1) Livear Regression

$$f(x) = ax+b$$
 o, b constants  
min  $E = \sum_{i=1}^{\infty} (y_i - ax_i - b)^2$   
 $q_i b$ 

From Calculus:

$$\frac{dE}{da} = \sum_{i=1}^{\infty} 2 \left( \frac{y_i - ax_i - b}{ax_i} \right) \left( -x_i \right) = 0$$

=) 
$$\sum_{i=1}^{n} x_i y_i - \alpha \sum_{i=1}^{n} x_i^2 - b \sum_{i=1}^{n} x_i^2 = 0$$

$$\frac{dt}{db} = \underbrace{\underbrace{2|y_i - ax_i - b}(-1)}_{i=1} - o$$

$$\frac{d\xi}{db} = \sum_{i=1}^{\infty} 2i \frac{y_i - ax_i - b}{(-1)^{-2}}$$

$$= -2 \left[ \sum_{i=1}^{\infty} y_i - a \sum_{i=1}^{\infty} x_i - bn \right] = 0$$

$$2 - \sum_{i=1}^{\infty} x_i + b = \sum_{i=1}^{\infty} y_i$$

Solve for a, b kom (), (2)

$$b = \frac{(\mathbf{z} \mathbf{x}_{i} \mathbf{y}_{i})(\mathbf{z} \mathbf{x}_{i}) - (\mathbf{z} \mathbf{x}_{i}^{2})(\mathbf{z} \mathbf{y}_{i})}{(\mathbf{z} \mathbf{x}_{i})^{2} - n(\mathbf{z} \mathbf{x}_{i}^{2})}$$

$$\alpha = \underbrace{\Xi x_i \, \Xi y_i - n \, \Xi x_i y_i}_{\left(\Xi x_i^2\right)^2 - n \left(\Xi x_i^2\right)}$$

| Fit a Straight                                                                                                   |            | X                             | y<br>                        |   |
|------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|------------------------------|---|
| Fit a Straight<br>line to the data<br>shown on the right                                                         | J<br>J     | -2.0000<br>-1.6000            | -2.7664<br>-1.8747           |   |
| snown on the right                                                                                               | 1          | -1.2000<br>-0.8000<br>-0.4000 | -2.7127<br>-1.7671<br>0.1816 |   |
| Solution                                                                                                         | ,          | 0.0000<br>0.4000<br>0.8000    | 1.0231<br>2.0852<br>1.3998   |   |
| y= f(x)= ax+b                                                                                                    | •          | 1.2000<br>1.6000<br>2.0000    | 3.6906<br>3.0207<br>4.9748   |   |
|                                                                                                                  |            |                               |                              |   |
| $b = (\underbrace{\Sigma \times i \times i})(\underbrace{\Sigma \times i})^2 - \underbrace{(\Sigma \times i)^2}$ | <u>) -</u> | - (5 %                        | )(Zyi)<br>2 \                | 7 |
| $(\mathbf{Z} \times_i)^{r}$                                                                                      | -          | n(2)                          | ×i )                         |   |
| a = \( \in X; \in y; -                                                                                           | - 1        | n Ex;                         | <b>ઝ</b> ં                   |   |
| (\(\ge \chi_i\)^2 -                                                                                              | 1          | n (5 x                        |                              |   |

n=11 (# data points)

| Xi   | yi       | ×;2  | xiyi          |
|------|----------|------|---------------|
| -2   | - 2.7664 | 4    | 5.23 <b>%</b> |
| -1:1 | -1.8747  | 2.56 | 2.9995        |
| -1.2 | -2.71 67 | 1.44 | 3.2552        |
| -0.8 | -1.7671  | 0.64 | 1.4137        |
| -0.4 | 0.1817   | 0-11 | -0.0726       |
| 0    | 1-023)   | 0    | O             |
| 0.4  | 2-0852   | 0-12 | 0.8341        |
| 0.8  | F3998    | 0.64 | 1.1199        |
| 1.2  | 3.6106   | 1.44 | 4.4287        |
| 1.6  | 3.0207   | 2.56 | 9.8331        |
| 2.0  | 4.9748   | 4.6  | 9.9496        |
| 0    | 7.255    | 17.6 | 34.2939       |

Substitute in III



$$a = 1.9485$$
  
 $b = 0.6595$