```
In [1]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [2]:

dataset = pd.read_csv('50_startups.csv')
```

In [3]: ▶

dataset

Out[3]:

	DOD Coord	Administration	Markating Chand	City	Drofit
	R&D Spend 165349.20	Administration 136897.80	Marketing Spend 471784.10	City	192261.83
				Madurai	192201.03
1	162597.70	151377.59	443898.53		
2	153441.51	101145.55	407934.54	Coimbatore	191050.39
3	144372.41	118671.85	383199.62	Chennai	182901.99
4	142107.34	91391.77	366168.42	Coimbatore	166187.94
5	131876.90	99814.71	362861.36	Chennai	156991.12
6	134615.46	147198.87	127716.82	Madurai	156122.51
7	130298.13	145530.06	323876.68	Coimbatore	155752.60
8	120542.52	148718.95	311613.29	Chennai	152211.77
9	123334.88	108679.17	304981.62	Madurai	149759.96
10	101913.08	110594.11	229160.95	Coimbatore	146121.95
11	100671.96	91790.61	249744.55	Madurai	144259.40
12	93863.75	127320.38	249839.44	Coimbatore	141585.52
13	91992.39	135495.07	252664.93	Madurai	134307.35
14	119943.24	156547.42	256512.92	Coimbatore	132602.65
15	114523.61	122616.84	261776.23	Chennai	129917.04
16	78013.11	121597.55	264346.06	Madurai	126992.93
17	94657.16	145077.58	282574.31	Chennai	125370.37
18	91749.16	114175.79	294919.57	Coimbatore	124266.90
19	86419.70	153514.11	0.00	Chennai	122776.86
20	76253.86	113867.30	298664.47	Madurai	118474.03
21	78389.47	153773.43	299737.29	Chennai	111313.02
22	73994.56	122782.75	303319.26	Coimbatore	110352.25
23	67532.53	105751.03	304768.73	Coimbatore	108733.99
24	77044.01	99281.34	140574.81	Chennai	108552.04
25	64664.71	139553.16	137962.62	Madurai	107404.34
26	75328.87	144135.98	134050.07	Coimbatore	105733.54
27	72107.60	127864.55	353183.81	Chennai	105008.31
28	66051.52	182645.56	118148.20	Coimbatore	103282.38
29	65605.48	153032.06	107138.38	Chennai	101004.64
30	61994.48	115641.28	91131.24	Coimbatore	99937.59
31	61136.38	152701.92	88218.23	Chennai	97483.56
32	63408.86	129219.61	46085.25	Madurai	97427.84
33	55493.95	103057.49	214634.81	Coimbatore	96778.92

	R&D Spend	Administration	Marketing Spend	City	Profit
34	46426.07	157693.92	210797.67	Madurai	96712.80
35	46014.02	85047.44	205517.64	Chennai	96479.51
36	28663.76	127056.21	201126.82	Coimbatore	90708.19
37	44069.95	51283.14	197029.42	Madurai	89949.14
38	20229.59	65947.93	185265.10	Chennai	81229.06
39	38558.51	82982.09	174999.30	Madurai	81005.76
40	28754.33	118546.05	172795.67	Madurai	78239.91
41	27892.92	84710.77	164470.71	Coimbatore	77798.83
42	23640.93	96189.63	148001.11	Madurai	71498.49
43	15505.73	127382.30	35534.17	Chennai	69758.98
44	22177.74	154806.14	28334.72	Madurai	65200.33
45	1000.23	124153.04	1903.93	Chennai	64926.08
46	1315.46	115816.21	297114.46	Coimbatore	49490.75
47	0.00	135426.92	0.00	Madurai	42559.73
48	542.05	51743.15	0.00	Chennai	35673.41
49	0.00	116983.80	45173.06	Madurai	14681.40

```
In [4]: ▶
```

```
dataset.isnull().sum()
```

Out[4]:

R&D Spend 0
Administration 0
Marketing Spend 0
City 0
Profit 0
dtype: int64

```
In [5]:
```

```
#dependent & independent variable
x =dataset.iloc[:,:-1].values
y= dataset.iloc[:,4].values
```

```
In [6]: ▶
```

```
# convert categorical to numerical
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
le_x = LabelEncoder()
x[:,3] = le_x.fit_transform(x[:,3])
ohe_x = ColumnTransformer(
    [('one_hot_encoder', OneHotEncoder(),[3])],
    remainder = 'passthrough'
)
x = np.array(ohe_x.fit_transform(x), dtype = np.int)
```

In [7]: ▶

Χ

```
Out[7]:
```

```
array([[
              1,
                       0,
                                0, 165349, 136897, 471784],
                                1, 162597, 151377, 443898],
              0,
                       0,
        0,
                       1,
                                0, 153441, 101145, 407934],
        0, 144372, 118671, 383199],
              1,
                       0,
        0, 142107, 91391, 366168],
              0,
                       1,
        0,
                                0, 131876,
                                             99814, 362861],
              1,
        1, 134615, 147198, 127716],
              0,
                       0,
        0,
                       1,
                                0, 130298, 145530, 323876],
                                0, 120542, 148718, 311613],
              1,
                       0,
                                1, 123334, 108679, 304981],
              0,
                       0,
                                0, 101913, 110594, 229160],
              0,
                       1,
              0,
                                  100671, 91790, 249744],
        0,
                                1,
        0,
                       1,
                                0,
                                    93863, 127320, 249839],
                       0,
        91992, 135495, 252664],
              0,
                                1,
                                  119943, 156547, 256512],
        0,
                       1,
                       0,
                                0, 114523, 122616, 261776],
        1,
                                    78013, 121597, 264346],
              0,
                       0,
                                1,
                                0,
                                    94657, 145077, 282574],
              1,
                       0,
                                    91749, 114175, 294919],
        0,
                       1,
                                0,
        Γ
                                0,
                                    86419, 153514,
              1,
                       0,
                                1,
                                    76253, 113867, 298664],
        0,
                       0,
                                    78389, 153773, 299737],
        0,
                                0,
              1,
        0,
                       1,
                                0,
                                    73994, 122782, 303319],
                                    67532, 105751, 304768],
                                0,
        0,
                       1,
                       0,
                                             99281, 140574],
        1,
                                0,
                                    77044,
                                    64664, 139553, 137962],
                                1,
        0,
                       0,
              0,
                                0,
                                    75328, 144135, 134050],
        1,
        1,
                       0,
                                0,
                                    72107, 127864, 353183],
                                0,
                                    66051, 182645, 118148],
        0,
                       1,
        1,
                       0,
                                0,
                                    65605, 153032, 107138],
                                    61994, 115641,
                                                      91131],
              0,
                       1,
                                0,
                                0,
                                    61136, 152701,
                                                      88218],
              1,
                       0,
                                    63408, 129219,
              0,
                                1,
                                                      460851,
                       0,
                                0,
                                    55493, 103057, 214634],
              0,
                       1,
              0,
                       0,
                                1,
                                    46426, 157693, 210797],
                                0,
                                    46014,
                                             85047, 205517],
        1,
                       0,
        0,
                                0,
                                    28663, 127056, 201126],
                       1,
              0,
                                1,
                                    44069,
                                             51283, 197029],
                       0,
                                             65947, 185265],
                                0,
                                    20229,
              1,
                       0,
                                             82982, 174999],
              0,
                       0,
                                1,
                                    38558,
                                    28754, 118546, 172795],
                                1,
              0,
                       0,
              0,
                                0,
                                    27892,
                                             84710, 164470],
                       1,
                                             96189, 148001],
              0,
                       0,
                                1,
                                    23640,
                                    15505, 127382,
        0,
                                                      35534],
              1,
                       0,
              0,
                       0,
                                    22177, 154806,
                                1,
                                                      283341,
                                     1000, 124153,
              1,
                       0,
                                0,
                                                       1903],
              0,
                                0,
                                     1315, 115816, 297114],
                       1,
              0,
                       0,
                                1,
                                         0, 135426,
                                                           0],
                                                          0],
                                             51743,
              1,
                       0,
                                0,
                                       542,
                                                      45173]])
              0,
                       0,
                                1,
                                         0, 116983,
```

In [8]: ▶

```
#dummy variable trap
x = x[:,1:]
```

In [9]: ▶

x

Out[9]:

```
array([[
              0,
                       0, 165349, 136897, 471784],
                       1, 162597, 151377, 443898],
              0,
       0, 153441, 101145, 407934],
       1,
                       0, 144372, 118671, 383199],
       0,
                       0, 142107,
       91391, 366168],
              1,
       0,
                       0, 131876,
                                   99814, 362861],
                       1, 134615, 147198, 127716],
       0,
       I
              1,
                       0, 130298, 145530, 323876],
                       0, 120542, 148718, 311613],
              0,
                       1, 123334, 108679, 304981],
              0,
                       0, 101913, 110594, 229160],
              1,
              0,
                       1, 100671,
                                   91790, 249744],
       1,
                       0,
                           93863, 127320, 249839],
       1,
                           91992, 135495, 252664],
              0,
                       0, 119943, 156547, 256512],
       1,
                       0, 114523, 122616, 261776],
              0,
                       1,
                           78013, 121597, 264346],
              0,
                       0,
                           94657, 145077, 282574],
              0,
                           91749, 114175, 294919],
       1,
                       0,
       Γ
                       0,
                           86419, 153514,
              0,
                       1.
                           76253, 113867, 298664],
       0,
                           78389, 153773, 299737],
       0,
              0,
                       0,
                           73994, 122782, 303319],
              1,
                           67532, 105751, 304768],
              1,
                       0,
              0,
                                   99281, 140574],
                       0,
                           77044,
                           64664, 139553, 137962],
       0,
                       1,
                       0,
                           75328, 144135, 134050],
       1,
              0,
                       0,
                           72107, 127864, 353183],
                           66051, 182645, 118148],
       0,
              1,
                           65605, 153032, 107138],
       0,
                       0,
                                            91131],
              1,
                       0,
                           61994, 115641,
                           61136, 152701,
                                            88218],
              0,
                       0,
                           63408, 129219,
                                            460851,
              0,
                       1,
                           55493, 103057, 214634],
                       0,
              1,
              0,
                       1,
                           46426, 157693, 210797],
                       0,
                           46014,
                                    85047, 205517],
              0,
                       0,
                           28663, 127056, 201126],
              1,
                           44069,
                                   51283, 197029],
              0,
                       1,
                       0,
                           20229,
                                    65947, 185265],
              0,
                                   82982, 174999],
              0,
                       1,
                           38558,
                           28754, 118546, 172795],
                       1,
              0,
              1,
                           27892,
                                    84710, 164470],
                       0,
                           23640,
                                    96189, 148001],
              0,
                       1,
                           15505, 127382,
                       0,
                                            35534],
              0,
                      1,
                                            28334],
              0,
                           22177, 154806,
                            1000, 124153,
                                              1903],
              0,
                       0,
                      0,
                            1315, 115816, 297114],
              1,
              0,
                       1,
                               0, 135426,
                                                 0],
                             542,
                                    51743,
              0,
                       0,
                                                 0],
              0,
                       1,
                               0, 116983,
                                            45173]])
```

```
In [10]:
                                                                                          H
#split and train data
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=.30,random_state = 0)
In [11]:
                                                                                          H
# MLR model from sklearn
from sklearn.linear_model import LinearRegression
regress = LinearRegression()
regress.fit(x_train, y_train)
Out[11]:
LinearRegression()
In [12]:
                                                                                          M
#prediction
y_pred = regress.predict(x_test)
In [13]:
y_pred
Out[13]:
array([104282.74845358, 132536.53849927, 133911.11921423, 72584.35572911,
       179920.88369286, 114549.21392778, 66444.25735029,
                                                           98404.98885339,
       114499.77312619, 169367.57489703, 96522.21039595,
                                                           88040.95894935,
       110949.65365898, 90419.61586831, 128020.69204362])
In [14]:
                                                                                          H
y_test
Out[14]:
array([103282.38, 144259.4, 146121.95, 77798.83, 191050.39, 105008.31,
        81229.06, 97483.56, 110352.25, 166187.94, 96778.92, 96479.51,
       105733.54, 96712.8, 124266.9])
In [15]:
#model performance - Best fitted line error rate
regress.score(x_train, y_train)
Out[15]:
0.9515563254725671
```

In [16]: ▶

regress.score(x_test, y_test)

Out[16]:

0.9358682078683178

In [17]:

lets build the model using backward elimination
Now we will use linear regression from statsmodel library
import statsmodels.api as sm

In [18]:

x = np.append(arr = np.ones(shape = (50,1), dtype = int), values = x, axis = 1) # <math>x = c+x #x = np.append(arr = x, values = np.ones(shape = (50,1), dtype = int), axis = 1) # <math>x = x+c

In [19]: ▶

Χ

```
Out[19]:
```

```
array([[
              1,
                       0,
                                0, 165349, 136897, 471784],
              1,
                       0,
                                1, 162597, 151377, 443898],
        1,
                       1,
                                0, 153441, 101145, 407934],
                                0, 144372, 118671, 383199],
        1,
                       0,
        0, 142107, 91391, 366168],
              1,
                       1,
        0,
                                0, 131876,
                                             99814, 362861],
              1,
        1, 134615, 147198, 127716],
              1,
                       0,
        1,
                       1,
                                0, 130298, 145530, 323876],
                                0, 120542, 148718, 311613],
              1,
                       0,
              1,
                                1, 123334, 108679, 304981],
                       0,
                                0, 101913, 110594, 229160],
              1,
                       1,
                       0,
                                  100671, 91790, 249744],
        1,
                                1,
        1,
                       1,
                                0,
                                    93863, 127320, 249839],
                       0,
        91992, 135495, 252664],
              1,
                                1,
                                  119943, 156547, 256512],
        1,
                       1,
              1,
                       0,
                                0, 114523, 122616, 261776],
        1,
                                    78013, 121597, 264346],
                                1,
                       0,
                                0,
                                    94657, 145077, 282574],
              1,
                       0,
        1,
                       1,
                                0,
                                    91749, 114175, 294919],
        Γ
                                0,
                                    86419, 153514,
              1,
                       0,
                                1,
                                    76253, 113867, 298664],
        1,
                       0,
                                    78389, 153773, 299737],
        0,
                                0,
              1,
        1,
                       1,
                                0,
                                    73994, 122782, 303319],
                                    67532, 105751, 304768],
                                0,
        1,
                       1,
                                             99281, 140574],
        1,
                       0,
                                0,
                                    77044,
                                    64664, 139553, 137962],
                                1,
        1,
                       0,
                                0,
                                    75328, 144135, 134050],
        1,
                       1,
        1,
                       0,
                                0,
                                    72107, 127864, 353183],
                                0,
                                    66051, 182645, 118148],
        1,
              1,
        1,
                       0,
                                0,
                                    65605, 153032, 107138],
                                                      91131],
        1,
                                0,
                                    61994, 115641,
                       1,
                                0,
                                    61136, 152701,
                                                      88218],
              1,
                       0,
                                    63408, 129219,
                                1,
                                                      460851,
              1,
                       0,
                                0,
                                    55493, 103057, 214634],
              1,
                       1,
              1,
                       0,
                                1,
                                    46426, 157693, 210797],
                                0,
                                    46014,
                                             85047, 205517],
        1,
                       0,
        1,
                                0,
                                    28663, 127056, 201126],
                       1,
        1,
                                    44069,
                                             51283, 197029],
              1,
                       0,
                                             65947, 185265],
                                0,
                                    20229,
              1,
                       0,
                                             82982, 174999],
              1,
                       0,
                                1,
                                    38558,
                                    28754, 118546, 172795],
                                1,
              1,
                       0,
                                0,
                                    27892,
                                             84710, 164470],
              1,
                       1,
              1,
                                             96189, 148001],
        0,
                                1,
                                    23640,
                                    15505, 127382,
        0,
                                                      35534],
              1,
                       0,
                       0,
              1,
                                1,
                                    22177, 154806,
                                                      283341,
                                     1000, 124153,
              1,
                       0,
                                0,
                                                       1903],
                                0,
                                     1315, 115816, 297114],
              1,
                       1,
              1,
                       0,
                                1,
                                         0, 135426,
                                                           0],
                                                          0],
                                             51743,
              1,
                       0,
                                0,
                                      542,
                                                      45173]])
              1,
                       0,
                                1,
                                         0, 116983,
```

In [20]:

```
#backward elimination
x_ov = x[:,[0,1,2,3,4,5]] # x_ov = x
regress_ols = sm.OLS(endog=y, exog = x_ov).fit()
regress_ols.summary()
```

Out[20]:

OLS Regression Results

De	p. Variable:		у			R	0.951	
	Model:		OLS			lj. R	0.945	
	Method:	Leas	st S	quares	F-statistic:			169.9
	Date:	Sat, 09) Jai	n 2021	Prob (F-statistic):		-statistic):	1.34e-27
	Time:		19	9:26:15	Log-Likelihood:		ikelihood:	-525.38
No. Ob	servations:			50			AIC:	1063.
Df	Residuals:			44			BIC:	1074.
	Df Model:			5				
Covariance Type:			nonrobust					
coef		std	err	t	P	> t	[0.025	0.975]
const	5.008e+04	6952.6	17	7.204	0.0	000	3.61e+04	6.41e+04
x1	240.7605	3338.8	77	0.072	0.9	43	-6488.304	6969.825
x2	42.0063	3256.0	58	0.013	0.9	90	-6520.148	6604.161
х3	0.8060	0.0	46	17.368	0.0	000	0.712	0.900
x4	-0.0270	0.0	52	-0.517	0.6	808	-0.132	0.078
х5	0.0270	0.0	17	1.574	0.1	23	-0.008	0.062
(Omnibus:	14.783	D	urbin-W	/atso	n:	1.283	
Prob(O	mnibus):	0.001	0.001 Jarque-Bera (3):	21.267	
	Skew:	-0.948		Pro	b(JE	3):	2.41e-05	
	Kurtosis:	5.572		Coi	nd. N	ο.	1.47e+06	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.47e+06. This might indicate that there are strong multicollinearity or other numerical problems.

In [21]: ▶

x_ov

```
Out[21]:
```

```
array([[
              1,
                       0,
                                0, 165349, 136897, 471784],
              1,
                       0,
                                1, 162597, 151377, 443898],
        1,
                       1,
                                0, 153441, 101145, 407934],
        0, 144372, 118671, 383199],
              1,
                       0,
        0, 142107, 91391, 366168],
              1,
                       1,
        0,
                                0, 131876,
                                            99814, 362861],
              1,
        1, 134615, 147198, 127716],
              1,
                       0,
        1,
                       1,
                                0, 130298, 145530, 323876],
                                0, 120542, 148718, 311613],
        I
              1,
                       0,
              1,
                                1, 123334, 108679, 304981],
                       0,
              1,
                                0, 101913, 110594, 229160],
        1,
                       0,
                                1, 100671, 91790, 249744],
        1,
        1,
                       1,
                                0,
                                    93863, 127320, 249839],
                       0,
        91992, 135495, 252664],
              1,
                                1,
                                  119943, 156547, 256512],
        1,
                       1,
              1,
                       0,
                                0, 114523, 122616, 261776],
        1,
                                    78013, 121597, 264346],
                                1,
                       0,
              1,
                                0,
                                    94657, 145077, 282574],
                       0,
        1,
                       1,
                                0,
                                    91749, 114175, 294919],
        Γ
                                0,
                                    86419, 153514,
              1,
                       0,
                                1,
                                    76253, 113867, 298664],
        1,
                       0,
                                    78389, 153773, 299737],
        0,
                                0,
              1,
              1,
        1,
                                0,
                                    73994, 122782, 303319],
                                    67532, 105751, 304768],
                                0,
        1,
                       1,
              1,
                       0,
                                            99281, 140574],
        0,
                                    77044,
                                    64664, 139553, 137962],
                                1,
        1,
                       0,
                                0,
                                    75328, 144135, 134050],
        1,
                       1,
        1,
                       0,
                                0,
                                    72107, 127864, 353183],
        0,
                                    66051, 182645, 118148],
              1,
                       1,
        1,
                       0,
                                0,
                                    65605, 153032, 107138],
                                    61994, 115641,
                                                      91131],
        1,
                       1,
                                0,
                                0,
                                    61136, 152701,
                                                      88218],
              1,
                       0,
                                    63408, 129219,
                                1,
                                                      460851,
              1,
                       0,
                                0,
                                    55493, 103057, 214634],
              1,
                       1,
              1,
                       0,
                                1,
                                    46426, 157693, 210797],
                                0,
                                    46014,
                                             85047, 205517],
        1,
                       0,
        1,
                                0,
                                    28663, 127056, 201126],
                       1,
        1,
                                    44069,
                                             51283, 197029],
              1,
                       0,
                                             65947, 185265],
                                0,
                                    20229,
              1,
                       0,
                                             82982, 174999],
              1,
                       0,
                                1,
                                    38558,
                                    28754, 118546, 172795],
                                1,
              1,
                       0,
              1,
                                0,
                                    27892,
                                             84710, 164470],
        1,
                                             96189, 148001],
        1,
                       0,
                                1,
                                    23640,
                                    15505, 127382,
        0,
                                                      35534],
              1,
                       0,
                       0,
              1,
                                1,
                                    22177, 154806,
                                                      283341,
                                     1000, 124153,
              1,
                       0,
                                0,
                                                       1903],
                                0,
                                     1315, 115816, 297114],
              1,
                       1,
              1,
                       0,
                                1,
                                        0, 135426,
                                                          0],
                                             51743,
              1,
                       0,
                                0,
                                      542,
                                                          0],
                                                      45173]])
              1,
                       0,
                                1,
                                        0, 116983,
```

```
In [22]:
                                                                                            H
x_{ovc} = x_{ov}[:,1:]
In [23]:
                                                                                            H
#split and train data
from sklearn.model_selection import train_test_split
x_ov_train, x_ov_test, y_ov_train, y_ov_test = train_test_split(x_ov,y,test_size=.30,random
# MLR model from sklearn
from sklearn.linear_model import LinearRegression
regress_ov1 = LinearRegression()
regress_ov1.fit(x_ov_train, y_ov_train)
Out[23]:
LinearRegression()
In [24]:
                                                                                            H
regress_ov1.score(x_ov_train, y_ov_train)
Out[24]:
0.9515563254725671
In [25]:
regress_ov1.score(x_ov_test, y_ov_test)
Out[25]:
```

In [26]:

```
#iteration 2
x_ov = x[:,[0,1,3,4,5]]
regress_ols = sm.OLS(endog=y, exog = x_ov).fit()
regress_ols.summary()
```

Out[26]:

OLS Regression Results

De	у			F	0.951		
		OLS			Adj. R-squared:		
	Lea	Least Squares			F-statistic:		
	Date:	Sat, 0	9 Ja	n 2021	Prob (F-statistic):		8.49e-29
	Time:		19	9:27:29	Log-L	ikelihood:	-525.38
No. Ob	servations:			50		AIC:	1061.
Df	Residuals:			45		BIC:	1070.
	Df Model:			4			
Covariance Type:		nonrobust		robust			
	coef	std	err	t	P> t	[0.025	0.975]
const	5.011e+04	6647.	901	7.537	0.000	3.67e+04	6.35e+04
x 1	220.1847	2900.	553	0.076	0.940	-5621.828	6062.197
x2	0.8060	0.0	046	17.606	0.000	0.714	0.898
х3	-0.0270	0.0	052	-0.523	0.604	-0.131	0.077
x4	0.0270	0.0	017	1.592	0.118	-0.007	0.061
		14.759	D	urbin-W	atson:	1.282	
		0.001	.001 Jarque-Bera (JB):			21.173	
	Skew:	-0.948		Pro	b(JB):	2.53e-05	
	Kurtosis:	5.563		Cor	nd. No.	1.40e+06	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.4e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [27]:
                                                                                            H
x_{ovc} = x_{ov}[:,1:]
x_ov_train, x_ov_test, y_ov_train, y_ov_test = train_test_split(x_ov,y,test_size=.30,random
# MLR model from sklearn
from sklearn.linear_model import LinearRegression
regress_ov2 = LinearRegression()
regress_ov2.fit(x_ov_train, y_ov_train)
Out[27]:
LinearRegression()
In [28]:
                                                                                            M
regress_ov2.score(x_ov_train, y_ov_train)
Out[28]:
0.9515467487890941
In [29]:
                                                                                            H
regress_ov2.score(x_ov_test, y_ov_test)
```

Out[29]:

In [30]:

```
#iteration 3
x_ov = x[:,[0,3,4,5]]
regress_ols = sm.OLS(endog=y, exog = x_ov).fit()
regress_ols.summary()
```

Out[30]:

OLS Regression Results

De	:	у			R-squared:		
		OLS			Adj. R-squared:		
	Method:		Least Squares		F-statistic:		296.0
Date:		Sat, 0	Sat, 09 Jan 2021		Prob (F-statistic):		4.53e-30
Time:		:	19:28:19		Log-Likelihood:		-525.39
No. Observations:		:	50			AIC:	1059.
Df Residuals:		:	46			BIC:	1066.
	Df Model	:	3				
Covar	iance Type	:	nonrobust				
coef		std	err	t	P> t	[0.025	0.975]
const	5.012e+04	6572.	384	7.626	0.000	3.69e+04	6.34e+04
x1	0.8057	0.	045	17.846	0.000	0.715	0.897
x2	-0.0268	0.	051	-0.526	0.602	-0.130	0.076
х3	0.0272	0.	016	1.655	0.105	-0.006	0.060
	14.839	D	urbin-Wa	otooni	1.282		
Omnibus:		14.009	ט	ui biii-vv	atson.	1.202	
Prob(C		0.001	Jar	que-Bera	a (JB):	21.443	

Warnings:

Kurtosis:

5.587

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 1.40e+06

[2] The condition number is large, 1.4e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [31]:
                                                                                            H
x_{ovc} = x_{ov}[:,1:]
x_ov_train, x_ov_test, y_ov_train, y_ov_test = train_test_split(x_ov,y,test_size=.30,random
# MLR model from sklearn
from sklearn.linear_model import LinearRegression
regress_ov3 = LinearRegression()
regress_ov3.fit(x_ov_train, y_ov_train)
Out[31]:
LinearRegression()
In [32]:
                                                                                            M
regress_ov3.score(x_ov_train, y_ov_train)
Out[32]:
0.9515383544673244
In [33]:
                                                                                            M
regress_ov3.score(x_ov_test, y_ov_test)
Out[33]:
```

In [35]:

```
x_ov
```

Out[35]:

```
array([[
             1, 165349, 136897, 471784],
             1, 162597, 151377, 443898],
       Γ
             1, 153441, 101145, 407934],
       1, 144372, 118671, 383199],
       1, 142107, 91391, 366168],
       1, 131876,
                         99814, 362861],
       1, 134615, 147198, 127716],
             1, 130298, 145530, 323876],
       1, 120542, 148718, 311613],
             1, 123334, 108679, 304981],
             1, 101913, 110594, 229160],
             1, 100671, 91790, 249744],
       93863, 127320, 249839],
       91992, 135495, 252664],
             1,
                119943, 156547, 256512],
       1.
             1, 114523, 122616, 261776],
       1,
                 78013, 121597, 264346],
             1,
                 94657, 145077, 282574],
                 91749, 114175, 294919],
       1,
             1,
                 86419, 153514,
                 76253, 113867, 298664],
       1,
                 78389, 153773, 299737],
       Γ
             1,
                 73994, 122782, 303319],
             1.
                 67532, 105751, 304768],
             1,
             1,
                 77044,
                          99281, 140574],
                 64664, 139553, 137962],
             1,
       I
             1,
                 75328, 144135, 134050],
       1,
                 72107, 127864, 353183],
                 66051, 182645, 118148],
       1,
                 65605, 153032, 107138],
       1,
                 61994, 115641,
                                  91131],
             1,
             1,
                 61136, 152701,
                                  88218],
                 63408, 129219,
             1,
                                  460851,
                 55493, 103057, 214634],
             1,
             1,
                 46426, 157693, 210797],
                 46014,
                          85047, 205517],
       1,
             1,
                 28663, 127056, 201126],
             1,
                 44069,
                          51283, 197029],
             1,
                          65947, 185265],
                 20229,
                          82982, 174999],
             1,
                 38558,
             1,
                 28754, 118546, 172795],
             1,
                 27892,
                          84710, 164470],
                 23640,
                          96189, 148001],
             1,
                 15505, 127382,
       Γ
                                  35534],
             1,
                 22177, 154806,
                                  28334],
             1,
                   1000, 124153,
             1,
                                   1903],
             1,
                   1315, 115816, 297114],
                      0, 135426,
             1,
                          51743,
                                       0],
             1,
                    542,
             1,
                      0, 116983,
                                  45173]])
```

In [36]:

```
#iteration 4
x_ov = x[:,[0,3,5]]
regress_ols = sm.OLS(endog=y, exog = x_ov).fit()
regress_ols.summary()
```

Out[36]:

OLS Regression Results

De	:	у			R-squared:			
	:	OLS			Adj. R-squared:			
	Method:		Least Squares			-statistic:	450.8	
Date:		: Sat, 0	Sat, 09 Jan 2021			Prob (F-statistic):		
	Time	:	19:29:47			ikelihood:	-525.54	
No. Observations:		:	50			AIC:	1057.	
Df Residuals:		:		47		BIC:	1063.	
Df Model:		:	2					
Covariance Type:		:	nonrobust					
coef		f std	err	t	P> t	[0.025	0.975]	
const	4.698e+04	2689.	941	17.464	0.000	4.16e+04	5.24e+04	
x1	0.7966	0.	041	19.265	0.000	0.713	0.880	
x2	x2 0.0299		016	1.927	0.060	-0.001	0.061	
(Omnibus:	14.678	D	urbin-W	atson:	1.257		
Prob(Omnibus):		0.001	0.001 Jarque-Bera (JB):			21.162		
	Skew:	-0.939		Pro	b(JB):	2.54e-05		
Kurtosis:		5.575		Cor	ıd. No.	5.32e+05		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.32e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [37]:
                                                                                            H
x_{ovc} = x_{ov}[:,1:]
x_ov_train, x_ov_test, y_ov_train, y_ov_test = train_test_split(x_ov,y,test_size=.30,random
# MLR model from sklearn
from sklearn.linear_model import LinearRegression
regress_ov4 = LinearRegression()
regress_ov4.fit(x_ov_train, y_ov_train)
Out[37]:
LinearRegression()
In [38]:
regress_ov4.score(x_ov_train, y_ov_train)
Out[38]:
0.9512556961080693
In [39]:
                                                                                            M
regress_ov4.score(x_ov_test, y_ov_test)
Out[39]:
```

In [40]:

```
#iteration 5
x_ov = x[:,[0,3]]
regress_ols = sm.OLS(endog=y, exog = x_ov).fit()
regress_ols.summary()
```

Out[40]:

OLS Regression Results

De		у			R-squared:			
	Model	•	OLS			-squared:	0.945	
	Method	: Lea	Least Squares			F-statistic:		
	Date	: Sat, 0	Sat, 09 Jan 2021			-statistic):	3.50e-32	
	Time	:	19:30:32			Log-Likelihood:		
No. Ob	servations	:	50			AIC:	1059.	
Df Residuals:			48			BIC:	1063.	
	Df Model	:		1				
Covariance Type:			non	robust				
					D> 141	[0.00F	0.0751	
	coef	sta	err	t	P> t	[0.025	0.975]	
const	4.903e+04	2537.	900	19.320	0.000	4.39e+04	5.41e+04	
x1	0.8543	0.	029	29.151	0.000	0.795	0.913	
(Omnibus:	13.727	D	urbin-W	atson:	1.116		
Prob(O	mnibus):	0.001	Jar	que-Ber	a (JB):	18.538		
	Skew:	-0.911		Pro	b(JB):	9.43e-05		
	Kurtosis:	5.361		Cor	nd. No.	1.65e+05		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.65e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [41]:
                                                                                            H
x_{ovc} = x_{ov}[:,1:]
x_ov_train, x_ov_test, y_ov_train, y_ov_test = train_test_split(x_ov,y,test_size=.30,random
# MLR model from sklearn
from sklearn.linear_model import LinearRegression
regress_ov5 = LinearRegression()
regress_ov5.fit(x_ov_train, y_ov_train)
Out[41]:
LinearRegression()
In [42]:
                                                                                            H
regress_ov5.score(x_ov_train, y_ov_train)
Out[42]:
0.9476436934242192
In [43]:
                                                                                            H
regress_ov5.score(x_ov_test, y_ov_test)
Out[43]:
0.9360403445633265
In [ ]:
```