Q1.0(2 Q2.2(2 Q3, 0, 5/3 Q4, 1/3

3.5

EA 869 – Turma U – 1. Semestre 2008 Prova2 – 10/04/2008 – Prof. Léo Pini Magalhães.

	Nome: Ricardo Drogo Righet	Número: 064144
γ	Q1. (2,0) Considere os diagramas a seguir:	CO end
Ĵ	СРИ	REM memória
	UAL UC PC RI RI	
		PC RDM

A CPU contém os registradores apresentados mais o reg. PC.

Considerando que a fase de busca e decodificação já tenha sido realizada, preencha na tabela abaixo (acrescente mais linhas se necessário) a fase de execução da instrução indicando ao mesmo tempo o ocorrido em cada pulso na figura acima.

LDA end;	$ACC \leftarrow (end)$	\sim
	Pulso relógio	Micro-operação
	1	REME-(PCX
	7	RDM+((REM))
		PC+(PC)+1
	3	RIK (RDM)
	Ц	Acc + (RI)

Q2. (2,0) Para o esquema a seguir (baseado no texto, mas diferente!):

Preencha a tabela a seguir (complete com tantas linhas quanto o necessário) para a operação:

Pulso do relógio	Microoperação	Microcomandos	Observação (se for o caso)
1	bus ← (R2) TMP ← bus ALLES	Rrz, W, Zacc	Carreys (RD) em TMP
- 5.	ALLED		e zero Acc
2*	ZF (Acc)	RER	Manda pata o sounder
	I_ (TMP)		OS operandos Ø (do Acc) e (TMP), que vale (RD).
3*	Acc somo	We	Manda para o Acc o resultado da soma
			\emptyset + (TMP) que vale \emptyset +(R2) = (R2)

* OBS: Z, e Z, são os operandos do somador e soma é o ser resultado

Q3. (3,0) Para o esquema a seguir:

(instrução com 8 bits, 3 dígitos mais significativos são o Código Operação)

Mostre a fase de execução da operação TMP ← (end) (transferir o conteúdo de um endereço de memória para o registrador TMP) na tabela a seguir. Considere que a instrução já está no registrador RI.

Relógio	Microcomandos	Microoperações
	REM (PC)	
2*	MEM	E,IPC)
3	RDM←((MEM))	R
Ц	barramento (RDM) TMPE barramento	TRB,W O

* WEW & engeredo abontago na memaria

- Q4. (3,0) Considere a arquitetura microprogramada discutida em aula e fornecida, ligeiramente modificada, na próxima folha, com as seguintes alterações: agora o bit 24 seleciona MIR(1-12); BI1, BI2 e BI3 transportam 12 bits; MPC tem 12 bits
- A) Explique o mapeamento para CO= 0100 (indique o endereço da micromemória onde será definido o mapeamento, faça-o e indique o início, na micromemória, do microprograma na posição 22).
- B) Qual tamanho terá a micromemória?

micromemória

end.	microoperações	sinais de controle	seus comentários
0		1,15,16,19,23	
1		1,5,10,18,22,23	<i>y</i> .
2			
3			
4			
5			
6			
7			
8			
9			
10			
	l		

 $2^{12} = 1024.4 = 4096$. Palavias cada palavia $\rightarrow 24$ bits Tamanho da Meméria: $4k \times 24$

U 3

P)

