Lecture #15 ¹H MRS: Single-voxel and Spectroscopic Imaging Studies

- Single-voxel ¹H MRS
 - Technical considerations
 - Applications and Research
- ¹H MRSI
 - Technical considerations
 - Applications and Research
- Readings and Handouts
 - de Graaf, Chapters 6, 7, and 9.

MRI and MRS

Anatomy + Biochemistry

Technical requirements

- Spatial localization
- Water suppression
- Lipid suppression
- B₀ homogeneity

Spectral quantitation

Position Resolved Spectroscopy (PRESS)

• STEAM: alternative sequence using three 90° to localize via a stimulated echo (1/2 the signal but shorter minimum TE)

Water Suppression

Single Voxel ¹H MRS

Excite rectangular volume of tissue (PRESS or STEAM) Widely available, fully automated. Typical Protocol:

- Graphically prescribe ROI
- Shimming (often automated)
- Data collection: 2-5 min, 3-8 cc voxels

TR/TE=2000/35 ms 64 averages PRESS

- Applications:
 - focal ROIs
 - diffuse diseases
- Reliability high, but still some technical challenges:
 - homogeneity
 - SNR

Tissue Composition

Gray Matter

Pons

2.0

1.0

3.0

4.0

Echo Time Considerations 1 month old infant

Difficulties: Lipid Contamination

Difficulties: B₀ Inhomogeneity

Spectroscopic Imaging

- Excite a large volume of tissue, then use gradients for spatial encoding
- Typically 5-15 min acq, 1-3 cc voxels

Traditional ¹H CSI

PRESS MRSI Example

Typical clinical parameters: TR/TE=1000/144 ms, 16x16 matrix,

1.5 cm slice, 24 cm FOV, 3.4 cc voxels, 4 min acquisition.

Pros: robust, automated

Cons: limited coverage

FOV/resolution/imaging time not independent e.g. 16x16x16 voxels requires 2.3 hrs (TR = 2s)¹²

Research Topics

- Technical developments:
 - Volumetric spectroscopic imaging
 - Robust measurement of additional metabolites such as mI, Glu, Gln, GABA, etc
 - Spectral quantification
 - ¹H MRS in non-brain tissues (primary problems due to motion and lipids)
- Biological/medical questions: better understanding of the roles of these metabolites under normal and pathological conditions.

Motivation for MRSI

SNR considerations should dominate, and SNR is independent of the number of voxels.

$$SNR \propto V\sqrt{T_{AD}}$$

single voxel

single slice

volumetric 14

Increasing Spatial-coverage: *k*-space view of MRSI

$$\begin{array}{ccc} MRI & vs & MRSI \\ (k_x, \, k_y, \, k_z) & (k_x, \, k_y, \, k_z, \, k_f) \\ & & k_f = time \end{array}$$

Strategy: use time-varying readout gradients to cover *k*-space

⇒ EPI, EPSI, spiral-MRSI

k-space view of MRSI

 Gradients allow arbitrary movement along k_x, k_y, and k_z (subject to amplitude and slew rate constraints)

• Must move linearly along $k_f = t$

3DFT MRSI with an oscillating readout gradient

Volumetric Echo-Planar MRSI

16 slices
1.1 cc voxels
TR/TI/TE = 2000/170/144 ms
17 min acquisition
Gridding reconstruction

Typical Protocol

- 16 slices, 18 x 18 pixels each
- $FOV = 24 \times 24 \times 10 \text{ cm}$
- TR/TI/TE = 2000/170/144 ms
- $FOV_f = 400 \text{ Hz}, Res_f = 5 \text{ Hz}$
- 46 TRs to cover 4D k-space
- 1 7 min acq

spherical coverage in k_x, k_y, k_z

Fast MRSI

Given that SNR constraints require significant averaging, why bother scanning rapidly (e.g. spiral CSI)?

Answer: increased flexibility!

Spiral MRSI

- Allows "independent" selection of imaging time, voxel size, and FOV
- Allows "smart" averaging
 - Interleaving to increase FOV and/or spectral bandwidth
 - RF phase cycling
- Other applications
 - Water referencing
 - Spatially-resolved 2D NMR
 - -k-space filtering

Spatially Resolved 2-D Spectroscopy

- Spiral gradients allow collection of 2 spectral and up to 3 spatial axes
- Suitable for variety of 2D MRS methods: e.g J-resolved, COSY.

Example:
J-Resolved
Spiral MRSI
(1.5 T)

Spiral readout $18 \times 18 \times 128 \times 256$ (k_x, k_y, t_1, t_2) data set 1 cc voxels 17 min acquisition

Variable-Density Sampling

- Problem: MRSI suffers from significant Gibbs ringing. Increased k-space coverage can reduce ringing, however post-acquisition windowing reduces SNR (see Problem Set 1).
- Solution: use a k-space sampling density proportional to desired window (Mareci 84, Parker 87, Star-Lack 95, Boada 97)

Variable-Density Spiral MRSI

k-space Coverage

Constant density Variable density

Fixed nominal voxel size and FOV Constant density Variable density image space radius Sampling density

(kx,ky)-radius

Sampling along k_t is constant

Variable-Density Spiral MRSI

Lipids

Metabolites

¹H volumetric vd-spiral MRSI

1.5 T, 7 yo male, TE=144ms, 1 cc voxels, 15 min acq.

Pro: lots of data!

Con: lots of data!

(also poorer shim vs single voxel)

Fast ¹H MRSI at ³T

Spiral MRSI
TR/TI/TE=2000/180/144 ms
1.2 cc voxels

3.6 min acquisition

Representative spectrum

In Vivo MRI/MRS

- Three: most important factors for a successful in vivo MRSI exam:
 - Homogeneity, homogeneity, and homogeneity (SNR should probably be somewhere in this list)
- Hence, shimming is extremely important.
- MRI scanners typically compensated with passive and supercon shims to very high orders (e.g. 14th order zonal shims).
 - Typical homogeneity = 1ppm over 30 cm sphere.
- Magnets also equipped with linear gradients for shimming as well as higher order resistive shims such as z^2 , xy, etc

If supercon shims already adjusted to maximize field Question: uniformity, why do we need additional resistive shims?

Answer: Any object placed within the main magnet changes the magnetic field!

Magnetic Susceptibility

• All materials are magnetized to some degree.

$$B=\mu_0(1+\chi_m)H$$
magnetic susceptibility

Bz

Susceptibility: air = 0.000004 water = -0.000002

max shift about ± 10 ppm

Susceptibility and B₀ orientation

High Field Magnets (≥3T)

- Pros
 - SNR linear with B₀
 - Spectral separation increases
- Cons
 - Susceptibility scales with B₀
 - If linewidths dominated by T_2^* , SNR goes only as $sqrt(B_0)$

Summary

- ¹H MRS is best viewed as an adjunct to MRI, currently in widespread clinical use.
- Technical difficulties addressed with large voxels, water/lipid suppression, in vivo shimming
- Clinical neuro applications available today, body applications under development.
- Ongoing technical development:
 - Improved Shimming: homogeneity is key to a successful study!!
 - Automated processing and quantification
 - Phased-array coils, SENSE/SMASH
 - Motion-insenitive sequences
 - High field MRSI: other nuclei, improved spectral editing

Next Lecture: Clinical MRS I