Groepen theorie

Luc Veldhuis

5 April 2017

Definition

 $x \in G$, G een groep

 $\langle x \rangle = \{x^m | m \in \mathbb{Z}\}$ is de ondergroep voortgebracht uit x.

(De kleinste ondergroep van G die x bevat.)

Ondergroep van G

- $\langle x \rangle \neq \emptyset$, $e = x^0 \in \langle x \rangle$
- $x^{m_1}, x^{m_2} \in \langle x \rangle$, $m_i \in \mathbb{Z} \Rightarrow x^{m_1} x^{m_2} = x^{m_1 + m_2} \in \langle x \rangle$
- $x^m \in \mathbb{Z} \Rightarrow (x^m)^{-1} = x^{-m} \in \langle x \rangle$

Opmerking

$$\langle x^{-1} \rangle = \langle x \rangle$$

 $\langle x \rangle$ abels, want: $x^{m_1} \cdot x^{m_2} = x^{m_1 + m_2} = x^{m_2 + m_1} = x^{m_2} \cdot x^{m_1}$

Een ondergroep van de vorm $\langle x \rangle$ heet cyklisch.

Voorbeeld

- D_{2n} , $n \ge 3 \to \langle r \rangle = \{e, r, r^2, \dots, r^{n-1}\}$, want $r^n = e$
- $S_4 \rightarrow \langle (1\ 2\ 3\ 4) \rangle = \{e, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2)\}$, want $(1\ 2\ 3\ 4)^4 = e$
- $\mathbb{Z} \to \langle 3 \rangle = \{3m | m \in \mathbb{Z}\} = 3\mathbb{Z} = \langle -3 \rangle$ (\mathbb{Z} is een optelgroep)
- $\bullet \ \mathbb{F}_5^* = \{\overline{1} = \overline{2^0}, \overline{2} = \overline{2^1}, \overline{3} = \overline{2^3}, \overline{4} = \overline{2^2}\} = \langle 2 \rangle$

Stelling

Als $H = \langle x \rangle$, dan |x| = |H| = |x| (Kan allebei oneindig zijn.) Ook geldt :

- Als $|x| = n < \infty$, dan is $\langle x \rangle = \{e, x, x^2, \dots, x^n\}$ allemaal verschillend.
- Als $|x| = \infty$, dan is $\langle x \rangle = \{\dots, x^{-2}, x^{-1}, e, x^1, x^2, \dots\}$ allemaal verschillend.

Bewijs

met rest).

 e,x,\ldots,x^{n-1} zijn verschillend. Stel dat $x^i=x^j$, met $0\leq i< j\leq n-1$ Dan is $e=x^{-i}x^i=x^{-i}x^j=x^{j-i}$ met $1\leq j-i\leq n-1$. x heeft orde n, dus tegenspraak. e,x,\ldots,x^{n-1} zijn allemaal verschillend. Neem nu $m\in\mathbb{Z}$ en m=qn+r met $0\leq r\leq n-1$, $q\in\mathbb{Z}$ (delen

Dan:
$$x^m = x^{qn+r} = (x^n)^q \cdot x^r = e^q x^r = x^r$$

Dus $\langle x \rangle = \{x^m | m \in \mathbb{Z}\} \subseteq \{e, x, \dots, x^{n-1}\} \subseteq \langle x \rangle$
Dus $\langle x \rangle = \{e, x, \dots, x^{n-1}\}$

Opmerking

Als $|x|=n<\infty$, dan is $x^{m_1}=x^{m_2}$ voor $m_1,m_2\in\mathbb{Z}\leftrightarrow m_1\&m_2$ hebben dezelfde rest, $r\in\{0,1,\ldots,n-1\}$ bij deling door $n\leftrightarrow n|m_1-m_2$ Dus $x^{m_1}=x^{m_2}\leftrightarrow n|m_1-m_2$ $x^m=e\leftrightarrow n|m$

Stelling

Elk tweetal cyklische groepen met hetzelfde aantal elementen is isomorf

- Als $|x|=|y|=n<\infty$, dan is $\phi:\langle x\rangle\to\langle y\rangle$ een isomorfisme. $x^0\mapsto y^i$
- Als $|x| = \infty$, dan is $\phi : \mathbb{Z} \to \langle x \rangle$ een isomorfisme: $k \mapsto x^k$

Opmerking

Dus een cyklische groep met $n<\infty$ elementen is isomorf met $\mathbb{Z}/n\mathbb{Z}=\langle\overline{1}\rangle$, ook als n=1

Bewijs

- ϕ is welgedefinieerd: $x^i = x^j \leftrightarrow n | (i j) \leftrightarrow y^i = y^j$, want $|x| = |y| = n < \infty$ Dus elke keuze van exponent van $x \pmod{n}$ geeft hetzelfde resultaat.
 - ϕ is een homomorfisme: $\phi(x^i \cdot x^j) = \phi(x^{i+j}) = y^{i+j}$ $\phi(x^i) \cdot \phi(x^j) = y^i y^j = y^{i+j}$ $\phi(x^i \cdot x^j) = \phi(x^i)\phi(x^j)$ is een homomorfisme.
 - ϕ is surjectief: $\{e, x, \dots, x^{n-1}\}$ beeldt af op $\{e, y, \dots, y^{n-1}\} = \langle y \rangle$
 - ϕ is injectief, want $|\langle x \rangle| = |\langle y \rangle| = n < \infty$
- Oefening (je kunt er niet tellen)

Voorbeeld

Als $|x|=n<\infty$, dan is $\phi:\mathbb{Z}/n\mathbb{Z}\to \langle y\rangle$ met $\overline{i\cdot t}\mapsto y^i$ een isomorfisme

Stelling

Stel
$$a\in\mathbb{Z}$$
, $|x|=n<\infty$, dan geldt $|x^a|=rac{n}{ggd(a,n)}$

Bewijs

Idee: Bepaal alle $m \in \mathbb{Z}$ met $(x^a)^m = e$. De kleinste positive m is dan $|x^a|$.

Bewijs (vervolg)

$$m \in Z : e = (x^a)^m = x^{am} \leftrightarrow n | am$$

Schrijf
$$d = ggd(a, n) \ge 1$$
, $a = a'd$, $n = n'd$ met $n' \ge 1$

Dan $n'd|a'dm \leftrightarrow n'|a'm$ en ggd(a',n')=1 dus met lemma van Euclides n'|m

Dus $(x^a)^m = e \leftrightarrow n' | m$. De kleinste $m \ge 1$ die voldoet is de orde van x^a , $|x^a| = n' = \frac{n}{\gcd(a,n)}$

Lemma van Euclides

Als $a, b, c \in \mathbb{Z}$, a|bc en ggd(a, b) = 1 dan a|c.

Bewijs

Volgens Bézout: $\exists x, y \in \mathbb{Z} \text{ met } ggd(a, b) = 1 = xa + yb$

Dan c = xac + ybc, met a|xa en a|bc, dus a|c

Voorbeeld

In $\mathbb{Z}/12\mathbb{Z}$ heeft $\overline{8}\cdot\overline{1}$ orde $\frac{12}{ggd(8,12)}=3$

Stelling

Zij $H = \langle x \rangle$

- Als $\langle x \rangle = \infty$ dan is $\langle x^a \rangle = \langle x \rangle \leftrightarrow a = \pm 1$
- Als $\langle x \rangle = n < \infty$ dan is $\langle x^a \rangle = \langle x \rangle \leftrightarrow ggd(a,n) = 1$. $\langle x \rangle$ heeft $\phi(n)$ als voortbrenger.

Bewijs

- Oefening $(\langle x \rangle \cong \mathbb{Z})$
- $\langle x^a \rangle \subseteq \langle x \langle$, want $\# \text{elem} | x^a | = \frac{n}{ggd(n,a)}$, en # elem | x | = n, dus $\langle x^a \langle = \langle x \langle \leftrightarrow ggd(a,n) = 1$

Voorbeeld

 $\mathbb{Z}/12\mathbb{Z}=\langle T \rangle$ heeft voortbrengers $a\cdot t=\overline{a}$ met $\overline{a}\in (\mathbb{Z}/12\mathbb{Z})^*$, dus $\phi(12)=\phi(2^2\cdot 3)=\phi(2^2)\phi(3)=2^{2-1}(2-1)3^{1-1}(3-1)=4$

Stelling

Elke ondergroep van een cyklische groep is cyklish.

Preciezer: als $H = \langle x \rangle$:

- Als $|x| = \infty (\leftrightarrow |H| = \infty)$, dan zijn de ondergroepen van H 1 op 1 met $a = 0, 1, 2, \ldots$ a = 0 geeft $\langle x^a \rangle = \langle e \rangle = \{e\}$
- Als $|x| = n < \infty$, dan zijn de ondergroepen 1 op 1 met de positieve delers van n. $d|n \stackrel{\text{1-op-1}}{\longleftrightarrow} < x^d > (\frac{n}{d} \text{ elementen})$

Voor het bewijs, zie boek theorem 7 pagina 58.

Voorbeeld

ullet $\mathbb{Z}/12\mathbb{Z}=\langle t
angle$, positieve delers van $12=2^2\cdot 3^1$: #(2+1)(1+1)=6, namelijk (1,2,3,4,6,12) $H=\langle d\cdot t
angle$ d 1 2 3 4 5 6

• $\mathbb{F} = \langle \overline{2} \rangle$ heeft ook 6 ondergroepen. Vind deze en de voortbrengers.