

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 8 – Étude graphique des mouvements plans

Travaux dirigés

D'après ressources de Florestan Mathurin et Stéphane Genouël.

Treuil-palan de pont roulant

On s'intéresse à un treuil-palan de pont roulant. Il est constitué d'un ensemble moteur, réducteur et tambour qui met en mouvement, par l'intermédiaire de câbles, une poulie sur laquelle on retrouve un crochet.

L'objectif de cette étude est de vérifier une performance du réducteur dont on donne un extrait du cahier des charges fonctionnel ainsi que le modèle.

Ch. 8: Cinématique graphique

	Nb de	Module	Diamètre
	dents Z	(mm)	primitif (mm)
Pignon 1	21		
Roue 2		2	$d_2 = 102$
Couronne 0a	123		
Pignon 3		3	$d_3 = 69$
Roue 4	34		
Couronne 0b	91		

Question 1

Compléter le tableau ci-dessus en indiquant les nombres de dents, les modules et les diamètres primitifs manquants.

Dans un premier temps, on se propose de déterminer le rapport de réduction du réducteur en utilisant une méthode graphique. Sur la figure des documents réponse sont représentés les cercles primitifs des différentes roues du mécanismes. Sur le cadran de droite on retrouve le premier étage de réduction. Sur le cadran de gauche on retrouve le deuxième étage de réduction.

A l'instant t, on donne le vecteur vitesse $\overline{V(B \in 1/0)}$. On note $I_{i/j}$ le CIR du solide i par rapport au solide j.

Question 2

Déterminer $I_{1/0}$, $I_{2/1}$, $I_{2/0}$, $I_{3/0}$, $I_{3/2}$, $I_{3/4}$, $I_{4/0}$, $I_{4/5}$.

En expliquant la démarche de construction déterminer graphiquement sur le document réponse $\overline{V(C \in 2/0)}$. En déduire $\overrightarrow{V(C \in 3/0)}$.

Question 4

En expliquant la démarche de construction déterminer graphiquement sur le document réponse $\overline{V(I \in 3/0)}$. En déduire $V(I \in 4/0)$.

Question 5

En expliquant la démarche de construction déterminer graphiquement sur le document réponse $V(F \in 4/0)$. En déduire $V(F \in 5/0)$.

Question 6

Déterminer une relation entre $||V(C \in 3/0)||$ et $||V(B \in 1/0)||$.

Question 7

Déterminer une relation entre $||\overrightarrow{V(C \in 3/0)}||$ et $||\overrightarrow{V(I \in 4/0)}||$ en fonction de d_1 , d_2 et d_3 .

Question 8

Déterminer une relation entre $||\overrightarrow{V(I \in 4/0)}||$ et $||\overrightarrow{V(F \in 5/0)}||$.

Déterminer la relation entre $\omega_{5/0}$ et $||\overrightarrow{V(F \in 5/0)}||$ en fonction de d_3 , d_4 ainsi que le relation entre $\omega_{1/0}$ et $||\overrightarrow{V(B \in 1/0)}||$ en fonction de d_1 .

2

Question 10

En déduire le rapport de réduction du réducteur.

Question 11 Faire l'application et conclure vis-à-vis du cahier des charges fonctionnel.

