Math 132: Discrete Mathematics Problem session 5

- 1. Give a combinatorial argument that $k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$.
- 2. Show that for $n \in \mathbb{N}$, $\sum_{i=0}^{n} 2^{i} \cdot {n \choose i} = 3^{n}$.
- 3. Suppose you have 6 distinct jars and 3n indistinct balls. How many ways can you distribute the balls in the jars such that the first jar contains a multiple of 3 balls?
- 4. Let (a_1, a_2, \ldots, a_n) be a sequence of n nonnegative integers such that $\sum_{i=1}^n a_i = n$ and $\sum_{i=1}^j a_i \ge j$ for all $1 \le j \le n$. For instance, if n = 2, we have the sequences (1, 1) and (2, 0), while if n = 3 the possible sequences are (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), and (3, 0, 0). Show that the number of such sequences is b_n for all n.
- 5. Show that b_n is the number of rooted binary trees, each node having 0 or 2 children, with n internal nodes. The first few cases are (internal nodes are black):

- 6. How many 10 digit numbers can be formed using exactly 4 digits from $\{1, 2, 3, \dots, 0\}$?
- 7. Show that if $n \in \mathbb{N}$, then $3|n^3 + 2n$.
- 8. Show that if a and b are relatively prime natural numbers that both divide c, then ab|c. Show this fails if a and b are not relatively prime.
- 9. How many divisors of $176820688 = 2^4 \cdot 11^3 \cdot 19^2 \cdot 23$ are there?
- 10. Let \forall be the logical operator XOR, where $p \lor q = 1$ if and only exactly one of p and q are true. Show that \forall can be expressed in terms of \neg , \lor , and \land .
- 11. Similar to the last problem, show:
 - Every instance of \leftrightarrow can be replaced with an expression involving \neg , \vee , \wedge , and \rightarrow .
 - Every instance of \rightarrow can be replaced with an expression involving \neg , \lor , or \land .
 - Every instance of \vee can be replaced with an expression involving \neg and \wedge .
 - Every instance of \wedge can be replaced with an expression involving \neg and \vee .
- 12. Let $\bar{\wedge}$ be the logical operator NAND, where $p \bar{\wedge} q = 1$ if and only if both p and q are false. Show that every logical expression can be written using only $\bar{\wedge}$.