Probabilistic Guarded Kleene Algebra with Tests

Wojciech Rozowski ¹ Tobias Kappé ² Dexter Kozen ³ Todd Schmid ¹ Alexandra Silva³

¹ University College London, UK

²University of Amsterdam, NL

³Cornell University, US

August 12, 2022

Knuth-Yao algorithm

How to simulate using !! !!?


```
while true do
   if flip(0.5) then
      if flip(0.5) then
          return 1 // heads-heads
       else
          return 2 // heads-tails
   else
      if flip(0.5) then
          return 3 // tails-heads
       else
          skip // tails-tails
```


Knuth-Yao algorithm

Correctness?

```
while true do
   if flip(0.5) then
      if flip(0.5) then
                                          if flip(1/3) then
          return 1 // heads-heads
                                              return 1
       else
                                          else
          return 2 // heads-tails
                                              if flip(0.5) then
   else
                                                  return 2
      if flip(0.5) then
                                              else
          return 3 // tails-heads
                                                 return 3
       else
          skip // tails-tails
```

Kleene Algebra with Tests

```
b, c \in \mathtt{BExp} ::= 0 \mid 1 \mid t \in T \mid b \cdot c \mid b + c \mid \overline{b}
e, f \in \mathtt{Exp} ::= b \in \mathtt{BExp} \mid p \in \mathtt{Act} \mid e + f \mid e \cdot f \mid e^*
```

```
e; \mathbf{f} \stackrel{\text{def}}{=} ef
if b then e else \mathbf{f} \stackrel{\text{def}}{=} be + \bar{b}f
while b do \mathbf{e} \stackrel{\text{def}}{=} (be)^* \bar{b}
```

Kleene Algebra with Tests

while b do e \equiv if b then (e; while b do e) if b then e else f \equiv if \bar{b} then f else e

Automata on guarded strings: $Q \rightarrow 2^{\text{At}} \times Q^{\text{At} \times \text{Act}}$

Guarded Kleene Algebra with Tests

Replace (+) and (*) with their Boolean guarded versions $e, f \in \text{Exp} ::= \begin{array}{ccc} b \in \text{BExp} & \textbf{assert } b \\ \mid p \in \text{Act} & \textbf{do } p \\ \mid e \cdot f & e; f \\ \mid e +_b f & \textbf{if } b \textbf{ then } e \textbf{ else } f \\ \mid e^{(b)} & \textbf{while } b \textbf{ do } e \end{array}$

- Decidable in nearly linear time
- Sound and complete Salomaa-style axiomatisation
- Strictly deterministic automata on guarded strings: $Q \times At \rightarrow \{\checkmark, X\} + Act \times Q$

Probabilistic Guarded Kleene Algebra with Tests

```
\begin{array}{lll} e,f\in \operatorname{Exp} ::= & b\in \operatorname{BExp} & \operatorname{assert}\ b \\ & \mid p\in \operatorname{Act} & \operatorname{do}\ p \\ & \mid e\cdot f & e;f \\ & \mid e+_bf & \text{if}\ b \text{ then}\ e \text{ else}\ f \\ & \mid e^{(b)} & \operatorname{while}\ b \text{ do}\ e \\ & \mid e\oplus_r f & \operatorname{if}\ \operatorname{flip}(r) \text{ then}\ e \text{ else}\ f \\ & \mid e^{[r]} & \operatorname{while}\ \operatorname{flip}(r) \text{ do}\ e \\ & \mid v\in V & \operatorname{return}\ v \end{array}
```

Correctness of Knuth-Yao in ProbGKAT

$$((\textcolor{red}{v_1} \oplus_{\frac{1}{2}} \textcolor{blue}{v_2}) \oplus_{\frac{1}{2}} (\textcolor{red}{v_3} \oplus_{\frac{1}{2}} \mathbb{1}))^{(\mathbb{1})} \equiv \textcolor{blue}{v_1} \oplus_{\frac{1}{3}} (\textcolor{red}{v_2} \oplus_{\frac{1}{2}} \textcolor{blue}{v_3})$$

Operational model

Automata with the transition function of the type $Q \times \mathtt{At} \to \mathcal{D}_{\omega}(\{\checkmark,X\} + V + \mathtt{Act} \times Q)$

- Notion of equivalence: bisimulation associated with the type functor
- ► Can be decided in $O(n^2 \log(n))$ using a generic minimization algorithm (Wißmann et al, 2020)

Operational semantics

Axiomatisation of bisimulation equivalence

Guarded Choice Axioms		Sequencing axioms		Loop axioms	
G1.	$e +_b e \equiv e$	AS.	$(ef)g \equiv e(fg)$	GU.	$e^{(b)} \equiv ee^{(b)} +_b \mathbb{1}$
G2.	$e +_{1} f \equiv e$	AL.	$0e \equiv 0$	PU.	$e^{[r]} \equiv ee^{[r]} \oplus_r \mathbb{1}$
G3.	$e +_b f \equiv f +_{\bar{b}} e$	VS.	$ve \equiv v$		$(e +_c \mathbb{1})^{(b)} \equiv (ce)^{(b)}$
G4. (e	$(a+b) + c g \equiv e + bc (f + c g)$	NL.	$\mathbb{1}e \equiv e$	PT.	$(e \oplus_{s} \mathbb{1})^{[r]} \equiv e^{\left[\frac{rs}{1-r(1-s)}\right]}$
G5.	$(e +_b f) \equiv (be +_b f)$	NR.	$e1 \equiv e$	PB.	$e^{[1]} \equiv e^{(1)}$
Probabilistic Choice Axioms		GDR. $(e +_b f)g \equiv eg +_b fg$		PGT	$(e \oplus_r \mathbb{1})^{(b)} \equiv e^{(b)} (r \neq 0)$
P1.	$e \oplus_r e \equiv e$	PDR.	$(e \oplus_r f)g \equiv eg \oplus_r fg$	GF.	$E(e) \equiv 0$ $g \equiv eg +_b f$
P2.	$e \oplus_1 f \equiv e$	Distri	butivity axiom		
P3.	$e \oplus_r f \equiv f \oplus_{(1-r)} e$	D.	$(e \oplus_r f) +_b (e \oplus_r g)$		$g \equiv e^{(b)} f$
P4.	$(e \oplus_r f) \oplus_s q$		$\equiv e \oplus_r (f +_b g)$		
	$\equiv e \oplus_{rs} (f \oplus_{\frac{(1-r)s}{1-rs}} g)$			PF.	$\frac{E(e) \equiv 0 g \equiv eg \oplus_r f}{g \equiv e^{[r]} f}$

Laws involving division apply when the denominator is not zero.

- ► Two Salomaa-like inference rules for introducing the loops
- ▶ Sound: $e \equiv f \implies e \leftrightarrow f$
- Complete if we use the generalised version of GF and UA allowing to obtain unique solutions to arbitrary guarded systems

Knuth-Yao example revisited: axiomatic reasoning

$$\begin{split} d &= \textit{V}_1 \oplus_{\frac{1}{3}} \left(\textit{V}_2 \oplus_{\frac{1}{2}} \textit{V}_3 \right) \text{ and } g = \left(\textit{V}_1 \oplus_{\frac{1}{2}} \textit{V}_2 \right) \oplus_{\frac{1}{2}} \left(\textit{V}_3 \oplus_{\frac{1}{2}} \mathbbm{1} \right) \\ g^{(1)} &\equiv \left((\textit{V}_1 \oplus_{\frac{1}{2}} \textit{V}_2) \oplus_{\frac{1}{2}} (\textit{V}_3 \oplus_{\frac{1}{2}} \mathbbm{1}) \right)^{(1)} & \text{Definition of } g \\ &\equiv \left(((\textit{V}_1 \oplus_{\frac{1}{2}} \textit{V}_2) \oplus_{\frac{2}{3}} \textit{V}_3) \oplus_{\frac{3}{4}} \mathbbm{1} \right)^{(1)} & \text{Probabilistic skew associativity} \\ &\equiv \left((\textit{V}_1 \oplus_{\frac{1}{2}} \textit{V}_2) \oplus_{\frac{2}{3}} \textit{V}_3 \right)^{(1)} & \text{Loop tightening: } (e \oplus_r \mathbbm{1})^{(b)} \equiv e^{(b)} \\ &\equiv (\textit{V}_1 \oplus_{\frac{1}{3}} (\textit{V}_2 \oplus_{\frac{1}{2}} \textit{V}_3))^{(1)} & \text{Probabilistic skew associativity} \\ &\equiv (\textit{V}_1 \oplus_{\frac{1}{3}} (\textit{V}_2 \oplus_{\frac{1}{2}} \textit{V}_3))(\textit{V}_1 \oplus_{\frac{1}{3}} (\textit{V}_2 \oplus_{\frac{1}{2}} \textit{V}_3))^{(1)} +_1 \mathbbm{1} & \text{Loop unrolling: } e^{(b)} = ee^{(b)} +_b \mathbbm{1} \\ &\equiv (\textit{V}_1 \oplus_{\frac{1}{3}} (\textit{V}_2 \oplus_{\frac{1}{2}} \textit{V}_3))d^{(1)} & \text{Definition of } d \text{ and } e +_1 f \equiv e \\ &\equiv (\textit{V}_1 d^{(1)} \oplus_{\frac{1}{3}} (\textit{V}_2 d^{(1)} \oplus_{\frac{1}{2}} \textit{V}_3 d^{(1)})) & \text{Right distributivity of ; over } \oplus \\ &\equiv (\textit{V}_1 \oplus_{\frac{1}{3}} (\textit{V}_2 \oplus_{\frac{1}{3}} \textit{V}_3)) & \text{Sequencing after return: } \textit{Ve} \equiv \textit{V} \end{split}$$

Definition of d

= d

Summary

- GKAT + probabilistic choice and loops + return variables
- ▶ Operational semantics: $\texttt{Exp} \times \texttt{At} \rightarrow \mathcal{D}_{\omega}(\{\checkmark, X\} + V + \texttt{Act} \times \texttt{Exp})$
- ▶ Decidable in $O(n^2 \log(n))$ time
- A sound axiomatisation of bisimulation equivalence

Things I haven't talked about

- Coalgebraic semantics
- Model checking ProbGKAT automata with Prism (Kwiatkowska et al, 2011) or STORM (Hensel et al, 2022)
- Fundamental Theorem
- Verifying discrete simulation protocols

Some references

- (Knuth & Yao, 1976) "The complexity of nonuniform random number generation"
- (Kozen, 1997) "Kleene Algebra with Tests"
- (Smolka, Foster, Hsu, Kappé, Kozen & Silva, 2019) "Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time"
- (Schmid, Kappé, Kozen & Silva., 2021) "Guarded Kleene Algebra with Tets: Coequations, Coinduction and Completeness"
- (Wißmann, Dorsch, Milius & Schröder, 2020) "Efficient and Modular Coalgebraic Partition Refinement"