MCA/MSc. (CS) Semester-II Examination 2022-23 CS322: Deep Learning

Time: 1 hour 20 marks

1. Find the SVD of A,
$$U \sum V^T$$
, where $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. Explain each step clearly. [11 marks]

2. Let's assume we have a two layer neural network, as defined below:

$$z_1 = W_1 x^{(i)} + b_1, \quad a_1 = ReLU(z_1), \quad z_2 = W_2 a_1 + b_2, \quad \hat{y}^{(i)} = \sigma(z_2)$$

$$L^{(i)} = y^{(i)} * \log(\hat{y}^{(i)}) + (1 - y^{(i)}) * \log(1 - \hat{y}^{(i)}), \quad J = \frac{-1}{m} \sum_{i=1}^{m} L^{(i)}$$

Note that $x^{(i)}$ represents a single input example, and is of shape $D_x \times 1$. Further $y^{(i)}$ is a single output label and is a scalar. There are m examples in our dataset. We will use D_{a_1} nodes in our hidden layer; that is, z_1 's shape is $D_{a_1} \times 1$.

MCA/MSc. (CS) Semester-II Examination 2022-23 CS322: Deep Learning

Time: 1 hour 20 marks

1. Find the SVD of A,
$$U \sum V^T$$
, where A = $\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. Explain each step clearly. [11 marks]

2. Let's assume we have a two layer neural network, as defined below:

Note that $x^{(i)}$ represents a single input example, and is of shape $D_x \times 1$. Further $y^{(i)}$ is a single output label and is a scalar. There are m examples in our dataset. We will use D_{a_1} nodes in our hidden layer; that is, z_1 's shape is $D_{a_1} \times 1$.

MCA/MSc. (CS) Semester-II Examination 2022-23 CS322: Deep Learning

Time: 1 hour 20 marks

1. Find the SVD of A,
$$U \sum V^T$$
, where $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. Explain each step clearly. [11 marks]

2. Let's assume we have a two layer neural network, as defined below:

$$z_1 = W_1 x^{(i)} + b_1, a_1 = ReLU(z_1), z_2 = W_2 a_1 + b_2, \hat{y}^{(i)} = \sigma(z_2)$$

$$L^{(i)} = y^{(i)} * \log(\hat{y}^{(i)}) + (1 - y^{(i)}) * \log(1 - \hat{y}^{(i)}), J = \frac{-1}{m} \sum_{i=1}^{m} L^{(i)}$$

Note that $x^{(i)}$ represents a single input example, and is of shape $D_x \times 1$. Further $y^{(i)}$ is a single output label and is a scalar. There are m examples in our dataset. We will use D_{a_1} nodes in our hidden layer; that is, z_1 's shape is $D_{a_1} \times 1$.

MCA/MSc. (CS) Semester-II Examination 2022-23 CS322: Deep Learning

Time: 1 hour 20 marks

1. Find the SVD of A,
$$U \sum V^T$$
, where $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. Explain each step clearly. [11 marks]

2. Let's assume we have a two layer neural network, as defined below:

$$z_1 = W_1 x^{(i)} + b_1, \quad a_1 = ReLU(z_1), \quad z_2 = W_2 a_1 + b_2, \quad \hat{y}^{(i)} = \sigma(z_2)$$

$$L^{(i)} = y^{(i)} * \log(\hat{y}^{(i)}) + (1 - y^{(i)}) * \log(1 - \hat{y}^{(i)}), \quad J = \frac{-1}{m} \sum_{i=1}^{m} L^{(i)}$$

Note that $x^{(i)}$ represents a single input example, and is of shape $D_x \times 1$. Further $y^{(i)}$ is a single output label and is a scalar. There are m examples in our dataset. We will use D_{a_1} nodes in our hidden layer; that is, z_1 's shape is $D_{a_1} \times 1$.

Based on the given information, answer the following questions: (a) What are the shapes of W_1 , b_1 , W_2 , b_2 ? If we were vectorizing this network across multiple examples, what would the shapes of the weights/biases be instead? If we were vectorizing across multiple examples, what would the shapes of X and Y be instead? [2 marks] (b) What is $\partial J/\partial \hat{y}^{(i)}$? Refer to this result as $\partial_1^{(i)}$. Using this result, what is $\partial J/\partial \hat{y}$? [1 marks] (c) What is $\partial \hat{y}^{(i)}/\partial z_2$? Refer to this result as $\partial_2^{(i)}$. [1 marks] (d) What is $\partial z_2/\partial a_1$? Refer to this result as $\partial_a^{(i)}$. [1 marks] (e) What is $\partial a_1/\partial z_1$? Refer to this result as $\partial_{\alpha}^{(i)}$. [1 marks] (f) What is $\partial z_1/\partial W_1$? Refer to this result as $\partial_5^{(i)}$. [1 marks] (g) What is $\partial J/\partial W_1$? 2 marks Based on the given information, answer the following questions: (a) What are the shapes of W_1 , b_1 , W_2 , b_2 ? If we were vectorizing this network across multiple examples, what would the shapes of the weights/biases be instead? If we were vectorizing across multiple examples, what would the shapes of X and Y be instead? [2 marks] (b) What is $\partial J/\partial \hat{y}^{(i)}$? Refer to this result as $\partial_1^{(i)}$. Using this result, what is $\partial J/\partial \hat{y}$? [1 marks] (c) What is $\partial \hat{y}^{(i)}/\partial z_2$? Refer to this result as $\partial_2^{(i)}$. [1 marks] (d) What is $\partial z_2/\partial a_1$? Refer to this result as $\partial_2^{(i)}$. [1 marks] (e) What is $\partial a_1/\partial z_1$? Refer to this result as $\partial_{a}^{(i)}$. [1 marks] (f) What is $\partial z_1/\partial W_1$? Refer to this result as $\partial_5^{(i)}$. [1 marks] (g) What is $\partial J/\partial W_1$? [2 marks] Based on the given information, answer the following questions: (a) What are the shapes of W_1 , b_1 , W_2 , b_2 ? If we were vectorizing this network across multiple examples, what would the shapes of the weights/biases be instead? If we were vectorizing across multiple examples, what would the shapes of X and Y be instead? [2 marks] (b) What is $\partial J/\partial \hat{y}^{(i)}$? Refer to this result as $\partial_1^{(i)}$. Using this result, what is $\partial J/\partial \hat{y}$? [1 marks] (c) What is $\partial \hat{y}^{(i)}/\partial z_2$? Refer to this result as $\partial_2^{(i)}$. [1 marks] (d) What is $\partial z_2/\partial a_1$? Refer to this result as $\partial_3^{(i)}$. [1 marks] (e) What is $\partial a_1/\partial z_1$? Refer to this result as $\partial_A^{(i)}$. [1 marks] (f) What is $\partial z_1/\partial W_1$? Refer to this result as $\partial_5^{(i)}$. [1 marks] (g) What is $\partial J/\partial W_1$? [2 marks] Based on the given information, answer the following questions: (a) What are the shapes of W_1 , b_1 , W_2 , b_2 ? If we were vectorizing this network across multiple examples, what would the shapes of the weights/biases be instead? If we were vectorizing across multiple examples, what would the shapes of X and Y be instead? [2 marks] (b) What is $\partial J/\partial \hat{y}^{(i)}$? Refer to this result as $\partial_1^{(i)}$. Using this result, what is $\partial J/\partial \hat{y}$? [1 marks] (c) What is $\partial \hat{y}^{(i)}/\partial z_2$? Refer to this result as $\partial_2^{(i)}$. [1 marks] (d) What is $\partial z_2/\partial a_1$? Refer to this result as $\partial_3^{(i)}$. [1 marks] (e) What is $\partial a_1/\partial z_1$? Refer to this result as $\partial_A^{(i)}$. [1 marks]

[1 marks]

2 marks

(f) What is $\partial z_1/\partial W_1$? Refer to this result as $\partial_{5}^{(i)}$.

(g) What is $\partial J/\partial W_1$?