Simple Black-Box Adversarial Attack

ESHIKA KHANDELWAL 2020114018 AMEYA SHARMA 2020101059 ADITH JOHN RAJEEV 2020114010

PROBLEM STATEMENT

The problem we aim to address in our paper "Simple Black-box Adversarial Attack" is the generation of effective adversarial examples that can fool machine learning models without knowledge of their internal architecture or parameters.

SOLUTION

The paper proposes a gradient-free optimization approach called SimBA to generate adversarial examples. SimBA iteratively perturbs the input data by adding small noise until the model's output changes, and then uses a heuristic search to refine the perturbations.

SimBA

- SimBA is a gradient-free optimization approach for generating adversarial examples that can fool machine learning models without knowledge of their internal architecture or parameters.
- SimBA works by iteratively perturbing the input data by adding small random noise until the model's output changes. Once a change in output is observed, SimBA uses a heuristic search to refine the perturbation and find the most effective one.
- Lowercase "e" refers to the perturbation or noise added to the input data by the SimBa attack algorithm.

The Approach

Algorithm 1 SimBA in Pseudocode

```
1: procedure SIMBA(\mathbf{x}, y, Q, \epsilon)
2: \delta = \mathbf{0}
3: \mathbf{p} = p_h(y \mid \mathbf{x})
4: while \mathbf{p}_y = \max_{y'} \mathbf{p}_{y'} do
5: Pick randomly without replacement: \mathbf{q} \in Q
6: \mathbf{for} \ \alpha \in \{\epsilon, -\epsilon\} \ \mathbf{do}
7: \mathbf{p}' = p_h(y \mid \mathbf{x} + \delta + \alpha \mathbf{q})
8: \mathbf{if} \ \mathbf{p}'_y < \mathbf{p}_y \ \mathbf{then}
9: \delta = \delta + \alpha \mathbf{q}
10: \mathbf{p} = \mathbf{p}'
11: \mathbf{break}
```

Pick random orthonormal vector from set with replacement.

Add vector to image

Calculate new probability

Manipulate image according to change in probability

Break when misclassified

Orthogonal Search Vectors (Q)

- Cartesian Basis
 - ▶ The standard basis Q = I
 - Increasing/Decreasing color of one pixel in every iteration
 - Corresponds to L0 attack
- Discrete Cosine Basis
 - Representing image in the frequency domain by breaking it down into a sum of cosine functions of varying frequencies and amplitudes. (DCT)
 - Adding noise in the frequency domain and then getting it back to the image space using IDCT.

Untargeted vs Targeted

Untargeted

- Aim to reduce the probability of original class
- Break when the highest probability is assigned to a different class

Targeted

- Aim to increase the prob of target class
 - Target class not chosen randomly.
 - A class that is not too close to original class.(10th from prediction)
- Break when highest probability is assigned to target class

- TinylmageNet
- Attacks
 - Untargeted Attack (cartesian bias)
 - Targeted Attack
 - Discrete Cosine Bias (if time permits)

SCOPE

(AS DISCUSSED WITH TA)

Implementation Details

- ► Finetuned the Resnet50 model to work on TinylmageNet database.
- ► Implemented proposed solution in paper, SimBa, to execute targeted and untargeted attack.
- ► Tested observations on 500 test images in untargeted and 100 images in targeted.

Finetuning Resnet50

```
100%|
                 2/2 [00:01<00:00, 1.03it/s]
100%
                 1563/1563 [03:16<00:00, 7.94it/s]
100%
                 157/157 [00:09<00:00, 17.01it/s]
                Training Loss: 2.267500
                                                                               Validation Loss: 1.307188
                                                                                                                Validation Accuracy: 0.670800
Epoch: 1
                                                Training Accuracy: 0.507110
                 1563/1563 [02:48<00:00, 9.29it/s]
100%|
100%|
                157/157 [00:08<00:00, 19.04it/s]
Epoch: 2
                Training Loss: 1.145882
                                                Training Accuracy: 0.707690
                                                                               Validation Loss: 1.193575
                                                                                                                Validation Accuracy: 0.696100
                 1563/1563 [02:48<00:00, 9.26it/s]
100%|
100%||
                 157/157 [00:08<00:00, 18.93it/s]
                Training Loss: 0.826008
Epoch: 3
                                                Training Accuracy: 0.783250
                                                                               Validation Loss: 1.172133
                                                                                                                Validation Accuracy: 0.706400
```

Attacks

- Untargeted attack (max 5000 iter, 500 correctly predicted images)
 - **▶** SimBA
 - ▶ SimBA-DCT
- Targeted attack (max 5000 iter, 100 correctly predicted images)
 - SimBA (can easily be extended to DCT with the same code)
- We run all attacks for e = [0.2, 0.4, 0.6, 0.8, 1.0]

Goldfish

Gondola

PERTURBATIONS

Sea Cuc<mark>umbe</mark>r

Fountain

Sea Slug

King Penguin

PERTURBATIONS

Pill Bottle

Flagpole

RESULTS UNTARGETED DCT

Tailed Frog

Albatross

PERTURBATIONS

Lakeside

Plunger

Paper: ImageNet

Untargeted				
Attack	Average queries	Average L_2	Success rate	
	Label-	only		
Boundary attack	123,407	5.98	100%	
Opt-attack	71,100	6.98	100%	
LFBA	30,000	6.34	100%	
	Score-b	ased		
QL-attack	28,174	8.27	85.4%	
Bandits-TD	5,251	5.00	80.5%	
SimBA	1,665	3.98	98.6%	
SimBA-DCT	1,283	3.06	97.8%	

Targeted					
Attack	Average queries	Average L_2	Success rate		
	Score-	based			
QL-attack	20,614	11.39	98.7%		
AutoZOOM	13,525	26.74	100%		
SimBA	7,899	9.53	100%		
SimBA-DCT	8,824	7.04	96.5%		

Our Implementation: TinyImageNet

Paper:

- maximum iterations are more than ours
- more number of images

Ours:

where e = 0.2

Paper:

Ours:

Limitations

- Smaller images were harder to imperceptibly attack since not all pixels contribute to the confidence of a particular class.
- ► Finding effective perturbations for smaller images requires more fine-grained control over the perturbation, which can be challenging to achieve while maintaining imperceptibility.

Future Work

- General Basis to get Q
- Try on more images and higher iterations
- Try ImageNet instead of TinyImageNet

References

- Simple Black-box Adversarial Attacks; Chuan Guo, Jacob R. Gardner, Yurong You, Andrew Gordon Wilson, Kilian Q. Weinberger
- Low Frequency
 Adversarial Perturbation;
 Chuan Guo, Jared S.
 Frank, Kilian Q.
 Weinberger
- https://huggingface.co/d atasets/Maysee/tinyimagenet

CONTRIBUTION

- ► ESHIKA FINETUNE RESNET + SIMBA-DCT
- ► AMEYA TARGETED ATTACK
- ► ADITH -UNTARGETED ATTACK (SIMBA)