Problem 1: State and define the hazards presented by instruction level parallelism. For each one, indicate how it can be resolved.

1. Data Hazards

- RAW (Data dependence) cannot use a value before it is computed. Resolve by forwarding or stalling
- WAW (Output dependence) cannot write a value if a logically preceding instruction might overwrite it Resolve by pipeline design (in-order op-fetch + in-order WB), stalling on potential write to pending register, or renaming
- WAR (anti-dependence) cannot write a value before logically preceding instruction reading the previous value have done so. Resolve by pipeline design (in-order issue with in-order operand fetch), stalling or renaming.

2. Structural Hazards

Attempt to use the same hardware resource for two different purposes at once. Resolve by adding hardware resources (as design time) or stalling

3. Control Hazards

Cannot determine the control flow until the condition of the branch is resolved. Resolve by stalling. Mitigated by predicting and discarding miss-predicts.

Problem 2. Your current version of ZippyCAD runs through a benchmark design in 43 minutes on your ZIPS10 computer. ZIPS has a new model that they are offering to sell to you. ZIPS30 is a scalar machine like ZIPS10, but 3 times faster. Or you can get the ZIPS1010 vector upgrade that performs vectorized code at 10 times the performance of ZIPS10. You know that ZippyCAD spends a lot of time in its numerical library, so you are intrigued. *How much of ZippyCAD would need to vectorize for the ZIPS1010 to beat the ZIPS30?*

$$SUvector = \frac{Tscalar}{Tvector} = \frac{1}{(1-f)+f/x} = \frac{1}{1-f+f/10} \ge 3$$

$$f \geq 20\,/\,27 \approx 74\%$$