M - 170 - 2013

철강제품 적재에 관한 안전 기술지침

2013. 11.

한국산업안전보건공단

안전보건기술지침 개요

- o 작성자: 한국안전학회 이우봉
- o 제·개정 경과
 - 2013년 11월 기계안전분야 기준제정위원회 심의
- o 관련규격 및 자료
 - HSE, Safety in the storage and handling or steel and other metal stock, ISBN 978 0 7276 1986. 3 HSE Books
 - HSE, Safety in the use of pallets: plant and Machinery Guidance Note PM15, ISBN 0-7176-522-7
- o 관련법규·규칙·고시 등
- o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2013년 11월 29일

제 정 자 : 한국산업안전보건공단 이사장

KOSHA GUIDE M - 170 - 2013

철강제품 적재에 관한 안전 기술지침

1. 목 적

이 지침의 목적은 철강제품의 적재에 대한 위험요인을 알아보고 제품 종류별로 안전한 적재방법에 대한 기술적 지침을 제공함으로써 사업주에게는 제품 적재와 관련하여 위험을 관리하는데 도움을 주고 근로자에게는 안전한 작업환 경을 제공함에 있다.

2. 적용범위

이 지침은 철강제조회사에서 생산하거나 판매회사에서 판매를 목적으로 길이 또는 너비를 가공한 철강제품의 적재에 적용하며 제품의 취급 및 인양작업에는 적용하지 아니한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
- (가) "자립형 적재(Free standing)" 라 함은 철강제품을 지지대 또는 받침대 없이 제품 그대로를 바닥에 쌓아서 저장하는 것을 말하며 구름이나 미끄러짐이 없도록 고임목 또는 쐐기로 고정하여 적재하는 것을 포함한다.
- (나) "선반형 적재(Racking)"라 함은 철강제품을 고정된 지지대 위해 설치된 가로대 선반(받침대)위에 제품을 얹어 적재하거나 세워서 저장하는 것을 말한다.
- (다) "적층형 적재(Stacking)"라 함은 철강제품을 자립형 적재 또는 선반형 적 재에서 여러 층으로 쌓아 저장하는 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 사업주와 근로자 의무

(1) 사업주 의무

- (가) 근로자의 안전보건을 확보하기 위하여 합리적이고 실천적인 조치를 취하고 안전관리 시스템을 제공하고 유지하여야 한다.
- (나) 법적의무를 다하기 위하여 안전정책을 수립하고 철강제품의 저장시스템 에 대한 위험성평가를 하여야 한다.
- (다) 위험성 평가과정, 위험제거 실행 대책 수립 시 근로자를 참여시켜 의견을 들어야 한다.
- (라) 안전한 적재작업을 할 수 있도록 근로자에게 교육과 안전정보를 제공하여야 한다.
- (마) 근로자가 제품저장에 사용하는 장비가 안전하게 작동되는지 정기적으로 검사를 하고 유지관리 하여야 한다.
- (바) 근로자에게 적절한 안전보호구를 제공하고 착용방법에 대해 교육하여야 한다.

(2) 근로자 의무

- (가) 근로자 자신의 안전 및 주변 근로자의 안전을 위해 조심하고 배려하여야 한다.
- (나) 사업주 및 안전보건상 책임을 가진 관리감독자, 안전관리자와 협력하여야 한다.

M - 170 - 2013

5. 적재 시스템 설계

5.1 적재장 배치 시 고려 사항

적재된 제품이 갑자기 붕괴되거나 떨어지면 중대재해를 일으킬 수 있으므로 올바른 적재장 설계가 안전상 매우 중요하며 아래 사항을 고려하여야 한다.

- (가) 적재제품을 취급하는 근로자가 위험에 노출되지 않도록 하는 안전한 작업장 배치
- (나) 적재장에서 작업하는 시간을 최소화
- (다) 제품의 의도하지 않은 움직임에 대한 제어방법(이동방지용 지주, 지지대, 체인 설치 등)
- (라) 근로자가 선반형 적재대, 적층된 제품 위에 올라 갈 필요성을 최소화
- (마) 크레인 등 적재하역 장비로부터의 위험을 최소화
- (바) 이동통로, 발판, 사다리 및 안전 난간 등 안전한 접근방법
- (사) 적재시 안전상에 영향을 미치는 외부적 영향(예 : 날씨, 진동 등)
- (아) 근로자의 이동통로와 구분되는 지게차 등 운반차량의 안전한 이동통로
- 5.2 안전한 적재방법 선정 시 고려 사항
 - (1) 자립형 적재 및 적흥형 적재는 제품들이 떨어지거나 움직여서 재해를 일으키지 않도록 견고하게 적재되도록 설계되어야 한다.
 - (2) 선반형 적재대는 제품의 중량을 견딜 수 있는 안정적이고 충분한 강도를 유지하도록 설계되어야 한다.
 - (3) 다양한 철강제품의 종류에 따라 안전한 적재방법을 선정하여야 하며 아래

M - 170 - 2013

의 사항을 고려하여야 한다.

- (가) 적재할 제품의 물리적 특성(크기, 중량, 형상, 표면상태, 무게중심, 안정성 등)
- (나) 적재형태에 따른 안정성
- (다) 인양 및 취급설비의 종류
- (라) 적재할 제품의 최대무게, 양 및 접근성
- (마) 제품의 입출고 빈도
- (바) 제품의 포장형태(Banding 등)
- (사) 제품 운반차량(지게차)과 충격 시 충격하중 정도
- (아) 제품의 이동 또는 붕괴 시 이동통로 밖으로의 이동을 봉쇄할 수 있는 공 간과 방책

6. 적재 시스템의 선정

6.1 제품의 적재 시스템 구분

철강제품의 적재형태는 크게 나누면 아래의 적재형태 중 하나이다.

- (1) 자립형 적재(Free standing type)로서 제품을 고정된 지지대나 적재선반이 없이 바닥에 그대로 적재하거나 적층으로 적재하는 것이다.
- (2) 선반지지형 적재(Rack supported type)로서 제품을 고정된 지지대와 그 위에 있는 가로대 선반 위에 적재하는 것이다.
- 6.2 적재시스템의 형태 및 적재방법의 선정

M - 170 - 2013

적재시스템 형태와 적재방법을 선정할 때에는 아래사항을 고려하여야 한다.

- (1) 제품형상별 안정성을 고려하여야 한다.
- (가) 강관 및 봉강류 : 길고 지름이 작음
- (나) 형강(ㄱ형강 및 ㄷ형강)류 : 길고 폭이 좁음
- (다) H빔: 길고 폭이 넓음
- (라) 코일류: 지름이 크고 둥글며 폭이 넓거나 좁음
- (마) 판재류 : 길이와 폭이 넓음
- (2) 사용될 제품의 적재시스템을 고려하여야 한다.
- (3) 예상 적재제품의 양을 고려하여야 한다.
- 6.3 제품 형상 특성에 따른 적재시스템의 안정성
 - 6.2 항의 여러 요인 중에서도 제품형상에 따른 고유한 안정성이 적재시스템을 좌우한다.
 - (1) 어떤 제품형상은 제품 자체 그대로 적재하여도 안전하게 저장할 수 있다. 예를 들면 소폭 코일의 경우에는 나무 받침대를 바닥에 대고 그 위에 코일을 뉘어 적재하고 그 위에 받침대를 넣은 후 다시 코일을 적층(Stacking)하면 안전한 저장이 된다.
 - (2) 반대로 소폭 코일을 세워두면 불안정성이 커져 위험성이 있다. 이와 같이 안정성이 없는 철강제품의 적재는 적절하게 지지되고 있는 구조물의 지지 대에 안전하게 저장할 수 있다.

KOSHA GUIDE M - 170 - 2013

7. 제품 형상별 적재 시스템

- 7.1 길고 폭이 좁은 제품의 적재(봉강류, 강관류 또는 소형 형강류)
 - (1) 외팔보형 선반적재(Cantilever racking system)

수직 지주대와 수평 가로대로 구성된 구조물(<그림1> 참조)로서 선반인 가로 대에 제품을 적재한다.

- (가) 수평으로 적재하면 가장 안정적으로 저장할 수 있다.
- (나) 수평으로 적재하는 것을 수직으로 적재하는 것보다 우선적으로 사용하도 록 한다.
- (다) 구경이 작은 경우 처짐이 발생하기 쉬우므로 중간에 받침대를 두어야 한다.
- (라) 여러 적재형태 중에서 가장 저장밀도가 크고 쉽게 관리할 수 있으며 적 재 시 노동강도가 가장 적다.

<그림 1> 외팔보형 적재대

- (2) 토스트형 선반적재(Toast racking)
 - (가) 하부의 기본 가로대에 두 개의 지주대가 수직으로 세워진 구조물(<그림

M - 170 - 2013

2> 참조)로서 수직 지주대 사이에 제품을 적재한다.

(나) 제품의 적재 높이는 수직 지주대 높이에 제한을 받는다. 따라서 수직 지 주대 높이가 제품의 적재 높이보다 높아야 안전하다.

<그림 2> 토스트형 적재대

- (3) A형 선반적재 (A-Frame racking)
 - (가) A형 적재대는 하부의 기본 틀에 수직 지주를 A형(<그림 3> 참조)으로 세우고 외팔보형태와 비슷하게 수평 가로대가 선반을 이루는 구조물로서 수평가로대 사이에 제품을 기대어 세워 적재한다.
 - (나) 수평으로 적재하여 천정크레인으로 인양할 수 있다.
 - (다) 수직으로 적재하는 경우 제품이 적재대 밑면의 밖으로 미끄러지지 않도록 일정 높이의 턱을 만들거나 체인으로 묶어 움직임을 제한할 수 있다.

<그림 3> A형 적재대

M - 170 - 2013

- (4) 사다리형 선반적재(Ladder racking)
 - (가) 사다리형 적재대는 토스트형 적재대와 유사하지만 수직 지주대에 수평 가로대가 여러 개 있는 구조(<그림 4> 참조)로서 수평가로대 사이 공간 에 제품을 적재한다.
 - (나) 구조상 접근성과 제품의 적재 또는 빼내기가 어렵고 크레인을 사용할 수 없다.

<그림 4> 사다리형 적재대

- (5) U형 선반적재 (U-Frame racking)
- (가) 하부의 기본 틀에 수직 지주대를 세워 U형태의 지지대(<그림 5> 참조) 가 쌍을 이루어 U형 사이에 제품을 적재한다.
- (나) 주로 한 종류의 제품을 임시적으로 저장하는데 사용되고 있다.
- (다) 접근성은 좋으나 두 개의 U형틀이 고정되어 있지 않아 운반차량 등에 의해 외부 충격을 받으면 쉽게 붕괴될 수 있어 안정성이 떨어진다.

<그림 5> U형 적재대

- (6) 크래들형 선반적재(Cradle racking)
- (가) U자형 적재대를 변형하여 안정성을 높게 한 것으로 두 개의 U자형 적재 대가 고정된 부재에 연결되고 가로대 선반을 설치한 적재대(<그림 6> 참조)로서 가로대 선반 사이에 제품을 적재한다.
- (나) U형에 비해 안정성을 크게 향상시켰으나 제품적재가 제한적이고 제품인 양은 크래들 적재대와 함께 들어 이동시켜야 한다.

<그림 6> 크래들형 적재대

- 7.2 길고 폭이 넓은 제품의 적재 (H빔 등 대형 형강류)
 - (1) 자립형 적재 (Free standing)
 - (가) H빔과 같은 대형 형강류는 폭이 넓고 길어서 바닥에 나무 받침대를 깔고 그 위에 그대로 적재하는 것이 적합하다.

M - 170 - 2013

- (나) 제품의 인양은 천정크레인으로 하는 것이 가장 바람직하고 취급 시 주문 제작한 스플릿 바(Split bar)를 받침대로 하여 H빔 사이를 조정하여 인양 하면 안전하고 쉽게 작업할 수 있다.
- 7.3 코일류 제품의 적재 (소폭 코일, 광폭 코일)

코일은 지름을 폭으로 나눈 값이 6.5 이상인 소폭 코일과 6.5 이하인 광폭 코일에 따라 안전한 적재의 요건이 크게 달라진다.

- (가) 소폭 코일은 코일 중앙 구멍이 수직으로 놓일 때(Bore-vertical position) 는 안정적이지만 수평으로 놓이게(Bore-horizontal position) 되면 불안정하게 된다.
- (나) 소폭 코일을 수평 위치로 자립식 적재를 하면 구르기 쉬우므로 코일 적 재대에 기대게 하여 안정적으로 적재할 수 있다.
- (1) 소폭 코일의 적재
- (가) 수직 위치로 자립형 적재

코일을 바닥에 중앙구멍이 수직 위치가 되도록 하고 그 위에 여러 코일을 적층하여 적재(<그림 7> 참조)하며 코일 사이에 작은 각목을 받침대로 넣 어 안전한 취급을 할 수 있도록 한다.

<그림 7> 구멍 수직 위치로 자립형 적재

(나) 수평 위치(Bore-horizontal)를 지지대에 기대기 적재

M - 170 - 2013

소폭 코일의 수평 위치로 지지대에 적재하는 방법에는 소폭 코일 크기에 맞는 케이지를 만들어 여러 개 코일을 적재하는 방법 또는 외팔보(Cantilever arm)에 걸어 적재하는 방법도 있으나 제일 많이 사용하는 적재방법은 지지구조물에 코일을 기대기(Leaning coil racking)하여 적재(<그림 8> 참조)하는 방법이다.

- ① 지지대에는 코일을 안정적으로 적재하기 위해 적당한 각도의 백레스트 (Back rest)를 설치하도록 한다.
- ② 코일의 적재는 백레스트 각도로 곧게 적재되어야 한다.
- ③ 코일의 사이사이에는 나무받침대를 넣어 인양 등 취급이 용이하도록 한다.

<그림 8> 구멍 수평 위치로 기대기 적재대

(2) 광폭 코일의 적재

광폭 코일은 수평 위치로 자립적 적재로 하면 코일이 구르기 쉬우므로 구름 방지조치를 취하여야 하며 수직 위치로 적재하지 않는 것이 보통이다.

(가) 자립형 적재

광폭 코일을 수평 위치로 자립적 적재를 할 때는 바닥에 고정 쐐기(Chock)를 받쳐 (<그림 9> 참조) 코일의 움직임을 방지하여야 한다.

- ① 코일의 하중 지탱은 쐐기가 해주기 때문에 1열 위에 2열을 쌓는 것은 붕괴 위험이 있으므로 하지 않아야 한다.
- ② 쐐기는 코일 한쪽 당 2개씩 중앙선을 중심으로 해서 일정한 간격으로 설치한다.

M - 170 - 2013

- ③ 쐐기의 각도가 적으면 마찰계수가 적어 코일이 쐐기를 넘어 이동하므로 각도를 알맞게 조정하여야 한다.
- ④ 적재장 바닥에는 오일 등의 누출이 없도록 하여 쐐기와 바닥간의 마찰력을 확보해야 한다.
- ⑤ 코일의 자립식 적재장의 이동통로 옆에는 코일의 구름을 정지시키는 지 주대 등으로 스토퍼(Stopper)를 세워야 한다.

<그림 9> 구멍 수평 위치로 자립형 적재

(나) 적층 적재(Stacking)

광폭의 코일을 수평 위치 형태로 여러 층으로 적층 적재를 할 때는 코일 중량이 맨 밑층의 코일에 미치기 때문에 (<그림 10> 참조) 붕괴원인이 될 수있다. 붕괴형태로는 맨 하층 코일이 쐐기를 넘어 붕괴되는 경우와 맨 하층 코일이 쐐기와 함께 미끄러지는 경우(<그림 11> 및 <그림 12> 참조)가 있다.

KOSHA GUIDE M - 170 - 2013

<그림 10> 상층코일의 하중영향 <그림 11> 하층코일이 쐐기를 넘는 경우

<그림 12> 쐐기가 미끄러지는 경우

광폭 코일의 안전한 적층적재에는 아래 사항을 유의하여야 한다.

- ① 적층 높이를 낮게 유지하도록 한다. 3층 이상 쌓을 경우에는 이에 맞는 지지대를 설계하여 사용하여야 한다.
- ② 맨 하층의 코일은 적절하게 지지 고정되어야 한다. 두 개의 인접 코일을 서로 묶어 움직이지 못하게 하여 적층으로 인한 안정성을 향상 시키도록 한다.
- ③ 코일을 정확하게 정렬하면서 상층으로 적층되어 각 코일의 중심점의 연 결선 중점이 바로 상층 코일의 중심점(<그림 13> 참조)이 되도록 한다.

M - 170 - 2013

<그림 13> 중심선 일치된 코일의 정렬

- ④ 바닥층 코일은 서로 닿도록 한다.
- ⑤ 적층을 할 때에는 코일 양단에서 구름이 일어나지 않도록 고정된 구속물 을 설치하도록 한다.
- ⑥ 바닥층의 각 코일에는 양쪽에 2개씩 고정 쐐기를 설치한다.
- ⑦ 바닥층의 코일은 그 지름이 10% 이상 차이가 나지 않도록 하여 상층 코 일의 안정성을 높이도록 한다.(<그림 14> 및 <그림 15> 참조)

10% 이내로 안정적 적층

<그림 14> A, B 지름 차이가 <그림 15> D, E 지름 차이가 10% 이상으로 F 직경에 관계없이 불안정

(다) 지지대 또는 선반형 적재(Supported racked storage)

광폭 코일은 지지대 또는 선반형 적재를 할 때 더욱 안정한 적재를 할 수 있

M - 170 - 2013

다. 이때 코일이 적재장 밖으로 구름에 대비하여 구름방지 방책을 설치하여 야 한다. 지지대 또는 선반형 적재 형식은 아래와 같다.

① 콘크리트 코일 웰형 적재(Concrete coil well) 코일형태에 맞춰 콘크리트 바닥을 파서 안치할 수 있는 코일 웰(Coil well) 형태(<그림 16> 참조)에 적재한다.

② 요람형 받침대 적재(Cradle)

<그림 16> 콘크리트 코일 웰형 적재

나무로 요람형 받침대를 코일 지름에 맞추어 <그림 17>과 같이 제작하여 안정성이 크게 증가하여 다층 적층적재에 효과적이다.

<그림 17> 요람형 받침대 적재

M - 170 - 2013

③ 자립형 선반 적재(Standing coil rack)

코일이 안치될 수 있도록 일정간격의 두 개의 수평대로 된 선반형 구조물로서 광폭 코일보다 여러 종류의 폭을 가진 소폭 코일을 적재할 때 효과적으로 사용된다. 철제의 가로대에는 플라스틱 또는 나무를 덧대어 코일의 이동을 방지하고 있다.

7.4 판재류 제품의 적재 (후판 및 박판)

(1) 자립형 적재

후판 등의 판재류 제품은 바닥에 각목을 적당한 간격으로 깔고 그 위에 적재하는 <그림 18>과 같이 하는 것이 가장 안정적이다.

판재류를 적층 적재(Stacking)할 때에는 각 제품 사이에 각목을 적절하게 지지하여 인양 등 취급을 용이하게 할 수 있다.

(2) 팔레트형 선반 적재(Pallet racking)

팔레트형 선반을 만들어 판재류를 수평으로 적재하는 방식으로 팔레트 선반은 바닥이나 벽에 고정하여 안정성을 높이고 작은 크기의 판재류를 안전하게 적 재할 수 있다.

<그림 18> 코일의 자립형 선반 적재대

(3) 토스트형 선반 적재 (Toast racks)

M - 170 - 2013

하부 구조물에 수직으로 칸막이 지지대를 설치하여 제작된 구조물(<그림 19>참조)로 비교적 작은 크기의 여러 종류의 판재류를 수직으로 세워 기대게 하는 적재방법으로 옆으로 이동을 막고 제품을 꺼내도록 설계되어 있다.

<그림 19> 토스트형 선반적재대

8. 적재장에서 사고발생 유형별 안전조치사항

(1) 고소에서 추락

근로자들이 불안정한 수단으로 고소에 있는 제품에 접근할 경우(예: 선반형 적재대에 지지대를 타고 올라가는 경우 등) 또는 부적절한 안전보호구를 착용 하고 고소에서 작업하거나 제품의 날카로운 표면 또는 단부에서 추락하는 사 고가 발생한다.

- (가) 적재시스템을 설계할 때 고소에 접근할 필요를 최소화 하여야 한다.
- (나) 고소에 접근할 때 안전한 접근수단(안전발판, 안전작업대, 이동식 고소작 업대 등)을 제공하여야 한다. 단, 이동식 사다리는 가장 불안정하다.
- (다) 작업대에는 안전 난간대를 설치하여야 한다.
- (2) 움직이는 적재제품 및 이동하는 차량에 충돌

M - 170 - 2013

근로자들이 적재제품 사이에 근로자들이 접근할 수 있는 접근통로가 부적절할 경우 제품 운반차량에 충돌하거나 또는 적재된 제품이 굴러 근로자와 충돌하 는 사고가 발생한다.

- (가) 근로자들의 이동통로, 작업지역 및 적재장소를 명확히 구분할 수 있는 표시(예: 적재장 바닥에 페인트마킹 등)를 하여야 한다.
- (나) 차량 이동통로와 근로자 이동통로는 분리하여야 하며 지정된 보행자 횡 단지역을 명확히 표시하여야 한다.
- (다) 적재된 제품이 굴러 보행자와 충돌을 막기 위해 적재장소와 보행자 통로 사이에 제품의 구름방지 방책을 설치하여야 한다. 이때 구름방지 방책은 적재제품의 이동 또는 붕괴를 막을 수 있는 충분한 강도를 가져야 한다.
- (3) 제품 운반차량 및 인양설비로 부터 충돌

제품을 운반하는 차량의 운전원 또는 크레인 등 인양설비 운전원의 시야를 제한 받거나 보이지 않아 운반 차량 또는 인양된 제품의 이동시 근로자의 충돌 사고가 발생한다.

- (가) 천정운전원이 인양된 제품을 이동시킬 때 이동시 방해물 또는 이동통로 에서 일하는 근로자를 볼 수 있어야 한다.
- (나) 운반차량의 운전원이 보행자를 볼 수 있어야 한다.
- (다) 제품 적재높이를 제한하여 넓은 시야를 확보하여야 한다. 특히 차량이동 통로와 근로자 보행통로가 가까울 경우 적재제품의 높이를 제한하여야 한다.
- (라) 모든 작업장은 적절한 조도의 조명이 있어야 하며 필요시 시야를 넓게 하는 보조기구(예: 볼록거울 설치 또는 근로자의 형광 작업복 착용)를 설 치하여야 한다.

M - 170 - 2013

(마) 차량 또는 운반설비의 운전자가 좋은 시야를 갖도록 사각지대를 볼 수 있는 거울을 장착하거나 폐쇄회로 텔레비전(CCTV)을 설치한 차량을 선정하도록 한다.

(4) 미끄러짐 또는 걸림

제품표면은 미끄러워서 미끄러지거나 적재제품의 돌출부분 및 날카로운 단부 등에 걸려 넘어지는 재해가 발생한다.

- (가) 근로자들이 제품에 오르거나 제품을 건너뛰는 불안전한 행동을 하지 않아야 한다.
- (나) 근로자 이동통로와 작업장의 바닥단면은 오일 또는 물의 누출이 없도록 하여야 한다.
- (다) 제품을 적재장 밖으로 운반하기 위하여 싣거나 내리는 지역과 차량통행 로는 겨울에 눈이나 얼음이 없도록 관리하여야 한다.
- (라) 무질서한 적재제품의 정리정돈 또는 폐기물의 제거를 통하여 걸려 넘어 지는 요인을 제거해야 한다.
- (마) 보행자 통로에는 돌출된 적재제품, 빈 팔레트 및 적재의 느슨한 포장띠 등 걸리는 위험요인이 없도록 하여야 한다.
- (바) 작업장 바닥 또는 도로 표면에는 패인 곳, 돌출물 또는 부적절한 배수구 덮개 등이 없어야 한다.

(5) 낙하물에 의한 충돌

적재제품은 인양 또는 이동 중에 낙하할 뿐만 아니라 샤클 등 인양설비의 부속장치의 낙하물이 신호수, 줄걸이 작업자 등의 머리에 충돌하는 재해가 발생한다.

(가) 크레인 운전원 등 적재장소에서 작업하는 모든 근로자는 머리 보호를 위

M - 170 - 2013

한 안전모를 착용하여야 한다.

(나) 낙하물로부터 위험을 방지하기 위해 필요시 낙하방지시설 또는 낙하물이 더 이상 이동통로로 들어오지 못하도록 정지시키는 방책을 설치하여야 한다.