数学分析

lihui588211

2023年11月4日

目录

第一章	实数集与函数	5
1.1	实数	5
	1.1.1 实数及其性质	5
	1.1.2 绝对值与不等式	7
1.2	数集 • 确界原理	10
	1.2.1 区间和邻域	10
	1.2.2 有界集 • 确界原理	11
1.3	函数的概念	16

4 目录

第一章 实数集与函数

1.1 实数

数学分析研究的基本对象是定义在实数集上的函数. 为此,我们先简要叙述实数的有关概念.

1.1.1 实数及其性质

在中学数学课程中,我们知道实数由有理数与无理数两部分组成. **有理数**可用分数形式 $\frac{p}{q}$ (p、q 为整数, $q \neq 0$) 表示,也可用有限十进制小数或无限循环十进制小数来表示;而无限不循环十进制小数则称为**无理数**. 有理数和无理数统称为**实数**.

为了之后讨论的需要,我们把有限十进制小数 (包括整数) 也统一表示为无限十进制小数.为了实现这个目的,我们作如下规定:

• 对于正有限小数 $x = a_0.a_1a_2\cdots a_n$ 时,其中 $0 \le a_i \le 9$, $i = 1, 2, \cdots n$, $a_n \ne 0$, a_0 为非负整数,记

$$x = a_0.a_1a_2\cdots(a_n-1)9999\cdots$$

• 对于正整数 $x = a_0$, 记

$$x = (a_0 - 1).9999 \cdots$$

- 对于负有限小数 (包括负整数) y , 先将 -y 表示为正无限小数,再加负号得到 y 的无限小数形式
- 对于 0,记 0 = 0.000····

于是,任何实数都可用一个确定的无限小数来表示. 如 5 表示为 4.999… , 3.1415 表示为 3.14149999… , -2.738 表示为 -2.7379999…

我们已经熟知比较两个有理数大小的方法了. 下面定义两个实数的大小关系.

定义 1 (非负实数的大小) 给定两个非负实数

$$x = a_0.a_1a_2\cdots a_n\cdots$$
, $y = b_0.b_1b_2\cdots b_n\cdots$

其中 a_0, b_0 为非负整数, $a_k, b_k (k = 1, 2, \dots)$ 为整数, $0 \le a_k \le 9, 0 \le b_k \le 9$.

- 若有 $a_k = b_k (k = 0, 1, 2, \dots)$, 则称 x 与 y 相等, 记为 x = y.
- 若 $a_0 > b_0$ 或存在非负整数 l , 使得 $a_k = b_k (k = 0, 1, 2, \dots, l)$ 但 $a_{l+1} > b_{l+1}$, 则称 x

大于 y 或 y 小于 x , 记为 x > y 或 y < x.

对于负实数 x,y , 如果按照上面的定义, 分别有 -x = -y 与 -x > -y , 则分别称 $x = y \mathrel{
eq} x < y \mathrel{
eq} x > x$.

另外, 规定任何非负实数大于任何负实数.

下面给出一个通过有限小数来比较两个实数大小的等价条件. 为此, 先给出如下定义.

定义 2 (实数的近似) 设 $x = a_0.a_1a_2 \cdots a_n \cdots$ 为非负实数.

- 称有理数 $x_n = a_0.a_1a_2\cdots a_n$ 为实数 x 的 n 位不足近似. 称有理数 $\bar{x}_n = x_n + \frac{1}{10^n}$ 为 x 的 n 位过剩近似.

对于负实数 $x=-a_0.a_1a_2\cdots a_n\cdots$, 其 n 位不足近似和 n 位过剩近似分别规定为

$$x_n = -a_0.a_1a_2\cdots a_n - \frac{1}{10^n}$$
 $\bar{x}_n = x_n + \frac{1}{10^n}$

注 1 不难看出,实数 x 的不足近似 x_n 当 n 增大时不减,即 $x_0 \le x_1 \le x_2 \le \cdots$;而过剩近 似 \bar{x}_n 当 n 增大时不增, 即 $\bar{x}_0 \geq \bar{x}_1 \geq \bar{x}_2 \geq \cdots$

我们有以下的命题.

命题 1 (近似等价比大小) 设 $x = a_0.a_1a_2 \cdots$ 与 $y = b_0.b_1b_2 \cdots$ 为两个实数,则

$$x > y \iff \exists n \in \mathbb{N},$$
使得 $x_n > \bar{y}_n$

其中, x_n 表示 x 的 n 位不足近似, \bar{y}_n 表示 y 的 n 位过剩近似.

关于这个命题的证明,以及实数四则运算的定义,可参阅本书附录。

例 1 (两个实数之间必定存在有理数)

设 x,y 为实数, x < y. 证明: 存在有理数 r, 满足 x < r < y.

证明 x < y, 由 命题 1 得,存在非负整数 n , 使得 $\bar{x}_n < y_n$. 令 $r = \frac{1}{2}(\bar{x}_n + y_n)$, 则 r 为有理数,且有

$$x \le \bar{x}_n < r < y_n \le y$$

为了方便起见,通常将全体实数构成的集合记为 \mathbb{R} , 即 $\mathbb{R} = \{x \mid x$ 为实数\. 实数有如下一些主要性质:

- 1. 实数集 ℝ 对加、减、乘、除 (除数不为 0) 四则运算是封闭的,即任意两个实数的和、差、积、 商 (除数不为 0) 仍然是实数.
- 2. 实数集是有序的,即任意两实数 a,b 必然满足下述三个关系之一:a < b, a = b, a > b.
- 3. 实数的大小关系具有传递性,即若 a > b, b > c,则有 a > c.

1.1 实数 7

4. 实数具有阿基米德 (Archimedes) 性,即对任何 $a,b \in \mathbb{R}$,若 b > a > 0,则存在正整数 n,使得 na > b.

- 5. 实数集 ℝ 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数 (见例 1),也有无理数.
- 6. 如果在一条直线上 (通常画成水平直线) 确定一点 O 作为原点,指定一个方向为正向 (通常 把指向右方的方向规定为正向),并规定一个单位长度,则称此直线为 **数轴**. 可以说明: 任 一实数都对应数轴上唯一的一点; 反之,数轴上的每一点也都唯一地代表着一个实数. 于是,实数集 \mathbb{R} 与数轴上的点有着一一对应关系. 在本书以后的叙述中,常把"实数 a"与"数轴上的点 a"这两种说法看做具有相同的含义.

例 2

设 $a,b \in \mathbb{R}$. 证明: 若对任何正数 ε , 有 $a < b + \varepsilon$, 则 $a \le b$.

证明 用反证法. 假设结论不成立,则根据实数集的有序性,必有 a > b. 令 $\varepsilon = a - b$,则 ε 为正数,但有 $a = b + \varepsilon$,这与题设 $a < b + \varepsilon$ 产生矛盾. 因此必有 a < b.

1.1.2 绝对值与不等式

实数 a 的绝对值定义为

$$\mid a \mid = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

从数轴上看,数 a 的绝对值 |a| 就是点 a 到原点的距离. 实数的绝对值有如下一些性质:

- 1. |a|=|-a|>0, 当且仅当 a=0 时, 有 |a|=0.
- $2. |a| \le a \le |a|$.
- 3. $|a| < h \iff -h < a < h$ $|a| \le h \iff -h \le a \le h \text{ (h>0)}.$
- 4. 对任何 $a,b \in \mathbb{R}$,都有如下的**三角不等式**:

$$|a| - |b| \le |a \pm b| \le |a| + |b|$$

5. |ab| = |a| |b|

6.
$$|\frac{a}{b}| = \frac{|a|}{|b|} (b \neq 0)$$

下面只证明性质 4, 其余性质由读者自行证明.

证明 由性质 2 有 $-|a| \le a \le |a|, -|b| \le b \le |b|$ 两式相加得 $-(|a|+|b|) \le a+b \le |a|+|b|$ 根据性质 3,上式等价于

$$|a+b| \le |a| + |b| \tag{1}$$

将式 (1) 中 b 换成 -b, 即得 $|a-b| \le |a| + |-b| = |a| + |b|$, 这就证明了性质 4 不等式的 右半部分.

又由 |a|=|a-b+b|, 根据式 (1.1) 得 $|a| \le |a-b| + |b|$, 从而有

$$|a| - |b| \le |a - b| \tag{2}$$

将式 (2) 中的 b 换成 -b, 即得 $|a| - |b| \le |a+b|$. 左半部分得证.

习题 1.1

 \dagger 1 设 a 为有理数, x 为无理数. 证明:

(1) a+x 是无理数 (2) 当 $a \neq 0$ 时, ax 是无理数.

证明 (1) 用反证法. 假设 a+x 是有理数,则存在整数 $q_1, p_1 \neq 0$ 使得 $a+x = \frac{q_1}{p_1}$. 又 a 为有 理数,则存在整数 $q_2, p_2 \neq 0$ 使得 $a = \frac{q_2}{p_2}$. 则 $x = (a+x) - a = \frac{q_1}{p_1} - \frac{q_2}{p_2} = \frac{q_1 p_2^{r_1} - q_2 p_1}{p_1 p_2}$. 其中, $q_1 p_2 - q_2 p_1, p_1 p_2$ 均为整数,且 $p_1 p_2 \neq 0$,则 x 也为有理数. 这与题设 x 为无理数相矛盾. 故 a+x必为无理数.

(2) 与 (1) 思路类似. 假设 ax 是有理数, 有 $ax = \frac{q_1}{p_1}$, $a = \frac{q_2}{p_2}$, 其中 p_1, p_2, q_2 均不为 0. 则 $x=rac{ax}{a}=rac{q_1p_2}{p_1q_2}$ 也为有理数. 与题设矛盾.

†2 试在数轴上表示出下列不等式的解:

(1)
$$x(x^2-1) > 0$$
 (2) $|x-1| < |x-3|$ (3) $\sqrt{x-1} - \sqrt{2x-1} \ge \sqrt{3x-2}$

 \mathbf{H} (1) 因式分解得 $x(x+1)(x-1) > 0 \implies -1 < x < 0 \to 0$ x > 1

$$-1$$
 0 1 x

(3) 首先,根据平方根的非负性,有 $x-1 \ge 0, 2x-1 \ge 0, 3x-2 \ge 0, x-1 \ge 2x-1$ 整理得相互矛盾的不等式: $x \ge 1, x \le 0$. 故不等式无解.

†3 设 $a,b \in \mathbb{R}$. 证明:若对任何正数 ε ,都有 $|a-b| < \varepsilon$,则 a=b.

证明 用反证法. 假设 $a \neq b$, 则 |a-b| > 0. 取 $\varepsilon = |a-b|$,则 $|a-b| = \varepsilon$. 这与题设 $|a-b| < \varepsilon$ 相矛盾. 故必有 a=b.

†4 设 $x \neq 0$, 证明 $|x + \frac{1}{x}| \geq 2$, 并说明其中等号何时成立.

1.1 实数 9

证明 易知 $(x-\frac{1}{x})^2 \geq 0 \iff x^2-2+\frac{1}{x^2} \geq 0 \iff x^2+2+\frac{1}{x^2} \geq 4 \iff (x+\frac{1}{x})^2 \geq 4 \iff (|x+\frac{1}{x}|) \geq 2^2 \iff |x+\frac{1}{x}| \geq 2$. 并且, $|x+\frac{1}{x}| = 2 \iff (x-\frac{1}{x})^2 = 0 \iff x=\frac{1}{x} \iff x^2=1 \iff |x| = 1$. 即 |x| = 1 时等号成立。

 \dagger 5 证明: 对任何 $x \in \mathbb{R}$. 有

$$(1)|x-1| + |x-2| \ge 1 \quad (2)|x-1| + |x-2| + |x-3| \ge 2$$

证明 (1) 由三角不等式得 $|x-1|+|x-2| \ge |(x-1)-(x-2)| = 1$. 当且仅当 $x-1 \ge 0$ 且 $x-2 \le 0$, 即 $x \in [1,2]$ 时等号成立.

$$(2) \mid x-1 \mid + \mid x-2 \mid + \mid x-3 \mid \geq \mid x-1 \mid + \mid x-3 \mid \geq \mid (x-1)-(x-3) \mid = 2$$
. 当且仅当 $x=2$ 时等号成立.

†6 设 $a,b,c \in \mathbb{R}^+$ (\mathbb{R}^+ 表示全体正实数的集合). 证明:

$$|\sqrt{a^2+b^2}-\sqrt{a^2+c^2}| \le |b-c|$$
.

你能说明此不等式的几何意义吗?

证明 欲证 | $\sqrt{a^2+b^2}-\sqrt{a^2+c^2}$ | \leq | b-c |

只需证
$$(|\sqrt{a^2+b^2}-\sqrt{a^2+c^2}|)^2 \le (|b-c|)^2$$

$$\iff a^2 + b^2 + 2\sqrt{(a^2 + b^2)(a^2 + c^2)} + b^2 + c^2 \le b^2 + 2bc + c^2 \iff a^2 + bc \le \sqrt{(a^2 + b^2)(a^2 + c^2)}$$

$$\iff a^4 + 2a^2bc + b^2c^2 \le a^4 + a^2c^2 + a^2b^2 + b^2c^2$$

$$\iff 2a^2bc \le a^2(b^2+c^2)$$

由于 $a^2 > 0$ 且 $b^2 + c^2 > 2bc$,故原命题得证.

几何意义: 给出平面上两点 A(a,b), B(a,c), 则 A,B 到原点 O 的距离分别为 $\sqrt{a^2+b^2}$, $\sqrt{a^2+c^2}$, A,B 两点的距离为 |b-c|. 故原不等式等价于 $|OA-OB| \le |AB|$, 即两边之差小于第三边. 如下图所示.

†7 设 $x>0, b>0, a\neq b$. 证明 $\frac{a+x}{b+x}$ 介于 1 与 $\frac{a}{b}$ 之间.

证明

$$(\frac{a+x}{b+x}-1)(\frac{a+x}{b+x}-\frac{a}{b})$$

$$=(\frac{a+x-b-x}{b+x})(\frac{ab+bx-ab-ax}{b(b+x)})$$

$$=\frac{-x(a-b)^2}{b(b+x)^2}$$

由于
$$x>0, b>0, a\neq b$$
 , 上式 $<0.$ 故 $\frac{a+x}{b+x}$ 介于 1 与 $\frac{a}{b}$ 之间.

†8 设p为正整数. 证明: 若p不是完全平方数,则 \sqrt{p} 是无理数.

证明 用反证法. 假设 \sqrt{p} 是有理数,则存在互质的正整数 m,n 使得 $\sqrt{p} = \frac{n}{m} \iff p = \frac{n^2}{m^2}$. 可得 $p^2 = pm^2$,于是 p 是 n 的因数. 设 n = pk,则 k 与 m 互质,且 $p^2k^2 = pm^2 \iff m^2 = pk^2$. 可得 p 也是 m 的因数. m,n 有公因数 p ,这与 m,n 互质相矛盾. 故 \sqrt{p} 是无理数.

†9 设 a,b 为给定实数. 试用不等式符号 (不用绝对值符号) 表示下列不等式的解:

(1)
$$|x-a| < |x-b|$$
 (2) $|x-a| < x-b$ (3) $|x^2-a| < b$

解(1)

$$|x-a| < |x-b|$$

$$\iff (x-a)^2 < (x-b)^2 \iff 2x(a-b) > a^2 + b^2$$

$$\iff \begin{cases} \mathcal{F}_{\mathbf{A}}^{\mathbf{A}} & a = b \\ x > \frac{a+b}{2} & a > b \\ x < \frac{a+b}{2} & a < b \end{cases}$$

(2) 解集必然是 $\{x \mid x > b\}$ 的子集. 结合 (1) 可得

$$\begin{cases} \mathcal{E} & a \le b \\ x > \frac{a+b}{2} & a > b \end{cases}$$

- (3) <1> 当 $b \le 0$ 时,不等式无解.
 - <2> 当 b>0 时,不等式等价于 $a-b < x^2 < a+b$.
 - [1] 当 $a+b \le 0$ 时,不等式无解.
 - [2] 当 a+b>0 时,
 - 1) 若 a < b, 不等式的解为 $-\sqrt{a+b} < x < \sqrt{a+b}$.
 - 2) 若 a > b,不等式的解为 $\sqrt{a-b} < x < \sqrt{a+b}$ 或 $-\sqrt{a+b} < x < -\sqrt{a-b}$.

1.2 数集 • 确界原理

本节中我们先定义 \mathbb{R} 中两类重要的数集——区间和邻域,然后讨论有界集,并给出确界的定义和确界原理.

1.2.1 区间和邻域

设 $a,b \in \mathbb{R}$,且 a < b .我们称数集 $\{x \mid a < x < b\}$ 为 开区间,记作 (a,b) ;称数集 $\{x \mid a \le x \le b\}$ 为 闭区间,记作 [a,b] ;称数集 $\{x \mid a \le x < b\}$ 和 $\{x \mid a < x \le b\}$ 为 半开半闭区间,分别记作 (a,b] 和 [a,b). 以上这几类区间统称为 有限区间.从数轴上来看,开区间 (a,b) 表示 a,b 两点间所有点的集合,闭区间 [a,b] 比开区间 (a,b) 多两个端点,半开半闭区间 (a,b) 和 [a,b) 则比开区间 (a,b) 多一个端点.

1.2 数集 • 确界原理 11

数集 $\{x\mid x\geq a\}$ 记作 $[a,+\infty)$, 这里符号 ∞ 读作"无穷大", $+\infty$ 读作"正无穷大".类似地,我们记

$$\begin{aligned} & (-\infty, a] = \{x \mid x \leq a\} \\ & (a, +\infty) = \{x \mid x > a\} \\ & (-\infty, a) = \{x \mid x < a\} \\ & (-\infty, +\infty) = \{x \mid -\infty < x < +\infty\} = \mathbb{R} \end{aligned}$$

其中 $-\infty$ 读作"负无穷大". 以上这几类数集统称为 无限区间. 有限区间和无限区间统称为 区间.

设 $a \in \mathbb{R}, \delta > 0$. 称集合 $\{x \mid |x-a| < \delta\}$ 为 点 a 的 δ 邻域,记作 $U(a,\delta)$,或简记为 U(a),即有

$$U(a, \delta) = \{x \mid |x - a| < \delta\} = (a - \delta, a + \delta)$$

点 a 的空心 δ 邻域定义为

$$U^{\circ}(a,\delta) = \{x \mid 0 < |x-a| < \delta\} = (a-\delta,a) \cup (a,a+\delta)$$

它也可以简记为 $U^{\circ}(a)$. 注意到, $U^{\circ}(a,\delta)$ 和 $U(a,\delta)$ 的差别在于: $U^{\circ}(a,\delta)$ 不包含点 a.

此外,我们还常用到以下几种邻域:

点 a 的 δ 左邻域 $U_{-}(a,\delta)=(a-\delta,a]$, 简记为 $U_{-}(a)$.

点 a 的 δ 右邻域 $U_+(a,\delta)=[a,a+\delta)$, 简记为 $U_+(a)$.

点 a 的空心 δ 左邻域 $U_{-}^{\circ}(a,\delta)=(a-\delta,a)$, 简记为 $U_{-}^{\circ}(a)$.

点 a 的空心 δ 右邻域 $U_+^{\circ}(a,\delta)=(a,a+\delta)$, 简记为 $U_+^{\circ}(a)$.

 ∞ 邻域 $U(\infty) = \{x \mid |x| > M\}$, 其中 M 为充分大的正数 (下同).

 $+\infty$ 邻域 $U(+\infty) = \{x \mid x > M\}.$

 $-\infty$ 邻域 $U(-\infty) = \{x \mid x < -M\}.$

1.2.2 有界集 • 确界原理

定义 3 (有界数集) 设 S 为 \mathbb{R} 中的一个数集.

- 若存在数 M, 使得对一切 $x \in S$, 都有 $x \le M$, 则称 S 为 有上界的数集 ,称 M 为 S 的一个 上界.
- 若存在数 L, 使得对一切 $x \in S$, 都有 xgleM, 则称 S 为 有下界的数集 ,称 L 为 S 的一个 下界.
- 若数集 S 既有上界又有下界,则称 S 为有界集.

例 3 (正整数集无上界)

证明数集 $\mathbb{N}_+ = \{n \mid n$ 力正整数 $\}$ 有下界而无上界.

证明 显然,任何一个不大于 1 的实数都是 \mathbb{N}_+ 的下界,故 \mathbb{N}_+ 为有下界的数集.

为证 \mathbb{N}_+ 无上界,按照定义只需证明: 对于无论多么大的数 M,总存在某个正整数 $n_0 \in \mathbb{N}_+$,有 $n_0 > M$. 事实上,对任何正数 M (无论多么大),总可取 $n_0 = \lfloor M \rfloor + 1$,则 $n_0 \in \mathbb{N}_+$,且 $n_0 > M$. 这就证明了 \mathbb{N}_+ 无上界.

读者还可以自行证明:任何有限区间都是有界集,无限区间都是无界集;由有限个数组成的数集是有界集.

若数集 S 有上界,则显然它有无穷多个上界,而其中最小的一个上界常常具有重要的作用,称它为数集 S 的上确界. 同样,有下界数集的最大下界,称为该数集的下确界. 下面给出数集的上确界和下确界的精确定义.

定义 4 (上确界) 设 $S \in \mathbb{R}$ 中的一个数集. 若数 η 满足:

- (i) 对一切 $x \in S$, 有 $x \le \eta$, 即 η 是 S 的上界
- (ii) 对任何 $\alpha < \eta$, 存在 $x_0 \in S$, 使得 $x_0 > \alpha$, 即 η 又是 S 的最小上界

则称数 η 为数集 S 的上确界,记作 $\eta = \sup S$

定义 5 (下确界) 设 $S \in \mathbb{R}$ 中的一个数集. 若数 ξ 满足:

- (i) 对一切 $x \in S$, 有 $x \ge \xi$, 即 $\xi \notin S$ 的下界
- (ii) 对任何 $\beta > \xi$, 存在 $x_0 \in S$, 使得 $x_0 < \beta$, 即 ξ 又是 S 的最大上界

则称数 ξ 为数集 S 的下确界,记作 $\xi = \inf S$

上确界与下确界统称为 确界.

例 4

设 $S = \{x \mid x \}$ 区间(0,1)上的有理数\. 试按照上下确界的定义验证: $\sup S = 1$, $\inf S = 0$.

证明 先验证 $\sup S = 1$:

- (i) 对一切的 $x \in S$, 明显有 $x \le 1$, 即 1 确实是 S 的上界.
- (ii) 对于任何的 $\alpha < 1$,
 - 若 α < 0,则任取 $x_0 \in S$,都有 $x_0 > \alpha$
 - 若 $\alpha > 0$,则由有理数集在实数集中的稠密性可知,在 $(\alpha,1)$ 上必有有理数 x_0 ,即存在 $x_0 \in S$,使得 $x_0 > \alpha$.

类似地,可以验证 $\inf S = 0$.

读者还可自行验证: 闭区间 [0 1] 的上、下确界分别为 1 和 0; 对于数集 $E = \{\frac{(-1)^n}{n} \mid n = 1, 2, \cdots\}$,有 $\sup E = \frac{1}{2}, \inf E = -1$; 正整数集 \mathbb{N}_+ 有下确界 $\inf \mathbb{N}_+ = 1$,而没有上确界.

注 2 由上 (Γ) 确界的定义可见,若数集 S 存在上 (Γ) 确界,则一定是唯一的. 又若数集 S 存在上、下确界,则有 $\inf S \leq \sup S$.

1.2 数集 • 确界原理 13

 ≥ 3 从上面一些例子可见,数集 $\leq S$ 的确界可能属于 $\leq S$,也可能不属于 $\leq S$.

例 5 (确界与最值)

设数集 S 有上确界. 证明

$$\eta = \sup S \in S \iff \eta = \max S$$

证明 \Longrightarrow) 设 $\eta = \sup S \in S$, 则对一切 $x \in S$, 都有 $x \le \eta$, 而 $\eta \in S$, 故 η 是数集 S 中最大的数,即 $\eta = \max S$.

(=) 设 $\eta = \max S$, 则 $\eta \in S$; 下面验证 $\eta = \sup S$:

- (i) 对一切 $x \in S$, 均有 $x \le \eta$, 即 $\eta \in S$ 的上界.
- (ii) 对任何 $\alpha < \eta$, 只需取 $x_0 = \eta \in S$, 便有 $x_0 > \alpha$. 这说明 $\eta = \sup S$.

关于数集确界的存在性,我们给出如下确界原理.

定理 1 (确界原理) 设 S 为非空数集. 若 S 有上界, 则 S 必有上确界; 若 S 有下界, 则 S 必有下确界.

证明 我们只证明关于上确界的结论,后一结论可类似地证明.

为了叙述方便,不妨设S含有非负数.由于S有上界,故可以找到非负整数n,使得

- 1) 对于任何 $x \in S$, 都有 x < n+1.
- 2) 存在 $a_0 \in S$, 使 $a_0 > n$.

对于半开半闭区间 [n, n+1) 作 10 等分,分点为 $n.1, n.2, \cdots, n.9$,则存在 $0, 1, 2, \cdots, 9$ 中的一个数 n_1 ,使得

- 1) 对于任何 $x \in S$, 都有 $x < n.n_1 + \frac{1}{10} = n.(n_1 + 1)$.
- 2) 存在 $a_1 \in S$, 使 $a_1 \ge n.n_1$.

. 对于半开半闭区间 $[n.n_1, n.n_1 + \frac{1}{10})$ 作 10 等分,分点为 $n.n_11, n.n_12, \cdots, n.n_19$,则存在 $0,1,2,\cdots,9$ 中的一个数 n_2 ,使得

- 1) 对于任何 $x \in S$, 都有 $x < n.n_1n_2 + \frac{1}{10^2} = n.n_1(n_2 + 1)$.
- 2) 存在 $a_2 \in S$, 使 $a_2 \ge n.n_1n_2$.

继续不断地 10 等分在前一步骤中所得到的半开区间,可知对任何 $k=1,2,\cdots$,存在 $0,1,2,\cdots$, 9 中的一个数 n_k , 使得

1) 对于任何
$$x \in S$$
, 都有 $x < n.n_1n_2 \cdots n_k + \frac{1}{10^k} = n.n_1n_2 \cdots (n_k + 1).$ (3)

2) 存在 $a_k \in S$, 使 $a_k \geq n.n_1n_2 \cdots n_k$.

将上述步骤无限地进行下去,得到实数 $\eta=n.n_1n_2\cdots n_k\cdots$. 下面证明 $\eta=\sup S$. 为此,只需证明:

- (i) 对一切 $x \in S$, 有 $x \le \eta$.
- (ii) 对任何 $\alpha > \eta$, 存在 $x_0 \in S$, 使得 $x_0 > \alpha$

倘若结论 (i) 不成立, 即存在 $x \in S$, 使 $x > \eta$, 则可以找到 x 的 k 位不足近似 x_k , 使得

$$x_k > \bar{\eta}_k = n.n_1 n_2 \cdots n_k + \frac{1}{10^k}$$

但这与不等式 (3) 相矛盾. 于是 (i) 得证.

现设 $\alpha < \eta$, 则存在 k , 使 η 的 k 位不足近似 $\eta_k > \bar{\alpha}_k$, 即 $n.n_1n_2\cdots n_k > \bar{\alpha}_k$. 根据数 η 的构造过程,存在 $x_0 \in S$, 有 $x_0 \geq \eta_k > \bar{\alpha}_k \geq \alpha$. 于是我们得到 $x_0 > \alpha$. 这说明 (ii) 成立.

在本书中,确界原理是极限理论的基础,读者应给予充分的重视.

例 6

设 A, B 为非空数集, 满足: 对一切 $x \in A$ 和 $y \in B$ 有 $x \le y$. 证明: 数集 A 有上确界, 数集 B 有下确界, 且

$$\sup A \le \inf B \tag{4}$$

证明 由题设可得,数集 B 中任何一个数 y 都是数集 A 的上界, A 中任何一个数 x. 都是 B 的下界, 故由确界原理推知,数集 A 有上确界,数集 B 有下确界.

现证不等式 (4). 对任何 $y \in B$,y 都是数集 A 的一个上界,而由上确界的定义得, $\sup A$ 是数集 A 的最小上界. 因此 $\sup A \leq y$. 而此式又表明数 $\sup A$ 是数集 B 的一个下界,故由下确界的定义得 $\sup A \leq \inf B$.

例 7

设 A, B 为非空有界数集, $S = A \cup B$. 证明:

- (i) $\sup S = \max\{\sup A, \sup B\}$
- (ii) $\inf S = \min \{\inf A, \inf B\}$

证明 由于 $S = A \cup B$, 易知 S 也是非空有界数集, 因此 S 的上、下确界都存在.

(i) 对于任何的 $x \in S$, 有 $x \in A$ 或 $x \in B \implies x \le \sup A$ 或 $x \le \sup B$, 从而有 $x \le \max\{\sup A, \sup B\}$, 故得 $\sup S \le \max\{\sup A, \sup B\}$.

另一方面,对任何的 $x \in A$,有 $x \in S \implies x \le \sup S \implies \sup A \le \sup S$;同理有 $\sup B \le \sup S$. 所以有 $\sup S \ge \max \{\sup A, \sup B\}$.

综上, 即可证得 $\sup S \ge \max\{\sup A, \sup B\}$.

(ii) 可类似证明.

若把 $+\infty$ 和 $-\infty$ 补充到实数集中,并规定任何一个实数 a 与 $+\infty$, $-\infty$ 的大小关系为: $-\infty$ < a < $+\infty$,则确界的概念可以扩充为: 若数集 S 无上界,则定义 $+\infty$ 为 S 的非正常上确界,记作 $\sup S = +\infty$; 若 S 无下界,定义 $-\infty$ 为 S 的非正常下确界,记作 $\inf S = -\infty$. 相应地,前面定义 4 、定义 5中所定义的确界分别称为 正常上、下确界.

在上述扩充意义下,我们有

1.2 数集 • 确界原理 15

定理 2 (推广的确界原理) 任何一个非空数集必有上、下确界 (正常的或非正常的).

例如,对于正整数集 \mathbb{N}_+ ,有 $\inf \mathbb{N}_+ = 1$, $\sup \mathbb{N}_+ = +\infty$; 对于数集 $S = \{y \mid y = 2 - x^2, x \in \mathbb{R}\}$, 有 $\inf S = -\infty$, $\sup S = 2$.

习题 1.2

†1 用区间表示下列不等式的解:

(1)
$$|1-x|-x \ge 0$$
 (2) $|x+\frac{1}{x}| \le 6$

(3)
$$(x-a)(x-b)(x-c) > 0$$
 (a,b,c) 为常数,且 $a < b < c$) (4) $\sin x \ge \frac{\sqrt{2}}{2}$

解 $(1) | 1-x | -x \ge 0 \iff |1-x| \ge x \iff 1-x \ge x$ 或 $x-1 \ge x \iff x \le \frac{1}{2}$ 用区间表示为 $(-\infty, \frac{1}{2}]$.

$$(2) \mid x + \frac{1}{x} \mid \leq 6 \iff (x + \frac{1}{x})^2 \leq 36 \iff (x^2 + 1)^2 \leq 36x^2 \iff x^4 - 34x^2 + 1 \leq 0 \\ \iff 17 - 12\sqrt{2} \leq x^2 \leq 17 + 12\sqrt{2} \iff -3 - 2\sqrt{2} \leq x \leq -3 + 2\sqrt{2} \\ \text{所区间表示为} \left[-3 - 2\sqrt{2}, -3 + 2\sqrt{2} \right] \cup \left[3 - 2\sqrt{2}, 3 + 2\sqrt{2} \right].$$

- (3) 解集为 $\{x \mid a < x < b$ 或 $x > c\}$. 写成区间为 $(a,b) \cup (c,+\infty)$.
- $(4)\ \bigcup_{k\in\mathbb{Z}}[\frac{\pi}{4}+2k\pi,\frac{3\pi}{4}+2k\pi]$
- †2 设 S 为非空数集. 试对下列概念给出定义:
 - (1) S 无上界 (2) S 无界
- 解 (1) S 为非空数集,若对任意的正数 M, 存在 $x_0 \in S$, 使得 $x_0 > M$, 则称 S 无上界.
 - (2) S 为非空数集, 若对任意的正数 M, 存在 $x_0 \in S$, 使得 $|x_0| > M$, 则称 S 无界.
- †3 试证明数集 $S = \{y \mid y = 2 x^2, x \in \mathbb{R}\}$ 有上界而无下界.

证明 $y = 2 - x^2 < 2$. 故 S 有上界 2.

对于任何一个正数 M, 都存在 $x_0 = \sqrt{3+M}$, 使得 $y_0 = 2 - x_0^2 = -M - 1 < -M$. 故 S 无下界.

†4 求下列数集的上、下确界,并依据定义加以验证:

(1)
$$S = \{x \mid x^2 < 2\}$$
 (2) $S = \{x \mid x = n!, n \in \mathbb{N}_+\}$

(3)
$$S = \{x \mid x \not\ni (0,1) \bot$$
 的无理数 \} (4) $S = \{x \mid x = 1 - \frac{1}{2^n}, n \in \mathbb{N}_+\}$

解 $(1) \sup S = \sqrt{2}, \inf S = -\sqrt{2}$. 易得, $\sqrt{2}$ 是 S 的一个上界. 对任意的 $\eta < \sqrt{2}$, 若 $\eta < -\sqrt{2}$,则 $\forall x \in S$,都有 $x > \eta$; 若 $\eta \ge -\sqrt{2}$,则存在 $x_0 = \frac{\sqrt{2} + \eta}{2} \in S$,有 $x_0 > \eta$. 由定义得, $\sqrt{2}$ 是 S 的上确界. 同理可验证 $-\sqrt{2}$ 是 S 的下确界.

- (2) $\sup S=+\infty,\inf S=1$. 对任意的正数 M ,都存在 $x_0=\lceil M \rceil! \in S$,有 $x_0>M$. 故 $\sup S=+\infty$. 易知,1 为 S 的一个下界. 对任意的 $\xi>1$,存在 $x_0=1\in S$,有 $x_0<\xi$. 故 1 为 S 的下确界.
- (3) $\sup S = 1$, $\inf S = 0$. 易知 1 为 S 的一个上界. 对任意的 $\eta < 1$, 根据无理数的稠密性, 在 $(\eta, 1)$ 上必然存在无理数 $x_0 \in S$, 即有 $x_0 > \eta$. 故 1 为 S 的上确界. 同理可证 0 为 S 的下确界.
- (4) $\sup S = 1, \inf S = \frac{1}{2}$. 对任意的 $x \in S$, 有 $x = 1 \frac{1}{2^n} \le 1$. 故 1 是 S 的上界. 对任何的 $\eta < 1$, 若 $\eta < \frac{1}{2}$, 则存在 $x_0 = 1 \frac{1}{2} = \frac{1}{2} \in S$, 有 $x_0 > \eta$; 若 $\eta \ge \frac{1}{2}$, 取 $n = \lceil \log_2(\frac{1}{1-\eta}) \rceil$, 则存在 $x_0 = 1 \frac{1}{2^n} \in S$, 有 $x_0 > \eta$. 故 1 是 S 的上确界. 容易验证,下确界即为 S 中的数的最小值 $\frac{1}{2}$.

†5 设 S 为非空有下界的数集,证明: $\inf S = \xi \in S \iff \xi = \min S$.

证明 \Longrightarrow) 设 $\xi = \inf S \in S$, 则对一切 $x \in S$, 都有 $x \ge \xi$, 而 $\xi \in S$, 故 ξ 是数集 S 中最小的数,即 $\eta = \min S$.

 \longleftarrow) 设 $\xi = \min S$, 则 $\xi \in S$; 下面验证 $\xi = \inf S$:

- (i) 对一切 $x \in S$, 均有 x > x, 即 $\xi \notin S$ 的下界.
- (ii) 对任何 $\beta > \xi$, 只需取 $x_0 = \xi \in S$, 便有 $x_0 < \beta$. 这说明 $\xi = \inf S$.
- † 6 设 S 为非空数集, 定义 $S^{-} = \{x \mid -x \in S\}$. 证明:
 - (1) $\inf S^- = -\sup S$ (2) $\sup S^- = -\inf S$.
- 证明 (1) 对任意的 $x \in S^-$, 都有 $-x \in S$, 则 $-x \le \sup S$, 故 $x \ge -\sup S$, 即 $-\sup S$ 是 S^- 的下界. 对任意的 $\beta > -\sup S$, 也即 $-\beta < \sup S$, 都存在 $-x_0 \in S$, 有 $-x_0 > -\beta$, 则 $x_0 \in S^-$,且 $x_0 < \beta$. 故 $-\sup S$ 是 S^- 的下确界.
- (2) 对任意的 $x \in S^-$, 都有 $-x \in S$, 则 $-x \ge \inf S$, 故 $x \le -\inf S$, 即 $-\inf S$ 是 S^- 的上界. 对任意的 $\alpha < -\inf S$, 也即 $-\alpha > \inf S$, 都存在 $-x_0 \in S$, 有 $-x_0 < -\alpha$,则 $x_0 \in S^-$,且 $x_0 > \alpha$. 故 $-\inf S$ 是 S^- 的上确界.
- † 7 设 A,B 均为非空有界数集,定义数集 $A+B=\{z\mid z=x+y, x\in A, y\in B\}$. 证明:(1) $\sup(A+B)=\sup A+\sup B$ (2) $\inf(A+B)=\inf A+\inf B$
- 证明 $(1) \Longrightarrow$) 对任意的 $z \in A + B$, 有 $z = x + y \le \sup A + \sup B$, 其中 $x \in A, y \in B$. 故 $\sup A + \sup B$ 是 A + B 的一个上界, 则 $\sup(A + B) \le \sup A + \sup B$.
- ⇒ 対于任意的 $\varepsilon > 0$, 存在 $x_0 \in A$, 有 $x_0 > \sup A \frac{1}{2}\varepsilon$, 存在 $y_0 \in B$, 有 $y_0 > \sup B \frac{1}{2}\varepsilon$. 故 $\sup(A+B) \ge z_0 = x_0 + y_0 > \sup A + \sup B \varepsilon$. 由 ε 的任意性可知, $\sup(A+B) \ge \sup A + \sup B$. 综上, $\sup(A+B) = \sup A + \sup B$.
- (2) ⇒) 对任意的 $z \in A+B$,有 $z=x+y \geq \inf A+\inf B$,其中 $x \in A, y \in B$.故 $\inf A+\inf B$ 是 A+B 的一个下界,则 $\inf (A+B) \geq \inf A+\inf B$.
- ⇒ 対于任意的 $\varepsilon > 0$, 存在 $x_0 \in A$, 有 $x_0 < \inf A + \frac{1}{2}\varepsilon$, 存在 $y_0 \in B$, 有 $y_0 < \inf B + \frac{1}{2}\varepsilon$. 故 $\inf(A+B) \le z_0 = x_0 + y_0 < \inf A + \inf B + \varepsilon$. 由 ε 的任意性可知, $\inf(A+B) \le \inf A + \inf B$. 综上, $\inf(A+B) = \inf A + \inf B$.

1.3 函数的概念 17

1.3 函数的概念