Homework 1: Ordered Sets, Infimums, Supremums (Due 2/6/2023)

Assignments should be **stapled** and written clearly and legibly. Problems 4 and 5 are optional.

- 1. §3.2, #10, 12(b).
- 2. §3.3, #3(a), (d), (f), (h), 5, 8.
- 3. Suppose that A and B are two nonempty sets of real numbers such that $x \leq y$ for all x in A and y in B. In this problem you will prove that $\sup A \leq \inf B$.
 - (a) Explain how we know that A is bounded above and B is bounded below.
 - (b) Explain how we know that both $\sup A$ and $\inf B$ must exist.
 - (c) **Prove** that $\sup A \leq y$ for all $y \in B$.
 - (d) Use part (c) and the definition of $\inf B$ to **prove** that $\sup A \leq \inf B$.
 - (e) Can one say that $\max A \leq \min B$? Justify your answer.
- 4. (Bonus) Using the axioms of an ordered field, prove the arithmetic-geometric mean inequality: For any $a, b \in \mathbb{R}$ with a > 0 and b > 0,

$$\sqrt{ab} \le \frac{a+b}{2}$$

You may assume the existence of square roots.

5. (Open Question¹) Is $e + \pi$ rational?

¹An open question is a question which has not been answered. No one knows its answer.