- 1. Распределение случайных величин X и Y задано вероятностями $\mathbb{P}(X=i,Y=j)=0,1$ при $1\leqslant i\leqslant j\leqslant 4$. Найдите $\mathbb{E}(Y\mid X)$.
- 2. Величина X равномерна на отрезке [0;1], величина Y равновероятно принимает значения 0 и 1. Величины X и Y независимы, $Z=X^Y$. Найдите $\mathbb{E}(Z\mid Y),\ Var(Z\mid Y),\ \mathbb{E}(Z\mid X),\ Var(Z\mid X).$
- 3. Величины X_1 , ..., X_n независимы и равномерна на отрезке [0;1]. Найдите $\mathbb{E}(X_1 \mid \min\{X_1,...,X_n\})$ и $\mathbb{E}(X_1 \mid \max\{X_1,...,X_n\})$.
- 4. Величины $X_1, ..., X_n$ независимы и одинаково распределены, $S_n = X_1 + ... + X_n$. Найдите $\mathbb{E}(S_k \mid S_n)$ в двух случаях: $k \leq n$ и k > n.
- 5. Величина X равномерна на отрезке [0; 1]. В шляпе лежат две свернутые бумажки. На одной бумажке написано X, на другой X². Вы тяните одну бумажку наугад. Пусть Z — число, написанное на вытянутой Вами бумажке, а W - число на другой бумажке. Увидев число Вы решаете, оставить себе эту бумажку, или отказаться от этой и забрать оставшуюся. Ваш выигрыш - число на оставшейся у Вас бумажке.
 - (a) Найдите $\mathbb{E}(W|Z)$
 - (b) Максимально подробно (кубическое уравнение там будет суровое, не решайте его) опишите стратегию максимизирующую Ваш выигрыш