Προκαταρκτικές Έννοιες Διακριτών Μαθηματικών Αλγόριθμοι και Πολυπλοκότητα

Μερκούρης Παπαμιχαήλ[†]

†Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης

Εαρινό Εξάμηνο, ακαδ. έτος 2022-2023

Περιεχόμενα

- 1 Μαθηματική Επαγωγή
 - Κλειστοί Τύποι Αθροίσματος
- 2 Ελάχιστο Αντιπαράδειγμα: Αρχή Καλής Διάταξης
 - Θεμελιώδες Θεώρημα Αριθμητικής
- ③ Υπαρξη Αντιπαραδείγματος
 - Θεώρημα του Ευκλείδη
- 4 Αρχή Περιστερώνα
- ⑤ Θεωρία Γραφημάτων
- 6 Bibliography

Περιεχόμενα

- 1 Μαθηματική Επαγωγή
 - Κλειστοί Τύποι Αθροίσματος
- Ελάχιστο Αντιπαράδειγμα: Αρχή Καλής ΔιάταξηςΘεμελιώδες Θεώρημα Αριθμητικής
- ③ Υπαρξη Αντιπαραδείγματος
 - Θεώρημα του Ευκλείδη
- 🐠 Αρχή Περιστερώνα
- Θεωρία Γραφημάτων
- 6 Bibliography

Ένα Πρώτο Πρόβλημα: Κλειστοί Τύποι Αθροίσματος

Πρόβλημα 1: Κλειστός Τύπος Αθροίσματος

Βρείτε έναν κλειστό τύπο για το άθροισμα,

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n$$

- Λέγεται ότι αυτό το πρόβλημα είχε βάλει ο δάσκαλος του Gauss στους μαθητές του.
- Σκοπός ήταν να τους κρατήσει απασχολημένους.
- Λέγεται πως ο Gauss, σε τόσο νεαρή ηλικία υπολόγισε το άθροισμα σε λίγα λεπτά.
- Ίσως ένα από τα πρώτα κατορθώματα του "πρίγκιπα των μαθηματικών"!

Τι παρατήρησε ο Gauss;

Μερικά Παραδείγματα

Ας προσπαθήσουμε να υπολογίσουμε το $\sum_{i=1}^{100} i = 1+2+\cdots+99+100$. Παρατηρούμε το εξής:

$$1 + 100 = 101$$

 $2 + 99 = 101$
 $3 + 98 = 101$
 \vdots
 $50 + 51 = 101$
 \vdots
 $100 + 1 = 101$

Από τα Παραδείγματα στη Μαθηματική Σχέση (1)

Ας ξαναδούμε τους υπολογισμούς που κάναμε:

$$1 + 100 = 101$$

$$2 + 99 = 101$$

$$3 + 98 = 101$$

$$\vdots$$

$$50 + 51 = 101$$

$$\vdots$$

$$100 + 1 = 101$$

▶ Αθροίζουμε τις παραπάνω σχέσεις κατά μέλη. Έχουμε 100 σχέσεις, κάθε μία από αυτές αθροίζει στο 101. Τελικά, θα έχουμε,

$$\sum_{i=1}^{100} i + \sum_{j=100}^{1} j = 100 \cdot 101$$

Από τα Παραδείγματα στη Μαθηματική Σχέση (2)

▶ Αθροίζουμε τις παραπάνω σχέσεις κατά μέλη. Έχουμε 100 σχέσεις, κάθε μία από αυτές αθροίζει στο 101. Τελικά, θα έχουμε,

$$\sum_{i=1}^{100} i + \sum_{j=100}^{1} j = 100 \cdot 101 \tag{1}$$

ightharpoonup Έστω $S_n = \sum_{i=1}^n i$. Η σχέση (1) γράφεται:

$$S_{100} + S_{100} = 100 \cdot 101 \tag{2}$$

Άρα,

$$S_{100} = \frac{100 \cdot 101}{2} \tag{3}$$

Από τα Παραδείγματα στη Μαθηματική Σχέση (3)

Δοκιμάζουμε να γενικεύσουμε την σχέση (3). Καταλήγουμε στο τύπο,

$$S_n = \frac{n(n+1)}{2} \tag{4}$$

Figure 1: Μια οπτική παρουσίαση του τύπου (4).

Από την Μαθηματική Σχέση στην Απόδειξη

Το Σχήμα 1 μας παρέχει μια πολύτιμη διαίσθηση, αλλά δεν αποτελεί τυπική απόδειξη! Μπορούμε να δικαιολογήσουμε αυστηρά την σχέση (4) με Μαθηματική Επαγωγή.

Το Αξίωμα της Μαθηματικής Επαγωγής

Αξίωμα Μαθηματικής Επαγωγής

Έστω κάποια ιδιότητα $\Phi(n)$ πάνω στους φυσικούς αριθμούς, δ.δ. $n \in \mathbb{N}$. Αν δείξουμε τα εξής:

- ① Ότι ισχύει η Φ(1) [Βήμα Βάσης].
- ② Ότι αν ισχύει $\Phi(n)$ [Επαγωγική Υπόθεση], τότε ισχύει το $\Phi(n+1)$, [Επαγωγικό Βήμα] δ.δ. $\forall n \in \mathbb{N}, \ \Phi(n) \Rightarrow \Phi(n+1)$

Τότε, έχουμε δείξει ότι,

$$\forall n \in \mathbb{N}, \ \Phi(n)$$

Πίσω στο Πρόβλημά μας

- ightharpoonup Έστω $\Phi(n) \equiv S_n = \frac{n(n+1)}{2}$.
 - **1** Για $\Phi(1)$, έχουμε $S_1 = \frac{1(1+1)}{2} = \frac{2}{2} = 1$. Το οποίο ήταν και το ζητούμενο!
 - ② Έστω ότι ισχύει το $\Phi(n)$ για κάποιο (αυθαίρετο) $n \in \mathbb{N}$. Θα δείξουμε ότι ισχύει το $\Phi(n+1)$.

$$S_{n+1} = S_n + (n+1)$$

$$\stackrel{E.Y.}{=} \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

Μία Ανασκόπιση

Είναι σημαντικό να εστιάσουμε στα βήματα που ακολουθήσαμε για την απόδειξη της Σχέσης (4).

Από το γενικό στιγμιότυπο πήγαμε στο ειδικό, δ.δ. από τον

- υπολογισμό του S_n , στο S_{100} .
- ② Μετά από κάποιους υπολογισμούς, βρήκαμε μια σχέση για το S_{100} .
- 3 Από την σχέση για το S_{100} , γενικεύσαμε, πίσω στο S_n .
- Τέλος, αποδείξαμε την γενική σχέση μέσω Μαθηματικής Επαγωγής.

Περιεχόμενα

- Μαθηματική ΕπαγωγήΚλειστοί Τύποι Αθροίσματος
- Ελάχιστο Αντιπαράδειγμα: Αρχή Καλής ΔιάταξηςΘεμελιώδες Θεώρημα Αριθμητικής
- Τπαρξη ΑντιπαραδείγματοςΘεώρημα του Ευκλείδη
- 4 Αρχή Περιστερώνα
- 5 Θεωρία Γραφημάτων
- 6 Bibliography

Αρχή Καλής Διάταξης

Αρχή Καλής Διάταξης (Well Ordered Principle)

Έστω ένα υποσύνολο των φυσικών αριθμών $S\subseteq\mathbb{N}$. Τότε το S έχει ελάχιστο στοιχείο.

- Αποδεικνύεται ότι η Αρχή Καλής Διάταξης είναι ισοδύναμη με το Αξίωμα Επαγωγής.
- Η Αρχή Καλής Διάταξης είναι μη-τετριμμένη ιδιότητα:
 - Λ.χ. το σύνολο των ακεραίων $\mathbb Z$ δεν είναι καλώς διατεταγμένο.
 - Πάρτε για παράδειγμα το σύνολο Even $\subseteq \mathbb{Z}$ το σύνολο των άρτιων ακέραιων.
 - Το Even δεν έχει ελάχιστο στοιχείο.

Κατασκευάζοντας Ελάχιστο Αντιπαράδειγμα

Μπορούμε να χρησιμοποιήσουμε την Αρχή Καλής Διάταξης για τα υποσύνολα των φυσικών αριθμών για να δείξουμε την αλήθεια κάποιας ιδιότητας $\Phi(n)$. Ειδικότερα:

- **1** Θέλουμε να αποδείξουμε μια πρόταση της μορφής $\forall n \in \mathbb{N}, \ \Phi(n)$.
- ② Υποθέτουμε (προς άτοπο) ότι η $\Phi(n)$ δεν ισχύει για όλους τους φυσικούς.
- ullet Θεωρούμε το σύνολο $C = \{n \in \mathbb{N} \mid \neg \Phi(n)\}$
- Έστω $c_0 \in C$ το ελάχιστο αντιπαράδειγμα, δ.δ. το ελάχιστο στοιχείο του C.
- Δποδεικνύουμε ότι το c₀ δεν μπορεί να υπάρξει!
- Αυτό ολοκληρώνει το άτοπο.

Μια Απόδειξη με Ελάχιστο Αντιπαράδειγμα

Πρόβλημα 2: Θεμελιώδες Θεώρημα Αριθμητικής

Κάθε φυσικός αριθμός $n\in\mathbb{N}$, με n>1 μπορεί να γραφτεί σαν γινόμενο πρώτων παραγόντων. Ειδικότερα, υπάρχουν p_1,p_2,\ldots,p_k πρώτοι αριθμοί, τέτοιοι ώστε,

$$p_1 \cdot p_2 \cdots p_k = n$$

Λίγη Θεωρία Αριθμών (1)

Συμβολισμός

Έστω δύο φυσικοί αριθμοί $a, b \in \mathbb{N}$. Θα λέμε ότι ο a διαιρεί το b, και θα το συμβολίζουμε με $a \mid b$, αν υπάρχει κάποιος φυσικός αριθμός $\lambda \in \mathbb{N}$, τέτοιος ώστε,

$$b = \lambda \cdot a$$

ightharpo Παρατηρούμε ότι αν $a\mid b$ και $a\mid c$, τότε $a\mid (b-c)$. Επειδή, $b=\lambda_1\cdot a$ και $c=\lambda_2\cdot a$, έχουμε $(b-c)=(\lambda_1-\lambda_2)a$.

Λίγη Θεωρία Αριθμών (2)

Ορισμός: Πρώτοι Αριθμοί

Έστω ένα φυσικός αριθμός $p \in \mathbb{N}$, θα λέμε ότι ο p είναι $\frac{\pi p \omega \tau o \varsigma}{\sigma}$ αν δεν υπάρχει άλλος αριθμός $n \in \mathbb{N}$, με $n \neq 1$, p, τέτοιος ώστε $n \mid p$.

- Από το Θεμελιώδες Θεώρημα της Αριθμιτικής βλέπουμε ότι από τους πρώτους αριθμούς μπορούμε να παράξουμε όλους τους φυσικούς αριθμούς.
- Οι αριθμοί που δεν είναι πρώτοι λέγονται σύνθετοι.

Αποδεικνύοντας το Θεμελιώδες Θεώρημα Αριθμητικής (1)

Πρόβλημα 2: Θεμελιώδες Θεώρημα Αριθμητικής (ΘΘΑ)

Κάθε φυσικός αριθμός $n \in \mathbb{N}$, με n > 1 μπορεί να γραφτεί σαν γινόμενο πρώτων παραγόντων. Ειδικότερα, υπάρχουν p_1, p_2, \ldots, p_k πρώτοι αριθμοί, τέτοιοι ώστε,

$$p_1 \cdot p_2 \cdots p_k = n$$

Απόδειξη:

1 Θεωρούμε, προς άτοπο, ότι υπάρχει κάποιος φυσικός αριθμός $n\in\mathbb{N}$, που δεν μπορεί να γραφτεί σαν γινόμενο πρώτων παραγόντων, δ.δ. $\neg\Theta\Theta A(n)$.

Αποδεικνύοντας το Θεμελιώδες Θεώρημα Αριθμητικής (2)

2 Έστω C το σύνολο των αντιπαραδειγμαων, δ.δ.

$$C = \{ n \in \mathbb{N} \mid \neg \Theta \Theta A(n) \}$$

- 3 Από Αρχή Καλής Διάταξης, έχουμε το ελάχιστο αντιπαράδειγμα $c_0 \in C$.
- 4 Εφόσον το c_0 είναι ένα αντιπαράδειγμα, έχουμε ότι το c_0 είναι σύνθετος. Δηλαδή, υπάρχουν αριθμοί $a,b< c_0$, τέτοιοι ώστε $a\cdot b=c_0$.
- 5 Επειδή, $a, b < c_0$, τότε $a, b \notin C$. Άρα μπορούν να γραφτούν σαν γινόμενο πρώτων παραγόντων.
- 6 Έστω $a=p_1^a\cdot p_2^a\dots p_k^a$ και $b=p_1^b\cdot p_2^b\dots p_\ell^b$
- 7 Τότε, $c_0 = p_1^a \cdot p_2^a \dots p_k^a \cdot p_1^b \cdot p_2^b \dots p_\ell^b$.
- 8 Συνεπώς το c0 δεν είναι αντιπαράδειγμα. Άτοπο!

 $O.E.\Delta.$

Περιεχόμενα

- Μαθηματική Επαγωγή
 - Κλειστοί Τύποι Αθροίσματος
- Ελάχιστο Αντιπαράδειγμα: Αρχή Καλής ΔιάταξηςΘεμελιώδες Θεώρημα Αριθμητικής
- ③ Υπαρξη Αντιπαραδείγματος
 - Θεώρημα του Ευκλείδη
- 4 Αρχή Περιστερώνα
- Θεωρία Γραφημάτων
- 6 Bibliography

Θεώρημα του Ευκλείδη στην Αριθμοθεωρία

Πρόβλημα 3: Θεώρημα του Ευκλείδη

Υπάρχουν άπειροι πρώτοι αριθμοί.

- Στην απόδειξη που θα δούμε κατασκευάζουμε αντιπαράδειγμα, χωρίς όμως να φτάνουμε σε άτοπο.
- Η απόδειξη είχε πρωτοδημοσιευθεί στο 9ο Βιβλίο των Στοιχείων.
- Έχει παρουσιαστεί σαν παράδειγμα "της ομορφιάς των μαθηματικών" από τον G. H. Hardy στην "Απολογία ενός Μαθηματικού"

Θεώρημα του Ευκλείδη στην Αριθμοθεωρία: Απόδειξη (1)

Για κάθε πεπερασμένη λίστα πρώτων αριθμών θα δώσουμε έναν πρώτο ο οποίος δεν περιλαμβάνεται στην λίστα.

- **0** Θεωρούμε μια πεπερασμένη λίστα πρώτων αριθμών p_1, p_2, \ldots, p_n .
- Θα δείξουμε ότι υπάρχει τουλάχιστον ένας πρώτος αριθμός, ο οποίος δεν περιλαμβάνεται στην λίστα.
- ullet Έστω $P=p_1\cdot p_2\cdots p_n$. Θεωρούμε τον αριθμό q=P+1.
- **①** \triangle ιακρίνουμε τις περιπτώσεις, είτε ο q είναι πρώτος, είτε όχι.
 - **1** Προφανώς, αν ο q είναι πρώτος, τότε έχουμε τελειώσει.
 - ② Αν ο q δεν είναι πρώτος, τότε θα υπάρχει κάποιος πρώτος p, ο οποίος να διαιρεί τον q, δ.δ. $p \mid q$.

Θεώρημα του Ευκλείδη στην Αριθμοθεωρία: Απόδειξη (2)

Αν ο q δεν είναι πρώτος, τότε θα υπάρχει κάποιος πρώτος p, ο οποίος να διαιρεί τον q, δ.δ. $q \mid p$.

- ① Αν ο πρώτος p είναι στην λίστα μας p_1, p_2, \ldots, p_n , τότε θα πρέπει να διαιρεί τον P.
- ② Αν διαιρεί τον P και το q, τότε $p \mid (P-q)=1$.
- Κανείς, όμως, πρώτος δεν διαιρεί το 1.
- Άρα το ρ δεν μπορεί να βρίσκεται στην λίστα μας.
- ightharpoonup Τελικά, είτε το q=P+1, θα είναι πρώτος, είτε θα έχει κάποιον πρώτο διαιρέτη p, ο οποίος δεν είναι στην λίστα p_1,p_2,\ldots,p_n .

 $O.E.\Delta.$

Θεώρημα του Ευκλείδη στην Αριθμοθεωρία: Ανασκόπηση

Η απόδειξη που είδαμε έχει τα ακόλουθα χαρακτηριστικά:

- Φανταστείτε ότι έρχεται ένας φιλόδοξος συνάδελφος μας και λέει ότι κατάφερε να φτιάξει μια λίστα με όλους τους πρώτους αριθμούς.
- Ακολουθώντας την απόδειξη του Ευκλείδη κατασκευάζουμε τον αριθμό q=P+1.
- Έπειτα, αποδεικνύουμε ότι είτε ο ίδιος ο q, θα είναι ένας πρώτος που δεν περιέχεται στην λίστα,
- είτε θα έχει έναν πρώτο διαιρέτη p που δεν περιέχεται στην λίστα.
- ▶ Παρατηρήστε ότι δεν κατασκευάζουμε κάποιον πρώτο ο οποίος να μην περιέχεται στην λίστα, αλλά αποδεικνύουμε ότι το σύνολο $\{q,p\}$ θα περιέχει τον πρώτο του αντιπαραδείγματος.

Περιεχόμενα

- 🕕 Μαθηματική Επαγωγή
 - Κλειστοί Τύποι Αθροίσματος
- Ελάχιστο Αντιπαράδειγμα: Αρχή Καλής ΔιάταξηςΘεμελιώδες Θεώρημα Αριθμητικής
- ③ Υπαρξη Αντιπαραδείγματος
 - Θεώρημα του Ευκλείδη
- 4 Αρχή Περιστερώνα
- Θεωρία Γραφημάτων
- 6 Bibliography

Αρχή Περιστερώνα

Αρχή Περιστερώνα (Διαισθητικά)

Έστω ότι έχουμε n+1 περιστέρια, και n περιστερώνες. Τότε, θα υπάρχουν τουλάχιστον 2 περιστέρια σε έναν περιστερώνα.

Αρχή Περιστερώνα (Τυπικά)

Έστω μια ακολουθία n+1 αριθμών, a_1,a_2,\ldots,a_{n+1} , όπου έχουμε επιλέξει τους όρους της ακολουθίας από το σύνολο $\{1,2,\ldots,n\}$. Τότε, θα υπάρχουν i,j, με $i\neq j$, τέτοια ώστε $a_i=a_j$.

Μια Απόδειξη με Αρχή Περιστερώνα (1)

Πρόβλημα 4

Υποθέστε μία ακολουθία φυσικών αριθμών a_1, a_2, \ldots, a_n . Τότε, υπάρχει ένα διαδοχικό άθροισμα $a_k + a_{k+1} + \cdots + a_{k+m}$ το οποίο να διαιρείται με το n.

 $ightharpoonup \Sigma$ υμβολισμός: Με $r=n \mod m$ συμβολίζουμε το υπόλοιπο της διαίρεσης του n με το m.

Μια Απόδειξη με Αρχή Περιστερώνα (2)

Θεωρούμε τα ακόλουθα αθροίσματα:

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 \vdots
 $s_n = a_1 + a_2 + \dots + a_n$

- Τα παραπάνω αθροίσματα είναι όλα διαδοχικά, συνεπώς αν ένα από αυτά διαιρείται με το n έχουμε τελειώσει.
- Χωρίς βλάβη της γενικότητας, θεωρούμε ότι κάτι τέτοιο δεν ισχύει.

Μια Απόδειξη με Αρχή Περιστερώνα (3)

Θεωρούμε την ακολουθία υπολοίπων,

```
r_1 = s_1 \mod n
r_2 = s_2 \mod n
r_3 = s_3 \mod n
\vdots
r_n = s_n \mod n
```

- Επειδή υποθέτουμε ότι κανένα από τα αθροίσματα s_i δεν διαιρείται με το n, τότε η ακολουθία r_1, \ldots, r_n παίρνει τιμές στο $\{1, 2, \ldots, n-1\}$.
- ② Από Αρχή Περιστερώνα, υπάρχουν $i,j,i \neq j$ τέτοια ώστε $r_i = r_j$.
- **3** Τότε $s_i s_j \mod n = 0$. Άρα $n \mid (s_i s_j)$. Αν i > j τότε $s_i s_j$ διαδοχικό, διαφορετικά παίρνουμε $s_i s_j$.

Περιεχόμενα

- 🕕 Μαθηματική Επαγωγή
 - Κλειστοί Τύποι Αθροίσματος
- Ελάχιστο Αντιπαράδειγμα: Αρχή Καλής ΔιάταξηςΘεμελιώδες Θεώρημα Αριθμητικής
- ③ Υπαρξη Αντιπαραδείγματος
 - Θεώρημα του Ευκλείδη
- 4 Αρχή Περιστερώνα
- Θεωρία Γραφημάτων
- 6 Bibliography

Λίγη Θεωρία Γραφημάτων

► Ένα γράφημα σκοπό έχει να κωδικοποιήσει συμμετρικές σχέσεις πάνω σε ένα πεπερασμένο σύνολο.

Ορισμός: Γράφημα

Έστω ένα πεπερασμένο σύνολο V. Θεωρούμε, επιπλέον, ένα σύνολο ακμών E, τέτοιο ώστε,

$$E \subseteq \{\{u,v\} \mid u,v \in V, \ u \neq v\}.$$

Ονομάζουμε το ζεύγος G=(V,E) γράφημα. Ονομάζουμε το σύνολο V, σύνολο κόμβων (ή κορυφών) και το σύνολο E, σύνολο ακμών.

Παράδειγμα Γραφήματος

Figure 2: Ένα παράδειγμα γραφήματος G=(V,E). Έχουμε $V=\{v_1,v_2,v_3,v_4,v_5,v_6,v_7\}$. Ενώ, $E=\{e_1,e_2,e_3,\ldots,e_{10}\}$. Παρατηρήστε ότι οι ακμές είναι δι-σύνολα, λ.χ. $e_1=\{v_1,v_5\}$, ή $e_2=\{v_5,v_2\}$.

Συμβολισμός:

- Με N(v) συμβολίζουμε την γειτονιά του v, $N(v_7) = \{v_1, v_6, v_4\}$.
- Με d(v) συμβολίζουμε το $\beta a \theta \mu \delta$ του v, $d(v_7) = |N(v_7)| = 3$.

Ειδικά Γραφήματα: Μονοπάτι

Ορισμός: Μονοπάτι

Ένα γράφημα G=(V,E) θα το λέμε μονοπάτι, αν μπορούμε να γράψουμε όλους τους κόμβους του V σε μια ακολουθία v_1,\ldots,v_n έτσι ώστε:

- **1** Κάθε διαδοχικό ζεύγος v_i, v_{i+1} συνδέεται με ακμή στο E.
- ② Κάθε κόμβος v_i , εκτός του πρώτου και του τελευταίου, έχει βαθμό 2, $d(v_i) = 2$.
- **③** Οι κόμβοι v_1, v_n έχουν βαθμό 1, $d(v_1) = d(v_n) = 1$.

Figure 3: Παράδειγμα Μονοπατιού.

Ειδικά Γραφήματα: Κύκλος

Ορισμός: Κύκλος

Ένα γράφημα G=(V,E) θα το λέμε κύκλο αν μπορούμε να γράψουμε όλους τους κόμβους του V σε μια ακολουθία v_1,\ldots,v_n έτσι ώστε:

- **1** Κάθε διαδοχικό ζεύγος v_i, v_{i+1} συνδέεται με ακμή στο E.
- **②** Κάθε κόμβος v_i έχει βαθμό 2, $d(v_i) = 2$.
- Οι κόμβοι v₁, v_n συνδέονται με ακμή στο Ε.

Figure 4: Παράδειγμα Κύκλου.

Συνεκτικότητα Γραφημάτων

Ορισμός: Συνεκτικότητα

Έστω ένα γράφημα G=(V,E). Θα λέμε ότι το G είναι συνεκτικό αν οποιοδήποτε δύο κόμβοι v_i,v_j συνδέονται με μονοπάτι στο G. Αν το G δεν είναι συνεκτικό, θα λέμε τα μεγιστικά συνεκτικά τμήματα του G συνεκτικές συνιστώσες του G.

Figure 5: Ένα γράφημα το οποίο έχει 3 συνεκτικές συνιστώσες.

Ειδικά Γραφήματα: Δέντρο

Ορισμός: Δέντρο

Έστω ένα γράφημα G = (V, E), θα λέμε ότι το G είναι δέντρο, αν ισχύουν τα ακόλουθα:

- **1** Το *G* είναι συνεκτικό.
- 2 Το *G δεν* περιέχει κάποιον κύκλο.

Figure 6: Ένα παράδειγμα δέντρου.

► Παρατήρηση: Σε αντίθεση με τις Δομές Δεδομένων, τα δέντρα στην
 Θεωρία Γραφημάτων δεν έχουν ρίζα.

Ένα Πρόβλημα στην Θεωρία Γραφημάτων (1)

Πρόβλημα 5

Έστω ένα δέντρο T=(V,E). Το T έχει τουλάχιστον δύο φύλλα, δ.δ. υπάρχουν δύο κόμβοι $v_1, v_2 \in V$, με $d(v_1)=d(v_2)=1$.

Ένα Πρόβλημα στην Θεωρία Γραφημάτων (2)

Πρόβλημα 5

Έστω ένα δέντρο T=(V,E). Το T έχει τουλάχιστον δύο φύλλα, δ.δ. υπάρχουν δύο κόμβοι $v_1,v_2\in V$, με $d(v_1)=d(v_2)=1$.

Απόδειξη:

- ① Έστω ένα μονοπάτι P στο T, το οποίο συνδέει δύο κόμβους v_1, v_n .
- ② Απαιτούμε το P να είναι μεγιστικό, δ.δ. δεν μπορούμε να προσθέσουμε άλλους κόμβους του T στο P και να παραμείνει μονοπάτι.
- ullet Τότε, $d(v_1)=d(v_n)=1$, διαφορετικά το P δεν θα ήταν μεγιστικό.

 $O.E.\Delta.$

Από την Απόδειξη στο Αλγόριθμο (1)

- Μπορούμε να σκεφτούμε ότι ο ισχυρισμός του Προβλήματος 5 είναι τετριμμένος, προφανώς ένα δέντρο θα έχει δύο φύλλα.
- Σε μικρά δέντρα μπορούμε να διαπιστώσουμε αυτό το γεγονός "με το μάτι".
- Τι συμβαίνει, όμως, όταν έχουμε ένα δέντρο με 100, 1000, ή
 1.000.000 κόμβους;
- Το γεγονός δεν είναι τόσο προφανές!
- Η απόδειξη παραπάνω είναι κατασκευαστική.
- Μπορούμε να γράψουμε έναν αλγόριθμο για την εύρεση φύλλων σε μεγάλα γραφήματα.

Από την Απόδειξη στον Αλγόριθμο (2)

Αλγόριθμος: ΕύρεσηΦύλλων

```
Είσοδος: Ένα δέντρο T = (V, E) Έξοδος: \ell ένα φύλλο του T.
```

- f O Διάλεξε έναν τυχαίο κόμβο $\ell \in V$.
 - // Κρατάμε τον παλιό κόμβο, ώστε ο αλγόριθμθος να μην πηγαίνει "μπρος-πίσω" πάνω σε μια ακμή.
- \bullet $\ell_{\mathsf{old}} \leftarrow \mathsf{null}$
- ③ Όσο $(N(\ell) \setminus \ell_{\mathsf{old}}) \neq \varnothing$ επανάλαβε:
 - ① Διάλεξε $\ell' \in (N(\ell) \setminus \ell_{\mathsf{old}})$ έναν τυχαίο γείτονα του ℓ .

 - \bullet $\ell \leftarrow \ell'$
- Φ Επέστρεψε ℓ

Αλγόριθμος είναι να γράφεις πρόγραμμα με ένα γαμόγελο στα χείλη. - Χρήστος Παπαδημητρίου

Περιεχόμενα

- 🕕 Μαθηματική Επαγωγή
 - Κλειστοί Τύποι Αθροίσματος
- Ελάχιστο Αντιπαράδειγμα: Αρχή Καλής ΔιάταξηΘεμελιώδες Θεώρημα Αριθμητικής
- ③ Υπαρξη Αντιπαραδείγματος
 - Θεώρημα του Ευκλείδη
- 4 Αρχή Περιστερώνα
- Θεωρία Γραφημάτων
- 6 Bibliography

Βιβλιογραφία

E. Lehman, F. Leighton, Thomson, and R. Meyer, Albert, *Mathematics for computer science*, 2017.

https://courses.csail.mit.edu/6.042/spring17/mcs.pdf.