Comparison of Toronto Neighbourhoods as Rental Locations

Manan Bhati

Researching city neighbourhoods is important to recent arrivals

- Discovering rental value proposition of city neighbourhoods is important to newly arrived people
- * Key considerations are average rent for the type and size of housing they want, distance/ commute time from their work location
- * Other important factors would be neighbourhood amenities for shopping, healthcare, recreation, education, etc.

Data acquisition and cleaning

- * Name, address, location coordinates, distance and postal code of residential apartments within 'x' km of work location, from Foursquare location database (100 rows and 8 features)
- * Average rent for apartments of different configurations by Toronto neighbourhood, from <u>CMHC</u>, Canada's national housing agency (134 rows and 11 features)
 - * Irrelevant rows and columns were dropped
 - * Compound neighbourhood names were separated, cleaned up
- Forward Sortation Areas (FSA) (initial 3 characters of postal codes),
 were extracted
- * Final dataset for clustering had 21 unique FSAs, average rent for a 2BR apartment by FSA, average distance from work location, number of apartment buildings by FSA, and FSA location coordinates

Key Data Preparation Challenge

- * Toronto <u>FSAs</u> and official <u>neighbourhoods</u> are not the same and do not map one-on-one. They are useful proxies for one another, however
 - * An FSA may overlap adjacent neighbourhoods and vice-versa
 - Rent statistics maintained by CMHC are aligned with neighbourhoods
 - Location data providers like Foursquare and OpenStreetMap provide postal codes (FSAs)
 - * 45 of the 100 residential buildings within 12km of work location, provided by Foursquare, did not have any postal code (FSA) tagged
 - * Missing FSAs had to be fetched by providing name and address information to OpenStreetMap database through Nominatim geocoder
 - * Neighbourhood names in CMHC table are often aggregates of adjacent neighbourhoods and do not line up squarely with official neighbourhood names
 - Parsed neighbourhood name components were passed on to OpenStreetMap geocoder service to retrieve associated postal codes
 - * FSAs are the key to linking rent data table and residential properties data table

Exploratory Data Analysis - I

Of 26 FSAs associated with 98 residential buildings,

- M5V is heavily represented (28 times)
- 10 FSAs occur only once, 8 occur twice

Foursquare returns maximum 100 venues:

 100 residential buildings were found within a radius of 6382 metres

Exploratory Data Analysis - II

Rent figures as they exist in CMHC table for 168 neighbourhood names

- Range is from CAD 1,055 to CAD 3,047
- Median = CAD 1,437, Mean = CAD 1,555

Rent figures for 90 FSAs: FSA average rent is mean of rent of neighbourhoods tagged to an FSA

- Range is from CAD 1,213 to CAD 3,047
- Median = CAD 1,460, Mean = CAD 1,573

Final Dataset for Unsupervised ML Modeling

	Postal Code	Neigh_Latitude	Neigh_Longitude	Number of Properties	Average_rent	DistanceFromOffice_y
0	M6P	43.661608	-79.464763	2	2005.000000	1202,000000
1	M6K	43.636847	-79.428191	9	1509.428571	3754,444444
2	M5T	43.653206	-79.400049	2	2004.000000	3837.500000
3	M5V	43.636039	-79.397400	28	2920.000000	4749.392857

- 21 FSAs representing 90 apartment buildings within 12 km of work location, for which average distance and average monthly rent could be mapped
- Average rent for an FSA is the mean of monthly rent figures of all CMHC neighbourhoods partially or fully tagged to that FSA
- Average distance is the mean of distances of all residential apartment buildings tagged to an FSA
- Average rent and average distance from work will be the two features to be used for cluster modeling of FSAs

K-Means clustering for Toronto FSAs

- K-means is an efficient clustering algorithm and quickly converges to a local optimum
- Optimum number of clusters 'k' can be determined by examining elbow point of a plot of inertia (sum of squared distances of samples to their closest cluster centre) vs. 'k'
- Setting number of iterations with random centroid initializations to high (>20) mitigates inherent variance in results generated by k-means algorithm
- Both features Average rent and Distance from work are standardized
- Our modeling penalizes average rent values more compared to distance from work. Two ways to model this:
 - Assign 80:20 weights to values of average rent and distance from work
 - Derive a composite score as:

Composite Score = 0.8 * Standardized Rent Value + 0.2 * Standardized Distance and then use a univariate grouping algorithm like Jenks optimization

K-Means Results

'Elbow' (sharp inflexion point) lies at a value of k=3

Average rent

Clusters with standardized features:

- •Cluster 2
- Cluster 1
- Cluster o

Sample observations with 3 cluster labels (unstandardized)

Cluster Visualization on Toronto Map

Cluster Description	Circle Marker Colour	
'Downtown Experience at a Steep		
Price' (2)		
'Mid-priced Experience in Popular		
Neighbourhoods' (o)	•	
'Economical but at some		
distance' (1)		

Conclusion

- Aim: to group Toronto neighbourhoods/ FSAs based on average rent for a 2BR apartment and distance from the target user's work location in Toronto
- Modeling: unsupervised learning through k-means clustering. Greater weightage assigned to average rent feature in forming clusters
- Accuracy of the clusters is heavily dependent upon the reliability of postal code mappings to venues in location data providers like Foursquare and OpenStreetMap
- **Improvement** avenues: include more data related to the attractiveness of a neighbourhood, e.g. easy neighbourhood amenities for shopping, recreation, etc., number of available residential units, etc.