Higher dimensions

UNDERSTANDING DATA VISUALIZATION

Richie Cotton

Data Evangelist at DataCamp

The UN life expectancy scatter plots

3D scatter plots

x and y are not the only dimensions

Points also have these dimensions

- color
- size
- transparency
- shape

Color

Size

Transparency

Shape

Avg. life expectancy (years) 60 70 80

Lots of panels

Even more panels

Other dimensions for line plots

- color
- thickness
- transparency
- line type (solid, dashes, dots)

Color

Linetype

Let's practice!

UNDERSTANDING DATA VISUALIZATION

Using color

UNDERSTANDING DATA VISUALIZATION

Richie Cotton

Data Evangelist at DataCamp

Colorspaces: Red-Green-Blue

Colorspaces: Cyan-Magenta-Yellow-black

Choosing a plotting palette

- Usually, each color should stand out as much as other colors.
- The perceptual distance from one color in the plot to the next should be constant.

Colorspaces: Hue-Chroma-Luminance

Hue

Colorspaces: Hue-Chroma-Luminance

Hue
Chroma (green)
Chroma (magenta)

Colorspaces: Hue-Chroma-Luminance

Hue Chroma (green) Chroma (magenta) Luminance (cyan) Luminance (red)

Three types of color scale: qualitative

Type	Purpose	What to vary
qualitative	Distinguish unordered categories	hue

Qualitative palette example

Three types of color scale: sequential

Type	Purpose	What to vary
sequential	Show ordering	chroma or luminance

Sequential palette example

Another sequential palette example

¹ Viridis color scale: https://bids.github.io/colormap

Three types of color scale: diverging

Type	Purpose	What to vary
diverging	Show above or below a midpoint	chroma or luminance, with 2 hues

Green Tech in Malaysia survey dataset

question	response	n
Uses reliable and repairable	Strongly Disagree	4
Uses reliable and repairable	Disagree	8
Uses reliable and repairable	Neutral	37
Uses reliable and repairable	Agree	52
Uses reliable and repairable	Strongly Agree	26
•••	•••	•••

¹ Islam et al. (2019) http://dx.doi.org/10.17632/wggvryfhsk.1

Diverging palette example

Let's practice!

UNDERSTANDING DATA VISUALIZATION

Plotting many variables at once

UNDERSTANDING DATA VISUALIZATION

Richie Cotton

Data Evangelist

When should you use a pair plot?

- You have up to ten variables (either continuous, categorical, or a mix).
- You want to see the distribution for each variable.
- You want to see the relationship between each pair of variables.

When should you use a correlation heatmap?

- You have lots of continuous variables.
- You want to a simple overview of how each pair of variables is related.

¹ Rossi, Allenby, and McCulloch (2005). Bayesian Statistics & Marketing

The United Nations dataset again

When should you use a parallel coordinates plot?

- You have lots of continuous variables.
- You want to find patterns across these variables, or
- You want to visualize clusters of observations.

A parallel coordinates plot

Let's practice!

UNDERSTANDING DATA VISUALIZATION

