ДЗ к семинару 22

Задача 1. Какие из следующих множеств являются кольцом:

- 1. вещественные числа вида $x+y\sqrt[3]{2}+z\sqrt[3]{4}$, где $x,y,z\in\mathbb{Q}$, относительно обычных операций сложения и умножения;
- 2. матрицы вида $\begin{pmatrix} x & y \\ ay & x \end{pmatrix}$, где a фиксированное целое число, $x,y \in \mathbb{Z}$, относительно обычных операций сложения и умножения;
- 3. множество функций $\mathbb{R} \to \mathbb{R}$, имеющих вторую производную на интервале (a,b), относительно обычных операций сложения и умножения функций?

Задача 2. Разделить многочлен

$$f(x) = 2x^4 - 3x^3 + 4x^2 - 5x + 6$$

с остатком на многочлен

$$q(x) = x^2 - 3x + 1.$$

Задача 3. Найти наибольший общий делитель многочленов

$$f(x) = x^4 + 2x^3 - x^2 - 4x - 2$$

И

$$g(x) = x^4 + x^3 - x^2 - 2x - 2$$

и его линейное выражение через f и g.

Задача 4. Найти наибольший общий делитель многочленов

$$f(x) = x^5 + x^3 + x + 1$$

И

$$g(x) = x^4 + 1$$

над полем \mathbb{F}_2 и его линейное выражение через f и g.

 $\mathit{Идеал}\ \mathfrak{a}\$ в кольце R называется $\mathit{максимальным},$ если

- 1. $\mathfrak{a} \neq R$;
- 2. для любого идеала $\mathfrak b$ в R, содержащего $\mathfrak a$, либо $\mathfrak b=\mathfrak a$, либо $\mathfrak b=R.$

Задача 5. Найти максимальные идеалы в кольцах:

- $1. \mathbb{Z};$
- 2. $\mathbb{C}[x]$.