Name

AP Precalculus Midterm Review

Day	Date	Lesson	Homework
1	Monday 12/9	Review Unit 1A & 1B Tests	Unit 1A Midterm Review
2	Tuesday 12/10	Review Unit 2A Test	Unit 1B Midterm Review
3-4	Wed/Thurs 12/11-12	FRQ #1 & FRQ #2 Practice	Unit 2A Midterm Review
5	Friday 12/13	Review Unit 2B Test	Unit 2B Midterm Review
6	Monday 12/16	Midterm Exam Free Response	Study for Multiple Choice
7	Tuesday 12/17	1 st Period Exam Questions and Work on Review (only 3 rd , 5 th , & 7 th have class)	Study for Multiple Choice
8	Wednesday 12/18	2 nd & 6 th Midterm	Study for Multiple Choice
9	Thursday 12/19	3 rd & 5 th Midterm	Study for Multiple Choice
10	Friday 12/20	4 th & 7 th Midterm	None 😊

Unit 1A: Polynomials

1. Complete each blank for the graph of f at right.

Domain: _____ Range: ____

Interval(s) of increase: _____

Interval(s) of decrease: _____

Interval(s) where constant:

Interval(s) where concave up: _____

Interval(s) where concave down: _____

Ordered pair(s) of inflection point(s): _____

Interval(s) where *g* is decreasing and concave down: _____

Interval(s) where *g* is increasing at a decreasing rate: _____

Interval(s) where *g* is decreasing at an increasing rate:

Is f(x) a function? _____ Justify.

2. A continuous function f is defined on the closed interval -5 < x < 6 and is shown on the graph below. For how many values of b, -5 < b < 6, is the average rate of change of f on the interval [b, 5] equal to 0? Give a reason for your answer.

y = f(x)

(-2, 0)

3. Selected values of continuous function f(x) are given in the table below. Is f(x) linear or quadratic? Justify your reasoning.

x	-3	-2	-1	0	1	2
f(x)	2.5	3	3.5	4	4.5	5

4. Selected values of continuous function g(x) are given in the table below. Is g(x) linear or quadratic? Justify your reasoning.

х	-4	-3	-2	-1	0	1
g(x)	-8	-14	-16	-14	-8	2

_						
5.	Find the degree	and leading of	coefficient	of the fo	llowing pol	ynomial functions.

(a)
$$f(x) = 5x^2 + 3x - 11$$

(b)
$$y = 2x^2(3-x)(4x+5)^2$$

Degree: _____

Degree: _____

Leading Coefficient: _____

Leading Coefficient: _____

6. Use the given graph to complete all characteristics asked for.

Zero(s): _____

Interval(s) of Increase:

Interval(s) of Decrease: _____

Relative Minima: ____

Relative Maxima:

Absolute Minimum:

Absolute Maximum:

7. Use the given graph to complete all characteristics asked for.

Zero(s):_____

Interval(s) of Increase:

Interval(s) of Decrease: _____

Relative Minima: _____

Relative Maxima: _____

Absolute Minimum:

Absolute Maximum:

8. The table below give selected values of a polynomial function. Determine the degree of the polynomial. Justify your answer.

х	-3	-2	-1	0	1	2	3
f(x)	113	35	3	-1	5	3	-25

9. The table below give selected values of a polynomial function. Determine the degree of the polynomial. Justify your answer.

х	-2	-1	0	1	2	3	4
g(x)	95	5	-1	5	-1	5	95

- **10.** Find the remaining zeros of the polynomial function f using the given information.
 - (a) Degree 4; Known zeros: -5i, $2 + i\sqrt{7}$
- (b) Degree 6; Known zeros: $0, -2, \sqrt{3}, -4 + i$
- **11.** Compete the following subparts for the graph at right.
 - (a) Given the values of the zeros. Include the multiplicity of each zero.
 - (b) Write a possible equation for the function in the graph. Give your answer in factored form.

- **12.** Compete the following subparts for the graph at right.
 - (a) Given the values of the zeros. Include the multiplicity of each zero.
 - (b) Write a possible equation for the function in the graph. Give your answer in factored form.

- **13.** Compete the following subparts for the graph at right.
 - (a) Given the values of the zeros. Include the multiplicity of each zero.
 - (b) Write a possible equation for the function in the graph. Give your answer in factored form.

14. Complete the following subparts for the function $f(x) = 3x^2(x^2 - 9)(x^2 + 4)$
(a) Degree:
(b) List all real zeros. Include the multiplicity of each zero:
(c) Number of <u>distinct</u> real zeros:
(d) Number of non-real zeros:

- (a) Degree: _____
- (b) List all real zeros. Include the multiplicity of each zero:
- (c) Number of <u>distinct</u> real zeros: _____
- (d) Number of non-real zeros: _____

16. Determine the following for the polynomial function
$$a(x) = x(x-8)^3(x+3)^4$$

(a)
$$a(x) > 0$$

(c)
$$a(x) < 0$$

(b)
$$a(x) \ge 0$$

(d)
$$a(x) \leq 0$$

17. Determine the following for the polynomial function
$$p(x) = -2x(x+2)(x-3)$$

(a)
$$p(x) > 0$$

(c)
$$p(x) < 0$$

(b)
$$p(x) \ge 0$$

(d)
$$p(x) \leq 0$$

18. Determine the following if
$$f(x) = 2x^2 + 5x - 3$$
 and $g(x) = x^2 + 3x - 2$ (Calculator Allowed)

(a)
$$f(x) > g(x)$$

(c)
$$f(x) < g(x)$$

(b) $f(x) \ge g(x)$

(d)
$$f(x) \le g(x)$$

19. Match the equation to its end behavior. Each choice is only used once.

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = \infty \text{ and } \lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = \infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = \infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -5x^4 + 8x^2 - 2x + 6$$

A.
$$f(x) = 4x^3 + 2x^2 - 13x - 27$$

B.
$$f(x) = -2x^3 + 5x^2 - 3x + 7$$

C.
$$f(x) = 6x^4 - 7x^3 + 8x$$

D.
$$f(x) = -5x^4 + 8x^2 - 2x + 6$$

20. Given $f(x) = -2x^5 - 3x^4 + 2$, describe the end behavior as the input values decrease without bound. Write your answer as a limit statement.

21. Given $g(x) = -3x^4 + 2x^2 + 8x - 1$, describe the end behavior as the input values increase without bound. Write your answer as a limit statement.

22. Match the equation to a correct statement about its absolute extrema. Choices may be used more than once or not at all.

$$f(x) = 4x^{3} + 2x^{2} - 13x - 27$$

$$f(x) = -2x^{3} + 5x^{2} - 3x + 7$$

$$f(x) = 6x^{4} - 7x^{3} + 8x$$

A. Absolute maximum, but no absolute minimum B. Absolute minimum, but no absolute maximum

 $f(x) = -5x^4 + 8x^2 - 2x + 6$

D. Neither an absolute maximum nor an absolute minimum

23. Complete the table below if f(x) is an <u>even</u> function.

х	-3	-2	-1	0	1	2	3
f(x)		-5		6	3		-2

24. Complete the table below if f(x) is an <u>odd</u> function.

х	-6	-4	-2	0	2	4	6
f(x)	3		-2	-1		7	

Unit 1B: Rationals

For #15-20; write limit statements to describe the left and right end behaviors.

25.

26.

27.
$$f(x) = \frac{2x^2 - 2x + 1}{3x^2 + 5x + 7}$$

28.
$$h(x) = \frac{2x(x-3)}{(x+2)^2(x-1)}$$

29.
$$f(x) = \frac{-2x^4 + 3x^2 + x - 1}{5x^2 + 2x + 3}$$

30.
$$h(x) = \frac{3(x-1)^2(x+5)}{(2x+3)^2}$$

Vertical Asymptote with reason:

Hole with reason:

Zero with reason:

32.
$$p(x) = \frac{(x+7)(x+2)^3}{(x+1)(x+2)^2}$$

Vertical Asymptote with reason:

Hole with reason:

Zero with reason:

$$33.\,r(x) = \frac{x^3 - x^2}{x^2 + 2x + 1}$$

Vertical Asymptote with reason:

Hole with reason:

Zero with reason:

34.	Expand	completely.	(3x -	1) ⁴
JT.	Lapanu	completely.	$(J\lambda$	1)

- **35.** The domain of a function h is $-4 \le x \le 7$ and the range of h is $-6 \le y \le 0$. Find the domain and range of g, where g(x) = 3h(x-2).
- **36.** The domain of a function k is $2 \le x \le 14$ and the range of k is $-3 \le y \le 2$. Find the domain and range of r, where r(x) = -2k(2x).
- **37.** The domain of a function f is $-4 \le x \le 6$ and the range of f is $0 \le y \le 10$. Find the domain and range of g, where g(x) = 2f(x-3) + 1.
- **38.** The domain of a function f is $-6 \le x \le 4$ and the range of f is $-10 \le y \le 3$. Find the domain and range of p, where p(x) = 5 3f(2(x+1)).
- **39.** The domain of a function f is $-4 \le x \le 6$ and the range of f is $0 \le y \le 10$. The graph of y = k(x) is the result of the transformation $k(x) = 4f\left(\frac{x}{2}\right) + 1$. The point (2, -3) on the graph of f transforms to which point on the graph of f?
- **40.** The domain of a function f is $-4 \le x \le 6$ and the range of f is $0 \le y \le 10$. The graph of y = p(x) is the result of the transformation p(x) = -2f(x-3) + 4. The point (4,1) on the graph of f transforms to which point on the graph of f?

41. (Multiple Choice) The function g is constructed by applying three transformations to the graph of f in this order: a horizontal dilation by a factor of 4, a vertical dilation by a factor of 3, and a vertical translation by -7 units. Which of the following equations relating g and f is correct?

(A)
$$g(x) = 4f(3x) - 7$$

(B)
$$g(x) = 3f(4x) - 7$$

(C)
$$g(x) = 3f\left(\frac{x}{4}\right) - 7$$

(D)
$$g(x) = 3f\left(\frac{x}{4}\right) + 7$$

42. Write the equation of the slant asymptote for the following function.

$$f(x) = \frac{9x^3 - 12x^2 - 5x + 1}{3x^2 - 2x + 1}$$

43. Let
$$f(x) = \frac{1}{x+3} - 2$$

(a) At which *x* value(s), if any, does *f* have a vertical asymptote?

$$\lim_{x\to\infty}f(x)=\underline{\hspace{1cm}}$$

(b) Sketch a graph of f on the grid at right.

44. Given $f(x) = 4 - x^2$, find g(x) if g(x) = -f(3x) + 7.

- **45.** Let $h(x) = \begin{cases} \frac{x}{3} 4 & x < -5 \\ 3 + 7x & -5 \le x < 6 \\ 5 \frac{x}{8} & x \ge 6 \end{cases}$
 - (a) Evaluate h (8) and h (-5).
 - (b) Give the ordered pairs of all the open circles on the graph of h.

46.	Tickets to an aquarium	are \$25 per perso	on. For parties	greater th	an 4, the cost of	each additi	onal
	person is \$18. There is:	no tax.					

- (a) If a group of 3 buys tickets to the aquarium, what is the total cost of all their tickets?
- (b) If a group of 7 buys tickets to the aquarium, what is the total cost of all their tickets?
- (c) Let C(n) be the total cost of buying n tickets to the aquarium. What values of n are reasonable in the domain? Explain.
- (d) Write a piecewise equation for C(n).

47. Selected values of function f(x) are given in the table below.

=	Ì	V	ij
=	b	÷	J
=	2	-	-
F	ŀ	4	0
Е	ĉ	s	5
Ç	ε	3	2
H	ŀ	4	н,
	E		

х	14	18	28	33	35	38	41	48	53
f(x)	48	50	53	64	70	75	84	105	138

- (a) A linear, quadratic, and cubic models are all fit to the data above. The residual plots for the linear and cubic models show a pattern. The residual plot for the quadratic model does not show a pattern. Which model is most appropriate for the data? Justify your reasoning.
- (b) Find the equation of the regression curve that models f(x).
- (c) Use your equation to find the average rate of change from x = 20 to x = 40.

Unit 2A: Exponentials

For #48-49, find an equation that gives the nth term of each sequence. Simplify your equation as much as possible. NOTE: You will have to determine if the sequence is arithmetic or geometric.

49.
$$\frac{2}{7}$$
, 2, 14, 98, ...

For #50-51, find an equation that gives the $n^{\rm th}$ term of each sequence. Instead of simplifying, use the $k^{\rm th}$ term of the sequence to write your equation, where k is given for each problem. NOTE: You will have to determine if the sequence is arithmetic or geometric.

50. 5, 8, 11, 14, ...
$$k = 1$$

51. 32,8, 2,
$$\frac{1}{2}$$
... $k = 3$

For #52-53, a function has the following coordinate points. Could the function represent a linear function, exponential function, or neither? Justify your answer.

52.

х	3	5	7
f(x)	16	4	1

53.

х	21	22	23
f(x)	6	2	1

For #54-55, it is known that f(x) is an exponential function that passes through the given points. Write an equation for this function.

For #56-59, answer the subparts given the function.

56. Given
$$f(x) = (0.9)^x$$

57. Given
$$f(x) = -24(2.3)^x$$

- (a) Is the function increasing or decreasing?
- (a) Is the function increasing or decreasing?
- (b) Is the function concave up or concave down?
- (b) Is the function concave up or concave down?
- (c) Determine the end behavior. Write limit statements.
- (c) Determine the end behavior. Write limit statements.

58. Given
$$f(x) = -5\left(\frac{1}{7}\right)^x$$

- **59.** Given $f(x) = 2(6)^x$
- (a) Is the function increasing or decreasing?
- (a) Is the function increasing or decreasing?
- (b) Is the function concave up or concave down?
- (b) Is the function concave up or concave down?
- (c) Determine the end behavior. Write limit statements.
- (c) Determine the end behavior. Write limit statements.

- **60.** The function f is given by $f(x) = 3^x$, and the function g is given by $g(x) = \frac{f(x)}{81}$. Rewrite g(x) so that it shows that a horizontal translation of f(x).
- **61.** The function *h* is given by $h(x) = 7 \cdot 4^{-\frac{x}{2}}$. What is the value for h(3)?

- **62.** Black mold found as a result of water damage in buildings typically grows at a rate of 13% per week, depending on the weather. The basement of a particular building that has had water damage shows an initial amount of 2500 sp/m³ (spores per cubic meters of air).
 - (a) Write an equation that gives the amount of black mold present in the basement *t* weeks after the original reading.

- (b) Rewrite the equation so that *t* is the number of days after the original reading.
- **63.** A new car's value decreases considerably over the years after purchasing. The following table shows the value of a new car for the given number of years after purchase.

Years After Purchase	0	1	3	5	6
Value (\$)	\$45,000	\$36,000	\$26,010	\$18,792	\$15,973

Using an exponential regression $y = ab^x$ to model this data, what is the car's predicted value to the nearest dollar 4 years after purchase?

64. The population for a small town in the land of Leibniz is shown below.

Time, yrs.	1995	2000	2005	2010	2015
Population, in thousands	8.21	8.63	8.49	8.84	8.92

- (a) Find the quadratic regression model:_____
- (b) Find the cubic regression model:_____
- (c) Find the exponential regression model:_____

65. Use the given functions below to evaluate the following if possible.

$$f(x) = 4x - 5$$

$$f(x) = 4x - 5$$
 $g(x) = x^2 - 2x + 4$ $h(x) = 3(2)^x$ $k(x) = 3 - 2x$

$$h(x) = 3(2)^x$$

$$k(x) = 3 - 2x$$

(a)
$$f(g(1)) =$$

(b)
$$g(f(0)) =$$

(c)
$$h(k(2)) =$$

(d)
$$g(f(x)) =$$

(e)
$$h(k(x)) =$$

(f)
$$k(h(x)) =$$

(g) (Multiple Choice) Which of the following expressions is NOT equivalent to h(k(x))?

A.
$$24 \left(\frac{1}{4}\right)^x$$

B.
$$24(2)^{-2x}$$

C.
$$24(4)^{-x}$$

D.
$$27(2)^{-2x}$$

x	-3	-1	2	6	9
p(x)	f(6)	e	-1	1	3

$$h(x) = \begin{cases} 8\left(\frac{1}{2}\right)^x, & x < 2\\ 1 - x^2, & x = 2\\ 4, & x > 3 \end{cases}$$

66. Use the given information above to evaluate the following, if possible.

(a)
$$f(g(4))$$

(b)
$$(g \circ f)(6)$$

(c)
$$(g \circ g)(-2)$$

(d)
$$p(f(\pi))$$

(e)
$$(f \circ g)(8)$$

(f)
$$(g \circ h)(0)$$

67. Find the inverse of the function $g(x) = \frac{3x-5}{-2x+7}$.

68. Given $f(x) = -3x^4 + 9$, find the domain of $f^{-1}(x)$.

69. Given $f(x) = \frac{1}{x}$ and $g(x) = \frac{2x-1}{x+2}$, find:

(a)
$$(f + g)(x)$$

(b)
$$(f - g)(x)$$

(c)
$$(f \cdot g)(x)$$

(d)
$$(f \circ g)(x)$$

(e)
$$(g \circ f)(x)$$

(f)
$$g^{-1}(4)$$

(g) Find the domain of $g^{-1}(x)$

Unit 2B: Logarithms

- **70.** Expand as much as possible: $\log_7 \left(\frac{a^2 \sqrt[3]{b}}{c} \right)$
- **71.** Condense as much as possible: $\frac{1}{3}\log a 4\log b + 2\log c$
- **72.** Find the inverses of the following functions. Use proper notation for the inverse. State any domain restrictions.

(a)
$$f(x) = -\frac{1}{2}\ln(3x - 2) - 1$$

(b)
$$f(x) = -2^{x+5} + 3$$

73. Graph the following function and list the characteristics. (Note: Think about how it would look without the transformations, then shift it!)

$$y = \left(\frac{2}{5}\right)^{x+1} + 2$$

Domain _____ Range _____

Any asymptotes? If so, give their equation.

End Behavior Limits:

74. Graph the following function and list the characteristics. (Note: Think about how it would look without the transformations, then shift it!)

$$f(x) = \log_2(x-3) + 4$$

Domain _____ Range _____

Any asymptotes? If so, give their equation.

End Behavior Limits:

75. Write an equivalent expression by condensing each expression to a single logarithm.

(a)
$$3 \ln x + 7 \ln y - 10 \ln z$$

(b)
$$4 \log x - \frac{1}{2} \log y - \log z$$

76. Write an equivalent expression by expanding each expression as much as possible.

(a)
$$\log_4\left(\frac{x^6y^5}{\sqrt[3]{z}}\right)$$

(b)
$$\log_5\left(\frac{125\sqrt{y}}{x^4}\right)$$

77. Change to the base asked for.

- (a) Change to base 10 $\log_5 14$
- (b) Change to base 7
 - $\log_2 9$
- (c) Change to base *e*

78. For each problem below, g(x) is a transformation of f(x). Give TWO different (but equivalent) transformations for which the graph of g is the image of the graph of f.

(a)
$$f(x) = \log_2(x)$$
 $g(x) = \log_2(64x)$ (b) $f(x) = \log_5(x)$ $g(x) = \log_5(125x)$

$$g(x) = \log_2(64x)$$

(b)
$$f(x) = \log_5(x)$$

$$g(x) = \log_5(125x)$$

79. Solve the following equations.

(a)
$$2^{3x-1} = 16$$

(b)
$$125^{-3k-2} = 25^{-k}$$

80. Solve the following equations. Solve without a calculator and give the EXACT answer. Then, use a calculator to find its decimal approximation rounded to three or more decimal places.

(a)
$$7^{x-8} + 1 = 11$$

(b)
$$-3e^{x-1} + 4 = -20$$

(c)
$$11^{4r} + 4 = 98.4$$

81. Solve the following equations.

(a)
$$\log_5(x^2 + 33) = \log_5(-12x - 3)$$

(b)
$$\log_2(-4x) - \log_2(3) = \log_2(24)$$

(c)
$$\log_6(2x) + 9 = 7$$

(d)
$$-6 \ln(x - 5) = 0$$

(e)
$$\log_5 x + \log_5(x - 2) = \log_5 3$$

(f)
$$\log_7(x+6) + \log_7 x = 1$$

82. Solve the inequality.

(a)
$$8^{x-1} \le \left(\frac{1}{2}\right)^{2x-1}$$

(a)
$$8^{x-1} \le \left(\frac{1}{2}\right)^{2x-1}$$
 (b) $\log_5(x-9) - \log_5 4 > 1$ (c) $\log_3(x-3) - \log_3 7 < \log_3 23$

(c)
$$\log_3(x-3) - \log_3 7 < \log_3 23$$

83. Find the inverse. State any domain restrictions.

(a)
$$f(x) = 3 \cdot 2^{3-x} + 5$$

(b)
$$g(x) = -4e^{3x-1} + 5$$

(c)
$$h(x) = \ln(4x + 1) - 2$$

(d)
$$m(x) = 6 \log_3(x+4) - 9$$

84. Below is the data that represents $f(x) = a + b \ln x$.

х	1	2	3	4
f(x)	2.1	4.8	6.4	7.5

- (a) Determine the equation of the logarithmic regression function.
- (b) Use the logarithmic function to find the value of the function when x = 7.
- (c) Use the logarithmic equation to find where f(x) = 6.
- **85.** The temperature of a pizza, in degrees Fahrenheit, t minutes after it is removed from the oven can be modeled by the function F where $F(t) = 425(0.916)^t$.
 - (a) What is the temperature of the pizza after 20 minutes?
 - (b) How many minutes will it take for the temperature of the pizza to cool down to 95°F?

- **86.** The Richter scale is used to measure earthquakes. The magnitude R of an earthquake is modeled by the equation $R = 0.67 \log(0.37E) + 1.46$, where E is the energy in kilowatt-hours, released by the earthquake.
 - (a) Find the magnitude of an earthquake that releases 3.5 $\times\,10^4$ Kilowatt-hours of energy.

- (b) How many Kilowatt-hours of energy is released in an earthquake that measures 2.5 on the Richter scale?
- **87.** The function f is graphed on the semi-log plot below where the vertical axis has been logarithmically scaled. Write the equation of $f(x) = ab^x$.

88. A set of data points are graphed on a semi-log plot where the vertical axis has been logarithmically scaled. The points form a line on the semi-log plot. What does this tell you about the type of model the data follows?

89. Consider the function $f(x) = 200(1.3)^x$. The semi-log plot $y = \ln(f(x))$ is modeled by the linear equation of the form $\ln(f(x)) = bx + a$. Determine the equation for $y = \ln(f(x))$. Round a and b to three or more decimal places.

90. The semi-log plot $y = \log(f(x))$ is modeled by the equation $\log(f(x)) = 0.447158x + 1.07918$. Write the equation of $f(x) = ab^x$. Round a to the nearest whole number and b to the nearest tenth.

