PYCVINTERFACE vs PYFUNCTION

Note! Only inn PYCVINTERFACE are you required to compile a shared object file. Make corrections to the examples below.

1. Python code comparison for both.

PYFUNCTION

i) Python Module:

```
import plumedCommunications as PLMD

def plumedInit(action: PLMD.PythonFunction):
    return {"Value": PLMD.defaults.COMPONENT_NODEV}

def plumedCalculate(action: PLMD.PythonFunction):
    arg1 = action.argument(0)
    arg2 = action.argument(1)
    return arg1 * arg2 # Multiply the two distances
```

Requires that the Value is from plumed for example distances and angles etc. ii) Dat file:

```
# Load the compiled shared object file
LOAD FILE=/path/to/PythonCVInterface.so

# Define distances as collective variables (CVs)
d1: DISTANCE ATOMS=1,2
d2: DISTANCE ATOMS=1,3

# Call the custom Python function through the loaded interface
fPY: PYFUNCTION IMPORT=pycvfunc CALCULATE=plumedCalculate ARG=d1,d2

# Print the output to a file
PRINT ARG=fPY FILE=colvar.out
```

PYCVINTERFACE

i) Python Module

My designed cv code or a simple one below

```
import plumedCommunications as PLMD

def plumedInit(action: PLMD.PythonCVInterface):
    action.data["force"] = 0.0
    return {"Value": PLMD.defaults.COMPONENT_NODEV}

def pysteeredForce(action: PLMD.PythonCVInterface):
    distance = action.getPositionsDifference(1, 4)
    time_step = action.getStep()
    force = 0.1 * time_step # Force increases with time
    action.data["force"] = force
    return distance * force
```

ii) Dat file

```
# Load the Python Collective Variable (CV) interface
# This tells PLUMED to load the shared object file containing the
LOAD FILE=/path/to/PythonCVInterface.so

# Define the Collective Variable using PYCVINTERFACE
# PYCVINTERFACE is used to import and calculate custom collective
# ATOMS specifies the atoms involved in the CV calculation
# IMPORT specifies the Python module containing the CV function
# CALCULATE specifies the Python function that will be used for th
cvPY: PYCVINTERFACE ATOMS=1,4 IMPORT=pysteeredMD CALCULATE=pystee1

# Output the calculated CV to a file
# This line tells PLUMED to print the calculated value of cvPY to
PRINT ARG=cvPY FILE=colvar_output.dat
```

1. General comparison

Aspect	PYCVINTERFACE	PYFUNCTION
Definition	A more comprehensive Python interface to implement complex custom collective variables (CVs) and manage interactions between atoms.	A simpler Python function interface that primarily retrieves and processes arguments from the PLUMED input file for calculations.
Mandatory Keys	IMPORT, CALCULATE	IMPORT, CALCULATE, ARG
Data Handling	Uses the plumedCommunications.PythonCVInterface object to manage atom positions, time-step updates, and other data required for complex CVs.	Uses the plumedCommunications.PythonFunction object to retrieve the arguments (e.g., distances or angles) specified in the plumed.dat file.
Components	Can manage multiple components, derivatives, and periodicities, which must be specified in the plumed.dat or the Python code.	Focuses on simple, single-component calculations using direct arguments from PLUMED input.
Prepare/Update Support	Supports both the PREPARE and UPDATE keywords, allowing more flexibility to update or prepare variables at different stages of the simulation.	Doesn't directly support PREPARE or UPDATE, as it's designed for simpler use cases.
Initialization (INIT)	Allows customization through the INIT keyword to set up initial parameters.	Defaults to plumedInit, which is simpler and more rigid.
Typical Use Cases	- Complex CVs involving multiple atoms and time-step-dependent variables Handling dynamic systems with evolving parameters Implementing advanced biasing techniques such as metadynamics or steered MD.	 Simple calculations based on fixed arguments. Distance-based biases (e.g., RMSD, COM distances). Multiplying or combining basic collective variables.
Examples in plumed.dat	cvPY: PYCVINTERFACE ATOMS=1,4 IMPORT=pydistancePBCs CALCULATE=pydist	fPY: PYFUNCTION IMPORT=pycvfunc CALCULATE=plumedCalculate ARG=d1,d2