STAT24410 NOTES

ADEN CHEN

Contents

1
1
2
2
3
5
5
5
6
6
7
7
7
8
8
9
9

1. Probability

1.1. **CDF.**

- 1.1.1. Properties of CDF.
 - Nondecreasing.
 - Right continuous.
 - $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$.
- 1.1.2. Inverse of CDF.

$$F^-(x) := \inf\{u : x \le F(u)\}.$$

Proposition 1.1. Let F be the cdf of X. If F is continuous and strictly increasing, then $Y := F(X) \sim \text{Uniform}[0, 1]$.

Proof. For any $y \in [0, 1]$,

$$\mathbb{P}(F(X) \le y) = F(F^{-1}(y)) = y.$$

Proposition 1.2. Let $U \sim \text{Uniform}[0,1]$ and X be the cdf of X. Then $F^{-1}(U) \stackrel{\mathcal{D}}{=} X$.

Proof. For any $x \in [0, 1]$,

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$$

Remark 1.3. This is useful for simulation.

1.2. **Transformations.** For Y := h(X), if h is one-to-one and differentiable, then

$$f_Y(y) = f_X(h^{-1}(y)) \cdot \left| \frac{\mathrm{d}h^{-1}(y)}{\mathrm{d}y} \right|.$$

1.3. **Expectation.** For an r.v. X. We define

$$X^+ = \max\{X, 0\}, \quad X^- = \max\{-X, 0\}.$$

Note that $X \equiv X^+ - X^-$.

Since X^+ is nonnegative,

$$\mathbb{E}(X^+) := \int_0^\infty x \, \mathrm{d}F(x)$$

in the Riemann–Stieltjes sense, and similarly X^- .

Definition 1.4. *X* has expected value if at least one of $\mathbb{E}(X^+)$ and $\mathbb{E}(X^-)$ is finite, and when it does

$$\mathbb{E}(X) := \mathbb{E}(X^+) - \mathbb{E}(X^-).$$

Definition 1.5. We say Y stochastically dominates $X, Y \succeq X$, if

$$\mathbb{P}(X > t) \le \mathbb{P}(Y > t), \quad \forall t.$$

Proposition 1.6.

- Linearity.
- If

$$\int_{\mathbb{R}} |x| f(x) \, \mathrm{d}x < \infty$$

then

$$\mathbb{E}(X) = \int_{\mathbb{D}} x f(x) \, \mathrm{d}x.$$

- If X is stochastically dominated by Y then $\mathbb{E}(X) \leq \mathbb{E}(Y)$.
- If X and Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Definition 1.7. The **variance** of X is given by

$$Var(X) := \mathbb{E}[(X - \mathbb{E}(X))^2]$$

Proposition 1.8.

- $\operatorname{Var}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$.
- $Var(cX) = c^2 Var(X)$.
- If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Proposition 1.9. If $X \ge 0$ and there exists an at most countable subset $S = \{x_1, x_2, ...\}$ of isolated points such that F_X is continuously differentiable on $[0, \infty) \setminus S$, then

$$\mathbb{E}(X) = \sum_{x \in S} x \mathbb{P}(X = x) + \int_0^\infty x F_X'(x) \, dx.$$

3

1.4. Probability Inequalities.

Theorem 1.10 (Markov's Inequality). *If* $X \ge 0$ *and* c > 0, *then*

$$\mathbb{P}(X \geq c) \leq \frac{\mathbb{E}(X)}{c}.$$

(Equality is attained when $\mathbb{P}(X = 0 \text{ or } X = c) = 1.$)

Proof. Construct

$$Y := \begin{cases} c, & x \ge 0 \\ 0, & X < c. \end{cases}$$

Then $Y \leq X$ and

$$\mathbb{E}(Y) = c \cdot \mathbb{P}(X \ge c) \le \mathbb{E}(X).$$

Theorem 1.11 (Chebychev's Inequality). If c > 0, then

$$\mathbb{P}(|X - \mu| \ge c) \le \frac{\mathbb{E}[(X - \mu)^2]}{c^2}$$

for any μ .

Proof. Apply Markov's inequality to $(X - \mu)^2$.

Theorem 1.12 (Chernoff's Inequality). *If* $c \in \mathbb{R}$ *and* t > 0, *then*

$$\mathbb{P}(X \ge c) \le e^{-tc} \, \mathbb{E}(e^{tX})$$

and

$$\mathbb{P}(X \le c) \le e^{tc} \, \mathbb{E}(e^{-tX}).$$

Proof. Apply Markov's inequality to e^{tX} and e^{-tX} .

Theorem 1.13 (Weak Law of Large Numbers). Let $X_1, X_2, ...$ be i.i.d. with finite expectation μ and variance σ^2 . Then as n goes to infinity,

$$\mathbb{P}\left[\left|\overline{X_n}-\mu\right|>\epsilon\right]\longrightarrow 0.$$

That is, $\overline{X_n} \xrightarrow{p} \mu$.

Proof. Note that $\mathbb{E}(\overline{X_n}) = \mu$ and $Var(\overline{X_n}) = \sigma^2/n$. Chebyshev's gives

$$\mathbb{P}\left(\left|\overline{X_n} - \mu\right| < \epsilon\right) \le \frac{\sigma^2}{n \cdot \epsilon^2} \longrightarrow 0$$

as $n \to \infty$.

Proposition 1.14 (Large Deviations). Let $X_1, X_2, ...$ be i.i.d. with finite expectation μ and variance σ^2 . Let $c > \mu$. Then

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(\overline{X_n}>c)=-\sup_t[tc-\kappa(t)],$$

where $\kappa(t) = \log \mathbb{E}(e^{tX})$.

We do not yet have the tools to prove that this is the limit, but we will use Chernoff's inequality to obtain a bound:

Proof. From Chernoff's inequality, for any t we have

$$\mathbb{P}(\overline{X_n} \geq c) = \mathbb{P}\left(\sum X_i \geq c \cdot n\right) \leq e^{-tnc}\,\mathbb{E}\left[e^{t(\sum X_i)}\right] = e^{-tnc + n\kappa(t)},$$

where $\kappa(t) = \log \mathbb{E}(e^{tX})$. Thus we have

$$\frac{1}{n}\log \mathbb{P}(\overline{X_n} \ge c) \le -\sup_{t} [tc - \kappa(t)].$$

Remark 1.15.

- $\mathbb{E}[e^{tX}]$ is the moment generating function.
- $\kappa(t)$ is the cumulant generating function.
- $\sup_{t} [tc \kappa(t)]$ is the **Legendre Transform**.

Definition 1.16. X_n converges in distribution to $X, X_n \xrightarrow{\mathcal{D}} X$, if

$$F_{X_n}(x) \longrightarrow F_X(x), \quad \forall x \in \mathbb{R}.$$

Definition 1.17. The moment generating function of X is

$$M: \mathbb{R} \longrightarrow [0, \infty]$$
$$t \longmapsto \mathbb{E}[e^{tX}].$$

Proposition 1.18. Properties of the moment generating function:

• $\mathbb{E}[X^m] = M_X^{(n)}(0)$ when Fubini grants

$$\mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[\sum_{n=0}^{\infty} \frac{(tX)^n}{n!}\right] = \sum_{n=0}^{\infty} \frac{t^n \,\mathbb{E}(X^n)}{n!}.$$

- $M_{cX}(t) = M_X(ct)$.
- If X and Y are independent, then

$$M_{X+Y}(t) = M_X(t) + M_Y(t).$$

• If X_1, X_2, \ldots are i.i.d., then

$$M_{\sum X_i} = \prod M_{X_i}$$
.

• $X_n \xrightarrow{\mathcal{D}} X$ if and only if $M_{X_n} \to M_X$ in a neighborhood of 0.

Theorem 1.19 (Central Limit Theorem). *If* $X_1, X_2, ...$ *are i.i.d.*, $\mathbb{E}(X_i) = \mu$, *and* $\text{Var}(X_i) = \sigma^2$, *then*

$$\frac{\sum X_i}{\sqrt{n}} \xrightarrow{\mathscr{D}} \mathcal{N}(\mu, \sigma^2).$$

Or, equivalently,

$$\sqrt{n}\cdot \overline{X}_n \xrightarrow{\mathcal{D}} \mathcal{N}(\mu, \sigma^2).$$

The following proof works only when we have enough regularity; it is meant to provide a certain intuition (the general proof needs complex analysis):

Proof. We consider the mgf.

$$M_{\sum X_i/\sqrt{n}}(t) = M_{\sum X_i}\left(\frac{t}{\sqrt{n}}\right) = \left[M_{X_i}\left(\frac{t}{\sqrt{n}}\right)\right]^n.$$

We obtain an approximation though Taylor:

$$M_X(\frac{t}{\sqrt{n}}) \approx M_X(0) + \frac{t}{\sqrt{n}} M_X'(0) + \frac{t^2}{n} M_X''(0)$$

Noting that $M_X'(0) = \mathbb{E}[X] = 0$ and $M_X''(0) = \mathbb{E}[X^2] = \sigma^2$, we have

$$M_{\sum X_i/\sqrt{n}}(t) \approx \left[1 + \frac{t^2\sigma^2}{n}\right]^n \longrightarrow e^{t^2\sigma^2}.$$

The last term is precisely the mgf of $N(0, \sigma^2)$.

2. Joint Distribution

2.1. Random Vectors and Joint Distributions.

Proposition 2.1.

•

$$F(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(x) \, \mathrm{d}x.$$

• If F is continuous and differentiable, then X has density

$$f(X) = \frac{\partial^n F(x)}{\partial x_1 \dots \partial x_n}.$$

• If X_1, X_2, \ldots, X_n are independent, then

$$F_X(x) = F_{X_1}(x_1) \dots F_{X_n}(x_n).$$

 \bullet If F is differentiable, then

$$f_X(x) = f_{X_1}(x_1) \dots f_{X_n}(x_n),$$

and conversely!

• If $X = (X_1, X_2, ..., X_n)$ has density f_X , then X_I has density

$$f_I(x_I) = \int_{\mathbb{R}^{n-|I|}} f\left(x_I, x_{S_n \setminus I}\right) \, \mathrm{d}x_{S_n \setminus I},$$

where $S_n := \{1, 2, ..., n\}$ are all the indices. Think "integrating out" the other variables.

2.2. Transformations.

Definition 2.2. The **Jacobian** of $g: G \to H \subset \mathbb{R}^n$, where G and H are open, is given by

$$J_g(y) \coloneqq \det \left[\frac{\partial g_i}{\partial y_j} \right].$$

If $X: \Omega \to H \subset \mathbb{R}^n$ and $h: H \to G \subset \mathbb{R}^n$, where H and F are open, are such that h is one-to-one and differentiable and $h^{-1}: G \to H$ is differentiable. Then $Y \coloneqq h(X)$ has density

$$f_Y(y) = \begin{cases} f_X(h^{-1}(y)) \cdot |Jh^{-1}(y)|, & y \in G \\ 0, & y \notin G. \end{cases}$$

Definition 2.3. The Gamma function is given by

$$\Gamma(\lambda) := \int_0^\infty e^{-x} x^{\lambda - 1} \, \mathrm{d}x.$$

Proposition 2.4. Properties:

- $\Gamma(1) = 1$.
- $\Gamma(1/2) = \sqrt{\pi}$.
- $\Gamma(x+1) = x\Gamma(x)$.
- $\Gamma(n) = (n-1)!$ for any $n \in \mathbb{N}$.

2.3. Conditional distribution. The continuous case:

Definition 2.5. We define the **conditional density** as

$$f_{X|Y}(x|y) \coloneqq \frac{f_{X|Y}(x,y)}{f_Y(y)},$$

2.4. Covariance and Correlation.

Definition 2.6. The **covariance** of random variables *X* and *Y* is

$$\mathrm{Cov}(X,Y) = \mathbb{E}\left((X-\mu_X)\cdot(Y-\mu_Y)\right).$$

Their correlation is given by

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}.$$

Proposition 2.7. *Properties:*

- $Var(a + bX) = b^2 Var(X)$.
- Cov(a + bX, c + dY) = bd Cov(X, Y).
- Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y).
- If X and Y are independent, then Cov(X,Y) = 0. But the converse is not true. For example, if $Z \sim N(0,1)$, and S and T are random signs (1 or -1), then Cov(SZ,TZ) = 0.

Theorem 2.8.

• If (X, Y) has density f, then X|Y has density

$$\frac{f(x,y)}{f_Y(y)}.$$

• If (X,Y) has a pmf, then X|Y is discrete with pmf

$$\frac{p(x,y)}{p_Y(y)}$$

Note that E(X|Y = y) is a number, and $\mathbb{E}(X|Y)$ is a random variable.

Proposition 2.9.

(i) If X and Y are independent, then

$$\mathbb{E}(X|Y) = \mathbb{E}(X)$$
 with probability 1.

(ii) Law of total expectation / Tower law:

$$\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X].$$

(iii)
$$\mathbb{E}[g(X)h(Y)|Y] = h(Y)\mathbb{E}(g(X)|Y) \quad \text{with probability } 1.$$

And

$$\mathbb{E}[X|T(Y)] = \mathbb{E}[\mathbb{E}[X|T(Y)|Y]]$$
 with probability 1.

(iv) Law of total variations

$$Var(Y) = \mathbb{E}[Var(Y|X)] + Var[\mathbb{E}(Y|X)],$$

where

$$Var(Y|X) := \mathbb{E}(Y^2|X) - (\mathbb{E}(Y|X))^2.$$

2.5. **Rejection Sampling.** If for some constant c we have

$$h(x) \ge c \cdot f(x), \quad \forall x,$$

then we can obtain a sample from distribution with density f using samples from distribution with density h using **rejection sampling**:

- (1) Sample Y from g and U from Uniform(0, 1), with Y and U independent.
- (2) Set X := Y if

$$U \le \frac{c \cdot f(Y)}{h(Y)}$$

and return to (1) otherwise.

Remark 2.10.

- Think sampling on the area under f (as a subset of the area under g).
- Rejection sampling can also be used if

$$f(x) = \frac{g(x)}{N},$$

where N is an unknown constant (e.g., an integral with numerical approximations but no closed form solutions). We need only find h such that

$$h(x) \ge cN \cdot g(x)$$
.

Think

$$h(x) \gg g(x)$$
.

3. STATISTICAL INFERENCE

3.1. Modeling Lifetime.

$$T:\Omega\longrightarrow [0,\infty)$$

Definition 3.1. The survival function is defined as

$$S: [0, \infty) \longrightarrow [0, 1]$$
$$x \longmapsto \mathbb{P}(T > x) = 1 - F_Y(x).$$

Definition 3.2. The **failure rate** function is defined as

$$h(x) \coloneqq \frac{f(x)}{S(x)}.$$

Remark 3.3.

$$\mathbb{P}(T \leq x + \Delta x | T > x) = \frac{\mathbb{P}[x < T \leq x + \Delta x]}{\mathbb{P}[T > x]} = \frac{F(x + \Delta x) - F(x)}{S(x)} \approx \Delta x \cdot \frac{f(x)}{S(x)} = \Delta x \cdot h(x).$$

Think of an increasing h as "aging."

Given h we can recover f:

$$h(x) = \frac{f(x)}{1 - F(x)} = -\frac{\partial}{\partial x} \log(1 - F(x)).$$

So,

$$\log(1 - F(x)) = -\int_0^x h(t)dt + C.$$

Since F(0) = 0 we know C = 0. We have

$$s(x) = \exp\left(-\int_0^x h\right)$$

and

$$f(x) = h(x) \exp\left(-\int_0^x h\right).$$

Example 3.4. If $h(x) = \lambda$ is a constant function, we have

$$f(x) = \lambda \exp\left(-\int_0^x \lambda dt\right) = \lambda \exp(-\lambda x), \quad \forall x > 0.$$

 $T \sim \text{Exponential}(\lambda)$.

Remark 3.5. item The "memoryless" property:

$$\mathbb{P}(T \le x + y | T > x) = \mathbb{P}(T \le y).$$

Example 3.6.

- If $h(x) = \alpha + \beta x$ with $\alpha, \beta > 0$, then T follows the Gompertz distribution.
- If $h(x) = \lambda \beta x^{\beta-1}$, then T follows the Weibull distribution.
- 3.2. **Estimating parameters.** We asssume $T_1, T_2, \dots \stackrel{\text{iid}}{\sim} \text{Exponential}(\lambda)$ and estimate λ .
- 3.3. The Method of Moments.

Definition 3.7. Method of moments: to estimate k map ameters equate the first k moments of X to the first sample moments of X.

Since $\mathbb{E}(\overline{T}_n) = 1/\lambda$, we may use

$$\hat{\lambda} = \frac{1}{\overline{T}_n}$$

as an estimator for λ .

Remark 3.8. We may do this for any moment. The second moment, for example, suggests using

$$\hat{\lambda}_2 = \sqrt{\frac{2n}{\sum T_i^2}}$$

as an estimator, since

$$\mathbb{E}\left[\frac{\sum T_i^2}{n}\right] = \frac{2}{\lambda^2}.$$

Theorem 3.9 (Continuous mapping theorem).

(i) if $X_n \to X$ and g is continuous, then

$$g(X_n) \xrightarrow{p} g(X).$$

(ii) If $X_n \xrightarrow{\mathcal{D}} X$ and g is continuous, then

$$g(X_n) \xrightarrow{\mathscr{D}} g(X).$$

Lemma 3.10 (Slutsky). If $X_n \xrightarrow{\mathfrak{D}} X$ and $Y_n \xrightarrow{p} c$, where c is a constant, then

$$X_n + Y_n \xrightarrow{\mathcal{D}} X + c$$

and

$$X_n Y_n \xrightarrow{\mathcal{D}} cX$$
.

Theorem 3.11 (Delta Method). If X_n is such that

$$\sqrt{n}(X_n - \theta) \xrightarrow{\mathfrak{D}} \mathcal{N}(0, \sigma^2)$$

and g is continuously differentiable, then

$$\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2[g'(\theta)]^2).$$

Remark 3.12. Intuition: We can write

$$\sqrt{n}(g(X_n) - g(\theta)) = g'(\tilde{\theta}_n)\sqrt{n}(X_n - \theta), \quad \tilde{\theta}_n \in (x_n, \theta).$$

We know that $g'(\tilde{\theta}_n) \xrightarrow{p} g'(\theta)$ and $\sqrt{n}(X_n - \theta) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$, so Slutsky's gives the desired result.

Thus the estimator $\hat{\lambda}_1$ is

• Consistent by the continuous mapping theorem

$$\frac{1}{\overline{T}_n} \xrightarrow{p} \lambda.$$

- Normally distributed by Delta Method.
- 3.3.1. Choices of Estimators. Metrics
 - Bias: $\mathbb{E}(\hat{\lambda}) \lambda$.
 - Variance: $Var[\hat{\lambda}]$.
 - Mean Squared Error: $MSE[\hat{\lambda}] = \mathbb{E}[(\hat{\lambda} \lambda)^2] = Bias^2 + Variance$.
 - 4. Common Distributions
- 4.1. **Exponential.** $X \sim \text{Exponential}(\lambda), \lambda > 0.$
 - Support: $[0, \infty)$
 - pdf: $\lambda e^{\lambda x}$
 - cdf: $1 e^{\lambda x}$

Definition 4.1. If $X \sim \text{Gamma}(\alpha, \beta)$ and has a density, then

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0.$$

Proposition 4.2.

 $\mathbb{E}(X) = \frac{\alpha}{\beta}, \quad \text{Var}(X) = \frac{\alpha}{\beta^2}.$

STAT24410 NOTES

Distribution	Support PMF		Mean	Variance
Binomial (n, p)	$\{0, 1, 2, \ldots, n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
Geometric (p)	$\{1,2,3,\dots\}$	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$\{0, 1, 2, \dots\}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ

Table 1. Key Properties of Discrete Distributions

Distribution	Support	PDF	Mean	Variance
Uniform (a,b)	[a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Exponential (λ)	$[0,\infty)$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Gamma(\alpha,\beta)$	$(0,\infty)$	$\frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)}$	$\frac{lpha}{eta}$	$rac{lpha}{eta^2}$
$\mathrm{Beta}(\alpha,\beta)$	(0, 1)	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Table 2. Key Properties of Continuous Distributions