Project #41 - Make Womb

An investigation of vascular adaptation to pregnancy

By Jungwoo Han and Daniel Zang

Healthy Fetal Development

Factors of Healthy Fetal Growth

- Oxygen and Nutrient
- Blood flow

Uterine Arteries

- Spiral
- Arcuate
- Radial

Source: https://www.glowm.com/article/heading/vol-5--surveillance-of-fetal-wellbeing--clinical-assessment-of-fetal-growth/id/411383

Source: https://journals.physiology.org/doi/full/10.1152/physiol.00033.2016

What is the Problem?

Fetal Growth Restriction

- Affects approximately 10% of all pregnancies
- Lack of early detection methods
- Can severely impact quality of life

What can go wrong?

- Inconsistent blood flow
- Improper remodeling of blood arteries

Source: https://www.nichd.nih.gov/research/supported/human-placenta-project/how-does-placenta-form

Background Information

Boyd Collection

- Developed in 1950s and 1960s
- Two categories of samples
 - o placenta-in-situ specimens
 - isolated placental specimens
- Difficulties with working with these specimen

Background Information

Placenta Anatomy

- Myometrium
 - Smooth muscular layer with dark red paths that is dense of tissue.
- Decidua
 - Appears pink or red
 - The white areas are tissues with glands.
- Villous
 - Finger-like projections

Two Different Approaches

01. Machine Learning

02. Image Analysis

Pre-process Images

- Filtering unused images
- Splitting into sub-images
 - 1424 by 2006 pixels
 - 118 pixels height, 178 pixels width
 - 800 -> 2440 Sub-Images
- Remove all black images

Machine Learning

- Split images into a train, test, validation set
- Model Architecture
 - U-Net
- Model Task
 - Pixel-wise Segmentation
- Models Trained
- Optimization
 - Early Callbacks
 - Validation Loss
- Visualization

- ResNet152V2
- DenseNet121
- VGG16
- VGG19
- NASNETMobile
- DenseNet201
- MobileNetV2

Machine Learning Results

- Best Model and Performance
 - DenseNet201
 - Acc: 0.9115
 - Loss: 0.2398
 - Valid_loss: 0.2150
- Optimization
 - Max_Epochs: 5
 - Validation loss
 - None of the models
 - o improved after 5 epochs
- Predictions
 - Good and Bad

Model prediction results

- 98% Training accuracy
- 96% Validation accuracy
- 6% Training loss
- 12% Validation loss
- Trained as whole images
- U-Net architecture
- Trained in batches of 4
- 20 training samples
- 5 steps per epoch

Original Mask (Truth)

Model prediction

Image Analysis

- ImageJ
 - Why it wasn't used
- Python Sci-kit image analysis
- Edge detection
 - Canny edge detection
 - Sobel filters
- Method
 - Gaussian blur
 - Threshholding
 - Removal of noise
- Drawing edges

Image Analysis Results

- Parameter choice for Noise removal
- Results
- What could be improved

Future Work

- Machine learning
 - More images for more datapoints
 - Images from other gestation weeks
- Image Analysis
 - Incorporate image with edges drawn into a ML model

Conclusion

- Machine learning
 - Developed a ML model that is able to predict regions of placenta, pixel-wise.
- Image Analysis
 - Developed a script that can identify blood vessels and glands.