

Sistemas Operativos 1

Administración De Memoria

SIN ABSTRACCIÓN DE MEMORIA

SIN ABSTRACCIÓN DE MEMORIA

- Las primeras computadoras (mainframe <1960), (minicomputadoras <1970) y (pc <1980) no tenían abstracción de memoria.
- Cada programa veía simplemente la memoria física
- Conjunto de direcciones desde 0 hasta N (valor máximo)
- Cada dirección corresponde a una celda que contenía cierto número de bits (comúnmente ocho)
- No es posible tener dos programas ejecutándose en memoria al mismo tiempo.

MOV REGISTRO1, [1000]

la computadora sólo movía el contenido de la ubicación de memoria física 1000 a REGISTRO1

SIN ABSTRACCIÓN DE MEMORIA

Tres formas simples de organizar la memoria con un sistema operativo y un proceso de usuario

Los modelos (a) y (c) tienen la desventaja de que un error en el programa de usuario puede borrar/dañar el sistema operativo, posiblemente con resultados desastrosos

PSW Program Status Word

 La IBM 360 (1965-1978), resolvió el problema incorporando cierto hardware especial (PSW - Program Status Word) que controlaba cualquier intento por parte de un proceso en ejecución de acceder a la memoria.

Ejecución de múltiple programas sin una abstracción de memoria

Reubicación Estática

Reubicación Estática

- Funciona si se lleva a cabo en la forma correcta
- Reduce la velocidad de la carga
- Requiere información adicional en todos los programas ejecutables para indicar cuáles palabras contienen direcciones (reubicables) y cuáles no.
- Ej:

MOV REGISTRO1, [1000]

MOV REGISTRO1, 28

 El cargador necesita saber qué es una dirección y qué es una constante

Exposición de Memoria Física

- + Muy Simple
- Los programas de usuario pueden estropear el sistema operativo con facilidad (intencional o accidentalmente)
- Es difícil tener varios programas en ejecución a la vez .
 problemas: protección y reubicación
 - + PSW (Program Status Word Ilaves)
 - Reubicación estática: LENTA y COMPLICADA

ESPACIO DE DIRECCIONES LÓGICO VS. FÍSICO

- El concepto de espacio de direcciones lógico que está separado de un espacio físico es central en la administración de memoria.
 - **Dirección lógica** generada por la CPU; también conocida como **dirección virtual**
 - Dirección Física dirección que ve la unidad de memoria
- Las direcciones lógicas y físicas son las mismas en la vinculación (binding) de tiempo de compilación y carga; y difieren en la vinculación (binding) de tiempo de ejecución

REGISTROS BASE Y LÍMITE

 Un par de registros base y límite definen el espacio lógico de direcciones

SOPORTE DE HARDWARE

UNIDAD DE ADMINISTRACIÓN DE MEMORIA (MMU)

- Dispositivo de hardware que mapea la memoria virtual o lógica con la memoria física
- En un esquema con MMU, el valor del registro de reubicación es sumado a cada dirección generada por un proceso del usuario cuando se envía a memoria
- Los programas del usuario trabajan con direcciones lógicas; nunca ven las direcciones físicas reales

- La memoria se divide generalmente en 2 particiones:
 - SO residente, generalmente en la parte baja de memoria junto al vector de interrupciones
 - Procesos del usuario
- Se utilizan registros de re-ubicación para proteger los procesos entre si, y al sistema operativo
 - Registro base contiene el valor de la menor dirección física
 - Registro límite contiene el rango de direcciones lógicas;
 las direcciones lógicas deben ser menor que este valor
- La MMU mapea direcciones lógicas en forma dinámica

- Asignación con múltiples particiones
- Hueco bloque de memoria disponible; de varios tamaños desparramados por memoria
- Cuando un proceso llega, se le asigna un bloque lo suficientemente grande.
- El SO mantiene información de:
 - a) particiones asignadas
 - b) particiones libres (huecos)

PROBLEMA DE ASIGNACIÓN DINÁMICA

Cómo satisfacer un pedido de tamaño n con una lista de huecos? (ej: 100K)

PROBLEMA DE ASIGNACIÓN DINÁMICA

Cómo satisfacer un pedido de tamaño n con una lista de huecos? (ej: 100K)

- Primer ajuste (First-fit): asigna el primer bloque libre que es suficientemente grande
- Mejor ajuste (Best-fit): asigna el menor bloque que es suficientemente grande para contener al proceso; debe buscar en toda la lista, salvo que este ordenada
 - Produce el desperdicio más chico por hueco
- Peor ajuste (Worst-fit): asigna el bloque más grande; debe recorrer la lista completa
 - Deja el desperdicio más grande

FRAGMENTACIÓN

Fragmentación Externa

existe suficiente para satisfacer un pedido, pero no en forma continua

Fragmentación Interna

la memoria asignada puede ser algo mayor que la requerida; esta diferencia es interna a una partición pero no es usada

20 / 23

COMPACTACIÓN

- Reduce la fragmentación externa por medio de la compactación
- Mueve el contenido de memoria para ubicar toda la memoria libre junta
- La compactación es posible sólo si tenemos re-ubicación dinámica, y el binding es hecho en tiempo de ejecución
- Problemas de I/O
 - Anclar el proceso en memoria si está haciendo E/S
 - Hacer E/S sólo a buffers del SO

COMPACTACIÓN

Asignación Continua

- + Soporta multiples programas ejecutando a la vez
- + Los programas de usuario tienen un **espacio de memoria** definido (protección)
- Requiere traducción Dirección Lógica → Dirección Física
 - MMU Hardware
- Genera Fragmentación Externa
- Compactación
 - Reduce fragmentación externa
 - Excesivamente costosa