Farheen Rahman CS455 Homework Assignment 6

DESIGN DOCUMENT

The constant values that I chose in order to able to run this experiment successfully includes:

- Number of messages to simulate: 1000
- Average time between messages from layer 5: 200
- Window size: 10
- Retransmission timeout: 100

I chose a much larger retransmission time because I found that when I increased the retransmission time I was able to acquire a packet loss ratio that greatly mirrored the given input, whereas when I lowered the retransmission time, there was a higher amount of error between expected and actual packet loss ratios. Of course, this led to larger RTT and communication times, which will be reflected below.

TESTING

The following values for loss rates and corruption rates are averaged across 110 total values (using increments of 0.1 from 0-1 inclusive).

For the sake of maintaining space, I chose to represent my data as a table of averages for each loss rate (displaying 11 rows instead of 110). I thought this would be much easier to read and digest, and would also make for easier data analysis.

I also chose to eliminate having seed numbers to identify trials because I find this unnecessary, both because the seed numbers are randomized and thus have little effect on the data itself, and also because I condensed the table to make them more readable.

The tables and their respective graphs are on the following pages.

Packet loss vs. average communication time (ms)

Trial #	Loss Rate	Avg Comm (ms)
1-10	0	11.303
11-20	0.1	20450.525
21-30	0.2	40059.785
31-40	0.3	62930.751
41-50	0.4	80996.797
51-60	0.5	93772.525
61-70	0.6	98446.948
71-80	0.7	102266.215
81-90	0.8	91931.491
91-100	0.9	113957.29
101-110	1	NaN

Number of Trials: 110 Mean: 70393.23

Std. Deviation: 30492.319 Confidence Interval: 95%

Z-value: 1.890 Error: +/- 10301.12931 Function of packet loss seen in

graph.

As can be seen in the graph, there is no value for 1, since the value given by all trials was: NaN. This is, I believe, because no packets were ever transmitted because they were all lost, and so, all averaged values for communication time would be averaged over a total transmission of 0 packets, this is simply how this metric was designed in my code.

Packet loss vs. average communication time (ms)

Trial #	Corruption Rate	Avg Comm (ms)
1-10	0	11.213
11-20	0.1	29562.587
21-30	0.2	53337.547
31-40	0.3	72860.787
41-50	0.4	80012.742
51-60	0.5	90165.078
61-70	0.6	101144.828
71-80	0.7	105278
81-90	0.8	108408.6089
91-100	0.9	96967.496
101-110	1	NaN

Number of Trials: 110 Mean: 83492.23 Std. Deviation: 32034.319 Confidence Interval: 95%

Z-value: 1.890 Error: +/- 23043.12931

Function of packet corruption seen

in graph.

As can be seen in the graph, there is no value for 1, since the value given by all trials was: NaN. This is, I believe, because no packets were ever transmitted because they were all corrupted, and so, all averaged values for communication time would be averaged over a total transmission of 0 packets, this is simply how this metric was designed in my code.

The sample output below is a snapshot of perfect transmissions for 1000 messages.

Sending packet: segnum: 0 acknum: 0 checksum: 1980 payload: cccccccccccccccc to B.

Sending ACK for packet :0

A received a successful ACK: segnum: 0 acknum: 0 checksum: 0 payload:

Sending ACK for packet :1

A received a successful ACK: segnum: 1 acknum: 1 checksum: 2 payload:

Sending packet: seqnum: 2 acknum: 0 checksum: 2022 payload: eeeeeeeeeeeeeeee to B.

Sending ACK for packet :2

A received a successful ACK: seqnum: 2 acknum: 2 checksum: 4 payload:

Sending ACK for packet :3

A received a successful ACK: segnum: 3 acknum: 3 checksum: 6 payload:

Sending packet: segnum: 4 acknum: 0 checksum: 2064 payload: gggggggggggggggggggg to B.

Sending ACK for packet :4

A received a successful ACK: segnum: 4 acknum: 4 checksum: 8 payload:

Sending ACK for packet :5

A received a successful ACK: seqnum: 5 acknum: 5 checksum: 10 payload:

Sending ACK for packet :6

A received a successful ACK: segnum: 6 acknum: 6 checksum: 12 payload:

Sending packet: seqnum: 7 acknum: 0 checksum: 2127 payload: jjjjjjjjjjjjj to B.

Sending ACK for packet:7

A received a successful ACK: seqnum: 7 acknum: 7 checksum: 14 payload:

Sending packet: segnum: 8 acknum: 0 checksum: 2148 payload: kkkkkkkkkkkkkkkkkkkkkk to B.

Sending ACK for packet :8

A received a successful ACK: segnum: 8 acknum: 8 checksum: 16 payload:

Sending packet: seqnum: 9 acknum: 0 checksum: 2169 payload: ||||||||||||| to B.

Sending ACK for packet:9

A received a successful ACK: segnum: 9 acknum: 9 checksum: 18 payload:

Simulator terminated at time 200125.29679250455

========STATISTICS==============

Number of original packets transmitted by A: 1000

Number of retransmissions by A: 0

Number of data packets delivered to layer 5 at B: 1000

Number of ACK packets sent by B: 1000

Number of corrupted packets:0

Ratio of lost packets: 0.0

Ratio of corrupted packets: 0.0

Average RTT: 11.207196813867787ms

Average communication time: 11.207196813867787 ms

Each case above clearly has its transmission from A to B clearly stated, an ACK being sent from B to A, and A having received a successful ACK.

CASE TWO: ack is lost/corrupted and a later cumulative ack moves the sender window by more than 1

CASE THREE: data packet is lost/corrupted, and data is retransmitted after RTO

CASE FOUR: data packet is lost/corrupted, and data is retransmitted after receiving duplicate ack

The sample output below is a snapshot of with a loss of 0.2 for 1000 messages. All of the prior cases can be identified by the given color.

A received a successful ACK: seqnum: 8 acknum: 8 checksum: 16 payload:

Sending ACK for packet:9

A received a successful ACK: seqnum: 9 acknum: 9 checksum: 18 payload:

Case 4: Received a duplicate ACK. Expected packet 0 but received 1

Timer interrupted!

Case 3: Resending packet after RTO: segnum: 0 acknum: 0 checksum: 1980 payload: ccccccccccccccccc to B.

B.

Sending ACK for packet :0

A received a successful ACK: seqnum: 0 acknum: 0 checksum: 0 payload:

Sending ACK for packet :1

A received a successful ACK: segnum: 1 acknum: 1 checksum: 2 payload:

Sending packet: seqnum: 2 acknum: 0 checksum: 2022 payload: eeeeeeeeeeeeeee to B.

Sending packet: seqnum: 3 acknum: 0 checksum: 2043 payload: ffffffffffffff to B.

Case 4: Received a duplicate ACK. Expected packet 2 but received 3

Timer interrupted!

Case 3: Resending packet after RTO: seqnum: 2 acknum: 0 checksum: 2022 payload: eeeeeeeeeeeeeeeee to B.

Case 3: Resending packet after RTO: seqnum: 3 acknum: 0 checksum: 2043 payload: ffffffffffffffff to B.

Sending ACK for packet :2

Sending ACK for packet:3

A received a successful ACK: seqnum: 2 acknum: 2 checksum: 4 payload:

A received a successful ACK: seqnum: 3 acknum: 3 checksum: 6 payload:

Sending packet: seqnum: 4 acknum: 0 checksum: 2064 payload: ggggggggggggggggggggg to B.

Sending ACK for packet:4

A received a successful ACK: seqnum: 4 acknum: 4 checksum: 8 payload:

Sending packet: seqnum: 5 acknum: 0 checksum: 2085 payload: hhhhhhhhhhhhhhhhhhhhhh to B.

Sending ACK for packet:5

Timer interrupted!

Timer interrupted!

Case 4: Received a duplicate ACK. Expected packet 6 but received 5

Sending ACK for packet :6

A received a successful ACK: seqnum: 6 acknum: 6 checksum: 12 payload:

Case 2: Shifted sender window more than once.

Sending packet: seqnum: 7 acknum: 0 checksum: 2127 payload: jjjjjjjjjjjjj to B.

Case 4: Received a duplicate ACK. Expected packet 7 but received 8

Timer interrupted!

Case 3: Resending packet after RTO: seqnum: 7 acknum: 0 checksum: 2127 payload: jjjjjjjjjjjjjt to B.

Case 3: Resending packet after RTO: segnum: 8 acknum: 0 checksum: 2148 payload: kkkkkkkkkkkkkkkkkkk to B.

Sending ACK for packet :7 Sending ACK for packet :8

A received a successful ACK: seqnum: 7 acknum: 7 checksum: 14 payload:

Sending packet: segnum: 9 acknum: 0 checksum: 2169 payload: IIIIIIIIIIIIIIII to B.

Timer interrupted!

Case 3: Resending packet after RTO: seqnum: 8 acknum: 0 checksum: 2148 payload: kkkkkkkkkkkkkkkkkkk to B.

Case 3: Resending packet after RTO: seqnum: 9 acknum: 0 checksum: 2169 payload: IIIIIIIIIIIIIIII to B.

Sending ACK for packet :9

A received a successful ACK: segnum: 9 acknum: 9 checksum: 18 payload:

Case 2: Shifted sender window more than once.

Simulator terminated at time 196842.06671346162

========STATISTICS============

Number of original packets transmitted by A: 1000

Number of retransmissions by A: 807

Number of data packets delivered to layer 5 at B: 1000

Number of ACK packets sent by B: 1000

Number of corrupted packets:0

Ratio of lost packets: 0.24930491195551435

Ratio of corrupted packets: 0.0

Average RTT: 41830.86482864948ms

Average communication time: 52397.90473720517 ms
