Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

tylervigen.com

Letters in Winning Word of Scripps National Spelling Bee

correlates with

Number of people killed by venomous spiders

→ Number of people killed by venomous spidersSpelling Bee winning word

tylervigen.com

CAUSALITY

PART I - CONFOUNDING

André dos Santos, Ph.D.

The Ladder of Causation

Confounding

- Not a statistical notion
- $P(Y|X) \neq P(Y|do(X))$
- Discrepancy between what we want to a asses (the causal effect) and what we actually do assess using statistical method

Backdoor path is any path from X to Y that starts with an arrow pointing into X.

X and Y will be **deconfounded** if we block every backdoor path.

Backdoor path is any path from X to Y that starts with an arrow pointing into X.

X and Y will be **deconfounded** if we block every backdoor path.

Backdoor path is any path from X to Y that starts with an arrow pointing into X.

X and Y will be **deconfounded** if we block every backdoor path.

No backdoor

- One backdoor path
- $\bullet \qquad X \leftarrow A \rightarrow B \leftarrow D \rightarrow E \rightarrow Y$

- One backdoor path
- $\bullet \qquad \mathsf{X} \leftarrow \mathsf{A} \rightarrow \mathsf{B} \leftarrow \mathsf{D} \rightarrow \mathsf{E} \rightarrow \mathsf{Y}$
- Control Ø

- One backdoor path
- $\bullet \quad X \leftarrow \ B \rightarrow Y$

- One backdoor path
- $\bullet \quad \mathsf{X} \leftarrow \; \mathsf{B} \rightarrow \mathsf{Y}$

- One backdoor path
- $\bullet \quad \mathsf{X} \leftarrow \; \mathsf{B} \to \mathsf{Y}$
- Control B

- One backdoor path
 - $\circ \quad X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$
- Control \emptyset

- One backdoor path \circ $X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$
- Control Ø

A := Societal norms
B := Seat belt usage
C := Safety and health related measures

- Two backdoor paths
 - $\bigcirc X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$

- Two backdoor paths
 - $\circ X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$
 - $\circ \quad X \leftarrow B \leftarrow C \rightarrow Y$

- Two backdoor paths
 - $\circ \quad X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$
 - $\circ \quad X \leftarrow B \leftarrow C \rightarrow Y$
- Control C

- A := Societal norms
 B := Seat belt usage
 C := Safety and health related measures
 D := Parental asthma
 E := Chronic bronchitis
 F := Sex
 G := Socioeconomic status
 X := Smoking
 Y := Lung disease

Control E, F, and G

A := Societal norms
B := Seat belt usage
C := Safety and health related measures
D := Parental asthma
E := Chronic bronchitis
F := Sex
G := Socioeconomic status
X := Smoking
Y := Lung disease

Chosen

Door 1	Door 2	Door 3	Outcome if switch	Outcome if stay
			Lose	Win
			Win	Lose
			Win	Lose

Door You Choose	Door with Car	Door Opened	Outcome if switch	Outcome if stay
1	1	2	Lose	Win
1	1	3	Lose	Win
1	2	2	Lose	Lose
1	2	3	Win	Lose
1	3	2	Win	Lose
1	3	3	Lose	Lose

Door You Choose	Door with Car	Door Opened	Outcome if switch	Outcome if stay
1	1	2	Lose	Win
1	1	3	Lose	Win
1	2	2	Lose	Lose
1	2	3	Win	Lose
1	3	2 🥂	Win	Lose
1	3	3	Lose	Lose

Door You Choose	Door with Car	Door Opened	Outcome if switch	Outcome if stay
1	1	2	Lose	Win
1	1	3	Lose	Win
1	2	2	Lose	Lose
1	2	3	Win	Lose
1	3	2	Win	Lose
1	3	3	Lose	Lose

Berkson's Paradox

Write down the results only when at least one of them comes up heads

Berkson's Paradox

Coin 1	Coin 2	Ω
Heads	Heads	25
	_	
Heads	Tails	23
Heads Tails	Tails Heads	27

Berkson's Paradox

Coin 1	Coin 2	Ω
Heads	Heads	25
Heads	Tails	23
Tails	Heads	27
Tails	Tails	Х

"How Not to Be Wrong" by Jordan Ellenberg

"How Not to Be Wrong" by Jordan Ellenberg

"How Not to Be Wrong" by Jordan Ellenberg

CAUSALITY

PART I - CONFOUNDING

André dos Santos, Ph.D.