

Đề 1 - Thầy Cảnh Lương - đề trắc nghiệm môn đại số tuyển tính ôn tập cuối kì

Đại số (Trường Đại học Bách khoa Hà Nội)

Câu 1. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (m+1)x^2 + 3x + 4$. Khẳng định nào sau đây là đúng

- A) f là đơn ánh khi m = 0
- B) f là đơn ánh khi m = -1
- C) Không tồn tại m để f đơn ánh
- D) f đơn ánh với mọi m

Câu 2. Cho ma trận $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & m \\ -1 & -2 & 5 \end{pmatrix}$. Khẳng định nào sau đây là đúng

- A) Phương trình AX = 0 có vô số nghiệm khi m = 3
- B) Ma trận A khả nghịch khi $m \neq -3$
- C) Ma trận A khả nghịch với mọi $m \in \mathbb{R}$
- D) Phương trình AX = 0 chỉ có nghiệm tầm thường khi m = -3

Câu 3. Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi f(x;y) := (2x+3y+m;x-2y). Khẳng định nào sau đây là đúng

- A) f là phép biến đổi tuyến tính khi m = 0
- B) f là phép biến đổi tuyến tính khi m = -1
- C) f là phép biến đổi tuyến tính khi $\forall m \in \mathbb{R}$
- D) Không tồn tại m để f là phép biến đổi tuyến tính

Câu 4. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 5x + 7$ và B = (1;3]. Khẳng định nào sau đây là đúng

A)
$$f^{-1}(B) = [1; 2]$$

B)
$$f^{-1}(B) = (3;4)$$

C)
$$f^{-1}(B) = [1;2) \cup (3;4]$$

D)
$$f^{-1}(B) = [1;2] \cup (3;4]$$

E)
$$f^{-1}(B) = [1;2) \cup [3;4]$$

Câu 5. Cho $E = \{e_1; e_2; e_3\}$ là một cơ sở của không gian véc tơ V. Đặt $f_1 = 2e_1 - 3e_2 + 2e_{3}$, $f_2 = e_1 + 2e_2 - 3e_3$; $f_3 = 5e_1 - 4e_2 + me_3$ và $F = \{f_1, f_2, f_3\}$. Khẳng định nào sau đây là đúng

- A) F độc lập tuyến tính khi m = 1
- B) F độc lập tuyến tính khi $m \neq 0$

- C) F độc lập tuyến tính khi $m \neq 1$
- D) F độc lập tuyến tinh với mọi m
- E) F phụ thuộc tuyến tính với mọi m

Câu 6. Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}$ xác định bởi $f(z) = z^5$. Khẳng định nào sau đây là đúng

A)
$$\operatorname{Re} \left[f\left(-1 + i\sqrt{3}\right) \right] = 32$$

B)
$$\operatorname{Re} \left[f \left(-1 + i\sqrt{3} \right) \right] = 8$$

C)
$$\operatorname{Re} \left[f \left(-1 + i\sqrt{3} \right) \right] = -16$$

D)
$$\operatorname{Re} \left[f \left(-1 + i\sqrt{3} \right) \right] = -8$$

E) Re
$$\left[f\left(-1+i\sqrt{3}\right) \right] = -32$$

F)
$$\operatorname{Re}\left[f\left(-1+i\sqrt{3}\right)\right]=16$$

Câu 7. Cho ma trận $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & m \\ 2 & 4m & 7 \end{pmatrix}$. Khẳng định nào sau đây là đúng

- A) Ma trận A chéo hóa trực giao được $\forall m$
- B) Ma trận A chéo hóa trực giao được khi m = 0
- C) Ma trận A chéo hóa trực giao được khi m = 1
- D) Ma trận A không thể chéo hóa trực giao được $\forall m$

Câu 8. Cho ánh xạ tuyến tính $f: P_2(x) \to R^2$ xác định bới $f(a+bx+cx^2) = (a+3b+c, 2a-b+4c)$ và $E = \left\{e_1 = 1; e_2 = x; e_3 = x^2\right\}; F = \left\{f_1 = (1,0); f_2 = (0,1)\right\}$ lần lượt là các cơ sở chính tắc của $P_2(x)$ và \mathbb{R}^2 . Khẳng định nào sau đây là đúng

A) Khi đó ma trận của
$$f$$
 theo các cơ sở E, F là $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 1 & 4 \end{pmatrix}$

B) r
Khi đó ma trận của
$$f$$
 theo các cơ sở E, F là $A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & 4 \end{pmatrix}$

C) Khi đó ma trận của
$$f$$
 theo các cơ sở E, F là $A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 4 & -1 \end{pmatrix}$

D) Khi đó ma trận của
$$f$$
 theo các cơ sở E, F là $A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 4 & 1 \end{pmatrix}$

Câu 9. Trong \mathbb{R}^3 với $x = (x_1, x_2, x_3); y = (y_1, y_2, y_3)$. đặt $< x, y >= x_1 y_1 + 2x_2 y_2 + 5x_3 y_3 + m$. Khẳng định nào sau đây là đúng

- A) $\langle x, y \rangle$ là tích vô hướng với mọi m
- B) Với mọi m thì $\langle x, y \rangle$ không phải là tích vô hướng
- C) $\langle x, y \rangle$ là tích vô hướng khi $m \neq 0$
- D) $\langle x, y \rangle$ là tích vô hướng khi m = 0

Câu 10. Trên $P_2(x)$ tích vố hướng được định nghĩa bới $\langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$ và cho 2 véc tơ $u(x) = 2 + mx + x^2$; v(x) = 3x. Khẳng định nào sau đây là đúng

- A) u(x), v(x) trực giao với nhau nếu m = 1
- B) u(x), v(x) trực giao với nhau nếu m = 0
- C) Với mọi m thì u(x), v(x) trực giao với nhau
- D) Với mọi m thì u(x) và v(x) không trực giao với nhau

Câu 11. Cho $z = (-1+i)^{10}(-\sqrt{3}+i)^{15}$. Khẳng định nào sau đây là đúng

- A) Re z = 0; Im $z = 20^2$
- B) Re z = 20; Im z = 20
- C) Re z = 20; Im z = 0
- D) Re $z = 2^{20}$; Im z = 0

Câu 12. Cho các tập hợp $A = \{x \in \mathbb{R} \mid x^2 + 6x + 5 < 0\}; B = \{x \in \mathbb{R} \mid \frac{x - 3}{x - 6} \le 0\}; C = \{x \in \mathbb{R} \mid x^2 - 6x + 8 \le 0\}$

. Khẳng định nào sau đây là đúng

- A) $(A \cap B) \setminus C = (4,5)$
- B) $(A \cap B) \setminus C = [4,5]$
- C) $(A \cap B) \setminus C = \lceil 4, 5 \rceil$
- D) $(A \cap B) \setminus C = (4,5]$
- E) Đáp án khác

Câu 13. Cho ánh xạ $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ xác định bới $f(x) = \frac{4x-5}{x-1}$ và A = [2,3]. Khẳng định nào sau đây là đúng

A)
$$f^{-1}(A) = \left[\frac{3}{2}, 2\right]$$

B)
$$f^{-1}(A) = \left[\frac{3}{2}, 2\right]$$

C)
$$f^{-1}(A) = (1,2)$$

D)
$$f^{-1}(A) = \left(\frac{3}{2}, 2\right)$$

E)
$$f^{-1}(A) = \left(\frac{3}{2}, 2\right)$$

Câu 14. Cho ma trận $A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$ và hàm số $f(x) = x^2 - 6x + 5$. Khẳng định nào sau đây là đúng

A)
$$f(A) = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$$
; B) $f(A) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$

C)
$$f(A) = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$$
; D) $f(A) = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$

$$\mathbf{E)} f(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Câu 15. Ký hiệu $V = \left\{ X \in M_2 \mid X = \begin{pmatrix} a & 0 \\ -2a & 4a \end{pmatrix}; a \in \mathbb{R} \right\}$ là không gian con của không gian véc tơ các ma trận vuông cấp 2 là M_2 . Khẳng định nào sau đây là đúng

- A) dim V = 3
- B) $\dim V = 2$
- C) $\dim V = 4$
- \mathbf{D}) dim V = 1

Câu 16. Trong không gian véc tơ $P_2(x)$ cho véc tơ $u=4+3x-x^2$ và cơ sở $E=\left\{e_1=1;e_2=1+x;e_3=1+x+x^2\right\}$. Khẳng định nào sau đây là đúng

- A) Tọa độ của véc to u theo cơ sở E là (1;3;1)
- B) Tọa độ của véc to u theo cơ sở E là (1;3;-2)
- C) Tọa độ của véc to u theo cơ sở E là (2;3;-1)
- D) Tọa độ của véc to u theo cơ sở E là (-2;3;1)
- E) Đáp án khác

Câu 17. Cho ma trận $A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 3 & 1 \end{pmatrix}$. Khẳng định nào sau đây là đúng

- A) Các trị riêng của ma trận A là $\lambda_1 = -1; \lambda_2 = 1; \lambda_3 = 2$
- B) Các trị riêng của ma trận A là $\lambda_1 = -1; \lambda_2 = \lambda_3 = 2$
- C) Các trị riêng của ma trận A là $\lambda_1 = 1; \lambda_2 = -2; \lambda_3 = 2$
- D) Các trị riêng của ma trận A là $\lambda_1 = 1; \lambda_2 = \lambda_3 = 2$
- E) Các trị riêng của ma trận A là $\lambda_1 = -1$; $\lambda_2 = \lambda_3 = -2$

Câu 18. Cho các số phức z = x + iy thỏa mãn $z.\overline{z} + i(z-\overline{z}) \le 2$. Khẳng định nào sau đây là đúng

A)
$$(x-1)^2 + y^2 \le 3$$

B)
$$x^2 + y^2 \le 3$$

C)
$$x^2 + (y-1)^2 \le 1$$

D)
$$(x-1)^2 + y^2 \le 4$$

E)
$$x^2 + (y-1)^2 \le 3$$

Câu 19. Cho dạng toàn phương $\omega = 5x_1^2 + x_2^2 + mx_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$. Khẳng định nào sau đây là đúng

- A) Dạng toàn phương trên xác định dương khi $m > \frac{5}{11}$
- B) Dạng toàn phương trên xác định dương khi $m > \frac{3}{11}$
- C) Dạng toàn phương trên xác định dương khi $m < \frac{4}{11}$
- D) Dạng toàn phương trên xác định dương khi $m > \frac{4}{11}$
- E) Đáp án khác

Câu 20. Cho ma trận $A = \begin{pmatrix} 1 & -1 & 0 & 2 \\ -1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & -3 & -1 & m \end{pmatrix}$. Khẳng định nào sau đây là đúng

- A) Ma trận A khả nghịch khi m = 1
- B) Ma trận A khả nghịch khi $m \neq 3$
- C) Ma trận A khả nghịch khi m = 0
- D) Ma trận A khả nghịch khi $m \neq 2$
- E) A khả nghịch với mọi m
- F) Không tồn tại m để ma trận A khả nghịch

Câu 21. Cho ma trận $A = \begin{pmatrix} 2 & 4 & 2 \\ 3 & -1 & -4 \\ -1 & 3 & 4 \\ 5 & 2 & -3 \end{pmatrix}$. Cho ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ xác định bởi f(X) = XA

. Khẳng định nào sau đây là đúng

A)
$$\dim Kerf = 2$$

B)
$$\dim Kerf = 1$$

C)
$$\dim Kerf = 3$$

D)
$$\dim Kerf = 4$$

Câu 22. Trong không gian véc tơ $P_2(x)$ cho hệ véc tơ $U = \{u_1 = 1 + 2x; u_2 = 1 + 3mx - x^2; u_3 = 2 - x + x^2\}$. Khẳng định nào sau đây là đúng

A) Véc to
$$p(x) = 1 - 3x + mx^2 \in span(U)$$
 khi $m \ne 1$

B) Véc to
$$p(x) = 1 - 3x + mx^2 \in span(U)$$
 khi $m \neq -1$

C) Véc to
$$p(x) = 1 - 3x + mx^2 \in span(U)$$
 khi $m = \frac{7}{3}$

D) Véc to
$$p(x) = 1 - 3x + mx^2 \in span(U)$$
 khi $m \neq \frac{7}{3}$

E) Véc to
$$p(x) = 1 - 3x + mx^2 \in span(U)$$
 khi $m \neq 0$

Câu 23. Cho hệ phương trình $\begin{cases} 2x_1 + 3x_2 - x_3 = 6 \\ x_1 + 4x_2 + ax_3 = 1 \\ 3x_1 + 2x_2 + x_3 = b \end{cases}$. Khẳng định nào sau đây là đúng $\begin{cases} x_1 + 3x_2 - x_3 = 6 \\ x_1 + 4x_2 + ax_3 = 1 \\ x_2 + 2x_3 = 5 \end{cases}$

A) Hệ đã cho có vô số nghiệm khi
$$a = -2$$
; $b = 11$

B) Hệ đã cho có vô số nghiệm khi
$$a = 1; b = 12$$

C) Hệ đã cho có vô số nghiệm khi
$$a = -3$$
; $b = 11$

D) Hệ đã cho có vô số nghiệm khi
$$a = 0; b = 11$$

Câu 24. Cho phép biến đổi tuyến tính $f: M_2 \to M_2$ xác định bởi $f(X) = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix} X$. Khẳng định nào sau đây là đúng

A) Các trị riêng của
$$f$$
 là $\lambda_1 = -1$; $\lambda_2 = 6$

B) Các trị riêng của
$$f$$
 là $\lambda_1 = 1$; $\lambda_2 = -6$

C) Các trị riêng của
$$f$$
 là $\lambda_1 = 2$; $\lambda_2 = 4$

- D) Các trị riêng của f là $\lambda_1 = 2$; $\lambda_2 = 5$
- E) Các trị riêng của f là $\lambda_1 = \lambda_2 = 1$

Câu 25. Cho E không gian Euclide 2n chiều, ký hiệu tích vô hướng của $x, y \in E$ là $\langle x, y \rangle$ và cho $\theta \neq a, b \in E$ trực giao với nhau. Gọi $V = \{x \in E \mid \langle x, a \rangle = 0; \langle x, b \rangle = 0\} \subset E$ là không gian con của E. Khẳng định nào sau đây là đúng

- A) $\dim V = 1$
- B) dim V = n + 2
- C) dim V = n 1
- D) dim V = 2n 2

Câu 26. Đặt
$$V = \left\{ X \in M_4 \middle| X = \begin{pmatrix} x & y & z & u \\ y & x & u & z \\ z & t & x & y \\ t & z & y & x \end{pmatrix} : x, y, z, u, t \in \mathbb{R} \right\}$$
 là không gian con của không gian véc

tơ các ma trận vuông cấp 4 trên $\mathbb R$. Khẳng định nào sau đây là đúng

- A) $\dim V = 3$
- B) $\dim V = 4$
- C) dim V = 12
- D) dim V=5

Câu 27. Trong không gian véc tơ \mathbb{R}^3 với tích vô hướng chính tắc cho $u_1 = (1;1;0), u_2 = (0;-1;1)$. Tìm véc tơ $v \in \mathbb{R}^3$ sao cho < v, u>=0 với mọi $u \in span\{u_2, u_2\}$. Khẳng định nào sau đây là đúng

- A) $v = (t; -t; -t), t \in \mathbb{R}$
- B) $v = (t; t; -t), t \in \mathbb{R}$
- C) $v = (t;t;t), t \in \mathbb{R}$
- D) $v = (-t; -t; t), t \in \mathbb{R}$

không gian véc tơ $P_2(x)$ cho Trong Câu to $E = \{u_2(x) = 1 - x - 2x^2; u_2(x) = 2 + 3x + x^2; u_3(x) = 6 + 4x + mx^2\}.$ Khẳng định nào sau đây là đúng

- A) E là cơ sở của $P_2(x)$ khi và chỉ khi m = 3
- B) E là cơ sở của $P_2(x)$ khi và chỉ khi m = 1
- C) E là cơ sở của $P_2(x)$ với mọi m
- D) E là cơ sở của $P_2(x)$ khi và chỉ khi $m \neq -2$
- E) E không là cơ sở của $P_2(x)$ với mọi m

Câu 29. Trong trường số phức \mathbb{C} cho phương trình $z^5 = 9\overline{z}$. Khẳng định nào sau đây là đúng

- A) Số nghiệm của phương trình đã cho là 4
- B) Số nghiệm của phương trình đã cho là 5
- C) Số nghiệm của phương trình đã cho là 6
- D) Số nghiệm của phương trình đã cho là 7
- E) Số nghiệm của phương trình đã cho là 2

Câu 30. Trong không gian véc to \mathbb{R}^5 cho không gian con $V = \{x = (x_1, x_2, x_3, 0, x_5) \mid x_1 + 2x_2 - 5x_3 = 0\}$. Khẳng định nào sau đây là đúng

- A) $\dim V = 2$
- B) $\dim V = 5$
- C) $\dim V = 1$
- D) $\dim V = 4$
- E) dim V = 3

Câu 31. Cho $E = \{e_1; e_2; e_3; e_4\}$ là một cơ sở của không gian véc tơ V. Đặt $u_1 = 2e_1 - 3e_2 + 2e_3 + e_4; u_2 = e_1 + 2e_2 - 3e_3 - 2e_4; u_3 = 5e_1 - 4e_2 + e_3; u_4 = e_1 - 5e_2 + 5e_3 + 3e_4$. Khẳng định nào sau đây là đúng

- A) $r\{u_1, u_2, u_3, u_4\} = 3$
- B) $r\{u_1, u_2, u_3, u_4\} = 1$
- C) $r\{u_1, u_2, u_3, u_4\} = 4$
- D) $r\{u_1, u_2, u_3, u_4\} = 2$

Câu 32. Trong $P_2(x)$ cho 4 véc tơ $p_1(x) = 1 - x + 2x^2; p_2(x) = -3 + 2x - x^2$ và $q_1(x) = -1 + 3x^2; q_2(x) = 10 - 7x + mx^2$. Khẳng định nào sau đây là đúng

- A) $Span\{p_1(x), p_2(x)\} = Span\{q_1(x), q_2(x)\}$ nếu m = 0
- B) $Span\{p_1(x), p_2(x)\} = Span\{q_1(x), q_2(x)\}$ nếu m = -2
- C) $Span\{p_1(x), p_2(x)\} = Span\{q_1(x), q_2(x)\}$ nếu m = 1
- D) $Span\{p_1(x), p_2(x)\} = Span\{q_1(x), q_2(x)\}$ nếu m = -1
- E) $Span\{p_1(x), p_2(x)\} = Span\{q_1(x), q_2(x)\}$ nếu m = 3
- F) $Span\{p_1(x), p_2(x)\} = Span\{q_1(x), q_2(x)\}$ nếu m = 5

Câu 33. Cho ma trận $A = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 2 \end{pmatrix}$. Khẳng định nào sau đây là đúng

A) Các trị riêng của A^5 là $\lambda_1 = 33; \lambda_2 = -1; \lambda_3 = 3120$

- B) Các trị riêng của A^5 là $\lambda_1 = 30; \lambda_2 = 10; \lambda_3 = 125$
- C) Các trị riêng của A^5 là $\lambda_1 = 1$; $\lambda_2 = 16$; $\lambda_3 = 625$
- D) Các trị riêng của A^5 là $\lambda_1 = 32; \lambda_2 = -1; \lambda_3 = 3125$

Câu 34 Cho ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ xác định bởi $f(x_1, x_2, x_3, x_4) = (2x_1 - x_2 + x_3 - x_4; x_1 - x_2 + x_3 + x_4; x_1 - x_2 - 3x_3 - x_4)$. Khẳng định nào sau đây là đúng

- A) $\dim Kerf = 1$; B) $\dim Kerf = 2$
- C) $\dim Kerf = 3$ D) $\dim Kerf = 0$
- E) $\dim Kerf = 4$

Câu 35. Cho hệ phương trình $\begin{cases} (1+m)x+y+z=1\\ x+(1+m)y+z=m \end{cases}$. Khẳng định nào sau đây là đúng $x+y+(1+m)z=m^2$

- A) Hệ đã cho có vô số nghiệm khi m = -1
- B) Hệ đã cho có vô số nghiệm khi m = 0
- C) Hệ đã cho có vô số nghiệm khi m = -3
- D) Hệ đã cho có vô số nghiệm $\forall m$
- E) Không tồn tại m để hệ trên vô số nghiệm

Câu 36. Trong \mathbb{R}^3 cho 6 véc tơ $u_1 = (2;0;3), u_2 = (4;1;5), u_3 = (3;1;2)$ và $v_1 = (1;2;-1), v_2 = (4;5;-2), v_3 = (1;-1;1)$. Một phép biến đổi tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ sao cho $f(u_k) = v_k$ $\left(k = \overline{1,3}\right)$. Ma trận của f theo cơ sở chính tắc của \mathbb{R}^3 là

A)
$$B = \frac{1}{3} \begin{pmatrix} -6 & 11 & 5 \\ -12 & 3 & 10 \\ 6 & -5 & -5 \end{pmatrix}$$
;

B)
$$B = \frac{1}{3} \begin{pmatrix} -6 & -12 & 6 \\ 11 & 3 & -5 \\ 5 & 10 & -5 \end{pmatrix}$$

C)
$$B = \begin{pmatrix} -6 & 11 & 5 \\ 0 & 3 & 10 \\ 6 & 5 & -5 \end{pmatrix}$$
;

D)
$$B = \begin{pmatrix} -6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -5 \end{pmatrix}$$

E) Đáp án khác

Câu 37. Trong trường số phức \mathbb{C} cho phương trình $z^4 + (1+2i)z^3 + 2(1+i)z^2 + (1+2i)z + m = 0$ Khẳng định nào sau đây là đúng

A) Phương trình đã cho có 4 nghiệm
$$z_{1,2} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$
; $z_{3,4} = i \left(-1 \pm \sqrt{2}\right)$ khi $m = -1$

- B) Phương trình đã cho có 4 nghiệm $z_{1,2} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$; $z_{3,4} = i \left(-1 \pm \sqrt{2}\right)$ khi m = 0
- C) Phương trình đã cho có 4 nghiệm $z_{1,2} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$; $z_{3,4} = i \left(-1 \pm \sqrt{2}\right)$ khi m = 2
- D) Phương trình đã cho có 4 nghiệm $z_{1,2} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$; $z_{3,4} = i \left(-1 \pm \sqrt{2}\right)$ khi m = 1
- E) Không tồn tại m để phương trình đa cho có 4 nghiệm trên

Câu 38. Trong \mathbb{R}^4 với tích vô hướng chính tắc cho $e_1 = \left(\frac{1}{3};0;\frac{2}{3};\frac{2}{3}\right), e_2 = \left(-\frac{2}{3};\frac{2}{3};0;\frac{1}{3}\right)$. Tìm hình chiếu trực giao của u = (-6;3;9;-12) lên $V = span\{e_1;e_2\}$. Khẳng định nào sau đây là đúng

A)
$$ch_V u = \left(-\frac{1}{3}; \frac{2}{3}; \frac{2}{3}; 1\right)$$

B)
$$ch_V u = \left(1; -\frac{2}{3}; \frac{2}{3}; \frac{1}{3}\right)$$

C)
$$ch_V u = \left(-\frac{8}{3}; \frac{4}{3}; -\frac{8}{3}; -2\right)$$

D)
$$ch_V u = \left(0; \frac{2}{3}; \frac{4}{3}; \frac{5}{3}\right)$$

E)
$$ch_V u = \left(\frac{1}{3}; \frac{2}{3}; 0; \frac{7}{3}\right)$$

F)
$$ch_V u = \left(\frac{5}{3}; -\frac{2}{3}; 2; \frac{5}{3}\right)$$

Câu 39. Cho A là ma trận vuông cấp 3. Xét phương trình ma trận AX - XA = E (1) trong đó E là ma trận đơn vị cấp 3. Khẳng định nào sau là đúng

- A) Phương trình (1) có nghiệm khi $\det A \neq 0$
- B) Phương trình (1) có nghiệm khi det A = 0
- C) Phương trình (1) luôn có nghiêm với mọi A cho trước
- D) Phương trình (1) luôn vô nghiệm với mọi $\,A\,$ cho trước

Câu 40. Cho hàm số $f: \mathbb{R} \to \mathbb{R}$ xác đinh bởi $f(x) = ax^3 + bx^2 + cx + d$ với $a,b,c,d \in \mathbb{R}$ cho trước. Cho ma trận vuông A có trị riêng là λ . Đặt $B = f(A) - f(\lambda)E$ trong đó E là ma trận đơn vị cùng cấp với ma trận A. Khẳng định nào sau là đúng

- A) det $B = \lambda(a+b+c+d)$
- B) $\det B = a + b + c + d$
- C) det $B = a\lambda^3 + b\lambda^2 + c\lambda + d$
- D) $\det B = 0$
- E) $\det B = a\lambda$
- F) $\det B = d\lambda$

1-B V	2-B √	3-A v	4-C V	5-CV	6-5	7-B	8-B	9-D	10-B
11-D	12-E /	13-B	14-E √	15-D ∨	16-E y	17-B	1 % E	19-E	20-F V
21-A	22-D	23-C	24-A	25-D	26-D V	27-A	28-D	29 -D	30-E ✓
31-D V	32-F	33-D	34-A	35-E √	36-A	3V/D	38-C	39-D	40-D