Inductor

Inductance

Self Inductance

$$L = \frac{N\Phi}{I}$$

L: Inductance(H)

Mutual Inductance

$$M_{12} = \frac{N_2 \Phi_{12}}{I_1}$$

 M_{12} : Mutual Inductance (H)

Coaxial Inductor

$$a < \rho < b$$

$$\vec{H} = \frac{I}{2\pi\rho} \vec{a}_{\phi}$$

$$\vec{B} = \mu \vec{H} = \frac{\mu I}{2\pi\rho} \vec{a}_{\phi}$$

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S} = \frac{\mu lI}{2\pi} \ln \left(\frac{b}{a} \right)$$

$$L = \frac{N\Phi}{I} = \frac{\mu l}{2\pi} \ln\left(\frac{b}{a}\right)$$

Parallel Plate Inductor

$$\vec{H} = \frac{I}{w} \vec{a}_{x}$$

$$\vec{B} = \mu \vec{H} = \frac{\mu I}{w} \vec{a}_{x}$$

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S} = \frac{\mu dII}{w}$$

$$L = \frac{N\Phi}{I} = \frac{\mu dI}{I}$$

Solenoid Inductor

$$\vec{H} = \frac{NI}{d} \vec{a}_z$$

$$\vec{B} = \mu \vec{H} = \frac{\mu NI}{d} \vec{a}_z$$

$$\Phi = \int_S \vec{B} \cdot d\vec{S} = \frac{\pi \mu a^2 NI}{d}$$

$$L = \frac{N\Phi}{I} = \frac{\pi \mu a^2 N^2}{d}$$

Toroid Inductor

$$\vec{H} = \frac{NI}{2\pi\rho} \vec{a}_{\phi}$$

$$\vec{B} = \mu \vec{H} = \frac{\mu NI}{2\pi\rho} \vec{a}_{\phi}$$

$$\Phi = \int_{S} \vec{B} \cdot d\vec{S} = \frac{\mu NI}{2\pi} (z_2 - z_1) \ln \left(\frac{\rho_2}{\rho_1} \right)$$

$$L = \frac{N\Phi}{I} = \frac{\mu N^2}{2\pi} \left(z_2 - z_1\right) \ln\left(\frac{\rho_2}{\rho_1}\right)$$

Maxwell Equations (1)

Time Invariant

Differential Form

$$\nabla \cdot \vec{D} = \rho_v$$

$$\nabla \times \vec{E} = 0$$

$$\nabla \times \vec{H} = \vec{J}$$

$$\nabla \cdot \vec{B} = 0$$

$$\oint_{S} \vec{D} \cdot d\vec{S} = Q$$

$$\oint \vec{E} \cdot d\vec{L} = 0$$

$$\oint \vec{H} \cdot d\vec{L} = I$$

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0$$

Maxwell Equations (2)

Time Varying

Differential Form

$$\nabla \cdot \vec{D} = \rho_{y}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

Integral Form

$$\oint_{S} \vec{D} \cdot d\vec{S} = Q$$

$$\oint \vec{E} \cdot d\vec{L} = -\int_{S} \frac{\partial B}{\partial t} \cdot d\vec{S}$$

$$\oint \vec{H} \cdot d\vec{L} = I + \int_{S} \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$$

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0$$

Plane Wave (1)

Direction of $\vec{E} \perp$ Direction of \vec{H}

Direction of \vec{v} = Direction of $\vec{E} \times \vec{H}$

Plane Wave (2)

$$E = \eta H \qquad \eta = \sqrt{\frac{\mu}{\varepsilon}} \qquad v = \frac{1}{\sqrt{\varepsilon \mu}}$$

E: Electric Field Intensity (V/m)

H: Magnetic Field Intensity (A/m)

 ε : Permittivity, $\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9}$ H/m for Free Space

 μ : Permeability, $\mu_0 = 4\pi \times 10^{-7}$ H/m for Free Space

 η : Intrinsic Impedance, $\eta_0 \approx 120\pi~\Omega$ for Free Space

v: Velocity, $c \approx 3 \times 10^8$ m/s for Free space

Example

Solenoid Inductor 2 ชุด อยู่ใกล้กันโดยมีแกนกลางเดียวกันอยู่ใน แกน z กำหนดให้ $I_1=2$ mA ไหลในทิศทาง \bar{a}_ϕ , d=5 cm, a=2 cm $N_1=50$ รอบ, $N_2=100$ รอบ $\mu_r=10$ และฟลักซ์ แม่เหล็กไปยัง Solenoid Inductor ชุดที่ 2 ได้ 80% จงหา \bar{H}_1 , \bar{B}_1 , Φ_1 , L_1 , Φ_{12} , M_{12}

Solution (1)

หา $ar{H}_1$ ได้

$$\vec{H}_1 = \frac{N_1 I_1}{d} \vec{a}_z = \frac{50 \times 2 \times 10^{-3}}{5 \times 10^{-2}} \vec{a}_z = 2.00 \vec{a}_z \text{ A/m}$$

หา $ar{B}_{\!\scriptscriptstyle 1}$ ได้

$$\vec{B}_1 = \mu \vec{H}_1 = 10 \times 4\pi \times 10^{-7} \times 2\vec{a}_z = 25.13\vec{a}_z \ \mu T$$

หา $\Phi_{_1}$ ได้

$$\Phi_1 = \int_S \vec{B}_1 \cdot d\vec{S} = \pi a^2 B_1 = \pi \times (2 \times 10^{-2})^2 \times 25.13 \times 10^{-6} = 31.58 \text{ nWb}$$

Solution (2)

หา $L_{\scriptscriptstyle 1}$ ได้

$$L_1 = \frac{N_1 \Phi_1}{I_1} = \frac{50 \times 31.58 \times 10^{-9}}{2 \times 10^{-3}} = 789.50 \ \mu H$$

หา Φ_{12} ได้

$$\Phi_{12} = \Phi_1 \times \frac{80}{100} = 31.58 \times 10^{-9} \times \frac{80}{100} = 25.26 \text{ nWb}$$

หา M_{12} ได้

$$M_{12} = \frac{N_2 \Phi_{12}}{I_1} = \frac{100 \times 25.26 \times 10^{-9}}{2 \times 10^{-3}} = 1.26 \text{ mH}$$

Quiz 10

Solenoid Inductor 2 ชุด อยู่ใกล้กันโดยมีแกนกลางเดียวกันอยู่ใน แกน z กำหนดให้ $I_1=5$ mA ไหลในทิศทาง \bar{a}_{ϕ} , d=2 cm, a=1 cm $N_1=80$ รอบ, $N_2=120$ รอบ $\mu_r=4$ และฟลักซ์ แม่เหล็กไปยัง Solenoid Inductor ชุดที่ 2 ได้ 90% จงหา \bar{H}_1 , \bar{B}_1 , Φ_1 , L_1 , Φ_{12} , M_{12}

 $\vec{H}_1 = 20.00\vec{a}_z \text{ A/m}, \ \vec{B}_1 = 100.53\vec{a}_z \ \mu\text{T}, \ \Phi_1 = 31.58 \text{ nWb}, \ L_1 = 505.28 \ \mu\text{H}, \ \Phi_{12} = 28.42 \text{ nWb}, \ M_{12} = 682.08 \ \mu\text{H}$

Assignment 10

Solenoid Inductor 2 ชุด อยู่ใกล้กันโดยมีแกนกลางเดียวกันอยู่ใน แกน z กำหนดให้ $I_1=3$ mA ไหลในทิศทาง \bar{a}_{ϕ} , d=4 cm, a=3 cm $N_1=60$ รอบ, $N_2=80$ รอบ $\mu_r=5$ และฟลักซ์ แม่เหล็กไปยัง Solenoid Inductor ชุดที่ 2 ได้ 85% จงหา \bar{H}_1 , \bar{B}_1 , Φ_1 , L_1 , Φ_{12} , M_{12}

 $\vec{H}_1 = 4.50\vec{a}_z$ A/m, $\vec{B}_1 = 28.27\vec{a}_z$ μ T, $\Phi_1 = 79.93$ nWb, $L_1 = 1.60$ mH, $\Phi_{12} = 67.94$ nWb, $M_{12} = 1.81$ mH

