1 Топология

Определение 1

Топологическое пространство — это пара (X,Ω) , где $\Omega\subset 2^X$ и выполнено 3 свойства:

- 1) $\varnothing, X \in \Omega$,
- (2) $A, B \in X \Rightarrow A \cap B \in X$,
- 3) $A_i \in X, i \in I \Rightarrow \bigcup A_i \in X$.

 $i{\in}I$

Элементы множества Ω называются *открытыми* множествами.

Если $A-\mathit{открыто}$, то $X\setminus A-\mathit{замкнуто}$.

Задача 1

Переформулируйте аксиомы для замкнутых множеств.

Пример 1. Топология называется тривиальной или антидискретной, если $\Omega = \emptyset, X$.

Задача 2

Докажите, что тривиальная топология — топология.

 Π ример 2. Топология называется $\partial uc\kappa pemnoù$, если $\Omega=2^X$.

Задача 3

Докажите, что дискретная топология — топология.

Задача 4

Пусть X есть луч $[0, +\infty)$, а Ω состоит из \varnothing , X и всевозможных лучей $(a, +\infty)$, где a>0.

Докажите, что Ω — топология на X.

Такая топология называется топология стрелки

Задача 5

Пусть X есть плоскость. Является ли топологической структурой набор множеств, состоящих из \varnothing , X и открытых кругов с центром в начале координат и всевозможными радиусами?

Задача 6

Пусть X состоит из четырёх элементов: $X = \{a, b, c, d\}$. Выясните, какие из следующих трёх наборов его подмножеств являются топологическими структурами в X (т.е. удовлетворяют аксиомам топологической структуры):

- 1) \varnothing , X, $\{a\}$, $\{b\}$, $\{a,c\}$, $\{a,b,c\}$, $\{a,b\}$;
- $(2) \varnothing, X, \{a\}, \{b\}, \{a,b\}, \{b,d\};$
- 3) \varnothing , X, $\{a, c, d\}$, $\{b, c, d\}$.

Задача 7

Своиства замкнутых множеств. Докажите что:

- 1) Пересечение любого набора замкнутых множеств замкнуто;
- 2) Объединение любого конечного набора замкнутых множеств замкнуто;
- 3) Пустое множество и все пространство (т.е. все множество носитель топологической структуры) замкнуты.

Определение 2

Ваза топологии — некоторый набор открытых множеств, такой, что всякое непустое открытое множество представимо в виде объединения множеств из этого набора.

Пример 3. Всевозможные интервалы составляют базу стандартной топологии на \mathbb{R} .

Задача 8

Докажите эквивалентные определения базы:

- 1) Совокупность Σ открытых множеств является базой топологии Ω , когда для всякого множества $U \in \Omega$ и всякой точки $x \in U$ существует такое множество $V \in \Sigma$, что $x \in V \subset U$.
- 2) Совокупность Σ подмножеств множества X является базой некоторой топологии в X, когда X есть объединение множеств из Σ и пересечение любых двух множеств из Σ представляется в виде объединения множеств из Σ .

Задача 9

Рассмотрим следующие три набора подмножеств плоскости \mathbb{R}^2 :

- 1) набор Σ_2 , состоящий из всевозможных открытых кругов (т.е. кругов, в которые не включаются ограничивающие их окружности);
- 2) набор Σ_{∞} , состоящий из всевозможных открытых квадратов (квадратов без граничных точек сторон и вершин), стороны которых параллельны координатным осям (они задаются неравенствами вида $\max\{|x-a|,|y-b|\} < r$);

3) набор Σ_1 , состоящий из всевозможных открытых квадратов, стороны которых параллельны биссектрисам координатных углов (они задаются неравенствами вида |x-a|+|y-b|< r).

Докажите, что каждый из наборов Σ_2 , Σ_∞ и Σ_1 служит базой некоторой топологической структуры в \mathbb{R}^2 , и структуры, определяемые этими базами, совпадают.

Задача 10*

Докажите, что всевозможные бесконечные арифметические прогрессии, состоящие из натуральных чисел, образуют базу некоторой топологии в N.

С помощью этой топологии докажите, что множество простых чисел бесконечно. Воспользуйтесь тем, что в противном случае множество {1} было бы открытым (?!).

Определение 3

Если Ω_1 и Ω_2 — топологические структуры в множестве X и $\Omega_1 \subset \Omega_2$, то говорят, что структура Ω_2 **тоньше**, чем Ω_1 , а Ω_1 — **грубее**, чем Ω_2 .

Пример 4. Дискретная топология самая тонкая, а антидискретная самая грубая.

2 Метрическое пространство

Определение 4

Метрическое пространство — это пара (X,d), где $d: X \times X \to R_+$ и выполнено 3 свойства:

- 1) $d(x,y) = 0 \Leftrightarrow x = y$,
- 2) $d(x,y) = d(y,x), \forall x, y \in X$,
- 3) Неравенство треугольника $\forall x, y, z$

$$d(x,y) + d(y,z) \geqslant d(x,z)$$
.

d называется **метрикой** или **расстоянием**

Пример 5.
$$\left(\mathbb{R}^n, \sqrt[p]{\sum\limits_{i=1}^n (x_i-y_i)}\right)$$
 — Евклидово расстояние

Задача 11

Докажите, что Евклидово расстояние — метрика

Пример 6.
$$(X,d), d = \begin{cases} 1, x \neq y \\ 0, x = y \end{cases}$$
 — метрика лентяя, дискретная метрика

Задача 12

Докажите, что *дискретная метрика* — метрика

Определение 5

$$\|x\|_p = p^{-\nu_p(x)} - p$$
-адическая норма

Пример 7.
$$(\mathbb{Q},d),d(r,s)=\|r-s\|_p-p$$
-адическая метрика

Задача 13

Докажите, что p-а ∂u ческая метрика — метрика

Определение 6

(X, d) — метрическое пространство.

Открытый шар
$$-B_r(x_0) = \{y \in X \mid d(y, x_0) < x\}.$$

Замкнутый шар — $\overline{B_r(x_0)} = \{y \in X \mid d(y, x_0) \leqslant x\}.$

Задача 14

Как устроены шары в метрике лентяя?

Задача 15

Как устроены шары в *p-адической метрике*?

Определение 7

(X, d) — метрическое пространство.

Топология Ω_d **индуцированная** метрикой определяется так:

 $A \in \Omega_d$, если A представляется как объединение открытых шаров в X.

Задача 16

Проверьте корректность определения индуцированной топологии.

 $\Pi pumep$ 8. \mathbb{R} со стандартной метрикой.

Открытые шары = открытые интервалы.

Примеры замкнутых множеств: $[0,1], \{2,3,9\};$

Задача 17

Докажите, что $A=\left\{\frac{1}{n}\right\}_{n\in\mathbb{Z}_{>0}}$ замкнутым не является, а $A\cup\{0\}$ — замкнуто

Задача 18

(X,d) — метрическое пространство.

 $U \subset X - om\kappa p \cup mo \Leftrightarrow \forall x \in U \exists \varepsilon : B_{\varepsilon}(x) \subset U$