

Larutan Penyangga

PENDAHULUAN

🦠 Larutan penyangga (buffer/dapar) adalah larutan yang dapat mempertahankan nilai pH tertentu walaupun diberi zat lain.

B. LARUTAN PENYANGGA ASAM

- 🔪 Larutan penyangga asam dapat mempertahankan pH < 7, tersusun atas campuran:
 - 1) Asam lemah dan garamnya Contoh: CH₃COOH dengan CH₃COONa
 - 2) Asam lemah dan basa konjugasinya Contoh: CH₃COOH dengan CH₃COO⁻
- 🔪 Larutan penyangga asam dapat dibuat dengan mereaksikan asam lemah dengan basa kuat.
- 🦠 **Reaksi tersebut** akan menghasilkan garam atau basa konjugasi, menghabiskan basa kuat dan menyisakan asam lemah.

Contoh:

Larutan penyangga dari 100 mL H₂CO₃ 0,3 M dan 100 mL NaOH 0,1 M,

- 🦠 Cara larutan penyangga asam menjaga pH:
 - 1) Pada penambahan asam (penambahan H⁺), kesetimbangan bergeser ke kiri, asam bereaksi dengan basa membentuk asam lemah.
 - 2) Pada penambahan basa (penambahan OH⁻), kesetimbangan bergeser ke kanan, basa bereaksi dengan asam membentuk air.
- 📏 Konsentrasi H+ dalam larutan penyangga asam:

Garam dari asam dan basa monovalen/divalen

$$[H^+] = Ka. \frac{Ma}{Mg} \qquad [H^+] = Ka. \frac{n a}{n g}$$

Garam dengan asam atau basa divalen

$$[H^+] = Ka. \frac{Ma}{2. Mg}$$
 $[H^+] = Ka. \frac{n a}{2. n g}$

Contoh:

100 mL larutan penyangga mengandung 10 mmol H_2S dan HS^- . (Ka $H_2S = 1 \times 10^{-6}$).

Tentukan pH larutan:

a. pH larutan penyangga

$$[H^+] = 10^{-6} \times \frac{10}{10} = 10^{-6}$$

 $pH = -log 10^{-6}$ $pH = 6$

b. Jika ditambahkan HCl 0.1 M 2mL

Asam akan bereaksi dengan HS- (basa),

	HS ⁻ (aq)	+ H†(aq) -	→ H ₂ S(aq)				
M	10 mmol	0,2 mmol	10 mmol				
R	0,2 mmol	0,2 mmol	0,2 mmol				
S	9,8 mmol	_	10,2 mmol				
$[H^+] = 10^{-6} \times \frac{10.2}{9.8} = 1.04 \times 10^{-6}$							
$pH = -log 1.04 \times 10^{-6}$ $pH = 5.98$							

c. Jika ditetesi KOH 0,1 M 3 mL

Basa akan bereaksi dengan H₂S (asam),

H₂S(aq) + OH⁻(aq) → HS⁻(aq) + H₂O(l)
M 10 mmol 0,3 mmol 10 mmol
R 0,3 mmol 0,3 mmol 0,3 mmol 0,3 mmol
S 9,7 mmol – 10,3 mmol 0,3 mmol
[H⁺] =
$$10^{-6}$$
 x $\frac{9,7}{10,3}$ = 9,4 x 10^{-7}
pH = $-\log 9,4$ x 10^{-7} pH = 6,02

LARUTAN PENYANGGA BASA

- 🔪 Larutan penyangga basa dapat mempertahankan pH > 7, tersusun atas campuran:
 - 1) Basa lemah dan garamnya Contoh: NH₃ dengan NH₄Cl.
 - 2) Basa lemah dan asam konjugasinya Contoh: NH₃ dengan NH₄⁺
- 🦠 Larutan penyangga basa dapat dibuat dengan mereaksikan asam kuat dengan basa lemah.
- 🦠 **Reaksi tersebut** akan menghasilkan garam atau asam konjugasi, menghabiskan asam kuat dan menyisakan basa lemah.

Contoh:

Larutan penyangga dari 250 mL NH₃ 0,1 M dan 100 mL HCl 0,1 M,

St	15 mmol	_		10 mmol
R	10 mmol	10 mmol		10 mmol
М	25 mmol	10 mmol		_
	NH ₃	+ HCl	~	NH ₄ Cl

- 🦠 Cara larutan penyangga basa menjaga pH:
 - 1) Pada penambahan asam (penambahan H⁺), kesetimbangan bergeser ke kanan, asam bereaksi dengan basa membentuk asam lemah.
 - 2) Pada penambahan basa (penambahan OH⁻), kesetimbangan bergeser ke kiri, bereaksi dengan asam membentuk air.

Konsentrasi OH⁻ dalam larutan penyangga basa: Garam dari asam dan basa monovalen/divalen

$$[OH^{-}] = Kb. \frac{Mb}{Mg} \qquad [OH^{-}] = Kb. \frac{n b}{n g}$$

Garam dengan asam atau basa divalen

$$[OH^{-}] = Kb. \frac{Mb}{2. Mg}$$
 $[OH^{-}] = Kb. \frac{n b}{2. n g}$

Contoh:

100~mL larutan penyangga mengandung NH $_3$ dan NH $_4$ Cl yang keduanya 0,1 M. (Kb NH $_3$ = 10^{-5}). Tentukan pH larutan:

a. pH larutan penyangga

$$[OH^{-}] = 10^{-5} \times \frac{10}{10} = 10^{-5}$$

 $pOH = -log 10^{-5} = 5$ $pH = 9$

b. Jika ditambahkan HCl 0,1 M 3 mL

Asam akan bereaksi dengan NH₃ (basa),

MH₃(aq) + H⁺(aq) → NH₄⁺(aq)
M 10 mmol 0,3 mmol 10 mmol
R 0,3 mmol 0,3 mmol 0,3 mmol
S 9,7 mmol - 10,3 mmol
[OH⁻] =
$$10^{-5}$$
 x $\frac{10,3}{9,7}$ = 1,06 x 10^{-5}
pOH = $-\log 1,06$ x 10^{-5} = 4,97
pH = 9,03

c. Jika ditetesi KOH 0,1 M 4 mL

Basa akan bereaksi dengan NH₄⁺ (asam),

$$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(aq) + H_2O(l)$$

M 10 mmol 0,4 mmol 10 mmol

R 0,4 mmol 0,4 mmol 0,4 mmol 0,4 mmol

S 9,6 mmol – 10,4 mmol 0,4 mmol

$$[OH^{-}] = 10^{-5} \times \frac{9.6}{10.4} = 9.23 \times 10^{-6}$$

 $pOH = -log9.23 \times 10^{-6} = 5.03$

$$pH = 8,97$$

D. FUNGSI LARUTAN PENYANGGA

- Narutan penyangga digunakan dalam:
 - 1) Analisis zat kimia dan biokimia
 - 2) Laboratorium bakteriologi
 - 3) Kultur jaringan
 - 4) Obat tablet dan cair
 - 5) Cocok tanam hidroponik
- Larutan penyangga terdapat dalam tubuh manusia yang berfungsi menjadi keseimbangan pH tubuh, terdapat pada cairan intrasel dan cairan ekstrasel (misalnya darah dan air liur).
- Nacam-macam larutan penyangga dalam tubuh:
 - 1) **Penyangga fosfat** tersusun atas H₂PO4⁻ dan HPO₄²⁻ dan berada pada seluruh cairan tubuh.

Pada penurunan pH tubuh

$$HPO_4^-(aq) + H^+(aq) \rightarrow H_2PO_4^-(aq)$$

Pada kenaikan pH tubuh

$$H_2PO_4^-(aq) + OH^-(aq) \rightarrow HPO_4^-(aq) + H_2O(l)$$

2) **Penyangga karbonat** tersusun atas H₂CO₃ dan HCO₃- dan berada pada darah.

Pada penurunan pH tubuh

$$HCO_3^-(aq) + H^+(aq) \rightarrow H_2CO_3(aq)$$

Pada kenaikan pH tubuh

$$H_2CO_3(aq) + OH_2(aq) \rightarrow HCO_3(aq) + H_2O(l)$$

3) **Penyangga hemoglobin** tersusun atas HHb dan HbO₂ dan berada pada darah.

Kesetimbangan hemoglobin

$$HHb(aq) + O_2(aq) \rightarrow HbO_2(aq) + H^+(aq)$$

- Tanpa larutan penyangga, tubuh manusia dapat mengalami asidosis dan alkalosis yang menyebabkan kerusakan jaringan dan organ.
- Asidosis adalah penurunan pH darah yang disebabkan oleh metabolisme tubuh yang terlalu tinggi karena diabetes mellitus, penyakit ginjal, diare, dan konsumsi makanan berprotein berlebihan.
- Alkalosis adalah peningkatan pH darah yang disebabkan hiperventilasi karena sedikitnya kadar oksigen di lingkungan, dan gas karbondioksida yang dilepas terlalu banyak.