Uppsala Universitet Matematiska institutionen Isac Hedén

Algebra I, 5 hp Distanskurs 2013-06-08 Tentamen

Tillåtna hjälpmedel: Skrivdon och linjal. Varje problem ger maximalt 5 poäng – om inget annat anges krävs att lösningarna skall vara åtföljda av klar och tydlig förklarande text för full poäng. Gränserna för betygen 3, 4 och 5 går vid 18, 25 och 32 poäng respektive. Påbörja varje uppgift på ett nytt blad.

Skrivtid: 09.00–14.00.

- 1. På den första uppgiften krävs inga motiveringar, endast svar.
 - a) Ge exempel på två mängder A och B, och en funktion $f:A\longrightarrow B$ som varken är injektiv eller surjektiv.
 - **b)** Beräkna $\sum_{k=3}^{8} (3k-2)$.
 - c) Beräkna $\sum_{k=3}^{8} 3^{k-2}$. Svaret behöver inte förenklas fullständigt. Det går bra att svara med ett bråk
 - d) I en skolklass finns 11 elever som spelar piano, och 12 som spelar tennis. 3 av eleverna spelar både piano och tennis, och 4 spelar varken tennis eller piano. Hur många elever finns det i klassen?
 - e) Låt a, b och n vara heltal med $n \ge 2$. Vad betyder det att $a \equiv b \pmod{n}$?
- **2.** a) Skriv talet $(132)_{\text{fyra}}$ i basen 2.
 - **b)** Bestäm alla heltal $x \ge 0$ sådana att $4x + 3 \equiv 0 \pmod{5}$.
- 3. Vilken är den minsta positiva rest som kan erhållas vid division av 29^{19} med 13?
- 4. Blyertspennor kostar 9 kronor styck och bläckpennor kostar 13 kronor styck.
 - a) Bestäm samtliga heltalslösningar till den diofantiska ekvationen 9x + 13y = 1.
 - b) När Beatrice köpte pennor av de två sorterna blev det totala priset 221 kronor. Vilket är det lägsta sammanlagda antalet pennor hon kan ha köpt?

5. Bevisa med induktion att

$$\sum_{k=1}^{n} \frac{k}{(k+1)!} = 1 - \frac{1}{(n+1)!}$$

för n = 1, 2, 3, ...

- **6.** Polynomen $x^4 + 4x^3 + 6x^2 + 4x + 5$ och $x^3 + 2x^2 3x 10$ har en gemensam icke-konstant faktor. Bestäm samtliga nollställen till $\det f\ddot{o}rsta$ polynomet.
- 7. a) Undersök med avseende på reflexivitet, symmetri och transitivitet, den relation R på \mathbb{Z} som definieras av $mRn \Leftrightarrow 5 \nmid m^2 \cdot n$.
 - b) Visa att mängden av alla naturliga tal som är delbara med 4 är uppräknelig.
 - c) Visa att mängden av alla naturliga tal som inte är delbara med 4 också är uppräknelig.
- 8. Bestäm alla primtal p för vilka ekvationen $x^3 3x + p = 0$ har en heltalsrot.

LYCKA TILL!