Identifying active faults in Switzerland using relocated earthquake catalogs and optimal anisotropic dynamic clustering

Identifying active faults in Switzerland using relocated earthquake catalogs and optimal anisotropic dynamic clustering

Wagner M.¹, Wang Y.¹, Husen S.¹, Wössner J.¹, Kissling E.², Ouillon G.³, Giardini D.¹, and Sornette D.⁴

¹Swiss Seismological Service, ETH Zurich, Switzerland

²Institute of Geophysics, ETH Zurich, Switzerland

³Lithophsy, Nice, France

⁴Department of Management, Technology, and Economics, ETH Zurich, Switzerland

Motivation

General interest: Linking faults and earthquakes

→ e.g. for hazard assessment

Motivation (cont.)

3D optimal anisotropic dynamic clustering (OADC) method

(Ouillon et al., 2008)

- 1992 Landers, California, aftershock sequence
- Method is able to reconstruct planar structures (faults) from seismicity
- Limitations!
 - → Single point for hypocenter location
 - → Stopping criterion based on a priori, isotropic location uncertainties of earthquakes

Motivation (cont.)

Approach used in this study

Method I

3D probabilistic, non-linear earthquake hypocenter location

- Posteriori probability density function (PDF):
 Representation of the probabilistic solution to the location problem, including complete information on uncertainties (Tarantola and Valette, 1982)
- Probabilistic, non-linear, global-search earthquake location in 3D media (NonLinLoc, A. Lomax, http://alomax.free.fr/nlloc/)
- Oct-tree importance sampling algorithm to compute PDF in 3D

Method I (cont.)

Two example PDFs

Method II

Traditional OADC method

- Based on k means clustering
- Assignment of earthquakes (single points) to planes by their distance
- Clustering stops when thickness of plane is smaller than a priori, isotropic location uncertainties of earthquakes

Method II (cont.)

Improved OADC method

 Distance of earthquake to plane is now based on points of the density scatter

cloud (not just single point)

 Dynamic stopping criteria based on individual location uncertainties projected onto plane normal direction

Results

Synthetic test with a real station geometry

- Projection of events on one vertical fault plane
- Calculation of synthetic travel times including Gaussian noise

Synthetic test with a real station geometry

Relocation of events using the same velocity model (3D)

Traditional OADC

- stopping criterion: 0.50 km (smaller than real error)
- 3 fault planes (instead of 1)

- used for clustering
- not used for clustering

Traditional OADC

- stopping criterion: 0.70 km
- 1 fault plane

- used for clustering
- not used for clustering

Improved OADC

- stopping criterion: 0.68 km
- 1 fault plane

- used for clustering
- not used for clustering

Conclusions

- The traditional OADC method was improved by including location uncertainties
- Clustering results are sensitive to location uncertainties
- Clustering is not meaningful without information on realistic location uncertainties
- 3D probabilistic, non-linear earthquake hypocenter location yields the required location uncertainties (PDF) as needed for clustering

Outlook

- Parameter studies of the improved OADC method with synthetic data
- Application of the method to real data in Switzerland
- Interpretation of the results including information from other geophysical methods (seismotectonics, ...)

Thank you!