Búsqueda en la Web

Crawling y PageRank

Particularidades de la búsqueda Web

- Retos: búsqueda en condiciones extremas
 - Escala, volatilidad, calidad muy variable, spam...
 - Colección desconocida
 - → Necesidad de un módulo que la descubra: crawler
- Ventaja: estructura adicional de hiperenlaces
 - Algoritmos de ránking que explotan el grafo Web
 - → PageRank

Crawling

- La Web se construye de forma libre y descentralizada
- ◆ Para indexar la colección, el buscador tiene que explorar y encontrarla
- La búsqueda de páginas se hace mediante un recorrido del grafo Web
- Lleva tiempo y necesita repetirse continuamente
- Lo importante es alcanzar las páginas que impactan en los resultados de búsqueda

Crawling: exploración de la Web

Web no descubierta aún

Crawling: exploración de la Web

- Frontera de crawling
- Web no descubierta aún

Crawling: exploración de la Web

- Semilla
- Web indexada
- Frontera de crawling
- Web no descubierta aún

Crawling: cola de prioridad

Crawling: pasos (cont)

Crawling – operaciones específicas

- Normalización de URLs
 - Mayúsculas en dominio y secuencias de escape, suprimir puerto por defecto,
 suprimir "." y "..", unificar "/" al final de la URL, etc.
- Aprovechar el texto de los enlaces (términos para el doc apuntado)
 - Con qué palabras describen autores externos el contenido de las páginas
 - Vulnerabilidad a ataques de link bombing
- Si una URL no responde repetidas veces, eliminarla
 - Del índice y de la cola de prioridad

Criterios de prioridad de crawling

- Semillas
 - Portales importantes, portales de noticias, ODP, etc.
- Criterios de prioridad en la cola de frontera de crawling
 - Tiempo de permanencia en la cola
 - Frecuencia y tipo de cambios de las páginas
 (p.e. periódico digital vs. portal de una facultad)
 - Impacto de los cambios en los ránkings de búsqueda
- Impacto en los ránkings
 - Nº de veces que la página aparece en resultados de búsqueda
 - PageRank, frecuencia de clicks de las URLs en un log

Crawling – cortesía con el servidor Web

- Exclusión de páginas
 - Protocolo de exclusión robots.txt (también se suele guardar en cache):
 User-agent, Allow, Disallow
 - <meta name="robots" content="noindex,nofollow">
 - (muy utilizado automáticamente en blogs y wikis)
- Moderar el nº de peticiones por minuto
 - P.e. una cada 1-60s, habitualmente > 20s en promedio
 - robots.txt → Crawl-delay
 - Aun así, los crawlers son los mayores consumidores de ancho de banda en Internet
- Autoidentificarse con el parámetro User-agent en la petición http
 - P.e. Googlebot, Bingbot, Yahoo! Slurp, etc.

Crawling – páginas dinámicas

Muchas no se pueden indexar

 P.e. toman input del usuario (front-end de aplicaciones), acceso vía enlaces creados con JavaScript, redirects, protegidas por password, etc.

Otras sí

- Existe un camino de enlaces visible para el crawler: equivale a una página estática
- No existe camino de enlaces: archivos sitemap (p.e. catálogos de tiendas online, etc.)
- Archivos sitemap (ver http://www.sitemaps.org)
 - Propuesto por Google en 2005, secundado poco después por Yahoo, MSN, Ask, IBM...
 - Contienen un listado de URLs a indexar, con detalles de prioridad (relativa),
 periodicidad de actualización, fecha de última modificación, etc.
 - La URL de ubicación del archivo sitemap se indica en robots.txt
 - Se suelen admitir máx 50.000 URLs / 10MB por sitemap, permitiendo un archivo índice de sitemaps con los mismos máximos (generalmente comprimido con gzip)
 - El servidor vuelca sus URLs dinámicas (p.e. generan consultas a una BD) a un listado sitemap en XML, el crawler las incluye en la cola de URLs
- También es posible enviar una URL manualmente para solicitar indexación

Ránking basado en enlaces: PageRank

- Aprovechar la estructura de links para extraer indicios de importancia
- Independiente de la consulta

- Después se combinará con scores por consulta
- Efectividad de Google
- Múltiples otras aplicaciones posteriores

PageRank: principio general

- Los links entrantes son un indicio de importancia
- Tanto más si el link procede de una página importante
- Pero tenemos en cuenta también si la página de origen es muy "pródiga" con los links

$$P(d_j) = \sum_{d_i \to d_j} d_j$$

$$P(d_{j}) = \sum_{d_{i} \to d_{j}} 1$$

$$A \leftarrow B$$

$$B$$

$$P(d_{j}) = \sum_{d_{i} \to d_{j}} P(d_{i})$$

$$A \leftarrow B$$

$$B$$

$$P(d_{j}) = \sum_{d_{i} \to d_{j}} P(d_{i})$$

$$A \leftarrow B$$

$$B \rightarrow C$$

$$P(d_{j}) = \sum_{d_{i} \to d_{j}} \frac{P(d_{i})}{\#out(d_{i})}$$

$$A \leftarrow A \leftarrow B$$

$$P(d_{j}) = \sum_{d_{i} \to d_{j}} \frac{P(d_{i})}{\#out(d_{i})}$$

$$A \leftarrow A \leftarrow B$$

$$P(d_j) = \frac{r}{N} + (1 - r) \sum_{d_i \to d_j} \frac{P(d_i)}{\#out(d_i)}$$

$$r \in (0,1)$$

$$P(d_{j}) = \frac{r}{N} + (1 - r) \sum_{d_{i} \to d_{j}} \frac{P(d_{i})}{\#out(d_{i})}$$

$$r \in (0,1)$$

$$A \leftarrow B$$

$$B \rightarrow C$$

Ejemplo

$$P(a) = r/3 + (1-r)P(c)$$

$$P(b) = r/3 + (1-r)P(a)/2$$

$$P(c) = r/3 + (1 - r)(P(a)/2 + P(b))$$

P(c) =
$$r/3 + (1-r)(P(a)/2 + P(a)/2 +$$

◆ En general no es viable resolver simbólicamente un sistema de ecuaciones con millones de variables ⇒ Cómputo iterativo (solución numérica)

	k = 1	k = 2	k = 3	k = 4	k = 5	<i>k</i> = 6	k = 7	k = 8	<i>k</i> = 9	
P(a)	0.3333	0.3333	0.3750	0.3542	0.3594	0.3594	0.3587	0.3590	0.3590	•••
P(b)	0.3333	0.2500	0.2500	0.2604	0.2552	0.2565	0.2565	0.2563	0.2564	
P(c)	0.3333	0.4167	0.3750	0.3854	0.3854	0.3841	0.3848	0.3846	0.3846	

PageRank: algoritmo simple

```
PageRank (links)
    for k \leftarrow 1 to |links|
                                          // Compute #outlinks of all nodes
        out[links[k].from] + +
    for i \leftarrow 1 to N do
                                          // Initial values
        P[i] \leftarrow 1/N
                                          // (division by N can be omitted)
    while convergence condition
                                         // Compute PageRank iteratively
        for i \leftarrow 1 to N do
            P'[i] \leftarrow r/N
                                          // (division by N can be omitted)
        for k \leftarrow 1 to |links| do
            i \leftarrow links[k]. from
            j \leftarrow links[k]. to
            P'[j] \leftarrow P'[j] + (1-r)P[i]/out[i]
        for i \leftarrow 1 to N do
            P[i] \leftarrow P'[i]
                                          // To handle sinks, add (1 - \sum_{i} P'[i])/N
```


PageRank: interpretación probabilística

- Navegante aleatorio
 - Empieza en una página al azar
 - Con probabilidad 1-r escoge un enlace saliente al azar y lo atraviesa
 - Con probabilidad r escribe directamente la URL de una página al azar
 - Repite este comportamiento indefinidamente
- En un instante dado, ¿cuál es la probabilidad P(d) de que este usuario se encuentre en una página d?
 - $-P(d) \equiv PageRank de d$
- El escenario describe un proceso estocástico que corresponde a una cadena de Markov: random walk
 - Las páginas son estados, el paso de una a otra son transiciones
 - La probabilidad de aterrizar en una página sólo depende de la página anterior
 - La probabilidad de transición de una página a otra se puede calcular
- Converge a una probabilidad estacionaria
- Comprobar que resulta la fórmula original...
 - Revela la necesidad de tratamiento de los nodos sumidero

Derivación probabilística

$$p(d_{j}|t) = \sum_{i} p(d_{j}|d_{i}, t-1)p(d_{i}|t-1) = \sum_{i} p(d_{j}|d_{i})p(d_{i}|t-1)$$

$$p(d_{j}|d_{i}) = p(d_{j}|d_{i}, click) p(click|d_{i}) + p(d_{j}|d_{i}, teleport) p(teleport|d_{i})$$

$$p(click|d_{i}) = \begin{cases} 1 - r & \text{si } \#out(d_{i}) > 0 \\ 0 & \text{si } \#out(d_{i}) = 0 \end{cases}$$

$$p(teleport|d_{i}) = \begin{cases} r & \text{si } \#out(d_{i}) > 0 \\ 1 & \text{si } \#out(d_{i}) = 0 \end{cases}$$

$$p(d_{j}|d_{i}, teleport) = p(d_{j}|teleport) = \frac{1}{N}$$
// Probabilidad uniforme teleport
$$p(d_{j}|d_{i}, click) = \begin{cases} \frac{1}{\#out(d_{i})} & \text{si } d_{i} \rightarrow d_{j} \text{ // Probabilidad uniforme entre enlaces} \\ 0 & \text{en otro caso} \end{cases}$$

Derivación probabilística

Haciendo el desarrollo probabilístico completo, sale un término más

$$P(d_j) = \frac{r}{N} + (1 - r) \left(\sum_{d_i \to d_j} \frac{P(d_i)}{\#out(d_i)} + \sum_{\#out(d_i) = 0} \frac{P(d_i)}{N} \right)$$

Páginas d_i que no tienen ningún enlace saliente: nodos "sumidero"

- El término aparece porque cuando el navegante llega a un sumidero, la probabilidad de que atraviese un enlace es cero (y no 1-r)
- Ésta es la fórmula completa y más correcta de PageRank
- El término extra es lo mismo que saldría si todos los nodos sumidero tuviesen un enlace a todos los demás nodos del grafo
- Pero no quiere eso decir que haya que añadir esos enlaces al grafo!

Tratamiento de sumideros

$$P(a) = r/3$$

$$P(b) = r/3 + (1 - r) P(a)/2$$

$$P(c) = r/3 + (1 - r) (P(a)/2 + P(b))$$

Tratamiento de sumideros

$$P(a) = r/3 + (1-r) P(c)/3$$

$$P(b) = r/3 + (1-r)(P(a)/2 + P(c)/3)$$

$$P(c) = r/3 + (1-r)(P(a)/2 + P(b) + P(c)/3)$$

Tratamiento de sumideros

$$P(a) = r/3 + (1-r) P(c)/3$$

$$P(b) = r/3 + (1-r)(P(a)/2 + P(c)/3)$$

$$P(c) = r/3 + (1-r)(P(a)/2 + P(b) + P(c)/3)$$

- Como si hubiese estos enlaces
- Pero no quiere decir que haya que añadirlos!

Integración de PageRank en un sistema de búsqueda

- Elaboraciones monótonas del valor, por ejemplo:
 - No es necesario dividir por N (evita $P(d) \ll 1$ pues $\sum_d P(d) = 1$)
 - $-\log P(d)$ modera la distribución tendente a power law
- Optimización de la convergencia
- Detectar spam (link farms, etc.)
- Particularizar el vector de teleportación (p.e. personalización,
 p.e. en Twitter WTF) y las probabilidades de transición
 - Muchas otras elaboraciones...
- $^{\text{CP}}$ Combinar P(d) con sim(q,d)
 - Los tres ingredientes principales de Google: contenido + links + RankBrain