## **CERTIFICATION TEST REPORT**

Manufacturer: Sonic Notify Inc.

251 Fifth Avenue, Floor 6 New York, New York 10016 United States of America

Applicant: Same As Above

Product: Wall Powered Beacon

Model: 4.70 AC Wall

FCC ID: 2ACB9470-AC

Testing Commenced: May 5, 2014

Testing Ended: June 11, 2014

Summary of Test Results: Page 5

### Standards:

- **❖** FCC Part 15 Subpart C, Section 15.249
- ❖ FCC Part 15 Subpart C, Section 15.215(c) Additional provisions to the general radiated emission limitations
- ❖ FCC15.207 Conducted Limits
- ❖ FCC Part 15 Subpart A, Section 15.31(e) Measurement Standards

Report Number: F2LQ6064C-01E Page 1 of 62 Issue Date: June 11, 2014



**Evaluation Conducted by:** 

**Report Reviewed by:** 

Joe Knepper, EMC Proj. Eng.

Joe Knipper

Michael Toth, Senior EMC Eng.

Ken Littell, EMC Tech. Mgr.

Wendy Fuster, President

F2 Labs 26501 Ridge Road Damascus, MD 20872 Ph 301.253.4500 Fax 301.253.5179 F2 Labs 16740 Peters Road Middlefield, OH 44062 Ph 440.632.5541 Fax 440.632.5542

This test report may be reproduced in full; partial reproduction only may be made with the written consent of F2 Labs. The results in this report apply only to the equipment tested.

021414

Report Number: F2LQ6064C-01E Page 2 of 62 Issue Date: June 11, 2014

## **TABLE OF CONTENTS**

| Section | Title                                               | Page |
|---------|-----------------------------------------------------|------|
|         |                                                     |      |
| 1       | ADMINISTRATIVE INFORMATION                          | 4    |
| 2       | SUMMARY OF TEST RESULTS/MODIFICATIONS               | 5    |
| 3       | TABLE OF MEASURED RESULTS                           | 6    |
| 4       | ENGINEERING STATEMENT                               | 7    |
| 5       | LIST OF MEASUREMENT INSTRUMENTATION                 | 8    |
| 6       | EUT INFORMATION AND DATA                            | 9    |
| 7       | FCC Part 15.215(c) – 20dB OCCUPIED BANDWIDTH        | 10   |
| 8       | FCC Part 15.249(a)(d) - FIELD STRENGTH OF EMISSIONS | 14   |
| 9       | FCC PART 15.31(e) – VOLTAGE VARIATIONS              | 49   |
| 10      | FCC PART 15.207 – CONDUCTED EMISSIONS               | 55   |
| 11      | PHOTOS/EXHIBITS - PRODUCT PHOTOS, TEST SETUPS       | 60   |

### 1 ADMINISTRATIVE INFORMATION

## 1.1 Measurement Location:

F2 Labs in Middlefield, Ohio. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.

## 1.2 Measurement Procedure:

All measurements were performed according to the 2009 version of ANSI C63.4 and recommended FCC procedure of measurement of DTS operating under Section 15.249. A list of the measurement equipment can be found in Section 6.

## 1.3 Uncertainty Budget:

Radiated Emission

- Combined Uncertainty (+ or -) 2.67 dB
- Expanded Uncertainty (+ or -) 5.35 dB

## **Conducted Emissions**

- Combined Uncertainty (+ or -) 1.88 dB
- Expanded Uncertainty (+ or -) 3.75 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 1.4 Document History:

| Document Number | Description | Issue Date    | Approved<br>By |
|-----------------|-------------|---------------|----------------|
| F2LQ6064C-01E   | First Issue | June 11, 2014 | W. Fuster      |
|                 |             |               |                |
|                 |             |               |                |
|                 |             |               |                |

Report Number: F2LQ6064C-01E Page 4 of 62 Issue Date: June 11, 2014

## 2 SUMMARY OF TEST RESULTS

| Test Name                    | Standard(s)              | Results  |
|------------------------------|--------------------------|----------|
| -20dB Occupied Bandwidth     | CFR 47 Part 15.215(c)    | Complies |
| Field Strength of Emissions  | CFR 47 Part 15.249(a)(d) | Complies |
| Conducted Emissions          | CFR 47 Part 15.207(a)    | Complies |
| Variation of the Input Power | CFR 47 Part 15.231(e)    | Complies |

Note: Product was operated using an AC to DC power supply, so Voltage Variation testing in 15.31(3)(e) was performed at the nominal voltage, and then the 85% and 115% of that voltage was tested also. The output power at the High, Mid, and Low channels was measured to verify how much the power and frequency were affected by the variation of the input power. No shift in frequency or power was measured at either of the varied voltages on any of the channels.

| Modifications Made to the Equipment |
|-------------------------------------|
| None                                |

## 3 TABLE OF MEASURED RESULTS

| Test                                  | High Channel<br>2.480GHz              | Mid Channel<br>2.440GHz               | Low Channel<br>2.404GHz               |
|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Average Field Strength of Fundamental | 74.7 dBµV/m                           | 77.5 dBµV/m                           | 78.1 dBµV/m                           |
| Peak Field Strength of Fundamental    | 75.2 dBµV/m                           | 77.8 dBµV/m                           | 78.9 dBµV/m                           |
| Average Limit for Fundamental         | 50 millivolts/meter<br>(93.98 dBµV/m) | 50 millivolts/meter<br>(93.98 dBµV/m) | 50 millivolts/meter<br>(93.98 dBµV/m) |
| Peak Limit for Fundamental            | (113.98dBuV/m)                        | (113.98dBuV/m)                        | (113.98dBuV/m)                        |
| -20dB Occupied<br>Bandwidth           | 134.635kHz                            | 139.571kHz                            | 144.943kHz                            |

The 20 dB bandwidth of the emission shall be contained within the frequency band designated in the rule section under which the equipment is operated.

Report Number: F2LQ6064C-01E Page 6 of 62 Issue Date: June 11, 2014

### 4 ENGINEERING STATEMENT

This report has been prepared on behalf of Sonic Notify Inc. to provide documentation for the testing described herein. This equipment has been tested and found to comply with part 15.249 of the FCC Rules using ANSI C63.4 2009 standard. The test results found in this test report relate only to the items tested.

Report Number: F2LQ6064C-01E Page 7 of 62 Issue Date: June 11, 2014

Order Number: F2LQ6064C **Client: Sonic Notify Inc.** 

Model: 4.70 AC Wall

Issue Date: June 11, 2014

#### 5 **EUT INFORMATION AND DATA**

### 5.1 **Equipment Under Test:**

Product: Wall Powered Beacon

Model: 4.70 AC Wall Serial No.: 850041 FCC ID: 2ACB9470-AC

#### 5.2 **Trade Name:**

Sonic Notify Inc.

#### 5.3 **Power Supply:**

WSU120-0700

#### 5.4 **Applicable Rules:**

CFR 47, Part 15.249

### 5.5 **Equipment Category:**

Radio Transmitter-DTS

#### 5.6 Antenna:

0dBi Gain Integral Antenna

### 5.7 **Accessories:**

N/A

#### 5.8 **Test Item Condition:**

The equipment to be tested was received in good condition.

#### 5.9 **Testing Algorithm:**

EUT was set up in a normal operating mode, connected to a smart phone via Bluetooth, pinging to a smart phone. Device was transmitting in three different channels (low, mid and high).

Page 8 of 62

## 6 LIST OF MEASUREMENT INSTRUMENTATION

| Equipment Type             | Asset<br>Number              | Manufacturer         | Model                          | Serial Number | Calibration<br>Due Date |  |
|----------------------------|------------------------------|----------------------|--------------------------------|---------------|-------------------------|--|
| Shield Room                | 0175                         | Ray Proof            | N/A                            | 11645         | Aug. 7, 2014            |  |
| Temp./Humidity<br>Recorder | CL119                        | Extech               | RH520                          | H005869       | Jan. 8, 2015            |  |
| OATS-3m                    | CL017                        | Compliance Labs      | N/A                            | 001           | Dec. 13, 2014           |  |
| OATS-10m                   | CL017                        | Compliance Labs      | N/A                            | 001           | Dec. 13, 2014           |  |
| Spectrum Analyzer          | CL138                        | Agilent Technologies | E4407B                         | US41192779    | Oct. 29, 2014           |  |
| Receiver CL151             |                              | Rohde & Schwarz      | ESU40                          | 100319        | Oct. 30, 2014           |  |
| Antenna 1-Chamber          | Antenna 1-Chamber 0142 ETS/E |                      | 3142B                          | 9811-1330     | Verified                |  |
| Antenna 2-OATS             | 0105                         | Sunol Sciences       | JB1                            | A101101       | May 7, 2015             |  |
| Horn Antenna               | tenna CL098                  |                      | 3115                           | 9809-5580     | Dec. 3, 2015            |  |
| Horn Antenna               | CL114                        | A.H. Systems, Inc.   | SAS-572                        | 237           | Sept. 16, 2014          |  |
| Pre-Amplifier              | CL045                        | Hewlett-Packard      | 8447D                          | 2944A08445    | Nov. 15, 2015           |  |
| Pre-Amplifier              | CL153                        | Agilent              | 83006-69007                    | MY39500900    | Jan. 9, 2015            |  |
| Amp. w/Monopole & CL163    |                              | A.H. Systems, Inc.   | A.H. Systems, Inc. EHA-52B     |               | Apr. 24, 2015           |  |
| Software:                  | ٦                            | File Version 1.0     | Software Verified: May 5, 2014 |               |                         |  |
| Software:                  | EMC                          | 32, Version 5.20.2   | Software Verified: May 5, 2014 |               |                         |  |

Report Number: F2LQ6064C-01E Page 9 of 62 Issue Date: June 11, 2014

## 7 FCC PART 15.215(e) – OCCUPIED BANDWIDTH

## 7.1 Requirements:

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

Bandwidth measurements were made at the low (2.404 GHz), mid (2.440 GHz) and upper (2.480 GHz) frequencies. The bandwidth was measured using the analyzer's marker function.

Report Number: F2LQ6064C-01E Page 10 of 62 Issue Date: June 11, 2014



## 7.2 Occupied Bandwidth Test Data

| Test Date: | May 16, 2014          | Test Engineers:    | J. Knepper, K. Littell |
|------------|-----------------------|--------------------|------------------------|
| _          |                       | Air Temperature:   | 20.7°C                 |
| Standards: | CFR 47 Part 15.215(c) | Relative Humidity: | 49%                    |

## **Low Channel**



Report Number: F2LQ6064C-01E Page 11 of 62 Issue Date: June 11, 2014

### **Mid Channel**



Report Number: F2LQ6064C-01E Page 12 of 62 Issue Date: June 11, 2014

## **High Channel**



Report Number: F2LQ6064C-01E Page 13 of 62 Issue Date: June 11, 2014

# 8 FCC PART 15.249(a)(d) – FIELD STRENGTH OF EMISSIONS FROM INTENTIONAL RADIATORS

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

| Fundamental frequency | Field strength of fundamental (millivolts/meter) | Field strength of harmonics (microvolts/meter) |
|-----------------------|--------------------------------------------------|------------------------------------------------|
| 902-928 MHz           | 50                                               | 500                                            |
| 2400-2483.5 MHz       | 50                                               | 500                                            |
| 5725-5875 MHz         | 50                                               | 500                                            |
| 24.0-24.25 GHz        | 250                                              | 2500                                           |

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Notes: Plots are peak, max hold pre-scan data included only to determine what frequencies to investigate and measure. During the pre-scan evaluation, the EUT was rotated in all possible directions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. At some frequencies, no emissions from the EUT were measurable over the ambient noise floor. The readings did not change with EUT on and EUT off.

At least 6 of the highest frequencies were measured per ANSI 63.4 on the Open Area Test Site. Frequencies below 1GHz were measured using a quasi-peak detector. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions. Some of the frequencies did not change with the EUT on or off. At those frequencies, the test distance was shortened to 1 meter and still no emissions from the EUT were visible or over the ambient or limit.

Report Number: F2LQ6064C-01E Page 14 of 62 Issue Date: June 11, 2014



## 8.1 Test Data - Field Strength of Emissions from Intentional Radiators

| Test Date: | May 16, 2014          | Test Engineers:    | J. Knepper, K. Littell |
|------------|-----------------------|--------------------|------------------------|
| Ctondordo  | CED 47 Dort 45 240(a) | Air Temperature:   | 24.1°C                 |
| Standards: | CFR 47 Part 15.249(a) | Relative Humidity: | 59%                    |

### **Low Channel**





Issue Date: June 11, 2014

## **Low Channel**

| Frequency<br>(MHz) | Polarity | Corr.<br>(dB) | MaxPeak<br>(dBµV/m) | MaxPeak<br>(dBµV/m)<br>Limit | MaxPeak<br>Margin | Average<br>(dBµV/m) | Average<br>(dBµV/m)<br>Limit | Average<br>Margin | Bandwidth<br>(kHz) |
|--------------------|----------|---------------|---------------------|------------------------------|-------------------|---------------------|------------------------------|-------------------|--------------------|
| 2399.000000        | Н        | 6.96          | 44.26               | 74                           | -29.7             | 31.06               | 54                           | -22.9             | 1000.000           |
| 2399.000000        | V        | 6.96          | 44.16               | 74                           | -29.8             | 31.06               | 54                           | -22.9             | 100.000            |
| 2404.000000        | V        | 6.96          | 83.56               | 113.97                       | -30.4             | 81.86               | 93.97                        | -12.1             | 1000.000           |
| 2404.000000        | Н        | 6.96          | 87.36               | 113.97                       | -26.6             | 86.56               | 93.97                        | -7.4              | 1000.000           |
| 2408.000000        | V        | 6.96          | 60.66               | 74                           | -13.3             | 33.26               | 54                           | -20.7             | 1000.000           |
| 2409.000000        | Н        | 6.96          | 59.56               | 74                           | -14.4             | 35.36               | 54                           | -18.6             | 1000.000           |
| 2484.000000        | V        | 7.05          | 44.95               | 74                           | -29.1             | 31.45               | 54                           | -22.6             | 1000.000           |
| 2484.000000        | Н        | 7.05          | 44.35               | 74                           | -29.7             | 31.45               | 54                           | -22.6             | 1000.000           |

Report Number: F2LQ6064C-01E Page 16 of 62 Issue Date: June 11, 2014

## **Mid Channel**





Report Number: F2LQ6064C-01E Page 17 of 62 Issue Date: June 11, 2014

## **Mid Channel**

| Frequency<br>(MHz) | Polarity | Corr.<br>(dB) | MaxPeak<br>(dBµV/m) | MaxPeak<br>(dBµV/m)<br>Limit | MaxPeak<br>Margin | Average<br>(dBµV/m) | Average<br>(dBµV/m)<br>Limit | Average<br>Margin | Bandwidth<br>(kHz) |
|--------------------|----------|---------------|---------------------|------------------------------|-------------------|---------------------|------------------------------|-------------------|--------------------|
| 2390.000000        | V        | 6.96          | 43.96               | 74                           | -30.0             | 31.06               | 54                           | -22.9             | 1000.000           |
| 2390.000000        | Н        | 6.96          | 43.96               | 74                           | -30.0             | 31.06               | 54                           | -22.9             | 1000.000           |
| 2435.000000        | Н        | 6.96          | 59.46               | 74                           | -14.5             | 34.06               | 54                           | -19.9             | 1000.000           |
| 2435.000000        | V        | 6.96          | 59.96               | 74                           | -14.0             | 34.26               | 54                           | -19.7             | 1000.000           |
| 2438.000000        | Н        | 6.96          | 66.46               | 74                           | -7.5              | 32.66               | 54                           | -21.3             | 1000.000           |
| 2438.000000        | V        | 6.96          | 61.26               | 74                           | -12.7             | 35.26               | 54                           | -18.7             | 1000.000           |
| 2440.000000        | V        | 6.96          | 83.25               | 113.97                       | -30.7             | 80.45               | 93.97                        | -13.5             | 1000.000           |
| 2440.000000        | Н        | 6.96          | 86.35               | 113.97                       | -27.6             | 86.05               | 93.97                        | -7.9              | 1000.000           |
| 2484.000000        | V        | 7.05          | 38.5                | 74                           | -35.5             | 24.5                | 54                           | -29.5             | 1000.000           |
| 2484.000000        | Н        | 7.05          | 37.5                | 74                           | -36.5             | 24.4                | 54                           | -29.6             | 1000.000           |

Report Number: F2LQ6064C-01E Page 18 of 62 Issue Date: June 11, 2014

## **High Channel**





Report Number: F2LQ6064C-01E Page 19 of 62 Issue Date: June 11, 2014

## **High Channel**

| Frequency<br>(MHz) | Polarity | Corr.<br>(dB) | MaxPeak<br>(dBµV/m) | MaxPeak<br>(dBµV/m)<br>Limit | MaxPeak<br>Margin | Average<br>(dBµV/m) | Average<br>(dBµV/m)<br>Limit | Average<br>Margin | Bandwidth<br>(kHz) |
|--------------------|----------|---------------|---------------------|------------------------------|-------------------|---------------------|------------------------------|-------------------|--------------------|
| 2390.000000        | Н        | 6.96          | 44.46               | 74                           | -29.5             | 31.06               | 54                           | -22.9             | 1000.000           |
| 2390.000000        | V        | 6.96          | 43.86               | 74                           | -30.1             | 31.06               | 54                           | -22.9             | 1000.000           |
| 2478.000000        | Н        | 7.05          | 58.06               | 74                           | -15.9             | 31.96               | 54                           | -22.0             | 1000.000           |
| 2480.000000        | Н        | 7.05          | 83.66               | 113.97                       | -30.3             | 83.16               | 93.97                        | -10.8             | 1000.000           |
| 2480.000000        | V        | 7.05          | 78.86               | 113.97                       | -35.1             | 77.56               | 93.97                        | -16.4             | 1000.000           |
| 2484.000000        | Н        | 7.05          | 50.16               | 74                           | -23.8             | 31.76               | 54                           | -22.2             | 1000.000           |
| 2484.000000        | ٧        | 7.05          | 48.65               | 74                           | -25.4             | 31.55               | 54                           | -22.5             | 1000.000           |

Report Number: F2LQ6064C-01E Page 20 of 62 Issue Date: June 11, 2014

## 8.2 Test Data – Spurious Emissions

Notes: Plots are peak, max hold pre-scan data included only to determine what frequencies to investigate and measure. During the pre-scan evaluation, the EUT was rotated in all possible directions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. At some frequencies, no emissions from the EUT were measurable over the ambient noise floor. The readings did not change with EUT on and EUT off.

At least 6 of the highest frequencies were measured per ANSI 63.4 on the Open Area Test Site. Frequencies below 1GHz were measured using a quasi-peak detector. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions. Some of the frequencies did not change with the EUT on or off. At those frequencies, the test distance was shortened to 1 meter and still no emissions from the EUT were visible or over the ambient or limit.

In the following plots, the black line indicates ambient noise and the red line indicates the measurement with the EUT on. Emissions to be found by the EUT were measured and listed in tables below.

Report Number: F2LQ6064C-01E Page 21 of 62 Issue Date: June 11, 2014



| Test Date: | May 16, 2014                        | Test Engineers:    | J. Knepper, K. Littell |  |
|------------|-------------------------------------|--------------------|------------------------|--|
| Standards: | CFR 47 Part 15.249(d) / Part 15.209 | Air Temperature:   | 24.8°C                 |  |
|            |                                     | Relative Humidity: | 58%                    |  |

## Low Channel, .009 to 0.15 MHz



## Low Channel, 0.15 MHz to 30 MHz



Report Number: F2LQ6064C-01E Page 22 of 62 Issue Date: June 11, 2014

## Low Channel, 30 MHz to 300 MHz, Horizontal



## Low Channel, 30 MHz to 300 MHz, Vertical



Report Number: F2LQ6064C-01E Page 23 of 62 Issue Date: June 11, 2014

## Low Channel, 300 MHz to 1 GHz, Horizontal



## Low Channel, 30 MHz to 1 GHz, Vertical



Report Number: F2LQ6064C-01E Page 24 of 62 Issue Date: June 11, 2014

## Low Channel, 1 GHz to 2.3 GHz, Horizontal



## Low Channel, 1 GHz to 2.3 GHz, Vertical



Report Number: F2LQ6064C-01E Page 25 of 62 Issue Date: June 11, 2014



## Low Channel, 2.3 GHz to 2.6 GHz, Vertical



Report Number: F2LQ6064C-01E Page 26 of 62 Issue Date: June 11, 2014

## Low Channel, 2.6 GHz to 6 GHz, Horizontal



## Low Channel, 2.6 GHz to 6 GHz, Vertical



Report Number: F2LQ6064C-01E Page 27 of 62 Issue Date: June 11, 2014

## Low Channel, 6 GHz to 18 GHz, Horizontal



## Low Channel, 6 GHz to 18 GHz, Vertical





## Low Channel, 18 GHz to 26 GHz, Vertical



Report Number: F2LQ6064C-01E Page 29 of 62 Issue Date: June 11, 2014



## **Low Channel**



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Corr.<br>(dB) | Margin<br>- QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|---------------|-------------------------|----------------------------|
| 39.740000          | 15.9                  | 50.0                  | 120.000            | 155.0          | Н            | 16.0          | 24.1                    | 40.0                       |
| 39.990000          | 24.6                  | 50.0                  | 120.000            | 155.0          | ٧            | 15.8          | 15.4                    | 40.0                       |
| 45.390000          | 12.9                  | 50.0                  | 120.000            | 155.0          | Н            | 12.3          | 27.1                    | 40.0                       |
| 49.000000          | 20.9                  | 50.0                  | 120.000            | 155.0          | ٧            | 10.6          | 19.1                    | 40.0                       |
| 57.360000          | 11.9                  | 50.0                  | 120.000            | 155.0          | Н            | 10.5          | 28.1                    | 40.0                       |
| 63.870000          | 20.0                  | 50.0                  | 120.000            | 155.0          | ٧            | 11.0          | 20.0                    | 40.0                       |
| 69.360000          | 17.3                  | 50.0                  | 120.000            | 155.0          | Н            | 11.1          | 22.7                    | 40.0                       |
| 72.870000          | 24.3                  | 50.0                  | 120.000            | 155.0          | ٧            | 11.2          | 15.7                    | 40.0                       |
| 81.270000          | 19.7                  | 50.0                  | 120.000            | 155.0          | Н            | 10.8          | 20.3                    | 40.0                       |
| 111.440000         | 19.1                  | 50.0                  | 120.000            | 155.0          | ٧            | 17.0          | 24.4                    | 43.5                       |
| 114.060000         | 19.4                  | 50.0                  | 120.000            | 155.0          | Н            | 17.2          | 24.1                    | 43.5                       |
| 123.860000         | 20.8                  | 50.0                  | 120.000            | 155.0          | ٧            | 17.9          | 22.7                    | 43.5                       |
| 125.860000         | 18.2                  | 50.0                  | 120.000            | 155.0          | Н            | 17.9          | 25.3                    | 43.5                       |

## Mid Channel, .009 to 0.15 MHz



## Mid Channel, 0.15 MHz to 30 MHz



Report Number: F2LQ6064C-01E Page 31 of 62 Issue Date: June 11, 2014

## Mid Channel, 30 MHz to 300 MHz, Horizontal



## Mid Channel, 30 MHz to 300 MHz, Vertical



Report Number: F2LQ6064C-01E Page 32 of 62 Issue Date: June 11, 2014

## Mid Channel, 300 MHz to 1 GHz, Horizontal



## Mid Channel, 300 MHz to 1 GHz, Vertical



Report Number: F2LQ6064C-01E Page 33 of 62 Issue Date: June 11, 2014

## Mid Channel, 1 GHz to 2.3 GHz, Horizontal



## Mid Channel, 1 GHz to 2.3 GHz, Vertical



Report Number: F2LQ6064C-01E Page 34 of 62 Issue Date: June 11, 2014

## Mid Channel, 2.3 GHz to 2.6 GHz, Horizontal



## Mid Channel, 2.3 GHz to 2.6 GHz, Vertical



Report Number: F2LQ6064C-01E Page 35 of 62 Issue Date: June 11, 2014

## Mid Channel, 2.6 GHz to 6 GHz, Horizontal



## Mid Channel, 2.6 GHz to 6 GHz, Vertical



#### Mid Channel, 6 GHz to 18 GHz, Horizontal



#### Mid Channel, 6 GHz to 18 GHz, Vertical



Report Number: F2LQ6064C-01E Page 37 of 62 Issue Date: June 11, 2014

#### Mid Channel, 18 GHz to 26 GHz, Horizontal



#### Mid Channel, 18 GHz to 26 GHz, Vertical



Report Number: F2LQ6064C-01E Page 38 of 62 Issue Date: June 11, 2014



Order Number: F2LQ6064C

#### **Mid Channel**



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Corr.<br>(dB) | Margin<br>- QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|---------------|-------------------------|----------------------------|
| 38.720000          | 27.1                  | 50.0                  | 120.000            | 155.0          | V            | 15.7          | 12.9                    | 40.0                       |
| 46.570000          | 24.8                  | 50.0                  | 120.000            | 155.0          | V            | 11.5          | 15.2                    | 40.0                       |
| 47.570000          | 14.0                  | 50.0                  | 120.000            | 155.0          | Н            | 11.2          | 26.0                    | 40.0                       |
| 52.910000          | 20.2                  | 50.0                  | 120.000            | 155.0          | V            | 10.0          | 19.8                    | 40.0                       |
| 55.590000          | 25.4                  | 50.0                  | 120.000            | 155.0          | Н            | 10.3          | 14.6                    | 40.0                       |
| 67.370000          | 19.9                  | 50.0                  | 120.000            | 155.0          | ٧            | 10.6          | 20.1                    | 40.0                       |
| 78.210000          | 18.3                  | 50.0                  | 120.000            | 155.0          | Н            | 10.9          | 21.7                    | 40.0                       |
| 115.370000         | 19.7                  | 50.0                  | 120.000            | 155.0          | Н            | 17.4          | 23.8                    | 43.5                       |
| 117.930000         | 22.2                  | 50.0                  | 120.000            | 155.0          | ٧            | 17.4          | 21.3                    | 43.5                       |
| 123.370000         | 21.9                  | 50.0                  | 120.000            | 155.0          | ٧            | 18.0          | 21.6                    | 43.5                       |
| 124.750000         | 17.4                  | 50.0                  | 120.000            | 155.0          | Н            | 17.9          | 26.1                    | 43.5                       |

Report Number: F2LQ6064C-01E Page 39 of 62 Issue Date: June 11, 2014

#### High Channel, .009 to 0.15 MHz



#### High Channel, 0.15 MHz to 30 MHz



Report Number: F2LQ6064C-01E Page 40 of 62 Issue Date: June 11, 2014

### High Channel, 30 MHz to 300 MHz, Horizontal



#### High Channel, 30 MHz to 300 MHz, Vertical



021414

## High Channel, 300 MHz to 1 GHz, Horizontal



#### High Channel, 30 MHz to 1 GHz, Vertical



#### High Channel, 1 GHz to 2.3 GHz, Horizontal



#### High Channel, 1 GHz to 2.3 GHz, Vertical



Report Number: F2LQ6064C-01E Page 43 of 62 Issue Date: June 11, 2014

High Channel, 2.3 GHz to 2.6 GHz, Horizontal



High Channel, 2.3 GHz to 2.6 GHz, Vertical



Page 44 of 62 Issue Date: June 11, 2014

#### High Channel, 2.6 GHz to 6 GHz, Horizontal



#### High Channel, 2.6 GHz to 6 GHz, Vertical



#### High Channel, 6 GHz to 18 GHz, Horizontal



#### High Channel, 6 GHz to 18 GHz, Vertical



Report Number: F2LQ6064C-01E Page 46 of 62 Issue Date: June 11, 2014



High Channel, 18 GHz to 26 GHz, Horizontal

High Channel, 18 GHz to 26 GHz, Vertical



Report Number: F2LQ6064C-01E Page 47 of 62 Issue Date: June 11, 2014







| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Corr.<br>(dB) | Margin<br>- QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|---------------|-------------------------|----------------------------|
| 32.040000          | 21.2                  | 50.0                  | 120.000            | 155.0          | Н            | 21.4          | 18.8                    | 40.0                       |
| 35.070000          | 26.6                  | 50.0                  | 120.000            | 155.0          | ٧            | 18.2          | 13.4                    | 40.0                       |
| 46.260000          | 24.3                  | 50.0                  | 120.000            | 155.0          | ٧            | 11.6          | 15.7                    | 40.0                       |
| 47.210000          | 13.7                  | 50.0                  | 120.000            | 155.0          | Н            | 11.3          | 26.3                    | 40.0                       |
| 52.910000          | 20.3                  | 50.0                  | 120.000            | 155.0          | ٧            | 10.0          | 19.7                    | 40.0                       |
| 57.000000          | 12.6                  | 50.0                  | 120.000            | 155.0          | Н            | 10.5          | 27.4                    | 40.0                       |
| 64.990000          | 14.0                  | 50.0                  | 120.000            | 155.0          | Н            | 10.9          | 26.0                    | 40.0                       |
| 66.660000          | 22.3                  | 50.0                  | 120.000            | 155.0          | ٧            | 10.5          | 17.7                    | 40.0                       |
| 72.910000          | 18.7                  | 50.0                  | 120.000            | 155.0          | Н            | 11.2          | 21.3                    | 40.0                       |
| 75.000000          | 22.1                  | 50.0                  | 120.000            | 155.0          | ٧            | 10.7          | 17.9                    | 40.0                       |
| 110.220000         | 18.8                  | 50.0                  | 120.000            | 155.0          | Н            | 16.9          | 24.7                    | 43.5                       |
| 117.830000         | 22.6                  | 50.0                  | 120.000            | 155.0          | V            | 17.4          | 20.9                    | 43.5                       |

Report Number: F2LQ6064C-01E Page 48 of 62 Issue Date: June 11, 2014

### **7 VOLTAGE VARIATIONS-15.31(E)**

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery. A nominal voltage of 120VAC was used and then 100VAC and 138VAC were used as the 85% and 115% variations.

**RESULTS:** The results showed that the fundamental frequency did not move outside the frequency band and the field strength did not increase above the limit during the variations.

#### Low Channel Vertical-100VAC



#### Low Channel Horizontal-100VAC



Report Number: F2LQ6064C-01E Page 49 of 62 Issue Date: June 11, 2014

#### Low Channel Horizontal-138VAC



#### Low Channel Vertical-138VAC



Report Number: F2LQ6064C-01E Page 50 of 62 Issue Date: June 11, 2014

#### **Mid Channel Vertical-100VAC**



#### Mid Channel Horizontal-100VAC



Report Number: F2LQ6064C-01E Page 51 of 62 Issue Date: June 11, 2014

#### Mid Channel Horizontal-138VAC



#### **Mid Channel Vertical-138VAC**



Report Number: F2LQ6064C-01E Page 52 of 62 Issue Date: June 11, 2014

## **High Channel Vertical-100VAC**



# **High Channel Horizontal-100VAC**



Report Number: F2LQ6064C-01E Page 53 of 62 Issue Date: June 11, 2014

# Labs (

# **High Channel Horizontal-138VAC**



# **High Channel Vertical-138VAC**



Report Number: F2LQ6064C-01E Page 54 of 62 Issue Date: June 11, 2014

#### 9 CONDUCTED EMISSIONS

### 9.1 Requirements

In accordance with FCC CFR 47 Part 15.207(a), "Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

|                             | Conducted limit (dBµV) |           |  |  |
|-----------------------------|------------------------|-----------|--|--|
| Frequency of emission (MHz) | Quasi-peak             | Average   |  |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |  |
| 0.5-5                       | 56                     | 46        |  |  |
| 5-30                        | 60                     | 50        |  |  |

<sup>\*</sup>Decreases with the logarithm of the frequency.

#### 9.2 Procedure

The EUT was placed on a 1.0 x 1.5 meter non-conductive table, 0.8 meter above a horizontal ground plane and 0.4 meter from a vertical ground plane. Power was provided to the EUT through a LISN bonded to a 3 x 2 meter ground plane. The LISN and peripherals were supplied power through a filtered AC power source. The output of the LISN was connected to the input of the receiver via a transient limiter, and emissions in the range 150 kHz to 30 MHz were measured. The measurements were recorded using the quasi-peak and average detectors as directed by the standard, and the resolution bandwidth during testing was 9 kHz. The raw measurements were corrected to allow for attenuation from the LISN, transient limiter and cables.

Report Number: F2LQ6064C-01E Page 55 of 62 Issue Date: June 11, 2014



#### 9.3 Conducted Emissions Test Data

| Test Date:    | June 11, 2014 | Test Engineer:     | M. Toth |
|---------------|---------------|--------------------|---------|
| Rule:         | 15.207        | Air Temperature:   | 21.9° C |
| Test Results: | Pass          | Relative Humidity: | 50%     |

Note: The data below represents worst case results of all three channels.

Conducted Test - Line 1: 0.15 MHz to 0.5 MHz



#### Conducted Test - Line 1: 0.5 MHz to 5.0 MHz



Report Number: F2LQ6064C-01E Page 56 of 62 Issue Date: June 11, 2014

#### Conducted Test - Line 1: 5.0 MHz to 30.0 MHz



|          | Top Discrete Measurements |                    |            |                 |                 |                   |                 |                |  |  |
|----------|---------------------------|--------------------|------------|-----------------|-----------------|-------------------|-----------------|----------------|--|--|
| No.      | Conductor                 | Frequency<br>(MHz) | Detector   | Level<br>(dBµV) | Adjustment (dB) | Results<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) |  |  |
| 1        | 1 Line 1                  | 0.154375           | Quasi-Peak | 48.37           | 11.0            | 59.37             | 65.76           | -6.4           |  |  |
| '        | Lille                     |                    | Average    | 23.71           | 11.0            | 34.71             | 55.76           | -21.1          |  |  |
| 2        | 2 Line 1                  | 0.199875           | Quasi-Peak | 47.99           | 11.0            | 58.99             | 63.62           | -4.6           |  |  |
|          |                           |                    | Average    | 22.20           | 11.0            | 33.20             | 53.62           | -20.4          |  |  |
| 2        | 3 Line 1                  | 0.227875           | Quasi-Peak | 41.24           | 11.0            | 52.24             | 62.53           | -10.3          |  |  |
| 3        |                           |                    | Average    | 21.98           | 11.0            | 32.98             | 52.53           | -19.6          |  |  |
| 1        | 4 Line 1                  | 0.27075            | Quasi-Peak | 40.30           | 11.0            | 51.30             | 61.10           | -9.8           |  |  |
| 4        |                           | 0.27073            | Average    | 19.81           | 11.0            | 30.81             | 51.10           | -20.3          |  |  |
| 5        | 5 Line 1                  | 0.32675            | Quasi-Peak | 42.79           | 11.0            | 53.79             | 59.53           | -5.7           |  |  |
|          | Lille                     |                    | Average    | 20.73           | 11.0            | 31.73             | 49.53           | -17.8          |  |  |
| 6 Line 1 | Line 1                    | 0.3915             | Quasi-Peak | 34.25           | 11.0            | 45.25             | 58.03           | -12.8          |  |  |
|          | Lille I                   | 0.3915             | Average    | 20.29           | 11.0            | 31.29             | 48.03           | -16.7          |  |  |

Report Number: F2LQ6064C-01E Page 57 of 62 Issue Date: June 11, 2014

#### Conducted Test - Line 2: 0.15 MHz to 0.5 MHz



#### Conducted Test - Line 2: 0.5 MHz to 5.0 MHz



Report Number: F2LQ6064C-01E Page 58 of 62 Issue Date: June 11, 2014

#### Conducted Test - Line 2: 5.0 MHz to 30.0 MHz



|     | Top Discrete Measurements |               |            |        |            |         |        |        |  |  |  |
|-----|---------------------------|---------------|------------|--------|------------|---------|--------|--------|--|--|--|
| No. | Conductor                 | Frequency     | Detector   | Level  | Adjustment | Results | Limit  | Margin |  |  |  |
|     | (MHz)                     | (IVIHZ)       | _          | (dBµV) | (dB)       | (dBµV)  | (dBµV) | (dB)   |  |  |  |
| 1   | 1 Line 2                  | 0.156125      | Quasi-Peak | 52.59  | 11.0       | 63.59   | 65.67  | -2.1   |  |  |  |
| Ŀ   | LING 2                    | 0.100120      | Average    | 26.09  | 11.0       | 37.09   | 55.67  | -18.6  |  |  |  |
| 2   | 2 Line 2                  | 0.16575       | Quasi-Peak | 48.12  | 11.0       | 59.12   | 65.17  | -6.1   |  |  |  |
|     | Line 2                    | 0.10070       | Average    | 27.06  | 11.0       | 38.06   | 55.17  | -17.1  |  |  |  |
| 3   | Line 2                    | 0.192         | Quasi-Peak | 46.31  | 11.0       | 57.31   | 63.95  | -6.6   |  |  |  |
| ٥   | LIIIe Z                   | 0.192         | Average    | 27.16  | 11.0       | 38.16   | 53.95  | -15.8  |  |  |  |
| 4   | Line 2                    | 0.22875       | Quasi-Peak | 49.82  | 11.0       | 60.82   | 62.50  | -1.7   |  |  |  |
| 4   | Lille 2                   | 0.22875       | Average    | 25.64  | 11.0       | 36.64   | 52.50  | -15.9  |  |  |  |
| 5   | Line 2                    | 0.29525       | Quasi-Peak | 44.43  | 11.0       | 55.43   | 60.38  | -5.0   |  |  |  |
| 3   | Lille 2                   |               | Average    | 23.28  | 11.0       | 34.28   | 50.38  | -16.1  |  |  |  |
| 6   | Line 2                    | 0.35825       | Quasi-Peak | 42.35  | 11.0       | 53.35   | 58.77  | -5.4   |  |  |  |
| 0   | Lille 2                   |               | Average    | 18.65  | 11.0       | 29.65   | 48.77  | -19.1  |  |  |  |
| 7   | Line 2                    | 2 0.444       | Quasi-Peak | 37.63  | 11.0       | 48.63   | 56.99  | -8.4   |  |  |  |
| _ ′ | Lille 2                   |               | Average    | 14.61  | 11.0       | 25.61   | 46.99  | -21.4  |  |  |  |
| 8   | Line 2                    | 0.511         | Quasi-Peak | 35.60  | 11.0       | 46.60   | 56.0   | -9.4   |  |  |  |
| °   | Lille 2                   | ine 2   0.511 | Average    | 14.16  | 11.0       | 25.16   | 46.0   | -20.8  |  |  |  |
| 9   | Line 2                    | 0.60125       | Quasi-Peak | 29.51  | 11.0       | 40.51   | 56.0   | -15.5  |  |  |  |
| 9   | Line 2                    | 0.60125       | Average    | 12.49  | 11.0       | 23.49   | 46.0   | -22.5  |  |  |  |
| 10  | Line 2                    | 1.4425        | Quasi-Peak | 25.82  | 11.0       | 36.82   | 56.0   | -19.2  |  |  |  |
| 10  | Line ∠                    | 1.4420        | Average    | 10.02  | 11.0       | 21.02   | 46.0   | -25.0  |  |  |  |
| 11  | Line 2                    | 1.77125       | Quasi-Peak | 26.78  | 11.0       | 37.78   | 56.0   | -18.2  |  |  |  |
| 11  | Line ∠                    | 1.77125       | Average    | 10.17  | 11.0       | 21.17   | 46.0   | -24.8  |  |  |  |

Report Number: F2LQ6064C-01E Page 59 of 62 Issue Date: June 11, 2014

# 10 PHOTOGRAPHS/EXHIBITS – PRODUCT PHOTOS, TEST SETUPS

# **Spurious Emissions**



Field Strength of Emissions, Occupied Bandwidth



# **Conducted Emissions**

