# Primes and How to Reconginze them Primality Testing Algorithms

Satwant Rana<sup>1</sup>

Advised by, Amitabha Tripathi<sup>2</sup>

<sup>1</sup>2012 MT 50618 Mathematics Department IIT Delhi

<sup>2</sup>Professor Mathematics Department IIT Delhi

Mid Semester MTP Presentation, 2016



#### Motivation

Prime numbers are central to Number Theory, acting as the atomic units around which all numbers are built. Therefore it is barely a surprise that *Primality Testing* is a problem with a rich history in Number Theory.

The motivation behind this project is to rediscover and implement the greatest and the latest in primality testing algorithms.

## Primes and Composites

Primes are defined as natural numbers which are only divisible by 1 and themselves. Formally, given  $p \in \mathbb{N}$  is a prime, if whenever  $q \mid p$ , then  $q \in \{1, p\}$ .

Any natural greater than 1 which is not a prime is called a *composite*.

## A Naive Primality Test

#### **Algorithm 1** Naive Primality Test

```
\begin{array}{l} \textbf{procedure} \ \text{NAIVEPRIMALITYTEST}(n) \\ d \leftarrow 2 \\ \textbf{while} \ d \leq n-1 \ \textbf{do} \\ r \leftarrow n \ \text{mod} \ d \\ \textbf{if} \ r = 0 \ \textbf{then} \\ \textbf{return} \ \text{false} \qquad \qquad \triangleright n \ \text{is composite} \\ d \leftarrow d+1 \\ \textbf{return} \ \text{true} \qquad \qquad \triangleright n \ \text{is prime} \end{array}
```

Time Complexity - O(n)

## An Optimization

If  $n, a, b \in \mathbb{Z}$  such that n = ab, then  $min(a, b) \leq \sqrt{(n)}$ .

#### Algorithm 2 Optimized Naive Primality Test

```
procedure OptimizedNaivePrimalityTest(n) d \leftarrow 2 while d \leq \min(n-1, \sqrt{n}) do r \leftarrow n \mod d if r = 0 then return false \Rightarrow n is composite d \leftarrow d+1 return true \Rightarrow n is prime
```

Time Complexity -  $O(\sqrt{n})$ 

## Compositeness Tests

A successful *primality test* proves that a given number is prime, whereas a successful *compositeness test* proves that a given number is composite.

e.g. If n > 2 and  $2 \mid n$ , then n is composite.

If a compositeness test is not successful, then we can't comment on the primality of the given number.

Composite numbers which the compositeness test labels as primes are called the *pseudoprimes* for the test.

## Fermat's (Little) Theorem

Theorem (Fermat's Theorem)   
 Given prime 
$$p$$
, and  $a \in \mathbb{Z}$ ,  $(a,p)=1$  we have, 
$$a^{p-1} \equiv 1 \mod p$$
   
 Corollary (1)   
 Given prime  $p$ , and  $a \in \mathbb{Z}$  we have,

 $a^p \equiv a \mod p$ 

## Fermat's Theorem as a Compositeness Test

The following Corollary 2 is a simple compositeness test using *Fermat's Theorem*.

#### Corollary (2)

If  $n \in \mathbb{N}$ ,  $n \ge 2$  and  $\exists a \in \mathbb{Z}$  such that,

 $a^n \not\equiv a \mod n$ 

then n is not a prime.

For instance, for n=9,  $2^9\equiv 8\not\equiv 2\mod 9$ , indicating the compositeness of 9.



## Fermat Pseudoprimes

There do exist combinations of a and composite n which satisfy the Fermat's Theorem.

For instance n=341=11.31 gives  $2^{341}\equiv 2\mod 341$ . This makes 341 a pseudoprime to the Fermat's Compositeness Test, or a *Fermat Pseudoprime*.

Although, in this case a change of base a from 2 to 3 yields  $3^{341} \equiv 168 \not\equiv 3 \mod 341$  which indicates that 341 is not a prime.

#### Carmichael Numbers

Given  $n \in \mathbb{Z}$  is a Carmichael Number, if  $a^{n-1} \equiv 1 \mod n$ ,  $\forall a \in \mathbb{Z}, (a, n) = 1$ .

The smallest example of *Carmichael Numbers* is 561, and there exist infinitely many of them.

Carmichael Numbers are Fermat Pseudoprimes for each base a comprime to n.

## Eucledian Algorithm for G.C.D.

For  $a, b \in \mathbb{Z}$ , we have (a, 0) = a, (a, b) = (a, b - a) and therefore  $(a, b) = (a, b \mod a)$ .

#### Algorithm 3 Euclidean Algorithm

```
procedure EUCLIDEANALGORITHM(a, b)
    a \leftarrow ABS(a)
    b \leftarrow ABS(b)

    ▷ Eliminating negative signs

    if a > b then
        SWAP(a, b)
    while a \neq 0 do
        c \leftarrow b \mod a
        b \leftarrow a
        a \leftarrow c
    return b
```

Time Complexity -  $O(\log \min(|a|, |b|))$ 



## Logarithmic Exponentiation

$$a^{n} = \begin{cases} 1 & n = 0 \\ (a^{\frac{n}{2}})^{2} & n \equiv 0 \mod 2 \\ a(a^{\frac{n-1}{2}})^{2} & n \equiv 1 \mod 2 \end{cases}$$

#### Algorithm 4 Recursive Logarithmic Exponentiation

```
procedure LogarithmicExponentiation(a, n, m)

result ← 1 mod m ▷ Calculates a^n \mod m

if n > 0 & n \equiv 0 \mod 2 then

result ← LogarithmicExponentiation(a, \frac{n}{2}, m)

result ← result * result mod m

else if n > 0 & n \equiv 1 \mod 2 then

result ← LogarithmicExponentiation(a, \frac{n-1}{2}, m)

result ← result * result mod m

result ← result * a \mod m

return result
```

## Logarithmic Exponentiation

If 
$$n=b_{d-1}b_{d-2}\dots b_0=\sum_{i=0}^{d-1}b_i2^i$$
, then 
$$a^n=a^{\sum_{i=0}^{d-1}b_i2^i}=\prod_{i=0}^{d-1}a^{b_i2^i}$$

#### Algorithm 5 Iterative Logarithmic Exponentiation

```
      procedure LogarithmicExponentiation(a, n, m)

      result ← 1 mod m
      ▷ Calculates a^n \mod m

      b ← a
      while n > 0 do

      if n \mod 2 = 1 then
      ▷ If rightmost bit is 1

      result ← result * b mod m
      ▷ Multiply by b

      b ← b * b mod m
      ▷ b stores a^{2^i} on i^{th} step

      n \leftarrow \frac{n}{2}
      ▷ Remove rightmost bit
```

return result.

## Fermat's Compositeness Test

Using current discussion, Fermat's Compositeness Test can be implented as

#### Algorithm 6 Fermat's Compositeness Test

```
procedure FERMATCOMPOSITENESSTEST(a, n)
  gcd ← EUCLEDIANALGORITHM(a, n).
  if gcd > 1 & gcd < n then
     return false
  left ← LOGARITHMICEXPONENTIATION(a, n, n)
  right ← a mod m
  return left ≠ right</pre>
```

## Fermat's Probabilistic Primality Test

Every failed run of a compositness test reduces the probability of compositeness, and increases the probability of primality. So we have a *Probabilistic Primality Test*,

#### Algorithm 7 Fermat's Probabilistic Primality Test

```
      procedure FERMATPROBABILISTICPRIMALITYTEST(n, iter)

      while iter > 0 do
      ▷ iter is number of iterations

      a \leftarrow \text{RANDOM}(0, n-1)
      ▷ Random number in [0, n-1]

      check \leftarrow \text{FERMATCOMPOSITENESSTEST}(a, n)

      if check then
      ▷ Composite found

      iter \leftarrow iter - 1

      return true
      ▷ Probable prime found
```

Time Complexity -  $O(\log n)$ 



## Fermat's Primality Test

If we have a table of *pseudoprimes* then a simple check removes the flaw from *Fermat's Compositeness Test*.

D.H. Lehmer prepared a table of all Fermat pseudoprimes below  $2.10^8$  for the base 2 with no factor < 317. Thus a primality test to check primality for  $n < 2.10^8$  can be formulated.

## Fermat's Primality Test

#### **Algorithm 8** Fermat's Primality Test

```
procedure FERMATPRIMALITYTEST(n)
   if n > 2.10^8 then
      return false
                                        for i = 2, i \le \min(313, n - 1), i \leftarrow i + 1 do
      if i \mid n then
         return false
                                             ▶ Factor < 313</p>
   if IterativeLogarithmicExponentiation(2, p-1, p) \not\equiv
1 mod 2 then
      return false

    Composite by Fermat's Theorem

   return !IsLehmerPseudoprime(n) ▷ Check Lehmer's
Table
```

#### Future Work

Planned readings include *Lucas Sequences* based *Primality Tests*, *Lenstra's Theorem* and *A.K.S. Algorithm*.

We plan to implement key algorithms from the above (and elsewhere) as well, in a modern programming language.