

FIG.1A

MATCH WITH FIG. 1A

241	AAGCTATTCTCTTTCACCAAGTACTTTCTCAAGATTGAGAAGAACGGGAAGGTCAGCGGG											300									
	TTC	GAT	AAG	AGA	AAG	TGG	TTC	ATG	ΑΑΑ	GAG	TTC	TAA	CTC	TTC	TTG	CCĊ	TTC	CAG	TCG	CCC	000
	Κ	L	F	S	F	T	K	Υ	F	L	K	I	E	K	N	G	K	٧	S	G	
201	ACC					TGC	CCG	TAC	AGC	ATC	CTG	GAG	ATA	ACA	TCA	GTA	GAA	ATC	GGA	GTT	360
301	TGGTTCTTCCTCTTGACGGGCATGTCGTAGGACCTCTATTGTAGTCATCTTTAGCCTCAA										300										
	T	K	K	Ε	N	С	Р	Y	S	I	L	E	I	T	S	٧	Ε	I	G	٧	
261	GTT	GCC	GTC	; A AA	\GCC	TTA:	AAC	AGC	AAC	TAT	TAC	ATT	.GCC	ATG	AAC	AA G	AAG	GGG		CTC	420
361	CAACGGCAGTTTCGGTAATTGTCGTTGATAATGAATCGGTACTTGTTCTTCCCCTTTGAG									420											
,	٧	Α	٧	K	Α	I	N	S	N	Υ	Y	L	Α	М	N	K	K	G	K	L	
421	TAT	GGC	TCA	AAA	GAA	TTT	AAC	AAT	GAC	TGT	AAG	CTG	AAG	GAG	AGG	ATA	GAG	GAA	AAT	GGA	480
	ATA	CCG	AGT	+ TTT	СТТ	AAA	TTG	TTA	CTG	ACA	TTC	GAC	TTC	CTC	TCC	TAT	CTC	CTT	TTA	CCT	460
	Y	G	S	K	Ε	F	N	N	D	С	K.	L	K	Ε	R	I	Ε	Ε	N	G	
MATC	H W]	TH	FIG	i. 1	lC																

FIG.1B

MATCH WITH FIG. 1B

FIG.1C

	1				50
FGF4	MS.GPGTAAV	ALLPAVLLAL	LA	. PWAGRGGAA	APTAPNGTLE
FGF6	MSRGAGRLQG	TLWALVFLGI	LV	.GMVVPSPAG	TR.ANNTLLD
FGF5	MSL	SFLLLLFFSH	LILSAWAHGE	${\tt KRLAPKGQPG}$	PAATDRNPIG
FGF1				• • • • • • • •	• • • • • • • • •
FGF2				• • • • • • • • •	• • • • • • • • •
FGF9				MAPLGEVG	NYFGVQDAVP
FGF7		MHKW	ILTWILPTLL	YRSCF	HIICLVGTIS
KGF2		 MWKW	<i>ILTHCASAFP</i>	HLPGCCCCCF	LLLF LV SSVP
FGF3				MGL	IWLLLLSLLE
FGF8	MGSPRSALSC	LLLHLLVLCL	QAQVRSAAQK	RGPGAGNPAD	TLGQGHEDRP
•					
					100
	51			************	
FGF4		VALSLARLPV			
FGF6		LSRSRAGLAG			
FGF5		MSSSSASSSP		· ·	SPSGRRT
FGF1	MAEG	EITTFTALTE	KFNLPPG		YKKP
FGF2	MAAG	SITTLPALPE	DGGSGAFPPG	H	FKDP
FGF9	FGNVPVLPVD	SPVLLSDHLG	QSEAGGLPRG	PAVTDLDH	LKGILRR
FGF7	LACNDMTPEQ	MATNVNC	SSPE	RHTRSYDY	MEGGDIR
KGF2		VSPEATNSSS		RHVRSYNH	\dots LQ.GDVR
FGF3	PGWPAAGPGA			GRGGVYEH	L.GGAPR
FGF8	FGQRSRAGKN	FTNPAPNYPE	EGSKEQRDSV	LPKVTQRHVR	EQSLVTDQLS

FIG.2A

MATCH WITH FIG. 2B

MATCH WITH FIG. 2A

101

FGF4	RRLYC NVGIGFHLQA LPDGRIGGAH ADT.RDSLLE LSPVERGV.V
FGF6	RRLYC NVGIGFHLQV LPDGRISGTH EEN.PYSLLE ISTVERGV.V
FGF5	GSLYC RVGIGFHLQI YPDGKVNGSH EAN.MLSVLE IFAVSQGI.V
FGF1	KLLYC SNG.GHFLRI LPDGTVDGTR DRSDQHIQLQ LSAESVGE.V
FGF2	KRLYC KNG.GFFLRI HPDGRVDGVR EKSDPHIKLQ LQAEERGV.V
FGF9	RQLYC R.T.GFHLEI FPNGTIQGTR KDHSRFGILE FISIAVGL.V
FGF7	VRRLF CRT.QWYLRI DKRGKVKGTQ EMKNNYNIME IRTVAVGI.V
KGF2	WRKLF SFT.KYFLKI EKNGKVSGTK KENCPYSILE ITSVEIGV.V
FGF3	RRKLY CAT.KYHLQL HPSGRVNGSL .ENSAYSILE ITAVEVGI.V
FGF8	RRLIRTYQLY SRTSGKHVQV LANKRINAMA EDGDPFAKLI VETDTFGSRV
	151 200
FGF4	SIFGVASRFF VAMSSKGKLY G.SPFFTDEC TFKEILLPNN YNAYESYKYP
FGF6	SLFGVRSALF VAMNSKGRLY A. TPSFQEEC KFRETLLPNN YNAYESDLYQ
FGF5	GIRGVFSNKF LAMSKKGKLH A.SAKFTDDC KFRERFQENS YNTYASAIHR
FGF1	YIKSTETGQY LAMDTDGLLY G.SQTPNEEC LFLERLEENH YNTYISKKH.
FGF2	SIKGVCANRY LAMKEDGRLL A.SKCVTDEC FFFERLESNN YNTYRSRKY.
FGF9	SIRGVDSGLY LGMNEKGELY G.SEKLTQEC VFREQFEENW YNTYSSNLYK
FGF7	AIKGVESEFY LAMNKEGKLY A.KKECNEDC NFKELILENH YNTYAS
KGF2	AVKAINSNYY LAMNKKGKLY G.SKEFNNDC KLKERIEENG YNTYAS
FGF3	AIRGLFSGRY LAMNKRGRLY A.SEHYSAEC EFVERIHELG YNTYASRLYR
FGF8	RVRGAETGLY ICMNKKGKLI AKSNGKGKDC VFTEIVLENN YTALQNAKY.

150

MATCH WITH FIG. 2C

FIG.2B

MATCH WITH FIG. 2B

	201	-			250
FGF4		GMFI	ALSKNGKTKK	GNRVSPTM	KVTHFLPRL.
FGF6		GTYI	ALSKYGRVKR	GSKVSPIM	TVTHFLPRI.
FGF5		TEKTGREWYV	ALNKRGKAKR	G CSPRVKPQH	ISTHFLPRFK
FGF1		AEKNWFV	GLKKNGSCKR	GPRTHYGQ	KAILFLPLPV
FGF2		TSWYV	ALKRTGQYKL	GSKTGPGQ	KAILFLPMSA
FGF9	HV	DTGRRYYV	ALNKDGTPRE	GTRTKRHQ	KFTH FLP RP V
FGF7	AKW	THNGGEM.FV	ALNQKGIPVR	GKKTKKEQ	KTAHFLPMAI
KGF2				G QKTRRKN	
FGF3				GFKTRRTQ	
FGF8		· -		G SKTRQHQ	
	251				300
	251		·		300
FGF4	251				-
FGF4 FGF6					
				APRKNTNSVK	
FGF6					
FGF6 FGF5	QSEQPELSFT	VTVPEKKNPP	SPIKSKIPLS	APRKNTNSVK	
FGF6 FGF5 FGF1	QSEQPELSFT SSD	VTVPEKKNPP	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2	QSEQPELSFT SSD	VTVPEKKNPP	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9 FGF7	QSEQPELSFT SSD KS	VTVPEKKNPP	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9 FGF7	QSEQPELSFT SSD KS DPDKVPELYK T	VTVPEKKNPP DILSQS	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9 FGF7 KGF2 FGF3	QSEQPELSFT SSD KS DPDKVPELYK T HS	VTVPEKKNPP DILSQS LQSGLPRPPG	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG
FGF6 FGF5 FGF1 FGF2 FGF9 FGF7	QSEQPELSFT SSD KS DPDKVPELYK T HS	VTVPEKKNPP DILSQS LQSGLPRPPG	SPIKSKIPLS	APRKNTNSVK	YRLKFRFG

MATCH WITH FIG. 2D

FIG.2C

MATCH WITH FIG. 2C

	301				
FGF4					
FGF6					
FGF5					
FGF1					
FGF2					
FGF9					
FGF7					
KGF2					
FGF3	LEASAH				
FGF8					

FIG.2D

GGAATTCCGG GAAGAGAGGG AAGAAAACAA CGGCGACTGG GCAGCTGCCT CCACTTCTGA	60
CAACTCCAAA GGGATATACT TGTAGAAGTG GCTCGCAGGC TGGGGCTCCG CAGAGAGAGA	120
CCAGAAGGTG CCAACCGCAG AGGGGTGCAG ATATCTCCCC CTATTCCCCA CCCCACCTCC	180
CTTGGGTTTT GTTCACCGTG CTGTCATCTG TTTTTCAGAC CTTTTTGGCA TCTAACATGG	240
TGAAGAAAGG AGTAAAGAAG AGAACAAAGT AACTCCTGGG GGAGCGAAGA GCGCTGGTGA	300
CCAACACCAC CAACGCCACC ACCAGCTCCT GCTGCTGCGG CCACCCACGT CCACCATTTA	360
CCGGGAGGCT CCAGAGGCGT AGGCAGCGGA TCCGAGAAAG GAGCGAGGGG AGTCAGCCGG	420
CTTTTCCGAG GAGTTATGGA TGTTGGTGCA TTCACTTCTG GCCAGATCCG CGCCCAGAGG	480
GAGCTAACCA GCAGCCACCA CCTCGAGCTC TCTCCTTGCC TTGCATCGGG TCTTACCCTT	540
CCAGTATGTT CCTTCTGATG AGACAATTTC CAGTGCCGAG AGTTTCAGTA CA ATG Met	595
TGG AAA TGG ATA CTG ACA CAT TGT GCC TCA GCC TTT CCC CAC CTG CCC Trp Lys Trp Ile Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro	643
GGC TGC TGC TGC TGC TTT TTG TTG CTG TTC TTG GTG TCT TCC GTC Gly Cys Cys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser Val	691
CCT GTC ACC TGC CAA GCC CTT GGT CAG GAC ATG GTG TCA CCA GAG GCC Pro Val Thr Cys Gln Ala Leu Gly Gln Asp Met Val Ser Pro Glu Ala	739
ACC AAC TCT TCT TCC TCC TCC TCC TCT CCT TCC AGC GCG GGA AGG Thr Asn Ser Ser Ser Ser Phe Ser Ser Pro Ser Ser Ala Gly Arg	787
CAT GTG CGG AGC TAC AAT CAC CTT CAA GGA GAT GTC CGC TGG AGA AAG His Val Arg Ser Tyr Asn His Leu Gln Gly Asp Val Arg Trp Arg Lys	835
CTA TTC TCT TTC ACC AAG TAC TTT CTC AAG ATT GAG AAG AAC GGG AAG Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys Ile Glu Lys Asn Gly Lys	883
GTC AGC GGG ACC AAG AAG GAG AAC TGC CCG TAC AGC ATC CTG GAG ATA Val Ser Gly Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile	931
ACA TCA GTA GAA ATC GGA GTT GTT GCC GTC AAA GCC ATT AAC AGC AAC Thr Ser Val Glu Ile Gly Val Val Ala Val Lys Ala Ile Asn Ser Asn	979
TAT TAC TTA GCC ATG AAC AAG AAG GGG AAA CTC TAT GGC TCA AAA GAA Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu Tyr Gly Ser Lys Glu	1027
TTT AAC AAT GAC TGT AAG CTG AAG GAG AGG ATA GAG GAA AAT GGA TAC Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly Tyr	1075

AAT ACC TAT GCA TCA TTT AAC TGG CAG CAT AAT GGG AGG CAA ATG TAT Asn Thr Tyr Ala Ser Phe Asn Trp Gln His Asn Gly Arg Gln Met Tyr	1123
GTG GCA TTG AAT GGA AAA GGA GCT CCA AGG AGA GGA CAG AAA ACA CGA Val Ala Leu Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg	1171
AGG AAA AAC ACC TCT GCT CAC TTT CTT CCA ATG GTG GTA CAC TCA Arg Lys Asn Thr Ser Ala His Phe Leu Pro Met Val Val His Ser	1216
TAGAGGAAGG CAACGTTTGT GGATGCAGTA AAACCAATGG CTCTTTTGCC AAGAATAGTG	1276
GATATTCTTC ATGAAGACAG TAGATTGAAA GGCAAAGACA CGTTGCAGAT GTCTGCTTGC	1336
TTAAAAGAAA GCCAGCCTTT GAAGGTTTTT GTATTCACTG CTGACATATG ATGTTCTTTT	1396
AATTAGTTCT GTGTCATGTC TTATAATCAA GATATAGGCA GATCGAATGG GATAGAAGTT	1456
ATTCCCAAGT GAAAAACATT GTGGCTGGGT TTTTTGTTGT TGTTGTCAAG TTTTTGTTTT	1516
TAAACCTCTG AGATAGAACT TAAAGGACAT AGAACAATCT GTTGAAAGAA CGATCTTCGG	1576
GAAAGTTATT TATGGAATAC GAACTCATAT CAAAGACTTC ATTGCTCATT CAAGCCTAAT	1636
GAATCAATGA ACAGTAATAC GTGCAAGCAT TTACTGGAAA GCACTTGGGT CATATCATAT	1696
GCACAACCAA AGGAGTTCTG GATGTGGTCT CATGGAATAA TTGAATAGAA TTTAAAAATA	1756
TAAACATGTT AGTGTGAAAC TGTTCTAACA ATACAAATAG TATGGTATGC TTGTGCATTC	1816
TGCCTTCATC CCTTTCTATT TCTTTCTAAG TTATTTATTT AATAGGATGT TAAATATCTT	1876
TTGGGGTTTT AAAGAGTATC TCAGCAGCTG TCTTCTGATT TATCTTTTCT TTTTATTCAG	1936
CACACCACAT GCATGTTCAC GACAAAGTGT TTTTAAAACT TGGCGAACAC TTCAAAAATA	1996
GGAGTTGGGA T:TAGGGAAGC AGTATGAGTG CCCGTGTGCT ATCAGTTGAC TTAATTTGCA	2056
CTTCTGCAGT AATAACCATC AACAATAAAT ATGGCAATGC TGTGCCATGG CTTGAGTGAG	2116
AGATGTCTGC TATCATTTGA AAACATATAT TACTCTCGAG GCTTCCTGTC TCAAGAAATA	2176
GACCAGAAGG CCAAATTCTT CTCTTTCAAT ACATCAGTTT GCCTCCAAGA ATATACTAAA	2236
AAAAGGAAAA TTAATTGCTA AATACATTTA AATAGCCTAG CCTCATTATT TACTCATGAT	2296
TTCTTGCCAA ATGTCATGGC GGTAAAGAGG CTGTCCACAT CTCTAAAAAC CCTCTGTAAA	2356
TTCCACATAA TGCATCTTTC CCAAAGGAAC TATAAAGAAT TTGGTATGAA GCGCAACTCT	2416

CCCAGGGGCT TAAACTGAGC A	AVATCAAATA	TATACTGGTA	TATGTGTAAC	CATATACAAA	2476
AACCTGTTCT AGCTGTATGA T	TCTAGTCTTT	ACAAAACCAA	ATAAAACTTG	TTTTCTGTAA	2536
ATTTAAAGAG CTTTACAAGG T	FTCCATAATG	TAACCATATC	AAAATTCATT	TTGTTAGAGC	2596
ACGTATAGAA AAGAGTACAT A	AAGAGTTTAC	CAATCATCAT	CACATTGTAT	TCCACTAAAT	2656
AAATACATAA GCCTTATTTG (CAGTGTCTGT	AGTGATTTTA	AAAATGTAGA	AAAATACTAT	2716
TTGTTCTAAA TACTTTTAAG (CAATAACTAT	AATAGTATAT	TGATGCTGCA	GTTTTATCTT	2776
CATATTTCTT GTTTTGAAAA A	AGCATTTTAT	TGTTTGGACA	CAGTATTTTG	GTACAAAAAA	2836
AAAGACTCAC TAAATGTGTC	TTACTAAAGT	TTAACCTTTG	GAAATGCTGG	CGTTCTGTGA	2896
TTCTCCAACA AACTTATTTG	TGTCAATACT	TAACCAGCAC	TTCCAGTTAA	TCTGTTATTT	2956
TTAAAAATTG CTTTATTAAG A	44ATTTTTTG	TATAATCCCA	TAAAAGGTCA	TATTTTTCCC	3016
ATTCTTCAAA AAAACTGTAT 1	TTCAGAAGAA	ACACATTTGA	GGCACTGTCT	TTTGGCTTAT	3076
AGTTTAAATT GCATTTCATC A	ATACTTTGCT	TCCAACTTGC	TTTTTGGCAA	ATGAGATTAT	3136
AAAAATGTTT AATTTTTGTG (GTTGGAATCT	GGATGTTAAA	ATTTAATTGG	TAACTCAGTC	3196
TGTGAGCTAT AATGTAATGC A	ATTCCTATCC	AAACTAGGTA	TCTTTTTTTC	CTTTATGTTG	3256
AAATAATAAT GGCACCTGAC A	ACATAGACAT	AGACCACCCA	CAACCTAAAT	TAAATGTTTG	3316
GTAAGACAAA TACACATTGG A	ATGACCACAG	TAACAGCAAA	CAGGGCACAA	ACTGGATTCT	3376
TATTTCACAT AGACATTTAG	ATTACTAA AG	AGGGCTATGT	GTAAACAGTC	ATCATTATAG	3436
TACTCAAGAC ACTAAAACAG	CTTCTAGCCA	AATATATTAA	AGCTTGCAGA	GGCCAAAAAT	3496
AGAAAACATC TCCCCTGTCT (CTCCCACATT	TCCCTCACAG	AAAGACAAAA	AACCTGCCTG	3556
GTGCAGTAGC TCACACCTGT	AATCCCAGCA	GTTTGGGAGA	CTGTGGGAAG	ATGGCTTGAG	3616
TCCAGGAGTT CTAGACAGGC	CTGAGAAACC	TAGTGAGACA	TCCTTCTCTT	AAACAAAACA	3676
AAACAAAACA AATGTAGCCA	TGCGTGGTGG	CATATACCTG	TGGTCCCAAC	TACTCAGGAG	3736
GCTGAAACGG AAGGATCTCT	TGGGCCCCAG	GAGTTTGAGG	CTGCAGTGAG	CTATAATCTT	3796
GCCATTGCAC TCCAGCCTGG	GTGAAAAAGA	GCCAGAAAGA	AAGGAAAGAG	AGAAAAGAGA	3856
AAAGAAAGAG AGAAAAGACA	GAAAGACAGG	AAGGAAGGAA	GGAAGGAAGG	AAGGAAGGAA	3916
GGAAGCAAGG AAAGAAGGAA	GGAAGGAAAG	AAGGGAGGA	AGGAAGGAGA	GAGAAAGAAA	3976
GATTGTTTGG TAAGGAGTAA	TGACATTCTC	TTGCATTTAA	AAGTGGCATA	TTTGCTTGAA	4036

ATGGAAATAG AATTCTGGTC CCTTTTGCAA CTACTGAAGA AAAAAAAAG CAGTTTCAGC 4096
CCTGAATGTT GTAGATTTGA AAAAAAAAAA AAAAAAACTC GAGGGGGGC CCGTACCCAA 4156
TTCGCCCTAT AGTGAGTCGT A 4177

FIG.3D

FIG.5

FIG.6

FIG.7

FIG.8

1-3 MINIMAL CELL ACCUMULATION, NO GRANULATION 4-6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES 10-12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.9

1-3 MINIMAL CELL ACCUMULATION, NO GRANULATION 4-6 IMMATURE GRANULATION, INFLAMMATORY CELLS, CAPILLARIES 7-9 GRANULATION TISSUE, CELLS, FIBROBLASTS, NEW EPITHELIUM 10-12 FIBROBLASTS, COLLAGEN, EPITHELIUM

FIG.10

ANTI-CYTOKERATIN IMMUNOSTAINING 0-NO CLOSURE 5-SLIGHT TO MODERATE CLOSURE 10-COMPLETE CLOSURE

FIG.11

ANTI-CYTOKERATIN IMMUNOSTAINING 0-NO CLOSURE 5-SLIGHT TO MODERATE CLOSURE 10-COMPLETE CLOSURE

FIG.12

PCNA SCORING 0-2 SLIGHT PROLIFERATION 3-5 MODERATE PROLIFERATION 6-8 INTENSE PROLIFERATION

FIG.13

PCNA SCORING
0-2 SLIGHT PROLIFERATION
3-5 MODERATE PROLIFERATION
6-8 INTENSE PROLIFERATION

FIG.14

ATGAGAGGATCGCATCACCATCACCATCACGGATCCTGCCAGGCTCTGGGTC
AGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCTTCCTCTTTCTCTTCCC
CGTCTTCCGCTGGTCGTCACGTTCGTTCTTACAACCACCTGCAGGGTGACGTTC
GTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAA
AACGGTAAAGTTTCTGGGACCAAGAAGGAGGAGAACTGCCCGTACAGCATCCTG
GAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAG
CAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAG
AATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAAAAATGGAT
ACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGAAAATGTAT
GTGGCATTGAaTGGAAAAAGGAGCTCCAaGGAGAGAAAACACCGAAG
GAAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

MRGSHHHHHHGSCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGD VRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSN YYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA LNGKGAPRRGQKTRRKNTSAHFLPMVVHS

kgf-2 synthetic cys37 Bam HI AAAGGATCCTGCCAGGCTCTGGGTCAGGACATG

FIG.15

DAY 8 POSTWOUNDING

FIG.16

GLUCOCORTICOID TREATED ANIMALS

FIG.17

FIG.18

FIG.19A

DAY 10 POSTWOUNDING FIG. 19B

GLUCOCORTICOID TREATED GROUP

FIG.20

FIG.22A

HEST AVAILABLE COPY

FIG. 22A-1

FIG.22B

BEST AVAILABLE COPY

ATGTGGAAATGGATACTGACCCACTGCGCTTCTGCTTTCCCGCACCTGCCGGGTTGCTGC Met Trp Lys Trp IIe Leu Thr His Cys Ala Ser Ala Phe Pro His Leu Pro Gly Cys Cys	60
TGCTGCTGCTTCCTGCTGTTCCTGGTTTCTTCTGTTCCGGTTACCTGCCAGGCTCTG Cys Cys Cys Phe Leu Leu Phe Leu Val Ser Ser Val Pro Val Thr Cys Gin Ala Leu	120
GGTCAGGACATGGTTTCTCCGGAAGCTACCAACTCTTCCTCTTCCTCTTTCTCTCCCCG Gly Gln Asp Met Val Ser Pro Glu Ala Thr Asn Ser Ser Ser Ser Phe Ser Ser Pro	180
ACTTCCGCTGGTCGTCACGTTCGTTCTTACAACCACCTGCAGGGTGACGTTCGTT	240
AAACTGTTCTCTTTCACCAAATACTTCCTGAAAAATCGAAAAAAACGGTAAAGTTTCTGGG Lys Leu Phe Ser Phe Thr Lys Tyr Phe Leu Lys IIe Glu Lys Asn Gly Lys Val Ser Gly	300
ACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTT Thr Lys Lys Glu Asn Cys Pro Tyr Ser Ile Leu Glu Ile Thr Ser Val Glu Ile Gly Val	
GTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTC Val Ala Val Lys Ala Ile Asn Ser Asn Tyr Tyr Leu Ala Met Asn Lys Lys Gly Lys Leu	
TATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGGAGGATAGAGGAAAATGGA Tyr Gly Ser Lys Glu Phe Asn Asn Asp Cys Lys Leu Lys Glu Arg Ile Glu Glu Asn Gly	
TACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTATGT	540
AATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCTCTGCTCAC Asn Gly Lys Gly Ala Pro Arg Arg Gly Gln Lys Thr Arg Arg Lys Asn Thr Ser Ala His	
TTTCTTCCAATGGTGGTACACTCATAG 627 Phe Leu Pro Met Val Val His Ser *	

MetThrCysGlnAlaLeuGlyGlnAspMetValSerProGluAlaThrAsnSerSerSer	60
TCCTCTTTCTCTCCCCGTCTTCCGCTGGTCGTCACGTTCGTT	120
GGTGACGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAAATCGAAAAAA GlyAspValArgTrpArgLysLeuPheSerPheThrLysTyrPheLeuLysIleGluLys	180
AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATAACA AsnGlyLysValSerGlyThrLysLysGluAsnCysProTyrSerIleLeuGluIleThr	240
TCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATG SerValGluIleGlyValValAlaValLysAlaIleAsnSerAsnTyrTyrLeuAlaMet	300
AACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAG AsnLysLysGlyLysLeuTyrGlySerLysGluPheAsnAsnAspCysLysLeuLysGlu	360
AGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG ArgIleGluGluAsnGlyTyrAsnThrTyrAlaSerPheAsnTrpGlnHisAsnGlyArg	420
CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGACAGAAAACACGAAGG GlnMetTyrValAlaLeuAsnGlyLysGlyAlaProArgArgGlyGlnLysThrArgArg	480
AAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG 525 LysAsnThrSerAlaHisPheLeuProMetValValHisSer *	

FIG.24A

ATGACTTGCCAGGCACTGGGTCAAGACATGGTTTCCCCGGAAGCTACCAACAGCTCCAGCTCTAGCTTCA	70
GCAGCCCATCTAGCGCAGGTCGTCACGTTCGCTCTTACAACCACTTACAGGGTGATGTTCGTTGGCGCAA +++++++++++++++++++++++++++++++	140
ACTGTTCAGCTTTACCAAGTACTTCCTGAAAATCGAAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAG ++++ ++++++++++++++++++++++++	210
AACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACA HILLIAG HILLIA	280
GCAACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAA +++++ ++++ ++++ ++++ ++++ ++++ ++++	350
GCTGAAGGAGAGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGG CGACTTCCTCTCCTATCTCCTTTTACCTATGTTATGGATACGTAGTAAATTGACCGTCGTATTACCCTCC L K E R I E E N G Y N T Y A S F N W Q H N G R	420
CAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGGACAGAAAACACGAAGGAAAAACACCT HHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	490
CTGCTCACTTTCTTCCAATGGTGGTACACTCATAG HILLIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIH	

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL KERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.25

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGV VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVA LNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

ATGGTTCGTTGGCGTAAACTGTTCTCTTTCACCAAATACTTCCTGAAAATCGAAAAA AACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCATCCTGGAGATA ACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCAACTATTACTTA GCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAAG CTGAAGGAGAGGATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAG CATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGAACACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCA TAG

MVRWRKLFSFTKYFLKIEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAM NKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTR RKNTSAHFLPMVVHS.

FIG.27

ATGGAAAAAACGGTAAAGTTTCTGGGACCAAGAAGGAGAACTGCCCGTACAGCAT CCTGGAGATAACATCAGTAGAAATCGGAGTTGTTGCCGTCAAAGCCATTAACAGCA ACTATTACTTAGCCATGAACAAGAAGGGGAAACTCTATGGCTCAAAAGAATTTAAC AATGACTGTAAGCTGAAGGAGGAGAGAAAATGGATACAATACCTATGCATC ATTTAACTGGCAGCATAATGGGAGGCAAATGTATGTGGCATTGAATGGAAAAGGAG CTCCAAGGAGAGACAGAAAACACGAAGGAAAAACACCTCTGCTCACTTTCTTCCA ATGGTGGTACACTCATAG

MEKNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDC KLKERIEENGYNTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVH S.

ATGGAGAACTGCCCGTACAGCATCCTGGAGATAACATCAGTAGAAATCGGAGTTGT TGCCGTCAAAGCCATTAACAGCAACTATTACTTAGCCATGAACAAGAAGGGGAAAC TCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGAGGATAGAGGAA AATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGAGGCAAATGTA TGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGAGAAAACACGAAGGAAAA ACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

 $\label{thm:lemonth} {\tt MENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGY} \\ {\tt NTYASFNWQHNGRQMYVALNGKGAPRRGQKTRRKNTSAHFLPMVVHS}.$

FIG.29

MVKAINSNYYLAMNKKGKLYGSKEFNNDCKLKERIEENGYNTYASFNWQHNGRQMY VALNGKGAPRRGQKTRRKNTSAHFLPMVVHS.

FIG.30

ATGGGGAAACTCTATGGCTCAAAAGAATTTAACAATGACTGTAAGCTGAAGGAGAG GATAGAGGAAAATGGATACAATACCTATGCATCATTTAACTGGCAGCATAATGGGA GGCAAATGTATGTGGCATTGAATGGAAAAGGAGCTCCAAGGAGAGACAGAAAACA CGAAGGAAAAACACCTCTGCTCACTTTCTTCCAATGGTGGTACACTCATAG

 $\label{lem:marklygskefnndcklkerieengyntyasfnwqhngrqmyvalngkgaprrgqktrkntsahflpmvvhs.$

MTCQALGQDMVSPEATNSSSSSFSSPSSAGRHVRSYNHLQGDVRWRKLFSFTKYFLKIE KNGKVSGTKKENCPYSILEITSVEIGVVAVKAINSNYYLAMNKKGKLYGSKEFNNDCKL K

FIG.32

MAGRHVRSYNHLQGDVRWRKLFSFTKYFLKTEKNGKVSGTKKENCPYSILEITSVEIGV VAVKAINSNYYLAMNKKGKLYGSKEFNNDCKLK

C-37 To Ser

FIG.34

C-106 To Ser

Appl. No. 09/345,373 Amdt. Dated Sept. 27, 2004 Response to PTO-948 of Nov. 15, 2001 Replacement Sheet

=0.0217† 3.3±0.25 5.3±0.9 3.8±0.4 5.0±0.4 4.6±0.7 4.2±0.7 BrdU SCORE =0.0074[†] p=0.0254 1275±148 389±115 1310±182 1220年89 RE-EPITH. 1142+141 923±61 EFFECT OF KGF-2 A33 ON NORMAL WOUND HEALING RAT MODEL p=0.0159* p=0.0053† **HISTOLOGICAL** 8.0±0.5 p=0.0445* =0.0047 8.4±0.4 6.8±0.2 6.8 ± 0.2 6.4±0.2 8.5±0.3 SCORE p=0.0217 † p=0.0367*% WOUND CLOSURE 71.2±2.6 58.8±3.7 60.2±2.6 66.2±2.1 68.4±2.4 65±1.4 18.1±1.6 p=0.0398* p=0.0200† **WOUND SIZE** 19.9土1.5 25.1±1.7 25.9±2.5 22.0±0.9 21.1±1.4 $(0.4 \, \mu \, g)$ KGF-2/∆33 (0.1µg) NO TREATMENT **IREATMENT** GROUPS BUFFER

FIG.37

FIG.38

FIG.39

HOURS POST INJECTION

FIG.40

FIG.42B

FIG.46

DAY 8 POSTWOUNDING

FIG.47

FIG.48

FIG.49

FIG. 50

PROLIFERATION OF HEPATOCYTES FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

PROLIFERATION OF PANCREATIC CELLS FOLLOWING SYSTEMIC ADMINISTRATION OF KGF-2

PThis Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.