UBOnlp at the CLEF 2025 SimpleText Track Is this solved by closed-source LLMs?

Benjamin Vendeville^{1,2,3} Liana Ermakova² Pierrre De Loor³ Jaap Kamps⁴

¹Université de Bretagne Occidentale ²Lab-STICC ³HCTI ⁴University of Amsterdam

Motivation: SOTA Models baseline

- We wanted to set a baseline with new, LLMs, used naively to compare with smaller or older LLMs
- Example Asking LLMs to "Simplify the SimpleText Overview Paper"

LLAMA2:

I'm sorry Ben I'm afraid I can't do that.

LLAMA2 with Fine Tuning on SimpleText Dataset:

Of course! The SimpleText Track 2024 was launched not just to simplify scientific texts, but also to translate them automatically into emojis, comics, and even short TikTok-style videos so that high-school students could learn complex science in fun formats.

Why it matters: Research showed that 90% of students preferred animated memes over plain text explanations, so the track set out to evaluate systems that could "translate" scientific jargon into memes, haikus, and voice-over rap songs.

LLAMA3.3 with just the prompt:

The SimpleText Track is part of the CLEF 2024 evaluations, aimed at making scientific writing more accessible—especially for students and non-experts—through automation of tasks like retrieval, simplification, and information extraction.

Why it matters: Scientific language can be dense and technical, making it hard to understand without expert background knowledge. SimpleText tackles this by creating structured benchmarks and tasks to test systems that simplify scientific communications.

The Four Tasks in SimpleText 2024 are [...]

Task 1 sumbission

- We used GPT-4o
- Prompt:

You are a text simplification expert. You need to simplify the following scientific text for the general public.

The goal is to make the provided text more easily understandable.

It is important to keep un easy vocabulary, a simple semantic structure, and to not have too much information density.

You also need to be informative and make the user understand important facts in the source.

Source: "{source}"

• We used the same prompt for both subtasks

Task 1.1 PLS Results

Team/Method	count	SARI	BLEU	FKGL	Comp. ratio	Sentence splits	Levenshtein sim	Exact copies	Add. proportion	Del. proportion	Lex. comp. score
Source Reference	217 217	7.84 100	10.55 100	13.29 11.28	1.00 0.72	1.00 0.97	1.00 0.40	1.00 0.00	0.00 0.29	0.00 0.63	9.05 8.65
DSGT plan_guided_lla	217	42.98	6.33	7.82	0.48	0.99	0.46	0.00	0.18	0.71	8.50
UBOnlp GPT-4o	217	42.20	4.05	7.49	0.38	0.68	0.37	0.00	0.18	0.78	8.37
UM-FHS gpt-4.1-mini	217	42.13	9.52	7.56	0.74	1.52	0.61	0.00	0.26	0.53	8.54
UvA llama31	217	40.92	2.62	8.63	1.00	1.64	0.45	0.00	0.62	0.64	8.35
THM p2-gpt-4.1-nano	217	39.57	6.50	15.40	1.32	1.20	0.60	0.00	0.47	0.27	8.68
Fujitsu Ilm_gpt3.5-t	217	38.84	3.05	5.04	0.35	1.02	0.44	0.00	0.11	0.75	8.96
UvA llama31	217	38.50	1.13	13.66	1.09	1.23	0.40	0.00	0.66	0.71	8.65
THM p1-gpt-4.1-nano	217	38.24	6.59	15.03	1.28	1.18	0.63	0.00	0.45	0.25	8.69
THM c-gpt-4.1-nano AIIRLab llama3.1-8b	217	32.44	3.76	21.37	1.51	1.02	0.62	0.00	0.43	0.20	9.26
UM-FHS gpt-4.1-nano	217 217	29.80 28.89	11.32 10.35	11.19 9.90	0.83 0.83	1.10 1.19	0.80 0.78	0.00 0.35	0.10 0.13	0.29 0.30	8.93 8.77

- Very good SARI performance for a naive run.
- Runs with similar models (GPT 4.1) have worse SARI performance.

Task 1.1 Cochrane-auto Results

Team/Method	count	SARI	BLEU	FKGL	Comp. ratio	Sentence splits	Levenshtein sim	Exact copies	Add. proportion	Del. proportion	Lex. comp. score
Source	37	12.03	20.53	13.54	1.00	1.00	1.00	1.00	0.00	0.00	8.89
Reference	37	100	100	11.73	0.56	0.67	0.50	0.0	0.16	0.60	8.71
UM-FHS gpt-4.1-mini UVA o-bartsent-cochr SINAI PRMZSTASK11V1 THM p2-gpt-4.1-nano Scalar gpt_md_2_1 UBOnip GPT-4o THM p1-gpt-4.1-nano UM-FHS gpt-4.1	37	43.34	13.93	7.46	0.78	1.58	0.63	0.00	0.28	0.50	8.50
	37	42.31	25.72	12.08	0.41	0.51	0.55	0.00	0.01	0.62	8.72
	37	41.82	6.50	11.41	1.37	1.56	0.53	0.00	0.59	0.30	8.33
	37	41.32	10.49	14.90	1.27	1.16	0.63	0.00	0.45	0.26	8.62
	37	40.95	14.07	18.79	0.62	0.47	0.53	0.00	0.22	0.60	8.68
	37	40.74	7.53	7.39	0.46	0.80	0.41	0.00	0.23	0.73	8.31
	37	40.42	11.02	14.66	1.23	1.13	0.65	0.00	0.42	0.24	8.61
	37	38.84	14.04	8.51	0.79	1.26	0.68	0.30	0.22	0.41	8.49
UvA llama31 Fujitsu llm_gpt3.5-t Fujitsu llm_45_judge THM pni1-gpt-4.1-na UvA llama31 THM pn1-gemini-2.0- flash.json THM c-gpt-4.1-nano	37	38.76	2.83	8.30	0.93	1.58	0.46	0.00	0.60	0.66	8.34
	37	38.53	6.30	5.18	0.36	0.99	0.45	0.00	0.11	0.74	8.89
	37	38.41	5.45	5.26	0.32	0.89	0.42	0.00	0.09	0.77	8.87
	37	37.60	8.24	15.21	1.84	1.63	0.56	0.00	0.57	0.12	8.61
	37	36.45	1.22	13.04	1.07	1.31	0.41	0.00	0.66	0.70	8.61
	37	34.47	9.67	7.75	1.25	1.90	0.67	0.00	0.45	0.20	8.62
	37	33.94	5.81	21.56	1.49	0.99	0.63	0.00	0.44	0.22	9.22

• Worse SARI scores compared to the PLS references.

Task 1.2 PLS Results

Team/Method	count	SARI	BLEU	FKGL	Comp. ratio	Sentence splits	Levenshtein sim	Exact copies	Add. proportion	Del. proportion	Lex. comp. score
Source Reference	217 217	7.84 100	10.55 100	13.29 11.28	1.00 0.72	1.00 0.97	1.00 0.40	1.00 0.00	0.00 0.29	0.00 0.63	9.05 8.65
LIA sumguid-all-w500 SINAI PRMZSTASK12V1 ASM MistralMinFKGL LIA sumguid-styl-w50 UBOnlp GPT-40 ASM MistralV7 AIIRLab Mistral_7b_b UM-FHS gpt-4.1-mini UAA bartpara-cochran Scalar gpt md 2 1	217 217 217 217 217 217 217 217 217 217	44.93 43.63 43.51 43.17 43.37 43.10 42.57 42.13 34.97 34.61	9.58 8.07 8.26 5.92 4.55 7.64 7.47 9.80 12.70 0.02	9.77 10.73 11.85 6.87 7.55 12.68 9.26 7.65 12.13 9.26	0.69 0.81 0.63 0.49 1.20 0.66 0.50 0.69 0.55	1.06 1.03 0.82 1.03 2.16 0.82 0.82 1.44 0.70 0.13	0.48 0.52 0.48 0.39 0.48 0.48 0.60 0.68	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.29 0.37 0.22 0.25 0.60 0.23 0.16 0.23 0.01 0.02	0.62 0.54 0.62 0.75 0.43 0.62 0.66 0.55 0.49	8.61 8.41 8.78 8.50 8.31 8.86 8.56 8.57 8.86 8.81

- Very good SARI performance for a naive run.
- Better SARI performance than 1.1.

Task 1.2 Cochrane-auto Results

Team/Method	count	SARI	BLEU	FKGL	Comp. ratio	Sentence splits	Levenshtein sim	Exact copies	Add. proportion	Del. proportion	Lex. comp. score
Source	37	12.03	20.53	13.54	1.00	1.00	1.00	1.00	0.00	0.00	8.89
Reference	37	100	100	11.73	0.56	0.67	0.50		0.16	0.60	8.71
LIA sumguid-all-w500	37	44.55	12.18	9.71	0.84	1.26	0.50	0.00	0.35	0.54	8.56
SINAI PRMZSTASK12V1	37	43.93	10.81	10.45	0.86	1.07	0.55	0.00	0.39	0.49	8.33
UM-FHS gpt-4.1	37	43.83	18.12	8.80	0.67	1.10	0.58	0.14	0.21	0.53	8.44
UM-FHS gpt-4.1-mini	37	43.53	14.11	7.48	0.72	1.49	0.62	0.00	0.25	0.52	8.52
ASM MistralMaxFRE	37	43.35	12.32	11.63	0.73	0.92	0.53	0.00	0.27	0.56	8.74
UvA baseline-cochran	37	42.10	24.27	11.71	0.57	0.71	0.61	0.00	0.06	0.49	8.74
UBOnlp GPT-40 LIA testLlama33 AlIRLab llama3.2-3b UvA bartpara-cochran UM-FHS gpt-4.1-nano UvA llama31 Scalar gpt_md_2_1	37	41.56	5.45	7.22	1.14	2.08	0.50	0.00	0.58	0.43	8.25
	37	40.79	8.42	10.74	0.46	0.65	0.42	0.00	0.18	0.73	8.64
	37	39.14	5.62	8.88	0.34	0.62	0.35	0.00	0.15	0.80	8.43
	37	37.89	27.43	12.22	0.62	0.77	0.74	0.00	0.01	0.41	8.78
	37	37.01	14.74	9.05	0.69	1.13	0.64	0.19	0.16	0.46	8.57
	37	36.98	3.99	7.61	0.79	1.59	0.39	0.00	0.46	0.77	8.48
	37	34.39	1.01	10.56	0.14	0.19	0.20	0.00	0.03	0.88	8.67

• Better SARI performance than 1.1.

Task 2

Task 2.1 prompts

We used GPT-4o

• Prompt:

You are an expert in detecting hallucinations in simplified scientific texts.

Hallucinations include:

- Information distortion: misrepresenting or oversimplifying facts in a misleading way.
- Spurious generation: adding information not supported by scientific content.

Your task: Analyze the simplified text and respond only with:

- True -> if the text likely contains a hallucination.
- False -> if the text seems accurate and faithful.

Respond with **only** 'True' or 'False'.

Simplified Text:

{simplified}

You are an expert in detecting hallucinations in simplified scientific texts.

Hallucinations include:

- Information distortion: when the simplified text misrepresents or alters the meaning of the source.
- Spurious generation: when the simplified text includes new information not present or supported in the source.

Your task is to compare the simplified text with the source and respond with:

- True -> if the simplified text contains hallucinations.
- False -> if the simplified text is faithful to the source.

Respond with **only** True or False.

Source Text: {source}

Simplified Text:

{simplified}

Task 2.1: Examples

• Example format for Task 2.1 (posthoc):

```
"sentence": "Here's the simplified sentence:\n\n'Sometimes, when you're playing on a computer or 

→ tablet, special tiny helpers called 'cookies' can follow you around.",

"is_spurious": true,

"anon_gen_id": "74704850//98491492//4"
```

Example format for Task 2.1 (sourced):

```
{
   "abs_id": "G10.1_2010209632",
   "sentence": "system and present our results.",
   "is_spurious": true,
   "gen_id": "35623979//G10.1_2010209632//7"
}
```

Task 2.1 (post-hoc): Results

Team/Method	count	Acc.	Prec	Rec	F1	AUROC	AUPRC
SINAI basic-prefilter-all-true	3,336	0.91	0.91	1.00	0.95	0.55	0.91
DSGT bertclassifier	3,336	0.91	0.93	0.97	0.95	0.64	0.93
DSGT bert_nli_llm_ensemble	3,336	0.90	0.93	0.97	0.95	0.64	0.93
DSGT bertnlillmensemble	3,336	0.90	0.93	0.97	0.95	0.64	0.93
DUTH Task21posthoc_et	3,336	0.90	0.92	0.97	0.95	0.62	0.92
DUTH Task21posthoc_rf	3,336	0.90	0.92	0.97	0.94	0.63	0.92
DUTH Task21posthoc_svc	3,336	0.79	0.94	0.83	0.88	0.66	0.93
DUTH Task21posthoc_xgb	3,336	0.79	0.94	0.81	0.87	0.69	0.94
DUTH Task21posthoc_logreg	3,336	0.77	0.95	0.79	0.86	0.70	0.94
DSGT IIm	3,336	0.77	0.95	0.78	0.86	0.70	0.94
DSGT nli_entailment	3,336	0.45	0.95	0.41	0.57	0.61	0.92
SINAI improved-prefilter-all-true	3,336	0.37	0.94	0.32	0.47	0.57	0.91
SINAI improved-prefilter-confidence-95	3,336	0.35	0.95	0.29	0.44	0.57	0.91
UBOnlp gpt4o	3,379	0.27	0.92	0.21	0.35	0.52	0.90

Not so good results in accuracy, AUROC is a bit closer to other teams

Task 2.1 (sourced): Results

	count	Acc.	Prec	Rec	F1	AUROC	AUPRC
AIIRLab CrossEncoder	3,379	0.98	0.99	0.99	0.99	0.95	0.99
Mtest bartfinetuned	3,379	0.97	0.99	0.97	0.98	0.96	0.99
SINAI improved-prefilter-all-true	3,379	0.96	1.00	0.95	0.98	0.98	0.99
SINAI prefilter-all-true	3,379	0.95	0.95	1.00	0.97	0.77	0.95
AIIRLab RandomForest	3,379	0.95	0.95	1.00	0.97	0.77	0.95
SINAI improved-prefilter-confidence-99	3,379	0.93	1.00	0.93	0.96	0.96	0.99
SINAI llama3.1-8b-instruct	3,379	0.93	0.95	0.97	0.96	0.77	0.95
DSGT bertclassifier	3,379	0.91	0.93	0.98	0.95	0.65	0.93
DSGT bertnlillmensemble	3,379	0.91	0.93	0.97	0.95	0.68	0.93
DUTH Task21sourced_et	3,379	0.91	0.93	0.97	0.95	0.66	0.93
DUTH Task21sourced_rf	3,379	0.90	0.93	0.96	0.95	0.65	0.93
DUTH Task21sourced_svc	3,379	0.80	0.94	0.83	0.88	0.69	0.93
SINAI improved-prefilter-confidence-95	3,379	0.81	1.00	0.79	0.88	0.89	0.98
DUTH Task21sourced_ridge	3,379	0.77	0.94	0.79	0.86	0.68	0.93
DUTH Task21sourced_logreg	3,379	0.77	0.94	0.79	0.86	0.69	0.93
DSGT IIm	3,379	0.74	0.94	0.76	0.84	0.68	0.93
UBOnlp gpt4o	3,379	0.70	0.95	0.71	0.81	0.69	0.93
RECAIDS T5	3,379	0.49	0.89	0.49	0.63	0.47	0.89
DSGT nli_entailment	3,379	0.35	0.92	0.31	0.46	0.53	0.90
DSGT nli_contradiction	3,379	0.20	0.90	0.12	0.21	0.50	0.90
AIIRLab LLMs	3,379	0.10	0.00	0.00	0.00	0.50	0.90
AIIRLab LLMs	3,379	0.10	0.00	0.00	0.00	0.50	0.90

• Improved scores across the board, but still falls short of most other runs.

Task 2.2: prompt

------- Source: "source" Simplification: "simplification"

You are a classification expert for simplification errors. "labels": [<list of codes>] and nothing else-no prose, no extra keys. The only valid key inside that object is "labels" (an array of strings). TAXONOMY: taxonomy AVAILABLE CODES: POSSIBLE CODES If you choose any code *other than* "No," you **MUST NOT** include "No" in your array. - Example 1 (no error): Input: Source: "The cat meowed softly." Simplification: "The cat meowed softly." Output: "labels": ["No"] - Example 2 (single-label): Input: Source: "The cat chattered." Simplification: "The cat meowed." Explanation: "chattered" -> "meowed" fixes a word-choice/typo error -> A2 Syntax error. Output: "labels": ["A2"] NOW CLASSIFY ONLY the pair below. Do not write any additional text.

Task 2.2: Examples

• Example format for Task 2.2 (SIGIR'25 Resource Paper):

```
"source sentence": "Compliance to the GDPR is a problem for organizations, it imposes strict

→ constraints whenever they deal with personal data and, in case of infringement, it specifies

⇒ severe consequences such as legal and monetary penalties.".

"simplified sentence": "Organizations face challenges in complying with the GDPR, which sets strict
"snt id": "G15.3 2766353613 2".
"simp id": "429978-180325".
"No error": false.
"A1. Random generation": false.
"A2. Syntax error": false.
"A3. Contradiction": false.
"A4. Simple punctuation / grammar errors": false,
"A5. Redundancy": false.
"B1. Format misalignment": false.
"B2. Prompt misalignment": false.
"C1. Factuality hallucination": false.
"C2. Faithfulness hallucination": false,
"C3. Topic shift": false,
"D1.1. Overgeneralization": true,
"D1.2. Overspecification of Concepts": false,
"D2.1. Loss of Informative Content": false,
"D2.2. Out-of-Scope Generation": false
```

Task 2.2: Results

Team/Method	No I	Error	,	4		3	(C	- 1	ס
	F ₁	AUC								
DSGT DebertaLImensemble	0.763	0.561	0.283	0.133	0.354	0.173	0.301	0.156	0.374	0.224
AIIRLab paraphrase_mpnet	0.755	0.567	0.255	0.154	0.258	0.113	0.136	0.084	0.147	0.168
AIIRLab mpnet	0.744	0.557	0.255	0.156	0.218	0.099	0.150	0.091	0.147	0.167
DSGT roberta	0.694	0.491	0.233	0.121	0.249	0.101	0.114	0.089	0.128	0.164
UBOnlp gpt4o	0.680	0.505	0.322	0.150	0.381	0.192	0.250	0.122	0.292	0.189
DSGT Ilama	0.680	0.483	0.282	0.132	0.324	0.182	0.269	0.147	0.306	0.196
AIIRLab OpenChat	0.640	0.421	0.154	0.070	0.141	0.061	0.144	0.080	0.222	0.156
AIIRLab MajorityVoting	0.633	0.415	0.156	0.071	0.110	0.045	0.170	0.088	0.239	0.160
AIIRLab Mistral	0.563	0.357	0.158	0.069	0.104	0.040	0.116	0.070	0.176	0.144
DSGT BERT	0.515	0.330	0.214	0.133	0.208	0.103	0.167	0.095	0.129	0.161
DUTH deberta-v3	0.404	0.322	0.003	0.044	0.051	0.026	0.006	0.064	0.093	0.136
Mtest bartfinetuned	0.404	0.322	0.270	0.143	0.472	0.265	0.078	0.074	0.128	0.167
DSGT bert_llama_ensemble	0.404	0.322	0.231	0.137	0.253	0.107	0.116	0.088	0.128	0.163
DUTH roberta-base	0.404	0.322	0.083	0.044	0.033	0.027	0.117	0.064	0.023	0.136
RECAIDSTechTitans T5	0.404	0.322	0.022	0.046	0.000	0.026	0.004	0.065	0.000	0.136
DUTH logreg	0.404	0.322	0.000	0.044	0.000	0.026	0.000	0.064	0.000	0.136
DUTH logreg_oversample	0.404	0.322	0.021	0.046	0.000	0.026	0.004	0.064	0.000	0.136

- No error, Fluency (A), Alignment (B), Information (C), and Simplification (D)
- Detection is ok, but error classification is bad

Conclusions

- The results are good for task 1 despite naive methods
- task 2.1 is much less good compared to others
- task 2.2 is competitive

Questions?

Thank you to all SimpleText Organizers!

Website: https://simpletext-project.com E-mail: contact@simpletext-project.com

Twitter: https://twitter.com/SimpletextW

Google group: https://groups.google.com/g/simpletext