Géométrie différentielle et théorie de jauge

Solutions to exercises

07/01/2020

4. Theorem of submersions. Since $d_x f: \mathbb{R}^n \to \mathbb{R}^k$ is surjective, the kernel $\ker d_x f$ has dimension n-k, and we can find a basis of \mathbb{R}^n so that $\ker d_x f$ is generated by the (n-k) last vectors of the basis, that is $\ker d_x f = \{0\} \times \mathbb{R}^{n-k}$. Consider the map $g: U \to \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ defined by $g(y) = (f(y), y^{k+1}, ..., y^n)$. Then, in the decomposition $\mathbb{R}^k \times \mathbb{R}^{n-k}$ of \mathbb{R}^n we can decompose $d_x f: \mathbb{R}^n \to \mathbb{R}^k$ as

$$d_x f = \begin{pmatrix} F & 0 \end{pmatrix}$$

with $F: \mathbb{R}^k \to \mathbb{R}^k$ a linear isomorphism. Therefore

$$d_{x}g = \begin{pmatrix} F & 0 \\ 0 & Id \end{pmatrix}$$

has det $d_x g = \det F \neq 0$ so $d_x g$ is a linear isomorphism. In this situation, the Inverse Function Theorem says that there exist open sets $V \ni x$ and $W \ni g(x)$ such that $\phi := g|_V : V \to W$ is a diffeomorphism. Then $\phi^{-1}(x^1, \dots, x^n)$ is a point $y \in V$ such that g(y) = x, in particular $f(y) = (x^1, \dots, x^k)$. So we obtain

$$f(\phi^{-1}(x)) = (x^1, \dots, x^k).$$
 (*)

Fix c=0 to simplify. If f is a submersion at any point of $f^{-1}(0)$, then for any $x \in f^{-1}(0)$ we have $d_x f$ surjective so we can apply the previous result: there exists a local diffeomorphism $\phi: V \to W$ such that $f \circ \phi^{-1}$ is the map (*). Then $\phi(V \cap f^{-1}(0)) = W \cap (\{0\} \times \mathbb{R}^{n-k})$, so ϕ is a submanifold chart for $f^{-1}(0)$ at x, and $T_x f^{-1}(0) = (d_x \phi)^{-1}(\{0\} \times \mathbb{R}^{n-k}) = \ker d_x f$.

5. Discrete quotients. Take a small ball B_r around x of radius r in some chart ϕ_x , so the closed ball \overline{B}_r is compact, and therefore the set $\{g \in \Gamma, \overline{B}_r \cap g(\overline{B}_r) \neq \emptyset\}$ is finite, let's say = $\{g_1, \ldots, g_k\}$. Since the action is free, $g_i(x) \neq x$, therefore if we take $0 < \rho < r$ small enough, then $\overline{B}_\rho \cap g_i(\overline{B}_\rho) = \emptyset$ for all i = 1, ..., k. So finally $\overline{B}_\rho \cap g_i(\overline{B}_\rho) = \emptyset$ for all $g \in \Gamma$, which means that $p|_{\overline{B}_\rho}$ is injective (no two points in \overline{B}_ρ represent the same point in the quotient). So we can take $U_x = B_\rho$.

Therefore, $\phi_x \circ (p|_{U_x})^{-1}$ is a chart on $p(U_x) \subset M/\Gamma$ at the point p(x). To check that we have an atlas, we look at the transition between two such chart, that is $\phi_y \circ (p|_{U_y})^{-1} \circ (\phi_x \circ (p|_{U_x})^{-1})^{-1} = \phi_y \circ q_{yx} \circ \phi_x^{-1}$, where $q_{yx} = p|_{U_y}^{-1} \circ p|_{U_x}$. If $x' \in (p|_{U_x})^{-1}(p(U_x) \cap p(U_y))$, then there is a point $y' \in U_y$ such that p(x') = p(y'), which means that there exist a (unique) $g \in \Gamma$ such that y' = gx'; then $q_{yx}(x') = y' = gx'$. If we move a bit x' then we have the same, but since the group is discrete, $q_{yx}(x')$ is given by the action of the same element g on g', and therefore g' is a diffeomorphism. Finally the transition $g' \circ q_{yx} \circ g_x^{-1}$ is a diffeomorphism, and we have an atlas on g'.

Remark. In the charts ϕ_x on M and $\phi_x \circ (p|_{U_x})^{-1}$ on M/Γ , the local expression of p is just the identity, therefore p is a local diffeomorphism.

14/01/2020

4. Interior product. By definition, if $p = |\alpha|$ and $q = |\beta|$, and defining $X_1 := v$,

$$i_{v}(\alpha \wedge \beta)(X_{2},...,X_{p+q}) = \frac{1}{p!q!} \sum_{\sigma \in S_{p+q}} \epsilon(\sigma)\alpha(X_{\sigma(1)},...,X_{\sigma(p)})\beta(X_{\sigma(p+1)},...,X_{\sigma(p+q)}).$$

We subdivise the sum into two sums, the first one corresponding to the permutations σ such that $\sigma(1) \in \{1,...,p\}$ and the second one to the permutations such that $\sigma(1) \in \{p+1,...,p+q\}$. Let us fix $\tau_{i,j}$ to be the transposition which exchanges i and j. For the first sum, consider the permutation $\sigma' = \tau_{1,\sigma(1)} \circ \sigma$, then $\sigma'(1) = 1$ so σ' is actually an element of the group of permutations of the p+q-1 elements $\{2,...,p+q\}$. Now σ is determined by $\sigma(1) \in \{1,...,p\}$ and $\sigma' \in S_{p+q-1}$, so we can rewrite the corresponding sum as

$$\begin{split} \frac{1}{p!q!} \sum_{i=1}^{p} \sum_{\sigma' \in S_{p+q-1}} \epsilon(\sigma') \alpha(v, X_{\sigma'(2)}, ..., X_{\sigma'(p)}) \beta(X_{\sigma'(p+1)}, ..., X_{\sigma'(p+q)}) \\ &= \frac{1}{(p-1)!q!} \sum_{\sigma' \in S_{p+q-1}} \epsilon(\sigma') \alpha(v, X_{\sigma'(2)}, ..., X_{\sigma'(p)}) \beta(X_{\sigma'(p+1)}, ..., X_{\sigma'(p+q)}) \\ &= \Big((i_{v}\alpha) \wedge \beta \Big) (X_{2}, ..., X_{p+q}). \end{split}$$

Similarly, in the second sum, σ is determined by $\sigma(1)$ and $\sigma' = \tau_{p+1,\sigma(1)} \circ \sigma$, a permutation such that $\sigma'(p+1) = p+1$, so we can consider σ' as a permutation of the p+q-1 elements $\{1,...,p,p+2,...,p+q\}$. Then, in the same way, we

obtain that the second sum equals

$$\frac{1}{p!(q-1)!} \sum_{\sigma' \in S_{p+q-1}} \epsilon(\sigma') \alpha(X_{\sigma'(1)}, ..., X_{\sigma'(p)}) \beta(\upsilon, X_{\sigma'(p+2)}, ..., X_{\sigma'(p+q)}) = (\alpha \wedge (i_{\upsilon}\beta))(X_2, ..., X_{p+q}).$$

Hence we get $i_{\upsilon}(\alpha \wedge \beta) = (i_{\upsilon}\alpha) \wedge \beta + (-1)^p \alpha \wedge i_{\upsilon}\beta$.

In particular, if p=1, then $i_v\alpha=\alpha(v)$ and one has $i_v(\alpha\wedge\beta)=\alpha(v)\beta-\alpha\wedge i_v\beta$. By induction, one gets the general formula $i_v(\alpha_1\wedge\cdots\wedge\alpha_p)=\sum_1^p(-1)^{i-1}\alpha_i(v)\alpha_1\wedge\cdots\wedge\widehat{\alpha_i}\wedge\cdots\wedge\alpha_k$ for 1-forms $\alpha_1,...,\alpha_p$.

10. Forms and submersions. Begin by the case of the submersion

$$p(x^1, ..., x^n) = (x^1, ..., x^k).$$
 (†)

For $I = \{i_1 < \cdots < i_q\}$ denote $dx^I = dx^{i_1} \wedge \cdots \wedge dx^{i_q}$. If we have a q-form β on \mathbb{R}^k , we can write $\beta = \sum_{I \subset \{1, \dots, k\}} \beta_I(x^1, \dots, x^k) dx^I$, therefore we also have $p^*\beta = \sum_{I \subset \{1, \dots, k\}} \beta_I(x^1, \dots, x^k) dx^I$. Hence a form

$$\alpha = \sum_{I \subset \{1, \dots, n\}} \alpha_I(x^1, \dots, x^n) dx^I$$

is of the form $\alpha = p^*\beta$ if and only if:

- 1. $\alpha_I = 0 \text{ if } I \not\subset \{1, ..., k\};$
- 2. each coefficient α_I is a function of $(x^1,...,x^k)$ only.

We have $i_{\frac{\partial}{\partial x^{\ell}}}\alpha = \sum_{I \ni \ell} \epsilon(\ell, I) \alpha_I dx^{I \setminus \ell}$, where $\epsilon(\ell, I) = (-1)^{j-1}$, where $I = \{i_1 < \dots < i_q\}$ and $\ell = i_j$ for some j. Therefore the first condition is equivalent to $i_{\frac{\partial}{\partial x^{\ell}}}\alpha = 0$ for all $\ell > k$.

Given the first condition, if $\ell > k$ we have $i \frac{\partial}{\partial x^{\ell}} d\alpha = \sum_{I} \frac{\partial \alpha_{I}}{\partial x^{\ell}} dx^{\ell} \wedge dx^{I}$, therefore the second condition is equivalent to $i \frac{\partial}{\partial x^{\ell}} d\alpha = 0$ for any $\ell > k$.

Finally, observe that $\ker d_x p = \langle \frac{\partial}{\partial x^{k+1}}, ..., \frac{\partial}{\partial x^n} \rangle$, so we have proved the result in that case.

Now let us deal with the case of a general submersion p. By the theorem of submersions, p is locally of the form (\dagger) and therefore if a form $\alpha \in \Omega^k M$ is of the form $\alpha = p^*\beta$ one must have $i_v\alpha = 0$ and $i_vd\alpha = 0$ for all $v \in \ker dp$. Conversely, if $i_v\alpha = 0$ and $i_vd\alpha = 0$ for all $v \in \ker dp$ then we can cover M by open sets U on which p is of the form (\dagger) , and we obtain forms β_U defined on p(U) such that $\alpha|_U = p^*\beta_U$. The problem is now to check that any β_U and β_V coincide on the intersection $p(U) \cap p(V)$, that is to prove that β_z does not depend on the point $x \in p^{-1}(z)$ used to define it by $p^*\beta_z = \alpha_x$ (as we have seen, this defines uniquely β_z). Suppose z = p(x) = p(y): by hypothesis, the fiber $p^{-1}(z)$ is connected, therefore there exists a path $c : [0,1] \to p^{-1}(z)$ such that c(0) = x and c(1) = y. At each point c(t) we have a unique $\beta_t \in \Lambda^k T_z^* N$ such that $p^*\beta_t = \alpha_{c(t)}$. From what we have just seen, β_t is locally constant, so $\beta_0 = \beta_1$ and therefore β_z does not depend on the choice of the point $x \in p^{-1}(z)$.

21/01/2020

- **4. Cartan formula.** Since for all t one has $\phi_t^*d\alpha = d\phi_t^*\alpha$, taking the derivative at t = 0 one has $\mathcal{L}_X d\alpha = d\mathcal{L}_X \alpha$. Similarly, since ϕ_t^* is an algebra morphism on the algebra of forms, one has $\phi_t^*(\alpha \wedge \beta) = (\phi_t^*\alpha) \wedge (\phi_t^*\beta)$ and therefore the derivative gives $\mathcal{L}_X(\alpha \wedge \beta) = (\mathcal{L}_X \alpha) \wedge \beta + \alpha \wedge (\mathcal{L}_X \beta)$, which means that \mathcal{L}_X is a derivation of the algebra ΩM . We can begin by proving the Cartan formula in special cases:
 - for a 0-form, that is a function f, we have $\phi_t^* f = f \circ \phi_t$ and therefore $\mathcal{L}_X f = \frac{d}{dt}|_{t=0} f \circ \phi_t = df(\frac{d\phi_t}{dt}|_{t=0}) = df(X)$; therefore $\mathcal{L}_X f = X \cdot f = i_X df$, so the formula is proved in this case;
 - for a 1-form, which is a sum of terms f dq, with f and q functions, we calculate

$$\mathcal{L}_X(fdg) = (\mathcal{L}_X f)dg + f\mathcal{L}_X dg = (i_X df)dg + fd\mathcal{L}_X g = (i_X df)dg + fd(i_X dg),$$
$$(i_X d + di_X)(fdg) = i_X (df \wedge dg) + d(fi_X dg) = (i_X df)dg - (i_X dg)df + (i_X dg)df + fd(i_X dg),$$

so we have indeed $\mathcal{L}_X(fdq) = (i_Xd + di_X)(fdq)$.

In general, we observe that $D=i_Xd+di_X$ is also a derivation of ΩM , that is satisfies $D(\alpha \wedge \beta)=(D\alpha) \wedge \beta+\alpha \wedge (D\beta)$ (do the calculation, this follows from the fact that both d and i_X satisfy the identity $d(\alpha \wedge \beta)=(d\alpha) \wedge \beta+(-1)^{|\alpha|}\alpha \wedge d\beta$). We can write locally a form as $\alpha=\alpha_1\wedge\cdots\wedge\alpha_k$ where the α_i 's are 1-forms, and using that $\mathcal{L}_X\alpha_i=D\alpha_i$ for the 1-forms α_i and the fact that \mathcal{L}_X and D are both derivations of ΩM , we obtain that $\mathcal{L}_X\alpha=D\alpha$.