03_MachineLearning

June 26, 2019

1 Import Libraries

```
In [1]: library( tidyverse )
Registered S3 methods overwritten by 'ggplot2':
 method
                 from
  [.quosures
                 rlang
  c.quosures
                 rlang
  print.quosures rlang
Registered S3 method overwritten by 'rvest':
 method
 read_xml.response xml2
 Attaching packages tidyverse 1.2.1
 ggplot2 3.1.1
                    purrr
                            0.3.2
tibble 2.1.1
                    dplyr
                            0.8.1
tidyr
       0.8.3
                    stringr 1.4.0
 readr
        1.3.1
                    forcats 0.4.0
 Conflicts tidyverse_conflicts()
 dplyr::filter() masks stats::filter()
 dplyr::lag()
                 masks stats::lag()
In [2]: library( tidymodels )
Registered S3 method overwritten by 'xts':
 method
             from
  as.zoo.xts zoo
 Attaching packages tidymodels 0.0.2
          0.5.2
broom
                        recipes
                                  0.1.5
dials
           0.0.2
                        rsample
                                  0.0.4
           0.4.0.1
 infer
                        yardstick 0.0.3
parsnip
           0.0.2
Conflicts tidymodels_conflicts()
 scales::discard() masks purrr::discard()
 dplyr::filter()
                   masks stats::filter()
 recipes::fixed() masks stringr::fixed()
 dplyr::lag()
                   masks stats::lag()
```

```
yardstick::spec() masks readr::spec()
 recipes::step()
                   masks stats::step()
In [3]: library( GGally )
Registered S3 method overwritten by 'GGally':
 method from
         ggplot2
  +.gg
Attaching package: GGally
The following object is masked from package:dplyr:
    nasa
In [4]: library( ggfortify )
   Non-linearly separable data
In [5]: funkydata <- read_csv( 'funkydata.csv')</pre>
Parsed with column specification:
cols(
  Gaussian1 = col_double(),
  Gaussian2 = col_double(),
 Moon1 = col_double(),
 Moon2 = col_double(),
 Circle1 = col_double(),
 Circle2 = col_double(),
 Y = col_double()
In [6]: funkydata$Y <- factor( funkydata$Y )</pre>
In [7]: funkydata %>% ggpairs( aes( color=Y ) )
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
`5` = col_double(),
  `6` = col_double(),
  7 = col_double(),
  `8` = col_double(),
  '9' = col double(),
 Y = col_double()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


3 Funkydata: Hold some test data in reserve to assess model fit

4 Train a Logistic Regression model

• Plain vanilla logistic regression

```
In [11]: model0 <- glm( Y ~ 1, train_data, family='binomial' )</pre>
```

```
In [12]: summary( model0 )
Call:
glm(formula = Y ~ 1, family = "binomial", data = train_data)
Deviance Residuals:
           1Q Median
                           ЗQ
                                  Max
-1.109 -1.109 -1.109 1.247
                                1.247
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.1618 0.1581 -1.023 0.306
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 222.14 on 160 degrees of freedom
Residual deviance: 222.14 on 160 degrees of freedom
AIC: 224.14
Number of Fisher Scoring iterations: 3
In [13]: model1 <- glm( Y ~ Gaussian1 + Gaussian2, train_data, family='binomial' )</pre>
In [14]: summary( model1 )
Call:
glm(formula = Y ~ Gaussian1 + Gaussian2, family = "binomial",
   data = train_data)
Deviance Residuals:
    Min
               1Q
                     Median
                                   3Q
                                            Max
-2.54001 -0.54082 -0.08572 0.50573
                                        1.96573
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
                       0.23391 -0.246
(Intercept) -0.05751
                                          0.806
Gaussian1
            1.35899
                                 4.804 1.55e-06 ***
                       0.28286
                       0.29487 -4.930 8.23e-07 ***
Gaussian2
          -1.45367
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 222.14 on 160 degrees of freedom
Residual deviance: 115.99 on 158 degrees of freedom
```

AIC: 121.99

Number of Fisher Scoring iterations: 6

In [15]: anova(model0, model1)

	Resid. Df	Resid. Dev	Df	Deviance
A df[,4]: 2 Œ 4	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	160	222.1426	NA	NA
	158	115.9891	2	106.1534

4.1 Use augment() function to attached fitted values to original data frame

In [16]: augmented_funky1 <- augment(model1)</pre>

In [17]: augmented_funky1 %>% head

	Y	Gaussian1	Gaussian2	.fitted	.se.fit	.resid	.hat	.sigma
A tibble: 6 Œ 10	<fct></fct>	<dbl></dbl>						
	0	-0.7994022	0.1545466	-1.368548	0.3410897	-0.6733768	0.018813077	0.85781
	0	-0.3301211	2.3876841	-3.977038	0.7507004	-0.1927051	0.010176560	0.85938
	1	1.4185881	-0.8775885	3.146052	0.5572896	0.2902479	0.012281822	0.85920
	0	-1.1174380	1.8842391	-4.315150	0.7157296	-0.1629480	0.006666868	0.85942
	0	-0.9947197	0.1794926	-1.670245	0.3845873	-0.5872655	0.019716611	0.85822
	0	-0.9994371	-2.4650403	2.167613	0.7913876	-2.1335296	0.057713163	0.84143

4.2 Plot distribution of TRAINING set fitted values colored by class

```
In [18]: options(repr.plot.width=4, repr.plot.height=3)
```

In [19]: augmented_funky1 %>% ggplot(aes(x=.fitted, fill=Y)) + geom_density(alpha=0.5)

4.3 Plot distribution of TEST set fitted values colored by class

```
In [20]: Ypred_test <- predict( model1, test_data )
In [21]: qplot( Ypred_test, geom='density', fill=test_data$Y, alpha=0.5 )</pre>
```


5 Logit link function

- The target variable Y is binary (0/1, loss/win)
- The output is not a 0/1 directly, but the probability of a win
- Linear regression involves solving simultaneous linear equations => linear combinations
- Predicted values of a linear regression MUST also be linear. Consider:
 - $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + ... + \hat{\beta}_n x_n + \epsilon$
 - Use logit link function
 - $logit = log(Odds) = log(\frac{p}{1-p}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_n x_n + \epsilon$
 - logit function is a "sigmoid" function
- Exponentiate the coefficient to get the odds ratio if bigger than 1, a 1 unit change in x is an increase
 - Odds ratio estimates = "times more likely" probability of a win over probability of a loss

In [22]: coef(model1)

(Intercept) -0.0575112921833882 Gaussian1 1.35898693828992 Gaussian2 -1.45366635126567

```
In [23]: exp( coef( model1 ) )
   (Intercept) 0.944111229249089 Gaussian1 3.8922482161911 Gaussian2 0.233711845658519
In [24]: Ypred_test <- predict( model1, test_data )</pre>
In [25]: head( Ypred_test )
      1.22155896041885 2 -4.15266485413218 3
                                               -0.440851379841008 4
                                                                     2.58701268252882 5
-3.23406378302684 6
                                            -0.190908032390208
5.1 Use type="response" argument to predict() to get probabilities
In [26]: Ypred_test <- predict( model1, test_data, type='response')</pre>
In [27]: head(Ypred_test)
   1 0.772337781135761 2 0.0154790930787615 3 0.391538121188741 4 0.930021046405469 5
0.0379037741712596 6
                                             0.452417419932877
5.2 Classification metrics
   • Goodness of fit is not adjusted R-squared, but rather accuracy, F1, ROC curve AUC, others...
In [28]: # In class activity 1: How to get test prediction accuracy?
In [29]: # Homework: How to get four-square confusion matrix of TP/FP/FN/TN?
5.3 ROC Curve

    How to create a ROC curve

In [30]: install.packages( "ROCit" )
Installing package into /usr/local/lib/R/3.6/site-library
(as lib is unspecified)
In [31]: library(ROCit)
In [32]: ROCit_obj <- rocit( score = Ypred_test, class = test_data$Y )</pre>
In [33]: options(repr.plot.width=4, repr.plot.height=4)
In [34]: plot(ROCit_obj)
```


5.4 Other Logistic regression considerations

5.4.1 Categorical/nominal predictor variables

- One hot encoding: the creation of a dummy variable for each level, e.g.,
 - If you have a nominal variable with 12 cases, you just picked up 11 variables. Each one is going to have it's own coefficient.
- Options: change variable type to interval like an ordinal, or bin into "other" category

6 Retrain GLM model with Parsnip interface (Tidyverse for modelling!)

• Parsnip is a unified modelling interface, allowing you to swap in and out classification algorithms easily

In [36]: head(test_predictions)

	.pred_class	Gaussian1	Gaussian2	Moon1	Moon2	Circle1	Circle2
A tibble: 6 Œ 8	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	1	1.65586765	0.66812598	-0.7572982	0.67647928	0.1200559	-1.07310621
	0	-0.18800968	2.64135636	-0.3005245	0.71755671	-0.6291578	-0.96904142
	0	0.06262386	0.32225076	2.0400183	0.41237844	0.4888741	-0.28609402
	1	1.41794353	-0.49361894	1.8422351	0.00584937	0.5923969	-0.65389154
	0	-2.31634471	0.01972274	1.9629823	0.60950815	0.1341592	-0.07741052
	0	-0.22614206	-0.11964738	0.6500019	-0.14814799	-0.6925768	0.33714084

7 Random Forest classifier

• RF YouTube explainer

Number of trees:

500

```
Sample size: 161
Number of independent variables: 2
Mtry: 1
Target node size: 1
Variable importance mode: none
Splitrule: gini
OOB prediction error: 19.88 %
```

```
In [ ]: #rf_fit %>% predict( test_data )
```

8 XGBoost classifier

• Gradient-boosted classification trees YouTube explainer

	.pred_class	Gaussian1	Gaussian2	Moon1	Moon2	Circle1	Cir
-	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dl< td=""></dl<>
	0	1.6558676502	0.668125980	-0.75729820	0.67647928	0.120055937	-1.0
	0	-0.1880096751	2.641356365	-0.30052452	0.71755671	-0.629157830	-0.9
	0	0.0626238564	0.322250763	2.04001830	0.41237844	0.488874131	-0.2
	1	1.4179435275	-0.493618939	1.84223510	0.00584937	0.592396893	-0.6
	0	-2.3163447117	0.019722740	1.96298234	0.60950815	0.134159196	-0.0
	1	-0.2261420600	-0.119647377	0.65000191	-0.14814799	-0.692576774	0.33
	1	0.2270759775	-0.507753673	1.77716240	-0.42903955	0.003267762	-0.5
	0	-0.5969662960	0.369458824	0.97169175	-0.56735363	-0.562316475	0.07
	1	0.8586829764	-0.331131219	0.14044903	-0.21966508	0.162196055	0.23
	0	-2.4770264147	0.923472230	0.70305250	0.02496383	0.945482393	0.03
	0	-1.8037906851	-0.101255631	0.93810901	0.66298693	0.069959399	1.04
	0	-1.9608033259	0.443044737	-0.32638898	1.10822502	-0.756865727	-0.1
	0	-2.4625986710	0.846115057	0.10872866	0.85881768	-0.792590975	0.43
	1	1.6123753093	0.074948580	-0.08007019	0.56677819	0.514306242	-0.1
	0	-0.4342303771	0.163155565	1.60443748	-0.54617186	-0.345529082	-0.5
	0	-1.5833100217	1.227229722	0.92649946	0.49189021	0.438684118	0.77
	1	0.5401740742	-0.073084328	0.19005626	0.31674494	0.501649694	0.29
	0	-0.7353438489	0.826731161	2.01274529	0.49230467	0.812581460	-0.2
A tibble: 39 Œ 8	1	1.2350916284	-0.769249327	0.11536418	0.05004481	0.184154812	0.62
	0	0.5932292715	1.061860497	0.88882760	-0.49659493	-0.344694977	0.39
	1	0.0007393842	-0.924164375	2.24426279	0.46433851	0.612628746	-0.1
	0	-1.3827299949	0.139191527	1.89423265	0.09442643	0.169541888	-0.3
	1	2.7854904947	-1.458262531	0.38183860	-0.34377601	0.059557048	0.30
	0	-2.7218274490	0.687199725	0.99326509	0.16822611	0.876884275	0.32
	1	0.5482647824	-0.504186671	0.18150563	0.18133960	0.558896594	0.32
	1	1.0196412973	-0.749209166	0.28320170	-0.19666803	0.094622159	0.45
	0	0.4798458503	1.484237232	1.10688118	0.17218468	0.840630299	0.56
	0	-1.7574668241	1.059429793	-0.68699186	0.81902125	-0.411478044	-1.0
	0	-0.7949517753	0.404936934	-0.13037966	0.38523097	0.486272751	0.43
	1	0.0583034403	-0.907377916	2.03606695	0.25954895	0.278357534	-0.1
	1	-0.2906075251	-0.225703143	2.14704453	0.36909832	0.703435515	-0.0
	1	0.2566899621	-1.098083214	0.82855720	-0.23845831	-0.601888625	-0.1
	0	-0.7473150173	-0.608385809	0.92504046	-0.28293448	-0.441012071	0.49
	0	-1.2954867952	2.084281856	-0.20381067	1.15105763	-0.782344224	-0.5
	0	0.7379528314	1.599841231	0.93596514	0.57630864	0.619781358	0.65
	1	-0.3933948255	0.004419483	1.73905958	0.01263737	0.210900076	-0.4
	0	-1.8262258001	-1.065161693	0.01023941	0.79893048	-1.091185914	0.12
	1	0.3041291925	-0.536522506	1.64894910	-0.55382701	-0.332578397	-0.6
	1	1.9812212804	-1.418520529	-0.02149899	0.61356625	0.539736454	-0.0
	-	1					