以下の設問 1 から 5 に答えよ. 解答は 解答用紙の所定の欄に記入すること. 1.

$$\lim_{x \to 0} \frac{\frac{\cos x}{1 + x^2} + a + bx^2}{x^4}$$

が有限の極限値をもつように定数 ${\bf a}$, ${\bf b}$ を定め , そのときの極限値を求めよ.

- 2. $\sin(x-y)-(x+y)\cos(x-y)$ の (0,0) におけるテイラー展開において, y^3 の項および x^5 の項を決定せよ.
- $3. \quad (1) \ f(x,y) = rac{1}{\pi}(x^2-3xy) x + 2y + \sin x \cos y (rac{5}{3}\pi + rac{\sqrt{3}}{2}) = 0$ により定まる陰関数 $y = \varphi(x)$ で x = 0 のとき $y = rac{5}{6}\pi$ を満たすものがただ一つ存在することを示し, $rac{d\varphi}{dx}(0)$ を求めよ.
 - (2) さらに $\frac{d^2\varphi}{dx^2}$ (0) を求めよ.
- 4. 2 変数関数 $g(x,y) = 3x^2y + y^3 12x^2 75y$ を考える.
 - (1) g(x,y) の停留点をすべて求めよ.
 - (2) (1) で求めた停留点の各点について,極大点,極小点,鞍点,ある いはいずれでもないか,を判定せよ.
- $5.\ arphi(x,y)=6x^4+x^2+y^2-1=0$ を満たしながら (x,y) が動くとき, $f(x,y)=x^2+y^2$ の最大値,最小値とそれらを与える (x,y) をラグランジュの乗数法を用いてすべて求めよ.