Chapter 18

Limits

Let $f: R \to R$ be a positive increasing function with

 $\lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1. \text{ Then } \lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$ [AIEEE-2010]

- (1) 1
- (2) $\frac{2}{3}$

- Let $f: R \to [0, \infty)$ be such that $\lim_{x \to 5} f(x)$ exists

and $\lim_{x \to 5} \frac{(f(x))^2 - 9}{\sqrt{|x - 5|}} = 0$. Then $\lim_{x \to 5} f(x)$ equals

[AIEEE-2011]

- (1) 2
- (2) 3

- 3. $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to

[JEE (Main)-2013]

- (1) $-\frac{1}{4}$ (2) $\frac{1}{2}$
- (3) 1
- 4. $\lim_{x\to 0} \frac{\sin(\pi\cos^2 x)}{y^2}$ is equal to [JEE (Main)-2014]
 - (1) –π
- (2) π

- $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to

[JEE (Main)-2015]

- (1) 4
- (2) 3
- (3) 2
- (4) $\frac{1}{2}$

- 6. Let $p = \lim_{x \to 0+} \left(1 + \tan^2 \sqrt{x}\right)^{\frac{1}{2x}}$ then log p is equal to [JEE (Main)-2016]
 - (1) 1
- (2) $\frac{1}{2}$
- (3) $\frac{1}{4}$
- (4) 2
- $\lim_{n\to\infty} \left(\frac{(n+1)(n+2)...3n}{n^{2n}}\right)^{1/n}$ is equal to

[JEE (Main)-2016]

- (3) $3 \log 3 2$ (4) $\frac{18}{34}$
- 8. $\lim_{x \to \frac{\pi}{2}} \frac{\cot x \cos x}{(\pi 2\pi)^3}$ equals

[JEE (Main)-2017]

- (1) $\frac{1}{16}$ (2) $\frac{1}{8}$
- (3) $\frac{1}{4}$
- For each $t \in R$, let [t] be the greatest integer less than or equal to t. Then [JEE (Main)-2018]

 $\lim_{x \to 0^+} x \left(\left| \frac{1}{x} \right| + \left[\frac{2}{x} \right] + \dots + \left[\frac{15}{x} \right] \right)$

- (1) Is equal to 0
- (2) Is equal to 15
- (3) Is equal to 120
- (4) Does not exist (in R)

10.
$$\lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4}$$

[JEE (Main)-2019]

- (1) Exists and equals $\frac{1}{2\sqrt{2}(\sqrt{2}+1)}$
- (2) Does not exist
- (3) Exists and equals $\frac{1}{4\sqrt{2}}$
- (4) Exists and equals $\frac{1}{2\sqrt{2}}$
- 11. For each $x \in R$, let [x] be the greatest integer less than or equal to x. Then $\lim_{x\to 0^-} \frac{x([x]+|x|)\sin[x]}{|x|}$ is [JEE (Main)-2019] equal to
 - (1) -sin1
- (2) 1
- (3) sin1
- (4) 0
- For each $t \in R$, let [t] be the greatest integer less than or equal to t. Then,

$$\lim_{\substack{x \to 1+}} \frac{(1-|x|+\sin|1-x|)\sin(\frac{x}{2}[1-x])}{|1-x|[1-x]}$$

[JEE (Main)-2019]

- (1) Equals 0
- (2) Equals 1
- (3) Equals -1
- (4) Does not exist
- 13. Let [x] denote the greatest integer less than or equal to x. Then

$$\lim_{x \to 0} \frac{\tan(\pi \sin^2 x) + (|x| - \sin(x[x]))^2}{x^2}$$

[JEE (Main)-2019]

- (1) Equals 0
- (2) Equals π + 1
- (3) Equals π
- (4) Does not exist
- 14. $\lim_{x\to 0} \frac{x \cot(4x)}{\sin^2 x \cot^2(2x)}$ is equal to
 - [JEE (Main)-2019]

- (1) 2
- (2) 4
- (3) 1
- (4) 0
- $\lim_{x \to \frac{\pi}{4}} \frac{\cot^3 x \tan x}{\cos \left(x + \frac{\pi}{4}\right)} \text{ is}$ [JEE (Main)-2019]
 - (1) $8\sqrt{2}$
- (2) 4
- (3) $4\sqrt{2}$

- 16. $\lim_{x \to 1} \frac{\sqrt{\pi} \sqrt{2 \sin^{-1} x}}{\sqrt{1 x}}$ is equal to [JEE (Main)-2019]
 - (1) $\sqrt{\frac{2}{\pi}}$
- (3) $\sqrt{\pi}$
- (4) $\frac{1}{\sqrt{2\pi}}$
- 17. $\lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} \sqrt{1 + \cos x}}$ equals [JEE (Main)-2019]
 - (1) $\sqrt{2}$

- (3) 4
- (4) $4\sqrt{2}$
- 18. Let $f: R \to R$ be a differentiable function satisfying
 - f'(3) + f'(2) = 0. Then $\lim_{x \to 0} \left(\frac{1 + f(3 + x) f(3)}{1 + f(2 x) f(2)} \right)^{\frac{1}{x}}$ is

equal to

[JEE (Main)-2019]

- 19. If $f(x) = [x] \left| \frac{x}{4} \right|$, $x \in R$, where [x] denotes the greatest integer function, then [JEE (Main)-2019]
 - (1) $\lim_{x\to 4^+} f(x)$ exists but $\lim_{x\to 4^-} f(x)$ does not exist
 - (2) f is continuous at x = 4
 - (3) $\lim_{x\to 4^-} f(x)$ exists but $\lim_{x\to 4^+} f(x)$ does not exist
 - (4) Both $\lim_{x\to 4^-} f(x)$ and $\lim_{x\to 4^+} f(x)$ exist but are
- 20. If $\lim_{x \to 1} \frac{x^4 1}{x 1} = \lim_{x \to k} \frac{x^3 k^3}{x^2 k^2}$, then k is
- 21. If $\lim_{x \to 1} \frac{x^2 ax + b}{x 1} = 5$, then a + b is equal to
 - [JEE (Main)-2019]

[JEE (Main)-2019]

- (1) 5
- (2) -4
- (3) 1

22.
$$\lim_{x\to 0} \frac{x+2\sin x}{\sqrt{x^2+2\sin x+1}-\sqrt{\sin^2 x-x+1}}$$
 is

[JEE (Main)-2019]

- (1) 3
- (2) 6
- (3) 1
- (4) 2
- 23. Let f(x) = 5 |x 2| and g(x) = |x + 1|, $x \in R$. If f(x) attains maximum value at α and g(x) attains minimum value at β , then

$$\lim_{x \to -\alpha\beta} \frac{(x-1)(x^2-5x+6)}{x^2-6x+8}$$
 is equal to

[JEE (Main)-2019]

- (1) 1/2
- (2) -1/2
- (3) -3/2
- (4) 3/2
- 24. $\lim_{x\to 0} \left(\frac{3x^2+2}{7x^2+2}\right)^{\frac{1}{x^2}}$ is equal to [JEE (Main)-2020]
 - (1) e

- 25. $\lim_{x\to 0} \left(\tan \left(\frac{\pi}{4} + x \right) \right)^{\frac{1}{x}}$ is equal to
 - (1) e^2
- (3) e
- 26. Let [t] denote the greatest integer $\leq t$. If for some

$$\lambda \in R - \{0, 1\}, \lim_{x \to 0} \left| \frac{1 - x + |x|}{\lambda - x + [x]} \right| = L, \text{ then } L \text{ is}$$

equal to

[JEE (Main)-2020]

- (1) 2
- (2) $\frac{1}{2}$
- (3) 0
- (4) 1
- 27. $\lim_{x \to a} \frac{(a+2x)^{\frac{1}{3}} (3x)^{\frac{1}{3}}}{(3a+x)^{\frac{1}{3}} (4x)^{\frac{1}{3}}} (a \neq 0) \text{ is equal to}$ [JEE (Main)-2020]

(1) $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{\frac{1}{3}}$ (2) $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{\frac{1}{3}}$

- (3) $\left(\frac{2}{3}\right)^{\frac{4}{3}}$

28. Let $f:(0,\infty)\to(0,\infty)$ be a differentiable function such that f(1) = e and

$$\lim_{t \to x} \frac{t^2 f^2(x) - x^2 f^2(t)}{t - x} = 0$$

If f(x) = 1, then x is equal to [JEE (Main)-2020]

- (1) 2e
- (3) $\frac{1}{2e}$
- 29. If α is the positive root of the equation, $p(x) = x^2 x$ -2 = 0, then $\lim_{x \to \alpha^+} \frac{\sqrt{1 - \cos(p(x))}}{x + \alpha - 4}$ is equal to

[JEE (Main)-2020]

- (1) $\frac{1}{\sqrt{2}}$
- (3) $\frac{3}{\sqrt{2}}$

30.
$$\lim_{x \to 0} \frac{x \left(e^{(\sqrt{1+x^2+x^4}-1)/x} - 1 \right)}{\sqrt{1+x^2+x^4}-1}$$

[JEE (Main)-2020]

- (3) Is equal to 0 (2) Is equal to \sqrt{e}
- 31. $\lim_{x \to 1} \left(\frac{\int_0^{(x-1)^2} t \cos(t^2) dt}{(x-1)\sin(x-1)} \right)$

[JEE (Main)-2020]

- (1) Does not exist (2) Is equal to 0
- (3) Is equal to 1 (4) Is equal to $\frac{1}{2}$
- 32. $\lim_{x\to 2} \frac{3^x + 3^{3-x} 12}{3^{-x/2} 3^{1-x}}$ is equal to _____. [JEE (Main)-2020]

33. If $\lim_{x \to 1} \frac{x + x^2 + x^3 + ... + x^n - n}{x - 1} = 820$, $(n \in N)$ then the value of n is equal to ______

[JEE (Main)-2020]

34. If $\lim_{x\to 0} \left\{ \frac{1}{x^8} \left(1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right) \right\} = 2^{-k}$, then the value of k is _____

[JEE (Main)-2020]

35. If $\lim_{x\to 0} \frac{ax - (e^{4x} - 1)}{ax(e^{4x} - 1)}$ exists and is equal to b, then the value of a -2b is _____.

[JEE (Main)-2021]

- The value of $\lim_{x\to 0} \left(\frac{x}{\sqrt[8]{1-\sin x} \sqrt[8]{1+\sin x}} \right)$ is equal to [JEE (Main)-2021]
 - (1) 4

(2) -4

(3) -1

- (4) 0
- 37. If α , β are the distinct roots of $x^2 + bx + c = 0$, then

$$\lim_{x\to\beta} \frac{e^{2\left(x^2+bx+c\right)}-1-2\left(x^2+bx+c\right)}{\left(x-\beta\right)^2} \text{ is equal to :}$$

[JEE (Main)-2021]

- (1) $b^2 4c$
- (2) $b^2 + 4c$
- (3) $2(b^2 + 4c)$
- 38. If $\lim_{x \to a} (\sqrt{x^2 x + 1} ax) = b$, then the ordered pair [JEE (Main)-2021]
 - (1) $\left(1, \frac{1}{2}\right)$
- (2) $\left(-1, -\frac{1}{2}\right)$
- (3) $\left(-1, \frac{1}{2}\right)$
- (4) $\left(1, -\frac{1}{2}\right)$
- $\lim_{x\to 0} \frac{\sin^2(\pi\cos^4 x)}{y^4}$ is equal to :

[JEE (Main)-2021] (2) π²

(1) 4π

- (3) $4\pi^2$
- 40. Let a be an integer such that $\lim_{x\to 7} \frac{18-[1-x]}{[x-3a]}$ exists, where [t] is greatest integer $\leq t$. Then a is equal to: [JEE (Main)-2022]
 - (1) -6
- (2) -2

(3) 2

- (4) 6
- 41. Let [t] denote the greatest integer $\leq t$ and $\{t\}$ denote the fractional part of t. The integral value of α for which the left hand limit of the function

$$f(x) = [1 + x] + \frac{\alpha^{2[x] + \{x\}} + [x] - 1}{2[x] + \{x\}}$$
 at $x = 0$ is

equal to $\alpha - \frac{4}{3}$, is _____.

[JEE (Main)-2022]

42. If $\lim_{x\to 1} \frac{\sin(3x^2-4x+1)-x^2+1}{2x^3-7x^2+ax+b} = -2$, then the value of (a - b) is equal to ____

[JEE (Main)-2022]

43. The value of $\lim_{x \to 1} \frac{(x^2 - 1)\sin^2(\pi x)}{x^4 - 2x^3 + 2x - 4}$ is equal to

[JEE (Main)-2022]

- (1) $\frac{\pi^2}{6}$
- (3) $\frac{\pi^2}{2}$

44.
$$\lim_{x \to 0} \left(\frac{(x + 2\cos x)^3 + 2(x + 2\cos x)^2 + 3\sin(x + 2\cos x)}{(x + 2)^3 + 2(x + 2)^2 + 3\sin(x + 2)} \right)^{\frac{100}{x}}$$

is equal to

[JEE (Main)-2022]

- 45. $\lim_{x \to \frac{\pi}{2}} \frac{8\sqrt{2} (\cos x + \sin x)^{7}}{\sqrt{2} \sqrt{2}\sin 2x}$ is equal to

- (2) 7
- (4) $7\sqrt{2}$

[JEE (Main)-2022]

46.
$$\lim_{n \to \infty} \frac{1}{2^n} \left(\frac{1}{\sqrt{1 - \frac{1}{2^n}}} + \frac{1}{\sqrt{1 - \frac{2}{2^n}}} + \frac{1}{\sqrt{1 - \frac{3}{2^n}}} + \dots + \frac{1}{\sqrt{1 - \frac{2^n - 1}{2^n}}} \right)$$

is equal to

(1) $\frac{1}{2}$

(2) 1

(3) 2

(4) -2

[JEE (Main)-2022]

47.
$$\lim_{x \to \frac{\pi}{2}} \tan^2 x \begin{pmatrix} \left(2\sin^2 x + 3\sin x + 4\right)^{\frac{1}{2}} \\ -\left(\sin^2 x + 6\sin x + 2\right)^{\frac{1}{2}} \end{pmatrix} \text{ is equal to}$$

[JEE (Main)-2022]

48.
$$\lim_{x \to \frac{1}{\sqrt{2}}} \frac{\sin(\cos^{-1}x) - x}{1 - \tan(\cos^{-1}x)}$$
 is equal to :

[JEE (Main)-2022]

- (1) $\sqrt{2}$
- (2) $-\sqrt{2}$
- (3) $\frac{1}{\sqrt{2}}$ (4) $-\frac{1}{\sqrt{2}}$
- $\lim_{x\to 0} \frac{\cos(\sin x) \cos x}{x^4}$ is equal to:

[JEE (Main)-2022]

equal to

[JEE (Main)-2022]

(1) 4

(2) -8

(3) -4

(4) 8

51. If $\lim_{x\to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}$, where $\alpha, \beta, \gamma \in \mathbb{R}$,

then which of the following is **NOT** correct?

[JEE (Main)-2022]

- (1) $\alpha^2 + \beta^2 + \gamma^2 = 6$
- (2) $\alpha\beta + \beta\gamma + \gamma\alpha + 1 = 0$
- (3) $\alpha \beta^2 + \beta \gamma^2 + \gamma \alpha^2 + 3 = 0$