CH NG IV

H TH C QUI (PH NG PHÁP M CAO C P)

I. H TH C QUI:

1.1/ NH NGH A: Cho s nguyên $r \ge 0$.

M t quá trình di n ra g n li n v i tham s nguyên $n \ge r$. Ta mu n tinh tr c ti p m t i l ng a_n có liên quan n quá trình trên theo $n \ge r$. Gi s ta bi t c k giá tr ban u là $a_r = \alpha_1, a_{r+1} = \alpha_2, \ldots, a_{r+(k-1)} = \alpha_k$ (*) và thi t l p c m t h th c $a_n = f(a_{n-1}, a_{n-2}, \ldots, a_{n-k}, n), \forall n \ge r + k$ (**) tinh gián ti p a_n theo k s h ng i tr c nó [trong (**) it nh t ph i có m t a_{n-k}]. (*) và (**) c cho s n ho c ta t tính toán tr c ti p t quá trình. T (*) và (**), n u v ph i c a (**) luôn luôn xác nh thì ta có duy nh t dãy

 $\{a_n \mid n \ge r\}$ th a (*) va (**). Ta noi (**) lam th th c quic p k v i i u ki n ban u (*).

Víd:

a) Tính
$$a_n = \int_0^e (\ln x)^n dx$$
, $\forall n \ge r = 1$.

Ta có
$$a_1 = \int_1^e \ln x dx = x \ln x \Big|_1^e - \int_1^e dx = e - x \Big|_1^e = e - (e - 1) = 1 \text{ và } \forall n \ge 2,$$

$$a_n = \int_1^e (\ln x)^n dx = x(\ln x)^n \Big]_1^e - \int_1^e n(\ln x)^{n-1} dx = e - n \int_1^e (\ln x)^{n-1} dx = e - n a_{n-1}. \text{ Nh } \text{ v y}$$

b) Dãy s Fibonacci $\{a_n \mid n \ge r = 0\}$ có

$$\begin{array}{lll} a_0=0,\,a_1=\ 1\ (*)\ v\grave{a}\ a_n=\ a_{n-1}+a_{n-2}=\ f(a_{n-1},\,a_{n-2},\,n),\,\forall n\geq 2\ (**):\ \ \hat{a}y\ l\grave{a}\ h\\ th\ c & qui\ c\ p\ 2. \end{array}$$

c) Tính
$$a_n = \int_0^{\pi/4} t g^n x dx$$
, $\forall n \ge r = 2$. $t = t gx$ thì $dt = (1 + t^2) dx$ và ta có

$$a_2 = \int_0^{\pi/4} tg^2 x dx = \int_0^1 \frac{t^2 dt}{1+t^2} = \int_0^1 (1 - \frac{1}{1+t^2}) dt = t - \arctan t$$

$$a_3 = \int_0^{\pi/4} tg^3 x dx = \int_0^{\pi/4} tgx(1 + tg^2 x) dx - \int_0^{\pi/4} tgx dx = \int_0^1 t dt - \int_0^{\pi/4} \frac{-d(\cos x)}{\cos x} =$$

$$= \frac{t^2}{2} \, \big|_0^1 + \ln(\cos x) \, \big|_0^{\pi/4} = \frac{1 - \ln 2}{2}.$$

$$v\grave{a} \ \forall n \geq 4, \ a_n = \int_0^{\pi/4} tg^n x dx = \int_0^{\pi/4} tg^{n-2} x (1 + tg^2 x) dx - \int_0^{\pi/4} tg^{n-2} x dx = \int_0^1 t^{n-2} dt - a_{n-2} =$$

$$=\frac{t^{n-1}}{n-1} \Big]_0^1 - a_{n-2} = \frac{1}{n-1} - a_{n-2}$$
. Nh v y $a_2 = 1 - \frac{\pi}{4}$, $a_3 = \frac{1 - \ln 2}{2}$ (*) và

$$a_n = \frac{1}{n-1} - a_{n-2} = f(a_{n-1}, a_{n-2}, n), \forall n \ge 4 (**) : \text{ ây là h th c } \text{ qui c p 2}.$$

1.2/GI IH TH C QUI:

Cho h th c qui c p k có $a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k}, n), \forall n \ge r + k (**) v i$ i u ki n u $a_r = \alpha_1, a_{r+1} = \alpha_2, ..., a_{r+(k-1)} = \alpha_k (*).$

- a) N u ch gi i riêng (**), ta th $ng có vô s dãy \{ a_n | n \ge r \}$ th a (**).
- b) N u gi i ng th i (*) và (**), ta ch có nhi u nh t lm t dãy { $a_n \mid n \geq r$ } th a (*) và (**).
- c) Vi c th c hi n a) ho c b) g i là gi i m t h th c qui. N u th c hi n a), ta nói ta tìm các nghi m t ng quát c a (**). N u th c hi n b), ta nói ta tìm m t nghi m riêng c a (**) t ng ng v i (*).

Vid:

- a) Cho h th c qui c p 3 có $a_o = 2, \, a_1 = -5, \, a_2 = 5 \, (*) \, \text{ và } \, \forall n \geq 3, \, a_n = 2a_{n-1} + a_{n-2} 2a_{n-3} \, (**)$ Gi i (**), ta có nghi m t ng quát $a_n = p + q(-1)^n + s.2^n, \, \forall n \geq 0 \, (p, \, q, \, s \in \mathbf{R}).$ K th p thêm (*), ta có $2 = p + q + s, \, -5 = p q + 2s, \, 5 = p + q + 4s.$ T ó $p = -3, \, q = 4, \, s = 1 \, \text{ và } a_n = -3 + 4(-1)^n + 2^n, \, \forall n \geq 0 \, \text{ là nghi m riêng c a (**)}.$
- b) Cho h th c qui c p 2 có $a_1 = 3$, $a_2 = -4$ (*) và $\forall n \ge 1$, $a_{n+2} = \sqrt{a_n a_{n+1}}$ (**). Gi i (**), ta có vô s dãy { $a_n \mid n \ge 1$ } th a (ch c n ch n a_1 , a_2 tùy ý ≥ 0). K th p thêm (*), ta không có dãy { $a_n \mid n \ge 1$ } nào th a (*) và (**) vì $a_3 = \sqrt{a_1 a_2} = \sqrt{-12}$ vô ngh a.

II. H TH C QUI TUY N TÍNH H S H NG THU N NH T:

- 2.1/ <u>H</u> TH C C P 1: Cho $a_n = \lambda a_{n-1}$, $\forall n \ge r+1$ (**) $(\lambda \in \mathbf{R}^* = \mathbf{R} \setminus \{0\})$ Suy ra $a_n - \lambda a_{n-1} = 0$, $\forall n \ge r+1$ và ta l p a th c b c nh t t ng ng $f(x) = (x - \lambda)$. Ta th y (**) có nghi m t ng quát $a_n = p\lambda^n$, $\forall n \ge r$ ($p \in \mathbf{R}$).

2.2/ H TH CC P2:

Cho $a_n = \lambda a_{n-1} + \mu a_{n-2}, \ \forall n \ge r+2 \ (\lambda, \mu \in \mathbf{R} \ \ va \ \ \mu \ne 0) \ (**).$

Suy ra $a_n - \lambda a_{n-1} - \mu a_{n-2} = 0$, $\forall n \ge r+2$ và ta 1 p tam th c b c hai t ng ng $f(x) = x^2 - \lambda x - \mu$ v i bi t th c $\Delta = \lambda^2 + 4\mu$.

- a) N u $\Delta > 0$ thì $f(x) = (x \lambda_1)(x \lambda_2)$ v i hai nghi m th c phân bi t λ_1, λ_2 . (**) có nghi m t ng quát $a_n = p \lambda_1^n + q \lambda_2^n, \forall n \ge r \ (p, q \in \mathbf{R})$.
- b) N u $\Delta = 0$ thì $f(x) = (x \lambda_o)^2$ v i nghi m th c kép λ_o . (**) có nghi m t ng quát $a_n = (p + nq) \lambda_o^n$, $\forall n \ge r \ (p, q \in \mathbf{R})$.
- c) N u $\Delta < 0$ thì f(x) có hai nghi m ph c d ng l ng giác $d(\cos \phi \pm i \sin \phi)$. (**) có nghi m t ng quát $a_n = d^n (p \cos n\phi + q \sin n\phi), \forall n \geq r (p, q \in \mathbf{R})$.

Ví d:

- a) Cho $a_1 = -16$, $a_2 = 2$ (*) $v\grave{a}$ $a_{n+2} = a_{n+1} + 6a_n$, $\forall n \ge 1$ (**). Ta có a th c t ng ng $f(x) = x^2 x 6 = (x-3)(x+2)$ ($\lambda_1 = 3 \ne \lambda_2 = -2$). (**) có nghi m t ng quát $a_n = p.3^n + q(-2)^n$, $\forall n \ge 1$ ($p, q \in \mathbf{R}$). T (*), -16 = 3p 4q $v\grave{a}$ 2 = 9p + 16q nên p = -2 $v\grave{a}$ q = 5. V y $a_n = (-2)3^n + 5(-2)^n$, $\forall n \ge 1$.
- b) Cho $a_2=0$, $a_3=-64$ (*) $v\grave{a}$ $a_{n+1}=8a_n-16a_{n-1}$, $\forall n\geq 3$ (**). Ta có a th c t ng ng $f(x)=x^2-8x+16=(x-4)^2$ (nghi m kép $\lambda_o=4$). (**) có nghi m t ng quát $a_n=(p+nq)4^n$, $\forall n\geq 2$ (p, $q\in \mathbf{R}$). T (*), 0=16(p+2q) $v\grave{a}-64=64(p+3q)$ nên p=2 $v\grave{a}$ q=-1. V y $a_n=(2-n)4^n$, $\forall n\geq 2$.
- c) Cho $a_o = 3$, $a_1 = 6$ (*) $v \grave{a} \ a_n = 2a_{n-1} 4a_{n-2}$, $\forall n \geq 2$ (**). Ta có a th c t ng ng $f(x) = x^2 2x + 4 = (x-1)^2 + (\sqrt{3})^2$ $v \grave{a} \ f(x)$ có hai nghi m ph c có d ng l ng giác $1 \pm i\sqrt{3} = 2(\cos\frac{\pi}{3} \pm i\sin\frac{\pi}{3})$.
 - $\begin{array}{l} (**) \ \ c\acute{o} \ nghi \ \ m \ t \ \ ng \ qu\acute{a}t \ \ a_n = 2^n \ (pcos\frac{n\pi}{3} + qsin\frac{n\pi}{3}), \ \forall n \geq 0 \ (p, \, q \in {\bf R}). \\ T \ \ \ (*), \ 3 = p \ \ v\grave{a} \ \ 6 = p + q\sqrt{3} \ \ n\^{e}n \ \ p = 3 \ \ v\grave{a} \ \ q = \sqrt{3} \ . \\ V \ y \ \ a_n = 2^n \ (3cos\frac{n\pi}{3} + \sqrt{3}\sin\frac{n\pi}{3}), \ \forall n \geq 0. \end{array}$
- d) Cho $n \ge 1$. An it mt t (b c thang th 0) lên c u thang n b c thang th n. M i b c chân c a An s lên c 1 ho c 2 b c thang. H i An có bao nhiều cách b c chân t m t t lên n b c thang th n? t a_n là s cách An b c chân t m t t lên n b c thang th n ($\forall n \ge 1$). D th y $a_1 = 1$, $a_2 = 2$ (*). Ta có $a_n = a_{n-1} + a_{n-2}$, $\forall n \ge 3$ (**) trong ó $a_{n-1} = S$ cách An b c chân t m t t lên n b c thang th n mà có t
 - và $a_{n-2} = S$ cách Anb c chân t m t t lên n b c thang th n mà không t chân lên b c thang th (n-1), ngh a là An có t chân lên b c th (n-2) r i t chân lên b c th n ngay.

Ta có a th c t ng ng $f(x) = x^2 - x - 1 = (x - \alpha)(x - \beta) (\alpha = \frac{1 + \sqrt{5}}{2}, \beta = \frac{1 - \sqrt{5}}{2})$

(**) có nghi m t ng quát $a_n = p\alpha^n + q\beta^n$, $\forall n \ge 1$ (p, $q \in \mathbf{R}$).

T (*), $1 = \alpha p + \beta q$ và $2 = \alpha^2 p + \beta^2 q$ nên $p = \frac{\alpha}{\sqrt{5}}$ và $q = \frac{-\beta}{\sqrt{5}}$.

V y
$$a_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\sqrt{5}}, \forall n \ge 1.$$

chân lên b c thang th (n-1)

e) Dãy Fibonacci $a_0 = 0$, $a_1 = 1$ (*) và $a_n = a_{n-1} + a_{n-2}$, $\forall n \ge 2$ (**).

Ta có a thac t ng ng $f(x) = x^2 - x - 1 = (x - \alpha)(x - \beta)$ $(\alpha = \frac{1 + \sqrt{5}}{2}, \beta = \frac{1 - \sqrt{5}}{2})$

 $(**) \text{ c\'o nghi } m \text{ t } \text{ ng qu\'at } a_n = p\alpha^n + q\beta^n, \ \forall n \geq 0 \text{ (p, q } \in \textbf{ R)}. \ T \quad (*),$

$$0 = p + q$$
 và $1 = \alpha p + \beta q$ nên $p = \frac{1}{\alpha - \beta} = \frac{1}{\sqrt{5}}$ và $q = -p = \frac{-1}{\sqrt{5}}$.

V y
$$a_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}, \forall n \ge 0.$$

III. H TH C QUI TUY N TÍNH H S H NG KHÔNG THU N NH T:

3.1/H TH CC P1:

Cho $a_n = \lambda a_{n-1} + \phi_m(n)\alpha^n$, $\forall n \ge r+1 \ (**)$ trong \acute{o} $\lambda, \alpha \in \mathbf{R}, \lambda \ne 0 \ne \alpha$, $\phi_m(x)$ là a th c h s th c theo bi n n và $deg(\phi_m) = m \ge 0$.

Xét h th c qui thu n nh t t ng ng $a_n - \lambda a_{n-1} = 0$, $\forall n \ge r+1$ (\blacklozenge) và a th c b c nh t t ng ng $f(x) = (x-\lambda)$.

Ta có Nghi m t ng quát a_n c a (**) =

- = Nghi m t ng quát a_n ' c $a(\blacklozenge)$ + m t nghi m c th b t k a_n '' c a(**).
- a) N u $\alpha \neq \lambda$: (**) có m t nghi m c th có d ng a_n " = $\psi_m(n)\alpha^n$, $\forall n \geq r$ trong ó $\psi_m(n)$ là a th c h s th c theo bi n n và $\deg(\psi_m) = m$.
- b) N u $\alpha = \lambda$: (**) có m t nghi m c th có d ng a_n " = $n\psi_m(n)\alpha^n$, $\forall n \ge r$ trong ó $\psi_m(n)$ là a th c h s th c theo bi n n và $\deg(\psi_m) = m$.

<u>Ví d</u>:

a) Bài toán THÁP HÀ N I: Cho n ≥ 1. Có 3 c c I, II và III. Tic c I ang có n cái a tròn có bán kính khác nhau (khi t a vào b t c c c nào, ta luôn luôn ph i tuân th vi c t a nh phía trên a l n). Hãy di chuy n h t n a này qua c c II (m i l n ch c chuy n l a và có th t t m a vào c c trung gian trong quá trình chuy n a). H i ta ph i c n bao nhiêu l n chuy n a?

 $\begin{array}{l} t\ a_n=s\ 1\ n\ chuy\ n\quad a\ c\ n\ c6\quad chuy\ n\ n\quad a\ t\ c\ c\ I\ qua\ c\ c\ II\ (n\ge 1). \\ Ta\ c6\ a_1=1\ (^*)\ va\ a_n=2a_{n-1}+1,\ \forall n\ge 2\ (^{**}).\quad ay\ la\ m\ t\ h\quad th\ c\quad qui\ tuy\ n\ tinh\ c\ p\ 1\ không\ thu\ n\ nh\ t\ v\ i\ \lambda=2\ne\alpha=1\ va\ \phi_o(n)=1\ c6\ deg(\phi_o)=0. \\ X\acute{e}t\ h\ th\ c\quad qui\ thu\ n\ nh\ t\ t\quad ng\ ng\ a_n-2a_{n-1}=0,\ \forall n\ge 2\ (\spadesuit)\ va\ a\ th\ c\ b\ c\ nh\ t\ t\quad ng\ ng\ f(x)=(x-2). \end{array}$

- (\blacklozenge) có nghi m t ng quát $a_n' = p2^n, \forall n \ge 1 \ (p \in \mathbf{R}).$
- (**) có m t nghi m c th có d ng a_n " = $1^n \psi_o(n) = q$, $\forall n \ge 1 \ (q \in \mathbf{R})$.

Thay a_n " = q, $\forall n \ge 1$ vào (**), ta có q = 2q + 1 nên a_n " = q = -1, $\forall n \ge 1$.

Do \acute{o} (**) có nghi m t ng quát là $a_n = a_n' + a_n'' = p2^n - 1$, $\forall n \ge 1$ ($p \in \mathbf{R}$).

T (*) ta có 1 = 2p - 1 nên p = 1. V y $a_n = 2^n - 1$, $\forall n \ge 1$.

b) Tính $a_n = 1^2 + 2^2 + ... + n^2, \forall n \ge 1.$

Ta có $a_1 = 1$ (*) và $a_n = a_{n-1} + n^2 \ \forall n \ge 2$ (**). ây là m th th c qui tuy n tính c p 1 không thu n nh t v i $\lambda = 1 = \alpha$ và $\phi_2(n) = n^2$ có $\deg(\phi_2) = 2$. Xét h th c qui thu n nh t t ng ng $a_n - a_{n-1} = 0$, $\forall n \ge 2$ (\spadesuit) và a th c b c nh t t ng ng f(x) = x - 1.

 (\blacklozenge) có nghi m t ng quát $a_n' = p.1^n = p, \forall n \ge 1 \ (p \in \mathbf{R}).$

(**) có m t nghi m c th có d ng a_n " = $1^n n \psi_2(n) = n(qn^2 + sn + t)$, $\forall n \ge 1$ (q, s, t ∈ **R**). Thay a_n " = $(qn^3 + sn^2 + tn)$, $\forall n \ge 1$ vào (**), ta có

 $qn^3 + sn^2 + tn = q(n-1)^3 + s(n-1)^2 + t(n-1) + n^2$, $\forall n \ge 2$ (c ng úng $\forall n \in \mathbb{Z}$). The n = 0, n = 1 và n = 2 vào ng nh t the c trên, ta có he phong trình

s-t-q=0, q+s+t=1 và 7q+3s+t=4. Gi i ra ta $c = \frac{1}{3}$, $s = \frac{1}{2}$, $t = \frac{1}{6}$

và a_n " = $\frac{1}{6}$ (2n³ + 3n² + n), \forall n \geq 1. Do \acute{o} (**) có nghi m t ng quát là

$$\begin{split} a_n &= a_n ' + a_n '' = \ p + \frac{1}{6} \ (2n^3 + 3n^2 + n) = \ p + \frac{1}{6} \ n(n+1)(2n+1), \ \forall n \geq 1 \ (p \in \mathbf{R}). \\ T \quad (*) \ ta \ co \ 1 = p+1 \ n \hat{\mathbf{e}} n \ p = 0. \ V \ y \ a_n = \ \frac{n(n+1)(2n+1)}{6}, \ \forall n \geq 1. \end{split}$$

3.2/H TH CC P2:

Cho $a_n = \lambda a_{n-1} + \mu a_{n-2} + \phi_m(n)\alpha^n$, $\forall n \geq r+2$ (**) trong $\delta \lambda, \mu, \alpha \in \mathbf{R}$, $\mu \neq 0 \neq \alpha, \phi_m(x)$ là a th c h s th c theo bi n n và $deg(\phi_m) = m \geq 0$. Xét h th c qui thu n nh t t ng ng $a_n - \lambda a_{n-1} - \mu a_{n-2} = 0$, $\forall n \geq r+2$ (\bullet) và tam th c b c hai t ng ng $f(x) = x^2 - \lambda x - \mu$. Ta $c\delta$ Nghi m t ng quát a_n c a (**) =

- = Nghi m t ng quát a_n ' c a(•) + m t nghi m c th b t k a_n '' c a(**).
- a) N u α không là nghi m c a f(x) [$f(\alpha) \neq 0$] : (**) có m t nghi m c th có d ng a_n " = $\psi_m(n)\alpha^n$, $\forall n \geq r$ trong ó $\psi_m(n)$ là a th c h s th c theo bi n n và $deg(\psi_m) = m$.
- b) N u α là nghi m n c a f(x) [f(α) = 0 \neq f '(α)] : (**) có m t nghi m c th có d ng a_n " = $n\psi_m(n)\alpha^n$, $\forall n \geq r$ trong ó $\psi_m(n)$ là a th ch s th c theo bi n n và $deg(\psi_m) = m$.
- c) N u α là nghi m kép c a f(x) [$f(\alpha) = 0 = f'(\alpha)$] : (**) có m t nghi m c th có d ng a_n " = $n^2 \psi_m(n) \alpha^n$, $\forall n \ge r$ trong ó $\psi_m(n)$ là a th c h s th c theo bi n n và $deg(\psi_m) = m$.

Ví d:

- a) Cho $a_2 = 37$, $a_3 = -97$ (*) $val_{n+1} = 9a_{n-1} + 5.2^n$, $\forall n \ge 3$ (**). ây là m the the course qui tuy n tính cop 2 không thu n nh tov i $\lambda = 0$, $\mu = -9$, $\alpha = 2$ value $\phi_o(n) = 5$ có $deg(\phi_o) = 0$. Xét hoth course qui thu n nh tot ngo ng $a_{n+1} 9a_{n-1} = 0$, $\forall n \ge 3$ (•) value the cobo chait ngo ngo $f(x) = x^2 9 = (x 3)(x + 3)$ có $f(2) = -5 \ne 0$. (•) có nghi mot ngo quát $a_n' = p.3^n + q(-3)^n$, $\forall n \ge 2$ (p, $q \in \mathbb{R}$). (**) có mot nghi moc tho có dong $a_n'' = 2^n \psi_o(n) = t.2^n$, $\forall n \ge 2$ (total). They $a_n'' = t.2^n$, $\forall n \ge 2$ value (**), ta có $t.2^{n+1} = 9t.2^{n-1} + 5.2^n$, $\forall n \ge 3$, ngh a là t = -2 value $a_n'' = -2^{n+1}$, $\forall n \ge 2$. Do ó (**) có nghi mot ngo quát là $a_n = a_n' + a_n'' = p.3^n + q(-3)^n 2^{n+1}$, $\forall n \ge 2$ (p, $q \in \mathbb{R}$).
 - $\begin{array}{lll} T & (*) \ ta \ c\acute{o} \ \ 37 = 9p + 9q 8 \ \ v\grave{a} \ 97 = 27p 27q 16 & n\^{e}n \ \ p = 1 \ \ v\grave{a} \ \ q = 4. \\ V \ \ y \ \ a_n = \ \ 3^n + 4(-3)^n 2^{n+1}, \ \forall n \geq 2. \end{array}$
- b) Cho $a_o = 73$, $a_1 = 92$ (*) $v\grave{a}_{n+2} = -4a_{n+1} + 5a_n + 24$, $\forall n \geq 0$ (**). $\hat{a}y \, l\grave{a}$ m th th c qui tuy n tính c p 2 không thu n nh t v i $\lambda = -4$, $\mu = 5$, $\alpha = 1$ $v\grave{a}$ $\phi_o(n) = 24$ có $deg(\phi_o) = 0$. Xét h th c qui thu n nh t t ng ng $a_{n+2} + 4a_{n+1} 5a_n = 0$, $\forall n \geq 0$ (•) $v\grave{a}$ tam th c b c hai t ng ng $f(x) = x^2 + 4x 5 = (x-1)(x+5)$ có $f(1) = 0 \neq f$ '(1) (•) có nghi m t ng quát a_n ' = $p.1^n + q(-5)^n = p + q(-5)^n$, $\forall n \geq 0$ (p, q $\in \mathbb{R}$). (**) có m t nghi m c th có d ng a_n " = $1^n n\psi_o(n) = tn$, $\forall n \geq 0$ (t $\in \mathbb{R}$). Thay $a_n = t$ n, $\forall n \geq 0$ $v\grave{a}o$ (**), ta có t(n+2) = -4t(n+1) + 5t n + 4, $\forall n \geq 0$, ngh a $l\grave{a}$ t = 4 $v\grave{a}$ $a_n = 4t$ $\forall n \geq 0$. Do ó (**) có nghi m t ng quát $l\grave{a}$

 $a_n = a_n' + a_n'' = p + q(-5)^n + 4t, \forall n \ge 0 \ (p, q \in \mathbf{R}).$

 a_n " = $n^2(2n+3)(-7)^n$, $\forall n \ge 1$. Do \acute{o} (**) có nghi m t ng quát là $a_n = a_n' + a_n'' = (p + qn + 3n^2 + 2n^3)(-7)^n, \forall n \ge 1 \ (p, q \in \mathbf{R}).$ T (*) ta có 84 = -7(p+q+5) và 49 = 49(p+2q+28) nên

p = -7 và q = -10. V y $a_n = (2n^3 + 3n^2 - 10n - 7)(-7)^n$, $\forall n \ge 1$.