Infinity. Cardinality.

Pairing function. Diagonalization.

Infinite sets

Consider three sets:

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

$$\mathbb{Z}^- = \{-1, -2, -3, -4, \ldots\}$$

Can we compare their cardinalities?

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Infinite sets

Consider three sets:

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

$$\mathbb{Z}^- = \{-1, -2, -3, -4, \ldots\}$$

Can we compare their cardinalities?

We need a definition for the cardinality of an infinite set.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Def. The sets *A* and *B* have the same cardinality if and only if there is a bijection from *A* to *B*.

When *A* and *B* have the same cardinality, we write |A| = |B|.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

$$\mathbb{Z}^- = \{-1, -2, -3, -4, \ldots\}$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Even_N$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Even_N$$

$$f(x) = 2x$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$

$$Even_N = \{0, 2, 4, 6, 8, \ldots\}$$

Alternatively

$$f: \mathbb{N} \to Even_N$$

. . .

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Odd_N$$

0• 1• 2• 3• ·

•1 •3 •5 •7 ···

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$Odd_N = \{1, 3, 5, 7, 9, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to Odd_N$$

$$f(x) = 2x + 1$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$\mathbb{Z}^- = \{-1, -2, -3, -4, -5, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to \mathbb{Z}^-$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Diagonalization.

$$\mathbb{N} = \{0, 1, 2, 3, 4, \ldots\}$$
$$\mathbb{Z}^- = \{-1, -2, -3, -4, -5, \ldots\}$$

Find a bijection

$$f: \mathbb{N} \to \mathbb{Z}^-$$

$$f(x) = -x - 1$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Therefore, all these sets have the same cardinality

$$|\mathbb{N}| = |Even_N| = |Odd_N| = |\mathbb{Z}^-|$$

Countable sets

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Therefore, all these sets have the same cardinality

$$|\mathbb{N}| = |Even_N| = |Odd_N| = |\mathbb{Z}^-|$$

Def. A set *S* is called *countable* if $|S| = |\mathbb{N}|$ or if *S* is a finite set.

Countable sets

Since $\mathbb N$ is an infinite set, the cardinality $|\mathbb N|$ is greater than any natural number. We need a way to denote the cardinality of this set.

The following symbol is used

$$|\mathbb{N}| = \aleph_0$$

It reads as "aleph naught", "aleph null", "aleph zero".

All infinite countable sets have the same cardinality \aleph_0 .

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Hilbert's Hotel

Imagine a hotel with a countably infinite number of rooms. Each room is occupied by a guest.

Question: Can it accommodate one more guest?

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Hilbert's Hotel

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

There is a bijection between $\{x\} \cup \mathbb{N}$ (guests) and \mathbb{N} (rooms)

Hilbert's Hotel

There is a bijection between $\{x\} \cup \mathbb{N}$ (guests) and \mathbb{N} (rooms)

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

We want to prove that $B = \mathbb{N} \times \{T, F\}$ is countable.

Can we find a bijection between \mathbb{N} and $B = \mathbb{N} \times \{T, F\}$?

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$$

$$B = \{(0, T), (1, T), (2, T), \ldots, (0, F), (1, F), (2, F), \ldots\}$$

Can we find a bijection between \mathbb{N} and $B = \mathbb{N} \times \{T, F\}$?

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$$

$$B = \{(0, T), (1, T), (2, T), \dots (0, F), (1, F), (2, F), \dots\}$$

$$(0, T), (0, F), (1, T), (1, F), (2, T), (2, F), \dots$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Similarly, there is a bijection between $\mathbb N$ and $\mathbb Z$

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

$$\mathbb{Z} = \{\ldots -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

We just rearrange the order of integers:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

In general, if there is a way to list the elements of a given set in linear order, then it is *countable* (i.e. there is a bijection between this set and \mathbb{N}).

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Theorem

Diagonalization.
Schröder-Bernstein

Find a bijection $h: A \rightarrow B$, where

$$A = \mathbb{N} \times \{ \mathbf{T}, F \}$$

$$B = \mathbb{Z}$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Find a bijection $h: A \rightarrow B$, where

$$A = \mathbb{N} \times \{T, F\}$$

$$B = \mathbb{Z}$$

A and *B* are countable, and we know how to construct the following two bijections

$$f: \mathbb{N} \to A$$

$$g:\mathbb{N}\to B$$

Since f is a bijection, there exist an inverse function $f^{-1}: A \to \mathbb{N}$, which is a bijection too, and we can find it, so

$$h(x) = g(f^{-1}(x))$$

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Diagonalization.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

We have shown that \mathbb{Z} is countable, $\mathbb{N} \times \{T, F\}$ is countable.

Similarly, it's not hard to show that for any *finite* set *A*, its Cartesian products

 $A \times \mathbb{N}$ and $\mathbb{N} \times A$ are countable.

$\mathbb{N} \times A$ and $A \times \mathbb{N}$ when A is finite

Similarly, it's not hard to show that for any *finite* set *A*, its Cartesian products

 $A \times \mathbb{N}$ and $\mathbb{N} \times A$ are countable.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Is the set $\mathbb{N} \times \mathbb{N}$ countable?

Can we find a bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$? If yes, then the set of ordered pairs of natural numbers, $\mathbb{N} \times \mathbb{N}$, is a countable set.

(0,3)(1,3) (2,3) (3,3)(4,3)(1,2) (2,2) (3,2) (4,2)(0,2)(0,1)(1,1) (2,1) (3,1)(4,1)(0,0)(1,0) (2,0) (3,0)(4,0) Infinite sets
Countable sets
Hilbert's Hotel
Ordered pairs

Power set. Diagonalization. Schröder-Bernstein

Theorem

Is the set $\mathbb{N} \times \mathbb{N}$ countable?

Can we find a bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$? If yes, then the set of ordered pairs of natural numbers, $\mathbb{N} \times \mathbb{N}$, is a countable set.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Pairing function $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$P(x,y) = \frac{1}{2}(x+y)(x+y+1) + y$$

$$(0,2)$$
 $(1,2)$ $(2,2)$ $(3,2)$ $(4,2)$...

$$(0,1)$$
 $(1,1)$ $(2,1)$ $(3,1)$ $(4,1)$...

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

The set of rational numbers, Q

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

We can define the set of rational numbers as the set of all quotients p/q such that $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^+$:

$$\mathbb{Q} = \left\{ \left. \frac{p}{q} \, \right| \, p \in \mathbb{Z} \, \land \, q \in \mathbb{Z}^+ \right\}$$

We can prove that $\mathbb Q$ is countable. The argument is similar to the proof for $\mathbb N \times \mathbb N$.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Is the power set $\mathcal{P}(\mathbb{N})$ countable?

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Theorem. The power set $\mathcal{P}(\mathbb{N})$ is not countable.

Proof. (by contradiction)

Assume that $\mathcal{P}(\mathbb{N})$ is countable, so all subsets of \mathbb{N} can be listed:

$$A_0, A_1, A_2, \ldots$$

We know that subsets can be encoded by sitrings of 1s and 0s.

Subset	0	1	2	3	4	5	• • •
A_0	0	0	0	1	0	0	
A_1°	1	1	1	0	0	1	
A_2	1	1	1	1	1	1	
A_3	0	0	0	0	0	1	
A_4	1	0	0	0	0	1	
A_5	1	1	0	0	1	1	

Now, we want to construct a counter-example subset $C \subseteq \mathbb{N}$ that is different from each A_i .

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Diagonalization.

Subset	0	1	2	3	4	5	•••
A_0	0	0	0	1	0	0	•••
A_1	1	1	1	0	0	1	
A_2	1	1	1	1	1	1	
A_3	0	0	0	0	0	1	
A_4	1	0	0	0	0	1	
A_5	1	1	0	0	1	1	
•••							
\overline{C}	1	0	0	1	1	0	•••

We construct a counter-example set C that is different from each subset A_i . How can we do it?

For all i = 0, 1, 2, 3...: Whenever $i \in A_i$, we choose $i \notin C$, and vice versa, when $i \notin A_i$, we choose $i \in C$. Thus, by construction, C is different from each A_i . Effectively, the set C inverts the diagonal.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set.

Theorem

Diagonalization.
Schröder-Bernstein

Since $C \neq A_i$ for all i, and C is obviously a subset of \mathbb{N} by construction, the list of subsets A_i does not contain all subsets of \mathbb{N} (it does not contain C, for example), therefore, our assumption was incorrect: the subsets of \mathbb{N} are not countable.

That is, the power set $\mathcal{P}(\mathbb{N})$ is uncountable.

This proof strategy is called diagonalization.

Similarly, we can show that the *unit interval* $0 \le x \le 1$ of real numbers is uncountable. (Also, see Rosen's book for the proof). And because you can make a bijection between this interval, [0, 1], and \mathbb{R} , the set of all real number is uncountable.

Infinite sets

Countable sets

Hilbert's Hotel
Ordered pairs

Power set. Diagonalization.

More results about cardinality

Theorem. If *A* and *B* are countable sets, then their union $A \cup B$ is also countable.

Proof. Wihtout loss of generality, we can assume that A and B are disjoint. (If they are not, we continue the proof with A and $B \setminus A$)

If at least one of the sets is finite, we first list this set, then the other set.

Otherwise, if both are infinite countable sets, we list both sets by alternating elements:

$$a_0, b_0, a_1, b_1, a_2, b_2, \dots$$

where $a_i \in A$ and $b_i \in B$.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Cardinality, one-to-one and onto

Mapping rules

If there is a *one-to-one* function $f : A \rightarrow B$ then

$$|A| \leq |B|$$
.

If there is an *onto* function $g: A \rightarrow B$ then

$$|A| \ge |B|$$
.

If there is a *bijection* $h : A \rightarrow B$ then

$$|A| = |B|$$
.

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs

Power set. Diagonalization.

Schröder-Bernstein Theorem

Infinite sets

Countable sets

Hilbert's Hotel

Ordered pairs Power set.

Diagonalization.
Schröder-Bernstein

Theorem (Schröder-Bernstein). Given two sets *A* and *B*, if there exist one-to-one functions $f: A \to B$ and $g: B \to A$, then there is a bijection between *A* and *B*.

In other words, to prove existence of a bijection, it's enough to prove existence of two one-to-one functions:

Once you have found a one-to-one function $f: A \rightarrow B$, instead of proving that f is onto, you can prove that there exists another one-to-one function that maps B to A.