FACTORIAL PROBLEM

Khalid Hourani

Definition 1. For any a > 1, let $\tau(a)$ denote the smallest integer n such that

$$a^n < n!$$

Theorem 1. $\tau(a)$ is well-defined, i.e., for any a > 1, there exists an n such that

$$a^n < n!$$

Proof. Consider the sequence $h(n) = \frac{a^n}{n!}$. We see that

$$\lim_{n \to \infty} \frac{h(n+1)}{h(n)} = \lim_{n \to \infty} \frac{a}{n+1}$$
$$= 0$$

By the ratio test, $\sum_{n=0}^{\infty} h(n)$ converges. Thus, the sequence $h(n) = \frac{a^n}{n!}$ converges to 0. Then, for every $\epsilon > 0$, there exists an n_0 such that, for all $n \ge n_0$,

$$\left| \frac{a^n}{n!} \right| < \epsilon$$

In particular, taking $\epsilon = 1$, we have $a^n < n!$ for all $n \ge n_0$.

Lemma 1. For all n > 1, $n! < n^n$.

Proof. Proceed by induction on n. The base case is $2! = 2 < 4 = 2^2$. Suppose that, for some k > 1, $k! < k^k$. Then

$$(k+1)! = k! \cdot (k+1)$$

$$< k^k \cdot (k+1) \text{ by the induction hypothesis}$$

$$< (k+1)^k \cdot (k+1)$$

$$= (k+1)^{k+1}$$

Theorem 2. For any integer n > 1, $\tau(n) > n$.

Proof. This follows directly from the above lemma: since $n! < n^n, \tau(n) > n$.

In fact, we can tighten this lower bound to $\tau(n) > 2n$. First, we show the following lemma:

Lemma 2. For any n > 0, $n^{2n} \left(4 - \frac{2}{n+1} \right) < (n+1)^{2n}$.

Proof. This is equivalent to showing that

$$4 - \frac{2}{n+1} < \left(\frac{n+1}{n}\right)^{2n}$$

However, the right hand side of the above inequality is simply the square of the sequence $\left(1 + \frac{1}{n}\right)^n$, which is an increasing sequence that converges to e. It suffices, therefore, to find show that the inequality holds for n = 1, since the left-hand-side is bounded above by 4:

$$4 - \frac{2}{1+1} = 4 - 1 = 3 < 4 = \left(\frac{1+1}{1}\right)^{2 \cdot 1}$$

Theorem 3. For any integer n > 2, $\tau(n) > 2n$.

Proof. We shall show by induction that $n^{2n} > (2n)!$. Begin with the base case:

$$(2 \cdot 3)! = 6! = 720 < 729 = 3^6 = 3^{2 \cdot 3}$$

Suppose that, for some k > 2, $(2k)! < k^{2k}$. Then, for k + 1, we have

$$\begin{aligned} (2(k+1))! &= (2k+2)! \\ &= (2k)!(2k+1)(2k+2) \\ &< k^{2k}(2k+1)(2k+2) \text{ by our Induction Hypothesis} \\ &= k^{2k}(k+1)^2 \left(4 - \frac{2}{k+1}\right) \\ &< (k+1)^{2k}(k+1)^2 \text{ by Lemma 2} \\ &= (k+1)^{2(k+1)} \end{aligned}$$

Thus, $\tau(n) > 2n$.