- 1. Pour tout $n_0 \in \mathbb{N}^*$, que peut-on dire de la suite $(\frac{1}{n}(a_1 + ... + a_{n_0}))_{n \in \mathbb{N}^*}$?
- 2. Pour tout $n \in \mathbb{N}^*$, exprimer $b_n l$ en fonction des $a_i l$, avec i = 1, ..., n.
- 3. Soit $\epsilon > 0$ et des réels $x_1, ..., x_k$ tels que $x_1, ..., x_k \in]-\epsilon, +\epsilon[$. Montrer pour tout entier $m \geqslant k$, on a $\frac{1}{m}(x_1 + ... + x_k) \in]-\epsilon, +\epsilon[$.
- 4. Montrer que si la suite $(a_n)_{n\in\mathbb{N}}$ converge vers une limite finie l, alors la suite $(b_n)_{n\in\mathbb{N}}$ converge également vers l.
- 5. La réciproque est-elle vraie?
- 6. Que peut-on dire si la suite $(a_n)_{n\in\mathbb{N}^*}$ tend vers $+\infty$?

1/
$$(a_1)_1$$
 $CV \Rightarrow \{a_1, 1 \ge 0\}$ borne $\exists m, M$

$$\Rightarrow m \leqslant \frac{1}{n} \sum_{i=1}^{n} a_i \leqslant M$$

$$donc \quad \frac{1}{n} \sum_{i=1}^{n} a_i - d = \frac{1}{n} \left(\sum_{i=1}^{n} a_i - n d \right) = \frac{1}{n} \sum_{i=1}^{n} a_i - d$$

$$\Rightarrow -2 \leqslant \frac{1}{n} \sum_{i=1}^{n} a_i \leqslant 2$$

4)
$$a_n \Rightarrow t \Rightarrow \forall \xi > 0 \exists N \quad t-\xi < a_n < t+\xi \quad \forall n > N$$

$$\Rightarrow \quad -\xi < a_n - t < \xi \quad \forall n > N$$

$$\Rightarrow \quad -\xi < b_n - t < \xi \quad \forall n > N$$
3/ $a_{\text{Wec}} = a_1 - t$

$$\Rightarrow b_n \rightarrow \ell$$

$$5/a_{h}=(-1)^{h} \qquad b_{n}=\begin{cases} -1/n & n \text{ impair} \\ 0 & n \text{ pair} \end{cases}$$

()
$$b_n \rightarrow \infty$$
 anss.