

Sistema de monitoratge autoadaptable heterogeni i distribuït

Autor: Joaquim Motger de la Encarnación

Director: Xavier Franch Gutierrez

Codirector: Marc Oriol Hilari

Treball de final de grau presentat sota el marc del Grau d'Enginyeria Informàtica en l'especialitat de Enginyeria del Software

Universitat Politècnica de Catalunya

Abstracte

Facultat d'Informàtica de Barcelona Enginyeria de Serveis i Sistemes de la Informació

Grau d'Enginyeria Informàtica

Sistema de monitoratge autoadaptable heterogeni i distribuït

per Joaquim MOTGER DE LA ENCARNACIÓN

El monitoratge consisteix en la tècnica d'observació i control dels sistemes software amb l'objectiu de garantir la seva fiabilitat, la qualitat del servei (Quality of Service, QoS), la seguretat i altres característiques dels sistemes software pròpies de la seva execució en temps real. El monitoratge proporciona la informació que permet a un sistema software autoadaptable modificar la seva execució davant la violació d'uns certs valors sobre aquestes característiques. De la mateixa manera, els sistemes de monitoratge requereixen també poder adaptar la seva execució per satisfer la seva fiabilitat. En aquest context, com podem dotar a un sistema de monitoratge de capacitats autoadaptables?

En base a aquesta premisa, aquest Treball de Final de Grau consisteix en el disseny i implementació d'un sistema de monitoratge autoadaptable, heterogeni i distribuït que integra un conjunt de monitors de naturalesa diversa i permet, mitjançant la gestió i adaptació de diagrames UML, la seva reconfiguració de forma automàtica. La proposta i el desenvolupament plantejats en aquest projecte es validen mitjançant casos d'ús reals i, en especial èmfasi, amb la seva integració dins el marc de SUPER-SEDE, un projecte del programa Horizon 2020 enfocat a la gestió del cicle de vida dels serveis software i les aplicacions, amb l'objectiu de millorar l'experiència final de l'usuari en l'ús d'aquests sistemes.

Índex

Al	ostrac	ete		iii										
1	Intr	oducció	5	1										
2	Con	ontextualització												
	2.1	Preser	ntació i justificació de la temàtica	. 3										
		2.1.1	Identificació dels stakeholders	. 4										
	2.2	Estat o	de l'art	. 4										
		2.2.1	Projecte SUPERSEDE	. 6										
3	Obj	Objectius												
	3.1	Object	tiu general	. 9										
		3.1.1	Objectius específics	. 10										
	3.2	Abast	del projecte	. 10										
4	Gestió i desenvolupament													
	4.1	Metod	dologia de desenvolupament	. 13										
	4.2	Recur	sos	. 14										
		4.2.1	Recursos humans	. 14										
		4.2.2	Recursos materials	. 14										
		4.2.3	Recursos software	. 14										
	4.3	Planif	icació temporal	. 15										
		4.3.1	Descripció de fases	. 15										
			Planificació	. 15										
			Disseny	. 15										
			Implementació	. 16										
			Fase final	. 16										
		4.3.2	Previsió d'alternatives i pla d'acció	. 17										
	4.4	Viabil	itat	. 17										
		4.4.1	Estimació pressupostària											
			Despeses directes	. 18										
			Despeses indirectes i amortitzacions	. 19										
			Contingències	. 19										
			Imprevistos											
			Pressupost global	20										
		4.4.2	Control de gestió	. 20										
		4.4.3	Sostenibilitat econòmica, social i ambiental	. 21										
			Dimensió econòmica											
			Dimensió social											
			Dimensió ambiental	21										
			Matriu de sostenibilitat	. 22										

5	Visi	ó general del sistema	23
		5.0.4 Disseny del sistema	24
		5.0.5 Integració de components	27
6	Eine	es de desenvolupament	29
_	6.1	Tecnologies utilitzades	29
7	Siste	ema de monitoratge	31
	7.1	Monitors	31
		7.1.1 Especificacions tècniques	32
		Comportament intern del monitor	32
		Redirecció de dades col·lectades	33
		Paràmetres de configuració	34
		7.1.2 Arquitectura genèrica	34
	7.2	Section 2	36
	7.2	7.2.1 Subsection 2.1	36
		7.2.1 Subsection 2.1	50
8		eny del sistema	37
	8.1	Descripció general	37
	8.2	Sistema de monitoratge	37
		8.2.1 Monitors	37
		8.2.2 Monitor Manager	37
		8.2.3 Orchestrator	38
	8.3	Sistema d'adaptabilitat	38
		8.3.1 Model Repository	38
		8.3.2 Adapter	38
		Model Adapter	39
		Enactor	39
	8.4	Dashboard	39
9	Rocc	onfiguració dels monitors	41
,	9.1	Main Section 1	41
	7.1	9.1.1 Subsection 1	41
		9.1.2 Subsection 2	41
	9.2	Main Section 2	41
	J. <u>L</u>	ividiti Section 2 · · · · · · · · · · · · · · · · · ·	11
10		eny del dashboard	43
	10.1	Main Section 1	43
		10.1.1 Subsection 1	43
		10.1.2 Subsection 2	43
	10.2	Main Section 2	43
11	Valid	dació del sistema	45
	-	Main Section 1	45
		11.1.1 Subsection 1	45
		11.1.2 Subsection 2	45
	11 2	Main Section 2	45
			10

12	Treb	all futi	ır i possible	es e	Χţ	a	กร	io	n	s												47
			Section 1																			47
		12.1.1	Subsection	1.																		47
		12.1.2	Subsection	2 .																		47
	12.2	Main S	Section 2										•									47
13		clusion																				49
	13.1	Main S	Section 1																			49
		13.1.1	Subsection	1.																		49
		13.1.2	Subsection	2 .																		49
	13.2	Main S	Section 2																			49

Índex de figures

	Arquitectura de sistemes auotadaptables monitorats	
4.1	Simplificació de la metodologia Kanban	13
5.1	Disseny genèric del sistema proposat	24
7.1	Arquitectura software genèrica d'un monitor	35

Índex de taules

4.1	Costos directes	18
4.2	Costos indirectes i amortitzacions	19
4.3	Contingències	19
4.4	Imprevistos	20
4.5	Resum global del pressupost	20
46	Matriu de sostenibilitat	22

Capítol 1

Introducció

El present document consisteix en la memòria del Treball de Final de Grau (TFG) del Grau en Enginyeria Informàtica titulat *Sistema de monitoratge autoadaptable, heterogeni i distribuït*. Com a projecte realitzat a la cloenda dels estudis de grau, el desenvolupament i presentació d'aquest projecte tenen dos objectius principals.

En primer lloc, la consolidació dels coneixements adquirits durant el transcurs del grau. Aquests coneixements engloben des de la qüestió tècnica i específica de la matèria, amb especial èmfasi en els conceptes i aprenentatges relacionats amb l'especialitat d'Enginyeria del Software (tals com el disseny de components software), fins a aspectes relacionats amb la gestió, realització i documentació de projectes complets, pràctics i funcionals, dels quals aquest TFG n'és un exemple. Al llarg dels capítols que composen aquesta memòria, la justificació, explicació i demostració de les tasques realitzades i els conceptes tractats s'exposen amb la rigurositat adequada a un document acadèmic d'aquesta categoria, demostrant l'assoliment d'aquests coneixements amb la major claredat possible.

Per altra banda, aquest projecte pretèn presentar-se com un treball d'investigació, recerca i desenvolupament amb valor propi, dins d'un àmbit i context determinats, amb un objectiu pràctic i aplicable. Més enllà del caire acadèmic, els productes i resultats generats com a conseqüència de la realització d'aquest projecte (components software, disseny i implementació de sistemes, documentació, etc.) esdevenen elements amb valor propi, amb expectatives d'ús i possibilitats d'expansió dins del seu propi context.

Per tal de satisfer aquests dos objectius, aquest projecte presenta el següent propòsit: dissenyar, implementar, gestionar, testejar, validar i mantenir un sistema de monitoratge que satisfaci els criteris d'autoadaptabilitat, heterogeneïtat i distribució (conceptes que s'aprofundiran més endavant). Sota aquesta temàtica, i amb les consideracions prèviament establertes, s'assoliran tant l'objectiu de consolidació de coneixements com la generació d'uns resultats que puguin ser presentats pel seu valor propi i independent.

Capítol 2

Contextualització

2.1 Presentació i justificació de la temàtica

En les darreres dècades els sistemes software han evolucionat fins al punt d'esdevenir elements clau i imprescindibles de les activitats primàries de qualsevol empresa, organització o institució. La gestió de la informació, els protocols i controls de seguretat, els processos de negoci, etc., són els reptes als quals els CIO de moltes empreses s'han d'enfrontar. Aquests reptes i els seus resultats depenen, en gran mesura, del comportament dels sistemes software que entren en joc dins aquestes activitats. Adicionalment, la quantitat de productes software exposats com a serveis o aplicacions mòbils ha incrementat dràsticament. Fet que deriva en el sorgiment d'una gran varietat de contexts i entorns d'execució entre els grans volums d'usuaris que aquests sistemes poden tenir.

És per aquest motiu que eventualment ha anat prenent força un concepte basat en l'estudi i control de qualitat dels sistemes software: el monitoratge. Com a part de la vida professional d'un enginyer de software, la supervisió i control dels components i sistemes amb els què treballa és un concepte clau amb el qual, d'una forma o altra, ha d'estar familiaritzat. Però el problema que plantegem aquí va més enllà: després del repte de monitorar els sistemes, ens hem de plantejar com dissenyar, gestionar i adaptar aquest monitoratge.

Els reptes que aquestes tasques plantegen i que aquest projecte treballa són diversos. Entre d'altres, cal valorar el disseny i les característiques tècniques dels monitors, la seva configuració i la capacitat d'adaptabilitat. En relació amb aquest últim aspecte, també cal valorar com s'emmagatzemen i es gestionen els detalls relacionats amb la configuració dels monitors, i establir interaccions de la manera més genèrica possible per facilitar l'extensibilitat.

Tal i com veurem més endavant a l'apartat 2.3. Estat de l'art, existeix una àmplia recerca que actualment treballa i desenvolupa projectes en relació a aquest àmbit. El potencial d'estudi que ofereix resulta d'un alt interès a causa de la possibilitat de recerca i síntesi i als diferents aspectes i criteris sobre els quals es pot treballar.

Així, tant com estudiant com a futur professional del sector de l'enginyeria del software, es poden contemplar diversos criteris per treballar en aquesta temàtica:

- Un aprofundiment en els coneixements de l'enginyeria i els sistemes software
- Treball i recerca en conceptes de control de qualitat, fiabilitat i millora de l'experiència de l'usuari

- Possibilitat de col·laborar i aprofundir en un tema de recerca d'actualitat dins l'enginyeria de serveis i els sistemes d'informació
- Plantejament d'un projecte complet que pugui servir a tercers interessats en l'estudi de sistemes de monitoratge autoadaptatius

2.1.1 Identificació dels stakeholders

Les diferents fases que engloben aquest projecte deriven en l'obtenció d'un producte final, orientat a la seva aplicació pràctica. Com a tal, els documents generats i els components dissenyats i implementats esdevenen productes propis dins el context del monitoratge de sistemes software. Com a tals, aspectes que s'exposaran al llarg d'aquest document (el disseny i implementació d'una arquitectura genèrica pels monitors, la gestió de les configuracions, etc.) poden resultar d'utilitat per a agents externs a la pròpia autoria del projecte.

Podem considerar, per tant, que podrà ser una eina d'interès pels principals stakeholders, que vindrien a ser:

- Desenvolupadors i enginyers software. Aquells agents al càrrec del control de qualitat de sistemes softwares de diverses naturaleses. Els conceptes treballats, el plantejament de problemàtiques, i el producte generat, poden aportar valor de qualitat al sector treballant, per una banda, en la síntesi i recopilació de la informació actual, i per altra banda, aportant propostes i solucions pròpies basades en l'experiència del desenvolupament del projecte.
- Gestors de projecte i experts en Sistemes d'Informació. La gestió de la informació, el tractament i el seu potencial poden resultar afectats gràcies a la capacitat de recol·lecció de dades del sistema de monitoratge, així com els criteris de revisió i control de qualitat, que permeten analitzar i obtenir informació fiable.
- Usuaris finals dels sistemes monitorats. De forma indirecta, es veuran afectats degut a les conseqüències del monitoratge dut a terme per aquest sistema de monitoratge o d'altres derivats dels conceptes treballats al llarg d'aquest projecte.

2.2 Estat de l'art

Per tal de plantejar les necessitats i projeccions del treball, així com les vies de desenvolupament del projecte, és necessari conèixer quina és la situació del monitoratge autoadaptatiu de sistemes software en la recerca actual.

En primer lloc, cal conéixer l'entorn referent als sistemes software autoadaptatius: és a dir, aquells que seran l'objectiu de monitoratge del nostre sistema de monitoratge (que no deixa de ser un altre sistema software autoadaptatiu). És interessant veure com la recerca i la investigació planteja, de forma pràcticament correlacionada, els conceptes de sistema autoadaptatiu i monitoratge.

De fet, documents de caràcter acadèmic tals com "An Approach to Self-adaptive Software Based on Supervisory Control", publicat per la Vanderbilt University de Nashville (USA), plantegen una arquitectura d'autoadaptabilitat per sistemes software

2.2. Estat de l'art 5

FIGURA 2.1: Arquitectura de sistemes autoadaptables monitorats

basada en la supervisió o monitoratge. Tal com podem veure a la Figura 2.1, destaquem dos components principals: l'aplicació principal, o **Main Application Function**, equivalent al sistema software (servei web, aplicació mòbil, etc.) encarregat d'una funcionalitat específica i sobre el qual volem realitzar el control de qualitat; i el component supervisor, o **Supervisory Component**, que s'encarrega d'executar aquest control de qualitat.

La interacció i arquitectura plantejada en la figura és relativament senzilla. El component software a avaluar forma part del domini del sistema a avaluar (*ground-level*, GL). En la seva activitat, aquesta aplicació o sistema rep una sèrie de dades (que dependrà de la naturalesa i objectiu del sistema), i produeix uns resultats en base a aquest *input*. Paral·lelament, com qualsevol sistema orientat a l'ús, existeix una interacció sistema-usuari. Més enllà del domini i les característiques pròpies dels sistemes software, es presenta l'entorn corresponent al sistema de supervisió o monitoratge (*supervisory-level*, SL). En aquest nivell trobem des d'un punt de vista lògic el component de supervisió o monitor, que interacciona amb l'aplicació principal de dues formes diferents:

- Monitoratge. Procés d'interacció entre el component principal i el monitor on el primer envia informació al segon. L'aplicatiu produeix, com a conseqüència de la seva activitat, informació i dades que envia com a *output* al monitor. Aquesta informació ha d'estar prèviament definida i estructurada, de tal manera que el monitor sigui capaç d'interpretar-la.
- Reconfiguració. El monitor procesa les dades que rep com a input del monitoratge i, segons els criteris d'adaptabilitat establerts, aplica els canvis o reconfiguracions pertinents en el sistema software monitorat. D'aquesta manera, la lògica encarregada d'interpretar la informació i prendre decisions d'adaptabilitat (SL) queda totalment separada de la lògica del domini de l'aplicatiu (GL).

Partint d'aquest punt, aquest document estableix les premisses del monitoratge i les necessitats de reconfiguració d'aquests tercers sistemes softwares, la naturalesa dels quals és diversa i heterogènia. Noti's que, de fet, l'anterior disseny presenta

una arquitectura genèrica aplicable a qualsevol entorn software, independentment de la naturalesa del domini monitorat. Tot i així, existeix una àmplia recerca especialitzada: publicacions com "Agent Based Services for Negotiation, Monitoring and Reconfiguration of Cloud Resources", publicada per la universitat de Nàpols (Itàlia), es centren en analitzar els requisits, necessitats i funcions principals del monitoratge i reconfiguració de sistemes i recursos al núvol (p.e. serveis web).

La documentació i bibliografia referent als sistemes software autoadaptables i als sistemes de supervisió i monitoratge és molt àmplia. Tot i així, si focalitzem la recerca a la problemàtica a resoldre, és a dir, l'autoadaptabilitat i reconfiguració dels sistemes de monitoratge, no trobem un treball tan profunditzat i específic com en el cas prèviament explicat.

En alguns documents, com per exemple el ja esmentat publicat per la University of Nashville, es mencionen criteris del disseny de la capa de supervisió, entre els quals entren en joc, p.e., factors com la previsió d'errors a la capa de l'aplicatiu principal, o ve esdeveniments/disparadors inesperats. I, com és lògic, una reacció i canvis per part del sistema de monitoratge.

En altres documents, tals com "Self-reconfiguration of service-based systems: a case study for service level agreements and resource optimization", publicat per IBM, es defineixen models autònoms d'autoadaptabilitat i reconfiguració autònoma, basats en tècniques de detecció d'esdeveniments i canvis en el propi sistema. Conceptes com l'anàlisi de l'estat del sistema, el monitoratge i l'execució d'una reconfiguració entren en joc dins d'aquest pla.

2.2.1 Projecte SUPERSEDE

Com a part de l'estat de l'art i punt de partida pel desenvolupament del sistema, cal introduïr el projecte SUPERSEDE (https://www.supersede.eu/). Aquest projecte forma part del *Horizon 2020 Programme*, un programa de recerca i innovació financiat i gestionat per la Unió Europea. Actualment, compta amb la participació de diverses empreses, fundacions i universitats, entre les quals s'inclou la pròpia UPC.

Aquest projecte planteja una proposta del cicle de vida i la gestió dels serveis software i les aplicacions, amb l'objectiu final similar al plantejat com a premisa d'aquest Treball de Final de Grau: millorar la qualitat de l'execució dels sistemes software i, en conseqüencia, l'experiència de l'usuari final en l'interacció amb aquests sistemes.

Dins aquest cicle de vida, orientat al control de qualitat dels sitemes software, es proposen 4 fases:

- 1. **Col·lecció**. L'obtenció i emmagatzematge de dades que puguin resultar d'interès pel control de qualitat. La naturalesa d'aquestes dades (així com el format i altres criteris) dependran de l'objectiu d'aquest anàlisi i el tipus de dades tractat. Així, aquestes poden incloure desde dades purament analítiques (p.e. % de disponibilitat del sistema) o bé contextuals (p.e. missatges o continguts introduïts al sistema).
- 2. **Anàlisi**. Les dades obtingudes en la fase anterior tenen un significat, una informació que el sistema ha de ser capaç d'extreure i comprendre. En aquesta

2.2. Estat de l'art

FIGURA 2.2: Cicle de vida i entorn proposat per SUPERSEDE

fase, les dades es transformen en coneixement en relació a l'estat del sistema, a través de diverses tècniques anal·lítiques, de nou en funció del marc d'estudi i el context. Per exemple, es podrien valorar tècniques d'anàlisi de llenguatge natural per estudiar les valoracions d'usuaris introduïdes a un sistema.

- 3. **Decisió**. El coneixement produït a l'anterior fase genera la capacitat de prendre decisions de millora i actuació sobre el sistema software. És a dir, deriva en una o vàries suggerencies d'adaptació. Les eines de presa de decisions entren en joc en aquesta fase, rebent com a entrada la informació i, a partir dels criteris i paràmetres definits en relació a aquesta informació, es produeix la suggerència d'adaptació del sistema.
- 4. Adaptació. Un cop el sistema ha estat capaç de produïr de forma automàtica una suggerència de millora o adaptació del sistema, aquesta s'aplica sobre el component monitoritzat amb l'objectiu de millorar l'experiència de l'usuari. Arribats a aquest punt, es tanca el cicle de control de qualitat, reflectint la transformació de l'input de la fase de col·lecció, les dades, fins a l'output d'aquesta darrera fase, l'adaptació del sistema.

La Figura 2.2 resumeix aquest cicle de vida i les característiques del context de les seves fases. Tal i com es pot observar, la principal font de dades amb les quals aquest control de qualitat es nodreix es l'experiència de l'usuari final, el context on s'executa aquesta aplicació o sistema i les dades generades del propi ús i funcionament del sistema. És, per tant, un aspecte clau l'obtenció de **dades en execució real**, que seran les que ens permetin aplicar aquest cicle regularment. Regularitat que serà crucial per satisfer l'objectiu d'anàl·lisi de la qualitat del sistema: només amb dades actuals i constants serem capaços de conéixer l'activitat real del nostre sistema i actuar en conseqüència.

En aquest context identifiquem per tant 4 sectors o subsistemes amb un objectiu específic que, integrats, serveixen a un propòsit genèric. Si ens plantegem com encaixa aquest model dins el nostre tema d'estudi (és a dir, l'adaptabilitat dels sistemes de

monitoratge) podem establir una relació directa amb les fases de **col·lecció** de dades i **adaptació**. Dins aquesta primera fase de col·lecció, necessitem definir un sistema capaç d'obtenir aquestes dades, en funció dels sistemes a controlar i de l'interès que tinguem sobre aquests sistemes. Aquest sistema de **monitoratge** estarà composat per un conjunt definit de monitors, encarregats de recollir aquesta informació. Per altra banda, si volem dotar a aquest sistema de monitoratge d'adaptabilitat, i per tant, garantir un control de qualitat sobre aquests monitors, necessitem establir un sistema que gestioni l'activitat dels monitors i defineixi adaptacions a aplicar sobre aquests monitors.

Pel desenvolupament d'aquest projecte, ens centrarem en aquestes dues parts: el sistema encarregat de la fase de col·lecció de dades (monitors), i el sistema encarregat de gestionar i aplicar les adaptacions sobre aquest sistema de col·lecció. De la mateixa manera, es treballa la integració entre aquests dos components, per generar com a resultat final l'objectiu d'aquest projecte: un sistema de monitoratge autoadaptable, heterogeni i distribuït.

Capítol 3

Objectius

Definit el context, l'àrea d'estudi i una aproximació a l'estat de l'art actual d'aquest projecte, cal definir amb el màxim nivell de detall quins seran els objectius principals, així com els objectius específics i l'abast, per tal d'introduïr els conceptes treballats durant el desenvolupament del mateix.

3.1 Objectiu general

L'objectiu principal d'aquest projecte consisteix en la implementació d'un sistema software orientat al monitoratge d'altres sistemes softwares. Aquest sistema haurà de complir 3 característiques principals: ser autoadaptable, heterogeni i distribuït. A continuació procedim a explicar en detall què entendrem per aquestes característiques dins el context d'aquest projecte, en base a la contextualització i els conceptes explicats anteriorment:

- 1. **Autoadaptable**. El sistema de monitoratge generat ha d'estar dotat de capacitats d'adaptabilitat de la seva execució en temps real. Mitjançant la gestió i control de la seva activitat, els diferents monitors han d'oferir eines d'adaptació orientades al control de qualitat del propi sistema. Per fer-ho, caldrà tenir en compte dos punts que es desenvoluparan més endavant: en primer lloc, la dotació dels monitors d'aquestes eines d'adaptació; en segon lloc, el disseny i implementació dels components necessaris per gestionar les adaptacions.
- 2. **Heterogeni**. El sistema constarà d'un conjunt de monitors de naturalesa variada i permetrà, mitjançant un disseny i una arquitectura prou genèrica, la integració de nous monitors de diversa índole. Per tant, el sistema haurà d'estar capacitat per gestionar els diversos tipus de monitors tot i les seves diferències en aspectes com el sistema monitorat, la naturalesa del monitoratge, les necessitats de configuració, etc. L'objectiu d'aquesta característica és que el resultat final sigui el més aprofitable i reusable possible.
- 3. **Distribuït**. El sistema haurà de permetre desplegar els diferents monitors i els components d'adaptabilitat de forma distribuïda i, per tant, tenir la capacitat de desplegar els diferents components com a elements independents dins el nostre sistema genèric.

Els detalls tècnics de l'assoliment d'aquests 3 objectius es desenvoluparan al llarg d'aquesta memòria.

3.1.1 Objectius específics

En base a l'objectiu general prèviament establert, cal definir una sèrie d'objectius específics que ens permetran assolir-lo definint unes vies prou clares com per a facilitar el desenvolupament del projecte. Procedim, doncs, a enumerar aquests objectius:

- **OBJ1.** Definir una planificació pel desenvolupament del projecte en funció dels requisits.
- **OBJ2.** Dissenyar una arquitectura software adequada a les necessitats.
- **OBJ3.** Implementar el sistema de monitoratge.
- **OBJ4.** Implementar el sistema d'adaptació dels monitors.
- **OBJ5.** Generació d'un producte final usable, que pugui ser desplegable i reproduïble en format demo.
- **OBJ6.** Configurar i definir l'entorn de desenvolupament i d'ús del sistema.
- OBJ7. Assegurar qualitat i fiabilitat mitjançant els criteris definits.
- **OBJ8.** Seguir una metodologia de desenvolupament i testing del sistema.
- **OBJ9.** Definir una sèrie de casos d'ús per mostrar la usabilitat i comportament real del sistema.
- **OBJ10.** Documentar i justificar l'evolució del projecte.

Aquests objectius engloben les dues vessants d'aquest projecte, ja especificades anteriorment: la generació i documentació d'un Treball de Final de Grau, i el disseny i la implementació del sistema descrit. En qualsevol cas, aquests objectius específics defineixen les "metes finals" d'aquest projecte. Per garantir-ne i comprendre el desenvolupament fins a assolir-los, cal definir les tasques i, per tant, l'abast específic d'aquest projecte.

3.2 Abast del projecte

Els objectius específics prèviament identificats ens donen una visió acurada de l'abast del nostre projecte i les tasques a realitzar. Tot i així, és important reflectir de forma explícita l'abast d'aquest projecte, enumerant els requisits (o dit d'una altra manera, les tasques o necessitats a satisfer) i delimitant el nostre projecte. Ens basarem per tant en els següents punts:

- Realitzar una recerca bibliogràfica (basada en l'estat de l'art) per assentar les bases i el context del desenvolupament del projecte.
- Dissenyar, implementar i documentar un disseny arquitectònic software que satisfaci l'objectiu general i els tres criteris (autoadaptabilitat, heterogeneïtat i distribució) del nostre sistema de monitoratge.
- Dissenyar, implementar i documentar el sistema d'adaptabilitat dels monitors i realitzar la integració amb els mateixos.
- Definir una sèrie de casos d'ús (mínim de 3 escenaris) que ens permetin validar les funcionalitats del sistema amb exemples mitjançant l'execució real.

11

• Dissenyar i implementar un dashboard que permeti visualitzar l'activitat del sistema de monitoratge i adaptabilitat.

Aquests punts estableixen el mínim del que podríem considerar com a necessari per considerar que s'han assolit els objectius esmentats a l'apartat 3 d'aquest document. Tot i així, podem preveure la possibilitat de permetre'ns augmentar les perspectives, i gràcies a l'ús d'una metodologia àgil (veure apartat 5.1. Metodologia de treball), augmentar l'abast del projecte, amb aspectes com incrementar el nombre de monitors implementats, o augmentar les funcionalitats del dashboard. En qualsevol cas, aquests aspectes serien un afegit secundari que únicament tindrà sentit contemplar amb el transcurs del projecte.

Capítol 4

Gestió i desenvolupament

Abans d'entrar en els detalls del projecte, necessitem definir sota quins criteris i quines pràctiques realitzarem la gestió i el desenvolupament del projecte.

4.1 Metodologia de desenvolupament

Les necessitats i requisits específics del projecte aniran fortament relacionades amb la recerca i l'avenç del propi transcurs del projecte. Si bé els objectius específics queden clars, les tasques a desenvolupar aniran evolucionant dinàmicament. Per aquesta raó, en aquest cas serà adequat seguir una metodologia de desenvolupament àgil. I, en concret, es seguirà una simplificació de la metodologia Kanban.

En base als requisits establerts inicialment durant la planificació del projecte, i al llarg del seu transcurs, s'aniran generant una sèrie de tasques que s'afegiran a un backlog o to-do list; és a dir, el conjunt de tasques amb la mínima granularitat que aporti valor al projecte com a producte entregable. D'acord a les necessitats, s'aplicarà una priorització, i aquestes tasques s'aniran afegint com a tasques realitzant o en progrés. Conforme aquestes tasques es completin, s'afegiran al llistat de tasques realitzades o done, mantenint així un control dels requisits que s'estan satisfent i el seu grau de completesa.

Per garantir la integritat del sistema, cadascuna d'aquestes tasques serà desenvolupada fora de l'entorn de producció, en un entorn (o branca) separats. D'aquesta manera, el desenvolupament no afectarà al producte provisional generat en cada moment del desenvolupament del projecte. I, alhora, permetrà fer un seguiment més exacte de l'estat de cada tasca o funcionalitat a implementar.

S'ha considerat millor opció a, per exemple, alternatives àgils com Scrum, degut a diversos factors. P.e., a Kanban les entregues o releases són constants, i no acotades

FIGURA 4.1: Simplificació de la metodologia Kanban

temporalment. Considerarem més important, per tant, la metodologia basada en el producte final.

4.2 Recursos

Per definir les necessitats de recursos per satisfer la realització del projecte, els classificarem segons el següent criteri: recursos **humans**, recursos **materials** i recursos **software**.

4.2.1 Recursos humans

Pel domini de nostre projecte, basat en 1 desenvolupador principal i 2 gestors de projecte (1 director + 1 co-director), considerarem les seves hores de treball com recursos humans. Estimarem, i considerant els següents aspectes:

- El TFG es correspon a 18 ECTS (3 crèdits ECTS GEP + 15 crèdits ECTS TFG)
- 1 ECTS = 25-30 hores de treball
- Durada aproximada TFG = 22 setmanes

Podem estimar, per tant, pel cas del desenvolupador (alumne) una dedicació d'unes **24 hores** a la setmana. Pel cas dels gestors, farem una estimació aproximada de **50 hores** en total per part dels dos rols, com a tasques de suport

4.2.2 Recursos materials

Els recursos materials per aquest projecte són relativament senzills. Bàsicament:

- Portàtil Lenovo G-50. Màquina principal amb la qual es durà a terme el projecte
- Materials d'impressió. Necessaris per documentació, impressió de memòria, etc.

4.2.3 Recursos software

Tot i que aquests es discutiran amb més detall al capítol 5. Eines de desenvolupament, podem identificar inicialment la necessitat d'alguns recursos software principals, tals com:

- **Gestor de versions**. El codi (emmagatzemament, desenvolupament i evolució) requereix un control i manteniment, motiu pel qual s'estableix com a necessitat una eina d'aquest tipus
- IDE. És necessari l'ús d'un entorn de desenvolupament integrat per desenvolupar el projecte, dissenyar l'arquitectura, realitzar la implementació, configurar l'entorn, etc.
- **Sistema de compilació automàtic**. Necessari per gestionar la compilació i les dependències dels projectes.

• Framework desenvolupament web. Segons les necessitats que es defineixin al llarg del projecte, es triarà una tecnologia específica per desenvolupar el dashboard definit com a requisit al projecte.

Les opcions triades per suplir les necessitats d'aquests recursos i altres recursos software identificats com a necessaris es plantejaran més endavant.

4.3 Planificació temporal

Segons les necessitats d'aquest projecte i les seves característiques, classificarem el desenvolupament en 4 fases: la planificació, el disseny, la implementació, i la documentació i entrega del projecte.

4.3.1 Descripció de fases

Planificació

En primer lloc cal una fase inicial o fase de planificació. L'objectiu principal d'aquesta fase del projecte és definir els aspectes bàsics que definiran la naturalesa del projecte: els objectius, la metodologia de treball, el desenvolupament, els requisits, la planificació, etc. És a dir, tot allò relacionat amb l'establiment de les premisses sobre les quals ens basarem per desenvolupar el nostre projecte.

Aquesta fase del projecte va fortament lligada al desenvolupament del curs GEP, juntament amb altres activitats. En definitiva, les tasques a realitzar són les següents:

- **P1.** Investigació i recerca en quant al monitoratge i l'adaptabilitat de sistemes software.
- **P2.** Definir l'abast i el context del projecte.
- P3. Definir les fases i tasques del projecte, així com una planificació temporal de desenvolupament.
- P4. Preparar una gestió econòmica i una anàlisi de sostenibilitat.
- **P5.** Establir els requisits i necessitats d'acord a l'especialitat d'Enginyeria del Software.
- **P6.** Definir les eines de desenvolupament i els llenguatges amb els que treballar i implementar el sistema i el dashboard.
- P7. Definir els casos d'ús per validar i implementar el sistema.

Disseny

Conforme la fase de planificació avanci, podrem començar a realitzar el disseny del nostre sistema des d'un punt de vista de requisits i també arquitectònic (en referència a arquitectura del software). És a dir: l'objectiu d'aquesta fase és passar dels conceptes i objectius definits a la planificació a un "mapa" o "esquema" que serveixi de guia pel desenvolupament del projecte (subjecte, per descomptat, a possibles canvis i adaptacions al llarg del desenvolupament).

Principalment, les tasques a incloure en aquesta fase són:

- D1. Definir els entorns de configuració sota els quals es desenvoluparà el projecte
- **D2.** Dissenyar l'arquitectura software del sistema de monitoratge i dels monitors
- D3. Definir els criteris d'adaptabilitat amb els quals es dotarà al sistema
- D4. Configurar un entorn de configuració d'acord amb els criteris definits
- D5. Documentar els avanços referents a aquesta fase (memòria)

Implementació

Aquesta fase tindrà la major càrrega de feina de tot el projecte. Partirà d'uns criteris i objectius ben definits i estructurats a partir de les anteriors fases. Les tasques es correspondran principalment a totes aquelles tasques d'implementació i de testing del nostre sistema.

Per tant, identificarem com a tasques:

- I1. Implementació de l'arquitectura genèrica del sistema de monitoratge.
- I2. Implementació del sistema de monitors.
- I3. Implementació del sistema d'adaptabilitat.
- I4. Integració dels sistemes.
- I5. Implementació d'un dashboard que permeti visualitzar l'activitat del sistema
- I6. Generació de documentació referent al desenvolupament i la implementació (documentació d'APIs, README per desplegar el sistema, manual d'usuari del dashboard, etc.)
- I7. Ampliació del sistema (afegir monitors, ampliar dashboard) en funció de les necessitats i/o de la disponibilitat temporal
- I8. Redacció i ampliació de la memòria

Fase final

Finalment, identificarem una darrera fase del projecte que servirà de cloenda per preparar l'entrega i defensa final de la feina realitzada, així com tancar possibles tasques pendents i assegurar el correcte funcionament del sistema i la generació d'un producte final adequat.

Les tasques principals seran:

- F1. Testing de les funcionalitats del sistema
- F2. Comprovació de la satisfacció dels objectius i requisits
- F3. Finalització i revisió de la memòria
- F4. Preparació de la defensa final

4.4. Viabilitat

4.3.2 Previsió d'alternatives i pla d'acció

La planificació temporal i de tasques plantejada, així com el consum de recursos, contempla un desenvolupament del treball regular i sense imprevistos. Tot i així, hem de considerar alternatives al desenvolupament fruït d'imprevistos, desviacions o altres factors no contemplats dins de la normalitat. Identificarem, per tant, les possibles següents desviacions:

• Increment del nº d'hores necessàries. Aquest problema pot ser derivat per diverses causes (inhabilitació temporal del desenvolupador, dificultats tècniques en el desenvolupament, etc.). Això pot provocar, per una banda, una necessitat de més hores, i per altra banda, més dedicació per unitat de temps.

Pla d'acció. La tasca corresponent a la implementació del dashboard serà adaptada en funció de l'estat del projecte arribat al moment. És a dir: al tractarse d'un requisit molt flexible en quant a la seva complexitat (podem aspirar a un dashboard molt complet i multifuncional, o bé establir els requisits mínims per satisfer els criteris d'acceptació del TFG), podem permetre'ns retallar hores d'aquesta tarda, prioritzant aspectes crucials (com p.e. la implementació dels monitors).

• Avaria en el hardware. És possible que durant el desenvolupament del projecte el hardware utilitzat (en aquest cas, el portàtil Lenovo G-50) pateixi alguna avaria. Al tractar-se de la principal eina de desenvolupament, això pot afectar als terminis de desenvolupament.

Pla d'acció. Dues mesures complementàries: per una banda, en tot moment es mantindran diverses còpies de seguretat de tots els artefactes generats (documentació, software, entorns de configuració...) per garantir-ne la recuperabilitat; per altra banda, disposarem d'un entorn de treball alternatiu (un sistema operatiu instal·lat a un disc dur extern) on podrem seguir el desenvolupament del nostre projecte paral·lelament mentre l'avaria es soluciona.

 Canvis en els requisits del projecte. Podem suposar que el desenvolupament pràctic del projecte ens durà a concloure nous canvis necessaris en quant als requisits prèviament establerts.

Pla d'acció. En primer lloc, sotmetre a constant revisió el projecte per tal d'evitar al màxim que es produeixi un canvi de requisits significatiu. Per ferho, constantment es revisaran requisits, nivell de viabilitat, i satisfacció envers els terminis establerts. Si, per contra, es produeix un canvi significatiu inevitable, el nº d'hores total del projecte (aproximats) permet un petit increment fruit d'aquesta desviació, per tal de garantir que la resta de tasques es duen a terme correctament.

4.4 Viabilitat

Un dels principals objectius del Treball de Final de Grau és plasmar la capacitat de l'estudiant de generar, mitjançant els coneixements obtinguts, un producte o projecte real, amb una utilitat i uns objectius aplicables al nostre entorn. Per aquest motiu, i com estudiants, cal assumir la responsabilitat del projecte i estudiar-ne la seva viabilitat en dos sentits. Per una banda, la seva viabilitat econòmica, mitjançant una estimació pressupostària dels costos del projecte en un àmbit professional. Per

altra banda, el seu impacte econòmic, social i ambiental des d'un punt de vista de sostenibilitat.

4.4.1 Estimació pressupostària

Per simplificar al màxim l'estudi dels costos i, alhora, clarificar i estudiar-ne la justificació, procedirem a identificar i estimar els diferents costos associats al projecte segons el seu tipus.

Despeses directes

Entraran dins la classificació de despeses directes aquelles despeses derivades directament de la realització d'activitats previstes pel desenvolupament del projecte. Per una major precisió, relacionarem directament les activitats definides a l'anterior entregable amb els costos directes.

ACTIVITAT	HORES TOTALS	DEVELOPER	DIRECTOR	CODIRECTOR	COST TOTAL
Planificació	149	125	12	12	2475,00€
Abast i context	30	25	2,5	2,5	500,00€
Planificació	12	10	1	1	200,00€
Gestió econòmica i sostenibilitat	12	10	1	1	200,00€
Requisits d'especialitat	12	10	1	1	200,00€
Recerca de la temàtica	38	30	4	4	650,00€
Eines de desenvolupament	20	20	0	0	300,00€
Definir casos d'ús	25	20	2,5	2,5	425,00€
Disseny	102	88	4	10	1670,00€
Entorn de configuració	15	15	0	0	225,00€
Arquitectura software	32	25	2	5	550,00€
Criteris d'autoadaptabilitat	25	20	2	3	425,00€
Integració continuada	20	18	0	2	320,00€
Documentació memòria	10	10	0	0	150,00€
Implementació	203	186	0	17	3215,00€
Implementació arquitectura genèrica	30	26	0	4	490,00€
Implementació monitors	70	65	0	5	1100,00€
Implementació sistema d'adaptabilitat	50	45	0	5	800,00€
Integració sistemes	20	20	0	0	300,00€
Implementació dashboard	33	30	0	3	525,00€
Documentació de components	15	15	0	0	225,00€
Ampliació del sistema	15	15	0	0	225,00€
Documentació memòria	10	10	0	0	150,00€
Fase final	85	75	4	6	1375,00€
Finalització tasques	10	10	0	0	150,00€
Testing	19	15	2	2	325,00€
Comprovació satisfacció	14	10	2	2	250,00€
FInalització memòria	25	25	0	0	375,00€
Preparació defensa final	17	15	0	2	275,00€
Total	539	474	20	45	8735,00€

TAULA 4.1: Costos directes

Per aquest cas, farem les següents assumpcions:

- En el projecte intervindran 3 agents: el desenvolupador (alumne), i dos gestors de projectes (director i codirector). La principal diferència entre el director i codirector, per aquest cas, serà la involucració de cadascun en el desenvolupament del projecte segons la fase (el director tindrà major pes durant la fase inicial, mentre que el codirector donarà més suport al desenvolupament).
- L'estimació del cost serà de 12€/hora pel desenvolupador i 25€/hora pels gestors del projecte, en base a la informació actual que podem trobar referent a aquest aspecte pels rols de programador junior i gestor de projecte a portals com InfoJobs.

4.4. Viabilitat

Per cada activitat estimarem un n^o d'hores total i un grau d'implicació de cada rol. Les unitats corresponen a hores pel n^o d'hores totals i de cada rol, i a \in pel cost total.

Despeses indirectes i amortitzacions

Considerarem les següents despeses indirectes i amortitzacions:

- Impressions a paper. Considerarem 150 fulls / memòria, a 3 memòries a entregar per la defensa final + 1 de provisional; com a afegit, 200 fulls per articles, documentació... fan un total de 800 fulls.
- **Electricitat**. Cost i consum en base a referències de característiques de portàtil i preu estàndard de companyies elèctriques.
- Amortització. portàtil Lenovo G-50. Cost en base a compra; percentatge d'amortització en base a les hores útils de vida aproximada i les hores de rendiment esperades de programació, documentació, etc.
- Software. El desenvolupament serà basat en software lliure i, per tant, sense despesa addicional, però el considerarem com a part del pressupost per possibles desviacions.

CONCEPTE	COST UNITARI	UNITATS	COST
Impressions a paper	0,03€/full	800 fulls	24,00€
Electricitat	0,20€/kWh	225 kWh	45,00€
Amortització portàtil Lenovo G-50	450,00€/portàtil	0,15 (amortitzat)	67,50€
Software	0,00€/mes	5 mesos	0,00€
Total			136,50€

TAULA 4.2: Costos indirectes i amortitzacions

Contingències

Afegirem, en base als costos directes i indirectes prèviament desglosats, un 15% sobre el total en concepte de contingències.

CONCEPTE	COST BASE	% CONTINGÈNCIES	TOTAL
Costos directes	8735,00€/full	15	1310,25€
Costos indirectes	136,50€/kWh	15	20,475€
Total			1330,725€

TAULA 4.3: Contingències

Imprevistos

Identificarem 2 imprevistos en base a la planificació:

 Prolongació de les hores / ampliació del termini. Contemplarem la possibilitat de requerir més temps de l'estimat per acabar el projecte, considerant una desviació de fins a 50 hores (que podríem considerar la dedicació aproximada de dues setmanes a mitja jornada). Considerarem una probabilitat raonable del 20 • Avaria de hardware. Problemes en l'ús del material hardware (en aquest cas, exclusivament el portàtil). Considerarem una probabilitat més remota, del 5%, i el pitjor dels casos, que equivaldria a la substitució total del cost del portàtil.

CONCEPTE	COST UNITARI	UNITATS	COST TOTAL	% PROBABILITAT	TOTAL
Ampliació del termini	12,00€/hora	50 hores	600,00€	20	120,00€
Avaria del hardware	450,00€/ordinador	1 ordinador	450,00€	5	22,50€
Total					142,50€

TAULA 4.4: Imprevistos

Pressupost global

Un cop valorat costos indirectes, costos indirectes i amortitzacions, contingències i possibles imprevistos, podem donar una versió completa de l'estimació pressupostària per la realització del projecte.

CONCEPTE	COST
Costos directes	8735,00€
Costos indirectes	136,50€
Contingències	1330,725€
Imprevistos	142,50€
Total	10.344,725€

TAULA 4.5: Resum global del pressupost

Per tant, el pressupost final és de 9867,475€.

4.4.2 Control de gestió

El pressupost exposat ja inclou com a part de la partida destinada una part generada per imprevistos i desviacions amb possibilitats de produir-se i que pretenen precisament realitzar un control i manteniment de la gestió i evolució del projecte i els recursos (veure apartats 2.1.3. i 2.1.4.).

Tot i així, podem considerar oportú establir uns mecanismes, o tasques específiques, dedicades al control periòdic que permetin fer un seguiment de l'activitat de gestió de projecte i, per tant, no només preveure de forma teòrica aspectes com desviacions pressupostàries, sinó detectar al llarg de l'evolució del projecte quan això succeeixi. Per fer-ho es proposa realitzar un control de desviacions durant la transició de fases; és a dir, treballarem amb un model de plantilla que ens calculi una sèrie de desviacions (en funció de diversos criteris), que al finalitzar cada fase ens permeti obtenir un feedback objectiu i ràpid de possibles desviacions respecte al pressupost inicial. Per fer-ho, i basant-nos en la bibliografia utilitzada a GEP, farem servir els següents indicadors:

- **Desviament de mà d'obra en preu** = (cost estimat cost real) * consum hores real
- **Desviament en la realització d'una tasca en consum** = (consum estimat consum real) * cost real
- Desviament total en la realització de tasques = cost total estimat tasca cost total real tasca

4.4. Viabilitat

 Desviament total de despeses fixes = total costos fixes pressupostat - total costos fixes real

Considerarem aquests 4 indicadors, ja que ens seran els més útils per detectar desviacions, p.e., en quant a la realització de les activitats descrites al Gantt, en termes tant de dedicació en quantitat d'hores total com per tasca, i també en aspectes com despeses fixes (p.e. amortitzacions). Mitjançant la comprovació d'aquests indicadors, podrem veure el grau de desviament i actuar en conseqüència segons les necessitats.

4.4.3 Sostenibilitat econòmica, social i ambiental

Procedim a fer un anàlisi de les 3 dimensions de la sostenibilitat en referència a aquest projecte, per posteriorment avaluar fent servir la matriu de sostenibilitat el grau de satisfacció d'aquest àmbit en funció dels criteris establerts.

Dimensió econòmica

La dimensió econòmica està satisfactòriament treballada gràcies al pressupost prèviament exposat, basat en dades objectives i específiques (p.e., activitats reals a realitzar durant el projecte), que inclou despeses materials i humanes. Aquests costos i temps de dedicació inclouen aspectes crítics tals com possibles desviacions i imprevistos, i una assignació proporcional dels recursos assignats a la rellevància de cada tasca. Es tracta d'un projecte realitzat amb el cost mínim, però suficient (tenint en compte sempre que és necessari afegir extres per desviacions), garantint la seva satisfacció però sense despeses innecessàries, el que garanteix la seva viabilitat econòmica.

Dimensió social

L'objectiu principal del treball és aprofundir en el control de qualitat i monitoritatge de sistemes software mitjançant el desenvolupament de software lliure reaprofitable. Tal i com vam veure a l'entregable 1 (a l'apartat Estat de l'art), existeix marge d'investigació i treball en aquest àmbit, i l'àmplia gama de serveis software poden extreure un cert benefici en base als avenços (o si més no, la recerca i síntesi) que aquest projecte pugui aportar. Des del punt de vista dels desenvolupadors (usuaris reals d'aquest projecte, ja que seran els que l'utilitzaran), aportem noves eines i facilitem criteris d'autoadaptabilitat per monitors de control de qualitat. També, però, tindrà conseqüències en els usuaris dels sistemes monitorats, ja que la recol·lecció de dades d'aquests està orientada a la millora de la qualitat dels serveis oferts per aquests sistemes. Aquest és un aspecte que cada vegada requereix més profunditat, motiu pel qual podem considerar l'existència d'una necessitat dins el mercat actual. Podem considerar que no existeixen col·lectius afectats negativament.

Dimensió ambiental

Els recursos plantejats tant pel desenvolupament del projecte com el consum necessari per la seva vida útil són mínims, i inclouen únicament aquells derivats del manteniment d'un sistema software. No existirà contaminació destacada més allà de la generada pel consum d'electricitat del dispositiu portàtil a utilitzar pel desenvolupament del projecte o la impressió de papers (que es limitarà al mínim necessari).

Es tracta, a més, d'un projecte que té per objectiu ser reaprofitat per tercers projectes (plantejant estructures, arquitectures, monitors, etc. reaprofitables).

Matriu de sostenibilitat

En base als anteriors criteris establerts, assignarem les següents puntuacions a la matriu de sostenibilitat, considerant únicament la Planificació per cadascuna de les 3 dimensions:

Sostenibilitat	Econòmica	Social	Ambiental
Planificació	9	8	7

TAULA 4.6: Matriu de sostenibilitat

Podem considerar, juntament amb la informació prèviament exposada, les següents justificacions:

- **Dimensió econòmica**. S'assoleixen satisfactòriament criteris econòmics amb rigor i detall (basat en pressupost) i es presenta informació verídica en quant a costos, optimitzats per un ajustament adequat.
- **Dimensió social**. Tot i que l'impacte pot no ser especialment destacable, sí que té un mercat profitós i aporta beneficis dins el seu sector que el fan un projecte positiu des del punt de vista social.
- Dimensió ambiental. No aporta un benefici destacable directe però sí que assoleix els criteris d'eficiència ambiental en quant al consum de recursos o l'empremta ecològica del projecte, que podrà ser reutilitzat per projectes tercers.

Capítol 5

Visió general del sistema

En aquesta part no es presentaran detalls més enllà de la naturalesa, objectius i funcionalitats generals del sistema i els seus components, ja que aquests es desenvoluparan més endavant, un cop els requisits estiguin definits.

En primer lloc, establim de nou la premisa d'aquest projecte: el **disseny**, la **implementació** i **validació** d'un sistema de **monitoratge** que satisfaci les característiques d'**adaptabilitat**, **heterogeneïtat** i **distribució** (característiques explicades al *Capítol 3. Objectius*). En base al context del projecte SUPERSEDE (presentat al *Capítol 2. Contextualització*), i segons aquest objectiu, el nostre sistema haurà d'incloure dues vessants:

- Un sistema de monitoratge de serveis i components software tercers.
- Un **sistema d'adaptabilitat** que permeti adaptar l'activitat del sistema de monitoratge.

El component clau de l'activitat del monitoratge és el que anomenem **monitor**. Un monitor no és més que un component software (independentment de la seva naturalesa o la tecnologia amb la qual està desenvolupat) que interactua amb un component software i col·lecciona informació relacionada amb la seva activitat, tal i com s'explica al *Capítol 2.2. Estat de l'art*. Per tal de generar un sistema de monitoratge dins el nostre projecte, haurem de tenir en compte diversos factors.

En primer lloc, necessitarem definir una **arquitectura genèrica** que ens permeti definir l'estructura i arquitectura bàsica dels monitors que inclourem al nostre projecte. D'aquesta manera, mitjançant criteris que s'estudiaran més endavant, el nostre sistema disposarà d'un component genèric a partir del qual podrem generar **monitors específics**, independentment de la seva activitat en termes específics. Així, garantit la característica d'**heterogeneïtat**, el nostre sistema permetrà la seva extensió mitjançant la implementació de nous monitors que es puguin integrar al sistema.

En segon lloc, haurem de considerar per una banda que aquests monitors han de ser components independents que es puguin desplegar de forma distribuïda i que la seva activitat pugui actuar com a unitat per sí mateixa. Per altra banda, per gestionar la integració del nostre sistema, necessitarem definir components que **integri** aquest conjunt de monitors en un únic punt i sigui capaç de gestionar l'activitat dels mateixos.

Paral·lelament al sistema de monitoratge, necessitem dissenyar i implementar una part del sistema que **gestioni les configuracions dels monitors** (és a dir, les diferents activitats de monitoratge) i pugui gestionar les adaptacions sobre els monitors.

FIGURA 5.1: Disseny genèric del sistema proposat

Per gestionar tot aquest subdomini del projecte, s'utilitzaran un **conjunt de models UML** amb els quals es modelaran tots els detalls relacionats amb les configuracions i les adaptacions dels monitors: configuracions actuals, propostes de noves configuracions, detalls sobre mecanismes d'adaptacions, etc. Mitjançant aquest conjunt de models, que més endavant es detallaran, el sistema podrà **computar i aplicar de forma automàtica adaptacions** sobre els monitors desplegats. Per garantir el funcionament i la validació del sistema, caldrà que aquests dos subcomponents estiguin integrats i es puguin comunicar entre ells, seguint els criteris d'adaptació.

Finalment, com a tasca complementària, el nostre sistema inclourà un *dashboard* consultor que permeti visualitza les diferents adaptacions que el sistema realitza sobre els monitors, per tal de poder observar i validar l'activitat del sistema d'acord amb els requisits establerts.

Definida la visió general del nostre sistema, i abans d'adreçar-nos als requisits específics, podem definir una **proposta de disseny** del sistema (presentada a la *Figura 5.1*) basada en els diferents components que intervindran per dur a terme l'activitat prèviament descrita. En base a aquesta proposta, procedirem a explicar cadascun dels components que intervenen segons els següents criteris: element/s d'entrada o **input**, comportament intern o **action**, i element/s de sortida o **output**.

5.0.4 Disseny del sistema

Primerament, comencem per explicar els components que formen el **sistema de monitoratge**:

• Monitor. Component de naturalesa ja descrita anteriorment, és l'encarregat de realitzar la col·lecció de dades d'un sistema software orientat al control de qualitat d'aquest. Dins el nostre sistema, disposarem d'un conjunt de monitors

variats, conjunt que podrà ser extès sota diversos criteris i seguint el marc de la proposta de disseny plantejada.

- Input. Informació/paràmetres de configuració d'un procés de monitoratge.
- Action. Procés de la informació per iniciar, aturar o modificar els paràmetres de la configuració d'un procés de monitoratge.
- Output. Conjunt de dades recol·lectades pels processos de monitoratge actius en el monitor.
- Monitor Manager. Encarregat de gestionar l'activitat dels monitors, integrant el conjunt de monitors independents en el sistema sota un únic punt d'entrada, amb una semàntica genèrica. És l'encarregat, per tant, de redireccionar les diferents reconfiguracions (així com l'inici i aturada de processos de monitoratge) als monitors corresponents.
 - Input. Informació/paràmetres de configuració d'un procés de monitoratge per a un monitor específic.
 - Action. Procés de la informació i transformació de la mateixa d'acord amb el monitor corresponent.
 - Output. Informació/paràmetres de configuració transformats i orientats al monitor corresponent.
- **Orchestrator.** Aquest document forma part del context del projecte SUPER-SEDE. Dins aquest projecte (presentat al capítol 2.2.1. *Projecte SUPERSEDE*), aquest component és el punt d'integració entre el subsistema d'adaptació de sistemes software i el subsistema de col·lecció i anàl·lisi de dades, i actua com a *orquestrador* en un sentit de "pont"redireccional. En el marc del nostre projecte, que s'inclou a SUPERSEDE, aquest component actuarà com a punt entre el subsistema d'adaptació i el sistema de monitoratge
 - Input. Informació/paràmetres de configuració d'un procés de monitoratge per a un monitor específic.
 - Action. Procés de la informació i transformació de la mateixa d'acord amb el propòsit del nostre sistema (configuració de monitors).
 - Output. Informació/paràmetres de configuració transformats i orientats al sistema de monitoratge.

D'aquesta manera, el nostre sistema de monitoratge presenta 3 subcomponents independents que integren l'activitat de monitoratge mitjançant la comunicació entre ells: el sistema rep, a través de l'Orchestrator, peticions d'accions sobre els processos de monitoratge dels monitors. Aquest Orchestrator processa aquesta petició, i la redirecciona al Monitor Manager, qui coneix i controla els diferents monitors que hi ha al nostre sistema. El Monitor Manager s'encarrega d'analitzar la informació, processar-la d'acord al monitor al qual s'ha de redireccionar, i finalment enviar l'ordre de configuració al monitor corresponent. Amb aquesta informació ja processada per tal que el monitor concret pugui entendre-la, aquest adapta (és a dir, reconfigura) un procés de monitoratge existent, o bé en crea un de nou o n'elimina un d'existent, i procedeix amb el procés de monitoratge d'acord amb l'acció realitzada.

Definit els components del sistema de monitoratge, procedim a exposar els components i la interacció del **sistema d'adaptabilitat**:

- Model Repository. Aquest component s'encarrega de gestionar la persistència (lectura i escriptura) dels diferents models UML que defineixen les configuracions del nostre sistema de monitoratge. Els detalls d'aquests models UML, la seva sintaxi i el seu ús es descriuran més endavant.
 - *Input*. Peticions de lectura i escriptura dels models UML.
 - Action. Accions pertinents sobre els models UML.
 - Output. Retorna els models UML demanats d'acord amb la petició o modificació pertinent.
- Model Adapter. Component que s'encarrega de realitzar adaptacions sobre els
 models UML que defineixen l'estat actual de les configuracions dels monitors
 d'acord amb les peticions d'adaptació que se li apliquen. Aquestes adaptacions
 sobre els diagrames definits s'apliquen en aquest component de forma aïllada,
 de manera que la resta del sistema no necessita tenir coneixement del procés
 tècnic de transformació dinàmica de models UML.
 - Input. Petició de modificació d'un model de configuració amb els models i paràmetres pertinents.
 - Action. Modificació dinàmica del model UML d'acord amb la petició
 - Output. Model UML transformat.
- Adapter. És l'encarregat de realitzar l'adaptació del model des d'un punt de vista d'abstracció tècnica, centrant-se en la part semàntica de l'adaptació dels monitors. Mitjançant els models que defineixen el sistema i les possible millores, aquest component estudia i computa de forma automàtica reconfiguracions dels monitors.
 - Input. Lectura dels models del Model Repository per computar la petició d'adaptació de monitors.
 - Action. Analitza els models i les possibles adaptacions per computar modificacions sobre els models de configuració, i demana aquesta modificació al Model Adapter.
 - Output. Model/s de configuració adaptats.

En definitiva, el sistema d'adaptabilitat defineix un *workflow* basat en una petició de reconfiguració a l'Adapter que, mitjançant l'anàl·lisi dels models que defineixen les configuracions dels monitors (configuracions actuals, suggerències de noves configuracions, etc.) computa una modificació real sobre la configuració actual.

En aquest punt, necessitem un últim component que actui de pont entre el sistema d'adaptabilitat i el sistema de monitoratge, de tal manera que les adaptacions realitzades en el sistema d'adaptabilitat sobre els models UML que defineixen l'estat del sistema de monitoratge s'apliquin a aquest darrer. En aquest sentit, s'introdueix el component **Enactor.**

• Enactor. Component d'integració entre les adaptacions generades pel sistema i el sistema de monitoratge. Concretament, actua de pont entre l'Adapter, encarregat de gestionar aquestes reconfiguracions, i l'Orchestrator, component del sistema genèric a SUPERSEDE encarregat de gestionar totes les peticions d'adaptabilitat de components software. La seva tasca principal és afegir una capa d'abstracció entre els dos subsistemes, per evitar que aquests hagin de conèixer de l'activitat de l'altre.

- Input. Model UML adaptat generat per l'Adapter amb una nova proposta de configuració del sistema.
- Action. Transformació del model UML en format processable per l'Orchestrator.
- Output. Petició de reconfiguració d'un monitor específic que envia a l'Orchestrator.

A termes genèrics, i sense entrar encara en detalls de disseny intern de cadascun d'aquests components, tenim una proposta inicial genèrica que defineix com ha de ser el nostre sistema, quins components l'han de formar i com s'han de relacionar entre ells per satisfer l'objectiu genèric d'aquest projecte.

Com a punt addicional, es proposa també el disseny d'un **dashboard** basat en un aplicatiu web senzill, a través del qual poguem visualitzar algunes de les dades de les adaptacions generades pel nostre sistema, amb l'objectiu de facilitar el control de l'activitat del sistema i la validació del mateix per una possible demostració.

5.0.5 Integració de components

La interacció entre els diferents components del sistema haurà de ser un dels elements a tractar en el desenvolupament del projecte. Un dels objectius principals és garantir el màxim desacoblament entre cadascuna d'aquestes interaccions, de tal manera que cadascun dels components puguin ser reaprofitats de forma independement, i que a més la major part de modificacions en aquests components no afectin a la resta, com a mínim en termes d'interacció.

Per facilitar aquesta integració, el projecte SUPERSEDE ofereix una plataforma anomenada *Integrated Framework* (IF), desenvolupada per un partner del projecte. El seu objectiu és oferir una integració de tots els components desplegats al *back-end* del sistema. A nivell tècnic, aquest component ofereix una llibreria amb un conjunt de *proxies* implementats, a través dels quals els diferents components es poden comunicar amb altres components desplegats i afegits al IF.

Per permetre aquesta integració, l'únic requisit que planteja aquesta plataforma és l'exposició dels diferents components com a serveis web RESTful. D'aquesta manera, IF actua com a pont directe sense necessitat de formatar o mapejar els paràmetres d'entrada i sortida d'aquestes interaccions, ja que aquest component s'encarrega de fer les transformacions pertinents d'acord amb les necessitats d'interacció.

Veurem més endavant com aquest sistema aprofita aquest framework per facilitar la comunicació i evitar mapejats d'entrada/sortida. Amb aquest objectiu, serà necessari exposar alguns dels components com a serveis web.

Eines de desenvolupament

El desenvolupament del sistema proposat requereix la integració d'un conjunt de subcomponents independents que, tot i comunicar-se entre ells, presenten una sèrie de característiques tècniques variades. Els requisits de desenvolupament i els entorns sobre els quals aquests components s'han de desenvolupar dependran de la naturalesa i els objectius de cadascun d'aquests. I, en termes genèrics, la gestió del sistema requerirà l'ús d'eines que ens facilitin aquest comportament.

Com a punt de partida al desenvolupament i exposició dels diversos components i tecnologies utilitzades, plantegem les tecnologies i elements bàsics que formen part del desenvolupament del projecte per, a partir d'aquí i al llarg dels següents capítols, exposar les tecnologies (llibreries, frameworks, etc.) que integrarem a aquestes per assolir els objectius.

6.1 Tecnologies utilitzades

Procedim a identificar les tecnologies bàsiques, amb les seves versions corresponents:

- Git / GitHub (http://github.com). Com a software de control de gestions i repositori s'utilitza git i GitHub, respectivament. La completesa i maduresa de git en la seva actualitat, així com les funcionalitats oferides per GitHub i la comoditat de la seva gestió, les fan candidates ideals per a realitzar el desenvolupament del projecte.
- Java 8. Pràcticament la totalitat del projecte i els seus components s'han implementat utilitzant llenguatge Java. Concretament, la darrera versió Java 8, degut a les millores i la correcció d'alguns bugs que suposa respecte la seva anterior versió, Java 7.
- Eclipse IDE for Java Developers (Neon 4.6.2). IDE i versió corresponents utilitzats pel desenvolupament dels components. S'ha considerat com l'opció ideal per una banda, per facilitar la compatibilitat i integració amb el projecte SUPERSEDE i els altres components, i per altra banda per la senzillesa i la integració de diferents plug-ins i eines que faciliten el desenvolupament.
- Eclipse Modeling Tools (Neon 4.6.2). IDE complementari al desenvolupament orientat al desenvolupament de projectes de creació i edició de models UML mitjançant l'ús de tecnologies associades que es detallaran més endavant.
- **Gradle 2.13.** Davant la necessitat de gestionar les dependències i la compilació dels diferents components, s'ha triat Gradle com a opció preferent.

Tot i que, tal i com s'especificava anteriorment, hi intervenen moltes altres tecnologies, aquestes s'aniran presentant conforme sigui necessari per facilitar l'assimilació dels conceptes explicats. El llistat anterior es correspon a la base sota la qual partirem.

Sistema de monitoratge

En aquest punt tenim la base necessària per procedir a exposar el treball realitzat des d'un punt de vista de disseny software i implementació dels diferents components. Agafant com a referència la solució proposada al *Capítol 5. Visió general del sistema*, procedirem a desenvolupar els detalls tècnics de cadascun dels components que integren aquest sistema.

Començarem per explicar els detalls relacionats amb el disseny i la implementació dels monitors.

7.1 Monitors

Recordem que, dins el nostre context, un monitor consisteix en un component software autònom amb una activitat regular orientada al control de qualitat d'un altre sistema software. Aquest control de qualitat es basa en una col·lecció de dades obtingudes a través d'aquest segon sistema, que ens aporten informació pròpia del context monitorat. Amb aquestes dades, un sistema capacitat per processar i analitzar aquestes dades, es poden generar suggerències de modificacions. Aquesta darrera part, però, queda fora de l'abast del nostre projecte, que centrarà l'activitat dels monitors en la seva tasca principal: la col·lecció de dades sota una sèrie de criteris específics.

En general, per tant, volem que el nostre sistema disposi d'un conjunt de monitors heterogenis (i, per tant, de naturalesa i comportament diferents), que puguin ser capaços de gestionar **processos de monitoratge** de forma paral·lela. És a dir: cadascun d'aquests monitors ha de ser capaç d'inicialitzar processos de monitoratge que s'executin en paral·lel i en segon pla, col·lectin dades d'acord als criteris de cadascun d'aquests processos, i les redireccionin a un tercer component software, encarregat del seu anàlisi.

Per tant, necessitem que cadascun d'aquests monitors satisfaci els següents requisits funcionals:

- 1. **Inicialització de procés de monitoratge.** El monitor ha de poder rebre una petició per inicialitzar un nou procés de monitoratge amb una sèrie de paràmetres de configuració que defineixin aquest procés de monitoratge.
- 2. **Modificació de procés de monitoratge.** Donat un procés de monitoratge ja existent, el sistema ha de permetre la seva reconfiguració. És a dir: el sistema ha de permetre modificar els paràmetres d'aquest procés i, en conseqüència,

alterar el comportament del procés (d'acord amb els criteris que es presenten a continuació.

3. **Aturada de procés de monitoratge.** Donat un procés de monitoratge ja existent, el sistema ha de permetre la seva aturada. Davant aquesta petició, el procés s'atura, i per tant es deixen de recol·lectar dades sota aquells criteris de monitoratge.

7.1.1 Especificacions tècniques

Tal i com establiem com a objectiu principal del projecte, aquest sistema de monitoratge ha de ser **heterogeni**. La conseqüència principal d'aquesta característica és que necessitem definir un sistema que contempli que cadascun d'aquests requisits funcionals es garanteixen en la integració dels monitors implementats, i que per tant esdevenen casos d'ús complets i satisfactoris del nostre context. Per fer-ho, i donat que els monitors seran el principal punt de variabilitat del nostre sistema, hem d'afegir un cert nivell d'abstracció, un **desacoblament** entre els detalls específics de cadascun dels monitors, que ens resulten indiferents per la resta del sistema.

Per tant, el primer pas que hem de realitzar és **dissenyar una arquitectura** i uns **criteris de configuració genèrics** que satisfacin dos criteris: primerament, que ens permetin integrar tots els monitors implementats sota aquesta proposta al nostre sistema; i en segon lloc, que permetin una independència suficient com per garantir el criteri d'heterogeneïtat dels monitors.

Desenvoluparem aquesta proposta analitzant els següents punts:

- 1. **Comportament intern del monitor.** Anàlisi de les necessitats i detalls tècnics del funcionament intern del procés de monitoratge.
- 2. **Redirecció de dades col·lectades.** Especificacions tècniques del mètode de gestió i redirecció de dades.
- 3. **Configuració dels monitors.** D'acord amb les necessitats anteriors, descriure quins paràmetres necessitarem per configurar els monitors.

Comportament intern del monitor

La implementació d'un monitor representa, des d'un punt de vista semàntic, un component software encarregat de monitorar un component software concret. En aquest context específic, entendrem **monitorar** com la col·lecció periòdica d'un conjunt de dades produïdes de l'execució del sistema software monitorat.

En base a aquesta definició, entendrem com a **procés de monitoratge** el cicle següent:

- 1. Inicialització de les estructures de col·lecció de dades
- 2. Captura de dades durant el transcurs d'un període de temps determinat
- Enviament de les dades a un tercer component software

7.1. Monitors 33

Així, de forma periòdica, un procés de monitoratge recull durant un període de temps (o *time slot*) específic totes les dades que el monitor ha estat configurat per recollir. Per tal que els monitors es puguin explotar al màxim, és imprescindible que aquests permetin l'execució en paral·lel de diversos processos de monitoratge, amb possibles diferències en els seus paràmetres de configuració (p.e., aquest *time slot*).

Davant aquesta proposta, el comportament i potencial d'un monitor queda molt limitat, ja que elements com p.e. el mètode de recollida de dades, o fins i tot les dades recollides, queden molt limitats. En general, és molt possible que un sistema software pugui ser monitorat mitjançant diferents tècniques, com per exemple l'ús d'APIs, llibreries o components externs, etc. Per aquesta raó, si volem permetre que el nostre monitor ofereixi flexibilitat en aquest aspecte, hem de permetre l'ús de diferents eines, o *tools*, que aquest monitor pot utilitzar indistintament per executar els processos de monitoratge.

La integració de diverses *tools* dins un monitor ens permeten no només una variabilitat en l'execució de la col·lecció de dades, sinó també una major fiabilitat i qualitat del monitor com a component software. Ens permet reaccionar, entre d'altres, davant escenaris on l'ús d'un sistema de monitoratge específic deixa de funcionar (p.e. una API que no dona resposta), ja que davant la detecció d'aquest error el canvi de *tool* utilitzada ens permet que el monitor no deixi de ser usable.

En resum, necessitem que el monitor sigui capaç de gestionar un nombre indefinit de processos de monitoratge en paral·lel, amb configuracions diferents, i que utilitzin el conjunt de *tools* implementades.

Redirecció de dades col·lectades

Un dels objectius de les especificacions tècniques dels monitors és permetre la seva integració, en primer lloc, dins el context del nostre projecte, i en segon lloc, a sistemes tercers que permetin l'anàlisi de les dades recollides durant la seva activitat de monitoratge. D'aquesta manera augmentem el valor propi dels components dissenyats en el projecte, reutilitzable en contexts diferents al plantejat. Per aquesta raó, i per completar l'activitat del monitor, hem de contemplar com dissenyar l'enviament i redirecció de les dades que cada monitor recull i formata durant la seva activitat.

Per facilitar aquest aspecte, i permetre també la seva integració dins el sistema general de SUPERSEDE, els monitors integraran la implementació d'enviament de les seves dades a través d'**Apache Kafka**. Es tracta d'una plataforma distribuïda de *streaming* que ofereix la possibilitat de crear i configurar *pipelines* de dades en temps real que actuen com a canal de comunicació entre diverses aplicacions o components software. L'arquitectura és senzilla: un component software, anomenat *producer*, es comunica amb el servidor Kafka i envia dades de forma periòdica a un *pipeline* específic d'aquest servidor, prèviament configurat i identificament amb el que anomenem Kafka *topic*, un identificador únic d'aquell *pipeline* per aquell desplegament de Kafka. Aquest flux de dades s'encua al servidor, i es redireccionen a uns altres sistemes o aplicacions, anomenats *consumers*, que reben i processen les dades d'un pipeline específic a mesura que es van enviant i processant.

En general, l'avantatge principal de Kafka i la justificació del seu ús pel nostre context és que permet una integració còmode i fiable entre diferents aplicacions que necessiten comunicar dades de forma periòdica, garantint la seva arribada. Kafka ofereix una sèrie d'APIs per configurar els *producers* i *consumers*, així com una configuració relativament senzilla del propi servidor. Gràcies a aquestes característiques, podem aprofitar els propis monitors per actuar com a *producers* d'un *stream* de dades, que es correspondrà amb les dades monitorades durant els processos d'execució, i distribuïr-les als diferents *pipelines* o Kafka *topics*. Així, davant possibles ampliacions i expansions d'aquest projecte, podem fàcilment incorporar components d'anàlisi gràcies al desacoblament entre la lògica interna del monitor i l'enviament i captura de dades que l'arquitectura de Kafka ens ofereix.

La lògica interna genèrica proposada per la implementació dels monitors serà, per tant, l'ús de l'API de *producer* de Kafka per part dels monitors, pel qual cada procés de monitoratge enviarà de forma periòdica dades a un servidor Kafka específic, o Kafka *endpoint*, i dins aquest desplegament, a un *pipeline* o Kafka *topic* específic.

Paràmetres de configuració

Davant les especificacions anteriors, i per garantir el màxim nivell de personalització i configuració dels monitors, cadascun dels processos de monitoratge actius en un monitor ha de permetre definir els paràmetres relacionats amb les possibles variacions i diferències entre aquests processos, tant en temps de creació com durant la seva reconfiguració. En aquest sentit, es proposen els següents paràmetres com a genèrics per a totes les implementacions de monitors:

- *Time slot*. Expressat en segons, indica la durada de cada període de monitoratge de dades (és a dir, temps que transcorre cada vegada que s'envia un nou *stream* de dades).
- Tool name. Nom de l'eina (tool) utilitzada per aquell procés de monitoratge, i que per tant implica la col·lecció d'unes dades específiques utilitzant una tècnica específica.
- Kafka endpoint. Adreça que apunta al servidor on es troba desplegat el sistema Kafka on s'han d'enviar les dades generades, ja sigui localhost o URL pública.
- *Kafka topic*. Identifica el *pipeline* de dades del servidor Kafka on el monitor (*producer* dins el context de Kafka) ha d'enviar les dades.

És possible, tal i com veurem més endavant, que alguns monitors requereixin de paràmetres de configuració addicionals, propis del funcionament intern específic del monitor. Per aquest motiu, a banda de proporcionar una configuració bàsica pels monitors amb els paràmetres anteriors, cal permetre també una extensibilitat en quant a paràmetres de configuració.

7.1.2 Arquitectura genèrica

Es proposa l'arquitectura definida a la Figura 5 a extendre per cadascuna de les implementacions de monitors. Per entendre aquesta arquitectura, a continuació s'expliquen cadascun dels elements integrats:

 MonitoringParams. Classe abstracta que cada monitor ha d'implementar que conté, de base, els paràmetres de configuració dels monitors genèrics per tots 7.1. Monitors 35

FIGURA 7.1: Arquitectura software genèrica d'un monitor

aquests. Addicionalment, cada implementació de monitor pot afegir els paràmetres i la lògica associada a aquests que consideri oportuns.

- ParserConfiguration. Interfície que cada monitor ha d'implementar i que defineix un mètode per transformar un objecte JSON en una instància de la classe *MonitoringParams* implementada pel propi monitor. L'objectiu és permetre així que el monitor pugui processar JSON com a format de comunicació estàndar per les peticions de configuracions, facilitant el seu ús desplegat com a servei web (especialment útil per l'Integrated Framework dins el context SUPERSE-DE, tal i com s'explica al *Capítol 5. Visió general del sistema*).
- **ToolInterface**. Interfície parametritzada amb una especialització de la classe *MonitoringParams* que defineix una instància de procés de monitoratge per una *tool* específica. Defineix els següents mètodes:
 - addConfiguration(T) -> inicialitza el procés de monitoratge amb els paràmetres definits per la instància de T (subclasse de MonitoringParams)
 - deleteConfiguration() -> atura el procés de monitoratge i elimina la instància de la tool
 - updateConfiguration(T) -> actualitza els paràmetres de configuració del procés iniciat en segon pla per la instància de la tool
- ToolDispatcher. Classe que actua com a controlador del monitor, rebent totes les peticions relacionades amb els processos de monitoratge i gestionant les diferents instàncies en execució. Defineix un ParserConfiguration per processar la traducció de JSON (format estàndar) a MonitoringParams pels següents mètodes:
 - addConfiguration(JSONObject) -> processa els paràmetres definits al JSO-NObject i inicialitza una instància de la tool corresponent amb els paràmetres associats
 - deleteConfiguration(int) -> atura el procés de monitoratge identificat per l'id proporcionat
 - updateConfiguration(JSONObject, int) -> actualitza els paràmetres de configuració definits al JSONObject del procés de monitoratge identificat per int

Aquest controlador és perfectament usable per tot monitor implementat d'acord amb la configuració de la resta de classes i interf

- MonitoringData. Interfície que cada monitor implementa amb les dades i format que el monitor genera fruït de la seva activitat, amb la implementació d'un mètode toJsonObject() per definir un format genèric de les dades a enviar
- KafkaCommunication. Classe que implementa la comunicació amb el servidor de Kafka, i que permet enviar les dades generades per l'activitat de monitoratge. Implementa dues lògiques diferenciades:
 - Comunicació amb un Kafka endpoint personalitzable i configurable per extensió i testing (corresponent als mètodes initProducer(String) i generate-ResponseKafka(List<MonitoringData>))
 - Comunicació amb el Kafka endpoint desplegat a IF (mètodes *initProxy()* i generateResponseIF(List<MonitoringData>))

7.2 Section 2

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

7.2.1 Subsection 2.1

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

Disseny del sistema

8.1 Descripció general

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

8.2 Sistema de monitoratge

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

8.2.1 Monitors

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

8.2.2 Monitor Manager

8.2.3 Orchestrator

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

8.3 Sistema d'adaptabilitat

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

8.3.1 Model Repository

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

8.3.2 Adapter

8.4. Dashboard 39

Model Adapter

Enactor

8.4 Dashboard

Reconfiguració dels monitors

9.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

9.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

9.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

9.2 Main Section 2

Disseny del dashboard

10.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

10.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

10.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

10.2 Main Section 2

Validació del sistema

11.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

11.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

11.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

11.2 Main Section 2

Treball futur i possibles expansions

12.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

12.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

12.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

12.2 Main Section 2

Conclusions

13.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

13.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

13.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

13.2 Main Section 2