1. Egyszerű reprezentációjú típusok

Típusok definiálása, majd osztály diagrammal történő leírása.

1. Adott síkbeli pontok közül hány esik rá egy adott kör lemezére?

Specifikáció:

$$A = (x:Pont^n, k:K\"or, db:\mathbb{N})$$

$$Ef = (x=x' \land k=k')$$

$$Uf = (Ef \land db = \sum_{i=1..n} 1)$$

$$x[i] \in k$$

Számlálás

$$i = m ... n \sim i = 1 ... n$$

felt(i) $\sim x[i] \in k$

Algoritmus:

Kör és a Pont típusa. Ábrázoljuk a köröket a középpontjukkal és a sugarukkal, a pontokat a koordinátájukkal.

Típusdefiníciók:

Kör	l := p∈k (k:Kör, p:Pont, l:L)
c: Pont r: ℝ Inv: r ≥ 0 [1.kvíz]	l := k.c, p ≤ k.r
	[2.kvíz]

Pont	$d := \overline{p, q} (p, q : Pont, d:\mathbb{R})$
x, y :ℝ	d := $\sqrt{(p.x - q.x)^2 + (p.y - q.y)^2}$

Megj: A tervezés során inkább a "felülről-lefelé" irányt követjük, de objektumelvű modellezés, különösen az objektum-orientált kódolás az "alulról felfelé" építkezést szereti.

Osztályok:

2. Racionális számok. Használjuk ki, hogy minden racionális szám ábrázolható két egész számmal, mint azok hányadosa.

Típusdefiníció:

Q	$c := a \pm b$ (a: \mathbb{Q} , b: \mathbb{Q} , c: \mathbb{Q})		
	$c := a \cdot b$ (a: \mathbb{Q} , b: \mathbb{Q} , c: \mathbb{Q})		
	c := a / b (b≠0) (a:ℚ, b:ℚ, c:ℚ)		
n, d: \mathbb{Z}	c.n, c.d := a.n \cdot b.d \pm a.d \cdot b.n, a.d \cdot b.d		
$//\frac{n}{d}$ Inv: d≠0	c.n, c.d := a.n · b.n, a.d · b.d [3.kvíz]		
	c.n, c.d := a.n · b.d, a.d · b.n (b.n≠0)		

$$\frac{c.n}{c.d} = \frac{a.n}{a.d} + \frac{b.n}{b.d} = \frac{a.n \cdot b.d + b.n \cdot a.d}{a.d \cdot b.d}$$

$$\frac{c.n}{c.d} = \frac{a.n}{a.d} - \frac{b.n}{b.d} = \frac{a.n \cdot b.d - b.n \cdot a.d}{a.d \cdot b.d}$$

$$\frac{c.n}{a.d} = \frac{a.n}{a.d} \cdot \frac{b.n}{b.d} = \frac{a.n \cdot b.n}{a.d \cdot b.d}$$

$$\frac{c.n}{c.d} = \frac{a.n}{a.d} / \frac{b.n}{b.d} = \frac{a.n}{a.d} \cdot \frac{b.d}{b.n} = \frac{a.n \cdot b.d}{a.d \cdot b.n}$$

A műveletek őrzik az invariánst, amely lehetne a d>0 is, vagy, hogy n és d relatív prím. Ez utóbbi esetben normálni kellene minden művelet után az n és d-t.

A műveleteket feladatoknak tekinthetjük, amelyeket elő- utófeltételes specifikációval is megfogalmazhatunk mind a típusspecifikáció, mind a típusmegvalósítás szintjén:

$$A = (a:\mathbb{Q}, b:\mathbb{Q}, c:\mathbb{Q})$$

$$A = (a:(n:\mathbb{Z}, d:\mathbb{Z}), b:(n:\mathbb{Z}, d:\mathbb{Z}), c:(n:\mathbb{Z}, d:\mathbb{Z}))$$

$$Ef = (a=a' \land b=b')$$

$$Uf = (Ef \land b \neq 0 \rightarrow c=a / b)$$

$$Uf = (Ef \land b = 0 \rightarrow c=a / b)$$

$$Uf = (Ef \land b = 0 \rightarrow c=a / b)$$

$$Uf = (Ef \land b = 0 \rightarrow c=a / b)$$

Ha nem akarjuk megkövetelni, hogy az inputváltozók megőrizzék az értékeiket:

$$Uf = (b' \neq 0 \rightarrow c = a' / b')$$
 ill. $Uf = (b'.n \neq 0 \rightarrow c.n, c.d = a'.n \cdot b'.d, a'.d \cdot b'.n)$

Osztálydiagram:

Milyen alakban lenne szebb meghívni a műveleteket? **a.Add(b)** vagy **Add(a,b)**? Az előbbi esetben az Add() művelet egy objektumhoz tartozik, az utóbbiban az osztályhoz (osztályszintű metódus).

Lehetne infix alakban meghívni a műveleteket a Add b, vagy még inkább a + b formában?

3. Komplex számok. Ábrázoljuk a komplex számokat az algebrai alakjukkal (x+y·i).

Típusdefiníció:

\mathbb{C}	c := a±b	(a: ℂ, b:ℂ, c:ℂ)	
	c := a*b	(a:ℂ, b:ℂ, c:ℂ)	
	c := a/b	(b≠0) (a:ℂ, b:ℂ, c:ℂ)	
x, y: ℝ	c.x, c.y := $a.x \pm b.x$, $a.y \pm b.y$		
	c.x, c.y := a.>	$c \cdot b.x - a.y \cdot b.y$, $a.x \cdot b.y + a.y \cdot b.x$	
// x+i·y [4.kvíz] több jó válasz	c.x, c.y := $(a.x \cdot b.x + a.y \cdot b.y) / (b.x^2 + b.y^2)$, $(a.y \cdot b.x - a.x \cdot b.y) / (b.x^2 + b.y^2)$		
	// b.	x≠0 ∨ b.y≠0	

Osztálydiagram:

[5.kvíz]