자성 磁性 magnetic property

자석 magnet

- 영구자석 (永久磁石, permanent magnet)
 - 지남철 (指南鐵) : 자철광 (磁鐵鑛, magnetite)
 - 주성분 Fe3O4
 - 두 개의 극(자기 쌍극 磁氣雙極): N극과 S극
 - N:north
 - S:south
 - 나침반(羅針盤, compass)

- 영구자석이 만들어진 원인
 - 자석에 클립을 사진과 같이 달라붙음
 - 이 상태로 오래 둠
 - 클립 하나 하나가 영구자석이 됨
 - 지구자기장 영향 하에 자철광이 오랜 기간 놓임
 - 자철광은 영구자석이 됨

• 문제점

- (1) 지구자기장보다 강한 자성을 갖는 자철광이 발견
- (2) 자철광은 지구 표면에만 존재

• 참고

- 지구자기장 크기 : 25~65 µT
- 우리 나라 경우 : 40 µT (T: tesla)

• Benjamin Franklin

- Philadelphia
- 1752년 6월
- 번개 실험
 - 번개(혹은 다른 말로 낙뢰(落雷))로부터 사람, 건물 및 다른 구조물을 보호할 목적으로 실험 수행
 - 연(鳶, kite)에 금속열쇠를 매달음
- 번개는 전기의 한 형태라는 것을 확인
- 번개 피해을 줄이기 위해 피뢰침(避雷針, lightning rod)을 발명하여 사용
- 피뢰침(피뢰침, lightning rod)
 - 건물 위에 피뢰짐을 설치
 - 전기가 흐르는 도선을 땅에 묻어 놓은 금속막대에 연결
 - 번개는 전기이므로 전류가 흐르는데 이 전류를 피뢰침과 금속막대에 의해 땅으로 빠져 나감

- 천연자석 (天然磁石, lodestone)
 - 번개에 의해 생성 → 천연자석은 지표면에만 존재
 - 번개 옆 5~10 cm 떨어진 거리에 있는 자철광은 0.07 T의 자성을 보임
- Peter Wasilewski 실험
 - Franklin 실험과 유사한 실험 수행
 - 실험
 - 소형 로켓
 - 플라스틱 통 : 모래와 자철광 조각을 담음
 - 금속선(金屬線, metal wire) : 3 마일 길이
 - 번개 대신 도선을 통해 흐르는 전류에 의해 순간적으로 강력한 자기장에 플라스틱 통이 노출 → 자철광이 천연자석이 됨
 - 동시에 높은 온도에 의해 모래와 자철광이 한 덩어리가 됨
 - 번개가 칠 때의 속성
 - 주변 온도: 2900℃
 - 전류 : 5,000~20,000 A(암페어)

- 전자 스핀(spin)
 - 전자는 질량과 전하를 갖고 있음
 - 전자 스핀을 도입해야 할 필요
 - 전자의 자전 운동으로 이해하면 쉬우나 실제 전자가 그렇게 움직이는 것은 아님
 - 스핀의 종류
 - Up spin (1)
 - Down spin (↓)

• 유튜브 동영상 : https://youtu.be/rg4Fnag4V-E

- 배타원리 (exclusion principle)
 - 동일한 상태에서 두 전자가 존재한다면 spin은 반대가 되어야 함
 - 동일한 상태에서
 - up spin 전자는 down spin 전자 : 공존
 - Up spin전자와 up spin 전자 : 서로 밀어냄 → 공존하지 못함
 - down spin 전자 두 개 : 서로 밀어냄 > 공존하지 못함

- 전자의 원자 궤도 함수 채우기
 - 주양자수(主量子數, principal quantum number) n
 - n = 1, 2, 3, 4, ...
 - 전자총 개수 : 2*n*²
 - n = 1 (K) : $2n^2 = 2 \cdot 1^2 = 2$ electrons
 - n = 2 (L) : $2n^2 = 2 \cdot 2^2 = 8$ electrons
 - n = 3 (M): $2n^2 = 2 \cdot 3^2 = 18$ electrons
 - n = 4 (N) : $2n^2 = 2 \cdot 4^2 = 32$ electrons
 - ...
 - 부양자수(部量子數, azimuthal quantum number) l
 - l = 0, 1, 2, 3, 4, ...
 - 전자총 개수 : 4*l* + 2
 - l = 0 (s): $4l + 2 = 4 \cdot 0 + 2 = 2$ electrons
 - $l = 1 (p) : 4l + 2 = 4 \cdot 1 + 2 = 6$ electrons
 - $l = 2(d): 4l + 2 = 4 \cdot 2 + 2 = 10$ electrons
 - $l = 3(f): 4l + 2 = 4 \cdot 3 + 2 = 14$ electorns
 - ...

• 궤도에 채울 수 있는 최대 전자수

• K궤도 $(n = 1) \ 2 \cdot 1^2 = 2 \ electrons : 1s^2$

• L궤도 (n = 2) $2 \cdot 2^2 = 8$ electrons : $2s^2 2p^6$

• M궤도 (n = 3) $2 \cdot 3^2 = 18$ electrons: $3s^2 3p^6 3d^{10}$

• N궤도 (n = 4) 2 · $4^2 = 32$ electrons: $4s^24p^64d^{10}4f^{14}$

• ...

주양자수 (n)	부양자수 (/)	자기양자수 (m)	오비탈 종류	포함 가능한 최대 전자수
n = 1	/= 0	m = 0	1s	2개
n = 2	/= 0	m = 0	2s	2개
	/= 1	m = -1, 0, 1	2p _x , 2p _y , 2p _z	67#
n = 3	/= 0	m = 0	3s	2개
	/= 1	m = -1, 0, 1	3p _x , 3p _y , 3p _z	67#
	/= 2	m = -2, -1, 0, 1, 2	3d _{xy} , 3d _{yz} , 3d _{xz} , 3d _{x²-y²} , 3d _{z²}	10개

• 전자가 궤도에 채워 들어가는 순서

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d,

• 18개 전자: $1s^22s^22p^63s^23p^6$ (2+2+6+2+6=18)

Group	Group			Trans	ition ele	ments	T	ransition	element	3		Group	Group	Group	Group	Group	Group
I	П											Ш	VI	V	VI	VII	0
H 1																H 1	He 2
$1s^1$											$1s^1$	$1s^2$					
Li 3	Be 4	B 5 C 6 N 7 O 8									F9	Ne 10					
$2s^1$	$2s^2$		$2p^1$ $2p^2$ $2p^3$ $2p^4$									2p ⁵	$2p^{6}$				
Na 11	Mg 12		Al 13 Si 14 P15 S 16								Cl 17	Ar 18					
$3s^1$	$3s^2$											$3p^1$	$3p^{2}$	$3p^3$	3p4	3p ⁵	$3p^{6}$
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
$4s^1$	$4s^2$	$3d^{1}4s^{2}$	$3d^{2}4s^{2}$	$3d^34s^2$	3d54s1	3d54s2	$3d^64s^2$	$3d^{7}4s^{2}$	$3d^84s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$	$4p^1$	$4p^2$	$4p^3$	$4p^4$	4p ⁵	$4p^6$
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	I 53	Xe 54
5s ¹	5s ²	$4d^15s^2$	$4d^25s^2$	4d ⁴ 5s ¹	4d ⁵ 5s ¹	4d ⁵ 5s ²	$4d^{7}5s^{1}$	4d85s1	4d ¹⁰	4d ¹⁰ 5s ¹	4d ¹⁰ 5s ²	5p1	$5p^2$	$5p^3$	$5p^4$	5p ⁵	5p ⁶
Cs 55	Ba 56	57-71*	Hf 72	Ta 73	W 74	Re 75	Os 76	Ir 77	Pt 78	Au 79	Hg 80	T1 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
6s ¹	6s ²		$5d^26s^2$	$5d^36s^2$	$5d^46s^2$	$5d^56s^2$	5d66s2	5d ⁷ 6s ²	5d ⁹ 6s ¹	5d ¹⁰ 6s ¹	5d ¹⁰ 6s ²	6p1	$6p^2$	6p ³	6p ⁴	6p ⁵	6p ⁶
Fr 87	Ra 88	89-	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Ds 110	Rg 111	112		114				
7 <i>s</i> ¹	$7s^2$	103**	$6d^27s^2$	$6d^37s^2$	6d ⁴ 7s ²	6d ⁵ 7s ²	6d ⁶ 7s ²	6d ⁷ 7s ²	6d ⁹ 7s ¹								
*Lanthanide series		La 57	Ce 58	Pr 59	Nd 60		Sm 62			75700000		Ho 67		and the second	Yb 70	- CONT. (100)	
		5d16s2	5d14f16s2	4f36s2	4f46s2	4f56s2	4f66s2	$4f^{7}6s^{2}$	5d14f76w2	5d14f86s2	4f 106s2	4f 116s2	4f 126s2	$4f^{13}6s^2$	4f146s2	5d 4f 146s2	
**Actinide series		ries	Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103
		$6d^17s^2$	$6d^27s^2$	$5f^26d7s^2$	5f36d7s2	5f6d7s2	5f 6d 7s2	5f ⁷ 6d ⁰ 7s ²	5f ⁷ 6d ¹ 7s ²	5f 86d 7 s2	5f ¹⁰ 6d ⁰ 7s ²	5f 116d 7s2	5f 126d 7s2	5f ¹³ 6d ¹³ x ²	5f146d7s2	$5f^{14}7s^27p^1$	

• **4**s와 3d에 <u>채워지는 전자 스핀</u>

금속			3d			4s	м 궤도의 전자 스핀 불균형	결과
Sc	1	1				$\uparrow\downarrow$	+2 0	+2
Ti	1	1	1			$\uparrow\downarrow$	+3 0	+3
V	1	1	1	1		$\uparrow\downarrow$	+4 0	+4
Cr	1	1	1	1	1	1	+5 0	+5
Mn	1	1	1	1	1	$\uparrow\downarrow$	+5 0	+5
Fe	$\uparrow\downarrow$	1	1	1	1	$\uparrow\downarrow$	+5 -1	+4
Co	↑↓	$\uparrow\downarrow$	1	1	1	$\uparrow\downarrow$	+5 -2	+3
Ni	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	1	1	$\uparrow\downarrow$	+5 -3	+2
Cu	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	↑↓	1↓	1	+5 -5	0
• 초전도자석: V (vanadium)								

• 강자성 물질 : Fe(철), Ni(니켈), Co(코발트)

- 자기구역(磁氣區域, magnetic domain)
 - 강자성체 물질을 구성하는 원자들은 서로 영향을 미쳐 어떤 구역을 형성함
 - 이런 개별 구역은 자기구역이라 함
 - 자기구역 크기 : 1~100 μm
 - 하나의 자기구역에서 전자의 spin이 향하는 방향(자화(磁化)된 방향)은 일정
 - 자기구역은 위 그림과 아래 왼쪽 그림에서 영역으로 표시
 - 아래쪽 왼쪽 그림
 - 자기구역은 한 개의 자석이나 자기구역의 자화(磁化, magnetized)된 방향이 제각각이라 전체적으로 자석이 아님
 - 아래쪽 오른쪽 그림
 - 외부에서 자기장 H가 빨간색 화살표 방향으로 가해지면 이 방향으로 모든 자기구역이 자화됨
 - 윗쪽이 N극 아래쪽이 S극인 자석

H = 0 $M \neq 0$

 $M = M_s$

- 큐리 온도(Curie temperature)
 - 강자성체 자석은 온도에 따라 자석의 강도가 달라짐
 - 온도가 높아질수록 자석의 세기가 약해짐
 - 큐리 온도에 도달하면 자석의 성질이 없어짐

물질	큐리 온도 (K)	
Со	1388	
Fe	1043	
Ni	627	

- 천연자석(天然磁石, lodestone)에 대한 정리
 - 번개에 의해 생성
 - 자철광(磁鐵鑛, magnetite)이 주성분
 - 번개가 칠 때 발생하는 강력한 전류에 의한 자기장에 자철광이 노출
 - 자철광의 자기구역이 번개의 자기장에 따라 배열
 - 자철광이 자석이 됨
 - 지표면에만 천연자석 분포
 - 자기구역
 - 전자의 spin 불균형
 - 대표적 강자성 원자 : Fe, Co, Ni
 - 큐리온도
 - 자철광 자석이 자성을 잃는 온도
 - 온도에 증가하면 자석의 세기는 약해짐