2018 Introduction to Massive Data Analysis Assignment 1

Deadline: 2018/10/21 23:59

Questions: PageRank

Given a big matrix M. Specifically the column-normalized adjacency matrix where each column represents a webpage (vertex) and where it links to the non-zero entries. Write a MapReduce program in Hadoop that calculate Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

With PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

forming recursive problem: $r = A \cdot r$

If M contains dead-ends, we have to renormalize r^{new}:

$$\forall j : r_j^{new} = r_j^{new} + \frac{1-S}{N}$$
 where: $S = \sum_j r_j^{new}$

NOTE: Please set β =0.8, and initial PageRank value = 1/N in this homework. A simple example:

 $V=\{1,2,3,4,5\}$ and $E=\{(1,2),(1,3),(2,4),(3,1),(3,4),(3,5),(5,1),(5,4)\}$

If we set β = 0.8, initial PageRank value = 1/5, and run a single round of PageRank, we get the following values:

İ	1	2	3	4	5
r_i^1	0.205	0.152	0.152	0.365	0.125

If we run 10 rounds of PageRank, we get the following values:

i	1	2	3	4	5
r _i ¹⁰	0.193	0.170	0.170	0.329	0.138

Structure:

[Mapper] Anode passes its PageRank "contributions" to the nodes it is connected to. [Reducer] Each node sums up all PageRank contributions that have been passed to it and updates its PageRank score.

Data format Input:

A file that contains one line for each link, and each line contains a pair of numbers that represent the vertices that are connected by the link.

1	2	
1	2 3	
2 3	4	
3	1	
3	4 5	
3 3 5 5	5	
5	1	
5	4	

Download here

https://snap.stanford.edu/data/p2p-Gnutella04.html

Output:

There should be one line for each vertex, and each line should contain the vertex identifier and the PageRank values.

4	0.329
1	0.193
2	0.170
3	0.170
5	0.138

Report Requirements:

a. Final output. (We require **20** iterations result)

PS. In addition, you could run processes until convergence (value at nodes no longer change) and present the result in your report.

NOTE: Please show the top ten vertices sorted by rank.

- b. Explain how you design your mapper and reducer.
- c. Please make sure that your .java file has the same name as your class name, which must be PageRank.