NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

DOE/NASA/0121-80/1 NASA CR-165152 ADL 83613

STUDY OF COMPONENT TECHNOLOGIES FOR FUEL CELL ON-SITE INTEGRATED ENERGY SYSTEMS

Volume II-Appendices

W. David Lee, Siegfried Mathias Arthur D. Little, Inc.

December 1980

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Under Contract DEN 3-121

for
U.S. DEPARTMENT OF ENERGY
Fossil Energy
Office of Coal Utilization

DOE/NASA/0121-80/1 NASA CR-165152 ADL 83613

STUDY OF
COMPONENT TECHNOLOGIES FOR
FULL CELL ON-SITE
INTEGRATED ENERGY SYSTEMS

Volume II Appendices

W. David Lee, Siegfried Mathias Arthur D. Little, Inc. Cambridge, Massachusetts 02140

December 1980

Prepared for National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Under Contract DEN 3-121

for
U.S. DEPARTMENT OF ENERGY
Fossil Energy
Office of Coal Utilization
Washington, D.C. 20545
Under Interagency Agreement DE-AI-03-ET-11272

TABLE OF CONTENTS

<u>VOI</u>	UME I	I - APPENDICES	Page
<u>1.</u>	COMPO	ONENT DATA BASE	1
	1.1	Introduction	1
	1.2	Fuel Cells	3
	1.3	Chillers	10
	1.4	Boilers	38
	1.5	Heat Exchangers	50
	1.6	Fan Coil Units, Air Handling Units, Cabinet Unit Heaters	56
	1.7	Thermal Storage	67
	1.8	Subsystem Elements	69
	1.9	Glossary	88
	1.16	Vendor Names	90
<u>2.</u>	INTE	GRATED FUEL CELL SYSTEMS DIAGRAMS	91
	2.1	Residential	91
	2.2	Retail Store	91
3.	COMP	UTER ANALYSIS OF SYSTEMS	107
	3.1	Residentail	107
	3.2	Retail Store	107
А	CASH	FLOWS SERIES FOR RASELINE SYSTEMS	126

PRECEDING PAGE BLANK NOT FILMED

INTRODUCTION

This data base catalogue was compiled in order to facilitate the analysis of various on-site integrated energy systems with fuel cell power plants. The catalogue is divided into two sections. The first characterizes individual components in terms of their performance profiles as a function of design parameters. The second characterizes total heating and cooling systems in terms of energy output as a function of input and control variables.

In the first section, data for each component are organized as follows:

1) Component Description

This sheet contains the following information:

- a) Component Name
- b) Range of standard nominal sizes
- c) Average useful lifetime
- d) Physical dimensions of a representative size
- e) Standard operation conditions
- f) Parameter constraints limiting component operation
- 2) Component Cost

Installed cost including overhead and profit are summarized for various component sizes. Component sizes considered are determined by the energy use profiles and design parameters for the two buildings studied.

Some components, such as terminal units, are fixed by building design loads. In such instances only the appropriate units are costed. In other instances, component size is a function of the total system configuration (e.g., compression chiller size is a function of chilled water storage and concurrent use of absorption machines). In such cases, a range of equipment size is costed. All costs are in 1978 dollars.

3) Performance Profiles

Variation of component capacity or efficiency is profiled against design and control parameters such as part load, fluid temperatures, flow rates, etc.

The second section analyzes energy systems used for heating, cooling and domestic hot water. Each system includes source of heating or cooling energy distribution components and terminal units. Design conditions are specified for the system, and energy demand for each component is specified as a function of the total system output. In addition, a control sheet is provied for each system to describe the intended energy flow control. Analysis of system input at other than design conditions can be accomplished as follows:

1) determine component energy demand under design conditions. 2) change individual component variables according to the control strategies given on the system control sheet. 3) alter component energy demand according to the profiles established in Section 1 of the catalogue

- 1. Component Name: FUEL CELL
- 2. Available nominal size: 20 to 30KW
- 3. Useful life: 25
- 4. Physical Dimensions for 703KW (200 ton) component size:

1.1 to 1.3 ft²/KW

5. Standard Rating Conditions:

Fuel Cell A 80 to 140°F Return 210°F delivery

Fuel Cell B 80 to 140°F Return 60 psig and 160°F delivery

Fuel Cell C 120 to 200°F Return 60 psig delivery

6. Parameter Constraints:

Fuel Cell A 20 KW minimum size module

Fuel Cell B 20 KW minimum size module

Fuel Cell C 100 KW minimum size module

7. Unit Cost in 1978 Dollars:

Fuel Cell A = $420 \cdot \text{KW} \cdot 93$ Fuel Cell B = $615 \cdot \text{KW} \cdot 93$ Fuel Cell C = $463 \cdot \text{KW} \cdot 93$

and \$50 per KW for installation.

FIGURE 1A POWERPLANT A ELECTRICAL EFFICIENCY

Percent of rated power

ORIGINAL PAGE IS OF POOR QUALITY

" WAIT!

FIGURE 1B POWER PLANT A HEAT RECOVERY EFFICIENCY

Percent of Rated Power
Revised 8-22-79

FIGURE 2A POWERPLANT B ELECTRICAL EFFICIENCY

Percent of rated electric power

FIGURE 2B

POWERPLANT B HIGH TEMPERATURE HEAT EFFICIENCY

FIGURE 2C

POWERPLANT B LOW TEMPERATURE HEAT EFFICIENCY

Percent of rated power

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3A

POWERPLANT C ELECTRICAL EFFICIENCY

Percent of rated power

FIGURE 3B

POWERPLANT C HEAT RECOVERY EFFICIENCY

Percent of rated power

ORIGINAL PAGE IS

- 1. Component Name: CENTRIFUGAL CHILLERS
- 2. Available nominal size: 281KW to 7032KW (80 tons to 2000 tons)
- 3. Useful life: 20 years
- 4. Physical Dimensions for 703KW (200 ton) component size:

8.8M x 2.8M x 2M (29' x 9' x 7') space require 1

5. Standard Rating Conditions:

Evaporator:

.043 1/s per KW (2.4 gpm/ton) flow rate

6.7°C (44°F) Leaving water temperature

12.2°C (54°F) Entering water temperature

Condenser:

.054 1/s per KW (3 gpm/ton) flow rate

35°C (95°F) Leaving water temperature

29.4°C (85°F) Entering water temperature

Fouling Factor .00009 M³·K/W (.0005 h·ft²·F/BTU

6. Parameter Constraints:

- A. Water flow rates between 1 M/s and 3.66 M/s (3 1/3 fps and 12 fps)
- B. Minimum load 10% full load
- C. Condenser water temperature range between 1.7°C and 11.1°C (3°F and 20°F)
- D. Leaving evaporator water temperature between 4.4°C and 10°C (40°F and 50°F)

CENTRIFUGAL CHILLERS COST DATA

-	ent Size KW (tons)	Installed Cost*		Unit Cost in \$/KW (ton)			
352	(100)	\$ 41,000	\$117	(\$410)			
527	(150)	49,300	94	(330)			
703	(200)	56,500	80	(282)			
721	(250)	63,600	72	(254)			
1054	(300)	67,300	64	(274)			
1406	(400)	82,225	58	(205)			

O&M as % installed cost = 7.5%

Including overhead and profit.

INCREMENTAL INSTALLED COST VS. COP+

Capital Cost*	COP	KW/ton		
\$43,000	5.5	. 64		
37,500	4.6	.77		

Incremental Capital Cost:

\$6000 increase per cop increase of 1

(\$4200 increase per .1 KW/ton power decrease)

Incremental Installed Cost:

\$8400 increase per cop increase of 1
(\$6000 increase per .1 KW/ton power decrease)

These are representative numbers for a 700 KW (200 ton) unit.

^{*} Applicable for range of cop from 4.2 to 5.6

COP AT PART LOAD

CAPACITY AS A FUNCTION OF CONDENSER WATER FLOW

* BASE FLOW = 34PM/TON

CAPACITY VS. LEAVING CHILLED WATER TEMP. (LCWT) (Leaving condenser water temperature 35°C (95°F))

°C LC	WT °F	Average % Capacity increase over base*				
<u> </u>	-	Indicade over page				
4.4	(40°)	-7				
5.5	(42°)	-3				
6.7	(44°)	0				
7.8	(46°)	4				
8.9	(48°)	7				
10.0	(50°)	11				

^{*} Average values taken for 3 units of nominal capacity 200, 350 and 650 tons

COP VS. FOULING FACTOR OF CONDENSER OR EVAPORATOR

- 1. Component Name: RECIPROCATING CHILLERS
- 2. Available nominal size: 35KW to 843KW (10 tons to 240 tons)
- 3. Useful life: 20 years
- 4. Physical Dimensions for 352KW (100 ton) component size:

5M x 2M x 1.5M (17' x 6' x 5') space required

5. Standard Rating Conditions:

Evaporator:

.043 l/s per KW (2.4 gpm/ton) flow rate

6.7°C (44°F) Leaving water temperature

12.2°C (54°F) Entering water temperature

Condenser:

.054 1/s per KW (3 gpm/ton) flow rate

35°C (95°F) Leaving water temperature

29.4°C (85°F) Entering water temperature

Fouling Factor .00009 M³·K/W(.0005 h·ft²·F/BTU)

- 6. Parameter Constraints:
 - A. Water flow rates between 1 M/s and 3.66 M/s (3 1/3 fps and 12 fps)
 - B. Minimum load 10% full load
 - C. Condenser water temperature range between 1.7°C and 11.1°C (3°F and 20°F)
 - D. Leaving evaporator water temperature between 4.4°C and 10°C (40°F and 50°F)

COST DATA

	ent Size KW (tons)	Installed Cost*	Unit Cost In \$/KW (ton)			
88	(25)	\$ 11,500	\$131	(\$460)		
176	(50)	16,950	96	(339)		
264	(75)	26,650	101	(355)		
352	(100)	28,250	80	(282)		
527	(150)	45,200	85	(300)		
703	(200)	63,000	90	(315)		

O&M as % installed cost = 6%

* Including overhead and profit

COP AND CAPACITY AT VARIOUS LEAVING CONDENSER AND LEAVING CHILLED WATER TEMPERATURES

GOP AT PART LOAD FOR VARYING CAPACITY CONTROL

- 1. HOT GAS BYPASS
- 2. BACKPRESSURE VALVE
- 3. SUCTION VALVE-LIFT UNLCADING SINGLE COMPRESSOR
- 4. SUCTION VALVE-LIFT UNLOADING TWO COMPRESSORS
- 5. SUCTION VALVE-LIFT UNLOADING THREE COMPRESSORS
- 6. SUCTION VALVE- LIFT UNLOADING FOUR COMPRESSORS

COP AT PART LOAD

				Y=A+B)	K+CX ² +DX ³				
	Range		Coefficients						
Capacity Control	of (X)	A	В	С	D				
Hot Gas Bypass	20< x 00</td <td>-2.83</td> <td>1.181</td> <td>-0.00153</td> <td></td>	-2.83	1.181	-0.00153					
Back Pressure Valve	20 <x<100< td=""><td>20.56</td><td>0.7144</td><td>0.0008</td><td></td></x<100<>	20.56	0.7144	0.0008					
Cylinder-head Bypass Single Compressor	25 <x<100< td=""><td>56.14</td><td>0.58143</td><td>-0.0014286</td><td></td></x<100<>	56.14	0.58143	-0.0014286					
Cylinder-Head Bypass Two Compressors	15< x <100	37.5	2.75	-0.043125 0	.00021875				
Cylinder-Head Bypass Three Compressors	10 <x<100< td=""><td>92.28</td><td>0.162857</td><td>-0.0008571</td><td></td></x<100<>	92.28	0.162857	-0.0008571					
Cylinder-Head Bypass Four Compressors	10 < x<100	105.72	0.282143	-0.0033929					
	Hot Gas Bypass Back Pressure Valve Cylinder-head Bypass Single Compressor Cylinder-Head Bypass Two Compressors Cylinder-Head Bypass Three Compressors Cylinder-Head Bypass Cylinder-Head Bypass Cylinder-Head Bypass	Capacity Control of (X) Hot Gas Bypass 20 <x<!00 10<x<100="" 10<x<100<="" 15<x<100="" 20<x<!00="" 25<x<100="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""><td>Capacity Control of (X) Hot Gas Bypass 20<x<!00 -2.83="" 105.72<="" 10<x<100="" 15<x<100="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""><td>Capacity Control of (X) A B Hot Gas Bypass 20<x<!00 -2.83="" 0.162857="" 0.282143<="" 0.58143="" 0.7144="" 1.181="" 105.72="" 10<x<100="" 15<x<100="" 2.75="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""><td>Capacity Control of (X) A B C Hot Gas Bypass 20<x<!00 -0.0008571="" -0.0014286="" -0.00153="" -0.0033929<="" -0.043125="" -2.83="" 0="" 0.0008="" 0.162857="" 0.282143="" 0.58143="" 0.7144="" 1.181="" 105.72="" 10<x<100="" 15<x<100="" 2.75="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""></x<!00></td></x<!00></td></x<!00></td></x<!00>	Capacity Control of (X) Hot Gas Bypass 20 <x<!00 -2.83="" 105.72<="" 10<x<100="" 15<x<100="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""><td>Capacity Control of (X) A B Hot Gas Bypass 20<x<!00 -2.83="" 0.162857="" 0.282143<="" 0.58143="" 0.7144="" 1.181="" 105.72="" 10<x<100="" 15<x<100="" 2.75="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""><td>Capacity Control of (X) A B C Hot Gas Bypass 20<x<!00 -0.0008571="" -0.0014286="" -0.00153="" -0.0033929<="" -0.043125="" -2.83="" 0="" 0.0008="" 0.162857="" 0.282143="" 0.58143="" 0.7144="" 1.181="" 105.72="" 10<x<100="" 15<x<100="" 2.75="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""></x<!00></td></x<!00></td></x<!00>	Capacity Control of (X) A B Hot Gas Bypass 20 <x<!00 -2.83="" 0.162857="" 0.282143<="" 0.58143="" 0.7144="" 1.181="" 105.72="" 10<x<100="" 15<x<100="" 2.75="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""><td>Capacity Control of (X) A B C Hot Gas Bypass 20<x<!00 -0.0008571="" -0.0014286="" -0.00153="" -0.0033929<="" -0.043125="" -2.83="" 0="" 0.0008="" 0.162857="" 0.282143="" 0.58143="" 0.7144="" 1.181="" 105.72="" 10<x<100="" 15<x<100="" 2.75="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""></x<!00></td></x<!00>	Capacity Control of (X) A B C Hot Gas Bypass 20 <x<!00 -0.0008571="" -0.0014286="" -0.00153="" -0.0033929<="" -0.043125="" -2.83="" 0="" 0.0008="" 0.162857="" 0.282143="" 0.58143="" 0.7144="" 1.181="" 105.72="" 10<x<100="" 15<x<100="" 2.75="" 20.56="" 20<x<!00="" 25<x<100="" 37.5="" 56.14="" 92.28="" back="" bypass="" compressor="" compressors="" cylinder-head="" pressure="" single="" td="" three="" two="" valve=""></x<!00>				

ा वा **प्रधार म**ा

PART LOAD PERFORMANCE

Load	§ COP
100	100
90	98
C8	94
70	91
60	87
50	82
40	74
30	65
20	53
10	33

COP VS. FOULING FACTOR OF CONDENSER OR EVAPORATOR

- 1. Component Name: ABSORPTION CHILLERS
- 2. Available nominal size: 10KW to 5837KW (3 tons to 1660 tons)
- 3. Useful life: 20 years
- 4. Physical Dimensions for 703KW (200 ton) component size:

8.5M x 3M x 2.5M (28' x 10' x 8') space required

- 5. Standard Rating Conditions:
 - A. 83 K^Pa (12 psig) steam or 115.6°C (240°F) hot water at .050 l/s per KW (2.8 gpm/ton)
 - B. 29.4°C (85°F) entering condenser water temperature
 - C. .064 1/s per KW (3.6 gpm/ton) condenser water flow
 - D. 6.7°C (44°F) leaving evaporator water temperature
 - E. .043 l/s per KW (2.4 grm/ton) evaporator water flow rate

6. Parameter Constraints:

- A. Leaving evaporator water temperature between 4.4°C and 10°C (40°F and 50°F)
- B. Entering condenser water temperature greater than 12.8°C (55°F)
- C. Maximum design load 113% nominal
- D. Maximum operating capacity 140% nominal
- E. Maximum steam temperature 171.1°C (340°F)
- F. Maximum hot water temperature 132.2°C (270°F)
- G. Maximum evaporator flow 3 M/s (10 fps)

COST DATA

Single Effect (18.7# Steam Per Ton-Hour)

Compor in rated	ent Si KW (t		Unit Cost in \$/KW (ton)		
355	(101)	\$60,000	\$171	(\$600)	
454	(129)	59,500	131	. (460)	
612	(174)	67,500	110	(388)	
802	(228)	76,280	95	(334)	
1034	(294)	89,300	85	(300)	
1353	(385)	106,500	78	(276)	
88+	(25+)	22,125	252	(885)	
		Double Effect (12.0# Steam Per Ton-Hour)			
1353	(385)	148,208	109	(385)	
3730	(1060)	301,136	80	(284)	

O&M as % installed cost = 4%

^{*} Including overhead and profit (32%)

⁺ Arkla, Steam

COP VS. CONDENSER WATER TEMPERATURE

CAPACITY VS. CONDENSER WATER TEMPERATURE

(Same for Double/Single Effect)

PERFORMANCE AT PART LOAD

CAPACITY VS. STEAM SUPPLY PRESSURE

CAPACITY AND COP VS. HOT WATER TEMPERATURE

CAPACITY vs. CHILLED WATER AND COOLING TOWER WATER TEMPERATURES

	Capacity as % of Nominal												
Entering Cooling Wate (Tower)	Entering Cooling Water												
Temperature									ATURE				
(°F)	(40)	(42)	(44)	(45)	(46)	(48)	(50)	(52)	(54)	(55)	(56)	(58)	(60)
o _C	4.4	5.5	6.7	7.2	7.8	8.9	10	11.1	12.2	12.8	13.3	14.4	15.6
18.3°C (65)	1.28	1.32	1.37	1.40	1.42	1.46	1.50	_	-	-	-	-	-
23.9°C (75)	1.13	1.19	1.26	1.29	1.32	1.38	1.44	1.47	1.50	1.52	1.53	1.56	1.59
26.7°C (80)	1.03	1.09	1.13	1.15	1.18	1,23	1.27	1.32	1.37	1.39	1.40	1.43	1.46
29.4°C (85)	0.90	0.95	1.00	1.02	1.05	1.10	1.14	1.19	1.23	1.25	1.26	1.30	1.33
32.2°C (90)	0.77	0.82	0.87	0.89	0.92	0.96	1.01	1.06	1.11	1.13	1.15	1.18	1.21
35.0°C (95)	0.60	0.61	0.71	0.74	0.76	0.81	0.86	0.90	0.94	0.96	0.98	1.01	1.04

AUXILIARY ELECTRIC REQUIREMENTS FOR SINGLE EFFECT MACHINES

KW out	(Tonnage)	KW Input
355	(101)	3.8
394	(112)	3.8
454	(129)	4.2
520	(148)	4.2
612	(174)	5.1
802	(228)	5.8
1034	(294)	7.2
1245	(354)	7.5
1635	(465)	8.0

ABSORPTION CHILLER

AUXILIARY ELECTRIC REQUIREMENTS FOR DOUBLE EFFECT MACHINES

- 1. Component Name: COOLING TOWERS
- 2. Available nominal size: 10KW to 5625KW (3 tons to 1600 tons)
- 3. Useful life: Steel 15 years
- 4. Physical Dimensions for 703kW (200 tons) component size:

2M x 4.3M x 2.4M (7' x 14' x (8' high)) space required

5. Standard Rating Conditions:

0.54 1/s per KW* (3 gpm/ton) cooled from 35°C to 29.4°C at 25.6° C.W.B. (95°F to 85°F at 78°F.W.B.)

- * Cooling tower heat rejection = 1.25 KW per KW refrigeration (15,000 BTUH/ton)
- 6. Parameter Conditions:

Freeze protection needed to operate below 0°C.W.B. (32°F.W.B.)

COOLING TOWERS

COST DATA

Compone in rated		Installed Cost*	Unit Cost in \$/KW (ton)
440	(125)	\$ 9.900	\$ 23 (\$79)
703	(200)	13,900	20 (70)
1143	(325)	21,300	19 (66)
1406	(400)	25,000	18 (62)
1582	(450)	27,000	17 (60)
2110	(600)	39,300	18 (65)

O&M as % installed cost = 15%

* Including overhead and profit

COOLING TOWERS

POWER CONSUMPTION VS. RATED FLOW

for 35°C/2 85°F) cond	e in 1/s (gpm) 29.4°C (95°F/ denser water CWB (78° FWB)	Fan KW (hp)
18.9	(300)	3.7 (5)
23.7	(375)	5.6 (7.5)
28.4	(450)	5.6 (7.5)
33.1	(525)	5.6 (7.5)
37.9	(600)	7.5 (10)
47.3	(750)	7.5 (10)
52.1	(825)	11.2 (15)
56.8	(900)	11.2 (15)
61.5	(975)	11.2 (15)
66.3	(1050)	11.2 (15)
71.0	(1125)	14.9 (20)
75.7	(1200)	14.9 (20)
80.5	(1275)	14.9 (20)
85.2	.350)	18.6 (25)
89.9	(A O.E.)	14.9 (20)
94.7	(1500)	18.6 (25)

Summary Power Consumption:

- 1. At rated conditions average KW/l/s = 11.8)
 (Avg. hp/gpm = .017)
- 2. At 23.3°C WB (74° F WB) and 35°C/29.4°C (95°F/85°F) Average KW/1/s = 8.7 (Avg. hp/gpm = .013)
- 3. At 23.3° C WB (74° F WB) and 39.4° C/29.4°C (103° F/85°F) Average kw/1/s = 9.5 (Avg. hp/gpm = .014)

COOLING TOWERS

LEAVING COOLING TOWER WATER AS A FUNCTION OF LOAD AND AMBIENT WET BULB TEMPERATURE

1. Part Load:

- A. Percent decrease in load = Percent decrease in approach.
- B. Leaving cooling tower water temperature = design cooling tower water temperature minus (percent decrease in load x design approach).

2. Reduced ambient temperature:

- A. .56°C.W.B (1°F.W.B) decrease in wet bulb temperature results in .371°C (.67°F) leaving cooling tower water temperature.
- B. Leaving cooling tower water temperature = design cooling tower water temperature minus [(.37 (.67) x ambient wet bulb temperature reduction)].

- 1. Component Name: HOT WATER BOILERS PACKAGED
- 2. Available nominal size: 10KW to 20,000KW
- 3. Usaful life: 20 years
- 4. Physical Dimensions for 980KW (100Bhp) component size:

4.3M x 1.8M x 2M (14' x 6' x 7') space required

- 5. Standard Rating Conditions:
 - I = B = R for cast iron oil fired
 - 1) 10% Co₂ in the flue gas
 - 2) Not more than No. 2 Shell Smoke Scale Reading
 - 3) Flue gas temperature at Gross Output less than 316°C (600°F)
 - 4) Draft loss through boiler must not exceed specified values
 - 5) Minimum overall efficiency not less than 70%
- 6. Parameter Constraints:
 - 121.1°C (250°F) maximum water temperature

HOT WATER BOILERS

COST DATA

-	ent Size (W (MBH) out	Installed Cost*	Unit Cost in \$/KW (MBH) out
70	(240)	\$ 2000	\$ 28.70 (\$8.40)
117	(400)	3340	28.70 (8.40)
176	(600)	4650	26.60 (7.80)
234	(800)	5730	24.40 (7.16)
352	(1200)	8456	23.90 (7.0)
469	(1600)	10,600	22.50 (6.6)

O&M as % installed cost = 5%

* Including overhead and profit

BOILER - GAS/OIL

EFFICIENCY VS. LOAD

BOILER - ELECTRIC (HIGH VOLTAGE)

EFFICIENCY AT PART LOAD

* DEPENDENT UPON INSTALLATION HEAT LOSSES

BOILER - GAS/OIL

AUXILIARY ELECTRIC INPUTS*

^{*} AUXILIARY ELECTRIC POWER REQUIRED BY BLOWER, FUEL PUMP, AND AIR PUMP FOR FIRETURE BOILERS

- 1. Component Name: WATER-WATER HEAT PUMP (TEMPLIFIER)
- 2. Available nominal size: 15KW to 220KW (50MBH to 750MBH)
- 3. Useful life: 15 years
- 4. Physical Dimensions for 73KW (250MBH) component size:

 2.7M x .9M x 1.2M (9' x 3' x 4') space required
- 5. Standard Rating Conditions:
 None

WATER-WATER HEAT PUMP (TEMPLIFIER)

COST DATA

	nent Size ed KW (MBH)	Installed Cost*
66	(224)	\$ 14,500
86	(294)	15,600
110	(374)	17,200
164	(561)	20,520
196	(668)	24,300
219	(748)	25,200

O&M as % installed cost = 5%

^{*} Including overhead and profit

TEMPLIFIER

COP vs. INLET AND OUTLET WATER TEMPERATURES

TEMPLIFIER

Leaving	Source Water		L	EAVING	HOT W	ATER T	EMP. °(C (°F)		
Temp. C	C (^O F)	43.3 (110)	48.9 (120)	54.4 (130)	60 (140)	65.6 (150)	71.1 (160)		82.2 (180)	93.3 (200)
	;					-				
51.7	(125)									3.32
48.9	(120)									3.15
46.1	(115)					4.47	4.13	3.88	3.62	2.98
43.3	(110)					4.33	4.01	3.76	3.50	2.80
40.6	(105)				***	4.21	3.87	3.65	3.37	2.79
37.8	(100)					4.08	3.73	3.51	3.29	2.75
35.0	(95)			4.81	4.35	3.93	3.63	3.41	3.14	2.67
32.2	(90)			4.66	4.19	3.80	3.50	3.27	3.05	2.56
29.4	(85)	5.67	5.05	4.52	4.07	3.68	3.37	3.16	2.93	
26.7	(80)	5.43	4.84	4.31	3.91	3.53	3.24	3.02	2.82	

- 1. Component Name: DOMESTIC HOT WATER BOILERS PACKAGED
- 2. Available nominal size. 114 to 379 (30 gal to 100 gal)
- 3. Useful life: 7 years
- 4. Physical Dimensions for 303 (80 gal) component size:

.74M diameter x 1.6M high (29" diameter x 63" high) space required

5. Standard Rating Conditions:

AGA

6. Parameter Constraints:

121.1°C (250°) Maximum water temperature

DOMESTIC HOT WATER BOILER

COST DATA

	ent Size d (gal)	Instal	led Cost*
284	(75)	\$	650
3786	(1000)	1	5,000
7572	(2000)	1	6,500

O&M as % installed cost = 5%

Including overhead and profit

DOMESTIC HOT WATER - GAS BOILER

EFFICIENCY VS. CONSUMPTION AND TEMPERATURE

* THROUGH 99F TEMPERATURE ** INSULATION THICKNESS 36"

DOMESTIC HOT WATER - ELECTRIC BOILER

EFFICIENCY AS A FUNCTION OF CONSUMPTION AND TEMPERATURE

- 1. Component Name: WATER TO WATER HEAT EXCHANGER
- 2. Nominal sizes: 91.7 W/°C to 4745 W/°C (174 BTU/HR °F

to 9000 BTU/HR °F)

- 3. Useful life: 20 years
- 4. Physical Dimensions for 2025W/°C:

 $0.34M \times 0.064M \times 0.087M$ (13.4 IN x 2.5 IN x 3.44 IN)

- 5. Standard Rating Conditions
 - A. 60°C (140°F) outlet cold water temperature
 - B. 21°C (70°F) inlet cold water temperature
 - C. 60°C (140°F) outlet hot water temperature
 - D. 82°C (180°F) inlet hot water temperature
- 6. Parameter Constraints
 - A. Entering hot water temperature must be between 0°C and lower than 100°C (32°F to 212°F)
 - B. Entering cold water temperature must be between 0°C and 100°C
- 7. Performance Rating:

Known Paramers:

- UA The overall heat transfer-area product of the heat exchanger.
- T_{CIN} Inlet cold side temperature.
- T_{COUT} Outlet cold side temperature.
- T Inlet hot side temperature.
- $T_{\mbox{\scriptsize HOMIN}}$ Maximum outlet hot side temperature.
- M_{CMAX} Maximum mass flow rate on the cold side.

Unknown Parameters:

M_{COLD} - Mass flow rate on the cold side.

 $M_{\rm HOT}$ - Mass flow rate on the hot side.

Q - Heat transferred by the heat exchanger.

 T_{HOUT} - Outlet hot side temperature.

The following equations are solved simultaneously to calculate the unknown parameters:

Equation for a heat exchanger:

$$Q = UA \Delta T_{LM}$$

Where:
$$\Delta T_{LM} = \frac{(T_{HOUT} - T_{CIN}) - (T_{HIN} - T_{COUT})}{L_n [(T_{HOUT} - T_{CIN}) / (T_{HIN} - T_{COUT})]}$$

Energy Balance:

$$Q = M_{COLD} (T_{COUT} - T_{CIN})$$

$$Q = M_{HOT} (T_{HIN} - T_{HOUT})$$

User Constraints:

The user sets the cold side mass flow rate equal to the maximum mass flow rate on the cold side, i.e.,

$$M_{COLD} = M_{CMAX}$$

There are now 3 equations and 3 unknowns. The user solves for the unknown parameters and if:

THOUT & THOMAX

The user is finished.

If $T_{\mbox{HOUT}} > T_{\mbox{HOMAX}}$, which implies the heat exchanger is too small to handle the maximum mass flow rate on the cold side, the user sets.

 $T_{HOUT} = T_{HOMAX}$

and solves for M_{COLD} , M_{HOT} and Q with the 3 equations.

WATER TO WATER HEAT EXCHANGER

COST DATA

C Hea	Installed		
11/°C	Times Area	(BTU/HR-°F)	Cost*
91.7		174	131
633		1200	374
2025		3840	749
4745		9000	1324

O&M as % installed cost = %

*Including overhead and profit

- 1. Component Name: STEAM/WATER HEAT EXCHANGE
- 2. Nominal Sizes: 1500W/°K to 6500W/°K (2888 BTU/HR °F

to 12300 BTU/HR°F)

- 3. Useful life: 20 years
- 4. Physical Dimensions for 1500W/°C:

$0.9M \times 0.17M \times 0.138M$

 $(35.5 \text{ IN } \times 6.72 \text{ IN } \times 5.44 \text{ IN})$

- 5. Standard Rating Conditions:
 - A. 446KPA (50PSIG) steam
 - B. 10°C (50°F) entering cold water temperature
 - C. 44°K (80°F) cold water temperature rise
- 6. Parameter Constraints:
 - A. Entering steam between 100 and 1100KPA (0 and 150 PSIG)
 - B. Entering water temperature between 0 and 100°C (32 and 212°F)
- 7. Performance Rating:

Known Parameters:

UA - The overall heat transfer-area product of the heat exchanger.

 T_{STM} - The temperature of the steam.

 $T_{\rm COUT}$ - Outlet cold side temperature.

 T_{CIN} - Inlet cold side temperature.

 $\boldsymbol{H}_{\mbox{FGSTM}}$ - Heat of condensation of the steam.

Unknown Parameters:

 $^{\rm M}_{\rm COLD}$ - Mass flow rate on the cold side.

 ${\rm M}_{\rm HOT}$ - Mass flow rate on the hot side.

Q - Maximum heat transfer possible by the heat exchanger.

The following equations are solved simultaneously to calculate the unknown parameters:

Equation for a heat exchanger:

Where:
$$\Delta T_{LM} = \frac{T_{COUT}^{-T}CIN}{L_{n}[(T_{STM}^{-T}CIN)/(T_{STM}^{-T}COUT)]}$$

$$Q = M_{COLD} (T_{COUT}^{-T}CIN)$$

$$Q = M_{HOT} \times H_{FGSTM}$$

The user will find that if the steam condensate is not allowed to subcool, the heat exchanger can only be operated at full capacity. In practice we allow the condensate to subcool (but do not calculate the subcooling since the additional heat is negligible compared to the heat of vaporization) which permits operation of the heat exchanger from zero to full capacity. Given the rate of cold water heating required, the mass of steam needed is:

$$M_{HOT} = \frac{M_{COLD} (T_{COUT}^{-T}CIN)}{H_{FGSTM}}$$

Provided we do not exceed the heat exchanger's maximum rate as calculated previously.

STEAM/WATER HEAT EXCHANGER

COST DATA

Component S: Heat Transfe Times	Installed* Cost	
W/°C	(BTU/HR°F)	(\$)
1522	(2888)	1025
3696	(7010)	1070
6462	(12260)	1196

O&M Costs as a % of installed costs =

^{*}Including overhead and profit

- 1. Component Name: FAN COIL UNITS
- 2. Available nominal size: 1.76KW to 10.5KW (.5 tons to 3 tons)
- 3. Useful life: 20 years
- 4. Physical Dimensions for .15 M³/s (300 CFM) component size:

1.5M x .3M x .76M (5' x 1' x (2.5' high)) space required

5. Standard Rating Conditions at nominal CFM

Cooling:

(25.6° C.D.B./18.3° C.W.B. or 26.7° C.D.B./19.4° C.W.B.) (78° F.D.B./ 65° F.W.B. or 80° F.D.B./67° F.W.B.) entering air temperature

- 7.2°C (45°F) entering chilled water temperature
- 5.5°C (10°F) chilled water temperature rise

Heating:

- 21.1°C.D.B. (70° F.D.B.) entering air temperature
- 82.2°C (180°F) entering water temperature

Water flow rate as specified by cooling

6. Parameter Constraints

Minimum chilled water flow = .032 1/s (.5gpm)

FAN COIL UNITS

COST DATA

Compoi	nent Size d M ³ /s (CFM)	Installed Cost*
.14	(300)	\$ 340
.28	(600)	430

O&M as % installed cost = 10%

^{*} Including overhead and profit

FAN COIL UNITS

HEATING CAPACITY vs. ENTERING WATER TEMPERATURE AND ENTERING AIR TEMPERATURE

 $H = .00972 H_0 (\frac{9}{5} \times ITD)^*.98571$

ENTERING WATER TEMPERATURE OC (OF)

Ent.		37.8	43.3	48.9	54.4	60	65.6	71.1	76.7	82.2	87.8	93.3
Air °C	<u></u>	(<u>100⁵)</u>	(110°)	(1 <u>20</u> °)	(130°)	(140°)	(1 <u>50</u> °)	(160°)	(170°)	(180°)	(190°)	(200°)
10	(50)	.46	.55	.64	.73	. 82	.91	1.00	1.09	1.18	1.27	1.36
12.8	(55)	.41	.50	.59	.68	.77	.86	.96	1.05	1.14	1.23	1.32
15.6	(60)	. 36	. 46	.55	.64	.73	.82	.91	1.00	1.09	1.18	1.27
18.3	(65)	.32	.41	. 50	.59	.68	.77	.86	.96	1.05	1.14	1.23
21.1	(70)	.27	. 36	. 46	.55	.64	.73	.82	.91	1.00	1.09	1.18
23.9	(75)	.23	. 32	.41	.50	.59	.68	.77	. 86	.96	1.05	1.14
26.7	(80)	.18	.27	. 36	. 46	.55	.64	.73	<u>.62</u>	.91	1.00	1.09

H = capacity at given conditions

 $H_O = \text{rated capacity at } 82.2^{\circ}\text{C (180}^{\circ}\text{F) EWT}$ 21.1°C (70°F) EAT

ITD = EWT - EAT in degree C

- 1. Component Name: AIR HANDLING UNIT
- 2. Available nominal size: .3 M³/s to 31 M³/s (600 CFM to 65,000 CFM)
- 3. Useful life: 20 years
- 4. Physical Dimensions for $19 \text{ M}^3/\text{s}$ (40,000 CFM) component size: $3.7\text{M} \times 4.9\text{M} \times 3.7\text{M}$ (12' x 16' x 12') space required
- 5. Standard Rating Conditions:

Cooling:

(25.6°C.D.B./18.3°C.W.B. or 26.7°C.D.B./19.4°C.W.B.) (78°F.D.B./65°F.W.B. or 80° F.D.B./67°F.W.B.) entering air temperature

7.2°C (45°F) entering chilled water temperature

 $5.5^{O}C$ ($10^{O}F$) chilled water temperature rise

Heating

 21.1^{O} C.W.B(70^{O} F.D.B.) entering air temperature

 82.2° C (180°F) entering water temperature

Water flow rate as specified by cooling

6. Parameter Constraints

Maximum water velocity in coils 2.3 M/s (7.5 fps)

Maximum face velocity across coils 3.6 M/s (700 fps) outlet velocity

AIR HANDLING UNIT

COST DATA

Component Size in rated CFM	Installed Cost*
40,000	
a) Fan & Housing	\$ 20,240
b) heating coils	3,900
c) cooling coils	10,250

O&M as % installed cost = 5%

* Including overhead and profit

AIR HANDLING UNIT

FAN POWER REQUIREMENT VS. ENTERING WATER TEMPERATURE AND FLOW RATE

1. Power correction factor for various water temperatures at a flow rate of 8.52 1/s (135 gpm).

% FAN ON TIME FOR HEATING VS ENTERING WATER TEMPERATURE

EW'	r	% FAN ON	TIME
°c —	(°F)		
60	(140°)	3/31 =	. 097
54.4	(130°)	3/27	.111
48.9	(120°)	3/22	.136
43.3	(110°)	3/19	. 158
37.8	(100°)	3/15	. 20

2. Power correction factor for various flow rates.

M/S	(<u>fps</u>)	1/s (GPM)	<u>C.F.</u>	Nominalized to .9M/s (3 fps)
2.3	$(7\frac{1}{2})$	8.5 (135)	1	. 88
2.1	(7)	8.0 (127)	1	. 88
1.8	(6)	6.8 (108)	1.025	.90
1.5	(5)	5.7 (90)	1.05	. 92
1.2	(4)	4.5 (72)	1.09	.96
.9	(3)	3.4 (54)	1.14	1
.6	(2)	2.3 (36)	1.26	1.11
. 3	(1)	1.1 (18)	1.64	1.40

" Month

⁺ Fan is on 100% time for cooling mode.

- 1. Component Name: CABINET UNIT HEATERS
- 2. Available nominal size: 3KW to 73KW (10MBH to 250MBH)
- 3. Useful life: 20 years
- 4. Physical Dimensions for 29.3KW (100MBH) component size: $\frac{1.5M \times .3M \times .76M (5' \times 1' \times (2.5' \text{ high}))}{2.5' \times 10^{-3}}$ space required
- 5. Standard Conditions:

93.3°C (200°F) entering water temperature

11.1°C (20°F) water temperature drop

15.6°C or 21.1°C (60°F or 70°F) entering air temperature

6. Parameter Constraints:

Minimum flow rate = .15 M/s (.5 ft/sec)

CABINET UNIT HEATERS

COST DATA

Component Size in rated KW (MBH)		Installed Cost*	Unit Cost in \$/KW (MBH)		
5.9	(20)	\$ 400	\$ 68	(\$20)	
11.7	(40)	520	14	(13)	
17.6	(60)	640	38	(11)	
23.4	(80)	760	32	(9.5)	
29.3	(100)	950	32	(9.5)	

O&M as % installed cost = 2%

* Including overhead and profit

UNIT HEATERS/CABINET

CAPACITY AS A FUNCTION OF ENTERING AIR TEMPERATURE AND ENTERING WATER TEMPERATURE

 $H = H_O \times .00835 * \times (\frac{9}{5} \Delta t)$ $H_O \text{ normalized to } 15.6^{\circ}\text{C } (60^{\circ}\text{F}) \text{ EAT}$ $82.2^{\circ}\text{C } (180^{\circ}\text{F}) \text{ EWT}$

ENTERING WATER TEMPERATURE C (OF) Ent. 60.0 76.7 98.9 104.4 43.3 48.9 65.6 87.8 93.3 71.1 82.2 Air Temp. ${}^{\circ}C({}^{\circ}F)$ [95] [100] [110] [120] [130] [140] [150] [160] [170] [180] [190] [200] [210] [220] (40) | .458 | .500 .583 .917 1.08 4.4 .666 .75 .833 1.00 1.16 1.25 | 1.33 1.42 | 1.50 10.0 (50) | .375 | .417 .500 .583 .666 .75 .835 .917 1.00 1.08 1.16 (1.25 1.33 1.42 15.6 (60) | .292 | .333 .417 .500 .583 .750 .917 1.00 .666 .835 1.08 1.16 1.25 1.33 (70) .208 .250 .333 .583 21.1 .417 .500 .666 .750 .835 .917 1.00 1.08 1.16 | 1.25 (80). 500 .333 .417 .583 .666 .750 . 835 .917 1.00 1.08

* H= H_O x .0092 x $\frac{9}{5}$ x \triangle T if rated at 21.10 (70°F) EAT, and 82.2°C (180°F) EWT

UNIT HEATERS/CABINET

CAPACITY AND FRICTION HEAD vs. FLOW RATE

PRESSURE LOSS AND HEATING CAPACITY FACTORS FOR VARIOUS RATES OF WATER FLOW

		7 0	F RATE	D WATE	R FLOW	1	
	25	50	75	100	125	150	175
Friction Head Factor	.085	.254	.575	1.00	2.18	2.32	3.85
Heating Capacity Factor	. 80	. 89	.96	1.00	1.04	1.07	1.10

CAP =
$$CAP_O \left(\frac{\% \text{ rated flow}}{100} \right)^{.17}$$

where $CAP_O = Capacity \text{ at rated flow}$

UNIT HEATERS/CABINET

CAPACITY VS. AIR FLOW

- 1. Component Name: THERMAL STORAGE TANK
- 2. Available Nominal Sizes: 379 1 to 190,000 1

(100 gal to 50,000 gal)

- 3. Useful life: 20 years
- 4. Physical Dimensions for 7570 1 (2000 gallon) Tank

1.63 M diamter x 3.681 high (64" diameter x 145" high)

- 5. Standard Rating Conditions:
 - A. The Stored water must be between 0 and 100°C (32 and 212°r')
 - B. The tank is above ground.
- 6. Jacket Loss:

The user specifies the overall heat transfer coefficient area product (UA). The percent loss is calculated by:

% loss =
$$\frac{Q \text{ Loss}}{Q \text{ Tota}} x 100$$

where Q $_{Total} = M C_{p} \Lambda T$

and M = Mass of water in the tank

C_D = Water heat capacity

 ΔT = Temperature difference between the tank contents and the room.

Q Loss = UAAT

thus: % Loss = $\frac{UA}{MC_p}$ x 100

To obtain the tank cost the user interpolates the cost versus & loss numbers.

THERMAL STORAGE TANK

COST DATA

	Compo Siz	1%	% loss/day 52°C (125°F) Tank Temp. 2%	5%		
_	liters	(gal)		Installed Cos	t*	5%/Liter
	379	(100)	\$ 264	191	148	
	1893	(500)	447	323	248	
	2271	(600)	1481	1347	1273	
	3785	(1000)	1699	1538	1451	
	18927	(5000)	3597	3287	3101	
	37854	(10000)	5830	5582	5334	.140
	189271	(50000)	23569	22948	22948	.121

O&M Costs as a % of installed costs =

^{*}Including overhead and profit

SUBSYSTEM ELEMENTS

To assure accurate system modelling several common subsystem designs (combinations of components) were developed to identify interconnection components such as pumps and controls. Also, interconnection flow rates were identified so that proper component sizing could be maintained. The following section is a summary of the subsystem elements.

System Description: VAPOR COMPRESSION CHILLER WITH CENTRAL

STATION AIR HANDLING UNITS

System Output: Design KW output = DKWO

Design tonnage = DT

Design Conditions:

1. .043 1/s per KW (2.4 gpm/ton) evaporator

2. .054 1/s per KW (3 gpm/ton) condenser

3. 7.2°C (45°F) leaving evaporator water temperature

4. 29.4°C (85°F) entering condenser water temperature

5. 210 KPa (70 ft) evaporator side pressure drop

6. 150 KPa (50 ft) condenser side pressure drop

7. .054 M^3/s per KW (400 CFM/ton) at AHU

Component Design KW Input

1. Centrifugal Chiller DKWO/Design COP

DT x Design KW/Ton*

2. Cooling Tower Fan .00924 DKWO

 $DTx.013hp/gpm_X3gpm/ton x .75KW/hp$

.9 eff

3. Evaporator Water Pumps .0134 DKWO

 $\frac{DTx2.4gpm/tonx70'}{3960 \text{ x .75 eff}} \text{ x } \frac{.75 \text{KW/hp}}{.9 \text{ eff}}$

(cont'd)

Component

Design KW Input

4. Condenser water pumps

.0120 DKWO

 $\frac{\texttt{DTx3gpm/tonx50'}}{\texttt{3960 x .75 eff}} \ \, \text{x} \ \, \frac{.75 \texttt{KW/hp}}{.9 \ \, \texttt{eff}}$

5. AHU

.0622 DKWO

 $\frac{\text{DTx400CFM/tonx2.5"}}{\text{6346 x .6 eff}} \quad \text{x} \quad \frac{.75 \text{KW/hp}}{.9 \text{ eff}}$

* .78KW/ton Centrifugal .95KW/ton Reciprocating

Vapor Compression Chiller with AHU Control Sheet

1. Centrifugal Chiller

- a) Water flow rates constant
- b) Cop (KW/ton) corrected for part load
- c) Leaving evaporator water temperature constant
- d) Entering condenser water temperature constant

2. Cooling Tower Fan

Cycle to maintain constant entering condenser water temperature with a given reduction in wet bulb temperature and part load.

3. Evaporator water pumps

Water flow rate constant

4. Condenser water pumps

Water flow rate constant

5. AHU fans

Cycle during heating only

System Description: ABSORPTION CHILLER WITH CENTRAL STATION

AIR HANDLING UNIT

System Output: Design KW output = DKWO

Design tonnage = DT

Design Conditions:

1. .043 1/s per KW (2.4 gpm/ton) evaporator

- 2. .064 1/s per KW (3.6 gpm/ton) condenser
- 3. 7.2°C (45°F) Leaving evaporator water temperature
- 4. 29.4°C (85°F) Entering condenser water temperature
- 5. 210 KPa (70') Evaporator side pressure drop
- 6. 150 KPa (50') Condenser side pressure grop
- 7. $.054 \text{ M}^3/\text{s}$ per KW (400 CFM/ton) at AHU

Component		Design KW Input
1.	Absorption Chiller	DKWO x f(DKWO)
		DT x f(DT)*
2.	Cooling Tower Fan	.012 DKWO DTx.014hp/gpmx3.6gpm/ton x .75KW/hp .9 eff

3. Evaporator Water Pumps .0134 DKWO

 $\frac{\text{DTx2.4gpm/tonx70'}}{3960 \text{ x .75 eff}} \text{ x } \frac{.75 \text{KW/hp}}{.9 \text{ eff}}$

(cont'd)

Component

Design KW Input

4. Condenser Water Pumps

.0144 DKWO

DTx3.6gpm/tonx50' x .75KW/hp 3960 x .75 eff .9 eff

5. AHU fans

.0622 DKWO

 $\frac{DTx400CFM/tonx2.5"}{6346 \text{ x .6 eff}} \text{ x } \frac{.75KW/hp}{.9 \text{ eff}}$

* See Absorption Chiller section for power consumption

Absorption Chiller with AllU Control Sheet

1. Absorption Chiller

- a) Electric input constant
- b) Steam or hot water input varies with part load. (LEWT and ECWT are constant)

2. Cooling Tower Fan

Cycle to maintain constant entering condenser water temperature with a given reduction in wet bulb temperature and part load.

3. Evaporator Water Pumps

Water flow rate constant

4. Condenser Water Pumps

Water flow rate constant

5. AHU Fans

Cycle during heating only

System Description: VAPOR COMPRESSION CHILLER WITH FAN COIL UNIT

System Output: Design KW output = DKWO Design Tonnage = DT

Design Conditions:

1. .034 1/s per KW (2.4 gpm/ton) evaporator

2. .054 1/s per KW (3 gpm/ton) condenser

3. 7.2°C (45°F) leaving evaporator water temperature

4. 29.4°C (85°F) entering condenser water temperature

5. 210 KPa evaporator side pressure drop

6. 150 KPa condenser side pressure drop

7. .142 $\frac{3}{M}$ /s (300CFM) for (1.76KW) 1/2 ton unit; .284 $\frac{3}{M}$ /s (600 CFM) for 3.5 KW (1 ton) unit

Component

Design KW Input

1. Centrifugal Chiller

DKWO Design Cop

DT x Design KW/ton

2. Cooling Tower fan .00924 DKWO

 $\frac{DTx.013hp/gpm x3gpm/ton x .75KW/hp}{.9 eff}$

3. Evaporator water pumps .0134 DKWO

 $\frac{DTx2.4gpm/tonx70'}{3960 \times .75 \text{ eff}} \times \frac{.75KW/hp}{.9 \text{ eff}}$

(cont'd)

Component

Design KW Input

4. Condenser Water pumps

.0120 DKWO

 $\frac{\text{DTx3gpm/tonx50'}}{3960 \text{ x .75 eff}} \text{ x } \frac{.75 \text{KW/hp}}{.9 \text{ eff}}$

5. Fan Coil Unit

19.2KW

100 watts per 1.76KW(½ ton) unit times 192 units

16.8KW

175 watts per 3.516KW(1 ton) unit times 96 units

Vapor Compression Chiller with FCU Control Sheet

1. Centrifugal Chiller

- a) Water flow rates constant
- b) COP (KW/ton) corrected for part load
- c) Leaving evaporator water temperature constant
- d) Entering condenser water temperature constant

2. Cooling tower fan

Cycle to maintain constant entering condenser water temperature with a given reduction in wet bulb temperature and part load.

3. Evaporator water pumps

Water flow rate constant

4. Condenser water pumps

Water flow with constant

5. FCU

Cycle during heating only

System Description: ABSORPTION CHILLER WITH FCU

System Output: Design KW output = DKWO Design ton = DT

Design Conditions:

- 1. .043 1/s per KW (2.4 gpm/ton) evaporator
- 2. .064 1/s per KW (3.6 gpm/ton) condenser
- 3. 7.2°C (45°F) leaving evaporator water temperature
- 4. 29.4°C (85°F) entering condenser water temperature
- 5. 210 KPa (70') evaporator side pressure drop
- 6. 150 KPa (50') condenser side pressure drop

Component	Design KW Input
1. Absorption Chiller	DKWO x f(DKWO)*
	Dt x f(DT)*
2. Cooling Tower fan	.012 DKWO
	$\frac{DTx.014hp/gpmx3.6gpm/ton x .75KW/hp}{.9 eff}$
2 Evenometer Weter numbe	0134 DKWO

3. Evaporator Water pumps .0134 DKWO

DTx2.4gpm/tonx70' x .75KW/hp
3960 x .75 eff .9 eff

(cont'd)

Component

Design KW Input

4. Condenser Water Pumps

.0144 DKWO

DTx3.6gpm/tonx50' x .75kW/hp 3960 x .75 eff .9 eff

5. Fan Coil Units

.01622 DKWO

100 Watts per 1.75KW(½ ton) unit times 192 units

175 watts per 3.516KW(1 ton) unit times 96 units

* See absorption chiller section for power consumption

Absorption Chiller with FCU Control Sheet

1. Absorption Chiller

- a) Electric input constant
- b) Steam or hot water input varies with part load (LEWT and ECWT are constant)

2. Cooling Tower Fan

Cycle to maintain constant entering condenser water temperature with a given reduction on wet bulb temperature and part load.

3. Evaporator Water Pump

Water flow rate constant

4. Condenser Water Pumps

Water flow rate constant

5. FCU Fans

Cycle during heating only

System Description:

GAS/OIL BOILER WITH FCU

System Output:

Design KW output = DKWO

Design MBH = DMBH

Design Conditions:

- 1. Select Hot Water Temperature
- 2. 75 KPa (25') pressure drop
- 3. .054 1/s per KW (3 gpm/ton) hot water flow rate established by cooling

Component

Design KW Input

1. Circulating Pump

.0048 DKWO

 $(\underline{DTx2.4 \text{ gpm/ton}x25' x (.75KW/hp})$ 3960 x .75 eff

2. FCU fans

9.6 KW

.5x100Wper 1.70KW(½ ton) unit times 192 units

8.4 KW

.5x175W per 3.516KW(1 ton) unit times 96 units

Gas/Oil Boiler with FCU Control Sheet

- 1. Water flow rate constant
- 2. Cycle fans

System Description:

GAS/OIL BOILER WITH CUH

System Output:

Design KW output = DKWO

Design MBH = DMBH

Design Conditions:

1. Select Hot water temperature

2. 75 KPa (25') pressure drop

3. 11.1°C (20°F) Hot water temperature drop

4. (.0215 DKWO) 1/s ((.1 DMBI)gpm) Hot water flow rate

Component

Design KW Input

1. Circulating Pump

.0024 DKWO

 $(\frac{\text{DMBH}}{10})$ 25' x .75KW/hp 3960 x .75 eff .9 eff

2. CUH fans

CUH rated watts* x No. of CUH .5 eff

* Use largest units available (2.35KW) and select hot water temperature and no. of units to meet DMBH

Gas/Oil Boiler with CUH Control Sheet

1. Circulating Pump

Water flow rate constant

2. CUH fans

Fans constant on

System Description:

GAS/OIL BOILER WITH AHU

System Output:

Design KW output = DKWO

Design MBH = DMBH

Design Conditions:

1. Select hot water temperature

2. 75 KPa 25' potential drop

3. .3048 M/s (3 fps \approx 55gpm/coil) water flow rate

Component

Design KW Input

1. Circulating pump

4.6 KW

(55 gpm/coilx $\underline{3}$ coil/unitx4 units)

x 25' x .75 KW/hp

÷

 $(3960)_{x}(.75 \text{ eff})_{x}(.9 \text{ eff})$

2. AHU fans

.0622 DKWO

 $\frac{\text{DTx400CFM/tonx2.5"}}{6346 \text{ x .6 eff}} \text{ x } \frac{\text{.75 KW/hp}}{\text{.9 eff}}$

Gas/Oil Boiler with AHU Control Sheet

- 1. Water flow rate constant
- 2. Cycle fans

GLOSSARY OF HEATING, VENTILATING AND AIR CONDITIONING (HVAC) TERMS

Absorption Chiller: An absorption chiller is a heat (steam, hot water, or gas fired) driven machine for providing chiller water to a building. A relatively small amount of electric power for pumps and fans is needed while the major source of input power is thermal.

Air Handling Unit: A central air handling unit conditions the air and supplies either a mixture of outdoor and return air or 100 percent outdoor air to the room unit. The apparatus contains fan(s), filters to clean the air, preheat coils (if required) to temper cold winter air, and a dehumidifier to cool and remove excess moisture from warm humid air or to add winter humification.

Boiler Efficiency: This is the ratio of BTU output divided by BTU input. It includes allowance for stack, radiation, convection and other losses.

Boiler Horsepower: A boiler horsepower (BHP) is defined as the evaporation of 34.5 lb. of water per hour from a temperature of 212°F into dry saturated steam at the same temperature.

Boiler, Packaged: A boiler equipped and shipped complete with fuel burning equipment, mechanical draft equipment, automatic controls and accessories. Usually shipped in one or more major sections.

British Thermal Unit (BTU): The amount of energy required to raise one pound of water 1 degree Fahrenheit.

Centrifugal Chiller: A centrifugal refrigeration machine consists basically of a centrifugal compressor, a cooler and a condenser. It may be driven by an electric motor, steam turbine or internal combustion engine.

Cooling Tower: A device that cools water directly by evaporation.

Fan Coil Terminal Unit: This is a room type terminal unit of the factory-fabricated, cabinet style package with fan, filters, chilled water and hot water coils.

Fouling Factor: Fouling factors represent the thermal resistance to heat flow introduced by scale and other water impurities in a heat exchanger. Normally, manufacturers rate a water-cooled condenser for various values of water side fouling.

Heat Exchanger: A device specifically designed to transfer heat between two physically separated fluids.

Heat Pump: A refrigerating system designed to utilize alternately the heat extracted at a low temperature and the heat rejected at a higher temperature for cooling and heating functions respectively.

Split System: Unitary equipment, incorporating the following possible arrangements:

- 1. Air handling unit with coil and compressor and remote condenser.
- 2. Air handling unit with coil and remote condensing unit.

Ton of Refrigeration: A refrigerating unit equal to 3,516 watts (12,000 BTU/hr), the rate at which it is necessary to freeze water in order to produce a ton of ice in 24 hours. The size of refrigeration and air conditioning systems is usually indicated in terms of "tons".

Two Pipe/Four-Pipe Systems: A two-pipe system contains a single piping system used to circulate chilled or hot water to a single air handling unit coil. A four-pipe system completely isolates the chilled and hot water systems so that the piping for each system may be designed independently.

Unitary Equipment: A unitary air conditioning unit, sometimes referred to as packaged equipment, consists of one or more factory-fabricated assemblies designed to provide the functions of air moving, air cleaning, cooling and dehumidification. The functions of heating and humidifying are also usually possible with such equipment. Unitary equipment includes a direct expansion cooling coil and a compressor condenser combination in addition to fans, auxiliaries and internal wiring and piping.

Unit Heater: The term unit heater denotes an assembly of elements, the principal function of which is to heat a space. The essential elements are a fan and motor, a heating element, an an enclosure. Filters, dampers, directional outlets, duct collars, combustion chambers, and flues may also be included.

VENDOR NAMES

Trane Centravac DS CTV1

Baltimore Air Coil Engineering

Manual

1. Centrifugal Chillers

Carrier York Turbopak 2. Reciprocating Chillers -Trane Carrier York 3. Absorption Chillers Trane Absorption Cold Generator Arkla York Absorption Liquid Chillers Model ES Carrier Hemetic Absorption Liquid Chillers 4. Hot Water Packaged Boilers - Hydrotherm - Mult-Temp Burnham Kewanee

7. Cabinet Unit Heaters - Trane

5. Cooling Towers

- 8. Water Water Heat Pump Templifier
- 9. Air Handling Units Trane Catalog
 Aerofin Catalog

2. INTEGRATED FUEL CELL SYSTEMS DIAGRAMS

The following pages illustrate the final baseline system diagrams for the system identified in Tables 19 and 20 of Volume I and follow the System Master List convention code.

acas 19

WEAR OF

3. COMPUTER ANALYSIS OF SYSTEMS

All systems analyzed in this project are summarized on the following Master List of Tables. This list is repeated in Section 4 of Volume I for completeness. The first set of tables provides the component size and brief description for the key components of each system. Each system is assigned a system number or computer run number and these are used throughout the report.

The second set of data summarizes the performance and cost results of the analysis. All costs are in 1978 dollars.

TABLE 4A
FUEL CELL A APARIMENT

RUN	FUEL	CELL	BOILER	CHIL	LER		RMAL STOR	AGE	NOTES
	NUMBER	MODULE SIZE KW	KW	ABSORP- TION KW	ELECTRIC KW	DIS- CHARGE DUR.HRS.	LITERS	DOMESTIC HOT WATR. LITERS	
1AA	21	20.8	0	0	351	1	1680	6814	
2AA	21	20.8	0	0	351	2	2404	6814	
3AA	21	20.8	0	0	351	0	0	6814	•
4AA	21	20.8	410	0	351	1	1680	6814	
5AA	21	20.8	0	88	351	1	1680	6814	6
6AA	21	20.8	410	0	351	1	1680	6814	2
7AA	14	28.0	586	316	351	1	1680	6814	2
8AA-1000	13	20.2	410	0	351	1	1680	6814	2, 3
8AA-500	18	20.4	410	0	351	1	1680	6814	2, 4
9AA	14	28.1	527	316	351	1	1680	6814	5
	i		l	{	ŧ	1	l	l	ł

^{1 -} Water to Water Heat Exchanger Used Throughout - 8098 Watts/°C

^{2 -} High Efficiency Modulated Boiler

^{3 -} Battery Storage 1000 KWH

^{4 -} Battery Storage 500 KWH

^{5 -} The Absorption Chiller Attempts to Limit the Fuel Cell to 200KW

^{6 -} Water-fired Absorption Unit

3. COMPUTER ANALYSIS OF SYSTEMS

All systems analyzed in this project are summarized on the following Master List of Tables. This list is repeated in Section 4 of Volume I for completeness. The first set of tables provides the component size and brief description for the key components of each system. Each system is assigned a system number or computer run number and these are used throughout the report.

The second set of data summarizes the performance and cost results of the analysis. All costs are in 1978 dollars.

TABLE 4A
FUEL CELL A APARTMENT

RUN	FUEL	CEI.L	BOILER	CH I I.			RMAL STOP		NOTES
	NUMBER	MODULE SIZE KW	KW	ABSORP- TION KW	ELECTRIC KW	DIS- CHARGE DUR.HRS.	LITERS	DOMESTIC HOT WATR. LITERS	
1AA	21	20.8	0	0	351	1	1630	6814	
2AA	21	20.8	0	0	351	2	2404	6814	
3 AA	21	20.8	0	0	351	0	0	6814	
4AA	21	20.8	410	0	351	ĵ	1680	6814	
5AA	21	20.8	0	88	351	1	1680	6814	6
6AA	21	20.8	410	0	351	1	1680	6814	2
7AA	14	28.0	586	316	351	1	1680	6814	2
8.AA-1000	13	20.2	410	0	351	1	1680	6814	2, 3
8AA-500	18	20.4	410	0	351	1	1680	6814	2, 4
9AA	14	28.1	527	316	351	1	1680	6814	5
		. •							

^{1 -} Water to Water Heat Exchanger Used Throughout - 8098 Watts/°C

^{2 -} High Efficiency Modulated Boiler

^{3 -} Battery Storage 1000 KWH

^{4 -} Battery Storage 500 KWH

^{5 -} The Absorption Chiller Attempts to Limit the Fuel Cell to 200KW

^{6 -} Water-fired Absorption Unit

TABLE 4B MASTER SYSTEM LIST

FUEL CELL B - APARTMENT

RUN	FUEL	CELL	BOILER	CHIL		THE	RMAL STOR	AGE	NOTES
	NUMBER	MODULE SIZE KW	KW	ABSORP- TION KW	ELECTRIC KW	DIS- CHARGE DUR.HRS.	LITERS	DOMESTIC HOT WATR. LITERS	
. 1BA	14	31.1	0	1-88	351	1	1,680	6814	1,2,3
2BA	14	31.1	0	1-88	. 351	2	2,404	6814	1,2,3
. 3BA	15	28.7	0	1-88	351	4	10,390	6314	1,2,3
4BA	17	25.5	0	1-88	351	8	36,560	6814	1,2,3
5BA	18	25.9	0	1-38	351	12	63,080	6814	1,2,3
6BA	18	24.4	0	0	351	0	0	6814	1,2,3
7BA	14	31.1	0	1-88	351	0	0	6814	1,2,3
8BA	18	24.4	0	0	351	1	1,680	6814	1,2,3
9BA	21	20.5	0	0	351	1	1,680	6814	1,3
10BA	21	20.5	322	0	351	1	1,680	6814	1,3
11BA	21	20.8	0	175	316	1	1,680	6814	1,3
12BA	21	20.5	0	0	351	1	1,680	13630	1,12
13BA	21	20.5	322	0	351	1	1,680	6814	1,3,4
14BA-8000	17	22.8	0	0	351	1	1,680	6814	1,3,4
14BA-4000	20	20.0	0	0	351	ι	1,680	6814	1,3,5
14BA-2000	21	20.6	0	0	351	1	1,680	6814	1,3,6
14BA-1000	16	21.3	0	0	351	1	1,680	6814	1,3,/
14BA-500	18	20.4	0	0	351	1	1,680	6814	1,3,8
15BA	14	28.0	527	351	351	1	1,680	6814	1,3
16BA-1000	13	20.0	322	0	351	1	1,680	6814	1,3,10
16BA-500	18	20.4	322	0	351	1	1,680	6814	1,3,11

^{1 -} A 7832 Watts/°C steam to water heat exchanger

^{2 -} A 8097 Watts/°C water to water heat exchanger

^{3 -} A 8182 liter hot water storage tank

^{4 - 8000} KWH battery limiting the load to 250 KW

^{5 - 4000} KWH battery limiting the load to 150KW

^{6 - 2000} KWH battery limiting the load to 150KW

^{7 - 1000} KWH battery limiting the load to 200KW

^{8 - 500} KWH battery limiting the load to 200 KW

^{9 -} High efficiency modulating boiler trying to limit the load to 200KW

^{10 - 1000} KWH battery limiting the load to 200 KW

^{11 - 500} KWH battery limiting the load to 200 KW

^{12 -} A 16365 liter hot water storage tank

TABLE 4C

FUEL CELL C - APARTMENT

RUN	FUEL	CELL	BOILER	CHIL	LER	THE	RMAL STOR	AGE	NOTES
	NUMBER	MODULE SIZE KW	KW	ABSORP- TION KW	ELECTRIC KW	DIS- CHARGE DUR.HRS.	LITERS	DOMESTIC HOT WATR. LITERS	
1CA	5	128.0	0	1-88	351	2	2,404	6814	1 -
2CA	5	128.0	0	1-88	351	4	10,390	6814	1
3CA	5	128.0	0	1-88	351	1	1,680	6814	1
4CA	5	128.0	0	1-88	351	0	0	6814	1
5CA	5	130.0	0	0	351	1	1,680	6814	1
6CA	5	130.0	322	0	351	1	1,680	6814	1
7CA	5	118.1	0	1-176	228	1	1,680	6814	1
8CA	5	130.1	322	0	351	1	1,680	6814	1, 2
9CA	5	110.8	439	316	264	1	1,680	6814	1, 2

^{1 -} A steam to water heat exchanger 7832 watt/°C is used.

^{2 -} High efficiency modulating boiler.

TABLE 4D

RETAIL STORE

RUN	FUEL	CELL	BOILER	CHIL			RMAL STOR		NOTES
	NUMBER	MODULE SIZE KW	KW	ABSORP- TION KW	ELECTRIC KW	DIS- CHARGE DUR.HRS.	LITERS	DOMESTIC HOT WATR. LITERS	
1AS	15	61.48	0	0	984	8	143,800	1700	1
2AS	15	56.71	0	o	984	13	450,460		1
	1	56.95	0	0	773	13	450,460	ŀ	•
3AS	15		0	0	984	1	74,550		
4AS	15	60.93	1	<u> </u>	l	4		1	
5AS	15	44.97	1582	1002	0	4	74,550	1	
6AS	15	65.5	0	0	1125	2	18,313		
7AS	11	85.8	0	1-88	932	4	74,550		
8AS	11	65.0	1582	1002	0	4	74,550	į.	
9AS	10	88.5	644	422	844	4	74,550	l	
ics	15	65.5	0	2-88	984	13	450,460	Į.	2
2CS	10	107.6	0	2-88	808	8	143,770	1700	2
3CS	7	139.6	0	2-88	633	13	450,460	1700	3
4CS	7	143.5	0	2-88	633	13	378,540	1135	3
4CS-36	9	110.9	0	2-88	633	13	378,540	1135	3,4
5CS	6	144.2	864	844	0	13	378,540	1135	3
6CS	7	136.0	0	2-175	492	13	378,540	1135	3
7CS	7	143.0	0	1-175	633	13	378,540	1135	3
8CS	6	144.0	864	844	0	13	378,540	1135	3
9CS	6	147.0	849	844	492	13	378.540	1135	3
	1					1		1	

^{1 -} $\rm H_2\mathcal{O}$ to $\rm H_2\mathcal{O}$ heat exchanger only 2024/watts/°C for all Fuel Cell C cases.

^{2 -} Steam HyO heat exchanger 1957 watts/°C and 3163 watts/°C H₂O to H₂O.

^{3 - 1957} watts/°C steam to H2O heat exchanger only.

^{4 -} This run represented 36 days of data. Otherwise it is exactly the same as 4CS.

IADLE 45

RETAIL STORE ANALYSIS

(8-125,000 Cabinet Unit Heaters 4 Air Handling Units)

RUN	FUEL	CELL	BOILER	CHILI	LER	THE	RMAL STOR	₹GE	NOTES
	NUMBER	MODULE SIZE KW	KW	ABSORP- TION KW	ELECTRIC KW	DIS- CHARGE DUR.HRS.	LITERS	DOMESTIC HOT WATR. LITERS	
15	N	one					•		
28									
185	15	62.1	0	2-88	984	1	866	1700	
2 B S	15	60	0	2-88	984	2	18,314	1700	
3ABS	15	57.6	0	2-88	805	8	143,770	1700	
3BS	15	57.6	0	2-88	984	4	74,550	1700	
4BS	15	57.8	0	2-88	984	8	143,770	1700	
5BS	15	54.0	0	2-88	984	13	453,890	1700	
6BS	15	53.85	0	2-88	633	13	453,890	1700	
7BS	15	58.0	0	2-88	823	4	74,550	1700	
888	15	56.8	0	1-88	738	13	378,540	1700	
9BS	15	55.3	0	2-88	633	13	378,540	1700	
10 BS	15	53.2	0	0	826	13	378,540	1700	
11 B S	15	56.8	0	1-88	738	13	378,540	2271	
12BS	15	56.8	0	1-88	738	13	378,540	1135	
13BS	15	50.7	0	1-88	738	13	378,540	1135	1
14BS	15	55.2	0	2-88	633	13	378,540	1135	1,2
15BS	15	55.3	0	2-88	633	13	378,540	1135	1,3
16BS	15	45.4	1671	1231	0	0	0	1135	1
17BS	11	64.2	1172	844	0	13	378,540	1135	1
18 B S	10	80	0	2-88	633	13	378,540	1135	1,4
20 B S	15	44.4	1172	844	0	13	378,540	1135	1,5
21BS	15	57.0	0	1-88	879	15	378,540	1135	5
22BS	11	6 + . 2	1172	844	0	13	378,540	1135	6

^{1 -} Eliminate 509 Watts/°C H₂O to H₂O Heat Exchanger, Use Steam to H₂O Heat Exchanger 1957 Watts/°C Only.

^{2 -} High Efficiency (Custom) Absorption Chiller 12# Steam Ton-HR

^{3 -} Relax Fuel Cell Reliability to 30 Hours per 10,000

^{4 -} Relax Fuel Cell Reliability to 10 Hours per 10,000

^{5 -} High Efficiency Absorption Chiller 10# Steam/Ton-HR

^{6 -} High Efficiency Modulating Boiler

TABLE 4F

RETAIL STORE ANALYSIS
(Continued)

RUN	FUEL	CELL	BOILER	CHIL			RHAL STOR		NOTES
	NUMBER	MODULE SIZE KW	KW	ABSORP- TION KW	ELECTRIC KW	DIS- CHARGE DUR.HRS.	LITERS	DOMESTIC HOT WATR. LITERS	
23BS-350	11	65.9	1347	844	510	13	378,540	1135	7
23BS-400	11	65.9	1347	844	510	13	378,540	1135	8
23BS-500	11	74.1	1347	844	510	13	378,540	1135	9
23BS-600	11	76.5	1347	844	510	13	378,540	1135	10
23BS-700	11	78.6	586	334	703	13	378,540	1135	11
25BS	11	64.2	879	844	0	13	378,540	1135	14, 16
26BS	11	64.2	351	844	0	13	378,540	1135	15, 17
27ES	13	35.1	1172	844	0	13	378,540	1135	12
2888	15	55.3	0	2-88	633	13	378,540	1135	14
29BS	15	55.3	0	2-88	633	13	378,540	1135	15
30BS	15	59.2	0	2-88	633	13	378,540	1135	13

^{7 - 350}KW Peak Limiting by Absorption Unit

^{8 - 400}KW Peak Limiting by Absorption Unit

^{9 - 500}KW Peak Limiting by Absorption Unit

^{10 - 600}KW Peak Limiting by Absorption Unit

^{11 - 700}KW Peak Limiting by Absorption Unit

^{12 - 3000}KWH Battery Trying to Hold the Load at 350KW

^{13 -} Adiabatic Thermal Storage Tank

^{14 -} High Efficiency Absorption Chiller 12# Steam/Ton-Hour

^{15 -} Higher Efficiency Absorption Chiller 6# Steam/Ton-Hour

lo - 880KW Boiler

^{17 - 350}KW Boiler

	•	ō-	
!		NO OF TUEL	00000000000
		GAS COSTS &	7450400 7450400 7451400 7451400 7451400 7451400 7451400 7451400 7451400 7451400
		CPERATION AND Maintenance except Taxes + insurance	
DLLCWING CONSTANTS ARE DEFINED	0000000 0000000 0000000 0000000 0000000	CAPITAL COST EXCEPT FUEL CELLS	000.000.000.000.000.000.000.000.000.00
Ē,	ON 8TU 35TS (DECIMAL) COSTS (17KM) 35TS (DECIMAL)		7 100 00 00 00 00 00 00 00 00 00 00 00 00
FOR THE LEVELIZED ANNUAL COST THE	FIXED CHANGE RATE FUEL ENESTY COSTS IN SCHILLION BTU ESCALATICY IN FUEL ENERGY COSTS (DEC ESCALATICY IN FUEL ENERGY COSTS (DEC SYSTEM LIFE (YEARS) ELECTRIC UTILITY ELECTRICITY COSTS (OEC	F.C. 512E (KW)	
FOR THE LEI	FUEL BREAK FUEL BREAK ESCALATION SESTEMBLE BREAK FUEL BREAK FUEL B	ž Ž	0 40 40 40 40 40 40 40 40 40 40 40 40 40

STORE

FUEL CELL A

•
_
•
•
•
_,
נב
֝֟֝֝֟֝֝֝֟֝֝֟֝֝֝֟֝֝֟֝ ֓֓֞֞
נב
֝֟֝֝֟֝֝֝֟֝֝֟֝֝֝֟֝֝֟֝ ֓֓֞֞
1735
ר לפרה
ר לפרה
1735

ORE

tataa waa of Full Cells And Far Lights ward Equipment Fuel Cell Installation Cost (8/4#) Type of Fuel Cell (1 & 4 & 2 * 8 * 3 * C) 8/44 BTU OWIGINAL GAS COST	2 16 7 5 . 00 50 5 7 5 . 00 50 5 5 00 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

ŧ

CORRECTION TO

727

80 CG

1		GAS CESTS .	5312.5	0 TO 1	34666	73327-60	4512.0	27.4.0		2477.00	3041.0	3040.0	2532.0	2523.0	0.000	501	0-1/4/	3372.0	4313.0	6395.0	2512.9	0.0100	3771.0	1146.0	0077-0	1663.0	2567.0
		CPERATION AND Maintenance except Taxes + insurance	16719.00	3335.0	3295.0	2372.9	34.1.0	1726.0	1149.0	1639.0	1254.0	1033.0	1016.0	1507.0		9013.0	1420.0	1975.0	9563.0		6417.0	5537.0		8110.0	9408.0	1208.0	1501.0
CHSTANTS ARE DEFINED	0.11440 0.02400 0.12000 25.000 0.04200 0.0400	EXCEPT FUEL CELLS	259204.00	94070.0	0.02016	97541.0		24912.0	0.04.60	15912.0	73322.0	95511.0	35154.0	1 0 5 0 3 0 0	21013.0	25175.0	C-949E1	0.5.5.0	3 392 3 . 0	0.22.000	99922.0	93022.0	2751750	07111.0	0.01910	0.00041	0.005+1
THE FOLLOWING C	COSTS (OECTMAL) (4)	MAY DYAH	55.5	0 . 5	132		27.0	2.0	450.	129.	932.		423	222		220	2002	7.7	073.	500	100	875	010	77.0	929	023	212.
THE LEVELIZED ANNAL C	CMANGE BATE ENERGY COSTS I ATION IN FUEL TO COST OF COSTS IN COSTS II ATION EXECTT	UN		5 62.1			7-10		0.40 0.40 0.40	2.55	50 PM	55.7	55.7	100 mm	es		73.9			65-350 65-3	HS-500 74-1	85-530 75.5	79.5	- V		W-1000	88 55.2
FOR T	######################################		; ;	•	•	9	•	.	er er	•	o –	~	~	•	•	• •	40	٥-	• 💊	~ "	۱n		~ "	٠.	٠.	T 6	• •

CLECTAICITY &		77.8	•	•	٠	٠	3.0 0	•		٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	٠	•	٠	•	•	٠	٠	٠	•	•	٠	•	•	•	٠	٠
1 535	5312.42	0.0	74431.52	73762.97	194.9	124.9	74313.91	511.6	763.9	1417.9	9.0.	2472.9	4271.9	3042.9	50.00	3035.0	2531.2	2522.0	6424.9	6091.9	6017.9	2470.9	1907.	3971.9	4312.9	6719.8	D - +0E 0	6-1162	6.000	2463.5	3779.8	71167-97	90700	8-6602	B - 2001	9-90CZ
TOTAL ENERGY &	53155	•	74431.63	3752.8	•	4	4 3 1 3	4511.9	2793.6	3417.0	3040.0	2472.9	4271.9	3040.	3035.9	3033.	2531.	2525.	9424	-1603	95017-91	2470.	#1207.87	3271.	.312.	6119	. 304.	-1152	0000	2423	3770.	71165.67	20000	72099.07	71662-87	72503.87
CP 4	1.63.1	36.29.9		5.141.5	5527.5			4675.0	3050	4661.4	3260.1	3979.6	2472.1	3385.9	3015.2	2982.2	1731.0	3732.0	-	9161.5	9552.3	2935.2	~	4.485.6	0524.3	0145.0	9165.9	0742.0	1330.1	5170.4	0031.3	•	•	ó.	50°500	53719.55
CAFITAL S	0.40545	10 10	418814	6	A 0 0 0 0 0		750000.50	A. 00 40 A	6.00 - I 4	44547.2	15072.1	42354.9	25437.3	-	-	12209.7	40935.1	40435-1	75090	71917-1	94978.6	1157	45571.1	4 3520.7	94731.5	61797.0	67797.0	10935.1	23105.2	62546.5	74344.6	666913.62	23240.0	100 33.1	40035.1	ň
LEV ANNUAL B	•	٠.				;	V 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0 1 0 0 C C C C C C C C C C C C C C C C	51162.7		200	42213.0	50140.3	4 2 1 35 . 5	4 2026 - 5	50322.5	50 347	73547.5	9	27.1		50	53129.3	64038.5	1.60968	83228.0	92215.5	92535.1	65234.0	52556.1	32	95705.3	40750.	*0116*	800
80.t		•			711				400) E	***	185	0		2	į		5	;		2	3	3	2	5	365-35	385-	165-50	195-50	385-70	585	2002	2	3	8	9

ORIGINAL PAGE IS

CORRECTICA LIGHTS KOM	
מברוץ נחבר	00000000000
645 CCSTS 8	
OPERATION AND TOTAL MAINTENANCE EXCEPT	00000000000000000000000000000000000000
CAPITAL COST EXCEPT FUEL CELLS	ANNUAL MARKET OF THE PROPERTY
HAYE CAN	
F.C. 512E (1845)	
NOR	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

STORE FUEL CELL C

LEVELITED ANNUAL COST THE FOLLGHING CENSTANTS ARE DEFINED

l

FUEL ENEMGY COSTS IN STMILLION BTJ
ESCALATION IN FUEL ENEMGY COSTS (DECIMAL)
ESCALATION IN FUEL ENEMGY (R)
EVERT LIFE (YEARS)
ELECTRIC UTILITY ELECTRICITY COSTS (9/KW)
ESCALATION IN ELECTRICITY COSTS (9/KW)

```
ELECTOICITY
1 510
TOTAL C.COSY &
CD . .... 8
 777.14 157
```

FUEL CELL

APARTHENTS EQUIPMENT (\$/K#) = C 4194 43. OF FUEL CELLS
44 F32 THE LIGHTS/NON HYAC
45 CELL TASTALLATION COST
70E CELL CELL (1 = 4. 2
744 BTU DRIGINAL GAS COST FOR THE LEVELIZED ANNUAL COST THE FOLLOWING CONSTANTS ARE

DEFINED

UEL ENERGY COSTS IN 8/WILLION BTU
SCALATION IN FUEL ENERSY COSTS (DECIMAL)
FIGHTED COST OF CAPITAL (4)
FISTEM LIFE (STOR CAPITAL (4)
LECTRIC UTILITY ELECTRICITY COSTS (8/KWH)
SCALATION IN ELECTRICITY COSTS (8/KWH)

١

```
8
```

ORIGINAL PAGE IS

0000 m m m m m m m m m m m m m m m m m	0.1440 0.1440 0.02400 0.02400 0.02400 0.002400 0.00200
EXTRA 1.0. OF FUEL CELLS CAM FOR THE LIGHTS/NOW HVAC EQUIPMENT FUEL CELL 1.5 T.L. XTIC. COST (8/C4) TYPE OF FUEL CELL (1 x A. 2 x B. 3 x C) 8/AM 9TU OPIGINAL GAS COST	FOR THE LEVELIZED ANNUAL COST THE FOLLOWING CONSTANTS ARE DEFINED FIRED CHARGE BATE TO STATE THE FOLLOWING CONSTANTS ARE DEFINED FUEL ENERGY COSTS IN BYMILLION BIU SECHATION 13 FUEL ENERGY COSTS (OBTIME) 0.00000 0.10000 SYSTEM LIFE (YEARS) 0.10000 COSTS (BYMM) 0.10000 COSTS (BYMM) 0.00000 COSTS (BYMM) 0.00000

APARTMENTS

2811

ı

```
TOTAL CASOSY
å
CAPITAL
```

CCAPECTICN TO LIGHTS KWH	00000000000
NO CF FUEL	00000000000000000000000000000000000000
GAS COSTS &	0 000000000000000000000000000000000000
CDESATION AND MAINTENANCE EXCEPT TAKES + INSURANCE	
CAPITAL COST EXCEPT FUEL CELLS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
HVAC KWH	
F.C. S12E (KH)	00000000000000000000000000000000000000
2 2	44444444 4440000000 4494000000000000000

FUEL CELL C APARTMENTS

EXTRA 40. OF FUEL CELLS

KARA FCR THE LISATS/NOW HVAC EQUIPMENT

11133.0

170E. OF FUEL CELLS

FOR THE LEVELIZED ANNUAL COST THE FOLLOWING CONSTANTS ARE DEFINED :

FIXED CHASSE RATE FUEL ENERGY COSTS IN SZMILLION BTU ESCALATION IN FUEL ENERGY COSTS (DECIMAL) NEIGHTED COST OF CAPITAL (R) SYSTEM LIFE (VEARS) ELECTRIC UTILITY ELECTRICITY COSTS (SZKMH) ESCALATION IN ELECTRICITY COSTS

```
ELECTRICITY &
  TOTAL FREGGY 8
  8
```

ろうら

ORIGINAL PAGE IS

4. CASH FLOWS FOR BASELINE SYSTEMS

Cash flows following the format of Section 4.2 are given in the following pages.

The percentage (%) entry at the top of the column entitled, "Discounted Cash Flow" is the Internal Rate of Return.

```
ĸ
                                                                                                              34

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

20
DISCOUNTED
CASH FLOR
AT
                                                                                                                   INCREMENTAL
CASH FLOW
                                                                                                                      SYSTEA
4.A.S
                                                                                                                        24430

46530

46530

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46630

46
JASEL INE
            EAR
```

eria di ping

×	
OLSCOUNTED CASH FLOW AT 0.0	
INCHEMENTAL CASH FLUB	1
SAS SAS	5.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 455 L INE 28	22
, ,	O=0meso-ooooooooooooooooooooooooooooooooooo

Water.

```
20
 2
   OLSCOUNTED
CASH FLUB
AT
   INCREMENTAL
CASH FLOD
   4
   X
5751E
   BASELINE
EAK
   らったてこのかおえのちゃんてきのかおよりられるとうにっていることとにしましましましま
>
```

1.2

```
×
                                                                                                               64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64946

64
CASH FLUE
AT 10.1
            ₹
                                                                                                                    INCREMENT.
                                                                                                                       992953
902953
902952
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
9020020
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
90200
9
            SYSTEM
4CS
                                                                                                                            SASEL INE
                        20
                   Y
```

·

ream	JASEL INL 25	SCS SCS	INCKEMENTAL CASH FLOW	CASH FLEE AT 0.0	
3		5784B.	-414814.62	-414314-62	
	45327.8	06255.4	9102.	5547.2	
~	46131.9	4.40180	8027.	1427.7	
~	46910-6	19990	6513.	7733.5	
•	47693.9	11935.7	5758.	4423.4	
S	44482.0	13920.6	1991	1459.9	
•	49274.8	15953.1	3321.	5.6089	
~	50072.2	18034.5	2337.	6440.5	
•	508 74.5	20105.7	.801	4325.9	
>	51681.6	22348.1	9333.	2440.3	
01	9.6	4.5b21	910.	0760.8	
	53310.5	F-12897	6434.	200.8	
	54132.1	29214.7	1917.	3.055	
	54958.B	31614.3	3344.	762.1	
	55790.5	3407134	1713.	719.3	
	56627.1	36537.5	0339.	757.3	
	57468.8	39164.0	8304.	783.7	
	58315.5	41802.4	5513.	267.0	
		1.06504	toc3.	037.3	
	. 2	47270.0	2753.	085.3	
	7.	50103.5	0782.	602.5	
	<u>ت</u> و	\$3005	749.	182.3	
	<u>ت</u>	25974.9	651.	17.0	
	9.6	5.4016.7	486.	0.10	
24	.5	62131.5	2555	59.9	
	9.	453-14-0	•	7.	

ORIGINAL PAGE IS

```
×
m
Ġ
 SESCOUNTED SASSITE SES
0114
 ı
FLOS
 INCRE CASH
 STEM
>4
 BASEL INE
 W
```

DISCOUNTED CASH FLC# AT 32.19 X	1
INCREMENTAL CASH FLUA	1 600 600 600 600 600 600 600 600 600 60
SYSTER	00000000000000000000000000000000000000
BASELINE 2A	134 134 134 134 134 134 134 134
VEAR	*************************************

6852 In 1 12

UISCOUNTED CASH FLCW AT 25.64 X	- 26 - 26 - 26 - 26 - 26 - 26 - 26 - 26	₹
INCREMENTAL CASH FLUB	- 26 - 26 - 26 - 26 - 26 - 26 - 26 - 26	6557.
SYSTER	44444444444444444444444444444444444444	
BASEL INE 2A		57502.2
n Ak	しまなすのならなでもならまなられるなりをなってできる。 でのごととももももももももも	

YEAR	BASEL INE 2A	STER SBA	INCREMENTAL CASH FLOA	OISCUUNTED CASH FLGW AT 23.90 X
0	0	5	454.5	245
	0	3.9	62171.0	0176.
• 3	9	~	1717.3	.230.
~ ۱	4 008 7.5	0	1239.5	2193.
> ◀	408 30 3	5	0736-8	5709.
· u	41577-6	3	0206.7	
) (47320	8	9654.5	6480.
•	43085-6	2	9073.4	3176.
• 10	43846.5	9	8464.5	0524.
) U	44611-8		7827.9	_
0	9	6	162	å
	46156.5	. 3	6466.1	÷
	40935-7	3	5739.0	:
	47719.6	8	45611.5	Ġ
	M	9	4191.0	•
	49301.7	*	3368°3	ໍ່
	50005	9	2511.0	-
	8 - 20000	2	1618.6	÷
	51710.5		0550.3	•
	52523	8	9725.3	7
	5.1340.7	3.0	8722.0	э Э
	-	0	7081.1	Ġ
	544000.5	9.0	0.4659	
	ところないり	-	477.5	'n
	500000		7	8
	10000000000000000000000000000000000000	000000000000000000000000000000000000000	3106-2	Ň
	V	•		

ORIGINAL PAGE IS

DISCOUNTED CASH FLGW AT 26.33 X	25 25 25 25 25 25 25 25 25 25 25 25 25 2
INCREMENTAL CASH FLOW	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SYSTEM	44 688020 7108820 7108820 7108820 740446 740460
BASEL INE	117654 117654 117654 117654 117654 117656 117656 117656 117656 117656 117656 11766
EAR	O = O = O = O = O = O = O = O = O = O =

```
×
DISCOUNTED
CASH FLOW
AT 23.4
                                                                                              MENTAL
FLOA
                                                                                                INCRE
                                                                                                  44440

4464444

46644444

46644444

46644444

46644444

46644444

46644444

46644444

46644444

4664444

4664444

466444

466444

466444

466444

466444

466444

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

46644

4
      51 EM
          ¥0
1
                                                                                                        14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14654

14
    DASELINE
        EAR
```