THE SHELL MODEL

22.02

Introduction To Applied Nuclear Physics
Spring 2012

Atomic Shell Model

- Chemical properties show a periodicity
- Periodic table of the elements
- Add electrons into shell structure

Atomic Radius

Ionization Energy

ATOMIC STRUCTURE

The atomic wavefunction is written as

$$|\psi\rangle = |n, l, m\rangle = R_{n,l}(r)Y_l^m(\vartheta, \varphi)$$

- where the labels indicate:
 - n : principal quantum number
 - I : orbital (or azimuthal) quantum number
 - m: magnetic quantum number
- The degeneracy is

$$\mathcal{D}(l) = 2(2l+1) \to \mathcal{D}(n) = 2n^2$$

5

AUFBAU PRINCIPLE

The orbitals (or shells) are then given by the n-levels (?)

1	0	1	2	3	4	5	6
Spectroscopic	S	p	d	f	g	h	i
notation							
$\mathcal{D}(l)$	2	6	10	14	18	22	26
	his	stori	c stru	hea	vy nu	iclei	

n	$\mathcal{D}(n)$	e ⁻ in shell
1	2	2
2	6	8
3	18	28

ATOMIC PERIODIC TABLE

Н																	Не
Li	Ве											В	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	CI	Ar
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra																

7

AUFBAU PRINCIPLE

The orbitals (or shells) are then given by close-by energy-levels

1	0	1	2	3	4	5	6
Spectroscopic notation	S	p	d	f	g	h	i
$\mathcal{D}(l)$	2	6	10	14	18	22	26
	his	stori	c stru	hea	vy nu	iclei	

n	$\mathcal{D}(n)$	e ⁻ in shell
1	2	2
2	6	8
3	18	28

3s+3p form one level with # 10 4s is filled before 3d

Nuclear Shell Model

- Picture of adding particles to an external potential is no longer good: each nucleon contributes to the potential
- Still many evidences of a shell structure

Separation Energy

PROTON

NEUTRON

B/A: JUMPS

"Jumps" in Binding energy from experimental data

CHART of NUCLIDES (Z/A vs. A)

CHART OF NUCLIDES

"Periodic", more complex properties → nuclear structure

© Brookhaven National Laboratory. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

NUCLEAR POTENTIAL

$$V_{\rm p} = r^2 \left(\frac{V_0}{R_0^2} - \frac{(Z-1)e^2}{2R_0^3} \right)$$

$$- \left(V_0 - \frac{3}{2} \frac{(Z-1)e^2}{R_0} \right)$$
 Harmonic potential

 $V_{\rm n} = r^2 \left(\frac{V_0}{R_0^2}\right) - (V_0)$

NUCLEAR POTENTIAL

$$V_{\rm p} = r^2 \left(\frac{V_0}{R_0^2} - \frac{(Z-1)e^2}{2R_0^3}\right)$$

$$-\left(V_0 - \frac{3}{2}\frac{(Z-1)e^2}{R_0}\right)$$
 Harmonic potential

$$V_{\rm n} = r^2 \left(\frac{V_0}{R_0^2}\right) - (V_0)$$

Steeper and Deeper for neutrons

well depth

Shell Mode

- Harmonic oscillator: solve (part of) the radial equation
 - including the angular momentum (centrifugal force term) we obtain the usual principal quantum number n = (N-I)/2+1

N	l	Spectroscopic	$\mathcal{D}(N)$	$2\mathcal{D}(N)$	Cumulative #
		Notation			
0	0	1 s	1	2	2
1	1	1 p	3	6	8
2	0,2	2s,1d	6	12	20
3	1,3	2p,1f	10	20	40
4	0,2,4	3s,2d,1g	15	30	70

Spin-Orbit Coupling

ullet The spin-orbit interaction is given by $V_{SO}=rac{1}{\hbar^2}V_{so}(r)\hat{ec{l}}\cdot\hat{ec{s}}$

We can calculate the dot product

$$\left\langle \hat{\vec{l}} \cdot \hat{\vec{s}} \right\rangle = \frac{1}{2} (\hat{\vec{j}}^2 - \hat{\vec{l}}^2 - \hat{\vec{s}}^2) = \frac{\hbar^2}{2} [j(j+1) - l(l+1) - \frac{3}{4}]$$

ullet Because of the addition rules, $j=l\pmrac{1}{2}$

$$\langle \hat{l} \cdot \hat{s} \rangle = \begin{cases} l \frac{\hbar^2}{2} & \text{for } j = l + \frac{1}{2} \\ -(l+1)\frac{\hbar^2}{2} & \text{for } j = l - \frac{1}{2} \end{cases}$$

17

Spin-Orbit Coupling

- when the spin is **aligned** with the angular momentum $j=l+\frac{1}{2}$ the potential becomes more negative, i.e. the well is deeper and the state more tightly bound.
- when spin and angular momentum are anti-aligned $j=l-\frac{1}{2}$ the system's energy is higher.
- ullet The difference in energy is $\Delta E = rac{V_{so}}{2}(2l+1)$

Thus it increases with /.

Example

- 3N level, with l=3 (1f level) j=7/2 or j=5/2
 - Level is pushed so down that it forms its own shell

Harmonic Oscillator			Harmoı with angu	Sp P	oin-Orbi otential	t		
N	e	Spec. Not	D	M.N.	Spec. Not	Spin-orbit	D	M.N.
6	0 2 4 6	4s 3d 2g 1i	56	168	4s 3d 2g 1i		58	184
5	1 3	3p 2f	42	112	3p 2f		44	126
4	- <u>5</u> <u>0</u> <u>2</u>	1h 3s 2d	30	70	1h 3s 2d	1h _{11/2} 12	32	82
3	1 3	1g 2p 1f	20	 - 40 -	1g 2p	1g _{9/2} _10	22	50
2	0	2s	12	20	2s	-1f _{7/2} — 8	8	28
	2	1d	. 12	20	1d		12	20
1	1	1p	6	8	1р		6	8
0	0	1s	2	2 20	1s		2	2

MIT OpenCourseWare http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.