

- 1. 矩阵连乘问题描述
- 2. 矩阵连乘问题分析
- 3. 矩阵连乘算法描述



## 矩阵连乘问题描述

例1: 若A是P×q矩阵, B是q×r的矩阵,则乘积C=AB是p×r的矩阵(矩阵 A和B可乘的条件是: A的列数等于B的行数),矩阵A和B相乘要多少次数乘?

根据矩阵乘法的相关知识(标准乘法),主要计算量在3重循环,总共需要p\*q\*r次数乘。

# 01

## 矩阵连乘问题描述

例2: 若三个矩阵 $A_1,A_2,A_3$ 的维数分别为 $10 \times 100$ , $100 \times 5$ , $5 \times 50$ ,若矩阵 $A_1,A_2,A_3$ 相乘,数乘次数是多少呢?

由于矩阵乘法满足结合律,因此矩阵A1A2A3相乘的次数与矩阵相乘的计算次序有关(加括号方式),如下式:

 $(A_1A_2) A_3 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500$ 

 $A_1 (A_2A_3)$   $100 \times 5 \times 50 + 10 \times 100 \times 50 = 75000$ 

## 矩阵连乘问题描述

例3:若四个矩阵 $A_1A_2A_3A_4$ 连乘,

如何计算相乘次数呢?

如右图所示,四个矩阵连乘共有5 种不同计算次序。尽管最终的乘积是相同的,但加括号的次序对求解矩阵 的连乘的代价有很大影响,主要表现 在矩阵元素的乘法次数上。

$$(A_1 (A_2 (A_3 A_4))),$$

$$(A_1((A_2A_3)A_4)),$$

$$((A_1 A_2) (A_3 A_4))$$
,

$$((A_1 (A_2 A_3)) A_4)$$
,

$$(((A_1 A_2) A_3) A_4).$$



## 矩阵连乘问题描述

矩阵连乘问题的定义:给定n个矩阵  $\{A1, A2, \dots, An\}$ ,其中Ai与Ai+1是可乘的,且i=1, $2\dots$ ,n-1,,如何确定计算矩阵连乘积的计算次序,使得计算矩阵连乘的数乘次数最少?

由于矩阵乘法满足结合律,所以计算矩阵连乘可以有许多不同的计算次序,矩阵连乘问题即为求矩阵连乘的最优计算次序的问题。



为了方便起见,定义下列的符号:



A[1:n]



#### (1) 最优子结构

假设 A[1:n] = A[1:k]A[k+1:n] 为最优计算次序,则子矩阵链 A[1:k]和A[k+1:n]的计算次序也应该是最优的,若存在一个计算次序 A[1:k] 其需要的计算量更少,则矛盾!

 $\Rightarrow A[1:n] = A[1:k]A[k+1:n]$ 

反证法

矩阵连乘问题具有最优子结构性质!

(2) 建立递归关系





#### (2) 建立递归关系

$$m[i][j] = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{m[i][k] + m[k+1][j] + p_{i-1}p_k p_j\} & i < j \end{cases}$$

从k表示从j-i种选择中找出一个数乘次数最少的位置。

若将最优断开位置k记为s[i][j]=k,则计算出最优值m[i][j]后,可以由s[i][j]递归地构造出最优解。



## 矩阵连乘算法描述

```
void MatrixChain(int p, int n, int **m, int **s)
 2 □ {
 3
        for (int i=1; i<=n; i++) //m[i][i]初始化
 4
           m[i][i] =0;
 5
        for (int r=2; r<=n; r++) //r个矩阵连乘
           for (int i=1; i<=n-r+l;i++)
 7 🗀
                                     //本轮循环的最后一个矩阵
 8
               int j=i+r-1;
               m[i][j]=m[i][i]+m[i+1][j]+p[i-1]*p[i]*p[j];
10
               s[i][j]=i;
                                     //假设最优划分位于i处;
               for(int k=i+1; k<j; k++) // 变化最优分割的位置, 逐一测试
11
12 🖹
13
                   int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
14
                   if (t<m[i][j])</pre>
15 🗀
16
                      m[i][j]=t;
                                    //如果更优, 替换原位置
17
                      s[i][j]=k;
18
19
20
```

时间复杂度: T(n)=0(n³)

### 总结

矩阵连乘最优次序是一个经典动态 规划问题。我们在本节中首先对矩阵 连乘问题进行了介绍,其次对矩阵连 乘问题进行了分析,最后给出了矩阵 连乘的算法描述,供大家参考。





(1) 请用高级语言编程实现矩阵连乘的动态规划算法。





## 席景科

中国矿业大学 计算机学院







计算矩阵连乘积A[1:6]的最少数乘次数,其中各矩阵的维数分别为:

$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   $30 \times 35$   $35 \times 15$   $15 \times 5$   $5 \times 10$   $10 \times 20$   $20 \times 25$ 



- 1) 计算m[1][1], m[2][2],...,m[6][6];
- 2) 计算m[1][2], m[2][3],...,m[5][6];
- 3) 计算m[1][3], m[2][4],
- m[3][5] m[4][6]; 4) 算m[1][4], m[2][5],m[3][6];
- 5) 计算m[1][5], m[2][6];
- 6) 计算m[1][6];



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
  $30 \times 35$   $35 \times 15$   $15 \times 5$   $5 \times 10$   $10 \times 20$   $20 \times 25$ 

1) 
$$m[1][1] = 0$$
  $s[1][1] = 0$  ...

| A[i:j]  | A[1:1]     | A[2:2] | A[3:3] | A[4:4]     | A[5:5] | A[6: 6] |
|---------|------------|--------|--------|------------|--------|---------|
| m[i][j] | 0          | 0      | 0      | 0          | 0      | 0       |
| s[i][j] | 0          | 0      | 0      | 0          | 0      | 0       |
| 最优计算次序  | 7 <u>-</u> | _      | _      | ~ <u>~</u> | _      | _       |



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
 $30 \times 35$   $35 \times 15$   $15 \times 5$   $5 \times 10$   $10 \times 20$   $20 \times 25$   
2)  $m[1][2] = m[1][1] + m[2][2] + 30 | |35| 15$   $s[1][2] = 1$   
 $= 0 + 0 + 15750$   
 $= 15750$ 

$$m[2][3] = m[2][2] + m[3][3] + 35 \square 15$$
 5  $s[2][3] = 2$   
= 0 + 0 + 2650  
= 2650



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   $30 \times 35$   $35 \times 15$   $15 \times 5$   $5 \times 10$   $10 \times 20$   $20 \times 25$ 

2)

| A[i:j]  | A[1:2]   | A[2:3]   | A[3:4]   | A[4: 5]  | A[5: 6]  |
|---------|----------|----------|----------|----------|----------|
| m[i][j] | 15750    | 2650     | 750      | 1000     | 5000     |
| s[i][j] | 1        | 2        | 3        | 4        | 5        |
| 最优计算次序  | $A_1A_2$ | $A_2A_3$ | $A_3A_4$ | $A_4A_5$ | $A_5A_6$ |



$$A_{1} \qquad A_{2} \qquad A_{3} \qquad A_{4} \qquad A_{5} \qquad A_{6}$$

$$30 \times 35 \quad 35 \times 15 \quad 15 \times 5 \quad 5 \times 10 \quad 10 \times 20 \quad 20 \times 25$$

$$3) \ m[1][3] = \min \stackrel{?}{?} \ m[1][1] + m[2][3] + p_{0} p_{1} p_{3} = 0 + 2625 + 5250$$

$$\stackrel{?}{?} \ m[1][2] + m[3][3] + p_{0} p_{2} p_{3} = 15750 + 0 + 2250$$

$$= \min \{7875, 18000\} = 7875$$

$$s[1][3] = 1$$

$$(A_{1}(A_{2}A_{3}))$$



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
30×35 35×15 15×5 5×10 10×20 20×25

3) 
$$m[2][4] = \min_{\substack{? \\ ? \\ ?}} m[2][2] + m[3][4] + p_1 p_2 p_4 = 0 + 750 + 5250$$
  
=  $\min_{\substack{\{6000, 4375\}}} m[2][3] + m[4][4] + p_1 p_3 p_4 = 2625 + 0 + 1750$ 

$$s[2][4] = 3$$

$$((A_2A_3)A_4)$$



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
30×35 35×15 15×5 5×10 10×20 20×25

3)

| A[i:j]  | A[1:3]          | A[2:4]          | A[3:5]                | A[4: 6]      |
|---------|-----------------|-----------------|-----------------------|--------------|
| m[i][j] | 7875            | 4375            | 2500                  | 3500         |
| s[i][j] | 1               | 3               | 3                     | 5            |
| 最优计算次序  | $(A_1(A_2A_3))$ | $((A_2A_3)A_4)$ | $(A_{3}(A_{4}A_{5}))$ | ((4,4,5)4,6) |



$$A_{1} \qquad A_{2} \qquad A_{3} \qquad A_{4} \qquad A_{5} \qquad A_{6}$$

$$30 \times 35 \quad 35 \times 15 \quad 15 \times 5 \quad 5 \times 10 \quad 10 \times 20 \quad 20 \times 25$$

$$? \qquad m[1][1] + m[2][4] + p_{0}p_{1}p_{4} = 0 + 4375 + 30\square 35 \quad 10 = 14875$$

$$4) \qquad m[1][4] = \min? m[1][2] + m[3][4] + p_{0}p_{2}p_{4} = 15750 + 750 + 30\square 15 \quad 10 = 21000$$

$$? \qquad m[1][3] + m[4][4] + p_{0}p_{3}p_{4} = 7875 + 0 + 30\square 5 \quad 10 = 9375$$

$$= 9375$$

$$s[1][4] = 3$$

$$((A_{1}A_{2}A_{3})A_{4})$$



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
30×35 35×15 15×5 5×10 10×20 20×25

? 
$$m[2][2] + m[3][5] + p_1p_2p_5 = 0 + 2500 + 35\Box 15$$
  $20 = 13000$ 

$$m[2][5] = \min ? m[2][3] + m[4][5] + p_1p_3p_5 = 2625 + 1000 + 35\Box 5$$
  $20 = 7125$ 

$$? m[2][4] + m[5][5] + p_1p_4p_5 = 4375 + 0 + 35\Box 10$$
  $20 = 11375$ 

$$= 7125$$

$$s[2][5] = 3$$

$$((4,4)(4,4))$$



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
30×35 35×15 15×5 5×10 10×20 20×25

4) A[i:j]A[1:4]A[2:5]A[3:6]m[i][j]9375 7125 5375 s[i][j]3 3 3 最优计算次序  $((A_2A_3)(A_4A_5))$   $(A_3(A_4A_5A_6))$  $((A_1A_2A_3)A_4)$ 



$$A_{1} \qquad A_{2} \qquad A_{3} \qquad A_{4} \qquad A_{5} \qquad A_{6}$$

$$30 \times 35 \quad 35 \times 15 \quad 15 \times 5 \quad 5 \times 10 \quad 10 \times 20 \quad 20 \times 25$$

$$5) \qquad \qquad ?m[1][1] + m[2][5] + p_{0}p_{1}p_{5} \qquad (A1(A2A3A4A5))$$

$$m[1][5] = \min ? m[1][2] + m[3][5] + p_{0}p_{2}p_{5} \qquad ((A1A2)(A3A4A5))$$

$$?m[1][3] + m[4][5] + p_{0}p_{3}p_{5} \qquad ((A1A2A3)(A4A5))$$

$$?m[1][4] + m[5][5] + p_{0}p_{4}p_{5} \qquad ((A1A2A3A4)(A5))$$

$$= 11875$$

$$s[1][5] = 3 \qquad ((A_{1}A_{2}A_{3})(A_{4}A_{5}))$$



$$A_{1} \qquad A_{2} \qquad A_{3} \qquad A_{4} \qquad A_{5} \qquad A_{6}$$

$$30 \times 35 \quad 35 \times 15 \quad 15 \times 5 \quad 5 \times 10 \quad 10 \times 20 \quad 20 \times 25$$

$$5) \qquad \qquad ?m[2][2] + m[3][6] + p_{1}p_{2}p_{6}$$

$$?m[2][3] + m[4][6] + p_{1}p_{3}p_{6}$$

$$?m[2][4] + m[5][6] + p_{1}p_{4}p_{6}$$

$$?m[2][5] + m[6][6] + p_{1}p_{5}p_{6}$$

$$= 10500$$

$$s[2][6] = 3 \qquad ((A_{2}A_{3}) (A_{4}A_{5}A_{6}))$$



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
30×35 35×15 15×5 5×10 10×20 20×25

5)

| A[i:j]  | A[1:5]                  | A[2:6]                  |
|---------|-------------------------|-------------------------|
| m[i][j] | 11875                   | 10500                   |
| s[i][j] | 3                       | 3                       |
| 最优计算次序  | $((A_1A_2A_3)(A_4A_5))$ | $((A_2A_3)(A_4A_5A_6))$ |



 $A_1$   $A_2$   $A_3$   $A_4$   $A_5$   $A_6$  $30 \times 35$   $35 \times 15$   $15 \times 5$   $5 \times 10$   $10 \times 20$   $20 \times 25$ 

| m              | $A_1$ | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> | A <sub>5</sub> | A <sub>6</sub> |
|----------------|-------|----------------|----------------|----------------|----------------|----------------|
| A <sub>1</sub> | 0     | 15750          | 7875           | 9375           | 11875          | 15125          |
| A <sub>2</sub> |       | 0              | 2625           | 4375           | 7125           | 10500          |
| A <sub>3</sub> |       |                | 0              | 750            | 2500           | 5375           |
| A <sub>4</sub> |       |                |                | 0              | 1000           | 3500           |
| A <sub>5</sub> |       |                |                |                | 0              | 5000           |
| A <sub>6</sub> |       |                |                |                |                | 0              |

| s              | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> | <b>A</b> <sub>5</sub> | A <sub>6</sub> |
|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|
| A <sub>1</sub> | 0              | 1              | 1              | 3              | 3                     | 3              |
| A <sub>2</sub> |                | 0              | 2              | 3              | 3                     | 3              |
| A <sub>3</sub> |                |                | 0              | 3              | 3                     | 3              |
| A <sub>4</sub> |                |                |                | 0              | 4                     | 5              |
| A <sub>5</sub> |                |                |                |                | 0                     | 5              |
| A <sub>6</sub> |                |                |                |                |                       | 0              |



$$A_1$$
  $A_2$   $A_3$   $A_4$   $A_5$   $A_6$   
  $30 \times 35$   $35 \times 15$   $15 \times 5$   $5 \times 10$   $10 \times 20$   $20 \times 25$ 

| S              | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | $A_4$ | <b>A</b> <sub>5</sub> | A <sub>6</sub> |
|----------------|----------------|----------------|----------------|-------|-----------------------|----------------|
| A <sub>1</sub> | 0              | 1              | 1              | 3     | 3                     | 3              |
| A <sub>2</sub> |                | 0              | 2              | 3     | 3                     | 3              |
| A <sub>3</sub> |                |                | 0              | 3     | 3                     | 3              |
| A <sub>4</sub> |                |                |                | 0     | 4                     | 5              |
| A <sub>5</sub> |                |                |                |       | 0                     | 5              |
| A <sub>6</sub> |                |                |                |       |                       | 0              |

#### 从右上角的元素开始分割



## 总结

我们在本节中以矩阵连乘问题为例,演示了使用动态规划方法 求解矩阵连乘最优次序的过程。



## 课后思考题

1)设n = 5, p = [10,5,1,10,2,10],请求矩阵连乘积的最优次序。