Kernel Embedding for Particle Gibbs-Based Optimal Control

L. Hochschwarzer

Intermediate Report Master's Thesis

Supervisor: R. Lefringhausen

Chair of Information-oriented Control

Technical University of Munich

Motivation

[Xiloyannis, Chiaradia, Frisoli and Masia 2019]

Challenges:

- Unknown dynamics
- Latent states
- Safety

Problem Statement - System

Given: Dataset $\mathbb{D} = \{ \boldsymbol{u}_t, \boldsymbol{y}_t \}_{t=-T:-1}$ from unknown system

$$egin{aligned} oldsymbol{x}_{t+1} &= oldsymbol{f}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{v}_{t}, & oldsymbol{v}_{t} \sim oldsymbol{\mathcal{V}}, \ oldsymbol{y}_{t} &= oldsymbol{g}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{w}_{t}, & oldsymbol{w}_{t} \sim oldsymbol{\mathcal{V}}, \end{aligned}$$

Assumptions

■ Known system structure

$$egin{aligned} oldsymbol{x}_{t+1} &= oldsymbol{f}_{oldsymbol{ heta}}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{v}_{t}, & oldsymbol{v}_{t} \sim oldsymbol{\mathcal{V}}_{oldsymbol{ heta}}, \ oldsymbol{y}_{t} &= oldsymbol{g}_{oldsymbol{ heta}}\left(oldsymbol{x}_{t}, oldsymbol{u}_{t}
ight) + oldsymbol{v}_{t}, & oldsymbol{w}_{t} \sim oldsymbol{\mathcal{V}}_{oldsymbol{ heta}}, \end{aligned}$$

■ Known priors $p(\theta)$ and $p(x_{-T})$

Problem Statement - Optimal Control Problem

Goal: Solve optimal control problem (OCP)

Stochastic OCP

$$\min_{oldsymbol{u}_{0:H}} J_H(oldsymbol{u}_{0:H})$$

subject to:

$$P[h_i(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}, \boldsymbol{y}_{0:H}) \le 0] \ge 1 - \alpha, \ \forall i = 1, ..., n_c$$

Problem: Underlying data distribution P is unknown

Related Works

Particle Gibbs based optimal control via scenario theory [Lefringhausen, Srithasan, Lederer and Hirche 2024]

⇒ Guarantees determined retroactively

Alternative Approaches:

Introduction

000

- Wasserstein ambiguity [Hota, Cherukuri and Lygeros 2019]
 - ⇒ Constraints limited to affine functions
- Kernel embeddings [Nemmour, Kremer, Schoelkopf and Zhu 2022]

[Thorpe, Lew, Oishi and Zhu 2022]

Particle Gibbs Scenarios

Particle Gibbs gives us the scenarios $\boldsymbol{\delta}^{[1:N]} = \{\boldsymbol{\theta}, \boldsymbol{x}_0, \boldsymbol{v}_{0:H}, \boldsymbol{w}_{0:H}\}^{[1:N]}$

Goal: Reformulate chance-constraint problem with scenarios $\boldsymbol{\delta}^{[1:N]}$

Chance Constraints

$$P[h_i(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}, \boldsymbol{y}_{0:H}) \le 0] \ge 1 - \alpha, \ \forall i = 1, ..., n_c$$

Scenario Approach (used in [Lefringhausen+ 2024])

$$h_i(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}^{[n]}, \boldsymbol{y}_{0:H}^{[n]}) \le 0, \ \forall n = 1, ..., N, \ \forall i = 1, ..., n_c$$

 \Rightarrow Risk factor α not considered in optimization

Maximum Mean Discrepancy (MMD) ambiguity sets

Goal: Reformulate chance-constraint problem with scenarios $\boldsymbol{\delta}^{[1:N]}$

Idea: Replace distribution P with the ambiguity set $\mathcal P$

MMD ambiguity set

Introduction

$$\mathcal{P} = \left\{ \tilde{P} : \mathsf{MMD}(\tilde{P}, P_N) \leq \varepsilon \right\}.$$

Expanded Chance-Constraints

$$\inf_{\tilde{P}\in\mathcal{P}} \tilde{P}\left[h_i(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}, \boldsymbol{y}_{0:H}) \leq 0\right] \geq 1 - \alpha.$$

Constraint Reformulation

Goal: Reformulate chance-constraint problem with scenarios $\boldsymbol{\delta}^{[1:N]}$

Feasible Region of chance constraint

$$Z_i := \left\{ oldsymbol{u}_{0:H} \in \mathcal{U}^{H+1} : \inf_{ ilde{P} \in \mathcal{P}} ilde{P} \left[ilde{h}_i(oldsymbol{u}_{0:H}, oldsymbol{\delta}) \leq 0
ight] \geq 1 - lpha
ight\}$$

 \Downarrow

Reformulated Feasible Region [Nemmour+ 2022]

$$Z_i \coloneqq \left\{ \boldsymbol{u}_{0:H} \in \mathcal{U}^{H+1} : \begin{array}{l} g_0 + \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{K} \boldsymbol{\gamma})_n + \varepsilon \sqrt{\boldsymbol{\gamma}^\mathsf{T} \boldsymbol{K} \boldsymbol{\gamma}} \leq t' \alpha \\ \vdots \\ [\tilde{h}_i(\boldsymbol{u}_{0:H}, \boldsymbol{\delta}^{[n]}) + t']_+ \leq g_0 + (\boldsymbol{K} \boldsymbol{\gamma})_n, \ n = 0, ..., N \\ g_0 \in \mathbb{R}, \boldsymbol{\gamma} \in \mathbb{R}^N, t' \in \mathbb{R} \end{array} \right\}$$

Problem Formulation

Goal: Reformulate chance-constraint problem with scenarios $oldsymbol{\delta}^{[1:N]}$

$$\begin{aligned} \min_{\boldsymbol{u}_{0:H}, \{g_0, \gamma, t'\}^{[1:n_c]}} J_H(\boldsymbol{u}_{0:H}) \\ \text{subject to: } \forall n \in \mathbb{N}_{\leq N}, \ \forall t \in \mathbb{N}_{\leq H}^0, \ \forall i \in \mathbb{N}_{\leq n_c} \\ \boldsymbol{x}_{t+1}^{[n]} = \boldsymbol{f}_{\boldsymbol{\theta}^{[n]}} \left(\boldsymbol{x}_t^{[n]}, \boldsymbol{u}_t\right) + \boldsymbol{v}_t^{[n]} \\ \boldsymbol{y}_t^{[n]} = \boldsymbol{g}_{\boldsymbol{\theta}^{[n]}} \left(\boldsymbol{x}_t^{[n]}, \boldsymbol{u}_t\right) + \boldsymbol{w}_t^{[n]} \end{aligned} \right\} \text{ Dynamic Constraints} \\ \boldsymbol{u}_{0:H} \in Z_i(g_0^{[i]}, \boldsymbol{\gamma}^{[i]}, t'^{[i]}) \end{aligned} \right\} \text{ Reformulated Chance Constraints}$$

Simulation Setup

■ Unknown system:

$$f(\boldsymbol{x}, u) = \begin{bmatrix} 0.8x_1 - 0.5x_2 \\ 0.4x_1 + 0.5x_2 + u \end{bmatrix}$$

$$\boldsymbol{x} \in \mathcal{N} \left(0.00 - \begin{bmatrix} 0.03 & -0.004 \end{bmatrix} \right)$$

$$oldsymbol{v}_t \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{Q} = egin{bmatrix} 0.03 & -0.004 \\ -0.004 & 0.01 \end{bmatrix}
ight).$$

■ Known system structure:
$$f(x,u) = A[x_1,x_2,u]^{\mathsf{T}} + v_t, \ v_t \sim \mathcal{N}(\mathbf{0},Q)$$

■ Priors:

$$oldsymbol{Q} \sim \mathcal{IW}(100oldsymbol{I}_2, 10) \ oldsymbol{A} \sim \mathcal{MN}(oldsymbol{0}, oldsymbol{Q}, 10oldsymbol{I}_2)$$

[Andrieu+ 2017]

$$\boldsymbol{x}_{\text{-}T} \sim \mathcal{N}([2,2]^{\mathsf{T}}, \boldsymbol{I}_2)$$

- Known measurement model $q(\boldsymbol{x}, u) = x_1, w_t \sim \mathcal{N}(0, 0.1)$
- Cost function $J_H = \sum_{t=0}^H u_t^2$
- Input constraints |u| < 10
- Gaussian kernels with bandwidth σ set via the median heuristic [Garreau+ 2018]
- Ambiguity set radius ε set via bootstrap construction [Nemmour+ 2022].

Optimal Control with Constrained Outputs

Number of scenarios used for optimization: N=200

Scenario Approach

Kernel Approach ($\alpha = 0.01$)

Optimal Control with Constrained Outputs

Number of scenarios used for optimization: N=200

Scenario Approach

Kernel Approach ($\alpha = 0.1$)

Optimal Control with Constrained Outputs

Number of scenarios used for optimization: N=200

Scenario Approach

Kernel Approach ($\alpha = 0.3$)

Successrate of Solution

N'=2000 scenarios used to test $u_{0:H}$

Conclusion

Summary: Kernel Embeddings allow for ...

- solving chance-constrained OCPs
- Choosing risk factor α

Future Plans:

- Use kernel embeddings on non-linear systems
- Parameter tuning of σ
- Alternative approach of reformulating chance constraints

References

Christophe Andrieu, Arnaud Doucet and Roman Holenstein. A flexible state-space model for learning nonlinear dynamical systems. In: Automatica 80 (2017), pp. 189-199.

Damien Garreau, Wittawat Jitkrittum and Motonobu Kanagawa, Large Sample Analysis of the Median Heuristic. In: arXiv:1707.07269 (2018).

Ashish R Hota, Ashish Cherukuri and John Lygeros, Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets. In: American Control Conference (ACC) (2019).

Robert Lefringhausen, Supitsana Srithasan, Armin Lederer and Sandra Hirche. Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States.

In: European Control Conference (2024).

Yassine Nemmour, Heiner Kremer, Bernhard Schoelkopf and Jia-Jie Zhu.

Maximum Mean Discrepancy Distributionally Robust Nonlinear Chance-Constrained Optimization with Finite-Sample Guarantee. In: arXiv preprint arXiv:2204.11564 (2022).

Adam J. Thorpe, Thomas Lew, Meeko M. K. Oishi and Jia-Jie Zhu,

Data-Driven Chance Constrained Control using Kernel Distribution Embeddings In: Learn, for Dynamics and Ctrl. Conf. 168 (2022), pp. 790–802.

Michele Xilovannis, Domenico Chiaradia, Antonio Frisoli and Lorenzo Masia,

Physiological and Kinematic Effects of a Soft Exosuit on Arm Movements, In: Journal of NeuroEngineering and Rehabilitation 16 (2019).

Timeline

Scenario Generation

Goal: Generate scenarios $oldsymbol{\delta}^{[1:N]}$ using the observations $\mathbb D$

Algorithm: Scenario Generation

For n = 1, ..., N:

- 1. Sample $\{m{\theta}, m{x}_{-T:-1}\}^{[n]}$ from $p(m{\theta}, m{x}_{-T:-1} \mid \mathbb{D})$ using PMCMC [Lefringhausen+ 2024].

 2. Sample $m{v}_t^{[n]}$ from $m{\mathcal{V}}_{m{\theta}^{[n]}}$ and $m{w}_t^{[n]}$ from $m{\mathcal{W}}_{m{\theta}^{[n]}}$ for t=-1,...,H3. Set $m{x}_0^{[n]} = m{f}_{m{\theta}^{[n]}} \left(m{x}_{-1}^{[n]}, m{u}_{-1} \right) + m{v}_{-1}^{[n]}$ Output: Scenarios $m{\delta}^{[1:N]} = \{m{\theta}, m{x}_0, m{v}_{0:H}, m{w}_{0:H}\}^{[1:N]}$

Bootstrap Construction

Algorithm: Bootstrap MMD ambiguity set

- 1. $K \leftarrow kernel(\delta, \delta)$
- 2. For m = 1, ..., B
- 3. $I \leftarrow N$ numbers from $\{1, \dots N\}$ with replacement
- 4. $K_x \leftarrow \sum_{i,j=1}^{N} K_{ij}, K_y \leftarrow \sum_{i,j\in I} K_{ij}, K_{xy} \leftarrow \sum_{j\in I} \sum_{i=1}^{N} K_{ij}$ 5. $\mathsf{MMD}[m] \leftarrow \frac{1}{N^2} (K_x + K_y 2K_{xy})$
- 6. End For
- 7. $\mathsf{MMD} \leftarrow \mathsf{sort}(\mathsf{MMD})$
- 8. $\varepsilon \leftarrow \mathsf{MMD}[\mathit{ceil}(B\beta)]$

Output: Gram matrix K, Radius of MMD ambiguity set ε

$$B = 1000, \beta = 0.95$$

Max Constraint

Chance Constraint

$$P\left[\max(\boldsymbol{h}(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}, \boldsymbol{y}_{0:H})) \le 0\right] \ge 1 - \alpha$$

Constrained Output ($\alpha = 0.5$)

Max Constraint

Chance Constraint

$$P\left[\max(\boldsymbol{h}(\boldsymbol{u}_{0:H}, \boldsymbol{x}_{0:H}, \boldsymbol{y}_{0:H})) \le 0\right] \ge 1 - \alpha$$

Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy

$$\begin{split} \mathsf{MMD}(\tilde{P}, P_N) &= ||\mu_{\tilde{P}} - \mu_{P_N}||_{\mathcal{H}} \\ &= \mathsf{E}_{x, x' \sim \tilde{P}}[k(x, x')] + \mathsf{E}_{y, y' \sim P_N}[k(y, y')] - 2\mathsf{E}_{x \sim \tilde{P}, y \sim P_N}[k(x, y)] \end{split}$$

(Biased) MMD estimator

$$\widehat{\mathsf{MMD}}(P,Q) = \frac{1}{N^2} \sum_{i=1}^N k(\boldsymbol{\delta}^{[i]}, \boldsymbol{\delta}^{[j]}) + k(\tilde{\boldsymbol{\delta}}^{[i]}, \tilde{\boldsymbol{\delta}}^{[j]}) - 2k(\boldsymbol{\delta}^{[i]}, \tilde{\boldsymbol{\delta}}^{[j]})$$