KNN Algorithm Hardware Accelerator

IOB-KNN User Guide, V0.1, Build ef71e47

December 26, 2020

Contents

List of Tables

List of Figures

www.iobundle.com

1 Introduction

The IObundle KNN core includes a configurable hardware accelerator for the KNN machine learning algorithm. It is written in Verilog and includes a C software driver. The user may change the size of the module to fit in its own FPGAs balancing the compromise between desired performance and space available. The IP is currently supported for use in FPGAs.

2 Symbol

Figure 1: IP Core Symbol

3 Features

- Verilog KNN machine learning algorithm accelerator
- C software driver.
- Reset, enable, data and test point send and neighbour read functions.
- IOb-SoC native CPU interface.
- AXI4 Lite CPU interface (premium option).

4 Benefits

- Easy hardware and software integration
- Compact hardware implementation
- Can fit many instances in low cost FPGAs
- Can fit many instances in small ASICs
- Low power consumption

5 Deliverables

- ASIC or FPGA synthesized netlist or Verilog source code
- ASIC or FPGA synthesis and implementation scripts or
- ASIC or FPGA verification environment
- Software driver and example user software
- User documentation for easy system integration
- Example integration in IOb-SoC (optional)

Block Diagram and Description

A high-level block diagram of the IOB-KNN core is presented in Figure ?? and a brief explanation of each block is given in Table ??.

Figure 2: High-level block diagram

Block	Description
Register File	Configuration, control and status registers accessible by the sofware

Table 1: Block descriptions.

www.iobundle.com

7 Interface Signals

The interface signals of the I²S/TDM transceiver core are described in the following tables.

Name	Direction	Width	Description		
clk	input	1	System clock input		
rst	input	1	System reset asynchronous and active high		

Table 2: General Interface Signals

Name	Direction	Width	Description		
valid	input	1	Native CPU interface valid signal		
address	input	ADDR_W	Native CPU interface address signal		
wdata	input	WDATA_W	Native CPU interface data write signal		
wstrb	input	DATA_W/8	Native CPU interface write strobe signal		
rdata	output	DATA_W	Native CPU interface read data signal		
ready	output	1	Native CPU interface ready signal		

Table 3: CPU Native Slave Interface Signals

Name	Direction	Width	Description
s axil awaddr	input	ADDR_W	Address write channel address
s_axil_awcache	input	4	Address write channel memory type. Transactions set with
5_axii_awcaciie	input	4	Normal Non-cacheable Modifiable and Bufferable (0011).
s_axil_awprot	input	3	Address write channel protection type. Transactions set with
S_axii_awpiot	Input	3	Normal Secure and Data attributes (000).
s_axil_awvalid	innut	1	Address write channel valid
0 - 0	input	· ·	
s_axil_awready	output	1 DATA 14/	Address write channel ready
s_axil_wdata	input	DATA_W	Write channel data
s_axil_wstrb	input	DATA_W/8	Write channel write strobe
s_axil_wvalid	input	1	Write channel valid
s_axil_wready	output	1	Write channel ready
s_axil_bresp	output	2	Write response channel response
s_axil_bvalid	output	1	Write response channel valid
s_axil_bready	input	1	Write response channel ready
s_axil_araddr	input	ADDR_W	Address read channel address
s_axil_arcache	input	4	Address read channel memory type. Transactions set with
			Normal Non-cacheable Modifiable and Bufferable (0011).
s_axil_arprot	input	3	Address read channel protection type. Transactions set with
			Normal Secure and Data attributes (000).
s_axil_arvalid	input	1	Address read channel valid
s_axil_arready	output	1	Address read channel ready
s_axil_rdata	output	DATA_W	Read channel data
s_axil_rresp	output	2	Read channel response
s_axil_rvalid	output	1	Read channel valid
s_axil_rready	input	1	Read channel ready

Table 4: CPU AXI4 Lite Slave Interface Signals

8 Registers

The software accessible registers of the KNN core are described in Table ??. The table gives information on the name, read/write capability, word aligned addresses, used word bits and a textual description.

Name	R/W	Addr	Bits	Initial	Description
				Value	
KNN_RESET	W	0x00	0:0	0	KNN soft reset
KNN_ENABLE	W	0x04	0:0	0	KNN enable
KNN_B	W	0x08	DATA_W-1:0	0	Point B
KNN_LABEL	W	0x0c	LABEL-1:0	0	Label point B
KNN_INFO	R	0x10	LABEL-1:0	0	2000 Bank of Labels
KNN_A	R	0x14	DATA_W-1:0	0	200 Point A Bank

Table 5: Software accessible registers.

9 FPGA Results

The following are FPGA implementation results for two FPGA device families.