Exercises of Analysis-01

Yifan Wei

October 2016

1 Simple Set Theory

1. This statement is not permitted: $A \in B \in A$. So we **CAN'T** have a set of all sets. (If U is a set of all sets, then $U \in U \in U$.)

2 Equivalence Relation

1. Suppose U is a collection of some sets, define relation R on U: $xRy \Leftrightarrow \exists$ a bijecton $f: x \to y$. (Check it out!)

This relation has a name Equipollence (denoted by \leftrightarrow), which is a topic of our next course, and I will show that the statement $x \leftrightarrow P(x)$ is always false.

3 Partial Order and Posets

- 1. The power set of a nonempty set is a poset ordered by inclusion.
- 2. On the set of natural numbers, we can define a relation | based on divisibility:

 $a|b \Leftrightarrow a$ is a divisor of b.

Use primary school arithmetics you can see this is actually a partial order.