Coding Theory: Revision

A Generic Communication Channel

Transmitter

Channel

Receiver

$$\boxed{\text{Data } \mathbf{x} \mid \text{Encoder} \mid \text{Noise } \mathbf{e} \mid \text{Decoder} \mid \text{Decoded Data } \hat{\mathbf{x}}}$$

$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{F}_q^k \mapsto \mathbf{c} = \underbrace{(c_1, \dots, c_n)}_{\text{codeword, } n > k} = (x_1, \dots, x_k)G \mapsto \mathbf{c} + \mathbf{e} \mapsto \hat{\mathbf{x}}$$

Code Parameters

- 1. Length: n
- 2. Number of codewords, or dimension: k
- 3. alphabet: \mathbb{F}_q

Alphabet \mathbb{F}_q

- 1. \mathbb{F}_p , p a prime
- 2. \mathbb{F}_q , q a prime power

- 1. p a prime: working modulo p
- 2. $q = p^r$: working in $\mathbb{F}_p[X]/(p(X))$ for p(X) a monic irreducible polynomial

Alphabet ■ Exercise

Exercise. (a) What is the multiplicative inverse of 3 modulo 7? (b) Provide a description of \mathbb{F}_{25} .

Alphabet Exercise

Exercise. (a) What is the multiplicative inverse of 3 modulo 7?

(b) Provide a description of \mathbb{F}_{25} .

(a) The inverse x of 3 modulo 7 satisfies $3x \equiv 1 \pmod{7}$, it is 5 because $15 \equiv 1 \pmod{7}$.

Exercise. (a) What is the multiplicative inverse of 3 modulo 7?

(b) Provide a description of \mathbb{F}_{25} .

- (a) The inverse x of 3 modulo 7 satisfies $3x \equiv 1 \pmod{7}$, it is 5 because $15 \equiv 1 \pmod{7}$.
- (b) To construct \mathbb{F}_{25} , since $25 = 5^2$, we need an irreducible polynomial of degree 2 modulo 5. Take for example $p(X) = X^2 + 2$. Then for X = 0, 1, 2, 3, 4, p(X) is not zero, so the polynomial is irreducible. Then

$$\mathbb{F}_{25} = \{a_0 + a_1 w, \ a_0, a_1 \in \mathbb{F}_5\}$$

where $w^2 = -2$.

Alphabet \mathbb{F}_q

- 1. \mathbb{F}_p , p a prime
- 2. \mathbb{F}_q , q a prime power

- 1. Always pay attention to the alphabet, answers to questions usually depend on the choice of the alphabet.
- 2. Be cautious with multiplicative inverses, we do not use 1/x in modular arithmetic.

Length n

A codeword is an element of \mathbb{F}_q^n , that is a vector of length n.

- 1. $(0,1,0,0) \in \mathbb{F}_2^4$, so n=4,
- 2. $(0, \omega, \omega + 1, 0, 1) \in \mathbb{F}_4^5$, so n = 5.

Number of codewords

A code C is a family of codewords. We count the number of codewords |C|.

If C is linear, then it is a subspace of \mathbb{F}_q^n , which has a dimension k.

- 1. The number of codewords is then $|\mathcal{C}| = q^k$ where k is the dimension of \mathcal{C} .
- 2. It also means that there are *k* codewords which generate all the possible codewords.

Linearity and Dimension Exercise

Exercise. (a) Is $\mathcal{C} = \{(0,0,0,0), (0,1,0,1), (1,1,0,0), (1,1,1,0), (0,0,0,1)\}$ over \mathbb{F}_2 linear? Compute $|\mathcal{C}|$. (b) Does there exist a code \mathcal{C} of dimension 2 in \mathbb{F}^4_{25} ? If yes, compute $|\mathcal{C}|$.

Linearity and Dimension Exercise

Exercise. (a) Is $\mathcal{C} = \{(0,0,0,0), (0,1,0,1), (1,1,0,0), (1,1,1,0), (0,0,0,1)\}$ over \mathbb{F}_2 linear? Compute $|\mathcal{C}|$. (b) Does there exist a code \mathcal{C} of dimension 2 in \mathbb{F}_{25}^4 ? If yes, compute $|\mathcal{C}|$.

(a) It cannot be linear because it contains 5 elements, 5 is not a power of 2. We cannot speak of dimension but $|\mathcal{C}| = 5$.

Linearity and Dimension

■ Exercise

Exercise. (a) Is $\mathcal{C} = \{(0,0,0,0), (0,1,0,1), (1,1,0,0), (1,1,1,0), (0,0,0,1)\}$ over \mathbb{F}_2 linear? Compute $|\mathcal{C}|$. (b) Does there exist a code \mathcal{C} of dimension 2 in \mathbb{F}_{25}^4 ? If yes, compute $|\mathcal{C}|$.

(a) It cannot be linear because it contains 5 elements, 5 is not a power of 2. We cannot speak of dimension but $|\mathcal{C}| = 5$. (b) Yes, take for example $\mathcal{C} = \{a_0(1,0,0,1) + a_1(0,1,1,0), a_0, a_1 \in \mathbb{F}_{25}\}$, we have $|\mathcal{C}| = (25)^2$.

Matrices

When the code is linear, it has:

- 1. a generator matrix G
- 2. a parity check matrix H

- 1. A generator matrix G contains as rows a basis of C: thus G is $k \times n$, it is often considered in systematic form: $G = [\mathbf{I}_k | A]$.
- 2. a parity check matrix H, of dimension $(n k) \times n$, we have $H\mathbf{x}^T = 0 \iff \mathbf{x} \in \mathcal{C}$. Also if $G = [\mathbf{I}_k | A]$, $H = [-A^T | \mathbf{I}_{n-k}]$.

Generator matrix Exercise

Exercise. Let C_1 be an (n_1, k_1) linear code with generator matrix G_1 , and C_2 be an (n_2, k_2) linear code with generator matrix G_2 . Let C be a code with generator matrix G given by

$$G = \begin{bmatrix} G_1 & 0 \\ 0 & G_2 \end{bmatrix}.$$

What are the parameters (n, k) of this code?

Generator matrix Exercise

Exercise. Let C_1 be an (n_1, k_1) linear code with generator matrix G_1 , and C_2 be an (n_2, k_2) linear code with generator matrix G_2 . Let C be a code with generator matrix G given by

$$G = \begin{bmatrix} G_1 & 0 \\ 0 & G_2 \end{bmatrix}.$$

What are the parameters (n, k) of this code?

The length is $n = n_1 + n_2$. The dimension k is $k = k_1 + k_2$ because of the block structure of G that makes its $k_1 + k_2$ rows linearly independent.

Matrices

When the code is linear, it has:

- 1. a generator matrix G
- 2. a parity check matrix H

- 1. To compute a systematic form, pay attention to the alphabet.
- 2. To compute the dimension from G, make sure the rows are linearly independent.
- 3. When computing $H = [-A^T | \mathbf{I}]$, pay attention to the alphabet.

Code Performance

- 1. reliability: minimum Hamming distance d_H
- 2. efficiency: rate k/n

- 1. Compute d_H by trying to set information symbols to 0.
- 2. $d_H = d$ if and only if its parity check matrix H has a set of d linearly dependent columns but no set of d-1 linearly dependent columns.
 - Use the parity check matrix, not the generator matrix.

Code Duality

 \mathcal{C}^{\perp} is the (n, n - k) code generated by the rows of the parity check matrix H of \mathcal{C} , an (n, k) code. Also $\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{F}_q^n, \ \mathbf{c} \cdot \mathbf{v}^T = \mathbf{0} \text{ for all } \mathbf{c} \in \mathcal{C} \}.$

- 1. self-orthogonal: $\mathcal{C} \subseteq \mathcal{C}^{\perp}$
- 2. self-dual: $C = C^{\perp}$

- 1. for a code to be self-dual, we need n = 2k.
- 2. self-orthogonality is checked using the rows of G
- 3. self-dual = self-orthogonal + dimension argument
- self-duality can be checked by computing H and showing it is equivalent to G

Bounds

 $B_q(n,d)$ = number of codewords in a linear code over \mathbb{F}_q of length n and minimum distance $\geq d$ ($A_q(n,d)$) for arbitrary codes)

- 1. the Sphere Packing Bound (SPB)
- 2. Gilbert Bound
- 3. Singleton Bound

SPB
$$(t = \lfloor \frac{d-1}{2} \rfloor)$$
:

$$A_q(n,d) \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^i}$$

Gilbert Bound:

$$B_q(n,d) \ge \frac{q^n}{\sum_{i=0}^{d-1} \binom{n}{i} (q-1)^i}.$$

Singleton Bound:

$$B_q(n,d) \le q^{n-d+1}$$

or
$$d \le n - (k - 1)$$
.

Code Families

- 1. Perfect codes
- 2. MDS codes
- 3. Hamming Codes
- 4. Reed-Mueller Codes
- 5. Golay Codes
- 6. Reed-Solomon Codes
- 7. Cyclic codes

Perfect codes

Codes meeting the sphere packing bound:

$$A_q(n,d) \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^i}$$

$$t = |\frac{d-1}{2}|.$$

The $(4,2,3)_3$ tetracode is perfect. The code contains $3^2 = 9$ codewords and

$$SPB = \frac{3^4}{\sum_{i=0}^{1} {4 \choose i} 2^i} = \frac{3^4}{1+8} = 3^2.$$

MDS codes

Codes reaching the Singleton bound:

$$B_q(n,d) \le q^{n-d+1}$$

or $d \le n - (k - 1)$. MDS = maximum distance separable. The $(4,1)_2$ repetition code is MDS.

$$d = 4 = n - (k - 1) = 4.$$

Reed-Solomon codes are MDS.

Hamming Codes

For $n=2^r-1$, $r\geq 2$, and q a prime power, codes whose parity check matrix is having as columns a nonzero vector from each 1-dimensional subspace of \mathbb{F}_q^r . Their Hamming distance is 3.

For r = 2 and q = 3,

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \end{bmatrix}$$

For r = 3 and q = 2:

$$H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Reed-Mueller Codes

Binary codes of length 2^{m} . $\mathcal{R}(0,m) =$ repetition code, $\mathcal{R}(m,m) = \mathbb{F}_2^{2^m}$ For $1 < r < m, \mathcal{R}(r, m) =$ $\{(\mathbf{u}, \mathbf{u} + \mathbf{v}), \mathbf{u} \in$ $\mathcal{R}(r, m-1), \mathbf{v} \in$ $\mathcal{R}(r-1,m-1)$ is the rth order binary Reed-Muller code.

Generator matrix G(r, m):

$$\begin{bmatrix} G(r,m-1) \ G(r,m-1) \\ \mathbf{0} \ G(r-1,m-1) \end{bmatrix}.$$

For m = 3 and $1 \le r = 1 < 3$

$$G(1,3) = \begin{bmatrix} G(1,2) & G(1,2) \\ \mathbf{0} & G(0,2) \end{bmatrix}$$

$$G(1,2) = \begin{bmatrix} G(1,1) & G(1,1) \\ \mathbf{0} & G(0,1) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\hline
0 & 0 & 1 & 1
\end{bmatrix}$$

Reed-Mueller Codes

Binary codes of length 2^m . $\mathcal{R}(0,m) =$ repetition code, $\mathcal{R}(m,m) = \mathbb{F}_2^{2^m}$ For $1 \leq r < m$, $\mathcal{R}(r,m) = \{(\mathbf{u},\mathbf{u}+\mathbf{v}), \mathbf{u} \in \mathcal{R}(r,m-1), \mathbf{v} \in \mathcal{R}(r-1,m-1)\}$ is the rth order binary Reed-Muller code.

Dimension

$$\binom{m}{0} + \binom{m}{1} + \ldots + \binom{m}{r}.$$

Minimum Hamming distance:

$$d_H(\mathcal{R}(r,m)) = 2^{m-r}.$$

Golay Codes

4 codes: \mathcal{G}_{24} , \mathcal{G}_{23} (binary) and \mathcal{G}_{12} , \mathcal{G}_{11} (ternary).

Reed-Solomon Codes

Choose nonzero v_1, \ldots, v_n and distinct $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$. Set $\mathbf{v} = (v_1, \ldots, v_n)$ and $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n)$. For $k \leq n$: $GRS_{n,k}(\boldsymbol{\alpha}, \mathbf{v}) = \{(v_1 f(\alpha_1), \ldots, v_n f(\alpha_n)), f(\boldsymbol{\lambda}, \boldsymbol{\gamma})\}$ $\mathbb{F}_q[X], \deg f(X) \leq k-1$. They are MDS.

Take $\mathbb{F}_q = \mathbb{F}_4$, and choose k = 2, so $f(X) = f_0 + f_1 X$. Choose $\alpha_1 = 1$, $\alpha_2 = w$, $\alpha_3 = w^2$ (thus n = 3). $GRS_{3,2}((1, w, w^2), \mathbf{1}) = \{(f_0 + f_1, f_0 + f_1 w, f_0 + f_1 w^2), f_0, f_1 \in \mathbb{F}_4\}.$

Please pay attention to the size of \mathbb{F}_q with respect to the length n.

Cyclic codes

A linear code C of length n such that for each vector $\mathbf{c} = (c_0, \dots, c_{n-1})$ in C, the vector $(c_{n-1}, c_0, \dots, c_{n-2})$ in

- 1. Working in $\mathbb{F}_q[X]/(X^n-1)$ $\mathcal{C} = \{q(X)g(X), \ q(X) \in \mathbb{F}_q[X], \deg(q(X)) < n-r\},$ for a generator polynomial g(X) (a nonzero polynomial g(X) of lowest degree r in \mathcal{C}).
- 2. If $\deg g(X) = r$, the dimension of \mathcal{C} is k = n r.

Cyclic Codes Generator matrix

3. For a generator polynomial $g(X) = \sum_{i=0}^{r} g_i X^i$ of degree r:

$$G = \begin{bmatrix} g_0 & g_1 & \dots & g_{r-1} & g_r & 0 & \dots & 0 \\ 0 & g_0 & g_1 & \dots & g_{r-1} & g_r & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & & & & & \\ 0 & 0 & g_0 & g_1 & & g_{r-1} & g_r & \end{bmatrix}$$

- 4. To construct a generator matrix in systematic form, encode the message polynomials $m(X) = X^i$ for i = 0, ..., k 1.
- 5. There is a correspondence between divisors g(X) of $X^n 1$ and cyclic codes of length n.

Cyclic Codes Check polynomial

5. The check polynomial h(X) satisfies

$$q(X)h(X) = X^n - 1.$$

- 6. $C = \{c(X), \deg c(X) \le n 1, c(X)h(X) \equiv 0 \pmod{X^n 1}\}$
- 7. If $h(X) = \sum_{i=0}^{k} h_i X^i$ of degree k, a parity-check matrix H is:

$$H = \begin{bmatrix} h_k & h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ 0 & h_k & h_{k-1} & \dots & h_1 & h_0 & 0 & \dots & 0 \\ \vdots & & \ddots & \ddots & & & & \\ 0 & & 0 & h_k & h_{k-1} & & h_1 & h_0 \end{bmatrix}$$

and \mathcal{C}^{\perp} is the cyclic code generated by the polynomial $h^{[-1]}(X)$.

BCH Bound

Let C be an (n, k, d)cyclic code over \mathbb{F}_q with defining set $T = \bigcup_s C_s$,

$$C_s = \{s, sq, \dots, sq^{u-1}\}$$

If T contains $\delta - 1$ consecutive elements for some integer δ , then

$$d \geq \delta$$
.

 \pmod{n} .

Cyclic Codes Example

Consider the binary code generated by

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

It is cyclic since
$$(1,0,1,1,1,0,0) \xrightarrow{shift} (0,1,0,1,1,1,0) \xrightarrow{shift} (0,0,1,0,1,1,1) \xrightarrow{shift} (1,0,0,1,0,1,1) \xrightarrow{shift} (1,1,0,0,1,0) \xrightarrow{shift} (0,1,1,1,0,0,1).$$
 It has generator polynomial $g(X) = 1 + X^2 + X^3 + X^4$ and check polynomial $h(X) = 1 + X^2 + X^3$.

Cyclic Codes Example

Since $h(X) = 1 + X^2 + X^3$, its parity check matrix is

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

Since $g(X) = 1 + X^2 + X^3 + X^4 = (X+1)(X^3 + X + 1) = (X+1)(X-\alpha)(X-\alpha^2)(X-\alpha^4)$ over \mathbb{F}_2 , with defining set $T = C_0 \cup C_1 = \{0,1,2,4\}$ which contains a set $\{0,1,2\}$ of $v = 3 = \delta - 1$ consecutive elements. Thus

$$d \ge 4$$
.

Modifying Codes

- 1. Puncturing
- 2. Extending
- 3. Equivalence

Puncturing

For a linear $(n, k, d)_q$ code \mathcal{C} , puncturing means deleting the same coordinate i in each codeword. The resulting code is denoted by \mathcal{C}^* .

(1) if d > 1, \mathcal{C}^* is an $(n-1,k,d^*)$ code where $d^* = d - 1$ if C has a minimum weight codeword with a nonzero ith coordinate and $d^* = d$ otherwise. (2) if d = 1, C^* is an (n - 1, k, 1)code if \mathcal{C} has no codeword of weight 1 whose nonzero entry is in coordinate i, otherwise, if $k > 1, C^*$ is an $(n - 1, k - 1, d^*)$ code with $d^* > 1$.

Extending

If C is an $(n, k, d)_q$ code, the extended code \hat{C} is the code $\{(x_1, \ldots, x_n, x_{n+1}) \in \mathbb{F}_q^{n+1}, (x_1, \ldots, x_n) \in C, x_1 + \cdots + x_{n+1} = 0\}$

• \hat{G} is obtained by adding an extra column to G, so that the sum of the coordinates of each row of \hat{G} is 0.

$$\bullet \ \hat{H} = \begin{bmatrix} 1 & \dots & 1 & 1 \\ \hline & & & 0 \\ & H & \vdots \\ & & 0 \end{bmatrix}$$

• Minimum distance: $d_H(\hat{\mathcal{C}}) = d_H(\mathcal{C})$ or $d_H(\mathcal{C}) + 1$.

Equivalence

Two linear codes C_1 and C_2 are equivalent provided there is a monomial matrix M = DP and an automorphism σ of \mathbb{F}_q such that $C_1M\sigma = C_2$.

- 1. $P \Rightarrow \text{permutation}$ equivalence
- 2. $M = DP \Rightarrow \text{monomial}$ equivalence
- 3. $M\sigma \Rightarrow$ equivalence

