Final Exam

Machine Learning

Introduction

DenseNet

DenseNet adalah arsitektur jaringan di mana setiap lapisan terhubung langsung ke setiap lapisan lain dengan cara feed-forward (dalam setiap blok padat). Untuk setiap lapisan, peta fitur dari semua lapisan sebelumnya diperlakukan sebagai input terpisah sedangkan peta fiturnya sendiri diteruskan sebagai input ke semua lapisan berikutnya.

DENSENET

Berikut adalah gambar Blok padat 5 lapis dengan tingkat pertumbuhan k=4, dimana Setiap lapisan mengambil semua peta fitur sebelumnya sebagai input.

Percobaan

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Tingkat kesalahan (%) pada himpunan data CIFAR dan SVHN. k menunjukkan tingkat pertumbuhan jaringan. Hasil yang melampaui semua metode yang bersaing adalah berani dan hasil terbaik secara keseluruhan berwarna biru. "+" menunjukkan augmentasi data standar (terjemahan dan/atau pencerminan). * menunjukkan hasil berjalan oleh diri kita sendiri. Semua hasil DenseNets tanpa augmentasi data (C10, C100, SVHN) diperoleh dengan menggunakan Dropout. DenseNets mencapai tingkat kesalahan yang lebih rendah saat menggunakan parameter yang lebih sedikit daripada ResNet. Tanpa augmentasi data, DenseNet berkinerja lebih baik dengan margin yang besar.

DATASETS

- CIFAR
- SVHN
- ImageNet

Results on CIFAR

Tabel di bawah ini menunjukkan hasil DenseNets pada dataset CIFAR. Tanda "+" di akhir menunjukkan untuk augmentasi data standar (pangkasan acak setelah bantalan nol, dan flip horizontal). Untuk model DenseNet, L menunjukkan kedalamannya dan k menunjukkan tingkat pertumbuhannya. Pada CIFAR-10 dan CIFAR-100 tanpa augmentasi data, lapisan Dropout dengan laju penurunan 0,2 diperkenalkan setelah setiap lapisan konvolusi kecuali yang pertama.

Model	Parameters	CIFAR-10	CIFAR-10+	CIFAR-100	CIFAR-100+
DenseNet (L=40, k=12)	1.0M	7.00	5.24	27.55	24.42
DenseNet (L=100, k=12)	7.0M	5.77	4.10	23.79	20.20
DenseNet (L=100, k=24)	27.2M	5.83	3.74	23.42	19.25
DenseNet-BC (L=100, k=12)	0.8M	5.92	4.51	24.15	22.27
DenseNet-BC (L=250, k=24)	15.3M	5.19	3.62	19.64	17.60
DenseNet-BC (L=190, k=40)	25.6M	-	3.46	-	17.18

Results on ImageNet and Pretra ined Models

Models in the original paper

Network	Top-1 error		
DenseNet-121 (k=32)	25.0		
DenseNet-169 (k=32)	23.6		
DenseNet-201 (k=32)	22.5		
DenseNet-161 (k=48)	22.2		

Models in the tech report

Network	Top-1 error
DenseNet-264 (k=32)	22.1
DenseNet-232 (k=48)	21.2
DenseNet-cosine-264 (k=32)	21.6
DenseNet-cosine-264 (k=48)	20.4

