Андрей Никитин (г. Минск)

ПРЕИМУЩЕСТВА ТРАНЗИСТОРОВ В КОРПУСАХ DIRECTFET

Большой объем исследований в области корпусирования мощных полупроводниковых приборов ведется компанией International Rectifier, которая в настоящее время выпускает лучшие в отрасли по соотношению «ценакачество» MOSFET-транзисторы. В статье рассматривается технология корпусирования DirectFET, которая обеспечивает рекордную для отрасли эффективность корпуса транзисторов.

настоящее время MOSFETтранзисторы являются одними из самых широко применяемых силовых приборов. Они используются в системах электропитания серверов, рабочих станций и универсальных ЭВМ (в качестве силовых коммутирующих элементов синхронных понижающих преобразователей), блоках питания ноутбуков, в шинных преобразователях телекоммуникационного оборудования и систем передачи данных, в электроприводах различного назначения, в аудиотехнике (силовые каскады усилителей класса D).

Условия жесткой конкурентной борьбы требуют от конструкторов, с одной стороны, обеспечить высокую эффективность разрабатываемых изделий, с другой — минимально возможные энергопотребление и габариты, и при этом — максимально снизить себестоимость конечных изделий. Силовые ключи, основная ниша использования MOSFET-транзисторов, безусловно — весьма чувствительная к названным факторам часть изделия.

Изначально основные усилия разработчиков мощных MOSFET-транзисторов были направлены на совершенствование структуры ячеек, повышение плотности их упаковки, оптимизацию технологических процессов с тем, чтобы:

- Минимизировать значение сопротивления открытого канала транзистора RDS(ON), поскольку этот параметр непосредственно влияет на количество энергии, уходящей в рассеиваемое прибором тепло;
- Минимизировать значение заряда затвора QG, поскольку этот фактор определяет максимальную частоту коммутации ключа (и, как следствие, его эффективность).

Эти усилия привели к ощутимым положительным результатам. Однако в какой-то момент стал очевиден следующий факт — вклад конструкции корпуса (сопротивление выводов, адгезивных материалов, используемых для присоединения кристалла к основанию корпуса, золотых проволочных соединений) в сопротивление RDS(ON) оказывается сопоставимым с вкладом кремния. Кроме того, выводы и герметики стандартных корпусов, таких как TSSOP и SOIC, приводят к увеличению площади, объема и массы транзистора. Поэтому сегодня значительные усилия разработчиков направлены именно на совершенствование корпусов MOSFETтранзисторов.

Высокая эффективность корпуса обеспечивается рядом параметров: малым активным сопротивлением выводов, малым температурным сопротивлением, низким уровнем паразитных факторов. Сюда надо добавить следующие факторы: максимальную площадь теплового и электрического контакта с печатной платой, удобную топологию выводов (для параллельного соединения транзисторов) и, конечно, минимальные габариты корпуса.

До определенного времени работы по повышению эффективности корпусов мощных MOSFET-транзисторов шли в двух направлениях:

- Разработка различных вариантов корпусов на базе корпуса SO-8;
- Разработка вариантов приборов с многорядным расположением шариковых контактов в корпусах типа BGA или бескорпусных FlipChip.

Однако к кардинальным изменениям в повышении эффективности корпусов эти направления не привели. И только предложенная компанией International Rectifier технология DirectFET обеспе-

чила прорыв на пути достижения рекордно высоких показателей эффективности корпуса. На рисунке 1 представлена структура MOSFET-транзистора в корпусе DirectFET.

На рисунке 2 приведен внешний вид и модификации корпусов DirectFET. В этой технологии используется специфический кристалл транзистора с двусторонним расположением выводов: площадка затвора и, как правило, несколько площадок истока с одной стороны и сток – с другой. Соединение стока с печатной платой обеспечивается с помощью медной крышки-зажима, на которой и размещен кристалл транзистора. В зависимости от размеров крышки существуют три группы корпусов: small (малые), medium (средние) и large (большие). В каждой из групп существуют различные модификации в зависимости от размера кристалла, позиционирования на крышке и числа контактных площадок. Маркировка, размеры, расположение выводов и рекомендуемая топология печатной платы приведены в [1].

В корпусах DirectFET отсутствует разварка кристалла (соединение проводниками площадок транзистора с внешними выводами). Основными преимуществами DirectFET являются:

- Оптимальные размеры корпуса;
- Ультранизкое электрическое сопротивление выводов;
- Низкое температурное сопротивление, высокая рассеивающая способность корпуса;
- Низкая паразитная индуктивность корпуса.

Оптимальные размеры корпуса. Начнем с «малой группы». По площади корпус DirectFET «S» сравним с

Рис. 1. Структура транзистора в корпусе DirectFET

International Rectifier

Таблица 1, MOSFET-транзисторы в корпусах DirectFET

Модель	Корпус	V_{DS} , B	Vgs max, B	R _{DS(on)} max 10 B, mOhms	ID @ TA=25°C, A	Qg Typ, nC	Qgd Typ, nC
IRF6714M	DirectFET MX	25	20	2,1	29,0	29,0	8,3
IRF6716M	DirectFET MX	25	20	1,6	39,0	39,0	12,0
IRF6711S	DirectFET SQ	25	20	3,8	19,0	13,0	4,4
IRF6674	DirectFET MZ	60	20	11,0	13,4	24,0	8,3
IRF7779L2	DirectFET L8	150	20	11,0	11,0	97,0	33,0
IRF7759L2	DirectFET L8	75	20	2,3	26,0	200,0	62,0
IRF7749L2	DirectFET L8	60	20	1,5	33,0	200,0	71,0
IRF6775M	DirectFET MZ	150	20	56,0	4,9	25,0	6,6
IRF6795M	DirectFET MX	25	20	1,8	32,0	35,0	10,0
IRF6645	DirectFET SJ	100	20	35,0	5,7	14,0	4,8
IRF6785	DirectFET MZ	200	20	100,0	3,4	26,0	6,9
IRF6712S	DirectFET SQ	25	20	4,9	17,0	13,0	4,4
IRF7665S2	DirectFET SB	100	20	62,0	4,1	8,3	3,2
IRF6722S	DirectFET ST	30	20	7,7	13,0	11,0	4,1
IRF7769L2	DirectFET L8	100	20	3,5	20,0	200,0	110,0
IRF6722M	DirectFET MP	30	20	7,7	13,0	11,0	4,3
IRF6643	DirectFET MZ	150	20	34,5	6,2	39,0	11,0
IRF6721S	DirectFET SQ	30	20	7,3	14,0	11,0	3,7
IRF6718L2	DirectFET L2	25	20	0,70	61,0	,	64,0
IRF6646	DirectFET MN	80	20	9,5	12,0	36,0	12,0
IRF6616	DirectFET MX	40	20	5,0	19,0	29,0	9,4
IRF6613	DirectFET MT	40	20	3,4	23,0	42,0	12,7
IRF6691	DirectFET MT	20	12	1,8	32,0	47,0	15,0
IRF6668	DirectFET MZ	80	20	15,0	02,0	22,0	7,8
IRF6797M	DirectFET MX	25	20	1,4	36,0	45,0	13,0
IRF6725M	DirectFET MX	30	20	2,2	28,0	36,0	11,0
IRF6648	DirectFET MN	60	20	7,0	20,0	36,0	14,0
IRF6715M	DirectFET MX	25	20	1,6	34,0	40,0	12,0
IRF6726M	DirectFET MT	30	20	1,7	32,0	51,0	16,0
IRF6710S2	DirectFET S1	25	20	5,9	12,0	8,8	3,0
IRF6709S2	DirectFET S1	25	20	7,8	12,0	8,1	2,8
IRF6798M	DirectFET MX	25	20	1,3	37,0	50,0	16,0
IRF6662	DirectFET MZ	100	20	22,0	8,3	22,0	6,8
IRF6717M	DirectFET MX	25	20	1,25	38,0	46,0	14,0
				1,23			
IRF7799L2	DirectFET L8	250	30	4.0	6,6	110,0	39,0
IRF6729M	DirectFET MX	30	20	1,8	31,0	42,0	14,0
IRF7739	DirectFET L8	40	20	1,0	46,0	220,0	81,0
IRF6665	DirectFET SH	100	20	62,0	4,2	8,7	2,8
IRF6727M	DirectFET MX	30	20	1,7	32,0	49,0	16,0
IRF6720S2	DirectFET S1	30	20	8,0	11,0	7,9	2,8
IRF6614	DirectFET ST	40	20	8,3	12,7	19,0	6,0
IRF6644	DirectFET MN	100	20	13,0	10,3	35,0	11,5
IRF6655	DirectFET SH	100	20	62,0	4,2	8,7	2,8
IRF6724M	DirectFET MX	30	20	2,5	27,0	33,0	10,0
IRF6641	DirectFET MZ	200	20	59,9	4,6	34,0	9,5
IRF6794M	DirectFET MX	25	20	3,0	32,0	31,0	11,0
IRF6713S	DirectFET SQ	25	20	3,0	22,0	21,0	6,3

TSSOP-8, но за счет низкого профиля объем меньше на 44%. По сравнению с SO-8 площадь меньше на 40%. «Средняя» группа по площади сравнима с SO-8, но объем меньше на 60%. По сравне-

нию с D-Pak площадь меньше на 54%. «Большая» группа: по площади выигрыш у D-Pak - 10%, у D2Pak - 63%. Для всех групп минимальная высота равна 0.7 мм.

Электрическое сопротивление выводов. В транзисторах DirectFET электрический ток протекает по кратчайшему расстоянию — через кристалл и крышку корпуса, что иллюстрируется

Рис. 2. Внешний вид и модификации корпусов DirectFET

Воздушный поток Реберный охладитель Теплоизоляционная прокладка между корпусом и транзистором

Рис. 3. Сравнение электрического сопротивления выводов для различных корпусов транзисторов

Рис. 4. **Способы отвода тепла с корпусов DirectFET**

ту. Монтаж корпусов DirectFET на пе-

Удобство монтажа на печатную пла-

рисунком 3. У транзисторов в корпусах SO-8, D-Pak и их разновидностях ток, кроме того, протекает через проводники разварки кристалла и выводы корпуса.

Электрическое сопротивление корпуса DirectFET менее 0,1 мОм, что более чем в 14 раз ниже, чем у классического корпуса SO-8. По сравнению с другими корпусами — выигрыш в 3,5...12 раз. Отметим, что у DirectFET сопротивление выводов гораздо ниже электрического сопротивления открытого канала RDS(ON).

Низкое температурное сопротивление. У транзисторов в пластмассовых корпусах отвод тепла от кристалла осуществляется только через выводы корпуса. Так, для корпусов SO-8 температурное сопротивление между кристаллом и печатной платой составляет 20°C/Вт. Для корпусов DirectFET аналогичный параметр составляет 1°C/Вт, поскольку площадь отвода тепла существенно выше. Аналогично, температурное сопротивление между кристаллом и верхней поверхностью корпуса для SO-8 составляет 55°C/Вт, а для DirectFET 3°C/Вт. Уже только из этих соображений температура корпуса DirectFET работающего транзистора может быть ниже (вплоть до разницы в 50°С), чем у корпуса SO-8. Рисунок 4 иллюстрирует возможности отвода тепла с корпусов DirectFET: обдувом, радиатором и теплопроводящей пленкой.

Низкая паразитная индуктивность корпуса. Из-за отсутствия проводников

разварки кристалла корпуса DirectFET имеют самую низкую среди корпусов паразитную индуктивность. Она не превышает 5 нГн на частотах до 5 МГц, что втрое ниже, чем у корпуса SO-8, в пять раз ниже, чем у корпуса D-Pak и в 10 раз ниже, чем у D2Pak. Низкая паразитная индуктивность обеспечивает высокое качество переходных процессов в режимах переключения транзистора и возможность работы на высоких частотах ШИМ. На рисунке 5 представлены осциллограммы, иллюстрирующие влияние паразитной индуктивности на качество переходных процессов для корпусов DirectFET и SO-8.

того канала и низкий заряд затвора обеспечивают достижение КПД преобразования выше 90% в одно- и многофазных DC/DC-конверторах, применяемых в

Ультранизкое сопротивление открыкомпьютерной технике.

ций) размеры контактных площадок истока, стока и затвора, расстояния между ними и допуска на посадку дают возможность использовать все материалы и технологии производства и монтажа печатных плат. За счет большой площади контакта и взаимного расположения контактных площадок достигается высокая механическая прочность соединения корпуса с платой, улучшенная

Рис. 5. Влияние паразитной индуктивности на качество переходных процессов

Рис. 6. **Монтаж корпусов DirectFET на печатную** плату

электрическая и тепловая проводимость с корпуса на плату.

Номенклатура изделий. Номенклатура транзисторов в корпусах DirectFET перекрывает диапазон напряжений 20...200 В. Это позволяет применять их в преобразовательных устройствах со всеми номиналами напряжений телекоммуникационных шин. Параметры транзисторов DirectFET представлены в таблице 1.

Объединив преимущества технологии корпусирования DirectFET и технологии TrenchFET Gen10.59, компания IR приступила к началу производства нового поколения МОП-транзисторов DirectFET-2. Обновление номенклатуры коснулось диапазона напряжений «сток-исток» 25...30 В. Транзисторы но-

вого поколения производятся в тех же корпусах, что позволяет произвести модернизацию и поднять КПД преобразования без изменения печатной платы.

Заключение

Многофазные DC/DC-конверторы, применяемые в вычислительной технике, телекоммуникации, управлении приводами стали в последние годы тем объектом, где выясняется подлинная эффективность современных мощных MOSFET-транзисторов. Для их создания привлекаются все новейшие достижения как в технологиях производства кристаллов и корпусирования, так и в схемотехнике. Стремительное приближение потребления (современными устройствами новейших поколений) тока к отметке 100 А непрерывно повышает сложность решаемых задач при проектировании конверторов.

Подведем итоги:

- Транзисторы DirectFET совместимы с требованиями RoHs: корпуса не содержат свинца или бромидов;
- Низкое температурное сопротивление «кристалл-корпус» позволяет обеспечить эффективный теплоотвод с верхней поверхности корпуса;
- Низкое температурное сопротивление «кристалл-печатная плата» позволяет обеспечить теплоотвод с площади на печатной плате не более чем у корпусов SO-8;

- Конструктивное исполнение транзисторов позволяет снизить сопротивление контактов на 90% по сравнению с корпусами SO-8;
- Низкий профиль по высоте (0,7 мм) обеспечивает минимальный объем корпуса;
- Транзисторы обладают низкой индуктивностью корпуса на высоких частотах:
- Транзисторы совместимы с традиционным технологическим оборудованием и производственными процессами монтажа печатной платы.

Именно эти достоинства технологии корпусирования DirectFET, разработанной и запатентованной компанией International Rectifier, позволяют создавать изделия, в полной мере соответствующие требованиям настоящего времени.

Литература

1. DirectFET® Technology Board Mounting Application Note// документ an-1035.pdf компании International Rectifier. □

Получение технической информации, заказ образцов, поставка – e-mail: power.vesti@compel.ru

