Z Transform Pairs and Properties

Z Transform Pairs		
Time Domain *	Z Domain	
	Z	$\mathbf{z}^{\cdot 1}$
$\delta[k]$ (unit impulse)	1	1
$\gamma[k]^{\dagger}$ (unit step)	$\Gamma(z) = \frac{z}{z - 1}$	$\Gamma(z) = \frac{1}{1 - z^{-1}}$
a^k	$\frac{z}{z-a}$	$\frac{1}{1-z^{-1}a}$
e ^{-bTk}	$\frac{z}{z - e^{-bT}}$	$\frac{1}{1-z^{-l}e^{-bT}}$
k	$\frac{z}{(z-1)^2}$	$\frac{z^{-1}}{(1-z^{-1})^2}$
sin(bk)	$\frac{z\sin(b)}{z^2 - 2z\cos(b) + 1}$	$\frac{z^{-1}\sin(b)}{1-2z^{-1}\cos(b)+z^{-2}}$
cos(bk)	$\frac{z(z-\cos(b))}{z^2-2z\cos(b)+1}$	$\frac{1-z^{-1}\cos(b)}{1-2z^{-1}\cos(b)+z^{-2}}$
a ^k sin(bk)	$\frac{az\sin(b)}{z^2 - 2az\cos(b) + a^2}$	$\frac{az^{-1}\sin(b)}{1-2az^{-1}\cos(b)+a^{2}z^{-2}}$
a ^k cos(bk)	$\frac{z(z-a\cos(b))}{z^2-2az\cos(b)+a^2}$	$\frac{1 - az^{-1}\cos(b)}{1 - 2az^{-1}\cos(b) + a^{2}z^{-2}}$

^{*}All time domain functions are implicitly=0 for k<0 (i.e. they are multiplied by unit step, $\gamma[k]$). \uparrow u[k] is more commonly used for the step, but is also used for other things. $\gamma[k]$ is chosen to avoid confusion (and because in the Z domain it looks a little like a step function, $\Gamma(z)$).

Z Transform Properties		
Property Name	Illustration	
Linearity	$af_1[k] + bf_2[k] \stackrel{\mathbb{Z}}{\longleftrightarrow} aF_1(z) + bF_2(z)$	
Left Shift by 1	$f[k+1] \stackrel{\mathbb{Z}}{\longleftrightarrow} zF(z) - zf[0]$	
Left Shift by 2	$f[k+2] \stackrel{\mathbb{Z}}{\longleftrightarrow} z^2 F(z) - z^2 f[0] - z f[1]$	
Left Shift by n	$f[k+n] \stackrel{\mathbb{Z}}{\longleftrightarrow} z^n F(z) - z^n \sum_{k=0}^{n-1} f[k] z^{-k}$ $= z^n \left(F(z) - \sum_{k=0}^{n-1} f[k] z^{-k} \right)$	
Right Shift by n	$f[k-n] \stackrel{\mathbb{Z}}{\longleftrightarrow} z^{-n} F(z)$	
Multiplication by time	$kf[k] \xleftarrow{\mathbb{Z}} -z \frac{dF(z)}{dz}$	
Scale in z	$a^k f[k] \longleftrightarrow F\left(\frac{z}{a}\right)$	
Scale in time	$f\left[\frac{k}{n}\right] \longleftrightarrow F(z^n);$ n is an integer $n \ge 1$	
Convolution	$f_1[k] * f_2[k] \stackrel{\mathbb{Z}}{\longleftrightarrow} F_1(z) F_2(z)$	
Initial Value Theorem	$f[0] = \lim_{z \to \infty} F(z)$	
Final Value Theorem (if final value exists)	$\lim_{k\to\infty} f[k] = \lim_{z\to 1} (z-1)F(z)$	