$11n_{14} (K11n_{14})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^{25} - 6u^{24} + \dots + 2b - 7u, 7u^{25} + 14u^{24} + \dots + 2a + 9u, u^{26} + 3u^{25} + \dots + u - 1 \rangle$$

 $I_2^u = \langle b + a, a^2 - a + 1, u^2 - u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 30 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{25} - 6u^{24} + \dots + 2b - 7u, 7u^{25} + 14u^{24} + \dots + 2a + 9u, u^{26} + 3u^{25} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{7}{2}u^{25} - 7u^{24} + \dots - 2u^{2} - \frac{9}{2}u\\ \frac{3}{2}u^{25} + 3u^{24} + \dots + u^{2} + \frac{7}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\-u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{25} + u^{24} + \dots - 4u^{2} - \frac{5}{2}u\\ -\frac{1}{2}u^{25} - u^{24} + \dots + 4u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{13}{2}u^{25} - 12u^{24} + \dots - \frac{17}{2}u + 2\\ \frac{9}{2}u^{25} + 8u^{24} + \dots + \frac{15}{2}u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} + 2u^{3} + u\\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} + 2u^{3} + u\\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1\\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1\\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1\\ u^{4} - 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{5}{2}u^{25} + 4u^{24} - \frac{57}{2}u^{23} - 41u^{22} + \frac{277}{2}u^{21} + \frac{305}{2}u^{20} - 391u^{19} - 205u^{18} + \frac{1475}{2}u^{17} - 141u^{16} - 910u^{15} + 742u^{14} + 464u^{13} - \frac{1721}{2}u^{12} + 374u^{11} + 381u^{10} - 512u^9 + 147u^8 + \frac{229}{2}u^7 - 247u^6 - \frac{49}{2}u^5 + \frac{29}{2}u^4 - 53u^3 - 27u^2 - \frac{29}{2}u + 9$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{26} + 3u^{25} + \dots - 3u + 1$
c_2	$u^{26} + 15u^{25} + \dots - 23u + 1$
c_3,c_8	$u^{26} - u^{25} + \dots + 16u - 16$
<i>C</i> ₅	$u^{26} - 3u^{25} + \dots - 11u + 2$
c_6, c_7, c_9 c_{10}	$u^{26} - 3u^{25} + \dots - u - 1$
c_{11}	$u^{26} + 3u^{25} + \dots + 3u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{26} + 15y^{25} + \dots - 23y + 1$
c_2	$y^{26} - 5y^{25} + \dots - 795y + 1$
c_{3}, c_{8}	$y^{26} + 25y^{25} + \dots + 1664y + 256$
<i>C</i> ₅	$y^{26} - 25y^{25} + \dots + 7y + 4$
c_6, c_7, c_9 c_{10}	$y^{26} - 29y^{25} + \dots - 19y + 1$
c_{11}	$y^{26} + 31y^{25} + \dots - 19y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.608473 + 0.715807I		
a = 0.153590 - 1.045830I	-7.73283 + 7.28919I	4.65018 - 5.96812I
b = -1.73126 + 0.24397I		
u = 0.608473 - 0.715807I		
a = 0.153590 + 1.045830I	-7.73283 - 7.28919I	4.65018 + 5.96812I
b = -1.73126 - 0.24397I		
u = 0.433445 + 0.761836I		
a = -0.011324 - 1.102790I	-8.25588 - 2.37235I	3.41364 + 0.56644I
b = -1.56800 + 0.06124I		
u = 0.433445 - 0.761836I		
a = -0.011324 + 1.102790I	-8.25588 + 2.37235I	3.41364 - 0.56644I
b = -1.56800 - 0.06124I		
u = 0.514434 + 0.670493I		
a = -0.106433 + 1.146570I	-4.15442 + 2.25820I	7.09524 - 3.00458I
b = 1.59480 - 0.23303I		
u = 0.514434 - 0.670493I		
a = -0.106433 - 1.146570I	-4.15442 - 2.25820I	7.09524 + 3.00458I
b = 1.59480 + 0.23303I		
u = -0.730522 + 0.264601I		
a = -0.408112 - 0.721539I	0.141642 - 0.491245I	7.19488 + 1.21216I
b = -0.020892 - 0.242346I		
u = -0.730522 - 0.264601I		
a = -0.408112 + 0.721539I	0.141642 + 0.491245I	7.19488 - 1.21216I
b = -0.020892 + 0.242346I		
u = 1.42824 + 0.09847I		
a = -0.332202 + 0.112416I	3.94867 + 3.99401I	9.09163 - 3.57778I
b = 1.191590 - 0.262632I		
u = 1.42824 - 0.09847I		
a = -0.332202 - 0.112416I	3.94867 - 3.99401I	9.09163 + 3.57778I
b = 1.191590 + 0.262632I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.47226 + 0.03460I		
a = -0.29209 - 2.37542I	6.47513 - 2.78553I	10.00226 + 3.18308I
b = 0.36258 + 1.62911I		
u = -1.47226 - 0.03460I		
a = -0.29209 + 2.37542I	6.47513 + 2.78553I	10.00226 - 3.18308I
b = 0.36258 - 1.62911I		
u = -1.45262 + 0.27035I		
a = 0.87552 + 1.41378I	-2.20853 - 1.36342I	6.29553 + 0.38377I
b = -1.239850 - 0.375242I		
u = -1.45262 - 0.27035I		
a = 0.87552 - 1.41378I	-2.20853 + 1.36342I	6.29553 - 0.38377I
b = -1.239850 + 0.375242I		
u = -0.230011 + 0.458848I		
a = 0.727275 + 1.025970I	-1.40190 - 2.19157I	3.35211 + 5.42014I
b = 0.536127 + 0.217517I		
u = -0.230011 - 0.458848I		
a = 0.727275 - 1.025970I	-1.40190 + 2.19157I	3.35211 - 5.42014I
b = 0.536127 - 0.217517I		
u = 1.49087		
a = 0.257464	7.14521	13.5410
b = -0.956110		
u = -1.52539 + 0.21566I		
a = -1.11758 - 1.58851I	2.54423 - 5.47373I	10.67253 + 2.88121I
b = 1.54625 + 0.70491I		
u = -1.52539 - 0.21566I		
a = -1.11758 + 1.58851I	2.54423 + 5.47373I	10.67253 - 2.88121I
b = 1.54625 - 0.70491I		
u = -0.448296		
a = -0.791985	0.706372	14.0850
b = -0.195879		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.56905 + 0.24097I		
a = 1.25395 + 1.44166I	-0.54439 - 10.83970I	8.04696 + 6.04188I
b = -1.78957 - 0.55743I		
u = -1.56905 - 0.24097I		
a = 1.25395 - 1.44166I	-0.54439 + 10.83970I	8.04696 - 6.04188I
b = -1.78957 + 0.55743I		
u = 1.63847 + 0.03227I		
a = 0.0580399 - 0.1115770I	8.45818 + 1.37920I	7.00000 + 2.69707I
b = -0.266246 + 0.474227I		
u = 1.63847 - 0.03227I		
a = 0.0580399 + 0.1115770I	8.45818 - 1.37920I	7.00000 - 2.69707I
b = -0.266246 - 0.474227I		
u = 0.335499 + 0.109869I		
a = -0.03337 + 2.42886I	0.44924 + 2.24817I	0.24032 - 5.78182I
b = 0.460465 - 1.052830I		
u = 0.335499 - 0.109869I		
a = -0.03337 - 2.42886I	0.44924 - 2.24817I	0.24032 + 5.78182I
b = 0.460465 + 1.052830I		

II.
$$I_2^u = \langle b+a, \ a^2-a+1, \ u^2-u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ -a + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -a \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 2au + 3a u + 12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^2$
c_3, c_8	u^4
C ₄	$(u^2 - u + 1)^2$
c_6, c_7	$(u^2 - u - 1)^2$
c_9, c_{10}, c_{11}	$(u^2 + u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2+y+1)^2$
c_3, c_8	y^4
$c_6, c_7, c_9 \\ c_{10}, c_{11}$	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 0.500000 + 0.866025I	0.98696 - 2.02988I	13.50000 + 1.52761I
b = -0.500000 - 0.866025I		
u = -0.618034		
a = 0.500000 - 0.866025I	0.98696 + 2.02988I	13.50000 - 1.52761I
b = -0.500000 + 0.866025I		
u = 1.61803		
a = 0.500000 + 0.866025I	8.88264 - 2.02988I	13.5000 + 5.4006I
b = -0.500000 - 0.866025I		
u = 1.61803		
a = 0.500000 - 0.866025I	8.88264 + 2.02988I	13.5000 - 5.4006I
b = -0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2+u+1)^2)(u^{26}+3u^{25}+\cdots-3u+1)$
c_2	$((u^2 + u + 1)^2)(u^{26} + 15u^{25} + \dots - 23u + 1)$
c_3, c_8	$u^4(u^{26} - u^{25} + \dots + 16u - 16)$
C ₄	$((u^2 - u + 1)^2)(u^{26} + 3u^{25} + \dots - 3u + 1)$
<i>C</i> ₅	$((u^2+u+1)^2)(u^{26}-3u^{25}+\cdots-11u+2)$
c_6, c_7	$((u^2 - u - 1)^2)(u^{26} - 3u^{25} + \dots - u - 1)$
c_9, c_{10}	$((u^2 + u - 1)^2)(u^{26} - 3u^{25} + \dots - u - 1)$
c_{11}	$((u^2 + u - 1)^2)(u^{26} + 3u^{25} + \dots + 3u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^2)(y^{26} + 15y^{25} + \dots - 23y + 1)$
c_2	$((y^2+y+1)^2)(y^{26}-5y^{25}+\cdots-795y+1)$
c_3, c_8	$y^4(y^{26} + 25y^{25} + \dots + 1664y + 256)$
<i>C</i> ₅	$((y^2+y+1)^2)(y^{26}-25y^{25}+\cdots+7y+4)$
c_6, c_7, c_9 c_{10}	$((y^2 - 3y + 1)^2)(y^{26} - 29y^{25} + \dots - 19y + 1)$
c_{11}	$((y^2 - 3y + 1)^2)(y^{26} + 31y^{25} + \dots - 19y + 1)$