

+2/1/56+

Example Exam - Basic Electricity, 08/10/2018

	α				
NT	9				
Name:	• • • • • • • • • • • • • • • • • • • •	 	 	 	

Student ID:

0 0	0	0 0	0 0
1 1	1 1	1 1	
2 2	2 2	2 2	2 2
3 3	3 3	3 3	3 3
图 腹	4 4	4 4	4 4
5 5	5 5	5	5 5
6 6	6 6	6 6	6
7 7	7	7 7	7 7
8 8	8 8	8 8	8 8
9 9	9 9	9 9	9 9

In the following circuit, where source voltage is $V_s=110~\mathrm{V}$, current and active power measurements were taken:

- $I_2 = 2$ A:
- $I_3 = 4 \text{ A}$;
- P₃ = 300 W (measured in RL branch)

Figura 2: Circuit

2/2

0/2

3/3

Question 1 Find the magnitude for current I_1 , in amperes.

3
If P3 = R I3 2 -> 300=R.42 -> R= 18,76.2
= = \ = \ R2 + X2 = VS -> \ \ 18,752 + X2 = 10 - X = 20,12 \ \OZ
(ET)
If Vs = 110 V LO", I3 = 110 = 4,00 L-47" A
18,75+320,12
I2= 2,00 L90°A, I1 = F2+ I3 = 2,88 L-18,8° A

Question 2 Find the power factor in the RL branch (leading or lagging).

Question 3 Find the reactive power supplied by the voltage source, in VAr.

$$Q = Q_L + Q_C$$

$$Q_L = |\hat{I}_3|^2 \cdot X = 4^2 \cdot 20.12 = 321.92 \text{ VAR}$$

$$Q_C = -110 \cdot 2 = -220 \text{ VAR}$$

$$Q = 101.92 \text{ VAR}$$

Question 4 Describe the procedure and assumptions that should be followed to find the capacitor that adjusts the power factor to a specific value.

0 0.5 1 1.5 2.5 3

2/3

World upsum dolor

- 1. Sit amit
- 2. Consectatur adipuscing elit
- 3. Sed de suismed

Tempor incididunt ut labore et dolore magna aliqua

•