Problem 1 Determine whether the following statements are true or false. If the statement is true, no further explanation is required. If the statement is false, give a counterexample.

- (i) The kernel of a bounded linear operator $T:X\to Y$ between normed spaces X and Y is closed.
- (ii) The range of a bounded linear operator $T:X\to Y$ between normed spaces X and Y is closed.
- (iii) The dual space X' of a normed space X is a Banach space.
- (iv) A closed subspace of a Banach space is itself a Banach space.

Problem 2 Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in a normed space $(X, \|\cdot\|)$.

- a) Prove that if $(x_k)_{k\in\mathbb{N}}$ is a Cauchy sequence, then $(x_k)_{k\in\mathbb{N}}$ is bounded.
- **b)** Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be equivalent norms on X, and let $x \in X$. Prove that $(x_k)_{k \in \mathbb{N}}$ converges to x in $(X, \|\cdot\|_a)$ if and only if $(x_k)_{k \in \mathbb{N}}$ converges to x in $(X, \|\cdot\|_b)$.

Problem 3 Let $(\ell^2, \langle \cdot, \cdot \rangle)$ be the inner product space of complex-valued sequences $x = (x_k)_{k \in \mathbb{N}}$ equipped with the standard inner product

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k}, \quad x, y \in \ell^2,$$

and let $T: \ell^2 \to \ell^2$ be the multiplication operator given by

$$Tx = \left(\frac{i^k x_k}{k}\right)_{k \in \mathbb{N}},$$

where $i = \sqrt{-1}$.

- a) Show that T is a bounded linear operator on ℓ^2 , and determine the operator norm ||T||.
- **b)** Determine the adjoint operator T^* . State what it means for an operator to be normal, and determine whether or not T is normal.
- c) Show that the range of T is dense in ℓ^2 .

Page 2 of 3

Problem 4 Let

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \\ -1 & -1 \end{bmatrix}.$$

- a) Find a singular value decomposition of A.
- **b)** Find the pseudoinverse A^+ of A, and use it to find the best approximation to a solution of the inconsistent system:

$$2x_1 + 2x_2 = 3$$
$$2x_1 + 2x_2 = 4$$
$$-x_1 - x_2 = -4$$

Problem 5 Find $a, b \in \mathbb{C}$ such that

$$\int_0^{2\pi} \left| t - a \sin t - b \sin 2t \right|^2 dt$$

is minimal.

Tip: You might find the formula $\sin^2 t = (1 - \cos 2t)/2$ useful.

Problem 6

a) Show that if $X \neq \emptyset$ is a complete metric space, and $T: X \to X$ is a mapping such that

$$T^k = \underbrace{T \circ T \circ \cdots \circ T}_{k \text{ times}}$$

is a contraction for some natural number k > 1, then T has a unique fixed point.

b) Consider the space of continuous functions C[0,1] equipped with the metric induced by the supremum norm

$$d(f,g) = ||f - g||_{\infty} = \sup_{0 \le t \le 1} |f(t) - g(t)|,$$

and let $T: C[0,1] \to C[0,1]$ be given by

$$(Tf)(t) = 1 - \int_0^t f(s) ds, \quad 0 \le t \le 1.$$

Show that T has a unique fixed point, and use iteration to find it starting with $f_0(t) = 1$.

Tip: You can use the result from a) even if you did not solve this problem.