Calculus II Homework Sequences

1. List the first 4 elements of the sequence.

(a)
$$a_n = \frac{(-1)^n}{n}$$
.

answer:
$$(a_1,a_2,a_3,a_4,a_5)=(1,\frac{1}{2},-\frac{1}{2},\frac{1}{4})$$

(b)
$$a_n = \frac{1}{n!}$$
.

$$\left(\frac{1}{4},\frac{1}{6},\frac{1}{6},\frac{1}{6},1\right) = \left(\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6}\right) = \left(\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6}\right)$$

(c)
$$a_n = \cos(\pi n)$$
.

nswer:
$$(a_1,a_2,a_3,a_4,a_5)=(-1,1,1,-1,1)$$

(d)
$$a_n = \frac{(-1)^n}{2n+1}$$
.

$$\left(\frac{1}{6},\frac{1}{7}-,\frac{1}{6},\frac{1}{8}-\right)=\left(\delta^{D},\phi^{D},\delta^{D},\delta^{D},\Gamma^{D}\right)\text{ Theorem }$$

(e)
$$a_n = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

2. List the first 5 elements of the sequence.

(a)
$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right), a_1 = 1.$$

(b)
$$a_n = a_{n-1} + a_{n-2}, a_1 = 1, a_2 = 1.$$

(c)
$$a_n = \frac{\left(\frac{1}{2} - n\right)}{n} a_{n-1}, a_0 = 1.$$

(d)
$$a_n = a_{n-1} + 2n + 1, a_0 = 1.$$

(e)
$$a_n := \frac{1}{n} a_{n-1}, a_1 = 1.$$

3. Give a simple sequence formula that matches the pattern below.

(a)
$$\left(1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \dots\right)$$
.

(d)
$$(4,7,10,13,16,19,\dots)$$

$$+ n\epsilon = n = 3n + 1$$

(b)
$$\left(-1, \frac{1}{5}, -\frac{1}{25}, \frac{1}{125}, -\frac{1}{625}, \frac{1}{3125} \dots\right)$$
 (e) $\left(-2, \frac{3}{4}, -\frac{4}{9}, \frac{5}{16}, -\frac{6}{25}, \frac{7}{36}, \dots\right)$ (c) $\left(-5, 2, -\frac{4}{5}, \frac{8}{25}, -\frac{16}{125}, \frac{32}{625}, \dots\right)$ (f) $(0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, \dots)$

$$\frac{1-n}{1-n}\left(\frac{\overline{c}}{\overline{1}}-\right)-=n$$
 answer:

$$\left(\frac{1+n}{2n}\right)n(1-) = n n \text{ Then end } n$$

(c)
$$\left(-5, 2, -\frac{4}{5}, \frac{8}{25}, -\frac{16}{125}, \frac{32}{625}, \dots\right)$$

SINGLE:
$$a_n = -5\left(\frac{2}{5}-\right)$$
 $b-1$

f)
$$(0,-1,0,1,0,-1,0,1,0,-1,0,1,\dots)$$

$$\left(\frac{\nabla}{2}u\right)_{SOO} = u_{D}$$
 : JOANSUE

4. Determine if the sequence is convergent or divergent. If convergent, find the limit of the sequence.

(a)
$$a_n = n$$
.

answer: convergent,
$$\lim n \to \infty$$

(b)
$$a_n = 2^n$$
.

$$(g) \ a_n = \frac{\ln n}{\sqrt[10]{n}}.$$

answer: convergent, item
$$\rightarrow \infty \leftarrow n$$

(c)
$$a_n = 1.0001^n$$
.

(h)
$$a_n = \frac{1}{n}$$
.

(d)
$$a_n = 0.999999^n$$
.

(i)
$$a_n = \frac{1}{n!}$$

(e)
$$a_n = n - \sqrt{n+1}\sqrt{n+2}$$

(i)
$$a_n = \frac{1}{n!}$$

$$= u_D \propto \leftarrow u_{\text{HIII}}$$
 the general convergence of the second of the se

(j)
$$a_n = \frac{n^n}{n!}$$

(f)
$$a_n = \frac{\ln n}{n}$$
.

(k)
$$a_n=\cos n.$$
 (n) $a_n=\left(\frac{2n+1}{n}\right)^n.$

(1)
$$a_n = \cos\left(\frac{1}{n}\right)$$
 (o) $a_n = \left(\frac{n+1}{n}\right)^{2n}$.

(m)
$$a_n = \left(\frac{n+1}{n}\right)^n$$
.
(p) $a_n = \left(\frac{n+1}{2n}\right)^n$.

answer: divergent

Solution. 4m.

Consider $f(x) = \left(\frac{x+1}{x}\right)^x$, where x is a positive number. We will now show that $\lim_{x \to \infty} f(x)$ exists. Since the limit is of the form 1^{∞} , we will start by finding the limit of the logarithm $\ln(f(x))$. We will then exponentiate that limit to find the limit of f(x).

$$\lim_{x \to \infty} \ln \left(\left(\frac{x+1}{x} \right)^x \right) = \lim_{x \to \infty} x \ln \left(\frac{x+1}{x} \right)$$

$$= \lim_{x \to \infty} \frac{\ln \left(\frac{x+1}{x} \right)}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{x} \right)}{\frac{1}{x}} \qquad \text{Form "$\frac{0}{0}$"} \text{ L'Hospital rule}$$

$$= \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} \left(1 + \frac{1}{x} \right)'$$

$$= \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}}$$

$$= 1$$

$$\lim_{x \to \infty} \left(\frac{x+1}{x} \right)^x = \lim_{x \to \infty} e^{\ln \left(\left(\frac{x+1}{x} \right)^x \right)} \qquad \text{The exponent is continuous}$$

$$= e^{\lim_{x \to \infty} \ln \left(\left(\frac{x+1}{x} \right)^x \right)}$$

$$= e^1 \qquad \text{use preceding}$$

$$= e \qquad \dots$$

Therefore
$$\lim_{\substack{n \to \infty \\ n - \text{integer}}} \left(\frac{n+1}{n}\right)^n = \lim_{\substack{x \to \infty \\ x - \text{real}}} \left(\frac{x+1}{x}\right)^x = e$$
 and the sequence converges (to e).

Solution. 4n.

This problem can be solved in fashion similar to Problem 4m. However there is a much simpler solution: