Nonlinear dynamics and chaos

Siddharth Bhat

Contents

1	Use	Useful links			
2	1D flows				
	2.1	Logist	t <mark>ic eqn</mark>	7	
		_	of bifurcations		
	2.3		on circle	-	
			Uniform oscillator		
		_	Nonuniform oscillator		
			Overdamped pendulum		
			Fireflies		
	2.4		near flows		
	2.5		onlinear flows		
				8	
		2.5.2	Rabbit and Sheep		
		2.5.3	Reversible systems		
		2.5.4	Pendulum		
		•	Index theory	8	

4 CONTENTS

Chapter 1

Useful links

- Course taught at Cornell is MAE5790. Video lectures available on YouTube.
- Textbook: nonlinear dyanmics and chaos
- MIT course number: 18.385J / 2.036J Contains problem sets and some lecture notes which prove theorems.

Chapter 2

1D flows

2.1 Logistic eqn

$$\dot{N} = rN(1 - \frac{N}{K})$$

2.2 Types of bifurcations

- Saddle node bifurcation/ Blue-sky: Fixed points appear. $\dot{X} = r + X^2$
- \bullet Transcritical bifurcation: Fixed points switch stability. $\dot{X}=RX-X^2$
- Pitchfork bifurcation: Appear in problems that have a symmetry.
 - Supercritical Pitchfork bifurcation: $\dot{x} = rx x^3$. Cubic term is stabilizing, pulls system back towards x = 0.
 - Subcritical Pitchfork bifurcation: $\dot{x} = rx + x^3$. We will have a blow up since x^3 pushes.
 - Subcritical Pitchfork bifurcation with stability: $\dot{x} = rx + x^3 x^5$. (Solve 3.4.14, 3.4.15)
- Imperfect bifurcation, catastrophe

- 2.3 Flows on circle
- 2.3.1 Uniform oscillator
- 2.3.2 Nonuniform oscillator
- 2.3.3 Overdamped pendulum
- 2.3.4 Fireflies
- 2.4 2D Linear flows
- 2.5 2D Nonlinear flows
- 2.5.1 Conservative systems
- 2.5.2 Rabbit and Sheep
- 2.5.3 Reversible systems
- 2.5.4 Pendulum
- 2.5.5 Index theory

TODO: has links to alternate homology theories (Morse homology and singular homolory. Read Morse homology sometime).