Sammanfattning av SG1183 Differentialekvationer och transformmetoder

Yashar Honarmandi yasharh@kth.se

8 oktober 2018

Sammanfattning

Innehåll

1	\mathbf{Ord}	linarie differentialekvationer (ODE)	1
	1.1	Användbara defitioner och satser	1
	1.2	Första ordningen	3
	1.3	Andra ordningen	5
	1.4	System av ODE	8
	1.5	Exakta differentialekvationer	12
	1.6	Stabilitet	13

1 Ordinarie differentialekvationer (ODE)

1.1 Användbara defitioner och satser

Lipschitzkontinuitet En funktion f är Lipschitzkontinuerlig om det finns ett K så att det för varje x_1, x_2 gäller att

$$|f(x_1) - f(x_2)| \le K|x_1 - x_2|.$$

Lipschitzkontinuitet och deriverbarhet Låt $f \in C^1$. Då är f Lipschitzkontinuerlig.

Grönwalls lemma Antag att det finns positiva A, K så att $h: [0, T \to \mathbf{R}]$ uppfyller

$$h(t) \le K \int_{0}^{t} h(s) \, \mathrm{d}s + A.$$

Då gäller att

$$h(t) \le Ae^{Kt}$$
.

Bevis Definiera

$$I(t) = \int_{0}^{t} h(s) \, \mathrm{d}s.$$

Då gäller att

$$\frac{\mathrm{d}I}{\mathrm{d}t}(t) = h(t) \le KI(t) + A.$$

Denna differentialolikheten kan vi lösa vid att tillämpa integrerande faktor. Detta kommer att ge

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-Kt} I(t) \right) \le A e^{-Kt}.$$

Vi integrerar från 0 till r och använder att I(0) = 0 för att få

$$I(r) \le \frac{A}{K} (e^{Kr} - 1).$$

Derivation på båda sidor ger

$$h(r) \le Ae^{Kr}$$
,

vilket skulle visas.

Positivt definitiva funktioner Låt D vara en öppen omgivning av $\mathbf{0}$. Funktionen V är positivt definitiv om $V(\mathbf{0}) = 0$ och $V(\mathbf{x}) > 0$, $\mathbf{x} \neq \mathbf{0}$. Definitionen är analog för negativt definitiva funktioner. Vid att inkludera likheten i olikhetstecknet fås också definitionen av positivt och negativt semidefinitiva funktioner.

Analytiska funktioner En funktion är analytisk om den lokalt beskrivs av en potensserie.

Potenser av matriser Vi definierar

$$e^{At} = I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!}.$$

Eulers metod Betrakta differentialekvationen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(t, y), \ 0 < t < T,$$
$$y(0) = y_0.$$

Vi gör indelningen $t_n=n\Delta t, n=0,1,\ldots,N$ så att $\Delta t=\frac{T}{N}$ och inför $y_n=y(t_n)$. Vidare gör vi approximationen

$$\frac{y_{n+1} - y_n}{\Delta t} = f(t_n, y).$$

Linjära differentialekvationer Om en differentialekvation kan skrivas på formen $F(t, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \dots) = 0$, är den linjär om F är linjär i alla sina argument förutom t.

Wronskianen Wronskianen definieras som

$$W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ \frac{dy_1}{dt}(t) & \frac{dy_2}{dt}(t) \end{vmatrix}.$$

För vektorvärda funktioner definieras den som determinanten av matrisen vars kolumner är de olika funktionerna.

Linjärt beroende funktioner $f: I \to \mathbf{R}, g: I \to \mathbf{R}$ är linjärt beroende om det finns k_1, k_2 så att

$$k_1 f(t) + k_2 g(t) = 0 \ \forall \ t \in I.$$

Fundamentalt sätt av lösningar Betrakta någon ODE och ett sätt lösningar. Detta sättet är ett fundamentalt sätt av lösningar om och endast om deras wronskian är nollskild överallt i lösningsintervallet.

1.2 Första ordningen

Existens av lösning Betrakta differentialekvationen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y),$$
$$y(0) = y_0.$$

Detta har en lösning om f är Lipschitzkontinuerlig.

Bevis Bilda två diskreta approximationer $\bar{y}, \bar{\bar{y}}$ av y. Vi kan visa att

$$\max_{t \in [0,T]} |\bar{y}, \bar{\bar{y}}| \le K\Delta t$$

där Δt är det största tidsavståndet mellan två punkter i någon av de diskreta approximationerna. Detta implicerar konvergens mot ett gränsvärde y(t) när $\Delta t \to 0$. Detta gränsvärdet uppfyller

$$y(t) = \lim_{\Delta t \to 0} \bar{y}(t)$$

$$= \lim_{\Delta t \to 0} \bar{y}(0) + \int_{0}^{t} f(\bar{y}(s)) ds$$

$$= y(0) + \int_{0}^{t} f(y(s)) ds,$$

där sista likheten kommer av integrandens Lipschitzkontinuitet. Integralkalkylens fundamentalsats ger då

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y),$$

vilket skulle visas.

Entydighet av lösning Betrakta differentialekvationen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y),$$
$$y(0) = y_0.$$

Detta har en unik lösning om f är Lipschitzkontinuerlig.

Observera att beviset kan även göras för en funktion f(t, y) vid att skriva differentialekvationen som ett system och komma med en motsvarande sats för system av differentialekvationer.

Bevis Betrakta två lösningar y, z av differentialekvationen. Vi får

$$y(\tau) - y_0 = \int_0^{\tau} f(y) \, \mathrm{d}t$$

och samma för z. Vi subtraherar dessa två resultat och får

$$y(\tau) - z(\tau) = y_0 - z_0 + \int_0^{\tau} f(y) - f(z) dt.$$

Vid att beräkna absolutbeloppet av båda sidor och använda Cauchy-Schwarz' oliket får man vidare

$$|y(\tau) - z(\tau)| \le |y_0 - z_0| + \int_0^{\tau} |f(y) - f(z)| dt.$$

Kravet om Lipschitzkontinuitet av f ger vidare

$$|y(\tau) - z(\tau)| \le |y_0 - z_0| + \int_0^{\tau} K|y(t) - z(t)| dt.$$

Grönwalls lemma ger slutligen

$$|y(\tau) - z(\tau)| \le |y_0 - z_0|e^{K\tau}$$
.

Om $y_0 = z_0$ är y = z, och beviset är klart.

Lösning av linjära ODE av första ordning Antag att vi har en differentialekvation på formen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) + p(t)y(t) = g(t).$$

Beräkna

$$P(t) = \int_{a}^{t} p \, \mathrm{d}x$$

och inför den integrerande faktorn $e^{P(t)}$. Multiplicera med den på båda sidor för att få

$$e^{P(t)} \frac{dy}{dt}(t) + p(t)e^{P(t)}y(t) = e^{P(t)}g(t).$$

Detta kan skrivas om till

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(y e^P \right) (t) = e^{P(t)} g(t) = \frac{\mathrm{d}H}{\mathrm{d}t} (t).$$

Analysens huvudsats ger då

$$y(t)e^{P(t)} = H(t) + c$$

och slutligen

$$y(t) = ce^{-P(t)} + e^{-P(t)}H(t).$$

Låt oss lägga till bivillkoret $y(a)=y_0$. Man kan då visa att lösningen kan skrivas som

$$y(t) = y_0 e^{-\int_a^t p dx} + \int_a^t g(x) e^{-\int_x^t p ds} dx.$$

Separabla ODE av första ordning Antag att vi har en differentialekvation som kan skrivas på formen

$$m(x) + n(y(x))\frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0.$$

Denna betecknas som en separabel ODE av första ordning.

För att lösa den, beräkna primitiv funktion på båda sidor, vilket ger

$$M(x) + N(y(x)) = c, c \in \mathbf{R}.$$

Om N är inverterbar, får man då y enligt

$$y(x) = N^{-1}(c - M(x)).$$

1.3 Andra ordningen

Entydighet av lösning Betrakta den andra ordningens ODE

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ y > t_0,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y'_0.$$

Den har en entydig lösning om p, q är Lipschitzkontinuerliga.

Form på lösning av andra ordningens ODE Betrakta den andra ordningens ODE

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = L(t,y) = g(t).$$

Låt $y_{\rm P}$ vara en partikulär lösning till denna. Då är y en lösning om och endast om

$$y = y_{\rm H} + y_{\rm P}$$

där $y_{\rm H}$ löser den homogena ekvationen.

Bevis Vi har

$$L(t, y) = L(t, y_P + y_H) = L(t, y_P) + L(t, y_H) = g(t) + 0 = g(t),$$

och därmed löser y differentialekvationen. Vi har även

$$L(t, y - y_P) = g(t) - g(t) = 0,$$

och $y-y_{\rm P}$ löser den homogena ekvationen. Eftersom detta är sant, har vi visat ekvivalens.

Fundamentala lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$

där p, q, g är kontinuerliga på I. Låt y_1 uppfylla

$$y_1(t_0) = 1, \frac{\mathrm{d}y_1}{\mathrm{d}t}(t_0) = 0$$

och y_2 uppfylla

$$y_2(t_0) = 0, \frac{\mathrm{d}y_2}{\mathrm{d}t}(t_0) = 1.$$

Då definieras y_1,y_2 som mängden av fundamentala lösningar av differentialekvationen.

Linjär kombination av lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t > t_0,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y_0'$$

och anta att y_1, y_2 är lösningar. Då finns det c_1, c_2 så att $y = c_1y_1 + c_2y_2$ är en lösning om $W(y_1, y_2)(t_0) \neq 0$.

Abels sats Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y_0'$$

och anta att y_1, y_2 är lösningar. Då gäller att

$$W(y_1, y_2)(t) = W(y_1, y_2)(t_0)e^{-\int_{t_0}^t p(s)ds}$$

Bevis

$$\frac{dW}{dt}(t) = \frac{dy_1}{dt}(t)\frac{dy_2}{dt}(t) - \frac{dy_1}{dt}(t)\frac{dy_2}{dt}(t) + y_1\frac{d^2y_2}{dt^2}(t) - y_2\frac{d^2y_1}{dt^2}(t)$$

$$= y_1\left(-p(t)\frac{dy_2}{dt}(t) + q(t)y_2(t)\right) - y_2\left(-p(t)\frac{dy_1}{dt}(t) + q(t)y_1(t)\right)$$

$$= -p(t)W(y_1, y_2)(t).$$

Denna differentialekvationen har lösning

$$W(y_1, y_2)(t) = W(y_1, y_2)(t_0)e^{-\int_{t_0}^t p(s)ds},$$

vilket skulle visas.

Linjärt beroende av lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$

$$y(t_0) = y_0,$$

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y'_0$$

och anta att y_1, y_2 är lösningar. Då är dessa linjärt beroende på I om och endast om $W(y_1, y_2)(t) = 0$.

Bevis Om dessa är linjärt beroende, ser man att Wronskianen blir lika med 0, då kolumnerna i matrisen vars determinant ger Wronskianen kommer vara multipler av varandra.

Lösning av andra ordningens ODE med konstanta koefficienter Låt r_1, r_2 vara lösningar till

$$r^2 + pr + q = 0.$$

Då ges lösningarna till

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p\frac{\mathrm{d}y}{\mathrm{d}t}(t) + qy(t) = L(t, y) = 0$$

av

$$y(t) = \begin{cases} c_1 e^{r_1 t} + c_2 e^{r_2 t}, & r_1 \neq r_2, \\ (c_1 t + c_2) e^{r_1 t}, & r_1 = r_2. \end{cases}$$

Variation av parametrar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I$$

där p,q,g är kontinuerliga på I och y_1,y_2 är lösningar av den motsvarande homogena ekvationen, ges en partikulär lösning av ekvationen av

$$y_{p} = -y_{1} \int_{t_{0}}^{t} \frac{y_{2}(s)g(s)}{W(y_{1}, y_{2})(s)} ds + y_{2} \int_{t_{0}}^{t} \frac{y_{1}(s)g(s)}{W(y_{1}, y_{2})(s)} ds$$

 $d\ddot{a}r \ t_0 \in I$.

1.4 System av ODE

Formulering Betrakta ett system av funktioner x_1, x_2, \ldots som beskrivs av systemet

$$\frac{\mathrm{d}x_1}{\mathrm{d}t}(t) = g_1(t) + \sum p_{1i}(t)x_i,$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t}(t) = g_2(t) + \sum p_{2i}(t)x_i,$$
:

av differentialekvationer. Definiera

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \end{bmatrix}, \mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ g_2(t) \\ \vdots \end{bmatrix}, P(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \dots \\ p_{21}(t) & p_{22}(t) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}.$$

Då kan systemet skrivas som

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Detta kan även generaliseras till

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{g}(t).$$

Autonoma system Ett autonomt system är på formen

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)).$$

Form på lösning av system av ODE Låt \mathbf{x}_p lösa

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Då är alla lösningar på formen

$$\mathbf{x} = \mathbf{x}_{\mathrm{p}} + \mathbf{x}_{\mathrm{h}}$$

där \mathbf{x}_{h} löser det motsvarande homogena systemet.

Fundamentalmatris Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P(t)\mathbf{x}(t)$$

med fundamentalt sätt av lösningar $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$. Då definieras systemets fundamentalmatris som

$$\Psi = \left[\mathbf{x}^{(1)}(t) \dots \mathbf{x}^{(n)}(t)\right].$$

Vi definierar även den speciella fundamentalmatrisen Φ , vars kolumner satisfierar begynnelsesvillkoret

$$\mathbf{x}^{(1)}(t_0) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{x}^{(n)}(t_0) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Det kan visas att denna ges av

$$\Phi(t) = e^{A(t)t}.$$

Linjär kombination av lösningar Låt $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} \in \mathbf{R}, \ 0 < t < T$ vara ett fundamentalt sätt av lösningar till

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P(t)\mathbf{x}(t), \ t > 0,$$

där P är kontinuerlig. Då kan varje lösning till ekvationen skrivas som

$$\mathbf{x} = \sum c_i \mathbf{x}^{(i)}$$

på precis ett sätt. Med fundamentalmatrisen kan detta uttryckas som

$$\mathbf{x} = \Psi \mathbf{c}$$
.

där \mathbf{c} är en vektor med koefficienter.

 ${\bf Bevis}\quad {\bf Begynnelses}$ värdeproblemet implicerar att vår lösning måste uppfylla

$$\begin{bmatrix} \mathbf{x}^{(1)}(0) \dots \mathbf{x}^{(n)}(0) \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \mathbf{x}(0).$$

Detta har bara en lösning om $|\mathbf{x}^{(1)}(0)...\mathbf{x}^{(n)}(0)| \neq 0$. Eftersom alla lösningarna är linjärt oberoende, är detta uppfylld. Konstanterna c_i ges då unikt, och beviset är klart.

System av ODE med konstant matris Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där Pär en konstant matris. Vi gör ansatsen $\mathbf{x}(t) = e^{rt} \pmb{\xi}$ och får

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) - P\mathbf{x}(t) = e^{rt}(rI - A)\boldsymbol{\xi}.$$

Eftersom exponentialfunktionen alltid är nollskild, kan detta bara bli noll om

$$P\boldsymbol{\xi} = r\boldsymbol{\xi}.$$

Alltså är ${\bf x}$ bara en lösning om ${\pmb \xi}$ är en egenvektor till P och r är det motsvarande egenvärdet.

Upprepande egenvärden Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där P är en konstant matris, låt r vara ett egenvärde till P med algebraisk multiplicitet 2 och geometrisk multiplicitet 1 och $\pmb{\xi}$ en motsvarande egenvektor. Då är en lösning

$$\mathbf{x}^{(1)} = \boldsymbol{\xi} e^{rt}$$

och en ny lösning kan skrivas som

$$\mathbf{x}^{(2)} = \boldsymbol{\xi} t e^{rt} + \boldsymbol{\eta} e^{rt},$$

där η uppfyller

$$(A - rI)\eta = \xi.$$

Wronskianen för ett system med konstant matris Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där P är en konstant matris. Låt ξ_i vara de olika egenvektorerna till P motsvarande egenvärden r_i . Wronskianen till dessa ges av

$$W(\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{n})(t) = \begin{vmatrix} e^{r_{1}t} \boldsymbol{\xi}_{1} & \dots & e^{r_{n}t} \boldsymbol{\xi}_{n} \end{vmatrix}$$
$$= e^{(r_{1}+\dots+r_{n})} \begin{vmatrix} \boldsymbol{\xi}_{1} & \dots & \boldsymbol{\xi}_{n} \end{vmatrix}$$
$$= W(\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{n})(0)e^{\operatorname{Tr}\{P\}t},$$

där vi har använt en sats för att få fram spåret. Det följer blant annat att Wronskianen är antingen 0 eller nollskild överallt.

Diagonalisering Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = A\mathbf{x}(t),$$

där A är en konstant matris som kan skrivas som $A = PDP^{-1}$. Då kan vi införa $\mathbf{x} = P\mathbf{y}$, vilket ger

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t}(t) = PDP^{-1}\mathbf{y} = PD\mathbf{y},$$
$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t}(t) = D\mathbf{y},$$

vilket är en simplare variant av det ursprungliga problemet.

Partikulärlösningar Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Det finns olika metoder att ta fram en partikulärlösning av detta.

 ${\bf Diagonalisering}~~{\bf Låt}~P$ vara diagonaliserbar och konstant. Då får man vid diagonalisering att

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t}(t) = \mathbf{h}(t) + D\mathbf{y}(t)$$

med $\mathbf{h} = T^{-1}\mathbf{g}$. Varje komponent kan då lösas som

$$y_j(t) = c_j e^{r_j t} + e^{r_j t} \int_{t_0}^t h_j(s) e^{-r_j s} ds.$$

Obestämda koefficienter Om **g** har en enkel form, kan man gissa på en lösning och bestämma koefficienterna baserad på ens gissning.

Variation av parametrar Ansätt

$$\mathbf{x}(t) = \Psi(t)\mathbf{u}(t).$$

Då ger differentialekvationen

$$\frac{\mathrm{d}\Psi}{\mathrm{d}t}(t)\mathbf{u}(t) + \Psi(t)\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t).$$

Eftersom Ψ är en fundamentalmatris för ekvationen, gäller att

$$\frac{\mathrm{d}\Psi}{\mathrm{d}t}(t)P(t)\Psi(t),$$

och vi får

$$\Psi(t)\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = \mathbf{g}(t).$$

Vi löser för **u** och integrerar, vilket slutligen ger

$$\mathbf{x}(t) = \Psi(t)\mathbf{c} + \Psi(t)\int_{t_0}^t \Psi^{-1}(s)\mathbf{g}(s) \,\mathrm{d}s.$$

1.5 Exakta differentialekvationer

Formulering Betrakta ekvationen

$$M(x, y(x)) + N(x, y(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0.$$

Denna är exakt om den kan skrivas på formen

$$\frac{\mathrm{d}\psi}{\mathrm{d}x}(x,y(x)) = 0.$$

Det gåller då att

$$\frac{\partial \psi}{\partial x}(x,y(x)) = M(x,y(x)), \ \frac{\partial \psi}{\partial y}(x,y(x)) = N(x,y(x)),$$

och lösningarna ges implicit av

$$\psi(x, y(x)) = c.$$

Exakthet av differentialekvationer Differentialekvationen

$$M(x, y(x)) + N(x, y(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0$$

är exakt om

$$\frac{\partial M}{\partial y}(x, y(x)) = \frac{\partial N}{\partial x}(x, y(x)).$$

1.6 Potensserier

I vissa fall kan man ansätta

$$y(x) = \sum_{i=1}^{\infty} a_i x^{n}$$

som en lösning av en differentialekvation. Detta kan endast göras om alla involverade koefficienter är analytiska.

1.7 Stabilitet

Jämviktspunkter Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)).$$

En jämviktspunkt för detta systemet är en punkt $\mathbf{x}(t_0)$ så att $\mathbf{f}(\mathbf{x}(t_0)) = \mathbf{0}$, med implikationen att $\mathbf{x}(t)$ är konstant för $t > t_0$.

Stabila jämviktspunkter En jämviktspunkt \mathbf{x}_0 är stabil om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att alla lösningar \mathbf{x} som uppfyller $|\mathbf{x}(t_0) - \mathbf{x}_0| < \delta$, existerar för $t > t_0$ och uppfyller $|\mathbf{x}(t) - \mathbf{x}_0| < \varepsilon$, $t > t_0$. En jämviktspunkt som ej uppfyller detta är instabil.

Asymptotiskt stabila jämviktspunkter En jämviktspunkt \mathbf{x}_0 är asymptotiskt stabil om den är stabil och det finns ett $\delta_0 > 0$ så att om $|\mathbf{x}(t_0) - \mathbf{x}_0| < \delta_0$, gäller det att

$$\lim_{t \to \infty} \mathbf{x}(t) = \mathbf{x}_0.$$

Stabilitet av autonom ODE Betrakta

$$\frac{dy}{dt}(t) = g(y(t)), \ g(y_0) = 0.$$

Då gäller att

- om $\frac{dg}{dy}(y_0) < 0$, är y_0 asymptotiskt stabil.
- om $\frac{dg}{dy}(y_0) > 0$, är y_0 instabil.

Bevis Här bevisas endast det första fallet. Betrakta $(y - y_0)^2$. Nära y_0 gäller att

$$\frac{\mathrm{d}}{\mathrm{d}t}(y(t) - y_0)^2 = 2(y(t) - y_0)g(y(t))$$

$$\approx 2(y(t) - y_0) \left(g(y_0) + \frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t) - y_0) + o((y(t) - y_0)^2) \right)$$

$$= 2(y(t) - y_0) \left(\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t) - y_0) + o((y(t) - y_0)^2) \right).$$

Det gäller att $o((y(t)-y_0)^2) < -\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t)-y_0)^2$ tillräckligt nära y_0 (man skulle även kunna välja en annan nollskild konstant än $-\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)$, men detta valet gör beviset snyggare). Detta ger

$$\frac{\mathrm{d}}{\mathrm{d}t}(y(t) - y_0)^2 < \frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t) - y_0)^2,$$

som kan lösas för att ge

$$(y(t) - y_0)^2 < e^{\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)t}(y(0) - y_0)^2,$$

som går mot 0 för stora t enligt vårt antagande om g:s derivata.

Karakterisering av jämviktspunkter för system Betrakta systemet

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där P är konstant och reellvärd. För enkelhetens skull kommer vi här att låta systemet vara ett system i två variabler. Låt även P ha egenvärden $r_1, r_2 \neq 0$. Då gäller att $\mathbf{0}$ är en kritisk punkt. Lösningarnas banor kan nu beskrivas på följande sätt:

- Om $r_1, r_2 < 0$ går alla lösningar in mot origo, och origo kallas en stabil nod.
- Om $r_1, r_2 > 0$ går alla lösningar ut från origo, och origo kallas en instabil nod.
- Om egenvärderna har olika tecken går lösningarna in mot origo parallellt med en egenvektor och ut parallellt med den andra, och origo kallas en instabil sadelpunkt.
- Om $r_1 = \alpha + i\beta$, $r_2 = \alpha i\beta$ gäller att:
 - Om $\alpha>0$ går lösningarna i spiraler ut från origo, och origo kallas en instabil spiralpunkt.

- Om $\alpha>0$ går lösningarna i spiraler in mot origo, och origo kallas en stabil spiralpunkt.
- Om $\alpha=0$ går lösningarna i bana kring origo, och origo kallas ett centrum.
- Om $r_1 = r_2 = r$ och det finns två egenvektorer motsvarande egenvärdet r går banorna i linjer från eller till origo, beroende på tecknet till r, och origo är en instabil eller stabil nod.
- Om $r_1 = r_2 = r$ och det bara finns en egenvektor motsvarande egenvärdet r går lösningarna i kurvade banor ut från eller in mot origo, där dessa banorna blir parallella med egenvektorn långt borta från origo, och origo är en stabil eller instabil degenererad nod.

Slutsats Det gäller alltså att

- Om alla Ps egenvärden har negativ realdel, är origo en stabil jämviktspunkt.
- Om något av P:s egenvärden har positiv realdel, är origo en instabil jämviktspunkt.

Stabilitet av jämviktspunkter för icke-linjära system av ODE Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)),$$

Låt detta ha en kritisk punkt \mathbf{x}_0 och låt $\mathbf{g} \in C^1$ i en öppen mängd kring \mathbf{x}_0 . Vi linjariserar kring \mathbf{x}_0 , vilket går om

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{|\mathbf{f}(\mathbf{x}(t))|}{|\mathbf{x}(t)|} = 0,$$

vilket uppfylls om $\mathbf{f} \in \mathbb{C}^2$. Inför funktionalmatrisen aka Jacobimatrisen

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1}(\mathbf{x}) & \dots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_p}{\mathrm{d}x_1}(\mathbf{x}) & \dots & \frac{\mathrm{d}f_p}{\mathrm{d}x_n}(\mathbf{x}) \end{bmatrix}$$

och betrakta $J(\mathbf{x}_0)$. Då gäller att

- $\bullet\,$ Om alla $J(\mathbf{x}_0)$ s egenvärden har negativ realdel, är \mathbf{x}_0 en stabil jämviktspunkt.
- Om något av $J(\mathbf{x}_0)$ egenvärden har positiv realdel, är \mathbf{x}_0 en instabil jämviktspunkt.

Lyapunovfunktioner Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)).$$

Antag att systemet har en kritisk punkt $\mathbf{0}$. Om det finns en positivt definitiv funktion $V \in C^1$ och en negativt definitiv funktion

$$V' = \frac{\partial V}{\partial x} f_1 + \frac{\partial V}{\partial y} f_2$$

på någon omgivning av ${\bf 0}$, är ${\bf 0}$ en stabil jämviktspunkt. Om V' är negativt semidefinitiv, är ${\bf 0}$ en stabil jämviktspunkt.