Unit 5: Word Frequency Distributions with the zipfR package Statistics for Linguists with R – A SIGIL Course

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

²Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

http://SIGIL.r-forge.r-project.org/

Copyright © 2007-2014 Baroni & Evert

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf's law
Some applications

Statistical LNRE Models

ZM & fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models

Reliability

zipfR

Lexical statistics

Zipf (1949, 1965); Baayen (2001); Baroni (2008)

- Statistical study of the frequency distribution of types (words or other linguistic units) in texts
 - remember the distinction between types and tokens?
- Different from other categorical data because of the extreme richness of types
 - people often speak of Zipf's law in this context

Outline

Lexical statistics & word frequency distributions Basic notions of lexical statistics

Typical frequency distribution patterns

Zipf's law

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfR

Basic terminology

- ▶ N: sample / corpus size, number of tokens in the sample
- ► *V*: vocabulary size, number of distinct types in the sample
- ▶ V_m : spectrum element m, number of types in the sample with frequency m (i.e. exactly m occurrences)
- ▶ V_1 : number of hapax legomena, types that occur only once in the sample (for hapaxes, #types = #tokens)
- A sample: a b b c a a b a
- $ightharpoonup N = 8, V = 3, V_1 = 1$

Rank / frequency profile

- ▶ The sample: caabccacd
- Frequency list ordered by decreasing frequency

t	f
С	4
a	3
b	1
d	1

Rank / frequency profile

- ▶ The sample: caabccacd
- Frequency list ordered by decreasing frequency

► Rank / frequency profile: ranks instead of type labels

r	f
1	4
2	3
3	1
4	1

ightharpoonup Expresses type frequency f_r as function of rank of a type

Rank/frequency profile of Brown corpus

Top and bottom ranks in the Brown corpus

top frequencies		bottom frequencies				
r	f	word	rank range f randomly selected examples			
1	69836	the	7731 - 8271	10	schedules, polynomials, bleak	
2	36365	of	8272 - 8922	9	tolerance, shaved, hymn	
3	28826	and	8923 - 9703	8	decreased, abolish, irresistible	
4	26126	to	9704 - 10783	7	immunity, cruising, titan	
5	23157	a	10784 - 11985	6	geographic, lauro, portrayed	
6	21314	in	11986 - 13690	5	grigori, slashing, developer	
7	10777	that	13691 - 15991	4	sheath, gaulle, ellipsoids	
8	10182	is	15992 - 19627	3	mc, initials, abstracted	
9	9968	was	19628 - 26085	2	thar, slackening, deluxe	
10	9801	he	26086 – 45215	1	beck, encompasses, second-place	

Frequency spectrum

- ▶ The sample: caabccacd
- ► Frequency classes: 1 (b, d), 3 (a), 4 (c)
- Frequency spectrum:

m	V_m
1	2
3	1
4	1

Frequency spectrum of Brown corpus

m

▶ The sample: a b b c a a b a

- ▶ The sample: a b b c a a b a
- $ightharpoonup N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$

- ► The sample: a b b c a a b a
- $ightharpoonup N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$
- $ightharpoonup N = 3, V = 2, V_1 = 1 (V_2 = 1, V_3 = 0, ...)$

- ▶ The sample: a b b c a a b a
- $ightharpoonup N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$
- $N = 3, V = 2, V_1 = 1 \quad (V_2 = 1, V_3 = 0, ...)$
- N = 5, V = 3, $V_1 = 1$ $(V_2 = 2, V_3 = 0, ...)$

- ▶ The sample: a b b c a a b a
- $ightharpoonup N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$
- $ightharpoonup N = 3, V = 2, V_1 = 1 \quad (V_2 = 1, V_3 = 0, ...)$
- $N = 5, V = 3, V_1 = 1 \quad (V_2 = 2, V_3 = 0, ...)$
- $ightharpoonup N = 8, V = 3, V_1 = 1 \quad (V_2 = 0, V_3 = 1, V_4 = 1, ...)$

Vocabulary growth curve of Brown corpus

With V_1 growth in red (curve smoothed with binomial interpolation)

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics

Typical frequency distribution patterns

Zipf's law Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfR

Typical frequency patterns

Across text types & languages

Typical frequency patterns

The Italian prefix ri- in the la Repubblica corpus

Is there a general law?

- ► Language after language, corpus after corpus, linguistic type after linguistic type, . . . we observe the same "few giants, many dwarves" pattern
- Similarity of plots suggests that relation between rank and frequency could be captured by a general law

Is there a general law?

- Language after language, corpus after corpus, linguistic type after linguistic type, ... we observe the same "few giants, many dwarves" pattern
- Similarity of plots suggests that relation between rank and frequency could be captured by a general law

▶ Nature of this relation becomes clearer if we plot log f as a function of log r

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics
Typical frequency distribution patterns

Zipf's law

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfF

- Straight line in double-logarithmic space corresponds to power law for original variables
- ► This leads to Zipf's (1949; 1965) famous law:

$$f(w) = \frac{C}{r(w)^a}$$

- Straight line in double-logarithmic space corresponds to power law for original variables
- ► This leads to Zipf's (1949; 1965) famous law:

$$f(w) = \frac{C}{r(w)^a}$$

- ▶ With a = 1 and C = 60,000, Zipf's law predicts that:
 - ▶ most frequent word occurs 60,000 times
 - second most frequent word occurs 30,000 times
 - ▶ third most frequent word occurs 20,000 times
 - ▶ and there is a long tail of 80,000 words with frequencies between 1.5 and 0.5 occurrences(!)

Logarithmic version

► Zipf's power law:

$$f(w) = \frac{C}{r(w)^a}$$

▶ If we take logarithm of both sides, we obtain:

$$\log f(w) = \log C - a \log r(w)$$

- Zipf's law predicts that rank / frequency profiles are straight lines in double logarithmic space
- ▶ Best fit a and C can be found with least-squares method

Logarithmic version

Zipf's power law:

$$f(w) = \frac{C}{r(w)^a}$$

▶ If we take logarithm of both sides, we obtain:

$$\log f(w) = \log C - a \log r(w)$$

- Zipf's law predicts that rank / frequency profiles are straight lines in double logarithmic space
- ▶ Best fit a and C can be found with least-squares method
- Provides intuitive interpretation of a and C:
 - ► a is **slope** determining how fast log frequency decreases
 - ▶ log *C* is **intercept**, i.e., predicted log frequency of word with rank 1 (log rank 0) = most frequent word

Fitting the Brown rank/frequency profile

Zipf-Mandelbrot law

Mandelbrot (1953, 1962)

Mandelbrot's extra parameter:

$$f(w) = \frac{C}{(r(w) + b)^a}$$

- Zipf's law is special case with b = 0
- Assuming a = 1, C = 60,000, b = 1:
 - ► For word with rank 1, Zipf's law predicts frequency of 60,000; Mandelbrot's variation predicts frequency of 30,000
 - ► For word with rank 1,000, Zipf's law predicts frequency of 60; Mandelbrot's variation predicts frequency of 59.94
- ► Zipf-Mandelbrot law forms basis of statistical LNRE models
 - ➤ ZM law derived mathematically as limiting distribution of vocabulary generated by a character-level Markov process

Zipf-Mandelbrot vs. Zipf's law

Fitting the Brown rank/frequency profile

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics
Typical frequency distribution patterns

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfR

23 / 71

Applications of word frequency distributions

- Most important application: extrapolation of vocabulary size and frequency spectrum to larger sample sizes
 - morphological productivity (e.g. Lüdeling and Evert 2005)
 - ▶ lexical richness in stylometry (Efron and Thisted 1976), language acquisition, clinical linguistics (Garrard *et al.* 2005)
 - language technology (estimate proportion of OOV words, unseen grammra rules, typos, ...)
- need method for predicting vocab. growth on unseen data

Applications of word frequency distributions

- Most important application: extrapolation of vocabulary size and frequency spectrum to larger sample sizes
 - morphological productivity (e.g. Lüdeling and Evert 2005)
 - ▶ lexical richness in stylometry (Efron and Thisted 1976), language acquisition, clinical linguistics (Garrard *et al.* 2005)
 - language technology (estimate proportion of OOV words, unseen grammra rules, typos, . . .)
- need method for predicting vocab. growth on unseen data
 - Direct applications of Zipf's law
 - population model for Good-Turing smoothing (Good 1953; Gale and Sampson 1995)
 - realistic prior for Bayesian language modelling
- need model of type probability distribution in the population

Vocabulary growth: Pronouns vs. ri- in Italian

N	V (pron.)	V (ri-)
5000	67	224
10000	69	271
15000	69	288
20000	70	300
25000	70	322
30000	71	347
35000	71	364
40000	71	377
45000	71	386
50000	71	400

Vocabulary growth: Pronouns vs. ri- in Italian

LNRE models for word frequency distributions

- ► LNRE = large number of rare events (cf. Baayen 2001)
- Statistics: corpus = random sample from population
 - population characterised by vocabulary of **types** w_k with occurrence **probabilities** π_k
 - ▶ not interested in specific types → arrange by decreasing probability: $\pi_1 \ge \pi_2 \ge \pi_3 \ge \cdots$
 - ▶ NB: not necessarily identical to Zipf ranking in sample!

LNRE models for word frequency distributions

- ► LNRE = large number of rare events (cf. Baayen 2001)
- Statistics: corpus = random sample from population
 - population characterised by vocabulary of **types** w_k with occurrence **probabilities** π_k
 - ▶ not interested in specific types → arrange by decreasing probability: $\pi_1 \ge \pi_2 \ge \pi_3 \ge \cdots$
 - ▶ NB: not necessarily identical to Zipf ranking in sample!
- ► LNRE model = population model for type probabilities, i.e. a function $k \mapsto \pi_k$ (with small number of parameters)
 - type probabilities π_k cannot be estimated reliably from a corpus, but parameters of LNRE model can

Examples of population models

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

► We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well
- Re-phrase the law for type probabilities:

$$\pi_k := \frac{C}{(k+b)^a}$$

- ▶ Two free parameters: a > 1 and $b \ge 0$
- ▶ C is not a parameter but a normalization constant, needed to ensure that $\sum_k \pi_k = 1$
- this is the Zipf-Mandelbrot population model

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics

Typical frequency distribution patterns

Zipf's law

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfR

The parameters of the Zipf-Mandelbrot model

The parameters of the Zipf-Mandelbrot model

32 / 71

The finite Zipf-Mandelbrot model

- ▶ Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small
- $\pi=10^{-6}$ (once every million words), $\pi=10^{-9}$ (once every billion words), $\pi=10^{-12}$ (once on the entire Internet), $\pi=10^{-100}$ (once in the universe?)

The finite Zipf-Mandelbrot model

- ▶ Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small
- $\pi=10^{-6}$ (once every million words), $\pi=10^{-9}$ (once every billion words), $\pi=10^{-12}$ (once on the entire Internet), $\pi=10^{-100}$ (once in the universe?)
- Alternative: finite (but often very large) number of types in the population
- ▶ We call this the population vocabulary size S (and write $S = \infty$ for an infinite type population)

The finite Zipf-Mandelbrot model Evert (2004)

- ► The finite Zipf-Mandelbrot model simply stops after the first S types (w₁,..., w_S)
- S becomes a new parameter of the model
 → the finite Zipf-Mandelbrot model has 3 parameters

Abbreviations:

- ZM for Zipf-Mandelbrot model
- ► fZM for finite Zipf-Mandelbrot model

Outline

Lexical statistics & word frequency distribution

Basic notions of lexical statistics

Typical frequency distribution patterns

Zipf's law

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfR

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:

Use computer simulation to sample from this model:

- ▶ Draw N tokens from the population such that in each step, type w_k has probability π_k to be picked
- This allows us to make predictions for samples (= corpora) of arbitrary size N → extrapolation

#1: 1 42 34 23 108 18 48 18 1 ...

```
#1: 1 42 34 23 108 18 48 18 1
   time order room school town course area course time
```

#1: 1 42 34 23 108 18 48 18 1 time order room school town course area course time **#2**: 286 28 23 36 3 4 7 4 8

```
#1: 1 42 34 23 108 18 48 18 1
  time order room school town course area course time
#2: 286 28 23 36 3 4 7 4 8
#3: 2 11 105 21 11 17 17 1 16 ...
```

```
#1: 1 42 34 23 108 18 48 18 1
  time order room school town course area course time
#2: 286 28 23 36 3 4 7 4 8 ...
#3: 2 11 105 21 11 17 17 1 16 ...
#4: 44 3 110 34 223 2 25
                            20 28 ...
#5:
   24 81 54 11 8
                     61 1
                            31 35 ...
#6: 3 65 9
             165
                  5
                     42 16
                            20 7 ...
#7:
  10
       21 11
            60 164
                     54 18 16 203 ...
#8: 11 7 147 5 24
                     19 15
                            85 37 ...
```

Samples: type frequency list & spectrum

rank <i>r</i>	f_r	type <i>k</i>
1	37	6
2	36	1
3	33	3
4	31	7
1 2 3 4 5 6 7 8 9	31	10
6	30	5
7	28	12
8	27	2
9	24	4
10	24	16
11	23	8
12	22	14
:	:	÷

m	V_m
1	83
2	22
3	20
4	12
5	10
6	5
7	5
8	3
9	3
10	3
÷	:
	11 -1

sample #1

Samples: type frequency list & spectrum

rank <i>r</i>	f_r	type <i>k</i>
1	39	2
2	34	3
2 3 4	30	5
4	29	10
5	28	8
6	26	1
7	25	13
8	24	7
9	23	6
10	23	11
11	20	4
12	19	17
:	:	÷

m	V_m
1	76
2	27
3 4	17
4	10
5	6
6	5
7	7
8	3
10	4
11	2
:	:

sample #2

Random variation in type-frequency lists

10 20 30 10 20 30 40

50

40

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics

Typical frequency distribution patterns

Zipf's law

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models Reliability

zipfR

Expected values

- There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely
- ► Take the average over a large number of samples, called expected value or expectation in statistics
- ▶ Notation: E[V(N)] and $E[V_m(N)]$
 - indicates that we are referring to expected values for a sample of size N
 - ▶ rather than to the specific values V and V_m observed in a particular sample or a real-world data set
- ► Expected values can be calculated efficiently *without* generating thousands of random samples

The expected vocabulary growth curve

Confidence intervals for the expected VGC

"Confidence intervals" indicate predicted sampling distribution:

for 95% of samples generated by the LNRE model, VGC will fall within the range delimited by the thin red lines

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics

Typical frequency distribution patterns

Zipf's law

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfF

Automatic parameter estimation

- ▶ By trial & error we found a = 2.0 and b = 550
- ▶ Automatic estimation procedure: a = 2.39 and b = 1968

4 D > 4 D > 4 E > 4 E > E 99 C

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics

Typical frequency distribution patterns

Zipf's law

Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models

Reliability

zipfF

Goodness-of-fit

- ► Goodness-of-fit statistics measure how well the model has been fitted to the observed training data
- Compare observed vs. expected frequency distribution
 - ▶ frequency spectrum (→ easier)
 - vocabulary growth curve

Goodness-of-fit

- Goodness-of-fit statistics measure how well the model has been fitted to the observed training data
- Compare observed vs. expected frequency distribution
 - ▶ frequency spectrum (→ easier)
 - vocabulary growth curve
- Similarity measures
 - ▶ mean square error (→ dominated by large V / V_m)
 - ► multivariate chi-squared statistic X² takes sampling variaton (and covariance of spectrum elements) into account

Goodness-of-fit

- ► Goodness-of-fit statistics measure how well the model has been fitted to the observed training data
- Compare observed vs. expected frequency distribution
 - ▶ frequency spectrum (→ easier)
 - vocabulary growth curve
- Similarity measures
 - ▶ mean square error (→ dominated by large V / V_m)
 - ► multivariate chi-squared statistic X² takes sampling variaton (and covariance of spectrum elements) into account
- ► Multivariate chi-squared test for goodness-of-fit
 - ► H₀: observed data = sample from LNRE model (i.e. fitted LNRE model describes the true population)
 - p-value derived from X^2 statistic ($X^2 \sim \chi_{\rm df}$ under H_0)
 - in previous example: $p \approx 0$:-(

- 1. Model assumptions \neq population (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings

- Model assumptions ≠ population (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model

- Model assumptions ≠ population (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model
- 3. Uncertainty due to sampling variation (i.e. observed training data differ from population distribution)
 - model fitted to training data, may not reflect true population
 - another training sample would have led to different parameters

- Model assumptions ≠ population (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model
- 3. Uncertainty due to sampling variation
 - (i.e. observed training data differ from population distribution)
 - model fitted to training data, may not reflect true population
 - another training sample would have led to different parameters

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - ▶ analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- ▶ Bootstrapping (Efron 1979)
 - resample from observed data without replacement
 - ▶ this approach is not suitable for type-token distributions (resamples underestimate vocabulary size V!)

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- ▶ Bootstrapping (Efron 1979)
 - resample from observed data without replacement
 - ▶ this approach is not suitable for type-token distributions (resamples underestimate vocabulary size V!)
- Parametric bootstrapping
 - use fitted model to generate samples, i.e. sample from the population described by the model
 - advantage: "correct" parameter values are known

LNRE modelling in a nutshell:

1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set

- 1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set
- 2. estimate parameters of LNRE model by matching observed and expected frequency spectrum

- 1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set
- 2. estimate parameters of LNRE model by matching observed and expected frequency spectrum
- 3. evaluate goodness-of-fit on spectrum (Baayen 2001) or by testing extrapolation accuracy (Baroni and Evert 2007)
 - ▶ in principle, you should only go on if model gives a plausible explanation of the observed data!

- 1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set
- 2. estimate parameters of LNRE model by matching observed and expected frequency spectrum
- 3. evaluate goodness-of-fit on spectrum (Baayen 2001) or by testing extrapolation accuracy (Baroni and Evert 2007)
 - ▶ in principle, you should only go on if model gives a plausible explanation of the observed data!
- 4. use LNRE model to compute expected frequency spectrum for arbitrary sample sizes
 - → extrapolation of vocabulary growth curve
 - or use population model directly as Bayesian prior etc.

zipfR

Evert and Baroni (2007)

- http://zipfR.R-Forge.R-Project.org/
- Conveniently available from CRAN repository
 - ▶ see Unit 1 for general package installation guides

Loading

- > library(zipfR)
- > ?zipfR
- > data(package="zipfR")

package overview in HTML help leads to zipfR tutorial

> help.start()

Importing data

```
> data(ItaRi.spc)  # not necessary in recent package versions
> data(ItaRi.emp.vgc)

# load your own data sets (see ?read.spc etc. for file format)
> my.spc <- read.spc("my.spc.txt")
> my.vgc <- read.vgc("my.vgc.txt")
> my.tfl <- read.tfl("my.tfl.txt")
> my.spc <- tfl2spc(my.tfl) # compute spectrum from frequency list</pre>
```

Looking at spectra

```
> summary(ItaRi.spc)
> ItaRi.spc
> N(ItaRi.spc)
> V(ItaRi.spc)
> Vm(ItaRi.spc, 1)
> Vm(ItaRi.spc, 1:5)
\# Baayen's P = estimate for slope of VGC
> Vm(ItaRi.spc, 1) / N(ItaRi.spc)
> plot(ItaRi.spc)
> plot(ItaRi.spc, log="x")
```

Looking at VGCs

```
> ItaRi.emp.vgc
> N(ItaRi.emp.vgc)
> plot(ItaRi.emp.vgc, add.m=1)
```

> summary(ItaRi.emp.vgc)

Smoothing VGCs with binomial interpolation

(for details, see Baayen 2001, Sec. 2.6.1)

ultra-

- ► Load the spectrum and empirical VGC of the less common prefix *ultra*-
- Compute binomially interpolated VGC for ultra-
- ▶ Plot the binomially interpolated *ri-* and *ultra-* VGCs together

Estimating LNRE models

```
# fit a fZM model
# (you can also try ZM and GIGP, and compare them with fZM)
> ItaUltra.fzm <- lnre("fzm", ItaUltra.spc)
> summary(ItaUltra.fzm)
```

Observed/expected spectra at estimation size

```
# expected spectrum
> ItaUltra.fzm.spc <-
  lnre.spc(ItaUltra.fzm, N(ItaUltra.fzm))
# compare
> plot(ItaUltra.spc, ItaUltra.fzm.spc,
       legend=c("observed", "fzm"))
# plot first 10 elements only
> plot(ItaUltra.spc, ItaUltra.fzm.spc,
       legend=c("observed", "fzm"), m.max=10)
```

Compare growth of two categories

```
# extrapolation of ultra- VGC to sample size of ri- data
> ItaUltra.ext.vgc <-</pre>
  lnre.vgc(ItaUltra.fzm, N(ItaRi.emp.vgc))
# compare
> plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,
       NO=N(ItaUltra.fzm), legend=c("ultra-", "ri-"))
# zooming in
> plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,
       NO=N(ItaUltra.fzm), legend=c("ultra-", "ri-"),
       xlim=c(0, 100e3))
```

Model validation by parametric bootstrapping

```
# define function to extract relevant information from fitted model
> extract.stats <- function (m)
    data.frame(alpha=m$param$alpha, A=m$param$A,
                 B=m$param$B, S=m$S, X2=m$gof$X2)
# run bootstrapping procedure (default = 100 replicates)
> runs <- lnre.bootstrap(ItaUltra.fzm, N(ItaUltra.fzm),</pre>
                             lnre, extract.stats, type="fzm")
# combine results into single data frame
> runs <- do.call(rbind, runs)</pre>
# NB: don't try this with large samples (N > 1M tokens)
```

Model validation by parametric bootstrapping

```
# distribution of estimated model parameters
> hist(runs$alpha, freq=FALSE, xlim=c(0, 1))
> lines(density(runs$alpha), lwd=2, col="red")
> abline(v=ItaUltra.fzm$param$alpha, lwd=2, col="blue")
# try the other parameters for yourself!
# distribution of goodness-of-fit values
> hist(runs$X2, freq=FALSE)
> lines(density(runs$X2), lwd=2, col="red")
# estimated population vocabulary size
> hist(runs$S) # what is wrong here?
```

References I

- Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer Academic Publishers, Dordrecht.
- Baroni, Marco (2008). Distributions in text. In A. Lüdeling and M. Kytö (eds.), *Corpus Linguistics. An International Handbook*, chapter 39. Mouton de Gruyter, Berlin.
- Baroni, Marco and Evert, Stefan (2007). Words and echoes: Assessing and mitigating the non-randomness problem in word frequency distribution modeling. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics*, pages 904–911, Prague, Czech Republic.
- Efron, Bradley (1979). Bootstrap methods: Another look at the jackknife. *The Annals of Statistics*, **7**(1), 1–26.
- Efron, Bradley and Thisted, Ronald (1976). Estimating the number of unseen species: How many words did Shakespeare know? *Biometrika*, **63**(3), 435–447.
- Evert, Stefan (2004). A simple LNRE model for random character sequences. In Proceedings of the 7èmes Journées Internationales d'Analyse Statistique des Données Textuelles (JADT 2004), pages 411–422, Louvain-la-Neuve, Belgium.
- Evert, Stefan and Baroni, Marco (2007). zipfR: Word frequency distributions in R. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions, pages 29–32, Prague, Czech Republic.

References II

- Gale, William A. and Sampson, Geoffrey (1995). Good-Turing frequency estimation without tears. *Journal of Quantitative Linguistics*, **2**(3), 217–237.
- Garrard, Peter; Maloney, Lisa M.; Hodges, John R.; Patterson, Karalyn (2005). The effects of very early alzheimer's disease on the characteristics of writing by a renowned author. *Brain*, **128**(2), 250–260.
- Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. *Biometrika*, **40**(3/4), 237–264.
- Lüdeling, Anke and Evert, Stefan (2005). The emergence of productive non-medical -itis. corpus evidence and qualitative analysis. In S. Kepser and M. Reis (eds.), Linguistic Evidence. Empirical, Theoretical, and Computational Perspectives, pages 351–370. Mouton de Gruyter, Berlin.
- Mandelbrot, Benoit (1953). An informational theory of the statistical structure of languages. In W. Jackson (ed.), Communication Theory, pages 486–502. Butterworth, London.
- Mandelbrot, Benoit (1962). On the theory of word frequencies and on related Markovian models of discourse. In R. Jakobson (ed.), *Structure of Language and its Mathematical Aspects*, pages 190–219. American Mathematical Society, Providence, RI.

References III

- Zipf, George Kingsley (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge, MA.
- Zipf, George Kingsley (1965). *The Psycho-biology of Language*. MIT Press, Cambridge, MA.