

Computer Architecture

과제 #1: ARM Instructions 분석

2021년 1학기 Young Geun Kim (김영근)

1차 과제 목적

■ 하드웨어 명령어 및 Assembly 언어의 이해

■ ARM Reference Manual을 통한 ARM Instruction 숙지

■ 시스템 및 하드웨어 레벨에서 명령어가 어떤 식으로 수행되는지 숙지

1차 과제 내용

- Instruction File (inst_data.mif) 내 000번 ~ 024번 주소의 ARM 명령어 분석
 - 16진수로 되어 있는 명령어를 2진수 (Binary)로 변환
 - 어떤 명령어인지 ARM Reference Manual을 통해 확인
 - 해당 명령어가 어떤 의미를 가지는지 서술
 - 분석한 의미에 맞게 실제 동작 순서 기록
 - 동작이 어디서 끝나는지 명시(끝나지 않는다면, 어디서부터 어디까지 반복되는지 명시)

inst_data.mif

address (16진수)

```
EA000006;
000
001
         EAFFFFFE;
002
         EA0000A7;
                                          EA000006
003
                EAFFFFFE;
     .005]
006
         EA0000A4;
007
         EAFFFFFE;
800
         E59F2EC8;
                                           instruction
009
         E3A00040;
00A
         E5820010;
                                             (16진수)
00B
         E5820014;
00C
         E5820018;
00D
         E582001C;
00E
         E5820020;
00F
         E5820024;
         E3A0003F;
010
011
         E5820028;
012
         E3A00008;
013
         E582002C;
014
         E59F3E9C;
015
         E59F1E9C;
016
         E5831000;
017
         E59F9E98;
018
         E3A08000;
019
         E5898000;
01A
         E5898004;
01B
         E5898008;
01C
         E589800C;
01D
         E5898010;
01E
         E5898014;
01F
         E5898018;
020
         E59FDE78;
021
         E5931200;
022
         E3510001;
023
         0A000000;
024
         EAFFFFFB;
```

arm_architecture_reference_manual.pdf

Instruction set encoding A3.1

Figure A3-1 shows the ARM instruction set encoding.

All other bit patterns are UNPREDICTABLE or UNDEFINED. See Extending the instruction set on page A3-32 for a description of the cases where instructions are UNDEFINED.

An entry in square brackets, for example [1], indicates that more information is given after the figure.

	31 30 29 28	27	2 6	25	24	23	22	21	20	19	181	7 16	1 1 5	5 1	4 1	3 12	11	10	9	8	7	6	5	4	3	2	1	0	
Data processing immediate shift	cond [1]	0	0	0	C	pc	ode	,	s		Rn				Rd		8	hift	am	ou	nt	shi	ft	0		Rr	n		
Miscellaneous instructions: See Figure A3-4	cond [1]	0	0	0	1	0	X	x	0	x	x :	х х	×	,	()	x	x	x	x	x	x	x	x	0	x	x	x	×	
Data processing register shift [2]	cond [1]	0	0	0		рс	ode	9	s		Rn		Γ		Rd			R	s		0	sh	ift	1		Rr	n	7	
Miscella neous instructions: See Figure A3-4	cond [1]	0	0	0	1	0	x	x	0	x	x :	х х	×)	()	x	x	x	x	x	0	x	x	1	x	x	x	×	
Multiplies: See Figure A3-3 Extra load/stores: See Figure A3-5	cond [1]	0	0	0	x	x	x	x	x	x	х :	х х	×)		x	x	x	x	x	1	x	x	1	x	x	x	×	
Data processing immediate [2]	cond [1]	0	0	1	0	рс	ode	9	s		Rn				Rd			rot	ate				im	me	diat	е			
Undefined instruction	cond [1]	0	0	1	1	0	×	0	0	x	x :	х х	×	,	()	κх	x	x	x	x	x	x	x	x	x	x	x :	ĸ	
Move immediate to status register	cond [1]	0	0	1	1	0	R	1	0		Mas	k		8	SBC)		rot	ate				im	me	diat	0			
Load/store immediate offset	cond [1]	0	1	0	Р	U	В	w	L		Rn				Rd						im	me	diat	e					
Load/store register offset	cond [1]	0	1	1	P	٥	В	w	L		Rn				Rd		8	hift	am	our	nt	sh	ift	0		Rr	n		
Media instructions [4]: See Figure A3-2	cond [1]	0	1	1	x	x	x	x	x	x	х :	х х	×	,	()	(x	x	x	x	x	x	x	x	1	x	x	x :	×	
Architecturally undefined	cond [1]	0	1	1	1	1	1	1	1	x	x	хх	×		x :	x x	x	x	x	x	1	1	1	1	x	x	х :	ĸ	
Load/store multiple	cond [1]	1	0	0	P	U	s	w	L		Rn								re	gist	erl	ist							
Branch and branch with link	cond [1]	1	0	1	L										2	4-bi	t off	set											
Coprocessor load/store and double register transfers	cond [3]	1	1	0	Р	U	N	w	L		Rn			(ORo	1	c	p_1	num				8-t	bit c	offse	et			
Coprocessor data processing	cond [3]	1	1	1	0	0	рα	ode	1		CR	1	Γ	(CRo	i	c	p_r	num		opo	od	e2	0		CF	ξm	7	
Coprocessor register transfers	cond [3]	1	1	1	0	ор	cod	le1	L		CR	1	Γ		Rd		c	p_r	num		оро	od	e2	1		CR	lm	7	
Software interrupt	cond [1]	1	1	1	1										s	wi n	umi	ber											
Unconditional instructions: See Figure A3-6	1 1 1 1	x	x	x	x	X	x	x	x	X	x :	хх	X		()	х	X	x	x	x	X	x	x	x	x	x	x x	t	

Figure A3-1 ARM instruction set summary

- The cond field is not allowed to be 1111 in this line. Other lines deal with the cases where bits[31:28] of the instruction are 1111.
- 2. If the opcode field is of the form 10xx and the S field is 0, one of the following lines applies instead.
- If the cond field is 1111, this instruction is UNPREDICTABLE prior to ARMv5.
- The architecturally Undefined instruction uses a small number of these instruction encodings.

Chapter A4 **ARM Instructions**

This chapter describes the syntax and usage of every ARM® instruction, in the sections:

- Alphabetical list of ARM instructions on page A4-2
- ARM instructions and architecture versions on page A4-286.

Example

◆ EA000006

- ➤ Instruction을 Binary로 변환
 - **1110 101**0 0000 0000 0000 0000 0000 0110 (2)
- ➤ 어떤 Instruction인지 Reference File을 통해 확인
 - B #6;
- ➤ Instruction이 어떤 의미를 가지는지 서술
 - PC+8+6x4 주소로 이동 (MIPS의 경우 <u>+4</u>이므로 주의)
 - PC는 현재 실행 중인 명령어의 주소를 의미함
 - 주소 단위가 4 Byte (= 1 Word)이기 때문임
 - 따라서, (0 + 8 + 24) / 4 = 008번 주소로 이동
 - 다음 Instruction은 008번 주소에 있는 E59F2EC8이 됨

A4.1.5 B, BL

Example

◆ E59FDE78

- ➤ Instruction을 Binary로 변환
 - 1110 01<u>0</u>1 1001 1111 1101 1110 0111 1000 (2)
- ➤ 어떤 Instruction인지 Reference File을 통해 확인
 - LDR \$13, [\$15, #0xE78];
 - 25번째 bit인 I bit가 0이므로, #으로 표기
- ➤ Instruction이 어떤 의미를 가지는지 서술
 - 15번 Register에 저장된 값에 #0xE78값을 더한 주소의 값을 메모리로 부터 읽어 와서 13번 Register에 저장
 - 메모리의 [\$15 + #0xE78] 주소에 저장된 값을 읽어와 \$13에 저장

A4.1.23 LDR

Example

◆ E1A0F00E

- ➤ Instruction을 Binary로 변환
- ➤ 어떤 Instruction인지 Reference File을 통해 확인
 - MOV \$15, #0xE;
- ▶ Instruction이 어떤 의미를 가지는지 서술
 - 15번 Register에 0xE (=14)를 저장

A4.1.35 MOV

31	28	27	26	25	24	23	22	21	20	19	16	15 12	2 11 0
	cond	0	0	Ι	1	1	0	1	S	SBZ		Rd	shifter_operand

Hint

- Condition Code (e.g., 0 (0000) = Equal, E (1110) = Always)
 - ARM Reference Manual 내 112 Page
- Data Processing Instructions (e.g., MOV, CMP)
 - Opcode: Manual 내 115 Page
 - Instruction Encoding: Manual 내 116 Page
- Load and Store Instructions (e.g., LDR, STR)
 - Address Mode: Manual 내 129 Page
 - Instruction Encoding: Manual 내 130 Page
 - **Examples**: Manual 내 131 Page
- Branch Instructions (e.g., B, BL)
 - Instruction Encoding: Manual 내 160 Page
 - **Examples**: Manual 내 114 Page

과제 채점 Focus

- 과제 Report의 비중: 100%
 - Instruction File (inst_data.mif) 내 000번 ~ 024번 주소의 Instruction 분석
 - Report에 반드시 포함되어야 하는 내용
 - 학과, 학번, 이름, 제출 일자
 - 각 Instruction에 대해
 - 16진수 명령어를 2진수로 변환 후 (1점)
 어떤 Instruction인지 Reference 파일을 통해 확인 후 Instruction이 어떤 의미를 가지는지 서술 (2점)
 - 분석한 의미에 맞게 실제 동작 순서 기술 (1점)
 - 동작이 어디서 끝나는지 명시 (끝나지 않는다면, 어디부터 어디까지 반복된다고 구체적으로 명시) (1점)

과제 채점 Focus

■ 제출 기한

- 4월 16일 (금) 11:59 PM

■ 제출 방법

- 스마트 캠퍼스를 통해 파일들 제출
- 제출할 파일 목록
 - 보고서
- 파일 제출 방법
 - "ca1_학번.zip"으로 압축하여 제출