DESIGN PHASE II REQUIREMENTS

(Functional & Non-Functional)

Project Title: SmartFarmer - IoT Enabled Smart Farming Application

Team Id: PNT2022MID32489

Functional Requirements of the Proposed System

FR	Functional Requirements (EPIC)	Sub Requirements
NO		
1	User Registeration	Email: Enter the Email
		Password: Enter the Password
2	Confirmation	Confirmation via Email
3	Log in to System	Serve Authenticated Content
4	Modules	User Permission
		Admin Module
		Roles of User
5	Condition Checking	Temperature Monitor
		Humidity Monitor
		Soil Moisture Monitor
		Motor Monitor
		Get Alert via Mobile
6	Logout	Exit

Non-Functional Requirements of Proposed System

NFR	Non-Functional Requirements	Description
NO		
1	Scalability	This means that IoT applications must
		have the ability to support an increasing
		number of connected devices, users,
		application features, and analytics

		capabilities, without any degradation in the
		quality of service.
	D.11.1.11/	
2	Reliability	Reliability is defined as the probability that
		a product, system, or service will perform
		its intended function adequately for a
		specified period of time, or will operate in
		a defined environment without failure.
3	Usability	Usability includes easy understanding and
		learn ability, efficiency in use, remember
		ability, lack of errors in operation and
		subjective pleasure.
4	Efficiency	IoT can also increase productivity making
		farms more efficient. With the help of
		sensors, farmers can reduce water usage,
		energy consumption, and monitoring the
		humidity.
5	Performance	The idea of implementing integrated
		sensors with sensing soil and
		environmental parameters in farming will
		be more efficient.
6	Security	Sensitive and private data must be
		protected from their production until the
		decision-making and storage stages.