Metody Obliczeniowe w Nauce i Technice Laboratorium 1 Arytmetyka Komputerowa Sprawozdanie

Yurii Vyzhha

13 października 2017

Zadanie 1 Sumowanie liczb pojedynczej precyzji

Zwykły algorytm sumowania

```
float[] ar = new float[10000000];
float v = 0.53125f;
for (int i = 0; i < ar.length; i++) {
    ar[i] = v;
}
float sum = 0.0f;
for (int i = 0; i < ar.length; i++) {
    sum += ar[i];
}</pre>
```

Bezwzględny błąd: $\sim 5.3\%$.

Względny błąd: 281659.5.

Wielkość błędu sumowania jest związana z reprezentacją liczb zmiennoprzecinkowych oraz z implementacją sumowania dwóch l.z. Dla obliczenia sumy dwóch l.z. mantysę mniejszej z liczb musimy doprowadzić do postaci większej z liczb co wiąże się z utratą mniej znaczących cyfr cechy.

Poniżej przedstawiamy wykres który pokazuje zależność pomiędzy błędem bezwzględnym a ilością iteracji wykonanych przez program.

Wzrost błądu względnego

Jak widzimy na wykresie, przy pierwszych 10⁶ iteracji nie mamy błędu. To jest związane z tym, że wielkość cechy jest wystarczają duża, a różnica między liczbami, które dodajemy, jest wystarczająco mała. Później błąd bezwględny się pojawia, ale rośnie co raz z mniejszą prędkością. To jest spowodowane tym, że z każdym dodawaniem mylimy się na stałą liczbę, a suma rośnie, więc udział błędu w sumie jest co raz mniejszy.

Rekurencyjny algorytm dodawania

```
public static float recSum(float[] ar, int a, int b) {
    if (a == b) return ar[a];
    if (b - a == 1) {
        return ar[a] + ar[b];
    }
    return recSum(ar, a, (b + a)/2) + recSum(ar, (b + a)/2 + 1, b);
}
```

Bezwzględny bład: 0.0%.

Względny błąd: 0.0.

Korzystając z rekurencyjnego algorytmu, nie dostaliśmy błędu. Ten algorytm jest zaimplementowany tak, że dodaje liczby wylącznie o tej samej wielkości, więc przesunięcie cechy i, co za tym idzie, utrata precyzji nie występują.

Czas działania obu algorytmów jest mniej więcej taki sam dla różnych danych wejściowych.

Zadanie 2 Algorytm Kahana

Implementacja algorytmu Kahana w języku Java

```
float sum = 0.0f;
float err = 0.0f;
for (int i = 0; i < ar.length; i++) {
    float y = ar[i] - err;
    float temp = sum + y;
    err = (temp - sum) - y;</pre>
```

```
sum = temp;
}
```

Algorytm Kahana działa w następujący sposób. Każdego razu jak dodajemy nową liczbę do ogólnej sumy (sum + y), obliczamy korektę (err), który stosujemy w następnej iteracji. Najpierw odejmujemy korektę err, którą obliczyliśmy w poprzedniej iteracji pętli i otrzymujemy poprawiony składnik y. Później dodajemy ten składnik do sumy sum. Najmniej znaczące bity y straciliśmy przy sumowaniu. Potem obliczamy najbardziej znaczące bity y za pomocą temp - sum. Kiedy odejmniemy y od otrzymanej różnicy, odzyskamy najmniej znaczące bity. Te właśnie bity straciliśmy przy obliczaniu sum + y. One będą korektą w następnej iteracji. Czas działania algorytmów Kahana oraz rekurencyjnego jest mniej więcej taki sam dla różnych danych wejściowych.

Zadanie 3 Sumy częściowe

Tablice nalerzy czytać w następujący sposób: najpierw podany jest wynik, otrzymany przy sumowaniu wprzód, a niżej w tej samej komórce wynik, otrzymany przy sumowaniu wstecz. Funkcje policzone z pojedynczą precyzją:

Funkcja dzeta Riemanna:

		n				
		50	100	200	500	1000
	2	1.6251329	1.634984	1.6399467	1.642936	1.6439348
		1.6251328	1.6349839	1.6399465	1.642936	1.6439345
s	3.6667	1.1093994	1.1094086	1.1094086	1.1094086	1.1094086
		1.1093998	1.1094089	1.1094103	1.1094105	1.1094105
	5	1.0369275	1.0369275	1.0369275	1.0369275	1.0369275
		1.0369277	1.0369277	1.0369277	1.0369277	1.0369277
	7.2	1.0072277	1.0072277	1.0072277	1.0072277	1.0072277
		1.0072277	1.0072277	1.0072277	1.0072277	1.0072277
	10	1.0009946	1.0009946	1.0009946	1.0009946	1.0009946
		1.0009946	1.0009946	1.0009946	1.0009946	1.0009946

Funkcja eta Dirichleta:

		n				
		50	100	200	500	1000
	2	0.822271	0.8224175	0.8224547	0.82246536	0.82246685
		0.82227105	0.8224175	0.8224546	0.82246506	0.8224665
s	3.6667	0.93469304	0.9346932	0.9346932	0.9346932	0.9346932
		0.93469304	0.93469334	0.93469334	0.93469334	0.93469334
	5	0.9721198	0.9721198	0.9721198	0.9721198	0.9721198
		0.97211975	0.97211975	0.97211975	0.97211975	0.97211975
	7.2	0.99352705	0.99352705	0.99352705	0.99352705	0.99352705
		0.993527	0.993527	0.993527	0.993527	0.993527
	10	0.99903953	0.99903953	0.99903953	0.99903953	0.99903953
		0.99903953	0.99903953	0.99903953	0.99903953	0.99903953

Funkcje policzone z podwójną precyzją:

Funkcja dzeta Riemanna:

		n		
		50	100	200
	2	1.625132733621529	1.6349839001848923	1.6399465460149971
		1.6251327336215293	1.634983900184893	1.6399465460149973
s	3.6667	1.1093997551541945	1.1094087973421474	1.1094102423332313
		1.1093997551541943	1.1094087973421476	1.109410242333231
	5	1.036927716716712	1.0369277526929555	1.0369277549886775
		1.0369277167167108	1.0369277526929532	1.036927754988676
	7.2	1.0072276664762816	1.007227666480654	1.0072276664807145
		1.0072276664762823	1.007227666480655	1.0072276664807163
	10	1.0009945751278182	1.0009945751278182	1.0009945751278182
		1.000994575127818	1.000994575127818	1.000994575127818

		n		
		500	1000	
	2	1.642936065514894	1.6439345666815615	
		1.6429360655148941	1.6439345666815597	
S	3.6667	1.1094104908440712	1.1094105108423578	
		1.1094104908440725	1.1094105108423593	
	5	1.0369277551393863	1.0369277551431222	
		1.0369277551393858	1.0369277551431204	
	7.2	1.0072276664807145	1.0072276664807145	
		1.0072276664807172	1.0072276664807172	
	10	1.0009945751278182	1.0009945751278182	
		1.000994575127818	1.000994575127818	

Funkcja eta Dirichleta:

		n		
		50	100	200
	2	0.8222710318260295	0.8224175333741286	0.822454595922551
		0.8222710318260289	0.8224175333741282	0.8224545959225509
s	3.6667	0.9346930600307106	0.9346933211400662	0.9346933421086845
		0.934693060030711	0.934693321140067	0.9346933421086852
	5	0.9721197689267979	0.9721197703981592	0.972119770445367
		0.9721197689267976	0.9721197703981589	0.9721197704453663
	7.2	0.9935270006613486	0.9935270006616185	0.9935270006616201
		0.9935270006613481	0.9935270006616179	0.9935270006616198
	10	0.9990395075982718	0.9990395075982718	0.9990395075982718
		0.9990395075982715	0.9990395075982715	0.9990395075982715

		n		
		500	1000	
	2	0.8224650374240963	0.8224665339241114	
		0.8224650374240972	0.8224665339241127	
s	3.6667	0.9346933438558745	0.9346933439141353	
		0.934693343855875	0.9346933439141354	
	5	0.9721197704468947	0.9721197704469091	
		0.9721197704468933	0.9721197704469088	
	7.2	0.9935270006616201	0.9935270006616201	
		0.9935270006616198	0.9935270006616198	
	10	0.9990395075982718	0.9990395075982718	
		0.9990395075982715	0.9990395075982715	

Zadanie 4 Błędy zaokrągleń i odwzorowanie logistyczne

Niżej podajemy kod programu w jezyku Julia, który rysuje diagram bifurkacyjny.

```
using Plots
```

```
@everywhere function almostequal(a::Float64, b::Float64, epsilon::Float64)
  return abs(a-b) <= epsilon
end
function calcarr(xa::Float64, p::Int64, start = 0.0, fin = 4.0)
  lambdaarr = collect(linspace(start, fin, p))
  const iterconst = 50000
  const epsilon = 1e-6
  xarr = Array{Array{Float64,1},1}(p)
  yarr = Array{Array{Float64,1},1}(p)
  for j = 1:p
    lambda = lambdaarr[j]
    x = xa
    xarr[j] = Array{Float64,1}(0)
    yarr[j] = Array{Float64,1}(0)
    for i = 1:iterconst
      x = lambda*x*(1-x)
    push!(yarr[j], x)
    found = false
    while !found
      x = lambda*x*(1-x)
      for y in yarr[j]
        if almostequal(x, y, epsilon)
          found = true
          break
        end
      end
      if !found
        push!(yarr[j], x) # if not, add it to the array
      end
    end
```


Użyto podwójnej precyzji:

Jak widzimy, diagram, który został wygenerowany przy użyciu podwójnej precyzji wygląda 'gęstrzej'. Algorytm, który generuje dany diagram, najpierw szuka pierwszego punktu, gdzie funkcja zbieża, a kolejne otrzymuje, porównując do już otrzymanych. Kiedy używamy pojedynczej precyzji, nie możemy wykryć niektrórych punktów, bo nie możemy rozróżnić dwóch bardzo bliskich siebie punktów. Dla tego używając l.z. z podwójną precyzją dostajemy więcej punktów.