		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Shaofei Zhu	NDS 182, 2 (2022).	1-Apr-2022

 $Q(\beta^{-})=-3139 \text{ SY}; S(n)=7352 \text{ 21}; S(p)=5430.5 \text{ 18}; Q(\alpha)=5867.15 \text{ 8}$ $\Delta Q(\beta^{-})=120 (2021Wa16).$

A

В

S(2n)=13591 7, S(2p)=9821.4 16 (2021Wa16).

 α : Additional information 1.

773.5[#] 3

1074.3[#] 4

1185.45 15

1311.51[&] 23

1340.82[&] 19

1413.6[#] 4

1786.0[#] 5

2188.0 7

2615.7 9

 $\approx 3.\times 10^3$

866.00[@] 15

 10^{+}

5-

 12^{+}

5-

 (0^{-})

 (2^{-})

 14^{+}

 16^{+}

18⁺

 20^{+}

 (0^+)

 $1.2 \mu s 3$

37 ps 4

²³⁶Pu Levels

Cross Reference (XREF) Flags

F

G

 236 Np β^{-} decay (155×10³ y)

 236 Np β^{-} decay (22.5 h)

 240 Cm α decay

```
^{236}Am \varepsilon decay (3.6 min)
                                                                                                       Comments
                                                            \%\alpha = 100; \%SF=1.9×10<sup>-7</sup> 4
                                             ABCDEFG
                                                            %SF: from T_{1/2}(SF)=1.5\times10^9 y 3 as unweighted average of 3.5\times10^9 y 10
                                                              (1952Gh27), 2.09×10<sup>9</sup> y 6 (1988SeZY), 1.36×10<sup>9</sup> y 20
                                                              (1990Og01,1995Hu21) and 1.13×10<sup>9</sup> y 13 (1995Hu21).
                                                            T_{1/2}: weighted average of 2.851 y 8 (1957Ho66) and 2.866 y 9 (1984Na30).
                                                              Other value: 2.7 y 3 (1949Ja01).
                                                            ^{236}Pu decay by ^{28}Mg emission observed by 1995Hu21 (15 tracks), 1990Og01
                                                              (two <sup>28</sup>Mg tracks). Partial T_{1/2}=1.06\times10^{14} y 28 (1995Hu21), \approx1.5\times10^{14} y
                                                              (1990Og01). T_{1/2}(<sup>28</sup>Mg, Calculated)= 4.12×10<sup>13</sup> y (Cluster
                                                              model, 1994Bu07), 2.52×10<sup>12</sup> y (Effective liquid drop model, 1993Go18).
 44.63<sup>#</sup> 9
                                             ABCDEFG
147.45<sup>#</sup> 9
                                             A CDEFG
305.80<sup>#</sup> 10
                                             A CD FG
515.70<sup>#</sup> 22
                                                    FG
698.31<sup>@</sup> 12
                                                   Ē
758.02<sup>@</sup> 17
                   3-
                                                   E
```

FG

FG

D

D

Ē

Ē

FG

FG

G

G

 J^{π} : M1 γ to 5⁻; γ to 4⁺ and 6⁺; proposed as K-isomer with configuration= $((\pi 5/2[523])(\pi 5/2[642])), K^{\pi}=5^{-} (2005As01).$

²³⁶Am ε decay (2.9 min)

 $^{237}\text{Np}(^{209}\text{Bi},^{210}\text{Pb}\gamma)$

 $^{235}\mathrm{U}(\alpha,3\mathrm{n}\gamma)$

 J^{π} : from systematics with ²⁴⁰Pu.

 J^{π} : from systematics with ²⁴⁰Pu.

%SF≤100

 J^{π} : ground state in the second potential well from syst of fission isomers (1974MeYP,1977Me08).

E(level): from 237 Np(p,2n) and 234 U(α ,2n) (1974MeYP).

 $T_{1/2}$: from 1977Me08 using ²³⁴U(α ,2n) reaction; other: 40 ps 15 (1974MeYP).

²³⁶Pu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
3063.7 <i>10</i> 3529.6 <i>11</i> 4.1×10 ³ 2	22 ⁺ 24 ⁺	34 ns 8	G G	Q(intrinsic)=37 b +14-8 (1977Me08). %SF: no γ decay observed (1977Me08). %SF≤100 E(level),T _{1/2} : from ²³⁷ Np(p,2n) (1969La14). J ^π : not determined, possible two-quasi-particle K-isomer in the second potential well from syst of fission isomers (1977Me08). %SF: no γ decay observed (1969La14).

[†] Deduced by the evaluator from a least-squares fit to γ -ray energies.

[&]amp; Band(C): $K^{\pi}=0^{-}$ (π , 5/2[523])(π , 5/2[642]), from syst with ²⁴⁰Pu (2005As01).

							γ ⁽²³⁶ Pu)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
44.63	2+	44.63 10	100	0	0+	E2	741 13	$\alpha(L)$ =538 10; $\alpha(M)$ =150.1 27; $\alpha(N)$ =41.2 7; $\alpha(O)$ =9.69 17; $\alpha(P)$ =1.515 27; $\alpha(Q)$ =0.00326
147.45	4+	102.82 2	100	44.63	2+	[E2]	13.87 19	E _γ ,I _γ ,Mult.: from ²³⁶ Np $β$ ⁻ decay (22.5 h). α(L)=10.06 14; $α$ (M)=2.82 4; $α$ (N)=0.775 11; α(O)=0.1826 26; $α$ (P)=0.0291 4 α(Q)=0.0001055 15
305.80	6+	158.35 2	100	147.45	4+	E2	2.139 30	E _γ ,I _γ : from ²³⁶ Np β^- decay (153×10 ³ y). α (K)=0.1927 27; α (L)=1.413 20; α (M)=0.394 α (N)=0.1084 15; α (O)=0.0256 4 α (P)=0.00414 6; α (Q)=2.465×10 ⁻⁵ 35
	0.1	+	100 [‡]	•••	- 1		. = 4.4. 7.0	E_{γ} , I_{γ} : from ²³⁶ Np β^- decay (153×10 ³ y). Mult.: from ²³⁵ U(α ,3n γ).
515.70	8+	209.9 [†] 2	100†	305.80	6+	E2	0.714 10	$\alpha(K)$ =0.1402 20; $\alpha(L)$ =0.417 6; $\alpha(M)$ =0.1157 17; $\alpha(N)$ =0.0318 5; $\alpha(O)$ =0.00753 11 $\alpha(P)$ =0.001235 18; $\alpha(Q)$ =1.096×10 ⁻⁵ 16 Mult.: from ²³⁵ U(α ,3n γ).
698.31	1-	653.68 [‡] 12	100 [‡] 15	44.63	2+	[E1]	0.00865 12	$\alpha(K)$ =0.00699 10; $\alpha(L)$ =0.001254 18; $\alpha(M)$ =0.000300 4; $\alpha(N)$ =8.12×10 ⁻⁵ 11 $\alpha(O)$ =2.004×10 ⁻⁵ 28; $\alpha(P)$ =3.72×10 ⁻⁶ 5; $\alpha(Q)$ =2.229×10 ⁻⁷ 31
		698.3‡ 2	71 [‡] 11	0	0+	[E1]	0.00766 11	$\alpha(K) = 0.00620 \ 9; \ \alpha(L) = 0.001104 \ 15;$ $\alpha(M) = 0.000264 \ 4; \ \alpha(N) = 7.15 \times 10^{-5} \ 10$ $\alpha(O) = 1.765 \times 10^{-5} \ 25; \ \alpha(P) = 3.28 \times 10^{-6} \ 5;$ $\alpha(Q) = 1.985 \times 10^{-7} \ 28$
758.02	3-	610.8‡ 3	58 [‡] 11	147.45	4+	[E1]	0.00982 14	$\alpha(\text{Q})=1.963 \times 10^{-26}$ $\alpha(\text{K})=0.00792 \ II; \ \alpha(\text{L})=0.001431 \ 20;$ $\alpha(\text{M})=0.000343 \ 5; \ \alpha(\text{N})=9.28 \times 10^{-5} \ I3$ $\alpha(\text{O})=2.289 \times 10^{-5} \ 32; \ \alpha(\text{P})=4.24 \times 10^{-6} \ 6;$ $\alpha(\text{Q})=2.516 \times 10^{-7} \ 35$
		713.3 [‡] 2	100 [‡] <i>17</i>	44.63	2+	[E1]	0.00737 10	$\alpha(K)$ =0.00597 8; $\alpha(L)$ =0.001060 15;

 $^{^{\}ddagger}$ From band structure, unless indicated otherwise. $^{\sharp}$ Band(A): K^{π} =0 $^{+}$ g.s. rotational band. Band assignment from energy systematics (1983Ha31).

[@] Band(B): $K^{\pi}=0^{-}$ octupole vibrational band. Assignment based on decay branching ratio to g.s. band (2005As01).

γ (236Pu) (continued)

E_i (level)	\mathtt{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	α	Comments
								α (M)=0.000254 4; α (N)=6.86×10 ⁻⁵ 10 α (O)=1.694×10 ⁻⁵ 24; α (P)=3.15×10 ⁻⁶ 4; α (Q)=1.912×10 ⁻⁷ 27
773.5	10+	257.8 [†] 2	100 [†]	515.70	8+	[E2]	0.346 5	$\alpha(K)$ =0.1006 14; $\alpha(L)$ =0.1785 26; $\alpha(M)$ =0.0492 7; $\alpha(N)$ =0.01350 19; $\alpha(O)$ =0.00321 5 $\alpha(P)$ =0.000532 8; $\alpha(Q)$ =6.41×10 ⁻⁶ 9
866.00	5-	560.3# 2	43# 8	305.80	6+	[E1]	0.01156 <i>16</i>	$\alpha(K)$ =0.00931 13; $\alpha(L)$ =0.001699 24; $\alpha(M)$ =0.000408 6; $\alpha(N)$ =0.0001103 15 $\alpha(O)$ =2.72×10 ⁻⁵ 4; $\alpha(P)$ =5.02×10 ⁻⁶ 7; $\alpha(Q)$ =2.94×10 ⁻⁷ 4
		718.6 [#] 2	100# 16	147.45	4+	[E1]	0.00727 10	$\alpha(K)$ =0.00589 8; $\alpha(L)$ =0.001045 15; $\alpha(M)$ =0.0002502 35; $\alpha(N)$ =6.77×10 ⁻⁵ 9 $\alpha(O)$ =1.671×10 ⁻⁵ 23; $\alpha(P)$ =3.11×10 ⁻⁶ 4; $\alpha(Q)$ =1.888×10 ⁻⁷ 26
1074.3	12+	300.8 [†] 2	100 [†]	773.5	10+	[E2]	0.2097 30	$\alpha(K)$ =0.0769 11; $\alpha(L)$ =0.0970 14; $\alpha(M)$ =0.0265 4; $\alpha(N)$ =0.00729 10; $\alpha(O)$ =0.001735 25
1185.45	5-	319.50# 11	66# 10	866.00	5-	M1(+E2)	0.6 4	$\alpha(P)=0.000291 \ 4; \ \alpha(Q)=4.39\times10^{-6} \ 6$ $\alpha(K)=0.4 \ 4; \ \alpha(L)=0.12 \ 4; \ \alpha(M)=0.030 \ 9;$ $\alpha(N)=0.0081 \ 23; \ \alpha(O)=0.0020 \ 6;$ $\alpha(P)=3.6\times10^{-4} \ 13$ $\alpha(Q)=1.8\times10^{-5} \ 14$ Mult.: from 236 Am ε decay (3.6 min).
		879.7# 2	100# 14	305.80	6 ⁺	[E1]	0.00506 7	$\alpha(K)$ =0.00412 6 ; $\alpha(L)$ =0.000717 10 ; $\alpha(M)$ =0.0001712 24 ; $\alpha(N)$ =4.63×10 ⁻⁵ 6 $\alpha(O)$ =1.145×10 ⁻⁵ 16 ; $\alpha(P)$ =2.144×10 ⁻⁶ 30 ; $\alpha(Q)$ =1.334×10 ⁻⁷ 19 B(E1)(W.u.)=9.0×10 ⁻¹¹ 26
		1037.8# 2	53# 8	147.45	4+	[E1]	0.00380 5	$\alpha(K)=0.00309 \ 4; \ \alpha(L)=0.000532 \ 7;$ $\alpha(M)=0.0001268 \ 18; \ \alpha(N)=3.43\times10^{-5} \ 5;$ $\alpha(O)=8.50\times10^{-6} \ 12$ $\alpha(P)=1.596\times10^{-6} \ 22; \ \alpha(Q)=1.010\times10^{-7} \ 14$ $\alpha(E)=0.0001268 \ 10^{-1} \ 10^{-1$
1311.51	(0^{-})	613.2 [‡] 2	100 [‡]	698.31	1-			B(E1)(W.u.)=2.9×10
1340.82	(2^{-})	582.8 [‡] 2	100 15	758.02				
	(-)	642.5 [‡] 2	53‡ 9	698.31				
1413.6	14 ⁺	339.3 [†] 2	100 [†]	1074.3	12+	[E2]	0.1459 <i>21</i>	$\alpha(K)$ =0.0620 9; $\alpha(L)$ =0.0614 9; $\alpha(M)$ =0.01670 24; $\alpha(N)$ =0.00458 6; $\alpha(O)$ =0.001094 16
1786.0	16 ⁺	372.4 [†] 3	100 [†]	1413.6	14+	[E2]	0.1120 <i>16</i>	$\alpha(P)=0.0001850 \ 26; \ \alpha(Q)=3.31\times10^{-6} \ 5$ $\alpha(K)=0.0524 \ 7; \ \alpha(L)=0.0437 \ 6;$ $\alpha(M)=0.01181 \ 17; \ \alpha(N)=0.00324 \ 5;$ $\alpha(O)=0.000774 \ 11$ $\alpha(P)=0.0001319 \ 19; \ \alpha(Q)=2.68\times10^{-6} \ 4$
2188.0	18 ⁺	402.0 5	100	1786.0	16 ⁺			α(1) 0.0001517 12, α(Q)=2.00Λ10 7
2615.7	20 ⁺	427.7 [@] 5	100 [@]	2188.0	18 ⁺			
3063.7	22+	448.0 [@] 5	100 @	2615.7	20^{+}			
3529.6	24+	465.9 [@] 5	100 [@]	3063.7	22+			

γ (236Pu) (continued)

- $\begin{tabular}{lll} $\stackrel{\dag}{$}$ From 235U($\alpha,$3n$\gamma). \\ $\stackrel{\dag}{$}$ From 236Am ε decay (2.9 min). \\ $^{\#}$ From 236Am ε decay (3.6 min). \\ $^{@}$ From 237Np(209Bi,210Pb$\gamma). \\ \end{tabular}$

Level Scheme

Intensities: Type not specified

Legend

$$^{236}_{\,94}\mathrm{Pu}_{142}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 127, 191 (2015)	1-Jun-2014

 $O(\beta^{-}) = -2258.3 \ 51$; $S(n) = 6999.8 \ 13$; $S(p) = 5997.5 \ 4$; $O(\alpha) = 5593.20 \ 19$ Additional information 1.

Energies of vibrational states (K=0⁺, 2⁺, 0⁻, 1⁻, 2⁻, 3⁻), and B(E2), B(E3) values for the excitation of 2⁺, 3⁻ levels have been calculated by 1965So04, 1970Ne08, 1971Ko31, 1975LeZR, 1975IvZZ. See also 1969Bl13, 1992Ra14, 1993Sa15, 1994Mi14 see 1964So02 for calculated energies of two-quasiparticle states in ²³⁸Pu and also for structure of some collective states. Discovery of ²³⁸Pu: 2013Fr02.

Alpha Decay: 2014Ba07, 2013De12, 2013Fe03, 2013Is13, 2013Se17, 2012Is08, 2011Ni11, 2011Qi06, 2011Zh36, 2010Le01, 2010Ni02, 2010Wa23, 2010Wa31, 2009De32, 2009Dr05, 2009Ni06, 2009Wa01, 2009Zh28, 2006Ch34, 2006De05, 2006Ha20, 2006Ha53, 2006Xu08, 2006Xu15, 2005Sh42, 2004Ca24, 2004ChZY, 2004Le07, 2003Ba64, 2003Jo04. Nuclear reactions: 2013Bo29, 2010Wa07, 2002Be08, 2002Lo18.

²³⁹Pu(n,2n): 2002Be08.

²³⁸U β - β ⁻ Decay: 2012Zu07,2010Ba07, 2006Ba35, 2005Tr01, 2004Ra13, 2003Cr04, 2002Hi09.

Cluster Decay.

²³⁸Pu(³²Si): 2014Ba09, 2013Oi04, 2013Zd01, 2013Zd02, 2012Ku23, 2012Ba35, 2012Mi17, 2012Sa31, 2012So15, 2012Ta10, 2010Si12, 2010Zh51, 2009Ar11, 2009Oi07, 2009Ro16, 2008Bh05, 2005Bh02, 2005Ku04, 2005Ku32, 2004Ba64, 2004Re22, 2002Ba80.

²³⁸Pu(²⁸Mg): 2013Na25, 2012Sa31, 2012So15, 2011Sh13, 2010Sa29, 2010Zh51, 2009Ar11, 2009Qi07, 2009Ro16, 2008Bh05, 2002Ba80, 2002Du16.

²³⁸Pu(³⁰Mg): 2013Qi04, 2013Zd01, 2013Zd02, 2012Ba35, 2012Ku29, 2012Ku16, 2012Qi01, 2012Sa31 2012Si01 2012So15 2011Si13, 2010Sa29, 2010Si12. 2009Ar05, 2009Ar11, 2009Ro16 2008Bh05 2005Ku32, 2004Ba64, 2004He16, 2002Du16, 2002Ba80.

²³⁸Pu(³⁴Si): 2009Qi07.

Nuclear Structure: 2014Lu01, 2013Af01, 2013Bo24, 2013Li30, 2013Ni02, 2013To12, 2012Ib02, 2012Ko06, 2012Lu02, 2012Mi06, 2012Pr09, 2012Ro29, 2012Ro34, 2011Af04, 2011Bo12, 2011In03, 2011Li44, 2011Ri05, 2011Wa30, 2010Bu02, 2010Is01, 2010Ko36, 2010Ra10, 2010Vr01, 2009So02, 2008Bu11, 2007Ba18, 2007Bo46, 2007Sh17, 2006De23, 2006Ra21, 2006Sa35, 2005Al40, 2005Bu38, 2005Du18, 2005La04, 2005Za02, 2004Go33, 2004Sa55, 2003Bu11, 2003Bu27, 2003Mi18, 2003Ra17, 2003Za01, 2002Do15, 2002Ma85, 2002Ra25, 2002Re31.

Isomer energy calculations - 1992Bh03. Other: 2011He12.

Fission Isomers and Super Deformed Bands: 2002Si26.

Quadrupole moments calculations - 1992Bh04.

²³⁸Pu Levels

Cross Reference (XREF) Flags

Α	238 Am ε decay	F	240 Pu(p,t)
В	238 Np β^- decay	G	238 U(α ,4n γ)
C	$^{242}\mathrm{Cm}~\alpha~\mathrm{decay}$	H	239 Pu(207 Pb, 208 Pb γ)
D	Coulomb excitation	I	239 Pu(117 Sn, 118 Sn γ)
E	²³⁹ Pu(d,t)		

XREF E(level) **ABCDEFGHI** Comments

 $\%\alpha = 100$; %SF=1.9×10⁻⁷ 1 $T_{1/2}$,%SF: recommended by 1986LoZT.

 $T_{1/2}$: 86.41 y 30 specific activity ²³⁸Pu/²⁴²Cm (1957Ho71), 87.77 y 2 by calorimetry (1973JoYT), 86.98 y 39 by specific activity (1976Po08), 87.71 y 3 specific activity 238 Pu/ 242 Cm (1977Di04), 87.98 v 51 relative activity using $T_{1/2}(^{239}$ Pu)=24110 v (1981Ag06).

238Pu Levels (continued)

E(level)	Jπ e	T _{1/2}	XREF	Comments
				$T_{1/2}(SF)=4.77\times10^{10} \text{ y } 14 \text{ (1972Ha11), } 4.63\times10^{10} \text{ y } 12 \text{ (1975GaZX),} 5.1\times10^{10} \text{ y } 6 \text{ (1961Dr04).}$
44.065 [†] 15	2+	175 ps <i>3</i>	ABCDEFGHI	J^{π} : E2 to g.s. $T_{1/2}$: weighted average of 177 ps 5 from aga9ta0 in 242 Cm α decay, and 174 ps 3 from B(E2) in Coulomb excitation.
145.936 [†] 21	4+		ABCDEFGH	B(E4) \uparrow =1.9 7 J^{π} : E2 to 2 ⁺ . Coul. ex. B(E4) \uparrow : from Coul. ex.
303.36 [†] 6	6+		BC FGHI	_(_ ')
512.55 [†] <i>15</i>	8+		C GHI	J^{π} : E2 γ to 303 level.
605.18 [‡] 3	1-		ABC	J^{π} : E1 to g.s The intensity ratio for the transitions to 0^+ and 2^+ agree with theory for K=0, not with K=1.
661.44 [‡] 4	3-		ABCD	B(E3) \uparrow =0.71 <i>I2</i> J ^{π} : E1+M2 γ 's to 2 ⁺ and 4 ⁺ . B(E3) \uparrow : from Coul. ex.
763.24 [‡] <i>11</i>	5-		ВС	J^{π} : M1+E2 γ from (4) ⁻ determines π = γ' s to 4 ⁺ and 6 ⁺ then give J=5. Member of K=0 octupole band.
771.9 [†] 5	10+		GHI	
911.6 [‡] 8	7-		H	
941.47 [#] 8	0_{+}		ABC EF	J^{π} : E0 to g.s.
962.783 [@] 23	1-		ABC	J^{π} : E1 to g.s The configuration was proposed by 1972Ah04 on the basis of log ft ratios in ε decay and energy calculations of 1964So02.
968.2? 4	(2-)	<8.5 ns	В	J^{π} : 114.4 γ from (4) ⁻ is probably E2. γ to 2 ⁺ . 1972Wi22 propose K=2, J^{π} =2 ⁻ . $T_{1/2}$: from delayed cey coincidence.
983.09 [#] 7	2+	0.55 ps +15-11	ABCDEF	J^{π} : E0+E2 to 2 ⁺ . $T_{1/2}$: from B(E2) in Coulomb excitation.
985.45 [@] 5	2-		AB	J^{π} : M1 to 3 ⁻ . log $ft=7.5$ (log $f^{1u}t=8.2$) from 1 ⁺ rules out 3 ⁻ and 4 ⁻ M1. The log ft for the ε feeding rules out $J^{\pi}=3^{-},4^{-}$.
1018.6? 3			С	
1028.537	2+		ABC F	J^{π} : E2 to g.s.
1069.929 & 22	3+		В	J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ log ft for the β^- feeding, photon intensity ratios, and band parameter suggest K=2, $J^{\pi}=3^+$.
$1077.7^{\dagger f}$ 5	12+	0.5.5	GHI	III E1. M2 (4+ C C C
1082.55 ^c 6	(4)	8.5 ns <i>5</i>	В	J^{π} : E1+M2 to 4 ⁺ . Configuration proposed by 1972Wi22. $T_{1/2}$: from $\beta \gamma(t)$ in ²³⁸ Np decay (1970Be57).
$1102.4^{\ddagger f}$ 5	9-		Н	To the state of th
1125.75 ^{&} 17 1134 4	(4^+) (0^+)		C F	J^{π} : γ 's to 2 ⁺ and 4 ⁺ . Possible member of K=2 band. J^{π} : L(p,t)=(0).
1174.4 4	(2+)		A	J^{π} : from γ transitions to 0^+ , 2^+ states $J^{\pi}=1\pm,2^+$. Intensity ratio is not in good agreement with Alaga rule for $J=1$, but it agrees well for $J=2$.
1202.45 ^d 8 1228.65 ^a 18 1252 2	(3) ⁻ 0 ⁺		B A C E F	J^{π} : M1(+E2) to (4) ⁻ . γ to 2 ⁺ . J^{π} : E0 to g.s.
1264.20 ^a 15 1310.3? 3	2 ⁺ 1 ⁺ ,2 ⁺		A C E	J^{π} : E0+E2+M1 to 2 ⁺ . J^{π} : M1 to 2 ⁺ . log ft =7.4 from 1 ⁺ rules out 3 ⁺ .
1340.4 [‡] <i>f</i> 6	11-		Н	
1426.4 [†] 6	14+		GHI	

238Pu Levels (continued)

E(level)	$J^{\pi}e$	T _{1/2}	XREF	Comments
1426.61 ^b f 24	0^{+}		A	J^{π} : E0 to g.s.
1447.24 19	1-		Α	J^{π} : E0 to 1^{-} intensity ratio of gammas to g.s. band suggests K=0.
1458.29 ^b 22	2+		A	J^{π} : E0+E2+M1 to 2 ⁺ energy spacing of the 1426 and 1458 levels and the ratio of ft's for the ε feedings to these levels suggest that they are members of a band.
1559.82 <i>14</i> 1596.3 <i>3</i>	1 ⁻ (2 ⁺)		A A	J^{π} : M1+E2 to 2 ⁻ . γ to g.s. gammas to 0 ⁺ , 1 ⁻ , 2 ⁺ levels. J^{π} : gammas to 0 ⁺ , 2 ⁺ , and possibly 4 ⁺ . J=1 is not ruled out if the placement
1621.29 <i>12</i>	1-		A	of 1450γ to 4^+ is not correct. J^{π} : E1 to 0^+ E0+M1+E2 transitions with about equal intensity to K, J^{π} =0,1 ⁻ and 1,1 ⁻ states imply that the configuration of the 1621 state is probably a mixture of K=0 and K=1.
1621.8 [‡] <i>f</i> 6	13-		Н	
1636.40 <i>13</i>	1-		A	J^{π} : E1 to 0 ⁺ E0 transitions with about same intensity to K, J^{π} =0,1 ⁻ and 1,1 ⁻ states imply that the configuration of the 1636.6 state is a mixture of K=0 and K=1.
1651.2 4	$1,2^{+}$		Α	J^{π} : γ' s to 0^+ and 2^+ .
1726.34 22	1,2+		A	J^{π} : γ' s to 0^+ and 2^+ .
1783.5 3	1,2+		Α	J^{π} : γ' s to 0^+ and 2^+ .
$1815.5^{\dagger f} 5$	16 ⁺		GHI	TT N/1 / . 1- 10-
1898.42 22	2-		A	J^{π} : M1 γ' s to 1 ⁻ and 3 ⁻ .
1944.6 [‡] <i>f</i>	15-		Н	
2241.7 $^{\dagger f}_{\bullet f}$ 6	18+		GHI	
$2308.2^{\ddagger f}$ 5	17^{-}	0.6 2	Н	# SE -100
≈2400		0.6 ns 2		%SF≤100 %SF: only SF decay observed.
				T _{1/2} : 0.5 ns 2 ²³⁶ U(α ,2n) (1973Li01), 0.7 ns 2 ²³⁸ Pu(d,pn) (1974MeYP). 1972We09 calculated T _{1/2} (SF)=0.95 ns, T _{1/2} (γ)=7.0 μ s. E=2400 200 from thresholds (1973Li01). Calculated energies are: E=2250 (1972We09), E=2000 (1971Pa33), E=1800 (1972Ma11). Assignment: ²³⁶ U(α ,2n) excit (1973Li01).
$2702.3^{\dagger f} 8$	20^{+}		HI	
2708.7 [‡] <i>f</i> 6	19-		Н	
3143.8 [‡] <i>f</i> 8	21-		Н	
3195.4 [†] f 8	22+		HI	
≈3500	(0^+)	6.0 ns 15		%SF≤100
				%SF: only SF decay observed.
				 T_{1/2}: 6.5 ns 15 ²³⁶U(α,2n) (1970Bu02,1971Br39), 5.0 ns 20 ²³⁶U(α,2n) (1973Li01). Other measurements: 1973Na35, 1969Me11. E=3700 200 from ²³⁶U(α,2n) thresholds (1973Li01), E=3400 400 estimated from excitation functions (1973Br38). Angular distribution of fission fragments following ²³²Th(α,F) and ²³⁶U(a,2nf) reactions were measured, and possible spin assignments were proposed from measured anisotropy by 1974SpZS. See also 1975Kh06 for a discussion on spin of this isomeric state. Assignment: ²³⁶U(α,2n) excit (1971Br39,1973Li01).
3610.6 [‡] <i>f</i> 10	23-		Н	
3717.1 [†] <i>f</i> 10	24+		HI	
4105.2 [‡] <i>f</i> 11	25-		Н	
4263.7 [†] <i>f</i> 11	26+		HI	
4623.2 [‡] <i>f</i> 13	27-		Н	
4833.3 [†] <i>f</i> 13	28+		Н	

²³⁸Pu Levels (continued)

E(level)
$$J^{\pi e}$$
 XREF
 $5161.3^{\ddagger f}$ (29⁻) H
 $5426.5?^{\dagger f}$ 9 (30⁺) H

- [†] Band(A): $K^{\pi}=0^{+}$ g.s. band.
- [‡] Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band.
- # Band(C): $K^{\pi}=0^{+}$ β -vibrational band.
- @ Band(D): $K^{\pi}=1^{-} \nu 7/2(743)-\nu 5/2(622)$ band. & Band(E): $K^{\pi}=2^{+}$.
- ^a Band(F): $K^{\pi} = 0^{+}$.
- ^b Band(G): $K^{\pi}=0^{+}$.
- ^c Band(H): $K^{\pi}=4^{-} \nu 7/2(743)+\nu 1/2(631)$ state.
- ^d Band(I): $K^{\pi}=3^{-} v \frac{7}{2}(743)-v \frac{1}{2}(631)$ state.
- ^e From an energy fit to the g.s. band in addition to other arguments as given. ^f From 239 Pu(207 Pb, 208 Pby).

11065		E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α&	$I_{(\gamma+ce)}$	Comments
44.065	2+	44.06 2	100	0.0	0+	E2		775		$\alpha(L)$ = 566; $\alpha(M)$ = 157 B(E2)(W.u.)=285 5 $\alpha,\alpha(L),\alpha(M)$: values given are the E2 theory values lowered by 3% (see 1987Ra01).
145.936	4+	101.88 <i>3</i>	100	44.065	2+	E2		14.8		$\alpha(L) = 10.7$; $\alpha(M) = 2.99$; N+= 1.15
303.36	6+	157.42 5	100	145.936		E2		2.24		$\alpha(K)$ = 0.197; $\alpha(L)$ = 1.48; $\alpha(M)$ = 0.412; N+= 0.157
512.55	8+	209.20 14	100	303.36	6+	E2		0.73		E_{γ} : From ²⁴⁸ Cm a decay. Mult.: from ce(L2)/ce(L3) in (α ,4n γ).
605.18	1-	561.17 5	100	44.065	2+	E1		0.0116		$\alpha(K) = 0.0093; \alpha(L) = 0.00170$
		605.18 <i>5</i>	73 2	0.0	0_{+}	E1		0.0101		
661.44	3-	515.53 7	55 1	145.936	4+	E1+M2	0.114 <i>17</i>	0.023 3		I _γ : from ε decay. Values of \approx 0.64 from β^- decay and 0.67 from α decay depend on splitting the intensity of the doubly placed 713 γ on the basis of model-dependent arguments.
		617.41 ^a 5	100 <mark>a</mark>	44.065		E1+M2	0.077 17	0.0122 13		
763.24	5-	459.80 20	≈3.4	303.36	6+					I_{γ} : from ε and α decay, see comment on 515 γ from the 661 level.
		617.36 ^a	100 ^a	145.936	4+					
771.9	10 ⁺	259.4 [‡] 5	100	512.55	8+	E2				
911.6	7-	608.7 ^b 5	100		6+					
941.47	0+	336.38 <i>15</i>	2.8 16	605.18	1-	[E1]				I_{γ} : from ²⁴² Cm α decay, if I(897.33 γ)=100.
		897.33 10	100 7	44.065		(E2)		0.0154		, (constant)
		941.5 2		0.0	0+	E0			59 7	$I_{(\gamma+ce)}$: from ²³⁸ Am ε decay, $I(\gamma+ce)/I\gamma(897\gamma)=0.62$ from 1960As10 in α decay. The value of 1.4 2 in β^- decay appears to be discrepant.
962.783	1-	301.5 <i>1</i>	1.68 9	661.44	3-	E2		0.213		$\alpha(K) = 0.0780$; $\alpha(L) = 0.098$; $\alpha(M) = 0.0269$; N+= 0.0103
		357.62 7	7.80 16		1-	M1+E2	2.43 20	0.224 15		
		918.69 <i>4</i>	82.0 8	44.065	2+	E1		0.00471		
		962.77 <i>3</i>	100.0 8	0.0	0_{+}	E1		0.00434		$\alpha(K)=0.00353; \ \alpha(L)=612\times10^{-6}$
968.2?	(2^{-})	924 <mark>b</mark>	100	44.065	2+	[E1]				$B(E1)(W.u.)>2.0\times10^{-8}$
		968.9 ^b 4	12 6	0.0	0^{+}	[M2]		0.122		B(M1)(W.u.)>0.016
983.09	2+	321.75 20	1.8 7	661.44	3-	[E1]		0.036		$B(E1)(W.u.)=4.7\times10^{-5}$ 24
		378.05 <i>13</i>	4.4 7		1-	[E1]		0.0255		$B(E1)(W.u.)=6.8\times10^{-5}$ 22
		837.11 <i>15</i>	35 2	145.936		[E2]		0.0176		B(E2)(W.u.)=3.1 10
		938.95 10	43 3	44.065		E0+E2		4.4 4		
		983.0 <i>3</i>	100 30	0.0	0_{+}	[E2]		0.0129		B(E2)(W.u.)=3.9 <i>12</i>
985.45	2-	323.98 <i>9</i> 380.29 <i>13</i>	2.8 <i>1</i> 2.2 2	661.44 605.18	3 ⁻ 1 ⁻	M1+E2 [M1]	2.8 8	0.29 <i>6</i> 0.665		Mult.: From 1981Le15.

S

$\gamma(^{238}Pu)$ (continued)

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	$\delta^{@}$	<u>α</u> &	$I_{(\gamma+ce)}$	Comments
1018.6?		974.5 <mark>b</mark> 3		44.065						
1028.537	2+	882.63 <i>3</i>	3.19 2	145.936		E2	. 22	0.0159		$\alpha(K) = 0.0115; \ \alpha(L) = 0.00328$
		984.45 2 1028.54 2	100 <i>I</i> 72.6 <i>3</i>	44.065 0.0	0+	M1+E2 E2	>+23	0.00129 0.0119		$\alpha(K) = 0.0089; \ \alpha(L) = 0.00226$
		1020.34 2	12.0 3	0.0	U	EZ		0.0119		Mult.: from 1981Le15.
1069.929	3 ⁺	923.98 2	30.0 2	145.936		M1+E2	+44 +72-8	0.00145		
		1025.87 2	100	44.065		M1+E2	>+31	0.00119		
1077.7	12+	305.9 [‡] 5	100	771.9	10+					
1082.55	$(4)^{-}$	114.4 4	1.51 27	968.2?	(2^{-})	(E2)	1.0.5	8.67		B(E2)(W.u.)=0.46 6
		319.29 11	2.3 3	763.24	5-	M1+E2	1.0 5	0.66 23		
		421.14 11	6.0 2	661.44	3 ⁻	[M1]	-0.24 4	0.29 0.009 <i>5</i>		B(E1)(W.u.)= 2.01×10^{-8} 12
1100 4	0-	936.61 6	100.0 14	145.936		E1+M2	-0.24 4	0.009 3		$B(E1)(W.u.)=2.01\times10^{-5}$ 12
1102.4	9-	190.8 6	60 19	911.6	7-					
		$330.5^{$^{\downarrow}}6$	35 11	771.9	10 ⁺					
		589.9 [‡] 5	100 24	512.55	8+	E1				
1125.75	(4^{+})	979.80 20	100	145.936						
11544	(2±)	1081.7 3	19 7	44.065						
1174.4	(2^{+})	1130.2 <i>5</i> 1174.5 <i>5</i>	100 83 22	44.065 0.0	0 ⁺					
1202.45	(3)-	1174.3 3 119.9 <i>1</i>	100 <i>4</i>	1082.55	$(4)^{-}$	M1(+E2)	< 0.38	3.81 <i>21</i>		$\alpha(L)$ = 2.69; $\alpha(M)$ = 0.657; N+= 0.246
1202.43	(3)	132.49 11	2.4 2	1062.55		[E1]	\0.36	0.271		u(L) = 2.09, u(W) = 0.037, W = 0.240
		174.0 2	22.0 5	1028.537		[E1]		0.143		
1228.65	0_{+}	1184.55 <i>21</i>	100	44.065		E2		0.0091		$\alpha(K)=0.00695$; $\alpha(L)=0.00163$
		1228.7 <i>3</i>		0.0	0_{+}	E0			9.2 12	
1264.20	2+	1118.25 <i>21</i>	100	145.936		[E2]		0.0102		
		1220.15 <i>21</i>	81 <i>15</i>	44.065		E0+E2+M1		0.26 3		
1310.3?	1+,2+	1266.2 3	100	44.065		M1		0.0268		$\alpha(K) = 0.0213; \ \alpha(L) = 0.00413$
1340.4	11-	238.0 6	74 25	1102.4	9-	E2				
		262.6 ^b	100.20	1077.7	12+	E1				E_{γ} : From authors' figure, not in their table.
		568.5 <i>6</i>	100 29	771.9	10 ⁺	E1				
1426.4	14+	348.8 [‡] 5	100	1077.7	12+	P.1		0.0055:		(17) 0.00465 (7) 010 10-6
1426.61	0_{+}	821.5 4	100	605.18	1 ⁻ 0 ⁺	E1		0.00574	0 5 12	$\alpha(K)=0.00465; \ \alpha(L)=818\times10^{-6}$
1447.24	1-	1426.6 <i>3</i> 841.9 <i>4</i>		0.0 605.18	1-	E0 E0			8.5 <i>12</i> 4.4 <i>5</i>	
174/.4	1	1403.2 3	100 9	44.065		E0 E1		0.00229	+.+ J	$\alpha(K)=0.00187$; $\alpha(L)=316\times10^{-6}$
		1403.2 3 1447.3 <i>3</i>	62 4	0.0	0^{+}	E1		0.00229		$\alpha(K)=0.00187; \ \alpha(L)=310\times10^{-6}$ $\alpha(K)=0.00177; \ \alpha(L)=300\times10^{-6}$
1458.29	2+	1447.5 3 1414.0 <i>3</i>	≈23	44.065		E0+E2+M1		0.00217		$\alpha(\mathbf{K})$ =0.001//, $\alpha(\mathbf{L})$ = 300×10
1130.27	2	1458.5 3	100	0.0	0^{+}	E0 E2 WII				
1559.82	1-	574.0 3	77 19	985.45	2-	M1+E2	3.2 5	0.055 6		
		597.0 <i>3</i>	100 12	962.783		[M1+E2]		0.12 8		
		954.7 <i>3</i>	≈58	605.18	1-	[M1+E2]		0.035 22		
		1515.9 <i>3</i>	79 <i>10</i>	44.065	2+					

6

$\gamma(^{238}Pu)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α &	$I_{(\gamma+ce)}$	Comments
1559.82	1-	1560.0 <i>3</i>	65 10	0.0	0+				
1596.3	(2^{+})	633.0 ^b 5	≈77	962.783	1-				
		1450.4 ^b 5	≈77	145.936	4 ⁺				
		1552.2 <i>3</i>	100 16	44.065					
		1596.5 <i>5</i>	≈31		0^{+}				
1621.29	1-	658.4 2	6.2 7	962.783		E0+E2+M1	1.39 14		
		679.5 <i>4</i>	8.8 9		0_{+}	E1	0.00809		$\alpha(K)=0.00654; \ \alpha(L)=0.00117$
		1016.2 2	9.7 10		1-	E0+E2+M1	0.66 7		
		1577.3 3	100 8	44.065		E1			$\alpha(K) = 0.00154$
1601.0	1.0-	1621.4 4	≈0.6		0+				
1621.8	13-	281.5 <i>6</i> 544.1 <i>6</i>	100 <i>39</i> 73 <i>33</i>		11 ⁻ 12 ⁺	E1			
1636.40	1-	653.3 5	73 33 ≈4.4		2 ⁺	EI			
1030.40	1	673.4 2	≈4.4	962.783		E0		3.3 4	
		1031.3 3			1-	E0		4.2 4	
		1592.5 3	38 4	44.065		20		1.2 /	
		1636.6 <i>3</i>	100 9		0+	E1			
1651.2	$1,2^{+}$	1607.0 <i>4</i>	100	44.065					
		1651.4 5	18 7		0_{+}				
1726.34	$1,2^{+}$	1682.2 <i>3</i>	100	44.065		E1,E2			
		1726.4 <i>3</i>	59 9		0+				
1783.5	$1,2^{+}$	1739.4 4	48 15	44.065					
		1783.6 4	100		0+				
1815.5	16 ⁺	389.0 ^{‡‡} 5	100		14+	E2			
1898.42	2-	935.2 ^b 3	≈27	962.783					
		1237.0 3	81 7		3-	M1	0.0285		$\alpha(K) = 0.0227; \ \alpha(L) = 0.00440$
1044.6	1.5-	1293.2 3	100 9		1-	M1	0.0254		$\alpha(K) = 0.0202; \ \alpha(L) = 0.00391$
1944.6	15-	323.1 <i>5</i> 518.3 <i>5</i>	100 <i>44</i> 57 29		13-				
2241.7	10+				14+	F.2			
2241.7	18 ⁺	426.2 [‡] 5 363.5 5	100		16+	E2			
2308.2	17-	492.8 <i>5</i>	100 <i>48</i> 46 <i>46</i>		15 ⁻ 16 ⁺	E2			
2702.3	20 ⁺	460.6 5	100		18 ⁺				
2702.3	19 ⁻	400.5 5	100		17 ⁻	E2			
2.30.7	/	467.1 5	≈38		18 ⁺	-			
3143.8	21-	435.1 5	100 49		19-	E2			
		441.6 <mark>b</mark> 5	38 20		20 ⁺				
3195.4	22 ⁺	493.10 [‡] <i>17</i>	100		20 ⁺				
3610.6	23-	415.7^{b} 5	40		22 ⁺				
3010.0	23	466.8 5	100		21 ⁻				
3717.1	24 ⁺	521.7 [‡] 5	100		22 ⁺				
3/1/.1	∠ '1	341.1. 3	100	3173.4	44				

γ (238Pu) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	J_f^{π} Mult. @
4105.2	25-	494.6 6	100	3610.6 2	23 ⁻ E2
4263.7	26+	546.6 [‡] 5	100	3717.1 2	24+
4623.2	27-	518.0 [‡] 7	100	4105.2 2	25-
4833.3	28+	569.6 [‡] 6	100	4263.7 2	26 ⁺
5161.3	(29^{-})	538.5 [‡] <i>b</i> 7	100	4623.2 2	27-
5426.5?	(30^{+})	592.2 [‡] <i>b</i> 6	100	4833.3 2	28+

 $^{^{\}dagger}$ From β^- decay, α decay, and ε decay, except where from in-beam studies as noted. ‡ From $^{239} Pu(^{207} Pb,^{208} Pb\gamma).$

[#] Branching ratios are from β^- decay, α decay, and ε decay.

@ From ce data in β^- , ε decay, and $\gamma(\theta)$ in 239 Pu(207 Pb, 208 Pb γ).

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

a Multiply placed with intensity suitably divided.
 b Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend $\begin{array}{ll} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & \gamma \text{ Decay (Uncertain)} \end{array}$ Level Scheme (continued) Intensities: Type not specified $\frac{1,2^{+}}{1^{-}}$ 13^{-} 1651.2 1636.40 1621.8 1621.29 1596.3 1559.82 1458.29 1447.24 1426.61 1426.4 1340.4 1+,2+ _ _1<u>3</u>1<u>0</u>.<u>3</u> 1264.20 1228.65 1102.4 1077.7 985.45 983.09 962.783 0.55 ps +15-11 941.47 771.9 605.18 145.936 44.065 175 ps *3* 87.7 y 1

 $^{238}_{94}\mathrm{Pu}_{144}$

Level Scheme (continued)

Intensities: Type not specified @ Multiply placed: intensity suitably divided

 $^{238}_{94} Pu_{144}$

Band(G): $K^{\pi}=0^+$

2+ 1458.29

0+ 1426.61

Band(F): $\mathbf{K}^{\pi} = \mathbf{0}^{+}$

2⁺ 1264.20

0+ 1228.65

Band(I): K^π=3⁻ ν 7/2(743)-ν 1/2(631) state

1202.45

Band(E): $K^{\pi}=2^+$

(4⁺) 1125.75

Band(H): $K^{\pi}=4^{-} v$ 7/2(743)+v 1/2(631) state (4)- 1082.55

3+ 1069.929

Band(D): $K^{\pi}=1^{-} v$ 7/2(743)-v 5/2(622) 2+ 1028.537

2- 985.45

1- 962.783

 $^{238}_{\ 94}\mathrm{Pu}_{144}$

	Н	listory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, E. Browne	NDS 109,2439 (2008)	31-Jul-2008

 $Q(\beta^{-})=-1385 \ 14$; $S(n)=6534.20 \ 23$; $S(p)=6474.4 \ 11$; $Q(\alpha)=5255.76 \ 14$ 2012Wa38

Note: Current evaluation has used the following Q record -1385 146534.20 23 6474.4 10 5255.75 14 2003Au03.

Additional information 1.

1989Ru07: Measured isotope shifts and hyperfine structure.

2004Be51: nuclear structure calculations, microscopic study of ²⁴⁰Pu structure using mean-field approach, discussed rotational bands, superdeformation, etc.

2008Ch15: structure calculations, octupole deformation.

See '²³⁹Pu(n,X):resonances' dataset in the ENSDF database for ²⁴⁰Pu for energies and width parameters of 993 resonances up to 2.95 keV

²⁴⁰Pu Levels

A second fission isomer of half-life 29 ns 4 was reported by 1970E103 in $^{239}Pu(n,\gamma)$; but not confirmed in later studies of 1973Na03 and 1970Bu02.

Cross Reference (XREF) Flags

```
^{239}Pu(n,\gamma) E=thermal
                                                                                                                 <sup>240</sup>Pu(n,n')
        ^{240}Np β<sup>-</sup> decay (61.9 min) F
Α
        ^{240}Np \beta^{-} decay (7.22 min)
                                                               ^{239}Pu(n,\gamma) E=0.3-58 eV
                                                                                                                 <sup>240</sup>Pu(d,d')
                                                     G
                                                                                                        T.
                                                               ^{239}Pu(n,\gamma) E=2 keV
        <sup>240</sup>Am \varepsilon decay (50.8 h)
                                                                                                                 Coulomb excitation
C
                                                      Н
                                                                                                        M
                                                                                                                 <sup>241</sup>Am(<sup>209</sup>Bi, <sup>210</sup>Poy)
                                                               <sup>239</sup>Pu(d,p)
        ^{244}Cm \alpha decay (18.11 y)
                                                      Ι
                                                                                                        N
                                                                                                                 <sup>242</sup>Pu(p,t)
        ^{238}U(\alpha,2n\gamma)
                                                               <sup>239</sup>Pu(d,pF)
                                                      j
                                                                                                        0
```

E(level)	$J^{\pi #}$	$T_{1/2}$	XREF
0.0	0+ @	6561 y 7	ABCDEFGHI KLMNO

Comments

 $%\alpha$ =100; %SF=5.7×10⁻⁶ 2 $%^{34}$ Si<1.3×10⁻¹¹

 $\langle r^2 \rangle^{1/2} = 5.84 \text{ fm } 4 \text{ (2004An14 evaluation)}.$

 $T_{1/2}$: weighted average (using LWM method, normalized residuals and Rajeval's technique) of 6545 y 19 (2007Ah05, α counting and ratio of activities measured in growth of ²⁴⁰Pu in ²⁴⁴Cm source over 37.2 y interval, half-life of 18.11 y 3 was used for ²⁴⁴Cm decay); 6574 y 6 (1984Be19); 6571 y 9 (1984St06); 6552.2 y 20 (1984Lu04, uncertainty increased to 0.1%); 6552.4 y 17 (1984Ru04; uncertainty increased to 0.1%); 6569 y 6 (1978Ja11); 6524 y 10 (1968Oe02, re-estimated as 6537 y 15 in a 1986 evaluation report of a Coordinated Research Program (CRP) of the International Atomic Energy Agency (IAEA)). Others: 6620 y 50 (1959Do64, re-estimated as 6610 y 55 by 1978Ja11); 6600 y 100 (1956Bu92); 6300 y 600 (1954Fa11); 6760 y 27 (1951Wa54); 6240 y 120 (1951We21); 6580 y 40 (1951In03, re-estimated as 6500 y 45 by 1978Ja11). The uncertainty on the weighted average is 4 y, it has been increased to 0.1% as recommended by the 1986 CRP of IAEA for long half-lives. The DDEP evaluation (2006BeZL) gives the same value. 1989Ho24 evaluation gives 6560 y 10.

 $T_{1/2}(SF)=1.15\times10^{11}$ y 2, weighted average (of first six values listed below) as adopted in the DDEP evaluation (2006BeZL); 2000Ho27 evaluation adopted 1.14×10¹¹ y *I*. Original measurements: 1.15×10¹¹ y 2 (1991Iv01); 1.12×10¹¹ y 2 (1989Dy01); 1.17×10¹¹ y 3 (1988SeZY); 1.15×10¹¹ y 3 (1984An25); 1.15×10¹¹ y 3 (1979BuZC); 1.176×10¹¹ y 25 (1967Fi13); 1.27×10¹¹ y 5 (priv. comm. to 1967Fi13); 1.45×10¹¹ y 2

²⁴⁰Pu Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$	XREF	Comments
42.0248	2+@			(1963Ma50); 1.340×10 ¹¹ y 15 (1962Wa13); 1.20×10 ¹¹ y (1959Mi90,1954Ch74); 1.225×10 ¹¹ y 30 (1954Ba14); 1.314×10 ¹¹ y 26 (1953Ki72). % ³⁴ Si decay mode: an upper limit was deduced based on an attempt to detect ³⁴ Si particles from ²⁴⁰ Pu decay as described (p222) in an article by P.B. Price and S.W. Barwick in book: Particle Emission from Nuclei (editors: D.N. Poenaru and M.S. Ivascu), p255 (1989). From the same reference 2003Au02 quote % ³⁴ Si<1.3×10 ⁻¹³ , which seems to be the value per decay.
42.824 8		167 ps 6	ABCDEFGHI KLMNO	 B(E2)↑=13.33 18 (1973Be44) J^π: E2 γ to 0⁺. T_{1/2}: as adopted by 2001Ra27 from weighted average of following six values from different methods: 1. from B(E2) in Coul. ex.: 163 ps 4 (1973Be44), 173 ps 6 (1971Fo17), 168 ps 6 (1965Fr11). 2. from γγ(t) in ²⁴⁴Cm α decay: 164 ps 5 (1970To08), 173 ps 15 (1960Be25). 3. recoil-distance Doppler-shift method in ²⁴⁴Cm α decay: 160 ps 20 (1964No01).
141.690 ^{&} 15	4 ⁺ @		ABCDEF I KLMNO	B(E4) \uparrow =1.3 6 (1973Be44) J ^π : E2 γ to 2 ⁺ .
294.319 ^{&} 24	6+ @		ABCDE KLMN	J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ .
497.37 <mark>&</mark> 20	8 ⁺ @		DE LMN	J^{π} : $\Delta J=(2) \gamma$ to 6^+ .
597.34 ^a 4	1-@		BCD FGH KL	J^{π} : E1 γ' s to 0^+ and 2^+ .
648.86 ^a 4	3-@		ABCD F LM	B(E3)↑=0.41 6 (1974Mc15)
0.0.00				J^{π} : $\sigma(\theta)$ in (d,d') ; γ' s to 2^+ and 4^+ .
742.33 ^a 4	5-@	<2 ns	A C L	J^{π} : $\sigma(\theta)$ in (d,d'); γ' s to 4 ⁺ and 6 ⁺ . $T_{1/2}$: from ²⁴⁰ Np β^- decay (61.9 min).
747.4 <mark>&</mark> 3	10 ⁺ @		E MN	J^{π} : $\Delta J=(2) \gamma$ to 8^+ .
860.71 ^b 7	0 ⁺		B D FGHI O	J^{π} : $L(p,t)=0$.
878.1? ^a 4	(7 ⁻) [@]			
8/8.1? ^a 4 900.32 ^b 4	2+		M	J^{π} : possible γ to 6^+ , possible γ from 9^- .
900.32° 4 938.06° 6	(1-)		BCD F HI K O B D FGH L	J^{π} : E2 γ to 4 ⁺ ; γ' s to 0 ⁺ and 4 ⁺ . XREF: D(?).
938.00 0	(1)		B D FGH L	J^{π} : from (n, γ) E=2 keV.
958.85 ^c 6	(2^{-})		ABC FGH	J^{π} : E1 from 1 ⁺ resonance level in (n,γ) E=2 keV.
992.4 <mark>b</mark> 5	4+		С	J^{π} : γ' s to 3 ⁻ and 5 ⁻ ; band assignment.
1001.94 ^c 8	(3^{-})		AC ILO	J^{π} : $\sigma(\theta)$ in (d,d') .
1030.55 ^d 4	(3)+	1.32 ns <i>15</i>	A C F	J^{π} : E2 γ' s to 2 ⁺ and 4 ⁺ ; band member. $T_{1/2}$: from 1976BuZP (²⁴⁰ Am ε decay).
1037.55 ^c 6	(4^{-})		A	J^{π} : (M1+E2) γ from (5 ⁻); γ to 3 ⁻ ; band member.
1041.1 & 3	12 ⁺ @		E MN	J^{π} : $\Delta J=(2) \gamma$ to 10^+ .
1056.8 ^a 3	$(9^{-})^{@}$		M	J^{π} : $\Delta J=1 \ \gamma' s$ to 8^+ and 10^+ .
1076.22 ^d 9	(4 ⁺)		A C L	J^{π} : γ' s to 2^+ and 4^+ ; band systematics.
1089.45 ^e 10	0+		B HI O	J^{π} : L(p,t)=0.
1115.53 ^c 6	(5^{-})		A L	J^{π} : (M1+E2) γ from (5 ⁻); γ' s to 4 ⁺ and 6 ⁺ .
1130.95 ^e 9	(2+)		В Н	J^{π} : γ' s to 0^+ and 4^+ .
1136.97 ^f 13	(2 ⁺)		BC HI L O	XREF: L(1135)O(1137). J^{π} : $\sigma(\theta)$ in (d,d'), (d,p) and (p,t).
1138.3? ^b 4	(6^{+})		M	J^{π} : possible γ to 4^{+} and from (8^{+}) ; possible band member.
1161.53 ^c 7	(6-)		A	J^{π} : (M1+E2) γ from (5 ⁻); γ to 6 ⁺ ; band member.
1177.63 ^f 8	(3^{+})		A C	E(level): from different set of γ rays observed in the two decays:

240Pu Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}		XREI	7	Comments
1180.5 <i>4</i> 1199 2	(2 ⁺)			Н		139.9, 147.2 and 175.4 γ rays in $^{240}{\rm Np}~\beta^-$ decay (61.9 min); and 1036.1 and 1135.1 γ rays in $^{240}{\rm Am}~\varepsilon$ decay (50.8 h), it appears that two different levels may be populated near 1177 keV. It should be stated, however, that the gamma-ray placements do not seem to be firmly established in $^{240}{\rm Np}$ decay. ${\rm J}^\pi$: γ' s to 2 ⁺ and 4 ⁺ ; band member. ${\rm J}^\pi$: from $({\rm n}, \gamma)$ E=2 keV.
1199 <i>2</i> 1222.99 <i>13</i>	(2^{+})		ВС	Hi	L L o	J^{π} : γ' s to 0^+ and 2^+ .
1232.46 ^f 10 1240.8 ^g 3 1262.08 24	(4 ⁺) (2 ⁻) (3 ⁺)		A C B C	i FGH	0	J^{π} : γ' s to 4^+ and 6^+ ; band member. J^{π} : E1 γ from 1^+ ; band member. J^{π} : γ' s to 2^+ and 4^+ .
1277.6 ^a 3 1282 ^g 2	(11 ⁻) [@] (3 ⁻)				M L	J^{π} : $\Delta J=(2) \gamma$ to (9^{-}) ; $\Delta J=1 \gamma$ to 10^{+} . J^{π} : $\sigma(\theta)$ in (d,d') .
1308.74 ^h 5 1321.13? 10	(5 ⁻)	165 ns 10	A B			J^{π} : (M1+E2) γ to (4 ⁻) and (6 ⁻). $T_{1/2}$: from ²⁴⁰ Np β ⁻ decay (61.9 min).
1321.13? 10 1323.4? ^b 4	$(1,2^+)$ (8^+)		Б		M	J^{π} : γ to 0^+ . J^{π} : possible band member.
1337.02 24	$(2^+,3,4^+)$		С		11	J^{π} : γ' s to 2^+ and 4^+ .
1374.8 <mark>&</mark> <i>4</i> 1379 <i>4</i>	14 ⁺ @			E	MN L	J^{π} : $\Delta J=2 \gamma$ to 12^+ .
1407 3					L	
1410.75 ⁱ 11	0(-)		В	FΗ		J^{π} : π =+ assumed by 1970Sc12 from an estimate of an upper limit of α (K)exp<2.8×10 ⁻² for the 813.4 γ . However, from ²³⁹ Pu(n, γ) reaction (1975WeZA,1972OtZZ) J^{π} =0 ⁻ . J=0 from $\gamma\gamma(\theta)$ in ²⁴⁰ Np β ⁻ decay (7.22 min).
1413.0	(+)			Н		J^{π} : from (n,γ) E=2 keV.
1438.45 ⁱ 8	2 ⁽⁻⁾		В	GH		J^{π} : 1970Sc12 assumed that this level has J^{π} =2 ⁺ and is member of a two-phonon octupole vibrational band. However, from ²³⁹ Pu(n, γ) reaction (1975WeZA,1972OtZZ) π = J=2 from $\gamma \gamma(\theta)$ in ²⁴⁰ Np β ⁻ decay (7.22 min).
1488.17 <i>7</i>	$(1,2^+)$		В	F H		J^{π} : γ to 0^+ .
1525.86 ^{<i>j</i>} 8 1539.67 <i>6</i>	(0 ⁺) (1 ⁻)		B B	H H		J^{π} : M1 γ from 1 ⁺ resonance in (n,γ) ; possible band member. XREF: H(1538). J^{π} : E1 γ from 1 ⁺ ; γ' s to 0 ⁺ and 2 ⁺ .
1539.8 <i>a</i> 4	$(13^{-})^{@}$				M	J^{π} : $\Delta J=1$ γ to 12^+ ; $\Delta J=(2)$ γ to (11^-) .
1557.0 ^b 3	(10^{+})				M	J^{π} : $\Delta J=1 \gamma$ to (9 ⁻); possible γ to (11 ⁻).
1558.87 ^j 5 1574 1580 5	(2+)		В	Н	L O	J^{π} : γ' s to 0^+ and 4^+ .
1607.72 13	(1-)		В	Н	L	XREF: L(1609). J^{π} : E1 γ from 1 ⁺ resonance level is M1; γ to 0 ⁺ .
1626.77 <i>15</i>	$(1,2^+)$		В	Н		J^{π} : γ to 0^+ .
1633.37 7 1641 5 1675 2	$(1,2^+)$		В	Н	L L	J^{π} : γ to 0^+ .
1710.43 <i>8</i> 1745.7 & <i>4</i>	(2 ⁺) 16 ⁺ @		В	Н	MN	J^{π} : γ' s to 0^+ and 4^+ . J^{π} : $\Delta J=(2) \gamma$ to 14^+ .
1752 <i>3</i> 1775.27 <i>15</i> 1784 <i>3</i>	(1-)		В	F H	L L	J^{π} : from (n,γ) E=2 keV.
1796.34 <i>13</i>	$(1,2^+)$		В	Н	L	J^{π} : γ to 0^+ .

²⁴⁰Pu Levels (continued)

1880.02 15 (1-2^+)	E(level) [†]	$J^{\pi \#}$	T _{1/2}		XRE	F	Comments
1841 8 4		$(1^{-},2^{+})$		В			J^{π} : γ' s to 0^+ and 3^- .
1861 3	1830.3 ^b 4	(12^{+})				M	J^{π} : $\Delta J = 1 \gamma$ to (11^{-}) ; $\Delta J = 2 \gamma$ to (10^{+}) .
1881.1 (0,1,2)	1841.8 <mark>a</mark> 4	$(15^{-})^{@}$				M	J^{π} : $\Delta J = 2 \gamma$ to (13 ⁻); γ to 14 ⁺ .
1902 3						L	
1917.8 3		(0,1,2)			F		J^{π} : primary γ from 1^+ .
1954.51 8		(1-)		R	п		YPEF: I (1023)
1994.1 17	1917.0 5	(1)		В	11	L	
1996.41 17	1954.51 8	(2^{+})		В			
2127.4 (**) 2136.8 4 (14*) 2136.6 5 18*		$(1,2^+)$		В			
2136.8 b 4 (14*) 2151.6 b 5 18+ c				В			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Н		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_				MN	
2500.5 ^a 5 (19 ^{-)®} 29 ^a 8 (19 ^{-)®} 18 ^a 1. AJ=(2) y to (17 ⁻); y to 18 ^a . 2590.2 ^a 5 (20 ^a 8) 19 ^a AJ=(2) y to (18 ^a); y to (17 ⁻). 2973.8 ^a 5 (21 ^a) [®] 19 ^a AJ=(2) y to (19 ^a); y to (19 ⁻). 3059.8 ^a 6 22 ^a 19 ^a 19 ^a AJ=(2) y to (19 ^a); y to (19 ⁻). 318.3 ^b 5 (20 ^a) 19 ^a						M	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						M	J^{π} : $\Delta J = 1 \ \gamma$ to (15 ⁻); $\Delta J = 2 \ \gamma$ to (14 ⁺).
2837.1 b 5						M	J^{π} : $\Delta J = (2) \gamma$ to (17^{-}) ; γ to 18^{+} .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2590.2 ^{&} 5	20 ⁺ @				MN	J^{π} : $\Delta J=(2) \gamma$ to 18^+ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2837.1 ^b 5	(18^{+})				M	J^{π} : $\Delta J = 2 \gamma$ to (16 ⁺); γ to (17 ⁻).
3218.3 ^b 5 (20 ⁺) 321.1 ^a 6 (23 ⁻) ^a 3218.1 ^a 6 (23 ⁻) ^a 3559.0 ^a 6 24 ⁺ ^a 3559.0 ^a 6 24 ⁺ ^a MN J ^x : ΔJ=2 γ to (21 ⁺); γ to 22 ⁺ . 3626.6 ^b 6 (22 ⁺) 3900.6 ^a 6 (25 ⁻) ^a 4063.5 ^b 8 (24 ⁺) 4086.3 ^a 6 26 ⁺ ^a 4086.3 ^a 6 (27 ⁻) ^a 410.8 ^a 6 (27 ⁻) ^a 4110.8 ^a 6 (27 ⁻) ^a 4530.9 ^b 9 (26 ⁺) 4530.9 ^b 9 (26 ⁺) 4530.9 ^b 10 (28 ⁺) 5550.2 ^b 12 (30 ⁺) 5512.2 ^a 8 (31 ⁻) ^a 5512.2 ^a 8 (31 ⁻) ^a 5512.2 ^a 8 (31 ⁻) ^a 56096.37 ^a 9 (33 ⁻) 5819.3 ^a 8 32 ⁺ ^a 6096.37 ^a 9 (33 ⁻) x ^k (0 ⁺) 3.6 ns 2 E 456.04 477. 28 ⁺ A18. 29 to (23 ⁻); γ to 24 ⁺ . A19. 29 to (23 ⁻); γ to 26 ⁺ . A19. 29 to (23 ⁻); γ to 26 ⁺ . A24. 30 to (28 ⁺) A25. 30 to (28 ⁺) A37. γ to (27 ⁻), possible γ to 28 ⁺ . A39. 40 to (28 ⁺) A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (28 ⁺) A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (28 ⁺) A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (28 ⁺) A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁺). A39. 40 to (27 ⁻), possible γ to (28 ⁻). A39. 40 to (27 ⁻), possible γ to (28 ⁻). A39. 40 to (27 ⁻), possible γ to (28 ⁻). A39. 40 to (27 ⁻), possible γ t	2973.8 ^a 5	$(21^{-})^{\textcircled{@}}$				M	J^{π} : $\Delta J = (2) \gamma$ to (19^{-}) ; γ to 20^{+} .
3218.3 ^b 5 (20 ⁺) 3421.1 ^a 6 (23 ⁻) ^a 3421.1 ^a 6 (23 ⁻) ^a 3559.0 ^a 6 24 ⁺ ^a 3559.0 ^a 6 (22 ⁺) 3626.6 ^b 6 (22 ⁺) 3900.6 ^a 6 (25 ⁻) ^a 4063.5 ^b 8 (24 ⁺) 4086.3 ^b 8 (24 ⁺) 4086.3 ^b 6 (27 ⁻) ^a 410.8 ^a 7 28 ⁺ ^a 410.8 ^a 8 32 ⁺ ^a 410.8 ^a 9 30.8 ^a 9	3059.8 <mark>&</mark> 6	22+@				MN	J^{π} : $\Delta J=(2) \gamma$ to 20^+ .
3421.1 a 6 (23 -) @	3218.3 ^b 5	(20^{+})				M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
4639.4& 7							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•
5220.3 $^{\&}$ 7 30+ $^{\textcircled{@}}$ 8 (31-) $^{\textcircled{@}}$ 9 (30+) 559.2 $^{\textcircled{b}}$ 12 (30+) 5819.3 $^{\textcircled{\&}}$ 8 32+ $^{\textcircled{@}}$ 9 (33-) $^{\textcircled{@}}$ 8 32+ $^{\textcircled{@}}$ 9 (0+) 3.6 ns 2 $^{\textcircled{B}}$ 5 $^{\textcircled{B}}$ 5 $^{\textcircled{B}}$ 5 $^{\textcircled{B}}$ 6 $^{\textcircled{B}}$ 7 $^{\textcircled{B}}$ 7 $^{\textcircled{B}}$ 8 $^{\textcircled{B}}$ 9 (25-) 6 $^{\textcircled{B}}$ 8 $^{\textcircled{B}}$ 9 (35-) 6 $^{\textcircled{B}}$ 9 (37-) 7 $^{\textcircled{B}}$ 9 (37-) 8 $^{\textcircled{B}}$ 9 (38-) 9 (37-) 8 $^{\textcircled{B}}$ 9 (38-) 9 (3		` ′					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
5559.2 b 12 (30 $^+$) 5819.3 a 8 32 $^+$ 9 (33 $^-$) a 17. a 17. a 19 (31 $^-$). a 18. a 19.							•
5819.3 8 32+		. ,				M	
6096.3? ^a 9 (33 ⁻) ^a y (0 ⁺) 3.6 ns 2 E	5559.2 ^b 12					M	J^{π} : γ (28 ⁺).
x ^k (0 ⁺) 3.6 ns 2 E %SF>0 %SF: Only SF decay observed. E(level): $x=2250\ 200$, deduced from the level density of $K^{\pi}=0^{+}$ bandheads in 239 Pu(d,pF) (2001Hu12,2001Th16). Other: 2800 200 (estimate by 1971Br39,1970Bu02,1973Na03). Fission isomer observed in 238 U(α,2n); 239 Pu(n,γ) and 239 Pu(d,p). $T_{1/2}$: weighted average of 3.8 ns +6-4 (1986De04); 3.5 ns 2 (1978Go10); 3.0 ns 5 (1973Li01); 2.4 ns 5 (1973Na03); 3.8 ns 3 (1971Br39,1970Bu02); 4.6 ns 6 (1970El03,1969El06), 4.4 ns 8 (1969VaZX); 7 ns 2 (1969Me11); 9 ns 4 (1969La14). Others: 1972Ga42, 1970Vi05, 1968Pa16.						M	J^{π} : γ to 30^+ .
%SF: Only SF decay observed. E(level): $x=2250\ 200$, deduced from the level density of $K^{\pi}=0^+$ bandheads in 239 Pu(d,pF) (2001Hu12,2001Th16). Other: 2800 200 (estimate by 1971Br39,1970Bu02,1973Na03). Fission isomer observed in 238 U(α ,2n); 239 Pu(n, γ) and 239 Pu(d,p). T _{1/2} : weighted average of 3.8 ns +6-4 (1986De04); 3.5 ns 2 (1978Go10); 3.0 ns 5 (1973Li01); 2.4 ns 5 (1973Na03); 3.8 ns 3 (1971Br39,1970Bu02); 4.6 ns 6 (1970El03,1969El06), 4.4 ns 8 (1969VaZX); 7 ns 2 (1969Me11); 9 ns 4 (1969La14). Others: 1972Ga42, 1970Vi05, 1968Pa16.						M	J^{π} : possible γ to (31 ⁻).
E(level): $x=2250$ 200, deduced from the level density of $K^{\pi}=0^{+}$ bandheads in 239 Pu(d,pF) (2001Hu12,2001Th16). Other: 2800 200 (estimate by 1971Br39,1970Bu02,1973Na03). Fission isomer observed in 238 U(α ,2n); 239 Pu(n, γ) and 239 Pu(d,p). T _{1/2} : weighted average of 3.8 ns +6-4 (1986De04); 3.5 ns 2 (1978Go10); 3.0 ns 5 (1973Li01); 2.4 ns 5 (1973Na03); 3.8 ns 3 (1971Br39,1970Bu02); 4.6 ns 6 (1970El03,1969El06), 4.4 ns 8 (1969VaZX); 7 ns 2 (1969Me11); 9 ns 4 (1969La14). Others: 1972Ga42, 1970Vi05, 1968Pa16.	\mathbf{x}^{k}	(0^+)	3.6 ns 2		E		
bandheads in 239 Pu(d,pF) (2001Hu12,2001Th16). Other: 2800 200 (estimate by 1971Br39,1970Bu02,1973Na03). Fission isomer observed in 238 U(α ,2n); 239 Pu(n, γ) and 239 Pu(d,p). T _{1/2} : weighted average of 3.8 ns +6-4 (1986De04); 3.5 ns 2 (1978Go10); 3.0 ns 5 (1973Li01); 2.4 ns 5 (1973Na03); 3.8 ns 3 (1971Br39,1970Bu02); 4.6 ns 6 (1970El03,1969El06), 4.4 ns 8 (1969VaZX); 7 ns 2 (1969Me11); 9 ns 4 (1969La14). Others: 1972Ga42, 1970Vi05, 1968Pa16.							
(estimate by $1971Br39,1970Bu02,1973Na03$). Fission isomer observed in $^{238}U(\alpha,2n);^{239}Pu(n,\gamma)$ and $^{239}Pu(d,p)$. $T_{1/2}$: weighted average of 3.8 ns +6-4 ($1986De04$); 3.5 ns 2 ($1978Go10$); 3.0 ns 5 ($1973Li01$); 2.4 ns 5 ($1973Na03$); 3.8 ns 3 ($1971Br39,1970Bu02$); 4.6 ns 6 ($1970El03,1969El06$), 4.4 ns 8 ($1969VaZX$); 7 ns 2 ($1969Me11$); 9 ns 4 ($1969VaZX$). Others: $1972Ga42,1970Vi05,1968Pa16$.							
Fission isomer observed in ${}^{238}\mathrm{U}(\alpha,2\mathrm{n});{}^{239}\mathrm{Pu}(\mathrm{n},\gamma)$ and ${}^{239}\mathrm{Pu}(\mathrm{d},\mathrm{p}).$ $\mathrm{T}_{1/2}$: weighted average of 3.8 ns +6-4 (1986De04); 3.5 ns 2 (1978Go10); 3.0 ns 5 (1973Li01); 2.4 ns 5 (1973Na03); 3.8 ns 3 (1971Br39,1970Bu02); 4.6 ns 6 (1970El03,1969El06), 4.4 ns 8 (1969VaZX); 7 ns 2 (1969Me11); 9 ns 4 (1969La14). Others: 1972Ga42, 1970Vi05, 1968Pa16.							
$T_{1/2}: \mbox{ weighted average of } 3.8 \mbox{ ns } +6-4 \mbox{ (1986De04); } 3.5 \mbox{ ns } 2 \\ \mbox{ (1978Go10); } 3.0 \mbox{ ns } 5 \mbox{ (1973Li01); } 2.4 \mbox{ ns } 5 \mbox{ (1973Na03); } 3.8 \mbox{ ns } 3 \\ \mbox{ (1971Br39,1970Bu02); } 4.6 \mbox{ ns } 6 \mbox{ (1970El03,1969El06), } 4.4 \mbox{ ns } 8 \\ \mbox{ (1969VaZX); } 7 \mbox{ ns } 2 \mbox{ (1969Me11); } 9 \mbox{ ns } 4 \mbox{ (1969La14). Others: } 1972Ga42, 1970Vi05, 1968Pa16. \\ \mbox{ 20.1+x$^{$k$}$} \mbox{ (2+) } \mbox{ E}$							
(1978Go10); 3.0 ns 5 (1973Li01); 2.4 ns 5 (1973Na03); 3.8 ns 3 (1971Br39,1970Bu02); 4.6 ns 6 (1970El03,1969El06), 4.4 ns 8 (1969VaZX); 7 ns 2 (1969Me11); 9 ns 4 (1969La14). Others: 1972Ga42, 1970Vi05, 1968Pa16. 20.1+x ^k (2+) E							
(1969VaZX); 7 ns 2 (1969Me11); 9 ns 4 (1969La14). Others: 1972Ga42, 1970Vi05, 1968Pa16. 20.1+x ^k (2 ⁺) E							
$1972 Ga 42, 1970 Vi05, 1968 Pa 16.$ $20.1 + x^{k} \qquad (2^{+}) \qquad \qquad E$							
$20.1+x^{k}$ (2 ⁺)							
	20.1 1	(0±)			_		1972Ga42, 1970V105, 1908Pa16.
66.8+X* (4 ') E							
	66.8+x*	(4 ')			E		

240Pu Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$	XREF	Comments
139.9+x ^k	(6 ⁺)		E	
239.2+x ^k	(8 ⁺)		E	
$364.5 + x?^{*k}$	(10^+)		E	
$516.9 + x?^{k}$	(10^{+})		E	
554.7+x°	(12) (1^{-})		E	
589.7+x°	(3^{-})		E	
769.9+x ^P 10	(0^{+})		E	
785.1+x ^p 11	(2 ⁺)		E	
806.2+x ^l 1	(2-)		E	
825.0+x ^p 11	(4^{+})		E	
825.6+x ^l 2	(3-)		E	
836.0+x ^m 5	(1^{-})		E	
846.8+x ^m 3	(2^{-})		E	
851.1+x ^l 4	(4-)		E	
866.0+x ^m 10	(3-)		E	
882.8+x ^l 6	(5-)		E	
891.2+x ^m 3	(4^{-})		E	
892.4+x ^p 12	(6^{+})		E	
918.8+x ^m 3	(5^{-})		E	
920.7+x ^l 12	(6^{-})		E	
936.4+x? ^{\$}	(1^{-})		E	
952.5+x? ^{\$}	(2^{-})		E	
960.7+x ^m 2	(6-)		E	
966.5+x ^l 13	(7^{-})		E	
970.6+x? ^{\$}	(3-)		E	
986.8+x ^p 13	(8+)		E	
998.3+x ^m 7	(7^{-})		E	
1012.2+x? ^s	(4-)		E	
1019+x?	(8-)		E	
1044.0+x? ^s 1054.9+x ^m 5	(5 ⁻) (8 ⁻)		E E	
1034.9+x = 3 $1078+x?^{l}$				
10/8+x? ^m	(9 ⁻) (9 ⁻)		E E	
1104+x? 1104.2+x?	(9) (10^+)		E	
1104.2+x? ^s	(6-)		E	
1161.5+x? ^s	(7^{-})		E	
1172+x? ^m	(10^{-})		E	
1230.4+x? ^s	(8-)		E	
1232+x? ^m	(11^{-})		E	
1246.5+x? ^t	(1^{-})		E	
1261.0+x? ^t	(2^{-})		E	
1287.0+x? ^t	(3^{-})		E	
1300.9+x? ^{\$}	(9-)		E	
1322.0+x? ^t	(4^{-})		E	
1344.5+x? ⁿ	(1-)		E	
1360.9+x ⁿ 2	(2-)		E	
1366.5+x? ^t	(6 ⁻)		E	
1382.9+x? ^s 1386.6+x ⁿ 3	(10^{-})		E	
$1386.6+x^{17}3$ $1421.0+x?^{t}$	(3-)		E E	
1421.0+x? ⁿ 1421.4+x ⁿ 6	(6 ⁻) (4 ⁻)		E E	
1421.4+x** 0	(4) (11^{-})		E	
1465.7+x ⁿ 6	(5^{-})		E	
$1485.5 + x?^{t}$	(7^{-})		E	
	· /			

240Pu Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	XREF	Comments
1518.7+x ⁿ 13	(6-)		E	
1559.0+x? ^t	(8^{-})		E	
1580.5+x ⁿ 14	(7^{-})		E	
1641.5+x? ^t	(9^{-})		E	
1654.7+x? ⁿ	(8^{-})		E	
1732+x? ⁿ	(9-)		E	
1733.5+x? ^t	(10^{-})		E	
1816+x? ⁿ	(10^{-})		E	
1835.0+x? ^t	(11^{-})		E	
1910.0+x? ⁿ	(11^{-})		E	
2011.0+x? ⁿ	(12^{-})		E	
2184+x ^q	(0^+)		J	
2276+x ^q	(0^+)		J	
$2375 + x^{q}$	(0^{+})		J	
$2435 + x^{q}$	(0^+)		J	
$2453 + x^{q}$	(0^+)		J	
2483+x ^q	(0^{+})		J	

²⁴⁰Pu Levels (continued)

E(level) [†]	Jπ#	XREF	E(level) [†]	Jπ#	XREF	E(level) [†]	Jπ#	XREF	
						769.9+x ^p 10	(0 ⁺)	E	•
						785.1+x ^p 11	(2^+)	E	
						806.2+x ^l 1 825.0+x ^p 11	(2^{-}) (4^{+})	E E	
						$825.6+x^{l}$ 2	(3-)	E	
						836.0+x ^m 5	(1^{-})	E	
						846.8+x ^m 3	(2^{-})	E	
						851.1+x ^l 4	(4-)	E	
						866.0+x ^m 10 882.8+x ^l 6	(3-)	E	
						882.8+x ⁶ 6 891.2+x ^m 3	(5 ⁻) (4 ⁻)	E E	
						892.4+x ^p 12	(6^+)	E	
						918.8+x ^m 3	(5-)	E	
						920.7+x ^l 12	(6-)	E	
						936.4+x? ^{\$}	(1-)	E	
						952.5+x? ^s 960.7+x ^m 2	(2 ⁻) (6 ⁻)	E E	
						966.5+x ^l 13	(7^{-})	E	
						970.6+x? ^{\$}	(3^{-})	E	
						986.8+x ^p 13	(8^{+})	E	
						998.3+x ^m 7 1012.2+x? ^s	(7^{-}) (4^{-})	E E	
						1012.2+x? $1019+x$?	(8-)	E	
						1044.0+x? ^s	(5^{-})	E	
						1054.9+x ^m 5	(8-)	E	
						1078+x? ^l	(9-)	E	
						1104+x? ^m	(9 ⁻)	E	
						1104.2+x? ^p 1109.0+x? ^s	(10^+) (6^-)	E E	
						1161.5+x? ^{\$}	(7^{-})	E	
						1172+x? ^m	(10^{-})	E	
						1230.4+x? ^{\$}	(8-)	E	
						1232+x? ^m 1246.5+x? ^t	(11^{-}) (1^{-})	E E	
						1240.5+x?	(2^{-})	E	
						1287.0+x? ^t	(3^{-})	E	
						1300.9+x? ^s	(9-)	E	
						1322.0+x? ^t	(4-)	E	
						1344.5+x? ⁿ 1360.9+x ⁿ 2	(1^{-}) (2^{-})	E E	
						1366.5+x? ^t	(6 ⁻)	E	
						1382.9+x? ^{\$}	(10^{-})	E	
						1386.6+x ⁿ 3	(3^{-})	E	
						1421.0+x? ^t	(6-)	E	
						1421.4+x ⁿ 6 1461.8+x? ^s	(4^{-}) (11^{-})	E E	
						1465.7+x ⁿ 6	(5^{-})	E	
						1485.5+x? ^t	(7^{-})	E	
						1518.7+x ⁿ 13	(6-)	E	
						1559.0+x? ^t	(8 ⁻)	E	
						1580.5+x ⁿ 14 1641.5+x? ^t	(7 ⁻) (9 ⁻)	E E	
						1654.7+x? ⁿ	(8-)	E	
						1732+x? ⁿ	(9-)	E	
						1733.5+x? ^t	(10^{-})	E	

240Pu Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	$J^{\pi \#}$	X	REF
						1816+x? ⁿ	(10^{-})	Е	
						1835.0+x? ^t	(11^{-})	E	
						1910.0+x? ⁿ	(11^{-})	E	
						2011.0+x? ⁿ	(12^{-})	E	
						2184+x ^q	(0^+)		J
						2276+x ^q	(0^+)		J
						2375+x ^q	(0^+)		J
						2435+x ^q	(0^+)		J
						2453+x ^q	(0^+)		J
						2483+x ^q	(0^+)		J
						2800+x ^r	(0^+)		J

²⁴⁰Pu Levels (continued)

- [†] From least-squares fit to E γ 's.
- [‡] Extrapolated from moment of inertia plot for the band (2001Ga05).
- # For $K^{\pi}=0^+$ ground-state, $K^{\pi}=0^-$ octupole band and $K^{\pi}=0^+$ band based on 860.7 level, band associations are also used as arguments for J^{π} assignments in addition to other arguments as listed. For SD bands, the assignments are as proposed by 2001Ga05 and 2000Pa40, with parentheses added by the evaluators due to lack of firm arguments for these assignments.
- [@] From fit to the bands for lower members of the bands. Above 14^+ in the g.s. band and above 5^- in $K^{\pi}=0^-$ band, the assignments are from Coulomb excitation work of 1998Ha08 with parentheses added by the evaluators.
- & Band(A): $K^{\pi}=0^{+}$ g.s. band. A=7.16, B=-0.0038.
- ^a Band(B): K^π=0⁻ octupole band. Band from 1998Ha08 AND 2007WaZV. A=5.135, B=0.0013.
- ^b Band(C): K^{π} =0⁺ band. This band starts out as β vibrational band, at $\hbar\omega$ ≈0.2 MeV, it is crossed by a 2-quasiparticle (possibly neutrons) excitation (2007WaZV). A=6.60, B=−0.0007.
- ^c Band(D): $K^{\pi}=1^{-}$ band. A=6.42, B=-0.0035 for odd spin; A=5.6, B=0.0005 for even spin.
- ^d Band(E): $K^{\pi}=3^{+}, v1/2[631]+v5/2[622]$. A=5.7 if B=0.
- ^e Band(F): $K^{\pi}=0^{+}$ band.
- ^f Band(G): $K^{\pi}=2^+$ band.
- ^g Band(H): $K^{\pi}=2^{-}$ band.
- ^h Band(I): $K^{\pi}=5^{-}$, $\pi 5/2[642]+\pi 5/2[523]$.
- ⁱ Band(J): $K^{\pi}=0^{-}$, $\pi 5/2[642]-\pi 5/2[523]$.
- ^j Band(K): $K^{\pi}=0^+$ band.
- ^k Band(L): SD-1 Band, $K^{\pi}=0^{+}$. Band from 2000Pa40, 2001Ga05, 2001Th16. Ground-state band in the second minimum. Population intensity 13% (2001Th16).
- ¹ Band(M): SD-2 Band, $K^{\pi}=2^{-}$. Band from 2000Pa40, 2001Ga05, 2001Th16. Population intensity=41%.
- ^m Band(N): SD-3 Band, $K^{\pi}=1^{-}$. Band from 2000Pa40, 2001Ga05, 2001Th16. Population intensity=15%.
- ⁿ Band(O): SD-4 Band, $K^{\pi}=1^{-}$. Band from 2000Pa40, 2001Ga05, 2001Th16. Population intensity=20%.
- ^o Band(P): SD-5 Band, $K^{\pi}=0^{-}$ octupole band. Band from 2000Pa40, 2001Ga05, 2001Th16. Population intensity=3%.
- p Band(Q): SD-6 band, K^π=0⁺ β band. Band from 2001Ga05, 2001Th16. Population intensity=1.7%.
- ^q Band(R): $K^{\pi}=0^+$ SD bandheads. Bandheads attributed to 3-phonon β-vibrations (2001Hu12). X=2250 200.
- ^r Band(S): K^{π} =0⁺ SD bandheads. Bandheads attributed to 4-phonon β-vibrations. This structure may be composed of 13 separate rotational bands (2001Hu12): x=2250 200.
- ^s Band(T): SD-7 band, $K^{\pi}=1^{-}$. Tentative band assignment from 2001Th16. Population intensity 1%.
- ^t Band(U): SD-8 band, $K^{\pi}=1^{-}$. Tentative band assignment from 2001Th16. Population intensity 6%.

A γ -ray cascade reported in Coulomb excitation (2007WaZV): 303.5-340.3-370.7-405.8-437.5-466.8 possibly belongs to 240 Pu.

10

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ	α^{h}	$\mathrm{I}_{(\gamma+ce)}$	Comments
	42.824	2+	42.824 [@] 8	100	0.0	0+	E2		906		B(E2)(W.u.)=287 11 α (L)=658 10; α (M)=183 3; α (N+)=64.1 9 α (N)=50.4 7; α (O)=11.84 17; α (P)=1.85 3; α (Q)=0.00390 6 Mult.: from ²⁴⁰ Am ε decay, ²⁴⁴ Cm α decay.
	141.690	4+	98.860 [@] 13	100	42.824	2+	E2		16.65		$\alpha(L)$ =12.08 17; $\alpha(M)$ =3.38 5; $\alpha(N+)$ =1.185 17 $\alpha(N)$ =0.930 13; $\alpha(O)$ =0.219 3; $\alpha(P)$ =0.0349 5; $\alpha(Q)$ =0.0001222 18 Mult.: from ²⁴⁰ Am ε decay.
	294.319	6+	152.630 [@] 20	100	141.690	4+	E2		2.49		$\alpha(K)$ =0.196 3; $\alpha(L)$ =1.665 24; $\alpha(M)$ =0.465 7; $\alpha(N+)$ =0.1629 23 $\alpha(N)$ =0.1278 18; $\alpha(O)$ =0.0302 5; $\alpha(P)$ =0.00488 7; $\alpha(Q)$ =2.76×10 ⁻⁵ 4
	497.37	8+	203.1 2	100	294.319	6+	(E2) ^d		0.807		$\alpha(K)$ =0.1471 21; $\alpha(L)$ =0.480 7; $\alpha(M)$ =0.1332 20; $\alpha(N+)$ =0.0467 7 $\alpha(N)$ =0.0366 6; $\alpha(O)$ =0.00867 13; $\alpha(P)$ =0.001419 21; $\alpha(Q)$ =1.201×10 ⁻⁵ 18
10	597.34	1-	554.60 7	100	42.824	2+	E1 ^c		0.01179		$\alpha(K) = 0.00949 \ 14; \ \alpha(L) = 0.001734 \ 25; \ \alpha(M) = 0.000417 \ 6; \ \alpha(N+) = 0.0001458 \ 21 \ \alpha(N) = 0.0001126 \ 16; \ \alpha(O) = 2.77 \times 10^{-5} \ 4; \ \alpha(P) = 5.13 \times 10^{-6} \ 8; \ \alpha(O) = 2.99 \times 10^{-7} \ 5$
			597.40 7	61 2	0.0	0+	E1 ^c		0.01024		$\alpha(K)=0.00826$ 12; $\alpha(L)=0.001495$ 21; $\alpha(M)=0.000359$ 5; $\alpha(N+)=0.0001256$ 18 $\alpha(N)=9.70\times10^{-5}$ 14; $\alpha(O)=2.39\times10^{-5}$ 4; $\alpha(P)=4.43\times10^{-6}$ 7; $\alpha(Q)=2.62\times10^{-7}$ 4
	648.86	3-	507.20 <i>10</i> 606.10 <i>7</i>	100 97 <i>5</i>	141.690 42.824						
	742.33	5-	448.01 ^{&} 6	67 3	294.319	6+	[E1]		0.0179		B(E1)(W.u.)>0.39×10 ⁻⁶ α (K)=0.01433 20; α (L)=0.00269 4; α (M)=0.000648 9; α (N+)=0.000227 4 α (N)=0.0001753 25; α (O)=4.31×10 ⁻⁵ 6; α (P)=7.90×10 ⁻⁶ 11; α (Q)=4.45×10 ⁻⁷ 7
			600.57 ^{&} 6	100 5	141.690	4+	[E1]		0.01013		B(E1)(W.u.)>0.24×10 ⁻⁶ α (K)=0.00818 12; α (L)=0.001480 21; α (M)=0.000355 5; α (N+)=0.0001243 18 α (N)=9.60×10 ⁻⁵ 14; α (O)=2.37×10 ⁻⁵ 4; α (P)=4.38×10 ⁻⁶ 7; α (O)=2.59×10 ⁻⁷ 4
	747.4	10+	250.2 2	100	497.37	8+	(E2) ^d		0.383		$\alpha(K)=0.1059$ 15; $\alpha(L)=0.202$ 3; $\alpha(M)=0.0556$ 8; $\alpha(N+)=0.0195$ 3 $\alpha(N)=0.01527$ 22; $\alpha(O)=0.00363$ 6; $\alpha(P)=0.000600$ 9; $\alpha(O)=6.92\times10^{-6}$ 10
	860.71	0+	263.37 7	89 2	597.34	1-	[E1]		0.0550		$\alpha(K)=0.0433 \ 6; \ \alpha(L)=0.00881 \ 13; \ \alpha(M)=0.00214 \ 3;$

γ (²⁴⁰Pu) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^h	$I_{(\gamma+ce)}$	Comments
860.71	0+	817.89 <i>10</i>	100	42.824	2+	E2 ^c	0.0183		$\alpha(N+)=0.000745$ 11 $\alpha(N)=0.000578$ 9; $\alpha(O)=0.0001409$ 20; $\alpha(P)=2.52\times10^{-5}$ 4; $\alpha(Q)=1.277\times10^{-6}$ 18 $\alpha(K)=0.01302$ 19; $\alpha(L)=0.00389$ 6; $\alpha(M)=0.000990$ 14; $\alpha(N+)=0.000348$ 5
		860.7		0.0	0+	E0		15 <i>4</i>	$\alpha(N)=0.000270 \ 4; \ \alpha(O)=6.59\times10^{-5} \ 10; \ \alpha(P)=1.194\times10^{-5} \ 17; \ \alpha(Q)=5.27\times10^{-7} \ 8 \ q_K^2(E0/E2)=7 \ 3, \ X(E0/E2)=0.048 \ 16 \ (2005Ki02 \ evaluation).$
									Mult.: from 244 Cm α decay.
878.1? 900.32	(7 ⁻) 2 ⁺	583.7 ^j 4 251.47 7	73 <i>3</i>	294.319 648.86		[E1]	0.0610		$\alpha(K)$ =0.0480 7; $\alpha(L)$ =0.00983 14; $\alpha(M)$ =0.00239 4; $\alpha(N+)$ =0.000832 12
									$\alpha(N)=0.000645 \ 9; \ \alpha(O)=0.0001571 \ 22; \ \alpha(P)=2.81\times10^{-5} \ 4; \ \alpha(Q)=1.406\times10^{-6} \ 20$
		302.98 7	85 <i>3</i>	597.34	1-	[E1]	0.0405		$\alpha(K)$ =0.0320 5; $\alpha(L)$ =0.00637 9; $\alpha(M)$ =0.001543 22; $\alpha(N+)$ =0.000538 8
									α (N)=0.000417 6; α (O)=0.0001018 15; α (P)=1.84×10 ⁻⁵ 3; α (Q)=9.59×10 ⁻⁷ 14
		758.61 8	100 3	141.690	4+	E2 ^c	0.0212		$\alpha(K)$ =0.01484 21; $\alpha(L)$ =0.00474 7; $\alpha(M)$ =0.001212 17; $\alpha(N+)$ =0.000427 6
									$\alpha(N)=0.000331$ 5; $\alpha(O)=8.06\times10^{-5}$ 12; $\alpha(P)=1.453\times10^{-5}$ 21; $\alpha(Q)=6.09\times10^{-7}$ 9
		857.48 10	42 2	42.824	2+	[M1,E2]	0.04 3		$\alpha(K)$ =0.034 22; $\alpha(L)$ =0.007 4; $\alpha(M)$ =0.0017 9; $\alpha(N+)$ =0.0006 3 $\alpha(N)$ =0.00047 24; $\alpha(O)$ =0.00012 6; $\alpha(P)$ =2.2×10 ⁻⁵ 12; $\alpha(Q)$ =1.3×10 ⁻⁶ 9
		900.37 10	14 2	0.0	0+	[E2]	0.01512		$\alpha(K)$ =0.01103 <i>16</i> ; $\alpha(L)$ =0.00305 <i>5</i> ; $\alpha(M)$ =0.000771 <i>11</i> ; $\alpha(N+)$ =0.000272 <i>4</i>
									α (N)=0.000210 3; α (O)=5.14×10 ⁻⁵ 8; α (P)=9.38×10 ⁻⁶ 14; α (Q)=4.39×10 ⁻⁷ 7
938.06	(1^{-})	289.21 <i>10</i>	1.4 3	648.86					
		340.70 10	5.0 5		1-				
		895.30 10	5 1	42.824					
050 05	(2-)	938.02 <i>10</i> 309.99 <i>9</i>	100 4	0.0 648.86	0 ⁺				
958.85	(2^{-})	361.55 <i>10</i>	4.3 <i>4</i> 3.5 <i>6</i>		3 1-				
		915.98 9	3.5 0 100 <i>3</i>	42.824	-				
992.4	4+	249.7 ^a 10	41 6	742.33		[E1]	0.0620 11		$\alpha({\rm K}){=}0.0487$ 8; $\alpha({\rm L}){=}0.01000$ 17; $\alpha({\rm M}){=}0.00243$ 5; $\alpha({\rm N}{+}){=}0.000846$ 15
									α (N)=0.000656 <i>12</i> ; α (O)=0.000160 <i>3</i> ; α (P)=2.85×10 ⁻⁵ <i>5</i> ; α (Q)=1.427×10 ⁻⁶ <i>24</i>
		343.7 ^a 10	100 10	648.86	3-	[E1]	0.0309		$\alpha(K)$ =0.0245 4; $\alpha(L)$ =0.00479 8; $\alpha(M)$ =0.001158 18; $\alpha(N+)$ =0.000404

1

12	

From ENSDF

Adopted	Levels,	Gammas	(continued)

γ (²⁴⁰Pu) (continued)

						y(Fu) (continued)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f J_f^{π}	Mult.#	δ	α^{h}	Comments
								7 $\alpha(N)=0.000313\ 5;\ \alpha(O)=7.66\times10^{-5}\ 12;\ \alpha(P)=1.390\times10^{-5}\ 22;$ $\alpha(Q)=7.44\times10^{-7}\ 12$
992.4	4+	697.8 ^a	71 <i>16</i>	294.319 6+				w(Q) ////// 12
1001.94	(3^{-})	959.1 <mark>&</mark> <i>1</i>	100	42.824 2+				
1030.55	(3)+	382.1 ^j 10	0.072 7	648.86 3	[E1]		0.0247	$\alpha(K)$ =0.0197 3; $\alpha(L)$ =0.00379 6; $\alpha(M)$ =0.000915 14; $\alpha(N+)$ =0.000319 5 $\alpha(N)$ =0.000247 4; $\alpha(O)$ =6.06×10 ⁻⁵ 10; $\alpha(P)$ =1.105×10 ⁻⁵ 17;
								$\alpha(O) = 6.04 \times 10^{-7} \text{ 9}$
		888.85 ^a 5	34.2 7	141.690 4+	E2		0.01550	$B(E2)(W.u.)=2.2\times10^{-3}$ 3
								$\alpha(K)$ =0.01127 <i>16</i> ; $\alpha(L)$ =0.00315 <i>5</i> ; $\alpha(M)$ =0.000797 <i>12</i> ; $\alpha(N+)$ =0.000281 <i>4</i>
								$\alpha(N)=0.000217 \ 3; \ \alpha(O)=5.31\times10^{-5} \ 8; \ \alpha(P)=9.68\times10^{-6} \ 14;$
								$\alpha(Q)=4.49\times10^{-7}$ 7 Mult.: from ²⁴⁰ Am ε decay.
		987.79 ^a 6	100.0 10	42.824 2+	E2(+M1)	>10	0.0128 3	Mult.: from $^{-10}$ Am ε decay. B(E2)(W.u.)=3.8×10 ⁻³ 5
		901.19 0	100.0 10	42.024 2	E2(+W11)	>10	0.0126 3	$\alpha(N)=0.000168 \ 3; \ \alpha(O)=4.13\times10^{-5} \ 7; \ \alpha(P)=7.57\times10^{-6} \ 13;$
								$\alpha(Q)=3.74\times10^{-7} 8$
								Mult.: from $^{240}\mathrm{Am}\ \varepsilon$ decay.
1037.55	(4^{-})	295.20 ^{&} 10	3.2 4	742.33 5				
		388.70 ^{&} 10	6.6 5	648.86 3-				
		895.80 <mark>&</mark> <i>10</i>	100 5	141.690 4+				
1041.1	12+	293.8 2	100	747.4 10 ⁺	(E2) ^d		0.226	$\alpha(K)$ =0.0802 12; $\alpha(L)$ =0.1063 16; $\alpha(M)$ =0.0291 5; $\alpha(N+)$ =0.01022 15 $\alpha(N)$ =0.00800 12; $\alpha(O)$ =0.00190 3; $\alpha(P)$ =0.000319 5; $\alpha(Q)$ =4.65×10 ⁻⁶ 7
1056.8	(9^{-})	178.4 ^j 4		878.1? (7-)				
	,	309.4 <i>3</i>	36 36	747.4 10+	$\mathrm{D}^{oldsymbol{d}}$			
		559.2 <i>3</i>	100 <i>71</i>	497.37 8+	$\mathrm{D}^{oldsymbol{d}}$			
1076.22	(4^{+})	934.50 <mark>&</mark> 10	100 12	141.690 4+				
	()	1033.50 <mark>&</mark> 20	40 4	42.824 2+				
1089.45	0_{+}	1046.62 10	100	42.824 2+				
1115.53	(5^{-})	466.70 ^{&} 10	4.5 4	648.86 3-				
		821.20 ^{&} 10	4.5 4	294.319 6+				
		973.90 <mark>&</mark> <i>10</i>	100 5	141.690 4+				
1130.95	(2^{+})	989.20 <i>10</i>	100 7	141.690 4+				E_{γ} : poor fit. Level-energy difference=990.26.

$\gamma(^{240}\text{Pu})$ (continued)

Adopted Levels, Gammas (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}^π_f	Mult.#	α^{h}	Comments
1130.95	(2+)	1088.30 20	39 4	42.824	2+			
		1131.00 20	75 6	0.0	0_{+}			
1136.97	(2^{+})	1094.20 20	100 15	42.824				
4400.00	(61)	1137.0 4	67 10	0.0	0+			
1138.3?	(6 ⁺)	$145.8^{j} 4$		992.4	4+			
1161.53	(6-)	419.20 410	9.8 8	742.33	5-			
		867.20 ^{&} 10	100 6	294.319				
1177.63	(3^{+})	139.90 <u>&</u> 10		1037.55	(4^{-})			
		147.2 ^{ig} 1		1030.55	$(3)^{+}$			
		175.40 ^{&} j 10		1001.94	(3^{-})			
		1036.1 ^a 3	33 4	141.690				
1222.99	(2^{+})	1135.1 ^a 3 1180.20 20	100 <i>6</i> 100 <i>8</i>	42.824 42.824				
1222.99	(2')	1223.00 20	80 12	0.0	0+			
1232.46	(4 ⁺)	938.20 10	100 17	294.319	-			
1232.40	(+)	1090.50 & 20	44 9	141.690				
		1190.0 ^a 10	7 4	42.824				
1240.8	(2^{-})	1198.0 <i>3</i>	100	42.824				
1262.08	(3^{+})	1120.3 ^a 4	31 <i>3</i>	141.690				
		1219.3 ^a 3	100 6	42.824	2+			
1277.6	(11-)	220.7 3	22 11	1056.8	(9-)	(E2) ^d	0.594	$\alpha(K)$ =0.1299 19; $\alpha(L)$ =0.338 6; $\alpha(M)$ =0.0936 15; $\alpha(N+)$ =0.0328 5 $\alpha(N)$ =0.0257 4; $\alpha(O)$ =0.00610 10; $\alpha(P)$ =0.001003 16; $\alpha(Q)$ =9.59×10 ⁻⁶ 14
		236.6 <i>3</i>	39 22	1041.1	12+	d		
		530.1 <i>3</i>	100 50	747.4	10 ⁺	$\mathrm{D}^{oldsymbol{d}}$		
1308.74	(5 ⁻)	147.20 ^{i&g} 10	4.0 3	1161.53	(6-)	(M1,E2)&	6 3	$\alpha(K)=4$ 4; $\alpha(L)=1.7$ 3; $\alpha(M)=0.44$ 11; $\alpha(N+)=0.16$ 4 $\alpha(N)=0.12$ 3; $\alpha(O)=0.029$ 7; $\alpha(P)=0.0051$ 7; $\alpha(Q)=0.00016$ 13
		193.30 ^{&} 10	22.1 11	1115.53	(5 ⁻)	(M1,E2)&	2.5 16	$\alpha(K)$ =1.7 16; $\alpha(L)$ =0.62 3; $\alpha(M)$ =0.161 5; $\alpha(N+)$ =0.0566 15 $\alpha(N)$ =0.0440 15; $\alpha(O)$ =0.01067 16; $\alpha(P)$ =0.00188 14; $\alpha(Q)$ =7.E-5 6
		271.30 ^{&} 10	22.5 11	1037.55	(4-)	(M1,E2)&	0.9 7	$\alpha(K)=0.7\ 6$; $\alpha(L)=0.20\ 6$; $\alpha(M)=0.050\ 11$; $\alpha(N+)=0.018\ 4$ $\alpha(N)=0.014\ 3$; $\alpha(O)=0.0033\ 8$; $\alpha(P)=0.00061\ 18$; $\alpha(Q)=2.8\times10^{-5}\ 23$
		306.80 ^{&} 10	1.6 2	1001.94	(3-)	(E2)	0.197	$\alpha(K)$ =0.0742 11; $\alpha(L)$ =0.0899 13; $\alpha(M)$ =0.0246 4; $\alpha(N+)$ =0.00863 13 $\alpha(N)$ =0.00675 10; $\alpha(O)$ =0.001608 23; $\alpha(P)$ =0.000270 4; $\alpha(Q)$ =4.20×10 ⁻⁶ 6
		566.34 ^{&} 6	100 5	742.33	5-	(M1,E2)&	0.13 9	Mult.: (M1+E2) from ce data, E2 required by ΔJ^{π} . $\alpha(K)=0.10~8$; $\alpha(L)=0.022~11$; $\alpha(M)=0.005~3$; $\alpha(N+)=0.0019~9$ $\alpha(N)=0.0015~7$; $\alpha(O)=0.00036~18$; $\alpha(P)=7.E-5~4$; $\alpha(Q)=4.E-6~3$

$\gamma(^{240}Pu)$ (continued)

$E_i(level)$	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{h}	Comments
1308.74	(5 ⁻)	1014.40 ^{&} 10	0.83 22	294.319	6+	<u></u>		
		1167.10 <mark>&</mark> <i>10</i>	17.8 11	141.690	4+			
1321.13?	$(1,2^+)$	1321.10 ^j 10	100	0.0	0^{+}			
1323.4?	(8+)	$185.0^{j} 3$	100 67	1138.3?	(6 ⁺)			
1323.7.	(0)	445.2 ^j 4	100 07	878.1?	(7^{-})			
1337.02	$(2^+,3,4^+)$	1195.5 ^a 4	100 19	141.690				
1337.02	(2 ,5,4)	1294.1 ^a 3	35 4	42.824				
1374.8	14+	333.7 3	100	1041.1	12+	(E2) ^d	0.1533	$\alpha(K)$ =0.0639 9; $\alpha(L)$ =0.0654 10; $\alpha(M)$ =0.0178 3; $\alpha(N+)$ =0.00625 9 $\alpha(N)$ =0.00488 7; $\alpha(O)$ =0.001165 17; $\alpha(P)$ =0.000197 3; $\alpha(Q)$ =3.44×10 ⁻⁶ 5
1410.75	$0^{(-)}$	813.41 10	100	597.34	1-			a(a,) also loo ,, a(a) also also a,, a(a) also also a, a(a) also a
1438.45	2(-)	789.59 10	100 17	648.86	3-			
		841.11 10	83 9		1-			
		1438.5	< 0.6	0.0	0_{+}			
1488.17	$(1,2^+)$	1445.30 <i>10</i>	100 3	42.824				
		1488.20 <i>10</i>	53 <i>3</i>	0.0	0_{+}			
1525.86	(0^+)	928.55 10	100 13	597.34	1-			
1500 67	(1-)	1483.00 10	18 3	42.824				
1539.67	(1-)	580.70 <i>20</i> 890.60 <i>20</i>	0.53 <i>15</i> 1.3 2	958.85 648.86	(2 ⁻) 3 ⁻			
		942.39 10	7.2 7	597.34	3 1-			
		1496.90 <i>10</i>	100 2	42.824				
		1539.62 9	63.2 15	0.0	0^{+}			
1539.8	(13^{-})	165.0 <i>3</i>	7 7	1374.8	14 ⁺			
		262.1 3	75 36	1277.6	(11^{-})	$(Q)^{d}$		
		498.7 <i>3</i>	100 64	1041.1	12+	$\mathbf{D}^{\mathbf{d}}$		
1557.0	(10^+)	233.5 3	69 46	1323.4?	(8 ⁺)	D		
	(/	279.6 ^j 4		1277.6	(11^{-})			
		500.3 3	100 65	1056.8	(9 ⁻)	D^{d}		
1558.87	(2^{+})	910.10 <i>10</i>	100 03	648.86	3-	D		
1550.07	(2)	961.62 <i>10</i>	93 5	597.34				
		1417.20 10	16 3	141.690	4+			
		1515.90 <i>10</i>	11 4	42.824				
		1558.80 <i>10</i>	4.3 14	0.0	0_{+}			
1607.72	(1^{-})	518.2 <i>3</i>	11 4	1089.45	0_{+}			
		959.0 2	13 4	648.86	3-			
1606.55	(1.2+)	1607.60 20	100 9	0.0	0+			
1626.77	$(1,2^+)$	1584.10 20	100 12	42.824				
		1626.60 20	29 6	0.0	0+			

γ (²⁴⁰Pu) (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.#
1633.37	$(1,2^+)$	496.7 3	6.5 13	1136.97	(2+)	
	, , ,	1036.5 <i>3</i>	1.9 13	597.34	ì- ´	
		1590.50 <i>10</i>	63 <i>3</i>	42.824	2+	
		1633.33 10	100 <i>3</i>	0.0	0_{+}	
1710.43	(2^{+})	573.40 20	28 7	1136.97	(2^{+})	
		1061.60 20	100 24	648.86	3-	
		1113.20 20	62 10	597.34	1-	
		1568.60 20	21 3	141.690	4+	
		1667.60 <i>10</i>	66 10	42.824	2+	
		1711.0 <i>10</i>	7 4	0.0	0_{+}	
1745.7	16 ⁺	371.0 <i>3</i>	100	1374.8	14+	$(Q)^{d}$
1775.27	(1^{-})	1732.40 20	67 <i>34</i>	42.824	2+	
		1775.30 20	100 33	0.0	0_{+}	
1796.34	$(1,2^+)$	475.0 <i>3</i>	100 27	1321.13?	$(1,2^+)$	
		573.40 20	73 18	1222.99	(2^{+})	
		837.60 20	73 27	958.85	(2^{-})	
		1796.2 <i>3</i>	27 9	0.0	0+	
1808.02	$(1^-,2^+)$	1159.20 20	40 13	648.86	3-	
		1210.5 5	100 30	597.34	1-	
		1765.20 20	47 7	42.824	2+	
		1807.9 <i>4</i>	13 7	0.0	0+	a
1830.3	(12^{+})	273.2 3	100 55	1557.0	(10^{+})	Q^d
		290.6 ^j 4		1539.8	(13^{-})	
		552.7 4	90 48	1277.6	(11^{-})	D^{d}
1841.8	(15^{-})	302.1 <i>3</i>	100 44	1539.8	(13^{-})	Q^{d}
		467.1 <i>3</i>	65 37	1374.8	14+	
1917.8	(1^{-})	1874.9 <i>3</i>	100 8	42.824	2+	
		1918.0 <i>10</i>	7 3	0.0	0_{+}	
1954.51	(2^{+})	1305.80 20	100 26	648.86	3-	
		1357.20 20	57 13	597.34	1-	
		1812.80 <i>10</i>	22 9	141.690	4+	
1006.41	(1.0+)	1911.4 3	61 4	42.824	2+	
1996.41	$(1,2^+)$	1398.5 5	100 40	597.34	1-	
		1953.60 20	46 10	42.824	2+	
		1996.7 4	20 8	0.0	0+	
2117.5	$(1,2^+)$	2074.80 ^j 20	100 16	42.824	2+	
		2117.5 10	23 13	0.0	0_{+}	
2136.8	(14^{+})	295.0 ^j 3	32 19	1841.8	(15^{-})	4
		306.5 <i>3</i>	100 56	1830.3	(12^{+})	Q^{d}

15

$\gamma(^{240}\text{Pu})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	α^{h}	Comments
2136.8	(14^{+})	597.1 3	78 <i>46</i>	1539.8 (13 ⁻)	\mathbf{D}^{d}		
2151.6	18 ⁺	405.9 <i>3</i>	100	1745.7 16 ⁺	$(Q)^{d}$		
2182.6	(17^{-})	340.7 <i>3</i>	100 89	1841.8 (15-)	$(Q)^{d}$		
		436.8 <i>3</i>	34 <i>42</i>	1745.7 16 ⁺			
2475.1	(16^{+})	292.6 ^j 4		2182.6 (17 ⁻)			
		338.2 <i>3</i>	100 92	2136.8 (14+)	Q^d		
		633.3 4	31 <i>31</i>	1841.8 (15-)	D^{d}		
2560.5	(19^{-})	377.9 <i>3</i>	100 72	2182.6 (17 ⁻)	$(Q)^{d}$		
		408.9 <i>3</i>	21 5	2151.6 18 ⁺			
2590.2	20^{+}	438.6 <i>3</i>	100	2151.6 18 ⁺	(E2) ^d	0.0726	$\alpha(K)$ =0.0390 6; $\alpha(L)$ =0.0247 4; $\alpha(M)$ =0.00659 10; $\alpha(N+)$ =0.00232 4
					1		$\alpha(N)=0.00181\ 3;\ \alpha(O)=0.000434\ 7;\ \alpha(P)=7.49\times10^{-5}\ 11;\ \alpha(Q)=1.87\times10^{-6}\ 3$
2837.1	(18^{+})	362.0 <i>3</i>	100 71	$2475.1 (16^+)$	Q^d		
2072.0	(21-)	654.6 3	33 26	2182.6 (17 ⁻)			
2973.8	(21^{-})	383.6 <i>3</i>	21 5	2590.2 20 ⁺	covd		
		413.3 3	100 62	2560.5 (19 ⁻)	$(Q)^{d}$		
3059.8	22+	469.6 <i>3</i>	100	2590.2 20 ⁺	$(E2)^{d}$	0.0612	$\alpha(K)=0.0345$ 5; $\alpha(L)=0.0196$ 3; $\alpha(M)=0.00522$ 8; $\alpha(N+)=0.00184$ 3
					- d		$\alpha(N)=0.001430\ 21;\ \alpha(O)=0.000344\ 5;\ \alpha(P)=5.97\times10^{-5}\ 9;\ \alpha(Q)=1.612\times10^{-6}\ 23$
3218.3	(20^+)	381.2 3	100 80	2837.1 (18 ⁺)	Q^d		
3421.1	(23^{-})	657.8 <i>3</i> 361.3 <i>3</i>	18 <i>12</i> 21 <i>7</i>	2560.5 (19 ⁻) 3059.8 22 ⁺			
3421.1	(23)	447.3 3	100 38	2973.8 (21 ⁻)	$(Q)^{d}$		
3559.0	24+	499.2 3	100 38	3059.8 22 ⁺	$(E2)^{d}$	0.0528	$\alpha(K)=0.0310\ 5;\ \alpha(L)=0.01610\ 23;\ \alpha(M)=0.00426\ 6;\ \alpha(N+)=0.001498\ 22$
3339.0	24	499.2 3	100	3039.6 22	(E2)	0.0328	$\alpha(N)=0.001167$ 3, $\alpha(L)=0.01010$ 23, $\alpha(M)=0.00420$ 6, $\alpha(N+)=0.001498$ 22 $\alpha(N)=0.001167$ 17; $\alpha(O)=0.000281$ 4; $\alpha(P)=4.90\times10^{-5}$ 7; $\alpha(Q)=1.417\times10^{-6}$ 20
3626.6	(22^{+})	408.3 <i>4</i>		3218.3 (20 ⁺)			$u(11) = 0.001107 17, u(0) = 0.000201 7, u(1) = 4.20 \times 10^{-7}, u(Q) = 1.417 \times 10^{-20}$
	()	652.8 4	100 50	2973.8 (21 ⁻)			
3900.6	(25^{-})	341.6 <i>3</i>	32 14	3559.0 24+			
		479.5 <i>3</i>	100 68	3421.1 (23-)	Q^d		
4063.5	(24^{+})	436.9 5		3626.6 (22 ⁺)			
4086.3	26 ⁺	185.7 <i>3</i>	11 6	3900.6 (25 ⁻)	1		
4410.0	(07-)	527.2 3	100 17	3559.0 24 ⁺	$(Q)^{d}$		
4410.8	(27^{-})	324.5 3		4086.3 26+	o.d		
4520.0	(26+)	510.2 3	100 74	3900.6 (25 ⁻)	Q^{d}		
4530.9 4639.4	(26 ⁺) 28 ⁺	467.4 <i>5</i> 228.6 <i>4</i>	27 15	4063.5 (24 ⁺) 4410.8 (27 ⁻)			
7UJJ. 1	20	553.1 3	100 35	4086.3 26+			
		310.6^{j} 4	-00 00	=0			

16

γ (²⁴⁰Pu) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.#	δ	α^{h}	$\mathrm{I}_{(\gamma+ce)}$	Comments
4950.0	(29^{-})	539.2 <i>3</i>	100 69	4410.8	(27^{-})					
5030.0	(28^{+})	499.1 5		4530.9	(26^{+})					
5220.3	30 ⁺	270.3 4		4950.0	(29^{-})					
		580.9 <i>3</i>	100 37	4639.4	28+					
5512.2	(31^{-})	562.2 <i>3</i>	100	4950.0	(29^{-})					
5559.2	(30^+)	529.2 <i>5</i>		5030.0	(28^+)					
5819.3	32 ⁺	599.0 <i>3</i>	100	5220.3	30 ⁺					
6096.3?	(33^{-})	584.1 ^{<i>j</i>} 4		5512.2	(31^{-})					
20.1+x	(2+)	(20.1)		X	(0+)	[E2]		2.3×10 ⁴ 3		$\alpha(L)=1.31\times10^4$ 18; $\alpha(M)=7.5\times10^3$ 10; $\alpha(N+)=2.6\times10^3$ 4 $\alpha(N)=2.0\times10^3$ 3; $\alpha(O)=4.8\times10^2$ 7; $\alpha(P)=74$ 10; $\alpha(Q)=0.108$ 13 Additional information 2.
66.8+x	(4 ⁺)	46.72 9	100	20.1+x	(2 ⁺)	(E2)		593 10		$\alpha(L)$ =431 8; $\alpha(M)$ =120.3 21; $\alpha(N+)$ =42.0 7 $\alpha(N)$ =33.0 6; $\alpha(O)$ =7.76 13; $\alpha(P)$ =1.215 21; $\alpha(Q)$ =0.00267 5
139.9+x	(6 ⁺)	73.12 <i>12</i>	100	66.8+x	(4+)	(E2)		68.9		$\alpha(L)=50.0 \ 8; \ \alpha(M)=14.00 \ 23; \ \alpha(N+)=4.90 \ 8$ $\alpha(N)=3.85 \ 7; \ \alpha(O)=0.906 \ 15; \ \alpha(P)=0.1430 \ 23;$ $\alpha(Q)=0.000399 \ 7$
239.2+x	(8+)	99.35 13	100	139.9+x	(6 ⁺)	(E2)		16.27		$\alpha(L)$ =11.81 18; $\alpha(M)$ =3.31 5; $\alpha(N+)$ =1.158 18 $\alpha(N)$ =0.909 14; $\alpha(O)$ =0.214 4; $\alpha(P)$ =0.0341 6; $\alpha(Q)$ =0.0001200 18
364.5+x?	(10^+)	126 ^j		239.2+x	(8^{+})					
554.7+x	$(1^{-})^{'}$	534.6	100	20.1+x						
		554.7	< 750	X	(0^{+})					I_{γ} : for triplet.
589.7+x	(3^{-})	569.6	100	20.1+x	(2^{+})					•

17

 $\gamma(^{240}\text{Pu})$ (continued)

 $E_i(\text{level}) \quad \underline{J}_i^{\pi} \quad \underline{E}_{\gamma}^{\ddagger} \quad \underline{I}_{\gamma}^{\dagger} \quad \underline{E}_f \quad \underline{J}_f^{\pi} \quad \underline{\text{Mult.}}^{\#}$

 $\gamma(^{240}\text{Pu})$ (continued)

 $E_i(\text{level}) \quad J_i^{\pi} \quad E_{\gamma}^{\ddagger} \quad I_{\gamma}^{\dagger} \quad E_f \quad J_f^{\pi} \quad \text{Mult.}^{\#}$

	Adopted	Levels,	Gammas	(continued))
--	---------	---------	--------	-------------	---

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.#
769.9+x	(0^+)	769.9 10		X	(0^+)	(E0)
806.2 + x	(2^{-})	216.5 5	1.9	589.7+x	(3^{-})	
		786.1 <i>1</i>	100.0 25	20.1+x	(2^{+})	E1
825.6+x	(3^{-})	(19.4)		806.2 + x	(2^{-})	
		805.4 2	100 13	20.1+x	(2^{+})	
836.0+x	(1^{-})	816 <i>I</i>	100 18	20.1+x	(2^+)	
046 0	(2-)	836 <i>1</i>	29 17	X 20.1	(0^+)	
846.8+x 851.1+x	(2^{-}) (4^{-})	826.7 <i>3</i> (25.5)	100	20.1+x 825.6+x	(2^+) (3^-)	
631.1+X	(4)	44.8		806.2+x	(2^{-})	(E2)
866.0+x	(3^{-})	799 <i>1</i>	100 22	66.8+x	(4^+)	(E2)
000.01 X	(5)	846 <i>I</i>	67 33	20.1+x	(2^{+})	
882.8+x	(5^{-})	31.7	0, 55	851.1+x	(4^{-})	(E2)
	(-)	57.2		825.6+x	(3^{-})	(E2)
891.2+x	(4^{-})	824.4 <i>3</i>	100	66.8 + x	(4^{+})	. ,
918.8 + x	(5^{-})	778.9 <i>3</i>	100 25	139.9 + x	(6^+)	
		852.0 <i>5</i>	42 <i>17</i>	66.8 + x	(4^{+})	
920.7+x	(6^{-})	(37.9)		882.8+x	(5^{-})	
		(69.6)		851.1+x	(4^{-})	
		936.4 ^j	<10	X	(0^{+})	
952.5+x?	(2^{-})	932.4 <i>j</i>	100	20.1+x	(2^{+})	
960.7+x	(6^{-})	820.8 2	100	139.9+x	(6^{+})	
966.5+x	(7^{-})	(45.8)		920.7+x	(6^{-})	
		(83.7)		882.8+x	(5^{-})	
970.6+x?	(3^{-})	904.1 ^j	100	66.8 + x	(4^{+})	
		858.7 <i>3</i>	100 40	139.9+x	(6^{+})	
1012.2+x?	(4^{-})	945.4 ^j	100	66.8 + x	(4^{+})	
1044.0+x?	(5^{-})	904.1 ^{<i>j</i>}	100	139.9 + x	(6^{+})	
1054.9+x	(8^{-})	815.7 <i>3</i>	100	239.2+x	(8^{+})	
1109.0+x?	(6^{-})	969.1 <i>j</i>	100	139.9+x	(6^+)	
1161.5+x?	(7^{-})	922.3 <i>j</i>	100	239.2+x	(8^{+})	
1230.4+x?	(8-)	991.2 ^j	100	239.2+x	(8 ⁺)	
	()	1226.5 ^{ij}		20.1+x	(2^{+})	
		1246.5 ^{<i>i</i>}		X X	(0^+)	
10(1.09	(2=)	414.2^{j}				(E0)
1261.0+x?	(2^{-})			846.8+x	(2-)	(E0)
		1241.0 ^j	25	20.1+x	(2^{+})	
1287.0+x?	(3^{-})	420 <i>j</i>		866.0+x	(3^{-})	(E0)
		1220.0 ^j	100	66.8 + x	(4^{+})	
1300.9+x?	(9^{-})	936.4 <i>j</i>	100	364.5+x?	(10^{+})	
1322.0+x?	(4^{-})	403 <i>j</i>	17	918.8+x	(5^{-})	
	` /	1255 ^j	100	66.8+x	(4 ⁺)	
1344.5+x?	(1^{-})	98 <i>j</i>	100	1246.5+x?	(1^{-})	
1377.37A:	(1)	20°		1270.JTA:	(1)	

						_
E_i (level)	J_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.#
		408.1 ^{<i>j</i>}		936.4+x?	(1^{-})	(E0)
		508.4	100	836.0+x	(1^{-})	(E0)
		1324.5 ^{ij}	<16	20.1+x	(2^{+})	
1360.9+x	(2^{-})	408.4		952.5+x?	(2^{-})	(E0)
		514.8 <i>15</i>	67	846.8 + x	(2^{-})	(E0)
		525	42	836.0+x	(1^{-})	
		535.2 2	100 25	825.6+x	(3^{-})	
		1341	<115	20.1+x	(2+)	
		1226.5 ^{ij}	< 500	139.9+x	(6^{+})	
1382.9+x?	(10^{-})	1018.4 ^{<i>j</i>}	100	364.5 + x?	(10^{+})	
1386.6+x	(3^{-})	415.7 ^{<i>j</i>}		970.6+x?	(3^{-})	(E0)
		520.4 <i>14</i>	<44	866.0+x	(3^{-})	(E0)
		535.5 3	61 17	851.1+x	(4^{-})	
		1319.9	26	66.8+x	(4+)	
1421.0+x?	(6-)	1281 ^j	100	139.9+x	(6^{+})	
1421.4+x	(4^{-})	409.2 ^j		1012.2+x?	(4^{-})	(E0)
		529.0 12		891.2+x	(4-)	(E0)
		538.6 2	<43 ^b	882.8+x	(5^{-})	
		1355	23	66.8+x	(4 ⁺)	
1461.8+x?	(11^{-})	944.9 ^J	100	516.9+x?	(12^{+})	
1465.7+x	(5^{-})	543.6 ^f 1	2	918.8+x	(5^{-})	(E0)
		545 1	64	920.7+x	(6-)	
		1324.5 ^{ij}	<22	139.9+x	(6^+)	
1485.5+x?	(7^{-})	1246.5 ^{ij}	100	239.2+x	(8^{+})	
1518.7+x	(6-)	409.7 ^{<i>j</i>}		1109.0+x?	(6^{-})	(E0)
		554.3 <i>4</i>	<340 ^e	966.5 + x	(7^{-})	
		556.5 1	2	960.7+x	(6-)	(E0)
		1379.5	17	139.9+x	(6 ⁺)	
1559.0+x?	(8-)	1320 ^j	100	239.2+x	(8^{+})	
1580.5 + x	(7^{-})	418.6 ^j		1161.5+x?	(7^{-})	(E0)
		581.8 <i>12</i>		998.3+x	(7^{-})	(E0)
		1341.3 ^{<i>j</i>}	<115	239.2+x	(8^{+})	
1641.5+x?	(9^{-})	1276 ^j	100	364.5+x?	(10^{+})	
1654.7+x?	(8-)	595.1 ^j 18				(E0)
		600.0^{j}		1054.9+x	(8^{-})	(E0)
		1414.3 ^j	40	239.2+x	(8^{+})	
1732+x?	(9^{-})	628.3 ^j 13		1104+x?	(9^{-})	(E0)
	. ,	1369 <i>j</i>	30	364.5+x?	(10^{+})	
1733.5+x?	(10^{-})	1369 ^j	100	364.5+x?	(10^{+})	
- / CC . C M .	(10)	1454.0 ^j	100	364.5+x?	(10^{+})	
1835.0+x?	(11^{-})	1318 ^j	100	516.9+x?	(10^{+})	
1033.U+X?	(11)	1310	100	310.9+X?	(12)	

$$\frac{E_{i}(\text{level})}{I} \quad \frac{J_{i}^{\pi}}{I_{i}} \quad \frac{E_{\gamma}^{\ddagger}}{1393^{j}} \quad \frac{I_{\gamma}^{\dagger}}{I_{\gamma}^{\dagger}} \quad \frac{E_{f}}{1393^{+}} \quad \frac{J_{f}^{\pi}}{1393^{+}} \quad \frac{\text{Mult.}^{\#}}{1393^{-}}$$

$$2011.0+x? \quad (12^{-}) \quad 1494.0^{j} \quad 100 \quad 516.9+x? \quad (12^{+})$$

- † Relative photon intensity, normalized to 100 for the strongest γ deexciting each level.
- [‡] From ²⁴⁰Np β^- decay (7.22 min), unless otherwise noted. For γ rays from levels in the second minimum, all values are from (α ,2n γ).
- # For transitions from levels in the second-potential well, E0 multipolarities are mixed with M1 and E2 components, except for the 769.9 transition from 0⁺ to 0⁺, which has to be E0.
- $^{@}$ From 244 Cm α decay.
- & From 240 Np $β^-$ decay (61.9 min).
- ^a From ²⁴⁰Am ε decay.
- b 538 γ and 538.6 γ are unresolved and intensities are undivided.
- ^c From ²⁴⁰Np β ⁻ decay (7.22 min).
- ^d From ΔJ=2, quadrupole (most likely E2) or ΔJ=1, dipole (most likely E1) from $\gamma(\theta)$ data in Coulomb excitation (2007WaZV).
- e For doublet
- f Poor fit in the level scheme. Level-energy difference=546.9 7. 545.3 is quoted in 2001Th16.
- g Placement from 1177 level proposed by the evaluators. 1982Pa23, in 240 Np β^- decay (61.9 min), proposed placement from only the 1309 keV level. The Δ K=4 involved for a transition from 1309-keV level to 1161-keV level suggests placement by 1982Pa23 is less likely.
- ^h Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ⁱ Multiply placed.
- ^j Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{240}_{94}$ Pu $_{146}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

٧ γ Decay (Uncertain)

$$^{240}_{94}\mathrm{Pu}_{146}$$

(1-)

938.06

Band(N): SD-3 Band, $K^{\pi}=1^{-}$

(11⁻) _ _ _ <u>1232+x</u>

 (10^{-}) _ <u>1172+x</u>

Band(M): SD-2 Band, $K^{\pi}=2^{-}$

<u>(9⁻)</u> _ _ _ _ <u>1078+x</u>

(9-) 1104+x

(8⁻) _ _ _ _ <u>1019+x</u>

 (8^{-}) 1054.9+x

 (7^{-}) 966.5+x 920.7+x **(5**⁻) 882.8+x 851.1+x (4-) (3-) 825.6+x

806.2+x

(2⁻)

 (7^{-}) 998.3+x (6^{-}) 960.7+x 918.8+x 891.2+x (5-) (4-) (3-) /866.0+x (2-) /846.8+x <u>(1⁻)</u> 836.0+x

Band(L): SD-1 Band, $\mathbf{K}^{\pi}\mathbf{=}\mathbf{0}^{+}$

 (12^{+}) 516.9+x

 (8^{+}) (6^{+}) (4^{+}) (2^{+}) (0^+)

Band(K): $K^{\pi}=0^+$ band

(2^{+})	1558.87
(0 ⁺)	1525.86

Band(J): $K^{\pi} = 0^{-}$, $\pi 5/2[642] - \pi 5/2[523]$

0(-)

1438.45 1410.75

Band(I): $K^{\pi}=5^{-}$, $\pi 5/2[642] + \pi 5/2[523]$

 (5^{-}) 1308.74

$$^{240}_{94}\mathrm{Pu}_{146}$$

Band(S): $\mathbf{K}^{\pi} = \mathbf{0}^{+} \mathbf{SD}$ bandheads

2800+x

 (0^{+})

Band(R): $K^{\pi}=0^+$ SD bandheads

(0^{+})	2483+x
(0 ⁺)	
(0+)	2435+x
(0^{+})	2375+x

 (0^{+}) 2276+x

 (0^+) 2184+x

Band(O): SD-4 Band, $K^{\pi}=1^{-}$

 (11^{-}) _ _ _1910.0+x

 (10^{-}) _ _ _ = 1816+x

 $\frac{(9^-)}{2}$ _ _ _ _ $\frac{1732+x}{2}$

(8⁻) 1654.7+x

 (7^{-}) 1580.5+x

1518.7+x $\frac{(5^{-})}{(4^{-})}$ 1465.7+x -1421.4+x **(3**⁻) 1386.6+x

(2⁻) 1360.9+x -1344.5+x

Band(T): SD-7 band, $\mathbf{K}^{\pi} = \mathbf{1}^{-}$

(11⁻) _ _ _1461.8+x

(9⁻) 1300.9+x

(8⁻) _ _ _ 1230.4+x

 (7^{-}) 1161.5+x

 (6^{-}) 1109.0+x

1044.0+x $\overline{(5^-)}$ (4[−]) \ 1012.2+x

-/970.6+x

Band(P): SD-5 Band, $K^{\pi}=0^{-}$ octupole band

$$\begin{array}{ccc} (3^{-}) & 589.7 + x \\ \hline (1^{-}) & 554.7 + x \end{array}$$

 $^{240}_{\ 94}\mathrm{Pu}_{146}$

Band(Q): SD-6 band, \mathbf{K}^{π} =0 $^{+}$ β band

1104.2+x

986.8+x

892.4+x

825.0+x

785.1+x

769.9+x

 (10^{+})

 (8^+)

 (6^+)

 (4^{+})

(2⁺)

(0⁺)

Band(U): SD-8 band, $\mathbf{K}^{\pi} \mathbf{=} \mathbf{1}^{-}$

(11⁻)____1835.0+x

$$^{240}_{94}\mathrm{Pu}_{146}$$

	His	tory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin, C. D. Nesaraja	NDS 186, 261 (2022)	31-Dec-2021

 $Q(\beta^{-})=-751.1\ 7$; $S(n)=6309.6\ 7$; $S(p)=6.89\times10^{3}\ 10$; $Q(\alpha)=4984.2\ 10$ 2021Wa16 $S(2n)=11551.1\ 7$, $S(2p)=12576.6\ 27\ (2021Wa16)$.

For references on theoretical studies refer to the NSR file at the Web site given in the abstract.

²⁴²Pu Levels

Cross Reference (XREF) Flags

```
^{246}Cm \alpha decay
                                                        Ē
                                                                  Coulomb excitation
                                                                                                                 <sup>241</sup>Pu(n,\gamma) E=th:primary \gamma's
Α
                                                                                                                 <sup>241</sup>Pu(n,\gamma) E=th:secondary \gamma's
         <sup>242</sup>Np \beta^- decay (2.2 min)
                                                                  <sup>242</sup>Pu(d,d')
В
                                                        F
                                                                 <sup>244</sup>Pu(p,t)
         ^{242}Np \beta^{-} decay (5.5 min)
                                                        G
C
         <sup>242</sup>Am \varepsilon decay (16.01 h)
                                                                  <sup>244</sup>Pu(<sup>208</sup>Pb, <sup>210</sup>Pby)
```

E(level)	$J^{\pi c}$	$T_{1/2}$	XREF
0.0^{\dagger}	0_{+}	3.73×10^5 y 2	ABCDEFGHIJ

Comments

 $\%\alpha$ =100; %SF=5.53×10⁻⁴ 5

%SF: From the adopted values for $T_{1/2}(\alpha)$ and $T_{1/2}(SF)$.

 $T_{1/2}$: Based on the following set of measurements. Standards used by the authors are given in parens and their half-lives have been corrected by the evaluators for newer values of the standards as follows: $T_{1/2}$ =87.7 y *I* for 238 Pu, 6561 y 7 for 240 Pu, and 24110 y 30 for 239 Pu. The following values are in units of 10^5 y. $T_{1/2}$ =3.65 5 (238 Pu) (1956Bu64), 3.79 5 (specific activity) (1956Bu92), 3.87 *10* (240 Pu) (1956Me37), 3.82 3 (239 Pu) (1969Be06), 3.67 7 (238 Pu) (1970Du02), 3.702 7 (absolute 4π αγ coin and radiometry) (1976Bu23), 3.764 9 (low-temperature heat capacity) (1976Os05), 3.708 25 (239 Pu) (1978MeZL), 3.742 24 (239 Pu) (1979Ag03), 3.766 25 (238 Pu) (1979Ag03). The value of 1976Os05 was recalculated by the evaluators using $E(\alpha)$ =4984.2 *10*. The authors used 4982.3 *12*. The value given by 1969Be06, 3.823 *16*, has been revised by 1976Bu23. These data give a weighted average of 3.730×10⁵ y *12*. The evaluators adopt 3.73×10⁵ y 2 with the uncertainty increased to overlap the two values quoted to the highest precision. Others:1950Th54, 1956Hu96.

 $T_{1/2}(SF)$ is based on the following set of measurements, given in units of 10^{10} y. The evaluators have applied the same corrections for the $T_{1/2}$ standards as given in the comment on $T_{1/2}(\alpha)$: 6.65 10 (1956Bu64), 6.79 9 (1956Me37 as revised by 2000Ho27), 6.74 5 (1978MeZL), 6.86 26 (1988SeZY), 6.79 9 (2005ChZU) 6.74 9 (2013Sa65), 6.72 8 (2017Ma07), and 6.77 5 (2018Be29). The values given for 1956Me37 and 2017Ma07 are based on the adopted value for $T_{1/2}(\alpha)$ and the authors' values of $T_{1/2}(\alpha)/T_{1/2}(SF) = 1.819 \times 10^5$ 18 and 1.802×10^5 18 respectively, These data give a weighted average of 6.748 28. The evaluators adopt $T_{1/2}(SF) = 6.75 \times 10^{10}$ 5 with the uncertainty increased to the smallest of the input values. Others: 6.7 7 (quoted in 1956Me37), 6.5 7 (1961Dr04), and 7.45 17 (1963Ma50). See also recommended value: 6.766×10^{10} y 37 (2021Cr02).

The intrinsic quadrupole and hexadecapole moments were deduced by 1986Zu01 as Q(0)=11.901 63 and H(0)=2.08 (12) from measured muonic X-ray data (muons were stopped on a 242 Pu target.) From Coulomb excitation, 1973Be44 deduced Q(0)=11.64 9 and H(0)=1.75 +71-87. From the intrinsic quadrupole and hexadecapole moments, the quadrupole and hexadecapole deformation parameters were obtained by 1986Zu01 as β (2)=0.2766 15 and

E(level) ^b	J^{π}	T _{1/2}	XREF	Comments
				$\beta(4)=0.0498\ 52.$
				The relative isotope shifts between ²⁴² Pu and ²⁴⁰ Pu, and between ²⁴² Pu and
				²⁴⁴ Pu were measured by 1985Ge08 to be 1.0 and 1.03 2, respectively. See
				also 1989Ru07.
				Energy distribution and yields of long range alpha particles emitted during spontaneous fission were measured by 1998Se17.
				Cold fission (without neutron emission) in ²⁴² Pu spontaneous fission was
				observed by 1996Da16.
				Energy and mass distributions of fission fragments were measured by
				1982A113, 1984Th01, 1989Wa29 and 1997De11.
				Energy and mass distribution of muon-induced fission fragments were
				measured by 1987Da22; time distribution of fission fragments from muonic
				²⁴² Pu was measured by 1980Wi06; energy distribution of fission fragments induced by (t,p) reaction was measured by 1974Ba28, and fission probability
				was deduced.
				The prompt gamma-ray spectrum for spontaneous fission was measured by 2018Ch34 and 2016Ob01. The prompt gamma-ray spectrum for
				neutron-induced fission was measured by 2018Ch34.
				Fission fragments mass distribution was measured by 2017Hi10 populated in
				the excitation-energy range from 10 to 60 MeV by multinucleon transfer
				channels in the reaction $^{18}\text{O} + ^{238}\text{U}$. σ and σ (E) for photo fission were measured by 2000So02.
				The absolute cross section for neutron-induced fission from 1 to 2.5 MeV was
				measured by 2017Ma07.
44.545 [†] 9	2+	160 ps 3	ABCDEFGHI J	J^{π} : E2 γ to 0^{+} .
				$T_{1/2}$: From B(E2) in Coulomb excitation.
147.4 [†] <i>1</i>	4+		ABC EFGHIJ	$B(E4)\uparrow=0.55 +53-41$
306.4 [†] 2	6+		C EF H J	
518.1 [†] 5	8+		EF H	
778.6 [†] 8	10+		E H	
780.45 [‡] 5	1-		B EF J	J^{π} : From systematics of octupole-vibrational state energies. A ratio of
				reduced-transition rates of gammas to the g.s. band:
				B(E1,735.93 γ)/B(E1,780.44 γ)=2.25 observed in β^- decay agrees with 2.0
832.3 [‡] <i>3</i>	2-		D 00 71	from the Alaga rule.
832.3* 3	3-		B EF IJ	B(E3)↑=0.42 7 J^{π} : From excit in Coulomb excitation; gammas to 2 ⁺ and 4 ⁺ levels.
865			F	J. 110m exert in Coulomo exertation, gammas to 2 and 4 levels.
927‡	5- d		EF	
956 [@]	0+		E G	J^{π} : L(p,t)=0.
992.5 [@] 3	(2 ⁺)		B EFG	J^{π} : Spacing of 36 keV above the 956 0^{+} state in (p,t) is suggestive of a
772.5	(2)		D LIG	rotational band. See 1970Ma29.
1019.5 [#] 8	3-		EF IJ	B(E3)↑=0.45 7
				J^{π} : From excit in Coulomb excitation.
1039.2 3	$(1,2^+)$		B I	J^{π} : Fed from $2^+, 3^+$ by primary in (n, γ) . Possible γ to 0^+ .
1064.0 9	(4-)			J^{π} : Fed from $2^+,3^+$ by primary in (n,γ) . γ to 4^+ . No γ' s to 0^+ or 2^+ .
1070.8?‡	7-		E	
1084.0 [†] 4 1092.1 2	12 ⁺ (6 ⁺)		ЕН	J^{π} : gammas to 4 ⁺ ,6 ⁺ . 1981Fr07 proposed $J^{\pi}=6^{+}$ and
1092.1 2			С	configuration= $(v5/2[622], v7/2[624])$ similar to the 1040.3-keV level in 244 Cm.
1102 4	2^{+d}		EFG	B(E2)↑=0.157 18
1122 <mark>#</mark>	5- d		EF	

E(level) ^b	$J^{\pi c}$	T _{1/2}	XRE	F_	Comments
1152.5 <i>13</i> 1154.5 2 1181.6 2 1186.3? ^{&} 6 1204	(2 ⁻) (2 ⁺ ,3 ⁻) (2 ⁺) (7 ⁻)		B B E F	IJ	J^{π} : Fed from $2^+,3^+$ by primary γ in (n,γ) . γ to 2^+ ; no γ' s to 0^+ or 4^+ . J^{π} : γ' s to 2^+ and 4^+ . $\log f^{t}=7.5$, $\log f^{t} t=8.3$ from (1^+) . J^{π} : γ' s to 0^+ and 4^+ .
1242.8 [‡] <i>4</i> 1259	9-		E F		
1277.1 [#] 4 1357.2? 3	7-		C E		J^{π} : by analogy to the 1308.7-keV level in 240 Pu, 1981Fr07 proposed a two-proton configuration of $5-(\pi 5/2[642],\pi 5/2[523])$. Although this configuration is consistent with a beta branch from a $6+(\pi 5/2[642],\nu 7/2[624])$ parent state, the gamma transition to a $6+(\nu 5/2[622],\nu 7/2[624])$ state is not. Admixture with two-proton states with large amplitudes would be expected.
1358.7 ^{&} 5 1401.0? 2 1428.0 4	(9 ⁻) (0,1 ⁺) (2 ⁻)		B B		J ^{π} : Log f t=7.0 from (1 ^{$+$}) suggests J ^{π} =0, 1, 2. No γ to 3 ^{$-$} implies J ^{π} =0, 1 ^{$+$} . J ^{π} : log f t=7.3 from (1 ^{$+$}). γ to 2 ^{$+$} . No γ 's to 0 ^{$+$} . Analogy with 1438.5 level in 240 Pu (1979Ha26).
1431.7 [†] <i>16</i>	14 ⁺			H	
1466.8 [‡] <i>4</i> 1478.5 [#] <i>4</i>	11 ⁻ 9 ⁻		E		
1501	9		E F		
1517.6 <i>I</i>	(1-)		В		J^{π} : γ' s to $0^+, 2^+$. The ratio of reduced transition intensities of 1517.6 and 1473.1 gammas is in agreement with the Alaga rule for K=0, $J^{\pi}=1^-$.
1577.9 ^{&} 4 1613 1638	(11 ⁻)		E F F		
1650 1683	(3 ⁻)		F F		J^{π} : Proposed by 1972El08 from (d,d') data. Assignment is uncertain. B(E3)=0.36 6 was extracted by 1972El08 from the (d,d') cross section.
1701			F		
1724.9 [#] 4 1733.4 [‡] 4 1745.3 <i>18</i> 1776	11 ⁻ 13 ⁻		E E F	I	
1817.4 [†] 4 1825.8 10 1842.2 ^{&} 4 1871.4 3 1874.1 2	16 ⁺ (4 ⁺) (13 ⁻)		E F E B	H IJ	J^{π} : Fed from $2^+,3^+$ by primary in (n,γ) . γ to 6^+ .
1885.9 [@] 4	(12^+)		Е		
1903.6 <i>3</i> 1949.8 2 1969.9 2 1995.7 ^a 4 2000 <i>CA</i>	(1,2 ⁺) (1,2 ⁺)	3.5 ns 6	B B E		 J^π: γ's to 0⁺ and 2⁺. J^π: γ's to 0⁺ and 2⁺. %SF=? %SF: Only SF decay observed. Assignment: ²⁴²Pu(d,pn) excit 1974MeYP. T_{1/2}: From 1974MeYP. See 1975Me28 for a review and systematics of fission isomer half-lives. T_{1/2} for SF isomer was calculated by 1972We09 (3.7 ns), 1971Ba30 (30 ns). 1992Bh03 (3.5 ns).
					ns). 1992Bh03 (3.5 ns). $T_{1/2}$ for γ emission was calculated by 1972We09 (3.4 μ s). See also

E(level) b	$J^{\pi c}$	T _{1/2}	2	XRE	F	Comments
≈2000+x		28 ns				1974Ba28. E(level): Level energy has not been experimentally determined. The calculated energy of E≈2000 is given here as the level's expected approximate location. Energy of the lowest level in the second minimum of the double-humped nuclear potential was calculated by several authors using various methods: E=2.2 MeV (1970AlZT), 2.2 MeV (1971Ba30), 2.6 MeV (1971Pa33), 2.0 MeV (1972Ma11), 2.0 MeV (1972We09), 2.1 MeV (1992Bh03). %SF=? %SF: Only SF decay observed. T _{1/2} : T _{1/2} =50 ns 30 was measured by 1969La14 in ²⁴¹ Pu(13-MeV d,p) reaction. This value was reevaluated by 1970Po01 as T _{1/2} =28 ns. E(level): From T _{1/2} -systematics of SF isomers in even Pu isotopes, 1975Me28 suggested that this isomer is a level lying higher than the 3.5-ns isomer in the second minimum of the double-humped nuclear potential.
2013.4 [#] 4	13-			E		
2040.6 [‡] 4	15-			E		
2091.8 20					IJ	
2147.7 <mark>&</mark> 5	(15^{-})			E		
2170.8 [@] 4	(14^{+})			E		
2237.5 [†] 4	18+			E	H	
2246.0 4	$(1,2^+)$		В			J^{π} : γ' s to $0^{+}, 2^{+}$.
2289.5 ^a 4	(2±)		ъ	E		I_{π}^{π} , $I_{\pi} = G$, $A \cap G_{\pi}^{\pi}$, Q^{\pm} , G_{π}^{π} , $G_{$
2331.3 2	(2 ⁺)		В			J^{π} : Log ft =4.9 for $β^{-}$ feeding from (1 ⁺) gives J^{π} =(0 ⁺ ,1 ⁺ ,2 ⁺). 1979Ha26 proposed a 2 ⁺ two-proton state with configuration ($π$ 5/2[642], $π$ 9/2[624]).
2339.5 [#] 4	15-			E		
2386.9 [‡] 4	17-			E		
2437.5 21					I	
2483.6 [@] 4	(16 ⁺)			E		
2494.7 <mark>&</mark> 5 2616.8 ^a 5	(17^{-})			E		
2688.6 [†] 5	20 ⁺			E	11	
2088.0 5 2707.1 [#] 5	20 17 ⁻			E	Н	
2707.1" 3 2769.3 [‡] 5				E		
2769.3* 3 2806.8 [@] 4	19-			E		
2806.8 4 2879.2 ^{&} 5	(18^+)			E		
2979.4 ^a 5	(19 ⁻)			E E		
3106.5 [#] 5	19-			E		
3142.1 [@] 4	(20^{+})			E		
3167.2 [†] 5	22+			E	H	
3185.1 [‡] 5	21-			E		
3297.5 <mark>&</mark> 6	(21^{-})			E		
3374.3 <i>a</i> 6				E		
3509.5 [@] 5	(22^{+})			E		
3538.5 [#] 5	21-			E		
3631.0 [‡] 5	23-			E		
3667.7 [†] 5	24 ⁺			E	H	
3747.2 <mark>&</mark> 7	(23^{-})			E		
3799.6? ^a 8				E		
3915.0 [@] 5	(24^{+})			E		

²⁴²Pu Levels (continued)

					XREF			
4000.5 [#] 7	23-	E	4368.0 [@] 6	(26^+)	E E E	5201.2 [†] 11	30 ⁺	E
4103.6 [‡] 5	25-	E	4599.4 [‡] 7	27-	E	5648.4 [‡] 9	31-	E
4180.2 [†] 6	26+	E H	4691.2 [†] 8	28+	E	5723.9 [†] 11	32 ⁺	E
4221.5 <mark>&</mark> 8	(25^{-})	E	5117.0 [‡] 8	29-	E			

[†] Band(A): $K^{\pi}=0^+$ g.s. band.

 $\gamma(^{242}\text{Pu})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ ‡#	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
44.545	2 ⁺	44.545 9	100	0.0	$\frac{J}{0^+}$	E2	748 10	B(E2)(W.u.)=301 14
44.343	2	44.545 9	100	0.0	U	EZ	740 10	$\alpha(L)=543 8; \alpha(M)=151.5 21$
								$\alpha(N)$ =41.6 6; $\alpha(O)$ =9.78 14; $\alpha(P)$ =1.529 21; $\alpha(Q)$ =0.00328 5
								Mult.: From ce data in 16.01-h $^{242}\mathrm{Am}\ \varepsilon$ decay.
147.4	4+	102.8 <i>I</i>	100	44.545	2+	(E2) [@]	13.88 20	$\alpha(L)$ =10.07 <i>15</i> ; $\alpha(M)$ =2.82 4 $\alpha(N)$ =0.775 <i>11</i> ; $\alpha(O)$ =0.1827 27; $\alpha(P)$ =0.0291 4; $\alpha(Q)$ =0.0001056 <i>15</i>
306.4	6+	159.1 <i>I</i>	100	147.4	4+	(E2) [@]	2.098 30	$\alpha(K)$ =0.1921 27; $\alpha(L)$ =1.384 20; $\alpha(M)$ =0.386 6 $\alpha(N)$ =0.1062 15; $\alpha(O)$ =0.0251 4; $\alpha(P)$ =0.00406 6; $\alpha(Q)$ =2.430×10 ⁻⁵ 34
518.1	8+	211.3 2	100	306.4	6+	(E2) [@]	0.696 10	$\alpha(K)$ =0.1388 20; $\alpha(L)$ =0.406 6; $\alpha(M)$ =0.1125 16 $\alpha(N)$ =0.0309 5; $\alpha(O)$ =0.00732 11;
								$\alpha(P)=0.001201 \ 17; \ \alpha(Q)=1.077\times10^{-5} \ 15$
778.6	10+	260.7 2	100	518.1	8+	(E2) [@]	0.333 5	α (K)=0.0987 <i>14</i> ; α (L)=0.1706 <i>24</i> ; α (M)=0.0470 <i>7</i>
								α (N)=0.01290 <i>19</i> ; α (O)=0.00307 <i>4</i> ; α (P)=0.000509 7; α (Q)=6.24×10 ⁻⁶ 9
780.45	1-	735.93 7	100	44.545	2+			$u(1) = 0.0003097, u(Q) = 0.24 \times 10^{-9}$
	-	780.44 5	53 1	0.0	0^{+}			
832.3	3-	685.0 <i>1</i>	100 14	147.4	4+			
		787.8	113 <i>CA</i>	44.545	2+			E_{γ} : From (n, γ). Transition is obscured in 2.2-min ²⁴² Np β - decay.
992.5	(2^{+})	948.0 2	100	44.545	2+			• • •

^{\ddagger} Band(B): $K^{\pi}=0^{-}$ Octupole-vibrational band.

[#] Band(C): $K^{\pi}=3^{-}$ band.

[@] Seq.(F): $K^{\pi} = 0^{+}$ band.

[&]amp; Band(D): K^{π} =? band.

^a Band(E): K^{π} =? band.

^b From a least-squares fit to the adopted gamma energies except where noted otherwise as indicated by the XREF column.

^c Except where noted otherwise, the assignments come from Coulomb excitation based on assigned band structure. The gs, K^{π} =0⁻, K^{π} =3⁻, and K^{π} =0⁺ bands have well-established intra-band Q transitions and several inter-band D transitions. The two K^{π} =? side bands are tentative since transitions connecting them to possible bandheads are not seen. Assignments for the gs band up to J^{π} =26⁺ are confirmed by 1983Sp03 from the systematic impact-parameter dependence of the I γ yields, particle- γ directional correlation, and from γ multiplicity measurements,

^d From (d,d') based on intensity patterns and ratios of cross sections at θ =90° and θ =125°.

γ ⁽²⁴²Pu) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	I_{γ} ‡#	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
1019.5	3-	974.9	100	44.545	2+			
1039.2	(1,2+)	1039.2 ^{ef} 3	100 ^e	0.0	0+			E _{γ} : E γ =1039.9 <i>14</i> from (n, γ): E=primary. I _{γ} : The 1871.4 level, the parent of the alternate placement, is not populated in (n, γ).
1064.0 1070.8?	(4 ⁻) 7 ⁻	915.7 143.8 <i>10</i> 553.7 2 765.0 2	100 100 100 100 <i>14</i>	147.4 927 518.1 306.4	4 ⁺ 5 ⁻ 8 ⁺ 6 ⁺			
1084.0	12+	306.2 2	100	778.6	10+	(E2) [@]	0.1985 28	$\alpha(K)$ =0.0745 10; $\alpha(L)$ =0.0906 13; $\alpha(M)$ =0.02476 35 $\alpha(N)$ =0.00680 10; $\alpha(O)$ =0.001619 23; $\alpha(P)$ =0.000272 4; $\alpha(Q)$ =4.21×10 ⁻⁶ 6
1092.1	(6 ⁺)	785.7 <i>I</i> 944.8 <i>I</i>	100 63 <i>3</i>	306.4 147.4	6 ⁺ 4 ⁺			
1152.5 1154.5	(2^{-}) $(2^{+},3^{-})$	1105.6 1007.3 2 1110.0 2	100 43 8 100 <i>15</i>	44.545 147.4 44.545	4+			
1181.6	(2+)	1034.2 2 1137.1 <i>I</i>	22 <i>4</i> 100 <i>4</i>	147.4 44.545	4 ⁺ 2 ⁺			I _{γ} : 1979Ha26 in 2.2-min β decay point out that I γ relative to the other intensities deexciting the 1181.6 level is much higher than expected based on the Alaga rule. They suggest that the 1137.1 γ might be a doublet with a second and stronger component as yet unplaced.
		1181.6 2	12 2	0.0	0^{+}			
1186.3?	(7^{-})	880.5 ^f 5	100	306.4	6+			
1242.8	9-	172.0 ^f 5	38 32	1070.8?	7-			
		465.0 5	77 42	778.6	10 ⁺			
1277.1	7-	725.7 <i>2</i> 760.0 <i>5</i>	100 24 <510	518.1	8 ⁺	(E1)&	0.00714 10	$\alpha(K)$ =0.00578 8; $\alpha(L)$ =0.001026 14; $\alpha(M)$ =0.0002455 34 $\alpha(N)$ =6.64×10 ⁻⁵ 9; $\alpha(O)$ =1.640×10 ⁻⁵ 23; $\alpha(P)$ =3.05×10 ⁻⁶ 4; $\alpha(Q)$ =1.856×10 ⁻⁷ 26
12/7.1	,	971.3 5	100 34	306.4	6 ⁺	(E1)&	0.00426 6	$\alpha(K)=0.00347 \ 5; \ \alpha(L)=0.000599 \ 8; \\ \alpha(M)=0.0001429 \ 20 \\ \alpha(N)=3.86\times10^{-5} \ 5; \ \alpha(O)=9.57\times10^{-6} \ 13; \\ \alpha(P)=1.794\times10^{-6} \ 25; \ \alpha(Q)=1.129\times10^{-7} \\ 16$
1357.2? 1358.7	(9-)	265.1 <i>I</i> 172.4 <i>4</i>	100 92 <i>62</i>	1092.1 1186.3?	(6 ⁺) (7 ⁻)	Q.		
4 404 00	(0.41)	841.6 5	100 46	518.1	8+	(D)&		
1401.0?	$(0,1^+)$	620.6 1	100	780.45	1- 1-			
1428.0	(2-)	647.4 <i>3</i> 1383.6 <i>4</i>	100 <i>10</i> 45 <i>19</i>	780.45 44.545				
1431.7	14+	347.7 2	100	1084.0	12+	(E2) [@]	0.1360 19	$\alpha(K)$ =0.0593 δ ; $\alpha(L)$ =0.0561 δ ; $\alpha(M)$ =0.01523 22 $\alpha(N)$ =0.00418 δ ; $\alpha(O)$ =0.000998 14; $\alpha(P)$ =0.0001691 24; $\alpha(Q)$ =3.13×10 ⁻⁶ 4
1466.8	11-	224.0 <i>3</i>	39 26	1242.8	9-	(E2) [@]	0.563 8	$\alpha(K)=0.1269 \ 18; \ \alpha(L)=0.318 \ 5;$

γ (242Pu) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	Ι _γ ‡#	E_f	${\rm J}_f^\pi$	Mult.	α^{\dagger}	Comments
	<u> </u>							$\alpha(M)=0.0879 \ 13$ $\alpha(N)=0.0242 \ 4; \ \alpha(O)=0.00573 \ 9;$ $\alpha(P)=0.000942 \ 14; \ \alpha(Q)=9.21\times10^{-6} \ 13$
1466.8	11-	382.8 <i>2</i> 689.0 <i>2</i>	26 <i>21</i> 100 <i>19</i>	1084.0 778.6	12 ⁺ 10 ⁺	(E1)&	0.00785 11	$\alpha(K)=0.00635 9$; $\alpha(L)=0.001133 16$;
								$\alpha(M)=0.000271 \ 4$ $\alpha(N)=7.34\times10^{-5} \ 10; \ \alpha(O)=1.811\times10^{-5} \ 25;$ $\alpha(P)=3.37\times10^{-6} \ 5; \ \alpha(Q)=2.032\times10^{-7} \ 28$
1478.5	9-	201.4 3	30 11	1277.1	7-	(E2) [@]	0.832 13	$\alpha(K)=0.1489 \ 21; \ \alpha(L)=0.497 \ 8; \ \alpha(M)=0.1380 \ 21$
								α (N)=0.0379 6; α (O)=0.00898 14; α (P)=0.001470 23; α (Q)=1.228×10 ⁻⁵ 18
		700.7 4	100 <i>91</i>	778.6	10+			
		961.4 <i>4</i>	44 13	518.1	8+	(E1)&	0.00434 6	$\alpha(K)$ =0.00353 5; $\alpha(L)$ =0.000610 9; $\alpha(M)$ =0.0001456 20
								$\alpha(N)=3.94\times10^{-5} 6$; $\alpha(O)=9.75\times10^{-6} 14$; $\alpha(P)=1.827\times10^{-6} 26$; $\alpha(Q)=1.148\times10^{-7} 16$
1517.6	(1-)	1473.1 <i>1</i> 1517.6 <i>1</i>	100 <i>3</i> 53 <i>3</i>	44.545 0.0	0_{+}			
1577.9	(11-)	219.2 3	100 37	1358.7	(9-)	(E2) [@]	0.609 9	$\alpha(K)$ =0.1313 19; $\alpha(L)$ =0.348 5; $\alpha(M)$ =0.0963
		00012	04.16	77 0.6	10+			α (N)=0.0265 4; α (O)=0.00627 10; α (P)=0.001031 16; α (Q)=9.76×10 ⁻⁶ 14
		800.1 2	84 16	778.6	10 ⁺	@		
1724.9	11-	246.4 2	20 8	1478.5	9-	(E2) [@]	0.403 6	$\alpha(K)=0.1086 \ 15; \ \alpha(L)=0.2144 \ 31;$ $\alpha(M)=0.0592 \ 9$
		<	100 =0	10010	404	77. St		$\alpha(N)=0.01625 \ 23; \ \alpha(O)=0.00386 \ 6;$ $\alpha(P)=0.000638 \ 9; \ \alpha(Q)=7.19\times10^{-6} \ 10$
		640.9 3	100 70	1084.0	12+	(E1)&	0.00897 13	$\alpha(K)$ =0.00725 10; $\alpha(L)$ =0.001303 18; $\alpha(M)$ =0.000312 4 $\alpha(N)$ =8.44×10 ⁻⁵ 12; $\alpha(O)$ =2.083×10 ⁻⁵ 29;
		947.1 2	49 12	778.6	10 ⁺	(E1) <mark>&</mark>	0.00445 6	$\alpha(P)=3.87\times10^{-6}$ 5; $\alpha(Q)=2.309\times10^{-7}$ 32 $\alpha(K)=0.00362$ 5; $\alpha(L)=0.000627$ 9;
		947.1 2	49 12	778.0	10	(E1)**	0.00443 0	$\alpha(K)=0.00302 \text{ 5}, \ \alpha(L)=0.000027 \text{ 9};$ $\alpha(M)=0.0001496 \text{ 21}$ $\alpha(N)=4.05\times10^{-5} \text{ 6}; \ \alpha(O)=1.001\times10^{-5} \text{ 14};$
1722.4	12-	26662	100.46	1466.0	11-	(F2) (0	0.200.4	$\alpha(P)=1.877\times10^{-6}\ 26;\ \alpha(Q)=1.177\times10^{-7}\ 16$
1733.4	13-	266.6 2	100 46	1466.8	11-	(E2) [@]	0.309 4	$\alpha(K)$ =0.0950 <i>13</i> ; $\alpha(L)$ =0.1560 22; $\alpha(M)$ =0.0429 6 $\alpha(N)$ =0.01178 <i>17</i> ; $\alpha(O)$ =0.00280 4;
								$\alpha(P)=0.000466 \ 7; \ \alpha(Q)=5.90\times10^{-6} \ 8$
		301.7 2	30 20	1431.7	14+	0_		
		649.4 2	93 16	1084.0	12+	(E1)&	0.00876 12	$\alpha(K)$ =0.00708 10; $\alpha(L)$ =0.001270 18; $\alpha(M)$ =0.000304 4
								$\alpha(N)=8.23\times10^{-5} 12; \ \alpha(O)=2.030\times10^{-5} 28; \ \alpha(P)=3.77\times10^{-6} 5; \ \alpha(Q)=2.255\times10^{-7} 32$
1817.4	16+	385.7 2	100	1431.7	14+	(E2) [@]	0.1017 14	$\alpha(K)$ =0.0492 7; $\alpha(L)$ =0.0385 5; $\alpha(M)$ =0.01039
400	2411		100	20.5	~ I			α (N)=0.00285 4; α (O)=0.000682 10; α (P)=0.0001165 16; α (Q)=2.474×10 ⁻⁶ 35
1825.8	(4+)	1518.6	100	306.4	6+			
1842.2	(13 ⁻)	264.3 3	100 62	1577.9	(11-)	(E2) [@]	0.318 5	$\alpha(K)$ =0.0964 <i>14</i> ; $\alpha(L)$ =0.1615 <i>24</i> ; $\alpha(M)$ =0.0444 <i>7</i>

γ ⁽²⁴²Pu) (continued)</sup>

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\ddagger \#}$	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
								α (N)=0.01220 18; α (O)=0.00290 4; α (P)=0.000482 7; α (Q)=6.03×10 ⁻⁶ 9
1842.2 1871.4	(13 ⁻)	758.2 <i>3</i> 1039.2 ^e <i>3</i> 1826.9 <i>3</i>	65 16 ≤96 ^e 100 22	1084.0 832.3 44.545	12 ⁺ 3 ⁻ 2 ⁺			
1874.1		1093.5 <i>I</i> 1874.5 <i>3</i>	100 22 100 9 22 5	780.45 0.0	1- 0+			
1885.9	(12^+)	801.9 2 1108.1 <i>4</i>	100 <i>34</i> 67 <i>25</i>	1084.0 778.6	12 ⁺ 10 ⁺			
1903.6	(1.0+)	1123.1 2 1859.2 <i>3</i>	45 9 100 5	780.45 44.545				
1949.8	$(1,2^+)$	1905.1 2 1949.9 2	37 <i>4</i> 100 <i>4</i>	44.545 0.0	0_{+}			
1969.9 1995.7	$(1,2^+)$	1925.4 2 1969.9 2 911.7 3	43 <i>5</i> 100 <i>5</i>	44.545 0.0 1084.0	0 ⁺ 12 ⁺			
2013.4	13-	1217.9 <i>3</i> 288.5 2	32 30	778.6 1724.9	10 ⁺ 11 ⁻	(E2) [@] b	0.2392 34	$\alpha(K)$ =0.0828 12; $\alpha(L)$ =0.1141 16; $\alpha(M)$ =0.0313 4 $\alpha(N)$ =0.00859 12; $\alpha(O)$ =0.002044 29; $\alpha(P)$ =0.000342 5; $\alpha(Q)$ =4.86×10 ⁻⁶ 7
		929.4 2	100 18	1084.0	12+	(E1) ^{&}	0.00460 6	$\alpha(K)=0.00374 5$; $\alpha(L)=0.000649$ 9 ; $\alpha(M)=0.0001548 22$ $\alpha(N)=4.19\times10^{-5} 6$; $\alpha(O)=1.036\times10^{-5} 15$; $\alpha(P)=1.942\times10^{-6} 27$; $\alpha(Q)=1.215\times10^{-7} 17$
2040.6	15-	223.2 4	8.3 47	1817.4	16 ⁺	(F2) (Q	0.1065.20	
		307.2 2	100 34	1733.4	13-	(E2) [@]	0.1965 28	$\alpha(K)$ =0.0740 10; $\alpha(L)$ =0.0895 13; $\alpha(M)$ =0.02445 35 $\alpha(N)$ =0.00671 10; $\alpha(O)$ =0.001599 23; $\alpha(P)$ =0.000268 4; $\alpha(Q)$ =4.18×10 ⁻⁶ 6
		608.9 2	36 6	1431.7	14+	(E1) ^{&}	0.00987 14	$\alpha(K)=0.00797 \ 11; \ \alpha(L)=0.001440$ $20; \ \alpha(M)=0.000345 \ 5$ $\alpha(N)=9.34\times10^{-5} \ 13;$ $\alpha(O)=2.303\times10^{-5} \ 32;$ $\alpha(P)=4.27\times10^{-6} \ 6;$ $\alpha(Q)=2.530\times10^{-7} \ 35$
2091.8 2147.7	(15 ⁻)	941.1 ^f 305.35 <i>3</i> 716.0 <i>4</i>	100 <580 100 29	1152.5 1842.2 1431.7	(2 ⁻) (13 ⁻) 14 ⁺			
2170.8	(14 ⁺)	284.9 3	100 29	1885.9	(12 ⁺)	(E2) [@]	0.249 4	$\alpha(K)$ =0.0846 <i>12</i> ; $\alpha(L)$ =0.1199 <i>18</i> ; $\alpha(M)$ =0.0329 <i>5</i> $\alpha(N)$ =0.00903 <i>13</i> ; $\alpha(O)$ =0.002148 <i>31</i> ; $\alpha(P)$ =0.000359 <i>5</i> ;
		739.1 2	67 20	1431.7	14+	(M1+E2) ^{ac}	0.06 4	$\alpha(Q)=5.01\times10^{-6} 7$ $\alpha(K)=0.049 \ 33; \ \alpha(L)=0.011 \ 5;$ $\alpha(M)=0.0026 \ I3$ $\alpha(N)=7.0\times10^{-4} \ 35;$ $\alpha(O)=1.7\times10^{-4} \ 9;$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡#	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.	$lpha^\dagger$	Comments
2170.8	(14+)	1086.8 2	80 27	1084.0	12+	(E2) [@] b	0.01056 15	$\alpha(P)=3.3\times10^{-5}\ 17;\ \alpha(Q)=1.9\times10^{-6}\ 13$ $\alpha(K)=0.00795\ 11;\ \alpha(L)=0.001947\ 27;$ $\alpha(M)=0.000486\ 7$ $\alpha(N)=0.0001322\ 19;\ \alpha(O)=3.25\times10^{-5}\ 5;$
2237.5	18 ⁺	420.1 2	100	1817.4	16 ⁺	(E2) [@]	0.0811 11	$\alpha(P)=5.98\times10^{-6} 8$; $\alpha(Q)=3.08\times10^{-7} 4$ $\alpha(K)=0.0422 6$; $\alpha(L)=0.0286 4$; $\alpha(M)=0.00766 11$ $\alpha(N)=0.002098 30$; $\alpha(O)=0.000503 7$; $\alpha(P)=8.66\times10^{-5} 12$; $\alpha(Q)=2.048\times10^{-6}$ 29
2246.0	$(1,2^+)$	2201.6 <i>5</i> 2246.0 <i>5</i>	100 25 75 25	44.545 0.0	2 ⁺ 0 ⁺			
2289.5		293.8 <i>3</i> 1205.5 <i>3</i>		1995.7 1084.0	12+			
2331.3	(2^{+})	813.6 <i>I</i> 1550.9 <i>I</i>	100 9 29 5	1517.6 780.45	(1 ⁻) 1 ⁻			
2339.5	15-	326.1 2	71 43	2013.4	13-	(E2) [@] b	0.1640 23	$\alpha(K)$ =0.0665 9; $\alpha(L)$ =0.0713 10; $\alpha(M)$ =0.01942 28 $\alpha(N)$ =0.00533 8; $\alpha(O)$ =0.001271 18; $\alpha(P)$ =0.0002143 30; $\alpha(Q)$ =3.63×10 ⁻⁶ 5
		907.8 3	100 24	1431.7	14+	(E1)&d	0.00479 7	$\alpha(K)$ =0.00390 5; $\alpha(L)$ =0.000677 9; $\alpha(M)$ =0.0001616 23 $\alpha(N)$ =4.37×10 ⁻⁵ 6; $\alpha(O)$ =1.082×10 ⁻⁵ 15; $\alpha(P)$ =2.025×10 ⁻⁶ 28; $\alpha(Q)$ =1.265×10 ⁻⁷ 18
2386.9	17-	149.4 <i>4</i>	<3.0	2237.5	18 ⁺			10
		346.3 2	100 50	2040.6	15-	(E2) [@]	0.1376 19	$\alpha(K)$ =0.0597 8; $\alpha(L)$ =0.0569 8; $\alpha(M)$ =0.01546 22 $\alpha(N)$ =0.00424 6; $\alpha(O)$ =0.001013 14; $\alpha(P)$ =0.0001716 24; $\alpha(Q)$ =3.16×10 ⁻⁶ 4
		569.5 2	28 10	1817.4	16 ⁺	(E1) ^{&}	0.01121 16	$\alpha(K)=0.00903 \ 13; \ \alpha(L)=0.001644 \ 23; \ \alpha(M)=0.000395 \ 6 \ \alpha(N)=0.0001068 \ 15; \ \alpha(O)=2.63\times10^{-5} \ 4; \ \alpha(P)=4.86\times10^{-6} \ 7; \ \alpha(Q)=2.85\times10^{-7} \ 4$
2483.6	(16+)	312.8 3	84 37	2170.8	(14+)	(E2) [@] b	0.1860 27	$\alpha(K)$ =0.0717 10; $\alpha(L)$ =0.0835 12; $\alpha(M)$ =0.02280 33 $\alpha(N)$ =0.00626 9; $\alpha(O)$ =0.001491 22; $\alpha(P)$ =0.000251 4; $\alpha(Q)$ =4.00×10 ⁻⁶ 6
		666.2 <i>4</i> 1051.9 2	47 16	1817.4 1431.7	16 ⁺ 14 ⁺	(E2) [@]	0.01122.76	$\alpha(K)=0.00841 \ 12; \ \alpha(L)=0.002101 \ 29;$
		1031.9 2	100 21	1431./	14	(E2) °	0.01122 16	$\alpha(K)=0.00841 \ 12; \ \alpha(L)=0.002101 \ 29;$ $\alpha(M)=0.000525 \ 7$ $\alpha(N)=0.0001430 \ 20; \ \alpha(O)=3.51\times10^{-5} \ 5;$ $\alpha(P)=6.45\times10^{-6} \ 9; \ \alpha(Q)=3.27\times10^{-7} \ 5$
2494.7	(17-)	347.0 <i>3</i> 677.3 <i>5</i>	<1143 100 <i>43</i>	2147.7 1817.4	(15 ⁻) 16 ⁺			
2616.8		327.3 <i>3</i> 1185.1 <i>4</i>	100 43	2289.5 1431.7	16 14 ⁺			
2688.6	20+	451.1 2	100	2237.5	18+	(E2) [@]	0.0676 9	$\alpha(K)$ =0.0371 5; $\alpha(L)$ =0.02243 32; $\alpha(M)$ =0.00598 8 $\alpha(N)$ =0.001639 23; $\alpha(O)$ =0.000394 6; $\alpha(P)$ =6.81×10 ⁻⁵ 10; $\alpha(Q)$ =1.755×10 ⁻⁶ 25
2707.1	17-	367.6 2	100 44	2339.5	15-			20

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ ‡#	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$lpha^\dagger$	Comments
2707.1	17-	889.7 <i>4</i>	37 10	1817.4 16 ⁺			
2769.3	19-	382.4 <i>3</i>	100 29	2386.9 17	(E2) [@]	0.1041 15	$\alpha(K)$ =0.0499 7; $\alpha(L)$ =0.0397 6; $\alpha(M)$ =0.01072 15
							α (N)=0.00294 4; α (O)=0.000703 10; α (P)=0.0001201 17; α (Q)=2.52×10 ⁻⁶ 4
		531.8 2	55 9	2237.5 18+	(E1)&	0.01278 18	$\alpha(K)=0.0001201 \text{ 17}, \alpha(Q)=2.32\times10^{-4}$ $\alpha(K)=0.01028 \text{ 14}; \alpha(L)=0.001887 \text{ 26};$
					,		α(M)=0.000454 6
							$\alpha(N)=0.0001226 \ 17; \ \alpha(O)=3.02\times10^{-5} \ 4;$ $\alpha(P)=5.57\times10^{-6} \ 8; \ \alpha(Q)=3.23\times10^{-7} \ 5$
2806.8	(18^{+})	323.2 2	83 29	2483.6 (16 ⁺)	$(E2)^{\textcircled{@}b}$	0.1685 24	$\alpha(K) = 0.0676 \ 9; \ \alpha(L) = 0.0737 \ 10;$
							$\alpha(M)$ =0.02010 29 $\alpha(N)$ =0.00551 8; $\alpha(O)$ =0.001315 19; $\alpha(P)$ =0.0002216 31; $\alpha(Q)$ =3.71×10 ⁻⁶ 5
		569.3 <i>3</i>		2237.5 18+			$u(1) = 0.0002210 31, u(Q) = 3.71 \times 10^{-3}$
	(4.0-)	989.4 2	100 <i>21</i>	1817.4 16 ⁺			
2879.2	(19^{-})	384.5 <i>3</i> 641.7 <i>5</i>		2494.7 (17 ⁻) 2237.5 18 ⁺			
2979.4		362.6 3		2616.8			
2106.5	10-	1162.0 4		1817.4 16 ⁺			
3106.5	19-	399.4 <i>3</i> 869.0 <i>4</i>		2707.1 17 ⁻ 2237.5 18 ⁺			
3142.1	(20^{+})	335.3 2	46 26	2806.8 (18+)	(E2) [@] b	0.1511 <i>21</i>	$\alpha(K)$ =0.0633 9; $\alpha(L)$ =0.0642 9; $\alpha(M)$ =0.01747 25
							$\alpha(N)=0.00479 \ 7; \ \alpha(O)=0.001144 \ 16;$ $\alpha(P)=0.0001933 \ 27; \ \alpha(Q)=3.40\times10^{-6} \ 5$
		453.5 <i>3</i>		2688.6 20+			
2167.2	22+	904.6 2	100 23	2237.5 18+	(E2) [@]	0.0504.0	(H) 0.0224.5 (L) 0.01844.26
3167.2	22+	478.6 2	100	2688.6 20+	(E2)	0.0584 8	$\alpha(K)$ =0.0334 5; $\alpha(L)$ =0.01844 26; $\alpha(M)$ =0.00490 7
							$\alpha(N) = 0.001341 \ 19; \ \alpha(O) = 0.000323 \ 5;$
2105.1	21-	415.0.2	100 42	27(0.2.10=	(Ea) (a)	0.0022 12	$\alpha(P)=5.61\times10^{-5} \ 8; \ \alpha(Q)=1.547\times10^{-6} \ 22$
3185.1	21-	415.8 2	100 42	2769.3 19	(E2) [@]	0.0833 12	$\alpha(K)$ =0.0429 6; $\alpha(L)$ =0.0296 4; $\alpha(M)$ =0.00794
					0		$\alpha(N)=0.002176 \ 31; \ \alpha(O)=0.000522 \ 7;$ $\alpha(P)=8.97\times10^{-5} \ 13; \ \alpha(Q)=2.095\times10^{-6} \ 29$
		496.5 2	28 5	2688.6 20 ⁺	(E1)&	0.01460 20	$\alpha(K)$ =0.01173 <i>16</i> ; $\alpha(L)$ =0.002172 <i>30</i> ; $\alpha(M)$ =0.000523 <i>7</i>
							α (N)=0.0001413 20; α (O)=3.47×10 ⁻⁵ 5; α (P)=6.40×10 ⁻⁶ 9; α (Q)=3.67×10 ⁻⁷ 5
3297.5	(21^{-})	418.3 3	100	2879.2 (19 ⁻)			
3374.3 3509.5	(22^{+})	394.9 <i>4</i> 367.4 2	100	2979.4 3142.1 (20 ⁺)			
3307.3	(22)	820.9 3		2688.6 20 ⁺			
3538.5	21-	432.0 <i>3</i> 849.9 <i>4</i>		3106.5 19 ⁻ 2688.6 20 ⁺			
3631.0	23-	445.9 2	100 50	3185.1 21	(E2) [@]	0.0696 10	$\alpha(K)=0.0379\ 5;\ \alpha(L)=0.02332\ 33;$
							$\alpha(M)=0.006239$
							$\alpha(N)=0.001705 \ 24; \ \alpha(O)=0.000410 \ 6; \ \alpha(P)=7.08\times10^{-5} \ 10; \ \alpha(O)=1.800\times10^{-6} \ 25$
		463.8 <i>3</i>	14 5	3167.2 22+			$u(1) = 1.00 \times 10^{-10}$ 10, $u(Q) = 1.000 \times 10^{-25}$
3667.7	24 ⁺	500.5 2	100	3167.2 22+	(E2) [@]	0.0525 7	$\alpha(K)$ =0.0308 4; $\alpha(L)$ =0.01596 22;
							$\alpha(M)=0.00422.6$
							$\alpha(N)=0.001156 \ 16; \ \alpha(O)=0.000279 \ 4;$ $\alpha(P)=4.86\times10^{-5} \ 7; \ \alpha(Q)=1.408\times10^{-6} \ 20$
							$u(1) = 1.00 \times 10^{-1}$, $u(Q) = 1.700 \times 10^{-20}$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡#	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
3747.2	(23-)	449.7 <i>4</i>	100	3297.5 (21-)			
3799.6?		425.3 ^f 4	100	3374.3			
3915.0	(24^{+})	405.5 <i>3</i>		3509.5 (22 ⁺)			
		747.8 <i>3</i>		$3167.2 \ 22^{+}$			
4000.5	23-	462.0 <i>4</i>	100	3538.5 21			
4103.6	25^{-}	435.9 <i>3</i>	5.0 25	3667.7 24 ⁺			
		472.6 3	100 63	3631.0 23-	(E2) [@]	0.0603 8	$\alpha(K)$ =0.0341 5; $\alpha(L)$ =0.01922 27; $\alpha(M)$ =0.00511 7 $\alpha(N)$ =0.001399 20; $\alpha(O)$ =0.000337 5; $\alpha(P)$ =5.85×10 ⁻⁵ 8; $\alpha(Q)$ =1.589×10 ⁻⁶ 22
4180.2	26 ⁺	512.5 <i>3</i>	100	3667.7 24 ⁺			
4221.5	(25^{-})	474.3 <i>4</i>	100	3747.2 (23 ⁻)			
4368.0	(26^+)	453.0 <i>3</i>	100	3915.0 (24 ⁺)			
4599.4	27^{-}	495.8 <i>4</i>	100	4103.6 25			
4691.2	28 ⁺	511.0 5	100	4180.2 26 ⁺			
5117.0	29-	517.6 <i>4</i>	100	4599.4 27			
5201.2	30^{+}	510.0 7	100	4691.2 28 ⁺			
5648.4	31-	531.4 4	100	5117.0 29			
5723.9	32 ⁺	522.7 4	100	5201.2 30 ⁺			

[†] Additional information 1.

[‡] Ey and branching ratios are mainly from Coulomb excitation and ²⁴²Np β^- decay. Ey=44.545 9 is from ²⁴⁶Cm α decay and Ey's without uncertainties are from ²⁴¹Pu(n, γ).

[#] Relative branching ratios normalized to 100 for the strongest transition from each level.

[®] From mult=Q in Coulomb excitation from angular distribution measurements and placement in the level scheme.

[&]amp; From mult=D in Coulomb excitation from angular distribution measurements and placement in the level scheme.

^a From mult=D+Q in Coulomb excitation from angular distribution measurements and placement in the level scheme.

^b The assignment as Q in Coulomb excitation is tentative.

^c The assignment as D+Q in Coulomb excitation is tentative.

^d The assignment as D in Coulomb excitation is tentative.

^e Multiply placed with undivided intensity.

f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{242}_{94}$ Pu $_{148}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

160 ps *3* 3.73×10⁵ y 2

 $^{242}_{94}\mathrm{Pu}_{148}$

$$^{242}_{94}\mathrm{Pu}_{148}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 146, 387 (2017)	31-Aug-2017

 $Q(\beta^-)=-73.2\ 27;\ S(n)=6019.9\ 29;\ S(p)=7.36\times10^3\ SY;\ Q(\alpha)=4665.5\ 10$ 2017Wa10 $\Delta S(p)=30\ (syst,\ 2017Wa10).$

Identification:

1954St98: 244 Pu produced from 243 Pu(n, γ) reaction and possibly by electron capture of 244 Am. The reaction were studied via a multiple order neutron capture of 239 Pu in the pile irradiated plutonium experiment at the Material Testing Reactor at Argonne National Laboratory with integrated flux of $\times 10^4$ neutrons. Plutonium was chemically separated and analyzed in a 12 inch, 60 ° mass spectrometer.

Systematic studies/Compilation/Evaluation:

2017He08: Review of properties of spontaneous fission.

2017Pr04: Systematics of B(E2) revisited using elemental data fit parameters.

2016Pr01: Compilation, evaluation for B(E2), $T_{1/2}$ and deformation parameter.

2011Ch65: Recommended T_{1/2} of ²⁴⁴Pu based on measurements published till 2010.

2000Ho27: Recommended T_{1/2} SF based on measurement till April 1998.

1989Ho24: Recommended total $T_{1/2}$ and $T_{1/2}(SF)$.

1975Me28, 1974VaYN: Properties of fission isomer.

Theoretical calculations:

2017Ph01, 2017Zh03, 2016Sa16, 2016Su09, 2014De43, 2014Is03, 2013Ra05, 2013Se17, 2013Is13, 2012Is08, 2011Qi06, 2011Qi12, 2011Zh36, 2009De32, 2009Ni06, 2008Xu06, 2007Pe30, 2006De05, 2005Sh42, 1996De19, 1979Po23; Calculated α decay half-life.

2015Ba24, 2015Sa15, 2010Sa09, 2008Xu06, 2005Re16, 2005Sh42, 2005Xu01, 2004Ro01, 1992Bh03, 1992Gr16, 1990Bh02, 1976Ra02, 1972Mo27, 1972We09: Calculated spontaneous fission half-lives.

1978Po01: Calculated properties of the SF isomer, its moment of inertia, pairing energy gap, and magnetic moment.

2000Se09: Description of long-range α emission during spontaneous fission.

2014Re05, 2002Hi06: Calculated $T_{1/2}(\beta\beta)$.

2014De43, 1998Bu18: Calculated energy levels and transition strengths.

2013De12, 1995Mo29, 1984Eg01, 1983Bo15, 1982Du16: Calculated deformation parameters.

2014Ji14, 2014Lu01, 2014Ro09, 2014Sh13, 2013Bo29, 2012Ja08, 2001YaZU, 1992Bh03, 1992Gr16, 1990Bh02, 1984Ro23, 1980Bj02, 1972Ma11, 1976Iw02, 2017Ba02, 1974MoYC, 1972We09, 1971Pa33: Calculated fission barriers heights.

2013Li30, 2010Wa34: Calculated two-quasiparticle high K-state with v7/2+[624]⊗v9/2-[734] configuration. Predicted the octupole deformed high K-isomeric state at 1.022 MeV in 2013Li30.

2010Wa23, 2010Wa31: Calculated relative intensities of α decay to rotational states.

2002Re31: Calculated g.s properties.

2012Zh14, 2005Al40, 2001Fa07, 1988ShZR, 1985Bo20, 1984Eg01, 1982Du16: Analysis of yrast states, backbending and alignment.

1983Bo15: Calculated equilibrium deformations and static electric moment.

2014Af04, 2013Af01, 1980Du07: Calculated moment of inertia.

2011Ne09, 2006Sh19, 2002Pr01, 1982L01, 1982Du16, 1971Ko31, 1970Ne08: Calculated octupole-vibrational states.

1969Wy02: Calculated nuclear mass parameter, an important characteristic of the collective motion of the nucleus.

1992Bh03, 1974MoYC, 1972Mo27, 1971Pa33: Calculated isomeric state energy.

1977VaYN: Review of properties of spontaneously fissioning isomers.

2014Mi26: Analyzed the influence of octupole mode on nuclear high K-isomer properties.

²⁴⁴Pu Levels

Cross Reference (XREF) Flags

²⁴⁴Pu(d,d')

 $^{248}\mathrm{Cm}~\alpha$ decay

Α

```
<sup>244</sup>Pu(<sup>47</sup>Ti,<sup>47</sup>Ti'γ)

<sup>244</sup>Pu(<sup>208</sup>Pb,<sup>208</sup>Pb'γ)
             ^{244}Np \beta^- decay
      В
             Coulomb excitation
                                                                Comments
ABCD F
              %SF=0.123 6; %α=99.877 6
              %SF is deduced from the adopted T_{1/2}=8.13 \times 10^7 y 3 and T_{1/2}(SF)=6.6 \times 10^{10} y
              T_{1/2}: From revised value of 8.12 \times 10^7 y 3 (2006Ag15). Relative activity using
                 thermal ionization mass spectrometry and \alpha spectrometry was used in the
                 2006Ag15 measurement. The method was an improvement from previous
                 measurements due to better isotope fraction as well as more accurate
                 determination of alpha activity ratios using <sup>240</sup>Pu and <sup>242</sup>Pu as reference
                 nuclides. The evaluator has however, revised the value given originally by
                2006Ag15 using values of T_{1/2}(^{242}Pu) = 3.73 \times 10^7 y 3 (from email rely of M. Martin on 14 May 2017), T_{1/2}(^{240}Pu) = 6561 y 7 (2008Si25), T_{1/2}(^{239}Pu) = 24110 y 29 (2014Br18), and T_{1/2}(^{241}Pu) \alpha decay = 5.87 ×10<sup>5</sup> y 5 (deduced
                 from T_{1/2}(^{241}Pu) = 14.329 \text{ y } 29 \text{ (2015Ne16)}, \text{ and } \%\alpha = 2.44 \times 10^{-3} \text{ 2}
                 (2008BeZV).
              Other T_{1/2}:
              2011Ch65: 8.00 \times 10^7 y 12 (recommended half-life based on measurements
                 published from 1956-2006).
              1989Ho24: 8.00 ×10<sup>7</sup> y 9 (weighted average of several compiled and revised
                 values till 1969).
              1969Be06: 8.28 \times 10^7 y 10 (specific activity relative to ^{239}Pu, measured with
                 Si-Au surface barrier detector),
              1966Fi07: 8.18 ×10<sup>7</sup> y 26 (specific activity relative to <sup>240</sup>Pu and <sup>242</sup>Pu, measured
                 with Si surface barrier detector),
              1956Bu92: 7.6 \times 10^7 y 20 (specific activity of decay to ^{240}U and ^{240}Np, measured
                using end window Geiger Muller counter and proportional counter),
              1956Di09: 7.6 \times 10^7 y 20 (activity of <sup>240</sup> Np decay, measured using
                Geiger-Mueller counters in anticoincidence with proportional counter).
              T_{1/2}(SF)=6.6 \times 10^{10} \text{ y } 3 \text{ from the weighted average of: } 6.56 \times 10^{10} \text{ y } 30
                 (1983Mo02), 6.8 \times 10^{10}y 8 (1977Go03), and 6.67 \times 10^{10} y 32 (revised value of
```

Other $T_{1/2}(SF)$: 2000Ho27: Recommended half-life 6.6×10^{10} y 2.

1980Kh05: 7.32 ×10¹⁰ y.

1966Fi07 by 1989Ho24).

1955Fi36: 2.5 ×10¹⁰ y 8.

 $T_{1/2}(2 \beta$ - decay) $\geq 1.1 \times 10^{18}$ y (1992Mo25: detection of ²⁴⁴Cm alpha activity with ≤ 0.24 counts per day. $\%(2 \beta\text{-decay}) \leq 7 \times 10^{-9}$ deduced from $T_{1/2}(2 \beta\text{-decay})$

decay) $\geq 1.1 \times 10^{18}$ y and total half-life of $T_{1/2}=8.13 \times 10^7$ y 3. 1998Se17, 1994Ve03: Observed emission of long-range alpha particles during spontaneous fission. The ratio of long-range alpha to fission rate was measured to be 2.62×10^{-3} 25, from which the light particle emission to binary fission probability ratio was deduced as 2.96×10^{-3} 31 by 1994Ve03. Energy distribution and yields were measured by 1998Se17.

1985Ge08: Measured isotope shift relative to ²⁴²Pu as 1.03 2.

Additional information 1. ABCD F

44.2‡ 4

158 ps 11

E(level): Level energy is calculated from $E\alpha$ =5034.89 keV to 2⁺ state, observed in ²⁴⁸Cm alpha decay.

E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF	Comments
				$T_{1/2}$: Calculated from B(E2)=13.61 18, measured in Coulomb excitation with α =7.8×10 ² 4 (α calculated from BrICC).
149.9 [‡] 6	4+		ABCDEF	$B(E4)\uparrow=0.09 +55-9$
				Additional information 2.
				E(level): Level energy is calculated from E α =4930.37 keV to 4 ⁺ state, observed in ²⁴⁸ Cm alpha decay.
				B(E4) was deduced in Coulomb excitation.
4	1.			J^{π} : From Coulomb excitation and (d,d') data.
313.0‡ 5	6+b		ABCDEF	
530.2 [‡] 7 708 4	$8^{+}\frac{b}{(2^{+},3^{-})}$		BCDEF C	J^{π} : from Coulomb excitation.
708 4	(2',5)		C	B(E2)=0.045 <i>I3</i> if J^{π} =2+; B(E3)=0.30 <i>I0</i> if J^{π} =3 ⁻ (1974Mc15).
797.8 [‡] 8	10 ⁺ b		C F	
957 [#] 2	3- <i>f</i>		CD	
1015 2	$(2^+)^{c}$		CD	
1068# 4	$(5^{-})^{f}$		D	E(level): 1068-keV level was doublet in (d,d') spectrum; 1975Th11 suggested that one level of the doublet may be the 5 ⁻ member of a K=2 ⁻ octupole-vibrational band.
1068 1108 2	(2=)6		D	
1108 2 1111.4 [‡] 9	$(3^{-})^{e}$ 12^{+b}		CD C F	
1111.4. 9	$(5^{-})^{e}$		D	
1201.5 [#] 8	7-		C EF	
1210 3			D	
1211.2 [@] 8	8-	1.75 s <i>12</i>	B EF	 J^π: From measurements of in-band M1/E2 branching ratios in ²⁴⁴Pu(²⁰⁸Pb, ²⁰⁸Pb'γ) deep inelastic reaction that was used to extract g_k-g_R/Q₀ values that verifies the assignment. In addition, systematics show a similar excitation energy and decay pattern of N=150 isotones with even Z for ²⁴⁶Cm (2008Ro21), ²⁴⁸Cf (2014Ma86), ²⁵⁰Fm (2008Gr17) and ²⁵²No (2008Ro21). T_{1/2}: From decay curve measurements in ²⁴⁴Pu(⁴⁷Ti, ⁴⁷Ti'γ) (2016Ho13).
1321.1 <mark>&</mark> <i>18</i>	9- d		F	
1353 4			D	
1378 <i>3</i> 1390.5 [#] 8	9-		D C F	
1434 3	9		D	
1442.2 [@] <i>13</i>	10^{-d}		F	
1466.7 [‡] <i>10</i>	14 ⁺		C F	
1575.1 ^{&} 15	11^{-d}		F	
1613 3	$(3^{-})^{g}$		D	
1623.3 [#] 9 1718.3 [@] 15	11 ⁻ 12 ⁻ d		C F	
1718.3° 13 1783 3	12 4		F D	
1805 <i>3</i>			D	
1847 3			D	
1859.2 [‡] 10	16^{+b}		C F	
1873.0 ^{&} 16 1896 3	13 ^{-d}		F D	
1898.9 [#] 9	13-		C F	
2037.7 [@] 16	14^{-d}		F	
2213.8 ^{&} 17	15- <i>d</i>		F	

²⁴⁴Pu Levels (continued)

E(level) [†]	$J^{\pi a}$	$T_{1/2}$	XRE	F	Comments
2214.9 [#] 10	15-		С	F	
2284.5 [‡] 11	18+ b		C	F	
2398.8 [@] 18	16 ⁻ d			F	
≈2400		380 ps 80			%SF≤100
		ŕ			E(level): The shape isomer's energy was deduced as 2.43 MeV $+30-26$ by 1971Au06 from intermediate structure observed in neutron-induced fission cross sections. Calculations of 1971Pa33, 1972Mo27, and 1992Bh03, 2013Gi06, yield E(level)= 3.2, 3.5, \approx 2.4 MeV, and 2.47 respectively. T _{1/2} : Measured from decay of fission isomer observed in ²⁴⁴ Pu(d,pn). Theoretical calculations: T _{1/2} (SF)=137 ps (2005Re16). 1974MeYP. See 1975Me28 for systematics of SF isomer half-lives. 1974Ba28: Fission probability distributions were measured following ²⁴² Pu(15-MeV t,pF) reaction, and the heights and curvatures of the two peaks in the fission barrier were deduced.
2567.8 [#] 10	17-		C	F	
2594.8 <mark>&</mark> 18	17^{-d}			F	
2737.9 [‡] <i>12</i>	20 ⁺		C	F	
2799.8 [@] 19	18^{-d}			F	
2952.2 [#] <i>12</i>	19-		C	F	
3013.8 & <i>19</i>	19 ⁻			F	
3211.0 [‡] <i>13</i>	22+		C	F	
3236.8 [@] 20	20^{-d}			F	
3360.0 [#] <i>13</i>	21-		C	F	
3467.8 <mark>&</mark> 21	21^{-d}			F	
3686.3 [‡] <i>14</i>	24+		C	F	
3705.8 [@] 22	22^{-d}			F	
3784.0 [#] 15	23-		C	F	
3948.8 & 23	23^{-d}			F	
4145.2 [‡] <i>15</i>	26+b		C	F	
4191.8 [@] 24	24^{-d}			F	
4227.2 [#] <i>17</i>	25-		C	F	
4606.1 [‡] <i>17</i>	28+		C		
4690.2 [#] 20	27^{-}		C		
5085.7 [‡] 20	30 ⁺		C		
5589.6 [‡] 22	32 ⁺		C		
6119.7 [‡] 24	34 ⁺		С		

[†] From least-squares fit to E γ data by the evaluator, except as noted. E=44.2 keV, and 149.9 keV have been held fixed during the the least-squares fit. Δ E=1 keV for gammas without uncertainty is assumed.

[‡] Band(A): K=0⁺ Ground-state band.

[#] Band(B): Octupole-vibrational band.

[©] Band(C): $K=8^-$, $(v9/2[734]\otimes v7/2[624])$, $\alpha=0$.

[&]amp; Band(D): $K=8^-, (v9/2[734] \otimes v7/2[624]), \alpha=1.$

^a Except as noted, assignments are based on band structure.

^b In addition to the band structure arguments, J^{π} for levels observed in Coulomb Excitation by 1983Sp03 are from systematic impact-parameter dependence of the γ -ray yields, the particle- γ directional correlation, and the γ -multiplicity measurements.

²⁴⁴Pu Levels (continued)

- ^c In the (d,d') measurement, 1975Th11 noted that J^{π} could also be a 3⁻. However a comparison of the reduced transition probability B(E2)↑=0.30 *10* (1970Th11) that was extracted by normalizing the (d,d') cross section with values from Coulomb Excitation measurement (1974Mc15): B(E3)=1.16 12 if J^{π} =3⁻; B(E2)=0.195 *18*, if J^{π} =2⁺ makes it a possible 2⁺ rather than a 3⁻.
- ^d Assignments for the $(^{244}Pu,^{244}Pu'\gamma)$ deep inelastic reaction are based on the band members built on the K isomer at 1211 keV except as noted.
- ^e K=0⁻ or 1⁻ ? This assignment was suggested in 1975Th11 from (d,d') data. The authors of 1975Th11 suggested also that the doublet at 1068 may contain the expected 1⁻ member of the band.
- f K=2 $^-$? This assignment was suggested in 1975Th11 from (d,d') data with J^{π} =3 $^-$ at 957 level and that the doublet at 1068 may contain the expected 5 $^-$ member of the band.
- g Based on the cross section pattern from the (d,d') measurements

						γ (²⁴⁴ Pu)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^a	Comments
44.2	2+	(44.2 ^{&} 4)		0.0 0+	[E2]	7.8×10 ² 4	$\alpha(L)=5.6\times10^2$ 3; $\alpha(M)=157$ 8 $\alpha(N)=43.2$ 21; $\alpha(O)=10.2$ 5; $\alpha(P)=1.59$ 8; $\alpha(Q)=0.00340$ 15 B(E2)(W.u.)=3.0×10 ² 3
149.9	4+	(105.7 ^{&} 7)		44.2 2+	[E2]	12.2 5	$\alpha(L)=8.9$ 3; $\alpha(M)=2.48$ 9 $\alpha(N)=0.681$ 24; $\alpha(O)=0.161$ 6; $\alpha(P)=0.0256$ 9; $\alpha(Q)=9.5\times10^{-5}$ 3 E_{γ} : 110.8 γ was observed by 1987Mo29 but was considered questionable by the evalutor due to its indistinct peak and its close proximity to the Pu K-Xray line as shown in Fig.1 in 1987Mo29.
313.0	6+	163.1 [‡] 5	100	149.9 4 ⁺	[E2]	1.90 4	$\alpha(K)$ =0.189 3; $\alpha(L)$ =1.240 25; $\alpha(M)$ =0.346 7 $\alpha(N)$ =0.0951 19; $\alpha(O)$ =0.0225 5; $\alpha(P)$ =0.00364 7; $\alpha(Q)$ =2.25×10 ⁻⁵ 4
530.2	8+	217.2 ^{‡‡} 5	100	313.0 6+	[E2]	0.630 11	$\alpha(K)$ =0.1332 20; $\alpha(L)$ =0.361 7; $\alpha(M)$ =0.1001 17 $\alpha(N)$ =0.0275 5; $\alpha(O)$ =0.00652 12; $\alpha(P)$ =0.001071 19; $\alpha(Q)$ =1.000×10 ⁻⁵ 16
797.8	10 ⁺	267.4 [‡] 5	100	530.2 8+			
1111.4	12 ⁺	313.5 [‡] 5	100	797.8 10 ⁺			
1201.5	7-	671.3 5		530.2 8+			
1211.2	8-	(10 ^{&} 1)		1201.5 7			
		681.0 [@] I		530.2 8+	[E1]	0.00802	$\alpha(K)=0.00649 \ 9; \ \alpha(L)=0.001158 \ 17;$ $\alpha(M)=0.000277 \ 4$ $\alpha(N)=7.50\times10^{-5} \ 11; \ \alpha(O)=1.85\times10^{-5} \ 3;$ $\alpha(P)=3.44\times10^{-6} \ 5; \ \alpha(Q)=2.07\times10^{-7} \ 3$
1321.1	9-	(110 <mark>&</mark> 2)		$1211.2\ 8^{-}$			
1390.5	9-	189.0 5		1201.5 7			
		592.9 <i>5</i> 860.5 <i>5</i>		797.8 10 ⁺ 530.2 8 ⁺			
1442.2	10-	(121 ^{&} 2)		1321.1 9			
1112.2	10	231#		1211.2 8			
1466.7	14 ⁺	355.1 [‡] 5		1111.4 12+			
1575.1	11-	133 [#]		1442.2 10-			
		254 [#]		1321.1 9-			
1623.3	11-	233.1 5		1390.5 9-			
		511.8 <i>5</i>		1111.4 12 ⁺ 797.8 10 ⁺			
		825.4 5		191.8 10			

γ (244Pu) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	E_f	\mathbf{J}_f^π
1718.3	12-	143 [#]		1575.1 11-	2799.8	18-	205#	2594.8	17-
		276 [#]		$1442.2 \ 10^{-}$			401 [#]	2398.8	16-
1859.2	16 ⁺	392.5 [‡] 5		1466.7 14+	2952.2	19-	384.4 5	2567.8	17^{-}
1873.0	13-	155 [#]	68 7	1718.3 12-	3013.8	19-	214 [#]	2799.8	18-
		298 [#]	100 9	1575.1 11-			419 [#]	2070	17-
1898.9	13-	275.6 5		1623.3 11	3211.0	22 ⁺	473.1 5	2737.9	20^{+}
		432.1 5		1466.7 14 ⁺	3236.8	20^{-}	223 [#]	3013.8	19-
		787.7 5		1111.4 12+			437 [#]	2799.8	18-
2037.7	14^{-}	165 [#]	65 8	1873.0 13-	3360.0	21^{-}	407.8 5	2952.2	19-
		319 [#]	100 9	1718.3 12-	3467.8	21^{-}	231 [#]	3236.8	20^{-}
2213.8	15-	176 [#]	45 <i>4</i>	2037.7 14-			454 [#]	3013.8	19-
		341 [#]	100 8	1873.0 13-	3686.3	24 ⁺	475.3 5	3211.0	22 ⁺
2214.9	15-	316.1 5		1898.9 13-	3705.8	22^{-}	469	3236.8	20^{-}
		355.9 <i>5</i>		1859.2 16 ⁺	3784.0	23-	424.0 8	3360.0	21-
		747.9 5		1466.7 14 ⁺	3948.8	23^{-}	481 [#] .	3467.8	21^{-}
2284.5	18 ⁺	425.3 [‡] 5		1859.2 16 ⁺	4145.2	26 ⁺	458.9 [‡] 5	3686.3	24+
2398.8	16-	185 [#]	49 5	2213.8 15-	4191.8	24^{-}	486 [#]	3705.8	22^{-}
		361 [#]	100 7	2037.7 14-	4227.2	25^{-}	443.2 8	3784.0	23-
2567.8	17^{-}	283.3 5		2284.5 18 ⁺	4606.1	28 ⁺	460.9 8	4145.2	26 ⁺
		353.1 5		2214.9 15	4690.2	27-	463.0 10	4227.2	25-
25040	1.7-	708.6 5	44.5	1859.2 16 ⁺	5085.7	30 ⁺	479.6 10	4606.1	28+
2594.8	17-	196 [#]	41 5	2398.8 16-	5589.6	32+	503.9 10		30+
		381#	100 11	2213.8 15	6119.7	34 ⁺	530.1	5589.6	32 ⁺
2737.9	20^{+}	453.4 [‡] 5		2284.5 18 ⁺					

 $^{^{\}dagger}$ From Coulomb Excitation (2016JaZZ, 1999Wi11), except as noted.

[‡] From Coulomb Excitation that have also been measured by 1983Sp03. ‡ From 244 Pu(208 Pb, 208 Pb' γ) deep inelastic data. @ From 244 Np β - decay.

[&]amp; Gamma has not been observed. Its energy is from level energy difference.

^a Additional information 3.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{244}_{\ 94}\mathrm{Pu}_{150}$

$$^{244}_{94}\mathrm{Pu}_{150}$$