Многопоточное программирование

Архитектурная поддержка многозадачности

Сложение векторов (a1,a2, .. a100) + (b1,b2, b100)

5 тактов на операцию сложения

Сложение векторов (a1,a2, .. a100) + (b1,b2, b100)

5 тактов на операцию сложения

• 1 устройство — 500 тактов

Сложение векторов (a1,a2, .. a100) + (b1,b2, b100)

5 тактов на операцию сложения

- 1 устройство 500 тактов
- 2 устройства 250 тактов

Сложение векторов (a1,a2, .. a100) + (b1,b2, b100)

5 тактов на операцию сложения

- 1 устройство 500 тактов
- 2 устройства 250 тактов
- N устройство 500/N тактов

Стадии исполнения инструкции:

- Выборка
- Декодирование
- Исполнение
- Запись результата

Суперскалярные компьютеры

Скалярные и векторные операции

- n количество элементов в векторе
- σ время на инициализацию векторной команды
- I количество ступеней конвейера
- т длительность выполнения ступени конвейера

- n количество элементов в векторе
- σ время на инициализацию векторной команды
- I количество ступеней конвейера
- т длительность выполнения ступени конвейера

$$E = \frac{n}{t} = \frac{n}{\left[\left(\sigma + l + n - 1\right)\tau\right]} = \frac{1}{\left[\tau + \left(\sigma + l - 1\right)\frac{\tau}{n}\right]}$$

Архитектуры процессоров CISC и RISC

- CISC Complete Instruction Set Computer
 - о окращение количества машинных циклов на выполнение одной инструкции
 - Увеличивалось количество инструкций
 - Использовался микрокод
- RISC Reduced Instruction Set Computer
 - Сложные инструкции CISC используются редко –инструкции будут простыми
 - Вместо микрокода в ПЗУ (медленно) используется программа в ОЗУ (быстро)
 - Необходимо использование оптимизирующих компиляторов, зато не нужно писать на ассемблере
 - Все инструкции имеют одинаковую длину и состоят из битовых полей, которые можно декодировать одновременно
 - Используется большое количество регистров для сокращения количества обращений к памяти

Классификация Флинна (1966)

SISD (Single Instruction stream over a Single Data stream) — один поток команд и один поток данных SIMD (Single Instruction, Multiple Data) — один поток команд и несколько потоков данных MISD (Multiple Instruction Single Data) — несколько потоков команд и один поток данных MIMD (Multiple Instruction Multiple Data) — несколько потоков команд и несколько потокок данных

SISD архитектура

- Традиционные последовательные комьютеры
- Классическая архитектура фон Неймна

SIMD архитектура

- Векторные процессоры
- Intel MMX, Pentium, Core 2 Duo
- GPU

MISD архитектура

MIMD архитектура

MIMD архитектура

Мультипроцессоры

- Два или более процессоров подсоединены к общей памяти
- Задачи легко перемещаются межу процессорами
- Самый дешевый способ

- Архитектура большинства многопроцессорных систем
- Любой процессор над любыми данными
- Легко масштабируется
- Узкое место общая шина
- Проблема когерентности кэш-памяти

VLIW - архитектура

- Very Long Instruction Word
- Несколько вычислительных устройств
- Одна инструкция несколько операций
- Простая архитектура
- Распределение вычислений задача компилятора

NUMA (Non-Uniform Memory Access)

- Память физически распределена
- Память логически объединена
- Время доступа к памяти определяется ее расположением

Мультипроцессоры

Общая распределяемая память (UMA)

- Преимущества:
 - о Привычная модель программирования
 - Высокая скорость обмена данными

Мультипроцессоры

Общая распределяемая память

- Преимущества:
 - о Привычная модель программирования
 - Высокая скорость обмена данными
- Недостатки
 - Синхронизация при доступе к общим данным
 - о Когерентность кэшей
 - Масштабируемость
 - Эффективное использование память в NUMA

Мультикомпьютеры

Распределяемая память

Мультикомпьютеры

- Массивно-параллельные системы (MPP)
- Кластеры
- Network of workstation(NOW)
- GRID

Мультикомьютеры

Распределенная память

- Преимущества
 - Низкая стоимость
 - Высокая масштабируемость
 - Меньше проблем с синхронизацией
 - о Декомпозиция на крупные задачи

Мультикомьютеры

Распределенная память

- Преимущества
 - Низкая стоимость
 - Высокая масштабируемость
 - Меньше проблем с синхронизацией
 - Декомпозиция на крупные задачи
- Недостатки
 - Необходимость использования сообщений
 - Высокие временные задержки и низкая пропускная способность
 - Отказы узлов

Кластеры

Структура вычислительного кластера

36 процессоров Pentium III/50CMHz, Dolphin SCI (двумерный тор), производительность 18 GFLORS

- Несколько связных между собой компьютеров
- используется как одни информационных ресурс

GRID

- Компьютерная среда, обеспечивающая скоординированное разделение вычислительных ресурсов и ресурсов хранения информации в одной виртуальной организации
- Форма распределенных вычислений, использующая «виртуальный кластер» состоящий из множества неоднородных вычислительных ресурсов
- «метакомпьютинг»

GRID

GRID

- Система получает задачи и делегирует вычисления ресурсам зарегистрированным в ней
- Ресурсы могут быть неоднородны и географически распределенными, это могут быть как производительные кластеры, так и обычные рабочие станции

CERN GRID

GRID имеет иерархическую структуру

Пример: GRID система CERN

- Верхний уровень Tier 0 получение информации с детекторов, сбор «сырых» научных данных, которые будут храниться до конца работы эксперимента
- Tier 1 хранение второй копии этих данных в других уголках мира, 11 центров по всему миру, Центры обладают значительными ресурсами для хранения данных
- Tier 2 следующие в иерархии, многочисленные центры второго уровня, региональные центры
- Tier 3 Институты
- Tier 4 Рабочие станции

CERN GRID

GRID

- Менеджер заданий
- Брокер ресурсов
- Система составления расписания
- Хранилище входных данных и результатов

GRID

Применение:

- Научные проекты
 - Обработка результатов работы БАК
 - о Поиск лекарств от болезни Альцгеймера и рака
 - Поиск инопланетной жизни
- Коммерческие проекты
 - Прогнозирование курсов валют
 - Расчёт конструкций в авиации и строительстве

Типовые схемы коммуникации

- Полный граф
- Линейка
- Кольцо
- Звезда
- Решетка
- Гиперкуб

Типовые схемы коммуникации

Топология сети кластеров

- Switch
- Полный граф
- В каждый момент один процессор может участвовать только в одой приемо-передаче сообщения

Характеристики топологии сети

- Диаметр(максимальное расстояние)
- Связность (разные маршруты)
- Ширина бинарного деления (минимальное число дуг для несвязности)
- Стоимость (количество линий передачи)

Характеристики топологи сети

Топллогия	Диаметр	Связность	Ширина бисекции	Стоимость
Полный граф				
Звезда				
Двоичное дерево				
Линейка				
Кольцо				
Решетка N=2				
Решетка тор N=2				
Гиперкуб				

Характеристики топологи сети

Топллогия	Диаметр	Связность	Ширина бисекции	Стоимость
Полный граф	1	p2/4	p-1	p(p-1)/2
Звезда	2	1	1	p-1
Двоичное дерево	2log((p+1)/2)	1	1	p-1
Линейка	p-1	1	1	p-1
Кольцо	p/2	2	2	р
Решетка N=2	2(√p−1)	√p	2	2(p–√p)
Решетка тор N=2	2√p/2	2√p	4	2р
Гиперкуб	log p	p/2	log p	(p log p)/2

Гибридные системы

Классификация Хокни

Классификация Фенга (1972)

- Две простые характеристики:
 - n количество бит в машинном слове, обрабатываемых параллельно
 - т число слов обрабатываемых одновременно
- Максимальная степень параллелизма
 - \circ P = m x n
- Преимущества:
- Недостатки:

Классификация Фенга (1972)

- Две простые характеристики:
 - n количество бит в машинном слове, обрабатываемых параллельно
 - o m число слов обрабатываемых одновременно
- Максимальная степен параллелизма
 - \circ P = m x n
- Преимущества:
 - едина числовая характеристика
- Недостатки:
 - Нет различия между разными системами
 - Не учитывается например возможное применение конвейера.

Классы по Фенгу

- Разрядно-последовательные, пословнопоследовательные (n = m = 1)
- Разрядно-параллельные, пословно-последовательные (n > 1, m = 1)
- Разрядно-последовательные, пословно-параллельные (n = 1, m > 1)
- Разрядно-параллельные, пословно-параллельные (n > 1, m > 1)

Другие классификаци

Классификация Хендлера Классификация Шнайдера Классификация Скилликорна

Производительность параллельных компьютеров

- Пиковая производительность
- MIPS Million Instruction per Second
- FLOP Float Point Operation per Second

Производительность параллельных компьютеров

Benchmark

LINPACK - решение систем уравнений

STREAM - работа с очень длинными векторами

Вопросы