Clustering

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"Data are becoming the new raw material of business"
-Craig Mundie

How do we find clusters of similar data objects?

*This lesson refers to chapter 7 of the GIDS book

Content of this lesson

- Hiearchical Clustering
 - Hiearchy of Clusters
 - Clustering Algorithms
 - Distance Measures
- Prototype-Based Clustering
 - Construction
 - Silhouette Coefficients

Density-Based Clustering

Dataset

- Dataset used : iris dataset
- Example Workflows:
 - "Hiearchical Clustering" https://kni.me/w/rlXFxYxQmbgNgSsM
 - Normalization
 - Distance caluclation
 - Hiearachical clustering
 - "K-means clustering" https://kni.me/w/t8UVEQH1sTTkus_w
 - Partitioning
 - Numeric error measures
 - "DBSCAN" https://kni.me/w/WgQVjVJugr9Nu24W
 - Normalization
 - Distance caluclation
 - Clustering

Unsupervised Learning

What is a Learning Algorithm?

- Input features
- Input attributes
- Independent variables

Class

Label

Target

Output feature/attribute

Dependent variable

Model parameters
$$y = f(\boldsymbol{\beta} \boldsymbol{X})$$
 with $\boldsymbol{\beta} = [\beta_1, \beta_2, \dots, \beta_m]$

A learning algorithm adjusts (learns) the model parameters β throughout a number of iterations to maximize/minimize a likelihood/error function on y.

Algorithm Training / Learning

The model *learns* / *is trained* during the *learning* / *training* phase to produce the right answer y (a.k.a., label)

That is why machine learning ©

- Many different algorithms for three ways of learning:
 - Supervised
 - Unsupervised
 - Semi-supervised

Supervised Learning

- $-X = (x_1, x_2)$ and $y = \{yellow, gray\}$
- A training set with many examples of (X, y)
- The model learns on the examples of the training set to produce the right value of y for an input vector X

Unsupervised Learning

- $-X = (x_1, x_2)$ and $y = \{yellow, gray\}$
- A training set with many examples of (X, y)
- The model learns to group the examples X of the training set based on similarity (closeness) or probability

Semi-Supervised Learning

- $-X = (x_1, x_2)$ and $y = \{yellow, gray\}$
- A training set with many examples of (X, y) and some samples (X, y)
- The model labels the data in the training set using a modified unsupervised learning procedure

Supervised Learning: Classification vs. Numerical Predictions

- $-X = (x_1, x_2)$ and $y = \{label 1, ..., label n\}$ or $y \in \mathbb{R}$
- A training set with many examples of (X, y)
- The model learns on the examples of the training set to produce the right value of y for an input vector X

Classification

```
y = {yellow, gray}
y = {churn, no churn}
y = {increase, unchanged, decrease}
y = {blonde, gray, brown, red, black}
y = {job 1, job 2, ..., job n}
```

Numerical Predictions

```
y = temperature
y = number of visitors
y = number of kW
y = price
y = number of hours
```

Training vs. Testing: Partitioning

- Training phase: the algorithm trains a model using the data in the training set
- Testing phase: a metric measures how well the model is performing on data in a new dataset (the test set)

Data Science: Process Overview

Finding Patterns

Finding Patterns

- Patterns describe or summarize the data set or parts of it.
- Finding patterns is an exploratory data analysis task. There is no specific target attribute whose values should be predicted as in supervised learning.
- Methods that have already been discussed in the context of data understanding:
 - Visualisation techniques like scatter plots or MDS are methods for finding patterns by visual inspection.
 - Correlation analysis can find patterns in the form of dependencies of pairs of variables.

Finding Patterns

- Cluster analysis. Identifying groups of "similar" data objects.
- Association rules. Finding associations between attributes or typical combinations of values like:

IF Demand=high and Supply=low THEN Price=high.

Clustering

Goal of Cluster Analysis

Discover hidden structures in unlabeled data (unsupervised)

Clustering identifies a finite set of groups (*clusters*) $C_1, C_2 \cdots, C_k$ in the dataset such that:

- Objects within the same cluster C_i shall be as similar as possible
- Objects of different clusters C_i , C_i ($i \neq j$) shall be as dissimilar as possible

Cluster Properties

- Clusters may have different sizes, shapes, densities
- Clusters may form a hierarchy
- Clusters may be overlapping or disjoint

Clustering Applications

- Find "natural" clusters and desc**Data understanding**
- Find useful and suitable groupsData Class Identification
- Find representatives for homogenous groups=> Data Reduction
- Find unusual data objects**Outlier Detection**
- Find random perturbations of the dataNoise Detection

Clustering as Optimization Problem

Definition:

Given a data set D, |D| = n. Determine a *clustering* C *of* D with:

$$C = \{C_1, C_2, \cdots, C_k\}$$
 where $C_i \subseteq D$ and $\bigcup_{1 \le i \le k} C_i = D$ the given data set D .

that best fits the given data set D.

Clustering Methods:

Inside the space

Cover the whole space

- 1. partitioning
- 2. hierarchical (linkage based)
- 3. density-based

Application Examples

- Customer segmentation
 - Find groups of customers with similar behaviour; find customers with unusual behavior
- Molecule search
 - Find molecules with similar structure to already working ones
- Anomaly detection
 - Find unusual patterns in data from sensors monitoring mechanical engines
- Determining user groups on the WWW
 - Clustering of activities in web-logs
 - Find groups of social media users with similar attitude.
- Structuring large sets of text documents
 - hierarchical clustering of the text documents
- Generating thematic maps from satellite images
 - clustering sets of raster images of the same area (feature vectors)

Types of Clustering Approach

Linkage Based

e.g. Hierarchical Clustering

Density based Clustering

e.g. DBSCAN

Clustering by Partitioning

e.g. k-Means

Grid based Clustering

Similarity Measures

(Dis-)similarity Functions for Numeric Attributes

For two objects $\mathbf{x} = (x_1, x_2, \dots, x_d)$ and $\mathbf{y} = (y_1, y_2, \dots, y_d)$:

- Minkowski-Distance (L_p-Metric)
- Euclidean Distance $(L_2 p = 2)$
- Manhattan-Distance $(L_1 p = 1)$
- Tschebyschew-Distance $(L_{\infty} p = \infty)$
- Cosine Distance
- Tanimoto Distance
- Pearson Distance

$$d_p(\mathbf{x}, \mathbf{y}) = \sqrt[p]{\sum_{i=1}^d |x_i - y_i|^p}$$

$$d_E(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^d (x_i - y_i)^2}$$

$$d_M(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^d |x_i - y_i|$$

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le d} \{|x_i - y_i|\}$$

$$d_C(x, y) = 1 - \frac{x^T y}{\|x\| \|y\|}$$

$$d_T(x, y) = 1 - \frac{x^T y}{\|x\|^2 + \|y\|^2 - x^T y}$$

Euclidean distance of z-score transformed x, y

(Dis-)similarity Functions for Numeric Attributes

Various choice of dis-similarity between two numerical vectors

(Dis-)similarity Functions for Binary Attributes

- The two values (e.g. 0 and 1) of a binary attribute can be interpreted as some property being absent (0) or present (1).
- In this sense, a vector of binary attribute can be interpreted as a set of properties that the corresponding object has.
- Example:
 - The binary vector (0, 1, 1, 0, 1) corresponds to the set of properties $\{a_2, a_3, a_5\}$.
 - The binary vector (0, 0, 0, 0, 0) corresponds to the empty property set {}.
 - The binary vector (1, 1, 1, 1, 1) corresponds to the property set $\{a_1, a_2, a_3, a_4, a_5\}$.

(Dis-)similarity Functions for Binary Attributes

- Dissimilarity measures for two vectors of binary attributes.
- Each data object is represent by the corresponding set of properties.
- Simple match

$$d_S = 1 - \frac{b+n}{b+n+x}$$

Russel & Rao

$$d_R = 1 - \frac{b}{b+n+x}$$

Jaccard

$$d_J = 1 - \frac{b}{b+x}$$

Dice

$$d_D = 1 - \frac{2b}{2b + x}$$

where b, n, and x are the number of predicates that:

- $b = \dots$ hold in both records
- $n = \dots$ do not hold in both records
- x = ... holds in only one of the two records

Defining Distance – Text Data & Time Series

- For text data, convert to bag-of-words
- Word frequency vectors are normalized according to the text length
- Cosine measures to assess similarity between documents

- For time series or text data, apply z-score transformation to the data
- Euclidean distance → Pearson metric
- Invariant to shifting useful for embedded time series with different offsets

(Dis-)similarity Functions for Binary Attributes

– Example:

X	У	Set X	Set Y	b n x	d_S d_I	d_{I} d_{I} d_{I}
101000	111000	$\{a_1,a_3\}$	$\{a_1,a_2,a_3\}$	2 3 1	0.16 0.6	66 0.33 0.20

(Dis-)similarity Functions for Ordinal Attributes

- Convert to a binary vector similar in closer categories
- Convert to a numerical rank
- Example:

Number of previous owners	Binary Vector
1 previous owner	100
2 previous owners	110
More than 2 previous owners	111

Number of previous owners	Rank
1 previous owner	1
2 previous owners	2
More than 2 previous owners	3

(Dis-)similarity Functions for Nominal Attributes

 Nominal attributes may be transformed into a set of binary attributes, each of them indicating one particular feature of the attribute (1-of-n encoding).

– Example:

Attribute "Manufacturer" with 6 possible values BMW, Chrysler, Dacia,

Manufacturer	Binary Vector	
Volkswagen	000001	
Dacia	000010	
Ford	100000	

Then one of the dissimilarity measures for binary attribute can be applied.

Influence of Distance Function / Similarity

Clustering vehicles:

- red Ferrari
- green Porsche
- red Bobby car

- Distance Function based on maximum speed (numeric distance function):
 - Cluster 1: Ferrari & Porsche
 - Cluster 2: Bobby car

The distance function affects the shape of the clusters

- Distance Function based on color (nominal attributes):
 - Cluster 1: Ferrari and Bobby car
 - Cluster 2: Porsche

Hierarchical Clustering

Similarities, Dissimilarities, and Distances

id	X	Y
a	1	2
b	3	3
c	2	1

- Given data points, how can we summarize how different they are?
 - Rather than summarizing the similarity
- Summarized by a single dissimilarity metric distance
- Distance matrix pairwise differences of all data points

$$\begin{array}{c|ccccc} [d_{i,j}] & a & b & c \\ \hline a & 0.00 & 2.23 & 1.41 \\ b & 2.23 & 0.00 & 2.23 \\ c & 1.41 & 2.23 & 0.00 \\ \hline \end{array}$$

- Distance $d_{i,j}$ (between i and j) calculated as the Euclidean distance

Partitions and Clusters

- Partition P a set of clusters $\{C_1, C_2, \dots, C_C\}$
- Cluster C_i a non-empty subset of data
- Each data point belongs to a single cluster
 - No overlap between clusters
- Union of clusters → entire data set

Agglomerative Hierarchical Clustering

- Data points with distance $< \delta \rightarrow$ belong to the same cluster
- Known as agglomerative clustering
- Different values of $\delta \rightarrow$ different partitions
- What should be the ideal δ ?
- Stable and robust clusters small alterations should not produce completely different clusters
- Clusters found at δ_1 are contained in clusters found at δ_2 (for $\delta_1 < \delta_2$)
- Increasing δ results in a hierarchy of clusters

Hierarchy of Clusters

Described by a dendrogram

- − At $\delta = 0 \rightarrow 7$ clusters of singletons
- − At $\delta = d(D,G) \rightarrow D \& G$ form a cluster, all others are singleton clusters
- − At $\delta = d(A,C) \rightarrow A \& C$ form a cluster, B remains a singleton, D, E, F, & G is another cluster\
- And so on

Linkage Hierarchies: Basics

Goal

Construction of a hierarchy of clusters (dendrogram)
 by merging/separating clusters with minimum/maximum distance

Dendrogram:

- A tree representing a hierarchy of clusters, with the following properties:
 - Root: single cluster with the whole data set.
 - Leaves: clusters containing a single object.
 - Branches: merges / separations between larger clusters and smaller clusters / objects

Linkage Hierarchies: Basics

Example dendrogram

distance between clusters

- Types of hierarchical methods
 - Bottom-up construction of dendrogram (agglomerative)
 - Top-down construction of dendrogram (divisive)

Agglomerative vs. Divisive Hierarchical Clustering

Clustering algorithm

- Start at $\delta = 0$, with each data point as a cluster
- Calculate the distance matrix between all clusters
- Merge the two clusters with smallest distance
- Go back to re-calculate the distance matrix
- Repeat until there is only a single cluster

```
Algorithm \operatorname{HC}(\mathcal{D}): (\mathcal{P}_t)_{t=0..n-1}, (\delta_t)_{t=0..n-1}
input: data set \mathcal{D}, |\mathcal{D}| = n
output: series of hierarchically nested partitions (\mathcal{P}_t)_{t=0..n-1}
series of hierarchy levels (\delta_t)_{t=0..n-1}

\begin{array}{ll}
\mathcal{P}_0 = \{\{\mathbf{x}\} \mid \mathbf{x} \in \mathcal{D}\} \\
2 & t = 0, \delta_t = 0 \\
3 & \text{while current partition } \mathcal{P}_t \text{ has more than one cluster} \\
4 & \text{find pair of clusters } (\mathcal{C}_1, \mathcal{C}_2) \text{ with minimal distance } d'(\mathcal{C}_1, \mathcal{C}_2) \\
5 & \delta_{t+1} = d'(\mathcal{C}_1, \mathcal{C}_2) \\
6 & \text{construct } \mathcal{P}_{t+1} \text{ from } \mathcal{P}_t \text{ by removing } \mathcal{C}_1 \text{ and } \mathcal{C}_2 \text{ and inserting } \mathcal{C}_1 \cup \mathcal{C}_2 \\
7 & t = t+1 \\
8 & \text{end while}
\end{array}
```

Clustering algorithm

Example: Distance matrix at each iteration of cluster forming

a b c d e f g	a b c d e f g 0 50 63 17 72 81 12 0 49 41 42 54 37 0 52 13 16 61 0 56 66 15 0 11 64 0 74 0 0	a b c d ef g a 0 50 63 17 72 12 b 0 49 41 42 37 c 0 52 13 61 d 0 56 15 ef 0 74 g 0	52 37 13 12 11 e f c a g d b
ag b c d	0 49 41 42 0 52 13 0 56	ag b d efc ag 0 37 15 61 b 0 41 42 d 0 52 efc 0	agd b efc agd 0 37 52 b 0 54 efc 0

Hierarchy of Clusters (Examples)

- Three well-separated clusters
- Formed with small δ
- Remains stable for a wide range of δ (until large δ)

Hierarchy of Clusters (Examples)

- Two well-separated clusters
- Clusters differ in sizes and shapes

Hierarchy of Clusters (Examples)

- Small noises to clusters
- Isolated noise points are *chained* forming clusters with small \(\delta \)
- No clearly defined robust clusters
- Hierarchical clustering (esp. single-linkage) is susceptible to noises

Heatmap

- Clustering on observations (rows)
- As well as clustering on columns (features)
- Color scale to represent numerical values
 - Show similarities in features within clusters

Single Linkage

Distance between clusters ≡ distance between two closest points

$$d(C_i, C_j) = \min_{x,y} \{d(x, y) | x \in C_i, y \in C_j\}$$

Distance of the closest two points, one from each cluster

Merge Step: Union of two subsets of data points

Complete Linkage

Distance between clusters ≡ distance between two farthest points

$$d(C_i, C_j) = \max_{x,y} \{d(x,y) | x \in C_i, y \in C_j\}$$

Distance of the farthest two points, one from each cluster

Merge Step: Union of two subsets of data points

Average Linkage / Centroid Method

Distance between clusters (nodes):

$$Dist_{avg}(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{p \in C_1} \sum_{p \in C_2} dist(p, q)$$

Average distance of all possible pairs of points between C_1 and C_2

$$Dist_{mean}(C_1, C_2) = dist(mean(C_1), mean(C_2))$$

Distance between two centroids

- Merge Step:
 - union of two subsets of data points
 - construct the mean point of the two clusters

Single Linkage vs. Complete Linkage

Single vs. Complete vs. Average Linkage

- Clustering of the 1-dimensional data set {2, 12, 16, 25, 29, 45}.
- All three approaches to measure the distance between clusters lead to different dendrograms.

Linkage Based Clustering

- Single Linkage:
 - Prefers well-separated clusters
- Complete Linkage:
 - Prefers small, compact clusters
- Average Linkage:
 - Prefers small, well-separated clusters...

Comments on Single Linkage and Variants

+ Finds not only a "flat" clustering, but a hierarchy of clusters (dendrogram)

+ A single clustering can be obtained from the dendrogram (e.g., by performing a horizontal cut)

- Decisions (merges/splits) cannot be undone
- Sensitive to noise (Single-Link)
 (a "line" of objects can connect two clusters)
- Inefficient
 - \rightarrow Runtime complexity at least $O(n^2)$ for n objects

Attribute Weighting

- Magnitude difference
 - Some attributes are larger in magnitude, thus dominates in calculation of dissimilarity
 - E.g, Horsepower (50-300) compared to mileage (5-25)
- Normalize the data all numerical attributes have a unit variance

- Which features should weigh more?
 - E.g., cup holders or air conditioning? How do they affect car's value
 - Additional weighting of attributes may be needed to reflect this

Curse of Dimensionality

- A unit sphere centered in a unit cube $[-1,1]^d$ in d-dimensional space
- → The higher the dimension, the smaller the coverage by the sphere

- High dimensional space → likelihood of finding a data point
- Known as the curse of dimensionality

Prototype- and Model-Based Clustering

Overview

Each cluster is represented by a model or prototype (representative data point)

- Works well when the assumption is true (i.e. closest prototype represents a cluster)
- But does not work all cases e.g., circular clusters

Partitioning

Goal:

A (disjoint) partitioning into k clusters with minimal costs

- Local optimization method:
 - choose k initial cluster representatives
 - optimize these representatives iteratively
 - assign each object to its most similar cluster representative

- Mean of a cluster (construction of central points)
- Median of a cluster (selection of representative points)
- Probability density function of a cluster (expectation maximization)

Construction

- Cluster partition is described by a membership matrix [$p_{i|j}$]
- $-p_{i|j}$: membership belongingness of data point j to cluster i.
- $-p_{i|j}$ can be binary or real-valued
- The number of clusters k must be known beforehand

- Data points are assigned to the closest model or prototype
- Update the prototype based on the new cluster partition
- Repeat until the model / prototype stops moving

Given k, the k-Means algorithm is implemented in four steps:

- 1. Partition objects into k non-empty subsets, calculate their **centroids** (i.e., **mean point**, of the cluster)
- 2. Assign each object to the cluster with the **nearest** centroid (Euclidean distance)
- 3. Compute the centroids from the current partition as $p_i = \frac{\sum_{j=1}^{n} p_{i|j} x_j}{\sum_{j=1}^{n} p_{i|j}}$
- 4. Go back to Step 2, repeat until the updated centroids stop moving significantly
- Note: Each data point can only belong to a single cluster
 - $-p_{i|j} = 1$ for the cluster with closest prototype, 0 otherwise

k-Means Algorithm

Comments of the k-Means Method

– Advantages:

- Relatively efficient: O(tkn) where n is #objects, k is #clusters, and t is #iterations; usually, k, t << n (t typically 5 10)
- Simple implementation
- k-means is the most popular partitioning clustering method!

– Weaknesses:

- Often terminates at a local optimum. A better local optimum may be found using techniques such as: deterministic annealing and genetic algorithms.
- Applicable only when mean is defined (what about categorical data?)
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

Problem with K-Means

An object with an extremely large value can substantially distort the distribution of the data.

One solution: K-Medoids

Instead of taking the **mean** value of the objects in a cluster as a reference point, **medoids** can be used, which are the most centrally located objects in a cluster.

Fuzzy c-Means Model

Cluster belongingness can be a real value [0,1]

$$p_{i|j} = \frac{1}{\sum_{k=1}^{C} \frac{\|x_j - p_i\|^2}{\|x_j - p_k\|^2}}$$

Prototype is calculated as

$$p_i = \frac{\sum_{j=1}^n p_{i|j}^2 x_j}{\sum_{j=1}^n p_{i|j}^2}$$

Where the power 2 of $p_{i|j}^2$ is referred as **fuzzifier**.

Gaussian Mixture Decomposition

- Each cluster follows a Gaussian distribution centered at the prototype
- Data follows a Gaussian mixture distribution of multiple clusters
- Cluster membership given by a Gaussian probability
- Iterative updating of:
 - The mean and the variance of Gaussian for each cluster
 - Prototypes

Clustering: Quality Measures

How Many Clusters

- You need to know the number of clusters k beforehand
- But you may not know estimate from the data
- Run clustering algorithm multiple times with different k
- Plot the validity measures against the number of clusters
 - Silhouette coefficient
 - Separation index
- Find the k that produces the optimum result

Optimal Clustering: Example

Cluster Quality Measures

Centroid μ_C : mean vector of all objects in clustering C

— Within-Cluster Variation:

$$TD^2 = \sum_{i=1}^k \sum_{p \in C_i} dist(p, \mu_{C_i})^2$$

Between-Cluster Variation:

$$BC^{2} = \sum_{j=1}^{k} \sum_{i=1}^{k} dist(\mu_{C_{j}}, \mu_{C_{i}})^{2}$$

Clustering Quality (one possible measure):

$$CQ = \frac{BC^2}{TD^2}$$

Silhouette-Coefficient for object *x*

Silhouette-Coefficient [Kaufman & Rousseeuw 1990] measures the quality of clustering

- -a(x): distance of object x to its cluster representative
- -b(x): distance of object x to the representative of the "second-best" cluster
- Silhouette s(x) of x

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}} \in [-1, 1]$$

- Average of s(x) is calculated for each cluster
- Good clusters → high silhouette coefficient

Silhouette-Coefficient

Good clustering...

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}} \approx \frac{b(x)}{b(x)} = 1$$

Silhouette-Coefficient

...not so good...

$$a(x) \approx b(x)$$

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}} \approx \frac{0}{b(x)} = 0$$

Silhouette-Coefficient

...bad clustering.

Silhouette-Coefficient for Clustering C

Silhouette coefficient s_c for clustering C is the average silhouette over all objects x ∈ C

$$s_c = \frac{1}{n} \sum_{x \in C} s(x)$$

- Interpretation of silhouette coefficient:
 - $-s_c > 0.7$: strong cluster structure,
 - $-s_c > 0.5$: reasonable cluster structure,
 - ...

Choice of Parameter k

Method

- For $k=2, 3, \dots, n-1$, determine one clustering each
- Choose k resulting in the highest clustering quality

Measure of clustering quality

- Uncorrelated with k
- for k-means and k-medoid:

 TD^2 and TD decrease monotonically with increasing k

Summary: Clustering by Partitioning

Scheme always similar:

- Find (random) starting clusters
- Iteratively improve cluster positions
 (compute new mean, swap medoids, compute new distribution parameters,...)

– Important:

- Number of clusters k
- Initial cluster position influences (heavily):
 - quality of results
 - speed of convergence

Problems for iterative clustering methods:

Clusters of varied size, density and shape

Separation Index

Separation index – designed to identify compact and well-separated clusters

$$D = \min_{i=1,\dots,C} \min_{j=i+1,\dots,C} \frac{\min_{x \in C_i, y \in C_j} d(x_i, x_j)}{\min_{k=1,\dots,C} diam_k}$$

Where $diam_k$ expresses the extent of a cluster

Cluster Shape

- Clusters found with prototype-based clustering tend to be spherical
- Unrealistic in many situations

Solutions:

- Use of non-Euclidean distance
- Subdivide the data into many small clusters first, then cluster the resulting prototypes

Two normal distributions

Mixture Model: both normal distributions contribute 50%

Mixture Model: one normal distribution contributes 10%, the other 90%

- First, draw a random integer i between 1 and k with probability p_i of drawing i. The data generated next will belong to cluster #i.
- Second, draw a random sample from the Gaussian distribution $g(x; \mu_i, \sigma_i)$ with the parameters μ_i , σ_i taken from model #i.
- Overall density function is:

$$f(\mathbf{x}; \, \theta) = \sum_{i=1}^{k} p_i \, g(\mathbf{x}; \mu_i, \sigma_i)$$

$$\theta = (\theta_1, \theta_2, \dots, \theta_k) \quad and \quad \theta_i = (p_i, \mu_i, \sigma_i)$$

 Given a mixture θ, the likelihood of the full data set being generated by this model is:

$$L = \prod_{j=1}^n f(x_j; \theta)$$

Gaussian Mixture Model – EM Clustering

- Assumption: Data were generated by sampling a set of normal distributions. (The probability density is a mixture of normal distributions.)
- Aim: Find the parameters for the normal distributions and how much each normal distribution contributes to the data.

- Algorithm: EM clustering (expectation maximisation).
- Alternating scheme in which the parameters of the normal distributions and the likelihoods of the data points to be generated by the corresponding normal distributions are estimated.

Density-Based Clustering

Density-based Clustering

- For numerical data, density-based clustering algorithm often yield the best results.
- Principle: A connected region with high data density corresponds to one cluster.
- DBScan is one of the most popular density-based clustering algorithms.
- However...
- There are no representatives. The clusters can mostly not be investigated, only assigned (or, in few-D, visualized).

Overview

In a grid, identify a square with more than 3 points (green)

- Problem: the grid is shifted slightly, then no longer 3+ points in a square (blue)
- Solution: a circle centered at each point (neighborhood). Identify a point with 3+ neighbors

Overview

Continue expanding the cluster as long as dense cells are within a neighborhood

→ **DBScan** algorithm

Construction

- At some location x, the ε -neighborhood is defined as

$$N_{\varepsilon}(x) = \{y: ||x - y|| \le \varepsilon\}$$

- If the neighborhood contains at least MinPts elements
- $\rightarrow x$ is located withing a cluster
- $\rightarrow x$ is referred to as a *core object*
- There may be other core objects withing $N_{\varepsilon}(x)$
- These points are density reachable from x
- Clusters are expanded until all density reachable points are included

Clustering: DBSCAN

DBSCAN - a density-based clustering algorithm - defines five types of points in a dataset.

- Core Points are points that have at least a minimum number of neighbors (MinPts) within a specified distance (ε).
- Noise Points are neither core points nor border points.
- **Border Points** are points that are within ε of a core point, but have less than **MinPts** neighbors.
- **Directly Density Reachable Points** are within ε of a core point.
- Density Reachable Points are reachable with a chain of Directly Density Reachable points.

Clusters are built by joining core and density-reachable points to one another.

Example with MinPts = 3

Core Point vs. Border Point vs. Noise

- t = Core point
- s = Boarder point
- n = Noise point

Directly Density Reachable vs. Density Reachable

- z is directly density reachable from t
- s is not directly density reachable from t, but density reachable via z

Note: But t is not density reachable from s, because s is not a Core point

DBSCAN [Density Based Spatial Clustering of Applications with Noise]

- For each point, DBSCAN determines the ε -environment and checks whether it contains more than MinPts data points \rightarrow **core** point
- Iteratively increases the cluster by adding density-reachable points

Clustering:

- A density-based clustering C of a dataset D w.r.t. ε and MinPts is the set of all density-based clusters C_i w.r.t. ε and MinPts in D.
- The set NoiseCL ("noise") is defined as the set of all objects in D which do not belong to any of the clusters.

Property:

- Let C_i be a density-based cluster and $p \in C_i$ be a core object.

 $C_i = \{o \in D \mid o \text{ density-reachable from } p \text{ w.r.t. } \varepsilon \text{ and } MinPts\}.$

DBSCAN [Density Based Spatial Clustering of Applications with Noise]

- DBSCAN uses (spatial) index structures for determining the ε -environment:
 - \rightarrow computational complexity $O(n \log n)$ instead of $O(n^2)$
- Arbitrary shape clusters found by DBSCAN
- Parameters: ε and MinPts

Summary of the lesson

- Clustering
- Similarity Measures
- Hierarchical Clustering
 - DIANE
 - AGNES
- Prototype or Model –based Clustering
 - K-Means
- Quality Measures
- Gaussian Mixture Model
- Density based Clustering
 - DBScan

Practical Example with KNIME Analytics Platform

Hierarchical Clustering

Workflow implementing hierarchical clustering with the simple Hierarchical Clustering node and with the more complex sequence of nodes, including the Distance Matrix Calculate node

Hierarchical Clustering

A dendrogram for the iris data obtained with Euclidean distance and complete linkage. Moving the threshold line changes the number of clusters and the assignment for the input rows.

K-Means Clustering

Building of k-Means prototypes (top) and cluster assignment (bottom)

This workflow implements a DBSCAN clustering on the iris data set. Notice the possibility to choose the distance metric in the Numeric Distances node

Thank you

For any questions please contact: education@knime.com