固体物理 Solid State Physics

冯雪

x-feng@tsinghua.edu.cn

罗姆楼2-101B

1. 金属银在室温下的电阻率为 $1.6\times10^{-8}\Omega.m$,每个原子贡献传导电子数目为1,费米能为5.5eV。试计算处于100V/cm的电场下电子的平均漂移速率。已知银的密度是 1.05×10^4 kg/m³,银的原子量为107.87。

2. 某一N型半导体电子浓度为1×10¹⁵ cm⁻³, 电子迁移率为1000 cm²/V.s, 求其电阻率。

3.硅材料中施主杂质为 1.5×10^{17} cm⁻³,受主杂质浓度为 2×10^{17} cm⁻³,计算其常温下电导率。

- 4.已知T=300K时硅的电子浓度为 $n=5\times10^4$ cm⁻³,
 - (1) 求空穴浓度p,并判断是何种类型半导体;
 - (2) 计算费米能级相对于本征费米能级的位置。
 - (注: Si材料: 带隙宽度 E_g = 1.12 eV, 本征载流子浓度 n_i = 1.5×10¹⁰ cm⁻³)
- 5.n型硅的施主浓度分别为 $1.5 \times 10^{14} cm^{-3}$ 和 $10^{12} cm^{-3}$ 时, 计算温度为300 K和500 K时电子和空穴浓度 n_0 和 p_0 , 进行对比,讨论掺杂浓度和温度对载流子的影响。 (已知T=300 K和500 K时硅的本征载流子浓度 n_i = $1.5 \times 10^{10} cm^{-3}$ 和 $3.5 \times 10^{14} cm^{-3}$)

6. 300 K, $n_0 = 10^{15} \,\mathrm{cm}^{-3}$, $n_i = 10^{10} \,\mathrm{cm}^{-3}$, 过剩 $\Delta n = 10^{13} \,\mathrm{cm}^{-3}$

$$E_{Fp}=?$$