH
1 2		н	CONHOH
1 3		H₃C	СООН
1 4		H₃C	CONHOH
1 5		ОН	СООН
1 6		OH	CONHOH
1 7			СООН
1 8		H	CONHOH
1 9			соон
2 0			CONHOH

番号	A-J-E	R ⁴	R ²
2 1	H ₃ CO —	Н	СООН
2 2	H ₃ CO —	Н	CONHOH
2 3	H₃CO —	H ₃ C	СООН
2 4	H₃CO —	H ₃ C	CONHOH
2 5	H₃CO —	OH	СООН
2 6	H ₃ CO —	ОН	CONHOH
2 7	H ₃ CO —		СООН
2 8	H ₃ CO —	H	CONHOH
2 9	H₃CO —	TN TN	СООН
3 0	H₃CO —		СОМНОН

番号	A-J-E	R⁴	R ²
3 1	(S)	н	СООН
3 2	(S)	н	CONHOH
3 3	(S)	H₃C CH₃	СООН
3 4	S	H₃C CH₃	CONHOH
3 5	(S)	OH	СООН
3 6	S	OH	CONHOH
3 7	S		соон
3 8	(S)	Н	CONHOH
3 9	S	N	соон
4 0	(S)		CONHOH

番号	A-J-E	R ⁴	R ²
4 1.		Н	СООН
4 2		н	СОИНОН
4 3		H ₃ C CH ₃	СООН
4 4		H ₃ C CH ₃	СОИНОН
4 5		OH	COOH
4 6		ОН	CONHOH
4 7			СООН
4 8			CONHOH
4 9			СООН
5 0		Hz.	CONHOH

番号	A-J-E	R ⁴	R ²
5 1	H ₃ C N	Н	СООН
5 2	H ₃ C N	н	CONHOH
5 3	H ₃ C N	H ₃ C ← CH ₃	СООН
5 4	H ₃ C N	H ₃ C	CONHOH
5 5	H ₃ C N	OH	СООН
5 6	H ₃ C N	OH	CONHOH
5 7	H ₃ C N		СООН
5 8	H ₃ C N	H	CONHOH
5 9	H ₃ C N		СООН
6 0	H ₃ C N		соинон

[本発明化合物の製造方法]

一般式 (I) で示される本発明化合物は、以下の方法、後記する実施例に記載する方法または公知の方法に基づいて製造できる。

一般式(I)で示される本発明化合物のうち、

5 (A-1):nが0を表わし、R²基が-COOR⁷⁻¹基(基中、R⁷⁻¹は C1~8アルキル基、 フェニル基、 またはフェニル基、 -OCOR²³、 -CONR²⁴R²⁵基が置換したC1~4アルキル基を表わす。)を表わし、A 中のArの置換基、R³基およびR⁴基は-COOH基、水酸基、アミノ基また はそれらを含有する基を表わさず、A、J、E基が一緒になって-COOH基
 10 を表わさない化合物、すなわち一般式 (I-A-1)

$$A^{1}-J^{1}-E^{1}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{1}-I$$

$$R^{4-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

(式中、R³⁻¹およびR⁴⁻¹はそれぞれR³およびR⁴と同じ意味を表わすが、 -COOH基、水酸基、アミノ基またはそれらを含有する基を表わさず、A¹、 J¹、E¹基はそれぞれA、J、E基と同じ意味を表わすが、A基中、Arの置 換基として-COOH基、水酸基、アミノ基を表わさず、A、J、E基が一緒 になって-COOH基を表わさず、その他の記号は前記と同じ意味を表わす。) は、以下の方法により製造することができる。

20

(1) E¹が-CONR⁹-である化合物は、一般式 (II)

$$R^{9}HN \xrightarrow{II} S \xrightarrow{R^{5} R^{6}} COOR^{7-1}$$
 (II)

(式中、すべての記号は前記と同じ意味を表す。)で示される化合物と一般式 (III)

$\Delta^1 - J^1 - COOH$ (III)

5

15

20

. 25

(式中、すべての記号は前記と同じ意味を表す。) で示される化合物とをアミド化反応に付すことにより製造することができる。

アミド化反応は公知であり、例えば

- (1) 酸ハライドを用いる方法、
- 10 (2) 混合酸無水物を用いる方法、
 - (3)縮合剤を用いる方法

等が挙げられる。

これらの方法を具体的に説明すると、(1)酸ハライドを用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、酸ハライド(オキザリルクロライド、チオニルクロライド等)と-20℃~還流温度で反応させ、得られた酸ハライドを三級アミン(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)の存在下、アミンと有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中、0~40℃で反応させることにより行なわれる。

(2) 混合酸無水物を用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、三級アミン(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)の存在下、酸ハライド(ピバロイルクロライド、トシルクロライド、メシルクロライド、クロロギ酸エチル、クロロギ酸イソブチル等)と、-20~40℃で反応させ、得られた混合酸無水物を有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中、相当するアミンと0~40℃で反応させることにより行なわれる。

(3) 縮合剤(1, 3-ジシクロヘキシルカルボジイミド(DCC)、1-エチルー3-[3-(ジメチルアミノ)プロピル]カルボジイミド(EDC)、2-クロロー1-メチルピリジニウムヨウ素等)を用いる方法は、例えば、カルボン酸とアミンを、有機溶媒(クロロホルム、塩化メチレン、ジメチルホルムアミド、ジエチルエーテル等)中または無溶媒で、三級アミン(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)を用いるかまたは用いないで、縮合剤を用いて、0~40℃で反応させることにより行なわれる。

これら(1)、(2)および(3)の反応は、いずれも不活性ガス(アルゴ 10 ン、窒素等)雰囲気下、無水条件で行なうことが望ましい。

(2) E¹が-NR⁹CO-である化合物は、一般式 (IV)

HOOC
$$\frac{R^1}{l!}$$
 R^{5} R^{6} R^{6} (IV)

15

5

(式中、すべての記号は前記と同じ意味を表す。) で示される化合物と一般式(V)

$A^{1}-J^{1}-NHR^{9}$ (V)

20

(式中、すべての記号は前記と同じ意味を表す。) で示される化合物とをアミド化反応に付すことにより製造することができる。

アミド化反応は、前記した方法により行なわれる。

25 (3) E¹が-OCO-である化合物は、一般式 (IV)

HOOC
$$\frac{R^1}{1}$$
 S R^{3-1} R^{4-1} $COOR^{7-1}$ (IV)

(式中、すべての記号は前記と同じ意味を表す。)で示される化合物と一般式 (VI)

5

25

A1-J1-OH (VI)

(式中、すべての記号は前記と同じ意味を表す。) で示される化合物とをエステル化反応に付すことにより製造することができる。

- 10 エステル化反応は公知であり、例えば
 - (1)酸ハライドを用いる方法、
 - (2) 混合酸無水物を用いる方法、
 - (3) 縮合剤を用いる方法

等が挙げられる。

- 15 これらの方法を具体的に説明すると、(1)酸ハライドを用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、酸ハライド(オキザリルクロライド、チオニルクロライド等)と-20℃~還流温度で反応させ、得られた酸ハライドを三級アミン(ピリジン、トリエチルアミン、ジメチルアニリン、
- 20 ジメチルアミノピリジン等)の存在下、アルコールと有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中、0~40℃で反応させることにより行なわれる。
 - (2) 混合酸無水物を用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、三級アミン(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)の存在下、酸ハライド(ピバロイルクロライド、ト

シルクロライド、メシルクロライド等)、または酸誘導体(クロロギ酸エチル、クロロギ酸イソブチル等)と、0~40℃で反応させ、得られた混合酸無水物を有機溶媒(クロロホルム、塩化メチレン、ジエチルエーテル、テトラヒドロフラン等)中、アルコールと0~40℃で反応させることにより行なわれる。

(3)縮合剤(1,3-ジシクロヘキシルカルボジイミド(DCC)、1-エチルー3-[3-(ジメチルアミノ)プロピル]カルボジイミド(EDC)、2-クロロー1-メチルピリジニウムヨウ素等)を用いる方法は、例えば、カルボン酸とアルコールを、有機溶媒(クロロホルム、塩化メチレン、ジメチルホルムアミド、ジエチルエーテル等)中または無溶媒で、三級アミン(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)を用いるかまたは用いないで、縮合剤を用いて、0~40℃で反応させることにより行なわれる。

これら(1)、(2)および(3)の反応は、いずれも不活性ガス(アルゴン、窒素等)雰囲気下、無水条件で行なうことが望ましい。

15

(4) E¹が-COO-である化合物は、一般式 (VII)

$$HO \xrightarrow{II} S \xrightarrow{R^{3-1} R^{4-1}} COOR^{7-1} \qquad (VII)$$

20

(式中、すべての記号は前記と同じ意味を表す。) で示される化合物と一般式 (III)

A1-J1-COOH (III)

25 (式中、すべての記号は前記と同じ意味を表す。)で示される化合物とをエステル化反応に付すことにより製造することができる。

エステル化反応は、前記の方法で行なわれる。

(5) E¹が-CH₂-O-である化合物は、一般式 (VII)

5
$$R^{1}$$
 R^{3-1} R^{4-1} $COOR^{7-1}$ (VII)

(式中、すべての記号は前記と同じ意味を表す。)で示される化合物と一般式 (VIII)

10
$$A^1-J^1 \longrightarrow X$$
 (VIII)

(式中、Xはハロゲン原子またはトリフルオロメタンスルホニルオキシ基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物とをエーテル化反応に付すことにより製造することができる。

- 15 エーテル化反応は公知であり、例えば、有機溶媒(ジメチルホルムアミド、アセトン等)中、塩基(炭酸カリウム等)存在下、0~40℃で反応させることにより行なわれる。
- (6) E¹が、-CO-CH₂-基、- (CH₂)₂-基、-CH=CH-基また 20 は-C≡C-基である化合物またはA¹、J¹、E¹基が一緒になって複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、NR²4R²5基(基中、R²4およびR²5は、前記と同じ意味を表わす。)またはCONR²4R²5基(基中、R²4およびR²5は、
- 25 前記と同じ意味を表わす。)で置換されてもよい。)を表わす化合物は、一般 式 (AA)

$$A^{1}-J^{1-}E^{1A}-II$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{3-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

$$R^{4-1}$$

(式中、E¹^基は、-CO-CH₂-基、-(CH₂)₂-基、-CH=CH-基または-C≡C-基を表わすか、もしくはA¹、J¹、E¹^基は一緒になって、複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。)またはCONR²⁴R²⁵基(基中、R²⁴およびおよびR²⁵は、前記と同じ意味を表わす。)で置換されてもよい。)を表わし、その他の記号は前記と同じ意味を表わす。)で置換されてもよい。)を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物を還元反応に付すことによって製造することができる。

還元反応は公知であり、例えば有機溶媒(トリフルオロ酢酸等)中、水素供 与体(トリエチルシラン、トリクロロシラン等)を用いて、0~40℃で行な われるか、あるいは後記する加水素水分解を行なう。

(7) A¹、J¹、E¹基が一緒になってメチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹6R¹7基を表わす化合物は、一般式 (IX)

$$A^{1}-J^{1-}E^{1B}$$

(式中、A¹、J¹、E^{1B}基は一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、

 $NR^{16}R^{17}$ 基(基中、 R^{16} および R^{17} は前記と同じ意味を表わす。)を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物と一般式 (XA)、 (XB)、 (XC) または (XD)

$$R^{3-1}$$
 R^{4-1} $COOR^{7-1}$ (XA)

$$R^{5}$$
 COOR⁷⁻¹ (XB)

5

$$\begin{array}{c|c}
O & R^{3-1} \\
\hline
COOR^{7-1} & (XC) \\
\hline
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

$$R^6-C\equiv C-COOR^{7-1}$$
 (XD)

(各式中、すべての記号は前記と同じ意味を表す。) で示される化合物とを反応させることにより製造することができる。

この反応は公知であり、例えば有機溶媒(ジイソプロピルエチルアミン、テ 10 トラハイドロフラン、エタノール、クロロホルム、アセトニトリル等)中、塩 基触媒(トリエチルアミン、テトラブチルアンモニウムフルオライド、モルホ リン、n-ブチルリチウム等)存在下、0~40℃で行なわれる。

(A-2): nが1または2を表わし、R²基が-COOR⁷⁻¹基(基中、 R⁷⁻¹は前記と同じ意味を表わす。)を表わし、A中のArの置換基、R³およびR⁴基は-COOH基、水酸基、アミノ基またはそれらを含有する基を表わさず、A、J、E基が一緒になって-COOH基を表わさない化合物、すなわち一般式(I-A-2) 10

$$A^{1}$$
— J^{1} — E^{1} — II
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{1}
 R^{1}
 R^{3-1}
 R^{4-1}
 R^{4-1}
 R^{4-1}

(式中、n1は1または2を表わし、その他の記号は前記と同じ意味を表す。) で示される化合物は、以下の方法により製造することができる。

(1) n l が l または 2 であり、 E^1 が $-CONR^9-$ 、 $-NR^9CO-$ 、 -OCO-、 -COO-、 $-CH_2-O-$ 基であり、 A^1 、 J^1 、 E^1 が一緒になって -COOH基を表わさない化合物は、 -般式(I-A-1a)

$$R^{1}$$
 R^{3-1} R^{4-1} R^{4-1} R^{5} R^{6} R^{6} R^{6} R^{6}

(式中、E¹⁻¹は-CONR³-、-NR³CO-、-OCO-、-COO-、-CH₂-O-基を表わすか、またはA¹、J¹、E¹⁻¹基は一緒になってメチル
 基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹6R¹²基(基中、R¹6およびR¹²は前記と同じ意味を表わす。)を表わし、その他の記号は前記と同じ意味を表す。)で示される化合物を酸化することによって製造することができる。

酸化反応は公知であり、例えば有機溶媒(塩化メチレン、クロロホルム等)中、過酸(m-クロロ過安息香酸等)の存在下、0~40℃で行なわれるか、あるいは溶媒(四塩化炭素、アセトニトリル、水、エタノールまたはそれらの混合溶媒等)中、触媒(三塩化ルテニウム水和物等)存在下または不存在下、酸化剤(過ヨウ素酸・2水和物等)を用いて、0℃~還流温度で行なわれる。

(2) n1が1または2であり、 E^1 が $-C \equiv C-$ またはA、JおよびEが一緒になって複素環(この複素環は、 $1\sim 4$ 個の $C1\sim 4$ アルキル基、 $C1\sim 4$ アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、 $C1\sim 8$ アルコキシカルボニル基、ニトロ基、 $NR^{24}R^{25}$ 基(基中、 R^{24} および R^{25} は、前記と同じ意味を表わす。)または $CONR^{24}R^{25}$ 基(基中、 R^{24} および R^{25} は、前記と同じ意味を表わす。)で置換されてもよい。)である化合物は、一般式(XI)

$$X \xrightarrow{\text{(i)}} R^{1} \xrightarrow{\text{(O)} n_{1}} R^{3-1} R^{4-1}$$
 $R^{5} R^{6}$
 $R^{5} R^{6}$
 $R^{5} R^{6}$

10

5

(式中、すべての記号は前記と同じ意味を表す。)で示される化合物と一般式 (XII)

$$\Delta^{1} - I^{1} - = (XII)$$

15

(式中、すべての記号は前記と同じ意味を表す。)で示される化合物または該 当する複素環化合物とを反応させることにより製造することができる。

この反応は公知であり、例えば有機溶媒(アセトニトリル、テトラヒドロフラン等)中、塩基(トリエチルアミン等)およびヨウ化第一銅の存在下、触媒 20 (テトラキス(トリフェニルホスフィン)パラジウム等)を用いて、0℃~還流温度で反応させることにより製造することができる。

(3) n 1 が 2 であり、E¹が-CO-CH₂-基である化合物は、一般式 (XIII)

$$A^1-J^1$$
 SO_2Na (XIII)

(式中、すべての記号は前記と同じ意味を表す。)で示される化合物と、一般式((XA)、 (XB)、 (XC) または (XD)

5

$$R^{5}$$
 $COOR^{7-1}$ (XB)

$$\begin{array}{c|c}
O & R^{3-1} \\
\hline
COOR^{7-1} & (XC)
\end{array}$$

または、

$$R^6-C\equiv C-COOR^{7-1}$$
 (XD)

(各式中、すべての記号は、前記と同じ意味を表わす。) で示される化合物とを反応させるか、あるいは上記(2)で製造した化合物をトリフルオロ酢酸で 2000 処理することによって製造できる場合もある。

この反応は公知であり、例えば有機溶媒(エタノール、水とベンゼンとの混合溶媒等)中、酢酸またはポリエチレングリコール存在下、加熱還流することによって製造することができる。

15 (4) n 1 m 2 con 0、 $E^1 m - CH = CH - 基 con 0$ 化合物は、一般式 (XIV)

$$A^{1} - J^{1}$$

$$QH = 0$$

$$R^{1} - O$$

$$R^{2} - R^{3-1} - R^{4-1}$$

$$COOR^{7-1} - (XIV)$$

(式中、すべての記号は前記と同じ意味を表す。)で示される化合物を脱水反応に付すことによって製造することができる。

- 5 脱水反応は公知であり、例えば有機溶媒(トルエン、ベンゼン等)中、触媒 量のpートルエンスルホン酸存在下、加熱還流することによって製造すること ができる。
- (5) n 1 が 2 であり、E ¹がー(C H ₂)₂-基である化合物は、一般式(XIV)

$$A^{1}-J^{1}$$

$$R^{1}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$(XIV)$$

10

20

(式中、すべての記号は前記と同じ意味を表す。) で示される化合物を還元反応に付すことによって製造することができる。

- 15 還元反応は前記した方法または後記する加水素水分解を用いて行なう。
 - (6) $n 1 が 1 であり、<math>E^1 \acute{m} CO CH_2$ 、 $(CH_2)_2 -$ 、- CH = CH -である化合物は、上記(3)~(5)で合成した化合物($n 1 \acute{m} 2$ であり、 $E^1 \acute{m} CO CH_2 -$ 、 $(CH_2)_2 -$ 、- CH = CH -である化合物)を還元することで製造することができる。

還元反応は前記した方法または後記する加水素水分解を用いて行なう。

またn1が1であり、E1が $-CO-CH_2$ -である化合物は、上記(2)で合成した化合物(n1が1であり、E1が $-C\equiv C$ -である化合物)をトリフルオロ酢酸で処理することで製造することができる場合もある。

PCT/JP97/02200

(7) また、上記(1)~(6)の化合物のうち、R³-1が水素原子を表わし、

 $-COR^{22}$ (基中、 R^{22} 前記と同じ意味を表わす。)を表わし、その他の記号 5 は前記と同じ意味を表す。)である化合物は、一般式 (BB)

$$A^{1}-J^{1}-E^{1}$$
 R^{1}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

(基中、すべての記号は前記と同じ意味を表す。) で示される化合物と相当す 10 るカルボン酸 (CC)

(基中、すべての記号は前記と同じ意味を表す。)とのアミド化反応に付し、 15 また場合により、引き続き酸性条件下でアミノ基の保護基(R^{b-1}基)を除去した後、再度相当する一般式(CC)で表わされるカルボン酸とのアミド化反応に付すことでも製造できる。

アミド化反応は、先述した方法に基づいて行なえる。酸性条件下でアミノ基 の保護基を除去するのは、後記する方法に基づいて行なえる。

20

25

(B) R²基中の-COOR⁷基、R³基、R⁴基、A中のArの置換基、A、J、 E基が一緒になって表わす基のいずれかの基が-COOH基またはそれを含有 する基を表わすか、あるいはR³基、R⁴基、A中のArの置換基のいずれかの 基が水酸基、アミノ基またはそれらを含有する基を表わす化合物、すなわちー 般式(I-B)

$$A^{2}-J^{2}-E^{2}$$

$$R^{1}$$

$$R^{1}$$

$$R^{3-2}$$

$$R^{4-2}$$

$$COOR^{7-2}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

(式中、A²、J²、E²、R³-²、R⁴-²、R²-²基はそれぞれA、J、E、R³、R⁴、R²基と同じ意味を表わすが、一COOR²基、R³基、R⁴基、A中のArの置換基、A、J、E基が一緒になって表わす基のいずれかの基が一COOH基またはそれを含有する基を表わすか、あるいはR³基、R⁴基、A中のArの置換基のいずれかの基が水酸基、アミノ基またはそれらを含有する基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物は、一般式(I-A-1)および一般式(I-A-2)で示される化合物をアルカリまたは酸条件下での脱保護、または加水素分解することによって製造することができる。

アルカリ条件下での脱保護は公知であり、例えば有機溶媒(メタノール、テトラヒドロフラン、ジオキサン等)中、アルカリ金属の水酸化物(水酸化ナトリウム、水酸化カリウム等)、アルカリ土類金属の水酸化物(水酸化カルシウム等)または炭酸塩(炭酸ナトリウム、炭酸カリウム等)あるいはその水溶液もしくはこれらの混合物を用いて0~40℃で行なわれる。

15

20

25

酸条件下での脱保護は公知であり、例えば溶媒(塩化メチレン、ジオキサン、 酢酸エチル、酢酸、水またはそれらの混合溶媒等)中、有機酸(トリフルオロ 酢酸等)、または無機酸(塩化水素、臭化水素等)を用いて、0~120℃で 行なわれる。

加水素水分解は公知であり、例えば溶媒(エーテル系(テトラヒドロフラン、ジオキサン、ジエメトキシエタン、ジエチルエーテル等)、アルコール系(メタノール、エタノール等)、ベンゼン系(ベンゼン、トルエン等)、ケトン系(アセトン、メチルエチルケトン等)、ニトリル系(アセトニトリル等)、アミド系(ジメチルホルムアミド等)、水、酢酸エチル、酢酸またはそれらの2

以上の混合溶媒等)中、触媒(パラジウムー炭素、パラジウム黒、水酸化パラジウム、二酸化白金、ラネーニッケル等)の存在下、無機酸(塩酸、硫酸、次亜塩素酸、ホウ酸、テトラフルオロホウ酸等)または有機酸(酢酸、pートルエンスルホン酸、シュウ酸、トリフルオロ酢酸、ギ酸等)の存在下または不存在下、常圧または加圧下の水素雰囲気下またはギ酸アンモニウム存在下、0~200℃の温度で行なわれる。

(C) R²基が-CONHOR⁸⁻¹基(基中、R⁸⁻¹はC1~8アルキル基、フェニル基、またはフェニル基が置換したC1~4アルキル基を表わす。)を表わし、A中のArの置換基、R³基およびR⁴基は-COOH基、水酸基、アミノ基またはそれらを含有する基を表わさず、A、J、E基が一緒になって-COOH基を表わさない化合物、すなわち一般式(I-C)

$$A^{1}-J^{1}-E^{1}$$

$$R^{1}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$
(I-C)

15

5

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は、以下の方法により製造することができる。

(1) nが0である化合物は、一般式(XV)

20

$$A^{1}-J^{1}-E^{1}$$
 R^{5}
 R^{6}
COOH (XV)

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物と一般式(XVI)

(式中、R^Yは水素原子またはアミノ基の保護基を表わし、その他の記号は前記 と同じ意味を表わす。)で示される化合物を縮合させることにより製造することができる。

この縮合反応は公知であり、例えば有機溶媒(クロロホルム、塩化メチレン、ジメチルホルムアミド、テトラヒドロフラン等)中または無溶媒で、三級アミン (ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)を用いるかまたは用いないで、縮合剤 (1-エチル-3-[₃3-(ジメチルアミノ)プロピル]カルボジイミド(EDC)等)を用いて、0~40℃で反応させることにより行なわれる。

(2) nが1または2である化合物は、前記(1)で製造した一般式15 (I-C-1)

$$R^{1}$$
 S R^{3-1} R^{4-1} $CONR^{Y}OR^{6-1}$ (I-C-1)

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物を酸化 20 反応に付し、必要であれば引き続いてRYを除去することにより製造することができる。

酸化反応は、前記の方法により行なわれる。

R^Yの脱保護は公知であり、例えば溶媒(塩化メチレン、ジオキサン、酢酸エチル、酢酸、水またはそれらの混合溶媒等)中、有機酸(トリフルオロ酢酸等)、 25 または無機酸(塩化水素、臭化水素等)を用いて、0~120℃で行なわれるか、あるいは溶媒(エーテル系(テトラヒドロフラン、ジオキサン、ジエメト

キシエタン、ジエチルエーテル等)、アルコール系(メタノール、エタノール等)、ペンゼン系(ペンゼン、トルエン等)、ケトン系(アセトン、メチルエチルケトン等)、ニトリル系(アセトニトリル等)、アミド系(ジメチルホルムアミド等)、水、酢酸エチル、酢酸またはそれらの2以上の混合溶媒等)中、触媒(パラジウムー炭素、パラジウム黒、水酸化パラジウム、二酸化白金、ラネーニッケル等)の存在下、無機酸(塩酸、硫酸、次亜塩素酸、ホウ酸、テトラフルオロホウ酸等)または有機酸(酢酸、pートルエンスルホン酸、シュウ酸、トリフルオロ酢酸、ギ酸等)の存在下または不存在下、常圧または加圧下の水素雰囲気下またはギ酸アンモニウム存在下、0~200℃の温度で行なわれる。酸を用いる場合は、その塩を用いてもよい。

5

10

(D) R²基中のR⁸が水素原子を表わすか、R³基、R⁴基、A中のArの置換 基またはA、J、E基が一緒になって表わす基のいずれかが-COOH基また はそれを含有する基を表わすか、R³基、R⁴基、A中のArの置換基のいずれ かの基が水酸基、アミノ基またはそれらを含有する基を表わす化合物、すなわ ち一般式 (I-D)

$$A^{2}-J^{2}-E^{2}\frac{I^{1}}{I^{1}}$$

$$R^{5}$$

$$R^{6}$$
(I-D)

(式中、A²、J²、E²、R³-²、R⁴-²、R³-²基はそれぞれA、J、E、R³、R⁴、R³基と同じ意味を表わすが、R³基、R⁴基、A中のArの置換基またはA、J、E基が一緒になって表わす基のいずれかの基が一COOH基またはそれを含有する基を表わすか、R³基、R⁴基、A中のArの置換基のいずれかの基が水酸基、アミノ基またはそれらを含有する基を表わすか、あるいはR³が水素原子を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物は、一般式 (I-C)で示される化合物をアルカリまたは酸条件下での脱保

_ WO 97/49679 _____ PCT/JP97/02200

護、または加水素分解することにより製造することができる。

アルカリまたは酸条件下での脱保護、加水素分解は、前記の方法で行なわれる。

5 一般式(II)、(IV)、(VII)、(XI)または(XIV)で示される化合物は公知の方法、次の反応工程式1、2、3、4および5によって示される方法または実施例に記載した方法により製造することができる。

反応工程式1

$$R^{5}$$
 $COOR^{7-1}$ (XB)

または、

$$R^6-C\equiv C-COOR^{7-1}$$
 (XD)

$$R^{9}HN \xrightarrow{II} S \xrightarrow{R^{5-1}} R^{4-1} COOR^{7-1}$$
 (II)

反応工程式2

SH (XIX)

$$R^{3-1} R^{4-1}$$
 (XA),

 $R^{5} R^{6}$ (XA),

 $R^{5} R^{6}$ (XB),

 $R^{5} R^{6}$ (XC)

 $R^{5} R^{6}$ (XD)

反応工程式3

$$R^{1}$$
 (XX) R^{3-1} R^{4-1} (XA), R^{5} R^{6} R^{3-1} (XB), R^{5} R^{6} R^{3-1} (XC) または、

$$HO \xrightarrow{II} S \xrightarrow{R^{3-1} R^{4-1}} COOR^{7-1} \qquad (VII)$$

 $R^6-C \equiv C - COOR^{7-1}$

(XD)

反応工程式4

反応工程式5

反応工程式中、R²はカルボン酸の保護基を表わし、その他の記号は前記と同じ意味を表わす。

前記反応工程式中の各反応は公知の方法により行なわれる。前記反応工程式において、出発物質として用いる化合物はそれ自体公知であるか、あるいは公知の方法により容易に製造することができる。また、本発明における他の出発物質および各試薬は、それ自体公知であるかまたは公知の方法により製造することができる。

本明細書中の各反応において、反応生成物は通常の精製手段、例えば、常圧 10 下または減圧下における蒸留、シリカゲルまたはケイ酸マグネシウムを用いた 高速液体クロマトグラフィー、薄層クロマトグラフィー、あるいはカラムクロ マトグラフィーまたは洗浄、再結晶等の方法により精製することができる。精 製は各反応ごとに行なってもよいし、いくつかの反応終了後に行なってもよい。

産業上の利用の可能性

[薬理活性]

一般式 (I) で示される本発明化合物がマトリックスメタロプロテイナーゼ 阻害活性を有することは、以下の実験によって証明された。例えば、ゼラチナ ーゼA阻害活性については次に示されるような結果を得た。

20

25

15

5

(1) ゼラチナーゼA阻害活性

実験方法

ヒト正常皮膚線維芽細胞(HNDF)より精製されたプロゼラチナーゼA $(7\mu 1)$ のアッセイバッファー($90\mu 1$)溶液に10mMのAPMA $(10\mu 1)$ を加えて、37で1時間プレインキュペーションし、酵素を活性化した。このように調製した活性酵素(1U/tube, $98\mu 1$)、種々の濃度の被験化合物あるいは被験化合物を添加しない反応液($2\mu 1$)、0.05% FITC-ゼラチン($100\mu 1$)を加えて、37で2時間インキュペー

表31

	実施例番号	IC50 (μM)
10	8 (2)	0.54
	8 (7)	0.40
	19 (1)	0. 011
	2 8	0.013
	28 (1)	0. 0014
15	28(3)	0.0029

なお、上記実験方法中、APMAはp-アミノフェニル水銀アセテート、およびFITCはフルオレセインイソチオシアネートを表わす。

20 [毒性]

5

一方、本発明化合物の毒性は非常に低いものであり、医薬として使用するために十分安全であると判断できる。

[医薬品への適用]

25 ヒトを含めた動物、特にヒトにおいて、マトリックスメタロプロテイナーゼを阻害することは、リュウマチ、骨関節炎、病的骨吸収、骨粗鬆症、歯周病、間質性腎炎、動脈硬化、肺気腫、肝硬変、角膜損傷、ガン細胞の転移浸潤や増殖の疾患、自己免疫疾患(クローン病、シュグレン病等)、白血球系の細胞の血管遊出や浸潤による疾患、血管新生等の予防および/または治療に有用であ

る。

5

10

25

一般式(I)で示される本発明化合物、その非毒性の塩、酸付加塩、またはその水和物を上記の目的で用いるには、通常、全身的または局所的に、経口または非経口の形で投与される。

投与量は、年齢、体重、症状、治療効果、投与方法、処理時間等により異なるが、通常、成人一人あたり、1回につき、1mgから 1000 mgの範囲で、1日1回から数回経口投与されるか、または成人一人あたり、1回につき、1mgから100mgの範囲で、1日1回から数回非経口投与(好ましくは、静脈内投与)されるか、または1日1時間から24時間の範囲で静脈内に持続投与される。

もちろん前記したように、投与量は、種々の条件によって変動するので、上 記投与量より少ない量で十分な場合もあるし、また範囲を越えて必要な場合も ある。

15 本発明化合物を投与する際には、経口投与のための固体組成物、液体組成物 およびその他の組成物および非経口投与のための注射剤、外用剤、坐剤等とし て用いられる。

経口投与のための固体組成物には、錠剤、丸剤、カプセル剤、散剤、顆粒剤 等が含まれる。

20 カプセル剤には、ハードカプセルおよびソフトカプセルが含まれる。

このような固体組成物においては、ひとつまたはそれ以上の活性物質が、少なくともひとつの不活性な希釈剤、例えばラクトース、マンニトール、グルコース、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤、繊維素グリコール酸カルシウムのような崩壊剤、ラクトースのような安定化剤、グルタミン酸またはアスパラギン酸のような溶解補助剤を含有していてもよい。錠剤または丸剤は必要により白糖、ゼラチン、ヒドロ

キシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレートなどの胃溶性あるいは腸溶性物質のフィルムで被覆していてもよいし、また2以上の層で被覆していてもよい。さらにゼラチンのような吸収されうる物質のカブセルも包含される。

5 経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、シロップ剤、エリキシル剤等を含む。このような液体組成物においては、ひとつまたはそれ以上の活性物質が、一般的に用いられる不活性な希釈剤(例えば精製水、エタノール)に含有される。この組成物は、不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。

経口投与のためのその他の組成物としては、ひとつまたはそれ以上の活性物 質を含み、それ自体公知の方法により処方されるスプレー剤が含まれる。この 組成物は不活性な希釈剤以外に亜硫酸水素ナトリウムのような安定剤と等張性 を与えるような緩衝剤、例えば塩化ナトリウム、クエン酸ナトリウムあるいは クエン酸のような等張剤を含有していてもよい。スプレー剤の製造方法は、例 えば米国特許第2,868,691号および同第3,095,355号に詳しく記載されている。 本発明による非経口投与のための注射剤としては、無菌の水性または非水性 の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例え ば注射用蒸留水および生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤とし ては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油の ような植物油、エタノールのようなアルコール類、ポリソルベート80(登録 商標)等がある。このような組成物は、さらに防腐剤、湿潤剤、乳化剤、分散 剤、安定化剤(例えば、ラクトース)、溶解補助剤(例えば、グルタミン酸、 アスパラギン酸) のような補助剤を含んでいてもよい。これらはバクテリア保 留フィルターを通すろ過、殺菌剤の配合または照射によって無菌化される。こ れらはまた無菌の固体組成物を製造し、例えば凍結乾燥品の使用前に、無菌化 または無菌の注射用蒸留水または他の溶媒に溶解して使用することもできる。 非経口投与のためのその他の組成物としては、ひとつまたはそれ以上の活性

15

20

25

物質を含み、常法により処方される外溶液剤、軟膏、塗布剤、直腸内投与のための坐剤および膣内投与のためのペッサリー等が含まれる。

発明を実施するための最良の形態

5 以下、参考例および実施例によって本発明を詳述するが、本発明はこれらに 限定されるものではない。

クロマトグラフィーによる分離の箇所およびTLCに示されているカッコ内 の溶媒は、使用した溶出溶媒または展開溶媒を示し、割合は体積比を表わす。

NMRの箇所に示されているカッコ内の溶媒は、測定に使用した溶媒を示し 10 ている。

実施例1

3-(4-アミノフェニルチオ) プロピオン酸 t-プチルエステル

4 ーアミノチオフェノール (2.36 g) のテトラヒドロフラン (THF; 20ml) 溶液に、2 ープロペニル酸 tープチルエステル (3.51 ml) および 1.0 M テトラブチルアンモニウム フルオリドのTHF溶液 (340μl) を加えた。混合溶液を室温で30分間撹拌して標題化合物を得た。化合物はそのまま次の反応に用いた。

実施例1 (1) ~1 (4)

相当するチオフェノール誘導体および相当するカルボン酸誘導体を用い、実 25 施例1と同様の操作をして以下の化合物を得た。

<u>実施例1 (1)</u>

3- (4-ヒドロキシフェニルチオ) プロピオン酸 tーブチルエステル

製造した標題化合物は、精製することなく次の反応に用いた。

<u>実施例1 (2)</u>

2-メチルー3-(4-ヒドロキシフェニルチオ)プロピオン酸 t-ブチルエステル

10

TLC:Rf 0.45 (ヘキサン:酢酸エチル=7:3)、

NMR (CDCI₃+CCI₄ (5 滴)) : δ 7.31 (2H, d, J=8.8Hz), 6.77 (2H, d, J=8.8Hz), 5.82 (1H, s), 3.08 (1H, dd, J=13.2Hz, 7.8Hz), 2.77 (1H, dd, J=13.2Hz, 6.6Hz), 2.53 (1H, m), 1.47 (9H, s), 1.20 (3H, d, J=7.2Hz)。

実施例1 (3)

TLC:Rf 0.58 (ヘキサン:酢酸エチル=4:1)、

NMR (CDCI₃): δ 7.36 (2H, d, J=8.8Hz), 7.30-7.10 (7H, m), 3.11 (1H, dd, J=14.0Hz, 8.1Hz), 3.00-2.70 (4H, m), 1.36 (9H, s).

5

<u>実施例1 (4)</u>

3- (4-メトキシフェニルチオ) プロピオン酸 t-プチルエステル

10

製造した標題化合物は、精製することなく次の反応に用いた。

実施例2

実施例1で製造した化合物に、トリエチルアミン(3.3 ml)およびベンゾイ 20 ルクロリド(2.0 ml)を加え、室温で30分間撹拌した。反応溶液に、1N塩酸を加え、酢酸エチルで抽出した。抽出液を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残渣をエーテルで洗浄し、標題化合物(5.17g)を得た。

TLC:Rf 0.51 (ヘキサン:酢酸エチル=7:3)、

25 NMR (CDCl₃) : δ 7.92 (1H, s), 7.89-7.82 (2H, m), 7.60 (2H, d, J=8.8Hz),

7.56-7.42 (3H, m), 7.38 (2H, d, J=8.8Hz), 3.08 (2H, t, J=7.4Hz), 2.51 (2H, t, J=7.4Hz), 1.45 (9H, s).

実施例3

5 3 - (4 -ベンジルオキシフェニルチオ) プロピオン酸 t -プチルエステル

TLC:Rf 0.71 (ヘキサン:酢酸エチル=4:1)、

NMR (CDCl₃): δ 7.46-7.30 (7H, m), 6.90 (2H, d, J=9.0Hz), 5.04 (2H, s), 3.00 (2H, t, J=7.6Hz), 2.46 (2H, t, J=7.6Hz), 1.44 (9H, s).

実施例4

3-[4-(ベンゾイルアミノ) フェニルスルフィニル] プロピオン酸 <math>t-20 ブチルエステル

実施例2で製造した化合物(714mg)のクロロホルム(7ml)溶液に、m-クロロ過安息香酸(493mg)を加え、室温で30分間撹拌した。反応溶液を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残渣にエーテルを加えて、結晶をろ過して以下の物性値を有する標題化合物(616mg)を得た。

NMR (CDCl₃): 88.17 (1H, s), 7.94-7.86 (2H, m), 7.85 (2H, d, J=8.8Hz), 7.61 (2H, d, J=8.8Hz), 7.57-7.46 (3H, m), 3.15 (1H, ddd, J=6.6Hz, 8.8Hz, 13.2Hz), 2.93 (1H, ddd, J=5.8Hz, 8.2Hz, 13.2Hz), 2.73 (1H, ddd, J=6.6Hz, 8.2Hz, 14.4Hz), 2.43 (1H, ddd, J=5.8Hz, 8.8Hz, 14.4Hz), 1.43 (9H, s)_o

実施例 5

3-[4-(ベンゾイルアミノ) フェニルスルホニル] プロピオン酸 <math>t-ブチルエステル

15

20

25

10

5

実施例2で製造した化合物(714mg)の四塩化炭素(2ml)、アセトニトリル(2ml)および水(4ml)の混合溶液に、アルゴン雰囲気下、過ヨウ素酸・2水和物(958mg)および三塩化ルテニウム・水和物(8mg)を加え、室温で2時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。抽出液を飽和チオ硫酸ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残渣をカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:2)で精製して下記の物性値を有する標題化合物(730mg)を得た。

TLC:Rf 0.20 (ヘキサン:酢酸エチル=7:3)、

NMR (CDCl₃): δ8.11 (1H, s), 7.94-7.86 (6H, m), 7.65-7.47 (3H, m), 3.37 (2H, t, J=7.4 Hz), 2.65 (2H, t, J=7.4 Hz), 1.41(9H,s)_o

5 実施例5(1)~5(2)

実施例3および実施例1 (3) で製造した化合物を用いて、実施例5と同様の操作をして以下の化合物を得た。

実施例5(1)

TLC:Rf 0.33 (ヘキサン:酢酸エチル=7:3)、
NMR (CDCl₃):δ7.83 (2H, d, J=9.2Hz), 7.42-7.32 (5H, m), 7.09 (2H, d, J=9.2Hz), 5.14 (2H, s), 3.34 (2H, t, J=7.4Hz), 2.64 (2H, t, J=7.4Hz)。

実施例5 (2)

20 2-ベンジルー3-(4-プロモフェニルスルホニル) プロピオン酸 <math>t-ブチルエステル

TLC:Rf 0.30 (ヘキサン:酢酸エチル=4:1)、

NMR (CDCl₃) : δ 7.69 (2H, d, J=8.8Hz), 7.67 (2H, d, J=8.8Hz), 7.30-7.20 (3H,

5 m), 7.07 (2H, s), 3.63 (1H, m), 3.10-2.90 (3H, m), 2.90 (1H, m), 1.33 (9H, s).

参考例1

2-xチル-3-[4-(トリフルオロメタンスルホニルオキシ)フェニルチオ]プロピオン酸 <math>t-プチルエステル

10

実施例1(2)で製造した化合物(1.50g)の塩化メチレン溶液(10ml)に、アルゴン雰囲気下、-78℃でピリジン(1.13 ml)および無水トリフルオロメタンスルホン酸(1.13 ml)を滴下した。混合溶液を室温で2時間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液(20 ml)を加え、室温で1時間激しく撹拌した。反応混合物を酢酸エチルで抽出し、抽出液を1 N塩酸、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残渣をカラムクロマトグラフィー(ヘキサン:酢酸 エチル=19:1)で精製して下記の物性値を有する標題化合物(2.05g)を得た。

TLC:Rf 0.29 (ヘキサン:酢酸エチル=19:1)、

NMR (CDCl₃+CCl₄ (5 滴)) : δ 7.40 (2H, d, J=9.0Hz), 7.19 (2H, d, J=9.0Hz),

3.24 (1H, dd, J=13.2Hz, 7.3Hz), 2.91 (1H, dd, J=13.2Hz, 6.8Hz), 2.59 (1H, m), 1.45 (9H, s), 1.24 (3H, d, J=6.8Hz).

参考例 2

5 2ーメチルー3ー(4ートリフルオロメタンスルホニルオキシフェニルスルホニル)プロピオン酸 tープチルエステル

10 参考例1で製造した化合物 (1.00 g) を用いて実施例5と同様の操作をして 下記の物性値を有する標題化合物 (748 m g) を得た。

mp:50℃,

TLC:Rf 0.57 (ヘキサン:酢酸エチル=9:1)、

NMR (CDCI₃+CCI₄ (5 滴)) : δ 8.05 (2H, d, J=8.6Hz), 7.49 (2H, d, J=8.6Hz),

3.71 (1H, dd, J=14.2Hz, 7.6Hz), 3.06 (1H, dd, J=14.2Hz, 5.1Hz), 2.96 (1H, m), 1.42 (9H, s), 1.31 (3H, d, J=7.2Hz)_o

実施例 6

3-(4-プロモフェニルスルホニル)プロピオン酸 t-プチルエステル

20

4-プロモフェニルスルフィン酸ナトリウム(729mg)、2-プロペニル酸 t-プチルエステル(439μ 1)、95%エタノール(4m1)およ び酢酸(372μ 1)の混合物を室温で12時間撹拌した。さらに、混合物に

2-プロペニル酸 t-ブチルエステル (2.20 ml)を加え、4時間還流した。 反応混合物を酢酸エチルで希釈し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮して下記の物性値を有する標題化合物 (872 mg)を得た。

5 mp:105℃、

TLC:Rf 0.31 (ヘキサン:酢酸エチル=4:1)、

NMR(CDCI₃+CCI₄ (5 滴)): δ 7.78 (2H, d, J=8.8Hz), 7.72 (2H, d, J=8.8Hz), 3.38 (2H, t, J=7.3Hz), 2.65 (2H, t, J=7.3Hz), 1.40 (9H, s)。

10 実施例 7

2-メチル-3- [4-(4-トリルエチニル) フェニルスルホニル] プロピオン酸 t-プチルエステル

15

参考例 2 で製造した化合物(4 3 2 m g) および 4 -エチニルトルエン (1 3 3 μ 1) のアセトニトリル(1 0 m l)溶液に、トリフェニルホスフィン (3 1 m g) 、トリエチルアミン(2 m l)、ヨウ化銅(8 m g) および 1 0%パラジウムー炭素(4 3 m g) を順に加えた。混合物を 3 時間還流し、

20 濃縮した。残渣をカラムクロマトグラフィー(ヘキサン:酢酸エチル=17:3)で精製して標題化合物(376mg)を得た後、ヘキサンで再結晶して下記の物性値を有する標題化合物(227mg)を得た。

TLC:Rf 0.41 (ヘキサン:酢酸エチル=4:1)、

NMR (CDCl₃+CCl₄ (5 滴)): δ 7.88 (2H, d, J=8.6Hz), 7.67 (2H, d, J=8.6Hz),

7.45 (2H, d, J=8.3Hz), 7.19 (2H, d, J=8.3Hz), 3.68 (1H, dd, J=13.9Hz, 7.1Hz), 3.01 (1H, dd, J=13.9Hz, 5.4Hz), 2.89 (1H, m), 1.42 (9H, s), 1.29 (3H, d, J=7.2Hz).

5 実施例7(1)~7(5)

実施例6または実施例5(2)で製造した化合物および相当するアセチレン 化合物を用いて、実施例7と同様の操作をして以下の化合物を得た。

<u>実施例7(1)</u>

10 $3-[4-(1-\alpha プチニル) フェニルスルホニル] プロピオン酸 <math>t-プチ$ ルエステル

TLC:Rf 0.38 (ヘキサン:酢酸エチル=6:1)、
NMR (CDCl₃+CCl₄ (5滴)):δ 7.81 (2H, d, J=8.6Hz), 7.55 (2H, d, J=8.6Hz), 3.37 (2H, t, J=7.6Hz), 2.64 (2H, t, J=7.6Hz), 2.44 (2H, t, J=7.1Hz), 1.59 (2H, m), 1.20-1.50 (4H, m), 1.41 (9H, s), 0.93 (3H, t, J=6.8Hz)。

20 実施例 7 (2)

3-[4-(フェニルエチニル) フェニルスルホニル] プロピオン酸 <math>t-プチルエステル

TLC:Rf 0.59 (ヘキサン:酢酸エチル=4:1)、

NMR (CDCl₃) : δ 7.89 (2H, d, J=8.7H), 7.70 (2H, d, J=8.7Hz), 7.58-7.53 (2H,

5 m), 7.40-7.37 (3H, m), 3.40 (2H, t, J=7.8Hz), 2.67 (2H, t, J=7.8Hz), 1.41 (9H, s).

実施例7 (3)

3-[4-(2-ピリジルエチニル) フェニルスルホニル] プロピオン酸 <math>t-ブチルエステル

10

TLC:Rf 0.34 (ヘキサン:酢酸エチル=1:1)、

NMR (CDCl₃): δ 8.65 (1H, m), 7.92 (2H, d, J=8.6H), 7.78 (2H, d, J=8.6H), 7.70 (1H, m), 7.56 (1H, m), 7.31 (1H, m), 3.42 (2H, m), 2.69 (2H, m), 1.42 (9H, s)_o

実施例7(4)

3-[4-(4-x)トキシフェニルエチニル)フェニルスルホニル] プロピオン酸 t-プチルエステル

20

TLC: Rf 0.15 (ヘキサン: 酢酸エチル=4:1)、

NMR (CDCl₃) : δ 7.87 (2H, d, J=8.6H), 7.66 (2H, d, J=8.6H), 7.49 (2H, d, J=8.8H), 6.90 (2H, d, J=8.8H), 3.85 (3H, s), 3.40 (2H, m), 2.66 (2H, m), 1.41 (9H, s)_o

実施例7 (5)

2-ペンジル-3-[4-(4-トリルエチニル) フェニルスルホニル] プロ 10 ピオン酸 t-ブチルエステル

TLC: Rf 0.19 (ヘキサン:酢酸エチル=4:1)、

15 NMR (CDCl₃): δ7.81 (2H, d, J=8.6Hz), 7.64 (2H, d, J=8.6Hz), 7.45 (2H, d, J=8.1Hz), 7.30-7.15 (5H, m), 7.08 (2H, m), 3.64 (1H, m), 3.15-2.75 (4H, m), 2.40 (3H, s), 1.34 (9H, s)_o

実施例8

3- [4-(ベンゾイルアミノ) フェニルチオ] プロピオン酸

5 実施例2で製造した化合物(560mg)のトリフルオロ酢酸(5ml) 溶液を室温で1時間撹拌した。反応溶液を濃縮し、ペンゼンを加え、再び濃縮 した。残渣をエーテルで洗浄して、以下の物性値を有する標題化合物 (440mg)を得た。

10 NMR (DMSO-d_e): δ 12.80-11.80 (1H, br.s), 10.30 (1H, s), 7.95 (2H, dd, J=2.0Hz, 8.2Hz), 7.77 (2H, d, J=8.8Hz), 7.65-7.47 (3H, m), 7.36 (2H, d, J=8.8Hz), 3.09 (2H, t, J=7.4Hz), 2.50 (2H, t, J=7.4Hz)_o

実施例8(1)~8(11)

実施例4、5、5(1)、7、7(1)、7(2)、7(3)、7(4)、7(5)または1(4)で製造した化合物を用い、実施例8と同様の操作(酸性条件下での脱保護;例えば、トリフルオロ酢酸、塩化水素のジオキサン溶液または酢酸エチル溶液を用いる。)を行ない以下の化合物を得た。

20 実施例8(1)

3- [4-(ベンゾイルアミノ) フェニルスルフィニル] プロピオン酸

TLC: Rf 0.26 (クロロホルム:メタノール:酢酸=90:10:1)、NMR (DMSO-d₆): δ 12.80-11.80 (1H, br.s), 10.52 (1H, s), 8.01 (2H, d, J=8.8Hz), 7.99-7.93 (2H, m), 7.64 (2H, d, J=8.8Hz), 7.62-7.50 (3H, m), 3.20 (1H, ddd, J=6.8, 8.2, 13.6Hz), 2.95 (1H, ddd, J=6.2,8.2,13.6Hz), 2.58 (1H, ddd, J=6.8,8.2,16.8Hz), 2.33 (1H, ddd, J=6.2,8.2,16.8Hz)。

実施例8 (2)

3- [4- (ベンゾイルアミノ) フェニルスルホニル] プロピオン酸

10

5

TLC:Rf 0.33 (クロロホルム:メタノール:酢酸=90:10:1)、NMR (DMSO-d₈):δ 13.20-11.80 (1H, br.s), 10.68 (1H, s), 8.07 (2H, d, J=8.8Hz), 7.98 (2H, dd, J=1.8, 8.2Hz), 7.87 (2H, d, J=8.8Hz), 7.70-7.50 (3H, m), 3.48 (2H, t, J=7.2Hz), 2.53 (2H, t, J=7.2Hz)。

<u>実施例8 (3)</u>

3- [4- (ペンジルオキシ) フェニルスルホニル] プロピオン酸

20

TLC:Rf 0.63 (クロロホルム:メタノール:酢酸=90:10:1)、

NMR (DMSO- d_6) : δ 12.70-12.40 (1H, br.s), 7.82 (2H, d, J=8.8Hz), 7.52-7.30 (5H, m), 7.28-7.20 (2H, d, J=8.8Hz), 5.22 (2H, s), 3.46 (2H, t, J=7.4Hz), 2.50 (2H, t, J=7.4Hz).

5 実施例8(4)

2-メチル-3- [4-(4-トリルカルボニルメチル) フェニルスルホニル] プロピオン酸

10

15

TLC:Rf 0.33(クロロホルム:メタノール:酢酸= 4.0:1:0.2)、NMR(DMSO- d_6+CCl_4 (5 滴)): δ 12.58 (1H, s), 7.97 (2H, d, J=7.8Hz), 7.84 (2H, d, J=8.1Hz), 7.54 (2H, d, J=8.1Hz), 7.36 (2H, d, J=7.8Hz), 3.60 (1H, dd, J=14.2, 6.8Hz), 3.39 (1H, dd, J=14.2, 5.4Hz), 2.68 (1H, m), 2.39 (3H, s), 1.17 (3H, d, J=7.1Hz)。

実施例8 (5)

2-メチル-3- [4-(4-トリルエチニル) フェニルスルホニル] プロピオン酸

20

TLC: Rf 0.35 (クロロホルム: メタノール=10:1)、

NMR (DMSO-d₆+CCl₄ (5 滴)) : 8 12.57 (1H, s), 7.91 (2H, d, J=8.6Hz), 7.79 (2H, d, J=8.6Hz), 7.50 (2H, d, J=8.3Hz), 7.27 (2H, d, J=8.3Hz), 3.66 (1H, dd, J=14.4, 7.3Hz), 3.44 (1H, dd, J=14.4, 5.4Hz), 2.70 (1H, m), 2.36 (3H, s), 1.18 (3H, d, J=7.1Hz)。

<u>実施例8 (6)</u>

5

3- [4-(1-ヘプチニル) フェニルスルホニル] プロピオン酸

 $mp: 122 \sim 123 \, C$

TLC:Rf 0.78 (クロロホルム:メタノール:酢酸=9:1:0.5)、

NMR(DMSO-d₆+CCl₄ (5 滴)): δ 12.54 (1H, s), 7.84 (2H, d, J=8.2Hz), 7.63 (2H, d, J=8.2Hz), 3.52 (2H, t, J=7.4Hz), 2.40-2.60 (4H, m), 1.57 (2H, m), 1.37 (4H, m), 0.90 (3H, t, J=7.0Hz)。

実施例8 (7)

20

3- [4-(フェニルエチニル) フェニルスルホニル] プロピオン酸

O S O OH

TLC:Rf 0.47 (DDDxuxux = 1),

NMR (DMSO-d₆) : δ 12.49 (1H, br.s), 7.93 (2H, d, J=8.5Hz), 7.78 (2H, d, J=8.5Hz), 7.61-7.56 (2H, m), 7.55-7.42 (3H, m), 3.52 (2H, t, J=7.3Hz), 2.56 (2H, t, J=7.3Hz).

5

実施例8 (8)

3- [4-(2-ピリジルエチニル) フェニルスルホニル] プロピオン酸

10

TLC:Rf 0.39(クロロホルム:メタノール:酢酸= $1\ 0\ 0:1\ 0:1$)、NMR (CDCI $_3$ +CD $_3$ OD ($3\$ ãi)): δ 8.63 (1H, m), 7.94 (2H, d, J=8.6Hz), 7.83-7.73 (3H, m), 7.60 (1H, m), 7.36 (1H, m), 3.47 (2H, m), 2.75 (2H, m)。

15 実施例8 (9)

3- [4-(4-メトキシフェニルエチニル) フェニルスルホニル] プロピオン酸

20

TLC:Rf 0.42 (クロロホルム:メタノール:酢酸=100:10:1)、

NMR (CDCl₃+CD₃OD (3 滴)) : δ 7.87 (2H, d, J=8.6Hz), 7.66 (2H, d, J=8.6Hz), 7.50 (2H, d, J=9.0Hz), 6.91 (2H, d, J=9.0Hz), 3.85 (3H, s), 3.44 (2H, m), 2.73 (2H, m)。

5 実施例8 (10)

2-ベンジル-3- [4-(4-トリルエチニル) フェニルスルホニル] プロピオン酸

10

TLC: Rf 0.45 (クロロホルム:メタノール:酢酸=100:10:1)、NMR (CDCl₃+CD₃OD (3 滴)):87.77 (2H, d, J=8.6Hz), 7.62 (2H, d, J=8.6Hz), 7.45 (2H, d, J=8.1Hz), 7.30-7.15 (5H, m), 7.04 (2H, m), 3.67 (1H, m), 3.15-3.05 (3H, m), 2.82 (1H, m), 2.40 (3H, s)。

15

実施例8 (11)

3- (4-メトキシフェニルチオ) プロピオン酸

20

T L C : R f 0.48 (クロロホルム:メタノール=10:1)、 NMR (CDCl₃) : δ 7.39 (2H, d, J=8.8Hz), 6.85 (2H, d, J=8.8Hz), 3.80 (3H, s),

3.04 (2H, t, J=7.2Hz), 2.61 (2H, t, J=7.2Hz).

実施例9

N-t-プトキシ-3-(4-メトキシフェニルチオ) プロピオンアミド

5

実施例8 (11)で製造した化合物(1.00 g)のDMF(20ml)溶液に、 tープトキシアミン塩酸塩(652mg)、トリエチルアミン(0.8 ml)、 10 1-エチルー3-(3-ジメチルアミノプロピル)ーカルボジイミド(EDC) 塩酸塩(995mg)および1-ヒドロキシベンゾトリアゾール(HOBt) 水和物(795mg)を0℃で加えた。混合物を室温で16時間撹拌した。反 応混合物に酢酸エチルおよび水を加え、0.1 N塩酸水溶液、飽和炭酸水素ナトリ ウム水溶液、水および飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥 15 後、濃縮して以下の物性値を有する標題化合物(1.35 g)を得た。

TLC: Rf 0.76 (0.76 (0.76 (0.76) 0.76 (0.76

実施例9(1)

N —ベンジルオキシー3-(4 -メトキシフェニルチオ) プロピオンアミド

20

実施例8 (11) で製造した化合物 (300mg) およびベンジルオキシアミン塩酸塩 (271mg) を用いて、実施例9と同様の操作をして以下の物性 25 値を有する標題化合物 (423mg) を得た。

TLC: Rf 0.65 (クロロホルム:メタノール=10:1)、
NMR (DMSO-d₆):δ7.38 (5H, m), 7.33 (2H, d, J=8.6Hz), 6.91 (2H, d, J=8.6Hz),
4.77 (2H, s), 3.74 (3H, s), 3.01 (2H, t, J=7.4Hz), 2.21 (2H, t, J=7.4Hz)。

5 実施例10

N-ペンジルオキシ-3-(4-メトキシフェニルスルホニル) プロピオンアミド

10

実施例9(1)で製造した化合物(159mg)を用いて、実施例5と同様の操作をして以下の物性値を有する標題化合物(152mg)を得た。 TLC:Rf 0.48(クロロホルム:メタノール=20:1)。

15 参考例 3

20

実施例 8 (11) で製造した化合物 (106 mg) のDMF (5 ml) 溶液に、N-t-プトキシカルボニル-N-t-プトキシカルボニルオキシアミン (120 mg) 、EDC塩酸塩(106 mg)および <math>4- (ジメチルアミノ)

ピリジン (6 mg) を0℃で加えた。混合物を室温で16時間撹拌した。反応溶液に水を加え、酢酸エチルで抽出した。抽出液を飽和塩化アンモニウム水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮して以下の物性値を有する標題化合物 (211 mg) を得た。

T L C : R f 0.48 (ヘキサン:酢酸エチル=4 : 1)。 NMR (DMSO-d₆) : δ 7.35 (2H, d, J=8.6Hz), 6.93 (2H, d, J=8.6Hz), 3.74 (3H, s), 3.18 (2H, m), 3.05 (2H, m), 1.46 (9H, s), 1.43 (9H, s)。

10 参考例 4

5

N-t- プトキシカルボニル-N-t- プトキシカルボニルオキシ-3- (4 - メトキシフェニルスルフィニル) プロピオンアミド

15

参考例3で製造した化合物(190mg)を用いて、実施例4と同様の操作をして以下の物性値を有する標題化合物を定量的に得た。

TLC: Rf 0.36 (クロロホルム:メタノール=20:1)、

NMR (DMSO-d₆) : δ 7.58 (2H, d, J=8.6Hz), 7.15 (2H, d, J=8.6Hz), 3.83 (3H,

20 s), 3.28-3.08 (2H, m), 3.05-2.80 (2H, m), 1.46 (9H, s), 1.44 (9H, s).

実施例11

N-ヒドロキシ-3-(4-メトキシフェニルチオ) プロピオンアミド

実施例 9 で製造した化合物(200mg)および30%臭化水素酢酸(2ml)の混合物を室温で1時間半撹拌した。反応溶液を濃縮し、残渣をカラムクロマトグラフィー(クロロホルム:メタノール=10:1)で精製して以下の物性値を有する標題化合物(138mg)を得た。

TLC: Rf 0.33 (クロロホルム: メタノール= 10:1)、

NMR (DMSO-d₆) : δ 10.42 (1H, br.s), 8.79 (1H, s), 7.33 (2H, d, J=8.6Hz), 6.92 (2H, d, J=8.6Hz), 3.75 (3H, s), 3.01 (2H, t, J=7.4Hz), 2.20 (2H, t, J=7.4Hz),

10

15

5

実施例11(1)~11(2)

参考例4または実施例10で製造した化合物を用いて、実施例11と同様の操作(酸性条件下での脱保護;例えば、臭化水素酢酸、トリフルオロ酢酸を用いる。)またはそれと同じ目的である操作(加水素分解)を行ない、以下の化合物を得た。

実施例11(1)

N-ヒドロキシー3-(4-メトキシフェニルスルフィニル) プロピオンアミド

20

TLC: Rf 0.46 (クロロホルム: メタノール=4:1)。

NMR (DMSO- d_6): 8 10.50 (1H, br.s), 8.82 (1H, br.s), 7.58 (2H, d, J=8.6Hz),

7.15 (2H, d, J=8.6Hz), 3.82 (3H, s), 3.20-3.03 (1H, m), 3.00-2.83 (1H, m), 2.43-2.25 (1H, m), 2.10-1.93 (1H, m)。

実施例11(2)

5 N-ヒドロキシー3- (4-メトキシフェニルスルホニル) プロピオンアミド

TLC: Rf 0.66 (0.66), 0.66 (0.66), 0.66 (0.66), 0.66), 0.660, 0.661, 0.66

10 NMR (DMSO- d_6): δ 10.50 (1H, br.s), 8.85 (1H, s), 7.82 (2H, d, J=8.6Hz), 7.17 (2H, d, J=8.6Hz), 3.87 (3H, s), 3.43 (2H, m), 2.27 (2H, m).

実施例 1.2

2-t-プトキシカルボニルアミノ-3-(4-メトキシフェニルチオ) プロ 15 ピオン酸 ベンジルエステル

2-tーブトキシカルボニルアミノ-3-ヒドロキシプロピオン酸 ベンジルエステル (29.5 g) の塩化メチレン (300 ml) 溶液に、トリエチルアミン (21 ml) およびメシルクロリド (8.6 ml) を加え、4℃で30分間撹拌した。反応溶液を氷冷した1N塩酸中にあけ、得られた黄色の油状物質を塩化メチレン (300 ml) に溶解し、ジイソプロピルエチルアミン (17 ml)、4-

メトキシベンゼンチオール(12 m 1)を $4 \, \mathbb{C}$ で加え、室温で 3 時間撹拌し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=8:1)で精製して、以下の物性値を有する標題化合物(24.8 g)を得た。 TLC:Rf 0.65(酢酸エチル:n-ヘキサン=1:2)、

5 NMR (CD₃OD) :δ 7.42-7.20 (7H, m), 6.80 (2H, d, J=9.0Hz), 5.35 (1H, m), 5.02 (1H, d, J=12.5Hz), 4.85 (1H, d, J=12.5Hz), 4.55 (1H, m), 3.78 (3H, s), 3.25 (2H, d, J=5.0Hz), 1.40 (9H, s),

実施例 1 3

10 2-t-プトキシカルボニルアミノ-3-(4-メトキシフェニルスルホニル)プロピオン酸 ベンジルエステル

実施例12で製造した化合物(20.9 g)の塩化メチレン(200 m1)溶液に、70%m-クロロ過安息香酸(26.0 g)を加え、室温で72時間撹拌した。反応溶液を、水にあけ、塩化メチレンで抽出した。有機層を無水硫酸マグネシウムで乾燥後、ろ過し、濃縮した。残渣をn-ヘキサンで洗浄し、沈殿物を酢酸エチルに溶解した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、ろ過し、濃縮した。残渣をn-ヘキサンで洗浄して、以下の物性値を有する標題化合物(16.7 g)を得た。

TLC: Rf 0.29 (酢酸エチル: $n-\Lambda$ キサン=1:2)、

NMR (CD₃OD) : δ 7.78 (2H, d, J=9.0Hz), 7.45-7.30 (5H, m), 6.98 (2H, d, J=9.0Hz), 5.50 (1H, d, J=7.5Hz), 5.18 (1H, d, J=11.0Hz), 5.06 (1H, d, J=11.0Hz), 4.60 (1H, m), 3.88 (3H, s), 3.72 (2H, d, J=5.0Hz), 1.35 (9H, s)_o

<u>実施例14</u>

2-t-プトキシカルボニルアミノー3-(4-メトキシフェニルスルホニル) プロピオン酸

実施例13で製造した化合物(1.35 g)のTHF(15 m l)溶液に、10%パラジウムーカーボン(100 g)を窒素雰囲気下で加え、室温で45分間、水素雰囲気下で撹拌した。10%パラジウムーカーボンを除去後、溶液を濃縮した。残渣をエーテルで洗浄して、以下の物性値を有する標題化合物(1.02 g)を得た。

TLC:Rf 0.57 (クロロホルム:メタノール:酢酸=9:1:1)、 NMR (DMSO-d₆) : δ 7.79 (2H, d, J=8.8Hz), 7.16 (2H, d, J=8.8Hz), 7.05 (1H, d, J=8.4Hz), 4.26 (1H, m), 3.87 (3H, s), 3.61 (2H, m), 1.32 (9H, s)。

15

10

5

<u>実施例15</u>

2-アミノ-3- (4-メトキシフェニルスルホニル) プロピオン酸 ベンジルエステル 塩酸塩

実施例13で製造した化合物を用い、実施例8と同様の操作をして以下の物性値を有する標題化合物を得た。

- WO 97/49679

PCT/JP97/02200

TLC: Rf 0.54 (0.54),

NMR (DMSO- d_6) : δ 9.00-8.80 (3H, br), 7.85 (2H, d, J=9.0Hz), 7.42-7.35 (5H, m), 7.15 (2H, d, J=9.0Hz), 5.18 (1H, d, J=12.5Hz), 4.98 (1H, d, J=12.5Hz), 4.45 (1H, t, J=5.0Hz), 3.95 (2H, d, J=5.0Hz), 3.86 (3HJ, s).

5

<u>実施例16~16</u>(2)

実施例15で製造した化合物および相当するカルボン酸を用い、実施例9と 同様の操作をして以下の化合物を得た。

10 実施例 1 6

2-[N-[N-(t-プトキシカルボニル) フェニルグリシル] アミノ] <math>-3-(4-メトキシフェニルスルホニル) プロピオン酸 ベンジルエステル

15

20

TLC:Rf 0.51 (酢酸エチル: $n-\Delta$ キサン=1:1)、

NMR (DMSO- d_6) : δ 8.88 and 8.75 (total 1H, d and d, J=7.8 and 7.8Hz), 7.79 and 7.74 (total 2H, d and d, J=9.0 and 9.0Hz), 7.42-7.20 (10H, m), 7.14 and 7.10 (total 2H, d and d, J=9.0 and 9.0Hz), 5.20-4.95 (3H, m), 4.80-4.65 and 4.63-4.45 (total 1H, m and m), 3.88 and 3.87 (total 3H, s and s), 3.80-3.60 (2H, m), 1.38 (9H, s).

実施例 1 6 (1)

2-アセチルアミノー3-(4-メトキシフェニルスルホニル)プロピオン酸 ペンジルエステル

⁵ NMR (CDCl₃): δ 7.76 (2H, d, J=9.2Hz), 7.45-7.30 (5H, m), 6.99 (2H, d, J=9.2Hz), 6.54 (1H, d, J=7.0Hz), 5.19 (1H, d, J=11.8Hz), 5.09 (1H, d, J=11.8Hz), 4.87 (1H, m), 3.88 (3H, s), 3.80-3.70 (2H, m), 1.93 (3H, s)。

実施例16(2)

15 TLC: Rf 0.31 (酢酸エチル: $n-\Lambda$ キサン=1:1)、

NMR (DMSO- d_6): δ 8.40 (1H, d, J=8.0Hz), 7.80 (2H, d, J=9.0Hz), 7.45-7.25 (5H, m), 7.18 (2H, d, J=9.0Hz), 6.95 (1H, m), 5.08 (2H, s), 4.70 (1H, m), 3.88 (3H, s), 3.80-3.60 (2H, m), 3.45-3.30 (2H, m, overlap with H₂O in DMSO), 1.40 (9H, s)_o

実施例 1.7~1.7.(2)

20

実施例16~16(2)で製造した化合物を用い、実施例14と同様の操作

をして以下の化合物を得た。

<u>実施例17</u>

2-[N-[N-(t-プトキシカルボニル) フェニルグリシル] アミノ] -5 3-(4-メトキシフェニルスルホニル) プロピオン酸

TLC:Rf 0.30 (クロロホルム:メタノール:酢酸=90:10:1)、
NMR (CD₃OD): 87.81 and 7.72 (total 2H, each d, J=9.2Hz), 7.35 (5H, m),
7.10 and 7.50 (total 2H, each d, J=9.2Hz), 5.11 and 5.03 (total 1H, each brs),
4.76 and 4.55 (total 1H, each dd, J=8.6Hz, 3.7Hz), 3.90 and 3.89 (total 3H, each s), 3.84-3.57 (2H, m), 1.44 (9H, s)。

15 実施例 1 7 (1)

2-アセチルアミノー3- (4-メトキシフェニルスルホニル) プロピオン酸

20 TLC: Rf 0.46 (酢酸エチル: 酢酸: 水=3:1:1)、
NMR (CDCI₃+CD₃OD): δ 7.82 (2H, d, J=8.8Hz), 7.03(2H, d, J=8.8Hz), 4.73

(1H, m), 3.89 (3H, s), 3.82-3.70 (2H, m), 1.91 (3H, s).

実施例17(2)

2-[N-[N-(t-プトキシカルボニル) グリシル] アミノ] -3-(45 -メトキシフェニルスルホニル) プロピオン酸

TLC:Rf 0.38 (クロロホルム:メタノール:酢酸=80:20:1)、 NMR (CDCI₃+CD₃OD): δ 7.82 (2H, d, J=9.0Hz), 7.03 (2H, d, J=9.0Hz), 4.75 (1H, m), 3.89 (3H, s), 3.75 (4H, m), 1.46 (9H, s)。

実施例18~18(2)

実施例 1 6. (2) で製造した化合物を用い、実施例 8 → 実施例 9 (相当する カルボン酸を用いる。) → 実施例 1 4 と同様の操作をして以下の化合物を得た。

<u>実施例18</u>

2-[N-[N-(t-プトキシカルボニル) フェニルグリシルーグリシル] アミノ] -3-(4-メトキシフェニルスルホニル) プロピオン酸

20

TLC:Rf 0.43 (クロロホルム:メタノール:酢酸=80:20:1)、NMR (DMSO-d₆): 88.29 (2H, m), 7.77 and 7.75 (total 2H, each d, J=9.0Hz), 7.41 (2H, m), 7.30 (4H, m), 7.12 and 7.10 (total 2H, each d, J=9.0Hz), 5.25 (1H, m), 4.53 (1H, m), 3.84 and 3.82 (total 3H, each s), 3.78-3.45 (4H, m), 1.38 (9H, s)。

<u>実施例18(1)</u>

10 2-[N-(N-rセチルグリシル) rミノ] -3-(4-メトキシフェニル スルホニル) プロピオン酸

15 TLC:Rf 0.32 (酢酸エチル:酢酸:水=3:1:1)、
NMR (DMSO-d₆+CD₃OD):δ 7.80 (2H, d, J=8.8Hz), 7.15 (2H, d, J=8.8Hz),
4.60 (1H, dd, J=8.3 and 4.0Hz), 3.89 (3H, s), 3.85-3.50 (4H, m), 1.89 (3H, s)。

<u>実施例18(2)</u>

2-[N-[N-(ベンジルカルボニル) グリシル] アミノ] <math>-3-(4-)トキシフェニルスルホニル) プロピオン酸

5

TLC:Rf 0.61 (酢酸エチル:酢酸:水=3:1:1)、 NMR (DMSO-d₆+CD₃OD): δ 7.79 (2H, d, J=8.8Hz), 7.40-7.20 (5H, m), 7.12 (2H, d J=8.8Hz), 4.59 (1H, m), 3.85 (3H, s), 3.82-3.40 (6H, m)。

10 実施例 19~19(6)

実施例14、17~17 (2)、18~18 (2)で製造した化合物を用い、 実施例9→実施例14と同様の操作をして以下の化合物を得た。

<u>実施例19</u>

15 N-ヒドロキシー 2-t - \mathcal{I} トキシカルボニルアミノー 3-(4- \mathbf{I} \mathbf{I}

· 20 TLC:Rf 0.62 (クロロホルム:メタノール:酢酸=9:1:1)。

実施例19(1)

5

10

N-ヒドロキシー2-[N-[N-(t-プトキシカルボニル) フェニルグリシル] アミノ] <math>-3-(4-メトキシフェニルスルホニル) プロピオンアミド

TLC: Rf 0.55 (クロロホルム:メタノール:酢酸=90:10:1)、NMR (DMSO- d_6): δ 10.65 (1H, br), 9.04 and 8.98 (total 1H, each br), 8.59 and 8.57 (total 1H, each d, J=8.2Hz), 7.77 and 7.66 (total 2H, each d, J=9.0Hz), 7.32 (6H, m), 7.13 and 7.08 (total 2H, each d, J=9.0Hz), 5.00 (1H, d, J=8.2Hz), 4.50 (1H, m), 3.87 (3H, s), 3.59 (2H, m), 1.38 (9H, s)。

<u>実施例19(2)</u>

N-ヒドロキシー2-アセチルアミノー3-(4-メトキシフェニルスルホニ 15 ル) プロピオンアミド

TLC:Rf 0.31 (クロロホルム:メタノール:酢酸=80:10:1)、
NMR (DMSO-d₆):δ11.00-8.60 (2H, br), 8.06 (1H, d, J=8.6Hz), 7.76 (2H, d, J=8.0Hz), 7.14 (2H, d, J=8.0Hz), 4.56 (1H, m), 3.86 (3H, s), 3.55 (2H, m), 1.63

(3H, s)。

<u>実施例19 (3)</u>

N-EFD+v-2-[N-[N-(t-T)+v)] N-EFD+v=1 N-EFD+v=1

TLC:Rf 0.40 (クロロホルム:メタノール:酢酸=90:10:1)、
NMR (DMSO-d₆): δ 10.62 (1H, brs), 8.99 (1H, brs), 8.15 (1H, d, J=8.4Hz),
7.75 (2H, d, J=8.8Hz), 7.14 (2H, d, J=8.8Hz), 6.87 (1H, m), 4.59 (1H, m), 3.87 (3H, s), 3.65-3.24 (4H, m), 1.39 (9H, s)。

実施例19(4)

TLC:Rf 0.45 (クロロホルム:メタノール:酢酸=90:10:1)、NMR (DMSO-d₆): δ11.00-10.40 (1H, br), 9.20-8.60 (1H, br), 8.23 (2H, m), 7.75 and 7.73 (total 2H, each d, J=8.6Hz), 7.44-7.29 (6H, m), 7.12 and 7.08 (total 2H, each d, J=8.6Hz), 5.24 (1H, m), 4.60 (1H, m), 3.83 and 3.80 (total 3H, each s), 3.66-3.33 (4H, m, overlap with H2O in DMSO), 1.38 (9H, s)。

実施例19(5)

15 TLC: Rf 0.45 (酢酸エチル:酢酸:水=3:1:1)、
NMR (DMSO-d₆+CD₃OD): δ7.76 (2H, m), 7.14 (2H, m), 4.60 (1H, m), 3.87 (3H, s), 3.70-3.30 (4H, m), 1.87 (3H, s)。

<u>実施例19(6)</u>

 $N-ヒドロキシ-2-[N-[N-(ベンジルカルボニル) グリシル] アミノ] \\ -3-(4-メトキシフェニルスルホニル) プロピオンアミド$

5

TLC:Rf 0.37 (クロロホルム:メタノール:酢酸=90:10:1)、NMR (DMSO-d₆+CD₃OD) : δ 7.78 (2H, m), 7.30 (7H, m), 4.60 (1H, m), 3.90-3.30 (9H, m)。

10 実施例20~20(4)

実施例14、19、17、19(1)、19(4)で製造した化合物を用い、 実施例8と同様の操作をして以下の化合物を得た。

実施例 2 0

15 2-アミノー3-(4-メトキシフェニルスルホニル)プロピオン酸 トリフルオロ酢酸塩

20 TLC:Rf 0.60 (クロロホルム:メタノール:酢酸=5:4:1)、NMR (CD₃OD): δ 7.94 (2H, d, J=9.2Hz), 7.18 (2H, d, J=9.2Hz), 4.43 (1H, dd, J=8.6Hz, 3.4Hz), 3.92 (3H, s), 3.89 (1H, dd, J=15.2Hz, 3.4Hz), 3.71 (1H, dd,

J=15.2Hz, 8.6Hz).

<u>実施例20(1)</u>

TLC:Rf 0.64 (クロロホルム:メタノール:酢酸=5:4:1)、
NMR (DMSO-d₆):δ 11.38 (1H, s), 9.60-9.25 (1H, br), 8.90-8.50 (3H, br), 7.90 (2H, d, J=8.8Hz), 7.21 (2H, d, J=8.8Hz), 3.90 (4H, m), 3.75 (2H, m)。

実施例20(2)

2-[N-(フェニルグリシル)アミノ]-3-(4-メトキシフェニルスルホニル)プロピオン酸 トリフルオロ酢酸塩

TLC:Rf 0.24 and 0.29 (酢酸エチル:酢酸:水=3:1:1)、
NMR (CD₃OD): δ 7.83 and 7.67 (total 2H, each d, J=8.8Hz), 7.48 (5H, m), 7.13 and 7.03 (total 2H, each d, J=8.8Hz), 4.88 and 4.61 (total 2H, each m, overlap with H₂O in CD₃OD), 3.91 and 3.89 (total 3H, each s), 3.80 and 3.73

(total 1H, each m), 3.62-3.50 (1H, m).

<u>実施例20 (3)</u>

N-ヒドロキシー 2-[N-(フェニルグリシル) アミノ]-3-(4-メト 5 キシフェニルスルホニル) プロピオンアミド トリフルオロ酢酸塩

TLC: Rf 0.46 and 0.51 (酢酸エチル: 酢酸: 水=3:1:1)、

NMR (DMSO-d₆): δ 10.90 (1H, br), 9.04 (2H, m), 8.58 (3H, br), 7.82 and 7.58 (total 2H, each d, J=8.8Hz), 7.45 (5H, m), 7.17 and 7.06 (total 2H, each d, J=8.8Hz), 4.98 and 4.81 (total 1H, each br), 4.50 (1H, m), 3.88 and 3.86 (total 3H, each s), 3.64 (1H, m), 3.40 (1H, m, overlap with H₂O in DMSO)_o

15 実施例20(4)

N-ヒドロキシ-2-[N-(フェニルグリシルーグリシル) アミノ] -3-(4-メトキシフェニルスルホニル) プロピオンアミド トリフルオロ酢酸塩

20

TLC: Rf 0.48 (酢酸エチル: 酢酸: 水=3:1:1)、

NMR (DMSO- d_6) : δ 10.81 (1H, m), 9.00 (1H, m), 8.64 (4H, m), 8.35 (1H, m), 7.77 and 7.74 (total 2H, each d, J=8.8Hz), 7.53 (2H, m), 7.43 (3H, m), 7.15 and 7.07 (total 2H, each d, J=8.8Hz), 5.07 (1H, m), 4.61 (1H, m), 3.87 and 3.79 (total 3H, each s), 3.68-3.34 (4H, m, overlap with H_2O in DMSO).

<u>参考例 5</u>

S-オキシラン酸 t-ブチルエステル

10

5

TLC:Rf 0.70 (酢酸エチル:n-ヘキサン=1:3)、 NMR (CDCL): 83.32 (1H dd J-28Hz 3.7Hz) 2.04 2.05 (0H - x)

NMR (CDCl₃) : δ 3.32 (1H, dd, J=2.8Hz, 3.7Hz), 2.94-2.85 (2H, m), 1.50 (9H, s).

20

15

実施例21

2R-ヒドロキシー3-(4-プロモフェニルスルホニル) プロピオン酸 <math>t

参考例 5 で製造した化合物(565 mg)の水(8.0 ml) + ベンゼン (8.0 ml) 混合溶媒の溶液に、ポリエチレングリコール 4 0 0 0 (98 mg)、 4 ープロモフェニルスルフィン酸ナトリウム(4.3 g)加え、7 時間還流した。 反応溶液を水にあけ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥後、ろ過し、濃縮した。残渣をシリカゲルカラム クロマトグラフィー (トルエン:酢酸エチル=8:1) で精製して、以下の物性値を有する標題化合物(490 mg)を得た。

TLC: Rf 0.56 (酢酸エチル: n-ヘキサン=1:2)、
NMR (CDCl₃): δ 7.28 (2H, d, J=8.8Hz), 7.70 (2H, d, J=8.8Hz), 4.55-4.48 (1H, m), 3.63 (1H, dd, J=3.0, 14.7Hz), 3.44 (1H, dd, J=7.9, 14.7Hz), 3.08 (1H, d, J=4.1HZ), 1.51 (9H, s)。

15 実施例22

2R-ヒドロキシ-3-[4-(4-トリルエチニル)フェニルスルホニル] プロピオン酸

20

5

実施例21で製造した化合物を用い、実施例7→実施例8と同様の操作をして以下の物性値を有する標題化合物を得た。

TLC:Rf · 0.23 (クロロホルム:メタノール:酢酸=8:1:1)、

NMR (DMSO- d_6) : δ 7.91 (2H, d, J=8.0Hz), 7.75 (2H, d, J=8.0Hz), 7.50 (2H, d, J=8.0Hz), 7.27 (2H, d, J=8.0Hz), 4.22-4.26 (1H, m), 3.46-3.64 (2H, m), 2.35 (3H, s).

5 実施例23

2 S-ヒドロキシ-3- [4-(4-トリルエチニル) フェニルスルホニル] プロピオン酸

10

参考例 5 で、Sーオキシラン酸カリウムのかわりにRーオキシラン酸カリウムを用い、参考例 5 →実施例 2 1 →実施例 7 →実施例 8 と 同様の操作をして以下の物性値を有する標題化合物を得た。

TLC:Rf 0.25 (クロロホルム:メタノール:酢酸=8:1:1)、
NMR (DMSO-d₆):δ13.21-12.23 (1H, br.), 7.92 (2H, d, J=8.5 Hz), 7.76 (2H, d, J=8.5 Hz), 7.50 (2H, d, J=8.2 Hz), 7.27 (2H, d, J=8.2 Hz), 4.41-4.35 (1H, m), 3.75-3.56 (2H, m), 2.36 (3H, s)。

実施例24

20 3- [4-(4-トリルエチニル) フェニルスルホニル] 酪酸

実施例1で、2-プロペニル酸 t-プチルエステルおよび4-アミノチオフェノールのかわりに2-プテニル酸 t-ブチルエステルおよび4-プロモチオフェノールを用い、実施例1→実施例5→実施例7→実施例8と同様の操作をして以下の物性値を有する標題化合物を得た。

TLC:Rf 0.47 (クロロホルム:メタノール:水=4:1:0.1)、 NMR (DMSO- d_6): δ 7.92 (2H, d, J=8.6Hz), 7.81 (2H, d, J=7.8Hz), 7.52 (2H, d, J=8.6Hz), 7.29 (2H, d, J=7.8Hz), 3.71-3.60 (1H, m), 2.76 (1H, dd, J=16.3Hz, 4.7Hz), 2.43-2.30 (4H, m), 1.24 (3H, d, J=7.0Hz)。

10

5

実施例 2 5

3- [4-(4-トリルカルボニルメチル) フェニルスルホニル] プロピオン 酸

15

実施例 6 で製造した化合物を用い、実施例 7 →実施例 8 と同様の操作をして 以下の物性値を有する標題化合物を得た。

TLC:Rf 0.46(酢酸エチル:酢酸=99:1)、

20 NMR (DMSO-d₆): δ 7.96 (2H, d, J=8.2Hz), 7.84 (2H, d, J=8.2Hz), 7.54 (2H, d, J=8.2Hz), 7.36 (2H, d, J=8.2Hz), 4.54 (2H, s), 3.51 (2H, t, J=7.4Hz), 2.60-2.45 (2H), 2.39 (3H,s)₆

実施例 2 6

25 3- [4-(4-トリルビニル)フェニルスルホニル] プロピオン酸

(1) 中間体:3 - [4 - [2 - ヒドロキシ-2 - (4 - トリル) エチル] フェニル] スルホニルプロピオン酸の製造

5 実施例25で製造した化合物(347mg)のエタノール(20ml)溶液に水素化ホウ素ナトリウム(111mg)を加え、室温で1時間撹拌した。反応混合物を濃縮し、1N塩酸で中和し、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、濃縮し、エーテルで洗浄して以下の物性値を有する上記中間体(273mg)を得た。

TLC:Rf 0.33 (クロロホルム:メタノール:酢酸=90:10:1)、NMR (CD₃OD):δ7.76 (2H, d, J=8.4Hz), 7.39 (2H, d, J=8.4Hz), 7.16 (2H, d, J=8.2Hz), 7.10 (2H, d, J=8.2Hz), 4.94-4.78 (1H), 3.45 (2H, t, J=7.0Hz), 3.20-2.98 (2H,m), 2.61 (2H, t, J=7.0Hz), 2.29 (3H, s)。

(2)標題化合物: 3-[4-(4-トリルビニル) フェニルスルホニル] プロピオン酸の製造

上記で得られた中間体(273mg)のトルエン溶液(10ml)にpートルエンスルホン酸・1水和物(30mg)を加え、50℃で2時間、70℃で2時間、30mg)を加え、50℃で2時間、70℃で2時間、さらに90℃で4時間撹拌した。反応混合物を室温まで冷却した後、

20 ろ過し、以下の物性値を有する標題化合物(221mg)を得た。

TLC:Rf 0.25 (クロロホルム:メタノール=85:15)、

NMR (CDCI₃+CD₃OD) : δ 7.87 (2H, d, J=8.4Hz), 7.67 (2H, d, J=8.4Hz), 7.45 (2H, d, J=8.0Hz), 7.25 (1H, d, J=16.2Hz), 7.20 (2H, d, J=8.2Hz), 7.08 (1H, d, J=16.2Hz), 3.44 (2H, t, J=7.2Hz), 2.73 (2H, t, J=7.2Hz), 2.38 (3H, s)_o

25

<u>実施例27~27 (2)</u>

参考例2で製造した化合物を用い、実施例7→実施例8と同様の操作をして 以下の化合物を得た。

実施例 2.7

5 2-メチル-3-[4-(1-ヘプチニル) フェニルスルホニル] プロピオン酸

10 TLC: Rf 0.33 (クロロホルム:メタノール=9:1)、

NMR (DMSO-d₆) : δ 12.53 (1H, br s), 7.82 (2H, d, J=8.4Hz), 7.61 (2H, d, J=8.4Hz), 3.61 (1H, dd, J=7.4Hz, J=14.6Hz), 3.39 (1H, dd, J=5.3Hz, J=14.6Hz), 2.70-2.56 (1H, m), 2.45 (2H, t, J=7.2Hz), 1.64-1.22 (6H, m), 1.14 (3H, d, J=7.4Hz), 0.87 (3H, t, J=6.8 Hz)_o

実施例 2 7 (1)

15

20

2-メチル-3- [4-(2-ベンゾフラニル) フェニルスルホニル] プロピオン酸

NMR (DMSO- d_6) : δ 12.57 (1H, br s), 8.17 (2H, d, J=8.2Hz), 7.99 (2H, d,

J=8.2Hz), 7.74-7.65 (3H, m), 7.43-7.26 (2H, m), 3.67 (1H, dd, J=7.0Hz, J=14.7Hz), 3.45 (1H, dd, J=5.3Hz, J=14.7Hz), 2.80-2.63 (1H, m), 1.17 (3H, d, J=7.0Hz).

5 実施例27(2)

2-メチル-3- [4-(4-ヒドロキシ-プチ-1-ニル) フェニルスルホニル] プロピオン酸

10

TLC:Rf 0.36 (クロロホルム:メタノール:酢酸=9:1:0.5)、NMR (DMSO-d $_6$): δ 7.83 (2H, d, J=8.4Hz), 7.62 (2H, d, J=8.4Hz), 4.07 (1H, br s), 3.66 (1H, dd, J=7.2Hz, J=14.9Hz), 3.58 (2H, t, J=6.7Hz), 3.34-3.25 (2H, m), 2.58 (2H, t, J=6.7Hz), 1.12 (3H, d, J=7.2Hz)。

15

実施例28~28 (3)

実施例27~27 (2)、8 (5)で製造した化合物を用い、実施例9→実施例11と同様の操作をして以下の化合物を得た。

20 実施例 2 8

N-ヒドロキシー2-メチルー3- [4-(1-ヘプチニル) フェニルスルホニル] プロピオンアミド

TLC: Rf 0.34 (クロロホルム: メタノール=9:1)、

NMR (DMSO-d₆): δ 10.54 (1H, br s), 7.82 (2H, d, J=8.6Hz), 7.60 (2H, d, J=8.6Hz), 3.55 (1H, dd, J=7.3Hz, J=14.3Hz), 3.28 (1H, dd, J=5.1Hz, J=14.3Hz), 2.64-2.39 (3H, m), 1.63-1.21 (6H, m), 1.06 (3H, d, J=7.3Hz), 0.87 (3H, t, J=7.1Hz)₀

<u>実施例28(1)</u>

N-ヒドロキシー2-メチルー3-[4-(2-ベンゾフラニル) フェニルス 10 ルホニル] プロピオンアミド

TLC: Rf 0.22 ($\rho \Box \Box \pi \nu \Delta$: $\lambda \rho / - \nu = 9:1$).

15 NMR (DMSO-d₆): δ 10.57 (1H, br s), 8.80 (1H, br s), 8.16 (2H, d, J=8.6Hz), 7.98 (2H, d, J=8.6Hz), 7.74-7.65 (3H, m), 7.43-7.26 (2H, m), 3.61 (1H, dd, J=7.3Hz, J=14.3Hz), 3.32 (1H, dd, J=5.2Hz, J=14.3Hz), 2.59 (1H, m), 1.09 (3H, d, J=7.3Hz)。

20 <u>実施例 2 8 (2)</u>

N-ヒドロキシー2-メチルー3-[4-(4-ヒドロキシープチー1-ニル)フェニルスルホニル] プロピオンアミド

TLC:Rf 0.20 (クロロホルム:メタノール:酢酸=9:1:0.5)、NMR (DMSO-d₆):δ 10.54 (1H, br s), 8.79 (1H, s), 7.82 (2H, d, J=8.3Hz), 7.61 (2H, d, J=8.3Hz), 3.66-3.48 (3H, m), 3.38-3.20 (1H, m), 2.61-2.50 (3H, m), 1.05 (3H, d, J=7.0Hz)。

<u>実施例28 (3)</u>

N-ヒドロキシー2-メチルー3-[4-(4-トリルエチニル) フェニルス 10 ルホニル] プロピオンアミド

TLC: Rf 0.29 ($\rho \Box \Box \pi \nu \Delta : \forall \beta / - \nu = 9 : 1$)

15 NMR (DMSO-d₆): δ 10.56 (1H, br s), 7.89 (2H, d, J=8.8Hz), 7.76 (2H, d, J=8.8Hz), 7.48 (2H, d, J=8.0Hz), 7.25 (2H, d, J=8.0Hz), 3.59 (1H, dd, J=7.1Hz, J=14.4Hz), 3.32 (1H, dd, J=5.0Hz, J=14.4Hz), 2.67-2.54 (1H, m), 2.33 (3H, s), 1.07 (3H, d, J=7.1Hz)_o

20 実施例 2 9

3- [4-(フェニルエチニル) フェニルスルフィニル] プロピオン酸

実施例1 (1) で製造した化合物を用い、参考例1→実施例4→実施例7と同様の操作をして3- [4-(フェニルエチニル)フェニルスルフィニル] プロピオン酸 t-ブチルエステル (標題化合物のt-ブチルエステル体)を得た。得られたt-ブチルエステル体を用い、実施例8と同様の操作をして以下の物性値を有する標題化合物を得た。

TLC:Rf 0.37 (クロロホルム:メタノール:水=4:1:0.1)、 NMR (DMSO-d₆): δ 7.79-7.72 (4H, m), 7.63-7.58 (2H, m), 7.48-7.44 (3H, m), 3.37-3.23 (1H, m), 3.07-2.93 (1H, m), 2.69-2.50 (1H, m), 2.42-2.27 (1H, m)。

実施例30

3- [4- (フェニルエチニル) フェニルチオ] プロピオン酸

15

. 20

5

10

実施例 290 途中で得られた t-7 チルエステル体($46\,\mathrm{mg}$)の THF($2\,\mathrm{ml}$)溶液にローソン試薬(Lawesson's Reagent)($55\,\mathrm{mg}$)を $0\,\mathrm{C}$ で加え、 $0\,\mathrm{C}$ で 15 分間撹拌した。反応溶液を濃縮し得られたオイルをシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール =97:3)で精製して、以下の物性値を有する標題化合物($11\,\mathrm{mg}$)を得た。

TLC:Rf 0.49 (クロロホルム:メタノール:水=4:1:0.1)、

NMR (CDCI₃+CD₃OD (2 滴)): δ 7.55-7.29 (9H, m), 3.20 (2H, t, J=7.4Hz), 2.65(2H, t, J=7.4Hz)。

<u>実施例31</u>

5 3- [4-(ベンゾイルアミノ) フェニルスルホニル] プロプー2-エン酸

実施例1で、2ープロペニル酸 tーブチルエステルのかわりに2ープロピニル酸 tーブチルエステルを用い、実施例1→実施例2→実施例4と同様の操作をした後、シリカゲルカラムを通してE/Z体を分離し、さらに実施例8と同様の操作をして以下の物性値を有する標題化合物を得た。

(1) シス体

10

TLC:Rf 0.68 (クロロホルム:メタノール:水=6:4:0.5)、NMR (DMSO-d₆):δ 10.72 (1H, s), 8.09 (2H, d, J=8.9Hz), 8.00 (2H, d, J=7.8Hz), 7.90 (2H, d, J=8.9Hz), 7.62-7.56 (3H, m), 6.93 (1H, d, J=12.7Hz), 6.83 (1H, d, J=12.7Hz)。

20 (2) トランス体

TLC: Rf 0.70 (クロロホルム: メタノール: x=6:4:0.5)、

NMR (DMSO- d_6) : δ 10.73 (1H, s), 8.12 (2H, d, J=9.0Hz), 8.02-7.92 (4H, m), 7.63-7.57 (3H, m), 7.66 (1H, d, J=13.8Hz), 6.67 (1H, d, J=13.8Hz).

実施例32

5 3-(4-プロモフェニルスルホニル)プロピオン酸

実施例 6 で製造した化合物を用い、実施例 8 と同様の操作をして以下の物性 10 値を有する標題化合物を得た。

TLC:Rf 0.41 (クロロホルム:メタノール:酢酸=100:10:1)、NMR (CDCl₃+CD₃OD (3 滴)):87.79 (2H, d, J=9.0Hz), 7.74 (2H, d, J=9.0Hz), 3.44 (2H, m), 2.72 (2H, m)。

15 [製剤例]

製剤例1

以下の各成分を常法により混合した後打錠して、一錠中に50mgの活性成分を含有する錠剤100錠を得た。

・3 - [4 - (フェニルカルボニルアミノ) フェニルスルホニル]

20	プロピオン酸	•••••	5.0	g
	・カルボキシメチルセルロースカルシウム(崩壊剤)	•••••	0.2	g
	・ステアリン酸マグネシウム(滑沢剤)	•••••	0.1	g
	・微結晶セルロース	•••••	4.7	g

25 製剤例 2

以下の各成分を常法により混合した後、溶液を常法により滅菌し、5mlず つアンプルに充填し、常法により凍結乾燥し、1アンプル中20mgの活性成 分を含有するアンプル100本を得た。

・3- [4- (フェニルカルボニルアミノ) フェニルスルホニル]

プロピオン酸

..... 2.0 g

・マンニトール

..... 2 0 g

5 . 蒸留水

-----1000 m l

請求の範囲

1. 一般式(I)

 $A-J-E \xrightarrow{R^1} (O)_n R^3 R^4$ $R^5 R^6 R^2$ (I)

5

(式中、R1は、水素原子、またはC1~4アルキル基を表わし、

R²は、-COOR⁷基または-CONHOR⁸基を表わし、

 R^7 は、水素原子、 $C1\sim 8$ アルキル基、フェニル基、あるいはフェニル基、 $-OCOR^{23}$ 基(基中、 R^{23} は $C1\sim 4$ アルキル基を表わす。)または $-CONR^{24}R^{25}$ 基(基中、 R^{24} および R^{25} はそれぞれ独立して、水素原子または $C1\sim 4$ アルキル基を表わす。)で置換された $C1\sim 4$ アルキル基を表わし、

R®は、水素原子、C1~8アルキル基、フェニル基、またはフェニル基で置換されたC1~4アルキル基を表わし、

- 15 Eは、 $-CONR^9-基$ 、 $-NR^9CO-基$ 、-OCO-基、-COO-基、 $-CH_2-O-基$ 、 $-CH_2-B$ または-C=C-B (基中、 $-CH_2-B$) ないまた、 $-CH_2-B$ ないて左側の結合手が」基に結合するものとする。)を表わし、
- 20 Jは、単結合またはC1~8アルキレン基を表わし、Aは、
 - 1) 水素原子、
 - 2) C1~8アルキル基、
 - 3) Ar基(Arは、炭素環または複素環を表わし、1から3個の、
- 25 i) C1~15アルキル基、
 - ii) C1~15アルコキシ基、

- iii) ハロゲン原子、
- iv) ニトロ基、
- v) シアノ基、
- vi) グアニジノ基、
- ⁵ vii) アミジノ基、
 - viii) 水酸基、
 - ix) ベンジルオキシ基、
- x) N R ¹² R ¹³ 基 (基中、R ¹² および R ¹³ はそれぞれ独立して、水素原子、 C 1 ~ 4 アルキル基または - C O O R ¹⁴ 基 (基中、R ¹⁴ は C 1 ~ 4 アルキル基 10 またはベンジル基を表わす。)を表わす。)、
 - xi) $-COOR^{15}$ 基(基中、 R^{15} は水素原子、 $C1\sim4$ アルキル基、フェニル基、またはフェニル基で置換された $C1\sim4$ アルキル基を表わす。)、
 - xii) トリフルオロメチル基、
 - xiii) 炭素環基、
- 15 xiv) 複素環基または
 - xv) 水酸基、 $C1\sim4$ アルコキシ基、 $NR^{12}R^{13}$ 基(基中、 R^{12} および R^{13} は前記と同じ意味を表わす。)、 $-COOR^{15}$ 基(基中、 R^{15} は前記と同じ意味を表わす。)、炭素環または複素環で置換された $C1\sim4$ アルキル基で置換されていてもよい。)または
- 20 4) 水酸基またはC1~4アルコキシ基で置換されたC1~4アルキル基を表わすか、あるいは

A、JおよびE基が一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、 $NR^{16}R^{17}$ 基(基中、 R^{16} および R^{17} はそれぞれ独立して、水素原子、 $C1\sim4$ アルキル

25 基、-COOR¹⁸基(基中、R¹⁸はC1~4アルキル基またはベンジル基を表わす。)を表わす。)または複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、

NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。) または CONR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。) で 置換されてもよい。) を表わし、

R³およびR⁴は、それぞれ独立して、

- 5 (1) 水素原子、
 - (2) C1~8アルキル基(ただし、基中のC1~8アルキル基の炭素原子1個は硫黄原子1個に置き換わっていてもよいものとする。)、
 - (3) COOR 19基(基中、R 19は水素原子、C 1 ~ 8 アルキル基、フェニル基、またはフェニル基で置換されたC 1 ~ 4 アルキル基を表わす。)、
- 10 (4) Ar_1 基(Ar_1 は炭素環または複素環を表わし、1から3個の $C1\sim 4$ アルキル基、 $C1\sim 4$ アルコキシ基、ハロゲン原子、水酸基またはトリフルオロメチル基で置換されていてもよい。)、
 - (5) 水酸基、
- (6) $-NR^{20}R^{21}$ 基(基中、 R^{20} および R^{21} はそれぞれ独立して、水素原子、 15 $C1\sim 4$ アルキル基、 $-COOR^{22}$ 基または $-COR^{22}$ 基(基中、 R^{22} は $C1\sim 4$ アルキル基またはベンジル基を表わす。)、
 - (7) A (2) 本 (基中、R*は、水素原子またはフェニル 本 (基中、R*は、水素原子またはフェニル 基を表わし、R*は、水素原子、-COOR²²基または-COR²²基(基中、R²²は前記と同じ意味を表わす。)を表わし、pは、1または2を表わす。)
- 20 または
 - (8)置換基として、
 - (a) COOR¹⁹基(基中、R¹⁹は前記と同じ意味を表わす。)、
 - (b) C1~4アルコキシ基、
 - (c) 水酸基、
- 25 (d) ペンジルオキシ基、
 - (e) N R ²⁰ R ²¹基 (基中、 R ²⁰および R ²¹は前記と同じ意味を表わす。) または、

(f) Ar₁基(基中、Ar₁は前記と同じ意味を表わす。)

からなる群から選ばれる基で置換されたC1~8アルキル基(ただし、基中のC1~8アルキル基の炭素原子1個は硫黄原子1個に置き換わっていてもよいものとする。)を表わすか、もしくはR³およびR⁴が結合する炭素原子と一緒になってC3~7シクロアルキル基を表わし、

R⁵およびR⁶は、水素原子またはメチル基を表わすか、もしくは R³およびR⁵が一緒になって単結合を形成し、R⁴およびR⁶は前記と同じ意味 を表わし、

nは0、1または2を表わす。ただし、A、JおよびEが-緒になって、フェ 10 ニル基を表わし、かつ R^2 がCONHOH基を表わす時、nは1または2を表わす。)

で示されるアリール(スルフィド、スルホキシド、スルホン)誘導体、または それらの非毒性塩を有効成分として含有するマトリックスメタロプロテイナー ゼ阻害剤。

15

2. 一般式(I)

$$A-J-E \xrightarrow{R^1} (O)_n R^3 R^4$$

$$R^5 R^6 R^2$$
(I)

20 (式中、 R^1 は、水素原子、または $C1\sim4$ アルキル基を表わし、

R²は、-COOR⁷基または-CONHOR⁸基を表わし、

 R^7 は、水素原子、 $C1\sim8$ アルキル基、フェニル基、あるいはフェニル基、 $-OCOR^{23}$ 基(基中、 R^{23} は $C1\sim4$ アルキル基を表わす。)または $-CONR^{24}R^{25}$ 基(基中、 R^{24} および R^{25} はそれぞれ独立して、水素原子または $C1\sim4$ アルキル基を表わす。)で置換された $C1\sim4$ アルキル基を表わし、

_ WO 97/49679 _ _ PCT/JP97/02200

 R^8 は、水素原子、 $C1\sim8$ アルキル基、フェニル基、またはフェニル基で置換された $C1\sim4$ アルキル基を表わし、

Eは、-CONR⁹-基、-NR⁹CO-基、-OCO-基、-COO-基、
-CH₂-O-基、-CO-CH₂-基、-(CH₂)₂-基、-CH=CH-基
または-C≡C-基(基中、R⁹は水素原子、C1~4アルキル基、フェニル基、
またはフェニル基で置換されたC1~4アルキル基を表わす。また、各基にお
いて左側の結合手がJ基に結合するものとする。)を表わし、

Jは、単結合またはC1~8アルキレン基を表わし、

Aは、

5

- 10 1) 水素原子、
 - 2) C1~8アルキル基、
 - 3) Ar基(Arは、炭素環または複素環を表わし、1から3個の、
 - i) C1~15アルキル基、
 - ii) C1~15アルコキシ基、
- 15 iii) ハロゲン原子、
 - iv) ニトロ基、
 - v) シアノ基、
 - vi) グアニジノ基、
 - vii) アミジノ基、
- 20 viii) 水酸基、
 - ix) ベンジルオキシ基、
 - x) $NR^{12}R^{13}$ 基(基中、 R^{12} および R^{13} はそれぞれ独立して、水素原子、 $C1\sim4$ アルキル基または $-COOR^{14}$ 基(基中、 R^{14} は $C1\sim4$ アルキル基またはベンジル基を表わす。) を表わす。)、
- 25 xi) $-COOR^{15}$ 基(基中、 R^{15} は水素原子、 $C1\sim4$ アルキル基、フェニル基、またはフェニル基で置換された $C1\sim4$ アルキル基を表わす。)、
 - xii) トリフルオロメチル基、
 - xiii) 炭素環基、

xiv) 複素環基または

5

- xv) 水酸基、 $C1\sim4$ アルコキシ基、 $NR^{12}R^{13}$ 基(基中、 R^{12} および R^{13} は前記と同じ意味を表わす。)、 $-COOR^{15}$ 基(基中、 R^{15} は前記と同じ意味を表わす。)、炭素環または複素環で置換された $C1\sim4$ アルキル基で置換されていてもよい。)または
- 4) 水酸基またはC1~4アルコキシ基で置換されたC1~4アルキル基を表わすか、あるいは

A、JおよびE基が一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、フェニル基、水酸基、NR¹⁶R¹⁷

**10 基(基中、R¹⁶およびR¹⁷はそれぞれ独立して、水素原子、C1~4アルキル基、-COOR¹⁸基(基中、R¹⁸はC1~4アルキル基またはベンジル基を表わす。)を表わす。)または複素環基(この複素環基は、1~4個のC1~4アルキル基、C1~4アルコキシ基、ハロゲン原子、トリフルオロメチル基、水酸基、カルボキシル基、C1~8アルコキシカルボニル基、ニトロ基、

NR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。) または CONR²⁴R²⁵基(基中、R²⁴およびR²⁵は、前記と同じ意味を表わす。) で 置換されてもよい。) を表わし、

R³およびR⁴は、それぞれ独立して、

- (1) 水素原子、
- 20 (2) C1~8アルキル基(ただし、基中のC1~8アルキル基の炭素原子1 個は硫黄原子1個に置き換わっていてもよいものとする。)、
 - (3) -COOR¹⁹基(基中、R¹⁹は水素原子、C1~8アルキル基、フェニル基、またはフェニル基で置換されたC1~4アルキル基を表わす。)、
- (4) Ar₁基(Ar₁は炭素環または複素環を表わし、1から3個のC1~4 25 アルキル基、C1~4アルコキシ基、ハロゲン原子、水酸基またはトリフルオ ロメチル基で置換されていてもよい。)、
 - (5) 水酸基、
 - (6) N R ²⁰ R ²¹ 基 (基中、R ²⁰ および R ²¹ はそれぞれ独立して、水素原子、

C1~4アルキル基、-COOR²²基または-COR²²基(基中、R²²はC1 ~4アルキル基またはペンジル基を表わす。)、

R^a 基(基中、R^aは、水素原子またはフェニル -NH+CO NH-p R^b 基

基を表わし、R^bは、水素原子、-COOR²²基または-COR²²基(基中、

- 5 R²²は前記と同じ意味を表わす。)を表わし、pは、1または2を表わす。) または
 - (8) 置換基として、
 - (a) COOR¹⁹基(基中、R¹⁹は前記と同じ意味を表わす。)、
 - (b) C1~4アルコキシ基、
- 10 (c) 水酸基、
 - (d) ベンジルオキシ基、
 - (e) -NR²⁰R²¹基 (基中、R²⁰およびR²¹は前記と同じ意味を表わす。) または、
 - (f) Ar,基(基中、Ar,は前記と同じ意味を表わす。)
- 15 からなる群から選ばれる基で置換されたC1~8アルキル基(ただし、基中のC1~8アルキル基の炭素原子1個は硫黄原子1個に置き換わっていてもよいものとする。)を表わすか、もしくはR³およびR⁴が結合する炭素原子と一緒になってC3~7シクロアルキル基を表わし、

R⁵およびR⁶は、水素原子またはメチル基を表わすか、もしくは

20 R³およびR⁵が一緒になって単結合を形成し、R⁴およびR⁶は前記と同じ意味 を表わし、

nは0、1または2を表わす。

ただし、

- (a) A、JおよびEが一緒になって、フェニル基を表わし、かつ R^2 が CONHOH基を表わす時、nは1または2を表わす。
 - (b) 下記 (1) ~ (58) の化合物は表わさないものとする:
 - (1) 3-(4-メチルフェニルスルホニル) プロピオン酸 イソプロピル

エステル、

(2) 3-(4-メチルフェニルスルホニル) プロピオン酸 フェニルエステル、

- (3) 3- (4-メチルフェニルスルホニル) プロピオン酸ナトリウム、
- 5 (4)3-(4-メチルフェニルスルホニル)プロピオン酸 メチルエステル、
 - (5) 3-(4-メチルフェニルスルホニル) プロピオン酸 エチルエステル、
 - (6) 3-(4-メチルフェニルスルホニル) プロピオン酸、
- 10 (7) 3-(4-エチルフェニルスルホニル) プロピオン酸、
 - (8) 3-(4-メトキシフェニルスルホニル) プロピオン酸 フェニルエステル、
 - (9) 3-(4-メトキシフェニルスルホニル) プロピオン酸、
- - (11)3-(4-ニトロフェニルスルホニル)プロピオン酸 イソプロピルエステル、
 - (12) 3-(4-ニトロフェニルスルホニル) プロピオン酸、
- (13)3-(4-アミノフェニルスルホニル) プロピオン酸 エチルエス 20 $_{\text{テル}}$ 、
 - (14) 3-(4-アミノフェニルスルホニル) プロピオン酸、
 - (15) 3-(4-ヒドロキシフェニルスルホニル) プロピオン酸、
 - (16)3-(4-ヒドロキシフェニルスルホニル)プロピオン酸 フェニルエステル、
- 25 (17)3-(4-プロモフェニルスルホニル)プロピオン酸 メチルエステル、
 - (18)3-(4-プロモフェニルスルホニル)プロピオン酸 エチルエステル、

(19) 3- (4-プロモフェニルスルホニル) プロピオン酸 フェニルエステル、

- (20) 3-(4-クロロフェニルスルホニル) プロピオン酸 メチルエステル、
- 5 (21) 3-(4-クロロフェニルスルホニル) プロピオン酸 エチルエステル、
 - (22) 3- (4-クロロフェニルスルホニル) プロピオン酸 <math>t-プチル エステル、
- (23)3-(4-クロロフェニルスルホニル)プロピオン酸 イソプロピ10 ルエステル、
 - (24) 3-(4-クロロフェニルスルホニル)プロピオン酸、
 - (25) 3-(4-クロロフェニルスルホニル) プロピオン酸 フェニルエステル、
- - (27) 3- (4-ヨードフェニルスルホニル) プロピオン酸 メチルエステル、
 - (28) 3 (4-アセチルアミノフェニルスルホニル)プロピオン酸 メチルエステル、
- 20 (29) 3-(4-アセチルアミノフェニルスルホニル) プロピオン酸 エチルエステル、
 - (30) 3-(4-ビニルフェニルスルホニル)プロピオン酸ナトリウム、
 - (31) 3-(4-カルボキシフェニルスルホニル)プロピオン酸、
- (32) 3 $(4-シアノフェニルスルホニル) プロピオン酸 エチルエス 25 <math>_{ テル }$ 、
 - (33) 3-(4-ホルミルフェニルスルホニル) プロピオン酸 エチルエステル、
 - (34) 3-(4-ビフェニルスルホニル)プロピオン酸 メチルエステル、

(35)2-アミノ-3-(2-メチルフェニルスルホニル) プロピオン酸、

- (36) 2-アミノ-3-(3-メチルフェニルスルホニル) プロピオン酸、
- (37) 2-アミノ-3-(4-メチルフェニルスルホニル)プロピオン酸、
- (38) 2-アミノ-3-(4-フルオロフェニルスルホニル) プロピオン酸、

5

- (39) 2 t プトキシカルボニルアミノ<math>-3 (4 7 7 1 -
 - (40) 2-アミノー3-(4-クロロフェニルスルホニル) プロピオン酸、
- (41) 2-t-プトキシカルボニルアミノ-3-(4-クロロフェニルス 10 ルホニル) プロピオン酸、
 - (42) 2-アミノー3-(3-トリフルオロメチルフェニルスルホニル) プロピオン酸、
 - (43) 2-アミノ-3-(4-ニトロフェニルスルホニル) プロピオン酸、
 - (44) 2-アミノー3-(2-ニトロフェニルスルホニル) プロピオン酸、
- 15 (45) 2-アミノー3-(4-アミノフェニルスルホニル) プロピオン酸、
 - (46) 2-アミノー3-(2-アミノフェニルスルホニル) プロピオン酸、
 - (47) 2, 2 ジメチル-3 (4-ヒドロキシフェニルチオ) プロピオン酸、
- $(48) 4 (2 \pi n \pi^2 + 5 2 \pi \pi^2 + 5$
 - $(49) 4 (2 \pi n \pi^2 + \pi n 2 \pi n \pi^2 + \pi n \pi^2 +$
 - (50) 4 -(2-)ルボキシー2 -メチルプロピルスルホニル)フェニル2 -フェニルブチレート、
- - (52)4-(2-カルボキシ-2-メチルプロピルメルカプト) フェニル 2<math>-(3, 4-ジェチルフェニル)イン酪酸、

 $(5\ 3)\ 4-(2-n)$ $(5\ 3)\ 4-(2-n)$

- 5 $(55) 4 (2 \pi \nu \pi^2 + \nu 2 \nu \pi^2 + \nu \pi^2 \nu$
 - (56) 3-(4-ブロモフェニルチオ) プロピオン酸、
 - (57) N-t-ブトキシ-3-(4-プロモフェニルチオ) プロピオンアミド、
- 10 (58) N-t-ブトキシ-3-(4-ビフェニルチオ) プロピオンアミド。) で示されるアリール (スルフィド、スルホキシド、スルホン) 誘導体、または それらの非毒性塩。
 - 3. R²が、-COOR⁷基である請求の範囲第2項に記載の化合物。

15

- 4. R²が、-CONHOR⁸基である請求の範囲第2項に記載の化合物。
- 5. Aが、水素原子、C1~8アルキル基、水酸基で置換されたC1~4アルキル基であるか、あるいはA、JおよびE基が一緒になって、メチル基、ハロゲン原子、トリフルオロメチル基、ニトロ基、シアノ基、ホルミル基、水酸基、NR¹⁶R¹⁷基である請求の範囲第3項または第4項に記載の化合物。
- 6. Aが、置換基を有してもよい炭素環であるか、あるいはA、Jおよび E基が一緒になって、フェニル基である請求の範囲第3項または第4項に記載 25 の化合物。
 - 7. Aが、置換基を有してもよい複素環であるか、あるいはA、Jおよび E基が一緒になって、複素環である請求の範囲第3項または第4項に記載の化 合物。

- 8. 化合物が、
- (1) 3 (4-アミノフェニルチオ) プロピオン酸 <math>t- ブチルエステル、
- (2)3-(4-ヒドロキシフェニルチオ)プロピオン酸 t-ブチルエステル、
- 5 (3) 2-メチル-3-(4-ヒドロキシフェニルチオ)プロピオン酸 t-プチルエステル、
 - (4) 2 -ベンジル-3 (4 -プロモフェニルチオ) プロピオン酸 t プチルエステル、
- 10 (6) 3-(4-プロモフェニルスルホニル) プロピオン酸 <math>t-プチルエステル、
 - (7)2 ーペンジルー3 -(4-プロモフェニルスルホニル) プロピオン酸 t <math>- プチルエステル、
- (8) $3 [4 (1 ^{7} + ^{2} + ^{2})]$ フェニルスルホニル] プロピオン酸 t $^{7} + ^{2}$
 - (9) 3- [4-(1-ヘプチニル) フェニルスルホニル] プロピオン酸、
 - (10) 3-(4-メトキシフェニルチオ)プロピオン酸、
 - (11) N-t-プトキシー3-(4-メトキシフェニルチオ) プロピオンアミド、
- 20 (12) N (3 3 4 3 -
 - (13) N-ベンジルオキシー3-(4-メトキシフェニルスルホニル) プロピオンアミド、
- (14) N-EFD+v-3-(4-y)+207 (14) N-EFD+v-3-(4-y)+207 (15) F
 - (15) N-ヒドロキシ-3-(4-メトキシフェニルスルフィニル) プロピオンアミド、
 - (16) Nーヒドロキシー3ー(4ーメトキシフェニルスルホニル) プロピオ

ンアミド、

- (17) 2-t-ブトキシカルボニルアミノー3-(4-メトキシフェニルチオ) プロピオン酸 ベンジルエステル、
- (18) 2-t-プトキシカルボニルアミノ-3-(4-メトキシフェニルス5 ルホニル) プロピオン酸 ベンジルエステル、

 - (20) 2-アミノー3-(4-メトキシフェニルスルホニル) プロピオン酸 ベンジルエステル 塩酸塩、
- 10 (21) 2 [N [N (t \mathcal{T} トキシカルボニル) フェニルグリシル] アミノ] -3- (4 メトキシフェニルスルホニル) プロピオン酸 ベンジルエステル、
 - (22) 2-アセチルアミノ-3-(4-メトキシフェニルスルホニル) プロピオン酸 ベンジルエステル、
- 15 (23) 2-[N-[N-(t-プトキシカルボニル) グリシル] アミノ] -3-(4-メトキシフェニルスルホニル) プロピオン酸 ベンジルエステル、 (24) <math>2-[N-[N-(t-プトキシカルボニル) フェニルグリシル] アミノ] <math>-3-(4-メトキシフェニルスルホニル) プロピオン酸、
- (25) 2-アセチルアミノ-3-(4-メトキシフェニルスルホニル)プロ 20 ピオン酸、
 - (26) 2 [N [N (t \neg τ トキシカルボニル) グリシル] アミノ] 3 (4 x トキシフェニルスルホニル) プロピオン酸、
 - (27) 2 [N (t -プトキシカルボニル) フェニルグリシルーグ リシル] アミノ] -3-(4-メトキシフェニルスルホニル) プロピオン酸、
- 25 (28) 2 [N (N アセチルグリシル) アミノ] 3 (4 メトキシフェニルスルホニル) プロピオン酸、

- (30) N-ヒドロキシー2-t-プトキシカルボニルアミノー3-(4-メトキシフェニルスルホニル) プロピオンアミド、
- (31) N-ヒドロキシー2 [N-[N-(t-プトキシカルボニル) フェニルグリシル] アミノ] -3-(4-メトキシフェニルスルホニル) プロピオンアミド、
 - (32) N-ヒドロキシー2-アセチルアミノー3- (4-メトキシフェニル スルホニル) プロピオンアミド、
 - (33) N-ヒドロキシー2- [N- [N- (t-ブトキシカルボニル) グリシル] アミノ] -3- (4-メトキシフェニルスルホニル) プロピオンアミド、
- 10 (34) N-ヒドロキシ-2-[N-[N-(t-プトキシカルボニル) フェニルグリシルーグリシル] アミノ] <math>-3-(4-メトキシフェニルスルホニル) プロピオンアミド、
 - (35) N-ヒドロキシー2-[N-(N-アセチルグリシル) アミノ] -3- (4-メトキシフェニルスルホニル) プロピオンアミド、
- 15 (36) N-EFD+v-2-[N-[N-(ベンジルカルボニル) グリシル] T=J=3-(4-J)+2
 - (37) 2-アミノー3-(4-メトキシフェニルスルホニル) プロピオン酸 トリフルオロ酢酸塩、
- (38) N-ヒドロキシー2-アミノー3-(4-メトキシフェニルスルホニ20 ル) プロピオンアミド 塩酸塩、
 - (39) 2- [N-(フェニルグリシル) アミノ] -3- (4-メトキシフェニルスルホニル) プロピオン酸 トリフルオロ酢酸塩、
 - (40) Nーヒドロキシー 2-[N-(フェニルグリシル) アミノ]-3-(4-2) ーメトキシフェニルスルホニル) プロピオンアミド トリフルオロ酢酸塩、
- 25 (41) N-ヒドロキシー2-[N-(フェニルグリシルーグリシル) アミノ] -3-(4-メトキシフェニルスルホニル) プロピオンアミド トリフルオロ 酢酸塩または
 - (42) 3-(4-プロモフェニルスルホニル) プロピオン酸

である請求の範囲第5項に記載の化合物。

9. 化合物が、

Ċ

- (1) 7 (3) 3 [4-(2-ピリジルエチニル) フェニルスルホニル] ブ5 ロピオン酸 <math>t-プチルエステル、
 - (2) 3 [4 (2 ピリジルエチニル) フェニルスルホニル] プロピオン酸、
 - (3) 2-メチルー3-[4-(2-ベンゾフラニル) フェニルスルホニル] プロピオン酸または
- 10 (4) Nーヒドロキシー2ーメチルー3ー [4-(2-ベンゾフラニル) フェニルスルホニル] プロピオンアミドである請求の範囲第6項に記載の化合物。
 - 10. 化合物が、
- 15 (1) 3 [4 (ペンゾイルアミノ) フェニルチオ] プロピオン酸 t ブチルエステル、
 - (2) 3 (4 ベンジルオキシフェニルチオ) プロピオン酸 t ブチルエステル、
 - (3)3-[4-(ベンゾイルアミノ)フェニルスルフィニル] プロピオン酸 t
- 20 ープチルエステル、
 - (4) 3 [4 (ペンゾイルアミノ) フェニルスルホニル] プロピオン酸 <math>t T + μ + μ
 - (5) 3-[4-(ベンジルオキシ) フェニルスルホニル] プロピオン酸 <math>t-プチルエステル、
- 25 (6) 2-メチル-3- [4-(4-トリルエチニル) フェニルスルホニル] プロピオン酸 t-プチルエステル、
 - (7) 3 [4 (フェニルエチニル) フェニルスルホニル] プロピオン酸 t ブチルエステル、

(8) 3 - [4 - (4 - メトキシフェニルエチニル) フェニルスルホニル] プロピオン酸 <math>t - プチルエステル、

- (9)3-[4-(4-トリルエチニル)フェニルスルホニル] プロピオン酸 t-ブチルエステル、
- 5 (10) 3 [4 (ベンゾイルアミノ) フェニルチオ] プロピオン酸、
 - (11) 3 [4 (ペンゾイルアミノ) フェニルスルフィニル] プロピオン酸、
 - (12) 3-[4-(ベンゾイルアミノ) フェニルスルホニル] プロピオン酸、
 - (13) 3-[4-(ベンジルオキシ) フェニルスルホニル] プロピオン酸、
- 10 (14) 2-メチル-3-[4-(4-トリルカルボニルメチル) フェニルス ルホニル] プロピオン酸、
 - (15) 2-メチル-3-[4-(4-トリルエチニル) フェニルスルホニル] プロピオン酸、
 - (16) 3- [4-(フェニルエチニル) フェニルスルホニル] プロピオン酸、
- 15 (17)3-[4-(4-メトキシフェニルエチニル)フェニルスルホニル] プロピオン酸、
 - (18) 2 ベンジル-3 [4 (4 トリルエチニル) フェニルスルホニル] プロピオン酸、
- (19) 2 R ヒドロキシ-3 (4 プロモフェニルスルホニル) プロピオ 20 ン酸 t ブチルエステル、
 - (20) 2 R ヒドロキシ- 3 [4 (4 トリルエチニル) フェニルスルホニル] プロピオン酸、
 - (21) 2S-ヒドロキシー3- [4-(4-トリルエチニル) フェニルスルホニル] プロピオン酸、
- **25** (22) 3 [4 (4 トリルエチニル) フェニルスルホニル] 酪酸、
 - (23)3 [4-(4-トリルカルボニルメチル) フェニルスルホニル] プロピオン酸、
 - (24) 3 [4-(4-)リルビニル) フェニルスルホニル] プロピオン酸、

(25) 2-メチル-3-[4-(1-ヘプチニル) フェニルスルホニル] プロピオン酸、

- (26) 2-メチル-3- [4-(4-ヒドロキシーブチー1-ニル) フェニルスルホニル] プロピオン酸、
- - (28) N-ヒドロキシ-2-メチル-3-[4-(4-ヒドロキシープチー1-ニル) フェニルスルホニル] プロピオンアミド、
- (29) $N-ヒドロキシ-2-メチル-3-[4-(4-トリルエチニル) フ 10 <math>_{x}$ ニルスルホニル] プロピオンアミド、
 - (30) 3 [4 (フェニルエチニル) フェニルスルフィニル] プロピオン酸、
 - (31) 3-[4-(フェニルエチニル)フェニルチオ]プロピオン酸、
 - (32) c i s -3 [4 (ベンゾイルアミノ) フェニルスルホニル] プロ
- 15 プー2-エン酸または
 - (33) t r a n s 3 [4 (ペンゾイルアミノ) フェニルスルホニル]プロプー 2 - エン酸

である請求の範囲第7項に記載の化合物。

International application No.

		}	PCT/J	P97/02200
Int.	SSIFICATION OF SUBJECT MATTER C1 ⁶ C07C317/44, C07C323/62, C07D209/18, C07T C07D333/24, A61K31/405, A61K31/42, A61K o International Patent Classification (IPC) or to both n	31/34. A61K31/195,	A61K31/165, A61P	07D263/57, C07D307/79, 031/38
B. FIEL	DS SEARCHED			
Int. C07D	cumentation searched (classification system followed by Cl^6 $C07C317/44$, $C07C323/62405/12$, $C07D413/12$, $C07D263/62$, C07D209/1 57, C07D307	8, C07D409 /79, C07D3	333/24,
	on searched other than minimum documentation to the ex	1		
	ta base consulted during the international search (name of ONLINE	data base and, where p	practicable, search 4	erms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap			Relevant to claim No.
P	EP, 780386, Al (F. Hoffmann June 25, 1997 (25. 06. 97)(-La Roche A Family: non	.G.), ie)	1 - 10
х	JUNGHEIM LOUIS N., "Potent Immunodeficiency Virus Type Inhibitors That Utilize Non as P2/P3 Ligands", J. Med. Janaury 5, 1996 (05. 01. 96 Vol. 39, No. 1, P. 96-108	1 Protease coded D-Ami Chem.,	no Acids	2, 3, 5, 8
х	EP, 614184, A1 (Lilly, Eli, June 29, 1994 (29. 06. 94) & JP, 6-325493, A & EP, 614		JSA),	2, 3, 5, 8
х	GASKIN P.J., "The C-S lysis conjugates by asparatate an aminotransferase enzyme", E (1995), Vol. 14, No. 5, P.	d alanine Ium. Exp. To		2, 3, 5
х	HE YIBING, "Determination a solubility and partition co	and estimati efficient o	on of	2, 3, 5
X Furth	er documents are listed in the continuation of Box C.	See patent	family annex.	
"A" docume to be of "E" earlier "L" docume cited to special "O" docume means "P" docume the price	categories of cited documents: ent defining the general state of the art which is not considered particular relevance document but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than ority date claimed actual completion of the international search tember 18, 1997 (18.09.97)	date and not in the principle or the principle or "X" document of part on sidered now step when the document of part of the combined with being obvious to document mem the document mem that of mailing of the principle of the pr	conflict with the application of the consideration of the conservation of the co	e claimed invention cannot be dered to involve an inventive ne e claimed invention cannot be step when the document is documents, such combination the art
Name and	nailing address of the ISA/	Authorized officer		
1	nese Patent Office			
Facsimile N		Telephone No.		

International application No.

C (Cti-		PCT/J	IP97/02200
	uation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the releva		Relevant to claim No.
	phenylsulfonyl acetates", Huanhing Huax (1995), Vol. 14, No. 2, P. 134-139	ue	
х	WO, 93/18031, A1 (Idemitsu Kosan Co., L September 16, 1993 (16. 09. 93) & US, 5468722, A & JP, 5-515530, A	td.),	2, 3, 5
x	Tomisawa H., "A novel pathway for formathiol metabolotes and cysteine conjugate cysteine conjugate sulfoxides", Biochem Pharmacol., (1993), Vol. 46, No. 7, P. 1	es for	2, 3, 5
х	TUCKER HOWARD, "Nonsteroidal antiandroge Synthesis and structure-activity relation of 3-substituted derivatives of 2-hydroxypropionanilides", J. Med. Chem. Vol. 31, No. 5, P. 954-959	onships	2, 3, 5
х	L. KHINGKAN, "Formation of phenol and thiocatechol metabolites from bromobenze oremercapturic acids through pyridoxal phosphate-dependent C-S lyase activity", Biochem. Pharmacol. (1993), Vol. 45, No. P. 2513-2525		2, 3, 5
х	WO, 93/13076, Al (Richter Gedeon et al.) July 8, 1993 (08. 07. 93) & CN, 1074440, A & TW, 222260, A	•	2, 3, 5
}	US, 5216022, A (Cortech, Inc.), June 1, 1993 (01. 06. 93) & JP, 7-502505, A & WO, 93/11760, A1		2, 3, 5
- 1	EP, 484949, A2 (Cortech, Inc.), May 13, 1992 (13. 05. 92) & US, 5240956, A & JP, 4-283576, A		2, 3, 5
ľ	WO, 93/12787, A1 (Richer Geneon et al.), July 8, 1993 (08. 07. 93) & CN, 1075255, A & TW, 232015, A		2, 3, 5
1 .	JP, 4-95059, A (Kissei Pharmaceutical Co Ltd.), March 27, 1992 (27. 03. 92)(Family: none	ľ	2, 3, 5
ļ :	BURGESS KEVIN, "Biocatalytic resolutions sulfinylalkanoates", J. Org. Chem. (1992 Vol. 57, No. 4, P. 1290-1295	of),	2, 3, 5
X I	JP, 2-136280, A (Tomoegawa Paper Co., Ltd May 24, 1990 (24. 05. 90)(Family: none)	d.),	2, 3, 5
1 \	VIJAY SOMAYAJI, "The Synthesis of 4-S- Cysteinyl-U-14CPhenol", Appl. Radiat. Iso (1989), Vol. 40, No. 6, P. 539-540	ot.	2, 3, 5
PCT/ISA/2	210 (continuation of second sheet) (July 1992)		

International application No.

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
х	JP, 60-258161, A (Showa Denko K.K.), December 20, 1985 (20. 12. 85) (Family: none)	2, 3, 5
x	US, 4666916, A (CIBA-Geigy AG.), May 19, 1987 (19. 05. 87) & EP, 222703, A2 & JP, 62-142180, A	2, 3, 5
x	CORCORAN G.B., "Role of glutathione in prevention of acetaminophen-induced hepatotoxicity by N-acetyl-L-cysteine in vivo", J. Pharmacol. Exp. Ther. (1986), Vol. 238, No. 1, P. 54-61	2, 3, 5
x	H. HOGEVEEN, "Chemical Shift of ethylenic protons in cis- and trans-B-aryl-, thio, B-arylsulfinylacids", Chem. Abstr. (1964), Vol. 61, column 15956D	2, 3, 5
x	JP, 51-136653, A (Ihara Chemical Industry Co., Ltd.), May 22, 1975 (22. 05. 75) (Family: none)	2, 4, 5
X .	JP, 51-131848, A (Laboratoire L. Lafon), September 30, 1976 (30. 09. 76) & US, 4065584, A	2, 4, 5
x	US, 3849574, A (Colgate-Palmolove Co.), November 19, 1974 (19. 11. 74) (Family: none)	2, 3, 5
x	RYNBRANDT R.H., "Preparation and hydrolysis of aminocyclopropyl and aminocyclobutyl sulfones", J. Org. Chem. (1975), Vol. 40, No. 16, P. 2282-2288	2, 3, 5
x	US, 3321483, A (Bristol-Myers Co.), May 23, 1967 (23. 05. 67) (Family: none)	2, 3, 5
x	RYNBRANDT R.H., "Oxidation of aminocyclopropyl sulfides", Tetrahedron Lett. (1972), No. 19, P. 1937-40	2, 3, 5
х	MACCAGNANI G., "Stereochemistry of vinyl carbanions. II Arylsulfinyl- and arylsulfonyl-vinylcarbanions, Chem. Abstr. (1968), Vol. 69, column 86143h	2, 3, 5
х	SEN ANATH B., "Potential amebicides. XXIV", J. Indian Chem. Soc., (1966), Vol. 43, No. 7, P. 521-525	2, 3, 5
х	LEON GOODMAN, "Potential anticancer agents V. some sulfur-substituted derivatives of Cys," Chem. Abstr. (1959), Vol. 53, columns 14958 to 14959g	2, 3, 5

International application No.

	nation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant pa	ssages Relevant to claim
x	H. HOGEVEEN, "Influence of steric and electronic factors on acidity", Chem. Abs (1965), Vol. 62, columns 1548c to 1548g	2, 3, 5
х	JP, 56-7756, A (Sumitomo Chemical Co., Ltd January 27, 1981 (27. 01. 81)(Family: none	d.), 2, 3, 5
х	US, 4207329, A (Merck & Co., Inc.), June 10, 1980 (10. 06. 80) (Family: none)	2, 3, 6
х	RALPH G., "Fenbufen, a New Anti-Inflammator Analgesic Synthesis and Structure-Activity Relationships of Analogs", J. Pharm. Sci. (1977), Vol. 66, No. 4, P. 466-476	2, 3, 6
		ł

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1° C07C317/44, C07C323/62, C07D209/18, C07D409/12, C07D405/12, C07D413/12, C07D263/57, C07D307/79, C07D333/24, A61K31/405, A61K31/42, A61K31/34, A61K31/195, A61K31/165, A61K31/38

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1 C07C317/44, C07C323/62, C07D209/18, C07D409/12, C07D405/12, C07D413/12, C07D263/57, C07D307/79, C07D333/24, A61K31/405, A61K31/42, A61K31/34, A61K31/195, A61K31/165, A61K31/38

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連する	5と認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
P	EP, 780386, A1 (エ7 オフマン ラ ロシュ アーケー) 25. 6月、1997 (25. 06. 97) (ファミリーなし)	1-10
x	JUNCHEIM LOUIS N., "Potent Human Immunodeficiency Virus Type 1 Protease Inhibitors That Utilize Noncoded D-Amino Acids as P2/P3 Ligands", J. Med. Chem., 5.1月:1996(05.01.96), Vol. 39, No. 1, P. 96-108	2, 3, 5, 8
. x	EP, 614184, A1 (Lilly, Eli, and Co., USA) 29.6月.1994 (29.06.94) & JP, 6-325493, A&EP, 614184, A2	2, 3, 5, 8
x	GASKIN P. J., "The C-S lysis of 1-cysteine conjugates by asparatate and alanine aminotransferase enzyme", Hum. Exp. Toxicol. (1995), Vol. 14, No. 5, P. 422-427	2, 3, 5
х	HE YIBING, "Determination and estimation of solubility and partition coefficient of phenylsulfonyl acetates", Huanhing Huaxue (1995), Vol. 14, No. 2, P. 134-139	2, 3, 5
x	WO, 93/18031, A1(出光興産株式会社) 16.9月.1993(16.09.93)&US, 5468722, A&JP, 5-515 530, A	2, 3, 5

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に含及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公扱された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 18.09.97	国際調査報告の発送日				
日本国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 渡辺 陽子 印 4 H 9 2 7 9				
郵便番号100 東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3443				

様式PCT/ISA/210(第2ページ)(1992年7月)

	国际山駅舎号「PCT/JP	97/02200
C (統き). 引用文献の	関連すると認められる文献	
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
х	Tomisawa H., "A novel pathway for formation of thiol metabolotes and cystein conjugates for cysteine conjugate sulfoxides", Biochem. Pharmacol., (1993), Vol. 46, No. 7, P. 1113-1117	0.0.5
x	TUCKER HOWARD, "Nonsteroidal antiandrogens. Synthesis and structure-activity relationships of 3-substituted derivatives of 2-hydroxypropionanilides", J. M. Chem. (1988), Vol. 31, No. 5, P. 954-959	2, 3, 5
X	L. KHINGKAN, "Formation of phenol and thiocatechol metabolites from bromobenz ene oremercapturic acids through pyridoxal phosphate-dependent C-S lyase activity", Biochem. Pharmacol. (1993), Vol. 45, No. 12, P. 2513-2525	- 2, 3, 5 - 2, 3, 5
X	WO, 93/13076, A1 (Richter Gedeon et al.) 8.7月.1993(08.07.93)&CN, 1074440, A &TW, 222260, A	2. 3. 5
x	US, 5216022, A(Cortech Inc.) 1.6月.1993(01.06.93)&JP.7-502505, A&WO, 93/11760, A	1 2, 3, 5
Х	EP, 484949, A2(Cortech, Inc.) 13.5月.1992(13.05.92)&US, 5240956, A&JP4-283576, A	2, 3, 5
X	WO, 93/12787, Al (Richer Geneon et al.) 8.7月. 1993 (08.07.93)&CN, 1075255, A&TW, 232015, A	2, 3, 5
X	JP, 4-95059, A(キッセイ薬品工業株式会社) 27. 3月. 1992 (27. 03. 92) (ファミリーーなし)	2, 3, 5
X	BURGESS KEVIN, "Biocatalytic resolutions of sulfinylalkanoates", J. Org. Chem. (1992), Vol. 57, No. 4, P. 1290-1295	2, 3, 5
X	JP, 2-136280, A(株式会社巴川製作所)24.5月.1990(24.05.90)(ファミリーなし)	2, 3, 5
X X	VIJAY SOMAYAJI, "The Synthesis of 4-S-Cysteinyl-U-14CPhenol", Appl. Radiat. Isot. (1989), Vol. 40, No. 6, P. 539-540 JP, 60-258161, A(昭和電工株式会社)20. 12月. 1985(20. 12. 85)(ファミリーなし)	
х	US, 4666916, A (チパカ゚イキ゚ーコーポレーション) 19. 5月. 1987 (19. 05. 87) &EP, 222703, A2&JP62-1421	2, 3, 5
Х	80, A CORCORAN G.B., "Role of glutathione in prevention of acetaminophen-induced hepatotoxicity by N-acetyl-L-cysteine in vivo", J. Pharmacol. Exp. Ther. (1986), Vol. 238, No. 1, P. 54-61	
X	H. HOGEVEEN, "Chemical Shift of ethylenic protons in cis- and trans-β-aryl-, thio, β-arylsulfinylacids". Chem. Abstr (1964) Vol. 61 28150550488	2, 3, 5
^	JF, 51~130053, A (イハウグミカル上業株式会社) 22. 5月. 1975(22. 05. 75) (ファミリーなし)	2, 4, 5
ı	JP, 51-131848, A (ラボ・ラトワールエルラフオン) 30. 9月. 1976 (30. 09. 76) &US, 4065584, A	2, 4, 5
	US, 3849574, A (Colgate-Palmolove Co.) 19.11月.1974(19.11.74)(77ミリーなし)	2, 3, 5
,	RYNBRANDT R.H., "Preparation and hydrolysis of aminocyclopropyl and aminocyclobutyl sulfones", J. Org. Chem. (1975), Vol. 40, No. 16, P. 2282-2288 US, 3321483, A (アプリストールメイヤーコーボ・レーション) 23.5月、1967 (23.05.67) (ファミリーな し)	2, 3, 5
1		2, 3, 5
X	RYNBRANDT R. H., "Oxidation of aminocyclopropyl sulfides", Tetrahedron Lett. (1972), No. 19, P. 1937-40 MACCAGNANI G., "Stereochemistry of vinyl carbanions. II Arylsulfinyl- and arylsulfonyl-vinylcarbanions Chem Abore (1968), Vol. 60 (Maccagnations)	2. 3. 5
	Sulfonyl-vinylcarbanions, Chem. Abstr. (1968), Vol. 69, 第86143h欄 SEN ANATH B., "Potential amebicides. XXIV", J. Indian Chem. Soc (1966), Vol. 43. No	
x i	EON GOODMAN, "Potential anticancer agents V some sulfur-substituted designs	2, 3, 5
i	ves of Cys, "Chem. Abstr. (1959), Vol. 53, 第14958欄-第14959g欄	2, 3, 5

国際調査報告

•	国际制宣教旨	
(続き).	関連すると認められる文献	
X	H. HOGEVEEN, "Influence of steric and electronic factors on acidity," chem. Abstr. (1965), Vol. 62, 第1548c欄-第1548g欄	2, 3, 5
x	JP. 56-7756, A(住友化学工業株式会社) 27.1月.1981(27.01.81)(ファミリーなし)	2, 3, 5
x	US, 4207329, A(メルク アント*コーホ*レーション インク) 10.6月.1980(10.06.80) (ファミリーなし)	2, 3, 6
x	RALPH G., "Fenbufen, a New Anti-Inflammatory Analgesic Synthesis and Structure-Activity Relationships of Analogs", J. Pharm. Sci. (1977), Vol. 66, No. 4, P. 466-476	2, 3, 6
		·
*,,		