UNIVERSITY OF TORONTO MAT290F - ADVANCED ENGINEERING MATHEMATICS FINAL EXAM, December 21, 2001

FAMILY NAME	
GIVEN NAME(S)	
STUDENT NUMBER	

Instructions

NO AIDS, NO CALCULATOR

Write your solutions clearly in the spaces provided below the problem statements. Use the back sides of the pages for rough work.

Problem	Mark
1	/10
2	/10
3	/10
4	/10
5	/10
6	/10
7	/10
8	/10
Total	/80

- 1. (a) State the conditions for a function f(t) to have a Laplace transform F(s).
 - (b) Using the residue theorem, find f(t) if

$$F(s) = \frac{1}{s^2(s-2)}.$$

2. (a) Suppose f(t) is a periodic function, of period T. Derive the following expression for its Laplace transform:

$$F(s) = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt.$$

(b) Find F(s) for the periodic function with T=10 and

$$f(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & 1 \le t < 10. \end{cases}$$

- 3. (a) State in logic format the definition that z is a boundary point of a set S.
 - (b) Using this definition, prove that z = 1 + 2i is a boundary point of the set of all complex numbers x + iy, where x ranges over all real numbers such that -1 < x < 1, and y ranges over all positive integers.
 - (c) Consider the function

$$f(z) = \begin{cases} 1 & \text{if } z \text{ is on the unit circle } |z| = 1 \\ z & \text{if } z \text{ is not on the unit circle.} \end{cases}$$

At what points z is f(z) continuous?

- 4. (a) Find all roots of the equation $z^4=-2i$. Show their locations in the complex plane.
 - (b) Determine all values of $(2-2i)^{2/3}$. Show their locations.

- 5. For each of the following functions, determine all its singularities, classify their types, and calculate the residues at the singularities where they're defined:
 - (a) $f(z) = z \operatorname{Re}(z)$
 - (b) $f(z) = z^2 \sin \frac{1}{z}$

•

- 6. (a) State Cauchy's integral formula for higher derivatives and state precisely the conditions under which it holds.
 - (b) Evaluate the integral $\int_{\Gamma} \frac{z \sin(3z)}{(z+4)^3} dz$, where Γ is the positively-oriented circle |z-2i|=9.
 - (c) Does $f(z) = \overline{z}$ have an antiderivative? Justify your answer.

Ţ

<u>-</u>

-

=

≘

7. Let
$$f(z) = \frac{1}{(z-2i)(z+4)}$$
.

- (a) Write the Laurent series of f(z) about the point z=0, convergent at z=1.
- (b) Write the Laurent series of f(z) about the point z=2i, convergent at z=5.

•

•

-

÷

-

•

=

•

- 8. Evaluate the integrals:
 - (a) $\int_{\Gamma} \frac{z^3}{z^2 2z + 5} dz$, Γ is the positively-oriented circle |z| = 1.
 - (b) $\int_{\Gamma} e^{2z} dz$, Γ is the counterclockwise semicircle of radius 1 from z=0 to z=2i.
 - (c) $\int_{\Gamma} \frac{(z-i)^2}{\sin^2 z} dz$, Γ is the positively-oriented circle |z|=1.

=