RESOLVING INCONSISTENCIES IN SIMPLE TEMPORAL PROBLEMS A PARAMETERIZED APPROACH

Konrad K. Dabrowski¹ Peter Jonsson² Sebastian Ordyniak³ George Osipov²

¹Newcastle University, UK ²Linköping University, Sweden ³University of Leeds, UK

A A A I 2022

Overview

- Simple Temporal Problem (STP) is an influential formalism for encoding and reasoning about temporal relations.
- STP constraints: $a \le x_i x_j \le b$, where x_i, x_j represent points in time and a, b are rational or infinite values.
- STP consistency can be checked in polynomial time.
- But what if STP constraints are inconsistent?
- We study Almost STP: the problem of resolving few inconsistencies using tools from *parameterized complexity*.
- For two large classes of STP constraints (one-sided and equation constraints), we find fpt algorithms.
- We determine complexity of all classes of STP constraints.

Simple Temporal Problem (STP)

Introduced by Dechter, Meiri, and Pearl in 1989.

Objects: points in time x_1, x_2, \ldots, x_n .

Constraints: $a \le x_i - x_j \le b$, where $a, b \in \mathbb{Q} \cup \{-\infty, \infty\}$.

Examples of constraints:

$$1 \le x_i - x_j \le 2,$$

$$-\infty \le x_i - x_j \le -2 \qquad \text{(one-sided)},$$

$$1 \le x_i - x_j \le \infty \qquad \text{(one-sided)},$$

$$1 \le x_i - x_j \le 1 \qquad \equiv x_i - x_j = 1 \qquad \text{(equation)}.$$

Simple Temporal Problem (STP)

Checking consistency requires polynomial time.

Almost STP

- How to deal with with inconsistent instances?
- Remove some constraints to achieve consistency.
- Call this problem Almost STP.
- Almost STP is NP-hard.
- Restrict the set of allowed constraints.
- Almost STP is in P only when restricted to trivial constraints $(a \le x_i x_j \le b$, where $a \le 0 \le b$) and NP-hard otherwise.
- Assume that removing few constraints is enough.
- Study complexity of Almost STP parameterized by k number of constraints to be removed.

Parameterized Complexity

k-Vertex Cover

Cover all edges with k vertices. Solvable in $f(k) \cdot \text{poly}(n)$ time.

k-Independent Set

Find k non-adjacent vertices. Solvable in $n^{O(k)}$ time.

Resolving Inconsistencies in STPs

Parameterized Complexity Classes

Back to Almost STP

- Let S contain $a \le x_i x_j \le b$ for all $a, b \in \mathbb{Q} \cup \{-\infty, \infty\}$.
- For every subset \mathcal{A} of \mathcal{S} , what is the parameterized complexity of ALMOST STP restricted to \mathcal{A} ?
- Some subsets of S:
 - Trivial constraints: $a \le x_i x_j \le b$, where $a \le 0 \le b$.
 - One-sided constraints: $a \leq x_i x_j$, where $a \geq 0$.
 - Equation constraints: $a \le x_i x_j \le a \equiv x_i x_j = a$.
- $1 \le x_i x_j \le 2$ is not trivial, one-sided or equation.

Classification Theorem

Theorem

Almost STP restricted to $A \subseteq S$ is

- \blacksquare in constant time if A only contains trivial constraints,
- 2 in FPT if A only contains one-sided constraints,
- 3 in FPT if A only contains equation constraints, and
- $\Psi[1]$ -hard otherwise.

One-sided constraints

Examples: $0 \le d - a, 1 \le d - e, 2 \le c - b, ...$

- At most one arc for every pair.
- Labels either zero or negative.
- Negative cycles are bad.

Classification Theorem

Theorem

Almost STP restricted to $A \subseteq S$ is

- \blacksquare in constant time if \mathcal{A} only contains trivial constraints,
- 2 in FPT if A only contains one-sided constraints,
- 3 in FPT if A only contains equation constraints, and
- $\Psi[1]$ -hard otherwise.

Equations

- a b = 1: $a \xrightarrow{1} b$, $b \xrightarrow{-1} a$.
- Values propagate. E.g., set a = 1.
- Nonzero cycles are bad.
- Goal: find k arcs that intersect every nonzero cycle.
- High level idea: use iterative compression and multicut to separate "conflicting" variables.

Classification Theorem

Theorem

Almost STP restricted to $A \subseteq S$ is

- \blacksquare in constant time if A only contains trivial constraints,
- 2 in FPT if A only contains one-sided constraints,
- 3 in FPT if A only contains equation constraints, and
- $\Psi[1]$ -hard otherwise.

W[1]-hard Cases (1/3)

Theorem (Göke et al.)

If A contains $x_i - x_j \leq 1$ and $x_i - x_j \geq 1$, then AlmostSTP restricted to A is W/1-hard.

- $x_i x_j \le 2$ and $x_i x_j \ge 2$ imply W[1]-hardness.
- What about $x_i x_j \le 2$ and $x_i x_j \ge 3$?
- $x_i x_j \le 2$ implements $x_i x_j \le 6$: $x_i - y \le 2$, $y - y' \le 2$, $y' - x_j \le 2$.
- $x_i x_j \ge 3$ implements $x_i x_j \ge 6$.
- $x_i x_j \le 6$ and $x_i x_j \ge 6$ imply W[1]-hardness.

W[1]-hard Cases (2/3)

Lemma

If \mathcal{A} contains $x_i - x_j \leq a$ and $x_i - x_j \geq b$ for any $a, b \in \mathbb{Q}_{>0}$, then AlmostSTP restricted to \mathcal{A} is W[1]-hard.

- What about $1 \le x_i x_j \le 2$?
- We can express $x_i x_j = 2$: $1 \le x_i - x_j \le 2, \ 2 \le x_i - x_j \le 4$.
- $1 \le x_i x_j \le 2$ implements $2 \le x_i x_j \le 2n + 2 \ \forall n \in \mathbb{N}$: $y x_i = 2n 2, \ 2n \le y x_j \le 4n$.
- For large enough n (in O(#variables)), $2n + 2 \approx \infty$ in STP.
- $1 \le x_i x_j \le 2$ expresses $x_i x_j \le 2$ and $x_i x_j \ge 2$.

W[1]-hard Cases (3/3)

Lemma

If A contains

- (a) $x_i x_j \le a$ and $x_i x_j \ge b$ for any $a, b \in \mathbb{Q}_{>0}$, or
- (b) $a \le x_i x_j \le b$ for some $0 < a < b < \infty$, then AlmostSTP restricted to A is W/1]-hard.

Finally, we prove that if \mathcal{A} is not trivial, one-sided, or equation, then it either implements two constraints from (a) or the constraint from (b).

Questions for Future

- What if we allow unary constraints, e.g. $1 \le x_i \le 3$?
- What if we allow strict constraints, e.g. $1 < x_i x_j \le 2$?
- \blacksquare For which other problems X is Almost X interesting?
- ALMOST STP assumes that the additive error is small. What about the multiplicative error? Can we check if (1ϵ) fraction of STP constraints are consistent? This question is asking about robust approximation.

Thank you!