# An Efficient Time-bound Hierarchical Key Management Scheme for Secure Broadcasting

Elisa Bertino, Ning Shang, Sam Wagstaff Purdue University

January 8, 2008



## Motivation: Problem to Solve

In e-subscription and pay TV systems, data can be organized and encrypted using symmetric key algorithms according to predefined time periods and privileges, then broadcast to users.



## Motivation: Problem to Solve

In e-subscription and pay TV systems, data can be organized and encrypted using symmetric key algorithms according to predefined time periods and privileges, then broadcast to users.



Problem: need an efficient way to manage the encryption keys.

 User in a higher class can access keys of its lower classes; but not vice versa

- User in a higher class can access keys of its lower classes; but not vice versa
- User can access keys/data only in assigned time periods

- User in a higher class can access keys of its lower classes; but not vice versa
- User can access keys/data only in assigned time periods
- Sow time and space complexity

- User in a higher class can access keys of its lower classes; but not vice versa
- User can access keys/data only in assigned time periods
- Sow time and space complexity

Schemes (Tzeng, 2002; Chien, 2004) were proposed; they were unable to achieve the above requirements completely.

# Components of Key Scheme

Intractability of Elliptic Curve Discrete Logarithm Problem (ECDLP)

In short: given P, [n]P, hard to find n. Used to achieve hierarchical property.

# Components of Key Scheme

- Intractability of Elliptic Curve Discrete Logarithm Problem (ECDLP)
  In short: given P, [n]P, hard to find n.
  Used to achieve hierarchical property.
- Oneway property of cryptographic hash function In short: given hash value (digest), hard to find pre-image. Used to achieve time-bound property.

# Components of Key Scheme

- Intractability of Elliptic Curve Discrete Logarithm Problem
  (ECDLP)

  In about private Refull Report to find the find to the find the f
  - In short: given P, [n]P, hard to find n. Used to achieve hierarchical property.
- Oneway property of cryptographic hash function In short: given hash value (digest), hard to find pre-image. Used to achieve time-bound property.
- Tamper-resistant device (e.g. TPM) In short: by its name. Used to store important sensitive info.

# Key Scheme in 4 Phases

- Initialization
- Encrypting Key Generation
- User Subscription
- Decrypting Key Derivation

## Initialization Phase

### Step 1: hierarchical parameters

#### Vendor chooses

- Elliptic curve E over a finite field  $\mathbb{F}_q$ ; DLP hard
- Point  $Q \in E(\mathbb{F}_q)$  with large prime order p
- 2n integers  $n_i, g_i$ ;  $n_i g_i$  all different mod p for  $1 \le i \le n$

### Vendor computes

- $P_i = [n_i]Q$  on  $E(\mathbb{F}_q)$
- $h_i$  such that  $g_i h_i \equiv 1 \pmod{p}$
- Class key  $K_i = [g_i]P_i$  for class  $C_i$
- Points  $R_{i,j} = [g_i]K_j + (-K_i)$ , when  $C_j \prec C_i$ .

### Initialization Phase

### Step 2: temporal parameters

#### Vendor chooses

- Random integers a, b
- keyed-hash message authentication code (HMAC)  $H_K(-)$  built with hash function H(-) and a fixed secret key K

### Initialization Phase

### Step 2: temporal parameters

#### Vendor chooses

- Random integers a, b
- keyed-hash message authentication code (HMAC)  $H_K(-)$  built with hash function H(-) and a fixed secret key K

### Step 3: parameter publication

Vendor publishes  $R_{i,j}$  on an authenticated board, whereas the integers  $g_i$ ,  $h_i$ , a and b are kept secret.

# **Encrypting Key Generation Phase**

[1, Z]: system's life time  $K_{i,t}$ : temporal class key;  $t \in [1, Z]$ 

### The generation process for $K_{i,t}$

$$K_{i,t} = H_K\left((K_i)_Y \oplus H^t(a) \oplus H^{Z-t}(b) \oplus ID_i\right)$$

 $(K_i)_Y$ : y-coordinate of  $K_i$ 

 $H^m(x)$ : m-fold iteration of H(-) applied to x

 $ID_i$ : identity of  $C_i$ 

 $\oplus$ : bitwise XOR

## User Subscription Phase

In this phase, a tamper-resistant device storing important information is issued to the subscriber.

### Step 1: encryption information

Vendor matches a subscription request with a policy configuration, assigns to class  $C_i$ . **Encryption information** 

EncInf<sub>i</sub> = 
$$\left\{ \left( H^{t_1}(a), H^{Z-t_2}(b) \right) \right\}$$
,

defined for all acceptable time intervals  $[t_1, t_2]$  defined in the policy.

## User Subscription Phase

### Step 2: delivery of info

- Vendor distributes the class key  $K_i$  to the subscriber through a secure channel
- Vendor issues the subscriber a tamper-resistant device storing  $H_K$  (thus H, K), E,  $\mathbb{F}_q$ ,  $ID_i$ ,  $h_i$  and  $EncInf_i$ .
- Secure clock embedded in the device

In this phase the temporal keys for a class and the classes below it are reconstructed by the tamper-resistant device.

### Step 1: user input

To access data for class  $C_j \leq C_i$ , user in class  $C_i$  inputs into the device

- only  $K_i$ , if  $C_j = C_i$
- $R_{i,j}$ , obtained from the authenticated public board; class identity  $ID_j$  of  $C_j$ ; its own secret class key  $K_i$ , otherwise if  $C_j \prec C_i$

### Step 2

- If  $K_j$  is the only input, the next step is executed directly
- Otherwise, the tamper-resistant device computes the secret class key of  $C_i$ :

$$K_j = [h_i](R_{i,j} + K_i).$$

### Step 3

If  $t \in [t_1, t_2]$  for some acceptable time interval  $[t_1, t_2]$  of the access control policy, the tamper-resistant device computes

$$H^{t}(a) = H^{t-t_1}(H^{t_1}(a)), \qquad H^{Z-t}(b) = H^{t_2-t}(H^{Z-t_2}(b)),$$

and 
$$K_{i,t} = H_K((K_i)_Y \oplus H^t(a) \oplus H^{Z-t}(b) \oplus ID_i)$$
.

### Step 3

If  $t \in [t_1, t_2]$  for some acceptable time interval  $[t_1, t_2]$  of the access control policy, the tamper-resistant device computes

$$H^{t}(a) = H^{t-t_1}(H^{t_1}(a)), \qquad H^{Z-t}(b) = H^{t_2-t}(H^{Z-t_2}(b)),$$

and 
$$K_{i,t} = H_K((K_i)_Y \oplus H^t(a) \oplus H^{Z-t}(b) \oplus ID_i)$$
.

### Step 4

At time granule t, the protected data belonging to class  $C_j$  can be decrypted by applying the key  $K_{i,t}$ .

## Achievements of Scheme

- Hierarchical key management supporting time-bound
- Resistant to the collusion attacks that break earlier schemes
- Efficient in terms of time and space requirements
- Class keys can be changed without re-issuing new devices

## Thank you!

Questions?

