Blatt 06, Aufgabe 2: TIRM

Michael Kopp

Gegeben ist ein Datensatz I(t) und der Zusammenhang

$$I(z) = I_0 \exp(-\beta z) \Leftrightarrow z(I) - z_0 = -\frac{1}{\beta} \ln I \tag{1}$$

mit $z_0 = \ln I_0/\beta$, sodass man aus dem Datensatz z(t) = z(I(t)) gewinnen kann.

Um daraus eine Verteilungswahrscheinlichkeit $P(z-z_0)$ zu generieren, bildet man ein Histogramm mit allen so erhaltenen z-Werten. Dies ist in Abb. 1(a) dargestellt.

Um daraus das Potential $\phi = \phi(z)$ zu bestimmen, verwendet man

$$P(z - z_0) = P_0 \exp\left(-\frac{\phi(z - z_0)}{kT}\right) \Leftrightarrow \frac{\phi(z - z_0) - \varphi_0}{kT} = -\ln P(z - z_0) \quad (2)$$

mit $\varphi_0 = kT \ln P_0$, was in Abb. 1(b) dargestellt ist.

Offenbar stimmt dieses Potential¹ hervorranged mit dem von Doppellagenkräften ($\phi_1 \propto \exp(-z)$), überlagert durch die Schwerkraft ($\phi_2 \propto z$) überein – siehe die Fits in 1(b).

(a) Histogramm für $z - z_0$; 100 Bins.

(b) Potential ϕ aus Histogramm.

Abbildung 1: Auswertung der gegebenben Daten I(t).

¹besonders, wenn man nur Werte $z - z_0 < 0.3$ beachtet