Principles of Econometrics (3e)

Ch. 6 다중회귀모형에 관한 추가적인 논의

2013년 1학기

윤성민

■ 6장의 주요 내용

- 다중회귀모형의 모수에 관한 둘 이상의 가설로 구성된 귀무가설을 동시에 검정하는 경우 (결합가설의 검정)
- ⇒ F-검정
- 표본의 정보 이외에 비표본 정보도 함께 이용하는 경우
- ⇒ 제한 최소제곱법
- 모형 설정의 오류를 찾는 방법
- ⇒ RESET 검정
- 다중공선성 문제의 탐지와 해결 방법

6.1 F-검정

<햄버거 체인점 사례>

- 제한되지 않은 모형(U) $S_i = \beta_1 + \beta_2 P_i + \beta_3 A_i + e_i$
- 가설이 $H_0: \beta_2 = 0$ $H_1: \beta_2 \neq 0$ 로 설정된다면 \Rightarrow t-검정
- 제한된 모형(R)

$$S_i = \beta_1 + \beta_3 A_i + e_i$$
 ($\beta_2 = 0$)

- 귀무가설이 참이라면 $SSE_R = SSE_U$
- 귀무가설이 거짓이라면 $SSE_R > SSE_U$

F-분포

- F-distribution
 - : 각각 자유도가 m_1, m_2 인 카이제곱분포를 갖는 두 확률변수 (V_1, V_2) 의 비율은 F-분포를 따름

$$F = \frac{V_1 / m_1}{V_2 / m_2} \sim F_{m_1, m_2}$$

Ch. 6 다중회귀모형에 관한 추가적인 논의

■ F-통계량

$$SSE = \sum \hat{e}_t^2 \sim \chi^2(N - K)$$

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(N-K)} \sim F(J, N-K)$$

- 모형에 설정된 제한이 부적절할수록
 (SSE_R - SSE_U) 커짐
 - ⇒ F-값 커짐
 - ⇒ 귀무가설 기각

 α =0.05가 되는 임계값은 $F_{(20, 10, 0.05)}$ =2.77이다.

 $\alpha = 0.05$

분모 자유도									분지	자유	ΞVi								
	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
1 2 3 4		19.00	215.7 19.16 9.28 6.59	224.6 19.25 9.12 6.39	230.2 19.30 9.01 6.26	234.0 19.33 8.94 6.16		238.9 19.37 8.85 6.04		USBNYS ZA			248.0 19.45 8.66 5.80	APPENDICT OF	TELESCE!	251.1 19.47 8.59 5.72	252.2 19.48 8.57 5.69	253.3 19.49 8.55 5.66	254.3 19.50 8.53 5.63
5 6 7 8	6.61 5.99 5.59 5.32 5.12	5.79 5.14 4.74 4.46 4.26	5.41 4.76 4.35 4.07 3.86	5.19 4.53 4.12 3.84 3.63	5.05 4.39 3.97 3.69 3.48	4.95 4.28 3.87 3.58 3.37	4.88 4.21 3.79 3.50 3.29	4.82 4.15 3.73 3.44 3.23	4.77 4.10 3.68 3.39 3.18	4.74 4.06 3.64 3.35 3.14	4.68 4.00 3.57 3.28 3.07	4.62 3.94 3.51 3.22 3.01	4.56 3.87 3.44 3.15 2.94	4.53 3.84 3.41 3.12 2.90	4.50 3.81 3.38 3.08 2.86	4.46 3.77 3.34 3.04 2.83	4.43 3.74 3.30 3.01 2.79	4.40 3.70 3.27 2.97 2.75	4.36 3.67 3.23 2.93 2.71
10 11 12 13 14	4.96 4.84 4.75 4.67 4.60	4.10 3.98 3.89 3.81 3.74	3.71 3.59 3.49 3.41 3.34	3.48 3.36 3.26 3.18 3.11	3.33 3.20 3.11 3.03 2.96	3.22 3.09 3.00 2.92 2.85	3.14 3.01 2.91 2.83 2.76	3.07 2.95 2.85 2.77 2.70	3.02 2.90 2.80 2.71 2.65	2.98 2.85 2.75 2.67 2.60	2.91 2.79 2.69 2.60 2.53	2.85 2.72 2.62 2.53 2.46	2.77 2.65 2.54 2.46 2.39	2.74 2.61 2.51 2.42 2.35	2.70 2.57 2.47 2.38 2.31	2.66 2.53 2.43 2.34 2.27	2.62 2.49 2.38 2.30 2.22	2.58 2.45 2.34 2.25 2.18	2.54 2.40 2.30 2.21 2.13

■ single restriction F-검정 (단일가설 검정 경우)

- 가설: $H_0: \beta_2 = 0$ $H_1: \beta_2 \neq 0$ (총수입은 가격에 의존하는가?)
- 검정통계량: $F = \frac{(SSE_R SSE_U)/J}{SSE_U/(N-K)}$ ~ F(J, N-K)
- 유의수준 선택: $\alpha = 0.05$
- 자유도 및 임계값: 단일가설이므로 J=1, (N-K)=75-3=72이므로 임계값은 $F_c = F_{(1,72;0.05)} = 3.97$ =FINV(0.05,1,72)
- F-통계량: $F = \frac{\left(SSE_R SSE_U\right)/J}{SSE_U/(N-K)} = \frac{\left(2961.827 1718.943\right)/1}{1718.943/(75-3)}$ = 52.06
- 검정결과: $F = 52.06 > 3.97 = F_c$ 따라서 귀무가설 기각(가격에 의존)
- P-값 계산: $p = P[F_{(1,72)} \ge 52.06] = .0000$ =FDIST(52.06,1,72)

$$p = 0.0000 < 0.05 = \alpha$$

- 햄버거 체인점의 총수입은 가격에 의존하는가? (t-검정)
- 가설: $H_0: \beta_2 = 0$ $H_1: \beta_2 \neq 0$
- 검정통계량: $t = \frac{b_2}{se(b_2)} \sim t_{(N-K)}$
- 유의수준 선택: $\alpha = 0.05$

=TINV(0.05,72)

- 임계값 및 기각역: 자유도=75-3=72이므로 임계값은 $t_c = \pm 1.993$ 기각역은 $t_c = \pm 1.993$
- t-통계량 및 P-값 계산: $t = \frac{b_2}{se(b_2)} = \frac{-7.908}{1.096} = \frac{-7.215}{1.096}$

$$P(t_{(72)} > 7.215) + P(t_{(72)} < -7.215) = 2 \times (2.2 \times 10^{-10}) = 0.000$$

• 검정결과: -7.215 < -1.993, $p = 0.000 < 0.05 = \alpha$ =TDIST(-7.215,72,2)

따라서 귀무가설 기각, 즉 수입은 가격에 의존함

$$F = 52.06 = t^2 = (-7.215)^2$$
 $F_c = 3.97 = t_c^2 = (1.993)^2$

6.2 모형의 유의성 검정

$$y_t = \beta_1 + x_{t2}\beta_2 + x_{t3}\beta_3 + \dots + x_{tK}\beta_K + e_t$$

■ 단일 추정치의 유의성 검정 ⇒ t-검정 (F-검정과 동일한 결과)

$$H_0$$
:어느 한 $\beta_k = 0$

$$H_1: \beta_k \neq 0$$

- 회귀모형의 전반적인 유의성 검정
 - = 결합가설의 검정 ⇒ F-검정

$$H_0: \beta_2 = 0, \beta_3 = 0, \dots, \beta_K = 0$$

 H_1 : at least one of the β_k is nonzero

■ multiple restriction F-검정 (결합가설 검정 경우)

$$y_i = \beta_1 + x_{i2}\beta_2 + x_{i3}\beta_3 + \dots + x_{iK}\beta_K + e_i$$

- (귀무가설) H_0 : $\beta_2 = 0$ and $\beta_3 = 0$ ··· and $\beta_K = 0$
- (대립가설) $H_1: \beta_k$ 들 중 적어도 하나는 0이 아니다
- 이 경우 제한된 모형: $y_i = \beta_1 + e_i$
- 이 모형의 OLS 추정량 $b_1^* = \sum Y_t / T = \overline{Y}$

$$SSE_R = \sum_{i=1}^{N} (y_i - b_1^*)^2 = \sum_{i=1}^{N} (y_i - \overline{y})^2 = SST$$

$$SSE_U = SSE$$
 $J = K - 1$

$$F = \frac{(SSE_R - SSE_U)/J}{SSE_U/(N-K)} = \frac{(SST - SSE)/(K-1)}{SSE/(N-K)} \sim F(K-1, N-K)$$

■ 햄버거 체인점, 결합가설 검정 (회귀식의 전반적 유의성 검정)

$$S_i = \beta_1 + \beta_2 P_i + \beta_3 A_i + e_i$$

- 귀무가설: $H_0: \beta_2 = 0$ and $\beta_3 = 0$
- 대립가설: $H_1: \beta_2 \neq 0$ or $\beta_3 \neq 0$

분산 분석					
	자유도	제곱합	제곱 평균	FЫ	유의한 F
회귀	2	1396.539	698.2695	29.24786	5.04E-10
잔차	72	1718.943	23.87421		
계	74	3115.482			

$$F = \frac{\left(SST - SSE\right) / \left(K - 1\right)}{SSE / \left(N - K\right)} = \frac{\left(3115.482 - 1718.943\right) / 2}{1718.943 / \left(75 - 3\right)} = 29.25$$

• $F_c = F(2,72;0.05) = 3.12$ 29.25 > 3.12 귀무가설 기각함 $p = P[F_{(2,72)} \ge 29.25] = .0000$

Eviews output

Dependent Variable: SALES

Method: Least Squares

Date: 11/04/10 Time: 23:29

Sample: 175

Included observations: 75

SALES=C(1)+C(2)*PRICE+C(3)*ADVERT

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3)	118.9136 -7.907854 1.862584	6.351638 1.095993 0.683195	18.72172 -7.215241 2.726283	0.0000 0.0000 0.0080
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.448258 0.432932 4.886124 1718.943 -223 8695 29.24786 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		77.37467 6.488537 6.049854 6.142553 6.086868 2.183037

6.3 확장된 모형

$$S = \beta_1 + \beta_2 P + \beta_3 A + e$$

- ✓ 광고비 지출을 늘리면 매출액이 계속 비례적으로 증가할 것인가?
- 현실적으로 광고비의 효과에는 수확체감의 법칙이 작용할 것 같음

Ch. 6 다중회귀모형에 관한 추가적인 논의

■ 확장된 모형

광고비 지출이 매출액 증대에 미치는 효과에 수확체감이
 작용하는 경우, 다음과 같은 모형이 적합할 수 있음

$$S = \beta_1 + \beta_2 P + \beta_3 A + \beta_4 A^2 + e$$

$$\frac{\Delta E(S)}{\Delta A}_{(P \text{ held constant})} = \frac{\partial E(S)}{\partial A} = \beta_3 + 2\beta_4 A$$

• 이 경우 $\beta_3 > 0$, $\beta_4 < 0$ 으로 예상됨

■ 확장된 모형의 추정결과

• 추정방법: 아래와 같이 변수를 변환하여 OLS 적용함

$$S = \beta_1 + \beta_2 P + \beta_3 A + \beta_4 A^2 + e$$

$$y_i = S_i, \quad x_{i2} = P_i, \quad x_{i3} = A_i, \quad x_{i4} = A_i^2$$

$$y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + e$$

• 추정결과

$$\hat{S}_i = 109.72 - 7.640 P_i + 12.151 A_i - 2.768 A_i^2$$

(se) (6.80) (1.046) (3.556) (0.941)

6.4 경제적 가설의 검정

6.4.1 광고의 유용성

- ✓ 광고는 매출에 영향을 미치는가?
- 제한되지 않은 모형 $S_i = \beta_1 + \beta_2 P_i + \beta_3 A_i + \beta_4 A_i^2 + e_i$ (U)

$$H_0: \beta_3 = 0, \beta_4 = 0$$

$$H_1: \beta_3 \neq 0 \text{ or } \beta_4 \neq 0$$

• 귀무가설이 옳다면(즉, 광고가 매출에 아무런 도움이 안 된다면)

$$S_i = \beta_1 + \beta_2 P_i + e_i \quad (R)$$

■ 햄버거 체인점의 광고는 총수입에 영향을 미치는가? (F-검정)

$$S_{i} = \beta_{1} + \beta_{2}P_{i} + \beta_{3}A_{i} + \beta_{4}A_{i}^{2} + e_{i}$$

- 가설: $H_0: \beta_3 = 0, \beta_4 = 0$ $H_1: \beta_3 \neq 0$ or $\beta_4 \neq 0$
- 검정통계량: $F = \frac{(SSE_R SSE_U)/2}{SSE_U/(75-4)} \sim F_{(2,71)}$
- 유의수준 선택: $\alpha = 0.05$
- 임계값 및 기각역: 자유도=75-4=71이므로 임계값은 $F_c = F_{(.95,2,71)} = 3.126$ 기각역은 F > 3.126
- F-통계량 및 P-값 계산: $F = \frac{(1896.391 1532.084)/2}{1532.084/(75 4)} = 8.44$

$$P[F_{(2,71)} > 8.44] = .0005$$

• 검정결과: $F_c = 3.126 < F = 8.44$ 따라서 귀무가설 기각, 즉 광고는 매출액에 영향 미침

$$S_i = \beta_1 + \beta_2 P_i + \beta_3 A_i + \beta_4 A_i^2 + e_i$$

- 경제이론에 따르면 한계수익이 한계비용보다 큰 모든 행위를 해야 함
- 광고를 한 단위 증가시킴에 따른 한계수익 = 기대 매출액의 증가

$$\frac{\Delta E(S)}{\Delta A}_{(P \text{ held constant})} = \beta_3 + 2\beta_4 A$$

- 광고를 한 단위 증가시킴에 따른 한계비용 = 광고비(1 단위금액) (매출 증가에 따른 재료비, 인건비, 관리비 등은 없다고 가정함)
- 한계수입=한계비용은 아래의 조건이 충족될 때 나타남

$$\beta_3 + 2\beta_4 A_o = 1$$

- 추정치 대입, $(12.1512) + 2 \times (-2.76796) \hat{A}_o = 1 \Rightarrow \hat{A}_o = 2.104$
- 따라서 광고의 최적 수준은 \$2,104 임

6.5 비표본 정보의 이용

- 비표본 정보(Nonsample Information)
 - 표본자료에 포함된 정보 이외에 추가적인 정보
 - 경제원칙, 경제이론, 경험 등에서 얻을 수 있음
- ▶ 모수를 추정할 때 정확성을 향상시킬 수 있음

■ 비표본 정보의 이용: 맥주수요함수 예

$$q = f(p_B, p_L, p_R, m)$$

-q: 맥주수요량, P_B : 맥주가격, P_L : 다른 술 가격 P_R : 기타 다른 모든 재화 가격, m: 소득

$$\ln q = \beta_1 + \beta_2 \ln p_B + \beta_3 \ln p_L + \beta_4 \ln p_R + \beta_5 \ln m$$

• 화폐착각(money illusion)이 없다면, 모든 가격과 소득이 동일한 비율로 증가할 경우 수요량은 변화하지 않을 것임

$$\ln q = \beta_1 + \beta_2 \ln(\lambda p_B) + \beta_3 \ln(\lambda p_L) + \beta_4 \ln(\lambda p_R) + \beta_5 \ln(\lambda m)$$

$$= \beta_1 + \beta_2 \ln p_B + \beta_3 \ln p_L + \beta_4 \ln p_R + \beta_5 \ln m + (\beta_2 + \beta_3 + \beta_4 + \beta_5) \ln \lambda$$

• 화폐착각이 없다면(소비자가 합리적이라면) $\beta_2 + \beta_3 + \beta_4 + \beta_5 = 0$

■ 맥주 수요함수 추정에 사용된 통계자료의 기통통계값

Table 6.1 Summary Statistics for Data Used to Estimate Beer Demand

	Q	PB	PL	PR	I
Sample mean	56.11	3.08	8.37	1.25	32,602
Median	54.90	3.11	8.39	1.18	32,457
Maximum	81.70	4.07	9.52	1.73	41,593
Minimum	44.30	1.78	6.95	0.67	25,088
Std. Dev.	7.8574	0.6422	0.7696	0.2983	4,542

q: 맥주수요량, P_B : 맥주가격, P_L : 다른 술 가격

 P_R : 기타 다른 모든 재화 가격, m: 소득

$$\ln q = \beta_1 + \beta_2 \ln p_B + \beta_3 \ln p_L + \beta_4 \ln p_R + \beta_5 \ln m$$

$$\beta_2 + \beta_3 + \beta_4 + \beta_5 = 0$$

■ **비표본 정보**인 다음 관계식을 원래 식에 대입

$$\underline{\beta_4} = -\beta_2 - \beta_3 - \beta_5$$

$$\ln q_{t} = \beta_{1} + \beta_{2} \ln p_{Bt} + \beta_{3} \ln p_{Lt} + \left(-\beta_{2} - \beta_{3} - \beta_{5}\right) \ln p_{Rt} + \beta_{5} \ln m_{t} + e_{t}$$

$$= \beta_{1} + \beta_{2} \left(\ln p_{Bt} - \ln p_{Rt}\right) + \beta_{3} \left(\ln p_{Lt} - \ln p_{Rt}\right) + \beta_{5} \left(\ln m_{t} - \ln p_{Rt}\right) + e_{t}$$

$$= \beta_{1} + \beta_{2} \ln \left(\frac{p_{Bt}}{p_{Rt}}\right) + \beta_{3} \ln \left(\frac{p_{Lt}}{p_{Rt}}\right) + \beta_{5} \ln \left(\frac{m_{t}}{p_{Rt}}\right) + e_{t}$$

$$\ln \hat{q}_t = -4.798 - 1.2994 \ln \left(\frac{p_{Bt}}{p_{Rt}} \right) + 0.1868 \ln \left(\frac{p_{Lt}}{p_{Rt}} \right) + 0.9458 \ln \left(\frac{m_t}{p_{Rt}} \right)$$
(3.714) (0.166) (0.284) (0.427)

$$b_4^* = -b_2^* - b_3^* - b_5^*$$

$$= -(-1.2994) - 0.1868 - 0.9458$$

$$= 0.1668$$

■ 맥주수요함수 추청결과: linear model

Dependent Variable: Q Method: Least Squares

Date: 04/23/11 Time: 16:22

Sample: 130

Included observations: 30

Q=C(1)+C(2)*PB+C(3)*PL+C(4)*PR+C(5)*M

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5)	82.15871 -23.74260 -4.077410 12.92434 0.001995	17.96176 5.429409 3.890489 4.163896 0.000776	4.574090 -4.372962 -1.048046 3.103906 2.570612	0.0001 0.0002 0.3046 0.0047 0.0165
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.822118 0.793657 3.569219 318.4831 -78.00374 28.88559 0.000000	Mean dependent S.D. dependent Akaike info criter Schwarz criterion Hannan-Quinn c Durbin-Watson s	var rion n riter.	56.11333 7.857381 5.533582 5.767115 5.608292 2.508801

■ 맥주수요함수 추청결과: log-log model

Dependent Variable: LOG(Q)

Method: Least Squares

Date: 04/23/11 Time: 16:37

Sample: 130

Included observations: 30

LOG(Q)=C(1)+C(2)*LOG(PB)+C(3)*LOG(PL)+C(4)*LOG(PR)+C(5)*LOG(M)

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5)	-3.243238 -1.020419 -0.582934 0.209545 0.922864	3.743000 0.239042 0.560150 0.079693 0.415514	-0.866481 -4.268787 -1.040674 2.629415 2.221016	0.3945 0.0002 0.3080 0.0144 0.0356
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.825389 0.797451 0.059973 0.089920 44.58235 29.54377 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		4.018531 0.133258 -2.638823 -2.405290 -2.564114 2.630645

■ 맥주수요함수 추청결과: 비표본 정보 이용(1)

Dependent Variable: LOG(Q)

Method: Least Squares

Date: 04/23/11 Time: 16:50

Sample: 130

Included observations: 30

LOG(Q)=C(1)+C(2)*LOG(PB/PR)+C(3)*LOG(PL/PR)+C(5)*LOG(M/PR)

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(5)	-4.797798 -1.299386 0.186816 0.945829	3.713905 0.165738 0.284383 0.427047	-1.291847 -7.840022 0.656916 2.214813	0.2078 0.0000 0.5170 0.0357
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.807949 0.785789 0.061676 0.098901 43.15437 36.46021 0.000000	Mean dependent S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn de Durbin-Watson s	var rion n criter.	4.018531 0.133258 -2.610291 -2.423465 -2.550524 2.686998

■ 맥주수요함수 추청결과: 비표본 정보 이용(2)

Dependent Variable: LOG(Q)

Method: Least Squares

Date: 04/23/11 Time: 17:03

Sample: 130

Included observations: 30

LOG(Q)=C(1)+C(3)*LOG(PL/PB)+C(4)*LOG(PR/PB)+C(5)*LOG(M/PB)

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(3) C(4) C(5)	-4.797798 0.186816 0.166742 0.945829	3.713905 0.284383 0.077075 0.427047	-1.291847 0.656916 2.163369 2.214813	0.2078 0.5170 0.0399 0.0357
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.807949 0.785789 0.061676 0.098901 43.15437 36.46021 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		4.018531 0.133258 -2.610291 -2.423465 -2.550524 2.686998

6.6 모형 설정

<설정된 모형에 따라 달라지는 문제들>

- 모형의 모수를 추정하는 최선의 방법은 무엇인가?
- 모형의 모수에 관한 가설을 어떻게 설정하여야 하는가?
- 모형의 모수에 관한 가설을 어떻게 검정할 수 있는가?
- 예측은 어떻게 해야 하는가?

- ✓ 모형을 선택할 경우 어떤 사항을 중요하게 고려하여야 하나?
- ✔ 선택한 모형이 적절한지를 평가하는 방법은 무엇인가?

<모형을 선택할 경우 고려해야 할 사항>

- (1) 모형에 포함되어야 할 설명변수의 선정
- (2) 함수형태의 선택
- (3) 다중회귀모형의 기본가정인 MR1~MR6의 준수 여부

6.6.1 주요 변수의 누락이 유발하는 문제 (omitted-variable problem)

• 올바른 모형이 다음과 같다고 하자

$$W_t = \beta_1 + \beta_2 E_t + \beta_3 M_t + e_t$$

W: 피고용인 임금, E: 경험, M: 열의(motivation)

부적절한 모형(주요 설명변수 M 이 누락된 모형)

$$W_t = \beta_1 + \beta_2 E_t + v_t$$

- 부적절한 제약 $\beta_3 = 0$ 이 부과된 셈
- \Rightarrow 누락된 변수(M)와 포함된 변수(E)가 완전 독립이 아니라면, β_1, β_2 의 OLS 추정량은 분산이 감소하나 불편추정량이 못됨
- ✓ 추정된 계수가 예상하지 못한 부호를 갖거나 비현실적인 값을 가지는 원인이 되기도 함 (증명: 6장 부록6B)

■ 가계소득 추정 사례

- 맞벌이 가계가 많아, 가계총소득(FAMINC)은 남편의 교육수준 (HEDU)과 아내의 교육수준(WEDU)에 크게 의존한다고 하자
- 아래 자료로 추정

Table 6.2 Summary Statistics for Data Used for Family Income Example								
	FAMINC	HEDU	WEDU	KL6	X_5	X_6		
Sample mean	91213	12.61	12.65	0.14	12.57	25.13		
Median	83013	12	12	0	12.60	24.91		
Maximum	344146	17	17	2	20.82	37.68		
Minimum	9072	4	5	0	2.26	9.37		
Std. Dev.	44147	3.035	2.285	0.392	3.427	5.052		
Correlation matrix								
FAMINC	1.000							
HEDU	0.355	1.000						
WEDU	0.362	0.594	1.000					
KL6	-0.072	0.105	0.129	1.000				
X_5	0.290	0.836	0.518	0.149	1.000			
X_6	0.351	0.821	0.799	0.160	0.900	1.000		

• 가계소득 추정 결과

$$\widehat{FAMINC}_i = -5534 + 3132 \, HEDU_i + 4523 WEDU_i$$
(se) (11230) (803) (1066)
(p-value) (.622) (.000) (.000)

- 남편이 교육을 1년 더 받을 경우 연간 가계소득은 \$3,132 증가
- **중요 변수**(WEDU)가 **누락된 경우**의 추정 결과

$$\widehat{FAMINC}_i = -26191 + 5155 HEDU_i$$
(se) (8541) (658)
(p-value) (.002) (.000)

- 남편이 교육을 1년 더 받을 경우 연간 가계소득은 \$5,155 증가 즉, 약 \$2,000 과대평가 (불편추정량 아닌 것을 확인할 수 있음)

• 가계소득 추정 결과

$$\widehat{FAMINC}_{i} = -5534 + 3132 HEDU_{i} + 4523 WEDU_{i}$$
(se) (11230) (803) (1066)
(p-value) (.622) (.000) (.000)

- 남편이 교육을 1년 더 받을 경우 연간 가계소득은 \$3,132 증가
- **중요하지 않은 변수**(*KL6*, 6세 미만 자녀수)가 **누락된 경우**의 추정 결과

$$\widehat{FAMINC}_{i} = -7755 + 3211 HEDU_{i} + 4777 WEDU_{i} - 14311 KL6_{i}$$
(se) (11163) (797) (1061) (5004)
(p-value) (.488) (.000) (.000) (.004)

- 남편이 교육을 1년 더 받을 경우 연간 가계소득은 \$3,211 증가 *HEDU*와 *WEDU* 추정치에 별 변화 없음 (불편추정량일 가능성 높음)
- KL6가 HEDU 및 WEDU와 독립이면, 누락되어도 전혀 영향 주지 않음

- 어떤 한 변수가 회귀모형에 포함되어야 하는지를 판단하는 방법
- 기본원칙: 유의성 검정

추정치가 0이라는 귀무가설이 기각되면 포함시킴 <주의>

- 추정치가 0이라는 귀무가설이 기각되지 못하는 이유
- (1) 해당 변수가 종속변수와 무관한 경우 ⇒ 제외시켜야 함
- (2) 중요한 변수임에도 불구하고, 표본이 적절하지 못한 경우
 - ⇒ 제외시키면, 나머지 추정치는 불편추정량이 되지 못함
- ✓ 가능한 많은 변수를 포함시키는 것이 좋은 전략인가?Cf. stepwise 옵션

model Y = X1 X2 X3 X4 / selection=stepwise;

35

• 가계소득 추정 결과

$$\widehat{FAMINC}_i = -5534 + 3132 HEDU_i + 4523 WEDU_i$$
(se) (11230) (803) (1066)
(p-value) (.622) (.000) (.000)

- 남편이 교육을 1년 더 받을 경우 연간 가계소득은 \$3,132 증가
- **무관한 변수**(*KL6*, 6세 미만 자녀수)가 **누락된 경우**의 추정 결과

$$\widehat{FAMINC}_i = -7755 + 3211 HEDU_i + 4777 WEDU_i - 14311 KL6_i$$
(se) (11163) (797) (1061) (5004)
(p-value) (.488) (.000) (.000) (.004)

- 남편이 교육을 1년 더 받을 경우 연간 가계소득은 \$3,211 증가 *HEDU*와 *WEDU* 추정치에 별 변화 없음 (불편추정량일 가능성 높음)
- KL6가 HEDU 및 WEDU와 독립이면, 누락되어도 전혀 영향 주지 않음

Ch. 6 다중회귀모형에 관한 추가적인 논의

KL6은 6세 미만 자녀수 (남편 및 아내의 교육 수준과 무관)

6.6.2 종속변수와 관련되지 않은 변수가 포함되었을 때의 문제

• 올바른 모형이 다음과 같다고 하자

$$W_t = \beta_1 + \beta_2 E_t + \beta_3 M_t + e_t$$

• 부적절한 아래 모형을 추정하였다고 하자

$$W_{t} = \beta_{1} + \beta_{2}E_{t} + \beta_{3}M_{t} + \beta_{4}C_{t} + e_{t}$$

- 문제점
- β_1 , β_2 , β_3 의 OLS 추정량은 불편추정량이기는 하지만, 분산이 증가하게 됨 (C가 E 및 M과 완전독립이 아니면)
- ⇒ 나머지 추정치의 정확도를 떨어뜨리고, 유의하지 않은 것으로 오해하게 만들 수 있음

• 가계소득 추정 결과

$$\widehat{FAMINC}_i = -7755 + 3211 HEDU_i + 4777 WEDU_i - 14311 KL6_i$$
(se) (11163) (797) (1061) (5004)
(p-value) (.488) (.000) (.000) (.004)

- 남편이 교육을 1년 더 받을 경우 연간 가계소득은 \$3,132 증가
- **종속변수와 인위적인(무관한) 변수**(*X5, X6*)가 **포함된 경우**의 추정 결과

$$\widehat{FAMINC}_{i} = -7759 + 3340 HEDU_{i} + 5869 WEDU_{i} - 14200 KL6_{i} + 889 X_{i5} - 1067 X_{i6}$$
(se) (11195) (1250) (2278) (5044) (2242) (1982) (p-value) (.500) (.008) (.010) (.005) (.692) (.591)

- HEDU와 WEDU 추정치에 큰 변화 없음 (불편추정량일 가능성 있음)
- 주요 추정치의 표준오차가 크게 증가하는 문제 확인됨, 정확성 감소

X5, *X6*는 난수 발생시켜 만든 변수 (무관, 독립)

6.6.3 RESET 검정 (Regression Specification Error Test)

• 적절한 변수 누락 여부와 함수형태의 잘못된 설정을 검정

$$Y_{t} = \beta_{1} + \beta_{2}X_{2t} + \beta_{3}X_{3t} + e_{t}$$
 $\hat{Y}_{t} = b_{1} + b_{2}X_{2t} + b_{3}X_{3t}$

• 다음과 같은 두 개의 인위적인 모형을 생각해보자

$$Y_{t} = \beta_{1} + \beta_{2} X_{2t} + \beta_{3} X_{3t} + \gamma_{1} \hat{Y}_{t}^{2} + e_{t}$$

$$Y_{t} = \beta_{1} + \beta_{2} X_{2t} + \beta_{3} X_{3t} + \gamma_{1} \hat{Y}_{t}^{2} + \gamma_{2} \hat{Y}_{t}^{3} + e_{t}$$

- γ_1 이나 γ_2 가 0이 아니라면, **비선형함수**가 적절하다는 의미
- 따라서 RESET 검정의 가설은 아래와 같음

$$H_0: \gamma_1 = 0, \quad H_1: \gamma_1 \neq 0$$

$$H_0: \gamma_1 = \gamma_2 = 0, \quad H_1: \gamma_1 \neq 0 \quad or \quad \gamma_2 \neq 0$$

■ RESET 검정 결과

- 귀무가설 기각되면,
 원래 모형이 부적절하여 향상될 수 있다는 의미
- 귀무가설을 기각하는데 실패할 경우,
 RESET 검정은 모형 설정의 오류를 알아낼 수 없다는 의미

```
proc autoreg ;
loglog: model | q = | lpb | lpl | lpr | lm / reset ;
liner: model | q = | pb | pl | pr | m / reset ;
```

■ Ramsey (1969)의 RESET 검정 예: 맥주 수요모형

<log-log model>

$$\ln(q_t) = \beta_1 + \beta_2 \ln(p_{Bt}) + \beta_3 \ln(p_{Lt}) + \beta_4 \ln(p_{Rt}) + \beta_5 \ln(m_t) + e_t$$

linear model>

$$q_{t} = \beta_{1} + \beta_{2} p_{Bt} + \beta_{3} p_{Lt} + \beta_{4} p_{Rt} + \beta_{5} m_{t} + e_{t}$$

Ramsey RESET Test: LOGLOG Model					
F-statistic (1 term)	0.0075	Probability	0.9319		
F-statistic (2 terms)	0.3581	Probability	0.7028		
Ramsey RESET Test: LINEAR Model					
F-statistic (1 term)	8.8377	Probability	0.0066		
F-statistic (2 terms)	4.7618	Probability	0.0186		

■ 맥주 수요모형 RESET 검정 결과

- (1 term): 예측치의 제곱변수가 추가된 경우
- (2 terms) : 예측치의 제곱 및 세제곱 변수가 함께 추가된 경우
- <log-log model>
- F-값이 아주 작음(0.0075, 0.3581), 이것들에 상응하는 p-값은 0.9319 및 0.7028로 유의수준(0.05)보다 훨씬 큼
 - ⇒ log-log model이 부적절한 모형이라고 주장할 수 없음

linear model>

- p-값은 0.0066 및 0.0186로 유의수준(0.05)보다 훨씬 작음
 - ⇒ linear model은 부적절한 모형이라는 결론

Model	loglog
Dependent Variable	lq

Ordinary Least Squares Estimates

SSE	0.08991989	DFE	25
MSE	0.00360	Root MSE	0.05997
SBC	-72.158707	AIC	-79.164694
Regress R-Square	0.8254	Total R-Square	0.8254
Durbin-Watson	2.6306		

Ramsey's RESET Test				
Power	RESET	Pr > F		
2	0.0074	0.9319		
3 4	0.3581 0.7385	0.7028 0.5403		

Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t
Intercept	1	-3.2432	3.7430	-0.87	0.3945
lpb	1	-1.0204	0.2390	-4.27	0.0002
lpl	1	-0.5829	0.5602	-1.04	0.3080
lpr	1	0.2095	0.0797	2.63	0.0144
lm	1	0.9229	0.4155	2.22	0.0356

Model liner Dependent Variable q

Ordinary Least Squares Estimates

318.483105	DFE	25
12.73932	Root MSE	3.56922
173.01346	AIC	166.007473
0.8221	Total R-Square	0.8221
2.5088		
	12.73932 173.01346 0.8221	12.73932 Root MSE 173.01346 AIC 0.8221 Total R-Square

Ramsey's RESET Test				
Power	RESET	Pr > F		
2 3	8.8377 4.7618	0.0066 0.0186		
4	3.3019	0.0392		

Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t
Intercept pb pl pr m	1 1 1 1	82.1587 -23.7426 -4.0774 12.9243 0.001995	17.9618 5.4294 3.8905 4.1639 0.000776	4.57 -4.37 -1.05 3.10 2.57	0.0001 0.0002 0.3046 0.0047 0.0165

6.7 다중공선성 (multicollinearity)

- 설명변수들 사이에는 밀접한 관련이 있을 수 있음 (두 변수가 공선(collinear)되어 있다고 라고 말함)
 - ⇒ 이 경우 설명변수가 종속변수에 미치는 영향을 추정하기 어려움 설명변수 자료는 풍부한 정보를 가지지 못함(poor data) (공선성 문제 collinearity problem 라고 말함)

(예1) 신문광고와 우대권(할인권) 나누어주기를 동시에 하는 경우

⇒ 매출액의 증가에 미치는 광고의 효과와 우대권의 효과를분리하여 추정하기 어려움

(예2) 노동과 자본이 고정된 비율로 생산에 투입되는 경우(버스-운전사)

⇒ 노동과 자본의 한계생산물을 각각 분리하여 추정하기 어려움

6.7.1 다중공선성이 유발하는 효과들

- R^2 및 모형의 F 값이 높음에도 불구하고 추정치들의 t-값이 낮게 나타남, 추정치들이 유의하지 않은 것으로 오해하게 함
- 몇 개의 표본을 추가하거나 제외시키면,
 추정치들이 매우 민감하게 달라짐
- 모형에서 명백하게 유의하지 않은 설명변수를 삭제하면 추정치들이 민감하게 달라짐
- ❖ 공선 관계가 표본외 관찰값에도 동일하게 존재하는 경우에는 예측의 정확도가 높을 수 있음

- 다중공선성 문제 (multicollinearity problem)
- 설명변수들 사이에 정확한 선형관계가 존재하는 경우,
 OLS를 이용해서는 모수 추정치를 구할 수 없음

$$var(b_2) = \frac{\sigma^2}{(1 - r_{23}^2) \sum_{i=1}^{N} (x_{i2} - \overline{x}_2)^2}$$

- 설명변수들 사이에 거의 정확한 선형관계가 존재하는 경우,
 OLS 추정량의 일부 분산, 표준오차가 큰 값으로 나타남
- ⇒ 구간추정이 넓은 폭으로 나타나 모수의 참값에 대한 정보를 얻기 어려움

6.7.2 자동차 연비 사례

MPG = 연비 (miles per gallon)

CYL = 실린더의 수 (number of cylinders; V4, V6, V8,...)

ENG = 배기량 (engine displacement in cubic inches)

WGT = 차량 무게 (vehicle weight in pounds)

- *CYL*, *ENG*, *WGT*가 *MPG*에 미치는 영향을 추정하려고 함
- 일반적으로 대형차(소형차)의 경우 *CYL*, *ENG*, *WGT*가 모두 큼(작음)
 - ⇒ 설명변수들 사이에 다중공선성이 존재할 가능성이 높음

■ 자동차 연비 사례 추정결과

• 설명변수가 하나만 포함된 모형의 추정결과

$$\widehat{MPG}_i = 42.9 + 3.558CYL_i$$
(se) (0.83) (0.146)
(p-value) (0.000) (0.000)

• 설명변수가 모두 포함된 모형의 추정결과

$$\widehat{MPG}_i = 44.4 - \begin{pmatrix} 0.268CYL_i \\ (\text{se}) & (1.5) \\ (p-\text{value}) & (0.000) \\ \end{pmatrix} \begin{pmatrix} 0.0083 \\ (0.0003) \\ (0.0000) \end{pmatrix} \begin{pmatrix} 0.00071 \\ (0.125) \\ \end{pmatrix}$$

✓ CYL 변수 추정치의 유의성이 크게 낮게 나타나고 있음

6.7.3 다중공선성의 탐지 및 해결

■ 다중공선성 탐지 방법

- (1) 설명변수들 사이의 상관관계 측정 (상관계수가 0.8 이상)
- (2) R^2 나 F-값이 높음에도 불구하고, 추정치의 t-값이 낮을 때
- (3) 다음과 같은 보조적인 회귀모형 추정, R^2 가 0.8 이상

$$x_{i2} = a_1 x_{i1} + a_3 x_{i3} + \dots + a_K x_{iK} + error$$

(4) 표본을 몇 개 늘리거나 줄이면, 추정치 크기가 크게 변화

■ 다중공선성 해결 방법

- 상관관계 높은 설명변수 삭제
 - 설명변수들 사이의 상관계수 계산해서 찾음
- 표본의 수 늘림
- 비표본정보의 이용, 제약 부과

6.8 예측

$$y_i = \beta_1 + x_{i2}\beta_2 + x_{i3}\beta_3 + e_i$$

- 단순회귀 경우와 유사함
- $(1, x_{02}, x_{03})$ 에서의 점예측치는 아래와 같음

$$\hat{y}_0 = b_1 + x_{02}b_2 + x_{03}b_3$$

<과제>

6.6

6.10 (beer_new.dat 자료를 이용하시오)

Eviews output을 출력하고,

출력물의 빈 여백에 간단하게 답을 적으시오.

※ 참고: 6.10 문제에 필요한 data는 사이버강의실에 있음 http://principlesofeconometrics.com/