```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: df = pd.read csv('Bengaluru House Data.csv')
         df.head(5)
Out[2]:
                                                                          society total_sqft bath balcony
                                 availability
                   area_type
                                                       location
                                                                    size
                                                                                                           price
          0 Super built-up Area
                                    19-Dec Electronic City Phase II
                                                                          Coomee
                                                                                             2.0
                                                                                                          39.07
                                                                  2 BHK
                                                                                      1056
                                                                                                     1.0
                                                 Chikka Tirupathi 4 Bedroom Theanmp
                     Plot Area Ready To Move
                                                                                      2600
                                                                                             5.0
                                                                                                     3.0
                                                                                                         120.00
          2
                  Built-up Area Ready To Move
                                                     Uttarahalli
                                                                  3 BHK
                                                                             NaN
                                                                                      1440
                                                                                             2.0
                                                                                                     3.0
                                                                                                          62.00
          3 Super built-up Area Ready To Move
                                              Lingadheeranahalli
                                                                                             3.0
                                                                                                          95.00
                                                                  3 BHK
                                                                          Soiewre
                                                                                      1521
                                                                                                     1.0
          4 Super built-up Area Ready To Move
                                                                                      1200
                                                      Kothanur
                                                                  2 BHK
                                                                             NaN
                                                                                             2.0
                                                                                                     1.0
                                                                                                          51.00
        df.shape
In [3]:
Out[3]: (13320, 9)
In [4]: df['area_type'].unique()
Out[4]: array(['Super built-up Area', 'Plot Area', 'Built-up Area',
                 'Carpet Area'], dtype=object)
In [5]: |df['area_type'].value_counts()
Out[5]: Super built-up Area
                                    8790
         Built-up Area
                                    2418
         Plot Area
                                    2025
                                      87
         Carpet Area
         Name: area_type, dtype: int64
```

```
In [6]: df2 = df.drop(['area_type', 'society', 'balcony', 'availability'], axis='columns')
        df2.shape
Out[6]: (13320, 5)
In [7]:
        df2.isnull().sum()
Out[7]: location
                       1
        size
                      16
        total sqft
                       0
        bath
                      73
        price
                       0
        dtype: int64
In [8]: df3 = df2.dropna()
        df3.isnull().sum()
Out[8]: location
                      0
        size
        total sqft
                       0
        bath
                       0
        price
        dtype: int64
In [9]: df3.shape
Out[9]: (13246, 5)
```

Feature Engineeringg

```
In [10]: df3['bhk'] = df3['size'].apply(lambda x:int (x.split(' ')[0]))
         df3.bhk.unique()
         C:\Users\NISHANT\AppData\Local\Temp\ipykernel 45688\339089679.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
         g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
         s-a-copy)
           df3['bhk'] = df3['size'].apply(lambda x:int (x.split(' ')[0]))
Out[10]: array([ 2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 10, 19, 16, 43, 14, 12,
                13, 18], dtype=int64)
In [11]: def is float(x):
             try:
                 float(x)
             except:
                 return False
             return True
```

```
In [12]: df3[~df3['total_sqft'].apply(is_float)].head(10)
```

Out[12]:

	location	size	total_sqft	bath	price	bhk
30	Yelahanka	4 BHK	2100 - 2850	4.0	186.000	4
122	Hebbal	4 BHK	3067 - 8156	4.0	477.000	4
137	8th Phase JP Nagar	2 BHK	1042 - 1105	2.0	54.005	2
165	Sarjapur	2 BHK	1145 - 1340	2.0	43.490	2
188	KR Puram	2 BHK	1015 - 1540	2.0	56.800	2
410	Kengeri	1 BHK	34.46Sq. Meter	1.0	18.500	1
549	Hennur Road	2 BHK	1195 - 1440	2.0	63.770	2
648	Arekere	9 Bedroom	4125Perch	9.0	265.000	9
661	Yelahanka	2 BHK	1120 - 1145	2.0	48.130	2
672	Bettahalsoor	4 Bedroom	3090 - 5002	4.0	445.000	4

```
In [13]: def convert_sqft_to_num(x):
    tokens = x.split('-')
    if len(tokens)==2:
        return (float(tokens[0])+float(tokens[1]))/2
    try:
        return float(x)
    except:
        return None
```

```
In [14]: df4 = df3.copy()
    df4.total_sqft = df4.total_sqft.apply(convert_sqft_to_num)
    df4 = df4[df4.total_sqft.notnull()]
    df4.head()
```

Out[14]:

	location	size	total_sqft	bath	price	bhk
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3
4	Kothanur	2 BHK	1200.0	2.0	51.00	2

```
In [15]: df4.loc[30]
```

```
Out[15]: location Yelahanka size 4 BHK total_sqft 2475.0 bath 4.0 price 186.0 bhk 4 Name: 30, dtype: object
```

In [16]: df4.head()

Out[16]:

	location	size	total_sqft	bath	price	bhk
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3
4	Kothanur	2 BHK	1200.0	2.0	51.00	2

```
In [17]: df5 = df4.copy()
    df5['price_per_sqft'] = df5['price']*100000/df5['total_sqft']
    df5.head()
```

Out[17]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000

```
In [18]: df5_stats = df5['price_per_sqft'].describe()
df5_stats
```

```
Out[18]: count
                  1.320000e+04
                  7.920759e+03
         mean
         std
                  1.067272e+05
         min
                  2.678298e+02
         25%
                  4.267701e+03
         50%
                  5.438331e+03
         75%
                  7.317073e+03
                  1.200000e+07
         max
```

Name: price_per_sqft, dtype: float64

```
In [19]:
     df5.to_csv("bhp.csv",index=False)
```

```
In [20]: df5.location = df5.location.apply(lambda x: x.strip())
         location stats = df5['location'].value counts(ascending=False)
         location stats
Out[20]: Whitefield
                                       533
         Sarjapur Road
                                       392
         Electronic City
                                       304
         Kanakpura Road
                                       264
         Thanisandra
                                       235
         Rajanna Layout
                                         1
         Subramanyanagar
                                         1
         Lakshmipura Vidyaanyapura
         Malur Hosur Road
                                         1
         Abshot Layout
                                         1
         Name: location, Length: 1287, dtype: int64
In [21]: location less than 10 = location stats[location stats<=10]</pre>
         location less than 10
Out[21]: BTM 1st Stage
                                       10
         Gunjur Palya
                                       10
         Nagappa Reddy Layout
                                       10
         Sector 1 HSR Layout
                                       10
         Thyagaraja Nagar
                                       10
         Rajanna Layout
                                       1
         Subramanyanagar
                                        1
         Lakshmipura Vidyaanyapura
                                        1
         Malur Hosur Road
                                        1
         Abshot Layout
         Name: location, Length: 1047, dtype: int64
In [22]: len(df5.location.unique())
Out[22]: 1287
```

```
In [23]: df5.location = df5.location.apply(lambda x: 'other' if x in location_less_than_10 else x)
len(df5.location.unique())
```

Out[23]: 241

In [24]: df5.head()

Out[24]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000

In [25]: df5.shape

Out[25]: (13200, 7)

In [26]: df5[df5.total_sqft/df5.bhk<300].head()</pre>

Out[26]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
9	other	6 Bedroom	1020.0	6.0	370.0	6	36274.509804
45	HSR Layout	8 Bedroom	600.0	9.0	200.0	8	33333.333333
58	Murugeshpalya	6 Bedroom	1407.0	4.0	150.0	6	10660.980810
68	Devarachikkanahalli	8 Bedroom	1350.0	7.0	85.0	8	6296.296296
70	other	3 Bedroom	500.0	3.0	100.0	3	20000.000000

```
In [27]: df6 = df5[~(df5.total_sqft/df5.bhk<300)]
df6.head()</pre>
```

Out[27]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000

```
In [28]: df6.shape
```

Out[28]: (12456, 7)

```
In [29]: df6.price_per_sqft.describe()
```

Out[29]: count 12456.000000 6308.502826 mean std 4168.127339 min 267.829813 25% 4210.526316 50% 5294.117647 75% 6916.666667 176470.588235 max

Name: price_per_sqft, dtype: float64

Function to remove outliers using mean and std

```
In [32]: def plot_scatter_chart(df,location):
    bhk2 = df[(df.location==location) & (df.bhk==2)]
    bhk3 = df[(df.location==location) & (df.bhk==3)]
    matplotlib.rcParams['figure.figsize'] = (15,10)
    plt.scatter(bhk2.total_sqft,bhk2.price,color='blue',label='2 BHK', s=50)
    plt.scatter(bhk3.total_sqft,bhk3.price,marker='+', color='green',label='3 BHK', s=50)
    plt.xlabel("Total Square Feet Area")
    plt.ylabel("Price (Lakh Indian Rupees)")
    plt.title(location)
    plt.legend()
```

Rajaji Nagar

In [33]: plot_scatter_chart(df7,"Hebbal")


```
In [34]: def remove bhk outliers(df):
             exclude_indices = np.array([])
             for location, location_df in df.groupby('location'):
                 bhk stats = {}
                 for bhk, bhk_df in location_df.groupby('bhk'):
                     bhk stats[bhk] = {
                          'mean': np.mean(bhk_df.price_per_sqft),
                          'std': np.std(bhk df.price per sqft),
                          'count': bhk df.shape[0]
                 for bhk, bhk df in location df.groupby('bhk'):
                     stats = bhk stats.get(bhk-1)
                     if stats and stats['count']>5:
                         exclude indices = np.append(exclude indices, bhk df[bhk df.price per sqft<(stats['mean'])].index.value
             return df.drop(exclude indices,axis='index')
         df8 = remove bhk outliers(df7)
         # df8 = df7.copy()
         df8.shape
```

Out[34]: (7317, 7)

In [35]: plot_scatter_chart(df8,"Rajaji Nagar")

In [36]: plot_scatter_chart(df8,"Hebbal")


```
In [37]: import matplotlib
matplotlib.rcParams["figure.figsize"] = (20,10)
plt.hist(df8.price_per_sqft,rwidth=0.8)
plt.xlabel("Price Per Square Feet")
plt.ylabel("Count")
```

Out[37]: Text(0, 0.5, 'Count')


```
In [38]: df8.bath.unique()
```

Out[38]: array([4., 3., 2., 5., 8., 1., 6., 7., 9., 12., 16., 13.])

```
In [39]: plt.hist(df8.bath,rwidth=0.8)
   plt.xlabel("Number of bathrooms")
   plt.ylabel("Count")
```

Out[39]: Text(0, 0.5, 'Count')

In [40]: df8[df8.bath>10]

Out[40]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
5277	Neeladri Nagar	10 BHK	4000.0	12.0	160.0	10	4000.000000
8483	other	10 BHK	12000.0	12.0	525.0	10	4375.000000
8572	other	16 BHK	10000.0	16.0	550.0	16	5500.000000
9306	other	11 BHK	6000.0	12.0	150.0	11	2500.000000
9637	other	13 BHK	5425.0	13.0	275.0	13	5069.124424

In [41]:

df8[df8.bath>df8.bhk+2]

Out[41]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
1626	Chikkabanavar	4 Bedroom	2460.0	7.0	80.0	4	3252.032520
5238	Nagasandra	4 Bedroom	7000.0	8.0	450.0	4	6428.571429
6711	Thanisandra	3 BHK	1806.0	6.0	116.0	3	6423.034330
8408	other	6 BHK	11338.0	9.0	1000.0	6	8819.897689

In [42]: df9 = df8[df8.bath<df8.bhk+2]</pre>

df9.shape

Out[42]: (7239, 7)

```
In [43]: df9.head()
```

Out[43]:

	location	size	total_sqft	bath	price	bhk	price_per_sqft
(1st Block Jayanagar	4 BHK	2850.0	4.0	428.0	4	15017.543860
	1 1st Block Jayanagar	3 BHK	1630.0	3.0	194.0	3	11901.840491
:	2 1st Block Jayanagar	3 BHK	1875.0	2.0	235.0	3	12533.333333
;	3 1st Block Jayanagar	3 BHK	1200.0	2.0	130.0	3	10833.333333
	1 1st Block Jayanagar	2 BHK	1235.0	2.0	148.0	2	11983.805668

```
In [44]:
    df10 = df9.drop(['size','price_per_sqft'],axis='columns')
    df10.head(3)
```

Out[44]:

	location	total_sqft	bath	price	bhk
0	1st Block Jayanagar	2850.0	4.0	428.0	4
1	1st Block Jayanagar	1630.0	3.0	194.0	3
2	1st Block Jayanagar	1875.0	2.0	235.0	3

OHE

In [45]: dummies = pd.get_dummies(df10.location)
dummies.head()

Out[45]:

	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	JP	JP	8th Phase JP Nagar	JP	 Vishveshwarya Layout	Vishwapriya Layout	Vittasandra	Whitefield
0	1	0	0	0	0	0	0	0	0	0	 0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	 0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	 0	0	0	0
3	1	0	0	0	0	0	0	0	0	0	 0	0	0	0
4	1	0	0	0	0	0	0	0	0	0	 0	0	0	0

5 rows × 241 columns

In [46]: df11 = pd.concat([df10,dummies.drop('other',axis='columns')],axis='columns')
df11.head()

Out[46]:

	location	total_sqft	bath	price	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	 Vijayanagar	Vishveshwarya Layout	Vishwapriya Layout	Vittasan
0	1st Block Jayanagar	2850.0	4.0	428.0	4	1	0	0	0	0	 0	0	0	
1	1st Block Jayanagar	1630.0	3.0	194.0	3	1	0	0	0	0	 0	0	0	
2	1st Block Jayanagar	1875.0	2.0	235.0	3	1	0	0	0	0	 0	0	0	
3	1st Block Jayanagar	1200.0	2.0	130.0	3	1	0	0	0	0	 0	0	0	
4	1st Block Jayanagar	1235.0	2.0	148.0	2	1	0	0	0	0	 0	0	0	

5 rows × 245 columns

4

```
In [47]: df12 = df11.drop('location',axis='columns')
    df12.head()
```

Out[47]:

	total_sqft	bath	price	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	Hbr	5th Phase JP Nagar	 Vijayanagar	Vishveshwarya Layout	Vishwapriya Layout	Vittasandra
0	2850.0	4.0	428.0	4	1	0	0	0	0	0	 0	0	0	0
1	1630.0	3.0	194.0	3	1	0	0	0	0	0	 0	0	0	0
2	1875.0	2.0	235.0	3	1	0	0	0	0	0	 0	0	0	0
3	1200.0	2.0	130.0	3	1	0	0	0	0	0	 0	0	0	0
4	1235.0	2.0	148.0	2	1	0	0	0	0	0	 0	0	0	0

5 rows × 244 columns

In [48]: df12.shape

Out[48]: (7239, 244)

In [49]: X = df12.drop(['price'],axis='columns')
X.head(2)

Out[49]:

	total_sqft	bath	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	6th Phase JP Nagar	 Vijayanagar	Vishveshwarya Layout	Vishwapriya Layout	Vittasandra
0	2850.0	4.0	4	1	0	0	0	0	0	0	 0	0	0	С
1	1630.0	3.0	3	1	0	0	0	0	0	0	 0	0	0	С

2 rows × 243 columns

4

```
In [50]: y = df12.price
         y.head(2)
Out[50]: 0
              428.0
              194.0
         Name: price, dtype: float64
In [51]: from sklearn.model selection import train test split
         X train,X test,y train,y test = train test split(X,y,test size=0.2,random state=10)
In [52]: from sklearn.model selection import ShuffleSplit
         from sklearn.model_selection import cross_val_score
         cv = ShuffleSplit(n splits=5,test size=0.2,random state=10)
In [53]: from sklearn.linear_model import LinearRegression
         lr clf = LinearRegression()
         lr clf.fit(X train,y train)
         lr_clf.score(X_test,y_test)
Out[53]: 0.8629132245229525
```

```
In [54]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Lasso
         from sklearn.tree import DecisionTreeRegressor
         def find best model using gridsearchcv(X,y):
             algos = {
                  'linear regression' : {
                      'model': LinearRegression(),
                      'params': {
                          'normalize': [True, False]
                 },
                  'lasso': {
                      'model': Lasso(),
                      'params': {
                          'alpha': [1,2],
                          'selection': ['random', 'cyclic']
                 },
                  'decision_tree': {
                      'model': DecisionTreeRegressor(),
                      'params': {
                          'criterion' : ['mse','friedman mse'],
                          'splitter': ['best','random']
             scores = []
             cv = ShuffleSplit(n splits=5, test size=0.2, random state=0)
             for algo name, config in algos.items():
                 gs = GridSearchCV(config['model'], config['params'], cv=cv, return train score=False)
                 gs.fit(X,y)
                 scores.append({
                      'model': algo name,
                      'best_score': gs.best_score_,
                      'best_params': gs.best_params_
                 })
             return pd.DataFrame(scores,columns=['model','best_score','best_params'])
```

```
find best model using gridsearchcv(X,y)
                                                  Traceback (most recent call last)
        ValueError
        Cell In[54], line 42
             34
                        scores.append({
             35
                            'model': algo name,
                            'best score': gs.best score,
             36
             37
                             'best params': gs.best params
                        })
             38
                    return pd.DataFrame(scores,columns=['model','best score','best params'])
        ---> 42 find best_model_using_gridsearchcv(X,y)
        Cell In[54], line 33, in find best model using gridsearchcv(X, y)
             31 for algo name, config in algos.items():
                    gs = GridSearchCV(config['model'], config['params'], cv=cv, return train score=False)
             32
        ---> 33
                    gs.fit(X,y)
                    scores.append({
             34
                        'model': algo_name,
             35
                        'best score': gs.best score,
             36
                        'best params': gs.best params
             37
In [ ]: def predict price(location, sqft, bath, bhk):
            loc index = np.where(X.columns==location)[0][0]
            x = np.zeros(len(X.columns))
            x[0] = sqft
            x[1] = bath
            x[2] = bhk
            if loc index >= 0:
                x[loc index] = 1
            return lr clf.predict([x])[0]
In [ ]: import pickle
        with open('banglore_home_prices_model.pickle','wb') as f:
            pickle.dump(lr clf,f)
```

```
In []: import json
    columns = {
        'data_columns' : [col.lower() for col in X.columns]
    }
    with open("columns.json","w") as f:
        f.write(json.dumps(columns))
```