Solid Rocket Motor

Part 7 Design of nozzle and thrust control device

■ The basic concept of the nozzle

Generally located in the tail of the combustion chamber, usually for the Laval nozzle; It consists of three parts: the convergence section (entrance section), the throat and the expansion section (exit cone)

The design of nozzle should be based on the engine development task book, the nozzle design task book, the relationship diagram between the nozzle and the engine, and the design of the nozzle contour.

■ The role of the nozzle

According to the mass flow rate of the engine, the combustion chamber pressure can be controlled by controlling the throat area;

$$A_{t} = \frac{\dot{m} \cdot C^{*}}{P_{c}} = \frac{F}{C_{F} P_{c}}$$

- The heat energy from the combustion of the fuel column into gas is converted into kinetic energy;
- Change the thrust direction, control the missile flight attitude;

■ Nozzle characteristics

- Passive thermal protection is used in solid rocket motor nozzle;
- According to the nozzle convergent section in the combustion chamber or outside, it can be divided into two types of diving and non diving;

According to the thrust vector control method is divided into fixed and movable two types of nozzles.

■ Thrust vector control method

According to the thrust vector control method it's divided into fixed and movable two types of nozzles.

gimbal	Flexible support	Trapped ball	Jet vane
L	S	S	L/S

■ Nozzle design content

- > Aerodynamic design
- > Thermal protection design
- > Structural design

■ Thrust Vector Control of Solid Rocket Motor

> (1) Single axis swing nozzle

■ Thrust Vector Control of Solid Rocket Motor

(2) Flexible nozzle

Rotation fulcrum at downstream

up stream

■ Thrust Vector Control of Solid Rocket Motor

(3) Liquid floating nozzle

■ Thrust Vector Control of Solid Rocket Motor

▶ (4) Bead nozzle

■ Thrust Vector Control of Solid Rocket Motor

> (7) Gas secondary injection

■ Thrust Vector Control of Solid Rocket Motor

> (8) Auxiliary engine

Device Performance	Maximum thrust deflection angle (°)	Maximum frequency response (Hz)	Servomechanis m Power and size
Single hinge swing nozzle	15	2~5	Larger
Flexible nozzle	15	2~5	large
Liquid floating nozzle	15	10	medium
Rotating nozzle	10	2	Larger
Bead nozzle	20	2	Larger
Gas rudder	10	10~15	small
Gas paddle	13		small
Jet deflecting ring	18		medium
Liquid secondary injection	6	12	small
Gas secondary injection	10	15	small

■ Thrust termination

THE END