

Enhanced Thermoelectric Metrics in Ultra-long Electrodeposited PEDOT Nanowires [Nano Letters 2011, 11, 125–131; DOI: 10.1021/nl103003d]. David K. Taggart, Yongan Yang, Sheng-Chin Kung, Theresa M. McIntire, and Reginald M. Penner*

The signs of the Seebeck coefficients reported in Table 1 of our paper are incorrect. These values were measured in accordance with the definition for the Seebeck coefficient given on p 130:

$$S = \frac{\Delta V_{\rm s}}{\Delta T} = \frac{V_{\rm hot} - V_{\rm cold}}{T_{\rm hot} - T_{\rm cold}} \tag{1}$$

where $\Delta V_{\rm s}$ is the Seebeck voltage and ΔT is the temperature gradient imposed upon the nanowires. Since S is defined by

 $\varepsilon_x = S(\partial T/\partial x)$, ^{1,2} eq 1 is incorrect and the Seebeck coefficient is defined instead as

$$S = \frac{-\Delta V_{\rm s}}{\Delta T} = \frac{-(V_{\rm hot} - V_{\rm cold})}{T_{\rm hot} - T_{\rm cold}}$$
(2)

By this definition, the S values reported in Table 1 are positive, not negative, and the majority carriers in our PEDOT nanowires are holes, not electrons, as erroneously stated on p 130. To be clear, our experimental measurements of S for arrays of PEDOT nanowires yield a $\Delta V_{\rm s}$ that is positive on the cold side of the nanowire array.

Because the effective mass of holes in PEDOT is \sim 3% lower than that of electrons (0.117 m_e versus 0.121 m_e³), reported values of the carrier concentration, n, and hole mobility are

Table 1. Experimentally Measured σ , S, and $S^2\sigma$ for PEDOT Nanowires and Films and Comparison with Literature Values for PEDOT and Other Conductive Polymers

	σ S/cm		S μV/K		$S^2 \sigma$ $W \cdot m^{-1} \cdot K^{-2}$		μ cm ² ·V ⁻¹ ·s ⁻	1
sample	310 K	300 K	310 K	300 K	310 K	300 K	310 K	reference
PEDOT nanowires $\text{height} \times \text{width}$								
$48 \text{ nm} \times 582 \text{ nm}$	40.5	39.6	38	33	5.8×10^{-6}	4.3×10^{-6}	9.9	this work
$80 \text{ nm} \times 440 \text{ nm}$	12.0	11.7	85	80	8.7×10^{-6}	8.4×10^{-6}	12.0	"
90 nm \times 205 nm	7.9	7.6	122	69	1.2×10^{-5}	3.6×10^{-6}	13.2	"
$60 \text{ nm} \times 340 \text{ nm}$	6.9	6.6	42	38	1.2×10^{-6}	9.6×10^{-7}	2.1	"
66 nm × 568 nm			70	76				"
40 nm × 245 nm			80	78				"
$40 \text{ nm} \times 251 \text{ nm}$			35	40				"
$40 \text{ nm} \times 258 \text{ nm}$			91	73				"
$60 \text{ nm} \times 157 \text{ nm}$			104	75				"
$75 \text{ nm} \times 172 \text{ nm}$			44	39				u
mean values	16.8	16.4	74	62	9.2×10^{-6}	6.3×10^{-6}	9 ± 5	и
PEDOT Films								
$height \times width$								
$30 \text{ nm} \times 1.5 \text{ mm}$	18.3	17.9	34	33	2.1×10^{-6}	2.0×10^{-6}	2.5	this work
150 nm $ imes$ 180 μ m	13.2	13.0	57	47	4.4×10^{-6}		4.5	"
45 nm × 1.5 mm	9.7	9.3	55	57	2.9×10^{-6}	3.0×10^{-6}	4.0	"
$170 \text{ nm} \times 312 \mu\text{m}$	3.2	3.1	44	39	6.3×10^{-7}	4.7×10^{-7}	0.57	u
mean values	11.1	10.9	48	44	2.6×10^{-6}	2.1×10^{-6}	3 ± 2	ű
Literature Values								
(all data 300 K)								
polyacetylene iodine doped thickness, $t = 300 \text{ nm}$	$3\times10^4to5\times10^4$		15-20		1.2×10^{-3} to 1.5×10^{-3}			4
polyacetylene metal—Cl _S doped	$0.15 - 1.1 \times 10^4$		11 - 1077		1.2×10^{-7} to 1.5×10^{-3}			5
polyacetylene FeCl $_3$ or I doped $t=9-35\mu\mathrm{m}$	$92-1 \times 10^4$		9-22		6.2×10^{-7} to 8.3×10^{-5}			6
polyaniline in PETG or PMMA	0.13-30		3-9		6.4×10^{-11} to 2.2×10^{-7}			7
polypyrrole films $t=40-100~\mu\mathrm{m}$	2	.6	7	7	1.7 ×	10^{-7}		8

Nano Letters

ADDITION/CORRECTION

Table 1. Continued

sample	σ S/cm 310 K 300 K	$\frac{S}{\mu V/K}$ 310 K 300 K	$\frac{S^{2}\sigma}{W \cdot m^{-1} \cdot K^{-2}}$ 310 K 300 K	$\frac{\mu}{\frac{\text{cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}}{310 \text{ K}}}$ reference
doped poly(alkylthiophene) t = 1.75 $-$ 3 μ m	0.00002 - 0.0013	200-700	1.0×10^{-10} to 8.8×10^{-9}	9
polythiophene films $t=$ sub 20 μm	0.00005 - 3	20-10000	5.0×10^{-8} to 1.0×10^{-5}	10
polycarbazole and derivatives	0.00027 - 0.29	4.9 - 127	5.0×10^{-10} to 1.5×10^{-7}	11
PEDOT/PSS DMSO-treated	0.06-220	12-888	1.6×10^{-9} to 4.8×10^{-6}	0.49-2.11 12
PEDOT/PSS pellets DMSO-treated	9-54	12-15	2.0×10^{-7} to 8.3×10^{-7}	13
PEDOT/PSS films $t = 10 - 30 / \mu m$	0.80 - 80	9-12	1.2×10^{-8} to 8.0×10^{-7}	14
PEDOT/PSS:carbon nanotube composite films: $t = 0.07 - 13 \text{ mm}$	0.20-0.40	10000-40000	1.0×10^{-6} to 2.5×10^{-5}	15

both modified by the inversion in sign of S. Specifically, the recalculated hole concentrations are 3.7×10^{18} to $45\times10^{18}\,\text{cm}^{-3}.$ Values for hole mobilities are given in the corrected Table 1.

■ REFERENCES

- (1) Ibach, H.; Lüth, H. Solid State Physics: An Introduction to Theory and Experiment; Springer-Verlag: Berlin, 1993; p 178.
- (2) Wang, S. Fundamentals of Semiconductor Theory and Device Physics; Prentice Hall: Englewood Cliffs, NJ, 1989; p 248.
- (3) Pai, C.; Liu, C.; Chen, W.; Jenekhe, S. Polymer 2006, 47, 699-708.
- (4) Nogami, Y.; Keneko, H.; Ishiguro, T.; Takahashi, A.; Tsukamoto, J.; Hosoito, N. Solid State Commun. 1990, 76, 583–586.
 - (5) Park, Y. Synth. Met. 1991, 45, 173-182.
- (6) Pukacki, W.; Plocharshi, J.; Roth, S. Synth. Met. 1994, 62, 253–256.
- (7) Subramaniam, C.; Kaiser, A.; Gilberd, P.; Liu, C.; Wessling, B. Solid State Commun. 1996, 97, 235–238.
- (8) Maddison, D.; Unsworth, J.; Roberts, R. Synth. Met. 1988, 26, 99-108.
- (9) Sun, J.; Yeh, M.-L.; Jung, B. J.; Zhang, B.; Feser, J.; Majumdar, A.; Katz, H. E. *Macromolecules* **2010**, 43, 2897–2903.
- (10) Hiraishi, K.; Masuhara, A.; Nakanishi, H.; Oikawa, H.; Shinohara, Y. *Jpn. J. Appl. Phys.* **2009**, *48*, 071501.
- (11) Wakim, S.; Aich, B.-R.; Tao, Y.; Leclerc, M. Polym. Rev. 2008, 48, 432-462.
- (12) Chang, K.-C.; Jeng, M.-S.; Yang, C.-C.; Chou, Y.-W.; Wu, S.-K.; Thomas, M. A.; Peng, Y.-C. J. Electron. Mater. 2009, 38, 1182–1188.
- (13) Jiang, F. X.; Xu, J. K.; Lu, B. Y.; Xie, Y.; Huang, R. J.; Li, L. F. Chin. Phys. Lett. **2008**, 25, 2202–2205.
 - (14) Kim, J.; Jung, J.; Lee, D.; Joo, J. Synth. Met. 2002, 126, 311–316.
- (15) Kim, D.; Kim, Y.; Choi, K.; Grunlan, J. C.; Yu, C. ACS Nano 2010, 4, 513–523.

DOI: 10.1021/nl201142j Published on Web 04/14/2011