Transformations

IV – Laplace et Dirac

G. Chênevert

16 novembre 2021

Au menu aujourd'hui

Retour sur la convolution

Transformée de Laplace

Lien avec la convolution

Rappel: Convolution

$$(x*y)(t) = \int_{-\infty}^{+\infty} x(\mathbf{u}) y(t - \mathbf{u}) d\mathbf{u}$$

Pourquoi ça nous intéresse? Si on savait tout déconvoluer :

- on pourrait tout filtrer, déflouter
- tout observer parfaitement

Convolution avec H

Si y = H * x,

$$y(t) = \int_{-\infty}^{+\infty} x(u) H(t-u) du = \int_{-\infty}^{t} x(u) du$$

y est la primitive de x qui s'annule en $-\infty$

Remarque : en dérivant y' = (H * x)' = H' * x et se rappelant que y' = x, on trouve que $\delta := H'$ est neutre pour la convolution

$$\delta * x = x \qquad \forall_x.$$

Propriétés de δ

Si $\delta * x = x$ pour toute fonction x:

• D'après la formule de l'aire totale, on doit avoir

$$A(x) = A(\delta * x) = A(\delta) \cdot A(x)$$

donc

$$A(\delta) = \int_{-\infty}^{+\infty} \delta(t) \, \mathrm{d}t = 1$$

• Mais $\delta(t) = H'(t) = 0$ presque partout . . .

Si δ était une fonction, on aurait $A(\delta) = 0$!

Conclusion : δ n'est pas une fonction.

Représentation officielle

Rappel : ce n'est **pas** une fonction. Ça ne nous empêchera pas de le manipuler!

Exemple

Représentation officielle de

$$x(t) = \sin(2\pi t) + \delta(t) - 2\delta(t-1) + 3\delta(t+1.25)$$

Signaux, définition opérationnelle

Les **signaux** forment un espace vectoriel contenant les fonctions (raisonnables) et aussi certaines « fonctions généralisées » pour lesquelles la plupart des opérations usuelles ont encore un sens . . .

SAUF peut-être l'évaluation en certains points, dits singuliers

(les autres sont des points réguliers).

Jouons avec δ (1/3)

On sait que

$$\delta(t) * x(t) = x(t) \quad \forall_x$$

Soit:

$$x(t) = \int_{-\infty}^{+\infty} \delta(u) x(t-u) du = \int_{-\infty}^{+\infty} \delta(t-u) x(u) du.$$

En t = 0:

$$x(0) = \int_{-\infty}^{+\infty} \delta(-u) \, x(u) \, \mathrm{d}u = \int_{-\infty}^{+\infty} \delta(u) \, x(u) \, \, \mathrm{d}u.$$

Jouons avec δ (1/3)

Le signal
$$t \mapsto x(t) \delta(t)$$
:

- est nul en tout $t \neq 0$;
- a une aire totale sous la courbe qui vaut x(0).

Donc
$$x(t) \delta(t) = x(0) \delta(t)$$
.

- Moduler un Dirac change son amplitude;
- multiplier par Dirac échantillonne un signal.

$$x(t) \cdot \delta(t) = x(0) \cdot \delta(t)$$

$$x(t) \cdot \delta(t) = x(0) \cdot \delta(t)$$

Puisqu'on peut modifier les valeurs d'un signal en un nombre fini de points sans modifier celui-ci, cette formule n'a de sens que si on suppose x continu en 0.

Dans le cas plus général où on suppose seulement $x \in \mathcal{C}^0_{\mathsf{mcx}}$, on aurait plutôt

$$x(t)\cdot\delta(t)=\frac{x(0^-)+x(0^+)}{2}\cdot\delta(t).$$

Exemple

 $H(t) \cdot \delta(t) = \frac{1}{2} \cdot \delta(t)$ (peu importe la convention retenue pour H(0))

Jouons avec δ (2/3)

On sait que

$$\delta(t) * x(t) = x(t) \quad \forall_{x}$$

Qu'obtient-on en convoluant avec un Dirac retardé $\delta(t-a)$?

Certainement

$$\delta(t-a)*x(t)=(\delta*x)(t-a)=x(t-a)$$

Le retard est une opération de convolution!

Jouons avec δ (3/3)

Que dire de la dérivée de Dirac?

$$\delta' * x = (\delta * x)' = x'$$

Dériver est une opération de convolution!

Représentation officielle de δ' :

Attention

Résister à la tentation d'écrire

$$\delta(t) = \begin{cases} 0 & \text{si } t \neq 0 \\ +\infty & \text{si } t = 0. \end{cases}$$

On perdrait alors toute l'information sur l'amplitude de δ !

Exemple

 $2\delta \neq \delta$: le membre de gauche est la dérivée de 2H, celui de droite la dérivée de H!

Par contre, pas de problème à écrire $sg'=2\delta$

Dérivées de fonctions discontinues

De façon générale : si x(t) est un signal satisfaisant les conditions de Dirichlet

(continûment dérivable par morceaux, sauf en des points isolés où il admet des limites à gauche et à droite)

sa dérivée au sens des signaux est une fonction continue par morceaux

+ des Diracs

$$\sum_{i} (x(t_i^+) - x(t_i^-)) \, \delta(t - t_i)$$

en chaque point t_i de discontinuité.

Au menu aujourd'hui

Retour sur la convolution

Transformée de Laplace

Lien avec la convolution

Une question de point de vue

Pour résoudre des ÉDO on cherche habituellement des solutions de la forme

$$\sum_{i} \underbrace{A_{i}}_{\text{amplitude}} e^{p_{i}t}$$

puisque les e^{pt} sont les fonctions propres pour l'opérateur de dérivée :

$$\frac{\mathsf{d}}{\mathsf{d}t}(e^{pt}) = p \, e^{pt}.$$

Pourquoi ne pas essayer d'exprimer toutes les fonctions comme somme d'exponentielles pondérées ?

$$x(t) = \int \underbrace{A(p)}_{\text{densité d'amplitude}} e^{pt} dp$$

Transformation de Laplace

Définition

Si x(t) est un signal à valeurs réelles ou complexes, la **transformée de Laplace** de x(t) est la fonction complexe définie par

$$X(p) := \int_0^\infty x(t) e^{-\rho t} dt.$$

On notera si nécessaire $X(p) = \mathcal{L}(x(t))$ ou $x(t) \supset X(p)$.

Convergence

- Dans ce cours, on se souciera peu de la convergence de cette intégrale. . .
- Habituellement, X(p) existe pour tout $p \ll à$ droite \gg d'une certaine abscisse σ (pouvant être $\pm \infty$) :

Quelques images

•
$$x(t) = 1 \supset X(p) = \frac{1}{p}$$

•
$$x(t) = t \supset X(p) = \frac{1}{p^2}$$

$$\bullet \ \ x(t) = \tfrac{t^n}{n!} \ \Box \ X(p) = \tfrac{1}{p^{n+1}}$$

•
$$x(t) = e^{at} \supset X(p) = \frac{1}{p-a}$$

•
$$x(t) = \cos \omega t \supset \frac{p}{p^2 + \omega^2}$$

•
$$x(t) = \sin \omega t \supset \frac{\omega}{p^2 + \omega^2}$$

Quelques propriétés

Si
$$x(t) \supset X(p)$$
:

•
$$x'(t) \supset p X(p) - x(0)$$

$$\bullet \int_0^t x(u) du \equiv \frac{X(p)}{p}$$

•
$$e^{at} x(t) \supset X(p-a)$$

•
$$t \times (t) \supset -X'(p)$$

$$\bullet \ \frac{x(t)}{t} \supset \int_{p}^{+\infty} X(p) \, \mathrm{d}p$$

•
$$x(t-a) \supset e^{-ap} X(p)$$

Formule de Mellin-Fourier

Si x(t) est causal, la transformée inverse de X(p) peut s'exprimer comme

$$x(t) = \int_{\sigma - i\infty}^{\sigma + i\infty} \underbrace{\frac{X(p)}{2i\pi}}_{\text{densit\'e d'amplitude}} e^{pt} dp$$

Formule qui montre qu'il s'agit bien de 2 repésentations équivalentes d'un même objet.

On parle de domaine temporel (t) vs domaine opérationnel (p).

En pratique

Pour retrouver un antécédent par Laplace, on s'appuie plutôt sur les images connues.

Exemple

$$X(p) = \frac{5}{(p+1)(p^2+2p+2)} = \frac{5}{p+1} - 5\frac{p+1}{(p+1)^2+1}$$

Résolution

$$X(p) = \frac{5}{p+1} - 5\frac{p+1}{(p+1)^2 + 1}$$

On sait:

•
$$\frac{1}{p+1} \sqsubset e^{-t}$$

•
$$\frac{p}{p^2+1} \subset \cos t$$

• par translation,
$$\frac{p+1}{(p+1)^2+1} \sqsubset e^{-t} \cos t$$

X(p) provient donc de

$$5e^{-t} - 5e^{-t}\cos t = 5e^{-t}(1-\cos t)$$

Pourquoi ça marche?

Les fonctions de la vraie vie sont essentiellement

- exponentielles : e^{at} (image $\frac{1}{p-a}$: fraction)
- polynomiales : t^n (image $\frac{n!}{p^{n+1}}$: fraction)
- oscillantes : \sin ou $\cos(\omega t)$ (image $\frac{\omega$ ou $p}{p^2+\omega^2}$: fractions)
- combinaisons linéaires et produits des trois types précédents.

Décompositions en éléments simples!

Ce que Laplace ne dit pas...

- Tous les signaux ont été supposés causaux (nuls pour t < 0)
- On s'intéresse plus à la position des pôles qu'à autre chose : par exemple, si

$$X(p) = \frac{1}{p^2 + 4p + 13} = \frac{1}{(p+2+3i)(p+2-3i)}$$

c'est que
$$x(t)$$
 « contient » $e^{(-2\pm3i)t}$
(ou $e^{-2t}\cos(3t)$ et $e^{-2t}\sin(3t)$ si x est réel – voir appliquette)

• La convergence de l'intégrale de Laplace devient importante dans certains cas...

Exemple

Théorème (de la valeur finale)

$$\lim_{t\to+\infty} x(t) = \lim_{p\to 0} p X(p).$$

Mais: peut-on dire

$$\lim_{t\to\infty}e^t=\lim_{p\to 0}\frac{p}{p-1}\,??$$

(Indice : non)

Cohérence

Par contre : $y(t) = e^t$ est solution de l'équation différentielle y'(t) = y(t).

En prenant la transformée de Laplace on a :

$$pY(p)-y_0=Y(p)\iff Y(p)=\frac{y_0}{p-1}.$$

En repassant dans le domaine temporel : $y(t) = y_0 e^t$.

Alors:

- si y(t) admet une limite en $+\infty$, c'est que $y_0=0$;
- par ailleurs, pour que Y(p) soit définie pour $p \to 0$ il faut aussi que $y_0 = 0$.

Au menu aujourd'hui

Retour sur la convolution

Transformée de Laplace

Lien avec la convolution

Laplace et convolution

Théorème

Pour
$$x(t)$$
 et $y(t)$ causaux, on a $\mathcal{L}(x * y) = \mathcal{L}(x) \cdot \mathcal{L}(y)$.

Laplace transforme les convolutions en multiplications!

C'est plus simple de convoluer dans le domaine opérationnel que temporel . . .

On peut donc ainsi parfois avantageusement calculer x * y comme

$$\mathcal{L}^{-1}(\mathcal{L}(x)\cdot\mathcal{L}(y)).$$

Laplace et Dirac

Que vaut $\mathcal{L}(\delta)$?

La définition dit :

$$\mathcal{L}(\delta)(p) = \int_0^{+\infty} \delta(t) \, \mathrm{e}^{-pt} \, \mathrm{d}t = \int_0^{+\infty} \delta(t) \, \mathrm{d}t.$$

La borne inférieure est à interpréter comme $\ll 0^- \gg$: d'où

$$\delta(t) \supset 1$$
.

Le neutre pour la multiplication! (comme il se doit)

Cohérence

• H * x est la primitive et x s'annulant en 0 (si x causal) :

$$\mathcal{L}(H * x) = \frac{X(p)}{p} = \mathcal{L}(H) \cdot \mathcal{L}(x) \checkmark$$

- δ est la dérivée de $H: \mathcal{L}(\delta) = 1 = p \mathcal{L}(H)$ \checkmark
- $x(t-a) = \delta(t-a) * x(t) : \mathcal{L}(x(t-a)) = e^{-ap} X(p) = \mathcal{L}(\delta(t-a)) \mathcal{L}(x)$
- x' peut être obtenu comme $\delta' * x$:

$$\mathcal{L}(x') = \mathcal{L}(\delta') \cdot X(p) = p X(p)$$
 et $x(0)$??

Faisons un peu plus attention

Ce qu'on appelle x' en Laplace est réellement $H \cdot x'$.

Or:

$$(H \cdot x)' = H' \cdot x + H \cdot x' = x(0) \cdot \delta + H \cdot x'$$

$$\implies H \cdot x' = (H \cdot x)' - x(0) \cdot \delta$$

En prenant la transformée :

$$\mathcal{L}(x') = p \cdot X(p) - x(0) \cdot 1 \quad \checkmark$$