EGM0004

Sistemas Não Lineares

Prof. Josenalde Barbosa de Oliveira – UFRN

i josenalde.oliveira@ufrn.br

Programa de Pós-Graduação em Engenharia Mecatrônica

Uma função G(s) é ERP se $Re[G(s)] > 0, \forall Re[s] > 0$

Lema: uma função G(s) é ERP se e somente se

- 1) G(s) é uma função estritamente estável
- 2) $Re[G(j\omega)] > 0$, $\forall \omega \geq 0$ (digrama polar permanece inteiramente no semi plano lateral direito aberto do plano complexo $\angle G(j\omega) < 90^{\circ}$
- 3) G(s) tem grau relativo igual a 0 ou 1
- 4) G(s) é estritamente de fase mínima
- a) não ERP (fase não mínima): $G(s) = \frac{s-1}{s^2 + 2s + 1}$

b) não ERP (instável):
$$G(s) = \frac{s+1}{s^2 - s + 1}$$

c) não ERP (grau relativo=2):
$$G(s) = \frac{1}{s^2 + s + 1}$$

d) ERP (fase mínima, estável, grau relativo=1): $G(s) = \frac{s+1}{s^2+s+1}$

e) ERP (com polos e zeros entrelaçados):
$$G(s) = \frac{(s+2)(s+4)}{(s+1)(s+3)(s+5)}$$

Lema de Kalman-Yakubovic-Lefschetz:

Seja
$$\dot{x} = Ax + bu$$
 controlável e observável com $G(s) = c^T(sI - A)^{-1}b$
 $y = c^Tx$

$$G(s)$$
 é ERP se e somente se existem $P=P^T>0$ e $Q=Q^T>0$ tal que $A^TP+PA=-Q$ só vale para grau relativo = 1 , $n^*=1$ $Pb=c$

Estabilidade absoluta e o problema de Lur'e

 $u = -k\phi(y)$ por exemplo, controlador não linear

 ϕ : setorial, $\phi(y)$ ou $\phi(t,y)$

Hipóteses:

$$\phi(\cdot)$$
 contínua, $\phi(0) = 0$, $0 \le \frac{\phi(y)}{y} \le k$

$$G(s) = c^{T}(sI - A)^{-1}b$$
, $A \notin Hurwitz$
ou tem autovalor com multiplicidade 1 na origem

$$S_k = \{\phi(\cdot) \text{ tal que } 0 \le \frac{\phi(y)}{y} \le k, \quad k > 0, y \ne 0\}$$

osenalde Oliveira

Estabilidade absoluta e o problema de Lur'e

Estabilidade absoluta e o problema de Lur'e

Se $k_1 = k_2$, a "não linearidade" torna-se apenas uma reta com inclinação k e u = -ky (linear!)

O critério de Nyquist para sistemas lineares diz que o sistema em malha fechada é estável se o número de envolvimentos do ponto -1/k no sentido anti-horário da curva $G(j\omega)$ for igual ao número de polos instáveis em malha fechada G(s)H(s)

Falso

Como resolver se $k1 \neq k2$?

Conjectura de Aizeman: G.A.S se critério de Nyquist

é válido para $k_1 \geq k \geq k_2$

Conjectura de Kalman: G.A.S se critério de Nyquist

é válido para
$$k_3 \ge k \ge k_4, k_3 \ge \frac{\partial (y\phi(t,y))}{\partial y} \ge k_4$$

Critério de Popov: condição suficiente de estabilidade

Definição: se $x^* = 0$ do sub-sistema tipo Lur'e-Portnikov é GAS para toda $\phi(y) \in S_k$, então, dizemos que o sistema tem $x^* = 0$ absolutamente estável no setor [0, k].

Critério de Popov:

Vasile Mihai Popov (Romênia, 1928)

Seja x_p : parte real de $G(j\omega)$

Seja
$$y_p = \omega Im[G(j\omega)]$$

Reta de Popov:
$$y_p = \frac{1}{q}x_p + \frac{1}{kq}$$

Reta com inclinação 1/q e que passa por (-1/k, 0)

Existe no plano de Popov (x_p, y_p) uma reta que passar por (-1/k, 0)

tal que o lugar de Popov (gráfico $y_p \times x_p$) fique estritamente à direita desta reta

$$\forall \omega \ge 0, \quad \exists q > 0, Re[(1 + jq\omega)G(j\omega)] + 1/k \ge \varepsilon, \quad \varepsilon > 0 \ll 1$$

$$\forall \omega \ge 0, \quad \exists q > 0, Re[(1 + jq\omega)G(j\omega)] \ge -1/k + \varepsilon, \quad \varepsilon > 0 \ll 1$$

Critério de Popov

 $\phi \in S_{k_1}$: sistema absolutamente estável

 $\phi \in S_{k_2}$: sistema não é absolutamente estável

Popov, V.M. (1960). Criterion of quality for non-linear controlled systems. In: Preprints of the First IFAC World Congress. Butterworths. Moscow. pp. 173–176.

 k_1y

Critério de Popov- interpretação

Desigualdade de Popov:

$$(1): \forall \omega \geq 0, \quad \exists q > 0, Re[(1+jq\omega)G(j\omega)] + 1/k \geq \varepsilon, \quad \varepsilon > 0 \ll 1$$

Seja:
$$G(j\omega) = G_r(j\omega) + jG_j(j\omega)$$
, $G_r = Re[G(j\omega)], G_j = Im[G(j\omega)]$. Substituindo em (1)

$$Re[(1+jq\omega)(G_r(j\omega)+jG_j(j\omega)]+1/k>\varepsilon$$

$$Re[G_r(j\omega) + jG_j(j\omega) + jq\omega G_r(j\omega) - q\omega G_j(j\omega)] + 1/k = G_r(j\omega) - q\omega G_j(j\omega) > -1/k + \varepsilon = x_p - qy_p + 1/k = 0$$

Construindo uma função $W(j\omega)$ com a mesma parte real de $G(j\omega) = G_r(j\omega)$ e parte imaginária $\omega G_j(j\omega)$:

$$W(j\omega) = x_p + jy_p = G_r(j\omega) + j\omega G_j(j\omega)$$

implica que o sistema não linear é globalmente assintoticamente estável se sobre o lugar de Popov

a representação de $W(j\omega)$ estiver abaixo da reta $x_p - qy_p + 1/k = 0$

Critério de Popov- exemplo

Desigualdade de Popov:

$$G(s) = \frac{s+3}{s^2+7s+10}$$
 e a não linearidade definida como $0 \le \phi(y) \le ky$

G(s): polos -2, -5, controlável, ERP

$$G(j\omega) = \frac{j\omega + 3}{(10 - \omega^2) + 7j\omega} = \frac{4\omega^2 + 30}{\omega^4 + 29\omega^2 + 100} + \frac{-\omega(\omega^2 + 11)}{\omega^4 + 29\omega^2 + 100}j$$

$$\frac{G_r(j\omega)}{G_r(j\omega)}$$

Substituindo na desigualdade: $G_r(j\omega) - q\omega G_j(j\omega) + 1/k - \varepsilon > 0$

$$4\omega^2 + 30 + q\omega^2(\omega^2 + 11) + (1/k - \varepsilon)(\omega^4 + 29\omega^2 + 100) > 0$$

a qual é satisfeita para $\forall q>0$ e para qualquer k, tal que $0< k<\infty$. Logo origem G.A.S.

Critério de Popov- exemplo

Ferramenta em: https://www.ece.unb.ca/jtaylor/NLS software.html

Taylor, J. Tutorial Guide: Enhanced MATLAB Tools for Linear and Nonlinear System Stability Analysis

$$G(s) = \frac{s+1}{s^4 + 2s^3 + 25s^2 + 3s + 1}$$

>> popov(num,den,0) popov criterion is satisfied maximum sector bound F_max = 8.4706

Trabalho mais atual: kodkin, 2023

Prof. Josenalde Oliveira

Mais restrito por incluir duas inclinações, contudo se aplica também a não autônomos

- a) A matriz **A** não tem valores próprios sobre o eixo $j\omega$ e tem p valores próprios no semiplano complexo direito,
- b) A não linearidade ϕ pertence ao sector $[k_1, k_2]$,
- c) Verifica-se uma das condições:
 - c₁) $0 < k_1 \le k_2$ e o diagrama de Nyquist de $G(j\omega)$ não entra no disco $D(k_1, k_2)$ (Fig. 3.15) e envolve-o p vezes no sentido contrário aos ponteiros do relógio,
 - c₂) $0 = k_1 < k_2$ e o diagrama de Nyquist de $G(j\omega)$ permanece no semiplano $R_e(s) \ge -1/k_2$,
 - c₃) $k_1 < 0 < k_2$ e o diagrama de Nyquist de $G(j\omega)$ permanece no interior do disco $D(k_1, k_2)$,
 - c₄) $k_1 < k_2 < 0$ e o diagrama de Nyquist de $G(j\omega)$ não entra no disco $D(-k_1, -k_2)$ e envolve-o p vezes no sentido contrário ao dos ponteiros do relógio,

então o ponto de equilíbrio x=0 é global e assimptoticamente estável.

A origem é G.A.S. se o critério de Nyquist é safisfeito para todo ponto -1/k no círculo

Prof. Josenalde Oliveira

Exemplo:

$$\ddot{x} + \dot{x} + x + \phi(x) = 0$$

Seja a não linearidade ϕ vista como entrada u

$$s^2X + sX + X + U = 0$$

$$X = \frac{-1}{s^2 + s + 1}U$$

Estável com $s = -0.5 \pm j\sqrt{3}$

Exemplo:

$$\ddot{x} + \dot{x} + x + \phi(x) = 0$$

$$\gamma^2 \le |G(j\omega)|^2 \qquad G(j\omega) = \frac{1}{1 - \omega^2 + j\omega}$$

$$|G(j\omega)|^2 = \frac{1}{(1 - \omega^2)^2 + \omega^2} = \frac{1}{1 - \omega^2 + \omega^4} = \frac{1}{\eta(\omega)}$$

$$\eta(\omega) = 1 - \omega^2 + \omega^4. \quad \frac{d(\eta(\omega))}{d\omega} = -2\omega + 4\omega^3 = 0 \implies \omega = \sqrt{1/2}$$

$$\eta(\sqrt{1/2}) = 3/4$$

$$\gamma^2 \le \frac{1}{3/4} \implies \gamma \le 1.15 < 1.5$$

Prof. Josenalde Oliveira

 $\mathrm{Exemplo}$: Taylor, J. Tutorial Guide: Enhanced MATLAB Tools for Linear and Nonlinear System Stability Analysis

Ferramenta em: https://www.ece.unb.ca/jtaylor/NLS software.html

$$G(s) = \frac{s+1}{s^4 + 2s^3 + 25s^2 + 3s + 1}$$

>> newnyq(num,den)
stable k range -1 < k < 43.17

>> circle(num,den,2.5)
circle criterion is satisfied
maximum sector bound F_max = 11.5925

Setor [2.5, 11.5925]

Exemplo: Taylor, J. Tutorial Guide: Enhanced MATLAB Tools for Linear and Nonlinear System Stability Analysis

Ferramenta em: https://www.ece.unb.ca/jtaylor/NLS software.html

$$G(s) = \frac{s+1}{s^4 + 2s^3 + 25s^2 + 3s + 1}$$

>> circle(num,den,-0.5)
circle criterion is satisfied
maximum sector bound F_max = 0.6897

Setor [-0.5, 0.6897]

Exemplo: Taylor, J. Tutorial Guide: Enhanced MATLAB Tools for Linear and Nonlinear System Stability Analysis

Ferramenta em: https://www.ece.unb.ca/jtaylor/NLS software.html

$$G(s) = \frac{s+1}{s^4 + 2s^3 + 25s^2 + 3s + 1}$$

>> newnyq(num,den)
stable k range -1 < k < 43.17

>> circle(num,den,2.5)
circle criterion is satisfied
maximum sector bound F_max = 11.5925

Setor [2.5, 11.5925]

Prof. Josenalde Oliveira

Estabilidade de Sistemas Não Autônomos

- a) O tempo aparece explicitamente nas equações do sistema
- b) Surge instante $t_0 \neq 0$

Seja o sistema não autônomo, em regime livre:

 $\dot{x}(t) = f[x(t), t], \quad f(\cdot, \cdot)$ contínua no tempo e indefinidamente diferenciável em relação a x

Um ponto de equilíbrio é aquele que $\forall t \geq t_0, \quad f[x_e(t), t] = 0$

O ponto de equilíbrio x=0 diz-se estável no sentido de Lyapunov, no instante t_0 , se para qualquer R>0

 $\exists r(R, t_0) \text{ tal que } \forall t \geq t_0$

Se r(R) uniformemente estável $||x(t_0)|| < r(R, t_0) \implies ||x(t)|| < R$. É instável, caso contrário

Definições análogas para assintótica, exponencial, local, global. Por exemplo, exponencial:

$$||x(t)|| \le \alpha ||x_0|| e^{-\lambda(t-t_0)}, \forall t \ge t_0$$

Método direto Lyapunov – não autônomo

Uma função escalar de um vetor x e de um escalar t é localmente positiva definida se V(0,t)=0 e $\exists V_0(x)$ positiva definida, independente de t, tal que $V(x,t)\geq V_0(x), \forall t>t_0$

Uma função V(x,t) diz-se decrescente se V(0,t)=0 e $\exists V_1(x)>0$ tal que $V(x,t)\leq V_1(x), \forall t>t_0$

Exempo:
$$V(x,t) = (1 + sen^2 t)(x_1^2 + x_2^2)$$

Visto que
$$1 \le 1 + sen^2t \le 2$$
, seja $V_0(x) = (x_1^2 + x_2^2) > 0$ tal que $V(x,t) \ge V_0(x)$

Também
$$\exists V_1(x) = 2(x_1^2 + x_2^2), \quad V(x,t) \leq V_1(x)$$
 qualquer que seja t .

Além disso é V(0,t)=0 e, portanto a função dada é decrescente

Método direto Lyapunov – não autônomo

Derivada de V(x,t)

$$\dot{V}(x,t) = \frac{d}{dt}V(x,t) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}\frac{dx(t)}{dt}$$

Estabilidade uniforme: seja uma bola B_{R_0} de raio R_0 centrada em x=0.

Se $\exists V(x,t)$ com derivadas parciais continuas, tal que $V(x,t) > 0, \dot{V}(x,t) \leq 0$ e V(x,t) é descrescente a origem é uniformemente estável.

Método direto Lyapunov – não autônomo

Exemplo: determine a estabilidade do sistema

$$\dot{x}_1(t) = -x_1(t) + x_2(t)$$

$$\dot{x}_2(t) = -e^{-2t}x_1(t) - x_2(t)$$

$$com V(x,t) = (1 + e^{-2t})x_1^2 + x_2^2$$

$$V(x,t)$$
 é p.d., pois se $V_0(x) = x_1^2 + x_2^2$, $V(x,t) \ge V_0(x), \forall t \ge t_0$.

$$\dot{V}(x,t) = -2e^{-2t}x_1^2 + \begin{bmatrix} 2(1+e^{-2t})x_1 & 2x_2 \end{bmatrix} \begin{bmatrix} -x_1 + x_2 \\ -e^{-2t}x_1 - x_2 \end{bmatrix}$$

$$\dot{V}(x,t) \le -2(x_1^2 - x_1x_2 + x_2^2) = -(x_1 - x_2)^2 - x_1^2 - x_2^2 < 0$$

e ainda V(x,t) é radialmente ilimitada. Logo, origem é global, uniforme e assintoticamente estável

Pinto, Manuel

Perturbations of asymptotically stable differential systems.

Analysis **4(1,2)** (1984), 161–175. (still active)

Consider the nonlinear non-autonomous differential system described by :

$$h-stability$$

$$\dot{x}(t) = f(t,x), \qquad x(t_0) = x_0, \qquad t \ge t_0 \ge 0,$$
 (1)

where $t \in \mathbb{R}_+$ is the time, $x \in \mathbb{R}^n$ is the state and $f \in \mathcal{C}(\mathbb{R}_+ \times \mathbb{R}^n, \mathbb{R}^n)$ is locally Lipschitz in x, uniformly in t.

 $^{\infty}$ Let $x(t) = x(t; t_0, x_0)$ be denoted by the unique solution of system (1) through $x_0 \in \mathbb{R}^n$, where $t = t_0$.

Definition:

Assume that $h: \mathbb{R}_+ \to \mathbb{R}_+^*$ is positive, continuous and bounded function. The system (1) is said to be :

Outline of Stable If there exist constants $c \ge 1$ and $\delta > 0$, independent of t_0 , such that for all $t_0 \in \mathbb{R}_+$ and for all $x_0 \in \mathbb{R}^n$ with $||x_0|| \le \delta$, the solution x(t) satisfies the estimation :

$$||x(t)|| \le c||x_0||h(t)h(t_0)^{-1}, \quad \forall \ t \ge t_0.$$
 (4)

Globally uniformly *h*-stable if there exists constant $c \ge 1$, such that for all $t_0 \in \mathbb{R}_+$ and all $x_0 \in \mathbb{R}^n$, the solution x(t) satisfies the estimation (4).

Here,
$$h(t)^{-1} = \frac{1}{h(t)}$$

Fonte: KICHA, A. New stability criteria of nonlinear non-autonomous systems

Pinto, Manuel

Perturbations of asymptotically stable differential systems.

Analysis **4(1,2)** (1984), 161–175.

h-stability

Remark:

For some special cases of h, the uniform h-stability coincides with known types of stability :

- If h(t) = b, for a positive constant b, then the system (1) is **stable**.
- If $h(t) = e^{-\lambda t}$, for a positive constant λ , then the system (1) is uniformly exponentially stable.
- If $h(t) = \frac{1}{(1+t)^{\gamma}}$, with γ is a positive constant, then the system (1) is polynomially stable.

Theorem 2:

Suppose that h is a positive, bounded, continuous, decreasing function on \mathbb{R}_+ with h' exists and continuous on \mathbb{R}_+ . Moreover, suppose that there exist constants $a_1, a_2 > 0, b \geq 1, k \geq 0$ and a function V(t,x) satisfying the following properties :

(i)
$$a_1 ||x||^b \le V(t,x) \le a_2 ||x||^b$$
,

(ii)
$$\dot{V}(t,x) \leq h'(t)h(t)^{-1}V(t,x) - kh'(t)h(t)^{-1}$$
,

for all $t \in \mathbb{R}_+$ and all $x \in \mathbb{R}^n$. Then, the system (1) is globally uniformly bounded.

Pinto, Manuel

Perturbations of asymptotically stable differential systems.

Analysis **4(1,2)** (1984), 161–175.

$$h-stability$$

Consider the scalar equation :

$$\dot{x} = -\frac{x}{t + \sin x} + \frac{2}{1 + t}, \qquad x \in \mathbb{R}, \quad t \in \mathbb{R}_+. \tag{5}$$

Setting, $V(t,x)=x^2$ and $h(t)=\frac{1}{(1+t)^2}$, which is positive, bounded, continuous and decreasing on \mathbb{R}_+ with h' exists and is continuous on \mathbb{R}_+ . Then, Theorem 2 holds with $a_1=a_2=1$ and b=k=2. This yields the global uniform boundedness of system (5), that is, the solutions of system (5) approach to a compact set S', when $t\to +\infty$, given by :

$$S' = \left\{ x \in \mathbb{R}, \ |x| \le \sqrt{2} \right\}.$$

Pinto, Manuel

Perturbations of asymptotically stable differential systems.

Analysis **4(1,2)** (1984), 161–175.

$$h-stability$$

For simulation of system (5) we select the initial state x(0) = 1.

Prof. Josenalde Oliveira