Undergraduate Real Analysis Facts

Taeyoung Chang

Last Update : August 30, 2021

Contents

1	Abstract Measure Theory	2
2	Integration over a General Measure Space 2.1 Measurable Functions	4 4 5 6 8
3		9
	3.1 The Lebesgue Measure on \mathbb{R}	10 10 11
4		11
	4.1 Construction of Product Measure	
5	The Spaces L^1 and L^2 5.1 Concrete Cases	14 15
6	Basic Fourier Analysis	15
	6.1 Integration of complex-valued functions	15
	6.2 Fourier series of periodic funcitons	
	6.3 Convolutions and good kernels	17 18
7	The space L^p	19
8	Signed Measures and The Radon-Nikodym Theorem	20

1 Abstract Measure Theory

- * σ -algebra \mathcal{A} : a collection of sets containing the whole set X and closed under taking complement or countable union & intersection
- * σ -algebra $\sigma(\mathcal{C})$ generated by \mathcal{C} : the smallest σ -algebra containing \mathcal{C}
- * Borel σ -algebra $\mathcal{B}(\mathbb{R})$: σ -algebra generated by $\mathcal{T} = \{\text{all open subsets of } \mathbb{R}\}$
- All open sets, closed sets, and countable sets in \mathbb{R} are Borel sets
- Every open set in \mathbb{R} can be expressed as a countable union of disjoint open intervals.
- $\mathcal{B}(\mathbb{R})$ can be generated by the collections above :
 - i. All finite open intervals
 - ii. All finite closed intervals
 - iii. All finite left-closed half-open intervals
 - iv. All finite right-closed half-open intervals
 - v. All left-unbounded open rays
 - vi. All right-unbounded open rays
 - vii. All left-unbounded closed rays
 - viii. All right-unbounded closed rays
- $\sqrt{}$ There are many subsets of \mathbb{R} which are not Borel. But there is no easy construction of non Borel sets. We can say that 'natural' sets we encounter are mostly Borel.
- \sqrt{A} countable intersections of open sets in \mathbb{R} is called as G_{δ} set. A countable unions of closed sets in \mathbb{R} is called as F_{σ} set. G_{δ} sets and F_{σ} sets are Borel sets.
- * Measure μ : a set function on a σ -algebra, which is nonnegative and countably additive satisfying $\mu(\phi) = 0$
- (Ex) The Lebesgues measure m on \mathbb{R}
 - $-m(I) = \text{length of } I \text{ for each interval } I \subset \mathbb{R}$
 - $-m(E+x)=m(E) \ \forall \ E \in \mathcal{B}(\mathbb{R}), \ x \in \mathbb{R}$ i.e. m is invariant under translation
- (Ex) The counting measure
 - $-(X, \mathcal{P}(X), \mu)$ where $\mu(E) = |E| \ \forall \ E \subset X$.
- (Ex) Dirac measure or Point mass
 - Fix $x \in X$. $(X, \mathcal{P}(X), \delta_x)$ where $\delta_x(A) = I(x \in A) \ \forall \ A \subset X$
- (Ex) Restriction of measure
 - $-(X, \mathcal{A}, \mu)$: measure space. $B \in \mathcal{A}$. Then restriction $\mathcal{A}_B = \{A \cap B : A \in \mathcal{A}\}$ is a σ -algebra on B and $\mu|_{\mathcal{A}_B}$ is a measure on (B, \mathcal{A}_B) . $\mathcal{B}(B)$ is a restriction of Borel sigma field on a Borel set B, which is equal to a σ -field generated by open sets in subspace topology on B

- Elementary properties of a measure
 - $-(X, \mathcal{A}, \mu)$: a measure space.
 - i. (Monotonicity): For any $A, B \in \mathcal{A}$, if $A \subset B$ then $\mu(A) \leq \mu(B)$
 - ii. For any $A, B \in \mathcal{A}$ with $\mu(A) < \infty$, if $A \subset B$ then $\mu(B \setminus A) = \mu(B) \mu(A)$
 - iii. (Subadditivity): For any $\{A_n\}_n \subset \mathcal{A}, \quad \mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$
 - iv. (Continuity from below): For any $\{A_n\}_n \subset \mathcal{A}$, if $A_n \subset A_{n+1} \, \forall n$, then $\mu(\bigcup_n A_n) = \lim_n \mu(A_n)$
 - v. (Continuity from above): For any $\{A_n\}_n \subset \mathcal{A}$, if $A_n \supset A_{n+1} \ \forall \ n$ then $\mu(\bigcap_n A_n) = \lim_n \mu(A_n)$ provided $\mu(A_1) < \infty$
- * Finite measure and σ -finite measure
 - If μ is a measure on (X, A) satisfying $\mu(X) < \infty$ then μ is said to be a finite measure. If $X = \bigcup_n X_n$ and $\mu(X_n) < \infty$ ∀ $n \in \mathbb{N}$ then μ is said to be σ -finite.
- * Null set and complete measure
 - $-(X, \mathcal{A}, \mu)$: a measure space. $E \in \mathcal{A}$. E is said to be a null set if $\mu(E) = 0$. μ is said to be complete if for any null set $E \in \mathcal{A}$, $F \subset E \Rightarrow F \in \mathcal{A}$.
- Completion of measure space
 - (X, \mathcal{A}, μ) : a measure space. \mathcal{N} : A collection of null sets. Define $\overline{\mathcal{A}} = \{E \cup F : E \in \mathcal{A}, F \subset N \text{ for some } N \in \mathcal{N}\}.$ Then (a) $\overline{\mathcal{A}}$ is a σ-algebra. (b) There is a unique measure $\overline{\mu}$ on $\overline{\mathcal{A}}$ extending μ given by $\overline{\mu}(E \cup F) = \mu(E) \, \forall \, E \in \mathcal{A}, F \subset N$ for some $N \in \mathcal{N}$. (c) $\overline{\mu}$ is complete measure. $(X, \mathcal{A}, \overline{\mu})$ is a completion of (X, \mathcal{A}, μ)
- * Lebesgue measurable sets
 - Denote $\mathcal{L}(\mathbb{R}) = \overline{\mathcal{B}(\mathbb{R})}$ for the completion $(\mathbb{R}, \overline{\mathcal{B}(\mathbb{R})}, \overline{m})$ of the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ and call it as the σ -algebra of Lebesgue measurable sets. We still denote \overline{m} by m (abusing the notation) and call it the Lebesgue measure on \mathbb{R} . Every $E \in \mathcal{L}(\mathbb{R})$ is called as a Lebesgue measurable set.

2 Integration over a General Measure Space

2.1 Measurable Functions

- * Measurable Functions
 - $-(X, \mathcal{A})$: a measurable space. $f: X \to \mathbb{R} \cup \{\pm \infty\}$. f is said to be \mathcal{A} -measurable if $f^{-1}(B) \in \mathcal{A} \ \forall \ B \in \mathcal{B}(\mathbb{R})$
- (Ex) Borel measurable functions
 - i. Every continuous function $f: \mathbb{R} \to \mathbb{R}$ is $\mathcal{B}(\mathbb{R})$ measurable. Every continuous function $f: I \to \mathbb{R}$ is $\mathcal{B}(I)$ measurable given $I \subset \mathbb{R}$ is an interval.
 - ii. Every monotone function $f: \mathbb{R} \to \mathbb{R}$ is $\mathcal{B}(\mathbb{R})$ measurable. Every monotone function $f: I \to \mathbb{R}$ is $\mathcal{B}(I)$ measurable given $I \subset \mathbb{R}$ is an interval.
- (Ex) Characteristic function
 - For given $A \subset X$, χ_A defined as $\chi_A(x) = I(x \in A)$ is said to be the characteristic function. χ_A is a measurable function $\Leftrightarrow A$ is a measurable set.
- (Ex) Simple function
 - A real-valued function ϕ is called simple if it is measurable and has only a finite number of values. $\phi = \sum_{k=1}^{n} \alpha_k \chi_{E_k}$ for some scalaras α_k 's and measurable sets E_k 's.
 - Any linear combination of finite number of simple functions is simple. Also, any finite product of simple functions is simple.
 - Consturcting measurable functions
 - If $f, g: X \to \mathbb{R}$ are measurable then $f + c, cf, f \pm g$ and fg are measurable.
 - If $f_n: X \to \mathbb{R}$, $n \in \mathbb{N}$ are measurable then $\sup f_n$, $\inf f_n$, $\max\{f_1, \dots, f_n\}$, $\min\{f_1, \dots, f_n\}$, $\limsup f_n$, $\liminf f_n$, $\liminf f_n$ are measurable.
 - $f: I \to \mathbb{R}$ is a function with a finite number of discontinuities i.e. f is piecewise continuous. Then f is $\mathcal{B}(I)$ -measurable.
 - f is real-valued function. $f = f^+ f^-$ and $f^+ f^- = 0$ and such decomposition is unique in the sense that if $f = f_1 f_2$ for some nonnegative functions f_1, f_2 s.t. $f_1 f_2 = 0$ then $f_1 = f^+$ and $f_2 = f^-$. Also $|f| = f^+ + f^-$.
 - Simple Approximation theorem
 - If $f: X \to \mathbb{R}$ is a measurable then \exists a sequence $\{\phi_n\}$ of simple functions s.t.
 - i. $0 \le |\phi_1| \le |\phi_2| \le \dots \le |\phi_n| \le \dots \le |f|$
 - ii. $\phi_n \to f$ pointwisely.

Additionally, if f is nonnegative measurable then above (i) is replaced by $0 \le \phi_1 \le \phi_2 \le \cdots \le \phi_n \le \cdots \le f$

2.2 Integration on Nonnegative Functions

- * Integration of nonnegative simple functions
 - For a nonenegative simple function $\phi = \sum_{k=1}^{n} \alpha_k \chi_{E_k}$, we define the interal by

$$\int_X \phi \, d\mu = \sum_{k=1}^n \alpha_k \mu(E_k)$$

- . For meaurable set $E \in \mathcal{A}$, we define $\int_E \phi \, d\mu = \int_X \phi \chi_E \, d\mu$
- $\sqrt{}$ The definition above is well defined i.e. if a nonnegative simple function ϕ is written as $\phi = \sum_{k=1}^{n} \alpha_k \chi_{E_k}$ and $\phi = \sum_{j=1}^{m} \beta_j \chi_{F_j}$ then integral is same for both expressions.
- Integral might have the value of ∞ .
- Elementary properties of integral of nonnegative simple functions.
 - Let φ and ψ be nonnegative simple functions

i. If
$$\alpha, \beta \geq 0$$
 then $\int (\alpha \varphi + \beta \psi) d\mu = \alpha \int \varphi d\mu + \beta \int \psi d\mu$

- ii. If $\varphi \leq \psi$ then $\int \varphi \, d\mu \leq \int \psi \, d\mu$
- iii. If $\nu: \mathcal{A} \to [0, \infty]$ is defined by $E \mapsto \int_E \varphi \, d\mu$ then ν is a measure.
- * Integration of nonnegative measurable functions
 - For a nonnegative measurable function $f: X \to [0, \infty]$, we define the integral by

$$\int_X f \, d\mu = \sup \{ \int \phi \, d\mu : 0 \le \phi \le f, simple \}$$

- . For meaurable set $E\in\mathcal{A},$ we define $\int_E f\,d\mu=\int f\chi_E\,d\mu$
- We denote the space of nonnegative measurable functions by \mathcal{L}^+
- Elementary properties of integral of nonnegative measurable functions.
 - Let $f, g \in \mathcal{L}^+$
 - i. If $\alpha, \beta \geq 0$ then $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$
 - ii. If $f \leq g$ then $\int f \, d\mu \leq \int g \, d\mu$
 - iii. If $\nu: \mathcal{A} \to [0, \infty]$ is defined by $E \mapsto \int_E f \, d\mu$ then ν is a measure.
- Monotone convergence theorem (MCT)
 - If $\{f_n\}$ is a sequence in \mathcal{L}^+ with $f_n \leq f_{n+1} \, \forall n$ then we have

$$\lim_{n} \int f_n \, d\mu = \int \lim_{n} f_n \, d\mu$$

 \square If $\{f_n\}$ is a sequence in \mathcal{L}^+ then we have

$$\int \sum_{n=1}^{\infty} f_n \, d\mu = \sum_{n=1}^{\infty} \int f_n \, d\mu$$

5

• If $f \in \mathcal{L}^+$ and E is a measure zero set then $\int_E f \, d\mu = 0$.

- * Almost everywhere
 - A statement P(x) depending on $x \in X$ is said to hold almost everywhere if the set $\{x \in X : P(x) \text{ does not hold } \}$ is a subset of a measure zero set.
- \square Suppose $\{f_n\}$ is a sequence in \mathcal{L}^+ and $f \in \mathcal{L}^+$. If $f_n \nearrow f$ a.e. then $\int f \, d\mu = \lim_n \int f_n \, d\mu$
- If $f \in \mathcal{L}^+$ then $\int f d\mu = 0 \Leftrightarrow f = 0$ a.e.
- Fatou's lemma
 - If $\{f_n\}$ is a sequence in \mathcal{L}^+ then $\int \liminf f_n d\mu \leq \liminf \int f_n d\mu$
 - If $\{f_n\}$ is a sequence in \mathcal{L}^+ and $f_n \to f$ a.e. then $\int f d\mu = \liminf \int f_n d\mu$

2.3 Integration for the General Case

- * Integrability
 - For $f \in \mathcal{L}^+$, f is said to be integrable if $\int f d\mu < \infty$
 - For a measurable function f, f is said to be integrable if both f^+ and f^- are integrable, or equivalently, |f| is integrable.
 - We denote the space of integrable functions by \mathcal{L}^1
- If $f \in \mathcal{L}^+$ is integrable then $f < \infty$ a.e. and $\{f > 0\}$ is a σ -finite set.
- If $f \in \mathcal{L}^+$ is integrable then $\forall \epsilon > 0$, $\exists E$ measurable set s.t. $\mu(E) < \infty$ and $\int f \, d\mu \varepsilon < \int_E f \, d\mu$
- Elementary properties of integral of integrable functions
 - Let $f, g \in \mathcal{L}^1$
 - i. For $\alpha, \beta \in \mathbb{R}$, $\alpha f + \beta g \in \mathcal{L}^1$ and $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$
 - ii. If $f = f_1 f_2$ with $f_1, f_2 \in \mathcal{L}^+ \cap \mathcal{L}^1$ then $\int f \, d\mu = \int f_1 \, d\mu \int f_2 \, d\mu$
 - iii. If $f \leq g$ then $\int f \, d\mu \leq \int g \, d\mu$
 - iv. $|\int f d\mu| \le \int |f| d\mu$
- Given $f \in \mathcal{L}^1$, a map defined by $E \mapsto \int_E f \, d\mu$ has a countable additivity.
- If $f \in \mathcal{L}^1$ and E is a measure zero set then $\int_E f \, d\mu = 0$
- If $f \in \mathcal{L}^1$ then f = 0 $a.e \Rightarrow \int f \, d\mu = 0$
- If $f, g \in \mathcal{L}^+$ or $f, g \in \mathcal{L}^1$ then $f \leq g$ a.e. $\Rightarrow \int f \, d\mu \leq \int g \, d\mu$ and f = g a.e. $\Rightarrow \int f \, d\mu = \int g \, d\mu$

(Note) Summary for facts about \mathcal{L}^+ and \mathcal{L}^1

Statement about functions	Functions in \mathcal{L}^+	Functions in \mathcal{L}^1
Closed under linear combi.	Yes (with positive scalars)	Yes
	Yes	Yes
$\int f = g \ a.e. \Rightarrow \int f d\mu = \int g d\mu$	Yes	Yes
$E \mapsto \int_E f d\mu$ is a measure	Yes	No (But countably additive)
$\mu(E) = 0 \Rightarrow \int_E f d\mu = 0$	Yes	Yes
$f = 0$ a.e. $\Rightarrow \int f d\mu = 0$	Yes	Yes
$\int f d\mu = 0 \Rightarrow f = 0 \ a.e.$	Yes	No

- Dominated convergence theorem (DCT)
 - $\{f_n\}$: sequence in \mathcal{L}^1 . let f be a measurable function. If $f_n \to f$ a.e. and $|f_n| \le g$ a.e. $\forall n \in \mathbb{N}$ for some $g \in \mathcal{L}^1$, then f is integrable and $\int f d\mu = \lim_n \int f_n d\mu$
- Generalized DCT: $\{f_n\}, \{g_n\}$: sequences in \mathcal{L}^1 . let f, g be integrable functions. If $f_n \to f$ a.e., $g_n \to g$ a.e., $\int g_n d\mu \to \int g d\mu$ and $|f_n| \leq g_n \, \forall \, n \in \mathbb{N}$ then $\int f d\mu = \lim_n \int f_n d\mu$
- (Note) Summary for classical results about interchanging limit and integral (All Functions are at least measurable on the following statements)
 - MCT
 - i. $\{f_n\}$ nonnegative and increasing. $\Rightarrow \lim_n \int f_n d\mu = \int \lim_n f_n d\mu$
 - ii. $\{f_n\}$ nonnegative and $f_n \nearrow f$ a.e. $\Rightarrow \lim_n \int f_n d\mu = \int f d\mu$
 - Fatou's lemma
 - i. $\{f_n\}$ nonnegative $\Rightarrow \int \liminf f_n d\mu \le \liminf \int f_n d\mu$
 - ii. $\{f_n\}$ nonnegative and $f_n \to f$ a.e. $\Rightarrow \int f d\mu \leq \liminf \int f_n d\mu$
 - DCT
 - i. $\{f_n\}$ integrable, $f_n \to f$ a.e. and $|f_n| \le g$ a.e. \forall n for some integrable $g \Rightarrow f$ is integrable and $\int f d\mu = \lim_n \int f_n d\mu$
 - Additional Results
 - i. $\{f_n\}$ integrable, $f_n \geq 0$ a.e. $\forall n$ and $f_n \geq f$ a.e. $\Rightarrow \lim_n \int f_n d\mu = \int f d\mu$
 - ii. $\{f_n\}$ increasing. $f_n \nearrow f$ a.e. and $f_n \ge g \ \forall \ n$ for some integrable $g \Rightarrow \lim_n \int f_n \ d\mu = \int f \ d\mu$
 - iii. $\{f_n\}$ integrable and $f_n \geq 0$ a.e. $\forall n. \Rightarrow \int \liminf f_n d\mu \leq \liminf \int f_n d\mu$
 - iv. $\{f_n\}$ integrable, $f_n \geq 0$ a.e. \forall n. and $f_n \rightarrow f$ a.e. $\Rightarrow \int f d\mu \leq \liminf \int f_n d\mu$
 - v. $\{f_n\}$ integrable, $f_n \to f$ a.e. for some integrable f, and $\exists \{g_n\}$ integrable s.t. $|f_n| \leq g_n \ \forall \ n$ where $g_n \to g$ a.e. & $\int g_n \ d\mu \to \int g \ d\mu$ for some integrable $g \to \int f \ d\mu = \lim_n \int f_n \ d\mu$
 - Approximation in \mathcal{L}^1
 - $-f \in \mathcal{L}^1$. $\{\phi_n\}$ is the sequence of simple functions obtained by the Simple approximation theorem. $(\phi_n \to f \text{ and } |\phi_n| \le |f|)$. Then we get $\int f d\mu = \lim_n \int \phi_n d\mu$ and $\lim_n \int |f \phi_n| d\mu = 0$
 - $\{f_n\}$: seq. in \mathcal{L}^1 . and $f \in \mathcal{L}^1$ s.t. $f_n \to f$ a.e. Then $\int |f_n - f| d\mu \to 0 \Leftrightarrow \int |f_n| d\mu \to \int |f| d\mu$

2.4 Concrete Examples

- The case of counting measures on \mathbb{N}
 - Consider measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, μ where μ is the counting measure. For any measurable function $f: \mathbb{N} \to \mathbb{R}$, f can be regarded as a sequence $a_n = f(n)$
 - i. If $f \ge 0$ then $\int f d\mu = \sum_n a_n$
 - ii. If $f \in \mathcal{L}^1$ then $\int f d\mu = \sum_n a_n$ and the series on RHS converges absolutely.
- The case of Dirac measures
 - Consider measure space $(X, \mathcal{P}(X), \delta_x)$ for a fixed $x \in X$. For any $f: X \to \mathbb{R}$, we have $\int f d\delta_x = f(x)$
- \bullet The case of the Lebesgue measure on $\mathbb R$
 - $\sqrt{\text{Every Borel measurable function is Lebesgue measurable}}$
 - Every Riemann integrable function $f:[a,b]\to\mathbb{R}$ is Lebesgue intebrable and the result of integrals for both integrations are the same. i.e. $\int_{[a,b]} f \, dm = \int_a^b f(x) \, dx$
 - (Characterization of Riemann integrability) For a bounded function $f : [a, b] \to \mathbb{R}$, f is Riemann integrable $\Leftrightarrow f$ is continuous m-a.e. where m is the Lebesgue measure
 - (Generalize to improper integral) If $f:[0,\infty)\to\mathbb{R}$ satisfies that f is Riemann integrable on [0,b] \forall b>0 and $\lim_{b\to\infty}\int_0^b f(x)dx$ exists, i.e. the improper integral $\int_0^\infty f(x)dx$ exists, then f is Lebesgue measurable and $\int_{[0,\infty)}f\,dm=\int_0^\infty f(x)dx$ provided f is nonnegative or Lebesgue integrable.
 - (Interchanging partial differentiation and integration) Consider a bivariate function $f:[0,\infty)\times[a,b]\to\mathbb{R}$ s.t. $f(\cdot,y):[0,\infty)\to\mathbb{R}$ is integrable for each $y\in[a,b]$. Define $F(y)=\int_0^\infty f(x,y)dx$
 - i. Suppose $\exists g \in \mathcal{L}^1$ s.t. $|f(x,y)| \leq g(x) \ \forall x, y$. Then $\lim_{y \to y_0} f(x,y) = f(x,y_0) \ \forall x \Rightarrow \lim_{y \to y_0} F(y) = F(y_0)$. In particular, $f(x,\cdot)$ is continuous $\forall x \Rightarrow F$ is continuous.
 - ii. Suppose $\frac{\partial f}{\partial y}$ exists on (a,b) and $\exists g \in \mathcal{L}^1$ s.t. $|\frac{\partial f}{\partial y}(x,y)| \leq g(x) \ \forall \ x,y$ Then F is diff.able on (a,b) and $F'(y) = \frac{\partial}{\partial y} \int_0^\infty f(x,y) dx = \int_0^\infty \frac{\partial}{\partial y} f(x,y) dx$
- The case of measure coming from function called density
 - $-(X, \mathcal{A}, \mu)$: measure space. ν is the measure given by $\nu(E) = \int_E f \, d\mu \, \forall \, E \in \mathcal{A}$ for some $f \in \mathcal{L}^+$ which is called as the density. For any $g \in \mathcal{L}^+$ or $g \in \mathcal{L}^1(\nu)$, we have $\int g \, d\nu = \int f g \, d\mu$
- A remark on the completeness of measure
 - Suppose $(X, \overline{\mathcal{A}}, \overline{\mu})$ is the completion of (X, \mathcal{A}, μ) . If $f: X \to \mathbb{R}$ is $\overline{\mathcal{A}}$ -measurable then $\exists g: X \to \mathbb{R}$ s.t. $g = f \overline{\mu} a.e.$ and g is \mathcal{A} -measurable.

3 Construction of Measures

- * Algebra \mathcal{A} : a collection of sets containing the whole set X and closed under taking complement or finite union & intersection
- * Premeasure μ : a set function on an algebra, which is nonnegative and countably additive $\mu(\phi) = 0$.
- $\sqrt{\text{Algebra is not closed under taking countable union, so countable additivity of premeasure } \mu \text{ is represented as } \mu(\bigcup_n A_n) = \sum_n \mu(A_n) \text{ for a disjoint } \{A_n\} \subset_{sea} \mathcal{A} \text{ s.t. } \bigcup_n A_n \in \mathcal{A}.$
- \sqrt{A} premeasure μ is called σ -finite if $X = \bigcup_n X_n$ with $\{X_n\} \subset \mathcal{A}$ and $\mu(X_n) < \infty \ \forall \ n \in \mathbb{N}$
- * Outer measure μ^*
 - For a premeasure μ on an algebra $\mathcal{A} \subset \mathcal{P}(X)$, the outer measure $\mu^* : \mathcal{P}(X) \to [0, \infty]$ is defined by $\mu^*(E) = \inf\{\sum_n \mu(A_n) : A_n \in \mathcal{A}, \bigcup_n A_n \text{ covers } E\}$
- Elementary properties of outer measure
 - i. $\mu^*(\phi) = 0$
 - ii. (Monotonicity) For any $A, B \subset X$, if $A \subset B$ then $\mu^*(A) \leq \mu^*(B)$
 - iii. (Countable Subadditivity) For any $\{A_n\} \subset \mathcal{P}(X)$, $\mu^*(\bigcup_n A_n) \leq \sum_n \mu^*(A_n)$
- * Caratheodory condition
 - $-\mu^*$: the outer measure associated to a premeasure μ on an algebra $\mathcal{A} \subset \mathcal{P}(X)$. $E \subset X$ is said to be μ^* -measurable if E satisfies the 'Catheodory condition' below: $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^C)$ for any $A \subset X$
 - The collection of all μ^* -measurable sets is denoted by \mathcal{M}^*
- Caratheodory Extension Theorem
 - μ^* : the outer measure associated to a premeasure μ on an algebra $\mathcal{A} \subset \mathcal{P}(X)$. The followings are true. (a) \mathcal{M}^* is a σ -algebra. (b) $\mu^*|_{\mathcal{M}^*}$ is a measure. (c) $\mu^*|_{\mathcal{A}} = \mu$ i.e. μ^* is indeed an extension of μ (d) $\mathcal{A} \subset \mathcal{M}^*$
 - In particular, if we denote $\mathcal{M} = \sigma(\mathcal{A})$, then $\mathcal{M} \subset \mathcal{M}^*$ by the result of (d). Define a measure $\tilde{\mu}$ on \mathcal{M} by $\tilde{\mu} = \mu^*|_{\mathcal{M}}$. If μ is a σ -finite premeasure then $\tilde{\mu}$ is the unique extension of μ which is a measure on \mathcal{M}

3.1 The Lebesgue Measure on \mathbb{R}

- Building an appropriate algebra to construct Lebesgue measure on \mathbb{R}
 - $-\mathcal{I} = \{(a,b] : -\infty < a < b < \infty\}, \ \mathcal{J} = \{(-\infty,b] : b \in \mathbb{R}\}, \ \mathcal{K} = \{(a,\infty) : a \in \mathbb{R}\}$ Every element of $\mathcal{I} \cup \mathcal{J} \cup \mathcal{K}$ is said to be h-interval. ('h' stands for 'half-open') \mathcal{A} is defined as the collection of finite unions of disjoint h-intervals.
 - $-\mathcal{A}$ above is an algebra.
 - \mathcal{A} generates a Borel σ -algebra i.e. $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$
- Constructing a premeasure which extends a length function.
 - Define $\mu: \mathcal{A} \to [0,\infty]$ by $\mu(\bigcup_{k=1}^n I_k) = \sum_{k=1}^n length(I_k)$ where I_k 's are disjoint h-intervals. Note that length of every ray is ∞ .
 - $-\mu$ is well-defined premeasure on \mathcal{A}
- Lebesgue measure on \mathbb{R}
 - The Lebesgue measure m on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is the unique extension of μ on $\mathcal{B}(\mathbb{R})$, which is guaranteed by the Caratheodory Extension Thm.
- Elementary properties of Lebesgue measure
 - -m(I) = length(I) for any interval $I \subset \mathbb{R}$ (For any ray, length is measured as ∞)
 - $-m(E+x)=m(E) \ \forall E \in \mathcal{B}(\mathbb{R}) \text{ and } \forall x \in \mathbb{R} \text{ i.e. } m \text{ is translation invariant.}$

3.2 The σ -algebra of Lebesgue Measurable sets $\mathcal{L}(\mathbb{R})$ and \mathcal{M}^*

- Assume same condition with the Caratheodory Extension Thm; μ^* : the outer measure associated to a premeasure μ on an algebra $\mathcal{A} \subset \mathcal{P}(X)$. Then $(X, \mathcal{M}^*, \mu^*|_{\mathcal{M}^*})$ is a complete measure space.
- Assume that we're in the situation of constructing Lebesgue measure with premeasure μ . Take $\varepsilon > 0$. For any $E \in \mathcal{M}^*$, $\exists \ F \subset \mathbb{R}$, $\mathcal{U} \subset \mathbb{R}$ s.t. $F \subset E \subset \mathcal{U}$ and $\mu^*(\mathcal{U} \setminus F) < \varepsilon$. Moreover, $\exists \ a \ F_{\sigma} \ \text{set} \ F$ and a $G_{\delta} \ \text{set} \ G$ s.t. $F \subset E \subset G$ and $\mu^*(G \setminus F) = 0$.
- The σ -algebra \mathcal{M}^* appearing in the construction of Lebesgue measure is the same as the σ -algebra of Lebesgue measurable sets $\mathcal{L}(\mathbb{R})$ defined by a completion of $\mathcal{B}(\mathbb{R})$. The outer measure μ^* restricted to \mathcal{M}^* in the construction of Lebesgue measure is indeed the extended Lebesgue measure \overline{m} on $\mathcal{L}(\mathbb{R})$.
- \square Regularity of Lebesgue measure m
 - Let $\varepsilon > 0$. For $E \in \mathcal{B}(\mathbb{R})$, $\exists F \subset \mathbb{R}$, $\mathcal{U} \subset \mathbb{R}$ s.t. $F \subset E \subset \mathcal{U}$ and $m(\mathcal{U} \setminus F) < \varepsilon$. Moreover, $\exists F, G \in \mathcal{B}(\mathbb{R})$ s.t. $F \subset E \subset G$ and $m(G \setminus F) = 0$.

3.3 Probability Borel Measure and Distribution Function

- Construction of Probability Borel Measure μ_F from a distribution function F
 - Let $F: \mathbb{R} \to \mathbb{R}$ be a monotone increasing right-continuous function with $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$ and $F(\infty) = \lim_{x \to \infty} F(x) = 1$. Also consider algebra \mathcal{A} used in the construction of Lebesgue measure.
 - Define $\mu: \mathcal{A} \to [0,1]$ by $\mu(\phi) = 0$ and $\mu(\bigcup_{k=1}^n (a_k, b_k]) = \sum_{k=1}^n F(b_k) F(a_k)$ Here, if $b_k = \infty$ then regard $(a_k, b_k]$ as (a_k, ∞) .
 - $-\mu$ above is a premeasure on \mathcal{A} . Since μ is a finite premeasure and $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$, thanks to the Caratheodory Extension Thm, there is a unique extension of μ which is a measure on $\mathcal{B}(\mathbb{R})$.
 - We denote such measure as μ_F , which is a probability Borel measure. $\mu_F(a,b] = F(b) F(a) \ \forall \ -\infty < a < b < \infty \ \text{and} \ \mu_F(-\infty,x] = F(x) \ \forall \ x \in \mathbb{R}.$
 - Using same logic, we can construct a unique Borel Measure from a distribution-like function F s.t. $F(\infty) = \lim_{x \to \infty} F(x) \le 1$.

4 Product Measures and The Fubini-Tonelli Theorem

4.1 Construction of Product Measure

- * Product σ -algebra
 - $-(X, \mathcal{A}), (Y, \mathcal{B})$: measurable spaces. The product σ -algebra $\mathcal{A} \otimes \mathcal{B}$ is defined by the σ -algebra on $X \times Y$ generated by $\mathcal{A} \times \mathcal{B} = \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}$ i.e. $\mathcal{A} \otimes \mathcal{B} = \sigma(\mathcal{A} \times \mathcal{B})$
 - Every set of the form $A \times B : A \in \mathcal{A}, B \in \mathcal{B}$ is called as (measurable) rectangles.
- If X and Y are topological spaces satisfying second countability axiom—i.e. each X and Y has a countable basis, then $\mathcal{B}(X) \times \mathcal{B}(Y) = \mathcal{B}(X \times Y)$ —(Note that for a topological space X, $\mathcal{B}(X)$ is defined as a σ -algebra generated by a collection of all open sets in X)
- $\square \ \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^2) \text{ and } \mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N}) = \mathcal{P}(\mathbb{N}^2)$
- Product measure
 - $-(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$: measure spaces. A product measure $\mu \times \nu$ is a measure on $\mathcal{A} \otimes \mathcal{B}$ satisfying $\mu \times \nu(A \times B) = \mu(A)\nu(B) \ \forall \ A \in \mathcal{A}, B \in \mathcal{B}$ (existence of such measure is guaranteed by the Caratheodory Extension Thm.)
 - In addition, if μ and ν are both σ -finite, then $\mu \times \nu$ is uniquely determined.

- Examples of product measure
 - i. The Lebesgue measure on \mathbb{R}^2
 - The product measure of Lebesgue measure $m^2 = m \times m$ is an extension of area function on $\mathcal{B}(\mathbb{R}^2)$ in the sense that for any real interval I and J, we get $m^2(I \times J) = m(I)m(J) = length(I) \times length(J) = area(I \times J)$
 - ii. The Counting measure on \mathbb{N}^2
 - The product measure $\mu^2 = \mu \times \mu$ where μ is a counting measure on $\mathcal{P}(\mathbb{N})$ is also a counting measure on \mathbb{N}^2
 - iii. The product of probability Borel measures
 - If each μ and ν is a probability Borel measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ then there is a uniquely determined probability Borel measure $\mu \times \nu$ on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$
 - If X and Y are independent random variables with distribution $X \sim \mu$ and $Y \sim \nu$ respectively, i.e. $P(X \in B) = \mu(B)$ and $P(Y \in B) = \nu(B) \ \forall \ B \in \mathcal{B}(\mathbb{R})$ then a random vector (X,Y) has a distribution $(X,Y) \sim \mu \times \nu$ so that $P((X,Y) \in A \times B) = P(X \in A)P(Y \in B) \ \forall \ A,B \in \mathcal{B}(\mathbb{R})$

4.2 Fubini-Tonelli Theorem

- * The concept of sections
 - i. X, Y: sets. For any $E \subset X \times Y$ and $x \in X, y \in Y$, x-section and y-section of E are defined by $E_x = \{y \in Y : (x, y) \in E\}$, $E^y = \{x \in X : (x, y) \in E\}$
 - ii. $f: X \times Y \to \mathbb{R}$. x-section and y-section of f are defined by $f_x: Y \to \mathbb{R}$, $f^y: X \to \mathbb{R}$ and $f_x(y) = f(x,y) \ \forall \ y \in Y$, $f^y(x) = f(x,y) \ \forall \ x \in X$
 - $\sqrt{(\chi_E)_x} = \chi_{E_x}$ (as a map from Y to \mathbb{R}) $/(\chi_E)^y = \chi_{E^y}$ (as a map from X to \mathbb{R})
- Measurability of sections
 - $-(X,\mathcal{A}),(Y,\mathcal{B})$: measurable spaces
 - i. If $E \in \mathcal{A} \otimes \mathcal{B}$ then $E_x \in \mathcal{B}$ and $E^y \in \mathcal{A} \ \forall \ x \in X, y \in Y$
 - ii. If $f: X \times Y \to \mathbb{R}$ is $\mathcal{A} \otimes \mathcal{B}$ -measurable then f_x is \mathcal{B} -measurable and f^y is \mathcal{A} -measurable $\forall x \in X, y \in Y$
- * Monotone Class
 - -X: a set. $\mathcal{A} \subset \mathcal{P}(X)$ is said to be a monotone class if $E_n \in \mathcal{A}, E_n \subset E_{n+1} \ \forall \ n \Rightarrow \bigcup_n E_n \in \mathcal{A} \ / \ E_n \in \mathcal{A}, E_n \supset E_{n+1} \ \forall \ n \Rightarrow \bigcap_n E_n \in \mathcal{A}$
 - $\sqrt{}$ Every σ -algebra is a monotone class. An intersection of monotone classes on the same set is a monotone class.
- The monotone class lemma
 - If $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra then $\mathcal{C}(\mathcal{A}) = \sigma(\mathcal{A})$ where $\mathcal{C}(\mathcal{A})$ denotes the smallest monotone class containing \mathcal{A} .

- $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$: σ -finite measure spaces. For $E \in \mathcal{A} \otimes \mathcal{B}$, the followings are satisfied.
 - i. $x \mapsto \nu(E_x)$ is a \mathcal{A} -measurable function $/y \mapsto \mu(E^y)$ is a \mathcal{B} -measurable function

ii.
$$\mu \times \nu(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y)$$

- Fubini-Tonelli Theorem
 - $-(X,\mathcal{A},\mu),(Y,\mathcal{B},\nu): \sigma$ -finite measure spaces. $f:X\times Y\to\mathbb{R}$
 - i. (Tonelli)

If f is nonnegative $A \otimes B$ -measurable function, then $g(x) = \int f_x d\nu$ is nonnegative A-measurable, $h(y) = \int f^y d\mu$ is nonnegative B-measurable, and the equation (*) holds true.

ii. (Fubini)

If f is integrable function then f_x is integrable for almost all $x \in X$, f^y is integrable for almost all $y \in Y$, and $g(x) = \int f_x d\nu \& h(y) = \int f^y d\mu$ are integrable. Moreover the equation (*) holds true.

(*)
$$\int_{X \times Y} f d(\mu \times \nu) = \int_{X} \int_{Y} f(x, y) d\nu(y) d\mu(x) = \int_{Y} \int_{X} f(x, y) d\mu(x) d\nu(y)$$

- V The meaning of statement of Fubini Thm is: If $f \in \mathcal{L}^1(\mu \times \nu)$ i.e. $\int |f| d(\mu \times \nu) < \infty$ then $f_x \in \mathcal{L}^1(\nu)$ i.e. $\int |f_x| d\nu < \infty$ for $\mu - a.e. x$ and $f^y \in \mathcal{L}^1(\mu)$ i.e. $\int |f^y| d\mu < \infty$ for $\nu - a.e. y$
- ☐ Fubini-Tonelli Thm for Probability Theory
 - -X,Y: independent random variables with distribution $X \sim \mu$ and $Y \sim \nu$ If a Borel measurable function $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies $f \geq 0$ or $E[f(X,Y)] < \infty$ then

$$E[f(X,Y)] = \int_{Y} \int_{X} f(x,y) \, d\mu(x) d\nu(y) = \int_{X} \int_{Y} f(x,y) \, d\nu(y) d\mu(x)$$

- Useful result about Lebesgue integral
 - If Borel measurable $f: \mathbb{R} \to \mathbb{R}$ is nonnegative or Lebesgue integrable function, then $\int f(x+\alpha) dm(x) = \int f(x) dm(x)$ and $\int f(\alpha x) dm(x) = \alpha^{-1} \int f(x) dm(x) \ \forall \ \alpha \neq 0$
- If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is an invertible linear map and $f: \mathbb{R}^2 \to \mathbb{R}$ is Borel measurable function, then we have $\int f \, dm^2 = |\det(T)| \int f \circ T \, dm^2$
- Properties of the Lebesgue measure m^2 on \mathbb{R}^2
 - Rotation invariance; $m^2(R(E)) = m^2(E) \ \forall E \in \mathcal{B}(\mathbb{R}^2)$ where R is a rotation map
 - Translation invaraince; $m^2(E+x) = m^2(E) \ \forall E \in \mathcal{B}(\mathbb{R}^2), x \in \mathbb{R}^2$

5 The Spaces L^1 and L^2

- * Banach Space
 - A complete normed vector space is said to be a Banach space
- * L^1 -norm
 - $-(X, \mathcal{A}, \mu)$: a measure space. $\|\cdot\|_1$ on $\mathcal{L}^1 = \mathcal{L}^1(X, \mathcal{A}, \mu)$ is defined as $\|f\|_1 = \int |f| d\mu$
 - In order to satisfy the defining properties of norm, introduce equivalence relation on \mathcal{L}^1 given as $f \sim g \Leftrightarrow f = g \ a.e.$
- * The space L^1
 - $-(X, \mathcal{A}, \mu)$: a measure space. Define $L^1 = L^1(X, \mathcal{A}, \mu)$ by $L^1 = \mathcal{L}^1/\sim$ i.e. L^1 is the space of equivalence classes in \mathcal{L}^1 w.r.t. \sim above.
 - $\sqrt{L^1}$ is a normed space with $\|\cdot\|_1$. L^1 identifies $f,g\in\mathcal{L}^1$ whenever f=g a.e.
- Riesz-Fisher Theorem
 - $-L^1$ is a Banach space.
- The effect of completion of measure spaces for L^1
 - $-(X, \overline{A}, \overline{\mu})$ is the completion of (X, \mathcal{A}, μ) . Then we have $L^1(X, \overline{\mu}) = L^1(X, \mu)$ as Banach spaces. i.e. there is a norm preserving linear bijection between two spaces.
 - $\sqrt{}$ We cannot distinguish $L^1(\mathbb{R}, \mathcal{L}(\mathbb{R}), m)$ from $L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$, which is why we do not need to consider the σ -algebra of Lebesgue measurable sets in reality.
- * Hilbert space
 - An inner product space being complete as a normed space is called as a Hilbert space.
- The space L^2
 - $-(X, \mathcal{A}, \mu)$: a measure space. Define $\mathcal{L}^2 = \{f : X \to \mathbb{R} \cup \{\pm \infty\} \mid \int |f|^2 d\mu < \infty\}$
 - $\sqrt{\mathcal{L}^2}$ is a vector space.
 - L^2 is defined as $L^2=\mathcal{L}^2/\sim$ where \sim is the equivalence relation of being equal almost everywhere.
 - Inner product on L^2 and the induced L^2 -norm is given as $\langle f, g \rangle = \int f g \, d\mu$ and $||f||_2 = \left(\int |f|^2 \, d\mu\right)^{1/2}$
- Approximation in L^1 and L^2
 - i. For any $f \in L^1$ and $\varepsilon > 0$, \exists a simple function $\phi \in L^1$ with $||f \phi||_1 < \varepsilon$
 - ii. For any $f \in L^2$ and $\varepsilon > 0$, \exists a simple function $\phi \in L^2$ with $||f \phi||_2 < \varepsilon$

5.1 Concrete Cases

- The case of $([0,1], \mathcal{B}([0,1]), m)$, which is a probability space.
 - $-L^{2}([0,1],m) \subset L^{1}([0,1],m)$ with $||f||_{1} \leq ||f||_{2} \ \forall f \in L^{2}([0,1],m)$
- The case of $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ where μ is a counting measure.
 - Denote $L^p(\mathbb{N},\mu)$ by ℓ^p and call it the little L^p space or the sequential L^p space.
 - $-\ell^1 \subset \ell^2 \text{ with } ||\{a_n\}||_2 \le ||\{a_n\}||_1 \ \forall \{a_n\} \in \ell^1$
- The case of $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$
 - There is no inclusion between the spaces $L^1(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ and $L^2(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$

6 Basic Fourier Analysis

6.1 Integration of complex-valued functions

- Componentwise measurability implies measurability of vector-valued function
 - $-(X, \mathcal{A})$: a measurable space. $f: X \to \mathbb{R}^2$. Componenetwise representation of f is (f_1, f_2) . Then f_1, f_2 are \mathcal{A} -measurable $\Leftrightarrow f$ is measurable. i.e. $f_1^{-1}(B_1), f_2^{-1}(B_2) \in \mathcal{A} \ \forall B_1, B_2 \in \mathcal{B}(\mathbb{R}) \Leftrightarrow f^{-1}(B) \in \mathcal{A} \ \forall B \in \mathcal{B}(\mathbb{R}^2)$
- * Measurability of complex-valued function
 - $-(X,\mathcal{A},\mu)$: a measure space. $f:X\to\mathbb{C}$
 - i. f is said to be A-measurable if Re(f) and Im(f) are A-measurable.
 - ii. f is said to be integrable if Re(f) and Im(f) are integrable. In this case we define integral of f by $\int f d\mu := \int Re(f) d\mu + i \int Im(f) d\mu$
 - $\sqrt{\ }$ If f is a measurable complex-valued function, then f is integrable $\Leftrightarrow |f|$ is integrable.
- Elementary properties of integral of complex-valued functions
 - Let $f, g: X \to \mathbb{C}$ be integrable functions
 - i. For $\alpha, \beta \in \mathbb{C}$, we have $\int \alpha f + \beta g \, d\mu = \alpha \int f \, d\mu + \beta \int g \, d\mu$
 - ii. $|\int f d\mu| \leq \int |f| d\mu$
- * L^1 and L^2 spaces of complex-valued functions.
 - $-(X,\mathcal{A},\mu)$: a measure space. we define $\mathcal{L}^1_{\mathbb{C}}$ and $\mathcal{L}^2_{\mathbb{C}}$ spaces as below

$$\mathcal{L}^1_{\mathbb{C}}(X,\mathcal{A},\mu) = \left\{ f: X \to \mathbb{C} \,|\, \int |f| \, d\mu < \infty \right\}, \quad \mathcal{L}^2_{\mathbb{C}}(X,\mathcal{A},\mu) = \left\{ f: X \to \mathbb{C} \,|\, \int |f|^2 \, d\mu < \infty \right\}$$

– We also define $L^1_\mathbb{C}$ and $L^2_\mathbb{C}$ by $L^1_\mathbb{C}:=\mathcal{L}^1_\mathbb{C}/\sim$ and $L^2_\mathbb{C}:=\mathcal{L}^2_\mathbb{C}/\sim$

 $-L^1$ and L^2 spaces are complex normed spaces with the norms

$$||f||_1 = \int |f| \ d\mu, \quad ||f||_2 = \left(\int |f|^2 \ d\mu\right)^2$$

- Note that L^2 is also a complex inner product space with inner product

$$\langle f, g \rangle = \int f \overline{g} \, d\mu$$

• Orthonormal family in L^2

 $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} e^{-imx} dx = \begin{cases} 1 & (n=m) \\ 0 & (n \neq m) \end{cases}$

 $-\{e^{inx}:n\in\mathbb{Z}\}\$ is an orthonormal family in $L^2([-\pi,\pi],\frac{1}{2\pi}m)$ where $\frac{1}{2\pi}m$ is the normalized Lebesgue measure on $[-\pi,\pi]$

6.2 Fourier series of periodic funcitons

- * Fourier coefficient and Fourier series
 - Let $f: [-\pi, \pi] \to \mathbb{C}$ be an integrable funtion w.r.t. the Lebesgue measure.
 - i. For each $n \in \mathbb{Z}$, the *n*-th Fourier coefficient of f is defined by

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx = \langle f, e_n \rangle$$

ii. Fourier series of f is defined as the following formal series

$$\sum_{n=-\infty}^{\infty} \hat{f}(n)e^{inx}$$

iii. Partial sums of the Fourier series of f is denoted by $S_N(f)$, which is given as

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n)e^{inx}$$

- $\sqrt{\text{Given the integrability of } f, \hat{f}(n) \text{ is well-defined for every } n \in \mathbb{Z}$
- $\sqrt{}$ Fourier series is called 'formal' since we don't know its convergence at this moment.
- * Trigonometric series and polynomial
 - Trigonometric series is the series of the following form ; $\sum_{n=-\infty}^{\infty} c_n e^{inx}$
 - Trigonometric polynomial is a special case of trigonometric series with $c_n=0$ for |n|>N , i.e. $\sum_{n=-N}^N c_n e^{inx}$
 - If $c_N \neq 0$ or $c_{-N} \neq 0$ then N is called the degree of the trigonometric polynomial
- $\sqrt{\ }$ The main problem of this section is "In what sense $S_N(f)$ converges to f as $N\to\infty$ "

6.3 Convolutions and good kernels

- * Convolution
 - For 2π -periodic square-integrable functions f and g on \mathbb{R} , the convolution f * g on $[-\pi, \pi]$ is defined as

$$f * g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x-y) \, dy$$

 $\sqrt{\text{By Cauchy-Schwarz inequality, convolution is well-defined.}}$

 $\sqrt{\text{Loosely speaking, convolution is a kind of weighted average.}}$

- Properties of convolutions
 - For 2π -periodic $f, g, h \in L^2$ and $\alpha, \beta \in \mathbb{C}$

i.
$$f * q = q * f$$

ii.
$$(\alpha f + \beta g) * h = \alpha f * h + \beta g * h$$

iii.
$$f * g = \hat{f} \cdot \hat{g}$$
 i.e. $f * g(n) = \hat{f}(n)\hat{g}(n) \quad \forall n \in \mathbb{Z}$

- * Dirichlet kernel
 - $-D_N(x) = \sum_{n=-N}^N e^{inx}$ is called as the N-th Dirichlet kernel.
 - Simplified form is $D_N(x) = \frac{\sin((N+1/2)x)}{\sin(x/2)}$
- For 2π -periodic $f \in L^2$, we have $S_N(f) = f * D_N$
- * A family of good kernels
 - A family of good kernels is a family $\{K_n\}_{n\in\mathbb{N}}$ of functions on $[-\pi,\pi]$ satisfying
 - i. (Normalized) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x) dx = 1 \quad \forall n \in \mathbb{N}$
 - ii. (Boundedness) $\{\|K_n\|_1\}_{n\in\mathbb{N}}$ is a bounded sequence of positive numbers.
 - iii. (Concentration at zero) $\forall \delta > 0$, we have $\int_{\delta < |x| < \pi} |K_n(x)| dx \to 0$ as $n \to \infty$
- Good kernels and convergence of convolution
 - If $\{K_n\}_{n\in\mathbb{N}}$ is a family of good kernels and f is continuous function on $[-\pi,\pi]$ then $f*K_n$ converges to f uniformly on $[-\pi,\pi]$
- Dirichlet kernels $\{D_n\}_{n\in\mathbb{N}}$ is not a family of good kernels. Hence it is difficult for us to hope that the partial sums $S_N(f)$ converges to f uniformly.
- * Cesaro Summable
 - A sequence of complex numbers $\{c_n\}_n$ is said to be Cesaro summable to $c \in \mathbb{C}$ if the arithmetic mean of their partial sums converges to c
 - For the case of Fourier series of f, "the Fourier series of f is Cesaro summable to f" means that $\sigma_N(f) = \frac{S_0(f) + S_1(f) + \dots + S_{N-1}(f)}{N}$ converges to f as $N \to \infty$
- * Fejer kernel
 - $F_N = \frac{D_0 + D + 1 + \dots + D_{N-1}}{N}$ is called as the N-th Fejer kernel.
 - Simplified form is $F_N(x) = \frac{\sin^2(Nx/2)}{N\sin^2(x/2)}$

- Fejer kernels $\{F_n\}_{n\in\mathbb{N}}$ is a finity of good kernels.
- If f is a continuous function on $[-\pi, \pi]$ with $f(-\pi) = f(\pi)$ then $f * F_n$ converges to f uniformly on $[-\pi, \pi]$ i.e. the Fourier series of f is uniformly Cesaro summable to f.
- \square If f is a continuous function on $[-\pi, \pi]$ with $f(-\pi) = f(\pi)$ then f can be uniformly approximated by trigonometric polynomials. i.e. $\forall \varepsilon > 0$, there is a trigonometric polynomial $p = f * F_N$ with large enough N s.t. $|f(x) p(x)| < \varepsilon \quad \forall -\pi \le x \le \pi$

6.4 Convergence of Fourier series in L^2 space and Plancherel Thm

- Here we consider $L^2([-\pi,\pi])$ having L^2 -norm defined as $||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$. Note that for $f \in L^2([-\pi,\pi])$, we can always assume $f(-\pi) = f(\pi)$ since we identify functions which coincide almost everywhere.
- Fourier partial sum as the Best approximtaion
 - If $f \in L^2([-\pi,\pi])$ then we have $\langle f S_N(f), e_n \rangle = 0 \ \forall \ |n| \leq N$ and

$$||f - S_N(f)||_2 \le \left| \left| f - \sum_{|n| \le N} c_n e_n \right| \right|_2 \quad \forall \ c_n \in \mathbb{C}$$

- $\sqrt{}$ It tells us that Fourier partial sum is the best approximation for a function in $L^2([-\pi,\pi])$ space among all trigonometric polynomials with same order in the sense of L^2 -distance.
- For any $f \in L^2([-\pi, \pi])$ and $\varepsilon > 0$, \exists a 2π -periodic continuous function g on $[-\pi, \pi]$ s.t. $||f g||_2 < \varepsilon$
- Convergence of Fourier series in L^2
 - For any $f \in L^2([-\pi, \pi])$ we have $||f S_N(f)||_2 \to 0$ as $N \to \infty$
- Parseval's identity
 - For any $f \in L^2([-\pi,\pi])$ we have the identity below

$$||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$$

- (Ex) Using Parseval's identity with f(x) = x on $[-\pi, \pi]$, we can show $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$
 - □ Riemann-Lebesgue Lemma (Easy version)
 - For any $f \in L^2([-\pi, \pi])$ we have $\hat{f}(n) \to 0$ as $|n| \to \infty$
 - Plancherel Theorem
 - $-\Phi: L^2([-\pi,\pi]) \to \ell^2(\mathbb{Z})$ given by $f \mapsto \{\hat{f}(n)\}_{n \in \mathbb{Z}}$ is a linear isometric bijection

7 The space L^p

- * L^p space for $p \ge 1$
 - $-\mathcal{L}^p := \left\{ f : X \to \mathbb{R} \cup \{\pm \infty\} \mid \int |f|^p \, d\mu < \infty \right\}$
 - $\sqrt{\mathcal{L}^p}$ is a vector space since $|f+g|^p \leq 2^{p-1}(|f|^p + |g|^p)$ (: convexity of $x \mapsto |x|^p$ given $p \geq 1$) and $|\alpha f|^p = |\alpha|^p |f|^p \ \forall \ \alpha \in \mathbb{R}$
 - $-L^p := \mathcal{L}^p / \sim$. L^p -norm is $||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}}$
 - $\sqrt{}$ To show L^p -norm is indeed a norm, we need to show the triangle inequality.
- * Conjugate exponents
 - For $p, q \ge 1$, p and q are called as conjugate exponents if $\frac{1}{p} + \frac{1}{q} = 1$
- Young's inequality
 - -a,b>0 and $1< p,q<\infty$. If p and q are conjugate exponents then $ab\leq \frac{a^p}{p}+\frac{b^q}{q}$
 - Equality holds iff $a^p = b^q$
- Hölder's inequality
 - If $1 < p, q < \infty$ are conjugate exponents and $f \in L^p$, $g \in L^q$ then $fg \in L^1$ and

$$||fg||_1 = \int |fg| \, d\mu \le ||f||_p ||g||_q$$

- Equality holds iff $\alpha |f|^p = \beta |g|^q$ a.e. for some $\alpha, \beta \in \mathbb{R}$ s.t. $(\alpha, \beta) \neq (0, 0)$ If $||f||_p > 0$ and $||g||_q > 0$ then $\alpha = ||g||_q^q$ and $\beta = ||f||_p^p$
- Minkowski's inequality
 - For $1 , if <math>f, g \in L^p$ then $||f + g||_p \le ||f||_p + ||g||_p$ $\sqrt{L^p}$ -norm is indeed a norm for $p \ge 1$
- * L^{∞} space
 - For a measurable function $f: X \to \mathbb{R} \cup \{\pm \infty\}$, the essential supremum norm is defined as

$$\|f\|_{\infty} := \inf\{M>0: \mu(\{|f|>M\}) = 0 \quad i.e. \quad |f| \leq M \ \mu - a.e.\}$$

- $-\mathcal{L}^{\infty} := \{f : X \to \mathbb{R} \cup \{\pm \infty\} | \|f\|_{\infty} < \infty\} \text{ where we say such } f \text{ is essentially bounded.} \quad \mathcal{L}^{\infty} \text{ is a vector space.} \quad L^{\infty} := \mathcal{L}^{\infty} / \sim$
- Both Hölder's and Minkowski's inequality can be extended to the case of $p=\infty$
 - (Hölder) If $f \in L^{\infty}$, $g \in L^1$ then $||fg||_1 \le ||f||_{\infty} ||g||_1$
 - (Minkowski) If $f,g\in L^\infty$ then $\|f+g\|_\infty \leq \|f\|_\infty + \|g\|_\infty$

 $\sqrt{L^{\infty}}$ -norm (essential supremum norm) is indeed a norm on L^{∞}

• $||f||_{\infty} = \inf\{\sup_{x \in X} |g(x)| : g \in \mathcal{L}^{\infty}, f = g \text{ a.e.}\}$

- Riesz-Fisher Theorem
 - For $1 \leq p \leq \infty$, L^p is a Banach space.
- Approximation in L^p
- $-1 \le p < \infty$. For any $f \in L^p$ and $\varepsilon > 0$, \exists a simple function $\phi \in L^p$ with $||f \phi||_p < \varepsilon$ \checkmark Why L^p spaces?
 - Among all L^p spaces, $p=1,2,\infty$ are the special ones.
 - $-L^2$ is a Hilbert space, which is easier to anlyze. L^1 is a natural one consisting of all integrable functions.
 - One might ask whether we really need to consider L^p spaces for $p \geq 1$ other than $p = 1, 2, \infty$. The answer is Yes.
 - i. In Fourier anlysis, there are many operators continuous on L^p for $1 but not on <math>L^1$ or L^{∞} , such as the Hilbert transform.
 - ii. In probability theory, the most important distribution is the gaussian distribution which belongs to L^p for $1 \le p < \infty$. The second most important one could be the p-stable distribution for $0 which belongs to <math>L^q$ for q < p but not to L^p . This yields a heavy tailed process.

8 Signed Measures and The Radon-Nikodym Theorem

- * Signed measure
 - -(X, A): a measurable space. A set function $\nu : A \to \mathbb{R} \cup \{\pm \infty\}$ is said to be a signed measure on (X, A) if
 - i. $\nu(\phi) = 0$
 - ii. ν assumes at most one of the values $\pm \infty$.
 - iii. $\nu(\bigcup_n E_n) = \sum_n \nu(E_n)$ for any disjoint $\{E_n\} \subset_{seq} \mathcal{A}$, where the RHS sum is absolutely convergent if LHS is finite.
 - $\sqrt{}$ For the third condition, note that when the indices of $\{E_n\}_n$ change, LHS does not change. To prevent the change of RHS, the additional condition is added.
- $\sqrt{}$ Every measure is a signed measure. For emphasizing the difference, we sometimes call a measure as a positive measure.
- μ_1 , μ_2 : positive measures on (X, \mathcal{A}) . If at least one of them is finite measure, then $\nu = \mu_1 \mu_2$ is a signed measure.
- * Extended μ -integrable
 - $-f: X \to \mathbb{R} \cup \{\pm \infty\}$ is said to be extended μ -integrable if either one of $\int f^+ d\mu$ or $\int f^- d\mu$ is finite.
- (X, \mathcal{A}, μ) : a measure space. If $f \in L^1(\mu)$ or f is extended μ -integrable, then $\nu : \mathcal{A} \to \mathbb{R} \cup \{\pm \infty\}$ defined by $\nu(E) := \int_E f \, d\mu = \int_E f^+ \, d\mu \int_E f^- \, d\mu$ is a signed measure. (Signed measure can be understood as a generalization of function in this sense)

- A signed measure satisfies continuity from above and from below.
- * Positive set, Negative set and Null set
 - $-\nu$: a signed measure on (X, \mathcal{A}) . Let $E \in \mathcal{A}$
 - i. E is a positive set (w.r.t. ν) if $\nu(F) \geq 0 \ \forall F \subset E, F \in \mathcal{A}$. Denote $E \geq_{\nu} 0$
 - ii. E is a negative set (w.r.t. ν) if $\nu(F) \leq 0 \ \forall F \subset E, F \in \mathcal{A}$ Denote $E \leq_{\nu} 0$
 - iii. E is a null set (w.r.t. ν) if $\nu(F) = 0 \ \forall F \subset E, F \in \mathcal{A}$ Denote $E =_{\nu} 0$
- Elementary properties of positive sets
 - i. If $E \geq_{\nu} 0$ then for any $F \subset E, F \in \mathcal{A}$, we have $F \geq_{\nu} 0$
 - ii. If $E_n \geq_{\nu} 0 \ \forall n \in \mathbb{N}$ then $\bigcup_n E_n \geq_{\nu} 0$
- Hahn decomposition thm
 - If ν is a signed measure on (X, \mathcal{A}) , then $\exists P \geq_{\nu} 0, N \leq_{\nu} 0$ s.t. $X = P \cup N$ is a partition. The choice of (P, N) is unique up to null sets.
 - $\sqrt{}$ Uniqueness of Hahn decomposition upto null sets means that if (P, N) and (P', N') are two Hahn decompositions of (X, \mathcal{A}, ν) then $P \cap N' =_{\nu} 0$ and $P' \cap N =_{\nu} 0$
- * Mutually singular signed measure
 - Two signed measures μ and ν are said to be mutually signular if \exists a partition $X = E \cup F$ with $E =_{\mu} 0$ and $F =_{\nu} 0$. Denote it as $\mu \perp \nu$
- Jordan decomposition thm
 - If ν : a signed measure then, there are unique positive measures ν^+ and ν^- s.t. $\nu = \nu^+ \nu^-$ and $\nu^+ \perp \nu^-$
 - Given a Hahn decomposition $X = P \cup N$ for ν , ν^+ and ν^- are given as $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = \nu(E \cap N)$
 - $\sqrt{}$ Jordan decomposition is very similar to a unique decomposition of a measurable function $f = f^+ f^-$ where f^+ , f^- are both nonnegative and have disjoint supports.
- Hahn decomposition and Jordan decomposition for ν defined by $\nu(E) = \int_E f \, d\mu$
 - For a measure space (X, \mathcal{A}, μ) and (extended) μ -integrable f, we have a signed measure ν defined by $\nu(E) = \int_E f \, d\mu$
 - Hahn decomposition for ν is $X=P\cup N$ with $P=\{f\geq 0\}$ and $N=\{f<0\}$ (Other possible choice is $P=\{f>0\}$ and $N=\{f\leq 0\}$)
 - Jordan decomposition for ν is $\nu = \nu^+ \nu^-$ with $\nu^+(E) = \int_E f^+ d\mu$ and $\nu^-(E) = \int_E f^- d\mu$
- If μ is a positive measure and λ_1, λ_2 are signed measures on (X, \mathcal{A}) with $\lambda_1 \perp \mu$, $\lambda_2 \perp \mu$, then $(\lambda_1 + \lambda_2) \perp \mu$
- * Total variation of signed measure & Finiteness of signed measure
 - For a signed measure ν , the total variation of ν is defined by the positive measure $|\nu| = \nu^+ + \nu^-$. (This is similar to $|f| = f^+ + f^-$)

- A signed measure ν is said to be finite (or σ -finite) if $|\nu|$ is finite (or σ -finite)
- If ν is a signed measure and μ is a positive measure then

i.
$$E =_{\nu} 0 \Leftrightarrow |\nu|(E) = 0 \quad \forall E \in \mathcal{A}$$

ii.
$$\nu \perp \mu \Leftrightarrow \nu^+ \perp \mu, \nu^- \perp \mu \Leftrightarrow |\nu| \perp \mu$$

- * Absolutely continuity of a signed measure w.r.t. a positive measure.
 - $-\nu$ is a signed measure and μ is a positive measure on (X, \mathcal{A}) . We say ν is absolutely continuous with respect to μ if $\mu(E) = 0 \Rightarrow \nu(E) = 0 \ \forall E \in \mathcal{A}$. Denote it as $\nu \ll \mu$
- If (X, \mathcal{A}, μ) is a measure space and f is extended μ -integrable function, then the signed measure ν defined by $\nu(E) = \int_E f \, d\mu$ is absolutely continuous w.r.t. μ
- Lebesgue decomposition
 - If μ is a σ -finite positive measure on (X, \mathcal{A}) , then a σ -finite signed measure ν on (X, \mathcal{A}) is uniquely decomposed as $\nu = \nu_1 + \nu_2$ with $\nu_1 \ll \mu$ and $\nu_2 \perp \mu$ where ν_1, ν_2 are signed measures.
 - Moreover, \exists a μ -null set $B \in \mathcal{A}$ s.t. $\nu_1(E) = \nu(E \setminus B), \ \nu_2(E) = \nu(E \cap B) \ \forall E \in \mathcal{A}$
 - $\sqrt{}$ This decomposition tells us that absolute continuity is, in a sense, "opposite" to mutual singularity.
- Radon-Nikodym thm
 - If μ is a σ -finite positive measure and ν is a σ -finite signed measure on (X, \mathcal{A}) s.t. $\nu \ll \mu$, then \exists a unique extended μ -integrable function $g: X \to \mathbb{R}$ satisfying $\nu(E) = \int_E g \, d\mu \, \, \forall \, E \in \mathcal{A}$
 - The function g is called as the Radon-Nikodym derivative of ν w.r.t. μ . Denote as

$$d\nu = g \, d\mu, \quad g = \frac{d\nu}{d\mu}$$

- Conditional expectation
 - $-(X, \mathcal{A}, \mu)$: a finite measure space. \mathcal{B} : a sub σ -algebra of \mathcal{A} . Let $\nu = \mu|_{\mathcal{B}}$. Then for any $f \in L^1(X, \mathcal{A}, \mu)$, $\exists g \in L^1(X, \mathcal{B}, \nu)$ s.t. $\int_E f \, d\mu = \int_E g \, d\nu \quad \forall E \in \mathcal{B}$
 - $\sqrt{}$ For $\mathcal{B} \subset \mathcal{A}$, 'f is \mathcal{A} -measurable' \Rightarrow 'f is \mathcal{B} -measurable'. Thus we should find \mathcal{B} measurable g satisfying $\int_E f d\mu = \int_E g d\nu \quad \forall E \in \mathcal{B}$
 - Such g is unique in the sense that if \exists another such function g', then $g = g' \nu a.e.$
 - In probability theory, g is called as the conditional expectation of f. Denote it as $g = E[f | \mathcal{B}]$