

ON THE CONDITIONS OF MAML CONVERGENCE

SHIRO TAKAGI¹ YOSHIHIRO NAGANO¹ YUKI YOSHIDA¹ MASATO OKADA¹

¹THE UNIVERSITY OF TOKYO

We derived the necessary conditions of inner learning rate α and meta-learning rate β for a simplified MAML to locally converge to local min from any point in the vicinity of the local min

We found that maximum possible β is larger when α is close to its maximum possible value

MAML AS NEGATIVE GRADIENT PENALTY

MAML

Update parameters to find a representation that can rapidly adapt to new tasks with a small quantity of data.

1. Inner loop

2. Meta-loop

$$\boldsymbol{\theta}_{\tau}' = \boldsymbol{\theta} - \boldsymbol{\alpha} \, \nabla_{\boldsymbol{\theta}} \, L_{\tau}(\boldsymbol{\theta})$$
Inner lr

$$\boldsymbol{\theta}_{\tau}' = \boldsymbol{\theta} - \boldsymbol{\alpha} \nabla_{\boldsymbol{\theta}} L_{\tau}(\boldsymbol{\theta})$$
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\beta} \nabla_{\boldsymbol{\theta}} \sum_{\tau \sim P(\tau)} L_{\tau}(\boldsymbol{\theta}_{\tau}')$ [Finn et al. 2017]

Assumptions

- 1. Only one step is taken per update
- 2. Only one task is considered
- 3. Data are not resampled

Approximation

Ignore higher order derivative terms for simplicity.

$$\nabla_{\boldsymbol{\theta}} L_{\tau}(\boldsymbol{\theta}_{\tau}') = \nabla_{\boldsymbol{\theta}} \theta_{\tau}' \frac{\partial L_{\tau}}{\partial \theta_{\tau}'} = (I - \alpha \nabla_{\boldsymbol{\theta}}^{2} L_{\tau}) \frac{\partial L_{\tau}}{\partial \theta_{\tau}'}$$
$$\approx \boldsymbol{g}_{\tau}(\boldsymbol{\theta}) - \alpha H_{\tau}(\boldsymbol{\theta}) \boldsymbol{g}_{\tau}(\boldsymbol{\theta})$$

Negative gradient penalty

An approximated MAML loss can be regarded as the loss with the negative gradient penalty.

$$\tilde{L}(\theta) = L(\theta') \approx L(\theta) - \frac{\alpha}{2} g(\theta)^{\mathsf{T}} g(\theta)$$

Then, update equation of \boldsymbol{v} is

$$\boldsymbol{v}(t+1) = \boldsymbol{v}(t) - \beta \Lambda_{\widetilde{H}} \boldsymbol{v}(t)$$
 [LeCun et al. 1998]

To reach a minimum, β should satisfy the following condition:

$$\forall i, |1 - \beta \lambda (H - \alpha H^2)_i| < 1$$

The necessary condition of β is:

$$\forall i, \quad \beta < \frac{2}{\lambda(H)_i - \alpha \lambda(H)_i^2}$$

Condition for simplified MAML to locally converge

The condition for the simplified MAML to locally converge to local min from any point in the vicinity of the local min:

$$\forall i, \quad \alpha \leq \frac{1}{\lambda(H)_i} \land \beta < \frac{2}{\lambda(H)_i - \alpha \lambda(H)_i^2}$$

As α approaches α_c , upper bound β_c diverges.

 $\Rightarrow \beta_c$ is larger when α is close to α_c

CONVERGENCE CONDITION

Simplified MAML Loss

Taking the Taylor series for the second-order term at a fixed point θ^* , the simplified MAML loss is

$$\tilde{L}(\boldsymbol{\theta}) \approx \tilde{L}(\boldsymbol{\theta}^*) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}^*)^{\mathsf{T}} \tilde{H}(\boldsymbol{\theta} - \boldsymbol{\theta}^*)$$

Condition for inner learning rate α

Since the necessary condition $\boldsymbol{\theta}^*$ to be a local minimum is that all eigenvalues λ of the Hessian \widetilde{H} at $\boldsymbol{\theta}^*$ are non-negative, α should satisfy the following condition:

$$\forall i, \lambda (\widetilde{H})_i \approx \lambda(H)_i - \alpha \lambda(H)_i^2 \ge 0$$

$$*\widetilde{H} = H - \alpha(T\boldsymbol{g} + H^2) \approx H - \alpha(H^2)$$

The necessary condition of α is:

$$\forall i, \quad \alpha \leq \frac{1}{\lambda(H)_i}$$

Condition for meta-learning rate β

 \widetilde{H} is diagonalizable: $\widetilde{H} = P \Lambda_{\widetilde{H}} P^{\mathsf{T}}$

Denoting $P^T(\boldsymbol{\theta} - \boldsymbol{\theta}^*)$ by \boldsymbol{v} , the simplified MAML loss is

$$\tilde{L}(\boldsymbol{v}) \approx \tilde{L}(0) + \frac{1}{2} \boldsymbol{v}^{\mathsf{T}} \Lambda_{\widetilde{H}} \boldsymbol{v}$$

EXPERIMENTS

Linear regression

Linear regression with all assumptions being hold. Theoretical β_c and α_c match empirical ones.

Few-shot learning

Training error of (a) Sinusoid regression and (b) Omniglot and (c) MiniImagenet classification with various α and β .

The largest possible β is larger when α is close to its maximum possible value.

⇒ Our theory explains the experimental result.