Heb dataset

- KNN
 - euclidean function

	T	T
	Test Accuracy	Train Accuracy
K = 1	0.833333	1.000000
K = 2	0.625000	0.892857
K = 3	0.916667	0.892857
K = 4	0.833333	0.875000
K = 5	0.916667	0.857143
K = 6	0.875000	0.875000
K = 7	0.958333	0. 839 28 6
K = 8	0.958333	0.857143
K = 9	0.958333	0.803571
K = 10	0.958333	0.821429
K = 11	0.958333	0.785714
K = 12	0.958333	0.803571
K = 13	0.958333	0.785714
K = 14	0.958333	0.785714

manhattan function

	Test	Accuracy	Train	Accuracy
K = 1		0.833333		1.000000
K = 2		0.625000		0.892857
K = 3		0.916667		0.892857
K = 4		0.833333		0.875000
K = 5		0.916667		0.857143
K = 6		0.875000		0.875000
K = 7		0.958333		0.839286
K = 8		0.958333		0.857143
K = 9		0.958333		0.803571
K = 10		0.958333		0.821429
K = 11		0.958333		0.785714
K = 12		0.958333		0.803571
K = 13		0.958333		0.785714
K = 14		0.958333		0.785714

- DT
 - entropy function

	Test Accuracy	Train Accuracy
$Max_depth = 1$	0.875000	0.821429
$Max_depth = 2$	0.958333	0.928571
$Max_depth = 3$	0.958333	0.964286
$Max_depth = 4$	0.916667	1.000000
$Max_depth = 5$	0.916667	1.000000
$Max_depth = 6$	0.916667	1.000000
$Max_depth = 7$	0.916667	1.000000
Max_depth = 8	0.916667	1.000000
Max depth = 9	0.916667	1.000000

o misclassification function

	Test Accuracy	Train Accuracy
Max_depth = 1	0.916667	0.857143
$Max_depth = 2$	0.958333	0.875000
$Max_depth = 3$	0.916667	0.892857
$Max_depth = 4$	0.916667	0.946429
Max_depth = 5	0.958333	0.982143
$Max_depth = 6$	0.958333	1.000000
$Max_depth = 7$	0.958333	1.000000
$Max_depth = 8$	0.958333	1.000000
$Max_depth = 9$	0.958333	1.000000

o gini index function

	Test Accuracy	Train Accuracy
$Max_depth = 1$	0.875000	0.857143
$Max_depth = 2$	0.875000	0.910714
$Max_depth = 3$	0.833333	1.000000
$Max_depth = 4$	0.833333	1.000000
Max_depth = 5	0.833333	1.000000
$Max_depth = 6$	0.833333	1.000000
$Max_depth = 7$	0.833333	1.000000
Max_depth = 8	0.833333	1.000000
$Max_depth = 9$	0.833333	1.000000

Dr dataset

- KNN
 - euclidean function

	Test	Accuracy	Train	Accuracy
K = 1		0.628986		1.000000
K = 2		0.594203		0.805211
K = 3		0.620290		0.827543
K = 4		0.626087		0.777916
K = 5		0.631884		0.764268
K = 6		0.657971		0.754342
K = 7		0.669565		0.743176
K = 8		0.657971		0.730769
K = 9		0.649275		0.719603
K = 10		0.643478		0.705955
K = 11		0.637681		0.702233
K = 12		0.649275		0.700993
K = 13		0.646377		0.704715
K = 14		0.655072		0.688586

o manhattan function

	Tost Accuracy	Train Accuracy
	*	*
K = 1	0.623188	1.000000
K = 2	0.628986	0.794045
K = 3	0.643478	0.827543
K = 4	0.646377	0.758065
K = 5	0.631884	0.785360
K = 6	0.666667	0.761787
K = 7	0.675362	0.758065
K = 8	0.689855	0.733251
K = 9	0.692754	0.727047
K = 10	0.678261	0.719603
K = 11	0.663768	0.71 9603
K = 12	0.666667	0.715881
K = 13	0.669565	0.715881
K = 14	0.672464	0.699752

• DT

o entropy function

	Test Accuracy	Train Accuracy
Max_depth = 20	0.652174	0.967742
Max_depth = 25	0.660870	0.995037
Max_depth = 30	0.657971	1.000000

o misclassification function

o gini index function

	Test Accuracy	Train Accuracy
Max_depth = 20	0.646377	0.996278
Max_depth = 25	0.646377	1.000000
Max_depth = 30	0.646377	1.000000

Sorted by accuracy diff

Heb

• KNN

Modeling Hepdata set: Using euclidean function:

	Test Accuracy	Train Accuracy	Accuracy Diff
K = 8	0.833333	0.839286	0.005952
K = 6	0.791667	0.821429	0.029762
K = 5	0.916667	0.839286	0.077381
K = 3	0.791667	0.892857	0.101190
K = 4	0.750000	0.857143	0.107143
K = 7	0.958333	0.821429	0.136905
K = 9	0.958333	0.785714	0.172619
K = 11	0.958333	0.785714	0.172619
K = 13	0.958333	0.785714	0.172619
K = 10	0.958333	0.767857	0.190476
K = 14	0.958333	0.767857	0.190476
K = 1	0.791667	1.000000	0.208333
K = 12	0.958333	0.750000	0.208333
K = 2	0.666667	0.910714	0.244048

Using manhattan function:

	Test Accuracy	Train Accuracy	Accuracy Diff
K = 6	0.875000	0.875000	0.000000
K = 3	0.916667	0.892857	0.023810
K = 4	0.833333	0.875000	0.041667
K = 5	0.916667	0.857143	0.059524
K = 8	0.958333	0.857143	0.101190
K = 7	0.958333	0.839286	0.119048
K = 10	0.958333	0.821429	0.136905
K = 9	0.958333	0.803571	0.154762
K = 12	0.958333	0.803571	0.154762
K = 1	0.833333	1.000000	0.166667
K = 11	0.958333	0.785714	0.172619
K = 13	0.958333	0.785714	0.172619
K = 14	0.958333	0.785714	0.172619
K = 2	0.625000	0.892857	0.267857

Modeling Hepdat	a set:		
Using cost entr	ору		
	Test Accuracy	Train Accuracy	Accuracy Diff
$Max_depth = 3$	0.958333	0.964286	0.005952
$Max_depth = 2$	0.958333	0.928571	0.029762
Max_depth = 1	0.875000	0.821429	0.053571
$Max_depth = 4$	0.916667	1.000000	0.083333
Max_depth = 5	0.916667	1.000000	0.083333
$Max_depth = 6$	0.916667	1.000000	0.083333
$Max_depth = 7$	0.916667	1.000000	0.083333
Max_depth = 8	0.916667	1.000000	0.083333
Max_depth = 9	0.916667	1.000000	0.083333
Using cost misc	lassification		
	Test Accuracy	Train Accuracy	Accuracy Diff
$Max_depth = 3$	0.916667	0.892857	0.023810
$Max_depth = 5$	0.958333	0.982143	0.023810
$Max_depth = 4$	0.916667	0.946429	0.029762
$Max_depth = 6$	0.958333	1.000000	0.041667
$Max_depth = 7$	0.958333	1.000000	0.041667
$Max_depth = 8$	0.958333	1.000000	0.041667
$Max_depth = 9$	0.958333	1.000000	0.041667
$Max_depth = 1$	0.916667	0.857143	0.059524
$Max_depth = 2$	0.958333	0.875000	0.083333
Using cost gini	index		
	Test Accuracy	Train Accuracy	Accuracy Diff
$Max_depth = 1$	0.875000	0.857143	0.017857
$Max_depth = 2$	0.875000	0.910714	0.035714
$Max_depth = 3$	0.833333	1.000000	0.166667
$Max_depth = 4$	0.833333	1.000000	0.166667
Max_depth = 5	0.833333	1.000000	0.166667
$Max_depth = 6$	0.833333	1.000000	0.166667
$Max_depth = 7$	0.833333	1.000000	0.166667
Max_depth = 8	0.833333	1.000000	0.166667
Max depth = 9	0.833333	1.000000	0.166667

Dr dataset

```
Modeling Drdata set:
Using euclidean function:
        Test Accuracy Train Accuracy Accuracy Diff
K = 14
             0.655072
                             0.688586
                                            0.033513
K = 12
             0.649275
                             0.700993
                                            0.051717
K = 13
             0.646377
                             0.704715
                                            0.058338
K = 10
             0.643478
                             0.705955
                                            0.062477
K = 11
             0.637681
                             0.702233
                                            0.064552
K = 9
             0.649275
                             0.719603
                                            0.070328
K = 8
             0.657971
                             0.730769
                                            0.072798
K = 7
             0.669565
                             0.743176
                                            0.073611
K = 6
             0.657971
                             0.754342
                                            0.096371
K = 5
             0.631884
                             0.764268
                                            0.132384
K = 4
             0.626087
                             0.777916
                                            0.151829
K = 3
             0.620290
                             0.827543
                                            0.207254
K = 2
             0.594203
                             0.805211
                                            0.211008
             0.628986
                             1.000000
                                            0.371014
Using manhattan function:
        Test Accuracy Train Accuracy Accuracy Diff
K = 14
             0.672464
                             0.699752
                                            0.027288
K = 9
                                            0.034294
             0.692754
                             0.727047
K = 10
             0.678261
                             0.719603
                                            0.041342
K = 8
             0.689855
                             0.733251
                                            0.043396
K = 13
             0.669565
                             0.715881
                                            0.046316
K = 12
             0.666667
                             0.715881
                                            0.049214
K = 11
                                            0.055835
             0.663768
                             0.719603
K = 7
             0.675362
                             0.758065
                                            0.082702
K = 6
             0.666667
                                            0.095120
                             0.761787
K = 4
             0.646377
                             0.758065
                                            0.111688
K = 5
             0.631884
                             0.785360
                                            0.153476
K = 2
             0.628986
                             0.794045
                                            0.165059
K = 3
             0.643478
                             0.827543
                                            0.184065
             0.623188
                             1.000000
                                            0.376812
```

• DT

Modeling Drdata set:							
Using cost entropy							
Tes	t Accuracy	Train Accuracy	Accuracy Diff				
Max_depth = 20	0.652174	0.967742	0.315568				
Max_depth = 25	0.660870	0.995037	0.334168				
Max_depth = 30	0.657971	1.000000	0.342029				
Using cost misclassification							
Tes	t Accuracy	Train Accuracy	Accuracy Diff				
Max_depth = 20	0.594203	0.933002	0.338800				
Max_depth = 25							
Max_depth = 30	0.585507	0.998759	0.413252				
Using cost gini index							
Tes	t Accuracy	Train Accuracy	Accuracy Diff				
Max_depth = 20	0.646377	0.996278	0.349901				
Max_depth = 25	0.646377	1.000000	0.353623				
Max_depth = 30	0.646377	1.000000	0.353623				