Reference No.: WTD13S0605042E Page 1 of 53

FCC TEST REPORT

FCC ID	: 2AAKGRCWBS30-1R
Applicant	: Sky Success Asia Limited.

Address : Unit1, 8/F, Wah Yiu Industrial Centre, 30-32 Au Pui Wan Street, Fo Tan,

NT,H.K.

Manufacturer: The same as aboveAddress: The same as above

Equipment Under Test (EUT):

Product Name : 2.4G Wireless Digital Security Camera System

Model No. : RCWBS30-1R (Receiver)

Standards : FCC CFR47 Part 15 Section 15.247:2012

Date of Test : July 17~22, 2013

Date of Issue : September 09, 2013

Test Result : PASS

Remark:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District,

Shenzhen 518105, China

Tel: +86-755-83551033 Fax: +86-755-83552400

Compiled by: Approved by:

Maikou Zhang / Project Engineer

Maibeu zhang

Philo Zhong / Manager

Tabelo short

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

^{*} The sample described above has been tested to be in compliance with the requirements of ANSI C63.4:2003. The test results have been reviewed and comply with the rules listed above and found to meet their essential requirements.

Reference No.: WTD13S0605042E Page 2 of 57

2 Test Summary

Test Items	Test Requirement	Result	
	15.205(a)		
Radiated Spurious Emissions	15.209	PASS	
	15.247(d)		
Conducted Emissions	15.207(a)	PASS	
Duty Cycle	15.35	PASS	
David a davi	15.247(d)	DAGG	
Band edge	15.205(a)	PASS	
Conduct Emission	15.207	N/A	
20dB Bandwidth	15.247(a)(1)	PASS	
Maximum Peak Output Power	15.247(b)(1)	PASS	
Frequency Separation	15.247(a)(1)	PASS	
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS	
Dwell time	15.247(a)(1)(iii)	PASS	
Maximum Permissible Exposure	4.4007/5\/4\	DAGG	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS	

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST. 4.4 TEST MODE 4.5 TEST FACILITY	
5	4.6 TEST LOCATION EQUIPMENT USED DURING TEST	
5	5.1 EQUIPMENT USED DURING TEST 5.2 MEASUREMENT UNCERTAINTY	6
6	CONDUCTED EMISSION	7
	2.1 E.U.T. OPERATION	7
7	RADIATED SPURIOUS EMISSIONS	10
	7.1 EUT OPERATION: 7.2 TEST SETUP. 7.3 SPECTRUM ANALYZER SETUP. 7.4 TEST PROCEDURE. 7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION. 7.6 SUMMARY OF TEST RESULTS.	
8	DUTY CYCLE	
	8.1 TEST PROCEDURE	
9	BAND EDGE MEASUREMENT	
	9.1 TEST RESULT:	
10	20 DB BANDWIDTH MEASUREMENT 10.1 Test Procedure: 10.2 Test Result:	31
11	MAXIMUM PEAK OUTPUT POWER	33
	11.1 TEST PROCEDURE: 11.2 TEST RESULT:	
12	HOPPING CHANNEL SEPARATION	36
	12.1 TEST PROCEDURE: 12.2 TEST RESULT:	36
13	NUMBER OF HOPPING FREQUENCY	
	13.1 TEST PROCEDURE: 13.2 TEST RESULT:	39
14	DWELL TIME	40

	14.1	TEST PROCEDURE:	
	14.2	TEST RESULT:	40
15	ANTE	NNA REQUIREMENT	44
16	RF EX	KPOSURE	45
	16.1	REQUIMENTS:	45
	16.2	THE PROCEDURES / LIMIT	45
	16.3	MPE CALCULATION METHOD	46
17	PHOT	TOGRAPHS – TEST SETUP	47
	17.1	CONDUCTED EMISSIONS	47
	17.2	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	47
18	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	49
	18.1	External View	
	18.2	EUT - OPEN VIEW	
	18.3	RF MODULE - VIEW	55
	18.4	RF ANTENNA - VIEW	56

Reference No.: WTD13S0605042E Page 5 of 57

4 General Information

4.1 General Description of E.U.T.

Product Name : 2.4G Wireless Digital Security Camera System

Model No. : RCWBS30-1R (Receiver)

Operation Frequency : 2408 MHz ~ 2468 MHz, 16 Channels in total

Type of Modulation : GFSK

Antenna installation : Integrated Antenna

Antenna Gain : 2 dBi

4.2 Details of E.U.T.

Technical Data : DC12V (Receiver)

Adapter : N/A

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2408	2	2412	3	2416	4	2420
5	2424	6	2428	7	2432	8	2436
9	2440	10	2444	11	2448	12	2452
13	2456	14	2460	15	2464	16	2468

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Lower channel	Middle channel	Upper channel
Transmitting	MHz	MHz	MHz
Receiving	2408MHz	2440MHz	2468MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files.

Registration 7760A, July 12, 2012.

FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory 'has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.6 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

5 Equipment Used during Test

5.1 Equipments List

	Equipmento List							
Conducted Emissions								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	101155	Aug. 13,2012	Aug. 12,2013		
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Aug. 13,2012	Aug. 12,2013		
3.	Cable	LARGE	RF300	EW02014-3	Aug.14,2012	Aug. 13,2013		
3m Se	mi-anechoic Chamber	for Radiation Emis	sions					
1.	EMC Analyzer	Agilent	E7405A	MY45114943	Aug. 13,2012	Aug. 12,2013		
2.	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Aug. 13,2012	Aug. 12,2013		
3.	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr. 20,2013	Apr. 19,2014		
4.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr. 20,2013	Apr. 19,2014		
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	399	Aug. 13,2012	Aug. 12,2013		
6.	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.07,2013	Apr.06,2014		
7.	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-148	Aug. 13,2012	Aug. 12,2013		
8.	Cable	Тор	EWO2014-7	-	Apr. 20,2013	Apr. 19,2014		
9.	Cable	Тор	TYPE16(13M)	-	Aug. 13,2012	Aug. 12,2013		
10.	DC POWER SUPPLY	LWDQGS	PS-303D		Aug. 13,2012	Aug. 12,2013		
11.	Humidity Chamber	GTH-225-40-1P	IAA061213		May. 15, 2013	May. 14, 2014		
12.	Spectrum Analyzer	ROHDE & SCHWARZ	FSL6		Sep. 21, 2012	Sep. 20, 2013		
Auxilia	ry equipment							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	Adapter	GOE	GS2U					

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
_	± 5.03 dB
Radiated Spurious	(Bilog antenna 30M~1000MHz)
Emissions test	± 4.74 dB
	(Horn antenna 1000M~25000MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTD13S0605042E Page 7 of 57

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: 66-56 dB_μV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-

Peak & Average if maximised peak within 6dB of Average

Limit

2.1 E.U.T. Operation

Operating Environment:

Temperature: 26 °C Humidity: 50 % RH

Atmospheric Pressure: 1010 mbar

EUT Operation:

The EUT was tested in RF mode with Adapter(The adapter is Auxiliary equipment).

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

2.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

2.3 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTD13S0605042E Page 10 of 57

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705

Test Result: PASS
Measurement Distance: 3m

Limit:

Frequency	Field Strength		h Field Strength Limit at 3m Measurem		
(MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation:

Operating Environment: Temperature: 25.5 °C

Humidity: 51 % RH

Atmospheric Pressure:1008 mbar

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Aechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

3m

Turn Table

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 9KHz to 25000MHz.

Below 30MHz

DCIOW OOMINIZ		
	Sweep Speed	.Auto
	IF Bandwidth	.10KHz
	Video Bandwidth	.10KHz
	Resolution Bandwidth	.10KHz
30MHz ~ 1GHz	Z	
	Sweep Speed	.Auto
	IF Bandwidth	.120 KHz
	Video Bandwidth	.100KHz
	Quasi-Peak Adapter Bandwidth	.120 KHz
	Quasi-Peak Adapter Mode	.Normal
	Resolution Bandwidth	.100KHz
Above 1GHz		
	Sweep Speed	. Auto
	IF Bandwidth	.120 KHz
	Video Bandwidth	.3MHz
	Quasi-Peak Adapter Bandwidth	.120 KHz
	Quasi-Peak Adapter Mode	.Normal
	Resolution Bandwidth	.1MHz

Reference No.: WTD13S0605042E Page 13 of 57

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table,

Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

7.6 Summary of Test Results

Test Frequency :Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 1000MHz

Test mode: continuous transmitting mode

Remark: the EUT was pretested at the high, middle and low channel, and the worse case was the low Channel, so the data show was the low channel only.

Antenna polarization: Vertical

Antenna polarization: Horizontal

Test Frequency: 1GHz ~ 18GHz

Test Mode: continuous transmitting mode

AV = Peak +20Log₁₀(duty cycle) =PK+(-14)=PK-14 [refer to section 8 for more detail]

Test Channel: TX 2408MHz
Antenna polarization: Vertical

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
2	4791.000	-14	46.50	54	-7.50	AV	
3	7239.000	-14	34.56	54	-19.44	AV	
4	11047.000	-14	34.19	54	-19.81	AV	
5	14583.000	-14	36.68	54	-17.32	AV	
6	17762.000	-14	43.92	54	-10.08	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
2	4825.000	-14	47.50	54	-6.50	AV	
3	7239.000	-14	37.68	54	-16.32	AV	
4	9755.000	-14	33.88	54	-20.12	AV	
5	14685.000	-14	38.51	54	-15.49	AV	
6	17235.000	-14	40.65	54	-13.35	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
2	4876.000	-14	44.47	54	-9.53	AV	
3	7324.000	-14	39.97	54	-14.03	AV	
4	10350.000	-14	36.18	54	-17.82	AV	
5	12050.000	-14	38.11	54	-15.89	AV	
6	17439.000	-14	42.55	54	-11.45	AV	

Antenna polarization: Horizontal

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
2	4961.000	-14	47.59	54	-6.41	AV	
3	7409.000	-14	41.26	54	-12.74	AV	
4	9806.000	-14	35.28	54	-18.72	AV	
5	13257.000	-14	37.63	54	-16.37	AV	
6	16555.000	-14	39.79	54	-14.21	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
2	4961.000	-14	48.09	54	-5.91	AV	
3	7409.000	-14	34.56	54	-19.44	AV	
4	10690.000	-14	30.46	54	-23.54	AV	
5	14719.000	-14	37.7	54	-16.3	AV	
6	16980.000	-14	39.85	54	-14.15	AV	

Antenna polarization: Horizontal 106.0 dBuV/m 96 86 76 66 56 46 36 26 16 6.0 1000.0000 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 16300.0018000.00MHz Reading Factor Result Limit Margin Freq. Detector No. Remark (MHz) (dBuV/m) (dBuV/m) (dB) (dBuV/m) (dB) 2468.000 108.17 -15.70 92.47 74.00 1 18.47 peak 73.36 4961.000 -11.77 61.59 74.00 2 -12.41 3 7409.000 62.25 -6.99 55.26 74.00 -18.74 peak 4 9806.000 54.46 49.28 74.00 -5.18 -24.72 peak 5 13257.000 54.67 -3.04 51.63 74.00 -22.37

Remark: the marker 1 is the fundamental

55.46

-1.67

53.79

16555.000

6

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
2	4961.000	-14	47.59	54	-6.41	AV	
3	7409.000	-14	41.26	54	-12.74	AV	
4	9806.000	-14	35.28	54	-18.72	AV	
5	13257.000	-14	37.63	54	-16.37	AV	
6	16555.000	-14	39.79	54	-14.21	AV	

74.00

peak

peak

-20.21

Test Frequency: Above 18GHz

The measurements were more than 20 dB below the limit and not reported

8 Duty Cycle

Test Requirement: FCC Part 15.35
Test Mothed: ANSI C63.4:2003

Test Status: TX mode.

8.1 Test Procedure

- 1. The EUT was placed on a turntable which is 0.8m above ground plane
- 2. Set EUT as normal wrking mode
- 3. Set SPA center frequency = fundamental frequency, RBW = 1000 kHz, VBW = 1000 kHz, Span = 0 Hz, Adjacent sweep time.

8.2 Test Result

Date: 26.JUL.2013 11:12:23

Date: 26.JUL.2013 11:18:43

The EUT is auto. operation for transmitter, it is declared by the manufacturer as a duty cycle ratio of less than 100%.

The EUT's work time: Ton = pulse time = 133.938 ms

The EUT's work period :T=T_{ON}+T_{OFF}= transmission period =739.938 ms

The EUT's duty cycle : D = T_{on} /T = 133.938/739.938*100% =18%

Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle)=20* Log₁₀(18 %)

= -14dB

Reference No.: WTD13S0605042E Page 24 of 57

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: DA 00-705

Measurement Distance: 3m

Limit: 40.0 dBuV/m between 30MHz & 88MHz;

43.5 dBuV/m between 88MHz & 216MHz; 46.0 dBuV/m between 216MHz & 960MHz;

54.0 dBuV/m above 960MHz.

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

Detector: For Peak value:

RBW = 1 MHz for $f \ge 1$ GHz VBW \ge RBW; Sweep = auto

Detector function = peak

Trace = max hold For AVG value:

RBW = 1 MHz for f ≥ 1 GHz VBW = 10Hz; Sweep = auto Detector function d= AVG

Trace = max hold

Test Mode: continuous transmitting

9.1 Test Result:

Lower Channel -Vertical

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2345.400	-14	17.71	54	-36.29	AV	
2	2395.000	-14	18.74	54	-35.26	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	235.000	-14	15.50	54	-38.50	AV	
2	2369.500	-14	18.47	54	-35.53	AV	
3.	2400.000	-14	18.00	54	-36.00	AV	

No	0.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	l	2483.500	-14	18.48	54	-35.52	AV	
2	2	2500.000	-14	17.10	54	-36.9	AV	

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	2483.500	-14	16.1	54	-37.9	AV	
2	2500.000	-14	18.08	54	-35.92	AV	

Test mode: Hopping on Lower Channel – Peak

Date: 20.JUL.2013 17:42:28

Upper Channel - Peak

Date: 20.JUL.2013 17:44:28

Test mode: Hopping off Lower Channel – Peak

Date: 20.JUL.2013 17:42:15

Upper Channel - Peak

Date: 20.JUL.2013 17:44:07

Reference No.: WTD13S0605042E Page 31 of 57

10 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 100kHz

10.2 Test Result:

Test Channel	Bandwidth
Low	4.830
Middle	4.770
High	4.790

Test result plot as follows:

Date: 20.JUL.2013 17:22:22

Date: 20.JUL.2013 17:13:39

Date: 20.JUL.2013 17:13:17

Reference No.: WTD13S0605042E Page 33 of 57

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 10MHz. VBW = 10MHz. Sweep = auto; Detector Function = Peak
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

Test Channel	Output Power (dBm)	Limit (dBm)
Low	11.22	20.97
Middle	11.47	20.97
High	12.12	20.97

Test result plot as follows:

Date: 20.JUL.2013 17:23:33

Date: 20.JUL.2013 17:22:03

High Channel

Date: 20.JUL.2013 17:27:37

Reference No.: WTD13S0605042E Page 36 of 57

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100kHz. VBW = 100kHz , Span = 4MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

Test Channel	Separation (MHz)	Result
Low	4.006	PASS
Middle	4.004	PASS
High	4.003	PASS

Test result plot as follows:

Date: 26.JUL.2013 14:55:51

Date: 26.JUL.2013 14:54:13

High Channel

Date: 26.JUL.2013 14:56:06

Reference No.: WTD13S0605042E Page 39 of 57

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

13.2 Test Result:

Total Channels are 16 Channels.

Date: 26.JUL.2013 14:54:44

Reference No.: WTD13S0605042E Page 40 of 57

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2.Set spectrum analyzer span = 0. centered on a hopping channel;

3.Set RBW = 1MHz and VBW = 1MHz.Sweep = as necessary to capture the entire dwell time per hopping channel.

4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result:

The test period: T = 0.4(s) * 16 = 6.4(s)

So, the Dwell Time can be calculated as follows:

Low channel: Dwell Time =1(times)/0.061(s)*3.30(ms)*6.4(s)=0.346(s) Middle channel: Dwell Time =1(times)/0.062(s)*3.30(ms)*6.4(s)=0..40(s) High channel: Dwell Time =1(times)/0.062(s)*3.30(ms)*6.4(s)=0.340(s)

Note: Mkr Delta is once pulse time.

Frequency	Mkr Delta(ms)	Dwell Time(s)	Limits(s)	Result
2408 MHz	3.30	0.346	0.400	Pass
2440 MHz	3.30	0.340	0.400	Pass
2468 MHz	3.30	0.340	0.400	Pass

Middle Channel

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a detachable antenna with RP SMA connector (The whorl is nonstandard, it only apply to this model), fulfill the requirement of this section.

Reference No.: WTD13S0605042E Page 45 of 57

16 RF Exposure

Test Requirement: FCC Part 1.1307

Test Mode: The EUT work in test mode(Tx).

16.1 Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTD13S0605042E Page 46 of 57

16.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

 $\mathbf{P} = \mathsf{Peak} \; \mathsf{RF} \; \mathsf{output} \; \mathsf{power} \; (\mathsf{W})$

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\textit{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
1.585	12.12	16.293	0.005	1

17 Photographs - Test Setup

17.1 Conducted Emissions

17.2 Photograph – Radiation Spurious Emission Test Setup

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

18 Photographs - Constructional Details

18.1 External View

18.2 EUT - Open View

Reference No.: WTD13S0605042E Page 53 of 57

Reference No.: WTD13S0605042E Page 54 of 57

18.3 RF module - View

18.4 RF Antenna - View

=End of report=