Population Genetics: Estimating diversity & selection tests Introductory

– Part 1 –

Neutral mechanisms of evolution

Part 2 -

Theoretical foundations of population genetics

Part 3 -

Estimating diversity

- Part 4 -

Detecting selection

Part 1 –Neutral mechanisms of evolution

Neutral mechanisms - mutations

Source of variation – mutations

- Single nucleotide substitutions (SNP)
- Insertions & deletions (INDEL)
- Large-scale rearrangements duplications, translocations

ATTCGCTGTCCGTACGTCGATCGCT ATTCGCTGTCCGTACGTCGATCGCT ATTCGCTGTCCGTACGTCGATCGCT ATTCGCTGTCCGTACGTCGATCGCT

Neutral mechanisms - mutations

Source of variation – mutations

- Single nucleotide substitutions (SNP)
- Insertions & deletions (INDEL)
- Large-scale rearrangements duplications, translocations

ATTCGCTGTCCGTACGTCGATCGCT ATTCGCTGTCCGTACGTCGATCGCT ATTCGCTGTCCGTACGTCGATCGCT ATTCGCTGTCCGGACGTCGATCGCT

Mutations – transitions & transversions

ATTCGCTGTCCGTACGTCGATCGCT
ATTCGCTGTCCGTACGTCGATCGCT
ATTCGCTGTCCGTACGTCGATCGCT
ATTCGCTGTCCGTACGTCGATCGCT
ATTCGCTGTCCGGACGTCGATCGCT

Mutations – effect on protein sequence

Non-synonymous

ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG GAC GTC GAT CGC
ATT CGC TGT CCG GAC GTC GAT CGC

Synonymous

ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAT GTC GAT CGC

Mutations – effect on fitness / reproductive success

- Neutral
- Deleterious
- Advantageous

Mutations – polymorphisms & substitutions

Mutations – minor allele frequency

Folded site frequency spectrum


```
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATA CGC TGT CCG GAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GCT CGC
```

Mutations – allele frequency

Species 1 ATT CAC TGT CCG TAC GTC GAT CGC Species 2 ATT CAC TGT CCG TAC GTC GAT CGC

Unfolded site frequency spectrum (SFS)

Mutations - take home

- Mutations come in various flavors
- Population geneticists try to understand processes that affect allele frequencies in populations.

Neutral mechanisms – Genetic drift

- Genetic drift is change in allele frequencies in a population from generation to generation that occurs due to chance events (sampling error).
- It's a stochastic process. Even if we know everything about a population and its biology, we cannot predict the state of the population in the future.

Drift - Exercise 1.

R script - drift_neutral.R

Let's start with 50 alleles / mutations at frequency of 0.5.

What happens to those alleles in a population of 100 individuals after 500 generations due to genetic drift?

What happens in a much larger population?

Repeat several times.

Drift - Exercise 1.

R script - drift_neutral.R

Let's start with 50 alleles / mutations at frequency of 0.5.

What happens to those alleles in a population of 100 individuals after 500 generations due to genetic drift?

What happens in much larger populations?

Take home: Effect of genetic drift depends on population size – strong in small and weak in large populations.

Drift - Exercise 2.

What happens to a single mutation in a population of 1000 individuals, which occurred only in 1 individual, after 500 generations due to genetic drift?

Repeat several times.

Let's try 100 mutations at frequency 1/individual. What happens to most them after?

Drift - Exercise 2.

What happens to a single mutation in a population of 1000 individuals, which occurred only in 1 individual, after 500 generations due to genetic drift?

Let's try 100 mutations at frequency 1/individual. What happens to most them after?

Take home:

- Most novel mutations are lost just due to the drift.
- It takes a lot of mutations and time for neutral mutations to reach substantial frequencies.
- Intermediate frequency neutral mutations are usually much older than rare mutations.

Demography – population growth

Demography – population contraction

Demography – bottleneck

©Arie Zackay

- Domestication
- Post-glacial expansion

Neutral mechanisms – migration

a.k.a. gene flow

Makes populations genetically more similar

Demography & migration - take home

- Historical demographic events and migration strongly affect allele frequency distribution.
 - They often mimic signatures of selection.
 - If unknown or unaccounted for may lead to wrong conclusions.

- Part 2 -

Theoretical foundations of population genetics

Hardy-Weinberg Equilibrium Model (1908)

Godfrey Hardy

Idealized population

- Infinite size (no drift)
- Random mating
- Non-overlapping generations
- No sex-ratio bias
- No selection
- No mutation
- No migration
- No recombination

Wilhelm Weinberg

$$p + q = 1$$

$$p^2 + 2pq + q^2 = 1$$

Within a large population the allele frequencies remain constant from one generation to the next unless the equilibrium is disturbed by migration, genetic mutations, or selection – population in equilibrium

Wright-Fisher Neutral Model (1930 - 1931)

Ronald Fisher

Evolution of allele frequency forward in time at a bi-allelic locus

- Finite & constant size
- Random mating

Sewall Wright

Census & effective population size

N – census population size, number of individuals

Ne – effective population size

Size of a Wright-Fisher population in which genetic drift occurs at the levels observed in an actual population

Theta – population mutation rate

$$\Theta = 4Ne\mu$$

O - population mutation rate, diversity

Ne - effective population size

 μ - mutation rate

Theoretical models- take home

- The theoretical models (HW, WF) describe the behaviour of allele frequencies in neutral idealized populations
- Though such populations don't exist in nature, the models provide reference points and mathematical framework of population genetics

- Part 3 -

Estimating diversity

Which of the populations is more diverse?

Case 2

n = 6

```
Case 1
GTT CGC TGT CCG TAC GTC
ATT CGC TGT CCG TAC GTC
ATT CGC TCG CCG TTC GTC
ATT CGC TGT CCG TAC GTC
ATT CGC TGT CCG TAC GTC
ATA CAC TGT CCG TAC GCC
ATT CGC TGT CCG TAC GTC
ATA CGC TGT CCG GAC GTC
ATA CAC TGT CCG GAC GTC
n = 12
```

```
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GCT CGC
ATA CAC TGT CCG GAC GTC GCT CGC
```

Number of segregating sites, S

Case 1

n = 12

```
GTT CGC TGT CCG TAC GTC
ATT CGC TGT CCG TAC GTC
ATT CGC TCG CCG TTC GTC
ATT CGC TGT CCG TAC GTC
ATT CGC TGT CCG TAC GTC
ATA CAC TGT CCG TAC GCC
ATT CGC TGT CCG TAC GTC
ATA CAC TGT CCG GAC GTC
ATA CAC TGT CCG GAC GTC
```

Case 2

```
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GCT CGC
ATA CAC TGT CCG GAC GTC GCT CGC
```

n = 6

Haplotypes

Case 1

GTT CGC TGT CCG TAC GTC

ATT CGC TGT CCG TAC GTC

ATT CGC TCG CCG TTC GTC

ATT CGC TGT CCG TAC GTC

ATT CGC TGT CCG TAC GTC

ATA CAC TGT CCG TAC GCC

ATT CGC TGT CCG TAC GTC

ATA CAC TGT CCG GAC GTC

ATA CAC TGT CCG GAC GTC

n = 12S = 8

Case 2

ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GCT CGC
ATA CAC TGT CCG GAC GTC GCT CGC

n = 6S = 4

Watterson's estimator Ow (Os)

Case 1 GTT CGC TGT CCG TAC GTC ATT CGC TGT CCG TAC GTC ATT CGC TCG CCG TTC GTC ATT CGC TGT CCG TAC GTC ATT CGC TGT CCG TAC GTC ATA CAC TGT CCG TAC GCC ATT CGC TGT CCG TAC GTC ATA CGC TGT CCG GAC GTC ATA CAC TGT CCG GAC GTC n = 12S = 8

$$n = 6$$
$$S = 4$$

$$\Theta w = \frac{S}{\sum_{i=2}^{n} \frac{1}{i-1}}$$

Could be normalized for the length of the analysed genomic region including invariant sites

Nei's nucleotide diversity ($\Theta \pi$ or π) (1979)

Masatoshi Nei

The average number of pairwise differences per sequence in the sample

$$\theta_{\pi} = \frac{1}{\binom{n}{2}} \sum_{i=1}^{n} S_i i(n-i)$$

Could be normalized for the length of the analysed genomic region including invariant sites

Nei's nucleotide diversity ($\Theta \pi$ or π)

```
Case 1
                                Case 2
GTT CGC TGT CCG TAC GTC
                                ATT CGC TGT CCG TAC GTC GAT CGC
                                ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC
ATT CGC TCG CCG TTC GTC
                                ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC
                                ATA CAC TGT CCG GAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC
                                ATA CAC TGT CCG GAC GTC GCT CGC
ATA CAC TGT CCG TAC GCC
                                ATA CAC TGT CCG GAC GTC GCT CGC
ATT CGC TGT CCG TAC GTC
                                n = 6
ATT CGC TGT CCG TAC GTC
                                S = 4
ATT CGC TGT CCG TAC GTC
ATT CGC TGT CCG TAC GTC
ATA CGC TGT CCG GAC GTC
                                   Sum of pairwise differences
ATA CAC TGT CCG GAC GTC
                                     Number of comparisons
n = 12
S = 8
```

Estimating diversity - take home

- Various parameters are used to describe diversity
- Using Thetas, populations differing in size and distributions of allele frequencies can be compared

- Part 4 -

Detecting selection

What is natural selection?

Natural selection is the process by which heritable traits become either more or less common in a population as a result of their impact on reproductive success.

Selection effects on phenotype

Selection effects on genotype

Positive (Darwinian) selection

- increases frequencies of advantageous alleles

Model: "Selective sweep"

Negative (purifying) selection

- decrease frequencies of detrimental alleles

Model: "Background selection" (BGS)

Balancing selection

- any kind of selection that maintains 2 or more alleles in a population

Selection effects on genotype

Positive (Darwinian) selection

- increases frequencies of advantageous alleles

Model: "Selective sweep"

Negative (purifying) selection

- decrease frequencies of detrimental alleles

Model: "Background selection" (BGS)

Balancing selection

- any kind of selection that maintains 2 or more alleles in a population

Selective sweep – 4 scenarios

Scheinfeldt & Tishkoff 2013

Selective sweep – 4 scenarios

Scheinfeldt & Tishkoff 2013

Signatures of a selective sweep

Vitti et al. Annual review of genetics. 2013

Selection tests - variety

Selection in a single population

- Deviations in allele frequencies (Tajima's D, Fay&Wu's H, Composite likelihood ratio)
- Deviation in linkage disequilibrium (OmegaPlus, Extended haplotype homozygosity EHH, iHS)

Selection between populations

- Population differentiation (Lewontin-Krakauer test, OutFLANK, PCAadapt, hapFLK, SelEstim, BayPass, LFMM, Bayenv)
- Linkage disequilibrium (XP-EHH)
- Combined LD + SFS (XP-CLR)

Selection between species

- Contrasting synonymous and non-synonymous sites (Ka/Ks, McDonald-Kreitman test)
- Contrasting polymorphism and divergence (Hudson-Kreitman-Aguade test)

Composite of multiple signals (CMS) test

Selection using allele frequency - Tajima's D (1989)

Reveals enrichment or depletion of rare alleles

Fumio Tajima

Tajima's
$$D = \Theta\pi - \Theta w$$

observed expected

Tajima's D - Exercise

Case 1

- 1 ATT CGC TGT CCG TAC GTC GAT CGC
- 2 ATT CGC TGT CCG TAC GTC GAT CGC
- 3 ATT CGC TGT CCG TAC GTC GAT CGC
- 4 ATT CGC TGT CCG GAC GTC GAT CGC
- 5 ATA CGC TGT CCG GAC GTC GAT CGC
- 6 ATA CAC TGT CCG GAC GTC GCT CGC

Tajima's D - Exercise

Case 2

- 1 ATT CGC TGT CCG TAC GTC GAT CGC
- 2 ATT CGC TGT CCG TAC GCC GAT CGC
- 3 ATT CGC TGT CCG TAC GTC GAT CGC
- 4 ATT CGC TGT CCG TAC GTC GAT CGC
- 5 ATT CCC TGT CCG TAC GTC GAT CGC
- 6 ATA CGC TGT CCG TAC GTC GCT CGC

Tajima's D - Exercise

Case 3

- 1 ATT CGC TGT CTG TAC GCC GAT CGC
- 2 ATT CGC TGT CTG TAC GCC GAT CGC
- 3 ATT CGC TGT CTG TAC GCC GAT CGC
- 4 ATA CGC TGT CCG GAC GTC GAT CGC
- 5 ATA CGC TGT CCG GAC GTC GAT CGC
- 6 ATA CAC TGT CCG GAC GTC GCT CGC

Tajima's D - interpretation

"0" – neutral evolution

"negative" - selection removing variation or recent population expansion

"positive" - selection maintaining variation or recent population contraction

Not robust to demographic changes -> knowing demographic history is critical to detect selection.

Tajima's D in a bottleneck

Fay & Wu's H – enrichment of high frequency derived alleles

Derived (youngest) alleles reach high frequencies slowly & randomly.

"negative" – excess of high-frequency derived alleles, selective sweep

"positive" (very rare) – selection maintaining Variation

Only very recent sweeps.

May be affected by population structure.

Testing full SFS – composite likelihood ratio test

Composite likelihood ratio test (CLR)

Nielsen (2005) modification uses genome-wide SFS as a null hypothesis

Software: SweepFinder & SweeD

Still may be affected by demography and SNP ascertainment bias

Genome scans – detecting outliers

Genome scans – calculating diversity statistics from the genome-wide genotyping or re-sequencing data in sliding windows.

Assumption: **genome-wide variation** represents **neutral** history whereas **outliers** are instances of **selective sweep**.

Problem: how to define outliers

Genome scans – detecting outliers

Take top 0.1%, 1%, 5% of the distribution – naïve, wrong but still gets published

Genome scans – detecting outliers

Simulate neutral datasets with diversity parameters of your population (O and size)

- using WF model if statistic believed to be robust to demography (CLR)
- using estimated demographic model for your population (Tajima's D, FayWu's H)

Calculate statistic on the neutral simulated dataset (null distribution) and define thresholds for your experimental data.

Reverse (limited but fast) and forward (versatile but slow) simulators.

Overview of simulation tools:

Hoban et al. Nature Reviews Genetics 13.2 (2012): 110-122.

Non adapted populations

Adaptive mutation

Adapted populations

Adapted populations

Theoretical models of population structure

Island model

Migration path; every island sends to every other island

Stepping stone model

Isolation by distance

Measuring population divergence – fixation index

No difference

Complete difference

A A		АТ
A A	$_{-}$ $Ht-Hs$	АТ
A A	$Fst = \frac{mt - ms}{s}$	АТ
ТТ	Ht	АТ
T T		АТ
т т	Ht – total heterozygosity	АТ
A 0.5 0.5	Hs – subpopulation heterozygosity	A 1 0
T 0.5 0.5		T 0 1

Genome-wide Fst scans – how to define outliers

Regions of exceptional differentiation indicate selection on adaptive mutation

Lewontin-Krakauer (LK) test

LK test, isolation by distance – different distribution

Using genome-wide Fst to estimate distribution

Detecting Fst outliers with OutFLANK – example

Simulations by Katie Lotterhos

Generation 0, refuges filled (Pops 1-3 and 15-17)
Generation 3000, expand to melted summit (Pop 6,9,10)
Generation 4000, all populations available

Isolation by distance model

Detecting Fst outliers with OutFLANK – exercise

Simulations by Katie Lotterhos

Generation 0, refuges filled (Pops 1-3 and 15-17)
Generation 3000, expand to melted summit (Pop 6,9,10)
Generation 4000, all populations available

Island model migration

12 QTL

663 706 923 1163 1347 1378 1639 1666 1825 2133 2556 2871

Detecting Fst outliers with OutFLANK – take home

OutFLANK

- Low false positive rate (false positive neutral / total neutral) true positives
- Low power in complex demographic and selection scenarios

Which means it rarely detects signals but if it does those are likely true outliers

Other approaches:

PCAadapt

hapFLK

SelEstim

BayPass

I FMM

Bayenv

Cross-population CLR (XP-CLR)

- considered robust to demographic history and SNP ascertainment bias
- requires well resolved physical & genetic maps
- requires dense genotyping or re-sequencing assay
- compares divergence only between two populations

B Multi-locus test of allele frequency differentiation

Speed of event as assessed by region size (Quickness with allele frequency had to change to produce observed region of frequency differentiation)

Chen et al. Genome Res. 2010

Detecting selection at macroevolutionary scale (between species)

The Neutral theory of molecular evolution (Kimura)

most of the variation seen at the molecular level is selectively neutral

Most of the observed mutations are neutral and their frequency governed by drift.

In genes, most non-synonymous mutations are neutral, which behave just like synonymous mutations.

$$Ka/Ks = Dn/Ds = \omega$$

$$Ka/Ks > 0$$
 – diversifying selection

Ka/Ks < 0 – purifying selection (against nonsyn)

McDonald – Kreitman test (MK)

McDonald

Neutral theory predicts that ratio of non-synonymous to synonymous changes should be constant through time.

Kreitman

Contrasts "present" (within species) with "historical" (between species) non-syn:syn ratios.

McDonald – Kreitman test (MK) example

	*	*	*				
Species 1	CTT AC	T TAT	ACC	CGT		Fixed between	Polymorphism within
	CTG AC				non-syn	1 (A)	1 (B)
	CTG AC	*	ACA	A CGI	syn	1 (C)	2 (D)
Species 2	ATG AC	с тст	ACC	CGT		historical	present day

Ratio is statistically tested using G

A/C = B/D, if all non-syn are neutral

A/C > B/D – non-syn substitutions were advantageous & selected

A/C < B/D – maladaptive recessive non-syn mutations persist within species

MK test - Exercise 1

Adaptive protein evolution at the Adh locus in Drosophila

John H. McDonald & Martin Kreitman

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA

image source: beerymethod.com

TABLE 1 Variable nucleotides from the coding region of the Adh locus in D. melanogaster, D. simulans and D. yakuba

		D. melanogaster	D. simulans	D. yakuba	
	Con.	abcdefghijkl	abcdef	abcdefghijkl	
781	G	T T T T T T T T T T T T T			Repl. Fixed
789	T			ccccccccccc	Syn. Fixed
808	A			GGGGGGGGGGG	Repl. Fixed
816	G	T T T TT	TTTTTT		Syn. Poly.
834	T		C C C		Syn. Poly.
859	C			G G G G G G G G G G G G G G G G G G G	Repl. Fixed Syn. 2 Poly.
867 870	c	T T T T T T T T T T T T		0 0 0 0 0 0 0 0 0 0	Syn. Fixed
950	Ğ		- A		Syn. Poly.
974	Ğ		T-TTTT		Syn. Poly.
983	T			ccccccccccc	Syn. Fixed
1019	C			A	Syn. Poly.
1031	C			A	Syn. Poly.
1034	T			- <u>c c c c c</u> c - c c	Syn. Poly.
1043	C	T T		A	Syn. Poly.
1068 1089	C	T T	A A A A A A		Syn. Poly. Repl. Fixed
1101	Ğ				Repl. Fixed
1127	T			cccccccccc	Syn. Fixed
1131	C			<u>T</u>	Syn. Poly.
1160	T			000000000000	Syn. Fixed
1175	T			cccccccccc	Syn. Fixed
1178	C				Syn. Poly.
1184	C			GGGGGGGGGG	Syn. Fixed
1190 1196	C G			<u>A</u> TTTT-TTT-T	Syn. Poly. Syn. Poly.
1199	C	- T		T T T T - T T T - T	Syn. Poly.
1202	T			cccccccccc	Syn. Fixed
1203	ć		T		Syn. Poly.
1229	T	C C C C C C C C C C			Syn. Poly.
1232	T				Syn. Fixed
1235	C	A-			Syn. Poly.
1244	C			A	Syn. Poly.
1265	C			GGGGGGGGG	Syn. Fixed
1271 1277	A T		- 1 - 1	000000000000	Syn. Poly. Syn. Fixed
1283	c	A A			Syn. Poly.
1298	c			T T T T T T T T T T T T	Syn. Fixed
1304	C		T -		Syn. Poly.
1316	C		T T	T T T T T T T T T T T T T	Syn. Poly.
1425	C	A A			Syn. Poly.
1431	T	C C		c c c c c c c c c c c c	Syn. Poly.
1443 1452	C				Syn. Poly.
1490	A				Syn. Poly. Repl. Poly.
1504	Ĉ	T T T T T T T T T T T T			Syn. Fixed
1518	c	TTTTTT			Syn. Poly.
1524	T		~ ~ ~	GGGGGGGGGG	Syn. Fixed
1527	C	T T T T T T		<u>T</u>	Syn. Poly.
1530	G			A	Syn. Poly.
1545	T			cccccccccc	Syn. Fixed
1548	C		T	<u>A</u>	Syn. Poly.
1551 1555	C C		T		Syn. Poly. Repl. Poly.
1557	Č	A A A A A			Syn. Poly.
1560	Ğ		A		Syn. Poly.
1573	G			ccccccccccc	Repl. Fixed
1581	C			T T T T T T T T T T T T T T T T	Syn. Fixed
1584	C			G G <u>G</u> G <u>G</u> G G G G G -	Syn. Poly.
1590	C	TTTTTTTTTTT	T T T		Syn. Poly.
1596	G	A A - A A		T T T T T T T T T T T T T	Syn. Poly.
1611 1614	A C		- G	T	Syn. Fixed Syn. 2 Poly.
1635	C			T-T	Syn. Poly.
1657	Ä			T T T T T T T T T T T T	Repl. Fixed
1665	ĉ				Syn. Poly.

McDonald – Kreitman test (MK) - exercise 2

Calculate MK test in pairwise comparisons between species (3 pairs)

McDonald – Kreitman test (MK) - exercise 2

Calculate MK test in pairwise comparisons between species (3 pairs)

Siddiq, Mohammad A., et al. "Experimental test and refutation of a classic case of molecular adaptation in Drosophila melanogaster."

Nature Ecology & Evolution 1 (2017): 0025.

Selection tests – take home

•Mutation, drift, migration, recombination & selection are ongoing evolutionary processes affecting allele frequencies

- •Discerning selection signatures from neutral is challenging
- •Multiple tests exist but none yet provide definitive answers....

.... but rather help formulate evolutionary hypotheses, which can be experimentally tested

```
GTT CGC TGT CCG TAC GTC
ATT CGC TGT CCG TAC GTC
ATT CGC TCG CCG TTC GTC
ATT CGC TGT CCG TAC GTC
ATT CGC TGT CCG TAC GTC
ATA CAC TGT CCG TAC GCC
ATT CGC TGT CCG TAC GTC
ATT CGC TGT CCG GAC GTC
ATA CAC TGT CCG GAC GTC
ATA CAC TGT CCG GAC GTC
```

ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATT CGC TGT CCG TAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GAT CGC
ATA CAC TGT CCG GAC GTC GCT CGC

```
n =
S =
Hap =
Θw =
Θπ =
```

Example 1

1 ATT CGC TGT CCG TAC GTC GAT CGC
2 ATT CGC TGT CCG TAC GTC GAT CGC
3 ATT CGC TGT CCG TAC GTC GAT CGC
4 ATT CGC TGT CCG GAC GTC GAT CGC
5 ATA CGC TGT CCG GAC GTC GAT CGC
6 ATA CAC TGT CCG GAC GTC GCT CGC

$$\Theta w = \Theta \pi = Tajima's D =$$

Example 2

1 ATT CGC TGT CTG TAC GCC GAT CGC
2 ATT CGC TGT CTG TAC GCC GAT CGC
3 ATT CGC TGT CTG TAC GCC GAT CGC
4 ATA CGC TGT CCG GAC GTC GAT CGC
5 ATA CGC TGT CCG GAC GTC GAT CGC
6 ATA CAC TGT CCG GAC GTC GCT CGC

$$\Theta w = \Theta \pi = Tajima's D =$$

Example 3

1 ATT CGC TGT CCG TAC GTC GAT CGC
2 ATT CGC TGT CCG TAC GCC GAT CGC
3 ATT CGC TGT CCG TAC GTC GAT CGC
4 ATT CGC TGT CCG TAC GTC GAT CGC
5 ATT CCC TGT CCG TAC GTC GAT CGC
6 ATA CGC TGT CCG TAC GTC GCT CGC

$$\Theta w = \Theta \pi = Tajima's D =$$