3) zero at the origin (jw)+1

- De The log magnitude of jw in dB is 20log |jw| = 20log w dB
- 1 The phase angle of jw is a constant and equal to 90°
- The log magnitude curve is a straight line with a slope of 20 d B/dee
- It is seen that the differences in the frequency responses of the factors I and jo his in the signs of the slopes of the log-mag curves and in the signs of the phase angles.
- @ Both log magnitudes become odB at w=1

- 4) Simple Pole | Zero 1 1+jwT , 1+jwT

 → The log mag of 1 is 1+iwT
 - 20 log | 1 = -20 log V 1+w2T2 dB
 - Jor low prequencies such that $\omega < c + 1$, the log mag may be approximated as $-20 \log \sqrt{1+\omega^2+2} \simeq 20 \log 1 = 0 \text{ dB}$
 - is the constant OdB line, for w<< =
 - It is called the Low frequency asymptote (LFA)
- ⇒ For higher frequencies such that $\omega >> f$,
 $-20 \log \sqrt{1+\omega^2 + 2} \simeq -20 \log \omega T dB$
 - -> The value of -20 logwT decreases by 20 dB for every decade of fequency (w).
 - The log magnitude conve is a straightline with a slope of -20 dB [dee, for W>> +.
 - -> It is called the high frequency asymptote (HFA)
 - -> This is known as Asymptotic approximation

- The logarithmic representation of the frequency response curre of the factor I can be approximated by two chaight line aryuptotes; one a straight line at odB for the frequency range $0 < \omega < 1$ and the other a straight line with a slope of -20dB/dec for the frequency range $1 < \omega < \infty$
- \rightarrow At $W = \frac{1}{T}$, the HFA has value $-2v \log w T$ ie $-20 \log \frac{1}{T} = -20 \log l = 0 dB$
- -> Thus the HFA meets the LFA at w=+
- > The frequency at which the two anywholes heet is called the corner frequency or break frequency.
- To the factor 1 the fequency 1+jwT w=+ is called the corner frequency.
 - The corner frequency divides the frequency response curve into two regions, a curve for how frequency region and a curre for high frequency region.

- -> Actual log mag 20 log \(\int 1+\omega^2 T^2 \) dB
- → At $w = \frac{1}{T}$, $LM = -20 \log \sqrt{1+1^2}$ = $-20 \log \sqrt{2}$

= -3dB.

- → But we have assumed LM at w=+
 to be 0 dB
- → So there is an error of -3dB at the corner frequency.

PHASE PLOT

(8) The phase angle of the factor 1/1+jwT w $\phi = -\tan^2 \omega T$

- (2) At zero frequency the phase angle is zero
- (B) At the corner frequency the phase angle is $\phi = -\tan^{-1} \frac{1}{T} \cdot T = -45^{\circ}$
- At infinity the phase angle is -90° $\frac{1}{100}$ $\frac{10}{100}$ $\frac{10}{100}$

-90

- An advantage of the logarithmic representation is that, for the reciprocal factors the log mag and phase angle curves need only be changed in sign.
 - EM for ItiNT is 20 log | ItiNT |

 1è 20 log \[\text{I+int}^2 \tau dB \]

 \$\phi\$ for ItiNT is tam of
 - (x) The corner frequency is $\omega = \frac{1}{T}$