

UNIT 6 GRAPHS PART II: Minimum Spanning Trees

Iris Hui-Ru Jiang Spring 2024

Department of Electrical Engineering National Taiwan University

Outline

- Content:
 - The minimum spanning tree problem
 - Prim's algorithm
 - Kruskal's algorithm
 - Reverse delete
 - Disjoing sets: Union-find
- Reading:
 - Chapters 19, 21

Recap: Greedy Algorithms

- An algorithm is greedy if it builds up a solution in small steps, making the choice that looks best at each step to optimize some underlying criterion
- It's easy to invent greedy algorithms for almost any problem
 - Intuitive and fast
 - Usually not optimal
- It's challenging to prove greedy algorithms succeed in solving a nontrivial problem optimally
 - Prove the greedy choice property by an exchange argument

Minimum Spanning Trees

Robert C. Prim 1957 (Dijkstra 1959) Joseph B. Kruskal 1956 Reverse-delete 1956

Minimum Spanning Graphs

- Q: How can a cable TV company lay cable to a new neighborhood, of course, as cheaply as possible?
- A: Curiously and fortunately, this problem is a case where many greedy algorithms optimally solve
 - Matroid structure
- Given
 - Undirected graph G = (V, E)
 - Nonnegative cost/weight w_e ∀ edge e ∈ V
 w_e ≥ 0
- Goal
 - Find a subset of edges $T \subseteq E$ so that
 - The subgraph (*V*, *T*) is connected
 - Total cost/weight $\Sigma_{e \in T} w_e$ is minimized

Minimum Spanning ????

- Q: Let T be a min. cost solution. What does (V, T) look like?
- A:
 - By definition, (V, T) must be connected
 - We show that it also contains no cycles
 - Suppose it contained a cycle C, and let e be any edge on C
 - We claim that $(V, T \{e\})$ is still connected
 - Any path previously used e can now go path C − {e} instead
 - It follows that $(V, T \{e\})$ is also a valid solution, but cheaper
 - Hence, (V, T) is a tree
- Goal
 - Find a subset of edges $T \subseteq E$ so that
 - (*V*, *T*) is a tree
 - Total cost/weight $\Sigma_{e \in T} w_e$ is minimized

Minimum Spanning Tree (MST)

- Given an undirected graph G = (V, E) with weights on the edges, a **minimum spanning tree (MST)** of G is a subset $T \subseteq E$ such that
 - T is connected and has no cycles,
 - T covers (spans) all vertices in V, and
 - sum of the weights of all edges in T is minimum
- |T| = |V| 1
- Applications: circuit interconnection (minimizing tree **radius**), communication network (minimizing tree **diameter**), etc.

Greedy Algorithms (1/3)

• Q: What will you do?

- All three greedy algorithms produce an MST
- Kruskal's algorithm:
 - Start with *T* = {}
 - Consider edges in ascending order of cost
 - Insert edge e in T as long as it does not create a cycle; otherwise, discard e and continue

Greedy Algorithms (2/3)

• Q: What will you do?

- All three greedy algorithms produce an MST
- Prim's algorithm: (c.f. Dijkstra's algorithm)
 - Start with a root node s
 - Greedily grow a tree T from s outward
 - At each step, add the cheapest edge e to the partial tree T that has exactly one endpoint in T

Greedy Algorithms (3/3)

• Q: What will you do?

- All three greedy algorithms produce an MST
- Reverse-delete algorithm: (reverse of Kruskal's algorithm)
 - Start with T = E
 - Consider edges in descending order of cost
 - Delete edge e from T unless doing so would disconnect T

Cut PropertyGreedy-choice property 1

cut

- Simplifying assumption: All edge costs c_e are distinct
- Q: When is it safe to include an edge in the MST?
- Cut Property: Let S be any subset of nodes, and let (u, v) be the light edge (minimum cost edge with one end in S and the other in V-S). Then every MST contains (u, v).
- Pf: Exchange argument!
 - Let T be a spanning tree that does not contain (u, v)
 - T is a spanning tree; \exists path $P \in T$ from u to $\sqrt{}$
 - Let (x, y) on $P, x \in S$ and $y \in V S$
 - $T' = T \{(x, y)\} + \{(u, v)\}$ is a spanning tree
 - (*V*, *T'*) must be connected: (V, T) is connected, any path in (V, T) using (x, y)can be rerouted in (V, T') by $x \rightarrow u$, (u, v), $v \rightarrow y$
 - (*V*, *T'*) must be acyclic:
 - Since w(u, v) < w(x, y), T' is cheaper than T

Cycle PropertyGreedy-choice property 2

- Q: When is it safe to exclude an edge out?
- Cycle Property: Let C be any cycle in G, and let e = (v, w) be the maximum cost edge in C. Then e does not belong to any MST.
- Pf: Exchange argument! (Similar to Cut Property)

Implementing MST Algorithms

Priority queue
Union-find (disjoint sets)

Growing a Minimum Spanning Tree (MST)

Grow an MST by adding one safe edge at a time

Generic-MST(G,w)

- 1. $A = \emptyset$
- 2. **while** *A* does not form a spanning tree
- find an edge (u,v) that is safe for A
- 4. $A = A \cup \{(u, v)\}$
- 5. return A
- A cut (S, V-S) of a graph G = (V, E) is a partition of V
- An edge (u, v) ∈ E crosses the cut (S, V-S) if one of its endpoints is in S and the other is in V-S
- A cut **respects** the set A of edges if no edges in A crosses the cut

Prim's Example

- R. C. Prim, 1957
- Procedure:
 - Start with a root node s
 - Greedily grow a tree T from s outward
 - At each step, add the cheapest edge e to the partial tree T that has exactly one endpoint in T

Prim's (Prim-Dijkstra's?) MST Algorithm

```
MST-Prim(G, w, r)
// Q: priority queue for vertices not in the tree, based on key.
// key: min weight of any edge connecting to a vertex in the tree.
1. for each vertex u \in G.V
2. u.key = \infty
3. u.\pi = NIL
4. r.key = 0
5. Q = G.V
6. while Q \neq \emptyset
7. u = \text{Extract-Min}(Q)
8. for each vertex v \in G.AdJ[u]
            if v \in Q and w(u,v) < v.key
10.
                V_{\cdot}\pi = U
11.
               v.key = w(u,v)
```

- Starts from a vertex and grows until the tree spans all the vertices
 - The edges in A always form a single tree
 - At each step, a safe, light edge connecting a vertex in A to a vertex in V A is added to the tree

Example: Prim's MST Algorithm

Time Complexity of Prim's MST Algorithm

```
MST-Prim(G, w, r)

1. for each vertex u \in G.V

2. u.key = \infty

3. u.\pi = NIL

4. r.key = 0

5. Q = G.V

6. while Q \neq \emptyset

7. u = Extract-Min(Q)

8. for each vertex v \in G.AdJ[u]

9. if v \in Q and w(u, v) < v.key

10. v.\pi = u

11. v.key = w(u, v)
```

- Q is implemented as a binary heap: O(E lg V) (= O(V lg V) + O(E lg V))
- Lines 1--4: O(V); line 5: O(V)
 - Line 7: O(lg V) for Extract-Min, so O(V lg V) with the while loop
 - Lines 8--11: O(E) operations, each takes $O(\lg V)$ time for Decrease-Key (maintaining the heap property after changing a node)
- Q is implemented as a Fibonacci heap: O(E + V lg V) (Fastest to date!)
- $|E| = O(V) \Rightarrow$ only $O(E \lg^* V)$ time. (Fredman & Tarjan, 1987)

Complexity of Mergeable Heaps

	Binary heap	Binomial heap	Fibonacci heap
Procedure	(worst-case)	(worst-case)	(amortized)
Make-Heap()	Θ(1)	$\Theta(1)$	$\Theta(1)$
Insert (H,x)	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(1)$
Minimum(H)	$\Theta(1)$	$\Theta(\lg n)$	$\Theta(1)$
Extract-Min (H)	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$
Union (H_1, H_2)	$\Theta(n)$	$\Theta(\lg n)$	$\Theta(1)$
Decrease-Key (H,x,k)	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(1)$
Delete(H,x)	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$

- Make-Heap(): creates and returns a new heap containing no elements
- Minimum(H): returns a pointer to the node with the minimum key
- Extract-Min(*H*): deletes the node with the minimum key
- Decrease-Key(H, x, k): assigns to node x the new key value
 k, which is ≤ its current key value
- Delete(H, x): deletes node x from heap H

Kruskal's Algorithm

- J. B. Kruskal, 1956
- Procedure:
 - Start with $T = \{\}$
 - Consider edges in ascending order of cost
 - Insert edge e in T as long as it does not create a cycle; otherwise, discard e and continue

Kruskal(G,w)

- 1. $\{e_1, e_2, ..., e_m\}$ = sort edges in ascending order of their costs
- 2. $T = \{\}$
- 3. for each $e_i = (u, v)$ do
- 4. **if** (*u* and *v* are not connected by edges in *T*) **then** // **different subtrees**
- 5. $T = T + \{e_i\}$ // merge these two corresponding subtrees

J. B. Kruskal: On the shortest spanning subtree of a graph and the traveling salesman problem. In *Proceedings of the American Mathematical Society*, 7(1) (Feb, 1956), pp. 48–50.

The Union-Find Data Structure (1/2)

- Union-find data structure represents disjoint sets
 - Disjoint sets: elements are disjoint
 - A disjoint-set data structure maintains a collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets
 - Each set has a representative
 - Operations:
 - Make-Set(x): $S_x = \{x\}$
 - Find-Set(x): representative of the set containing x

■ Union(x, y): $S_x \cup S_y$

The Union-Find Data Structure (2/2)

- Implementation: disjoint-set forest
 - Representative is the root; link: from children to parent
 - Union: attach the smaller to the larger one (union by rank)
 - Find: trace back to root and redirect the link (path compression)
- Running time: union by rank + path compression
 - The amortized running time per operation is $O(\alpha(n))$, $\alpha(n) < 5$!!
 - Average running time of a sequence of n operations

B. A. Galler & M. J. Fischer. An improved equivalence algorithm. *Comm. of the ACM*, 7(5), (May 1964), pp. 301–303.

R. E. Tarjan & J. van Leeuwen. Worst-case analysis of set union algorithms. Journal of the ACM, 31(2), pp. 245–281, 1984.

Kruskal's MST Algorithm

```
MST-Kruskal(G,w)

1. A = \emptyset

2. for each vertex v \in G.V

3. Make-Set(v)

4. Sort the edges of G.E by nondecreasing weight w

5. for each edge (u,v) \in G.E, in order by nondecreasing weight

6. if Find-Set(u) \neq Find-Set(v)

7. A = A \cup \{(u, v)\}

8. Union(u, v)

9. return A
```

- Add a safe edge at a time to the growing forest by finding an edge of least weight (from those connecting two trees in the forest)
- Time complexity: O(E lgE) (= O(E lg V), why?)
 - Lines 2--3: |V| operations; $O(V \alpha(V))$
 - $\text{ Line 4:} O(E \lg E); \lg |E| = O(\lg V)$
 - Lines 5--8: O(E) operations on disjoint-set forest, so $O((V+E)\alpha(V))$;

Unit 7 $\alpha(V) = O(\lg V)$ Y.-W. Chang

Example: Kruskal's MST Algorithm

•••••

Disjoint Sets

Union-find

Disjoint Sets

- See Chapter 19
- A disjoint-set data structure maintains a collection $S = \{S_1, S_2, ..., S_k\}$ of disjoint dynamic sets.
- Each set is identified by a representative, which is some member of the set.
- Operations supported:
 - Make-Set(x): $S_x = \{x\}$
 - Union(x, y): S_x ∪ S_y
 - Find-Set(x): representative of the set containing x

Application: Connected Components

Connected-Components(*G*)

- 1. **for** each vertex $v \in G.V$
- 2. *Make-Set(v)*
- 3. for each edge $(u, v) \in G.E$
- 4. **if** Find- $Set(u) \neq Find$ -Set(v)
- 5. Union(u, v)

Same-Component(*u,v*)

// check if u, v are in the same set

- 1. **if** Find-Set(u) == Find-Set(v)
- 2. return TRUE
- 3. return FALSE

Linked-List Representation of Disjoint Sets

- *n*: # of Make-Set operations.
- *m*: total # of Make-Set, Find-Set, Union operations.
- Operations supported:
 - Make-Set: O(1) time ($\Theta(n)$ for n Make-Set operations).
 - Find-Set: O(1) time.
 - Union??

Time Complexity

- *n*: # of Make-Set operations.
- m: total # of Make-Set, Find-Set, Union operations.
- Each naive Union takes linear time.
 - $\sum_{i=1}^{q-1} i = \Theta(q^2) \text{ for } q \text{ -1 union operations, where } q = m n + 1.$
 - Total time for n Make-Set and q -1 Union operations: $O(n+q^2) = O(m^2)$ => amortized time of an operation is O(m) time.
- Weighted-union heuristic: Append the smaller list onto the longer.
- Theorem: Using the weighted-union heuristic, a sequence of m Make-Set, Union, and Find-Set operations, with n Make-Set operations, takes O(m + n lg n) time.

Operations	# of objects updated	_
Make-Set(x_1) Make-Set(x_2) Make-Set(x_n) Union(x_1, x_2) Union(x_2, x_3) Union(x_{q-1}, x_q)	1 1 1 1 2 •• q-1	 Each time x's representative pointer is updated, then x is in the smaller set. x's representative pointer can be changed at most O(lg n) times.

Rooted-Tree Representation of Disjoint Sets

- Disjoint-set forest: sets are represented by rooted trees.
- Operations:
 - Make-Set: create a tree with only one node.
 - Find-Set (find path): traverse parent pointers until tree root.
 - Union: point one root to the other.
- Two heuristics to speed up the disjoint-set data structure:
 - Union by rank: Point the root of the smaller-sized tree to that of the larger one (approximation: upper bound of height).
 - Path compression: Make each node on the find path point directly to the root during Find-Set.

Pseudocode: Disjoint-set Forests

x.rank: upper bound on the height of x.

```
Make-Set(x)

1. x.p = x

2. x.rank = 0

Union(x,y)

1. Link(Find-Set(x), Find-Set(y))

Find-Set(x)

1. if x \neq x.p

2. x.p = Find-Set(x.p)

3. return x.p
```

```
Link(x,y)

1. if x.rank > y.rank

2.  y.p = x

3. else

4.  x.p = y

5.  if x.rank == y.rank

6.  y.rank = y.rank+1
```

Time Complexity

- Runtime by using both union by rank and path compression.
 - $O(m \alpha(m, n))$: Tarjan, 1975, where $\alpha(m, n)$ is "inverse" of Ackermann's function A:

$$A(1,j) = 2^{j}, \text{ for } j \ge 1$$

$$A(i,1) = A(i-1,2), \text{ for } i \ge 2$$

$$A(i,j) = A(i-1,A(i,j-1)), \text{ for } i,j \ge 2$$

$$\begin{vmatrix} j=1 & j=2 & j=3 \\ \hline i=1 & 2^{1} & 2^{2} & 2^{3} \\ \hline i=2 & 2^{2} & 2^{2} & 2^{2} \\ \hline i=3 & 2^{2} & 2^{2} & 2^{2} \\ \hline 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \end{vmatrix}_{16}$$

$$\alpha(m,n) = \min\{i \ge 1 : A(i,\lfloor m/n \rfloor) > \lg n\}$$

 $\alpha(m, n) \le 4$ for all practical cases.

- A slightly weaker bound $O(m \lg^* n)$: Hopcroft & Ullman, 1973.
- Runtime: O(m) for all **practical** applications.