

Московский государственный технический университет радиотехники, электроники и автоматики

(МГТУ МИРЭА)

Институт высоких технологий

Кафедра «Теплофизические приборы и аппараты»

Дисциплина (модуль) «Информационные технологии

в АКТ»

Курсовая Работа

Тема: "Расчет параметров двигателя на квазистационарных режимах"

	Вариант №14	
		Выполнил студент группы ВТ7 - 120
		/ А.Л. Чукаева
тметка о защите		

Преподаватель каф. ВТ-7

_ / В.В. Кадомкин /

Курсовая работа

Тема: Расчет параметров двигателя на квазистационарных режимах

Цель работы: В данной работе выполняется расчет на ПЭВМ параметров рабочих процессов двигателя с заданной начальной формой заряда. По результатам расчетов определяется изменение во площади поверхности горения, давление в камере сгорания, параметры потока по длине сопла и изменение тяги двигателя во время работы РДТТ.

Общие положения и теоретические сведения

На стационарном режиме работы РДТТ в каждый момент времени устанавливается баланс между приходом продуктов сгорания от твердого топлива и расходом продуктов сгорания через сопло. Учитывая, что поверхность горения заряда ТТ (в общем случае) не остается величиной постоянной, то баланс массы для продуктов сгорания в газовом объеме КС должен описываться дифференциальным уравнением вида

$$\frac{dm}{dt} = \frac{d(\rho V_k)}{dt} = P_T - G_c \tag{1}$$

где масса продуктов сгорания в KC, плотность продуктов сгорания, свободный объем камеры сгорания, секундный массовый приход продуктов приходом продуктов сгорания от твердого топлива, расход продуктов через выходное сопло.

При запуске двигателя давление в камере сгорания постепенно нарастает до тех пор, пока не достигнет некоторого заданного уровня, что эквивалентно накоплению массы газа и энергии в газовой зоне камеры сгорания. Приход продуктов при запуске двигателя превышает расход продуктов сгорания через сопло и этому, в частности, способствует дополнительный приход продуктов сгорания при работе воспламенителя.

При выходе на стационарный режим приход и расход продуктов уравновешивают друг друга. Приход и расход продуктов сгорания будет в процессе работы двигателя изменяться в определенных пределах, на характерные времена установления режима в КС часто гораздо меньше характерных времен изменения параметров рабочего процесса. Это относится к основным режимам работы (стационарным или квазистационарным) и должно быть получено соотношение, позволяющее найти параметры для расчета стационарные режимы энергосистем.

Приход продуктов в камере сгорания определяется массой сгоревшего топлива за единицу времени:

$$P_t = V_q * \rho_T \tag{2}$$

$$V_g = S_g * u \tag{3}$$

$$P_t = \rho_T * S_q * u, \tag{4}$$

где объем сгоревшего топлива в единицу времени, плотность топлива, скорость горения ТТ.

Скорость химических реакций существенно зависит от давления. Из-за сложного механизма взаимодействия газовой и конденсированной зон, конкурирующих процессов тепло-массопереноса для описания процесса горения твердого топлива часто используют эмпирические законы для скорости горения. В частности, для зависимости скорости горения топлива от давления может быть использован степенной закон для скорости горения:

$$u = u_1 * (\frac{P_k}{P_1})^v = u(P_k) \tag{5}$$

где р1 – некоторый выбранный уровень давления, который является характерным для работы топлива данного типа.

В качестве уровня давления могут быть выбраны и стандартные условия для атмосферы, хотя при этих условиях топлива могут не гореть, и выполнятся просто перерасчет имеющихся данных о скорости горения к стандартным условиям.

$$u = u_{10} * \left(\frac{P_k}{P_0}\right)^v = u_1 * \left(\frac{P_k}{P_1}\right)^v \tag{6}$$

$$u_{10} = u_1 * \left(\frac{P_0}{P_1}\right)^v \tag{7}$$

Часто используют приведенные скорости горения к стандартным условиям, но при этом оговаривают диапазон применения соотношений по давлению. Уравнение прихода газа запишем

$$P_T = \rho * S_g * u_1 * \left(\frac{P_k}{P_0}\right)^v \tag{8}$$

Учитывая, что выходное сопло РДТТ после выхода двигателя на режим работает в режиме критическом или сверхкритическом режиме истечения, то расход продуктов через сопло определяется соотношением:

$$G_{nozzle} = \frac{P_k F_{kr}}{\beta} \tag{9}$$

где β - расходный комплекс (имеет размерность скорости и для топлив принимает значение порядка $1400-1800~\mathrm{m/c}$).

Учитывая, что выполняется баланс между приходом и расходом продуктов, получил

$$\rho_T * S_g * u_1 * \left(\frac{P_k}{P_0}\right)^v = \frac{P_k * F_{kr}}{\beta} \tag{10}$$

Из этого уравнения можем найти соотношение для расчета давления в камере сгорания рк, которое позволит по конструктивным параметрам энергосистемы и свойствам топлива найти параметры рабочего процесса на стационарных режимах.

Коэффициент в степенном законе горения может изменятся в диапазоне от 0 до 1. Большие значения ν соответствуют специальным топливам, используемых для в РДТТ с глубоким регулирования двигателя по тяге. Для обычных топлив ν принимает значения порядка 0,2...0,5. Выполняем необходимые преобразования в уравнении баланса расхода

$$P_k^{\nu} * \frac{\rho_T * S_g * u_1}{P_0^{\nu}} = \frac{P_k * F_{kr}}{\beta} \tag{11}$$

$$P_k^{\nu-1} * \frac{\rho_T * S_g * u_1 * \beta}{F_{kr} * P_0^{\nu}} \tag{12}$$

и получаем формулу Бори

$$P_k = \left(\frac{\rho_T * S_g * u_1 * \beta}{F_{kr} * P_0^{\nu}}\right)^{\frac{1}{1-\nu}} \tag{13}$$

Данное соотношение используется для определения основных параметров двигателя на расчетных режимах, для анализа возможностей регулирования двигателя, анализа возможных изменений параметров при нештатных режимах работы, оценок изменения параметров рабочих процессов в зависимости от технологических разбросов, по мере разгара критического сечения сопла и т.д..

Данные варианта:

Рис. №1: Форма заряда по варианту

N1	N2	N3	N4
Б	Б	В	A

Исходные данные

Таблица №2: Исходные данные

Parameter	Value	Dimension	Index	Designation	Size	SI					
Dimensions charge											
Length	1.500000	m	1	L10	1.500000	m					
	1	m	1	L20	1	m					
Diam	0.500000	m	1	D10	0.500000	m					
	0.250000	m	1	D20	0.250000	m					
	0.300000	m	1	D30	0.300000	m					
Data on fuel	and combu	stion product	s								
The burning rate	2.500000	$\mathrm{mm/s}$	0	u	0.002500	m/s					
The index rate	0.250000	-	1	ν	0.250000	-					
The base pressure for the unit speed	100000	Pascal	1	P_0	100000	Pascal					
Indicator isentrope combustion	1.220000	-	1	k	1.220000	-					
Calculated value of the pressure in the CC	14	MPascal	1000000	P_k	14000000	Pascal					
Estimated value of the pressure at the nozzle exit	20	kPascal	1000	P_a	20000	Pascal					
The temperature in the combustion chamber	3200	K	1	T_k	3200	K					
Molar Mass	34	mole	1	μ	34	mole					
The specific gas constant				R_{spec}	244.529412	J/(kg*K)					
Fuel Density	1650	${ m kg}/m^3$	1	ρ	1650	${ m kg}/m^3$					
The time step	0.120000	-	1	h	0.120000						
Consumables complex				β	1497.668067						
Critical speed of sound				A_{kr}	927.382650						
Throat area				F_{kr}	0.002322	m^2					
The diameter of the critical cross-section				D_{kr}	0.054371						
The geometry of the	subsonic par	rt of the nozz	le: conical								
Angle	50	grade		ϕ_1	0.872665	radians					
The geometry of the se	ipersonic pa	art of the noz	zle: conical			1					
Angle	20	grade		ϕ_2	0.349066	radians					

$The\ calculated\ data$

Table N^o3 : The calculated data

The diameter at the nozzle exit		O_a	0.305840	m
Cross-sectional area at the nozzle exit	I I	\vec{f}_a	0.073462	m^2
Area ratio	Fkr	:/Fa	0.031604	-
Maximum dimensionless speed	λ_n	nax	3.176619	-
The dimensionless speed		λ	2.703413	-
Speed at the nozzle exit	μ	'a	2507.098360	-
Gas-dynamic functions	π ((λ)	0.000789	-
Gas-dynamic functions	ε ((λ)	0.002863	-
Gas-dynamic functions	q((λ)	0.012438	-
The difference to the PI(lambda * a) - Pa / Pk			-0.000639	-
The difference to the qu(lambda * a) - Fkr $/$ Fa			-0.019166	-
The length of the subsonic part of the nozzle	L_t	bpn	0.186964	m
The length of the supersonic part of the nozzle	L_{c}	$_{ipn}$	0.345453	m

$Dimensioning\ for\ quasi-stationary\ mode$

Table N°3: The calculated data

														Table	N^o3 : Th	e calculate	d $data$
t	li	D_{20}	D ₃₀	L_{10}	L_{20}	L ₃₀	S_{10}	S_{20}	S_{30}	S_{40}	Sg	pk	G_c	pa	I_{spec}	Р	u_{Pk}
0.000000	0.000000	0.250000	0.300000	1.500000	1.000000	0.500000	0.785398	0.147262	0.471239	0.125664	1.529563	13999999	21.703177	11052.096871	2476.810843	53754.663032	0.008599
0.120000	0.001032	0.252064	0.302064	1.498968	0.998968	0.500000	0.791065	0.146448	0.474481	0.124688	1.536682	14086945	21.837961	11120.734564	2477.228675	54097.624375	0.008613
0.240000	0.002065	0.254131	0.304131	1.497935	0.997935	0.500000	0.796727	0.145627	0.477728	0.123704	1.543785	14173831	21.972655	11189.325650	2477.641103	54440.352836	0.008626
0.360000	0.003101	0.256201	0.306201	1.496899	0.996899	0.500000	0.802384	0.144797	0.480980	0.122711	1.550872	14260655	22.107251	11257.867335	2478.048213	54782.834457	0.008639
0.480000	0.004137	0.258275	0.308275	1.495863	0.995863	0.500000	0.808037	0.143959	0.484237	0.121711	1.557943	14347412	22.241745	11326.356833	2478.450091	55125.055317	0.008652
0.600000	0.005176	0.260351	0.310351	1.494824	0.994824	0.500000	0.813684	0.143113	0.487498	0.120702	1.564997	14434100	22.376131	11394.791364	2478.846822	55467.001521	0.008665
0.720000	0.006215	0.262431	0.312431	1.493785	0.993785	0.500000	0.819327	0.142259	0.490765	0.119684	1.572035	14520715	22.510404	11463.168153	2479.238487	55808.659209	0.008678
0.840000	0.007257	0.264514	0.314514	1.492743	0.992743	0.500000	0.824964	0.141397	0.494037	0.118659	1.579057	14607253	22.644557	11531.484434	2479.625166	56150.014553	0.008691
0.960000	0.008300	0.266600	0.316600	1.491700	0.991700	0.500000	0.830596	0.140527	0.497313	0.117625	1.586061	14693711	22.778587	11599.737444	2480.006940	56491.053756	0.008704
1.080000	0.009344	0.268689	0.318689	1.490656	0.990656	0.500000	0.836222	0.139649	0.500595	0.116583	1.593049	14780085	22.912487	11667.924430	2480.383884	56831.763057	0.008717
1.200000	0.010390	0.270781	0.320781	1.489610	0.989610	0.500000	0.841843	0.138762	0.503881	0.115532	1.600019	14866373	23.046252	11736.042645	2480.756074	57172.128725	0.008730
1.320000	0.011438	0.272876	0.322876	1.488562	0.988562	0.500000	0.847459	0.137868	0.507172	0.114473	1.606972	14952569	23.179876	11804.089346	2481.123585	57512.137064	0.008742
1.440000	0.012487	0.274974	0.324974	1.487513	0.987513	0.500000	0.853069	0.136965	0.510468	0.113405	1.613907	15038672	23.313355	11872.061800	2481.486488	57851.774413	0.008755
1.560000	0.013537	0.277075	0.327075	1.486463	0.986463	0.500000	0.858673	0.136054	0.513768	0.112329	1.620824	15124677	23.446682	11939.957279	2481.844856	58191.027144	0.008767
1.680000	0.014590	0.279179	0.329179	1.485410	0.985410	0.500000	0.864271	0.135135	0.517073	0.111245	1.627724	15210581	23.579853	12007.773064	2482.198758	58529.881664	0.008780
1.800000	0.015643	0.281286	0.331286	1.484357	0.984357	0.500000	0.869863	0.134207	0.520383	0.110152	1.634605	15296381	23.712862	12075.506440	2482.548262	58868.324416	0.008792
1.920000	0.016698	0.283396	0.333396	1.483302	0.983302	0.500000	0.875449	0.133272	0.523698	0.109050	1.641468	15382073	23.845704	12143.154702	2482.893435	59206.341877	0.008804
2.040000	0.017755	0.285509	0.335509	1.482245	0.982245	0.500000	0.881029	0.132327	0.527017	0.107940	1.648313	15467654	23.978374	12210.715150	2483.234342	59543.920560	0.008816
2.160000	0.018813	0.287625	0.337625	1.481187	0.981187	0.500000	0.886602	0.131375	0.530340	0.106821	1.655139	15553120	24.110865	12278.185092	2483.571049	59881.047016	0.008829
2.280000	0.019872	0.289744	0.339744	1.480128	0.980128	0.500000	0.892169	0.130414	0.533669	0.105694	1.661946	15638468	24.243174	12345.561845	2483.903619	60217.707829	0.008841
2.400000	0.020933	0.291866	0.341866	1.479067	0.979067	0.500000	0.897730	0.129445	0.537002	0.104558	1.668735	15723694	24.375295	12412.842730	2484.232112	60553.889622	0.008853
2.520000	0.021995	0.293991	0.343991	1.478005	0.978005	0.500000	0.903284	0.128467	0.540339	0.103414	1.675504	15808796	24.507222	12480.025078	2484.556590	60889.579055	0.008865
2.640000	0.023059	0.296118	0.346118	1.476941	0.976941	0.500000	0.908831	0.127481	0.543681	0.102261	1.682254	15893770	24.638950	12547.106226	2484.877113	61224.762825	0.008877
2.760000	0.024124	0.298248	0.348248	1.475876	0.975876	0.500000	0.914371	0.126487	0.547027	0.101099	1.688984	15978612	24.770474	12614.083520	2485.193738	61559.427667	0.008888
2.880000	0.025191	0.300382	0.350382	1.474809	0.974809	0.500000	0.919905	0.125484	0.550378	0.099928	1.695695	16063319	24.901790	12680.954312	2485.506523	61893.560353	0.008900
3.000000	0.026259	0.302518	0.352518	1.473741	0.973741	0.500000	0.925431	0.124472	0.553734	0.098749	1.702386	16147888	25.032890	12747.715963	2485.815524	62227.147694	0.008912
3.120000	0.027328	0.304657	0.354657	1.472672	0.972672	0.500000	0.930951	0.123452	0.557093	0.097561	1.709057	16232315	25.163772	12814.365841	2486.120796	62560.176540	0.008923
3.240000	0.028399	0.306798	0.356798	1.471601	0.971601	0.500000	0.936463	0.122424	0.560457	0.096364	1.715709	16316597	25.294429	12880.901322	2486.422393	62892.633779	0.008935
3.360000	0.029471	0.308943	0.358943	1.470529	0.970529	0.500000	0.941968	0.121387	0.563826	0.095159	1.722339	16400731	25.424856	12947.319791	2486.720368	63224.506341	0.008947
3.480000	0.030545	0.311090	0.361090	1.469455	0.969455	0.500000	0.947465	0.120341	0.567199	0.093945	1.728950	16484714	25.555048	13013.618637	2487.014773	63555.781192	0.008958
3.600000	0.031620	0.313240	0.363240	1.468380	0.968380	0.500000	0.952955	0.119287	0.570576	0.092722	1.735540	16568542	25.685000	13079.795263	2487.305659	63886.445341	0.008969
3.720000	0.032696	0.315392	0.365392	1.467304	0.967304	0.500000	0.958438	0.118224	0.573957	0.091490	1.742109	16652211	25.814707	13145.847075	2487.593076	64216.485835	0.008981
3.840000	0.033774	0.317548	0.367548	1.466226	0.966226	0.500000	0.963913	0.117153	0.577343	0.090249	1.748657	16735720	25.944164	13211.771489	2487.877073	64545.889763	0.008992
3.960000	0.034853	0.319706	0.369706	1.465147	0.965147	0.500000	0.969380	0.116073	0.580732	0.088999	1.755184	16819063	26.073365	13277.565930	2488.157698	64874.644255	0.009003
4.080000	0.035933	0.321867	0.371867	1.464067	0.964067	0.500000	0.974839	0.114984	0.584127	0.087741	1.761690	16902239	26.202306	13343.227830	2488.434999	65202.736480	0.009014
4.200000	0.037015	0.324030	0.374030	1.462985	0.962985	0.500000	0.980290	0.113886	0.587525	0.086474	1.768175	16985244	26.330982	13408.754630	2488.709021	65530.153651	0.009025
4.320000	0.038098	0.326196	0.376196	1.461902	0.961902	0.500000	0.985733	0.112780	0.590927	0.085197	1.774638	17068074	26.459388	13474.143779	2488.979812	65856.883023	0.009036
4.440000	0.039182	0.328365	0.378365	1.460818	0.960818	0.500000	0.991168	0.111665	0.594334	0.083912	1.781079	17150727	26.587519	13539.392734	2489.247414	66182.911891	0.009047
4.560000	0.040268	0.330536	0.380536	1.459732	0.959732	0.500000	0.996595	0.110542	0.597744	0.082618	1.787499	17233199	26.715369	13604.498962	2489.511873	66508.227594	0.009058
4.680000	0.041355	0.332710	0.382710	1.458645	0.958645	0.500000	1.002013	0.109409	0.601159	0.081315	1.793896	17315486	26.842934	13669.459937	2489.773231	66832.817513	0.009069
4.800000	0.042443	0.334886	0.384886	1.457557	0.957557	0.500000	1.007423	0.108268	0.604578	0.080003	1.800272	17397587	26.970208	13734.273142	2490.031530	67156.669072	0.009080
4.920000	0.043533	0.337065	0.387065	1.456467	0.956467	0.500000	1.012825	0.107118	0.608001	0.078681	1.806625	17479497	27.097188	13798.936069	2490.286813	67479.769739	0.009090
5.040000	0.044624	0.339247	0.389247	1.455376	0.955376	0.500000	1.018218	0.105959	0.611428	0.077351	1.812956	17561214	27.223868	13863.446219	2490.539119	67802.107026	0.009101
5.160000	0.045716	0.341431	0.391431	1.454284	0.954284	0.500000	1.023602	0.104791	0.614859	0.076012	1.819264	17642734	27.350242	13927.801102	2490.788490	68123.668487	0.009111
5.280000	0.046809	0.343618	0.393618	1.453191	0.953191	0.500000	1.028977	0.103615	0.618294	0.074664	1.825550	17724055	27.476307	13991.998234	2491.034963	68444.441722	0.009122
5.400000	0.047904	0.345807	0.395807	1.452096	0.952096	0.500000	1.034344	0.102430	0.621733	0.073306	1.831812	17805172	27.602057	14056.035144	2491.278579	68764.414374	0.009132
5.520000	0.048999	0.347999	0.397999	1.451001	0.951001	0.500000	1.039701	0.101235	0.625175	0.071940	1.838052	17886083	27.727488	14119.909368	2491.519374	69083.574133	0.009143
5.640000	0.050097	0.350193	0.400193	1.449903	0.949903	0.500000	1.045050	0.100032	0.628622	0.070564	1.844268	17966785	27.852595	14183.618451	2491.757386	69401.908733	0.009153
5.760000	0.051195	0.352390	0.402390	1.448805	0.948805	0.500000	1.050389	0.098820	0.632073	0.069180	1.850462	18047275	27.977372	14247.159946	2491.992652	69719.405951	0.009163
5.880000	0.052295	0.354589	0.404589	1.447705	0.947705	0.500000	1.055720	0.097599	0.635527	0.067786	1.856631	18127550	28.101816	14310.531418	2492.225208	70036.053613	0.009173
6.000000	0.053395	0.356791	0.406791	1.446605	0.946605	0.500000	1.061040	0.096369	0.638985	0.066383	1.862777	18207606	28.225921	14373.730438	2492.455088	70351.839590	0.009183
6.120000	0.054497	0.358995	0.408995	1.445503	0.945503	0.500000	1.066352	0.095130	0.642447	0.064971	1.868900	18287440	28.349682	14436.754589	2492.682329	70666.751799	0.009193
6.240000	0.055601	0.361201	0.411201	1.444399	0.944399	0.500000	1.071654	0.093882	0.645913	0.063549	1.874998	18367050	28.473096	14499.601462	2492.906962	70980.778203	0.009203
6.360000	0.056705	0.363410	0.413410	1.443295	0.943295	0.500000	1.076947	0.092625	0.649383	0.062119	1.881073	18446432	28.596156	14562.268657	2493.129023	71293.906812	0.009213
6.480000	0.057811	0.365621	0.415621	1.442189	0.942189	0.500000	1.082229	0.091358	0.652856	0.060679	1.887123	18525584	28.718859	14624.753784	2493.348544	71606.125683	0.009223

Graphs

Pic. $N^{\it O}2$: Changing the diameter of the charge during engine operation

0.3

Pic. $N^{\rm O}3$: Changing the length of the charge during engine operation

Pic. $N^{O}4$: Changes in consumption during engine operation

Pic. $N^{\,0}5$: Changing the burning area of the charge during engine operation

Pic. $N^{o}6$: The change in pressure in the combustion chamber while the engine

Pic. $N^{\,o}7:$ Changing the speed of the combustion of fuel during engine operation

Pic. $N^o 8$: Change thrust during engine operation

Pic. N^{O} 9: Changing specific impulse while the engine

$Burning\ charge$

	time	$S_{gorsvod}$		time	$S_{gorsvod}$
t	0	0	t	24	0
x	у		x	у	
0.000000	0.250000		0.000000	0.250000	
1.500000	0.250000		1.373725	0.250000	
1.500000	0.150000		1.373725	0.250000	
1.000000	0.150000		0.873725	0.250000	
1.000000	0.125000		0.873725	0.250000	
0.000000	0.125000		0.000000	0.250000	
0.000000	0.250000		0.000000	0.250000	
0.000000	-0.250000		0.000000	-0.250000	
1.500000	-0.250000		1.373725	-0.250000	
1.500000	-0.150000		1.373725	-0.250000	
1.000000	-0.150000		0.873725	-0.250000	
1.000000	-0.125000		0.873725	-0.250000	
0.000000	-0.125000		0.000000	-0.250000	
0.000000	-0.250000		0.000000	-0.250000	

Table $N^{\,0}4$: Table calculated data to construct a model of the engine combustion charge

Table data validation through the function $\it IF$

Pic. $N^{\,0}\,10$: Start burning charge (0 sec)

Pic. $N^{\it O}$ 11: Intermediate burning time charge (10.08 seconds)

160700.65 Проектирование авиационных и ракетных двигателей

Информационные технологии в AKT: Лабораторный практикум

Pic. $N^{o}13$: The final time of combustion of the charge (24 sec)

Building a profile nozzle

i	li	D_i	F_i	F_{kr}/F_i	λ_i	$q(\lambda_i)$	$\pi(\lambda_i)$	$\tau(\lambda_i)$	$\varepsilon(\lambda_i)$	$q(\lambda_i) - F_{kr}/F_i$	Р	т	R_0	v
- 5	-0.186964	0.500000	-		0.007358		0.999970	0.999995		-0.000000	13999583	3199.982829		6.824127
-4	-0.149571	0.410874	0.132585	0.017511	0.010897	0.017511	0.999935	0.999988	0.999947	-0.000000	13999086	3199.962341	17.890551	10.106071
-3	-0.112178	0.321748	0.081304	0.028556	0.017772	0.028556	0.999826	0.999969	0.999858	-0.000000	13997570	3199.899835	17.888963	16.481898
-2	-0.074785	0.232623	0.042499	0.054630	0.034013	0.054630	0.999364	0.999885	0.999479	0.000000	13991101	3199.633135	17.882187	31.542967
- 1	-0.037393	0.143497	0.016172	0.143565	0.089662	0.143565	0.995590	0.999203	0.996384	-0.000000	13938259	3197.450600	17.826809	83.151114
0	0.000000	0.054371	0.002322	1.000000	0.999700	1.000000	0.560819	0.900960	0.622468	-0.000000	7851461	2883.073201	11.136885	927.104324
1	0.023030	0.071136	0.003974	0.584198	0.389441	0.584198	0.919450	0.984970	0.933480	0.000000	12872297	3151.904598	16.701362	361.161046
2	0.046060	0.087900	0.006068	0.382608	0.244614	0.382608	0.967557	0.994070	0.973329	0.000000	13545800	3181.024962	17.414319	226.850874
3	0.069091	0.104665	0.008604	0.269856	0.170133	0.269856	0.984196	0.997132	0.987028	-0.000000	13778749	3190.820918	17.659414	157.778838
4	0.092121	0.121429	0.011580	0.200487	0.125650	0.200487	0.991355	0.998435	0.992908	-0.000000	13878963	3194.993353	17.764621	116.525939
5	0.115151	0.138194	0.014999	0.154795	0.096733	0.154794	0.994869	0.999073	0.995792	-0.000000	13928160	3197.032668	17.816220	89.708209
6	0.138181	0.154959	0.018859	0.123113	0.076815	0.123113	0.996762	0.999415	0.997345	-0.000000	13954663	3198.128859	17.844004	71.236464
7	0.161211	0.171723	0.023160	0.100248	0.062492	0.100248	0.997856	0.999613	0.998242	-0.000000	13969980	3198.761568	17.860056	57.954241
8	0.184241	0.188488	0.027903	0.083208	0.051842	0.083209	0.998524	0.999734	0.998790	0.000000	13979335	3199.147725	17.869859	48.077187
9	0.207272	0.205252	0.033087	0.070171	0.043704	0.070171	0.998951	0.999811	0.999140	0.000000	13985311	3199.394303	17.876120	40.530025
10	0.230302	0.222017	0.038712	0.059974	0.037344	0.059974	0.999234	0.999862	0.999372	-0.000000	13989273	3199.557758	17.880272	34.632107
1	0.253332	0.238782	0.044779	0.051848	0.032279	0.051848	0.999428	0.999897	0.999531	-0.000000	13991985	3199.669582	17.883113	29.935098
1:	0.276362	0.255546	0.051288	0.045268	0.028180	0.045268	0.999564	0.999921	0.999642	-0.000000	13993891	3199.748179	17.885109	26.133349
13	3 0.299392	0.272311	0.058238	0.039866	0.024815	0.039866	0.999662	0.999939	0.999723	0.000000	13995263	3199.804726	17.886546	23.012874
1	1 0.322423	0.289075	0.065630	0.035376	0.022019	0.035376	0.999734	0.999952	0.999782	0.000000	13996270	3199.846253	17.887601	20.419854
1	0.345453	0.305840	0.073462	0.031604	0.019670	0.031604	0.999787	0.999962	0.999826	0.000000	13997023	3199.877302	17.888390	18.241776

Table $N^o 5$: Data table to build the profile of the nozzle

3,100 3,000 2,900 -0.2 -0.1 0 0.1 0.2 0.3

Pic. $N^{\,0}\,14$: Schedule changes in pressure on the projected profile of the nozzle

Pic. $N^{\rm O}$ 15: STemperature curve projected to the profile nozzle

 $160700.65\$ Проектирование авиационных и ракетных двигателей Информационные технологии в АКТ: Лабораторный практикум

Вывод по курсовой работе: Данная работа позволила овладеть навыками расчета на ПЭВМ параметров рабочих процессов двигателя с заданной начальной формой заряда.

$\Lambda ume pamy pa:$

1.	Методические	указания	на	курсовую	работу	ПО	дисциплине	37528	"Информационные	технологии в	AKT"
_	Кадомкин В.В.	– M. 2014	1 г.								

Цата защиты курсовой работы: «04» июня 2015 г.	
Подпись студента	
Полимен прополаратоля	