Wielki mur

Nazwa zadania	Wielki mur
Wejście	Standardowe wejście
Wyjście	Standardowe wyjście
Limit czasu	3 sekundy
Limit pamięci	256 MB

Julka w wolnym czasie od programowania uwielbia układać klocki. Klocki Julki mają wymiary $1 \times 1 \times 1$ lub $2 \times 1 \times 1$ (szerokość, wysokość i głębokość, odpowiednio, tak jak to zostało przedstawione na obrazku poniżej). Dwa klocki o tych samych wymiarach uznajemy za nierozróżnialne. Dziewczynka ma ogromne pudło, w którym mieści się nieskończenie wiele klocków obu typów.

Klocek jest zawsze ustawiany pionowo, a jedyne, co może różnić klocki między sobą, to ich wymiary.

Dwa klocki nazwiemy **zablokowanymi**, jeśli jeden z nich jest bezpośrednio nad drugim. Dwa klocki nazwiemy **połączonymi**, jeśli istnieje ciąg klocków $b_0, b_1, ..., b_k$ taki, że klocki b_{i-1} i b_i są **zablokowane** dla każdego i spełniającego $1 \le i \le k$. Zbiór klocków nazwiemy **połączonym**, jeśli każde dwa klocki w tym zbiorze są połączone.

Julka chciałaby zbudować prostokątny, cienki mur o szerokości *w* i wysokości *h* (i głębokości *1*). Mur musi być **porządny** - nie może zawierać **dziur**, a zbiór użytych klocków powinien być **połączony**. Dla przykładu, poniżej znajduje się porządny mur o szerokości 4 i wysokości 3.

Z drugiej strony, poniższy mur o wymiarach 4×3 **nie** jest połączony, a zatem nie jest porządny:

Na ile sposobów Julka może zbudować **porządny** mur? Liczba sposobów może być bardzo duża, dlatego wypisz jej resztę z dzielenia przez 1 000 000 007. Pamiętaj, że mur i jego odbicie lustrzane (czyli mur obrócony o 180 stopni) są uznawane za różne mury, chyba że wyglądają tak samo (innymi słowy, ściany klocków nie są rozróżnialne).

Wejście

Na standardowym wejściu znajduje się pojedyncza linia zawierająca dwie liczby całkowite w i h (1 \leq $w \leq$ 250000, $2 \leq h \leq$ 250000, $w \times h \leq$ 500000) oddzielone spacją - odpowiednio szerokość i wysokość muru.

Wyjście

Na standardowe wyjście należy wypisać jedną liczbę całkowitą - resztę z dzielenia przez 1 000 000 007 liczby możliwych sposobów utworzenia porządnego muru o wymiarach $w \times h$.

Podzadania

Podzadanie 1 (14 punktów): w = 2.

Podzadanie 2 (12 punktów): h = 2.

Podzadanie 3 (18 punktów): $w, h \le 100$.

Podzadanie 4 (30 punktów): $w \le 700$.

Podzadanie 5 (20 punktów): $h \le 700$.

Podzadanie 6 (6 punktów): Brak dodatkowych ograniczeń.

Przykłady

Wejście	Wyjście
2 2	3
3 3	12
5 7	1436232

Komentarz do pierwszego przykładu

Wszystkie trzy porządne mury o wymiarach 2 × 2 są przedstawione poniżej:

