WHAT IS CLAIMED IS:

1	1.	A method of managing network communication comprising:
2	termi	nating a first transmission control protocol ("TCP") connection at a first
3		network element, wherein said first TCP connection is between said
4		first network element and a second network element, and said first
5		TCP connection is intended to be terminated at a third network
6		element;
7	initia	ting a second TCP connection between said first network element and a
8		third network element;
9	estab	lishing communications between said second and said third network
10		elements via said first network element;
11	deter	mining need for data transfer between said second and said third network
12		elements by monitoring a plurality of data buffers; and
13	transi	ferring said data between said second and said third network elements.
1	2.	The method of claim 1, wherein said second network element initiates
2	said first TC	P connection for said third network element.
1,	3.	The method of claim 1, wherein said communications between said
2	second and s	aid third network elements are established using said first and said
3	second TCP	connections.
1	4.	The method of claim 1, wherein said communications between said
2	second and s	aid third network elements forms an end-to-end TCP connection.
1	5.	The method of claim 1, wherein said first network element is a proxy
2	server.	
1	6.	The method of claim 1, wherein a control unit of said proxy server
2	monitors said	l plurality of buffers.
1	7.	The method of claim 1, wherein said control unit transfers said data

between said second and said third network elements.

- 1 8. The method of claim 1, wherein said proxy server supports transparent 2 communications between said second and said third network elements.
- 1 9. The method of claim 1, wherein at least one of said plurality of buffers 2 is a receive buffer.
- 1 10. The method of claim 1, wherein at least one of said plurality of buffers 2 is a transmit buffer.
- 1 11. The method of claim 10, wherein said receive buffer is pre-allocated.
- 1 12. The method of claim 10, wherein said receive buffer is dynamically 2 allocated.
- 1 13. The method of claim 10, wherein said transmit buffer is pre-allocated.
- 1 14. The method of claim 10, wherein said transmit buffer is dynamically 2 allocated.
- 1 15. The method of claim 1, wherein said second network element is one of 2 a plurality of clients.
- 1 16. The method of claim 1, wherein one of a plurality of applications on said client initiates said first TCP connection for said client.
- 1 17. The method of claim 1, wherein said third network element is one of a plurality of servers.
- 1 18. The method of claim 1, wherein a data switching unit of said proxy 2 server determines which one of said plurality of servers to use for said second TCP 3 connection.
- 19. The method of claim 1, further comprising:
 monitoring said first TCP connection.

1	20. The method of claim 19, further comprising:
2	receiving a request for data from said application; and
3	determining whether said request requires said second TCP connection with
4	one of said plurality of servers.
1	21. The method of claim 20, wherein data switching unit receives said
2	request for data via said control unit.
1	22. The method of claim 20, wherein said determining of said second TCF
2	connection is done by said data switching unit.
1	23. The method of claim 20, further comprising:
2	if said request does not require said second TCP connection with one of said
3	plurality of servers,
4	servicing said request for data, and
5	closing said connection with said client.
1	24. The method of claim 23, wherein said request for data is served by
2	passing data from said data switching unit to said control unit for transmission to said
3	application on said client.
1	25. The method of claim 23, further comprising:
2	if said request requires said second TCP connection with one of said plurality
3	of servers,
4	selecting a first server from said plurality of servers, and
5	initiating said second TCP connection with said first server.
1	26. The method of claim 25, wherein said application requests said end-to-
2	end TCP connection with said first server.

27.

2	receiving said data on said second TCP connection from said first server;			
3	storing said data in said receive buffer of said second TCP connection;			
4	transferring said data from said receive buffer to said tran	transferring said data from said receive buffer to said transmit buffer of said		
5	first TCP connection;			
6	monitoring space in said transmit buffer; and			
7	if said transmit buffer has space,			
8	determining whether said fist TCP connection nee	d additional data.		
1	28. The method of claim 27, further comprising:			
2	if said first TCP connection need said additional data,			
3	requesting said additional data from said first serv	er; and		
4	repeating said steps of receiving, storing, transferr	ing, monitoring and		
5	determining until said request for data from	n said application is		
6	served.			
1	29. The method of claim 28, wherein said additional of	lata is transferred		
2	into said transmit buffer without a request for said additional data	1.		
1	30. The method of claim 28, further comprising:			
2	if said request for data from said application is served,			
3	closing said first TCP connection with said client.			
1	31. The method of claim 30, wherein said closing of s	aid connection is		
2	done by said control unit upon a receiving a request for closing sa	aid connection from		
3	said data switching unit.			
1	32. A network device comprising:			
2	terminate a first transmission control protocol ("TCP") co	nnection at a first		
3	network element, wherein said first TCP connection	on is between said		
	first network element and a second network eleme			
4	mst network element and a second network eleme	nt, and said first		
4 5		•		

The method of claim 25, further comprising:

2

3

1

2

1

7	initiate a second TCP connection between said first network element and a
8	third network element;
9	establish communications between said second and said third network
10	elements via said first network element;
11	determine need for data transfer between said second and said third network
12	elements by monitoring a plurality of data buffers; and
13	transfer said data between said second and said third network elements.

- 1 33. The network device of claim 32, wherein said second network element initiates said first TCP connection for said third network element.
 - 34. The network device of claim 32, wherein said communications between said second and said third network elements are established using said first and said second TCP connections.
 - 35. The network device of claim 32, wherein said communications between said second and said third network elements forms an end-to-end TCP connection.
 - 36. The network device of claim 32, wherein said first network element is a proxy server.
- 1 37. The network device of claim 32, wherein a control unit of said proxy server monitors said plurality of buffers.
- 1 38. The network device of claim 32, wherein said control unit transfers 2 said data between said second and said third network elements.
- 1 39. The network device of claim 32, wherein said proxy server supports 2 transparent communications between said second and said third network elements.
- 1 40. The network device of claim 32, wherein at least one of said plurality 2 of buffers is a receive buffer.

2

1

2

1

- 1 41. The network device of claim 32, wherein at least one of said plurality 2 of buffers is a transmit buffer.
- 1 42. The network device of claim 41, wherein said receive buffer is pre-2 allocated.
- 1 43. The network device of claim 41, wherein said receive buffer is 2 dynamically allocated.
- 1 44. The network device of claim 41, wherein said transmit buffer is pre-2 allocated.
 - 45. The network device of claim 41, wherein said transmit buffer is dynamically allocated.
 - 46. The network device of claim 32, wherein said second network element is one of a plurality of clients.
 - 47. The network device of claim 32, wherein one of a plurality of applications on said client initiates said first TCP connection for said client.
- 1 48. The network device of claim 32, wherein said third network element is 2 one of a plurality of servers.
- 1 49. The network device of claim 32, wherein a data switching unit of said 2 proxy server determines which one of said plurality of servers to use for said second 3 TCP connection.
- 1 50. The network device of claim 32, wherein said processor is further configured to
- 3 monitor said first TCP connection.

1	51.	The network device of claim 50, wherein said processor is further
2	configured to	
3	receiv	re a request for data from said application; and
4	deterr	nine whether said request requires said second TCP connection with one
5		of said plurality of servers.
1	52.	The network device of claim 51, wherein data switching unit receives
2	said request f	or data via said control unit.
1	53.	The network device of claim 51, wherein said determining of said
2	second TCP	connection is done by said data switching unit.
1	54.	The network device of claim 51, wherein said processor is further
2	configured to	
3	if said request does not require said second TCP connection with one of said	
4		plurality of servers,
5		service said request for data, and
6		close said connection with said client.
1	55.	The network device of claim 54, wherein said request for data is served
2	by passing da	ta from said data switching unit to said control unit for transmission to
3	said applicati	on on said client.
1	56.	The network device of claim 54, wherein said processor is further
2	configured to	
3	if said	request requires said second TCP connection with one of said plurality
4		of servers,
5		select a first server from said plurality of servers, and
6		initiate said second TCP connection with said first server.
1	57.	The network device of claim 56, wherein said application requests said
2	end-to-end To	OP connection with said first server

	1	58. The network device of claim 56, wherein said processor is further
	2	configured to
	3	receive said data on said second TCP connection from said first server;
	4	store said data in said receive buffer of said second TCP connection;
	5	transfer said data from said receive buffer to said transmit buffer of said first
	6	TCP connection;
	7	monitor space in said transmit buffer; and
	8	if said transmit buffer has space,
	9	determine whether said fist TCP connection need additional data.
=	1	59. The network device of claim 58, wherein said processor is further
H H three such Mrs. seed that the	2	configured to
Mary Hand	3	if said first TCP connection need said additional data,
	4	request said additional data from said first server; and
um auri	5	repeat said steps of receiving, storing, transferring, monitoring and
=======================================	6	determining until said request for data from said application is
Her Marti	7	served.
ann thuil thuis Ji	1	60. The network device of claim 59, wherein said additional data is
mus may	2	transferred into said transmit buffer without a request for said additional data.
	1	61. The network device of claim 59, wherein said processor is further
	2	configured to
	3	if said request for data from said application is served,
	4	close said first TCP connection with said client.
	1	62. The network device of claim 61, wherein said closing of said
	2	connection is done by said control unit upon a receiving a request for closing said
	3	connection from said data switching unit.

1	63. A network device comprising:	
2	means for terminating a first transmission control protocol ("TCP")	
3	connection at a first network element, wherein said first TCP	
4	connection is between said first network element and a second netwo	rk
5	element, and said first TCP connection is intended to be terminated a	t a
6	third network element;	
7	means for initiating a second TCP connection between said first network	
8	element and a third network element;	
9	means for establishing communications between said second and said third	
10	network elements via said first network element;	
11	means for determining need for data transfer between said second and said	
12	third network elements by monitoring a plurality of data buffers; and	
13	means for transferring said data between said second and said third network	
14	elements.	
1	64. The network device of claim 63, wherein said second network elements	nt
2	initiates said first TCP connection for said third network element.	

- 65. The network device of claim 63, wherein said communications between said second and said third network elements are established using said first and said second TCP connections.
- 1 66. The network device of claim 63, wherein said communications 2 between said second and said third network elements forms an end-to-end TCP 3 connection.
- 1 67. The network device of claim 63, wherein said first network element is 2 a proxy server.
- 1 68. The network device of claim 63, wherein a control unit of said proxy 2 server monitors said plurality of buffers.

- 1 69. The network device of claim 63, wherein said control unit transfers 2 said data between said second and said third network elements.
- 1 70. The network device of claim 63, wherein said proxy server supports 2 transparent communications between said second and said third network elements.
- The network device of claim 63, wherein at least one of said plurality of buffers is a receive buffer.
- The network device of claim 1, wherein at least one of said plurality of buffers is a transmit buffer.
- The network device of claim 72, wherein said receive buffer is preallocated.
- The network device of claim 72, wherein said receive buffer is dynamically allocated.
- The network device of claim 72, wherein said transmit buffer is preallocated.
- 1 76. The network device of claim 72, wherein said transmit buffer is 2 dynamically allocated.
- The network device of claim 1, wherein said second network element is one of a plurality of clients.
- 1 78. The network device of claim 1, wherein one of a plurality of applications on said client initiates said first TCP connection for said client.
- 1 79. The network device of claim 1, wherein said third network element is 2 one of a plurality of servers.

1

3

4

5

1	80.	The network device of claim 1, wherein a data switching unit of said
2	proxy server of	letermines which one of said plurality of servers to use for said second
3	TCP connection	on.

- 1 81. The network device of claim 1, further comprising: 2 means for monitoring said first TCP connection.
- 1 82. The network device of claim 81, further comprising:
 2 means for receiving a request for data from said application; and
 3 means for determining whether said request requires said second TCP
 4 connection with one of said plurality of servers.
 - 83. The network device of claim 82, wherein data switching unit receives said request for data via said control unit.
 - 84. The network device of claim 82, wherein said determining of said second TCP connection is done by said data switching unit.
 - 85. The network device of claim 82, further comprising:

 means for servicing said request for data if said request does not require said second TCP connection with one of said plurality of servers; and means for closing said connection with said client if said request does not require said second TCP connection with one of said plurality of servers.
- 1 86. The network device of claim 85, wherein said request for data is served 2 by passing data from said data switching unit to said control unit for transmission to 3 said application on said client.

1	87.	The network device of claim 85, further comprising.
2	means	for selecting a first server from said plurality of servers if said request
3		requires said second TCP connection with one of said plurality of
4		servers; and
5	means	for initiating said second TCP connection with said first server if said
6		request requires said second TCP connection with one of said plurality
7		of servers.
1	88.	The network device of claim 87, wherein said application requests said
		CP connection with said first server.
2	ond to ond 1	
1	89.	The network device of claim 87, further comprising:
2	means	for receiving said data on said second TCP connection from said first
3		server;
4	means	for storing said data in said receive buffer of said second TCP
5		connection;
6	means	s for transferring said data from said receive buffer to said transmit
7		buffer of said first TCP connection;
8	means	s for monitoring space in said transmit buffer; and
9	means	s for determining whether said fist TCP connection need additional data
10		if said transmit buffer has space.
1	90.	The network device of claim 89, further comprising:
2	means	s for requesting said additional data from said first server if said first
3		TCP connection need said additional data;
4	means	s for repeating said steps of receiving, storing, transferring, monitoring if
5		said first TCP connection need said additional data; and
6	mean	s for determining until said request for data from said application is
7		served.
1	91.	The network device of claim 90, wherein said additional data is
2		ato said transmit buffer without a request for said additional data.

2

1

2

3

1

1	92.	The network device of claim 90, further comprising:
2	means	for closing said first TCP connection with said client if said request for
3		data from said application is served.

- 93. The network device of claim 92, wherein said closing of said connection is done by said control unit upon a receiving a request for closing said connection from said data switching unit.
- 94. A computer program product for managing network communication, encoded in computer readable media, said program product comprising a set of instructions executable on a computer system, said set of instructions configured to terminate a first transmission control protocol ("TCP") connection at a first network element, wherein said first TCP connection is between said first network element and a second network element, and said first TCP connection is intended to be terminated at a third network element; initiate a second TCP connection between said first network element and a third network element; establish communications between said second and said third network elements via said first network element; determine need for data transfer between said second and said third network elements by monitoring a plurality of data buffers; and transfer said data between said second and said third network elements.
- 95. The computer program product of claim 94, wherein said second network element initiates said first TCP connection for said third network element.
- 96. The computer program product of claim 94, wherein said communications between said second and said third network elements are established using said first and said second TCP connections.

2

3

1

1	97. The computer program product of claim 94, wherein said
2	communications between said second and said third network elements forms an end-
3	to-end TCP connection.

- 1 98. The computer program product of claim 94, wherein said first network 2 element is a proxy server.
- 1 99. The computer program product of claim 94, wherein a control unit of 2 said proxy server monitors said plurality of buffers.
- 1 . 100. The computer program product of claim 94, wherein said control unit 2 transfers said data between said second and said third network elements.
 - 101. The computer program product of claim 94, wherein said proxy server supports transparent communications between said second and said third network elements.
 - 102. The computer program product of claim 94, wherein at least one of said plurality of buffers is a receive buffer.
- 1 103. The computer program product of claim 94, wherein at least one of 2 said plurality of buffers is a transmit buffer.
- 1 104. The computer program product of claim 102, wherein said receive 2 buffer is pre-allocated.
- 1 105. The computer program product of claim 102, wherein said receive 2 buffer is dynamically allocated.
- 1 106. The computer program product of claim 103, wherein said transmit 2 buffer is pre-allocated.
- 1 107. The computer program product of claim 103, wherein said transmit 2 buffer is dynamically allocated.

1	108.	The computer program product of claim 94, wherein said second
2	network elem	ent is one of a plurality of clients.
1	109.	The computer program product of claim 94, wherein one of a plurality
2	of application	s on said client initiates said first TCP connection for said client.
	440	
1	110.	The computer program product of claim 94, wherein said third network
2	element is on	e of a plurality of servers.
1	111.	The computer program product of claim 94, wherein a data switching
2	unit of said p	roxy server determines which one of said plurality of servers to use for
3	said second T	CP connection.
1	112.	The computer program product of claim 94, wherein said set of
2	instructions is	s further configured to:
3	monit	or said first TCP connection.
1	113.	The computer program product of claim 112, wherein said set of
2		s further configured to:
3		re a request for data from said application; and
4		nine whether said request requires said second TCP connection with one
	detern	• •
5		of said plurality of servers.
1	114.	The computer program product of claim 113, wherein data switching
2	unit receives	said request for data via said control unit.
1	115.	The computer program product of claim 113, wherein said determining

of said second TCP connection is done by said data switching unit.

	1	116.	The computer program product of claim 82, wherein said set of
	2	instructions is	further configured to:
	3	if said	request does not require said second TCP connection with one of said
	4		plurality of servers,
	5		service said request for data, and
1.12	6		close said connection with said client.
	1	117.	The computer program product of claim 116, wherein said request for
	2	data is served	by passing data from said data switching unit to said control unit for
	3	transmission to	o said application on said client.
	1	118.	The computer program product of claim 116, wherein said set of
	2		further configured to:
	3		request requires said second TCP connection with one of said plurality
	4	. At bara i	of servers,
	5		select a first server from said plurality of servers, and
	6		initiate said second TCP connection with said first server.
			mittate said second 1 er connection with said first server.
. ,	1	119.	The computer program product of claim 118, wherein said application
	2	requests said e	nd-to-end TCP connection with said first server.
	1	120.	The computer program product of claim 118, wherein said set of
	2		further configured to:
	3		said data on said second TCP connection from said first server;
	4		aid data in said receive buffer of said second TCP connection;
	5		said data from said receive buffer to said transmit buffer of said first
	6		TCP connection;
	7		r space in said transmit buffer; and
	8		ransmit buffer has space,
	9		determine whether said fist TCP connection need additional data.
	-		determine whomer said list i or connection need additional data.

3

1	121.	The computer program product of claim 120, wherein said set of
2	instructions is	further configured to:
3	if said	first TCP connection need said additional data,
4		request said additional data from said first server; and
5		repeat said steps of receiving, storing, transferring, monitoring and
6		determining until said request for data from said application is
7		served.
1	122.	The computer program product of claim 121, wherein said additional
2	data is transfe	rred into said transmit buffer without a request for said additional data.
1	123.	The computer program product of claim 121, wherein said set of
2	instructions is further configured to:	
3	if said	request for data from said application is served,
4		close said first TCP connection with said client.
1	124.	The computer program product of claim 123, wherein said closing of

said connection is done by said control unit upon a receiving a request for closing said

connection from said data switching unit.