BRAC UNIVERSITY

6

Department of Computer Science and Engineering

Examination: Midterm Exam Semester: Spring 2023

Duration: 1 hour 15 minutes Full Marks: 30

CSE 423: Computer Graphics

Name:	ID:	Section:

Answer the following questions. Figures in the right margin indicate marks.

1. $f(x,y) = \frac{x}{3} - \frac{y}{5} - 2 = 0$

Suppose, you have to plot the above line starting from its intersection with the x-axis and ending at that of the y-axis.

a. **Identify** the Zone (from Zone-0 to Zone-7) of the above line.

CO1
b. Derive starting/initial deviation ('d') and its derivatives (Δs)/decision parameters
4

- CO1 using mid-point line drawing algorithm.
- c. Using the mid-point line drawing algorithm, compute all the pixels (from start to end) to be colored for the given line segment. Show the present value of d as well as Δs at each stage.
- a. Derive starting/initial deviation ('d') and its derivatives (Δs)/decision parameters
 CO1 for drawing one octant of a circle starting from (0, r) using mid-point circle drawing algorithm.
 - b. Calculate all the pixels of one octant of a Circle starting from (0, r) where, r = 5
 CO1 10, and origin/center of the circle is at (-2, 3), showing the present value of d as well as Δs at each stage.
- 3. a. Write an algorithm for making region-outcode of a 3D end-point using CO2 Cohen-Sutherland line clipping algorithm (assuming lowest bits for x and highest bits for z)
 - b. Suppose, a viewing window from (-200, -150) to (200, 150) is given.
 - CO3 (i) **Compute** the numerical value of 't' for all boundaries for a given line segment starting from (-220, 350) to (350, 120).
 - (ii) Classify them as ' t_E ' or ' t_L '.
 - (iii) **Determine** the new endpoints using the value of ' t_{Emax} ' and ' t_{Lmin} '

BRAC UNIVERSITY

В

6

Department of Computer Science and Engineering

Examination: Midterm Exam

Duration: 1 hour 15 minutes

Semester: Spring 2023

Full Marks: 30

CSE 423: Computer Graphics

Name:	ID:	Section:

Answer the following questions. Figures in the right margin indicate marks.

1. $f(x,y) = \frac{x}{2} + \frac{y}{3} - 4 = 0$

Suppose, you have to plot the above line starting from its intersection with the x-axis and ending at that of the y-axis.

a. **Identify** the Zone (from Zone-0 to Zone-7) of the above line.

CO1

- b. **Derive** starting/initial deviation ('d') and its derivatives (Δs)/decision parameters 4 CO1 using mid-point line drawing algorithm.
- c. Using the mid-point line drawing algorithm, compute all the pixels (from start to end) to be colored for the given line segment. Show the present value of d as well as Δs at each stage.
- 2. a. Derive starting/initial deviation ('d') and its derivatives (Δs)/decision parameters
 CO1 for drawing one octant of a circle starting from (0, r) using mid-point circle drawing algorithm.
 - b. Calculate all the pixels of one octant of a Circle starting from (0, r) where, r = 5
 CO1 10, and origin/center of the circle is at (-3, 5), showing the present value of d as well as \(\Delta s\) at each stage.
- 3. a. Write an algorithm for making region-outcode of a 3D end-point using CO2 Cohen-Sutherland line clipping algorithm (assuming lowest bits for x and highest bits for z)
 - b. Suppose, a viewing window from (-200, -150) to (200, 150) is given.
 - CO3 (i) Compute the numerical value of 't' for all boundaries for a given line segment starting from (-220, 300) to (300, 100).
 - (ii) Classify them as ' t_E ' or ' t_L '.
 - (iii) **Determine** the new endpoints using the value of ' t_{Emax} ' and ' t_{Lmin} '