Introduction to High Performance Scientific Computing

Autumn, 2018

Lecture 11

Today

Basic computer archictecture

Introduction to parallel computing

Schematic of single core processor

Imperial Co

(Image from Hager & Wellein)

Schematic of single core processor

London

CPU and memory

- CPUs typically have clock speeds of ~1-2 GHz
 - Typically, CPUs can produce 2-4 double-precision floating-point results per cycle
 - So, peak performance is ~4e9 FLOPS, or 4 gigaflops
- Performance often limited by movement of data in and out of the arithmetic units
- Need to consider memory hierarchy

Memory hierarchy

- Generally, the closer the memory is to the arithmetic unit, the faster and smaller the memory
- Hard drive: very large (~500 gb), very slow
- Main memory (RAM): large (~2 gb), sort-of fast (~1 GHz)
 - All computations, applications, etc... should fit in main memory

Memory hierarchy

- Generally, the closer to the arithmetic unit, the faster and smaller the memory
- Hard drive: very large (~500 gb), very slow
- Main memory (RAM): large (~2 gb), sort-of fast (~1 GHz)
 - All computations, applications, etc... should fit in main memory
- For my laptop (core i5 processor):
 - L3 Cache → 3mb (shared by two cores)
 - (2e6 bytes/8) = 250,000 double precision numbers = 500 x 500 matrix
 - L2 Cache → 256 kb (per core)
 - 256000/8 = 32000 double precision numbers
 = ~180 x 180 matrix
 - L1 Cache → 64 kb (per core), half for data, half for instructions
 - 4000 double precision numbers

Memory hierarchy

Memory access: data can be moved from registers to arithmetic units once each clock cycle:

- For my laptop (core i5 processor):
 - Main memory → ~ 800 clock cycles
 - L2 Cache → ~ 11 clock cycles
 - L1 Cache → ~ 4 clock cycles

Example

- Construct three n-element arrays: b,c,d
- Within a loop, compute a = b + c*d
- Collect timing information as n varies

triad.f90 (used by triad.py):

Example

Results:

- Vertical lines indicate cache sizes
- Clear performance loss when a cache level becomes full

Temporal locality

Due to the influence of cache size, important to think about where data is stored:

- If possible, data in cache should be re-used as much as possible (temporal locality)
 - "cache hit": needed data is found in cache,
 - "cache miss": data is not in (nearest cache)
 - old data needs to be moved out, new data moved in
 - data is moved in cache lines (typically 8 or 16 floats)
- Re-using data in cache reduces cache misses and associated performance loss.

Spatial locality

- Since data is passed in "lines," there can be performance gain when using data which is adjacent in memory
- There can also be a penalty when using data that is scattered in memory
- Consider how matrices are stored in memory

A =	- 0 1	4 5	8 9	12 16
	$\frac{2}{3}$	6 7	10 11	20 24

Fortran:

- 0,1,2,3 occupy consecutive locations in memory
- · "column-major" ordering

Spatial locality

- Since data is passed in "lines," there can be performance gain when using data which is adjacent in memory
- There can also be a penalty when using data that is scattered in memory
- Consider how matrices are stored in memory

Γ 0 4 8 1	9 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$A = \begin{bmatrix} 1 & 3 & 3 & 3 \\ 2 & 6 & 10 & 2 \end{bmatrix}$	
3 7 11 2	4

Python (and c):

- 0,4,8,12 occupy consecutive locations in memory
- "row-major" ordering
- When using np.array, can force 'Fortran ordering'

Spatial locality: simple example

- Really only important for very large matrices:
 - Create 20000 x 20000 random matrix
 - Compute statistics by manually looping along rows and columns
 - Use timer to calculate wall time

 Better to first compute transpose, then loop across a row.

Code optimization

- Can use these ideas about cache to improve/optimize code
 - With compiled languages, the compiler will do much of the optimization for you
 - Working with large matrices in interpreted languages requires greater care

Code optimization

- Can use these ideas about cache to improve/optimize code
 - With compiled languages, the compiler can do much of the optimization for you
 - Working with large matrices in interpreted languages requires greater care
 - Most important point: first develop a code that works, then optimize it.

Does anyone have any questions?

Does anyone have any questions?

What does "high performance" mean?

Moore's law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Algorithms and hardware

Why parallelize a code?

1. Serial (single-processor) code is too slow

or

2 Serial code is too big

Parallel computing paradigms

Shared memory

- One 4-core chip with shared memory (RAM)
- MPI can coordinate communication between cores
- OpenMP generally easier to use for shared-memory systems
- MPI = Message Passing Interface
- OpenMP = Open Multi-Processing

Parallel computing paradigms

Distributed memory

- Each (4-core) chip has its own memory
- The chips are connected by network 'cables'
- MPI coordinates communication between two or more CPUs

Parallel computing paradigms

Related approaches:

- Hybrid programming: mix of shared-memory (OpenMP) and distributed-memory (MPI) programming
- GPU's: Shared memory programming (CUDA or OpenCL)
- Coprocessors and co-array programming

Example: computing an integral

Estimate integral with midpoint rule,

$$I = \int_{x_0}^{x_6} f(x) dx$$

1. Compute:

$$f(x_1^*), f(x_2^*), \dots$$

2. Compute areas of rectangles:

$$I_1 = (x_1 - x_0) * f(x_1^*)$$

3. Sum areas:

$$I \approx I_1 + I_2 + I_3 + \dots$$

Example: computing an integral

- How to parallelize?
- With three processors, can compute areas of two rectangles on each processor
- Not practical for small calculations, but could split 1e7 rectangles across, say, 10 processors

Scaling and performance

- How do we measure performance of a parallel code?
- Serial code: Optimize the efficiency → cost required to obtain a certain level of accuracy

Scaling and performance

- How do we measure performance of a parallel code?
- Serial code: Optimize the efficiency → cost required to obtain a certain level of accuracy
- Parallel code: Also optimize *scaling* or *speedup*: how much faster is the calculation when the number of procs is increased?

Speedup

- Speedup = Computation time on one proc/time on N procs = Ts/Tp
- Ideal: N = 10 processors, speedup = N = 10

Speedup

- Speedup = Computation time on one proc/time on N procs = Ts/Tp
- Ideal: N = 10 processors, speedup = N = 10
- Real life: Speedup will be less than N (possibly much less) Why?
 - Startup costs
 - Communication
 - Only part of the algorithm parallelizes
- Typically interested in performance of large problems running on large number of processors
 - Workstation: N= 16, 32
 - Imperial HPC (cx2): N = 256+
 - UK HPC (Archer): N = 1e3, 1e4, ...
- Ahmdal's law provides guidance

- Usually only part of a computation can be parallelized
 - One processor: T(1) = s + p
 - Two processors: T(2) = s + p/2
 - N processors: T(N) = s + p/N

p is the part of the code that can be parallelized

- Usually only part of a computation can be parallelized
 - One processor: T(1) = s + p
 - Two processors: T(2) = s + p/2
 - N processors: T(N) = s + p/N

p is the part of the code that can be parallelized

So, if only half the code can be parallelized (s = p = 0.5), Then the maximum speedup $T(1)/T(N \rightarrow inf) = (s+p)/(s) = 2$

It is important for p to be much larger than s!

Speedup T(1)/T(N) = (s+p)/(s+p/N)

Example: s = 0.1, p = 0.9

Number of processors	Speedup
1	1
2	1.8
4	3.1
8	4.7
16	6.4
32	7.8
256	9.7

Speedup T(1)/T(N) = (s+p)/(s+p/N)

Example: s = 0.1, p = 0.9

Number of processors	Speedup
1	1
2	1.8
4	3.1
8	4.7
16	6.4
32	7.8
256	9.7

Waste of resources to use N=256!

Strong and weak scaling

- Strong scaling: Time needed to solve a problem of fixed size as number of processors increases
- Weak scaling: Time needed for problem with fixed size per processor

- Profilers give detailed information about time spent in different parts of code
- In python: run -p filename gives profiling info
- With fortran (or c), can use gprof utility (not available on Macs)
- Steps:
 - 1. Compile code with -pg flag

```
$ gfortran -pg -o mt2.exe midpoint_time2.f90
```

- Profilers give detailed information about time spent in different parts of code
- In python: run -p filename gives profiling info
- With fortran (or c), can use gprof utility (not available on Macs)
- Steps:
 - 1. Compile code with -pg flag

```
$ gfortran -pg -o mt2.exe midpoint_time2.f90
```

2. Run code (this will generate gmon.out):

```
$ ./mt2.exe
```

3. Finally, run gprof

```
$ gprof ./mt2.exe
```

Output looks like:

```
Each sample counts as 0.01 seconds.
     cumulative
 %
                 self
                                 self
                                          total
 time
       seconds seconds
                          calls
                                 s/call s/call
                                                 name
                   6.25
                                   6.25
63.67
          6.25
                                           9.85
                                                 MAIN
36.75
          9.85
                   3.61 512000000
                                    0.00
                                            0.00
                                                  integrand_
```

and:

index	% time	self	children	called	name	÷ [2]	
[1]	100.0	6.25 6.25	3.61 3.61	1/1 1	MAIN	in [2] [1]	
		3.61 	0.00 512 	000000/512	000000 	integrand	_ [3]
						pontaneous>	
[2]	100.0	0.00	9.85		main [2]	
		6.25	3.61	1/1	MA	IN [1]	
		3.61	0.00 512	000000/5120	 00000	MAIN [1]
[3]	36.6	3.61	0.00 512	000000	inte	grand_ [3]	

- Can get line-by-line information from other tools like, oprof
- The more complicated the code, the more useful profiling becomes