Induktiver Sensor (Drehzahl)

Gegeben: Verlauf U, N,n

Gesucht: Verlauf Φ, Drehzahl

Bei einem induktiven Drehzahlmesser mit speziell ausgeformten Zahnrädern ergibt sich für die induzierte Spannung U der unten dargestellte Spannungsverlauf.

Skizzieren und berechnen sie den zugehörigen Verlauf des magnetischen Flusses Φ Inkl. Angabe der Werte von Φ .

Sensor

Wicklungszahl N	100	-
Anzahl Zähne n	60	-

Zeitverlauf

t ₁	0,001	S
t ₂	0,002	S
t ₃	0,003	S
t ₄	0,004	S
t ₅	0,005	S
t ₆	0,006	S

Δ t ₁	0,001	S
Δ t ₂	0,001	S
Δ t ₃	0,001	S
Δ t ₄	0,001	S
Δ t ₅	0,001	S
Δ t ₆	0,001	S

U(Δ t ₁)	0	V
$U(\Delta t_2)$	1	V
U(Δ t ₃)	4	V
U(Δ t ₄)	-4	V
U(Δ t ₅)	-1	V
U(Δ t ₆)	0	V

Φ(Ut=0)	0	V*s	=
gegebener		Weber	
Anfangswert			

$$u = N * \frac{\Delta \Phi}{\Delta t} \implies \Delta \Phi = \frac{u * \Delta t}{N}$$

Zwischenergebnis

ΔΦ (Δt1)	0	Vs
ΔΦ (Δt2)	0,00001	Vs
ΔΦ (Δt3)	0,00004	Vs
ΔΦ (Δt4)	-0,00004	Vs
ΔΦ (Δt5)	-0,00001	Vs
ΔΦ (Δt6)	0	Vs

$$\Rightarrow \Phi(t_{i+1}) = \Phi(t_i) + \frac{u * \Delta t}{N}$$

Φ (t ₀) (ist gegeben)	0	Vs
Φ (t ₁)	0	Vs
Φ (t ₂)	0,00001	Vs
Ф (t ₃)	0,00005	Vs
Φ (t ₄)	0,00001	Vs
Φ (t ₅)	0	Vs
Φ (t ₆)	0	Vs

Diagramm der Ergebnisse:

Es werden vom Sensor laufend diese Signale (0 bis t_6) wiederholt. Wie groß ist die Drehzahl ? (u/min)

Signaldauer	0,006	S
Anzahl Z		
(Signale pro Sekunde)		
=1/Signaldauer	166,66667	1/s
Drehzahl		
=Z/Anzahl der Zähne n	2,77778	1/s

Drehzahl in 1/min	166,66667	1/min
	,	

Hallelement

Gegeben: U(angelegt), R, Daten Hallelement, α

Gesucht: B

An einem Hallelement wird eine Spannung U angelegt.

Ein Magnetfeld fällt im Winkel 30° zur Ebene des Hallelements ein.

Gemessen wird dann die Hallspannung UH.

Wie groß ist die magnetische Flussdichte?

Angelegte Spannung U	10	Volt
----------------------	----	------

Daten des Hallelementes

Elektrischer Widerstand R	1,00*10 ³	Ohm
Hallkonstante R _H	2,00*10 ⁻⁴	m³/As
Dicke d	5,00*10 ⁻⁶	m

U _H	2,00*10 ⁻¹	V

Einfallswinkel des Magnetfeldes

α	30	Grad
A in Bogenmaß	0,523599	

0: /)	0.5	
$Sin(\alpha)$	0,5	

$$I = \frac{U}{R}$$

$$U_H = \frac{R_H}{d} * I * B * \sin \alpha$$

$$\Rightarrow B = \frac{U_H * d}{R_H * I * \sin \alpha}$$

Magnetische Flussdichte B	1	Tesla

$$T = \frac{Vs}{m^2} = \frac{N}{A * m} = \frac{kg}{A * s^2}$$

Dimensionierung einer Stromzange

Gegeben: Alle Daten vom Hallelement, Sollwerte der Stromzange

Gesucht: minimaler Radius r

Ein Hallelement wird in einer Stromzange verwendet.

Es wird mit der Spannung U betrieben.

Bis zu einer Hallspannung von U_H(max) liefert das Element genaue Werte.

Der maximale von der Stromzange zu messende Strom sei I_{max}.

Legen sie die Geometrie der Stromzange (r) gerade so aus, dass beim erlaubten Maximalstrom noch verlässliche Werte geliefert werden.

Angelegte Spannung U	10	V
----------------------	----	---

Daten des Hallelementes

Elektrischer Widerstand R	1*10 ²	Ohm
Hallkonstante R _H	4*10 ⁻⁴	m³/As
Dicke d	1*10 ⁻⁶	m
U _H (max)	0,01	V

Stromzange

Maximaler Stromwert I _{max}	100	А

$$I_{Element} = \frac{U}{R}$$

I _{Element}	0,1	А

Wenn es eine maximale Hallspannung gibt, existiert ein maximales B:

$$U_H(\max) = \frac{R_H}{d} * I_{Element} * B(\max)$$

$$B(\max) = \frac{U_H(max) * d}{R_H * I_{Element}}$$

B _{max}	2,5*10 ⁻⁴	Т

Daraus ergibt sich ein minimaler Radius r, denn:

Beim maximal erlaubten Strom darf in r nur die maximal erlaubte Flussdichte B existieren.

$$I(\max) = \frac{2\pi r * B(\max)}{\mu_0 \mu_r} \implies r = \frac{I(\max) * \mu_0 \mu_r}{2\pi * B(\max)}$$

Minimaler Radius r	8*10 ⁻²	m

Piezoelement

Gegeben: alle Daten bis auf A und Ri, Entladebedingungen

Gesucht: A, Ri

Ein Piezoelement soll bei einer wirkenden Kraft von 20N die Spannung 2V liefern.

Daten Piezoelement

Piezoelektrische Materialkonstante k _p	2,3*10 ⁻¹²	As/N
Dicke I	0,001	m
€r	5	-

Naturkonstante ε ₀	8,85*10 ⁻¹²	As/Vm
Von außen wirkende Kraft F	20	N
Zugehöriger Sollwert der Spannung U	2	V

Wie groß muss die Fläche des Piezoelementes sein ? (Angabe in cm²)

$$U = \frac{k_p * F}{C} \implies C = \frac{k_p * F}{U}$$

$$C = \varepsilon_0 \varepsilon_r * \frac{A}{l} \implies A = \frac{C * l}{\varepsilon_0 \varepsilon_r}$$

Fläche A in cm ²	5,2	cm ²
-----------------------------	-----	-----------------

(das entspricht ungefähr den Dimensionen eines Klopfsensors)

Die im Piezoelement gespeicherte Ladung darf sich nach Beginn des Krafteinflusses erst nach mehr als 1s um 75% abgebaut haben.

In welchem Wertebereich darf Ri liegen?

Erlaubte Zeit	1	s
Abgebaute Prozentzahl	75	%

$$\frac{U}{U_0} = \frac{x}{100}$$

$ U/U_0 $ 0,25

$$t_x = -\tau * ln \frac{U}{U_0} \implies \tau = -\frac{t}{ln \frac{U}{U_0}}$$

$$\tau = R_i * C \implies R_i = \frac{\tau}{C}$$

Erlaubter Minimalwert für R _i	3,1363*10 ¹⁰	Ohm
--	-------------------------	-----

Piezoelement mit Verstärker

Gegeben: U, Q, Piezo: I, A, ρ, Verstärker: V, V₀, R'_e Zeitangabe

Gesucht: $T \rightarrow$ nur in die gegebenen Formeln einsetzten

Ein Piezoelement liefert bei einer erzeugten Ladung Q die Spannung U.

Das Signal des Elementes werde mit einem Elektrometerverstärker weiter verarbeitet.

Wann ist die aufgebaute Ladung dabei um 63% des Anfangswertes abgefallen? (→Tau gesucht)

Spannung und Ladung am Piezoelement:

Q	2,00*10 ⁻¹⁰	Coulomb
U	0,5	Volt
0 0		

$$U = \frac{Q}{C} \implies C = \frac{Q}{U}$$

Piezoelement:

Länge I	0,001	m
Fläche A	1	cm ²
A, andere Einheit	0,0001	m ²
A, andere Einheit	100	mm²
Spezifischer Widerstand p	5*10 ¹³	Ohm mm²/m

$$R_i = \rho * \frac{l}{A}$$

Elektrometerverstärker:

V ₀	10000	-
V	1000	-
R _e ′	1*10 ⁸	Ohm

$$R_e \approx R_e * \frac{V_0}{V}$$

$$R = R_i || R_e$$

$$R = \frac{R_i * R_e}{R_i + R_e}$$

$$\tau = R * C$$

Т	0,133	S

Thermoelement

Gegeben: U_(Kontakt), später U_(Thermo)

Gesucht: T, später T₀

Eine Materialkombination aus Nickel-Chrom und Nickel bildet ein Thermopaar. An der Verbindungsstelle dieses Thermopaars falle eine Kontaktspannung ab.

Wie groß ist die Temperatur an der Kontaktstelle? (Angabe in K)

Aus Tabellen:

k _{NiCr,Pt}	2,2	mV/100K
K _{Ni,Pt}	-1,9	mV/100K
$k_{AB} = k_{A,Pt} - k_{B,Pt}$		
K _{NiCr,Ni}	4,1	mV/100K
k (andere Einheit)	4,1*10 ⁻⁵	V/K

Kontaktspannung	0,015	V	
-----------------	-------	---	--

Kontaktspannung an einer Stelle → Temperatur

$$|U_{1,2}| = k_{AB} * T_{1,2} \quad \Longrightarrow \quad T = \frac{U_{NiCr,Ni}}{k_{NiCr,Ni}}$$

T	365,85	K

Das oben genannte Thermopaar wird in einem Standard-Thermoelement mit Kupfer-Anschlussdrähten verwendet.

Dieses liefert die Thermospannung 0,003801V.

Auf welcher Temperatur liegen die Anschlusspunkte für die Kupferleitungen ?

Gelieferte Spannung U		
(des Thermoelementes)	0,003801	V

$$U = k_{AB} * (T_1 - T_0) \implies \frac{U}{k_{AB}} = T_1 - T_0 \implies T_0 = T_1 - \frac{U}{k_{AB}}$$

T_0	273,15	K

<u>Ultraschall-Abstandsmessung mit Triangulation</u>

Gegeben: Laufzeit (Sensor 1), d, a, C_{Luft}

Gesucht: Laufzeit (Sensor 2)

Für eine Ultraschall-Abstandsmessung werden 2 Piezoelemente verwendet.

Die Auswerteeinheit für Sensor 1 registriert folgende Laufzeit.

Der dadurch ermittelte Gesamtabstand beträgt folgenden Wert.

Welche Laufzeit wird bei Sensor 2 registriert?

Schallgeschwindigkeit in Luft C _{Luft}	343	m/s
Sensorabstand d	1,5	m
Gesamtabstand a	1	m
Laufzeit Sensor 1 t ₁	0,0065	S

$$c = 0.5 * t_{Signal} * c_{Luft}$$

$$a = \sqrt{c^2 - \frac{(d^2 - b^2 + c^2)^2}{4d^2}}$$

$$\Rightarrow 2d * \sqrt{c^2 - a^2} = d^2 - b^2 + c^2$$

$$\Rightarrow b^2 = d^2 + c^2 - 2d * \sqrt{c^2 - a^2}$$

b	1,41944	m

$$b = 0.5 * t_{Signal} * c_{Luft}$$

$$\Rightarrow t_{Signal} = \frac{2 * b}{C_{Luft}}$$

Laufzeit t ₂	0,00827666	S