

BLM3061 Mikroişlemci Sistemleri ve Assembly Dili LAB LAB 8 ADC/DAC Kullanımı

Uygulama

Aşağıdaki devre bileşenlerini kullanarak istenilenleri karşılayacak devreyi tasarlayıp Proteus benzetim ortamında çalıştırınız.

- 1. **Kare dalga üretimi:** DAC yardımıyla 20 Hz frekansında (0V-5V arası) kare dalga üretilecektir. İstenilen frekansı tutturmak için yeterli beklemeyi sağlayan bir DELAY alt prosedürü tanımlayınız.
- 2. **Testere dişi dalga üretimi:** DAC yardımıyla 40 Hz frekansında testere dişi dalga üretilecektir. Bu dalga için DAC'a artan ve azalan değerler gönderilerek dalga formu oluşturulacaktır. İstenilen frekansı sağlamak için uygun bir DELAY prosedürü kullanılacaktır.

Bileşenler:

- 1. 8086 Mikroişlemci
- 2. 74273 Sekizli D Tipi Flip-Flop (3 adet)
- 3. 74LS138 Demultiplexer
- 4. DAC0830 Dijitalden Analoga Çevirici
- 5. OP1P Opamp
- 6. Osiloskop

İstenenler:

Proteus devresini tasarlayın:

- DAC0830, 8086 mikroişlemci ile bağlanacaktır. DAC0830'un çıkışı bir osiloskopa bağlanarak dalga formları gözlemlenecektir.
- Kare ve testere dişi dalga üretimi için ayrı devreler tasarlanacaktır.

Dalga formlarını üretin:

- Kare dalga için DAC'a sırasıyla 0x00 ve 0xFF değerleri gönderilerek dalga formu oluşturulacaktır.(30 puan)
- Testere dişi dalga için DAC'a artan (0x00'dan 0xFF'e) ve azalan (0xFF'ten 0x00'a) değerler gönderilerek dalga formu oluşturulacaktır. (30puan)

Osiloskop ekranında dalga formlarını gözlemleyin:

- Osiloskop ayarları doğru yapılmalıdır. Dalga hareket ediyorsa, tetikleme modu Normal olarak ayarlanmalıdır. Trigger Level değeri dalganın ortalama seviyesine ayarlanarak sabitlenmelidir.
- Yatay eksende bir tam çevrim süresini belirlemek için dalganın başlangıç ve bitiş noktaları arasında kaç kare olduğunu sayınız.
- Çevrim süresini hesaplayınız: $T = Kare Sayısı \times Time/Div$. Ardından frekansı bulunuz: f = 1 / T.
- Genlik için, dalganın maksimum ve minimum noktaları arasındaki kare farkını dikey eksende ölçünüz. Genliği hesaplayınız: V = Kare Sayısı × Volt/Div.
- Not: Bu ölçümlerin doğruluğunu sağlamak için osiloskop ayarlarınızı kontrol ediniz.

Teorik-pratik karşılaştırma yapın(20 puan(Kare)+20 puan(Testere))

- Frekans ve genlik ölçümleri teorik değerlerle karşılaştırılarak hata oranı hesaplanacaktır.
- Hata formülü:
 - Hata (%) = |Teorik Değer Ölçülen Değer| / Teorik Değer × 100.
- Örnek: Teorik frekans 20 Hz ve ölçülen frekans 19.5 Hz ise, hata oranı: Hata (%) = $|20 19.5| / 20 \times 100 = 2.5\%$.

Hatırlatma:

- 1. Osiloskop ayarları doğru yapılmalıdır. Dalga hareket ediyorsa, tetikleme modu **Normal** olarak ayarlanmalıdır. Trigger Level değeri dalganın ortalama seviyesine ayarlanarak sabitlenmelidir.
- 2. Her iki dalga formu için ayrı devreler tasarlanmalıdır.
- 3. Frekans ve genlik hesaplamaları için:
 - Frekans: Bir tam dalga çevriminin yatay eksendeki kare sayısı Time/Div değeriyle çarpılarak çevrim süresi hesaplanır. Formül: T = Kare Sayısı × Time/Div. Ardından f = 1 / T formülü ile frekans hesaplanır.
 - Genlik: Dalganın dikey eksende tepe ve dip noktaları arasındaki fark hesaplanarak V = Kare Sayısı × Volt/Div formülüyle genlik bulunur.
- 4. Proteus'ta DAC ve osiloskop bağlantılarının doğru yapıldığından emin olunuz.

Deneyin bazı bağlantıları eksik devre yapısı aşağıdaki görselde görülebilir:

Teslim Edilecek Dosyalar

1. Video Kaydı:

o **4 dakikayı geçmeyen bir video** hazırlanmalıdır. Bu videoda, istenilen soruların cevapları ve yazılan kodun açıklaması detaylı bir şekilde anlatılmalıdır.

2. Proteus Projesi:

- Proteus simülasyon ortamında çalışan devre ve kodun yer aldığı bir proje dosyası hazırlanmalıdır.
- o Dosya ismi şu formatta olmalıdır: OgrenciNo_IsimSoyisim.pdsprj
- o Dosyada:
 - Devrenin Proteus'ta çalışan halleri,
 - Mikroişlemciye bağlı kod ve devrenin tam bağlantıları bulunmalıdır.
 - Frekans ve genlik hesaplamalarını ve hata oranını içeren rapor.

3. Zip Dosyası:

- o Tüm dosyalar **zip formatında bir arşiv** haline getirilmelidir.
- O Zip dosyasının ismi şu formatta olmalıdır: OgrenciNo_İsimSoyisim.zip
- Zip dosyası şu dosyaları içermelidir:
 - Video kaydı
 - Proteus projesi dosyaları (.pdsprj)
 - Frekans ve genlik hesaplamalarını ve hata oranını içeren bir rapor.

4. Soru ve İletişim:

- Odevle alakalı sorularınızı aşağıdaki mail adresine ya da classroom üzerinden ödev paylaşımı altına yazabilirsiniz:
 - **E-posta:** imran.gul@yildiz.edu.tr