```
In [2]:
        !pip install seaborn
        Requirement already satisfied: seaborn in c:\users\dell\anaconda3\lib\site-package
        s (0.12.2)
        Requirement already satisfied: numpy!=1.24.0,>=1.17 in c:\users\dell\anaconda3\lib
        \site-packages (from seaborn) (1.24.3)
        Requirement already satisfied: pandas>=0.25 in c:\users\dell\anaconda3\lib\site-pa
        ckages (from seaborn) (1.5.3)
        Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in c:\users\dell\anaconda3
        \lib\site-packages (from seaborn) (3.7.1)
        Requirement already satisfied: contourpy>=1.0.1 in c:\users\dell\anaconda3\lib\sit
        e-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.0.5)
        Requirement already satisfied: cycler>=0.10 in c:\users\dell\anaconda3\lib\site-pa
        ckages (from matplotlib!=3.6.1,>=3.1->seaborn) (0.11.0)
        Requirement already satisfied: fonttools>=4.22.0 in c:\users\dell\anaconda3\lib\si
        te-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (4.25.0)
        Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\dell\anaconda3\lib\si
        te-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.4.4)
        Requirement already satisfied: packaging>=20.0 in c:\users\dell\anaconda3\lib\site
        -packages (from matplotlib!=3.6.1,>=3.1->seaborn) (23.0)
        Requirement already satisfied: pillow>=6.2.0 in c:\users\dell\anaconda3\lib\site-p
        ackages (from matplotlib!=3.6.1,>=3.1->seaborn) (9.4.0)
        Requirement already satisfied: pyparsing>=2.3.1 in c:\users\dell\anaconda3\lib\sit
        e-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.0.9)
```

Requirement already satisfied: python-dateutil>=2.7 in c:\users\dell\anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\dell\anaconda3\lib\site-packages (from pandas>=0.25->seaborn) (2022.7)

Requirement already satisfied: six>=1.5 in c:\users\dell\anaconda3\lib\site-packag es (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.0)

importing seaborn library

Out[6]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	CO
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	ОК
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	not_distracted	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

In [8]: df.head(5)

12.0

Out[8]: total speeding alcohol not_distracted no_previous ins_premium ins_losses abbrev 0 18.8 7.332 5.640 18.048 15.040 784.55 145.08 ΑL 18.1 7.421 4.525 16.290 17.014 1053.48 133.93 ΑK 2 18.6 6.510 5.208 15.624 17.856 899.47 110.35 ΑZ 4.032 22.4 5.824 21.056 21.280 827.34 142.39 AR

10.920

10.680

878.41

 $\mathsf{C}\mathsf{A}$

165.63

Data Visualization

4.200

3.360

1)scatterplot

it is also used with several semantic groupings which can help to understand well in graph against categorical data, it can be drawn a two-dimensional graph

```
In [10]: sns.scatterplot(x="total",y='speeding',data=df)
Out[10]: <Axes: xlabel='total', ylabel='speeding'>
```



```
In [11]: sns.scatterplot(x="total",y='alcohol',data=df)
```

Out[11]: <Axes: xlabel='total', ylabel='alcohol'>

2)lineplot

Lineplot is a plot used to draw a relationship between x and y with the possibility of several semantic groupings.

```
In [12]: sns.lineplot(x="speeding",y="total",data=df,ci=None)

C:\Users\DELL\AppData\Local\Temp\ipykernel_7984\899624076.py:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.lineplot(x="speeding",y="total",data=df,ci=None)

<Axes: xlabel='speeding', ylabel='total'>
```


3)replot

This function provides access to several different axes-level functions that show the relationship between two variables with semantic mappings of subsets.

```
In [14]: sns.relplot(x="total",y="speeding",data=df,hue="abbrev")
Out[14]: <seaborn.axisgrid.FacetGrid at 0x1ddc856c490>
```



```
In [15]: sns.relplot(x="total",y="speeding",data=df)
Out[15]: <seaborn.axisgrid.FacetGrid at 0x1ddc8821b90>
```


4)Barplot

Barplot represents an estimate of central tendency for a numeric variable with the height of each rectangle and provides some indication of the uncertainty around that estimate using error bars.

```
In [17]: sns.barplot(data=df,x="speeding",y="total",ci=None)

C:\Users\DELL\AppData\Local\Temp\ipykernel_7984\1368591.py:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(data=df,x="speeding",y="total",ci=None)

<Axes: xlabel='speeding', ylabel='total'>
```



```
In [18]: sns.barplot(data=df,x="alcohol",y="speeding")
Out[18]: <Axes: xlabel='alcohol', ylabel='speeding'>
```


5)Countplot

Count plot used to show the counts of observations in each categorical bin using bars.

```
In [21]: sns.countplot(x="total",data=df)
```

Out[21]: <Axes: xlabel='total', ylabel='count'>

6)Jointplot

The joint plot is a way of understanding the relationship between two variables and the distribution of individuals of each variable.

```
In [22]: sns.jointplot(x="total",y="ins_premium",data=df)
Out[22]: <seaborn.axisgrid.JointGrid at 0x1ddc8a25c90>
```


7)Boxplot

A box plot is the visual representation of the depicting groups of numerical data through their quartiles against categorical data.

```
In [23]: sns.boxplot(x="no_previous",y="total",data=df)
Out[23]: <Axes: xlabel='no_previous', ylabel='total'>
```


8)Violinplot

A violin plot is similar to a boxplot. It shows several quantitative data across one or more categorical variables such that those distributions can be compared.

```
In [25]: sns.violinplot(df['speeding'])
Out[25]: <Axes: >
```


9)Swarmplot

A swarm plot is similar to a strip plot, We can draw a swarm plot with non-overlapping points against categorical data.

```
In [27]: sns.swarmplot(x = df["not_distracted"])
Out[27]: <Axes: xlabel='not_distracted'>
```



```
In [28]: sns.swarmplot(x ="not_distracted", y ="total",data = df)
```

Out[28]: <Axes: xlabel='not_distracted', ylabel='total'>

10)Pointplot

Point plot used to show point estimates and confidence intervals using scatter plot glyphs. A point plot represents an estimate of central tendency for a numeric variable by the position of scatter plot points and provides some indication of the uncertainty around that estimate using error bars.

```
In [29]: sns.pointplot(x = "total", y = "speeding", data = df)
Out[29]: <Axes: xlabel='total', ylabel='speeding'>
```


11) Distplot

It is used basically for univariant set of observations and visualizes it through a histogram that is only one observation and hence we choose one particular column of the dataset.

In []: