Lista 4 - Matrizes, Vetores e Geometria Analítica

Recapitulação

O produto interno é uma generalização daquilo que nas aulas de Cálculo, na geometria euclidiana, se refere por "produto escalar". Ou seja, para um par de vetores (\vec{u}, \vec{v}) onde $\vec{u} = \langle x_1, x_2, x_3 \rangle$ e $\vec{v} = \langle y_1, y_2, y_3 \rangle$, então

$$ec{u} imes ec{v} = x_1 y_1 + x_2 y_2 + x_3 y_3 = |ec{u}| |ec{v}| \cos heta$$

Definição

Seja V um espaço vetorial de dimensão finita sobre $\mathbb R$. Entende-se por produto interno sobre V uma aplicação que transforma cada par ordenado $(u,v)\in V\times V$ em que um número **real** (que indicaremos por $\langle u,v\rangle$) obedecendo às seguintes condições ($\forall u,v,w\in V,\alpha\in\mathbb R$):

1.
$$\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$$
;

2.
$$\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$$
;

3.
$$\langle u,v \rangle = \langle v,u \rangle$$
;

4. $\langle u,u
angle$ é um número real maior que zero para todo vetor u
eq e.

O produto interno usual do \mathbb{R}^n

Se $u=(x_1,\ldots,x_n)$ e $v=(y_1,\ldots,y_n)$ são vetores genéricos do \mathbb{R}^n , então:

1.
$$\langle u,v \rangle = \langle (x_1,\ldots,x_n), (y_1,\ldots,y_n) \rangle$$

$$=x_1y_1+\cdots+x_ny_n$$

2.
$$\langle \alpha u, v \rangle = (\alpha x_1) y_1 + \dots + (\alpha x_n) y_n$$

= $\alpha (x_1 y_1 + \dots + x_n y_n) = \alpha \langle u, v \rangle$

3.
$$\langle u,v \rangle = x_1y_1 + \cdots + x_ny_n = y_1x_1 + \cdots + y_nx_n = \langle v,u \rangle$$

4. Se
$$u
eq (0,\dots,0)$$
 então um dos x_i , ao menos, é não nulo. Logo, $\langle u,u \rangle = x_1^2 + \dots + x_n^2 > 0$

Exercícios

1. Verifique, em cada um dos itens abaixo, se a função \langle , \rangle é um produto interno no espaço vetorial V:

a.

$$V=\mathbb{R}^2, u=(x_1,y_1), w=(x_2,y_2)$$
 e $\langle u,w
angle=2x_1x_2+4y_1y_2.$

$$lacksq \langle u+v,w
angle = \langle u,w
angle + \langle v,w
angle$$

Demonstração

Seja
$$v = (x_3, y_3)$$
,

$$egin{aligned} \langle u+v,w
angle &= 2(x_1+x_3)x_2 + 4(y_1+y_3)y_2 \ &= 2x_1x_2 + 4y_1y_2 + 2x_1x_3 + 4y_1y_3 = \langle u,w
angle + \langle v,w
angle \end{aligned}$$

$$lacksquare \langle lpha u, w
angle = lpha \langle u, w
angle$$
 , $orall lpha \in \mathbb{R}$

Demonstração

$$\langle lpha u,v
angle =2(lpha x_1)x_2+4(lpha y_1)y_2=lpha(2x_1x_2+4y_1y_2)=lpha\langle u,w
angle$$

$$lacksquare \langle u,w
angle = \langle w,u
angle$$

Demonstração

$$\langle u,w
angle =2x_1x_2+4y_1y_2=2x_2x_1+4y_2y_1=\langle w,u
angle$$

 $extstyle \langle u,u
angle$ é um número real maior que zero para todo vetor u
eq e.

Demonstração

$$\langle u, u \rangle = 2x_1^2 + 4y_1^2$$

Se u
eq e, então pelo menos $x_1
eq 0$ ou $y_1
eq 0$, logo

$$2x_1^2 + 4y_1^2 > 0$$

b.

$$V=\mathbb{R}^3, u=(x_1,y_1,z_1), w=(x_2,y_2,z_2)$$
 e $\langle u,w
angle=x_1x_2+y_1y_2.$

$$lacksq \langle u+v,w
angle = \langle u,w
angle + \langle v,w
angle$$

Demonstração

Seja
$$v = (x_3, y_3, z_3)$$
,

$$egin{aligned} \langle u+v,w
angle &= (x_1+x_3)x_2 + (y_1+y_3)y_2 \ &= x_1x_2 + y_1y_2 + x_3x_2 + y_3y_2 = \langle u,w
angle + \langle v,w
angle \end{aligned}$$

$$igtimes \langle lpha u, w
angle = lpha \langle u, w
angle$$
, $orall lpha \in \mathbb{R}$

Demonstração

$$\langle lpha u,w
angle = (lpha x_1)x_2 + (lpha y_1)y_2 = lpha (x_1x_2 + y_1y_2) = lpha \langle u,w
angle$$

$$\langle u,w\rangle = \langle w,u\rangle$$

Demonstração

$$\langle u,w
angle = x_1x_2+y_1y_2=x_2x_1+y_2y_1=\langle w,u
angle$$

 $extstyle \langle u,u
angle$ é um número real maior que zero para todo vetor u
eq e.

Demonstração

$$\langle u,u \rangle = x_1^2 + y_1^2$$

Se u
eq e, então pelo menos $x_1
eq 0$ ou $y_1
eq 0$, logo

$$x_1^2 + y_1^2 > 0$$

C.

$$V=\mathbb{R}^4, u=(x_1,y_1,z_1,t_1), w=(x_2,y_2,z_2,t_2)$$
 e $\langle u,w
angle = x_1x_2+y_1y_2+z_1z_2-t_1t_2$

 $lacksquare \langle u+v,w
angle = \langle u,w
angle + \langle v,w
angle$

Demonstração

Seja
$$v = (x_3, y_3, z_3, t_3)$$
,

$$\langle u+v,w
angle = (x_1+x_3)x_2+(y_1+y_3)y_2+(z_1+z_3)z_2-(t_1+t_3)t_2$$

$$=x_1x_2+y_1y_2+z_1z_2-t_1t_2+x_3x_2+y_3y_2+z_3z_2-t_3t_2\ =\langle u,w
angle +\langle v,w
angle$$

$$lacksquare \langle lpha u, w
angle = lpha \langle u, w
angle$$
 , $orall lpha \in \mathbb{R}$

Demonstração

$$egin{aligned} \langle lpha u, w
angle &= (lpha x_1) x_2 + (lpha y_1) y_2 + (lpha z_1) z_2 - (lpha t_1) t_2 \ &= lpha (x_1 x_2 + y_1 y_2 + z_1 z_2 - t_1 t_2) = lpha \langle u, w
angle \end{aligned}$$

$$lacksquare \langle u,w
angle = \langle w,u
angle$$

Demonstração

$$\langle u, w \rangle = x_1 x_2 + y_1 y_2 + z_1 z_2 - t_1 t_2 = x_2 x_1 + y_2 y_1 + z_2 z_1 - t_2 t_1 = \langle w, u \rangle$$

Demonstração

$$\langle u,u \rangle = x_1^2 + y_1^2 + z_1^2 - t_1^2$$

Se $u \neq e$, então pelo menos $x_1 \neq 0$, ou $y_1 \neq 0$, ou $z_1 \neq 0$, ou $t_1 \neq 0$. Entretanto, se $x_1 = 0$, $y_1 = 0$, $z_1 = 0$ e $t_1 \neq 0$, então

$$x_1^2+y_1^2+z_1^2-t_1^2<0$$
 não é produto interno. $lacktriangle$

2. Sejam
$$X=(1,1,-2)$$
 e $Y=(a,-1,2)$. Para quais valores de a , X e Y são ortogonais?

Dois vetores são ortogonais entre si se estes descrevem entre si um ângulo $\theta=\frac{\pi}{2}$. Assim o sendo, o produto interno entre estes será nulo pois

$$ec{X} imesec{Y}=|ec{X}||ec{Y}|\cos heta=|ec{X}||ec{Y}|\cosrac{\pi}{2}=0$$

No mais, temos pela definição de produto interno que

$$|\vec{X}||\vec{Y}|\cos\theta = x_1y_1 + \dots + x_ny_n$$

Então, os valores de a para o qual X e Y seriam ortogonais são

$$\langle X,Y \rangle = a-1-4=0 \implies a=5$$

3. Mostre que se um vetor v é ortogonal a um vetor u, então v também é ortogonal à αu , para qualquer $\alpha \in \mathbb{R}$.

Seja $u=(x_1,\ldots,x_n)$ e $v=(y_1,\ldots,y_n)$. Pela definição de produto interno, se v é ortogonal a u, então

$$\langle u,v\rangle = \langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n=0$$

Avaliemos agora o caso $\langle \alpha u, v \rangle$:

$$egin{aligned} \langle lpha u,v
angle &= (lpha x_1)y_1 + \dots + (lpha x_n)y_n = lpha (x_1y_1 + \dots + x_ny_n) \ &= lpha \underbrace{\langle u,v
angle}_{ ext{Por hipótese} \,=\, 0} \end{aligned}$$

Logo, v também é ortogonal à αu .

4. Sabendo que ||u||=3, ||v||=5, determine lpha de tal maneira que $\langle u+\alpha v,u-\alpha v \rangle =0$.

Seja V um espaço euclidiano com o produto interno $(u,v) \to \langle u,v \rangle$. Dado um vetor $u \in V$ indica-se por ||u|| e chama-se *norma de u* o número real positivo dado por

$$||u||=\sqrt{\langle u,u
angle}$$

$$||u||=3 \implies \sqrt{\langle u,u
angle}=3 \implies \langle u,u
angle=9 \ ||v||=5 \implies \sqrt{\langle v,v
angle}=5 \implies \langle v,v
angle=25$$

Conforme a Definição 1, itens a à d, e propriedades P descritas por Callioli, et al. 1 , temos

$$\begin{array}{l} \langle u+\alpha v,u-\alpha v\rangle =\underbrace{\langle u,u-\alpha v\rangle + \langle \alpha v,u-\alpha v\rangle}_{(a)} =\\ \underbrace{\langle u,u\rangle + \langle u,-\alpha v\rangle + \langle \alpha v,u\rangle + \langle \alpha v,-\alpha v\rangle}_{(a)} =\\ \underbrace{\langle u,u\rangle - \underbrace{\alpha \langle u,v\rangle}_{P_2} + \underbrace{\alpha \langle v,u\rangle}_{(b)} - \underbrace{(\alpha)^2 \langle v,v\rangle}_{P_2\ e\ (b)}}_{P_2\ e\ (b)} =\\ 9-\alpha \langle u,v\rangle + \alpha \underbrace{\langle u,v\rangle}_{(c)} - 25\alpha^2 =\\ 9-\alpha \underbrace{\langle u,v\rangle + \alpha \langle u,v\rangle}_{E} - 25\alpha^2 = 0\\ \Longrightarrow \alpha = \pm \frac{3}{E} \blacksquare \end{array}$$

5. Sejam u e v vetores de um espaço vetorial com norma. Prove que $\langle u,v\rangle=0$ se, e somente se, $||u+\alpha v||\geq ||u||, \forall \alpha\in\mathbb{R}.$

Segundo a definição de norma, temos que $||u|| \ge 0, \forall u \in V$. A norma $||u + \alpha v||$ é a medida de um vetor, tal que, conforme a demonstração da *Desigualdade de Cauchy-Schwarz*,

$$||u+lpha v||^2=\langle u+lpha v,u+lpha v
angle=$$

$$\langle u, u \rangle + \langle u, \alpha v \rangle + \langle \alpha v, u \rangle + \langle \alpha v, \alpha v \rangle =$$

 $||u||^2 + 2\langle u, v \rangle + \alpha^2 ||v||^2$

Utilizemos essa igualdade para a prova que buscamos fazer.

$$||u+\alpha v||^2 = ||u||^2 + \underbrace{2\langle u,v\rangle}_{\text{Por hipótese \'e} = 0} + \alpha^2 ||v||^2 = \underbrace{||u||^2 + \alpha^2 ||v||^2}_{\text{Por defini\~ç\~ao s\~ao} \geq 0}$$

$$\therefore ||u + \alpha v||^2 \ge ||u||^2 \implies ||u + \alpha v|| \ge ||u|| \blacksquare$$

6. Sejam $f(t)=a_0+a_1t+\cdots+a_nt^n$ e $g(t)=b_0+b_1t+\cdots+b_nt^n$ polinômios quaisquer de $P_n(\mathbb{R})$. Verifique se a função

$$\langle f(t),g(t)
angle
ightarrow \sum_{i=0}^n a_i b_i$$

é produto interno no espaço $P_n(\mathbb{R})$.

A aplicação descrita trata-se de um produto interno se as quatro seguintes condições forem verificadas:

1.
$$\langle f(t) + h(t), g(t) \rangle = \langle f(t), g(t) \rangle + \langle h(t), g(t) \rangle$$

Demonstração

Seja $h(t) = c_0 + c_1 t + \cdots + c_n t^n$, tem-se:

$$egin{aligned} \langle f(t)+h(t),g(t)
angle &=\sum_{i=0}^n(a_i+c_i)b_i=\sum_{i=0}^n(a_ib_i+c_ib_i)=\ &\sum_{i=0}^na_ib_i+\sum_{i=0}^nc_ib_i=\langle f(t),g(t)
angle+\langle h(t),g(t)
angle &\blacksquare \end{aligned}$$

2.
$$\langle \alpha f(t), g(t) \rangle = \alpha \langle f(t), g(t) \rangle, \forall \alpha \in \mathbb{R}$$

Demonstração

$$egin{aligned} \langle lpha f(t), g(t)
angle &= \sum_{i=0}^n (lpha a_i) b_i = \sum_{i=0}^n lpha (a_i b_i) \ &= lpha \sum_{i=0}^n a_i b_i = lpha \langle f(t), g(t)
angle \, lacksquare \, \end{aligned}$$

3.
$$\langle u,v \rangle = \langle v,u \rangle$$

Demonstração

$$\langle f(t),g(t)
angle \ =\sum_{i=0}^n a_ib_i =\sum_{i=0}^n b_ia_i =\langle g(t),f(t)
angle lacksquare$$

4. $\langle f(t), f(t)
angle$ é um número real maior que zero para todo f(t)
eq 0

Demonstração

$$\langle f(t),f(t)
angle =\sum_{i=0}^n a_i a_i$$

Se $f(t)
eq (0,0,\ldots,0)$ então existe pelo menos um $a_i
eq 0$, logo

$$\sum_{i=0}^n a_i^2 > 0 \implies \langle f(t), f(t)
angle > 0 lacksquare$$

1. CALLIOLI, C.; DOMINGUES, H.; COSTA, R. Álgebra Linear e Aplicações. 6. ed. [s.l.] Atual Editora, [s.d.].

 \leftarrow