ECE 463 Introduction to Computer Networks

Internetworking: Addressing and ARP

Sanjay Rao

Layered Protocol Architecture

- The TCP/IP protocol suite is the basis for the networks that we call the Internet.
- The TCP/IP suite has four layers:
- Computers (hosts) implement all four layers. Routers (gateways) only have the bottom two layers.

Application telnet, ftp, email Layer Transport TCP, UDP Layer Network IP, ICMP, IGMP Layer (Data) Link **Device Drivers** Layer

What is an Internetwork?

- Multiple incompatible LANs can be physically connected by specialized computers called *routers*.
- The connected networks are called an internetwork.
 - The "Internet" is one (very big & successful) example of an internetwork

Connected LANs might be completely different (e.g., Ethernet and ATM)

Issues in Designing an Internetwork

- How do I designate a distant host?
 - Addressing / naming
- How do I send information to a distant host?
 - Routing
- Challenge
 - Scalability
 - Ensure ability to grow to worldwide scale

Router Operation

- Destination-Based Routing
 - Move packet through network via series of hops
- Forwarding:
 - Hardware table-lookup to determine next hop
 - Fast, must be done at line rate (i.e., per packet basis)
- Route table computation
 - How routers determine the routes in the first place
 - Software: more involved protocols

Possible Addressing Schemes

Flat

- e.g., every host identified by its 48-bit MAC address
- Router would need entry for every host in the world
 - Too big
 - Too hard to maintain as hosts come & go

Hierarchy

- Address broken into segments of increasing specificity
 - 765(Lafayette) 494(Purdue) 3399 (my office)
 - Indiana/ W. Lafayette / Purdue/ Sanjay
- Route to general region and then work toward specific destination
- As people and organizations shift, only update affected routing tables

IP Addressing

- IPv4: 32-bit addresses
 - Typically, write in dotted decimal format
 - E.g., 128.2.198.135
 - Each number is decimal representation of byte

0	8	16	24 31	
128	2	198	135	Decimal
80	02	с6	87	Hexadecimal
0100 000	0 0000 0010	1100 0110	1000 0111	Binary

IP Addressing and Forwarding

- Routing Table Requirement
 - Flat: For every destination IP address, give next hop
 - Nearly 2³² (4.3 x 10⁹) possibilities!
- Hierarchical Addressing Scheme

		•
pfx	network	host

- Address split into network ID and host ID
 - Purdue has one network ID shared by all hosts within Purdue
- All packets to given network follow same route
 - Until they reach destination network
- Fields
 - pfx
 Prefix to specify split between network & host IDs
 - network 2^x possibilities
 - host
 2^y possibilities

Uniform vs. Non-uniform hierarchy

- Uniform Hierarchy
 - All hosts have same split of network/host
- Nonuniform Hierarchy
 - Network/host splits may vary

Discussion: Why non-uniform?

IP Address Classes: OLD SCHEME

- Classes D, E, F
 - Not commonly used

IP Address Classes

Class	Count	Hosts
А	2^{7} -2 = 126	2 ²⁴ -2 = 16,777,214
В	$2^{14} = 16,398$	2^{16} - $2 = 65,534$
С	$2^{21} = 2,097,512$	$2^{8}-2=254$
Total	2,114,036	

Partitioning too Coarse

- Class A wasteful: Few organizations have 16.7 million hosts
- Class C insufficient: Many organizations require multiple class C's
- Too few Class B's.

Too many different Network IDs

Routing tables must still have 2.1 million entries

Classless Interdomain Routing: NEW SCHEME

- Arbitrary Split Between Network & Host IDs
 - Specify either by mask or prefix length

11111111111111110000000000000000000

network host	network	host
--------------	---------	------

- E.g.
 - 128.46.0.0 with netmask 255.255.0.0
 - 128.46.0.0/16

Aggregation with CIDR

- Original Use: Aggregate Class C Addresses
- One organization assigned contiguous range of class C's
 - e.g., Organization given all addresses 207.46.192.X --207.46.255.X
 - Specify as CIDR address 207.46.192.0/18

- Represents 2⁶ = 64 class C networks
- Use single entry in routing table
 - Just as if were single network address

Routing Table Entry Examples

Address	Prefix Length	Third Byte	Byte Range
207.46.0.0	19	000xxxxx ₂	0 – 31
207.46.32.0	19	001xxxxx ₂	32 – 63
207.46.64.0	19	010xxxxx ₂	64 – 95
207.46.128.0	18	10xxxxxx ₂	128 – 191
207.46.192.0	18	11xxxxxx ₂	192 – 255

Important Concepts

- Hierarchical addressing critical for scalable system
 - Don't require everyone to know everyone else
 - Reduces amount of updating when something changes
- Non-uniform hierarchy useful for heterogeneous networks
 - Class-based addressing too coarse
 - CIDR helps
- Implementation Challenge
 - Longest prefix matching much more difficult than when no ambiguity

Longest Prefix Matching Example

Routing Table

Network	Next Hop	3 rd Octet
128.96.170.0/23	Interface 0	1010 1010
128.96.168.0/23	Interface 1	1010 1000
128.96.166.0/23	R2	1010 0110
128.96.164.0/22	R3	1010 0100
(default)	R4	

Packet to destination 128.96.167.151: 1010 0111

- Matches two entries.
- Forwarded to R2 (Longer Prefix Match)

---ARP--

LAN Addresses and ARP

32-bit IP address:

- network-layer address
- used to get datagram to destination network

LAN (or MAC or physical) address:

- used to get datagram from one interface to another physicallyconnected interface (same network)
- 48 bit MAC address

LAN addresses (more)

Starting at A, given IP datagram addressed to B:

- look up IP address of B, find B on same network as A
- link layer sends datagram to B inside link-layer frame

ARP: Address Resolution Protocol

Question: how to determine MAC address of B given B's IP address?

- Each IP node (Host, Router) on LAN has ARP module, table
- ARP Table: IP/MAC address mappings for some LAN nodes
 - < IP address; MAC address; TTL>
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol

- A knows B's IP address, wants to learn physical address of B
- A broadcasts ARP query pkt, containing B's IP address
 - all machines on LAN receive ARP query
- B receives ARP packet, replies (unicast) to A with its (B's) physical layer address
- A caches (saves) IP-to-physical address pairs until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed

Transfer across Networks

- A creates IP packet with source A, destination B
- A uses ARP to get R's physical layer address for 111.111.111.110
- A creates Ethernet frame with R's physical address as dest, Ethernet frame contains A-to-B IP datagram
- A's data link layer sends Ethernet frame
- R's data link layer receives Ethernet frame
- R removes IP datagram from Ethernet frame, sees its destined to B
- R uses ARP to get B's physical layer address
- R creates frame containing A-to-B IP datagram sends to B

ARP Demo

- /sbin/arp -n (shows arp table)
- netstat -rn (shows IP routing table)
- sudo /usr/sbin/tcpdump -n arp host [hostIP]
- (tcpdump of ARP traffic)

What is a Switch?

- Switch: Networking device that operate on Ethernet frames Layer 2 devices
- Forward pkts to the destination's MAC address.
- Plug-and-Play devices Self-configuring without hardware or software changes.
- Will propagate broadcast packets (ARP)
- Will not show up in output of "traceroute"

Example:

- Host A can have arbitrary MAC address. No "rule" dictating what it should be.
- Switch will learn address of A over time.
- A need not be configured with information about the switch.

What is a Router?

- Router: networking device forwards data packets across an internetwork.
- Routers operate on Layer 3 of OSI model and use IP address information of the destination to forward the packet.
- Will not propagate broadcast packets (ARP)
- Are not Plug-and-play devices, hosts connected to the routers need their IP addresses to be configured.
 - Router must be configured to indicate packets of certain subnet must be directed on particular interface.
 - IP address of host must be carefully configured to match subnet it is on.
 - Host also configured with router information (typically)

Broadcast Domain

- Broadcast Domain: 2 hosts in same broadcast domain if a broadcast packet (e.g. ARP packet) sent by one of the hosts will also reach the other host.
- Different than "Collision Domain".
- Collision Domain: logical network segment where data packets can "collide" with one another for being sent on a shared medium at the same time.

Physical View of a LAN

