Mining Frequent Patterns in Uncertain Transactional Databases

What is frequent pattern mining?

Frequent pattern mining aims to discover all interesting patterns in a transactional database that have **support** no less than the user-specified **minimum support** (**minSup**) constraint. The **minSup** controls the minimum number of transactions that a pattern must appear in a database.

What is a uncertain transactional database?

A transactional database is a collection of transactions, where each transaction contains a transaction-identifier and a set of items with their respective uncertain value.

A hypothetical transactional database containing the items **a**, **b**, **c**, **d**, **e**, **f**, **and g** as shown below.

tid	Transactions	
1	a(0.4) b(0.5) c(0.2) g(0.1)	
2	b(0.2) c(0.3) d(0.4) e(0.2)	
3	a(0.3) b(0.1) c(0.3) d(0.4)	
4	a(0.2) c(0.6) d(0.2) f(0.1)	
5	a(0.3) b(0.2) c(0.4) d(0.5) g(0.3)	
6	c(0.2) d(0.7) e(0.34) f(0.2)	
7	a(0.6) b(0.4) c(0.3) d(0.2)	
8	a(0.2) e(0.2) f(0.2)	
9	a(0.1) b(0.3) c(0.2) d(0.4)	
10	b(0.3) c(0.2) d(0.1) e(0.6)	

Note: Duplicate items must not exist in a transaction.

What is the acceptable format of a uncertain transactional databases in PAMI?

about:srcdoc Page 1 of 4

Each row in a transactional database must contain only items with their respective uncertain values. A sample transactional database, say sampleInputFile.txt, is provided below.

```
a(0.4) b(0.5) c(0.2) g(0.1)
b(0.2) c(0.3) d(0.4) e(0.2)
a(0.3) b(0.1) c(0.3) d(0.4)
a(0.2) c(0.6) d(0.2) f(0.1)
a(0.3) b(0.2) c(0.4) d(0.5) g(0.3)
c(0.2) d(0.7) e(0.34) f(0.2)
a(0.6) b(0.4) c(0.3) d(0.2)
a(0.2) e(0.2) f(0.2)
a(0.1) b(0.3) c(0.2) d(0.4)
b(0.3) c(0.2) d(0.1) e(0.6)
```

What are the input parameters?

The input parameters to a frequent pattern mining algorithm are:

• Transactional database

Acceptable formats:

- String: E.g., 'uncertainTransactionalDatabase.txt'
- URL: E.g., https://u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/transactional_T10
- DataFrame with the header titled 'Transactions'

minSup

specified in

- count (beween 0 to length of a database) or
- **[**0, 1]

seperator

default seperator is '\t' (tab space)

How to store the output of a frequent pattern mining algorithm?

The patterns discovered by a frequent pattern mining algorithm can be saved into a file or a data frame.

about:srcdoc Page 2 of 4

How to run the frequent pattern mining algorithms in a terminal?

- Download the PAMI source code from github.
- Unzip the PAMI source code folder and enter into uncertain frequent pattern folder.
- Enter into uncertainFrequentPattern folder
- You will find folder like basic
- Enter into a specific folder and execute the following command on terminal.

```
syntax: python3 algorithmName.py <path to the input file> <path to
the output file> <minSup> <seperator>
```

```
Example: python3 PUFGrowth.py inputFile.txt outputFile.txt 0.05 '
```

How to execute a frequent pattern mining algorithm in a Jupyter Notebook?

Import the PAMI package executing: pip3 install PAMI

- Install the PAMI package from the PYPI repository by executing the following command: pip3 install PAMI
- Run the below sample code by making necessary changes

```
In [ ]:
        import PAMI.uncertainFrequentPattern.basic.PUFGrowth as alg
        iFile = 'sampleInputFile.txt' #specify the input transactional database
        minSup = 0.5
                                      #specify the minSup value <br>
        seperator = ' '
                                       #specify the seperator. Default seperator
        oFile = 'frequentPatterns.txt' #specify the output file name<br/>br>
        obj = alg.PUFGrowth(iFile, minSup, seperator) #initialize the algorithm <
                                              #start the mining process <br>
        obj.startMine()
        obj.savePatterns(oFile)
                                              #store the patterns in file <br>
        df = obj.getPatternsAsDataFrame()
                                             #Get the patterns discovered into a
        obj.printStats()
                                              #Print the statistics of mining pro
```

The frequentPatterns.txt file contains the following patterns (format: pattern:support):!cat frequentPatterns.txt

```
In [4]: !cat frequentPatterns.txt
```

about:srcdoc Page 3 of 4

- f 0.5
- e 1.3399999999999999
- b 2.0
- b a 0.56
- b c 0.51
- a 2.0999999999996
- a c 0.6100000000000001
- c 2.7
- d 2.9000000000000004
- c d 0.860000000000001

The dataframe containing the patterns is shown below:

In []: df

	Patterns	Support
0	f	0.50
1	е	1.34
2	b	2.00
3	b a	0.56
4	bс	0.51
5	а	2.09
6	ас	0.61
7	С	2.70
8	d	2.90
9	c d	0.86

about:srcdoc Page 4 of 4