CHAPTER 8: Sequence Labeling for Parts of Speech and Named Entities

Instructor: PhD. Nguyen Thi Quy

Group 5: 8.3 - 8.4.3

November 21, 2023

Presentation Overview

1 8.3 Named Entities and Named Entity Tagging

- 2 8.4 HMM Part-of-Speech Tagging
 - 8.4.1 Markov Chains
 - 8.4.2 The Hidden Markov Model
 - 8.4.3 The components of an HMM tagger

Presentation Overview

1 8.3 Named Entities and Named Entity Tagging

- 2 8.4 HMM Part-of-Speech Tagging
 - 8.4.1 Markov Chains
 - 8.4.2 The Hidden Markov Model
 - 8.4.3 The components of an HMM tagger

Presentation Overview

1 8.3 Named Entities and Named Entity Tagging

- 2 8.4 HMM Part-of-Speech Tagging
 - 8.4.1 Markov Chains
 - 8.4.2 The Hidden Markov Model
 - 8.4.3 The components of an HMM tagger

Introducing HMM

The Hidden Markov Model - HMM

- A statistical model with unknown parameters that must be determined from known parameters.
- Extends from the mathematical model: Markov Chains.

Applications

- Sequence labeling: NER, POS tagging
- Speech recognition

- Optical Character Recognition (OCR)
- Bioinformatics

Markov chains

A model that tells us something about the probabilities of sequences of random variables, states

- Sequence of states with a temporal order
- States can take values from any discrete set of values.
- Markov assumption: When predicting the future, the past doesn't matter

Figure: AA. Markov

Markov assumption

When predicting the future, the past doesn't matter, only the present

Markov assumption: $P(q_i = a | q_1...q_{i-1}) = P(q_1 = a | q_{i-1})$

Components of the Markov chains

- $Q = q_1q_2...q_n$: a set of N states
- A = a₁₁a₁₂...a_{N1}...a_{NN}: a transition probability matrix A, each a_{ij} representing the probability of moving from state i to state j
- $\pi = \pi_1, \pi_2, ..., \pi_n$: an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i.

Markov Chain in Figure (a)

- $Q = \{HOT, COLD, WARM\}$
- Transition probability matrix A:

			COLD	WARM
HOT	0.7	0.6	0.1	0.3
HOT COLD WARM	0.1	0.3	0.8	0.1
WARM	0.2	0.3	0.1	0.6

Initial probability distribution

$$\pi = [0.7, 0.1, 0.2]$$

Calculate the probabilities of

- 1 hot hot hot hot
- 2 cold hot cold hot

Markov Chain in Figure (a)

- $Q = \{HOT, COLD, WARM\}$
- Transition probability matrix A:

			COLD	WARM
HOT COLD WARM	0.7	0.6	0.1	0.3
COLD	0.1	0.3	0.8	0.1
WARM	0.2	0.3	0.1	0.6

Initial probability distribution

$$\pi = [0.7, 0.1, 0.2]$$

The Hidden Markov Model

A hidden Markov model (HMM) allows us to talk about both observed events and hidden events.

Unobservable Events:

- Part-of-speech
- Entity type

The Hidden Markov Model

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
	of moving from state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties , each expressing the probability of an observation o_t being generated
	from a state q_i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that
	the Markov chain will start in state i. Some states j may have $\pi_j = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Figure: Components of Hidden Markov Model

First order Hidden Markov Model

A first-order HMM instantiates two simplifying assumptions

The probability of a particular state depends only on the previous state

Markov Assumption:
$$P(q_i|q_1,...q_{i-1}) = P(q_i|q_{i-1})$$

2 The probability of an output observation depends only on the state that produced it and not on any other states.

Independence: $P(o_i|q_1,...,q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

The Hidden Markov Model

A sample HMM for the ice cream task.

- The two hidden states (H and C) correspond to hot and cold weather,
- The observations O = 1, 2, 3: number of ice creams eaten by Jason on a given day

Figure: A hidden Markov model for relating numbers of ice creams eaten by Jason (the observations) to the weather (H or C, the hidden variables).

HMM Tagger

A model in Natural Language Processing based on HMM, used for labeling elements in a sequence.

HMM Tagger consists of 2 components:

- 1 A: The probability of a tag occurring given the previous tag
- ② B: The probability, given a tag, that it will be associated with a given word

HMM Tagger

The probability of a tag occurring given the previous tag

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

Example - In the WSJ corpus:

- MD occurs 13124 times
- MD is followed by VB 10471 times

Tag transition probability MD - VB:

$$P(VB|MD) = \frac{C(MD, VB)}{C(MD)} = \frac{10471}{13124} = 0.8$$

HMM Tagger

The probability of a word occurring associated with a tag

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

Example - In the WSJ corpus:

- MD occurs 13124 times
- MD is associated with will 4046 times

Tag transition probability MD - VB:

$$P(will|MD) = \frac{C(MD, will)}{C(MD)} = \frac{4046}{13124} = 0.31$$

Reference

Speech and Language Processing (3rd ed. draft)

Dan Jurafsky and James H. Martin

Part I: Fundamental Algorithms, Chapter 8: Sequence Labeling for Parts of Speech and Named Entities

Thanks for listening!

Q&A section