## Llicenciatura de Química Examen de Física I 30-01-2007

#### Exercici 1.

Es llença una pedra des d'una finestra d'un edifici, que està a una altura h=10 m, amb una velocitat inicial de  $v_0 = 9$  m/s que forma un angle de  $\theta_0=30^\circ$  amb l'horitzontal. Determineu: a) l'alçada màxima de la pedra, b) a quina distància del edifici xoca la pedra contra el terra, c) el mòdul i direcció de la velocitat en aquest últim punt, d) el temps que tarda en xocar contra el terra.



#### Exercici 2.

Una nau orbita Mart en una trajectòria circular a una alçada de 600 km sobre la seva superfície. Trobeu: a) la velocitat de la nau, b) quantes voltes dóna la nau a Mart en un dia terrestre? c) l'energia potencial de la nau. d) Quant val l'acceleració de la gravetat sobre la superfície de Mart? e) Quines unitats té la constant de gravitació universal al Sistema Internacional (SI)?

Dades: Radi de Mart=3400 Km, Massa de Mart, M= 6,4 10<sup>23</sup> kg, G= 6,67 10<sup>-11</sup> (SI)

## Exercici 3.

L'aigua que circula pel tub de 14 cm de diàmetre té una velocitat de 2 m/s i una pressió de 188 kPa. Calculeu el cabdal d'aigua que circula pel tub, l'alçada h del manòmetre de mercuri, i l'alçada H del dipòsit. Considereu que no hi ha fricció a l'aigua.

Dades: La densitat del mercuri és  $13.6 \text{ g/cm}^3$ ;  $1 \text{ atm} = 1.013 \cdot 10^5 \text{ Pa}$ .



#### Exercici 4.

El Poloni-210 és un isòtop radioactiu molt potent. A banda de ser molt tòxic s'utilitza en naus espacials per a la generació de corrent elèctric. A cada desintegració s'alliberen 5,4 MeV d'energia en forma de calor. Una pila conté inicialment 1 g de <sup>210</sup>Po. Trobeu: (a) l'activitat inicial i desprès d'un mes, (b) la potència calorífica generada a l'instant inicial. Dades: el període de semidesintegració del <sup>210</sup>Po és de 138 dies.

#### Exercici 5.

En el sistema de la figura,  $m_2 = \frac{m_1}{2}$ , i la politja no té massa ni hi ha cap fricció amb la corda.

i) Si no hi ha fricció entre el cos 1 i la superfície, trobeu l'acceleració de les masses i la tensió de les cordes. Quin hauria de ser el coeficient de fricció mínim entre el cos 1 i la terra per a què el sistema estigués en repòs? En aquest cas, quant val T<sub>2</sub>? ii) Considerem ara que no hi ha fricció amb la superfície però que la politja sí que té massa i roda amb la corda. L'acceleració dels cossos és ara més petita o més gran que abans? Canvien les tensions?



### Exercici 6.

La massa esfèrica que penja de la corda de la figura és d'1 kg, i la corda mesura 2 metres. A sota hi ha una massa de també 1 kg. Es deixa caure la bola, (a) trobeu la tensió de la corda en el moment inicial i just abans de xocar amb el cos. (b) Quin treball ha fet la tensió i quin treball ha fet la gravetat sobre l'esfera durant aquest trajecte? (c) Si la col·lisió entre els cossos és elàstica, amb quina velocitat sortirà el cos inferior? (d) Si desprès del xoc surten junts, es perd energia mecànica a la col·lisió? Quanta? A quina alçada pujaran els cossos?



#### Exercici 1.

Es llença una pedra des d'una finestra d'un edifici, que està a una altura h=10 m, amb una velocitat inicial de  $v_0 = 9$  m/s que forma un angle de  $\theta_0 = 30^\circ$  amb l'horitzontal.



- 1. En el punt on l'alçada de la trajectòria de la pedra es màxima:
  - a.) L'acceleració s'anul·la.
  - b.) La component horitzontal de la velocitat s'anul·la.
  - c.) La component vertical de la velocitat s'anul·la.
  - d.) Cap de les respostes anteriors és certa.
- 2. L'alçada màxima assolida per la pedra val...
  - a) 15 m.
  - b) 7 m.
  - c) 11 m.
  - d) 18 m.
- 3. El temps que tarda la pedra en arribar al terra és aproximadament:
  - a.) El doble del que tarda en assolir l'alçada màxima.
  - b.) 2 minuts.
  - c.) 4 segons.
  - d.) 2 segons
- 4. La distància R del punt on xoca la pedra amb el terra i l'edifici val aproximadament:
  - a) 15 m.
  - b) 7 m.
  - c) 11 m.
  - d) 18 m.
- 5. La velocitat en el punt on la pedra xoca amb la terra aproximadament:
  - a.) Forma un angle de 62° amb l'horitzontal.
  - b.) Forma un angle de -62° amb l'horitzontal.
  - c.) El valor del component horitzontal de la velocitat és -8 m/s.
  - d.) Es nul·la.
- 6. El mòdul de la velocitat en el punt on xoca la pedra amb el terra és aproximadament:
  - a.) 17 m/s.
  - b.) 9 m/s.
  - c.) 35 m/s.
  - d.) Es manté constant a llarg de tota la trajectòria.

## Exercici 2.

Una nau orbita Mart en una trajectòria circular a una alçada de 600 km sobre la seva superfície. *Dades:* Radi de Mart=3400 Km, Massa de Mart, M= 6,4 10<sup>23</sup> kg, G= 6,67 10<sup>-11</sup> (SI)

- 7. La velocitat de la nau en aquesta òrbita val...
  - a) 75 m/s
  - b) 1800 m/s
  - c) 3,3 km/s
  - d) cap de les anteriors
- 8. La velocitat angular de la nau al voltant de Mart val...
  - a)  $\frac{GM}{r^2}$ , on r és la distància de la nau al centre de Mart
  - b)  $\frac{GM}{r^3}$
  - c)  $\left(\frac{GM}{r^2}\right)^{1/2}$
  - d)  $\left(\frac{GM}{r^3}\right)^{1/2}$
- 9. En un dia terrestre, el número de voltes que fa la nau a Mart és aproximadament...

  - b) 4
  - c) 7
  - d) 11
- 10. L'energia potencial de la nau val...
  - a)  $\frac{GM}{r^2}$ , on r és la distància de la nau al centre de Mart
  - b)  $-\frac{GMm}{r}$ , on m és la massa de la nau
  - c)  $-\frac{GMm}{r^2}$
  - d)  $-\frac{GM}{r}$
- 11. L'acceleració de la gravetat a la superfície de Mart val...
  - a)  $2,4 \text{ m/s}^2$
  - b)  $3.7 \text{ m/s}^2$
  - c) 5,2 m/s
  - d)  $9.5 \text{ m/s}^2$
- 12. Les unitats de la constant de gravitació universal G, en el sistema internacional són...

  - a) N m²/kg²
    b) N kg²/m²
    c) N/ m² kg²
  - d) Nm

#### Exercici 3.

L'aigua que circula pel tub de 14 cm de diàmetre té una velocitat de 2 m/s i una pressió de 188 kPa. Considereu que no hi ha fricció a l'aigua.

Dades: La densitat del mercuri és  $13.6 \text{ g/cm}^3$ ;  $1 \text{ atm} = 1.013 \cdot 10^5 \text{ Pa}$ .



- 13. El cabal d'aigua que circula pel tub val aproximadament:
  - a.)  $0.12 \text{ m}^3/\text{s}$
  - b.)  $0.06 \text{ m}^3/\text{s}$
  - c.)  $0.03 \text{ m}^3/\text{s}$
  - d.) Cap de les anteriors
- 14. La velocitat en el punt més estret val aproximadament
  - a.) 2 m/s
  - b.) 1,5 m/s
  - c.) 3,9 m/s
  - d.) Cap de les anteriors
- 15. La pressió en la part estreta del tub val
  - a.) 122 kPa
  - b.) 220 kPa
  - c.) 188 kPa
  - d.) Cap de les anteriors
- 16. L'alçada h del manòmetre de mercuri és aproximadament
  - a.) 4 cm
  - b.) 10 cm
  - c.) 15 cm
  - d.) Cap de les anteriors
- 17. L'alçada H del dipòsit val
  - a.) 7 cm
  - b.) 7 m
  - c.) 9 m
  - d.) Cap de les anteriors

#### Exercici 4.

El Poloni-210 és un isòtop radioactiu molt potent. A banda de ser molt tòxic s'utilitza en naus espacials per la generació de corrent elèctric. A cada desintegració s'alliberen 5,4 MeV d'energia en forma de calor. Una pila conté inicialment 1 g de <sup>210</sup>Po. *Dades:* el període de semidesintegració del <sup>210</sup>Po és de 138 dies, 1 eV=1,6 10<sup>-19</sup> J

- 18. La constant de semidesintegració del Poloni-210 val...
  - a)  $8,4 \cdot 10^{-8} \text{ s}^{-1}$
  - b)  $5.8 \cdot 10^{-8} \, \text{s}^{-1}$
  - c)  $7.2 \cdot 10^{-3} \cdot s^{-1}$
  - d) cap de les anteriors
- 19. L'activitat inicial A<sub>0</sub> del Poloni a la pila és...

  - a) 2,4 10<sup>11</sup> Bq b) 1,66 10<sup>14</sup> Bq
  - c) 5,2 10<sup>16</sup> desintegració/s
  - d) cap de les anteriors
- 20. L'activitat del Poloni un més desprès val...
  - a)  $0.02 A_0$ , on  $A_0$  és la activitat inicial
  - b)  $0.51 A_0$
  - c)  $0.86 A_0$
  - d) 1,4 A<sub>0</sub>
- 21. L'activitat del Poloni 138 dies desprès de l'instant inicial val...
  - a)  $0.25 A_0$
  - b)  $0.50 A_0$
  - c)  $0,75 A_0$
  - d)  $A_0$
- 22. La potència calorífica generada a l'instant inicial és aproximadament...
  - a) 5 w
  - b) 140 w
  - c) 1,4 kw
  - d) 12 J

# Exercici 5.

En el sistema de la figura,  $m_2 = \frac{m_1}{2}$ , la politja no té massa ni es considera cap fricció.

- 23. El número de forces que actuen sobre el cos 1 és ..
  - a) una força
  - b) dues forces
  - c) tres forces
  - d) quatre forces



- 24. L'acceleració...
  - a) de cada massa és diferent.
  - b) de la massa  $m_1$  val (1/3)g.
  - c) de la massa  $m_1$  val (2/3)g.
  - d) creix proporcionalment a la distancia recorreguda.
- 25. La tensió  $T_1$  de la corda unida al cos 1 val
  - a)  $m_1 g$
  - b)  $m_2 g$
  - c)  $m_1 a$
  - d)  $m_2 a$

Per a què no hi hagués moviment...

- 26. El coeficient de fricció mínim entre la massa m<sub>1</sub> i la superfície ha de ser aproximadament:
  - a.) 1
  - b.) 1/5
  - c.) 1/2
  - d.) Negligible
- 27. ...i el valor de la tensió de la massa m2 val...
  - a.)  $m_2g/2$
  - b.)  $m_1g/2$
  - c.)  $2m_1g$
  - d.) el doble del valor de la tensió de la massa m<sub>1</sub>.

Si no hi ha fricció i la politja té massa,...

- 28. L'acceleració dels dos cossos:
  - a.) No és la mateixa per als dos cossos.
  - b.) Es major que la que tenen quan la politja no té massa.
  - c.) Es igual que la que tenen quan la politja no té massa.
  - d.) Es menor que la que tenen quan la politja no té massa.

#### Exercici 6.

La massa esfèrica que penja de la corda de la figura és d'1 kg, i la corda mesura 2 metres. A sota hi ha una massa de també 1 kg.

Es deixa caure la bola...

- 29. La tensió de la corda en el instant inicial val
  - a) 0 N
  - b) 9,81 N
  - c) 19,62 N
  - d) Cap de les anteriors



| 31. El treball de la corda durant el trajecte val                                       |                                    |
|-----------------------------------------------------------------------------------------|------------------------------------|
| a)                                                                                      | 1,62 J                             |
| b)                                                                                      | 19,6 w                             |
|                                                                                         | 19,2 kw                            |
| d)                                                                                      | Cap de les anteriors               |
| 32. El treball de la gravetat durant aquest trajecte val                                |                                    |
|                                                                                         | 19,6 J                             |
| · · · · · · · · · · · · · · · · · · ·                                                   | 19,6 w                             |
| ,                                                                                       | 19,6 kw                            |
| d)                                                                                      | Cap de les anteriors               |
| Si la col·lisió entre els cossos és elàstica, al xoc                                    |                                    |
| 33.                                                                                     |                                    |
| a) Es conserva l'energia cinètica, però no la quantitat de moviment                     |                                    |
| b) Es conserva l'energia cinètica i la quantitat de moviment                            |                                    |
| c) No es conserva l'energia cinètica, però sí la quantitat de moviment                  |                                    |
| d) No es conserva ni l'energia cinètica ni la quantitat de moviment                     |                                    |
| 34. La massa inferior surt amb una velocitat de                                         |                                    |
| a)                                                                                      | 2,5 m/s                            |
| b)                                                                                      | 3,13 m/s                           |
| ,                                                                                       | 6,26 m/s                           |
| d)                                                                                      | Cap de les anteriors               |
| Si després del xoc les dues masses surten juntes                                        |                                    |
| 35. La seva velocitat val                                                               |                                    |
| a)                                                                                      | 2,5 m/s                            |
| b)                                                                                      | 3,13 m/s                           |
| c)                                                                                      | 6,26 m/s                           |
| d)                                                                                      | Cap de les anteriors               |
| 36. Pujaran fins a una alçada de                                                        |                                    |
| a)                                                                                      | 2 m                                |
| b)                                                                                      | 0,5 m                              |
| c)                                                                                      | 0,25 m                             |
| d)                                                                                      | Cap de les anteriors               |
| 37. En aquest xoc on les masses surten juntes, l'energia mecànica perduda representa el |                                    |
| a)                                                                                      | 5 % de l'energia mecànica inicial  |
| b)                                                                                      | 10 % de l'energia mecànica inicial |
| c)                                                                                      | 15 % de l'energia mecànica inicial |
| d)                                                                                      | Cap de les anteriors               |

30. La tensió de la corda just abans del xoc val

d) Cap de les anteriors

a) 0 Nb) 19,6 Nc) 29,4 N