Intro Geometrie Krümmung ART

Gravitation und Raumzeitkrümmung

Roland Steinbauer

Fakultät für Mathematik, Universität Wien

ÖAW, Gravitation 2015, Oktober 2015

(Intro) Geometrie Krümmung ART

Die Einsteingleichungen (1)

November 1915

Albert Einstein, 'Zur allgemeinen Relativitätstheorie' 'Die Feldgleichungen der Gravitation'

Sitzungsberichte d. Preussischen Akad. d. Wissenschaften

Die Allgemeine Relativitätstheorie ist eine **geometrische Theorie**: Sie verknüpft die Raum-Zeit-Geometrie mit dem Materieinhalt

$$\underbrace{\mathsf{R}_{i\mathsf{k}} - \frac{1}{2}\,\mathsf{R}\,\mathsf{g}_{i\mathsf{k}}}_{} \quad = \quad \underbrace{\frac{8\pi\mathsf{G}}{\mathsf{c}^4}\,\mathsf{T}_{i\mathsf{k}}}_{}$$

Krümmung Masse/Energie

Die Krümmung der Raumzeit ist proportional ihrem Energieinhalt.

Intro Geometrie Krümmung ART

Überblick

1 Intro: Einsteins Gleichungen von 1915

Was sagen die Einsteingleichungen?

Wieso ist Krümmung der Raumzeit proportional Materieinhalt?

- @ Geometrie: Warum ist die Schwerkraft geometrisch?
- Krümmung: Warum gerade die Krümmung?

Einschub: Was ist überhaupt "die Krümmung"?

Die Konsequenzen:

Grundzüge der Allgemeinen Relativitätstheorie

- Die Geometrie lenkt das Licht ab
- Die Geometrie bewegt Massen
- 6 Die Geometrie formt schwarze Löcher und Raumzeitsingularitäten

Schwerkraft als Eigenschaft des Raumes?

F: Warum krümmt Masse/Energie den Raum?

Besser davor:

F: Warum kann die Schwerkraft überhaupt als

Eigenschaft des Raumes

verstanden werden?

A: Wegen der

Universalität der Schwerkraft:

Die Schwerkraft wirkt auf **jede** Form von Masse (Energie) in gleicher Weise.

Messung eines Magnetfeldes

Messung der Kraftdifferenz auf Magneten und neutrale Masse

Messung eines Schwerefeldes

Messung der **Differenz** 444 wovon ???

→ Universalität der Schwerkraft

Das Äquivalenzprinzip (1)

Galileo Galilei [1564-1642]

• Alle Körper fallen gleich schnell.

Die Fallgeschwindigkeit eines Körpers hängt nicht von seinem Gewicht ab.

• schwere Masse = träge Masse

Galileis Fallgesetz

$$\vec{F} = m_{\text{tr}} \cdot \vec{a} = m_{\text{sch}} \cdot \vec{g}$$

Das Äquivalenzprinzip (2)

Apollo 15: David Scott, der Hammer und die Feder

Das Äquivalenzprinzip (3)

Einsteins glücklichster Gedanke

- ullet Schwerelosigkeit pprox freier Fall
- ullet Gravitationsfeld pprox Beschleunigung

Technisch:

- Ein Beobachter im geschlossenen Labor kann durch kein Experiment feststellen, ob er sich in der Schwerelosigkeit weit weg von Massen befindet oder im freien Fall nahe einer Masse.
- Im lokalen Inertialsystem gelten die Gesetze der SRT.

ART

Schwerkraft ist eine Eigenschaft des Raumes!

F: Warum krümmt Masse/Energie den Raum?

Besser davor:

- F: Warum kann die Schwerkraft überhaupt als Eigenschaft des Raumes verstanden werden?
- A: Wegen der Universalität der Schwerkraft: Die Schwerkraft wirkt auf **jede** Form von Masse (Energie) in gleicher Weise. O.K.
- F: Aber warum **gerade die Krümmung?**
- A: Das ist etwas technisch... daher zuerst ein Einschub: Was ist Krümmung?

Inhalt

- 1 Intro: Einsteins Gleichungen von 1915
- 2 Warum ist die Schwerkraft geometrisch?
- Warum gerade die Krümmung?
 - Einschub: Was ist Krümmung?
 - Jetzt wirklich: Warum gerade die Krümmung?
- 4 Grundzüge der Allgemeinen Relativitätstheorie
 - Die Geometrie lenkt das Licht ab
 - Die Geometrie bewegt Massen
 - Schware Löcher, Raumzeitsingularitäten

Was ist Krümmung?

- F: Sind gekrümmte Flächen ungewöhnlich?
- A: Nein!
 Wir alle leben auf einer.
- F: Was sind die wichtigsten Effekte der Krümmung?

Einfache Konsequenzen

Geodäten ersetzen Geraden

- Kürzeste Verbindungen sind nicht gerade.
- Kürzeste Verbindungen können sich schneiden.

ntro Geometrie (Krümmung) ART

Klassische Geometrie von Flächen

Carl Friedrich Gauß [1777–1855]

In jedem Punkt einer Fläche gibt es eine Richtung **minimaler** und eine Richtung **max. Krümmung**.

Theorema Egregium.

Das Produkt der zugehörigen Hauptkrümmungen, die Gauß-Krümmung ist eine Invariante.

ART

Moderne Differentialgeometrie

- F: Was benötigt man um Geometrie zu betreiben?
- A1: Längen- und Winkelmessung
- A2: Technisch: ein Skalarprodukt, $\langle \vec{v}, \vec{w} \rangle = ||\vec{v}|| ||\vec{w}|| \cos \alpha$

Bernhard Riemann [1826-1866]

- Metrik: Vorgabe eins Skalarprodukts in jedem Punkt einer n-dimensionalen Fläche
- Krümmungstensor

$$R(u, v)w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} w$$

- kodiert die Obstruktion gegen Flachheit
- fasst die 2-dim. Krümmungen zusammen

Inhalt

- 1 Intro: Einsteins Gleichungen von 1915
- 2 Warum ist die Schwerkraft geometrisch?
- Warum gerade die Krümmung?
 - Einschub: Was ist Krümmung?
 - Jetzt wirklich: Warum gerade die Krümmung?
- 4 Grundzüge der Allgemeinen Relativitätstheorie
 - Die Geometrie lenkt das Licht ab
 - Die Geometrie bewegt Massen
 - Schware Löcher, Raumzeitsingularitäten

tro Geometrie (Krümmung)

Jetzt wirklich: Warum gerade die Krümmung?

F: Warum krümmt Masse/Energie den Raum?

- F: Warum kann die Schwerkraft überhaupt als **Eigenschaft des Raumes** verstanden werden?
- A: Wegen der Universalität der Schwerkraft:
- F: Aber warum **gerade die Krümmung?**
- A: Das ist etwas technisch...
 daher zuerst ein Einschub: Was ist Krümmung?

O.K

F: Jetzt aber wirklich: Warum gerade die Krümmung?

ART

Newtonsche Mechanik

Isaac Newton [1664-1727]

1. Newtonsches Gesetz:

Kräftefreie Körper sind in Ruhe oder bewegen sich auf Geraden.

2. Newtonsches Gesetz:

 $\mathsf{Kraft} = \mathsf{Masse} \cdot \mathsf{Beschleunigung}$

$$\vec{F} = m \cdot \vec{a}$$

Gravitationsgesetz:

$$F = G \cdot \frac{m \cdot M}{r^2}$$

Gezeitenkräfte

 \implies relative Beschleunigung

Anwesenheit von Masse ⇒ relative Beschleunigung

Gravitation und Raumzeitkriimmung

Riemann Geometrie: Geodätische Deviation

• **Geodäten** ersetzen gerade Linien (minimale Krümmung,

kürzeste Verbindungen)

 Krümmung bestimmt Abstände zwischen Geodäten

$$\ddot{X} = R(V, X) X$$

Krümmung und Einsteingleichungen

Newtonsche Gezeitenkräfte

Geodätische Deviation

Kombiniere das!

$$R(V,X) \sim 4 \cdot \pi \cdot G \cdot \rho$$

$${\sf R}_{\sf ik} - \frac{1}{2}\,{\sf R}\,{\sf g}_{\sf ik} \ = \ \frac{8\pi{\sf G}}{{\sf c}^4}\,{\sf T}_{\sf ik}$$

ART

ART

- Fazit: Die Schwerkraft wirkt auf alle Massen/Energien gleich.
- Qualitativ:

Die Schwerkraft kann als Eigenschaft des Raumes (der Raumzeit) verstanden werden.

• Quantitativ:

Die Krümmung der Raum(zeit) ist proportional zu ihrem Massen- und Energieinhalt.

Die ganze Wahrheit:

$$\underbrace{R_{ik} - \frac{1}{2} R g_{ik}}_{} = \underbrace{\frac{8\pi G}{c^4} T_{ik}}_{}$$

Krümmung

Masse/Energie

Inhalt

- 1 Intro: Einsteins Gleichungen von 1915
- Warum ist die Schwerkraft geometrisch?
- Warum gerade die Krümmung?
 - Einschub: Was ist Krümmung?
 - Jetzt wirklich: Warum gerade die Krümmung?
- 4 Grundzüge der Allgemeinen Relativitätstheorie
 - Die Geometrie lenkt das Licht ab
 - Die Geometrie bewegt Massen
 - Schware Löcher, Raumzeitsingularitäten

Intro Geometrie

Lichtablenkung im Gravitationsfeld der Sonne

Experimentelle Bestätigung:

Arthur Eddington Sonnenfinsternis 29. Mai 1919

Einstein wird berühmt

New York Times, 7. November 1919

Gravitationslinsen

Das Licht einer fernen Quelle wird im Gravitationsfeld einer dazwischenliegenden Masse (z.B. Galaxie(n Cluster)) abgelenkt. Diese wirkt wie eine **Linse** und kann das Bild verzerren, verstärken oder sogar vervielfältigen.

Einstein Kreuz

Quasar Q2237+030 Linse ZW2237+030

Inhalt

- 1 Intro: Einsteins Gleichungen von 1915
- 2 Warum ist die Schwerkraft geometrisch?
- Warum gerade die Krümmung?
 - Einschub: Was ist Krümmung?
 - Jetzt wirklich: Warum gerade die Krümmung?
- 4 Grundzüge der Allgemeinen Relativitätstheorie
 - Die Geometrie lenkt das Licht ab
 - Die Geometrie bewegt Massen
 - Schware Löcher, Raumzeitsingularitäten

Bewegung von Massen in der Raumzeit

Körper bewegen sich auf Geodäten der Raumzeit.

Analogie: Roulettekugel statt "Masse am Seil"

Periheldrehung des Merkur

Klassischer Test der ART

Beiträge zur Periheldrehung

Bogensek./Jh	Ursache
531.63	andere Planeten
0.0254	Abplattung Sonne
42.98	ART
574.64	Summe
574.10±0.65	beobachtet

Krümmung

(ART)

Inhalt

- 1 Intro: Einsteins Gleichungen von 1915
- 2 Warum ist die Schwerkraft geometrisch?
- Warum gerade die Krümmung?
 - Einschub: Was ist Krümmung?
 - Jetzt wirklich: Warum gerade die Krümmung?
- 4 Grundzüge der Allgemeinen Relativitätstheorie
 - Die Geometrie lenkt das Licht ab
 - Die Geometrie bewegt Massen
 - Schware Löcher, Raumzeitsingularitäten

Die Schwarzschildmetrik

Karl Schwarzschild [1873-1916]

Lösung der Einstein Gleichungen Gravitationsfeld einer nicht rotierenden Kugel

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{1}{1 - \frac{2M}{r}}dr^{2} + r^{2}d\Omega^{2}$$

Außenraumlösung

$$r_s = 2M$$

Schwarzschildradius

Lösung für einen Stern

Gravitationskollaps, schwarze Löcher

Kruskal Ausdehnung:

Maximale analytische Ausdehnung der Schwarzschildlösung

Astrophysik: Gravitationskollaps, Kontraktion über Schwarzschildradius hinaus

- Stern
- Weisser Zwerg
- Neutronenstern
- Schwarzes Loch

Raumzeitsingularitäten

Singularität: kompliziert zu definieren...

falls es nicht fortsetzbare Geodäten gibt

R. Penrose & S. Hawking, 1965–70

Singularitätentheoreme:

Raumzeitsingularitäten treten unter physikalisch realistischen Bedingungen (ohne Symmetrie!) auf.

Kosmische Zensurhypothese

Raumzeitsingularitäten sind (generisch) hinter einem Ereignishorizont verborgen, also "von Außen nicht sichtbar."

Intro Geometrie Krümmung

Schwarze Löcher

Aggregationsscheibe eines schwarzen Lochs

Kip Thorne

ENDE

Danke für die Aufmerksamkeit!

Expendic G-02 Sculpture, Aluminium $283 \times 283 \times 24$ cm (c) Tomas Eller, 2009

Gravitation und Raumzeitkrümmung

