

Revisão de Sistemas Digitais, mas não só...

1. Operandos em arquitetura de computadores

- Todas as operações são realizadas em base 2 (binário)
- Para efeitos de visualização os operandos podem ser representados em base 16 (hexadecimal) ou 10 (decimal)

Conversão de bases:

- Considere o número x representado na base b
- Como converter para uma base c?
- 1. Separar o número x em parte inteira (x_I) e parte fracionária (x_f)
- 2. Converter as duas partes em separado e somar no final
 - A. Converter a parte inteira através do método das divisões sucessivas pela base de destino
 - B. Converter a parte fracionária através do método das multiplicações sucessivas pela base de destino

Ex. conversão do número 19,27 para base 2:

19,27 = 10011,0100010100011101011100001010...

Uma dízima finita numa base b por ser infinita numa base c!

1. Operandos em arquitetura de computadores

- Todas as operações são realizadas em base 2 (binário)
- Para efeitos de visualização os operandos podem ser representados em base 16 (hexadecimal) ou 10 (decimal)

Conversão de bases:

- Considere o número x representado na base b
- Como converter para uma base c?
- 1. Separar o número x em parte inteira (x_I) e parte fracionária (x_f)
- 2. Converter as duas partes em separado e somar no final
 - A. Converter a parte inteira através do método das divisões sucessivas pela base de destino
 - B. Converter a parte fracionária através do método das multiplicações sucessivas pela base de destino

Ex. conversão do número 11101.101₂ para base 10:

$$11101.101_2 = 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3} = 16 + 8 + 4 + 1 + 0.5 + 0.125$$
$$= 29.625$$

1. Operandos em arquitetura de computadores

- Todas as operações são realizadas em base 2 (binário)
- Para efeitos de visualização os operandos podem ser representados em base 16 (hexadecimal) ou 10 (decimal)

Conversão de bases:

- Considere o número x representado na base b
- Como converter para uma base c?

Se $b = p^m$ e $c=p^n$, então a conversão pode ser feita diretamente!

Cada conjunto de m símbolos na base c corresponde a um conjunto de n símbolos na base b

Muito fácil de aplicar se m=1 ou n=1!

Base binária (21) para hexadecimal (24)

Cada 4 símbolos na base 2 equivale a 1 símbolo na base 16

$$00100111011_2 = 0001 0011 1011_2 = 13B_{16}$$
1 3 B

Base octal (2³) para base binária (2¹)

Cada 1 símbolo na base 8 equivale a 3 símbolos na base 2

$$13421_8 = \underline{001}\,\underline{011}\,\underline{100}\,\underline{010}\,\underline{001}_2$$
 $1 \quad 3 \quad 4 \quad 2 \quad 1$

1. Operandos em arquitetura de computadores

- Todas as operações são realizadas em base 2 (binário)
- Para efeitos de visualização os operandos podem ser representados em base 16 (hexadecimal) ou 10 (decimal)

2. Operandos com sinal

- O bit mais significativo representa o sinal: O positivo; 1 negativo
- Três representações:

Sinal e módulo:

- Considere um número x representado com 8 bits: $x_7x_6x_5x_4x_3x_2x_1x_0$
- □ Sinal \rightarrow bit mais significativo (neste caso x_7)
- □ Módulo → restantes bits $(x_6x_5x_4x_3x_2x_1x_0)$
- \Box A representação do número y=-x é realizada complementando o bit de sinal
- □ Existem dois zeros, +0 e -0.

1. Operandos em arquitetura de computadores

- Todas as operações são realizadas em base 2 (binário)
- Para efeitos de visualização os operandos podem ser representados em base 16 (hexadecimal) ou 10 (decimal)

2. Operandos com sinal

- O bit mais significativo representa o sinal: O positivo; 1 negativo
- Três representações:

Complemento para um:

- Considere um número x representado com 8 bits: $x_7x_6x_5x_4x_3x_2x_1x_0$
- Sinal \rightarrow bit mais significativo (neste caso x_7)
- Se o sinal for positivo, os restantes bits representam o módulo, caso contrário representam o complemento do módulo
- A representação do número -x é realizada complementando (operação lógica not) todos os bits do número x, i.e., $\overline{x_7}$ $\overline{x_6}$ $\overline{x_5}$ $\overline{x_4}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_0}$
- □ Existem dois zeros, +0 e -0.

1. Operandos em arquitetura de computadores

- Todas as operações são realizadas em base 2 (binário)
- Para efeitos de visualização os operandos podem ser representados em base 16 (hexadecimal) ou 10 (decimal)

2. Operandos com sinal

- O bit mais significativo representa o sinal: O positivo; 1 negativo
- Três representações:

Complemento para dois:

- Considere um número x representado com 8 bits: $x_7x_6x_5x_4x_3x_2x_1x_0$
- □ Sinal \rightarrow bit mais significativo (neste caso x_7)
- Se o sinal for positivo, os restantes bits representam o módulo, caso contrário representam o complemento do módulo, somado de um
- A representação do número -x é realizada complementando (operação lógica not) todos os bits do número x, i.e., $\overline{x_7}$ $\overline{x_6}$ $\overline{x_5}$ $\overline{x_4}$ $\overline{x_3}$ $\overline{x_2}$ $\overline{x_1}$ $\overline{x_0}$, a que se soma o valor 1
- Só existe um zero, mas a gama dos números negativos é maior que a gama dos números positivos

$$-x = \overline{x} + 1$$

Independentemente de x ser positivo ou negativo

3. Tipos de operandos em arquitetura de computadores

Nomenclatura baseada na implementação

Programador (ex: C)	Arquiteto de computadores (ex: Assembly)	Dimensão			
char / byte	byte	1B = 8 bits			
short	half word	2B = 16 bits			
int / long	word	4B = 32 bits			
long long	double word	8B = 64 bits			
	quad word	16B = 128 bits			

1. Soma/subtração

- □ Geralmente os números inteiros com sinal são representados em formato complemento para dois → facilita a implementação do somador!
- A operação é realizada como se tratasse de um número binário convencional.

Flags:

- Carry (C) = C_8
- Zero (Z) = 1 se o resultado for 0,0 caso contrário
- Negative (N) = S_7
- Overflow (V) = $C_8 \oplus C_7$

Soma/subtração

- □ Geralmente os números inteiros com sinal são representados em formato complemento para dois → facilita a implementação do somador!
- A operação é realizada como se tratasse de um número binário convencional.

Flags:

- Carry (C) = 0
- \mathbb{Z} ero (Z) = 0
- Negative (N) = 1
- Overflow (V) = 0

l. Soma/subtração

- □ Geralmente os números inteiros com sinal são representados em formato complemento para dois → facilita a implementação do somador!
- A operação é realizada como se tratasse de um número binário convencional.

Flags:

- Carry (C) = 0 (o resultado está correto se os operandos não tiverem sinal)
- \mathbb{Z} Zero (Z) = 0
- Negative (N) = 1
 - Overflow (V) = 1 (O resultado está errado se os operandos tiverem sinal, i.e., não é representável em 8 bits com sinal)

2. Multiplicação sem sinal

No caso da multiplicação (ou da divisão) a operação tem de ser realizada tendo em vista o sinal dos operandos.

114 x 67 = 0111 0010 ₂ x 0100 0011 ₂														
							0	1	1	1	0	0	1	0
						X	0	1	0	0	0	0	1	1
							0	1	1	1	0	0	1	0
						0	1	1	1	0	0	1	0	
+	0	1	1	1	0	0	1	0						
	0	1	1	1	0	1	1	1	0	1	0	1	1	0

O produto de 2 números com n e m bits, respetivamente, resulta num número contido em n+m bits

8 bits x 8 bits → 16 bits

3. Multiplicação com sinal

No caso da multiplicação (ou da divisão) a operação tem de ser realizada tendo em vista o sinal dos operandos.

 $-114 \times 67 = 1000 \ 1110_2 \times 0100 \ 0011_2$ 1 0 0 0 1 1 1 0

x01000011

O produto de 2 números com n e m bits, respetivamente, resulta num número contido em n+m bits

8 bits x 8 bits → 16 bits

3. Multiplicação com sinal

No caso da multiplicação (ou da divisão) a operação tem de ser realizada tendo em vista o sinal dos operandos.

Para realizar um produto em números com sinal, primeiro devese estender ambos os operandos de forma a perfazer o número de bits usado no resultado.

A operação de multiplicação de números (no pior dos casos) usa uma cadeia de somadores igual ao número de bits do resultado!

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

4. Divisão sem sinal

 No caso da multiplicação (ou da divisão) a operação tem de ser realizada tendo em vista o sinal dos operandos.

Resultado: 101011₂ = 43

Resto: 1

A operação de divisão é bastante mais complexa, envolvendo várias operações encadeadas!

Embora existam vários algoritmos para a implementação eficiente da divisão, como se verá mais à frente, o tempo de cálculo é sempre bastante superior ao de uma soma ou mesmo de uma multiplicação!

4. Divisão sem sinal

- No caso da multiplicação (ou da divisão) a operação tem de ser realizada tendo em vista o sinal dos operandos.
- Se o divisor for uma potência de dois, existe uma forma mais simples:

 $z = \frac{x}{2^{y}} = \begin{cases} x \ shr \ y & se \ y > 0 \\ x \ shl \ y & se \ y < 0 \end{cases}$

Resultado: 101011₂ = 43

Boas práticas de programação:

sempre que possível, evitar a utilização da operação de divisão!

Nota: também se deve evitar a multiplicação, embora a complexidade da multiplicação seja bastante inferior

4. Divisão sem sinal

- No caso da multiplicação (ou da divisão) a operação tem de ser realizada tendo em vista o sinal dos operandos.
- Se estivermos a dividir várias vezes pelo mesmo valor (x), podemos calcular o reciproco (1/x) e depois multiplicar os valores. Ex:

$$173 / 4 = 1010 1101_2 / 100_2$$

Resultado: 101011₂ = 43

Boas práticas de programação:

sempre que possível, evitar a utilização da operação de divisão!

Nota: também se deve evitar a multiplicação, embora a complexidade da multiplicação seja bastante inferior

for
$$(i=0; i< N; i++)$$

 $A[i] = A[i]/x;$

Como representar um número com virgula?

Exemplo 110.010₂

Não podemos representar a virgula nem com 1 nem com 0! Em ambos os casos seria visto simplesmente como um número inteiro de valor elevado.

. Virgula fixa

- A vírgula está numa posição fixa, mas apenas o programador sabe onde ela está.
- Para realizar uma operação, é necessário realizar todas as normalizações e desnormalizações à mão

2. Virgula flutuante

- □ Representação em modo científico, ex: 1427.3 → 1.427 x 10³ (com 3 dígitos de parte fracionária)
- Geralmente faz uso da norma IEEE-754
- A representação adapta-se de acordo com o número de bits do sinal.
- A desvantagem é uma potencial redução na precisão do número

. Virgula fixa

- A vírgula está numa posição fixa, mas apenas o programador sabe onde ela está.
- Para realizar uma operação, é necessário realizar todas as normalizações e desnormalizações à mão
- Utiliza-se frequentemente a nomenclatura da Texas Instruments, a qual assume números em complemento para dois.
- Formato Qn

 n bits para parte fracionária
- □ Formato Qm.n → m bits para a parte inteira, n bits para parte fracionária

O número 0110 11.01 $_2$ =+27,25 está representado no formato Q2 ou Q6.2

O formato Q6.2 permite representar números na gama [-2⁵,..., 2⁵-2⁻²]

. Virgula fixa

- A vírgula está numa posição fixa, mas apenas o programador sabe onde ela está.
- Para realizar uma operação, é necessário realizar todas as normalizações e desnormalizações à mão
- Utiliza-se frequentemente a nomenclatura da Texas Instruments, a qual assume números em complemento para dois.
- □ Formato Qn → n bits para parte fracionária
- □ Formato Qm.n → m bits para a parte inteira, n bits para parte fracionária

O número 0110 11.01 $_2$ =+27,25 está representado no formato Q2 ou Q6.2

O formato Q6.2 permite representar números na gama $[-2^5,...,2^{5-2-2}]$

Na prática a representação indica que o operando pode ser representado como inteiro (para o exemplo em cima, 0110 1101₂) à parte de um fator de escala de 2⁻ⁿ (que neste caso corresponde a 2⁻²)

Virgula fixa

Para realizar operações em virgula fixa é necessário ter em consideração os fatores de escala de cada um dos operandos, normalizando-os (converter para o mesmo fator de escala) antes de efetuar a operação (quando necessário).

A. Soma/subtração de operandos com formato Qx e Qy (assumindo que o número total de bits é o mesmo)

- 1. Verificar qual dos números tem <u>maior</u> número de bits na parte inteira, i.e., qual tem menor número de bits na parte fracionária
- 2. Ao operando escolhido em 1) fazer shift left do módulo da diferença |x-y|
- 3. Somar os operandos

Esta solução maximiza a precisão, mas pode levar a overflow e portanto deve ser evitada

Virgula fixa

Para realizar operações em virgula fixa é necessário ter em consideração os fatores de escala de cada um dos operandos, normalizando-os (converter para o mesmo fator de escala) antes de efetuar a operação (quando necessário).

A. Soma/subtração de operandos com formato Qx e Qy (assumindo que o número total de bits é o mesmo)

- 1. Verificar qual dos números tem <u>menor</u> número de bits na parte inteira, i.e., qual tem maior número de bits na parte fracionária
- 2. Ao operando escolhido em 1) fazer shift right aritmético (complemento para dois) do módulo da diferença |x-y|
- 3. Somar os operandos

```
1101 01.10 + 1100.1110 → 1101 01.10 + (1100.1110 asr 2) → 1101 01.10 + 111100.11

(02) (04)
```


Virgula fixa

Para realizar operações em virgula fixa é necessário ter em consideração os fatores de escala de cada um dos operandos, normalizando-os (converter para o mesmo fator de escala) antes de efetuar a operação (quando necessário).

A. Soma/subtração de operandos com formato Qx e Qy (assumindo que o número total de bits é o mesmo)

- 1. Verificar qual dos números tem <u>menor</u> número de bits na parte inteira, i.e., qual tem maior número de bits na parte fracionária
- 2. Ao operando escolhido em 1) fazer shift right aritmético (complemento para dois) do módulo da diferença |x-y|
- 3. Somar os operandos

```
1101 01.10 + 1100.1110 → 1101 01.10 + (1100.1110 asr 2) → 1101 01.10 + 111100.11

(02) (04)
```

Esta solução minimiza a existência de overflows, mas leva a perda de precisão Ainda assim, é a solução preferencial (a não ser que saibamos à partida que o número de bits é suficiente)

1. Virgula fixa

Para realizar operações em virgula fixa é necessário ter em consideração os fatores de escala de cada um dos operandos, normalizando-os (converter para o mesmo fator de escala) antes de efetuar a operação (quando necessário).

A. Soma/subtração de operandos com formato Qx e Qy (assumindo que o número total de bits é o mesmo)

Em geral, quando somamos dois operandos no formato Qz.y, só poderemos garantir a inexistência de overflow se a operação for realizada com 1 bit extra na parte inteira, i.e., fazendo:

```
a + b → (a asr 1) + (b asr 1)
(Qz.y) (Qz+1.y-1)
```


Virgula fixa

- Para realizar operações em virgula fixa é necessário ter em consideração os fatores de escala de cada um dos operandos, normalizando-os (converter para o mesmo fator de escala) antes de efetuar a operação (quando necessário).
- B. Produto de operandos com formato Qx e Qy (assumindo que o número total de bits é o mesmo)
 - 1. Não é necessária qualquer normalização à entrada, i.e., pode-se multiplicar os operandos normalmente
 - 2. O resultado estará no formato Qx+y

```
1101 01.10<sub>2</sub> x 1100.1110<sub>2</sub> = (1101 0110<sub>2</sub> x 2<sup>-2</sup>) x (1100 1110<sub>2</sub> x 2<sup>-4</sup>) \Rightarrow 1101 0110<sub>2</sub> x 1100 1110<sub>2</sub> x 2<sup>-6</sup>

(02) (04) 0000 1000 0011 0100<sub>2</sub> x 2<sup>-6</sup>

0000 1000 00.11 0100 (formato 06)
```


1. Virgula fixa

- Para realizar operações em virgula fixa é necessário ter em consideração os fatores de escala de cada um dos operandos, normalizando-os (converter para o mesmo fator de escala) antes de efetuar a operação (quando necessário).
- B. Produto de operandos com formato Qx e Qy (assumindo que o número total de bits é o mesmo)
 - 1. Se o realizarmos as operações com número de bits limitado (ex: 8), para garantir a inexistência de overflow, deve-se preservar sempre a parte alta

```
11.01 0110_2 \times 11.001110_2 = (1101 \ 0110_2 \times 2^{-6}) \times (1100 \ 1110_2 \times 2^{-6}) \Rightarrow 0000 \ 1000 \ 0011 \ 0100_2 \times 2^{-12}

(06) (06) 0000 \cdot 1000 \quad 0011 \ 0100 \quad (formato \ 012)
0000 \cdot 1000 \quad (formato \ 04)
```


2. Virgula flutuante

□ Representação em modo científico, ex: 1427 → 1.427 x 10³

Norma IEEE-754

- Base b, 2 ou 10
- Mantissa <u>m</u>, a qual é sempre representada no formato 1.xxx
- Expoente <u>e</u>
- Sinal s
- □ Representa o número: (-1)^s x m x b^e

 $1427 = 0000 \ 0101 \ 1001 \ 0011_2 =$ = 1.011 \ 0010 \ 0110_2 \times 2^{10}

(a virgula desloca-se 10 casas)

2. Virgula flutuante

- Representação em modo científico, ex: 1427 → 1.427 x 10³
- Norma IEEE 754
 - □ Base *b*, 2 ou 10
 - Mantissa <u>m</u>, a qual é sempre representada no formato 1.xxx
 - Expoente <u>e</u>
 - Sinal s
 - □ Representa o número: (-1)^s x m x b^e

 $1427 = 0000 \ 0101 \ 1001 \ 0011_2 =$ = 1.011 \ 0010 \ 0110_2 \ \times 2^{10}

(a virgula desloca-se 10 casas)

Representação no formato de 32 bits (single-precision)

31 30 23 22 0

S Expoente Fração

2. Virgula flutuante

Representação em modo científico, ex: 1427 → 1.427 x 10³

Norma IEEE 754

- Como a mantissa começa com 1.xxxx, não precisamos de escrever o 1. no campo de fração!
- Assim existe sempre um 1 "escondido" que não é representado na fração

2. Virgula flutuante

- Representação em modo científico, ex: 1427 → 0.1427 x 10⁴
- Norma IEEE 754
 - O expoente é representado com um offset: 127.

$$1427 = 0000 \ 0101 \ 1001 \ 0011_2 =$$

= 1.011 \ 0010 \ 0110_2 \times 2^{10}

Expoente:

10+127 = 137 = 1000 1001

2. Virgula flutuante

Representação em modo científico, ex: 1427 → 0.1427 x 10⁴

Norma IEEE 754

2. Virgula flutuante

□ Representação em modo científico, ex: 1427 → 0.1427 x 10⁴

□ Norma IEEE-754

Nome	Nome comum	Base	Fração (#bits)	Expoente (#bits)	Expoente (Bias)	Casas <u>decimais</u> da fração	Expoente <u>decimal</u> máximo
Binary16	Half precision	2	11	5	15	3.31	4.51
Binary32	Single precision (float)	2	23	8	127	7.22	38.23
Binary64	Double precision (double)	2	53	11	1023	15.95	307.95
Binary128	Quadruple precision	2	113	15	16383	34.02	4931.77
Binary256	Octuple precision	2	237	19	262143	71.34	78913.2