# Charotar University of Science and Technology [CHARUSAT]

## **Faculty of Technology and Engineering**

## U & P U. Patel Department of Computer Engineering **Subject: CE252 Digital Electronics**

Unit Test-1

Semester: 3<sup>rd</sup> Sem B.Tech (CE) **Maximum Marks: 30** Date: 22/08/2019 (Thursday) Time: 9:10 a.m to 10:10 a.m.

### Instructions:

[C]

- (i) Attempt *all* the questions.
- (ii) Figures to the right indicate full marks.
- (iii) Make suitable assumptions and draw neat figures wherever if required.

### Q-1 Answer the following questions.

[10]

What is the Hexa decimal representation of  $(2598.65)_{10}$ . [A]

[01] [01]

[B] What is the Minterm equivalent of A' + B'. Write dual of F = (A+B')(A+1).

[01]

[D]Which gate is equivalent of given circuit? [01]



What is r's complement of  $(57340)_9$ ?  $[\mathbf{E}]$ 

[01]

Write Octal representation of (A5B.CE)<sub>16</sub>.  $[\mathbf{F}]$ 

- [01]
- How many 1's are there if the number  $(7 * 256^3 + 0 * 256^2 + 1 * 256 + 3)$  is [G] [01] represented in binary?
- Write and demonstrate by means of truth tables the validity of the following [03] [H]theorems of Boolean algebra. The distributive law of OR (+) over AND (.).

#### Q-2 Answer the following questions.

[10]

- Simplify the Boolean function F = (B + BC) (B + B'C) (B + D). Specify the law [A] that you have used in each step.
- [B] What is the value of base r if (121)r = (144)8.
- [C] Perform following operation using r's complement without converting numbers in other format.  $(345)_7 - (127)_7$ .

| (     |            | e Seat No. |  |
|-------|------------|------------|--|
| u sir | 1/11/19/14 | , 2631 NU  |  |
|       |            |            |  |

- [D] Express the complement of given function in product of Maxterm.  $F(A, B, C) = \Sigma (1, 4, 5, 6, 7)$ .
- [E] Draw a circuit for given Boolean function. F=X'Y+YZ+XY'. (Note: You have only one Ex-OR, one AND and one OR Gate)

### Q-3 Answer the following questions.

[10]

- [A] Minimize the following Expression and realize using basic gates.  $Y = \Sigma m(0,2,5,6,7,8,10,13,15)$
- [B] Implement the following circuit using NOR-NOR implementation  $F=\pi_{M}(0,2,4,5,7,10,13,15)$

OR

[B] Simplify the following expression using Tabulation method.  $Y = \Sigma m(0,1,2,3,5,7,8,9,11,14)$ 

\*\*\*\*Best of Luck\*\*\*\*