

Packet Tracer: Configuración de OSPFv2 multiárea

Topología

Tabla de asignación de direcciones

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Área del protocolo OSPFv2:
R1	G0/0	10.1.1.1	255.255.255.0	1
	G0/1	10.1.2.1	255.255.255.0	1
	S0/0/0	192.168.10.2	255.255.255.252	0
R2	G0/0	10.2.1.1	255.255.255.0	0
	S0/0/0	192.168.10.1	255.255.255.252	0
	S0/0/1	192.168.10.5	255.255.255.252	0
R3	G0/0	192.168.2.1	255.255.255.0	2
	G0/1	192.168.1.1	255.255.255.0	2
	S0/0/1	192.168.10.6	255.255.255.252	0

Objetivos

Parte 1: Configurar OSPFv2 multiárea

Parte 2: Verificar y examinar OSPFv2 multiárea

Información básica

En esta actividad, configurará OSPFv2 multiárea. La red ya está conectada, y las interfaces están configuradas con el direccionamiento IPv4. Su trabajo es habilitar OSPFv2 multiárea, verificar la conectividad y examinar el funcionamiento de OSPFv2 multiárea.

Parte 1: Configurar OSPFv2

Paso 1: Configure OSPFv2 en R1.

Configure OSPFv2 en el R1 con una ID de proceso 1 y una ID de router 1.1.1.1.

Paso 2: Anunciar cada red conectada directamente en OSPFv2 en el R1.

Configure cada red en OSPFv2 mediante la asignación de áreas según la tabla de direccionamiento.

```
R1(config-router) # network 10.1.1.0 0.0.0.255 area 1
R1(config-router) # network 10.1.2.0 0.0.0.255 area 1
R1(config-router) # network 192.168.10.0 0.0.0.3 area 0
```

Paso 3: Configurar OSPFv2 en el R2 y el R3.

Repita los pasos anteriores para el R2 y el R3 con las ID de router 2.2.2.2 y 3.3.3.3, respectivamente.

Parte 2: Verificar y examinar OSPFv2 multiárea

Paso 1: Verificar la conectividad a cada una de las áreas OSPFv2.

Desde el R1, haga ping a cada uno de los siguientes dispositivos remotos en el área 0 y el área 2: 192.168.1.2, 192.168.2.2 y 10.2.1.2.

Paso 2: Utilizar los comandos show para examinar las operaciones de OSPFv2 actuales.

Utilice los siguientes comandos para recopilar información sobre la implementación de OSPFv2 multiárea.

```
show ip protocols
show ip route
show ip ospf database
show ip ospf interface
show ip ospf neighbor
```

Preguntas de reflexión

1.	¿Cuáles de los routers son internos?
2.	¿Cuáles de los routers son de respaldo?
3.	¿Cuáles de los routers son de área perimetral?
4.	¿Cuáles de los routers son de sistema autónomo?
5.	¿Cuáles de los routers generan LSA de tipo 1?
6.	¿Cuáles de los routers generan LSA de tipo 2?
7.	¿Cuáles de los routers generan LSA de tipo 3?
8.	¿Cuáles de los routers generan LSA de tipo 4 y 5?
9.	¿Cuántas rutas interárea tiene cada router?

Packet Tracer: Configuración de OSPFv2 multiárea

10. ¿Por qué hay, en general, un ASBR en este tipo de red?

Tabla de calificación sugerida

Packet Tracer suma 80 puntos. Cada una de las preguntas de reflexión vale 2 puntos.