Indian Institute of Technology Kharagpur

CS60094: Computational Number Theory, Spring 2023 End Semester Examination

25 APRIL 2023

CSE 107, 2PM - 5PM

Total marks = 100

Answer Question 1, two questions from Section I and two questions from Section II.

Note that exactly five questions must be answered.

Keep your answers clear and concise. State all assumptions you make.

Let $\alpha \in \mathbb{F}_{p^n}^*$ and $r = (p^n - 1)/(p - 1) = 1 + p + p^2 + \dots + p^{n-1}$.

(a) Prove that $\alpha^r \in \mathbb{F}_p$.

(b) Show how α^{-1} can be efficiently computed using the fact that $\alpha^{-1} = (\alpha^r)^{-1} \alpha^{r-1}$.

10+10=20

SECTION I

2. Let p, q be primes, n = pq, $a \in \mathbb{Z}_n^*$ and $d = \gcd(p-1, q-1)$.

Prove that n is a pseudoprime to base a if and only if $a^d \equiv 1 \pmod{n}$.

Prove that n is a pseudoprime to exactly d^2 bases in \mathbb{Z}_n^* .

(c) To how many bases in \mathbb{Z}_n^* is n a pseudoprime if q = 2p - 1?

8+6+6=20

- 3. Prove the following assertions.
 - Fermat's little theorem holds for all Carmichael numbers (i.e., if n is a Carmichael number, then $a^n \equiv a \pmod{n}$ for all $a \in \mathbb{Z}_n$).
- (b) An odd prime p is a strong pseudoprime in any base not divisible by p.
 - An odd composite integer n is not an Euler pseudoprime to at least half the bases in \mathbb{Z}_n^* .

5+5+10 = 20

4. Consider a primality testing algorithm A that takes as input an odd integer n > 1 and a positive integer parameter k, described as follows.

```
\mathcal{A}(n,k)
Choose a_1,a_2,\ldots,a_k at random from \mathbb{Z}_n^+
for i\leftarrow 1,2,\ldots,k
compute b_i\leftarrow a_i^{(n-1)/2} \mod n
if b_i\neq \pm 1, output "NO"
if b_i=1 for all i=1,2,\ldots,k, then output "NO"
output "YES"
```

Prove the following.

- (a) If n is prime, A outputs "NO" with probability at most 2^{-k} .
- (b) If n is composite, \mathcal{A} outputs "YES" with probability at most 2^{-k} .

10+10=20

SECTION II

- We say that a positive integer n can be written as the sum of two squares if $n = a^2 + b^2$ for some positive integers a, b.
- (s) Show that is two integers m,n can be written as sums of two squares, then mn can also be so
- (b) Prove that no $n \equiv 3 \pmod{4}$ can be written as a sum of two squares.
- (c) Let a square-free composite integer n be a product of (distinct) primes each congruent to 1 modulo 4. Show that n can be written as a sum of 2 squares in at least 2 different ways.
- (d) Let n be as in Part (c) and we know that $n = a^2 + b^2 = c^2 + d^2$ with a, b, c, d being distinct. Describe how n can be factored easily.

3+3+6+8=20

Suppose you are given a black box that, given two positive integers n and k, returns in one unit of time the decision whether n has a factor d in the range $2 \le d \le k$. Using this black box, devise an algorithm to factor a positive integer n in polynomial (in $\log n$) time. Deduce the running time of your algorithm. 20

- 7. Dixon's method for factoring an integer n can be combined with a sieve that helps reducing the running time from L[2] to L[3/2]. Instead of choosing random values x_1, \ldots, x_s in the relations, we first choose a random value of x and for $-M \le c \le M$, we check the smoothness of the integers $(x+c)^2 \mod n$ over t small primes p_1, p_2, \ldots, p_t . As in Dixon's original method, take t = L[1/2].
 - (a) Determine M for which one expects to get a system of the desired size.
 - (b) Describe a sieve over the interval [-M, M] for detecting the smooth values of $(x + c)^2 \mod n$.
 - (c) Deduce how you achieve a running time of L[3/2] using this sieve.

5+5+10=20