Chapter 1

Fundamental Concepts

Definition 1.1

If $U \subset \mathbb{R}^2$ is open and $f: U \to \mathbb{R}$ is a continuous function, then f is called C^1 on U if $\partial f/\partial x, \partial f/\partial y$ exist and are continuous on U.

Definition 1.2

We define for $f = u + iv : U \to \mathbb{C}$ a C_1 function

$$\frac{\partial}{\partial z}f := \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})f$$
$$\frac{\partial}{\partial \bar{z}}f := \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})f$$

which is easy to be checked linear and the chain rules.

where we may check let z = x + iy, $\bar{z} = x - iy$, we have

$$\begin{split} \frac{\partial}{\partial z}z &= 1, \quad \frac{\partial}{\partial z}\bar{z} = 0 \\ \frac{\partial}{\partial \bar{z}}z &= 0, \quad \frac{\partial}{\partial \bar{z}}\bar{z} = 1 \end{split}$$

Proposition 1.1

(The Leibniz Rules) We have for any $F,G \in C^1$

$$\frac{\partial}{\partial z}(F \cdot G) = \frac{\partial F}{\partial z} \cdot G + F \cdot \frac{\partial G}{\partial z}$$
$$\frac{\partial}{\partial \overline{z}}(F \cdot G) = \frac{\partial F}{\partial \overline{z}} \cdot G + F \cdot \frac{\partial G}{\partial \overline{z}}$$

Proposition 1.2

We have for $l \le j, m \le k$ nonnegative integers and then

$$(\frac{\partial^l}{\partial z^l})(\frac{\partial^m}{\partial \bar{z}^m})(z^j\bar{z}^k) = \frac{j!}{l!}\frac{k!}{m!}z^{j-l}\bar{z}^{k-m}$$

Proposition 1.3

If $p(z,\bar{z}) = \sum a_{lm} z^l \bar{z}^m$ is a polynomial, then p contains no term with m > 0 iff $\frac{\partial p}{\partial \bar{z}} \equiv 0$.

Corollary 1.1

If $p(z, \bar{z}) = qz, \bar{z}$ are polynomials, then they have same coefficients.

Definition 1.3

A C_1 function $f: U \mapsto \mathbb{C}$ is said to be holomorphic if

$$\frac{\partial f}{\partial \bar{z}} = 0$$

at every point of U.

Definition 1.4

A C^1 function $f = u(x,y) + iv(x,y) : U \to \mathbb{C}$ is holomorphic if

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

at every point of U, which is called the Cauchy-Riemann equations.

Proposition 1.4

If $f: U \to \mathbb{C}$ is C^1 and if f satisfies the C-R equations, then

$$\frac{\partial}{\partial z}f = \frac{\partial}{\partial x}f = -i\frac{\partial}{\partial y}f$$

on U.

Proof

We have

$$\begin{split} \frac{\partial}{\partial x}f &= \frac{\partial}{\partial x}u + i\frac{\partial}{\partial x}v = (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})u = 2\frac{\partial}{\partial z}u \\ \frac{\partial}{\partial x}f &= \frac{\partial}{\partial x}u + i\frac{\partial}{\partial x}v = i(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})v = 2\frac{\partial}{\partial z}iv \\ -i\frac{\partial}{\partial y}f &= -i\frac{\partial}{\partial y}u + \frac{\partial}{\partial y}v = (\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})u = 2\frac{\partial}{\partial z}u \\ -i\frac{\partial}{\partial y}f &= -i\frac{\partial}{\partial y}u + \frac{\partial}{\partial y}v = i(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})v = 2\frac{\partial}{\partial z}iv \end{split}$$

on U.

Definition 1.5

If $U \subset \mathbb{C}$ is open and $u \in C^2(U)$, then u is called harmonic if

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

where we also denote it as

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

where the operator is called the Laplace operator.

Here we have

$$4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z}u = 4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = \Delta u$$

Proposition 1.5

The real and imaginary parts of a holomorphic C^2 function are harmonic.

Proof

Assume f = u + iv and then according to C-R equations, we have

$$\frac{\partial^2}{\partial x^2}u = \frac{\partial^2}{\partial x \partial y}v = \frac{\partial^2}{\partial y \partial x}v = -\frac{\partial^2}{\partial y^2}u$$

and

$$\frac{\partial^2}{\partial x^2}v = -\frac{\partial^2}{\partial x \partial y}u = -\frac{\partial^2}{\partial y \partial x}u = -\frac{\partial^2}{\partial y^2}v$$

Lemma 1.1

It u(x,y) is a real-valued polynomial with $\Delta u=0$, then there exists a (holomorphic) Q(z) such that ReQ=u.

Proof

Consider $u(x,y)=u(\frac{z+\bar{z}}{2},\frac{z-\bar{z}}{2})=P(z,\bar{z})=\sum a_{lm}z^{l}\bar{z}^{m}$, we know $\Delta u=0$ and hence

$$P(z,\bar{z}) = a_0 0 + \sum_{k=0}^{m} a_k z^k + \sum_{k=0}^{n} b_k \bar{z}^k$$

P is real-valued and we know

$$a_0 0 + \sum_{k=0}^{m} a_k z^k + \sum_{k=0}^{n} b_k \bar{z}^k = \bar{a_0} 0 + \sum_{k=0}^{m} \bar{a_k} \bar{z}^k + \sum_{k=0}^{n} \bar{b_k} z^k$$

and hence $a_00 \in \mathbb{R}, a_k = \bar{b_k}$ and hence

$$u(z) = c + \sum_{k=0}^{n} a_k z^k + \sum_{k=0}^{n} \bar{a_k} \bar{z}^k = Re(c + 2\sum_{k=0}^{n} a_k z^k) = Re(Q)$$

where Q is obviously holomorphic.

Theorem 1.1

If f, g are C^1 functions on the rectangle

$$\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : |x - a| < \delta, |y - b| < \epsilon\}$$

and if

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x} \text{ on } \mathcal{R}$$

then there is a function $h \in C^{(\mathcal{R})}$ such that

$$\frac{\partial}{\partial x}h = f, \frac{\partial}{\partial y}h = g$$

on R. If f, g are real-valuedd, the nwe may take h to be real-valued also.

\Diamond

Proof

For $(x, y) \in \mathcal{R}$, define

$$h(x,y) = \int_{a}^{x} f(t,b)dt + \int_{b}^{y} g(x,s)ds$$

and we know

$$\frac{\partial}{\partial y}h(x,y) = g(x,y)$$

and

$$\frac{\partial}{\partial x}h(x,y) = f(x,b) + \frac{\partial}{\partial x}\int_b^y g(x,s)ds = f(x,b) + \int_b^y \frac{\partial}{\partial y}f(x,s) = f(x,b) + f(x,y) - f(x,b) = f(x,y)$$

and hence $h \in C^2(\mathcal{R})$ and real-valued if f, g are.

Corollary 1.2

If \mathcal{R} is an open rectangle (or open disc) and if u is a real-valued harmonic function on \mathbb{R} , then there is a holomorphic function F on \mathbb{R} such that ReF = u.

Proof

We know

$$\frac{\partial^2}{\partial x^2}u + \frac{\partial^2}{\partial y^2}u = 0$$

and hence there exists v real-valued such taht

$$\frac{\partial}{\partial x}v=-\frac{\partial}{\partial y}u, \frac{\partial}{\partial y}v=\frac{\partial}{\partial x}u$$

and hence F = u + iv is a holomorphic function with Re(F) = u.

Theorem 1.2

If $U \subset \mathbb{C}$ is either an open rectangle or an open disc and if F is holomorphic on U, then there is a holomorphic function H on U such that $\partial H/\partial z = F$ on U.

Proof

Consider $H = h_1 + ih_2$ and we have F = u(z) + iv(z), then we let f = u, g = -v and we will have

$$\frac{\partial}{\partial y}f = \frac{\partial}{\partial x}g$$

and hence we have a real C^2 function h_1 such that

$$\frac{\partial}{\partial x}h_1 = u, \frac{\partial}{\partial y}h_1 = -v$$

and $h_2 \in C^2$ with

$$\frac{\partial}{\partial x}h_2 = v, \frac{\partial}{\partial y}h_2 = u$$

Then

$$\frac{\partial}{\partial z}H = \frac{1}{2}(\frac{\partial}{\partial x}h_1 + \frac{\partial}{\partial y}h_2) + \frac{i}{2}(\frac{\partial}{\partial x}h_2 - \frac{\partial}{\partial y}h_1) = u + iv = F$$

Definition 1.6

A function $\phi:[a,b]\to\mathbb{R}$ is called continuously differentiable and we write $\phi\in C^1([a,b])$ if

- (a) ϕ is continous on [a, b]
- (b) ϕ' exists on (a,b)
- (c) ϕ' has a continuous extension to [a, b], i.e.

$$\lim_{t \to a^+} \phi'(t)$$
 and $\lim_{t \to b^-} \phi'(t)$

both exists. Then $\phi(b) - \phi(a) = \int_a^b \phi'(t) dt$.

Proof

Here notice that ϕ is absolutely continuous on [a,b] respect to m, then we know $\phi(b-\epsilon)-\phi(a+\epsilon)=\int_{a+\epsilon}^{b-\epsilon}\phi'(t)dt$ for any epsilon>0, and hence

$$\phi(b) - \phi(a) = \int_{a}^{b} \phi'(t)dt$$

Definition 1.7

A curve $\gamma:[a,b]\to\mathbb{C}$ is said to be continuous on [a,b] if both γ_1 and γ_2 are, $\gamma=\gamma_1+i\gamma_2$. The curve is C_1 on [a,b] if γ_1,γ_2 are C_1 on [a,b] and then we may denote

$$\frac{d\gamma}{dt} = \frac{d\gamma_1}{dt} + i\frac{d\gamma_2}{dt}$$

Definition 1.8

Let $\varphi:[a,b]\to\mathbb{C}$ be continuous on [a,b]. Write $\varphi(t)=\varphi_1(t)+i\varphi_2(t)$. Then we define

$$\int_{a}^{b} \varphi(t)dt = \int_{a}^{b} \varphi_{1}(t)dt + i \int_{a}^{b} \varphi_{2}(t)dt$$

Proposition 1.6

Let $U \subset \mathbb{C}$ be open and let $\gamma: [a,b] \to U$ be a C_1 curve. If $f: U \to \mathbb{R}$ and $f \in C^1(U)$, then

$$f(\gamma(b)) - f(\gamma(a)) = \int_{a}^{b} \left(\frac{\partial}{\partial x} f(\gamma(t)) \frac{d\gamma_{1}}{dt} + \frac{\partial}{\partial y} f(\gamma(t)) \frac{d\gamma_{2}}{dt} \right) dt$$

This is due to the chain rule.

Proposition 1.7

Repalce f above as complex-valued and holomorphic, then we have

$$f(\gamma(b)) - f(\gamma(a)) = \int_a^b \frac{\partial}{\partial z} f(\gamma(t)) \cdot \frac{d\gamma}{dt}(t) dt$$

Proof

Notice

$$\begin{split} f(\gamma(b)) - f(\gamma(a)) &= \int_a^b \left(\frac{\partial}{\partial x} u(\gamma(t)) \frac{d\gamma_1}{dt}(t) + \frac{\partial}{\partial y} u(\gamma(t)) \frac{d\gamma_2}{dt}(t) \right) + i \left(\frac{\partial}{\partial x} v(\gamma(t)) \frac{d\gamma_1}{dt}(t) + \frac{\partial}{\partial y} v(\gamma(t)) \frac{d\gamma_2}{dt}(t) \right) dt \\ &= \frac{\partial}{\partial x} f(\gamma(t)) \frac{d\gamma}{dt}(t) = \int_a^b \frac{\partial}{\partial z} f(\gamma(t)) \frac{d\gamma}{dt}(t) dt \end{split}$$

Definition 1.9

If $U \subset \mathbb{C}$ open and $F: U \to \mathbb{C}$ is continuous on U and $\gamma: [a,b] \to U$ is a C_1 curve, then we define the complex line integral

$$\int_{\gamma} F(z)dz = \int_{a}^{b} F(\gamma(t)) \frac{d\gamma}{dt} dt$$

Proposition 1.8

Let $U \subset \mathbb{C}$ be open and let $\gamma: [a,b] \to U$ be a C^1 curve. If f is a holomorphic function on U, then

$$f(\gamma(b)) - f(\gamma(a)) = \int_{\gamma} \frac{\partial}{\partial z} f(z) dz$$

Proposition 1.9

If ϕ : $[a,b] \to \mathbb{C}$ *is continuous, then*

$$\left| \int_{a}^{b} \phi(t)dt \right| \leq \int_{a}^{b} \left| \phi(t) \right| dt$$

Proposition 1.10

Let $U \subset \mathbb{C}$ be open and $f \in C^0(U)$. If $\gamma : [a,b] \to U$ is a C^1 curve, then

$$\left| \int_{\gamma} f(z)dz \right| \le (\sup_{t \in [a,b]} |f(\gamma(t))|) \cdot l(\gamma)$$

where

$$l(\gamma) = \int_{a}^{b} \left| \frac{d\gamma}{dt}(t) \right| dt$$

Proposition 1.11

Let $U \subset \mathbb{C}$ be an open set and $F: U \to \mathbb{C}$ a continuous function. Let $\gamma: [a,b] \to U$ be a C^1 curve. Suppose that $\theta: [c,d] \to [a,b]$ is a one-to-one, onto, increasing C^1 function with a C^1 inverse. Let $\tilde{\gamma} = \gamma \circ \phi$. Then

$$\int_{\tilde{\gamma}} f dz = \int_{\gamma} f dz$$

Proof

We have

$$\int_{\tilde{\gamma}}fdz=\int_{c}^{d}f(\gamma(\phi(t)))\frac{d\gamma(\phi(t))}{dt}dt=\int_{a}^{b}f(\gamma(s))\frac{\gamma(s)}{ds}\phi'(\phi^{-1}(s))(\phi^{-1})'(s)ds=\int_{\gamma}fdz$$
 since
$$\phi'(\phi^{-1}(s))(\phi^{-1})'=1.$$

Definition 1.10

Let f be a function on the open set U in \mathbb{C} and consider if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists then we say that f has a complex derivative at z_0 . We denote the complex derivative by $f'(z_0)$.

*

Theorem 1.3

Let $U \subset \mathbb{C}$ be an open set and let f be holomorphic on U. Then f' exists at each point of U and

$$f'(z) = \frac{\partial}{\partial z} f$$

for all $z \in U$.

Proof

Consider

$$\gamma(t) = (1 - t)z_0 + tz$$

and then we know

$$f(z) - f(z_0) = f(\gamma(1)) - f(\gamma_0) = \int_{\gamma} \frac{\partial}{\partial z} f dz = (z - z_0) \int_0^1 \frac{\partial}{\partial z} f(\gamma(t)) dt = \frac{\partial}{\partial z} f(z_0) + \int_0^1 (\frac{\partial}{\partial z} f(\gamma(t)) - \frac{\partial}{\partial z} f(z_0)) dt$$

and hence

$$\left|\frac{f(z) - f(z_0)}{z - z_0} - \frac{\partial}{\partial z}f(z_0)\right| \le \int \left|\frac{\partial}{\partial z}(\gamma(t)) - \frac{\partial}{\partial z}f(z_0)\right| dt \to 0$$

when $z \to z_0$.

Theorem 1.4

If $f \in C^1(U)$ and f has a complex derivative at each point of U, then f is holomorphic on U. In particular, if a continuous, complex-valued function f on U has a complex derivative at each point and if f' is continuous on U, then f is holomorphic on U.

Proof

It is easy to check

$$\lim_{h \to 0, h \in \mathbb{R}} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{\partial}{\partial x} u(x_0, y_0) + i \frac{\partial}{\partial x} v(x_0, y_0)$$

and

$$\lim_{h \to 0, h \in \mathbb{R}} \frac{f(z_0 + h) - f(z_0)}{h} = -i \frac{\partial}{\partial y} u(x_0, y_0) + \frac{\partial}{\partial y} v(x_0, y_0)$$

and hence f satisfies the C-R equations so holomorphic.

Notice the continuity of f' may implies that $f \in C^1(U)$ and hence the problem goes.

Theorem 1.5

Let f be holomorphic in a neighborhood of $P \in \mathbb{C}$. Let ω_1, ω_2 be complex numbers of unit modulus. Consider the directional derivatives

$$D_{\omega_1} f(P) = \lim_{t \to 0} \frac{f(P + t\omega_1) - f(P)}{t}$$

and

$$D_{\omega_2} f(P) = \lim_{t \to 0} \frac{f(P + t\omega_2) - f(P)}{t}$$

then

a.
$$|D_{\omega_1} f(P)| = |D_{\omega_2} f(P)|$$

b. If $f'(P) \neq 0$, then the directed angle from ω_1 to ω_2 equals the directed angle from $D_{\omega_1} f(P)$ to $D_{\omega_2} f(P)$.

 \Diamond

Proof

Notice that

$$D_{\omega_j} = f'(P)\omega_j, j = 1, 2$$

and then the conclusions go.

Lemma 1.2

Let $(\alpha, \beta) \subset \mathbb{R}$ be an open interval and let $H: (\alpha, \beta) \to \mathbb{R}$, $F: (\alpha, \beta) \to \mathbb{R}$ be continuous functions. Let $p \in (\alpha, \beta)$ and suppose that dH/dx exists and equals F(x) for all $x \in (\alpha, \beta)\{p\}$. Then (dH/dx)(p) exists and (dH/dx)(x) = F(x) for all $x \in (\alpha, \beta)$.

Proof

Assume $[a,b] \subset (\alpha,\beta)$ and then $K(x) = H(a) + \int_a^x F(t)dt$ on [a,b], so we know K-H is continuous on [a,b] and constant on $[a,p) \cup (p,b]$, which means K=H on [a,b].

Theorem 1.6

Let $U \subset \mathbb{C}$ be either an open rectangle or an open disc and let $P \in U$. Let f and g be continuous, real-valued functions on U which are continuously differentiable on $U - \{P\}$. Suppose further that

$$\frac{\partial}{\partial y}f = \frac{\partial}{\partial x}g \ on \ U = \{P\}$$

Then there exists a C^1 function $h: U \to \mathbb{R}$ such that

$$\frac{\partial}{\partial x} = f, \frac{\partial}{\partial y} = g$$

at every point of U.

C

Proof

Consider a closed rectangle containing p inside in U and define $h(x,y)=\int_a^x f(t,b)dt+\int_b^y g(x,s)ds$ and we know that $\frac{\partial}{\partial y}h=g(x,y)$ and $\frac{\partial}{\partial x}h=f(x,y)$ for any $x\neq P_x$, then for a fixed y, we know dh(x,y)/dx=f(x,y) exists for all points in U except for (p_x,y) and hence dh(x,y)/dx=f(x,y) at (p_x,y) . Then we know $\frac{\partial}{\partial x}h=f,\frac{\partial}{\partial y}h=g$ on U.

Theorem 1.7

Let $U \subset \mathbb{C}$ be either an open rectangle or an open disc. Let $P \in U$ be fixed. Suppose that F is continuous on U and holomorphic on $U - \{P\}$. Then there is a holomorphic H on U such that U such that $\frac{\partial}{\partial z}H = F$.

Proof

Consider F = u + iv, then we have

$$\frac{\partial}{\partial y}v=\frac{\partial}{\partial x}u$$
 and $\frac{\partial}{\partial y}u=\frac{\partial}{\partial x}(-v)$

on $U-\{P\}$, then we know there exists h_1,h_2 on U such that $\frac{\partial}{\partial x}h_1=u,\frac{\partial}{\partial y}h_1=(-v),\frac{\partial}{\partial x}h_2=v,\frac{\partial}{\partial y}h_2=u$ and let $H=h_1+ih_2$, we have

$$\frac{\partial}{\partial z}H = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})(h_1 + ih_2) = (u + u) + i(v + v) = F$$

Definition 1.11

The boundary $\partial D(P,r)$ of the disc D(P,r) can be parametrized as a simple closed curve $\gamma:[0,1]\to\mathbb{C}$ by setting

$$\gamma(t) = P + re^{2\pi it}$$

we call it counterclockwise orientation.

Lemma 1.3

Let γ be the boundary of a disc $D(z_0, r)$ in the complex plane, equiipped with counterclockwise orientation. Let z be a point inside the circle $\partial D(z_0, \gamma)$. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z} d\xi = 1$$

 \Diamond

Proof

Consider
$$I(z) = \int_{\gamma} \frac{1}{\xi - z} d\xi = \int_0^1 \frac{1}{(z_0 + e^{2\pi i t}) - z} (2\pi i) e^{2\pi i t} dt$$
 and since
$$\frac{\partial}{\partial x} \frac{1}{\xi - z} = \frac{1}{(\xi - z)^2}, \frac{\partial}{\partial y} \frac{1}{\xi - z} = i \frac{1}{(\xi - z)^2}$$

and hence we have

$$\frac{\partial}{\partial \bar{z}}I(z) = \int_{\gamma} \frac{\partial}{\partial \bar{z}}(\frac{1}{\xi-z})d\xi = 0 \quad \frac{\partial}{\partial z}I(z) = \int_{\gamma} \frac{\partial}{\partial z}(\frac{1}{\xi-z})d\xi = \int_{\gamma} \frac{1}{(\xi-z)^2}d\xi$$

where $\frac{1}{(\xi-z)^2}$ is the complex derivative of the holomorphic function $\frac{-1}{\xi-z}$ and hence

$$\frac{\partial}{\partial z}I(z) = \int_{\gamma} \frac{1}{(\xi - z)^2} d\xi = 0$$

Therefore, I(z) is holomorphic on $D(z_0,r)$ and $\frac{\partial}{\partial z}I=0$ which means I is constant on $D(z_0,r)$ and notice $I(z_0)=2\pi i$

and hence the equation holds.

Theorem 1.8

(The Cauchy integral fomula) Suppose that U is an open set in $\mathbb C$ and that f is a holomorphic function on U. Let $z_0 \in U$ and let r > 0 be such that $\overline{D}(z_0, r) \subset U$. Let $\gamma : [0, 1] \to \mathbb C$ be the C^1 curve $\gamma(t) = z_0 + r\cos(2\pi t) + ir\sin(2\pi t)$. Then for each $z \in D(z_0, r)$,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

 \Diamond

Proof By theorem 1.7, there is H such that

$$\frac{\partial}{\partial z}H = \frac{f(\xi) - f(z)}{\xi - z}$$

if $\xi \neq z$ and $\frac{\partial}{\partial z} H(z) = f'(z)$ holomorphic on $D(z_0, r + \epsilon)$ and hence

$$\int_{\gamma} \frac{f(\xi) - f(z)}{\xi - z} d\xi = 0$$

and the equation holds by the lemma 1.3.

Theorem 1.9

(The Cauchy integral theorem) If f is a holomorphic function on an open disc U in the complex plane, and if $\gamma: [a,b] \to U$ is a C^1 curve in U with $\gamma(a) = \gamma(b)$, then

$$\int_{\mathcal{X}} f(z)dz = 0$$

 \odot

Proof Only need to pick G such that $\frac{\partial}{\partial z}G=f$ on U is fine.