

ETC3250: Regression

Semester 1, 2019

Professor Di Cook

Econometrics and Business Statistics Monash University Week 2 (b)

Outline

Moving beyond linearity

Moving beyond linearity
splines and GAMs

3/27

Outline

Moving beyond linearity

splines and

GAMs

and more

The truth is rarely linear, but often the linearity assumption is good enough.

When it's not ...

lill polynomials,

step functions,

splines,

Lill local regression, and

I generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear models.

Lill Moving beyond linearity
Lill polynomials

© basis functions

Instead of fitting a linear model (in x), we fit the model

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_K b_K(x_i) + e_i,$$

where $b_1(X), b_2(X), \ldots, b_K(X)$ are a family of functions or transformations that can be applied to a variable x, and $i = 1, \ldots, n$.

- Lill Polynomial regression: $b_k(x_i) = x_i^k$
- Lill Piecewise constant functions: $b_k(x_i) = I(c_k \le x_i \le c_{k+1})$

5/27

Outline

☑ Moving beyond linearity☑ polynomials⑤ basis functions

$$x1 = x$$
, $x2 = x^2$, $x3 = x^3$, $x4 = x^4$, $x5 = x^5$

6/27

- Moving beyond linearity polynomials
- **Jil** splines
- knots

Knots: $\kappa_1, \ldots, \kappa_K$.

A spline is a continuous function f(x) consisting of polynomials between each consecutive pair of "knots" $x = \kappa_j$ and $x = \kappa_{i+1}$.

Lill Parameters constrained so that f(x) is continuous. **III** Further constraints imposed to give continuous derivatives.

7/27

Outline

Moving beyond linearity

M polynomials

Jil splines

knots

• piecewise poly

Piecewise cubic polynomial with a single knot at a point c:

$$\hat{y_i} = \left\{ \begin{cases} \beta_{01} + \beta_{11} x_i + \beta_{21} x_i^2 + \beta_{31}^2 & if \ x_i < c \\ \beta_{02} + \beta_{12} x_i + \beta_{22} x_i^2 + \beta_{32}^2 & if \ x_i \geq c \end{cases} \right\}$$

- Moving beyond linearity
- **III** polynomials
- splines
 - knotspiecewise poly

(Chapter7/7.3.pdf)

9/27

Outline

- Moving beyond linearity
- polynomials
- splines
 - knots
 - piecewise poly
 - basis fns

- **IIII** Truncated power basis
- **Lill** Predictors: $x, ..., x^p, (x \kappa_1)_+^p, ..., (x \kappa_K)_+^p$

Then the regression is piecewise order- polynomials.

- $\lfloor \mathbf{l} \mathbf{l} \rfloor_{p-1}$ continuous derivatives.
- Lill Usually choose p = 1 or p = 3.
- $\lfloor \mathbf{d} \mathbf{d} \rfloor_{p+K+1}$ degrees of freedom

- Moving beyond linearity
- polynomials
- **III** splines
 - knots
 - piecewise poly
 - basis fns

$$x1 = x$$
, $x2 = x^2$, $x3 = x^3$, $x4 = (x + 0.5)^3_+$, $x5 = (x - 0.5)^3_+$

11/27

Outline

- Moving beyond linearity
- polynomials splines
- m shiiies
 - knots
 - piecewise poly
 - basis fns
 - natural

Splines based on truncated power bases have high variance at the outer range of the predictors.

Natural splines are similar, but have additional boundary constraints: the function is linear at the

boundary constraints: the function is linear at the boundaries. This reduces the variance.

Degrees of freedom df = K.

Create predictors using $_{\tt ns}$ function in R (automatically chooses knots given $_{\tt df}).$

- Moving beyond linearity
- polynomials
- **III** splines
 - knots
 - piecewise poly
 - basis fns
 - natural

(Chapter7/7.4.pdf) 13 / 27

Outline

- Moving beyond linearity
- **III** polynomials
- splines
 - knots
 - piecewise poly
 - basis fns
 - natural

(Chapter7/7.7.pdf) 14 / 27

- Moving beyond linearity
- **III** polynomials
- **III** splines
 - knots
 - piecewise poly
 - basis fns
 - natural

Natural cubic splines

15/27

Outline

- Moving beyond linearity
- **III** polynomials
- **Jil** splines
 - knots
 - piecewise poly
 - basis fns
 - natural
 - knots

Knot placement

- Lill Strategy 1: specify $_{\rm df}$ (equivalently $_{\it K}$) and let $_{\rm ns}$ place them at appropriate quantiles of the observed $_{\it K}$.
- $\label{eq:locations} \begin{tabular}{ll} $\underline{\bf M}$ Strategy 2: choose κ and their locations. \end{tabular}$

- Moving beyond linearity
- polynomials
- **III** splines
 - knots
 - piecewise poly
 - basis fns
 - natural
 - knots

DF = 2 (linear fit)

17/27

Outline

- Moving beyond linearity
- **III** polynomials
- splines
 - knots
 - piecewise poly
 - basis fns
 - natural
 - knots

DF = 3

18/27

Moving beyond

linearity

[iii] polynomials

III splines

knots

piecewise poly

basis fns

natural

knots

DF = 8

19/27

Outline

Moving beyond linearity

polynomials

splines

knots

• piecewise poly

basis fns

natural

knots

DF = 15

20/27

- Moving beyond linearity
- polynomials
- splines
 - knots
 - piecewise poly
 - basis fns
 - natural
 - knots

DF = 50

21/27

Outline

- Moving beyond linearity
- **III** polynomials
- <u>IIII</u> splines
- Generalised additive models (GAMs)
 - Curse of dimensionality

Why is it hard to fit models of the form

$$y=f(x_1,x_2,\ldots,x_p)+e?$$

- Data is very sparse in high-dimensional space.
- Lill Model assumes p-way interactions which are hard to estimate.

- Moving beyond linearity
- polynomials
- <u>IIII</u> splines
- Generalised additive models (GAMs)
 - Curse of dimensionality
 - Additive functions

 $y_i = eta_0 + f_1(x_{i,1}) + f_2(x_{i,2}) + \ldots + f_p(x_{p,1}) + e_i$

where each f is a smooth univariate function.

Allows for flexible nonlinearities in several variables, but retains the additive structure of linear models.

23/27

Outline

- Moving beyond linearity
- **M** polynomials
- **Idd** splines
- dditive models (GAMs)
 - Curse of dimensionality
 - Additive functions

 $wage = eta_0 + f_1(year) + f_2(age) + f_3(education) + arepsilon$

(Chapter7/7.11.pdf)

- Moving beyond linearity
- polynomials
- **Jul** splines
- Lill Generalised additive models (GAMs)
 - Curse of dimensionality
 - Additive functions
 - Generalisation

- Can fit a GAM simply using, e.g. natural splines:
- Coefficients not that interesting; fitted functions are.
- Use plot.gam from gam package.
- Lill Can mix terms --- some linear, some nonlinear --- and use anova() to compare models.
- GAMs are additive, although low-order interactions can be included in a natural way using, e.g. bivariate smoothers or interactions of the form ns (age, df=5):ns (year, df=5).

25/27

Outline

- Moving beyond linearity
- **M** polynomials
- **III** splines
- Generalised additive models
- (GAMs)
 - Curse of dimensionality
 - Additive functions
 - Generalisation
 - Interaction

- Additive models assume no interactions.
- Add bivariate smooths for two-way interactions.
- **Ⅲ** Graphically check for interactions using faceting.

Made by a human with a computer Slides at https://monba.dicook.org. Code and data at https://github.com/dicook/Business_Analytics.	
Created using R Markdown with flair by xaringan, and kunoichi (female ninja) style.	
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.	27 / 27