Scatterplot with multiple axes

Conditioning Plot

Scatterplot with Marginal Histograms (in R because I didn't have SAS dataset)

Kaplan-Meier Plot

	CIII	SAS Syst	IIIC (
	cedure	TEST Pro	The LIFE		
red Values	and Uncenso	Censored	ımber of	of the Nu	Summary o
Percent Censored	Censored	Failed	Total	treat	Stratum
83.25	174	35	209	0	1
42.34	94	128	222	1	2
		163	431		Total

Note: 22 observations with invalid time, censoring, or strata values were deleted.

ROC Curve

The SAS System

The LOGISTIC Procedure

Model Information				
Data Set	WORK.HELP			
Response Variable	g1b			
Number of Response Levels	2			
Model	binary logit			
Optimization Technique	Fisher's scoring			

Number of Observations Read	d 453
Number of Observations Used	453

Resp	onse	Profile
Ordered Value	g1b	Total Frequency
1	1	127
2	0	326

Probability modeled is g1b='1'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	539.518	485.378		
SC	543.634	493.610		
-2 Log L	537.518	481.378		

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	56.1398	1	<.0001		
Score	51.3463	1	<.0001		
Wald	45.7147	1	<.0001		

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-3.4329	0.4043	72.0892	<.0001
cesd	1	0.0709	0.0105	45.7147	<.0001

	Odds Ratio I	Estimates	
Effect	95% Wald Point Estimate Confidence L		77.7
cesd	1.073	1.052	1.096

Association of Pred Observe			and
Percent Concordant	71.3	Somers' D	0.445
Percent Discordant	26.7	Gamma	0.455
Percent Tied	2.0	Tau-a	0.180
Pairs	41402	С	0.723

Pairs Plot

Visualize Correlation Matrix

a4code #Don't know why you'd want this, but I guess it can't hurt to include it proc import datafile="\\Client\C\$\help.csv" out=help dbms=csv replace; delimiter=','; getnames=yes; axis1 minor=none; axis2 minor=none order=(5 to 60 by 13.625); axis3 minor=none order=(20, 40, 60); symbol1 i=sm65s v=circle color=black l=1 w=5; symbol2 i=sm65s v=triangle color=black l=2 w=5; run; proc gplot data=help; where female eq 1 and substance eq 'alcohol'; plot indtot*cesd / vaxis=axis1 haxis=axis3; plot2 mcs*cesd / vaxis = axis2; run; quit; proc sgpanel data=help; panelby g1b substance / layout=lattice; pbspline x=cesd y=mcs; run; quit; ods select censoredsummary survivalplot; proc lifetest data=help plots=s(test); time dayslink*linkstatus(0); strata treat; run; ods graphics on; ods select roccurve; proc logistic data=help descending plots(only)=roc; model g1b = cesd; run; ods graphics off; proc sgscatter data=help; where female eq 1; matrix cesd mcs pcs i1 / diagonal=(histogram kernel); run; quit; proc sgscatter data=help; where female eq 1; compare x = (cesd mcs pcs i1)

y = (cesd mcs pcs i1) / loess;

ellipse=(alpha=.25) start=bottomleft
markerattrs=(symbol=circlefilled size=4);

matrix mcs pcs pss_fr drugrisk cesd indtot i1 sexrisk /

proc sgscatter data=help;

run; quit;

run; quit;

q4code

```
#R code
scatterhist = function(x, y, xlab="x label", ylab="y label"){
  zones=matrix(c(3,1,2,4), ncol=2, byrow=TRUE)
  layout(zones, widths=c(4/5,1/5), heights=c(1/5,4/5))
  par(mar=c(0,0,0,0))
  plot(type="n",x=1, y =1, bty="n",xaxt="n", yaxt="n")
  text(x=1,y=1,paste0("nobs = ",min(length(x), length(y))), cex
       =1.8)
  xhist = hist(x, plot=FALSE)
  yhist = hist(y, plot=FALSE)
  top = max(c(xhist$counts, yhist$counts))
  par(mar=c(3,3,1,1))
  plot(x,y)
  par(mar=c(0,3,1,1))
  barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
  par(mar=c(3,0,1,1))
  barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,
          horiz=TRUE)
  par(oma=c(3,3,0,0))
 mtext(xlab, side=1, line=1, outer=TRUE, adj=0,
        at=.8 * (mean(x) - min(x))/(max(x)-min(x)))
  mtext(ylab, side=2, line=1, outer=TRUE, adj=0,
        at=(.8 * (mean(y) - min(y))/(max(y) - min(y)))) }
```