Chapter 7

Support Vector Machines Kernels

Support Vector Machines

Relationship to Logistic Regression

Number of Positive Nodes

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Number of Positive Nodes

Three misclassifications

Two misclassifications

No misclassifications

No misclassifications—but is this the best position?

No misclassifications—but is this the best position?

Maximize the region between classes

Similarity Between Logistic Regression and SVM

Two features (nodes, age) Two labels (survived, lost) 60 40 Age 20 10 20 **Number of Malignant Nodes**

And include the largest boundary possible

Logistic Regression vs SVM Cost Functions

Logistic Regression vs SVM Cost Functions

Logistic Regression vs SVM Cost Functions

This is probably still the correct boundary

Regularization in SVMs

Import the class containing the classification method

from sklearn.svm import LinearSVC

Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

LinSVC = LinearSVC(penalty='I2', C=10.0)

Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

LinSVC = LinearSVC(penalty='I2', C=10.0)

Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

```
LinSVC = LinearSVC(penalty='I2', C=10.0)
```

Fit the instance on the data and then predict the expected value

```
LinSVC = LinSVC.fit(X_train, y_train)
y_predict = LinSVC.predict(X_test)
```


Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

```
LinSVC = LinearSVC(penalty='I2', C=10.0)
```

Fit the instance on the data and then predict the expected value

```
LinSVC = LinSVC.fit(X_train, y_train)
y_predict = LinSVC.predict(X_test)
```

Tune regularization parameters with cross-validation.

Kernels

Classification with SVMs

Non-Linear Decision Boundaries with SVM

Non-linear data can be made linear with higher dimensionality

The Kernel Trick

Transform data so it is linearly separable

Palme d'Or Winners at

Cannes

Budget

Palme d'Or Winners at

Cannes

Budget

Approach 1: Create higher order features to transform the data.

Budget² +
Rating² +
Budget * Rating +
...

Palme d'Or Winners at

Cannes

Budget

Approach 2: Transform the space to a different coordinate system.

Palme d'Or Winners at

Cannes

Budget

Define Feature 1: Similarity to "Pulp Fiction"

Palme d'Or Winners at

Budget

Cannes

Define Feature 2: Similarity to "Black Swan"

Palme d'Or Winners at

Budget

Cannes

Define Feature 3: Similarity to "Transformers"

Palme d'Or Winners at

Cannes

$$a_1(x^{obs}) = exp\left[\frac{-\sum(x_i^{obs} - x_i^{Transformers})^2}{2\sigma^2}\right]$$

Create a
Gaussian function
at feature 3

Transformation:

$$[x_1, x_2] \rightarrow [0.7a_1, 0.9a_2, -0.6a_3]$$

Classification in the New Space

Transformation:

$$[x_1, x_2] \rightarrow [0.7a_1, 0.9a_2, -0.6a_3]$$

Palme d'Or Winners at

Cannes

Budget

SVM Gaussian Kernel Palme d'Or Winners at Cannes **Budget**

SVM Gaussian Kernel Palme d'Or Winners at Cannes Radial Basis Function (RBF) Kernel **Budget**

Import the class containing the classification method

from sklearn.svm import SVC

Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

3

Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

3

Import the class containing the classification method

```
from sklearn.svm import SVC
```

Create an instance of the class

```
rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)
```

Fit the instance on the data and then predict the expected value

```
rbfSVC = rbfSVC.fit(X_train, y_train)
y_predict = rbfSVC.predict(X_test)
```


Import the class containing the classification method

```
from sklearn.svm import SVC
```

Create an instance of the class

```
rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)
```

Fit the instance on the data and then predict the expected value

```
rbfSVC = rbfSVC.fit(X_train, y_train)
y_predict = rbfSVC.predict(X_test)
```

Tune kernel and associated parameters with cross-validation.

Feature Overload

Problem

SVMs with RBF Kernels are very slow to train with lots of features or data

Feature Overload

Problem

SVMs with RBF Kernels are very slow to train with lots of features or data

Solution

Construct approximate kernel map with SGD using Nystroem or RBF sampler

Feature Overload

Problem

SVMs with RBF Kernels are very slow to train with lots of features or data

Solution

Construct approximate kernel map with SGD using Nystroem or RBF sampler. Fit a linear classifier.

Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

```
nystroemSVC = Nystroem(kernel='rbf', gamma=1.0,
n_components=100)
```

Fit the instance on the data and transform

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```


Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

```
nystroemSVC = Nystroem(kernel='rbf', gamma=1.0,
n_components=100)
```


Fit the instance on the data and transform

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```


Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

```
nystroemSVC = Nystroem(kernel='rbf', gamma=1.0,
n_components=100)
```


Fit the instance on the data and transform

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```


Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

```
nystroemSVC = Nystroem(kernel='rbf', gamma=1.0,
n_components=100)
```


n_components is number of samples

Fit the instance on the data and transform

```
X_train = nystroemSVC.fit_transform(X_train)
X_test = nystroemSVC.transform(X_test)
```


Import the class containing the classification method

from sklearn.kernel_approximation import RBFsampler

Create an instance of the class

```
rbfSample = RBFsampler(gamma=1.0,
n_components=100)
```

Fit the instance on the data and transform

```
X_train = rbfSample.fit_transform(X_train)
X_test = rbfSample.transform(X_test)
```


Import the class containing the classification method

from sklearn.kernel_approximation import RBFsampler

Create an instance of the class

```
rbfSample = RBFsampler(gamma=1.0,
n_components=100)
```


Fit the instance on the data and transform

```
X_train = rbfSample.fit_transform(X_train)
X_test = rbfSample.transform(X_test)
```


Import the class containing the classification method

from sklearn.kernel_approximation import RBFsampler

Create an instance of the class

```
rbfSample = RBFsampler(gamma=1.0,
n_components=100)
```


parameter names are identical to previous

Fit the instance on the data and transform

```
X_train = rbfSample.fit_transform(X_train)
X_test = rbfSample.transform(X_test)
```


When to Use Logistic Regression vs SVC

Features

Data

Model Choice

Many (~10K

Small (1K rows)

Simple, Logistic or LinearSVC

Features)

Medium (~10k rows)

SVC with RBF

Few (<100 Features)

Many (>100K Points)

Add features, Logistic, LinearSVC

Few (<100 Features)

or Kernel Approx.

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the <u>Intel Sample Source Code License Agreement</u>.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

