HOTEL RESERVATION CANCELLATION PREDICTION

Problem Statement

 Given a dataset containing data of reservations made by customers in different hotels, build a machine learning model to predict whether the customer cancels his/her hotel reservation or not.

About the Dataset

- No. of rows = 119390
- No. of attributes = 32
- Target variable = is_cancelled
- No. of independent variables = 31
- No. of numeric variables = 12
- No. of object variables = 19

Independent variables in the dataset

- Hotel
- Lead_time
- Arrival_date_year
- Arrival date month
- Arrival_date_week_number
- Arrival_date_day_of_month
- Stays_in_weekend_nights
- Stays_in_week_nights
- Adults
- Children
- Babies
- Meal
- Country
- Market_segment
- distribution_channel

- is_repeated_guest
- previous_cancellations
- previous_bookings_not_cancelled
- reserved_room_type
- assigned_room_type
- booking_changes
- deposit_type
- agent
- company
- days_in_waiting_list
- customer_type
- adr
- required_car_parking_spaces
- total_of_special_requests
- reservation_status
- reservation_status_date

Correlation Matrix

- 0.8

- 0.6

- 0.4

- 0.2

-0.0

--0.2

--0.4

Data Cleaning

Data Cleaning is the process of identifying the incorrect, incomplete, inaccurate, duplicated, irrelevant or missing part of the data and then modifying, replacing or deleting them according to the necessity

Replacing NULL/MISSING Values

- Replacing numerical missing values with MEAN/MEDIAN
 - No. of null values in [children] = 4
 - No. of null values in [agent] = 16340
 - No. of null values in [company] = 112593

Data Cleaning

Replacing NULL/MISSING Values

- Replacing categorical missing values with MODE
 - No. of null values in [children] = 4
 - No. of null values in [agent] = 16340
 - No. of null values in [company] = 112593

Removing the Duplicate Values

- No. of duplicate values in the data set = 32013
- Since we have 32013 duplicate records in the data, we will remove this from the data set so that we get only distinct records. Post removing the duplicate, we will check whether the duplicates have been removed from the data set or not.
- No. of rows in the dataset after removing duplicates = 87377

Encoding Categorical Data

- Encoding categorical data is a process of converting categorical data into integer format so that the data with converted categorical values can be provided to the different models.
- An approach to encoding categorical values is to use a technique called label encoding. Label encoding is simply converting each value in a column to a number.

Categorical variables in our data set:

- Hotel
- arrival_date_month
- meal
- country
- Market_segment
- distribution_channel

- reserved_room_type
- assigned_room_type
- deposit_type
- customer_type
- reservation_status
- reservation_status_date

Training the Model

- Size of training data = 75%
- Size of testing data = 25%

Confusion Matrix

Confusion Matrix

No

6026

- 4000

2000

- 4000

2000

Yes

Accuracy using Various Classifiers

Logistic Regression

- Training Accuracy: 0.9882194958188366
- Testing Accuracy: 0.9888303959716183

Gaussian Naive Bayes

- Training Accuracy: 0.9460568882378075
- Testing Accuracy: 0.9476768139162279

K Neighbors Classifier

- Training Accuracy: 0.9882500152597204
- Testing Accuracy: 0.983611810482948

Decision Tree Classifier

- Training Accuracy: 0.9882347555392785
- Testing Accuracy: 0.9888761730373083

Random Forest Classifier

- Training Accuracy: 1.0
- Testing Accuracy: 1.0

Conclusion

- The highest accuracy in this problem is obtained using the Random Forest Classifier.
- Highest accuracy = 100%