

AICTE QIP Short Term Training Program

on

Applications of Molecular Simulations and Machine Learning in Research

WORKSHOP

Large-scale Atomic/Molecular Massively Parallel Simulator

Sriram Krishnamurthy

Research Scholar

Chemical Engineering – IIT M

Overview

- Introduction To LAMMPS
- Examples From LAMMPS Website
- Input Script Lennard Jones
- Input Files Generation Tools A Brief Introduction
- SPCE Water
- Hexane Water mixture

- LAMMPS Large-Scale Atomic/Molecular Massively Oarallel Simulator.
- Development began in the mid 1990s at the Sandia National Laboratories. Released as open source code in 2004.
- LAMMPS has potentials for solid-state materials (metals, semiconductors) and soft matter (biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale.
- Can be run on single processor or in parallel with GPU acceleration support.
- Modular code with most functionality in optional packages.
- Open Source Repository on GitHub.

• Features of LAMMPS:

- 221 different pair styles
- 17 bond styles
- 22 angle styles
- 17 dihedral style
- 13 improper style
- 264 fixes
- 138 computes

Post processing tools

- Pizza.py
- MDAnalysis
- VMD etc...

Some examples from LAMMPS website

- Blood Flow in Capilaries : https://www.lammps.org/movies/mp4/blood.mp4
- Rhodopsin in solvated lipid bilayer: https://www.lammps.org/movies/mp4/rhodo.mp4
- Flow of water and ions thru a silica pore : https://www.lammps.org/movies/mp4/pore.mp4
- Au nanowire formation and extension: https://www.lammps.org/movies/mp4/nanowire2.mp4

	,							
variable	eq_step	equal	1e5	0.0 -				
variable	pro_step	equal	1e5	-0.2				
variable	dt	equal	0.001					
variable	thermo_step	equal	1000	$(x)^{-0.4}$ D -0.6				
variable	epsilon	equal	1	-0.8				
variable	sigma	equal	1.0	-1.0				
variable	part_num	equal	1000		.0 1.2 1	.4 1.	$\frac{1}{6}$ 1.8	3 2
variable	lj_cut	equal	3.5*\${sig	;ma}			,	
variable	eq_dump	equal	1e3					
variable	pro_dump	equal	1e3					
variable	box_length	equal	ceil((\${pa	art_nur	n}/\${rh	o})^	(1/3	3))

units lj

dimension 3

boundary p p p

atom_style atomic

lattice sc \${rho}

region box block 0.0 \${box_length} 0.0 \${box_length} 0.0 \${box_length}

create_box 1 box

create_atoms 1 box

mass 1 1.0

```
pair_style | lj/cut ${lj_cut}
```

```
pair_modify shift yes
```

pair_coeff 1 1 \${epsilon} \${sigma} \${lj_cut}

min_style sd

minimize 1.0e-6 1.0e-8 1000 10000

velocity all create 1.0 89387 dist gaussian

fix 1 all nvt temp 1.0 1.0 10 #NoseHoover

thermo_style custom step temp press pe ke etotal density

thermo \${thermo_step}

timestep \${dt}

fix 3 all print \${thermo_step} "\$S \$T \$P \${Pe} \${Ke} \$E \${EP}" file equilibration.dat

compute RDF all rdf 500 1 1 cutoff 3.5

fix 5 all ave/time 10 100 \${pro_step} c_RDF[*] file rdf_\${rho}.dat mode vector

dump 1 all custom \${eq_dump} dump.equilibration id x y z

run \${eq_step}

write_restart equilibrium.restart

Results

Input Data Generation Tools

- VMD Topotools : <u>TopoTools by Axel Kohlmeyer</u>
- Moltemplate : https://www.moltemplate.org/
- ATB: <u>Automated Topology Builder and Repository</u>
- Avogadro : https://avogadro.cc/

SPCE - Water

- Input Files : GitHub
- 100 ps equilibration
- 4 ns of non equilibrium run with simple shear Using SSLOD algorithm.

Parameter	Value				
$\sigma_{ m O}$	3.166 Å				
ϵ	0.650 KJ/mol				
r_{OH}	1.00Å				
$ heta_{HOH}$	109.47°				
q_0	-0.8476e				
q_H	$ q_{o} /2$				

Results

Potential Energy - Equilibration

Hexane – Water mixture

- OPLSAA forcefield
- System generated using Moltemplate
- 4ns equilibration run
- Input Files : GitHub

Show trajectory

