```
library(ACCT337)
```

presentation.R

```
Statistical 'Programming' {
  [Project Presentation]
     < Examination of the Relationship between
       Executive Pay and Company Performance
       for US-listed companies using R Programming >
```

library(ACCT337)

presentation.R

- INTRODUCTION
 - > BACKGROUND
 - > LITERATURE REVIEW
 - > PROJECT OBJECTIVES
 - > HYPOTHESES
 - > METHODOLOGY

02

- EXPLORATORY DATA ANALYSIS
 - > SETUP WORKSPACE
 - > UNDERSTANDING DATA
 - > CLEANING DATA
 - > EXPLORING DATA

- **03** REGRESSION ANALYSIS
 - > OUR REGRESSION MODEL
 - > FORWARD, BACKWARD, STEPWISE
- **04** EVALUATION OF MODEL
 - > ACCURACY OF MODEL
 - > ADDITION OF FIXED EFFECTS & TWO-WAY CLUSTERING
- 06 CONCLUSION
 - > FINAL RESULTS
 - > ENDNOTES

BACKGROUND

Stock-related components of CEO Compensation

FOR:

- Solves agency problem
- Executives less inclined to act opportunistically against shareholders' interests

AGAINST:

- Lack of concrete evidence of a direct relationship between CEO compensation and corporate performance
- Symbol of income inequality: Median \$14.2m

LITERATURE REVIEW

We incorporated the following techniques in our model according to similar previous research:

- Fixed Effect Model to account for unobservable Firm & Year variances and increase robustness
- 2. Lead dependent variables (n+1) to prevent reverse causality
 - Payoff not fully observable until next period, but managers will still be compensated
- 3. Inclusion of **control variables** such as firm size, financial leverage, & CEO-Duality role

OBJECTIVES

Background Jobs ×

HYPOTHESES - dependent variables

Objective: Determine the best measure of firm performance.

VARIABLE	DEFINITION
oiadp/at	Return on Assets (ROA)
ni / (csho * prcc_f)	Return on Equity (ROE)
(prcc_f * csho + lt) / at	Tobin's Q

Background Jobs ×

HYPOTHESES - independent variables

VARIABLE	DEFINITION	SIGN	EXPLANATION		
(tdc1 - total_curr) / tdc_1	Ratio of Incentive to Total Compensation	+	When company performance is linked to how well-compensated CEOs are, Ratio↑		
execdir	Dummy variable for Dual-Role of CEO & Director	+	Dual roles = Compensation ↑ = Higher expectation to boost firm performance		
age	CEO's age	+	Older = More experience = Compensation ↑ = Better firm performance		
shrown_excl_opts_pct	% of company shares owned by CEO	+	CEO more incentivised for the firm to perform better		
fyear - becameceo	CEO tenure	+	Specialised experience from CEO = Better firm performance		
lt / at	Financial leverage	-	Decreased ability to meet financial obligations		
capx / at	Ratio of Capex to Total Assets	+	Indicator of financial health and future performance		
xrd / at	Ratio of R&D to Total Assets	+	Significantly boosts growth opportunities and productivity		
log(at)	Firm size	+	Bigger firms = Higher profitability		
onsole Terminal × Background Jobs ×					

METHODOLOGY

INITIAL SAMPLE SELECTION

- Download WRDS execucomp & compustat, excluding financial services firms
- Select US-listed companies
- 3. Remove non-CFO executives
- Account for market volatility and economic uncertainty during the Global Financial Crisis and COVID-19
- 5. Remove CEOs who were replaced/appointed that year

Exploratory Data Analysis

Keep specific variables related to our research

SUB-TASKS

- Setup workspace
- Clean data
- Understand data
- Data Analysis using Regression Models
- Conclusion Recommendations

DATA ANALYSIS TECHNIQUE

- Identify best independent variable
- Conduct Fixed-Effect linear regression
- Conduct stepwise/backward/forward regression
- Identify best regression model
 - i.e., incentive compensation ratio with the strongest relationship to firm performance

SETUP WORKSPACE

INSTALL & LAUNCH PACKAGES

```
install.packages("readr")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("corrplot")
install.packages("car")
install.packages("psych")
install.packages("lubridate")
install.packages("zoo")
install.packages("caret")
install.packages("lfe")
install.packages("broom")
install.packages("stargazer")
install.packages("fixest")
```

library(readr) library(dplyr) library(ggplot2) library(corrplot) library(car) library(psych) library(lubridate) library(caret) library(lfe) library(broom) library(stargazer) library(fixest) library(hrbrthemes)

IMPORT DATASET

```
execucomp <- read_csv("execucomp_19922022.csv")</pre>
compustat <- read_csv("compustat_19502023.csv")</pre>
```

Introduction

install.packages("hrbrthemes")

DATA CLEANING

INITIAL DATA CLEANING

- Exclude missing observations in "tdc1"
- Replace missing/negative values with 0 in "shrown_excl_opts_pct"
- Replace all variable values with their industry averages
- Exclude variables for industries with no financial data available
- For companies where xrd data is unavailable, assume they do not have R&D expenses and replace their "xrd" with 0

Introduction

Background Jobs ×

EXPLORATORY DATA ANALYSIS: COMPANIES AND INDUSTRIES

length(unique(funda\$SIC))

Synthesis: Identify the number of industries.

Output: 356

length(unique(funda\$GVKEY))

Finding: Each company can have multiple records for various years.

Synthesis: Identify the number of unique companies.

Output: 2,399

compIndustries <- distinct(funda, GVKEY, SIC)</pre>

Identify companies which belong to more than one industry. Synthesis:

Array with 2,399 rows (same as the number of companies) Output:

Hence, each company belongs to a single industry.

_	GVKEY	SIC
1	001004	5080
2	001045	4512
3	001072	3670
4	001075	4911
5	001076	6141


```
freqconm <- funda %>% group_by(SIC) %>% distinct(GVKEY)
                  %>% summarise(ncompanies=n())
                  %>% arrange(desc(ncompanies))
```

Overview of the number of companies in each industry Synthesis:

Outcome: Array with 356 rows

S:	IC	ncompan	ies
Min.	: 100	Min. :	1.00
1st Qu	.:3043	1st Qu.:	2.00
Median	:3826	Median :	3.00
Mean	:4466	Mean :	6.74
3rd Qu	.:5919	3rd Qu.:	7.00
Max.	:9997	Max. :1	48.00

Key trends:

Introduction

- 96% of industries: Less than 25 companies
- Only the first 14 industries have more than 25 companies

Industries with Most no. of Companies:

- Real Estate Investment Trusts
- Television Programming & Broadcasting
- Services Computer Programming, Data Processing, Etc.
- Semiconductors & Related Devices
- **Pharmaceutical Preparations**

EXPLORATORY DATA ANALYSIS: CONTINUOUS VARIABLES

DISTRIBUTION OF SELECTED VARIABLES

VARIABLE	DISTRIBUTION	ACTION + EXPLANATION
TDC1, SHROWN_EXCL_OPTS_PCT, TOTAL_CURR, csho	Right-skewed	Able to see the overall distribution so no further action needed
AGE	Normal distribution	No further action needed; data near the mean more frequent in occurrence than the data far from the mean
at, capx, xrd, oiadp, prcc_f, lt, ni	N/A	Unable to view overall distribution due to outliers; will need to winsorize

Exploratory Data Analysis

Introduction

BOXPLOT OF SELECTED VARIABLES - **BEFORE** ADJUSTMENT OF OUTLIERS

Terminal ×

Background Jobs ×

SECONDARY DATA CLEANING

ADJUSTMENT OF OUTLIERS

Objective: Prevent significant impact on results

Method of Adjustment: ifelse and winsorisation To maintain the number of observations that can be used for subsequent analyses

```
funda_winsor <- funda %>%
  mutate(at
                = ifelse(at
                                  > quantile(at.
                                                      0.99. na.rm = TRUE). quantile(at.
                                                                                              0.99. \text{ na.rm} = \text{TRUE}). \text{ at})) \% > \%
  mutate(capx = ifelse(capx
                                 > quantile(capx,
                                                      0.99, na.rm = TRUE), quantile(capx,
                                                                                              0.99, na.rm = TRUE), capx)) \%>%
                = ifelse(xrd
                                  > quantile(xrd.
                                                      0.99, na.rm = TRUE), quantile(xrd,
                                                                                              0.99, na.rm = TRUE), xrd)) %>%
  mutate(xrd
  mutate(oiadp = ifelse(oiadp
                                 > quantile(oiadp.
                                                      0.99, na.rm = TRUE), quantile(oiadp,
                                                                                              0.99, na.rm = TRUE), oiadp)) %>%
  mutate(prcc_f = ifelse(prcc_f > quantile(prcc_f, 0.99, na.rm = TRUE), quantile(prcc_f, 0.99, na.rm = TRUE), prcc_f)) %>%
                = ifelse(lt
                                  > quantile(lt.
                                                      0.99. na.rm = TRUE), quantile(lt.
                                                                                              0.99. \text{ na.rm} = \text{TRUE}). 1t)) %>%
  mutate(1t
  mutate(ni
                = winsor(ni, trim=0.01))
```

Introduction

BOXPLOT OF SELECTED VARIABLES - AFTER ADJUSTMENT OF OUTLIERS

Terminal ×

Background Jobs ×

CORRELATION MATRIX

```
funda_corr <- funda_winsor %>%
  select(TDC1, TOTAL_CURR, csho, at,
         capx, xrd, prcc_f, lt, ni,
         roa_p1, tobinsq_p1, roe_p1) %>%
  completify("TDC1", "TOTAL_CURR", "csho", "at",
             "capx", "xrd", "prcc_f", "lt", "ni",
             "roa_p1", "tobinsq_p1", "roe_p1")
corrplot(cor(funda_corr),
         method = "shade",
         order = "AOE".
         type = "lower",
         tl.pos = "ld",
         tl.col = "black",
         addCoef.col = "black",
         number.cex = .7.
         t1.cex = .8
```


Introduction

PREPARE DATA FOR REGRESSION

Background Jobs ×

OVERVIEW OF THE DATA

BOXPLOT OF CALCULATED VARIABLES

Terminal ×

Background Jobs ×

OVERVIEW OF THE DATA

DESCRIPTIVE STATISTICS

funda						
Variable	Mean	Median	Min	Max	Stdev	
TDC1	6391	4574	0	246027	7149	
TOTAL_CURR	1038	875	0	35500	1152	
csho	215.523	71.454	0.001	10778.264	604.036	
at	21772	2912	0	3418318	135403	
сарх	413.354	52.600	-0.001	37985	1620.707	
xrd	190.550	9.674	0	35931	953.207	
prcc_f	51.364	35.755	0.007	3808.410	84.655	
It	17434	1767	0	3412078	125326	
ni	566.58	95.65	-16855	83963	2503.88	

Variable	Mean	Median	Min	Max	Stdev
TDC1	6605.952	4676.242	0.001	246026.710	7544.209
TOTAL_CURR	1063.5	891.7	0	35500	1198.4
csho	218.161	70.258	0.001	10778.264	629.925
at	14756.861	3008.218	1.041	277797.670	39539.057
сарх	345.5	50.2	0	6620	938.4
xrd	150.972	8.694	0	4389.610	527.308
prcc_f	50.57	37.79	0.05	294.07	47.97
lt	10874.790	1805.205	0.083	223523.166	31484.505
ni	497.9	101.4	-976.1	9845.1	1370.9

PREPARE DATA FOR REGRESSION

CREATE TRAIN AND TEST DATASET

train <- sample_frac(funda_last, 0.6)</pre>

test <- anti_join(funda_last, train)

① test 3461 obs. of 38 variables ② train 5191 obs. of 38 variables

LOGARITHMIC TRANSFORMATION

Objective: Satisfy the linearity assumption & Normalise effects of distribution

Method:

Distributions with Positive values: log(x)
Distributions with Negative values: log(x + CEILING(MIN))

e.g., for roa, CEILING(-7.065) = 8

roa
Min. :-7.065
1st Qu.: 0.030
Median : 0.071
Mean : 0.076
3rd Qu.: 0.123
Max. : 1.374

Introduction

NORMAL REGRESSION

NORMAL REGRESSION

DROP INSIGNIFICANT VARIABLES

```
reg_tobinsq_normal <-
  lm(log(tobinsq_p1 + 1) \sim inc
     + SHROWN_EXCL_OPTS_PCT
     + firmsize
     + log(rdat +1)
     + log(capexat + 1)
     + EXECDIR
     + AGE
     + log(tenure + 1),
     data = train)
```

```
Residuals:
   Min
          10 Median
                        30
                              Max
-1.1840 -0.2306 -0.0715 0.1668 2.0692
Coefficients:
                  Estimate Std. Error t value
                                                   Pr(>|t|)
(Intercept)
                  1.418463
                           0.056284
                                    25.20 < 0.00000000000000000002 ***
                  0.395588
                           0.023711
                                    16.68 < 0.00000000000000000
inc
SHROWN_EXCL_OPTS_PCT 0.003084
                           0.000935
                                                    0.00098 ***
firmsize
                 -0.078104
                           log(rdat + 1)
              0.167295
                           0.028676
                                     5.83
                                                0.000000057 ***
log(capexat + 1) 0.133739
                           0.077562 1.72
                                                    0.08471 .
EXECDIR
                  0.064817
                           0.027326
                                    2.37
                                                    0.01773 *
                                    -3.78
                                                    0.00016 ***
AGE
                 -0.002985
                           0.000790
log(tenure + 1)
               0.038032
                           0.008842
                                     4.30
                                                0.0000172830 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.365 on 5182 degrees of freedom
Multiple R-squared: 0.165. Adjusted R-squared: 0.163
```


Introduction

NORMAL REGRESSION

VARIANCE INFLATION FACTOR (VIF)

Benchmark VIF:

VIF > 4: Multicollinearity might exist, Further investigation needed VIF > 10: Serious indication of multicollinearity that requires correction

Objective: Detect multicollinearity (more than one independent variable are correlated with each other)

Variable	inc	SHROWN_EXC L_OPTS_PCT	firmsize	rdat	capexat	EXECDIR	AGE	tenure
VIF	1.171	1.201	1.270	1.093	1.026	1.005	1.231	1.313

Conclusion:

Multicollinearity is insignificant. No further investigation required.

Introduction

FORWARD SELECTION MODEL

- Start with no independent variable
- Add one variable each time
- The variable added will increase R-squared the most

forward_tobinsq <- step(reg_tobinsq, direction = "forward")</pre> tobinsq_forward_pred <- predict(forward_tobinsq, test)</pre>

Accuracy Results on Test Set			
Adjusted r-squared	0.163		
MAE	1.177		
RSME	2.388		

```
Residuals:
         10 Median
  Min
                           Max
-1.188 -0.230 -0.071 0.168 1.989
Coefficients:
                   Estimate Std. Error t value
                                                      Pr(>|t|)
(Intercept)
                            0.056930
                                      24.77 < 0.0000000000000000 ***
                   1.410092
                   0.398031
                            0.023842
                                      16.69 < 0.00000000000000000
inc
SHROWN_EXCL_OPTS_PCT 0.003116
                            0.000936
                                       3.33
                                                       0.00087 ***
firmsize
                  -0.079355
                            0.028716
                                                  0.0000000044 ***
log(rdat + 1)
                 0.168772
                                       5.88
log(capexat + 1)
                           0.077566
                                       1.71
                  0.132961
                                                       0.08656 .
log(fl + 1)
                   0.030784
                           0.031462
                                       0.98
                                                       0.32790
EXECDIR
                  0.065980
                            0.027352
                                       2.41
                                                       0.01589 *
                  -0.002980
                            0.000790
                                      -3.77
                                                       0.00016 ***
AGE
log(tenure + 1)
                   0.038385
                            0.008849
                                       4.34
                                                  0.0000146732 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.365 on 5181 degrees of freedom
Multiple R-squared: 0.165, Adjusted R-squared: 0.163
```


BACKWARD ELIMINATION MODEL

- Start with all independent variables
- Drops one variable each time
- If the variable does not contribute to a higher accuracy, it is dropped.

backward_tobinsq <- step(reg_tobinsq, direction = "backward")</pre> tobinsq_backward_pred <- predict(backward_tobinsq, test)

Exploratory Data Analysis

Accuracy Results on Test Set			
Adjusted r-squared	0.163		
MAE	1.177		
RSME	2.388		

```
Residuals:
   Min
           10 Median
                                Max
-1.1840 -0.2306 -0.0715 0.1668 2.0692
Coefficients:
                   Estimate Std. Error t value
(Intercept)
                   1.418463
                             0.056284
                                       25.20 < 0.00000000000000000
                            0.023711
inc
                   0.395588
                                       0.000935
                                        3.30
SHROWN_EXCL_OPTS_PCT 0.003084
                                                       0.00098
                             0.003142
                                      -24.86 < 0.00000000000000000
firmsize
                  -0.078104
log(rdat + 1)
                   0.167295
                           0.028676
                                       5.83
                                                   0.000000057 ***
                   0.133739
                           0.077562
                                       1.72
log(capexat + 1)
                                                       0.08471
                             0.027326
                                       2.37
EXECDIR
                   0.064817
                                                       0.01773 *
                  -0.002985
                             0.000790
                                       -3.78
AGE
                                                       0.00016 ***
log(tenure + 1)
                   0.038032
                             0.008842
                                       4.30
                                                   0.0000172830 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.365 on 5182 degrees of freedom
Multiple R-squared: 0.165.
                            Adjusted R-squared: 0.163
```


STEPWISE REGRESSION

- Start with no independent variables
- 2. Adds one variable each time
- 3. Existing variables that do not contribute to a higher accuracy will be dropped.

stepwise_tobinsq <- step(reg_tobinsq, direction = "both")
tobinsq_stepwise_pred <- predict(stepwise_tobinsq, test)</pre>

Accuracy Results on Test Set			
Adjusted r-squared	0.163		
MAE	1.177		
RSME	2.388		

```
Residuals:
   Min
            10 Median
                                   Max
-1.1840 -0.2306 -0.0715 0.1668 2.0692
Coefficients:
                     Estimate Std. Error t value
                                                             Pr(>|t|)
(Intercept)
                     1.418463
                                0.056284
                                           25.20 < 0.00000000000000000
                     0.395588
                                0.023711
                                           16.68 < 0.00000000000000000
inc
                                0.000935
SHROWN_EXCL_OPTS_PCT 0.003084
                                                              0.00098
                                          -24.86 < 0.00000000000000000
firmsize
                     -0.078104
                                0.003142
log(rdat + 1)
                     0.167295
                                0.028676
                                            5.83
                                                         0.000000057 ***
log(capexat + 1)
                                0.077562
                                            1.72
                     0.133739
                                                              0.08471 .
                                0.027326
                                            2.37
EXECDIR
                     0.064817
                                                              0.01773 *
                                0.000790
                                           -3.78
AGE
                     -0.002985
                                                              0.00016 ***
log(tenure + 1)
                     0.038032
                                0.008842
                                            4.30
                                                         0.0000172830 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.365 on 5182 degrees of freedom
Multiple R-squared: 0.165, Adjusted R-squared: 0.163
F-statistic: 128 on 8 and 5182 DF, p-value: <0.0000000000000000
```


COMPARISON OF REGRESSION MODELS

ACCURACY RESULTS	FORWARD	BACKWARD	STEPWISE
ADJUSTED R-SQUARED the higher the better		0.163	
MAE the lower the better		1.177	
RMSE the lower the better		2.388	

Conclusion:

Keep the original simple regression model with no further changes.

- > SELECTION OF MODEL
- > ADDITION OF FIXED EFFECTS
 & TWO-WAY CLUSTERING

#Statistical Programming

SELECTED MODEL

SIMPLE LINEAR REGRESSION MODEL

```
linearreg <-
  lm(log(tobinsq_p1 + 1) \sim inc
     + SHROWN_EXCL_OPTS_PCT
     + firmsize
     + log(rdat +1)
     + log(capexat + 1)
     + EXECDIR
     + AGE
     + log(tenure + 1),
     data = train)
```


Introduction

Background Jobs ×

SELECTED MODEL

1Q Median

LINEAR REGRESSION MODEL

SUMMARY STATISTICS

-1.1834 -0.2330 -0.0717 0.1677 2.0602

Coefficients:

Residuals: Min

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.056965 1.410178 24.75 < 0.00000000000000000000 *** log(inc + 1)0.531154 0.035234 15.08 < 0.00000000000000000 SHROWN_EXCL_OPTS_PCT 0.003040 0.000941 firmsize -0.075580 0.003136 -24.10 < 0.00000000000000002 ***0.028809 log(rdat + 1)0.169821 0.000000004 *** log(capexat + 1)0.142247 0.077918 1.83 0.0680 EXECDIR 0.065243 0.027455 2.38 0.0175 * -3.95 AGE -0.003134 0.000793 0.000078909 *** log(tenure + 1)0.037620 0.008884 4.23 0.000023282 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

F-statistic: 120 on 8 and 5182 DF, p-value: <0.0000000000000000

Residual standard error: 0.367 on 5182 degrees of freedom

VARIANCE INFLATION FACTOR (VIF)

inc	1.171
SHROWN_EXCL_OPTS_PCT	1.201
firmsize	1.270
rdat	1.093
capexat	1.026
EXECDIR	1.005
AGE	1.231
tenure	1.313

Terminal ×

Background Jobs ×

Multiple R-squared: 0.157,

Adjusted R-squared: 0.155

SELECTED MODEL

ACCURACY OF MODEL

MEAN ERROR	ROOT MEAN SQUARED ERROR	MEAN ABSOLUTE ERROR	MEAN PERCENTAGE ERROR	MEAN ABSOLUTE PERCENTAGE ERROR
ME	RMSE	MAE	MPE	MAPE
1.133	2.388	1.177	33.15	39.17

Conclusion:

Since the relevant values (ME, RMSE, MAE) are low, the model's accuracy is adequate.

Introduction

ADDITIONS TO OUR MODEL

FIXED EFFECTS

Objective: Control unobserved characteristics of individual entities in the dataset that might be systematically related to the dependent variable

```
foels_reg <- feols(data = train, log(tobinsg_p1 + 1) ~ inc
                   + SHROWN_EXCL_OPTS_PCT + firmsize
                    + \log(rdat + 1) + \log(capexat + 1)
                    + EXECDIR + AGE
                    + log(tenure + 1) | GVKEY + YEAR)
final pred <- predict(foels reg. test)</pre>
final error <- test$tobinsq p1 - final pred
final_final <- data.frame("Predicted" = final_pred,
                           "Actual" = test$tobinsq_p1,
                           "Error" = final error)
```

TWO-WAY CLUSTERING

Objective: Account for the presence of heteroscedasticity in the data, where the variability of error is not constant across all observations

```
cluster_reg <- feols(data = train, log(tobinsg_p1 + 1) ~ inc
                     + SHROWN_EXCL_OPTS_PCT + firmsize
                       log(rdat +1) + log(capexat + 1)
                     + EXECDIR + AGE
                     + log(tenure + 1) | GVKEY + YEAR,
                     cluster = c("GVKEY", "YEAR"))
```

Overall Effect: Improve accuracy of our model & Provide better predictions

SELECTED MODEL INCLUDING ADDITIONS

ACCURACY OF MODEL

ACCURACY RESULTS	PREVIOUS VALUE	NEW VALUE	EXPLANATION
ADJUSTED R-SQUARED the higher the better	0.163	0.839758	Even better fit for our model
MAE the lower the better	1.177	1.156	Remained relatively low
RMSE the lower the better	2.388	2.249	

Conclusion: Coefficients of the selected variables are significant - We will keep them for our final model.

presentation.R

FINAL MODEL

DROP INSIGNIFICANT VARIABLES

```
final_reg <- feols(data = train, log(tobinsq_p1 + 1) ~ inc
                   + SHROWN_EXCL_OPTS_PCT + firmsize | GVKEY + YEAR)
```

```
OLS estimation, Dep. Var.: log(tobinsq_p1 + 1)
Observations: 5,191
Fixed-effects: GVKEY: 1,845, YEAR: 7
Standard-errors: Clustered (GVKEY)
                 Estimate Std. Error t value Pr(>|t|)
inc
                  0.07577 0.032364 2.341 0.0193330 *
firmsize
                 -0.26027 0.021023 -12.380 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.127987
            Adj. R2: 0.839937
              Within R2: 0.165233
```

Background Jobs ×

OPTIMAL PROPORTION OF INCENTIVE COMPENSATION

Final Conclusion: No optimal proportion of incentive compensation.

Introduction

ENDNOTES

OUR MODEL

To derive the best-fitted model for our use case, we included the following:

- Extensive data cleansing
- Replacement of NA values with the industry average for many variables
- Winsorization of outliers
- Elimination of reverse causality by using forward one-year dependent variable
- Log transformation to account for variables with right-skewed distributions
- Reduction of endogeneity by checking for multicollinearity and adding/dropping control variables
- Avoidance of omitted firm/year variable bias by performing fixed-effect linear regression

CONCLUSION

Positive (albeit weak) relationship between incentive compensation and firm performance

(consistent with the efficient market and agency theory hypothesis)

Possibility that managers accept large amounts of equity compensation in the form of option awards

Investors increase expectations on firm performance

Higher Tobin's Q values as they overvalue the firm and its assets.

```
Statistical 'Programming' {
          print("Thank You!")
G1_Group5 ← c("Abigail", "Clarice", "Erinn", "Kaitlyn", "Spencer")
```

presentation.R

library(ACCT337)

library(ACCT337)

presentation.R

