Wstęp do Informatyki i Programowania Laboratorium: Lista 2 Podstawowe instrukcje

Jacek Cichoń Przemysław Kobylański

Zadanie 1 (4 pkt)

W Polsce używamy następujących monet i banknotów:

```
monety 1gr, 2gr, 5gr, 10gr, 20gr, 50gr, 1zł, 2zł, 5zł
banknoty 10 zł, 20 zł, 50 zł, 100 zł, 200 zł
```

Napisz w C program, który czyta kwotę podaną w postaci całkowitej liczby złoty i całkowitej liczby groszy a następnie drukuje w jaki sposób wypłacić ją jak najmniejszą liczbą banknotów i monet. Przykład:

Uwaga

Przyjmij, że wczytania liczba groszy jest mniejsza od 100.

Zadanie 2 (3 pkt)

Napisz program, który czyta liczbę całkowitą n a następnie wczytuje n liczb rzeczywistych x_1,x_2,\ldots,x_n . Na koniec drukuje średnią arytmetyczną wczytanych wartości rzeczywistych.

Uwaga

Nie używaj tablicy.

Zadanie 3 (5 pkt)

Dla jakich liczb naturalnych n prawdziwa jest nierówność:

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} > 10$$
?

Napisz program wyznaczający najmniejszą z takich liczbn.

Jaki jest niezmiennik pętli wyliczającej najmniejszą wartość n? Postaraj się go uzasadnić.

Zadanie 4 (3 pkt)

Wyznacz stosunkowo dobre przybliżenie liczby $^{1000}\sqrt{1000!}$ - możesz założyć, że arytmetyka liczb typu double zapewni Ci odpowiednią dokładność.

Wskazówka

Postaraj się wyliczyć to przybliżenie bez obliczania wartości 1000!.

Zadanie 5 (5 pkt)

Niech $\tau(n) = |\{(a,b) \in \{1,\ldots,n\}^2 : NWD(a,b) = 1\}|$ będzie liczbą par liczb względnie pierwszych, gdzie obie liczby w parze są z zakresu od 1 do n.

- 1. Napisz w języku C program drukujący w kolejnych wierszach liczby n i $\tau(n)$, dla $n=1,\ldots,1000$ (taki format danych nazywa się CSV).
- 2. Liczby drukowane przez program przekieruj do pliku wykres.csv.
- 3. Narysuj wykres $\{(n, \tau(n)) : n = 1, ..., 1000\}$. (użyj Excela albo innego arkusza kalkulacyjnego, do którego zaimportujesz plik wykres.csv).
- 4. Jaki można wysnuć wniosek z uzyskanego wykresu?

Zadanie 6 (5 pkt)

Niech $\sigma(n)$ oznacza sumę wszystkich dzielników liczby naturalnej n mniejszych od liczby n (na przykład $\sigma(5) = 1$ oraz $\sigma(6) = 1 + 2 + 3 = 6$).

Liczbę n nazywamy doskonałą jeśli $\sigma(n)=n$. Parę liczb(n,m), gdzie n< m, nazywamy zaprzyjaźnioną, jeśli $\sigma(n)=m$ oraz $\sigma(m)=n$.

Znajdź wszystkie liczby doskonałe mniejsze od 1000. Wyznacz wszystkie zaprzyjaźnione pary liczb mniejszych niż 1000.

Wskazówka

Obliczone wartości $\sigma(n)$ zapisz w tablicy aby program działał jak najszybciej.