Rec'd PCT/PTO 21 0CT 2085 PCT/JP 2004/005998

本 国 特 許 庁 JAPAN PATENT OFFICE

26. 4. 2004

10/554150

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年12月 1日

出 願 番 号 Application Number:

人

特願2003-401126

[ST. 10/C]:

[JP2003-401126]

REC'D 0 1 JUL 2004

WIPO

PCT

出 願
Applicant(s):

100

山之内製薬株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 6月 4日

今井康

BEST AVAILABLE COPY

7

【曹類名】特許 【請求項1】

【化1】

$$R^3$$
 R^3
 R^3
 R^3
 R^3
 R^2
 R^3
 R^3

[式中の記号は以下の意味を示す。

R1:置換されていてもよいアミノ。

 $R^2: CF_3$ 、若しくはハロゲン。

R³:H、若しくはハロゲン。

a、b:それぞれ単結合又は二重結合を示し、一方が単結合、他方が二重結合。 -X-:

- (1)aが単結合、bが二重結合である場合、-CH=CH-、-CH=N-、-N=CH-、-N=N-、若しくは -S-。
- (2) aが二重結合、bが単結合である場合、-N-。Y:

(1) aが単結合、bが二重結合である場合、CH、若しくはN。

(2) aが二重結合、bが単結合である場合、S。

-A-:-O-、-S-、-NH-、若しくは-N(低級アルキル)-。

B: それぞれ置換されていてもよい低級アルキル、低級アルケニル、低級アルキニル、シクロアルキル、若しくはアリール。]

【請求項2】

 \mathbb{R}^1 が式(II)、若しくは式(III)で示される基である請求の範囲 $\mathrm{1}$ 記載の化合物。 【化2】

$$-N^{2^{1}-R^{12}}$$
 $-N^{R^{14}}$ $-N^{R^{13}}$ (III)

[式中の記号は以下の意味を示す。

 Z^1 :単結合、低級アルキレン、若しくは-低級アルキレン-C(=0)-。

R¹¹:-OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、及び1つ若しくは2つの低級アルキルで置換されていてもよいカルバモイルからなる群より選択される基で置換されて R¹²:

(1) Z¹が単結合、又は低級アルキレンを示す場合、

-H、-OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、1つ若しくは2つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されてい

出証特2004-3048216

てもよいシクローキル、置換されていてもよい芳香族へ 環、又は置換されていてもよい非芳香族へ 環、

(2) Z¹が-低級アルキレン-C(=0)-を示す場合、

式(III)、若しくは式(IV)で示される基。

【化3】

$$-N^{R^{14}}$$
 $-N^{Z^2}R^{15}$ $-N^{I^{13}}$ (III) $-N^{I^{11}}$ (IV)

[式中の記号は以下の意味を示す。

 Z^2 :単結合、若しくは低級アルキレン。

 R^{15} : -H、-OH、-O-低級アルキル、 $-CO_2H$ 、 $-CO_2$ -低級アルキル、1 つ若しくは2 つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよい芳香族へテロ環、又は置換されていてもよい非芳香族へテロ環。]

 \mathbb{R}^{13} 、 \mathbb{R}^{14} :隣接する窒素原子と一体となって、置換されていてもよい非芳香族環状アミノ基。]

【請求項3】

請求項1記載のいずれかの化合物を有効成分とする医薬。

【請求項4】

中枢性尿崩症治療剤又は夜間頻尿治療剤である、請求項3記載の医薬。

【請求項5】

アルギニンバソプレシンV₂ 受容体作動薬である請求項3記載の医薬。

【書類名】明細

【技術分野】

[0001]

本発明は、医薬、殊に中枢性尿崩症、夜間頻尿治療薬として有用な新規4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその塩及び該化合物を有効成分とする医薬に関する。

. 【背景技術】

[0002]

アルギニンバソプレシン(AVP)は、視床下部-下垂体系にて生合成・分泌される9個のアミノ酸からなるペプチドである。AVPの受容体は、 V_{1a} 、 V_{1b} 及び V_{2} の3種類のサブタイプに分類され、末梢におけるAVPの主な薬理作用には V_{1a} 受容体を介する血管収縮作用と、 V_{2} 受容体を介する抗利尿作用が知られている。 V_{2} 受容体選択的作動薬としてはペプチドであるデスモプレシン(AVPの1位のシステインのアミノ基を削除し、8位のアルギニンをd型に変換したもの)が合成されており、中枢性尿崩症の治療に用いられている(非特許文献 1)。しかしながら、デスモプレシンの経口剤は生物学的利用率が非常に低く、効果を得るためには高い用量が必要である。このため、デスモプレシン製剤は高価であり、また個体間の吸収のばらつきに基づく副作用の発生がしばしば認められる。従って、 V_{2} 受容体を選択的に刺激する、生物学的利用率の高い非ペプチド性の抗利尿薬の開発が期待されている

[0003]

一方、医療の多様化、高齢化に伴い、薬物が単独で使用されることの方が稀となり、多くの場合は複数の薬物が同時に、あるいは時間をずらして投与されている。これはAVP受容体作動薬の分野でも同様である。薬物は、肝臓において薬物代謝酵素の作用を受けて不活性化され、代謝産物へと変換されるが、この薬物代謝酵素の中でも最も重要であるのがチトクロームP450 (CYP) である。CYPには多数の分子種が存在するが、同じ分子種のCYPにより代謝される複数の薬物がその代謝酵素上で競合すると、その薬物のCYPへの親和性により異なるものの、何らかの代謝阻害を受けることが考えられる。その結果、血中濃度上昇や血中半減期延長等の薬物相互作用が発現する。

このような薬物相互作用は、相加作用、相乗作用を意図して使用される場合を除き好ましくない作用であり、予期せぬ副作用を呈する場合がある。従って、CYPに対する親和性が低く、薬物相互作用の懸念の小さい医薬の創製が望まれている。

$[0\ 0\ 0\ 4\]$

従来、V2 受容体選択的作動薬であり、抗利尿作用を示す非ペプチド性化合物としては、一般式(A)、一般式(B) 又は一般式(C) で示される3環性化合物が知られている(特許文献1、特許文献2、特許文献3)。

【化4】

$$X + \bigcup_{N \to G} D = X + \bigcup_{N \to Z} X + \bigcup_{N \to$$

(式中の記号は、該公報参照)

[0005]

2/

また、 V_2 受容 択的作動薬として、一般式 (D) で示られている (特殊文献 4)。

る縮合アゼピン誘導体が知

【化5】

(式中の記号は、該公報参照)

[0006]

また、一般式(E)で示されるベンゾアゼピン誘導体(特許文献 5、特許文献 6)、及び一般式(F)又は一般式(G)で示されるベンゾへテロ環化合物(特許文献 7、特許文献 8、特許文献 9)が V_2 受容体選択的作動薬として知られている。

【化6】

ACONR²R³

$$R^{1}$$

$$CO$$

$$R^{5}$$

$$(E)$$

$$(F)$$

$$(G)$$

(式中の記号は、該公報参照)

しかし、いずれの公報にも4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体に関する開示は一切ない。

[0007]

また、AVP受容体又はオキシトシン受容体に対する拮抗作用を有する、4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体が知られているが、 V_2 受容体作動作用並びに中枢性尿崩症及び夜間頻尿に関しては一切知られていない(特許文献 10、特許文献 11、特許文献 12)。

[0008]

【非特許文献 1】 日本内分泌学会雑誌, 54, 676-691, 1978.

【特許文献1】国際公開第99/06409号パンフレット

【特許文献 2 】国際公開第99/06403号パンフレット

【特許文献3】国際公開第00/46224号パンフレット

【特許文献4】 国際公開第01/49682号パンフレット

【特許文献5】国際公開第97/22591号パンフレット

【特許文献 6】日本国特許第2926335号公報

【特許文献7】日本国特許第3215910号公報

【特許文献8】日本国特許出願公開特開平11-349570号公報

【特許文献9】日本国特許出願公開特開2000-351768号公報

【特許文献10】国際公開第95/06035号パンフレット 【特許文献11】国際公開第98/39325号パンフレット

【特許文献12】日本国特許出願公開特開平9-221475号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

このような状況で、中枢性尿崩症及び/又は夜間頻尿の治療を目的とした生物学的利用率の高い非ペプチド性の抗利尿薬の開発が切望されている。

【課題を解決するための手段】

[0010]

本発明者等は、中枢性尿崩症及び/又は夜間頻尿に対する有効性が期待できる V_2 受容体作動作用を有する化合物について鋭意研究したところ、新規な4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体が優れた該効果を有することを見出し、本発明を完成させた。また、本発明化合物が、従来知られていた V_2 受容体作動作用を有するベンゾアゼピン誘導体に比べ、薬物代謝酵素CYP3A4及UCYP2C9に対する阻害作用が極めて低いことを見出した。

[0011]

即ち、本発明によれば、中枢性尿崩症及び/又は夜間頻尿治療薬として有用な下記一般式(I)で示される、新規な4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩;及びこれらの化合物のいずれかを有効成分とする医薬;特に中枢性尿崩症治療剤又は夜間頻尿治療剤である上記の医薬;アルギニンバゾプレシン V_2 受容体作動薬である上記の医薬が提供される。

【化7】

$$R^3$$
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^2
 R^3
 R^3

「式中の記号は以下の意味を示す。

 R^1 :置換されていてもよいアミノ。

 $R^2: CF_3$ 、若しくはハロゲン。

R³:H、若しくはハロゲン。

a、b:それぞれ単結合又は二重結合を示し、一方が単結合、他方が二重結合。

-X-:

- (1)aが単結合、bが二重結合である場合、-CH=CH-、-CH=N-、-N=CH-、-N=N-、若しくは-S-。
- (2) aが二重結合、bが単結合である場合、-N-。

Y:

- (1) aが単結合、bが二重結合である場合、CH、若しくはN。
- (2) aが二重結合、bが単結合である場合、S。

-A-:-0-、-S-、-NH-、若しくは-N(低級アルキル)-。

B: それぞれ置換されていてもよい低級アルキル、低級アルケニル、低級アルキニル、シクロアルキル、若しくはアリール。]

[0012]

本発明化合物は、置換されたメチリデン基が置換したベンゾアゼピン環炭素原子に隣接 する環炭素原子にジフルオロ基を有する点に化学構造上の特徴を有しており、従来知られ

出証特2004-3048216

ていたV2 受容体の的作動薬と構造を全く異にするものです。なお、本発明化合物はジフルオロ基を有いため、カルボニル基に共役した二重結合が異性化することなく、生体内においても十分な安定性を有する。

[0013]

これらの化合物のうち、好ましくは R^1 が式(II)、若しくは式(III)で示される基である上記一般式(I)で示される、新規な4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H -1-ベンゾアゼピン誘導体又はその製薬学的に許容される塩である。

【化8】

$$-N^{Z_{-}^{1}}R^{12}$$
 $-N^{R_{-}^{14}}$

[式中の記号は以下の意味を示す。

 Z^1 :単結合、低級アルキレン、若しくは-低級アルキレン-C(=0)-。

 R^{11} :-OH、-O-低級アルキル、 $-CO_2H$ 、 $-CO_2-$ 低級アルキル、及び1つ若しくは2つの低級アルキルで置換されていてもよいカルバモイルからなる群より選択される基で置換されていてもよい低級アルキル、又は-H。 R^{12} :

(1) Z^1 が単結合、又は低級アルキレンを示す場合、

-H、-OH、-O-低級アルキル、-CO₂H、-CO₂-低級アルキル、1つ若しくは2つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよい芳香族へテロ環、又は置換されていてもよい非芳香族へテロ環。

(2) Z¹が-低級アルキレン-C(=0)-を示す場合、

式(III)、若しくは式(IV)で示される基。

【化9】

[式中の記号は以下の意味を示す。

Z²:単結合、若しくは低級アルキレン。

 R^{15} : -H、-OH、-O-低級アルキル、 $-CO_2H$ 、 $-CO_2$ -低級アルキル、1 つ若しくは 2 つの低級アルキルで置換されていてもよいカルバモイル、置換されていてもよいアリール、置換されていてもよいシクロアルキル、置換されていてもよい芳香族へテロ環、又は置換されていてもよい非芳香族へテロ環。]

 \mathbb{R}^{13} 、 \mathbb{R}^{14} :隣接する窒素原子と一体となって、置換されていてもよい非芳香族環状アミノ基。]

【発明を実施するための最良の形態】

[0014]

本発明化合物をさらに説明すると次の通りである。

本明細書中、「低級アルキル」とは、 C_{1-6} の直鎖又は分枝状の炭素鎖の1価基を意味し、具体的には例えば、メチル、エチル、プロピル、プチル、ペンチル若しくはヘキシル、又はイソプロピル、tert-ブチル等のこれらの構造異性体であり、好ましくは C_{1-4} アルキルのメチル、エチル、プロピル、ブチル、イソブチルである。

「低級アルキレン」とは、 C_{1-6} の直鎖又は分枝状の炭素鎖の2価基を意味し、具体的には例えば、メチレン、エチレン、トリメチレン、メチルメチレン、メチルエチレン、ジメチルメチレン等が挙げられる。

「低級アルケニル」とは、C2-6の直鎖又は分枝状の少なくとも1つの二重結合を有する

炭素鎖の1 価基 まままし、具体的には例えば、ビニル、ア 、1-プテニル、2-プテニル、1-ヘキセニル、2-プテニル、又は2-メチルアリル等のこれらの構造異性体であり、好ましくはアリル、2-メチル-1-プロペン-3-イルである。

「低級アルキニル」とは、 C_{2-6} の直鎖又は分枝状の少なくとも 1 つの三重結合を有する炭素鎖の 1 価基を意味し、具体的には例えば、エチニル、プロパルギル、1-ブチニル、3-ブチニル、1-ヘキシニル若しくは3-ヘキシニル、又は3-メチル-1-ブチニル等のこれらの構造異性体であり、好ましくはプロパルギル、1-ブチン-4-イルである。

「シクロアルキル」とは、部分的に不飽和結合を有していてもよい C_{3-8} の非芳香族の炭化水素環の1価基を意味し、具体的には例えば、シクロプロピル、シクロペンチル、シクロヘキシル、シクロオクチル、シクロヘキセニル、シクロオクタンジエニル等が挙げられる。

「アリール」とは、単環乃至3環のC₆₋₁₄の芳香族の炭化水素環の1価基を意味し、具体的には例えば、フェニル、ナフチル等が挙げられ、好ましくはフェニルである。

「芳香族へテロ環」とは、単環乃至3環の窒素、酸素、硫黄等のヘテロ原子を有する芳香環の1価基を意味し、具体的には例えば、ピリジル、チエニル、フリル、ピラジニル、ピリダジニル、チアゾリル、ピリミジニル、ピラゾリル、ピロリル、オキサゾリル、イソチアゾリル、イソオキサゾリル、イミダゾリル等が挙げられ、好ましくはピリジルである。

「非芳香族へテロ環」とは、部分的に不飽和結合を有していてもよく、アリール若しくは芳香族へテロ環と縮合していてもよい窒素、酸素、硫黄等のヘテロ原子を有する5乃至7員環の1価基を意味し、具体的には例えば、ピロリジニル、イミダゾリジニル、ピペリジニル、ピペラジニル、アゼピニル、モルホニル、チオモルホニル、テトラヒドロフリル、テトラヒドロチエニル等が挙げられ、好ましくはピロリジニル、ピペラジニル、モルホニルである。

「非芳香族環状アミノ基」とは、部分的に不飽和結合を有していてもよく、窒素、酸素、硫黄を含んでいてもよい3乃至10員環の非芳香族の環状アミン、好ましくは5乃至7員環の非芳香族の環状アミンの1価基を意味し、具体的には例えば、ピロリジニル、ピペリジニル、アゼピニル、モルホニル、チオモルホニル、ピペラジニル、ピラゾリジニル、ジヒドロピロリル等が挙げられ、好ましくはピロリジニル、ピペリジニル、ピペラジニル、モルホニルである。

「ハロゲン」とは、ハロゲン原子の1価基を意味し、具体的には例えばフルオロ、クロロ、プロモ、ヨード等が挙げられる。

本明細曹において、「置換されていてもよい」の語の許容される置換基としては、それぞれの基の置換基として通常用いられる置換基であればいずれでもよく、各々の基に1つ以上の置換基を有していてもよい。

 R^1 における「置換されていてもよいアミノ」とは、具体的には、上記一般式($I\ I\ I$)及び($I\ I\ I$)で示される基を挙げることができる。

Bにおける「置換されていてもよいシクロアルキル」、「置換されていてもよいアリール」; R^{12} 、 R^{15} における「置換されていてもよいアリール」、「置換されていてもよいシクロアルキル」、「置換されていてもよい芳香族へテロ環」、「置換されていてもよい非芳香族へテロ環」;並びに R^{13} 、 R^{14} における「置換されていてもよい非芳香族環状アミノ基」;において許容される置換基としては、以下の(a)乃至(h)に示される基が挙げられる。なお、 R^2 は、-OH、-O-低級アルキル、1つ又は2つの低級アルキルで置換されていてもよいアミノ、1つ又は2つの低級アルキルで置換されていてもよいアミノ、1つ又は2つの低級アルキルで置換されていてもよいカルバモイル、アリール、芳香族へテロ環及びハロゲンからなる群より選択される1つ以上の基で置換されていてもよい低級アルキルを示す。

- (a) ハロゲン:
- (b) -OH、 $-O-R^{2}$ 、 $-O-アリール、<math>-OCO-R^{2}$ 、オキソ (=0) ;
- (c)-SH、-S-R 2 、-S-アリール、-SO-R 2 、-SO-アリール、-SO $_2$ -R 2 、-SO $_2$ -アリール、1つ又は2つのR 2 で置換されていてもよいスルファモイル;

- (d) $1つ又は <math>\mathbb{R}^2$ で置換されていてもよいアミノ、 \mathbb{R}^2 、 \mathbb{R}^2 、 \mathbb{R}^2 、 \mathbb{R}^2 、 \mathbb{R}^2 、 \mathbb{R}^2 O_2-R^2 , $-NHSO_2-\nu$) $-\nu$, $-\nu$;
- (e) -CHO、-CO- R^Z 、-CO₂H、-CO₂- R^Z 、1つ又は2つの R^Z で置換されていてもよいカルバモ イル、シアノ:
- (f)-0H、-0-低級アルキル、1つ又は2つの低級アルキルで置換されていてもよいアミノ 、1つ又は2つの低級アルキルで置換されていてもよいカルバモイル、アリール、芳香族へ テロ環、ハロゲン及び \mathbb{R}^2 からなる群より選択される1つ以上の基でそれぞれ置換されてい てもよいアリール若しくはシクロアルキル;
- (g)-0H、-0-低級アルキル、1つ又は2つの低級アルキルで置換されていてもよいアミノ 、1つ又は2つの低級アルキルで置換されていてもよいカルバモイル、アリール、芳香族へ テロ環、ハロゲン及び \mathbb{R}^2 からなる群より選択される1つ以上の基でそれぞれ置換されてい てもよい芳香族ヘテロ環若しくは非芳香族ヘテロ環;
- (h)上記(a)乃至(g)に示される置換基より選択される1つ以上の基でそれぞれ置 換されていてもよい低級アルキル若しくは低級アルケニル。

また、Bにおける「置換されていてもよい低級アルキル」「置換されていてもよい低級 アルケニル」「置換されていてもよい低級アルキニル」において許容される置換基として は、上記の(a)乃至(g)に示される基が挙げられる。

[0015]

一般式(I)で示される本発明の化合物には、置換基の種類によっては、不斉炭素原子 を含む場合があり、これに基づく光学異性体が存在しうる。本発明はこれらの光学異性体 の混合物や単離されたものをすべて包含する。また、本発明化合物は互変異性体が存在す る場合があるが、本発明にはこれらの異性体の分離したもの、あるいは混合物が含有され る。

また、本発明の化合物は、塩を形成する場合もあり、かかる塩が製薬学的に許容されう る塩である限りにおいて本発明に包含される。具体的には、塩酸、臭化水素酸、ヨウ化水 素酸、硫酸、硝酸、リン酸などの無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロ ン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンス ルホン酸、エタンスルホン酸、p-トルエンスルホン酸、アスパラギン酸又はグルタミン酸 などの有機酸との酸付加塩、ナトリウム、カリウム、カルシウム、マグネシウム等の金属 を含む無機塩基、メチルアミン、エチルアミン、エタノールアミン、リジン、オルニチン 等の有機塩基との塩やアンモニウム塩等が挙げられる。さらに、本発明は本発明化合物及 びその製薬学上許容される塩の各種の水和物や溶媒和物及び結晶多形を有する物質も包含 する。なお、本発明化合物には、生体内において代謝されて前記一般式(Ⅰ)を有する化 合物又はその塩に変換される化合物、いわゆるプロドラッグもすべて包含される。本発明 のプロドラッグを形成する基としては、Prog. Med., 5; 2157-2161, 1985.に記載されて いる基や、廣川書店1990年刊「医薬品の開発」第7巻 分子設計163-198ページに記載され ている基が挙げられる。

[0016]

本発明化合物及びその製薬学的に許容される塩は、その基本骨格あるいは置換基の種類 に基づく特徴を利用し、種々の公知の合成法を適用して製造することができる。以下に代 表的な製法を例示する。なお、官能基の種類によっては、当該官能基を原料乃至中間体の 段階で適当な保護基、すなわち容易に当該官能基に転化可能な基に置き換えておくことが 製造技術上効果的な場合がある。しかる後、必要に応じて保護基を除去し、所望の化合物 を得ることができる。このような官能基としては例えば水酸基やカルボキシル基、アミノ 基などを挙げることができ、それらの保護基としては例えばグリーン (Greene) 及びウッ ツ (Wuts) 著、「Protective Groups in Organic Synthesis (third edition)」に記載 の保護基を挙げることができ、これらを反応条件に応じて適宜用いればよい。

[0017]

<中間体の製法>

(式中、 R^2 、a、b、X、Y、Aは前記の意味を示し;Lvは脱離基を示し; B^1 は前記のB又は水酸基、アミノ基若しくはスルファニル基の保護基を示し; R^a はカルボキシル基、低級アルキルオキシカルボニル基又はシアノ基を示す。以下同様。)

本製法は、化合物(a)の脱離基Lvを化合物(b)で置換し、化合物(c)を製造し、必要に応じて加水分解することにより化合物(d)を製造する方法である。

[0018]

(第一工程)

化合物(a)における脱離基Lvとしては、例えばフルオロ、クロロ、メタンスルホニルオキシ、p-トルエンスルホニルオキシ、トリフルオロメタンスルホニルオキシが挙げられ、好ましくはフルオロ、クロロ、メタンスルホニルオキシである。

反応は、無溶媒中、あるいはベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル類;ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類;N,N-ジメチルホルムアミド (DMF);ジメチルアセトアミド (DMA);N-メチルピロリドン;ジメチルスルホキシド (DMSO);酢酸エチル(EtOAc)等のエステル類;アセトニトリル等反応に不活性な溶媒、又はメタノール(MeOH)、エタノール(EtOH)、2-プロパノール(iPrOH)等のアルコール類中、化合物(a)と化合物(b)とを等モル乃至一方を過剰量用い、室温乃至加熱還流下に行うことができる。化合物によっては、有機塩基(好ましくは、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン)又は金属塩塩基(好ましくは、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水素化ナトリウム)の存在下に行うのが有利な場合がある。

[0019]

(第二工程)

反応は、化合物(c)に対し、芳香族炭化水素類、エーテル類、ハロゲン化炭化水素類、アルコール系溶媒、DMF、DMA、DMSO、ピリジン、水等反応に不活性な溶媒中、硫酸、塩酸、臭化水素酸等の鉱酸、ギ酸、酢酸等の有機酸又は水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸セシウムあるいはアンモニア等の塩基存在下、冷却下乃至加熱還流下に行うことができる。反応温度は化合物により適宜選択することができる。

[0020]

<第一製法>

(式中、 R^1 は前記の意味を、 R^b は低級アルキルを示す。以下同様。)

本製法は、上記中間体の製法で製造した化合物 (d) を化合物 (1a) と縮合して化合物 (1b) を製造し、加水分解することにより化合物 (1c) を製造し、化合物 (1d) を縮合することにより、(1c) が(1c) が(1c) を製造し、化合物 (1c) を縮合することにより、(1c) が(1c) が水酸基、アミノ基若しくはスルファニル基の保護基である化合物 (1c) を製造する方法である。

[0021]

(第一工程)

化合物(d)は遊離酸として反応に用いることもできるが、その反応性誘導体を反応に用いることもできる。化合物(d)の反応性誘導体としては、メチルエステル、エチルエステル、tert-ブチルエステルなどの通常のエステル;酸クロリド、酸プロミド等の酸ハライド;酸アジド;N-ヒドロキシベンゾトリアゾール、p-ニトロフェノールやN-ヒドロキシスクシンイミド等との活性エステル;対称型酸無水物;アルキル炭酸ハライド等のハロカルボン酸アルキルエステル、ピバロイルハライド、p-トルエンスルホン酸クロリド等との混合酸無水物;塩化ジフェニルホスホリル、N-メチルモルホリンとを反応させて得られるリン酸系混合酸無水物等の混合酸無水物等が挙げられる。

化合物 (d) を遊離酸で反応させる場合、あるいは活性エステルを単離せずに反応させる場合等は、ジシクロヘキシルカルボジイミド (DCC)、1,1'-カルボニルビス-1H-イミダゾール (CDI)、ジフェニルホスホリルアジド (DPPA)、ジエチルホスホリルシアニドや1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 (WSCD) などの縮合剤を使用するのが好適である。

特に本発明においては、酸クロリド法、活性エステル化剤と縮合剤との共存下に反応させる方法、通常のエステルをアミン処理する方法が、簡便容易に本発明化合物としうるので便利である。

反応は使用する反応性誘導体や縮合剤によっても異なるが、ハロゲン化炭化水素類、芳

出証特2004-3048216

香族炭化水素類 ーテル類、エステル類、アセトニトリ DMFやDMSOなどの反応に不活性な有機溶媒 冷却下、冷却乃至室温下あるいは室温乃至加熱下に行われる。

なお、反応に際して、化合物(la)を過剰に用いたり、N-メチルモルホリン、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン、ピコリン、ルチジンなどの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。また、ピリジン塩酸塩、ピリジン p-トルエンスルホン酸塩、N,N-ジメチルアニリン塩酸塩などの弱塩基と強酸からなる塩を用いてもよい。ピリジンは溶媒とすることもできる。

特に、アセトニトリル、DMF等の溶媒中、ピリジン、N,N-ジメチルアニリン等の塩基、 又はピリジン塩酸塩等の塩の存在下に反応させるのが好適である。

[0022]

(第二工程)

反応は、中間体の製法第二工程に準じて行うことができる。

[0023]

(第三工程)

反応は、第一製法第一工程に準じて行うことができる。

[0024]

化合物(le)は、必要に応じて保護基を除去することにより、又は、さらに必要な側鎖を常法に従って導入することにより、本発明化合物(I)に導くことができる。必要な側鎖の導入は、後述の第二製法第三工程に準じて行うこともできる。

[0025]

<第二製法>

(式中、 B^2 は水酸基、アミノ基若しくはスルファニル基の保護基を示す。以下同様。) 本製法は、上記中間体の製法で製造した、 B^2 がBでない化合物 (dd)を化合物 (1a)と縮合して化合物 (2a)を製造し、保護基 B^2 を除去して化合物 (2b)を製造し、化合物 (2c)若しくは (2d)と縮合して化合物 (2e)を製造し、加水分解することにより化合物 (2f)を製造し、化合物 (1d)と縮合することにより、本発明化合物 (I) を製造する方法である。

[0026]

(第一工程)

反応は、第一製法第一工程に準じて行うことができる。

[0027]

(第二工程)

水酸基、アミノ基若しくはスルファニル基の保護基としては、前述の「Protective Groups in Organic Synthesis (third edition)」に記載の保護基を挙げることができる。

反応は、「Prot ve Groups in Organic Synthesis (the edition)」に記載の方法に準じて行うことができる。

特に、水酸基の保護基としてベンジル基を用いる場合、トリフルオロ酢酸等の強酸性溶液中、ペンタメチルベンゼンを作用させてベンジル基を除去する方法を用いることもできる。

[0028]

(第三工程)

化合物(2c)における脱離基Lvとしては、例えばクロロ、ブロモ、ヨード、メタンスルホニルオキシ、p-トルエンスルホニルオキシ、トリフルオロメタンスルホニルオキシが挙げられ、好ましくはブロモ、メタンスルホニルオキシ、p-トルエンスルホニルオキシである。

化合物(2c)を用いる反応は、通常のアルキル化反応を用いることができ、好ましくはアセトニトリル、DMF、DMSO、エーテル類等の反応に不活性な溶媒中、化合物(2b)と(2c)を等モル乃至一方を過剰量用い、冷却下、冷却乃至室温下、あるいは室温乃至加熱下に、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム等の塩基の存在下に行うことができる。

化合物(2d)を用いる反応は、エーテル類、DMF、N-メチルピロリドン等の非プロトン性の反応に不活性な溶媒中、トリフェニルホスフィン等の有機ホスフィン、及びアゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル等のアゾジカルボン酸ジアルキルの存在下、光延反応条件下にて行うことができる(Synthesis, 1981, pp.1)。

[0029]

(第四工程)

反応は、第一製法第二工程に準じて行うことができる。

[0030]

(第五工程)

反応は、第一製法第一工程に準じて行うことができる。

[0031]

さらに、式(I)で示されるいくつかの本発明化合物は、第一製法若しくは第二製法により得られた本発明化合物から、公知のアルキル化、アシル化、置換反応、酸化、還元、加水分解等、当業者が通常採用しうる工程を任意に組み合わせることにより製造することができる。具体的には、例えばメタクロロ過安息香酸等の酸化剤による硫黄原子の酸化等を挙げることができ、このような反応は「実験化学講座 第4版」(丸善株式会社、1990-1992年)に記載の方法を適用して、又は準じて行うことができる。また、これらの当業者が通常採用しうる工程は、本発明化合物に対する適用に限定されず、製造中間体に対して適用することもできる。具体的には、例えば第二製法第三工程で得られる化合物に対して適用することもでき、その後、次の工程に進むこともできる。

[0032]

このようにして製造された本発明化合物は、遊離のまま、又は常法による造塩処理を施し、その塩として単離・精製される。単離・精製は抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。

各種の異性体は異性体間の物理化学的性質の差を利用して常法により単離できる。例えばラセミ混合物は、例えば酒石酸等の一般的な光学活性酸とのジアステレオマー塩に導き光学分割する方法などの一般的なラセミ体分割法により、光学的に純粋な異性体に導くことができる。また、ジアステレオ混合物は、例えば分別結晶化又は各種クロマトグラフィーなどにより分離できる。また、光学活性な化合物は適当な光学活性な原料を用いることにより製造することもできる。

[0033]

本発明化合物はアルギニンバソプレシンV2 受容体に対して優れた作動作用を有する。従って、本発明化合物は、本作用に基づくプロフィールの抗利尿作用を有し、排尿障害、大量尿に有用であり、頻尿、尿失禁、遺尿症、中枢性尿崩症、夜間頻尿、夜尿症の予防及び

/又は治療に有るある。また、これら以外にも、V2受容の動作用に基づき、血液凝固 第VIII因子及び、Willebrand因子放出作用を有し、様々な出血状態に有用であり、自然 発生性出血、血友病、von Willebrand病、尿毒症、先天的又は後天的血小板機能障害、外 傷性及び手術時出血、肝硬変等の診断、予防及び治療に有効である。

[0034]

また、本発明化合物は薬物代謝酵素CYP3A4及びCYP2C9に対する阻害作用が極めて小さいため、CYP3A4若しくはCYP2C9を介して代謝される他の薬物への薬物相互作用の懸念が従来知られているアルギニンバソプレシンV2受容体作動作用を有するベンゾアゼピン誘導体に比べて少なく、他剤との併用療法にも安全に使用できる点で優れている。

CYP3A4により代謝される薬物としては、シンバスタチン、ロバスタチン、フルバスタチン、ミダゾラム、ニフェジピン、アムロジピン、ニカルジピン等が、また、CYP2C9により代謝される薬物としては、ジクロフェナク、イブプロフェン、インドメタシン、トルブタミド、グリベンクラミド、ロサルタン等が挙げられる(総合臨床, 48(6), 1427-1431, 1999.)。

[0035]

本発明化合物の薬理作用は以下の試験方法により確認された。

(1) V2 受容体結合試験

田原らの方法 (British Journal of Pharmacology, Vol 125, p. 1463–1470, 1998) に 準じて、ヒト V_2 発現CHO細胞膜標本を調製した。膜標本2 μ gを[3 H]- 2 アルギニン- バソプレシン (以下、単に「[3 H]- 2 バソプレシン」という。) (0.5 nM, Specific activity = 75 Ci / mmol) 及び試験化合物 ($^{10^{-10}}$ $^{-10^{-5}}$ M) と共に、10 nM MgCl2、0.1% ウシ血清アルブミン (BSA) を含有する50 nMトリスー塩酸緩衝液 (pH=7.4) の総量250 μ 1中で60分間、25 $^{\infty}$ でインキュベーションした。その後、セルハーベスターを用いて遊離型[3 H]-バソプレシンと受容体結合型[3 H]-バソプレシンを分離し、ユニフィルタープレートGF/Bガラスフィルター上に受容体結合型[3 H]-バソプレシンを吸着させた。十分に乾燥させた後、マイクロプレートシンチレーションカクテルと混合し、受容体結合型[3 H]-バソプレシン量をトップカウントを用いて測定し、阻害率を次式より算出した。

阻害率 (%) = 1 0 0 - (C_1 - B_1) / (C_0 - B_1) × 1 0 0

 C_1 : 既知濃度の試験化合物と $[^3H]$ -バソプレシンとが共存して受容体膜標本と処理するとき、 $[^3H]$ -バソプレシンが膜標本と結合する量

 C_0 :試験化合物非存在下で、 $[^3H]$ -バソプレシンと受容体膜標本とを処理するとき、 $[^3H]$ -バソプレシンが膜標本と結合する量

 B_1 :過剰量のバソプレシン $(10^{-6}\ M)$ と $[^3H]$ -バソプレシンとが共存して受容体膜標本と処理するとき、 $[^3H]$ -バソプレシンが膜標本と結合する量

上記式より阻害率が50%となる試験化合物の濃度 (ICso値) を算出し、これから試験化合物の受容体に対する親和性、即ち解離定数 (Ki) を次式より算出した。

解離定数 (Ki) = IC50/(1+[L]/Kd)

[L]:[³H]-バソプレシンの濃度

Kd: 飽和結合実験より求めた[3H]-バソプレシンの受容体に対する解離定数

【表1】

V₂ 受容体に対する親和性

化合物	Ki (nM)
実施例1	57
実施例3	11
実施例9	19
実施例14	18
実施例24	4.3
実施例46	5.8
実施例51	43
実施例98	6.2

表1に示すように、本発明化合物はV2受容体に対する高い親和性を有することが明らかとなった。

[0036]

(2) 抗利尿試験 (静脈内投与)

実験には、各群5例のウィスター系の雄性ラット(10~12週齢)を用いた。群Aには実施例3の化合物0.3 mg/kg、群Bには実施例9の化合物0.3 mg/kgをそれぞれ溶媒(DMSOを含む生理食塩水)に溶解したものを、群Cには比較として溶媒のみをそれぞれ1 ml/kgで静脈内投与し、15分後に蒸留水30 ml/kgを強制経口投与した(水負荷)。水負荷2時間後までの尿を代謝ケージにて採取し、水負荷量を100%としたときの尿量を尿排泄率として算出した。なお、評価には、1時間後までの尿排泄率と2時間後までの尿排泄率のそれぞれの群における平均値を用いた。その結果を表2に示す。

[0037]

【表 2】

抗利尿作用(静脈内投与)

	化合物	尿排泄	率(%)
	10 11 19	1時間後	2時間後
群A	実施例3	1.3	6.2
群B	実施例9	0	5.3
群C	溶媒	64.0	80.0

表 2 に示すように、本発明化合物は優れた抗利尿作用を有することが明らかとなった。 【 0 0 3 8】

(3) 抗利尿試験(経口投与)

実験には、ウィスター系の雄性ラット(10~12週齢)を用いた。試験化合物を経口投与し、15分後に蒸留水30 ml/kgを強制経口投与した(水負荷)。水負荷4時間後までの尿を代謝ケージにて採取し、水負荷量を100%としたときの尿量を尿排泄率として算出した。なお、評価には尿排泄率を50%減少させるのに必要な試験化合物の用量(ED50)を用いた。その結果、本発明化合物は静脈内投与のみならず、経口投与によっても優れた抗利尿作用を有することが明らかとなった。

[0039]

(4) チトクロームP450 (3A4) 酵素阻害試験

Crespiらの方法 (Analytical Biochemistry, 248, 188-190, 1997) に準じて実験を行 出証特2004-3048216 った。

96ウェルプレート を用いて、基質として7-ベンジルオキシ-4-(トリフルオロメチル)クマリン $(5\times10^{-5}\ \text{M})$ 、試験化合物 $(4.9\times10^{-8}\sim5\times10^{-5}\ \text{M})$ および酵素 $(5\times10^{-9}\ \text{M})$ を、8.2 μ M NADP+、0.41 μ M グルコース-6-ホスフェート、0.41 μ M MgCl2 および0.4 Units / ml グルコース-6-ホスフェート デヒドロゲナーゼを含む200 μ Mリン酸緩衝液 (μ) H=7.4) の総量200 μ l中で、30分間37℃でインキュベーションした。その後、アセトニトリル80% 含有0.5 M 2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール水溶液を加えて反応を停止させ、蛍光プレートリーダーで蛍光強度(励起波長;409 μ Mm、蛍光波長;530 μ Mm)を測定した。阻害率を次式より算出し、阻害率が50%となる試験化合物濃度(IC50)を求めた。その結果を表 3 に示す。

阻害率 (%) =100-(C₁-B₁)/(C₀-B₁)×100

C1:既知濃度の試験化合物と酵素及び基質存在下での蛍光強度

Co:試験化合物非存在下、酵素及び基質存在下での蛍光強度

Bı:ブランクウェルの蛍光強度

[0040]

(5) チトクロームP450 (2C9) 酵素阻害作用

Crespiらの方法 (Analytical Biochemistry, 248, 188-190, 1997) に準じて実験を行った。

96ウェルプレートを用いて、基質として7-メトキシ-4-(トリフルオロメチル)クマリン $(7.5\times10^{-5}\ \text{M})$ 、試験化合物 $(4.9\times10^{-8}\sim5\times10^{-5}\ \text{M})$ および酵素 $(10^{-8}\ \text{M})$ を、8.2 μ M NADP+、 $0.41\ \text{mM}$ グルコース-6-ホスフェート、 $0.41\ \text{mM}$ MgCl₂および0.4 Units/ml グルコース-6-ホスフェート デヒドロゲナーゼを含む $200\ \text{mM}$ リン酸緩衝液(pH=7.4)の総量 $200\ \mu$ 1中で、45分間 $37\ \mathbb{C}$ でインキュベーションした。その後、アセトニトリル80%含有 $0.5\ \text{M}$ 2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール水溶液を加えて反応を停止させ、蛍光プレートリーダーで蛍光強度(励起波長; $409\ \text{nm}$ 、蛍光波長; $530\ \text{nm}$)を測定した。阻害率を上記(4)と同じ式により算出し、阻害率が50%となる試験化合物濃度($1C_5\ \text{o}$)を求めた。その結果を表 $3\ \text{に示}$ す。

[0041]

【表3】

CYP(3A4 及び 2C9)阻害作用

化合物	IC ₅₀ (μM)		
1012 1/3	CYP3A4	CYP2C9	
実施例3	>50	>50	
実施例9	13	11	
実施例51	34	>50	
実施例55	36	>50	

表3に示すように、本発明化合物は薬物代謝酵素CYP3A4及びCYP2C9に対して極めて低い 阻害作用を示した。

[0042]

本発明の医薬は、一般式(I)で示される本発明化合物の1種以上と、通常製剤化に用いられる、薬剤用単体、賦形剤、その他添加剤を用いて、通常使用されている方法によって調製することができる。投与は錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤等による経口投与、静注、筋注等の注射剤、又は座剤、経鼻、経粘膜、経皮などによる非経口投与のいずれの形態であってもよい。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、1種以上の活性物質が、少なくとも1種の不活性な希釈剤、例えば乳糖、マンニトール、プドウ糖、ヒドロキシプロピルセルロース、微結晶

セルロース、デーン、ポリビニルピロリドン、メタケイ・ルミン酸マグネシウム等と 混合される。組成力は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン 酸マグネシウムのような潤滑剤、繊維素グリコール酸カルシウムのような崩壊剤、ラクト ースのような安定化剤、グルタミン酸又はアスパラギン酸のような溶解補助剤等を含有し ていてもよい。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロ ース、ヒドロキシプロピルメチルセルロースフタレート等の糖衣又は胃溶性若しくは腸溶 性のフィルムで被覆してもよい。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロッ プ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタ ノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味 剤、風味剤、芳香剤、防腐剤を含有していてもよい。

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤 を含有する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水が含ま れる。非水性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレング リコール、オリーブ油のような植物油、EtOHのようなアルコール類、ポリソルベート80等 がある。このような組成物は、さらに防腐剤、湿潤剤、乳化剤、分散剤、例えばラクトー スのような安定剤、例えばグルタミン酸やアスパラギン酸のような溶解補助剤等のような 補助剤を含んでいてもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌 剤の配合又は照射によって無菌化される。これらはまた無菌の固体組成物を製造し、使用 前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

通常経口投与の場合、1日の投与量は、体重あたり約0.0001~50 mg/kg、好ましくは約0 .001~10 mg/kgが適当で、さらに好ましくは0.01~1 mg/kgが適当であり、これを1回であ るいは2乃至4回に分けて投与する。静脈投与される場合は、1日の投与量は体重あたり約0 .0001~1 mg/kg、好ましくは約0.0001~0.1 mg/kgが適当で、1日1回乃至複数回に分けて 投与する。投与量は症状、年齢、性別等を考慮して個々の場合に応じて適宜決定される。 但し、投与量は種々の条件で変動するので、上記投与量より少ない量で十分な場合もある

【実施例】

[0043]

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら 制限されるものではない。なお、実施例において使用される原料化合物には新規な物質も 含まれており、そのような原料化合物の公知物からの製造法を参考例として説明する。

[0044]

参考例1

60%水素化ナトリウム油分散体5.2 gをDMF 50 mlに懸濁し、氷冷下ベンジルアルコール6 .73 mlを加えた。室温に昇温後、4-フルオロ-2-トリフルオロメチル安息香酸12.3 gを加 え、室温にて6時間攪拌した。反応液に1M塩酸水溶液を加え、析出した結晶を濾取し、16. 39 gの4-(ベンジルオキシ)-2-(トリフルオロメチル)安息香酸を得た。 MS(+):297.

[0045]

参考例1と同様に、表4に示す参考例2~4を、それぞれ対応する原料を用いて製造し た。

なお、表中の記号は以下の意味を示す (以下同様) 。 Rf:参考例番号、

Data:物理化学的データ(NMR:(CH3)4Siを内部標準とし、特に記載がない場合にはDMSOdsを測定溶媒とする¹H-NMRにおけるピークのδ(ppm)を示す、MS(+):FAB-MS[M+H]⁺、MS(-): FAB-MS[M-H]+, EMS(+): ESI-MS[M+H]+, EMS(-): ESI-MS[M-H]+), R^A、R^B:一般式中の置換基、

nPr:ノルマルプロピル、cPr:シクロプロピル。

なお、NMRデータについては、化合物により2種以上のコンフォマーの存在による複雑な

MS(+);231

MS(-);263

データを与えるがあるが、そのうち、主に存在していまえられるコンフォマーに対応するピークの後を記載した。また、これらのピークは、加温下で測定することにより、1種類の化合物を示すピークに収束した。

【0046】 【表4】

$R^B \nearrow R^A$					
Rf	R ^A	R ^B	Data		
2	CF ₃	cPr-CH ₂ O-	EMS(-);259		

nPr-S-

nPr-S-

[0047]

Cl

CF₃

参考例 5

4

メチル 4-フルオロ-2-トリフルオロベンゾアート4.44 gをDMF 40 mlに溶解し、炭酸カリウム3.32 g及びN-メチル-N-プロピルアミン4.10 mlを加え、80 $\mathbb C$ にて14時間攪拌した。反応液を冷却後、水及びEtOAcを加え分液操作を行った。有機層を飽和食塩水にて洗浄後、無水硫酸ナトリウムにて乾燥し、溶媒を留去して得られた粗生成物をシリカゲルカラムクロマトグラフィーに付し、ヘキサン-EtOAc(4:1)で溶出し減圧下濃縮して、4.79 gのメチル 4-[メチル(プロピル)アミノ]-2-(トリフルオロメチル)ベンゾアートを得た。MS(+);276.

[0048]

参考例6

参考例 5 の化合物4.78 gをMeOH 20 mlに溶解し、5M水酸化ナトリウム水溶液 6.94 mlを加え、70 \mathbb{C} にて5時間攪拌した。反応液を冷却後、減圧下濃縮した。得られた残渣を1 M 塩酸水にて中和し、析出した結晶を濾取して、4.36 gの4-[メチル(プロピル)アミノ]-2-(トリフルオロメチル)安息香酸を得た。

MS (+) ; 262.

[0049]

参考例 7

参考例1の化合物8.0 gをTHF 80 mlに溶解し、氷冷下塩化チオニル8 ml、DMF 3滴を加えた後室温にて3時間攪拌した。反応溶媒を留去後乾燥し酸クロリド体を得た。これに(Z)-メチル(4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン)アセタート6.84 gを加え氷冷下ピリジン50 mlを加え、室温にて12時間攪拌した。反応終了後、溶媒を留去し1M塩酸水溶液とEtOAcを加え分液操作を行った。有機層を水及び飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。溶媒を留去して得られた残渣をEtOHより再結晶を行い、9.12 gのメチル(2Z)- $\{1-[4-(ベンジルオキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン5-イリデン<math>\}$ アセタートを得た。

EMS(+);532.

[0050]

参考例 7 と同様に、表 5 に示す参考例 8 ~ 1 1 を、それぞれ対応する原料を用いて製造した。

なお、表中の記号は以下の意味を示す (以下同様)。

Me:メチル。

[0051]

Rf	R ^A	R ^B	Data	
8	CF ₃	cPr-CH ₂ O-	EMS(+);496	
9	C1	nPr-S-	MS(+);466	
10	CF ₃	nPr-S-	MS(+);500	
11	CF ₃	nPr-N(Me)-	MS(+);497	

[0052]

参考例 1 2

参考例 7 の化合物 9.1 gをトリフルオロ酢酸 100 mlに溶解し、ペンタメチルベンゼン 5.1 gを加え室温にて12時間攪拌した。不溶物を濾過後、濾液を減圧下濃縮した。得られた残渣にジエチルエーテルを加え、析出した結晶を濾取し、6.22 gのメチル(22) – 4,4–ジフルオロ–1–4–ヒドロキシ–2–(トリフルオロメチル)ベンゾイル]–1,2,3,4–テトラヒドロ–5H–1–ベンゾアゼピン 5–イリデン 2–イリデン 2–アセタートを得た。 EMS(+);442.

[0053]

参考例13

[0054]

参考例14

参考例 1 3 の化合物 3.75 gをトリフルオロ酢酸 20 ml に溶解し、室温にて 30分間 攪拌した。減圧下溶媒を留去し、3.25 gの $[4-\{[(5Z)-4,4-ジフルオロ-5-(2-メトキシ-2-オキソエチリデン)-2,3,4,5-テトラヒドロ-1H-1-ベンゾアゼピン-1-イル] カルボニル<math>\{-3-(トリフルオロメチル)$ フェノキシ] 酢酸を得た。

MS (+); 450.

[0055]

参考例 1 5

参考例 1 4 の化合物1.09 gをDMF 10 mlに溶解し、HOBt 324 mg、WSCD 460 mg、ジメチルアミン $(2.0\ M\ THF溶液)$ 1.20 ml及びトリエチルアミン $0.335\ ml$ を加えた後、室温にて6時間攪拌した。反応液に炭酸水素ナトリウム水溶液を加え、析出した沈殿物を濾取することで得られた組成生物を水で洗浄後、減圧下乾燥し、 $1.14\ g$ のメチル (22) $-{1-[4-(2-ジメチルアミノ-2-オキソエトキシ)-2-(トリフルオロメチル)ペンゾイル]-4,4-ジフルオ$

ロ-1, 2, 3, 4-テ

ヒドロ-5H-1-ベンゾアゼピン-5-イリテーアセタートを得た。

MS (+): 527. [0056]

参考例16

参考例12の化合物1.00 gをTHF 15 mlに溶解し、1-ブタノール0.415 ml、トリフェニ ルホスフィン1.19 g及びアゾジカルボン酸ジエチル2.08 mlを加えた後、室温にて17時間 攪拌した。反応液に水とEtOAcを加え分液操作を行った。有機層を水及び飽和食塩水にて 洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を留去して得られた粗生成物をシリカ ゲルカラムクロマトグラフィーに付し、クロロホルム-MeOH(50:1)で溶出し、減圧下濃縮 して、1.41 gの粗メチル (2Z)- 1-[4-ブトキシ-2-(トリフルオロメチル)ベンゾイル]-4.4 -ジフルオロ-1, 2, 3, 4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン| アセタートを得た

上記で得られた化合物をMeOH 5 ml-THF 10 mlに溶解し、1M水酸化ナトリウム水溶液を 加えた後室温にて2時間攪拌した。溶媒を留去した後、1M塩酸及びクロロホルム-iPrOH(3 :1混合溶媒)を加え分液操作を行った。有機層を飽和食塩水にて洗浄し、無水硫酸ナトリ ウムにて乾燥した。溶媒を留去して、1.01 gの(2Z)-{1-[4-ブトキシ-2-(トリフルオロメ チル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリ デン 酢酸を得た。

MS (+); 484.

[0057]

参考例16と同様に、表6に示す参考例17~19を、それぞれ対応する原料を用いて 製造した。

なお、表中の記号は以下の意味を示す(以下同様)。

iBu:イソブチル。

[0058]

【表 6】

Rf	R ^A	R ^B	Data	
17	CF ₃	nPr-O-	MS(+);470	
18	CF ₃	iBu-O-	MS(+);483	
19	Cl	iBu-O-	MS(+);450	

[0059]

参考例 2 0

参考例 7 の化合物1.43 gをMeOH 15 ml-THF 25 mlの混合溶媒に溶解し、1M 水酸化ナト リウム水溶液10 mlを加え室温にて2時間攪拌した。有機溶媒を留去後、1M塩酸を加え液性 を酸性とした後、析出した白色固体を遮取、減圧乾燥し、1.39 gの(2Z)-{1-[4-(ベンジル オキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H -1-ベンゾアゼピン-5-イリデン|酢酸を得た。

MS (+) : 518.

[0060]

参考例20と 製造した。

に、表7に示す参考例21~25を、

ぞれ対応する原料を用いて

[0061]

【表7】

Rf	R ^A	R ^B	Data
21	CF ₃	cPr-CH ₂ O- EMS(+);482	
22	Cl	nPr-S-	MS(+);452
23	CF ₃	nPr-S-	MS(+);486
24	CF ₃	nPr-N(Me)-	MS(+);483
25	CF ₃	Me ₂ NOCCH ₂ -O-	MS(+);513

[0062]

実施例1

参考例 2 0 の化合物150 mgをDMF 5 mlに溶解し、HOBt 43 mg、WSCD 61 mg、グリシンアミド 塩酸塩35 mg及びトリエチルアミン0.045 mlを加えた後、室温にて 4 時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液及びEtOAcを加え分液操作を行った。有機層を水及び飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を留去して得られた残渣をEtOHより再結晶を行い、139 mgの(2Z)-N-(2-アミノ-2-オキソエチル)-2- $\{1-[4-(ベンジルオキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン<math>\}$ アセトアミドを得た。

実施例1と同様に、表 $8\sim10$ に示す実施例 $2\sim16$ を、それぞれ対応する原料を用いて製造した。

[0063]

実施例17

参考例 2 0 の化合物 150 mgを THF 3.5 ml に溶解し、塩化チオニル0.3 ml 及び $2\sim3$ 滴のDM Fを加え室温にて1時間攪拌した。減圧下溶媒を留去し、さらにトルエンを用いて塩化チオニルを共沸留去した。得られた残渣を THF に溶解し、この溶液を アンモニア水に滴下した。反応液に EtOAcを加え分液操作を行った。有機層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムにて乾燥した。得られた粗生成物を iPrOH-ジイソプロピルエーテル混合溶媒から再結晶し、126 mgの $(2Z)-2-\{1-[4-(ベンジルオキシ)-2-(トリフルオロメチル)ベンゾイル]-4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンズアゼピン-5-イリデン<math>\}$ アセトアミドを得た。

実施例17と同様に、表11に示す実施例18を、それぞれ対応する原料を用いて製造した。また、参考例12と同様に、表11に示す実施例19~20を、それぞれ対応する原料を用いて製造した。

[0064]

実施例21

実施例6の化合物325 mgを1,2-ジクロロエタン5 mlに溶解し、氷冷下メタクロロ過安息香酸148 mgを加え室温にて4時間撥拌した。反応液に10%(w/v) Na2 S2 O3 5H2 O水溶液、水及

出証特2004-3048216

びクロロホルム え分液操作を行った。有機層を飽和重 にて洗浄後、無水硫酸ナトリウムにて乾燥し、溶媒を留去して得られた粗生成物をシリカゲルカラムクロマトグラフィーに付し、クロロホルム-MeOH(23:2)で溶出し、減圧下濃縮して、121 mgの(2Z)-N-(2-アミノ-2-オキソエチル)-2- $\{4,4-$ ジフルオロ-1- $\{4-($ プロピルスルフィニル)ベンゾイル]-1,2,3,4-テトラヒドロ-5H-1-ベンゾアゼピン-5-イリデン $\}$ アセトアミドを得た。

なお、表中の記号は以下の意味を示す(以下同様)。

Ex:実施例番号、

· R^C:一般式中の置換基、

Et:エチル、nBu:ノルマルブチル、Ph:フェニル、Py:ピリジル、Bn:ベンジル、Gly:カルバモイルメチルアミノ($-NHCH_2$ CON H_2)、Etha:2-ヒドロキシエチルアミノ($-NHCH_2$ COH) 、Car:アミノ($-NH_2$)。なお、置換基の前の数字は置換位置を示す。具体的には、例えば-NHPh(2-OH)は2-ヒドロキシフェニルアミノを、-NHCH2(2-Py)はピリジン-2-イルメチルアミノを示す。

[0065]

	N .
Ex	R ^A ; R ^B ; R ^C
	Data
	R^A : -CF ₃ ; R^B : Bn-O-; R^C : -CH ₂ -CONH ₂
	MS(+);5/4.
1	NMR(DMSO-d6);2.35-2.55(1H,br),2.60-2.80(1H,br),3.00-3.15(1H,br),3.76(2H,s),4.75
1	-1
	<u></u> σ ₂ ιτα μ./ τ.
ł	R : -CF ₃ ; R : Bn-O-; R : -(CH ₂) ₂ -OH
İ	MS(+);561.
2	NMR(DMSO-d6);2.25-2.55(1H,br),2.60-2.80(1H,br),3.05-3.20(1H,br),3.20-3.25(2H,br),3.42-3.50(2H,br),4.72(1H,br),4.73
1	- 1/2-1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
1	- ^
<u> </u>	1 1 1 1 (012) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i	R^A : -CF ₃ ; R^B : cPr-CH ₂ O-; R^C : -CH ₂ -CONH ₂
!	(MS(+); 538.
3	NMR(DMSO-d6);0.24-0.30(2H,m),0.49-0.58(2H,m),1.08-1.20(1H,m),2.33-2.45(1H,b)
]	1 "/>="^^ ~!^ /*±4;01 /\}.02"3.27(1 EL.DE) 1 DX={ XX/A H #s\ A &A & A&/1TT L\ A AA/1TT \\
i] - u, u = 0.0112), 0.05(117, u, J-0.0112), 0.93(1H dd J=2 f) & &U ₂ \ 7 11 7 20/611\ 0.40 [
 	
	R^{A} : -CF ₃ ; R^{B} : cPr-CH ₂ O-; R^{C} : -(CH ₂) ₂ -OH MS(+); 525.
ł	
4	NMR(DMSO-d6);0.24-0.31(2H,m),0.48-0.56(2H,m),1.09-1.21(1H,m),2.27-2.46(1H,b)
	1 "//="00 ="00" (1450) /J.VV"J.ZV(JD.M.) 3 41-4 7///H m) 3 20//7H J T=2 0ff=3 4 99/111 1 = 1
	1 ************************************
	H,dd,J=2.5,8.8Hz),7.13-7.18(2H,m),7.24(1H,t,J=7.3Hz)7.30-7.34(1H,m),8.48(1H,t,J=5.3Hz).
	\mathbb{R}^{A} : -Cl; \mathbb{R}^{B} : nPr-S-; \mathbb{R}^{C} : -CH ₂ -CONH ₂
	MS(+); 508.
5	NMR(DMSO-d6);0.92(3H,t,J=7.6Hz),1.46-1.55(2H,m),2.24-2.50(1H,br),2.65-2.84(1 H,br),2.89-2.93(2H m) 3.04.3.23(1H,br),2.75(2H,m),2.24-2.50(1H,br),2.65-2.84(1
	H,br),2.89-2.93(2H,m),3.04-3.22(1H,br),3.75(2H,s),4.70-4.92(1H,br),6.37(1H,s),6.87
	R^{A} : -CF ₃ ; R^{B} : nPr-S-; R^{C} : -CH ₂ -CONH ₂
	MS(+); 542.
6	NMR(DMSO-d6):0.93(3H.t.J=7.2Hz) 1.48-1.57(2H =) 2.28.2.50(1H1.) 2.50.2
	6.73(1H,d,J=8.0Hz),6.84(1H,d,J=8.0Hz),7.14-7.76(7H,m),8.69(1H,t,J=5.2Hz).

[0066]

	DA			
Ex				
<u> </u>	Data			
	R^A : -CF ₃ ; R^B : nPr-O-; R^C : -CH ₂ -CONH ₂			
7	MS(+);526. NMR(DMSO-d6);0.92(3H,t, J=7.3Hz),1.62-1.72(2H,m),2.30-2.50(1H,br),2.60-2.80(1 H,br),3.00-3.10(1H,br),3.76(2H,s),3.90(2H,t, J=6.6Hz),4.70-4.90(1H,br),6.45(1H,s),6.7 2(1H,d, J=7.8Hz),6.85(1H,d, J=7.8Hz),6.94(1H,dd, J=2.1,7.6Hz),7.10-7.38(6H,m),8.68 (1H,t, J=5.4Hz).			
	R^{A} : -CF ₃ ; R^{B} : nPr-O-; R^{C} : -(CH ₂) ₂ -OH			
8	MS(+);513. NMR(DMSO-d6);0.92(3H,t,J=7.3Hz),1.62-1.72(2H,m),2.30-2.50(1H,br),2.60-2.80(1 H,br),3.00-3.20(1H,br),3.23(2H,t,J=5.9Hz),3.44-3.50(2H,m),3.90(2H,t,J=6.6Hz),4.72 (1H,t,J=5.4Hz),4.75-4.86(1H,br),6.40(1H,s),6.71(1H,d,J=7.8Hz),6.85(1H,d,J=8.3Hz), 6.95(1H,dd,J=2.5,8.8Hz),7.10-7.18(2H,m),7.25(1H,t,J=7.1Hz),7.30-7.34(1H,m),8.46(1 H,t,J=5.6Hz).			
	R^A : -CF ₃ ; R^B : nBu-O-; R^C : -CH ₂ -CONH ₂			
9	NMR(DMSO-d6);0.89(3H,t, <i>J</i> =7.3Hz),1.31-1.42(2H,m),1.57-1.67(2H,m),2.30-2.50(1 H,br),2.70-2.85(1H,br),3.00-3.20(1H,br),3.76(2H,s),3.94(2H,t, <i>J</i> =6.6Hz),4.65-4.95(1H,br),6.45(1H,s),6.72(1H,d, <i>J</i> =7.8Hz),6.85(1H,d, <i>J</i> =8.8Hz),6.94(1H,dd, <i>J</i> =2.4,8.8Hz),7.10-7.20(3H,m),7.22-7.32(2H,m),7.33-7.37(1H,m) 8 68(1H t, <i>J</i> =5.3Hz)			
	R^{A} : -CF ₃ ; R^{B} : nBu-O-; R^{C} : -(CH ₂) ₂ -OH MS(+);527.			
10	NMR(DMSO-d6);0.89(3H,t, <i>J</i> =7.4Hz),1.32-1.42(2H,m),1.58-1.67(2H,m),2.25-2.45(1H,br),2.60-2.80(1H,br),3.00-3.15(1H,br),3.20-3.30(2H,m),3.44-3.50(2H,m),3.94(2H,t, <i>J</i> =6.4Hz),4.73(1H,t, <i>J</i> =5.2Hz),4.75-4.87(1H,br),6.39(1H,s),6.71(1H,d, <i>J</i> =7.8Hz),6.84(1H,d, <i>J</i> =8.8Hz),6.95(1H,dd, <i>J</i> =2.5,8.8Hz),7.12-7.18(2H,m),7.21-7.26(1H,m),7.30-7.33(1H,m),8.46(1H,t, <i>J</i> =5.6Hz).			
	R^A : -CF ₃ ; R^B : iBu-O-; R^C : -CH ₂ -CONH ₂			
11	MS(+);540. NMR(DMSO-d6);0.92(6H,d,J=6.8Hz),1.89-2.00(1H,m),2.30-2.50(1H,br),2.60-2.80(1 H,br),3.00-3.20(1H,br),3.70-3.82(4H,m),4.75-4.85(1H,br),6.45(1H,s),6.72(1H,d,J=7.9 Hz),6.86(1H,d,J=8.8Hz),6.95(1H,dd,J=2.4,8.3Hz),7.12-7.19(3H,m),7.23-7.30(2H,m),7.36(1H,dd,J=7.8Hz,1.5Hz),8.68(1H,t,J=5.6Hz).			

[0067]

Ex	R ^A ; R ^B ; R ^C
	Data
12	R^{A} : -CF ₃ ; R^{B} : iBu-O-; R^{C} : -(CH ₂) ₂ -OH
	MS(+);527. NMR(DMSO-d6);0.92(6H,d,J=6.4Hz),1.89-2.00(1H,m),2.30-2.50(1H,br),2.60-2.80(1 H,br),3.00-3.15(1H,br),3.19-3.25(2H,m),3.44-3.50(2H,m),3.72(2H,d,J=6.3Hz),4.73(1 H,t,J=5.1Hz),4.76-4.88(1H,br),6.40(1H,s),6.71(1H,d,J=7.3Hz),6.85(1H,d,J=8.8Hz),6.9 6(1H,dd,J=2.5,8.3Hz),7.13-7.18(2H,m),7.22-7.27(1H,m),7.32(1H,dd,J=7.8Hz,1.5Hz), 8.46(1H,t,J=5.6Hz).
	R^A : -Cl; R^B : iBu-O-; R^C : -CH ₂ -CONH ₂
13	MS(+);506. NMR(DMSO-d6);0.91(6H,d,J=6.8Hz),1.86-1.98(1H,m),2.25-2.50(1H,br),2.60-2.80(1 H,br),3.00-3.15(1H,br),3.67(2H,d,J=6.3Hz),3.70-3.78(2H,br),4.73-4.90(1H,br),6.35(1 H,s),6.63-6.69(1H,m),6.89-6.96(3H,m),7.11-7.20(2H,m),7.22-7.33(3H,m),8.62(1H,s).
	\mathbb{R}^{A} : -CF ₃ ; \mathbb{R}^{B} : nPr-N(Me)-; \mathbb{R}^{C} : -CH ₂ -CONH ₂
14	MS(+); 539. NMR(DMSO-d6);0.80(3H,t,J=7.2Hz),1.40-1.45(2H,m),2.27-2.53(1H,br),2.55-2.77(1 H,br),2.86(3H,s),2.92-3.15(1H,br),3.24(2H,s),3.75(2H,s),4.71-5.05(1H,br),6.44(1H,s),6.58(1H,d,J=8.4Hz),6.67(1H,d,J=8.4Hz),6.71(1H,d,J=7.6Hz),6.77(1H,s),7.14-7.36(5H,m),8.64(1H,s).
	R^A : -CF ₃ ; R^B : Me ₂ NOCCH ₂ -O-; R^C : -CH ₂ -CONH ₂
15	MS(+);569. NMR(DMSO-d6);2.30-2.50(1H,br),2.65-2.85(1H,br),2.80(3H,s),2.92(3H,s),3.00-3.20 (1H,br),3.70-3.82(2H,m),4.75-4.90(1H,br),4.86(2H,s),6.44(1H,s),6.73(1H,d,=7.8Hz), 6.83(1H,d,=8.3Hz),6.90(1H,dd,=2.4,8.3Hz),7.11-7.20(3H,m),7.24-7.30(2H,m),7.36 (1H,dd,=7.3Hz,1.4Hz),8.68(1H,t,=5.7Hz).
	R^A : -CF ₃ ; R^B : nPr-O-; R^C : -H
16	MS(+);469. NMR(DMSO-d6);0.92(3H,t,J=7.8Hz),1.61-1.71(2H,m),2.35-2.55(1H,br),2.60-2.80(1 H,br),3.00-3.20(1H,br),3.90(2H,t,J=6.4Hz),4.70-4.90(1H,br),6.38(1H,s),6.72(1H,d,J=7.8Hz),6.84(1H,d,J=8.7Hz),6.96(1H,dd,J=2.5,8.6Hz),7.10-7.18(2H,m),7.22-7.27(1H,m),7.28-7.31(1H,m),7.35(1H,s),7.87(1H,s).

[0068]

	N .
Ex	R ^A ; R ^B ; R ^C
	Data
	\mathbb{R}^{A} : -CF ₃ ; \mathbb{R}^{B} : Bn-O-; \mathbb{R}^{C} : -H
,_	MS(+);517.
17	NMR(DMSO-d6);2.30-2.55(1H,br),2.60-2.80(1H,br).3.05-3.25(1H,br),4.75-4.95(1H,br)
	[7],5.09(2H,S),6.38(1H,S),6.73(1H,d,J=7.8Hz),6.86(1H,d,J=8.7Hz),7.05(1H,dd,J=2.4.8
	14Hz),7.13-7.18(1H,m),7.22-7.42(9H,m),7.88(1H,s).
	R^A : -CF ₃ ; R^B : nPr-N(Me)-; R^C : -H
18	MS(+); 482.
10	NMR(DMSO-d6);0.81(3H,t,J=7.2Hz),1.40-1.46(2H,m),2.24-2.52(1H,br),2.57-2.78(1
•	1 1,01),2.65(311,5),2.95-3.1/(1H,br),3.23(2H,s),4.70-5.02(1H,br),6.36(1H,s),6.62-6.76(4)
	H,m),7.16-7.34(4H,m),7.84(1H,s). R ^A : -CF ₃ ; R ^B : HO-; R ^C : -CH ₂ -CONH ₂
İ	MS(+);484.
19	
'	NMR(DMSO-d6);2.30-2.50(1H,br),2.55-2.80(1H,br),3.00-3.20(1H,br),3.75(2H,s),4.70
	-4.90(1H,br),6.47(1H,s),6.66-6.76(3H,m),7.00(1H,d,J=1.5Hz),7.10-7.19(2H,m),7.22-7. 30(2H,m),7.35(1H,d,J=7.8Hz),8.65(1H,t,J=5.6Hz),10.3(1H,s).
	R^{A} : -CF ₃ ; R^{B} : HO-; R^{C} : -H
j	MS(+);427.
20	NMR(DMSO-d6);2.30-2.50(1H,br),2.55-2.80(1H,br),3.00-3.20(1H,br),4.70-4.90(1H,br),6.41(1H,br),6.67,6.74(2H,br),2.55-2.80(1H,br),3.00-3.20(1H,br),4.70-4.90(1H,br),6.41(1H,br),6.67,6.74(2H,br),6.41(1H,br),6.67,6.74(2H,br),6.41(1H,br),6.67,6.74(2H,br),6.41(1H,br),6.67,6.74(2H,br),6.41(1H,br),6.67,6.74(2H,br),6.41(1H,br),6.67,6.74(2H,br),6.41(1H,br),6.67,6.74(2H,br),6.41(1H,br),6.
İ	r),6.41(1H,s),6.67-6.74(3H,m),7.00(1H,s),7.15(1H,tdJ=1.4,7.8Hz),7.24(1H,t,J=7.6Hz),
	1 /.2/-/.32(1H,m), /.34(1H,s), /.85(1H,s), 10.3(1H,s),
ļ	R^A : -CF ₃ ; R^B : nPr-S(=O)-; R^C : -CH ₂ -CONH ₂
	MS(+); 558.
21	NMR(DMSO-d6);0.87(3H,t,J=7.2Hz),1.19-1.27(1H,m),1.45-1.58(1H,m),2.18-2.52(1
	1 11,01),2.03-2.78(1H,01),2.93-3.00(2H,m),3.06-3.25(1H hr) 3.74-3.76(2H m) 4.75-4.03 [
	[(17,0r),0.35(1H,s),0.73(1H,d,J=7.6Hz),7.12-7.15(3H,m),7.24-7.33(2H,m),7.36(1H,dd, J
	J=1.6,7.2Hz),7.71(1H,d,J=8.0Hz),7.98(1H,s),8.70(1H,s).
	R^{A} : -CF ₃ ; R^{B} : nPr-S(=O) ₂ -; R^{C} : -CH ₂ -CONH ₂ MS(+); 574.
00	
22	NMR(DMSO-d6);0.84(3H,t,J=7.6Hz),1.38-1.47(2H,m),2.15-2.54(1H,br),2.67-2.90(1H,br),3.15-3.30(1H,br),3.34-3.52(2H,m),2.75.3.77(2H,m),4.75.4.00(1M,br),2.67-2.90(1H,br),3.15-3.30(1H,br),3.34-3.52(2H,m),3.75.3.77(2H,m),4.75.4.00(1M,br),3.67-2.90(1H,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.67-2.90(1H,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.67-2.90(1H,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),3.75.3.77(2H,m),4.75.4.00(1M,br),4.75.4.
	H,br),3.15-3.30(1H,br),3.34-3.52(2H,m),3.75-3.77(2H,m),4.75-4.90(1H,br),6.61(1H,s),6.74(1H,d,J=8.0Hz),7.13-7.17(3H,m),7.26-7.39(2H,m),7.37-7.39(1H,m),7.97(1H,d,J=
	8.4Hz),8.16(1H,s),8.71(1H,s).

[0069]

Ex	R ^B	RD	MS(+)
23	-OnPr	F	544
24	-OnPr	Cl	560
25	-OnPr	Br	604,606
26	-O-CH ₂ C(CH ₃)=CH ₂	Н	538
27	-O-(CH ₂) ₂ CH ₂ F	Н	544
28	(S)-O-CH2CHFCH3	Н	544
29	(R)-O-CH ₂ CHFCH ₃	Н	544
30	(S)-O-CH ₂ CHFCH ₃	F	562
31	(R)-O-CH ₂ CHFCH ₃	F	562
32	-O-CH ₂ CHFCH ₃	Н	544
33	-O-CH ₂ CF ₂ CH ₃	Н	562
34	-O-CH ₂ CF ₂ CH ₃	F	580
35	-N(Me)Et	Н	525
36	-N(Et)nPr	Н	553
37	-N(Me)nBu	Н	553
38	-N(Me)iBu	Н	553
39	-NnPr ₂	Н	567
40	-SEt	Н	528
41	-SiBu	Н	556
42	-SCH=CH ₂	H	526
43	-SCH ₂ CH ₂ F	Н	546
44	-S(CH ₂) ₂ CH ₂ F	Н	560
45	-SCH₂CHFCH₃	Н	560

[0070]

	T			
Ex	R ^B	R ^D	MS(+)	
46	-OnPr	F	531	
47	-OnPr	Cl	547	
48	-O-CH ₂ cPr	Н	525	
49	-O-(CH ₂) ₂ CH ₂ F	Н	531	
50	-O-CH ₂ CHFCH ₃	3 H		
51	-O-CH ₂ CF ₂ CH ₃	549		
52	(S)-O-CH ₂ CHFCH ₃	Н	531	
53	(R)-O-CH ₂ CHFCH ₃	Н	531	
54	(S)-O-CH ₂ CHFCH ₃	F	549	
55	(R)-O-CH ₂ CHFCH ₃	F	549	
56	-O-CH ₂ CF ₂ CH ₃	F	567	
57	-N(Me)(CH ₂) ₂ CH ₂ F	Н	544	
58	-N(Et)nPr	(Et)nPr H		
59	-SCH=CH ₂	-SCH=CH ₂ H		
60	-SCH ₂ CH ₂ F	Н	533	
61	-S(CH ₂) ₂ CH ₂ F	Н	547	

[0071]

Ex	R [₿]	R ^D	MS(+)
62	-OnPr	-OnPr F 4	
63	-OnPr	Cl	503
64	-OnPr	Br	547,549
65	-O-(CH ₂) ₂ CH ₂ F	Н	487
66	-O-CH2CHFCH3	Н	487
67	-O-CH ₂ CF ₂ CH ₃	-O-CH ₂ CF ₂ CH ₃ H	
68	-O-CH ₂ CF ₂ CH ₃	F	523
69	(S)-O-CH ₂ CHFCH ₃	Н	487
70	(R)-O-CH ₂ CHFCH ₃	Н	487
71	(S)-O-CH ₂ CHFCH ₃	F	505
72	(R)-O-CH ₂ CHFCH ₃	F	505
73	-N(Me)(CH ₂) ₂ CH ₂ F	H	500
74	-N(Me)CH ₂ CF ₂ CH ₃	Н	518
75	-N(Et)nPr	Н	496
76	-N(Et)(CH ₂) ₂ CH ₂ F	Н	514
77	-NnPr ₂ H		510

[0072]

F	-6		
Ex	R ^c	R ^D	MS(+)
78	-NH(CH ₂)₂OMe	Н	527
79	-NHC(Me) ₂ CH ₂ OH	Н	541
80	-NH(CH ₂) ₂ F	Н	515
81	-NH(CH ₂)₃OH	Н	527
82	-NH(CH ₂)₃F	Н	529
83	-NHCH2CH(OH)CH2OH	Н	543
84	-NHCH2CH(R-OH)CH2OH	Н	543
85	-NHCH2CH(S-OH)CH2OH	Н	543
86	-NHCH2CH(R-OH)CH2OH	F	561
87	-NH(CH ₂) ₂ O(CH ₂) ₂ OH		557
88	-NH(CH ₂) ₂ NMe ₂ H		540
89	-NH(CH ₂) ₂ CONH ₂	Н	540
90	-NHCH(CONH ₂) ₂		569
91	-NHCH ₂ CONHMe H		540
92	-NHCH ₂ CONMe ₂ H		554
93	-NH(CH ₂) ₂ NHCOCH ₃	Н	554
94	-N(CH ₂ CH ₂ OH) ₂	Н	557
95	-N(CH ₂ CONH ₂) ₂	Н	583
96	-NHPh	Н	545
97	-NHPh(2-OH)	Н	561
98	-NHPh(3-OH) H		561
99	-NHPh(4-OH) H		561
100	-NHPh(2-CONH ₂) H		588
101	-NHPh(3-CONH ₂) H		588
102	-NHPh(4-CONH ₂) H		588
103	-NHPh(3-SO ₂ NH ₂)	Н	624
104	-NHPh(4-SO ₂ NH ₂)	Н	624
105	-NHPh(3-NHCOMe)	Н	602

[0073]

Ex	R ^c	R ^D	MS(+)
106	-NHCH ₂ Ph(3-OH)	Н	575
107	-NHCH₂Ph(4-OH)	Н	575
108	-NHCH ₂ Ph(4-SO ₂ NH ₂)	Н	638
109	-NHCH₂(2-Py)	Н	560
110	-H-0	н	580
111	-H 0	Н	596
112	-H_O	н	594
113	-H-O-OH	н	610

[0074]

Ex	R ^c	R ^D	MS(+)
114	-N →OH	Н	539
115	-N OH	Н	553
116	-N CONH ₂	Н	580
117	-NCONH ₂	Н	580
118	-NF	Н	555
119	-N F	Н	573
120	-NOH	Н	567
121	-N NH	Н	552
122	-N_0	Н	539

[0075]

Ex	.R ^B	R ^c	R ^D	MS(+)
123	-O-(CH ₂) ₂ CH ₂ F	-NHCH2CH(R-OH)CH2OH	Н	561
124	-O-(CH ₂) ₂ CH ₂ F	-NHCH2CH(S-OH)CH2OH	Н	561
125	-O-(CH ₂) ₂ CH ₂ F	-NH(CH ₂) ₂ CONH ₂	Н	558
126	-O-(CH₂)₂CH₂F	-Й O	Н	628
127	(+)-O-CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	Н	558
128	(-)-O-CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	Н	558
129	(+)-O-CHFCH ₃	-NHCH2CH(S-OH)CH2OH	Н	561
130	(-)-O-CHFCH ₃	-NHCH2CH(S-OH)CH2OH	Н	561
131	(+)-O-CHFCH ₃	-NHCH2CH(R-OH)CH2OH	Н	561
132	(-)-O-CHFCH₃	-NHCH2CH(R-OH)CH2OH	H	561
133	(+)-O-CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	F	576
134	(-)-O-CHFCH ₃	-NH(CH ₂) ₂ CONH ₂	F	576
135	(+)-O-CHFCH ₃	-NHCH2CH(S-OH)CH2OH	F	579
136	(-)-O-CHFCH ₃	-NHCH2CH(R-OH)CH2OH	F	579
137	-O-CH ₂ CF ₂ CH ₃	-NHCH2CH(R-OH)CH2OH	Н	579
138	-O-CH ₂ CF ₂ CH ₃	-NHCH2CH(S-OH)CH2OH	Н	579
139	-O-CH ₂ CF ₂ CH ₃	-NH(CH ₂) ₂ CONH ₂	Н	576
140	-O-CH ₂ CF ₂ CH ₃	-NH(CH ₂) ₂ CONH ₂	F	594
141	-O-CH ₂ CF ₂ CH ₃	-NHCH ₂ CH(S-OH)CH ₂ OH	F	597
142	-O-CH ₂ CF ₂ CH ₃	-NHCH2CH(R-OH)CH2OH	F	597
143	-SEt	-NH(CH ₂) ₂ CONH ₂	Н	542
144	-SEt	-NHCH(CONH ₂) ₂	Н	571
145	-SEt	-NHPh(3-CONH ₂)	H	590

[0076]

Ex	R ^{1A}	MS(+)
146	Gly	493
147	Car	436 .

[0077]

以下、表20~35に本発明の別の化合物の構造を示す。これらは、上記の製造法や実施例記載の方法、及び当業者にとって自明である方法、又はこれらの変法を用いることにより合成されたか、合成することができる。

なお、表中の記号は以下の意味を示す。

No:化合物番号。

R^{1 A}、-A^A-B^A、X、Y:一般式中の置換基、

iPr:イソプロピル、tBu:tert-ブチル、cBu:シクロブチル、nPen:ノルマルペンチル、cPen:シクロペンチル、iAm:イソアミル、nHex:ノルマルヘキシル、pyrr:ピロリジン-1-イル、pipe:ピペリジン-1-イル、pipa:ピペラジン-1-イル、mor:モルホリン-4-イル、Ac:アセチル、Ms:メタンスルホニル、cyano:シアノ。

[0078]

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
A1	Gly	-O-Me	A30	Car	-O-(CH ₂) ₂ -cyano
A2	Gly	-O-Et	A31	Etha	-O-CH ₂ CH(Me)OMe
A3	Etha	-O-Et	A32	Etha	-O-CH ₂ CH(Me)OMe
A4	Car	-O-Et	A33	Car	-O-CH ₂ CH(Me)OMe
A5	Etha	-O-iPr	A34	Etha	-O-CH ₂ CF ₂ CF ₃
A6	Car	-O-nBu	A35	Car	-O-CH ₂ CF ₂ CF ₃
A7	Car	-O-iBu	A36	Etha	-O-CH ₂ CF ₂ CH ₃
A8	Gly	-O-tBu	A37	Car	-O-CH ₂ CF ₂ CHF ₂
A9	Gly	-O-iAm	A38	Gly	-O-(CH ₂) ₂ OH
A10	Gly	-O-nPen	A39	Etha	-O-(CH ₂) ₂ OH
A11	Etha	-O-nHex	A40	Car	-O-(CH ₂) ₂ OH
A12	Gly	-O-cPen	A41	Gly	-O-CH ₂ CO ₂ H
A13	Gly	-O-Ph	A42	Etha	-O-CH ₂ CO ₂ H
A14	Car	-O-Ph	A43	Car	-O-CH ₂ CO ₂ H
A15	Gly	-O-CH ₂ CF ₃	A44	Etha	-N(Me)-iBu
A16	Gly	-O-CH ₂ CHF ₂	A45	Car	-N(Me)-iBu
A17	Gly	-O-CH2CH≡CH	A46	Etha	-S-Et
A18	Gly	-O-(CH ₂) ₂ CH≡CH	A47	Car	-S-Et
A19	Gly	-O-(CH ₂) ₂ OMe	A48	Gly	-S-iPr
A20	Car	-O-CH ₂ cPr	A49	Etha	-S-iPr
A21	Gly	-O-CH₂cBu	A50	Car	-S-iPr
A22	Car	-O-CH₂cBu	A51	Gly	-N(Me)-CH ₂ CH ₂ OMe
A23	Gly	-O-CH ₂ tBu	A52	Etha	-N(Me)-CH ₂ CH ₂ OMe
A24	Etha	-O-CH₂tBu	A53	Car	-N(Me)-CH ₂ CH ₂ OMe
A25	Gly	-O-CH ₂ CONH ₂	A55	Gly	-N(Me)-nBu
A27	Gly	-O-CH ₂ CONHMe	A56	Etha	-N(Me)-nBu
A28	Gly	-O-(CH ₂) ₂ -cyano	A57	Car	-N(Me)-nBu
A29	Etha	-O-(CH ₂) ₂ -cyano	A58	Etha	-N(nPr)-nPr

[0079]

No	R ^{1A}	-A ^A -B ^A
A69	Gly	-O-Et
A70	Car	-O-nPr
A71	Gly	-O-iPr
A72	Etha	-O-nBu

[0080]

	N 51A 34 34 34							
No	R ^{1A}	-X-	Υ	-A ^A -B ^A				
B1	Gly	-N=C-	N	-O-nPr				
B2	Etha	-N=C-	N	-O-nPr				
B3	Car	-N=C-	N	-O-nPr				
B4	Gly	-N=C-	N	-O-iBu				
B5	Etha	-N=C-	N	-O-iBu				
B6	Car	-N=C-	N	-O-iBu				
B7	Gly	-N=C-	N	-S-nPr				
_B8	Etha	-N=C-	N	-S-nPr				
B9	Car	-N=C-	N	-S-nPr				
B10	Gly	-N=C-	N	-N(Me)-nPr				
B11	Etha	-N=C-	N	-N(Me)-nPr				
B12	Car	-N=C-	N	-N(Me)-nPr				
B13	Gly	-N=N-	CH	-O-nPr				
B14	Etha	-N=N-	CH	-O-nPr				
B15	Car	-N=N-	CH	-O-nPr				
B16	Gly	-N=N-	CH	-O-iBu				
B17	Etha	-N=N-	CH	-O-iBu				
B18	Car	-N=N-	CH	-O-iBu				
B19	Gly	-N=N-	СН	-S-nPr				
B20	Etha	-N=N-	CH	-S-nPr				
B21	Car	-N=N-	CH	-S-nPr				
B22	Gly	-N=N-	CH	-N(Me)-nPr				
B23	Etha	-N=N-	CH	-N(Me)-nPr				
B24	Car	-N=N-	CH	-N(Me)-nPr				
B25	Gly	-S-	N	-O-nPr				
B26	Etha	-S-	N	-O-nPr				
B27	Car	-S-	N	-O-nPr				
B28	Gly	-S-	N	-O-iBu				
B29	Etha	-S-	N	-O-iBu				
B30	Car	-S-	N	-O-iBu				
B31	Gly	-S-	N	-S-nPr				
B32	Etha	-S-	N	-S-nPr				
B33	Car	-S-	N	-S-nPr				
B34	Gly	-S-	N	-N(Me)-nPr				
B35	Etha	-S-	N	-N(Me)-nPr				

[0081]

No	R ^{1A}	-X-	Υ	-A ^A -B ^A
B36	Car	-S-	N	-N(Me)-nPr
B37	Gly	-N=C-	CH	-O-nPr
B38	Etha	-N=C-	CH	-O-nPr
B39	Car	-N=C-	CH	-O-nPr
B40	Gly	-N=C-	CH	-O-iBu
B41	_ Etha	-N=C-	CH	-O-iBu
B42	Car	-N=C-	CH	-O-iBu
B43	Gly	-N=C-	CH	-S-nPr
B44	Etha	-N=C-	CH	-S-nPr
B45	Car	-N=C-	CH	-S-nPr
B46	Gly	-N=C-	CH	-N(Me)-nPr
B47	Etha	-N=C-	CH	-N(Me)-nPr
B48	Car	-N=C-	CH	-N(Me)-nPr

[0082]

No	R ^{1A}	-X-	Y	-A ^A -B ^A
B49	Etha	-C=C-	N	-O-nPr
B50	Gly	-C=C-	N	-O-iBu
B51	Etha	-C=C-	N	-O-iBu
B52	Car	-C=C-	N	-O-iBu
B53	Gly	-C=C-	N	-S-nPr
B54	Etha	-C=C-	N	-S-nPr
_B55	Car	-C=C-	N	-S-nPr
_B56	Gly	-C=C-	N	-N(Me)-nPr
B57	Etha	-C=C-	N	-N(Me)-nPr
B58	Car	-C=C-	N	-N(Me)-nPr
B59	Gly	-S-	CH	-O-nPr
B60	Etha	-S-	CH	-O-nPr
B61	Car	-S-	CH	-O-nPr
B62	Gly	-S-	CH	-O-iBu
_B63	Etha	-S-	CH	-O-iBu
B64	Car	-S-	CH	-O-iBu
B65	Gly	-S-	CH	-S-nPr
B66	Etha	-S-	СН	-S-nPr
B67	Car	-S-	СН	-S-nPr

【0083】 【表25】

No	R ^{1A}	X	Υ	-A ^A -B ^A
B68	Gly	N	S	-N(Me)-nPr
B69	Etha	N	S	-N(Me)-nPr
B70	Car	N	S	-N(Me)-nPr

[0084]

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C1	Gly	-O-iBu	C10	Gly	-S-iPr
C2	Etha	-O-iBu	C11	Etha	-S-iPr
C3	Car	-O-iBu	C12	Car	-S-iPr
C4	Gly	-O-nBu	C13	Gly	-S-Et
C5	Etha	-O-nBu	C14	Etha	-S-Et
C6	Car	-O-nBu	C15	Car	-S-Et
C7	Gly	-S-nPr	C16	Gly	-N(Me)-nPr
C8	Etha	-S-nPr	C17	Etha	-N(Me)-nPr
C9	Car	-S-nPr	C18	Car	-N(Me)-nPr

【0085】 【表27】

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C19	Gly	-O-nPr	C30	Car	-S-nPr
C20	Etha	-O-nPr	C31	Gly	-S-iPr
C21	Car	-O-nPr	C32	Etha	-S-iPr
C22	Gly	-O-iBu	C33	Car	-S-iPr
C23	Etha	-O-iBu	C34	Gly	-S-Et
C24	Car	-O-iBu	C35	Etha	-S-Et
C25	Gly	-O-nBu	C36	Car	-S-Et
C26	Etha	-O-nBu	C37	Gly	-N(Me)-nPr
C27	Car	-O-nBu	C38	Etha	-N(Me)-nPr
C28	Gly	-S-nPr	C39	Car	-N(Me)-nPr
C29	Etha	-S-nPr			

[0086]

No	R ^{1A}	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C40	Gly	-O-iBu	C49	Gly	-S-iPr
C41	Etha	-O-iBu	C50	Etha	-S-iPr
C42	Car	-O-iBu	C51	Car	-S-iPr
C43	Gly	-O-nBu	C54	Gly	-S-Et
C44	Etha	-O-nBu	C55	Etha	-S-Et
C45	Car	-O-nBu	C56	Car	-S-Et
C46	Gly	-S-nPr	C57	Gly	-N(Me)-nPr
C47	Etha	-S-nPr	C58	Etha	-N(Me)-nPr
C48	Car	-S-nPr	C59	Car	-N(Me)-nPr

【0087】 【表29】

No	R ^{1A}	1 AA 5A		_ 10	
	K	-A ^A -B ^A	No	R ^{1A}	-A ^A -B ^A
C60	Etha	-O-nPr	C70	Gly	-S-iPr
C61	Gly	-O-iBu	C71	Etha	-S-iPr
C62	Etha	-O-iBu	C72	Car	-S-iPr
C63	Car	-O-iBu	C73	Gly	-S-Et
C64	Gly	-O-nBu	C74	Etha	-S-Et
C65	Etha	-O-nBu	C75	Car	-S-Et
C66	Car	-O-nBu	C76	Gly	-N(Me)-nPr
C67	Gly	-S-nPr	C77	Etha	-N(Me)-nPr
C68	Etha	-S-nPr	C78	Car	-N(Me)-nPr
C69	Car	-S-nPr		Cal	-14(141c)-IIL1

[0088]

No	R ^{1A}	No	R ^{1A}
D1	NHCH ₂ -(2-Py)	D33	4-H ₂ NOC-pipe
D2	NHPh	D34	NHCH ₂ CO-pyrr
D3	NHCH₂Ph	D35	NHCH ₂ CO-(3-HO-pyrr)
D4	NHCH ₂ -(2-HO-Ph)	D36	NHCH ₂ CO-(3-HO-pipe)
D5	NHCH ₂ -(3-HO-Ph)	D37	NHCH ₂ CO-(4-HO-pipe)
D6	NHCH ₂ -(4-HO-Ph)	D38	NH-(3-Ac-Ph)
D7	NHCH ₂ -(2-H ₂ NOC-Ph)	D39	NH-(3-MeHNOC-Ph)
D8	NHCH ₂ -(3-H ₂ NOC-Ph)	D40	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
D9	NHCH ₂ -(4-H ₂ NOC-Ph)	D41	NH-(3-Ms-Ph)
D10	NH-(2-HO-Ph)	D42	NHCH ₂ CO-mor
D11	NH-(3-HO-Ph)	D43	NHCH ₂ -(6-HO-2-Py)
D12	NH-(4-HO-Ph)	D44	NHCH ₂ -(6-MeO-2-Py)
D13	NH-(2-H ₂ NOC-Ph)	D45	NHCH ₂ -(6-H ₂ NOC-2-Py)
D14	NH-(3-H ₂ NOC-Ph)	D46	NHCH ₂ -(6-cyano-2-Py)
D15	NH-(4-H ₂ NOC-Ph)	D47	NHCH ₂ -(6-Me ₂ NOC-2-Py)
D16	NH-(CH ₂) ₂ OMe	D48	NHCH ₂ -(6-H ₂ N-2-Py)
D17	NH-(CH ₂) ₃ OH	D49	NHCH ₂ -(6-Me ₂ N-2-Py)
D18	N(CH ₂ CH ₂ OH) ₂	D50	NHCH ₂ -(6-F-2-Py)
D19	NHCH ₂ CH(CH ₂ OH)OH	D51	NHCH ₂ -(6-Cl-2-Py)
D20	N(Me)CH ₂ CH ₂ OH	D52	NHCH ₂ -(6-Me-2-Py)
D21	3-НО-ругг	D53	NHCH ₂ -(pyrazol-2-yl)
D22	3-HO-pipe	D54	NHCH ₂ -(pyridazine-2-yl)
D23	4-HO-pipe	D55	NHCH ₂ -(pyrimidine-2-yl)
D24	NHCH ₂ CONHMe	D56	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
_D25	NHCH ₂ CONMe ₂	D57	NHCH(Me)CH ₂ OH
D26	N(Me)CH ₂ CONH ₂	D58	NHCH₂CH(Me)OH
D27	N(Me)CH ₂ CONHMe	D59	NHC(Me) ₂ CH ₂ OH
D28	N(Me)CH ₂ CONMe ₂	D60	NHCH ₂ C(Me) ₂ OH
D29	NH(CH ₂) ₂ CONH ₂	D61	3-oxo-pipa
D30	N(CH ₂ CONH ₂) ₂	D62	NHCH ₂ CO-(3-H ₂ NOC-pipe)
D31	NHCH(CONH ₂)CH ₂ OH	D63	NHCH ₂ CO-(4-H ₂ NOC-pipe)
D32	3-H ₂ NOC-pipe	D64	NHCH(CH ₂ OH) ₂

[0089]

No	R ^{1A}	No	R ^{1A}
_E1	NHCH₂Ph	E20	NHCH ₂ -(6-H ₂ NOC-2-Py)
E2	NHCH ₂ -(2-HO-Ph)	E21	NHCH ₂ -(6-cyano-2-Py)
E3	NHCH ₂ -(2-H ₂ NOC-Ph)	E22	NHCH ₂ -(6-Me ₂ NOC-2-Py)
E4	NHCH ₂ -(3-H ₂ NOC-Ph)	E23	NHCH ₂ -(6-H ₂ N-2-Py)
E5	NHCH ₂ -(4-H ₂ NOC-Ph)	E24	NHCH ₂ -(6-Me ₂ N-2-Py)
E6	N(Me)CH ₂ CH ₂ OH	E25	NHCH ₂ -(6-F-2-Py)
E7	4-HO-pipe	E26	NHCH ₂ -(6-Cl-2-Py)
_E8	N(Me)CH ₂ CONH ₂	E27	NHCH ₂ -(6-Me-2-Py)
E9	N(Me)CH ₂ CONHMe	E28	NHCH ₂ -(pyrazol-2-yl)
E10	N(Me)CH ₂ CONMe ₂	E29	NHCH ₂ -(pyridazine-2-yl)
E11	NHCH(CONH ₂)CH ₂ OH	E30	NHCH ₂ -(pyrimidine-2-yl)
E12	NHCH ₂ CO-(3-HO-pipe)	E31	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
E13	NH-(3-Ac-Ph)	E32	NHCH(Me)CH ₂ OH
E14	NH-(3-MeHNOC-Ph)	E33	NHCH ₂ CH(Me)OH
E15	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)	E34	NHCH ₂ C(Me) ₂ OH
E16	NH-(3-Ms-Ph)	E35	NHCH ₂ CO-(3-H ₂ NOC-pipe)
E17	NHCH ₂ CO-mor	E36	NHCH ₂ CO-(4-H ₂ NOC-pipe)
E18	NHCH ₂ -(6-HO-2-Py)	E37	NHCH(CH ₂ OH) ₂
E19	NHCH ₂ -(6-MeO-2-Py)) = - 4 1/L

[0090]

No	R ^{1A}	No	R ^{1A}
F1	NHCH ₂ -(2-Py)	F33	4-H ₂ NOC-pipe
F2	NHPh	F34	NHCH ₂ CO-pyrr
F3	NHCH ₂ Ph	F35	NHCH ₂ CO-(3-HO-pyrr)
F4	NHCH ₂ -(2-HO-Ph)	F36	NHCH ₂ CO-(3-HO-pipe)
_ F5	NHCH ₂ -(3-HO-Ph)	F37	NHCH ₂ CO-(4-HO-pipe)
F6	NHCH ₂ -(4-HO-Ph)	F38	NH-(3-Ac-Ph)
_ F7_	NHCH ₂ -(2-H ₂ NOC-Ph)	F39	NH-(3-MeHNOC-Ph)
F8	NHCH ₂ -(3-H ₂ NOC-Ph)	F40	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
F9	NHCH ₂ -(4-H ₂ NOC-Ph)	F41	NH-(3-Ms-Ph)
F10	NH-(2-HO-Ph)	F42	NHCH ₂ CO-mor
F11	NH-(3-HO-Ph)	F43	NHCH ₂ -(6-HO-2-Py)
F12	NH-(4-HO-Ph)	F44	NHCH ₂ -(6-MeO-2-Py)
F13	NH-(2-H ₂ NOC-Ph)	F45	NHCH ₂ -(6-H ₂ NOC-2-Py)
F14	NH-(3-H ₂ NOC-Ph)	F46	NHCH ₂ -(6-cyano-2-Py)
F15	NH-(4-H ₂ NOC-Ph)	F47	NHCH ₂ -(6-Me ₂ NOC-2-Py)
F16	NH-(CH ₂) ₂ OMe	F48	NHCH ₂ -(6-H ₂ N-2-Py)
F17	NH-(CH ₂) ₃ OH	F49	NHCH ₂ -(6-Me ₂ N-2-Py)
F18	N(CH ₂ CH ₂ OH) ₂	F50	NHCH ₂ -(6-F-2-Py)
F19	NHCH ₂ CH(CH ₂ OH)OH	F51	NHCH ₂ -(6-Cl-2-Py)
F20	N(Me)CH ₂ CH ₂ OH	F52	NHCH ₂ -(6-Me-2-Py)
F21	3-HO-pyrr	F53	NHCH ₂ -(pyrazol-2-yl)
F22	3-HO-pipe	F54	NHCH ₂ -(pyridazine-2-yl)
F23	4-HO-pipe	F55	NHCH ₂ -(pyrimidine-2-yl)
F24	NHCH₂CONHMe	F56	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
F25	NHCH ₂ CONMe ₂	F57	NHCH(Me)CH ₂ OH
F26	N(Me)CH ₂ CONH ₂	F58	NHCH ₂ CH(Me)OH
F27	N(Me)CH₂CONHMe	F59	NHC(Me) ₂ CH ₂ OH
F28	N(Me)CH ₂ CONMe ₂	F60	NHCH ₂ C(Me) ₂ OH
F29	NH(CH ₂) ₂ CONH ₂	F61	3-охо-ріра
F30	N(CH ₂ CONH ₂) ₂	F62	NHCH ₂ CO-(3-H ₂ NOC-pipe)
F31	NHCH(CONH ₂)CH ₂ OH	F63	NHCH ₂ CO-(4-H ₂ NOC-pipe)
F32	3-H ₂ NOC-pipe	F64	NHCH(CH ₂ OH) ₂

[0091]

No	R ^{1A}	T NIa	-10
G1		No	R ^{1A}
G2	NHCH ₂ -(2-Py) NHPh	G32	NHCH₂CO-pyrr
G3		G33	NHCH ₂ CO-(3-HO-pyrr)
G3 G4	NHCH ₂ Ph	G34	NHCH ₂ CO-(3-HO-pipe)
G5	NHCH ₂ -(2-HO-Ph)	G35	NHCH ₂ CO-(4-HO-pipe)
G6	NHCH ₂ -(3-HO-Ph)	G36	NH-(3-Ac-Ph)
G7	NHCH ₂ -(4-HO-Ph)	G37	NH-(3-MeHNOC-Ph)
G8	NHCH ₂ -(2-H ₂ NOC-Ph)	G38	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
	NHCH ₂ -(3-H ₂ NOC-Ph)	G39	NH-(3-Ms-Ph)
G9	NHCH ₂ -(4-H ₂ NOC-Ph)	G40	NHCH ₂ CO-mor
G10	NH-(2-HO-Ph)	G41	NHCH ₂ -(6-HO-2-Py)
G11	NH-(3-HO-Ph)	G42	NHCH ₂ -(6-MeO-2-Py)
G12	NH-(4-HO-Ph)	G43	NHCH ₂ -(6-H ₂ NOC-2-Py)
G13	NH-(2-H ₂ NOC-Ph)	G44	NHCH ₂ -(6-cyano-2-Py)
G14	NH-(4-H ₂ NOC-Ph)	G45	NHCH ₂ -(6-Me ₂ NOC-2-Py)
G15	NH-(CH ₂) ₂ OMe	G46	NHCH ₂ -(6-H ₂ N-2-Py)
G16	NH-(CH ₂) ₃ OH	G47	NHCH ₂ -(6-Me ₂ N-2-Py)
G17	N(CH ₂ CH ₂ OH) ₂	G48	NHCH ₂ -(6-F-2-Py)
G18	NHCH ₂ CH(CH ₂ OH)OH	G49	NHCH ₂ -(6-Cl-2-Py)
G19	N(Me)CH ₂ CH ₂ OH	G50	NHCH ₂ -(6-Me-2-Py)
G20	3-НО-ругг	G51	NHCH ₂ -(pyrazol-2-yl)
G21	3-HO-pipe	G52	NHCH ₂ -(pyridazine-2-yl)
G22	4-HO-pipe	G53	NHCH ₂ -(pyrimidine-2-yl)
G23	NHCH₂CONHMe	G54	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
G24	NHCH ₂ CONMe ₂	G55	NHCH(Me)CH ₂ OH
G25	N(Me)CH ₂ CONH ₂	G56	NHCH ₂ CH(Me)OH
G26	N(Me)CH ₂ CONHMe	G57	NHC(Me) ₂ CH ₂ OH
G27	N(Me)CH ₂ CONMe ₂	G58	NHCH ₂ C(Me) ₂ OH
G28	N(CH ₂ CONH ₂) ₂	G59	3-oxo-pipa
G29	NHCH(CONH ₂)CH ₂ OH	G60	NHCH ₂ CO-(3-H ₂ NOC-pipe)
G30	3-H ₂ NOC-pipe	G61	NHCH ₂ CO-(4-H ₂ NOC-pipe)
G31	4-H ₂ NOC-pipe	G62	NHCH(CH ₂ OH) ₂

[0092]

No	R ^{1A}	No	R ^{1A}
H1	NHCH ₂ -(2-Py)	H33	4-H ₂ NOC-pipe
H2	NHPh	H34	NHCH ₂ CO-pyrr
H3	NHCH ₂ Ph	H35	NHCH ₂ CO-(3-HO-pyrr)
H4	NHCH ₂ -(2-HO-Ph)	H36	NHCH ₂ CO-(3-HO-pipe)
H5	NHCH ₂ -(3-HO-Ph)	H37	NHCH ₂ CO-(4-HO-pipe)
H6	NHCH ₂ -(4-HO-Ph)	H38	NH-(3-Ac-Ph)
H7	NHCH ₂ -(2-H ₂ NOC-Ph)	H39	NH-(3-MeHNOC-Ph)
H8	NHCH ₂ -(3-H ₂ NOC-Ph)	H40	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
H9	NHCH ₂ -(4-H ₂ NOC-Ph)	H41	NH-(3-Ms-Ph)
H10	NH-(2-HO-Ph)	H42	NHCH ₂ CO-mor
H11	NH-(3-HO-Ph)	H43	NHCH ₂ -(6-HO-2-Py)
H12	NH-(4-HO-Ph)	H44	NHCH ₂ -(6-MeO-2-Py)
H13	NH-(2-H ₂ NOC-Ph)	H45	NHCH ₂ -(6-H ₂ NOC-2-Py)
H14	NH-(3-H ₂ NOC-Ph)	H46	NHCH ₂ -(6-cyano-2-Py)
H15	NH-(4-H ₂ NOC-Ph)	H47	NHCH ₂ -(6-Me ₂ NOC-2-Py)
H16	NH-(CH ₂) ₂ OMe	H48	NHCH ₂ -(6-H ₂ N-2-Py)
H17	NH-(CH ₂) ₃ OH	H49	NHCH ₂ -(6-Me ₂ N-2-Py)
H18	N(CH ₂ CH ₂ OH) ₂	H50	NHCH ₂ -(6-F-2-Py)
H19	NHCH2CH(CH2OH)OH	H51	NHCH ₂ -(6-Cl-2-Py)
H20	N(Me)CH ₂ CH ₂ OH	H52	NHCH ₂ -(6-Me-2-Py)
H21	3-HO-pyrr	H53	NHCH ₂ -(pyrazol-2-yl)
H22	3-HO-pipe	H54	NHCH ₂ -(pyridazine-2-yl)
H23	4-HO-pipe	H55	NHCH ₂ -(pyrimidine-2-yl)
H24	NHCH ₂ CONHMe	H56	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
H25	NHCH ₂ CONMe ₂	H57	NHCH(Me)CH ₂ OH
H26	N(Me)CH ₂ CONH ₂	H58	NHCH ₂ CH(Me)OH
H27	N(Me)CH ₂ CONHMe	H59	NHC(Me) ₂ CH ₂ OH
H28	N(Me)CH ₂ CONMe ₂	H60	NHCH ₂ C(Me) ₂ OH
H29	NH(CH ₂) ₂ CONH ₂	H61	3-oxo-pipa
H30	N(CH ₂ CONH ₂) ₂	H62	NHCH ₂ CO-(3-H ₂ NOC-pipe)
H31	NHCH(CONH ₂)CH ₂ OH	H63	NHCH ₂ CO-(4-H ₂ NOC-pipe)
H32	3-H ₂ NOC-pipe	H64	NHCH(CH ₂ OH) ₂

[0093]

No	R ^{1A}	No	R ^{1A}
11	NHCH ₂ -(2-Py)	133	4-H ₂ NOC-pipe
12	NHPh	134	NHCH ₂ CO-pyrr
13	NHCH ₂ Ph	135	NHCH ₂ CO-(3-HO-pyrr)
14	NHCH ₂ -(2-HO-Ph)	136	NHCH ₂ CO-(3-HO-pipe)
15	NHCH ₂ -(3-HO-Ph)	137	NHCH ₂ CO-(4-HO-pipe)
16	NHCH ₂ -(4-HO-Ph)	138	NH-(3-Ac-Ph)
17	NHCH ₂ -(2-H ₂ NOC-Ph)	139	NH-(3-MeHNOC-Ph)
18	NHCH ₂ -(3-H ₂ NOC-Ph)	140	NHCH ₂ -(4-H ₂ NO ₂ S-Ph)
19	NHCH ₂ -(4-H ₂ NOC-Ph)	141	NH-(3-Ms-Ph)
110	NH-(2-HO-Ph)	142	NHCH ₂ CO-mor
111	NH-(3-HO-Ph)	143	NHCH ₂ -(6-HO-2-Py)
<u> 112</u>	NH-(4-HO-Ph)	144	NHCH ₂ -(6-MeO-2-Py)
113	NH-(2-H ₂ NOC-Ph)	145	NHCH ₂ -(6-H ₂ NOC-2-Py)
114	NH-(3-H ₂ NOC-Ph)	146	NHCH ₂ -(6-cyano-2-Py)
115	NH-(4-H ₂ NOC-Ph)	147	NHCH ₂ -(6-Me ₂ NOC-2-Py)
116	NH-(CH ₂) ₂ OMe	148	NHCH ₂ -(6-H ₂ N-2-Py)
117	NH-(CH ₂) ₃ OH	149	NHCH ₂ -(6-Me ₂ N-2-Py)
118	N(CH ₂ CH ₂ OH) ₂	150	NHCH ₂ -(6-F-2-Py)
119	NHCH2CH(CH2OH)OH	151	NHCH ₂ -(6-CI-2-Py)
120	N(Me)CH ₂ CH ₂ OH	152	NHCH ₂ -(6-Me-2-Py)
121	3-НО-ругг	153	NHCH ₂ -(pyrazol-2-yl)
122	3-HO-pipe	154	NHCH ₂ -(pyridazine-2-yl)
123	4-HO-pipe	155	NHCH ₂ -(pyrimidine-2-yl)
124	NHCH₂CONHMe	156	N(CH ₂ CONH ₂)((CH ₂) ₂ OH)
125	NHCH ₂ CONMe ₂	157	NHCH(Me)CH ₂ OH
126	N(Me)CH ₂ CONH ₂	158	NHCH ₂ CH(Me)OH
127	N(Me)CH ₂ CONHMe	159	NHC(Me) ₂ CH ₂ OH
128	N(Me)CH ₂ CONMe ₂	160	NHCH ₂ C(Me) ₂ OH
129	NH(CH ₂) ₂ CONH ₂	l61	3-oxo-pipa
130	N(CH ₂ CONH ₂) ₂	162	NHCH ₂ CO-(3-H ₂ NOC-pipe)
<u> 131</u>	NHCH(CONH ₂)CH ₂ OH	163	NHCH ₂ CO-(4-H ₂ NOC-pipe)
132	3-H ₂ NOC-pipe	164	NHCH(CH ₂ OH) ₂

【課題】

優れた尿崩症治療剤及び/又は夜間頻尿予防剤の提供。

【解決手段】

一般式(I)で示される新規な4,4-ジフルオロ-1,2,3,4-テトラヒドロ-5H-1-ベンゾア ゼピン誘導体又はその製薬学的に許容される塩。

[式中の記号は、以下の意味を示す。

 R^1 :置換されていてもよいアミノ。 R^2 : CF_3 、若しくはハロゲン。 R^3 :H、若しくはハロゲ ン。a、b:一方が単結合、他方が二重結合。-X-: (1) aが単結合、bが二重結合である 場合、-CH=CH-、-CH=N-、-N=CH-、-N=N-、若しくは-S-。

(2) aが二重結合、bが単結合である場合、-N-。Y: (1) aが単結合、bが二重結合であ る場合、CH、若しくはN。(2) aが二重結合、bが単結合である場合、S。-A-:-O-、-S-、-NH-、若しくは-N(低級アルキル)-。B: それぞれ置換されていてもよい低級アルキル、 低級アルケニル、低級アルキニル、シクロアルキル、若しくはアリール。]

【選択図】なし

特願2003-401126

出願人履歴情報

識別番号

[000006677]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

東京都中央区日本橋本町2丁目3番11号

氏 名 山之内製薬株式会社