Algorithmen der Bioinformatik I WS 2017/2018

Burkhard Morgenstern Peter Meinicke

Dept. Bioinformatics Institute of Microbiology and Genetics (IMG) University of Göttingen

November 7, 2017

Question: for

$$S_1,\ldots,S_n$$

and a $n \times n$ distance matrix $(d_{i,j})$, is there a tree T representing the distances $d_{i,j}$?

Consider tree T and S_i , S_j , S_k , S_l arranged in T as:

Then one has:

$$d_{i,j} + d_{k,l} = a + b + d + e$$

 $d_{i,k} + d_{j,l} = a + b + 2 \cdot c + d + e$
 $d_{i,l} + d_{j,k} = a + b + 2 \cdot c + d + e$

In general: for each selection of 'species' S_i, S_j, S_k, S_l , two of the sums

are equal and the third one is smaller or equal than these two sums.

Equivalently: for each selection of S_i , S_j , S_k , S_l , one has

$$d_{i,j} + d_{k,l} \le \max\{d_{i,j} + d_{k,l}, d_{i,j} + d_{k,l}\}$$

('Four-point condition')

Theorem

For a distance matrix $(d_{i,j})$, there is a tree T representing the distances $d_{i,j}$ if and only if $(d_{i,j})$ meets the four-point condition.

UPGMA can go wrong:

- Distances between root and leaves made equal
- Branching pattern ('topology') can be wrong

Example (UPGMA finds wrong branching pattern)

	Α	В	С	D
Α	0	6	8	12
В		0	4	8
С			0	6
D				0

Improved distance method for tree reconstruction:

Neighbour Joining

Hierarchical clustering as in *UPGMA*, but: instead of joining sequences S_i , S_j with minimal distance $d_{i,j}$, use 'corrected distances' $D_{i,j}$.

Assumption: sequences evolved from tree T without molecular-clock property, i.e. leaves may have different distances from root. Observed distances are 'real' distances in T.

Define:

$$r_i = \frac{1}{n-2} \sum_k d_{i,k}$$

and 'corrected distances'

$$D_{i,j}=d_{i,j}-r_i-r_j$$

(Attention: values $D_{i,j}$ may be negative!)

It can be proven mathematically:

Theorem

If there exists an (unknown) tree T with distances $d_{i,j} = d_{i,i}^T$, then:

Pair of sequences S_i , S_j minimizes $D_{i,j}$ if and only if S_i and S_j are neighbouring leaves in T.

Algorithm:

- Calculate 'corrected distances' $D_{i,j}$ for each sequence pair S_i , S_j .
- Join pair of sequences with minimal $D_{i,j}$
- Replace S_i , S_j by new node S_k
- Compute distances between S_k and other sequences.
- Re-calculate 'corrected distances' Di,j
- Join pair of sequences with minimal $D_{i,j}$ etc

If nodes S_i and S_j with minimal $D_{i,j}$ connected by new node S_k : Calculate distance $d_{k,m}$ to remaining sequences S_m .

Easy to see:

$$\Rightarrow d_{k,m} = \frac{1}{2}(d_{i,m} + d_{j,m} - d_{i,j})$$

 $d_{i,m} + d_{i,m} = 2 \cdot d_{k,m} + d_{i,k} + d_{i,k}$

Result:

If there exists an (unknown) tree T, and distances $d_{i,j}$ are derived from T, *i.e.*

$$d_{i,j} = d_{i,j}^T$$

then Neighbour-Joining is guaranteed to find the underlying tree T.

In general:

Neighbour-Joining constructs tree T such that tree distances $d_{i,j}^T$ approximate input distances $d_{i,j}$

In an ideal world:

'Distance' $d(S_1, S_2)$ between sequences S_1 and S_2 defined as *time* that passed, since S_1 and S_2 evolved from their last common ancester.

Problem: time cannot be inferred by looking at S_1 and S_2

Therefore:

Define distance $d(S_1, S_2)$ as (estimated) *number of substitutions per position* that happened since S_1 and S_2 separated in phylogeny.

To estimate *d*:

- Align S₁ and S₂
- If distance between S_1 and S_2 small: number of substitutions \approx number of mismatches, use relative frequency of mismatches.
- For larger distances, use for example Jukes-Cantor formula.

 S_1 taaggactgttagaggcaacacatcactgctgccccgtaggtcagtctgatca

 $\mathcal{S}_{\!\scriptscriptstyle 2}$ taaggagtgtttcagaggcaacacatcactgctgccccgtaggacagtctatca

How many substitutions have occurred since S_1 and S_2 separated?

 S_1 taaggactgtt--agaggcaacacatcactgctgccccgtaggtcagtctgatca

 $S_{\!\scriptscriptstyle 2}$ taaggagtgtttcagaggcaacacatcactgctgccccgtaggacagtct-atca

Align sequences!

 S_1 taaggactgtt--agaggcaacacatcactgctgccccgtaggtcagtctgatca S_2 taaggagtgtttcagaggcaacacatcactgctgccccgtaggacagtct-atca

For close sequences: number of $mismatches \approx number of substitutions$


```
S_1 taaggactgtt--agaggcaacacatcactgctgccccgtaggtcagtctgatca S_3 tagcgagtgcttcatcggtagtacaccacaccttgaccattggatagtgt-acca
```

For distant sequences: more *substitutinos* than *mismatches* expected!

Jukes-Cantor model for DNA evolution: equal rate for all possible substitutios.

Average number d of substitutions per sequence position estimated as

$$d = -\frac{3}{4} \ln \left[1 - \frac{4}{3} \times \rho \right]$$

where p is (average) number of mismatches per position

Example (1):

 $S_{1} \text{ ta} \\ \text{aggactgtt--aga} \\ \text{ggcaacacatcactgctgccccgtaggtc} \\ \text{agtctgatca}$

 $\textbf{\textit{S}}_{3} \text{ tagcgagtgcttcatcggtagtacaccacaccttgaccattggatagtgt-acca}$

52 positions in alignment (ignoring gaps), 21 mismatches.

 $\Rightarrow p = 21/52 \approx 0.403$ mismatches per position.

With *Jukes-Cantor*: d = 0.578 substitution per position estimated.

Example (2):

 \mathcal{S}_{1} taagga $_{\text{c}}$ tgtt--agaggcaacacatcactgctgccccgtagg $_{\text{t}}$ cagtctgatca

 $S_{\!\scriptscriptstyle 2}$ taagga $_{\!\scriptscriptstyle 3}$ tgtttcagaggcaacacatcactgctgccccgtagg $_{\!\scriptscriptstyle 4}$ cagtct-atca

52 positions in alignment (ignoring gaps), 2 mismatches.

 \Rightarrow $p = 2/52 \approx 0.0384$ mismatches per position.

With *Jukes-Cantor*: d = 0.0394 substitution per position estimated.

Example (Multiple Alignment)

Protein Family, not aligned. Homologies not visible.

Example (Multiple Alignment)

Multiple alignment (MSA) highlights (local) similarities

Goal: calculate best MSA for input sequences

$$S_1,\ldots,S_n$$

automatically

Definition (Projection of Multiple Alignment)

For multiple alignment A, define $P_{i,j}(A)$ as projection of A to sequences S_i and S_j by omitting all other sequences (and removing double gaps in remaining alignment of S_i and S_j)

Example (Projection of MSA)

Multiple alignment A

Example (Projection of MSA)

Projection $P_{1,4}(A)$ of A to S_1 and S_4

Example (Projection of MSA)

Projection $P_{1,4}(A)$ of A to S_1 and S_4

Example (Projection of MSA)

Projection $P_{1,4}(A)$ of A to S_1 and S_4

Sum-of-pairs score Sc(A) of MSA A of S_1, \ldots, S_n defined as:

$$Sc(A) = \sum_{i < j} Sc(P_{i,j}(A))$$

Dynamic-programming algorithm to calculate optimal alignments can be generalized to multiple alignment (in theory!)

But: computing time far too long, not practicable

MSA for n sequences corresponds to path through n-dimensional space

(http://www.techfak.uni-bielefeld.de/)

Heuristic solutions necessary; most important approach: *progressive* alignment!

Idea for 'progressive alignment':

- Align successively sequences and groups of previously aligned sequences, until all sequences are aligned in one MSA
- Two *groups* G_1 , G_2 of sequences aligned by A_1 , A_2 can be aligned like two *single* sequences if A_1 , A_2 remain unchanged

Example (Alignment of two multiple alignments)

Example (Alignment of two multiple alignments)

```
S<sub>1</sub> E V R E - - V W -
S<sub>2</sub> - A R D - - I W A
S<sub>3</sub> Q A R E - S I Y A
S<sub>4</sub> - - R E - S L W S
S<sub>5</sub> - - R E W S L W S
S<sub>6</sub> - - R E Y S - - S
```

Score of aligning two columns: sum of scores of amino-acid pairs. For large sets of sequences: represent columns as *profiles*, i.e. frequencies of amino acids.

Procedure for progressive alignment:

- Construct rooted tree of input sequences S_1, \ldots, S_n ('guide tree').
- Traverse T from leaves to root
- At every inner node, construct profile alignments of sequences corresponding to daughter nodes

Figure: Tree of 5 sequences, Topology (branching order, ignoring branch lengths) represented as ((A,B)(C(D,E)))

