

Θερμοδυναμική Ι

Ιδιότητες καθαρής ουσίας

Ελληνικό Μεσογειακό Πανεπιστήμιο Τμήμα Μηχανολόγων Μηχανικών

Δημήτρης Αλ. Κατσαπρακάκης

Η έννοια της καθαρής ουσίας

- Καθαρή ουσία είναι ένα μέρος της ύλης στο οποίο η σύστασή του είναι σταθερή σε όλη την έκτασή του.
- Για παράδειγμα, το νερό, το οξυγόνο, το άζωτο και ο αέρας είναι καθαρές ουσίες.
- Ένα μίγμα δύο ή περισσοτέρων φάσεων μίας καθαρής ουσίας (π.χ. νερό και ατμός ή νερό και πάγος) συνεχίζει να είναι καθαρή ουσία.

- Οι τρεις φάσεις μιας καθαρής ουσίας είναι η στερεή, η υγρή και η αέρια.
- Στη στερεή φάση τα μόρια της καθαρής ουσίας είναι σταθερά διατεταγμένα στο χώρο, σε μικρές αποστάσεις μεταξύ τους. Με την αύξηση της θερμοκρασίας αυξάνεται το πλάτος ταλάντωσής τους γύρω από τις σταθερές θέσεις τους στο χώρο.
- Στην υγρή φάση τα μόρια της καθαρής ουσίας βρίσκονται επίσης σε πολύ μικρή απόσταση μεταξύ τους (εφάπτονται το ένα με το άλλο), όμως μπορούν να κινηθούν ελεύθερα (να κυλήσουν) το ένα επάνω στο άλλο, με αποτέλεσμα να μεταβάλλονται οι μεταξύ τους σχετικές θέσεις. Με την αύξηση της θερμοκρασίας η κίνηση αυτή επιταχύνεται.
- Στην αέρια φάση τα μόρια βρίσκονται σε μεγάλες αποστάσεις το ένα από το άλλο, κινούνται τυχαία στο χώρο και συγκρούονται μεταξύ τους ή με τις επιφάνειες στερεών ή υγρών σωμάτων που πιθανώς θα συναντήσουν.

- EMANA CONTRACTOR OF THE PROPERTY OF THE PROPER
- Κάθε καθαρή ουσία μπορεί να υπάρξει και στις τρεις φάσεις, ανάλογα με το συνδυασμό θερμοκρασίας και πίεσης υπό τον οποίο βρίσκεται. Συγκεκριμένα:
 - αν η θερμοκρασία είναι αρκετά υψηλή και η πίεση αρκετά χαμηλή, η καθαρή ουσία θα βρεθεί στην αέρια φάση
 - σε ένα συγκεκριμένο για κάθε καθαρή ουσία συνδυασμό ενδιάμεσων θερμοκρασιών και πιέσεων, η καθαρή ουσία θα βρεθεί στην υγρή φάση
 - αν η θερμοκρασία είναι αρκετά χαμηλή και η πίεση αρκετά υψηλή, η καθαρή ουσία θα βρεθεί στη στερεή φάση.
- Για παράδειγμα, αν έχουμε νερό σε πίεση 1 atm = 101.325 Pa = 1,01325 bar, τότε
 - σε θερμοκρασία κάτω των 0 °C θα είναι σε στερεή φάση (πάγος)
 - σε θερμοκρασίες μεταξύ 0 και 100 °C θα είναι σε υγρή φάση
 - στους 100 °C η υγρή φάση θα είναι σε ισορροπία με την αέρια φάση, συνεπώς και οι δύο φάσεις θα συνυπάρχουν σε κορεσμένη κατάσταση, δηλαδή κορεσμένο υγρό έτοιμο να εξατμιστεί και κορεσμένος ατμός έτοιμος να υγροποιηθεί
 - σε θερμοκρασίας μεγαλύτερες των 100 °C θα βρίσκεται σε αέρια φάση.

- Σε όλες τις περιπτώσεις του σχήματος η πίεση ισούται με 1 atm. Επίσης η πίεση κάτω από το κινούμενο έμβολο παραμένει σταθερή.
- Όταν η θερμοκρασία του νερού είναι χαμηλότερη των 0 °C τότε τούτο βρίσκεται στη στερεή φάση.
- Όταν η θερμοκρασία είναι από 0 έως 99,99999... °C, το υγρό ονομάζεται υπόψυκτο υγρό. Η θερμοκρασία του θα πρέπει να αυξηθεί έστω και κατά ένα ελάχιστο προκειμένου να φτάσει στην επόμενη φάση, όπου έχουμε κορεσμένο υγρό.

- Στο κορεσμένο υγρό, η ουσία δεν μπορεί να διατηρήσει άλλο την υγρή φάση, έστω και με την παραμικρή αύξηση της θερμοκρασίας, η οποία θα οδηγήσει στην εξάτμιση του υγρού και στη μετατροπή της ουσίας από την υγρή στην αέρια φάση.
- Όσο η παροχή θερμότητας προς την καθαρή ουσία διατηρείται, τόσο θα εξελίσσεται και η εξάτμιση. Τη στιγμή που θα εξατμιστεί η τελευταία σταγόνα της υγρής φάσης, έχουμε πλέον κορεσμένο ατμό, που σημαίνει ότι η παραμικρή ψύξη του θα οδηγήσει σε υγροποίησή του.

• Εφόσον διατηρηθεί η παροχή θερμότητας προς την καθαρή ουσία, η θερμοκρασία του ατμού θα συνεχίσει να αυξάνεται, οπότε τότε λέμε ότι έχουμε υπέρθερμο ατμό.

Διαγράμματα και πίνακες υδρατμών

- Στις περισσότερες περιπτώσεις χρήσης ατμού για μεταφορά ενέργειας δεν είναι ακριβές να προσεγγιστεί ο υπολογισμός των ιδιοτήτων του θεωρώντας τον ως τέλειο αέριο.
- Πρακτικά, δεν υπάρχει ακριβής αναλυτική ή εμπειρική σχέση με την οποία να είναι εφικτός ο υπολογισμός των ιδιοτήτων του ατμού.
- Συνεπώς, οι ιδιότητες υγρού και υπέρθερμου ατμού θα πρέπει να λαμβάνονται από σχετικούς πίνακες.
- Στον ατμοσφαιρικό αέρα η περιεκτικότητα υδρατμών περιορίζεται σε πολύ χαμηλές τιμές. Σε αυτή την περίπτωση, το μίγμα αέρα και υδρατμών (υγρός ατμοσφαιρικός αέρας) μπορεί να θεωρηθεί ως τέλειο αέριο.

- Στο διάγραμμα του σχήματος παρουσιάζεται η μεταβολή του ειδικού όγκου του νερού συναρτήσει της θερμοκρασίας του, για διάφορες πιέσεις.
- Η μπλε καμπύλη παριστάνει σημεία όπου το νερό βρίσκεται σε κορεσμένη φάση.
- Η πράσινη καμπύλη παριστάνει σημεία όπου ο ατμός βρίσκεται σε κορεσμένη φάση.
- Το σημείο C ονομάζεται κρίσιμο σημείο.
- Η μεταβλητή x παριστάνει την περιεκτικότητα κατά μάζα του μίγματος σε ατμό.
- Πάνω στη μπλε καμπύλη έχουμε x = 0 γιατί όλο το νερό βρίσκεται σε κορεσμένη υγρή φάση, άρα δεν έχουμε καθόλου ατμό.
- Πάνω στην πράσινη καμπύλη έχουμε x = 1 γιατί όλο το νερό βρίσκεται σε κορεσμένη αέρια φάση.

- Ανάμεσα στη μπλε και στην πράσινη καμπύλη έχουμε τη διφασική περιοχή, δηλαδη σημεία στα οποία συνυπάρχουν η υγρή και η αέρια φάση του νερού.
- Εντός της καμπύλης κορεσμού ορίζεται η περιεκτικότητα των υδρατμών στο μίγμα υγρού ατμού, η οποία συνήθως συμβολίζεται με "x".
- Το μέγεθος x ονομάζεται και ποιότητα του κορεσμένου μίγματος ή ξηρότητα ατμού.
- Η περιεκτικότητα των υδρατμών ορίζεται ως ο λόγος της μάζας υδρατμών στο μίγμα που παραμένει σε αέρια φάση, προς τη συνολική μάζα των υγρών υδρατμών:

$$x = \frac{m_g}{m_g + m_f}$$

• Η περιεκτικότητα υδρατμών χρησιμοποιείται συνήθως για τον υπολογισμό διαφόρων θερμοδυναμικών μεγεθών των υγρών υδρατμών, όπως ενθαλπία, εσωτερική ενέργεια, ειδικό όγκο και εντροπία.

• Για παράδειγμα, έστω ότι απαιτείται ο υπολογισμός του ειδικού όγκου υδρατμών. Εξ' ορισμού, ο ειδικός όγκος υδρατμών είναι ο λόγος του συνολικού όγκου υγρού νερού και υδρατμών προς τη συνολική μάζα τους:

$$u = \frac{V}{m} = \frac{m_f \cdot u_f + m_g \cdot u_g}{m_f + m_g}$$

όπου οι δείκτες f και g υποδηλώνουν υγρή και αέρια φάση αντίστοιχα.

• Η περιεκτικότητα των υδρατμών στο μίγμα υγρής και αέριας φάσης, εξ' ορισμού θα δίνεται από τη σχέση:

$$x = \frac{m_g}{m_g + m_f} \iff x = \frac{m_g}{m_{tot}} \iff x = \frac{m_{tot} - m_f}{m_{tot}} \iff x = 1 - \frac{m_f}{m_{tot}}$$

$$\frac{m_f}{m_{tot}} = 1 - x$$

• Πλέον η σχέση του ειδικού όγκου μπορεί να γραφεί ως εξής:

$$\upsilon = \frac{V}{m} = \frac{m_f \cdot \upsilon_f + m_g \cdot \upsilon_g}{m_f + m_g} \Leftrightarrow \upsilon = \frac{m_f}{m_{tot}} \cdot \upsilon_f + \frac{m_g}{m_{tot}} \cdot \upsilon_g \Leftrightarrow \upsilon = (1 - x) \cdot \upsilon_f + x \cdot \upsilon_g$$

 Τέλος, αν συμβολίσουμε τη διαφορά ειδικών όγκων αέριας και υγρής φάσης ως υ_{fg}, δηλαδή:

$$v_{fg} = v_g - v_f$$

τότε η παραπάνω σχέση μπορεί να γραφεί επίσης ως εξής:

$$\upsilon = (1-x) \cdot \upsilon_f + x \cdot \upsilon_g \Leftrightarrow \upsilon = \upsilon_f - x \cdot \upsilon_f + x \cdot \upsilon_g \Leftrightarrow \upsilon = \upsilon_f + x \cdot \left(\upsilon_g - \upsilon_f\right) \Leftrightarrow \upsilon = \upsilon_f + x \cdot \upsilon_{fg}$$

• Από την τελευταία επίσης σχέση η ξηρότητα του μίγματος μπορεί να γραφεί ως εξής:

$$x = \frac{v - v_f}{v_g - v_f}$$

 Ανάλογες εξισώσεις ισχύουν για τον υπολογισμό της ειδικής εσωτερικής ενέργειας, της ειδικής ενθαλπίας και της ειδικής εντροπίας του μίγματος υδρατμών αέριας και υγρής φάσης.

- Τα σημεία στην περιοχή του διαγράμματος αριστερά από τη μπλε καμπύλη αντιστοιχούν σε καταστάσεις υπόψυκτου υγρού.
- Τα σημεία στην περιοχή του διαγράμματος δεξιά από την πράσινη καμπύλη αντιστοιχούν σε καταστάσεις υπέρθερμου ατμού.
- Για μία τυχαία πίεση, έστω p₂, η οποία διατηρείται σταθερή, ξεκινώντας από κατάσταση υπόψυκτου υγρού προσδίδουμε θερμότητα στο μέσο.
- Μέχρι να φτάσει σε κατάσταση κορεσμού, έχουμε αύξηση της θερμοκρασίας και του ειδικού όγκου του νερού.
- Από την κατάσταση κορεσμού και μετά, όσο διατηρείται η παροχή θερμότητας, η θερμοκρασία του νερού δεν αλλάζει, αλλά παραμένει σταθερή. Η προσδιδόμενη θερμότητα συμβάλει μόνο στην αλλαγή της φάσης του (μέσα στη διφασική περιοχή στο διάγραμμα).

 Μέσα στη διφασική περιοχή του διαγράμματος, η θέρμανση του νερού συμβάλει στην αύξηση του ειδικού όγκου του.

• Από την καμπύλη κορεσμένου ατμού και μετά, και για όσο συνεχίζεται η παροχή

θερμότητας, έχουμε και πάλι αύξηση της θερμοκρασίας και του ειδικού όγκου, με χαμηλότερο ρυθμό.

Διάγραμμα Τ – υ νερού

- Στο σχήμα παρουσιάζεται ένα πραγματικό διάγραμμα T υ νερού (προσέγγιση τελείου αερίου, με σφάλμα μικρότερο του 1%).
- Παρατηρείται ότι όσο αυξάνεται η πίεση, τόσο η διαφορά $\upsilon_{\rm f}$ και $\upsilon_{\rm g}$ $\upsilon_{\rm f}$ ελαττώνεται.
- Όταν η πίεση φτάσει τα 22,06 MPa (220,6 bar ή περίπου 220,6 atm), το ευθύγραμμο τμήμα μέσα στη διφασική περιοχή εκφυλίζεται σε ένα σημείο, το κρίσιμο σημείο C, στο οποίο ισχύουν οι ακόλουθες τιμές για τα μεγέθη του διαγράμματος:
 - κρίσιμη πίεση: p_c = 22,06 Mpa
 - κρίσιμος ειδικός όγκος: $v_c = 0.003106 \text{ m}^3/\text{kg}$
 - κρίσιμη θερμοκρασία: $T_c = 373,95$ °C.

Διάγραμμα Τ – υ νερού

- Στο κρίσιμο σημείο και για πιέσεις ή θερμοκρασίες πάνω από τις κρίσιμες τιμές, οι καταστάσεις υγρού και ατμού δεν διαχωρίζονται και η ρευστή αυτή φάση της ουσίας ονομάζεται υπερκρίσιμο ρευστό.
- Οι μεταβολές που συνήθως εξετάζονται με τη βοήθεια του διαγράμματος είναι:
 - προσθήκη θερμότητας υπό σταθερή πίεση
 - αφαίρεση θερμότητας υπό σταθερή πίεση
 - προσθήκη θερμότητας υπό σταθερό όγκο
 - αφαίρεση θερμότητας υπό σταθερό όγκο
 - αύξηση της πίεσης υπό σταθερή θερμοκρασία
 - μείωση της πίεσης υπό σταθερή θερμοκρασία.

Διάγραμμα p – υ νερού

• Αντίστοιχα αποτυπώνονται οι ίδιες πληροφορίες σε διάγραμμα πίεσης – ειδικού όγκου.

Διάγραμμα Τ – s νερού

- Στα προβλήματα μεταφοράς θερμότητας με χρήση ατμού συνήθως χρησιμοποιείται το διάγραμμα υδρατμού με άξονες θερμοκρασίας εντροπίας.
- Το διάγραμμα αυτό αποδεικνύεται περισσότερο εύχρηστο σε προβλήματα μεταφοράς θερμότητας, καθώς οι ισεντροπικές μεταβολές εμφανίζονται ως κάθετες γραμμές.
- Το σχήμα της καμπύλης κορεσμού παραμένει το ίδιο στο διάγραμμα T-s.
- Οι περιοχές υπέρθερμου ατμού, υπόψυκτου υγρού και διφασικής περιοχής παραμένουν επίσης σε αντίστοιχες θέσεις στο διάγραμμα αυτό.

Διάγραμμα Τ – s νερού

Διάγραμμα φάσεων καθαρής ουσίας

• Τα διαγράμματα φάσεων καθαρής ουσίας δείχνουν τις φάσεις μίας ουσίας που είναι θερμοδυναμικά σταθερές υπό συγκεκριμένες συνθήκες θερμοκρασίας και πίεσης, γι' αυτό και αποκαλούνται επίσης διαγράμματα θερμοκρασίας—πίεσης.

• Η ουσία μπορεί να υπάρχει στην αέρια κατάσταση (μία φάση), στην υγρή (μία φάση) ή στη

στερεά κατάσταση (σε μία ή περισσότερες φάσεις).

 Τα όρια μεταξύ δύο φάσεων δείχνουν τις συνθήκες πίεσης και θερμοκρασίας υπό τις οποίες δύο διαφορετικές φάσεις βρίσκονται σε ισορροπία και γι' αυτό αποκαλούνται καμπύλες ισορροπίας.

Πίνακες ιδιοτήτων κορεσμένου νερού - ατμού

- Η πλήρης παρουσίαση των πινάκων με τις ιδιότητες των υδρατμών απαιτεί όγκο ανάλογο ενός ολόκληρου βιβλίου.
- Ειδικά όμως για τη μελέτη συνήθως θερμοδυναμικών προβλημάτων, οι δυνατές καταστάσεις υδρατμών εμπίπτουν σε ένα περιορισμένο σχετικά πεδίο τιμών.
- Συνεπώς, στις περιπτώσεις αυτές συνήθως αρκούν περιεκτικοί και απλοποιημένοι πίνακες ιδιοτήτων υδρατμών.
- Στους πίνακες που ακολουθούν παρουσιάζονται οι ιδιότητες κορεσμένου νερού και υδρατμών συναρτήσει της θερμοκρασίας και της πίεσης αντίστοιχα.

T _{sat} (°C)	Πίεση	Ειδικός (m³/	•	Ειδική εσ	ωτερική ε (kJ/kg)	ενέργεια	Ειδική ε	νθαλπία (kJ/kg)	Ειδική ε	ντροπία (kJ/kgK)
	(kPa)	U_f	U_g	u_f	u_{fg}	u_g	h _f	h_{fg}	h _g	S _f	S _{fg}	S_g
0,01	0,6117	0,001	206	0,00	2.374,9	2.374,9	0,0	2.500,9	J	0	9,1556	9,1556
5	0,8725	0,001	147,03	21,02	2.360,8	2.381,8	21,0	2.489,1	2.510,1	0,0763	8,9487	9,0249
10	1,2281	0,001	106,32	42,02	2.346,6	2.388,7	42,0	2.477,2	2.519,2	0,1511	8,7488	8,8999
15	1,7057	0,001001	77,885	62,98	2.332,5	2.395,5	63,0	2.465,4	2.528,3	0,2245	8,5559	8,7803
20	2,3392	0,001002	57,762	83,91	2.318,4	2.402,3	83,9	2.453,5	2.537,4	0,2965	8,3696	8,6661
25	3,1698	0,001003	43,34	104,83	2.304,3	2.409,1	104,8	2.441,7	2.546,5	0,3672	8,1895	8,5567
30	4,2469	0,001004	32,879	125,73	2.290,2	2.415,9	125,7	2.429,8	2.555,6	0,4368	8,0152	8,452
35	5,6291	0,001006	25,205	146,63	2.276,0	2.422,7	146,6	2.417,9	2.564,6	0,5051	7,8466	8,3517
40	7,3851	0,001008	19,515	167,53	2.261,9	2.429,4	167,5	2.406,0	2.573,5	0,5724	7,6832	8,2556
45	9,5953	0,00101	15,251	188,43	2.247,7	2.436,1	188,4	2.394,0	2.582,4	0,6386	7,5247	8,1633
50	12,352	0,001012	12,026	209,33	2.233,4	2.442,7	209,3	2.382,0	2.591,3	0,7038	7,371	8,0748
55	15,763	0,001015	9,5639	230,24	2.219,1	2.449,3	230,3	2.369,8	2.600,1	0,768	7,2218	7,9898
60	19,947	0,001017	7,667	251,16	2.204,7	2.455,9	251,2	2.357,7	2.608,8	0,8313	7,0769	7,9082

T _{sat} (°C)	Πίεση (kPa)	Ειδικός (m³/l	•	Ειδική εσ	ωτερική ε (kJ/kg)	ενέργεια	Ειδική ε	νθαλπία (kJ/kg)	Ειδική ε	ντροπία (kJ/kgK)
	(Ki a)	U_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S _{fg}	S_g
65	25,043	0,00102	6,1935	272,09	2.190,3	2.462,4	272,1	2.345,4	2.617,5	0,8937	6,936	7,8296
70	31,202	0,001023	5,0396	293,04	2.175,8	2.468,9	293,1	2.333,0	2.626,1	0,9551	6,7989	7,754
75	38,597	0,001026	4,1291	313,99	2.161,3	2.475,3	314,0	2.320,6	2.634,6	1,0158	6,6655	7,6812
80	47,416	0,001029	3,4053	334,97	2.146,6	2.481,6	335,0	2.308,0	2.643,0	1,0756	6,5355	7,6111
85	57,868	0,001032	2,8261	355,96	2.131,9	2.487,8	356,0	2.295,3	2.651,4	1,1346	6,4089	7,5435
90	70,183	0,001036	2,3593	376,97	2.117,0	2.494,0	377,0	2.282,5	2.659,6	1,1929	6,2853	7,4782
95	84,609	0,00104	1,9808	398,00	2.102,0	2.500,1	398,1	2.269,6	2.667,6	1,2504	6,1647	7,4151
100	101,42	0,001043	1,672	419,06	2.087,0	2.506,0	419,2	2.256,4	2.675,6	1,3072	6,047	7,3542
105	120,9	0,001047	1,4186	440,15	2.071,8	2.511,9	440,3	2.243,1	2.683,4	1,3634	5,9319	7,2952
110	143,38	0,001052	1,2094	461,27	2.056,4	2.517,7	461,4	2.229,7	2.691,1	1,4188	5,8193	7,2382
115	169,18	0,001056	1,036	482,42	2.040,9	2.523,3	482,6	2.216,0	2.698,6	1,4737	5,7092	7,1829
120	198,67	0,00106	0,89133	503,60	2.025,3	2.528,9	503,8	2.202,1	2.706,0	1,5279	5,6013	7,1292
125	232,23	0,001065	0,77012	524,83	2.009,5	2.534,3	525,1	2.188,1	2.713,1	1,5816	5,4956	7,0771

T (0C)	Πίεση	Ειδικός	• •	Ειδική εσ	ωτερική ε	ενέργεια	Erging ~	νΩαλπία: /	[k] /kg)	Erging o	uroomic: (
T _{sat} (°C)	(kPa)	(m ³ /l	(R)		(kJ/kg)		בנסנגון צ	νθαλπία (בנטנגון צ	ντροπία (K1/KBK)
	(111 31)	u_f	U_g	u_f	u_{fg}	u_g	h _f	h_{fg}	h _g	S_f	S_{fg}	S_g
130	270,28	0,00107	0,66808	546,10	1.993,4	2.539,5	546,4	2.173,7	2.720,1	1,6346	5,3919	7,0265
135	313,22	0,001075	0,58179	567,41	1.977,3	2.544,7	567,8	2.159,1	2.726,9	1,6872	5,2901	6,9773
140	361,53	0,00108	0,5085	588,77	1.960,9	2.549,6	589,2	2.144,3	2.733,5	1,7392	5,1901	6,9294
145	415,68	0,001085	0,446	610,19	1.944,2	2.554,4	610,6	2.129,2	2.739,8	1,7908	5,0919	6,8827
150	476,16	0,001091	0,39248	631,66	1.927,4	2.559,1	632,2	2.113,8	2.745,9	1,8418	4,9953	6,8371
155	543,49	0,001096	0,34648	653,19	1.910,3	2.563,5	653,8	2.098,0	2.751,8	1,8924	4,9002	6,7927
160	618,23	0,001102	0,3068	674,79	1.893,0	2.567,8	675,5	2.082,0	2.757,5	1,9426	4,8066	6,7492
165	700,93	0,001108	0,27244	696,46	1.875,4	2.571,9	697,2	2.065,6	2.762,8	1,9923	4,7143	6,7067
170	792,18	0,001114	0,2426	718,20	1.857,5	2.575,7	719,1	2.048,8	2.767,9	2,0417	4,6233	6,665
175	892,6	0,001121	0,21659	740,02	1.839,4	2.579,4	741,0	2.031,7	2.772,7	2,0906	4,5335	6,6242
180	1.002,8	0,001127	0,19384	761,92	1.820,9	2.582,8	763,1	2.014,2	2.777,2	2,1392	4,4448	6,5841
185	1.123,5	0,001134	0,1739	783,91	1.802,1	2.586,0	785,2	1.996,2	2.781,4	2,1875	4,3572	6,5447
190	1.255,2	0,001141	0,15636	806,00	1.783,0	2.589,0	807,4	1.977,9	2.785,3	2,2355	4,2705	6,5059

T (0C)	Πίεση	Ειδικός		Ειδική εσ	σωτερική ε	ενέργεια	۲۰۶۰۰۰ م	() or) = { or /		۲. ۶		. <i> </i> .~ /\
T _{sat} (°C)	(kPa)	(m ³ /	rkg)		(kJ/kg)		Ειοικη ε	νθαλπία (KJ/Kg)	Elotkij E	ντροπία (KJ/KgK)
	(::: 3.)	U_f	u_g	u_f	u_{fg}	u_g	h _f	h_{fg}	h _g	S_f	S_{fg}	S_g
195	1.398,8	0,001149	0,14089	828,18	1.763,6	2.591,7	829,8	1.959,0	2.788,8	2,2831	4,1847	6,4678
200	1.554,9	0,001157	0,12721	850,46	1.743,7	2.594,2	852,3	1.939,8	2.792,0	2,3305	4,0997	6,4302
205	1.724,3	0,001164	0,11508	872,86	1.723,5	2.596,4	874,9	1.920,0	2.794,8	2,3776	4,0154	6,393
210	1.907,7	0,001173	0,10429	895,38	1.702,9	2.598,3	897,6	1.899,7	2.797,3	2,4245	3,9318	6,3563
215	2.105,9	0,001181	0,09468	918,02	1.681,9	2.599,9	920,5	1.878,8	2.799,3	2,4712	3,8489	6,32
220	2.319,6	0,00119	0,086094	940,79	1.660,5	2.601,3	943,6	1.857,4	2.801,0	2,5176	3,7664	6,284
225	2.549,7	0,001199	0,078405	963,70	1.638,6	2.602,3	966,8	1.835,4	2.802,2	2,5639	3,6844	6,2483
230	2.797,1	0,001209	0,071505	986,76	1.616,1	2.602,9	990,1	1.812,8	2.802,9	2,61	3,6028	6,2128
235	3.062,6	0,001219	0,0653	1.010,0	1.593,2	2.603,2	1.013,7	1.789,5	2.803,2	2,656	3,5216	6,1775
240	3.347,0	0,001229	0,059707	1.033,4	1.569,8	2.603,1	1.037,5	1.765,5	2.803,0	2,7018	3,4405	6,1424
245	3.651,2	0,00124	0,054656	1.056,9	1.545,7	2.602,7	1.061,5	1.740,8	2.802,2	2,7476	3,3596	6,1072
250	3.976,2	0,001252	0,050085	1.080,7	1.521,1	2.601,8	1.085,7	1.715,3	2.801,0	2,7933	3,2788	6,0721
255	4.322,9	0,001263	0,045941	1.104,7	1.495,8	2.600,5	1.110,1	1.689,0	2.799,1	2,839	3,1979	6,0369

T _{sat} (°C)	Πίεση	Ειδικός (m³/		Ειδική εσ	σωτερική ε (kJ/kg)	ενέργεια	Ειδική ε	:νθαλπία (kI/kg)	Ειδική ε	ντροπία (Ι	k I /køK)
'sat ()	(kPa)	υ _f	V _g	u_f	u _{fg}	u_{g}	h _f	h _{fg}	h _g	S _f	S _{fg}	S _g
260	4.692,3		0,042175		1.469,9	2.598,7	1.134,8	1.661,8	2.796,6	2,8847	3,1169	6,0017
265	5.085,3	0,001289	0,038748	1.153,3	1.443,2	2.596,5	1.159,8	1.633,7	2.793,5	2,9304	3,0358	5,9662
270	5.503,0	0,001303	0,035622	1.177,9	1.415,7	2.593,7	1.185,1	1.604,6	2.789,7	2,9762	2,9542	5,9305
275	5.946,4	0,001317	0,032767	1.202,9	1.387,4	2.590,3	1.210,7	1.574,5	2.785,2	3,0221	2,8723	5,8944
280	6.416,6	0,001333	0,030153	1.228,2	1.358,2	2.586,4	1.236,7	1.543,2	2.779,9	3,0681	2,7898	5,8579
285	6.914,6	0,001349	0,027756	1.253,7	1.328,1	2.581,8	1.263,1	1.510,7	2.773,7	3,1144	2,7066	5,821
290	7.441,8	0,001366	0,025554	1.279,7	1.296,9	2.576,5	1.289,8	1.476,9	2.766,7	3,1608	2,6225	5,7834
295	7.999,0	0,001384	0,023528	1.306,0	1.264,5	2.570,5	1.317,1	1.441,6	2.758,7	3,2076	2,5374	5,745
300	8.587,9	0,001404	0,021659	1.332,7	1.230,9	2.563,6	1.344,8	1.404,8	2.749,6	3,2548	2,4511	5,7059
305	9.209,4	0,001425	0,019932	1.360,0	1.195,9	2.555,8	1.373,1	1.366,3	2.739,4	3,3024	2,3633	5,6657
310	9.865	0,001447	0,018333	1.387,7	1.159,3	2.547,1	1.402,0	1.325,9	2.727,9	3,3506	2,2737	5,6243
315	10.556	0,001472	0,016849	1.416,1	1.121,1	2.537,2	1.431,6	1.283,4	2.715,0	3,3994	2,1821	5,5816
320	11.284	0,001499	0,01547	1.445,1	1.080,9	2.526,0	1.462,0	1.238,5	2.700,6	3,4491	2,0881	5,5372

- (0.5)	Πίεση	Ειδικός	• •	Ειδική εσ	σωτερική ε	ενέργεια	- 6 /		/	- 6 /	1	/
T _{sat} (°C)	(kPa)	(m ³ /	kg)		(kJ/kg)		Ειδική ε	νθαλπία (kJ/kg)	Ειδική ε	ντροπία (Ι	kJ/kgK)
	(Ki a)	u_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h _g	S_f	S_{fg}	S_g
325	12.051	0,001528	0,014183	1.475,0	1.038,5	2.513,4	1.493,4	1.191,0	2.684,3	3,4998	1,9911	5,4908
330	12.858	0,00156	0,012979	1.505,7	993,5	2.499,2	1.525,8	1.140,3	2.666,0	3,5516	1,8906	5,4422
335	13.707	0,001597	0,011848	1.537,5	945,5	2.483,0	1.559,4	1.086,0	2.645,4	3,605	1,7857	5,3907
340	14.601	0,001638	0,010783	1.570,7	893,8	2.464,5	1.594,6	1.027,4	2.622,0	3,6602	1,6756	5,3358
345	15.541	0,001685	0,009772	1.605,5	837,7	2.443,2	1.631,7	963,4	2.595,1	3,7179	1,5585	5,2765
350	16.529	0,001741	0,008806	1.642,4	775,9	2.418,3	1.671,2	892,7	2.563,9	3,7788	1,4326	5,2114
355	17.570	0,001808	0,007872	1.682,2	706,4	2.388,6	1.714,0	812,9	2.526,9	3,8442	1,2942	5,1384
360	18.666	0,001895	0,00695	1.726,2	625,7	2.351,9	1.761,5	720,1	2.481,6	3,9165	1,1373	5,0537
365	19.822	0,002015	0,006009	1.777,2	526,4	2.303,6	1.817,2	605,5	2.422,7	4,0004	0,9489	4,9493
370	21.044	0,002217	0,004953	1.844,5	385,6	2.230,1	1.891,2	443,1	2.334,3	4,1119	0,689	4,8009
373,95	22.064	0,003106	0,003106	2.015,7	0,0	2.015,7	2.084,3	0,0	2.084,3	4,407	0	4,407

- Οι ανωτέρω πίνακες, για δεδομένη θερμοκρασία δίνουν για το κορεσμένο υγρό (δείκτης f) και για τον κορεσμένο ατμό (δείκτης g):
 - την πίεση κορεσμού (ή, αλλιώς, την πίεση ισορροπίας υγρού ατμού)
 - τις τιμές του ειδικού όγκου u_f και u_g σε m^3/kg
 - τις τιμές της ειδικής εσωτερικής ενέργειας u_f και u_g σε kJ/kg
 - τις τιμές της ειδικής ενθαλπίας h_f και h_g σε kJ/kg
 - τις τιμές της ειδικής εντροπίας s_f και s_g σε kJ/kgK
 - τις τιμές της ειδικής λανθάνουσας εσωτερικής ενέργειας u_{fg} , της ειδικής λανθάνουσας ενθαλπίας h_{fg} και της ειδικής λανθάνουσας εντροπίας s_{fg} , που ισούνται με τη διαφορά των αντίστοιχων μεγεθών κορεσμένου ατμού μείον αυτών του κορεσμένου υγρού.

- Στην περίπτωση που θέλουμε να υπολογίσουμε ένα μέγεθος από τον πίνακα για μία θερμοκρασία που δεν δίνεται ακριβώς, δηλαδή βρίσκεται ανάμεσα σε δύο άλλες τιμές θερμοκρασίας στον πίνακα, τότε εφαρμόζουμε γραμμική παρεμβολή ανάμεσα στις τιμές αυτές και σε αυτήν για την οποία θέλουμε να υπολογίσουμε το μέγεθος.
- Για παράδειγμα, έστω ότι θέλουμε να υπολογίσουμε την ειδική εσωτερική ενέργεια του κορεσμένου υγρού νερού u_f για θερμοκρασία 22 °C.

T _{sat} (°C)	Πίεση (kPa)	Ειδικός ((m³/k	•	Ειδική εσ	ωτερική ε (kJ/kg)	ενέργεια	Ειδική ε	νθαλπία (kJ/kg)	Ειδική ε	ντροπία (kJ/kgK)
Sal () (k	(KPa)	U_f	U_g	u_f	u_{fg}	u_g	h _f	h_{fg}	h _g	S _f	S _{fg}	S_g
20	2,3392	0,001002	57,762	83,91	2.318,4	2.402,3	83,9	2.453,5	2.537,4	0,2965	8,3696	8,6661
25	3,1698	0,001003	43,34	104,83	2.304,3	2.409,1	104,8	2.441,7	2.546,5	0,3672	8,1895	8,5567

- Από τον πίνακα παρατηρούμε ότι η θερμοκρασία αυτή δεν υπάρχει, ωστόσο δίνονται τα αντίστοιχα μεγέθη για θερμοκρασίες 20 °C και 25 °C.
- Παρατηρούμε επίσης ότι η ειδική εσωτερική ενέργεια βαίνει αυξανόμενη συναρτήσει της θερμοκρασίας.

• Η σχέση της γραμμικής παρεμβολής μεταξύ δύο τιμών με αύξουσα συνάρτηση είναι, με εφαρμογή για το συγκεκριμένο πρόβλημα:

$$u_{f} = u_{f1} + \frac{T - T_{1}}{T_{2} - T_{1}} \cdot (u_{f2} - u_{f1})$$

όπου στο κλάσμα μπαίνει η ανεξάρτητη μεταβλητή, δηλαδή στην προκειμένη περίπτωση η θερμοκρασία, ενώ οι υπόλοιπες τιμές αφορούν στο μέγεθος που θέλουμε να υπολογίσουμε. Συγκεκριμένα:

- T_1 , T_2 οι δύο ακραίες τιμές της θερμοκρασίας μεταξύ των οποίων εμπεριέχεται η τιμή για την οποία θέλουμε να υπολογίσουμε την ειδική εσωτερική ενέργεια, δηλαδή T_1 = 20 °C και T_2 = 25 °C
- u_{f1} , u_{f2} οι αντίστοιχες τιμές της ειδικής εσωτερικής ενέργειας για τις δύο θερμοκρασίες T_1 και T_2 (από τον πίνακα βρίσκουμε u_{f1} = 83,91 kJ/kg και u_{f2} = 104,83 kJ/kg)
- Τη θερμοκρασία για την οποία θέλουμε να υπολογίσουμε την ειδική εσωτερική ενέργεια u_f.

• Με αντικατάσταση των μεγεθών στη σχέση έχουμε:

$$u_{f} = u_{f1} + \frac{T - T_{1}}{T_{2} - T_{1}} \cdot \left(u_{f2} - u_{f1}\right) \Rightarrow u_{f} = 83,91 \frac{kJ}{kg} + \frac{(22 - 20)K}{(25 - 20)K} \cdot (104,83 - 83,91) \frac{kJ}{kg} \Leftrightarrow u_{f} = 92,28 \frac{kJ}{kg}$$

• Αν έχουμε φθίνουσα μονοτονία του υπολογιζόμενου μεγέθους συναρτήσει του ανεξάρτητου μεγέθους (π.χ. αν θέλαμε να υπολογίσουμε τον ειδικό όγκο του κορεσμένου ατμού υ_g), τότε η σχέση της γραμμικής παρεμβολής γίνεται:

$$v_g = v_{g1} - \frac{T - T_1}{T_2 - T_1} \cdot (v_{g1} - v_{g2})$$

• Για τις ίδιες με ανωτέρω θερμοκρασίες, από τον πίνακα βρίσκουμε v_{g1} = 57,762 m³/kg και v_{g2} = 43,34 m³/kg. Με αντικατάσταση στην ανωτέρω σχέση βρίσκουμε:

$$\upsilon_{g} = \upsilon_{g1} - \frac{T - T_{1}}{T_{2} - T_{1}} \cdot \left(\upsilon_{g1} - \upsilon_{g2}\right) \Rightarrow \\
\upsilon_{g} = 57,762 \frac{m^{3}}{kg} - \frac{(22 - 20)K}{(25 - 20)K} \cdot \left(57,762 - 43,34\right) \frac{m^{3}}{kg} \Leftrightarrow \upsilon_{g} = 51,993 \frac{m^{3}}{kg}$$

		Ειδικός	όνκος	Ειδική ςσ	ωτερική ς	NÇOVELO						
Πίεση	T _{sat} (°C)	(m³/l		LIOIKI EO	ωτερική ε (kJ/kg)	νεργεια	Ειδική ο	ενθαλπία (kI/ka)	Ειδική ς	ντροπία (kl/kaK)
(kPa)	sat (C)	(111 / 1			(KJ) KB)		LIUINI			· ·	ντροπια (NJ/ NBIN/
\ - /		U_f	u_g	u_f	u_{fg}	u_g	h _f	h _{fg}	h _g	S _f	S_{fg}	S_g
1	6,97	0,001	129,19	29,302	2.355,2	2.384,5	29,303	2.484,4	2.513,7	0,1059	8,8690	8,9749
1,5	13,02	0,001001	87,964	54,686	2.338,1	2.392,8	54,688	2.470,1	2.524,7	0,1956	8,6314	8,8270
2	17,50	0,001001	66,99	73,431	2.325,5	2.398,9	73,433	2.459,5	2.532,9	0,2606	8,4621	8,7227
2,5	21,08	0,001002	54,242	88,422	2.315,4	2.403,8	88,424	2.451,0	2.539,4	0,3118	8,3302	8,6421
3	24,08	0,001003	45,654	100,98	2.306,9	2.407,9	100,98	2.443,9	2.544,8	0,3543	8,2222	8,5765
4	28,96	0,001004	34,791	121,39	2.293,1	2.414,5	121,39	2.432,3	2.553,7	0,4224	8,0510	8,4734
5	32,87	0,001005	28,185	137,75	2.282,1	2.419,8	137,75	2.423,0	2.560,7	0,4762	7,9176	8,3938
7,5	40,29	0,001008	19,233	168,74	2.261,1	2.429,8	168,75	2.405,3	2.574,0	0,5763	7,6738	8,2501
10	45,81	0,00101	14,67	191,79	2.245,4	2.437,2	191,81	2.392,1	2.583,9	0,6492	7,4996	8,1488
15	53,97	0,001014	10,02	225,93	2.222,1	2.448,0	225,94	2.372,3	2.598,3	0,7549	7,2522	8,0071
20	60,06	0,001017	7,6481	251,4	2.204,6	2.456,0	251,42	2.357,5	2.608,9	0,8320	7,0752	7,9073
25	64,96	0,00102	6,2034	271,93	2.190,4	2.462,4	271,96	2.345,5	2.617,5	0,8932	6,9370	7,8302
30	69,09	0,001022	5,2287	289,24	2.178,5	2.467,7	289,27	2.335,3	2.624,6	0,9441	6,8234	7,7675

Πίεση		Ειδικός	όγκος	Ειδική εσ	ωτερική ε	νέργεια						
(kPa)	T _{sat} (°C)	(m³/l	kg)		(kJ/kg)		Ειδική ε	ενθαλπία (kJ/kg)	Ειδική ε	ντροπία (kJ/kgK)
(KFa)		U_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_{g}	S _f	S_{fg}	S_g
40	75,86	0,001026	3,9933	317,58	2.158,8	2.476,3	317,62	2.318,4	2.636,1	1,0261	6,6430	7,6691
50	81,32	0,00103	3,2403	340,49	2.142,7	2.483,2	340,54	2.304,7	2.645,2	1,0912	6,5019	7,5931
75	91,76	0,001037	2,2172	384,36	2.111,8	2.496,1	384,44	2.278,0	2.662,4	1,2132	6,2426	7,4558
100	99,61	0,001043	1,6941	417,4	2.088,2	2.505,6	417,51	2.257,5	2.675,0	1,3028	6,0562	7,3589
101,325	99,97	0,001043	1,6734	418,95	2.087,0	2.506,0	419,06	2.256,5	2.675,6	1,3069	6,0476	7,3545
125	105,97	0,001048	1,375	444,23	2.068,8	2.513,0	444,36	2.240,6	2.684,9	1,3741	5,9100	7,2841
150	111,35	0,001053	1,1594	466,97	2.052,3	2.519,2	467,13	2.226,0	2.693,1	1,4337	5,7894	7,2231
175	116,04	0,001057	1,0037	486,82	2.037,7	2.524,5	487,01	2.213,1	2.700,2	1,4850	5,6865	7,1716
200	120,21	0,001061	0,88578	504,5	2.024,6	2.529,1	504,71	2.201,6	2.706,3	1,5302	5,5968	7,1270
225	123,97	0,001064	0,79329	520,47	2.012,7	2.533,2	520,71	2.191,0	2.711,7	1,5706	5,5171	7,0877
250	127,41	0,001067	0,71873	535,08	2.001,8	2.536,8	535,35	2.181,2	2.716,5	1,6072	5,4453	7,0525
275	130,58	0,00107	0,65732	548,57	1.991,6	2.540,1	548,86	2.172,0	2.720,9	1,6408	5,3800	7,0207
300	133,52	0,001073	0,60582	561,11	1.982,1	2.543,2	561,43	2.163,5	2.724,9	1,6717	5,3200	6,9917

Πίεση		Ειδικός	όγκος	Ειδική εσ	ωτερική ε	νέργεια						
(kPa)	T _{sat} (°C)	(m³/l	<g)< td=""><td></td><td>(kJ/kg)</td><td></td><td>Ειδική ε</td><td>ενθαλπία (</td><td>kJ/kg)</td><td>Ειδική ε</td><td>ντροπία (</td><td>kJ/kgK)</td></g)<>		(kJ/kg)		Ειδική ε	ενθαλπία (kJ/kg)	Ειδική ε	ντροπία (kJ/kgK)
(KFa)		U_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_{g}	S _f	S_{fg}	S_g
325	136,27	0,001076	0,56199	572,84	1.973,1	2.545,9	573,19	2.155,4	2.728,6	1,7005	5,2645	6,9650
350	138,86	0,001079	0,52422	583,89	1.964,6	2.548,5	584,26	2.147,7	2.732,0	1,7274	5,2128	6,9402
375	141,30	0,001081	0,49133	594,32	1.956,6	2.550,9	594,73	2.140,4	2.735,1	1,7526	5,1645	6,9171
400	143,61	0,001084	0,46242	604,22	1.948,9	2.553,1	604,66	2.133,4	2.738,1	1,7765	5,1191	6,8955
450	147,90	0,001088	0,41392	622,65	1.934,5	2.557,1	623,14	2.120,3	2.743,4	1,8205	5,0356	6,8561
500	151,83	0,001093	0,37483	639,54	1.921,2	2.560,7	640,09	2.108,0	2.748,1	1,8604	4,9603	6,8207
550	155,46	0,001097	0,34261	655,16	1.908,8	2.563,9	655,77	2.096,6	2.752,4	1,8970	4,8916	6,7886
600	158,83	0,001101	0,3156	669,72	1.897,1	2.566,8	670,38	2.085,8	2.756,2	1,9308	4,8285	6,7593
650	161,98	0,001104	0,2926	683,37	1.886,1	2.569,4	684,08	2.075,5	2.759,6	1,9623	4,7699	6,7322
700	164,95	0,001108	0,27278	696,23	1.875,6	2.571,8	697,00	2.065,8	2.762,8	1,9918	4,7153	6,7071
750	167,75	0,001111	0,25552	708,4	1.865,6	2.574,0	709,24	2.056,4	2.765,7	2,0195	4,6642	6,6837
800	170,41	0,001115	0,24035	719,97	1.856,1	2.576,0	720,9	2.047,5	2.768,3	2,046	4,616	6,662
850	172,94	0,001118	0,2269	731,00	1.846,9	2.577,9	732,0	2.038,8	2.770,8	2,071	4,571	6,641

Πίεση		Ειδικός	όγκος	Ειδική εσ	ωτερική ε	νέργεια						
(kPa)	T _{sat} (°C)	(m^3/l)	<g)< td=""><td></td><td>(kJ/kg)</td><td></td><td>Ειδική ε</td><td>ενθαλπία (</td><td>kJ/kg)</td><td>Ειδική ε</td><td>ντροπία (</td><td>kJ/kgK)</td></g)<>		(kJ/kg)		Ειδική ε	ενθαλπία (kJ/kg)	Ειδική ε	ντροπία (kJ/kgK)
(Ki a)		U_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S _f	S_{fg}	S_g
900	175,35	0,001121	0,21489	741,55	1.838,1	2.579,6	742,6	2.030,5	2.773,0	2,094	4,527	6,621
950	177,66	0,001124	0,20411	751,67	1.829,6	2.581,3	752,7	2.022,4	2.775,2	2,117	4,486	6,603
1.000	179,88	0,001127	0,19436	761,39	1.821,4	2.582,8	762,5	2.014,6	2.777,1	2,138	4,447	6,585
1.100	184,06	0,001133	0,17745	779,78	1.805,7	2.585,5	781,0	1.999,6	2.780,7	2,179	4,374	6,552
1.200	187,96	0,001138	0,16326	796,96	1.790,9	2.587,8	798,3	1.985,4	2.783,8	2,216	4,306	6,522
1.300	191,60	0,001144	0,15119	813,10	1.776,8	2.589,9	814,6	1.971,9	2.786,5	2,251	4,243	6,494
1.400	195,04	0,001149	0,14078	828,35	1.763,4	2.591,8	830,0	1.958,9	2.788,9	2,284	4,184	6,468
1.500	198,29	0,001154	0,13171	842,82	1.750,6	2.593,4	844,6	1.946,4	2.791,0	2,314	4,129	6,443
1.750	205,72	0,001166	0,11344	876,12	1.720,6	2.596,7	878,2	1.917,1	2.795,2	2,384	4,003	6,388
2.000	212,38	0,001177	0,09959	906,12	1.693,0	2.599,1	908,5	1.889,8	2.798,3	2,447	3,892	6,339
2.250	218,41	0,001187	0,08872	933,54	1.667,3	2.600,9	936,2	1.864,3	2.800,5	2,503	3,793	6,295
2.500	223,95	0,001197	0,07995	958,87	1.643,2	2.602,1	961,9	1.840,1	2.801,9	2,554	3,702	6,256
3.000	233,85	0,001217	0,06667	1.004,60	1.598,5	2.603,2	1.008,3	1.794,9	2.803,2	2,645	3,54	6,186
•												

Πίεση		Ειδικός	•	Ειδική εσ	ωτερική ε	νέργεια						
(kPa)	T _{sat} (°C)	(m^3/l)	kg)		(kJ/kg)		Ειδική ε	ενθαλπία (kJ/kg)	Ειδική ε	ντροπία (kJ/kgK)
(Kra)		u_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
3.500	242,56	0,001235	0,05706	1.045,40	1.557,6	2.603,0	1.049,7	1.753,0	2.802,7	2,725	3,399	6,124
4.000	250,35	0,001252	0,04978	1.082,40	1.519,3	2.601,7	1.087,4	1.713,5	2.800,8	2,797	3,273	6,07
5.000	263,94	0,001286	0,03945	1.148,10	1.448,9	2.597,0	1.154,5	1.639,7	2.794,2	2,921	3,053	5,974
6.000	275,59	0,001319	0,03245	1.205,80	1.384,1	2.589,9	1.213,8	1.570,9	2.784,6	3,028	2,863	5,89
7.000	285,83	0,001352	0,02738	1.258,00	1.323,0	2.581,0	1.267,5	1.505,2	2.772,6	3,122	2,693	5,815
8.000	295,01	0,001384	0,02353	1.306,00	1.264,5	2.570,5	1.317,1	1.441,6	2.758,7	3,208	2,537	5,745
9.000	303,35	0,001418	0,02049	1.350,90	1.207,6	2.558,5	1.363,7	1.379,3	2.742,9	3,287	2,393	5,679
10.000	311,00	0,001452	0,01803	1.393,30	1.151,8	2.545,2	1.407,8	1.317,6	2.725,5	3,36	2,256	5,616
11.000	318,08	0,001488	0,01599	1.433,90	1.096,6	2.530,4	1.450,2	1.256,1	2.706,3	3,43	2,125	5,554
12.000	324,68	0,001526	0,01426	1.473,00	1.041,3	2.514,3	1.491,3	1.194,1	2.685,4	3,496	1,998	5,494
13.000	330,85	0,001566	0,01278	1.511,00	985,5	2.496,6	1.531,4	1.131,3	2.662,7	3,561	1,873	5,434
14.000	336,67	0,00161	0,01149	1.548,40	928,7	2.477,1	1.571,0	1.067,0	2.637,9	3,623	1,75	5,373
15.000	342,16	0,001657	0,01034	1.585,50	870,3	2.455,7	1.610,3	1.000,5	2.610,8	3,685	1,626	5,311

Ιδιότητες κορεσμένου υγρού – κορεσμένων υδρατμών συναρτήσει της πίεσής του

Πίεση (kPa)	T _{sat} (°C) (m ³	Ειδικός ((m³/l	•	Ειδική εσωτερική ενέργεια (kJ/kg)			Ειδική ε	ενθαλπία (kJ/kg)	Ειδική εντροπία (kJ/kgK)			
(KFa)		U_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g	
16.000	347,36	0,00171	0,00931	1.622,60	809,4	2.432,0	1.649,9	931,1	2.581,0	3,746	1,501	5,247	
17.000	352,29	0,00177	0,00837	1.660,20	745,1	2.405,4	1.690,3	857,4	2.547,7	3,808	1,371	5,179	
18.000	356,99	0,00184	0,0075	1.699,10	675,9	2.375,0	1.732,2	777,8	2.510,0	3,872	1,234	5,106	
19.000	361,47	0,001926	0,00668	1.740,30	598,9	2.339,2	1.776,8	689,2	2.466,0	3,94	1,086	5,026	
20.000	365,75	0,002038	0,00586	1.785,80	509,0	2.294,8	1.826,6	585,5	2.412,1	4,015	0,916	4,931	
21.000	369,83	0,002207	0,00499	1.841,60	391,9	2.233,5	1.888,0	450,4	2.338,4	4,107	0,701	4,808	
22.000	373,71	0,002703	0,00364	1.951,70	140,8	2.092,4	2.011,1	161,5	2.172,6	4,294	0,25	4,544	
22.064	373,95	0,003106	0,00311	2.015,70	0,0	2.015,7	2.084,3	0,0	2.084,3	4,407	0	4,407	

Πίνακες θερμοδυναμικών ιδιοτήτων του νερού

- Οι ανωτέρω πίνακες, για δεδομένη πίεση δίνουν για το κορεσμένο υγρό (δείκτης f) και για τον κορεσμένο ατμό (δείκτης g):
 - τη θερμοκρασία κορεσμού (ή, αλλιώς, τη θερμοκρασία ισορροπίας υγρού ατμού)
 - τις τιμές του ειδικού όγκου u_f και u_g σε m^3/kg
 - τις τιμές της ειδικής εσωτερικής ενέργειας u_f και u_g σε kJ/kg
 - τις τιμές της ειδικής ενθαλπίας h_f και h_g σε kJ/kg
 - τις τιμές της ειδικής εντροπίας s_f και s_g σε kJ/kgK
 - τις τιμές της ειδικής λανθάνουσας εσωτερικής ενέργειας u_{fg} , της ειδικής λανθάνουσας ενθαλπίας h_{fg} και της ειδικής λανθάνουσας εντροπίας s_{fg} .

Παράδειγμα 1: ιδιότητες υγρού ατμού

Να υπολογιστούν η θερμοκρασία, ο ειδικός όγκος και η ειδική ενθαλπία υγρού ατμού περιεκτικότητας σε υδρατμούς 20%. Η πίεση του μίγματος είναι 150 kPa.

<u>Λύση</u>:

Από τον πίνακα ιδιοτήτων συναρτήσει της πίεσης κορεσμένου μίγματος νερού – ατμού για πίεση 150 kPa, βρίσκουμε:

- θερμοκρασία: T_{sat} = 111,35°C
- ειδικός όγκος κορεσμένου υγρού: $v_f = 0.001053 \text{ m}^3/\text{kg}$
- ειδικός όγκος κορεσμένου ατμού: $v_g = 1,1594 \text{ m}^3/\text{kg}$
- ειδική ενθαλπία κορεσμένου υγρού: $h_f = 467,13 \text{ kJ/kg}$
- ειδική ενθαλπία κορεσμένου ατμού: $h_g = 2.693,1 \text{ kJ/kg}$.

Παράδειγμα 1: ιδιότητες υγρού ατμού

Να υπολογιστούν η θερμοκρασία, ο ειδικός όγκος και η ειδική ενθαλπία υγρού ατμού περιεκτικότητας σε υδρατμούς 20%. Η πίεση του μίγματος είναι 150 kPa.

Λύση:

Ο ειδικός όγκος υπολογίζεται ως εξής:

$$u = (1-x) \cdot u_f + x \cdot u_g \Leftrightarrow u = (1-0,20) \cdot 0,001053 \frac{m^3}{kg} + 0,20 \cdot 1,1594 \frac{m^3}{kg} \Leftrightarrow u = 0,2327 \frac{m^3}{kg}$$

Ομοίως, η ειδική ενθαλπία υπολογίζεται από τη σχέση:

$$h=(1-x)\cdot h_f + x\cdot h_g \Leftrightarrow \upsilon = (1-0,20)\cdot 467,13 \frac{kJ}{kg} + 0,20\cdot 2.693,1 \frac{kJ}{kg} \Leftrightarrow h=912,32 \frac{kJ}{kg}$$

Διάγραμμα p-h ψυκτικών μέσων

- Τα ψυκτικά μέσα είναι τα εργαζόμενα μέσα, δηλαδή τα σώματα μέσω των οποίων επιτελείται η συναλλαγή θερμότητας σε συσκευές με τις οποίες επιτυγχάνεται η ψύξη ενός χώρου, δηλαδή σε κλιματιστικές συσκευές, ψυγεία και ψύκτες.
- Στις συνθήκες που χρησιμοποιούνται τα ψυκτικά για την παραγωγή ψύξης δεν μπορούν να θεωρηθούν ως τέλεια αέρια. Συνεπώς, οι νόμοι των τελείων αερίων δεν μπορούν να χρησιμοποιηθούν για τον υπολογισμό των θερμοδυναμικών καταστάσεων από τις οποίες διέρχονται τα ψυκτικά μέσα κατά την εκτέλεση ενός ψυκτικού κύκλου. Οι ιδιότητες των ψυκτικών μέσων συναρτήσει κάποιων καταστατικών μεγεθών (π.χ. θερμοκρασία, πίεση) εντοπίζονται από σχετικούς πίνακες.

T _{sat} (°C)	Πίεση (kPa)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
		U_f	u_g	u_f	u_g	h_f	h_g	S _f	S_g
-103,3	0,00039	0,000628	35,496000	71,46	321,10	71,46	334,94	0,413	1,964
-100	0,00056	0,000632	25,193000	75,36	322,74	75,36	336,85	0,435	1,946
-90	0,00152	0,000643	9,769800	87,23	327,91	87,23	342,76	0,502	1,897
-80	0,00367	0,000654	4,268200	99,16	333,17	99,16	348,83	0,565	1,858
-70	0,00798	0,000666	2,059000	111,19	338,59	111,20	355,02	0,626	1,826
-60	0,01591	0,000678	1,079000	123,35	344,14	123,36	361,31	0,685	1,801
-50	0,02945	0,000691	0,606200	135,65	349,80	135,67	367,65	0,741	1,781
-40	0,05121	0,000705	0,361080	148,10	355,51	148,14	374,00	0,796	1,764
-30	0,08438	0,000720	0,225940	160,73	361,26	160,79	380,32	0,849	1,752
-28	0,09270	0,000723	0,206800	163,27	362,40	163,34	381,57	0,859	1,749
-26,07	0,10133	0,000726	0,190180	165,74	363,51	165,81	382,78	0,869	1,747
-26	0,10167	0,000726	0,189580	165,83	363,55	165,90	382,82	0,869	1,747
-24	0,11130	0,000730	0,174070	168,39	364,70	168,47	384,07	0,880	1,745

T _{sat} (°C)	Πίεση (kPa)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
		U_f	u_g	u_f	u_g	h_f	h_g	S_f	S_g
-22	0,12165	0,000733	0,160060	170,96	365,85	171,05	385,32	0,890	1,743
-20	0,13273	0,000736	0,147390	173,54	366,99	173,64	386,55	0,900	1,741
-18	0,14460	0,000740	0,135920	176,12	368,14	176,23	387,79	0,910	1,740
-16	0,15728	0,000743	0,125510	178,71	369,28	178,83	389,02	0,921	1,738
-14	0,17082	0,000746	0,116050	181,31	370,42	181,44	390,24	0,931	1,736
-12	0,18524	0,000750	0,107440	183,93	371,56	184,07	391,46	0,941	1,735
-10	0,20060	0,000754	0,099590	186,55	372,68	186,70	392,66	0,951	1,733
-8	0,21693	0,000757	0,092420	189,18	373,82	189,34	393,87	0,961	1,732
-6	0,23428	0,000761	0,085870	191,81	374,94	191,99	395,06	0,971	1,731
-4	0,25268	0,000765	0,079870	194,46	376,07	194,65	396,25	0,980	1,729
-2	0,27217	0,000768	0,074360	197,11	377,19	197,32	397,43	0,990	1,728
0	0,29280	0,000772	0,069310	199,77	378,31	200,00	398,60	1,000	1,727
2	0,31462	0,000776	0,064660	202,45	379,43	202,69	399,77	1,010	1,726

T _{sat} (°C)	Πίεση (kPa)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
		U_f	u_g	u_f	u_g	h_f	h_g	S _f	S_g
4	0,33766	0,000780	0,060390	205,14	380,53	205,40	400,92	1,020	1,725
6	0,36198	0,000784	0,056440	207,83	381,63	208,11	402,06	1,029	1,724
8	0,38761	0,000789	0,052800	210,53	382,73	210,84	403,20	1,039	1,723
10	0,41461	0,000793	0,049440	213,25	383,82	213,58	404,32	1,049	1,722
12	0,44301	0,000797	0,046330	215,98	384,91	216,33	405,43	1,058	1,721
14	0,47288	0,000802	0,043450	218,71	385,98	219,09	406,53	1,068	1,720
16	0,50425	0,000807	0,040780	221,46	387,05	221,87	407,61	1,077	1,720
18	0,53718	0,000811	0,038300	224,22	388,12	224,66	408,69	1,087	1,719
20	0,57171	0,000816	0,036000	227,00	389,17	227,47	409,75	1,096	1,718
22	0,60789	0,000821	0,033850	229,79	390,21	230,29	410,79	1,106	1,717
24	0,64578	0,000826	0,031860	232,59	391,25	233,12	411,82	1,115	1,717
26	0,68543	0,000831	0,030000	235,40	392,28	235,97	412,84	1,125	1,716
28	0,72688	0,000837	0,028260	238,23	393,30	238,84	413,84	1,134	1,715

T _{sat} (°C)	Πίεση (kPa)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
		U_f	U_g	u_f	u_g	h_f	h_g	S_f	Sg
30	0,77020	0,000842	0,026640	241,07	394,30	241,72	414,82	1,144	1,715
32	0,81543	0,000848	0,025130	243,93	395,29	244,62	415,78	1,153	1,714
34	0,86263	0,000854	0,023710	246,80	396,27	247,54	416,72	1,162	1,713
36	0,91185	0,000860	0,022380	249,70	397,24	250,48	417,65	1,172	1,712
38	0,96315	0,000866	0,021130	252,60	398,20	253,43	418,55	1,181	1,712
40	1,01660	0,000872	0,019970	255,52	399,13	256,41	419,43	1,191	1,711
42	1,07220	0,000879	0,018870	258,47	400,05	259,41	420,28	1,200	1,710
44	1,13010	0,000885	0,017840	261,43	400,95	262,43	421,11	1,209	1,710
46	1,19030	0,000892	0,016870	264,41	401,84	265,47	421,92	1,219	1,709
48	1,25290	0,000900	0,015950	267,40	402,71	268,53	422,69	1,228	1,708
50	1,31790	0,000907	0,015090	270,42	403,55	271,62	423,44	1,238	1,707
52	1,38540	0,000915	0,014280	273,47	404,37	274,74	424,15	1,247	1,706
54	1,45550	0,000923	0,013510	276,55	405,17	277,89	424,83	1,256	1,706

T _{sat} (°C)	Πίεση (kPa)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
		U_f	U_g	u_f	u_g	h_f	h_g	S_f	Sg
56	1,52820	0,000932	0,012780	279,64	405,94	281,06	425,47	1,266	1,705
58	1,60360	0,000941	0,012090	282,76	406,68	284,27	426,07	1,275	1,704
60	1,68180	0,000950	0,011440	285,90	407,39	287,50	426,63	1,285	1,702
62	1,76280	0,000960	0,010830	289,09	408,05	290,78	427,14	1,294	1,701
64	1,84670	0,000970	0,010240	292,30	408,70	294,09	427,61	1,304	1,700
66	1,93370	0,000980	0,009690	295,54	409,28	297,44	428,02	1,314	1,699
68	2,02370	0,000992	0,009160	298,83	409,82	300,84	428,36	1,323	1,697
70	2,11680	0,001004	0,008650	302,16	410,34	304,28	428,65	1,333	1,696
72	2,21320	0,001016	0,008170	305,53	410,78	307,78	428,86	1,343	1,694
74	2,31300	0,001030	0,007710	308,95	411,17	311,33	429,00	1,353	1,692
76	2,41610	0,001045	0,007270	312,42	411,47	314,94	429,04	1,363	1,690
78	2,52280	0,001060	0,006850	315,95	411,70	318,63	428,98	1,373	1,688
80	2,63320	0,001077	0,006450	319,55	411,83	322,39	428,81	1,384	1,685

T _{sat} (°C) Πίεση (kPa)	Πίεση (kPa)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
	U_f	U_g	u_f	u_g	h _f	h_g	S_f	Sg	
85	2,92580	0,001127	0,005500	328,92	411,67	332,22	427,76	1,410	1,677
90	3,24420	0,001194	0,004610	339,06	410,46	342,93	425,42	1,439	1,666
95	3,59120	0,001294	0,003740	350,60	407,24	355,25	420,67	1,472	1,649
100	3,97240	0,001536	0,002680	367,20	397,03	373,30	407,68	1,519	1,611
101,06	4,05930	0,001954	0,001950	381,71	381,72	389,64	389,64	1,562	1,562

Πίεση (kPa)	T _{sat} (°C)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
(Kra)		U_f	u_g	u_f	u_g	h_f	h_g	S _f	S_g
10	– 66,85	0,0007	1,6667	115,8	340,7	115,8	357,4	0,6484	1,8192
20	-66,85	0,0007	0,8703	128,3	346,5	128,3	363,9	0,7075	1,7945
30	- 49,66	0,0007	0,5956	136,5	350,3	136,5	368,2	0,7446	1,7813
40	- 49,66	0,0007	0,4550	142,8	353,2	142,8	371,4	0,7722	1,7725
50	-40,43	0,0007	0,3691	147,9	355,5	147,9	374,0	0,7944	1,7661
60	-40,43	0,0007	0,3111	152,2	357,5	152,2	376,2	0,8130	1,7611
70	-33,83	0,0007	0,2692	156,0	359,4	156,1	378,2	0,8292	1,7571
80	-33,83	0,0007	0,2375	159,4	360,9	159,5	379,9	0,8435	1,7538
90	-28,61	0,0007	0,2125	162,6	362,3	162,7	381,4	0,8564	1,7509
100	-28,61	0,0007	0,1925	165,5	363,6	165,6	382,8	0,8681	1,7484
101,325	-26,06	0,0007	0,1901	165,8	363,7	165,9	383,0	0,8696	1,7481
110	-26,06	0,0007	0,1759	168,1	364,7	168,2	384,1	0,8788	1,7462
120	-22,29	0,0007	0,1621	170,6	366,0	170,7	385,4	0,8888	1,7443

Πίεση (kPa) Τ _{sat}	T _{sat} (°C)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
(Ki a)		U_f	U_g	u_f	u_g	h_f	h_g	S_f	Sg
130	-22,29	0,0007	0,1503	173,0	367,0	173,1	386,5	0,8981	1,7426
140	-18,75	0,0007	0,1401	175,2	367,9	175,3	387,5	0,9068	1,7411
150	-18,75	0,0007	0,1312	177,3	368,8	177,4	388,5	0,9150	1,7397
160	-15,58	0,0007	0,1234	179,3	369,7	179,4	389,5	0,9228	1,7384
170	-15,58	0,0008	0,1166	181,2	370,6	181,3	390,4	0,9302	1,7372
180	-12,71	0,0008	0,1104	183,1	371,3	183,2	391,2	0,9372	1,7361
190	-12,71	0,0008	0,1048	184,8	372,1	184,9	392,0	0,9439	1,7351
200	-10,08	0,0008	0,0999	186,5	372,8	186,6	392,8	0,9503	1,7342
210	-10,08	0,0008	0,0953	188,0	373,6	188,2	393,6	0,9565	1,7333
220	−7,64	0,0008	0,0912	189,6	374,2	189,8	394,3	0,9624	1,7325
230	-7,64	0,0008	0,0874	191,1	374,9	191,3	395,0	0,9681	1,7317
240	- 5,37	0,0008	0,0839	192,6	375,5	192,8	395,6	0,9736	1,7310
250	- 5,37	0,0008	0,0807	194,1	376,1	194,3	396,3	0,9790	1,7303

Πίεση (kPa)	T _{sat} (°C)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
(Kra)		U_f	U_g	u_f	u_g	h_f	h_g	S _f	S_g
260	-3,24	0,0008	0,0777	195,5	376,7	195,7	396,9	0,9841	1,7297
270	-3,24	0,0008	0,0749	196,8	377,3	197,0	397,5	0,9891	1,7291
280	-1,24	0,0008	0,0724	198,1	377,8	198,3	398,1	0,9939	1,7285
290	-1,24	0,0008	0,0700	199,4	378,3	199,6	398,6	0,9986	1,7280
300	0,66	0,0008	0,0677	200,7	378,9	200,9	399,2	1,0032	1,7275
310	0,66	0,0008	0,0656	201,9	379,4	202,1	399,7	1,0077	1,7270
320	2,46	0,0008	0,0636	203,1	379,8	203,3	400,2	1,0120	1,7265
330	2,46	0,0008	0,0617	204,2	380,3	204,5	400,7	1,0162	1,7260
340	4,18	0,0008	0,0600	205,3	380,8	205,6	401,2	1,0204	1,7256
350	4,18	0,0008	0,0583	206,5	381,3	206,8	401,7	1,0244	1,7252
360	5,82	0,0008	0,0568	207,6	381,8	207,9	402,2	1,0283	1,7248
370	5,82	0,0008	0,0553	208,7	382,2	209,0	402,6	1,0322	1,7244
380	7,40	0,0008	0,0538	209,7	382,6	210,0	403,1	1,0360	1,7240

Πίεση (kPa) Τ _{sat} (^c	T _{sat} (°C)	Ειδικός όγ	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		ντροπία kgK)
(Ki a)		U_f	u_g	u_f	u_g	h_f	h_g	S _f	S_g
390	7,40	0,0008	0,0525	210,8	383,0	211,1	403,5	1,0397	1,7237
400	8,91	0,0008	0,0512	211,8	383,4	212,1	403,9	1,0433	1,7234
425	8,91	0,0008	0,0483	214,3	384,4	214,6	404,9	1,0520	1,7226
450	12,45	0,0008	0,0456	216,6	385,4	217,0	405,9	1,0603	1,7218
475	12,45	0,0008	0,0433	218,9	386,2	219,3	406,8	1,0683	1,7211
500	15,71	0,0008	0,0411	221,1	387,1	221,5	407,7	1,0759	1,7205
525	15,71	0,0008	0,0392	223,2	387,9	223,6	408,5	1,0833	1,7199
550	18,72	0,0008	0,0374	225,3	388,7	225,7	409,3	1,0904	1,7193
575	18,72	0,0008	0,0358	227,2	389,5	227,7	410,1	1,0972	1,7188
600	21,54	0,0008	0,0343	229,2	390,2	229,7	410,8	1,1038	1,7183
625	21,54	0,0008	0,0330	231,1	390,9	231,6	411,5	1,1102	1,7179
650	24,18	0,0008	0,0317	233,0	391,6	233,5	412,2	1,1163	1,7174
675	24,18	0,0008	0,0305	234,7	392,2	235,3	412,8	1,1224	1,7170

Πίεση (kPa)	T _{sat} (°C)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
(Kra)		U_f	U_g	u_f	u_g	h_f	h_g	S _f	S_g
700	26,68	0,0008	0,0294	236,4	392,9	237,0	413,5	1,1282	1,7166
725	26,68	0,0008	0,0284	238,2	393,5	238,8	414,1	1,1339	1,7162
750	29,04	0,0008	0,0274	239,9	394,1	240,5	414,6	1,1394	1,7158
800	29,04	0,0009	0,0257	243,0	395,2	243,7	415,7	1,1500	1,7150
850	33,44	0,0009	0,0241	246,2	396,3	246,9	416,8	1,1602	1,7143
900	33,44	0,0009	0,0227	249,1	397,3	249,9	417,7	1,1699	1,7137
950	37,46	0,0009	0,0215	252,0	398,2	252,8	418,6	1,1792	1,7130
1.000	37,46	0,0009	0,0203	254,7	399,2	255,6	419,5	1,1881	1,7124
1.100	42,93	0,0009	0,0184	260,0	400,8	261,0	421,0	1,2050	1,7112
1.200	42,93	0,0009	0,0167	265,1	402,3	266,2	422,4	1,2208	1,7100
1.300	49,42	0,0009	0,0153	269,8	403,7	271,0	423,6	1,2357	1,7088
1.400	49,42	0,0009	0,0141	274,4	404,9	275,7	424,7	1,2498	1,7076
1.500	55,20	0,0009	0,0131	278,7	406,1	280,1	425,7	1,2632	1,7063

Πίεση (kPa)	T _{sat} (°C) Ειδικός όγκος (m³/kg		νκος (m³/kg)	Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)	
(Kra)		U_f	U_g	u_f	u_g	h_f	h_g	S_f	Sg
1.600	55,20	0,0009	0,0122	283,0	407,1	284,5	426,5	1,2759	1,7050
1.700	60,43	0,0010	0,0113	287,0	408,0	288,6	427,2	1,2882	1,7037
1.800	60,43	0,0010	0,0106	290,9	408,8	292,6	427,8	1,2999	1,7022
1.900	65,22	0,0010	0,0099	294,7	409,5	296,6	428,3	1,3113	1,7007
2.000	65,22	0,0010	0,0093	298,4	410,2	300,4	428,8	1,3223	1,6991
2.200	71,72	0,0010	0,0083	305,6	411,2	307,8	429,3	1,3433	1,6956
2.400	71,72	0,0010	0,0074	312,4	411,9	314,9	429,5	1,3632	1,6917
2.600	79,41	0,0011	0,0066	319,0	412,2	321,8	429,3	1,3823	1,6872
2.800	79,41	0,0011	0,0059	325,5	412,2	328,6	428,7	1,4007	1,6819
3.000	86,22	0,0011	0,0053	331,9	411,8	335,3	427,6	1,4188	1,6758
3.200	86,22	0,0012	0,0047	338,2	410,9	342,0	426,0	1,4367	1,6685
3.400	92,32	0,0012	0,0042	344,6	409,3	348,8	423,6	1,4548	1,6596
3.600	92,32	0,0013	0,0037	351,3	407,0	356,0	420,3	1,4737	1,6483

Πίεση	T _{sat} (°C)	Ειδικός όγκος (m³/kg)		Ειδική εσωτερική ενέργεια (kJ/kg)		Ειδική ενθαλπία (kJ/kg)		Ειδική εντροπία (kJ/kgK)		
	(kPa)	-	U_f	U_g	u_f	u_g	h_f	h_{g}	S _f	S_g
3	.800	97,83	0,0014	0,0032	358,7	403,0	364,0	415,1	1,4947	1,6324
4	.000	97,83	0,0016	0,0025	369,3	394,2	375,6	404,4	1,5250	1,6022

Διάγραμμα p-h ψυκτικών μέσων

- Ένα ακόμα χρήσιμο εργαλείο για τον υπολογισμό των ιδιοτήτων του ψυκτικού μέσου κατά την εκτέλεση του ψυκτικού κύκλου είναι το διάγραμμα πίεσης ειδικής ενθαλπίας (p h) του ψυκτικού μέσου.
- Το βασικό πλεονέκτημα του διαγράμματος πίεσης ειδικής ενθαλπίας του ψυκτικού μέσου είναι το ότι τρεις από τις τέσσερις διεργασίες που εκτελούνται σε ένα ψυκτικό κύκλο αναπαριστώνται σε αυτό με ευθείες γραμμές.
- Οι θερμοδυναμικές ιδιότητες στις διάφορες καταστάσεις του ψυκτικού μέσου κατά την εκτέλεση του ψυκτικού κύκλου μπορούν να εντοπιστούν απευθείας από το διάγραμμα, αντί του πίνακα.

Διάγραμμα p-h ψυκτικού μέσου R-134a

Παράδειγμα 2: διάγραμμα ψυκτικού μέσου

Να υπολογιστεί η μεταβολή της ενθαλπίας κατά μία θερμοδυναμική μεταβολή κατά την οποία 20 kg ψυκτικού μέσου R134a με περιεκτικότητα σε αέρια φάση 85% θερμαίνονται στους 90 °C σε σταθερή πίεση 1 MPa.

<u>Λύση</u>:

Από τον πίνακα 3.6 με τις ιδιότητες κορεσμού του ψυκτικού μέσου R134a συναρτήσει της πίεσης διαβάζουμε την ειδική ενθαλπία για τις καταστάσεις κορεσμένου υγρού και αερίου και για πίεση 1 MPa (1.000 kPa):

- $h_f = 255,6 \text{ kJ/kg}$
- $h_g = 419,5 \text{ kJ/kg}$.

Η ειδική ενθαλπία της αρχικής κατάστασης υπολογίζεται με βάση την αρχική περιεκτικότητα του διφασικού μίγματος σε αέρια φάση:

$$h=(1-x)\cdot h_f + x\cdot h_g \Leftrightarrow \upsilon = (1-0.85)\cdot 255.6 \frac{kJ}{kg} + 0.85\cdot 419.5 \frac{kJ}{kg} \Leftrightarrow h=394.9 \frac{kJ}{kg}$$

Παράδειγμα 2: διάγραμμα ψυκτικού μέσου

Η τελική κατάσταση του ψυκτικού μέσου εντοπίζεται στο διάγραμμα πίεσης – ειδικής ενθαλπίας του ψυκτικού μέσου R134a από την τομή της ισοβαρούς του 1 MPa με την ισοθερμοκρασιακή των 90 °C.

Εντοπίζοντας το σημείο της τελικής κατάστασης διαβάζουμε στη συνέχεια την ειδική ενθαλπία αυτής ίση με 472 kJ/kg.

Παράδειγμα 2: διάγραμμα ψυκτικού μέσου

Η διαφορά της ενθαλπίας κατά τη θερμοδυναμική μεταβολή υπολογίζεται τελικά πολλαπλασιάζοντας τη διαφορά των ειδικών ενθαλπιών αρχικής και τελικής κατάστασης με τη συνολική μάζα του ψυκτικού μέσου:

$$\Delta H = \Delta h \cdot m \Leftrightarrow \Delta H = (h_2 - h_1) \cdot m \Leftrightarrow \Delta H = (472 - 394,9) \frac{kJ}{kg} \cdot 20 \text{ kg} \Leftrightarrow \Delta H = 1.542 \text{ kJ}$$

Πίνακες ιδιοτήτων υπέρθερμου ατμού

- Πρόκειται για ένα σύνολο μικρότερων πινάκων, ο κάθε ένας από τους οποίους αναφέρεται σε συγκεκριμένη πίεση.
- Για κάθε πίεση αναγράφεται στο ίδιο κελί και η θερμοκρασία κορεσμού.
- Στην πρώτη γραμμή κάθε πίνακα δίνονται οι τιμές για τον ειδικό όγκο, την ειδική εσωτερική ενέργεια, την ειδική ενθαλπία και την ειδική εντροπία για τον κορεσμένο ατμό.
- Στις επόμενες γραμμές δίνονται οι τιμές των ανωτέρω μεγεθών για διάφορες θερμοκρασίες.
- Θα πρέπει να σημειωθεί ότι:
 - ο υπέρθερμος ατμός, σε συγκεκριμένη πίεση, βρίσκεται πάντα σε υψηλότερη θερμοκρασία από τον κορεσμένο ατμό, στην ίδια πίεση
 - ο υπέρθερμος ατμός, σε συγκεκριμένη θερμοκρασία, βρίσκεται πάντα σε χαμηλότερη πίεση από τον κορεσμένο ατμό, στην ίδια θερμοκρασία.
- Τέλος, καθώς οι ιδιότητες του υπέρθερμου ατμού δίνονται συναρτήσει πίεσης και θερμοκρασίας, ενδέχεται να χρειαστούν 3 γραμμικές παρεμβολές για ακριβή υπολογισμό.

P=4.0 MPa (250.4°C)								
Θερμοκρασία (°C)	Ειδικός όγκος (m³/kg)	Ειδική εσωτερική ενέργεια (kJ/kg)	Ειδική ενθαλπία (kJ/kg)	Ειδική εντροπία ((kJ/kgK)				
Τιμές κορεσμού	0.0498	2601.7	2800.8	6.070				
275	0.0546	2668.9	2887.3	6.231				
300	0.0589	2726.2	2961.7	6.364				
350	0.0665	2827.4	3093.3	6.584				
400	0.0734	2920.7	3214.5	6.771				
450	0.0800	3011.0	3331.2	6.939				
500	0.0864	3100.3	3446.0	7.092				
600	0.0989	3279.4	3674.9	7.371				
700	0.1110	3462.4	3906.3	7.621				
800	0.1229	3650.6	4142.3	7.852				
900	0.1348	3844.8	4383.9	8.067				
1000	0.1465	4045.1	4631.2	8.270				

http://ouopentextbooks.org/thermodynamics/superheated-vapor-tables/

P=8.0 MPa (295.0°C)								
Θερμοκρασία (°C)	Ειδικός όγκος (m³/kg)	Ειδική εσωτερική ενέργεια (kJ/kg)	Ειδική ενθαλπία (kJ/kg)	Ειδική εντροπία ((kJ/kgK)				
Τιμές κορεσμού	0.0235	2570.5	2758.7	5.745				
300	0.0243	2592.3	2786.5	5.794				
350	0.0300	2748.3	2988.1	6.132				
400	0.0343	2864.6	3139.4	6.366				
450	0.0382	2967.8	3273.3	6.558				
500	0.0418	3065.4	3399.5	6.727				
600	0.0485	3254.7	3642.4	7.022				
700	0.0548	3443.6	3882.2	7.282				
800	0.0610	3635.7	4123.8	7.518				
900	0.0671	3832.6	4369.3	7.737				
1000	0.0731	4035.0	4619.6	7.942				

http://ouopentextbooks.org/thermodynamics/superheated-vapor-tables/

P=17.5 MPa (354.7°C)								
Θερμοκρασία (°C)	Ειδικός όγκος (m³/kg)	Ειδική εσωτερική ενέργεια (kJ/kg)	Ειδική ενθαλπία (kJ/kg)	Ειδική εντροπία ((kJ/kgK)				
Τιμές κορεσμού	0.00793	2390.5	2529.3	5.143				
375	0.01056	2567.5	2752.3	5.494				
400	0.01246	2684.3	2902.4	5.721				
450	0.01520	2845.4	3111.4	6.021				
500	0.01739	2972.4	3276.7	6.242				
600	0.02107	3192.5	3561.3	6.589				
700	0.02434	3397.5	3823.5	6.873				
800	0.02741	3599.7	4079.3	7.124				
900	0.03035	3803.4	4334.5	7.351				
1000	0.03322	4010.7	4592.0	7.562				

P=20.0 MPa (365.8°C)								
Θερμοκρασία (°C)	Ειδικός όγκος (m³/kg)	Ειδική εσωτερική ενέργεια (kJ/kg)	Ειδική ενθαλπία (kJ/kg)	Ειδική εντροπία ((kJ/kgK)				
Τιμές κορεσμού	0.00587	2295.0	2412.3	4.931				
375	0.00768	2449.1	2602.6	5.228				
400	0.00995	2617.9	2816.9	5.553				
450	0.01272	2807.2	3061.7	5.904				
500	0.01479	2945.3	3241.2	6.145				
600	0.01819	3175.3	3539.0	6.508				
700	0.02113	3385.1	3807.8	6.799				
800	0.02387	3590.1	4067.5	7.053				
900	0.02648	3795.7	4325.4	7.283				
1000	0.02902	4004.3	4584.7	7.495				

Πίνακες ιδιοτήτων υπέρθερμου ατμού

- Για παράδειγμα, έστω ότι θέλουμε να υπολογίσουμε την ειδική ενθαλπία του υπέρθερμου ατμού στους 550 °C και για πίεση 18,5 MPa.
- Από τους πίνακες βλέπουμε ότι έχουμε τιμές για πιέσεις στα 17,5 MPa και 20 MPa και για θερμοκρασίες στους 500 °C και στους 600 °C.
- Για τον υπολογισμό της ζητούμενης ειδικής ενθαλπίας, καταρχήν υπολογίζουμε την ειδική ενθαλπία στους 550 °C και για τις πιέσεις των 17,5 MPa και 20 MPa.
- Η ειδική ενθαλπία βαίνει αύξουσα συναρτήσει της θερμοκρασίας, οπότε:

για την πίεση των 17,5 MPa:

$$h_g = h_{g1} + \frac{T - T_1}{T_2 - T_1} \cdot (h_{g2} - h_{g1}) \Rightarrow h_g = 3.276, 7 \frac{kJ}{kg} + \frac{(550 - 500)K}{(600 - 500)K} \cdot (3.561, 3 - 3.276, 7) \frac{kJ}{kg}$$

$$\Leftrightarrow h_g = 3.419 \frac{kJ}{kg}$$

Πίνακες ιδιοτήτων υπέρθερμου ατμού

για την πίεση των 20 MPa:

$$h_g = h_{g1} + \frac{T - T_1}{T_2 - T_1} \cdot (h_{g2} - h_{g1}) \Rightarrow h_g = 3.241, 2 \frac{kJ}{kg} + \frac{(550 - 500)K}{(600 - 500)K} \cdot (3.539 - 3.241, 2) \frac{kJ}{kg}$$

$$\Leftrightarrow h_g = 3.390, 1 \frac{kJ}{kg}$$

 Τέλος, εκτελούμε και μία τρίτη γραμμική παρεμβολή συναρτήσει της πίεσης και για τις δύο ειδικές ενθαλπίες που υπολογίσαμε πριν για τους 550 °C. Παρατηρούμε ότι η ειδική ενθαλπία βαίνει φθίνουσα συναρτήσει της πίεσης, οπότε:

$$\begin{aligned} h_g &= h_{g1} - \frac{p - p_1}{p_2 - p_1} \cdot \left(h_{g1} - h_{g2}\right) \Rightarrow h_g = 3.419 \frac{kJ}{kg} - \frac{(18,5 - 17,5)MPa}{(20 - 17,5)MPa} \cdot (3.419 - 3.390,1) \frac{kJ}{kg} \\ &\Leftrightarrow h_g = 3.407, 4 \frac{kJ}{kg} \end{aligned}$$

Παράδειγμα 3: υπέρθερμος ατμός

Ένας λέβητας που διαθέτει υπερθερμαντήρα παράγει ατμό πίεσης 1,5·10⁶ Nt/m² με βαθμό υπερθέρμανσης 76,7 °C. Να βρεθεί η ειδική ενθαλπία του ατμού.

Λύση:

Ο βαθμός υπερθέρμανσης που δίνεται στην εκφώνηση σημαίνει ότι ο ατμός υπερθερμαίνεται κατά 76,7 °C υψηλότερη θερμοκρασία από τη θερμοκρασία κορεσμού του στην πίεση υπό την οποία βρίσκεται, η οποία δίνεται 1,5·10⁶ Nt/m² ή 1,5 MPa.

Οι ιδιότητες του υπέρθερμου ατμού δίνονται στους πίνακες των δύο επόμενων διαφανειών για πιέσεις 1,4 MPa και 1,6 MPa.

Πίνακες ιδιοτήτων υπέρθερμου ατμού

WKO.	WELOTEIAKO 77	JAETHE!
ENAH		OIMH
	-37 KG	

P=1.4 MPa (195.0 °C)								
Θερμοκρασία (°C)	Ειδικός όγκος (m³/kg)	Ειδική εσωτερική ενέργεια (kJ/kg)	Ειδική ενθαλπία (kJ/kg)	Ειδική εντροπία ((kJ/kgK)				
Τιμές κορεσμού	0.1408	2591.8	2788.8	6.468				
200	0.1430	2602.7	2803.0	6.498				
250	0.1636	2698.9	2927.9	6.749				
300	0.1823	2785.7	3040.9	6.955				
350	0.2003	2869.7	3150.1	7.138				
400	0.2178	2953.1	3258.1	7.305				
450	0.2351	3037.0	3366.1	7.459				
500	0.2522	3121.8	3474.8	7.605				
600	0.2860	3295.1	3695.4	7.873				
700	0.3195	3474.4	3921.7	8.118				
800	0.3529	3660.2	4154.3	8.346				
900	0.3861	3852.7	4393.3	8.559				
1000	0.4193	4051.7	4638.8	8.759				

Πίνακες ιδιοτήτων υπέρθερμου ατμού

P=1.6 MPa (201.4°C)								
Θερμοκρασία (°C)	Ειδικός όγκος (m³/kg)	Ειδική εσωτερική ενέργεια (kJ/kg)	Ειδική ενθαλπία (kJ/kg)	Ειδική εντροπία ((kJ/kgK)				
Τιμές κορεσμού	0.1237	2594.8	2792.8	6.420				
225	0.1329	2645.1	2857.8	6.554				
250	0.1419	2692.9	2919.9	6.675				
300	0.1587	2781.6	3035.4	6.886				
350	0.1746	2866.6	3146.0	7.071				
400	0.1901	2950.7	3254.9	7.239				
450	0.2053	3035.0	3363.5	7.395				
500	0.2203	3120.1	3472.6	7.541				
600	0.2500	3293.9	3693.9	7.810				
700	0.2794	3473.5	3920.5	8.056				
800	0.3087	3659.5	4153.3	8.283				
900	0.3378	3852.1	4392.6	8.497				
1000	0.3669	4051.2	4638.2	8.697				

Παράδειγμα 3: υπέρθερμος ατμός

- Στην πίεση των 1,4 MPa η θερμοκρασία κορεσμού δίνεται 195 °C, ενώ στην πίεση των 1,6 MPa η θερμοκρασία κορεσμού δίνεται 201,4 °C.
- Για την πίεση των 1,5 MPa η θερμοκρασία κορεσμού μπορεί να ληφθεί ίση με το μέσο όρο των ανωτέρω θερμοκρασιών (καθώς τα 1,5 MPa είναι ακριβώς ανάμεσα στο 1,4 MPa και στα 1,6 MPa), άρα θα είναι ίση με 198,2 °C.
- Με βάση τα ανωτέρω, η θερμοκρασία του υπέρθερμου ατμού, με βάση την υπερθέρμανση κατά 76,7 °C, υπολογίζεται ίση με 274,9 °C.
- Για τον υπολογισμό της ειδικής ενθαλπίας του μέσου θα χρειαστεί και πάλι να γίνει τριπλή γραμμική παρεμβολή.
- Από τους πίνακες βλέπουμε ότι έχουμε τιμές για πιέσεις στα 1,4 MPa και 1,6 MPa και για θερμοκρασίες στους 250 °C και στους 300 °C.
- Καταρχήν υπολογίζονται οι ειδικές ενθαλπίες για τους 274,9 °C και για τις πιέσεις των 1,4 MPa και 1,6 MPa.

Παράδειγμα 3: υπέρθερμος ατμός

• Η ειδική ενθαλπία βαίνει αύξουσα συναρτήσει της θερμοκρασίας, οπότε:

για την πίεση των 1,4 MPa:

$$h_g = h_{g1} + \frac{T - T_1}{T_2 - T_1} \cdot (h_{g2} - h_{g1}) \Rightarrow h_g = 2.927, 9 \frac{kJ}{kg} + \frac{(274, 9 - 250)K}{(300 - 250)K} \cdot (3.040, 9 - 2.927, 9) \frac{kJ}{kg}$$

$$\Leftrightarrow h_g = 2.984, 2 \frac{kJ}{kg}$$

για την πίεση των 1,6 MPa:

$$h_g = h_{g1} + \frac{T - T_1}{T_2 - T_1} \cdot (h_{g2} - h_{g1}) \Rightarrow h_g = 2.919, 9 \frac{kJ}{kg} + \frac{(274, 9 - 250)K}{(300 - 250)K} \cdot (3.035, 4 - 2.919, 9) \frac{kJ}{kg}$$

$$\Leftrightarrow h_g = 2.977, 4 \frac{kJ}{kg}$$

Πίνακες ιδιοτήτων υπέρθερμου ατμού

• Τέλος, εκτελούμε και μία τρίτη γραμμική παρεμβολή συναρτήσει της πίεσης και για τις δύο ειδικές ενθαλπίες που υπολογίσαμε πριν για τους 274,9 °C. Παρατηρούμε ότι η ειδική ενθαλπία βαίνει φθίνουσα συναρτήσει της πίεσης, οπότε:

$$h_g = h_{g1} - \frac{p - p_1}{p_2 - p_1} \cdot (h_{g1} - h_{g2}) \Rightarrow$$

$$h_g = 2.984, 2 \frac{kJ}{kg} - \frac{(274,9-250)MPa}{(300-250)MPa} \cdot (2.984,2-2.977,4) \frac{kJ}{kg} \Leftrightarrow h_g = 2.980, 8 \frac{kJ}{kg}$$

Πίνακες ιδιοτήτων υπόψυκτου νερού

- Πρόκειται για ένα σύνολο μικρότερων πινάκων, ο κάθε ένας από τους οποίους αναφέρεται σε συγκεκριμένη πίεση.
- Στην πρώτη στήλη κάθε πίνακα δίνονται οι τιμές για τον ειδικό όγκο, την ειδική εσωτερική ενέργεια, την ειδική ενθαλπία και την ειδική εντροπία για τον κορεσμένο ατμό.
- Στις επόμενες στήλες δίνονται οι τιμές των ανωτέρω μεγεθών για διάφορες θερμοκρασίες.
- Οι ιδιότητες του υπόψυκτου νερού είναι κατά προσέγγιση ίδιες με αυτές του κορεσμένου νερού στην ίδια θερμοκρασία και πίεση.

Πίνακες ιδιοτήτων υπόψυκτου νερού

P		Temperature, T (°C)									
(MPa)		0	20	40	60	80	100	120	140	160	180
5	$10^3 v (m^3/kg)$	0.9977	0.9996	1.0057	1.0149	1.0267	1.0410	1.0576	1.0769	1.0988	1.1240
	u (kJ/kg)	0.0441	83.609	166.92	250.29	333.82	417.65	501.91	586.80	672.55	759.47
1 [h (kJ/kg)	5.030	88.610	171.95	255.36	338.96	422.85	507.19	592.18	678.04	765.09
	s (kJ/kg-K)	0.00014	0.29543	0.57046	0.82865	1.0723	1.3034	1.5236	1.7344	1.9374	2.1338
10	$10^3 v (\text{m}^3/\text{kg})$	0.9952	0.9973	1.0035	1.0127	1.0244	1.0385	1.0549	1.0738	1.0954	1.1200
	u (kJ/kg)	0.1171	83.308	166.33	249.43	332.69	416.23	500.18	584.72	670.06	756.48
	h (kJ/kg)	10.069	93.281	176.37	259.55	342.94	426.62	510.73	595.45	681.01	767.68
	s (kJ/kg-K)	0.00034	0.29435	0.56852	0.82602	1.0691	1.2996	1.5191	1.7293	1.9316	2.1272
20	$10^3 v (m^3/kg)$	0.9904	0.9929	0.9992	1.0084	1.0199	1.0337	1.0496	1.0679	1.0886	1.1122
	u (kJ/kg)	0.2257	82.708	165.17	247.75	330.50	413.50	496.85	580.71	665.28	750.78
	$h\left(\text{kJ/kg}\right)$	20.033	102.57	185.16	267.92	350.90	434.17	517.84	602.07	687.05	773.02
	s (kJ/kg-K)	0.00047	0.29208	0.56461	0.8208	1.0627	1.2920	1.5105	1.7194	1.9203	2.1143
40	$10^3 v (\text{m}^3/\text{kg})$	0.9811	0.9845	0.9911	1.0001	1.0113	1.0245	1.0397	1.0569	1.0762	1.0980
	u (kJ/kg)	0.3078	81.520	162.96	244.58	326.37	408.36	490.61	573.26	656.43	740.32
	h (kJ/kg)	39.553	120.90	202.60	284.59	366.82	449.34	532.20	615.53	699.48	784.24
	s (kJ/kg-K)	-0.00024	0.28716	0.55676	0.81054	1.0503	1.2775	1.4938	1.7006	1.8990	2.0903
60	$10^3 v (\text{m}^3/\text{kg})$	0.9725	0.9765	0.9833	0.9923	1.0032	1.0159	1.0304	1.0467	1.0649	1.0852
	u (kJ/kg)	0.2357	80.345	160.86	241.62	322.54	403.61	484.88	566.44	648.40	730.90
	h (kJ/kg)	58.584	138.94	219.87	301.16	382.73	464.56	546.70	629.24	712.30	796.01
	s (kJ/kg-K)	-0.00208	0.2818	0.54885	0.80049	1.0383	1.2637	1.4781	1.6829	1.8792	2.0681
80	$10^3 v (m^3/kg)$	0.9643	0.9690	0.9760	0.9849	0.9956	1.0078	1.0217	1.0372	1.0545	1.0735
	u (kJ/kg)	0.03710	79.182	158.88	238.85	318.96	399.20	479.57	560.16	641.05	722.35
	h (kJ/kg)	77.184	156.70	236.96	317.64	398.61	479.83	561.31	643.14	725.41	808.23
	s (kJ/kg-K)	-0.00489	0.27604	0.54087	0.79062	1.0266	1.2503	1.4631	1.6661	1.8605	2.0474
100	$10^3 v (\text{m}^3/\text{kg})$	0.9567	0.9619	0.9691	0.9779	0.9883	1.0002	1.0136	1.0284	1.0448	1.0628
[u (kJ/kg)	-0.2637	78.031	156.99	236.24	315.62	395.09	474.65	554.36	634.29	714.52
	h (kJ/kg)	95.40	174.22	253.90	334.03	414.46	495.11	576.01	657.20	738.77	820.80
	s (kJ/kg-K)	-0.00851	0.26992	0.53284	0.7809	1.0153	1.2375	1.4487	1.6501	1.8429	2.0280

Να υπολογιστεί η ενθαλπία κορεσμένου ατμού μάζας 20 kg και πίεσης 60 kPa.

<u>Λύση</u>:

Αφού μας δίνεται η πίεση, χρησιμοποιούμε τον αντίστοιχο πίνακα ιδιοτήτων κορεσμένου νερού – ατμού ως προς την πίεση.

Στον πίνακα αυτό δίνονται οι ιδιότητες κορεσμένου νερού – ατμού για πιέσεις 50 kPa και 75 kPa. Συνεπώς θα πρέπει να γίνει γραμμική παρεμβολή για την πίεση των 60 kPa.

Η ειδική ενθαλπία του κορεσμένου ατμού για τις πιέσεις των 50 kPa και των 75 kPa είναι $h_{g1} = 2.645,2$ kJ/kg και $h_{g2} = 2.662,4$ kJ/kg αντίστοιχα. Επίσης παρατηρούμε ότι η ειδική ενθαλπία βαίνει αύξουσα συναρτήσει της θερμοκρασίας. Συνεπώς, εφαρμόζοντας την αντίστοιχη σχέση γραμμικής παρεμβολής, έχουμε:

αντίστοιχη σχέση γραμμικής παρεμβολής, έχουμε:
$$h_g = h_{g1} + \frac{p - p_1}{p_2 - p_1} \cdot \left(h_{g2} - h_{g1}\right) \Rightarrow h_g = 2.645, 2\frac{kJ}{kg} + \frac{(60 - 50)MPa}{(75 - 50)MPa} \cdot (2.662, 4 - 2.645, 2)\frac{kJ}{kg}$$

$$\Leftrightarrow h_g = 2.652, 1\frac{kJ}{kg}$$

Παράδειγμα 4: ιδιότητες κορεσμένου ατμού

Να υπολογιστεί η ενθαλπία κορεσμένου ατμού μάζας 20 kg και πίεσης 60 kPa.

<u>Λύση</u>:

Η ολική ενθαλπία του ατμού προκύπτει ως το γινόμενο της ειδικής ενθαλπίας επί τη μάζα του ατμού:

 $H = h \cdot m \Rightarrow H = 2.652,1 \text{ kJ/kg} \cdot 20 \text{ kg} \Leftrightarrow H = 52.502,0 \text{ kJ}$

Παράδειγμα 5: ιδιότητες κορεσμένου ατμού

Ένας μικρός βοηθητικός λέβητας παράγει κορεσμένο ατμό πίεσης 1,28 bar. Ποια είναι η ειδική ενθαλπία του ατμού;

<u>Λύση</u>:

Αφού μας δίνεται η πίεση, χρησιμοποιούμε τον αντίστοιχο πίνακα ιδιοτήτων κορεσμένου νερού – ατμού ως προς την πίεση.

Τα 1,28 bar είναι ίσα με 128.000 Pa ή 128 kPa.

Στον πίνακα ιδιοτήτων ατμού συναρτήσει της πίεσης δίνονται οι τιμές για πιέσεις στα 125 kPa και στα 150 kPa. Συνεπώς θα πρέπει να γίνει γραμμική παρεμβολή για τα 128 kPa.

Η ειδική ενθαλπία του κορεσμένου ατμού για τις πιέσεις των 125 kPa και των 150 kPa είναι $h_{g1} = 2.684,9$ kJ/kg και $h_{g2} = 2.693,1$ kJ/kg αντίστοιχα. Επίσης παρατηρούμε ότι η ειδική ενθαλπία βαίνει αύξουσα συναρτήσει της θερμοκρασίας. Συνεπώς, εφαρμόζοντας την αντίστοιχη σχέση γραμμικής παρεμβολής, έχουμε:

Παράδειγμα 5: ιδιότητες κορεσμένου ατμού

$$\begin{aligned} h_g &= h_{g1} + \frac{p - p_1}{p_2 - p_1} \cdot \left(h_{g2} - h_{g1}\right) \Rightarrow h_g = 2.684, 9 \frac{kJ}{kg} + \frac{(128 - 125)MPa}{(150 - 125)MPa} \cdot (2.693, 1 - 2.684, 9) \frac{kJ}{kg} \\ & \Leftrightarrow h_g = 2.685, 9 \frac{kJ}{kg} \end{aligned}$$

Υγρός ατμός

- Όταν το νερό βρίσκεται στη μεταβατική περιοχή ανάμεσα στο κορεσμένο υγρό και στον κορεσμένο ατμό, τότε λέμε ότι βρίσκεται στη διφασική περιοχή, δηλαδή συνυπάρχουν ταυτόχρονα και οι δύο φάσεις, υγρή και αέρια του μέσου. Το νερό τότε ονομάζεται και «υγρός ατμός».
- Για να βρούμε τις ιδιότητες του μέσου στη διφασική περιοχή χρησιμοποιούμε το βαθμό ξηρότητας του ατμού x.
- Υπενθυμίζεται ότι ο βαθμός ξηρότητας του μίγματος ορίζεται ως ο λόγος της μάζας ατμού προς τη συνολική μάζα του μίγματος:

$$x = \frac{m_g}{m_g + m_f}$$

Υγρός ατμός

 Η ενθαλπία σε ένα σημείο Μ εντός της διφασικής περιοχής προκύπτει από τον ισολογισμό ισχύος κατά την ανάμιξη της υγρής και της αέριας φάσης του μέσου, σύμφωνα με τον οποίο:

$$\begin{array}{l} m_{M} \cdot h_{M} = m_{g} \cdot h_{g} + m_{f} \cdot h_{f} \Leftrightarrow h_{M} = \frac{m_{g} \cdot h_{g} + m_{f} \cdot h_{f}}{m_{M}} \Leftrightarrow h_{M} = \frac{m_{g}}{m_{M}} \cdot h_{g} + \frac{m_{f}}{m_{M}} \cdot h_{f} \\ \Leftrightarrow h_{M} = x \cdot h_{g} + (1 - x) \cdot h_{f} \end{array}$$

όπου η συνολική μάζα του μίγματος ισούται με:

$$m_M = m_g + m_f$$

• Με την ίδια σχέση υπολογίζονται και τα υπόλοιπα μεγέθη για τη διφασική περιοχή του νερού.

Παράδειγμα 6: ξηρός ατμός

Να υπολογιστεί η ειδική εσωτερική ενέργεια, η ειδική ενθαλπία, ο ειδικός όγκος και η ειδική εντροπία υγρού ατμού πίεσης 7 bar και βαθμού ξηρότητας 50%.

<u>Λύση</u>:

Από τον πίνακα ιδιοτήτων κορεσμένου υγρού – ατμού συναρτήσει της πίεσης, για τα 700 kPa (7 bar), βρίσκουμε:

$$v_f = 0.001108 \text{ m}^3/\text{kg}$$
 $h_f = 697.00 \text{ kJ/kg}$ $v_g = 0.27278 \text{ m}^3/\text{kg}$ $h_g = 2.762.8 \text{ kJ/kg}$

$$u_f = 696,23 \text{ kJ/kg}$$
 $s_f = 1,9918 \text{ kJ/kgK}$ $u_g = 2.571,8 \text{ kJ/kg}$ $s_g = 6,7071 \text{ kJ/kgK}$

Παράδειγμα 6: ξηρός ατμός

Εφαρμόζουμε την ανωτέρω σχέση διαδοχικά για όλα τα μεγέθη συναρτήσει του βαθμού ξηρότητας και βρίσκουμε:

$$\upsilon_{M} = x \cdot \upsilon_{g} + (1 - x) \cdot \upsilon_{f} \Rightarrow \upsilon_{M} = 0,5 \cdot 0,27278 \frac{m^{3}}{kg} + (1 - 0,5) \cdot 0,001108 \frac{m^{3}}{kg} \Leftrightarrow \upsilon_{M} = 0,136944 \frac{m^{3}}{kg}$$

$$u_{M} = x \cdot u_{g} + (1-x) \cdot u_{f} \Rightarrow u_{M} = 0.5 \cdot 2.571.8 \frac{kJ}{kg} + (1-0.5) \cdot 696.23 \frac{kJ}{kg} \Leftrightarrow u_{M} = 1.634.015 \frac{kJ}{kg}$$

$$h_{M} = x \cdot h_{g} + (1-x) \cdot h_{f} \Rightarrow h_{M} = 0.5 \cdot 2.762.8 \frac{kJ}{kg} + (1-0.5) \cdot 697.00 \frac{kJ}{kg} \Leftrightarrow h_{M} = 1.729.9 \frac{kJ}{kg}$$

$$s_{M} = x \cdot s_{g} + (1-x) \cdot s_{f} \Rightarrow h_{M} = 0.5 \cdot 6.7071 \frac{kJ}{kg \cdot K} + (1-0.5) \cdot 1.9918 \frac{kJ}{kg \cdot K} \Leftrightarrow s_{M} = 4.34945 \frac{kJ}{kg \cdot K}$$

Σας ευχαριστώ πολύ για την προσοχή σας

Ελληνικό Μεσογειακό Πανεπιστήμιο Τμήμα Μηχανολόγων Μηχανικών

Δημήτρης Αλ. Κατσαπρακάκης