Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 257.3 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 657.85 657.84 Bølgelengde (nm) 657.83 657.82 657.81 657.80 657.79 20 80 0 40 60 100 120

Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 1.72, tilsynelatende blå størrelseklass $m_B=3.74$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 1.72, tilsynelatende blå størrelseklass $m_B = 2.74$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=9.20,$ tilsynelatende

blå størrelseklass m_B = 10.22

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 9.20, tilsynelatende blå størrelseklass $m_B = 11.22$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.87 og store halvakse a=94.73 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.87 og store halvakse a=50.62 AU.

Filen 1F.txt

Ved bølgelengden 638.68 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 22.90 solmasser, temperatur på 14.10 Kelvin og tetthet 1.63e-20 kg per kubikkmeter

Gass-sky B har masse på 20.40 solmasser, temperatur på 48.70 Kelvin og tetthet 9.61e-21 kg per kubikkmeter

Gass-sky C har masse på 9.80 solmasser, temperatur på 59.90 Kelvin og

tetthet 7.70e-21 kg per kubikkmeter

Gass-sky D har masse på 19.00 solmasser, temperatur på 74.60 Kelvin og tetthet 6.86e-21 kg per kubikkmeter

Gass-sky E har masse på 14.80 solmasser, temperatur på 63.40 Kelvin og tetthet 6.73e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas overflate består hovedsaklig av helium

STJERNE B) hele stjerna er elektrondegenerert

STJERNE C) stjerna har et degenerert heliumskall

STJERNE D) stjernas energi kommer fra Planck-stråling alene

STJERNE E) stjerna har en degenerert heliumkjerne

Filen 1L.txt

Stjerne A har spektralklasse M1 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 9.43

Stjerne B har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V = 4.84

Stjerne C har spektralklasse K7 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 1.48

Stjerne D har spektralklasse B9 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 3.49

Stjerne E har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 3.57

Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\mathrm{m/s}$ mot deg eller fra deg (like mange i hver retning)

$Filen~2A/Oppgave 2A_Figur 1.png$

2

3

i

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 . i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.743999999999999467093 AU.

Tangensiell hastighet er 40502.90489161855657585 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.116 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.060 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=15.545.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9660 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00088 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=130.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9964 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 562.80 nm.

Filen 4A.txt

Stjernas masse er 5.84 solmasser.

Stjernas radius er 0.82 solradier.

Filen 4C.png

Figur 4C 1.6500 1.5000 1.3500 Sannsynlighetstetthet i 10⁻⁴ % 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -1000 -750 -500 -250 500 250 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.49 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.17 solmasser.

r-koordinaten til det innerste romskipet er r $=6.48~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=12.27~\mathrm{km}.$