

From Rants to Riches: A Review-Reading Pipeline for Multilingual Sentiment Analysis Using Neural Networks and Transformers

Inès Ben Hamza, Inès Battah, Xun Lu

Abstract

User-generated data: a goldmine for marketing insights.

This project introduces a review-reading pipeline that leverages Sentiment Analysis, Topic Modeling, Transformers and Neural Networks to analyze multilingual customer feedback, classifying sentiment as positive, negative, or neutral.

In the **first part** of the project, we investigate multilingual sentiment analysis and topic modeling for consumer reviews, focusing on insights across English, French, and Spanish datasets using state-of-the-art transformer models to classify sentiments into positive, neutral, and negative categories. Subsequently, we apply topic modelling to gain deeper insights into customer feedback on our product.

In the **second part**, we used Neural Networks to classify customer feedback. Tokenized review text is processed with LSTM layers to capture sequential patterns, and metadata like language and topics is integrated. By building our sentiment analysis model from scratch, we aimed to tailor it for nuanced, multilingual, domainspecific sentiment classification.

Objectives

Leverage transformers to enhance sentiment classification accuracy and handle complex, multilingual datasets.

Use topic modeling to uncover customer frustrations by analyzing themes in feedback, providing actionable insights to improve products and address key pain points.

Develop a multilingual review-reading pipeline to classify customer feedback into positive, neutral, and negative sentiments across English, French, and Spanish datasets.

Methodology

Figure 1: Multimodal & Multilingual Pipeline for Sentiment Review Reading

- > Data Preprocessing: Reviews in English, French, and Spanish were tokenized, lemmatized, and cleaned. Non-Roman script reviews were excluded, and the dataset was balanced across sentiment categories.
- > Topic Modeling: BERTopic, LDA, LSA, and NMF were leveraged to extract topics across languages.
- > Sentiment Analysis Models: VADER served as a baseline for English reviews, while multilingual BERT-based models compared for more accurate sentiment classification.
- > Neural Network Sentiment Classification: multimodal LSTM-based network processed text sequences (via embeddings) and structured features (language, topic) for improved sentiment predictions.

Models

Topic Modeling

Aspect	NMF	LSA	LDA	BERTOPIC		
Methodology	Non-negative matrix factorization.	Singular Value Decomposition (SVD).	Probabilistic topic modeling.	Clustering-based using embeddings.		
Input	TF-IDF matrix.	Document-term matrix.	Document-term matrix.	Transformer embeddings + TF- IDF		
Output	Non-negative topic- word and doc-topic matrices.	Reduced matrix capturing latent semantics.	Topic distributions for docs and words.	Topic representations with embeddings and keywords		

Multilingual & Multimodal Neural Network

Model	Test Accuracy (%)	Test Loss		
Activation Functions				
ReLU	68.59	0.77		
Tanh	67.80	0.76		
Leaky ReLU	67.41	0.77		
ELU	68.35	0.76		
Custom Weights & Preprocessing				
Custom Weights	65.00	0.74		
Lemmatized Reviews	48.19	0.97		
# of Hi	dden Layers (wit	h ReLU)		
3	67.00	0.77		
4	68.59	0.77		
5	66.32	0.78		
Table 2: Com	parison of Model Pe	erformance		

Results

Topic Modeling

Figure 5: LDA Top 3 Topics in BERT-Predicted Negative Reviews (1- and 2-Star Ratings)

Baseline (Vader, English only)

Multilingual & Multimodal Neural Network

Comparison of

Compari	can of				(,	0-	,					
Comparis											Posit	$_{ m tive}$	0.69
	ation Perf										Nega	tive	0.70
of NN with VADER Baseline			Neur	Neural Network (Multimodal & Multilingual)					rual)	Neutral		0.65	
											Posit	$_{ m tive}$	0.72
			O	er	all A	ccura	асу	: Baseli	ne = 0.56	, Neur	al No	etwor	k = 0.69
Confu	ısion Matrix: R	eal Sentiment v	s. VADER Sent	mer	it		С	onfusion Matrix	for the Multimodal	& Multilingua	INN		
					- 8000	Negati	ive -	4739	1126	825		- 4500	
negative -	4677	1771	3552		- 7000	Wegue	•		1120	023		- 4000	
- O-					- 6000 - 5000	Labels Neut		1301	4249	1261		- 3500 - 3000	
True label	1352	724	2924		- 4000	Tree L	lai 🧻	1501	4245	1201		- 2500	
					- 3000							- 2000	
positive -	694	652	8654		- 2000	Positi	ve -	818	1011	4921		- 1500	
					- 1000				,			1000	
	negative	neutral	positive		_			Wegative	Weitig	Positive			
		Predicted label							Predicted Labels				

Figure 6: Confusion Matrices for Comparison of Model Performance

- > Better Neutral Sentiment Handling: VADER struggles with nuanced neutral reviews, often misclassifying them as positive or negative, while our model outperforms by incorporating context and multimodal features.
- > LSTM for Context Understanding: LSTM layer in our RNN captures sequential dependencies in text, improving the model's ability to understand subtle sentiment

Use case

Figure 7: Multilingual Sentiment Analysis with Neural Networks: Sample Predictions

Sentiment Analysis	Topic Modeling					
Track overall customer satisfaction through reviews	Identify recurring complaints: "long shipping times" "poor customer service"					
Highlight 5-star reviews and flag low-star reviews for further investigation	Identify specific areas for improvement: "battery life", "screen durability" in electronics reviews					

Figure 8: From Sentiment Analysis to Topic Modeling: Insights from Customer Reviews

Conclusion

Using sentiment analysis models, we extracted positive and negative reviews to perform topic modeling, gaining insights into recurring themes and analyzing customer feedback in our product reviews.

Sentiment Analysis & Topic Modeling Insights

- > Extracted themes from positive and negative reviews in English, French, and Spanish.
- > Identified common issues like poor product quality, functionality problems, delivery delays, and refund challenges across all languages.
- Language-specific insights:
 - > English: Broken products, delivery inefficiencies, unclear return policies.
 - French: Undelivered packages, dissatisfaction with size and fit, courier
- > **Spanish:** Fragile products, poor craftsmanship, need for simplified returns.

Neural Network Insight

Advantage Over VADER:

VADER struggles with nuanced expressions, neutral sentiment, and multilingual data. By leveraging LSTM layers for sequential text patterns and integrating metadata (e.g., language, topics), our model excels in context-aware sentiment classification.

Comparison to Transformer Models:

BERT-based techniques achieved higher accuracy in sentiment classification, particularly for positive and negative labels.

Takeaway:

Sentiment F1-Score

0.18

Negative

Neutral

While transformer-based models outperform in general sentiment classification, our custom NN complements them by offering actionable, domain-specific insights and better handling of neutral sentiment, making it an invaluable tool for business-focused analytics.

Acknowledgments

Grootendorst, Maarten. BERTopic Graph GitHub, https://github.com/MaartenGr/BERTopic.

Hugging Face's nlptown/bert-base-multilingual-uncased-sentiment

Hugging Face's LiYuan/amazon-review-sentiment-analysis:

nttps://huggingface.co/LiYu<u>an/amazon-review-sentiment-analysis</u>

Hugging Face's cardiffnlp/twitter-xlm-roberta-base-sentiment:

Kapadia, Kavita. "Introduction to Topic Modeling." GitHub, 2018,

https://github.com/kapadias/medium-articles/blob/master/natural-language-processing