Seminar course Accelerated Computing Systems

(aka "acc-systems")
Preliminary meeting
https://dse.in.tum.de/

Dr. Atsushi Koshiba, Harshavardhan Unnibhav, Jiyang Chen,
Sebastian Reimers, Patrick Sebanic,
Prof. Pramod Bhatotia

Course instructors

Chair of Distributed Systems & Operating Systems

https://dse.in.tum.de/team/

Dr. Atsushi Koshiba

Postdoc

Harshavardhan Unnibhavi

PhD student

Jiyang Chen

PhD student

Sebastian Reimers

PhD student

Patrick Sebanic

PhD student

acc-systems: Seminar info

Communication:

Join us with TUM email address (@tum.de)

<u>ls1-courses-tum.slack.com</u>

#ws-23-acc-systems

https://github.com/TUM-DSE/seminars/

Context

The need for high performance computing

- The rise of AI is powered by large-scale data-driven learning
 - To meet the computational requirements of these modern workloads, we need **high-performance computing**
- Only CPU-centric computing is still limiting
 - We need large numbers of high performance cores!
 - Led to the rise of accelerators for compute-intensive, data-intensive tasks

Hardware accelerators

- Optimized to accelerate a specific computation: 10x~100x faster than CPUs
 - Graphic processing units (GPUs)
 - Field processing gate arrays (FPGAs)
 - Tensor processing units (TPUs) or specialized AI accelerators

Question: how we can leverage accelerators in modern computer systems?

Accelerated computing systems

ТИП

- Accelerated computing offloads compute-/data-intensive parts of a workload
 - Having separate types of accelerators is known as heterogeneous computing

Design challenges

- Programmability, portability
- Performance
- Security
- Memory management
- Synchronization
- Resource isolation

Host code runs on a host processor (e.g., filesystem, networking)

A server architecture w/ accelerators

Compute-intensive "kernel" code runs on the accelerators (e.g., training an Al model)

System stack

Accelerated computing systems comprises various SW/HW components

Tentative topics

Papers from top systems conferences: ASPLOS, OSDI, USENIX ATC, EuroSys, ISCA, and MICRO

Tentative topics
Virtualization for accelerators
Security for accelerators
Heterogeneous task scheduling
SmartNICs
Software-hardware co-design for accelerators
Hardware/OS support for heterogeneous computing
Near-data processing
Resource disaggregation
•••

Format

Bird's eyes view

Team (2 students per team)

Research papers
(Top systems conferences)

Understand

Research ideas

1 presentation

1 short report

Peer-reviewing

Overview

Phase I

Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Phase I: Kick-off meeting

Format and motivation (all participants meeting)

Team formation (2 students per team)

Paper selection (Top systems conferences)

The first week

NOTE

- 1. A list of papers will be provided for FCFS bidding
- 2. Paper presentation guidelines will be provided for the next phase

Phase II: Understand & explore

Focus

- Understand the paper and related work
- 2. Also **explore** a "laundry list" of research ideas/directions

Paper presentation

Focus

- Explain the work/related work ("why?" and "how?")
- 2. Explain and discuss all possible research directions
- 3. Pick a research direction

Phase III: Research

Research work

Focus:

Indepth research work to nail-down the problem and detailed approach to solve it!

Research prototype

Bonus: (Optional)

"Build the system to solve it!" and show us the working idea and associated results

Phase IV: Report & review

Peer-review

END.

Focus

Prepare a single "short & sweet" report summarizing

- (a) Paper
- (b) Research work

Focus

Give constructive (positive and critical) feedback for

- (a) Paper summary
- (b) Research work

Overall timeline

Organization

- Format
 - Team-based seminar course (2 students per team)
- Communication
 - Slack for announcements and information sharing
 - Hotcrp for report submission and peer-reviewing
- Meetings (in-person, attendance is compulsory)
 - **Meeting #1:** Kick-off
 - **Meeting #2:** Paper presentation

Learning goals

- Learn about the cutting-edge research in computer systems
- Promote critical thinking
- Cultivate an environment for innovation
 - To push the boundaries by advancing the state-of-the-art
- Improve scientific skills
 - Presentation
 - Writing
 - Communication: discussion and arguing
 - Mentorship: giving feedback and moderating discussion
- Encourage system building and evaluation
 - Learn by building, breaking, and benchmarking systems
- Importantly, to have fun!

Code of conduct

University plagiarism policy

https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-conduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

Interested?

Sign up on the TUM matching platform

Contacts

- Dr. Atsushi Koshiba
 - <u>atsushi.koshiba@tum.de</u>
- All seminar-related info: https://github.com/TUM-DSE/seminars

Workspace: http://ls1-courses-tum.slack.com/

Channel: #ws-23-acc-systems

Join us with TUM email address (@tum.de)