GROUP E CATIONS

K ⁺	Na ⁺	NH ₄ ⁺

Group E cations don't have a common precipitating agent since they are mostly soluble in water. Both K^+ and Na^+ are alkali metals, while NH_4^+ is considered to be in Group E due to its salts being very soluble.

Flame test is the most reliable way to detect the presence of K⁺ and Na⁺ in low concentrations.

Na⁺	> Extremely sensitive	
	Confirmatory test:	
	 An intense yellow flame that lasts for 5 seconds or more 	
	without the blue filter	
	- The intensity and duration of the sodium flame is directly	
	proportional to the concentration on Na ⁺ present	
K ⁺	More volatile than sodium	
	 this means that the flame emission duration of K⁺ is shorter 	
	than the duration of Na ⁺	
	Confirmatory test:	
	- A reddish violet flame that lasts for 2 seconds with blue	
	filter	
	- The use of the blue filter is to permit the transmittance of	
	the reddish violet potassium flame that is usually masked	
	by the intense yellow sodium flame	

The tests for different cation groups introduces NH₄⁺ at various points of the analysis means that the test for ammonium ion should be performed to the original solution.

NH ₄ ⁺	Confirmatory actions:	
	 Reaction with 6 M NaOH: produces ammonia 	
	- Heating of the solution: releases ammonia gas in the air	
	which then reacts with the red litmus paper attached to the	
	watch glass, making it unifromly change from red to blue	
	 A scattered change means that during heating, a spray of 	
	NaOH droplets occured	