DSI-06_Homework 5: Chapter 6, pg 286

Julia Gallucci

2023-03-05

13. In this exercise, we will predict the number of applications received using the other variables in the College data set.

```
#install.packages("ISLR") install package containing College dataset
library(ISLR) #load library
attach(College) #attach College dataset to make the variables associated with College available.
head(College) #return the column names and first few rows of the dataset
```

##		Private	Apps	Accept	Enroll	Top10	perc '	Γου25υ	erc
	Abilene Christian University		1660	1232			23	- op - op .	52
	Adelphi University	Yes	2186	1924	512		16		29
	Adrian College	Yes	1428	1097	336		22		50
##	Agnes Scott College	Yes	417	349	137		60		89
##	Alaska Pacific University	Yes	193	146	55		16		44
##	Albertson College	Yes	587	479	158		38		62
##		F.Underg	grad l	P.Under	grad Out	tstate	Room	.Board	Books
##	Abilene Christian University	2	2885		537	7440		3300	450
##	Adelphi University	2	2683	:	1227	12280		6450	750
##	Adrian College	1036			99	11250		3750	400
##	Agnes Scott College		510		63	12960		5450	450
##	Alaska Pacific University	249			869	7560		4120	800
##	Albertson College	678			41	13500		3335	500
##		Personal	L PhD	Termina	al S.F.	Ratio j	perc.	alumni	Expend
##	Abilene Christian University	2200	70	-	78	18.1		12	7041
##	Adelphi University	1500	29	;	30	12.2		16	10527
##	Adrian College	1165	5 53	(36	12.9		30	8735
##	Agnes Scott College	875	92	9	97	7.7		37	19016
##	Alaska Pacific University	1500	76	-	72	11.9		2	10922
##	Albertson College	675	67	-	73	9.4		11	9727
##		Grad.Rat	ce						
##	Abilene Christian University	60							
##	Adelphi University	56							
##	Adrian College		54						
	Agnes Scott College		59						
##	Alaska Pacific University		15						
##	Albertson College	Ę	55						

(a) Split the data set into a training set and a test set.

We can use the function sample() to split the observations into two halves for the training and testing sets. The train vector contains the indices of the College dataset that will be used as the training data.

```
# split the 777 observations in half (roughly) so 388 observations in the training set
train <- sample (1: nrow(College), nrow(College) / 2)
test <- (-train)</pre>
```

(b) Fit a linear model using least squares on the training set, and report the test error obtained.

```
lm.fit <- lm(Apps ~ ., data = College, subset = train) # fit model on only training data
lm.pred <- predict(lm.fit, College[test,], type="response") #predict using our fit model on test data
mean((lm.pred - College[test,]$Apps )^2) #given our predictions we can compute the MSE for the test set</pre>
```

[1] 1135758

So our estimated test MSE for the linear regression is 1135758

(c) Fit a ridge regression model on the training set, with lambda chosen by cross-validation. Report the test error obtained.

We will use the glmnet() function from the glmnet package to perform ridge regression. Instead of using a data frame, the glmnet() function requires that the predictors be in the form of a matrix and the response be in the form of a vector. The model.matrix() automatically transforms qualitative variables into dummy variables.

```
library(glmnet)
```

```
## Loading required package: Matrix
```

Loaded glmnet 4.1-6

```
#Set up matrices needed for the glmnet functions
train.mat = model.matrix(Apps~., data = College[train,]) #training matrix using train observations
test.mat = model.matrix(Apps~., data = College[test,]) #testing matrix using test observations
```

Choose lambda using cross-validation

```
lamda_cv = cv.glmnet(train.mat,College[train,]$Apps,alpha=0) #perform cross validation on our model
bestlam = lamda_cv$lambda.min #minimum lambda extracted
bestlam
```

[1] 405.8404

Fit a ridge regression model and predict on our testing data using our best lambda!

```
ridge.mod = glmnet(train.mat,College[train,]$Apps,alpha = 0)
#Make predictions
ridge.pred = predict(ridge.mod,s=bestlam,newx = test.mat)
mean((ridge.pred - College[test,]$Apps)^2) #given our predictions we can compute the MSE for the test s
```

[1] 976261.5

The test error of the ridge regression fit with a lambda chosen by cross-validation is 976261.5, lower than the linear model test error!

(d) Fit a lasso model on the training set, with lambda chosen by crossvalidation. Report the test error obtained, along with the number of non-zero coefficient estimates.

We will perform the lasso the exact same way as ridge regression except we have alpha = 1 in the glmnet() function to specify the lasso method is to be used.

Choose lambda using cross-validation

```
lamda_cv2 = cv.glmnet(train.mat,College[train,]$Apps,alpha=1)
bestlam_2 = lamda_cv2$lambda.min
bestlam_2
```

```
## [1] 1.97344
```

Fit a lasso regression model and predict on our testing data using our best lambda!

```
#Fit lasso model
lasso.mod = glmnet(train.mat,College[train,]$Apps,alpha = 1)
#Make predictions
lasso.pred = predict(lasso.mod,s=bestlam_2,newx=test.mat)
mean((lasso.pred - College[test,]$Apps)^2)
```

[1] 1115901

The test error of the lasso model fit with a lambda chosen by cross-validation is 1115901 ,higher than ridge regression test error but lower than the linear model!

Based on test error, the model performance from best to worst is:

- 1. Ridge Regression (976261.5)
- 2. Lasso model (1115901)
- 3. Linear model (1135758)