Contrôle 1

Durée : trois heures

Documents et calculatrices non autorisés

Nom:

Prénom:

Groupe:

 $Entourer\ votre\ professeur\ de\ TD: M.\ Ghanem\ /\ Mme\ Malek\ /\ M.\ Nicolet\ /\ Mme\ Trémoulet$

Consignes:

- vous devez répondre directement sur les feuilles jointes.
- aucune autre feuille, que celles agrafées fournies pour répondre, ne sera corrigée.
- aucune réponse au crayon de papier ne sera corrigée.
- toute personne ne respectant pas ces consignes se verra attribuer la note 00/20.

Exercice 1 (3 points)

1. Déterminer $\lim_{x\to 0} \frac{\cos(x) - \sqrt{1-x^2}}{x^4}$

2. Déterminer $\lim_{x\to 0} \frac{\sin(x-\sin(x))}{\sqrt{1+x^3}-1}$

suite du cedre page suivante

Exercice 2 (4 points)

1. Déterminer, en utilisant obligatoirement la règle de d'Alembert, la nature de la série $\sum \prod_{k=2}^{n} \frac{\ln(k)}{k}$

2. Déterminer, en utilisant obligatoirement la règle de d'Alembert, la nature de la série $\sum \frac{(2n)!}{n^2 2^{2n}}$

3. Soit $\alpha \in \mathbb{R}_+^*$. Déterminer la nature de la série $\sum \frac{(-1)^n}{n^{\alpha}}$

Exercice 3 (5 points)

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle strictement positive telle que $\forall k\in\mathbb{N}^*, \ \frac{u_{k+1}}{u_k}\leqslant \left(\frac{k}{k+1}\right)^{\alpha}$ où $\alpha>1$.

1. Montrer que pour tout $n \geqslant 2$, $\frac{u_n}{u_1} \leqslant \frac{1}{n^{\alpha}}$

[suite du cadre page suivante]

n déduire le neture de V	

2. En déduire la nature de $\sum u_n$.

3. On considère la suite (u_n) définie par

$$u_n = \frac{1 \times 3 \times \ldots \times (2n-1)}{2 \times 4 \times \ldots \times 2n} \times \frac{1}{2n+1}$$

a. La règle de d'Alembert permet-elle de conclure sur la nature de $\sum u_n\,?$

b. Vérifier que $\frac{u_{n+1}}{u_n} = \frac{\left(1 + \frac{1}{2n}\right)^2}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{3}{2n}\right)}$

c. En déduire que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{3}{2n} + o\left(\frac{1}{n}\right)$$

4. a. Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N} \quad n \geqslant n_0 \Longrightarrow \frac{u_{n+1}}{u_n} \leqslant \left(\frac{n}{n+1}\right)^{5/4}$$

b. La série $\sum u_n$ est-elle convergente?

Exercice 4 (2,5 points)

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par

$$u_n = \ln\left((n-1)!\right) - \left(n - \frac{1}{2}\right)\ln(n) + n$$

1. Montrer que $u_{n+1} - u_n = 1 - \left(n + \frac{1}{2}\right) \ln \left(1 + \frac{1}{n}\right)$

[suite du cadre page suivante]

`	
/	

2. Montrer que $u_{n+1} - u_n \sim -\frac{1}{12n^2}$

3. En déduire que (u_n) est convergente.

Exercice 5 (2,5 points)

On considère la série de terme général $u_n = \frac{1}{1 + (-1)^n n^{\alpha}}$ où $\alpha \in \mathbb{R}_+^*$.

1. Vérifier que $u_n = \frac{(-1)^n}{n^{\alpha}} \frac{1}{1 + \frac{(-1)^n}{n^{\alpha}}}$

2. Déterminer $a \in \mathbb{R}$ tel que $u_n = \frac{(-1)^n}{n^{\alpha}} - \frac{a}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$

3. En déduire la nature de $\sum u_n$.

Exercice 6 (2 points)

On considère la série de terme général $u_n=1-\sqrt{1+\frac{(-1)^n}{\sqrt{n}}}$

1. Déterminer $(a,b)\in\mathbb{R}^2$ tel que $u_n=\frac{(-1)^{n+1}a}{\sqrt{n}}+\frac{b}{n}+o\left(\frac{1}{n}\right)$

2. En déduire la nature de $\sum u_n$.

Exercice 7 (2 points)

Soit $a \in \mathbb{R}_+^*$. Déterminer la nature de la série $\sum \ln \left(\frac{1}{n^a}\right) - \ln \left(\sin \left(\frac{1}{n^a}\right)\right)$

EPITA	1	Tn	fn.S	né
	_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L 50

	•			
<u>NOM</u>	<i>;</i>	PRENOM	<i>t</i>	GROUPE :

Contrôle 1 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet

Exercice 1. Questions de cours (5 points)
Répondre aux questions suivantes. Soyez concis, et précis!
1. Pourquoi a-t-on besoin de doper les semi-conducteurs?
2. A quoi correspond la lettre P ou N qui permet de différencier les 2 types de dopage?
3. A quoi sert un modèle?
4. Pourquoi modéliser les composants à base de semi-conducteur?
5. En polarisation inverse, quelque soit le modèle utilisé pour la diode, on utilise ur interrupteur ouvert. Pourquoi néglige-t-on le courant qui traverse la diode en inverse?

F	6.	Par quoi remplace-t-on la diode lorsqu'elle est passante si on utilise son modèle le moins précis?
	74.0	
	7.	Par quoi remplace-t-on la diode lorsqu'elle est passante si on utilise son modèle le plus précis?
Towns of the Control		
	8.	En deçà d'une certaine tension, on voit apparaître un fort courant inverse. Quels sont les phénomènes à l'origine de ce courant? (On ne vous demande pas de les expliquer)
	9.	Quelle est la particularité d'une diode Zéner? Tracer sa caractéristique complète.

1		En polarisation inverse, par quel(s) composant(s) devez-vous remplacer la diode Zéner si vous utilisez son modèle à seuil? Faites un schéma, sans oublier de préciser où se trouvent anode et cathode.

Exercice 2. Les diodes : Polarisation (6 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec $V_0 = 0.7V_{\odot}$

1. Si $R=100\Omega$, $I_0=60 mA$ et E=5V, montrer que la diode est bloquée. (Rq : Utiliser un raisonnement par l'absurde). Déterminer alors l'intensité du courant qui traverse la résistance.

Exercice 3.	Caractéristique de transfert (4 points)
Soit le circuit	suivant:
On souhaite tr	racer la caractéristique $U = f(V)$.
	e modèle à seuil pour modéliser la diode; et on $E \cap E$
1. Donner	l'expression de $\it U$ si la diode est passante.
0 \	
2. Donner	l'expression de U si la diode est bloquée.
3 Pour au	elles valeurs de V la diode est-elle bloquée?
o. rour qu	elles valeurs de vila diode est-elle bloquee?

4. Tracer U = f(V).

<u>Exercice 4.</u>	(2 points)
--------------------	------------

Soit le circuit suivant :

On choisit, comme référence des potentiels, le point *C*. Déterminer le potentiel du point *A*.

		1
		-
		et de la constant
		ı

Exercice 5. (3 points)

Soit le circuit suivant :

Le but de l'exercice est de déterminer le générateur de Thévenin équivalent à la partie encadrée du circuit.

Ĺ,	Déterminer l'expression littérale de la résistance R_{th} du générateur de tension équivalent
	de THEVENIN.

2. Determiner	l'expression littére	ale de la tension <i>E</i>	E _{th} du générateur	de tension équivalent
	·			
			•	
		•		

Algorithmique Contrôle no 1

INFO-SPÉ - EPITA

D.S. 312017.57 BW (7 nov 2011 - 10:00)

Consignes (à lire):

- □ Vous devez répondre sur les feuilles de réponses prévues à cet effet.
 - Aucune autre feuille ne sera ramassée (gardez vos brouillons pour vous).
 - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées : utilisez des brouillons!
 - Ne séparez pas les feuilles à moins de pouvoir les ré-agrafer pour les rendre.
 - Aucune réponse au crayon de papier ne sera corrigée.
- □ La présentation est notée en moins, c'est à dire que vous êtes noté sur 20 et que les points de présentation (2 au maximum) sont retirés de cette note.

□ Les algorithmes :

- Tout algorithme doit être écrit dans le langage Algo (pas de C, Caml ou autre).
- Tout code Algo non indenté ne sera pas corrigé.
- Tout ce dont vous avez besoin (types, routines) est indiqué en annexe (dernière page)!
- □ Durée : 2h00

Exercice 1 (Hachages - 8 points)

1. Soit le tableau suivant, montrant 11 éléments et leur valeur de hachage respective.

Elément	В	D	F	Е	Н	G	J	I	С	K	A
Valeur de hachage	1	3	7	3	9	7	11	8	2	12	9

Représenter (dessiner) le tableau de hachage correspondant à l'ajout successif de ces 11 éléments (dans l'ordre donné) dans le cas d'un hachage linéaire. On considérera que le tableau contient 13 éléments (m=13) numérotés de 0 à m-1.

2. Soient les déclarations suivantes :

```
Constantes
  M = 13
Types
  /* déclaration du type t_element */
  t_element = ...
  t_hachage = M t_element
\mathbf{Variables}
  t_hachage th
/st Renvoie vrai si la i^st place d'un tableau Th est vide, faux sinon st/
Algorithme fonction estvide : booléen
Paramètres locaux
  t_hachage
  entier
                     /* Avec 0<=i<=m-1 */
/* Calcule la valeur de hachage primaire d'un élément x */
Algorithme fonction h : Entier
Paramètres locaux
  t_element x
```

Pour les principes et algorithmes qui suivront, nous n'envisagerons pas la possibilité d'implémenter la suppression. Nous considérerons donc une case du tableau comme ne pouvant avoir que deux états : "Vide" ou "Non vide".

Soit un entier m et th un tableau d'indices de 0 à m-1. Soit h une fonction de hachage définie sur le type des éléments de th et à résultat dans [0,m-1]. La méthode dite de hachage ordonné utilise à la fois le hachage linéaire et des comparaisons entre les valeurs des éléments. C'est à dire que lorsque des éléments sont en collision, ils sont triés par ordre croissant.

- (a) Ecrire le principe d'une fonction d'ajout d'un élément x dans le tableau th selon le principe du hachage ordonné. On exercera un contrôle de redondance sur l'élément à ajouter. Attention : On admettra qu'il existe au moins une place vide permettant de faire l'ajout de l'élément.
- (b) En utilisant ce principe et les déclarations précédentes, écrire l'algorithme de la procédure **Ajouter_HO** correspondant à l'ajout d'un nouvel élément dans le tableau de hachage selon le principe du *hachage ordonné*.

Exercice 2 (Hauteur d'un arbre général - 7 points)

Note: Pour écrire les algorithmes demandés, vous pouvez utiliser la fonction \max (a, b) qui retourne le maximum des deux entiers a et b.

- 1. Donner la définition de la hauteur d'un arbre général.
- 2. Écrire une fonction qui calcule la hauteur d'un arbre général représenté par n-uplets de pointeurs (le type t_arbre_nuplets).
- 3. Écrire une fonction qui calcule la hauteur, avec cette fois ci la représentation premier fils-frère droit (le type t_arbre_dyn).

Exercice 3 (Intervalle - 5 points)

L'objectif de cet exercice est d'afficher un intervalle de clés dans un arbre 2.3.4. Nous utiliserons ici la procédure ecrire (plutôt que de construire une chaîne) qui est capable de *convertir* les clés de nos arbres pour les afficher.

1. Ecrire la procédure range (A, bi, bs) qui affiche (en ordre croissant) l'ensemble des clés se trouvant dans l'arbre 2.3.4 A et comprises dans l'intervalle [bi; bs].

Remarques:

Pour ne pas omettre certaines clés il faut bien faire attention aux propriétés de la relation d'ordre des arbre 2.3.4, et particulièrement :

- il ne faut pas oublier que même si la dernière clé d'un noeud est inférieure à la borne minimale de l'intervalle, il peut y avoir des clés dans l'intervalle dans le sous-arbre issu du dernier fils.
- De même, si la première clé du noeud est supérieure à la borne maximale, il peut y avoir des clés dans l'intervalle dans le sous-arbre issu du premier fils.

L'algorithme pourra avoir la structure suivante :

Soient x la première clé supérieure ou égale à bi dans le nœud racine et y le dernière clé inférieure ou égale à bs dans le nœud racine.

Si l'arbre n'est pas vide :

- $\diamond\,$ Recherche dans le nœud racine de la première clé supérieure ou égal à bi:x
- ♦ Si on est en feuille :
 - \circ Affichage des clés entre bi et bs (de $x \ge y$).
- ♦ Sinon
 - \circ Pour toutes les clés de $x \ge y$:
 - afficher les clés du fils gauche comprises entre bi et bs
 - afficher la clé
 - o afficher les clés du fils droit de y comprises entre bi et bs.

Annexes

Type de données représentant les arbres 2-3-4:

```
constantes
    degre = 2
types
    /* déclaration du type t_element */
    t_a234 = ↑ t_noeud_234
    tab3cles = (2*degre-1) chaine
    tab4fils = (2*degre) t_a234
    t_noeud_234 = enregistrement
        entier nbcles
        tab3cles cle
        tab4fils fils
fin enregistrement t_noeud_234
```

Arbres Généraux en représentation nuplets

Arbres Généraux en représentation premier-fils/frère-droit

Vecteurs de clefs

```
constantes
    MaxVect = /*une valeur suffisante !*/
types
    t_element = ...
    t_vect_cles = MaxVect t_element
```

Nom	
Prénom	
Groupe	

Algorithmique - Info-SPE

Contrôle nº 1 D.S. 312017.57 BW (7 nov. 2011 - 10 :00)

Feuilles de réponses

Consignes (à lire):

- □ Vous devez répondre sur les feuilles de réponses prévues à cet effet.
 - Aucune autre feuille ne sera ramassée (gardez vos brouillons pour vous).
 - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées : utilisez des brouillons!
 - Ne séparez pas les feuilles à moins de pouvoir les ré-agrafer pour les rendre.
 - Aucune réponse au crayon de papier ne sera corrigée.
- □ La présentation est notée en moins, c'est à dire que vous êtes noté sur 20 et que les points de présentation (2 au maximum) sont retirés de cette note.

$\hfill\Box$ Les algorithmes :

- Tout algorithme doit être écrit dans le langage Algo (pas de C, Caml ou autre).
- Tout code Algo non indenté ne sera pas corrigé.
- Tout ce dont vous avez besoin (types, routines) est indiqué en annexe (dernière page)!
- □ Durée : 2h00

$R\'eponses$	1	(hachages		8	points
--------------	---	-----------	--	---	--------

				<u> </u>	
-					
					 J
ncipes & algorithme	s:				
		n le principe d	u hachage orde	nné ·	J
		n le principe d	u <i>hachage ordo</i>	nné :	
		n le principe d	u <i>hachage ordc</i>	nné :	
) Principe d'une fon		n le principe d	u <i>hachage ordc</i>	nné :	
Principe d'une fon		n le principe d	u hachage orde	nné :	
Principe d'une fon		n le principe d	u hachage ordo	nné :	
) Principe d'une fon	ction d'ajout selo	n le principe d	u hachage ordo	nné :	
) Principe d'une fon	ction d'ajout selo	n le principe d	u hachage ordo	nné :	
) Principe d'une fon	ction d'ajout selo	n le principe d	u hachage ordo	nné :	
) Principe d'une fon	ction d'ajout selo	n le principe d	u hachage ordo	nné :	
) Principe d'une fon	ction d'ajout selo	n le principe d	u hachage ordo	nné :	
) Principe d'une fon	ction d'ajout selo	n le principe d	u hachage ordo	$nn\epsilon$:	
incipes & algorithme	ction d'ajout selo	n le principe d	u hachage ordo	nné :	

(b) Algorithme de la fonction booléenne ${\it Ajouter_HO}$ correspondant à ce principe :

Algorithme procedure Ajouter_H0
Paramètres globaux
t_hachage th
Paramètres locaux
t_element x
Variables

Début

Fin Algorithme procedure Ajouter_HO

Réponses 2 (Hauteur d'un arbre général - 7 points)

l.	Définition de la hauteur d'un arbre général :

2. Spécifications:

La fonction hauteur_ag (t_arbre_nuplets A) retourne la hauteur de l'arbre A.

Algorithme:

fin algorithme fonction hauteur_ag

3. Spécifications:

La fonction hauteur_ag_2 (t_arbre_dyn A) retourne la hauteur de l'arbre A.

Algorithme:

fin algorithme fonction hauteur_ag_2

Réponses 3 (Intervalle – 5 points)

1. Spécification: la procédure range (A,bi,bs) affiche (en ordre croissant) l'ensemble des clés se trouvant dans l'arbre 2.3.4 A et comprises dans l'intervalle [bi; bs]. Les clés seront séparées par des espaces. L'algorithme n'affichera rien si l'arbre est vide.

algorithme procedure range parametres locaux

t_a234

A

entier

bi, bs

variables

debut

fin algorithme procedure range

Contrôle 1 Architecture des ordinateurs

		Duite. III
Nom:	Prénom :	Classe:

Exercice 1 (6 points)

Soit le nombre binaire 10011010112, que l'on considère non signé dans un premier temps.

- 1. Donnez sa représentation décimale.
- 2. Donnez sa représentation hexadécimale.

On le considère maintenant signé sur 10 bits.

- 3. Donnez sa représentation décimale.
- 4. Donnez sa représentation binaire sur 15 bits signés.

Si le nombre binaire signé 27 bits 10001110100100011010101002 vaut -59470516₁₀.

- 5. Combien vaut le nombre binaire signé 32 bits 11111100011101001000110101011002?
- 6. Combien vaut le nombre binaire signé 27 bits 1100011101001000110101010102?

Soit le nombre en représentation décimale suivant : 2²⁴.

- 7. Combien faut-il de bits au minimum pour le représenter en binaire non signé ?
- 8. Combien faut-il de bits au minimum pour le représenter en binaire signé ?

Soit le nombre en représentation décimale suivant : -2²⁴.

9. Combien faut-il de bits au minimum pour le représenter en binaire signé ?

Pour finir:

- 10. Donnez la représentation binaire sur 10 bits signés du nombre -512.
- 11. Donnez la représentation binaire sur 12 bits signés du nombre -512.
- 12. Donnez la représentation binaire sur 12 bits signés du nombre -511.

Exercice 2 (5 points)

- 1. Convertissez, <u>en détaillant chaque étape</u>, les deux nombres ci-dessous dans le format flottant simple **précision**. Vous exprimerez le résultat final, sous forme binaire, <u>en précisant chacun des champs</u>.
 - 155,25
 - 0,625
- 2. <u>En détaillant chaque étape</u>, donnez la représentation décimale des nombres codés en double précision suivants :
 - · 12E1 4000 0000 0000₁₆
 - 8001 2000 0000 0000₁₆
 - 7FFO 0000 0000 0000₁₆

Contrôle 1

Exercice 3 (4 points)

On désire réaliser un compteur synchrone avec la séquence du tableau ci-dessous. On dispose pour cela de bascules JK synchronisées sur front montant.

1. Remplissez le tableau.

Q_1	Q ₀	$\mathbf{J_1}$	\mathbf{K}_{1}	\mathbf{J}_0	\mathbf{K}_{0}
1	0				
1	1				
0	1				
0	0				

2. Donnez les équations des entrées J et K de chaque bascule <u>en détaillant vos calculs par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (ex : $J_0 = 1$, $K_1 = \overline{Q}_2$).

Exercice 4 (5 points)

Pour chaque question, vous pourrez ajouter toutes les portes logiques que vous jugerez nécessaires.

1. Câblez les bascules ci-dessous afin de réaliser un compteur asynchrone modulo 10.

2. Câblez les bascules ci-dessous afin de réaliser un décompteur asynchrone modulo 11.

3. Donnez le schéma de câblage d'un diviseur de fréquence par deux à l'aide d'une bascule D.

2011/2012

Contrôle n°1 de Physique

Calculatrice et documents non autorisées

Exercice 1

Partie A

(Sur 5 points)

On considère un solénoïde de longueur L, formé de N spires de rayon R. Lors du passage du courant I, il se crée à l'intérieur un champ magnétique uniforme d'expression :

$$\vec{B} = \mu_0 \frac{N.I}{L} \vec{e}_z$$

- 1- Tracer les lignes du champ magnétique à l'intérieur du solénoïde
- 2- Exprimer le flux magnétique traversant les N spires.
- 3- Le courant est en effet variable en fonction du temps et s'écrit comme :

$$I(t) = I_0 \cdot \cos(\omega t)$$

- a- Interpréter ce qui se produit
- b- Exprimer la f.é.m auto-induite, ainsi que le courant induit maximal, sachant que la bobine a une résistance r

On donne: $\mu_0 = 4\pi . 10^{-7} S.I$; $r = 10\Omega$, $I_0 = 10A$, N = 100, $\omega = 10$ rad/s, R=2 cm, L=40 cm.

Partie B

(sur 5 points)

Un fil traversé par un courant I est placé à la distance d, d'un cadre de longueur a et de largeur b.

- 1- Utiliser la loi de Biot-Savart pour représenter le vecteur champ magnétique dans le plan (xoy). Le champ magnétique est variable en x, son expression est : $B(x) = \frac{\mu_0 I}{2\pi x}$
- 2- Monter que le flux magnétique traversant le cadre est : $\Phi(\vec{B}) = -\frac{\mu_0}{2\pi}I.b.\ln(\frac{a+d}{d})$.

- 3- Le courant traversant le fil est d'expression : $I(t) = I_0 e^{-\frac{t}{\tau}}$; où I_0 et τ sont des constantes.
- a- Exprimer la f.é.m auto-induite dans le cadre
- b- En déduire le courant induit i sachant que le cadre a une résistance R. Représenter le sens de i dans le cadre. Justifier votre réponse.

Exercice 2 (sur 5 points)

Soit un fluide avec un champ de vitesse tridimensionnel:

$$\vec{V}(x, y, z) = (7x^4 - 2 + z^2, 3y^2 - \frac{1}{z}, x^{-\frac{3}{4}} - 2z)$$

- 1- Calculer la divergence du vecteur vitesse.
- 2- Evaluer la divergence de la vitesse à l'origine P(0,0,0). Analyser le signe de ce résultat, de quel type de phénomène s'agit-il?
- 3- Quel sera le résultat si le champ de vitesse est proportionnel à $\frac{1}{r^2}$?
- 4- Indiquer pour chaque diagramme si

$$div(\vec{v}) = 0 \qquad ro\vec{t}(\vec{v}) = 0$$
$$div(\vec{v}) \neq 0 \qquad ro\vec{t}(\vec{v}) \neq 0$$

	Figure a	Divergence Rotationnel
	b	
47.000.000.000.000.000.000.000	c	

Exercice 3 (sur 5 points)

- I. Vérifier les identités d'analyse vectorielle suivantes : (Toutes les fonctions scalaires sont des différentielles totales exactes). (Justifier votre calcul)
- $1-\ div(ro\vec{t}\,(\vec{V}))=0$
- 2- $div(f\vec{V}) = fdiv(\vec{V}) + \vec{V}.gra\vec{d}(f)$
- II. Retrouver les deux équations de Maxwell suivantes en donnant leurs interprétations.
- 1- $div(\vec{E}) = \frac{\rho}{\varepsilon}$
- $2- div(\vec{B}) = 0$

<u>Formulaire</u>

Loi de Biot-Savart

$$d\vec{B} = \frac{\mu_0}{4\pi} I \frac{d\vec{l} \Lambda P \vec{M}}{P M^3}$$

Flux magnétique

$$\Phi(\vec{B}) = \iint_{S} \vec{B}.d\vec{S}$$

Théorème de Gauss

$$\oint \int_{S} \vec{E} \cdot d\vec{S} = \frac{Q \text{ int}}{\varepsilon}$$

Théorème de Green-Ostrogradski

$$\oint_{S} \vec{U}.d\vec{S} = \iiint_{\tau} div (\vec{U}) d\tau$$

Loi de Faraday

$$e = -\frac{d\Phi}{dt}$$