Practical Python - Internet of Things

Clinton Roy

The Edge, State Library of Queensland

October 28, 2017

Introducing MicroPython

- ▶ Python for microcontroller boards
- ► Started as a Kickstarter
- ► All Open Source

Outline

Introduction

Installation

Circuits

Resources

Introducing the ESP8266

- ▶ 80MHZ processor
- ▶ lots of GPIO (General Purpose Input/Output) pins
- ► Digital interfaces
- ► One Analogue
- Wifi
- ► Cheap
- ► reasonably well documented (now)

ESP8266 Development Board

Introduction to Electricity

► The water analogy

http://www.electricalonline4u.com/2015/10/ohm-law-explanation-guide.html

Pin Mapping

```
Micropython
            Board
             D3
             D4 (also Led1 but inverse)*
             D2
             D1
             SD2
            SD3
        10
             D6
        12
        13
            D7
        14 D5
             D8
        15
             D0 (also Led2 but inverse)*
```

Installation

- ▶ Install Python, e.g. http://anaconda.org
- ► Install esptool
- > pip install esptool
 - ► Clear flash memory
- > esptool.py --port /dev/ttyUSBO erase_flash
 - ► Download MicroPython http://github.com/micropython/micropython/releases
 - ► Flash board
- > esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash
 --flash_size=detect 0 ~/Downloads/esp8266-\$version.bin

Setup

- Connect to the board
- > screen /dev/ttyUSB0 115200
 - ► Hit enter!
 - ► Work out WIFI name
- > import network
- > ap = network.WLAN(network.AP_IF)
- > ap.config("essid")
 - ► Write this down!
 - ► Turn on the Web Server
- > import webrepl_setup
 - ▶ Follow the prompts. Pick a simple password.
 - ► Turn on Web Server
 - ► Reboot...
 - ► Connect to Board, password is micropythoN

RGB LED Layout

Red/Green/Blue Light Emitting Diode

Look Around

- ▶ Micropython implements a filesystem, just like a computer.
- > import os
- > os.listdir()

RGB LED Code

Pulse Width Modulation

```
> from machine import Pin, PWM
> r = PWM(Pin(4), freq=500, duty=0)
> g = PWM(Pin(12), freq=500, duty=0)
> b = PWM(Pin(14), freq=500, duty=0)
>
```

Servo Layout

- ► Orange PWM
- ► Red +V
- ▶ Brown Ground

Force Sensor Layout

Servo Code

```
> from machine import Pin, PWM
> s = PWM(Pin(14), freq=50, duty=0)
```

Force Sensor Code

- ► Analogue to Digital Converter
- > from machine import ADC
- > adc = ADC(0)
- > adc.read()

Temperature Sensor Layout

Stand Alone Mode

- ► Special files:
 - boot.py, main.py
- ▶ Wifi
- > import network
- > n = network.WLAN(network.STA_IF)
- > n.active(True)
- > n.connect("slqwireless")
- > n.isconnected()
- > n.ifconfig()

Temperature Sensor Code

```
> import dht
> import machine
> d = dht.DHT11(machine.Pin(4))
>
> # Only once a second.
> d.measure()
> d.temperature()
> d.humidity()
```

Resources

- ► These notes: Copyright © 2017 Clinton Roy
 https://github.com/clintonroy/slq2017python @④
- https://docs.micropython.org/en/latest/esp8266/ esp8266/tutorial/
- ▶ http://fritzing.org/