Circuitos

November 22, 2020

1 Circuitos Aritméticos

Grupo 7:

- Luís Almeida A84180
- João Pedro Antunes A86813

Considere circuitos aritméticos N*1 (N inputs e 1 output), com "wires" de 16 bits e "gates" de três tipos: 1. a "gate" binária \oplus implementa xor bit a bit

- 2. a "gate" binária + implementa soma aritmética (add) de inteiros módulo 2^{16} ,
- 3. a "gate" unária \gg_r implementa o "right-shift-rotate" do argumento um número de posições dado pela constante 0 < r < 16.

Os parâmetros do circuito são o número de inputs N, o número de "gates" M e a razão γ entre o número de "gates" add e o número total de "gates".

Neste problema 1. É dado um circuito aleatoriamente gerado com parâmetros N, M e γ . 2. São dados também o valor do output final e o "output" de todas as "gates" add. Pretende-se usar Z3 para determinar se os dados são consistentes entre si e, se forem, determinar inputs que sejam compatíveis com tais outputs.

1.0.1 Geração dos Circuitos

Podemos modelar os circuitos aritméticos como grafos orientados. O circuito terá N "inputs" e 1 "output" final, pelo que teremos no mínimo N+1 "wires". Os "wires" que são "inputs" têm de ser fixados no início do grafo e o "wire" de "output" final será o "sink" r que, para todas as "sources" s, existe um caminho de s para r. Temos portanto que fixar o "sink" r no fim do grafo. Os "gates" não serão nada mais do que nodos "intermédios" do grafo que representam a operação a ser realizada sobre a informação que lhes é fornecida. A informação irá fluir sempre dos "inputs" para os "outputs", pelo que podemos olhar para o grafo como uma árvore. A "root" desta árvore será o nodo 0, estando este ligado a todos os "wires" de "input".

Para distinguirmos "wires" e "gates", assim como "wires" de "input" e "wires" de output, "gates" add de "gates xor, vamos etiquetar cada nodo com a respetiva "wire" ou "gate" que este representa. Para gerarmos circuitos aleatórios, podemos determinar aleatoriamente o número de cada tipo de "gate" presente no circuito. Posteriormente percorrem-se todas as "gates" ao acaso, escolhendo aleatoriamente os "inputs" de cada gate. Resta apenas garantir que para todas as "sources" s existe um caminho para o nodo do "output" final do circuito, o "sink" r. Para este efeito podemos simplesmente descartar os grafos gerados que não têm esta propriedade e gerar um novo grafo até que esta se verifique.

```
[2]: from z3 import *

#from pygraphviz import *

import networkx as nx

import random
```

```
[3]: def gera_circuito(N,M,gama):
         addGts = int(M*gama)
                                   #Determina-se o número de gates add
         G = nx.DiGraph()
         G.add_node(0, type = "root") #Etiqueta-se a root
         for i in range(N):
             G.add_node(i+1, type = "Input") #Criam-se os wires de Input
                                 #Liga-se a root aos inputs
             G.add_edge(0,i+1)
         comp = M - addGts #Nodos restantes sem ser somas
         xorGts = random.randint((N -1 -addGts),comp) #numero de gates xor
         rotGts = comp - xorGts #numero de gates rotate
         #addGts, rotGts, xorGts
         # 1 -> add, 2 -> rotate, 3 -> xor
         aux = [1]*addGts + [2]*rotGts + [3]*xorGts
         random.shuffle(aux) #Percorrem-se as gates do circuito ao acaso
         for x in aux:
             n = len(G)
             inpts = random.choices(list(range(1,n)),k = 2) #Escolhem-se os inputs dau
      \rightarrow qate x, um nodo qualquer do
                                                             #grafo exceto a root
             if x == 1:
                 G.add_node(n, type = "Sum", inputs = inpts)
                 G.add_edge(inpts[0],n)
                 G.add_edge(inpts[1],n)
             elif x == 2:
                 G.add_node(n, type = "Rot", r = random.randint(1,15), inputs =
      →inpts[0]) #0 número de bits a rodar
                 G.add_edge(inpts[0],n)
      → # é aleatório
             elif x == 3:
                 G.add_node(n, type = "Xor", inputs = inpts)
                 G.add_edge(inpts[0],n)
                 G.add_edge(inpts[1],n)
         return G
```

```
def verificaCircuito(graph, outN): #Verifica se existe um caminho de_

→todas as sources para o output final

for x in graph:
    if not nx.has_path(graph,x,outN):
        return False

return True

def get_circuito(N,M,gama): #Gera grafos enquanto não gerar algum grafo que_

→represente um circuito

g = gera_circuito(N,M,gama)

while not verificaCircuito(g,len(g)-1):
    g = gera_circuito(N,M,gama)

return g
```

1.0.2 Consistência dos dados

Conforme referido no enunciado é agora pedido que, dados um "output" final do circuito e os resultados de cada "gate" add, se determine se estes valores são consistentes entre si, ou seja, se existe algum "input" do circuito cujo "output" é o resultado dado, bem como o resultado de cada "gate" add é o valor dado. Podemos começar por definir uma função que, dado um circuito, um "input" e um número N de "inputs", determine o "output" final do circuito, bem como o valor de cada "gate" add. Comecemos por definir funções que vão implementar a operação de cada "gate" no circuito:

```
[4]: def fromBin(a):
         r = 0
         for i in range(16):
             r = 2*r
             if (a[i]=='1'):
                 r = r+1
         return r
     def toBin(a):
         r = []
         for _ in range(16):
             r.insert(0,'1' if a%2==1 else '0')
             a = a//2
         return ''.join(r)
     def xor_16(b1,b2):
         return b1 ^ b2
     def add_16(a,b):
         return (a+b)\%(2**16)
     def rotate_16(b,r):
         return ((b >> r)\%(2**16) | (b << 16-r))
```

Vamos agora definir uma função que calcula o "output" de um dado circuito quando lhe é fornecido um determinado "input". Esta função tem de apenas percorrer o grafo e executar as operações etiquetadas em cada nodo. Podemos utilizar uma breadth-first-search para este efeito e assim encarar o circuito por "níveis". Vamos começar por dividir o "input" do circuito entre os "wires" de "input". Criamos um dicionário d que, para todo o $x \in d$, irá armazenar o resultado da operação especificada pelo nodo x. De seguida, iniciamos uma travessia no grafo a partir da root e por cada nodo que visitarmos inspecionamos a sua etiqueta. Executamos a operação determinada pela etiqueta e guardamos o resultado no dicionário. Quando já não houverem nodos por visitar significa que chegamos ao nodo onde está o output final, pelo que apenas precisamos de retornar o seu valor.

```
[5]: def calcula_circuito(graph,inp,N):
         d = \{\}
         for i in range(N):
             d[i+1] = fromBin(inp[i*16:(i+1)*16]) 	 #Divide-se o input pelos wires_{\square}
      \rightarrow de input
         queue = [0]
         outsGate = {} #Dicionário que armazena o valor dos gates add
         while queue:
             x = queue.pop(0)
             for (u,v) in graph.out_edges(x):
                 if v not in queue:
                     queue.append(v)
                     queue.sort()
                                     #Faz-se um sort à orla para podermos encarar ou
      ⇒circuito da esq para a dir
             if graph.nodes[x]['type'] == 'Sum':
                 d[x] = add_16(d[graph.nodes[x]['inputs'][0]],d[graph.
      →nodes[x]['inputs'][1]]) #Guardar o valor do resul-
                 outsGate[x] = d[x]
                                                                                   ш
      \rightarrow#tado da gate no dicionário d
             elif graph.nodes[x]['type'] == 'Xor':
                 d[x] = xor_16(d[graph.nodes[x]['inputs'][0]],d[graph.
      →nodes[x]['inputs'][1]])
             elif graph.nodes[x]['type'] == 'Rot':
                 d[x] = rotate_16(d[graph.nodes[x]['inputs']],graph.nodes[x]['r'])
             if not queue:
                 return (toBin(d[x]),outsGate) #Retorna-se o output do circuito, bemu
      →como um dicionário que nos indica
                                              # qual o valor de cada gate add
         return 0
```

Temos então de usar o Z3 para determinar se um conjunto de valores para cada gate add e um determinado "output" final são consistentes entre si. Utilizando teoria de *bit vectors* em conjunto com Lógica Proposicional podemos resolver este problema invertendo o circuito. Caso o Solver retorne

unsat, sabemos que o conjunto de valores não é consistente entre si, caso contrário apresentar-seão alguns inputs que são consistentes com a informação fornecida. Comecemos por definir as operações do circuito usando Z3:

```
[6]: def xor_16z3(b1,b2):
    return b1 ^ b2

def add_16z3(b1,b2):
    return b1+b2

def rotate_16z3(b,r):
    return ((b << 16-r) | LShR(b,r))</pre>
```

Para invertermos o circuito vamos começar por criar um *bit vector* por cada "wire" de "input". De seguida percorremos o grafo, executando novamente as operações especificadas por cada nodo. No entanto, temos de adicionar a restrição de que, para cada "gate" add, o resultado tem de ser igual ao especificado no input da função. No fim de percorrermos o grafo, apenas forçamos o output a ser igual ao indicado.

```
[7]: def inverte_circuito(graph,out,outGates):
         d = \{\}
         sol = Solver()
         queue = [0]
         while queue:
             x = queue.pop(0)
             for (u,v) in graph.out_edges(x):
                 if v not in queue:
                     queue.append(v)
                     queue.sort()
             if graph.nodes[x]['type'] == 'Sum':
                 d[x] = add_16z3(d[graph.nodes[x]['inputs'][0]],d[graph.
      →nodes[x]['inputs'][1]])
                 sol.add(d[x] == outGates[x])
             elif graph.nodes[x]['type'] == 'Xor':
                 d[x] = xor_16z3(d[graph.nodes[x]['inputs'][0]],d[graph.
      →nodes[x]['inputs'][1]])
             elif graph.nodes[x]['type'] == 'Rot':
                 d[x] = rotate_16z3(d[graph.nodes[x]['inputs']],graph.nodes[x]['r'])
             elif graph.nodes[x]['type'] == 'Input':
                 d[x] = BitVec(str(x)+'inpt',16)
```

```
if not queue:
           sol.add(fromBin(out) == d[x])
  r = sol.check()
  if r == sat:
      print('Consistente')
      1 = []
       cnt = 0
       while sol.check() == sat and cnt != 5:
           m = sol.model()
           l.append("".join([toBin(m[d[y]].as_long()) if m[d[y]] != None else_u
\rightarrow"".join(random.choices(["0","1"],k = 16)) for x,y in graph.out_edges(0)]))
           sol.add(Not(And([d[y] == m[d[y]] for x,y in graph.out_edges(0)])))
           cnt += 1
       return 1
  else:
       print('Inconsistente')
  return []
```

De seguida apresenta-se uma função que apenas imprime o circuito:

```
[8]: def hierarchy_pos(G, root=None, width=1., vert_gap = 0.2, vert_loc = 0, xcenter_
      \rightarrow= 0.5):
         111
         From Joel's answer at https://stackoverflow.com/a/29597209/2966723.
         Licensed under Creative Commons Attribution-Share Alike
         If the graph is a tree this will return the positions to plot this in a
         hierarchical layout.
         G: the graph (must be a tree)
         root: the root node of current branch
         - if the tree is directed and this is not given,
           the root will be found and used
         - if the tree is directed and this is given, then
           the positions will be just for the descendants of this node.
         - if the tree is undirected and not given,
           then a random choice will be used.
         width: horizontal space allocated for this branch - avoids overlap with_{\sqcup}
      \rightarrow other branches
         vert_gap: gap between levels of hierarchy
```

```
vert_loc: vertical location of root
  xcenter: horizontal location of root
  if root is None:
      if isinstance(G, nx.DiGraph):
           root = next(iter(nx.topological_sort(G))) #allows back_
→compatibility with nx version 1.11
      else:
           root = random.choice(list(G.nodes))
  def _hierarchy_pos(G, root, width=1., vert_gap = 0.2, vert_loc = 0, xcenter_u
\Rightarrow= 0.5, pos = None, parent = None):
      see hierarchy_pos docstring for most arguments
      pos: a dict saying where all nodes go if they have been assigned
      parent: parent of this branch. - only affects it if non-directed
       111
      if pos is None:
           pos = {root:(xcenter,vert_loc)}
      else:
           pos[root] = (xcenter, vert_loc)
      children = list(G.neighbors(root))
      if not isinstance(G, nx.DiGraph) and parent is not None:
           children.remove(parent)
      if len(children)!=0:
           dx = width/len(children)
           nextx = xcenter - width/2 - dx/2
           for child in children:
              nextx += dx
               pos = _hierarchy_pos(G,child, width = dx, vert_gap = vert_gap,
                                   vert_loc = vert_loc-vert_gap, xcenter=nextx,
                                   pos=pos, parent = root)
      return pos
  return _hierarchy_pos(G, root, width, vert_gap, vert_loc, xcenter)
```

```
[9]: def showCircuito(G):
    pos= hierarchy_pos(G)
    lbs = nx.get_node_attributes(G,"type").copy()
    rots = nx.get_node_attributes(G,"r")
    lbs = {k : lbs[k] + " " +str(rots.get(k,"")) for k in lbs}
```

1.0.3 Exemplos

```
[13]: n = 4
M = 7
gama = 4/7

def randInput(N):
    res = random.choices(["0","1"],k = N*16)
    return "".join(res)

k = randInput(n)

G = get_circuito(n,M,gama)
    showCircuito(G)
    print(k)
    r = calcula_circuito(G,k,n)
    print(r)
```



```
[14]: inverte_circuito(G,'0010010110001000', {6: 21878, 7: 18041, 9: 6436, 11: 9608})
```

Consistente

```
[15]: inverte_circuito(G,'0010010110001000', {6: 21878, 7: 18041, 9: 6436, 11: 9607})
```

Inconsistente

[15]: []