Provas e Exercícios

Ref. H. D. Ebbnghaus Primavera 2022

Contents

- 1 Sintaxe das Linguagens de Primeira Ordem
 2 Semântica das Linguagens de Primeira Ordem
 4
- 3 Cálculo de Sequentes 15

1 Sintaxe das Linguagens de Primeira Ordem

Exercício 1.3. Seja $\alpha : \mathbb{N} \to \mathbb{R}$ dado. Para $a, b \in \mathbb{R}$ tq a < b mostre que $\exists c \in I := [a, b]$ tq $c \notin \operatorname{Im}(\alpha)$. Conclua disso que I, e portanto \mathbb{R} , são incontáveis.

Proof. Seja $I_0 := [a, b]$ e defina indutivamente $I_{n+1} := I_n \setminus \{\alpha(n)\}$, obviamente $I_0 \supseteq I_1 \supseteq \ldots$ forma uma sequência de intervalos encaixantes e, por estarmos em \mathbb{R} , vale que

$$\bigcap_{n\in\mathbb{N}}I_n\neq\emptyset$$

como $\alpha(k) \notin I_n, \forall k \leq n$, então, em particular, $\alpha(k) \notin \bigcap_{n \in \mathbb{N}} I_n, \forall k \in \mathbb{N}$, i.e., $c \notin \bigcap_{n \in \mathbb{N}} \forall c \in \text{Im}(\alpha)$

Exercício 1.4. Prove que se $M_0, M_1, \dots \leq \aleph_0$, então

$$\bigcup_{n\in\mathbb{N}} M_n \le \aleph_0$$

e o utilize para provar o Lema 1.2.

Proof. O primeiro teorema é facilmente provável utilizando um argumento similar ao da Diagonal de Cantor: Sabemos que existe uma bijeção $\alpha_i : \mathbb{N} \to M_i, \forall i \in \mathbb{N}$, equivalente a uma sequência $\alpha_{i0}, \alpha_{i1}, \ldots$ tq $M_i = \{\alpha_{in} \mid n \in \mathbb{N}\}$, construindo a matriz $a_{ij} := \alpha_{ij}$ utilizamos a diagonal para enumerar todos os elementos da matriz.

Definindo $M_n:=\mathbb{A}^n$, o conjunto de strings de comprimento n, é fácil mostrar por indução que $M_i\leq\aleph_0, \forall i\in\mathbb{N},$ com isso

$$\bigcup_{n\in\mathbb{N}} M_n = \mathbb{A}^* \le \aleph_0.$$

Como $\mathbb{A}^* \geq \aleph_0$ pelo teorema de Schröder-Bernstein $\mathcal{A}^* \approx \aleph_0$.

Exercício 1.5. Demonstre o Teorema de Cantor: não existe $\alpha: M \to \mathcal{P}(M)$ sobrejetivo e, portanto, bijetivo.

Proof. Seja $S := \{a \in M \mid a \notin \alpha(a)\} \in \mathcal{P}(M)$, assumindo por hipótese que existe α sobrejetivo, então $\exists s \in M$ tq $\alpha(s) = S$. Se $s \in S$, por definição $s \notin \alpha(s) = S$, contradição. Se $s \notin S$, por definição $s \in \alpha(s) = S$, contradição, portanto não existe tal $s \in M$.

Exercício 4.6. (a) Seja \mathfrak{C}_v o cálculo consistindo das seguintes regras:

Mostre que para toda variável x e S-termo t, x t é derivável em \mathfrak{C}_v sse $x \in \mathsf{var}(t)$.

(b) Dê um resultado para SF análogo ao resultado para var em (a).

Proof. (a)

- (i) Se $x \in \mathsf{var}(t)$ então x t é derivável em \mathfrak{C}_v : Se t = x então $x \in \mathsf{var}(t)$ e pela $1^{\underline{a}}$ regra x t é derivável. Se $t = t_i$ e $x \in \mathsf{var}(t_i)$ então, seguindo a definição, $x \in f(t_1 \dots t_n)$.
- (ii) Se x t é derivável em \mathfrak{C}_v então $x \in \mathsf{var}(t)$: Se t = x a primeira regra garante que $x \in \mathsf{var}(t)$. Se $t = ft_1 \dots t_n$ então existe um x t_i em \mathfrak{C}_v , como todos termos dessa forma que existem partem de uma regra sem premissa (regra 1) então $x \in \mathsf{var}(t_i)$ logo $x \in \mathsf{var}(ft_1 \dots t_n)$.
- (b) Seja o cálculo \mathfrak{C}_a definido pelas regras:

$$\frac{}{t_m \doteq t_n \quad t_m \doteq t_n} \; ; \quad \frac{\varphi \quad \psi}{\varphi \quad \neg \psi} \; ; \quad \frac{\varphi \quad \psi}{\varphi \quad (\varphi * \psi)} \; * = \land, \lor, \rightarrow, \leftrightarrow; \quad \frac{\varphi \quad \psi}{\varphi \quad Qx\psi} \; Q = \forall, \exists.$$

Para todo termo t_m, t_n e toda variável $x. \varphi \psi$ é derivável em \mathfrak{C}_a sse $\varphi \in \mathsf{SF}(\psi)$.

Exercício 4.7. Altere o cálculo de fórmulas omitindo os parênteses que delimitam as fórmulas introduzidas da forma $\varphi \, \Box \, \psi$. Mostre que tais fórmulas não terão mais uma única decomposição e que SF não será mais uma função bem definida.

Proof. Pegue, por exemplo, a fórmula $\varphi := \exists x Px \land Qy$, podemos, utilizando o cálculo de fórmulas, construir duas derivações diferentes da mesma fórmula:

- 1. Px, (F2) em P e x;
- 2. Qy, (F2) em Q e y;
- 3. $Px \wedge Qy$, (F4) em (1) e (2) com \wedge ;
- 4. $\exists x Px \land Qy$, (F5) em (3) usando \exists e x.

e a outra altera somente os passos (3) e (4) para:

- 1. $\exists x P x$, (F5) em (1) usando \exists e x;
- 2. $\exists x Px \land Qy \ x$, (F4) em (2) e (3) com \land .

Obviamente $SF(\varphi) = \{\varphi, Px \land Qy, Qy, Px\}$ utilizando a primeira derivação e $SF(\varphi) = \{\varphi, \exists x Px, Qy, Px\}$ utilizando a segunda.

Exercício 4.8. Definimos uma S-fórmula em notação polonesa (S-P-fórmula) como as strings em \mathbb{A}_S tq a regra (F4) é alterada pra: Se φ, ψ são S-P-fórmulas, então também são $\varphi\psi$, com $\varphi = \wedge, \vee, \rightarrow, \leftrightarrow$.

Proof. Precisamos antes provar o análogo ao **Lema 4.2.(b)** para S-P-fórmulas: para $\varphi \neq \varphi'$, φ não é um segmento inicial próprio de φ' . Se $\varphi = \wedge \chi \psi$, assuma por contradição que φ é um segmento inicial próprio de φ' , i.e., existe $\zeta \neq \Box$ tq $\varphi \zeta = \wedge \psi \chi = \varphi'$, mas como φ' começa com \wedge este só pode ser formado a partir de (F4), portanto $\varphi = \wedge \chi' \psi'$ para algumas χ', ψ' S-P-fórmulas. Podemos então cancelar \wedge e ficar com $\chi \psi \zeta = \chi' \psi$, mas, pela hipótese de indução, se χ é um segmento próprio de χ' , só pode ser o caso que $\chi = \chi'$, o mesmo vale para ψ e ψ' , logo $\zeta = \Box$, contradição.

Para provar o **Lema 4.3.(b)** provemos primeiro que se $\varphi_1 \dots \varphi_n = \varphi'_1 \dots \varphi'_n$, então $\varphi_i = \varphi'_i$ por indução. Caso base: φ_1 é segmento inicial próprio de φ'_1 , pelo **Lema 4.2.(b)** temos $\varphi_1 = \varphi'_1$. Hipótese de indução: assuma que $\varphi_i = \varphi'_i$, logo podemos cancelá-lo, o que implica que φ_{i+1} é segmento inicial próprio de φ'_{i+1} , i.e., $\varphi_{i+1} = \varphi'_{i+1}$.

Seja agora $n \neq m$, assuma sem perda de generalidade que n = m + k para k > 0, logo $\varphi_1 \dots \varphi_n = \varphi'_1 \dots \varphi'_m$, da prova anterior temos então que $\square = \varphi'_{n+1} \dots \varphi'_m$, contradição, logo k = 0. A prova do **Lema 4.4.(b)** é trivial, basta definirmos a função SF para \mathcal{S} -P-fórmulas, o que é muito simples.

Exercício 4.9. Seja $t_1, \ldots, t_n \in \mathcal{T}^{\mathcal{S}}$ de comprimento k, para $n \geq 1$. Mostre que $\exists \xi, \eta \in \mathbb{A}^*_{\mathcal{S}}$ unicamente determinados e $t \in \mathcal{T}^{\mathcal{S}}$ tq o comprimento de ξ é $1 \leq i < k$ e $t_1 \ldots t_n = \xi t \eta$.

Proof. Seja $i = \sum_{j=0}^m \log(t_j)$ para algum m < n, nesse caso $t = t_{m+1}$ e $\eta = t_{m+2} \dots t_n$ podendo ser possivelmente \square . Se todos os termos são constantes ou variáveis este sempre é o caso, se for uma função é possível pararmos no meio de um termo $t_m = ft'_1 \dots t'_p$, nesse caso se ξ terminar antes de t'_q pegamos $t = t'_{q+1}$ e η como o resto.

Exercício 5.2. Mostre que o cálculo \mathfrak{C}_{nf} permite derivar precisamente aquelas strings da forma x φ no qual $\varphi \in \mathcal{L}^{\mathcal{S}}$ tq $x \notin \text{free}(\varphi)$:

$$\overline{x \quad t_1 \doteq t_2} \text{ Se } t_1, t_2 \in \mathcal{T}^{\mathcal{S}} \text{ e } x \notin \mathsf{var}(t_1) \cup \mathsf{var}(t_2);$$

$$\frac{1}{x-Rt_1\dots t_n}$$
 Se $R\in\mathcal{S}$ é n-ária, $t_1,\dots,t_n\in\mathcal{T}^{\mathcal{S}}$ e $x\notin\bigcup_{n\in\mathbb{N}}\mathsf{var}(t_n)$;

$$\frac{x-\varphi}{x-\neg\varphi}\;;\quad \frac{(x-\varphi)-(x-\psi)}{x-(\varphi*\psi)}\;*=\land,\lor,\rightarrow,\leftrightarrow; \qquad \frac{x-\varphi}{x-Qx\varphi}\;; \qquad \frac{x-\varphi}{x-Qx\varphi}\;Q=\forall,\exists;$$

```
\varphi = t_1 = t_2: por definição x \notin \operatorname{free}(\varphi); \varphi = Rt_1 \dots t_n: Também por definição x \notin \operatorname{free}(\varphi); \varphi = Qx\psi nesse caso x \notin \operatorname{free}(\varphi) = \operatorname{free}(\psi) \setminus \{x\}; (*) Portanto todas as fórmulas \varphi deriváveis com premissa livre não tem uma ocorrência livre de x. \varphi = \neg \psi: Se \neg \psi é derivável, então \psi também é, mas se \psi é derivável em \mathfrak{C}_{nf} então, por (*), x \notin \operatorname{free}(\psi) \to x \notin \operatorname{free}(\neg \psi); \varphi = (\psi * \chi): O argumento é análogo ao de cima, ambos \psi, \chi tem de ser derivável e, por (*), não há ocorrência livre neles, o que implica que não há em (\psi * \chi).

(\Leftarrow) Agora assumindo x \notin \operatorname{free}(\varphi): \varphi = t_1 = t_2: então ela é derivável pela regra 1; \varphi = Rt_1 \dots t_n: então ela é derivável pela 2^a regra; \varphi = Qx\psi: a última e penúltima regra garantem que é derivável; \varphi = \neg \psi: então x \notin \operatorname{free}(\varphi), portanto a 3^a regra garante que é derivável; \varphi = (\psi * \chi): Se x não ocorre livre em \varphi então ela não ocorre livre em ambos, portanto a 5^a regra garante sua derivação.
```

2 Semântica das Linguagens de Primeira Ordem

Exercício 1.4. Seja $\mathfrak{I} := (\mathfrak{A}, \beta)$ tq $\mathfrak{A} := (\mathbb{N}, +, \cdot, 0, 1, <)$ e $\beta(v_n) := 2n$ para $n \ge 0$. Interprete as seguintes fórmulas:

- a) $\exists v_0 v_0 + v_0 \doteq v_1$;
- b) $\exists v_0 v_0 \cdot v_0 \doteq v_1;$
- c) $\exists v_1 v_0 \doteq v_1$;
- d) $\forall v_0 \exists v_1 v_0 \doteq v_1$;
- e) $\forall v_0 \forall v_1 \exists v_2 (v_0 < v_2 \land v_2 < v_1).$

Proof. (⇒) Fazendo indução em cada regra:

Proof. $\mathfrak{I} \models a$) sse há um $a \in \mathbb{N}$ to $a + a = \beta(v_1) = 2$, de fato a = 1 satisfaz;

- $\mathfrak{I} \models b$) sse há um $a \in \mathbb{N}$ t
q $a \cdot a = 2$, obviamente a equação $x^2 = 2$ não tem solução nos naturais, portant
o $\mathfrak{I} \not\models b$);
- $\mathfrak{I} \models c$) sse há um $a \in \mathbb{N}$ to 0 = a, o que é claramente verdade:
- $\mathfrak{I} \models d$) sse para todo $a \in \mathbb{N}$ existe um $b \in \mathbb{N}$ tq a = b, o que também é verdadeiro;
- $\mathfrak{I} \models e$) sse para todo $a, b \in \mathbb{N}$ existe um $c \in \mathbb{N}$ tq a < c e c < b. Em particular escolhendo b = a + 1 temos que existe um natural c tq a < c < a + 1 o que é falso, portanto $\mathfrak{I} \not\models e$).

Exercício 1.5. Seja $A \neq \emptyset$ e $A, \mathcal{S} < \aleph_0$ um conjunto de símbolos. Mostre que há uma quantidade finita de \mathcal{S} -estruturas com domínio A.

Proof. Seja $S = ((c_i)_{0 \le i \le n_1}, (R_i)_{0 \le i \le n_2}, (f_i)_{0 \le i \le n_3})$ e |A| = m, a quantidade total de associações

possíveis para cada elemento é:

$$\alpha_{R_i} := \{ Z \mid Z \subseteq A^n \}, \quad |\alpha_{R_i}| = \mathcal{P}(\alpha_{R_i}) = 2^m$$

$$\alpha_{f_i} := A^{(A^n)}, \quad |\alpha_{f_i}| = |A|^{|A^n|} = m^{(m^n)}$$

$$\alpha_{c_i} := (A^n)^{A^n}, \quad |\alpha_{c_i}| = |(A^n)|^{|A^n|} = (m^{n \cdot m^n})$$

Dessa forma, como todos são finitos e a união finita de conjuntos finitos é finita então o total de estruturas \mathcal{H} :

$$\mathcal{H} := \bigcup \left\{ \bigcup_{0 \leq i \leq n_1} \alpha_{R_i}, \bigcup_{0 \leq i \leq n_2} \alpha_{f_i}, \bigcup_{0 \leq i \leq n_3} \alpha_{c_i} \right\} < \aleph_0.$$

Exercício 1.6. Para S-estruturas $\mathfrak{A} = (A, \mathfrak{a})$ e $\mathfrak{B} = (B, \mathfrak{b})$ seja $\mathfrak{A} \times \mathfrak{B}$ a S-estrutura com domínio $A \times B$ satisfazendo:

Para $R \in \mathcal{S}$ n-ária e $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$:

$$R^{\mathfrak{A} \times \mathfrak{B}}(a_1, b_1) \dots (a_n, b_n) \leftrightarrow R^{\mathfrak{A}}a_1 \dots a_n \wedge R^{\mathfrak{B}}b_1 \dots b_n;$$

Para $f \in \mathcal{S}$ n-ária e $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$:

$$f^{\mathfrak{A} \times \mathfrak{B}}((a_1, b_1), \dots, (a_n, b_n)) := (f^{\mathfrak{A}}(a_1, \dots, a_n), f^{\mathfrak{B}}(b_1, \dots, b_n));$$

Para $c \in \mathcal{S}$:

$$c^{\mathfrak{A} \times \mathfrak{B}} := (c^{\mathfrak{A}}, c^{\mathfrak{B}});$$

Mostre que:

- (a) Se as \mathcal{S}_{gr} -estruturas $\mathfrak A$ e $\mathfrak B$ são grupos então $\mathfrak A \times \mathfrak B$ também é.
- (b) Se $\mathfrak{A},\mathfrak{B}$ são estruturas satisfazendo os axiomas de equivalência então $\mathfrak{A}\times\mathfrak{B}$ também satisfaz.
- (c) Se as $\mathcal{S}_{\mathsf{ar}}$ -estruturas $\mathfrak{A}, \mathfrak{B}$ são corpos, então $\mathfrak{A} \times \mathfrak{B}$ não é.

Proof. (a) Sejam $\mathfrak{A}=(A,\circ,e);\mathfrak{B}=(B,*,\varepsilon)$ e $\mathfrak{A}\times\mathfrak{B}=(A\times B,\circledast,\epsilon)$. Se $a,b,c\in\mathfrak{A};x,y,z\in\mathfrak{B}$ e $u,v,w\in\mathfrak{A}\times\mathfrak{B}$:

(i) $\forall u, v, w((u \circledast v) \circledast w = u \circledast (v \circledast w))$:

$$(\overbrace{(x,a)}^{u} \circledast \overbrace{(y,b)}^{v}) \circledast \overbrace{(z,c)}^{w} = (x \circ y, a * b) \circledast (z,c)$$

$$= (x \circ y \circ z, a * b * c)$$

$$= (x,a) \circledast (y \circ z, b * c)$$

$$= (x,a) \circledast ((y,b) \circledast (z,c))$$

$$(u \circledast v) \circledast w = u \circledast (v \circledast w).$$

(ii) $\forall u \exists v (u \circledast v) = \epsilon$:

$$(\overbrace{(x,a)}^{v} \circledast \overbrace{(y,b)}^{v}) = \overbrace{(e,\varepsilon)}^{\epsilon}$$

$$(x \circ y, a * b) = (e,\varepsilon)$$

$$\forall x \exists y (x \circ y = e) \land \forall a \exists b (a * b = \varepsilon).$$

(iii) $\exists \epsilon \forall u (u \circledast \epsilon = u)$:

$$(\overbrace{(x,a) \circledast (e,\varepsilon)}^{e}) = \overbrace{(x,a)}^{u}$$
$$(x \circ e, a \circ \varepsilon) = (x,a)$$
$$\exists e \forall x (x \circ e = x) \land \exists \varepsilon \forall a (a * \varepsilon = a).$$

- (b) Sejam $\mathfrak{A} = (A, R); \mathfrak{B} = (B, R), \mathfrak{A} \times \mathfrak{B} = (A \times B, \mathscr{R}) \text{ com } x, y, z \in \mathfrak{A}; a, b, c \in \mathfrak{B}; u, v, w \in \mathfrak{A} \times \mathfrak{B}$:
- (i) $\forall u(u\mathcal{R}u)$:

$$(x,a) \overset{u}{\mathscr{R}}(x,a) \leftrightarrow xRx \wedge aRa$$
$$\forall x(xRx) \wedge \forall a(aRa).$$

(ii) $\forall u, v(u\Re v \leftrightarrow v\Re u)$:

$$(x,a) \mathscr{R} (y,b) \leftrightarrow (y,b) \mathscr{R} (x,a)$$

$$xRy \wedge a\mathcal{R}b \leftrightarrow yRx \wedge b\mathcal{R}a$$

$$\forall x, y(xRy \leftrightarrow yRx) \wedge \forall a, b(a\mathcal{R}b \leftrightarrow b\mathcal{R}a)$$

(iii) $\forall u, v, w(u\Re v \wedge v\Re w \to u\Re w)$:

$$(x,a) \mathscr{R}(y,b) \wedge (y,b) \mathscr{R}(z,c) \to (x,a) \mathscr{R}(z,c)$$

$$(xRy \wedge a\mathcal{R}b) \wedge (yRz \wedge b\mathcal{R}c) \to xRz \wedge a\mathcal{R}c$$

$$(xRy \wedge yRz) \wedge (a\mathcal{R}b \wedge b\mathcal{R}c) \to xRz \wedge a\mathcal{R}c$$

$$\forall x, y, z(xRy \wedge yRz \to xRz) \wedge \forall a, b, c(a\mathcal{R}b \wedge b\mathcal{R}c \to a\mathcal{R}c)$$

(c) Sejam $\mathfrak{A}=(A,+,\cdot,0,1); \mathfrak{B}=(B,*,\times,\overline{0},\overline{1})$ e $\mathfrak{A}\times\mathfrak{B}=(A\times B,\oplus,\odot,\mathbf{0},\mathbf{1})$ com $x,y\in\mathfrak{A};a,b\in\mathfrak{B}$ e $u,v\in\mathfrak{A}\times\mathfrak{B}$:

Um dos axiomas é $\forall (u \neq \mathbf{0}) \exists v (u \oplus v = \mathbf{1})$:

$$(x, a) \oplus (y, b) = (1, \overline{1})$$

 $(x \cdot y, a * b) = (1, \overline{1})$

Se isso é verdade então, em particular, para ou x=0 ou $a=\overline{0}$ temos que $(0,b),(x,\overline{0})\neq \mathbf{0}$, logo ambos $0,\overline{0}$ possuiriam invreso, o que é falso.

Exercício 2.1. Mostre que para $x, y \in \{\top, \bot\}$:

- a) \rightarrow $(x,y) = \dot{\lor} (\dot{\neg} (x), y);$
- b) $\dot{\wedge}$ $(x,y) = \dot{\neg} (\dot{\vee} (\dot{\neg} (x), \dot{\neg} (y)));$
- c) \leftrightarrow $(x, y) = \dot{\wedge} (\dot{\rightarrow} (x, y), \dot{\rightarrow} (y, x)).$

	x	y	$\dot{\neg}$ (x)	$\dot{\vee} \ (\dot{\neg} \ (x), y)$	$\dot{\rightarrow} (x,y)$
	T	Т	Τ	Т	Т
Proof.	Т	\perp	Т		
	1	Т	Т	Т	Т
	1	Τ	Т	Т	Т

x	y	$\dot{\neg}$ (x)	$\dot{\neg} (y)$	$\dot{\vee} (\dot{\neg} (x), \dot{\neg} (y))$	$\dot{\neg} \left(\dot{\lor} \left(\dot{\neg} \left(x \right), \dot{\neg} \left(y \right) \right) \right)$	$\dot{\wedge} (x,y)$
T	Т	Τ	Τ	Τ	Т	Т
T	\perp		Т	Т	Τ	
	T	T	Т	Т	Τ	
	\perp	Т	Т	Т		

x	y	$\dot{\rightarrow} (x,y)$	$\dot{\rightarrow} (y, x)$	$\dot{\wedge} \ (\dot{\rightarrow} (x,y), \dot{\rightarrow} (y,x))$	$\leftrightarrow (x,y)$
T	Т	Т	Т	Т	Т
T	1		Т	Ι	
	Т	Т			
	T	Т	Т	Т	Т

Exercício 3.3. Seja P um símbolo de relação unária e f de função binária. Determine duas interpretações para cada fórmula uma que a satisfaça e outra que não:

- a) $\forall v_1 f v_0 v_1 \doteq v_0;$
- b) $\exists v_0 \forall v_1 f v_0 v_1 \doteq v_1;$
- c) $\exists v_0(Pv_0 \wedge \forall v_1 Pfv_0v_1)$.

Proof. a) Seja $\mathfrak{I} = (\mathbb{N}, R, \cdot)$ tq $\beta(v_0) = 0$, então $\mathfrak{I} \models a$) sse para todo $n \in \mathbb{N}$ vale $0 \cdot a = 0$, o que é fato. Entretanto para mesma interpretação com + temos a + 0 = 0, o que não é o caso.

- b) Interpretando com a mesma estrutura que em a) o que b) garante é a existência de um elemento neutro, o que é verdade. Pro caso de não satisfação basta retirarmos o elemento neutro do domínio.
- c) Seja Rx := x é par para mesma estrutura \Im com +, o que c) diz é que existe um x par tq para todo y, x + y é par, o que é claramente falso, use, entretanto, \cdot ao invés de +, então obviamente para todo y, xy é par se x for par.

Exercício 3.4. Uma fórmula sem \neg , \rightarrow e \leftrightarrow é denominada *positiva*. Prove que toda fórmula positiva é satisfatível.

Proof. Seja $\mathfrak{I}=(\mathfrak{A},\beta)$ tq $\mathsf{Dom}(\mathfrak{A})=\{a\}$ e $\beta(v)=a,$ com $R_i^{\mathfrak{A}}$ sendo o grafo da função identidade n-ária para todo i, assim como $f_i^{\mathfrak{A}}=$ id e $c_i^{\mathfrak{A}}=a$. De fato, $\mathfrak{I}(t)=a, \forall t\in\mathcal{T}^{\mathcal{S}}$. Por indução em fórmulas é claro que $\mathfrak{I}\models t_1\equiv t_2$ e $\mathfrak{R}t_1\dots t_n$, logo também satisfaz $\varphi\wedge\psi$ e $\varphi\vee\psi$, o mesmo para $\forall x\varphi\in\exists x\varphi$.

Exercício 4.9. Para fórmulas arbitrárias φ, ψ, χ prove que:

a)
$$(\varphi \vee \psi) \models \chi \text{ sse } \varphi \models \chi \text{ e } \psi \models \chi$$
;

b)
$$\models (\varphi \rightarrow \psi)$$
 sse $\varphi \models \psi$.

Proof. a) (\Rightarrow) Basta provarmos que $(\varphi \lor \psi \to \chi) \models \exists ((\varphi \to \chi) \land (\psi \to \chi)), \log o$

 $\varphi \vDash \chi$ e $\psi \vDash \chi$ sse para todo \Im , se $\Im \vDash \varphi$, então $\Im \vDash \chi$, i.e., $\Im \vDash (\varphi \to \chi)$ e, igualmente, $\Im \vDash (\psi \to \chi)$; sse $\Im \vDash ((\varphi \to \chi) \land (\psi \to \chi))$; sse $(\varphi \lor \psi) \vDash \chi$.

b) (⇐)

$$\varphi \vDash \psi$$
 sse para todo \Im se $\Im \vDash \varphi$ então $\Im \vDash \psi$;
sse para todo $\Im \vDash (\varphi \to \psi)$;
sse $\vDash (\varphi \to \psi)$.

Exercício 4.10. Mostre que:

- (a) $\exists x \forall y \varphi \models \forall y \exists x \varphi$;
- (b) $\forall y \exists x Rxy \not\models \exists x \forall y Rxy$.

Proof. (a) $\mathfrak{I} \models \exists x \forall y \varphi$ sse existe um $a \in A$ tq $\mathfrak{I} = \forall y \varphi$, então em particular existe um $a \in A$ tq $\mathfrak{I} = \exists x \forall y \varphi$ sendo $t \in A$ um termo genérico qualquer. Assim, devido a escolha arbitrária, concluímos que para todo $t \in A$ existe um $a \in A$ tq $\mathfrak{I} = \varphi$, i.e., $\mathfrak{I} \models \forall y \exists x \varphi$.

(b) $\mathfrak{I} \models \forall y \exists x Rxy$ sse para todo $a \in A$ existe um $t \in A$ tq $\mathfrak{I} \models Rta$, mas isso não necessariamente implica que exista um t tq Rta valha para todo a.

Obs: Lembre-se que a definição de satisfatibilidade é feita na metateoria que, por mais rigorosa que seja, é justificada pela noção intuitiva que temos de cada fórmula e justificada da mesma forma.

Exercício 4.11. Prove que para $Q = \forall, \exists$:

- a) $Qx(\varphi \wedge \psi) \models \exists (Qx\varphi \wedge Qx\psi);$
- b) $Qx(\varphi \lor \psi) \models \exists (\varphi \lor Qx\psi)$, se $x \notin free(\varphi)$;
- e justifique o motivo da assunção $x \notin free(\varphi)$.

Proof. Provarei para $Q=\forall$ porque é fácil ver que a intuição se estende pro outro caso.

- a) Obviamente se para todo $a \in A$ temos $\Im \frac{a}{x} \models \varphi$ e para todo $b \in A$ temos $\Im \frac{b}{x} \models \psi$, então para todo $c \in A$, $\Im \frac{c}{x} \models \varphi$ e $\Im \frac{c}{x} \models \psi$, i.e., para todo $c \in A$, $\Im \models (\varphi \land \psi)$, analogamente vale a volta. A justificativa se baseia no fato intuitivo de que se estamos variando pelo domínio todo de uma forma numa fórmula e de outra forma na outra, então podemos variar em ambas da mesma forma.
- b) $\mathfrak{I} \models \forall x \varphi$ sse para todo $a \in A$, $\mathfrak{I}_{x}^{\underline{a}} \models \varphi$, i.e., utilizamos a valoração β que interpreta x como a, mas como $x \notin \mathsf{free}(\varphi)$, então $\mathfrak{I}_{x}^{\underline{a}}(\varphi) = \mathfrak{I}(\varphi)$, a partir disso é fácil provar ambos b) e c).

Exercício 4.12. Sejam φ, ψ fórmulas tais que $\varphi \models \exists \psi$. Seja χ' obtido de χ substituindo todas as subfórmulas da forma φ por ψ . Mostre que para todo $\chi, \chi \models \exists \chi'$.

Proof. Provaremos por indução em fórmulas:

Se $\chi = \varphi$ é atômica então $\mathfrak{I} \models \varphi$ sse, por hipótese, $\mathfrak{I} \models \chi' = \psi$;

se $\chi = \neg \varphi$ então $\mathfrak{I} \models \chi$ s
se não vale $\mathfrak{I} \models \varphi$ s
se, por hipótese, não vale $\mathfrak{I} \models \psi$, i.e., $\mathfrak{I} \models \chi' = \neg \psi$;

se $\chi = \xi \vee \varphi$ então $\mathfrak{I} \vDash \chi$ sse $\mathfrak{I} \vDash \xi$ ou $\mathfrak{I} \vDash \varphi$ sse, por hipótese, $\mathfrak{I} \vDash \xi$ ou $\mathfrak{I} \vDash \psi$, i.e., $\mathfrak{I} \vDash \chi' = \xi \vee \psi$; se $\chi = \exists x \varphi$ então $\mathfrak{I} \vDash \chi$ sse existe um $a \in A$ tq $\mathfrak{I} = \varphi$ sse, por hipótese, existe um $a \in A$ tq $\mathfrak{I} = \varphi$, i.e., $\mathfrak{I} \vDash \chi' = \exists x \psi$.

Portanto $\chi \models \exists \chi'$.

Exercício 4.13. Prove o análogo ao 4.8. para relação de consequência.

Proof. Pelo Lema 4.4. é fácil estender o caso que o conjunto é satisfatível para consequência lógica.

Exercício 4.14. Um conjunto Φ de sentenças é dito independente se não há um $\varphi \in \Phi$ tq $\Phi \setminus \{\varphi\} \models \varphi$. Mostre que os conjuntos Φ_{gr} e Φ_{eq} de axiomas dos grupos e relações de equivalência são independentes.

$$Proof. \ \ (a) \ \Phi_{gr} = \{\underbrace{\forall uvw((u \circ v) \circ w = u \circ (v \circ w))}_{\varphi_1}, \underbrace{\forall u \exists v(u \circ v = e)}_{\varphi_2}, \underbrace{\exists c \forall u(u \circ c = u)}_{\varphi_3}\}$$

- (i) Como φ_3 garante a existência de um elemento neutro, mas não necessariamente precisamos interpretar e como este, peguemos $(\mathbb{N}\setminus\{1\},\cdot,0)$, de fato esta é associativa e possui um número que se operado com qualquer outro no domínio resulta em 0, sendo este, é claro, também o 0, então $\mathfrak{I} \models \Phi_{\mathrm{gr}} \setminus \{\varphi_3\}, \text{ mas } \mathfrak{I} \not\models \varphi_3;$
- (ii) Como φ_2 garante a existência de um inverso, basta tomarmos a estrutura $(\mathbb{N}, +, 0)$ em \mathfrak{I} que vale $\mathfrak{I} \models \Phi_{gr} \setminus \{\varphi_2\}$, mas $\mathfrak{I} \not\models \varphi_2$;
- (iii) Como φ_1 garante associativ
idade tomamos o operador \circ como não associativo, por exemplo a estrutura $(\mathbb{Z}, -, 0)$ em \mathfrak{I} garante que $\mathfrak{I} \models \Phi_{gr} \setminus \{\varphi_1\}$, mas $\mathfrak{I} \not\models \varphi_1$.

(b)
$$\Phi_{\text{eq}} = \{ \underbrace{\forall a(aRa)}_{\varphi_1}, \underbrace{\forall ab(aRb \leftrightarrow bRa)}_{\varphi_2}, \underbrace{\forall abc(aRb \land bRc \rightarrow aRc)}_{\varphi_3} \}$$

(i) Para $\Phi_{\text{eq}} \setminus \{\varphi_3\}$ basta tomar (\mathbb{Z}, \cdot, R) to aRb see $a \cdot b \geqslant 0$. Assim ambos φ_1, φ_2 são satisfeitos,

mas escolhendo b=0 em φ_3 tal relação não é sempre verdade;

- (ii) Para $\Phi_{eq} \setminus \{\varphi_2\}$ basta tomar (\mathbb{N}, \geq) , tal qual não é simétrica;
- (iii) Para $\Phi_{eq} \setminus \{\varphi_1\}$ basta tomar $A = \{a\}$ e (A, R) tq $\forall a \in A(aRa)$.

Exercício 4.15. (Generalização do Exercício 1.6.). Seja $I \neq \emptyset$, $\forall i \in I$, seja \mathfrak{A}_i uma \mathcal{S} -estrutura. Denotaremos por $\prod_{i \in I} \mathfrak{A}_i$ a S-estrutura do produto direto das S-estruturas \mathfrak{A}_i :

$$\mathsf{Dom}\left(\prod_{i\in I}\mathfrak{A}_i\right):=\left\{g\ \bigg|\ g:I\to\bigcup_{i\in I}\mathsf{Dom}(\mathfrak{A}_i),\ \mathrm{e}\ g(i)\in\mathsf{Dom}(\mathfrak{A}_i), \forall i\in I\right\}$$

i.e., n-tuplas de todas as possíveis combinações de elementos no domínio de cada estrutura (que denotaremos por $\langle g(i) \mid i \in I \rangle$), e:

para $R \in \mathcal{S}$ n-ária e $g_1, \ldots, g_n \in \prod_{i \in I} \mathsf{Dom}(\mathfrak{A}_i)$:

$$R^{\mathfrak{A}}g_1 \dots g_n \text{ sse } R^{\mathfrak{A}_i}g_1(i) \dots g_n(i), \forall i \in I;$$

para $f \in \mathcal{S}$ n-ária e $g_1, \ldots, g_n \in \prod_{i \in I} \mathsf{Dom}(\mathfrak{A}_i)$:

$$f^{\mathfrak{A}}(g_1,\ldots,g_n):=\langle f^{\mathfrak{A}_i}(g_1(i),\ldots,g_n(i))\mid i\in I\rangle;$$

 $e c^{\mathfrak{A}} := \langle c^{\mathfrak{A}_i} \mid i \in I \rangle \text{ para } c \in \mathcal{S}.$

Prove que para $t \in \mathcal{T}^{\mathcal{S}}$ se $\text{var}(t) \subseteq \{v_0, \dots, v_{n-1}\}$ e $g_0, \dots, g_{n-1} \in \prod_{i \in I} \text{Dom}(\mathfrak{A}_i)$, então

$$t^{\mathfrak{A}}[g_0, \dots, g_{n-1}] = \langle t^{\mathfrak{A}_i}[g_0(i), \dots, g_{n-1}(i)] \mid i \in I \rangle \ (*)$$

Proof. Se t=c, então, por definição, $c^{\mathfrak{A}}=\langle c^{\mathfrak{A}_i}\mid i\in I\rangle$. Se t=x, então, novamente por definição, $t^{\mathfrak{A}}[g_0]=g_0=\langle g_0(i)\mid i\in I\rangle$. Provados os casos bases assuma (*) como hipótese indutiva. Se $t=f(t_1,\ldots,t_n)$, então $t^{\mathfrak{A}}=f^{\mathfrak{A}}(t_1^{\mathfrak{A}},\ldots,t_n^{\mathfrak{A}})$, por hipótese para cada t_i temos $t_i^{\mathfrak{A}}=g_k$, para algum g_k , logo $t^{\mathfrak{A}}=f^{\mathfrak{A}}(g_{i_1},\ldots,g_{i_n})$ que, por definição, é igual a $\langle f^{\mathfrak{A}_i}(g_{i_1}(i),\ldots,g_{i_n}(i))\mid i\in I\rangle$.

Exercício 4.16. Fórmulas deriváveis no seguinte cálculo são denominadas fórmulas Horn:

$$(\neg \varphi_1 \lor \cdots \lor \neg \varphi_n \lor \varphi)$$
 Se $n \in \mathbb{N}$ e $\varphi_1, \ldots, \varphi_n, \varphi$ são atômicas;

$$\neg \varphi_0 \lor \cdots \lor \neg \varphi_n$$
 Se $n \in \mathbb{N}$ e $\varphi_0, \ldots, \varphi_n$ são atômicas;

$$\frac{\varphi,\psi}{(\varphi\wedge\psi)}$$
; $\frac{\varphi}{\forall x\varphi}$; $\frac{\varphi}{\exists x\varphi}$.

Mostre que se φ é uma sentença Horn e se $\mathfrak{A}_i \models \varphi, \forall i \in I$, então $\prod_{i \in I} \mathfrak{A}_i \models \varphi$.

Proof. Pelo teorema anterior temos $\prod_{i \in I} \mathfrak{A}_i \models (t_1 \doteq t_2)$ sse $t_1^{\mathfrak{A}} = \langle t_1^{\mathfrak{A}_i} \mid i \in I \rangle = t_2^{\mathfrak{A}} = \langle t_2^{\mathfrak{A}_i} \mid i \in I \rangle$, i.e., $t_1^{\mathfrak{A}_i} = t_2^{\mathfrak{A}_i}, \forall i \in I$, então obviamente se cada \mathfrak{A}_i o satisfaz, o produto direto também. É fácil estender o argumento paras outras fórmulas atômicas. Disso é fácil tirar que se todas as estruturas satisfazem negações e disjunções de fórmulas atômicas, então o produto direto também satisfaz. Provado o caso base assuma como hipótese de indução que se $\mathfrak{A}_i \models \varphi, \forall i \in I$, então $\prod_{i \in I} \mathfrak{A}_i \models \varphi$. Se $\mathfrak{A}_i \models (\varphi \land \psi)$, então $\mathfrak{A}_i \models \varphi$ e $\mathfrak{A}_i \models \psi$, por hipótese isso implica que $\prod_{i \in I} \mathfrak{A}_i \models \varphi$ e $\prod_{i \in I} \mathfrak{A}_i \models \psi$, i.e., $\prod_{i \in I} \mathfrak{A}_i \models (\varphi \land \psi)$. Da mesma forma, $\mathfrak{A}_i \models \exists x \varphi$ sse existe $a \in \mathsf{Dom}(\mathfrak{A}_i)$ tq $\mathfrak{A}_i \stackrel{\cdot}{a} \models \varphi$, se em cada domínio das \mathfrak{A}_i há um elemento que satisfaz, em particular pegando $a_i \in \mathsf{Dom}(\mathfrak{A}_i)$ temos que a n-tupla $(a_1, \ldots, a_n) \in \mathsf{Dom}\left(\prod_{i \in I} \mathfrak{A}_i\right)$ também satisfaz, o argumento é análogo para $\forall x \varphi$.

Exercício 5.9. Seja $\mathcal{S} < \aleph_0$ um conjunto de símbolos e \mathfrak{A} uma \mathcal{S} -estrutura tq $\mathsf{Dom}(\mathfrak{A}) < \aleph_0$. Mostre que há $\varphi_{\mathfrak{A}} \in \mathcal{L}_0^{\mathcal{S}}$ cujos modelos são exatamente aquelas \mathcal{S} -estruturas isomórficas a \mathfrak{A} .

Proof. Construiremos $\varphi_{\mathfrak{A}}$ em função de \mathfrak{A} , enumere $\mathsf{Dom}(\mathfrak{A}) = \{a_0, \dots, a_{n-1}\}$. Como $\mathcal{S} < \aleph_0$, então para especificamente $x_1, \dots, x_n \in \mathsf{Var}$ defina $\Phi := \{\varphi \mid \varphi \text{ \'e atômica e free}(\varphi) = \{x_1, \dots, x_n\}\}$ o conjunto de \mathcal{S} -fórmulas atômicas com exatamente x_1, \dots, x_n como variáveis livres. Obviamente $\Phi < \aleph_0$, enumere portanto $\Phi = \{\varphi_1, \dots, \varphi_k\}$. Defina por indução $\Psi_0 := \emptyset$ e

$$\Psi_m := \begin{cases} \Psi_{m-1} \cup \{\varphi_m\}, \text{ se } \mathfrak{A} \models \varphi_m[a_1, \dots, a_n]; \\ \Psi_{m-1} \cup \{\neg \varphi_m\}, \text{ se } \mathfrak{A} \not\models \varphi_m[a_1, \dots, a_n]. \end{cases}$$

com isso o conjunto

$$\Psi := \bigcup_{i=1}^k \Psi_i$$

tem cardinalidade igual a Φ e, portanto, é finito. Obviamente Ψ possui todas as informações necessárias para definirmos todas as funções, relações e constantes e suas dependências com os elementos do domínio, portanto toda estrutura que satisfaz Ψ terá tais propriedades, basta agora garantir que o domínio dessa nova estrutura esteja em bijeção com o de \mathfrak{A} , defina então:

$$\varphi_{\mathfrak{A}} := \exists x_1 \dots x_n \left(\bigwedge \Psi \wedge \forall x \left(\bigvee_{i=1}^n x \doteq x_i \right) \right)$$

Exercício 5.10. Mostre que: (a) A relação < é elementarmente definível em $(\mathbb{R}, +, \cdot, 0)$, i.e., existe uma fórmula $\varphi \in \mathcal{L}_2^{\{+, \cdot, 0\}}$ tq $\forall a, b \in \mathbb{R}$:

$$(\mathbb{R}, +, \cdot, 0) \models \varphi[a, b] \text{ sse } a < b.$$

(b) A relação < não é elementarmente definível em $(\mathbb{R}, +, 0)$.

Proof. (a) Tome $\varphi = \exists c(\neg(c \doteq 0) \land (b \doteq a + c^2))$, dessa forma $(\mathbb{R}, +, \cdot, 0) \models \varphi[a, b]$ sse a < b. (b) Seja $\pi : \mathfrak{A} \cong \mathfrak{A}$ um automorfismo em $\mathfrak{A} = (\mathbb{R}, +, \cdot, 0)$ tq $\pi(a) = -a$ que é o $c \in \mathbb{R}$ tq a + c = 0. Para provar que π é um automorfismo precisamos:

- (i) π é uma bijeção;
- (ii) $\pi(a+b) = \pi(a) + \pi(b)$;
- (iii) $\pi(0) = 0$.

Como todos são verficados isso garante que é um automorfismo. Agora vejamos que se existe um $\varphi[a,b]$ tq $\mathfrak{A} \models \varphi[a,b]$ sse a < b então como π é estritamente decrescente, $\mathfrak{A} \models \varphi[\pi(a),\pi(b)]$ sse a > b. Sabemos, também, pelo **Lema do Isomorfismo** que $\mathfrak{A} \models \varphi[a,b]$ sse $\mathfrak{A} \models \varphi[\pi(a),\pi(b)]$, i.e., a < b sse b < a, o que é uma contradição, portanto não existe tal $\varphi[a,b]$ e, com isso, < não é elementarmente definível.

Exercício 5.11. Alterando o cálculo das fórmulas universais substituindo o quantificador universal em (iii) por um existencial conseguimos o cálculo de fórmulas existenciais. Prove que:

- a) A negação de uma sentença universal é logicamente equivalente a uma sentença existencial, e vice versa;
- b) Se $\mathfrak{A} \subseteq \mathfrak{B}$ e φ é uma sentença existencial, então $\mathfrak{A} \models \varphi \implies \mathfrak{B} \models \varphi$.

Proof. a) Caso base para ambas: Se φ é livre de quantificadores, obviamente $\neg \varphi$ também é, portanto se φ é uma sentença universal, $\neg \varphi$ é existencial e vice versa. Tomemos como hipótese indutiva que se φ é universal/existencial, então $\neg \varphi$ é existencial/universal. Se $\varphi = (\psi \land \chi)$, então $\neg \varphi$ é logicamente equivalente a $\neg \psi \lor \neg \chi$, assim como para $\varphi = (\chi \lor \psi)$ temos $\neg \psi \land \neg \chi$, por hipótese é fácil ver que a propriedade é preservada para ambos os casos. Da mesma forma se $\varphi = \forall x\psi$, então $\neg \varphi$ é logicamente equivalente a $\exists x \neg \varphi$, o caso contrário é análogo.

b) Por a) sabemos que $\neg \varphi$ é logicamente equivalente a uma fórmula universal, se $\mathfrak{A} \models \varphi$, então $\mathfrak{A} \not\models \neg \varphi$, pela contraposição do **Corolário 5.8.** temos que $\mathfrak{B} \not\models \neg \varphi$, i.e., $\mathfrak{B} \models \varphi$.

Exercício 6.7. Formalize as seguintes declarações usando o conjunto de símbolos de 6.2.:

- a) Todo real positivo tem uma raiz quadrada positiva;
- b) Se ρ é estritamente monótona, então ρ é injetiva;
- c) ρ é uniformemente contínua em \mathbb{R} ;
- d) para todo x, se ρ é diferenciável em x, então ρ é contínua em x.

 $\begin{array}{l} \textit{Proof. a)} \ \forall x \exists y (0 < y \land y \cdot y \doteq x); \\ \text{b)} \ (\forall x \forall y (x < y \rightarrow \rho(x) < \rho(y)) \lor \forall x \forall y (x < y \rightarrow \rho(y) < \rho(x))) \rightarrow \forall x \forall y (\rho(x) \doteq \rho(y) \rightarrow x \doteq y); \end{array}$

- c) $\forall u (0 < u \rightarrow \exists v (0 < v \rightarrow \forall x \forall y (\Delta(x, y) < v \rightarrow \Delta(\rho(x), \rho(y)) < u)));$
- d) Sejam

$$C(x) := \forall u (0 < u \to \exists v (0 < v \to \forall y (\Delta(y, x) < v \to \Delta(\rho(y), \rho(x)) < u)));$$

$$L(\ell, f(y), p) := \forall u(0 < u \to \exists v(0 < v \to \forall y((0 < \Delta(y, p) \land \Delta(y, p) < v) \to \Delta(f(y), \ell) < u).$$

Logo
$$\forall z (\exists w (\rho(x+y) \doteq w \cdot y + \rho(x) \land \exists \ell (L(\ell, w, 0))) \rightarrow C(x)).$$

Exercício 6.8. Seja $S_{eq} = \{R\}$, formalize:

- a) R é uma relação de equivalência com no mínimo duas classes de equivalência;
- b) R é uma relação de equivalência com uma classe de equivalência contendo mais de um elemento.

Proof. a)
$$\bigwedge \Phi_{eq} \wedge \exists a \exists b (Rab \wedge \exists c (\neg Rac));$$

b) $\bigwedge \Phi_{eq} \wedge \exists a \exists b (Rab \wedge \neg (a \doteq b)).$

Exercício 6.9. Utilize o Exercício 4.16. para provar que:

- a) Se para todo $i \in I$ a estrutura \mathfrak{A}_i é um grupo, então $\prod_{i \in I} \mathfrak{A}_i$ é um grupo;
- b) Nem a teoria da ordem, nem a dos corpos, pode ser axiomatizada por uma sentença de Horn.

Proof. a) Seja $\mathfrak{A} = \prod_{i \in I} \mathfrak{A}_i$, vale que $\mathfrak{A} \models \forall x (x \circ e \doteq x)$ sse para todo $g \in \mathsf{Dom}(\mathfrak{A})$ temos $g \circ^{\mathfrak{A}} e^{\mathfrak{A}} = g$, i.e., $\langle g(i) \circ^{\mathfrak{A}_i} e^{\mathfrak{A}_i} \mid i \in I \rangle = \langle g(i) \mid i \in I \rangle$ que é igual sse $g(i) \circ^{\mathfrak{A}_i} e^{\mathfrak{A}_i} = g(i)$, $\forall i \in I$ o que, por hipótese, é verdade. Destrinchando os axiomas de grupo desta forma é fácil mostrar que $\mathfrak{A} \models \Phi_{gr}$.

b) Assuma que $\varphi_{fd} = \bigwedge \Phi_{fd}$ a conjunção dos axiomas de corpos seja uma sentença Horn, pelo **Exercício 1.6.** o produto direto de duas estruturas de corpos $\mathfrak{C} = \mathfrak{A} \times \mathfrak{B}$ não é um corpo e, pelo **Exercício 4.16.**, deveria ser. Contradição, então φ_{fd} não é uma sentença Horn.

Igualmente se $\varphi_{\mathrm{ord}} = \bigwedge \Phi_{\mathrm{ord}}$ é uma sentença de Horn, então se $\mathfrak{A}, \mathfrak{B}$ são estruturas de ordem, $\mathfrak{C} = \mathfrak{A} \times \mathfrak{B}$ precisa também ser. Note que $\mathfrak{C} \models \forall xy(x < y \lor x \doteq y \lor y < x)$ sse para x = (a, b) e y = (p, q) temos $\forall (a, b)(p, q)((a , entretando escolhendo <math>(a, b), (p, q)$ tq a < p e b > q temos \mathfrak{C} não o satisfaz, contradição.

Exercício 6.10. $M\subseteq\mathbb{N}$ é denominado spectrum se há um conjunto de símbolos \mathcal{S} e uma \mathcal{S} -sentença φ tq

 $M = \{n \in \mathbb{N} \mid \varphi \text{ possui um modelo com exatamente } n \text{ elementos} \}.$

Prove que é um spectrum: a) Todo $N \subseteq \mathbb{N} \setminus \{0\}$ finito;

- b) $\{n \in \mathbb{N} \setminus \{0\} \mid (n \equiv 0 \pmod{m}) \land m \geqslant 1\};$
- c) $\{n^2 \mid n \in \mathbb{N} \setminus \{0\}\};$
- d) $\{n \in \mathbb{N} \setminus \{0\} \mid n \text{ não é primo}\};$
- e) $\{n \in \mathbb{N} \mid n \text{ \'e primo}\}.$

Proof. Seja $\varphi_{\geqslant n}:=\bigwedge_{i,j\in\{1,\dots,n\}}\neg(v_i\doteq v_j),$ então

$$\varphi_n := \exists v_1 \dots v_n \left(\varphi_{\geqslant n} \wedge \forall v \left(\bigvee_{i=1}^n v \doteq v_i \right) \right)$$

é a formalização de há exatamente n elementos.

- a) Como $N < \aleph_0$ enumere $N = \{a_1, \dots, a_n\}$, logo podemos descrever $N = \{n \in \mathbb{N} \mid \bigvee_{i=1}^n \varphi_{a_i}\}$.
- b) Pegue $S = \{R\}$ e defina

$$\varphi = \bigwedge \Phi_{\text{eq}} \wedge \exists v_1 \dots v_m \left(\varphi_{\geqslant m} \wedge \forall v \left(\bigvee_{i=1}^m Rvv_i \right) \right)$$

Isso garante não só que R é uma relação de equivalência como garante que o conjunto quociente \mathfrak{A}/R de qualquer modelo de φ terá exatamente m classes de equivalência, como todas possuem a mesma cardinalidade tem de ser possível particionar o domínio em m conjuntos diferentes, i.e., ser um múltiplo de m.

c) Seja $\mathcal{S} = \{R, f, g\}$ a ideia é formalizar ψ to $f, g : \mathsf{Dom}(\mathfrak{A}) \to R, \chi$ to (f(x), g(x)) é injetivo e ξ que é sobrejetivo, i.e.:

$$\psi := \forall x (Rf(x) \land Rg(x));$$

$$\chi := \forall x \forall y ((f(x) = f(y) \land g(x) = g(y)) \to x = y);$$

$$\xi := \forall x \forall y ((Rx \land Ry) \to \exists z (f(z) = x \land g(z) = y)).$$

Logo, se $\mathfrak{A} \models \varphi := \psi \land \chi \land \xi$, então \mathfrak{A} possui uma bijeção de $\mathsf{Dom}(\mathfrak{A})$ em \mathbb{R}^2 , i.e., a cardinalidade do domínio será o quadrado de um natural. Para provarmos que sempre haverá um modelo para cada quadrado perfeito contruiremos um modelo para φ . Seja $\mathsf{Dom}(\mathfrak{A}) := \{1, \ldots, m\}$ e defina $R := \{1, \dots, p\}$, se f(x) é o quociente de $x \in \mathsf{Dom}(\mathfrak{A})$ por $p \in q(x)$ o resto, então x = pf(x) + q(x)com f, g unicamente determinados, então para cada x no domínio existem $(f(x), g(x)) \in \mathbb{R}^2$ e vice versa.

d)

e) $\varphi := \bigwedge \Phi_{\text{ofd}} \wedge \forall x (\neg (x \doteq x+1) \rightarrow x < x+1)$ garante, visto que todo corpo finito tem característica prima e, portanto, contém p^n elementos, a última restrição garante que n=1. Seja $\mathfrak{A} \models \varphi$ cujo domínio tem p elementos. Assuma por contradição que existe $\mathfrak{B} \models \varphi$ to $n \neq 1$, então $\exists a \notin \mathbb{F}_p$, portanto $a \neq 0$, a vista disso temos $a < a + 1 < \cdots < a + p = a$, contradição, visto que < é uma relação de ordem total.

Exercício 7.5. Prove que:

- a) Se $\mathfrak{A}=(A,+^A,\cdot^A,0^A,1^A)\models\Pi$ e se $\sigma^A:A\to A$, dada por $\sigma^A(a)=a+^A1^A$, então $(A, \sigma^A, 0^A) \models (P1)-(P3).$
- b) $\mathfrak{N} = (\mathbb{N}, +, \cdot, 0, 1)$ é caracterizada por Π até o isomorfismo.

Proof. a) Interpretemos em \mathfrak{A} os 3 primeiros axiomas de Π :

- (i) $\forall x(\neg x + ^A 1^A \doteq 0^A)$ sse $\forall x(\neg \sigma(x) \doteq 0)$ (P1);
- (ii) $\forall xy(x+^A 1^A \doteq y+^A 1^A \rightarrow x \doteq y)$ sse $\forall xy(\sigma(x) \doteq \sigma(y) \rightarrow x \doteq y)$ (P2); (iii) $\forall X((X0^A \land \forall x(Xx \rightarrow Xx+^A 1^A)) \rightarrow \forall yXy)$ sse $\forall X((X0^A \land \forall x(Xx \rightarrow X\sigma(x))) \rightarrow \forall yXy)$
- b) Seja $\mathfrak{A} = (A, +^A, \cdot^A, 0^A, 1^A) \models \Pi$ para $\pi : \mathfrak{N} \cong \mathfrak{A}$ definimos indutivamente: $\pi(0) = 0^A$;

$$\pi(x+1) = \pi(x) + ^A 1^A.$$

Demonstraremos agora que π é bijetivo:

Sobretividade: a definição garante o caso base, $0^A \in \text{Im}(\pi)$. Assuma por hipótese $a = \pi(n) \in \text{Im}(\pi)$, $\log a + {}^A 1^A = \pi(n) + {}^A 1^A = \pi(n) + {}^A \pi(1)$, por definição $a + {}^A 1^A = \pi(n+1) \in \text{Im}(\pi)$.

Injetividade: Queremos provar que $\forall nm(n \neq m \rightarrow \pi(n) \neq \pi(m))$. Indução em n:

Caso base: n=0 e $m \neq 0$, em particular, assuma sem perda de generalidade, que m=k+1, logo $\pi(n) = 0^A$ e $\pi(m) = \pi(k+1)$, pela primeira sentença em Π , $k+1 \neq 0$, portanto $\pi(m) = \pi(k+1) \neq 0$ $\pi(0) = 0^A = \pi(n).$

Provado o caso base assuma como hipótese de indução que $\forall m(n \neq m \rightarrow \pi(n) \neq \pi(m))$, façamos agora indução dupla, dessa vez em m:

Caso base: m=0 e $n\neq 0$, em especial n=k+1, a prova deste é análogo ao caso base em n. Hipótese indutiva: $n \neq m \rightarrow \pi(n) \neq \pi(m)$, sejam $n, m \neq 0$, então n = p + 1 e m = q + 1, se $n \neq m$, i.e., $\neg (p+1=q+1)$, por 2 em Π , $p \neq q$ e, por hipótese, $\pi(p) \neq \pi(q)$, portanto, se $\pi(n) = \pi(p) + {}^A 1^A = \pi(m) = \pi(q) + {}^A 1^A$, também por 2 em Π temos $\pi(p) = \pi(q)$, contradição, logo $\pi(n) \neq \pi(m)$.

Se π é isomorfismo, provemos que (i) $\pi(n+m) = \pi(n) + {}^A \pi(m)$ e (ii) $\pi(n \cdot m) = \pi(n) \cdot {}^A \pi(m)$:

Caso base: $\pi(m+0) = \pi(m) = \pi(m) + {}^A 0^A = \pi(m) + {}^A \pi(0)$, pela propriedade 4 em Π . Assuma $\pi(n+m) = \pi(n) + \pi(m)$ como hipótese de indução:

$$\pi(m + (n + 1)) = \pi((m + n) + 1)$$

$$= \pi(m + n) +^{A} 1^{A}$$

$$= (\pi(m) +^{A} \pi(n)) +^{A} 1^{A}$$
passo indutivo;
$$= \pi(m) +^{A} (\pi(n) +^{A} 1^{A})$$

$$= \pi(m) +^{A} \pi(n + 1)$$
(P5);
$$= \pi(m) +^{A} \pi(n + 1)$$
definição.

(ii)

Caso base: $\pi(m \cdot 0) = \pi(0) = \pi(m) \cdot 0^A = \pi(m) \cdot \pi(0)$, pela propriedade 6 em Π . Assuma $\pi(n \cdot m) = \pi(n) \cdot {}^{A}\pi(m)$ como hipótese e indução:

$$\pi(m \cdot (n+1)) = \pi(m \cdot n + m)$$

$$= \pi(m \cdot n) +^{A} \pi(m);$$

$$= (\pi(m) \cdot^{A} \pi(n)) +^{A} \pi(m)$$
passo indutivo;
$$= \pi(m) \cdot^{A} (\pi(n) +^{A} 1^{A})$$

$$= \pi(m) \cdot^{A} \pi(n+1)$$
(P7);
$$= \pi(m) \cdot^{A} \pi(n+1)$$
definição.

Exercício 8.8. Para $n \ge 1$ dê uma definição similar dos quantificadores "existe ao menos n" e "existe exatamente n".

Proof.

Exercício 8.9. Sejam P e f binária e $x := v_0, y := v_1, u := v_2, v := v_3$ e $w := v_4$. Mostre, usando a **Definição 8.2.** que:

- a) $\exists xy(Pxu \land Pyv)\frac{u\ u\ v}{x\ y\ v} = \exists xy(Pxu \land Pyu);$ b) $\exists xy(Pxu \land Pyv)\frac{v\ fuv}{u\ v} = \exists xy(Pxv \land Pyfuv);$ c) $\exists xy(Pxu \land Pyv)\frac{u\ x\ fuv}{x\ u\ v} = \exists wy(Pwx \land Pyfuv);$
- d) $(\forall x \exists y (Pxy \land Pxu) \lor \exists u fuu \doteq x) \frac{x fxy}{x u} = \forall v \exists w (Pvw \land Pvfxy) \lor \exists u fuu \doteq x.$

Proof.

Exercício 8.10. Mostre que se $x_0, \ldots, x_r \notin \bigcup_{i=0}^r \mathsf{var}(t_i)$, então

$$\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} \models \exists \forall x_0 \dots x_r (\bigwedge_{i=0}^r x_i \doteq t_i \to \varphi).$$

Proof.

Exercício 8.11. Formalize um cálculo que derive strings exatamente da forma:

$$tx_0 \dots x_r t_0 \dots t_r t \frac{t_0 \dots t_r}{x_0 \dots x_r}$$
 ou $\varphi x_0 \dots x_r t_0 \dots t_r \varphi \frac{t_0 \dots t_r}{x_0 \dots x_r}$.

Proof.

Cálculo de Sequentes 3

Exercício 2.7. Analise quais das regras abaixo estão corretas:
$$\frac{\Gamma \varphi_1 \ \psi_1 \quad \Gamma \varphi_2 \ \psi_2}{\Gamma \ (\varphi_1 \lor \varphi_2) \ (\psi_1 \lor \psi_2)} \ (i); \qquad \frac{\Gamma \ \varphi_1 \ \psi_1 \quad \Gamma \ \varphi_2 \ \psi_2}{\Gamma \ (\varphi_1 \lor \varphi_2) \ (\psi_1 \land \psi_2)} \ (ii).$$

Proof.