

	PGE381L Outline
	Introduction to petrophysics, geology, and formation data
	Porosity
	Fluid saturations
	Permeability
	Quantification of heterogeneity, spatial data analysis, and geostatistics
	Interfacial phenomena and wettability
	Capillary pressure
	Relative permeability
	Dispersion in porous media
	Introduction to petrophysics of unconventional reservoirs
oya Heidari, Ph.D.	Advanced Petrophysics

What do we learn in this lecture?

- What is relative permeability?
- Modeling of two-phase immiscible displacement in porous media
- Buckley-Leverett approximate solution
- · How to quantify relative permeability
 - Laboratory measurements
- Assessment of relative permeability from drainage capillary pressure
- Parameters affecting relative permeability

Zoya Heidari, Ph.D.

Advanced Petrophysics

-

Relative Permeability

 Relative Permeability: The permeability of one fluid in the presence of other immiscible fluids is known as the effective permeability to that fluid.

$$q_{w} = -\frac{kk_{rw}A}{\mu_{w}} \left(\frac{\partial P_{w}}{\partial x} + \rho_{w}g \sin \alpha \right)$$

$$q_o = -\frac{kk_{ro}A}{\mu_o} \left(\frac{\partial P_o}{\partial x} + \rho_o g \sin \alpha \right)$$

$$q_{g} = -\frac{kk_{rg}A}{\mu_{g}} \left(\frac{\partial P_{g}}{\partial x} + \rho_{g}g\sin\alpha \right)$$

Zoya Heidari, Ph.D.

Advanced Petrophysics

Modeling of Two-Phase Immiscible Displacement in Porous Media

OPTIONAL

• Please watch the video (Parts 1 and 2)! The link to this video is already shared with you.

Zoya Heidari, Ph.D.

Advanced Petrophysics

Buckley-Leverett Approximate Solution

OPTIONAL

• Please watch the video (Parts 1 and 2)! The link to this video is already shared with you.

Zoya Heidari, Ph.D.

Advanced Petrophysics

How to Estimate Relative Permeability?

- How to Estimate Relative Permeability?
 - Laboratory-based assessment of relative permeability
 - Stationary liquid method
 - Porous Plate Desaturation
 - Centrifuge Desaturation
 - Unsteady-state method
 - In-situ assessment of relative permeability
 - What are the possibilities based on what we learned so far?

Zoya Heidari, Ph.D.

Advanced Petrophysics

9

Stationary Liquid Method

- Step 1: Install the clean, dry core sample in the Hassler apparatus. Evacuate the
 core and saturate with the wetting phase. Determine the absolute permeability of
 the core by wetting phase flow.
- Step 2: Displace the wetting phase with the non-wetting phase until no more
 wetting phase flows from the core. Calculate the irreducible wetting phase
 saturation and the initial non-wetting phase saturation. Measure the steady state
 pressure drop and the non-wetting phase injection rate and calculate the relative
 permeability to the non-wetting phase at the irreducible wetting phase saturation
 via

$$k_{rmw} = \frac{\mu_{mv} q_{mv} L}{kA\Delta P_{mv}}$$

Zoya Heidari, Ph.D. Advanced Petrophysics 10

Stationary Liquid Method

- Step 3: Inject a mixture of the wetting and non-wetting phases at rates qnw and qw such that the ratio, qw/qnw, is very much less than 1 until steady state is achieved. Steady state is achieved when the injected and produced qw/qnw ratios are equal and the pressure drop no longer changes with time.
- Step 4: Measure the pressure drop and calculate the wetting phase saturation by material balance. Calculate the relative permeabilities to the nonwetting and wetting phases at the latest wetting phase saturation via

$$k_{rw} = \frac{\mu_{w} q_{w} L}{kA \Delta P_{w}} \qquad k_{rmw} = \frac{\mu_{mw} q_{mv} L}{kA \Delta P_{mw}}$$

Zoya Heidari, Ph.D. Advanced Petrophysics

Stationary Liquid Method

- Step 5: Increase the ratio qw/qnw and repeat steps 3 and 4 to calculate the relative permeabilities at higher and higher wetting phase saturations.
- Step 6: Inject only the wetting phase until no more non-wetting phase flows from the core. Calculate the residual non-wetting phase saturation. Measure the steady state pressure drop and the wetting phase injection rate and calculate the relative permeability to the wetting phase at residual non-wetting phase saturation.

How to minimize the capillary end effects?

Interpretation of Data Collected from Unsteady-state Method

JBN Method

(Welge (1952) and Johnson, Bossler and Neumann (JBN, 1959))

$$k_{\mathit{rnw}} = \frac{f_{\mathit{nw,outlet}}}{\frac{d}{d\left(\frac{1}{W_i}\right)}} \qquad k_{\mathit{rw}} = \frac{\mu_{\mathit{w}}}{\mu_{\mathit{nw}}} \left(\frac{1}{f_{\mathit{nw,outlet}}} - 1\right) k_{\mathit{rnw}}$$

$$I_r = \frac{\left(\frac{q}{\Delta P}\right)}{\left(\frac{q}{\Delta P}\right)_s} = \frac{kA}{\mu_{\mathit{w}}L}$$
 constant

I encourage you to see the derivation or to try to derive these equations yourself!

Advanced Petrophysics

Zoya Heidari, Ph.D.

8

Characteristics of Unsteady-state Method

- Very fast compared to the steady-state method
- Minimizing capillary end effects is critical!
 - Can you explain the reason?
- Range of water saturation in which relative permeability can be recorded: S_{wf} to 1- S_{nwr}
 - What rock/fluid properties control this range?

In-situ Assessment of Relative Permeability

- Is it possible to estimate relative permeability in-situ condition?
- What are the possible options based on what we learned so far?
- What are the challenges associated with these possible options?

Assessment of Relative Permeability from Drainage Capillary Pressure

OPTIONAL

$$k_{rw}(S_w) = \frac{k_w}{k} = \frac{\int_0^{S_w} \frac{dS_w}{P_c^{2+\alpha}}}{\int_0^1 \frac{dS_w}{P_c^{2+\alpha}}}$$

$$k_{rw}(S_{w}) = \frac{k_{w}}{k} = \frac{\int_{0}^{S_{w}} \frac{dS_{w}}{P_{c}^{2+\alpha}}}{\int_{0}^{1} \frac{dS_{w}}{P_{c}^{2+\alpha}}} \qquad k_{rmw}(S_{w}) = \frac{k_{mw}}{k} = \frac{\int_{0}^{1} \frac{dS_{w}}{P_{c}^{2+\alpha}}}{\int_{0}^{1} \frac{dS_{w}}{P_{c}^{2+\alpha}}}$$

- What are the limitations of these models?
- Can they be addressed?

Zoya Heidari, Ph.D.

Advanced Petrophysics

Updated Model: Burdine (1953)

OPTIONAL

Normalized drainage relative permeability

$$\overline{k}_{rw}(S_w^*) = \frac{k_w(S_w^*)}{k_w(S_w^* = 1)} = \left(S_w^*\right)^2 \frac{\int_0^{S_w^*} \frac{1}{P_c^2} dS_w^*}{\int_0^1 \frac{1}{P_c^2} dS_w^*}$$

$$\overline{k}_{rmw}(S_w^*) = \underbrace{\frac{k_{mw}(S_w^*)}{k_{mw}(S_w^* = 0)}}_{\text{We need to estimate this value!}} = \left(1 - S_w^*\right)^2 \frac{\int\limits_{S_w^*}^1 \frac{1}{P_c^2} dS_w^*}{\int\limits_0^1 \frac{1}{P_c^2} dS_w^*}$$

Normalized wetting phase saturation
$$S_{w}^{*} = \frac{S_{w} - S_{wirr}}{1 - S_{wirr}}$$

How to calculate this integral?

Zoya Heidari, Ph.D.

Advanced Petrophysics

Assessment of Relative Permeability from Drainage Capillary Pressure

OPTIONAL

Let's use Brooks-Corey drainage capillary pressure model:

$$\ln S_w^* = -\lambda \ln P_c + \lambda \ln P_e \longrightarrow \ln P_c = -\frac{1}{\lambda} \ln S_w^* + \ln P_e \longrightarrow P_c = P_e \left(S_w^*\right)^{-\frac{1}{\lambda}}$$

pore size distribution index

wetting phase saturation at which k_{rnw} becomes 0 (at critical nonwetting phase saturation)

Zoya Heidari, Ph.D.

Advanced Petrophysics

27

Example

Please Take Notes!

Parameters Affecting Relative Permeability

- Fluid saturation
- Saturation history
- Wettability
- Injection rate
- Viscosity ratio
- Interfacial tension
- Pore structure
- Temperature
- Heterogeneity
- ...

Zoya Heidari, Ph.D.

Advanced Petrophysics

Impact of Temperature on Relative Permeability

Source: Poston et al., 1970

Zoya Heidari, Ph.D.

Advanced Petrophysics

Complementary References

- Peters, E. J., 2012, Advanced Petrophysics. Live Oak Book Company. Chapter 8
- Zinszner, B. and Pellerin, F. M., 2007, A Geoscientist's Guide to Petrophysics. Editions Technip.

Zoya Heidari, Ph.D.

Advanced Petrophysics