∂ Задание 1

Необходимые знания

1. Как менять занчения переменных внутри функций в Си.

Задание

В папке swap лежит 3 файла: swap.c, swap.h и main.c. Ваша задача закончить метод Swap в swap.c, так, чтобы он менял местами два символа. Скомпилировать программу. Если вы все сделали верно, то программа, которую вы собрали выведет "b a".

Изменение значений переменных внутри функций в С

1. Передача по значению

Функция получает копию переменной. Изменения не сохраняются после вызова.

2. Передача по указателю

Функция получает адрес переменной. Изменения сохраняются.

Код поменят, все закоммитил

```
    @ccurecc →.../os_lab_2019/lab2/src/swap (master) $ gcc swap.c main.c -o swap_program
    @ccurecc →.../os_lab_2019/lab2/src/swap (master) $ ./swap_program
    b a
    @ccurecc →.../os_lab_2019/lab2/src/swap (master) $
```

Задание 2

Необходимые знания

- 1. Выделение и освобождение памяти в куче Си.
- 2. В чем разница между стеком и кучей (прямо в задании не потребуется, но я спрошу).
- 3. Использование аргументов командной строки

Задание

B nanke revert_string содержатся файлы main.c, revert_string.h, revert_string.c. Вам необходимо реализовать метод RevertString в revert_string.c, который должен переворачивать данную пользователем строку. Изучить код main.c, скомпилировать программу, рассказать, как она работает и, что делает.

1. Выделение и освобождение памяти в куче (Си)

Выделение:

- malloc(size) выделяет size байт неинициализированной памяти.
- calloc(n, size) выделяет память для n элементов по size байт (инициализирует нулями).
- realloc(ptr, new_size) изменяет размер ранее выделенного блока памяти.

Освобождение:

free(ptr) — освобождает память, выделенную malloc/calloc/realloc.

2. Разница между стеком и кучей

Стек Куча

Автоматическое управление памятью Ручное управление (malloc/free)

Быстрый доступ Медленнее стека

Ограниченный размер Большой размер (доступна вся RAM)

Хранит локальные переменные Хранит динамические данные

Освобождается при выходе из функции Требуется явное освобождение

3. Аргументы командной строки

Передача параметров в программу при запуске.

```
int main(int , char *
                      []) {
 // argc — количество аргументов (включая имя программы)
  // argv[] — массив строк (аргументы)
Пример:
#include <stdio.h>
int main(int , char * []) {
  printf("Программа: %s\n",
  for (int = 1; < ; ++) {
   printf("Аргумент % d: % s\n", , []);
Запуск:
./program hello 123
# Выведет:
# Программа: ./program
# Аргумент 1: hello
# Аргумент 2: 123
```

Код поменял, все закоммитил, код мейна изучил, написал подробные комментарии

```
  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ gcc main.c revert_string.c -o revert_string
  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ ./revert_string "Venom"
  Reverted: moneV
  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $
```

Задание 3

∂ Необходимые знания

- 1. Основы работы компилятора: препроцессор, компилятор, линковщик. Их роли и порядок работы.
- 2. Что такое статическая и динамическая линковка. В чем разница?
- 3. Опции компилятора: -I, -L, -1, -shared, -o, -c, -fPIC
- 4. Утилита аг.
- 5. Переменная окружения LD_LIBRARY_РАТН

Задание

В **задании 2**, вы написали маленькую библиотеку с одной функцией, переворота строки. Тем не менее этот код уже можно переиспользовать, а чтобы это было удобнее делать, его необходимо вынести в библиотеку. Ваше задание скомпилировать статическую и динамическую библиотеки с RevertString и залинковать их в приложения с main.c.

Получится две программы, первая будет использовать статическую билиотеку, а вторая динамическую.

1. Этапы работы компилятора

1. Препроцессор (gcc -E)

Обрабатывает директивы #include, #define, удаляет комментарии.

На выходе: чистый С-код (.і файл).

2. Компилятор (gcc -S)

Преобразует код в ассемблер (.s файл).

3. Ассемблер (gcc -c)

Генерирует объектный файл (.о).

4. Линковщик (ld)

Связывает объектные файлы и библиотеки в исполняемый файл.

2. Статическая vs динамическая линковка

Статическая	Динамическая
Библиотеки (.а) вшиваются в бинарник	Библиотеки (.so) подгружаются при запуске
Большой размер файла	Меньший размер
Не зависит от системы	Требует совместимых .so на целевой системе
Изменения в .so не влияют	Обновления .so применяются автоматически

3. Опции компилятора

Опция Назначение Пример

-I	Добавить путь к заголовочным файлам	gcc -I/usr/local/include main.c
-L	Добавить путь к библиотекам	gcc -L/usr/local/lib -lm
-I	Связать библиотеку	gcc -lpthread main.c
-shared	Создать динамическую библиотеку	gcc -shared -o libfoo.so foo.c
-0	Задать имя выходного файла	gcc main.c -o program
-c	Только компиляция (без линковки)	gcc -c file.c

gcc -fPIC -shared -o lib.so file.c

4. Утилита ar

-fPIC

Создает и управляет статическими библиотеками (.a).

5. Переменная LD_LIBRARY_PATH

Список путей для поиска динамических библиотек (.so) во время выполнения.

Генерация позиционно-независимого кода (для .so)

Создание статической библиотеки

```
  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ gcc -c revert_string.c -o revert_string.o

  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ ar rcs librevert_string.a revert_string.o

  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ gcc main.c -I. -L. -lrevert_string -o static_program

  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $
```

Запуск файла со статической библиотекой

```
@ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ ./static_program "Hello World"
Reverted: dlroW olleH
@ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $
```

Создание динамической библиотеки

```
    @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ gcc -fPIC -c revert_string.c -o revert_string_pic.o
    @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ gcc -shared -o librevert_string.so revert_string_pic.o
    @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ gcc main.c -I. -L. -lrevert_string -o dynamic_program
    @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $
```

Запуск файла с динамической библиотекой

```
② @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ ./dynamic_program "Hello World"
./dynamic_program: error while loading shared libraries: librevert_string.so: cannot open shared object file: No such file or directory
② @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH
③ @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ ./dynamic_program "Hello World"
Reverted: dlrow olleH
○ @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ .
```

1. Статическая библиотека:

ar rcs создает архив (.a) из объектных файлов

При линковке код библиотеки включается в исполняемый файл

Плюсы: не требует наличия библиотеки при запуске

Минусы: увеличивает размер программы

2. Динамическая библиотека:

- -fPIC генерирует позиционно-независимый код
- -shared создает разделяемую библиотеку (.so)

При запуске требуется наличие библиотеки

Плюсы: экономия памяти, возможность обновления без перекомпиляции

3. Ключевые опции дсс:

- -І. искать заголовочные файлы в текущей директории
- -L. искать библиотеки в текущей директории
- -lrevert_string линковаться с librevert_string.a/so
- -о указать имя выходного файла

4. LD_LIBRARY_PATH:

Указывает дополнительные пути для поиска динамических библиотек

Тесты не компилировались в папке tests, поэтому я скопировал их в папку из второго и третьего задания

```
@ccurecc →.../os_lab_2019/lab2/src/tests (master) $ gcc tests.c -I. -L. -lrevert_string -lcunit -o test_program
  tests.c:5:10: fatal error: revert_string.h: No such file or directory

5 | #include "revert_string.h"
  compilation terminated.
● @ccurecc →.../os_lab_2019/lab2/src/tests (master) $ cd ../

    @ccurecc →/workspaces/os_lab_2019/lab2/src (master) $ cp revert_string/revert_string.h tests/
    @ccurecc →/workspaces/os_lab_2019/lab2/src (master) $ gcc tests.c -I. -L. -lrevert_string -lcunit -o test_program

  gcc: error: tests.c: No such file or directory

@ccurecc →/workspaces/os_lab_2019/lab2/src (master) $ gcc tests/tests.c -I. -lrevert_string -lcunit -o test_program
  /usr/bin/ld: cannot find -lrevert_string
  collect2: error: ld returned 1 exit status
• @ccurecc →/workspaces/os_lab_2019/lab2/src (master) $ cp tests/tests.c revert_string/

@ccurecc →/workspaces/os_lab_2019/lab2/src (master) $ cd revert_string

    @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ gcc tests.c -I. -L. -lrevert_string -lcunit -o test_program
    @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH
    @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $ ./test_program

         CUnit - A unit testing framework for C - Version 2.1-3
         http://cunit.sourceforge.net/
  Suite: Suite
     Test: test of RevertString function ...passed
                                          Ran Passed Failed Inactive
                     Type Total
  Run Summary:
                    suites
                                   1
                                            1
                                                  n/a
                                                              0
                                                                          0
                     tests
                                                               0
                                                                          0
                   asserts
                                                      4
                                                               0
                                                                        n/a
  Elapsed time = 0.000 seconds
  @ccurecc →.../os_lab_2019/lab2/src/revert_string (master) $
```