实验二: 语音信号的频分复用

- 背景
 - 将多段采样率8000Hz的信号在频域上合并为一段采样率 48000Hz的信号
- 步骤
 - •人说话时语音的频带分布在300Hz到3400Hz
 - 奈奎斯特采样定理:采样频率需要大于最大信号频率两倍, 否则会发生混叠
 - 将4段采集的音频降采样到8000HZ, 得到频带受限的信号
 - 经过对4段8000Hz语音进行适当处理, 使多路不同的语音的 频带在48000Hz的信号频带上互不重叠, 实现多路语音同时 传输

任务

- 使用任意编程语言(python/matlab) 验证"频分复用原理"
 - 收集四段不同的长度为30s的语音
 - 预处理音频信号: 统一原始信号的采样率至8000Hz
 - 编码处理: 将4段音频的频谱合并到一段采样率为48000Hz的音频中
 - 解码处理:将叠加在一起的多路语音分开,分离得到多路语音
- •注意事项:
 - 因为编码得到的信号仍然是实信号,在调制解调的过程中,要保持频谱 共轭对称的性质

示例

8、(10 分) $x_1 = [2,3]$ 是频率为 2Hz、时长为 1s 的数字信号, $x_2 = [1,1,2]$ 是频率为 3Hz、时长为 1s 的数字信号。对这两段信号做频分复用,得到频率为 12Hz、时长为 1s 的数字信号y。已知y在时域上仍为**实信号**,其频谱序列长度为 12,其中下标为 1-2 的频段保存了 x_1 的频谱信息,下标为 3-5 的频段保存了 x_2 的频谱信息,如下图所示。试求出一个满足题意的信号y的频谱序列,并填写在下列空格内。 \leftarrow

4

保存x₁频谱信息 保存x₂频谱信息

													-0
下标↩	0←	1←	2←	3←	4←	5←	6←	7←	8←	9←	10←	11←	4
频谱值↩	←	↩	↩	↩	↩	4	4	←7	4	↩	←	4	4

更节省频带的示例

任务

前面的实验是整段语音进行频分复用,这在通信场景中是较为少见的。下面我们进行分帧频分复用,每一帧的长度为N秒。具体来讲,将音频切为多个等长的片段,每一个片段的长度为N秒,分别对每一片段进行频分复用,最终再解码。解码后将每一帧进行拼接,组合为完整的音频。请尝试N=1s, 2s, 5s, 10s时,分帧频分复用的结果。

实验要求

- 提交源码、实验结果以及实验报告
- •工具参考
 - Python: librosa(语音处理) numpy(python的科学计算库,有fft相关的api)
 - Matlab: audioread(音频文件读取) fft(傅里叶变换)