TDT4305 2021 - Assignment 4 solution

Adwords problem

1. Given the following table of advertisers and their bids on queries, compute the advertiser-query pairs using the three algorithms. For all algorithms, tie-break on the index, smallest index first.

Advertiser	Query	Bid	
a_1	q_1	0.5	
a_1	q_3	1	
a_2	q_2	0.5	
a ₃	q_2	0.5	
a_3	q_4	1	
a_4	q_1	0.75	

a) Assume for the Greedy algorithm that all bids are 1 or 0 and the budget of each advertiser a_i is B_i =2. Fill in the table for the Greedy algorithm.

Time	Query	Candidates	Budget left	Accu. revenue	Notes
1	q_1	<u>a1</u> , a4	$B_1 = 1$	1	Tie-break
2	q_2	<u>a2</u> , a3	$B_2 = 1$	2	Tie-break
3	q_3	<u>a</u> 1	$B_1 = 0$	3	
4	q_4	<u>a</u> ₃	$B_3 = 1$	4	
5	q 3	a_1	X	4	
6	q_3	a_1	X	4	
7	q_2	<u>a</u> ₂ , a ₃	$B_2 = 0$	5	Tie-break
8	q_4	<u>a</u> 3	$B_3 = 0$	6	

Assume the following budgets B_i for advertisers a_i in the next two algorithms:

Advertiser	Budget	
a_1	3	
a_2	1	
a ₃	1	
<i>a</i> ₄	2	

b) Fill in the table for the Balance algorithm.

Time	Query	Candidates & bids	Budget left	Accu. revenue	Notes
1	q_1	$(a_1, 0.5), (a_4, 0.75)$	B_1 =2.5	0.5	Largest remaining budget
2	q_2	$(a_2, 0.5), (a_3, 0.5)$	B_2 =0.5	1	Tie-break
3	q_3	$(a_1, 1)$	B_1 =1.5	2	
4	q_4	$(a_3, 1)$	$B_3 = 0$	3	
5	q_3	$(a_1, 1)$	$B_1 = 0.5$	4	
6	q 3	$(a_1, 1)$	X	4	No budget left
7	q_2	$(a_2, 0.5), (a_3, 0.5)$	$B_2 = 0$	4.5	Only remaining budget
8	q_4	$(a_3, 1)$	X	4.5	No budget left

c) Fill in the table for the Generalized Balance algorithm.

Time	Query	Candidates & bids	Scores	Budget left	Accu. revenue	Notes
1	q_1	$(a_1, 0.5), (a_4, 0.75)$	$0.5(1-e^{-1})\approx 0.31 0.75(1-e^{-1})\approx 0.47$	B ₄ =1.25	0.75	Highest score
2	q_2	$(a_2, 0.5), (a_3, 0.5)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B_2 =0.5	1.25	Tie-break
3	q 3	<u>(a₁, 1)</u>		B ₁ =2	2.25	
4	q_4	<u>(a₃, 1)</u>		B ₃ =0	3.25	
5	q_3	<u>(a₁, 1)</u>		$B_1 = 1$	4.25	
6	q_3	<u>(a₁, 1)</u>		B ₁ =0	5.25	
7	q_2	(a ₂ , 0.5), (a ₃ , 0.5)		B ₂ =0	5.75	Only remaining budget
8	q_4	$(a_3, 1)$		X	5.75	

- 2. What is the definition of the competitive ratio?
 - See [MMDS] section 8.2.3.
- 3. What is broad matching and why is it useful?
 - See [MMDS] section 8.4.3.
- 4. What is second-price auction and why is it useful?
 - See [MMDS] section 8.4.3.