ROBOMASTER

开发板 C 型

用户手册 [v1.0]

2020.01

〇 快速搜索关键词

PDF 电子文档可以使用查找功能搜索关键词。例如在 Adobe Reader 中,Windows 用户使用快捷键 Ctrl+F,Mac 用户使用 Command+F 即可搜索关键词。

₩ 点击目录转跳

用户可以通过目录了解文档的内容结构,点击标题即可跳转到相应页面。

骨 打印文档

本文档支持高质量打印。

目 录

免责声明	2
产品使用注意事项	2
RoboMaster 开发板 C 型	2
简介	2
物品清单	2
接口及线序说明	3
开发板	3
XT30 电源线线序	3
SWD 下载线线序	4
2-pin CAN 线	4
4-pin CAN 线	4
尺寸及安装说明	4
功能说明	5
电源框图	5
输入防护电路	6
用户自定义LED	6
5∨接口	7
BOOT配置接口	7
micro USB 接口	8
SWD接口	9
按 键	9
可配置 I/O 接口	10
UART 接口	10
CAN 总线接口	11
PWM接口	12
DBUS 接口	13
数字摄像头 FPC 接口	14
蜂鸣器	14
电压检测	15
六轴惯性测量单元	15
磁力计	16
使 用	17
特征参数	17
附表	17

免责声明

感谢您购买 RoboMaster[™] 开发板 C 型(以下简称"开发板")。在使用之前,请仔细阅读本声明,一旦使用,即被视为对本声明全部内容的认可和接受。请严格遵守手册、产品说明和相关的法律法规、政策、准则安装和使用该产品。在使用产品过程中,用户承诺对自己的行为及因此而产生的所有后果负责。因用户不当使用、安装、改装造成的任何损失,DJI™ 将不承担法律责任。

DJI 和 RoboMaster 是深圳市大疆[™] 创新科技有限公司及其关联公司的商标。本文出现的产品名称、品牌等,均为其所属公司的商标。本产品及手册为大疆创新版权所有。未经许可,不得以任何形式复制翻印。关于免责声明的最终解释权,归大疆创新所有。

本文档及本产品所有相关的文档最终解释权归大疆创新所有。如有更新,恕不另行通知。请访问 www. robomaster.com 官方网站以获取最新的产品信息。

产品使用注意事项

- 1. 请按照本说明正确使用线材,以免损坏线材或者开发板。
- 2. 使用前请检查线材有无老化、损坏。如存在以上现象,请更换新线材。
- 请按照本说明在规定的工作环境(如电压、温度等参数)使用,否则可能会影响产品寿命或造成永久性损坏。
- 4. 请使用正确的方式固定开发板,避免开发板受到物理损坏。
- 5. 开发板上电后如发现有火花、冒烟、焦糊味或其它异常,请立即关掉电源。
- 6. 使用时请不要掀开硅胶外壳,避免由于异物造成开发板短路或性能下降。

RoboMaster 开发板 C 型

简介

RoboMaster 开发板 C 型采用高性能的 STM32 主控芯片,支持宽电压输入,集成专用的扩展接口、通信接口以及高精度 IMU 传感器,可配合 RoboMaster 产品或者其他配件使用。开发板具备防反接、防过压等保护功能;结构紧凑,集成度高,配套例程丰富,可广泛应用在机器人比赛、科研教育、自动化设备等领域。

物品清单

接口及线序说明

开发板

		接口说明
1	自定义 LED	用户 LED 三色灯
2	5V接口	5V 激光接口
3	复位按键	用于复位 STM32
4	micro USB 接口	用于 USB 通信或使用 DFU 模式下载固件
5	BOOT 配置接口	BOOT0、BOOT1 的配置接口
6	SWD 下载接口	用于支持 SWD 下载器下载程序
7	自定义按键	用户自定义按键输入
8	24V 电源输入接口	电源输入
9	24V 电源输出接口	电源输出
10	可配置 I/O 接口	可配置为硬件 IIC 与 SPI 接口
11	UART 接口(3-pin)	3pin UART 接口
12	CAN2 总线接口	4pin CAN 接口
13	CAN1 总线接口	2pin CAN 接口
14	UART接口(4-pin)	4pin UART 接口
15	PWM 接口	7路PWM输出接口
16	DBUS 接口	1路 DBUS 遥控器接收接口
17	数字摄像头 FPC 接口(18-pin)	支持 DCMI 的 FPC 接口

XT30 电源线线序

线长 450mm, 线序从上到下依次为: A 红色(正极), B 黑色(负极)

SWD 下载线线序

线长 100mm, 线序从上到下依次为:

A 黑色(SWDIO), B 黑色(SWCLK), C 黑色(GND), D 黑色(3.3V)

2-pin CAN 线

线长 350mm, 线序从上到下依次为: A 黑色(CANL), B 红色(CANH)

4-pin CAN 线

线长 350mm, 线序从上到下依次为:

A 灰色 (CANL) ,B 灰色 (CANH) ,C 灰色 (GND) ,D 红色 (5V)

尺寸及安装说明

请参考图示尺寸,正确安装开发板。

单位: mm

开发板设有 4 个内径 2.5mm,外径 5.0mm 的安装孔,方便用户安装开发板。此外,开发板可搭配 RoboMaster 电调中心板 2 实现接口扩展,如下图所示。

(备注:螺丝及铜柱需自行购买)

单位: mm

功能说明

电源框图

开发板电源框图如下所示

开发板电源主要包括:

1 路: 24V 转 5V 降压电路(电源网络为 VCC_5V_M),用于对外的 7 路 PWM 舵机接口,最大输出总电流为 5A;

1 路: 24V 转 5V 降压电路(电源网络为 VCC_5V),用于板载器件的供电及作为下一级电源的输入,最大输出电流为 1A:

1路: 5V(电源网络为 VCC_5V)转 3.3V的降压电路,主要用于板载器件的供电。

输入防护电路

电源输入接口采用 XT30 接口,具备输入防反接、缓启动保护;同时,开发板自带输入防过压保护电路, 当输入超过 28V 时,后级电路会关断,实现了过压保护作用。

用户自定义 LED

开发板集成 1 颗共阳极 RGB LED 指示灯,对应的控制 IO 为 PH10(蓝灯)、PH11(绿灯)、PH12(红灯),当 IO 口输出高电平时,对应的 LED 指示灯点亮;当 IO 口输出低电平时,对应的 LED 指示灯熄灭。用户也可以通过 PWM 控制对应指示灯的亮度。

5V接口

开发板集成一个可控的 5V 电源接口,用户可以外接 RoboMaster 红点激光器, 对应的开关控制 IO 为PC8,用户也可以通过 PWM 控制来实现对红外激光器的亮度调节。

BOOT 配置接口

开发板上的 STM32 芯片有两个管脚 BOOT0 和 BOOT1,该管脚在芯片复位时的电平状态决定了芯片复位后的启动方式。开发板的 BOOT 管脚配置原理图如下所示:

默认情况下 BOOT 管脚均为低电平,STM32 上电从 User Flash 启动。用户也可以通过跳线帽配置 BOOT0 与BOOT1 的复位电平状态(BOOT配置引脚使用 2.54mm 间距的 2x2 排针引出,如下图所示),使得 STM32 以不同的方式启动。例如当 BOOT0 = 1,BOOT1 = 0 时,STM32 将从 System memory 启动,进入 DFU(Device Firmware update)模式(详见"Micro USB 接口")

STM32 启动方式与 BOOT 配置关系如下表所示:

启动模式	选择引脚	启动模式	说明
BOOT1	воото	104分发入	ут. и д
X	0	用户闪存存储器	用户闪存存储器被选为启动区域
0	1	系统存储器	系统存储器被选为启动区域
1	1	内置 SRAM	内置 SRAM 被选为启动区域

micro USB 接口

开发板集成一个 USB 全速接口,可用于与其他设备进行 USB 通信。该接口符合 USB2.0 协议规范。在主机模式下支持全速(FS,12Mbps)和低速(LS,1.5Mbps)收发器,而从机模式下仅支持全速(FS,12Mbps)收发器。

用户可通过该 USB 接口实现对单板的供电(仅可以驱动 STM32 及部分板载外设*),也可以配合 BOOT 配置实现 DFU 模式下载固件。开发板使用 DFU 模式下载固件的操作步骤如下:

- 1. 通过跳线帽配置 STM32 的 BOOT0 电平状态为高电平, 且 BOOT1 电平状态为低电平;
- 2. 将开发板通过 USB 线连接到 PC;
- 3. 通过 RST 按键复位开发板, 使开发板进入 DFU 模式;
- 4. 通过 DFU File Manager 软件将 BIN 文件转化成 DFU 文件;
- 5. 通过 DfuSe Demo 软件将第 4 步生成的 DFU 文件下载到开发板上。

^{*}USB 供电只供给电源网络 VCC 5V,不支持由电源网络 VCC 5V M 供电的板载外设,例如 PWM 外设接口。

SWD 接口

开发板集成一个 SWD 调试接口,用于程序的下载和调试,接口线序如下所示。用户可通过专用仿真器如 J-link 或 ST-link 下载与调试程序。

按 键

开发板集成两个按键:复位按键(RST)和用户自定义按键(KEY)。用户自定义按键按下时 STM32的 PAO 管脚电平状态为低电平。

可配置 I/O 接口

为增强适用性,开发板集成了 1 个 2.54mm 间距的 8-pin 牛角座,用于用户连接 IIC 或 SPI 设备,该接口支持 3.3V 或者 $5V^*$ 的通信设备。

接口引脚线序如下所示:

1	2	3	4	5	6	7	8
SPI2_CS	GND	SPI2_CLK	3.3V	SPI2_MOSI	I2C2_SCL	SPI2_MISO	I2C2_SDA

^{*}需要使用 5V 外接设备时需要手动焊接 R210 电阻并去除 R209。

UART 接口

开发板集成了 2 路 UART 接口,映射到 STM32 的 UART1 与 UART6。其中 UART1 为 4-pin 对外接口,UART6 为 3-pin 对外接口,可以用于与裁判系统电源模块连接,原理图及接口线序如下所示。UART 接口波特率可配置,另外,该接口只支持 3.3V 和 5V 电平,若需与 RS485 或 RS232 接口通信,请外置电平转换芯片。

UART1 引脚线序:

1	2	3	4
RXD	TXD	GND	5V

UART6 引脚线序:

1	2	3
GND	TXD	RXD

- \triangle
- 需要注意,UART6 接口线序与裁判系统电源模块一致,因此开发板与电源模块通信时需要 将线材的 TX 与 RX 线序交叉;
 - 开发板的外壳丝印(UART1 与 UART2)与 STM32 的实际串口配置并不对应,外壳丝印 UART1 对应 STM32 的 UART6,外壳丝印 UART2 对应 STM32 的 UART1。

CAN 总线接口

开发板集成 2 路 CAN 总线接口,其中 CAN1 总线接口为 2-pin 接口,CAN2 总线接口为 4-pin 接口。 CAN 总线接口最大支持 1M 传输速度,可用于控制 RoboMaster 电调或与其他设备通信,接口的原理 图及线序如下所示。

CAN1 引脚线序:

1	2
CANL	CANH

CAN2 引脚线序:

1	2	3	4
5V	GND	CANH	CANL

PWM 接口

开发板集成 7 路 PWM 输出接口,用于连接 5V 舵机模块或其他 PWM 驱动模块,7 路 PWM 接口总输出电流最大可达 5A,其原理图如下所示。

DBUS 接口

开发板集成 1 路 DBUS 接口,与 PWM 接口共用一个连接器,其接口原理图如下所示。DBUS 信号经反相电路后连接到 STM32 的 UART3,波特率一般设置为 100kbps。

数字摄像头 FPC 接口

开发板集成1个支持DCMI的FPC接口(18-pin),可连接8位CMOS照相机模块,并支持多种数据格式,该接口的原理图如下所示。

蜂鸣器

开发板集成一个贴片式无源蜂鸣器,需要使用 PWM 驱动,额定频率 4000Hz。用户也可以通过调节不同的 PWM 频率,改变蜂鸣器的输出音调。

电压检测

开发板集成了 1 路电压检测,用于检测输入电压 VCC_BAT,该电压分压后连接到 STM32 的 ADC (PF10); D10 起到箝压作用,用于保护 STM32 的 ADC 接口。

六轴惯性测量单元

开发板内部集成一个高性能的 6 轴惯性测量单元。惯性测量单元选用抗震性能卓越的 BMI088,配合特殊的减震结构设计,可大幅提升冲击工况下陀螺仪的可靠性。为了改善惯性测量单元的温飘问题,开发板增加了加热电路,用户可以通过 STM32 的 TIM10_CH1 (对应的 IO 为 PF6)实现对陀螺仪做恒温处理。加热电路如下所示,Heat_Power 为 5V,当 TIM10_CH1 保持高电平时,加热功率为 0.58W,加热温度一般控制在比电路板正常工作温度高 15~20℃为宜。

STM32 与 BMI088 的通信方式为 SPI 通信,支持最大 10MHz 的通信速率。原理图如下所示。

磁力计

开发板集成了一个三轴磁力计芯片,即 IST8310。STM32 与 IST8310 的通信方式为 IIC 通信,支持最大 400kHz 的通信速率。IST8310 的默认 IIC 地址为 0x0E,其原理图如下所示。

使 用

开发板支持 SWD 或 DFU 下载固件。用户可通过 J-link 或 ST-link 下载与调试程序(SWD 模式);也可以通过 USB 下载程序到开发板(DFU 模式)。用户可前往以下网址 https://www.robomaster.com/zh-CN/products/components/general/development-board-type-c#downloads 下载出厂程序调试开发板。

特征参数

输入电压	8 V~28 V
待机电流	0.01 A @DC 24 V
重量	38 g
尺寸(长×宽×高)	60 × 41 × 16.3 mm
工作温度范围	0~55℃

附表

附单板网络名与 IO 对照表。

功能类型	网络名	对应 IO
	LED_R	PH12
LED	LED_G	PH11
	LED_B	PH10
5V 接口	TIM3_CH3	PC8
	USB_DM	PA11
USB 接口	USB_DP	PA12
	USB_OTG	PA10
KEY	KEY	PA0
	I2C2_SCL	PF1
	I2C2_SDA	PF0
可配置 IO 接口	SPI2_CS	PB12
可能量 10 按口	SPI2_CLK	PB13
	SPI2_MISO	PB14
	SPI2_MOSI	PB15
LIADT 拉口(2 min)	UART6_TX	PG14
UART接口(3-pin)	UART6_RX	PG9
LIADT 控口(4 nin)	UART1_TX	PA9
UART接口(4-pin)	UART1_RX	PB7
CAN11	CAN1_TX	PD1
CAN1 总线接口 	CAN1_RX	PD0

	CAN2_TX	PB6
CAN2 总线接口	CAN2_RX	PB5
	TIM1_CH1	PE9
	TIM1_CH2	PE11
	TIM1_CH3	PE13
PWM 接口	TIM1_CH4	PE14
	TIM8_CH1	PC6
	TIM8_CH2	PI6
	TIM8_CH3	PI7
DBUS 接口	UART3_RX	PC11
	I2C1_SCL	PB8
	I2C1_SDA	PB9
	PCLK_OUT	PA6
	DCMI_HREF	PH8
	DCMI_VSYNC	PI5
	DCMI_D0	PH9
数字摄像头 FPC 接口	DCMI_D1	PC7
	DCMI_D2	PE0
	DCMI_D3	PE1
	DCMI_D4	PE4
	DCMI_D5	PI4
	DCMI_D6	PE5
	DCMI_D7	PE6
蜂鸣器	TIM4_CH3	PD14
电压检测	ADC_BAT	PF10
	TIM10_CH1	PF6
	INT1_Accel	PC4
	INT1_Gyro	PC5
6轴IMU (BMI088)	CS1_Accel	PA4
0 抽 IIVIO(DIVIIOOO)	CS1_Gyro	PB0
	SPI1_CLK	PB3
	SPI1_MOSI	PA7
	SPI1_MISO	PB4
	RSTN_IST8310	PG6
磁力计	DRDY_IST8310	PG3
IA C/YZAL	I2C3_SCL	PA8
	I2C3_SDA	PC9

WWW.ROBOMASTER.COM R 和 ROBOMASTER 是大躍创新的商标 Copyright © 2020 大躍创新 版权所有