Dynamic Indexing

When the collection gets updated, how to update our index?

How to deal with changes in the collection?

Periodically re-index from scratch!

Can we do better?

What if new documents must be indexed quickly?

Auxiliary Index

- Keep two indexes
 - Main Index
 - Keep invalidation bit to indicate deletion.
 - Auxiliary Index (for new files)
 - Periodically (or when Aux. Index becomes too large) merge auxiliary index with main index.
- Search in both. Merge the results.

Can we do better?

Main Index and Auxiliary Index

Merge

Merge

Logarithmic Merge

Logarithmic Merge

Logarithmic Merge

Quiz

- What is the overall index construction time? (choose the best answer)
 - $\theta(1)$
 - θ(T/n)
 - θ(T^{2/n})
 - $\theta(\log(T/n))$
 - $\theta(T \log(T/n))$

Distributed Indexing

How to leverage cloud computing infrastructure and distributed computing frameworks for indexing?

Indexing with the Map-Reduce Framework

Input splits sent to Mappers

Mappers process the input

Aggregate the results in reducers

Map-Reduce Framework

Picture Source: Internet.

Indexing with the Map-Reduce Framework

Input splits sent to Mappers

Mappers process the input

Aggregate the results in reducers

Indexing

Summary

- We discussed
 - Blocked Sort-based Indexing
 - Single-pass In-memory Indexing
 - Distributed Indexing
 - Dynamic Indexing
- Advances in hardware, networking and software capabilities have led to wide variety of techniques for efficient indexing.