Use algebraic techniques to simply the following Boolean equations in terms of the variables P, Q, R and S.

$$F = P.S + P.\overline{Q}.\overline{S} + P.Q.S$$

$$G = F.P + R.P + (\overline{P} + \overline{S}).(\overline{P} + \overline{Q}).R$$

$$\overline{P} \overline{P} + \overline{S} \overline{P} + \overline{P} Q + \overline{S} Q$$

Note that G is a function of F, which is given by the first equation.

Finally, simplify:

$$H = F.G$$

2. Use the smallest possible multiplexer to implement the simplified Boolean expression H that you obtained in 1(a). Note that H should be expressed in terms of the input variables P, Q, R and S.

3. K-Maps: Write down a simplified SOP expression for the following using K-Maps:

$$F(A, B, C, D) = \Pi M(3,4,6,7,11) + d(0,2,8,13)$$

A	BCD	00	01		10
	00	X		0	X
	01	04	5	0 7	0 6
-	11	12	χ 3		1
-	10	X	1	0 "	1

$$F(A,B,C,D) = \overline{C}D + AB + \overline{B}\overline{D}$$

4. Mixed Logic Synthesis: Use the mixed logic design style to implement the output carry (C_{OUT}) of a FULL ADDER using 3-input NAND gates only. Count the total number of transistors.

5. Consider the combinational circuit below. Use this circuit to fill out the truth table shown below.

X	Υ	OUT ₃	OUT ₂	OUT ₁	OUT₀
0	0	Ď	D	1	0
0	1	D	0	D	1
1	0	D	0	1	D
1	1	0	1	0	ව

6. Complete the following timing diagram. Assume Q_1 and Q_3 are initialized to zero. Be careful when you are copying the timing diagram.

7. Pattern Detection with FSM: You have been asked to design a Mealy machine which can detect a pattern 1X0, where X is a DON'T CARE condition. Hence it will produce a 1 for both 110 and 100. Draw the state diagram of the FSM.

8. For the state diagram shown below, write down the state transition table and draw the corresponding sequential circuit diagram.

Q,	02	tugai	N(a,)	N(dz)	outpur
0	D	D	l	1	0
0	D	1	0	ſ	0
0	1	0	0	\bigcirc	1
0	1	1	1	0	
l	0	0	D)	Ò
l	0	1	l	1	0
1	' 1	Q 1,		0	
1	1	1	0	D	1

Q,Qz			DU+Puf = Qz
00	0	0	
01			
1 1	(
10	0	0	

Q, Qz		
00	J	
01	0	0
1 1	0	0
10	\prod	

9. Consider the following modified synchronous counter. Assume that the counter is initialized to 0010. N4ND

Complete the following table.

Cycle	Z0	Z 1	Z2	Z 3
0	0	0	1	0
1	1	1	6	1
2	0	1	1	1
3	1	0	1	1