Part-2 Coursework EE401: Advanced Comm. Theory "Multipath Space-Time CDMA" version 2.0

Professor A. Manikas
Chair of Communications and Array Processing
Department of Electrical & Electronic Engineering
Imperial College London

1 Aims

• The main objective of this assignment-study is to simulate a QPSK-DS-CDMA communication system and design space-time array receivers to handle multipaths and suppress MAI (multiple access interference) and improve the overall capacity of the system.

2 Equipment and Software

- PC (operating system XP, Vista or Windows 7) or Mac
- MATLAB, Visual C++, or any other suitable language.
- Three digital photos (size: smaller that or equal to 160×112).
- The MATLAB functions given with AM1 experiment (to be downloaded).
- There are four task in this assignment and, for the 4th task, there is a personal data file that should be downloaded from the course-website.

3 Definitions

- $\mathcal{X} \triangleq$ alphabetical order of the 1st letter of your surname
- $\mathcal{Y} \triangleq$ alphabetical order of the 1st letter of your formal firstname.

4 Tasks

Task-1 [20%]

• With reference to Figure 1, consider three CDMA users with each user transmitting a digital photo, at the same time, on the same frequency band.

Figure 1: System Architecture for Tasks 1 and 2.

• Modulation: All three users use the same constellation diagram given in Figure 2, where the angle ϕ is given in degrees according to the following expression

$$\phi \triangleq \mathcal{X} + 2\mathcal{Y} \tag{1}$$

Figure 2: QPSK constellation diagram.

• **PN-codes**: The three PN-code sequences $\{\alpha_1[k]\}, \{\alpha_2[k]\}$ and $\{\alpha_3[k]\}$ are gold-sequences produced using the following two primitive polynomials:

1st polynomial (m-sequence)	2nd polynomial (m-sequence)
$D^4 + D + 1$	$D^4 + D^3 + 1$

The desired user's gold-sequence $\{\alpha_1[k]\}$ is produced by adding (modulo-2) a delayed version (d-bits) of the 2nd m-sequence to the 1st m-sequence where d is the smallest integer that:

- gives a "balanced" gold sequence and

- satisfies the inequality:

$$d \ge 1 + (\mathcal{X} + \mathcal{Y}) \bmod 12 \tag{2}$$

The gold-sequences of the remaining two users $\{\alpha_2[k]\}$ and $\{\alpha_3[k]\}$ are produced with delays d+1 and d+2 respectively.

• <u>Channel</u>: the three transmitted signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ arrive at the input of the receiver (point \hat{T}_1 of Fig. 1) according to the parameters given in Table-1. The point \hat{T}_1 is taken as the origin (0,0,0) of the 3-dim real space.

Table-1: Channel Parameters (there are no multipath effects)				
signal-paths arriving	relative delay	fading coeff.	(azimuth, elevation)	
at the receiver			(θ, ϕ)	
one path of $s_1(t)$	$(\tau_1 \operatorname{mod} 15) = 3$	$\beta_1 = 0.4$	$(30^{\circ}, 0^{\circ})$	
one path of $s_2(t)$	$(\tau_2 \operatorname{mod} 15) = 7$	$\beta_2 = 0.7$	$(90^{\circ}, 0^{\circ})$	
one path of $s_3(t)$	$(\tau_3 \operatorname{mod} 15) = 12$	$\beta_3 = 0.2$	$(150^{\circ}, 0^{\circ})$	

• <u>Noise</u>: The noise at point \widehat{T}_1 is assumed to be additive white Gaussian noise of zero mean and power

i. 0dB,

ii. 40dB

below the power level of the desired signal at point \widehat{T}_1 .

Task-1a: Using the above description, simulate the system up to the receiver's input (point \widehat{T}_1). No MatLab builtin functions should be used for generating noise and modulation/demodulation.

Task-1b: Design a receiver to receive "photo-1" (i.e. $\{\alpha_1[n]\}$) and remove the other 2 signals as unwanted multiple-access interference (MAI). Make a comparison at different levels of noise. Note: delays are assumed unknown.

Task-2 [20%]

• The objective of this task is the same as in Task-1. But replace the channel described by Table-1 with the multipath channel of Table 2 where the desired user's signal is received at point \widehat{T}_1 via three paths (multipaths).

Table-2: Channel Parameters (with multipath effects)				
signals arriving	relative delay in T_c	fading coeff.	(azimuth, elevation)	
at the Receiver			(θ,ϕ)	
1st path of $s_1(t)$	$(\mathcal{X} + \mathcal{Y}) \operatorname{mod} 4$	$\beta_{11} = 0.8$	$(30^{\circ}, 0^{\circ})$	
2nd path of $s_1(t)$	$4 + (\mathcal{X} + \mathcal{Y}) \mod 5$	$\beta_{12} = 0.4 \exp(-j40^{\circ})$	$(45^{\circ}, 0^{\circ})$	
3rd path of $s_1(t)$	$9 + (\mathcal{X} + \mathcal{Y}) \mod 6$	$\beta_{13} = 0.8 \exp(+j80^{\circ})$	$(20^{\circ}, 0^{\circ})$	
$s_2(t)$	8	$\beta_2 = 0.5$	$(80^{\circ}, 0^{\circ})$	
$s_3(t)$	13	$\beta_3 = 0.2$	$(150^{\circ}, 0^{\circ})$	

Design the best possible receiver for this environment. Note: fading coefficient may be assumed known.

Task-3 [30%]

• As in Task-1 but by employing at point \widehat{T}_1 (see Figure 3) a uniform circular array of 5 isotropic elements (antennas) with half-wavelength inter-antenna spacing (1st element: 30° anticlockwise with respect to the x-axis). Design the best possible receiver for this environment. Note: fading coefficient may be assumed known.

Figure 3: System Architecture for Task 3.

Task-4 [30%]

• Personal data file: For this task please download your personal data file from

http://skynet.ee.imperial.ac.uk/notes/notes.html

• <u>PN-codes</u>: With reference to Figure 4, each of the three users is transmitting a text message of sixty 8-bit characters. The desired-user uses a gold-sequence $\{\alpha_1[k]\}$ that is generated based on the following two primitive polynomials:

	1st polynomial (m-sequence)	2nd polynomial (m-sequence)
1st user:	$D^5 + D^3 + 1$	$D^5 + D^4 + D^3 + D + 1$

by adding (modulo-2) a delayed version (d-bits) of the 2nd m-sequence to the 1st m-sequence where

$$d \triangleq \text{the parameter "phase shift" in your personal file}$$
 (3)

No information is provided about the PN-codes of the other two users.

<u>Modulation</u>: The desired user uses the constellation diagram shown in Figure 2, where the angle ϕ is given in degrees by the parameter "phi mod". That is

$$\phi \triangleq$$
 "phi mod" in your personal file (4)

<u>Channel</u>: The channel parameters are unknown to the receiver - except the fading coefficients of the multipaths of the desired user β_{1,1}, β_{1,2} and β_{1,3} which have been already estimated using another approach. These are given by the elements of the (3×1) complex vector "Beta_1" in your personal file,
 i.e.

$$\begin{bmatrix} \beta_{1,1}, & \beta_{1,2}, & \beta_{1,3} \end{bmatrix}^T = \text{"Beta_1" in your personal file}$$
 (5)

• Channel output: The complex received array signal-vector $\underline{x}(t)$ at output of the antenna array is given in your personal data file by the parameter "Xmatrix". That is, it is given in the form of L snapshots (i.e. the vectors $\underline{x}(t_{\ell})$ for $\ell = 1, 2, 3, ..., L$) forming the matrix $\mathbb{X} \in C^{N \times L}$, where N is the number of array elements, i.e.

$$X = "Xmatrix"$$
 in your personal file (6)

Note that the system is asynchronous with unknown time delays with respect to the receiver's clock.

Figure 4: System Architecture for Task 4

Task-4a: Estimate the various channel parameters associated with the desired user's paths.

Task-4b: Design a receiver (preferably a spatiotemporal beamformer) to receive the 60-character desired text-message.

5 Deliverable

- MATLAB/C file(s) with brief comments. That is four MATLAB script files (one per task) where the system parameters are defined and a number of MATLAB functions (with comments) are called.
- A pdf file with the results of the above four tasks (photos/messages) supported by 2-5 lines of some brief comments per task.

• Comments, if any, of how to run the programs to observe the results of the four tasks.

- A user interface may be useful but not essential.
- Please upload a zip file (including all the files) named by your login name (eg. kl209.zip)

6 Some Notes

- 1. The messages are first modulated using QPSK, then spread by the gold sequences.
- 2. The PN-code are generated by seeting the initial state of the shift register be all ones (i.e. [1 1 1 1 1]);
- 3. The Xmatrix in your "mat" file contains the received signals which has the form:

$$[\underline{x}(1), \underline{x}(2), ..., \underline{x}(L)]$$
 $(N \times L \text{ matrix})$

in which $\underline{x}(i)$, i = 1, ..., L is a $N \times 1$ vector; and $\underline{x}(1)$ is the first snapshot of the signal-vector received,..., $\underline{x}(L)$ is the last snapshots of the signal-vector received.

4. Please download and use the "Matlab Wrappers" from

http://skynet.ee.imperial.ac.uk/notes/notes.html

7 References

- [1] Lecture Notes on Advanced Communication Theory
- [2] your own references.