ΦΥΛΛΑΔΙΟ 12

ΥΠΕΡΒΟΛΗ

Βασική Θεωρία

Ορς. Υπερβολή με εστίες τα σημεία E' και E ονομάζεται ο γεωμετρικός τόπος C των σημείων του επιπέδου των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από τα E' και E είναι σταθερή και μικρότερη του (E'E)

Aν η υπερβολή C έχει εστίες τα E ' , E και σταθερή διαφορά 2α , τότε: M \in C \Leftrightarrow |(ME ') -(ME)| = 2 α

Εστιακή απόσταση: Ονομάζεται η απόσταση των εστιών της

Εξίσωση της υπερβολής με σταθερή διαφορά 2α και

i. esties
$$E'(-\gamma,0)$$
, $E(\gamma,0)$: $\frac{\chi^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$, show $\beta = \sqrt{\gamma^2 - \alpha^2}$

ii. esties
$$E'(0,-\gamma)$$
, $E(0,\gamma): \frac{y^2}{\alpha^2} - \frac{x^2}{\beta^2} = 1$, show $\beta = \sqrt{\gamma^2 - \alpha^2}$

Ισοσκελής Υπερβολή: Όταν α = β

Εξίσωση Ισοσκελούς Υπερβολής: $x^2 - y^2 = \alpha^2$

Εκκεντρότητα Ισοσκελούς υπερβολής: $\varepsilon = \sqrt{2}$

Ιδιότητες Υπερβολής

- Έχει άξονες συμμετρίας τους x'x και y'y και κέντρο συμμετρίας την αρχή των αξόνων
- Η υπερβολή C βρίσκεται έξω από την "ταινία" των ευθειών $x = -\alpha$ και $x = \alpha$
- Έχει την ανακλαστική ιδιότητα
- Όταν οι εστίες βρίσκονται στον άξονα x 'x τότε έχει κορυφές τα σημεία A ' $(-\alpha$,0) και A $(\alpha$,0) και ασύμπτωτες τις ευθείες: $y = \frac{\beta}{\alpha} \cdot x$, $y = -\frac{\beta}{\alpha} \cdot x$. Έχει εκκεντρότητα $\varepsilon = \frac{\gamma}{\alpha} > 1$
- Όταν οι εστίες βρίσκονται στον άξονα y'y τότε έχει κορυφές τα σημεία $A'(0,-\alpha)$ και $A(0,\alpha)$ και ασύμπτωτες τις ευθείες: $y=\frac{\beta}{\alpha}\cdot x$, $y=-\frac{\beta}{\alpha}\cdot x$

Ορθογώνιο βάσης της υπερβολής C: $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$,

λέγεται το ορθογώνιο που έχει κορυφές τα σημεία: $K(\alpha,\beta)$, $\Lambda(\alpha,-\beta)$, $M(-\alpha,-\beta)$, $N(-\alpha,\beta)$

Εξίσωση εφαπτομένης στο σημείο επαφής $M(x_1, y_1)$

i. της υπερβολής C:
$$\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$$
, ε: $\frac{x \cdot x_1}{\alpha^2} - \frac{y \cdot y_1}{\beta^2} = 1$

ii. της υπερβολής C:
$$\frac{y^2}{\alpha^2} - \frac{x^2}{\beta^2} = 1$$
, ε: $\frac{y \cdot y_1}{\alpha^2} - \frac{x \cdot x_1}{\beta^2} = 1$

Ανακλαστική Ιδιότητα: Η εφαπτομένη μιας υπερβολής σε ένα σημείο της Μ διχοτομεί τη γωνία $E'\hat{M}E$, όπου E', E οι εστίες της υπερβολής

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Θέμα 2ο

16128. Δίνεται η υπερβολή (C): $\frac{x^2}{16} - \frac{y^2}{9} = 1$.

- α) Να βρείτε τις συντεταγμένες των εστιών E' και E.
- β) Αν το N είναι τυχαίο σημείο της (C), να βρείτε την τιμή της διαφοράς |(NE')-(NE)|.
- γ) Να σχεδιάσετε την υπερβολή (C).

17942. Δίνεται η κωνική τομή με εξίσωση (C) $\frac{x^2}{4} - \frac{y^2}{9} = 1$.

- α) Να προσδιορίσετε το είδος της κωνικής τομής και να βρείτε μία εστία της.
- β) Να εξετάσετε αν το σημείο M(1,2022) μπορεί να ανήκει στην (C).

20721. Δίνεται η υπερβολή C με εξίσωση $\frac{x^2}{9} - \frac{y^2}{16} = 1$.

- α) Να βρείτε τις εστίες της C.
- β) Να βρείτε τις εξισώσεις των ασυμπτώτων της C.
- γ) Να σχεδιάσετε την υπερβολή C και τις ασύμπτωτές της στο ίδιο σύστημα αξόνων.

20869. Στο παρακάτω σχήμα φαίνονται η υπερβολή $C: x^2 - y^2 = 1$, η εστία της E, η εφαπτομένη της ζ στο σημείο A(1,0) και το σημείο Γ στο οποίο αυτή τέμνει την ασύμπτωτη ευθεία ε_1 της υπερβολής.

α) Να βρείτε τις εστίες $E^{'}$, E και τις ασύμπτωτες ε_1 , ε_2 της υπερβολής.

β)

- i. Να βρείτε την εξίσωση της εφαπτομένης ζ.
- ii. Να αποδείξετε ότι το σημείο Γ έχει συντεταγμένες (1,1).

21218. Δίνονται οι υπερβολές (C_1) : $x^2 - y^2 = 1$, (C_2) : $y^2 - x^2 = 1$.

- α) Να αποδείξετε ότι οι εστίες της C_1 είναι οι $E_1(\sqrt{2}$, 0) , $E_1(-\sqrt{2}$, 0).
- β) Αν E_2 , E'_2 οι εστίες της C_2 τότε να αποδείξετε ότι το $E_1E_2E'_1E'_2$ είναι τετράγωνο.