Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 23 (Sept 18, 2019)

Sums and Direct Sums

- **Definition:** Let U and W be subspaces of the vector space V. Then the sum of U and W, $U+W=\{u+w:u\in U,w\in W\}$. It is easy to see that U+W is a subspace of V. In fact, U+W is the smallest subspace of V containing U and W.
- **Definition:** V is said to be the direct sum of the subspaces U and W if every vector $v \in V$ is uniquely expressible in the form v = u + w, where $u \in U$, $w \in W$. We shall use the notation $V = U \oplus W$ to indicate that V is the direct sum of U and W.
- **Proposition 19:** If U and W are subspaces of the vector space V, then $V = U \oplus W$ if and only if V = U + W and $U \cap W = \{0\}$. **Proof:** Left as an exercise.
- **Remark:** In some books, direct sum is defined as in Proposition 19, and then our definition is derived as a proposition.
- **Remark:** The subspace W in the above is often referred to as a **complement** or **complementary** subspace of U. It should be noted that there is nothing unique about complementary subspaces.

Dimension of the Sum

Proposition 20: If U and W are finite-dimensional subspaces of the vector space V, then $\dim(U+W)=\dim U+\dim W-\dim(U\cap W)$.

Proof: Put $X = U \cap W$ for convenience. If either U or W is $\{0\}$, then there is nothing to prove. The main idea is to use Prop 15 to construct a basis for U + W. Let $B = \{x_1, \ldots, x_k\}$ be a basis for X (note that X is finite dimensional subspace of U and W both by Prop 18). Of course, if X is $\{0\}$, then this step is not needed. Since $X \subseteq U$, we expand B to a basis B_1 for U by adjoining the vectors u_1, \ldots, u_m , i.e.

 $B_1 = \{x_1, \dots, x_k, u_1, \dots, u_m\}$, where $k \ge 0, m > 0$. Similarly, expand B to a basis B_2 of W by adjoining the vectors w_1, \dots, w_n , i.e.

 $B_2 = \{x_1, \dots, x_k, w_1, \dots, w_n\}, \text{ where } n > 0. \text{ Put}$

 $C = B \cup B_1 \cup B_2 = \{x_1, \dots, x_k, u_1, \dots, u_m, w_1, \dots, w_n\}$. We claim that C is a basis for U + W. In order to prove this claim, we need to prove the following:

- ① Span (C) = U + W.
- ① *C* is L.I.

Dimension of the Sum (Cont'd)

Proof that: Span (C) = U + W

Since $B \subseteq X \subseteq U \subseteq U + W$, $B_1 \subseteq U \subseteq U + W$ and $B_2 \subseteq W \subseteq U + W$, we see that $C \subseteq U + W$. Thus, Span $(C) \subseteq U + W$. To prove the other containment, take an arbitrary element $z = u + w \in U + W$, where $u \in U$ and $w \in W$. Now $u \in U$ can be written as:

 $u=e_1x_1+\cdots+e_kx_k+f_1u_1+\cdots+f_mu_m$ and $w\in W$ can be written as: $w=g_1x_1+\cdots+g_kx_k+h_1w_1+\cdots+h_nw_n$. Therefore,

$$z = (e_1 + g_1)x_1 + \cdots + (e_k + g_k)x_k + f_1u_1 + \cdots + f_mu_m + h_1w_1 + \cdots + h_nw_n,$$

i.e z is a linear combination of elements of C. Thus, $U+W\subseteq \operatorname{Span}(C)$, which proves the other containment. Hence $U+W=\operatorname{Span}(C)$.

Dimension of the Sum (Cont'd)

Proof that: the set C L. I.

Suppose:

$$a_1x_1 + \cdots + a_kx_k + b_1u_1 + \cdots + b_mu_m + c_1w_1 + \cdots + c_nw_n = 0$$
 (1)

or
$$a_1x_1 + \dots + a_kx_k + b_1u_1 + \dots + b_mu_m = -c_1w_1 - \dots - c_nw_n$$
 (2)

Note that LHS $\in U$ and RHS $\in W$ and thus, this vector belongs to $U \cap W$. Hence we can write:

$$-c_1w_1 - \cdots - c_nw_n = d_1x_1 + \cdots + d_kx_k$$
 (3)

or
$$d_1x_1 + \cdots + d_kx_k + c_1w_1 + \cdots + c_nw_n = 0$$
 (4)

Since B_2 is LI, being a basis for W, we must have $d_1 = \cdots = d_k = c_1 = \cdots = c_n = 0$. Therefore (1) becomes

$$a_1x_1 + \cdots + a_kx_k + b_1u_1 + \cdots + b_mu_m = 0.$$
 (5)

Dimension of the Sum (Cont'd)

Now, since B_1 is a basis for U, we must have $a_1 = \cdots = a_k = b_1 = \cdots = v_m = 0$. Hence C is L1. Finally, since dim U = k + m, dim W = k + n and dim $(U \cap W) = k$, we have:

$$\dim U + \dim W = |C| = k + m + n = \dim U + \dim W - \dim(U \cap W).$$

Corollary to Proposition 20: If V is the direct sum of the finite dimensional subspaces U and W, then $\dim V = \dim(U \oplus W) = \dim U + \dim W$.

Remark: The above result is the analogue for finite-dimensional vector spaces of the familiar result about the cardinality of the union of finite sets

Some Examples

Example 1: Plane \mathbb{R}^2

- Consider the subspaces of \mathbb{R}^2 , say U,W. Note that the only possibility for a proper subspace U is dim U=1, i.e. it has a basis consisting of one (non-zero vector), say u_1 . Geometrically, $u_1=\begin{pmatrix} x_1\\y_1\end{pmatrix}$ corresponds to the point (x_1,y_1) in the plane or more specifically, the directed line segment joining (0,0) to (x_1,y_1) .
- Taking a particular case, say $u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. What does U corresponds to: Algebraically, $U = \{ku_1 : k \in \mathbb{R}\}$. Geometrycally, U is a line passing through the origin and (1,1).
- In fact, any 1-dimensional subspace corresponds to a line through the origin, and conversely.

- Now, suppose u_2 is a vector which is not a scalar multiple of u_1 . Therefore, u_1, u_2 are LI. Thus, $\{u_1, u_2\}$ is necessarily a basis, i.e. any vector u can be uniquely expressed as a linear combination of u_1 and u_2 .
- If $U = \operatorname{Span}\{u_1\}$, $W = \operatorname{Span}\{u_2\}$, then $\dim(U+W) = \dim U + \dim W \dim(U\cap W)$ i.e. $2 = 1 + 1 \dim(U\cap W)$ and therefore, $\dim(U\cap W) = 0$, i.e. $U\cap W = \{0\}$. One can also verify this geometrically.
- Algebraically, we can see something from a different perspective. Since u_1 and u_2 are linearly independent, the equation $c_1u_1+c_2u_2=0$ holds only for $c_1=c_2=0$. Hence the homogeneous system AX=0, where $A=[u_1,u_2]$, the matrix with u_1 and u_2 as its columns, has only the trivial solution. Hence, by TIMT, A is invertible.

Also the system AX = b has a solution (actually unique) for every $b \in \mathbb{R}^2$, i.e. every $b \in \text{Span}\{u_1, u_2\}$, i.e. $\{u_1, u_2\}$ is a basis.

Example 2: Plane \mathbb{R}^3

- Let us consider subspaces of \mathbb{R}^3 , say U, W.
- Case 1: dim U = 1Then U has a basis consisting of a single vector, say, u_1 . As before, $u_1 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ corresponds to the directed line segment joining (0,0,0)

and (x, y, z).

• Case 2: dim U=2; then U has a basis consisting of two linearly independent vectors u_1 and u_2 , i.e. $U = \text{Span}\{u_1, u_2\}$. Then U corresponds to a plane through origin, i.e. corresponds to the geometrical fact that two intersecting lines in \mathbb{R}^3 determine a plane. It is obvious that that Span $\{u_1\}$ and Span $\{u_2\}$ intersect at the origin. We can see this using coordinate geometry also.

• Let us take a plane through the origin, say x + y + z = 0. This corresponds to the linear system AX = 0 where A = [1, 1, 1]. Since A is already an RREF matrix, we solve the corresponding homogenous system:

$$x_1 = -x_2 - x_3$$

$$x_2 = x_2$$

$$x_3 = x_3$$

to get
$$X = x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, i.e. the plane corresponds to the

span of the two linearly independent vectors

$$u_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
 and $u_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

• Conversely, suppose we take any vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in the span of the

linearly independent vectors
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\3\\5 \end{pmatrix}$.

Thus,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \tag{6}$$

Solving for c_1 and c_2 in terms of x and y, i.e. solving the system

$$\begin{pmatrix} 1 & 1 & : & x \\ 2 & 3 & : & y \end{pmatrix}$$
 and RREF of this system or matrix is

$$\begin{pmatrix} 1 & 0 & : & 3x-y \\ 0 & 1 & : & y-2x \end{pmatrix}$$
 .i.e $c_1=3x-y, c_2=y-2x$. Substituting in the

third row of system (6), we get $z = 3c_1 + 5c_2 = -x + 2y$, equation of the plane through origin.

 What about intersection of two planes passing through origin. i.e. two 2-dimensional subspaces U and W.

We have that

$$\dim(U+W) = \dim U + \dim W - \dim(U\cap W) = 4 - \dim(U\cap W) \quad (7)$$

Now, U + W has U and V as subspaces, so dim(U + W) = 3 or 2.

Thus $\dim(U+W)=3$ makes (7) into $3=4-\dim(U\cap W) \implies \dim(U\cap W)=1$, i.e. $U\cap W$ is a line (1-dimensional subspace through the origin).

Note: If dim(U+W)=2, then $U+W=U=W \implies U$ and W were actually the same subspace, and (7) becomes 2=2+2-2, which is obviously true.

Quick Summary

- Concepts: span, linear dependence/independence, basis, dimension
- If V is a finite-dimensional space, U, W subspaces:
 - $|any LI set| \le |any spanning set|$ (Prop 12)
 - Any two bases have the same number of vectors = dimension of the space (Prop 13)
 - Any LI set can be expanded to a basis (Prop 15)
 - Any spanning set can be contracted to a basis (Prop 16)
 - If U is a proper subspace, then $0 < \dim U < \dim V$ (Prop 18)
 - $\dim(U+W) = \dim U + \dim W \dim(U\cap W)$ (Prop 20)