Introdução à Investigação Operacional 5º aula T - Resumo

Resumo – IIO – T5Recordando o fundamental para a Análise de Sensibilidade

Resumo – IIO – T5

Análise de Sensibilidade / Pós-Otimalidade

Variações nos coeficientes da função objetivo:

A otimalidade pode ser posta em causa!

Variações nos termos independentes das restrições:

Otimalidade "OK"!

Variações nos coeficientes das restrições:

Variações apenas em **D**:

Variações em **B** (e **D**):

Introdução de novas variáveis:

Uma nova variável corresponde a uma nova coluna em **D**, **d**_N

Calcular <u>apenas</u> $\mathbf{r_N} = -\mathbf{C_N} + \mathbf{C_B} \cdot \mathbf{B}^{-1} \cdot \mathbf{d_N}$ Se $\mathbf{r_N} < \mathbf{0}$, então a nova variável deve entrar para a base. Prosseguir com o Alg.Simplex Primal.

Resumo – IIO – T5 Análise de Pós-Otimalidade - Algoritmo Simplex Dual

Introdução de novas restrições:

	Х	Υ	F1	F2	F3	TI
Х	1	0	0	1	1	3
Υ	0	1	0	-1	0	2
F1	0	0	1	1	1	2
F	0	0	0	2	3	11

	Χ	Υ	F1	F2	F3	F4	TI
Х						0	
						0	
F1	0	0	1	1		0	
F4	2	1	0	0	0	1	7
F	0	0	0	2	3	0	11

	Χ	Υ	F1	F2	F3	F4	TI
Х	1	0	0	1	1	0	3
Υ	0	1	0	-1	0	0	2
F1	0	0	1	1	1	0	2
F4	0	0	0	-1	-2	1	-1
F	0	0	0	2	3	0	11

	Χ	Υ	F1	F2	F3	F4	TI
Х	1	0	0	1	1	0	3
Υ	0	1	0	-1	0	0	2
F1	0	0	1	1	1	0	2
F4	0	0	0	-1	-2	1	1
F	0	0	0	2	3	0	11

mas ... ""Ótima"" !

		Х	Υ	F1	F2	F3	F4	TI	
	Х	1	0	0	1	1	0	3	
	Υ	0	1	0	-1	0	0	2	Deve
	F1	0	0	1	1	1	0	2	ve sai
	F4	0	0	0	-1	-2	1	1)—	ir da bas
	F	0	0	0	2	3	0	11	ase
Q	ual a	vari	ável	que e	entra r	na bas	e?		

Calcular os quocientes $q_i = |r_i/a_{ij}|$, para $a_{ij} < 0$ e selecionar a variável que minimiza esses quocientes.

		Х	Υ	F1	F2	F3	F4	TI	
	Х	1	0	0	1	1	0	3	
	Υ	0	1	0	-1	0	0	2	De
	F1	0	0	1	1	1	0	2	ve sa
	F4	0	0	0	-1	-2	1	<u>1</u>)—	Deve sair da basel
1 30	°F	0	0	0	2	3	0	11	ase
Date all	\mathbf{q}_{j}	-	_	_	2	3/2	_		
Para				F3	deve e	entrar p	oara a	base!	

	Χ	Υ	F1	F2	F3	F4	TI
Х	1	0	0	1/2	0	1/2	5/2
Υ	0	1	0	-1	0	0	2
F1	0	0	1	1/2	0	1/2	
F3	0	0	0	1/2	1	-1/2	1/2
F				1/2		3/2	19/2
		Solu	ção ó	tima e	adm	issível!	

A solução ótima determinada anteriormente verifica a nova restrição?

Sim ⇒ Solução anterior ainda **ótima**!

Não \Rightarrow Solução anterior ainda **"""ótima""**, mas **não admissível** \Rightarrow prosseguir com o **Alg. Simplex Dual** <u>OU</u> arbitrar uma nova base do problema "ampliado" e verificar a sua admissibilidade e otimalidade!

	Fontes de oferta	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Pontos de Procura	
Disponibilidades		X.; ?			Necessidades
a ₁	1	/ \IJ ·	*	1	b1
a2	2			2	b2
aį	i	cij.		j	bj
am	m				
				n	bn

 X_{ij} representa a quantidade a ser transportada da fonte i para o ponto de consumo j.

Leituras de apoio:

Elementos de apoio às aulas de IIO – Cap IX

Análise de Sensibilidade / Pós-Otimalidade – ficheiro pdf
 pp. 82 a 96. Cap XII – O Problema dos Transportes – ficheiro pdf pp.
 122 a 148.

Disponível atividade semanal de apoio à aprendizagem no moodle!