MLP Előrejelzések

Kovászna MLP (12, 12,)			
Előrejelzés	Valódi adat		
4.47	4.60		
4.40	4.30		
4.17	4.20		
4.08	4.10		
4.00	4.00		
3.95	3.80		
3.82	3.80		
3.94	3.80		
3.86	3.80		
3.86	3.80		
3.86	4.20		
4.40	4.90		

Hargita MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
3.80	3.90	
3.91	4.00	
4.01	4.20	
4.22	4.40	
4.39	4.40	
4.38	4.50	
4.47	4.30	
4.24	4.20	
4.13	4.00	
3.94	3.80	
3.74	3.80	
3.78	3.70	
5.5 Hargita MLP 2022 augusztus - 2023 július között — Hargita MLP — Hargita MLP — Hargita MLP — Hargita MLP — Hargita McF		

Maros MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
2.71	2.80	
2.79	2.90	
2.90	3.10	
3.08	3.20	
3.17	3.20	
3.11	3.10	
2.97	3.10	
2.96	3.00	
2.89	2.70	
2.66	2.70	
2.69	2.70	
2.68	2.70	

Model	MSE	RRMSE	MAPE
Kovászna MLP ((12, 12, 12,), 5 réteg)	3.66 %	4.70 %	3.13 %
Hargita MLP ((12, 12, 12,), 5 réteg)	1.46 %	2.96 %	2.64 %
Maros MLP ((12, 12, 12,), 5 réteg)	1.10 %	3.64 %	2.85 %

Kovászna	MLP	modell	összefoglaló
----------	-----	--------	--------------

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	70
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	lbfgs
Optimalizálási ciklus lépésszáma:	1235
Rejtett rétegek Aktivációs függvénye:	relu

```
Tanító párok: (amiből megtanulta a súlyokat)
                                                                                   Teszt párok (amiket meg kell jósoljon):
1. [12.2 12.5 12.3] --> 11.9
                                                                                   1. [4.7 4.4 4.5] --> 4.6
2. [12.5 12.3 11.9] --> 11.1
                                                                                   2. [4.4 4.5 4.6] --> 4.3
                                                                                   3. [4.5 4.6 4.3] --> 4.2
3. [12.3 11.9 11.1] --> 10.9
                                                                                   4. [4.6 4.3 4.2] --> 4.1
4. [11.9 11.1 10.9] --> 11.4
5. [11.1 10.9 11.4] --> 11.2
                                                                                   5. [4.3 4.2 4.1] --> 4.0
                                                                                   Rétegek súlyai:
ELtolási értékek vektora:
                                                                                                                                                      0.02912297,
[array([-0.48278261, -0.4463698 , -0.29493995,
                                                      0.13497285,
                                                                    0.40403927,
                                                                                   [array([[ 0.41990623, 0.24029993, 0.10677507,
                                                                                                                                        0.87150226,
```

1.18337905,

-0.31456655,

identity

-0.95221567, 0.4466447 , -0.35145308, 1.06609049, 0.18461417, -1.3483072 ,

-0.29991362], [0.02848743, -0.5284752 , -0.57568517, 1.28451483, -0.05192756,

0.45161633, 1.38737214, -0.55223078, -1.79910074, 1.4396735 , -0.06789969,

0.60303261], [-0.56045831, -0.81790373, 0.36334446, -1.02181059, 0.43312622,

Hargita MLP modell összefoglaló

0.08996234, -0.659286 , -0.82490936, 0.01074621, -0.59508843, 1.056782 ,

-0.91146649, 0.03675066, -0.41622409, -0.06590725, 1.16305054, -0.27473883,

-0.56645016]), array([-0.09281684, 0.43808824, -0.0296096 ,

-0.41807708, -0.40258625]), array([0.15631833, 0.95470113,

Kimeneti réteg Aktivációs függvénye:

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	79
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	lbfgs
Optimalizálási ciklus lépésszáma:	473
Rejtett rétegek Aktivációs függvénye:	relu
Kimeneti réteg Aktivációs függvénye:	identity

```
Tanító párok: (amiből megtanulta a súlyokat)

1. [10.9 11.4 11.2] --> 10.7

2. [11.4 11.2 10.7] --> 9.6

3. [11.2 10.7 9.6] --> 9.3

4. [10.7 9.6 9.3] --> 8.6

5. [9.6 9.3 8.6] --> 8.7
```

```
ELtolási értékek vektora:

[array([ 0.84648706, 0.06345905, 0.36349727, -0.35049507, 0.37897201, -0.38852672, -0.2329749 , -0.43846084, 0.02810056, 0.92927318, 1.06452661, -0.13770738]), array([-0.52443579, -0.02566875, 0.49699985, -0.07208581, -0.15100475, -0.37830862, 0.20299731, -0.39281586, -0.50511969, -0.30142248, 0.26300733, -0.60914657]), array([-0.2056402 , 0.60275185, -0.31443772,
```

```
Rétegek súlyai:

[array([[-0.09143903, -0.48826611, -0.00926866, -0.63393975, 0.99100603, 0.00450663, 0.37860614, 0.33283197, -0.94123392, -0.3933766 , 0.23722464, 0.1740844 ], [ 0.32021406, 0.33820175, -0.28871045, 0.22086954, -0.94705374, -0.42174015, -0.06025271, -0.35458988, -0.32504785, 0.23847073, -0.41249661, -0.75036028], [ 0.39307733, 0.62553802, 0.1185268 , 0.47602475, 0.73512435,
```

Maros MLP modell összefoglaló

```
Bemeneti neuronok száma:
                                                                                                                                                        3
                                                                                                                                                        1
Kimeneti neuronok száma:
                                                                                                                                                        77
Legjobb random kezdőérték a súlyozásra:
Rejtett rétegek és azok neuronjainak száma:
                                                                                                                                                        (12, 12, 12,)
Normalizálási eljárás:
                                                                                                                                                        standard
Optimalizálási Algoritmus:
                                                                                                                                                        lbfgs
Optimalizálási ciklus lépésszáma:
                                                                                                                                                        1341
Rejtett rétegek Aktivációs függvénye:
                                                                                                                                                        relu
Kimeneti réteg Aktivációs függvénye:
                                                                                                                                                        identity
```

```
Tanító párok: (amiből megtanulta a súlyokat)

1. [8.3 8.4 8.5] --> 8.2

2. [8.4 8.5 8.2] --> 7.9
```

Teszt párok (amiket meg kell jósoljon):

1. [2.6 2.7 2.7] --> 2.8

2. [2.7 2.7 2.8] --> 2.9

```
3. [8.5 8.2 7.9] --> 7.8
4. [8.2 7.9 7.8] --> 7.9
5. [7.9 7.8 7.9] --> 8.3
```

```
3. [2.7 2.8 2.9] --> 3.1
4. [2.8 2.9 3.1] --> 3.2
5. [2.9 3.1 3.2] --> 3.2
```

```
ELtolási értékek vektora:
```

```
[array([-0.48107038, -0.55423792, -0.58578232, 0.66565169,
                                                              0.02365569,
1.25122971, 1.50746837, -0.2823368 , 1.24816013, 0.00369101, -0.50439636,
-0.3584788 ]), array([ 0.73427378, -0.14003675, -0.30610167, 0.2657614 ,
0.81876015, -0.07246417, -0.73544402, -0.10280388, -0.08500122, -0.17260526,
0.6541049 , -0.27928042]), array([-0.65676515, -0.34118627, 0.41474387,
```

Rétegek súlyai:

```
[array([[-0.46030271, 0.69779298, 0.23890222, -1.40684322,
                                                                  -0.82274526,
0.98013193, -1.10033405, -0.02399903, -1.70795505, -1.23026846, 0.13509493,
0.02795271], [ 0.25557612, -0.60051377, -0.28854565, -1.11797844, 0.39355001,
-0.17486721, -0.91231541, 0.23558654, -0.53667664, 0.43945443, -0.30388958,
-0.11696677], [-0.7239003 , 1.57342912, -0.77020686, 0.45057577, -0.73739128, <del>-</del>
```