Vaja 15 Težno nihalo

Jure Kos

8.1.2022

Uvod

Nihajni čas matematičnega nihala (točkastega telesa na breztežni nitki), ki niha nedušeno in z majhno amplitudo, je:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Pri tej vaji želimo izračunati gravitacijski pospešek Zemlje. Pri tem uporabimo popravke, ki nam zgornjo formulo naredijo natančnejšo. Tako dobimo natančnejšo formulo za g:

$$g = l_0(\frac{2\pi}{T}) \cdot \left[1 + \frac{1}{2} \sin^2 \frac{\alpha}{2} + \frac{2}{5} \left(\frac{r}{l_0}\right)^2 - 1/6 \frac{m_z}{m_k} + (1+k) \frac{\rho_{z_r}}{\rho_{F_e}} + \left(\frac{\Lambda}{2\pi}\right)^2 \right]$$

Potrebščine

- 1. Nihalo, obešeno na strop,
- 2. merilo z zrcalcem, pritrjenim na zidu,
- 3. vrvica,
- 4. štoparica,
- 5. kljunasto merilo,
- 6. vžigalnik.

Meritve

št. nihajev	t_01	t_02	t_03
5	00:14,2	00:11,8	00:14,9
10	00:28,9	00:26,8	00:29,7
15	00:44,6	00:41,6	00:44,6
20	00:59,4	00:56,5	00:59,4
25	01:14,1	01:11,3	01:14,4
30	01:29,2	01:26,3	01:29,3
35	01:44,1	01:42,1	01:44,1
40	01:59,0	01:55,9	01:59,0
45	02:13,9	02:10,9	02:13,8
50	02:28,7	02:25,8	02:28,8
55	02:43,7	02:40,6	02:43,7
60	02:58,6	02:55,5	02:58,6
65	03:13,5	03:10,4	03:13,3
70	03:28,3	03:25,3	03:28,2
75	03:43,1	03:40,1	03:43,1
80	03:58,0	03:55,0	03:58,0
85	04:13,1	04:10,0	04:13,0
90	04:27,8	04:24,8	04:27,8
95	04:42,5	04:39,7	04:42,5
100	04:57,7	04:54,6	04:57,5
105	05:12,5	05:09,4	05:13,1
110	05:27,4	05:24,3	05:27,2
115	05:42,3	05:39,2	05:42,1
120	05:57,2	05:54,1	05:57,0
125	06:12,1	06:08,9	06:11,9
130	06:26,7	06:23,8	06:26,7
135	06:41,9	06:38,7	06:41,7
140	06:54,6	06:53,6	06:56,5
145	07:11,6	07:08,5	07:11,4
150	07:26,4	07:23,3	07:26,3

Slika 1: Meritve nihajnih časov

l=210 cm
$$\pm$$
 0,1 cm
a=4,3 cm \pm 0.05 cm
h = 5,3 mm \pm 0,01 mm
 r_z =0,75 mm (1 \pm 0,013)
r = $\frac{-h^2 - \frac{a^2}{3}}{-2h}$ = 6,07 cm (1 \pm 0,015)
 x_0 = 20 cm
 x_{150} = 14,6 cm

Izračuni

Izračun povprečnega nihajnega časa:

Najprej smo izračunali čase 5 nihajev za vsako vrstico meritev. To smo naredili tako, da smo odšteli čas v absolutnih enotah in s tem dobili časovno razliko. Tako smo naredili povprečje vseh meritev, ki je prišlo $\overline{t_{5_1}}=14,8675s$ za prvo meritev in tako dobili povprečen nihajni čas enega nihaja prve meritve kot $\overline{t_1}=2,9735$ s $(1\pm0,00274)$. Seveda to ponovimo za vse 3 meritve in s tem lahko rezultate zapišemo v tabeli kot

Meritev	1	2	3
Nihajni čas [s]	2,9735	2.9414	2.9817
Napaka [%]	$0,\!269$	0.2719	0.2683

Tabela 1: Meritve nihajnih časov

Iz vseh treh meritev lahko izračunamo povprečen čas $\overline{t},$ s katerim izračunamo pospešek kot

$$\bar{t} = \frac{t_1 + t_2 + t_3}{3} = 2.9655s(1 \pm 0.00155)$$

Za uporabo zgoraj napisane formule potrebujemo izračunati še neznane količine.

Logaritemski dekrement izračunamo po formuli $\Lambda=ln(\frac{x_n}{x_{n+1}})$, kjer je $x_n=x_0e^{-\beta nT}$ amplituda n-tega nihaja. Izrazimo lahko β kot

$$\beta = -\frac{\ln(\frac{x_n}{x_0})}{nT}$$

[n=150] x_n in x_0 poznamo

$$\beta = 5,021 \cdot 10^{-4} \cdot (1 \pm 0,03)$$

Izračunamo dalje

$$\Lambda = \ln \frac{x_0 e^{-\beta nT}}{x_0 e^{-\beta (n+1)T}} = T\beta = 1.488 \cdot 10^{-3} (1 \pm 0,039)$$

Izračunajmo še odklon nihala. Tega dobimo kot

$$sin\alpha = \frac{x_0}{l} \longrightarrow \alpha = arcsin(\frac{x_0}{l}) = 5,46^{\circ}$$

Za izračun potrebujemo le še masi krogle in žice

$$m_k = \frac{4\pi r^3}{3} \rho_{F_e} = 7,3kg(1\pm0,03)$$

$$m_z = \pi r_z^2 l_0 \rho_{jeklo} = 0,0308 kg (1 \pm 0,026)$$

Izračun gravitacijskega pospeška

Zdaj lahko vstavimo vse številke v formulo za gravitacijski pospešek in dobimo

$$g = 9,80624 \frac{m}{s^2}$$

Po izračunu napake dobimo

$$\Delta g = 2, 3 \cdot 10^{-3} \frac{m}{s^2}$$

Dobimo končno vrednost:

$$g = 9,80624 \frac{m}{s^2} \pm 2, 3 \cdot 10^{-3} \frac{m}{s^2} = 9,80624 \frac{m}{s^2} (1 \pm 0,000235)$$

 ${\bf Z}{\bf a}$ primerjavo lahko izračunamo pospešek z uporabo formule za matematično nihalo

$$g = l_0(\frac{2\pi}{T}) = 9,856(1 \pm 0,0059)\frac{m}{s^2}$$