

Sistemas Computacionais

Parte 05 – Circuitos Lógicos Combinacionais Somadores, Codificadores, Multiplexadores

Prof. Francisco Javier Francisco.diaz@p.ucb.br

Circuitos lógicos combinacionais

Somadores, Codificadores e Multiplexadores Funções e Operações

Adição Binária Simples

$$0 + 0 = 0$$
 Zero mais zero é igual a zero

$$0 + 1 = 1$$
 Zero mais um é igual a um

$$1 + 0 = 1$$
 Um mais zero é igual a um

Meio Somador

A B Soma

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

Meio Somador

Α	В	Cout	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
$\Sigma = som_0$	1		
$C_{\rm out} = ca$	rry de saída		
$A \in B =$	variáveis de	entrada (operano	los)

Tabela-verdade de um meio somador

A tabela abaixo exemplifica a soma de A = 0011 + B = 0101 (3+5)....??? Seria 8? Mas Soma (Σ) = 6???. É que falta somar o $C_{out} = 10 = 2$,

Logo A+B+Cout = 1000 = 8

Somador Completo

Α	В	Cin	C_{out}	Σ
0	0	0	0	0
0	0	1	0	1
0	- 1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\rm in}$ = carry de entrada, algumas vezes denominado de CI

 $C_{
m out}={
m carry}$ de saída, algumas vezes denominado de CO

 $\Sigma = soma$

 $A \in B$ = variáveis de entrada (operandos)

$$\Sigma = (A \oplus B) \oplus C_{in}$$
$$C_{out} = AB + (A \oplus B)C_{in}$$

Somador Completo

Α	В	Cin	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	- 1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	-1	1	1	1

Somador completo a partir de dois circuitos do tipo meio somador

SOMADORES BINÁRIOS PARALELOS

MSB –Bit Mais Significativo LSB –Bit Menos Significativo

Determinar as saídas para cada somador

Se interligados $\Sigma_i = \Sigma_4 \Sigma_3 \Sigma_2 \Sigma_1 = 1001$ onde $\Sigma_4 = Cout$

MSB –Bit Mais Significativo LSB –Bit Menos Significativo

SOMADORES BINÁRIOS PARALELOS

Determine a soma gerada pelo somador paralelo de 3 bits visto na Figura e mostre os carries intermediários quando os números binários 101 e 011 são somados

$$\Sigma_i = \Sigma_4 \Sigma_3 \Sigma_2 \Sigma_1 = 1000$$
 onde $\Sigma_4 = Cout$

Somadores paralelos de 4 bits

Somadores paralelos de 4 bits em cascata

Igualdade

Comparador de 1 Bit Comparador de 2 Bit Comparador de 4 Bit

• Comparador de 1 Bit

A saída é 1 quando as entradas forem iguais.

• Comparador de 2 Bit

A saída é 1 quando $A_0 = B_0$ AND $A_1 = B_1$

• Comparador de 4 Bit

Uma das três saídas é nível ALTO:

- A maior que B (A > B)
- A igual a B (A = B)
- A menor que B (A < B)

Igualdade

Determine a saída de cada um dos circuitos se as entradas A e B são:

(a) 10 e 10 (b) 11 e 10 (c) 01 e 11

Desigualdade

Igualdade ou Desigualdade?

Determinar a saída do comparador

Agora este resultado entrando em 2 portas AND

01 => saída da AND = 0 01 => saída da AND = 0

Logo saída é 0, nível baixo, e a comparação confirma falso (Não são iguais). Uma comparação bit a bit mostra que o bit 1 mais significativo está em A (A₂)e portanto A>B é verdadeiro e esta será a saída 1.

Desigualdade

Comparador conectado em cascata

Great Place To Work. Certificada

Em um decodificador, para cada entrada A_1A_0 , somente uma saída tem nível lógico 1. Como mostra a tabela, isso significa que a qualquer instante uma das saídas (O_0, O_1, O_2, O_3) é diferenciada das outras. Neste caso é diferenciada por ter nível lógico 1, enquanto as outras são 0.

O decodificador consiste simplesmente em portas AND(OU NAND). As entradas são aplicadas às portas diretamente ou após uma inversão lógica, conforme necessário

Decodificador Binário Básico

Determine a lógica necessária para decodificar o número binário 1011 produzindo um nível ALTO na saída.

Determine a lógica necessária para decodificar o número binário 1011 produzindo um nível ALTO na saída.

Decodificador de 4 Bits – com NAND

DÍGITO DECIMAL		RADA:		ÁRIAS	FUNÇÃO DE DECODIFICAÇÃO	0	7	2	3	4	5	6	7	SAÍD 8	AS 9	10	11	12	13	14	15
	0		0				,	1	1	1	1	1	1	1	1	1		1	1		
0		0		0	$A_3A_2A_1A_0$	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
4	0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
5	0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
6	0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
7	0	1	1	1	$\overline{A}_3 A_2 A_1 A_0$	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
10	1	0	1	0	$A_3\overline{A}_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
11	1	0	1	1	$A_3\overline{A}_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
12	1	1	0	0	$A_3A_2\overline{A}_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
13	1	1	0	1	$A_3A_2\overline{A}_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
14	1	1	1	0	$A_3A_2A_1\overline{A}_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
15	1	1	1	1	$A_3A_2A_1A_0$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Great Place To Work. Certificada

Decodificador de BCD para Decimal

DÍGITO DECIMAL	A ₃	CÓDIG A₂	O BCD A _I	A ₀	FUNÇÃO DE DECODIFICAÇÃO
0	0	0	0	0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$
1	0	0	0	1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$
2	0	0	1	0	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$
3	0	0	1	1	$\overline{A}_3\overline{A}_2A_1A_0$
4	0	1	0	0	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$
5	0	1	0	1	$\overline{A}_3 A_2 \overline{A}_1 A_0$
6	0	1	1	0	$\overline{A}_3 A_2 A_1 \overline{A}_0$
7	0	1	1	1	$\overline{A}_{3}A_{2}A_{1}A_{0}$
8	1	0	0	0	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$
9	1	0	0	1	$A_3\overline{A}_2\overline{A}_1A_0$

Decodificador de BCD para Decimal

O CI 74HC42 é um decodificador de BCD para decimal. O símbolo lógico é mostrado na Figura. Se as formas de onda de entrada vistas na Figura, são aplicadas nas entradas do CI 74HC42, mostre as formas de onda de saída.

DÍGITO DECIMAL	FUNÇÃO DE DECODIFICAÇÃO
0	$\overline{A}_3\overline{A}_2\overline{A}_1\overline{A}_0$
1	$\overline{A}_3\overline{A}_2\overline{A}_1A_0$
2	$\overline{A}_3\overline{A}_2A_1\overline{A}_0$
3	$\overline{A}_3\overline{A}_2A_1A_0$
4	$\overline{A}_3 A_2 \overline{A}_1 \overline{A}_0$
5	$\overline{A}_3 A_2 \overline{A}_1 A_0$
6	$\overline{A}_3 A_2 A_1 \overline{A}_0$
7	$\overline{A}_3 A_2 A_1 A_0$
8	$A_3\overline{A}_2\overline{A}_1\overline{A}_0$
9	$A_3\overline{A}_2\overline{A}_1A_0$

• Aplicando decodificador no arranjo de um Display de 7 Segmentos

• Segmentos ativos para cada dígito decimal

DÍGITO	SEGMENTOS ATIVADOS
0	a, b, c, d, e, f
1	<i>b</i> , <i>c</i>
2	a, b, d, e, g
3	a, b, c, d, g
4	b, c, f, g
5	a, c, d, f, g
6	a, c, d, e, f, g
7	a, b, c
8	a, b, c, d, e, f, g
9	a, b, c, d, f, g

• Diagrama em blocos da lógica de 7 segmentos com o display

• Tabela de verdade para a lógica de 7 segmentos

DÍGITO	ENTRADAS				SAÍDAS DOS SEGMENTOS						
DECIMAL	D	C	В	A	а	Ь	C	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

DÍGITO	SEGMENTOS ATIVADOS
0	a, b, c, d, e, f
1	<i>b</i> , <i>c</i>
2	a, b, d, e, g
3	a, b, c, d, g
4	b, c, f, g
5	a, c, d, f, g
6	a, c, d, e, f, g
7	a, b, c
8	a, b, c, d, e, f, g
9	a, b, c, d, f, g

Decodificador de BCD para 7 Segmentos

Universidade Católica de Brasília

Decodificador de BCD para 7 Segmentos

LT(Lamp Test): quando em nível baixo testa todos os segmentos

RBI (Ripple Blanking Input): quando em nível baixo apaga o display quando as entradas forem zero

BI/RBO (Blanking Input/Ripple Blanking Output): quando em nível baixo apaga o display, independente do displays entradas e serve como saída para transmitir esse sinal para outros displays.

Decodificador de BCD para 7 Segmentos . Exemplo

As entradas do segmentos do display recebem o sinal de um decodificador binário para 7 segmentos, a qual deve fornecer corrente suficiente para polarizar os LEDs e acender os segmentos corretos para representar os números referentes às entradas binárias

Codificadores

Codificador de Decimal para BCD

	*	CÓDIG	O BCD	
DÍGITO DECIMAL	A ₃	A ₂	A_1	A ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Codificadores

Codificador de Decimal para BCD

Codificadores

UM CODIFICADOR DE DECIMAL PARA BCD (74HC147)

• Multiplexador de 4 entradas

ELEÇÃO DE DADOS 📗	
S ₀	ENTRADA SELECIONADA
0	D_0
1	D_1
0	D_2
1	D_3
	S ₀ 0 1

MULTIPLEXADORES (SELETORES DE DADOS)

ENTRADAS DE SE S _I	ELEÇÃO DE DADOS S ₀	ENTRADA SELECIONADA
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

MULTIPLEXADORES (SELETORES DE DADOS)

(a)

As formas de onda da entrada de dados e das entradas de seleção de dados vistas na Figura(a) são aplicadas no multiplexador mostrado. Determine a forma de onda de saída em relação às entradas.

MULTIPLEXADORES (SELETORES DE DADOS)

As formas de onda da entrada de dados e das entradas de seleção de dados vistas na Figura(a) são aplicadas no multiplexador mostrado. Determine a forma de onda de saída em relação às entradas.

ENTRADAS DE S	SELEÇÃO DE DADOS S _o	ENTRADA SELECIONADA
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

DEMULTIPLEXADORES

DEMUX.

Demultiplexadores

• DEMUX de 2 para 4 linhas

ENTRADAS DE SELEÇÃO DE DADOS			
	S ₁	S ₀	ENTRADA SELECIONADA
	0	0	D_0
	0	1	D_1
	1	0	D_2
	1	1	D_3

DEMULTIPLEXADORES

A forma de onda de entrada de dados em série e as entradas de seleção de dados (SO e S1) são mostradas na Figura. Determine as formas de onda da saída de dados DO a D3 para o demultiplexador .

DEMULTIPLEXADORES

A forma de onda de entrada de dados em série e as entradas de seleção de dados (SO e S1) são mostradas na Figura Determine as formas de onda da saída de dados DO a D3 para o demultiplexador .

Dúvidas?

