CS 188 Spring 2019

The state of the s

Introduction to Artificial Intelligence

Written HW 4

Due: Monday 2/25/2019 at 11:59pm (submit via Gradescope).

Leave self assessment boxes blank for this due date.

Self assessment due: Monday 3/4/2019 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download a PDF copy of your submission from Gradescope). For each subpart where your original answer was correct, write "correct." Otherwise, write and explain the correct answer.

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually

Submission: Your submission should be a PDF that matches this template. Each page of the PDF should align with the corresponding page of the template (page 1 has name/collaborators, question 1 begins on page 2, etc.). Do not reorder, split, combine, or add extra pages. The intention is that you print out the template, write on the page in pen/pencil, and then scan or take pictures of the pages to make your submission. You may also fill out this template digitally (e.g. using a tablet.)

First name	Gresony	
Last name	Uezono	
SID	3031967 186	
Collaborators		

Q1. Reinforcement Learning

Imagine an unknown game which has only two states $\{A, B\}$ and in each state the agent has two actions to choose from: $\{\text{Up, Down}\}$. Suppose a game agent chooses actions according to some policy π and generates the following sequence of actions and rewards in the unknown game:

A -		13	1 1	2	3	A
A.0	0	١	1	1	1	1
A, U		0	0	6	10	-1/4
B, 0	0	6	-2	-2	-2	-)
	0	U	0	6	7/4	7/
	4.2		1 0		14	7/4

t	s_t	at	s_{t+1}	Tt
0	A	Down	В	2
1	В	Down	В	-4
2	В	Up	В	0
3	В	Up	A	3
4	A	Up	A	-1

Unless specified otherwise, assume a discount factor $\gamma=0.5$ and a learning rate $\alpha=0.5$

(a) Recall the update function of Q-learning is:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with the above experience sequence?

$$Q(A, Down) = 1$$
, $Q(B, Up) = 7/4$

Self assessment

If your answer was correct, write "correct" above. Otherwise, write and explain the correct answer.

(b) In model-based reinforcement learning, we first estimate the transition function T(s, a, s') and the reward function R(s, a, s'). Fill in the following estimates of T and R, estimated from the experience above. Write "n/a" if not applicable or undefined.

$$\hat{T}(A, Up, A) = 1$$
, $\hat{T}(A, Up, B) = 0$, $\hat{T}(B, Up, A) = 1$, $\hat{T}(B, Up, B) = 1$

$$\hat{R}(A, Up, A) = _____, \quad \hat{R}(A, Up, B) = ___/ (A, Up, B) = ___/ (B, Up, A) = ___/ (B, Up, B) = ___$$

Self assessment	
If your answer was correct, write "correct" above. Ot	herwise, write and explain the correct answer.

(c) To decouple this question from the previous one, assume we had a different experience and ended up with the following estimates of the transition and reward functions:

s	a	s'	$\hat{T}(s,a,s')$	$\hat{R}(s,a,s')$
A	Up	A	1	10
Ā	Down	A	0.5	2
A	Down	В	0.5	2
В	Up	A	1	-5
В	Down	В	1	8

(i) Give the optimal policy $\hat{\pi}^*(s)$ and $\hat{V}^*(s)$ for the MDP with transition function \hat{T} and reward function \hat{R} .

Hint: for any $x \in \mathbb{R}$, |x| < 1, we have $1 + x + x^2 + x^3 + x^4 + \cdots = 1/(1-x)$.

- (ii) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converge to? Assume the learning rate α_t is properly chosen so that convergence is guaranteed.
 - the values found above, \hat{V}^*
 - \bigcirc the optimal values, V^{\bullet}
 - O neither \hat{V}^* nor V^*
 - O not enough information to determine

	I IV	
wise, write		wise, write and explain the correct answer.

Q2. Policy Evaluation

In this question, you will be working in an MDP with states S, actions A, discount factor γ , transition function T, and reward function S

We have some fixed policy $\pi: S \to A$ which returns an action $a = \pi(s)$ for each state $s \in S$. We want to learn the O function $O^{\pi/s}$ the Q function $Q^{\pi}(s,a)$ for this policy: the expected discounted reward from taking action a in state s and then continuing to act on the state of the state continuing to act according to π : $Q^{\pi}(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma Q^{\pi}(s',\pi(s'))]$. The policy π will not change while running any of the above while running any of the algorithms below.

- (a) Can we guarantee anything about how the values Q^{π} compare to the values Q^{\bullet} for an optimal policy π^{\bullet} ?
 - $Q^{\pi}(s,a) \leq Q^{\bullet}(s,a)$ for all s,a
 - $\bigcirc Q^{\pi}(s,a) = Q^{\bullet}(s,a) \text{ for all } s,a$
 - $Q^{\pi}(s,a) \geq Q^{\bullet}(s,a)$ for all s,a
 - None of the above are guaranteed
- G" & Q" 1/c .+ will be at most
- the optimal policy For 45, a

Self assessment

If your answer was correct, write "correct" above. Otherwise, write and explain the correct answer.

- (b) Suppose T and R are unknown. You will develop sample-based methods to estimate Q^* . You obtain a series of samples $(s_1, a_1, r_1), (s_2, a_2, r_2), \ldots (s_T, a_T, r_T)$ from acting according to this policy (where $a_t = \pi(s_t)$, for all t).
 - (i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

$$V(s_t) \leftarrow (1-\alpha)V(s_t) + \alpha(r_t + \gamma V(s_{t+1}))$$

which approximates the expected discounted reward $V^{\pi}(s)$ for following policy π from each state s, for a learning rate α .

Fill in the blank below to create a similar update equation which will approximate Q^{π} using the samples. You can use any of the terms $Q, s_t, s_{t+1}, a_t, a_{t+1}, r_t, r_{t+1}, \gamma, \alpha, \pi$ in your equation, as well as \sum and max with any index variables (i.e. you could write \max_a , or \sum_a and then use a somewhere else), but no other terms.

$$Q(s_t,a_t) \leftarrow (1-\alpha)Q(s_t,a_t) + \alpha \left[\begin{array}{ccc} \Gamma_+ & + & \mathcal{Y} Q^{\top} \left(S_{++1}, \, \mathcal{T} \left(S_{++1} \right) \right) \end{array} \right]$$

(ii) Now, we will approximate Q^{π} using a linear function: $Q(s,a) = \sum_{i=1}^{d} w_i f_i(s,a)$ for weights w_1, \ldots, w_d and feature functions $f_1(s,a),\ldots,f_d(s,a)$.

To decouple this part from the previous part, use Qsamp for the value in the blank in part (i) (i.e. $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha Q_{samp}$.

Which of the following is the correct sample-based update for each w_i ?

- $\bigcirc w_i \leftarrow w_i + \alpha[Q(s_t, a_t) Q_{samp}] \times$
- $O w_i \leftarrow w_i \alpha[Q(s_t, a_t) Q_{samp}] \times$

(iii) The algorithms in the previous parts (part i and ii) are:

odel-fre

elf assessment				
				-
f your answer was correct, write "con	most" above Otherwise w	rite and explain the correct	answer.	