SINGAPORE POLYTECHNIC 2020 / 2021 Semester One Examination

No.	SOLUTION
A1	В
A2	С
A3	D
A4	В
A5	В
B1a (i)	$\mathbf{A} - 2\mathbf{B} = \begin{bmatrix} 1 & 4 \\ -2 & -3 \end{bmatrix} - 2 \begin{bmatrix} -3 & -4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ -2 & -3 \end{bmatrix} - \begin{bmatrix} -6 & -8 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ -6 & -5 \end{bmatrix}$
B1a (ii)	Answer: Not possible to evaluate / Not conformable.
	<u>Reason:</u> The number of columns in B is not equal to the number of rows in \mathbb{C}^T .
B1b	$\mathbf{AB} = \begin{bmatrix} 1 & 4 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -3 & -4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$
	Since $AB = 5I$, $A^{-1}AB = 5A^{-1}I$
	$\mathbf{A} \mathbf{A}\mathbf{B} = 5\mathbf{A} \mathbf{I}$ $\mathbf{B} = 5\mathbf{A}^{-1}$
	$\mathbf{A}^{-1} = \frac{1}{5}\mathbf{B} = \frac{1}{5} \begin{bmatrix} -3 & -4 \\ 2 & 1 \end{bmatrix}$
B2a	$\mathbf{T}_{1} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \mathbf{T}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
	$\mathbf{C} = \mathbf{T}_2 \mathbf{T}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
B2b	$\mathbf{P'} = \mathbf{CP} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 0 & 7 \\ 1 & 1 \end{bmatrix}$
B2c	$\mathbf{T}_{1}^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \ \mathbf{T}_{2}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
	$\mathbf{C}^{-1} = \mathbf{T}_1^{-1} \mathbf{T}_2^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

SINGAPORE POLYTECHNIC 2020 / 2021 Semester One Examination

B3a Convert to decimal:

 $1011.101_2 = 2^3 + 2^1 + 2^0 + 2^{-1} + 2^{-3} = 11.625_{10}$

Convert to hexadecimal:

 $1011.101_2 = 1011.1010_2 = B.A_{16}$

B3b

Integ	Integral part:		
2	43		
2	21	1	
2	10	1	
2	5	0	
2	2	1	
2	1	0	
	0	1	

Frac	tional part:	
2	0.7	
2	0.4	1
2	0.8	0
2	0.6	1
2	0.2	1
2	0.4	0
2	0.8	0
2	0.6	1
2	0.2	1
2	0.4	0
	0.8 (rep)	0

 $\therefore 43.7_{10} = 101011.1\overline{0110}_2$

B4a $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $A = \{1, 2, 3, 4, 5, 6\}$

 $B = \{3, 6, 9\}$

B4b $\therefore \overline{A} = \{7,8,9\}$

 $\therefore A \cap B = \{3,6\}$

 $A \cup B = \{1, 2, 3, 4, 5, 6, 9\}$ $\therefore |A \cup B| = 7$

B4c

SINGAPORE POLYTECHNIC 2020 / 2021 Semester One Examination

B5a	For $p \wedge q$: T \wedge F is FALSE		
(i)	For $\neg (p \land q)$: $\neg F$ is TRUE		
B5a	For $p \Rightarrow q : T \Rightarrow F$ is FALSE		
(ii)	For $(p \Rightarrow q) \lor p$: F \lor T is TRUE		
B5b	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	T T F T F T		
	T F F F F T		
	F T T T F F T F		
	From the truth table above, we conclude that $M \neq N$.		
B6a	$6^4 = 1296$		
B6b	$^{6}P_{4} = 360$		
В6с	${}^{4}C_{1} \times {}^{5}P_{3} = 240$		
B6d	${}^{5}C_{2} \times \frac{4!}{2!} = 120$		
B7a	There are 6 possible scenarios: $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$		
	Probability = $\frac{6}{36} = \frac{1}{6}$		
B7b			
B7c	There are 5 possible scenarios: $(4,6),(5,5),(6,4),(5,6),(6,5)$		
	Probability = $\frac{5}{36}$		
B7d	There are 4 possible scenarios: $(1,5),(2,6),(5,1),(6,2)$		
	Probability = $\frac{4}{36} = \frac{1}{9}$		
Cla			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	0 1 0 0		

SINGAPORE POLYTECHNIC 2020 / 2021 Semester One Examination

C1b
$$f(x,y,z) = (\overline{x} + \overline{y} + z) \cdot (x + \overline{y} + z) \cdot (x + y + z)$$
$$= (\overline{y} + z + (\overline{x} \cdot x)) \cdot (x + y + z)$$
$$= (\overline{y} + z) \cdot (x + y + z)$$
$$= z + \overline{y} \cdot (x + y)$$
$$= z + x\overline{y}$$

From the truth table, when z = 0 and f(x, y, z) = 1, we see that x = 1 (i.e. the game is C1c running continuously for > 2 hours). Hence, t > 2.

C2a T_1 : rotation 135° anticlockwise about the origin T_2 : scaling relative to the origin by a factor of $\sqrt{2}$ in the x-direction and a factor of $\frac{1}{\sqrt{D}}$ in the y-direction

 T_3 : shearing by a factor of 1 in the x-direction

$$\mathbf{T}_{1} = \begin{bmatrix} \cos 135^{\circ} & -\sin 135^{\circ} & 0 \\ \sin 135^{\circ} & \cos 135^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \ \mathbf{T}_{2} = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \ \mathbf{T}_{3} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = \mathbf{T}_{3}\mathbf{T}_{2}\mathbf{T}_{1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{3}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{TP} = \begin{bmatrix} -\frac{1}{2} & -\frac{3}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -3 & -2 \\ 0 & -1 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
 (verified)

C2c For parallelogram A'B'C'D' to transform to a rhombus by vertical scaling only, the lengths of both A'B' and C'D' must be equal to 2 units.

Pythagoras Theorem: $2^2 = 1^2 + k^2 \Rightarrow k = \pm \sqrt{3}$

For each person to hold on to the baton exactly once, each person will have one less C3a person to pass the baton to for every subsequent pass.

Answer = 5! = 120

Notice that Bob can only hold on to the baton for a maximum of three times in total, and C₃b this happens when: AB - B - B.

No. of ways where Bob held on to the baton three times $=5^2$

No. of ways where there are no restrictions $=5^5$

Answer $= 5^5 - 5^2 = 3100$

SINGAPORE POLYTECHNIC 2020 / 2021 Semester One Examination

C3c No. of ways to form a group of three people = ${}^{5}C_{2}$

No. of ways where there are no restrictions (within the group of three people) = 2^5

However, the 2^5 ways calculated above will always include 2 ways where only two people pass the baton back and forth among themselves (e.g. ABABAB, ACACAC, etc.). Hence, we need to subtract 2 ways from the 2^5 ways.

Answer = ${}^{5}C_{2} \times (2^{5} - 2) = 300$

C3d For the baton to start and end with Alice, we require: $AO _ OA$, where O represents anyone else (other than Alice) holding on to the baton.

There are 3 distinct cases:

Case 1 (A O O O O A): $5 \times 4 \times 4 \times 4 \times 1 = 320$ ways

Case 2 (A O O A O A): $5\times4\times1\times5\times1=100$ ways

Case 3 (A O A O O A): $5 \times 1 \times 5 \times 4 \times 1 = 100$ ways

Answer = 320 + 100 + 100 = 520