B1 – Vollständige Formalisierung und Zusammenfassung der Ergebnisse (self-contained)

Auto-Analyse

18. August 2025

Zusammenfassung

Dieses Dokument fasst die Theorie (Gibbs-Reduktion, Graph-Laplacian, Galerkin-Lift, Approximant, Thermo-Identitäten) vollständig zusammen und erläutert die Ergebnisse der vorliegenden PoC-Dokumente. Es ist *self-contained*.

1 Theorie

1.1 Gibbs-Reduktion und Faktorisierung

Seien H_S, H_E endlichdimensional und selbstadjungiert und $H = H_S \otimes \mathbf{1} + \mathbf{1} \otimes H_E$. Da die Summanden kommutieren, gilt

$$e^{-\beta H} = e^{-\beta H_S} \otimes e^{-\beta H_E}. \tag{1.1}$$

Mit $Z_{SE} = \operatorname{Tr} e^{-\beta H}$ folgt die reduzierte Dichte

$$\operatorname{Tr}_{E} \frac{\mathrm{e}^{-\beta H}}{Z_{SE}} = \frac{\mathrm{e}^{-\beta H_{S}}}{\operatorname{Tr} \mathrm{e}^{-\beta H_{S}}}.$$
(1.2)

Siehe [1, 2].

1.2 Graph-Laplacian, Galerkin-Lift und Approximanten

Für einen zusammenhängenden Graphen ist der kombinatorische Laplacian L = D - A symmetrisch, positiv semidefinit (PSD) und erfüllt $L\mathbf{1} = 0$ [3]. Sei $C \in \mathbb{R}^{c \times n}$ eine Aggregationsmatrix mit Zeilensummen 1, $R = C^{\top}$ und L_0 der grobe Laplacian. Dann

$$L_{\text{lift}} := R L_0 C \tag{1.3}$$

ist symmetrisch, PSD und erfüllt $L_{\text{lift}}\mathbf{1} = 0$. Für

$$L_A(\alpha) = (1 - \alpha)L + \alpha L_{\text{lift}}, \qquad \alpha \in [0, 1], \tag{1.4}$$

bleiben PSD-Eigenschaft und Kern erhalten.

1.3 Gibbs-Observablen und Thermo-Identitäten

In Spektraldarstellung $L = Q \Lambda Q^{\top}$ und $p_i = \mathrm{e}^{-\beta \lambda_i} / \sum_j \mathrm{e}^{-\beta \lambda_j}$ gelten

$$E = \sum_{i} p_i \lambda_i, \qquad S = -\sum_{i} p_i \log p_i, \qquad P = \sum_{i} p_i^2.$$
 (1.5)

Mit $Z(\beta) = \operatorname{Tr} e^{-\beta L}$ folgt

$$\partial_{\beta} \log Z = -E, \qquad \partial_{\beta}^2 \log Z = \operatorname{Var}_{\rho}(L) \ge 0.$$
 (1.6)

Robustheits-"Airbags" bei nichtkommutierenden Zusätzen liefern Golden–Thompson bzw. Trotter–Kato [4, 5].

2 Zusammenfassung der Ergebnisse (aus den PDFs/TEX)

Korrektheit der Reduktion. Die Reduktion $\operatorname{Tr}_E(\rho_{SE}) = \rho_S$ wurde numerisch genau bestätigt, indem $\rho_{SE} \propto \mathrm{e}^{-\beta(L \oplus H_E)}$ explizit konstruiert und die Teilspur mit $\rho_S \propto \mathrm{e}^{-\beta L}$ verglichen wurde (Frobenius-Abweichung $\approx 10^{-16}$ in den Tests).

PSD/Kern-Erhalt durch Galerkin-Lift. Für den Lift $L_{\text{lift}} = C^{\top} L_0 C$ wurden Symmetrie, PSD und $L_{\text{lift}} \mathbf{1} = 0$ verifiziert; die Approximanten $L_A(\alpha)$ behalten diese Eigenschaften für alle $\alpha \in [0, 1]$.

Thermodynamische Konsistenz. Die Identitäten $E = -\partial_{\beta} \log Z$ und $\partial_{\beta}^2 \log Z = \operatorname{Var}_{\rho}(L)$ wurden numerisch (Finite Differenzen) validiert; die Varianz ist nichtnegativ und stimmt mit der zweiten Ableitung von $\log Z$ überein.

Urgraph vs. Approximant-Subgraph. Für den ST-Urgraph (Level 4) und einen Approximant-Subgraph (gleichmäßige Aggregation via "nearest corner") wurden E, S, P über $\alpha \in \{0, 0.25, 0.5, 0.75, 1\}$ ausgewertet. Die Trends sind konsistent: S zeigt eine sanfte Variation, P nimmt mit zunehmender "Strukturierung" ab, E folgt der Mischung der Spektren (Details je nach Wahl von L_0 und Clusterung).

Interpretation. Die Ergebnisse belegen: (i) Gibbs-Reduktion funktioniert exakt für Kronecker-Summen, (ii) das Coarse-Graining via $C^{\top}L_0C$ ist Laplace-kohärent, (iii) die gemischte Familie $L_A(\alpha)$ ist ein wohldefinierter Pfad zwischen Ur- und Lift-Operator, (iv) die Standard-Observablen liefern eine stabile Diagnose der Approximation.

Literatur

Literatur

- [1] R. A. Horn, C. R. Johnson: *Matrix Analysis*, 2nd ed., Cambridge University Press.
- [2] M. A. Nielsen, I. L. Chuang: Quantum Computation and Quantum Information, Cambridge University Press.
- [3] F. R. K. Chung: Spectral Graph Theory, CBMS Regional Conf. Ser., AMS.
- [4] P. J. Forrester, C. J. Thompson: The Golden–Thompson inequality, *J. Math. Phys.* 55 (2014).
- [5] H. Neidhardt, V. A. Zagrebnov: Trotter-Kato Product Formula and Semigroups (Survey).