Пациональный Технический Университет Украины "КПИ" Институт прикладного системного анализа "ИПСА"

BAZAUN IN METOALI PACKPLITURI CHCTEMHOÑ REOTPEAGABLICHHOCTN

ATT, IDOCH, ARAJOMKR MARBII I.A. Darkpatoba

Восстановление функциональных закономерностей в задачах раскрытия концептуальной неопределенности

Задача раскрытия концептуальной неопределенности сводится к задаче системно согласованного раскрытия множества разнородных неопределенностей на основе единых принципов, приемов и критериев. Это множество включает:

неопределенность целей разработки;

неопределенность перспектив конкурентоспособности изделия;

неопределенность изменения рынков спроса и сбыта; неопределенность активного противодействия конкурентов;

ситуационную неопределенность рисков в процессе разработки, производства, сбыта и эксплуатации изделия.

Концептуальная неопределенность

Такой вид неопределенности относится к концептуальному в том смысле, что в отличие от информационной неопределенности он представляет собой единый комплекс неизвестности, неоднозначности и противоречивости взаимосвязанных и взаимозависимых элементов указанного множества разнородных неопределенностей.

Содержательная формулировка задачи

В содержательной формулировке задачу раскрытия концептуальной неопределенности можно свести к задаче системно согласованного раскрытия множества разнородных неопределенностей на основе единых принципов, приемов и критериев.

Это множество содержит неопределенности целей разработки, перспектив конкурентоспособности изделия, изменения рынков спроса и сбыта, активного противодействия конкурентов, а также ситуационную неопределенность рисков в процессе разработки, производства, сбыта и эксплуатации изделия.

Выбор класса и структуры приближающих функций

- выбор класса и структуры приближающих функций при формировании функциональных зависимостей;
- выбор критериев, принципов, подходов и методов построения приближающих функций;
- нахождение приближающих функций в принятом классе, которые обеспечивают их наилучшее приближение по принятому критерию.

Задача выбора класса и структуры приближающих функций

Необходимость выбора рационального компромисса между противоречивыми требованиями: максимизации уровня достоверности процедуры выявления искомой закономерности, что ведет к необходимости повышения сложности класса приближающих функций, и требованием минимизации сложности и трудоемкости процедуры формирования искомой функциональной зависимости, что обуславливает необходимость упрощения приближающих функций.

Задача формирования приближающих функций

Математическая постановка задачи

Пусть вектор $y = (y_i | i = \overline{1,m})$, $y_i = f_i(x_1, x_2, x_3)$ определяет требуемые или желательные значения искомых функций, которые количественно характеризуют основные свойства объекта.

- x_1 образует показатели проектных решений ЛПР, в частности, для технического изделия это его конструктивные, технические, технологические и другие показатели;
- x_2 образует контролируемые показатели внешнего воздействия, в частности, показатели статической, динамической нагрузки и другие;
- x_3 образует показатели случайных и неуправляемых факторов внешнего воздействия

Исходная информация задана в виде дискретного массива

$$\mathbf{M}_0 = \langle \mathbf{Y}_0, \mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3 \rangle,$$

$$Y_0 = (Y_i | i = \overline{1,m}), Y_i = (Y_i [q_0] | q_0 = \overline{1,k_0}),$$

$$X_1 = (X_{1j_1} | j_1 = \overline{1, n_1}), X_{1j_1} = (X_{1j_1} [q_1] | q_1 = \overline{1, k_1}),$$

$$X_2 = (X_{2j_2} | j_2 = \overline{1, n_2}), X_{2j_2} = (X_{2j_2} [q_2] | q_2 = \overline{1, k_2}), X_3 = (X_{3j_3} | j_3 = \overline{1, n_3}),$$

$$X_{3j_3} = (X_{3j_3} [q_3] | q_3 = \overline{1, k_3}),$$

Множество Y_0 определяет численные значения $Y_i[q_0] \Rightarrow \left\langle X_{1j_1}[q_1], X_{2j_2}[q_2], X_{3j_3}[q_3] \right\rangle$ искомых непрерывных функций

$$y_i = f_i(x_1, x_2, x_3), i = \overline{1, m};$$

$$x_1 = (x_{1j_1} | j_1 = \overline{1, n_1}), x_2 = (x_{2j_2} | j_2 = \overline{1, n_2}), x_3 = (x_{3j_3} | j_3 = \overline{1, n_3})$$

Каждому значению $q_0 \in [1, k_0]$ соответствует определенный набор $q_0 \Leftrightarrow \langle q_1, q_2, q_3 \rangle$ значений $q_1 \in [1, k_1]$, $q_2 \in [1, k_2]$, $q_3 \in [1, k_3]$.

Множество $\mathbf{Y}_{_{0}}$ состоит из k_{0} различных значений $\mathbf{Y}_{_{i}}[q_{0}].$

В множествах X_1, X_2, X_3 определенная часть величин $X_{1j_1}[q_1], X_{2j_2}[q_2], X_{3j_3}[q_3]$ при некоторых значениях $q_1 = \hat{q}_1 \in \hat{Q}_1 \subset [1, k_1]$, $q_2 = \hat{q}_2 \in \hat{Q}_2 \subset [1, k_2]$, $q_3 = \hat{q}_3 \in \hat{Q}_3 \subset [1, k_3]$ раздельно повторяется, но для различных $q_0 \in [1, k_0]$ не существует полностью совпадающих наборов $\left\langle X_{1j_1}[q_1], X_{2j_2}[q_2], X_{3j_3}[q_3] \right\rangle$. Здесь $n_1 + n_2 + n_3 = n_0$, $n_0 \leq k_0$. Известно, что $x_1 \in D_1$, $x_2 \in D_2$, $x_3 \in D_3$, $X_1 \in \hat{D}_1, X_2 \in \hat{D}_2, X_3 \in \hat{D}_3$ где

$$D_{s} = \left\langle x_{sj_{s}} \middle| d_{sj_{s}}^{-} \leq x_{sj_{s}} \leq d_{sj_{s}}^{+}, j_{s} = \overline{1, n_{s}} \right\rangle, \quad s = \overline{1,3}$$

$$\hat{D}_{s} = \left\langle X_{sj_{s}} \middle| \hat{d}_{sj_{s}}^{-} \leq X_{sj_{s}} \leq \hat{d}_{sj_{s}}^{+}, j_{s} = \overline{1, n_{s}} \right\rangle, \quad s = \overline{1,3}$$

$$d_{sj_{s}}^{-} \leq \hat{d}_{sj_{s}}^{-}, d_{sj_{s}}^{+} \geq \hat{d}_{sj_{s}}^{+}.$$

Требуется найти такие приближающие функции $\Phi_i(x_1,x_2,x_3), i=\overline{1,m}$, которые с практически приемлемой погрешностью характеризую<u>т и</u>стинные функциональные зависимости $y_i=f_i(x_1,x_2,x_3), i=\overline{1,m}$, на множестве D_s .

 \overline{y} – определяет внешние параметры изделия, которые характеризуют технические, эксплуатационные, экономические и другие показатели качества;

 x_1 – компонентами вектора являются внутренние параметры изделия, изменяемые Разработчиком;

 \overline{x}_2 компонентами вектора являются контролируемые параметры, задаваемые Заказчиком;

 \overline{x}_{3} - компонентами вектора являются неконтролируемые параметры внешнего воздействия (показатели внешней среды).

Формирование приближающих функций в виде иерархической многоуровневой системы моделей

На верхнем уровне реализуется модель, определяющая зависимость приближающих функций от переменных x_1, x_2, x_3 . Искомые функции формируются в классе аддитивных функций и представляются в виде суперпозиции функций от переменных x_1, x_2, x_3 .

$$\Phi_{i}(x_{1}, x_{2}, x_{3}) = c_{i1}\Phi_{i1}(x_{1}) + c_{i2}\Phi_{i2}(x_{2}) + c_{i3}\Phi_{i3}(x_{3}), i = \overline{1, m}.$$
 (1)

Формирование приближающих функций в виде иерархической многоуровневой системы моделей

На втором иерархическом уровне формируются модели, которые определяют раздельно зависимость приближающих функций от соответственно компонентов переменных x_1, x_2, x_3 .

$$\Phi_{i1}(x_1) = \sum_{j_1=1}^{n_1} a_{ij_1}^{(1)} \Psi_{1j_1}(x_{1j_1}), \Phi_{i2}(x_2) = \sum_{j_2=1}^{n_2} a_{ij_2}^{(2)} \Psi_{2j_2}(x_{2j_2}),$$

$$\Phi_{i3}(x_3) = \sum_{j_3=1}^{n_3} a_{ij_3}^{(3)} \Psi_{3j_3}(x_{3j_3}).$$
(2)

Предлагается для всех $i=\overline{1,m}$ по каждой переменной $x_{1j_1}, x_{2j_2}, x_{3j_3}$ выбирать соответственно однотипные функции $\Psi_{1j_1}, \Psi_{2j_2}, \Psi_{3j_3}$, что позволяет упростить дальнейшее решение задачи

Формирование приближающих функций в виде иерархической многоуровневой системы моделей

На третьем иерархическом уровне

формируются модели, которые определяют функции $\Psi_{1j_1}, \Psi_{2j_2}, \Psi_{3j_3}$. Здесь важнейшей задачей является выбор структуры и компонентов функций $\Psi_{1j_1}, \Psi_{2j_2}, \Psi_{3j_3}$. Структуры этих функций выбираем аналогично (2). Представим функции в виде следующих обобщенных полиномов

$$\Psi_{s j_s}(x_{sj_s}) = \sum_{p=0}^{P_{j_s}} \lambda_{j_s p} \phi_{j_s p}(x_{sj_s}).$$
 (3)

Формирование многоуровневой системы моделей

$$\Phi_i(x_1, x_2, x_3) = c_{i1}\Phi_{i1}(x_1) + c_{i2}\Phi_{i2}(x_2) + c_{i3}\Phi_{i3}(x_3)$$
 $i = \overline{1, m}$

$$\Phi_{i1}(x_1) = \sum_{j_1=1}^{n_1} a_{ij_1}^{(1)} \Psi_{1j_1}(x_{j_1})$$

$$\Phi_{i2}(x_2) = \sum_{j_2=1}^{n_2} a_{ij_2}^{(2)} \Psi_{2j_2}(x_{j_2})$$

$$\Phi_{i3}(x_3) = \sum_{j_3=1}^{n_3} a_{ij_3}^{(3)} \Psi_{3j_3}(x_{j_3})$$

$$\Psi_{sj_s}(x_{j_s}) = \sum_{p=0}^{p_{j_s}} \lambda_{j_s p} \varphi_{j_s p}(x_{j_s}) \qquad x_s = (x_{j_s} | j_s = \overline{1, n_s}), \quad s = 1, 2, 3$$

Реализация системы моделей

Последовательность формирования системы моделей:

Выбор полинома:

$$\varphi_{j_sp}(x_{j_s}) \Rightarrow T^*_{j_sp}(x_{j_s})$$

Определение функций

$$\Psi_1$$
, Ψ_2 , Ψ_3

Задача формирования функций Ψ_1, Ψ_2, Ψ_3

сводится к чебышевской задаче приближения для следующей системы уравнений:

$$F_{i1}(\hat{X}[q_0]) - b_{q_0} = 0, q_0 = \overline{1,k_0}$$
 (4)

$$F_{i1}(\hat{\mathbf{X}}[q_0]) = \sum_{j_1=1}^{n_1} \sum_{p_1=0}^{P_{j_1}} \lambda_{j_1 p_1} T_{p_1}^* (\hat{\mathbf{X}}_{1j_1}[q_1]) + \sum_{j_2=1}^{n_2} \sum_{p_2=0}^{P_{j_2}} \lambda_{j_2 p_2} T_{p_2}^* (\hat{\mathbf{X}}_{2j_2}[q_2]) + \sum_{j_2=1}^{N} \sum_{p_2=0}^{N} \lambda_{j_2 p_2}[q_2] + \sum_{j_2=1}^{N} \sum_{p_2=0}^{N} \lambda_{j_2 p_2}[q_2] + \sum_{j_2=0}^{N} \sum_{p_2=0}^{N} \lambda_{j_2 p_2}[q_2] + \sum_{j_2=0}^{N} \lambda_{j_2 p_2}[q_2] + \sum_{j_2=0}^{N} \sum_{p_2=0}^{N} \lambda_{j_2 p_2}[q_2] + \sum_{j_2=0}^{N} \sum_{p_2=0}^{N} \lambda_{j_2 p_2}[q_2] + \sum_{j_2=0}^{N} \sum_{p_2=0}^{N} \lambda_{j_2 p_2}[q_2] + \sum_{j_2=0}^{N} \sum_{p_2=0}^$$

$$+\sum_{j_3=1}^{n_3}\sum_{p_3=0}^{P_{j_3}}\lambda_{j_3p_3}T_{p_3}^*(\hat{\mathbf{X}}_{3j_3}[q_3])$$

$$\hat{X}[q_0] = (\hat{X}_{1j_1}[q_1], \hat{X}_{2j_2}[q_2], \hat{X}_{3j_3}[q_3] | q_0 \Leftrightarrow \langle q_1, q_2, q_3 \rangle)$$

Здесь $T_{p_1}^*, T_{p_2}^*, T_{p_3}^*$ — смещенные полиномы Чебышева

Задача формирования функций Ψ_1, Ψ_2, Ψ_3

 b_{q_0} – величина, определяемая соотношением

$$b_{q_0} = \{ \max_{i \in [1,m]} \hat{Y}_i [q_0] + \min_{i \in [1,m]} \hat{Y}_i [q_0] \} / 2, q_0 = \overline{1, k_0}$$

 $\hat{X}_{1j_1}[q_1], \hat{X}_{2j_2}[q_2], \hat{X}_{3j_3}[q_3], \hat{Y}_i[q_0]$ — значения соответственно величин $X_{1j_1}[q_1], X_{2j_2}[q_2], X_{3j_3}[q_3], Y_i[q_0]$ нормированных к отрезку [0,1].

Задача выбора критериев

Решение системы состоит в определении таких матриц $\|\lambda_{j_1p_1}^0\|, \|\lambda_{j_2p_2}^0\|, \|\lambda_{j_3p_3}^0\|$, которые с учетом максимальной невязки

$$\Delta_{\lambda} = \max_{q_0 \in [1, k_0]} \left| F_1(\hat{X}[q_0]) - b_{q_0} \right|, \tag{5}$$

принимаемой за меру чебышевского приближения системы (4), обеспечивают наилучшее приближение

$$\Delta_{\lambda}^{0} = \min_{\|\lambda\|} \Delta_{\lambda}$$

При этом величина наилучшего приближения Δ_{λ}^{0} и искомых матриц характеризуются соотношениями:

$$\Delta_{\lambda}^{0} = \min_{\|\lambda\|} \max_{q_0 \in [1, k_0]} \left| F_1(\hat{\mathbf{X}}[q_0]) - b_{q_0} \right|,$$

$$\lambda^{0} = \operatorname{Arg} \min_{\|\lambda\|} \max_{q_{0} \in [1, k_{0}]} \left| F_{1}(\hat{X}[q_{0}]) - b_{q_{0}} \right|.$$

Здесь

$$\|\lambda^{0}\| = \left\langle \|\lambda_{j_{1}p_{1}}^{0}\|, \|\lambda_{j_{2}p_{2}}^{0}\|, \|\lambda_{j_{3}p_{3}}^{0}\| \right\rangle, \|\lambda\| = \left\langle \|\lambda_{j_{1}p_{1}}\|, \|\lambda_{j_{2}p_{2}}\|, \|\lambda_{j_{3}p_{3}}\| \right\rangle$$

Задача формирования функций Φ_{is}

В этой задаче полагаем, что $\forall i \in [1, m]$ степень влияния функций $\Phi_{i1}(x_1), \Phi_{i2}(x_2), \Phi_{i3}(x_3)$ на свойства соответствующей приближающей функции $\Phi_i(x_1, x_2, x_3)$ одинакова. В результате задача состоит в определении матриц $\|a_{ij_1}^{(1)}\|, \|a_{ij_2}^{(2)}\|, \|a_{ij_3}^{(3)}\| \forall i \in [1, m]$ и сводится к чебышевской задаче приближения для следующих трех систем уравнений:

$$F_{i21}(\hat{X}_{1}[q_{0}]) - \hat{Y}_{i}[q_{0}] = 0, \quad F_{i22}(\hat{X}_{2}[q_{0}]) - \hat{Y}_{i}[q_{0}] = 0,$$

$$F_{i23}(\hat{X}_{3}[q_{0}]) - \hat{Y}_{i}[q_{0}] = 0, \quad q_{0} = \overline{1, k_{0}}$$
(6)

Задача формирования функций Φ_{is}

$$F_{i21}(\hat{\mathbf{X}}_{1}[q_{0}]) = \sum_{j_{1}=1}^{n_{1}} a_{ij_{1}}^{(1)} \Psi_{1j_{1}}(\hat{\mathbf{X}}_{1j_{1}}[q_{1}]), F_{i22}(\hat{\mathbf{X}}_{2}[q_{0}]) = \sum_{j_{2}=1}^{n_{2}} a_{ij_{2}}^{(2)} \Psi_{2j_{2}}(\hat{\mathbf{X}}_{2j_{2}}[q_{2}])$$

$$F_{i23}(\hat{\mathbf{X}}_{3}[q_{0}]) = \sum_{j_{3}=1}^{n_{3}} a_{i\,j_{3}}^{(3)} \Psi_{3\,j_{3}}(\hat{\mathbf{X}}_{3\,j_{3}}[q_{3}]).$$

Решение каждой системы состоит в определении соответственно таких матриц $\|a_s^0\| = \|\hat{a}_{ij_s}^{(s)}\|$, $s = \overline{1,3}$, которые для величины максимальной невязки

$$\Delta_{a_s} = \max_{q_0 \in [1, k_0]} \left| F_{i2s} \left(\hat{X}_s [q_0] \right) - \hat{Y}_i [q_0] \right|,$$

принимаемой за меру чебышевского приближения системы (5.6), обеспечивают наилучшее приближение

$$\Delta_s^0 = \min_{\|a_s\|} \Delta_{a_s}.$$

Задача формирования функций Φ_{is}

$$\Delta_{1}^{0} = \min_{\|a_{1}\|} \max_{q_{0} \in [1, k_{0}]} \left| F_{i21} \left(\hat{X}_{1} [q_{0}] \right) - \hat{Y}_{i} [q_{0}] \right|,$$

$$||a_1^0|| = \text{Arg } \min_{||a_1||} \max_{q_0 \in [1, k_0]} |F_{i21}(\hat{X}_1[q_0]) - \hat{Y}_i[q_0]|,$$

$$\Delta_{2}^{0} = \min_{\|a_{2}\|} \max_{q_{0} \in [1, k_{0}]} \left| F_{i22} \left(\hat{X}_{2} [q_{0}] \right) - \hat{Y}_{i} [q_{0}] \right|,$$

$$||a_2^0|| = \operatorname{Arg} \min_{||a_2||} \max_{q_0 \in [1,k_0]} |F_{i22}(\hat{X}_2[q_0]) - \hat{Y}_i[q_0]|,$$

$$\Delta_3^0 = \min_{\|a_3\|} \max_{q_0 \in [1, k_0]} \left| F_{i23} \left(\hat{X}_3 [q_0] \right) - \hat{Y}_i [q_0] \right|,$$

$$||a_3^0|| = \operatorname{Arg} \min_{||a_3||} \max_{q_0 \in [1, k_0]} |F_{i23}(\hat{X}_3[q_0]) - \hat{Y}_i[q_0]|,$$

Задача формирования функций Φ_i

Формирование каждой функции $\Phi_i(x_1, x_2, x_3)$ является независимым, и потому $\forall i \in [1, m]$ все процессы вычислений $\Phi_i(x_1, x_2, x_3)$ могут выполняться одновременно и параллельно.

Решение задачи для $\forall i \in [1, m]$ состоит в нахождении матриц $\|c_{i1}\|$, $\|c_{i2}\|$, $\|c_{i3}\|$ и сводится к чебышевской задаче приближения для системы уравнений:

$$F_{i3}(\hat{X}[q_0]) - \hat{Y}_i[q_0] = 0, \quad q_0 = \overline{1, k_0}, i \in [1, m],$$

где

$$F_{i3}(\hat{X}[q_0]) = c_{i1}\Phi_{i1}(\hat{X}_1[q_1]) + c_{i2}\Phi_{i2}(\hat{X}_2[q_2]) + c_{i3}\Phi_{i3}(\hat{X}_3[q_3]),$$

$$q_0 \Leftrightarrow \langle q_1, q_2, q_3 \rangle.$$

Чебышевский критерий оценивания качества решения

$$\Delta_c^0 = \min_{\|c\|} \max_{i \in [1, m]} |F_{i3}(\hat{X}[q_0]) - \hat{Y}_i[q_0]|,$$

$$||c^0|| = \operatorname{Arg} \min_{||c||} \max_{i \in [1,m]} |F_{i3}(\hat{X}[q_0]) - \hat{Y}_i[q_0]|,$$

$$\|c^0\| = \langle \|c_{i1}^0\|, \|c_{i2}^0\|, \|c_{i3}^0\| \rangle, \|c\| = \langle \|c_{i1}\|, \|c_{i2}\|, \|c_{i3}\| \rangle.$$

Иерархическая система приближающих функций

$$\Phi_{i}(x_{1}, x_{2}, x_{3}) = c_{i1}^{0} \Phi_{i1}(x_{1}) + c_{i2}^{0} \Phi_{i2}(x_{2}) + c_{i3}^{0} \Phi_{i3}(x_{3}), i = \overline{1, m}$$
 (7)

$$\Phi_{i1}(x_1) = \sum_{j_1=1}^{n_1} \hat{a}_{ij_1}^{(1)} \Psi_{1j_1}(x_{1j_1}), \Phi_{i2}(x_2) = \sum_{j_2=1}^{n_2} \hat{a}_{ij_2}^{(2)} \Psi_{2j_2}(x_{2j_2}),$$
(8)

$$\Phi_{i3}(x_3) = \sum_{j_3=1}^{n_3} \hat{a}_{ij_3}^{(3)} \Psi_{3j_3}(x_{3j_3})$$

$$\Psi_{s j_s}(x_{j_s}) = \sum_{p_s=0}^{P_{j_s}} \lambda_{j_s p_s}^0 T_{p_s}^*(x_{sj_s}), s = \overline{1,3}$$
 (9)

Постановка задачи

Известно, что m целевых функций зависят от переменных x_1, x_2, x_3 :

$$y_i = f_i(x_1, x_2, x_3); i = 1...m.$$

Вид этих функций неизвестен, они учитывают 3 вида неопределенности: цели (x_1) , взаимодействия (x_2) и ситуационную неопределенность (x_3) .

Заданы численные значения переменных (x_1, x_2, x_3) и целевых функций в виде совокупности массивов.

Постановка задачи

Например,

q_0	$x_1[q_1]$	$x_2[q_2]$	$x_3[q_3]$	$Y_1[q_1]$	$Y_2[q_2]$	$Y_3[q_3]$
1	1,5	2,5	0,7	23,535	27,93	53,146
2	3	2,0	0,7	35,16	28,68	65,52
1						
n	0,3	0,2	0,07	3,516	2,868	6,552

Примечание. Векторы X_1, X_2, X_3 могут рассматриваться как определенные значения регулируемых параметров в технических или экономических системах, а Y — значения некоторых зависимых показателей, полученные путем наблюдений, экспериментов или опроса мнения экспертов и т.п. q_0 — номер выборки.

Требуется для каждой из целевых функций F_i определить вид аппроксимирующей функции Φ_i .

1. Нормирование всех исходных величин к интервалу [0; 1].

Используем минимальные и максимальные значения каждой из переменных:

$$\hat{x}_{1j1} = \frac{x_{1j1} - d_{1j1}^{-}}{d_{1j1}^{+} - d_{1j1}^{-}}; \quad \hat{x}_{1j1} \in [0,1]; \quad x_{1j1} \in D_{1j1}.$$

$$\hat{x}_{2j2} = \frac{x_{2j2} - d_{2j2}^{-}}{d_{2j2}^{+} - d_{2j2}^{-}}; \quad \hat{x}_{2j2} \in [0,1]; \quad x_{2j2} \in D_{2j2}.$$

$$\hat{x}_{3j3} = \frac{\alpha_{j3} - d_{3j3}^{-}}{d_{3j3}^{+} - d_{3j3}^{-}}; \quad \hat{x}_{3j3} \in [0,1]; \quad x_{3j3} \in D_{3j3}.$$

Для нашего примера (векторы x_1, x_2, x_3 приняты одномерными

$$\hat{x}_{1}[1] = \frac{x_{1}[1] - x_{1}^{-}}{x_{1}^{+} - x_{1}^{-}}, \quad \partial e \quad x_{1}^{+} = \max x_{1}; \quad x_{1}^{-} = \min x_{1}$$

$$x_{1}^{+} = 3; \quad x_{1}^{-} = 0,3$$

$$\hat{x}_{1}[1] = \frac{x_{1}[1] - x_{1}^{-}}{x_{1}^{+} - x_{1}^{-}} = \frac{1,5 - 0,3}{3 - 0,3} \cong 0,444$$

$$\hat{x}_{1}[1] = \frac{x_{2}[1] - x_{2}^{-}}{x_{1}^{+} - x_{1}^{-}} = \frac{2,5 - 0,2}{3 - 0,3} = 1$$

$$\hat{x}_2[1] = \frac{x_2[1] - x_2^-}{x_2^+ - x_2^-} = \frac{2, 5 - 0, 2}{2, 5 - 0, 2} = 1$$

$$\hat{x}_3[1] = \frac{x_3[1] - x_3^-}{x_3^+ - x_3^-} = \frac{0,7 - 0,07}{0,7 - 0,07} = 1$$

И аналогично для Y:

$$\hat{Y}_{1}[1] = \frac{Y_{1}[1] - Y_{1}^{-}}{Y_{1}^{+} - Y_{1}^{-}} = \frac{23,535 - 3,516}{35,16 - 3,516} = 0,6326$$

$$\hat{Y}_{2}[1] = \frac{Y_{2}[1] - Y_{2}^{-}}{Y_{2}^{+} - Y_{2}^{-}} = \frac{27,93 - 2,868}{28,68 - 2,868} = 0,971$$

$$\hat{Y}_{3}[1] = \frac{Y_{3}[1] - Y_{3}^{-}}{Y_{3}^{+} - Y_{3}^{-}} = \frac{53,146 - 6,552}{65,52 - 6,552} = 0,79$$

2. Определение коэффициентов при полиномах Чебышева — матриц $||\lambda||$.

Для определения b_{q_0} величины, возможны следующие варианты:

$$b_{q_0} = \{ \max_{i \in [1,m]} \hat{Y}_i [q_0] + \min_{i \in [1,m]} \hat{Y}_i [q_0] \} / 2, q_0 = \overline{1, k_0}$$

- 1) b_{q_0} определяется средним арифметическим значением
- 2) $b_{iq_0}^{q_0}$ принимаются равными нормированным значениям Например, когда b_{q_0} определяется средним арифметическим значением, имеем

$$\hat{Y}_{cp}[1] = \frac{\max_{i} Y_{i}[1]}{2} + \min_{i} Y_{i}[1]}{2} = \frac{0.971 + 0.6326}{2} = 0.8018$$

Смещенные полиномы Чебышева имеют вид

$$T_k^*(x) = T_k(2x-1)$$
 (рекуррентная формула)

$$T_0^* = 0.5$$

Получим:

$$T_1^*(x) = -1 + 2x$$

$$T_2^*(x) = 1 - 8x + 8x^2$$

$$T_3^*(x) = -1 + 18x - 48x^2 + 32x^3$$

$$T_4^*(x) = 1 - 32x + 160x^2 - 256x^3 + 128x^4$$

$$T_5^*(x) = -1 + 50x - 400x^2 + 1120x^3 - 1280x^4 + 512x^5$$

$$T_6^*(x) = 1 - 72x + 840x^2 - 3584x^3 + 6912x^4 - 6144x^5 + 2048x^6$$

Реализация системы моделей

Последовательность формирования системы моделей:

Выбор полинома:

$$\varphi_{j_s p}(x_{j_s}) \Rightarrow T_{j_s p}^*(x_{j_s})$$

Определение функций $\Psi_1, \ \Psi_2, \ \Psi_3$:

$$\Psi_{1j_1}(x_{j_1}), \quad \Psi_{2j_2}(x_{j_2}), \quad \Psi_{3j_3}(x_{j_3}) \quad \Rightarrow \quad \|\lambda_{j_1p_1}\|, \quad \|\lambda_{j_2p_2}\|, \quad \|\lambda_{j_3p_3}\|$$

$$F_1(\hat{X}[q_0]) - b_{q_0} = 0, \qquad q_0 = \overline{1, k_0}$$

$$F_{1}(\hat{X}[q_{0}]) = \sum_{j_{1}=1}^{n_{1}} \sum_{p_{1}}^{p_{j_{1}}} \lambda_{j_{1}p_{1}} T_{p_{1}}^{*}(\hat{X}_{j_{1}}[q_{1}]) + \sum_{j_{2}=1}^{n_{2}} \sum_{p_{2}}^{p_{j_{2}}} \lambda_{j_{2}p_{2}} T_{p_{2}}^{*}(\hat{X}_{j_{2}}[q_{2}]) + \sum_{j_{3}=1}^{n_{3}} \sum_{p_{3}}^{p_{j_{3}}} \lambda_{j_{3}p_{3}} T_{p_{3}}^{*}(\hat{X}_{j_{3}}[q_{3}])$$

Определение функций $\Phi_{_{i}}$:

$$\Phi_{i}(x_{1}, x_{2}, x_{3}) \quad i = \overline{1, m} \implies \|c_{i1}\|, \|c_{i2}\|, \|c_{i3}\| \quad i = \overline{1, m}$$

$$F_{3i}(\hat{X}[q_{0}]) - \hat{Y}_{i}[q_{0}] = 0, \quad i = \overline{1, m}$$

В общем случае для определения $\|\lambda\|$ имеем систему уравнений:

(1-й способ)

$$\hat{Y}_{cp}(q) = \sum_{j1=1}^{n_1} \sum_{p1=0}^{P1} \lambda_{1j1p1} T^*_{p1}(\hat{x}_{1j1}[q_1]) + \sum_{j2=1}^{n_2} \sum_{p2=0}^{P2} \lambda_{2j2p2} T^*_{p2}(\hat{x}_{2j2}[q_2]) +$$

$$+\sum_{j3=1}^{n_3}\sum_{p3=0}^{P3}\lambda_{3j3p3}T^*_{p3}(\hat{x}_{3j3}[q_3])$$

$$q = 1...n$$
 (число уравнений)

2-й способ: не единая система уравнений для $\|\lambda\|$, а отдельно решаются 3 системы для каждого $\|\lambda_1\|, \|\lambda_2\|, \|\lambda_3\|$, левая часть везде одинакова — средневзвешенные значения Y_i .

В условии задачи для конкретного варианта оговаривается, какой из двух способов следует использовать, но в программе следует предусмотреть оба!

3. Определение структуры векторов x_1, x_2, x_3 — матриц ||a||.

После определения матриц $\|\lambda\|$ вычисляются значения функций Ψ :

$$\Psi_{1j1}(\hat{x}_{1j1}) = \sum_{p_1=0}^{P_1} \lambda_{1j1p1} T_{p_1}^*(\hat{x}_{1j1})$$

$$\Psi_{2j2}(\hat{x}_{2j2}) = \sum_{p_2=0}^{P_2} \lambda_{2j2p2} T_{p_2}^*(\hat{x}_{2j2})$$

$$\Psi_{3j3}(\hat{x}_{3j3}) = \sum_{p_3=0}^{P_3} \lambda_{3j3p3} T_{p_3}^*(\hat{x}_{3j3})$$

Матрицы $\|a\|$ определяются для каждой i-ой функции отдельно

$$\hat{Y}_i(q) = \sum_{j=1}^{n_1} a^{(i)} \Psi_{1j1}(\hat{x}_{1j1}[q])$$

$$\hat{Y}_i(q) = \sum_{j=1}^{n_2} a^{(i)}_{2j2} \Psi_{2j2}(\hat{x}_{2j2}[q])$$

$$\hat{Y}_i(q) = \sum_{j3=1}^{n_3} a^{(i)}_{3j3} \Psi_{3j3}(\hat{x}_{3j3}[q])$$

q=1...n для всех трех систем уравнений, а число неизвестных определяется размерностями векторов x_1, x_2, x_3 .

В левой части этих уравнений — нормированные табличные значения $Y_i(q)$.

В рассматриваемом примере размерности =1 ($x_{11} \equiv x_1$ и др.)

$$\hat{Y}_{1}(q) = a^{1}_{11} \Psi_{11}(\hat{x}_{11}[q])$$

$$0,6326 = a^{1}_{11}[0,5b_{110} + b_{111}(-1+2*0,444) + ...]$$

$$1 = a^{1}_{11}[0,5b_{110} + b_{111}(-1+2*1) + ...]$$
...

 $0 = a_{11}^{1}[0,5b_{110} + b_{111}(-1+2*0) + ...]$

Аналогично — другие векторы.

4. Определение структуры векторов функций Φ_i — матриц ||c|| .

После нахождения $\|a\|$ вычисляются значения следующих функций (q=1...n).

$$\Phi_{1i}(\hat{x}_1[q]) = \sum_{j_1=1}^{n_1} a_{1j_1}^{(i)} \Psi_{1j_1}(\hat{x}_{1j_1}[q])$$

$$\Phi_{2i}(\hat{x}_2[q]) = \sum_{j_2=1}^{n_2} a_{2j_2}^{(i)} \Psi_{2j_2}(\hat{x}_{2j_2}[q])$$

$$\Phi_{3i}(\hat{x}_3[q]) = \sum_{j_3=1}^{n_3} a_{3j_3}^{(i)} \Psi_{3j_3}(\hat{x}_{3j_3}[q])$$

Замечание. Функции Ψ для разных целевых функций остаются одинаковыми (в последних формулах отсутствует зависимость от i).

И, наконец, уточняется вклад каждой функции $\Phi_{1i}, \Phi_{2i}, \Phi_{3i}$ в функции Φ_{i} :

$$\Phi_i(x_1, x_2, x_3) = C_{1i}\Phi_{1i}(x_1) + C_{2i}\Phi_{2i}(x_2) + C_{3i}\Phi_{3i}(x_3)$$

Матрицы $\|c\|$ определяются для каждой i-ой функции отдельно.

Как и при определении ||a||, в левой части уравнений берутся нормированные исходные значения $Y_i(q)$.

$$\hat{Y}_{i}(q) = C_{1i}\Phi_{1i}(\hat{x}_{1}[q]) + C_{2i}\Phi_{2i}(\hat{x}_{2}[q]) + C_{3i}\Phi_{3i}(\hat{x}_{3}[q])$$

В каждой из i систем уравнений будут три неизвестных коэффициента C и n(q=1...n) уравнений.

5. Пересчет коэффициентов полученных многочленов через обратные формулы нормирования

Задание

В каждом из вариантов заданы:

- исходные таблицы данных;
- размерности векторов $x_1, x_2, x_3 n_1, n_2, n_3$;
- количество выборок n (для расчета);
- **количество** целевых функций m;
- веса целевых функций;
- метод решения несовместных систем уравнений, в которых число неизвестных не равно числу уравнений;

Наборы Р1, Р2, Р3— степени полинома Чебышева (Лежандра, Лагера, Эрмита и др.) для x_1, x_2, x_3 — следует подобрать самостоятельно, исходя из критерия минимума максимального отклонения функций: $10^{-6} \le \Delta^0 \le 10^{-3}$.

Задание

Требуется:

- 1) сформировать целевые функции и вывести на печать
- значения всех промежуточных коэффициентов (λ, a, c) и функций (Ψ, Φ) ;
- вид полученных функций $\Phi_i(x_1,x_2,x_3)$ через: 1) $\Phi_{i1}(x_1), \Phi_{i2}(x_2), \Phi_{i3}(x_3)$; 2) полиномы Чебышева;
- 3) в форме обычных многочленов (целесообразно это предусмотреть в файле результатов) как в нормированном, так и в восстановленном виде;
- построить графики исходных и полученных функций;
- оценить погрешность восстановленных функций по $\Phi_i(x_1, x_2, x_3)$ отношению к исходной заданной выборке.
- 4) сделать письменный отчет о выполненной работе, включив листинг программы.

Раздел 4. Требования к программе

- 1. Языки программирования: Pascal / Delphi, Turbo / Borland C/C++, Borland C++ Builder и др.
- 2. Учет всех вариантов задания и способов решения задач.
- 3. Основные элементы интерфейса:
 - Реализовать файловый ввод и вывод (*.txt), предусмотрев диалоговые окна при нажатии на кнопки «Изменить», «Добавить» и др.:
- имя файла с таблицей переменных X вводится в окно «Файл исходных данных»;
- в следующее окно последовательно вводятся имена файлов, каждый из которых содержит лишь один столбец это Y_i (число файлов совпадает с числом целевых функций), а также w_i удельный вес функции, предусмотреть особую отметку для случая 0.5*(min+max);

Раздел 4. Требования к программе

- окно для файла численных результатов;
- окно для графического представления результатов;
- окна для размерности векторов x_1, x_2, x_3, Y_i ;
- окна для выбора требуемой степени полиномов векторов x_1, x_2, x_3 ;
- окна выбора различных видов полиномов: Чебышева, Лежандра, Лагера, Эрмита;
- окно для графического представления результатов используемых полиномов (по мере увеличения количества удерживаемых членов разложения);
- окно «размер выборки», предусматривающее возможность варьирования количества выборки;
- окно, позволяющее решать три системы уравнений для определения матриц $\|\lambda_{j_1}^0\|_{p_1}\|_{p_2}\|_{p_2}\|_{p_3}\|_{p_3}\|_{p_4}\|_{p_5}\|_{p_6}\|$

Раздел 4. Требования к программе

- 5. Программа решения несовместных систем уравнений предоставляется дополнительно в отдельном исполняемом файле.
- 6. Все исходные файлы (годные к повторной компиляции в соответствующей оболочке!) вместе с исполняемым (*.exe) сдаются на жестком носителе информации.

Пример окна задания исходных данных и просмотра результатов

Quit Method of Simplex Control Sample

Quit Method of Simplex Control Sample Laboratory Work

Fill lambdas, A and C with: Weight selection: Method of Simplex: Polynomial powers (max + min) / 2 Chebishev's polynomial Zeros Precision: C Lejandr's polynomial (max - min) / 2 0.0001 C Lagger's polynomial max - min Random numbers Ermit's polynomial average Show discrepancies Chebishev's 2 sort polynomial C-type polynomial -Lambda equations: S-type polynomial in common Fill Go separatly Displaced polynomial Draw

Пример окна задания исходных данных и просмотра результатов

Пример окна задания исходных данных и просмотра результатов

Постановка задачи:

Построить по заданной дискретной выборке приближающие функции $\Phi_i(x_1,x_2,x_3)$, i=1,m (аналитические и графически представленные функциональные зависимости), которые с практически приемлемой погрешностью в смысле Чебышевского приближения характеризуют истинные функциональные зависимости $y_i = f_i(x_1,x_2,x_3)$, i=1,m.

Предложить свой вариант дискретной выборки X_j и Y_i и построить приближающие функции $\Phi_i(x_1,x_2,x_3), i=1,m$.

Постановка задачи:

Исходные данные: $\underline{X_1}[X_{11}, X_{12}], X_2[X_{21}, X_{22}], X_3[X_{31}, X_{32}, X_{33}]$ и $Y_1[X_1, X_2, X_3], i = 1, 4$

	q_0	X_{11}	X_{12}	X_{21}	X_{22}	X_{31}	X_{32}	X_{33}
1	1	6,050	12,015	1,050	9,015	10,000	1,000	6,100
	2	8,150	10,100	1,150	9,109	15,800	2,100	4,200
	3	10,200	8,125	1,192	9,125	22,500	2,500	3,500
	4	12,250	6,175	2,250	9,175	25,700	3,510	2,720
•	5	14,325	5,200	4,325	9,198	32,500	4,200	2,530
4	6	16,350	4,250	6,350	9,251	35,000	5,020	2,100
1	7	18,490	3,400	8,411	9,495	40,700	8,200	1,150
	8	20,698	2,500	10,505	10,498	51,800	10,100	0,720
2			S.E.					
	41	5,950	10,110	7,950	3,115	58,600	2,720	12,850
	42	5,020	8,115	9,995	1,115	35,800	2,340	10,340
ì	43	4,050	6,128	11,950	2,120	15,260	2,160	8,680
	44	5,935	4,131	13,935	4,130	9,520	1,760	5,320
	45	6,925	2,135	15,925	6,135	4,800	1,480	2,160

Постановка задачи:

Y_1	Y_2	Y_3	Y_4
254,621	58,145	119,406	117,683
298,163	73,368	92,651	90,123
387,411	71,084	87,691	83,576
467,197	83,567	78,793	74,789
566,547	93,813	79,497	54,316
616,829	8,475	101,985	109,463
473,329	10,924	128,591	233,415
249,421	24,183	102,861	308,613
225,356	46,324	105,817	207,319
176,578	76,457	78,473	182,263
170,948	95,814	81,417	84,132
168,334	104,549	78,653	61,953

 b_{q_0} определяется средним арифметическим значением

$$b_{q_0} = \{ \max_{i \in [1,m]} \hat{Y}_i[q_0] + \min_{i \in [1,m]} \hat{Y}_i[q_0] \} / 2, q_0 = \overline{1, k_0}$$

Рассмотрим график для третьей целевой функции

Рассмотрим график для четвертой целевой функции

Первый иерархический уровень

$$\Phi_{1} = 1,000 * \Phi_{11}(X_{1}) + 1,000 * \Phi_{12}(X_{2}) + 1,000 * \Phi_{13}(X_{3})$$

$$\Phi_{2} = 1,000 * \Phi_{21}(X_{1}) + 1,000 * \Phi_{22}(X_{2}) + 1,000 * \Phi_{23}(X_{3})$$

$$\Phi_{3} = 1,000 * \Phi_{31}(X_{1}) + 1,000 * \Phi_{32}(X_{2}) + 1,000 * \Phi_{33}(X_{3})$$

$$\Phi_{4} = 1,000 * \Phi_{41}(X_{1}) + 1,000 * \Phi_{42}(X_{2}) + 1,000 * \Phi_{43}(X_{3})$$

Второй уровень

$$\Phi_{11} = 1,769 * K_{11}(X_{11}) + 0,437 * K_{12}(X_{12});$$

$$\Phi_{12} = 1,710 * K_{21}(X_{21}) + 2,785 * K_{22}(X_{22});$$

$$\Phi_{13} = 0,948 * K_{31}(X_{31}) + 0,469 * K_{32}(X_{32}) + 0,726 * K_{33}(X_{33});$$

$$\Phi_{21} = 0,619 * K_{11}(X_{11}) + 1,342 * K_{12}(X_{12});$$

$$\Phi_{22} = -0,766 * K_{21}(X_{21}) + 0,794 * K_{22}(X_{22});$$

$$\Phi_{23} = 0,932 * K_{31}(X_{31}) + 1,255 * K_{32}(X_{32}) + 1,120 * K_{33}(X_{33});$$

Второй уровень

$$\Phi_{31} = 1,187 * K_{11}(X_{11}) + 0,579 * K_{12}(X_{12});$$

$$\Phi_{32} = 2,531 * K_{21}(X_{21}) + 0,415 * K_{22}(X_{22});$$

$$\Phi_{33} = 1,346 * K_{31}(X_{31}) + 1,023 * K_{32}(X_{32}) + 0,897 * K_{33}(X_{33});$$

$$\Phi_{41} = -0.101 * K_{11}(X_{11}) + 0.561 * K_{12}(X_{12});$$

$$\Phi_{42} = 0.947 * K_{21}(X_{21}) + -1.575 * K_{22}(X_{22});$$

$$\Phi_{43} = -0.066 * K_{31}(X_{31}) + 1.089 * K_{32}(X_{32}) + 0.554 * K_{33}(X_{33});$$

Третий уровень

$$K_{11}(X_{11}) = 0,074 * T_1(X_{11}) + -0,095 * T_2(X_{11});$$

$$K_{12}(X_{12}) = -0,224 * T_1(X_{12}) + -0,116 * T_2(X_{12});$$

$$K_{21}(X_{21}) = -0,186 * T_1(X_{21}) + -0,069 * T_2(X_{21});$$

$$K_{22}(X_{22}) = 0,100 * T_1(X_{22}) + 0,022 * T_2(X_{22});$$

$$K_{31}(X_{31}) = -0,144 * T_1(X_{31}) + 0,122 * T_2(X_{31}) + -0,134 * T_3(X_{31});$$

$$K_{32}(X_{32}) = 0,031 * T_1(X_{32}) + -0,230 * T_2(X_{32}) + -0,024 * T_3(X_{32});$$

$$K_{33}(X_{33}) = -0,021 * T_1(X_{33}) + -0,177 * T_2(X_{33}) + 0,016 * T_3(X_{33});$$

С помощью полиномов

$$\Phi_{1} = 0.131*T_{1}(X_{11}) + -0.168*T_{2}(X_{11}) + -0.098*T_{1}(X_{12}) + -0.051*T_{2}(X_{12}) + \\ -0.317*T_{1}(X_{21}) + -0.118*T_{2}(X_{21}) + 0.279*T_{1}(X_{22}) + 0.063*T_{2}(X_{22}) + \\ -0.136*T_{1}(X_{31}) + 0.115*T_{2}(X_{31}) + -0.127*T_{3}(X_{31}) + 0.015*T_{1}(X_{32}) + \\ -0.108*T_{2}(X_{32}) + -0.011*T_{3}(X_{32}) + -0.016*T_{1}(X_{33}) + -0.128*T_{2}(X_{33}) + \\ 0.012*T_{3}(X_{33})$$

$$\Phi_{2} = 0.046 * T_{1}(X_{11}) + -0.059 * T_{2}(X_{11}) + -0.301 * T_{1}(X_{12}) + -0.155 * T_{2}(X_{12}) + 0.142 * T_{1}(X_{21}) + 0.053 * T_{2}(X_{21}) + 0.079 * T_{1}(X_{22}) + 0.018 * T_{2}(X_{22}) + -0.134 * T_{1}(X_{31}) + 0.113 * T_{2}(X_{31}) + -0.125 * T_{3}(X_{31}) + 0.039 * T_{1}(X_{32}) + -0.288 * T_{2}(X_{32}) + -0.030 * T_{3}(X_{32}) + -0.024 * T_{1}(X_{33}) + -0.198 * T_{2}(X_{33}) + 0.018 * T_{3}(X_{33})$$

С помощью полиномов

$$\Phi_{3} = 0,088*T_{1}(X_{11}) + -0,113*T_{2}(X_{11}) + -0,130*T_{1}(X_{12}) + -0,067*T_{2}(X_{12}) + \\ -0,470*T_{1}(X_{21}) + -0,175*T_{2}(X_{21}) + 0,042*T_{1}(X_{22}) + 0,009*T_{2}(X_{22}) + \\ -0,193*T_{1}(X_{31}) + 0,164*T_{2}(X_{31}) + -0,180*T_{3}(X_{31}) + 0,032*T_{1}(X_{32}) + \\ -0,235*T_{2}(X_{32}) + -0,024*T_{3}(X_{32}) + -0,019*T_{1}(X_{33}) + -0,159*T_{2}(X_{33}) + \\ 0,015*T_{3}(X_{33})$$

$$\Phi_{4} = -0,007*T_{1}(X_{11}) + 0,010*T_{2}(X_{11}) + -0,126*T_{1}(X_{12}) + -0,065*T_{2}(X_{12}) + \\ -0,176*T_{1}(X_{21}) + -0,065*T_{2}(X_{21}) + -0,158*T_{1}(X_{22}) + -0,035*T_{2}(X_{22}) + \\ 0,009*T_{1}(X_{31}) + -0,008*T_{2}(X_{31}) + 0,009*T_{3}(X_{31}) + 0,034*T_{1}(X_{32}) + \\ -0,250*T_{2}(X_{32}) + -0,026*T_{3}(X_{32}) + -0,012*T_{1}(X_{33}) + -0,098*T_{2}(X_{33}) + \\ 0,009*T_{3}(X_{33})$$

Для нормированных значений X

$$\Phi_{1} = 1,602 * X_{11}^{1} + -1,341 * X_{11}^{2} + 0,208 * X_{12}^{1} + -0,404 * X_{12}^{2} + 0,310 * X_{21}^{1} + -0,945 * X_{21}^{2} + 0,057 * X_{22}^{1} + 0,500 * X_{22}^{2} + 0,479 * X_{31}^{1} + 7,015 * X_{31}^{2} + -4,062 * X_{31}^{3} + 0,692 * X_{32}^{1} + -0,330 * X_{32}^{2} + -0,354 * X_{32}^{3} + 1,208 * X_{33}^{1} + -1,593 * X_{33}^{2} + 0,377 * X_{33}^{3} + -0,125$$

$$\Phi_{2} = 0,561 * X_{11}^{1} + -0,469 * X_{11}^{2} + 0,640 * X_{12}^{1} + -1,242 * X_{12}^{2} + -0,139 * X_{21}^{1} + 0,423 * X_{21}^{2} + 0,016 * X_{22}^{1} + 0,143 * X_{22}^{2} + -3,421 * X_{31}^{1} + 6,897 * X_{31}^{2} + -3,993 * X_{31}^{3} + 1,850 * X_{32}^{1} + -0,884 * X_{32}^{2} + -0,948 * X_{32}^{3} + 1,864 * X_{33}^{1} + -2,457 * X_{33}^{2} + 0,581 * X_{33}^{3} + -0,227$$

Для нормированных значений X

$$\Phi_{3} = 1,076 * X_{11}^{1} + -0,900 * X_{21}^{2} + 0,276 * X_{12}^{1} + -0,536 * X_{12}^{2} + 0,459 * X_{21}^{1} + -1,399 * X_{21}^{2} + 0,009 * X_{22}^{1} + 0,075 * X_{22}^{2} + -4,940 * X_{31}^{1} + 9,959 * X_{31}^{2} + -5,767 * X_{31}^{3} + 1,508 * X_{32}^{1} + -0,720 * X_{32}^{2} + -0,772 * X_{32}^{3} + 1,492 * X_{33}^{1} + -1,967 * X_{23}^{2} + 0,465 * X_{33}^{3} + 0,266$$

$$\Phi_{4} = -0,092 * X_{11}^{1} + 0,077 * X_{11}^{2} + 0,267 * X_{12}^{1} + -0,519 * X_{12}^{2} + 0,172 * X_{21}^{1} + -0,524 * X_{21}^{2} + -0,032 * X_{22}^{1} + -0,283 * X_{22}^{2} + 0,241 * X_{31}^{1} + -0,485 * X_{31}^{2} + 0,281 * X_{31}^{3} + 1,605 * X_{32}^{1} + -0,766 * X_{32}^{2} + -0,822 * X_{32}^{3} + 0,069$$

Для исходных значений X

$$\Phi_1 = 0.136 * X_{11}^1 + -0.001 * X_{11}^2 + 0.019 * X_{12}^1 + 0.000 * X_{12}^2 + 0.061 * X_{21}^1 + -0.001 * X_{21}^2 + -0.023 * X_{22}^1 + 0.000 * X_{22}^2 + -0.234 * X_{31}^1 + 0.001 * X_{31}^2 + 0.000 * X_{31}^3 + 0.007 * X_{32}^1 + 0.001 * X_{32}^2 + 0.000 * X_{32}^3 + 0.284 * X_{33}^1 + -0.007 * X_{33}^2 + 0.000 * X_{31}^2 + 0.000 * X_{21}^2 + 0.000 * X_{21}^2 + 0.000 * X_{22}^2 + 0.000 * X_{31}^2 + 0.000 * X_{32}^2 + 0.000 * X_{32}^2 + 0.000 * X_{32}^2 + 0.000 * X_{33}^2 +$$

Для исходных значений X

$$\Phi_{3} = 0,091*X_{11}^{1} + -0,001*X_{21}^{2} + 0,026*X_{12}^{1} + 0,000*X_{12}^{2} + 0,090*X_{21}^{1} + -0,001*X_{21}^{2} + -0,003*X_{22}^{1} + 0,000*X_{22}^{2} + -0,332*X_{31}^{1} + 0,002*X_{31}^{2} + 0,000*X_{32}^{3} + 0,015*X_{32}^{1} + 0,001*X_{32}^{2} + 0,000*X_{33}^{3} + 0,015*X_{33}^{1} + -0,009*X_{33}^{2} + 0,000*X_{33}^{3} + 11,071$$

$$\Phi_{4} = -0,008*X_{11}^{1} + 0,000*X_{21}^{2} + 0,025*X_{12}^{1} + 0,000*X_{22}^{2} + 0,034*X_{21}^{1} + 0,000*X_{21}^{2} + 0,013*X_{22}^{1} + 0,000*X_{22}^{2} + 0,016*X_{31}^{1} + 0,000*X_{31}^{2} + 0,000*X_{31}^{2} + 0,016*X_{32}^{1} + 0,001*X_{32}^{2} + 0,000*X_{32}^{3} + 0,000*X_{32}^{3} + 0,016*X_{31}^{1} + 0,000*X_{32}^{2} + 0,000*X_{32}^{3} + 0,000*X_{32}^{3} + 0,016*X_{33}^{1} + 0,000*X_{32}^{2} + 0,000*X_{32}^{3} + 0,000*X_{33}^{3} +$$

