

Microsoft R Server

Sanket R.Dhurandhar Global Black Belt – Advanced Analytics

A language platform...

A Procedural Language optimized for Statistics and Data Science A Data Visualization Framework Provided as Open Source

A community...

3 million-plus Statistical Analysis and Machine Learning Users Taught in Most University Statistics Programs Active User Groups Across the World

An ecosystem

CRAN: 7,500-plus Freely Available Algorithms, Test Data and Evaluations Many Applicable to Big Data If Scaled

R features

- R holds all data in-memory
- R's memory management has to managed explicitly
- Implicitly parallel computation mechanism
- Requires data movement prior to analysis
- Mainly driven by community support
- Innovation is very fast to flow to developers

Why Microsoft R Server? Open source R has some limitations for Enterprises

R needs data in memory to start a computation*

R is single threaded*

R requires skilled resource to scale out computations across a cluster and needs recoding for R mapreduce in Hadoop

Open source R is supported by the community

Microsoft R Server solves these problems!

*Open source R work-arounds are available for some of these problems but do not work in all cases

What is Microsoft R Server?

Microsoft R Server is an enterprise-class big data analytics platform for R .

Supporting a variety of big data statistics, predictive modeling and machine learning capabilities, R Server supports the full range of analytics – exploration, analysis, visualization and modeling based on Open Source R.

By leveraging and extending open source R, R Server is fully compatible with R scripts, functions and CRAN packages, while extending R to analyze data at enterprise scale.

Revolution Analytics product integration

Microsoft R Server (previously Revolution R Enterprise (RRE))

High-performance open source R plus:

- Data source connectivity to big-data objects
- Big-data advanced analytics
- Multi-platform environment support
- In-Hadoop and in-Teradata predictive modeling
- Development and production environment support
 - IDE for data scientist developers
 - Secure, Scalable R Deployment
- Technical support, training and services

Open Source Components Licensed Components

The Microsoft R Server Platform

• Wide data sets supported – thousands of variables

across nodes

ScaleR - Parallel + "Big Data"

Stream data in to RAM in blocks. "Big Data" can be any data size. We handle Megabytes to Gigabytes to Terabytes...

XDF file format is optimised to work with the ScaleR library and significantly speeds up iterative algorithm processing.

Interim results are collected and combined analytically to produce the output on the entire data set

DistributedR - Code Portability

ScaleR models can be deployed from a server or edge node to run in Hadoop or in Teradata/SQL without any functional R model re-coding

Local Parallel - Linux or Windows

```
### SETUP LOCAL ENVIRONMENT VARIABLES ###

myLocalCC <- "localpar"

### LOCAL COMPUTE CONTEXT ###

rxSetComputeContext(myLocalCC)

### CNFATE LIBREN DIRECTORY AND FILE OBJECTS ###

linuxFs <- RxNativeFileSystem() )

PinlineDataSet <-
RxXdfData("AirlineDemoSmall/AirlineDemoSmall.

xdf", fileSystem = linuxFS)
```

In - Hadoop

```
### SETUP HADOOP ENVIRONMENT VARIABLES ###
    myHadoopCCC <- RxHadoopMR()

### HADOOP COMPUTE CONTEXT ###
    rxSetComputeContext(myHadoopCC)

### CREATE HDFS, DIRECTORY AND FILE OBJECTS ###
    hdfsFS <- RxHdfsFileSystem()
    AirlineDataSet <-
        RxXdfData("AirlineDemoSmall/AirlineDemoSmall
        .xdf"), fileSystem = hdfsFS)</pre>
```

In - Teradata

Functional model R script – does not need to change to run in Hadoop

```
### ANALYTICAL PROCESSING ###
### Statistical Summary of the data
    rxSummary(~ArrDelay+DayOfWeek, data= AirlineDataSet, reportProgress=1)

### CrossTab the data
    rxCrossTabs(ArrDelay ~ DayOfWeek, data= AirlineDataSet, means=T)

### Linear Model and plot
    hdfsXdfArrLateLinMod <- rxLinMod(ArrDelay ~ DayOfWeek + 0 , data = AirlineDataSet)
    plot(hdfsXdfArrLateLinMod$coefficients)</pre>
```

2# Model development and model compute choice: "Write Once. Deploy Anywhere."

Revolution R Enterprise Parallelized Algorithms

Data Step

- Data import Delimited, Fixed, SAS, SPSS, OBDC
- Variable creation & transformation
- Recode variables
- Factor variables
- Missing value handling
- Sort, Merge, Split
- Aggregate by category (means, sums)

Descriptive Statistics

- Min / Max, Mean, Median (approx.)
- Quantiles (approx.)
- Standard Deviation
- Variance
- Correlation
- Covariance
- Sum of Squares (cross product matrix for set variables)
- Pairwise Cross tabs
- Risk Ratio & Odds Ratio
- Cross-Tabulation of Data (standard tables & long form)
- Marginal Summaries of Cross Tabulations

Statistical Tests

- Chi Square Test
- Kendall Rank Correlation
- Fisher's Exact Test
- Student's t-Test

Sampling

- Subsample (observations & variables)
- Random Sampling

Predictive Models

- Sum of Squares (cross product matrix for set variables)
- Multiple Linear Regression
- Generalized Linear Models (GLM) exponential family distributions: binomial, Gaussian, inverse Gaussian, Poisson, Tweedie. Standard link functions: cauchit, identity, log, logit, probit. User defined distributions & link functions.
- Covariance & Correlation Matrices
- Logistic Regression
- Classification & Regression Trees
- NEW Naïve Bayes Classification
- Predictions/scoring for models
- Residuals for all models

Variable Selection

- Stepwise Regression Linear, Logistic and GLM
- Stepwise Coefficient Tracking Wide datasets(40k vars)

Simulation

Monte Carlo

Parallel Random Number Generation

Cluster Analysis

K-Means

Classification

- Decision Trees
- Decision Forests
- Stochastic Gradient Boosted Decision Tree

Combination

- Using Revolution rxDataStep and rxExec functions to combine open source R with Revolution R
- NEW PEMA API

works with Open Source R v3

1# Improve Dramatically on Performance and Capacity

GLM 'Gamma' Simulation Timings Independent Variables: 2 factors (100 and 20 levels) and one continuous

Timings from a Windows 7, 64-bit quadcore laptop with 8 GB RAM

Example: performance assessment of SAS, R, Hadoop, Revolution (Strata/Hadoop World, October 2012) at AllState Insurance

- Steve Yun, Principal Predictive Modeller at Allstate Research and Planning Centre benchmarked SAS, R and Hadoop. "Data is our competitive advantage".
- Generalised Linear Model for 150 million observations of insurance data and 70 degrees of freedom.

Software	Platform	Comments	Time to fit
SAS (current tool)	16-core Sun Server	Proc GENMOD	5 hours
rmr / map-reduce	10-node (8 cores / node) Hadoop cluster	Lot of coding, prep and error investigation. Possible to improve time?	> 9 hours processing
Open source R	250-GB Server	Full data set and sampling. Sampling quicker but not acceptable to business.	Impossible (> 3 days)
Revolution ScaleR	5-node (4 cores / node) LSF cluster	90 minutes to load full data set	5.7 minutes

Allstate's conclusion:

- SAS works, but is slow.
- The data is too big for open-source R, even on a very large server.
- Hadoop is not a right fit
- Revolution ScaleR gets the same results as SAS, but much faster and on cheaper kit

SAS Comparison

Results by Size of Analysis Data Set

Total, All Tasks	Runtime (Seconds)		RRE 7
Analysis File Size	RRE 7	SAS 9.4	Speed Multiple
n = 1,000,000	68.4	623.0	9X
n=5,000,000	123.6	5,192.4	42X

Results for Scoring

Scoring Task	Runtime (Seconds)		RRE 7
Scoring File Size	RRE 7	SAS 9.4	Speed Multiple
n = 10,000,000	10.1	40.0	4X
n=50,000,000	28.8	183.0	6X

Benchmark Results

n = 5,000,000	Runtime (Seconds)		RRE 7
Task	RRE 7	SAS 9.4	Speed Multiple
Descriptive statistics	1.2	247.3	213X
Median and deciles	1.4	249.6	185X
Frequency distribution	0.8	262.7	350X
Linear regression with 20 numeric predictors	6.8	267.2	39X
Linear regression with 20 mixed predictors	7.3	269.6	37X
Stepwise linear regression, 100 numeric predictors	13.9	262.8	18X
Logistic regression with 20 numeric predictors	16.9	980.7	58X
Generalized linear model, 20 numeric predictors	32.7	573.6	18X
k-means clustering, 20 active variables	10.1	1,025.9	101X
k-means clustering, 100 active variables	32.5	1,053.0	32X
Total, all tasks	123.6	5,192.4	42X

SQL Server R Services Model Development (R Users)

Working from R IDE on a local workstation, execute an R script that runs in-database on remote SQL server, and get the results back.

SQL Server R Services

Model Operationalization

(R Code->T-SQL Stored Proc.)

Call a T-SQL System Stored Procedure to generate features and train (or retrain) the model Call a T-SQL System Stored Procedure from my application and have it trigger R script execution in-database to predict on new dataset. Results are then returned to my application (predictions, plots).

DeployR: Framework for R as a service for BI / web apps

DeployR: example R as a service for BI / web apps

Example: Market Basket Analysis in HTML tool

Example: integration with Excel

Example: fraud analytics deployed to BI tool

DeployR Example – C# web app business user front end for portfolio optimisation

