

# COMP1806: Information Security

Part a: Introduction to COMP1806

Part b: Fundamentals of Information Security

#### **Dr Sakshyam Panda**

Lecturer

Center for Sustainable Cyber Security (CS2)

s.panda@greenwich.ac.uk

#### Module structure and rationale



- Module leader: Sakshyam Panda
- Lecturers: Sakshyam Panda



- Lectures: 11 topics in 11 weeks x 1 hrs per week
  - Pre-recorded lectures (made available at least 3 days prior to tutorials)
- Tutorials: 11 topics in 11 weeks x 2 hrs per week
  - Aim: Deeper theoretical understanding of the module content
  - Where: On campus (check your timetable)

## Module guide



- Slides provide an outline
  - Prepare questions for your lecturers
  - On going to-do: "security-related news monitoring"
    - https://www.theregister.co.uk/security/
    - https://www.hackmageddon.com
    - https://www.securityweek.com/
    - https://krebsonsecurity.com/
    - https://secureframe.com/
- Use the Internet!
  - Google and Wikipedia
    - Treat their results carefully confirm with primary and authoritative sources







# Reading List



#### Background textbooks

- 6th edition of Whitman, M. E., & Mattord, H. J. (2017).
  Principles of information security. Cengage Learning,
  ISBN-13: 978-1337102063 (Most recommended)
- Latest edition of Anderson, R. (2018), Security engineering. John Wiley & Sons, ISBN-13: 978-0470068526
- High impact factor Scientific journals and magazines
  - IEEE Security & Privacy Magazine
  - Computers & Security Journal (Elsevier)
  - IEEE Transactions on Dependable and Secure Computing
  - > IEEE Transactions on Information Forensics and Security
  - ACM Transactions on Privacy and Security
- Industry white papers, reports and products





#### Module assessment



- Coursework 60% weighting
  - Outline Details The final output is a report to critically discuss a research and technical topic inspired by the module content. Carried out in teams of:
    - 5 or 6,
    - Or individually



Multiple-choice exam, 20 questions - 1 hour



## **Key Dates**



- Coursework 60% weighting
  - Release date: 10 Oct 2025, 09:00 BST
  - Submission deadline: 12 Nov 2025, 17:00 BST

- Quiz/Exam- 40% weighting
  - During tutorials



# Indicative lectures (L)



| Week | Date       | Lecture                                           |
|------|------------|---------------------------------------------------|
| 1    | 26/09/2025 | Introduction to Information Security              |
| 2    | 03/10/2025 | Attacks, Threats and Impact                       |
| 3    | 10/10/2025 | Security and Privacy for Machine Learning         |
| 4    | 17/10/2025 | Risk Assessment                                   |
| 5    | 24/10/2025 | Designing Secure Systems                          |
| 6    | 31/10/2025 | Defences, Controls, Planning, and Investment      |
| 7    | 07/11/2025 | Skills/PDP Week                                   |
| 8    | 14/11/2025 | Legal, ethical, and privacy issues                |
| 9    | 21/11/2025 | Latest from Industry and Research (Guest Speaker) |
| 10   | 28/11/2025 | Introduction to Cryptography                      |
| 11   | 07/12/2025 | Applications of Cryptography                      |
| 12   | 12/12/2025 | Summary of all weeks                              |

## Cyber - a global concern



- Need for cyber
- Organisations
- Domestic life (our houses)
  - Work from home





#### Learning Objectives of Lecture 1



- Motivate the need for information security
- Briefly discuss history of information security
- Learn some fundamental terms of information security
- Learn the high-level approaches to information security implementation



# Motivation



#### **Motivation**



- What is the mission of cyber security?
  - To prevent unauthorised parties from accessing, deleting or modifying our digital data – and not only...
- Why do we need cyber security?
  - We are all concerned
  - Cyber crime can be very expensive
    - can seriously affect the functioning of businesses/economies
    - can have life threatening (safety) implications
- What are typical dangers in cyber security?
  - Malware
  - Hacking into web sites, databases, systems
  - Stealing passwords
  - Identity theft
  - Denial-of-Service (DoS) Attacks





#### Interconnected world





# Cyber security...



- Billions of devices → a cyber attack can be launched from anywhere → very large attack surface
  - e.g. IoT, interconnected cars, 5G, healthcare, smart grid
- Attacks to be launched by threat actors to exploit vulnerabilities
  - System, network and software vulnerabilities
  - The use of Artificial Intelligence (AI) introduces new vulnerabilities
- Defender → countermeasures to prevent being hacked
- Countermeasures cost and not only...
  - Obstacle of legacy systems





#### It's real



#### World's Biggest Data Breaches & Hacks



https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

## Question



Which of the following best describes the primary goal of information security?

- A. To ensure that only authorized users can access information
- B. To prevent all cyberattacks from occurring
- C. To maintain the confidentiality, integrity, and availability of information
- D. To monitor all user activities within a system

## Question



Which of the following best describes the primary goal of information security?

- A. To ensure that only authorized users can access information
- B. To prevent all cyberattacks from occurring
- C. To maintain the confidentiality, integrity, and availability of information
- D. To monitor all user activities within a system



# Definitions

# What is security?



- Security means to be protected from adversaries, from those who would do harm, intentionally or otherwise
  - State of being secure and free from danger or harm
  - The actions taken to make someone or something secure
- The protection of information and its critical elements, including systems and hardware that use, store, and transmit that information (CNSS)
- Includes:
  - Information security management
  - Data security
  - Network security





# What is security? (cont...)



- A successful organisation should have multiple layers of security in place to protect major components of an Information system:
  - Software
  - Hardware
  - People
  - Procedures
  - Data
  - Network

#### C.I.A. triad



- has been considered the industry standard for computer security since the development of the mainframe
- expanded model consists of a list of critical characteristics of information



#### Protection



- Information security management, controls to protect:
  - Confidentiality (C)
    - Information has confidentiality when it is protected from disclosure or exposure to unauthorized individuals or systems
  - Integrity (I)
    - Information has integrity when it is whole, complete, and uncorrupted
  - Availability (A)
    - Enables authorized users—persons or computer systems—to access information without interference or obstruction and to receive it in the required format
- Data security: protecting digital data
- Network security: prevent and monitor for malicious intrusions
  - Unauthorised access
  - Misuse
  - Modification
  - Denial of resources

## Beyond CIA



#### Additional principles

#### Authenticity

The property of being genuine and being able to be verified and trusted

#### Accountability

requirement for actions of an entity to be traced uniquely to that entity



# Computer security challenges



- 1. Computer security is not as simple as it might first appear to the novice
- 2. In developing a particular security mechanism or algorithm, one must always consider potential attacks on those security features
- 3. Procedures used to provide services are often counterintuitive
- 4. Physical and logical placement needs to be determined
- 5. Security mechanisms typically involve more than a particular algorithm or protocol and also require that participants be in possession of some secret information which raises questions about the creation, distribution, and protection of that secret information
- 6. Attackers only need to find a single weakness, while the designer must find and eliminate all weaknesses to achieve perfect security
- 7. Security is still too often an afterthought to be incorporated into a system after the design is complete, rather than being an integral part of the design process
- 8. Security requires regular and constant monitoring
- 9. There is a natural tendency on the part of users and system managers to perceive little benefit from security investment until a security failure occurs
- 10. Many users and even security administrators view strong security as an impediment to efficient and user-friendly operation of an information system or use of information

#### Key Information Security Concepts (1/3)



- Access: ability to use, manipulate, modify, or affect another subject or object
- Asset: protected resource
- Attack: an intentional or unintentional act that can damage or otherwise compromise information and systems
- Control, safeguard, or countermeasure:
   Security mechanisms, policies, or procedures that can successfully counter attacks
- Exploit: a technique used to compromise a system







#### Key Information Security Concepts (2/3)



- Exposure: a condition or state of being exposed
- Loss: A single instance of an information asset suffering some damage or destruction (impact)
- Protection profile or security posture: entire set of controls and safeguards that the organisation implements to protect the asset
- Risk: expected impact of an unwanted occurrence
- Threat: any event or circumstance that has the potential to adversely affect operations and assets
- Threat Agent: the specific instance or a component of a threat





#### Key Information Security Concepts (3/3)



- Threat event: an occurrence of an event caused by a threat agent
- Vulnerability: weaknesses or faults in a system or protection mechanism that expose information to attack or damage
- A computer can be the subject (attacker) of an attack and/or the object (target) of an attack:
  - When it is the subject of an attack, the computer is used as an active tool to conduct attack
  - When it is the object of an attack, the computer is the entity being attacked





#### **Balancing Information Security and Access**



- Impossible to obtain perfect information security
  - Security is not an absolute→ it is a process, not a goal
- Security should be considered a balance between protection and availability
  - To achieve balance, the level of security must allow reasonable access, yet protect against threats





# Implementation of Information Security

# Approaches to Information Security Implementation: Bottom-Up Approach



- Systems administrators attempt to improve security of their systems → Bottom-Up Approach
- Key advantage: technical expertise of individual administrators
- It lacks several critical features:
  - Participant support
  - Organisational staying power
- An alternative approach, which has a higher probability of success, is called the top-down approach



# Approaches to Information Security Implementation: Top-Down Approach



- Initiated by upper management
  - Issue policy, procedures, and processes
  - Dictate goals and expected outcomes
  - Determine who is countable for each of the required actions
- It has
  - strong upper-management support
  - a dedicated champion
  - dedicated funding
  - clear planning, and
  - the opportunity to influence organisational culture
- Also involves a formal development strategy referred to as a systems development life cycle (SDLC)





# Approaches to Information Security Implementation





#### Security Professionals and the Organisation



- It takes a wide range of professionals to support a diverse information security program
- Chief information officer (CIO)
  - Senior technology officer
  - Primarily responsible for advising the senior executives on strategic planning
- Chief information security officer (CISO)
  - Has primary responsibility for assessment, management, and implementation of IS in the organisation
  - Usually reports directly to the CIO





# Security as a Social Science



- Security begins and ends with the people that interact with the system, intentionally or otherwise
- Social science examines the behaviour of individuals interacting with systems
- End users that need the very information the security personnel are trying to protect may be the weakest link in the security chain
- Security administrators can greatly reduce the levels of risk caused by end users and create more acceptable and supportable security profiles

  SOCIAL? ENGINEERING

#### References



- 6th edition of Whitman, M. E., & Mattord, H. J. (2017).
   Principles of information security. Cengage Learning.
- Stallings, W. and Brown, L., 2017. Computer Security:
   Principles and Practice, Global Edition.
- Images sources (labeled to be reused): https://images.google.com



# Thank You!

# Any Questions?