

EEC1509 - Machine Learning Lesson #10 Random Forest

Ivanovitch Silva November, 2018

Update repository

git clone https://github.com/ivanovitchm/EEC1509_MachineLearning.git

Ou

git pull

Agenda

- Previously on last class (Decision Trees)
- Ensembles (Random Forest)
- Combining predictions
- Why Ensembling works
- Introduction variation with bagging and random features
- Reducing overfitting using Random Forest

Decision Tree (classification)

Decision Tree (regression)

	Pred	dictors		Target				
Outlook	Temp.	Humidity	Windy	Hours Played				
Rainy	Hot	High	Falce	26			Outlook	
Rainy	Hot	High	True	30				- 10
Overoast	Hot	High	Falce	48				
Sunny	Mild	High	Falce	46	Su	inny	Overcast	Rainy
Sunny	Cool	Normal	Falce	62				
Sunny	Cool	Normal	True	23				
Overoast	Cool	Normal	True	43	W	indy	46.3	Temp.
Rainy	Mild	High	Falce	36				
Rainy	Cool	Normal	Falce	38				
Sunny	Mild	Normal	Falce	48	FALSE	TRUE	Cool	Hot
Rainy	Mild	Normal	True	48				
Overoast	Mild	High	True	62				
Overoast	Hot	Normal	Falce	44	47.7	26.5	38	27.5
Sunny	Mild	High	True	30				

Why Entropy in Decision Trees?

- The goal is to tidy the data.
- You try to separate your data and group the samples together in the classes they belong to.
- You maximize the purity of the groups as much as possible each time you create a new node of the tree
- Of course, at the end of the tree, you want to have a clear answer.

Applying Decision Tree

sklearn.tree.DecisionTreeClassifier

class sklearn.tree. **DecisionTreeClassifier** (criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False) [source]

sklearn.tree.DecisionTreeRegressor

class sklearn.tree. **DecisionTreeRegressor** (criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False) ¶ [source]

Receiver Operating Characteristic (ROC)

	True condition				
	Total population	Condition positive	Condition negative		
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error		
condition	Predicted condition negative	False negative, Type II error	True negative		
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\sum False \ positive}{\sum \ Condition \ negative}$		

AUC - Area Under Curve

Decision Tree Overfitting

settings	train AUC	test AUC
default (min_samples_split: 2, max_depth: None)	0.947	0.694
min_samples_split: 13	0.842	0.699
min_samples_split: 13, max_depth: 7	0.748	0.743
min_samples_split: 100, max_depth: 2	0.662	0.655

The Dataset

The target column, or what we want to predict, is whether individuals make less than or equal to 50k a year, or more than 50k a year.

US Census 1994

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	capital_gain
0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0

Combining Model Predictions with Ensembles

```
1 from sklearn.tree import DecisionTreeClassifier
 2 from sklearn.metrics import roc auc score
 4 # features
 5 columns = ["age", "workclass", "education num", "marital status",
              "occupation", "relationship", "race", "sex",
              "hours per week", "native country"]
 9 # model 1
10 clf = DecisionTreeClassifier(random state=1, min samples leaf=2)
11 clf.fit(train[columns], train["high income"])
12
13 # model 2
14 clf2 = DecisionTreeClassifier(random state=1, max depth=5)
15 clf2.fit(train[columns], train["high income"])
16
17 # prediction on model 1
18 predictions = clf.predict(test[columns])
19 print(roc auc score(test["high income"], predictions))
20
21 # prediction on model 2
22 predictions = clf2.predict(test[columns])
23 print(roc auc score(test["high income"], predictions))
```

0.6878964226062301 0.6759853906508785

Combining our predictions

	• • ,	\ <i>\</i>	. •
Ma	iorit	y Vo	ting
I · I · I	י ייין	, . .	טיייט

DT1	DT2	DT3	Final	Prediction
0	1	0	0	
1	1	1	1	
0	0	1	0	
1	0	0	0	

settings	test AUC
min_samples_leaf: 2	0.688
max_depth: 2	0.676
combined predictions	0.715

	#1 Model	#2 Model	Mean	Rounded
0	0.166667	0.288507	0.227587	0.0
1	0.000000	0.288507	0.144253	0.0
2	0.000000	0.180918	0.090459	0.0
3	0.000000	0.354167	0.177083	0.0
4	0.000000	0.041009	0.020504	0.0
5	0.000000	0.006875	0.003437	0.0
6	0.000000	0.006875	0.003437	0.0
7	0.333333	0.146179	0.239756	0.0
8	0.000000	0.006875	0.003437	0.0
9	0.666667	0.777431	0.722049	1.0
10	0.000000	0.041009	0.020504	0.0

Why Ensembling Works

Introduction Variation with Bagging

```
1 # We'll build 10 trees
 2 tree count = 10
 4 # Each "bag" will have 60% of the number of original rows
 5 bag proportion = .6
 7 predictions = []
 8 for i in range(tree count):
       # We select 60% of the rows from train, sampling with replacement
10
      # We set a random state to ensure we'll be able to replicate our results
      # We set it to i instead of a fixed value so we don't
      # get the same sample in every loop.
13
      bag = train.sample(frac=bag proportion, replace=True, random state=i)
14
15
      # Fit a decision tree model to the "bag"
16
      clf = DecisionTreeClassifier(random state=1, min samples leaf=2)
17
      clf.fit(bag[columns], bag["high income"])
18
19
       # Using the model, make predictions on the test data
       predictions.append(clf.predict proba(test[columns])[:,1])
21 combined = np.sum(predictions, axis=0) / 10
22 rounded = np.round(combined)
23
24 print(roc auc score(test["high income"], rounded))
```

settings	test AUC
min_samples_leaf: 2	0.688
max_depth: 2	0.676
combined predictions	0.715
min_samples_leaf: 2, with bagging	0.732

Introduction Variation from Random Features

settings	test AUC
min_samples_leaf: 2	0.688
max_depth: 2	0.676
combined predictions	0.715
min_samples_leaf: 2, with bagging	0.732
min_samples_leaf: 2, with bagging and random subsets	0.734

Put it All Together

0.7347461391939776

Reducing Overfitting

```
clf = DecisionTreeClassifier(random_state=1, min_samples_leaf=5)

clf.fit(train[columns], train["high_income"])

predictions = clf.predict(train[columns])
print(roc_auc_score(train["high_income"], predictions))

predictions = clf.predict(test[columns])
print(roc_auc_score(test["high_income"], predictions))
```

```
0.8192570489534683
0.7139325899284541
```


Reducing Overfitting

- 0.7917047295143252
- 0.7498874343962398

When to use Random Forest

- Strengths of a Random Forest
 - Very accurate predictions
 - Resistance to overfitting
- Weakness
 - They are difficult to interpret
 - They take longer to create

