EXPERIMENTAL VERIFICATION OF CHARGING AND DISCHARGING PROPERTIES OF A PACKED BED HEAT RESERVOIR FOR SPACE HEATING

Under the Guidance of:

Mr. Nikhil Kanojia

Anuj Sharma

Ayush Gupta

Deshraj

Sandeep Kumar Singh

Manish Kr. Sah

Mayank Singh

AIM OF THE PROJECT

To better utilize solar energy and design an efficient system which can use it for space heating and eventually reduce the energy imprint of fossil fuels and their adverse effect on environment

OBJECTIVES

To determine a suitable material to act as thermal reservoir

To determine the optimum mass flow rate for the system.

Calculate optimum timing for working condition.

Variation of charging and discharging characteristics with bed parameters.

INTRODUCTION

ENERGY STORAGE METHODS:

- Mechanical Energy Storage
- Electrical Energy Storage
- Chemical Energy Storage
- Biological Energy Storage
- Thermal Energy Storage

THERMAL ENERGY STORAGE

Sensible Heat Energy Storage

Latent Heat Energy Storage

Thermochemical Energy Storage

WHY PACKED BED HEAT RESERVOIR?

Freedom in choice of storing material

Applicability in a wide temperature range, with limiting temperatures given by the material's melting point

Direct heat transfer between working fluid and storage material

No degradation or chemical instability

No safety concerns

Elimination of chemicals and corrosive materials

Author	Analysis	Investigation	Material Used	Results
Furnas, (1930) Lof and Hawley,	Experimental Analysis of heat transfer in bed.	Heat transfer Coefficient, relation with different		Varies along velocity.
(1948)	Determined the heat transfer coefficient in	velocity Heat transfer	Granite gravels- Fluid	coefficient
Littman et al., (1968)	packed bed.	Coefficient, Mass flow rate		increases.
	Heat transfer study for low range of Reynolds		Rocks-Fluid	H = 6 - 99.2 and Nu = 2 - 6
Farber, (1982)	number in packed bed.	Heat transfer Coefficient and		
	Numerical approach of	Nusselt number	Rocks-Fluid	Heat transfer
Ismail and Stuginsky,	Heat transfer process in packed bed.	Ranges		coefficient increases
(1999)		Heat transfer process		
	Parametric study on fixed packed bed model.	hv = 700. (G/dp)0.75	PCM and heat storage material	
		Parameters, Pressure drop and Heat transfer		

Lof et al., (1963)	Designed an air heating system.	Reliability	Rocks-Fluid	Operate reliably over many years with little maintenance.
Garg et al., (1990) Audi,	Investigation of rock bed solar collector. Experimental study	Constructing collector consists of rocks.	Rocks-Fluid Jordanian	Satisfactory overall efficiency.
(1991)	of a solar space heating model. Storage models for	Fulfill energy demand for 220 m2 floor area	rocks,tar sand Zeolite Gravels-fluid	An alternative to traditional packed bed system.
al., (1976)			Graveis ridia	
a, (1770)	cooling systems.	Storage size, Mass flow rate		Values of NTU greater than ten, Insensitive the mass flow rate.
	Pressure drop and heat transfer	Pressure drop and heat transfer	Rocks-Fluid	than ten, Insensitive the

Mocker et al., (2012)	Design a Pebble bed Regenerator.	Energy Balance for CHP	Rocks- Fluid	Waste fuel Recovery, Reliability
Steinhagen et al., (2013)	Create a model for packed bed for high applications.	Thermo Mechanical Behavior	Rocks- Fluid	Thermally stable, feasible
Saxena et al., (2013)	Design a solar air heater for low and moderate temperature.	Thermal Performance	Rocks- Fluid	Thermally stable, feasible
Steinfeld et al., (2011)	Create a Heat Transfer model.	Charging and Discharging Characteristic	Rocks- Fluid	Charging efficiency decreases with increase in mass flow rate

Steinfeld et al.,(2012)	Packed-bed thermal storage for concentrated solar power	Formation of a dynamic numerical storage system with separate fluid and solid phases	unit yields 95% overall thermalefficiency
Aydin et al., (2014)	Recent advancements in Heat storage Systems	Comparison on thermodynamic properties of various materials	Concrete and Calcium Chlorideidentified as promising materials
Kaushik and Gupta et al., (2016)	Packed-Bed with Clay and waste Rubber	Experimentation with different mass flow rates and temperatures	Ideal Mass flow rates and Temperature for Packed bed identified

SUMMARY OF LITERATURE SURVEY

- Previous studies identify Packed Bed as the most suitable and economical heat storage solution for commercial purpose
- Various Materials have been tested with Packed Bed heat storage systems including but not limited to clay, rocks, rubber, plastic, marble etc.
- A material suitable for commercialization of this system is still far from reach and there is a large room for improvement and a huge potential for growth

SUMMARY OF LITERATURE SURVEY

 Following Materials have been identified through the survey

Energy Storage Type	Material	Density (Kg/m3)	Specific Heat Capacity (KJ/kg)	Latent Heat of Fusion (KJ/Kg)	Reaction Enthalpy (KJ/Kg)
	Rock	2240	0.9	-	-
	Sandstone	2200	0.71	-	-
Sensible	Brick	1600	0.84	-	-
	Soil	1300	0.46	-	-
	Concrete	2240	1.13	-	-
	Teflon	2200	1.4	-	-
Latent	Paraffin Wax	1802	-	174.4	-
Thermochemical	CaCl2.H2O	2100	3.06	-	433.6
	Zeolite	650	1.07	-	1107
	Silica Gel	600	1.13	-	1380

EXPERIMENTAL SETUP

METHODOLOGY

Building the piping framework which houses the Packed Bed Chamber

Sealing of all potential leakage points

Fabrication and Insulation of Heater

Installation of thermocouples, flow meters, various measuring unit and heater on appratus

Insulation of appratus

