

Github Codes

Sph2Pob: Boosting Object Detection on Spherical Images with Planar Oriented Boxes Methods

Xinyuan Liu^{1,2}, Hang Xu³, Bin Chen^{1,2}, Qiang Zhao¹, Yike Ma¹, Chenggang Yan³, Feng Dai^{1*}

¹Institute of Computing Technology, Chinese Academy of Sciences ²University of Chinese Academy of Sciences ³Hangzhou Dianzi University

♦ Introduction **♦**

> Task

detect (locate+classfy) objects on panoramic / spherical images.

Wed 23 August 11:45-12:45 (5 / 6)

→ Application

environment perception for robotics and automatic driving.

> Focus point

IoU calculation and loss design for spherical bounding boxes.

> Challenges

- It's hard to balance differnetiablity, accuary and speed in spherical IoU calculation.
- It's hard to design better spherical loss functions beyond naive L1-Loss.

Contributions

- convert spherical boxes into planar oriented boxes in pairs, named as Sph2Pob.
- implement a differentiable, fast, accurate spherical IoU based on Sph2Pob.
- implement a flexible and extensible spherical loss functions based on Sph2Pob.

Prerequisites

> Spherical Images

- Spherical image is a natural extend (360° view) of comon planar image.
- Spherical image has two display mode, i.e., sphere and equal rectangular projection.

Sphere

Equal Rectangular Projection (ERP)

≻Spherical Boxes

- Spherical bounding box is defined as $(\theta, \phi, \alpha, \beta, \gamma)$.
- $n(\theta, \phi)$ is the tangent point of the sphere and rectangular tangent plane.
- α and β are the horizontal and vertical fields of view of the spherical bounding box.
- γ is rotated angle around center-axis $p(\theta,\phi)$.
- Apart from γ , another rotated angle Δ coupled with box-pair exists on sphere. [our insight]
- we call γ as external angle, while Δ as internal angle.

external angle

Welcome to communicate with me through Email! liuxinyuan21s@ict.ac.cn fdai@ict.ac.cn

♦ Methodology **♦**

> Overview

Comparsion

	Exact Method	Approxim	ate Method	Approximate Method			
Method	Unbiased-IoU	Sph-lo2U	FoV-IoU	Sph2Pob-IoU(Our)			
differentiablity	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow$	****	****	****			
speed	* * * * *	****	****	****			
accuracy	****	$\star \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$	$\star\star \star \Leftrightarrow \Leftrightarrow \Leftrightarrow$	****			

Mathematical Details

- 1. Compute position and pose.
 - $\boldsymbol{n} = \boldsymbol{n}(\theta, \phi) = [nx, ny, nz]^{\top}$ $= [\sin(\phi)\cos(\theta), \sin(\phi)\sin(\theta), \cos(\phi)]^{\top}$
 - $\boldsymbol{p} = \boldsymbol{p}(\theta, \phi) = \frac{\partial \boldsymbol{n}(\theta, \phi)}{\partial \phi} = [px, py, pz]^{\top}$ $= [\cos(\phi)\cos(\theta), \cos(\phi)\sin(\theta), -\sin(\phi)]^{\top}$
- 2. Construct spherical transformation. $oldsymbol{R} = \left[oldsymbol{v}_x, oldsymbol{v}_y, oldsymbol{v}_z
 ight]^ op = \left\lceil rac{oldsymbol{n}_1 + oldsymbol{n}_2}{\|oldsymbol{n}_1 + oldsymbol{n}_2\|}, rac{oldsymbol{n}_1 - oldsymbol{n}_2}{\|oldsymbol{n}_1 - oldsymbol{n}_2\|}, oldsymbol{v}_x imes oldsymbol{v}_y
 ight
 ceil^ op$

3. Transform position and pose.

 $\hat{m{n}}(\hat{ heta},\hat{\phi}) = m{R} \ m{n}(heta,\phi)$

4. Compute Internal Angle.

 $a_i = \Delta_i + \gamma_i, i = 1, 2$

 $\left[oldsymbol{\hat{p}}_{1}, oldsymbol{\hat{p}}_{2}
ight] = oldsymbol{R}\left[oldsymbol{p}_{1}, oldsymbol{p}_{2}
ight]$

 $\Delta = \Delta_1 + \Delta_2 = \arccos(\hat{\boldsymbol{p}}_1 \cdot \hat{\boldsymbol{p}}_{ref}) + \arccos(\hat{\boldsymbol{p}}_2 \cdot \hat{\boldsymbol{p}}_{ref})$

5. Map spherical boxes to planar boxes.

 $\mathcal{B}_i^\mathcal{P} = (x_i, y_i, w_i, h_i, a_i) = (\hat{ heta}_i, \hat{\phi}_i, \hat{lpha}_i, \hat{eta}_i, \hat{\Delta}_i)$

Experiments

≻Main Results

Scatter of different IoU.

Comprehensive comparison of box transform methods.

Mothod	Consistency			Time-cost		Detection		
Method	$\mathbf{R}_{all} \uparrow$	$\mathbf{R}_{low} \uparrow$	$\mathbf{R}_{high} \uparrow$	$ \mathbf{T}_{cpu}\downarrow$	$\mathbf{T}_{cuda} \downarrow$	AP↑	$AP_{50} \uparrow$ 24.3 25.0	AP ₇₅
Sph	0.7819	0.9922	0.4274	0.0364	0.0033	10.7	24.3	7.8
Fov	0.9600	0.9974	0.8860	0.0372	0.0034	10.9	25.0	7.9
Sph2Pob	0.9989	0.9990	0.9988	2.2275	0.0096	11.5	25.7	8.2
Unbiased	1.0000	1.0000	1.0000	46.4417	-	_	-	1-

Ablation studies about edge & angle calculation.

Edge	Error ↓(mean±std)	R↑	Angle	Error ↓(mean±std)	R↑
arc	0.0016 ± 0.0042	0.9989	original	0.0025 ± 0.0086	0.9946
chord	0.0023 ± 0.0063	0.9974	equator	0.0016 ± 0.0042	0.9989
tangent	0.0086 ± 0.0192	0.9681	project	0.0017 ± 0.0043	0.9987

> Evaluations

Evaluation on different Loss.

CIoU[†] [Zheng et al., 2021] 11.5 25.7 8.2 10.5 25.3

Evaluation on different detectors.

Datastan	Logg	360-Indoor			PANDORA			
Detector	Loss	AP↑	$\mathbf{AP}_{50} \uparrow$	$\mathbf{AP}_{75} \uparrow$	AP↑	AP ₅₀ ↑	$AP_{75} \uparrow$	
Faster R-CNN	L1	12.5	28.1	9.1	11.0	27.8	6.2	
	CI _o U [†]	12.9	29.1	9.4	11.3	28.6	7.1	
SSD	L1	10.8	27.6	6.3	9.5	25.8	4.6	
	CI ₀ U [†]	12.0	28.7	8.0	10.5	26.9	6.0	
FCOS	L1	8.8	20.2	6.7	7.7	19.7	4.4	
	$CIoU^{\dagger}$	9.2	21.0	7.0	8.8	21.2	5.6	

❖ Visualization ❖

360-Indoor

PANDORA

