Problem R-11P ($C_8H_8F_2Si$). Below is the partial 300 MHz 1H NMR spectrum of vinyl difluorophenylsilane in acetone- d_6 (courtesy of Josh Dykstra), Analyze the spectrum, and label the spectrum with coupling trees, and identify H_g , H_c and H_t . Report all coupling in the standard format ($^nJ_{X-Y} = 00.0 \text{ Hz}$). Apart from intensities, the spectrum is basically first order.

Problem R-11P ($C_8H_8F_2Si$). Below is the partial 300 MHz 1H NMR spectrum of vinyl difluorophenylsilane in acetone- d_6 (courtesy of Josh Dykstra), Analyze the spectrum, and label the spectrum with coupling trees, and identify H_g , H_c and H_t . Report all coupling in the standard format ($^nJ_{X-Y} = 00.0 \text{ Hz}$). Apart from intensities, the spectrum is basically first order.

