Inequalities with Absolute Values

APMA Faculty University of Virginia

August 7, 2024

Definition

Absolute Values Definitions Less Than

Definition.
$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

For example, |5| = 5, but |-5| = -(-5) = 5.

Intuition: The absolute value of x is the distance between the number x and 0 on a number line.

Facts

Absolute Values Definitions Less Than Greater Than

Crucial Facts.

$$|x| = a \implies x = \pm a$$

 $|x| < a \implies -a < x < a$
 $|x| > a \implies x < -a \text{ or } x > a$

Finally,
$$\sqrt{x^2} = |x|$$
. For example, $\sqrt{(-6)^2} = \sqrt{36} = 6$.

Values Less Than

Absolute

Absolute Value Less Than

Example. Solve for x: |2x - 5| < 7.

Solution.

$$|2x-5| < 7 \implies -7 < 2x-5 < 7$$

This means -7 < 2x - 5 and 2x - 5 < 7:

$$\implies -1 < x$$
 and $x < 6$

In interval form, the solution is |(-1,6)|.

Absolute

Values Greater Than

Absolute Value Greater Than

Example. Solve for x: |2x-5| > 7.

Solution.

$$|2x-5| > 7 \implies 2x-5 < -7$$
 or $2x-5 > 7$

$$\Rightarrow x < -1$$
 or $x > 6$.

In interval form, the answer is $|(-\infty, -1) \cup (6, \infty)|$.