Ramakrishna Mission Vivekananda Educational and Research Institute

PO Belur Math, Howrah, West Bengal 711 202 School of Mathematical Sciences Department of Computer Science

MSc Big Data Analytics and MSc Computer Science: Batch 2023-25 DA109: Linear Algebra and Matrix Computation Instructor: Dr. Soumitra Samanta TA: Rajdeep Mondal

Problem set: 4

Please try to solve all the problems 1 alone. If you are stuck, I encourage you first consult with your batch mates and then TA. If you still need help then come to Instructor.

Notations:

• : scalar multiplication

• Tr(A): Trace of a matrix A

• $\mathcal{R}(\mathbf{A})$: row-space of a matrix \mathbf{A}

• $C(\mathbf{A})$: column-space of a matrix \mathbf{A}

• $\mathcal{N}(\mathbf{A})$: null-space of a matrix \mathbf{A}

• $\rho(\mathbf{A})$: Rank of a matrix \mathbf{A}

• *q-inverse*: Generalised inverse

• A^- : *q-inverse* of a matrix A

- 1. Prove that Postmultiplication of the permutation $(j_1, j_2,, j_n)$ by [k, l] interchanges j_k and j_l while premultiplication interchanges k and l wherever they may occur in the permutation.
- 2. Suppose B is obtained from a A by interchanging two rows or two columns then using the definition of determinant prove that $|\mathbf{A}| = -|\mathbf{B}|$.
- 3. Show that:

a.
$$|\mathbf{E}_{ij}| = -1$$

b.
$$|\mathbf{E}_i(\alpha)| = \alpha$$

a.
$$|\mathbf{E}_{ij}| = -1$$
 b. $|\mathbf{E}_{i}(\alpha)| = \alpha$ c. $|\mathbf{E}_{ij}(\beta)| = 1$

4. Prove that

$$\begin{vmatrix} 1 + a_1 & a_2 & \dots & a_n \\ a_1 & 1 + a_2 & \dots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & 1 + a_n \end{vmatrix} = 1 + a_1 + a_2 + \dots + a_n$$

5. If **A** is the real $n \times n$ matrix where $a_{ij} = \rho^{|i-j|}$, show that $|\mathbf{A}| = (1 - \rho^2)^{n-1}$.

¹All the problems have been selected by the TA from the Rao & Bhimasankaram book [1].

6. Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two distinct points in \mathbb{R}^2 . Show that the equation of the line passing through P and Q is

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix}$$

by showing that this equation represents a line, i.e., the coefficients of x and y are not both zero, and that it contains P and Q.

- 7. If **A** is a $n \times n$ matrix such that $a_{ij} = i + j 2$ for all i and j. Show that $|\mathbf{A}| = 0$ whenever $n \ge 4$.
- 8. Suppose \mathbf{A}_n be the following $n \times n$ tridiagonal matrix

$$\begin{pmatrix} a & b & 0 & \dots & 0 & 0 \\ c & a & b & \dots & 0 & 0 \\ 0 & c & a & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a & b \\ 0 & 0 & 0 & \dots & c & a \end{pmatrix}$$

Show that $|\mathbf{A}_n| = a|\mathbf{A}_{n-1}| - bc|\mathbf{A}_{n-2}|$ for $n \geq 3$.

9. Without expanding the determinant prove that

$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & xz & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$

10. Show that

(a)
$$\begin{vmatrix} b & c & 0 \\ a & 0 & c \\ 0 & a & b \end{vmatrix} = -2abc$$

(b) Using the result in (a) show that

$$\begin{vmatrix} b^{2} + c^{2} & ab & ac \\ ab & a^{2} + c^{2} & bc \\ ac & bc & a^{2} + b^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}$$

11. Prove that

$$\begin{vmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{vmatrix} = (a^2 + b^2 + c^2 + d^2)^2$$

12. Solve the following system using Cramer's rule:

$$2x_1 - x_2 + x_3 = -3$$

$$x_1 + x_2 - 3x_3 = 17$$

$$5x_1 - 2x_2 - 4x_3 = 20$$

- 13. Show that the intersection of the two distinct planes $a_1x + b_1y + c_1z = 0$ and $a_2x + b_2y + c_2z = 0$ in \mathbb{R}^3 is $\frac{x}{b_1c_2 b_2c_1} = \frac{y}{c_1a_2 c_2a_1} = \frac{z}{a_1b_2 a_2b_1}$
- 14. Let \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} be $m \times m$ matrices such that \mathbf{A} is non-singular and \mathbf{A} commutes with \mathbf{C} . Then show that

$$\begin{vmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{vmatrix} = \mathbf{A}\mathbf{D} - \mathbf{C}\mathbf{B}$$

15. Suppose
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}$$

- (a) Determine all the eigenvalues of **A**.
- (b) For each eigenvalue λ of **A**, find the set of eigenvectors corresponding to λ .
- (c) Find a basis for \mathbb{R}^3 consisting of eigenvectors of **A**.
- (d) Determine an invertible matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{D}$.
- 16. Let T be a linear operator on a finite-dimensional vector space \mathbf{V} , and let β be an ordered basis for \mathbf{V} . Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of $[T]_{\beta}$.
- 17. (a) Prove that a linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of T.
 - (b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .
- 18. Let T be a linear operator on a vector space \mathbf{V} over the field \mathbb{F} , and let g(t) be a polynomial with coeicients from \mathbb{F} . Prove that if x is an eigenvector of T with corresponding eigenvalue λ , then x is an eigenvector of g(T) with corresponding eigenvalue $g(\lambda)$.
- 19. For each of the following matrices $\mathbf{A} \in M_{n \times n}(\mathbb{R})$, test \mathbf{A} for diagonalizability, and if \mathbf{A} is diagonalizable, find an invertible matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{D}$:

a.
$$\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$
 b. $\begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$

20. Find a rank-factorization of the matrix

$$\begin{pmatrix}
2 & 4 & 2 & 4 & 4 \\
1 & 2 & 1 & 2 & 2 \\
3 & 0 & 3 & 3 & 0 \\
0 & -4 & 0 & -2 & -4 \\
5 & 2 & 5 & 6 & 2
\end{pmatrix}$$

and hence find the characteristics roots.

- 21. Let **A** be a 2×2 matrix. Then show that $|\mathbf{I} + \mathbf{A}| = 1 + |\mathbf{A}|$ iff $tr(\mathbf{A}) = 0$.
- 22. For any eigenvalue α of \mathbf{A} , the algebraic multiplicity of α with respect to \mathbf{A} is not less than the geometric multiplicity of α with respect to \mathbf{A} .
- 23. If **A** is an $n \times n$ singular matrix with k distinct eigenvalues, show that $k-1 \le \rho(\mathbf{A}) \le n-1$. Also show by construction that $\rho(\mathbf{A})$ can take any value between k-1 and n-1.
- 24. Consider the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$. Using characteristics polynomial find A^7 .
- 25. Prove that for any two $n \times n$ matrices **A** and **B** the characteristic polynomials of **AB** and **BA** are the same.
- 26. Prove that the minimal polynomial of a matrix always divides it's characteristics polynomial.
- 27. Suppose

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

Using Cayley-Hamilton theorem, find the inverse of the matrix **B**.

28. When the minimal polynomial coincides with the characteristic polynomial for a matrix? Show that for the following companion matrix this holds:

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-1} \end{pmatrix}$$

- 29. Find the minimal polynomial of the following $n \times n$ matrices:
 - (a) $\alpha \mathbf{A}$, where the minimal polynomial of \mathbf{A} is f(x).
 - (b) $\mathbf{J} = \mathbf{1}\mathbf{1}^T$, where **1** is the $n \times 1$ matrix of ones.
- 30. Show that the vector space \mathbf{V} of all real-valued continuous functions on an interval [a,b] forms a inner product space where the inner product is defined as

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx.$$

- 31. Show that $\langle \mathbf{A}, \mathbf{B} \rangle = tr(\mathbf{B}^* \mathbf{A})$ is an inner product on $\mathbb{C}^{m \times n}$.
- 32. Let V be an inner product space over \mathbb{F} . Prove the polar identities For all $x, y \in V$

 - $\begin{array}{ll} \text{(a)} & < x,y> = \frac{1}{4}||x+y||^2 \frac{1}{4}||x-y||^2 & \text{ if } \mathbb{F} = \mathbb{R}. \\ \text{(b)} & < x,y> = \frac{1}{4}\sum_{k=1}^4 i^k||x+i^ky||^2 & \text{ if } \mathbb{F} = \mathbb{C} \text{ where } i^2 = -1 \end{array}$
- 33. Show that $\langle x, y \rangle = 0$ for all y iff x = 0.
- 34. Let $\mathbf{x}_1, \mathbf{x}_2,, \mathbf{x}_n$ form an orthonormal set.
 - (a) Show that $||\sum_{i=1}^k \alpha_i \mathbf{x}_i||^2 = \sum_{i=1}^k |\alpha_i|^2$.
 - (b) Prove that $||\mathbf{x}||^2 \ge \sum_{i=1}^k |<\mathbf{x}, \mathbf{x}_i>|^2$.
- 35. Let $\mathbf{x}_1 = (1, 1, 1, 1), \mathbf{x}_2 = (0, 1, 1, 1), \mathbf{x}_3 = (0, 0, 1, 1) \text{ and } \mathbf{x}_4 = (0, 0, 0, 1) \text{ in } \mathbb{R}^4$. Starting from $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ obtain an orthonormal basis of \mathbb{R}^4 . If you use $\{\mathbf{x}_4, \mathbf{x}_3, \mathbf{x}_2, \mathbf{x}_1\}$ what is the orthonormal basis obtained?
- 36. Find an orthonormal basis of the subspace of \mathbb{R}^4 spanned by (2,-1,0,1), (6,1,4,-5) and (4,1,3,-4).
- 37. Consider the inner product $\langle x, y \rangle = y^T A x$ on \mathbb{R}^3 where

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$

Find an orthonormal basis B of $S:=\{(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3): \mathbf{x}_1+\mathbf{x}_2+\mathbf{x}_3=0\}$ and then extend it to an orthonormal basis C of \mathbb{R}^3 .

- 38. Consider the subspace $S = \{(\xi_1, \xi_2, \xi_3, \xi_4) : \xi_1 = \xi_2 = \xi_3\}$ and $T = \{(\xi_1, \xi_2, \xi_3, \xi_4) : \xi_1 = \xi_2 \text{ and } \xi_4 = 0\}$ of \mathbb{R}^4 . Find S + T, $S^{\perp} + T^{\perp}$ and verify that $(S + T)^{\perp} = S^{\perp} \cap T^{\perp}$.
- 39. Let **A** be an $n \times n$ matrix that is similar to an upper triangular matrix and has the distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$ with corresponding multiplicities $m_1, m_2, ..., m_k$. Prove the following statements:
 - (a) $tr(\mathbf{A}) = \sum_{i=1}^{k} m_i \lambda_i$
 - (b) $|\mathbf{A}| = \lambda_1^{m_1} \lambda_2^{m_2} \lambda_k^{m_k}$
- 40. (a) Using the standard ordered basis of $\mathbf{P}_2(\mathbb{R})$ find a orthonormal basis of it w.r.t the inner product defined as:

$$< f(x), g(x) > = \int_{-1}^{1} f(x)g(x) dx$$
 for all $f(x), g(x) \in \mathbf{V}$

- (b) Let $\mathbf{V} = \mathbf{P}_3(\mathbb{R})$ with the inner product defined above. Find the orthogonal projection of $f(x) = x^3$ on $\mathbf{P}_2(\mathbb{R})$.
- 41. Reduce each of the following to a matrix in reduced echelon form by elementary row operations and find the rank, a row basis, a column basis and a rank-factorization.

(a)
$$\begin{pmatrix} 2 & 1 & 0 & 0 & 1 \\ 3 & 0 & 3 & 0 & 2 \\ 5 & 7 & -9 & 2 & 5 \end{pmatrix}$$
(b)
$$\begin{pmatrix} 3 & 1 & 2 & 4 \\ 9 & 3 & 6 & 12 \\ 2 & 0 & 0 & 2 \\ 5 & 1 & 2 & 6 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 3 & 1 & 2 & 4 \\ 9 & 3 & 6 & 12 \\ 2 & 0 & 0 & 2 \\ 5 & 1 & 2 & 6 \end{pmatrix}$$

References

[1] A. Ramachandra Rao and P Bhimasankaram. Linear Algebra. Hindustan Book Agency, 2nd edition,