2-4 Recurrences

魏恒峰

hfwei@nju.edu.cn

2018年04月18日

Maximal Sum Subarray (Problem 4.1-5)

- ightharpoonup Array $A[1 \cdots n], a_i > = < 0$
- ightharpoonup To find (the sum of) an MS in A

$$A[-2,1,-3, \boxed{4,-1,2,1},-5,4]$$

 $\mathsf{MSS}[i]$: the sum of the MS (MS[i]) in $A[1\cdots i]$

 ${\sf MSS}[i]{:}$ the sum of the MS (MS[i]) in $A[1\cdots i]$

 $\mathsf{mss} = \mathsf{MSS}[n]$

 $\mathsf{MSS}[i] :$ the sum of the MS (MS[i]) in $A[1 \cdots i]$

$$\mathsf{mss} = \mathsf{MSS}[n]$$

$$Q$$
: Is $a_i \in \mathsf{MS}[i]$?

 $\mathsf{MSS}[i]$: the sum of the MS (MS[i]) in $A[1\cdots i]$

$$\mathsf{mss} = \mathsf{MSS}[n]$$

$$Q$$
: Is $a_i \in \mathsf{MS}[i]$?

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1], \ref{MSS}[i-1], \ref{MSS}[i]\}$$

$$\mathsf{mss} = \max_{1 \leq i \leq n} \mathsf{MSS}[i]$$

Q: where does the $\mathsf{MS}[i]$ start?

$$\mathsf{mss} = \max_{1 \leq i \leq n} \mathsf{MSS}[i]$$

Q: where does the MS[i] start?

$$\mathsf{MSS}[i] = \max \left\{ \mathsf{MSS}[i-1] + a_i, 0 \right\}$$

$$\mathsf{mss} = \max_{1 \leq i \leq n} \mathsf{MSS}[i]$$

Q: where does the MS[i] start?

$$\mathsf{MSS}[i] = \max \left\{ \mathsf{MSS}[i-1] + a_i, 0 \right\}$$

$$\mathsf{MSS}[0] = 0$$

- 1: procedure $MSS(A[1 \cdots n])$
- 2: $MSS[0] \leftarrow 0$
- 3: for $i \leftarrow 1$ to n do
- 4: $\mathsf{MSS}[i] \leftarrow \max \left\{ \mathsf{MSS}[i-1] + A[i], 0 \right\}$
- 5: **return** $\max_{1 \leq i \leq n} \mathsf{MSS}[i]$

Ulf Grenander $O(n^3) \implies O(n^2)$

Ulf Grenander $O(n^3) \implies O(n^2)$ Michael Shamos $O(n \log n)$, onenight

Ulf Grenander $O(n^3) \implies O(n^2)$ Michael Shamos $O(n\log n)$, onenight Jon Bentley Conjecture: $\Omega(n\log n)$

Ulf Grenander $O(n^3) \implies O(n^2)$

Michael Shamos $O(n \log n)$, onenight

Jon Bentley Conjecture: $\Omega(n \log n)$

Michael Shamos Carnegie Mellon seminar

Ulf Grenander $O(n^3) \Longrightarrow O(n^2)$ Michael Shamos $O(n\log n)$, onenight Jon Bentley Conjecture: $\Omega(n\log n)$ Michael Shamos Carnegie Mellon seminar Jay Kadane O(n),

Ulf Grenander $O(n^3) \Longrightarrow O(n^2)$ Michael Shamos $O(n\log n)$, onenight Jon Bentley Conjecture: $\Omega(n\log n)$ Michael Shamos Carnegie Mellon seminar Jay Kadane O(n), ≤ 1 minute

Maximum-product subarray

Maximum-product subarray (Problem 7.4)

- ▶ Array $A[1 \dots n]$
- ightharpoonup Find maximum-product subarray of A

Ending with i

Ending with $\it i$

		$\frac{1}{2}$	4	-2	5	$-\frac{1}{5}$	8
MaxP[i]	1	$\frac{1}{2}$	4	-2	5	8	64

Ending with i

		$\frac{1}{2}$	4	-2	5	$-\frac{1}{5}$	8
MaxP[i]	1	$\frac{1}{2}$	4	-2	5	8	64
MinP[i]	1	$\frac{1}{2}$	2	-8	-40	-1	-8

Ending with i

		$\frac{1}{2}$	4	-2	5	$-\frac{1}{5}$	8
MaxP[i]	1	$\frac{1}{2}$	4	-2	5	8	64
MinP[i]	1	$\frac{1}{2}$	2	-8	-40	-1	-8

$$\begin{split} \mathsf{MaxP}[i] &= \max\{\mathsf{MaxP}[i-1] \cdot a_i, \mathsf{MinP}[i-1] \cdot a_i, a_i\} \\ \mathsf{MinP}[i] &= \min\{\mathsf{MaxP}[i-1] \cdot a_i, \mathsf{MinP}[i-1] \cdot a_i, a_i\} \end{split}$$

Binary Search (CLRS 4.5-3)

$$T(n) = T(n/2) + \Theta(1)$$

```
1: procedure BINARYSEARCH(A, L, R, x)
      if R < L then
2:
         return -1
3:
      m \leftarrow L + (R - L)/2
4:
      if A[m] = x then
                                                       T(n) = \Theta(\log n)
5:
6:
         return m
      else if A[m] > x then
7:
          return BinarySearch(A, L, m-1, x)
8:
```

return BINARYSEARCH(A, m + 1, R, x)

else

9.

10:

$$T(n) = \left\{ \begin{array}{ll} \max\left\{T(\lfloor\frac{n-1}{2}\rfloor), T(\lceil\frac{n-1}{2}\rceil)\right\} + 1, & n > 2\\ 1, & n = 1 \end{array} \right.$$

$$T(n) = \begin{cases} \max\left\{T(\lfloor\frac{n-1}{2}\rfloor), T(\lceil\frac{n-1}{2}\rceil)\right\} + 1, & n > 2\\ 1, & n = 1 \end{cases}$$

$$T(n) = \begin{cases} T(\lfloor\frac{n}{2}\rfloor) + 1, & n > 2\\ 1, & n = 1 \end{cases}$$

$$T(n) = \begin{cases} T(\lfloor \frac{n}{2} \rfloor) + 1, & n > 2\\ 1, & n = 1 \end{cases}$$

$$T(n) = \begin{cases} T(\lfloor \frac{n}{2} \rfloor) + 1, & n > 2\\ 1, & n = 1 \end{cases}$$

$$2^k \le n < 2^{k+1} \implies T(n) = k+1$$

$$T(n) = \begin{cases} T(\lfloor \frac{n}{2} \rfloor) + 1, & n > 2\\ 1, & n = 1 \end{cases}$$

$$2^k \le n < 2^{k+1} \implies T(n) = k+1$$

$$T(n) = \lfloor \lg n \rfloor + 1$$

$$T(n) = \begin{cases} T(\lfloor \frac{n}{2} \rfloor) + 1, & n > 2\\ 1, & n = 1 \end{cases}$$

$$2^k \le n < 2^{k+1} \implies T(n) = k+1$$

$$T(n) = \lfloor \lg n \rfloor + 1$$

Theorem

The worst case time complexity of BinarySearch on an input size of n

of bits in the binary representation of n.

Analysis of Mergesort in CLRS (# of Comparisions; $a_i : \infty$ not Counted)

- (a) Analyze the worst case W(n) and the best case B(n) time complexity of mergesort as accurately as possible. Explore the relation between them and the binary representations of numbers.
 - Plot W(n) and B(n) and explain what you observe.
- (b) Analyze the average case A(n) time complexity of mergesort. Plot A(n) and explain what you observe.
- (c) Prove that: The minimum number of comparisons needed to merge two sorted arrays of equal size m is 2m-1.

Analysis of Mergesort in CLRS (# of Comparisions; $a_i : \infty$ not Counted)

- (a) Analyze the worst case W(n) and the best case B(n) time complexity of mergesort as accurately as possible. Explore the relation between them and the binary representations of numbers.
 - Plot W(n) and B(n) and explain what you observe.
- (b) Analyze the average case A(n) time complexity of mergesort. Plot A(n) and explain what you observe.
- (c) Prove that: The minimum number of comparisons needed to merge two sorted arrays of equal size m is 2m-1.

W(n): Consider W(n+1)

$$W(n) = W(\lfloor \frac{n}{2} \rfloor) + W(\lceil \frac{n}{2} \rceil) + (n-1)$$

$$W(n) = W(\lfloor \frac{n}{2} \rfloor) + W(\lceil \frac{n}{2} \rceil) + (n-1)$$

Theorem

The worst case time complexity of $\operatorname{MERGESORT}$ on an input size of n

The total # of bits in the binary representations of all the numbers < n.

S(n): # of bits in the binary representations of all the numbers < n.

S(n): # of bits in the binary representations of all the numbers < n.

$$S(n) = S(\lfloor \frac{n}{2} \rfloor) + S(\lceil \frac{n}{2} \rceil) + (n-1)$$

S(n): # of bits in the binary representations of all the numbers < n.

$$S(n) = S(\lfloor \frac{n}{2} \rfloor) + S(\lceil \frac{n}{2} \rceil) + (n-1)$$

$$S(15) = S(7) + S(8) + 14$$

S(n): # of bits in the binary representations of all the numbers < n.

$$S(n) = S(\lfloor \frac{n}{2} \rfloor) + S(\lceil \frac{n}{2} \rceil) + (n-1)$$

$$S(15) = S(7) + S(8) + 14$$

1		1		1		1
10		10		10		10
11		11		11		11
100		100		100		100
101		101		101		101
110		110		110		110
111		111		111		111
1000	=	1000	+	1000	+	1000
1001		100		1001		1001
1010		1010		1010		1010
1011		1011		1011		1011
1100		1100		1100		1100
1101		1101		1101		1101
1110		1110		1110		1110

Problem (Area-Efficient VLSI Layout)

Embed a complete binary tree of n nodes into a grid with minimum area.

► Complete binary tree circuit of

$$\# \mathsf{layer} = 3, 5, 7, \dots$$

- Vertex on grid; no crossing edges
- ► Area:

$$\underbrace{A(n)}_{\text{area}} = \underbrace{H(n)}_{\text{height}} \times \underbrace{W(n)}_{\text{width}}$$

Problem (Area-Efficient VLSI Layout)

Embed a complete binary tree of n nodes into a grid with minimum area.

► Complete binary tree circuit of

$$\# layer = 3, 5, 7, \dots$$

- Vertex on grid; no crossing edges
- ► Area:

$$\underbrace{A(n)}_{\text{area}} = \underbrace{H(n)}_{\text{height}} \times \underbrace{W(n)}_{\text{width}}$$

$$H(n) = H(\frac{n}{2}) + \Theta(1) = \Theta(\log n)$$

$$H(n) = H(\frac{n}{2}) + \Theta(1) = \Theta(\log n)$$

$$W(n) = \frac{2}{2}W(\frac{n}{2}) + \Theta(1) = \Theta(n)$$

$$H(n) = H(\frac{n}{2}) + \Theta(1) = \Theta(\log n)$$

$$W(n) = \frac{2}{2}W(\frac{n}{2}) + \Theta(1) = \Theta(n)$$

$$A(n) = \Theta(n \log n)$$

$$Q: \boxed{H(n)} \times \boxed{W(n)} = n$$

$$Q: \boxed{H(n)} \times \boxed{W(n)} = n$$

 $1 \times n$

$$Q: \boxed{H(n)} \times \boxed{W(n)} = n$$

$$1 \times n$$

$$\frac{n}{\log n} \times \log n$$

$$Q: \boxed{H(n)} \times \boxed{W(n)} = n$$

$$1 \times n$$

$$\frac{n}{\log n} \times \log n$$

$$\sqrt{n} \times \sqrt{n}$$

$$Q: \boxed{H(n)} \times \boxed{W(n)} = n$$

$$1 \times n$$

$$\frac{n}{\log n} \times \log n$$

$$\sqrt{n} \times \sqrt{n}$$

$$H(n) = \Theta(\sqrt{n}), \; W(n) = \Theta(\sqrt{n}), \; A(n) = \Theta(n)$$

$$Q: \boxed{H(n)} \times \boxed{W(n)} = n$$

$$1 \times n$$

$$\frac{n}{\log n} \times \log n$$

$$\sqrt{n} \times \sqrt{n}$$

$$H(n) = \Theta(\sqrt{n}), \ W(n) = \Theta(\sqrt{n}), \ A(n) = \Theta(n)$$

$$H(n) = \Box H(\frac{n}{\Box}) + O(\Box)$$

$$Q: \boxed{H(n)} \times \boxed{W(n)} = n$$

$$1 \times n$$

$$\frac{n}{\log n} \times \log n$$

$$\sqrt{n} \times \sqrt{n}$$

$$H(n) = \Theta(\sqrt{n}), \ W(n) = \Theta(\sqrt{n}), \ A(n) = \Theta(n)$$

$$H(n) = \Box H(\frac{n}{\Box}) + O(\Box)$$

$$H(n) = 2H(\frac{n}{4}) + \Theta(1)$$

H-layout

"VLSI Theory and Parallel Supercomputing", Charles E. Leiserson, 1989.

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn