;;

DEDMOT	2000	・みょこと・エッチ ぐっこ	· , - ·-
スピッしバル		JMENTATION	こびとこ

	-1,2,	,13ve3		77
- ∆4 ₽	V¢.	3704	718	OH
-				

-- ATRICHMEN

	in the state of the control of the c	1. A Heaving Instruction of Jeans and Heaving about the ex- erior of the John Service materials of the page of
Aucik ubi üNic Leave Didin	09/18/92	AND DATES COVERED
GROUNDUÄTER MUNITORING PROGRAM FOR 1991	, FINAL ANNUAL GROUNDWATER MONITORING REPORT	s. FUNDING NUMBERS
a. ACTIONS.		DAAA15 88 D 0021
7. PERFORMING ORGANIZATION NA HARDING LAWSON ASSOCIATES	ME(S) AND ADDRESS(ES)	d. PERFORMING ORGANIZATION REPORT NUMBER 92272R01
9. SPCNSCRING, MONITORING AGE ROCKY MOUNTAIN ARSENAL (CO.).		10. SPONSORING MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES		
12a. DISTRIBUTION: AVAILABILITY S	TATEMENT LEASE; DISTRIBUTION IS UNLIMITED	12b. DISTRIBUTION CODE
CONTAMINANT MIGRATION. MAINTAIN A DATABASE TO	OGRAM WAS TO: (1) ASSESS CHANGES IN (2) MONITOR THE EFFECTS OF REMEDI. MEET REGULATORY REQUIREMENTS AND SITY STUDY (RI/FS) VERIFICATION.	AL ACTIONS. (3) UPPORT REMEDIAL
	SELEC OCT 21 B	TE 1993
14. SUBJECT TERMS HYDROLOGY, REMEDIATION		15. NUMBER OF PAGES 16. PRICE CODE
17. SECURITY CLASSIFICATION 19 OF REPORT UNCLASSIFIED	B. SECURITY CLASSIFICATION 19. SECURITY CLASS OF THIS PAGE OF ABSTRACT	SIFICATION 20. LIMITATION OF ABSTRACT

92272R01 VOL. II OF II 2ND COPY

- COMMITTED TO PROTECTION OF THE ENVIRONMENT -

Groundwater Monitoring Program Final Annual Groundwater Monitoring Report for 1991

Volume II of II

September 18, 1992 Contract No. DAAA15-88-D-0021 Delivery Order 0006

Harding Lawson Associates

REQUESTS FOR COPIES OF THIS DOCUMENT SHOULD BE REFERRED TO THE PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL AMXRM-PM, COMMERCE CITY, COLORADO 80022

This document complies with the National Environmental Policy Act of 1969.

ROCKY MOUNTAIN ARSENAL • COMMERCE CITY, COLORADO • 80022-2180

TECHNICAL SUPPORT FOR ROCKY MOUNTAIN ARSENAL

Groundwater Monitoring Program
Final Annual Groundwater Monitoring Report for 1991

Volume II of II

September 18, 1992 Contract No. DAAA15-88-D-0021 Delivery Order 0006

PREPARED BY

Harding Lawson Associates

PREPARED FOR

PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL

Rocky Mountain Arsenal Information Center Commerce City, Colorado

THIS DOCUMENT IS INTENDED TO COMPLY WITH THE NATIONAL ENVIRONMENTAL POLICY ACT OF 1969.

THE INFORMATION AND CONCLUSIONS PRESENTED IN THIS REPORT REPRESENT THE OFFICIAL POSITION OF THE DEPARTMENT OF THE ARMY UNLESS EXPRESSLY MODIFIED BY A SUBSEQUENT DOCUMENT. THIS REPORT CONSTITUTES THE RELEVANT PORTION OF THE ADMINISTRATIVE RECORD FOR THIS CERCLA OPERABLE UNIT.

93 10 19 206

TABLE OF CONTENTS

				<u>Page</u>
LIST	OF 7	ABLES		v
LIST	OF F	IGURE	s	vii
LIST	OF F	LATES		xii
<u>VOL</u>	UME	<u>.1</u>		
EXF	CUTI	VE SUN	1MARY	ES-i
	RES	ULTS O	THE 1991 WATER MONITORING YEAR PROGRAM	ES-3
1.0	INT	RODUC	TION	ì
	1.1	SITE E	BACKGROUND	l
	1.2	NATU	RE AND EXTENT OF CONTAMINATION	3
	1.3	SUMM	IARY OF PREVIOUS GROUNDWATER MONITORING	4
	1.4	OVER	VIEW OF CURRENT GROUNDWATER MONITORING	7
2.0	HYE	ROGEC	DLOGIC SETTING	8
	2.1	GEOL	OGY	8
		2.1.1 2.2.2	Alluvium Denver Formation	9 9
	2.2	GROU	NDWATER HYDROLOGY	10
		2.2.1 2.2.2	Unconfined Flow System Confined Flow System	12
3.0	PRO	GRAM	STRATEGY	14
	3.1	WATE	R-LEVEL MONITORING	14
		3.1.1 3.1.2 3.1.3 3.1.4	Network Design Comparison With Previous Networks Procedures Quality Assurance and Quality Control	14 15 16 16

11793,600 - GMP 0625091592 Availability Codes
Availability Codes
Special

1

TABLE OF CONTENTS (Continued)

				<u>Page</u>
	3.2	GROU	UNDWATER SAMPLING	. 16
		3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Network Design Comparison With Previous Networks Procedures Chemical Analysis Quality Assurance and Quality Contro!	. 18 . 19
4.0	RES	ults o	F MONITORING DURING THE 1991 WATER MONITORING YEAR .	. 22
	4.1	WATE	R-LEVEL MONITORING DATA	. 23
		4.1.1 4.1.2 4.1.3	Unconfined Flow System Confined Flow System Influences on Data Interpretation 4.1.3.1 Monitoring Network 4.1.3.2 Updated Survey Data	. 26 . 27 . 27
	4.2	GROU	NDWATER SAMPLING DATA	. 28
		4.2.1	Contaminant Distribution in the Unconfined Flow System 4.2.1.1 Diisopropylmethylphosphonate (DIMP) 4.2.1.2 Dibromochloropropane (DBCP) 4.2.1.3 Chloroform 4.2.1.4 Dieldrin	. 29 . 30 . 30
		4.2.2	4.2.1.5 Fluoride Contaminant Distribution in the Confined Flow System 4.2.2.1 Diisopropylmethylphosphonate (DIMP) 4.2.2.2 Dibromochloropropane (DBCP) 4.2.2.3 Chloroform 4.2.2.4 Dieldrin 4.2.2.5 Fluoride	. 33 . 33 . 34 . 34
		4.2.3 4.2.4	4.2.2.5 Fluoride Tentatively Identified Compound Analytical Results Quality Assurance and Quality Control Data 4.2.4.1 Evaluation of Field Quality Control Blank Data 4.2.4.2 Evaluation of Data for Sample Duplicates 4.2.4.3 Gas Chromatography/Mass Spectrometry Confirmation	. 35 . 36 . 39
		4.2.5	Results 4.2.4.4 Quality Assurance and Quality Control Conclusions Influences on Data Interpretation 4.2.5.1 Monitoring Network 4.2.5.2 Laboratory Analysis and Reporting	. 48 . 48 . 48
	4.3	SUMM	IARY	. 50
		4.3.1	Unconfined Flow System	

TABLE OF CONTENTS (Continued)

				<u>Page</u>
		4.3.3	Aquifer Interactions 4.3.3.1 Water-level Data Comparisons 4.3.3.2 Analytical Data Comparisons	. 52
5.0			T OF 1991 WATER MONITORING YEAR DATA FOR ESPONSE ACTION AREAS	. 56
	5.1	NORT	H BOUNDARY CONTAINMENT/TREATMENT SYSTEM	. 57
		5.1.1 5.1.2	Groundwater Flow 5.1.1.1 Water-Table Maps 5.1.1.2 Water-level Cross Sections and Three-point Plots 5.1.1.3 Groundwater Hydrographs 5.1.1.4 Summary Contaminant Migration	. 58 . 59 . 61 . 64 . 65
			5.1.2.1 Unconfined Flow System 5.1.2.2 Confined Flow System 5.1.2.3 Summary	. 70
	5.2	NORT	HWEST BOUNDARY CONTAINMENT/TREATMENT SYSTEM	. 72
		5.2.1 5.2.2 5.2.3	Groundwater Flow 5.2.1.1 Water-Table Maps 5.2.1.2 Water-level Cross Sections and Three-point Plots Contaminant Migration	. 73 . 75 . 76
			Summary	
	5.3	BASIN	F INTERIM RESPONSE ACTION AREA	. 79
		5.3.1 5.3.2	Groundwater Flow Contaminant Migration 5.3.2.1 Unconfined Flow System 5.3.2.2 Confined Flow System 5.3.2.3 Summary	. 80 . 81 . 82
	5.4	BASIN	A NECK CONTAINMENT SYSTEM	. 83
	5.5	IRONE	DALE CONTAINMENT/TREATMENT SYSTEM	. 85
6.0	GLO	SSARY		. 87
7.0	DEE	EDENIC	rc	0.1

TABLE OF CONTENTS

APPENDIXES

- A HYDROGEOLOGIC DATA COLLECTED DURING THE 1991 WATER MONITORING YEAR
- B GAS CHROMATOGRAPHY DATA COLLECTED DURING THE 1991 WATER MONITORING YEAR
- C GAS CHROMATOGRAPHY/MASS SPECTROMETRY DATA COLLECTED DURING THE 1991 WATER MONITORING YEAR

LIST OF TABLES

VOLUME II	
Table No.	
1.1	Comprehensive Monitoring Program Groundwater Monitoring Programs
1.2	Rocky Mountain Arsenal Comprehensive Monitoring Program Target Analytes for the 1991 Water Monitoring Year
3.1	Winter 1990/91, Spring 1991, and Fall 1991 Water Quality Monitoring Networks
3.2	Analytical Parameters for Non-Gas Chromatography/Mass Spectrometry Detection Methods
3.3	Analytical Parameters for Gas Chromatography/Mass Spectrometry Analysis and Certified Reporting Limits
4.1	Comparison Between the 1991 Water Monitoring Network and Previous Water-level Well Networks
4.2	Summary of Analyses for the Winter 1990/91 Sampling Round
4.3	Summary of Analyses for the Spring 1991 Sampling Round
4.4	Summary of Analyses for the Fall 1991 Sampling Round
4.5	Summary of Specific Analyte Data for the 1991 Water Monitoring Year
4.6	Tentatively Identified Compounds, Spring 1991 Sampling Round
4.7	Summary of Data Rejected for the 1991 Water Monitoring Year
4.8	Quality Control Blank Artifact Summary, Volatile Organic Analyses, 1991 Water Monitoring Year
4.9	Quality Control Blank Artifact Summary, Semivolatile Organic Compound and Pesticide Analyses, 1991 Water Monitoring Year
4.10	Quality Control Blank Artifact Summary, Trace Inorganic Constituent Analyses, 1991 Water Monitoring Year
4.11	Statistical Summary for Duplicate Sample Analyses, 1991 Water Monitoring Year
4.12	Certified Reporting Limits for Different Analytical Methods, 1991 Water Monitoring Year
4.13	Dilution Differences for Certified Reporting Limits, 1991 Water Monitoring Year

11793,600 + GMP 0625091492

LIST OF TABLES (Continued)

4.14	Approximate Vertical Gradients Between Stratigraphically Adjacent Unconfined Flow System Wells and Confined Flow System Wells at Cluster Sites, 1991 Water Monitoring Year
5.1	Direction of Vertical Hydraulic Gradients at Well Clusters Near the North Boundary Containment/Treatment System, September 1991
5.2	Contaminant Concentrations in Samples From the Confined Flow System Near the North Boundary Containment/Treatment System, Fall 1989 and Winter 1990/91

LIST OF FIGURES

Figure No.	
1.1	Location Map, Rocky Mountain Arsenal, Commerce City, Colorado
1.2	Locations of Major Potential Contamination Sites, Lakes, Containment Systems, and Interim Response Action Areas
2.1	Upper Stratigraphic Sections of the Denver Basin
2.2	Surficial Geologic Map of the Rocky Mountain Arsenal Area
2.3	Denver Formation Stratigraphic Column
2.4	Rocky Mountain Arsenal Containinant Migration Pathways
3.1	Winter 1990/1991 Water-level Monitoring Network, Confined Groundwater Flow System
3.2	Winter 1990/1991 Sampling Network, Unconfined Groundwater Flow System
3.3	Winter 1990/1991 Sampling Network, Denver Formation Confined Flow System
3.4	1991 Water Monitoring Year Basin F Interim Response Action Sampling Network
4.1	Regional Water-Table Map of the Unconfined Flow System, Winter 1990, 1991
4.2	Regional Water-Table Map of the Unconfined Flow System, Spring 1991
4.3	Regional Water-Table Map of the Unconfined Flow System, Fall 1991
4.4	Potentiometric Surface of the Denver Formation, Zone A. Winter 1990/1991
4.5	Potentiometric Surface of the Denver Formation, Zone 1U, Winter 1990/1991
4.6	Potentiometric Surface of the Denver Formation, Zone 1, Winter 1990/1991
4 .7	Potentiometric Surface of the Denver Formation, Zone 2, Winter 1990/1991
4.8	Potentiometric Surface of the Denver Formation, Zone 3, Winter 1990/1991
4.9	Potentiometric Surface of the Denver Formation, Zone 4, Winter 1990/1991
4.10	Unconfined Groundwater Flow System Fall 1989 Dieldrin Plumes with Winter 1990/1991 Analytical Results Posted
4.11	Unconfined Groundwater Flow System Fall 1989 Chloroform Plumes with Winter 1990/1991 Analytical Results Posted
4.12	Unconfined Groundwater Flow System Fall 1989 Dibromochloropropane (DBCP) Plumes with Winter 1990/1991 Analytical Results Posted

Figure No.	
4.13	Unconfined Groundwater Flow System Fall 1989 Diisopropylmethylphosphonate (DIMP) Plumes with Winter 1990/1991 Analytical Results Posted
4.14	Unconfined Groundwater Flow System Fall 1989 Fluoride Plumes with Winter 1990, 1991 Analytical Results Posted
4.15	Dieldrin Detections, Confined Groundwater Flow System, Winter 1990-1991
4.16	Chloroform Detections, Confined Groundwater Flow System, Winter 1990 1991
4.17	Dibromochloropropane (DBCP) Detections, Confined Groundwater Flow System, Winter 1990/1991
4.18	Diisopropylmethylphosphonate (DIMP) Detections. Confined Groundwater Flow System, Winter 1990/1991
4.19	Fluoride Detections, Confined Groundwater Flow System, Winter 1990 1991
4.20	Approximate Vertical Gradient Direction between the Unconfined and Confined Flow Systems at Cluster Sites, October 1, 1990, to September 30, 1991
5.1	Well Location Maps for the North Boundary Containment System, Basin A Neck Containment System, and South Plants South Tank Farm
5.2	Unconfined Flow System Water-Table Elevation Map of the Interim Response Action Areas, Winter 1990: 1991
5.3	Unconfined Flow System Water-Table Elevation Map of the Interim Response Action Areas, Spring 1991
5.4	Unconfined Flow System Water-Table Elevation Map of the Interim Response Action Areas, Fall 1991
5.5	Cross Section of Approximate Water-Table Elevations at the North Boundary Containment/Treatment System from October 1 to December 31, 1990
5.6	Cross Section of Approximate Water-Table Elevations at the North Boundary Containment/Treatment System from January 1 to March 31, 1991
5.7	Cross Section of Approximate Water-Table Elevations at the North Boundary Containment/Treatment System from April 1 to June 30, 1991
5.8	Cross Section of App ximate Water-Table Elevations at the North Boundary Containment/Treatment System from July 1 to September 30, 1991
5.9	Direction and Magnitude of Water-Table Gradients in the Vicinity of the North Boundary Containment/Treatment System Barrier Wall from October 1 to December 31, 1990

Figure No.	
5.10	Direction and Magnitude of Water-Table Gradients in the Vicinity of the North Boundary Containment/Treatment System Barrier Wall from January 1 to March 31, 1991
5.11	Direction and Magnitude of Water-Table Gradients in the Vicinity of the North Boundary Containment Treatment System Barrier Wall from April 1 to June 30 1991:
5.12	Direction and Magnitude of Water-Table Gradients in the Vicinity of the Nort Boundary Containment Treatment System Barrier Wall from July 1 to September 30, 1991
5 13	Hydrograph of Unconfined Flow System Wells Across the North Boundary Containment Treatment System Barrier Wall (wells 24178 and 24193)
5.14	Hydrograph of Unconfined Flow System Wells Across the North Boundary Containment, Treatment System Barrier Wall (wells 24177 and 24192)
5.15	Hydrograph of Unconfined Flow System Wells Across the North Boundary Containment/Treatment System Barrier Wall (wells 23212 and 23217)
5.16	Hydrograph of Unconfined Flow System Wells Across the North Boundary Containment/Treatment System Barrier Wall (wells 23214 and 23215)
5.17	Hydrograph of Unconfined Flow System Wells Across the North Boundary Containment/Treatment System Barrier Wall (wells 24180 and 24512)
5.18	Hydrograph of Confined Flow System Wells Across the North Boundary Containment/Treatment System Barrier Wall (wells 23161 and 23234)
5.19	Hydrograph of Confined Flow System Wells Across the North Boundary Containment/Treatment System Barrier Wall (wells 24202 and 24203)
5.20	Hydrograph of Confined Flow System Wells Across the North Boundary Containment Treatment System Barrier Wall (wells 24204 and 24205)
5.21	Hydrograph of Well Cluster North of the North Boundary Containment/Treatment System Barrier Wall (wells 24171, 24172, 24511, and 24512)
5.22	Hydrograph of Well Cluster North of the North Boundary Containment/Treatment System Barrier Wall (wells 24167, 24168, 24192, and 24503)
5.23	Hydrograph of Well Cluster North of the North Boundary Containment/Treatment System Barrier Wall (wells 24194 and 24204)

Figure No.	
5.24	Hydrograph of Well Cluster South of the North Boundary Containment/Treatment System Barrier Wall (wells 23176, 23177, and 23178)
5 25	Hydrograph of Well Cluster South of the North Boundary Containment/Treatment System Barrier Wall (wells 24178 and 24203)
5.26	Hydrograph of Well Cluster South of the North Boundary Containment/Treatment System Barrier Wall (wells 24179 and 24205)
5.27	Diisopropylmethylphosphonate (DIMP) Histograms for Wells near the North Boundary Containment/Treatment System
5.28	Dibromochloropropane (DBCP) Histograms for Wells near the North Boundary Containment/Treatment System
5.29	Dieldrin Histograms for Wells near the North Boundary Containment/Treatment System
5.30	Chloroform Histograms for Wells near the North Boundary Containment/ Treatment System
5.31	Fluoride Histograms for Wells near the North Boundary Containment. Treatment System
5.32	Diisopropylmethylphosphonate (DIMP) Histograms for Wells North of Rocky Mountain Arsenal
5.33	Dibromochloropropane (DBCP) Histograms for Wells North of Rocky Mountain Arsenal
5.34	Dieldrin Histograms for Wells North of Rocky Mountain Arsenal
5.35	Chloroform Histograms for Wells North of Rocky Mountain Arsenal
5.36	Fluoride Histograms for Wells North of Rocky Mountain Arsenal
5.37	Well Location Maps for the Irondale Containment System and the Northwest Boundary Containment System
5.38	Cross Section of Approximate Water-Table Elevations at the Northwest Boundary Containment/Treatment System from October 1 to December 31, 1990
5.39	Cross Section of Approximate Water-Table Elevations at the Northwest Boundary Containment/Treatment System from January 1 to March 31, 1991
5.40	Cross Section of Approximate Water-Table Elevations at the Northwest Boundary Containment/Treatment System from April 1 to June 30, 1991

11793,600 - GMP 0625091492

x

Figure No.	
5.41	Cross Section of Approximate Water-Table Elevations at the Northwest Boundary Containment/Treatment System from July 1 to September 30, 1991
5.42	Direction and Magnitude of Water-Table Gradients in the Vicinity of the Northwest Boundary Containment/Treatment System Barrier Wall from October 1 to December 31, 1990
5.43	Direction and Magnitude of Water-Table Gradients in the Vicinity of the Northwest Boundary Containment/Treatment System Barrier Wall from January 1 to March 31, 1991
5.44	Direction and Magnitude of Water-Table Gradients in the Vicinity of the Northwest Boundary Containment/Treatment System Barrier Wall from April 1 to June 30, 1991
5.45	Direction and Magnitude of Water-Table Gradients in the Vicinity of the Northwest Boundary Containment/Treatment System Barrier Wall from July 1 to September 30, 1991
5.46	Dissopropylmethylphosphonate (DIMP) Histograms for Wells near the Northwest Boundary Containment/Treatment System
5.47	Dieldrin Histograms for Wells near the Northwest Boundary Containment/ Treatment System
5.48	Dibromochloropropane (DBCP) Histograms for Wells near the Northwest Boundary Containment/Treatment System
5.49	Chloroform Histograms for Wells near the Northwest Boundary Containment/ Treatment System
5.50	Fluoride Histograms for Wells near the Northwest Boundary Containment/ Treatment System
5.51	Diisopropylmethylphosphonate (DIMP) Histograms for Wells near Basin F
5.52	Dibromochloropropane (DBCP) Histograms for Wells near Basin F
5.53	Dieldrin Histograms for Wells near Basin F
5.54	Chloroform Histograms for Wells near Basin F
5.55	Fluoride Histograms for Wells near Basin F

LIST OF PLATES

Plate No. Comprehensive Monitoring Program Regional Rocky Mountain Arsenal Well Location Map, May 1992 Winter 1990/91 Water-level Monitoring Network, Unconfined Groundwater Flow System

Table 1.1: Comprehensive Monitoring Program Groundwater Monitoring Programs

Water Monitoring Year	Number of Water Levels Measured Ouarterly ^a	Number of Wells Sampled Annually ^a	Number of Wells Sampled Semiannually ^a	Number of Wells Sampled Ouarterly ^a
1988	1119	466	307	46
1989	1013	488	388	101
1990	1210	621	61	65
1991	1265	282	N/A	70

N/A = not applicable

^a The actual number of wells measured or sampled can vary from this number of proposed wells.

Table 1.2: Rocky Mountain Arsenal Comprehensive Monitoring Program Target Analytes for the 1991 Water Monitoring Year

Organochlorine Pesticides

2,2'-bis(p-Chlorophenyl)-1,1-dichloroethene 2,2'-bis(p-Chlorophenyl)-1,1,1-trichloroethane

Aldrin

Chlordane

Endrin

Dieldrin

Isodrin

Hexachlorocyclopentadiene

Volatile Organohalogens

1.1-Dichloroethane

1.2-Dichloroethane

1,1-Dichloroethene

1.2-Dichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Carbon tetrachloride

Chlorobenzene

Chloroform

Methylene chloride

Tetrachloroethene

Trichloroethene

Organosulfur Compounds

1.4-Dithiane

1,4-Oxithiane

Benzothiazole

Dimethyldisulfide

p-Chlorophenylmethylsulfide

p-Chlorophenylmethylsulfone

p-Chloropheny methylsulfoxide

Organophosphorus Compounds^a

Atrazine

Malathion

Parathion

Supona

Vapona

Volatile Organic Aromatic Compounds

Benzene

Ethylbenzene

Toluene

m-Xylene

o- and p-Xylene

Volatile Hydrocarbon Compounds

Bicycloheptadiene

Dicyclopentadiene (DCPD)

Methylisobutyl Ketone (MIBK)

Organophosphorus Compounds

Diisopropylmethylphosphonate (DIMP)

Dimethylmethylphosphonate (DMMP)

Dibromochloropropane (DBCP)

Metals

Arsenic

Cadium

Chromium

Copper

Lead

Mercury

Zinc

Cations

Calcium

Magnesium

Potassium

Sodium

Anions

Chloride

Fluoride

Nitrate+nitrite

Sulfate

Cyanide

In the 1988, 1989, and 1990 CMP analytical programs, only Parathion results were reported from the organophosphorous compounds.

Table 3.1: Winter 1990/91, Spring 1991, and Fall 1991 Water Quality Monitoring Networks (Page 1 of 2)

Section Number	Total Wells	Well Number
Winter 1990/9	<u>l</u>	
Unconfined Fl	ow Syste	em Wells
01	2	027°, 075
02	4	020, 023, 034, 505
22	5	008, 011, 043, 051, 053
23	28	047, 049, 057, 085, 095, 108 ^a , 118, 123, 142, 179, 188, 191, 197, 198, 202, 203, 204, 205, 220, 226, 231, 232, 235, 237, 238 ^a , 239, 241, 530
24	14	063, 101, 127, 135, 161, 163, 164, 166, 184, 185, 191, 199, 200, 201
26	32	011, 015, 017, 019, 020, 041, 065 ^a , 071, 073, 076, 083, 085, 127, 133, 145 ^a , 148, 157, 158, 160, 161, 162, 163, 164 ^a , 165 ^a , 166, 167 ^a , 168, 169, 170, 171 173, 501, 503
27	20	003, 016, 037, 044, 053, 056, 057, 059, 062, 064, 071, 072, 073, 074, 076, 079, 082, 083, 085, 086
28	2	002, 023
33	5	048, 077, 078, 079, 581
35	3	505, 506 ^a , 507
Offpost	98	37304°, 37307, 37308, 37309, 37312, 37313, 37320°, 37323, 37327, 37330, 37331, 37332°, 37333, 37334, 37335°, 37336°, 37337, 37338, 37339, 37341°, 37342°, 37343, 37345, 37346°, 37347°, 37348°, 37357°, 37350°, 37351°, 37352°, 37353°, 37354°, 37355°, 37356°, 37357°, 37358, 37359°, 37360°, 37361°, 37363°, 37364°, 37366°, 37367°, 37368°, 37369, 37370, 37371, 37373, 37374, 37377, 37378, 37381, 37382, 37383°, 37385, 37386, 37389, 37391, 37392, 37395°, 37396, 37397°, 37402°, 37403°, 37404°, 37405°, 37406°, 37407, 37408°, 37409°, 37410°, 37418°, 37419°, 37420°, 37428°, 37429°, 37430°, 37433°, 37434°, 37435°, 37436°, 37437°, 37438, 37439, 37440°, 37441, 37442°, 37433°, 37444°, 005, 198-608°, 198-611°, 108-614°, DCGW01°, DCGW03°, SACMW03°, SACMW08°, SACMW11°
	rotar u	nconfined flow system wells = 213

Confined Flow System Wells

	0,0.0	, , , , , , , , , , , , , , , , , , ,
01	3	028, 029, 076
02	2	021, 025
22	6	023, 027, 028, 030, 031, 619
23	19	177, 180, 181, 183, 189, 190, 192, 193, 200, 201, 218, 219, 221, 222, 227, 230, 233, 234, 236

Table 3.1: Winter 1990/91, Spring 1991, and Fall 1991 Water Quality Monitoring Networks (Page 2 of 2)

Section Number	Total Wells	Well Number
Confined Flow	System	Wells (continued)
24	6	136, 168, 171, 172, 174, 175
26	15	066, 067, 072, 075, 084, 086, 129, 140, 142, 146, 149, 150, 153, 155, 156
27	3	054, 055, 058
28	1	025
Offpost	14	37316, 37317, 37318, 37319, 37321*, 37322*, 37365, 37372, 37376, 37379, 37380, 37387, 37388, 37390
	Total co	onfined flow system wells = 69

Spring 1991/Fall 1991

Unconfined Flow System Wells

23	13	049, 095, 108 ^{b,c} , 142, 179 ^c , 188, 191, 220, 237, 238 ^{b,c} , 239 ^c , 241, 530 ^c
26	31	015, 017, 019, 020, 041, 065 ^{b,c} , 071, 073, 083, 085, 127, 133, 145 ^{b,c} , 148, 157, 158 ^b , 160, 161, 162, 163, 164 ^{b,c} , 165 ^{b,c} , 166, 167 ^b , 168, 169, 170, 171, 173, 501, 503
27	1	016
35	2	505, 506 ^{b,c}
	Total	unconfined flow system wells = 47

Confined Flow System Wells

23	8	180°, 181, 189, 190, 192, 193, 221, 222
26	15	066, 067, 072, 075, 084, 086, 129, 140, 142, 146°, 149, 150, 153, 155, 156

Total confined flow system wells = 23

^{*} Additional Offpost Remedial Investigation well sampled but not in proposed Comprehensive Monitoring Program Network.

No sample obtained in Winter 1990/91.
 No sample obtained in Spring 1991.
 No sample obtained in Fall 1991.

Table 3.2: Analytical Parameters for Non-Gas Chromatography/Mass Spectrometry Detection Methods (Page 1 of 2)

		DataChem Laboratories		ESE Laboratories	
Analyte	Analyte Detection Analyte Method		Certified Reporting Limit (µg/l)	PMRMA Method Designation	Certified Reporting Limit (µg/1)
Allalyte	- Westing	Designation		Designation	(PK/1)
Anions	IONCHROM				
Chloride		TT09	278	NN8	1590
Fluoride		TT09	153	NN8	1000 •
Nitrite, nitrate (nonspecific)		LL8	10	TF22	10
Sulfate		TT09	175	NN8	5000
Cyanide	Colorimetric				
Cyanide		TF34	5	CN1	8.9
Dibromochloropropane	GC/ECD				
Dibromochloropropane	- , -	AY8	0.195	Q8	0.13
Metals					
Arsenic	AA	AX8	2.35	R9D	25
Arsenic	AA	SS12	117	SD30	2
Arsenic	AA			VV8	2.5
Cadmium	ICP	SS12	6.78	R9D	5
Calcium	ICP	SS12	105	R9D	50
Chromium	ICP	SS12	16.8	R9D	22
Copper	ICP	SS12	18.8	R9D	10
Lead	ICP	SS12	43.4	R9D	52
Magnesium	ICP	SS12	135	R9D	89.2
Mercury	AA	CC8	0.1	WW8	0.5
Potassium	ICP	SS12	1240	XX8	590
Sodium	ICP	SS12	279	R9D	251
Zinc	ICP	SS12	18	R9D	20
Vitrogen-phosphorus Pesticides	GC/NPD				
Atrazine	23/112	UH11	4.03	UN07	0.512
Malathion		UH11	0.373	UN07	0.25
Parathion		UH11	0.647	UN07	0.25
Supona		UH11	0.787	UN07	0.25
Vаропа Vаропа		UN11	0.384	UN07	0.25 0.25
Organochlorine Pesticides	GC/ECD				
2,2-bis(p-Chlorophenyl)-	GC/ECD	KK8	0.049	MM8A	0.059
1,1,1-trichloroethane					
2,2-bis(p-Chlorophenyl)- 1.1-dichloroethene		KK8	0.054	MM8A	0.046
Aldrin		КК8	0.05	MM8A	0.000
Chlordane			0.03		0.083
Dieldrin		KK8		MM8A	0.152
Endrin Endrin		KK8	0.05	MM8A	0.0539
enarin Hexachlorocyclopentadiene		KK8	0.05	MM8A	0.06
nexachiorocyclopentagiene Isodrin		KK8 KK8	0.048 0.051	MM8A MM8A	0.08 3 0.056
organosulfur Compounds	GC/FPD				
1,4-Dithiane	GUITT	AAA8	1.34	PP8A	3.34
1,4-Oxathiane		AAA8	1.34 2.38	PP8A	3.34 1.35
4-Chlorophenylmethyl sulfide		AAA8	2.38 5.69	PP8A	1.35
4-Chlorophenylmethyl sulfone		AAA8	5.69 7.46	PP8A	2.24
4-Chlorophenylmethyl sulfoxide					
4- Omorobitetty meetry i suitoxide		AAA8	11.5	PP8A	۵ ۷ .۱

Table 3.2: Analytical Parameters for Non-Gas Chromatography/Mass Spectrometry Detection Methods (Page 2 of 2)

		DataChem	Laboratories	ESE Laboratories	
Analyte	Analyte Detection <u>Method</u>	PMRMA Method Designation	Certified Reporting Limit (µg/l)	PMRMA Method Designation	Certified Reporting Limit (µg/1)
Organosulfur Compounds (continued)			_		
Benzothiazole Dimethyl disulfide		AAA8 AAA8	\$ 0.55	PP8A PP8A	1.14 1.16
Phosphonates	GC/FPD	•			
Diisopropylmethylphosphonate	,	AT8	0.392	QQ8	10.1
Dimethylmethylphosphonate		AT8	0.188	QQ8	16.3
Volatile Halogenated Compounds	GC/CON				
1,1,1-Trichloroethane		N8	0.76	TT8	1.09
1,1,2-Trichloroethane		N8	0.78	TT8	1 63
1,1-Dichloroethane		N8	0.73	TT8	1.93
1,1-Dichloroethene		N8	1.7	TT8	1.85
1,2-Dichloroethane		N8	1.1	TT8	2.07
1,2-Dichloroethene (total of cis & trans)		N8	0.76	TT8	1.75
Carbon tetrachloride		N8	0.99	TT8	1.69
Chlorobenzene		N8	0.82	TT8	1.36
Chloroform		N8	0.5	TT8	1.88
Methylene chloride		N8	7.4	TT8	2.48
Tetrachloroethene		N8	u.75	TT8	2.76
Trichloroethene		N8	0.56	TT8	1.31
Volatile Hydrocarbons	GC/FID				
Bicyclo[2,2,1]hepta-2-5-diene	·	P8	5.9	R8	13.9
Dicyclopentadiene		P8	5	R8	9.31
Methylisobutyl ketone		P8	4.9	R8	12.9
Volatile Organic Aromatics	GC/PID				
Benzene	•	AV8	1.05	SS8	1.92
Ethylbenzene		AV8	1.37	SS8	0.62
Toluene		AV8	1.47	SS8	2.1
m-Xylene		AV8	1.32	SS8	1.04
o,p-Xylene		AV8	1.36	SS8	1.34

AA = atomic absorption spectrometry

ESE = Environmental Science and Engineering, Inc.

GC/CON = gas chromatography/conductivity detector

GC/ECD = gas chromatography/electron capture detector

GC/FID = gas chromatography/flame ionization detector

GC/FID = gas chromatography/flame photometric detector

GC/MS = gas chromatography/mass spectrometry

GC/NPD = gas chromatography/nitrogen phosphorus detector

GC/PID = gas chromatography/photoionization detector

HPLC = high performance liquid chromatography

ICP = inductively coupled argon plasma screen

IONCHROM = ion chromatography

PMRMA = Program Manager for Rocky Mountain Arsenal

µg/l = micrograms per liter

Table 3.3: Analytical Parameters for Gas Chromatography/Mass Spectrometry
Analysis and Certified Reporting Limits
(Page 1 of 4)

	DataChem L	aboratories	ESE Laboratories	
Analyte	PMRMA Method Designation	Certified Reporting Limit (µg/l)	PMRMA Method Designation	Certified Reporting Limit (µg/1)
Semivolatile Organic Compounds		•		
1.2.3-Trichlorobenzene	UM25	5.8		
1,2,4-Trichlorobenzene	UM25	2.4	UM28	1.4
1,2-Dichlorobenzene	UM25	1.2	UM28	1.0
1,2-Diphenylhydrazine	UM25	13		
1.3-Dichlorobenzene	UM25	3.4	UM28	1.1
1.4-Dichlorobenzene	UM25	1.5	UM28	1.0
1.4-Dithiane	UM25	3.3		
1,4-Oxathiane	UM25	27		
2,2-bis (p-Chlorophenyl)-1,1,1-trichloroethane	UM25	18		
2,2-bis (p-Chlorophenyl)-1,1-dichloroethene	UM25	14		
2,2-bis (p-Chlorophenyl)-1,1-dichloroethane	UM25	18		
2,3,6-Trichlorophenol	UM25	1.7		
2,4,5-Trichlorophenol	UM25	2.8	UM28	4.6
2,4,6-Trichlorophenol	UM25	3.6	UM28	4.8
2,4-Dichlorophenol	UM25	8.4	UM28	5.8
2,4-Dimethylphenol	UM25	4.4	UM28	4.6
2,4-Dinitrophenol	UM25	176	UM28	33
2,4-Dinitrotoluene	UM25	5.8	UM28	9.7
2.6-Dinitroaniline	UM25	8.8		
2,6-Dinitrotoluene	UM25	6.7	UM28	5.0
2-Chloronaphthalene	UM25	2.6	UM28	1.6
2-Chlorophenol	UM25	2.8	UM28	2.4
2-Methylnaphthalene	UM25	1.3	UM28	1.9
2-Methylphenol	UM25	3.6	UM28	3.9
2-Nitroaniline			UM28	9.6
2-Nitrophenol	UM25	8.2	UM28	6.7
3,3'-Dichlorobenzidine	UM25	5.0	UM28	32
3-Dinitroaniline	UM25	21		
3-Menthyl-4-chlorophenol	UM25	8.5		
3-Nitroaniline	UM25	15	UM28	30
3-Nitrotoluene	UM25	2.9		
4-Bromophenylphenyl ether	UM25	22	UM28	1.4
4-Chloro-3-methylphenol	025		UM28	7.0
4-Chloroaniline			UM28	17
4-Chlorophenylmethyl sulfide	UM25	10		
4-Chlorophenylmethyl sulfone	UM25	5.3		
4-Chlorophenylmethyl sulfoxide	UM25	15		
4-Chlorophenylphenyl ether	UM25	23	UM28	4.0
4-Methylphenol	UM25	2.8	UM28	6.1
4-Nitroaniline			UM28	40
4-Nitrophenol	UM25	96	UM28	44

Table 3.3: Analytical Parameters for Gas Chromatography/Mass Spectrometry
Analysis and Certified Reporting Limits
(Page 2 of 4)

	DataChem L	aboratories	s <u>ESE Laboratories</u>	
Analyte	PMRMA Method Designation	Certified Reporting Limit (µg/l)	PMRMA Method Designation	Certified Reporting Limit (µg/l)
Semivolatile Organic Compounds (continued)				
Acenaphthene	UM25	5.8	UM28	3.4
Acenaphthylene	UM25	5.1	UM28	1.1
Aldrin	UM25	13	020	* * *
Anthracene	UM25	5.2	UM28	1.0
Atrazine	UM25	5.9	020	
Benzo[A]anthracene	UM25	9.8	UM28	5.8
Benzo[A]pyrene	0.0123	7.0	UM28	1.2
Benzo[B]fluoranthene	UM25	10	UM28	1.3
Benzo[B]pyrene	UM25	14	C 1V120	1.3
Benzo[G,H,I]perylene	UM25	15	UM28	1.1
Benzo[K]fluoranthene	UM25	10	UM28	2.3
Benzoic acid	014123	10	UM28	2.3
Benzyl alcohol	UM25	4.0	UM28	12
bis(2-Ethylhexyl) phthalate	UM25	7.7	U IVI20	1 4
Bromacil	UM25	2.9		
Butylbenzylphthalate	UM25	2.9 28	111420	
Chlordane		37	UM28	1.1
•	UM25	-	1111400	3.5
Chrysene	UM25	7.4	UM28	2.5
Di-N-butylphthalate	UM25	33	UM28	4.9
Di-N-octylphthalate	UM25	1.5	UM28	8.0
Dibenzo[A,H]anthracene	UM25	12	UM28	2.0
Dibenzofuran	UM25	5.1	UM28	2.6
Dibromochloropropane	UM25	12		
Dicyclopentadiene	UM25	5.5		
Dieldrin	UM25	26		
Diethylphthalate	UM25	5.9	UM28	2.2
Diisopropylmethylphosphonate	UM25	21		
Dimethylmethylphosphonate	UM25	130		
Dimethylphthalate	UM25	2.2	UM28	5.1
Endosulfan sulfate	UM25	50		
Endrin	UM25	18		
Endrin aldehyde	UM25	5.0		
Fluoranthene	UM25	24	UM28	1.0
Fluorene	UM25	9.2	UM28	1.3
Heptachlor	UM25	38		
Heptachlor epoxide	UM25	28		
Hexachlorobenzene	UM25	12	UM28	1.0
Hexachlorobutadiene	UM25	8.7	UM28	1.0
Hexachlorocyclopentadiene	UM25	54	UM28	7.6
Hexachloroethane	UM25	8.3	UM28	1.2
Indeno[1,2,3,-C,D]pyrene	UM25	21	UM28	4.4
Isodrin	UM25	7.8	2122	

Table 3.3: Analytical Parameters for Gas Chromatography/Mass Spectrometry
Analysis and Certified Reporting Limits
(Page 3 of 4)

	DataChem_L	aboratories ESE Laborator		oratories
Analyte	PMRMA Method Designation	Certified Reporting Limit (µg/l)	PMRMA Method Designation	Certified Reporting Limit (µg/l)
Semivolatile Organic Compounds (continued)				
Isophorone	` UM25	2.4	UM28	1.1
Lindane	UM25	7.2		
Malathion	UM25	21		
Methoxychlor	UM25	11		
Mirex	UM25	24		
N-nitrosodi-N-propylamine	UM25	6.8	UM28	3.2
N-nitrosodimethylamine	UM25	9.7		
N-nitrosodiphenylamine	UM25	3.7	UM28	5.9
Naphthalene	UM25	0.5	UM28	3.8
Nitrobenzene	UM25	3.7	UM28	2.9
Parathion	UM25	37		
Pentachlorophenol	UM25	9.1	UM28	12
Phenanthrene	UM25	9.9	UM28	1.0
Phenol	UM25	2.2	UM28	6.2
Pyrene	UM25	17	UM28	1.0
Supona	UM25	19		
Vapona	UM25	8.5		
alpha-Benzenehexachloride	UM25	5.3		
alpha-Endosulfan	UM25	23		
beta-Benzenehexachloride	UM25	17		
beta-Endosulfan	UM25	42		
bis(2-Chloroethoxy)methane	UM25	6.8		
bis(2-Chloroethyl)ether	UM25	0.68		
bis(2-Chloroisopropyl)ether	UM25	5.0		
bis(2-Chloroethoxyl)methane			UM28	3.8
bis(2-Chloroethyl)ether			UM28	1.8
bis(2-Chloroisopropyl)ether			UM28	1.3
bis(2-Ethylexyl)phthalate			UM28	1.0
Volatile Organic Compounds			_	_
1,1,1-Trichloroethane	UM21	1.0	UM27	3.6
1,1,2,2-Tetrachloroethane	UM21	1.5	UM27	2.0
1,1-Dichloroethane	UM21	1.0	UM27	2.0
1,1-Dichloroethene	UM21	1.0	UM27	21
1,2,3-Trichloropropane			UM27	2.0
1,2-Dichlorobenzene			UM27	17
1,2-Dichloroethane	UM21	1.0	UM27	6.7
1,2-Dichloroethene (total of cis and trans)	UM21	5.0		
1,2-Dichloropropane	UM21	1.0	UM27	2.0
1,3-Dichlorobenzene	UM21	1.0	UM27	10
1,3-Dichloropropane	UM21	4.8		
1,4-Dichlorobenzene			UM27	17

Table 3.3: Analytical Parameters for Gas Chromatography/Mass Spectrometry Analysis and Certified Reporting Limits (Page 4 of 4)

	DataChem Laboratories		ESE Labo	ESE Laboratories	
Analyte	PMRMA Method Designation	Certified Reporting Limit (µg/1)	PMRMA Method Designation	Certified Reporting Limit (µg l)	
Volatile Organic Compounds (continued)					
2-Chloroethylvinyl ether	UM21	3.5	UM27	4.0	
2-Hexanone			UM27	4.8	
Acetone	UM21	8.0	UM27	17	
Acrolein			UM27	20	
Acrylonitril	UM21	8.4	UM27	2.3	
Benzene	UM21	1.0	UM27	2.8	
Bromodichloromethane	UM21	1.0	UM27	2.0	
Bromoform	UM21	11	UM27	2.0	
Bromomethane	UM21	14	UM27	36	
Carbon disulfide	021		UM27	16	
Carbon tetrachloride	UM21	1.0	UM27	4.4	
Chlorobenzene	UM21	1.0	UM27	2.0	
Chloroethane	UM21	8.0	UM27	8.0	
Chloroform	UM21	1.0	UM27	2.0	
Chloromethane	UM21	1.2	UM27	9.0	
# 11- 0 1 0 11- 0	UM21	1.0	UM27	2.0	
Dibromochloromethane	UM21	2.0	C.VI27	2.0	
Dichlorobenzene (nonspecific)	U:VIZ I	2.0	UM27	17	
Dichlorodifluoromethane	7/8/21	1.0	UM27	2.0	
Ethylbenzene	UM21	1.0		2.0	
Ethylmethacrylate			UM27		
Methlene bromide			UM27	2.0	
Methylene chloride	UM21	1.0	UM27	19	
Methylethyl ketone	UM21	10	UM27	6.2	
Methylisobutyl ketone	UM21	1.4	UM27	2.0	
Styrene			UM27	2.0	
Tetrachloroethene	UM21	1.0	UM27	2.0	
Toluene	UM21	1.0	UM27	2.0	
Trichloroethene	UM21	1.0	UM27	2.2	
Trichlorofluoromethane	UM21	1.0	UM27	11	
Vinyl acetate			UM27	2.0	
Vinyl chloride	UM21	12	UM27	2.0	
cis-1,3-Dichloropropene			UM27	2.4	
cis-1,4-Dichloro-2-butene			UM27	2.3	
m-Xylene	UM21	1.0			
o,p-Xylene	UM21	2.0	UM27	11	
trans-1,2-Dichloroethene	· · · · · ·		UM27	37	
trans-1,3-Dichloropropene			UM27	1.6	
trans-1,4-Dichloro-2-butene			UM27	3.6	
trans-1,7 Diemore-2 Outene			01.12	5.0	

ESE = Environmental Science and Engineering, Inc. PMRMA = Program Manager for Rocky Mountain Arsenal $\mu g_i I$ = micrograms per liter

Table 4.1: Comparison Between the 1991 Water Monitoring Network and Previous Water-level Well Networks

Sampling Round	Number of CMP Water-level Measurement Wells	Number of Supplementary Wells ^a	CMP Water-level Measurement Dates
Winter 1987, 88	1025	0	11/03/87 to 11/15/87
Spring 1988	916	0	04/20/88 to 05/01/88
Summer 1988	830	0	07/15/88 to 07/25/88
Fall 1988 Winter 1988, 89 Spring 1989 Summer 1989	922 920 984 1008	0 0 0 0	10.11/88 to 10/19/88 01/26/89 to 02/03/89 04/24/89 to 05/02/89 07/24/89 to 07/31/89
Fall 1989	1210	0	10:09 89 to 10:19:89
Winter 1989/90	1200	0	02 12 90 to 02 21 90
Spring 1990	1210	Ō	05 07 90 to 05 15 90
Summer 1990	1216	ō	08/06/90 to 08/14/90
Winter 1990/91	1216	135	01 23, 91 to 02 04 91
Spring 1991	1171	129	04 01 91 to 04 09 91
Fall 1991	1177	178	09/16/91 to 09/27/91

CMP = Comprehensive Monitoring Program

Water-level data from supplementary wells were collected by Morrison-Knudson Engineers, Inc., Technical Operations Division of the Army, and the U.S. Geological Survey near the boundary systems.

Table 4.2: Summary of Analyses for the Winter 1990/91 Sampling Round (Page 1 of 2)

Group/Analyte	Number of Analyses ^a	Number of Detections	Minimum Detection (μg/l)	Maximum Detection (µg/l)	Well Number of Maximum Detection
Volatile Aromatic Compounds					
Benzene	264	20	1.27	210	26133
Ethylbenzene	264	3	2.98	3.89	23049
Toluene	264	15	1.71	>400	26163
m-Xylene	264	5	1.35	7.10	26133
o- and p-Xylenes	264	8	1.50	31.8	26133
Volatile Organohalogen Compounds					
1,1,1-Trichloroethane	273	12	0.828	31.3	23189
1,1,2-Trichloroethane	273	1	6.79	5.79	23189
1.1-Dichloroethane	273	18	1.44	65 .7	02505
1,1-Dichloroethene	266	5	2.03	46.9	23189
1,2-Dichloroethane	273	20	1.49	60.2	35507
1,2-Dichloroethene	273	16	1 29	580	26173
Carbon tetrachioride	273	5	1.21	37.3	23189
Chlorobenzene	273	19	0.950	12.6	23189
Chloroform	273	108	0.573	22,000	26148
Methylene chloride	273	6	3.41	430	26133
Tetrachloroethene	273	60	0.841	830	26133
Trichloroethene	273	58	0.793	500	26173
Volatile Hydrocarbon Compounds					
Bicycloheptadiene	205	9	12.0	740	26133
Dicyclopentadiene	261	28	9.84	2300	26133
Methylisobutylketone	256	3	19.3	210	26133
Dibromochloropropane	184	23	0.147	15.0	26157
Organochlorine Pesticides					
2.2-Bis(p-chlorophenyl)-	173	17	0.0591	1.40	23530
1,1,1-trichloroethane 2,2-Bis(p-chlorophenyl)-	186	3	0.129	0.979	26163
1,1-dichloroethene	180	3	0.129	0.773	20103
Aldrin	175	16	0.0583	0.566	26085
Chlordane	186	2	2.10	2.20	02034
Dieldrin	168	31	0.0457 ^b	3.30	24101
Endrin	186	21	0.0433 ^b	3.80	23049
Hexachlorocyclopentadiene	156	6	0.148	5.30	23530
Isodrin	182	5	0.0825	1.10	23530
Organophosphorus Pesticides					
Atrazine	222	66	4.38	170	26163
Malathion	230	16	0.462	3.74	23530
Parathion	268	39	0.824	59.6	37313
Supona	230	3	0.929	1.93	26163
Vapona	220	4	0.627	5.69	26163

Table 4.2: Summary of Analyses for the Winter 1990/91 Sampling Round (Page 2 of 2)

	Group/Analyte	Number of Analyses ^a	Number of Detections	Minimum Detection (µg/l)	Maximum Detection (µg/l)	Well Number of Maximum Detection
	Organophosphorus Compounds					
	Diisopropylmethylphosphonate	248	151	0.443	3700	37418
•	Dimethylmethylphosphate	249	12	0.226	17,000	26041
	Organosulfur Compounds					
	1,4-Dithiane	272	46	1.63	200	35507
	1,4-Oxathiane	233	23	2.00	43.0	26041
	Benzothiazole	271	2	6.82	15.7	26163
	Dimethyldisulfide	224	3	1.84	4.45	26163
	p-Chlorophenylmethylsulfide	270	16	1.29	530	26133
	p-Chlorophenylmethylsulfone	268	37	6.50	760	26168
	p-Chlorophenylmethylsulfoxide	272	29	2.93	160	23220
	Metals					
	Arsenic	270	61	2.71	57.2	26163
	Cadmium	270	l	15.9	15.9	23530
	Chromium	270	24	17.2	151	23530
	Copper	270	28	10.9	696	24127
	Lead	270	4	44.6	79.0	23530
	Mercury	271	76	0.102	3.60	37444
	Zinc	270	65	20.5	278	SACMW08
	Cations					
	Calcium	230	230	2200	950,000	26066
	Magnesium	230	224	294	510,000	26041
	Potassium	271	259	1290	181,000	26041
	Sodium	230	230	54,000	21,000,000	26041
	Cyanide	220	12	5.33	16.5	26166
	Anions					
	Chloride	187	187	3560	11,000,000	26163
	Fluoride	172	160	832	130,000	26163
	Nitrate/nitrite	260	260	16.5	30,000	23095
	Sulfate	214	211	2160	14,000,000	02023

^a There were 273 groundwater samples collected during the Winter 1990/91 sampling round. The number of analytical results in the final database is often less than 273 due primarily to their rejection. A summary of rejected results is presented in Table 4.7

 μ g/l = micrograms per liter

< = less than

> = greater than

b The reported results are below the certified reporting limit because the method accuracy is above 100 percent.

Table 4.3: Summary of Analyses for the Spring 1991 Sampling Round (Page 1 of 2)

Group/Analyte	Number of Analyses ^a	Number of Detections	Minimum Detection (µg/1)	Maximum Detection (µg/l)	Well Number of Maximum Detection
Volatile Aromatic Compounds					
Benzene	61	17	1.26	200	26133
Ethylbenzene	61	1	11.3	11.3	23530
Toluene	61	6	11.2	1800	26163
m-Xylene	61	3	1.55	11.2	23530
o- and p-Xylenes	61	8	1.82	21.7	23530
Volatile Organohalogen Compounds					
1,1,1-Trichloroethane	61	0	-	-	-
1,1,2-Trichloroethane	61	Ō	_	_	_
1,1-Dichloroethane	61	6	0.935	3.73	26157
1,1-Dichloroethene	61	Ō	-	=	-
1,2-Dichloroethane	61		1.87	23.9	23049
1,2-Dichloroethene	61	5 2 2 6	6.81	470	26173
Carbon tetrachloride	61	$\bar{2}$	2.23	4.63	26073
Chlorobenzene	61	6	1.47	9.55	26066
Chloroform	51	22	0.644	73,000	26133
Methylene chloride	61	5	18.3	190	26148
Tetrachloroethene	60	14	1.13	970	26133
Trichloroethene	59	19	0.678	600	26173
Volatile Hydrocarbon Compounds					
Bicycloheptadiene	40	7	12.7	310	26148
Dicyclopentadiene	58	13	22.7	5600	23049
Methylisobutylketone	58	4	9.23	110	26148
Methynsobatyrketone	30	7	7.23		20140
Dibromochloropropane	60	11	0.200	22.0	26133
Organochlorine Pesticides					
2,2-Bis(p-chlorophenyl)-	48	9	0.157	0.706	26148
1,1,1-trichloroethane	40	•	0.107	0.161	2/172
2,2-Bis(p-chlorophenyl)- 1,1-dichloroethene	48	3	0.106	0.161	26173
Aldrin	48	7	0.0682	0.964	26173
Chlordane	48	ó	-	-	20175
Dieldrin	48	20	0.0681	6.20	23241
Endrin	47	6	0.0589	0.248	26148
Hexachlorocyclopentadiene	9	0	0.0307	0.240	20140
Isodrin	48	4	0.0767	1.70	23241
15041111	70	7	0.0707	1.70	23241
Organophosphorus Pesticides	2.			240	26162
Atrazine	31	19	5.57	240	26163
Malathion	31	15	0.559	7.09	23241
Parathion	49	7	0.966	6.10	26071
Supona	31	3	1.26	11.0	26041
Vapona	31	4	0.433	9.90	26041

Table 4.3: Summary of Analyses for the Spring 1991 Sampling Round (Page 2 of 2)

Group/Analyte	Number of Analyses ^a	Number of Detections	Minimum Detection (μg/1)	Maximum Detection (µg/l)	Well Number of Maximum Detection
Organophosphorus Compounds					
Diisopropylmethylphosphonate	59	41	0.998	3200	26071
Dimethylmethylphosphate	59	10	0.272	8300	26041
Organosulfur Compounds					
1,4-Dithiane	53	28	1.76	160	26066
1,4-Oxathiane	52	25	1.65	67.0	26041
Benzothiazole	29	6	2.68	21.9	26041
Dimethyldisulfide	29	3	1.10	4.47	26041
p-Chlorophenylmethylsulfide	48	10	6.88	530	26133
p-Chlorophenylmethylsulfone	53	23	6.26	820	26168
p-Chlorophenylmethylsulfoxide	46	13	5.49	140	26148
Metals					
Arsenic	58	33	2.94	30.8	23049
Cadmium	58	0	-	<u>-</u>	.
Chromium	58	12	23.0	92.6	26133
Copper	58	9	10.5	93.0	23095
Lead	58	0	_	-	-
Mercury	59	22	0.101	1.79	26071
Zinc	58	8	21.4	42.6	26501
Cations					
Calcium	40	40	34,600	960,000	26066
Magnesium	40	40	2060	520,000	26041
Potassium	58	58	1240	142,000	26041
Sodium	40	40	120,000	20,000,000	26041
Cyanide	58	14	5.00	18.5	26168
Anions					_
Chloride	60	60	16,000	10,000,000	26041
Fluoride	60	46	1250	250,000	26041
Nitrate/nitrite	58	58	13.4	31,000	23095
Sulfate	60	60	120,000	10,000,000	26041

^a There were 61 groundwater samples collected during the Spring 1991 sampling round. The number of analytical results in the final database is often less than 61 due primarily to their rejection. A summary of rejected results is presented in Table 4.7.

 $[\]mu$ g, 1 = micrograms per liter - = Because no detections were recorded, no value exists.

Table 4.4: Summary of Analyses for the Fall 1991 Sampling Round (Page 1 of 2)

Group/Analyte	Number of Analyses ^a	Number of Detections	Minimum Detection (μg/l)	Maximum Detection (µg/l)	Well Number of Maximum Detection
Volatile Aromatic Compounds					
Benzene	58	11	3.08	140	26173
Ethylbenzene	58	6	1.15	11.3	26133
Toluene	58	5	3.09	690	26163
m-Xylene	58	3	1.21	7.37	26133
o- and p-Xylenes	58	5	3.65	20.7	26133
Volatile Organohalogen Compounds					
1.1.1-Trichloroethane	58	3	1.91	195	26133
1,1,2-Trichloroethane	33	ŏ	-	-	20133
1,1-Dichloroethane	58		2.83	9.40	26133
1,1-Dichloroethene	58	5 2 2	1.99	2.45	26171
1,2-Dichloroethane	58	2	4.67	46.0	23095
1,2-Dichloroethene	58	2	5.32	30.2	26133
Carbon tetrachloride	58	1	5.84	5.84	26073
Chlorobenzene	58	6	1.56	31.7	26148
Chloroform	58	81	2.25	55,000	_
Methylene chloride	58	6	11.3	57,000 570	26173
Tetrachloroethene	58 58	12	2.71	196	26173
Trichloroethene	58	14			23241
Tricmoroethene	36	14	1.46	198	26133
Volatile Hydrocarbon Compounds					
Dicyclopentadiene	58	11	10.5	900	26133
Methylisobutylketone	58	3	17.3	98.2	26133
Dibromochloropropane	58	8	0.934	71.0	26173
Organochlorine Pesticides					
2,2-Bis(p-chlorophenyl)-	58	3	0.193	1.90	26163
1,1,1-trichloroethane					
2,2-Bis(p-chlorophenyl)-	58	2	0.174	0.270	23095
1,1-dichloroethene					
Aldrin	58	4	0.133	2.40	26127
Chlordane	58	0	-	-	-
Dieldrin	58	32	0.0529 ^b	7.40	26127
Endrin	58	8	0.0735	1.42	26127
Hexachlorocyclopentadiene	58	0	-	-	-
Isodrin	58	4	0.0887	0.181	35505
Organophosphorus Pesticides					
Parathion	56	0	-	~	-
Organophosphorus Compounds					
Diisopropylmethylphosphonate	57	34	14.5	5400	23095
Dimethylmethylphosphate	57	4	34.3	8000	26041
·)	J,	7	57.5	5000	20041

Table 4.4: Summary of Analyses for the Fall 1991 Sampling Round (Page 2 of 2)

Group/Analyte	Number of Analyses ^a	Number of Detections	Minimum Detection (μg/l)	Maximum Detection (µg/l)	Well Number of Maximum Detection
Organosulfur Compounds					
1.4-Dithiane	58	24	4.35	200	26066
1,4-Oxathiane	58	27	2.01	28.2	26148
Benzothiazole	58	4	1.32	2.75	·26066
Dimethyldisulfide	58	2	6.06	13.1	26173
p-Chlorophenylmethylsulfide	58	16	1.27	960	26173
p-Chlorophenylmethylsulfone	58	32	3.52	2900	26167
p-Chlorophenylmethylsulfoxide	58	13	3.81	350	26167
Metals					
Arsenic	55	26	2.04	130	26041
Cadmium	55	0	-	-	-
Chromium	55	0	-	-	-
Copper	55	0	-	-	-
Lead	55	0	-	-	=
Mercury	55	6	0.504	25.0	26019
Zinc	55	0	-	-	-
Cations					
Calcium	55	55	22,000	1,300,000	26167
Magnesium	55	51	1630	460,000	26041
Potassium	55	55	1280	130,000	26041
Sodium	55	55	130,000	17,000,000	26041
Cyanide	55	14	10.4	28.2	26020
Anions					
Chloride	58	58	17,100	22,000,000	26041
Fluoride	58	28	955	220,000	26041
Nitrate/nitrite	58	58	22.7	28,000	26020
Sulfate	58	58	120,000	9,000,000	26041

 $\mu g/l = micrograms per liter$

^a There were 58 groundwater samples collected during the Fall 1991 sampling round. The number of analytical results in the final database is often less than 58 due primarily to their rejection. A summary of rejected results is presented in Table 4.7

results is presented in Table 4.7
b The reported results are below the certified reporting limit because the method accuracy is above 100 percent.

^{- =} Because no detections were recorded, no value exists.

Table 4.5: Summary of Specific Analyte Data for the 1991 Water Monitoring Year

:

CFS = confined flow system UFS = unconfined flow system

Table 4.6: Tentatively Identified Compounds Spring 1991 Sampling Round

Compound	Number of <u>Detections</u>	Concentration (µg/1) ^a	Well Identification
1-Chloro-4-(methylsulfonyl)-benzene	2	4.8 45	26169 26166
2-Chloro-5-methylphenol	1	130	26163
2-Chloro-6-methylphenol	1	81	26163
4-Dioxide-1,4-oxathiane	1	• 7.9	26129
4-Methyl-2-pentanone/methylisobutyl ketone ^b	1	69	26133
(Methylsulfonyl)-benzene	i	27	26166
Tetrachloroethene ^b	1	140	26133

 μ g/l = micrograms per l'ter

a Reported concentrations are estimated values.
 b CMP target analytes

Table 4.7: Summary of Data Rejected for the 1991 Water Monitoring Year (Page 1 of 2)

Method/Analyte	Number of Rejected Values ^a
Winter 1000/01	
Winter 1990/91 Method: N8 Volatile Organohalogen Compounds 1,1-Dichloroethene	7
Method: P8 Volatile Hydrocarbon Compounds Bicycloheptadiene	25
Dicyclopentadiene Methylisobutylketone	16
Method: R8 Volatile Hydrocarbon Compounds Dicyclopentadiene	9
Method: AY8 Dibromochloropropane Dibromochloropropane	87
Method: KK8 Organochlorine Pesticides 2,2-Bis(p-chlorophenyl)-1,1,1-trichloroethan	e 100
2,2-Bis(p-chlorophenyl)-1,1-dichloroethene	e 100 87
Aldrin	98
Chlordane	87
Dieldrin	116
Endrin	87
Hexachlorocyclopentadiene	100
Isodrin	91
Method: MM8A Organochlorine Pesticides Hexachlorocyclopentadiene	17
Method: UH11 Organophosphorus Pesticides	_
Atrazine	9
Malathion	1
Parathion	3
Supona Vapona	1 1 1
Method: AT8 Organophosphorus Compounds Diisopropylmethylphosphonate Dimethylmethylphosphate	25 24
Method: AAA8 Organosulfur Compounds 1,4-Oxathiane Dimethyldisulfide	36 36
Method: PP8A Organosulfur Compounds 1,4-Oxathiane Dimethyldisulfide p-Chlorophenylmethylsulfide p-Chlorophenylmethylsulfone	3 12 2 4

Table 4.7: Summary of Data Rejected for the 1991 Water Monitoring Year (Page 2 of 2)

Method/Analyte	Number of Rejected Values ^a
Winter 1990/91 (continued) Method: TF34 Cyanide Cyanide	52
Method: LL8 Anions Nitrate/nitrite	13
Method: TT09 Anions Chloride Fluoride	71 86 44
Sulfate Spring 1991 Method: N8 Volatile Organohalogen Compound Chloroform	10
Method: KK8 Organochlorine Pesticides Endrin Hexachlorocyclopentadiene	1 23
Method: MM8A Organochlorine Pesticides Hexachlorocyclopentadiene	18
Method: AAA8 Organosulfur Compounds 1,4-Oxathiane Benzothiazole Dimethyldisulfide Dithiane p-Chlorophenylmethylsulfide p-Chlorophenylmethylsulfone p-Chlorophenylmethylsulfoxide	8 31 31 7 12 7

^a Number of rejected values includes quality control samples.

Table 4.8: Quality Control Blank Artifact Summary, Volatile Organic Analyses
1991 Water Monitoring Year

Sampling Round	Blank Well Number ^a	Affected Well Number ^b	Chemical Abbreviation	Blank Artifact Concentration (µg/1)	Investigative Sample Concentration ^c (µg/l)	Affected Investigative Sample Concentration ^d (µg/l)
Rinse Blank Winter 1991						
	23232	23235	CH2CL2	3.15	< 2.48	< 2.48
	33077	33078	CLC6H5	1.20	< 0.82	< 0.82
		•	CHCL3	0.649	0.78	0.694
	37334	37337	CHCL3	1.83	2 78	< 0.50
			CLC6H5	1.64	2.35	< 0.82
			DBCP	0.220	0.24	< 0.195
Fall 1991						
	26157	26171	CHCL3	65.4	27,000	<1.88
			TCLEE	6.07	>196	3.45
Field Blank Winter 1991						
	26086		CHCL3	2.00	< 0.50	
	33077		CLC6H5	1.18	< 0.82	
Spring 1991						
abung 1991	26127		TCLEE	1.01	< 0.75	

b For rinse blanks, the well that was sampled with the same sampling equipment after the blank sample was collected.

₹.

< = less than
> = greater than
CH2CL2 = methylene chloride
CHCL3 = chloroform
CLC6H5 = chlorobenzene
DBCP = dibrochloropropane
TCLEE = tetrachloroethene

µg/l = micrograms per liter

a. The well that was sampled before the blank sample was collected.

For trip blanks and field blanks, this is the concentration detected in the investigative sample collected at the same time the blank was collected. For rinse blanks, this is the concentration detected in the investigative sample that was collected before the blank was collected.

d For rinse blanks, the concentration in the well that was sampled with the same sampling equipment after the blank sample was collected.

Table 4.9: Quality Control Blank Artifact Summary, Semivolatile Organic Compound and Pesticide Analyses, 1991 Water Monitoring Year

Sampling Round	Blank Well Number ^a	Affected Well Number ^b	Chemical Abbreviation	Blank Artifact Concentration (µg/l)	Investigative Sample Concentration ^C (µg/l)	Affected Investigative Sample Concentration ^d (µg/l)
Trip Blank						
Winter 1991	22224		DIMP	1.05	5.54	
	23204 26086		ALDRN	0.0973	<0.05	
Rinse Blank						
Winter 1991	•					
	26086	26153	PPDDT	0.0770	0.589	< 0.059
Fall 1991						
	26127	26075	ENDRN	0.0681	1.42	< 0.060
			ALDRN	0.351	2.40	< 0.083
			DLDRN	0.267	7.40	0.0692
			CPMS	1.30	<1 08	<1.08
Field Blank						
Winter 1991						
	23142		ALDRN	0.0942	< 0 05	
	26086		ENDRN	0.261	0 0774	
			PPDDT	0 173	0 589	
	37368		ALDRN	0 0645	< 0.05	

a. The well that was sampled before the blank sample was collected.

b For rinse blanks, the well that was sampled with the same sampling equipment after the blank sample was collected

For trip blanks and field blanks, this is the concentration detected in the investigative sample collected at the same time the blank was collected. For rinse blanks, this is the concentration detected in the investigative sample that was collected before the blank was collected.

d For rinse blanks, the concentration in the well that was sampled with the same sampling equipment after the blank sample was collected.

< = less than

ALDRN = aldrin

CPMS = p-chlorophenylmethyl sulfide

DIMP = diisopropylmethyl phosphonate

DLDRN = dieldrin

 ${\tt ENDRN} = {\tt endrin}$

PPDDT = 2,2-bis(para-chlorophenyl)-1,1,1-trichloroethane

 $\mu g/l = micrograms per liter$

Table 4:10: Quality Control Blank Artifact Summary, Trace Inorganic Constituent Analyses
1991 Water Monitoring Year
(Page 1 of 2)

Sampling Round	Well Number ³	Affected Well Number ^b	Chemical Abbreviation	Blank Artifact Concentration {\(\mu \pi \eta \chi \chi \pi \chi \chi \chi \chi \chi \chi \chi \ch	Investigative Sample Concentration ^c (µg/1)	Affected Investigative Sample Concentration ^d (µg/1)
Trip Blank Winter 1990/91						
•	01075	01075	НG	0.124	< 0.10	
•	24166	24166	НG	0 136	< 0.10	
	37353	37353	HG	1.08	1 02	
Spring 1991						
	23191	23191	HG	0 364	< 0.10	
	26015	26015	AS	3 22	6 69	
	26127	26127	НG	0.447	< 0 10	
Fall 1991					•	
	26127	26127	F	1560	<1000 ^a	
Rinse Blank Winter 1990/91						
	33077	33078	ZN	46 4	64.6 ^e	50 3^e
			ZN	22 9	42.3 ^e	39 5 ^e
			CU	26.6	<18.0 ^e	<18.8 ^e
			CU	29 9	<18 0 ^e	<18 8 ^e
			HG	0 212	0.818	0 401
	37334	37337	ZN	437	< 18.0	24 5
			HG	0.879	280	0.687
	37353	37397	HG	0 508	1 02	0 741
	37368		НG	0 705	U 4 66	
	37408	37409 ^f	HG	0.605	1.22	0 771
			ZN	166	32 .6	25.8
Spring 1991						
	36015	26161	ZN	33.2	< 20.0	< 20.0
	26127	26168	НG	1 10	<0 100	0.366
Fall 1991					•	•
	26127	26075	CU	17 4	<1000g	<500€

Table 4.10: Quality Control Blank Artifact Summary, Trace Inorganic Compound Analyse
1991 Water Monitoring Year
(Page 2 of 2)

Sampling	Well	Affected Well	Chemical	Blank Artifact Concentration	Investigative Sample Concentration ^c	Affected Investigative Sample Concentration ^d
Round	Number ^a	Number ^b	Abbreviation	(µg/l)	(µg/l)	(µg/l)
Field Blank						
Winter 1990/91						
	23232	23232	ZN	24.4	< 20.0	
	34161	24161	ZN	120	< 20 0	
	26086	26086	ÇR	18.0	< 16 8	
	33077	33077	HG	0.363	0.818	
	37334	37334	HG	1 03	0 280	
	37368	37368	HG	0.323	0 466	
	37408	37408	HG	1 18	1 22	
Spring 1991						
-	26127	26127	HG	1.26	< 0 10	

^a The well that was sampled before the blank sample was collected.

b For rinse blanks, the well that was sampled with the same sampling equipment after the sample was collected.

d For rinse blanks, the concentration in the well that was sampled with the same sampling equipment after the blank sample was collected.

e This sample was analyzed in two separate lots on different dates. Both values from the database are reported.

g Elevated certified reporting limit.

< = less than

AS = arsenic

CR = chromium

CU = copper

F = fluoride

HG = mercury ZN = zinc

 $\mu g/l = micrograms per liter$

^c For trip blanks and field blanks, this is the concentration detected in the investigative sample collected at the same time the blank was collected. For rinse blanks, this is the concentration detected in the investigative sample that was collected before the blank was collected.

The well was sampled on the last day of the Winter 1990/91 monitoring round. Therefore, there is no affected investigative well associated with the rinse blank.

Table 4.11: Statistical Summary for Duplicate Sample Analyses 1991 Water Monitoring Year (Page 2 of 2)

Target Analyte	Number of Detection <u>Pairs</u>	Low RPD (Percent)	High RPD (Percent)	Average RPD (Percent)
Trace Inorganic Compounds (continued)				
Magnesium	34	0.0	170	9.7
Sodium	35	0.0	170	17
Nitrite nitrate (nonspecific)	42	0.0	190	21
Sulfate	36	0.0	190	10
Zinc	_9	6.6	87	41
Total of all analytes	325ª			16 ^b

RPD = r lative percent difference

Total number of detection pairs.
 Geometric mean of the average RPDs.

Table 4.12: Certified Reporting Limits for Different Analytical Methods 1991 Water Monitoring Year

	Method I	Designation	Certified Re	Number of Detections				
Analyte	<u>DataChem</u>	ESE-Denver	DataChem	ESE-Denver	Between Certified Reporting Limits ^a			
Chloroform	N8	TT8	0.500	1.88	47			
Dibromochloropropane	AY8	Q8	0.195	0.130	3			
Diisopropylmethylphosphonate	AT8	QQ8	0.392	10.1	78 .			
Dieldrin	KK8	MM8A	0.0500	0.0539	3			
Fluoride	TT09	NN8	153	1000	4			

ESE = Environmental Science and Engineering, Inc. DataChem = DataChem Laboratories $\mu g/l$ = micrograms per liter

^a Value of concentration reported is in between the values of Certified Reporting Limits.

Table 4.13: Dilution Differences for Certified Reporting Limits 1991 Water Monitoring Year

Analyte	Laboratory	Method Designation	Dilution Factor		Number of Analyses Reported below the Given CRL ^b
Dieldrin	DataChem	KK8	1	0.0500	171
			10	0.500	10
	ESE-Denver	MM8A	i	0.0539	104
			4	0.220	2
			5	0.270	2
Fluoride	DataChem	TT09	1	153	34
			32	4900	1
			104	16,000	1
	ESE-Denver	NN8	ì	1000	34
			10	10,000	45
			25	25,000	7
			50	50,000	19
				100,000	3

CRL = Certified Reporting Limit DataChem = DataChem Laboratories

ESE = Environmental Science and Engineering, Inc.

 $\mu g/l = micrograms per liter$

^a CRL obtained through dilution factor calculations. A dilution factor of 1 corresponds to an undiluted sample.

b The quantity listed is the number of results reported as less than the corresponding CRL.

Table 4.14: Approximate Vertical Gradients Between Stratigraphically Adjacent Unconfined Flow System Wells and Confined Flow System Wells at Cluster Sites, 1991 Water Monitoring Year (Page 1 of 4)

Approximate Yearly Vertical Gradient	0.047 0.011 0.062 0.039 0.029 0.040 -0.012 0.283 0.304 0.004 0.008 0.014 0.008 0.004 0.007 -0.007	0.240 0.163 -0.013 -0.153 0.092
ments ^a Fourth Quarter Up Down	NN9N999999999999999999999999999999999	NN N
Fourt	ww - 4 wuun	00
Gradient Measu Third Quarter Up Down	- 040400000444	כזכז כזכז
C Gradi Third	00 0 4 00	77
Number of Vertical Hydraulic Gradient Measurements ^a uarter Second Quarter Third Quarter Fourth Down Up Down Up Down	nnnnn nnnnn n	nn nn
Second Up	n n n nn	44
Number of First Quarter Up Down	74	
Stratigraphic Unit of Confined Flow System Well	Denver B Denver B Denver AU Denver AU Denver AU Denver A	Denver ALSH Denver AL Denver AL Denver A Denver AL
Confined Flow System Well	11003 12003 01015 01022 01025 01039 01076 02024 02024 02027 02035 02037 02037 02037 02041 02060 06004	35027 35062 35066 35008 36066
Unconfined Flow System Well	11002 12002 01014 01024 01024 01078 02020 02023 02034 02037 02038 02036 02036 02037 02058 02069 31005	35026 35061 35065 35077 36065 36069

11793,600(2) - T-X.GMP 0826091492

Table 4.14: Approximate Vertical Gradients Between Stratigraphically Adjacent Unconfined Flow System Wells at Cluster Sites,

See College

Processor .

.

Year	
1991 Water Monitoring	(Page 2 of 4)

Approximate Yearly Vertical Gradient	0.021 0.029 0.099 0.099 0.099 0.017 0.018 0.	0.005
ments ^a Fourth Quarter Up Down	~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	6
Fourt Up	0 000 000 0	9
Gradient Meass Third Quarter Up Down		2
Ilic Gradi Third	00 00 00	
Number of Vertical Hydraulic Gradient Measurements ^a uarter Second Quarter Third Quarter Fourth Down Up Down Up	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	=
of Vertic Second Up	00 0 0	_
Number First Quarter Up Down	e %	1.7
First (Up		-
Stratigraphic Unit of Confined Flow System Well	Denver ASH Denver A Denver A Denver IU Denver II	Denver 2
Confined Flow System Well	36078 36110 25012 25039 25039 25050 25051 26074 35021 35021 3508 3508 3508 3508 3508 3508 3508 3508	23233
Unconfined Flow System Well	36077 36109 36109 36109 25038 25042 25044 25047 26063 35069 35069 35069 3508 36146 25011 25028 26065 26085 26127 26143 35031 35031	23123

11793,600(2) - T-X.GMP 0826091492

Table 4.14: Approximate Vertical Gradients Between Stratigraphically Adjacent Unconfined Flow System Wells and Confined Flow System Wells at Cluster Sites,
1991 Water Monitoring Year
(Page 3 of 4)

Approximate Yearly Vertical Gradient	-0.005	0.337	0.003	0.114	0.188	0.045	0.176	0.091	0.015	0.049	0.002	-0.017	0.019	0.072	0.008	0.017	-0.004	0.007	0.030	0.029	0.058	0.034	0.045	0.020	0.010	0.007
Quarter Down	4	2		27	7	7	7	7	7	7	7		7	7	7	_		7	4	15		7	\$	7	7	7
Fourth Up	21)	7									61					91	6			7					
ent Measu Quarter Down	9	2	7	56	7	7	7	. 2	2	7	7		7	7	C 1	12	~	01	4	-	7	_	C1	_	7	15
lic Gradient Me Third Quarter Up Dow	20	1										m					17	4								
al Hydrau Quarter Down	13	2	7	15	7	7	7	2	7	7	7		2	2	2	13	4	9	4	13		7	m	m	7	\$
Second (Up	٥, ٧	ı										m						∞			7					
Number of Vertical Hydraulic Gradient Measurements Quarter Second Quarter Third Quarter Fourth Down Up Down Up	4			<u> </u>										œ		7	36	32	42	21						
First Q Up	=											_				5	13	15	4	10						_
Stratigraphic Unit of Confined Flow System Well	Denver 2	Denver 3	Denver 3	Denver 3	Denver 3	Denver 3	Denver 3	Denver 3	Denver 3	Denver 3	Denver 3	Denver 3	Denver 4	Denver 4	Denver 4	Denver 4										
Confined Flow System Well	23176	23186	23189	24167	25016	25019	56069	26072	26077	26082	26089	03003	23192	23236	24136	24206	24203	24205	24202	24204	37376	37379	22023	27054	27058	28028
Unconfined Flow System Well	23178	23185	23188	24192	25015	25018	26068	16071	26076	26081	26088	03002	23191	23226	24135	24177	24178	24179	24193	24194	37338	37374	22021	27053	27057	28027

11793,600(2) - T-X.GMP 0826091492

Table 4.14: Approximate Vertical Gradients Between Stratigraphically Adjacent Unconfined Flow System Wells and Confined Flow System Wells at Cluster Sites,
1991 Water Monitoring Year
(Page 4 of 4)

Fourth Quarter Yearly Vertical Up Down Gradient	2 -0.001 2 0.043 2 0.010
radient Measuren ird Quarter F p Down	2 - 15 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
ical Hydraulic G d Quarter Th Down U	r-00
Number of Vertical Hydraulic Gradient Measurement First Quarter Second Quarter Third Quarter Four Up Down Up Down Up Down Up	3
' '	-
Stratigraphic Unit of Confined Flow System Well	Denver 4 Denver 4 Denver 4 Denver 4
Confined Flow System Well	33034 34010 37321 37365
Unconfined Flow System Well	33033 34008 37320 37343

11793,600(2) - T-X.GMP 0826091492

^a The total number of times either of the wells in the cluster was measured.

Table 5.1: Direction of Vertical Hydraulic Gradients at Well Clusters Near the North Boundary Containment/Treatment System
September 1991

Well Cluster ^a	Aquifer Designation (zone)	Direction of Vertical Hydraulic Gradient
North of NBS	· · · · · · · · · · · · · · · · · · ·	D
24511, 24512/24172	UFS/CFS(2)	Down
24511, 24512/24171	UFS/CFS(5)	Down
24172/24171	CFS(2)/CFS(5)	Ŭр
24503, 24192/24167	UFS/CFS(2)	Down
24503, 24192/24168	UFS/CFS(3)	Down
24194/24204	UFS/CFS(3)	Down
South of NBS		
24179/24205	UFS/CFS(3)	Up
23178/23176	UFS/CFS(2)	Up
23178/23177	UFS/CFS(2)	Up
24178/24203	UFS/CFS(3)	Up

CFS = confined flow system
NBS = North Boundary Containment/Treatment System
UFS = unconfined flow system

a A cluster is defined as a set of wells completed at different depth intervals within the confined and unconfined systems that are close to one another.

Table 5.2: Contaminant Concentrations in Samples From the Confined Flow System Near the North Boundary Containment/Treatment System, Fall 1989 and Winter 1990/91

Well	D	IMP	Die	eldrin		DBCP	Chic	roform
Number (Zone)	Fall 1989	Winter 1990/91	Fall 1989	Winter 1990/91	Fall 1989	Winter 1990/91	Fall 1989	Winter <u>1990/91</u>
23177(2) 23200(3) 23201(4) 23218(2) 23219(3) 23227(2) 23233(2) 23234(3) 23236(3)	LT LT LT 0.559 LT LT LT LT	0.475 LT LT LT LT LT LT LT LT LT	LT LT LT LT LT 0.176 LT LT LT	LT LT LT NA LT LT LT LT LT	LT LT LT LT LT LT LT LT LT	LT LT LT LT NA LT LT NA NA	1.34 LT LT LT LT LT LT LT LT	I.SS LT LT LT LT LT LT LT LT
24136(2) 24168(3) 24171(3) 24172(5) 24174(3) 24175(4)	LT LT LT LT LT LT	LT LT LT LT LT LT	LT LT 0.179 LT 0.101 LT	LT LT LT LT LT LT	LT 2.81 LT LT LT LT 2.99	LT LT 0.283 LT LT LT	LT 10.8 LT 15.2 LT 8.08	LT LT 6.06 0.585 LT LT
37316(5) 37317(4) 37318(3) 37319(6) 37321(4) 37322(5) 37365(4) 37372(4) 37376(3) 37379(3) 37380(4) 37388(4) 37390(3)	20.4 LT 10.3 NS 0.451 LT 17.6 0.705 LT 50.0 5.35 0.496 NS	4.74 .443 16.9 11.7 1.37 LT 46.0 LT LT 31.7 4.27 LT 9.06	LT LT NS LT LT LT LT LT LT LT LT LT NS	NA NA NA LT LT NA LT NA LT NA NA NA	LT LT NS LT LT LT LT LT LT LT LT LT	NA NA LT LT LT NA 0.199 NA LT NA LT LT	LT LT NS LT NA LT LT LT 1.41 0.675 LT NS	LT LT LT LT LT 0.889 LT LT 1.51 LT 0.631

DBCP = dibromochloropropane
DIMP = diisopropylmethylphosphonate
LT = less than Certified Reporting Limit
NS = well was not sampled

NA = well was sampled but results are not available because analyses were cancelled or results were rejected.

STEM	ZONE & THIC	KNESS	LITHOLOGIC DESCRIPTION
QUATER-	Alluvium	0-120	Gravei, silty sand, sandy silt, and clay; laterally variable
-	8	0-25	Figure 2. St. St. St. St. St. St. St. St. Dallo Salidatolia, and annual st.
	Volcani - clastic	0-50	Volcaniclastic material and laterally equivalent claystone and sandstone
FORMATION	A	0-75	A Upper (AU) (0-13') A Middle (AM) (0-20') A Lower (AL) (0-20') A Lower (AL) (0-20') Sandstone, claystone, and lignite
Σ Σ	Lignite A	0-11	
	IU	0-40'	
DENVER	Lignite B	0-12	
TERTIARY DE	1	0-60'	
3118	Lignite C	0-13	
- 16	2	0-55	
SO	Lignite D	0-13	sandstone, and lignite isee feet
CRETACEOUS	3	0 - 45	The state of the s
CRE	4	0 - 50	
	5	0-25	
	6	0-30	
	7	0-30	
	8	0 - 40 (0 - 27	
į	g	0-20	

Source: Environmental Science and Engineering, 1988

thickness shown in parentheses.

Prepared for:
Program Manager for
Rocky Mountain Arsenal
Commerce City, Colorado

Prepared by:
Harding Lawson Associates

Figure 2.3

Denver Formation Stratigraphic Column

GWAR FY91

\ {

Teneral Land

i

j.

, ET

T 2 S R 66 W 36 5005 2175000 E 33 2170300 E 5040 5045 2166000 E 8 S 118 T 2 S N 000012

STATE OF

5000 N T 2 S ß RMA Boundary R 66 W North Boundary
Containment/Treatment
System 24 Sewage Treatment Plant Basin F IRA Structur CONCLUSION OF THE PARTY OF THE ō . œ T 1 S T 2 S

Ì

Ė

72S T 1 S 20 17 S Б., Qr,s 19 a 09151 3 ₩. R 66 W 2180000 E o North Boundary
Containment/Treatment
System R 67 W 12 36 35 5 ₽, 34 Northwest Boundary Containment/Treatment System 33 9 2 9HEIG 41nos 2186000 E 53 32 T18 N 000812 N 00001S

215000 N 215000 N 210000 N 728 20 58 2165000 E 3 6 30 R 66 W 2350000 E 25 36 218E-050 E 2180000 E 8 8 21770/0 E 2146000 E ଖ 718 T28 N 000003

P. S. Charles Tanana. T28 8 53 3 H 66 W 36 31800015 3 75,000 E 8 83 The second 21**06**000 E æ N 00000E

T waste

7

EXPLANATION

A COMPANY OF THE COMPANY

The second secon

Prepared R Prepared -H.nent system Figure 5.9 Direction & Recharge trenches

in the Viciu Treatment Barrier wall

October 1 **GWAR FY91**

Prepared for:

Program Manager for **Rocky Mountain Arsenal** Commerce City, Colorado

Prepared by:

Harding Lawson Associates

Figure 5.9

Direction and Magnitude of Water-Table Gradients in the Vicinity of the North Boundary Containment/ Treatment System Barrier Wall from October 1 to December 31, 1990 GWAR FY91

n Manag Mountain erce City, ament system

Hecharge trenches

lagnitude

f the Nor - Barrier wall

em Barri

30, 1991

Prepared for:

Program Manager for Rocky Mountain Arsenal Commerce City, Colorado

Prepared by:

Harding Lawson Associates

Figure 5.11

Direction and Magnitude of Water-Table Gradients in the Vicinity of the North Boundary Containment/ Treatment System Barrier Wall from April 1 to June 30, 1991

GWAR FY91

EXPLANATION

△23101 Alluvial well

o²³¹⁰² Unconfined Denver Formation well

Containm

Direction and magnitude of water-table gradient in feet/feet

Note: Wells in red were utilized in three-point solutions of water-table direction and magnitude.

Drainage

(I)

SPTORTAR IN.

nager for itain Arsenal City, Colorado

vson Associate ment system

tude of Water- Recharge trenches North Boundar Sarrier Wall froi_ Barrier wall 30,1991

Prepared for:

Program Manager for Rocky Mountain Arsenal Commerce City, Colorado Prepared by: Harding Lawson Associates

Figure 5.12

Direction and Magnitude of Water-Table Gradients in the Vicinity of the North Boundary Containment/
Treatment System Barrier Wall from
July 1 to September 30,1991

GWAR FY91

10 mg

900年以前成功的企業的開始的問題

1. G . 7.

EXPLANATION

Containment System

Containment System

Program Manager for
Rocky Mountain Arsenal
Commerce City, Colorado
Prepared by:
Harding Lawson Associates

Figure 5.37

Well Location Maps for the Irondale
Containment System and the Northwest
Boundary Containment System

GWAR FY91

7

Statement of the statem

Ì

!18 2185000 E 2190000 E R 67 W 66 W FULTON LATERAL THIRD CREEK

2190000 E 2195000 E 66 W

I RACKE .

220000 N 215000 N 1 S T 2 S 210000 N

200000 N 195000 N 9TH AVENUE

EXPLANATION

Se Section Number

Arapahoe Well

Arapahoe Well

Arapahoe Well

Unconfined Denver Formation Well

Railroad

Railroad

Not Classified (DP Associates, October

Physical barrier

Hydraulic barrier

Recharge trenches

pr Formation Well

Formation Well

P Associates, October 1991)

EXPLANATION

Section Number

Arsenal Boundary

Railroad

Alluvial Well

Arapahoe Well

Unconfined Denver Formation We

Confined Denver Formation Well

Not Classified (DP Associates, O

STAPLETON AIRPORT RUNWAYS		
	2180000 E	
	Conta	inment systems
nver Formation Well		ical barrier aulic barrier
r 19 (DP Associates, October 1	/	arge trenches
		er wall

Program Manager for Rocky Mountain Arsenal Commerce City, Colorado

Prepared by:

Harding Lawson Associates

Plate 1

Comprehensive Monitoring Program Regional Rocky Mountain Arsenal Well Location Map, September 1992

R FY91

EXPL

Unconfined flow system

PLANATION

Containment system

EXPL

Unconfined flow system

- · Alluvial wells
- · Denver wells
- Not classified
 (D.P. Associates, October 1991)

Note: For onpost wells, the section number the three-digit well number shown (i.e., wells in Section 3 - 03001)

