Автоматизация лабораторной установки «Маятник Обербека»

Георгий Семенов, гр. М3101

Сергей Смирнов, гр. М3104

Университет ИТМО

Дисциплина: «Специальные разделы физики»

Научный руководитель: Тимофеева Эльвира Олеговна

Проблема

При выполнении учебных лабораторных работ по физике решающее значение в обработке результатов работы и анализе данных имеет точность прямых измерений.

Цель и задачи

Цель: создание решения по оптимизации установки.

Задачи:

- Анализ направлений автоматизации установки
- Создание технического и программного решения для автоматизации

Лабораторная работа: оборудование

Константы лабораторной установки	
Наименование величины	Значение
Ускорение свободного падения	$g = 9.81 \mathrm{m/c^2}$
Высота, с которой падает каретка	h = 70,0 cm
Масса каретки	$m_0 = 47.0 \pm 0.5 \mathrm{r}$
Масса шайбы на каретке	$m_{\rm III} = 220,0 \pm 0,5$ г
Масса груза на крестовине	$m_{ m yr} = 408,0 \pm 0,5 \Gamma$
Диаметр ступицы	$d = 46.0 \pm 0.5 \mathrm{MM}$
Расстояние первой риски от оси	$l_1 = 57,0 \pm 0,5$ мм
Расстояние между рисками	$l_0 = 25.0 \pm 0.2 \mathrm{mm}$
Высота груза на крестовине	$b = 40,0 \pm 0,5$ мм
Параметры лабораторной установки	
Наименование величины	Значение
Масса падающей каретки с грузами	$m(n_1) = m_0 + m_{III} \cdot n_1$
Расстояние грузов от ступицы	$R(n_2) = l_1 + (n_2 - 1) \cdot l_0 + \frac{b}{2}$

Лабораторная работа: физическая модель

Цели:

- Проверка основного закона динамики вращательного движения
- Проверка теоремы Штейнера о зависимости момента инерции от положения масс относительно оси вращения

Результаты:

Для каждой конфигурации получить \bar{t} и $\Delta_{\bar{t}}$ и найти a, ε , M и Δ_a , Δ_ε , Δ_M ; для каждого n_2 найти I_0 , $m_{\rm VT}$, ΔI_0 , $\Delta m_{\rm VT}$

$$m\vec{a} + m\vec{g} + \vec{T} = 0 \qquad a = \frac{2h}{t^2}$$

$$M = T \cdot \frac{d}{2} \qquad \varepsilon = \frac{2a}{d}$$

$$M(\varepsilon) = M_{\rm Tp} + |\varepsilon|$$

$$\downarrow$$

$$I(R^2) = I_0 + 4m_{\rm yT}R^2$$

Направления оптимизации

- 1. Автоматическая активация секундомера
 - Событием изменения координаты
 - Наблюдением за вращением маятника
 - С помощью фоторамок
- 2. Автоматическое распознавание конфигурации
 - На основе времени падения
 - На основе внешнего дальномера
 - На основе дальномеров на ступице

Чрезмерная автоматизация негативно влияет на наглядность результатов и отвлекает от процесса измерений.

Выбранное решение для автоматизации

Arduino Uno R3 и ультразвуковые датчики HC-SR04

Программы:

- Лабораторное программное решение
- Эмулятор лабораторной установки
- Клиент для ПК

Установочные эксперименты

Установочные эксперименты

Проблема точности измерений

$$x(t) = \begin{cases} x_1(t), & x \in [0, h - \Delta_h) \\ \frac{x_1(t) + x_2(t)}{2}, & x \in [h - \Delta_h, \Delta_h] \\ x_2(t), & x \in (\Delta_h, h] \end{cases}$$

Точность дальномеров на диапазоне рейки

r1 = 12.8 cm, r2 = 12.7 cm

Программное решение

- 1. Подключить микроконтроллер Arduino
- 2. Запустить программу
- 3. Установить галочку «Режим эмулятора» в соответствии с режимом измерений
- 4. Провести измерения, выбирая конфигурацию с помощью ползунков и нажимая кнопку «Измерить»
- 5. Ознакомиться с графиками и таблицами, нажав кнопку «Таблицы и графики»

Итоги

Результаты проекта:

- Проведён анализ подходов к автоматизации
- Предложено цельное решение по автоматизации установки
- Разработана измерительная рейка с дальномерами
- Создана программа для проведения измерений

Личные результаты:

- Изучены форматы научной статьи и презентации
- Получены навыки работы со станками
- Освоена среда разработки Arduino с датчиками
- Получено представление о методологии разработки учебных лабораторных работ
- Приобретён опыт работы в команде над проектом

Благодарность

Выражаем благодарность

- Научному руководителю: Тимофеевой Эльвире Олеговне
- Преподавателю физики: Музыченко Яне Борисовне
- ФабЛабу Технопарка Университета ИТМО и лично Алексею Щеколдину

Спасибо за внимание!