

R Para Economía y Negocios

Tarea 5

Profesor: Victor Macias E. Ayudante: Gabriel Cabrera G.¹ 27 noviembre 2018

Instrucciones

- 1. Esta tarea debe ser entregada en grupos de máximo 3 personas.
- 2. Ver Pregunta 1.
- 3. El asunto del email debe ser: "Tarea 5-R-UDP Apellido 1 -Apellido 2 -Apellido 3"
- 4. La fecha de entrega es el Viernes 7 de Diciembre del 2018 hasta las 23:59 hrs al correo del curso: r2018uchile@gmail.com.

"I am glad of all details ... whether they seem to you to be relevant or not."

Sir Arthur Conan Doyle, Adventures of Sherlock Holmes (1892)

Pregunta 1 (20 puntos)

Para la entrega de la tarea se deberá seguir los siguientes pasos:

- 1. Generar un repositorio en Github (•) de un integrante del curso.
- 2. Trabajar utilizando un *R Proyect* con *Version Control* (**git**) en R Studio o R Studio Cloud (**a**).
- 3. Desarrollar toda la tarea utilizando un R Notebook bajo extensión html ($\mathbf{\Theta}$).
- 4. El tema como el formato lo decide el grupo (2.).
- 5. Deben subir la tarea al repositorio creado en el **paso 1** antes de las 23:59 hrs del 30 de Noviembre del 2018 y generar un *Github Pages* () con la tarea.
- 6. Finalmente deben enviar el link del *Github pages* (\bigcirc) al correo del curso. Toda mail atrasado implicará nota 1.0, al igual que cualquier modificación del repositorio antes de que se suba la nota.
- 7. No deje la Tarea 5 para última hora...mucha suerte.

¹ **4**: gcabrerag@fen.uchile.cl

Pregunta 2 (50 puntos)

- 1. Descargue el precio de las acciones de Microsoft ("MSFT") y Apple ("AAPL") desde Enero del 2000 hasta Agosto del 2018 con periodicidad mensual.
- 2. Utilizando los datos de 2.1, construya una función que permita:
 - a. Calcular los retornos.
 - b. Graficar los retornos y retornos acumulados.
 - c. Testear normalidad utilizando Jarque-Bera (JB)

$$JB = n \left[\frac{skewness^2}{6} + \frac{(kurtosis - 3)^2}{24} \right]$$

donde

$$skewness = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2\right)^{3/2}}$$

$$kurtosis = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2\right)^2}$$

Si $JB > \chi^2_{(\alpha,2)}$, se rechaza la hipótesis nula y por ende, los datos no siguen una distribución normal. **No puede** usar una librería, debe programarlo desde cero. Finalmente, la función debe tener la capacidad de aceptar n precios de acciones.

Puede utilizar el siguiente ejemplo como referencia:

```
function_finance(x, return = c("yes", "no"), graph = c("type 1", "type 2"), norm = c("yes", "no"))
```

- a. x, son los datos.
- b. return, calcula los retornos:
 - yes, retorno basado en $ln(p_t/p_{t-1})$.
 - no, retorno basado en $\frac{p_t p_{t-1}}{p_{t-1}}$.
- c. graph, utilizando ggplot2:
 - type 1, gráfico retornos.
 - type 1, gráfico retornos acumulados.
- d. norm, realiza el test de jarque-bera:
 - yes, realiza el test y muestra el resultado en la consola.
 - no, realiza el test y no muestra el resultado en la consola.

Pregunta 3 (30 puntos)

Suponga que el modelo poblacional es el siguiente: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$

Sin embargo, por ignorancia o falta de datos, se estima el modelo excluyendo x_2 , realizándose la siguiente regresión simple de y sólo sobre x_1 : $y = \beta_0 + \beta_1 x_1 + v$, donde $v = \beta_2 x_2 + u$

La siguiente tabla describe los valores a usar en las simulaciones:

Parámetros	Valores
\overline{R}	10000
n	50, 100, 500, 1000
eta_0	2
eta_1	2,5
eta_2	1
x_1	$x_1 \sim N(20, 1)$
x_2	$x_2 = 0,8x_1 + e$, donde $e \sim N(0,1)$ (Caso 1)
x_2	$x_2 \sim U[0, 1] \text{ (Caso 2)}$
u	$u \sim N(0,1)$

Para responder (a) y (b) asuma $x_2 = 0, 8x_1 + e$, donde $x_1 \sim N(20, 1)$ y $e \sim N(0, 1)$

- a. Calcule $E(\hat{\beta}_1)$ y $var(\hat{\beta}_1)$ para muestras de tamaños 50, 100, 500, 1000. ¿Existe sesgo?, ¿Desaparece el sesgo a medida que el tamaño de la muestra aumenta?
- b. Grafique la distribución de $\hat{\beta}_1$ para tamaños de muestra n=50,100,500,1000
- c. Si $x_2 \sim U[0,1]$, ¿Cómo cambian los resultados que obtuviste en (a) y (b)?