ECHO-AWARE signal processing for audio scene analysis

Diego DI CARLO

November 23, 2020

suprevisors: Antione DELEFORGE, Nancy BERTIN

collaborators: Clément ELVIRA, Robin SCHEIBLER, Ivan DOKMANIĆ, Sharon GANNOT, Pini A

INRIA IRISA

Meeting - 2020 edition

Sound

- produced by
- recorded by microphones
- corrupted by noise
- propagates in the room
 - \hookrightarrow reverberation

Attention: artificial sound vs (natural) microphone recordings

Echo-aware signal processing for audio scene analysis

Semantic information

about source nature and semantic content

Spatial information

about source position and room geometry

Temporal information

about events activity

Audio Scene Analysis

Extraction and organization of all the information in the sound

 \rightarrow

 \rightarrow

Animals do it, Humans do it. Can computer and robots do it?

Echo-aware signal processing for audio scene analysis

Signal Processing

Mathematical models, frameworks and tools to tackle and solve such problems

Some problems

- Speaker Verification
- Sound Source Separation
- Speech Enhancement
- Automatic Speech Recognition
- Sound Source Localization
- Room Geometry Estimation
- Voice Activity Detection
- Diarization
- \cdot RT $_{60}$ estimation
- Wall Absorption Estimation
- · and many many other

Everything is connected HOW \rightarrow WHERE \rightarrow WHEN \rightarrow WHAT

Who?

What?

Echo-aware signal processing for audio scene analysis

Acoustic Echoes

- Elements of the sound propagation
- Sound reflection standing out for time and strength w.r.t. to the total reverberation
- · repetition of the source sound but later
- · both outdoor and indoor

Audio signal processing w.r.t. sound propagation [?]

- · ignore it
- · assume it free-field
- model it entirely
- \cdot model as few reflection \rightarrow echo-aware processing

Thesis goal and contribution

Audio Scene Analysis	Signal Processing	Acoustic Echoes
\	\	\downarrow
context and problems	models and frameworks	better processing

Thesis objective

- 1. provide new methodologies and data to process and estimate acoustic echoes
- Turning echoes into friends [?] extend previous classical methods for audio scene analysis

contribution Estimation

- · Knowledge-based echo estimation, aka Blaster
- · Learning-based echo estimation, aka Lantern

Application

- Echo-aware Source Separation, aka Separake
- Echo-aware Source Localization, aka Mirage
- · Echo-aware Speech Enhancement
- · Echo-aware Room Geometry Estimation

From Physics to Digital Signal Processing Introduction Blaster Echo-aware signal Lantern processing Interim conclusion (2/4)for audio scene analysis introduction mirage Interim conclusion (3/4) Echo-aware Dataset Dataset for Echo-aware processing

Introduction Motivation Outline

Modeling

Acoustic Impulse Response

Sound propagates Sound source \to ? \to microphone Sound propagates $s \quad \to \quad h \quad \to \quad x$

Acoustic Impulse Response

Sound propagates Sound source \rightarrow environment \rightarrow microphone Sound propagates $s \rightarrow h \rightarrow x$

Sound interacts with environment

- · it is reflected (specularly and diffusely)
- · it is diffracted
- · it is absorbers and transmitted

Acoustic Impulse Response (AIR)

the linear filtering effect due to the propagation of sound from a source to a microphone.

$$x_i(t) = (a \ast s)(t)$$

Acoustic Impulse Response

Sound interacts with environment

- · it is reflected (specularly and diffusely)
- · it is diffracted
- · it is absorbers and transmitted

Echoes and Room Impulse Response

RIRs can be modeled with the Image Methods

- · specular reflection only
- · "playing billiard in a concert hall"
- for shoebox room it is is the solution for physics
- · in frequency domain it writes as

RIRs accounts for

the geometry of the room

- · Room shape and size
- · Mic and Source position
- · presence of objects

the acoustic properties of the audio scene

- · surface materials
- objects materials

examples

Echoes in (Digital) Signal Processing

Room Impulse Response

$$\tilde{x}_i = (\tilde{h}_i * \tilde{s})(t) \longrightarrow \tilde{X}_i(f) = \tilde{H}_{ij}(f)\tilde{S}(f)$$

the linear filtering effect due to the propagation of sound from a source to a microphone in a indoor space

Observation

Our vision is limited both in time (finite and discrete) and in frequency (finite and discrete)

$$x_i[n] = \dots (1)$$

Signal model in the frequency domain

$$x_i = (h_i * s)(t) \ \longrightarrow \ X(f) = H_i(f) S(f)$$

Approximations

- Narrowband Approximation
- · DTFT echo model in the DFT

Interim Conclusion I

Approximations

- Echoes are well described by specular reflection
- · Echoes are off-grid by nature
- · Sampling and quantization make them hard
- Processing in the discrete frequency domain, but with continuous time echo model

Acoustic Echo Estimation

Acoustic Echo Retrieval

The acoustic echoes retrieval (AER) problem

Estimating early (strong) acoustic reflections:

- their time of arrivals → TOAs Estimation
 ⇔ sufficient sometimes
- their amplitude
 ⇔ closed-form form TOA

Approaches

Active approaches

- · solve and easier problem
- · Intrusive or specific setup
- · Single microphones

Application Sonar, Calibration, Measurements

Passive approaches

more difficult problem — blind inverse problem

Acoustic Echo Retrieval

The acoustic echoes retrieval (AER) problem

Estimating early (strong) acoustic reflections:

- their time of arrivals → TOAs Estimation
 Sufficient sometimes
- their amplitude
 ⇔ closed-form form TOA

Arrival time of acoustic events V V V V V V V V P P Time

Approaches

Scenario: signal source, only TOAs and passive system

Passive Acoustic Echo Estimation

Passive Acoustic Echo Estimation:

RIR-based approaches

- 1. SIMO BCE problem \implies RIRs
- Peak picking and disambiguation ⇒
 Fchoes

Pros

- SIMO BCE is well studied (elegant framework)
- It works well is some scenarios and in practice

$\hookrightarrow \text{if not limitation}$

Cons

- · Full RIR
- dependent of manually tuned peak picking
- Pathological issue (sampling and body-guard
- Complexity

RIR-agnostic approaches

1. Estimation directly in the echoes parameters space $\{\tau,\alpha\}$ and direction of arrivals can be used instead

Performed with

- Cross-correlation on-grid, eg. EM, Acoustic Cameras
- Cross-relation with super-resolution off-grid, [?, ?]

Pro

- · No need for full RIRs
- · Sub-sampling accuracy
- Low complexity
- · Sparsity and Non-negativity are respected

Cons

Exploratory

AER as discrete SIMO BCE

Key ingredient – Cross relation identity

$$x_i = h_i * s$$

$$h_2 * x_1 = h_2 * h_1 * s = h_1 * h_2 * s = h_1 * x_2$$

Ideas:

- 1. Sampled version of x_1, x_2 are available $(\mathbf{x}_1, \mathbf{x}_2)$
- 2. echoes' TOAs ∝ sampling frequency
- 3. Find echoes ightarrow find sparse vectors $\mathbf{h}_1, \mathbf{h}_2$ of length L
- 4. Modeled as Lasso-like problem

$$\begin{split} \widehat{\mathbf{h}}_1, \widehat{\mathbf{h}}_2 \in \underset{\mathbf{h}_1, \mathbf{h}_2 \in \mathbf{R}^n}{\operatorname{arg\,min}} & \|\mathbf{x}_1 * \mathbf{h}_2 - \mathbf{x}_2 * \mathbf{h}_1\|_2^2 + \lambda \mathcal{P}(\mathbf{h}_1, \mathbf{h}_2) \quad \text{s.t.} \quad \mathcal{C}(\mathbf{h}_1, \mathbf{h}_2) \\ \mathcal{P}(\mathbf{h}_1, \mathbf{h}_2) \longrightarrow \text{sparse promoting regularizer} & \mathcal{C}(\mathbf{h}_1, \mathbf{h}_2) \longrightarrow \text{non-negativity constraints} \end{split}$$

$$\mathbf{x_i} * \mathbf{h}_i \text{ computed as } \mathcal{T}(\mathbf{x}_i) \mathbf{h_i} \in \mathcal{O}(L^2)$$

AER as discrete SIMO BCE

Key ingredient – Cross relation identity

$$x_i = h_i * s$$

$$h_2 * x_1 = h_2 * h_1 * s = h_1 * h_2 * s = h_1 * x_2$$

Ideas:

- 1. Sampled version of x_1, x_2 are available $(\mathbf{x}_1, \mathbf{x}_2)$
- 2. echoes' TOAs ∝ sampling frequency
- 3. Find echoes \rightarrow find sparse vectors $\mathbf{h}_1, \mathbf{h}_2$ of length L
- 4. Modeled as Lasso-like problem

$$\begin{split} \widehat{\mathbf{h}}_1, \widehat{\mathbf{h}}_2 \in \underset{\mathbf{h}_1, \mathbf{h}_2 \in \mathbf{R}^n}{\min} \ \| \mathbf{x}_1 * \mathbf{h}_2 - \mathbf{x}_2 * \mathbf{h}_1 \|_2^2 + \lambda \mathcal{P}(\mathbf{h}_1, \mathbf{h}_2) \quad \text{s.t.} \quad \mathcal{C}(\mathbf{h}_1, \mathbf{h}_2) \\ \mathcal{P}(\mathbf{h}_1, \mathbf{h}_2) \longrightarrow \text{sparse promoting regularizer} & \mathcal{C}(\mathbf{h}_1, \mathbf{h}_2) \longrightarrow \text{non-negativity constraints} \end{split}$$

 $\mathbf{x_i}*\mathbf{h}_j \text{ computed as } \mathcal{T}(\mathbf{x}_i)\mathbf{h_j} \in \mathcal{O}(L^2)$

Limitations & bottleneck

On-grid estimation

- · Sparsity and non-negativity Echoes are not necessarily "on grid"
- · Body guard effect [?]
 - \rightarrow low recall \Longrightarrow low accuracy
 - $\rightarrow \ \text{slow convergence}$

... and Pick Picking

ightarrow Manually tuned peaking or peak disambiguation

Increase the sampling frequency, $F_{\rm s}$

→ Increase Precision

Computational bottleneck

- · Bigger vectors and matrices
 - \longrightarrow memory usage
- Computational complexity: at best $\mathcal{O}(F_s^2)$ per iteration
- · the higher the sampling frequency, the more ill-conditioned
 - → slow convergence

Blaster- Off-grid BCE

Observation 1: the cross relation remains true in the frequency domain

$$\mathcal{F} x_1 \cdot \mathcal{F} h_2({}^n\!/{}_{\!\mathit{F_s}}) = \mathcal{F} x_2 \cdot \mathcal{F} h_1({}^n\!/{}_{\!\mathit{F_s}}) \qquad n = 0 \dots N-1$$

Observation 2: $\mathcal{F}\delta_{\text{echo}}$ is known in closed-form

Observation 3: $\mathcal{F}x_i$ can be (well) approximated by DFT

$$\mathbf{X}_i = \mathsf{DFT}(\mathbf{x}_i) \simeq \mathcal{F}\mathbf{x}_i(nF_s) \qquad n = 0 \dots N-1$$

Idea: Recover echoes by matching a finite number of frequencies

$$\underset{h_1,h_2 \in \underset{\text{Space}}{\text{measure}}}{\arg\min} \ \tfrac{1}{2} \|\mathbf{X}_1 \cdot \mathcal{F} h_2(f) - \mathbf{X}_2 \cdot \mathcal{F} h_1(f)\|_2^2 + \lambda \|h_1 + h_2\|_{\text{TV}} \quad \text{s.t. } \begin{cases} h_1(\{0\}) = 1 \\ h_l \geq 0 \end{cases}$$

Instance of a BLasso problem [?] (Sliding Frank-Wolfe algorithm)

no Toeplitz matrix

Solutions is anchor prevents a train of Dirac trivial solution

Blaster- Experiments

Experiments

- simulation data with ISM with Pyroomacoustics
- 1 source, 2 microphones, random room geometry
- · Full RIRs
- · 2 sources: broadband and speech
- 2 datasets: different SNR, different RT60

Methods

- BSN: Blind Sparse and Nonnegative SIMO BCE [?]
- IL1C: Iteratively-weighted ℓ_1 Constraint SIME BCE \cite{ME}
- Blaster: Proposed off-grid approach

Metrics

- RMSE
- Precision

Blaster- Results

Lantern-data-driven AER

Observation 1: Mapping from observation to echo is extremely difficult Later echoes are not considered, may help

Observation 2: We have acoustic simulators
Acoustic simulators based on ISM
source position, room ← reverberation elements ←
annotation for free

Observation 3: (Deep) Learning-based methods successful for localization Echoes are strongly related to the source position

Idea: Use Deep Learning for AER

- Extend previous work on source localization for Echo Estimation
- Estimate the first echo TOA
 - \hookrightarrow simple case, but with important application in SSL

Lantern- Data & Models

Data

- · train:
 - ⇔ artificially generated RIR
 - \hookrightarrow white noise + noise
- · test:
 - ⇔ artificially generated RIR

Architecture

- · models: MLP, CNN
- · loss: Multi-class regression problem
 - $\hookrightarrow \mathsf{RMSF}$
 - Gaussian regression + uncertainty
 - \hookrightarrow Student Regression + uncertainty

Lantern- Experiments & Resuls

Experiments

- 1. MLP
- 2. CNN
- 3. CNN + Noise
- 4. CNN + Gaussian
- 5. CNN + Student

Results

- 1. MLP
- 2. CNN
- 3. CNN + Noise
- 4. CNN + Gaussian
- 5. CNN + Student

Interim conclusion (2/4)

on Acoustic Echo Retrieval:

- Most of the literature is on Passive and RIR-based, with on-grid approaches
- On-grid approaches suffers by the off-grid nature of the echoes (complexity, sampling)

on Blaster:

- ✓ off-grid parameter-free which exploit dirac closed-form model (non negativity and sparsity)
- ✓ smaller RMSE due to super-resolution, better for small # of echoes
- x source dependent and on number of echoes
- x validate only on synthetic data
- → Multichannel and RTF-based extention

on Lantern:

- ✓ promising results for first echo estimation
- ✓ direct application for table top application
- **X** difficult extention
- x need for real data validation

Echo-aware Application

Audio signal processing and sound propagation

Sound propagation is [?]

$$\begin{split} x_i(t) &= (h*s)(t) \\ h(t) &= h^d(t) + h^e(t) + h^r(t) \\ H(f) &= \sum_{r=0}^R \alpha_i^{(r)}(f) \mathrm{e}^{-\mathrm{i} 2\pi \tau_i^{(r)} f_k} \end{split}$$

completely ignored

$$\hookrightarrow h(t) = 1$$

· assumed direct path (anechoic case)

$$\hookrightarrow h(t) = h^d(t) + \varepsilon(t)$$

fully modeled (reverberant case)

$$\hookrightarrow h(t) = h^d(t) + h^e(t) + h^l(t) + \varepsilon(t)$$

· early echoes (multipath case)

$$\hookrightarrow h(t) = h^d(t) + h^e(t) + \varepsilon(t)$$

$\Leftarrow \textit{strong early reflection and strong reverberation level}$

- · detrimentally affect typical Audio Scene Analysis algorithm
- · undesired interfering source
- undesired position of the true sources (TDOA disambiguation)

Echo-aware Application

What: echoes as sound repetition

- Sound Source Separation
- Speech Enhancement
 → Dereverberation, Denoising, Room Equalization
- Speaker Verification

Where: echoes as new sound direction

- · Sound Source Localization
- · Microphone Calibration
- · Room Geometry Reconstruction

How: echoes as element of sound propagation

- Blind Acoustic Channel Estimation as initialization for other methods
- · Acoustic Measurements

Echo-aware Application

What: echoes as sound repetition

- Sound Source Separation
- Speech Enhancement
 → Dereverberation, Denoising, Room Equalization
- · Speaker Verification

Where: echoes as new sound direction

- · Sound Source Localization
- · Microphone Calibration
- · Room Geometry Reconstruction

How: echoes as element of sound propagation

- Blind Acoustic Channel Estimation as initialization for other methods
- · Acoustic Measurements

Mirage- Sound Source Locatization with Echoes

The Picnic Scenario:

- Microphone close to a surface (table-top scenario)
- · Clear definition of the echo
- One source

Mirage Array

How to access the image microphone

Each pair is augmented with echoes

Mirage- Sound Source Locatization with Echoes

1D SSL

- Estimate the TDOA between two microphones signals with GCC
- · Map the TDOA to angles knowing the array geometry

2D SSL

- For each pair: 1D-SSL
- Compute a global angular spectrum by "fusing" together the estimation of each pairs

Baseline:

GCC-PHAT on true microphones

Proposed Approach:

Using DNN-based TDOA estimation problem: real value not estimation

Mirage-Results

Interim conclusion (3/4)

Echo-aware Audio Scene Analysis

- ✓ vast gamma of problems

 → not limited to audio (e.g., seismology, medical imaging, astrophysics, etc.)
- ✓ between anechoic and reverberant propagation
- ✓ physical-interpretation (with virtual microphones)
- performance depending on the quality of the echo-estimation still very challenging task
- X

Mirage & echo-aware SSL

✓ impossible 2D localization with only 2 microphones

Separake & echo-aware SSS

· nice

Echo-aware Dataset

Echo-aware Datasets

Data in audio signal processing

- 1. are necessary for validating (and learning) models
- collecting real data is a not always possible annotation and recording require expertise, equipment and time
- dataset of real data cannot be easily shared they do not generalize to different use-cases and scenarios (array, recording scenario)
- simulated data are used instead: quantity, versatility, annotation easiness and "quality"

Echo-aware Data in audio signal processing

For $\operatorname{SE}:$ strong echoes, but not annotated

[?, ?, ?]

For RooGE: good geo. annotation, but no variety of acoustic scenarios

[?, ?, ?]

dEchorate realization

Echo Annotation

- 1. RIR estimation with ESS [?]
- 2. IPS with beacon
- GUI for echo annotation Skyline, Matched Filter, Assisted Peak Picking
- 4. Refined position with Least Square optimization
- 5. iterate including ceiling (perfectly flat)

dEchorate realization

Echo Annotation

- 1. RIR estimation with ESS [?]
- 2. IPS with beacon
- GUI for echo annotation Skyline, Matched Filter, Assisted Peak Picking
- 4. Refined position with Least Square optimization
- 5. iterate including ceiling (perfectly flat)

TABLE RESULTS

dEchorate realization

Echo Annotation

- 1. RIR estimation with ESS [?]
- 2. IPS with beacon
- GUI for echo annotation Skyline, Matched Filter, Assisted Peak Picking
- 4. Refined position with Least Square optimization
- 5. iterate including ceiling (perfectly flat)

IMAGE SKYLINE

Room Geometry Estimation

Estimating the room geometry: shape, volume or reflector position) from signal or form TOAs and labels

If TOAs annotation (label and value) are available, RooGE as Image Source Inversion: For each wall/label:

- 1. $TOA \rightarrow image source position via 3D multilateration$
- 2. image source position \rightarrow reflector estimation via geometric reasoning

Other methods differs for prior knowledge and setup [?, ?, ?]

Room Geometry Estimation

Estimating the room geometry: shape, volume or reflector position) from signal or form TOAs and labels

If TOAs annotation (label and value) are available, RooGE as Image Source Inversion: For each wall/label:

- 1. $TOA \rightarrow image$ source position via 3D multilateration
- 2. image source position \rightarrow reflector estimation via geometric reasoning

Other methods differs for prior knowledge and setup [?, ?, ?]

IMAGE EXAMPLE HERE

Room Geometry Estimation

Estimating the room geometry: shape, volume or reflector position) from signal or form TOAs and labels

If TOAs annotation (label and value) are available, RooGE as Image Source Inversion: For each wall/label:

- 1. $TOA \rightarrow image$ source position via 3D multilateration
- 2. image source position \rightarrow reflector estimation via geometric reasoning

Other methods differs for prior knowledge and setup [?, ?, ?]

TABLES RESULTS HERE

Speech Enhancement

improve the quality of a target sound source with respect:

- interferences, i.e. form other sources → sound source separation
- background noise → denoising
- reverberation → dereverberation, room equalization

Spatial filtering via Beamformers

- · Is a speech enhancement techniques for multichannel
- · vs. Wiener Filtering, the target is distortionless
- · in anechoic case, it correspond to delay-and-sum beamformer
- · physical interpretation with steering vector based on DOA
- both in time and frequency domain

Speech Enhancement

Improve the quality of a target sound source with respect:

- interferences, i.e. form other sources → sound source separation
- background noise → denoising
- reverberation → dereverberation, room equalization

Spatial filtering via Beamformers

- · Is a speech enhancement techniques for multichannel
- · vs. Wiener Filtering, the target is distortionless
- · in anechoic case, it correspond to delay-and-sum beamformer
- · physical interpretation with steering vector based on DOA
- both in time and frequency domain

Beamforming: Delay and Sum

$$\mathbf{y}[l,k] = \mathbf{W}^{\mathsf{H}}\mathbf{x}[l,k]$$

STFT Signal Model

$$\mathbf{x}[l,k] = \mathbf{H}[k]\mathbf{s}[l,k] + \mathbf{n}[l,k]$$

Beamforming: Filter and Sum

$$\mathbf{y}[l,k] = \mathbf{W}^{\mathsf{H}}\mathbf{x}[l,k]$$

Beamforming in the STFT domain: apply filter and sum independently at each frequency bin

The PSD of various components asd

Different Criteria and Solution

- · DS
- · MVDR DP
- · MVDR ReTF

IMAGE RESULTS

Interim conclusion (3/4)

dEchorate dataset for echo-aware signal processing

- designed for AER, SE and RooGE
- $\boldsymbol{\cdot} \ \mathsf{Geometrical} \ \mathsf{annotation} \longleftrightarrow \mathsf{image} \ \mathsf{source} \ \mathsf{annotation} \longleftrightarrow \mathsf{Signal} \ \mathsf{Annotation}$
- Measured Real RIRs and equivalent synt RIR
- · also speech, noise, babble noise and different room conf (+fornitures)
- · GUI, tools and code

Application

Echo Estimation

· Huge difference between real and simulated data

Room Geometry Reconstruction

 \cdot some annotation inconsistencies are noticed (but manually corrected)

Echo-aware Speech Enhancement

- · a
- b

Conclusion

2D Outline

Thesis outline with projects