Digital Logic Circuits Cont'd

Michael Brodskiy

Professor: S. Shazli

January 23, 2023

- Logical Equivalences of And
 - $-(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ Associative Law

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
Τ	Τ	Т	Т	Τ	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	Т	F	F	Т	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

• Logical Equivalences of Or

$$- p \lor T \equiv T$$
 — Identity Law

$$- p \lor F \equiv p$$
 — Domination Law

$$- p \lor p \equiv p$$
 — Idempotent Law

$$- p \lor q \equiv q \lor p$$
 — Commutative Law

$$-\ (p\vee q)\vee r\equiv p\vee (q\vee r)$$
 — Associative Law

$$-\sim (p\vee q)\equiv (\sim p)\wedge (\sim q)$$
 — De Morgan's Law

- Can implement any truth table with AND, OR, and NOT
 - 1. AND combinations that yield a "1" in the truth table
 - 2. OR the results of the AND gates
- $\bullet\,$ Sum of Products Form: Key Idea
 - Assume we have the truth table of a boolean function
 - How do we express the function in terms of the inputs in a standard manner?
 - * Idea: Sum of Products Form
 - * Express the truth table as a two-level Boolean expression
 - * If ANY of the combinations of input variables that results in a 1 is TRUE, then the output is 1
 - $\ast~\mathrm{F}=\mathrm{OR}$ of all input variable combinations that result in a 1
 - Complement: Variable with a bar over it

 $\bar{A}, \bar{B}, \bar{C}$

- Literal: Variable or its complement

$$A, \bar{A}, B, \bar{B}, C, \bar{C}$$

- Implicant: Product (AND) of literals

$$(A \bullet B \bullet \bar{C}), (\bar{A} \bullet C), (B \bullet \bar{C})$$

- Minterm: Product (AND) that includes all input variables

$$(A \bullet B \bullet \bar{C}), (\bar{A} \bullet \bar{B} \bullet C), (\bar{A} \bullet B \bullet \bar{C})$$

- Maxterm: Sum (OR) that includes all input variables

$$(A \lor B \lor \bar{C}), (\bar{A} \lor \bar{B} \lor C), (\bar{A} \lor B \lor \bar{C})$$

- Canonical Form: Standard form for a boolean expression
- Sum of Products Form (SOP)
 - Also known as a disjunctive normal form or minterm expansion
 - Each row in a truth table has a minterm
 - A minterm is a product (AND) of literals
 - Each minterm is TRUE for that row (and only that row)
 - All boolean equations can be written in SOP form
 - Standard "shorthand" notation
 - * If the order of variables in the rows of a truth table are agreed upon, then one may write M<ROW> as shorthand, for example, M4 for row 4
 - * This can be be rewritten as a sum of products or summation notation:

$$m3 + m4 + m5 + m6 + m7 = \sum m(3, 4, 5, 6, 7)$$

- * The canonical form is not always the minimal form
- Product of Sums (POS) Form
 - Each sum term represents one of the "zeros" of the function
 - Write the inverses of the zero functions as each term
 - * Ex. If a truth table gives $\begin{pmatrix} A & B & C \\ 0 & 1 & 0 \end{pmatrix}$, then a term of the product of sums would $(A \vee \bar{B} \vee C)$
 - * Multiply (AND) each of these terms
 - This is also known as maxterm form or conjunctive normal form

- 1. Find truth table rows where F is 0
- 2. 0 in input column \rightarrow true literal
- 3. 1 in input column \rightarrow complemented literal
- 4. OR the literals to get a maxterm
- 5. AND together all the maxterms
- Standard "shorthand" notation
 - * If the order of variables in the rows of a truth table are agreed upon, then one may write M<ROW> as shorthand, for example, M4 for row 4
 - * This can be be rewritten as a product of the sums or product notation:

$$(M0)(M1)(M2) = \prod M(0,1,2)$$

- * The canonical form is not always the minimal form
- Minterm-Maxterm Conversion
 - Rewrite minterm shorthand using maxterm shorthand, replacing minterm indices with the indices not already used, and vice versa:

$$\sum m(3,4,5,6,7) = \prod M(0,1,2)$$