

Lógica y Teoría de la Computación Segundo semestre 2021

Daniel Vega Araya

$$p \rightarrow \neg \neg p$$

Lógica Proposicional

- El poder expresivo de la lógica proposicional es limitado:
 - LP **no permite** referirse fácilmente a todos los elementos de un dominio.
 - Si el dominio es infinito no numerable, simplemente no se puede expresar el conocimiento acerca de todos los individuos.

Lógica Proposicional

- El poder expresivo de la lógica proposicional es limitado:
 - LP **no permite** referirse fácilmente a todos los elementos de un dominio.
 - Si el dominio es infinito no numerable, simplemente no se puede expresar el conocimiento acerca de todos los individuos.

entonces.....

Lógica de Primer Orden

Mientras que

- LP asume que el mundo tiene sólo hechos.
- LPO asume que el mundo tiene:
 - Objetos: personas, casas, números, animales, profesores, instituciones, ...
 - **Predicados** (o relaciones): hermano de, mayor que, dentro de, de color, es dueño de, hijo de, padre de, ...
 - Funciones: sucesor de, raíz cuadrada de, segundo tiempo de, mejor amigo de, ...

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más

"uno más dos es igual a tres"

- Relaciones: es igual a
- <u>Funciones</u>: más

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más

- "uno **más** dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos:

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones:

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones: de lógica, tienen sueño
 - <u>Funciones</u>:

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones: de lógica, tienen sueño
 - Funciones: -----

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones: de lógica, tienen sueño
 - Funciones: -----
- "Homero es padre de Bart y esposo de Marge"
 - Objetos:

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones: de lógica, tienen sueño
 - Funciones: -----
- "Homero es padre de Bart y esposo de Marge"
 - Objetos: Homero, Bart, Marge
 - <u>Relaciones</u>:

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones: de lógica, tienen sueño
 - Funciones: -----
- "Homero es padre de Bart y esposo de Marge"
 - Objetos: Homero, Bart, Marge
 - Relaciones: es padre de, esposo de
 - <u>Funciones</u>:

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones: de lógica, tienen sueño
 - Funciones: -----
- "Homero es padre de Bart y esposo de Marge"
 - Objetos: Homero, Bart, Marge
 - Relaciones: es padre de, esposo de
 - <u>Funciones</u>: -----

- "uno más dos es igual a tres"
 - Objetos: uno, dos, tres
 - Relaciones: es igual a
 - Funciones: más
- "los alumnos de lógica tienen sueño"
 - Objetos: alumnos
 - Relaciones: de lógica, tienen sueño
 - Funciones: -----
- "Homero es padre de Bart y esposo de Marge"*
 - Objetos: Homero, Bart, Marge
 - Relaciones: es padre de, esposo de
 - <u>Funciones</u>: -----

*y es un conectivo lógico.

Alfabeto

- Constantes (C): persona, casa, Homero, dos, alumnos, etc.
- Predicados o relaciones (P): es igual a, es padre de, tienen sueño, pertenece a, etc.
- Funciones (F): más, raíz cuadrada, sucesor, etc.
- Variables: x, y, z, etc.
- Conectivos lógicos: \neg , \lor , \land , \rightarrow , \leftrightarrow
- Cuantificadores lógicos: ∀, ∃
- Relación igualdad: =
- Símbolos de puntuación: (,)

El concepto de *predicado* es similar al de *relación*, con la única salvedad que el primero es filosófico y el segundo es matemático.

Predicados y funciones

- Los predicados suelen ser mapeos de objetos a un V o F.
- Los predicados y funciones tienen una aridad mayor a 0.
- Las funciones son mapeos de *muchos* a *un* objeto.

Ejemplo,

```
P = \{GustaComer(\cdot), EsHermanoDe(\cdot, \cdot)\}
F = \{Hijo(\cdot)\}
C = \{Homero, Marge, Bart, Lisa, Maggie\}
```

- Una fórmula en LPO está definida sobre algunas constantes, funciones y predicados.
- Un vocabulario L (o un conjunto de símbolos) es la unión tres conjuntos:
 - Constantes: $\{c_1, c_2, ..., c_l, ...\}$
 - Funciones: $\{f_1, f_2, ..., f_m, ...\}$
 - Predicados: $\{p_1, p_2, ..., p_m, ...\}$

$$L = \{\{p_1, p_2, ..., p_m, ...\}, \{f_1, f_2, ..., f_m, ...\}, \{c_1, c_2, ..., c_l, ...\}\}$$

- En los números naturales,
 - Constantes: {0, 1}
 - Funciones: {sucesor, +, *}
 - Relaciones: {<}Ejemplo,
 - sucesor es una función unaria: sucesor(\cdot)
 - + y * son funciones binarias: $+(\cdot, \cdot)$ y * (\cdot, \cdot)
 - < es una relación binaria: $<(\cdot,\cdot)$
- L = { {GustaComer}, {hijo}, {Homero, Marge, Bart, Lisa, Maggie} } un vocabulario donde:
 - GustaComer es un predicado de aridad 1 tal que GustaComer(x) es verdadero si a x le gusta comer.
 - La función hijo(x) representa al padre del objeto x.

Variables

• Se utilizan en predicados y funciones

Ejemplo: GustaComer (x), EsHermanoDe(x, y), Hijo(z).

- Pueden ser:
 - Ligadas a algún cuantificador ∀ o ∃.
 - Libres (no ligadas).

Ejemplo: $P(x, y) \land \forall z Q(z)$

Variables

• Se utilizan en predicados y funciones

Ejemplo: GustaComer (x), EsHermanoDe(x, y), Hijo(z).

- Pueden ser:
 - Ligadas a algún cuantificador ∀ o ∃.
 - Libres (no ligadas).

Ejemplo: $P(x, y) \land \forall z Q(z)$

 \rightarrow La x e y en P(x, y) son libres

Variables

• Se utilizan en predicados y funciones

Ejemplo: GustaComer (x), EsHermanoDe(x, y), Hijo(z).

- Pueden ser:
 - Ligadas a algún cuantificador ∀ o ∃.
 - Libres (no ligadas).

Ejemplo: $P(x, y) \land \forall z Q(z)$

- \rightarrow La x e y en P(x, y) son libres
- → La z de ∀zQ(z) está ligada

Variables

• Dado que las variables libres no aparecen cuantificadas sobre el dominio, el valor de verdad de la fórmula dependerá del valor dado a las variables libres.

Ejemplo:

• ¿Es cierto que x < sucesor(0) en \mathbb{N} ?

Variables

• Dado que las variables libres no aparecen cuantificadas sobre el dominio, el valor de verdad de la fórmula dependerá del valor dado a las variables libres.

- ¿Es cierto que x < sucesor(0) en №?
 - Si x es 0, entonces es verdadera en \mathbb{N} .
 - Si x es 1, entonces es falsa en \mathbb{N} .

Variables

• Dado que las variables libres no aparecen cuantificadas sobre el dominio, el valor de verdad de la fórmula dependerá del valor dado a las variables libres.

- ¿Es cierto que x < sucesor(0) en №?
 - Si x es 0, entonces es verdadera en \mathbb{N} .
 - \circ Si x es 1, entonces es falsa en \mathbb{N} .
- daHambre(p)
 - ¿Qué pasa si p = hamburguesa?

Variables

• Dado que las variables libres no aparecen cuantificadas sobre el dominio, el valor de verdad de la fórmula dependerá del valor dado a las variables libres.

- ¿Es cierto que x < sucesor(0) en №?
 - Si x es 0, entonces es verdadera en \mathbb{N} .
 - Si x es 1, entonces es falsa en \mathbb{N} .
- daHambre(p)
 - ¿Qué pasa si p = hamburguesa?
 - ¿Qué pasa si p = hákarl?

Variables

• Dado que las variables libres no aparecen cuantificadas sobre el dominio, el valor de verdad de la fórmula dependerá del valor dado a las variables libres.

- ¿Es cierto que x < sucesor(0) en №?
 - Si x es 0, entonces es verdadera en \mathbb{N} .
 - Si x es 1, entonces es falsa en \mathbb{N} .
- daHambre(p)
 - ¿Qué pasa si p = hamburguesa?
 - ¿Qué pasa si p = hákarl?

Lógica y Teoría de la Computación Segundo semestre 2021

