

Pracownia Fizyczna Zdalna Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

TEMAT: Wyznaczanie przyspieszenia ziemskiego metodą wahadła matematycznego							
Wydział	Matematyki Stosowanej	Kierunek	Informatyka				
Grupa/Sekcja	2/C	Rok akademicki	2021				
Rok studiów	I	Semestr	2				
Oświadczam, że niniejsze sprawozdanie jest całkowicie moim/naszym dziełem, że żaden							
z fragmentów sprawozdania nie jest zapożyczony z cudzej pracy. Oświadczam, że jestem							
świadoma/świadom odpowiedzialności karnej za naruszenie praw autorskich osób trzecich.							
Lp.	Imię i nazwisko	Podpis					
1.	Grzegorz Koperwas						
2.							
3.							

Ocena poprawności elementów sprawozdania

data	wstęp i cel	struktura		rachunek		zapis	
oceny	ćwiczenia	sprawozdania	obliczenia	niepewności	wykres	końcowy	wnioski

Ocena końcowa

OCENA lub	
LICZBA PUNKTÓW	
DATA	
PODPIS	

1. Wstęp teoretyczny

Celem doświadczenia jest wyznaczenie przyspieszenia grawitacyjnego g poprzez pomiar czasu w jakim wahadło wykona daną ilość cykli w zależności od jego długości.

- ullet Q ciężar
- \bullet N naciąg

Rysunek 1: Wahadło w stanie największego wychylenia

Wahadło matematyczne składa się z ciężarka, (Na rysunkach 1 oraz 2 oznaczony jest jako kropka), który porusza się po łuku (jego długość to s).

Na potrzeby naszego eksperymentu rozważamy małe drgania wahadła, gdzie $\alpha < 7^\circ$, zatem możemy założyć[War]:

$$\sin \alpha \approx \alpha \tag{1}$$

- ullet Q ciężar
- \bullet N naciąg

Rysunek 2: Rozkład sił na wahadle

Na rysunku 2 widzimy iż siła $\vec{Q_1}$ jest równoważona przez siłę \vec{N} , zatem siła $\vec{Q_2}$ jest siłą wypadkową.

$$\vec{Q} = m\vec{g}$$

$$|Q_2| = mg\sin\alpha = mg\frac{x}{l}, \quad Z (1.)$$

$$|Q_2| \approx mg\frac{s}{l}$$

Siła $\vec{Q_2}$ jest zwrócona do środka, zatem:

$$Q_2 = -\frac{mg}{l}s$$

Siła ta jest zależna od wychylenia wahadła, zatem jest ona siłą sprężystą[sci] w formie F=-kx, gdzie:

$$k = \frac{mg}{l}, \quad x = s$$

Zatem układ wykonuje ruchy harmoniczne, gdzie okres drgań T jest dany wzorem:

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m}{\frac{mg}{l}}} =$$
$$= 2\pi \sqrt{\frac{l}{g}}$$

Następnie wyliczamy z wzoru g:

$$T^{2} = 4\pi^{2} \cdot \frac{l}{g}$$
$$g = \frac{4l\pi^{2}}{T^{2}}$$

Na potrzeby sprawozdania obliczymy g jako nachylenie wykresu liniowego:

$$T^{2} = 4\pi^{2} \cdot \frac{l}{g}$$
$$T^{2}(l) = \frac{4\pi^{2}}{g} \cdot l$$

Gdzie nachylenie wykresu $T^{2}\left(l\right)$ to $\frac{4\pi^{2}}{g}$.

Literatura

- [sci] sciencefacts.net. What is spring force. https://www.sciencefacts.net/spring-force.html. Dostęp: 2021-03-15.
- [War] Politechnika Warszawska. Podręcznik Wydziału Fizyki Politechinki Warszawskiej. http://ilf.fizyka.pw.edu.pl/podrecznik/3/5/2. Dostęp: 2021-03-15.