Kevco

May 12, 2023

Contents

1	DP	5
	1.1	背包 DP
		1.1.1 01 背包
		1.1.2 完全背包
		1.1.3 多重背包
		1.1.4 分组背包
		1.1.5 树上背包
		1.1.6 k 优背包
		1.1.7 前后缀背包
		1.1.8 方案计数
		1.1.9 输出方案
		1.1.10 其他
	1.2	线性 DP
		1.2.1 LIS
		1.2.2 LCS
		1.2.3 LCIS
		1.2.4 回文字符串
		1.2.5 方格取数
	1.3	树形 DP
		1.3.1 树的中心
		1.3.2 最大深度和
	1.4	状压 DP
		1.4.1 例 1
	1.5	数位 DP
		1.5.1 例 1
	1.6	概率 DP
		1.6.1 例 1
	1.7	子集和 DP
		1.7.1 枚举子集超集
		1.7.2 子集计数
		1.7.3 其他例子 40
2	Dat	a Structure 42
	2.1	Hash
	2.2	单调队列 43
	2.3	DSU
		2.3.1 边带权
		2.3.2 扩展域
	2.4	ST 表
	2.5	Trie
		2.5.1 普通 trie
		2.5.2 可持久化 trie 51

	2.6	树状数约	组		 												53
	2.7	线段树			 												56
		2.7.1	普通线	段树													56
		2.7.2	动态开	点	 												59
		2.7.3	势能线	段树													61
			可持久														63
	2.8	平衡树															65
			有旋 t														65
			FHQtı														69
			文艺平														74
																	78
	2.9	莫队 .	4442														82
			普通莫	I BY													82
		=	莫队套														84
			六 带修莫														87
			回滚莫	-12 -													89
			回滚莫														92
			树上莫														95
			树上带														99
			二次离														103
			y -1 .		 	-	-		-		-		 -	-	-		
3	Tree	е														1	06
	3.1	树 Hash	1		 												106
																	106
	J		判断同	构	 			 •									
	-	3.1.1	判断同 判断对														108
	3.2	3.1.1	判断对	称	 												
		3.1.1 3.1.2	判断对	称	 												108 111
	3.2	3.1.1 3.1.2 树上启ź LCA	判断对 发式合	称 并	 	 	 			 			 		 		108 111 114
	3.2	3.1.1 3.1.2 树上启龙 LCA 3.3.1	判断对 发式合	称 	 	 	 	 		 	•		 		 	•	108 111 114
	3.2	3.1.1 3.1.2 树上启2 LCA 3.3.1 3.3.2	判断对发式合 倍增	新 并 	 	 	 	 		 			 		 	•	108 111 114 114 119
	3.2	3.1.1 3.1.2 树上启2 LCA 3.3.1 3.3.2	判断对 发式合 倍增 欧拉序 Tarjan	称 并	 	 	 	 		 			 		 	•	108 111 114 114 119 121
	3.2 3.3	3.1.1 3.1.2 树上启龙 LCA . 3.3.1 3.3.2 DFS 序	判断对 发式合 倍增 欧拉序 Tarjan	称并 ; , , , , , , , , , , ,	 · · · · · · · · · · · · · · · · · · ·	 •	 	 		· · · · · · · ·			 		 	•	108 111 114 114 119 121
	3.2 3.3	3.1.1 3.1.2 树上启龙 LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1	判断对 发式合 · 倍增 欧拉序 Tarjan /树上	称并 ; 」差改	 	 		 				·	 		 	• • • • • • • • • • • • • • • • • • • •	108 111 114 114 119 121
	3.2 3.3	3.1.1 3.1.2 树上启龙 LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1 3.4.2	判断对 发式合 倍增 欧拉序 Tarjan /树上 子树修	称并 ; 差改改	 	 		 					 		 		108 111 114 119 121 125 125
	3.2 3.3	3.1.1 3.1.2 树上启龙 LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1 3.4.2	判断式 倍欧 Tarjan / / 子树 / / 子树 / / 子树	称并 ; 差改改	 	 		 					 		 		108 111 114 119 121 125 125
4	3.2 3.3	3.1.1 3.1.2 树上启龙 LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1 3.4.2 3.4.3	判断式 倍欧 Tarjan / / 子树 / / 子树 / / 子树	称并 ; 差改改	 	 		 					 		 		108 111 114 119 121 125 125
4	3.2 3.3 3.4	3.1.1 3.1.2 树上启龙 LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1 3.4.2 3.4.3	判发:倍欧Tarjan 大一增拉rjan 大子树树链链 有种性链	称并 差改改询	 	 										1	108 111 114 114 119 121 125 128 132
4	3.2 3.3 3.4 Stri	3.1.1 3.1.2 树上启ź LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1 3.4.2 3.4.3	判发,倍欧Tarjan 大一增拉rjan 大子树树链链 大子树树链链	称并									 			1	108 111 114 114 119 121 125 128 132
4	3.2 3.3 3.4 Stri 4.1	3.1.1 3.1.2 树上启纪 LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1 3.4.2 3.4.3 ng hash	判发,倍欧Tarjan对分,增拉Tarjan上修修在,增拉Tarjan上修修查	称并												1	108 111 114 119 121 125 128 132
4	3.2 3.3 3.4 Stri 4.1 4.2	3.1.1 3.1.2 树上启龙 LCA 3.3.1 3.3.2 3.3.3 DFS 序 3.4.1 3.4.2 3.4.3 ng hash kmp	判发,倍欧Tarjan对大、增拉rjan上修链链	称并 ; 差改改询												1	108 111 114 114 119 121 125 128 132 .36 136 137

5	Mat																	143
	5.1	数论.																143
		5.1.1	线性	筛.														143
		5.1.2	逆元															145
		5.1.3	康托	展开	F													148
		5.1.4	整除	分均	£													151
		5.1.5	dfs $\bar{\lambda}$	* 	子													153
	5.2	线性代	数.															154
		5.2.1	矩阵															154
		5.2.2	gaus	s .														156
	5.3	博弈论	·															158
		5.3.1	$_{\rm nim}$															158
		5.3.2	其他	模型	ī													162
6	杂项																	166
-	6.1	根号分	治 .															166

1 DP

1.1 背包 DP

1.1.1 01 背包

```
#include <iostream>
using namespace std;
const int N=1010;
int f[N];
int n,m;
int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
    {
        int v,w;
        scanf("%d%d",&v,&w);
        for(int j=m; j>=v; j--)
            f[j]=max(f[j],f[j-v]+w);
    }
    cout << f[m];
}
```

1.1.2 完全背包

```
#include <iostream>
#include <algorithm>
using namespace std;
const int N=1010;
int n,V,f[N];
int main()
{
    cin >> n >> V;
    for(int i=1;i<=n;i++)</pre>
    {
        int v,w;
        scanf("%d%d",&v,&w);
        for(int j=v; j \le V; j++)
            f[j]=max(f[j],f[j-v]+w);
    }
    cout << f[V];</pre>
    return 0;
}
```

1.1.3 多重背包

```
#include <iostream>
using namespace std;
const int N=110;
int f[N][N];
int n,m;
int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
    {
        int v,w,s;
        scanf("%d%d%d",&v,&w,&s);
        for(int j=1; j<=m; j++)</pre>
            for(int k=0;k<=s&&k*v<=j;k++)</pre>
                f[i][j]=max(f[i][j],f[i-1][j-k*v]+k*w);
    }
    cout << f[n][m];
#include <iostream>
using namespace std;
const int M=2010;
int f[M],n,m;
int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
    {
        int v,w,s;
        scanf("%d%d%d",&v,&w,&s);
        int k=1;
        while(k<=s)
        {
            int V=v*k,W=w*k;
            for(int j=m; j>=V; j--)
```

```
f[j]=max(f[j],f[j-V]+W);
             s-=k;
             k*=2;
        }
        if(s)
        {
             int V=v*s, W=w*s;
             for(int j=m; j>=V; j--)
                 f[j]=max(f[j],f[j-V]+W);
        }
    }
    cout << f[m];
}
//单调队列优化 O(n * m)
#include <bits/stdc++.h>
using namespace std;
const int N=2e4+10;
int f[2][N],q[N],n,m;
int main()
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
        int cur=i&1,pre=cur^1;
        int v,w,s;
        scanf("%d%d%d",&v,&w,&s);
        for(int j=0;j<v;j++)</pre>
             int ff=0,rr=-1;
             for(int k=0; j+k*v<=m; k++)</pre>
             {
                 if(ff \le rr \& \& -q[ff] > s) ff + +;
\rightarrow while (ff<=rr&&f[pre][q[rr]*v+j]-q[rr]*w<=f[pre][k*v+j]-k*w)

    rr--;

                 q[++rr]=k;
                 f[cur][k*v+j]=f[pre][q[ff]*v+j]+(k-q[ff])*w;
```

```
}
}
printf("%d",f[n&1][m]);
return 0;
}
```

1.1.4 分组背包

```
// o(n * m * s)
#include <bits/stdc++.h>
using namespace std;
const int N=110;
int f[N],n,m,s,v[N],w[N];
int main()
{
    cin >> n >> m;
    for(int i=0;i<n;i++)</pre>
    {
        scanf("%d",&s);
        for(int i=0;i<s;i++)</pre>
             scanf("%d%d",&v[i],&w[i]);
        for(int j=m; j>=0; j--)
             for(int k=0;k<s;k++)</pre>
                 if(j>=v[k]) f[j]=max(f[j],f[j-v[k]]+w[k]);
    cout << f[m];</pre>
    return 0;
}
```

1.1.5 树上背包

```
//基于 dfs O(n * m * m)
#include <bits/stdc++.h>
using namespace std;
const int N=110;
int f[N][N],w[N],v[N];
int root,n,m;
vector<int> e[N];
void dfs(int u)
    for(int i=v[u];i<=m;i++) f[u][i]=w[u];</pre>
    for(auto s : e[u])
        dfs(s);
        for(int j=m; j>=v[u]; j--)
            for(int k=0; k<=j-v[u]; k++)
                 f[u][j]=max(f[u][j],f[u][j-k]+f[s][k]);
}
int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
    {
        int a,b,p;
        scanf("%d%d%d",&a,&b,&p);
        v[i]=a,w[i]=b;
        if(p==-1) root=i;
        else e[p].push_back(i);
    }
    dfs(root);
    printf("%d\n",f[root][m]);
    return 0;
}
```

```
dfs 序写法
             O(n * m)
0 是虚拟源点
*/
#include <bits/stdc++.h>
using namespace std;
const int N=310;
int f[N][N],w[N],v[N],r[N],tot,id[N];
int n,m;
vector<int> e[N];
void dfs(int u)
{
    id[++tot]=u;
    for(auto s : e[u])
        dfs(s);
    r[u]=tot;
}
int main()
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
    {
        int a,p;
        scanf("%d%d",&p,&a);
        w[i]=a;
        v[i]=1;
        if(!p) e[0].push_back(i);
        else e[p].push_back(i);
    }
    dfs(0);
    for(int i=n;i>=0;i--)
        for(int j=1; j<=m; j++)</pre>
            if(j>=v[id[i]])
f[i][j]=\max(f[r[id[i]]+1][j],f[i+1][j-v[id[i]]]+w[id[i]]);
            else f[i][j]=f[r[id[i]]+1][j];
    printf("%d\n",f[0][m]);
```

```
return 0;
}
```

1.1.6 k 优背包

```
求前 k 优解 O(n * m * k)
转移变成两个长为 k 的降序数组合并
#include <bits/stdc++.h>
using namespace std;
const int N=5010,K=60;
int n,m,k,v[N],w[N];
int f[N][K],temp[K];
int main()
    cin >> k >> m >> n;
    for(int i=1;i<=n;i++) cin >> v[i] >> w[i];
    memset(f,-0x3f,sizeof f);
    f[0][0]=0;
    for(int i=1;i<=n;i++)</pre>
        for(int j=m; j>=v[i]; j--)
        {
            int t=0,a=0,b=0;
            while(t<k)</pre>
                if(f[j][a]>f[j-v[i]][b]+w[i])
   temp[t++]=f[j][a++];
                else temp[t++]=f[j-v[i]][b++]+w[i];
            memcpy(f[j],temp,sizeof temp);
        }
    }
    int res=0;
    for(int i=0;i<k;i++)</pre>
        if(f[m][i]) res+=f[m][i];
    printf("%d\n",res);
    return 0;
}
```

1.1.7 前后缀背包

```
给定 n 个物品 m 体积背包 每个物品 有 v w 选取若干物品装背包
n 件物品, 求考虑去掉某一件物品的 01 背包
定义 f[i][i] 是只考虑前 i 件物品的 01 背包
                                      q[i][j] 是只考虑后
→ i 件的 01 背包
去掉第 i 件的背包就是 f[i-1][j] 和 g[n-i][j] 组合起来
可以 O(m) 时间求去掉第 i 件物品, 体积不超过 v 的最大值
具体就是 dp[v] = max (f[i-1][j] + g[n-i][v-j])
O(n * m + q * m)
*/
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7,N=5010;
int n,m,k,v[N],w[N];
int f[N][N],g[N][N];
int dp[N]; // dp[i] 为去掉第 i 个物品,体积不超过 m 的最大值
void solve()
{
   cin >> n >> m;
   for(int i=1;i<=n;i++) scanf("%d%d",v+i,w+i);</pre>
   for(int i=1;i<n;i++)</pre>
   {
       for(int j=1; j<=m; j++)</pre>
          f[i][j]=f[i-1][j];
           if(j>=v[i])
f[i][j]=\max(f[i][j],f[i-1][j-v[i]]+w[i]);
       }
   }
   for(int i=n;i>1;i--)
       for(int j=1; j<=m; j++)</pre>
          g[i][j]=g[i+1][j];
```

```
if(j>=v[i])

    g[i][j]=max(g[i][j],g[i+1][j-v[i]]+w[i]);
}

for(int i=1;i<=n;i++)
    for(int j=0;j<=m;j++)
        dp[i]=max(dp[i],f[i-1][j]+g[n-i][m-j]);
}</pre>
```

1.1.8 方案计数

```
求恰好装满背包的方案数
01 背包 f[i][j]=f[i-1][j]+f[i-1][j-v]
完全背包 f[i][j]=f[i-1][j]+f[i][j-v]
多重背包 f[i][j]=f[i-1][j]+f[i-1][j-v]+...+f[i-1][j-s*v] (预处
→ 理前缀和)
#include <bits/stdc++.h>
using namespace std;
const int N=110,mod=1e6+7;
int n,m;
int f[N],g[N];
int main()
{
    cin >> n >> m;
    f[0]=1,g[0]=1;
    for(int i=0,s;i<n;i++)</pre>
    {
        for(int j=1;j<=m;j++)g[j]=g[j-1]+f[j];</pre>
        cin >> s;
        for(int j=1; j<=m; j++)</pre>
        {
            if(j>s) f[j]=(g[j]-g[j-s-1])\mbox{mod};
            else f[j]=g[j]%mod;
        }
    }
   printf("%d",f[m]);
    return 0;
//求最优解方案数
#include <bits/stdc++.h>
using namespace std;
```

```
const int mod=1e9+7, N=1010;
int n,m,p;
int f[N],g[N];
void solve()
                                                  cin >> n >> m;
                                                 for(int i=0;i<=m;i++) g[i]=1;</pre>
                                                  for(int i=1;i<=n;i++)</pre>
                                                  {
                                                                                                    int v,w;
                                                                                                    scanf("%d%d",&v,&w);
                                                                                                    for(int j=m; j>=v; j--)
                                                                                                                                                        int t=f[j-v]+w;
                                                                                                                                                       \hspace{0.1cm} 
                                                                                                                                                      else if(f[j]==t) g[j]=(g[j]+g[j-v])mod;
                                                                                                    }
                                                 }
                                               printf("%d\n",g[m]);
}
```

1.1.9 输出方案

```
输出具体方案:保留二维、即保留中间状态、从后往前比较状态 反推转移
→ 的路径
字典序最小 : 逆序选择物体, 反推时能选则选
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int f[N][N],n,m,v[N],w[N];
int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++) scanf("%d%d",&v[i],&w[i]);</pre>
    for(int i=n;i;i--)
    {
       for(int j=0; j<=m; j++)</pre>
            if(j<v[i]) f[i][j]=f[i+1][j];</pre>
            else f[i][j]=max(f[i+1][j],f[i+1][j-v[i]]+w[i]);
       }
    }
    for(int i=1;i<=n;i++)</pre>
        if(m)=v[i]\&\&f[i][m]==f[i+1][m-v[i]]+w[i])
           printf("%d ",i);
           m-=v[i];
        }
    }
    return 0;
}
```

1.1.10 其他

```
01 背包 三维属性 a,b,w, 求满足总的 a>=m,b>=p 的最小重量 w
普通背包 f[i][j],表示二维属性不超过 i,j
         f[i][j] 表示二维属性不小于, 因此转移有所区别
本题
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7, N=110;
int n,m,p;
int f[N][N];
void solve()
{
    cin >> m >> p >> n;
    for(int j=0; j<=m; j++)</pre>
        for(int k=0;k<=p;k++)</pre>
            f[j][k]=0x3f3f3f3f;
    f[0][0]=0;
    for(int i=1;i<=n;i++)</pre>
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
       for(int j=m; j>=0; j--)
            for(int k=p;k>=0;k--)
\rightarrow f[j][k]=min(f[j][k],f[max(0,j-a)][max(0,k-b)]+c);
    printf("%d\n",f[m][p]);
}
```

1.2 线性 DP

```
1.2.1 LIS
// O(n * n)
#include <iostream>
using namespace std;
const int N=1010;
int f[N],a[N],n;
int main()
    cin >> n;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<=n;i++)</pre>
        f[i]=1;
        for(int j=1;j<i;j++)</pre>
             if(a[i]>a[j]) f[i]=max(f[i],f[j]+1);
    }
    int res=0;
    for(int i=1;i<=n;i++) res=max(res,f[i]);</pre>
    cout << res;</pre>
}
// O(n * logn)
#include <iostream>
#include <algorithm>
using namespace std;
const int N=1e5+10;
int n,g[N];
int main()
{
    cin >> n;
    int len=0;
    for(int i=1;i<=n;i++)</pre>
```

```
{
    int x;
    scanf("%d",&x);
    int l=0,r=len;
    while(l<r)
    {
        int mid=l+r+1>>1;
        if(g[mid]<x) l=mid;
        else r=mid-1;
    }
    g[r+1]=x;
    len=max(len,r+1);
}
printf("%d\n",len);
}</pre>
```

1.2.2 LCS

```
// O(n * m)
#include <iostream>
using namespace std;
const int N=1010;
char s1[N],s2[N];
int n,m,f[N][N];
int main()
{
    scanf("%d%d%s%s",&n,&m,s1+1,s2+1);
    for(int i=1;i<=n;i++)</pre>
        for(int j=1; j<=m; j++)</pre>
            f[i][j]=max(f[i-1][j],f[i][j-1]);
             if(s1[i]==s2[j])
    f[i][j]=max(f[i][j],f[i-1][j-1]+1);
        }
    }
    printf("%d\n",f[n][m]);
    return 0;
}
```

1.2.3 LCIS

```
//定义 f[i][j] 表示以 b[j] 结尾的 LCIS
#include <iostream>
using namespace std;
const int N=3010;
int n,a[N],b[N],f[N][N];
int main()
{
    cin >> n;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<=n;i++) scanf("%d",b+i);</pre>
    for(int i=1;i<=n;i++)</pre>
        int maxv=0;
        // maxv 表示 f[i-1][1-j] 中满足 b[j]<a[i] 的最大值
        for(int j=1; j<=n; j++)</pre>
            f[i][j]=f[i-1][j];
             if(a[i]==b[j]) f[i][j]=max(f[i][j],maxv+1);
             if(b[j] < a[i]) maxv = max(maxv,f[i-1][j]);</pre>
        }
    }
    int res=0;
    for(int i=1;i<=n;i++) res=max(res,f[n][i]);</pre>
    printf("%d\n",res);
    return 0;
}
```

1.2.4 回文字符串

```
POJ 1159. 将给定字符串插入最少的元素变成回文串
定义 f[i][j] 为将 i-j 变成回文串的最少操作次数
状态计算: f[i][j] = min(f[i+1][j], f[i][j-1]) + 1;
if(s[i]==s[j]) \ f[i][j] = min(\ f[i+1][j-1]\ ,\ f[i][j]\ );
#include <iostream>
using namespace std;
const int N=5e3+10;
char s[N];
int f[2][N],n;
int main()
{
   cin >> n;
   cin >> s+1;
   for(int i=n-1;i;i--)
       int cur=i&1,pre=cur^1;
       for(int j=i+1; j<=n; j++)</pre>
           f[cur][j]=min(f[cur][j-1],f[pre][j])+1;
           if(s[i]==s[j])

    f[cur][j]=min(f[cur][j],f[pre][j-1]);

       }
   printf("%d",f[1][n]);
   return 0;
}
```

1.2.5 方格取数

```
// 两条路同时走
#include <bits/stdc++.h>
using namespace std;
const int N=15;
int n,g[N][N],f[2*N][N][N];
int main()
{
    cin >> n;
    int x,y,w;
    while (scanf("%d%d%d",&x,&y,&w),x) g[x][y]=w;
    for(int i=2;i<=n*2;i++)</pre>
        for(int j=1; j<min(n+1,i); j++)</pre>
             for(int k=1;k<min(n+1,i);k++)</pre>
             {
                 if(i-j>n | |i-k>n) continue;
\rightarrow f[i][j][k] = \max(\{f[i-1][j-1][k], f[i-1][j-1][k-1], f[i-1][j][k], f[i-1][j][k-1]\});
                 f[i][j][k] += g[j][i-j] + g[k][i-k];
                 if(j==k) f[i][j][k]-=g[j][i-j];
    printf("%d\n",f[2*n][n][n]);
}
```

1.3 树形 DP

```
1.3.1 树的中心
```

```
// 树的中心
#include <bits/stdc++.h>
using namespace std;
const int N=10010,inf=0x3f3f3f3f;
int n,d1[N],d2[N],pos[N],up[N];
vector<pair<int,int>> e[N];
int dfs_d(int u,int fa)
    d1[u]=d2[u]=-inf; // 考虑负权
    for(auto v : e[u])
    {
        int j=v.first,w=v.second;
        if(j==fa) continue;
        int d=dfs_d(j,u)+w;
        if(d>=d1[u]) d2[u]=d1[u],d1[u]=d,pos[u]=j;
        else if(d>d2[u]) d2[u]=d;
    }
    if(d1[u]==-inf) return 0;
    else return d1[u];
}
void dfs_u(int u,int fa)
    for(auto v : e[u])
        int j=v.first,w=v.second;
        if(j==fa) continue;
        up[j]=up[u]+w;
        if(j==pos[u]) up[j]=max(up[j],d2[u]+w);
        else up[j]=max(up[j],d1[u]+w);
        dfs_u(j,u);
    }
}
```

```
int main()
{
    cin >> n;
    for(int i=1;i<n;i++)</pre>
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        e[a].push_back({b,c});
        e[b].push_back({a,c});
    }
    dfs_d(1,0);
    dfs_u(1,0);
    int res=inf;
    for(int i=1;i<=n;i++) res=min(res,max(d1[i],up[i]));</pre>
    printf("%d\n",res);
    return 0;
}
```

1.3.2 最大深度和

```
// 换根 求最大深度和
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7,N=1e5+10;
int n,m,k,p[N],siz[N];
11 dp[N];
vector<pair<int,int>> e[N];
void pre(int u,int fa)
    siz[u]=p[u];
    for(auto v : e[u])
    {
        int j=v.first,w=v.second;
        if(j==fa) continue;
        pre(j,u);
        siz[u]+=siz[j];
        dp[1]+=(11)siz[j]*w;
    }
}
void dfs(int u,int fa)
{
    for(auto v : e[u])
        int j=v.first,w=v.second;
        if(j==fa) continue;
        dp[j]=dp[u]+(siz[1]-(11)2*siz[j])*w;
        dfs(j,u);
    }
}
void solve()
    cin >> n;
    for(int i=1;i<=n;i++) scanf("%d",p+i);</pre>
    for(int i=1;i<n;i++)</pre>
```

```
{
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        e[a].push_back({b,c});
        e[b].push_back({a,c});
    }
   pre(1,0);
    dfs(1,0);
    ll res=1e18;
    for(int i=1;i<=n;i++) res=min(res,dp[i]);</pre>
   printf("%lld\n",res);
}
int main()
{
    solve();
    return 0;
}
```

1.4 状压 DP 1.4.1 例 1 #include <bits/stdc++.h> using namespace std; const int N=110,M=1<<10;</pre> int n,m,g[N],f[N][70][70]; int cnt[M]; vector<int> st; bool check(int i) for(int j=0; j<m; j++)</pre> if((i>>j&1)+((i>>j+1)&1)+((i>>j+2)&1)>1) return false; return true; } int main() { cin >> n >> m;for(int i=1;i<=n;i++)</pre> string s; cin >> s; for(int j=0; j<m; j++)</pre> if(s[j]=='H') g[i]+=1<<j; g[0]=g[n+1]=g[n+2]=(1<< m)-1;for(int i=0;i<1<<m;i++)</pre> if(check(i)) st.push_back(i); for(int i=0;i<1<<m;i++)</pre> for(int j=0; j<m; j++)</pre> if(i>>j&1) cnt[i]++; memset(f,0xc0,sizeof f); f[0][0]=0;

1.5 数位 DP

```
1.5.1 例 1
```

```
// Windy 数:不含前导零且相邻两个数字之差至少为 2 的正整数被称为
→ Windy 数。
#include <bits/stdc++.h>
using namespace std;
int f[11][10],a,b;
int dp(int n)
{
    if(!n) return 0;
    int res=0,last=-2;
    vector<int> a;
    while(n) a.push_back(n\%10), n/=10;
    for(int i=a.size()-1;i>=0;i--)
        int t=a[i];
        for(int j=0;j<t;j++)</pre>
            if(abs(j-last)>=2) res+=f[i][j];
        if(abs(t-last)>=2) last=t;
        else break;
        if(!i) res++;
    }
    for(int i=0;i<a.size()-2;i++)</pre>
        for(int j=1; j<10; j++)</pre>
            res+=f[i][j];
    res+=f[a.size()-2][1];
    return res;
}
int main()
{
    cin >> a >> b;
    for(int i=0;i<10;i++) f[0][i]=1;</pre>
```

1.6 概率 DP

```
1.6.1 例 1
1. 求到 n 号点的概率:
f[i] 表示从 1 号点到 i 号点的概率
f[1]=1, f[i] = sum(f[j]/deg[j]) j 存在一条指向 i 的出边
2. 求到 n 号点的期望步数
f[i] 表示从 i 号点走到 n 号点的期望步数
f[n]=0 f[i] = sum(f[j]/deg[x]) + 1 j 为 i 的出边指向的点
3. 到达 n 号点的期望步数 图不保证是无环的
f[n]=0 线性方程组 高斯消元 O(n~3)
4. 一个长为 n 的 01 串 每次等概率选择一位翻转 问将 01 串变成全 0
→ 的期望步数
f[i] 表示当前串有 i 个 1 变成 i-1 个 1 的期望步数 有 f[n]=1
考虑 i < n f[i] = i/n * 1 + (1-i/n) * (1 + f[i+1] + f[i])
整理可得 i * f[i] = n + (n-i) * f[i+1]
假设给定串有 cnt 个 1 res = sum(f[i]) i from 1 to cnt
*/
1/4
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=998244353,N=1e6+10;
int n,m,k;
string x,y;
int qmi(int a,int k,int p)
{
   int res=1;
   while(k)
      if(k\&1) res=(l1)res*a%p;
      a=(11)a*a%p;
      k >> = 1;
   }
```

```
return res;
}
void solve()
    cin >> n;
    cin >> x >> y;
    int cnt=0;
    for(int i=0;i<n;i++) cnt+=(x[i]!=y[i]);</pre>
    11 res=0;
    vector<int> f(n+1,0);
    f[n]=1;
    if(cnt==n) res+=1;
    for(int i=n-1;i>=1;i--)
    {
        int t=((11)(n-i)*f[i+1]\%mod+n)\%mod;
        f[i]=(11)t*qmi(i,mod-2,mod)%mod;
        if(i<=cnt) res+=f[i],res%=mod;</pre>
    }
    printf("%d\n",res);
}
```

1.7 子集和 DP

1.7.1 枚举子集超集

```
#include <bits/stdc++.h>
using namespace std;
int n;
void todo(){}
void solve()
{
   // 枚举 i 的所有非空子集 0(3~n)
   for(int i = 1; i < 1<<n; i++)</pre>
       for(int j = i; j; j = (j-1)&i)
           todo();
   // 枚举 i 的所有超集
                          0(3^n)
   for(int i = 1; i < 1<<n; i++)
       for(int j = i; j < 1 < n; j = (j+1)|i)
           todo();
}
```

1.7.2 子集计数

```
a[i] \ll m \quad O(mlogm)
给定 a[i] 解决 f[mask]=sum(a[i]) 的求解 其中 i 是所有 mask 的
→ 子集
定义 dp[i][mask] 代表只有二进制从低到高到 i 位和 mask 不同的
\hookrightarrow sum(a[i])
    if(mask>>i \&1 == 0) dp[i][mask] = dp[i-1][mask]
    else \ dp[i][mask] = dp[i-1][mask] + dp[i-1][mask^{(1<< i)}]
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7, N=1e5+10, M=1<<17;</pre>
int n,m,k;
11 dp[M];
int a[N];
void solve()
{
    cin >> n;
    int maxv=M-1;
    for(int i=0;i<n;i++)</pre>
    {
        int x;
        scanf("%d",&x);
        a[i]=x;
        dp[x]++;
    }
    //i 从 0 开始
    for(int i=0;i<17;i++)</pre>
        for(int j=M-1; j>=0; j--)
            if(j>>i\&1) dp[j]+=dp[j^(1<<i)];
    ll res=0;
    for(int i=0;i<n;i++)</pre>
        res+=dp[a[i]^maxv];
```

```
cout << res << endl;
}</pre>
```

1.7.3 其他例子

```
求 ai / (aj & ak) i<j<k 的最大值
dp[i][j] 表示 j 的超集中前二大的下标
*/
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7, N=1e6+10, M=1<<21;</pre>
int n,m,p[N];
pair<int,int> dp[M];
void insert(int mask,int u)
    if(u>dp[mask].first)

    dp[mask].second=dp[mask].first,dp[mask].first=u;
    else if(u>dp[mask].second&&u!=dp[mask].first)
    dp[mask].second=u;
}
void solve()
{
    cin >> n;
    for(int i=1;i<=n;i++) scanf("%d",p+i),insert(p[i],i);</pre>
    for(int j=0; j<=20; j++)</pre>
        for(int i=0;i<M;i++)</pre>
             if((i>>j&1)==0)

    insert(i,dp[i^(1<<j)].first),insert(i,dp[i^(1<<j)].second);
</pre>
    int ans=0;
    for(int i=1;i<n-1;i++)</pre>
    {
        int res=0;
        int mask=0;
        for(int j=20; j>=0; j--)
             if(p[i]>>j&1) res+=(1<<j);
             else if(dp[mask|(1<<j)].second>i)
\rightarrow res+=(1<<j),mask|=(1<<j);
        }
```

```
ans=max(ans,res);
}
cout << ans << endl;
}</pre>
```

2 Data Structure

2.1 Hash

```
#include <bits/stdc++.h>
using namespace std;
struct custom_hash
    static uint64_t splitmix64(uint64_t x)
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x \hat{} (x >> 31);
    }
    size_t operator()(uint64_t x) const
        static const uint64_t FIXED_RANDOM =
   chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};
unordered_map<int,int,custom_hash> hh;
```

2.2 单调队列

```
#include <iostream>
using namespace std;
const int N=1e6+10;
int a[N],q[N];
int n,k;
int main()
{
     scanf("%d%d",&n,&k);
     for(int i=0;i<n;i++) scanf("%d",&a[i]);</pre>
     int f=0,r=-1;
     for(int i=0;i<n;i++)</pre>
          if(f \le r \&\&i - q[f] \ge k) f++;
          \label{eq:continuous_problem} \mbox{while} (\mbox{f<=}\mbox{r\&\&a[q[r]]>=a[i])r--;}
          q[++r]=i;
          if(i \ge k-1) printf("%d ",a[q[f]]);
     return 0;
}
```

2.3 DSU

2.3.1 边带权

```
#include <bits/stdc++.h>
using namespace std;
const int N=50010;
int p[N],d[N];
int find(int k)
    if(p[k]!=k)
        int u=p[k];
        p[k]=find(p[k]);
        d[k]+=d[u];
    return p[k];
}
int main()
    int n,k;
    cin >> n >> k;
    for(int i=1;i<=n;i++) p[i]=i;</pre>
    int res=0;
    while(k--)
    {
        int D,x,y;
        cin >> D >> x >> y;
        if(x>n||y>n) res++;
        else if(D==2)
            if(x==y) res++;
            else
            {
                 int a=find(x),b=find(y);
                 if(a==b)
```

```
{
                     if((d[x]-d[y]-1)%3) res++;
                 }
                else p[a]=b,d[a]=d[y]-d[x]+1;
            }
        }
        else
        {
            int a=find(x),b=find(y);
            if(a==b)
            {
                 if((d[x]-d[y])%3)res++;
            }
            else p[a]=b,d[a]=d[y]-d[x];
        }
    }
    cout << res;</pre>
    return 0;
}
```

2.3.2 扩展域

```
#include <iostream>
using namespace std;
const int N=50001;
int p[N*3],n,k,res;
int find(int k)
{
    if(p[k]!=k) p[k]=find(p[k]);
    return p[k];
}
void uni(int a,int b)
    p[find(a)]=find(b);
}
void check()
    int d,x,y;
    cin >> d >> x >> y;
    if(x>n||y>n)
        res++;
        return;
    if(d==1)
        if(find(x)==find(y+n) | |find(x+n)==find(y)) res++;
        else
        {
            uni(x,y);
            uni(x+n,y+n);
            uni(x+2*n,y+2*n);
        }
    }
    else
```

```
{
        if(x=y||find(x)=find(y)||find(y)=find(x+n)) res++;
        else
        {
            uni(x,y+n);
            uni(x+n,y+2*n);
            uni(x+2*n,y);
        }
    }
}
int main()
{
    cin >> n >> k;
    for(int i=1;i<3*n;i++)p[i]=i;</pre>
    while(k--) check();
    cout << res;</pre>
    return 0;
}
```

2.4 ST 表

```
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,m,f[18][N];
void init()
{
    for(int j=1; j<18; j++)</pre>
        for(int i=1;i+(1<<j)-1<=n;i++)
            f[j][i]=max(f[j-1][i],f[j-1][i+(1<< j-1)]);
}
int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
    {
        int x;
        scanf("%d",&x);
        f[0][i]=x;
    init();
    while(m--)
        int 1,r;
        scanf("%d%d",&l,&r);
        int k=31-__builtin_clz(r-l+1);
        printf("%d\n", max(f[k][l], f[k][r-(1<< k)+1]));
    }
}
```

2.5 Trie

2.5.1 普通 trie

```
#include <iostream>
using namespace std;
const int N=1e5+10;
int trie[N][26],cnt[N],n,idx;
char s[N];
void insert()
{
    int p=0;
    for(int i=0;s[i];i++)
        int t=s[i]-'a';
        if(!trie[p][t]) trie[p][t]=++idx;
        p=trie[p][t];
    }
    cnt[p]++;
}
int find()
    int p=0;
    for(int i=0;s[i];i++)
        int t=s[i]-'a';
        if(!trie[p][t]) return 0;
        p=trie[p][t];
    }
    return cnt[p];
}
int main()
{
    cin >> n;
    while(n--)
```

```
{
    char str[2];
    scanf("%s%s",str,s);
    if(str[0]=='I') insert();
    else printf("%d\n",find());
}
    return 0;
}
```

2.5.2 可持久化 trie

```
#include <bits/stdc++.h>
using namespace std;
const int N=6e5+10;
int n,m,trie[N*25][2],idx,cnt[N*25],root[N];
int s[N];
void insert(int num,int p,int q)
    for(int i=24;i>=0;i--)
    {
        if(p) trie[q][0]=trie[p][0],trie[q][1]=trie[p][1];
        int t=num>>i&1;
        trie[q][t]=++idx;
        p=trie[p][t],q=trie[q][t];
        cnt[q]=cnt[p]+1;
    }
}
int query(int num,int p,int q)
{
    int res=0;
    for(int i=24;i>=0;i--)
        int t=num>>i&1;
        if(cnt[trie[q][t^1]]-cnt[trie[p][t^1]])
            res+=1<<i,t^=1;
        p=trie[p][t];
        q=trie[q][t];
    }
    return res;
}
int main()
    cin >> n >> m;
    root[0]=++idx,root[1]=++idx;
    insert(0,root[0],root[1]);
```

```
for(int i=1;i<=n;i++)</pre>
        int x;
        scanf("%d",&x);
        s[i]=s[i-1]^x;
        root[i+1]=++idx;
        insert(s[i],root[i],root[i+1]);
    }
    while(m--)
    {
        char str[2];
        scanf("%s",str);
        if(*str=='A')
            int x;
            scanf("%d",&x);
            n++;
            s[n]=s[n-1]^x;
            root[n+1]=++idx;
            insert(s[n],root[n],root[n+1]);
        }
        else
        {
            int l,r,x;
            scanf("%d%d%d",&1,&r,&x);
            printf("%d\n", query(x^s[n], root[l-1], root[r]));
        }
    }
}
```

2.6 树状数组

```
#include <bits/stdc++.h>
using namespace std;
const int N=50010;
int tr[N],n,m,a[N],tree[N][N];
int tr1[N],tr2[N];
// 树状数组
int lowbit(int x)
{
    return x&-x;
}
void init()
{
    for(int i=1;i<=n;i++)</pre>
        tr[i]=a[i];
        for(int j=i-1;j>i-lowbit(i);j-=lowbit(j))
            tr[i]+=tr[j];
        }
    }
}
void add(int x,int c,int tr[]=tr)
    for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;</pre>
int sum(int x,int tr[]=tr)
    int res=0;
    for(int i=x;i;i-=lowbit(i)) res+=tr[i];
    return res;
}
```

// 二维树状数组

```
void add(int x,int y,int c)
    for(int i=x;i<=n;i+=lowbit(i))</pre>
        for(int j=y;j<=m;j+=lowbit(j))</pre>
            tree[i][j]+=c;
}
int sum(int x,int y)
{
    int res=0;
    for(int i=x;i;i==lowbit(i))
        for(int j=y;j;j-=lowbit(j))
            res+=tree[i][j];
}
// 区间加, 区间求和 : tr1 维护差分数组 d[i], tr2 维护 i*d[i]
// 求 sum 1-x
int pre(int x)
{
    return (x+1)*sum(x,tr1)-sum(x,tr2);
}
// 维护区间最值
void update(int x,int c)
{
    //剪枝优化
    if(c==a[x]) return;
    if(c>a[x])
    {
        for(int i=x;i<=n;i+=lowbit(i))</pre>
            tr[i]=max(tr[i],c);
        a[x]=c;
        return;
    }
    a[x]=c;
    for(int i=x;i<=n;i+=lowbit(i))</pre>
    {
        tr[i]=a[i];
        for(int j=i-1;j>i-lowbit(i);j-=lowbit(j))
            tr[i]=max(tr[i],tr[j]);
    }
```

```
}
//如果是前缀最值可以直接 O(logn) 求
int query(int 1,int r)
   if(l>r) return 0;
   int res=0;
    if(r-lowbit(r)+1<1) res=max(a[r],query(1,r-1));
   else res=max(tr[r],query(1,r-lowbit(r)));
   return res;
}
// 倍增求序列第 k 小
int k_min(int k)
{
   int pos=0;
   for(int i=20;i>=0;i--)
       if(pos+(1<<i)<=n \&\& tr[pos+(1<<i)]<k)
           pos+=1<<i,k-=tr[pos];
   return pos+1;
}
```

2.7 线段树

2.7.1 普通线段树

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pii;
const int mod=1e9+7,N=2e5+10;
int n,m,k;
int p[N];
struct node
{
}tr[N*4];
void pushup(node &u,node &l,node &r)
{
}
void pushup(int u)
{
    pushup(tr[u],tr[u<<1],tr[u<<1|1]);</pre>
}
void pushdown(int u,int L,int R)
{
}
void build(int u,int L,int R)
    if(L==R)
    {
        return;
    int mid=L+R>>1;
```

```
build(u << 1, L, mid), build(u << 1 | 1, mid + 1, R);
    pushup(u);
}
//区间修改
void modify(int u,int L,int R,int l,int r,int d)
    if(L>=1&&R<=r)
    {
        return;
    pushdown(u,L,R);
    int mid=L+R>>1;
    if(1<=mid) modify(u<<1,L,mid,1,r,d);</pre>
    if(r>mid) modify(u<<1|1,mid+1,R,1,r,d);</pre>
    pushup(u);
}
//单点修改
void modify(int u,int L,int R,int x,int d)
{
    if(L==R)
    {
         return;
    int mid=L+R>>1;
    if(x<=mid) modify(u<<1,L,mid,x,d);</pre>
    else modify(u << 1 | 1, mid+1, R, x, d);
    pushup(u);
}
node query(int u,int L,int R,int l,int r)
    if(L>=1&&R<=r) return tr[u];</pre>
    pushdown(u,L,R);
    int mid=L+R>>1;
    if(l>mid) return query(u<<1|1,mid+1,R,l,r);</pre>
    else if(r<=mid) return query(u<<1,L,mid,1,r);</pre>
    node res;
    node ls=query(u<<1,L,mid,l,r);</pre>
    node rs=query(u<<1|1,mid+1,R,1,r);</pre>
    pushup(res,ls,rs);
```

Algorithm Template

```
return res;
}
```

2.7.2 动态开点

```
//动态开点 root=1
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pii;
const int mod=1e9+7, N=2e5+10;
int n,m,k;
int p[N];
struct node
    int ls,rs;
}tr[N];//O(mlogn) 尽量开大
int root=1,id=1;
void pushup(node &u,node &left,node &right)
}
void pushup(int u)
   pushup(tr[u],tr[tr[u].ls],tr[tr[u].rs]);
}
void pushdown(int u,int L,int R)
    if(!tr[u].tag) return;
    if(!tr[u].ls) tr[u].ls=++id;
    if(!tr[u).rs) tr[u].rs=++id;
}
//区间修改
void modify(int &u,int L,int R,int l,int r,int d)
{
    if(!u) u=++id;
```

```
if(L>=1&&R<=r)
        return;
    pushdown(u,L,R);
    int mid=L+R-1>>1;
    if(l<=mid) modify(tr[u].ls,L,mid,l,r,d);</pre>
    if(r>mid) modify(tr[u].rs,mid+1,R,l,r,d);
    pushup(u);
}
//单点修改
void modify(int &u,int L,int R,int x,int d)
    if(!u) u=++id;
    if(L==R)
    {
        return;
    }
    int mid=L+R-1>>1;
    if(x>mid) modify(tr[u].rs,mid+1,R,x,d);
    else modify(tr[u].ls,L,mid,x,d);
    pushup(u);
}
//区间查询 要保证 l <= r
node query(int u,int L,int R,int 1,int r)
    if(!u) return node();
    if(L>=1&&R<=r) return tr[u];</pre>
    pushdown(u,L,R);
    int mid=L+R-1>>1;
    if(l>mid) return query(tr[u].rs,mid+1,R,l,r);
    else if(r<=mid) return query(tr[u].ls,L,mid,l,r);</pre>
    node res;
    node left=query(tr[u].ls,L,mid,l,r);
    node right=query(tr[u].rs,mid+1,R,l,r);
    pushup(res,left,right);
    return res;
}
```

2.7.3 势能线段树

```
//势能线段树 区间开根
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7,N=2e5+10;
int n,m,k;
ll p[N];
struct node
    11 sum, v;
}tr[N*4];
void pushup(node &u,node &1,node &r)
{
    u.sum=1.sum+r.sum;
    u.v=max(1.v,r.v);
}
void pushup(int u)
    pushup(tr[u],tr[u<<1],tr[u<<1|1]);</pre>
}
void build(int u,int L,int R)
    if(L==R)
    {
        tr[u].sum=p[L];
        tr[u].v=p[L];
        return;
    }
    int mid=L+R>>1;
    build(u<<1,L,mid),build(u<<1|1,mid+1,R);</pre>
    pushup(u);
}
void modify(int u,int L,int R,int l,int r)
```

```
{
    if(tr[u].v<=1) return;</pre>
    if(L==R)
    {
        tr[u].sum=sqrt(tr[u].sum);
        tr[u].v=tr[u].sum;
        return;
    }
    int mid=L+R>>1;
    if(l<=mid) modify(u<<1,L,mid,l,r);</pre>
    if(r>mid) modify(u<<1|1,mid+1,R,1,r);</pre>
    pushup(u);
}
11 query(int u,int L,int R,int 1,int r)
{
    if(L>=1&&R<=r) return tr[u].sum;</pre>
    int mid=L+R>>1;
    ll res=0;
    if(1<=mid) res+=query(u<<1,L,mid,1,r);</pre>
    if(r>mid) res+=query(u<<1|1,mid+1,R,l,r);</pre>
    return res;
}
void solve()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++) scanf("%lld",p+i);</pre>
    build(1,1,n);
    while(m--)
    {
        int k,l,r;
        scanf("%d%d%d",&k,&l,&r);
        if(l>r) swap(l,r);
        if(k==2) printf("%lld\n",query(1,1,n,1,r));
        else modify(1,1,n,l,r);
}
int main()
{
    solve();
    return 0;
}
```

2.7.4 可持久化线段树

```
// 区间第 k 小
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10,INF=1e9+5;
int n,m,idx;
int root[N],a[N];
struct node
    int 1,r;
    int cnt;
}tr[N*40];
void pushup(int u)
{
    tr[u].cnt=tr[tr[u].1].cnt+tr[tr[u].r].cnt;
}
void modify(int p,int q,int L,int R,int x)
{
    tr[q]=tr[p];
    if(L==R)
    {
        tr[q].cnt++;
        return;
    }
    int mid=L+R-1>>1;
    if(x>mid)
    {
        tr[q].r=++idx;
        modify(tr[p].r,tr[q].r,mid+1,R,x);
    }
    else
    {
        tr[q].l=++idx;
        modify(tr[p].1,tr[q].1,L,mid,x);
    pushup(q);
```

```
}
int query(int p,int q,int L,int R,int k)
    if(L==R) return L;
    int mid=L+R-1>>1;
    int cnt=tr[tr[q].1].cnt-tr[tr[p].1].cnt;
    if(cnt>=k) return query(tr[p].1,tr[q].1,L,mid,k);
    else return query(tr[p].r,tr[q].r,mid+1,R,k-cnt);
}
int main()
{
    cin >> n >> m;
    root[0]=++idx;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<=n;i++)</pre>
    {
        root[i]=++idx;
        modify(root[i-1],root[i],-INF,INF,a[i]);
    }
    while(m--)
        int 1,r,k;
        scanf("%d%d%d",&l,&r,&k);
        printf("%d\n",query(root[l-1],root[r],-INF,INF,k));
    }
}
```

2.8 平衡树

2.8.1 有旋 treap

```
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10,INF=1e9+10;
int n,root,idx;
struct node
{
    int 1,r;
    int key, val;
    int cnt,size;
}tr[N];
int get_node(int key)
    tr[++idx].key=key;
    tr[idx].val=rand();
    tr[idx].cnt=tr[idx].size=1;
    return idx;
}
void pushup(int p)
    tr[p].size=tr[tr[p].l].size+tr[p].cnt+tr[tr[p].r].size;
}
void zig(int &p)
    int q=tr[p].1;
    tr[p].l=tr[q].r,tr[q].r=p,p=q;
    pushup(tr[p].r),pushup(p);
}
void zag(int &p)
    int q=tr[p].r;
    tr[p].r=tr[q].l,tr[q].l=p,p=q;
    pushup(tr[p].1),pushup(p);
```

```
}
void insert(int &p,int key)
    if(!p) p=get_node(key);
    else if(tr[p].key==key) tr[p].cnt++;
    else if(tr[p].key>key)
    {
        insert(tr[p].1,key);
        if(tr[tr[p].1].val>tr[p].val) zig(p);
    }
    else
    {
        insert(tr[p].r,key);
        if(tr[tr[p].r].val>tr[p].val) zag(p);
    }
    pushup(p);
}
void dele(int &p,int key)
{
    if(!p) return;
    if(tr[p].key==key)
        if(tr[p].cnt>1) tr[p].cnt--;
        else if(tr[p].1||tr[p].r)
        {
            if(!tr[p].r||tr[tr[p].1].val>tr[tr[p].r].val)
            {
                zig(p);
                dele(tr[p].r,key);
            }
            else
                zag(p);
                dele(tr[p].1,key);
            }
        }
        else p=0;
    else if(tr[p].key>key) dele(tr[p].1,key);
    else dele(tr[p].r,key);
```

```
pushup(p);
}
int get_rank(int p,int key)
    if(!p) return 1;
    if(tr[p].key==key) return tr[tr[p].1].size+1;
    if(tr[p].key>key) return get_rank(tr[p].1,key);
    return get_rank(tr[p].r,key)+tr[p].cnt+tr[tr[p].1].size;
}
int get_key(int p,int rank)
    if(!p) return INF;
    if(tr[tr[p].1].size>=rank) return get_key(tr[p].1,rank);
    if(tr[tr[p].1].size+tr[p].cnt>=rank) return tr[p].key;
    return get_key(tr[p].r,rank-tr[p].cnt-tr[tr[p].1].size);
}
int get_pre(int p,int key)
{
    if(!p) return -INF;
    if(tr[p].key>=key) return get_pre(tr[p].1,key);
    return max(tr[p].key,get_pre(tr[p].r,key));
}
int get_next(int p,int key)
    if(!p) return INF;
    if(tr[p].key<=key) return get_next(tr[p].r,key);</pre>
    return min(tr[p].key,get_next(tr[p].1,key));
}
int main()
    cin >> n;
    while(n--)
    {
        int opt,x;
        scanf("%d%d", &opt, &x);
        if(opt==1) insert(root,x);
        else if(opt==2) dele(root,x);
        else if(opt==3) printf("%d\n",get_rank(root,x));
```

```
else if(opt==4) printf("%d\n",get_key(root,x));
    else if(opt==5) printf("%d\n",get_pre(root,x));
    else printf("%d\n",get_next(root,x));
}

return 0;
}
```

2.8.2 FHQtreap

```
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10,INF=1e8+10;
int n,m,idx,root;
int a[N],st[N];
//相同权值的点不会去重 同时存在
struct node
{
    int 1,r;
    int key, val;
    int size;
}tr[N];
int get_node(int key)
    tr[++idx].key=key;
    tr[idx].val=rand();
    tr[idx].size=1;
    return idx;
}
void pushup(int p)
    tr[p].size=tr[tr[p].l].size+tr[tr[p].r].size+1;
}
//按照 key 将树分成 <=key 和 >key 的两棵子树
void split_by_key(int p,int key,int &x,int &y)
{
    if(!p) x=y=0;
    else
    {
        if(tr[p].key<=key)</pre>
   x=p,split_by_key(tr[p].r,key,tr[x].r,y);
        else y=p,split_by_key(tr[p].1,key,x,tr[y].1);
        pushup(p);
    }
}
```

```
//按前 k 个分配 将树分成前 k 个点组成的树和剩余点组成的树
void split_by_size(int p,int k,int &x,int &y)
{
   if(!p) x=y=0;
   else
       if(tr[tr[p].1].size<k)</pre>
   x=p,split_by_size(tr[p].r,k-tr[tr[p].l].size-1,tr[x].r,y);
       else y=p,split_by_size(tr[p].1,k,x,tr[y].1);
       pushup(p);
   }
}
//合并 x 和 y 两棵树 其中 x.key < y.key 返回合并后的根
int merge(int x,int y)
{
   if(!x||!y) return x+y;
   int res;
   if(tr[x].val>tr[y].val) res=x,tr[x].r=merge(tr[x].r,y);
   else res=y,tr[y].l=merge(x,tr[y].l);
   pushup(res);
   return res;
}
//插入:按照 key 分裂 开新点 合并左和新点 再合并右
void insert(int &p,int key)
{
   int x,y;
   split_by_key(p,key,x,y);
   int new_node=get_node(key);
   p=merge(merge(x,new_node),y);
}
//删除:按照 key 分裂成三部分 删除中间部分的根 合并三次
void dele(int &p,int key)
{
   int x,y,z;
   split_by_key(p,key,x,z);
   split_by_key(x,key-1,x,y);
   y=merge(tr[y].1,tr[y].r);
   p=merge(merge(x,y),z);
}
```

```
//获得 key 的排名:按 key-1 分裂 排名就是左子树的大小 +1
int get_rank(int &p,int key)
{
    int x,y,res;
    split_by_key(p,key-1,x,y);
   res=tr[x].size+1;
   p=merge(x,y);
   return res;
}
//rank 对应的 key rank<1 返回最小数 rank>sum_node 返回 INF
int get_key(int &p,int rank)
{
    int x,y,z,res;
    split_by_size(p,rank-1,x,y);
    split_by_size(y,1,y,z);
    if(y) res=tr[y].key;
    else res=INF;
   p=merge(merge(x,y),z);
   return res;
}
//前驱 不存在返回-INF
int get_pre(int &p,int key)
{
    int x,y,z,res;
    split_by_key(p,key-1,y,z);
    split_by_size(y,tr[y].size-1,x,y);
    if(y) res=tr[y].key;
   else res=-INF;
   p=merge(merge(x,y),z);
   return res;
}
//后继 不存在返回 INF
int get_next(int &p,int key)
    int x,y,z,res;
    split_by_key(p,key,x,y);
    split_by_size(y,1,y,z);
    if(y) res=tr[y].key;
    else res=INF;
```

```
p=merge(merge(x,y),z);
    return res;
}
void dfs(int p)
{
    if(!p) return;
    dfs(tr[p].1),dfs(tr[p].r);
    pushup(p);
}
//a[] 是有序序列 O(n) 建树建成 treap 别忘记最后 dfs 更新信息
void build(int &root,int len)
{
    int top=0;
    for(int i=1;i<=len;i++)</pre>
    {
        int k=top;
        int new_id=get_node(a[i]);
        while(k&&tr[st[k]].val<tr[new_id].val) k--;</pre>
        if(k) tr[st[k]].r=new_id;
        if(k<top) tr[new_id].l=st[k+1];</pre>
        st[++k]=new_id;
        top=k;
    }
    root=st[1];
    dfs(root);
}
int main()
{
    cin >> n >> m;
    for(int i=0;i<n;i++)</pre>
    {
        int x;
        scanf("%d",&x);
        insert(root,x);
    }
    int last=0;
    int ans=0;
    while(m--)
    {
```

```
int opt,x;
scanf("%d%d",&opt,&x);
x^=last;
if(opt==1) insert(root,x);
else if(opt==2) dele(root,x);
else if(opt==3) last=get_rank(root,x);
else if(opt==4) last=get_key(root,x);
else if(opt==5) last=get_pre(root,x);
else last=get_next(root,x);
if(opt>2) ans^=last;
}

printf("%d\n",ans);
return 0;
}
```

2.8.3 文艺平衡树

```
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7,N=1e5+10;
int n,m,idx,root;
struct node
    int 1,r;
    int tag;
    int key, val;
    int size;
}tr[N];
int get_node(int key)
{
    tr[++idx].key=key;
    tr[idx].val=rand();
    tr[idx].size=1;
    return idx;
}
void pushup(int p)
    tr[p].size=tr[tr[p].1].size+tr[tr[p].r].size+1;
}
void pushdown(int p)
{
    if(!tr[p].tag) return;
    swap(tr[p].1,tr[p].r);
    if(tr[p].1) tr[tr[p].1].tag^=1;
    if(tr[p].r) tr[tr[p].r].tag^=1;
    tr[p].tag=0;
}
void split_by_key(int p,int key,int &x,int &y)
    if(!p) x=y=0;
    else
```

```
{
        if(tr[p].key<=key)</pre>
    x=p,split_by_key(tr[p].r,key,tr[x].r,y);
        else y=p,split_by_key(tr[p].1,key,x,tr[y].1);
        pushup(p);
    }
}
void split(int p,int k,int &x,int &y)
    if(!p) x=y=0;
    else
    {
        pushdown(p);
        if(tr[tr[p].1].size+1 \le k)
        {
            split(tr[p].r,k-tr[tr[p].1].size-1,tr[x].r,y);
        }
        else
        {
            split(tr[p].1,k,x,tr[y].1);
        pushup(p);
    }
}
int merge(int x,int y)
    if(!x||!y) return x+y;
    pushdown(x),pushdown(y);
    int res;
    if(tr[x].val>tr[y].val)
        res=x;
        tr[x].r=merge(tr[x].r,y);
    }
    else
    {
        res=y;
        tr[y].l=merge(x,tr[y].1);
    pushup(res);
```

```
return res;
}
// 区间翻转
void rever(int 1,int r)
{
    int x,y,z;
    split(root,r,y,z);
    split(y,l-1,x,y);
    tr[y].tag^=1;
    root=merge(merge(x,y),z);
}
void insert(int &p,int key)
    int x,y;
    split_by_key(p,key,x,y);
    int new_node=get_node(key);
    p=merge(merge(x,new_node),y);
}
void print(int p)
{
    if(!p) return;
    pushdown(p);
    print(tr[p].1);
    printf("%d ",tr[p].key);
    print(tr[p].r);
}
void solve()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++) insert(root,i);</pre>
    while(m--)
    {
        int 1,r;
        scanf("%d%d",&l,&r);
        rever(1,r);
    print(root);
}
```

```
int main()
{
    solve();
    return 0;
}
```

2.8.4 可持久化 treap

```
#include <bits/stdc++.h>
using namespace std;
const int N=5e5+10,INF=(111<<31)-1;</pre>
int n,m,root[N],idx;
struct node
    int 1,r;
    int key, val;
    int size;
}tr[N*52];
int get_node(int key)
    tr[++idx].key=key;
    tr[idx].val=rand();
    tr[idx].size=1;
    return idx;
}
void pushup(int p)
    tr[p].size=1+tr[tr[p].1].size+tr[tr[p].r].size;
}
void split_by_key(int p,int key,int &x,int &y)
    if(!p) x=y=0;
    else
    {
        int res;
        if(tr[p].key<=key)</pre>

    x=get_node(0),res=x,tr[x]=tr[p],split_by_key(tr[p].r,key,tr[x].r,y);

y=get_node(0), res=y, tr[y]=tr[p], split_by_key(tr[p].1, key,x, tr[y].1);
        pushup(res);
    }
}
```

```
void split_by_size(int p,int k,int &x,int &y)
              if(!p) x=y=0;
             else
              {
                           int res;
                           if(tr[tr[p].l].size<k)</pre>
  \rightarrow x=get_node(0),res=x,tr[x]=tr[p],split_by_size(tr[p].r,k-tr[tr[p].1].size-1,tr[x]=tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[p].size-1,tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[x]=tr[

y=get_node(0),res=y,tr[y]=tr[p],split_by_size(tr[p].1,k,x,tr[y].1);

                           pushup(res);
}
int merge(int x,int y)
{
              if(!x||!y) return x+y;
             int root;
              if(tr[x].val>tr[y].val)
  → root=get_node(0),tr[root]=tr[x],tr[root].r=merge(tr[x].r,y);
             else
  → root=get_node(0),tr[root]=tr[y],tr[root].l=merge(x,tr[y].l);
             pushup(root);
             return root;
}
void insert(int &root,int odd,int key)
{
             int x,y,z;
             y=get_node(key);
              split_by_key(odd,key-1,x,z);
             root=merge(merge(x,y),z);
}
void dele(int &root,int odd,int key)
{
              int x,y,z;
              split_by_key(odd,key-1,x,y);
              split_by_key(y,key,y,z);
             y=merge(tr[y].1,tr[y].r);
             root=merge(merge(x,y),z);
}
int get_rank(int &root,int odd,int key)
```

```
{
    int x,y,res;
    split_by_key(odd,key-1,x,y);
    res=tr[x].size+1;
    root=merge(x,y);
    return res;
}
int get_key(int &root,int odd,int rank)
    int x,y,z;
    split_by_size(odd,rank-1,x,y);
    split_by_size(y,1,y,z);
    int res=tr[y].key;
    root=merge(merge(x,y),z);
    return res;
}
int get_pre(int &root,int odd,int key)
    int x,y,z;
    split_by_key(odd,key-1,y,z);
    split_by_size(y,tr[y].size-1,x,y);
    int res;
    if(y) res=tr[y].key;
    else res=-INF;
    root=merge(merge(x,y),z);
    return res;
}
int get_next(int &root,int odd,int key)
{
    int x,y,z;
    split_by_key(odd,key,x,y);
    split_by_size(y,1,y,z);
    int res;
    if(y) res=tr[y].key;
    else res=-INF;
    root=merge(merge(x,y),z);
    return res;
}
int main()
```

```
{
    cin >> n;
    for(int i=1;i<=n;i++)</pre>
        int v,opt,x;
        scanf("%d%d%d",&v,&opt,&x);
        if(opt==1) insert(root[i],root[v],x);
        else if(opt==2) dele(root[i],root[v],x);
        else if(opt==3)
   printf("%d\n",get_rank(root[i],root[v],x));
        else if(opt==4)
   printf("%d\n",get_key(root[i],root[v],x));
        else if(opt==5)
   printf("%d\n",get_pre(root[i],root[v],x));
        else printf("%d\n",get_next(root[i],root[v],x));
    }
    return 0;
}
```

2.9 莫队

2.9.1 普通莫队

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=5e4+10;
int n,m,k,cnt[N],a[N];
int len;
11 ans[N],res;
struct q
{
    int id,1,r;
}Q[N];
bool cmp(q &a,q &b)
{
    if(a.1/len!=b.1/len) return a.1<b.1;</pre>
    if(a.l/len&1) return a.r>b.r;
    return a.r<b.r;</pre>
}
void add(int x)
{
    res-=(11)cnt[x]*cnt[x];
    cnt[x]++;
    res+=(11)cnt[x]*cnt[x];
}
void dele(int x)
{
    res=(11)cnt[x]*cnt[x];
    cnt[x]--;
    res+=(11)cnt[x]*cnt[x];
}
int main()
```

```
cin >> n >> m >> k;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=0;i<m;i++)</pre>
    {
        int 1,r;
        scanf("%d%d",&l,&r);
        Q[i]={i,1,r};
    }
    len=max(1,(int)sqrt((double)n*n/m));
    sort(Q,Q+m,cmp);
    int i=0,j=1;
    for(int k=0; k<m; k++)</pre>
    {
        int l=Q[k].1,r=Q[k].r;
        while(i<r) add(a[++i]);</pre>
        while(j>1) add(a[--j]);
        while(i>r) dele(a[i--]);
        while(j<1) dele(a[j++]);</pre>
        ans[Q[k].id]=res;
    }
    for(int i=0;i<m;i++) printf("%lld\n",ans[i]);</pre>
    return 0;
}
```

2.9.2 莫队套分块

```
// 莫队 + 分块 : 统计区间中在 [a,b] 值域内数的个数和不重复的数的
→ 个数
#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const int mod=1e9+7, N=1e5+10;
int n,m,len;
int a[N],cnt[N],sum1[N],sum2[N];
pii ans[N];
struct q
    int id,1,r,a,b;
}Q[N];
bool cmp(q &A,q &B)
    if(A.1/len!=B.1/len) return A.1<B.1;</pre>
    if(A.1/len&1) return A.r>B.r;
    return A.r<B.r;</pre>
}
void add(int x)
{
    sum1[x/len]++;
    if(!cnt[x]) sum2[x/len]++;
    cnt[x]++;
}
void del(int x)
{
    sum1[x/len]--;
    cnt[x]--;
    if(!cnt[x]) sum2[x/len]--;
}
void query(int l,int r,int id)
```

```
{
    int res1=0,res2=0;
    if(l/len==r/len)
    {
        for(int i=1;i<=r;i++)</pre>
            res1+=cnt[i],res2+=(cnt[i]>0);
    }
    else
    {
        int i=1,j=r;
        while(i/len==1/len) res1+=cnt[i],res2+=(cnt[i]>0),i++;
        while(j/len==r/len) res1+=cnt[j],res2+=(cnt[j]>0),j--;
        for(int k=i/len;k<=j/len;k++)</pre>
   res1+=sum1[k],res2+=sum2[k];
    ans[id].first=res1,ans[id].second=res2;
}
void solve()
    cin >> n >> m;
    len=(int)sqrt((double)n*n/m/2)+1;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<=m;i++)</pre>
        int 1,r,a,b;
        scanf("%d%d%d%d",&l,&r,&a,&b);
        Q[i]={i,1,r,a,b};
    }
    sort(Q+1,Q+m+1,cmp);
    for(int k=1,i=0,j=1;k<=m;k++)</pre>
    {
        int l=Q[k].1,r=Q[k].r;
        while(i<r) add(a[++i]);</pre>
        while(j>1) add(a[--j]);
        while(i>r) del(a[i--]);
        while(j<1) del(a[j++]);</pre>
        query(Q[k].a,Q[k].b,Q[k].id);
    }
    for(int i=1;i<=m;i++) printf("%d</pre>
```

```
int main()
{
    solve();
    return 0;
}
```

2.9.3 带修莫队

```
//数颜色: 带修 求区间不重复的数的个数
#include <bits/stdc++.h>
using namespace std;
const int N=14e4+10,s=1e6+10;
int n,m,tot,qot,len;
int cnt[s],a[N],res,ans[N];
struct q
    int id,1,r,t;
}Q[N];
struct modify
    int x,y;
}M[N];
bool cmp(q &a,q &b)
    if(a.l/len!=b.l/len) return a.l<b.1;</pre>
    if(a.r/len!=b.r/len) return a.r<b.r;</pre>
    if(a.r/len&1)return a.t>b.t;
    return a.t<b.t;</pre>
}
inline void add(int x)
    if(!cnt[x]) res++;
    cnt[x]++;
}
inline void del(int x)
{
    cnt[x]--;
    if(!cnt[x]) res--;
}
inline void changet(int l,int r,int t)
{
```

```
int x=M[t].x,y=M[t].y;
    if(x>=l\&\&x<=r) add(y),del(a[x]);
    M[t].y=a[x],a[x]=y;
}
int main()
    cin >> n >> m;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<=m;i++)</pre>
    {
        char str[2];
        int x,y;
        scanf("%s%d%d",str,&x,&y);
        if(*str=='R')
        {
             ++tot;
             M[tot] = \{x, y\};
        else qot++,Q[qot]={qot,x,y,tot};
    }
    len=cbrt((double)n*n*max(1,tot)/qot)+1;
    sort(Q+1,Q+qot+1,cmp);
    for(int k=1,i=1,j=0,tt=0;k<=qot;k++)</pre>
    {
        int l=Q[k].1,r=Q[k].r,t=Q[k].t;
        while(j<r) add(a[++j]);</pre>
        while(i>1) add(a[--i]);
        while(j>r) del(a[j--]);
        while(i<1) del(a[i++]);</pre>
        while(tt<t) changet(i,j,++tt);</pre>
        while(tt>t) changet(i,j,tt--);
        ans[Q[k].id]=res;
    }
    for(int i=1;i<=qot;i++) printf("%d\n",ans[i]);</pre>
    return 0;
}
```

2.9.4 回滚莫队 1(只加不删)

```
// 只加不删的莫队 :求区间 a[i]*cnt[a[i]] 的最大值
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=1e5+10;
int n,m,len,a[N],cnt[N];
11 ans[N];
struct q
{
    int id,1,r;
}Q[N];
vector<int> num;
bool cmp(q &a,q &b)
    if(a.l/len!=b.l/len) return a.l<b.l;</pre>
    return a.r<b.r;
}
int main()
{
    cin >> n >> m;
    len=(int)sqrt((double)n*n/m)+1;
    for(int i=1;i<=n;i++)</pre>
        scanf("%d",a+i);
        num.push_back(a[i]);
    }
    sort(num.begin(),num.end());
    num.erase(unique(num.begin(),num.end()),num.end());
    for(int i=1;i<=n;i++)</pre>
→ a[i]=lower_bound(num.begin(),num.end(),a[i])-num.begin();
    for(int i=1;i<=m;i++)</pre>
    {
        int 1,r;
```

```
scanf("%d%d",&1,&r);
                  Q[i]={i,1,r};
}
sort(Q+1,Q+m+1,cmp);
for(int k=1;k<=m;)</pre>
{
                  int p=k;
                  while (p \le m \& Q[p].1/len = Q[k].1/len) p++;
                  int right=Q[k].1/len*len+len-1;
                  \label{eq:while(k<p&&Q[k].r<=right)} \endaligned \begin{tabular}{ll} \begin{tabular}
                  {
                                    11 res=0;
                                     int l=Q[k].1,r=Q[k].r;
                                    for(int i=1;i<=r;i++)</pre>
                                    {
                                                       cnt[a[i]]++;
                                                       res=max(res,(ll)cnt[a[i]]*num[a[i]]);
                                    ans[Q[k].id]=res;
                                    for(int i=1;i<=r;i++) cnt[a[i]]--;</pre>
                                    k++;
                  }
                  ll res=0;
                  int j=right;
                  while(k<p)</pre>
                                     int l=Q[k].1,r=Q[k].r;
                                    while(j<r)
                                     {
                                                       ++j;
                                                       cnt[a[j]]++;
                                                       res=max(res,(l1)cnt[a[j]]*num[a[j]]);
                                    }
                                    11 backup=res;
                                    for(int i=right;i>=1;i--)
                                    {
                                                       cnt[a[i]]++;
                                                       res=max(res,(ll)cnt[a[i]]*num[a[i]]);
                                    ans[Q[k].id]=res;
```

```
res=backup;
    for(int i=1;i<=right;i++) cnt[a[i]]--;
    k++;
}

memset(cnt,0,sizeof cnt);
}

for(int i=1;i<=m;i++) printf("%lld\n",ans[i]);
return 0;
}</pre>
```

2.9.5 回滚莫队 2(只删不加)

```
// 只删不加 : 求区间 mex
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=2e5+10;
int n,m,len,a[N],cnt[N];
int ans[N];
struct q
    int id,1,r;
}Q[N];
vector<int> num;
bool cmp(q &a,q &b)
    if(a.1/len!=b.1/len) return a.1<b.1;</pre>
    return a.r>b.r;
}
int main()
    cin >> n >> m;
    len=(int)sqrt(n)+1;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<=m;i++)</pre>
        int 1,r;
        scanf("%d%d",&l,&r);
        Q[i]={i,1,r};
    }
    sort(Q+1,Q+m+1,cmp);
    for(int k=1;k<=m;)</pre>
    {
        int p=k;
```

```
while (p \le m \& Q[p].1/len = Q[k].1/len) p++;
    int left=Q[k].1/len*len;
    int right=left+len-1;
    while (k 
    {
        int res=0;
        int l=Q[k].1,r=Q[k].r;
        for(int i=1;i<=r;i++) cnt[a[i]]++;</pre>
        while(cnt[res]) res++;
        ans[Q[k].id]=res;
        for(int i=1;i<=r;i++) cnt[a[i]]--;</pre>
    }
    if(k>=p) continue;
    int res=0;
    int j=Q[k].r;
    for(int i=left;i<=j;i++) cnt[a[i]]++;</pre>
    while(cnt[res]) res++;
    while(k<p)
    {
        int l=Q[k].1,r=Q[k].r;
        while(j>r)
        {
            cnt[a[j]]--;
            if(!cnt[a[j]]) res=min(res,a[j]);
            --j;
        }
        int backup=res;
        for(int i=left;i<l;i++)</pre>
            cnt[a[i]]--;
            if(!cnt[a[i]]) res=min(res,a[i]);
        ans[Q[k].id]=res;
        res=backup;
        for(int i=left;i<1;i++) cnt[a[i]]++;</pre>
        k++;
    }
    memset(cnt,0,sizeof cnt);
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
```

}

```
return 0;
}
```

2.9.6 树上莫队

```
利用括号序,将两个点之间的路径变为连续的区间
具体而言 设 l[u] < l[v]
(1) 若 lca(u,v) = u 则 u,v 之间的路径就是括号序列中 [l[u],
→ 1[v]] 这一段里只出现一次的节点
(2) 否则, u,v 之间的路径就是 [r[u], l[v]] 这一段里只出现一次的节
→ 点 + lca 这个节点
因为只计算只出现一次的点 开一个 cnt[] 记录点的权值信息, 同时开
→ st[u] 记录编号为 u 的这个点的出现次数
一旦 st[u] 为偶数, 就要删除这个点的权值信息
求路径上出现的不重复数的个数
*/
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,m,a[N],cnt[N],st[N],l[N],r[N],id[N],tot,ans[N],res;
int p[20][N],dep[N];
vector<int> nums,e[N];
array<int,4> query[N];
int len;
bool cmp(array<int,4> &a,array<int,4> &b)
   if(a[0]/len!=b[0]/len) return a[0]<b[0];</pre>
   if(a[0]/len&1) return a[1]>b[1];
   return a[1] < b[1];</pre>
}
void dfs(int u,int fa)
   p[0][u]=fa,dep[u]=dep[fa]+1;
   1[u]=++tot;
   id[tot]=u;
   for(auto v : e[u])
       if(v==fa) continue;
       dfs(v,u);
   }
```

```
r[u]=++tot;
    id[tot]=u;
}
int lca(int u,int v)
{
    if(dep[v]>dep[u]) swap(u,v);
    int d=dep[u]-dep[v];
    for(int i=19;i>=0;i--)
        if(d>>i&1) u=p[i][u];
    if(u==v) return u;
    for(int i=19;i>=0;i--)
        if(p[i][u]!=p[i][v])
            u=p[i][u],v=p[i][v];
    return p[0][u];
}
void add(int x)
    st[x]^=1;
    if(st[x])
    {
        if(!cnt[a[x]]) res++;
        cnt[a[x]]++;
    }
    else
    {
        cnt[a[x]]--;
        if(!cnt[a[x]]) res--;
    }
}
int main()
{
    cin >> n >> m;
    for(int i=1;i<=n;i++)</pre>
    scanf("%d",a+i),nums.push_back(a[i]);
    sort(nums.begin(),nums.end());
    nums.erase(unique(nums.begin(),nums.end()),nums.end());
    for(int i=1;i<=n;i++)</pre>
\rightarrow a[i]=lower_bound(nums.begin(),nums.end(),a[i])-nums.end()+1;
    for(int i=1;i<n;i++)</pre>
        int a,b;
```

```
scanf("%d%d",&a,&b);
    e[a].push_back(b);
    e[b].push_back(a);
}
dfs(1,0);
len=(int)sqrt((double)tot*tot/m)+1;
for(int j=1; j<=19; j++)</pre>
    for(int i=1;i<=n;i++)</pre>
        p[j][i]=p[j-1][p[j-1][i]];
for(int i=1;i<=m;i++)</pre>
{
    int x,y;
    scanf("%d%d",&x,&y);
    if(l[x]>l[y]) swap(x,y);
    int w=lca(x,y);
    if(x==w) query[i]={l[x],l[y],i,0};
    else query[i]={r[x],1[y],i,w};
}
sort(query+1,query+m+1,cmp);
for(int i=1, j=0, k=1; k<=m; k++)</pre>
{
    int l=query[k][0],r=query[k][1],w=query[k][3];
    while(j<r) add(id[++j]);</pre>
    while(i>1) add(id[--i]);
    while(j>r) add(id[j--]);
    while(i<1) add(id[i++]);</pre>
    if(w)
    {
        add(w);
        ans[query[k][2]]=res;
        add(w);
    }
    else ans[query[k][2]]=res;
}
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
return 0;
```

}

2.9.7 树上带修莫队

```
// 树上带修
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=1e5+10;
int n,m,q,a[N],1[N],r[N],id[N*2],tot,tt,qq;
11 ans[N],res;
int p[20][N],dep[N],v[N],w[N];
vector<int> e[N];
int cnt[N],st[N];
struct node
    int l,r,w,t,id;
}query[N];
int len;
struct
    int x,y;
}modify[N];
bool cmp(node &a,node &b)
    if(a.1/len!=b.1/len) return a.1<b.1;</pre>
    if(a.r/len!=b.r/len) return a.r<b.r;</pre>
    return a.t<b.t;
}
void dfs(int u,int fa)
    p[0][u]=fa,dep[u]=dep[fa]+1;
    1[u]=++tot;
    id[tot] = u;
    for(auto v : e[u])
        if(v==fa) continue;
        dfs(v,u);
    }
```

```
r[u]=++tot;
    id[tot]=u;
}
int lca(int u,int v)
{
    if(dep[v]>dep[u]) swap(u,v);
    int d=dep[u]-dep[v];
    for(int i=19;i>=0;i--)
        if(d>>i&1) u=p[i][u];
    if(u==v) return u;
    for(int i=19;i>=0;i--)
        if(p[i][u]!=p[i][v])
            u=p[i][u],v=p[i][v];
    return p[0][u];
}
void add(int x)
    int t=a[x];
    st[x]^=1;
    if(st[x])
    {
        cnt[t]++;
        res+=(11)v[t]*w[cnt[t]];
    }
    else
    {
        res-=(11)v[t]*w[cnt[t]];
        cnt[t]--;
    }
}
void swapp(int m1,int m2)
    res-=(11)v[m1]*w[cnt[m1]];
    cnt[m1]--;
    cnt[m2]++;
    res+=(11)v[m2]*w[cnt[m2]];
}
void change(int t,int L,int R)
    int x=modify[t].x,y=modify[t].y;
```

```
// 判断是否在区间内
    if(st[x]) swapp(a[x],y);
    swap(a[x],modify[t].y);
}
int main()
    cin >> n >> m >> q;
    for(int i=1;i<=m;i++) scanf("%d",v+i);</pre>
    for(int i=1;i<=n;i++) scanf("%d",w+i);</pre>
    for(int i=1;i<n;i++)</pre>
    {
        int a,b;
        scanf("%d%d",&a,&b);
        e[a].push_back(b);
        e[b].push_back(a);
    dfs(1,0);
    for(int j=1; j<=19; j++)</pre>
        for(int i=1;i<=n;i++)</pre>
             p[j][i]=p[j-1][p[j-1][i]];
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<=q;i++)</pre>
        int opt,x,y;
        scanf("%d%d%d",&opt,&x,&y);
        if(opt)
        {
             ++qq;
             if(l[x]>l[y]) swap(x,y);
             int w=lca(x,y);
             if(x==w) query[qq]={l[x],l[y],0,tt,qq};
             else query[qq]={r[x],l[y],w,tt,qq};
        }
        else
        {
             ++tt;
             modify[tt]={x,y};
        }
    }
    len=(int)cbrt((double)tot*tot*max(1,tt)/qq)+1;
```

```
sort(query+1,query+qq+1,cmp);
    for(int i=1,j=0,T=0,k=1;k<=qq;k++)</pre>
    {
        int
→ l=query[k].l,r=query[k].r,w=query[k].w,t=query[k].t;
        while(j<r) add(id[++j]);</pre>
        while(i>1) add(id[--i]);
        while(j>r) add(id[j--]);
        while(i<1) add(id[i++]);</pre>
        while(T<t) change(++T,i,j);</pre>
        while(T>t) change(T--,i,j);
        if(w)
        {
             add(w);
             ans[query[k].id]=res;
             add(w);
        }
        else ans[query[k].id]=res;
    }
    for(int i=1;i<=qq;i++) printf("%lld\n",ans[i]);</pre>
    return 0;
}
```

2.9.8 二次离线莫队

```
// 二次离线
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=1e5+10;
int n,m,k,a[N],len;
vector<int> nums;
11 f[N],g[N],ans[N];
struct q
    int l,r,id;
    ll res;
}query[N];
struct node
    int l,r,id,t;
};
vector<node> range[N];
bool cmp(q &a,q &b)
    if(a.1/len!=b.1/len) return a.1<b.1;</pre>
    if(a.l/len&1) return a.r>b.r;
    return a.r<b.r;
}
int main()
{
    cin >> n >> m >> k;
    len=(int)sqrt((double)n*n/m)+1;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=0;i<(1<<14);i++)</pre>
        if(__builtin_popcount(i)==k)
            nums.push_back(i);
    for(int i=1;i<=n;i++)</pre>
    {
```

```
for(auto x : nums) g[a[i]^x]++;
    f[i]=g[a[i+1]];
}
for(int i=1;i<=m;i++)</pre>
{
    int 1,r;
    scanf("%d%d",&1,&r);
    query[i]={1,r,i};
}
sort(query+1,query+m+1,cmp);
for(int i=1,L=1,R=0;i<=m;i++)</pre>
{
    int l=query[i].1,r=query[i].r;
    if(R<r) range[L-1].push_back({R+1,r,i,-1});</pre>
    while(R<r) query[i].res+=f[R++];</pre>
    if(R>r) range[L-1].push_back({r+1,R,i,1});
    while(R>r) query[i].res-=f[--R];
    if(L<1) range[R].push_back({L,l-1,i,-1});</pre>
    while(L<1) query[i].res+=f[L-1]+!k,L++;
    if(L>1) range[R].push_back({1,L-1,i,1});
    while(L>1) query[i].res-=f[L-2]+!k,L--;
}
memset(g,0,sizeof g);
for(int i=1;i<=n;i++)</pre>
    for(auto x : nums) g[a[i]^x]++;
    for(auto &q : range[i])
    {
         int l=q.l,r=q.r,id=q.id,t=q.t;
        for(int x=1;x<=r;x++)</pre>
             query[id].res+=g[a[x]]*t;
    }
}
for(int i=2;i<=m;i++) query[i].res+=query[i-1].res;</pre>
for(int i=1;i<=m;i++) ans[query[i].id]=query[i].res;</pre>
for(int i=1;i<=m;i++) printf("%lld\n",ans[i]);</pre>
return 0;
```

}

3 Tree

3.1 树 Hash

3.1.1 判断同构

```
// 求无根树是否同构 : hash + 换根
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef unsigned long long ull;
const int mod=1e9+7,N=110;
const ull mask =

    std::chrono::steady_clock::now().time_since_epoch().count();

ull shift(ull x) {
 x = mask;
  x = x << 13;
  x = x >> 7;
  x = x << 17;
  x = mask;
  return x;
}
ull hh[N],res;
int n,m,k;
map<ull,int> mp;
vector<int> e[N];
// 求以 u 为根的树的 hash 值
void dfs(int u)
{
   hh[u]=1;
    for(auto v : e[u])
       dfs(v);
       hh[u]+=shift(hh[v]);
    }
}
```

```
//换根
void dp(int u)
{
    res=min(res,hh[u]);
    for(auto v : e[u])
        hh[v]+=shift(hh[u]-shift(hh[v]));
        dp(v);
    }
}
void solve()
{
    cin >> m;
    for(int t=1;t<=m;t++)</pre>
    {
        cin >> n;
        for(int i=1;i<=n;i++) e[i].clear();</pre>
        int root=-1;
        for(int i=1;i<=n;i++)</pre>
        {
             int b;
            scanf("%d",&b);
             if(b) e[b].push_back(i);
             else root=i;
        }
        res=18446744073709551615ull;
        dfs(root);
        dp(root);
        if(!mp.count(res)) mp[res]=t;
        printf("%d\n",mp[res]);
    }
}
int main()
{
    solve();
    return 0;
}
```

3.1.2 判断对称

```
给出一棵以 1 为根的树 判断这棵树是否对称
对称 : 若有偶数个子树 则要求两两同构
      若有奇数个 可以有一个在中间 其他的两两同构 在中间的必须自
→ 己也对称
判断是否对称:将所有子树的 hash 值异或起来 如果为 O 一定对称
           如果不为 o 枚举放在中间那棵子树
           如果 sum ~ 子树 hash 值 ==0 且子树本身也对称 那么整
   棵树就可以对称
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const int mod=1e9+7, N=2e5+10;
const ull mask =

    std::chrono::steady_clock::now().time_since_epoch().count();

ull shift(ull x) {
 x = mask;
 x = x << 13;
 x = x >> 7;
 x = x << 17;
 x = mask;
 return x;
ull hh[N];
int n;
vector<int> e[N];
bool f[N];
void dfs(int u,int fa)
   hh[u]=1;
   ull sum=0;
```

```
for(auto v : e[u])
        if(v==fa) continue;
        dfs(v,u);
        hh[u]+=shift(hh[v]);
        sum^=shift(hh[v]);
    }
    if(!sum) f[u]=1;
    else
    {
        for(auto v : e[u])
        {
             if(v==fa) continue;
            if(sum==shift(hh[v])&&f[v])
             {
                 f[u]=1;
                 break;
            }
        }
    }
}
void solve()
    cin >> n;
    for(int i=1;i<=n;i++) e[i].clear(),f[i]=0;</pre>
    for(int i=0;i<n-1;i++)</pre>
    {
        int a,b;
        scanf("%d%d",&a,&b);
        e[a].push_back(b);
        e[b].push_back(a);
    }
    dfs(1,0);
    if(f[1]) puts("YES");
    else puts("NO");
}
int main()
    int _;
```

```
cin >> _;
while(_--) solve();
return 0;
}
```

3.2 树上启发式合并

```
询问所有子树中, 出现最多次数的颜色, 有多少种
O(nlogn)
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int N=1e5+10;
int n,c[N];
vector<int> e[N];
int son[N],siz[N],cnt[N];
int 1[N],r[N],id[N],tot;
11 ans[N],sum,maxv;
void dfs(int u,int fa)
    1[u]=++tot;
    id[tot]=u;
    siz[u]=1;
    for(auto j : e[u])
        if(j==fa) continue;
       dfs(j,u);
       siz[u]+=siz[j];
        if(siz[j]>siz[son[u]]) son[u]=j;
   r[u]=tot;
}
void dfs2(int u,int fa,bool keep)
   for(auto j : e[u])
    {
        if(j==fa||j==son[u]) continue;
        dfs2(j,u,0);
    }
    if(son[u]) dfs2(son[u],u,1);
```

```
for(auto j: e[u])
    {
        if(j==fa||j==son[u]) continue;
        for(int k=l[j];k<=r[j];k++)</pre>
             int x=c[id[k]];
             cnt[x]++;
             if(cnt[x]>maxv) maxv=cnt[x],sum=0;
             if(cnt[x] == maxv) sum+=x;
        }
    }
    int x=c[u];
    cnt[x]++;
    if(cnt[x]>maxv) maxv=cnt[x],sum=0;
    if(cnt[x]==maxv) sum+=x;
    ans[u]=sum;
    if(!keep)
    {
        for(int i=l[u];i<=r[u];i++) cnt[c[id[i]]]--;</pre>
        maxv=0,sum=0;
    }
}
int main()
{
    cin >> n;
    for(int i=1;i<=n;i++) scanf("%d",c+i);</pre>
    for(int i=1;i<n;i++)</pre>
    {
        int a,b;
        scanf("%d%d",&a,&b);
        e[a].push_back(b);
        e[b].push_back(a);
    }
    dfs(1,0);
    dfs2(1,0,1);
    for(int i=1;i<=n;i++) printf("%lld ",ans[i]);</pre>
    return 0;
```

}

3.3 LCA

3.3.1 倍增

```
// 预处理 O(nlogn) 单次询问 O(logn)
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7, N=5e5+10;
int n,m,root;
int p[N][20],d[N];
vector<int> e[N];
void dfs(int u,int fa)
{
    p[u][0]=fa;
    for(auto v : e[u])
        if(v==fa) continue;
        d[v]=d[u]+1;
        dfs(v,u);
    }
}
void solve()
    cin >> n >> m >> root;
    for(int i=1;i<n;i++)</pre>
    {
        int x,y;
        scanf("%d%d",&x,&y);
        e[x].push_back(y);
        e[y].push_back(x);
    }
    dfs(root,0);
    for(int j=1;j<=19;j++)</pre>
        for(int i=1;i<=n;i++)</pre>
            p[i][j]=p[p[i][j-1]][j-1];
    while(m--)
```

```
{
        int a,b;
        scanf("%d%d",&a,&b);
        if(d[a] < d[b]) swap(a,b);</pre>
        int h=d[a]-d[b];
        for(int j=19; j>=0; j--)
            if(h>>j&1) a=p[a][j];
        if(a==b) {
            printf("%d\n",a);
            continue;
        }
        for(int j=19;j>=0;j--)
            if(p[a][j]!=p[b][j]) a=p[a][j],b=p[b][j];
        printf("%d\n",p[a][0]);
    }
}
int main()
{
    solve();
    return 0;
}
```

```
/*
给定 n 点 m 边的无向边带权图 n,m <= 2e5 对于每一条边 分别求出包
→ 含这条边的最小生成树
先求出全局最小生成树, 对于任意一条边而言
(1) 如果这条边在最小生成树里 那么答案就是全局最小生成树
(2) 如果不是 那么 对于这条边 (u,v) 在全局最小生成树中 找到 u 到
→ v 路径上边权最大的边
   去掉那条边 把这条边 (u,v) 加入生成树 就是权重最小的生成树
   求路径:LCA 维护倍增的父亲节点 同时维护路径上边权的最大值 预处
→ 理 O(nlogn) 查询 O(logn)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7, N=2e5+10;
int n,m,p[N],pmax[19][N],f[19][N],depth[N];
vector<pii> e[N];
11 res,ans2[N];
struct edge
{
   int v,1,r,id;
}E[N];
void dfs(int u,int fa)
{
   for(auto v: e[u])
      int j=v.first,w=v.second;
      if(j==fa) continue;
      depth[j]=depth[u]+1;
      pmax[0][j]=w;
      f[0][j]=u;
      dfs(j,u);
   }
}
bool cmp(edge &a,edge &b)
```

```
{
    return a.v<b.v;
}
int find(int x)
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}
void solve()
    cin >> n >> m;
    for(int i=1;i<=n;i++) p[i]=i;</pre>
    for(int i=1;i<=m;i++)</pre>
    {
         int u,v,x;
         scanf("%d%d%d",&u,&v,&x);
        E[i] = \{x, u, v, i\};
    }
    sort(E+1,E+m+1,cmp);
    for(int i=1;i<=m;i++)</pre>
         int u=E[i].1,v=E[i].r;
         int a=find(u),b=find(v);
         if(a==b) continue;
         e[u].push_back({v,E[i].v});
         e[v].push_back({u,E[i].v});
        res+=E[i].v;
        p[a]=b;
    }
    dfs(1,0);
    for(int j=1;j<=18;j++)</pre>
         for(int i=1;i<=n;i++)</pre>
             f[j][i]=f[j-1][f[j-1][i]],
             pmax[j][i]=max(pmax[j-1][i],pmax[j-1][f[j-1][i]]);
    for(int i=1;i<=m;i++)</pre>
         ll ans=0;
```

```
int u=E[i].1,v=E[i].r,id=E[i].id;
        if(depth[u] < depth[v]) swap(u,v);</pre>
        int d=depth[u]-depth[v];
        for(int j=18; j>=0; j--)
             if(d>>j\&1) ans=max(ans,(ll)pmax[j][u]),u=f[j][u];
        if(u!=v)
        {
            for(int j=18; j>=0; j--)
                 if(f[j][u]!=f[j][v])
                     ans=max(ans,(11)pmax[j][u]);
                     ans=max(ans,(11)pmax[j][v]);
                     u=f[j][u];
                     v=f[j][v];
                 }
            }
            ans=max(ans,(11)pmax[0][u]);
             ans=max(ans,(11)pmax[0][v]);
        }
        ans2[id]=res-ans+E[i].v;
    }
    for(int i=1;i<=m;i++) printf("%lld\n",ans2[i]);</pre>
}
int main()
{
    solve();
    return 0;
}
```

3.3.2 欧拉序

```
欧拉序转为 RMQ 问题
对两个点 u,v 他们的 lca 一定是
区间 pos[u] - pos[v] 中深度最小的那个点
*/
#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const int mod=1e9+7,N=5e5+10;
int n,m,root;
vector<int> e[N];
// pos[u] 记录 u 第一次出现的位置
int depth[N],pos[N],tot;
pii id[N*2],f[21][N*2];
void dfs(int u,int fa)
   depth[u]=depth[fa]+1;
   pos[u]=++tot;
   f[0][tot]={depth[u],u};
   for(auto v: e[u])
       if(v==fa) continue;
       dfs(v,u);
       f[0][++tot]={depth[u],u};
   }
}
void solve()
   cin >> n >> m >> root;
   for(int i=1;i<n;i++)</pre>
    {
       int a,b;
       scanf("%d%d",&a,&b);
       e[a].push_back(b);
       e[b].push_back(a);
```

```
}
     dfs(root,0);
     for(int j=1; j<=20; j++)</pre>
         for(int i=1;i+(1<<j)-1<=tot;i++)</pre>
              f[j][i]=min(f[j-1][i],f[j-1][i+(1<< j-1)]);
     while(m--)
     {
         int a,b;
         scanf("%d%d",&a,&b);
         if(pos[a]>pos[b]) swap(a,b);
          int k=31-__builtin_clz(pos[b]-pos[a]+1);
\hspace*{2.5cm} \rightarrow \hspace*{0.5cm} \texttt{printf("%d\n",min(f[k][pos[a]],f[k][pos[b]-(1<< k)+1]).second);} \\
}
int main()
{
     solve();
    return 0;
}
```

3.3.3 Tarjan

```
// O(n + m)
#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const int mod=1e9+7, N=5e5+10;
int n,m,root,p[N];
int ans[N];
bool st[N];
vector<int> e[N];
vector<pii> query[N];
int find(int x)
{
    if(x!=p[x]) p[x]=find(p[x]);
    return p[x];
}
void tarjan(int u,int fa)
    st[u]=1;
    for(auto v : e[u])
    {
        if(v==fa) continue;
        tarjan(v,u);
        p[v]=u;
    for(auto x : query[u])
        int v=x.first,id=x.second;
        if(st[v]) ans[id]=find(p[v]);
}
void solve()
{
    cin >> n >> m >> root;
```

```
for(int i=1;i<=n;i++) p[i]=i;</pre>
    for(int i=1;i<n;i++)</pre>
    {
        int a,b;
        scanf("%d%d",&a,&b);
        e[a].push_back(b);
        e[b].push_back(a);
    }
    for(int i=1;i<=m;i++)</pre>
        int a,b;
        scanf("%d%d",&a,&b);
        query[a].push_back({b,i});
        query[b].push_back({a,i});
    }
    tarjan(root,0);
    for(int i=1;i<=m;i++) printf("%d\n",ans[i]);</pre>
}
int main()
{
    solve();
    return 0;
}
```

```
// tarjan 求路径上边权的最值
#include <bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const int mod=1e9+7,N=1e5+10,INF=1e9;
int n,m,root,p[N];
int maxv[N],minv[N];
pii ans[N];
bool st[N];
vector<pii> query[N],e[N];
vector<array<int,3>> deal[N];
int find(int x)
    if(x!=p[x])
    {
        int t=p[x];
        p[x]=find(p[x]);
        minv[x]=min(minv[x],minv[t]);
        maxv[x]=max(maxv[x],maxv[t]);
    return p[x];
}
void tarjan(int u,int fa)
    minv[u] = INF, maxv[u] = 0;
    st[u]=1;
    for(auto v : e[u])
        int j=v.first,w=v.second;
        if(j==fa) continue;
        tarjan(j,u);
        maxv[j]=minv[j]=w;
        p[j]=u;
    for(auto x : query[u])
```

```
int v=x.first,id=x.second;
        if(st[v]) deal[find(v)].push_back({u,v,id});
    }
    for(auto x : deal[u])
        find(x[0]),find(x[1]);
        int t1=min(minv[x[0]],minv[x[1]]);
        int t2=max(maxv[x[0]],maxv[x[1]]);
        ans[x[2]]=\{t1,t2\};
    }
}
void solve()
    cin >> n;
    for(int i=1;i<=n;i++) p[i]=i;</pre>
    for(int i=1;i<n;i++)</pre>
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        e[a].push_back({b,c});
        e[b].push_back({a,c});
    }
    cin >> m;
    for(int i=1;i<=m;i++)</pre>
    {
        int a,b;
        scanf("%d%d",&a,&b);
        query[a].push_back({b,i});
        query[b].push_back({a,i});
    }
    tarjan(1,0);
    for(int i=1;i<=m;i++) printf("%d</pre>
}
int main()
{
    solve();
    return 0;
}
```

3.4 DFS 序/树上差分

3.4.1 子树修改

```
(1) 单点修改 子树查询 : dfs 序相当于单点修改 区间查询 树状数组即
(2) 子树修改 单点查询 : dfs 序相当于区间修改 单点查询 维护序列的
→ 差分数组即可
(3) 子树修改 子树查询: dfs 序 相当于区间修改 区间查询 维护两个
→ dfs 序差分树状数组即可
*/
// (3)
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7, N=1e6+10;
int n,m,root,p[N];
11 tr1[N],tr2[N],res[N];
vector<int> e[N];
int l[N],r[N],tot;
int lowbit(int x)
   return x&-x;
}
void add(int x,ll c,ll tr[])
   for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;</pre>
}
11 sum(int x,ll tr[])
   ll res=0;
   for(int i=x;i;i-=lowbit(i)) res+=tr[i];
   return res;
}
```

```
11 prefix(int x)
    return (11)(x+1)*sum(x,tr1)-sum(x,tr2);
}
void dfs(int u,int fa)
    1[u]=++tot;
    for(auto v : e[u])
        if(v==fa) continue;
        dfs(v,u);
    }
    r[u]=tot;
}
void solve()
    cin >> n >> m >> root;
    for(int i=1;i<=n;i++) scanf("%d",p+i);</pre>
    for(int i=1;i<n;i++)</pre>
    {
        int a,b;
        scanf("%d%d",&a,&b);
        e[a].push_back(b);
        e[b].push_back(a);
    }
    dfs(root,0);
    for(int i=1;i<=n;i++) res[l[i]]=p[i];</pre>
    for(int i=n;i>0;i--) res[i]-=res[i-1];
    for(int i=1;i<=n;i++)</pre>

→ add(i,res[i],tr1),add(i,res[i]*i,tr2);

    while(m--)
    {
        int opt,a,x;
        scanf("%d%d", &opt, &a);
        if(opt==1)
        {
             scanf("%d",&x);
             add(1[a],x,tr1),add(r[a]+1,-x,tr1);
```

3.4.2 树链修改

```
树上差分:真正的节点值是整棵子树的差分数组值之和
(1) 修改路径上的所有点:变成修改单点的信息,修改一点,
  那么这一点到根的路径上的所有点都会修改
(2) 求单点点权 :子树和
(3) 求子树和 :推公式 与点的深度有关
具体来说:
(1) 点差分 :修改 u \to v 的路径上的所有点 --> 修改 u \to lca 和
→ v -> lca 的下面一个节点 两条链
          也就是 d[u]++,d[v]++,d[lca.father]--,d[lca]--;
(2) 边差分 :定义某一点代表这个点到其父亲节点的边 那么修改 u -> v
→ 路径上的所有边
          也就是 d[u]++,d[v]--,d[lca]-=2;
维护两个树状数组, 一个 d[u]
另一个 depth[u]*d[u] 的值
子树 u 的和 = sum(d[v] * (depth[v] - depth[u] + 1))
= sum \ tr2(l[u], r[u]) - sum \ tr1(l[u], r[u]) * (depth[u] - 1)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7, N=1e6+10;
int n,m,root,tot,idx;
int depth[N],a[N],pos[N],1[N],r[N],par[N];
int p[22][2*N];
vector<int> e[N];
11 tr1[N],tr2[N];
int lowbit(int x)
{
   return x&-x;
}
void add(int x,ll c,ll tr[])
{
```

```
if(!x) return;
    for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;</pre>
}
11 sum(int x,ll tr[])
{
    11 res=0;
    for(int i=x;i;i-=lowbit(i)) res+=tr[i];
    return res;
}
void dfs(int u,int fa)
{
    par[u]=fa;
    l[u]=++idx;
    depth[u]=depth[fa]+1;
    pos[u]=++tot;
    p[0][tot]=u;
    for(auto v : e[u])
        if(v==fa) continue;
        dfs(v,u);
        p[0][++tot]=u;
    r[u]=idx;
}
int lca(int u,int v)
    int a=pos[u],b=pos[v];
    if(a>b) swap(a,b);
    int k=31-__builtin_clz(b-a+1);
    if(depth[p[k][a]] < depth[p[k][b-(1<<k)+1]]) return p[k][a];
    else return p[k][b-(1 << k)+1];
}
void add_list(int u,int v,int x)
{
    int w=lca(u,v);
    add(1[u],x,tr1);
    add(1[u],(11)depth[u]*x,tr2);
    add(1[v],x,tr1);
    add(1[v],(11)depth[v]*x,tr2);
```

```
add(l[w],-x,tr1);
    add(1[w],(11)depth[w]*(-x),tr2);
    add(l[par[w]],-x,tr1);
    add(l[par[w]],(l1)depth[par[w]]*(-x),tr2);
}
11 query(int u)
{
   11 sum1=sum(r[u],tr2)-sum(1[u]-1,tr2);
   11 sum2=sum(r[u],tr1)-sum(1[u]-1,tr1);
   return sum1-sum2*(depth[u]-1);
void solve()
    cin >> n >> m >> root;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<n;i++)</pre>
        int a,b;
        scanf("%d%d",&a,&b);
        e[a].push_back(b);
        e[b].push_back(a);
    dfs(root,0);
    for(int j=1; j<=21; j++)</pre>
        for(int i=1;i+(1<<j)-1<=tot;i++)</pre>
             if(depth[p[j-1][i]] < depth[p[j-1][i+(1 << j-1)]])
\rightarrow p[j][i]=p[j-1][i];
             else p[j][i]=p[j-1][i+(1<< j-1)];
    for(int i=1;i<=n;i++) add_list(i,i,a[i]);</pre>
    while(m--)
    {
        int opt,a,b,x;
        scanf("%d%d", &opt, &a);
        if(opt==1)
        {
             scanf("%d%d",&b,&x);
             add_list(a,b,x);
        }
```

```
else if(opt==2)

printf("%lld\n",sum(r[a],tr1)-sum(l[a]-1,tr1));
    else printf("%lld\n",query(a));
}

int main()
{
    solve();
    return 0;
}
```

3.4.3 树链查询

```
(7) 单点修改 树链查询
维护所有树链 变成 子树修改 单点查询 再差分 变成 dfs 序上的单点修
→ 改 区间查询
(8) 子树修改 树链查询:
维护树链的差分 推公式得 维护 d[u] 和 d[u] * depth[u]
子树修改 = [l[u], r[u]] 区间
所有点 v \leftarrow x * (depth[v] - depth[u] + 1)
= x * depth[v] + x * (1 - depth[u])
后一项变成差分数组 d[i] 的单点修改 前一项变成 tr2 的单点修改
树链值 = sum_tr1[l[u],r[u]] + sum_tr2[l[u],r[u]] * depth[u]
// 1. 单点修改 2. 子树修改 3. 树链查询
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7, N=1e6+10;
int n,m,root,tot,idx;
int depth[N],a[N],pos[N],1[N],r[N],par[N];
int p[22][2*N];
vector<int> e[N];
11 tr1[N],tr2[N];
int lowbit(int x)
   return x&-x;
}
void add(int x,ll c,ll tr[])
{
   if(!x) return;
   for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;</pre>
}
11 sum(int x,ll tr[])
```

```
{
    11 res=0;
    for(int i=x;i;i-=lowbit(i)) res+=tr[i];
    return res;
}
void dfs(int u,int fa)
}
    par[u]=fa;
    l[u]=++idx;
    depth[u]=depth[fa]+1;
    pos[u]=++tot;
    p[0][tot]=u;
    for(auto v : e[u])
        if(v==fa) continue;
        dfs(v,u);
        p[0][++tot]=u;
    r[u]=idx;
}
int lca(int u,int v)
    int a=pos[u],b=pos[v];
    if(a>b) swap(a,b);
    int k=31-__builtin_clz(b-a+1);
    if(depth[p[k][a]] < depth[p[k][b-(1<<k)+1]]) return p[k][a];
    else return p[k][b-(1<< k)+1];
}
void query_one(int u,ll x)
{
    add(1[u],x,tr1);
    add(r[u]+1,-x,tr1);
}
void query_tree(int u,ll x)
    11 t=(1-depth[u])*x;
    add(1[u],t,tr1);
    add(r[u]+1,-t,tr1);
    add(1[u],x,tr2);
```

```
add(r[u]+1,-x,tr2);
}
11 query(int u)
    11 t=sum(1[u],tr2)*depth[u];
    t+=sum(1[u],tr1);
    return t;
}
11 query_list(int u,int v)
    int w=lca(u,v);
    11 res=query(u)+query(v)-query(w)-query(par[w]);
    return res;
}
void solve()
    cin >> n >> m >> root;
    for(int i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(int i=1;i<n;i++)</pre>
    {
        int a,b;
        scanf("%d%d",&a,&b);
        e[a].push_back(b);
        e[b].push_back(a);
    }
    dfs(root,0);
    for(int j=1; j<=21; j++)</pre>
        for(int i=1;i+(1<<j)-1<=tot;i++)</pre>
             if(depth[p[j-1][i]] < depth[p[j-1][i+(1 << j-1)]])
→ p[j][i]=p[j-1][i];
             else p[j][i]=p[j-1][i+(1<< j-1)];
    for(int i=1;i<=n;i++) query_one(i,a[i]);</pre>
    while(m--)
    {
        int opt,a,x;
        scanf("%d%d%d", &opt, &a, &x);
        if(opt==1) query_one(a,x);
        else if(opt==2) query_tree(a,x);
```

```
else printf("%lld\n",query_list(a,x));
}
int main()
{
    solve();
    return 0;
}
```

4 String

```
4.1 hash
base 要大于字符串元素种类
字符串元素不要映射成 0
 */
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7,N=2e5+10,base=131;
const int mod2=998244353,base2=13331;
int n,m,k;
int ha[N],b[N];
char s[N];
int hash_value(int l,int r)
                     \tt return \ (ha[r]-(ll)ha[l-1]*b[r-l+1]\mbox{\em mod+mod)\mbox{\em mod+mod)\mbox{\em mod+mod)}\mbox{\em mod+mod)\mbox{\em mod+mod)}\mbox{\em mod+mod)\mbox{\em mod+mod}\mbox{\em mod+mod)\mbox{\em mod+mod}\mbox{\em mod+mod)\mbox{\em mod+mod}\mbox{\em mod+mod+mod}\mbox{\em mod+mod}\mbox{\em mod+mod}\mbox{\em mod+mod}\mbox{\em mod+mod}\m
}
void solve()
                     scanf("%d%s",&n,s+1);
                    b[0]=1;
                     for(int i=1;i<=n;i++)</pre>
                                          b[i]=(11)b[i-1]*base\%mod;
                                          ha[i]=((l1)ha[i-1]*base+s[i])%mod;
}
int main()
{
                     solve();
                     return 0;
}
```

4.2 kmp

```
t = n - ne[n] 是 s 的最小循环覆盖 并且
其他的循环覆盖长度是 t 的倍数
假设 t/n, 那么 t 就是 s 的最小周期 否则 不存在周期
求 s 的 所有 border: ne[n] 是最长 border
ne[ne[n]] 是次长 以此类推
while(ne[n]) n=ne[n];
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7, N=1e6+10, M=1e5+10;
int n,m;
char s[N],p[M];
int ne[M],f[N];
void kmp()
{
   ne[1]=0;
   for(int i=2,j=0;i<=m;i++)</pre>
       while (j \&\&p[j+1]!=p[i]) j=ne[j];
       if(p[j+1]==p[i]) j++;
       ne[i]=j;
   }
   for(int i=1,j=0;i<=n;i++)</pre>
       while((j==m) | | (j \&\&p[j+1] !=s[i])) j=ne[j];
       if(p[j+1]==s[i]) j++;
       f[i]=j;
   }
}
```

4.3 exkmp

```
/*
求所有的 i s[i - n] 与 p 的最大前缀匹配
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7, N=2e5+10;
int n,m,k;
int z[N],Z[N];
char s[N],p[N];
void exkmp()
    p[m+1] = '@', s[n+1] = '#';
    z[1]=0;
    int L=1,R=0;
    for(int i=2;i<=m;i++)</pre>
        if(i>R) z[i]=0;
        else
            int k=i-L+1;
            z[i]=min(z[k],R-i+1);
        while(p[i+z[i]]==p[1+z[i]]) z[i]++;
        if(i+z[i]-1>R) L=i,R=i+z[i]-1;
    }
    L=0,R=0;
    for(int i=1;i<=n;i++)</pre>
        if(i>R) Z[i]=0;
        else
        {
            int k=i-L+1;
            Z[i]=min(z[k],R-i+1);
        while(s[i+Z[i]]==p[1+Z[i]]) Z[i]++;
```

```
if(i+Z[i]-1>R) L=i,R=i+Z[i]-1;
}
```

```
4.4 manacher
/*
最长回文子串问题
(1) 枚举中点 二分 + 字符串哈希 O(nlogn)
(2) manacher O(n)
mamacher
1. 首先插入无关字符 避免奇偶分类讨论 全部变成奇数情况 同时在首尾
→ 插入一个不可能和其他位置相等的哨兵 避免判边界
2. 记录一个 p[i] 表示以 i 为中点的最长回文半径 (包括中点)
3. 从前往后枚举中点 i 维护一个 [L,R] 区间 表示 < i 里 回文区间的
\rightarrow R 最大的区间 也就是 [m-p[m]+1,m+p[m]-1]
4. 考虑求 p[i]
 (1) 如果 R < i 直接暴力求 p[i]
 (2) 如果 R >= i 求点 i 在区间 [L,R] 里的对称点 k = 2m-i
      若 Lk > L 那么 p[i] = p[k]
      否则 Lk \leftarrow L 那么 p[i] 至少 = p[k] 然后暴力扩展
 求完 p[i] 别忘记更新 [L,R]
 最后 res = max(p[i]) - 1
每次暴力扩展时 R 一定会增大 而 R 最多增大 O(n) 因此总时间 O(n)
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7, N=11e6+10;
int n,m,k;
int p[N*2];
char s[N],t[N*2];
void manacher()
{
   t[0]='@';
   t[++m]='$';
   for(int i=1;i<=n;i++) t[++m]=s[i],t[++m]='$';</pre>
   t[m+1]='~';
   int M=0,R=0;
   for(int i=1;i<=m;i++)</pre>
      if(i>R) p[i]=1;
      else p[i]=min(p[2*M-i],R-i+1);
```

```
while(t[i-p[i]]==t[i+p[i]]) p[i]++;
    if(i+p[i]-1>R) M=i,R=i+p[i]-1;
}
int res=0;
for(int i=1;i<=m;i++) res=max(res,p[i]);
    printf("%d\n",res-1);
}</pre>
```

4.5 getmin

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7, N=2e5+10;
int n;
char s[N*2];
void getmin()
    for(int i=1;i<=n;i++) s[i+n]=s[i];</pre>
    int i=1,j=2;
    while(j<=n)</pre>
    {
        int k=0;
        while (k \le n \&\&s[i+k] == s[j+k]) k++;
        if(s[i+k]>s[j+k]) i+=k+1;
        else j+=k+1;
        if(i==j) j++;
        if(i>j) swap(i,j);
    }
    for(int l=i;l<=i+n-1;l++) printf("%c",s[1]);</pre>
}
```

5 Math 5.1 数论 5.1.1 线性筛 // 线性筛 #include <bits/stdc++.h> using namespace std; typedef long long 11; const int mod=1e9+7,N=2e5+10; int n,cnt; **int** p[N];//p[i]:i 的最小质因子 **int** pr[N];//所有质数 bool st[N]; //线性筛 void shai() { for(int i=2;i<=n;i++)</pre> if(!p[i]) p[i]=i,pr[cnt++]=i; for(int j=0;pr[j]*i<=n;j++)</pre> { p[pr[j]*i]=pr[j]; if(p[i]==pr[j]) break; } } } // long long 取模 0(1) 11 longlong_mod(ll a,ll b,ll m) { a%=m,b%=m;11 d=(long double)a*b/m; d=a*b-d*m;if(d>=m) d-=m; if(d<0) d+=m;</pre> return d; }

```
// 快速乘方法 O(logn)
11 longlong_mul(ll a,ll b,ll p)
{
   a\%=p,b\%=p;
   ll res=0;
   while(b)
   {
       if(b&1) res=(res+a)%p;
       a=(a+a)\%p;
   }
   return res;
}
// 区间筛: 求 [l,r] 之间的素数个数 l,r <= 1e14 r-l <= 1e7
// 我们知道一个合数一定有不超过其根号的质因子
//因此我们可以预处理 1e7 以内的质数 然后利用埃氏筛的思想
// 将 [1,r] 筛一遍 时间复杂度 O(n*loglogn)
int interval()
{
   ll 1,r;
   cin >> 1 >> r;
   if(l==1) l=2;
   for(int i=0;i<cnt;i++)</pre>
   {
       int t=pr[i];
       for(ll j=r/t*t; j>=l&&j>t; j-=t) st[j-l]=1;
   }
   int sum=0;
   for(int i=0;i<=r-1;i++) sum+=(!st[i]);</pre>
   return sum;
}
```

```
5.1.2 逆元
/*
逆元
(1) p 是质数
x = b \hat{p} - 2 \mod p
(2) p 不是质数
扩展欧几里得算法
b * x mod p = 1 \rightarrow b * x + p * y = 1
求得一个特殊解后 变成 O - p-1 范围内即可
(3) 求 1 - n 逆元 inv[i] = (p - p / i) * inv[p % i] % p;
(4) 求 1! - n! 逆元
先求出来 n! 逆元 然后从后往前递推 inv[i-1] = inv[i] * i % p;
(5) 求 a1 a2 ... an 的逆元
前缀乘积 si 先求出 sn 的逆元 然后 invs[i-1]= invs[i] * a[i] %
\hookrightarrow p;
mathrew{m} inv[i] = s[i-1] * invs[i] % p; (s[0]=1)
(6) a / b mod p 如果 b p 不互质
  a / b \mod p = a \mod (p * b) / b
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=3e6+10;
ll res,m1,a1,m2,a2;
int n,a[N],b[N];
int qmi(int a,int k,int p)
{
   int res=1;
   while(k)
       if(k&1) res=(ll)res*a%p;
       a=(11)a*a%p;
```

```
k >> = 1;
    return res;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
    if(!b)
    {
        x=1, y=0;
        return a;
    11 d=exgcd(b,a%b,y,x);
    y=y-a/b*x;
    return d;
}
// (1)
int inv1(int b,int p)
    return qmi(b,p-2,p);
}
// (2)
int inv2(int b,int p)
{
    11 x,y;
    11 d=exgcd(b,p,x,y);
    if(d!=1) return -1;
    return (x%p+p)%p;
                        //x 通解 x = x0 + b/d * k 同余 b/d,
   同余 b
}
//求 1 - n 的逆元
int inv[N];
void inv3(int n,int p)
    inv[1]=1;
    for(int i=2;i<=n;i++)</pre>
        inv[i]=(11)(p-p/i)*inv[p\%i]\%p;
}
//求 1! - n! 逆元
```

```
int infact[N];
void inv4(int n,int p)
{
    int res=1;
    for(int i=2;i<=n;i++) res=(ll)res*i%p;
    infact[n]=inv1(res,p);
    for(int i=n-1;i>0;i--)
        infact[i]=(ll)infact[i+1]*(i+1)%p;
}
```

5.1.3 康托展开

```
康托展开:将1-n的任一排列 映射到1-n!某个唯一的数上 (其实
→ 是字典序的排名)
逆康托展开: 逆映射 数 -> 排列
应用:(1) 将某一排列映射到唯一的数字上, 便于记录, 如八数码
    (2) 单纯求 某一排列 有多少个排列 字典序比他小
    (3) 求排在第 & 位的排列是什么 (逆康托展开)
康托展开:数位 dp 的思考方式 先考虑第一位不同的
找 2-n 中比 a1 小的数的个数 b1 那么 res+=b1*(n-1)!
现在将第一位固定为 a1 考虑第二位 .. 类推
到 b[] 数组 表示数组右边比这一位的元素小的元素个数 res = sum (
\rightarrow bi * (n-i)!)
(1) O(n~2) 朴素求法
(2) D(nlogn) 树状数组优化
逆康托展开: 类似进制转换 每次 bi = x / (n-i)! x = (n-i)!
         得到 b[] 数组 再推出 a[] 暴力 O(n~2)
                平衡树优化 D(nlogn)
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const int mod=998244353,N=1e6+10;
int n,m,k;
int a[N],tr[N];
int fact[N];
void init()
{
   fact[0] = fact[1] = 1;
   for(int i=2;i<=n;i++) fact[i]=(11)fact[i-1]*i\( mod; \)</pre>
}
```

```
// 暴力做法
11 cantor()
{
    ll ans=1;
    for(int i=1;i<n;i++)</pre>
        int cnt=0;
        for(int j=i+1; j<=n; j++)</pre>
             if(a[j] < a[i]) cnt++;</pre>
        ans+=cnt*fact[n-i];
    }
    return ans;
}
int lowbit(int x)
{
    return x&-x;
}
void add(int x,int c)
    for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;</pre>
}
int sum(int x)
{
    int res=0;
    for(int i=x;i;i-=lowbit(i)) res+=tr[i];
    return res;
}
//树状数组
int cantor2()
{
    ll ans=1;
    for(int i=n;i>0;i--)
    {
        int cnt=sum(a[i]);
        ans+=(11)cnt*fact[n-i]%mod;
        add(a[i],1);
        ans%=mod;
    }
    return ans;
```

```
}
vector<int> decantor(ll x)
{
    x--;
    vector<int> b(n+1,0),a(n+1,0);
    for(int i=1;i<=n;i++)</pre>
    {
        b[i]=x/fact[n-i];
        x\%=fact[n-i];
    }
    bool st[N]={0};
    for(int i=1;i<=n;i++)</pre>
        int cnt=0;
        int j;
        for(j=1;j<=n;j++)</pre>
             if(st[j]) continue;
             if(cnt==b[i]) break;
             cnt++;
        }
        a[i]=j,st[j]=1;
    }
    return a;
}
int main()
{
    cin >> n;
    init();
    return 0;
}
```

5.1.4 整除分块

```
整除分块:对于 n/i (下取整 1 <= i <= n)
其取值只有 O(sqrt n) 个
1. 计算 sum (n/i) i 属于 [1,n] 下取整
根据整除分块的性质 每次计算一整块 那么时间复杂度 O(sqrt n)
如何 O(1) 计算一整块: 对于每一块的左端点 l 块内的值 d=n/l,
块内的右端点就是满足 i*d<=n 的最大的 i
故 r = n/d 下取整
2. 计算 sum(n/i) 上取整
 上取整 n/i = (n-1) / i + 1
3. 计算 sum(k mod i) i[1,n]
 k \mod i = k - k/i * i 每一块都是等差数列
 注意边界 if(!d) r=n; else\ r = min(n,k/d);
4. 计算 sum(f(i)*(n/i))
  一类题 可以预处理 f(i) 的前缀和 s[i] 然后整除分块
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7, N=2e5+10;
int n,m,k;
int p[N];
// sum (n/i)
11 block()
{
   ll sum=0;
   for(int l=1;1<=n;1++)</pre>
       11 d=n/1,r=n/d;
       sum+=(r-1+1)*d;
       1=r;
   }
   return sum;
```

```
}
int main()
{
    return 0;
}
```

5.1.5 dfs 求因子

```
因子个数上界
n \le 1e8 \ d(n) \le 1e3
n \le 1e18 \ d(n) \le 1e5
n = a * b   a, b <= 1e9
分解质因数后 dfs 出 n 的因子
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pii;
// dfs 枚举因子
vector<pii> prime;
vector<pair<11,11>> factor;
void dfs(int id,ll k1,ll k2)
    if(id==prime.size())
        factor.push_back({k1,k2});
        return;
    }
    int p=prime[id].first,cnt=prime[id].second;
    11 pow=1;
    for(int i=1;i<=cnt;i++) pow*=p;</pre>
    ll res=1;
    for(int i=0; i<=cnt;i++)</pre>
    {
        dfs(id+1,k1*res,k2*(pow/res));
        res*=p;
    }
}
```

5.2 线性代数

```
5.2.1 矩阵乘法
```

```
dp[n][m] 直接 dp 时间复杂度 O(nm)
矩阵乘法 D(m^3*logn)
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7,N=102;
11 n,m;
11 a[N][N],f[N];
void fa()
    11 t[N] = \{0\};
    for(int i=1;i<=m;i++)</pre>
        if(f[i])
             for(int j=1; j<=m; j++)</pre>
                 if(a[i][j])
                     t[j]+=f[i]*a[i][j],t[j]%=mod;
    memcpy(f,t,sizeof t);
}
void aa()
    11 t[N][N]={0};
    for(int i=1;i<=m;i++)</pre>
        for(int k=1;k<=m;k++)</pre>
             if(a[i][k])
                 for(int j=1; j<=m; j++)</pre>
                     if(a[k][j])
                          t[i][j]+=a[i][k]*a[k][j],t[i][j]%=mod;
    memcpy(a,t,sizeof t);
}
void qmi(ll x)
```

```
while(x)
    {
        if(x&1) fa();
        aa();
        x>>=1;
    }
}
void solve()
    cin >> n >> m;
    for(int i=2;i<=m;i++) a[i][i-1]=1;</pre>
    a[1][m]=a[m][m]=1;
    f[m]=1;
    qmi(n);
    printf("%d\n",f[m]);
}
int main()
{
    solve();
    return 0;
}
```

5.2.2 gauss

```
// 高斯消元 O(n^3)
#include <bits/stdc++.h>
using namespace std;
const int mod=1e9+7, N=110;
const double eps=1e-10;
int n,m,k;
double a[N][N], b[N];
void gauss()
{
    int l=1;
    for(int i=1;i<=n;i++)</pre>
        for(int j=1; j<=n; j++)</pre>
             if(abs(a[j][i])>abs(a[l][i]))
             {
                 for(int k=i;k<=n;k++) swap(a[j][k],a[l][k]);</pre>
                 swap(b[j],b[l]);
             }
        }
         if(abs(a[l][i])<eps) continue;</pre>
        for(int j=1; j<=n; j++)</pre>
             if(j!=l&&abs(a[j][i])>eps)
                 double d=a[j][i]/a[l][i];
                 for(int k=i; k \le n; k++) a[j][k]-=d*a[l][k];
                 b[j] = d*b[1];
             }
        1++;
    }
    for(int i=1;i<=n;i++)</pre>
    {
         if(abs(b[i])>eps)
```

5.3 博弈论

5.3.1 nim

/*

一.nim 游戏

n 堆石子,每一堆 xi 个,轮流取石子,每次从某堆中取石子,至少取一个,无法取石子的玩家输

结论: $x1 \ ^{\circ}x2 \ ^{\circ}\dots \ ^{\circ}xn = 0 \ P$ 态 $x1 \ ^{\circ}x2 \ ^{\circ}\dots \ ^{\circ}xn != 0 \ N$ 态

证明:

终态 0 ~ 0 ~ ... ~ 0 = 0 是 P 态

小范围内结论成立, 下证任意范围都成立

对于任意 x1 $^{\circ}x2$ $^{\circ}\dots$ $^{\circ}xn=0$ 无论如何取, x1 $^{\circ}x2$ $^{\circ}\dots$ $^{\circ}xi'$

反证,如果 = 0 ,那么有 xi = xi' ,但是 对于任意 != 0 的情况 , 一定 有取法使得 = 0 ,因此是 N 态

下面构造一种取法: 设 x1 $^{\circ}$... $^{\circ}$ xn = b1b2...bn 其中 bi 为二进制 \rightarrow 位

假设二进制中最高位 1 是 bi ,那么在 x 中寻找一个 xj ,使得 xj 的 \rightarrow bi 位为 1 ,这样的 xj 一定存在

然后对于 bi+1 - bn , 如果 某一位是 o , 那么 xj 的这一位不变,否则, xj 的这一位取反

这样,就得到了一个 xj',并且满足 xj' < xj , x1 ~ ... ~ xj' ~ ... \rightarrow ~ xn = 0 是合法构造

二. 反常 nim 游戏 无法取石子的玩家赢

结论:如果 x1 = x2 = ... = xn = 1, 那么结论与 nim 相反 (异或和为 O, N; 非 O, P) 否则, 结论与 nim 相同

三. 类 nim

每次操作可以选一堆石子 放或取 石子

结论仍然与 nim 一样,因为不管加或减,异或和 = 0 的,操作后一定 != \rightarrow 0

四. 分裂 nim 游戏 n 堆石子, 每次可以选某一堆取石子, 或者将其分裂为两堆 正常规则

分析:拆成 n 个相同的组合游戏,只看一堆来分析, $SG(0)=0,SG(1)=1,SG(2)=mex~(0,1,1^1)=2,\ldots$ 打表得到结论 SG(0)=0, SG(4k+1)=4k+1, SG(4k+2)=4k+2, SG(4k+3)=4k+4, SG(4k+4)=4k+3

如果是反常规则

仍然按照正常规则 来求得所有点的 SG 值, 然后和反常 nim 一样, 特判 \Rightarrow \Rightarrow 1, 如果全 1, 则结论相反

五.Fibonacci nim

初始有 n 个石子 先手第一次可取 1 - n-1 个石子, 之后每一次可取的数 \rightarrow 量最多为上一个人取的两倍 不能取的输

结论:n = Fibonacci 数 <=> n 是 P 态 , n != Fibonacci 数 <=> n 是 N 态

Zeckendorf 定理:每个正整数都可以唯一的写成若干个不相邻的 \rightarrow Fibonacci 数 (不包括第一个 Fib 数,1,2,3,5,8) 的和 如何得到这种表示:每次贪心地选取小于等于 n 的最大的 Fibonacci 数

必胜策略 : 1. 若 n != Fib 数, 假设 n = Fx1 + Fx2 + ... + Fxk , \rightarrow 其中 xi 递减, 则取 Fxk, 即最小项

故最终只会是先手将 n 取完, 先手胜

- 2. 若 n = Fib = Fx, 假设先手取 $m \land m < Fx$
- (1) 若 m >= Fx-2 , 那么有 Fx m <= Fx Fx-2 = Fx-1 \leftrightarrow < 2 * Fx-2 , 因此后手直接取 Fx m
- (2) 若 m < Fx-2 555 m >= Fx-4 , 取 Fx-2 m, 剩下
- → Fx-1, 此时下一轮先手并不能一次取完
 - (3) 若 m < Fx-4 ੴ m >= Fx-6 , 取 Fx-4 m, 剩下
- \rightarrow Fx-1 + Fx-3, 且下一轮先手并不能取完 Fx-3

实际操作时, n - m = Fx1 + Fx2 + ... + Fxk, 后手取 Fxk 且一定可以取到 (由上面的 (1)(2)(3) 可证)

七.k 倍动态减法

有 n 个石子 先手第一次可取 1 - n - 1 个石子,之后每一次可取的数量最 \rightarrow 多为上一个人取的 k 倍 不能取的输

1.k=1

结论: $n = 2^i$ <=> $n \neq P$ 态 $n!=2^i$ <=> $n \neq N$ 态

```
必胜策略 (证明)
(1) n = 2^{i} ,先手取 n 的二进制表示的最后一位 1 故后手并不能
→ 拿走倒数第二位 1, 因此并不能一次取完
   故最终一定是 n 只剩 1 个 1, 然后先手取走
(2) n = 2^i , 由于先手不能取完,因此先手取完后,后手一定可以取到
→ 最后一位 1
2.k=2
Fibonacci nim
3.k > 2
需要构造某个数列,这个数列满足的性质是,任何正整数都能被数列中若干
→ 项表示出来, 且表示的这几项满足
ax1 > k * ax2 , ax2 > k * ax3, ...
假设已经构造出了前 i-1 个数, 第 i 个数 ai, 前 i-1 项所能构造出来
→ 的最大数是 bi-1, 那么有 ai = bi-1 + 1
如何更新 bi: 找到 满足 ai > k * aj 最大的 j, 那么 bi = ai + bj
构造出以后,如果 n = 数列中的某一项 ,那么是 P 态,否则是 N 态;
最优策略仍然是 将 n 用数列若干项表示, 然后取最小的那一项
// hdu 2486
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int,int> pii;
const int mod=1e9+7, N=1e6+10;
int n,m,k;
int a[N],b[N],tot;
void print()
{
   int res=0;
   for(int i=tot;i>=1;i--)
      if(n>=a[i]) n-=a[i],res=a[i];
   printf("%d\n",res);
}
void solve()
```

```
a[1]=1,b[1]=1,tot=1;
    cin >> n >> k;
    for(int i=2,j=1;a[i-1]<n;i++)</pre>
    {
        a[i]=b[i-1]+1,tot++;
        while((11)k*a[j+1] < a[i]) j++;
        if(a[j]*k<a[i]) b[i]=a[i]+b[j];
        else b[i]=a[i];
    }
    if(a[tot] == n) printf("lose\n");
    else print();
}
int main()
{
    int _;
    cin >> _;
    for(int i=1;i<=_;i++)</pre>
        printf("Case %d: ",i);
        solve();
    }
    return 0;
}
```

5.3.2 其他模型

/*

一. 普通 Bash

n 个物品,每次取 1-m 个,最后无法取的人输

归纳知, SG(x) = x % (m+1), 故若 n % (m+1) == 0, P 态, 否则是 N \rightarrow 态

最优策略就是,如果当前 x % (m+1) != 0 ,则取 x % (m+1) 个,否则 \hookrightarrow 任取

二.chomp!游戏

n*m 矩阵,每个格子放饼干,每次可以选则一块饼干 (x,y),并且将以这 块饼干为左上角的矩形全部吃掉,

吃到 (1,1) 这块饼干的人输

结论:如果 n = m = 1,P态,否则是 N态

证明 (存在性证明) :现在假设先手取 (n,m), 如果后手必输, 那么得证, \rightarrow 否则如果后手有必胜策略 (a,b),

那么先手就可以取 (a,b) 而不是 (n,m), 因此一定

→ 是先手必胜

由于是存在性证明,因此并不能给出必胜策略,目前还没有构造出具体的必 → 胜策略

扩展:可以扩展到任意一个存在最大元的有限偏序集 S, 每次选择 x 并且 ϕ 移走 ϕ 和所有比 ϕ 大的元素, 取走最后一个元素的人输

结论:如果 S 中元素个数 > 1 那么先手必胜

当然也可以是有最小元,每次移走比 x 小的元素,那么先手必胜具体例子

- (1) 三维 chomp 游戏
- (2) 由 n 的因子构成的集合, x <= y 当且仅当 x/y n 是最大元, 故 n > 1, N 态, n = 1, P 态
- (3)1-n个数,每次选择一个集合中的数 x,并删除集合中所有 x 的约
- → 数,取走最后一个元素的人输 1 是最小元,故 n>1 先手必胜
- (4) 给定有根树, 初始节点为白色, 每次可以选择一个白色节点并将此节点
- → 到根的路径上所有的节点全部染黑,无法染色的人赢 root 相当于最大元,因此如果节点个数 > 1,先手必胜

三.Wythoff 游戏

两堆石子 n,m,每次可以从一堆中取出若干个,或者从两堆石子同时取走若 \rightarrow 干个

(等价的游戏:在棋盘上移动,每次可以向左/上移动若干步,或者向左上 → 45 度移动若干步)

打表观察得到结论:假设 $n \le m$,得到 P 态的一堆数对 (a,b),规律是 ai = [i*C] ,bi = [i*C*C] ,其中 C = (1 + 根号 5) / 2, \rightarrow [] 代表下取整 且 ai = mex(aj,bj) j < i,bi = ai + i

Beatty 序列:由一个正无理数 r 产生的序列 Br = [r*1], [r*2],

r = [r*3], ...

Rayleigh 定理: 如果正无理数 r, s 满足 1/r + 1/s = 1, 那么 r = 1

即任意一个正整数存在且仅存在于 Br 或 Bs 中

如何判断: $n,m,n \ll m$, i = m-n, if(n==i*C) P 态, else N 态 最优策略:同取 if(n>i*C) $n,m \rightarrow i*C$, i*C+i

 \mathbb{R} n i = (m-1)/(C*C) + 1 , t = i * C , if(n>t) $n \rightarrow t$ \mathbb{R} m i = (n-1)/C + 1 , t = i * C*C , if(m>t) $n \rightarrow t$

四. 树上删边

给定一棵树,每次删一条边,删除之后如果某个支不与地面/根相连,那么 → 也一并删去

- 1. 如果树是一条链, 那么 = nim 游戏, sq(x) = x
- 2. Colon 原则:假设 G1, G2 是两个树上删边游戏, 如果 sq(G1) =
- \rightarrow sg(G2) , 那么将 G1 的根新加一条边连到更低的节点作为新的根 \rightarrow (地面)

变成一个新的树上删边游戏 H1, 同理 G2 变成 H2, 那么有结论 sg(H1) \rightarrow = sg(H2)

证明: 已知 sg(G1) = sg(G2), 证明 sg(H1) = sg(H2), 等价于证明 $H1 \rightarrow + H2$ 是 P 态

假设先手删 H1 新加的那条边,那么后山删 H2 新加的边 ,后手胜 否则,先手删 G1 内部的边,那么有两种情况

- (1) sg(G1') < sg(G1) , 那么后手一定可以操作使得 sg(G2') = sg(G1') , 因为 sg(G1) = sg(G2),
 - (2) sg(G1') > sg(G1) , 那么后手也操作 G1 , 使得 sg(G1')
- → 变回 sg(G1), 由 sg 的定义知这是一定可以的

故后手能一直保持 sq(G1) = sq(G2), 直到 sq(G1) = sq(G2) =

→ 0,这时先手只能选择新加的边,因此是 P 态

故 sg(H1) $^{sg(H2)} = 0$, sg(H1) = sg(H2)

- 3. 结论 由 1, 2, 假设 G2 是链, 那么 sg(H2) = sg(G2) + 1, 故 sg(H1) = sg(G1) + 1
- 故得出结论 sg(u) = xorsum (sg(v) + 1) , v 是 u 所有的儿

```
*/
// Wythoff
#include <bits/stdc++.h>
using namespace std;
int main()
{
       int a, b, cha, c;
       double k=(sqrt(5.0)+1)/2;
       while (scanf("%d%d", &a, &b) && (a+b)!=0)
              if(a==b) //如果相同, 可以一次取完
              {
                      printf("1\n0 0\n");
                      continue;
              if(a>b) swap(a, b);//a 代表小的, 代表大的
              cha=b-a;//求差
              c=int(cha*k);//计算如果 b 固定的话, a 应该是多少
              if(c==a)//如果相等,那么先手必输
                      printf("0\n");
              else
              {
                      printf("1\n");
                      int bb=c+cha;//计算如果 c 当做小的,大
→ 的应该是多少
                      if(b-bb==a-c)//判断这个可不可以两堆同时
                             printf("%d %d\n", c, bb);
                      for(int i=a-1, j=1; i>=1; i--,
  j++)//固定 a, 求另一个数
                      {
                             if(int(j*k)==i)
                             {
                                    printf("%d %d\n",
\rightarrow int(j*k), a);
                                    break;
                             }
                      for(int i=b-1, j=1; i>=1; i--,
→ j++)//固定 b, 求另一个数
```

6 杂项

6.1 根号分治

```
1. 给一个 n 点 m 边的图, 每个点初始为白色 q 个询问 有两种类型 n
\rightarrow <= 2e5 m,q <= 4e5
1. 将一个点变色 即白变黑 黑变白
2. 查询一个点邻接有多少个黑点
n 个点 按照度的不同 分成两类 deg > sqrt(n) 的称为大点 个数不超过
\rightarrow sqrt(n) \uparrow
deq < sqrt(n) 的称为小点
考虑查询: 如果是 小点 那么可以直接暴力统计
如果是大点 那么不能暴力统计了 可以修改时维护大点的答案 O(sqrt(n))
考虑修改: 要维护大点的答案 所以将这个点所有邻接的大点的答案都修
→ 改一下 O(sqrt(n))
当然每个点周围的大点需要先预处理 O(m)
2. 给定无向图 n 个点 m 条边 求三元环的个数
根号分治
按 点的度 重新建边 任意一条边 点度小的指向点度大的 点度相同的, 编
→ 号小的指向编号大的 变成新图
不难知道新图是有向无环的
点度小的指向点度大的 保证了 新图 任意一个点的出度 <= sqrt(m)
而原图中的任意三元环 i-j-k i< j< k 在新图中一定会以 i->j j->k
→ i->k 出现
因此第一层循环点 i 第二层循环出边 对应的点 j 第三层循环点 j 的出
\rightarrow 边 对应点 k 判断 i 是否指向 k (预处理)
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod=1e9+7, N=1e5+10, M=2*N;
int n,m,k;
int h[N],e[M],ne[M],d[N],in[N],idx;
pair<int,int> edge[M];
```

```
void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void solve()
{
    cin >> n >> m;;
    for(int i=0;i<m;i++)</pre>
    {
        int u,v;
        scanf("%d%d",&u,&v);
        d[u]++,d[v]++;
        edge[i]=\{u,v\};
    }
    for(int i=1;i<=n;i++) h[i]=-1;</pre>
    for(int i=0;i<m;i++)</pre>
        int u=edge[i].first,v=edge[i].second;
        if(d[u]>d[v]) swap(u,v);
        else if(d[u]==d[v])
             if(u>v) swap(u,v);
        add(u,v);
    }
    ll res=0;
    for(int i=1;i<=n;i++)</pre>
        for(int j=h[i];~j;j=ne[j]) in[e[j]]=i;
        for(int j=h[i];~j;j=ne[j])
             int u=e[j];
             for(int k=h[u];~k;k=ne[k])
                 if(in[e[k]]==i) res++;
    }
    cout << res;</pre>
}
int main()
{
```

```
solve();
return 0;
}
```