CS101 Homework 4 : Cipher Deadline 14 April, 2016 till 23:55

In this homework, you will work on strings. You will implement a program that has a menu for 4 different actions: 1) Given a word and a text finding out how many times does the text contain this word, 2) and 3) A cipher that will encrypt/decrypt the given string, 4) Creating a regular plural word and 5) Exit the program. Your program will print out a menu that will print the possible options after every action and at start up. The menu structure should be as given below:

The user will choose an option from the menu. For example, if the user enters 2, you will encrypt a given text. Counting the number of the words option will get an input string and print out the number of words on the screen. Making a regular plural word in English will get an input string which is **singular(you do not need to check if the input word is singular)**. You may follow these rules:

- a) If the word ends in s, x, z, ch or sh add es to the word.e.g.: box -> boxes
- b) If the word ends in y and the y is preceded by a consonant, change the y to ies.

e. g.: duty -> duties

c) In all other cases, add just an s.

e.g.: geek -> geeks

To encrypt or decrypt a text, you will implement a cipher phase: You will write a code that will encrypt and decrypt a given string according to the given **key** which is an **integer**. Your cipher will apply the following transformation to the given string. This is an extension of the Ceasar Cipher:

- 1. Reverse the given string e.g. dude -> edud
- 2. Cipher the reversed string.
 - 1. Encrypt only characters with double index e.g. in edud only e and u characters will be encrypted (indices 0 and 2 in "edud").
- Use Ceasar Cipher to encrypt a character:
 Ceasar cipher shifts the given character by a value of key (which is the input to the cipher). For example with a key of 1:

$$d -> c$$
, $f -> e$, $h -> g$, $a -> z$

Following image illustrates Ceasar cipher with a key of 3:

For decryption phase you will have to undo each operation one by one in order to obtain the true string which is encrypted by your algorithm(ignore uppercase part for decryption).

Encryption Example for key of 1:

Decryption Example for key of 1:

IMPORTANT:

When Cipher phase is chosen (2 or 3 in menu) your program should **first** ask for the text, **then** ask for the key!

Coding Instructions:

- Submit a file named Cipher.java to the LMS submissions with different names will be disregarded!
- Everything should be implemented in methods e.g one method for menu print another method for count words etc..

- Make sure your program compiles and runs before submitting otherwise you will get 0 from your homework (no exceptions).
- Do not use any structure that is not mentioned in class. If you would like to use such structure consult to your instructor.
- The first lines of your code must include your name, surname, student number, and department as a comment. An example comment is as follows:

/* John Smith S0001 Department of Computer Science */

- Submit .java files only. Do NOT submit .rar, .zip, .doc, .class, etc. files.
- IMPORTANT : Add comments to your code that briefly explains what your code does such as :

int x; // x holds the number of square