Magnetic Material

Property of Magnetic Material (1)

Property of Magnetic Material (2)

Magnetic Dipole Moment

$$\vec{m} = I_b \vec{S}$$

 \vec{m} : Magnetic Dipole Moment $(\mathbf{A} \cdot \mathbf{m}^2)$

 I_b : Bound Current (A)

 \vec{S} : Enclosed Area (\mathbf{m}^2)

Property of Magnetic Material (3)

Total Magnetic Dipole Moment

$$\vec{m}_{total} = \sum_{i=1}^{n} \vec{m}_{i}$$

n: Number of Magnetic Dipole moment

Magnetization

$$\vec{M} = \lim_{v \to 0} \frac{1}{v} \vec{m}_{total}$$

 \bar{M} : Magnetization (A/m)

v: Volume (m³)

Property of Magnetic Material (6)

Permeability

$$\mu = \mu_r \mu_0$$

 μ_r : Relative Permeability

 μ : Permeability (F/m)

$$\vec{B} = \mu_r \mu_0 \vec{H} = \mu \vec{H}$$

Magnetic Boundary Condition (1)

Tangent

Magnetic Boundary Condition (2)

กำหนดให้ $\Delta h \rightarrow 0$ จะได้

$$\oint \vec{H} \cdot d\vec{L} = I$$

$$H_{t1} \Delta w - H_{t2} \Delta w = I$$

$$H_{t1} - H_{t2} = \frac{I}{\Delta w} = K$$

$$\vec{H}_{t1} - \vec{H}_{t2} = \vec{a}_{N12} \times \vec{K}$$

 \vec{K} : Surface Current (A/m)

Magnetic Boundary Condition (3)

Normal

Magnetic Boundary Condition (4)

กำหนดให้ $\Delta h \rightarrow 0$ จะได้

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0$$

$$B_{N1} \Delta S - B_{N2} \Delta S = 0$$

$$B_{N1} = B_{N2}$$

$$\vec{B}_{N1} = \vec{B}_{N2}$$

Magnetic Boundary Condition (5)

Angle

$$\theta_i = \tan^{-1} \left(\frac{A_{ti}}{A_{Ni}} \right)$$

A is H or Bi is 1 or 2

Inductance

$$L = \frac{N\Phi}{I}$$

L: Inductance (H)

Maxwell Equations

Time Invariant

Differential Form

$$\nabla \cdot \vec{D} = \rho_{v}$$

$$\nabla \times \vec{E} = 0$$

$$\nabla \times \vec{H} = \vec{J}$$

$$\nabla \cdot \vec{B} = 0$$

$$\oint_{S} \vec{D} \cdot d\vec{S} = Q$$

$$\oint \vec{E} \cdot d\vec{L} = 0$$

$$\oint \vec{H} \cdot d\vec{L} = I$$

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0$$

Example

กำหนดให้บริเวณที่ 1 (z>0) มี $\mu_1=5$ μ H/m และบริเวณที่ 2 (z<0) มี $\mu_2=4$ μ H/m มี $\vec{B}_1=4\vec{a}_x-\vec{a}_y+\vec{a}_z$ mT และ $\vec{K}=-200\vec{a}_x+200\vec{a}_y$ A/m บนพื้นผิว z=0 จงหา $\vec{H}_1,\,\vec{H}_2,\,\vec{B}_2,\,\theta_1$ และ θ_2

Solution (1)

หา $ar{H}_1$ ได้

$$\begin{split} \vec{H}_1 &= \frac{1}{\mu_1} \vec{B}_1 \\ &= \frac{1}{5 \times 10^{-6}} \left(4 \vec{a}_x - \vec{a}_y + \vec{a}_z \right) \times 10^{-3} \\ &= 800 \vec{a}_x - 200 \vec{a}_y + 200 \vec{a}_z \text{ A/m} \end{split}$$

พิจารณาในแนวสัมผัส

$$\begin{split} \vec{H}_{t1} &= 800 \vec{a}_x - 200 \vec{a}_y \text{ A/m} \\ \vec{a}_{N12} &= -\vec{a}_z \end{split}$$

Solution (2)

$$\begin{split} \vec{H}_{t1} - \vec{H}_{t2} &= \vec{a}_{N12} \times \vec{K} \\ 800 \vec{a}_x - 200 \vec{a}_y - \vec{H}_{t2} &= -\vec{a}_z \times \left(-200 \vec{a}_x + 200 \vec{a}_y\right) \\ 800 \vec{a}_x - 200 \vec{a}_y - \vec{H}_{t2} &= 200 \vec{a}_x + 200 \vec{a}_y \end{split}$$

$$\begin{split} \vec{H}_{t2} &= 600 \vec{a}_x - 400 \vec{a}_y \text{ A/m} \\ \vec{B}_{t2} &= \mu_2 \vec{H}_{t2} \\ &= 4 \times 10^{-6} \times \left(600 \vec{a}_x - 400 \vec{a}_y \right) \\ &= 2.4 \vec{a}_x - 1.6 \vec{a}_y \text{ mT} \end{split}$$

Solution (3)

 $\vec{B}_{N1} = \vec{a}_z \text{ mT}$

 $\vec{B}_{N2} = \vec{B}_{N1}$

พิจารณาในแนวตั้งฉาก

$$= \vec{a}_z \text{ mT}$$

$$\vec{H}_{N2} = \frac{1}{\mu_2} \vec{B}_{N_2}$$

$$= \frac{1}{4 \times 10^{-6}} \vec{a}_z \times 10^{-3}$$

$$= 250 \vec{a}_z \text{ A/m}$$

Solution (4)

หา $ec{H}_2$ และ $ec{B}_2$ ได้

$$\vec{H}_2 = \vec{H}_{t2} + \vec{H}_{N2}$$

= $600\vec{a}_x - 400\vec{a}_y + 250\vec{a}_z$ A/m #

$$\vec{B}_2 = \vec{B}_{t2} + \vec{B}_{N2}$$

= $2.4\vec{a}_x - 1.6\vec{a}_v + \vec{a}_z$ mT #

Solution (5)

หา θ_1 และ θ_2 ได้

$$\theta_{1} = \tan^{-1} \left(\frac{B_{t1}}{B_{N1}} \right) \qquad \theta_{2} = \tan^{-1} \left(\frac{B_{t2}}{B_{N2}} \right)$$

$$= \tan^{-1} \left(\frac{\sqrt{4^{2} + (-1)^{2}}}{1} \right) \qquad = \tan^{-1} \left(\frac{\sqrt{2.4^{2} + (-1.6)^{2}}}{1} \right)$$

$$= 76.37^{\circ} \quad \# \qquad = 70.88^{\circ} \quad \#$$

Quiz 9

กำหนดให้บริเวณที่ 1 (x < 0) มี $\mu_1 = 10~\mu$ H/m และบริเวณ ที่ 2 (x > 0) มี $\mu_2 = 5~\mu$ H/m มี $\bar{B}_2 = -2\bar{a}_x + 4\bar{a}_y - \bar{a}_z$ mT และ $\bar{K} = -200\bar{a}_y + 200\bar{a}_z$ A/m บนพื้นผิว x = 0 จง หา \bar{H}_1 , \bar{H}_2 , \bar{B}_1 , θ_1 และ θ_2

$$\begin{split} \vec{H}_2 &= -400\vec{a}_x + 800\vec{a}_y - 200\vec{a}_z \text{ A/m,} \\ \vec{H}_1 &= -200\vec{a}_x + 600\vec{a}_y - 400\vec{a}_z \text{ A/m,} \\ \vec{B}_1 &= -2\vec{a}_x + 6\vec{a}_y - 4\vec{a}_z \text{ mT,} \\ \theta_1 &= 74.50^\circ, \\ \theta_2 &= 64.12^\circ \end{split}$$

Assignment 9

กำหนดให้บริเวณที่ 1 (y < 0) มี μ_1 = 2 μ H/m และบริเวณ ที่ 2 (y > 0) มี μ_2 = 3 μ H/m มีความเข้มสนามแม่เหล็ก \bar{H}_2 = $-300\bar{a}_x$ + $200\bar{a}_y$ + $200\bar{a}_z$ A/m และกระแสเชิง พื้นผิว \bar{K} = $300\bar{a}_x$ - $100\bar{a}_z$ A/m บนพื้นผิว y = 0 จงหา \bar{H}_1 , \bar{B}_1 , \bar{B}_2 , θ_1 และ θ_2

$$\begin{split} \vec{B}_2 &= -900\vec{a}_x + 600\vec{a}_y + 600\vec{a}_z \ \mu \text{T}, \\ \vec{H}_1 &= -400\vec{a}_x + 300\vec{a}_y - 100\vec{a}_z \ \text{A/m}, \\ \vec{B}_1 &= -800\vec{a}_x + 600\vec{a}_y - 200\vec{a}_z \ \mu \text{T}, \\ \theta_1 &= 53.96^\circ, \\ \theta_2 &= 60.98^\circ \end{split}$$

B ₂ = 0 1 R 2	H N1 = 1 BN1	
= 3×10 6(-300 dz +200 dz +200 dz)	- 12×10 (600 ay ×10 6)	นายกฤษณ์ ธกษมเทวินทร์
B ₂ - 900 a ₂ + 600 a ₂ + 600 a ₃ JuT	H _M = 300 a, A/m	66011314
H. = 300 \$.200 ± 0.4	H, - H, + H,	
H ₁₂ = -300 a _x +200 a _z A/m	H, -400 d, +300 d, -100 d	A/m
ā _{N 2} = -ā _y		
H ₁₁ -H ₄₂ = a _{n12} = k	$\vec{B}_1 = \vec{B}_{e_1} + \vec{B}_{N_1}$	
11, +300 a, -200 a, - a, (300 a, -100 a)	B, = -800 à, +600 à, -200 à	
Hi + 300ax - 200az - 100ax - 300az		
He = -400a = 100a = A/m By - Ju, Hy	$\theta_1 = \tan^{-1}\left(\frac{B_{+1}}{B_{+1}}\right)$	Oz tan' (Brz)
B ₄₁ =2×10-6 (-400 d _x -100 d _z)	= tan ((x-800) 2+(-200) 2)	$\frac{1}{2} \tan^2 \left(\frac{\sqrt{(-900)^2 \cdot (100)^2}}{(000)} \right)$
B41 = -800 a - 200 a JuT	θ, = 53.96°	
B _{N2} = 600 å, JLT	V ₁ - 33. 10	Ð₂ = 60.98°
B _{N2} - B _{N1} = 600 a, JuT		