Analysis

Teil I Folgen und Reihen

1 Konvergenz von Folgen

Def. (1) Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls

 $\forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N}, \ \forall n \ge N \colon |a_n - a| < \epsilon.$

Für \mathbb{R}^d muss gelten $||a_n - a|| < \epsilon$.

Def. (2) Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls es $l \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbf{N}^* : a_n \notin] l - \varepsilon, l + \varepsilon[\}$ endlich ist.

Thm. (Monotone) Sei $(a_n)_{n\geqslant 1}$ monoton fallend und nach unten beschränkt. Dann konvergiert $(a_n)_{n\geqslant 1}$ mit Grenzwert $\lim_{n\to\infty} a_n = \inf\{a_n : n\geqslant 1\}$.

Thm. (Cauchy) Die Folge $(a_n)_{n\geqslant 1}$ ist genau dann konvergent, falls $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ so dass $|a_n - a_m| < \varepsilon \quad \forall n, m \geqslant N$

Thm. (Sandwich) Die Folge $(a_n)_{n\geqslant 1}$ konvergiert zu a, falls $(b_n)_{n\geqslant 1}$, $(c_n)_{n\geqslant 1}$ existieren mit Grenzwert a und $\forall n\ge 1$: $b_n\le a_n\le c_n$.

2 Konvergenz von Reihen

Def. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert absolut (\Rightarrow konvergent), falls $\sum_{k=1}^{\infty} |a_k|$ kovergiert.

Thm. (Cauchy) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls. $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ mit $\begin{vmatrix} \sum_{k=n}^{m} a_k \\ k \end{vmatrix} < \varepsilon \quad \forall m \geqslant n \geqslant N$

Thm. (Ratio) Sei $(a_n)_{n\geqslant 1}$ mit $a_n\neq 0 \quad \forall n\geqslant 1$. Falls

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$$

dann konvergiert die Reihe absolut. Falls $\liminf_{n\to\infty} \square > 1$ divergiert die Reihe.

Thm. (Root) Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut. Falls $\square > 1$, dann divergiert die Reihe.

Thm. (Alternating) Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0 \quad \forall n\geqslant 1$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

und es gilt $a_1 - a_2 \leq S \leq a_1$.

3 Andere Aussagen

Lem. (Bernouilli) $(1+x)^n \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1.$

Thm. (Teilfolge) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

Thm. (Vektorfolge) $\lim_{n\to\infty} a_n = b$ genau dann wenn $\lim_{n\to\infty} a_{n,j} = b_j$ $\forall 1 \leq j \leq d$.

Def. (LimSup, LimInf) Sei a_n beschränkt, definieren wir

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \sup \{ a_k : k \geqslant n \}$$

$$\liminf_{n\to\infty} a_n := \lim_{n\to\infty} \inf\{a_k : k \geqslant n\}$$

4 Bekannte Grenzwerte

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} n^a q^n, \ 0 \le q \le 1, \ a \in \mathbb{Z} = 0$$

$$\lim_{n \to \pm \infty} \left(1 \pm \frac{x}{n}\right)^n = e^{\pm x}$$

$$\lim_{n \to \infty \land f(n) \to \infty} \left(1 + \frac{1}{f(n)}\right)^{f(n)} = e$$

$$\lim_{n \to \infty \land f(n) \to \infty} \left(1 + f(x)\right)^{\frac{1}{f(x)}} = e$$

Teil II Stetige Funktionen

Def. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist stetig falls sie in jedem Punkt von D stetig ist.

1 Stetigkeit an einem Punkt

Def. (Epsilon) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\varepsilon > 0$

ein $\delta > 0$ gibt, so dass für alle $x \in D$ gilt:

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

Thm. (Sequence) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist genau dann in x_0 stetig, falls für jede Folge $(a_n)_{n \ge 1}$ in D

$$\lim_{n \to \infty} a_n = x_0 \Longrightarrow \lim_{n \to \infty} f(a_n) = f(x_0)$$

gilt.

Thm. (Sidewise) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

gilt.

Thm. (Differentiable) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls sie x_0 differenzierbar ist.

2 Eigenschaften

Thm. (Zwischenwertsatz) Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \longrightarrow \mathbb{R}$ eine stetige Funktion und $a, b, \in I$. Für jedes y zwischen f(a) und f(b) gibt es ein x zwischen a und b mit f(x) = y.

Thm. (Min-Max) Sei $f: I = [a, b] \longrightarrow \mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u \in I$ und $v \in I$ mit

$$f(u) \leqslant f(x) \leqslant f(v) \quad \forall x \in I$$

und f ist beschränkt

Thm. (Umkehrabbildung) Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig, streng monoton. Dann ist $J := f(I) \subset \mathbb{R}$ ein Intervall und $f^{-1}: J \longrightarrow I$ ist stetig, streng monoton.

- 3 Konvergenz von Funktionenfolgen
- 4 Die Exponentialfunktion
- 5 Trigonometrische Funktionen
- 6 Grenzwert an einem Punkt

Def. (Häufungspunkt) $x_0 \in \mathbb{R}$ ist ein Häufungs-punkt der Menge D falls $\forall \delta > 0$ gilt:

$$(]x_0 - \delta, x_0 + \delta [\setminus \{x_0\}) \cap D \neq \emptyset$$

Def. (Grenzwert) $\lim_{x \to x_0} f(x) = A \text{ mit } A \in \mathbb{R},$ $f: D \longrightarrow \mathbb{R}$, falls $x_0 \in \mathbb{R}$ ein Häufungspunkt ist und $\forall \varepsilon > 0 \quad \exists \delta > 0$

$$\forall x \in D \cap (]x_0 - \delta, x_0 + \delta [\setminus \{x_0\}) : |f(x) - A| < \varepsilon$$

Teil III Differenzierbare Funktionen

Def. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist differenzierbar falls sie in jedem Punkt von D differenzierbar ist.

1 Differenzierbarkeit

Def. f ist in x_0 differenzierbar falls

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Falls $x = x_0 + h$, ist dies äquivalent zu

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

2 Abbleitungen

Thm. (Ableitungsregeln)

· Summenregel

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

· Produktregel

$$(f \cdot q)'(x_0) = f'(x_0)q(x_0) + f(x_0)q'(x_0)$$

· Quotientenregel

$$\left(\frac{f}{g}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

· Kettenregel

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$