

Relevance of Text Analytics

At AlgoAnalytics

Outline

About AlgoAnalytics

Contracts Management

Structured Document Decomposition

Document Similarity in Text Analytics

Predicting number of days for a case

Other Text Analytics relevance

Technologies

CEO and company Profile

About AlgoAnalytics

Analytics Consultancy

- Work at the intersection of mathematics and other domains
- Harness data to provide insight and solutions to our clients

Led by Aniruddha Pant

- +30 data scientists with experience in mathematics and engineering
- Team strengths include ability to deal with structured/unstructured data, classical ML as well as deep learning using cutting edge methodologies

Expertise in Mathematics and Computer Science

- Develop advanced mathematical models or solutions for a wide range of industries:
- Financial services, Retail, economics, healthcare, BFSI, telecom, ...

Working with Domain Specialists

 Work closely with domain experts – either from the clients side or our own – to effectively model the problem to be solved

Aniruddha Pant CEO and Founder of AlgoAnalytics

PhD, Control systems, University of California at Berkeley, USA 2001

Highlights

- 20+ years in application of advanced mathematical techniques to academic and enterprise problems.
- Experience in application of machine learning to various business problems.
- Experience in financial markets trading; Indian as well as global markets.

Expertise

- Experience in cross-domain application of **basic scientific process**.
- Research in areas ranging from biology to financial markets to military applications.
- Close collaboration with premier educational institutes in India, USA & Europe.
- Active involvement in startup ecosystem in India.

Prior Experience

- Vice President, Capital Metrics and Risk Solutions
- Head of Analytics Competency Center, Persistent Systems
- Scientist and Group Leader, Tata Consultancy Services

AlgoAnalytics - One Stop Al Shop

BFSI

- Dormancy Analysis
- •Recommender System
- Credit/Collection Score

Retail

- Churn Analysis
- •Recommender System
- Image Analytics

Healthcare

- Medical Image Diagnostics
- Work flow optimization
- Cash flow forecasting

Legal

- Contracts Management
- •Structured Document decomposition
- Document similarity in text analytics

Internet of Things

- Predictive maintenance in ovens
- Air leakage detection
- •Engine/compressor fault detection

Others

- Algorithmic trading strategies
- •Risk sensing network theory
- Network failure model

- We use structured data to design our predictive analytics solutions like churn, recommender sys
- We use techniques like clustering, Recurrent Neural Networks,

Structured Data

- We use text data analytics for designing solutions like sentiment analysis, news summarization and many more
- We use techniques like natural language processing, word2vec, deep learning, TF-IDF

Text Data

- •Image data is used for predicting existence of particular pathology, image recognition and many others
- We use techniques like deep learning – convolutional neural network, artificial neural networks and technologies like TensorFlow

Image Data

- We use sound data to design factory solutions like air leakage detection, identification of empty and loaded strokes from press data, engine-compressor fault detection
- We use techniques like deep learning

Sound Data

Contracts Management – Overview

Motivation:

- Automate / semi automate manual labor to read and extract information
 from legal contracts
- Classify the legal contract paragraphs in to SLA vs Non SLA
- Use Natural Language Processing to extract meaningful information like name, place, location, entity, dates, amounts etc.
- Similar approach can be used for any text classification problem

Use the correctly Classify into Convert the **Machine** Trained on Readable Classificati Classificati classified SLAs Learning pdf to existing SLA and nonon Level 1 on Level 2 and further **Contract** readable file Model contracts data SLA classify them into sub types Feedback - Learn From **SLA: Service Level Obligation** Mistakes Subtypes of SLA: Deliverable, Obligation, Contractual Obligation

SLA vs Non SLA

SLA Vs. Non SLA

- Learn from structure and content of text
- Similar supervised learning problem can be designed for any structured text. E.g. Relevant text Vs. Irrelevant text
- Relevant text can then further be classified into more subclasses

14. Anti-Malware: shall ensure the servers and workstations involved with accessing, processing, transmitting or storing CLIENT data are protected with up-to-date anti-malware software. In the servers and workstations involved with accessing, processing, transmitting or storing CLIENT data are protected with up-to-date anti-malware software.

3.2 Calculations of Fees. Client acknowledges that the Subscription Fees payable by Client may be based in part on service levels, options or scope parameters set forth in a Statement of Work. Subscription Fees according to Client's actual usage of the Subscriptions and Services in the manner set forth in the applicable Statement of Work.

Results

SLA Vs. Non SLA Classification

99.26%
97.85%
99.53%
100%
96.43%

Confusion Matrix		
	SLA Predicted	NonSLA Predicted
SLA Actual	54	0
NonSLA Actual	2	213

Within a single contract

Average Accuracy	/4.44%
Average Kappa	44.02%
Average ROC	78.77%
Sensitivity	95%
Specificity	46.43%

A..... A...... 74 440/

Confusion Matrix		
	SLA Predicted	NonSLA Predicted
SLA Actual	2 6	4
NonSLA Actual	30	73

Detailed Schema

Applying Machine Learning and NLP

Machine Learning and NLP

- Machine learned features TFIDF and latest Word2Vec
- Human feedback for misclassified text will also be used as features
- NLP has been used in Cleaning of Text, Topic Detection, Keyword Extraction, Summarizing the text, etc.
- The name and entity recognition can be effectively used in any text application.
- Sentiment Analysis has been extensively used in risk event detection.

Structured Contract Decomposition: Motivation and Basic Schema

Motivation:

- Build section specific models and intelligence for an individual section
- The combination of models gives the probability of sentence belonging to that section
- The decomposition methodology framework can be extended to any structured document / text.

Basic schema:

- The structured document can be decomposed using machine learning and text analytics methods.
- The method can also tell us ALL section of a document where assigned section topic is being mentioned.
- Example shows how we can separate out the Security and
 Disaster Recovery sentences and effectively the entire section
 - X-Axis : Sentences
 - Y-Axis : Probability
 - Probability < 0.5 Not belonging to section
 - Probability >0.5 Belongs to a section

Document Similarity in Text Analytics

Problem Statement - Finding semantically similar clause from standard clause library for each clause

Methods

- A. Frequency based similarity
- B. Unigrams and bigrams modeling
- C. TF-IDF
- D. Latent Semantic Analysis
- Word2Vec model

Ensemble Technique: Combination of above models to improve performance

■ Larger Dataset (616 Documents - 10239 Clauses with 69 Clauses in Clause Library)

Recall Performance

Limitations of Unsupervised Approach

- (1) Large no. of clauses (2) Unusual size of clauses
- (3) Noisy data (4) Idiosyncrasies of data

Overview of Modeling Process

- I. Removing punctuations and special characters
- II. Stop-words removal
- II. Tokenization: paragraphs as list of words

Cosine similarity metric for finding similar vectors

Clause Segmentation Data Cleaning

Vector Space Model

Similarity Function

Model Evaluation

Dividing text documents into set of paragraphs (clauses)

Vector representation of text data

- Frequency based
- 2. Unigrams and Bigrams
- 3. TF-IDF representation
- 4. word2vec model

Recall@N metric to evaluate performance of various models

Predict number of days for a case to get approval

- Predict the number of days a case will take to get approval, based on given question-answers for all cases
- Find most similar cases from the dataset (question-answers for all cases) using distance scores

Pre-Processing:

Methodology:

Results

- Models used for prediction :
 - Outlier Detection: 1. IsolationForest 2. OneClassSVM
 - Classification Method: 1. RandomForest 2. LinearDiscriminantAnalysis
- Methods used for distance scores:
 - 1. Euclidian distance 2. Gower distance
- Input Data:
 - 244 cases with 18 features(question-answers)

Other Supporting Text Analytics Work

Twitter Analytics

- Identify, process and group together relevant tweets using machine learning methods

News Analytics

- Access, identify and analyze relevant news article given a topic
- News summarization

App Development

Download, analyze twitter feeds of stocks to get sentiment and topic detection

Multi-language Sentiment Analysis

- Model can be used to get similar words.
- Trained model can learn proximity of words

Topic Summary & Concept Detection

- Keyword extraction
- Summary extraction
- Topic detection
- -Words Importance

Technology: the os ret packurgo NLTK learn machine learning in Python **TensorFlow** theano Pandas Microsoft mongoDB Azure cassandra **PostgreSQL** Microsoft CNTK Azure Machine Learning Spark **SHOGUN 4.0.0** twitter Google