See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276512484

Densities and Speeds of Sound of Glycine, L-Alanine, and L-Valine in Aqueous 1-Ethyl-3-methylimidazolium Chloride Solutions at Different Temperatures

ARTICLE in JOURNAL OF CHEMICAL & ENGINEERING DATA · MAY 2015

Impact Factor: 2.04 · DOI: 10.1021/je500324a

CITATION

1

READS

38

4 AUTHORS:

Amalendu Pal

Kurukshetra University

14 PUBLICATIONS 81 CITATIONS

SEE PROFILE

Harsh Kumar

National Institute of Technology Jalandhar

96 PUBLICATIONS 482 CITATIONS

SEE PROFILE

Ritu Maar

Maharishi Markandeshwar University, Mullana

12 PUBLICATIONS 41 CITATIONS

SEE PROFILE

Harish Kumar Sharma

Maharishi Markandeshwar University, Mullana

52 PUBLICATIONS **181** CITATIONS

SEE PROFILE

Densities and Speeds of Sound of Glycine, L-Alanine, and L-Valine in Aqueous 1-Ethyl-3-methylimidazolium Chloride Solutions at **Different Temperatures**

Amalendu Pal,*,[‡] Harsh Kumar,[§] Ritu Maan,[†] and Harish Kumar Sharma[†]

ABSTRACT: The interactions of amino acids + water + 1-ethyl-3-methylimidazolium chloride [emim][Cl] solutions have been studied at different temperatures using volumetric and acoustic measurements. The density (ρ) and speed of sound (u) of glycine/L-alanine/L-valine + water + 1-ethyl-3-methylimidazolium chloride solutions have been measured at temperatures T = (288.15, 293.15, 298.15, 303.15,and 308.15) K and experimental pressure of 0.1 MPa. The apparent molar properties, standard partial molar properties, and partial molar properties of transfer have been determined from experimentally measured densities and speeds of sound. The resulting values of V_{ϕ}^0 , ΔV_{ϕ}^0 , $K_{\phi,s}^0$, and $\Delta K_{\phi,s}^0$ have been used to discuss the nature of interactions present in the mixtures. The apparent molar expansivity ϕ_E^0 and its temperature derivative $(\partial \phi_E^0/\partial T)$ have also been calculated.

1. INTRODUCTION

Ionic liquids (ILs) are low-melting-point ionic compounds and have proven to be an excellent substitute for conventional molecular solvents due to their environmentally benign properties. 1-5 Amino acids are useful as starting material for the preparation of a wide range of ionic liquids, but the environment exerts an important influence over the conformational characteristics of amino acids. Proteins comprise polymers of α amino acids and play a central role in many cellular processes. Environmental changes and heat can disrupt the structure of proteins and induce denaturation which is a serious problem in the handling of proteins in drug manufacturing, food production, and biotransformation. Several schemes have been proposed aimed at protein stabilization^{6–9} including using ionic liquid as a solvent. ¹⁰ The understanding of molecular level interactions among amino acids and ILs is essential in designing and optimization of a variety of novel processes in biotechnology and industry. In the current study, the solvation behavior of amino acids in aqueous IL solutions with variations in temperature and concentration has been analyzed. Various volumetric and compressibility parameters have been calculated to understand the influence of a series of amino acids upon ILs adequately. Some mixtures comprising ionic liquid and amino acid have also been studied successfully as reported in the literature. ^{11–16} In a previous work, we have reported the densities and speeds of sound of aqueous mixtures comprising ionic liquid and ester¹⁷⁻²⁰ and amino acids²¹ to interpret the interaction behavior based on the structural characteristics of properties of the species involved. In the current study, an effort has been made to elucidate

preferential interactions prevailing among amino acids and aqueous 1-ethyl-3-methyl imidazolium chloride [emim][Cl] mixtures. Various volumetric and compressibility parameters have been calculated to understand the mixing effects. Here, we have measured the experimental density and speed of sound of glycine, L-alanine, L-valine in aqueous [emim][Cl] solutions at temperature T = (288.15, 293.15, 298.15, 303.15, and 308.15) K. The speed of sound is considered to be a thermodynamic property when negligible²² absorption of low frequency and low amplitude sound waves takes place as is the case in the present study. The data obtained from experimental measurements were used to determine apparent molar volume (V_{ϕ}) , apparent molar adiabatic compressibility $(K_{\phi s})$, partial molar volume (V_{ϕ}^{0}) , and partial molar adiabatic compressibility $(K_{\phi,s}^0)$. The limiting apparent molar expansivity ϕ_{F}^0 group contributions of V_{ϕ}^{0} for amino acids, and hydration number were also calculated.

2. EXPERIMENTAL SECTION

2.1. Materials. 1-Ethyl-3-methyl imidazolium chloride, [emim][C1] (Sigma Aldrich, USA; mass fraction > 0.97), glycine (Merck-Schuchardt, Germany, GC 0.99), L-alanine (Himedia, GC 99), and L-valine (Merck-Schuchardt, Germany, GC 0.99) have been used in this study. The water content as determined using Karl Fischer analysis was < 350 ppm after being vacuum dried at 70 °C overnight. The ionic liquid

Received: April 9, 2014 Accepted: April 22, 2015 Published: May 5, 2015

[‡]Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India

Spepartment of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India

[†]Department of Chemistry, M. M. University, Mullana, Ambala, Haryana, India

Table 1. Specification of Chemical Samples

chemical name	CAS No.	provenance	mass fraction purity
1-ethyl-3-methyl- imidazolium chloride	65039-09-0	Sigma-Aldrich, USA	> 0.97
glycine	56-40-6	Merck-Schuchardt	> 0.99
L-alanine	56-41-7	Himedia, India	0.99
L-valine	72-18-4	Merck-Schuchardt	0.99

[emim][Cl] was checked for any impurities by ¹H NMR (Bruker 300 MHz) and IR (ABB MB3000). All other details describing preparation of solutions have been given in our earlier studies. ^{17–21} Details of the chemicals used in the present study are also given in Table 1.

2.2. Density and Speed of Sound Measurements. Densities and speeds of sound of mixtures under investigation have been measured using Anton Paar DSA 5000 densimeter. The calibration and measurement details have been given in our earlier studies. The temperature inside the densimeter was controlled to \pm 0.01 K by a built in Peltier system. The precision in density and speed of sound measurements are $1\cdot10^{-3}$ kg·m⁻³ and $1\cdot10^{-2}$ m·s⁻¹, respectively. The full accuracies of all the factors involved in the density readings have been considered, and the uncertainty for the density was estimated to be 0.2 %. The standard uncertainty for the speeds of sound was estimated to be 3 m·s⁻¹. Measurements have been performed in triplicate to reproduce the results.

3. RESULTS AND DISCUSSION

3.1. Apparent Molar Quantities. Densities ρ and speeds of sound u at temperatures T=(288.15, 293.15, 298.15, 303.15, and 308.15) K for glycine, L-alanine, and L-valine in (0.0981 and 0.3003) mol·kg $^{-1}$ aqueous [emim][Cl] solutions are reported in Table 2. The experimentally measured data have been used to calculate apparent molar volume V_{ϕ} and apparent molar adiabatic compressibility $K_{\phi,s}$ of amino acids, which were calculated from experimental density and speeds of sound data using the relations

$$V_{\phi} = M/\rho - 1000(\rho - \rho_0)/m\rho\rho_0 \tag{1}$$

$$K_{\phi,s} = M\kappa_s/\rho - \{1000(\kappa_{s,0}\rho - \kappa_s\rho_0)/m\rho\rho_0\}$$
 (2)

$$\kappa_{\rm s} = 1/(c^2 \rho) \tag{3}$$

where m is the molality (mol·kg⁻¹) of amino acid in the ([emim][CI] + water) mixture, M is the molar mass of the solute (kg·mol⁻¹) (amino acid) and ρ_0 , $\kappa_{s,0}$, and ρ , κ_s are the densities (kg·m⁻³) and coefficient of adiabatic compressibility (Pa⁻¹) for reference solvent (desired molality of aqueous [emim][CI]) and (amino acid + [emim][CI] + water) solutions, respectively. The obtained values of V_{ϕ} , and $K_{\phi,s}$ for amino acids in aqueous [emim][CI] solutions are reported in Table 3. The V_{ϕ} values increase with the rise of temperature as well as with elongation of the alkyl chain length of amino acid. The trend of V_{ϕ} values with temperature follows as

The values of V_{ϕ} for glycine in 0.0981 mol·kg⁻¹ aqueous solution of [emim][Cl] against molalities of glycine have been plotted in Figure 1 at different temperatures. The V_{ϕ} values as plotted in Figure 1 for all mixtures in the experimental temperature range are positive. The values of V_{ϕ} for amino acids in aqueous 0.0981 mol·kg¹ aqueous [emim][Cl]

solutions increase with an increase in molar mass from glycine to L-alanine to L-valine.

Similar trends have been observed for L-alanine and L-valine at 0.0981 mol·kg $^{-1}$ aqueous solution of [emim][Cl] against molalities. However, the V_ϕ values increase with the concentration of [emim][Cl] in 0.3003 mol·kg $^{-1}$ aqueous solution of [emim][Cl] against molalities of amino acids but again retaining the same trend against temperature and chain length of amino acid as observed in 0.0981 mol·kg $^{-1}$ [emim][Cl]. The negative values of $K_{\phi,s}$ as shown in Table 3 mean less compressibility of the mixture as compared to that of bulk. Moreover a decrease in magnitude of $K_{\phi,s}$ values with an increase in molality of amino acids suggests the presence of ion—dipole interactions.

3.2. Apparent Molar Properties at Infinite Dilution. Apparent molar volumes V_{ϕ} and apparent molar adiabatic compressibility $K_{\phi,s}$ varies with the molality of amino acids as represented by the following equations

$$V_{\phi} = V_{\phi}^0 + S_{\nu} m \tag{4}$$

$$K_{\phi,s} = K_{\phi,s}^0 + S_k m \tag{5}$$

where V_ϕ^0 and $K_{\phi,s}^0$ are apparent molar volume at infinite dilution, that is, partial molar volume and apparent molar adiabatic compressibility at infinite dilution, that is, partial molar adiabatic compressibility. The S_ν and S_k are the experimental slopes which give an idea about the prevailing solute—solute interactions in the mixtures. The values of V_ϕ^0 and S_ν collectively with $K_{\phi,s}^0$ and S_k obtained using least-squares fitting of V_ϕ and $K_{\phi,s}$ are given in Table 4 along with standard errors. The apparent molar properties at infinite dilution, the partial molar properties, give an idea about the presence of solute—solvent interactions. It is also observed from Table 4 that the positive V_ϕ^0 values at all concentrations follows the order L-valine > L-alanine > glycine.

The decrease in V_{ϕ}^0 values with an increase in [emim][Cl] molality represents the volume contraction²³ due to hydrophobic interactions. However the V_{ϕ}^0 values increase with a rise in temperature which suggests that at higher temperature significant solute—solvent interactions are present in the mixtures. Further, the higher V_{ϕ}^0 values are obtained for amino acids with a higher number of carbon atoms in the alkyl chain length. It is also suggested that partial molar volume is the volume comprising the molar volume of pure water and change in volume which occur due to interaction with water.

The variation of V_{ϕ}^{0} of amino acids in aqueous [emim][Cl] are graphically represented in Figure 2 at different temperatures. The trend shown in Figure 2 shows that large values of V_{ϕ}^{0} are observed for amino acids having longer alkyl chain length. The same behavior was also reported earlier.²⁴ The sign (positive) and magnitude (large) of the V_{ϕ}^{0} values show the dominance of ion-dipole interactions over dipole-dipole interactions at high molalities of aqueous [emim][Cl] solutions. Positive S_{ν} values for amino acids in aqueous and 0.3003 mol kg^{-1} [emim][Cl] predict that (COO $^-$ /NH $_3^+$) + IL interactions are predominant as compared to pair-pair interactions. The negative S_{ν} values for amino acids in 0.0981 mol·kg⁻¹ [emim][Cl] solutions predict that ion—solvent interactions prevail as compared to ion-ion interactions. This observed behavior results in a dehydrating effect upon amino acids. Further, with a rise in temperature a decrease in magnitude of $K_{\phi,s}^0$ values is observed. Less negative $K_{\phi,s}^0$ values are

Table 2. Values of Densities ρ and Speeds of Sound c of Amino Acids in Aqueous Solutions of [emim][Cl] at Different Temperatures and Atmospheric Pressure

m			$\rho{\cdot}10^{-3}/\mathrm{kg}{\cdot}\mathrm{m}^{-3b}$					$c/\text{m}\cdot\text{s}^{-1}$		
mol·kg ⁻¹ a	T/K = 288.15	T/K = 293.15	T/K = 298.15	T/K = 303.15	T/K = 308.15	T/K = 288.15	T/K = 293.15	T/K = 298.15	T/K = 303.15	T/K = 308.15
					+ 0.0981 mol·kg					
0.0684	1.003954	1.002980	1.001750	1.000300	0.998624	1482.09	1497.35	1510.78	1520.12	1532.85
0.1185	1.005522	1.004530	1.003275	1.001820	1.000122	1485.45	1500.47	1513.71	1523.16	1535.16
0.2441	1.009478	1.008435	1.007135	1.005650	1.003910	1492.08	1507.13	1520.28	1531.04	1541.04
0.3745	1.013624	1.012530	1.011190	1.009680	1.007900	1499.20	1513.66	1526.54	1537.36	1547.36
0.4407	1.015750	1.014640	1.013265	1.011740	1.009940	1502.95	1517.65	1530.39	1541.21	1551.30
0.5737	1.020050	1.018890	1.017480	1.015920	1.014090	1507.69	1524.77	1537.27	1546.99	1557.46
0.6604	1.022880	1.021700	1.020250	1.018675	1.016810	1514.96	1529.14	1541.60	1551.23	1561.68
0.7894	1.027120	1.025900	1.024430	1.022800	1.020925	1522.95	1536.94	1549.15	1559.34	1569.22
0.9189	1.031440	1.030140	1.028650	1.026990	1.025100	1529.71	1543.24	1555.21	1564.34	1574.50
				Glycine -	+ 0.3003 mol·kg	emim][Cl]				
0.0663	1.007190	1.006145	1.004830	1.003310	1.001575	1508.53	1522.12	1533.96	1544.20	1553.23
0.1303	1.009444	1.008370	1.007020	1.005480	1.003720	1512.57	1526.09	1537.94	1548.14	1556.54
0.2556	1.013720	1.012610	1.011190	1.009600	1.007780	1518.71	1531.96	1543.57	1553.51	1561.83
0.3705	1.017470	1.016320	1.014840	1.013220	1.011357	1525.53	1538.63	1550.07	1559.89	1568.03
0.4570	1.020199	1.019000	1.017500	1.015840	1.013950	1529.33	1542.30	1553.59	1563.27	1571.63
0.6063	1.024690	1.023480	1.021900	1.020190	1.018230	1538.19	1550.55	1561.55	1571.05	1579.13
0.6424	1.025730	1.024490	1.022935	1.021200	1.019220	1539.33	1552.53	1563.53	1573.04	1581.09
0.7973	1.030095	1.028800	1.027150	1.025370	1.023350	1548.34	1560.69	1571.42	1580.60	1588.18
0.8314	1.031029	1.029690	1.028080	1.026290	1.024260	1550.55	1562.57	1573.25	1582.45	1590.27
					+ 0.0981 mol·kg					
0.0505	1.003196	1.002220	1.000995	0.999540	0.997874	1481.68	1496.94	1510.28	1521.89	1531.86
0.1005	1.004564	1.003566	1.002310	1.000840	0.999160	1485.30	1500.48	1513.79	1525.26	1535.39
0.2143	1.007731	1.006679	1.005381	1.003870	1.002140	1492.88	1507.73	1520.75	1532.06	1541.76
0.2981	1.010110	1.009030	1.007680	1.006150	1.004400	1499.16	1513.82	1526.61	1537.74	1547.06
0.5017	1.016070	1.014910	1.013470	1.011850	1.010070	1513.53	1527.57	1539.89	1550.56	1559.64
0.6146	1.019430	1.018260	1.016780	1.015150	1.013320	1522.05	1535.80	1547.79	1558.04	1567.39
0.6768	1.021330	1.020140	1.018650	1.016980	1.015130	1526.79	1540.12	1551.91	1562.11	1570.81
0.8087	1.025420	1.024144	1.022670	1.020950	1.019100	1535.93	1549.13	1560.63	1570.53	1578.76
0.9612	1.030220	1.028910	1.027380	1.025628	1.023740	1545.00	1557.39	1569.61	1579.61	1589.64
0.0///	1.00/00/	1.005045	1.004550		+ 0.3003 mol·kg		1522.02	1524.02	1542.00	1551.04
0.0666	1.006886	1.005845	1.004550	1.003043	1.001330	1509.47	1523.02	1534.82	1542.00	1551.04
0.1231	1.008640	1.007584	1.006270	1.004753	1.003028	1513.35	1526.72	1538.42	1546.00	1555.12
0.2619	1.012885	1.011790	1.010430	1.008884	1.007122	1522.85	1535.90	1547.26	1555.06	1563.00
0.3674	1.016055	1.014930	1.013530	1.011960	1.010162	1530.40	1543.17	1554.28	1561.60	1570.00
0.4540	1.018620	1.017460	1.016030	1.014435	1.012613	1536.75	1548.90	1559.78	1567.12	1575.66
0.5795	1.022285	1.021070	1.019594	1.017970	1.016100	1545.06	1557.21	1567.80	1575.07	1584.05
0.6228 0.7706	1.023540	1.022299 1.026430	1.020810	1.019170	1.017292	1548.12	1560.22	1570.65	1577.98	1586.81
	1.027736 1.029800	1.028460	1.024900 1.026890	1.023210 1.025180	1.021260 1.023200	1558.67 1563.70	1570.31	1580.43 1585.11	1587.11	1595.76
0.8437	1.029800	1.028400	1.020890		+ 0.0981mol·kg		1575.17	1303.11	1592.01	1600.55
0.0552	1.003180	1.002210	1.000970	0.999514	0.997832	1484.02	1499.11	1512.03	1523.00	1533.49
0.0643	1.003406	1.002435	1.001185	0.999730	0.998043	1484.80	1500.01	1512.88	1524.03	1534.00
0.0043	1.003400	1.002433	1.001183	1.000470	0.998765	1488.55	1503.00	1516.00	1527.01	1537.02
0.1329	1.005160	1.003201	1.002875	1.001400	0.999680	1492.42	1507.15	1520.04	1530.80	1540.70
0.1742	1.006250	1.005240	1.003925	1.002440	1.000710	1497.00	1511.00	1524.00	1534.50	1544.50
0.2715	1.008905	1.007880	1.006520	1.005010	1.003255	1507.43	1521.45	1533.69	1544.23	1553.08
0.3658	1.011600	1.010560	1.009193	1.007640	1.005880	1518.05	1531.56	1543.37	1553.44	1561.85
0.4432	1.013900	1.012820	1.011490	1.009920	1.008121	1525.92	1539.06	1550.55	1560.31	1568.45
*******	21120,00				+ 0.3003 mol·kg		2007122	2001.00	201101	
0.0378	1.006059	1.004985	1.003643	1.002123	1.000399	1504.97	1523.86	1533.60	1543.47	1555.13
0.0627	1.006865	1.005758	1.004382	1.002843	1.001113	1507.59	1526.40	1535.97	1545.75	1557.20
0.0959	1.007903	1.006758	1.005324	1.003783	1.002025	1511.08	1529.79	1539.13	1548.80	1559.95
0.1272	1.008847	1.007675	1.006207	1.004644	1.002864	1514.37	1532.99	1542.11	1551.67	1562.55
0.1641	1.009962	1.008733	1.007207	1.005621	1.003841	1518.25	1536.75	1545.62	1555.05	1565.61
0.2166	1.011502	1.010215	1.008632	1.006988	1.005178	1523.76	1542.11	1550.62	1559.87	1569.96
0.3620	1.015412	1.014050	1.012412	1.010774	1.009194	1539.05	1556.96	1564.46	1573.21	1582.02
0.4420	1.017492	1.016050	1.014492	1.012884	1.011534	1547.45	1565.13	1572.08	1580.54	1588.65

 am is the molality of amino acid. b The uncertainties $u(\rho)$ for the densities are estimated to be 0.2 % and uncertainties u(c) in speeds of sound measurements are 3 m·s⁻¹. Standard uncertainties u(T) in temperature measurements are 0.01 K.

Table 3. Values of Apparent Molar Volumes V_{ϕ} and Apparent Molar Adiabatic Compressibility K_{ϕ} of Amino Acids in Aqueous Solutions of [emim][Cl] at Different Temperatures and Atmospheric Pressure

m			$V_{\phi} \cdot 10^{-6} / \text{m}^3 \cdot \text{mol}^{-1}$				Ψ	0 ⁶ /m ³ ·mol ⁻¹ ·G		
mol·kg ^{-1a}	T/K = 288.15	T/K = 293.15	T/K = 298.15	T/K = 303.15	T/K = 308.15	T/K = 288.15	T/K = 293.15	T/K = 298.15	T/K = 303.15	T/K = 308.1
				Glycine +	0.0981 mol·kg	l [emim][Cl]				
0.0684	43.83	44.28	44.68	44.89	45.28	-45.02	-44.09	-43.34	-42.69	-42.12
0.1185	43.69	44.11	44.56	44.73	45.15	-45.37	-44.43	-43.68	-43.02	-42.45
0.2441	43.36	43.78	44.19	44.41	44.80	-45.75	-44.80	-44.04	-43.37	-42.79
0.3745	43.04	43.45	43.83	44.04	44.42	-46.01	-45.05	-44.28	-43.61	-43.03
0.4407	42.86	43.25	43.65	43.87	44.23	-46.12	-45.16	-44.39	-43.71	-43.13
0.5737	42.51	42.90	43.27	43.51	43.84	-46.35	-45.38	-44.60	-43.92	-43.33
0.6604	42.28	42.65	43.04	43.26	43.61	-46.48	-45.51	-44.73	-44.05	-43.46
0.7894	41.95	42.31	42.66	42.92	43.23	-46.68	-45.71	-44.92	-44.24	-43.65
0.9189	41.59	41.99	42.32	42.58	42.86	-46.89	-45.91	-45.12	-44.43	-43.83
0.0//2	20.00			-	0.3003 mol·kg		40.00			
0.0663	38.90	39.20	39.82	40.20	40.74	-43.76	-43.02	-42.27	-41.71	-41.24
0.1303	39.22	39.59	40.18	40.53	41.01	-44.18	-43.43	-42.68	-42.11	-41.64
0.2556	39.79	40.12	40.70	41.08	41.57	-44.54	-43.78	-43.01	-42.45	-41.97
0.3705	40.33	40.67	41.23	41.58	42.04	-44.75	-43.99	-43.23	-42.65	-42.18
0.4570	40.71	41.10	41.60	41.98	42.41	-44.90	-44.14 44.26	-43.37	-42.79	-42.31
0.6063	41.40	41.71	42.23	42.60	43.05	-45.13	-44.36	-43.59	-43.01	-42.53
0.6424 0.7973	41.57	41.92	42.37 43.06	42.76 43.44	43.22 43.87	-45.18 -45.41	-44.42	-43.64 -43.85	-43.06	-42.58 -42.78
0.7973	42.23 42.36	42.58		43.54	43.87	-45.45	-44.64 44.69	-43.83 -43.90	-43.27 -43.31	-42.78 -42.82
0.8314	42.30	42.75	43.17		43.97 + 0.0981 mol·kg		-44.68	-43.90	-43.31	-42.82
0.0505	61.81	62.48	62.94	63.35	63.71	-44.75	-43.82	-43.08	-42.42	-41.86
0.1005	61.60	62.17	62.73	63.11	63.47	-45.26	-43.82 -44.32	-43.57	-42.42 -42.91	-42.34
0.1003	61.11	61.64	62.13	62.53	62.96	-45.64	-44.69	-43.93	-42.91 -43.27	-42.70
0.2981	60.73	61.22	61.76	62.13	62.52	-45.81	-44.86	-44.09	-43.43	-42.85
0.5017	59.79	60.25	60.77	61.19	61.51	-46.14	-45.18	-44.41	-43.74	-43.15
0.6146	59.35	59.75	60.24	60.61	60.96	-46.31	-45.35	-44.57	-43.90	-43.31
0.6768	59.06	59.46	59.93	60.33	60.68	-46.40	-45.44	-44.66	-43.98	-43.39
0.8087	58.48	58.93	59.30	59.71	60.01	-46.60	-45.63	-44.85	-44.17	-43.58
0.9612	57.86	58.27	58.65	59.03	59.34	-46.83	-45.85	-45.07	-44.38	-43.79
.,,,,,	0,100	00.27	0.110		+ 0.3003 mol·kg		10.00	,		10.77
0.0666	57.53	57.79	58.14	58.36	58.60	-43.75	-43.01	-42.26	-41.68	-41.22
0.1231	57.56	57.84	58.19	58.42	58.67	-44.13	-43.38	-42.63	-42.05	-41.58
0.2619	57.63	57.92	58.29	58.52	58.81	-44.50	-43.75	-42.99	-42.42	-41.94
0.3674	57.68	57.98	58.36	58.61	58.93	-44.69	-43.93	-43.17	-42.59	-42.12
0.4540	57.72	58.04	58.43	58.69	59.01	-44.82	-44.07	-43.30	-42.72	-42.25
0.5795	57.77	58.13	58.52	58.79	59.14	-45.01	-44.24	-43.47	-42.90	-42.42
0.6228	57.78	58.16	58.55	58.83	59.17	-45.07	-44.30	-43.53	-42.95	-42.47
0.7706	57.86	58.26	58.64	58.94	59.32	-45.27	-44.50	-43.72	-43.14	-42.66
0.8437	57.88	58.28	58.68	58.98	59.37	-45.36	-44.59	-43.81	-43.23	-42.75
				L-Valine +	- 0.0981 mol·kg	emim][Cl]				
0.0552	92.36	92.90	93.64	94.08	94.77	-44.83	-43.90	-43.16	-42.50	-41.94
0.0643	92.28	92.76	93.56	93.95	94.63	-44.96	-44.02	-43.28	-42.62	-42.06
0.0951	91.98	92.48	93.27	93.62	94.31	-45.23	-44.29	-43.54	-42.88	-42.31
0.1329	91.63	92.04	92.82	93.20	93.85	-45.41	-44.46	-43.71	-43.05	-42.48
0.1742	91.22	91.66	92.39	92.77	93.34	-45.54	-44.59	-43.83	-43.17	-42.60
0.2715	90.32	90.68	91.35	91.71	92.22	-45.75	-44.80	-44.04	-43.37	-42.79
0.3658	89.44	89.76	90.30	90.71	91.13	-45.91	-44.95	-44.19	-43.52	-42.94
0.4432	88.72	89.09	89.46	89.86	90.31	-46.03	-45.07	-44.30	-43.63	-43.05
					- 0.3003 mol·kg					
0.0378	83.46	84.80	86.66	87.41	88.15	-43.21	-42.48	-41.74	-41.18	-40.72
0.0627	83.81	85.16	86.85	87.64	88.22	-43.71	-42.97	-42.22	-41.66	-41.19
0.0959	84.29	85.59	87.33	87.90	88.61	-44.00	-43.25	-42.49	-41.93	-41.46
0.1272	84.73	85.94	87.54	88.16	88.90	-44.15	-43.40	-42.64	-42.07	-41.60
0.1641	85.00	86.30	87.92	88.56	89.16	-44.28	-43.52	-42.76	-42.19	-41.71
0.2166	85.37	86.65	88.16	88.94	89.56	-44.41	-43.65	-42.88	-42.31	-41.83
0.3620	86.64	87.64	88.74	89.23	90.07	-44.67	-43.90	-43.12	-42.55	-42.08
0.4420	87.05	88.07	88.80	89.34	90.31	-44.78	-44.01	-43.23	-42.66	-42.19

 $[^]am$ is the molality of amino acid in the mixture of {[emim][Cl]+water} as solvent.

Figure 1. Apparent molar volume V_{ϕ} for glycine in 0.0981 mol·kg⁻¹ [emim][Cl] at different temperatures against molalities m for glycine: blue \spadesuit , 288.15 K; red \blacksquare , 293.15 K; green \blacktriangle , 298.15 K; purple \bullet , 303.15 K; orange \times , 308.15 K.

obtained for amino acids in aqueous [emim][Cl] solutions than amino acids in water, which makes the medium less compressible. The negative values of S_k suggest the solvation of ions due to weak ion—ion interactions, which is also evident from our S_v data.

3.3. Group Contributions of Standard Partial Molar Volume. A number of carbon atoms in the alkyl part of amino acids have a linear relationship with V_{ϕ}^{0} , which is represented using equation²⁵

$$V_{\phi}^{0} = V_{\phi}^{0}(NH_{3}^{+}, COO^{-}) + n_{c}V_{\phi}^{0}(CH_{2})$$
(6)

where $n_{\rm c}$ is number of carbon atoms in the alkyl chain length of amino acids; $V_\phi^0({\rm NH_3^+,COO^-})$ is the zwitterionic end group contribution and $V_\phi^0({\rm CH_2})$ is the methylene group contribution toward V_ϕ^0 values.

 $(V_{\phi}^{0}(\mathrm{NH}_{3}^{+},\mathrm{COO}^{-})$ and $V_{\phi}^{0}(\mathrm{CH}_{2}))$ are the zwitterionic end groups and methylene group contributions to V_{ϕ}^{0} , respectively. The least-squares regression analysis of equation 6 results in the $V_{\phi}^{0}(\mathrm{NH}_{3}^{+},\mathrm{COO}^{-})$ and $V_{\phi}^{0}(\mathrm{CH}_{2})$ values. The calculated values of $V_{\phi}^{0}(\mathrm{NH}_{3}^{+},\mathrm{COO}^{-})$ and $V_{\phi}^{0}(\mathrm{CH}_{2})$ have been reported in Table 5. The alkyl chain parts of the amino acids, that is, CH_{2} of glycine, $\mathrm{CH}_{3}\mathrm{CH}$ of L-alanine, and $\mathrm{CH}_{3}\mathrm{CH}_{3}\mathrm{CH}\mathrm{CH}$ of L-valine have been studied here. The $V_{\phi}^{0}(\mathrm{CH}_{2})$ values are obtained from the mean of CH^{-} and CH_{3}^{-} groups contributions to the total V_{ϕ}^{0} values of the amino acids. The following equations 26 have been used to calculate the other alkyl chains contributions:

$$V_{\phi}^{0}(CH_{3}) = 1.5V_{\phi}^{0}(CH_{2})$$
 (7)

$$V_{\phi}^{0}(CH) = 0.5V_{\phi}^{0}(CH_{2})$$
 (8)

From Table 5, it is observed that $V_{\phi}^{0}(\mathrm{NH_{3}^{+},COO^{-}})$ values are large in comparison to $V_{\phi}^{0}(\mathrm{CH_{2}})$ values. This suggests that

ion—ion interactions of [emim][Cl] ions and NH₃,COO⁻ groups dominate over [emim][Cl] hydrophobic interactions. The large $V_{\phi}^{0}(\mathrm{NH_{3}^{+},COO^{-}})$ values in comparison to those of $V_{\phi}^{0}(\mathrm{CH_{2}})$ are mainly due to the molar mass difference of the respective groups and the contribution of a side group can result in increasing the V_{ϕ}^{0} values.

3.4. Partial Molar Quantities of Transfer. Solute—solute interactions at infinite dilution are are not taken into consideration, therefore the nature of these interactions may be discussed using limiting molar quantities of transfer. The partial molar volumes of transfer ΔV_{ϕ}^0 and partial molar adiabatic compressibility of transfer $\Delta K_{\phi,s}^0$ of the amino acids from water to aqueous [emim][Cl] solutions were determined using the following equation:

$$\Delta Y_{\phi}^{0} = Y_{\phi}^{0}$$
 (in aqueous [emim][Cl] solution)
$$-Y_{\phi}^{0}$$
 (in water) (9)

where Y^0_ϕ represents V^0_ϕ and $K^0_{\phi,s}$. The ΔV^0_ϕ and $\Delta K^0_{\phi,s}$ values are reported in Table 6. The values of Y^0_ϕ (in water) have been taken from our earlier work.²¹ The values of ΔV_{ϕ}^{0} as reported in Table 6 and plotted in Figure 3 show that the magnitude of ΔV_{ϕ}^{0} values decreases at high [emim][Cl] concentrations. This is in contrast with the earlier reported behavior of amino acid+[Pmim][Br]+water²⁷ mixtures and amino acid+[Hmim]-[Cl]+water²⁸ mixtures. The values of ΔV_{ϕ}^{0} are positive for amino acids in aqueous [emim][Cl] solutions except for L-valine in 0.3003 mol·kg⁻¹ [emim][C1] solutions. The positive $\Delta K_{\phi s}^{0}$ values as reported in Table 6 decrease with an increase in temperature and [emim][Cl] concentration. The ΔV_{ϕ}^{0} values provide partial information about the solute–solvent interactions^{29–31} because solute–solute interactions contribute much less toward ΔV_{ϕ}^{0} values. Depending upon the ΔV_{ϕ}^{0} values, it is suggested that three types of interactions, (i) ion-ion interactions, (ii) ion-hydrophobic interactions, and (iii) hydrophobic-hydrophobic interactions, occur in amino acids + [emim][Cl] + water mixtures. Interactions between Cl and [emim] tions of [emim][Cl] and (NH₃,COO⁻) groups of amino acids, that is, ion-ion interactions result in positive values as per the cosphere overlap model³² This occurs because the electrostriction is reduced and the structure of water becomes enhanced. Ion-hydrophobic interactions [interactions between Cl⁻ and [emim]⁺ ions of [emim][Cl] and the nonpolar group of amino acids, and the [emim]+ ion of [emim][Cl] and (NH₃,COO⁻) group of amino acids] and also the hydrophobic-hydrophobic interactions between hydrophobic groups of amino acids and the alkyl part of the [emim][Cl] result in negative ΔV_{ϕ}^{0} values as hydrophilic hydrophobic and hydrophobic—hydrophobic group interactions have a greater tendency to occur because of the presence of an alkyl group, and also there will be a volume reduction due to co-sphere overlapping. The positive values of ΔV_{ϕ}^{0} represent that due to hydrophilic-hydrophilic interactions, the expansion of volume takes place and some water molecules are released. Furthermore, the negative ΔV_{ϕ}^{0} values for glycine and L-valine in 0.3003 mol·kg⁻¹ [emim][C1] solutions predict the dominance of interaction types (ii) and (iii) over type (i), that is, ion-ion interactions. The interaction between the alkyl part of imidazoline and nonpolar group of amino acids may lead to hydrophobic-hydrophobic interactions. Further, the intrinsic volume of solute and change in volume due to solute-solvent interactions is the actual standard partial molar volume.³³

Table 4. Values of Limiting Apparent Molar Volumes V_{ϕ}^{0} , Experimental Slopes S_{ν} , Limiting Apparent Molar Adiabatic Compressibility K_{ϕ}^{0} , and Experimental Slope S_{k} , of Amino Acids in Aqueous Solutions of [emim][Cl] at Different Temperatures

m ^a	T	$V_\phi^0{\cdot}10^{-6}$	$S_{\nu} \cdot 10^6$	$K_{\phi}^{0}\cdot10^{6}$	$S_k \cdot 10^6$
mol⋅kg ⁻¹	K	m ³ mol ⁻¹	m³⋅kg mol ^{-3/2}	m ³ mol ⁻¹ GPa ⁻¹	kg m ³ mol ⁻² GPa ⁻¹
			Glycine		
0.0981	288.15	44.01(±0.004)	$-2.62(\pm0.008)$	$-45.13(\pm0.084)$	$-2.03(\pm0.156)$
	293.15	$44.44(\pm0.011)$	$-2.69(\pm0.020)$	$-44.19(\pm0.082)$	$-1.98(\pm0.151)$
	298.15	$44.88(\pm0.005)$	$-2.79(\pm0.010)$	$-43.45(\pm0.080)$	$-1.93(\pm0.148)$
	303.15	$45.06(\pm0.005)$	$-2.71(\pm0.009)$	$-42.79(\pm0.078)$	$-1.89(\pm0.143)$
	308.15	$45.49(\pm0.005)$	$-2.85(\pm0.009)$	$-42.22(\pm0.078)$	$-1.86(\pm0.144)$
0.3003	288.15	$38.63(\pm0.018)$	$4.53(\pm0.034)$	$-43.89(\pm0.092)$	$-2.00(\pm0.173)$
	293.15	$38.96(\pm0.026)$	$4.57(\pm0.048)$	$-43.15(\pm0.089)$	$-1.96(\pm0.168)$
	298.15	$39.59(\pm0.022)$	$4.35(\pm0.041)$	$-42.39(\pm0.088)$	$-1.92(\pm0.166)$
	303.15	$39.96(\pm0.017)$	$4.36(\pm0.032)$	$-41.83(\pm0.087)$	$-1.89(\pm0.165)$
	308.15	$40.47(\pm0.012)$	$4.25(\pm0.022)$	$-41.37(\pm0.087)$	$-1.86(\pm0.163)$
			L-Alanine		
0.0981	288.15	$62.03(\pm0.014)$	$-4.37(\pm0.025)$	$-45.03(\pm0.115)$	$-2.01(\pm0.207)$
	293.15	$62.63(\pm0.035)$	$-4.62(\pm0.062)$	$-44.09(\pm0.113)$	$-1.97(\pm0.202)$
	298.15	$63.17(\pm0.018)$	$-4.75(\pm0.032)$	$-43.35(\pm0.111)$	$-1.92(\pm0.200)$
	303.15	$63.57(\pm0.017)$	$-4.76(\pm0.031)$	$-42.69(\pm0.109)$	$-1.89(\pm0.196)$
	308.15	$63.96(\pm0.015)$	$-4.85(\pm0.028)$	$-42.12(\pm0.108)$	$-1.86(\pm0.193)$
0.3003	288.15	$57.50(\pm0.006)$	$0.46(\pm0.011)$	$-43.88(\pm0.088)$	$-1.89(\pm0.169)$
	293.15	$57.75(\pm0.006)$	$0.65(\pm0.012)$	$-43.14(\pm0.087)$	$-1.85(\pm0.166)$
	298.15	$58.10(\pm0.007)$	$0.70(\pm0.013)$	$-42.38(\pm0.086)$	$-1.82(\pm0.164)$
	303.15	$58.31(\pm 0.006)$	$0.81(\pm 0.011)$	$-41.81(\pm0.087)$	$-1.81(\pm0.167)$
	308.15	$58.55(\pm0.007)$	$1.00(\pm 0.014)$	$-41.34(\pm0.087)$	$-1.79(\pm0.166)$
			L-Valine		
0.0981	288.15	$92.87(\pm0.007)$	$-9.39(\pm0.027)$	$-44.89(\pm0.092)$	$-2.84(\pm0.380)$
	293.15	$93.39(\pm0.027)$	$-9.84(\pm0.111)$	$-43.95(\pm0.090)$	$-2.78(\pm0.372)$
	298.15	$94.27(\pm0.014)$	$-10.83(\pm0.06)$	$-43.21(\pm0.089)$	$-2.72(\pm0.366)$
	303.15	$94.65(\pm0.009)$	$-10.81(\pm0.038)$	$-42.56(\pm0.087)$	$-2.67(\pm0.362)$
	308.15	$95.38(\pm0.020)$	$-11.55(\pm0.081)$	$-41.99(\pm0.087)$	$-2.63(\pm0.358)$
0.3003	288.15	$83.39(\pm0.119)$	$8.73(\pm0.513)$	$-43.61(\pm0.160)$	$-3.05(\pm0.690)$
	293.15	$84.79(\pm0.119)$	$7.83(\pm 0.515)$	$-42.86(\pm0.156)$	$-2.82(\pm0.673)$
	298.15	$86.76(\pm0.156)$	$5.28(\pm0.672)$	$-42.11(\pm0.154)$	$-2.55(\pm0.663)$
	303.15	$87.49(\pm0.160)$	$4.77(\pm0.690)$	$-41.55(\pm0.153)$	$-2.33(\pm0.658)$
	308.15	$88.09(\pm0.119)$	$5.45(\pm0.511)$	$-41.09(\pm0.152)$	$-2.12(\pm0.653)$
is the molality of	of [emim][Cl].				

Figure 2. Apparent molar volume at infinite dilution, V_ϕ^0 for glycine (blue \spadesuit, \diamondsuit), L-alanine (red \blacksquare, \square), and L-valine (green \spadesuit, \triangle) in aqueous solutions of [emim][Cl] (filled symbols, 0.0981 mol·kg⁻¹ [emim][Cl]) at different temperatures.

The intrinsic volume has two major contributions:³⁴

$$V_{\text{intrinsic}} = V_{\text{vw}} + V_{\text{void}} \tag{10}$$

Table 5. Contributions of the Zwitterionic Group (NH₃⁺ COO⁻), CH₂ Group, and Other Alkyl Chains to the Infinite Dilution Apparent Molar Volume V_{ϕ}^{0} in Aqueous [emim][Cl] Solutions at 298.15 K

	V_ϕ^0 ·10 $^6/\mathrm{m}^3~\mathrm{mol}^{-1}$			
group	$m_{\rm IL} = 0.1019 \text{ mol·kg}^{-1}$	$m_{\rm IL} = 0.3042 \ {\rm mol \cdot kg^{-1}}$		
(NH ₃ COO ⁻)	29.329	25.260		
CH ₂ -	16.332	15.524		
CH ₃ CH-	32.665	31.049		
(CH3)2CHCH-	65.330	66.044		

where $V_{\rm vw}$ is the van der Waals volume occupied by the solute ³⁵ and $V_{\rm void}$ is the volume associated with the voids and abandoned spaces present. Equation 10 has been modified by Shahidi et al. ³⁶ to include the solute contribution to its standard partial molar volume as

$$V_{\phi}^{0} = V_{\text{vw}} + V_{\text{void}} - \sigma_{\text{s}} \tag{11}$$

where $\sigma_{\rm s}$ is the shrinkage in volume due to interactions of water molecules with hydrogen bonding groups of solute molecules. So, the partial molar volume can be represented as

Table 6. Partial Molar Volume of Transfer, ΔV_{ϕ}^{0} and Partial Molar Isentropic Compressibility of Transfer, $\Delta K_{\phi,s}^0$ of Amino Acids in Aqueous Solutions of [emim][Cl] at **Different Temperatures**

m^a	T	ΔV_{ϕ}^0 ·10 ⁶	$\Delta K_{\phi,s}^0 \cdot 10^6$		
mol·kg ⁻¹	K	m³·mol ^{−1}	m ³ ·mol ⁻¹ ·GPa ⁻¹		
		Glycine			
0.0981	288.15	2.30	-1.241		
	293.15	2.50	-1.046		
	298.15	2.77	-1.051		
	303.15	2.75	-0.967		
	308.15	2.95	-0.853		
0.3003	288.15	-3.08	0.574		
	293.15	-2.98	0.404		
	298.15	-2.52	0.273		
	303.15	-2.35	0.174		
	308.15	-2.07	0.163		
		L-Alanine			
0.0981	288.15	4.77	-0.0322		
	293.15	5.15	-0.191		
	298.15	5.47	-0.311		
	303.15	5.63	-0.397		
	308.15	5.80	-0.408		
0.3003	288.15	0.24	1.120		
	293.15	0.27	0.766		
	298.15	0.40	0.651		
	303.15	0.37	0.483		
	308.15	0.39	0.373		
		L-Valine			
0.0981	288.15	4.36	-0.390		
	293.15	4.68	-0.544		
	298.15	5.32	-0.657		
	303.15	5.47	-0.740		
	308.15	5.93	-0.748		
0.3003	288.15	-5.12	0.890		
	293.15	-3.92	0.546		
	298.15	-2.09	0.441		
	303.15	-1.69	0.262		
	308.15	-1.36	0.157		
am is the molality of [emim][Cl].					

$$V_{\phi}^{0} = V_{\text{vw}} + V_{\text{void}} - V_{\text{shrinkage}} \tag{12}$$

where $V_{
m vw}$ and $V_{
m void}$ are assumed to be the same in aqueous and aqueous [emim][Cl] solutions, therefore the overall positive ΔV_{ϕ}^{0} values of the amino acids justify the decrease in the $V_{\rm shrinkage}$ in the [emim][Cl] solutions and vice versa for glycine and L-valine in 0.3003 mol·kg⁻¹[emin][Cl] solutions.

3.5. Hydration Number. Hydration number (n_H) for glycine, L-alanine, and L-valine in aqueous [emim][Cl] solutions was estimated using the following equation³

$$n_{\rm H} = \frac{V_{\phi(\rm e)}^0}{V_{\rm e}^0 - V_{\rm b}^0} \tag{13}$$

where $V_{\rm e}^0$ is the molar volume of electrostricted water and $V_{\rm h}^0$ is the molar volume of the bulk water. The value of $(V_e^0 - V_b^0)$ is approximately $-3.0 \text{ cm}^3 \text{ mol}^{-1}$ for electrolytes at 298.15 K. 38 The $V_{\phi({
m e})}^{0}$ values were calculated using the following

$$V_{\phi(e)}^{0} = V_{\phi}^{0} - V_{\text{int}}^{0} \tag{14}$$

Figure 3. Plot of apparent molar volume of transfer against temperature for glycine (blue $\blacklozenge, \diamondsuit$), L-alanine (red \blacksquare, \square), and L-valine (green \blacktriangle , \triangle) in aqueous solutions of [emim][Cl] (filled symbols, 0.0981 mol·kg⁻¹ [emim][Cl]; empty symbols, 0.3003 mol·kg⁻¹ [emim][Cl]) at different temperatures.

where V_{int}^0 is the intrinsic partial molar volume. V_{int}^0 the intrinsic partial molar volume, includes van der Waals volume, and volume due to packing effects. The values of V_{int}^0 for amino acids were calculated with the help of molar crystal volumes using the relationship⁴⁰

$$V_{\rm int}^0 = \frac{0.7}{0.634} V_{\phi}^0(\text{cryst})$$
 (15)

where 0.7 and 0.634 are the packing densities for the molecules in an organic crystal and for randomly packed spheres, respectively. The crystal densities of amino acids give by Berlin and Pallansch⁴¹ were used to calculate crystal molar volumes at 298.15 K. The calculated $n_{\rm H}$ values are reported in Table 7. It is observed from Table 7 that $n_{\rm H}$ values for the amino acids follow the order: $n_{\rm H}$ (L-alanine) > $n_{\rm H}$ (L-valine) > $n_{\rm H}$ (glycine) in all aqueous [emim][Cl] solutions except in 0.3003 mol·kg [emim][Cl] solutions where it follow the order: n_H (L-valine) > $n_{\rm H}$ (L-alanine) > $n_{\rm H}$ (glycine). Also, $n_{\rm H}$ values increase overall as the concentration of aqueous [emim][Cl] increases. This shows that there is a decrease in the electrostriction of water thereby increasing amino acids + IL interactions with increasing [emim][Cl] concentrations which suggests strong interactions at higher [emim][Cl] concentrations⁴² in present mixtures.

3.6. Thermal Expansion Coefficients. The thermal expansion coefficient α was determined using the relationship⁴³

$$\alpha = 1/V_{\phi}^{0}(\partial V_{\phi}^{0}/\partial T) \tag{16}$$

The solute-solvent interactions⁴⁴ can be interpreted with the help of α values reported in Table 8 at 298.15 K. The values of α graphically represented in Figure 4 exhibit an overall increase as the concentration of aqueous [emim][C1] increases, except for L-valine which suggests a volume expansion or decrease in

Table 7. Hydration Number (n_H) of Amino Acids in Aqueous [emim][Cl] Solutions at 298.15 K

	$n_{ m H}$				
amino acid	$m_{\rm IL} = 0.0000 {\rm mol \cdot kg^{-1}}$	$m_{\rm IL} = 0.0981 {\rm mol \cdot kg^{-1}}$	$m_{\rm IL} = 0.3003 {\rm mol \cdot kg^{-1}}$		
glycine	3.85	2.12	3.72		
L-alanine	5.49	2.60	4.14		
L-valine	5.73	2.37	4.64		

Table 8. Limiting Apparent Molar Expansivity $\phi_{\rm E}^0$, Coefficient of Thermal Expansion α , and Temperature Derivative of Limiting Apparent Molar Expansivity $(\partial^2 V_\phi^0/\partial T^2)$ at $T=298.15~{\rm K}$

m ^a	ϕ_E^0 · 10^6	$\alpha \cdot 10^3$	$\left(\partial^2 V_\phi^0/\partial T^2\right)$			
mol⋅kg ⁻¹	$m^3 \cdot mol^{-1} \cdot K^{-1}$	K ⁻¹	m³⋅mol ⁻¹			
	Glycir	ne				
0.0000	0.0404	2.643	0.0002			
0.0981	0.0716	2.869	-0.0015			
0.3003	0.0934	3.070	0.0005			
	L-Alani	ine				
0.0000	0.0449	2.631	0.0001			
0.0981	0.0959	2.919	-0.0032			
0.3003	0.0528	2.972	-0.0010			
	L-Valis	ne				
0.0000	0.0469	2.585	0.0006			
0.0981	0.1256	2.208	-0.0004			
0.3003	0.2422	2.435	-0.0162			
a_m is the molality of [emim][Cl].						

Figure 4. Coefficient of thermal expansion α against concentration of amino acids: glycine (blue \spadesuit, \diamondsuit), L-alanine (red \blacksquare , \square), and L-valine (green $\blacktriangle, \triangle$) in aqueous solutions of [emim][Cl] (filled symbols, 0.0981 mol·kg⁻¹ [emim][Cl]; empty symbols, 0.3003 mol·kg⁻¹ [emim][Cl]) at different temperatures.

compressibility of the solutions when molecules of amino acid are added in the aqueous [emim][Cl] solutions.

3.7. Limiting Apparent Apparent Molar Expansivities. imiting apparent molar expansivity ϕ_E^0 was determined using

Limiting apparent molar expansivity $\phi_{\rm E}^0$ was determined using equation:

$$\phi_{\rm E}^{\,0} = \left(\partial V_{\phi}^{\,0}/\partial T\right) \tag{17}$$

The calculated values of $\phi_{\rm E}^0$ are reported in Table 8. The limiting apparent molar expansivity was also represented as a combination⁴⁵ of two terms:

$$\phi_{\rm E}^{\,0} = \phi_{\rm E}^{\,0}({\rm elect}) + \phi_{\rm E}^{\,0}({\rm str}) \tag{18}$$

where $\phi_E^0(\text{elect})$ and $\phi_E^0(\text{str})$ are expansivities due to electrostriction and solvent structure changes, respectively. The expansivity due to electrostriction changes $\phi_E^0(\text{elect})$ dominates at higher temperature, whereas expansivity due to structural changes $\phi_E^0(\text{str})$ dominates at lower temperatures. The temperature derivative of ϕ_E^0 , $(\partial \phi_E^0/\partial T)$, was also obtained using

$$(\partial \phi_{\rm E}^{\,0}/\partial T) = (\partial^2 V_{\phi}^{\,0}/\partial T^2) \tag{19}$$

The $(\partial \phi_{\rm E}^0/\partial T)$ values as reported in Table 8 are found to be negative for all mixtures. The values have been found negative for all mixtures. The sign of the temperature derivative of limiting apparent molar expansivity predicts whether the solutes have structure making or breaking characteristics upon mixing with solvent. Therefore it predicts amino acid to be a possible structure breaker. Further, the overall negative values of $(\partial \phi_{\rm E}^0/\partial T)$ suggest the dominance of $\phi_{\rm E}^0({\rm elect})$ over $\phi_{\rm E}^0({\rm str})$ toward the prediction of solute—solvent interactions in amino acids + [emim][Cl] + water mixtures studied in this work.

4. CONCLUSION

Density and speeds of sound values at different temperatures have been reported for amino acids + [emim][Cl] + water mixtures in this study. Experimental data have been used to determine apparent molar properties, partial molar properties, and partial molar properties of transfer. The results shows that values of V_{ϕ}^{0} decrease with an increase in concentrated aqueous [emim][Cl] solutions due to hydrophobic interactions or caging effect of water molecules leading to volume contraction. The results obtained from compressibility data ($K_{\phi,s}^0$ and $\Delta K_{\phi,s}^0$ values) support the results obtained from apparent molar volume. Also, strong interactions among the [emim][Cl] ions and the zwitterionic group of amino acid have been confirmed by their large $V_{\phi}^{0}(NH_{3}^{+},COO^{-})$ values as compared to $V_{\phi}^{0}(CH_{2})$ values. The obtained values of ΔV_{ϕ}^{0} values suggest the presence of hydrophobic-hydrophobic interactions between the alkyl part of [emim]⁺ and the nonpolar groups of amino acids.

AUTHOR INFORMATION

Corresponding Author

*E-mail: palchem21@gmail.com.

Notes

The authors declare no competing financial interest.

■ REFERENCES

- (1) Baranyai, K. J.; Deacon, G. B.; MacFarlane, D. R.; Pringle, J. M.; Scott, J. L. Thermal degradation of ionic liquids at elevated temperatures. *Aust. J. Chem.* **2004**, *57*, 145–147.
- (2) Smiglak, M.; Reichert, W. M.; Holbrey, J. D.; Wilkes, J. S.; Sun, L.; Thrasher, J. S.; Kostyantyn, K.; Singh, S.; Katritzky, A. R.; Rogers, R. D. Combustible ionic liquids by design: Is laboratory safety another ionic liquid myth? *Chem. Commun.* **2006**, *24*, 2554–2556.
- (3) Matsumoto, K.; Hagiwara, R.; Ito, Y. Room-temperature ionic liquids with high conductivities and wide electrochemical windows: *N*-Alkyl-*N*-methylpyrrolidinium and *N*-Alkyl-*N*-methylpiperidinium fluorohydrogenates. *Electrochem. Solid State* **2004**, *7*, L3—L3.
- (4) Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—A review. *Fluid Phase Equilib.* **2004**, 219, 93–98.
- (5) Rebelo, L. P. N.; Lopes, J. N. C.; Esperancüa, J. M. S. S. On the critical temperature, normal boliling point, and vapor pressure of ionic liquids. *J. Phys. Chem. B.* **2005**, *109*, 6040–6043.
- (6) Gerlsma, S. Y. Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other derivatives. *J. Biol. Chem.* **1968**, *243*, 957–961.
- (7) Kaushik, J. K.; Bhat, R. Thermal stability of proteins in aqueous polyols solutions: Role of surface tension of water in the stabilizing effect of polyols. *J. Biol. Chem. B* **1998**, *102*, 7058–7066.
- (8) Arakawa, T.; Bhatt, R.; Timasheff, S. N. Why preferential hydration does not always stabilize the native structure of globular proteins. *Biochem.* **1990**, *29*, 1924–931.
- (9) Ikegaya, K. Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase. *J. Biochem.* **2005**, 137, 349.
- (10) Noritomi, H.; Minamisawa, K.; Kamiya, R.; Kato, S. Thermal stability of proteins in the presence of aprotic ionic liquids. *J. Biomed. Sci. Eng.* **2011**, *4*, 94–99.
- (11) Tomé, L. I. N.; Jorge, M.; Gomes, J. R. B.; Coutinho, J. A. P. Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution. *J. Phys. Chem. B* **2012**, *116*, 1831–1842.
- (12) Fang, S.; Ren, D-H. Effect of 1-ethyl-3-methylimidazolium bromide ionic liquid on the volumetric behavior of some aqueous L-amino acids solutions. *J. Chem. Eng. Data* **2013**, *58*, 845–850.
- (13) Fujita, K.; MacFarlane, D. R.; Forsyth, M. Protein solubilising and stabilising ionic liquids. *Chem. Commun.* **2005**, *38*, 4804–4806.
- (14) Plaquevent, J-C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A-C. Ionic Liquids: New targets and media for alpha-amino acid and peptide chemistry. *Chem. Rev.* **2008**, *108*, 5035–5060.
- (15) Tietze, A. A.; Bordusa, F.; Giernoth, R.; Imhof, D.; Lenzer, T.; Maass, A.; Mrestani-Klaus, C.; Neundorf, I.; Oum, K.; Reith, D.; Stark, A. On the nature of interactions between ionic liquids and small amino-acid-based biomolecules. *Chem. Phys. Chem.* **2013**, *14*, 4044–4064
- (16) Podgoršek, A.; Macchiagodena, M.; Ramondo, F.; Costa, G. M. F.; Pádua, A. A. Glycine in 1-butyl-3-methylimidazolium acetate and trifluoroacetate ionic liquids: Effect of fluorination and hydrogen bonding. *Chem. Phys. chem.* **2012**, *13*, 1753–1763.
- (17) Pal, A.; Kumar, H.; Sharma, H. K.; Maan, R. Solute—solvent interactions of alkyl acetoacetates in aqueous{1-butyl-3-methylimidazolium bromide [bmim][Br]}ionic liquid solutions in the temperature interval (288.15–308.15) K. *Thermochim. Acta* **2014**, *577*, 79–86.
- (18) Pal, A.; Kumar, H.; Sharma, H. K.; Maan, R. Thermophysical properties of alkyl acetates in aqueous solutions of ionic liquid {1-butyl-3-methylimidazolium bromide [bmim][Br]} at different temperatures. *Phys. Chem. Liq.* **2015**, *53*, 390–402.
- (19) Pal, A.; Kumar, H.; Kumar, H. K.; Maan, R. Thermophysical properties of alkyl acetates in aqueous solutions of ionic liquid {1-butyl-3-methylimidazolium chloride} [bmim][Cl] at different temperatures. *Indian J. Pure Appl. Phys.* **2015**, *53*, 000–000.
- (20) Pal, A.; Kumar, H.; Kumar, H. K.; Maan, R. Solute-solvent interactions of alkyl acetoacetates in aqueous {1-butyl-3-methylimida-

- zolium chloride [bmim][Cl]}ionic liquid solutions in the temperature interval (288.15 308.15) K. J. Chem. Eng. Data 2014, 59, 2367–2376.
- (21) Pal, A.; Kumar, H.; Sharma, H. K.; Maan, R. Solute—solvent interactions of glycine, L-alanine, and L-valine in aqueous 1-methyl-3-octylimidazolium chloride ionic liquid solutions in the temperature interval (288.15–308.15) K. Thermochim. Acta 2014, 590, 127–137.
- (22) Rowlinson, J. S. Liquids and Liquid Mixtures; Butterworths: London 1959.
- (23) Wen, W. Y.; Saito, S. Apparent and partial molar volumes of five symmetrical tetraalkylammonium bromides in aqueous solutions. *J. Phys. Chem.* **1964**, *68*, 2639–2644.
- (24) Pal, A.; Kumar, S. Volumetric properties of L-alanine, and L-valine in aqueous sucrose solutions at T = (288.15 and 308.15) K. J. Chem. Thermodyn. **2005**, 37, 1085–1092.
- (25) Ali, A.; Khan, S.; Hyder, S.; Tariq, M. Interactions of some α -amino acids with tetra-n-alkylammonium bromides in aqueous medium at different temperatures. *J. Chem. Thermodyn.* **2007**, 39, 613–620.
- (26) Yan, Z.; Wang, J.; Liu, W.; Lu, J.; Yan, Z.; Wang, J.; Liu, W.; Lu, J. Apparent molar volumes and viscosity B-coefficients of some α -amino acids in aqueous solutions from 278.15 to 308.15 K. *Thermochim. Acta* **1999**, 334, 17–27.
- (27) Shekaari, H.; Jebali, F. Solute—solvent interactions of amino acids in aqueous 1-propyl-3-methylimidazolium bromide ionic liquid solutions at 298.15 K. *J. Sol. Chem.* **2010**, *39*, 1409—1427.
- (28) Shekaari, H.; Jebali, F. Volumetric and conductometric studies of some amino acids in aqueous ionic liquid, 1-1-hexyl-3-methylimidazolium chloride solutions at 298.15 K. *Phys. Chem. Liq.* **2011**, *49*, 572–587.
- (29) Banipal, T. S.; Kaur, P. Partial molal volumes and expansibilities of some amino acids in aqueous solutions. *J. Indian Chem. Soc.* **1999**, 76, 431–437.
- (30) Franks, F. Water. A comprehensive treatise: Aqueous solutions of amphiphiles and macromolecules, 4th ed.; Plenum Press: New York, 1975.
- (31) Romero, C. M.; Negrete, F. Effect of temperature on partial molar volumes and viscosities of aqueous solutions of a-DL-amino-butyric acid, DL-norvaline and DL-norleucine. *Phys. Chem. Liq.* **2004**, *42*, 261–267.
- (32) Rajagopal, K.; Jayabalakrishnan, S. S. Volumetric and viscometric studies of 4-aminobutyric acid in aqueous solutions of salbutamol sulphate at 308.15, 313.15 and 318.15 K. *Chin. J. Chem. Eng.* **2009**, *17*, 796–804.
- (33) Franks, F.; Quickenden, M. A.; Reid, D. S.; Watson, B. Calorimetric and volumetric studies of dilute aqueous solutions of cyclic ether derivatives. *Trans. Faraday Soc.* **1970**, *66*, 582–589.
- (34) Singh, S. K.; Kishore, N. Partial molar volumes of transfer of some amino acids and peptides from water to 1 mol dm⁻³ aqueous sodium acetate, sodium sulfate, and sodium thiocynate at 25 degree C, and correlation of the transfer parameters to the thermal stability of hen egg white lysozyme and a-lactalbumin in the presence of these salts. *J. Solution Chem.* **2003**, 32, 117–135.
- (35) Bondi, A. Van der Waals Volumes and Radii. *J. Phys. Chem.* **1964**, *68*, 441–451.
- (36) Shahidi, F.; Farrell, P G Partial molar volumes of organic compounds in water: Part 5. Aminocarboxylic acids. *J. Chem. Soc. Faraday Trans. 1* **1978**, *74*, 858–868.
- (37) Millero, F. J.; Surdo, A. L.; Shin, C. The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 degree C. *J. Phys. Chem.* **1978**, *82*, 784–792.
- (38) Waris, B. N.; Hassan, U.; Shrivastava, N. Viscosities of amino acid—urea—water ternary systems from 298.15 to 318.15 K. *Ind. J. Chem. A.* **2001**, *40*, 1218–1221.
- (39) Lepori, L.; Gianni, P. Partial molar volumes of ionic and nonionic organic solutes in water: A simple additivity scheme based on the intrinsic volume approach. *J. Sol. Chem.* **2000**, *29*, 405–447.
- (40) Munde, M. M.; Kishore, N. Volumetric properties of aqueous 2-chloroethanol solutions and volumes of transfer of amino acids and

peptides from water to aqueous 2-chloroethanol solutions. J. Solution Chem. 2003, 32, 791–802.

- (41) Berlin, E.; Pallansch, M. J. Densities of several proteins and Lamino acids in the dry state. J. Phys. Chem. 1968, 72, 1887–1889.
- (42) Owaga, T.; Mizutani, K.; Yasuda, M. Volume, adiabatic compressibility and viscosity of amino acids in aqueous alkali-chloride solutions. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2064–2068.
- (43) Dhondge, S. S.; Zodape, S. P.; Parwate, D. V. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. *J. Chem. Thermodyn.* **2012**, *48*, 207–212.
- (44) Cabani, S.; Conti, G.; Matteoli, E. Partial molal expansibilities of organic compounds in aqueous solution. I. Alcohols and ethers. *J. Sol. Chem.* **1976**, *5*, 751–763.
- (45) Iqbal, M. J.; Chaudhry, M. A. Volumetic and viscometric studies of antidepressant drugs in aqueous medium at different temperatures. *J. Chem. Eng. Data* **2009**, *54*, 2772–2776.
- (46) Hepler, L. G. Thermal expansion and structure in water and aqueous solutions. *Can. J. Chem.* 1969, 47, 4613–4617.