Алгоритмы и структуры данных Лабораторная работа по запросам на отрезках, 2018 год

Задача А. Проверьте сортирующую сеть

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды

Ограничение по памяти:

Проверьте является ли сеть из n проводов сортирующей.

Формат входных данных

В первой строке входного файла содержится три числа n —количество проводов, m —количество компараторов в сети и k —количество слоев в сети ($1 \le n \le 15$, $0 \le m, k \le 150$). В каждой из следующих строк содержится описание слоя из компараторов: число r — количество компараторов в слое и далее r пар чисел, номера проводов, которые сравнивает компаратор. Внутри слоя все номера проводов различны.

Формат выходных данных

Выведите «Yes», если сеть является сортирующей и «No», если нет.

Пример

стандартный ввод	стандартный вывод
4 6 3	Yes
2 1 2 3 4	
2 1 4 2 3	
2 1 2 3 4	

Задача В. Постройте сортирующую сеть

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды

Ограничение по памяти:

Постройте сортирующую сеть для n проводов.

Формат входных данных

В первой строке входного файла находится одно число $n\ (1\leqslant n\leqslant 16)$ — требуемый размер сортирующей сети.

Формат выходных данных

В первую строку выходного файла выведите три числа n —количество проводов, m —количество компараторов в сети и k —количество слоев в сети. В каждой из следующих строк выведите описание слоя из компараторов, число r — количество компараторов в слое и далее r пар чисел, номера проводов, которые сравнивает компаратор. Внутри слоя все номера проводов должны быть различны. Число слоев не должно превышать 12.

Пример

стандартный ввод	стандартный вывод
4	4 6 3
	2 1 2 3 4
	2 1 4 2 3
	2 1 2 3 4

Задача С. Почти сортирующая сеть

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам задано несколько 0-1 последовательностей. Для каждой последовательности постройте сеть компараторов, которая сортирует все 0-1 последовательности, кроме заданной, или скажите, что такой не существует.

Сеть компараторов на картинке не является сортирующей, она не сортирует последовательность [1,0,1,0]. Оказывается, [1,0,1,0] — единственная 0-1 последовательность, которая не сортируется этой сетью.

Формат входных данных

Входные данные состоят из нескольких тестов.

Каждый тест начинается с целого числа n ($2 \le n \le 10$) — число проводов. Далее следует n целых чисел a_1, a_2, \ldots, a_n ($a_i \in \{0, 1\}$).

После последнего теста вводится n=0, означающий конец входных данных.

Формат выходных данных

Для каждого теста выведите "-1", если не существует сети компараторов, сортирующей все 0-1 последовательности, кроме $[a_1,a_2,\ldots,a_n]$. В противном случае выведите описано такой сети. Оно должно состоять из целого числа m — количество компараторов ($0 \le m \le 1000$). Далее описываются компараторы. Каждый из них задается номерами ниток, которые он соединяет.

Гарантируется, что если такая сеть существует, то существует и сеть, в которой не более 100 компараторов (однако вы можете использовать до 1000).

Примеры

стандартный ввод	стандартный вывод
4	5
1 0 1 0	1 3
4	2 3
1 1 1 1	2 4
0	1 2
	3 4
	-1