SEGMENTACIÓN AUTOMÁTICA DE AORTA

Martha Eliana Arenas Márquez Liceth Yaneth Rozo Quintana

JUSTIFICACIÓN

En el tratamiento de enfermedades de la aorta como lo son los aneurismas, la segmentación de la aorta es fundamental para la planeación quirúrgica. La segmentación permite ofrecer imágenes representativas de la estructura para el análisis por parte del profesional, adicionalmente facilita la elección o adaptación de una endoprótesis si el paciente la requiere.

JUSTIFICACIÓN

Actualmente esta segmentación se realiza de forma manual o semiautomática, para realizarla de forma manual se requiere de una gran cantidad de tiempo y de un experto en el tema, la segmentación semiautomática toma menor tiempo, pero suele tomar fracciones de hueso y corazón que no permiten aislar la segmentación para el análisis.

DATASET

Imágenes DICOM de tomografías computarizadas de casos de la fundación cardiovascular y del hospital Universitario.

DATASET

PREPROCESAMIENTO

Las imágenes se transformaron del formato DICOM a NIFT, con un tamaño de 512*512. Se Normalizaron los valores en la escala de Hounsfield; la cual es utilizada comúnmente en tomografías computarizadas.

Se generaron slides y se convirtieron al formato PNG, para Train y para Test.

- Train:
 - o mask: 566
 - o img: 566
- Test:
 - o mak: 171
 - o img: 171

ARQUITECTURA UNET

IMPLEMENTACIÓN

Layer (type)	Output Shape	Param #	Connected to	
input_1 (InputLayer)	[(None, 128, 128, 1)	0		
conv2d (Conv2D)	(None, 128, 128, 32)	320	input_1[0][0]	
conv2d_1 (Conv2D)	(None, 128, 128, 32)	9248	conv2d[0][0]	
max_pooling2d (MaxPooling2D)	(None, 64, 64, 32)	0	conv2d_1[0][0]	
conv2d_2 (Conv2D)	(None, 64, 64, 64)	18496	max_pooling2d[0][0]	
conv2d_3 (Conv2D)	(None, 64, 64, 64)	36928	conv2d_2[0][0]	
max_pooling2d_1 (MaxPooling2D)	(None, 32, 32, 64)	0	conv2d_3[0][0]	
conv2d_4 (Conv2D)	(None, 32, 32, 128)	73856	max_pooling2d_1[0][0]	
conv2d_5 (Conv2D)	(None, 32, 32, 128)	147584	conv2d_4[0][0]	
max_pooling2d_2 (MaxPooling2D)	(None, 16, 16, 128)	0	conv2d_5[0][0]	
conv2d_6 (Conv2D)	(None, 16, 16, 256)	295168	max_pooling2d_2[0][0]	
conv2d_7 (Conv2D)	(None, 16, 16, 256)	590080	conv2d_6[0][0]	

RESULTADOS

ARQUITECTURA SEGNET

IMPLEMENTACIÓN

up_sampling2d_13 (UpSampling	(None,	80,	160,	128)	0
deconv10 (Conv2DTranspose)	(None,	80,	160,	128)	147584
bn23 (BatchNormalization)	(None,	80,	160,	128)	512
activation_74 (Activation)	(None,	80,	160,	128)	0
deconv11 (Conv2DTranspose)	(None,	80,	160,	64)	73792
bn24 (BatchNormalization)	(None,	80,	160,	64)	256
activation_75 (Activation)	(None,	80,	160,	64)	0
up_sampling2d_14 (UpSampling	(None,	160,	320	, 64)	0
deconv12 (Conv2DTranspose)	(None,	160,	320	, 64)	36928
bn25 (BatchNormalization)	(None,	160,	320	, 64)	256
activation_76 (Activation)	(None,	160,	320	, 64)	0
deconv13 (Conv2DTranspose)	(None,	160,	320	, 1)	577
bn26 (BatchNormalization)	(None,	160,	320	, 1)	4
activation_77 (Activation)	(None,	160,	320	, 1)	0
Total params: 33,392,517 Trainable params: 33,376,643 Non-trainable params: 15,874			====		

RESULTADOS

RESULTADOS

CONCLUSIONES

- Con la segmentación automática de la aorta, se logra que no se gaste mucho tiempo durante este procedimiento. Al usar técnicas de inteligencia artificial, como deep learning obteniendo buenos resultados.
- La mejor arquitectura de redes neuronales para nuestro caso, que teníamos pocos datos fue la UNET, luego de hacer una evaluación de otras arquitecturas utilizadas en la segmentación de imágenes biomédicas.

MÉTRICAS

Dice:

Predicted

Ground truth

Predicted + Ground truth

loU:

MÉTRICAS

MÉTRICAS

¡Gracias!