Computational Data Mining

Fatemeh Mansoori

Course material

• https://github.com/uisf-course/CDM

Multiplication Ax Using rows of A

Multiply A times x using the three rows of A :

By rows
$$\begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + 3x_2 \\ 2x_1 + 4x_2 \\ 3x_1 + 7x_2 \end{bmatrix}$$
 inner products
$$=$$
 of the rows with $\mathbf{x} = (x_1, x_2)$

- a row at a time
- are also known as "dot products" because of the dot notation

$$row \cdot column = (2, 3) \cdot (x_1, x_2) = 2x_1 + 3x_2$$

use this for computing but not for understanding.

Multiplication Ax Using Columns of A

• For Understanding Ax using vector approach.

By columns
$$\begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix} = \text{of the columns}$$
 a_1 and a_2

- vector approach sees Ax as a "linear combination" of a₁ and a₂
- linear combination of of a₁ and a₂ includes two steps :
 - Multiply the columns \bar{a}_1 and \bar{a}_2 by "scalars" x_1 and x_2
 - Add vectors $x_1 a_1 + x_2 a_2 = Ax$.
- Ax is a linear combination of the columns of A
- leads us to the column space of A.
 - all combinations of the columns
 - Space created by Ax for all vectors X

Column space of A C(A)

- All combinations $x_1 a_1 + x_2 a_2 = Ax$ produce what part of the full 3D space?
- produce a plane
 - contains the complete line in the direction of $a_1 = (2, 2, 3)$
 - contains the complete line in the direction of $a_2 = (3, 4, 7)$
 - *sum* of any vector on one line plus any vector on the other line
 - This addition fills out an infinite plane containing the two lines.
 - does not fill out the whole 3-dimensional space
 - If $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is in the column space of A?

Column space of A C(A)

What are the column spaces of

$$A_2 = \begin{bmatrix} 2 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 7 & 10 \end{bmatrix} \text{ and } A_3 = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 1 \end{bmatrix}?$$

What is all possible column spaces inside R³

- The zero vector (0, 0, 0)
- A line of all vectors x_1a_1
- A plane of all vectors x₁a₁ + x₂a₂
- The whole R3 with all vectors $x_1a_1 + x_2a_2 + x_3a_3$

Matrix C

- create a matrix C whose columns independence columns of A
- construction of C from the n columns of A:
 - If column 1 of A is not all zero, put it into the matrix C.
 - If column 2 of A is not a multiple of column 1, put it into C.
 - If column 3 of A is not a combination of columns 1 and 2, put it into C. Continue.
- At the end C will haver columns $(r \le n)$.
- They will be a "basis" for the column space of A.
- A basis for a subspace is a full set of independent vectors
- All vectors in the space are combinations of the basis vectors

Example

What is matrix C and R for the matrices blow :

$$A = \left[egin{array}{cccc} 1 & 3 & 8 \ 1 & 2 & 6 \ 0 & 1 & 2 \end{array}
ight]$$

$$A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 2 & 6 \\ 0 & 1 & 2 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \end{bmatrix}$$

$$A = \left[egin{array}{cccc} 1 & 2 & 3 \ 0 & 4 & 5 \ 0 & 0 & 6 \end{array}
ight]$$

Rank of the matrix

The rank of a matrix is the dimension of its column space.

- Different basis, but always the same number of vectors
- That number r is the "dimension" of the column space of A and C

Matrix R

- The matrix C connects to A by a third matrix R: A = CR
- Their shapes are :
 - (m by n) = (m by r) (r by n).

C multiplies the first column $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ of R, this produces column 1 of C and A. C multiplies the second column $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ of R, we get column 2 of C and A. C multiplies the third column $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ of R, we get 2(column 1) + 2(column 2).

Matrix R

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 \end{bmatrix} = CR$$
 All three matrices have rank $r = 1$ Column Rank = Row Rank

The number of independent columns equals the number of independent rows

Matrix-Matrix Multiplication AB

 Inner products (rows times columns) produce each of the numbers in AB = C:

dot product $c_{23} = (\text{row 2 of } A) \cdot (\text{column 3 of } B)$ is a sum of a's times b's:

$$c_{23} = a_{21} b_{13} + a_{22} b_{23} + a_{23} b_{33} = \sum_{k=1}^{3} a_{2k} b_{k3}$$
 $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$

Matrix-Matrix Multiplication AB

- columns of A times rows of B.
- Outer product :
 - one column u times one row v^T

• m by 1 matrix (a column u) times a 1 by p matrix (a row v^T) gives an m by p matrix

what is special about the rank one matrix uv^{T} :

AB multiplication

- All column of uv^{T} are multiply of $u = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$
- All rows are multiply of $v^{\mathrm{T}} = [3 \ 4 \ 6]$
- column space of uv^T is one-dimensional: the line in the direction of u
- All nonzero matrices uv^T have rank one

AB multiplication

AB = Sum of Rank One Matrices

$$AB = \left[egin{array}{cccc} & & & & & & \\ a_1 & \dots & a_n & & & \\ & & & & & \end{array}
ight] \left[egin{array}{cccc} & & & & & \\ & & & & & \\ & & & & \end{array}
ight] = egin{array}{cccc} a_1 b_1^* + a_2 b_2^* + \dots + a_n b_n^*. \\ & & & & \text{sum of rank 1 matrices} \end{array}$$

$$\left[\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & 4 \\ 0 & 5 \end{array}\right] =$$

Question

- Suppose the column space of an m by n matrix is all of R3. What can you say about m? What can you say about n? What can you say about the rank r?
- Suppose A is the 3 by 3 matrix ones(3, 3) of all ones. Find two independent vectors x and y that solve Ax = 0 and Ay = 0. Write that first equation Ax = 0 (with numbers) as a combination of the columns of A. Why don't I ask for a third independent vector with Az = 0?