Medical/Bio Research Topics I: Week 08 (25.04.2024)

Diffusion-weighted MRI (2): Data Processing

확산가중 자기공명영상 (2): 데이터 처리 방법

Brain Mapping with Diffusion-weighted MRI (dMRI)

Diffusion-weighted MRI

Analytical Variability in dMRI

- Variability of white matter tractography [Schilling et al., 2021]
 - Resulted from different protocols for white matter fibre bundle segmentation

[Schilling et al., 2021]

[Schilling et al., 2021]

Variation in protocols for white matter fibre bundle segmentation

Preprocessing

- Numerous steps to clean dMRI data before diffusion modelling
 - Correction for unwanted variation
 - Head motion
 - Eddy current-induced distortion
 - Inhomogeneity-induced distortion

[dMRI: Preprocessing]

- 46 scans
 - 1 scan without diffusion weighting
 - 45 scans with diffusion weighting at $b = 1000 \text{ s/mm}^2$

Average image for $b = 0 \text{ s/mm}^2$

Average image for $b = 1,000 \text{ s/mm}^2$

b-values

 $0 \quad 1000 \quad 1000 \quad 1000 \quad 1000 \quad 1000 \quad \cdots \quad 1000$

46 values

b-vectors

0 0.2488 -0.4396 0.6565 -0.3743 0.2818 ... 0.4357

 $0 \quad 0.9672 \quad 0.7676 \quad -0.0606 \quad -0.5783 \quad 0.0936 \quad \cdots \quad 0.8473$

 $0 - 0.0588 \quad 0.4671 \quad -0.7513 \quad 0.7245 \quad 0.9545 \quad \cdots \quad 0.3021$

46 vectors

Diffusion-sensitizing gradient directions

Estimated head motion

Estimated eddy currents

White Matter Microstructure

- Given the notion that diffusion measurement is sensitive to water molecular diffusion on a "microscopic scale"
 - Mean squared displacement in terms of time elapsed and diffusivity: $\langle r^2 \rangle = 2Dt = \sim \mu m$
- -Through measurement of the average Brownian diffusion behaviour of water molecules by averaging diffusion properties over a great many cells and axons within a voxel

Diffusion tensor model

- Represents the directional dependence of diffusion by a diagonalized matrix or an ellipsoid
- Depicts only a single fibre population at each voxel based on the assumption that the probability density function describing the random displacement of water molecules due to diffusion is Gaussian
 - Not proper to voxels that have multiple fibre populations crossing or highly curving fibre bundles

MRI signals measured without and with diffusion weighting

https://www.blog.brainsightai.com/post/from-dti-to-hardi]]

Diffusion tensor and its ellipsoid representation

[Geva et al., 2011]

Isotropic and anisotropic diffusion represented by ellipsoids

Grey matter Isotropic, restricted diffusion

White matter Anisotropic, restricted diffusion

Potential sources of diffusion anisotropy

- Cytoskeleton
 - Microtubules (25 nm diameter)
 - Neurofilaments (10 nm diameter)
 - Microfilaments (7 nm diameter)
- Axonal membranes
- Myelin sheath

[Noguerol et al., 2017]]

Isotropic and anisotropic diffusion in brain tissues

[Beaulieu, 2002]]

Transverse and longitudinal sections of myelinated optic nerves of the garfish

- Scalar invariants that are quantities independent of the coordinate system in which the diffusion tensor is expressed
 - Characterize aspects of water molecular diffusion, such as the magnitude and anisotropy (directional dependence), offering insights into tissue structure and organization
 - Fractional anisotropy (FA)
 - Mean diffusivity (MD)
 - Axial diffusivity (AD)
 - Radial diffusivity (RD)

[Geva et al., 2011]

Directional information added to an FA map

[dMRI: Diffusion Modelling]

FA

1

AD

RD

[Chang et al., 2005]

FA maps according to different numbers of diffusion-sensitizing gradient directions

Information of white matter microstructure

[Statistical Analysis of dMRI]

```
    FA ~
    Age +
    Sex +
    Education year +
    Memory performance
```

Design matrix

OutputRegression

Positive correlaton

Negative correlation

MD ~
 Age +
 Sex +
 Education year +
 Memory performance

Output Regression

Positive correlaton

Negative correlation

- Input to machine learning models
 - Table of voxel-wise or region-wise scalar values for diffusion tensors

Diffusion tensor-derived scalar invariant map

White Matter Tractography

- Map of connectional anatomy of the white matter
 - Bundled streamlines that reflect where organized white matter fibre tracts are likely to be
 - Based on how strongly and in what directions water molecules diffuse given physical constraints in the brain

[Geva et al.,2011]

[Oishi et al., 2011]

- Deterministic vs. probabilistic ways
 - Deterministic by strictly following the directions of water molecular diffusion
 - Probabilistic by inferring a probability of different directions of water molecular diffusion at any given location

[Garyfallidis, 2012]

Deterministic and probabilistic ways for white matter tractography

[Schreiber et al., 2014]

Comparison between probabilistic and deterministic tractography

- White matter fibre tract
 - Segmented white matter
 - Based on information about:
 - Terminations of each white matter fibre tract into the cortex
 - Histologically-derived definitions for each white matter fibre tract

[https://www.mrtrix.org/]]

Determination of white matter fibre tracts

[Oishi et al., 2011]

Trajectory of the corticospinal tract

[Oishi et al., 2011]

Trajectory of the corpus callosum

[Oishi et al., 2011]

Trajectory of the inferior longitudinal fasciculus

[dMRI: White Matter Tractography]

Whole brain white matter tractography

Terminations of streamlines

Generated streamlines

Determination of white matter fibre tracts

Network

- Set of nodes and edges
 - Nodes: pre-defined regions
 - Edges: connectivity (white matter fibre tracts) between regions

[Honey et al., 2007]

Modes of brain connectivity

Tract count

Structural network or connectome

Structural network based on diffusion tensor-derived scalar invariants

- Input to machine learning models
 - Table of region-to-region connectivity (white matter fibre tracts)
 values

		Features ————————————————————————————————————				
		Brain regions 1 – 2 connectivity	Brain regions 1 – 3 connectivity	Brain regions 1 – 4 connectivity		
Samples	Subject 1	-	-	-	-	
	Subject 2	-	-	-	-	
	♥ Subject 3	-	-	-	-	
	:	-	-	-	-	

Structural network map