

6CS012-Artificial Intelligence and Machine Learning Lecture-02

Learning Artificial Intelligence
Understanding the Components of Learning:
A Classification Perspective.

Siman Giri

Learning outcomes for the Week!!!

- To **revise** the various **components** of (Machine) **Learning** that we discuss **@5CS037**.
- To **review and re-familiarize** above mentioned **components** with the context of **Classification task** → "**Logistic Regression**".
- To able to differentiate between Machine Learning and Deep Learning.

A review on (Machine) Learning!!

1. What is Learning?

1.1 What is Learning? Intuition.

- Task-Example: Identify the spam emails!!!
- (Program a machine that learns how to filter spam emails.)

Let's Demystify the Magic!!

1.2 Demystifying Magic-1: Expert System.

- Example: Identify the spam emails!!!
- (Program a machine that learns how to filter spam emails.)
 - Expert-System:
 - In the early days of "intelligent" applications, many systems used hand-coded rules of "if" and "else" decisions to process data or adjust to user input.
 - A naïve solutions: machine can simply make a array of all the words, appearance of whose result in an email being spam, when a new email arrives, machine can check for those blacklisted word from array. If it matches one of them, it can be assigned as spam otherwise can be moved to inbox.
 - This would be an example of using an expert-designed rule system ("learning by memorization") to design an "intelligent" application.

1.2 Demystifying Magic-1: Expert System.

- Expert-System ~ learning by memorizations:
 - In our example "learning by memorization" approach might work well but it lacks one important aspects of learning systems
 - the ability to label unseen emailmessages i.e. email messages which may be spam but does not contain any of the word in the blacklist(array) will be delivered to our inbox.

- Manually crafting decision rules is feasible for some application, but has following two disadvantages:
 - The logic required to make a decision is specific to a single domain and task.
 Changing the task even slightly might required to rewrite of the whole system.
 - Designing rules requires a deep understanding of how a decision should be made by a human expert.
 - {We did not learn from the data! instead we memorize a features of data.}

1.3 When do we need Learning?

- A successful learning system must be able to progress from individual examples to broader generalization
 - also referred as "inductive reasoning" or "inductive inference".
- Example1: detect cat in an image.

- Challenges with Expert System:
 - way in which **pixels** (~ which make up an image in a computer) are "**perceived**" by the **computer** is very different from how **humans perceive** a **face**.
 - This difference in representation makes it basically impossible for a human to come up with a good set of rules to describe what constitutes a cat in a digital image.
 - Using machine to learn:
 - however, simply presenting a program with a large collection of images of faces is enough for an algorithm to determine what characteristics are needed to identify a face.
 - {learning from data ~ What does it means to learn from data?}

1.4 (Machine/Deep) Learning: Definition.

- Machine/Deep learning is a sub-domain of artificial intelligence (AI) that utilizes Statistics, Pattern recognition, knowledge discovery and data mining to automatically learn and improve with experiences without being explicitly programmed.
- Disclaimer!!

 "In Machine/Deep Learning we do not write a program to solve a specific problem or task instead we write a code/program to facilitate machine to learn from the data."
- Almost any application that involves **understanding data or signals** that come from the real world can be best **addressed using machine learning**.
- Great examples are face detection and speech recognition and many kinds of languageprocessing tasks.

1.5 (Machine/Deep) Learning: Premises.

- When and Why do we build Machine Learning System?
 - There exists some **pattern/behavior** of interest:

(Some Task to be solved)

- The pattern/behavior is difficult to describe: (Encoding a rule to understand a behavior is difficult)
- There is data (past experiences are in abundant)
- Use data to "learn" the pattern

1.6 (Machine/Deep) Learning: Cautions!!

- Machine/Deep learning is a very general and useful framework, but it is not "magic" and may not always work.
 - In order to better understand when it will and when it will not work, it is useful to **formalize** the **learning problem** more.
- Some challenges of Machine/Deep Learning:
 - Why do we think that previously seen data will help us predict/infer the future?
 - estimation:
 - When we have data that are noisy reflections of some underlying quantity of interest, we have to aggregate the data and make estimates or predictions about the quantity.
 - How do we deal with the fact that, for example, the same treatment may end up with different results on different trials?
 - How can we predict how well an estimate may compare to future results?
 - generalization:
 - How can we predict results of a situation or experiment that we have never encountered before in our data set?

Components of Learning.

2. Data and Learning Paradigm.

2.1 Data - Basic Overview and Definitions.

- "Data" :a collection of facts about any objects or phenomenon.
 - Facts/Measurements can be of quantitative(numeric) or qualitative(descriptive) in nature.
 - Variables and Measurements
- Some similar definitions:
 - Factual information (such as measurements or statistics) used as a basis for reasoning, discussion, or calculation
 - Information in digital form that can be transmitted or processed
 - Information output by a sensing device or organ that includes both useful and irrelevant or redundant information and must be processed to be meaningful Cautions!!!!

Datum

A single piece of information, which can be treated as an observation

Data

The plural of datum; multiple observations

Dataset

A homogenous collection of data (each datum must have the sample this had been been and Classification.

Fig: Data(sets) Format.

2.2 Dataset Formats: In Practice.

- Some Terminology associated with dataset in practice:
- Variables:
 - Target or output variables also referred as dependent variables.
 - Predictor, Feature or input variables also referred as independent variables
- Notations:
 - Feature Variables: x or X.
 - Actual Target Variables: y or Y.
 - Predicted Target Variables: \hat{y} or \hat{Y} .

Machine Learning

Deep Learning

2.3 Framing a Learning Problem

- Learning Problem(Tasks) in Machine Learning depends on type of the data we have:
- Datasets are made up of individual examples that contain features and a label.
 - Examples that contain both features and a label are called labeled datasets.
 - Examples that contain only features are called **unlabeled datasets**.

3/2/2024 L02: Machine Learning and Classification.

2.4 Supervised Machine Learning.

- Data in Supervised Learning:
 - For Supervised Learning Setup, training data comes in pairs of inputs (x, y): where $X \in \mathbb{R}^d$ is the input instance and Y its label, which can be written as:
 - $D = \{(x_1, y_1) \dots (x_n, y_n)\} \subseteq R^d * C$
 - Where:
 - R^d : d-dimensional feature space.
 - x_i : input vector of the i^{th} sample.
 - y_i : label of the i^{th} sample.
 - *C*: label space.
- Tasks in Supervised Learning:
 - There can be multiple scenario for the label space *c*.

Binary Classification	$c = \{0 \ or \ 1\}$	E.g.: An email is either spam or not a spam.
Multi Class Classification	$c = \{1, 2, \dots k\} (k \ge 2)$	E.g.: Traffic sign Classification.
Regression	$c = \mathbb{R}$	E.g.: Height of the person.

2.4 Supervised Machine Learning: Examples.

Regression

• House Price Prediction:

A	8	C	D	E	F	G	H	1	J	K	L	M	N
Street	OverallCond	YearBuilt	YearRemo	MasVnrArea	TotalBsmt	Heating	CentralAir	BsmtFullB	FullBath	HalfBath	Bedroom/	SaleCondition	Price
Pave	6	1961	1961	0	882	GasA	Y	0	1	. 0	2	Normal	11622
Pave	6	1958	1958	108	1329	GasA	Y	0	1	1	3	Normal	14267
Pave	5	1997	1998	0	928	GasA	Y	0	2	1	3	Normal	13830
Pave	6	1998	1998	20	926	GasA	Y	0	2	1	3	Normal	9978
Pave	5	1992	1992	0	1280	GasA	Y	0	2	. 0	2	Normal	5005
Pave	5	1993	1994	0	763	GasA	Y	0	2	1	3	Normal	10000
Pave	7	1992	2007	0	1168	GasA	Y	1	2	. 0	3	Normal	7980
Pave	5	1998	1998	0	789	GasA	Υ	0	2	1	3	Normal	8402
Pave	5	1990	1990	0	1300	GasA	Y	1	1	1	2	Normal	10176
Pave	5	1970	1970	0	882	GasA	Y	1	1	0	2	Normal	8400
Pave	5	1999	1999	0	1405	GasA	Y	1	2	. 0	2	Normal	5858
Pave	5	1971	1971	504	483	GasA	Y	0	1	1	2	Normal	1680
Pave	5	1971	1971	492	525	GasA	Y	0	1	1	3	Normal	1680
Pave	6	1975	1975	0	855	GasA	Y	0	2	1	3	Normal	2280
Pave	6	1975	1975	0	836	GasA	Y	0	1	. 0	2	Normal	2280
Pave	5	2009	2010	162	1590	GasA	Y	0	2	1	3	Partial	12858
Pave	5	2009	2010	256	1544	GasA	Y	0	2	. 0	3	Partial	12883
Pave	5	2005	2005	615	1698	GasA	Y	0	2	. 0	3	Normal	11520
Pave	5	2005	2006	240	1822	GasA	Y	0	2	. 0	3	Normal	14122
Pave	5	2003	2004	1095	2846	GasA	Y	1	2	1	3	Normal	14300
Pave	5	2002	2002	232	1671	GasA	Y	1	2	1	3	Normal	13650
Pave	5	2006	2006	178	1370	GasA	Y	0	2	. 0	2	Normal	7132
Pave	5	2005	2005	0	1324	GasA	Y	0	2	. 0	3	Normal	18494
Pave	5	2006	2006	14	1145	GasA	Y	0	2	. 0	2	Normal	3203
Pave	5	2004	2004	0	384	GasA	Y	1	2	1	3	Normal	13300

Classification

- Tasks in Supervised Learning-Classification Task:
 - Binary Classification.
 - Multi-Class Classification.

2. Summary: Dataset.

Data

2.5 Elements of (Machine) Learning.

- Dataset:
 - Labelled vs. Unlabeled Dataset.
- (Machine) Learning:
 - A Decision Process (Representation/Model):
 - Machine learning algorithms(Models) are used to make inference or estimate of an output based on input data – labeled or unlabeled.
 - **An Error Function (Evaluation):**
 - A performance metric used to evaluate the estimate of a model.
 - Metrics depends on types of learning (supervised or unsupervised) and task (Classification types of Regression)
 - An model Optimization Process:
 - An automated algorithm or process used to update parameters of machine learning models until threshold or accepted evaluation metric has been achieved

!!! Learning a Model \rightarrow means finding the parameter of feature and target mapping function. 18

data + model compute

• Prediction:

• Learned model(hypothesis) h(.) is used to predict the label Y for data without label, the predicted label is represented as \hat{Y} .

inference

• Inference:

- Understanding the association between Y and X.
 - Which predictors are associated with the response?
 - What is the relationship between the response and predictor?
 - Can the relationship between Y and each predictor be adequately summarized using a linear equation?

2.7 (Supervised) Machine Learning: Conclusion.

- It is an attempt to find the function "f" that minimizes the selected loss such that:
 - $f = argmin_{f \in H} \mathbb{L}(f)$
- A big part of machine learning focuses on the question, how to do this minimization efficiently?
 - Optimization Techniques.
- If you find a function f(.) with low loss on your data D, how do you know whether it will still get examples right that are not in D?
 - Generalization!!!

Workflow: Supervised Learning.

Classification with Logistic Regression. 3. Model ~ The Decision Process.

3/2/2024

3.1 Classification: Introduction.

- Objective of Classification Problem:
 - We consider a **pattern classification** problem which is **formulated** in the following way.
 - There is a large, perhaps infinite, **set of objects** (observations, patterns, dataset etc.) which **can be classified** into **two classes** (**that is, assigned to two sets**).
 - We do not have an algorithm that does this classification, but we have a sample of objects with known class labels.
 - Using these classification examples, we want to define an algorithm/model that will classify objects from the entire set with the minimum error.
- Training Set:
 - A sample of objects with known class labels is called training set and is written as $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
 - where $y_i \in \{-1, 1\}$ is the class label of vector x_i and n is the size of the training set.
- A Decision Function:
 - A classifier is represented by a decision function:

```
f(x): V \to \{-1, 1\} such that f(x) = 1 if the classifier assigns x to the first class, and f(x) = -1, if the classifier assigns x to the second class.
```


3.3 Logistic Regression for Binary Classification.

- Logistic Regression The Model (Decision Process):
 - Logistic Regression is a probabilistic, linear classifier parameterized by a weight matrix W and a bias vector b. Mathematically:

•
$$P(y = 1|x, W, b) = \sigma(w.x + b) = \frac{1}{1 + e^{-(w.x + b)}}$$

• $P(y = 0|x, W, b) = 1 - \sigma(w.x + b) = 1 - \frac{1}{1 + e^{-(w.x + b)}}$

- Decision Function:
 - The sigmoid function from the prior section thus gives us a way to take an instance x and compute the probability P(y = 1|x, W, b).
 - How do we make a decision about which class to apply to a instance example x?

3.3 Logistic Regression for Binary Classification.

- Logistic Regression The Model {Decision Process}:
 - Logistic Regression is a probabilistic, linear classifier parameterized by a weight matrix W and a bias vector b. Mathematically:

•
$$P(y = 1|x, W, b) = \sigma(w.x + b) = \frac{1}{1 + e^{-(w.x + b)}}$$

• $P(y = 0|x, W, b) = 1 - \sigma(w.x + b) = 1 - \frac{1}{1 + e^{-(w.x + b)}}$

- Decision Function:
 - The sigmoid function from the prior section thus gives us a way to take an instance x and compute the probability P(y = 1|x, W, b).
 - How do we make a decision about which class to apply to a instance example x?
 - We design a decision boundary i.e.:

• decision(x) =
$$\begin{cases} 1 & if \ P(y=1|x,W,b) > 0.5 \\ 0 & Otherwise \end{cases}$$

Sigmoid Function.

- Logistic/Sigmoid function:
 - The logistic function σ is a function from the real line to the unit interval (0,1)

•
$$\sigma(x) = \frac{1}{1+e^{-x}} = \frac{e^x}{1+e^x} - \infty < x < \infty$$

- The function maps any real value $\{x \in (-\infty, +\infty)\}$ into another value between 0 and 1.
 - Properties:
 - Range: $0 < \sigma(x) < 1$.
 - Inverse: $x = \sigma^{-1}(p) = \ln\left(\frac{p}{1-p}\right)$: logit function.
 - Derivative: $\frac{d}{dt}\sigma(x) = \sigma(x)(1 \sigma(x)) = \sigma(x)\sigma(-x)$
 - In machine learning, we use sigmoid to map predictions to probabilities.


```
Output:
P(Y = 1|X, W, b): \{Y \in [0, 1]\}
Decision Function
decision := \begin{cases} 1 & if P \geq 0.5 \\ 0 & otherwise \end{cases}
```


3.3 Logistic Regression for Multi-class Classification.

- aka ~ Multinomial Logistic Regression ~ The Model {Decision Process}:
 - Mathematically, the probability that an input vector \mathbf{x} is a member of a class \mathbf{i} , a value of a stochastic variable Y, can be written as:

•
$$P(Y = i|x, W, b) = softmax(Wx + b) = \frac{e^{w_i x_i + b_i}}{\sum_j e^{w_j x_i + b_j}}$$

- Decision Function:
 - The model's prediction y_{pred} is the class whose probability is maximal i.e.:
 - $y_{pred} = argmax_i P(Y = i | x, W, b)$

3.3 Logistic Regression for Multi-class Classification.

- aka ~ Multinomial Logistic Regression ~ The Model {Decision Process}:
 - Mathematically, the probability that an input vector \mathbf{x} is a member of a class \mathbf{i} , a value of a stochastic variable Y, can be written as:

•
$$P(Y = i|x, W, b) = softmax(Wx + b) = \frac{e^{w_i x_i + b_i}}{\sum_j e^{w_j x_i + b_j}}$$

- Decision Function:
 - The model's prediction y_{pred} is the class whose probability is maximal i.e.:
 - $y_{pred} = argmax_i P(Y = i | x, W, b)$

Confused!!! – Let's look into example but first redefine sigmoid and softmax

Softmax Function

- Let's ask "chatgpt" what is softmax function:
 - Softmax is a **mathematical function** that is often used in machine learning and **deep learning** for various purposes, but most commonly for **multiclass classification problems**.
 - It is used to transform a vector of raw scores or logits (real numbers) into a probability distribution over multiple classes.
 - The softmax function takes an input vector (commonly denoted as "z") of length "N" and computes a new vector of the same length, where each element in the new vector represents the probability of the corresponding class.
 - Represented by:
 - $softmax(z)_i = \frac{e^{z_i}}{\sum_{j=1}^N e^{z_j}}$
 - Here:
 - e: Euler's number.
 - Zi: is the raw score or "logit" for class "i".
 - Denominator: sum of the exponentials of all the raw scores, ensuring output probabilities to sum 1.
 - "chatgpt"

Softmax: Example

Fig: Workflow of Multinomial Logistic Regression with Softmax (Softmax Regression)

Classification with Logistic Regression.

4. The Error/Loss Function.

4.1 The Loss Function: Introduction.

- Any function that express how close the model/classifier's output $\{\hat{y}\}$ is to the correct output $\{y\}$. These function are called as loss function i.e.
 - $L(\hat{y}, y) = \text{How much } \hat{y} \text{ differs from } y.$
- The loss function we use for classification task are in general called as cross entropy loss and in general written as:

The formula for **cross entropy loss** is:

$$L_{CE}(y, \widehat{y}) = -\sum_{i=1}^{C} y_i \log(\widehat{y}_i)$$

Where:

- y is the **true label** from provided set of data.
- \hat{y} is the predicted label by the classifier.
- C is the number of classes in dataset.
- For Binary classification where C = 2, the cross entropy loss is defined as:

$$L_{BCE}(y, \widehat{y}) = -[y \log(\widehat{y}) + (1 - y) \log(1 - \widehat{y})]$$

4.2 Loss Vs. Cost Function.

• Loss function are calculated for each pair of input and target variable whereas Cost function is an average of loss function. Example:

Input{X}	Target{Y}	Predicted $\{\widehat{Y}\}$	Loss $\{Y - \widehat{Y}\}$	
x^1	y_1	$\widehat{y_1}$	$(y_1 - \widehat{y_1})$	
÷	:	:	:	pairwise
x^n	y_n	$\widehat{\mathcal{Y}_n}$	$(y_n - \hat{y}_n)$	
		Cost:=	$\sum_{i}^{n}(y_{i}-\hat{y})$	average
			n	

- The Objective of any Machine/Deep Learning algorithms are to find best mapping function:
 - $f(W,b): X \rightarrow Y$
 - One way to achieve such is to find the parameters i.e. weight and biases $\{f(W,b)\}$ which minimizes our loss/cost function.

Classification with Logistic Regression. 5. The optimization ~ Learning/Training the Model.

5.1 Learning/Training The Model

- The Objective of any Machine/Deep Learning algorithms are to find best mapping function:
 - $f(W,b): X \to Y$
 - One way to achieve such is to find the parameters i.e. **weight and biases**{f(W, b)} which minimizes our loss/cost function.
- How do we minimize a (loss) function?
- To answer above question first let's find out what kind of function we are dealing by plotting the loss value Vs. Weights

5.2 Error/loss Surface

At which value of w_1 and $w_2 : \mathbb{L}(w_1, w_2)$ is minimum?

Options-1: Brute Force:

A way to estimate $\underset{w_1,w_2}{argmin_{w_1,w_2}} \mathbb{L}$ is to:

Calculate the loss function for every possible w_2 and w_1 .

Then select w₁ and w₂ where the loss function is minimum.

LO2: Machine Learning and Classification
Is it a optimal Method?

5.3 What is Gradient?

- The **gradient** is a fancy word for derivative, or the rate of change of a function. It's a vector (a direction to move) that
 - Points in the direction of greatest increase of a function.
 - Is zero at a local maximum or local minimum (because there is no single direction of increase).
- The term "gradient" is typically used for functions with several inputs{X} and a single output{Y}.
- Derivative:
 - The regular, plain-old derivative gives **us the rate of change of a single variable**, usually x.
 - For example, $\frac{dF}{dx}$ tells us how much the function F changes for a change in x.
 - But if a function takes multiple variables, such as x and y and z, it will have multiple derivatives:
 - We can represent these multiple rates of change in a vector, with one component for each derivative. Thus, a function that takes 3 variables will have a gradient with 3 components:
 - F(x, y, z) has three variables and three derivatives: $\frac{dF}{dx}$, $\frac{dF}{dy}$: $\frac{dF}{dz}$ {Partial Derivative}
- The gradient of a multi-variable function has a component for each direction.

5.4 Gradient Descent Algorithm!!!

• Idea:

- It is an iterative methods used to compute minimum.
- The gradient **VL** at any point is the direction of the steepest increase. The negative gradient is the direction of steepest decrease.
- By following the –ve gradient, we can eventually find the lowest point.
- This method is called Gradient Descent.

• Algorithm:

- For some cost/loss functions: $\mathbb{L}(w_0, ..., w_d)$.
- Start off with some guesses for $w_0, ..., w_d$
 - It does not really matter what values you start off with, but a common choice is to set them all initially to zero
- Repeat until Convergence:{

$$w_{new} \coloneqq w_{old} - \alpha \frac{\partial \mathbb{L}(w_0, ..., w_d)}{\partial w}$$

$$\begin{array}{c} \textbf{\textit{Learing Rate}} \\ \textbf{(Convergence:=Until pre-defined number of iterations.)} \end{array}$$

How Good is Your Model/Classifier?

6. The Evaluation Metrics ~ For Binary Classification.

{Idea can be extended to Multi-class}

6.1 Example: Remember!!!

	Email	Actual	Predicted
1	I need help please wire me \$1000 right now	1 - Spam	1 - Spam
2	Hot new investment, don't miss this!	1 - Spam	0 - Not Spam
3	Please help me?	1 - Spam	0 - Not Spam
4	Your parcel will be delivered today	0 - Not Spam	0 - Not Spam
5	Review changes to our Terms and Conditions	0 - Not Spam	0 - Not Spam
6	Weekly sync notes	0 - Not Spam	0 - Not Spam
7	Re: Follow up from today's meeting	0 - Not Spam	0 - Not Spam
8	Pre-read for tomorrow	0 - Not Spam	0 - Not Spam
9	Brief results from new UX study	0 - Not Spam	0 - Not Spam
10	Meeting notes from today	0 - Not Spam	0 - Not Spam
11	A reminder about your next appointment	0 - Not Spam	1 - Spam
12	An invitation to a conference call tomorrow	0 - Not Spam	0 - Not Spam
13	We have some news about your application	0 - Not Spam	1 - Spam
14	Final briefing notes for your meeting	0 - Not Spam	0 - Not Spam
15	Attached are the updated guidelines for this project	0 - Not Spam	0 - Not Spam
16	New feedback on your project from last week's meeting	0 - Not Spam	0 - Not Spam
17	Thank you for participating in our survey	0 - Not Spam	0 - Not Spam
18	Your account has been upgraded to Premium status	0 - Not Spam	1 - Spam
19	Confirming the dates for the annual board meeting	0 - Not Spam	0 - Not Spam
20	Please review these updated guidelines	0 - Not Spam	0 - Not Spam

How good of a job we did?

How good is my Model?

6.2 Accuracy!!

- The most straightforward way to measure a classifier's performance is using the Accuracy metric.
- Here, we compare the actual and predicted class of each data point, i.e. for total predictions how many were correctly predicted.
- Accuracy is given as:
 - accuracy = <u>Number of correct predictions</u> Total number of predictions.
- For our Example:

	Email	Actual	Predicted	
1	I need help please wire me \$1000 right now	1 - Spam	1 - Spam	8
2	Hot new investment, don't miss this!	1 - Spam	0 - Not Spam	(>
3	Please help me?	1 - Spam	0 - Not Spam	0
4	Your parcel will be delivered today	0 - Not Spam	0 - Not Spam	⋖
5	Review changes to our Terms and Conditions	0 - Not Spam	0 - Not Spam	⋖
6	Weekly sync notes	0 - Not Spam	0 - Not Spam	⋄
7	Re: Follow up from today's meeting	0 - Not Spam	0 - Not Spam	⋄
8	Pre-read for tomorrow	0 - Not Spam	0 - Not Spam	~
9	Brief results from new UX study	0 - Not Spam	0 - Not Spam	8
10	Meeting notes from today	0 - Not Spam	0 - Not Spam	<
11	A reminder about your next appointment	0 - Not Spam	1 - Spam	Q
12	An invitation to a conference call tomorrow	0 - Not Spam	0 - Not Spam	8
13	We have some news about your application	0 - Not Spam	1 - Spam	(
14	Final briefing notes for your meeting	0 - Not Spam	0 - Not Spam	♦
15	Attached are the updated guidelines for this project	0 - Not Spam	0 - Not Spam	~
16	New feedback on your project from last week's meeting	0 - Not Spam	0 - Not Spam	⋖
17	Thank you for participating in our survey	0 - Not Spam	0 - Not Spam	⋄
18	Your account has been upgraded to Premium status	0 - Not Spam	1 - Spam	Ø
19	Confirming the dates for the annual board meeting	0 - Not Spam	0 - Not Spam	8
20	Please review these updated guidelines	0 - Not Spam	0 - Not Spam	♦

accuracy =
$$\frac{15}{20} \times 100\% = 75\%$$

6.3 Is accuracy an adequate evaluation metrics?

- Accuracy is often used as the measure of classification performance because it is simple to compute and easy to interpret.
- However, it can turn out to be misleading in some cases. For instances:
 - class imbalance: scenario where certain classes contain way more data points than the others.
 - In our example: 17 out of 20 datapoints are of not-spam class, and only 3 are from spam class.
 - What if our model has predicted all datapoints to be not-spam, accuracy would have been:= $\frac{17}{20} \times 100\% = 85\%$.
 - **differential misclassification costs** getting a positive wrong costs more than getting a negative wrong.
 - For example: we built a model to identify Tumor from the given datasets and overall accuracy more than 90% {out of 10 times 9 times we predicted tumor correctly}.
 - What happens for onetime we predicted person to have Tumor and the person do not have tumor?

6.4 Other Accuracy Metrics: Confusion Matrix

- A confusion matrix, is a technique for summarizing the performance of classification algorithm.
- The Confusion Matrix takes the classification results and groups them into four categories:
- For our email example we assign:
 - spam a 1 label{class of interest}
 - not-spam a 0 label

confusion matrix

6.5 Confusion Matrix: Example.

- Let's populate the confusion matrix with email classification example.
- For our email example we assign:
 - spam a **1** label{class of interest}
 - not-spam a 0 label
- Thus:
 - TP:→ actual spam {1} predicted spam {1} := 1
 - FP:→ actual spam{1} predicted not-spam{0}:= 2
 - TN:→ actual not-spam{0} predicted not-spam{0}:= 14
 - FN:→ actual not-spam{0} predicted spam{1}:= 3

predicted	positive{1}	Negative{0}
positive {1}	true positives {TP=1}	false positives {FP=2}
negative {0}	false negatives {FN=3}	true negatives {TN=14}

	Email	Actual	Predicted
1	I need help please wire me \$1000 right now	1 - Spam	1 - Spam
2	Hot new investment, don't miss this!	1 - Spam	0 - Not Spam
3	Please help me?	1 - Spam	0 - Not Spam
4	Your parcel will be delivered today	0 - Not Spam	0 - Not Spam
5	Review changes to our Terms and Conditions	0 - Not Spam	0 - Not Spam
6	Weekly sync notes	0 - Not Spam	0 - Not Spam
7	Re: Follow up from today's meeting	0 - Not Spam	0 - Not Spam
8	Pre-read for tomorrow	0 - Not Spam	0 - Not Spam
9	Brief results from new UX study	0 - Not Spam	0 - Not Spam
10	Meeting notes from today	0 - Not Spam	0 - Not Spam
11	A reminder about your next appointment	0 - Not Spam	1 - Spam
12	An invitation to a conference call tomorrow	0 - Not Spam	0 - Not Spam
13	We have some news about your application	0 - Not Spam	1 - Spam
14	Final briefing notes for your meeting	0 - Not Spam	0 - Not Spam
15	Attached are the updated guidelines for this project	0 - Not Spam	0 - Not Spam
16	New feedback on your project from last week's meeting	0 - Not Spam	0 - Not Spam
17	Thank you for participating in our survey	0 - Not Spam	0 - Not Spam
18	Your account has been upgraded to Premium status	0 - Not Spam	1 - Spam
19	Confirming the dates for the annual board meeting	0 - Not Spam	0 - Not Spam
20	Please review these updated guidelines	0 - Not Spam	0 - Not Spam

6.6 Evaluation Metrics

- Confusion metrics are then utilize to generate various other metrics including accuracy.
- Accuracy:
 - simply a ratio of correctly predicted observation to the total observations.

•
$$accuracy = \frac{TP+TN}{TP+FP+FN+TN}$$

- Precision:
 - Only looks at positive class/label.
 - Precision is the ratio of **correctly predicted positive observations** to the **total predicted positive observations**.
 - {Out of all predicted positive class how many are correct}

• precison =
$$\frac{TP}{TP+FP}$$

6.6 Evaluation Metrics

- Confusion metrics are then utilize to generate various other metrics including accuracy.
- Recall {aka sensitivity aka true positive rate}:
 - Recall is the ratio of correctly predicted positive observations to the all observations in actual class – yes
 - Out of all the positive classes, how many instances were identified correctly.
 - i.e. Sensitivity describes how good a model at predicting positive classes.
 - higher the sensitivity value means your model is good in predicting positive classes
 - {Among total positive classes in dataset: How many were correctly classified}

$$recall = \frac{TP}{TP + FN}$$

6.6 Evaluation Metrics

- If you are not sure about which metrics is better for you task in hand, there is always F1-Score:
- F1 score is the weighted average of Precision and Recall.

$$F1-Score = rac{Precision * Recall}{Precision + Recall}$$

6.7 Confusion Matrix: Multi-class Problem

- Error in classification problem can be broadly of two kind i.e.
 - True:
 - label $\{y\}$ is 0 predicted $\{\hat{y}\}$ is 0.
 - label $\{y\}$ is 1 predicted $\{\hat{y}\}$ is 1.
 - False:;
 - label $\{y\}$ is 0 predicted $\{\hat{y}\}$ is 1.
 - label $\{y\}$ is 1 predicted $\{\hat{y}\}$ is 0.
- We can extend this idea to build confusion Matrix for multi class problem.

Confusion matrix with 3 class

6.8 Extending to: Precision and Recall

- In our example of email classification we only have two class **spam and not a spam**.
- Now let's imagine there are three different kind of email tags namely:
 - urgent, normal and spam

• We built a Multinomial Logistic Regression or Softmax Regression we can determine precision and recall as:

	urgent	normal	spam	
urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
spam	3	30	200	precision s= $\frac{200}{3+30+200}$
recallu = recalln = recalls =				
	8	60	200	
	8+5+3	10+60+30	1+50+200	

In Tutorial:

- We will build a Logistic Regression for Multiclass Classification Problem with image dataset.
- Come with laptops.

Thank You and Questions.