Meeting

Po Hsun Wu

October 18, 2022

Progress report

$$\bar{y} = 1 - \frac{y}{\max(y)} \tag{1}$$

	β	ϕ
Rise time(sec)	μ =0.5887 σ =0.3575	μ =0.4132 σ =0.4636
2% Settling time(sec)	μ =4.6819 σ =3.3599	μ =4.3516 σ =3.3567
5% Settling time(sec)	μ =2.4018 σ =2.8485	μ =2.2058 σ =2.7957
Overshoot(%)	μ = 9.0915 σ =21.5718	μ = 8.9186 σ =21.3232
Undershoot(%)	μ = 6.3101 σ =23.0001	μ = 4.6244 σ =17.7231

4 D > 4 D > 4 E > 4 E > E 990

Stochastic policy

Using Stochastic policy to replace the controller. $(\pi: S \to \mathbb{P}(X \in A))$

$$a_t \sim \pi_\theta(\,\cdot\,|s_t)$$
 (2)

Figure 1: Stochastic policy

Multinomial logistic regression

The one way to determine the probability of classify problem is using multinomial logistic regression.

$$\ln\left(\mathbb{P}\left(Y=i\right)\right) \triangleq \beta_{i}\mathbf{x} - \ln z \tag{3}$$

$$\mathbb{P}(Y=i) = \frac{1}{z}e^{\beta_i \mathbf{x}} \tag{4}$$

where $i \in [1, n]$, $\mathbf{x} \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^{n \times n}$. The β is adjustable value. From the probability theory,

$$\sum_{j=1}^{n} \mathbb{P}(Y=j) = 1 = \frac{1}{z} e^{\beta_{j} \mathbf{x}}$$

$$\Rightarrow z = \sum_{j=1}^{n} e_{k}^{\beta_{j} \mathbf{x}}$$
(5)

Stochastic policy

We use Softmax function(or normalization exponential function) to transfer the output to the probability.

$$\mathbb{P}(Y) = \operatorname{softmax}(i, \mathbf{x}) = \frac{e^{x_i}}{\sum_{j=1}^{n} e^{x_j}}$$
 (6)

Po Hsun Wu October 18, 2022