ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU!

Miejsce na naklejkę MMA-P1 1P-091 PRÓBNY EGZAMIN **STYCZEŃ ROK 2009 MATURALNY** Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 – 12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorujacego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy przekreśl. 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie. Za rozwiazanie wszystkich zadań 7. Obok każdego zadania podana jest maksymalna liczba punktów, można otrzymać którą możesz uzyskać za jego poprawne rozwiązanie. łącznie 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla 50 punktów i linijki oraz kalkulatora. Życzymy powodzenia! Wypełnia zdający przed rozpoczęciem pracy

PESEL ZDAJĄCEGO

KOD

ZDAJĄCEGO

Zadanie 1. (4 pkt)

Funkcja f jest określona wzorem
$$f(x) = \begin{cases} -x-4 & \text{dla } -7 \le x < -3 \\ -1 & \text{dla } -3 \le x < 0 \\ 4x-1 & \text{dla } 0 \le x \le 2 \end{cases}$$

- a) Podaj dziedzinę funkcji f.
- b) Podaj jej miejsca zerowe.
- c) Naszkicuj wykres tej funkcji.
- d) Podaj zbiór wartości funkcji f.

Zadanie 2. (*3 pkt*)

Spośród cyfr 1, 2, 3, 4, 5, 6 losujemy kolejno dwa razy po jednej cyfrze ze zwracaniem. Tworzymy liczbę dwucyfrową w ten sposób, że pierwsza z wylosowanych cyfr jest cyfrą dziesiątek, a druga cyfrą jedności tej liczby. Oblicz prawdopodobieństwo utworzenia liczby większej od 52.

Zadanie 3. (*4 pkt*)

Uzasadnij, że dla każdego
$$\alpha \in (0^{\circ}, 90^{\circ})$$
 prawdą jest, że $(1 + \sin \alpha) \cdot \left(\frac{1}{\cos \alpha} - \operatorname{tg} \alpha\right) = \cos \alpha$.

Zadanie 4. (4 pkt)

Liczba $\frac{3}{4}$ jest pierwszym wyrazem ciągu geometrycznego (b_n) , którego iloraz jest równy (-2). Pierwszy wyraz ciągu arytmetycznego (a_n) jest taki sam jak pierwszy wyraz ciągu (b_n) . Suma siedmiu początkowych wyrazów ciągu (a_n) jest równa sumie siedmiu początkowych wyrazów ciągu (b_n) . Oblicz różnicę ciągu arytmetycznego (a_n) .

Zadanie 5. (*6 pkt*)

Rozwiąż nierówność $(x-2)^2-4<0$. Podaj wszystkie rozwiązania równania $x^3+6x^2-4x-24=0$, które należą do zbioru rozwiązań tej nierówności.

Zadanie 6. (4 pkt)

Punkty A = (-4, -1), B = (0, -5), C = (2, 1) są wierzchołkami trójkąta równoramiennego. Wyznacz równanie osi symetrii tego trójkąta.

Zadanie 7. (5 *pkt*)

Krawędź boczna ostrosłupa prawidłowego czworokątnego ma długość 4 cm i jest nachylona do płaszczyzny podstawy pod kątem 30°. Oblicz długość krawędzi sześcianu, którego objętość jest równa objętości tego ostrosłupa.

Zadanie 8. (*3 pkt*)

Dziadek założył w banku trzyletnią lokatę pieniężną o stałej rocznej stopie procentowej równej 5% (już po uwzględnieniu podatków i prowizji). Odsetki są kapitalizowane po każdym roku trwania lokaty. Całość środków, otrzymanych z banku po zlikwidowaniu lokaty, dziadek podzielił równo pomiędzy dziewięcioro wnucząt tak, że każde z dzieci otrzymało 1029 zł. Oblicz początkową kwotę lokaty.

Zadanie 9. (*4 pkt*)

W trójkącie ostrokątnym ABC bok AB ma długość 18 cm, a wysokość CD jest równa 15 cm. Punkt D dzieli bok AB tak, że |AD|:|DB|=1:2. Przez punkt P leżący na odcinku DB poprowadzono prostą równoległą do prostej CD, odcinając od trójkąta ABC trójkąt, którego pole jest cztery razy mniejsze niż pole trójkąta ABC. Oblicz długość odcinka PB.

Zadanie 10. (*5 pkt*)

Doświadczalnie ustalono, że czas T(n), liczony w sekundach, potrzebny na alfabetyczne ułożenie n kartek z nazwiskami wyraża się, z dobrym przybliżeniem, wzorem $T(n) = a \cdot n^2 + b \cdot n$. Ułożenie 10 kartek trwa średnio 20 sekund, a 30 kartek średnio 90 sekund. Wyznacz wzór funkcji T(n) i oblicz, ile kartek można ułożyć średnio w ciągu 50 sekund.

Zadanie 11. (4 pkt)

Na zewnątrz kwadratu *ABCD* na bokach *AB* i *BC* zbudowano trójkąty równoboczne *AEB* i *BFC*. Uzasadnij, że trójkąt *DEF* jest równoboczny.

Zadanie 12. *(4 pkt)*

W pewnej klasie liczba dziewcząt stanowi 60% liczby osób w tej klasie. Gdy 6 dziewcząt wyjechało na mecz siatkówki, w klasie pozostało tyle samo chłopców, ile dziewcząt. Oblicz, ile osób liczy ta klasa oraz ilu jest w niej chłopców.

BRUDNOPIS