Etapa 1

Identificarea repartiției pentru variabilele aleatoare primare pe baza unor eșantioane de valori independente

Stati Andreea Grupa:1310A

Problema studiată în cadrul acestui proiect se încadrează în una dintre temele cele mai cunoscute din domeniul cercetării operaționale (engl. Systems/ Machinesinterference problem) cu aplicații în special în domeniul organizării optime a producției în întreprinderile mari, sau în organizarea muncii la companiile de service. Tema aleasă urmărește însă aplicarea unui volum cât mai mare de cunoștințe predate la curs, pentru o mai bună înțelegere a problematicii privind evaluarea performanțelor în sistemele stohastice cu evenimente discrete.

Proiectul își propune ca pe baza unui model stohastic primar, ce cuprinde 4 variabilele aleatoare (TfA, TfB, TrA, TrB) pentru care trebuie să se cunoască funcția de repartiție, să se rezolve o problemă de predicție în sensul estimării disponibilității atunci când muncitorului îi sunt alocate spre deservire mai multe sisteme. Mai precis, ne propunem să estimăm disponibilitatea care s-ar putea obține în funcție de numărul de sisteme deservite de muncitor.

Fig. 1 – Evoluţia procesului afectat de întreruperi.

 ${\it Pasul} \ {f 1}$. Valorile din eșantion se ordonează crescător și se determină media aritmetică a lor (ma).

Pentru TfA:

TfA = [0.0106	0.0996	0.1176	0.1193	0.1694	0.1909	0.1934	0.2095
0.2130	0.2602	0.2651	0.2665	0.2687	0.2913	0.2944	0.2986
0.2998	0.3262	0.3369	0.3376	0.3547	0.3698	0.3698	0.3957
0.4005	0.4387	0.4477	0.4732	0.4747	0.4882	0.4906	0.5542
0.5717	0.5759	0.5816	0.5919	0.6111	0.6485	0.6561	0.6603
0.6643	0.6653	0.6668	0.6684	0.6822	0.6822	0.7192	0.7536
0.7832	0.7962	0.7976	0.8370	0.8628	0.8700	0.8894	0.8937
0.9882	0.9964	1.1332	1.1744	1.1934	1.1953	1.2049	1.2295
1.2406	1.2715	1.3135	1.3277	1.3550	1.4081	1.4125	1.4441
1.5150	1.5232	1.5463	1.5677	1.5835	1.5867	1.6321	1.6596
1.6825	1.6994	1.7329	1.7369	1.7621	1.8486	1.8525	1.8625
1.8629	1.8977	1.9226	1.9810	1.9875	1.9992	2.0695	2.0790
2.1060	2.1089	2.1301	2.1304	2.1336	2.1355	2.1588	2.1625
2.2487	2.3020	2.3284	2.3349	2.3535	2.3979	2.4024	2.4268
2.4367	2.4444	2.4546	2.4552	2.4569	2.4860	2.4962	2.5118
2.5154	2.5374	2.5917	2.5922	2.6019	2.6248	2.6340	2.6370
2.6400	2.6479	2.6501	2.6803	2.7243	2.7355	2.7424	2.7467
2.7920	2.7927	2.8286	2.8351	2.8705	2.9030	2.9353	2.9354
2.9441	2.9971	2.9980	3.1033	3.2090	3.2168	3.2292	3.2486
3.2563	3.2894	3.2966	3.3103	3.3225	3.3632	3.4748	3.4755
3.4988	3.5011	3.5152	3.5571	3.6273	3.7289	3.7836	3.8238
3.8643	3.9215	4.0375	4.0490	4.0769	4.0908	4.1213	4.1547
4.1746	4.1888	4.1927	4.2714	4.3164	4.3235	4.3765	4.4261
4.4387	4.4581	4.5757	4.6038	4.6235	4.6598	4.6777	4.7024
4.7345	4.7396	4.7927	4.8108	4.8944	5.1142	5.1345	5.1636
5.1783	5.1938	5.2284	5.2594	5.3314	5.3336	5.3373	5.3451
5.4025	5.4471	5.4999	5.5816	5.6834	5.7511	5.8565	5.8571
5.9224	5.9531	5.9774	5.9999	6.0126	6.0534	6.0668	6.2043
6.3248	6.6059	6.6126	6.6962	6.7368	6.8410	6.8726	7.0086
7.0315	7.0451	7.1533	7.1980	7.2056	7.2529	7.2799	7.3073
7.3358	7.4155	7.5150	7.5483	7.6078	7.7690	7.8321	7.8830
7.9983	8.1980	8.2447	8.4696	8.5719	8.6809	8.6849	8.7756
8.7905	9.0314	9.4067	9.4634	9.8318	10.1585	10.3785	10.3883
10.4569	10.6336	10.6358	10.6586	10.7802	10.9219	10.9787	11.1421
11.4358	11.6486	11.7252	11.7320	11.8401	12.1604	12.3666	13.1136
14.0954	14.1353	14.8333	15.3813	15.3919	15.4568	16.7355	17.3844
17.8423	18.1916	18.6075	19.3723	19.9670	20.5827	21.0111	21.6499
23.1775	26.2742	27.1934	31.7788]	;			

ma1 = 4.8588

Pentru TfB

TfB = [0.0153	0.0212	0.0443	0.0593	0.0629	0.0701	0.1098	0.1230
0.1352	0.1545	0.2003	0.2009	0.2251	0.2314	0.2480	0.3325
0.3378	0.3427	0.3486	0.3599	0.3698	0.4013	0.4246	0.4569
0.5124	0.5440	0.5457	0.5551	0.5598	0.5618	0.5644	0.6330
0.6541	0.6553	0.6702	0.6787	0.6830	0.6983	0.7059	0.7217
0.7334	0.7785	0.7810	0.8018	0.8039	0.8079	0.8139	0.8193
0.8339	0.8376	0.8917	0.8937	0.9684	0.9912	0.9958	
1.0793	1.0866	1.1015	1.1403	1.1868	1.1943	1.1997	1.2277
1.2380	1.2610	1.2647	1.2984	1.3013	1.3124	1.3195	1.3548
1.3643	1.3701	1.4511	1.4569	1.4685	1.4867	1.4886	1.4925
1.5059	1.5081	1.5821	1.6275	1.6314	1.6356	1.6418	1.6429
1.6548	1.6723	1.6979	1.7050	1.7175	1.7330	1.7603	1.7772
1.7942	1.8413	1.8614	1.8818	1.8976	1.9081	1.9162	1.9417
1.9435	1.9798	2.0553	2.0638	2.0709	2.1131	2.1249	2.1745
2.1762	2.2224	2.2522	2.2812	2.2845	2.2953	2.3213	2.3327
2.3353	2.3621	2.3869	2.4173	2.4313	2.4341	2.5185	2.5458
2.5798	2.6125	2.7041	2.7274	2.7575	2.7804	2.7933	2.9026
2.9222	2.9259	2.9726	2.9740	2.9830	2.9843	3.0145	3.0295
3.0479	3.0562	3.0610	3.0807	3.1019	3.1280	3.1409	3.1480
3.1514	3.1664	3.1751	3.2166	3.2592	3.2603	3.2879	3.4594
3.4824	3.5027	3.5991	3.6778	3.6808	3.6816	3.6962	3.7029
3.8812	3.8818	3.8920	3.8948	4.0112	4.0502	4.0590	4.1222
4.1248	4.2309	4.3339	4.3419	4.4283	4.4527	4.5076	4.5220
4.5616	4.5762	4.5974	4.6335	4.6632	4.6772	4.7183	4.8177
4.9546	4.9764	4.9857	4.9927	5.0619	5.0935	5.1768	5.1956
5.2698	5.4168	5.4685	5.5754	5.6564	5.6861	5.7324	5.7483
5.7547	5.8484	5.9204	5.9405	5.9491	5.9687	6.1485	6.2456
6.3131	6.3681	6.4557	6.5793	6.6062	6.6487	6.6887	6.8072
6.8194	6.8226	6.8834	6.9264	6.9438	6.9475	6.9957	7.0072
7.0208	7.0573	7.2055	7.2189	7.2625	7.2868	7.3100	7.3197
7.3546	7.4303	7.5098	7.7050	7.7188	7.7281	7.7501	7.8555
7.8693	7.9540	8.3432	8.3903	8.4554	8.4686	8.4976	8.5431
8.6093	8.7089	8.8563	8.9796	9.3744	9.3785	9.8880	10.1542
10.1823	10.5458	10.6597	10.7788	11.2356	11.4066	11.7003	11.8103
12.1129	12.7186	12.8556	12.8742	13.2834	13.7203	13.8964	13.8995
14.1284	14.2591	14.6148	14.8014	15.3773	15.5129	15.8824	16.3840
16.9240	16.9249	17.3426	18.0039	18.3228	19.7051	20.2357	20.6990
22.2735	24.7141	24.9289	32.7739]	;			

ma2 = 4.8416

<u>Pentru TrA</u>

TrA = [0.0028	0.0041	0.0047	0.0065	0.0067	0.0069	0.0073	0.0085
0.0109	0.0120	0.0124	0.0129	0.0133	0.0144	0.0150	0.0153
0.0156	0.0157	0.0228	0.0236	0.0246	0.0247	0.0254	0.0262
0.0263	0.0267	0.0278	0.0282	0.0294	0.0304	0.0316	0.0324
0.0355	0.0365	0.0369	0.0386	0.0414	0.0432	0.0435	0.0461
0.0467	0.0471	0.0485	0.0492	0.0500	0.0502	0.0509	0.0523
0.0527	0.0530	0.0569	0.0569	0.0586	0.0586	0.0586	0.0609
0.0620	0.0631	0.0650	0.0654	0.0673	0.0675	0.0677	0.0682
0.0689	0.0697	0.0706	0.0714	0.0720	0.0742	0.0752	0.0755
0.0779	0.0790	0.0805	0.0813	0.0813	0.0821	0.0882	0.0898
0.0899	0.0909	0.0913	0.0935	0.0976	0.0983	0.0987	0.0989
0.0991	0.0993	0.1010	0.1045	0.1052	0.1076	0.1078	0.1081
0.1091	0.1111	0.1117	0.1122	0.1132	0.1132	0.1155	0.1165
0.1171	0.1182	0.1182	0.1185	0.1187	0.1193	0.1238	0.1271
0.1279	0.1282	0.1291	0.1292	0.1314	0.1317	0.1322	0.1339
0.1388	0.1395	0.1398	0.1436	0.1440	0.1466	0.1498	0.1559
0.1559	0.1562	0.1588	0.1603	0.1628	0.1663	0.1676	0.1686
0.1690	0.1697	0.1723	0.1754	0.1791	0.1802	0.1823	0.1834
0.1840	0.1864	0.1887	0.1907	0.1936	0.1959	0.1966	0.2013
0.2028	0.2046	0.2054	0.2059	0.2078	0.2097	0.2108	0.2148
0.2148	0.2151	0.2159	0.2176	0.2184	0.2201	0.2221	0.2223
0.2223	0.2228	0.2232	0.2271	0.2328	0.2334	0.2362	0.2372
0.2374	0.2376	0.2388	0.2405	0.2405	0.2514	0.2540	0.2579
0.2660	0.2687	0.2700	0.2813	0.2829	0.2848	0.2873	0.2892
0.2908	0.3006	0.3012	0.3016	0.3060	0.3069	0.3074	0.3096
0.3120	0.3130	0.3135	0.3172	0.3188	0.3280	0.3281	0.3298
0.3409	0.3450	0.3470	0.3572	0.3575	0.3607	0.3629	0.3651
0.3653	0.3669	0.3682	0.3686	0.3709	0.3723	0.3775	0.3854
0.3880	0.3890	0.3919	0.3966	0.3967	0.3967	0.4040	0.4110
0.4166	0.4213	0.4216	0.4351	0.4496	0.4514	0.4640	0.4695
0.4786	0.4881	0.4900	0.4918	0.4948	0.4970	0.5060	0.5133
0.5188	0.5196	0.5285	0.5331	0.5361	0.5499	0.5575	0.5845
0.5906	0.5947	0.6039	0.6102	0.6177	0.6186	0.6288	0.6357
0.6453	0.6718	0.6734	0.6766	0.6837	0.6867	0.7087	0.7266
0.7285	0.7311	0.7359	0.7390	0.7698	0.7874	0.7886	0.7946
0.8157	0.8196	0.8485	0.8643	0.8848	0.9054	0.9183	0.9459
0.9473	0.9560	0.9838	1.0418	1.0774	1.0856	1.1000	1.1287
1.1500	1.2718	1.2751	1.4578];				

ma3 = 0.2852

Pentru TrB

TrB= [0.0002	0.0012	0.0012	0.0024	0.0036	0.0045	0.0057	0.0057
0.0087	0.0105	0.0113	0.0136	0.0147	0.0149	0.0161	0.0181
0.0186	0.0216	0.0216	0.0220	0.0225	0.0234	0.0236	0.0266
0.0287	0.0296	0.0325	0.0359	0.0378	0.0396	0.0406	0.0454
0.0460	0.0480	0.0480	0.0485	0.0541	0.0545	0.0546	0.0562
0.0569	0.0594	0.0603	0.0604	0.0617	0.0620	0.0645	0.0665
0.0672	0.0680	0.0686	0.0709	0.0739	0.0760	0.0795	0.0845
0.0882	0.0932	0.1006	0.1026	0.1027	0.1069	0.1072	0.1074
0.1085	0.1091	0.1113	0.1187	0.1211	0.1213	0.1254	0.1272
0.1294	0.1313	0.1353	0.1432	0.1444	0.1444	0.1472	0.1489
0.1506	0.1519	0.1526	0.1544	0.1566	0.1619	0.1632	0.1634
0.1658	0.1666	0.1670	0.1706	0.1725	0.1772	0.1777	0.1786
0.1809	0.1853	0.1857	0.1857	0.1877	0.1969	0.1979	0.1991
0.1997	0.2041	0.2079	0.2086	0.2107	0.2110	0.2112	0.2123
0.2131	0.2167	0.2191	0.2239	0.2346	0.2361	0.2364	0.2434
0.2475	0.2548	0.2552	0.2555	0.2582	0.2591	0.2623	0.2631
0.2634	0.2651	0.2691	0.2713	0.2733	0.2741	0.2748	0.2759
0.2782	0.2786	0.2800	0.2851	0.2863	0.2880	0.2944	0.2950
0.2962	0.2973	0.3037	0.3103	0.3108	0.3151	0.3161	0.3170
0.3170	0.3179	0.3231	0.3258	0.3284	0.3332	0.3336	0.3352
0.3372	0.3391	0.3417	0.3436	0.3442	0.3459	0.3480	0.3576
0.3618	0.3626	0.3628	0.3655	0.3690	0.3731	0.3769	0.3785
0.3791	0.3808	0.3864	0.3926	0.3950	0.3965	0.3977	0.3981
0.4050	0.4054	0.4059	0.4099	0.4150	0.4198	0.4233	0.4324
0.4326	0.4338	0.4501	0.4556	0.4684	0.4686	0.4702	0.4745
0.4769	0.4987	0.5074	0.5220	0.5264	0.5329	0.5347	0.5362
0.5392	0.5466	0.5589	0.5662	0.5666	0.5677	0.5679	0.5698
0.5711	0.5862	0.5926	0.5931	0.5957	0.5964	0.6021	0.6111
0.6147	0.6178	0.6181	0.6373	0.6544	0.6607	0.6626	0.6755
0.6853	0.6899	0.6921	0.6929	0.7020	0.7029	0.7038	0.7068
0.7115	0.7397	0.7544	0.7581	0.7584	0.7717	0.7852	0.7978
0.8198	0.8361	0.8573	0.8774	0.8793	0.8942	0.9004	0.9022
0.9206	0.9217	0.9233	0.9360	0.9585	0.9904	1.0179	1.0290
1.0334	1.0451	1.0504	1.0529	1.0601	1.0628	1.0703	1.0865
1.0987	1.1010	1.1160	1.1327	1.1395	1.1580	1.1641	1.1651
1.1743	1.2319	1.2406	1.2521	1.2822	1.2855	1.3177	1.3921
1.4063	1.4281	1.5366	1.6048	1.7194	1.7239	1.7625	1.8096
1.8457	1.9107	1.9643	2.1610];				

ma4 = 0.4447

Pasul 2. Se adoptă un interval de analiză potrivit [0, v] care să cuprindă valorile din eșantion sau marea majoritate a lor (între 98% și 100% din valori).

Pentru TfA

v1 = 27

Pentru TfB

v2 = 24.73

Pentru TrA

v3 = 1.2

Pentru TrB

v4 = 1.9

Pasul 3. Se împarte intervalul de analiză [0, v] în k diviziuni egale şi se determină rapartizarea valorilor din eşantion pe aceste subintervale.

k = floor (1 + 3.222 * log(N))

Pentru TfA

k1 = 19

 $n1 = [71 \ 69 \ 39 \ 34 \ 21 \ 18 \ 9 \ 11 \ 7 \ 3 \ 4 \ 1 \ 3 \ 2 \ 31 \ 1 \ 0 \ 1];$

Pentru TfB

k2 = 19

 $n2 = [69 \ 60 \ 43 \ 28 \ 19 \ 28 \ 13 \ 5 \ 6 \ 5 \ 6 \ 4 \ 2 \ 4 \ 1 \ 3 \ 0 \ 1 \ 1];$

Pentru TrA

k3 = 19

n3 = [58 53 36 35 21 20 13 10 9 8 7 6 6 2 5 2 1 4 1];

Pentru TrB

k4 = 19

 $n4 = [58 \ 47 \ 41 \ 38 \ 18 \ 20 \ 14 \ 12 \ 6 \ 8 \ 11 \ 8 \ 5 \ 2 \ 2 \ 1 \ 1 \ 3 \ 2];$

Pasul 4. Se adoptă o valoare λ_0 ca primă estimare a parametrului variabilei aleatoare studiate, pentru care s-a presupus o repartiție exponențial-negativă.

$$\lambda_0 = 1 / \text{ma}$$

Pentru TfA

lam01 = 0.2058

Pentru TfB

lam02 = 0.2065

Pentru TrA

lam03 = 3.5068

Pentru TrB

lam04 = 2.2487

Pasul 5. Se realizează un proces de căutare într-o vecinătate a valorii λ 0 care să permită găsirea celei mai potrivite valori pentru parametrul λ .

Pentru TfA

lamF1 = 0.2023

Pentru TfB

lamF2 = 0.1917

Pentru TrA

lamF3 = 3.6015

Pentru TrB

lamF4 = 2.1835

 ${\it Pasul}$ 6. Se compară grafic funcția de repartiție teoretică cu funcția empirică corespunzătoare, calculată în k puncte echidistante din intervalul de analiză.

Pentru TfA

<u>Pentru *TfB*</u>

Pentru TrA

<u>Pentru *TrB*</u>

 $m{Cod Sursa}$ (este același pentru cele 4 cazuri, se modifica ca input-uri doar eșantionul (TfA, TfB, TrA respectiv TrB) si valoarea lui v corespunzătoare fiecărui eșantion)

tfa= [0.0106	0 0996	0.1176	0.1193	0.1694	0.1909	0.1934	0.2095
0.2130	0.2602	0.1170	0.1193	0.1034	0.1909	0.1934	0.2986
0.2998	0.3262	0.3369	0.3376	0.3547	0.3698	0.3698	0.3957
0.4005	0.4387	0.4477	0.4732	0.4747	0.4882	0.4906	0.5542
0.5717	0.5759	0.5816	0.5919	0.6111	0.6485	0.6561	0.6603
0.6643	0.6653	0.6668	0.6684	0.6822	0.6822	0.7192	0.7536
0.7832	0.7962	0.7976	0.8370	0.8628	0.8700	0.8894	0.7530
0.9882	0.7362	1.1332	1.1744	1.1934	1.1953	1.2049	
1.2406	1.2715	1.3135	1.3277	1.3550	1.4081	1.4125	1.4441
1.5150	1.5232	1.5463	1.5677	1.5835	1.5867	1.6321	1.6596
1.6825	1.6994	1.7329	1.7369	1.7621	1.8486	1.8525	1.8625
1.8629	1.8977	1.9226	1.9810	1.9875	1.9992	2.0695	2.0790
2.1060	2.1089	2.1301	2.1304	2.1336	2.1355	2.1588	2.1625
2.2487	2.3020	2.3284	2.3349	2.3535	2.3979	2.4024	2.4268
2.4367	2.4444	2.4546	2.4552	2.4569	2.4860	2.4962	2.5118
2.5154	2.5374	2.5917	2.5922	2.6019	2.6248	2.6340	2.6370
2.6400	2.6479	2.6501	2.6803	2.7243	2.7355	2.7424	2.7467
2.7920	2.7927	2.8286	2.8351	2.7243	2.7333	2.9353	2.7467
2.9441		2.9980					
	2.9971		3.1033	3.2090	3.2168	3.2292	3.2486
3.2563	3.2894	3.2966	3.3103	3.3225	3.3632	3.4748	3.4755 3.8238
3.4988	3.5011	3.5152	3.5571	3.6273	3.7289	3.7836	
3.8643	3.9215	4.0375	4.0490	4.0769		4.1213	4.1547
4.1746	4.1888	4.1927	4.2714	4.3164	4.3235	4.3765	4.4261
4.4387	4.4581	4.5757	4.6038	4.6235	4.6598	4.6777	4.7024
4.7345	4.7396	4.7927	4.8108	4.8944	5.1142	5.1345	5.1636
5.1783	5.1938	5.2284	5.2594	5.3314	5.3336	5.3373	5.3451
5.4025	5.4471	5.4999	5.5816	5.6834	5.7511	5.8565	5.8571
5.9224	5.9531	5.9774	5.9999	6.0126	6.0534	6.0668	6.2043
6.3248	6.6059	6.6126	6.6962	6.7368	6.8410	6.8726	7.0086
7.0315	7.0451	7.1533	7.1980	7.2056	7.2529	7.2799	7.3073
7.3358	7.4155	7.5150	7.5483	7.6078	7.7690	7.8321	7.8830
7.9983	8.1980	8.2447	8.4696	8.5719	8.6809	8.6849	8.7756
8.7905	9.0314	9.4067	9.4634	9.8318			
10.4569	10.6336	10.6358	10.6586	10.7802	10.9219	10.9787	11.1421
11.4358	11.6486	11.7252	11.7320	11.8401	12.1604	12.3666	13.1136
14.0954	14.1353	14.8333	15.3813	15.3919	15.4568	16.7355	17.3844
17.8423	18.1916	18.6075	19.3723	19.9670	20.5827	21.0111	21.6499
23.1775	26.2742	27.1934	31.7788]	;			
% pasul 1							
E=sort(tfa);							
ma=mean(E)							

```
E=sort(tfa);
ma=mean(E)

% pasul 2
v = 27

%pasul 3
N = length(E);
```

```
k = floor(1+3.222*log(N))
D = v / k; % marimea unui subinterval(Delta)
n = zeros(1,k);
for i = 1:N
    j = ceil(E(i)/D);
    if(j <= k)
        n(j)=n(j)+1;
    end
end
sum(n);
plot(n)
%pasul 4
lambda0=1/ma;
maxx=5/lambda0;
lam0 = 1/ma
% fct teoretica
d = 5/lam0/1000;
z=0:d:5/lam0;
f = lam0*exp(-lam0*z);
%fct empirica
D = 5/lam0/k;
x = D:D:5/lam0;
n=zeros(1,k);
for i = 1:N
    j = ceil(E(i)/D);
    if(j <= k)
        n(j)=n(j)+1;
    end
end
y=x-D/2;
fe=n/N/D;
% Afisarea pe acelasi grafic a celor doua functii, f și fe
plot(z,f,'-',y,fe,'.');
% Proces de căutare a celei mai potrivite valori pentru parametrul lambda intr-o
vecinatate a valorii initiale lam0.
st = 0.5*lam0;
dr = 1.5*lam0;
pc = (dr - st) / 1000;
Spdm = 10000;
for lam = st : pc: dr
    D = 5/lam/k;
    x = D:D:5/lam;
    n=zeros(1,k);
    for i = 1:N
        j = ceil(E(i)/D);
        if(j <= k)
            n(j)=n(j)+1;
        end
    end
    y=x-D/2;
    fe=n/N/D;
```

Concluzii

Pentru toate cele 4 variabile aleatoare TfA, TfB, TrA și TrB s-a adoptat o lege de distribuție exponențial-negativă, valorile parametrilor fiind (cu patru zecimale):

 $\lambda A = 0.2023$

 $\lambda B = 0.1917$

 $\mu A = 3.6015$

 $\mu B = 2.1835$