Geometría Diferencial 1

Augusto Cabrera-Becerril

November 2022

Índice general

Ín	adice general	;
1.	Curvas Diferenciables	5
	Superficies Diferenciables 2.1. Introducción	
	2.2. Superficies Regulares en \mathbb{R}^n	17
	2.4. Variedades diferenciales I	18
3.	Variedades diferenciables	21

ÍNDICE GENERAL ÍNDICE GENERAL

Capítulo 1

Curvas Diferenciables

En esta sección abordaremos algunos aspectos de la teoría de curvas diferenciables.

Definición 1. Una curva diferenciable parametrizada es una función $\alpha: I \subset \mathbb{R} \to \mathbb{R}^n$ diferenciable, es decir que cada componente $x_i(t)$ es una función diferenciable de \mathbb{R} en \mathbb{R} . La variable t es llamada parámetro de la curva.

Denotamos $\dot{\alpha}$ a la derivada de α respecto al parámetro t, el vector $\dot{\alpha}(t) = (\dot{x}_i(t))$ es llamado vector tangente de α . Debe distinguirse cuidadosamente una curva parametrizada de su traza.

Ejemplo 1. La curva $\alpha(t) = (a\cos t, a\sin t, bt)$, con $t \in \mathbb{R}$ tiene su traza en \mathbb{R}^3 , se trata de una hélice de paso $2\pi b$ en el cilindro $x^2 + y^2 = a^2$. El parámetro t mide el ángulo que el eje X hace con la rect a que une al origen con la proyección de $\alpha(t)$ sobre el plano XY.

Ejemplo 2. La curva $\alpha : \mathbb{R} \to \mathbb{R}^2$ dada por $t \mapsto (t^3, t^2)$ es una curva diferenciable parametrizada. Observe que $\alpha'(0) = (0,0)$.

Ejemplo 3. La curva $\alpha : \mathbb{R} \to \mathbb{R}^2$ dada por $t \mapsto (t^3 - 4t, t^2 - 4)$ es una curva diferenciable parametrizada. Observe que α no es una función inyectiva. En efecto $\alpha(2) = \alpha(-2) = (0,0)$

Ejemplo 4. La aplicación $\alpha(t) = (t, |t|)$ no es una curva diferenciable, puesto que la función valor absoluto no es diferenciable en 0.

Ejemplo 5. Las curvas $\alpha(t) = (\cos(t), \sin(t))$ y $\beta(t) = (\cos(2t), \sin(2t))$ tienen la misma traza, es decir el

círculo $x^2 + y^2 = 1$, la diferencia es que los vectores tangentes tienen una magnitud distinta.

$$(s)$$

$$k(s)(s)$$

$$(s)(s) - \det \begin{pmatrix} \hat{t}(s) \\ k(s)\hat{n}(s) \\ k(s)\tau\hat{b}(s) \end{pmatrix} - \det \begin{pmatrix} \hat{t}(s) \\ k(s)\hat{n}(s) \\ k^{2}(s)\hat{t}(s) \end{pmatrix}$$

$$= k(s)\dot{k}(s) \det \begin{pmatrix} \hat{t}(s) \\ \hat{n}(s) \\ \hat{n}(s) \end{pmatrix} - k^{2}(s)\tau(s) \det \begin{pmatrix} \hat{t}(s) \\ \hat{n}(s) \\ \hat{b}(s) \end{pmatrix} - k^{3}(s) \det \begin{pmatrix} \hat{t}(s) \\ \hat{n}(s) \\ \hat{t}(s) \end{pmatrix}$$

$$= -k^{2}(s)\tau(s) \det \begin{pmatrix} \hat{t}(s) \\ \hat{n}(s) \\ \hat{b}(s)d \end{pmatrix} = -k^{2}(s)\tau(s)$$

Ahora consideremos una curva $\gamma: I \to \mathbb{R}^3$ y tomemos una reparametrización por longitud de arco $t: [c,d] \to [a,b]$. Por la regla de la cadena $\gamma'(s) = \dot{\gamma}t', \gamma''(s) = \ddot{\gamma}(t'')^2 + ot\gamma t''$ y $\gamma'''(s) = \ddot{\gamma}(t')^3 + 3\ddot{\gamma}t''t' + \dot{\gamma}t'''$. Donde el punto es la derivada respecto a t y la prima es derivada respecto a s. Ahora

$$\gamma' \times \gamma'' = (\dot{\gamma}t') \times (\ddot{\gamma}(t')^2 + \dot{\gamma}t'')$$

$$= (\dot{\gamma}t') \times (\ddot{\gamma}(t')^2) + (\dot{\gamma}t') \times (\dot{\gamma}t'')$$

$$= (t')^3(\dot{\gamma} \times \ddot{\gamma}) + (t')(t'')(\dot{\gamma} \times \dot{\gamma})$$

$$= (t')^3(\dot{\gamma} \times \ddot{\gamma})$$

Por otro lado

$$\hat{b} = \hat{t} \times \hat{n} = \gamma' \times \frac{\gamma''}{|\gamma''|} = \frac{1}{k} (\gamma' \times \gamma'') = \frac{1}{k} (\gamma' \times \gamma'') (t')^3$$

CAPÍTULO 1. CURVAS DIFERENCIABLES

Además $\gamma'=\dot{\gamma}t',$ así que al tomar normas obtenemos: $|t'|=\frac{1}{|ga\dot{m}ma|}.$ Por lo tanto tenemos que:

$$|\dot{\gamma} \times \ddot{\gamma}(t')^3| = k|\hat{b}| = k = \frac{|\dot{\gamma} \times \ddot{\gamma}|}{|\dot{\gamma}|^3}$$

Capítulo 2

Superficies Diferenciables

2.1. Introducción

2.2. Superficies Regulares en \mathbb{R}^n

Definición 2. El conjunto $S \subset \mathbb{R}^3$ es una superficie regular si para cualquier punto $p \in S$ existe una vecindad abierta V y una función $\varphi: U \to V \cap S$, con $U \subset \mathbb{R}^2$ un abierto. Donde

- 1. φ es diferenciable de clase \mathcal{C}^{∞} .
- 2. φ es un homeomorfismo
- 3. $\forall q \in U$ la aplicación $d\varphi_q : \mathbb{R}^2 \to \mathbb{R}^3$ es inyectiva.

Lema 1. Las siguientes afirmaciones son equivalentes

- 1. La aplicación d φ_p es inyectiva
- 2. La matriz $d\varphi_p$ es de rango 2
- 3. $\frac{\partial(x_i,x_j)}{\partial(u,v)} \neq 0$ para algún par (i,j)

4.
$$\sum_{i,j=1}^{3} \frac{\partial (x_i, x_j)^2}{\partial (u, v)}|_q \neq 0$$

- 5. $\varphi_u \times \varphi_v \neq 0$
- 6. φ_u y φ_v son linealmente independientes en todo su dominio.

Lema 2. Sea $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable. Entonces graf(f) es una superficie diferenciable.

Demostración. Basta considerar la aplicación $\varphi(u,v)=(u,v,f(u,v))$, esta es una parametrización. La proyección $\Pi(x,y,z)=(x,y)$ define una carta global para nuestra superficie.

Definición 3. Sea $F: V \subset \mathbb{R}^3 \to \mathbb{R}$ función diferenciable y $p \in V$ Decimos que p es un punto regular si DF_p no se anula y diremos que $a \in \mathbb{R}$ es valor regular de F si para cualquier $p \in F^{-1}(a)$ es punto regular.

Lema 3. Sea $F: V \to \mathbb{R}$ una función diferenciable, $a \in F(V)$ un valor regular de F. Entonces el conjunto de nivel

$$S = \{(x, y, z) \in V | F(x, y, z) = a\}$$

es una superficie regular y es un cerrado en \mathbb{R}^3

Demostración. Sea $p_0 \in F^{-1}(a)$, entonces $\nabla F_p \neq 0$. Sin perder la generalidad supongamos que $F_z(p_0) \neq 0$. Por el Teorema de la Función Implicita, existe Ω una vecindad abierta de (x_0, y_0) en \mathbb{R}^2 y una función f definida en Ω tal que $(x, y, z) \in V \cap F^{-1}(a)$ si y sólo sí z = f(x, y). Es decir $F^{-1}(a)$ se puede describir localmente como la gráfica de una función, así es claro que se trata de una superficie diferencianle regular. \square

Ejemplo 6. El elipsoide dado por

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Consideremos la función $F(x,y,z)=1-\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}$, observese que $\nabla F(x,y,z)=(-\frac{2x}{a^2},\frac{-2y}{b^2}+\frac{-2z}{c^2})$ sólo se anula en (0,0,0), pero éste no es un punto en el elipsiode. Así nuestro elipsoide $F^{-1}(0)$ es una superficie diferenciable. En particular la esfera es una superficie diferenciable.

Ejemplo 7. El hiperboloide de dos mantos dado por:

$$-x^2 - y^2 + z^2 = 1$$

es una suoerficie diferenciable. Consideremos la función

$$F(x, y, z) = z^2 - x^2 - y^2$$

es claro que ∇F no se anula más que en el punto (0,0,0) y el hiperboloide esta dado por $F^{-1}(1)$ que no contiene a F(0,0,0).

Lema 4. Toda superficie diferenciable $S \subset \mathbb{R}^3$ es localmente la gráfica de una función diferenciable de \mathbb{R}^2 $en \mathbb{R}^3$

Demostración. Sea $p \in S$, elegido arbitrariamente. Como S es diferenciable, tomemos una parametrización local $\varphi(u,v) = (x_1(u,v), x_2(u,v), x_3(u,v))$ tal que uno de los menores $\frac{\partial(x_i,x_j)}{\partial(u,v)}$ no se anula. Supongamos sin

pérdida de generalidad que $\frac{\partial(x_1,x_2)}{\partial(u,v)}(q) \neq 0$, con $\varphi(q)=p$. Tomamos $\Pi:\mathbb{R}^3 \to \mathbb{R}^2$ dada por $(x,y,z) \mapsto (x,y)$. Al aplicar $\Pi \circ \varphi:\Omega \to \mathbb{R}^2$ en cualquier (u,v) en el dominio de la parametrización tenemos

$$\Pi \circ \varphi(u,v) = (x_1(u,v), x_2(u,v))$$

tomando la diferencial

$$D\left(\Pi \circ \varphi\right)_q = \left(\begin{array}{cc} x_u^1 & x_v^1 \\ x_u^2 & x_v^2 \end{array}\right)$$

y además

$$\det \mathbf{D} \left(\Pi \circ \varphi \right)_q = \frac{\partial (x^1, x^2)}{\partial (u, v)} \neq 0$$

Por el teorema de la función inversa, existen vecindades $V_1(q) \subset \mathbb{R}^2$ y $V_2(\Pi(p)) \subset \mathbb{R}^2_{XY}$ tal que la función $\Pi \circ \varphi : V_1 \to V_2$ tiene inversa diferenciable. Denotemos
la por:

$$\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$

De este modo z = f(x, y) y S es localmente la gráfica de una función diferenciable.

Teorema 1. Sea $S \subset \mathbb{R}^3$ una superficie diferenciable, entonces se cumple que:

a S es localmente la imagen inversa de un valor regular de una función $F: \mathbb{R}^3 \to \mathbb{R}$ de clase \mathcal{C}^1

b S es localmente la gráfica de una función $f: \mathbb{R}^2 \to \mathbb{R}$

c S es localmente la imagen de una parametrización $\varphi: \Omega \to U \subset \mathbb{R}^3$

Ejemplo 8. Consideremos el cilindro circular recto.

- 1. El cilindro es la imagen inversa de 1, bajo la función $F: \mathbb{R}^3 \to \mathbb{R}$ dada por $F(x, y, z) = x^2 + y^2$. Observese que $\nabla F = (2x, 2y, 0)$. Claramente 1 es valor regular de F.
- 2. La parametrización $\varphi(u,v) = (\cos(u),\sin(u),v)$, cubre todo el cilindro menos una recta.

Ejemplo 9 (Superficies de revolución). Consideremos una curva γ contenida en el plano XY y que no cruza el eje Z

Toro de revolución

Paraboloide hiperbólico

2.3. Curvatura gaussiana

Consideremos una curva definida en una superficie diferenciable

2.4. Variedades diferenciales I

Hasta ahora nuestros ejemplos se restringen a que nuestras superficies están completamente contenidas en el euclidiano \mathbb{R}^3 . Consideremos un ejemplo sencillo. La botella de Klein. Topológicamente se trata de un espaci

S

S

Capítulo 3

Variedades diferenciables