Exercícios resolvidos de transformações lineares (ALGA II)

J. A. T. Barbosa, A. J. M. Ferreira e J. M. A. César de Sá

Faculdade de Engenharia da Universidade do Porto

Departamento de Engenharia Mecânica e Gestão Industrial

237 h.

のでは、100mmの

Mostre que a função $T: \mathbb{R}^3 \to \mathbb{R}^3$ com T(x, y, z) = (xy, yz, z) não é uma transformação linear.

Resolução:

Quer o domínio, quer o conjunto de chegada de T, em ambos os casos \mathbb{R}^3 , são espaços vectoriais reais. Assim, T será uma transformação linear, se e só se verificar a condição

$$\forall X_1, X_2 \in \mathbb{R}^3 \ \forall a, b \in \mathbb{R} \ T(aX_1 + bX_2) = a \ T(X_1) + b \ T(X_2)$$

Considerando $X_1 = (x_1, y_1, z_1) \in \mathbb{R}^3$ e $X_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$, tem-se

$$a X_1 + b X_2 = (ax_1 + bx_2, ay_1 + by_2, az_1 + bz_2)$$

sendo a sua imagem dada por

$$T(a X_1 + b X_2) = T(ax_1 + bx_2, ay_1 + by_2, az_1 + bz_2) =$$

= $((ax_1 + bx_2) (ay_1 + by_2), (ay_1 + by_2) (az_1 + bz_2), az_1 + bz_2)$

Por outro lado, obtém-se

$$a T(X_1) + b T(X_2) = a T(x_1, y_1, z_1) + b T(x_2, y_2, z_2) =$$

$$= a (x_1y_1, y_1z_1, z_1) + b (x_2y_2, y_2z_2, z_2) =$$

$$= (ax_1y_1 + bx_2y_2, ay_1z_1 + by_2z_2, az_1 + bz_2)$$

Verifica-se que $T(a X_1 + b X_2) \neq a T(X_1) + b T(X_2)$, pelo que a função T não é uma transformação linear.

238 a.

Seja a transformação linear $T: R^3 \to R^2$ com T(x, y, z) = (3x-2z, y+z). Determine o seu núcleo e contradomínio. Para cada um destes conjuntos, indique uma base e as respectivas dimensões.

Resolução:

Comecemos por obter o núcleo de T: $N(T) = \{X \in \mathbb{R}^3 : T(X) = (0, 0)\}$. Resolvendo a equação

$$T(x, y, z) = (3x - 2z, y + z) = (0, 0) \Leftrightarrow \begin{cases} 3x - 2z = 0 \\ y + z = 0 \end{cases} \Leftrightarrow \begin{cases} x = 2z/3 \\ y = -z \end{cases}$$

resulta

$$N(T) = \left\{ X = (2c/3, -c, c) \in R^3 \right\}$$

Tem-se ainda

$$B_N = \text{Base } N(T) = \{(2, -3, 3)\} \ (c = 3)$$

$$\dim N(T) = 1$$

Dado que $N(T) \neq \{(0, 0, 0)\}$, ou $\dim N(T) \neq 0$, a transformação linear T não é injectiva, ou seja, não admite transformação inversa.

A dimensão do contradomínio tem, então, o valor

$$dim \ T(R^3) = dim \ R^3 - dim \ N(T) = 3 - 1 = 2$$

Calculemos o contradomínio de T: $T(R^3) = \{Y \in R^2 : \exists X \in R^3, T(X) = Y\} \subseteq R^2$. Como as dimensões do contradomínio e do conjunto de chegada são idênticas, isto é, $\dim T(R^3) = \dim R^2 = 2$, conclui-se que $T(R^3) = R^2$, pelo que T é sobrejectiva.

251.

Para cada uma das transformações lineares abaixo definidas, obtenha a respectiva lei de transformação.

a)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 com
 $T(1, 0, 0) = (2, 1), T(0, 1, 0) = (1, 3) \in T(0, 0, 1) = (0, 1)$

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 com
 $T(2, 1) = (7, 2, 1) \in T(-1, 1) = (3, 1, 4)$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 com
 $T(0, 1, 2) = (3, 3, 5), T(1, 2, 2) = (1, 1, -1) \in T(1, 1, 1) = (0, 1, -1)$

Resolução:

a) Designe-se por $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$ e por $E_2 = \{(1, 0), (0, 1)\}$, as bases canónicas de R^3 e R^2 respectivamente.

A matriz da transformação linear T em relação às bases E_3 e E_2 é

$$T = m(T) = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix}$$

Tem-se, então,

$$T(x, y, z) = T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x + y \\ x + 3y + z \end{bmatrix}$$

pelo que

$$T: R^3 \rightarrow R^2$$

$$(x, y, z) \rightarrow (2x+y, x+3y+z)$$

b) Calculemos, em primeiro lugar, as imagens dos vectores que constituem a base canónica do domínio, $E_2 = \{(1, 0), (0, 1)\}$.

Sabendo que

$$T(2, 1) = T(2, 0) + T(0, 1) = 2 T(1, 0) + T(0, 1)$$

$$T(-1, 1) = T(-1, 0) + T(0, 1) = -T(1, 0) + T(0, 1)$$

resolva-se o sistema de equações lineares

$$\begin{cases} 2 T(1, 0) + T(0, 1) = (7, 2, 1) \\ -T(1, 0) + T(0, 1) = (3, 1, 4) \end{cases} \Leftrightarrow \begin{cases} T(0, 1) = (7, 2, 1) - 2 T(1, 0) \\ -T(1, 0) - 2 T(1, 0) = (3, 1, 4) - (7, 2, 1) \end{cases} \Leftrightarrow \begin{cases} T(0, 1) = (13, 4, 9)/3 \\ T(1, 0) = (4, 1, -3)/3 \end{cases}$$

A matriz da transformação linear T em relação às bases canónicas de R^2 e R^3 é

$$T = m(T) = \frac{1}{3} \begin{bmatrix} 4 & 13 \\ 1 & 4 \\ -3 & 9 \end{bmatrix}$$

Assim,

$$T(x, y) = T \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & 13 \\ 1 & 4 \\ -3 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4x + 13y \\ x + 4y \\ -3x + 9y \end{bmatrix}$$

Obtém-se, então,

$$T: R^2 \rightarrow R^3$$

$$(x, y) \rightarrow \left(\frac{4x+13y}{3}, \frac{x+4y}{3}, -x+3y\right)$$

c) Antes de mais, convém notar que $\{(0, 1, 2), (1, 2, 2), (1, 1, 1)\}$ constitui uma base do domínio de T.

Calculemos, agora, as imagens dos vectores que constituem a base canónica de R^3 , $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$.

Sabendo que

$$T(0, 1, 2) = T(\vec{j}) + 2 T(\vec{k})$$

$$T(1, 2, 2) = T(\vec{i}) + 2 T(\vec{j}) + 2 T(\vec{k})$$

$$T(1, 1, 1) = T(\vec{i}) + T(\vec{j}) + T(\vec{k})$$

resolva-se o sistema de equações lineares

$$\begin{cases} T(\vec{j}) + 2 \ T(\vec{k}) = (3, 3, 5) \\ T(\vec{i}) + 2 \ T(\vec{j}) + 2 \ T(\vec{k}) = (1, 1, -1) \iff \\ T(\vec{i}) + T(\vec{j}) + T(\vec{k}) = (0, 1, -1) \end{cases}$$

$$\Leftrightarrow \begin{cases} T(\vec{j}) = (3, 3, 5) - 2 \ T(\vec{k}) \\ T(\vec{i}) - 4 \ T(\vec{k}) + 2 \ T(\vec{k}) = (1, 1, -1) - (6, 6, 10) \Leftrightarrow \\ T(\vec{i}) - 2 \ T(\vec{k}) + T(\vec{k}) = (0, 1, -1) - (3, 3, 5) \end{cases}$$

$$\Leftrightarrow \begin{cases} T(\vec{i}) = (-5, -5, -11) + 2 \ T(\vec{k}) \\ 2 \ T(\vec{k}) - 2 \ T(\vec{k}) + T(\vec{k}) = (-3, -2, -6) - (-5, -5, -11) \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} T(\vec{j}) = (-1, -3, -5) \\ T(\vec{i}) = (-1, 1, -1) \\ T(\vec{k}) = (2, 3, 5) \end{cases}$$

A matriz da transformação linear T em relação à base canónica de R^3 é

$$T = m(T) = \begin{bmatrix} -1 & -1 & 2 \\ 1 & -3 & 3 \\ -1 & -5 & 5 \end{bmatrix}$$

Assim,

$$T(x, y, z) = T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 & -1 & 2 \\ 1 & -3 & 3 \\ -1 & -5 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -x - y + 2z \\ x - 3y + 3z \\ -x - 5y + 5z \end{bmatrix}$$

Obtém-se, então,

$$T: R^3 \rightarrow R^3$$

 $(x, y, z) \rightarrow (-x - y + 2z, x - 3y + 3z, -x - 5y + 5z)$

257.

Seja a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3 \text{ com } T(x, y, z) = (x-z, y-z, -x-y+2z)$$

e a matriz

$$S = \begin{bmatrix} 1 & -3 & 1 \\ -1 & 6 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$

- a) Determine o núcleo e o contradomínio de T.
- b) Será T invertível? Justifique.
- c) Defina a transformação linear S representada pela matriz S em relação à base canónica de R^3 .
- d) Determine a transformação linear TS e represente-a matricialmente.

Resolução:

a) Sabendo que $T(\vec{i}) = (1, 0, -1), T(\vec{j}) = (0, 1, -1)$ e $T(\vec{k}) = (-1, -1, 2),$ a matriz que representa a transformação linear T em relação à base canónica de R^3 , $E = \{\vec{i}, \vec{j}, \vec{k}\},$ é

$$T = m(T) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

Em relação à matriz anterior verifica-se que

$$|T|=2-1-1=0 \Rightarrow r(T) \leq 2$$

$$\left|\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right| = 1 \neq 0 \implies r(T) = 2$$

isto é, é uma matriz com característica igual a 2. Sabendo que $r(T) = dim T(R^3)$, obtém-se

$$dim T(R^3) = 2 \implies T(R^3) \subset R^3$$

Company of the second

ou seja, a transformação linear T não é sobrejectiva.

Podemos, desde já, concluir que

$$\dim N(T) = \dim R^3 - \dim T(R^3) = 3 - 2 = 1 \implies N(T) \neq \{(0, 0, 0)\}$$

e, portanto, T não é injectiva (dim $N(T) \neq 0$). Calculando o seu núcleo

$$\begin{cases} x & -z = 0 \\ y - z = 0 \\ -x - y + 2z = 0 \end{cases} \Leftrightarrow \begin{cases} x = z \\ y = z \\ 0 = 0 \end{cases}$$

pelo que

$$N(T) = \{X = (w, w, w) \in R^3\}$$

$$S_{M} = \text{Base } N(T) = \{(1, 1, 1)\}$$

Calculando o contradomínio de T

$$\begin{cases} x & -z = a \\ y - z = b \iff \begin{bmatrix} 1 & 0 & -1 & a \\ 0 & 1 & -1 & b \\ -1 & -1 & 2 & c \end{bmatrix} \iff$$

$$\Leftrightarrow \begin{bmatrix} 1 & 0 & -1 & a \\ 0 & 1 & -1 & b \\ 0 & -1 & 1 & a+c \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 0 & -1 & a \\ 0 & 1 & -1 & b \\ 0 & 0 & 0 & a+b+c \end{bmatrix}$$

isto é,

$$Y = (a, b, c) \in T(R^3) \Leftrightarrow a+b+c=0$$

$$T(R^3) = \{Y = (-b-c, b, c) \in R^3\}$$

$$S_T = \text{Base } T(R^3) = \{(-1, 1, 0), (-1, 0, 1)\}$$

- b) A transformação linear T não é invertível, já que, tal como foi verificado na alínea anterior, não é injectiva.
- c) Verifica-se que

$$S(x, y, z) = S \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -3 & 1 \\ -1 & 6 & 2 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 3y + z \\ -x + 6y + 2z \\ x + 4z \end{bmatrix}$$

pelo que

$$S: R^3 \rightarrow R^3$$

 $(x, y, z) \rightarrow (x-3y+z, -x+6y+2z, x+4z)$

d) Seja P a matriz que representa a transformação linear composta $TS: R^3 \to R^3$ em relação à base canónica de R^3 .

Assim,

$$P = m(T) \ m(S) = T \ S = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -3 & 1 \\ -1 & 6 & 2 \\ 1 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 0 & -3 & -3 \\ -2 & 6 & -2 \\ 2 & -3 & 5 \end{bmatrix}$$

Tem-se, então,

$$(TS)(x, y, z) = P \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & -3 & -3 \\ -2 & 6 & -2 \\ 2 & -3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3y - 3z \\ -2x + 6y - 2z \\ 2x - 3y + 5z \end{bmatrix}$$

ou seja,

$$TS: R^3 \rightarrow R^3$$

 $(x, y, z) \rightarrow (-3y - 3z, -2x + 6y - 2z, 2x - 3y + 5z)$

A transformação linear composta TS poderia, ainda, ser calculada, aplicando a definição de função composta, isto é,

$$(TS)(x, y, z) = T[S(x, y, z)] = T(x-3y+z, -x+6y+2z, x+4z) =$$

$$= (-3y-3z, -2x+6y-2z, 2x-3y+5z)$$

and the state of the second state of the second state of the second seco

258.

Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$, definida pelas imagens $T(\vec{i}) = (0, 0)$, $T(\vec{j}) = (1, 1)$ e $T(\vec{k}) = (1, -1)$.

- a) Obtenha uma representação matricial para T.
- b) Calcule o valor de $T(4\vec{i} \vec{j} \vec{k})$, bem como a nulidade e a ordem de T.
- c) Determine a matriz que representa T relativamente às bases $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$, base canónica de R^3 , e $S' = \{S_1', S_2'\} = \{(1, 1), (1, 2)\}$.
- d) Determine uma base U, para o domínio, e uma base U', para o conjunto de chegada, em relação às quais a matriz de T tenha uma forma diagonal.

Resolução:

a) A matriz que representa a transformação linear em relação às bases canónicas de R^3 e de R^2 , $E_2 = \{(1,0), (0,1)\}$, é

$$T = m(T) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

b) Assim,

$$T(x, y, z) = T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} y+z \\ y-z \end{bmatrix}$$

ou seja,

$$T: R^3 \rightarrow R^3$$

$$(x, y, z) \rightarrow (y+z, y-z)$$

Resulta então

$$T(4\vec{i} - \vec{j} - \vec{k}) = T(4, -1, -1) = (-2, 0)$$

A característica da matriz T, sendo $r(T) \le 2$, tem o valor

$$\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \neq 0 \implies r(T) = 2$$

Conclui-se que:

Ordem de
$$T = dim \ T(R^3) = r(T) = 2$$

Nulidade de $T = dim \ N(T) = dim \ R^3 - dim \ T(R^3) = 3 - 2 = 1$

Além disso:

$$\dim N(T) \neq 0 \implies T$$
 não é injectiva
$$\dim R^2 = \dim T(R^3) \implies T(R^3) = R^2 \text{ e } T \text{ é sobrejectiva}$$

Figura 1: Representações matriciais para a transformação linear T

c) A matriz $T_{E_3,S'}$, que representa a transformação linear T em relação às bases E_3 e S', deverá conter, nas suas colunas, as imagens dos vectores \vec{i} , \vec{j} e \vec{k} , expressas na base S', figura 1.

Sendo conhecidas as imagens de \vec{i} , \vec{j} e \vec{k} expressas na base E_2 , base canónica de R^2 , ou seja,

$$T(\vec{i}) = (0, 0), T(\vec{j}) = (1, 1) e T(\vec{k}) = (1, -1)$$

há que obter as suas coordenadas em relação à desejada, S'.

Para o efeito, encontremos as expressões que determinam a mudança de

coordenadas, no espaço \mathbb{R}^2 , entre as bases \mathbb{E}_2 e \mathbb{S}^1 , figura 2.

Figura 2: Mudança de coordenadas no espaço R^2

Sabendo que

$$(a, b) = a_1 S_1' + b_1 S_2' = a_1 (1, 1) + b_1 (1, 2) = (a_1 + b_1, a_1 + 2b_1)$$

as expressões de mudança de coordenadas de S' para E_2 são

$$\begin{cases} a_1 + b_1 = a \\ a_1 + 2b_1 = b \end{cases} \quad (S' \to E_2)$$

Resolvendo o sistema de equações anterior em ordem a_1 e b_1 , obtém-se

$$\begin{cases} a_1 = 2a - b \\ b_1 = -a + b \end{cases} \quad (E_2 \to S')$$

que traduz as expressões de mudança de coordenadas de $E_{\rm 2}$ para $S^{\,\prime}$.

Usando as relações anteriores resulta

$$T(\vec{i}) = (0, 0) = (0, 0)_{s}$$

$$T(\vec{j}) = (1, 1) = (1, 0)_{S}$$

$$T(\vec{k}) = (1, -1) = (3, -2)_{S'}$$

A matriz $T_{E_3,S}$, que representa a transformação linear T em relação às bases E_3 e

S', é

$$T_{E_3,S'} = m(T) = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & -2 \end{bmatrix}_{E_5,S'}$$

A lei de transformação linear associada à matriz $T_{\mathcal{E}_3,\mathcal{S}^*}$, toma a forma

$$T: R^3 \rightarrow R^2$$

$$(x, y, z) \rightarrow (y+3z, -2z)_{S^1}$$

já que

$$T(x, y, z) = T_{E_3,S} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & -2 \end{bmatrix}_{E_3,S} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} y+3z \\ -2z \end{bmatrix}_{S}$$

d) Sejam as bases do domínio e do conjunto de chegada de T

$$U = \{U_1, U_2, U_3\}$$
: Base de R^3

$$U' = \{U_1', U_2'\}$$
: Base de R^2

Uma vez que $\dim T(\mathbb{R}^3)=2$, a representação matricial em forma diagonal para T tomará a forma

$$T_{U,U} = m(T) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{U,U}$$

já que se deverá verificar a condição

$$r(T_{trt'}) = dim \ T(R^3) = 2$$

Atendendo à forma como se encontra definida a matriz $T_{U,U'} = m(T)$, é possível concluir-se, figura 3,

$$T(U_1) \! = \! (1 \ , \, 0)_{U^*} \! = \! 1 \ U_1 \ ' \ + 0 \ U_2 \ ' \ \Rightarrow \ T(U_1) \! = \! U_1 \ '$$

$$T(U_2)=(0,1)_{U_1}=0\ U_1'+1\ U_2' \implies T(U_2)=U_2'$$

$$T(U_3)=(0,0)_U$$
 $\Rightarrow U_3 \in N(T)$

Figura 3: Representação matricial em forma diagonal para T

Para identificarmos o vector U_3 , há que determinar o núcleo de T:

$$\begin{cases} y+z=0 \\ y-z=0 \end{cases} \Leftrightarrow \begin{cases} y=0 \\ z=0 \end{cases}, \ \forall x \in R$$

$$N(T) = \left\{ X = (w, 0, 0) \in R^3 \right\}$$

$$S_N = \text{Base } N(T) = \{(1, 0, 0)\} = \{\vec{i}\}$$

Escolhamos, por exemplo, o vector da base do núcleo

$$U_3=\vec{i}\in N(T)$$

Os restantes vectores, U_1 e U_2 , deverão ser escolhidos de modo a que o conjunto $U=\{U_1\ ,\ U_2\ ,\ U_3\}\$ seja uma base de R^3 . Optando por uma solução que seja simples, o recurso aos vectores coordenados unitários permite, por exemplo, escolher

$$U_1 = \vec{j} = (0, 1, 0)$$

$$U_2 = \vec{k} = (0, 0, 1)$$

pelo que a base do domínio de T é

$$U = \{\vec{i}, \vec{j}, \vec{k}\}$$

Relativamente à base do conjunto de chegada, obtém-se

$$U_1' = T(U_1) = T(\vec{j}) = (1, 1)$$

$$U_2' = T(U_2) = T(\vec{k}) = (1, -1)$$

isto é,

$$U' = \{U_1', U_2'\} = \{(1, 1), (1, -1)\}$$

é a base do conjunto de chegada de T.

Neste caso, designando

$$X^{U} = (x_1, y_1, z_1)_{U}$$

obtém-se

$$T(x_1, y_1, z_1)_U = T_{U,U} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{U,U} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_U = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}_U.$$

ou seja,

$$T: R^3 \rightarrow R^2$$

 $(x_1, y_1, z_1)_U \rightarrow (x_1, y_1)_U$

representa a lei de transformação linear associada à matriz $T_{U,U^{\circ}}$.

265.

Considere a curva a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^3$, definida por

$$S(x, y, z) = (x+2y-z, y, x+3y-z)$$

Determine a reprsentação matricial das transformações lineares S e S^2 em relação à base $B=\{B_1$, B_2 , $B_3\}=\{(1,0,1),(1,0,0),(1,1,2)\}$.

Resolução:

Para obter a matriz da transformação linear S em relação à base B, $S_{B,B}$, é necessário calcular as imagens dos vectores que formam a base do domínio, B, expressas na base considerada para o conjunto de chegada, B, figura 1.

Figura 1: Representação matricial para a transformação linear S

As imagens dos vectores da base B, expressas na base canónica de R^3 , $E = \{\vec{i}, \vec{j}, \vec{k}\}$, são

$$S(1,0,1) = (0,0,0)$$

$$S(1,0,0) = (1,0,1)$$

$$S(1,1,2) = (1,1,2)$$

Antes de determinarmos as coordenadas dos vectores (imagens) obtidos anteriormente na base B (conjunto de chegada), encontremos as expressões de mudança de coordenadas entre as bases E e B do espaço R^3 , figura 2.

Figura 2: Mudança de coordenadas no espaço R³

Sabendo que

$$(a, b, c) = a_1 B_1 + b_1 B_2 + c_1 B_3 = (a_1 + b_1 + c_1, c_1, a_1 + 2c_1)$$

as expressões de mudança de coordenadas de B para E são

$$\begin{cases} a_1 + b_1 + c_1 = a \\ c_1 = b \\ a_1 + 2c_1 = c \end{cases} (B \to E)$$

Resolvendo o sistema de equações anterior em ordem a_1 , b_1 e c_1 , obtém-se

$$\begin{cases} a_1 = -2b + c \\ b_1 = a + b - c \\ c_1 = b \end{cases} \quad (E \to B)$$

que traduz as expressões de mudança de coordenadas de E para B. Usando as relações anteriores resulta então

$$S(1,0,1) = (0,0,0) = (0,0,0)_B$$

$$S(1,0,0) = (1,0,1) = (1,0,0)_R$$

$$S(1, 1, 2) = (1, 1, 2) = (0, 0, 1)_{R}$$

A matriz $S_{B,B}$, que representa a transformação linear S em relação à base B, é

$$S_{B,B} = m(S) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{B,B}$$

A lei de transformação linear associada à matriz $S_{B,B}$, toma a forma

$$S: R^{3} \to R^{3}$$

$$(x_{1}, y_{1}, z_{1})_{B} \to (y_{1}, 0, z_{1})_{B}$$

já que

$$S(x_1, y_1, z_1)_B = S_{B,B} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{B,B} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_B = \begin{bmatrix} y_1 \\ 0 \\ z_1 \end{bmatrix}_B$$

Figura 3: Representação matricial da transformação linear S^2

Relativamente à transformação linear composta $S^2 = SS$, verifica-se que, figura 3,

$$S^2 = SS : R^3 \rightarrow R^3$$

A matrix $P_{B,B}$ que representa a transformação linear composta $S^2 = SS$ em relação à base B (domínio e conjunto de chegada) é obtida a partir do produto matricial

$$P_{B,B} = m(S^2) = m(S)m(S) = S_{B,B}S_{B,B} =$$

Na obtenção da matriz $P_{B,B}$ há a realçar o seguinte:

- (1) Para que seja possível a composição, a base do conjunto de chegada da primeira transformação tem de ser igual à base do domínio da segunda transformação;
- (2) A base do domínio da primeira transformação será igual à base do domínio da transformação composta;
- (3) A base do conjunto de chegada da segunda transformação será igual à base do conjunto de chegada da transformação composta.

A lei de transformação linear associada à matriz $P_{B,B}$ é

$$S^2 = SS : R^3 \rightarrow R^3$$

 $(x_1, y_1, z_1)_R \rightarrow (0, 0, z_1)_R$

já que

$$S^{2}(x_{1}, y_{1}, z_{1})_{B} = P_{B,B} \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \end{bmatrix}_{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{B,B} \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \end{bmatrix}_{B} = \begin{bmatrix} 0 \\ 0 \\ z_{1} \end{bmatrix}_{B}$$

286.

Considere as transformações lineares $S: \mathbb{R}^2 \to \mathbb{R}^3$ e $T: \mathbb{R}^3 \to \mathbb{R}^3$, definidas por

$$S(x, y) = (x + y, 2x, x - y)$$

$$T(1, 1, 0) = (2, 0, -1), T(1, -1, 0) = (0, 0, 1) e T(0, 0, 1) = (0, 1, 1).$$

- a) Caracterize o núcleo e o contradomínio de S. Identifique, para cada um dos conjuntos, uma base e conclua em relação às suas dimensões.
- b) Mostre que S é injectiva e caracterize devidamente a sua transformação inversa.
- c) Obtenha uma base U, para o domínio, e uma base U, para o conjunto de chegada, em relação às quais a matriz de S tenha uma forma diagonal.
- d) Defina adequadamente a transformação composta possível de S com T, tendo como referência as bases canónicas. Obtenha a respectiva representação matricial.
- e) Mostre que a transformação linear S é definida, em relação à base canónica de R^2 , $E_2 = \{(1,0), (0,1)\}$, e à base

$$B = \{B_1, B_2, B_3\} = \{(1, 1, 0), (0, 0, 1), (1, -1, 0)\}$$

de R3, através da relação

$$S(x, y) = \frac{1}{2}(3x + y, 2x - 2y, -x + y)_B$$

f) Adoptando bases devidamente seleccionadas, defina a lei de transformação para T, de forma a que seja possível obter a transformação composta encontrada em d), se for utilizada, nessa composição, a lei de transformação para S referida na alínea anterior.

Resolução:

a) Calculemos o núcleo de S, N(S):

$$\begin{cases} x + y = 0 \\ 2x = 0 \\ x - y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \\ 0 = 0 \end{cases}$$

Tem-se, então,

The same of the sa

$$N(S) = \{X = (0, 0) \in \mathbb{R}^2\}$$

 $S_N = \text{Base } N(S) = \{\}$
 $\dim N(S) = 0$

concluindo-se, desde já, que S é injectiva.

Calculemos o contradomínio de S, $S(R^2)$:

$$\begin{cases} x+y=a \\ 2x = b \Leftrightarrow \\ x-y=c \end{cases} \Leftrightarrow \begin{cases} x=\frac{b}{2} \\ y=a-\frac{b}{2} \\ \frac{b}{2}-a+\frac{b}{2}=c \end{cases} \Leftrightarrow \begin{cases} x=\frac{b}{2} \\ y=a-\frac{b}{2} \end{cases} \land c=-a+b$$

Tem-se

$$S(R^{2}) = \left\{ Y = (a, b, -a+b) \in R^{3} \right\}$$

$$S_{T} = \text{Base } S(R^{2}) = \left\{ (1, 0, -1), (0, 1, 1) \right\}$$

$$\dim S(R^{2}) = 2$$

Verifica-se que $S(R^2) \subset R^3$, pelo que S não é sobrejectiva.

b) A transformação linear S é injectiva, uma vez que $dim\ N(S)=0$. Recorrendo às expressões que resultaram do cálculo do contradomínio, obtém-se

$$S^{-1}: S(R^2) \rightarrow R^2$$

$$(a, b, -a+b) \rightarrow \left(\frac{b}{2}, a-\frac{b}{2}\right)$$

c) Sejam as bases do domínio e do conjunto de chegada de S

$$U = \{U_1, U_2\} : Base de R^2$$

$$U' = \{U_1', U_2', U_3'\}$$
: Base de R^3

Uma vez que $\dim S(\mathbb{R}^2)=2$, a representação matricial em forma diagonal para S tomará a forma

$$S_{U,U'} = m(S) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}_{U,U'}$$

já que se deverá verificar a condição

$$r(S_{U,U'}) = dim \ S(R^2) = 2$$

Atendendo à forma como se encontra definida a matriz $S_{U,U} = m(S)$, é possível concluir-se, figura 1,

$$S(U_1)=(1,0,0)_U.=1 \ U_1'+0 \ U_2'+0 \ U_3' \Rightarrow S(U_1)=U_1'$$

$$S(U_2)=(0,1,0)_{U'}=0\ U_1'+1\ U_2'+0\ U_3' \implies S(U_2)=U_2'$$

Figura 1: Representação matricial em forma diagonal para S

Neste caso, a base U pode ser qualquer base do domínio de S; optando pela base canónica do espaço R^2 (a mais simples), tem-se

$$U = E_2 = \{(1, 0), (0, 1)\}$$

Relativamente à base do conjunto de chegada, obtém-se

$$U_1' = S(1, 0) = (1, 2, 1) \in S(R^2)$$

$$U,' = S(0, 1) = (1, 0, -1) \in S(R^2)$$

O terceiro elemento, U_3 ', deverá ser escolhido de forma a que o conjunto $U' = \{U_1', U_2', U_3'\}$ seja uma base de R^3 . Neste caso, bastará escolher qualquer vector de R^3 que não esteja situado no contradomínio de S; seja, por exemplo,

$$U_3' = (1, 0, 0) \notin S(R^2)$$

Tem-se então

$$U' = \{U_1', U_2', U_3'\} = \{(1, 2, 1), (1, 0, -1), (1, 0, 0)\}$$

Uma vez que $U=E_2$, a representação matricial de S tomará a forma alternativa

$$S_{E_2,U'} = m(S) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}_{E_2,U'}$$

A lei de transformação linear associada à matriz S_{E_2,U^*} é

$$S: R^2 \rightarrow R^3$$
$$(x, y) \rightarrow (x, y, 0)_{U^*}$$

já que

$$S(x, y) = S_{E_2,U'} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}_{E_2,U'} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}_{U'}$$

d) Comecemos por calcular as imagens dos vectores que constituem a base canónica de R^3 , $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$.

Sabendo que

$$T(1, 1, 0) = T(\vec{i}) + T(\vec{j}) = (2, 0, -1)$$

 $T(1, -1, 0) = T(\vec{i}) - T(\vec{j}) = (0, 0, 1)$
 $T(0, 0, 1) = T(\vec{k}) = (0, 1, 1)$

resulta, após a resolução do sistema de equações,

$$\begin{cases} T(\vec{i}) + T(\vec{j}) = (2, 0, -1) \\ T(\vec{i}) - T(\vec{j}) = (0, 0, 1) \end{cases} \Leftrightarrow \begin{cases} 2 T(\vec{i}) = (2, 0, 0) \Leftrightarrow \\ T(\vec{k}) = (0, 1, 1) \end{cases}$$

$$\Leftrightarrow \begin{cases} T(\vec{j}) = (1, 0, -1) \\ T(\vec{i}) = (1, 0, 0) \\ T(\vec{k}) = (0, 1, 1) \end{cases}$$

A matriz da transformação linear T em relação à base canónica de \mathbb{R}^3 é

$$T = m(T) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

Assim,

$$T(x, y, z) = T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y \\ z \\ -y+z \end{bmatrix}$$

Obtém-se, então,

$$T: R^3 \rightarrow R^3$$

$$(x, y, z) \rightarrow (x+y, z, -y+z)$$

A composição possível envolvendo as aplicações lineares S e T, figura 2, é

$$TS: R^2 \rightarrow R^3$$

Sabendo que

$$S(1,0) = (1,2,1)$$

$$S(0,1) = (1,0,-1)$$

tem-se

$$S = m(S) = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 1 & -1 \end{bmatrix}$$

Assim,

$$P = m(TS) = m(T)m(S) = TS = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix}$$

Figura 2: Representação matricial da transformação linear TS

A lei de transformação linear associada à matriz P = m(TS) é

$$TS: R^2 \rightarrow R^3$$

$$(x, y) \rightarrow (3x+y, x-y, -x-y)$$

já que

The second secon

$$TS(x, y) = P\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x + y \\ x - y \\ -x - y \end{bmatrix}$$

e) Para obter a matriz da transformação linear S em relação à base canónica de R^2 , $E_2 = \{(1,0), (0,1)\}$, e à base de R^3 ,

$$B = \{B_1, B_2, B_3\} = \{(1, 1, 0), (0, 0, 1), (1, -1, 0)\}$$

é necessário calcular as imagens dos vectores que formam a base do domínio, expressas na base considerada para o conjunto de chegada, figura 3.

Figura 3: Representação matricial para a transformação linear S

As imagens dos vectores da base do domínio, E_2 , são

$$S(1,0) = (1,2,1)$$

$$S(0,1) = (1,0,-1)$$

encontrando-se expressas na base canónica de R^3 , $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$.

Antes de determinarmos as coordenadas dos vectores (imagens) obtidos anteriormente na base B (conjunto de chegada), encontremos as expressões de

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997

mudança de coordenadas entre as bases $E_3\,$ e B do espaço R^3 , figura 4.

Figura 4: Mudança de coordenadas no espaço R^3

Sabendo que

$$(a, b, c) = a_1 B_1 + b_1 B_2 + c_1 B_3 = (a_1 + c_1, a_1 - c_1, b_1)$$

as expressões de mudança de coordenadas de B para E_3 são

$$\begin{cases} a_1 + c_1 = a \\ a_1 - c_1 = b \\ b_1 = c \end{cases} \quad (B \to E_3)$$

Resolvendo o sistema de equações anterior em ordem a_1 , b_1 e c_1 , obtém-se

$$\begin{cases} a_1 = (a+b)/2 \\ b_1 = c \\ c_1 = (a-b)/2 \end{cases} \quad (E_3 \to B)$$

que traduz as expressões de mudança de coordenadas de E_3 para B.

Usando as relações anteriores resulta então

$$S(1,0) = (1,2,1) = \frac{1}{2}(3,2,-1)_B$$

$$S(0, 1) = (1, 0, -1) = \frac{1}{2}(1, -2, 1)_B$$

A matriz $S_{E_2,B}$, que representa a transformação linear S em relação às bases E_2 e B, é

$$S_{E_2,B} = m(S) = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 2 & -2 \\ -1 & 1 \end{bmatrix}_{E_2,B}$$

A lei de transformação linear associada à matriz $S_{E_2,B}$, toma a forma

$$S: R^2 \rightarrow R^3$$

 $(x, y) \rightarrow \frac{1}{2}(3x+y, 2x-2y, -x+y)_B$

já que

$$S(x, y) = S_{E_2,B} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 2 & -2 \\ -1 & 1 \end{bmatrix}_{E_2,B} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3x + y \\ 2x - 2y \\ -x + y \end{bmatrix}_{B}$$

f) Na alínea d) definiu-se a composição TS em relação às bases canónicas de R^2 e R^3 , tendo sido, para o efeito, calculada a matriz P=m(TS), a partir do produto das matrizes T=m(T) e S=m(S).

Neste caso, pretende-se obter a mesma matriz P=m(TS), recorrendo, agora, à matriz $S_{E_2,B}$, que representa a transformação linear S em relação às bases E_2 (domínio) e B (conjunto de chegada).

Convém notar que a base E_2 é comum, como base do domínio R^2 , às matrizes $S_{E_2,B} = m(S)$ e P = m(TS).

Assim, a matriz $S_{E_2,B}$ só poderá ser composta com uma representação matricial de T que se encontre definida em relação às bases, figura 5:

- Base do domínio de T: base B
 Esta base deverá ser coincidente com a base do conjunto de chegada da matriz S_{E₂,B}.
- Base do conjunto de chegada de T: base E₃
 Esta base deverá coincidir com a base que é considerada como base do conjunto de chegada da matriz P=m(TS).

Pretende-se, então, obter a matriz $T_{B,E_3}=m(T)$, que é a representação matricial da transformação T em relação às bases B (domínio) e E_3 (conjunto de chegada).

Figura 5: Representação matricial da transformação linear TS

Calculando as imagens dos vectores que constituem a base B, obtém-se

$$T(B_1) = T(1, 1, 0) = (2, 0, -1)$$

 $T(B_2) = T(0, 0, 1) = (0, 1, 1)$
 $T(B_1) = T(1, -1, 0) = (0, 0, 1)$

as quais estão expressas na base canónica do conjunto de chegada, isto é, a base E_3 pretendida.

Tem-se então

$$T_{B,E_3} = m(T) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}_{B,E_3}$$

。 1914年 - 191

A lei de transformação linear associada à matriz $T_{B,E_3}=m(T)$, é

$$T: R^{3} \rightarrow R^{3}$$

$$(x_{1}, y_{1}, z_{1})_{B} \rightarrow (2x_{1}, y_{1}, -x_{1} + y_{1} + z_{1})$$

uma vez que

\$1

$$T(x_1, y_1, z_1)_B = T_{B,E_3} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}_{B,E_1} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_B = \begin{bmatrix} 2x_1 \\ y_1 \\ -x_1 + y_1 + z_1 \end{bmatrix}$$

Para confirmar o resultado obtido na alínea d) para a matriz P=m(TS), basta verificar, neste caso, que

$$P = m(TS) = m(T)m(S) = T_{B,E_3} S_{E_2,B} =$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}_{B, E_{3}} \frac{1}{2} \begin{bmatrix} 3 & 1 \\ 2 & -2 \\ -1 & 1 \end{bmatrix}_{E_{2}, B} = \frac{1}{2} \begin{bmatrix} 6 & 2 \\ 2 & -2 \\ -2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & -1 \\ -1 & -1 \end{bmatrix}$$

$$(3)$$

Na obtenção da matriz P há a realçar o seguinte:

- Para que seja possível a composição, a base do conjunto de chegada da primeira aplicação (S) tem de ser igual à base do domínio da segunda aplicação (T);
- (2) A base do domínio da primeira aplicação (S) será igual à base do domínio da aplicação composta (TS);
- (3) A base do conjunto de chegada da segunda aplicação (T) será igual à base do conjunto de chegada da aplicação composta (TS).

Same and a same and a second of the second o

288.

Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$, com

$$T(x, y, z) = (y+z, y-z)$$

Sejam as bases $U = \{U_1, U_2, U_3\} = \{(0, 1, 0), (0, 0, 1), (1, 0, 0)\}$ para o espaço R^3 , e $U' = \{U_1', U_2'\} = \{(-1, 1), (1, 1)\}$ para o espaço R^2 . Determine:

- a) A matriz de T em relação às bases canónicas de R^3 , $E_3 = \{\vec{i}, \vec{j}, \vec{k}\}$, e de R^2 , $E_2 = \{(1, 0), (0, 1)\}$.
- b) A matriz, B, de mudança de base de U para E_3 .
- c) A matriz, C, de mudança de base de U' para E_2 .
- d) As coordenadas dos vectores $X_1 = (1, 1, 2)$ e $X_2 = (1, 5)$, em relação às bases U e U', respectivamente.
- e) A matriz $T_{E_1,U'}$, que representa a transformação T em relação às bases E_3 e U'.
- f) A matriz T_{U,E_2} , que representa a transformação T em relação às bases U e E_2 .
- g) A matriz $T_{U,U^{\circ}}$, que representa a transformação T em relação às bases U e U° .
- h) A imagem, através de T, do vector $X_1 = (1, 1, 2)$, expressa nas bases E_2 e U'.

Resolução:

a) As imagens dos vectores da base canónica de R^3 , expressas na base canónica de R^2 , são

$$T(\vec{i}) = T(1, 0, 0) = (0, 0)$$

$$T(\vec{j}) = T(0, 1, 0) = (1, 1)$$

$$T(\vec{k}) = T(0, 0, 1) = (1, -1)$$

A matriz da transformação linear T em relação às bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 , é

$$T = m(T) = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

b) Consideremos o problema de mudança de coordenadas no espaço vectorial R^3 ,

The state of the s

ilustrado na figura 1, onde se designaram:

- Coordenadas do vector X na base E_3 : $X^{E_3} = (x, y, z)_{E_3}$;
- Coordenadas do vector X na base U: $X^U = (x_i, y_i, z_i)_U$.

Figura 1: Mudança de coordenadas no espaço R^3

Pretende-se obter a matriz, B, de mudança de base de U para E_3 , isto é,

$$X^{E_3} = B X^U$$

Recorrendo à relação matricial

$$E_3 X^{E_3} = U X^U$$

onde

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3 \text{ e } U = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

são, respectivamente, as matrizes que possuem nas respectivas colunas os vectores das bases E_3 e U, obtém-se

$$E_3^{-1} E_3 X^{E_3} = E_3^{-1} U X^U \iff X^{E_3} = E_3^{-1} U X^U$$

de onde resulta

The second se

$$B = E_3^{-1} \ U = U = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

uma vez que a matriz E_3 é coincidente com a matriz identidade (de ordem 3). As expressões de mudança de coordenadas de U para E_3 são

$$X^{E_3} = B X^U \Leftrightarrow \begin{cases} x = z_1 \\ y = x_1 \\ z = y_1 \end{cases} \quad (U \to E_3)$$

Sabendo que

$$B^{-1} = \frac{1}{|B|} \begin{bmatrix} Adj \ B \end{bmatrix}^{T} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

as expressões de mudança de coordenadas de E_3 para U são

$$X^{U} = B^{-1} X^{E_{3}} \Leftrightarrow \begin{cases} x_{1} = y \\ y_{1} = z \\ z_{1} = x \end{cases} (E_{3} \to U)$$

Figura 2: Mudança de coordenadas no espaço R^2

c) Consideremos o problema de mudança de coordenadas no espaço vectorial R^2 , ilustrado na figura 2, onde se designaram:

- Coordenadas do vector Y na base E_2 : $Y^{E_2} = (a, b)_{E_2}$;
- Coordenadas do vector Y na base $U': Y^{U'} = (a_1, b_1)_U$.

Pretende-se obter a matriz, C, de mudança de base de U' para E_2 , isto é,

$$Y^{E_2} = C Y^{U'}$$

Recorrendo à relação matricial

$$E, Y^{E_2} = U' Y^{U'}$$

onde

$$E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 \text{ e } U' = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

são, respectivamente, as matrizes que possuem nas respectivas colunas os vectores das bases E_2 e U', obtém-se

$$E_2^{-1} E_2 Y^{E_2} = E_2^{-1} U' Y^{U'} \iff Y^{E_2} = E_2^{-1} U' Y^{U'}$$

de onde resulta

$$C = E_2^{-1} \quad U' = U' = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

uma vez que a matriz E_2 é coincidente com a matriz identidade (de ordem 2).

As expressões de mudança de coordenadas de U^{\prime} para E_{2} são

$$Y^{E_2} = C Y^{U'} \Leftrightarrow \begin{cases} a = -a_1 + b_1 \\ b = a_1 + b_1 \end{cases} \quad (U' \to E_2)$$

Sabendo que

$$C^{-1} = \frac{1}{\mid C \mid} \begin{bmatrix} Adj \ C \end{bmatrix}^{T} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

as expressões de mudança de coordenadas de $\it E_{\it 2}$ para $\it U$ ' são

The state of the s

$$Y^{U'} = C^{-1} Y^{E_2} \iff \begin{cases} a_1 = (-a+b)/2 \\ b_1 = (a+b)/2 \end{cases} \quad (E_2 \to U')$$

d) As coordenadas do vector $X_{\rm l}$ = (1 , 1 , 2) em relação à base U são dadas por

$$X_{1}^{U} = B^{-1} X_{1}^{E_{3}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}_{E_{3}} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}_{U}$$

ou seja,

$$X_1 = (1, 1, 2) = (1, 2, 1)_U$$

As coordenadas do vector $X_2 = (1, 5)$ em relação à base U' são dadas por

$$X_2^{U'} = C^{-1} X_2^{E_2} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix}_{E_7} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}_{U'}$$

ou seja,

$$X_2 = (1, 5) = (2, 3)_U$$

e) Atente-se no esquema ilustrado na figura 3. Pretende-se, neste caso, encontrar a matriz $T_{E_1,U'}=m(T)$, tal que

$$Y^{U'} = T_{E_1,U'} X^{E_3}$$

Sendo conhecida a matriz T = m(T), sabe-se que

$$Y^{E_2} = T X^{E_3}$$

que poderá ser transformada numa expressão semelhante à anterior, desde que sejam introduzidas mudanças de base adequadas. Tem-se, então,

$$Y^{E_2} = T X^{E_3} \iff C Y^{U'} = T X^{E_3} \iff C^{-1} C Y^{U'} = C^{-1} T X^{E_3} \iff$$

$$Y^{U'} = C^{-1} T X^{E_3}$$

pelo que

$$T_{E_3,U'} = C^{-1} \ T = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}_{E_3,U'}$$

A lei de transformação linear associada à matriz T_{E_3,U^*} é

$$T: R^3 \rightarrow R^2$$

$$(x, y, z) \rightarrow (-z, y)_{U}$$

já que

ê.

$$T(x, y, z) = T_{E_3,U'} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}_{E_3,U'} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -z \\ y \end{bmatrix}_{U'}$$

Figura 3: Representações matriciais para a transformação linear T

f) Pretende-se, agora, encontrar a matriz $T_{U.E_2} = m(T)$, tal que

$$Y^{E_2} = T_{U,E_2} X^U$$

Recorrendo, uma vez mais, à matriz T = m(T), a transformação da equação matricial

$$Y^{E_2} = T X^{E_1}$$

numa expressão semelhante à anterior, permite obter

$$Y^{E_2} = T X^{E_3} \iff Y^{E_2} = T R X^C$$

ou seja,

$$T_{U,E_2} = T B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}_{U,E_2}$$

A lei de transformação linear associada à matriz T_{U,E_2} é

$$T: R^3 \to R^2$$

$$(x_1, y_1, z_1)_{t'} \to (x_1 + y_1, x_1 - y_1)$$

já que

$$T(x_1, y_1, z_1)_U = T_{U,E_2} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_U = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}_{U,E_2} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}_U = \begin{bmatrix} x_1 + y_1 \\ x_1 - y_1 \end{bmatrix}$$

g) Pretende-se, agora, encontrar a matriz $T_{U,U} = m(T)$, tal que

$$Y^{U'} = T_{U,U'}, X^{U}$$

Recorrendo, novamente, à matriz T = m(T), a transformação da equação matricial

$$Y^{E_2} = T X^{E_3}$$

numa expressão semelhante à anterior, permite obter

$$Y^{E_2} = T X^{E_3} \iff C Y^{C'} = T B X^{C} \iff C^{-1} C Y^{C'} = C^{-1} T B X^{C} \iff$$

$$Y^{U'} = C^{-1} T B X^{U}$$

ou seja,

$$T_{U,U} = C^{-1} T B = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} =$$

$$= \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}_{U,U}$$

A lei de transformação linear associada à matriz $T_{U,U}$ é

$$T: R^3 \rightarrow R^2$$

 $(x_1, y_1, z_1)_U \rightarrow (-y_1, x_1)_U$

já que

$$T(x_{1}, y_{1}, z_{1})_{U} = T_{U,U} \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \end{bmatrix}_{U} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}_{U,U} \begin{bmatrix} x_{1} \\ y_{1} \\ z_{1} \end{bmatrix}_{U} = \begin{bmatrix} -y_{1} \\ x_{1} \end{bmatrix}_{U}.$$

h) A imagem, através de T, do vector $X_1 = (1, 1, 2) = (1, 2, 1)_U$, expressa na base E_2 , é dada por

$$T(1, 1, 1) = T \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

ou ainda

$$T(1, 2, 1)_{U} = T_{U.E_{2}} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}_{U} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix}_{U.E_{2}} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}_{U} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

A imagem, através de T, do vector $X_1 = (1, 1, 2) = (1, 2, 1)_U$, expressa na base U', é dada por

$$T(1, 1, 2) = T_{E_1, \ell} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}_{E_1, \ell} \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}_{\ell} \cdot$$

ou ainda

$$T(1, 2, 1)_{U} = T_{U,U} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}_{U} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}_{U,U} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}_{U} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}_{U}$$

Finalmente, é possível verificar que as imagens anteriormente obtidas, (3, -1) e $(-2, 1)_{t}$, correspondem, de facto, ao mesmo elemento do conjunto de chegada de T; com efeito, elas satisfazem, por exemplo, a relação de mudança de coordenadas

$$Y^{E_2} = C Y^{U'} \quad (U' \to E_2)$$

ou seja,

$$\begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix}_{t}.$$

Resumindo.

$$T(1, 1, 2) = (3, -1) = (-2, 1)_{t}$$