Théorème de Rolle

Exercice 1 [01370] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. On suppose que f' ne s'annule pas. Montrer que f ne peut être périodique.

Exercice 2 [01371] [Correction]

Soit $a, b, c \in \mathbb{R}$. Montrer qu'il existe $x \in [0; 1]$ tel que

$$4ax^3 + 3bx^2 + 2cx = a + b + c.$$

Exercice 3 [00256] [Correction]

Soit $f: [a;b] \to \mathbb{R}$ dérivable et vérifiant f'(a) > 0 et f'(b) < 0. Montrer que la dérivée de f s'annule.

Exercice 4 [01372] [Correction]

Soit $n \in \mathbb{N}$ et $f: I \to \mathbb{R}$ une application de classe \mathcal{C}^n s'annulant en n+1 points distincts de I.

- (a) Montrer que la dérivée n-ième de f s'annule au moins une fois sur I.
- (b) Soit α un réel. Montrer que la dérivée (n-1) -ième de $f'+\alpha f$ s'annule au moins une fois sur I.

On pourra introduire une fonction auxiliaire.

Exercice 5 [00262] [Correction]

On pose $f: x \mapsto ((x^2 - 1)^n)^{(n)}$.

- (a) Montrer que f est une fonction polynomiale de degré n.
- (b) Calculer f(1) et f(-1).
- (c) Montrer que f possède exactement n racines distinctes toutes dans]-1;1[.

Exercice 6 [02820] [Correction]

Soient $f\colon I\to\mathbb{R}$ une fonction deux fois dérivable sur I et a,b,c trois points distincts de I.

Montrer

$$\exists d \in I, \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-a)(c-b)} = \frac{1}{2}f''(d).$$

Exercice 7 [01376] [Correction]

Soient $n \in \mathbb{N}$, $a < b \in \mathbb{R}$ et $f : [a; b] \to \mathbb{R}$ une fonction n fois dérivable. Montrer que si

$$f(a) = f'(a) = \dots = f^{(n-1)}(a) = 0$$
 et $f(b) = 0$

alors il existe $c \in [a; b[$ tel que $f^{(n)}(c) = 0$.

Exercice 8 [01373] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que

$$\lim_{-\infty} f = \lim_{+\infty} f = +\infty.$$

Montrer qu'il existe $c \in \mathbb{R}$ tel que f'(c) = 0.

Exercice 9 [01374] [Correction]

Soit $f: [0; +\infty[\to \mathbb{R}]]$ une fonction dérivable telle que

$$\lim_{+\infty} f = f(0).$$

Montrer qu'il existe c > 0 tel que f'(c) = 0.

Exercice 10 [01377] [Correction]

Soit a > 0 et f une fonction réelle continue sur [0; a] et dérivable sur [0; a]. On suppose

$$f(0) = 0$$
 et $f(a) f'(a) < 0$.

Montrer qu'il existe $c \in [0; a[$ tel que f'(c) = 0.

Exercice 11 [01380] [Correction]

Soit a > 0 et $f: [0; a] \to \mathbb{R}$ une fonction dérivable telle que

$$f(0) = f(a) = 0$$
 et $f'(0) = 0$.

- (a) Montrer que la dérivée de $x \mapsto f(x)/x$ s'annule sur]0;a[.
- (b) En déduire qu'il existe un point autre que l'origine en lequel la tangente à f passe par l'origine.

Exercice 12 [01375] [Correction]

Soit $f: [a; b] \to \mathbb{R}$ dérivable vérifiant

$$f(a) = f(b) = 0$$
 et $f'(a) > 0, f'(b) > 0$.

Montrer qu'il existe $c_1, c_2, c_3 \in]a; b[$ tels que $c_1 < c_2 < c_3$ et

$$f'(c_1) = f(c_2) = f'(c_3) = 0.$$

Exercice 13 [03436] [Correction]

Soit $f: [a;b] \to \mathbb{R}$ de classe \mathcal{C}^2 vérifiant

$$f(a) = f'(a)$$
 et $f(b) = f'(b)$.

Montrer qu'il existe $c \in]a; b[$ tel que

$$f(c) = f''(c).$$

Indice: on pourra introduire une fonction auxiliaire dépendant de f(x), f'(x) et e^x

Exercice 14 [05027] [Correction]

Soit $f: [a;b] \to \mathbb{R}$ une fonction dérivable s'annulant en a et b.

- (a) Soit $\alpha \in \mathbb{R}$. Montrer qu'il existe $c \in [a; b[$ tel que $f'(c) + \alpha f(c) = 0$.
- (b) Montrer qu'il existe $c \in [a; b[$ tel que f'(c) + cf(c) = 0.

Corrections

Exercice 1 : [énoncé]

Si f est T-périodique avec T>0 alors en appliquant le théorème de Rolle entre par exemple 0 et T, la dérivée de f s'annule.

Exercice 2 : [énoncé]

Soit $\varphi \colon [0;1] \to \mathbb{R}$ définie par

$$\varphi(x) = ax^{4} + bx^{3} + cx^{2} - (a+b+c)x$$

 φ est dérivable et $\varphi(0)=0=\varphi(1)$. Il suffit d'appliquer le théorème de Rolle pour conclure.

Exercice 3: [énoncé]

fadmet un maximum sur $[a\,;b]$ qui ne peut être ni en a, ni en b : la dérivée de f s'y annule.

Exercice 4: [énoncé]

(a) Notons $a_0 < a_1 < \ldots < a_n$ les n+1 points où nous savons que f s'annule. Pour tout $i \in \{1, \ldots, n\}$, on peut appliquer le théorème de Rolle à f sur $[a_{i-1}; a_i]$.

En effet f est continue sur $[a_{i-1}; a_i]$, dérivable sur $]a_{i-1}; a_i[$ et $f(a_{i-1}) = 0 = f(a_i)$.

Par le théorème de Rolle, il existe $b_i \in [a_{i-1}; a_i]$ tel que $f'(b_i) = 0$.

Puisque $b_1 < a_1 < b_2 < \cdots < a_{n-1} < b_n$, les b_1, \ldots, b_n sont deux à deux distincts.

Ainsi f' s'annule au moins n fois.

De même, f'' s'annule au moins n-1 fois et ainsi de suite jusqu'à $f^{(n)}$ s'annule au moins une fois.

(b) Considérons $g(x) = f(x)e^{\alpha x}$. g s'annule n+1 fois donc g' s'annule au moins n fois.

Or $g'(x) = (f'(x) + \alpha f(x))e^{\alpha x}$ donc les annulations de g' sont les annulations de $f' + \alpha f$.

Puisque $f' + \alpha f$ s'annule n fois, la dérivée (n-1)-ième de $f' + \alpha f$ s'annule au moins une fois.

Exercice 5 : [énoncé]

- (a) $(X^2-1)^n$ est de degré 2n donc $((X^2-1)^n)^{(n)}$ est de degré n.
- (b) Introduisons $g: x \mapsto (x^2 1)^n$ de sorte que $f = g^{(n)}$ Quand $x \to 1$ On a

$$g(x) = (x+1)^n (x-1)^n = 2^n (x-1)^n + o((x-1)^n).$$

Par la formule de Taylor-Young, on a parallèlement

$$g(x) = \frac{g^{(n)}(1)}{n!}(x-1)^n + o((x-1)^n)$$

donc

$$f(1) = g^{(n)}(1) = 2^n n!$$

et de manière similaire

$$f(-1) = (-1)^n 2^n n!$$

(c) 1 et -1 sont racines de multiplicité n de $g: x \mapsto (x^2 - 1)^n$, 1 et -1 sont donc racines de $g, g', \dots, g^{(n-1)}$.

En appliquant le théorème de Rolle, on montre que $g', g'', \ldots, g^{(n)} = f$ admettent resp. $1, 2, \ldots, n$ racines dans]-1;1[. Puisque f est de degré n, celles-ci sont simples et il ne peut y en avoir d'autres.

Exercice 6: [énoncé]

Considérons

$$g: x \mapsto (x-b)f(a) + (a-x)f(b) + (b-a)f(x) - \frac{1}{2}(a-b)(b-x)(x-a)K$$

où la constante K est choisie de sorte que g(c) = 0 (ce qui est possible). La fonction g s'annule en a, en b et en c donc par le théorème de Rolle, il existe $d \in I$ tel que g''(d) = 0 ce qui résout le problème posé.

Exercice 7: [énoncé]

En appliquant le théorème de Rolle à f entre a et b: il existe $c_1 \in]a; b[$ tel que $f'(c_1) = 0$.

En appliquant le théorème de Rolle à f' entre a et c_1 : il existe $c_2 \in]a; c_1[$ tel que $f''(c_2) = 0$.

En appliquant le théorème de Rolle à $f^{(n-1)}$ entre a et c_{n-1} : il existe $c_n \in]a; c_{n-1}[$ tel que $f^{(n)}(c_n) = 0$. $c = c_n$ résout le problème.

Exercice 8 : [énoncé]

Puisque $\lim_{-\infty} f = +\infty$ et $\lim_{+\infty} f = +\infty$, il existe a < 0 et b > 0 tels que

$$f(a) > f(0) + 1$$
 et $f(b) > f(0) + 1$.

En appliquant le théorème des valeurs intermédiaires entre a et 0, d'une part, et 0 et b d'autre part, il existe $\alpha \in]a;0[$ et $\beta \in]0;b[$ tels que $f(\alpha)=f(0)+1=f(\beta).$ En appliquant le théorème de Rolle entre α et β , il existe $c \in]\alpha;\beta[\subset \mathbb{R}$ tel que f'(c)=0.

Exercice 9: [énoncé]

Si f est constante, la propriété est immédiate.

Sinon, il existe $x_0 \in]0$; $+\infty[$ tel que $f(x_0) \neq f(0)$.

Posons $y = \frac{1}{2}(f(x_0) + f(0))$ qui est une valeur intermédiaire à f(0) et $f(x_0)$. Par le théorème des valeurs intermédiaires, il existe $a \in]0; x_0[$ tel que f(a) = y. Puisque $\lim_{\infty} f = f(0), y$ est une valeur intermédiaire à $f(x_0)$ et une valeur $f(x_1)$ avec x_1 suffisamment grand. Par le théorème des valeurs intermédiaires, il existe $b \in [x_0; x_1]$ tel que f(b) = y.

En appliquant le théorème de Rolle sur [a;b], on peut alors conclure.

Exercice 10: [énoncé]

Quitte à considérer -f, on peut supposer f(a) > 0 et f'(a) < 0.

Puisque f'(a) < 0, il existe $b \in]0$; a[tel que f(b) > f(a).

En appliquant le théorème de valeurs intermédiaires entre 0 et b, il existe $\alpha \in]0\,;b[$ tel que $f(\alpha)=f(a).$

En appliquant le théorème de Rolle entre α et a, on obtient $c \in]\alpha; a[\subset]0; a[$ tel que f'(c) = 0.

Exercice 11: [énoncé]

(a) La fonction $g: x \mapsto f(x)/x$ est définie, continue et dérivable sur]0;a]. Quand $x \to 0$,

$$g(x) \to f'(0) = 0.$$

Prolongeons g par continuité en 0 en posant g(0) = 0.

Puisque g est continue sur [0;a], dérivable sur [0;a] et puisque g(0) = g(a), le théorème de Rolle assure l'annulation de la dérivée de g en un point $c \in [0;a]$.

(b)
$$g'(x) = \frac{xf'(x) - f(x)}{x^2}$$

donc g'(c) = 0 donne cf'(c) = f(c).

La tangente à f en c a pour équation :

$$y = f'(c)(x - c) + f(c) = f'(c)x.$$

Elle passe par l'origine.

Exercice 12: [énoncé]

Puisque f(a) = 0 et f'(a) > 0, il existe $x_1 \in]a; b[$ tel que $f(x_1) > 0$.

En effet, si pour tout $x_1 \in]a; b[, f(x_1) \le 0 \text{ alors quand } h \to 0^+, \frac{f(a+h)-f(a)}{h} \le 0$ et donc $f'(a) \le 0$.

De même, puisque f(b)=0 et f'(b)>0, il existe $x_2\in]a\,;b[$ tel que $f(x_2)<0.$

Puisque f prend une valeur positive et une valeur négative dans]a;b[, par le théorème des valeurs intermédiaires, f s'y annule.

Ainsi il existe $c_2 \in [a; b]$ tel que $f(c_2) = 0$.

En appliquant le théorème de Rolle sur $[a; c_2]$ et $[c_2; b]$, on obtient c_1 et c_3 .

Exercice 13: [énoncé]

Introduisons $\varphi \colon x \mapsto (f(x) - f'(x))e^x$.

La fonction φ est définie et continue sur [a;b], φ est dérivable sur]a;b[et $\varphi(a)=0=\varphi(b)$.

Par le théorème de Rolle, on peut affirmer qu'il existe $c \in]a; b[$ tel que

$$\varphi'(c) = 0.$$

Or

$$\varphi'(x) = (f(x) - f''(x))e^x$$

donc $\varphi'(c) = 0$ donne

$$f(c) = f''(c).$$

Exercice 14: [énoncé]

On introduit une fonction auxiliaire dont l'annulation de la dérivée fait apparaître la relation souhaitée.

(a) Considérons la fonction $\varphi \colon [a;b] \to \mathbb{R}$ définie par $\varphi(x) = f(x) \mathrm{e}^{\alpha x}$. Celle-ci est dérivable par produit de fonctions qui le sont et

$$\varphi'(x) = (f'(x) + \alpha f(x))e^{\alpha x}.$$

De plus, φ s'annule en a et b ce qui permet d'appliquer le théorème de Rolle. Il existe donc $c \in]a; b[$ tel que $\varphi'(c) = 0$. Puisque le facteur exponentiel ne s'annule pas, ceci donne $f'(c) + \alpha f(c) = 0$.

(b) On suit la même démarche avec la fonction auxiliaire $\psi \colon [a\,;b] \to \mathbb{R}$ définie par

$$\psi(x) = f(x)e^{x^2/2}$$

pour laquelle

$$\psi(x) = f(x)e^{x^2/2}$$

$$\psi'(x) = (f'(x) + xf(x))e^{x^2/2}.$$