

Bluetooth Low Energy (BLE) 4.2 Module Model MB-N2 Data Sheet

Date: Nov 2016

Version: 0.1 (Initial Draft)

E-mail: info@redbear.cc Website: www.redbear.cc

Red Bear Company Limited assumes no responsibility for any errors which may appear in this manual. And reserves the right to alter the hardware, software, and/or specifications detailed here at any time without notice.

Document release	Date	Modification	Initials
Version 0.1	2016/11/01	Initial version	Ping
		2	

Description

MB-N2 BLE module houses the Nordic nRF52832 SoC with an on-board chip antenna tuning for great performance and low power consumption.

MB-N2 offers all Bluetooth low energy features: radio, stack, profiles and application space for customer applications, so no external processor is needed. The module also provides flexible hardware interfaces to connect sensors, simple user interfaces or even displays directly to the module.

MB-N2 can be powered directly with a standard 3V coin cell batteries or pair of 3A batteries. In lowest power sleep mode, it consumes only 0.4uA and will wake up in few hundred microseconds.

For the nRF52832 SoC, refers to the nRF52832 Product Specification and the SDK is available from the Nordic Semiconductor website.

Key Features

- Bluetooth 4.2 certified, 5.0 ready (BLE only)
- 32-bit ARM Cortex-M4F processor @ 64MHz
- FPU, DSP
- Up to 64 KB SRAM and 512 KB Flash
- Certified for CE, FCC and Bluetooth
- Small size 10 mm x 18 mm
- An on-board chip antenna tuning for great performance
- Supports NFC-A tags

Applications

- Sports and leisure equipment
- Heart rate collector
- Pedometer
- Watches
- Cycling and cadence sensor
- Consumer electronics
- Human Interface Devices (Keyboard, Mouse)
- Consumer medical
- Smart energy
- Security finder
- Proximity and presence
- Home and building automation

1. Package Pinout Diagram

2. Reference Schematic

3. Module Physical Dimensions

4. Layout Guide

5. Pin Assignment

Pin No.	Name	Туре	Description
(1)(2)(14)	GND	Ground	Ground. The pad must be connected to a solid ground plane
(26)(43)			plane
(3)(13)	VDD	POWER	Power supply (1.9 – 3.6V)
(4)	P0.25	Digital I/O	General purpose I/O pin
(5)	P0.26	Digital I/O	General purpose I/O pin
(6)	P0.27	Digital I/O	General purpose I/O pin.
(7)	P0.29	Digital I/O	General purpose I/O pin.
	AIN4	Analog Input	SAADC/COMP/LPCOMP input.
(8)	P0.29	Digital I/O	General purpose I/O pin.
	AIN5	Analog Input	SAADC/COMP/LPCOMP input.
(9)	P0.30	Digital I/O	General purpose I/O pin.
	AIN6	Analog Input	SAADC/COMP/LPCOMP input.
(10)	P0.31	Digital I/O	General purpose I/O pin.
	AIN7	Analog Input	SAADC/COMP/LPCOMP input.
(11)	DEC4	POWER	1V3 regulator supply decoupling.
			Input from DC/DC regulator. Output from 1.3 V LDO.
(12)	DCC	POWER	DC/DC regulator output pin.
(15)	P0.00	Digital I/O	General purpose I/O pin.
	XL1	Analog Input	Connection for 32.768 kHz crystal (LFXO).
(16)	P0.01	Digital I/O	General purpose I/O pin.
	XL2	Analog Input	Connection for 32.768 kHz crystal (LFXO).
(17)	P0.02	Digital I/O	General purpose I/O pin.
	AIN0	Analog Input	SAADC/COMP/LPCOMP input.

Pin No.	Name	Туре	Description
(18)	P0.03	Digital I/O	General purpose I/O pin.
	AIN1	Analog Input	SAADC/COMP/LPCOMP input.
(19)	P0.04	Digital I/O	General purpose I/O pin.
	AIN2	Analog Input	SAADC/COMP/LPCOMP input.
(20)	P0.05	Digital I/O	General purpose I/O pin.
	AIN3	Analog Input	SAADC/COMP/LPCOMP input.
(21)	P0.06	Digital I/O	General purpose I/O pin.
	AIN4	Analog Input	SAADC/COMP/LPCOMP input.
(22)	P0.07	Digital I/O	General purpose I/O pin.
(23)	P0.08	Digital I/O	General purpose I/O pin.
(24)	P0.09	Digital I/O	General purpose I/O pin.
	NFC1	NFC Input	NFC antenna connection.
(25)	P0.10	Digital I/O	General purpose I/O pin.
	NFC1	NFC Input	NFC antenna connection.
(27)	P0.11	Digital I/O	General purpose I/O pin.
(28)	P0.12	Digital I/O	General purpose I/O pin.
(29)	P0.13	Digital I/O	General purpose I/O pin.
(30)	P0.14	Digital I/O	General purpose I/O pin.
	TRACEDATA(3)		Trace port output.
(31)	P0.15	Digital I/O	General purpose I/O pin.
	TRACEDATA(2)		Trace port output.
(32)	P0.16	Digital I/O	General purpose I/O pin.
	TRACEDATA(1)		Trace port output.
(33)	P0.17	Digital I/O	General purpose I/O pin.

Pin No.	Name	Туре	Description
(34)	P0.18	Digital I/O	General purpose I/O pin.
	TRACEDATA(0)		Single Wire Output.
	swo		
(35)	P0.19	Digital I/O	General purpose I/O pin.
(36)	P0.20	Digital I/O	General purpose I/O pin.
	TRACECLK		Trace port clock output.
(37)	P0.21	Digital I/O	General purpose I/O pin.
	RESET		Configurable as pin reset.
(38)	SWDCLK	Digital Input	Serial Wire Debug clock input for debug
			and programming.
(39)	SWDIO	Digital I/O	Serial Wire Debug I/O for debug and
			programming.
(40)	P0.22	Digital I/O	General purpose I/O pin.
(41)	P0.23	Digital I/O	General purpose I/O pin.
(42)	P0.24	Digital I/O	General purpose I/O pin.

6. PCB Layout Guide

For optimal performance of the antenna, place the module at the corner of the PCB as shown in the diagram below, do not place any metal (traces, components, battery etc.) within the clearance area of the antenna. Place the GND vias as close to the GND pins as possible.

Recommended layout

7. 3D Radiation Pattern

◆XY-plane

◆XZ-plane

Far-field Power Distribution(H+V) on X-Y Plane Plot Peak Gain(H+V)=-6.5 dBi, Plot AvgGain(H+V)=-6.2dBi @2.44000 GHz

♦YZ-plane

$Far-field\ Power\ Distribution(H+V)\ on\ Y-Z\ Plane\\ \ Plot\ Peak\ Gnin(H+V)=2\ 4\ dBi,\ Plot\ AvgGnin(H+V)=5\ 7dBi\ @2\ 44000\ GHz$

