EP2

MAC 422 Sistemas Operacionais

Jonas Arilho Pedro Bortolli

16/10/2017

Thread Ciclista

Ciclista

Funções

- Mover o ciclista pra frente
- Alterar a velocidade de um ciclista
- Quebrar um ciclista e tirá-lo da prova

Ciclista

Implementação

- A movimentação dos ciclistas deve ser sincronizada
- Barreira de sincronização!

Barreira de Sincronização

Barreira

- Pthread_mutex
 - Cada ciclista tem um mutex associado

- Pthread_cond
 - Usado para enviar um sinal pelo signal para liberar alguém que está parado no wait

Threads e mutex

Ciclista

- Simula a
 movimentação
 dos ciclistas
- Faz os devidos sorteios dos eventos probabilísticos

Barreira

- Sincroniza as threads dos ciclistas
- Coordenador
 controla quando
 os ciclistas devem
 esperar

Pista

Controla o acesso
 à pista para que
 dois ciclistas não
 tentem mudar ao
 mesmo tempo

Detalhes

 Todos os ciclistas vão em direção a parte mais interna da pista sempre que possível

 Função rand() para sortear números pseudoaleatórios

 Função recalc() muda todas as velocidades dos ciclistas para que o programa possa ser simulado de 20 em 20 ms

Resultados (gráficos)

Termologia dos Resultados

time ./ep2 <argumentos> -r

Medido em segundos

Tempo de Execução Consumo de Memória

• valgrind ./ep2 <argumentos> -r

Medido em kilobytes

Configuração dos Computadores

PC 1

- Intel(R) Core(TM) i7-6700CPU @ 3.40GHz(8 cores)
- 16 GB Ram DDR 4
- Ubuntu 16.04.2 LTS

PC 2

- Intel(R) Core(TM)
 i5-6200U CPU @ 2.30GHz
 (4 cores)
- 8 GB Ram DDR 4
- Ubuntu 16.04.2 LTS

Tempo de execução

250 metros

Consumo de Memória

250 metros

Tempo de execução

500 metros

Consumo de Memória

500 metros

Tempo de execução

1000 metros

Consumo de Memória

1000 metros

Conclusões

Paralelismo

Pela diferença no tempo de execução para 4
 e 8 cores fica evidente que o paralelismo
 ajudou bastante no desempenho.

Memória

 A memória depende muito do tamanho da pista e do número de voltas

Tempo

 O tempo depende mais do número de ciclistas e do número de voltas

Conclusões

- Resultados práticos justificam os esperados
- A variação de cada número da entrada impacta o programa de maneiras semelhantes, embora com intensidades diferentes

- Aumento do N: aumenta moderadamente a memória necessária e muito o consumo de tempo
- Aumento do D: aumenta muito a memória gasta e moderadamente o consumo de tempo
- Aumento do V: aumenta muito o consumo de tempo embora não gaste mais memória adicional