TR: Siffleur

COQUEMA Sean et PARIS Romain, TD1 TP2

Sommaire

- I. Cahier des charges
 - 1) But du TR
 - 2) Schéma bloc
- II. Fonctionnement théorique
- III. Fonctionnement pratique
- IV. Conclusion
- V. Liste et prix des composants

Cahier des charges

But du TR

Réaliser un Gradateur de lumière à commande sonore, c'est-à-dire que, quand l'utilisateur produira un sifflement aigu, l'intensité lumineuse augmentera avec 8 niveaux, de 0 à 100%. D'autre part, lorsque l'utilisateur produira un sifflement grave, l'intensité lumineuse sera remise à 0%.Un sifflement de commande dure au maximum 0,5s et le TR est alimenté en + - 10V.

Schéma bloc

Description des fonctions:

- FP1: Transforme en une tension le signal produit par le micro électret.
- FP2: 2 filtres passe-bande (vers 300Hz et vers 800Hz) + 2 monostables , font des impulsions de 0,5 seconde, lorsqu'un sifflement correct passe par les filtres.
- FP3: Un compteur binaire, Z le remet à Zéro , une impulsion ++ fait augmenter le comptage de un, 8 niveaux sont prévus, le chiffre de sortie N sera composé de 3 bits.
- FP4: 3 résistances, qui en fonction des tensions des signaux N (0V ou 5 V) produisent un signal pouvant varier de 0 à 5V en 8 paliers.
- FP5: Générateur de signal triangulaire (1Khz) d'amplitude 0 à 5 V.
- FP6: Le signal V est comparé au triangle pour créer un signal PWM (MLI).
- FP7: Le signal PWM est amplifié par un MOS de puissance, il alimente en courant une LED de puissance (ou une ampoule) fonctionnant ici en 10V.

Fonctionnement théorique

FP1

Un micro électret comporte un capteur «piezzo électrique» associé à un transistor FET. Le «piezzo» est un matériau qui produit des électrons lorsque la pression qu'il subit à ses extrémités varie (signal sonore), le transistor FET les transforme en une variation de résistance . Une résistance de polarisation vers le +, permet de créer un diviseur de tension . Ici R1 est la résistance de polarisation. C1 coupe le continu.

Proposition d'un montage électronique :

- Le micro électret est marqué M;
- R2(10k) est la résistance de polarisation ;
- C2(100nF) et R3(47k) représentent le filtre passe haut ;
- R1(10k) et C1(100uF) servent au filtrage de l'alimentation ;
- C3(10uF), R5(47k) et R4 vont servir à amplifier la sortie du micro.

Détermination de R4:

On veut un gain de 50 en sortie du montage, donc R4 =

On a donc fabriqué du +5V.

La fonction FP2 se décompose en :

Détermination des passe-bande :

On utilise des passe-bande de type Rauch

$$H_{PBande}(j\omega) = A \frac{2 j m \frac{\omega}{\omega_c}}{1 + 2 j m \frac{\omega}{\omega_c} + (j \frac{\omega}{\omega_c})^2}$$

Passe-bande 300Hz:

$$Y1 = R1 = 10K$$

$$Y2 = R2 = 1,6K$$

$$Y3 = C2 = 0,1uF=100nF$$

$$Y4 = C1 = 0,1uF = 100nF$$

$$Y5 = R3 = 20K$$

Passe-bande 800Hz:

$$Y1 = R1 = 5,6K$$

$$Y2 = R2 = 330$$

$$Y3 = C2 = 0.1 uF = 100 nF$$

$$Y4 = C1 = 0,1uF = 100nF$$

$$Y5 = R3 = 12K$$

Détermination du comparateur :

On souhaite comparer notre sortie passe-bande avec 1V pour produire le bon signal.Pour cela on utilise le schéma ci-dessous avec un pont diviseur relié à notre +5V pour fabriquer la tension à comparer.

<u>Limiteur TTL:</u>

Le limiteur TTL sert à fabriquer un signal carré (car oui, lorsque l'on siffle c'est du sinusoïdal) afin de l'envoyer dans le compteur.

- On veut un signal entièrement positif donc E- est relié à la masse ;
- E + = 5V;
- R = 9.5K.

Détermination du monostable 4538 avec un temps de 0,5s :

On utilise le monostable 4538 pour que notre sifflement quel qu'il soit, à la bonne fréquence soit pris en compte toutes les 0,5s sur front descendant.

FP3

Pour faire un compteur binaire alimenté en 5V, on utilise un 4040 avec le signal ++ branché sur l'horloge et le signal Z sur le reset.

FP4

Les sorties Q0 à Q2 du compteur prennent successivement 8 valeurs binaires qui vont de 000 et 111 On doit donc mettre des résistances sur Q0 à Q2 tel que :

On a 8 bits donc 000 donne 5Vx0/7 en sortie, 001 donne 5Vx1/7 en sortie, 010 donne 5Vx2/7 .. 111 donne 5Vx7/7.

On trouve donc:

- Ra1 = 12K
- Ra2 = 6K
- Ra3 = 3K

Le but est de produire un signal triangulaire positif de 0 à 5V pour le comparer avec le signal analogique de FP4.

Le schéma est de la forme :

Afin d'obtenir un signal variant de -2,5V à 2,5V, on a :

- R = 87K
- C = 10nF
- R1 = 10K
- R2 = 35K

Néanmoins, on veut un signal positif de 0 à 5V donc on rajoute un Offset, qui est un additionneur et on a :

On choisit:

- R1= 10K
- R2 = 10K

Pour le comparateur, on utilise un TL081, il compare la tension Va (sortie de FP4 variant de 0 à 5V) à la dent de scie dont l'amplitude varie de 0 à 5V (FP5).

Exemple:

- Le code N à la sortie du compteur est de 001;
- Rapport cyclique = th/ période = r;
- Avec Va = 5Vx1/7, r = 1/7;
- Si N varie de 000 à 111 r varie de 0 à 100%.

Finalement, il suffit juste de relier la sortie de notre comparateur (FP6) à une interface de puissance pour commander la Led qui va s'allumer selon les niveaux.

Pour cette interface nous utiliserons un MOSFET de type IRFD110.

Lorsque sa tension VGS > 4V:

- Il y a un court circuit entre Les broches D et S
- Il peut laisser passer 4A sans chauffer

Lorsque sa tension VGS < 2V:

• Il est en circuit ouvert

Nous avons maintenant vu toutes les parties théoriques de notre système. Pour la partie pratique, le sifflement sera, pour un test optimal, généré grâce à un GBF à 300Hz ou 800Hz. En FP7, nous utilisons une ampoule, le câblage est réalisé sur la plaque de TR et les alimentations du montage sont +5V +10V -10V

Fonctionnement pratique

FP1

FP2

Passe-bande à 300Hz

Passe-bande à 800Hz

Comparateur

Limiteur TTL

FP3 FP4

FP5
Signal Triangle -2,5V à 2,5V

Offset pour 0 à 5V

<u>FP6 FP7</u>

Schéma complet

Conclusion

Au final, le TR marchait plus ou moins bien, c'est-à-dire qu'en pratique c'est difficile de siffler à 300Hz ou 800Hz sans entraînement, le montage aurait pu être plus séléctif sur les passe-bande. Au niveau de l'allumage et des niveaux de led, le 0,5s à chaque cycle est trop long, on dirait que le système n'est pas très réactif, mais sinon dans l'ensemble, tout fonctionne bien.

Liste et prix des composants

CD4040: 1 composant pour 0,28€

4538 : 2 composants pour 2,50€

TL081:9 composants pour 1,98€

IRFD110:1 composant pour 2,50€

Diode : 2 composants pour 0,20€

R = 330:1 composant pour 0,10€

R = 1.5K : 1 composant pour 1.04€

R 5,6K : 1 composant pour 0,153€

R 8,2K : 1 composant pour 0,153€

R 10K: 7 composants pour 1,04€

R 12K : 2 composants pour 0,0771€

R 22K : 2 composants pour 0,70€

R 33K : 1 composant pour 1,04€

R 47K : 2 composants pour 0,12€

R 82K : 1 composant pour 0,0480€

C 100nf: 5 composants pour 2,88€

C 10nF: 1 composant pour 0,10€

C 100uF: 1 composant pour 1,06€

D'après REBOUL.fr, shop.mchobby.be et conrad.fr

Soit un TR qui coûte environ 16€

