Notes

Maksim Levental

December 4, 2019

Contents

1 Differential Geometry

Diffe	erential Geometry	1
1.1	Directional Derivative	1
1.2	Derivations	2
1.3	Vector Fields	2
1.4	Dual Space	2
App	oendix	3
$2.\overline{1}$	Definitions	3
	2.1.1 Linear Operator	3
	2.1.2 Germs	3
	2.1.3 Algebra	3
	2.1.4 Module	4
2.2	Tensor Product	4
2.3	Wedge Product	4
	1.1 1.2 1.3 1.4 App 2.1	1.2 Derivations 1.3 Vector Fields 1.4 Dual Space Appendix 2.1 Definitions 2.1.1 Linear Operator 2.1.2 Germs 2.1.3 Algebra 2.1.4 Module 2.2 Tensor Product

Contents

1.1	Directional Derivative							
1.2	Derivations							6
1.3	Vector Fields							-
1 /	Dual Space							•

1.1 Directional Derivative

Elements of the tangent space $T_p(\mathbb{R}^n)$ anchored at a point $p=(p^1,\ldots,p^n)\in\mathbb{R}^n$ can be visualized as arrows emanating from p. These arrows are called tangent vectors and represented by column vectors:

$$\boldsymbol{v} = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix} \tag{1}$$

The line through a point p with direction \boldsymbol{v} has parameterization

$$c(t) = (p^1 + tv^1, \dots, p^n + tv^n)$$
 (2)

If $f \in C^{\infty}$ in a neighborhood of p and v is a tangent vector at p, the directional derivative of f in the direction of v at p is defined

$$D_{\mathbf{v}}f = \lim_{t \to 0} \left. \frac{f(c(t)) - f(p)}{t} = \frac{\mathrm{d}}{\mathrm{d}t} f(c(t)) \right|_{t=0}$$
 (3)

By the chain rule

$$D_{\mathbf{v}}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \bigg|_{t=0} \tag{4}$$

$$= \sum_{i=1}^{n} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \bigg|_{t=0} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{5}$$

$$= \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{6}$$

(7)

The directional derivative operator at p is defined

$$D_{\mathbf{v}} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{8}$$

The association $v \mapsto D_v$ offers a way to isomorphically identify tangent vectors with operators on functions. The following makes this rigorous.

1.2 Derivations

For each tangent vector v at a point $p \in \mathbb{R}^n$, the directional derivative at p gives a map of vector spaces

$$D_{\boldsymbol{v}} \colon C_{\boldsymbol{p}}^{\infty} \to \mathbb{R}$$

 $D_{\boldsymbol{v}}$ is a linear map that satisfies the *Leibniz rule*

$$D_{\mathbf{v}}(fg) = (D_{\mathbf{v}}f)g(p) + f(p)(D_{\mathbf{v}}g) \tag{9}$$

because the partial derivative satisfy the product rule. In general, any linear map $L\colon C_p^\infty\to\mathbb{R}$ that satisfies the Leibniz rule is called a *derivation* at p. Denote the set of all derivations at p by $\mathcal{D}_p(\mathbb{R}^n)$. This set is also a real vector space.

So far we know directional derivatives $D_{\boldsymbol{v}}$ at p are derivations at p. Thus, there is a map

$$\phi \colon T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$$
$$\mathbf{v} \mapsto D_{\mathbf{v}}$$

Theorem 1.1. The linear map ϕ is an isomorphism of vector spaces.

The implication is that we may identify tangent vectors at p with derivations at p (by way of directional derivatives against germs). Under this isomorphism $T_p(\mathbb{R}^n) \simeq \mathcal{D}_p(\mathbb{R}^n)$, the standard basis $\{e_1, \ldots, e_n\}$ for $T_p(\mathbb{R}^n)$ maps to

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_{p}, \dots, \frac{\partial}{\partial x^n} \bigg|_{p} \right\} \tag{10}$$

Therefore from now on we write a tangent vector as

$$\mathbf{v} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{11}$$

The point being that, while not as geometrically intuitive as arrows, $\mathcal{D}_{p}(\mathbb{R}^{n})$ generalizes to manifolds.

1.3 Vector Fields

A vector field X on an open $U \subset \mathbb{R}^n$ is function that assigns to $p \in U$ a tangent vector $X_p \in T_p(\mathbb{R}^n)$. Notice, carefully, that the vector field assigns at each point a vector in the tangent space anchored at that point. Using the tangent basis (eqn. (10))

$$X \colon p \mapsto \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p}$$
 (12)

Note that both the coefficients **and** the partial derivatives are evaluated at p. Having said that, we often omit p in the specification of a vector field when it clear from context.

Example 1.1. On $\mathbb{R}^n - \{\mathbf{0}\}$, let p = (x, y). Then

$$X = \frac{-y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}$$

$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} \\ \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}^T$$

See figure ??

In general we can identify vector fields with parameterized column vectors

$$X = \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \Big|_{p} \leftrightarrow \begin{bmatrix} a^{1}(p) \\ \vdots \\ a^{n}(p) \end{bmatrix}$$
 (13)

1.4 Dual Space

The dual space V^{\wedge} of V is the set of all real-valued linear functions on V i.e. all $f: V \to \mathbb{R}$. Elements of V^{\wedge} are called *covectors*.

Assume V is finite dimensional and let $\{e_1,\ldots,e_n\}$ be a basis V. Recall that $e_i \coloneqq \partial_{x_i}$. Then $X = \sum a^i \partial_{x_i}$ for all $X \in T_p$. Let $\alpha^i \colon V \to \mathbb{R}$ be the linear function that picks out the ith coordinate of a **vector**, i.e. $\alpha^i(X) = a^i(p)$. Note that

$$\alpha^i(\partial_j) = \alpha^i(1 \cdot \partial_j) \tag{14}$$

$$= \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 (15)

$$=\delta_j^i \tag{16}$$

Note that position of indices is important – upper indices are for covectors.

Proposition 1.0.1. $\{\alpha^i\}$ form a basis for V^{\wedge} .

Proof. We first prove that $\{\alpha^i\}$ span V^{\wedge} . If $f \in V^{\wedge}$ and $X = \sum a^i \partial_{x_i} \in V$, then

$$f(X) = \sum a^i f(\partial_{x_i}) \tag{17}$$

$$= \sum \alpha^{i}(X)f(\partial_{x_{i}}) \tag{18}$$

$$= \sum f(\partial_{x_i})\alpha^i(X) \tag{19}$$

which shows that any f can be expanded as a linear sum of α^i . To show linear independence, suppose $\sum c_i \alpha^i = 0$ with at least one c_i non-zero. Applying this to an arbitrary ∂_{x_i} gives

$$0 = \left(\sum_{i} c_{i} \alpha^{i}\right) (\partial_{x_{i}}) = \sum_{i} c_{i} \alpha^{i} (\partial_{x_{i}}) = \sum_{i} c_{i} \delta_{j}^{i} = c_{j}$$

$$(20)$$

which is a contradiction. Hence α^i are linearly independent. \Box

This basis $\{\alpha^i\}$ for V^{\wedge} is said to be *dual* to the basis $\{\partial_{x_i}\}$ for V.

Example 1.2. (Coordinate functions) With respect to a basis $\{\partial_{x_i}\}$ for V, every $X \in V$ can be written uniquely as a linear combination $X = \sum a^i \partial_{x_i}$ with $a^i \in \mathbb{R}$. Let $\{\alpha^i\}$ be the dual basis (i.e. the basis for V^{\wedge}). Then

$$\alpha^{i}(X) = \alpha^{i} \left(\sum_{j} a^{j} \partial_{x_{j}} \right)$$

$$= \sum_{j} a^{j} \alpha^{i} (\partial_{x_{j}})$$

$$= \sum_{j} a^{j} \delta_{j}^{i}$$

$$= a^{i}$$

Thus, the dual basis $\{\alpha^i\}$ to $\{\partial_{x_i}\}$ is the set of coordinate functions. The sense here is that since tangent vectors are directional derivatives (i.e. operators on functions) and the dual space is a mapping from those operators to \mathbb{R} , then a mapping from operators to scalars means hitting an operator with a function (or vice-versa). And the coordinate functions are constant with respect to each other coordinate (and hence partials wrt them are naturally zero).

2 Appendix

Contents

2.1	Definitions	3
	2.1.1 Linear Operator	3
	2.1.2 Germs	3
	2.1.3 Algebra	3
	2.1.4 Module	1
2.2	Tensor Product	1
2.3	Wedge Product	1

2.1 Definitions

2.1.1 Linear Operator

A map $L\colon V\to W$ between vector spaces over a field K is a linear operator if

- 1. **distributivity**: L(u+v) = L(u) + L(v)
- 2. homogeneity: L(rv) = rL(v)

To emphasize the field, L is said to be K-linear.

2.1.2 Germs

Consider the set of all pairs (f,U), where U is a neighborhood of p and $f:U\to\mathbb{R}$ is a C^∞ function. We say that $(f,U)\sim (g,U')$ if there is an open W such that $p\in W\subset U\cap U'$ and f=g when restricted to W. The equivalence class [(f,U)] of (f,U) is the germ of f at p. We write

$$C_n^{\infty}(\mathbb{R}^n) := \{ [(f, U)] \} \tag{21}$$

for the set all germs of C^{∞} functions on \mathbb{R}^n at p.

2.1.3 Algebra

An algebra over $field\ K$ is a vector space A over K with a multiplication map

$$\mu \colon A \times A \to A$$
 (22)

usually written $\mu(a,b) = a \cdot b$, such that μ is associative, distributive, and homogeneous, where homogeneity is defined:

- 1. associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. **distributivity**: $(a+b) \cdot c = a \cdot c + b \cdot c$ and $a \cdot b + a \cdot c$
- 3. homogeneity: $r(a \cdot b) = (ra) \cdot b = a \cdot (rb)$

If A, A' are algebras then an algebra homomorphism is a linear operator L that respects algebra multiplication L(ab) = L(a)L(b). It's the case that addition and multiplication of functions induces addition and multiplication on the set of germs C_p^{∞} , making it into an algebra over \mathbb{R}^n .

2.1.4 Module

If R is a commutative ring with identity, then a (left) R-module is an abelian group A with a scalar multiplication map

$$\mu \colon R \times A \to A \tag{23}$$

such that μ is

1. **associative**: (rs)a = r(sa) for $r, s \in R$

2. identity: $1 \in R \implies 1a = a$

3. **distributive**: (r+s)a = ra+sa and r(a+b) = ra+rb

If R is a field, then an R-module is a vector space over R; in this sense modules generalize vector space to scalars from a ring rather than a field.

Let A, A' be R-modules. An R-module homomorphism $f \colon A \to A'$ is a map that preserves both addition and scalar multiplication.

2.2 Tensor Product

Let f be k-linear function and g be an ℓ -linear function on a vector space V. Then, their tensor product is the $(k+\ell)$ -linear function $f\otimes g$

$$(f \otimes g)(v_1, \dots, v_{k+\ell}) := f(v_1, \dots, v_k)g(v_{k+1}, \dots, v_{k+\ell})$$
(24)

Example 2.1. (Bilinear maps) Let $\{e_i\}$ be a basis for a vector space V and $\{\alpha^j\}$ be the dual basis for V^{\vee} . Also let $\langle , \rangle \colon V \times V \to \mathbb{R}$ be a bilinear map on V. Set $g_{ij} = \langle e_i, e_j \rangle \in \mathbb{R}$. If

$$v = \sum v^i e_i \tag{25}$$

$$w = \sum w^i e_i \tag{26}$$

then $v^i=\alpha^i(v)$ and $w^j=\alpha^j(w)$, where α are the coordinate functions a^i,a^j . By bilinearity, we can express $\langle \, , \rangle$ in terms of the tensor product

$$\langle v, w \rangle = \sum_{ij} v^i w^j \langle e_i, e_j \rangle$$

$$= \sum_{ij} \alpha^i (v) \alpha^i (w) g_{ij}$$

$$= \sum_{ij} (\alpha^i \otimes \alpha^j) (v, w) \times g_{ij}$$
(27)

Hence $\langle , \rangle = \sum g_{ij} \, \alpha^i \otimes \alpha^j$

2.3 Wedge Product

Let f be k-linear function and g be an ℓ -linear function on a vector space V. If f, g are alternating¹ then we would

like their product to be alternating as well: the wedge product or exterior product $f \wedge g$

$$f \wedge g := \frac{1}{k!l!} A(f \otimes g) \tag{28}$$

$$:= \frac{1}{k!l!} \sum_{\sigma \in S_{k+\ell}} (\operatorname{sgn}(\sigma)) f(v_{\sigma(1)}, \dots, v_{\sigma(k)})$$
 (29)

$$g(v_{\sigma(k+1)},\ldots,v_{\sigma(k+\ell)})$$

where $S_{k+\ell}$ is the permutation group on $k + \ell$ elements

Note that the wedge product of three alternating functions f, g, h generalizes to

$$f \wedge g \wedge h = \frac{1}{k!\ell!m!} = A(f \otimes g \otimes h) \tag{30}$$

and any number of alternating functions.

Proposition 2.0.1. (Wedge product of 1-covectors) If $\{\alpha^i\}$ are linear functions on V and $v_i \in V$ then

$$\alpha^1 \wedge \dots \wedge \alpha^k(v_1, \dots, v_k) = \det([\alpha^i(v_i)])$$
 (31)

where $[\alpha^{i}(v_{i})]$ is the matrix where the i, j-entry is $\alpha^{i}(v_{i})$.

Proof.

$$\alpha^{1} \wedge \dots \wedge \alpha^{k}(v_{1}, \dots, v_{k}) = A(\alpha^{1} \wedge \dots \wedge \alpha^{k})(v_{1}, \dots, v_{k})$$
(32)

$$= \sum_{\sigma \in S_k} (\operatorname{sgn}(\sigma)) \alpha^1(v_{\sigma(1)}) \wedge \dots \wedge \alpha^k(v_{\sigma(k)})$$
 (33)

$$= \det([\alpha^i(v_j)]) \tag{34}$$

 $^{^1{\}rm An}$ alternating function is one that changes signs if arguments are transposed (e.g. cross-product or determinant).

Index

R-module homomorphism, 4 algebra, 3 algebra homomorphism, 3Bilinear maps, 4Coordinate functions, 3covectors, 2 derivation, 2 directional derivative, 1 dual space, 2exterior product, 4 field, 3 germ, 3 isomorphically, 2 Leibniz rule, 2 linear operator, 3module, 4 permutation group, 4 tangent space, 1tangent vectors, 1 tensor product, 4vector field, 2 wedge product, 4