Machine Learning to Predict Loan Defaults

•••

December 4th, 2021

Dakshin Kannaan, Siddharth Iyer, Santino Luppino, Zheng Li, Dimitri Niles

Overview

- Objective: Develop machine learning methods to forecast loan defaults for risk optimization problems
- This is a classification problem
- Models:
 - Clustering
 - Random Forest
 - Support Vector Machine
 - Neural Network
 - Logistic Classification

Exploratory Data Analysis

- Reduced predictors from 122 to 15
 - Then using PCA reduced further
- Many columns seemed irrelevant
 - SK_ID_CURR held the IDs of each loan
 - FLAG_DOCUMENT columns
 - FLAG_MOBIL or FLAG_EMAIL

Very unbalanced dataset...model will try to classify everything as Non-default

TARGET	NAME	_CONTR CODE_	_GENDEFFLAG_C	WN_C, F	LAG_OWN_R CNT_	CHILDREI AMT	INCOME	AMT_CREDIT A	AMT_ANNUIT\ NAN	ME_TYPE_S NAME	_INCOM NAM	E_EDUCA NAMI	E_FAMIL) NAME	_HOUSII RI	EGION_POPL	AGE
	1	0	1	0	1	0	202500	406597.5	24700.5	6	7	4	3	1	0.018801	25.920548
	0	0	0	0	0	0	270000	1293502.5	35698.5	1	4	1	1	1	0.003541	45.9315069
	0	1	1	1	1	0	67500	135000	6750	6	7	4	3	1	0.010032	52.1808219
	0	0	0	0	1	0	135000	312682.5	29686.5	6	7	4	0	1	0.008019	52.0684932
	0	0	1	0	1	0	121500	513000	21865.5	6	7	4	3	1	0.028663	54.6082192
	0	0	1	0	1	0	99000	490495.5	27517.5	5	4	4	1	1	0.035792	46.4136986

Age Distribution

Income Distribution

Are women better? Yes

Men are more likely to default

Male Default Rate: 0.10166590161426058

Female Default Rate: 0.07004736280903613

ANNUITY PAYMENT/AVAILABLE CREDIT:

Male: 0.052568245751685505

Female: 0.05599976395069611

K-Means Clustering

- Both clusters have most of the data concentrated into a singular cluster
- The two different methods of scaled and not scaled do not have a significant effect
- Some of the features that are included in cluster one are Children Count, Realty Status, and Family Status
- Age stood alone as its own cluster in both methods

Not Scaled:

data.FLAG_OWN_CAR	data.CODE_GENDER	data.NAME_CONTRACT_TYPE
data.NAME_FAMILY_STATUS	data.CNT_CHILDREN	data.FLAG_OWN_REALTY
data.AMT_CREDIT	data.REGION_POPULATION_RELATIVE	data.NAME_HOUSING_TYPE
2 data.AGE	1 data.AMT_ANNUITY	1 data.AMT_INCOME_TOTAL
5	_ 4	3
data.NAME_EDUCATION_TYPE 6	data.NAME_INCOME_TYPE 6	data.NAME_TYPE_SUITE 6

Scaled:

data.AGE 1	data.AMT_INCOME_TOTAL 2	data.NAME_TYPE_SUITE
data.NAME_INCOME_TYPE	data.NAME_EDUCATION_TYPE	data.NAME_CONTRACT_TYPE
data.CODE_GENDER	data.FLAG_OWN_CAR	data.FLAG_OWN_REALTY
data.CNT_CHILDREN	data.NAME_FAMILY_STATUS	data.NAME_HOUSING_TYPE
data.REGION_POPULATION_RELATIVE	data.AMT_CREDIT	data.AMT_ANNUITY
4	5	6

Hierarchical Clustering

- The dendrograms for each of the methods are roughly the same
- Credit and Income being in their own branches,
 and the rest of the data is on its own branch
- Clusters for all 3 methods will be similar since the composition of the tree is the exact same.
- Trees by default have a height of 4

Complete:

Average:

Single:

Hierarchical Clustering (cont.)

- Age is its own cluster in all three of the methods
 - Could be explained by the composition of the variable compared to the other data
- Income Type, Income Total , Credit, and Annuity are also stand alone features
- All of the other features are contained within the first cluster
- Hierarchical Clustering appears to be the better model considering this model gives more consistent results regarding clustering than the k-means clustering

Complete:

data.NAME_CONTRACT_T	YPE data.CODE_GENDER	data.FLAG_OWN_CAR
	1 1	1
data.FLAG_OWN_REA	LTY data.CNT_CHILDREN	data.NAME_FAMILY_STATUS
	1 1	1
data.NAME_HOUSING_T	YPE data.REGION_POPULATION_RELATIVE	data.AMT_INCOME_TOTAL
	1 1	. 2
data.AMT_CRE	DIT data.AMT_ANNUITY	data.NAME_TYPE_SUITE
	3 4	5
data.NAME_INCOME_T	YPE data.NAME_EDUCATION_TYPE	data.AGE
	5 5	6

Average:

data.NAME_CONTRACT_TYPE	data.CODE_GENDER	data.FLAG_OWN_CAR
1	1	1
data.FLAG_OWN_REALTY	data.CNT_CHILDREN	data.NAME_EDUCATION_TYPE
1	1	1
data.NAME_FAMILY_STATUS	data.NAME_HOUSING_TYPE	data.REGION_POPULATION_RELATIVE
1	1	1
data.AMT_INCOME_TOTAL	data.AMT_CREDIT	data.AMT_ANNUITY
2	3	4
data.NAME_TYPE_SUITE	data.NAME_INCOME_TYPE	data.AGE
5	5	6

Single:

data.NAME CONTRACT TYPE	data.CODE GENDER	data.FLAG OWN CAR
_ 1	- 1	- 1
data.FLAG_OWN_REALTY	data.CNT_CHILDREN	data.NAME_TYPE_SUITE
1	1	1
data.NAME_EDUCATION_TYPE	data.NAME_FAMILY_STATUS	data.NAME_HOUSING_TYPE
1	1	1
data.REGION_POPULATION_RELATIVE	data.AMT_INCOME_TOTAL	data.AMT_CREDIT
1	2	3
data.AMT_ANNUITY	data.NAME_INCOME_TYPE	data.AGE
4	5	6

Principal Component Analysis - I

Principal Component Analysis - II

RF Feature Importance

rf.class

data.AMT_CREDIT
data.AMT_ANNUITY
data.AMT_INCOME_TOTAL
data.AGE
data.NAME_EDUCATION_TYPE
data.NAME_HOUSING_TYPE
data.CODE_GENDER
data.NAME_INCOME_TYPE
data.NAME_FAMILY_STATUS
data.NAME_CONTRACT_TYPE
data.FLAG_OWN_CAR
data.CNT_CHILDREN
data.REGION_POPULATION_RELATIVE
data.FLAG_OWN_REALTY
data.NAME_TYPE_SUITE

data.AGE
data.AMT_ANNUITY
data.AMT_CREDIT
data.REGION_POPULATION_RELATIVE
data.AMT_INCOME_TOTAL
data.NAME_FAMILY_STATUS
data.CNT_CHILDREN
data.NAME_INCOME_TYPE
data.NAME_HOUSING_TYPE
data.NAME_TYPE_SUITE
data.FLAG_OWN_REALTY
data.NAME_EDUCATION_TYPE
data.FLAG_OWN_CAR
data.CODE_GENDER
data.NAME_CONTRACT_TYPE

4 Models for Classification Prediction

1 represents default loans 0 represents paid loans

Logistic

SVM:

Radial Basis Kernel

Random Forest:

1000 trees with 5 variables for each tree

Neural Network:

• 1 hidden layer, 4 nodes, 300 epochs

3 Ways to Train and Test the Models:

- Unbalanced train with unbalanced test
- Balanced train with balanced test.
- Balanced train with unbalanced test

- * "Unbalanced" represents the raw data's ratio of default to paid loans which is about 1 to 9
- * "Balanced" represents the modified data's ratio of default to paid loans which is about 1 to 1

Unbalanced Train with Unbalanced Test

	0	1
0	2300	200

Accuracy: 92%

Balanced Train with Balanced Test

Logistic	0	1
0	742	479
1	507	772

S V IVI	U	1
0	794	529
1	453	724

60.6%	
-------	--

60.7%

RF	0	1
0	740	485
1	507	768

NN	0	1
0	1060	1039
1	187	214

60.3% 51.0%

Balanced Train with Unbalanced Test

Logistic	0	1
0	1345	74
1	956	125

0	1505	82
1	796	117

SVM

58.8%

64.9%

RF	0	1
0	1366	61
1	935	138

NN	0	1
0	954	51
1	1343	152

60.2%

44.2%

Next Step

- More factors
- More data to train the models
- More complicated models

