

Exceptional service in the national interest

SCIENTIFIC MACHINE LEARNING AND TENSORFLOW TUTORIAL

Physics informed neural networks and Inverse Problems

Ravi G Patel

Scientific Machine Learning Department

February 1 – 2, 2024

Numerical PDEs: Analysis, Algorithms, and Data Challenges

ICERM

Brown University

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

PHYSICS INFORMED NEURAL NETWORKS

- We previously fit neural networks to functions by regressing against data,
 - We used a loss function that penalized against RSS

$$\mathcal{J} = ||y - N(x)||_2^2$$

- Neural networks can also be trained using more general loss functions like a PDE residual
 - Solves a PDE

$$F(x, u, Du, D^{2}u, ...) = 0 x \in \Omega$$

$$G(x, u, Du, D^{2}u, ...) = 0 x \in \Omega \setminus \partial\Omega$$

Residual:

$$\mathcal{J} = ||F(x, u, Du, D^2u, ...)||^2 + \lambda ||G(x, u, Du, D^2u, ...)||^2$$

PHYSICS INFORMED NEURAL NETWORKS¹ (PINNS) AS A PDE **COLLOCATION SCHEME**

For the PDE,

$$\partial_t u + \partial_x F(u) = 0 \quad (x, t) \in interior$$
 $\mathcal{B}u = f \quad (x, t) \in boundary$
 $u = g \quad t = 0$

Let the solution be defined by a neural network, $u = u(x, t; \xi)$

Choose collocation points in space-time

Define a residual,

$$R = ||\partial_t u + \partial_x F(u)||^2_{\ell_2(x,t)_{interior}}$$

$$+ \lambda_{BC} ||\mathcal{B}u - f||^2_{\ell_2(x,t)_{boundary}}$$

$$+ \lambda_{IC} ||u - g||^2_{\ell_2(x,0)}$$

$$\xi = \underset{\hat{\xi}}{\operatorname{argmin}} \ R(\hat{\xi})$$

Minimize ¹ Raissi et al., *arXiv:1711.10561*

CONTROL VOLUME PINNS¹ (CVPINNS)

For PDEs of the form,

$$\partial_t u + \partial_x F(u) = 0 \quad (x, t) \in interior$$
 $\mathcal{B}u = f \quad (x, t) \in boundary$
 $u = g \quad t = 0$

Let the solution be defined by a neural network,

$$u = u(x, t; \xi)$$

Choose mesh in space-time

Apply divergence theorem to each cell in the mesh

$$R_c = \int_{A_c} \nabla \cdot \begin{pmatrix} u \\ F \end{pmatrix} dA_c = \int_{l_c} \begin{pmatrix} u \\ F \end{pmatrix} \cdot dl_c$$

Approximate integrals with quadrature

Fluxes at boundaries replaced by prescribed values

Minimize residuals

$$\xi = \underset{\hat{\xi}}{\operatorname{argmin}} \sum_{c} R_c^2$$

INVERSE PROBLEMS WITH PINNS

• If we have a data, u_d , and a parameterized PDE, e.g.,

$$F(\partial_t u, \partial_x u, \lambda) = 0$$
$$\mathcal{B}u = 0$$

• We can find the parameter, λ , using PINNs by adding an extra term to the PINNs loss,

$$\xi, \lambda = \underset{\hat{\xi}, \hat{\lambda}}{\operatorname{argmin}} \ R(\hat{\xi}, \hat{\lambda}) + \alpha ||u - u_d||_{\ell_2}^2$$

 This will simultaneously solve the PDE while adjusting the parameters such that the solution matches the data

CONSTRAINTS FOR PINNS

- Often the parameters we're fitting need to be constrained
 - Well-posedness of the PDE
 - E.g., the conductivity in the heat equation must be positive $\partial_t u = \nabla \cdot \lambda \nabla u$
 - We can penalize against negative conductivity by adding another term to the loss,

$$\xi, \lambda = \underset{\hat{\xi}, \hat{\lambda}}{\operatorname{argmin}} R(\hat{\xi}, \hat{\lambda}) + \alpha ||u - u_d||_{\ell_2}^2 + \beta ||\max(0, -k)||_{\ell_2}^2$$

With a high enough regularization weight, the minima will not have negative conductivity

CVPINNS FOR HYPERBOLIC CONSERVATION LAWS A CASE STUDY OF PHYSICS INFORMED CONSTRAINED LEARNING

Ingredients needed:

- A numerical method for the PDE, $\partial_t \boldsymbol{u} + \boldsymbol{F}(\boldsymbol{u}) = 0$
- \circ A parameterization for $oldsymbol{F}(oldsymbol{u})$

Shock solution to the traffic flow equation¹

Challenges,

- PDE forms discontinuities
- ullet $oldsymbol{F}(oldsymbol{u})$ must produce a well-posed IBVP

Hyperbolic region for Grad's 13 moment equations²

¹ LeVeque, Finite Volume Methods for Hyperbolic Problems, 2004

² Brini and Ruggeri, Continuum Mech. Thermodyn., 2020

EOS DISCOVERY FOR COPPER UNDER SHOCK

- Perform LAMMPS¹ simulations of the reverse-ballistic impact experiment
 - Various impact velocities and initial temperatures

Fit an EOS to the LAMMPS data using CVPINNs

• Regularized neural network parameterization to preserve hyperbolicity in the Euler equations (convex Entropy)

Use fitted EOS to perform FD simulations of a new impact case and compare to LAMMPS

EOS fits using penalty to prevent loss of hyperbolicity

Use fitted EOS's to solve new impact case

• Viscous regularized finite difference (FD) code on a fine mesh

OTHER PINNS VARIANTS

Variational PINNs (E. Kharazmi et al., arXiv:1912.00873 (2019))

Conservative PINNs (A. Jagtap et al., *CMAME* (2020))

EXERCISE

- Exercise 1
 - Develop a PINN for the viscous Burgers equation
 - Solve the forward problem for the viscous Burgers equation
 - Using the provided data, find the viscosity coefficient
- Exercise 2
 - Find the frequency of the forcing term in the Poisson equation