CAP 5516 Medical Image Computing (Spring 2025)

Dr. Chen Chen

Associate Professor

Center for Research in Computer Vision (CRCV)

University of Central Florida

Office: HEC 221

Email: chen.chen@crcv.ucf.edu

Web: https://www.crcv.ucf.edu/chenchen/

Lecture 14 Efficient Deep Learning (4)

resources

large

Building Geospatial Foundation Models with Minimal Resource Costs

Mendieta, Matías, Boran Han, Xingjian Shi, Yi Zhu, and Chen Chen. "Towards geospatial foundation models via continual pretraining." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16806-16816. 2023.

Introduction

- Geospatial technologies
 - Understand the earth
 - How we interact with it

- Applications
 - Agriculture
 - Urban planning
 - Disaster response

- Geospatial foundation models
 - Enable strong performance
 - Various downstream tasks

permanently irrigated land, sclerophyllous vegetation, beaches, dunes, sands, estuaries, sea and ocean

non-irrigated arable land, fruit trees and berry plantations, agro-forestry areas, transitional woodland/shrub

permanently irrigated land, vineyards, beaches, dunes, sands, water courses

Introduction

- Publicly available ImageNet
 - Directly fine-tune
 - Useful, but suboptimal
 - Domain gap

- Geospatial models from scratch
 - Immense data, time, resources
 - Not consistently better than ImageNet

SatMAE, requires 768 hours on a V100 GPU for training a vision transformer

Contributions

- GFM paradigm investigation
 - Highly effective and sustainable
- Pretraining data
 - GeoPile
 - Various remote sensing sources
- Multi-objective continual pretraining
 - Leverage ImageNet representations
 - Freedom to learn in-domain features

Background

- Masked Image Modeling
 - Pre-training strategy using selfsupervised learning
 - Strong downstream transfer

Pretraining Data Selection

Time: training time in hours on a V100 GPU

CO2: carbon impact estimations in kg CO2 equivalent

- Sentinel-2 imagery
 - Common choice
 - Gather 1.3M images

Method	# Images	Epochs	ARP↑	Time ↓	$CO_2 \downarrow$
ImageNet-22k Sup.	14M	-	0.0	-	-
Sentinel-2 [30]	1.3M	100	-5.83	155.6	22.2

- Experiment Setup
 - Train Swin-B with MIM
 - Fine-tune the pretrained model on downstream datasets

$\Delta \mathbf{PP}(M) =$	$\frac{1}{N} \sum_{i=1}^{N} score(i)$	$(M, task_i) - score(baseline, task_i)$ $score(baseline, task_i)$
AKI(M) -	$\overline{N} \underset{i=1}{\overset{\sim}{\sum}}$	$score(baseline, task_i)$

ARP: average relative performance

- 7 downstream datasets
 - Change detection
 - Single and multi-label classification
 - Segmentation
 - Super-resolution

Pretraining Data Selection

- Sentinel-2 imagery
 - Perceivably low feature diversity
 - Low entropy
- MIM objective
 - Easier reconstruction with Sentinel
 - Similar image regions for masking

Method	# Images	Epochs	ARP↑	Time ↓	$CO_2 \downarrow$
ImageNet-22k Sup.	14M	-	0.0	-	-
Sentinel-2 [30]	1.3M	100	-5.83	155.6	22.2

Sentinel-2

Pretraining Data Selection

• GeoPile

- Variety of ground sample distances (GSDs)
- Labeled and unlabeled datasets
- Higher entropy and diverse

Dataset	# Images	GSD	# Classes
NAIP [33]	300,000	1m	n/a
RSD46-WHU [29]	116,893	0.5m - 2m	46
MLRSNet [35]	109,161	0.1m - 10m	60
RESISC45 [9]	31,500	0.2m - 30m	45
PatternNet [48]	30,400	0.1m - 0.8m	38

Method	# Images	Epochs	ARP↑	Time ↓	$CO_2\downarrow$
ImageNet-22k Sup.	14M	-	0.0	-	-
Sentinel-2 [30]	1.3M	100	-5.83	155.6	22.2
GeoPile	600k	200	0.92	133.3	19.0

Sentinel-2

GeoPile

Vanilla Continual Pretraining

- Validity Investigation
 - Initialize with ImageNet-22k weights
 - Pretraining with GeoPile (MIM)
 - Performance improvement

Method	# Images	Epochs	ARP↑	Time ↓	$CO_2\downarrow$
ImageNet-22k Sup.	14M	-	0.0	-	-
Sentinel-2 [30]	1.3M	100	-5.83	155.6	22.2
GeoPile	600k	200	0.92	133.3	19.0
GeoPile [†]	600k	200	1.24	133.3	19.0

Data for pre-train	Weights initialization	Pre-train method
--------------------	------------------------	------------------

Sentinel-2	Sentinel-2 images	Random	MIM
GeoPile	GeoPile images	Random	MIM
GeoPile +	GeoPile images	ImageNet-22k	MIM

Resulting model finetune on downstream datasets for performance evaluation (ARP)

Vanilla Continual Pretraining

- Validity Investigation
 - Initialize with ImageNet-22k weights
 - Pretraining with GeoPile (MIM)
 - Performance improvement
- Longer Pretraining
 - Significantly more cost
 - Marginal gain

Method	# Images	Epochs	ARP↑	Time ↓	$CO_2 \downarrow$
ImageNet-22k Sup.	14M	-	0.0	-	-
Sentinel-2 [30]	1.3M	100	-5.83	155.6	22.2
GeoPile	600k	200	0.92	133.3	19.0
$GeoPile^\dagger$	600k	200	1.24	133.3	19.0
GeoPile [†]	600k	800	1.45	533.2	76.0

How can we significantly improve performance while maintaining minimal compute and carbon footprint overhead?

- GeoPile dataset
 - Diverse pretraining data

- Student network
 - Randomly initialized
 - MIM objective

 Leverage existing large-scale models

Leverage existing large-scale models

- Teacher network
 - Readily available ImageNet-22k
 - Frozen

$$\mathcal{L}_{feat} = -rac{P(f_L^S)}{\|P(f_L^S)\|_2} \cdot rac{f_L^T}{\|f_L^T\|_2}$$
 cosine similarity

Leverage existing large-scale models

- Masked feature guidance
 - Intermediate features (L^{th} layer feature)
 - Cosine similarity

- Multi-objective continual training paradigm
 - Guide and accelerate learning (\mathcal{L}_{feat})
 - Freedom to acquire valuable indomain features (\mathcal{L}_{MIM})

Method	# Images	Epochs	ARP↑	Time ↓	$CO_2 \downarrow$
ImageNet-22k Sup.	14M	-	0.0	-	-
Sentinel-2 [30]	1.3M	100	-5.83	155.6	22.2
GeoPile	600k	200	0.92	133.3	19.0
GeoPile [†]	600k	200	1.24	133.3	19.0
GeoPile [†]	600k	800	1.45	533.2	76.0
GFM	600k	100	3.31	93.3	13.3

Results

- 7 downstream datasets
 - Change detection
 - Single and multi-label classification
 - Segmentation
 - Super-resolution

ImageNet-1k Sup.
SeCo
ImageNet-22k Sup. (ViT)
SatMAE
ImageNet-22k Sup. (Swin)
GFM (ours)

Change Detection

- Onera Satellite Change Detection
 - Sentinel-2 imagery
 - 10m 60m GSD
 - Pixel-level change
 - Urban developments

Change Detection

- Onera Satellite Change Detection
 - Sentinel-2 imagery
 - 10m 60m GSD
 - Pixel-level change
 - Urban developments

Method	Precision ↑	Recall ↑	F1 ↑
ResNet50 (ImageNet-1k) [20]	70.42	25.12	36.20
SeCo [30]	65.47	38.06	46.94
MATTER [1]	61.80	57.13	59.37
ViT (ImageNet-22k) [15]	48.34	22.52	30.73
SatMAE [10]	48.19	42.24	45.02
Swin (random)[27]	51.80	47.69	49.66
Swin (ImageNet-22k)[27]	46.88	59.28	52.35
GFM	58.07	61.67	59.82

Change Detection

- Onera Satellite Change Detection
 - Sentinel-2 imagery
 - 10m GSD
- DSFIN
 - WorldView-3 and GeoEys-1
 - 1m GSD
- Results
 - GFM improves in both datasets
 - SatMAE does not

Onera Satellite Change Detection

Method	Precision ↑	Recall ↑	F1 ↑
ResNet50 (ImageNet-1k) [20]	70.42	25.12	36.20
SeCo [30]	65.47	38.06	46.94
MATTER [1]	61.80	57.13	59.37
ViT (ImageNet-22k) [15]	48.34	22.52	30.73
SatMAE [10]	48.19	42.24	45.02
Swin (random)[27]	51.80	47.69	49.66
Swin (ImageNet-22k)[27]	46.88	59.28	52.35
GFM	58.07	61.67	59.82

DSFIN

Method	Precision ↑	Recall ↑	F1 ↑
ResNet50 (ImageNet-1k) [20]	28.74	92.07	43.80
SeCo [30]	39.68	81.02	53.27
ViT (ImageNet-22k) [15]	70.77	66.34	68.49
SatMAE [10]	70.45	60.29	64.98
Swin (random)[27]	57.97	62.06	59.94
Swin (ImageNet-22k)[27]	67.11	72.33	69.62
GFM	74.83	67.98	71.24

Classification

- UC Merced
 - 21 classes
 - 1 foot GSD
- BigEarthNet
 - 19 classes
 - 10m GSD
- Baseline comparisons
 - SeCo lower in UCM
 - SatMAE lower in BEN

Method	UCM	BEN 10%	BEN 1%
ResNet50 (ImageNet-1k) [20]	98.8	80.0	41.3
SeCo [30]	97.1	82.6	63.6
ViT (ImageNet-22k)[15]	93.1	84.7	73.6
SatMAE [10]	92.6	81.8	68.9
Swin (random)[27]	66.9	80.6	65.7
Swin (ImageNet-22k) [27]	99.0	85.7	79.5
GFM	99.0	86.3	80.7

- Sample efficiency
 - BigEarthNet 10% and 1%
 - Maintain strong performance

Segmentation

- WHU Aerial
 - Building segmentation
 - GSD 0.3m
- Vaihingen
 - 6 class
 - GSD 0.9m

Method	WHU Aerial	Vaihingen
ResNet50 (ImageNet-1k) [20]	88.5	74.0
SeCo [30]	86.7	68.9
ViT (ImageNet-22k) [15]	81.6	72.6
SatMAE [10]	82.5	70.6
Swin (random) [27]	88.2	67.0
Swin (ImageNet-22k) [27]	90.4	74.7
GFM	90.7	75.3

Super-resolution

- SpaceNet2
 - 1.24m 8-band input
 - Generate 0.3m pan-sharpened equivalent

Method	PSNR ↑	SSIM ↑
ViT (ImageNet-22k)[15]	23.279	0.619
SatMAE [10]	22.742	0.621
Swin (random) [27]	21.825	0.594
Swin (ImageNet-22k) [27]	21.655	0.612
GFM	22.599	0.638

- Baseline comparisons
 - SatMAE lags behind
 - GFM continues to improve

Conclusion

 Consistent improvement across downstream tasks.

 More than 8× reduction in total training time and carbon impact in comparison to SOTA

Sustainable and effective geospatial pretraining

Code and models are available at https://github.com/mmendiet/GFM

BiomedGPT

BiomedGPT: A generalist vision—language foundation model for diverse biomedical tasks

Kai Zhang¹, Rong Zhou¹, Eashan Adhikarla¹, Zhiling Yan¹, Yixin Liu¹, Jun Yu¹, Zhengliang Liu², Xun Chen³, Brian D. Davison¹, Hui Ren⁴, Jing Huang^{5,6}, Chen Chen⁷, Yuyin Zhou⁸, Sunyang Fu⁹, Wei Liu¹⁰, Tianming Liu², Xiang Li^{4*}, Yong Chen^{5,11,12,13}, Lifang He^{1*}, James Zou^{14,15}, Quanzheng Li⁴, Hongfang Liu⁹, and Lichao Sun^{1*}

¹Department of Computer Science and Engineering, Lehigh University, PA, United States

² School of Computing, University of Georgia, GA, United States

³Samsung Research America, CA, United States

⁴Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, United States

⁵Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, PA, United States

⁶PolicyLab, Children's Hospital of Philadelphia, PA, United States

⁷Center for Research in Computer Vision, University of Central Florida, FL, United States

⁸Department of Computer Science and Engineering, University of California, Santa Cruz, CA, United States

⁹McWilliams School of Biomedical Informatics, UTHealth Houston, TX, United States

¹⁰Department of Radiation Oncology, Mayo Clinic, AZ, United States

¹¹The Center for Health AI and Synthesis of Evidence (CHASE), University of Pennsylvania, PA, United States

¹²Penn Institute for Biomedical Informatics (IBI), PA, United States

¹³Leonard Davis Institute of Health Economics, PA, United States

¹⁴Department of Biomedical Data Science, Stanford University School of Medicine, CA, United States

¹⁵Department of Computer Science, Stanford University, CA, United States

Most medical Al models are the specialist

The limited amount of accessible high-quality annotated biomedical data.

However, the increasing availability of biomedical data could set the early stage for the development of **Generalist AI** solutions that capture the complexity within biomedicine.

A snapshot: how powerful and generalist BiomedGPT is

A snapshot: how powerful and generalist BiomedGPT is

BiomedGPT v.s. Previous SOTAs BiomedGPT v.s. Med-PaLM M (12B) Radiology VQA Chest X-ray Captioning **Gross Captioning** (VQA-RAD) Radiology VQA (IU X-ray) (Peir Gross) (SLAKE) Radiology VQA (SLAKE) Report Generation (MIMIC-CXR) 80 Image Classification 120 (MedMNIST) 60 90 40 60 20 30 Pathology VQA (PathVQA) Pathology VQA (PathVQA) **Breast Mass Classification** (CBIS-DDSM) TB Diagnostic Medical Question (SZ-CXR) Summarization (MeQSum) **BiomedGPT** Report Summarization (MIMIC-III) Previous SOTA **Breast Calcification Classification** Madical Language Inference Report Summarization Med-PaLM M (12B) (CBIS-DDSM) (MedNLI) (MIMIC-CXR)

A generalist model – the same model with the same set of weights, without finetuning, can excel at a wide variety of tasks.

How the GFM training paradigm can be applied here?

Announcement

• No class next week (2/25 & 2/27)

Thank you!

