KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI COLLEGE OF ENGINEERING

BSc. (Mechanical Engineering) End of Second Semester Examination

EE 252 : ELECTRICAL ENGINEERING MACHINES MARCH, 2018

Time allowed: **ONE HOUR**

INSTRUCTIONS FOR CANDIDATES:

- 1. Answer **ALL** questions.
- 2. Circle your answer on the question paper and on the Scannable sheet.
- 3. Indicate your **index number** on the question paper.

CAUTION: DO NOT TAKE AWAY ANY EXAMINATION MATERIAL PROVIDED TO YOU, UNLESS YOU ARE TOLD TO DO SO.

1. The volt-ampere equation for a long shunt compound generator is given by

$$a)V_t = E_a + I_a r_a$$

b)
$$V_t = E_a - I_a r_a$$

$$c)V_t = E_a - I_a(r_a + r_s)$$

$$d$$
) $V_t = E_a - I_a r_a - I_L r_s$

2. Armature winding is one in which working

a) flux is produced by field current

b)e.m.f. is produced by the working flux

- c) flux is produced by the working e.m.f.
- d) e.m.f. is produced by the leakage flux

The armature of a d.c machine has a resistance of 0.1 Ω and is connected to a 230 V supply.

Use the above information to answer questions 3 and 4.

- 3. Calculate the generated E.M.F when it is running as a generator giving 80A.
- a) 218V
- b)265V
- c) 238V
- d)None of the above
- 4. Caculate the generated E.M.F when it is running as a motor taking 60A.
 - a)190V
- b)245V
- c)224V
- d)None of the above

A solenoid relay is operated from a 220-V, dc supply and the 1000-turn coil resistance is 5.5 k Ω . The core diameter of the relay is 20 mm and the gap length is 1.5 mm, the armature being stationary. The gap faces may be taken as parallel and the permeability of the ferromagnetic parts as very high. Take μ_0 =4 π ×10⁻⁷.

ts as	ts as very night. Take $\mu_0=4\pi\times10^{-7}$.					
5. c)	Determine the curr 0.04A	rent that will flow b)0.004A	•	the relay c 05A		ne of the above
	Determine the mn	nf of the magnetic b) 80.0 At	c system c) 120	.0 At	d)None of	f the above
	Determine the air () 0.0107Wb/m ²	gap flux density b) 0.00107W	/b/m ²	c) 0.10	07Wb/m ²	d)None of the above
	Determine the coi 0.804 H	l inductance b) 0.084H	c)	0.656Н	d)No	one of the above
	Determine the pull)0.95N	on the armature. b) 0.88N		0.69N	d)Nor	ne of the above
10.	10. A long shunt compound D.C. motor runs at full-load speed of 1000 rpm. If the current					
	through its series field windings is caused to be zero, then its full-load speed					
h)	becomes more th	an 1000 rpm	b)rema	ns 1000 rp	om	
c)	becomes less tha	ın 1000 rpm	d)becon	nes 1100 r	pm	
11.	11. In a d.c. series generator, the terminal voltage with increase in load					
i)	decreases	b) rem	nains unc	hanged		
c)]	Increases	d) var	ries with	lrooping c	haracteristic	es
12. Armature winding is one in which working						
b)	flux is produced	by field current		b)e.m.f. is	produced b	y the working flux
d)	flux is produced	by the working e.	.m.f.	d) e.m.f. is	produced b	y the leakage flux

The armature of a d.c machine has a resistance of 0.1 Ω and is connected to a 230 V supply.

Index	number	Depart	tment			
Use	the above inform	nation to answer que	estions 9 and 10.			
13.	13. Calculate the generated E.M.F when it is running as a generator giving 80A.					
j)	218V	b)265V	c) 238V	d)None of the above		
<i>14</i> .	Calculate the gen	erated E.M.F when i	t is running as a mo	otor taking 60A.		
k)	190V b)245V	c)224V	d)None of the above		
<i>15</i> .	A four pole d.c m	otor is fed at 440V a	and takes an armatu	re current of 50A .The resistance		
	of the armature circuit is 0.28 Ω .The armature winding is wave –connected with 888					
	conductors and th	ne useful flux per pol	e is 0.023Wb. Calc	culate the speed.		
1)	567rev/min	b)626rev/min	c)545 rev/min	d)None of the above		
16.	16. A d.c. motor runs at 900rev/min off a 460 V supply. Calculate the approximate speed					
	when the machine is connected across a 200V supply. Assume the new flux is to be 0.7					
	of the original flu	X				
m)) 367rev/min	b)648 rev/min	c)559 rev/min	d) None of the above		
17.	17. A D.C. shunt motor is running with a certain load. The effect of adding an external					
	resistance in the field circuit is to					
n)	reduce the moto	r speed l	b) reduce the armati	ure current of the motor		
ĺ	c) increase the motor speed d)stop the motor					
18. A three phase 50 Hz, 4-pole, squirrel cage induction motor has its stator rewound for 6						
poles without any alteration in the rotor .The motor will now run at the speed						
,	less than 1000 r	, 1				
		1 0		rpm, then the slip is		
1,	0.03	b)0.04	c)0.05	d)None of the above		
			the armature curren	t of a shunt motor decreases as		
	the motor accele		.1 (1			
	q) The high speed of the motor will cause the flux in the motor to decrease.					
	r) The supply voltage decreases because the back emf has increased.s) The current decreases because the motor cannot take up any load.					
s)			-	•		
t)	The current deci	reases because the ba	ack emt has increase	ea		

A 3- phase , 4 pole , 440 -V , 50 HZ , star connected induction motor, operates at 1450 rev/min on full load and has the following parameters per phase: R $_{\rm I}$ =0.05 Ω , $X_{\rm I}$ =0.12 Ω , $R'_{\rm 2}$ =0.04 Ω and $X'_{\rm 2}$ =0.14 Ω . Neglect the magnetizing current.

Use the above information to answer questions 17 and 18.

21. Calculate the	synchronous speed in ra	dians / second			
u) 150.0	b)163.3	c)157.1	d)None of the above		
22. Calculate the	percentage slip at full loa	d.			
v) 8%	b)5%	c) 3%	d) None of the above		
23. The direction	of rotation of a three pha	se induction motor can l	be changed by		
w) By connecti	ng the winding in star.				
x) By complete	ely changing the sequence	of the leads to the wind	dings of the motor.		
y) By interchar	nging any two of leads to	the windings of the mot	or.		
z) By complete	ely changing the sequence	of the leads to the wind	dings of the motor so that a		
delta connec	ction is obtained.				
20 A shunt mor	tor supplied at 230V runs	at 900rev/min when the	e armature current is 30A		
.The resistance of	of the armature circuit is 0	$0.4~\Omega$. Calculate the resistance	stance required in series		
with the armatur	re to reduce the speed to 6	00rev/min, assuming th	at the armature current is		
then 20A					
aa) 6.35 Ω	b)4.90 Ω	c)3.84 Ω	d)None of the above		
21.Which of the	21. Which of the following is not true about a squirrel cage motor?				
a) It has a multiple phase rotor.					
b) The presence of external resistors in the rotor circuit gives rise to high starting torque.					
c) It is more efficient than the slip ring induction motor.					
d) It is more robust than the slip ring induction motor.					
1. DC series motor should never be switched on at no load, because					
a) the field cur	rent is initially zero	b) the motor do	es not pick up		
c) the speed be	comes dangerously high	d) it will take lo	ong to accelerate		
2. The volt-ampere equation for a long shunt compound motor is given by					
a) $V_t = E_a + I_a$	$_{a}r_{a}$	b) $V_t = E_a -$	$I_a r_a$		
$c)V_t = E_a + I_a($	$(r_a + r_s)$	$d)V_t = E_a +$	$I_a r_a + I_L r_s$		
3. The rotor of an induction motor cannot run at synchronous speed because if it does so					
then					
a) rotor e.m.f v	vill be zero	b) rotor curre	nt will be zero		

Index numberDepartment						
c) rotor torque would be zero			d) all of the above			
suci	h that average			ors. The magnetic flux and speed are is 2.2V and each conductor is capable of		
Use	the above in	formation to answer	questions 25	to 28		
25. I	25. Find the terminal voltage on no load in volts if the armature is lap-connected.					
a)	162	b) 153	c)132	d)None of the above		
26. Find the output current on full load in amperes if the armature winding is lap-connected.						
a)	800	b)750	c) 700	d)None of the above		
27. Find the terminal voltage on no load in volts if the armature winding is wave-connected.						
	556	b)544	c)528	d)None of the above		
28. Find the output current on full load in amperes if the armature is wave-connected.						
a.	200	b)180	c)140	d)None of the above		
29. A D.C shunt generator when driven without any excitation showed an open circuit voltage						
of 12 volts .When the field winding was excited, the voltage dropped to zero . It happened						
be	cause					
a) The field resistance was higher than the critical resistance						
b) There was break in the armature circuit c) Field winding was wrongly connected						
d) There was no residual magnetism in the field circuit						
30. A D.C shunt motor runs at a rated speed if its field circuit gets open –circuited, then soon after this the motor speed would tend to						
a) de	ecrease b) remain ungagged	c) increase	d) fluctuate around its previous speed		

FORMULA SHEET

$$I_{2} = \frac{E_{2}}{\sqrt{R_{2}^{2} + X_{2}^{2}}}$$

$$I_{2}' = I_{1} = \frac{V_{1ph}}{\sqrt{(R_{1} + \frac{R_{2}'}{s})^{2} + (X_{1} + X_{2}')^{2}}}$$

$$P_{rotor} = \frac{3I_{2}R_{2}}{s} = \frac{3I_{2}'^{2}R_{2}'}{s} = T\omega_{s}$$

$$T = \frac{3V_{1ph}^{2}R_{2}'}{s\omega_{s}[(R_{1} + \frac{R_{2}'}{s})^{2} + (X_{1} + X_{2}')^{2}]}$$

$$T_{\text{max}} = \frac{3V_{1ph}^{2}}{2\omega_{s}(R_{1} + \sqrt{(R_{1}^{2} + (X_{1} + X_{2}^{2})^{2})^{2}})}$$

$$s_{T \max} = \frac{R_2'}{\sqrt{(R_1^2 + (X_1 + X_2')^2)}}$$

$$\eta = \frac{n S \cos \theta}{n S \cos \theta + P_0 + n^2 P_{sc full load}}$$

$$V.R._{p.u} = \frac{V_{sc}\cos(\theta_{sc} \pm \theta_{pf})}{V_{1}}$$

$$V = E_{arm} - I_a R_a - I_L R_{ser}$$

$$I_f = \frac{V_L + I_L R_{ser}}{R_f}$$

$$V = E_{arm} - I_a (R_a + R_{ser})$$

$$I_f = \frac{V_L}{R_f}$$

$$V = E_{arm} \pm I_a (R_a + R_{ser})$$

$$\eta = \frac{V_{L}I_{L}}{V_{L}I_{L} + I_{a}^{2}R_{a} + I_{f}V_{f} + I_{ser}^{2}R_{see} + core loss + friction + windage}$$

All symbols have their usual meanings.