ДВИЖЕНИЕ СИММЕТРИЧНОГО ЭКИПАЖА НА ОМНИ-КОЛЕСАХ С МАССИВНЫМИ РОЛИКАМИ

© 2018 г. К.В. Герасимов^{1,*}, А.А. Зобова^{1,**}

¹ Кафедра теоретической механики и мехатроники
механико-математического факультета МГУ им. М.В. Ломоносова
*E-mail: kiriger@gmail.com, **E-mail: azobova@mech.math.msu.su
Поступила в редакцию 14.11.2017 г.

Рассматривается динамика симметричного экипажа с роликонесущими колесами, движущегося по неподвижной горизонтальной абсолютно шероховатой плоскости в следующих предположениях: масса каждого ролика ненулевая, контакт между роликами и плоскостью точечный, проскальзывания нет. Уравнения движения составлены с помощью системы символьных вычислений Махіта. В уравнениях движения получены дополнительные члены, пропорциональные осевому моменту инерции ролика и зависящие от углов поворота колес. Массивность роликов учитывается в тех фазах движения, когда не происходит смены роликов в контакте. При переходе колес с одного ролика на другой масса роликов считается пренебрежимо малой. Показано, что ряд движений, существующих в безынерционной модели (т.е. не учитывающей массу роликов), пропадает, так же как и линейный первый интеграл. Проведено сравнение основных типов движения симметричного трехколесного экипажа, полученных

численным интегрированием уравнений движения с результатами, полученными на основании безынерционной модели.

Ключевые слова: роликонесущее колесо, омниколесо, массивные ролики, неголономная связь, лаконичная форма уравнений движения Я.В. Татаринова

1. Введение. Омниколеса (в русской литературе также используется название роликонесущие колеса) — это колеса особой конструкции, позволяющей экипажу двигаться в произвольном направлении, вращая колеса вокруг их собственных осей и не поворачивая их вокруг вертикали. На ободе такого колеса располагаются ролики, которые могут свободно вращаться вокруг своих осей, жестко закрепленных в диске колеса. Существуют два варианта расположения осей роликов: первый (собственно омниколеса) — оси роликов являются касательными к ободу колеса и, следовательно, лежат в его плоскости; второй (тесапит wheels [1]) — оси роликов развернуты вокруг нормали к ободу колеса на постоянный угол, обычно $\pi/4$.

Ранее была рассмотрена динамика омни-экипажей с использованием упрощенных моделей омни-колес, в которых не учитывается инерция и форма роликов [2–7], колеса моделируются как жесткие диски (без роликов), которые могут скользить в одном направлении и катиться без проскальзывания в другом. Далее будем называть такую модель безынерционной, в том смысле, что инерция собственного вращения роликов в ней не учитывается. В другой части работ по динамике омни-экипажа [8–11] используются некоторые формализмы для построения численных моделей систем тел. При этом явный вид уравнений движения оказывается скрытым, что делает невозможным непосредственный анализ уравнений и затрудняет оценку влияния разных факторов на динамику системы. Цель настоящей работы – получение в явном виде уравнений движения по инерции экипажа с омни-колесами с массивными роликами в неголономной постановке с помощью подхода Я.В. Татаринова [12], исследование их свойств и сравнение поведения такой системы с поведением системы в безынерционном случае [13].

2. Постановка задачи. Рассмотрим экипаж с омни-колесами, движущийся по инерции по неподвижной абсолютно шероховатой горизонтальной плоскости. Экипаж состоит из платформы и N одинаковых омни-колес, плоскости которых относительно платформы неподвижны. Каждое колесо может свободно вращаться относительно платформы вокруг собственной оси, расположенной горизонтально. Будем считать, что на каждом колесе установлено n массивных роликов, так что оси роликов параллельны касательным к контурам дисков колес (см. фиг. 1). На рисунках ролики обозначены как закрашенные области, либо области с пунктирными границами, расположенные вдоль контуров дисков колес. На фиг. 1 ролики пронумерованы от 1 до n. Таким образом, система состоит из N(n+1)+1 абсолютно твердых тел.

Фиг. 1

 Φ иг. 2

Введем неподвижную систему отсчета так, что ось OZ направлена вертикально вверх, а плоскость OXY совпадает с опорной плоскостью. Введем также подвижную систему отсчета $S\xi\eta Z$, жестко связанную с платформой экипажа так, что плоскость $S\xi\eta$ горизонтальна и содержит центры всех колес P_i . Будем считать, что оси колес лежат на лучах, соединяющих центр масс платформы S и центры колес (см. фиг. 2), а расстояния от центров колес до S одинаковы и равны R. Геометрию установки колес на платформе зададим углами α_i между осью $S\xi$ и осями колес (см. фиг. 1). Будем считать, что центр масс всей системы совпадает с точкой S (отсюда следует, что $\sum_k \cos \alpha_k = \sum_k \sin \alpha_k = 0$). Введем также три орта, жестко связанных с дисками колес: единичный орт оси i-го колеса $\mathbf{n}_i = \mathbf{SP}_i/|\mathbf{SP}_i|$ и орты \mathbf{n}_i^{\perp} и \mathbf{n}_i^z , лежащие в плоскости диска колеса, причем вектор

 ${f n}_i^z$ вертикален при нулевом повороте колеса χ_i . Положения центров роликов на колесе определим углами κ_j между ними и направлением, противоположным вектору ${f n}_i^z$.

Положение экипажа будем задавать следующими координатами: x, y — координаты точки S на плоскости OXY, θ — угол между осями OX и $S\xi$ (угол курса), χ_i ($i=1,\ldots,N$) — углы поворота колес вокруг их осей, отсчитываемые против часовой стрелки, если смотреть с конца вектора \mathbf{n}_i , и ϕ_j — углы поворота роликов вокруг их собственных осей. Таким образом, вектор обобщенных координат имеет вид

$$\mathbf{q} = (x, y, \theta, \{\chi_i\}|_{i=1}^N, \{\phi_k\}|_{k=1}^N, \{\phi_s\}|_{s=1}^{N(n-1)})^T \in \mathbb{R}^{N(n+1)+3}$$

где сначала указаны углы поворота ϕ_k роликов, находящихся в данный момент в контакте с опорной плоскостью, а затем – остальных, "свободных", роликов. Индекс s используется для сквозной нумерации свободных роликов и связан с номером колеса i и ролика на колесе j по формуле s=n(i-1)+j.

Введем псевдоскорости

$$\mathbf{v} = (\nu_1, \nu_2, \nu_3, \nu_s), \quad \mathbf{v}_S = R\nu_1\mathbf{e}_{\xi} + R\nu_2\mathbf{e}_{\eta}, \quad \nu_3 = \Lambda\dot{\theta}, \quad \nu_s = \dot{\phi}_s, \quad s = 1, \dots, N(n-1)$$

Их механический смысл таков: $\nu_1, \ \nu_2$ — проекции скорости точки S на оси $S\xi\eta$, связанные с платформой, ν_3 — с точностью до множителя угловая скорость платформы, ν_s — угловые скорости свободных роликов. Число независимых псевдоскоростей системы K=N(n-1)+3. Таким образом, имеем

$$\dot{x} = R\nu_1\cos\theta - R\nu_2\sin\theta, \quad \dot{y} = R\nu_1\sin\theta + R\nu_2\cos\theta$$

Будем считать, что проскальзывания между опорной плоскостью и роликами в контакте не происходит, т.е. скорости точек C_i контакта равны нулю:

$$\mathbf{v}_{C_i} = 0, \quad i = 1, \dots, N$$

Выражая скорость точек контакта через введенные псевдоскорости и проектируя на векторы \mathbf{e}_{ξ} и \mathbf{e}_{η} соответственно, получим:

$$\dot{\phi_k} = \frac{R}{\rho_k} (\nu_1 \cos \alpha_k + \nu_2 \sin \alpha_k); \quad \rho_k = l \cos \chi_k - r \tag{2.1}$$

$$\dot{\chi}_i = \frac{R}{l} (\nu_1 \sin \alpha_i - \nu_2 \cos \alpha_i - \frac{\nu_3}{\Lambda})$$
 (2.2)

Заметим, что знаменатель ρ_k в формуле (2.1) – расстояние от оси ролика до точки контакта, обращающееся в нуль на стыке роликов (см. фиг. 1). Это обстоятельство приводит к разрывам второго рода функций в правых частях уравнений движения и будет рассмотрено отдельно ниже. Уравнение (2.2) совпадает с уравнением связи в случае безынерционной модели роликов.

Таким образом, выражение обобщенных скоростей через псевдоскорости, учитывающее связи, наложенные на систему, можно записать в матричном виде (явные выражения компонент матрицы V приведены в приложении):

$$\dot{\mathbf{q}} = V\boldsymbol{\nu}, \quad V = V(\theta, \chi_i) \tag{2.3}$$

3. Уравнения движения. Воспользуемся лаконичным методом получения уравнений движения для систем с дифференциальными связями, предложенным Я.В. Татариновым [12]:

$$\frac{d}{dt}\frac{\partial L^*}{\partial \nu_{\alpha}} + \{P_{\alpha}, L^*\} = \sum_{\mu=1}^{K} \{P_{\alpha}, \nu_{\mu} P_{\mu}\}, \quad \alpha = 1, \dots, K$$
(3.1)

Здесь L – лагранжиан, L^* – он же с учетом связей, P_{α} – линейные комбинации формальных канонических импульсов p_i , определяемые из соотношения

$$\sum_{\mu=1}^{K} \nu_{\mu} P_{\mu} \equiv \sum_{i=1}^{N(n+1)+3} \dot{q}_{i} p_{i}$$

в котором \dot{q}_i выражены через псевдоскорости ν_{μ} в соответствии с формулами (2.3). Фигурными скобками $\{\cdot,\cdot\}$ обозначена скобка Пуассона по p_i, q_i . После ее вычисления вы-

полняется подстановка

$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$

(Подробности см. в работах [12, 13].)

Так как потенциальная энергия системы во время движения не меняется, лагранжиан равен кинетической энергии:

$$2L = 2T = M\mathbf{v}_S^2 + I_S\dot{\theta}^2 + J\sum_i \dot{\chi}_i^2 + B\sum_{i,j} (\dot{\phi}_{ij}^2 + 2\dot{\theta}\sin(\kappa_j + \chi_i)\dot{\phi}_{ij}) = \dot{\mathbf{q}}^{\mathrm{T}}\mathcal{M}\dot{\mathbf{q}}$$
(3.2)

Здесь M, I_S , J — массово-инерционные характеристики экипажа (см. Приложение), B — момент инерции ролика относительно его оси вращения. Лагранжиан при учете связей определяется соотношением:

$$2L^* = \boldsymbol{\nu}^{\mathrm{T}} V^{\mathrm{T}} \mathcal{M} V \boldsymbol{\nu} = \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}^* (\chi_i) \boldsymbol{\nu}$$

Структура симметрической матрицы \mathcal{M}^* следующая:

Явные формулы для коэффициентов m_{ij}^* главного минора 3×3 выписаны в приложении; отметим, что они зависят только от координат χ_i , которые входят в дроби вида B/ρ_i^2 и $B\sin\chi_i/\rho_i$, имеющие разрывы второго рода при смене роликов (см. равенство (2.1)). Этот минор соответствует псевдоскоростям ν_1 , ν_2 , ν_3 . Остальные элементы матрицы \mathcal{M}^* соответствуют скоростям свободных роликов ν_s , для которых $\chi_{kl} = \chi_k + \kappa_l$ — угол между

вертикалью и осью ролика. Индекс $k=1,\ldots,N$ означает номер колеса, индекс $l=2,\ldots,n$ – номер свободного ролика на колесе (l=1 – ролик, находящийся в контакте). Крупной звездой \star обозначен минор $N(n-1)\times 3$, равный транспонированному минору $3\times N(n-1)$ над главной диагональю.

Первое слагаемое в левой части равенства (3.1) получается дифференцированием лагранжиана и подстановкой связей:

$$\frac{d}{dt}\frac{\partial L^*}{\partial \nu_{\alpha}} = \frac{d}{dt}(\mathcal{M}^*(\chi)\boldsymbol{\nu}_{\alpha}) = \mathcal{M}^*(\chi_i)\dot{\boldsymbol{\nu}}_{\alpha} + \left(\frac{d}{dt}(\mathcal{M}^*(\chi))\boldsymbol{\nu}\right)_{\alpha} = \mathcal{M}^*(\chi_i)\dot{\boldsymbol{\nu}}_{\alpha} + \left(\sum_{i=1}^N \mathcal{M}_i^*(V\nu)_{3+i}\boldsymbol{\nu}\right)_{\alpha}$$
(3.3)

где $\mathcal{M}_i^* = \frac{\partial \mathcal{M}^*}{\partial \chi_i}$. Обратим внимание, что вторая группа слагаемых, соответствующих свободным роликам ($\alpha=4,\ldots,K$), имеет вид

$$\nu_3 \frac{B}{\Lambda} \left(-\frac{\nu_3 R}{l\Lambda} - \frac{\nu_2 R}{l} \cos \alpha_i + \frac{\nu_1 R}{l} \sin \alpha_i \right) \cos \chi_{ij} = \nu_3 \frac{B}{\Lambda} (\dot{\chi}_i)^* \cos \chi_{ij}. \tag{3.4}$$

Выпишем выражения для P_{α} :

$$P_{1} = R\left(p_{x}\cos\theta + p_{y}\sin\theta + \sum_{i}\left(\frac{p_{\chi_{i}}}{l}\sin\alpha_{i} + \frac{p_{\phi_{i1}}}{\rho_{i}}\cos\alpha_{i}\right)\right)$$

$$P_{2} = R\left(-p_{x}\sin\theta + p_{y}\cos\theta + \sum_{i}\left(-\frac{p_{\chi_{i}}}{l}\cos\alpha_{i} + \frac{p_{\phi_{i1}}}{\rho_{i}}\sin\alpha_{i}\right)\right)$$

$$P_{3} = \frac{1}{\Lambda}\left(p_{\theta} - \sum_{i}\frac{R}{l}p_{\chi_{i}}\right)$$

$$P_{5} = p_{\phi_{5}}$$

$$(3.5)$$

Поскольку коэффициенты лагранжиана L^* зависят только от координаты χ_i , его скобки Пуассона с P_1 , P_2 , P_3 — квадратичные формы псевдоскоростей, пропорциональные моменту инерции ролика B с коэффициентами, зависящими от χ_i :

$$\{P_1, L^*\} = -\frac{\partial P_1}{\partial p_{\chi_i}} \frac{\partial L^*}{\partial \chi_i} = -\frac{R}{2l} \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}_i^* \boldsymbol{\nu} \sin \alpha_i,$$

$$\{P_2, L^*\} = \frac{R}{2l} \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}_i^* \boldsymbol{\nu} \cos \alpha_i, \ \{P_3, L^*\} = \frac{R}{2l\Lambda} \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}_i^* \boldsymbol{\nu}, \quad \{P_s, L^*\} = 0, s > 3$$

Остается рассмотреть правую часть (3.1): суммы $\{P_{\alpha}, \nu_{\mu}P_{\mu}\}$ отличны от нуля лишь в уравнениях для $\alpha=1,\dots,3$ (см. Приложение).

Собирая вместе выражения для слагаемых (3.1) и пользуясь обозначениями из Приложения, окончательно получим следующую структуру уравнений:

$$\mathcal{M}^* \dot{\boldsymbol{\nu}} = MR^2 \Lambda^{-1} \begin{pmatrix} \nu_2 \nu_3 \\ -\nu_1 \nu_3 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \boldsymbol{\nu}^{\mathrm{T}} \begin{pmatrix} \frac{R}{2l} \begin{pmatrix} -\mathcal{M}_i^* \sin \alpha_i \\ \mathcal{M}_i^* \cos \alpha_i \\ 0 \\ \vdots \\ 0 \end{pmatrix} - BR^2 \begin{pmatrix} \mathcal{P}_1 \\ \mathcal{P}_2 \\ \mathcal{P}_3 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \boldsymbol{\nu} - B \begin{pmatrix} \star \\ \star \\ \frac{\nu_3}{\Lambda} \dot{\chi}_1^* \cos \chi_{12} \\ \vdots \\ \frac{\nu_3}{\Lambda} \dot{\chi}_N^* \cos \chi_{Nn} \end{pmatrix}$$

$$(3.6)$$

Символ \star в последнем слагаемом правой части уравнений для $\alpha = 1, \ldots, 3$ заменяет выражения из второго слагаемого (3.3). Матрицы \mathcal{P}_{α} размера $K \times K$ составлены из строк $\mathbf{p}_{\alpha\beta}$, определенных явно в Приложении и зависящих от геометрии экипажа и углов поворота колес χ_i :

$$\mathcal{P}_1 = egin{pmatrix} \mathbf{0} \ \mathbf{p}_{12} \ \mathbf{p}_{13} \ \mathbf{0} \ dots \ \mathbf{0} \ \end{pmatrix}, \mathcal{P}_3 = egin{pmatrix} -\mathbf{p}_{13} \ -\mathbf{p}_{23} \ \mathbf{0} \ \mathbf{0} \ dots \ \mathcal{P}_3 \ \mathcal{P}_$$

Поскольку матрицы \mathcal{M}_i^* и \mathcal{P}_{α} зависят от углов поворота колес χ_i , для замыкания системы к этим уравнениям надо добавить уравнения (2.2).

Структура уравнений позволяет выявить следующие свойства:

- 1. Система допускает интеграл энергии $\frac{1}{2} \boldsymbol{\nu}^{\mathrm{T}} \mathcal{M}^*(\chi_i) \boldsymbol{\nu} = h = \mathrm{const}$ в силу общей теоремы об изменении полной механической энергии: так как система стеснена автономными идеальными связями, а силы консервативны, то полная энергия (в нашем случае она равна кинетической энергии) сохраняется.
- 2. В случае, если платформа экипажа неподвижна, т.е. $\nu_1=\nu_2=\nu_3=0$, свободные ролики сохраняют свою начальную угловую скорость: $\nu_s={\rm const},$ чего и следовало ожидать.
- 3. При B=0 все слагаемые в правой части равенства (3.6), кроме первого, обращаются в нуль, как и все члены, соответствующие свободным роликам, в левой части (см. Приложение, равенства (7.1)). В этом случае существенными остаются первые три уравнения системы на ν_1 , ν_2 , ν_3 . Эти уравнения описывают динамику безынерционной модели экипажа [5].
- 4. Существовавший в безынерционной модели линейный первый интеграл разрушается для модели с массивными роликами. При B=0 он имеет вид $m_{33}^*\nu_3={\rm const}$ (причем $m_{33}={\rm const}$) и следует непосредственно из третьего уравнения системы. При $B\neq 0$ скорость изменения ν_3 пропорциональна моменту инерции ролика B.
- 5. Поскольку скобки Пуассона в уравнениях для свободных роликов равны нулю, система допускает первые интегралы:

$$\nu_s + \frac{1}{\Lambda} \sin \chi_{ij} \nu_3 = \text{const} \tag{3.7}$$

Скорость вращения платформы ν_3 связана со скоростями собственного вращения свободных роликов. В частности, вращение экипажа вокруг вертикальной оси, проходящей через

его центр $(\nu_1(0)=0,\nu_2(0)=0,\nu_3(0)\neq 0)$, неравномерно, в отличие от выводов, основанных на безынерционной модели.

- 6. Одновременное изменение начальных значений всех псевдоскоростей $\nu \to \lambda \nu, \lambda \neq 0$ умножением на число, отличное от нуля, эквивалентно замене времени $t \to \lambda t$.
- **4.** Переход между роликами. Уравнения (3.6) описывают динамику системы на промежутках времени, в течение которых не происходит смены роликов. При переходе любого колеса с одного ролика на другой коэффициенты уравнений терпят разрыв второго рода из-за выражений $\rho_i = l \cos \chi_i r$ в знаменателе.

Заметим, что на практике ситуация $\rho_i=0$ никогда не реализуется, так как концы роликов усекаются (в частности, потому что оси роликов в реальных системах имеют ненулевую толщину и должны быть закреплены в колесах). Для того чтобы в каждый момент в контакте между колесом и плоскостью был ролик, ролики располагают в два или больше рядов.

Фиг. 3

Для исследования движений, на которых происходят смены контактных роликов, примем следующие предположения. Усечем ролики (см. левую часть фиг. 3), но оставим их оси в одной плоскости, пренебрегая пересечением тел роликов в пространстве. Переход между роликами одного колеса будет происходить при значении угла $\chi_i = \frac{2\pi}{n}$. Колесо с усеченными роликами определим, располагая ось ролика на расстоянии $r = l \cos \frac{\pi}{n-1}$ от центра колеса , а его поверхность задавая как фигуру вращения дуги окружности радиуса l с углом раствора $\frac{2\pi}{n}$ вокруг этой оси, замкнутую соответствующими дисками.

Кроме этого, при смене контакта происходит мгновенное наложение связи на вновь вошедший в контакт ролик и снятие ее с освободившегося, после чего последний может свободно вращаться вокруг своей оси. В этот момент в реальной системе происходят вза-

имодействия типа ударных, в том числе проскальзывание роликов относительно плоскости, при котором происходит уменьшение полной энергии системы. Однако моделирование этих эффектов здесь не рассматривается. Будем считать, что скорости ν_1 , ν_2 , ν_3 при переходе с ролика на ролик не изменяются, как и в безынерционной модели в отсутствии роликов (B=0). Таким образом, масса роликов влияет на динамику системы только на гладких участках движения и не учитывается при смене роликов. Из уравнений (2.1) и (2.2) получим, что ролик, входящий в контакт, мгновенно приобретает ту же угловую скорость, что и освобождающийся ролик.

Таким образом, при переходе ($\chi_i = \chi_i^+$) сохраним значения ν_1 , ν_2 , ν_3 , заменим χ_i с χ_i^+ на χ_i^- (см. правую часть фиг. 3), и выполним с псевдоскоростями ν_s следующее преобразование. Пусть $\boldsymbol{\nu}_i^s = (\nu_{i2}, \dots, \nu_{in})$ – псевдоскорости свободных роликов на колесе i. Тогда, если при смене контакта $\dot{\chi}_i > 0$ (т.е. колесо поворачивается против часовой стрелки, см. фиг. 1), то отбросим ν_{in} , остальные компоненты вектора $\boldsymbol{\nu}_i^s$ перенумеруем, сдвигая их вперед: $\nu_{ij} \to \nu_{ij+1}$, а компоненту ν_{i2} положим равной значению правой части в уравнении связи (2.1). При вращении колеса в другую сторону, выполним аналогичные преобразования, номера роликов при этом сдвигаются назад.

5. Примеры движений Численные решения получим для симметричного трехколесного экипажа ($\alpha_i = \frac{2\pi}{N}(i-1), N=3$), с n=5 роликами на колесе и следующих движений:

 Φ иг. 4

- 1. Вращение вокруг своей оси $(\nu_1(0) = \nu_2(0) = 0, \nu_3(0) = 1)$ (фиг. 4);
- <u>Фиг. 6</u>] 3. Движение с ненулевой скоростью центра масс и, одновременно, с ненулевой угловой скоростью платформы $(\nu_1(0)=1,\nu_2(0)=0,\nu_3(0)=1)$ (фиг. 6).

Расчеты выполнены в безразмерных величинах, так что радиус платформы и колеса R=0.15 и r=0.05, массы платформы, колеса и ролика 1, 0.15 и 0.05. При этом момент инерции ролика $B\approx 1.6\cdot 10^{-5}$. Для безынерционной модели массово-инерционные характеристики колес положим соответствующими экипажу с пятью заблокированными роликами.

Во всех трех случаях наблюдаются различия между двумя постановками: свободные ролики приходят в движение, из-за чего меняется угловая скорость платформы экипажа и скорость центра масс экипажа. Кроме этого, становится заметно влияние введенных предположений о смене контакта: график кинетической энергии приобретает ступенчатый вид в силу изменений, зависящих от χ_i и $\dot{\phi}_{i,j}$, в слагаемых (3.2):

$$B\sum_{i,j} (\dot{\phi}_{ij}^2 + 2\dot{\theta}\sin(\kappa_j + \chi_i)\dot{\phi}_{ij})$$
(5.1)

при мгновенном наложении связей. В промежутки времени между сменами роликов энергия остается постоянной.

В случаях 1 и 2 траектории центра экипажа S на плоскости OXY и характер вращения вокруг вертикальной оси SZ ($\theta(t)$) согласно модели с роликами и безынерционной модели различаются несущественно, однако заметны переходные режимы вращения роликов в начале движения.

При вращении вокруг вертикали (движение 1) угловая скорость платформы ν_3 меняется немонотонно, но в среднем медленно убывает: за первые 10^3 с угловая скорость уменьшается на 2%. Скорость центра масс остается равной нулю. Кинетическая энергия системы также медленно убывает. На фиг. 4 представлены угловые скорости роликов на первом колесе $\dot{\phi}_{1j}$. Номер кривой совпадает с номером ролика на колесе, поведение роликов на других двух колесах полностью аналогично. Заметим, что при нулевой скорости

Фиг. 4

Фиг. 5

центра экипажа опорный ролик не вращается (см. формулу (2.2)): угловая скорость первого ролика в течение первой секунды движения нулевая. После выхода из контакта ролик начинает раскручиваться в соответствии с первым интегралом (3.7). Раскрученный ролик при входе в контакт с опорной плоскостью мгновенно теряет угловую скорость (на графике угловой скорости первого ролика это происходит при t = 9.6с), что приводит к убыванию кинетической энергии.

При движении по прямой (движение 2) угловая скорость остается нулевой. На фиг. 5 слева показаны графики относительного изменения скорости центра масс $\nu_1(t)/\nu_1(0)-1$ (кривая 1) и кинетической энергии T(t)/T(0)-1 (кривая 2). Видно, что на начальном этапе движения при смене контакта кинетическая энергия возрастает, что обусловлено принятой моделью наложения связи, но при этом возрастание энергии остается в пределах 4%. Скорость центра масс (кривая 2, слева) в среднем убывает. Скорость вращения переднего колеса равна нулю, колесо катится, опираясь на один и тот же ролик, остальные ролики не раскручиваются. Угловые скорости роликов на одном из задних колес показаны на фиг. 5 справа. Свободные ролики двигаются с постоянной угловой скоростью, ролик в контакте изменяет свою скорость за счет скорости центра масс. После того как все ролики побывают в контакте, их движение становится квазипериодичным, а энергия убывает с каждой сменой контакта.

Фиг. 6

При движении 3, сочетающем поступательное и вращательное движение, угловая скорость экипажа ν_3 растет и выходит на постоянное значение (кривая 1 на фиг. 6 слева вверху), скорость центра экипажа $v = \sqrt{\nu_1^2 + \nu_2^2}$ уменьшается до нуля (кривая 2 там же), а кинетическая энергия (кривая 3) после короткого начального участка, где происходят маленькие по величине скачки вверх аналогично движению 2, убывает. Угловые скорости роликов представляют собой квазипериодические функции времени (характерный уча-

сток представлен на фиг. 6 справа вверху, обозначения те же что и на фиг. 4). Центр платформы описывает спираль (нижняя часть фиг. 6). Заметим, что если не учитывать массу роликов на колесе, то при принятых начальных условиях скорость центра масс и угловая скорость платформы сохраняются, а центр платформы описывает окружность. Таким образом, даже малая масса роликов приводит к качественным изменениям в движении экипажа.

6. Выводы.

- 1. Получены уравнения движения экипажа с полным набором роликов в неголономной постановке.
- 2. Показано, что при учете массы роликов возникают дополнительные члены, пропорциональные моменту инерции ролика относительно его оси.
 - 3. Предложена модель перехода с ролика на ролик.
- 4. Получены численные решения с учетом движения свободных роликов для симметричного экипажа и обнаружены качественные отличия от безынерционной модели.

7. Приложение. Матрица кинетической энергии:

В ее третьей строке сначала указаны элементы, соответствующие роликам, находящимся в контакте, а затем соответствующие "свободным" роликам; элементы упорядочены по возрастанию индексов, так что ролики одного колеса соседствуют. Матрица \mathcal{M} – симметрическая, звездой обозначены элементы, получающиеся транспонированием верхнего треугольника матрицы.

Матрица связей:

$$V = \begin{bmatrix} \tilde{V} & O_1 \\ O_2 & E \end{bmatrix}; \quad \tilde{V} = \begin{bmatrix} R\cos\theta & -R\sin\theta & 0 \\ R\sin\theta & R\cos\theta & 0 \\ 0 & 0 & \frac{1}{\Lambda} \\ \frac{R}{l}\sin\alpha_i & -\frac{R}{l}\cos\alpha_i & -\frac{R}{\Lambda l} \\ \frac{R}{\rho_k}\cos\alpha_k & \frac{R}{\rho_k}\sin\alpha_k & 0 \end{bmatrix}$$

Здесь O_1 и O_2 – нулевые $(3+2n\times N(n-1))$ - и $(N(n-1)\times 3)$ -матрицы, E – единичная матрица размерности N(n-1).

Элементы матрицы кинетической энергии при учете связей:

$$m_{11}^{*} = MR^{2} + \sum_{i} \left(J \frac{R^{2}}{l^{2}} \sin^{2} \alpha_{i} + B \frac{R^{2}}{\rho_{i}^{2}} \cos^{2} \alpha_{i} \right) \quad (11 \leftrightarrow 22, \sin \alpha_{i} \leftrightarrow \cos \alpha_{i})$$

$$m_{33}^{*} = \frac{1}{\Lambda} \left(I_{S} + \sum_{i} J \frac{R^{2}}{l^{2}} \right), \quad m_{12}^{*} = \sum_{i} \left(-J \frac{R^{2}}{l^{2}} + B \frac{R^{2}}{\rho_{i}^{2}} \right) \sin \alpha_{i} \cos \alpha_{i} \quad (7.1)$$

$$m_{13}^{*} = \frac{1}{\Lambda} \sum_{i} B \frac{R}{\rho_{i}} \sin \chi_{i} \cos \alpha_{i}, \quad m_{23}^{*} = \frac{1}{\Lambda} \sum_{i} B \frac{R}{\rho_{i}} \sin \chi_{i} \sin \alpha_{i}$$

Обозначая $\xi_{\pm}(\alpha) = \nu_1 \cos \alpha \pm \nu_2 \sin \alpha$, $\eta_{\pm}(\alpha) = \nu_1 \sin \alpha \pm \nu_2 \cos \alpha$, для формальных импульсов $\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{q}}}$ получим:

$$p_{x} = MR\xi_{-}(\theta), \ p_{y} = MR\eta_{+}(\theta), \ p_{\theta} = BR\sum_{i} \frac{\sin\chi_{i}}{\rho_{i}}\xi_{+}(\alpha_{i}) + \frac{I_{S}}{\Lambda}\nu_{3} + B\sum_{s} \sin\chi_{s}\nu_{s}$$

$$p_{\chi_{i}} = J\frac{R}{l}(\eta_{-}(\alpha_{i}) - \frac{1}{\Lambda}\nu_{3}), \ p_{\phi_{k1}} = \frac{BR}{\rho_{k}}\xi_{+}(\alpha_{k}) + \frac{B}{\Lambda}\sin\chi_{k}, \ p_{\phi_{s}} = \frac{B}{\Lambda}\nu_{3}\sin\chi_{s} + B\nu_{s}$$
(7.2)

Линейные комбинации P_{α} имеют вид:

$$P_{1} = R\left(p_{x}\cos\theta + p_{y}\sin\theta + \sum_{i}\left(\frac{p_{\chi_{i}}}{l}\sin\alpha_{i} + \frac{p_{\phi_{i1}}}{\rho_{i}}\cos\alpha_{i}\right)\right)$$

$$P_{2} = R\left(-p_{x}\sin\theta + p_{y}\cos\theta + \sum_{i}\left(-\frac{p_{\chi_{i}}}{l}\cos\alpha_{i} + \frac{p_{\phi_{i1}}}{\rho_{i}}\sin\alpha_{i}\right)\right)$$

$$P_{3} = \frac{1}{\Lambda}\left(p_{\theta} + \sum_{i}\frac{R}{l}p_{\chi_{i}}\right), P_{s} = p_{\phi_{s}}$$

$$(7.3)$$

Для упрощения записи правой части уравнений введем обозначение для операции дискретной свертки произвольной функции f:

$$\sigma[f(\alpha, \chi)] = \sum_{k=1}^{N} f(\alpha_k, \chi_k) \frac{\sin \chi_k}{\rho_k^3}$$

Тогда скобки Пуассона в правой части (3.1) имеют вид (звездочкой обозначена подстанов-

ка канонических формальных импульсов p_i):

$$(\{P_1, P_2\})^* = \left(-\sum_{k=1}^N R^2 \tau_k p_{\phi_k}\right)^* = -BR^2 (R\nu_1 \sigma[\cos\alpha] + R\nu_2 \sigma[\sin\alpha] + \Lambda^{-1}\nu_3 \sigma[\rho\sin\chi]) =$$

$$= -BR^2 \mathbf{p}_{12} \boldsymbol{\nu}, \text{ rae } \mathbf{p}_{12} = (\sigma[\cos\alpha], R\sigma[\sin\alpha], \Lambda^{-1}\sigma[\rho\sin\chi], 0, \dots, 0)$$

$$(\{P_1, P_3\})^* = R\Lambda^{-1} \left(-\sin\theta p_x + \cos\theta p_y - \sum_{k=1}^N R\cos\alpha_k \tau_k p_{\phi_k}\right)^* = MR^2\Lambda^{-1}\nu_2 -$$

$$- BR^2\Lambda^{-1} (R\nu_1 \sigma[\cos^2\alpha] + R\nu_2 \sigma[\sin\alpha\cos\alpha] + \Lambda^{-1}\nu_3 \sigma[\rho\cos\alpha\sin\chi]) =$$

$$= MR^2\Lambda^{-1}\nu_2 - BR^2 \mathbf{p}_{13} \boldsymbol{\nu}$$

$$\text{где } \mathbf{p}_{13} = \Lambda^{-1} (R\sigma[\cos^2\alpha], R\sigma[\sin\alpha\cos\alpha], \Lambda^{-1}\sigma[\rho\cos\alpha\sin\chi], 0, \dots, 0)$$

$$(\{P_2, P_3\})^* = R\Lambda^{-1} \left(-\cos\theta p_x - \sin\theta p_y - \sum_{k=1}^N R\sin\alpha_k \tau_k p_{\phi_k}\right)^* = -MR^2\Lambda^{-1}\nu_1 -$$

$$- BR^2\Lambda^{-1} (R\nu_1 \sigma[\sin\alpha\cos\alpha] + R\nu_2 \sigma[\sin^2\alpha] + \Lambda^{-1}\nu_3 \sigma[\rho\sin\alpha\sin\chi] =$$

$$= -MR^2\Lambda^{-1}\nu_1 - BR^2 \mathbf{p}_{23} \boldsymbol{\nu}$$

$$\text{где } \mathbf{p}_{23} = \Lambda^{-1} (R\sigma[\sin\alpha\cos\alpha], R\sigma[\sin^2\alpha], \Lambda^{-1}\sigma[\rho\sin\alpha\sin\chi], 0, \dots, 0),$$

Литература

- Gfrerrer A. Geometry and kinematics of the Mecanum wheel // Computer Aided Geom. Design. 2008. T. 25. C. 784–791.
- 2. Зобова А. А., Татаринов Я. В. Математические аспекты динамики движения экипажа с тремя окольцованными колесами // Мобильные роботы и мехатронные системы. М.: Изд-во МГУ, 2006. С. 61–67.
- 3. Мартыненко Ю. Г., Формальский А. М. О движении мобильного робота с роликонесущими колесами // Изв. РАН. Теория сист. управл. 2007. № 6. С. 142–149.

- Зобова А. А., Татаринов Я. В. Свободные и управляемые движения некоторой модели экипажа с роликонесущими колесами // Вестник Моск. ун-та. Сер. 1: Матем. Механ. 2008.
 № 6. С. 62–65.
- Зобова А. А., Татаринов Я. В. Динамика экипажа с роликонесущими колесами // ПММ. 2009. Т. 73. № 1. С. 13–22.
- 6. Мартыненко Ю. Г. Устойчивость стационарных движений мобильного робота с роликонесущими колесами и смещенным центром масс // ПММ. 2010. Т. 74. № 4. С. 610–619.
- 7. Борисов А. В., Килин А. А., Мамаев И. С. Тележка с омниколесами на плоскости и сфере // Нелин. дин. 2011. Т. 7. № 4 (Мобильные роботы). С. 785–801.
- 8. Dynamic model with slip for wheeled omnidirectional robots / R.L. Williams, B.E. Carter, P. Gallina [и др.] // IEEE Transactions on Robotics and Automation. 2002. Т. 18. № 3. С. 285–293.
- 9. Ashmore M., Barnes N. Omni-drive robot motion on curved paths: the fastest path between two points is not a straight-line // Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002. C. 225–236.
- Tobolar J., Herrmann F., Bunte T. Object-oriented modelling and control of vehicles with omni-directional wheels // Computational Mechanics. 2009. Hrad Nectiny, Czech Republic: 2009.
- Косенко И. И., Герасимов К. В. Физически-ориентированное моделирование динамики омнитележки // Нелин. дин. 2016. Т. 12. № 2. С. 251–262.

- 12. Татаринов Я. В. Уравнения классической механики в новой форме // Вестник Моск. ун-та. Сер. 1: Матем. Механ. 2003. № 3. С. 67–76.
- 13. Зобова А. А. Применение лаконичных форм уравнений движения в динамике неголономных мобильных роботов // Нелин. дин. 2011. Т. 7. № 4. Р. 771–783.

Фигуры.

Фиг. 1.

Фиг. 3.

Фиг. 4.

Фиг. 5.

Фиг. 6.

ON THE MOTION OF A SYMMETRICAL VEHICLE WITH OMNIWHEELS WITH MASSIVE ROLLERS

© 2018 г. K. Gerasimov^{1,*}, A. Zobova^{1,**}

¹ Chair of Theoretical Mechanics and Mechanics, Department of Mechanics and Mathematics, Lomonosov Moscow State University

*E-mail: kiriger@gmail.com, **E-mail: azobova@mech.math.msu.su