Protocolo Modbus: visão geral

Curso ScadaBR 1.2 Completo

O Protocolo Modbus

- É um protocolo de comunicação digital, aberto (sem royalties), que surgiu na década de 70
- Amplamente utilizado na automação, costuma ser um padrão de fato na comunicação de dispositivos
- Vantangens: simples, fácil de implementar
- Desvantagens: antigo, menos recursos

O Protocolo Modbus

- Pode ser utilizado tanto em redes seriais (RS-232/RS-485) como em redes TCP/IP
- Segue um modelo mestre-escravo
- Suportado pela maioria dos CLPs do mercado

Conceitos básicos de Modbus

- Frame de comunicação Modbus
- Endereços de escravos na rede Modbus
- Faixas e endereços de memória em dispostivos
- Códigos das funções Modbus suportadas pelo ScadaBR

Frame Modbus

Requisição mestre → escravo

Endereço escravo	Código Função Modbus	Dados requisição	Verificação de erros
------------------	-------------------------	------------------	----------------------

Resposta escravo → mestre

Endereço escravo	Código Função Modbus	Dados resposta	Verificação de erros
Endereço escravo	Código função de exceção Modbus	Dados exceção	Verificação de erros

Endereços de escravos

- Uma rede de dispositivos Modbus pode ter até 247 escravos
- Todos os escravos devem ter um endereço único de 1 a 247; o mestre Modbus não tem endereço próprio
- Alguns fabricantes não seguem a especificação do protocolo e usam a faixa reservada (248 a 255) para endereços de escravos

Endereços de memória

- O protocolo Modbus define 4 faixas de memórias que um dispositivo pode armazenar informações, sendo 2 faixas binárias e 2 faixas de palavras de 2 bytes (16 bits)
- Cada faixa tem até 65.536 endereços (2¹⁶)
- A utilização mais comum dessas faixas é para associar aos dados de I/O e memórias do dispositivo (CLP, modem GPRS, etc...)

Endereços de memória

O protocolo Modbus divide as informações que podem ser armazenadas transmitidas em 4 faixas de endereços:

- Entradas discretas (discrete inputs)
- Registradores de entrada (input registers)
- Bobinas (coils)
- Registradores "holding" (holding registers)

Faixas de endereços

Nome	Faixa	Uso comum	Acesso	Tamanho por endereço
Bobinas (coils)	00001-09999 00000-09998	Saídas discretas	Leitura e escrita	1 bit
Entradas discretas (discrete inputs)	10001-19999 10000-19998	Entradas discretas	Apenas leitura	1 bit
Registrador de entrada (input register)	30001-39999 30000-39998	Entradas analógicas	Apenas leitura	16 bits
Registrador <i>holding</i> (holding register)	4 0001- 4 9999 40000-49998	Saídas analógicas	Leitura e escrita	16 bits

Funções Modbus no ScadaBR

- 0x01 (01) Read Coils
- 0x02 (02) Read Discrete Inputs
- 0x03 (03) Read Holding Registers
- 0x04 (04) Read Input Registers
- 0x05 (05) Write Single Coil
- 0x06 (06) Write Single Register
- 0x10 (16) Write Multiple registers
- 0x16 (22) Mask Write Register

Próximas aulas

Nas próximas aulas utilizaremos o protocolo Modbus para simular o uso de dispositivos reais com o ScadaBR

- Modbus Serial com ScadaBR (usando um Arduino)
- Modbus TCP/IP com ScadaBR (software simulador didático)

