Feuille 0.2

Exercice 1 – Ensembles compacts dans les espaces métriques. Soit (E, d) un espace métrique.

- a) Soit $A \subset E$ un sous-ensemble de E. Montrer que A vérifie la propriété de Bolzano Weiestrass (ie toute suite dans A a au moins une valeur d'adhérence dans A) ssi il vérifie la propriété de Borel Lebesgue, ie si $(U_i)_{i\in I}$ est une famille d'ouverts de E telle que $\bigcup_i U_i \cap A = A$ alors il existe $i_1, \dots i_N \in I$ tels que $\bigcup_{k=1}^N U_{i_k} \cap A = A$. Dans ce cas on dit que l'ensemble A est compact.
- **b)** Montrer que toute suite d'un compact A ayant une seule valeur d'adhérence converge.
- c) Montrer qu'un sous ensemble A compact de E est fermé et borné. On notera que dans $E = \mathbb{R}^m$ où $(a_n)_n$ converge vers a si et seulement si les composantes $(a_n^i)_n$ convergent dans \mathbb{R} vers les composantes a^i , les fermés bornés sont des compacts.

Exercice 2 — Fonctions définies sur un compact. Soient (E,d) et (E',d') deux espaces métriques, et soit $f: E \longrightarrow E'$. Définitions:

- On dit que f est un homéomorphisme de E sur E' si f est inversible continue et f^{-1} est également continue.
- On dit que f est ouverte si l'image de tout ouvert de E par f est un ouvert de E'.
- On dit que $f: E \to E'$ est uniformément continue sur E si pour tout $\epsilon > 0$, il existe $\eta > 0$ tel que $d(x,y) \leq \eta$ entraı̂ne $d'(f(x),f(y)) \leq \epsilon$ pour tout x et y.
- a) Montrer que si f est continue sur K compact de E alors f(K) est compact et f est uniformément continue sur K. Remarque: En particulier une application numérique (à valeur dans \mathbb{R}) définie sur un compact est bornée et atteint ses bornes.
- **b)** Montrer que si f est bijective et continue sur un compact K alors f est une application ouverte de K sur f(K), et donc un homéomorphisme de K sur f(K).

Exercice 3 – Espace vectoriel normé. Soit $(E, \|.\|)$ un evn défini sur \mathbb{R} ou \mathbb{C} . E est un espace métrique pour la distance associée à la norme.

- a) Montrer que l'application qui à $x \in E$ associe ||x|| est continue sur E.
- **b)** Soit $A \subset \mathbb{R}^n$ fermé et non bornée. Montrer que si $f: A \to \mathbb{R}$ est continue et coercive i.e. $\lim_{\|x\| \to +\infty} f(x) = +\infty$ alors f est minorée et atteint sa borne inférieure sur A.
- c) Montrer que E est de dimension finie ssi sa boule unité est compacte (théorème de Riesz).

Exercice 4 – Espace de Banach. Un evn complet est appelé espace de Banach.

a) Soit $(a_n)_n$ une suite de E espace de Banach, dont la série est absolument convergente. Montrer que cette série converge dans E et que l'on $\|\sum_{n=0}^{+\infty} a_n\| \leqslant \sum_{n=0}^{+\infty} \|a_n\|$.

- **b)** Soient E un espace de Banach et A un ensemble quelconque non vide. Montre que $\mathcal{B} = \{f : A \to E / f \text{ bornée}\}$ muni de la norme sup (norme de la convergence uniforme) est un espace de Banach.
- c) Soient E un espace de Banach et A un ensemble quelconque non vide. Montre que $C_b = \{f : A \to E / f \text{ bornée et continue}\}$ est un sous espace de Banach dans \mathcal{B} . On notera que si A est compact, il coincide avec $C(A, E) = \{f : A \to E / f \text{ continue}\}$.
- **d)** Montrer que $C([0,1],\mathbb{R})$ ensemble des fonctions continues de [0,1] vers \mathbb{R} , muni de la norme $\int_0^1 [f(t)|dt$ n'est pas un espace de Banach en prenant par exemple $f_n(x) = 0$ sur $[0,\frac{1}{2}]$, $f_n(x) = 1$ sur $[\frac{1}{2} + \frac{1}{n}, 1]$ et linéaire sur $[\frac{1}{2}, \frac{1}{2} + \frac{1}{n}]$.

Exercice 5 – Fonctions linéaires continues dans les evn. Soient $(E, ||.||_E)$ et $(F, ||.||_F)$ deux evn.

- a) Soit $f: E \to F$ linéaire. Montrer les assertions suivantes sont équivalentes : i) f est continue en un point de E, ii) f est continue sur E, iii) f est bornée sur toute partie bornée de E, iv) il existe une constante M > 0 telle que $||f(x)||_F \leq M||x||_E$ pour tout x dans E.
- **b)** Montrer que si f est une forme linéaire non nulle alors f est continue si et seulement si $f^{-1}(0)$ est fermé.
- c) Montrer que si F est un espace de Banach, l'ensemble $\mathcal{L}(E,F)$ des applications linéaires continues de E dans F est un espace de Banach pour la norme subordonnée. Rappel: Si $f \in \mathcal{L}(E,F)$, sa norme subordonnée est

$$|f| = \sup\{|f(x)|_F \mid x \in S_E(0,1)\} = \sup\{\frac{|f(x)|_F}{|x|_E} \mid x \in E - \{0\}\}$$

d) Soit $p: E \to \mathbb{R}^+$ une semi-norme vérifiant donc $p(x+y) \leqslant p(x) + p(y)$; $p(\lambda x) = |\lambda| p(x)$ et p(0) = 0. Montrer que p est continue sur $(E, \|.\|)$ si et seulement si il existe M > 0 telle que pour tout x de E,

$$p(x) \leqslant M||x||.$$

En déduire que toute semi-norme p sur \mathbb{R}^n muni de la norme euclidienne est continue et par suite que toutes les normes sur \mathbb{R}^n sont équivalentes et que toutes les applications linéaires définies sur \mathbb{R}^n et à valeur dans F sont continues.

- e) Soit E un espace vectoriel de dimension finie muni de 2 normes $\|.\|_1$ et $\|.\|_2$. Montrer que les boules unités pour ces 2 normes sont homéomorphes (on pourra utiliser une fonction qui à x associe $\lambda(x)x$ avec $\lambda(x) \ge 0$).
- **f)** En déduire en particulier que dans \mathbb{R}^2 le disque unité est le carré unité sont homéomorphes et définir l'application homéomorphe.