Planning

Planning

- plan = sequence of actions
 - to get from current state to goal state
- planning = find plan
 - using search algorithms
- often domain specific
 - i.e., using knowledge
 about the underlying problem structure
- example: path/motion-planning

Path/Motion Planning

The Path Planning Problem

The Path Planning Problem

- given
 - map with free space and obstacles
 - start s and goal g points (or poses)
- find path, i.e.,
 - sequence of points p_i
 - through free space
 - connecting s and g

The Path Planning Problem

find path as sequence of points pi

- assuming canonical actions
- to get from p_i to p_{i+1}

Representing the Mobile System

- treat system as point
- increase obstacles by e.g. system radius

aka obstacle growing

Motion Planning

things can get more complicated...

Rigid Body in 3D

- not only point x for position
- but also orientation
- => **pose** (position & orientation)

Rigid Body in 3D

Degree of Freedom, DoF:

= number of independent motion variables

rigid body pose in 3D: 6 DoF

- 3 DoF translation (position)
- 3 DoF rotation (orientation)

Configuration Space

Motion Planning

e.g., interested in collision-free motion of robot hand

- system consists of moving parts
- not an option to treat hand/system as a point
- and just use obstacle growing

- work space (WS)
 - physical space
 - with start & goal(s)
 - physical obstacles and free space
- configuration space (CS)
 - space spanned by system's DoFs
 - configuration = vector in CS
 - i.e., values for each DoF
 - e.g., angles for robot arm joints

- configuration space (CS)
- forbidden space (in CS)
 - aka obstacle space in CS
 - configurations that lead to collisions (or otherwise undesirable states)
- free space (in CS)
 - CS minus forbidden space
 - i.e., all configurations that do not lead to collisions

- configuration space (CS)
- forbidden/obstacle space (in CS)
- free space (in CS)

motion planning:

find collision free path

= path through free space (in CS)

important note:

- if moving system is a point
 - e.g., "simple" mobile system & obstacle growing
- then configuration space = work space
 - aka path planning

Example Motion Planning

2D robot arm

- with 2 DoF
- rotational joints α, β

configuration space?

Example

suppose α , β are not constrained, i.e., can "freely rotate around" \Rightarrow CS is a torus

Example

an obstacle in the CS

Further Example

2 links and 2 joints, 5 obstacles

- start config.
- goal config.
- position of the "hand" in physical, respectively configuration space
- intermediate configurations (during execution of the plan)

Free Space Representations

Representation Approaches

Roadmap

- represent connectivity of free space by a network
- Cell decomposition
 - decompose free space into simple cells
 - connectivity = adjacency graph of these cells

Potential field

- define a function over the free space
- that has a global minimum at the goal configuration
- and follow its steepest descent

Roadmap: Visibility Graph

- Shakey (late 60s)
- polygons for obstacles
 - vertices, aka (path) nodes, and (obstacle) edges
- connect obstacle corners
 - and start s and goal g
 - with free space edges aka (path) segments

Roadmap: Visibility Graph

- given roadmap (here visibility graph)
- find path: e.g., A*

Simple Algorithm

- 1. add all obstacles vertices in VG, plus start and goal
- 2. For every pair of nodes u, v in VG
- 3. If segment(u,v) is an obstacle edge then
- 4. insert (u,v) into VG
- 5. else
- 6. for every obstacle edge e
- 7. if segment(u,v) intersects e
- 8. then goto 2
- 9. insert (u,v) into VG

Complexity

Space: O(n²)

Time:

- Simple algorithm: O(n³) time
- Rotational sweep: O(n² log n)
- Optimal algorithm: O(n²)

Reduced Visibility Graph

- aka Generalized Visibility Graph
- aka Tangent(ial) Graph

Eliminate

- concave obstacle vertices
- and non-tangent segments

Reduced Visibility Graph

tangent segment = both its vertices are tangent points

Def.: if a line L contacts obstacle vertex p but does not intersect any internal point in a small neighboring obstacle region of p, then L is tangent to p and p is a tangent point

two separated polygons => 4 tangents

Reduced Visibility Graph

tangent segments

Problem with Visibility Graph

- can lead along obstacles
- aka semi-free path

how to get more, resp. max clearance?

Voronoi Diagram

- cells = areas with min distances to a vertex
- i.e., edges are equistant points between vertices

Definition of Voronoi Diagram

- Let P be a set of n distinct points (aka sites) in the plane
- The Voronoi diagram of P is the subdivision of the plane into n cells, one for each point
- A point q lies in the cell corresponding to a point p_i ∈ P iff for each p_i ∈ P, j ≠ i : Distance(q, p_i) < Distance(q, p_i)

Generalized Voronoi Diagram (GVD)

instead of points given set of polygons (obstacles)

 GVD edges equidistant from the two closest obstacles

• Time: O(n log n)

• Space: O(n)

Voronoi Diagram: Metrics

different options for distance, e.g.

- L₁: Manhattan
- L₂: Euclidean

Voronoi Diagram: Metrics

- L₁
- note the straight lines

Voronoi Diagram: Metrics

- L₂
- note the curved lines

Voronoi Diagram

polygonal obstacles and Euclidean metric

set of points equidistant to

- 2 vertices = line
- 2 edges = line
- 1 vertex and 1 edge = parabola

Time: O(n log(n) (both for point sets and polygon representation)

Path-Planning Approaches

- Roadmap
- Cell decomposition
- Potential field

Cell-Decomposition Methods

free space F represented by non-overlapping cells

two classes:

- exact
 - union of cells is exactly F
- approximate
 - union of cells is contained in F

Exact: e.g. Trapezoidal Decomposition

obstacles = polygons

extend vertical line at every obstacle vertex until it touches an other obstacle

easy and efficient to compute with a sweep line alg. O(n log n) time, O(n) space

planar sweep line: sort by x-coordinates, iterate over them

- can use centers of the trapezoids
- as vertices in a search graph

but this is not a proper roadmap!!!

⇒ need for local obstacle avoidance

Approximate: e.g. Regular Grid

- dominant form of (2D) map representation
- decomposition of space into regular cells (array)
 - occupied or free
 - potentially probabilistic
- graph (roadmap)
 - centers of free cells
 - adjacency = edge
 - 4 vs 8 connection

