MA2202 AY23/24 Sem 2 Final

Solution by Thang Pang Ern Audited by Ong See Hai

Question 1

Let *G* be a group, and let $x \in G$ be an element of finite order $n < \infty$. Show that for any $r, s \in \mathbb{Z}_{>0}$ such that n = rs, the element $x^r \in G$ is of finite order equal to *s*.

Solution. Suppose there exists $k \in \mathbb{Z}_{>0}$ such that $x^k = e$. Then, the smallest such k is n. Since n = rs, then $(x^r)^s = x^{rs} = x^n = e$, so the order of x^r divides s. Suppose there exists some other $t \in \mathbb{Z}_{>0}$ such that $(x^r)^t = e$, so $x^{rt} = e$. By the definition of the order of an element, $n \mid rt$, so $rs \mid rt$.

Since r > 0, then $s \mid t$. Thus, any exponent t for which $(x^r)^t = e$ must be a multiple of s, and so the smallest such t is precisely s.

Question 2

Let *G* be a group, and let *H* and *K* be subgroups of *G*. Show that the union $H \cup K$ is a subgroup of *G* if and only if either $H \subseteq K$ or $K \subseteq H$.

Solution. For the reverse direction, if $H \subseteq K$, $H \cup K = K$. Since K is a subgroup of G, then $H \cup K$ is also a subgroup of G. Similarly, if $K \subseteq H$, then $H \cup K = H$, and we repeat the earlier process, which shows that $H \cup K$ is also a subgroup of G.

For the forward direction, we prove using contraposition. That is, we wish to show

if neither $H \subseteq K$ nor $K \subseteq H$ then $H \cup K$ is not a subgroup of G.

With this, choose $h \in H \setminus K$ and $k \in K \setminus H$. Note that for any $h, k \in H \cup K$, we have $hk \in H \cup K$. Either $hk \in H$ or $hk \in K$. If $hk \in H$, then $h^{-1}hk \in H$, so $k \in H$, which is a contradiction as $k \in K \setminus H$. Similarly, if $hk \in K$, then $hkk^{-1} \in K$, so $h \in K$. Again, this is a contradiction as $h \in H \setminus K$. We conclude that $H \cup K$ is not a subgroup of G.

Question 3

- (a) Determine the order of the centralizer of (12)(34) in the symmetric group S_6 , and justify your answer.
- (b) Show that there does not exist any element of order 18 in the symmetric group S_9 .

Solution.

(a) Recall that if an element in S_n has m_ℓ cycles of length ℓ , then its centralizer has size

$$\prod_\ell \left(\ell^{m_\ell}\cdot m_\ell!
ight).$$

Here x = (12)(34) has two 2-cycles and two fixed points (i.e. two 1-cycles), so

$$|C_{S_6(x)}| = (2^2 \cdot 2!) \times (1^2 \cdot 2!) = 16.$$

Equivalently, one can see that any $g \in C_{S_6}(x)$ may either

- rotate each of the two 2–cycles independently in 2 ways each,
- permute the mentioned two 2-cycles in 2! ways,
- permute the two fixed points in 2! ways,

so the order is $2^2 \cdot 2! \cdot 2! = 16$.

(b) Say $\sigma \in S_9$ has order $18 = 2 \cdot 3^2$. Then, $lcm(\ell_1, ..., \ell_k) = 2 \cdot 3^2$, where ℓ_i denotes the length of each cycle.

So, there exists ℓ_i which is divisible by $3^2 = 9$. The only cycle of length divisible by 9 in S_9 is a single 9–cycle, but that alone has order 9, not 18, and it already uses up all 9 points so no disjoint 2–cycle can appear. Hence, no permutation in S_9 can have order 18.

Question 4

Let G be a group and $N \subseteq G$ be a normal subgroup. Suppose Γ is a group and $q : G \to \Gamma$ is a homomorphism with $\ker(q) \supseteq N$ satisfying the following universal property:

For any group H and any homomorphism $f: G \to H$ with $\ker(f) \supseteq N$, there exists a unique homomorphism $f': \Gamma \to H$ such that $f = f' \circ q$.

Show that $\Gamma \cong G/N$.

Solution. Define $\pi: G \to G/N$ be the canonical quotient map which is surjective. So, $\ker \pi = N \subseteq \ker q$. By the universal property of q, for any group H and any homomorphism $f: G \to H$, there exists a unique homomorphism $f': \Gamma \to H$ such that $f = f' \circ q$. In particular, we can choose

$$H = G/N$$
 $q: G \to \Gamma$ $\pi = f$ $u = f'$,

so we construct

$$u: G/N \to \Gamma$$
 such that $\pi = u \circ q$.

As such, we have the following diagram:

On the other hand, since $\ker q \supseteq N = \ker \pi$, the universal property of π yields a unique

$$v: G/N \longrightarrow \Gamma$$
 with $q = v \circ \pi$.

It now suffices to check that u and v are inverses. First,

$$(u \circ v) \circ \pi = u \circ (v \circ \pi) = u \circ q = \pi,$$

so by uniqueness of the factorisation through π , we get $u \circ v = \mathrm{id}_{G/N}$. Similarly,

$$(v \circ u) \circ q = v \circ (u \circ q) = v \circ \pi = q$$

and the uniqueness of the factorisation through q forces $v \circ u = \mathrm{id}_{\Gamma}$. Hence u is an isomorphism, which implies that $\Gamma \cong G/N$.

Question 5

Prove or disprove: For any infinite set X, there exists a non-trivial proper normal subgroup N in the group Perm(X) of permutations on X.

Solution. The statement is true. To approach this question, one can take some infinite set as an example, say $X = \mathbb{R}$, and try to construct a corresponding non-trivial proper normal subgroup N. Thereafter, generalise the claim. In particular, the set

$$N = {\sigma \in \text{Perm}(X) : \text{the set } {\sigma(x) \neq x} \text{ is finite}}$$
 is an example.

We prove that N satisfies the mentioned claims. Since $\sigma, \tau \in \text{Perm}(X)$ each permute finitely many points, then so does $\sigma \tau$ and σ^{-1} (in fact $\sigma = \sigma^{-1}$), so $N \leq \text{Perm}(X)$. $N \leq \text{Perm}(X)$ is clear as well.

Lastly, to establish properness, when X is infinite, there exist permutations of X whose support is infinite. In particular, we can choose an infinite cycle, so any such permutation $\sigma \in \text{Perm}(X) \setminus N$. Note that throughout our discussion, N can be taken to not be the trivial group $\{e\}$ since we can choose any transposition $\sigma = (xy)$ which permutes precisely two points (and two is finite).

Question 6

Let *G* be a group, and let $N \subseteq G$ be a proper normal subgroup of *G*. Suppose the only subgroups *H* of *G* satisfying $N \subseteq H \subseteq G$ are H = N and H = G. Show that the index [G : N] is finite and equal to a prime number.

Solution. Recall the lattice isomorphism theorem, which states that if G is a group and $\pi: G \to G/N$ denotes the canonical projection, then

$$H \to \pi(H)$$
 and $X \to \pi^{-1}(X)$

set up inverse bijections

$$\{H < G : N \subseteq H \subseteq G\} \leftrightarrow \{X < G/N\}.$$

Using this, we see that the only subgroups of G/N are $\{e_{G/N}\}$ and G/N. Next, take any non-trivial coset $gN \neq N$. Its cyclic subgroup $\langle gN \rangle$ is non-trivial, so $\langle gN \rangle = G/N$. As such, G/N is a cyclic group.

Suppose on the contrary that $\langle gN \rangle$ is infinite. Then, for each $k \geq 2$, $\langle (gN)^k \rangle$ would be a proper non-trivial subgroup of G/N, which is a contradiction, so $\langle gN \rangle$ is finite. Consequently, [G:N] is finite, say of order m. In other words, [G:N]=m, which is finite.

Lastly, we prove that |G/N| is prime. Recall that any finite cyclic group $\mathbb{Z}/m\mathbb{Z}$ has a unique subgroup of order d for every $d \mid m$. By way of contradiction, if m were composite, then we can write m = ab with 1 < a < m. So, $\langle (gN)^a \rangle$ is a proper non-trivial subgroup of order b, which again is a contradiction as there are no proper subgroups of G/N. Hence, m has no proper divisors other than 1 and itself, which implies m is prime.

Question 7

- (a) Describe, up to isomorphism, all groups G with the following property: there exists $n \in \mathbb{Z}_{>0}$ and an injective homomorphism $G \hookrightarrow S_n$.
- (b) Describe, up to isomorphism, all groups G with the following property: there exists $n \in \mathbb{Z}_{>0}$ and a surjective homomorphism $S_n \twoheadrightarrow G$.

Solution.

- (a) By Cayley's theorem, every group G is isomorphic to some subgroup of a symmetric group S_n . Since every subgroup of S_n is finite, then G is precisely the set of all finite groups, up to isomorphism.
- (b) Recall that a surjection exhibits, i.e. $G \cong S_n/N$ for some $N \subseteq S_n$. We consider a few cases.

For $n \ge 5$, the only normal subgroups are $\{e\}$, A_n , S_n so the only non-trivial proper quotient is $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z}$. Aside from the trivial quotient $S_n/S_n \cong \{e\}$ and the identity map $S_n/\{e\} \cong S_n$, there are no others.

If n = 4, besides $\{e\}, A_4, S_4$, we recall that the Klein four-group V is $\le S_4$, and that $S_4/V \cong S_3$.

If n = 3, the only non-trivial proper normal subgroup is A_3 , so $S_3/A_3 \cong \mathbb{Z}/2\mathbb{Z}$. If n = 2 or n = 1, there are no non-trivial proper quotients.

To conclude, all such groups G, up to isomorphism, are $\{e\}$, $\mathbb{Z}/2\mathbb{Z}$ or S_k for $k \geq 3$.

Question 8

Describe all elements of the automorphism group $Aut(\mathbb{Z})$ of the group \mathbb{Z} .

Solution. Let $\varphi : \mathbb{Z} \to \mathbb{Z}$ be a group homomorphism. Then, $\varphi(n) = n\varphi(1)$ for all $n \in \mathbb{Z}$. Note that φ is bijective if and only if $\varphi(1)$ is a generator of \mathbb{Z} . Recall that the only generators of the infinite cyclic group \mathbb{Z} are ± 1 , so $\varphi(1) = \pm 1$. Consider the maps

$$\varphi_+: \mathbb{Z} \to \mathbb{Z}$$
 where $n \mapsto n$ and $\varphi_-: \mathbb{Z} \to \mathbb{Z}$ where $n \mapsto -n$.

Under composition, these maps satisfy the following:

$$\phi_+ \circ \phi_+ = \phi_+ \quad \phi_+ \circ \phi_- = \phi_- \quad \phi_- \circ \phi_- = \phi_+$$

As such, we conclude that $Aut(\mathbb{Z}) = \{\pm 1\}$.

Question 9

Let G be a finite group. Suppose $N \subseteq G$ is a normal subgroup such that |N| and [G:N] are relatively prime. Show that N is the unique subgroup of G of order |N|.

Solution. Let $K \le G$ be such that |K| = |N|. We will prove that K = N. Since $N \le G$, then $NK \le G$, so $|NK| \mid |G|$ by Lagrange's theorem. Recall that

$$|NK| = \frac{|N||K|}{|N \cap K|} = \frac{|N|^2}{|N \cap K|}$$
 and $|G| = |N| \cdot [G:N]$.

So,

$$\frac{\left|N\right|^2}{\left|N\cap K\right|}\mid \left|G\right|$$
 which implies $\frac{\left|N\right|^2}{\left|N\cap K\right|}\mid \left|N\right|\cdot \left[G:N\right].$

As such,

$$\frac{|N|}{|N\cap K|}\mid [G:N].$$

Since $\gcd(|N|, [G:N]) = 1$, then $\frac{|N|}{|N \cap K|} = 1$, so $|N| = |N \cap K|$. Hence, $N \cap K = K$, which implies $K \subseteq N$. Since |K| = |N| and $K \subseteq N$, then $K \supseteq N$. It follows that K = N.

Question 10

Let *G* be a finite group. Let *p* be a prime and let $P \subseteq G$ be a *p*-Sylow subgroup. Suppose *P* is abelian. Show that for any $x, y \in P$, if there exists $g \in G$ such that $gxg^{-1} = y$, then there exists $n \in N_G(P)$ such that $nxn^{-1} = y$.

In other words, two elements of P which are conjugate in G are already conjugate in the normalizer $N_G(P)$ of P.

Solution. Let $x, y \in P$, and suppose there exists $g \in G$ such that $gxg^{-1} = y$. Since $y \in P$ and P is abelian, then every element of P commutes with y. So, $P \subseteq C_G(y)$. Likewise, gPg^{-1} also contains y, so $gPg^{-1} \subseteq C_G(y)$.

As P and gPg^{-1} are both Sylow p-subgroups of $C_G(y)$, then by Sylow's second theorem, they are conjugates in $C_G(y)$. That is to say, there exists $z \in C_G(y)$ such that

$$zPz^{-1} = gPg^{-1}.$$

Since $z \in C_G(y)$, then $zyz^{-1} = y$.

We claim that $n = z^{-1}g$ normalizes P. To see why,

$$nPn^{-1} = z^{-1}gPg^{-1}z = z^{-1}zPz^{-1}z = P$$

so $n \in N_G(P)$. Next, we claim that $nxn^{-1} = y$. We have

$$nxn^{-1} = z^{-1}gxg^{-1}z$$
 since $n = z^{-1}g$
= $z^{-1}yz$ since $gxg^{-1} = y$ as mentioned in the question
= y since $z \in C_G(y)$

as desired.