EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 17: DAC 3

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

Date	Topics			
24-Jan	Course introduction and ADC architectures			
29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction			
31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT			
5-Feb	ADC & DAC static performance metrics, INL and DNL			
7-Feb	OPAMP and bias circuits review			
12-Feb	SC circuits review			
14-Feb	Sample and Hold Amplifier - Reading materials			
19-Feb	Flash ADC and Comparators: Regenerative Latch			
21-Feb	Comparators: Latch offset, preamp, auto-zero			
26-Feb	Finish Flash ADC			
28-Feb	DAC Architectures - Resistor, R-2R			
5-Mar	DAC Architectures - Current steering, Segmented			
7-Mar	DAC Architectures - Capacitor-based			
12-Mar	SAR ADC with bottom plate sampling			
14-Mar	SAR ADC with top plate sampling			
19-Mar	Midterm Review			
21-Mar	Midterm exam			
26-Mar	Spring break			
28-Mar	Spring break			
2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain			
4-Apr	Pipelined ADC bit sync and alignment using Full adders			
9-Apr	Pipelined ADC 1.5bit vs multi-bit structures			
11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB			
16-Apr	Single-slope ADC			
18-Apr	Oversampling & Delta-Sigma ADCs			
23-Apr	Second- and higher-order Delta-Sigma Modulator.			
25-Apr	Hybrid ADC - Pipelined SAR			
30-Apr	Hybrid ADC - Time-Interleaving			
2-May	ADC testing and FoM			
7-May	Project presentation 1			
8-May	Project presentation 2			
14-May	Final Review			
20-May	Project Report Due by 6 PM			

DAC 3

DAC Architectures Comparison

4bit Example

Binary Weighted vs Unit Element

Binary-weighted DAC

- Pros
 - Min. # of switched elements
 - Simple and fast
 - Compact and efficient
- Cons
 - Large DNL and glitches
 - Monotonicity not guaranteed
- INL/DNL
 - INL(max) ≈ $(\sqrt{N/2})\sigma$
 - DNL(max) ≈ 2*INL

Unit-element DAC

- Pros
 - Good DNL, small glitches
 - Linear glitch energy
 - Guaranteed monotonic
- Cons
 - Needs B2T decoder
 - complex for $N \ge 8$
- INL/DNL
 - − INL(max) ≈ $(\sqrt{N/2})\sigma$
 - DNL(max) ≈ σ

Combine BW and UE architectures → Segmentation

Segmented DAC

Objective:

Compromise between unit-element and binary-weighted DAC

Approach:

B₁ MSB bits → unit elements B₂ LSB bits → binary weighted

$$B_{Total} = B_1 + B_2$$

- INL: unaffected same as either architecture
- DNL: Worst case occurs when LSB DAC turns off and one more MSB DAC element turns on → Same as binary weighted DAC with (B₂+1) # of bits
- Number of switched elements: (2^{B1}-1) + B₂

Segmented DAC Principle

4bit Example (2+2)

DNL/INL of Segmented DAC

- INL
 - Same as in thermometer DAC
- DNL
 - Worst case occurs when LSB DAC turns off and one more MSB DAC element turns on
 - Essentially same DNL as a binary weighted DAC with B_b+1 bits

Example: $B=B_{h}+B_{+}=4+4=8$

INL/DNL Comparison Table

	Thermometer	Segmented	Binary Weighted		
σ _{INL} (worst case)	$\approx \frac{1}{2} \sigma_{\rm u} \sqrt{2^{\rm B}}$				
σ _{DNL} (worst case)	≅ σ _u	$\cong \sigma_u \sqrt{2^{B_b+1}-1}$	$\cong \sigma_u \sqrt{2^B - 1}$		
Number of Switched Elements	2 ^B – 1	$B_b + 2^{B_t} - 1$	В		

- INL is same for all architectures
- DNL of Binary-weighted DAC is 2 times the DNL

Example INL/DNL Comparison

(B=12,
$$\sigma_u$$
=1%)

DAC Architecture	σ _{INL} (worst)	σ _{DNL} (worst)	Number of Switched Elements
Thermometer	0.32	0.01	4095
Binary Weighted	0.32	0.64	12
Segmented (B _b =7, B _t =5)	0.32	0.16	38

DAC INL/DNL Summary

- DAC choice of architecture has significant impact on DNL
- INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision
- Results assume uncorrelated random element variations
- Systematic errors and correlations are usually also important and may affect final DAC performance

<u>Ref:</u> Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/D converters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9.

10-bit Segmented DAC Example (8+2)

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm²," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1948-1958, issue 12, 1998.

Area vs. Segmentation

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm²," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1948-1958, issue 12, 1998.

THD vs. Segmentation

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm²," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1948-1958, issue 12, 1998.

Current Cell

C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm²," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1948-1958, issue 12, 1998.

Commonly Used Techniques

- Retiming
 - Latches in (or close to) each current cell
 - Latch controlled by global clock to ensure that current cells switch simultaneously (independent of decoder delays)
- Make before break
 - Ensure uninterrupted current flow, so that tail current source remains active
- Low swing driver
 - Drive differential pair with low swing to minimize coupling from control signals to output
- Cascoded tail current source for high output impedance
 - Ensures that overall impedance at output nodes is code independent (necessary for good INL)

Switch Driver

P. Palmers, Xu Wu, and M. Steyaert, "A 130 nm CMOS 6-bit full Nyquist 3GS/s DAC," IEEE Asian Solid-State Circuits Conference, ASSCC '07, pp.348-351, 12-14 Nov. 2007

Biasing Scheme

M=4 for Main current source transistors to place one transistor in each quadrant

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm²," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1948-1958, issue 12, 1998.

Randomization and Dummies

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm²," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1948-1958, issue 12, 1998.

Homework #5

Designing 4-bit Binary Weighted and Segmented DACs

