Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

2	R_{Λ}	DE.	Dτ	ОТ
/.		DE I		.,.

1	Mason's Gain Formula		1	2.1 Introduction
2	Bode	Bode Plot		2.2 Example
	2.1	Introduction	1	3 Second order Sy
	2.2	Example	1	3.1 Damping
3	Secon	nd order System	1	3.2 Example 4 Routh Hurwitz Cr
	3.1	Damping	1	
	3.2	Example	1	4.1 Routh Array
				4.2 Marginal Stability
4	Routh	Routh Hurwitz Criterion		4.3 Stability
	4.1	Routh Array	1	5 STATE-SPACE MO
	4.2	Marginal Stability	1	
	4.3	Stability	1	5.1 Controllability and Observa
				5.2 Second Order System
5	State-	State-Space Model		6 Nyquist Plo
	5.1	Controllability and Observability	1	7 Compensator
	5.2	Second Order System	1	8 Routh Hurwitz Ci
6	Nyquist Plot		1	8.1 Stability
				8.1. The plant transfer function
7	Compensators		1	$G(s) = \left(K_P + \frac{K_I}{s}\right) \left(\frac{1}{s(s)}\right)$
8	Routh	Routh Hurwitz Criterion		s / s
	8.1	Stability	1	When the plant operates in

Abstract-This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

- YSTEM
 - RITERION
 - ODEL
- biity
 - T

 - RITERION
- is given as

$$G(s) = \left(K_P + \frac{K_I}{s}\right) \left(\frac{1}{s(s+2)}\right) \tag{8.1.1}$$

n a unity feedback configuration, the condition for the stability of the closed loop system is

- a) $K_P > \frac{K_I}{2} > 0$ b) $2K_I > K_P > 0$
- c) $2K_I < K_P$
- d) $2K_I > K_P$

Solution: The closed Loop Transfer function for unity feedback is

$$\frac{G(s)}{(1+G(s))} = \frac{(K_P s + K_I)}{s^2(s+2) + (K_P s + K_I)}$$
(8.1.2)
$$= \frac{(K_P s + K_I)}{s^3 + 2s^2 + K_P s + K_I}$$
(8.1.3)

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 8.2

Using the Routh Hurwitz tabular form:

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} \begin{vmatrix} 1 & K_{P} \\ 2 & K_{I} \\ \frac{2K_{P} - K_{I}}{2} & 0 \\ K_{P} \end{vmatrix}$$
 (8.1.4)

Sufficient condition for Routh-Hurwitz Stability Criterion:- The sufficient condition is that all the elements of the first column of the Routh array should have the same sign.

For a system to be stable:

$$K_P > 0$$
 (8.1.5)

$$2K_P - K_I > 0 (8.1.6)$$

$$K_P > \frac{K_I}{2} > 0$$
 (8.1.7)

So, (8.1.7) is the required condition for system to be stable.

8.2. Verify your result by plotting the gain and phase plots of (8.1.3) for different values of K_P and K_I .

Solution: For a system to be stable Gain Margin should be greater than 1 and Phase Margin Should be Positive.

The following code plots for $K_P = 1$ and $K_I = 0.5$ Fig. 8.2

- The Phase margin: 73.07475039260186
- The Gain Margin: ∞

The Phase plot is as shown,

For
$$K_P = -1$$
 and $K_I = 0.5$ Fig. 8.2

- The Phase margin: -128.18015255977565
- The Gain Margin: ∞

The Phase plot is as shown,

Fig. 8.2

The above problem can be found in PI controller as shown:

Fig. 8.2

$$u(t) = K_P e(t) + K_I \int e(t)$$
 (8.2.1)

Applying Laplace Transform:

TZ .

$$U(s) = \left(K_P + \frac{K_I}{s}\right)E(s) \tag{8.2.2}$$

In (8.1.1)

$$E(s) = \frac{1}{s(s+2)}$$
 (8.2.3)