Classification of text using Association Rule mining with Critical Relative Support based pruning

ICACCI, Jaipur

Saurabh Mathur (VIT, Vellore)

Contents

1. Introduction

The problem statement

2. Background

Other approaches to solve the problem

3. Proposed Idea

Our approach to solve the problem

4. Results & Conclusions

Some closing thoughts

Introduction

Introduction 1/24

Association Rules

The Apriori algorithm [1] is a way to generate such rules from transaction data

Introduction 2/24

Problem Statement

Find the minimal set of interesting association rules *from text*

ntroduction 3/24

The dataset

BBC Insights dataset [5]

2004-2005 Time period 2,225 Documents 5 Categories

Introduction 4/24

Background

Background 5/24

Literature Survey

Citation

Rakesh Agrawal and Ramakrishnan Srikant; 1993 ^[1]	Apriori Algorithm proposed.
Zailani Abdullah, et al.; 2011 ^[2]	Proposed a metric (CRS) to remove uninteresting rules.
Gayathri, K.; Marimuthu, A.; 2013 ^[3]	Text classification performance is independent of size of feature space in most cases.
Kulkarni et al. 2012 ^[6]	Feature co-occurrence and association are can be used for classification
Kadhim, A.I.; Cheah, YuN; 2014 ^[4]	Term weighing and NLP reduce the dimensionality of the feature space

tl;dr

Background 6/24

Proposed Idea

Proposed Idea 7/24

Flowchart - Part 1

Proposed Idea 8/24

Flowchart - Part 2

Proposed Idea 9/24

Pre-Processing

Convert text document to transaction format

Tokenizing. Stop word removal. POS Tagging. Stemming. Tf-Idf.

Find representative features

Features found only in a particular class

Proposed Idea 10/24

Rule mining

$$X => Y$$

 $Y \in Classes$ Classes = { Business, Entertainment, Politics, Sports, Technology }

Proposed Idea 11/24

Rule Filtering with CRS

Before applying CRS filtering, update support as -

$$Mod_{Supp}(X \Longrightarrow Y) = (1-a) \cdot (1-b) \cdot (1-c) \cdot supp(X \Longrightarrow Y)$$

Where,

 $a = \frac{\text{Number of documents of class Y}}{\text{Total number of documents}}$

 $b = \frac{\text{Number of representative features of class Y}}{\text{Total number of documents}}$

 $c = \frac{\text{Number of rules of class Y}}{\text{Total number of rules}}$

Proposed Idea 12/24

Results & Conclusion

Results & Conclusion 13/24

Accuracy

81 %

Results & Conclusion 14/24

Confusion Matrix

Predicted categories v/s Actual categories

Results & Conclusion 15/24

Rules - politics

politics

size: support (0.06 - 0.113) color: lift (3.74 - 5.336)

Results & Conclusion 16/24

Rules - tech

size: support (0.06 - 0.093) color: lift (3.84 - 5.453)

Results & Conclusion 17/24

Rules - sport

sport

size: support (0.06 - 0.089) color: lift (2.81 - 3.86)

Results & Conclusion 18/24

Rules - tech

entertainment

size: support (0.06 - 0.096) color: lift (4.043 - 5.416)

Results & Conclusion 19/24

Rules - business

business

size: support (0.061 - 0.111) color: lift (3.065 - 4.001)

Results & Conclusion 20/24

Pros

- Uses existing tools (Apriori Algorithm).
- ▶ 50% to 67% faster than Apriori.
- More transparent than other text classification Algorithms.
- Allows domain experts to tune the model.

Results & Conclusion 21/24

Cons

- Ignores the relative order of terms.
- While used for pre-processing, term frequency is not considered for classification.
- Parameters (Minimum support, Minimum confidence, Critical Relative support threshold) need to be tuned carefully.

Results & Conclusion 22/24

References

- Rakesh Agrawal and Ramakrishnan Srikant, "Fast algorithms for mining association rules in large databases, Proceedings of the 20th International Conference on Very Large Data Bases, VLDB", pages 487-499, Santiago, Chile, September 1994.
- Zailani Abdullah, Tutut Herawan, Noraziah Ahmad and, Mustafa Mat Deris, "Mining significant association rules from educational data using critical relative support approach, Procedia - Social and Behavioral Sciences", 28 (2011) 97 – 101.
- 3. Gayathri, K.; Marimuthu, A., "Text document preprocessing with the KNN for classification using the SVM," in Intelligent Systems and Control (ISCO), 2013 7th International Conference on, vol., no., pp.453-457, 4-5 Jan. 2013.

Results & Conclusion 23/24

References

- Kadhim, A.I.; Cheah, Yu.-N.; Ahamed, N.H., "Text Document Preprocessing and Dimension Reduction Techniques for Text Document Clustering," in Artificial Intelligence with Applications in Engineering and Technology (ICAIET), 2014 4th International Conference on, vol., no., pp.69-73, 3-5 Dec. 2014.
- D. Greene and P. Cunningham. "Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering", Proc. ICML 2006
- Kulkarni, A.R.; Tokekar, V.; Kulkarni, P., "Identifying context of text documents using Naïve Bayes classification and Apriori association rule mining," in Software Engineering (CONSEG), 2012 CSI Sixth International Conference", Sept.2012.

Results & Conclusion 24/24