o Dérivées : polynômes et fractions rationnellles

Pour les fonctions qui suivent, on déterminera leur dérivée et leur tableau de variation :

$$f(x) = 2x^3 - 6x^2 - 4x + 2$$

$$g_1(x) = \frac{5x - 3}{4x + 1}$$

$$g_2(x) = \frac{5x + 3}{4x - 1}$$

$$h(x) = \frac{3x + 2}{3x^2 + 2}$$

$$i(x) = \frac{1x^2 + 5}{2x + 1}$$

Correction:

$$f'(x) = 6x^2 - 12x - 4$$
$$\Delta = 240 > 0$$

Il y a deux solutions réelles distinctes qui sont :

$$x_1 = \frac{12 + \sqrt{240}}{12} \approx 2.2909944487358$$

$$x_2 = \frac{12 - \sqrt{240}}{12} \approx -0.29099444873581$$

$$x_2 < x_1$$

$$f(x_1) \approx -14.606629658239$$

 $f(x_2) \approx 2.6066296582387$

$$g_1'(x) = \frac{17}{(4x+1)^2}$$
$$g_2'(x) = \frac{-17}{(4x-1)^2}$$

x	$-\infty$		+∞		
$g_1'(x)$		+			
$g_1(x)$	-∞	+∞	_	+∞	

x		$\frac{1}{4}$ $+\infty$
$g_2'(x)$	-	-
$g_2(x)$	+∞ -∞	+∞ -∞

$$h'(x) = \frac{-9x^2 - 12x + 6}{(3x^2 + 2)^2}$$
$$\Delta = 360 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{12 - \sqrt{360}}{-18} \approx 0.38742588672279$$
$$x_2 = \frac{12 + \sqrt{360}}{-18} \approx -1.7207592200561$$
$$x_2 < x_1$$

x	$-\infty$		x_2		x_1		+∞
h'(x)		-	0	+	0	_	
h(x)	0		$h(x_2)$		$h(x_1)$		· 0

$$h(x_1) = \approx 1.2220097427677$$

 $h(x_2) = \approx -0.28694480770274$

$$i'(x) = \frac{2x^2 + 2x - 10}{(2x+1)^2}$$
$$\Delta = 84 > 0$$

On a donc deux solutions réelles distinctes :

$$x_1 = \frac{-2 - \sqrt{84}}{4} \approx -2.7912878474779$$

$$x_2 = \frac{-2 + \sqrt{84}}{4} \approx 1.7912878474779$$

$$x_1 < x_2$$

$$f(x_1) = \approx -2.7912878474779$$
$$f(x_2) = \approx 1.7912878474779$$