Final Exam USC 230 For all sets A, B, C show that: =) $\chi \in (B-C)$ & $\chi \notin (A-C)$ =7 $\chi \in B \neq \chi \in C$ & $\chi \in C$ or $\chi \in A$ =) $\chi \in B \neq \chi \notin A$ $\neq \chi \in C$ or $\chi \notin C$ >> RE(B-A) ≠ x & C

Scanned with CamScanner

(12) $f: R-\xi-\frac{5}{2} \rightarrow R-\xi\frac{1}{2}, f(x)=\frac{x+4}{2x+5};$ 9: R- 8-53 -> R- 833, 9(x) = 2-3x; h: R-\(\x) = \f(x) - g(x) Determine if h(x) is one to the and onto. If it is, find the inverse of h(x). $h(x) = f(x) - g(x) = \frac{5x + 6}{4x + 10}$ one to one: 5x, +6 5x2+6

4x,+10 4x2+10 20 x1x2+24x2+50x1+60= 20/x1x2+24x, +50x2+60 - 26x, = 26x2 onto: Random number from codomain: n= 3 $\frac{5(3/4)+6-9.75}{4(3/4)+10}=\frac{3}{13}=\frac{3}{4}$ Not onto because 3 is not in the range of h(x). There is no inverse.

3 (2) For
$$x > 0$$
, $x \in R$, find the $O()$ estimate of order of the function

$$f(x) = 6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9$$

$$3x^{3} + 2x^{2} (\log x)^{2} - 5x$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$3x^{3} + 2x^{2} (\log x)^{2} - 5x$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$3x^{3} + 2x^{2} (\log x)^{2} - 5x$$

$$|f(x)| = \left[6x^{4} + 3(x^{6}) + |x| + 5|x^{4} - 7|x| + 9\right]$$

$$3x^{3} + 2|x^{2}| + 2|x^{2}| + |x^{2}| + |x^{2}| + |x^{2}| + |x^{2}|$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} \log x - 5x^{3} + 7x - 9\right]$$

$$|f(x)| = \left[6x^{4} + 3x^{6} + 3x^{6$$

(10) Use Mathematical Induction to prove that for all positive integers n $6 + 13 + 20 + \dots + (7n - 1) = \frac{n}{2}(7n + 5)$ THE THE THE THE PROPERTY $L \cdot H \cdot S = b = R \cdot H \cdot S = \frac{1}{2} \cdot (7+5) = 6$ 6+13+20+111+ (7m-1)= m(7m+5) L.H.S n= m+1: $= \frac{m}{2}(7m+5) + (7m+16) + (7m+7-1)$ $= \frac{(7m^2 + 5m)}{2} + (7m + 6) \qquad (7 - (m+1)(7m + 12))$ $= \frac{7m^2 + 5m}{2} + \frac{14m + 12}{2} \qquad (= m+1)(7m + 12)$ $=\frac{m+1}{2}(7m+12)$ $= \frac{7m^2 + 5m + 14m + 12}{2}$ proved by Mathematical $= 7m^2 + 19m + 12$ $= 7m^2 + 12m + 7m + 12$

	2	
5) 1,2) Let TCZ, T= &-1, Z,	7, 14, 23, 34,	13
Prove that T is countable or unecon	table.	
$n^{th} element = n^2 - 2$		
- 11 element - 11 -2		
one to one: $f: N \rightarrow T$ $f(n) = n^2 - 2$	1 1	
=> $f(m) = f(n) => m^2 - Z =$	n2-2 => m	マート2ラカニり
onto: yET, fxEZ when	$f(x) = x^{2} - 2$	$=y, y=x^{2}$
	10	
=>f is onto		
=> f is bijective	3 4 1	
=7 Z; Tare all alike	Lang O	<u> </u>
	1	/ :
3 Zt is countable, therefore T is	also counta	ble.

Scanned with CamScanner

7)	1) B is closest to A
	1-AB = 6 / 5 = & B3
	and the same from the state of the same of
	2) E is the 2nd closest to A
	2) E is the 2nd closest to A $\overline{AE} = 8$, $6 = EE, B3$
	3) Then G
	GA = 18, 5 = & G, E, B3
	4) C, AB+BC=13, S= EG, C, E, B3
	5) F, AE + EF = 15, S = & G, F, C, E, B3
	1) 11 1 (11 1 1 1 2 2 5 5 6 1 1 1 1 1 1 2
	6) H, A, GH+ AG=33, 5= &H, G, F, C, E, B3
	7) L, AE+EF+IF=34, S=&L, H, G, F, C, E, B3
	1) 6, 11 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Lis a part of the vertex set
	CIS TO VITCA DO
	So the shortest path from A-L is AE + EF+ LF-34
	3 / L 31017(5) Parin 110/11 / L 15 / L

Scanned with CamScanner

Scanned with CamScanner

,	
9)	(12) Conference Organizers have 6 different colored
	(12) Conference Organizers have 6 different colored mugs on a table for attenders to take.
-	
-	a) how many different colored Scetions of 18 mgs can be hisplayed on a table?
+	on a table:
	$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 18$
+	$X_i \geq 0$, $1 \leq i \leq 6$
+	- D[6+18-1] 23 231 [32 649]
	= 0(6+18+1) = 23 = 231 = (33,649)
	b) If the organizers always have at least 2 blue and 2 yellow mugs on the table, how many different selections of 18 mags can be displayed?
-	yellow mugs on the terble, how many different selections
-	of 18 mgs can be displayd?
-	V + V - + V - + V - 14
	X1+ X2+X3+ X4 + X5 + X6 = 14
	x; =0, (\le i \le 6
-	(6+14-1)=(19)=19!=11,628
	14/ (14) 14:15!