

Efficient Deobfuscation of Linear Mixed Boolean-Arithmetic Expressions

Benjamin Reichenwallner & Peter Meerwald-Stadler
November 2022

Authors

Benjamin Reichenwallner Denuvo GmbH, Austria benjamin.reichenwallner@denuvo.com

Peter Meerwald-Stadler Denuvo GmbH, Austria peter.meerwald@denuvo.com

- Denuvo provides anti-piracy solutions for video games
- Interested in effective and efficient code obfuscation techniques
- We want small and fast MBAs that cannot be easily broken
 - ► Are *linear* MBAs worth using?

Motivation

- Mixed Boolean-arithmetic expressions (MBAs) are a common ingredient for obfuscation
 - ▶ Hide secret information or code via introduction of exaggerated complexity
- E.g., x + y can be written as

$$2((x \& y) | (\sim x \& \sim y)) - 2(\sim x \& y) + 3((\sim x \& y) | (x \& \sim y)) - 2 \cdot \sim y$$

Hard to simplify due to the incompatibility of arithmetic and bitwise operations

Motivation

- Mixed Boolean-arithmetic expressions (MBAs) are a common ingredient for obfuscation
 - ▶ Hide secret information or code via introduction of exaggerated complexity
- E.g., x + y can be written as

$$2((x \& y) | (\sim x \& \sim y)) - 2(\sim x \& y) + 3((\sim x \& y) | (x \& \sim y)) - 2 \cdot \sim y$$

- Hard to simplify due to the incompatibility of arithmetic and bitwise operations
- There is a variety of techniques for simplification
 - ▶ pattern matching, neural networks, bit-blasting, stochastic program synthesis . . .
- Most existing tools fail on simplifying or even verifying those expressions
- In 2021, MBA-Blast and MBA-Solver simplify linear MBAs within fractions of a second
 - ... but there are some caveats to be resolved in order to make Liu et al.'s approach powerful in practice

Mixed Boolean-arithmetic expressions

- ullet An MBA mixes bitwise (\equiv logical) and arithmetic operations
- Introduced by Zhou et al. in 2006.
- Hard to simplify:
 - Arithmetic or logical simplification rules are not compatible
 - Established tools either concentrate on arithmetic or logical expressions
 - ► Most MBA simplifiers are not (yet) powerful enough

Mixed Boolean-arithmetic expressions

- ullet An MBA mixes bitwise (\equiv logical) and arithmetic operations
- Introduced by Zhou et al. in 2006.
- Hard to simplify:
 - Arithmetic or logical simplification rules are not compatible
 - Established tools either concentrate on arithmetic or logical expressions
 - ► Most MBA simplifiers are not (yet) powerful enough
- We concentrate on *linear* MBAs: functions $e:(B^n)^t \to B^n$ of the form

$$e(x_1,\ldots,x_t)=\sum_{i\in I}a_ie_i(x_1,\ldots,x_t),$$

where $B = \{0, 1\}$, $n, t \in \mathbb{N}$, $I \subset \mathbb{N}$ is an index set, $a_i \in B^n$ are constants and e_i are bitwise expressions of x_1, \ldots, x_t for $i \in I$.

Mixed Boolean-arithmetic expressions

- Examples:
 - $x + (x \& y) 2 \cdot (x|y) + 42$ is a *linear* MBA
 - $\triangleright y \cdot (x \wedge y) (x \& y)^2 1$ is a polynomial MBA
 - ▶ $3 \cdot x^y + x + 17$ is not polynomial
 - \blacktriangleright 5 + (x|3) (5&y) is not polynomial
- Methods for generation:
 - ► (Iterative) application of known rewriting rules (see, e.g., LOKI)
 - ► Solution of random linear equation systems (Zhou et al. 2007)
 - **▶** ...
- Zhou et al.: Linear MBAs are equivalent on B^n for any $n \in \mathbb{N}$ if they are equivalent on $B = \{0, 1\}$.
 - ▶ Bitwise expressions can be considered logical expressions.
 - ▶ MBAs with t variables identified by only 2^t (rather than 2^{nt}) values!

The myth of Zhou et al.'s reversed direction

• In more detail, Zhou et al. prove that an MBA $e \equiv 0$ if and only if the vector $Y_a = (a_1, \ldots, a_s)^T$ of its coefficients solves a linear equation system AY = o, where A is a truth value matrix of e's bitwise expressions.

The myth of Zhou et al.'s reversed direction

- In more detail, Zhou et al. prove that an MBA $e \equiv 0$ if and only if the vector $Y_a = (a_1, \ldots, a_s)^T$ of its coefficients solves a linear equation system AY = o, where A is a truth value matrix of e's bitwise expressions.
- But unfortunately, he formulates the theorem wrongly.

```
A = (v_{i,j})_{2^i \times s}, be the \{0,1\}-matrix of truth tables over \mathbb{Z}/(2^n). Then e = 0 if and only if the linear system AY = 0 has a solution over ring \mathbb{Z}/(2^n), where Y_{s \times 1} = (y_0, \cdots, y_{s-1})^\mathsf{T} is a vector of s variables over \mathbb{Z}/(2^n).
```

- This might have delayed powerful algebraic simplification tools for years!
- Liu et al. claim to be the first to prove the reverse direction in their MBA-Blast paper in 2021.

MBA-Blast & MBA-Solver

- Very similar simplifiers written in Python.
- Both transform a linear MBA from B^n to B and simplify it there.

MBA-Blast & MBA-Solver

- Each bitwise expression (and hence each MBA) with t variables can be written as a linear combination of 2^t base expressions.
 - ► E.g., for t = 2, $\{1, x, y, x \& y\}$
 - ightharpoonup ... or $\{\sim (x \mid y), \sim (x \mid \sim y), x \& \sim y, x \& y\}$
- Simple potential solutions can be found via a lookup table.
 - $\blacktriangleright \mathsf{E.g.}, \ x+y-(x\&y)\to x|y$

MBA-Blast & MBA-Solver

- Each bitwise expression (and hence each MBA) with t variables can be written as a linear combination of 2^t base expressions.
 - ► E.g., for t = 2, $\{1, x, y, x \& y\}$
 - ► ... or $\{\sim(x \mid y), \sim(x \mid \sim y), x \& \sim y, x \& y\}$
- Simple potential solutions can be found via a lookup table.
 - $\blacktriangleright \text{ E.g., } x + y (x \& y) \rightarrow x | y$
- Main differences:
 - ▶ MBA-Solver transforms whole MBAs while MBA-Blast transforms bitwise expressions and combines the results.
 - ► MBA-Solver uses a more complex basis in order to solve equation systems without usage of NumPy.
 - ► MBA-Solver is significantly faster.
 - ► MBA-Solver misses simple solutions.

SiMBA (Simple MBA Simplifier)

- We adapt the approach and resolve the existing tools' main sufferings.
- We follow the following principles:
 - ▶ We use generic code that works for *arbitrary* variable count.
 - We want to be independent of lookup tables (4 variables: $2^{2^4} = 65\,536$ entries).
 - ▶ We do not use any library such as SymPy or NumPy for simplification or equation system solving.
 - We find simplest solutions whenever the simplified expression has few enough variables.
 - We validate input expressions.
 - Our algorithm is invariant to an expression's concrete representation.

Success factors

- We evaluate input expressions **directly in** B^n for variables in B.
 - ▶ We prove and use a generalization of Zhou et al.'s theorem.
 - ▶ Hence there is no need for any simplification library.

Success factors

- We evaluate input expressions **directly in** B^n for variables in B.
 - ▶ We prove and use a generalization of Zhou et al.'s theorem.
 - ► Hence there is no need for any simplification library.
- We use a **generic** basis for every $t \in \mathbb{N}$:

$$\{1\} \cup \bigcup_{i=1}^{t} \{x_i\} \bigcup_{\substack{i_1,i_2=1\\i_1 < i_2}}^{t} \{x_{i_1} \& x_{i_2}\} \cup \bigcup_{\substack{i_1,i_2,i_3=1\\i_1 < i_2 < i_3}}^{t} \{x_{i_1} \& x_{i_2} \& x_{i_3}\} \cup \cdots \cup \{x_1 \& \cdots \& x_t\}$$

- ► This gives us a nice truth table s.t. in each iteration of Gaussian elimination there is a row with only one 1.
- ▶ We can generically determine the row in which a specific conjunction is eliminated.

Success factors

- We evaluate input expressions **directly in** B^n for variables in B.
 - ▶ We prove and use a generalization of Zhou et al.'s theorem.
 - ► Hence there is no need for any simplification library.
- We use a **generic** basis for every $t \in \mathbb{N}$:

$$\{1\} \cup \bigcup_{i=1}^{t} \{x_i\} \bigcup_{\substack{i_1,i_2=1\\i_1 < i_2}}^{t} \{x_{i_1} \& x_{i_2}\} \cup \bigcup_{\substack{i_1,i_2,i_3=1\\i_1 < i_2 < i_3}}^{t} \{x_{i_1} \& x_{i_2} \& x_{i_3}\} \cup \cdots \cup \{x_1 \& \cdots \& x_t\}$$

- ► This gives us a nice truth table s.t. in each iteration of Gaussian elimination there is a row with only one 1.
- ▶ We can generically determine the row in which a specific conjunction is eliminated.
- We find the simplest solution (in place of the resulting linear combination of conjunctions) for every input that does not depend on more than 3 variables.

Verification and comparison

- Experiments:
 - ▶ Verification via simplification of MBAs from Matteo Favaro's NeuReduce Github repository
 - ► Comparison via simplification of MBAs from *MBA-Solver*'s Github repository
 - ► Comparison via simplification of self-generated MBAs
 - Simplification of MBAs encoded via affine functions
- See the MBA-Blast and MBA-Solver papers for a comparison with *Arybo*, *SSPAM* and *Syntia*.

Verification

 Verification of SiMBA on the dataset of linear MBAs provided by Matteo Favaro's Github repository:

	Total	Solved	Runtime
2 variables	4 000	4 000	0.00024 s
3 variables	4 560	4 560	0.00069 s
4 variables	441	441	0.00084 s
5 variables	999	999	0.00147 s

Comparison

• Comparison on the dataset of linear MBAs provided by MBA-Solver's Github repository:

	2 variables (551 expr.)	3 variables (350 expr.)	4 variables (107 expr.)	
MBA-Blast	0.02501 s	0.06726 s	_	
MBA-Solver	0.00047 s	0.00121 s	0.14362 <i>s</i>	
MBA-Flatten*	0.01872 s	0.08455 <i>s</i>	0.85104 <i>s</i>	
SiMBA	0.00024 s	0.00116 s	0.00257 <i>s</i>	

 $^{^{\}star}$ published in September 2022 by Liu et al.

Comparison

• Comparison on 1000 self-generated expressions for 5 target functions:

$$e_1(x, y) = x + y$$

$$e_2 = 49374$$

$$ightharpoonup e_3(x) = 3735936685x + 49374$$

$$e_4(x,y) = 3735936685(x^y) + 49374$$

$$e_5(x) = 3735936685 \cdot \sim x$$

MBA-Solver

	2 variables	3 variables	4 variables	
e_1	0.00074 s	0.00091 s	0.12761 <i>s</i>	
e_2	0.00052 s	0.00092 s	0.12352 <i>s</i>	
e_3	0.00026 s	0.00150 s	0.12802 <i>s</i>	
e_4	0.00041 s	0.00160 s	0.12683 <i>s</i>	
<i>e</i> ₅	0.00072 s	0.00134 s	0.12871 <i>s</i>	

SiMBA

	2 variables	3 variables	4 variables
e_1	0.00019 s	0.00117 s	0.00550 <i>s</i>
e_2	0.00010 s	0.00045 <i>s</i>	0.00528 <i>s</i>
<i>e</i> ₃	0.00020 s	0.00109 s	0.00544 <i>s</i>
e_4	0.00024 s	0.00100 s	0.00564 s
e_5	0.00022 s	0.00108 s	0.00543 <i>s</i>

Encoded expressions

- Runtime of SiMBA on 1000 MBAs with output encoding generated for five expressions:
 - $ightharpoonup e'_i = ae_i + b$ for random $a, b \in B^{64}$
 - Not supported by MBA-Solver and MBA-Blast

	2 variables	3 variables	4 variables
e_1'	0.00020 s	0.00118 s	0.00484 <i>s</i>
e_2'	0.00010 s	0.00029 s	0.00481 <i>s</i>
e_3'	0.00021 s	0.00125 <i>s</i>	0.00460 <i>s</i>
e_4'	0.00020 s	0.00098 s	0.00516 <i>s</i>
e_5'	0.00015 s	0.00110 s	0.00547 <i>s</i>

Outlook: Nonlinear MBAs

- Possible extension to polynomial and nonpolynomial MBAs via identifying all linear subexpressions of a nonlinear MBA and additional tricks
- Comparison on the datasets of linear, polynomial and nonpolynomial MBAs provided by MBA-Solver's Github repository:

Category	Total	MBA-Solver*		MBA-Flatten*		SiMBA	
		Solved	Runtime	Solved	Runtime	Solved	Runtime
Linear	1008	1 008	0.01546 <i>s</i>	1 008	0.12374 <i>s</i>	1 008	0.00250 <i>s</i>
Polynom.	1008	1 008	0.02271 s	737	0.18124 <i>s</i>	1 008	0.00326 s
Nonpolyn.	899	109	0.07965 <i>s</i>	88	0.22775 s	899	0.00957 s

 $^{^{\}star}$ MBA-Solver and MBA-Flatten, as available to us, require additional knowledge about the input.

Conclusion

- Zhou et al.'s transformation $B^n \leftrightarrow B$ is a powerful basis for deobfuscation
- Linear MBAs can be broken easily and fast
 - Hypothesis: This is also true for all nonlinear MBAs that can be reduced to linear ones.
 - ▶ However, increasing the number of variables makes it exponentially harder.
- SiMBA's source code is available here: github.com/DenuvoSoftwareSolutions/SiMBA

Conclusion

- Zhou et al.'s transformation $B^n \leftrightarrow B$ is a powerful basis for deobfuscation
- Linear MBAs can be broken easily and fast
 - ▶ Hypothesis: This is also true for all nonlinear MBAs that can be reduced to linear ones.
 - ▶ However, increasing the number of variables makes it exponentially harder.
- SiMBA's source code is available here: github.com/DenuvoSoftwareSolutions/SiMBA

THANK YOU!

References

FAVARO, Matteo:

NeuReduce.

https://github.com/fvrmatteo/NeuReduce

 $\mathrm{Liu},\ \mathsf{Binbin}\ ;\ \mathrm{Shen},\ \mathsf{Junfu}\ ;\ \mathrm{Ming},\ \mathsf{Jiang}\ ;\ \mathrm{Zheng},\ \mathsf{Qilong}\ ;\ \mathrm{Li},\ \mathsf{Jing}\ ;\ \mathrm{Xu},\ \mathsf{Dongpeng} :$

In: Proceedings of the 30th USENIX Security Symposium, USENIX Association, August 2021 (USENIX 2021), 1701-1718

LIU, Binbin; ZHENG, Qilong; LI, Jing; XU, Dongpeng:

An In-Place Simplification on Mixed Boolean-Arithmetic Expressions.

In: Security and Communication Networks, Hindawi, September 2022 (2022), 1-14

Schloegel, Moritz; Blazytko, Tim; Contag, Moritz; Aschermann, Cornelius; Basler, Julius; Holz, Thorsten; Abbasi, Ali:

LOKI. Hardening code obfuscation against automated attacks.

In: 31st USENIX Security Symposium.

Boston, MA: USENIX Association, August 2022 (USENIX 2022), 3055-3073

UNH SOFTSEC GROUP:

MBA-Solver Code and Dataset.

https://github.com/softsec-unh/MBA-Solver

Xu, Dongpeng; Liu, Binbin; Feng, Weijie; Ming, Jiang; Zheng, Qilong; Yu, Qiaoyan:

Boosting SMT solver performance on mixed-bitwise-arithmetic expressions.

In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation.

Virtual, Canada: Association for Computing Machinery, June 2021 (PLDI 2021), 651-664

References

ZHOU, Yongxin; MAIN, Alec:

Diversity via code transformations. A solution for NGNA renewable security. In: The NCTA Technical Papers 2006.

Atlanta: The National Cable and Telecommunications Association Show, 2006, 173-182

ZHOU, Yongxin; MAIN, Alec; Gu, Yuan X.; JOHNSON, Harold:

Information hiding in software with mixed Boolean-arithmetic transforms.

In: Proceedings of the 8th International Conference on Information Security Applications.
Berlin. Heidelberg: Springer-Verlag, August 2007 (WISA 2007), 61–75