Project Presentation

Data Mining AA 2022 / 23

Alessandro Bucci Giacomo Cignoni Alberto Roberto Marinelli

Datatype Casting

Both Users and Tweets dataframe features were cast to datatypes coherently with the **semantic** of the features.

#	Column	Dtype
0	id	object
1	user_id	object
2	retweet_count	object
3	reply_count	object
4	favorite_count	object
5	num_hashtags	object
6	num_urls	object
7	num_mentions	object
8	created_at	object
9	text	object

Outliers and attributes distributions

Analyzed features distributions with **boxplots**, most of the features have a "long tail".

Substituted with NaN the **outlier features** having impossible values (e.g. more urls in a tweet than the number of characters or dates in the future).

Manage Duplicates

23

Idea

Initially all rows that were **exactly identical** were **removed**.

Then, assuming that id and user_id are unique in Tweets dataset, the idea was to extract the rows with the same values for these attributes in order to recover the damaged values by comparing duplicates.

	id	user_id	retweet_count	reply_count	favorite_count	num_hashtags	num_urls	num_mentions	created_at	text
80220	199269133416792064	270494010							2017-05- 08 22:47:18	Ik heb een video toegevoegd aan een @YouTube- a
80221	199269133416792064	270494010							2017-05- 08 22:47:18	Ik heb een video toegevoegd aan een @YouTube- a
53334	458097180310400960	385121466	1						2019-04- 23 04:17:33	RT @jameon_heard: Having to beat around the bu
53335	458097180310400960	385121466	1						2019-04- 23 04:17:33	RT @jameon_heard: Either wayy
44223	473413979579351040	1395978913							2019-06- 04 10:41:03	the universe always has a plan
27787	<na></na>	3159993463	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	0	2020-04- 25 02:03:35	Renovation hell continues. Fifth day

Manage Duplicates

දිදු

No results but new information discovered

No value was corrected because, when analysing the result of this row-by-row matching operation, the **texts and related data of the Tweets were completely different**, so an error was assumed in the extraction of the Tweet id during crawling, and several **Tweets with the same id were found**.

	id	user_id	retweet_count	reply_count	favorite_count	num_hashtags	num_urls	num_mentions	created_at	text
80220	199269133416792064	270494010							2017-05- 08 22:47:18	Ik heb een video toegevoegd aan een @YouTube- a
80221	199269133416792064	270494010							2017-05- 08 22:47:18	lk heb een video toegevoegd aan een @YouTube- a
53334	458097180310400960	385121466							2019-04- 23 04:17:33	RT @jameon_heard: Having to beat around the bu
53335	458097180310400960	385121466							2019-04- 23 04:17:33	RT @jameon_heard: Either wayy
44223	473413979579351040	1395978913							2019-06- 04 10:41:03	the universe always has a plan
27787	<na></na>	3159993463	<na></na>	<na></na>	<na></na>	<na></na>	<na></na>	0	2020-04- 25 02:03:35	Renovation hell continues. Fifth day

Manage Null

Users DataFrame

For the users dataframe, the **median** was used to replace null values, in particular distinguishing between **bots** and **non-bots**.

Tweets DataFrame

In this dataframe, for each user with *more than 20 Tweets*, the **median** was calculated **specifically**. Otherwise, due to the limited data available to make a good estimate of the median, this value was calculated on **bots** and **non-bots** as in the previous dataframe.

Indicator extraction

For each user:

retweet count reply count favorite count number of hashtags number of urls number of mentions

For each tweet of the user

- Average and Sum
- Total success score

- Count
- Count with text
- Tweets in a year
- Tweets outside of plausible years
- Average text length
- Creation year
- Entropy

Indicator extraction

Entropy is obtained by using the unique **timedeltas** (the time passed between the publishing of each tweet) as categories.

The precision used are **second**, **minute**, **quarter of an hour**, **hour**, **day**.

Total success score is obtained by the formula:

Total Success Score =
$$\frac{\text{Total Acceptance Score}}{\text{Total Diffusion Score} + 0.1}$$

Where the Total Acceptance Score is the sum of retweet_count_sum, reply_count_sum and favorite_count_sum and Total Diffusion Score is the sum of num_hashtags_sum, num_mentions_sum and num_urls_sum.

All attributes Correlation map

Clustering

Feature sets

num_mentions_avg num_hashtags_avg favorite_count_avg statuses count post_in_2012 ... post_in_2020 avg_text_len total_success_score years_outside_of_plausible_range tweet_count creation_year entropy_minute reply_count_avg entropy_day favorite_count_sum retweet_count_sum num_urls_avg Minimal dataset (6 features) **Full Dataset**

(23 features)

Preprocessing

Log-scale reduction

Due to some attributes having some excessively **high values**, it was necessary to apply a reduction in **log-scale values**.

Normalization

From each dataset (full and minimum), **two sub-datasets** of data were produced
corresponding to the normalizations applied. This
practice allow to **avoid the bias** given by the
range of the different attribute.

- Z-Score
- Min-Max

DBSCAN

Best Result

- Dataset: minimal
- Normalization: **Min-Max**
- Clustering configuration: 0.03 eps and 10 minpts
- Cluster sizes:

[4398, **3155**, 270, **822**, **2055**, 37, 392, 75, 200, 57, 24, 23]

Using the 'bot' data, it was noted that clusters in this configuration almost always have a **well-defined distribution** of only bots or only users. Despite this, half of the **clusters are very small in size**.

Hierarchical clustering

Best Result

- Dataset: full
- Normalization: Min-Max
- Distance metric: **cosine**
- Method: ward
- Dendrogram:

Dendrogram with ward method and MinMax normalization

Hierarchical clustering

8 8⁸ • Cluster sizes and distributions:

The analysis of each of these results using **radar plots** revealed some interesting features, such as:

Clusters 4 and 5 have **higher favorite sum**, but Cluster 5 of humans have the **highest retweet sum on average**, indicating that humans gets more retweets.

Mostly bots have a lot of tweets from 2019, 2018 and 2017, while clusters with mostly humans have tweets mostly in 2020.

K-Means

Best Result

- Dataset: full
- Normalization: Min-Max
- K-Value: **7**
- Cluster sizes:

[1038, 3678, 987, 473, 1204, 2444, 1684]

X-Means

Results

We tried the **X-Means** implementation from Pyclustering library, with **Bayesian Information Criterion** (BIC) splitting criterion. We used 2 as the minimum number of clusters and a variable between 20 and 100 as the maximum. Centroids were initialized with K-Means++ heuristic.

With both **complete** and **minimal** datasets configurations, **X-Means fails** to achieve a good clustering, always selecting as the number of clusters the allowed maximum.

Classification

Feature sets

lang favorite_count_avg statuses_count reply_count_avg avg_text_len num_hashtags_avg total_success_score favorite_count_sum tweet_count num_urls_avg entropy_minute retweet_count_sum entropy_day num_mentions_avg

Full Dataset

(13 features)

Minimal Dataset

(6 features)

Train-test split

Models and Results

	Validation approach	Minimal Test accuracy	Full Test accuracy		
KNN	hold-out	0.80	0.82		
Bayesian classifier	hold-out	0.65	0.76		
Decision Tree	6-fold CV	0.84	0.84		
Random Forest	6-fold CV	0.85	0.85		
SVM	6-fold CV	0.84	0.84		
MLP	hold-out	0.84	0.85		

- Low recall in all models for non-bots. That means significant number of bots classified as non-bots.
- High precision in all models for non-bots. That means most of non-bots are classified correctly.

In minimal feature set, we chose **Bernoulli instead of Gaussian**Bayesian classifier even if the latter had a higher validation accuracy, as Gaussian had a non-bot recall <0.5.

Extra considerations

Time Series

Preprocessing

Detrend

We used a Unit Root Test (**Augmented Dickey-Fuller**), a statistical test where we can say that a series is non-stationary if it does not have a unit root. That is expressed if the p-value is less than the significance level (0.05).

To correct them, we subtract a moving average of the series from the original series.

Denoising

Preprocessing

We used the **Knee method** on the mean of the **sums of absolute differences (SAD)** between the original time series and the smoothed one, choosing the best window that "doesn't smooth too much" the original time series.

Preprocessing

Normalization

For the normalization we used the Mean-Variance scaler.

Chosen Clustering

Shape-based K-Means

Although there is not any clear curve to apply the elbow method, **K=8** was the best as it had a balanced number of clusters in terms of SSE and cluster sizes.

Shapelets

For extracting the shapelets we resorted to the Grabocka method, using as size of the shapelet **21** and found **6** shapelets.

Then we trained a Shapelet model consisting of a time series transformation and a logistic regression layer on top. Using this model, we are able to analyse the time series by **observing the number and position of shapelets matched**.

Thanks for your attention!