# **Ćwiczenie 9: Pomiar czasu** względnego za pomocą timera

Instrukcja laboratorium

Mariusz Chilmon <mariusz.chilmon@ctm.gdynia.pl>





2024-01-30

Any fool can write code that a computer can understand. Good programmers write code that humans can understand.

— Martin Fowler

## Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z:

- · odczytem czasu odmierzonego przez timer,
- wykorzystaniem przerwań GPIO w interakcji z timerem,
- dekompozycji złożonego programu do bloków funkcjonalnych.

# Uruchomienie programu wyjściowego

- 1. Podłącz płytkę WPSH209 do Arduino Uno.
- 2. Wyświetlacz wskazuje wartość 8.888.

# Zadanie podstawowe

Celem zadania podstawowego jest zaprogramowanie miernika refleksu. Urządzenie ma co około 10 sekund rozpoczynać odliczanie sygnalizowane sygnałem świetlnym lub dźwiękowym, które użytkownik ma jak najszybciej zatrzymać wciśnięciem przycisku *S1*. Czas między sygnałem a wciśnięciem przycisku ma być mierzony z rozdzielczością 1 ms.

#### Wymagania funkcjonalne

- 1. Po kilku–kilkunastu sekundach od uruchomienia zaświecana jest dioda *D1* i/lub uruchamiany jest buzzer *LS1*. Rozpoczyna się odmierzanie czasu na wyświetlaczu.
- 2. Po chwili (np. 20 ms) dioda i/lub buzzer są wyłączane.
- 3. Po wciśnięciu przycisku *S1* odliczanie czasu zostaje zatrzymane i można go odczytać z wyświetlacza.
- 4. Po kilku-kilkunastu sekundach cykl pracy rozpoczyna się od nowa.

## Modyfikacja programu

Implementację programu najlepiej podzielić na kroki, pozwalające stopniowo realizować żądaną funkcjonalność.

Do odmierzania czasu można użyć timera Timer/Counter1, który dzięki 16-bitowej rozdzielczości pozwoli zachować odpowiednią rozdzielczość pomiaru.

### Wyświetlanie stanu timera

W funkcji currentTime() zwróć wartość licznika TCNT1.

Na wyświetlaczu będzie widoczna domyślna wartość tego rejestru, tj. 0.

#### **Uruchomienie timera**

W celu uruchomienia timera należy za pomocą bitów CS10...CS12 podać sygnał zegarowy o częstotliwości, która umożliwi odliczenie czasu rzędu kilku sekund. Możesz zrobić to w pętli głónwej mainLoop (), dzięki czemu odliczanie będzie mogło być cyklicznie wznawiane.

Na wyświetlaczu będzie widoczne odliczanie licznika TCNT1.

#### Przeskalowanie czasu

Przelicz wartość zwracaną przez currentTime(), tak by była wyrażona w milisekundach.

#### Opóźnienie startu

Opóźnij start odliczania dodając wywołanie funkcji \_delay\_ms() w pętli głównej.



Ponieważ pomiar czasu następuje za pomocą timera, a przycisk obsługiwany jest w przerwaniu, umieszczanie w pętli głównej odliczania czasu za pomocą \_delay\_ms() (co blokuje program na czas odliczania interwału) nie stanowi problemu.

#### Zatrzymanie odliczania

Aby po wciśnięciu przycisku jak najszybciej zatrzymać odliczanie, należy użyć przerwania.

Aby włączyć przerwanie od przycisku S1 należy w funkcji interruptsInitialize() włączyć przerwanie PCINT1 dla wejścia PCINT9¹:

```
1 PCMSK1 |= _BV(PCINT9);
2 PCICR |= _BV(PCIE1);
```

W obsłudze tego przerwania (ISR (PCINT1\_vect)) zatrzymaj pracę timera przez wyłączenie sygnału zegarowego.

#### Resetowanie timera

Na początku każdego cyklu (po odmierzeniu opóźnienia za pomocą \_delay\_ms()) wyzeruj licznik timera, tak by pomiar czasu zaczynał się zawsze od zera.

#### Sygnalizacja rozpoczęcia odliczania

Bezpośrednio po lub bezpośrednio przed włączeniem timera<sup>2</sup> w pętli głównej włącz buzzer i/lub LED. Wyłącz je po krótkiej chwili, do odmierzenia której też możesz użyć \_delay\_ms().

## Zadanie rozszerzone

Celem zadania rozszerzonego jest usunięcie możliwości oszukiwania urządzenia przez użytkownika.

#### Wymagania funkcjonalne

- 1. Po przepełneniu timera odliczanie jest zatrzymywane.
- 2. Ciągłe wciskanie i puszczanie przycisku opóźnia start odliczania, żeby nie było możliwe w ten sposób uzyskanie niskiego wyniku (falstart).

#### Modyfikacja programu

Przepełnienie timera można obsłużyć w przerwaniu TIMER1\_OVF\_vect. Włącza się je za pomocą flagi TOIE1.

Obsłużenie falstartu można zrealizować przez ustawianie dodatkowej zmiennej w przerwaniu od przycisku i sprawdzaniu jej w pętli głównej.

<sup>&</sup>lt;sup>1</sup>Tak, w tym mikrokontrolerze PCINT raz oznacza przerwanie od GPIO, a raz pin wywołujący to przerwanie...

<sup>&</sup>lt;sup>2</sup>Nie da się tego zrobić jednocześnie, gdyż nie da się w jednej instrukcji zapisać danych do kilku rejestrów.