Problem Set 7

Problems marked (T) are for discussions in Tutorial sessions.

- 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation with $T(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $T(\mathbf{e}_2) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $T(\mathbf{e}_3) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Let $v \in \mathbb{R}^3$. What is $T(\mathbf{v})$? Is T one-one, as a function? Is T onto?
- 2. Change $T(\mathbf{e}_3) = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ in the above. What is $T(\mathbf{v})$? Is T one-one? Is T onto?
- 3. Can we ever find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ which is onto?
- 4. Find out $[\mathbf{v}]_{\mathcal{B}}$, where \mathcal{B} is an ordered basis:

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, \mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
. Solution: $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 3\\-1\\-1 \end{bmatrix}$.

(b)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, \mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
. Solution: $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$.

(c)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, v = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
. Solution: $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$.

(d)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \right\}, \mathbf{v} = \begin{bmatrix} 1\\1\\2\\3 \end{bmatrix}$$
. Solution: $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 3\\-1\\-1 \end{bmatrix}$.

(e)
$$\mathcal{B} = \{\mathbf{e}_2, \mathbf{e}_1, \mathbf{e}_3\}, \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. Solution: $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

5. Find out **v** given $[\mathbf{v}]_{\mathcal{B}}$, where \mathcal{B} is an ordered basis:

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
. Solution: $\mathbf{v} = \begin{bmatrix} 6\\3\\1 \end{bmatrix}$.

(b)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
. Solution: $\mathbf{v} = \begin{bmatrix} 3\\5\\4 \end{bmatrix}$.

(c)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
. Solution: $\mathbf{v} = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$.

(d)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \right\}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}.$$

(e)
$$\mathcal{B} = \{\mathbf{e}_2, \mathbf{e}_1, \mathbf{e}_3\}, [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
.

- 6. Give three linear transformations from \mathbb{R}^3 to $\mathbb{W} = \{\mathbf{w} : w_1 w_2 + w_3 w_4 + w_5 = 0\}$. Give their coordinate matrices w.r.t the ordered bases $\mathcal{B}_1 = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$, $\mathcal{B}_2 = \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ on \mathbb{R}^3 and some ordered basis of \mathbb{W} .
- 7. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ as $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x y + z \\ x + 2z \end{bmatrix}$. Find
 - (a) a basis of Range (T),
 - (b) rank (T),
 - (c) a basis for $\mathcal{N}(T)$, and
 - (d) $\dim(\mathcal{N}(T))$.
- 8. (T) Find all linear transformations from $\mathbb{R}^n \longrightarrow \mathbb{R}$.

Solution: Let $T(\mathbf{e}_i) = \alpha_i, \ 1 \leq i \leq n$. So

$$T(\mathbf{x}) = T\left(\sum_{i=1}^{n} x_i \mathbf{e}_i\right) = \sum_{i=1}^{n} x_i T(\mathbf{e}_i) = \sum_{i=1}^{n} \alpha_i x_i = \langle \mathbf{x}, [\alpha_1, \dots, \alpha_n]^t \rangle.$$

Also, given any $T: \mathbb{R}^n \longrightarrow \mathbb{R}$, linear, then we know the images of \mathbf{e}_i , for $1 \le i \le n$, the basis vectors. That is, there exists $\beta_i \in \mathbb{R}$ such that $T(\mathbf{e}_i) = \beta_i$, for $1 \le i \le n$. Thus,

$$T(\mathbf{x}) = \sum_{i=1}^{n} \beta_i x_i = \langle \mathbf{x}, [\beta_1, \dots, \beta_n]^t \rangle.$$

9. Let $\mathbf{v} \in \mathbb{R}^n$ and $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an ordered basis of \mathbb{R}^n . Form a matrix $B = [\mathbf{v}_1 \cdots \mathbf{v}_n]$. Is $B[\mathbf{e}_1]_{\mathcal{B}} = \mathbf{e}_1$? What is $B[[\mathbf{e}_1]_{\mathcal{B}}, \dots, [\mathbf{e}_n]_{\mathcal{B}}]$? Show that B is invertible and $[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$. Solution:

Let
$$\mathbf{e}_1 = \sum_{i=1}^n \alpha_i \mathbf{v}_i$$
. Then, $[\mathbf{e}_1]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$. So, $B[\mathbf{e}_1]_{\mathcal{B}} = [\mathbf{v}_1 \quad \cdots \quad \mathbf{v}_n] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \sum_{i=1}^n \alpha_i \mathbf{v}_i = \mathbf{e}_1$.

Hence, we see that $B[\mathbf{e}_i]_{\mathcal{B}} = \mathbf{e}_i$, for all $i, 1 \leq i \leq n$. Also,

$$B[[\mathbf{e}_1|_{\mathcal{B}},\ldots,[\mathbf{e}_n]_{\mathcal{B}}]=[B[\mathbf{e}_1|_{\mathcal{B}},\ldots,B[\mathbf{e}_n]_{\mathcal{B}}]=[\mathbf{e}_1,\ldots,\mathbf{e}_n]=I.$$

Thus, $B^{-1} = [[\mathbf{e}_1]_{\mathcal{B}}, \dots, [\mathbf{e}_n]_{\mathcal{B}}]$. Further, $[\mathbf{e}_i]_{\mathcal{B}} = B^{-1}\mathbf{e}_i$, for all $i, 1 \leq i \leq n$ implies that $[\mathbf{v}]_{\mathcal{B}} = B^{-1}\mathbf{v}$.

10. Let V, W be vector spaces and let L(V, W) be the vector space of all linear transformations from V to W. Show that $\dim L(V, W) = \dim V \cdot \dim W$.

Solution: Let $\dim(V) = m$ and $\dim(W) = n$. Then, there is a one-to-one correspondence between L(V, W) and the vector space of $n \times m$ matrices. Therefore, $\dim(L(V, W) = mn = \dim(V)\dim(W)$.

11. (T) Show that a linear transformation is one-one if and only if null-space of $\mathcal{N}(T)$ is $\{0\}$.

Solution: $\mathcal{N}(T) \neq \{\mathbf{0}\} \Rightarrow$ there is an $\mathbf{x} \in \mathcal{N}(T)$, $\mathbf{x} \neq \mathbf{0} \Rightarrow T(\mathbf{x}) = T(\mathbf{0}) \Rightarrow T$ is not one-one. If $\mathcal{N}(T) = \{\mathbf{0}\}$ then $T(\mathbf{x}) = T(\mathbf{y}) \Rightarrow T(\mathbf{x} - \mathbf{y}) = \mathbf{0} \Rightarrow \mathbf{x} - \mathbf{y} \in \mathcal{N}(T) \Rightarrow \mathbf{x} = \mathbf{y}$.

12. Describe all 2×2 orthogonal matrices. Prove that action of any orthogonal matrix on a vector $\mathbf{v} \in \mathbb{R}^2$, is either a rotation or a reflection about a line.

Solution: As A preserves length, there is a $\theta \in [0, 2\pi)$ such that $A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ $(\sin^2 \theta + \cos^2 \theta = 1)$. Since $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \perp \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, we have, $A \begin{bmatrix} 1 \\ 0 \end{bmatrix} \perp A \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Therefore, $A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$ or $A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix}$, which further implies that

$$A = \underbrace{\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}}_{\text{rotation by an angle }\theta} \quad \text{or} \quad A = \underbrace{\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}}_{\text{reflection about a line of inclination }\theta/$$

13. **(T)** Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $n \geq 2$, with $\|\mathbf{v}\| = \|\mathbf{w}\| = 1$. Prove that there exist an orthogonal matrix A such that $A(\mathbf{v}) = \mathbf{w}$. Prove also that A can be chosen such that $\det(A) = 1$. (This is why orthogonal matrices with determinant one are called rotations.))

Solution: As composition and inverse of orthogonal matrices are orthogonal, it is enough to choose $\mathbf{v} = \mathbf{e}_1$. So we need an orthogonal matrix A such that $A(\mathbf{e}_1) = \mathbf{w}$. Find an orthonormal basis of \mathbb{R}^n , say $\{\mathbf{w}, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ by Gram Schmidt. Let $A = [\mathbf{w} \ \mathbf{w}_2 \cdots \ \mathbf{w}_n]$, that is, first column of A is \mathbf{w} and so on. Then A is orthogonal and $det(A) = \pm 1$. If det(A) = -1, then multiply the second column with -1.