

4A = 12.7. v. 4t. sino -- 2 avea swept by the radius vector $\frac{\partial A}{\partial t} = \frac{1}{2} \cdot r \cdot v \cdot \sin \theta$ $\frac{\Delta A}{\Delta t} = \frac{1}{2} \cdot \gamma \cdot U \cdot \sin \theta$ $\frac{\partial}{\partial x} = \frac{m \cdot v \cdot \gamma \cdot \sin \theta}{2m} = \frac{p \cdot r \cdot \sin \theta}{2m}$ $\frac{dA}{dt} = \frac{L}{2m} = const$ areal speed of Early Eg: Suppose a planet is revolving around the sun in an elliptical orbit given by eqn. $\frac{\chi^2 + y^2}{b^2} = 1$. Find the time period of revolution in terms of the orgular momentume of the planet about sun. Soln:7 $\frac{1}{7}$ $dA = \frac{L}{2m} \cdot ds$ $\frac{7}{3} \int_0^{\infty} dA = \frac{L}{2m} \int_0^{\infty} dt$ > (A) = L .(+) .: xab = L.T : T = 2×mab According to this law the square III Low of period) of the time period of any planet around son is directly proportional to cube of the average distance ے م ____ م blu wen,

For
$$V_0 = \sqrt{\frac{c_1 M_0}{c_2}}$$
 is orbital speed.

The planet of $\sqrt{\frac{c_1 M_0}{c_2}}$ is time period of the planet of $\sqrt{\frac{c_1 M_0}{c_2}}$ in planet.

For $\sqrt{\frac{c_1 M_0}{c_2}}$ is time period of the planet.

The planet of $\sqrt{\frac{c_1 M_0}{c_2}}$ is time period of the planet.

For $\sqrt{\frac{c_1 M_0}{c_2}}$ is time period of $\sqrt{\frac{c_1 M_0}{c_2}}$ in \sqrt