CSCI-4113 Assignment 0

Anas Alhadi B00895875

September 16, 2024

Cont	ents							
0.1	Question 1.	 	 	 	 	 		 _

0.1 Question 1

Given a graph G=(V,E). An ILP for the Dominating Set $D\subseteq V$ over G can be:

- First we define the variable $x_v = \{0,1\}$ in which $x_v = 1, v \in D$ and 0 otherwise
- The objective function is to minimize $\sum_{v \in V} c_v x_v$
- We now define a neighbor set $N_v \subseteq V$ to be the set of vertices directly connected to a vetrex $v \in V$ unioned with the vertex itself

Such that we have a constraint that states that the $\sum_{v \in V} x_v \ge 1, \forall N_v$ {What this basically is trying to say is that given a vertex, at least it or one of its neighbors needs to be in D}