Instructions

- ► Use Latex (Submit only pdf file, Mention Name, Roll No. in title)
- ► Private submission on Piazza (Ask TA for help with submission)
- ► Select appropriate folder (e.g. hw2)
- ► Subject of post: <HW#>_<Roll#>
- ▶ Submit the md5 digest of the pdf file using openss1 in hex.

Formally

CCA-Security

- ► Give a formal definition of CCA-Security
- ► Recall the ones given for KPA, CPA in class

Hill Cipher

▶ Encrypt first 4 letters of your name with the Hill cipher using the following key in \mathbb{Z}_{26} :

$$K = \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix}$$

- ▶ Now, show the steps to calculate K^{-1}
- ▶ What are the necessary conditions for *K* to be invertible?
- ▶ Now show the decryption.

Theorem (Perfect Secrecy)

Suppose $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is a cryptosystem where $|\mathcal{K}| = |\mathcal{P}| = |\mathcal{C}|$, then the cryptosystem provides perfect secrecy if and only if every key is used with equal probability $1/|\mathcal{K}|$, and for every $x \in \mathcal{P}$ and $y \in \mathcal{C}$ there is a unique K such that $e_K(x) = y$.

- Prove it.
- You are allowed to refer Stinson.

Perfect Secrecy?

► Show why the One Time Pad (OTP) is insecure if the key is used more than once.

Hill Vs Permutation

► What is the relation between the Hill cipher and the permutation cipher. Illustrate with an example.