Lecture 13, Sept. 30

13.1 Example.

$$\{F \rightarrow (G \land H), (F \land G) \lor H\} \models H$$

Proof. Proof by contradiction. Suppose H is false

$$(F \land G) \lor H, \neg H \quad \therefore F \land G$$

 $(F \land G) \quad \therefore F$
 $F \rightarrow (G \land H), F \quad \therefore G \land H$
 $G \land H \quad \therefore H$
 $\neg H, H \quad gives \ the \ contradiction$
 $\therefore H$

Here is a derivation for the valid argument

$$S = \{F \rightarrow (G \land H), (F \land G) \lor H, \neg H\} \vDash F \rightarrow (G \land H) \qquad by \ V1$$

$$S \vDash (F \land G) \lor H \qquad \qquad V1$$

$$S \vDash F \land G \qquad \qquad V18 \ on \ line \ 2,3$$

$$S \vDash F \qquad \qquad V11 \ on \ line \ 4$$

$$S \vDash G \land H \qquad \qquad V23 \ on \ line \ 1,5$$

$$S \vDash H \qquad \qquad by \ V12 \ on \ 6$$

$$\{F \rightarrow (G \land H), (F \land G) \lor H\} \vDash H \qquad \qquad V5 \ on \ line \ 3,7$$

Here is another proof

Proof. Let α be an arbitrary assignment

Suppose that $F \to (G \land H)$ is true (under α)

Suppose that $(F \wedge G) \vee H$ is true

Note that wither $F \wedge G$ is true or H is true

Case 1. Suppose $F \wedge G$ is true. [V14]

Since $F \wedge G : F$ [V11]

Since $F \rightarrow (G \land H)$ and F : F [V23]

Since $G \wedge H : H [V12]$

Case 2. Support that *H* is true. [V14]

Then H is true. [V1]

In either case, we have proven H [V14]

Here is a corresponding derivation of valid argument

1.
$$S = \{F \rightarrow (G \land H), (F \land G)\} \models F \rightarrow (G \land H)$$

2.
$$S \models F \land G$$

3.
$$S \models F$$

4.
$$S \models G \land H$$

5.
$$S \models H$$

6.
$$\{F \rightarrow (G \land H), H\} \models H$$

7.
$$\{F \rightarrow (G \land H), (F \land G) \lor H\} \models H$$

13.2 Example. Show that

$$\{(F \lor \neg G) \to H, F \leftrightarrow (G \land \neg H)\} \vDash \neg(H \to F)$$

Solution: We need to show that

for every assignment α

if $(F \lor \neg G) \to H$ is true under α

and $F \leftrightarrow (G \land \neg H)$ is true

then $H \rightarrow F$ is false

Proof. Let α be arbitrary assignment

Suppose $(F \vee \neg G) \rightarrow H$ is true

Suppose $F \leftrightarrow (G \land \neg H)$ is true.

[We need to show that $H \to F$ is false. Notice that $\neg (H \to F) \equiv H \land \neg F$. So we need to show that H is true and F is false.]

Suppose, for a contradiction, that H is false.

Since
$$(F \vee \neg G) \rightarrow H$$
 and $\neg H$ $\therefore \neg (F \vee \neg G)$

Since
$$\neg (F \lor \neg G)$$
 $\therefore \neg F \land G$

Since
$$F \leftrightarrow (G \land \neg H)$$
 and $\neg F$ $\therefore \neg (G \land \neg H)$

Since G and $\neg H$:: $G \land \neg H$

Since $G \wedge \neg H$ and $\neg (G \wedge \neg H)$ we have a contradiction

So *H* is true.

Since H is true, then $\neg\neg H$

Since $\neg\neg H$ we have $\neg G \lor \neg \neg H$

Since $\neg G \lor \neg \neg H$ we have $\neg (G \land \neg H)$

Since $F \leftrightarrow (G \land \neg H)$ and $\neg (G \land \neg H)$, we have $\neg F$

Since H and $\neg F$, we have $H \land \neg F$

Since $H \land \neg F$ we have $\neg (H \to F)$

 $\{(F \vee \neg G) \rightarrow H, F \leftrightarrow (G \wedge \neg H)\} \models \neg(H \rightarrow F)$

Here is a derivation

Proof. 1.
$$S = \{(F \lor \neg G) \to H, F \leftrightarrow (G \land \neg H), \neg H\} \models \neg (H \to F)$$

2.
$$S \models F \leftrightarrow (G \land \neg H)$$

3.
$$S \models \neg H$$

4.
$$S \vDash \neg (F \lor \neg G)$$

5.
$$S \models \neg F \land \neg \neg G$$

6.
$$S \models \neg F \land G$$

7.
$$S \models \neg F$$
 v31 on 2,6

8.
$$S \models \neg \neg G$$

9.
$$S \models G$$
 v45,e2 on 8

10.
$$S \models G \land \neg H$$
 v10 on 9,3

11.
$$T = \{(F \land \neg G) \rightarrow H, F \leftrightarrow (F \land \neg H)\} \models H$$
 v5 on 10,7

12. $T \models \neg \neg H$

13.
$$T \models \neg G \lor \neg \neg H$$

14.
$$T \models \neg(G \land \neg H)$$

15.
$$T \models F \leftrightarrow (G \land \neg H)$$

16.
$$T \models \neg F$$

17.
$$T \models H \land \neg F$$

18.
$$T \models \neg (H \rightarrow F)$$