cosx

cot x

 $\sin x$ 

tan x

# 高等数学宝典(上篇)——公式大全 (含微分方程、复变函数)

# 一. 初等数学

- 1. 三角函数
  - (1) 相互联系

 $\sin^2 x + \cos^2 x = 1$ .  $\tan^2 x + 1 = \sec^2 x$ .  $\cot^2 x + 1 = \csc^2 x$ .  $\sin x \cdot \csc x = 1$ ,  $\cos x \cdot \sec x = 1$ ,  $\tan x \cdot \cot x = 1$ .

$$\frac{\sin x}{\cos x} = \tan x, \frac{\cos x}{\sin x} = \cot x.$$
 奇变偶不变,符号看象限:



$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta, \cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta,$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}.$$

(3) 积化和差

$$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)], \quad \cos\alpha\cos\beta = \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)],$$
  
$$\sin\alpha\sin\beta = -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)].$$

(4) 和差化积

$$\sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}, \quad \sin\alpha - \sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2},$$
$$\cos\alpha + \cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}, \quad \cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}.$$

(5) 降幂公式

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
,  $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$ 

(6) 半角公式

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}, \quad \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}},$$

$$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}, \quad \cot\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} = \frac{1+\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1-\cos\alpha}.$$

- 2. 复数
  - (1) 代数表示 z = a + bi
  - (2) 三角表示  $z = r(\cos\theta + i\sin\theta)$ , 其中  $r = |a + bi| = \sqrt{a^2 + b^2}$ ,  $a = r\cos\theta$ ,  $b = r\sin\theta$ .
  - (3) 指数表示  $a + bi = re^{i\theta}$  (欧拉公式:  $e^{i\theta} = \cos\theta + i\sin\theta$ ).
- 3. 一些常见的曲线

(1) 圆 
$$x^2 + y^2 = a^2$$
 的参数方程为 
$$\begin{cases} x = a\cos\theta, \\ y = a\sin\theta, \end{cases}$$
 极坐标方程为 $\rho = a\left(\theta \in [0, 2\pi)\right);$ 



1

(2) 圆  $x^2 + (y-a)^2 = a^2$  的参数方程为  $\begin{cases} x = a\cos t, \\ y = a + a\sin t, \end{cases} (t \in [0, 2\pi))$  极坐标方程为 $\rho = 2a\sin\theta(\theta \in [0, \pi));$ 



- (3) 圆  $(x-a)^2 + y^2 = a^2$  的参数方程为  $\begin{cases} x = a + a \cos t, \\ y = a \sin t, \end{cases} (t \in [0, 2\pi))$ 极坐标方程为 $\rho = 2a \cos \theta \ (\theta \in (-\frac{\pi}{2}, \frac{\pi}{2}]) ;$
- (4) 圆  $(x+a)^2 + y^2 = a^2$  的参数方程为  $\begin{cases} x = -a + a \cos t, \\ y = a \sin t, \end{cases}$  极坐标方程为 $\rho = -2a \cos \theta \ (\theta \in [\frac{\pi}{2}, \frac{3\pi}{2}));$





(5) 圆  $x^2 + (y+a)^2 = a^2$  的参数方程为  $\begin{cases} x = a \cos t, \\ y = -a + a \sin t, \end{cases}$  极坐标方程为 $\rho = -2a \sin \theta \quad (\theta \in [\pi, 2\pi));$ 



(6) 椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  的参数方程为  $\begin{cases} x = a\cos t, \\ y = b\sin t, \end{cases} (t \in [0, 2\pi));$ 







(8) 笛卡儿叶线  $x^3+y^3=3axy$  的参数方程为  $\begin{cases} x = \frac{3at}{1+t^3} \\ y = \frac{3at^2}{1+t^3} \end{cases} ;$ 





(9) 星形线  $x^{2/3} + y^{2/3} = a^{2/3}$  的参数方程为  $\begin{cases} x = a\cos^3\theta \\ y = a\sin^3\theta \end{cases}$ ;



(10) 摆线(圆滚线)  $x = a \arcsin(1 - \frac{y}{a}) - \sqrt{2ay - y^2}$  的参数方程为  $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$ 

(11) 心形线  $x^2 + y^2 = a(\sqrt{x^2 + y^2} - x)$  的极坐标方程为 $\rho = a(1 - \cos \theta)$ ;



- (12) 心形线  $x^2 + y^2 = a(\sqrt{x^2 + y^2} + x)$  的极坐标方程为 $\rho = a(1 + \cos \theta)$ ;
- (13) 双纽线 $(x^2+y^2)^2=a^2(x^2-y^2)$ 的极坐标方程为 $\rho^2=a^2\cos 2\theta$ ;







(16) 不经过原点的直线 ax + by + c = 0 ( $a^2 + b^2 \neq 0$ )







 $y = a \ (a > 0) \Rightarrow \rho = \frac{a}{\sin \theta} \ \theta \in (0, \pi);$ 



$$y = x - a \ (a > 0) \Rightarrow \rho = \frac{a}{\cos\theta + \sin\theta} \ \theta \in (-\frac{\pi}{4}, \frac{3\pi}{4}).$$



#### 二. 极限

1. 
$$|q| < 1$$
,  $\lim_{n \to \infty} q^n = 0$ .

$$2. \lim_{n\to\infty} \sqrt[n]{n} = 1.$$

3. 设数列 $\{a_n\}$ 与 $\{b_n\}$ 都收敛, $\lim_{n\to\infty}a_n=a$ , $\lim_{n\to\infty}b_n=b$ ,则

$$\lim_{n\to\infty}(a_n\pm b_n)=\lim_{n\to\infty}a_n\pm\lim_{n\to\infty}b_n=a\pm b;\qquad \lim_{n\to\infty}(a_nb_n)=(\lim_{n\to\infty}a_n)(\lim_{n\to\infty}b_n)=ab;$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b} \quad (b\neq 0).$$

- 4. 设  $x_n = \frac{a_0 + a_1 n + \dots + a_l n^l}{b_0 + b_1 n + \dots + b_m n^m}$ , 其中  $a_l \neq 0$ ,  $b_m \neq 0$ ,  $l \leq m$ , 则  $\lim_{n \to \infty} x_n = \begin{cases} a_l / b_m & l = m \\ 0 & l < m \end{cases}$
- 5.  $\lim_{n\to\infty} \left(\frac{1}{p} + \frac{2}{p^2} + \dots + \frac{n}{p^n}\right) = \frac{p}{(p-1)^2}, \ \sharp \neq p > 1.$  6.
  - $6. \quad \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$
- 7.  $\[ \[ \] \lim_{x \to x_0} f(x) = A, \] \lim_{x \to x_0} g(x) = B. \] \[ \[ \] \lim_{x \to x_0} [f(x) \pm g(x) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = A \pm B; \]$

$$\lim_{x \to x_0} [f(x)g(x)] = [\lim_{n \to \infty} f(x)][\lim_{n \to \infty} g(x)] = AB; \quad \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} \quad (B \neq 0).$$

8. 设 y = f(u)与 u = g(x)的复合函数 f[g(x)]在  $x_0$ 的某去心邻域  $N(x_0)$  内有定义.

若  $\lim_{x \to x_0} g(x) = u_0$ ,  $\lim_{u \to u_0} f(u) = A$ , 且  $\forall x \in N(x_0)$ , 有  $g(x) \neq u_0$ , 其中  $x_0$ ,  $u_0$  为有限值. 则复合函数f[g(x)]当 $x \to x_0$ 时也有极限,且 $\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = A$ .

9. 
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
.  $\lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e$ .

10. 常用的等价无穷小:

$$\sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim x \ (x \to 0); \qquad (1 - \cos x) \sim \frac{1}{2} x^2 \ (x \to 0)$$

$$\ln(1+x) \sim x \ (x \to 0) \qquad (e^x - 1) \sim x \ (x \to 0)$$

$$(\sqrt[n]{1+x} - 1) \sim \frac{x}{n} \ (x \to 0); \qquad [(1+x)^{\alpha} - 1] \sim \alpha x \ (x \to 0).$$

# 三. 导数与微分

1. 导数定义: 
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

2. 函数四则运算的求导法则

$$[u(x)\pm v(x)]'=u'(x)\pm v'(x).$$
  $[u(x)\cdot v(x)]'=u'(x)v(x)+u(x)v'(x).$ 

$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}.$$

3. 反函数的求导法则

设定义在区间 I 上的严格单调连续函数 x = f(y) 在点 y 处可导,且  $f'(y) \neq 0$ ,则其反函数  $y = f^{-1}(x)$  在 对应的点 x 处可导,且 $(f^{-1})'(x) = \frac{1}{f'(y)}$ ,即 $\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{\frac{\mathrm{d} x}{x}}$ .

4. 复合函数的求导法则

设函数  $u=\varphi(x)$  在点 x 处可导,函数 y=f(u)在对应的点  $u=\varphi(x)$  处可导,则复合函数  $y=f(\varphi(x))$ 在点 x 处可导,且  $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(u)\varphi'(x)$ ,即  $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$ 

5. 设函数 y = f(x)由参数方程  $\begin{cases} x = \varphi(t) \\ v = \psi(t) \end{cases}$  确定.  $x = \varphi(t)$ ,  $y = \psi(t)$ 在区间  $[\alpha, \beta]$ 上可导, 函数  $x = \varphi(t)$ 

具有连续的严格单调的反函数  $t=\varphi^{-1}(x)$ , 且  $\varphi'(t)\neq 0$ , 则  $y=\psi(t)=\psi(\varphi^{-1}(x))$ . 函数 y=f(x)的导函数

由参数方程 
$$\begin{cases} x = \varphi(t) \\ y' = \frac{y'(t)}{x'(t)}$$
 确定.

6. 基本求导公式

$$(1) (x^{\alpha})' = \alpha x^{\alpha - 1}. \qquad (2) (a^{x})' = a^{x} \ln a. \qquad (3) (e^{x})' = e^{x}. \qquad (4) (\log_{\alpha} x)' = \frac{1}{x \ln a}. \qquad (5) (\ln x)' = \frac{1}{x}.$$

$$(6) (\sin x)' = \cos x. \qquad (7) (\cos x)' = -\sin x. \qquad (8) (\tan x)' = \sec^{2} x. \qquad (9) (\cot x)' = -\csc^{2} x.$$

$$(10) (\sec x)' = \sec x \cdot \tan x. \qquad (11) (\csc x)' = -\csc x \cdot \cot x.$$

(12) 
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
. (13)  $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$ .

【张小向高数宝典】【上篇: 公式大全】【中篇: 典型题赏析】【下篇: 高数秘籍】 
$$(14) (\arctan x)' = \frac{1}{1+x^2}. \qquad (15) (\operatorname{arccot} x)' = -\frac{1}{1+x^2}.$$

7. 一些简单函数的高阶导数(n, k 为正整数)

(2) 
$$(x^{-n})^{(k)} = (-1)^k n \cdot (n+1) \cdots (n+k-1) x^{-n-k}$$
, (3)  $[(1+x)^{\alpha}]^{(k)} = \alpha \cdot (\alpha-1) \cdots (\alpha-k+1) x^{\alpha-k}$ 

(4) 
$$(a^x)^{(k)} = a^x (\ln^k a)$$
, 特别的,  $(e^x)^{(k)} = e^x$ ,

(5) 
$$(\ln x)^{(k)} = (-1)^{k-1} \frac{(k-1)!}{x^k}$$
, (6)  $[\ln(1+x)]^{(k)} = (-1)^{k-1} \frac{(k-1)!}{(1+x)^k}$ ,

(7) 
$$(\sin x)^{(k)} = \sin(x + \frac{k\pi}{2}),$$
 (8)  $(\cos x)^{(k)} = \cos(x + \frac{k\pi}{2}).$ 

(9) 
$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}$$

$$= u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v'' + \dots + \frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)} + \dots + uv^{(n)}$$

8. 微分四则运算法则: 
$$d(u\pm v)=du\pm dv$$
,  $d(uv)=vdu+udv$ ,  $d\left(\frac{u}{v}\right)=\frac{vdu-udv}{v^2}(v\neq 0)$ .

9. 微分复合运算法则(一阶微分形式不变性)

设函数 y = f[g(x)]由可微函数 y = f(u)与 u = g(x)复合而成,则有 dy = f'(u)du, du = g'(x)dx,

另一方面, 
$$dy = (f[g(x)])' dx = f'(u)g'(x)dx = f'(u)du$$
.

10. 拉格朗日中值定理:

设函数 f(x)满足下列条件:  $(1) f(x) \in C_{[a,b]}$ , (2) f(x)在(a,b)内可导.

则至少存在一点 $\xi \in (a,b)$ , 使得  $f(b) - f(a) = f'(\xi)(b-a)$ .

11. 柯西中值定理:

设函数 f(x), g(x)满足下列条件:

 $(1) f, g \in C_{[a,b]}, (2) f, g$  在(a,b)内可导,  $(3) g'(x) \neq 0 \forall x \in (a,b)$ .

则至少存在一点
$$\xi \in (a,b)$$
,使得 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$ .

12. 用中值定理证明的关键在干构造辅助函数.

| Γ | ① 使用罗尔中值定理或拉格朗日中值定理                        |                                           |                                    |  |  |  |  |
|---|--------------------------------------------|-------------------------------------------|------------------------------------|--|--|--|--|
| ŀ |                                            |                                           |                                    |  |  |  |  |
|   | 中值等式 $G(\xi) = 0$                          | 凑成导数等式 $F'(\xi)=0$                        | 辅助函数 F(x)                          |  |  |  |  |
|   | $f'(\xi) + A\xi^k + B = 0$                 | $[f(x) + \frac{Ax^{k+1}}{k+1} + Bx]' = 0$ | $f(x) + \frac{Ax^{k+1}}{k+1} + Bx$ |  |  |  |  |
|   | $f(a)g'(\xi) - f'(\xi)g(a) - k = 0$        | [f(a)g(x)-f(x)g(a)-kx]'=0                 | f(a)g(x) - f(x)g(a) - kx           |  |  |  |  |
|   | $\sum_{i=0}^{n-1} a_i(n-i)\xi^{n-1-i} = 0$ | $[\sum_{i=0}^{n-1} a_i \xi^{n-i}]' = 0$   | $\sum_{i=0}^{n-1} a_i x^{n-i}$     |  |  |  |  |
|   | $f'(\xi)g(\xi) + f(\xi)g'(\xi) = 0$        | [f(x)g(x)]'=0                             | f(x)g(x)                           |  |  |  |  |
|   | $f(\xi)g''(\xi) - f''(\xi)g(\xi) = 0$      | [f(x)g'(x)-f'(x)g(x)]'=0                  | f(x)g'(x) - f'(x)g(x)              |  |  |  |  |
|   | $\xi f'(\xi) + kf(\xi) = 0$                | $[x^k f(x)]' = 0$                         | $x^k f(x)$                         |  |  |  |  |
|   | $(\xi-1)f'(\xi)+kf(\xi)=0$                 | $[(x-1)^k f(x)]'=0$                       | $(x-1)^k f(x)$                     |  |  |  |  |
|   | $f'(\xi)g(1-\xi)-$ $kf(\xi)g'(1-\xi)=0$    | $[g^k(1-x)f(x)]'=0$                       | $g^{k}(1-x)f(x)$                   |  |  |  |  |

| $f'(\xi) + Af(\xi) = 0$                                                  | $[e^{Ax}f(x)]'=0$                                                         | $e^{Ax}f(x)$                                      |  |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
| $f'(\xi) + g'(\xi)f(\xi) = 0$                                            | $[e^{g(x)}f(x)]'=0$                                                       | $e^{g(x)}f(x)$                                    |  |  |  |
| $\xi f'(\xi) - kf(\xi) = 0$                                              | $[f(x)/x^k]'=0$                                                           | $f(x)/x^k$                                        |  |  |  |
| $f'(\xi) - kf(\xi) = 0$                                                  | $[f(x)/e^{kx}]'=0$                                                        | $f(x)/e^{kx}$                                     |  |  |  |
| $f'(\xi)g(\xi) - f(\xi)g'(\xi) = 0$                                      | [f(x)/g(x)]'=0                                                            | f(x)/g(x)                                         |  |  |  |
| $(1-\xi^2)/(1+\xi^2)^2=0$                                                | $[x/(1+x^2)]'=0$                                                          | $x/(1+x^2)$                                       |  |  |  |
| ② 使用柯西中值定理                                                               |                                                                           |                                                   |  |  |  |
| 中值等式 $G(\xi) = 0$                                                        | 凑成导数等式 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$            | 辅助函数 <i>f</i> (x), <i>g</i> (x)                   |  |  |  |
| $(b-a)\varphi(\xi) - \xi\varphi(\xi)$ $-[b\varphi(a) - a\varphi(b)] = 0$ | $\frac{\varphi(b)/b - \varphi(a)/a}{1/b - 1/a} = \frac{f'(\xi)}{g'(\xi)}$ | $f(x) = \frac{\varphi(x)}{x}, g(x) = \frac{1}{x}$ |  |  |  |
| $f(b)-f(a)-\xi f'(\xi)\ln\frac{b}{a}=0$                                  | $\frac{f(b)-f(a)}{\ln b - \ln a} = \frac{f'(\xi)}{1/\xi}$                 | $g(x) = \ln x$                                    |  |  |  |

根据  $G(\xi)$ 的特点选取适当的初等函数作为 f(x), g(x), 如指数函数, 对数函数, 三角函数等.(从略)

# 13. 洛必达法则

设函数 f(x)在区间 $(x_0, x_0+\delta)(\delta>0)$ 内满足下列条件:

(1) 
$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^+} g(x) = 0$$
, (2)  $f, g$  在 $(x_0, x_0 + \delta)$ 内可导,且  $g'(x) \neq 0$ ,

(3) 
$$\lim_{x \to x_0^+} \frac{f'(x)}{g'(x)} = A (A 为有限数或∞). 则  $\lim_{x \to x_0^+} \frac{f(x)}{g(x)} = \lim_{x \to x_0^+} \frac{f'(x)}{g'(x)} = A.$$$

设函数 f(x)在区间 $(x_0, x_0+\delta)(\delta>0)$ 内满足下列条件:

(1) 
$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^+} g(x) = \infty$$
, (2)  $f, g \notin (x_0, x_0 + \delta)$  内可导, 且  $g'(x) \neq 0$ ,

(3) 
$$\lim_{x \to x_0^+} \frac{f'(x)}{g'(x)} = A$$
 (A 为有限数或∞). 则  $\lim_{x \to x_0^+} \frac{f(x)}{g(x)} = \lim_{x \to x_0^+} \frac{f'(x)}{g'(x)} = A$ .

不可用洛必达法则的情形

(1) 
$$\lim_{x \to 1} \frac{x+1}{x+2}$$
, (2)  $\lim_{x \to \infty} \frac{x+\sin x}{x}$ , (3)  $\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}}$ .

事实上, 
$$\lim_{x\to 1} \frac{x+1}{x+2} = \frac{2}{3}$$
,  $\lim_{x\to\infty} \frac{x+\sin x}{x} = \lim_{x\to\infty} (1+\frac{\sin x}{x}) = 1$ ,  $\lim_{x\to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x\to +\infty} \frac{1-e^{-2x}}{1+e^{-2x}} = 1$ .

# 14. 带皮亚诺余项的泰勒公式

设函数 
$$f(x)$$
在  $x_0$  处  $n$  阶可导,则  $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$ 

#### 15. 几个初等函数的麦克劳林公式

(1) 
$$e^{x} = 1 + x + \frac{1}{2} x^{2} + \frac{1}{6} x^{3} + \dots + \frac{1}{n!} x^{n} + o(x^{n}).$$

(2) 
$$\sin x = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \dots + (-1)^n \frac{1}{(2n+1)!} x^{2n+1} + o(x^{2n+1})$$

(3) 
$$\cos x = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \dots + (-1)^n \frac{1}{(2n)!} x^{2n} + o(x^{2n}).$$

(4) 
$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n-1}\frac{1}{n}x^n + o(x^n)$$
.

(5) 
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n + o(x^n).$$

(6) 
$$\sin^2 x = \frac{1 - \cos 2x}{2} = \frac{1}{2} - \frac{1}{2} \left[ 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!} + o((2x)^{2n}) \right]$$

$$=x^{2}-\frac{x^{4}}{3}+\cdots+(-1)^{n+1}\frac{2^{n-1}}{n!(2n-1)!!}x^{2n}+o(x^{2n}).$$

(7) 
$$\cos^2 x = 1 - \sin^2 x = 1 - x^2 + \frac{x^4}{3} - \dots + (-1)^n \frac{2^{n-1}}{n!(2n-1)!!} x^{2n} + o(x^{2n}).$$

16. 带拉格朗日余项的泰勒公式

设函数  $f(x) \in C_{[a,b]}^{(n)}$ , 且  $f(x) \in C_{(a,b)}^{(n+1)}$ , 则  $\forall x, x_0 \in [a,b]$ , 有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, 其中 \xi 介于 x 与 x_0 之间.$$

17. 几个初等函数的带拉格朗日余项的麦克劳林公式

(1) 
$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots + \frac{1}{n!}x^n + \frac{e^{\theta x}}{(n+1)!}x^{n+1} \quad (x \in \mathbb{R}, 0 < \theta < 1).$$

(2) 
$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots + (-1)^{n-1}\frac{1}{(2n-1)!}x^{2n-1} + (-1)^n\frac{\cos\theta x}{(2n+1)!}x^{2n+1} \quad (x \in \mathbb{R}, 0 < \theta < 1).$$

(3) 
$$\cos x = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \dots + (-1)^n \frac{1}{(2n)!} x^{2n} + (-1)^{n+1} \frac{\cos \theta x}{(2n+2)!} x^{2n+2} \quad (x \in \mathbf{R}, 0 < \theta < 1).$$

(4) 
$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^{n-1}\frac{1}{n}x^n + \frac{(-1)^n x^{n+1}}{(n+1)(1+\theta x)^{(n+1)}} \quad (x \in \mathbf{R}, 0 < \theta < 1).$$

(5) 
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^{n} + \frac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!} (1+\theta x)^{\alpha-n-1} x^{n+1} \quad (x \in \mathbb{R}, 0 < \theta < 1).$$

18. 曲率

(1) 设曲线 
$$C$$
 在直角坐标系中的方程为  $y = y(x)$ 且  $y(x)$ 具有二阶导数. 则  $K = \left| \frac{y''}{[1+(y')^2]^{3/2}} \right|$ .

(2) 设曲线 
$$C$$
 的参数方程为 
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, 则  $K = \frac{\left| x'_t y''_t - x'_t y'_t \right|}{\left[ (x'_t)^2 + (y'_t)^2 \right]^{3/2}}$ .

#### 四. 一元积分

- 1. 定积分的性质
  - (1) 若f, g 在[a, b]上可积,  $k_1, k_2 \in \mathbb{R}$ , 则  $\int_a^b [k_1 f(x) + k_2 g(x)] dx = k_1 \int_a^b f(x) dx + k_2 \int_a^b g(x) dx$ .
  - (2) 若f在某区间I上可积,则f在I的任一子区间上可积,且 $\forall a, b, c \in I$ ,

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

- (3) 若f, g 在[a,b]上可积,且 $\forall x \in [a,b]$ ,  $f(x) \leq g(x)$ ,则 $\int_a^b f(x) dx \leq \int_a^b g(x) dx$ .
- (4) 若f在[a,b]上可积,且 $\forall x \in [a,b], f(x) \ge 0$ ,则 $\int_a^b f(x) dx \ge 0$ .
- (5) 若f在[a, b]上可积,则  $\left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$ .
- (6) 若 f 在 [a, b] 上可积,且  $\forall x \in [a, b], m \le f(x) \le M$ ,则  $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ .
- (7) 若 $f \in C[a,b]$ , 则至少存在一点 $\xi \in [a,b]$ 使  $\int_a^b f(x) dx = f(\xi)(b-a)$ .
- 2. 变上限积分所定义的函数的性质

设  $f(x) \in C[a, b]$ , 则函数  $\Phi(x) = \int_a^x f(t) dt$  在区间 [a, x]上可导,且 $\Phi'(x) = f(x)$ .

3. 微积分学基本公式

若  $f(x) \in C[a, b]$ , F(x)为 f(x)在区间[a, b]上的一个原函数,则  $\int_a^b f(x) dx = F(b) - F(a)$ .

### 4. 不定积分的性质

(1) 
$$\left[\int f(x) dx\right]' = f(x)$$
,  $d\left[\int f(x) dx\right] = f(x) dx$ ,  $\int f'(x) dx = f(x) + C$ ,  $\int df(x) = f(x) + C$ .

(2) 设 f(x), g(x)有原函数,  $k_1, k_2 \in \mathbf{R}$ , 则  $\int [k_1 f(x) + k_2 g(x)] dx = k_1 \int f(x) dx + k_2 \int g(x) dx$ .

### 5. 基本积分表

(1) 
$$\int k dx = kx + C \quad (k 是常数).$$

(2) 
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \quad (\alpha \neq -1)$$

(3) 
$$\int \frac{1}{x} dx = \ln|x| + C$$
.

$$(4) \int \frac{1}{x^2 + 1} dx = \arctan x + C.$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C.$$

(6) 
$$\int \cos x dx = \sin x + C$$
.

(7) 
$$\int \sin x dx = -\cos x + C.$$

(8) 
$$\int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + C$$

(9) 
$$\int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$$
. (10)  $\int \sec x \tan x dx = \sec x + C$ .

(10) 
$$\int \sec x \tan x dx = \sec x + C.$$

(11) 
$$\int \csc x \cot x dx = -\csc x + C.$$

$$(12) \int e^x \mathrm{d}x = e^x + C.$$

$$(13) \int a^x dx = \frac{a^x}{\ln a} + C.$$

$$(14) \int \mathrm{sh} x \mathrm{d}x = \mathrm{ch}x + C .$$

(15) 
$$\int \mathbf{ch} x dx = \mathbf{sh} x + C.$$

(16) 
$$\int \tan x dx = -\ln|\cos x| + C.$$

$$(17) \int \cot x dx = \ln|\sin x| + C$$

(18) 
$$\int \sec x dx = \ln|\sec x + \tan x| + C.$$

(19) 
$$\int \csc x dx = \ln|\csc x - \cot x| + C$$
 (20)  $\int \frac{1}{x^2 + x^2} dx = \frac{1}{x} \arctan \frac{x}{x} + C$ .

(20) 
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

(21) 
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

(21) 
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C.$$
 (22) 
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a - x}{a - x} \right| + C.$$

(23) 
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C.$$

(24) 
$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln(x + \sqrt{x^2 \pm a^2}) + C.$$

(25) 
$$\int \sqrt{x^2 \pm a^2} \, dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln|x + \sqrt{x^2 \pm a^2}| + C.$$

(26) 
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C.$$

(27) 
$$I_n = \int_0^{\pi/2} \sin^n x dx = \int_0^{\pi/2} \cos^n x dx = \frac{n-1}{n} I_{n-2}$$

#### 6. 换元积分法

- (1) 第一类换元积分法: 设函数  $u = \varphi(x)$ 可微, F(u)为 f(u)的一个原函数. 则  $\int f[\varphi(x)]\varphi'(x)dx = \int f(u)du = F(u) + C = F[\varphi(x)] + C.$
- (2) 常见的凑微分法

① 
$$dx = \frac{1}{a}d(ax+b)(a, b)$$
 为常数且  $a \neq 0$ )

② 
$$x^n dx = \frac{1}{(n+1)a} d(ax^{n+1} + b)(a, b)$$
 常数且  $a \neq 0, n \neq -1$ 

(3) 第二类换元积分法: 设函数 
$$f(x)$$
 连续,函数  $x = \varphi(u)$ 有连续的导数, $\varphi'(u) \neq 0$ ,且 
$$\int f[\varphi(u)]\varphi'(u)\mathrm{d}u = F(u) + C. \, \text{则} \int f(x)\mathrm{d}x = \int f[\varphi(u)]\varphi'(u)\mathrm{d}u = F(u) + C = F[\varphi^{-1}(x)] + C.$$

(4) 常见的第二类换元法

①令
$$\sqrt[n]{ax+b} = u(a,b)$$
 为常数且  $a \neq 0$ )

②令
$$\sqrt[n]{\frac{ax+b}{cx+d}} = t$$
 (其中  $ac \neq 0, b, d$  不同时为零)

③
$$\diamondsuit$$
  $x=\frac{1}{u}$ ,

① 
$$\Leftrightarrow u = \tan \frac{x}{2}$$
,  $\iiint \sin x = \frac{2u}{1+u^2}$ ,  $\cos x = \frac{1-u^2}{1+u^2}$ ,  $dx = \frac{2du}{1+u^2}$ .

⑤令 
$$x = a \sin t$$
, 则  $\sqrt{a^2 - x^2} = a \cos x$ ,  $dx = a \cos t dt$ , 其中  $a > 0$ ,  $t \in [0, \pi/2]$ .

⑥令 
$$x = a \sec t$$
, 则  $\sqrt{x^2 - a^2} = a \tan x$ ,  $dx = a \sec t \tan t dt$ , 其中  $a > 0$ ,  $t \in (0, \pi/2)$ .

⑦令 
$$x = a \tan t$$
, 则  $\sqrt{x^2 + a^2} = a \sec x$ ,  $dx = a \sec^2 x dt$ , 其中  $a > 0$ ,  $t \in (0, \pi/2)$ .

### 7. 分部积分法

(1) 不定积分的分部积分法

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x)$$

- (2) 分部积分法中 u(x), v(x)的常见选取方法
  - 1  $P(x)\sin x dx = -P(x)d(\cos x)$ ,  $P(x)\cos x dx = P(x)d(\sin x)$ .

  - ③  $P(x) \ln x dx = \ln x d(\int P(x) dx)$ .

$$e^{ax}\cos(bx)dx = \frac{1}{a}\cos(bx)d(e^{ax}) = \frac{1}{b}e^{ax}d(\sin(bx)),$$

$$e^{ax}\sin(bx)dx = \frac{1}{a}\sin(bx)d(e^{ax}) = -\frac{1}{b}e^{ax}d(\cos(bx)).$$

(3) 定积分的分部积分法

$$\int_{a}^{b} u(x)v'(x)dx = \int_{a}^{b} u(x)dv(x) = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)du(x).$$

8. 平面曲线的弧长

(1) 在直角坐标系中: 
$$y = f(x), x \in [a, b]$$
, 其中  $f(x) \in C^{(1)}_{[a,b]}$ , 取  $ds = \sqrt{(dx)^2 + (dy)^2}$ , 则 $\Delta s - ds = o(\Delta x)$  ( $\Delta x \to 0$ ),于是  $s = \int_a^b \sqrt{1 + (y')^2} dx$ .

(2) 参数方程 
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} t \in [\alpha, \beta], \ \text{其中} \varphi(t), \psi(t) \in \mathcal{C}^{(1)}_{[\alpha, \beta]},$$

$$ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} dt, \ \exists \exists s = \int_{\alpha}^{\beta} \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} dt.$$

(3) 极坐标系中: 
$$\rho = \rho(\theta)$$
,  $\theta \in [\alpha, \beta]$ , 则 
$$\begin{cases} x = \rho(\theta)\cos\theta \\ y = \rho(\theta)\sin\theta \end{cases}$$
,  $s = \int_{\alpha}^{\beta} \sqrt{\rho^2(\theta) + [\rho'(\theta)]^2} d\theta$ .

9. 空间曲线的弧长

设空间曲线 
$$L$$
 的参数方程为 
$$\begin{cases} x=x(t) \\ y=y(t) & t \in [\alpha,\beta], \text{ 其中 } x(t),y(t),z(t) \in \mathcal{C}^{(1)}_{[\alpha,\beta]}, \text{则} \\ z=z(t) \end{cases}$$

$$ds = \sqrt{(dx)^2 + (dy)^2 + (dz)^2} = \sqrt{[x'(t)]^2 + [y'(t)]^2 + [y'(t)]^2} dt,$$

于是 
$$L$$
 的长度为  $s = \int_{\alpha}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [y'(t)]^2} dt$ .

- 10. 平面图形的面积
  - (1) 直角坐标系中

① 
$$y = f(x)$$
 与  $y = g(x)$ 以及  $x = a$ ,  $x = b$  所围成的图形的面积(其中  $f(x) \ge g(x)$ )  $A = \int_a^b [f(x) - g(x)] dx$ .

② 
$$x = \varphi(y)$$
 与  $x = \psi(y)$ 以及  $y = c$ ,  $y = d$  所围成的图形的面积(其中  $\psi(y) \ge \varphi(y)$ )  $A = \int_{c}^{d} [\psi(y) - \varphi(y)] dy$ .

(2) 极坐标系中

$$\rho = a\theta, \ \theta \in [\alpha, \beta], \ dA = \frac{1}{2}\rho^2(\theta)d\theta, \ A = \frac{1}{2}\int_{\alpha}^{\beta}\rho^2(\theta)d\theta.$$

- 11. 空间立体的体积
  - (1) 平行截面面积 A(x)已知的立体( $a \le x \le b$ ): dV = A(x)dx,  $V = \int_a^b A(x)dx$ .
  - (2) 旋转体的体积

① 
$$y = f(x)$$
  $(x \in [a, b])$ 绕  $x$  轴旋转一周(其中  $f(x) \ge 0$ ),  $A(x) = \pi f^2(x)$ , 故 $V = \pi \int_a^b f^2(x) dx$ .

② 
$$x = g(y)$$
  $(y \in [c, d])$ 绕  $y$  轴旋转一周(其中  $g(y) \ge 0$ ),  $A(y) = \pi g^2(y)$ , 故 $V = \pi \int_{c}^{d} g^2(y) dy$ .

# 五. 微分方程

1. 一阶可分离变量的微分方程:  $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y)$ , 其中 f(x), g(y)连续.

$$\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx \Rightarrow \int \frac{dy}{g(y)} = \int f(x)dx \Rightarrow G(y) = F(x) + C.$$
(其中  $g(y) \neq 0$ ,  $G'(y) = \frac{1}{g(y)}$ ,  $F'(x) = f(x)$ ,  $C$  为任意常数)

2. 一阶线性微分方程:  $\frac{dy}{dx} + p(x)y = q(x)$ , 其中 p(x), q(x)连续.

(1) 对于 
$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = 0$$
,分离变量得:  $\frac{\mathrm{d}y}{y} = -p(x)\mathrm{d}x$ ,  $y = Ce^{-\int p(x)\mathrm{d}x}$  (  $C$  为任意常数).

(2) 对于 
$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$$
,  $y = C(x)e^{-\int p(x)\mathrm{d}x}$  得  $y = e^{-\int p(x)\mathrm{d}x} [\int q(x)e^{\int p(x)\mathrm{d}x}\mathrm{d}x + C]$ .

3. 可经变量代换化为已知类型的几类一阶微分方程

(1) 齐次方程: 
$$\frac{dy}{dx} = f(x, y)$$
, 其中  $f(tx, ty) = f(x, y)$ ,  $\forall t \neq 0$ .

①将原方程化为
$$\frac{dy}{dx} = \varphi(\frac{y}{x})$$
,

②令
$$u = \frac{y}{x}$$
得 $y = ux$ , 从而 $\frac{dy}{dx} = u + x \frac{du}{dx}$ ,代入原方程并整理得 $x \frac{du}{dx} = \varphi(u) - u$ ,

③分离变量,得
$$\frac{\mathrm{d}u}{\varphi(u)-u} = \frac{\mathrm{d}x}{x}$$
,

④两边积分,

⑤以
$$\frac{y}{x}$$
代替  $u$ .

(2) 伯努里方程: 
$$\frac{dy}{dx} + p(x)y = q(x)y^{\alpha}$$
, 其中  $\alpha \neq 0, 1$ .

①两边同除以 
$$y^{\alpha}$$
 得  $y^{-\alpha} \frac{dy}{dx} + p(x)y^{1-\alpha} = q(x)$ ,

②令 
$$z=y^{1-\alpha}$$
,则  $\frac{\mathrm{d}z}{\mathrm{d}x}=(1-\alpha)y^{-\alpha}\frac{\mathrm{d}y}{\mathrm{d}x}$ ,原方程化为  $\frac{\mathrm{d}z}{\mathrm{d}x}+(1-\alpha)p(x)z=(1-\alpha)q(x)$ ,

- ③解上述关于 z 的一阶线性非齐次微分方程
- ④ 以 y<sup>1-α</sup> 代替 z.
- 4. 可降阶的高阶微分方程
  - (1)  $y^{(n)} = f(x)$  型
  - (2) 不显含未知函数 y 的方程: y'' = f(x, y').

令 
$$y'=z$$
, 则  $\frac{\mathrm{d}z}{\mathrm{d}x}=f(x,z)$ . 若解之得  $z=\varphi(x,C_1)$ , 则  $y=\int \varphi(x,C_1)\mathrm{d}x+C_2$ .

(3) 不显含自变量 x 的方程: y'' = f(y, y').

改取 y 为自变量, 令 
$$z=y'=z(y)$$
, 则  $y''=\frac{\mathrm{d}z}{\mathrm{d}x}=\frac{\mathrm{d}z}{\mathrm{d}y}\cdot\frac{\mathrm{d}y}{\mathrm{d}x}=z\cdot\frac{\mathrm{d}z}{\mathrm{d}y}$ .

于是原方程化为  $z\frac{dz}{dy} = f(y,z)$ . 这是关于 z(y)的一阶微分方程, 若解之得:

$$z = \varphi(y, C_1), \quad \mathbb{H} \frac{\mathbf{d}y}{\mathbf{d}x} = \varphi(y, C_1), \quad \mathbb{H} x = \int \frac{\mathbf{d}y}{\varphi(y, C_1)} + C_2.$$

5. 设  $a_1(x), a_2(x) f(x) \in C_I$ , 则 $\forall x \in I$  及任给的初始条件  $y(x_0) = y_0, y'(x_0) = y_1$ , 初值问题

$$\begin{cases} y'' + a_1(x)y' + a_2(x)y = f(x), \\ y(x_0) = y_0, y'(x_0) = y_1, \end{cases}$$

存在定义于区间 I 上的唯一解 y = y(x).

- 6. 设  $y_1(x)$ ,  $y_2(x)$  是线性齐次方程  $y'' + a_1(x)y' + a_2(x)$  y = 0 的两个解, $W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}$ ,则
  - (1)  $y_1(x)$ ,  $y_2(x)$ 在区间 I 上线性相关  $\Leftrightarrow \exists x_0 \in I$  使它们的 Wronski 行列式  $W(x_0) = 0$ .
  - (2)  $y_1(x)$ ,  $y_2(x)$ 在区间 I 上线性无关 $\Leftrightarrow \forall x \in I$ , 它们的 Wronski 行列式  $W(x) \neq 0$ .
- 7. 线性齐次方程  $y'' + a_1(x)y' + a_2(x)y = 0$  必存在两个线性无关的解.
- 8. 设  $y_1(x)$ ,  $y_2(x)$  是线性齐次方程  $y'' + a_1(x)y' + a_2(x)y = 0$  的两个线性无关的解,则该线性齐次方程的解集  $S \neq y_1(x)$ ,  $y_2(x)$ 生成的一个二维线性空间

$$\{\overline{y} = c_1 y_1 + c_2 y_2 \mid c_1, c_2$$
为任意常数 $\}$ .

9. 设 y\*(x)是二阶线性非齐次方程  $y'' + a_1(x)y' + a_2(x)y = f(x)$ 

1

的一个特解,  $y_1(x)$ ,  $y_2(x)$ 是对应的齐次方程  $y'' + a_1(x)y' + a_2(x)y = 0$  ② 的两个线性无关的解, 则  $y = c_1y_1(x) + c_2y_2(x) + y*(x)$ 为非齐次方程①的通解.

- 10. 设  $y_i^*(x)$  是方程  $y'' + a_1(x)y' + a_2(x)$   $y = f_i(x)$  (i = 1, 2, ..., n)的特解,则  $y_1^*(x) + \cdots + y_n^*(x)$  是方程  $y'' + a_1(x)y' + a_2(x)$   $y = f_1(x) + \cdots + f_n(x)$ 的特解.
- 11. 二阶线性常系数齐次方程的解法
  - (1) 特征方程  $ar^2+br+c=0$  有两个相异实根  $r_1, r_2$ , 则通解  $y=c_1e^{r_1x}+c_2e^{r_2x}$ .
  - (2) 特征方程有两个相等实根  $r_1 = r_2 = r$ , 则通解  $y = (c_1 + c_2 x)e^{rx}$ .
  - (3) 特征方程有一对共轭复根  $r = \alpha \pm i\beta$ , 则通解  $y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$ .
- 12. 二阶线性常系数非齐次方程的解法
  - (1) 待定系数法求 ay''+by'+cy = f(x) ( $a\neq 0, b, c$  为常数)的特解.
    - ①  $f(x) = P_n(x)e^{\alpha x}$ . 若  $\alpha$ 不是  $ar^2+br+c=0$  的根,则令  $y^*=(b_0x^n+b_1x^{n-1}+...+b_{n-1}x+b_n)e^{\alpha x}$ . 若  $\alpha$ 是  $ar^2+br+c=0$  的单根,则令  $y^*=x(b_0x^n+b_1x^{n-1}+...+b_{n-1}x+b_n)e^{\alpha x}$ . 若  $\alpha$ 是  $ar^2+br+c=0$  的重根,则令  $y^*=x^2(b_0x^n+b_1x^{n-1}+...+b_{n-1}x+b_n)e^{\alpha x}$ . 再代入原方程,通过比较系数确定  $b_0,b_1,...,b_n$ .
    - ②  $f(x) = P_n(x)e^{\alpha x}\cos\beta x$  或  $f(x) = P_n(x)e^{\alpha x}\sin\beta x$ . 先求  $ay''+by'+cy = P_n(x)e^{\alpha x}[\cos\beta x + i\sin\beta x] = P_n(x)e^{(\alpha+i\beta)x}$ 的特解  $Y^*$ .

则原方程的特解互取为 
$$y^* = \begin{cases} \operatorname{Re}Y^*, & f(x) = P_n(x)e^{\alpha x}\cos\beta x \\ \operatorname{Im}Y^*, & f(x) = P_n(x)e^{\alpha x}\sin\beta x \end{cases}$$

- (2) 常数变易法
- 13. n 阶 Euler 方程:  $a_0 x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + ... + a_{n-1} x y' + a_n y = f(x)$  (其中  $a_0, a_1, ..., a_n$  为常数).
- 14. 二阶 Euler 方程的解法.

$$\Rightarrow x = e^t$$
, 则  $ax^2y'' + bxy' + cy = f(x)$ 化为  $a\frac{d^2y}{dt^2} + (b-a)\frac{dy}{dt} + cy = f(e^t)$ .

这是一个线性常系数微分方程, 求出其通解后将 t 换为 lnx 即得原方程的解.

#### 六. 多元函数微分学

1. 偏导数定义

$$\frac{\partial z}{\partial x}\Big|_{(x_0, y_0)} = z_x(x_0, y_0) = f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

$$\frac{\partial z}{\partial y}\Big|_{(x_0, y_0)} = z_y(x_0, y_0) = f_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}.$$

$$\frac{\partial}{\partial x}(\frac{\partial z}{\partial x}) = \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} = f_{xx}(x, y), \quad \frac{\partial}{\partial y}(\frac{\partial z}{\partial x}) = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 f}{\partial x \partial y} = f_{xy}(x, y),$$

$$\frac{\partial}{\partial x}(\frac{\partial z}{\partial y}) = \frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 f}{\partial y \partial x} = f_{yx}(x, y), \quad \frac{\partial}{\partial y}(\frac{\partial z}{\partial y}) = \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 f}{\partial y^2} = f_{yy}(x, y),$$

2. 可微的必要条件:

若函数 f(x, y)在点  $M_0(x_0, y_0)$ 处可微,则

- ① f(x, y)在点  $M_0(x_0, y_0)$ 处连续;
- ② f(x, y) 在点  $M_0(x_0, y_0)$  处存在偏导数,且  $dz|_{(x_0, y_0)} = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$ .

3. 全微分的运算法则

$$d[f(x, y) \pm g(x, y)] = df(x, y) \pm dg(x, y);$$

d[f(x, y)g(x, y)] = g(x, y)df(x, y) + f(x, y)dg(x, y);

$$d\frac{f(x,y)}{g(x,y)} = \frac{g(x,y)df(x,y) - f(x,y)dg(x,y)}{g^{2}(x,y)} \quad (g(x,y) \neq 0).$$

- 4. 方向导数
  - (1) z = f(x, y)在点  $M_0(x_0, y_0)$ 处沿着向量 l 的方向导数

$$\left. \frac{\partial z}{\partial \mathbf{I}} \right|_{(x_0, y_0)} \lim_{t \to 0} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta) - f(x_0, y_0)}{t},$$

其中向量 l 的方向余弦为  $\cos \alpha$ ,  $\cos \beta$ .

(2) 若函数 f(x, y)在点  $M_0(x_0, y_0)$ 处可微,则 f(x, y)在点  $M_0(x_0, y_0)$ 处沿任一方向 l 的方向导数都存在,且有

$$\frac{\partial z}{\partial l}\Big|_{(x_0, y_0)} = f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\cos\beta.$$

- 5. 梯度 grad  $f(x_0, y_0) = f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}$ .
- 6. 复合函数微分法
  - (1) 设函数  $u = \varphi(x)$ ,  $v = \psi(x)$ 在点 x 处可导,而 z = f(u, v)在对应的点(u, v)处可微,

则复合函数 
$$z = f(\varphi(x), \psi(x))$$
在点处可导,且  $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\partial z}{\partial u} \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\partial z}{\partial v} \frac{\mathrm{d}v}{\mathrm{d}x} = \mathrm{grad}z \cdot \{\frac{\mathrm{d}u}{\mathrm{d}x}, \frac{\mathrm{d}v}{\mathrm{d}x}\}.$ 

(2) 设函数  $u = \varphi(x, y), v = \psi(x, y)$ 在点(x, y)处可偏导,而 z = f(u, v)在对应的点(u, v)处可微,则复合函数  $z = f(\varphi(x, y), \psi(x, y))$ 在点(x, y)处存在偏导数,且

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = \operatorname{grad} z \cdot \{ \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x} \},$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} = \operatorname{grad} z \cdot \{ \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y} \},$$

- 7. 隐函数微分法
  - (1) 设二元函数 F(x, y)满足下列条件:
    - ① $F_{x}(x, y)$ ,  $F_{y}(x, y)$ 在点 $(x_{0}, y_{0})$ 的某邻域内连续.
    - $2F(x_0, y_0) = 0$ ,
    - $\Im F_{\nu}(x_0, y_0) \neq 0.$

则存在点  $x_0$  的一个邻域  $N(x_0, \delta)$ 以及在  $N(x_0, \delta)$ 内定义的唯一的函数 y = y(x)满足:

- (i)  $y_0 = y(x_0), F(x, y(x)) \equiv 0, \forall x \in N(x_0, \delta).$
- (ii) 在  $N(x_0, \delta)$ 中,函数 y = y(x)有连续的导数,且  $y' = -\frac{F_x}{F_y}$ .
- (2) 设n+1 元函数 $F(x_1, x_2, ..., x_n, y)$ 满足下列条件:
  - ①  $F_{x}(x_{1},x_{2},...,x_{n},y)$  (i=1,2,...,n),  $F_{y}(x_{1},x_{2},...,x_{n},y)$ 在点  $M_{0}$  的某邻域内连续.
  - $2F(M_0, y_0) = 0$
  - $\Im F_{\nu}(M_0, y_0) \neq 0.$

则存在点  $M_0$  的一个邻域  $N(M_0, \delta)$ 以及在  $N(M_0, \delta)$ 内定义的唯一的一个 n 元函数  $y = y(x_1, x_2, ..., x_n)$ 满足:

(i)  $y_0 = y(M_0)$ ,

$$\exists F(x_1, x_2, ..., x_n, y(x_1, x_2, ..., x_n)) \equiv 0, \forall (x_1, x_2, ..., x_n) \in N(M_0, \delta).$$

(ii) 
$$y = y(x_1, x_2, ..., x_n)$$
在  $N(M_0, \delta)$ 中有一阶连续偏导数,且  $\frac{\partial y}{\partial x_i} = -\frac{F_{x_i}}{F_y}$   $(i = 1, 2, ..., n)$ .

- (3) 设三元函数 F(x, y, z), G(x, y, z)满足下列条件:
  - ① $F_x$ ,  $F_v$ ,  $F_z$ ,  $G_x$ ,  $G_v$ ,  $G_z$  在点  $M_0(x_0, y_0, z_0)$ 的某邻域内连续.

则存在点  $x_0$  的一个邻域  $N(x_0, \delta)$ 以及在  $N(x_0, \delta)$ 内定义的唯一的一组函数  $\begin{cases} y = y(x) \\ z = z(x) \end{cases}$ 满足:

(i) 
$$y_0 = y(x_0), z_0 = z(x_0), \ \mathbb{E}\begin{cases} F(x, y(x), z(x)) \equiv 0 \\ F(x, y(x), z(x)) \equiv 0 \end{cases} \forall x \in N(x_0, \delta).$$

里中 
$$\frac{\partial (F,G)}{\partial (z,x)} / \frac{\partial (F,G)}{\partial (y,z)}, \quad \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\partial (F,G)}{\partial (x,y)} / \frac{\partial (F,G)}{\partial (y,z)},$$
其中  $\frac{\partial (F,G)}{\partial (z,x)} = \begin{vmatrix} F_z & F_x \\ G_z & G_y \end{vmatrix}, \frac{\partial (F,G)}{\partial (y,z)} = \begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}, \frac{\partial (F,G)}{\partial (x,y)} = \begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix}.$ 

- 8. 切线方程与法平面方程
  - (1) 设曲线Γ的参数方程为  $\begin{cases} x = x(t), \\ y = y(t), M_0, M \text{ 的坐标分别为}(x(t_0), y(t_0), z(t_0)), 则切线方程为 \\ z = z(t), \end{cases}$

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}$$

故切向量为  $a = \{x(t_0), y(t_0), z(t_0)\}$ , 法平面的方程为

$$x'(t_0)(x-x_0) + y'(t_0)(y-y_0) + z'(t_0)(z-z_0) = 0.$$

(2) 设曲线 $\Gamma$ 的方程为  $\begin{cases} y=y(x), \\ z=z(x), \end{cases}$  则点  $M_0(x_0,y(x_0),z(x_0))$ 处的切线方程为

$$\frac{x - x_0}{1} = \frac{y - y(x_0)}{y'(x_0)} = \frac{z - z(x_0)}{z'(x_0)}$$

法平面方程为:

$$(x-x_0) + y'(x_0)(y-y(x_0)) + z'(t_0)(z-z(x_0)) = 0.$$

(3) 设曲线 $\Gamma$ 的方程为  $\begin{cases} F(x,y,z)=0, \\ G(x,y,z)=0, \end{cases}$  它确定  $\begin{cases} y=y(x), \\ z=z(x), \end{cases}$  则点  $M_0$  处的切线方程为:

$$\frac{x-x_0}{\frac{\partial(F,G)}{\partial(y,z)}\Big|_{M_0}} = \frac{y-y_0}{\frac{\partial(F,G)}{\partial(z,x)}\Big|_{M_0}} = \frac{z-z_0}{\frac{\partial(F,G)}{\partial(x,y)}\Big|_{M_0}}$$

法平面方程为:

$$\frac{\partial(F,G)}{\partial(y,z)}\bigg|_{M_0}(x-x_0)+\frac{\partial(F,G)}{\partial(z,x)}\bigg|_{M_0}(y-y_0)+\frac{\partial(F,G)}{\partial(x,y)}\bigg|_{M_0}(z-z_0)=0.$$

- 9. 切平面方程与法线方程
  - (1) Σ: F(x, y, z) = 0 在点  $M_0(x_0, y_0, z_0)$ 处的切平面方程为

$$F_x(M_0)(x-x_0)+F_y(M_0)(y-y_0)+F_z(M_0)(z-z_0)=0$$

法线方程为

$$\frac{x - x_0}{F_x(M_0)} = \frac{y - y_0}{F_y(M_0)} = \frac{z - z_0}{F_z(M_0)}$$

(2) Σ: z = f(x, y)在点  $M_0(x_0, y_0, z_0)$ 处的切平面方程为

$$f_{x}(x_{0}, y_{0})(x-x_{0}) + f_{y}(x_{0}, y_{0})(y-y_{0}) - (z-z_{0}) = 0,$$

法线方程为

$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}.$$

10. 多元函数的 Taylor 公式

设二元函数 f(x, y)在点  $M_0(x_0, y_0)$ 的某邻域  $N(M_0)$ 内有 n+1 阶连续偏导数. 则  $\forall M(x_0+\Delta x, y_0+\Delta y) \in N(M_0)$ ,有

$$f(x_{0} + \Delta x, y_{0} + \Delta y) = f(x_{0}, y_{0}) + (\Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y}) f(x_{0}, y_{0}) + \frac{1}{2!} (\Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y})^{2} f(x_{0}, y_{0}) + \cdots$$

$$+ \frac{1}{n!} (\Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y})^{n} f(x_{0}, y_{0})$$

$$+ \frac{1}{(n+1)!} (\Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y})^{n+1} f(x_{0} + \theta \Delta x, y_{0} + \theta \Delta y)$$

其中 0<θ<1.

上式称为二元函数 f(x, y)在点  $M_0$  处带有 Lagrange 型余项的 n 阶 Taylor 公式. 特殊情形

(1) 中值公式

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + f_x(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta x + f_y(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \Delta y$$
 其中  $0 < \theta < 1$ .

(2) 一阶 Taylor 公式

$$f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0) + (\Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y}) f(x_0, y_0)$$

$$+ \frac{1}{2} (\Delta x \cdot \frac{\partial}{\partial x} + \Delta y \cdot \frac{\partial}{\partial y})^2 f(x_0 + \theta \Delta x, y_0 + \theta \Delta y)$$

$$= f(x_0, y_0) + [\Delta x, \Delta y] \begin{bmatrix} f_x \\ f_y \end{bmatrix}_M + \frac{1}{2} [\Delta x, \Delta y] H_f(M^*) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

其中  $M^*(x_0+\theta\Delta x, y_0+\theta\Delta y)$ ,  $0<\theta<1$ ,  $H_f(M)$ 为 f 在点 M(x,y)处的 Hessian 矩阵  $\begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}$ .

(3) Maclaurin 公式

### 七. 数量函数积分

- 1. 数量函数积分的定义  $\int_{\Omega} f(M) d\Omega = \lim_{d \to 0} \sum_{k=1}^{n} f(M_k) \Delta \Omega_k$ .
- 2. 数量函数积分的性质
  - $(1)\int_{\Omega} [af(M) + bg(M)]d\Omega = a\int_{\Omega} f(M)d\Omega + b\int_{\Omega} g(M)d\Omega$ , 其中 a, b 为常数.
  - $(2)\int_{\Omega}f(M)d\Omega = \int_{\Omega_1}f(M)d\Omega + \int_{\Omega_2}f(M)d\Omega$ , 其中 $\Omega = \Omega_1\cup\Omega_2$ , 且 $\Omega_1$  与 $\Omega_2$  无公共内点.
  - $(3) f(M) \le g(M) (\forall M \in \Omega) \Rightarrow \int_{\Omega} f(M) d\Omega \le \int_{\Omega} g(M) d\Omega.$
  - (4)  $|\int_{\Omega} f(M) d\Omega| \leq \int_{\Omega} |f(M)| d\Omega$ .
  - (5)  $a \le f(M) \le b$  ( $\forall M \in \Omega$ )  $\Rightarrow aV \le \int_{\Omega} f(M) d\Omega \le bV$ , 其中 V 为 $\Omega$ 的度量.
  - $(6) f(M) \in C_{\Omega} \Rightarrow \exists M * \in \Omega \text{ s.t. } \int_{\Omega} f(M) d\Omega = f(M *)V, 其中 V 为 \Omega 的度量.$
- 3. 直角坐标系下的二重积分的计算

(1) 
$$D = \{(x, y) \mid a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)\}, \text{ Mod}_D f(x, y) d\sigma = \int_a^b dx \int_{\sigma_1(x)}^{\varphi_2(x)} f(x, y) dy.$$

(2) 
$$D = \{(x, y) \mid c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y)\}, \ \text{Mill}_D f(x, y) d\sigma = \int_c^d dy \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx.$$

4. 二重积分换元法

设函数 f(x, y) 在有界闭区域 D 上连续,  $x = \varphi(u, v)$  和  $y = \psi(u, v)$  有一阶连续偏导数,且 Jacobi 行列式

$$J(u, v) = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \varphi_u & \varphi_v \\ \Psi_u & \Psi_v \end{vmatrix} \neq 0,$$

 $\iiint_D f(x, y) dxdy = \iint_D f(\varphi(u, y), \psi(u, y)) |J(u, y)| dudy$ 

5. 极坐标系下二重积分的计算

 $\Rightarrow x = \rho \cos \varphi, y = \rho \sin \varphi, \text{ Mill}_D f(x, y) dx dy = \text{Ill}_D f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho d\varphi.$ 

(1) 极点 O 在 D 的外部

$$\begin{split} D &= \{ (\varphi, \rho) \mid \alpha \leq \varphi \leq \beta, \, \rho_1(\varphi) \leq \rho \leq \rho_2(\varphi) \}, \, \, | \mathbb{J} | \\ & \mathbb{J}_D f(x, y) \mathrm{d} x \mathrm{d} y = \int_{\alpha}^{\beta} \mathrm{d} \varphi \int_{\rho_1(\varphi)}^{\rho_2(\varphi)} f(\rho \cos \varphi, \rho \sin \varphi) \rho \mathrm{d} \rho \, \, . \end{split}$$

(2) 极点 O 在 D 的边界曲线上  $D = \{(\varphi, \rho) \mid \alpha \le \varphi \le \beta, 0 \le \rho \le \rho(\varphi)\}, 则$ 

$$\iint_{D} f(x, y) dxdy = \int_{\alpha}^{\beta} d\varphi \int_{0}^{\rho(\varphi)} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho.$$

(3) 极点 O 在 D 的内部

$$D = \{ (\varphi, \rho) \mid 0 \le \varphi \le 2\pi, 0 \le \rho \le \rho(\varphi) \}, \text{ } \emptyset$$

$$\iint_D f(x, y) dx dy = \int_0^{2\pi} d\varphi \int_0^{\rho(\varphi)} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho.$$



 $\Rightarrow x = a\rho\cos\varphi, y = b\rho\sin\varphi, \text{ MII}_D f(x, y) dxdy = \iint_D f(a\rho\cos\varphi, b\rho\sin\varphi) ab\rho d\varphi d\varphi.$ 

7. 直角坐标系下三重积分的计算

$$(1) \Omega = \{(x, y, z) \mid (x, y) \in D_{xy}, z_1(x, y) \le z \le z_2(x, y)\}, \text{ MIM}_{\Omega} f(x, y, z) dv = \iint_{D} \left[\int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz\right] dx dy.$$

(2) 
$$\Omega = \{(x, y, z) \mid (y, z) \in D_{yz}, x_1(y, z) \le x \le x_2(y, z)\}, \text{ MIM}_{\Omega} f(x, y, z) dv = \iint_{D_{yz}} \left[ \int_{x_1(y, z)}^{x_2(y, z)} f(x, y, z) dx \right] dy dz.$$

(3) 
$$\Omega = \{(x, y, z) \mid (z, x) \in D_{zx}, y_1(z, x) \le y \le y_2(z, x)\}, \text{ Missing } f(x, y, z) dv = \iint_{D_{zx}} \left[ \int_{y_1(z, x)}^{y_2(z, x)} f(x, y, z) dy \right] dz dx.$$

(4) 
$$\Omega = \{(x, y, z) \mid (x, y) \in D(z), p \le z \le q\}, \quad \text{Mill}_{\Omega} f(x, y, z) dv = \int_{p}^{q} \left[ \iint_{D(z)} f(x, y, z) dx dy \right] dz.$$

(5) 
$$\Omega = \{(x, y, z) \mid (y, z) \in D(x), a \le x \le b\}, \quad \text{Mill}_{\Omega} f(x, y, z) dv = \int_{a}^{b} \left[ \iint_{D(x)} f(x, y, z) dy dz \right] dx$$
.

(6) 
$$\Omega = \{(x, y, z) \mid (z, x) \in D(y), c \le y \le d\}, \quad \text{MM}_{\Omega} f(x, y, z) dv = \int_{c}^{d} \left[ \iint_{D(y)} f(x, y, z) dz dx \right] dy.$$

8. 柱面坐标系下三重积分的计算

 $\Rightarrow x = \rho \cos \varphi, y = \rho \sin \varphi, z = z, \quad \text{If} \quad \text{If} \quad (x, y, z) dv = \text{If} \quad (\rho \cos \varphi, \rho \sin \varphi, z) \rho d\varphi d\rho dz.$ 

9. 球面坐标系下三重积分的计算

$$\Rightarrow x = r\sin\theta\cos\varphi, y = r\sin\theta\sin\varphi, z = r\cos\theta,$$

 $\iiint_{\Omega} f(x, y, z) dv = \iiint_{\Omega} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) r^2 \sin \theta dr d\theta d\varphi.$ 

10. 广义球坐标系下三重积分的计算

 $\Rightarrow x = ar\sin\theta\cos\varphi, y = br\sin\theta\sin\varphi, z = cr\cos\theta,$ 

 $\iiint_{\Omega} f(x, y, z) dv = \iiint_{\Omega} f(ar\sin\theta\cos\varphi, br\sin\theta\sin\varphi, cr\cos\theta) abcr^{2} \sin\theta dr d\theta d\varphi.$ 



(1) L: 
$$y = y(x) \in C_{[a,b]}^{(1)}$$
,  $\text{MJ} \int_L f(x,y) ds = \int_a^b f(x,y(x)) \sqrt{1 + [y'(x)]^2} dx$ .

(2) 
$$L: x = x(y) \in C_{[c,d]}^{(1)}, \quad \text{If } \int_{L} f(x,y) ds = \int_{c}^{d} f(x(y),y) \sqrt{1 + [x'(y)]^{2}} dy$$

(3) L: 
$$x = x(t), y = y(t) \in C^{(1)}_{[\alpha,\beta]}, \quad \text{III} \quad \int_L f(x,y) ds = \int_{\alpha}^{\beta} f(x(t),y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

$$(4) L: \rho = \rho(\varphi) \in C^{(1)}_{[\alpha,\beta]}, \quad \text{If } \int_{L} f(x,y) ds = \int_{\alpha}^{\beta} f(\rho(\varphi) \sin \varphi, \rho(\varphi) \cos \varphi) \sqrt{\rho^{2} + [\rho'(\varphi)]^{2}} d\varphi.$$

(5) L: 
$$x = x(t)$$
,  $y = y(t)$ ,  $z = z(t) \in C^{(1)}_{[\alpha,\beta]}$ ,  $\mathbb{N}$ 

$$\int_{L} f(x, y, z) ds = \int_{\alpha}^{\beta} f(x(t), y(t), z(t)) \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [y'(t)]^{2}} dt.$$

- 12. 第一型曲面积分的计算
  - (1) 设Σ: z = z(x, y)分片光滑, f 在Σ上连续, Σ在 xOy 平面上的投影区域为  $D_{xy}$ , 则 $\iint_{\Sigma} f(x, y, z) dA = \iint_{D} f(x, y, z(x, y)) \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dxdy$ .
  - (2) 设Σ: y = y(z, x)分片光滑, f在Σ上连续, Σ在 zOx 平面上的投影区域为  $D_{zx}$ , 则 $\iint_{\Sigma} f(x, y, z) dA = \iint_{D} f(x, y(z, x), z) \sqrt{1 + y_{z}^{2} + y_{x}^{2}} dz dx$ .
  - (3) 设Σ: x = x(y, z)分片光滑, f 在Σ上连续, Σ在 yOz 平面上的投影区域为  $D_{yz}$ , 则 $\iint_{\Sigma} f(x, y, z) dA = \iint_{D} f(x(y, z), y, z) \sqrt{1 + x_{y}^{2} + x_{z}^{2}} dy dz$ .
- 13. 线密度为 $\mu(x,y)$ 的平面曲线段 L 的质心坐标( $\overline{x},\overline{y}$ )

$$\overline{x} = \frac{\int_{L} x \mu(x, y) ds}{\int_{L} \mu(x, y) ds}, \overline{y} = \frac{\int_{L} y \mu(x, y) ds}{\int_{L} \mu(x, y) ds}.$$

14. 面密度为 $\mu(x,y)$ 的平面薄片 D 的质心坐标( $\overline{x},\overline{y}$ )

$$\overline{x} = \frac{\iint_D x \mu(x, y) dxdy}{\iint_D \mu(x, y) dxdy}, \overline{y} = \frac{\iint_D y \mu(x, y) dxdy}{\iint_D \mu(x, y) dxdy}.$$

15. 密度为 $\mu(x,y,z)$ 的空间立体 $\Omega$ 的质心坐标( $\overline{x},\overline{y},\overline{z}$ )

$$\overline{x} = \frac{\iiint_{\Omega} x \mu(x, y, z) dxdydz}{\iiint_{\Omega} \mu(x, y, z) dxdydz}, \ \overline{y} = \frac{\iiint_{\Omega} y \mu(x, y, z) dxdydz}{\iiint_{\Omega} \mu(x, y, z) dxdydz}, \ \overline{z} = \frac{\iiint_{\Omega} z \mu(x, y, z) dxdydz}{\iiint_{\Omega} \mu(x, y, z) dxdydz}.$$

- 16. 线密度为 $\mu(x, y)$ 的平面曲线段 L 对 x 轴的转动惯量  $I_x = \int_L y^2 \mu ds$ , 对 y 轴的转动惯量  $I_y = \int_L x^2 \mu ds$ .
- 17. 面密度为 $\mu(x, y)$ 的平面薄片 D 对 x 轴的转动惯量  $I_x = \iint_D y^2 \mu d\sigma$ , 对 y 轴的转动惯量  $I_y = \iint_D x^2 \mu d\sigma$ .
- 18. 密度为 $\mu(x, y, z)$ 的空间立体 $\Omega$ 关于 x 轴, y 轴, z 轴的转动惯量  $I_x$ ,  $I_y$ ,  $I_z$  $I_x = \iiint_{\Omega} (y^2 + z^2) \mu dx dy dz, I_y = \iiint_{\Omega} (z^2 + x^2) \mu dx dy dz, I_z = \iiint_{\Omega} (x^2 + y^2) \mu dx dy dz.$
- 19. 线密度为 $\mu(x, y)$ 的平面曲线段 L 对位于L外的点  $M_0(x_0, y_0)$ 处的单位质点的引力 F 的两个分量

$$F_x = \int_L \frac{k(x - x_0)\mu(x, y)}{r^3} ds$$
,  $F_y = \int_L \frac{k(y - y_0)\mu(x, y)}{r^3} ds$ ,

其中 k 为引力常数,  $r = \sqrt{(x - x_0)^2 + (y - y_0)^2}$ .

20. 面密度为 $\mu(x, y, z)$ 的曲面块 $\Sigma$ 对 $\Sigma$ 外的一点  $M_0(x_0, y_0, z_0)$ 处单位质点的引力 F 的三个分量

$$F_x = \iint_{\Sigma} \frac{k(x - x_0)\mu}{r^3} dA$$
,  $F_y = \iint_{\Sigma} \frac{k(y - y_0)\mu}{r^3} dA$ ,  $F_z = \iint_{\Sigma} \frac{k(z - z_0)\mu}{r^3} dA$ ,

其中 k 为引力常数,  $r = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$ .

21. 密度为 $\mu(x, y, z)$ 的空间立体 $\Omega$ 对 $\Omega$ 外的一点 $M_0(x_0, y_0, z_0)$ 处单位质点的引力F的三个分量

$$F_x = \iiint_{\Omega} \frac{k(x-x_0)\mu}{r^3} dv$$
,  $F_y = \iiint_{\Omega} \frac{k(y-y_0)\mu}{r^3} dv$ ,  $F_z = \iiint_{\Omega} \frac{k(z-z_0)\mu}{r^3} dv$ ,

其中 k 为引力常数,  $r = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$ .

# 八. 向量函数积分

1. 第二型曲线积分的定义  $\int_{L} \boldsymbol{F}(\boldsymbol{M}) ds = \int_{L} \boldsymbol{F}(\boldsymbol{M}) \cdot \boldsymbol{T}(\boldsymbol{M}) ds = \lim_{d \to 0} \sum_{i=1}^{n} \boldsymbol{F}(\boldsymbol{M}_{i}) \cdot \boldsymbol{T}(\boldsymbol{M}_{i}) \Delta s_{i}$ ,

其中 T(M)为 L 在点 M 处沿 L 的正方向的单位切向量。

- 2. 第二型曲线积分的坐标形式
  - (1) L 为 xOy 平面上的有向光滑曲线:  $\int_L F(M) ds = \int_L F(M) \cdot T(M) ds = \int_L P(x, y) dx + Q(x, y) dy$ .
  - (2) L 为空间有向光滑曲线:  $\int_{I} F(M) ds = \int_{I} F(M) \cdot T(M) ds = \int_{I} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$ .
- 3. 第二型曲线积分的性质
  - $(1)\int_{L} [k_{1}F_{1}(M) + k_{2}F_{2}(M)] ds = k_{1}\int_{L} F_{1}(M) ds + k_{2}\int_{L} F_{2}(M) ds$ , 其中  $k_{1}$ ,  $k_{2}$  为任意常数.
  - $(2)\int_{l} F(M) ds = -\int_{l} -F(M) ds$ , 其中 L表示与 L 的方向相反的有向曲线段.
  - (3)  $\int_{L(AB)} F(M) ds = \int_{L(AC)} F(M) ds + \int_{L(CB)} F(M) ds$ ,其中 A, B, C 为 L 上的任意三个点.
- 4. 第二型曲线积分的计算
  - (1) 设 L: x = x(t), y = y(t)为 xOy 平面上的有向光滑曲线, 当参数 t 单调地由 $\alpha$ 变到 $\beta$ 时, 点 M(x, y)由 L 的起点 A 沿 L 运动到终点 B, 向量函数  $F(M) = \{P(x, y), Q(x, y)\}$ 在 L 上连续, 则

$$\int_{L} F(M) ds = \int_{L} P(x, y) dx + Q(x, y) dy = \int_{\alpha}^{\beta} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)] dt.$$

(2) 设 L: x = x(t), y = y(t), z = z(t)为空间内有向光滑曲线,当参数 t 单调地由 $\alpha$ 变到 $\beta$ 时,点 M(x, y, z) 由 L 的起点 A 沿 L 运动到终点 B,向量函数  $F(M) = \{P(x, y, z), Q(x, y, z), R(x, y, z)\}$ 在 L 上连续,则  $\int_{L} F(M) ds = \int_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$ 

$$= \int_{\alpha}^{\beta} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t) + R(x(t), y(t))z'(t)]dt.$$

5. 第二型曲面积分的定义  $\iint_{\Sigma} \mathbf{F}(\mathbf{M}) d\mathbf{A} = \iint_{\Sigma} \mathbf{F}(\mathbf{M}) \cdot \mathbf{n}(\mathbf{M}) d\mathbf{A} = \lim_{d \to 0} \sum_{i=1}^{n} \mathbf{F}(\mathbf{M}_{i}) \cdot \mathbf{n}(\mathbf{M}_{i}) \Delta A_{i}$ .

其中n(M)为Σ在点M处沿Σ的正方向的单位法向量.

- 6. 第二型曲面积分的坐标形式  $\iint_{\Sigma} F(M) dA = \iint_{\Sigma} P(x, y, z) dy \wedge dz + Q(x, y, z) dz \wedge dx + R(x, y, z) dx \wedge dy$ .
- 7. 第二型曲面积分的性质
  - (1)  $\iint_{\Sigma} [k_1 F_1(M) + k_2 F_2(M)] dA = k_1 \iint_{\Sigma} F_1(M) dA + k_2 \iint_{\Sigma} F_2(M) dA$ , 其中  $k_1, k_2$  为任意常数.
  - (2)  $\iint_{\Sigma} F(M) dA = -\iint_{\Sigma} -F(M) dA$ ,其中 $\Sigma$ 表示与 $\Sigma$ 的方向相反的有向曲面块.
  - (3)  $\iint_{\Sigma} F(M) dA = \iint_{\Sigma 1} F(M) dA + \iint_{\Sigma 2} F(M) dA$ , 其中 $\Sigma = \Sigma 1 \cup \Sigma 2$ , 且 $\Sigma 1$  与 $\Sigma 2$  无公共内点.
- 8. 第二型曲面积分的计算
  - (1) 设Σ: z = z(x, y)为光滑的有向曲面, Σ在 xOy 平面上的投影区域为  $D_{xy}$ , R(x, y, z)在Σ上连续,

则
$$\iint_{\Sigma} R(x, y, z) dx \wedge dy = \begin{cases} \iint_{D_{xy}} R(x, y, z(x, y)) dx dy, & \Sigma取上侧 \\ -\iint_{D_{xy}} R(x, y, z(x, y)) dx dy, & \Sigma取下侧 \end{cases}$$

(2) 设Σ: x = x(y, z)为光滑的有向曲面, Σ在 yOz 平面上的投影区域为  $D_{yz}$ , P(x, y, z)在Σ上连续,

则
$$\iint_{\Sigma} P(x, y, z) dy \wedge dz = \begin{cases} \iint_{D_{yz}} P(x(y, z), y, z) dy dz, & \Sigma 取 前侧 \\ -\iint_{D_{yz}} P(x(y, z), y, z) dy dz, & \Sigma 取 后侧 \end{cases}$$

【张小向高数宝典】【上篇:公式大全】【中篇:典型题赏析】【下篇:高数秘籍】 ◆双面打印/复印,节约纸张◆ (3) 设Σ: y = y(z, x)为光滑的有向曲面, $\Sigma$ 在 zOx 平面上的投影区域为  $D_{zx}$ , Q(x, y, z)在 $\Sigma$ 上连续,

则
$$\iint_{\Sigma} Q(x, y, z) dz \wedge dx = \begin{cases} \iint_{D_{zx}} Q(x, y(z, x), z) dz dx, & \Sigma 取右侧 \\ -\iint_{D_{zx}} Q(x, y(z, x), z) dz dx, & \Sigma 取左侧 \end{cases}$$

- 9. 两类曲线积分之间的关系
  - (1) 当 L 为 xOy 平面上的光滑曲线时,设  $F(M) = \{P(M), Q(M)\}, T(M) = \{\cos\alpha, \cos\beta\}$ ,则  $\int_{I} \mathbf{F}(M) ds = \int_{I} \mathbf{F}(M) \cdot \mathbf{T}(M) ds = \int_{I} (P \cos \alpha + Q \cos \beta) ds.$
  - (2) 当 L 为空间曲线时,设  $F(M) = \{P(M), Q(M), R(M)\}, T(M) = \{\cos\alpha, \cos\beta, \cos\gamma\}$ ,则  $\int_{I} \mathbf{F}(M) d\mathbf{s} = \int_{I} \mathbf{F}(M) \cdot \mathbf{T}(M) d\mathbf{s} = \int_{I} (P \cos \alpha + Q \cos \beta + R \cos \gamma) d\mathbf{s}.$
- 10. 两类曲面积分之间的关系

设
$$F(M) = \{P(M), Q(M), R(M)\}, n(M) = \{\cos\alpha, \cos\beta, \cos\gamma\},$$
则 
$$\iint_{\Sigma} F(M) dA = \iint_{\Sigma} F(M) \cdot n(M) dA = \iint_{\Sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma) dA.$$

11. Green 公式

设D为平面有界闭区域,其边界 $\partial D$ 为分段光滑曲线,函数P,Q在D上有一阶连续偏导数,则

$$\oint_{\partial D^+} P dx + Q dy = \iint_D (Q_x - P_y) dx dy$$

12. 平面曲线积分与路径无关的条件

设 P(x, y), Q(x, y)在平面单连通域 G 内有连续的一阶偏导数, 则下列条件等价:

- $(1) P_v = Q_x$  在 G 内处处成立.
- (2) 对 G 内任一条分段光滑的闭曲线 L, 有  $\oint_{\Gamma} P dx + Q dy = 0$ .
- (3) 曲线积分 $\int_L P dx + Q dy$  在 G 内与路径无关.
- (4) 表达式 Pdx + Qdy 在 G 内是某个二元函数 u(x, y)的全微分, 即 du = Pdx + Qdy.
- 13. 若 P(x, y), Q(x, y)在单连通区域 G 内有一阶连续偏导数, 则 Pdx + Qdy 在 G 内存在原函数的充要条 件是:  $\forall (x, y) \in G, P_y = Q_x$ . 此时有

(1) 
$$u(x, y) = \int_{(x_0, y_0)}^{(x, y)} P dx + Q dy + C$$
,  $\sharp \div (x_0, y_0), (x, y) \in G$ .

(2) 
$$\int_{(x_1,y_1)}^{(x_2,y_2)} P dx + Q dy = u(x_2,y_2) - u(x_1,y_1) = u(x,y)\Big|_{(x_1,y_1)}^{(x_2,y_2)}, \quad \sharp \psi(x_1,y_1), (x_2,y_2) \in G.$$

14. Gauss 公式

设 $\Omega$ 是以分片光滑曲面 $\Sigma$ 为边界的空间有界闭区域,函数 P,Q,R 在 $\Omega$ 上具有一阶连续偏导数,则  $\oint_{\Sigma} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy = \iiint_{\Omega} (P_x + Q_y + R_z) dx dy dz, \quad \cancel{\exists} + \nabla \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D}.$ 

15. Stokes 公式

设 $\Sigma$ 是以分段光滑闭曲线 L 为边界曲线的分片光滑曲面,函数 P, Q, R 在包含 $\Sigma$ 的空间区域 G 内具有 一阶连续偏导数,则

$$\oint_{L} P dx + Q dy + R dz = \iint_{\Sigma} \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \wedge dz + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz \wedge dx + \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \wedge dy$$

$$= \iint_{\Sigma} \begin{vmatrix} dy \wedge dz & dz \wedge dx & dx \wedge dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix},$$

其中曲线 L 的方向与曲面Σ的侧符合右手螺旋法则, $\frac{\partial}{\partial r} \cdot Q$  即  $\frac{\partial Q}{\partial r}$ 

- 16.  $F(M) = \{P(M), Q(M), R(M)\}$ 的散度:  $\text{div} F = P_x + Q_y + R_z$ .
- 17.  $F(M) = \{P(M), Q(M), R(M)\}$ 的旋度: rot $F = \{R_y Q_z, P_z R_x, Q_x P_y\}$ .

#### 九. 复变函数

1. 设复变函数 
$$w = f(z)$$
 在  $z_0$  处的**导数**  $f'(z_0) = \frac{dw}{dz} \bigg|_{z=z} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$ 

- 2. 复变函数求导法则
  - (1) C' = 0 (C 为复常数);
  - (2)  $(z^n)' = nz^{n-1}$ ;
  - (3)  $[f(z) \pm g(z)]' = f'(z) \pm g'(z);$
  - (4) [f(z)g(z)]' = f'(z)g(z) + f(z)g'(z);

(5) 
$$\left[\frac{f(z)}{g(z)}\right]' = \frac{f'(z)g(z) - f(z)g'(z)}{g^2(z)}, g(z) \neq 0;$$

- (6) [f(g(z))]' = f'(g(z))g'(z);
- (7)  $f'(z) = \frac{1}{\varphi'(z)}$ , 其中 w = f(z)与  $z = \varphi(w)$ 为两个互为反函数的单值函数,且 $\varphi'(w) \neq 0$ .
- 3. 复变函数可导的必要条件

设函数 f(z) = u(x, y) + iv(x, y)在区域 D 内有定义,  $z_0 = x_0 + iy_0 \in D$ ,若 f(z)在  $z_0$ 处可导,

则二元函数 u(x, y), v(x, y)在点 $(x_0, y_0)$ 处存在偏导数  $\frac{\partial u}{\partial x}$ ,  $\frac{\partial u}{\partial y}$ ,  $\frac{\partial v}{\partial x}$ ,  $\frac{\partial v}{\partial y}$ , 且满足 C-R 条件

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

- 4. 若 f(z)在 z 处可导,则  $f'(z) = u_x + iv_x = v_y + iv_x = v_y iu_y = u_x iu_y$ .
- 5. 初等函数的简单性质
  - (1) 指数函数  $f(z) = e^z = e^x(\cos y + i \sin y)$ 
    - (1)  $|e^z| = e^x$ ,
    - ② Arg  $e^z = y + 2k\pi, k = 0, \pm 1, \pm 2, ...,$
    - ③  $f(z) = e^z$  处处解析,且 $(e^z)' = e^z$ ,
    - $(4) e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2} \cdot e^{z_1} / e^{z_2} = e^{z_1 z_2}.$
    - ⑤  $e^{z+2\pi i} = e^z$ , 即  $e^z$  是以  $2\pi i$  为周期的函数.
    - ⑥ 极限  $\lim_{z\to\infty} e^z$  不存在,当 z 沿实数轴趋向于+∞时,  $e^z\to\infty$ ,当 z 沿实数轴趋向于-∞时,  $e^z\to0$ .
  - (2) 对数函数  $w = \text{Ln}z = \ln|z| + i(\arg z + 2k\pi) = \ln|z| + i\text{Arg}z$ .

Lnz 是无穷多值函数, 对于每个固定的 k,  $Lnz = ln|z| + i(argz + 2k\pi)$ 成为一个单值函数, 称为 Lnz的一个分支. 特别地, 取 k = 0, 称 lnz = ln|z| + i argz 为 Lnz 的主值.

- ① Lnz = lnz + i  $2k\pi (k = 0, \pm 1, \pm 2, ...)$ .
- ②  $Ln(z_1z_2) = Lnz_1 + Lnz_2$ ,  $Ln\frac{z_1}{z_2} = Lnz_1 Lnz_2$ , (等号的意义为集合相等).
- ③  $\ln z$  在复平面内除原点与负实轴外,处处连续. 事实上,  $\ln |z|$ 除原点外处处连续,而  $\lim_{y\to 0^-} \arg z = -\pi$ ,  $\lim_{y\to 0^+} \arg z = \pi$ , 故  $\arg z$  在原点及负实轴上不连续.
- ④ Lnz 的各个单值分支在除原点与负实轴外的其他点处解析, 其导数为 $\frac{1}{z}$ .

事实上, 对于 Lnz 的主值 lnz, 令  $z = e^w$ , 则  $\frac{d}{dz} \ln z = (\frac{de^w}{dw})^{-1} = \frac{1}{e^w} = \frac{1}{z}$ .

- (3) 幂函数  $z^{\alpha} = e^{\alpha \ln z} = e^{\alpha (\ln z + 2k\pi i)}$   $(z \neq 0, k = 0, \pm 1, \pm 2, ...)$ , 其主值为  $e^{\alpha \ln z}$ .
  - ① 当 $\alpha$ 为整数时, $z^{\alpha} = e^{\alpha \ln z}$ 为单值函数.
  - ② 特别地、当 $\alpha$ 为正整数时、 $z^{\alpha}$ 即 z 的 $\alpha$ 次幂.

- ③ 当 $\alpha$ 为有理数 $\frac{m}{n}$  (m, n 互质 n > 1)时, $z^{\alpha} = e^{\frac{m}{n} \ln z + 2k \frac{m}{n} \pi^{i}}$  取 k = 0, 1, 2, ..., n-1 时的 n 个值.
- ④ 特别地当 $\alpha = \frac{1}{n}$  时,  $z^{\alpha}$ 即为 z 的 n 次方根.
- ⑤ 对应于 Lnz 的各个单值分支,  $z^a$ 的各个分支在除原点及负实轴外的其他点处解析, 且其导数为 $\alpha z^{a-1}$ .
- (4) 三角函数:  $\sin z = \frac{1}{2i} (e^{iz} e^{-iz})$ ,  $\cos z = \frac{1}{2} (e^{iz} e^{-iz})$  是以  $2\pi$ 为周期的解析函数,  $(\sin z)' = \cos z$ ,  $(\cos z)' = -\sin z$ .
- (5) 其他的初等函数.

$$\tan z = \frac{\sin z}{\cos z}$$
,  $\cot z = \frac{\cos z}{\sin z}$ ,  $\sec z = \frac{1}{\cos z}$ ,  $\csc z = \frac{1}{\sin z}$ ,  $\cot z = \frac{e^z + e^{-z}}{2}$ ,  $\sin z = \frac{e^z - e^{-z}}{2}$ .

6. 复变函数积分的定义

$$\int_{L} f(z)dz = \lim_{d \to 0} \sum_{k=1}^{n} f(\zeta_{k}) \Delta z_{k} = \lim_{d \to 0} \sum_{k=1}^{n} (u_{k} + iv_{k}) (\Delta x_{k} + i\Delta y_{k})$$

$$= \lim_{d \to 0} \left[ \sum_{k=1}^{n} (u_{k} \Delta x_{k} - v_{k} \Delta y_{k}) + i \sum_{k=1}^{n} (v_{k} \Delta x_{k} + u_{k} \Delta y_{k}) \right] = \int_{L} u dx - v dy + i \int_{L} v dx + u dy.$$

- 7. 复变函数积分的计算
  - (1) 设 L 的参数方程为 x = x(t), y = y(t),  $t|_{\mathbb{R}^{d}} = \alpha$ ,  $t|_{\mathbb{R}^{d}} = \beta$ , 则

$$\int_{L} f(z)dz = \int_{\alpha}^{\beta} [u \cdot x'(t) - v \cdot y'(t)]dt + i \int_{\alpha}^{\beta} [v \cdot x'(t) + u \cdot y'(t)]dt.$$

(2) 设 L 的参数方程为 z = z(t),  $t|_{\text{\tiny del}} = \alpha$ ,  $t|_{\text{\tiny Sel}} = \beta$ , 则

$$\int_{I} f(z) dz = \int_{\alpha}^{\beta} f(z(t)) z'(t) dt.$$

(3) 设f(z)在区域D内解析且 $\Phi(z)$ 为f(z)的一个原函数,则

$$\int_{z_0}^{z_1} f(\zeta) d\zeta = \Phi(z_1) - \Phi(z_0) = \Phi(z_0) \Big|_{z_0}^{z_1}, (\sharp \psi z_0, z_1 \in D).$$

8. Cauchy 积分定理:

设 f(z)在单连通域 D 内解析, L 为 D 内任一条分段光滑的闭曲线则  $\oint_L f(z) dz = 0$ , 从而积分  $\int_L f(z) dz$  与路径无关, 只与起点和终点有关.

9. 复合闭路定理

设  $L, L_k$  (k = 1, 2, ..., n)为 n+1 条取逆时针方向的简单闭曲线,  $L_k$  (k = 1, 2, ..., n)完全在 L 内且互不相交,也互不包含,D 为由  $L, L_k$  (k = 1, 2, ..., n)围成的复连通域. 如果 f(z)在  $\overline{D} = D \cup \partial D$  上解析,则  $\oint_L f(z) dz = \sum_{k=0}^n \oint_{L_k} f(z) dz$ .

10. 闭路变形原理

当n=1时,上述复合闭路定理即 $\oint_L f(z)dz = \int_{L_1} f(z)dz$ ,它表明:区域D内的一个解析函数沿闭曲线积分,不因闭曲线在区域内连续变形而改变它的值积分,只要在变形过程中曲线不经过被积函数的奇点.

11. Cauchy 积分公式

设f(z)在区域D(单连通或复连通)及D的边界L上解析,则对任意 $z \in D$ 、有

$$f(z) = \frac{1}{2\pi i} \oint_{L} \frac{f(\zeta)}{\zeta - z} d\zeta, \, \sharp + L \, \text{NED}.$$

12. 高阶导数公式

设函数 f(z)在区域 D(单连通或复连通)及 D 的边界 L 上解析,则 f(z)在区域 D 内存在任意阶导数,且对任意  $z \in D$ , n = 1, 2, ...,有

$$f^{(n)}(z) = \frac{n!}{2\pi} \oint_L \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, 其中 L 取正向.$$

13. 孤立奇点及其分类

若 f(z)在  $z_0$  不解析, 但在  $z_0$  的某一去心邻域  $0 < |z-z_0| < \delta$ 内解析, 则称  $z_0$  为 f(z)的孤立奇点.

设  $z_0$  为 f(z)的孤立奇点, f(z)在  $z_0$  的去心邻域  $0 < |z-z_0| < \delta$ 内的 Laurent 展式为  $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$ .

若 
$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$$
 中无负幂项,则称  $z_0$  为  $f(z)$ 的可去奇点,

若 
$$\sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 中负幂项只有有限项,则称  $z_0$  为  $f(z)$ 的极点,

若  $c_{-m} \neq 0$ , 而  $c_{-k} = 0$  (k = m+1, m+2, ...), 则称  $z_0$  为 f(z)的 m 级极点

若 
$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$$
 中负幂项有无穷多项,则称  $z_0$  为  $f(z)$ 的本性奇点.

14. 孤立奇点类型的判定

设 $z_0$ 为f(z)的奇点,f(z)在 $N(z_0,\delta)$ 内解析,则

- (1)  $z_0$  为 f(z)的可去奇点  $\Leftrightarrow$   $F(z) = \begin{cases} f(z), & z \neq z_0 \\ c_0, & z = z_0 \end{cases}$  在  $N(z_0, \delta)$ 内解析, 其中  $c_0$  为有限复常数
  - $\Leftrightarrow \lim_{z \to z_0} f(z) = c_0$ , 其中  $c_0$  为有限复常数
  - $\Leftrightarrow f(z)$ 在 $N(z_0, \delta)$  内有界.
- (2)  $z_0$  为 f(z)的 m 级极点  $\Leftrightarrow f(z) = (z z_0)^{-m} \varphi(z)$ ,其中  $\varphi(z_0) \neq 0$ ,且  $\varphi(z)$ 在  $N(z_0, \delta)$ 内解析.  $z_0$  为 f(z)的极点  $\Leftrightarrow \lim_{z \to z_0} f(z) = \infty$ .
- (3)  $z_0$  为 f(z)的本性奇点  $\Leftrightarrow \lim_{z \to z_0} f(z)$  不存在且  $\lim_{z \to z_0} f(z) \neq \infty$ .
- 15. 零点

若解析函数 f(z)能表示成  $f(z) = (z-z_0)^m \varphi(z)$ ,其中  $\varphi(z_0) \neq 0$ ,且  $\varphi(z)$ 在  $z_0$  处解析,m 为某一正整数,则称  $z_0$  为 f(z)的 m 级零点.

 $E_{z_0}$  差  $E_{z_0}$  处解析,则  $E_{z_0}$  为  $E_{z_0}$  为  $E_{z_0}$  为  $E_{z_0}$  的  $E_{z_0}$   $E_{z_0}$ 

$$\Leftrightarrow f^{(n)}(z_0) = 0 \ (n = 0, ..., m-1), f^{(m)}(z_0) \neq 0.$$

16. 若 f(z)在  $z = \infty$ 的去心邻域 $\{z \in \mathbb{C} \mid R < |z| < +\infty\}$ 内解析,则称∞为 f(z)的孤立奇点.

令 t = 1/z, 则 t = 0 是 f(1/t)的孤立奇点.

 $E_t = 0 \ E_t(1/t)$ 的可去奇点(m 级极点,本性奇点),则称  $E_t = \infty \ E_t(z)$ 的可去奇点(m 级极点,本性奇点).

设 f(z)在 $\{z \in \mathbb{C} \mid R < |z| < +\infty\}$ 内解析,则在此圆环内有

$$f(z) = \sum_{n=1}^{\infty} c_{-n} z^{-n} + \sum_{n=0}^{\infty} c_n z^n, \quad (*)$$

因此  $z = \infty$  是 f(z)的

- (1) 可去奇点 ⇔(\*)中无正幂项;
- (2) m 级极点  $\Leftrightarrow c_m \neq 0$ , 而  $c_k = 0$  (k = m+1, m+2, ...);

- 17. 设f(z)以 $z_0$ 为有限孤立奇点,即f(z)在 $z_0$ 的某个去心邻域 $0 < |z-z_0| < R$ 内解析,L为该邻域内包含 $z_0$ 的任意一条逆时针方向的简单闭曲线,则 f(z)在  $z_0$  点处的  $\frac{\mathbf{g}}{\mathbf{g}}$   $\mathbf{Res}[f(z), z_0] = \frac{1}{2\pi \mathbf{i}} \oint_L f(z) dz$ .

  - (2) 如果  $z_0$  为 f(z)的一级极点,则 Res[f(z),  $z_0$ ] =  $\lim_{z \to z_0} (z z_0) f(z)$ . 记 $\varphi(z)=(z-z_0)f(z)$ , 则 Res $[f(z), z_0]=\varphi(z_0)$ .
  - (3) 如果  $z_0$  为 f(z)的 m 级极点,则  $\operatorname{Res}[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)].$ 若  $z_0$  为 f(z)的 m 级极点,则∀大于或等于 m 的正整数 k,有

$$\operatorname{Res}[f(z), z_0] = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}} [(z-z_0)^k f(z)].$$

- (4) 若  $f(z) = \frac{P(z)}{Q(z)}$ , P(z)及 Q(z)在  $z_0$  处解析,且  $P(z_0) \neq 0$ ,  $Q(z_0) = 0$ ,  $Q'(z_0) \neq 0$ , 则  $\operatorname{Res}[f(z), z_0] = \frac{P(z_0)}{O'(z_0)}$ .
- 18. 设∞为f(z)的一个孤立奇点,即f(z)在∞的某去心邻域R<|z|<+∞内解析. 设L为圆环域R<|z|<+∞内绕 原点的任何一条逆时针方向简单闭曲线,则 f(z)在∞的<mark>留数 Res</mark>[f(z), ∞] =  $\frac{1}{2\pi i} \oint_{t^-} f(z) dz$ .
- 19. Res[f(z), ∞] =  $-c_{-1}$ , 其中  $c_{-1}$  为 f(z)在 R < |z| < +∞内的 Laurent 展式中  $\frac{1}{z}$  的系数.
- 20. Res[f(z),  $\infty$ ] =  $-\text{Res}[f(\frac{1}{z}), \frac{1}{z^2}, 0]$ .
- 21. 设函数 f(z)在区域 D 内除去有限个孤立奇点  $z_1, z_2, ..., z_n$  外处处解析,  $L \in D$  内包围诸奇点的任意一 条逆时针简单闭曲线,则  $\oint_L f(z) dz = 2\pi i \sum_{k=0}^n \text{Res}[f(z), z_k].$
- 22. 如果函数 f(z)在扩充复平面内除去有限个孤立奇点外处处解析, 那么 f(z) 在所有奇点(包括∞点)的 留数的总和等于零, 即  $\operatorname{Res}[f(z), \infty] + \sum_{k=1}^{n} \operatorname{Res}[f(z), z_{k}] = 0.$
- 23. 形如  $\int_0^{2\pi} R(\cos x, \sin x) dx$  的积分, 其中  $R(\cos x, \sin x)$ 为  $\cos x$ ,  $\sin x$  的有理函数.

令 
$$z = e^{ix}$$
,  $x : 0 \rightarrow 2\pi$  (对应于| $z$ | = 1 逆时针方向一周),则 d $z$  = i $e^{ix}$  d $x$ , d $x = \frac{dz}{iz}$ ,

$$\cos x = \frac{1}{2} (e^{ix} + e^{-ix}) = \frac{1}{2} (z + z^{-1}) = \frac{z^2 + 1}{2z}, \ \sin x = \frac{1}{2i} (e^{ix} - e^{-ix}) = \frac{z^2 - 1}{2iz}.$$

所以 
$$\int_0^{2\pi} R(\cos x, \sin x) dx = \oint_{|z|=1} R(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}) \frac{dz}{iz}$$
.

$$\Leftrightarrow f(z) = \frac{1}{iz} \cdot R(\frac{z^2 + 1}{2z}, \frac{z^2 - 1}{2iz}), \quad \bigcup \int_0^{2\pi} R(\cos x, \sin x) dx = \oint_{|z| = 1} f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}[f(z), z_k],$$

其中  $z_k$  (k = 1, 2, ..., n)为 f(z)在|z| < 1 内的孤立奇点.

若  $R(\cos x, \sin x)$ 为 x 的偶函数,则  $\int_0^{\pi} R(\cos x, \sin x) dx = \frac{1}{2} \int_{-\pi}^{\pi} R(\cos x, \sin x) dx$ ,仍然可令  $z = e^{ix}$ ,将

 $\int_{-\pi}^{\pi} R(\cos x, \sin x) dx$  化为单位圆周上的积分.

24. 形如  $\int_{-x}^{+\infty} R(x) dx$  的积分, 其中 R(x)为 x 的有理函数, 而分母的次数至少比分子的次数高二次, 并且 R(z)在实轴上无孤立奇点. 则该反常积分是收敛的, 且 $\int_{-\infty}^{+\infty} R(x) \mathrm{d}x = 2\pi \mathrm{i} \sum_{k=0}^{n} \mathrm{Res}[R(z), z_k],$ 其中 z<sub>k</sub> 为 R(z)在上半平面内的所有有限远孤立奇点. 若 R(x)为偶函数,则有  $\int_0^{+\infty} R(x) dx = \pi i \sum_{k=0}^{n} \text{Res}[R(z), z_k].$ 

25. 形如  $\int_{-\infty}^{+\infty} R(x)e^{aix} dx$  (a>0)的积分, 其中 R(x)是 x 的有理函数, 而分母的次数至少比分子的次数高 一次,并且在实轴上无孤立奇点. 则该积分收敛,且 $\int_{-\infty}^{+\infty} R(x)e^{aix}dx = 2\pi i\sum_{k=1}^{n} \operatorname{Res}[R(z)e^{aiz}, z_k],$ 其中 $z_k$ 为R(z)在上半平面内的所有有限远孤立奇点.

### 十. 级数

1. 设 
$$\sum_{n=1}^{\infty} c_n = S$$
,  $\sum_{n=1}^{\infty} c_n' = T$ ,  $\alpha$ ,  $\beta$ 为任意常数,则  $\sum_{n=1}^{\infty} (\alpha c_n + \beta c_n') = \alpha S + \beta T$ .

2. 幂级数  $\sum_{n=0}^{\infty} c_n z^n$  的收敛半径

设 
$$\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = \rho$$
 或  $\lim_{n\to\infty} \sqrt{|c_n|} = \rho$ ,则  $\sum_{n=0}^{\infty} c_n z^n$  的收敛半径  $R = \begin{cases} 1/\rho, & 0 < \rho < +\infty; \\ +\infty, & \rho = 0; \\ 0, & \rho = +\infty. \end{cases}$ 

3. 设 $S(z) = \sum_{n=0}^{\infty} c_n z^n (|z| < R_1)$ ,  $T(z) = \sum_{n=0}^{\infty} c'_n z^n (|z| < R_2)$ .  $c_n$ ,  $c'_n (n = 1, 2, ...)$ 为复常数,  $R = \min(R_1, R_2)$ ,

$$(1) S(z) \pm T(z) = \sum_{n=0}^{\infty} c_n z^n \pm \sum_{n=0}^{\infty} c'_n z^n = \sum_{n=0}^{\infty} (c_n \pm c'_n) z^n.$$

$$(2) S(z) \cdot T(z) = \sum_{n=0}^{\infty} c_n z^n \cdot \sum_{n=0}^{\infty} c'_n z^n = \sum_{n=0}^{\infty} (c_0 c'_n + c_1 c'_{n-1} + \dots + c_n c'_0) z^n.$$

- 4. 设复幂级数  $\sum_{n=0}^{\infty} c_n z^n$  的收敛半径为  $R\neq 0$ , 和函数为 S(z), 则
  - (1) S(z) 在收敛圆内(即|z| < R)内解析;

(2) 幂级数 
$$\sum_{n=0}^{\infty} c_n z^n$$
 在收敛圆内可以逐项求导,即当  $|z| < R$  时,有  $S'(z) = \sum_{n=0}^{\infty} (c_n z^n)' = \sum_{n=1}^{\infty} n c_n z^{n-1}$ .

(3) 幂级数  $\sum_{n=0}^{\infty} c_n z^n$  在收敛圆内可以逐项积分,即当 |z| < R 时,有

并且逐项求导或逐项积分后所得的幂级数与原幂级数有相同的收敛半径, 但在收敛圆周上的敛 散性有可能改变.

- 5. 设实幂级数  $\sum_{n=0}^{\infty} a_n x^n$  的收敛半径  $R \neq 0$ ,其和函数为 S(x),则
  - (1) S(x) 在收敛域 $\widetilde{D}$ 上连续

(2) 幂级数  $\sum_{n=0}^{\infty} a_n x^n$  在 (-R, R) 内可以逐项求导,即 $\forall x \in (-R, R)$ ,有

$$S'(x) = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

(3) 幂级数  $\sum_{n=0}^{\infty} a_n x^n$  在 (-R, R) 内可以逐项积分,即 $\forall x \in (-R, R)$ ,有

$$\int_0^x S(x) dx = \sum_{n=0}^{\infty} \int_0^x a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}.$$

并且逐项求导和逐项积分后所得的幂级数收敛半径仍为 R, 但在收敛区间端点的敛散性可能改变.

6. 设复函数 f(z)在区域 D 内解析,  $z_0 \in D$ , R 为  $z_0$  到 D 的边界上各点的最短距离, 则当|  $z-z_0$ |<R 时, f(z) 能展开成幂级数, 即

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$$
 —— $f(z)$ 在点  $z_0$  处的 Talor 展式.

其中系数  $c_n = \frac{1}{n!} f^{(n)}(z_0)$  (n = 0, 1, 2, ...),且展开式是唯一的.

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$$
 称为  $f(z)$ 在点  $z_0$  处的 Talor 级数.

特别地, 当 z<sub>0</sub> = 0 时, 它们相应的称为 Maclaurin 展式与 Maclaurin 级数.

- 7. 设实函数  $f \in C^{\infty}(x_0 R, x_0 + R)$ ,则 f(x)在 $(x_0 R, x_0 + R)$ 内能展成幂级数  $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$  的充分必要条件是:  $\forall x \in (x_0 R, x_0 + R)$ , 其泰勒公式的余项  $R_n(x) \to 0$   $(n \to \infty)$ . 满足此条件时,展开式是唯一的.
- 8. 几个常用的展开式

(1) 
$$e^z = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots \quad (|z| < +\infty).$$

(2) 
$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} \quad (|z| < +\infty).$$

(3) 
$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} (|z| < +\infty).$$

(4) 
$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots + z^n + \dots = \sum_{n=0}^{\infty} z^n \quad (|z| < 1).$$

(5) 
$$\frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots + (-1)^{n-1} z^{n-1} + \dots = \sum_{n=0}^{\infty} (-1)^n z^n \quad (|z| < 1).$$

(6) 
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, x \in (-1, 1].$$

(7) 
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1) \cdots (\alpha-n+1)}{n!} x^n + \dots$$
 (\*)

当 $\alpha$ ≤-1 时, (\*)的收敛域为(-1, 1);

当 $-1 < \alpha < 0$  时, (\*)的收敛域为(-1, 1];

当 $\alpha > 0$  时, (\*)的收敛域为[-1, 1].

9. 设 f(z)在圆环域  $R_1 < |z-z_0| < R_2$  内解析、则在此圆环域内, f(z)能展成双边无穷级数、即有

其中 $c_n = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$ ,  $n = 0, \pm 1, \pm 2, \pm 3, ...L$  为圆环内绕 $z_0$ 的任何一条逆时针方向的简单

闭曲线,并且展开式是唯一的.  $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$  称为 f(z) 在该圆环内的 Laurent 级数.

10. 三角函数系 1, cosx, sinx, cos2x, sin2x, ..., cosnx, sinnx, ...的正交性

$$\int_{-\pi}^{\pi} 1 \cdot \cos nx dx = 0, \quad \int_{-\pi}^{\pi} 1 \cdot \sin nx dx = 0, \quad (n = 1, 2, ...)$$

$$\int_{-\pi}^{\pi} \cos mx \cdot \sin nx dx = 0, \quad (m, n = 1, 2, ...)$$

$$\int_{-\pi}^{\pi} \cos m \cdot \cos nx dx = 0, \quad \int_{-\pi}^{\pi} \sin mx \cdot \sin nx dx = 0, \quad (m, n = 1, 2, ... \ \text{\mathbb{H}} \ m \neq n,)$$

$$\int_{-\pi}^{\pi} 1 \cdot 1 dx = 2\pi, \quad \int_{-\pi}^{\pi} \cos^2 nx dx = \pi, \quad \int_{-\pi}^{\pi} \sin^2 nx dx = \pi, \quad (n = 1, 2, ...)$$

11. 以 2π为周期的函数 f(x)可展开为三角级数的必要条件:

若 
$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$
 在[- $\pi$ ,  $\pi$ ]上可逐项积分,则有

(Euler-Fourier 公式) 
$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx & n = 0, 1, 2, \dots \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx & n = 1, 2, \dots \end{cases}$$

上述公式中的  $a_n$  (n=0,1,2,...),  $b_n$  (n=1,2,...)称为函数 f(x)的 Fourier 系数. 由这些系数作出的三 角级数

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

称为 f(x)的 Fourier 级数. 记为  $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ .

- 12. (Dirichlet 收敛定理)设 f(x)是以  $2\pi$ 为周期的函数, 在区间[ $-\pi$ ,  $\pi$ ]上满足 Dirichlet 条件
  - (1) 连续或只有有限个第一类间断点;
  - (2) 只有有限个极值点.

则 f(x)的 Fourier 级数  $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$  在 $[-\pi, \pi]$ 上收敛,并且其和函数为:

$$S(x) = \begin{cases} f(x), & x \to f(x)$$
的连续点 
$$[f(x+0) + f(x-0)]/2, & x \to f(x)$$
的间断点 
$$[f(-\pi+0) + f(\pi-0)]/2, & x = \pm \pi \end{cases}$$

13. 设以 2l 为周期的函数 f(x)在[-l, l]上满足狄氏条件,则在连续点处它的 Fourier 展开式为

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}),$$

其中 
$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
  $(n = 0, 1, 2, ...)$ ;  $b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$   $(n = 1, 2, ...)$ .

若以 2l 为周期的函数 f(x)在[-l, l]上满足狄氏条件,则其 Fourier 级数的和函数

$$S(x) = \begin{cases} f(x), & x \ge f(x) \text{ ni exist} \\ [f(x+0) + f(x-0)]/2, & x \ge f(x) \text{ ni ni min} \\ [f(-l+0) + f(l-0)]/2, & x = \pm l \end{cases}$$

若 
$$f(x)$$
在 $(-l, l)$ 上为奇函数,则  $f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$ ,其中  $b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx$ .

若 f(x)在(-l, l)上为偶函数,则  $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$ ,其中  $a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx$ .

# 十一. 空间解析几何和向量代数

- 1. 平面方程
  - (1) 点法式方程:  $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$ .
  - (2) 一般方程: Ax + By + Cz + D = 0.

(3) 三点式方程: 
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

- (4) 截距式方程:  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ .
- 2. 直线方程

(1) 参数方程: 
$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \quad (-\infty < t < \infty). \\ z = z_0 + nt \end{cases}$$

(2) 对称方程或标准方程: 
$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$
.

(3) 一般方程: 
$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

(4) 截距式方程: 
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
.

- 3. 夹角
  - (1) 直线  $L_1$  和  $L_2$  的夹角 $\phi$  =  $\arccos \frac{\left|\mathbf{s}_1 \cdot \mathbf{s}_2\right|}{\left\|\mathbf{s}_1\right\| \cdot \left\|\mathbf{s}_2\right\|}$ , 其中  $\mathbf{s}_1$  和  $\mathbf{s}_2$  分别为直线  $L_1$  和  $L_2$  的方向向量.
  - (2) 直线与平面的夹角 $\phi = \arcsin \frac{|s \cdot n|}{\|s\| \cdot \|n\|}$ , 其中 s 为直线的方向向量, n 为平面的法向量.
  - (3) 两平面之间的夹角 $\phi$ =  $\arccos \frac{|\boldsymbol{n}_1 \cdot \boldsymbol{n}_2|}{\|\boldsymbol{n}_1\| \cdot \|\boldsymbol{n}_2\|}$ , 其中  $\boldsymbol{n}_1$  和  $\boldsymbol{n}_2$  分别两平面的法向量.
- 4. 距离
  - (1) 点 P 到直线 L 的距离  $d = \frac{\|P_0P \times s\|}{\|s\|}$ , 其中  $P_0$  在直线 L 上, s 为直线 L 的方向向量.
  - (2) 点 P 到平面 $\pi$ 的距离  $d = \frac{|P_0 P \cdot n|}{\|n\|}$ , 其中  $P_0$  在平面 $\pi$ 上, n 为平面 $\pi$ 的法向量.
  - (3) 异面直线  $L_1$  和  $L_2$  之间的距离  $d = \frac{|(s_1, s_2, \overrightarrow{P_1P_2})|}{\|s_1 \times s_2\|}$ , 其中  $s_1$  和  $s_2$  分别为直线  $L_1$  和  $L_2$  的方向向量,  $P_1$  和  $P_2$  分别在直线  $L_1$  和  $L_2$  上.
- 5. 二次曲面.

| 一般方程 $x^{T}Ax + B^{T}x + c = 0$ 中 $A$ 的秩与正惯指数 | 标准方程                                                       | 示意图      | 类型         |
|-----------------------------------------------|------------------------------------------------------------|----------|------------|
| r(A) = 3;<br>p = 0 或 3<br>需要根据标准方程<br>进一步判断类型 | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  |          | 椭球面        |
|                                               | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$  |          | 点          |
| r(A) = 3;<br>p = 1 或 2<br>需要根据标准方程<br>进一步判断类型 | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$  |          | 单叶双曲<br>面  |
|                                               | $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ |          | 双叶双曲面      |
|                                               | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$  |          | 二次锥面       |
| r(A) = 2;<br>p = 0 或 2<br>需要根据标准方程<br>进一步判断类型 | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$                    |          | 椭圆抛物<br>面  |
|                                               | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$                    |          | 椭圆柱面       |
|                                               | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$                    | (z 轴)    | 直线         |
| r(A) = 2;<br>p = 1<br>需要根据标准方程<br>进一步判断类型     | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$                    |          | 双曲抛物面      |
|                                               | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$                    |          | 双曲柱面       |
|                                               | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$                    |          | 一对<br>相交平面 |
| r(A) = 1;<br>p = 0 或 1<br>需要根据标准方程<br>进一步判断类型 | $\frac{x^2}{a^2} = 1$                                      | <b>—</b> | 一对<br>平行平面 |
|                                               | $x^2 = 0$                                                  |          | 一对<br>重合平面 |
|                                               | $x^2 = 2py$                                                |          | 抛物柱面       |