011 = 5=0					
INFORMATION DISCLOSURE IN AN APPLICATION (Use several sheets if necessary)				Docket Number DIV-1140-3 (112766.159)	Application Number 09/663,620
				Applicant Jay M. Short	
Sheet	1	OF	4	September 15, 2000	Group Art Unit 1652

U.S. Patent Documents **EXAMINER DOCUMENT NUMBER** DATE NAME **CLASS SUBCLASS FILING DATE** INITIAL **APPROPRIATE** 6,057,103 05/02/00 Short ريار 6,054,267 04/25/00 Short **-6**,004,788 12/21/99 Short 5,976,862 11/02/99 Kauffman et al. 5,965,408 10/12/99 Short 5,945,329 08/31/99 Breddam et al. 5,939,250 8/17/99 Short 5,932,419 08/03/99 Bauer et al. 5,885,827 03/23/99 3*201*. Wabl et al. 5,885,577 03/32/9 Alvarez 5,837,458 11/17/98 Minshull et al. 5,830,721 11/03/98 Stemmer et al. 5,824,514 10/20/98 Kauffman et al. 435 5,817,483 Kaufmann et al. 10/06/98 0 5,814,476 Kaufmann et al. 09/29/98 435 69 5,811,238 09/22/98 record Stemmer et al.: 5,789,166 08/04/98 435 Bauer et al. 5,763,102 Kauffman et al. 06/09/98 5,723,323 Kauffman et al. 03/03/98 .5,645,088 07/08/97 5,605,703 02/25/07 reference of necare Stemmer __ 5,389,537 02/14/95 Raines et al. 5,354,656 Sorge et al. 10/11/94 5,333,675 08/02/94 Mullis et al. 5,284,485 10/20/98 Thompson et al. 5,234,824 08/10/93 Mullis 5,223,409 Ladner et al. 06/29/93 5,198,346 03/30/93 Ladner et al. 5,187,083 02/16/93 Mullis

EXAMINER: Initial if citation is considered, whether or not citation is in conformance with MPEP § 609: Draw Line through citation if not conformance and not considered. Include copy with next communication to applicant.

NEWYORK 68635v1 & Reference Could not be located

#19

Subt For P	TO-1440			·	<u>,</u>								
Subt. For, PTO-1449					Docket Number Application Number								
INFORMATION DISCLOSURE					DIV-1140-3 09/663,620					20			
IN AN APPLICATION				(11	(112766.159)								
					Applicant Chart								
(Use several sheets if necessary)					Jay M. Short								
					Filing Date Group Art Unit								
Sheet	2	OF		4	Septer	September 15, 2000		o l	1652				
			<u></u>							· · · · · ·			
110	5,176,995		T ₀₁	/05/93	Sninsky et a			(; 24	_	1	-		
110	5,096,815		+	3/17/92	Ladner et al			433		<u>63</u>	, 		
Me	4,965,188			/23/90	Mullis et al.	<u> </u>		425		67.	- -		
100	4,959,312		+-	/25/90	Sirotkin			438		197	 		
110	4,800,159			/24/89	Mullis et al.		735		<u> </u>	129			
110	4,683,202			/28/87	Mullis et al.	<u> </u>	755		1		3		
- MC	5.352.778		+ -	/4/94				1/3	<u>קלי</u>	71_		 -	
	5 500 363		-	19/96	Comb et al.		-	501					/
				13/30	Comb et al.		_ ر	refe	un	(c. of	rea	20	
EVALABLES.		-	For	reign Pa	atent Docu	ıme	ents						,
EXAMINER INITIAL	DOCUMENT NUMBER	DATE	Ξ.		COUNTRY			LASS	SUE	BCLASS			LATION
	EP 0 316 018	5/17/89		EPO			-		<u> </u>		YE	3	NO
120	WO 99/36553	7/22/99	· · · · · · · · · · · · · · · · · · ·	PCT			 			<u> </u>	-	-	
**	WO 98/58080	12/23/96		PCT									
N. C.	WO 98/49286	11/05/98		PCT			_					\dashv	
MI	WO 98/48024	10/29/98		PCT			<u> </u>					\dashv	
M	WO 98/45331	10/15/98		PCT			-				!	\dashv	
NE	WO 98/38297	9/3/98		PCT									
/jet	WO 97/35957	10/2/97		PCT							 	\dashv	
NH	WO 97/20950	6/12/97		PCT								\dashv	
lie	WO 97/20078 🗸	6/5/97		PCT								\dashv	
WK	WO 96/41865	12/27/96		PCT								\dashv	
Vil	WO 96/09411	3/28/96		PCT	······································							\dashv	
"We	WO 96/06188	2/29/96		PCT								\dashv	
Ne	WO 95/22625	8/24/95		PCT								\dashv	
Ino	WO 95 20039	7/27/95		PCT							<u> </u>	-	
70-	WO 91/16427	10/01/91		PCT /	deruce of	re	ierel				l	+	
Stock	WO 91/12341	8/22/91		PCT	- U			_					
LE	WO 90/ 02809	3/22/90		PCT									
he	WO 98/32845 🗸	7/30/98		PCT								+	
(Other Decume	nto (In	ماريم	lina A.u	blan Title								
1. (2)	Other Documer	Optimizing	nucle	otide mixtu	inor, Title,	Da	te, i	ertine	nt P	ages,	etc.)	-d	
Ne	<u>mutagenesis, Bio-te</u>	cnnology (NY) 1	(0(3) : 297-(300 (Mar 1992)								
M	Burks et al., "In vitro : 412-417 (1997 Jan 2	scanning s 1)	atura	tion mutag	enesis of an an _	tiboo	dy bind	ding pock	et," <i>Pr</i>	oc Natl A	cad Sc	i US	A 94(2):
EXAMINER					DATE CO	NSI	DERE	D					
	Thed						4	10	167)			
EXAMINER: Initial if citation is considered, whether or not citation is in conformance with MPEP § 609: Draw Line through													
citation if not conformance and not considered. Include copy with next communication to applicant.													

NEWYORK 68635v1

At A Reference Could not be located

Subt. For, PTO-1449

INFORMATION DISCLOSURE IN AN APPLICATION

(Use several sheets if necessary)

4

Docket Number DIV-1140-3 (112766.159)

Application Number 09/663,620

Applicant

Jay M. Short

Sheet 3 OF

Filing Date
September 15, 2000

Group Art Unit 1652

100	Cadwell and Joyce, "Randomization of Genes by PCR Mutagenesis", PCR Methods and Applications, 2:28-33 (1992).
NA	Chen and Struhl, "Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein," Proc Natl Acad Sci USA 85(8): 2691-2695 (Apr 1988)
7 0	Chiana at al. "NA transition in the state of
	Chiang et al., "Mutagenic oligonucleotide-directed PCR amplification (Mod-PCR): an efficient method for generation
MIO	random base substitution mutations in a DNS sequence element," <i>PCR Methods Appl</i> 2(3) : 210-217 (Feb 1993) Christian et al, "Simplified methods for construction, assessment and rapid screening of peptide libraries in
109	<u> </u>
M	Crameri et al., "Construction and evolution of antibody-phage libraries by DNA shuffling", Nature Medicine 2:100-101 (1996)
Ne	Cunniff and Mrogan, "Analysis of heat shock element recognition by saturation mutagenesis of the human HSP70.1 gene promoter," J Biol Chem 268(11): 8317-8324 (1993 Apr 15)
**	Cwirla et al., "Peptide on a phage: a vast library of peptides for identifying ligands," <i>Proc Natl Acad Sci USA</i> 87(16): 6378-6382 (Aug 1990)
Me	Dennis and Lazarus, "Kunitz domain inhibitors of tissue factor-factor VIIa. I. Potent inhibitors selected from libraries
110	by phage display," <i>J Biol Chem</i> 269(35) : 22129-22136 (1994 Sep 2) Derbyshire et al., "A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides," Gene 46(2-3) : 145-153 (1996)
1	100 100 100 100 100 100 100 100 100 100
M	Goff et al., "Efficient saturation mutagenesis of a pentapeptide coding sequence using mixed oligonucleotides," DNA 6(4): 381-388 (Aug 1987)
Ne	Hermes et al., "Searching sequence space by definably random mutagenesis: Improving the catalytic potency of an enzyme", PNAS USA 87:696-700 (Jan. 1990)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Hill and Struhl, "Mutagenesis with degenerate oligonucleotides: and efficient method for saturating a defined DNA
* 8	Togion with Dasa-pair substitutions, Wethods Enzymol 165-5-8-368 (1987)
	Horwitz and DiMaio, "Saturation mutagenesis using mixed oligonucleotides and M13 templates containing uracil,"
100	_ Wethous_Enzymon 165. 599-611 (1990)
	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ –methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25)
NO NO	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ –methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991)
	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ –methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30)
NO NO	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ –methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Human Antibodies by Chain Shuffling", Biotechnology 10:779-783.
NY N	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ -methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Human Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR." Nucleic Acids Res. 18:1687-91 (1990)
Ne Ne	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁸ –methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Human Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR," Nucleic Acids Res. 18:1687-91 (1990) Moore et al., "Strategies for the in vitro Evolution of Protein Function: Enzyme Evolution by Random Recombination of Improved Sequences", J. Mol. Biol. 272:336-347 (1997)
DE DE NE	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ -methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Human Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR," Nucleic Acids Res. 18:1687-91 (1990) Moore et al., "Strategies for the in vitro Evolution of Protein Function: Enzyme Evolution by Random Recombination of Improved Sequences", J. Mol. Biol. 272:336-347 (1997) Morris and McIvor, "Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance," Biochem Pharmacol 47(7): 1207-1220 (1994 Mar 29)
DE DE DE DE	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ -methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Human Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR," Nucleic Acids Res. 18:1687-91 (1990) Moore et al., "Strategies for the in vitro Evolution of Protein Function: Enzyme Evolution by Random Recombination of Improved Sequences", J. Mol. Biol. 272:336-347 (1997) Morris and McIvor, "Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance," Biochem Pharmacol 47(7): 1207-1220 (1994 Mar 29) Olesen and Kielland-Brandt, "Altering substrate preference of carboxypeptidase Y by a poyel strategy of mutagenesis
De De De De De	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ -methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage blones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Human Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR," Nucleic Acids Res. 18:1687-91 (1990) Moore et al., "Strategies for the in vitro Evolution of Protein Function: Enzyme Evolution by Random Recombination of Improved Sequences", J. Mol. Biol. 272:336-347 (1997) Morris and McIvor, "Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance," Biochem Pharmacol 47(7): 1207-1220 (1994 Mar 29) Olesen and Kielland-Brandt, "Altering substrate preference of carboxypeptidase Y by a novel strategy of mutagenesis eliminating wild type backgroun," Protein Eng 6(4): 409-415 (Jun 1993) Olins et al., "Saturation mutagenesis of human interleukin-3," J Biol Chem 270(40): pp 23754-123760 (6 October 1995)
De D	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ -methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, <i>Mol Gen Genet</i> 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage blones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," <i>Gene</i> 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Hurnan Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR," Nucleic Acids Res. 18:1687-91 (1990) Moore et al., "Strategies for the in vitro Evolution of Protein Function: Enzyme Evolution by Random Recombination of Improved Sequences", J. Mol. Biol. 272:336-347 (1997) Morris and McIvor, "Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance," <i>Biochem Pharmacol</i> 47(7): 1207-1220 (1994 Mar 29) Olesen and Kielland-Brandt, "Altering substrate preference of carboxypeptidase Y by a novel strategy of mutagenesis eliminating wild type backgroun," <i>Protein Eng</i> 6(4): 409-415 (Jun 1993) Olins et al., "Saturation mutagenesis of human interleukin-3," <i>J Biol Chem</i> 270(40): pp 23754-123760 (6 October 1995)
DEPENDENT OF THE PROPERTY OF T	Ilhara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ –methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, Mol Gen Genet 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage clones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," Gene 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Human Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR," Nucleic Acids Res. 18:1687-91 (1990) Moore et al., "Strategies for the in vitro Evolution of Protein Function: Enzyme Evolution by Random Recombination of Improved Sequences", J. Mol. Biol. 272:336-347 (1997) Morris and McIvor, "Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance," Biochem Pharmacol 47(7): 1207-1220 (1994 Mar 29) Olesen and Kielland-Brandt, "Altering substrate preference of carboxypeptidase Y by a novel strategy of mutagenesis eliminating wild type backgroun," Protein Eng 6(4): 409-415 (Jun 1993) Olins et al., "Saturation mutagenesis of human interleukin-3," J Biol Chem 270(40): pp 23754-123760 (6 October 1995) Oliphant and Struhl, "An efficient method for generation proteins with altered enzymatic properties: application to beta-lactamase," Proc Natl Acad Sci USA 86(23): 9094-9098 (Dec 1989)
222222224 12222224 1222224	Ihara et al., "Requirement of the Pro-Cys-His-Arg sequence for O ⁶ -methylguanine DNA methylransferase activity revealed by saturation mutagenesis with negative and positive screening, <i>Mol Gen Genet</i> 243(4): 379-389 (1994 May 25) Krishnan et al., "Direct and crossover PCR amplifications to facilitate Tn5supF-based sequencing of alpha phage blones", Nucl. Acids Res. 19:6177-82 (1991) J.W. Little, "Saturation mutagenesis of specific codons: elimination of molecule with stop codons from mixed pools of DNA," <i>Gene</i> 88(1): 113-115 (1990 Mar 30) Marks et al., "Bypassing Immunization: Building High Affinity Hurnan Antibodies by Chain Shuffling", Biotechnology 10:779-783. Meyerhans et al., "DNA recombination during PCR," Nucleic Acids Res. 18:1687-91 (1990) Moore et al., "Strategies for the in vitro Evolution of Protein Function: Enzyme Evolution by Random Recombination of Improved Sequences", J. Mol. Biol. 272:336-347 (1997) Morris and McIvor, "Saturation mutagenesis at dihydrofolate reductase codons 22 and 31. A variety of amino acid substitutions conferring methotrexate resistance," <i>Biochem Pharmacol</i> 47(7): 1207-1220 (1994 Mar 29) Olesen and Kielland-Brandt, "Altering substrate preference of carboxypeptidase Y by a novel strategy of mutagenesis eliminating wild type backgroun," <i>Protein Eng</i> 6(4): 409-415 (Jun 1993) Olins et al., "Saturation mutagenesis of human interleukin-3," <i>J Biol Chem</i> 270(40): pp 23754-123760 (6 October 1995)

EXAMINER

Natree

DATE CONSIDERED
8/5/03

EXAMINER: Initial if citation is considered, whether or not citation is in conformance with MPEP § 609: Draw Line through citation if not conformance and not considered. Include copy with next communication to applicant.

NEWYORK 68635v1

* * referece and net be localed

Subt. For, PTO-1449

INFORMATION DISCLOSURE IN AN APPLICATION

(Use several sheets if necessary)

4

Div-1140-3 (112766.159) Application Number 09/663,620

Applicant
Jay M. Short

Sheet 4 OF

Filing Date
September 15, 2000

Group Art Unit 1652

<u> </u>	
/\%	Patten et al., "Applications of DNA shuffling to pharmaceuticals and vaccines", Curr. Opin. In Biotech. :724-33 (1997)
	Enzymology 208:564-86 (1991)
	Reidhaar-Olson and Sauer, "Combinatorial Cassette Mutagenesis as a Probe of the Information Content of Protein Sequences", Science 241:53-57 (Jul. 1998)
NU	Roberts et al., "Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage," <i>Proc Natl Acad Sci USA</i> 89(6): 2429-2433 (1992 Mar 15)
	Sherman et al., "Saturation mutagenesis of the plasminogen acitibator inhibitor-1 reactive center," <i>J Biol Chem</i> 267(11) : 7588-7595 (1992 Apr 15)
M	Singh et al., "Saturation mutagenesis of the octopine synthase enhancer: correlation of mutant pgenotypes with binding of a nuclear protein factor," <i>Proc Natl Acad Sci USA</i> 86(10) : 3733-3737 (May 1989)
	K. Sirotkin, "A computer program to display codon changes caused by a mutagenesis," Comput Appl Biosci 4(2): 243-247 (Apr 1988)
M	K. Sirotkin, "Advantages to mutagenesis techniques generated populations containing the complete spectrum, of single codon changes," <i>J Theor Biol</i> 123(3): 261-279 (1986 Dec 7)
1/2	Soteropoulos and Perlin, "Genetic probing of the stalk segments associated with M2 and M3 of the plasma membrane H+ -ATPase from Saccharomyces cerevisiae," J Biol Chem 273(41): 26426-26431 (1998 Oct 9)
\mathcal{N}	Acta Physiol Scand 643: 115-122 (Aug 19998)
· N	W. Stemmer, "DNA shuffling by random fragmentation and reassembly: In Vitro recombinations for molecular evolution", PNAS USA 91:10747-51 (Oct. 1994)
<u> </u>	W. Stemmer, "Evolution of a protein in vitro by DNA shuffling", Nature 370:389-91 (Aug. 1994)
Me	Stemmer et al., "Selection of an Active Single Chain Fv Antibody from a Protein Linker Library Prepated by Enzymatic Inverse PCR", Biotechniques 14:256-65 (1993).
<u> </u>	Tsiang et al., "Proteing engineering tyhrombin for optimal specificity and potency of anticoagulant activity in vivo," Biochemistry 35(51): 16449-16457 (1996 Dec 24)
_k	Warren et al., "A rapid screen of active site mutants in glycinamide ribonucleotide transformylase," <i>Biochemistry</i> 35(27): 8855-8862 (1996 Jul 9)
<u> </u>	Weiner et al., "A method for the site-directed mono- and multi-mutagenesis of double stranded DNA," <i>Gene</i> 126(1): 35-41 (1993 Apr 15)
Ne	Wells et al., "Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites," <i>Gene</i> 34(2-3): 315-323 (1985)
14	White et al., "Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354," Biochem
_W	Yelton et al., "Affinity maturation of the BR96 anti-carcinoma antibody by codon-based mutagenesis,," <i>J Immunol</i> 155(4) : 1994-2004 (1995 Aug 15)
M	Zilliacus et al., "Evolution of distinct DNA-binding specificities within the nuclear receptor family of transcription factors," <i>Proc Natl Acad Sci USA</i> 91(10) : 4175-4179 (1994 May 10)
W.	Zhao et al., "Functional and nonfunctional mutations distinguished by random recombination of homologous genes," Proceedings of the National Academy of Sciences, USA, 94: 7997-8000 (July 1997)
18	Zhao et al., "Optimization of DNA shuffling for high fidelity recombination," <i>Nucleic Acids Research</i> , 25(6) : 1307-1308 (March 15, 1997)
A X	Dube et al., "Artificial Mutant generated by the insertion of random oligonucleotides into the putative" Biochem 30:11760-11767 (1991)
N	Schultz Let al., "Site-saturation studies of beta lactamase: production and characterization of mutant beta-lactamases with all possible amino acid substitutions at residue 71", PNAS USA 83:1588-92 (1986)
\mathcal{M}	Stemmer W, "Rapid Evolution of a protein in vitro by DNA Shuffling", Nature 370:389-91 (1994)

Natred

DATE CONSIDERED

EXAMINER: Initial if citation is considered, whether or not citation is in conformance with MPEP § 609: Draw Line through citation if not conformance and not considered. Include copy with next communication to applicant.

NEWYORK 68635v1

* Before a could not be located