Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Arquitectura de Computadores 2 – Ano Letivo 2012/13 – Exame Final

Nome:		
	Notas Importantes!	

- 1. Pode responder a cada questão com uma opção que deverá assinalar com um X na tabela ao lado. Por cada resposta errada será descontado, à cotação global, 1/3 da cotação da respectiva pergunta.
- 2. Durante a realização do teste não é permitida a permanência na sala de calculadoras, telemóveis ou outros dispositivos electrónicos.
- 3. Cotações: Grupo I cada 0.4 valores Grupos II e III cada 0.6 valores.

Grupo I

- 1. Um microcontrolador é um dispositivo programável que:
 - a) disponibiliza através dos portos de I/O a generalidade dos sinais dos barramentos do microprocessador para ligação direta a sensores e atuadores de um sistema embutido
 - b) integra num único circuito integrado, microprocessador, memória e periféricos
 - c) devido a restrições de custos não utiliza mecanismos de multiplexagem para partilha de pinos entre diversas funcionalidades
 - d) todas as restantes respostas estão corretas
- 2. A função de um bootloader num sistema baseado num microcontrolador é:
 - a) transferir o código executável do *host PC* usado no desenvolvimento, para o sistema *embedded* para posterior execução
 - b) realizar a compilação do software e iniciar a sua execução após o reset do sistema
 - c) executar o *software* e auxiliar na sua depuração através da introdução de *breakpoints*, visualização do conteúdo de registos e de posições de memória
 - d) interagir com o cross-compiler para efeitos de depuração da aplicação
- 3. O modelo de programação de um periférico especifíca:
 - a) o sub-conjunto de instruções assembly do CPU suportadas por esse periférico
 - b) os sinais elétricos usados na ligação do periférico a dispositivos externos, tais como sensores e atuadores
 - c) as arquiteturas e as ferramentas de desenvolvimento com as quais o periférico pode ser usado
 - d) o conjunto de registos, respetivos campos e modos de acesso suportados pelo periférico
- **4.** A descodificação de endereços consiste em:
 - a) determinar, em função do endereço presente no barramento, qual o periférico ou memória que deve ser selecionada
 - b) representar um endereço em binário de forma a utilizar o menor número possível de linhas do barramento
 - c) determinar em função do endereço gerado pelo periférico, qual o CPU ou memória que deve ser selecionada
 - d) preencher a totalidade do espaço de endereçamento do processador com memórias e periféricos
- **5.** O diagrama temporal da figura do lado representa um ciclo de:
 - a) leitura de um dispositivo em que os sinais de controlo usam lógica negativa
 - b) leitura de um dispositivo em que os sinais de controlo usam lógica positiva
 - c) escrita num dispositivo em que os sinais de controlo usam lógica negativa
 - d) escrita num dispositivo em que os sinais de controlo usam lógica positiva

Address	X	valid	\mathbb{X}
WR\			
RD_			
Data -	Hi-Z	valid	<u>-</u>

- **6.** O sinal de seleção "Sel" (activo alto) de um porto mapeado na gama de endereços **0x0000...0x07FF** de um processador com um espaço de endereçamento de 16 bits pode ser obtido através da expressão:
 - a) $Sel = \prod_{i=0}^{11} A_i$
- b) $Sel = \prod_{i=1}^{15} A^{i}$
- c) $Sel = \prod_{i=0}^{11} A_i \setminus$
- d) $Sel = \prod_{i=1}^{15} A_i \setminus$

- 7. Numa transferência assíncrona:
 - a) assume-se que o dispositivo externo responde à velocidade do CPU e, consequentemente, não existem sinais de protocolo envolvidos no *handshake* da transação
 - b) o CPU prolonga o ciclo de leitura/escrita por um ou mais ciclos de relógio, se for ativado um sinal de protocolo gerado pelo dispositivo externo
 - c) o CPU prolonga o ciclo de leitura/escrita até que o dispositivo externo sinalize através de sinais de protocolo que a operação pretendida foi completada
 - d) nenhuma das restantes respostas está correta
- **8.** A figura do lado corresponde ao diagrama temporal de:
 - a) uma operação de escrita numa transferência síncrona com dados e endereços multiplexados numa configuração micro-ciclo
 - b) uma operação de leitura numa transferência síncrona com dados e endereços não multiplexados numa configuração *merged*

- c) uma operação de leitura numa transferência assíncrona com dados e endereços multiplexados numa configuração micro-ciclo e *strobes* independentes
- d) uma operação de escrita numa transferência assíncrona com dados e endereços não multiplexados numa configuração *merged* e *strobes* independentes
- 9. A técnica de entrada/saída de dados por interrupção:
 - a) permite transferir eficientemente (com elevado throughput) grandes quantidade de informação
 - b) permite mascarar a latência do periférico
 - c) consiste na execução de um ciclo de *polling* que é interrompido quando o periférico estiver pronto para realizar a transferência
 - d) consiste na interrupção do periférico sempre que o CPU pretende transferir informação
- 10. Quando é usada a técnica de entrada/saída de dados por DMA:
 - a) o CPU verifica através de um ciclo de *polling* ao registo de dados do controlador de DMA se a transferência já foi concluída
 - b) o periférico faz um pedido de interrupção ao CPU quando estiver pronto para transferir os dados
 - c) o CPU configura o controlador de DMA que fará por software a transferência propriamente dita
 - d) o CPU configura o controlador de DMA que fará por hardware a transferência propriamente dita
- 11. Um árbitro de um barramento *multimaster* baseado em prioridades FIFO garante:
 - a) que é sempre servido o *master* de maior prioridade com pedido pendente de atribuição de barramento
 - b) a ausência de fenómenos de starvation
 - c) que a atribuição do barramento é fixada pela ordem temporal inversa com que os *masters* fazem os seus pedidos
 - d) que a atribuição do barramento é fixada pela ordem temporal com que os slaves fazem os seus pedidos
- **12.** A figura do lado representa um circuito que pode ser usado para implementar os mecanismos de *Acesso* e *Seleção* de um árbitro de um barramento *multimaster* baseado:
 - a) em prioridades fixas, sendo a entrada *REQUESTI* a mais prioritária
 - b) no critério *round-robin* (atribui frações de tempo para cada *master* em partes iguais e de forma circular)
 - c) em prioridades fixas, sendo a entrada *REQUEST4* a mais prioritária
 - d) no critério First-Come-First-Served

	o standard RS-232 um dos tipos de erro de comunicação que e detectado e o erro de <i>framing.</i> Esse erro ocorre iando o receptor:		
a)	recebe um número de bits a "1" que não corresponde à paridade programada		
b)	recebe um bit de paridade diferente do programado		
c)	deteta um número de bits no campo de dados diferente do programado		
d)	recebe como stop bit um bit com o nível lógico "0"		
15. A i	interface SPI permite a comunicação entre:		
a)	um master e vários slaves, numa ligação em daisy-chain, sendo o sinal de relógio implícito		
b)	um <i>master</i> e vários <i>slaves</i> , numa ligação com sinais de selecção individuais, sendo o sinal de relógi explícito		
c)	vários <i>masters</i> e vários <i>slaves</i> , numa ligação com sinais de selecção individuais, sendo o sinal de relógi implícito		
d)	vários <i>masters</i> e vários <i>slaves</i> , numa ligação com sinais de selecção individuais, sendo o sinal de relógio explícito		
16. Na	interface I2C o master selecciona o slave com quem vai comunicar através de:		
a)	um sinal de seleção que ativa antes de iniciar a transferência		
b)	o) informação transmitida na linha de dados		
c)	um sinal específico de selecção através do qual é transferido o endereço desse <i>slave</i>		
d)	um barramento de endereços de 7 bits a partir do qual cada dispositivo descodifica o seu próprio endereço		
17. O <i>a</i>	dirty bit é usado numa cache com política de escrita:		
a)	write-through para indicar que a informação armazenada no respectivo bloco foi alterada		
b)	y) write-through para indicar que o respectivo bloco não está a ser usado		
c)	write-back para indicar que a informação armazenada no respectivo bloco foi alterada		
d)	write-back para indicar que o respectivo bloco não está a ser usado		
	ma <i>cache</i> com associatividade de 4 de 8 kBytes, e 128 blocos, o número de comparadores necessários para mparar o campo <i>tag</i> de um endereço de acesso à memória é:		
a)	4 c) 8096		
b)	d) nenhuma das restantes respostas está correcta		
19. A	técnica de memória virtual permite:		
a)	a utilização de armazenamento secundário para aumentar a dimensão aparente da memória física do sistema		
b)) que o espaço de endereçamento de um processo exceda o limite de memória física disponível		
c)	implementar mecanismos de proteção devido à independência dos espaços de endereçamento de cada processo		
d)	todas as restantes respostas estão correctas		
20. A	tradução de endereços virtuais em endereços físicos consiste na tradução do:		
a)	a) virtual page number no physical page number e sua justaposição com o page offset do endereço virtual		
b)			
c)	physical page offset no virtual page offset e sua justaposição com o page number do endereço físico		
d)	virtual page offset no physical page offset e sua justaposição com o page number do endereço virtual		

13. Suponha que pretende interligar, através de um protocolo/interface série, dois sistemas computacionais que distam de alguns metros numa linha de produção com elevados níveis de interferência electromagnética, um ligado a um sensor e outro correspondendo a um computador de controlo. O standard mais adequado a este

c) CAN

d) RS232

b) I2C

cenário de aplicação é:

a) SPI

Grupo II

- 21. Num espaço de endereçamento de 16 *bits*, um descodificador implementado através da expressão lógica "Sel\ = A15 + A13\ + A12 + A11\", descodifica a(s) seguinte(s) gama(s) de endereço(s):
 - a) 0x2000 a 0x27FF, 0x6000 a 0x67FF
 - b) 0x2800 a 0x2FFF, 0x6800 a 0x6FFF
 - c) 0x9000 a 0x97FF, 0xD000 a 0xD7FF
 - d) 0x9800 a 0x9FFF, 0xD800 a 0xDFFF
- **22.** Num porto de entrada constituído por *buffers tri-state* (na ligação entre os sinais externos e o barramento de dados do processador), o sinal de *Enable* ativo alto é obtido a partir dos sinais Sel\ e RD\ (ambos ativos baixos) de acordo com a expressão lógica:
 - a) Enable = Sel\ . RD\
 - b) Enable = (Sel\ . RD\)\
 - c) Enable = Sel $\$ + RD $\$
 - d) Enable = (Sel $\ + RD$)
- **23.** Num sistema de interrupções com uma única linha e identificação da fonte por *software*, a sequência de operações efetuada durante o atendimento a uma interrupção é, pela ordem indicada, a seguinte:
 - a) identificação da fonte, determinação do endereço da RSI, salvaguarda do endereço de retorno, salto para a RSI
 - b) salto para a RSI, identificação da fonte, salvaguarda do endereço de retorno
 - c) determinação do endereço da RSI, identificação da fonte, salvaguarda do endereço de retorno, salto para a RSI
 - d) salvaguarda do endereço de retorno, salto para a RSI, identificação da fonte
- **24.** Na organização do sistema de interrupções designada por "interrupções vetorizadas", o processador obtém o vector que identifica o periférico gerador da interrupção:
 - a) por *hardware* num ciclo de *interrupt acknowledge* durante o qual o periférico gerador da interrupção o coloca no barramento de dados
 - b) por *hardware* através da leitura do valor presente no barramento de endereços uma vez que quando o periférico ativa a linha de interrupção coloca simultaneamente nesse barramento o seu vetor
 - c) por software na rotina de serviço à interrupção "questionando" cada um dos periféricos do sistema
 - d) por *software*, antes de chamar a rotina de serviço à interrupção "questionando" cada um dos periféricos do sistema
- **25.** Numa transferência por DMA, em modo bloco, quando o controlador de DMA pretende dar início a uma transferência:
 - a) ativa o sinal busreq durante um número fixo de ciclos de relógio, efetuando de seguida a transferência
 - b) ativa o sinal busreq, efetuando a transferência logo que se torne no bus master
 - c) gera uma interrupção que é interpretada pelo CPU como um pedido de cedência dos barramentos; a transferência é efetuada quando o DMA reconhecer a ativação do sinal *busgrant*
 - d) sinaliza o CPU, através da linha *busreq*, que vai dar início à transferência e inicia-a de imediato; o sinal *busgrant* é utilizado pelo CPU para suspender a atividade do DMA
- **26.** Considere um barramento paralelo multiplexado, constituído por 32 linhas informação. Sobre este barramento pretende implementar-se um protocolo de comunicação, do tipo micro-ciclo, que apresenta um espaço de endereçamento de 64 bits e 32 bits de dados. Para completar uma transação sobre este barramento, o número mínimo de ciclos necessários e de *qualifiers* codificados é:
 - a) 2 ciclos e 2 qualifiers
 - b) 2 ciclos e 3 qualifiers
 - c) 3 ciclos e 2 qualifiers
 - d) 3 ciclos e 3 qualifiers

- **27.** Considere um *timer* de 16 bits, com <u>reset</u> assíncrono, com uma frequência de entrada de 1MHz, que funciona, em modo alternado, com duas constantes de divisão KA e KB. Utilizando o *timer* como divisor de frequência, e supondo que o tempo a "1" do sinal é determinado pela constante KB, para se obter à saída um sinal com um período de 10ms e *duty-cycle* de 40%, a constante KA deverá valer:
 - a) 4000

b) 3999

c) 6000

d) 5999

28. Considere um CPU a funcionar a uma frequência de 100 MHz ligado a uma memória com um tempo de acesso (referenciado ao seu sinal CE\) de 15 ns. O CPU suporta transferências de tipo semi-síncrono, estando o ciclo de leitura, sem *wait-states*, representado na figura ao lado (note o tempo de *setup* de 3ns). No barramento de dados que interliga o CPU e a memória existe um *buffer* com um tempo de propagação de 4 ns e o descodificador que gera o sinal de selecção para a memória apresenta um atraso de propagação de 6 ns. Para que este sistema funcione correctamente o número de *wait-states* que é necessário introduzir no ciclo de leitura é:

- a) 0
- b) 1

- c) 2
- d) nenhuma das restantes respostas está correcta
- **29.** Considere um sistema baseado num CPU a funcionar a uma frequência de 200 MHz com um CPI médio de 2 que processa por interrupção eventos externos periódicos. Se o *overhead* máximo do atendimento a uma interrupção for de 10 **ciclos de relógio**, e a rotina de serviço à interrupção tiver 20 **instruções**, a máxima frequência a que esses eventos podem ocorrer é, aproximadamente:
 - a) 1 MHz

b) 2 MHz

- c) 4 MHz
- d) 8 MHz

- **30.** O trecho de código *assembly* MIPS (com *branch delay slot*) que se apresenta ao lado envia 4000 *words* para um periférico. Admitindo que este código é executado num processador de 400 MIPS (executa 4 × 10⁸ instrucões/seg) e que o ciclo de *polling* é efetuado em média 9 vezes, a taxa de transferência média que se obtém é, aproximadamente:
 - a) 4 Mbytes/s
 - b) 8 Mbytes/s
 - c) 16 Mbytes/s
 - d) 32 Mbytes/s

send: la \$a0,mem buf la \$a1,io addr \$a2,4000 li poll: lw \$t0,0(\$a1) lui \$t1,0x1000 \$t0,\$t0,\$t1 and \$t0,\$zero,poll beq nop lw \$t0,0(\$a0) \$a2,\$a2,-1 addi \$t0,4(\$a1) sw \$a2,\$zero,poll bne addiu \$a0,\$a0,4 \$ra jr ori \$v0,\$zero,0

31. Um dispositivo com interface RS232 e configurado para transmitir com 7 *bits* de dados, paridade par e 2 *stop bits*, produz a trama seguinte que é recebida por outro dispositivo RS232 incorrectamente configurado para 8 *bits*

de dados, paridade ímpar e 1 stop bit mas com o mesmo baud rate. Nestas circunstâncias o recetor:

- a) vai detetar uma trama inválida devido a um número incorrecto de stop bits
- b) vai detetar um erro de paridade
- c) vai detetar um erro de paridade e uma trama inválida devido a um número incorreto de stop bits
- d) não vai detetar qualquer erro
- **32.**Suponha que dispõe de 32 circuitos de memória de 1Mx4. Usando todos estes circuitos é possível construir um módulo de memória de:
 - a) $2M \times 64$
 - b) $8M \times 32$
 - c) $8M \times 8$
 - d) $2M \times 8$
- **33.** Considere um processador com um espaço de endereçamento de 32 bits e uma memória *cache* com associatividade de 4, de 256 kByte e blocos de 32 bytes. A dimensão, em bits, dos campos *tag*, *set* e *byte* é:
 - a) Tag: 14; Set: 13; Byte: 5
 - b) Tag: 16; Set: 11; Byte: 5
 - c) Tag: 16; Set: 13; Byte: 3
 - d) Tag: 9; Set: 18; Byte: 5
- **34.**Num dado processador um endereço virtual é representado com 32 bits, dos quais 11 bits são usados para o *page offset*. Esse processador é usado num sistema com 2 GByte de memória física. Nestas circunstâncias o número de páginas virtuais e físicas é, respectivamente:
 - a) 1M e 2k
 - b) 1M e 2M
 - c) 2M e 2k
 - d) 2M e 1M
- 35. Na técnica de memória virtual, o número de entradas do TLB é:
 - a) dependente da implementação sendo sempre muito inferior ao número de entradas da page table
 - b) igual ao número de entradas da page table
 - c) igual ao número máximo de páginas virtuais
 - d) igual ao número máximo de páginas virtuais de memória usadas pelo processo em execução
- **36.** Num sistema que suporta um nível de *cache* e memória virtual:
 - a) no espaço de armazenamento secundário (disco) estão armazenadas as páginas de memória virtual mais recentemente acedidas e na memória *cache* estão armazenados os blocos dessas páginas mais recentemente acedidos
 - b) os blocos da cache e as páginas de memória são tipicamente da mesma dimensão
 - c) enquanto é efectuado o processamento de um *page fault* de um processo, o processador pode estar ocupado a executar outro processo
 - d) todas as restantes respostas estão correctas

- **37.** Num sistema de memória virtual de 32 bits em que a dimensão da página é de 4 kBytes, a *page table* de cada processo tem um total de:
 - a) 1M entradas
 - b) 2M entradas
 - c) 4k entradas
 - d) 32 entradas

Grupo III

Um sistema possui um espaço de endereçamento virtual de 4 GBytes, páginas de memória de 4 kBytes e 1 GByte de memória física. Considere também:

- que num dado instante está a executar um processo cujo *Page Table Register* possui o valor **0x01230000**
- que cada entrada da *page table* possui 32 bits, está alinhada em endereços múltiplos de 4 e contém a seguinte informação e *flags*

Valid, Dirty, Read, Write, Execute flags	Bits não usados	PPN
[31:27]	[26:18]	[17:0]

o conteúdo de algumas posições da memória principal a seguir indicados

Endereço	Valor	
• • •		
0x0123001C	0xB00000C	
0x01230020	0xF0000007	
0x01230024	0xD8000005	
0x01230028	0xA000000E	
• • •		

- 38. Num acesso à memória, o CPU produz o endereço 0x0000900c. Qual o endereço físico em que é traduzido?
 - a) 0x0000E00C
 - b) 0x00005007
 - c) 0x0000500C
 - d) nenhuma das restantes respostas está correta
- **39.** O processo em execução pode aceder ao endereço virtual **0x0000A014** para:
 - a) leitura e escrita
 - b) leitura
 - c) escrita
 - d) nenhuma das restantes respostas está correta
- **40.** No caso de ser necessário substituir a página física que contém o endereço físico **0x0007001** por uma nova página, haverá necessidade de a salvaguardar previamente?
 - a) não, porque a respetiva flag Write não está ativa
 - b) não, porque a respetiva flag Dirty não está ativa
 - c) sim, porque a respetiva flag Write está ativa
 - d) sim, porque a respetiva flag Dirty está ativa

Área de Rascunho