1 Dane

1.1 Czym są dane wejściowe i wyjściowe systemu?

1.1.1 Dane Wejściowe

Dane wejściowe to trójka natężeń podstawowych kolorów czerwony, zielony, niebieski (R, G, B). Są zależne od obiektu zbadanego przez sensor, z którego pochodzą. Na podstawie tych właśnie natężeń jest określony kolor, (kąt) który jest przekazany na serwo dolne.

1.1.2 Dane Wyjściowe

Dane wyjściowe to wyznaczony na podstawie trójki podstawowych kolorów kąt pod jakim należy ustawić serwo, które steruje rynną spustową do odpowiednich kontenerów.

1.2 Sposób (algorytm) na przetwarzanie wejść na wyjścia.

1.2.1 Słownie

- 1. Wyznaczenie natężenia R.
- 2. Wyznaczenie natężenia G.
- 3. Wyznaczenie natężenia B.
- 4. Determinujemy kolor.
 - (a) Np Jeśli 24 < R < 38 oraz 30 < G < 44 to ustaw kolor na yellow.
 - (b) Np Jeśli 19 < B < 22 oraz 22 < G < 25 to ustaw kolor na orange.
 - (c) Kombinacji można zaimplementować tyle ile szerokości kontenerów zmieści się na obwodzie wyznaczonym przez spód zsuwu (oś środek serwa).
- 5. Na podstawie wyznaczonego koloru określamy kąt.
- 6. Serwo ustawiamy pod wyznaczonym kątem.

1.2.2 Pseudokod

```
loop(){
moveSerwo1Degrees(X)
color = detectColor()
decision = chooseContainer(color)
moveSerwo2(decision)
pushObject()
moveSerwo1Degrees(-X)
   detectColor(){
//sprawdzamyczerwone
digitalWrite(X, LOW);
digitalWrite(X, LOW);
R = pulseIn(sensor, LOW);
//sprawdzamyzielone
digitalWrite(X, LOW);
digitalWrite(X, HIGH);
G = pulseIn(sensor, LOW);
//sprawdzamyniebieskie
digitalWrite(X, HIGH);
digitalWrite(X, HIGH);
B = pulseIn(sensor, LOW);
color = colorCombinations(R, G, B);
return color;
}
   colorCombinations(R, G, B){
if(R > 24 and R < 38 and G > 30 and G < 44)
color = 1 //yellow
if(B > 22 and B < 19 and G > 22 and G < 25)
color = 2 / / orange
```