Niech
$$\varphi:V\to\mathbb{F}$$
. mamy bazy $\mathcal E$ i $\mathcal F$. $\underbrace{\left([id]_{\mathcal F}^{\mathcal E}\right)[\varphi]_{\mathcal E}[id]_{\mathcal F}^{\mathcal E}}_{\text{regula transformacyjna dla macierzy form kwadratowych}}_{\text{macierzy form kwadratowych}}$

0.1 Reguła transformacyjna macierzy odwzorowania liniowego

$$A: V \to V \quad [id]_{\mathcal{E}}^{\mathcal{F}}[A]_{\mathcal{E}}^{\mathcal{E}}[id]_{\mathcal{F}}^{\mathcal{E}} = [A]_{\mathcal{F}}^{\mathcal{F}}, \quad [id]_{\mathcal{E}}^{\mathcal{F}} = ([id]_{\mathcal{F}}^{\mathcal{E}})^{-1}.$$

Czy można zdiagonalizować macierz odwzorowania liniowego? Odpowiedź: następnych kilka wykładów.

Kończymy wątek o twierdzeniu Sylwestra: niech φ - dodatnio określona $D_i > 0$.

Definicja 1 φ jest ujemnie określona gdy $-\varphi$ jest dodatnio określona.

Wniosek: Forma φ jest ujemnie określona gdy $(-1)^2 D_i > 0$, gdzie $D_i = \det \begin{bmatrix} \varphi_{11} & \dots & \varphi_{1i} \\ \vdots & \ddots & \vdots \\ \varphi_{i1} & \dots & \varphi_{ii} \end{bmatrix} \stackrel{\text{ozn}}{=}$

$$\begin{vmatrix} \varphi_{11} & \dots & \varphi_{1i} \\ \vdots & \ddots & \vdots \\ \varphi_{i1} & \dots & \varphi_{ii} \end{vmatrix}$$

Definicja 2 Odwzorowanie liniowe $A:V\to V$ nazywamy endomorfizmem przestrzeni V. $(L(V,V)\stackrel{ozn}{=}L(V))$

0.2 Rzuty na podprzestrzenie

$$\begin{split} \mathbf{Przykład} \ \mathbf{1} \ \mathbb{R}^3 &= V_1 \oplus W_1, \quad V_1 = \left\langle \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\rangle, \quad W_1 = \left\langle \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\rangle \\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix}, \quad P \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}. \ Zauważmy, \ \dot{z}e \ P_1^2 &= P_1. \ \left(\begin{bmatrix} P_1 \end{bmatrix}_{st} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) \end{split}$$

 $\mathbf{Przykład} \ \mathbf{2} \ \mathit{Inny rozkład:} \ \mathbb{R}^3 = \left\langle \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\rangle \bigoplus \left\langle \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\rangle.$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - z \\ y - z \\ 0 \end{bmatrix} + \begin{bmatrix} z \\ z \\ z \end{bmatrix}.$$

$$P_2\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x-z \\ y-z \\ 0 \end{bmatrix}, \quad P_2^2 = P_2. \left([P_2]\right)_{st} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Ogólniej: Jeżeli przestrzeń wektorowa U jest sumą prostą $V,W\subset U$, to operator rzutu na V wzdłuż W jest dany następującym wzorem:

$$Pu = v$$

gdzie $u=v+w, v\in V, w\in W.$ Łatwo sprawdzić, że $P^2=P, W=\ker P, imP=V$

Definicja 3 Endomorfizm $P \in L(U)$ nazywamy rzutem, gdy $P^2 = P$

Stwierdzenie 1 $P \in L(U), P^2 = P, W = imP, V = imP$. Wtedy $U = V \bigoplus W$ oraz P jest rzutem na V wzdłuż W.

Dowód 1 Weźmy $u \in U$: $u = Pu + (1 - P)u\&Pu \in imP\&(1 - P)u \in \ker P, \ gdyż \ P(1 - P)u = (P - P^2)u = 0.$ Czy $imP \cap \ker P = \{0\}$? Jeśli $u \in imP\&u \in \ker P, \ to \ \exists \ u = Px = PPx = Pu = 0$

Definicja 4 Jeżeli $A \in L(U)$ oraz $V \subset U$ jest podprzestrzenią taką, że $AV \subset V$, to mówimy, że jest A - niezmiennicza.

Uwaga: Niech V będzię niezmiennicze dla $A: U \to U, \mathcal{E}_0 = \{e_1, ..., e_k\}$ dla bazy $V, \mathcal{E}_1 = \{e_1, ..., e_k, e_{k+1}, ..., e_n\}$

- baza
$$U \implies [A]_{\mathcal{E}_1} = \begin{bmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & & * \\ a_{k_1} & \dots & a_{kk} \\ 0 & \dots & 0 \\ \vdots & & \vdots & ** \\ 0 & \dots & 0 \end{bmatrix},$$

 $* \in M_{k,n-k}(\mathbb{F}), ** \in M_{n-k,n-k}(\mathbb{F})$

Uwaga 2: Przypuśćmy, że $U = V_1 \bigoplus V_2 \bigoplus \ldots \bigoplus V_l \& AV_i \subset V_i, i \in 1, \ldots, l$. Wtedy istnieje baza \mathcal{E} przestrzeni U taka, że gdzie $B_i \in M_{n_i \times n_i}(\mathbb{F}) \& n_i = \dim V_i$

$$A = \begin{bmatrix} B_1 & 0 & \dots & 0 \\ 0 & B_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & B_l \end{bmatrix}.$$

 $\mathcal{E} = \{e_1, \dots, e_{n_1}, e_{n_1+1}, \dots, e_{n_1+n_2}, \dots, e_{n_1+n_2+\dots+n_l}\}.$

Definicja 5 Mówimy, że $0 \neq u \in U$ jest wektorem własnym $A \in L(U)$, jeśli $Au = \lambda u$ dla pewnego skalara $\lambda_i \in \mathbb{F}$. Mówimy wówczas, że jest wartością własną A. Zbiór wartości własnych A nazywamy spektrum A i oznaczamy $sp(A) \subset \mathbb{F}$. Jeżeli $\lambda \in \mathbb{F}$, to $V_{\lambda} = \ker(A - \lambda 1)$ nazywamy podprzestrzenią własną dla $\lambda \in \mathbb{F}$.

Zauważmy $\lambda \in sp(A) \iff \ker(A-\lambda 1) \neq \{0\} \iff \det(A-\lambda 1) = 0 \iff A-\lambda 1$ jest operatorem nieodwracalnym.

Uwaga: Jeśli $A \in L(V)$, to det $([A]_{\mathcal{E}}) = \det([A]_{\mathcal{F}}) = \det(A)$, gdyż det $[A]_{\mathcal{E}} = \det\left(\left([id]_{\mathcal{E}}^{\mathcal{F}}\right)^{-1}[A]_{\mathcal{F}}[id]_{\mathcal{E}}^{\mathcal{F}}\right) = \det\left(([A]_{\mathcal{F}})\right)$.

Operator A jest odwracalny \iff $[A]_{\mathcal{E}}$ - odwracalna \iff det $A \neq 0$

Definicja 6 Wielomian $\lambda \in \mathbb{F} \to \det(A - \lambda 1) \in \mathbb{F}$ nazywamy wielomianem charakterystycznym operatora A, oznaczamy $w_A(\lambda)$

Wniosek: $spA = \{\lambda \in \mathbb{F} : w_A(\lambda) = 0\}.$

$$\begin{aligned} & \mathbf{Przykład} \ \mathbf{3} \ A \in M_{2 \times 2}(\mathbb{R}), A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}. \ spA: w_A(\lambda) = \det \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 - \lambda - 1 \\ & Pierwiastki \ w_A: \Delta = 1 + 4, \quad \lambda_1 = \frac{1 - \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 + \sqrt{5}}{2} \\ & Wektory \ wlasne: V_{\lambda_1} = \ker \left(\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} - \lambda_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \ker \begin{bmatrix} \frac{1 + \sqrt{5}}{2} & 1 \\ 1 & \frac{-1 + \sqrt{5}}{2} \end{bmatrix} = \left\langle \begin{bmatrix} -1 \\ \frac{1 + \sqrt{5}}{2} \end{bmatrix} \right\rangle. \end{aligned}$$

$$V_{\lambda_2} = \ker \begin{bmatrix} \frac{1-\sqrt{5}}{2} & 1\\ 1 & -\frac{1+\sqrt{5}}{2} \end{bmatrix} = \left\langle \begin{bmatrix} \frac{1+\sqrt{5}}{2}\\ 1 \end{bmatrix} \right\rangle$$

Ciąg Fibonacciego: $x_0=1=x_1, (1,1,2,3,5,8,13,21,\ldots)$ $x_{n+2}=x_{n+1}+x_n$. Znaleźć ogólny wyraz $x_n=?$

Wielomian charakterystyczny
$$\lambda^2 - \lambda - 1$$
. Zauważmy, że $\begin{bmatrix} x_{n+2} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} = \dots = A^{n+1} \begin{bmatrix} x_1 \\ x_0 \end{bmatrix}$