Politecnico di Torino Corso di Laurea in Architettura

Esame di Istituzioni di Matematiche

Data: 25/01/2023

Durata della prova: due ore

Soluzioni

Cognome e nome:
Numero di matricola:
□ Consegna - □ Si ritira - Firma:

Esito			1
Problema	Punti	Valut	azione
1	3		
2	3		
3	3		
4	7		
5	3		
6	3		
7	3		
8	7		
Totale	32		

Parte I – Geometria e algebra lineare

Sia $\lambda \in \mathbb{R}$ e si consideri la matrice

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 0 & 2 \\ \lambda & 0 & \lambda^2 \end{pmatrix}.$$

- (i) Determinare i valori di λ per cui A risulta invertibile.
- (ii) Fissato $\lambda = 3/2$, calcolare il determinante della matrice $B = 2A^{T}A^{-1}$.

Si considerino i vettori

$$\vec{u} = -\hat{i} + 2\hat{j} + 3\hat{k}, \qquad \vec{w} = \hat{i} + 5\hat{j} - 3\hat{k}.$$

Sia $\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$ un generico vettore con $x, y, z \in \mathbb{R}$.

- (i) Stabilire le condizioni che devono essere soddisfatte da x, y, z affinché risulti $\vec{u} \wedge \vec{v} = \vec{w}$.
- (ii) A partire dalle condizioni individuate, individuare tutti i vettori \vec{v} che soddisfano $\vec{u} \wedge \vec{v} = \vec{w}$. Interpretare geometricamente il risultato ottenuto: quanti sono e quali caratteristiche condividono tali vettori?

$$A = (2, 0, 1),$$
 $B = (0, 2, 1),$ $C = (1, 1, 3).$

- (i) Verificare che il triangolo di vertici A, B, C è isoscele.
- (ii) Determinare l'equazione cartesiana del piano π passante per A, B e C.

Sia $c \in \mathbb{R}$ e si considerino i piani di equazione

$$\pi_1$$
: $x + y + 2 = 0$, π_2 : $z - 1 = 0$, π_3 : $2x + 2y - z = c$.

Sia poi r la retta $\pi_1 \cap \pi_2$.

- (i) Determinare una parametrizzazione di r.
- (ii) Determinare, se esistono, i valori di c per cui la retta r è contenuta nel piano π_3 .
- (iii) Determinare l'equazione cartesiana del piano π_4 perpendicolare a r e passante per il punto A = (1, 2, 3).
- (iv) Determinare la distanza tra il punto B = (0, 0, 1) e il piano π_4 .

Parte II – Analisi matematica

Problema 5 (i) Disegnare il grafico di una funzione $f: \mathbb{R} \to \mathbb{R}$ in modo tale che siano soddisfatte le seguenti condizioni: • dom $f = \mathbb{R} \setminus \{0\}$. • $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to 0} f(x) = 1$, $\lim_{x \to +\infty} f(x) = -1$, • f(2) = 0 e la retta tangente al grafico di f in corrispondenza di x = 2 è verticale. (ii) Disegnare anche il grafico di |f(x+2)-1|. Problema 6 (3 punti) Si consideri la funzione $f(x) = \log(1 + e^{-x})$. (i) Determinare l'equazione della retta tangente al grafico di f in corrispondenza di x=0. (ii) Calcolare $\lim_{x \to +\infty} x^2 f(x)$. Problema 7 Si consideri la funzione $f(x) = 1 - \sqrt{x}$. (i) Disegnare un grafico qualitativo di f e determinare b>0 in modo tale che la media integrale di f sull'intervallo [0, b] sia nulla. (ii) Determinare l'area della regione piana compresa tra il grafico di f e l'asse delle ascisse nell'intervallo [0, b], dove b è il valore determinato nel punto precedente Problema 8 (7 punti) Si consideri la funzione $f(x) = \frac{e^{2x-1}}{x}$. (i) Determinare il dominio di f e il comportamento della funzione agli estremi del dominio.

(ii) Determinare gli intervalli di monotonia di f e individuare gli eventuali punti di estremo locale.

(iv) Mostrare che l'equazione $e^{2x-1} + 3x = 0$ ammette un'unica soluzione reale.

(iii) Disegnare un grafico qualitativo di f.

Si tratta di una soluzione positiva o negativa?

Soluzione del Problema 1:

(i) A è invertibile
$$\iff$$
 det $A \neq 0$. Suluppendo lungo la seconda colonna ar ottrene det $A = 2 \begin{vmatrix} 2 & 2 \\ \lambda & \lambda^2 \end{vmatrix} = 4\lambda(\lambda - 1)$. Pertanto A è invertibile $\iff \lambda \neq 0$ e $\lambda \neq 1$.

(ii)
$$\lambda = 3/2 \Rightarrow A = \text{invertibrle} \Rightarrow \text{det } A \neq 0.$$
 Allowe

$$\text{det } B = \text{det } (2A^{T}A^{-1}) = 2^{3} \text{det } (A^{T}A^{-1})$$

$$= 8 \text{det } (A^{T}) \text{det } (A^{-1})$$

$$= 8 \text{det} (A) \frac{1}{\text{det}(A)} = \frac{8}{-1}$$

Soluzione del Problema 2:

(i)
$$\vec{\lambda} \wedge \vec{\lambda} = \begin{vmatrix} \hat{\lambda} & \hat{\lambda} & \hat{\kappa} \\ -1 & 2 & 3 \\ & & & 2 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ y & z \end{vmatrix} \hat{\lambda} - \begin{vmatrix} -1 & 3 \\ & & z \end{vmatrix} \hat{\lambda} + \begin{vmatrix} -1 & 2 \\ & & z \end{vmatrix} \hat{\kappa}$$

$$= (2z - 3y)\hat{\lambda} + (z + 3x)\hat{\lambda} - (y + 2x)\hat{\kappa}.$$

Putento, $\vec{\lambda} \wedge \vec{\lambda} = \vec{\lambda} \iff \begin{cases} 2z - 3y = 1 \\ z + 3x = 5 \\ y + 2x = 3 \end{cases}$

(ii) Resolvendo il sistema col metodo di Gours si ottrene
$$\begin{pmatrix} 0-3 & 2 & | & 1 \\ 3 & 0 & 1 & | & 5 \\ 2 & 1 & 0 & | & 3 \end{pmatrix} \xrightarrow{R_3 \leftrightarrow R_1} \begin{pmatrix} 2 & 1 & 0 & | & 3 \\ 3 & 0 & 1 & | & 5 \\ 0 & -3 & 2 & | & 1 \end{pmatrix} \xrightarrow{R_2 \to 2R_2 - 3R_1} \begin{pmatrix} 2 & 1 & 0 & | & 3 \\ 0 & -3 & 2 & | & 1 \\ 0 & -3 & 2 & | & 1 \end{pmatrix}$$

$$\frac{1}{R_3 \to R_3 - R_2} \begin{pmatrix} 2 & 1 & 0 & | & 3 & | & 0 & | & 2x + y & | & 3 & | & 3 & | & 2z - 2x & | & &$$

$$\Rightarrow \begin{cases} x = t \\ y = 3 - 2t , t \in \mathbb{R}. \\ x = 5 - 3t \end{cases}$$

 $\Rightarrow \begin{cases} x=t \\ y=3-2t \end{cases} \text{ tell.} \quad \text{Quind: } \vec{\pi} \land \vec{\tau} = \vec{w} \Leftrightarrow \vec{r} = (t, 3-2t, 5-3t), t \in \mathbb{R}.$ $\Rightarrow \begin{cases} y=3-2t \\ z=5-3t \end{cases} \text{ tell.} \quad \text{Al variou in tell. tell. rettor individuous i point della zetta.}$ ponente per Q=(0,3,5) e dirette come - vi. Pagina 5 di 10

Soluzione del Problema 3:

(a)
$$\|[\overrightarrow{AB}\|] = \|[B-A\|] = \|(-2,2,0)\| = \sqrt{(-2)^2 + 2^2 + 0^2}' = \sqrt{8}.$$

 $\|[\overrightarrow{BC}\|] = \|[C-B\|] = \|(1,-1,2)\| = \sqrt{1^2 + (-1)^2 + 2^2}' = \sqrt{6}.$
 $\|[\overrightarrow{CA}\|] = \|[A-C\|] = \|(1,-1,-2)\| = \sqrt{1^2 + (-1)^2 + (-2)^2} = \sqrt{6}.$

Quind: | IBCII = ILEÀII e n'étroupolo de vertire: A,B,C è concele.

Je preno T pasante per AIBIC e perpendicolore a $\vec{n} = \vec{A}\vec{B} \wedge \vec{A}\vec{c}$, overo $\int_{N} \frac{1}{N} = \left| \frac{x}{2} \frac{x}{N} \frac{x}{N} \right| = \left| \frac{20}{42} \right|^{2} - \left| \frac{-20}{42} \right|^{2} + \left| \frac{-72}{41} \right|^{2} \frac{x}{N}$

Dunque l'equerone conterrana de TT 2 del tipo 4x + 4y = d, con d'elR de leterminone. Posselvé $A \in \Pi \Rightarrow 4.2 + 4.0 = d$, rimite d=8 e quind $4x+4y=8 \Rightarrow \pi: x+y=2$.

Soluzione del Problema 4:

(i)
$$r = \pi 4 \times \pi 2 \implies r: \begin{cases} x + y + z = 0 \\ y - 1 = 0 \end{cases} \implies r: \begin{cases} x = t \\ y = 2 - t \end{cases}, t \in \mathbb{R}.$$

(ii) rèdizette come v= (1,-1,0) e posse per Q=(0,2,1). Affinché ratis deve oversi che QETS e vil ni, dove Ng = (2,2,-1) è m vettore normale al prono Tis.

Si ha che NTIN3, porché NT·N3 = (1,-1,0)·(2,2,-1) = 2-2 = 0, pertents r è parellela a TI3 per qualssais valore de CEIR.

Snottre $Q \in \Pi_3 \Rightarrow 2 \cdot 0 + 2 \cdot 2 - 1 = c \Rightarrow$

Concludence che <u>ratio</u> = 3.

(iii) Sia $\vec{n_4}$ un vettere normale al prono $\vec{n_4}$. Allore $\vec{n_4} \iff \vec{n_4} \iff \vec{n_4} \implies \vec{n_4} \implies$

data dalla relatione

Riondremo che la distante de un puto $P=(x_0, y_{01}z_0)$ del premo $\pi: ax + by + cz = d e$ $d(P_1\pi) = \frac{|ax + by + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}.$

Nel easo in exem 25mlte allore $J(B, T_4) = \frac{|1 \cdot 0 - 1 \cdot 0 + 0 \cdot 1 - (-1)|}{\sqrt{4^2 + (-1)^2 + 0^2}} = \frac{1}{\sqrt{2}}$

Soluzione del Problema 5:

Soluzione del Problema 6:

(i) f è derivabile in IR poiché compositione de funtion in derivabile, e x he $f'(x) = \frac{-e^{-x}}{1+e^{-x}} = -\frac{1}{1+e^{x}}$. Si ha in portrolore $f'(0) = -\frac{1}{2}$.

L'equatione della rette tongente al grafico b f rul f runto (0, f(0)) = (0, log 2) è data da y = f(0) + f'(0)(x-0), ovuro $y = log 2 - \frac{1}{2}x$.

(ii) $\lim_{x\to+\infty} x^2 \log(1+e^{-x})$. Povendo $t=e^{-x}$, x_1 vede che $x\to+\infty$ is he $t\to0^+$, e vale l'approximatione loeale per $x\to+\infty$ is he $t\to0^+$, e vale l'approximatione loeale $\lim_{x\to+\infty} (1+e^{-x}) = \lim_{x\to+\infty} \frac{x^2}{e^x} = 0$. Pertants (sortit. degli equivalenti) $\lim_{x\to+\infty} x^2 \log(1+e^{-x}) = \lim_{x\to+\infty} \frac{x^2}{e^x} = 0$. In alternative: $\lim_{x\to+\infty} \frac{\log(1+e^{-x})}{2\log(1+e^{-x})} = \lim_{x\to+\infty} \frac{x^2}{2(1+e^{-x})} = 0$. (t. de l'Hapital) $\lim_{x\to+\infty} \frac{\log(1+e^{-x})}{2\log(1+e^{-x})} = 0$.

Soluzione del Problema 7:

Soluzione del Problema 7:

(i)
$$y = \frac{1}{b} =$$

Perso
$$\mu = 0 \iff \int_0^b f(x) dx = 0$$
. So he
$$\int_0^b (1 - \sqrt{x}) dx = \left[x - \frac{x^{3/2}}{3/2} \right]_0^b = b - \frac{2}{3} b^{3/2} = b \left(1 - \frac{2}{3} \sqrt{5} \right).$$
Quind $\mu = 0 \iff 1 - \frac{2}{3} \sqrt{5} = 0 \iff b = \frac{9}{4}$.

Area (R) =
$$\int_{0}^{1} f(x) dx - \int_{1}^{4/4} f(x) dx = \left[x - \frac{2}{3}x^{3/2}\right]_{0}^{1} - \left[x - \frac{2}{3}x^{3/2}\right]_{2}^{4/4}$$

$$= \left(1 - \frac{2}{3}\right) - \left[\frac{9}{4}\left(1 - \frac{2}{3} \cdot \frac{3}{2}\right) - \left(1 - \frac{2}{3}\right)\right] = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

Soluzione del Problema 8:

(i)
$$dom f = |R| \{0\} = (-\infty, 0) \cup (0, +\infty).$$
 $\lim_{\chi \to -\infty} \frac{e^{2\chi - 1}}{\chi} = \lim_{\chi \to -\infty} e^{2\chi - 1} = \lim_{\chi \to -\infty} \frac{1}{\chi} = 0.0 = 0$
 $\lim_{\chi \to -\infty} \frac{e^{2\chi - 1}}{\chi} = \lim_{\chi \to -\infty} e^{2\chi - 1} = \lim_{\chi \to +\infty} \frac{1}{\chi} = \lim_{\chi \to 0^{\pm}} \frac{1}{\chi} =$

(ii)
$$f$$
 è develobre in dont poiché ottente de compositione e reprosto de furnou in develor, e x he $f'(x) = \frac{(e^{2x-1})^{1}x - e^{2x-1}(x)^{1}}{x^{2}} = \frac{2e^{2x-1}x - e^{2x-1}}{x^{2}} = \frac{e^{2x-1}}{x^{2}}(2x-1)$

St ha
$$f'(x) = 0 \iff 2x - 1 = 0 \iff x = \frac{1}{2}$$
. Suche,
$$f'(x) > 0 \iff \frac{e^{2x-1}}{2} (2x-1) > 0 \iff 2x - 1 > 0 \iff x > \frac{1}{2}$$
.
Pagina 9 di 10

Quinde $f \in st$. decreseente in $(-\infty,0)$ e in (0,1/2), invece è st. crescente in $(1/2,+\infty)$. Le p. to sterionous $x=\frac{1}{2}$

25 metre perso un p. to de minimo relativo, con $f(\frac{1}{2})=2$.

$$(iv)$$
 $e^{2x-1} + 3x = 0 \iff e^{2x-1} = -3x$

Onewends che z=0 non è une solutione $(=^{2} \neq -3)$, l'equetron epivole e $f(x)=\frac{e^{2x-1}}{x}=-3$.

Dol gration qualitation vocato sopre si evince che f(x) = -3 ammette un'unice solutione (negative),

overo $x^* = f^{-1}(3) < 0$.

Prin precisemente, poidré f è ot. dec. in $(-\infty,0)$, f(x)<0 $\forall x<0$ e $\exists m (-\infty,0) = (-\infty,0)$, la restorant $f: (-\infty,0) \rightarrow (-\infty,0)$ remlta brundoca, que de $\forall y^*<0 \exists ! x^*<0$ $t\cdot c. f(x^*) = y^*.$