

Московский институт электроники и математики им. А.Н. Тихонова

# Статистические свойства случайных блужданий с объемным и поверхностным подкреплением

Лобашев Александр Алексеевич, МИЭМ НИУ ВШЭ

Научный руководитель: Тамм Михаил Владимирович

Москва, 2020



#### Исследуемая модель в общем виде



- Непосещенная область
- О Граница посещенной области
- О Посещенная область

Имеется граф G=(V,E), по которому перемещается агент.

- Агент находится в вершине Current.
- Агент смотрит на все вершины графа, соседние с вершиной Current
- Соседние вершины могут быть трех типов:
  - 1. Вершины, в которых агент уже был (volume)
  - 2. Вершины, граничащие с вершинами, где агент уже был (surface)
  - 3. Остальные вершины (bulk)



#### Случайное блуждание с объемным и поверхностным подкреплением

Московский институт электроники и математики им. А.Н. Тихонова



В данной работе исследуется блуждание по 3-мерной кубической решетке.





# Пример траектории: клубок





# Пример траектории: глобула





#### Цели исследования

- Выяснить количество различных типов траекторий.
- Построить фазовую диаграммы модели в координатах (a, b)
  - а коэффициент объемного подкрепления
  - b коэффициент поверхностного подкрепления
  - и найти границы раздела фаз.
- Найти макроскопические характеристики, остающиеся инвариантными внутри одной фазы.

6



#### Результаты полученные традиционным методом



- Эскиз фазовой диаграммы модели в координатах (a, b)
  - а коэффициент объемного подкрепления
  - b коэффициент поверхностного подкрепления

#### Классический подход

Model parameters (a, b)

 $\stackrel{Model}{\longrightarrow}$ 

Microstate

 $\xrightarrow{?}$ 

Energy of microstate  $E_c(a, b)$ 

Используемый в исследовании подход

Model parameters (a, b)

 $\xrightarrow{Model}$ 

Microstate

Neural network

Estimation of model parameters  $(\hat{a}, \hat{b})$ 

Обучение нейронной сети неявно заменяет вычисление статсуммы:

$$(\hat{a}, \hat{b})^T = \frac{\sum_{(a,b)} (a,b)^T e^{-\beta E_{(a,b)}^{-1}(C)}}{\sum_C e^{-\beta E_{(a,b)}^{-1}(C)}}$$



Реализация траектории при заданных параметрах









#### В Визуализация найденных кластеров



















#### В Визуализация найденных кластеров



# Визуализация найденных кластеров















# Визуализация найденных кластеров



#### В Визуализация найденных кластеров



#### Визуализация найденных кластеров













#### Поиск макроскопических характеристик траектории

Московский институт электроники и математики им. А.Н. Тихонова

Подходящими кандидатами для величин, характеризующих фазу в целом, оказались

- радиус инерции траектории / среднеквадратичное расстояние между точками траектории
- отношение объема траектории к объему границы

Попробуем предсказать параметры модели используя только эти два числа.

# 🕟 Поиск макроскопических характеристик траектории



# 🕟 Поиск макроскопических характеристик траектории



# 🕟 Поиск макроскопических характеристик траектории





#### **В** Сравнение фазовых диаграмм

#### Используется изображение траектории



#### Используется радиус инерции и фрактальная размерность





В работе были найдены две новые фазы, ранее не упоминавшиеся в литературе, и было показано, что все найденные фазы можно различить по двум параметрам: радиусу инерции и фрактальной размерности траектории.

Подробное описание используемых архитектур моделей, программ симуляции и визуализации, а также исходные коды можно найти по ссылке

https://github.com/akrisroof/reinforced random walk



НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ