Interrogation écrite n°08

NOM: Prénom: Note:

1. Soit u un endomorphisme d'un espace euclidien E. Montrer que $\operatorname{Ker}(u^*) = \operatorname{Im}(u)^{\perp}$ puis que $\operatorname{Im}(u^*) = \operatorname{Ker}(u)^{\perp}$. Soit $x \in E$. Alors

$$x \in \operatorname{Ker}(u^*)$$

$$\iff u^*(x) = 0_{\operatorname{E}}$$

$$\iff \forall y \in \operatorname{E}, \langle u^*(x), y \rangle = 0$$

$$\iff \forall y \in \operatorname{E}, \langle x, u(y) \rangle = 0$$

$$\iff \forall z \in \operatorname{Im}(u), \langle x, z \rangle = 0$$

$$\iff x \in \operatorname{Im}(u)^{\perp}$$

Ainsi $\operatorname{Ker}(u^*) = \operatorname{Im}(u)^{\perp}$. En appliquant cette égalité à u^* , on obtient $\operatorname{Ker}((u^*)^*) = \operatorname{Im}(u^*)^{\perp}$ i.e. $\operatorname{Ker}(u) = \operatorname{Im}(u^*)^{\perp}$. Or E est de dimension finie donc $\operatorname{Ker}(u)^{\perp} = (\operatorname{Im}(u^*)^{\perp})^{\perp} = \operatorname{Im}(u^*)$.

2. On munit \mathbb{R}^3 de son produit scalaire usuel. On note s la réflexion par rapport au plan P d'équation x + y + z = 0. Déterminer la matrice de s dans la base canonique.

Notons que a=(1,1,1) est un vecteur normal à P. Ainsi le projeté orthogonal d'un vecteur u sur P^{\perp} est $v=\frac{\langle u,a\rangle}{\|a\|^2}a=\frac{1}{3}\langle u,a\rangle a$ puis s(u)=u-2v. En notant $\mathcal{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 , on trouve alors

$$\begin{split} s(e_1) &= e_1 - \frac{2}{3} \langle e_1, a \rangle a = \frac{1}{3} (1, -2, -2) \\ s(e_2) &= e_2 - \frac{2}{3} \langle e_2, a \rangle a = \frac{1}{3} (-2, 1, -2) \\ s(e_3) &= e_2 - \frac{2}{3} \langle e_3, a \rangle a = \frac{1}{3} (-2, -2, 1) \end{split}$$

On en déduit que $\max_{\mathcal{B}}(s) = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$.

3. On se donne deux matrices $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{pmatrix}$. Etablir que ces deux matrices sont semblables en utilisant l'endo-

morphisme u associé à A dans une base (e_1, e_2, e_3) d'un espace vectoriel E.

Comme la matrice de u dans la base (e_1, e_2, e_3) est A, on a $u(e_1) = e_2 + 2e_3$, $u(e_2) = e_1 + e_3$ et $u(e_3) = e_1$. La matrice de u dans la base (e_2, e_1, e_3) est donc B. On en déduit que A et B sont semblables.

4. L'ensemble $A = \{(x, y) \in \mathbb{R}^2, \ y^2 = x^2(1 - x^2)\}$ est-il une partie compacte de \mathbb{R}^2 ?

L'application $f:(x,y) \in \mathbb{R}^2 \mapsto y^2 - x^2(1-x^2)$ est polynomiale donc continue. Ainsi A est fermé comme image réciproque du fermé $\{0\}$ par l'application continue f. Soit $(x,y) \in A$. Alors $x^2(1-x^2) = y^2 \ge 0$ donc $x^2 \in [0,1]$ i.e. $x \in [-1,1]$. De plus, $y^2 = x^2(1-x^2) \le 1$ donc $y \in [-1,1]$.

Finalement $A \subset [-1,1]^2$ donc A est borné.

Comme \mathbb{R}^2 est de dimension finie, A est compact comme fermé borné de \mathbb{R}^2 .