Quantum Circuit Transformation Based on Subgraph Isomorphism and Tabu Search*

First Aaaaaaauthor $^{1[0000-ereer1111-2222-3333]},$ Second Author $^{2,3[1111-2222-3333-4444]},$ and Third Author $^{3[2222-3333-4444-5555]}$

 Princeton University, Princeton NJ 08544, USA
 Springer Heidelberg, Tiergartenstr. 17, 69121 Heidelberg, Germany lncs@springer.com

 $http://www.springer.com/gp/computer-science/lncs $3 ABC Institute, Rupert-Karls-University Heidelberg, Heidelberg, Germany $$ \{abc,lncs}\$

Abstract. The process of circuit transformation is to find an automatic method to map any logical quantum circuits to physical circuits effectively in an acceptable time, and add as few auxiliary gates as possible. We mainly propose an initial mapping algorithm based on a combined subgraph isomorphism algorithm and a circuit transformation algorithm based on Tabu Search (QCTS). Our experimental results show that the algorithm is effective. Compared with the initial mapping based on the VF2 algorithm, auxiliary gates added to our initial mapping are reduced by 22.26%, and the depth of the output circuit is reduced by 11.17%. QCTS is scalable on large-scale circuits with less overhead, compared with other state-of-the-art algorithms.

Keywords: Quantum circuit transformation · Subgraph isomorphism · Initial mapping · Tabu Search

1 Introduction

Quantum technology has been applied in practice, but large quantum computers have not yet been built. Most of the contributions of quantum information to computer science are still in the theoretical stage. In March 2017, IBM developed the first 5-qubit backend called IBM QX2. In June, it launched the 16-qubit backend called IBM QX3. The revised versions of 5-qubit and 16-qubit are called IBM QX4 and IBM QX5, respectively. IBM Q experience provides the public with free quantum computer resources on the cloud and opens source the quantum computing software framework $Qiskit^4$. In order to use these quantum computer resources, we must map a logical quantum circuit to a given physical circuit and satisfy some necessary physical constraints. This requires a set of highly efficient and automatic mapping procedures. Quantum circuit transformation is an important part of the quantum circuit compilation. The main

^{*} Supported by organization x.

⁴ https://www.qiskit.org/.

idea is to convert the input logical circuit (LC) into a physical circuit (PC) and satisfy the physical constraints.

The biggest problem facing quantum information processing is the problem of quantum decoherence. The entanglement of the quantum system with the surrounding environment and quantum measurement will cause the disappearance of quantum coherence. Since it is now in the NISQ era, there are only dozens of qubits, and it is unrealistic to realize quantum error correction [16]. Quantum gate operations are limited in physical circuits. They can only be performed between adjacent qubits. Thus it is necessary to convert circuits by adding auxiliary gates to satisfy logical and physical constraints. This process may introduce many errors, which brings a huge challenge to circuit compilation because noise has a greater impact on the final circuit and may make the result meaningless. The quantum coherence time is concise. The longest coherence time of a superconducting quantum chip is still within 10us-100us, the time of a single quantum gate is about 20ns, the time of a 2-qubit gate is about 40ns, and the time of a measurement operation is about 300ns-1us.

There are currently five main methods for solving the qubit allocation problem.

- 1. Unitary matrix factorization algorithm. The first method uses the unitary matrix factorization algorithm to rearrange the quantum circuit from the beginning while retaining the input circuit [8, 14].
- 2. Converting into some existing problems. The second method converts the quantum circuit transformation problem into some existing problems, such as AI planning [22, 3], Integer Linear Programming (ILP) [1], Satisfiability Modulo Theory (SMT) [12], and use tools for these problems to find acceptable results. However, these methods may run for a long time and can only be applied to a small number of qubits. Furthermore, these tools cannot take advantage of some of the properties of quantum mapping.
- 3. Precise methods. The precise method is only suitable for simple quantum structures and cannot be extended to complex quantum structures [19].
- 4. Graph theory. In [17], Shafaei used the minimum linear arrangement problem in graph theory to model the problem of reducing the interaction distance. It divided a given circuit into several sub-circuits and applied the minimum linear arrangement problem, respectively. Then it turns non-adjacent gates in the sub-circuits into adjacent circuits by adding auxiliary gates. Finally, it used the minimum linear permutation problem to find an appropriate permutation and bubble sort to calculate the number of SWAP gates needed. In [7] and [11], they proposed a two-step approach to reformulate the subtasks of gate scheduling as a graph problem. For example, according to the graph coloring problem and the maximum subgraph isomorphism problem to minimize the number of auxiliary gates. Both of them moved a qubit from the initial position to the target position in the best possible path with minimal cost. The former defined a priority to get the initial mapping, and the latter purely solved the problem of position movement. They all divided the swapping of qubits into three categories. The first is a movement that

- is beneficial to both qubits; the second considers one advantageous, but the other is not mapped; the third is that one is advantageous, and the other is harmful. Then they calculate the scores from the initial position to the target position according to the types and move.
- 5. Heuristic search [25, 4, 9, 23, 19]. The circuit transformation algorithm hopes to find a minimum number of SWAPs. Heuristic search uses an evaluation function to obtain an acceptable solution in exponential time. Zulehner divided a given circuit into multiple layers, which can be implemented in a CNOT constraint compatible manner [25]. A compatible mapping is then determined for each of these layers, which requires as few auxiliary gates as possible. The main idea is to determine the cheapest path from the root node to the target node (the lowest cost). Since the search space is usually exponential, complex mechanisms keep the paths considered as few as possible. Zhou designed a heuristic search algorithm with a novel selection mechanism [23]. He did not choose the lowest cost operation to apply but looked forward one step and then chose the best continuous operation. In this way, the algorithm can effectively avoid local minimum. Moreover, a pruning mechanism is introduced to reduce the search space's size and ensure that the program terminates in a reasonable amount of time. This algorithm's time complexity is $O(|V|^4)$.

Li proposed a SWAP-based search algorithm SABRE [9]. Compared with previous search algorithms based on exhaustive mapping, SABRE achieves exponential search complexity and ensures the scalability of SABRE to adapt to the large quantum equipment in the NISQ era. By introducing the attenuation effect in the heuristic cost function, different hardware compatible circuits are generated by switching the number of gates in the circuit according to the circuit depth. This makes SABRE suitable for NISQ devices with different characteristics and optimization goals. The routing algorithm implemented in $t | ket \rangle$ can ensure that any quantum circuit is compiled into any architecture [4]. The algorithm is divided into four stages: decomposing the input circuit into time steps, determining the initial position, routing across time steps, and finally cleaning up. The heuristic method in $t|ket\rangle$ matches or is better than the results of other circuit transformation systems in terms of depth and the total number of gates of the compiled circuit, and the running time is greatly reduced, allowing larger circuits to be routed. Tannu proposed a variation-aware qubit movement strategy, which takes advantage of the change in error rate and a change-aware qubit allocation strategy by trying to select the route with the lowest probability of failure [21]. This strategy allocates program qubits to physical qubits to take advantage of SWAPs in the error rate, thereby minimizing the use of links with high error rates.

In general, an initial algorithm can be used to generate an initial mapping. Paler used a heuristic method to find the initial mapping and IBM's compiler to benchmark [15]. The preliminary results show that the cost can be reduced by up to 10% only by placing qubits differently from the default position (trivial

4 F. Author et al.

placement) only in the actual circuit instance on the actual NISQ device. In 2018, a novel reverse traversal technique was proposed in [9], which selects the initial mapping method by considering the whole circuit. In [23], an annealing algorithm, was proposed to find a favorable initial mapping. The initial heuristic mapping generated by the algorithm is unstable and cannot be used in practice. In [10], VF2 subgraph isomorphism algorithm was used to generate an initial mapping. Compared with VF2 mapping, our algorithm based on CSI reduces the number of SWAP gates by 22.29% and the depth by 11.17%. The main contributions of this paper are as follows.

- 1. We propose an combined subgraph isomorphism algorithm (CSI) to obtain the initial mapping, which can be reduced to subgraph isomorphism. Thus we use a state-of-the-art subgraph isomorphism algorithm to generate part of the initial mapping and then complete the mapping based on the connectivity between qubits.
- 2. We propose a heuristic circuit transformation algorithm based on Tabu Search [6] (QCTS), which can handle large circuits in a short time at a low cost. Compared with the previous precise search and heuristic algorithms, it can complete the circuit transformation in a shorter time. QCTS can complete the search of the 159 circuits [25] only with a few minutes, but another heuristic search cannot deal with them in a few minutes. Even some heuristic methods may not handle large circuits.

The rest of this paper is organised as follows. In Section 2 we recall some background of quantum computing and quantum information. We propose the problems of the transformation of quantum circuits in Section 3. Section 4 describes and analyses our algorithm in detail. The experimental results are reported in Section 5. The last section concludes the paper and discusses future research.

2 Background

This section introduces some notions and notations of quantum computing and quantum information.

2.1 Qubits

Classical information is stored in bits, while quantum information is stored in qubits. Besides two basic states $|0\rangle$ and $|1\rangle$, a qubit can be in any linear superposition state with the $|\phi\rangle = a\,|0\rangle + b\,|1\rangle$, where $a,b\in\mathbb{C}$ satisfy $|a|^2 + |b|^2 = 1$. Then $|\phi\rangle$ is in the state $|0\rangle$ with the probability $|a|^2$ or in the state $|1\rangle$ with the probability $|b|^2$.

2.2 Quantum Gate

Commonly used quantum gate symbols and their matrices are shown in Fig. 1. Physical qubit and logical qubit are represented by q, q, respectively.

Fig. 1. The symbols of common quantum gates and their matrices

2.3 Quantum Circuit

A quantum logical circuit LC (see Fig. 2) consists of quantum gates interconnected by quantum wires [5]. A quantum wire is a mechanism for moving quantum data from one location to another. Each line represents a qubit, and the gate operation on the line acts on the corresponding qubit. The width w of a circuit refers to the number of qubits in the circuit. The depth d of a circuit refers to the number of layers executed in parallel. The directed acyclic graph (see Fig. 3) of a circuit is obtained by parallelizing and layering the circuit by topological sorting. In this paper, circuits with a depth less than 100 are called small-sized circuits, circuits with a depth greater than 1000 are called largesized circuits, and the rest are medium-sized circuits. The execution order of a quantum logical circuit graph is from left to right. The depth of the circuit (see Fig. 2) is 6, and the width is 5. It is unnecessary to consider single quantum gates in circuit transformation since the qubit is local [18]. Architecture graph \mathcal{AG}_L is generated by regarding qubits in LC as nodes V and 2-qubit gates as edges E. Our initial mapping tries to find subgraphs isomorphic to the logical architecture graph (LAG) on the physical architecture graph (PAG).

2.4 Architectures

We mainly discuss the physical circuits of IBM Q series. Let $\mathcal{AG}_{\mathcal{P}} = (V_P, E_P)$ denote the architecture graph of the physical circuit, where V_P denotes the

F. Author et al.

6

Fig. 2. Original circuit

Fig. 3. The directed acyclic graph (DAG) of original circuit in Fig. 2

 ${\bf Fig.\,4.}$ (a) The architecture graph of original circuit in Fig. 2. (b) The partial architecture graph of IBM Q20

 ${\bf Fig.\,5.}$ Transformation of gate direction

physical qubit set and E_P represents the directed edge set that the CNOT gates. Fig. 7 (a) and (b) are PAG of the 5-qubit of IBM QX2, (c) and (d) are PAG of 16-qubit of IBM QX3, and (e) are the PAG of IBM Q20. An arrow in the figure indicates that the qubit at the beginning of the arrow can control

Fig. 6. Decomposition of a SWAP gate

the qubit at the end of the arrow, and the 2-qubit gate operations can only be performed between qubits with edges connected. IBM physical circuit only supports single quantum gates and CNOT gates between two adjacent qubits. Fig. 4(a) is the logical architecture of the original circuit of Fig. 2, and Fig. 4(b) is the partial architecture graph of IBM Q20.

Fig. 7. IBM QX architectures

3 Problem Analysis

Problem in qubit Mapping Single qubit gates and CNOT gates are used as basic gates since they are commonly used to implement any quantum circuit supported by the IBM QX architecture. Before circuit transformation, the circuit should be simplified to a circuit with only single quantum gates and CNOT gates [13, 2]. We insert auxiliary gates (see Fig. 6) so that two non-adjacent qubits can move to adjacent positions or change direction between two adjacent qubits (see Fig. 5). The introduction of auxiliary gates may lead to errors, leading to a large deviation between the final results and the actual situation. The quantum system is easy to interact with the surrounding environment, resulting in errors. In the

NISQ era, quantum error correction is difficult to achieve. Due to the decoherence problem of quantum bits, the quantum operation needs to be completed in a coherent period, and the time of quantum bits in the coherent state is short. Therefore, it is necessary to improve the parallelism of qubits as much as possible to minimize the depth of the quantum circuit. This is the focus of this paper. We hope to find a circuit transformation algorithm to make the output circuit with the minimum number of auxiliary gates and the circuit depth in an acceptable amount of time.

Given the logical circuit LC, physical structure \mathcal{AG}_P , and an initial mapping τ , CNOT gate $g = \langle q_i, q_j \rangle$, $\langle \tau(q_i), \tau(q_j) \rangle$ is a directed edge on \mathcal{AG}_P , if gate G is executable.

Example 1. Fig. 4 (a) is the logical structure of Fig. 2, Fig. 4 (b) is the partial architecture graph of IBM Q20, an initial mapping is $\tau = \{q_0 \to \mathbf{q}_{10}, \ q_1 \to \mathbf{q}_0, \ q_2 \to \mathbf{q}_6, \ q_3 \to \mathbf{q}_5, \ q_4 \to \mathbf{q}_{11}\}$. $g_0 = \langle q_2, q_1 \rangle$ is not executable, since $\langle \tau(q_2), \tau(q_1) \rangle = \langle \mathbf{q}_6, \mathbf{q}_0 \rangle$ does not exists in \mathcal{AG}_P . But $g_3 = \langle q_1, q_3 \rangle$ is executable, since $\langle \tau(q_1), \tau(q_3) \rangle = \langle \mathbf{q}_0, \mathbf{q}_5 \rangle$ exist in \mathcal{AG}_P .

A quantum circuit transformation problem mainly includes the following four steps, among which the third step of isomorphism and the fourth step of the circuit transformation problem are both NPC [19]

Fig. 8. Circuit transformation process

1. Preprocess the logical quantum circuit. It includes extracting the LAG of the circuit, adjusting the life cycle of qubits (this part of the work is done by Zhang [24]), and calculating the shortest path of the physical circuit.

- 2. Compute isomorphic substructures. It uses the subgraph isomorphism algorithm to find part of the initial mapping, which is done by Sun [20]
- 3. Generate high-quality initial mapping. We perform mapping completion because the remaining nodes cannot satisfy all isomorphism requirements. According to the connectivity between the unmapped node and the mapped nodes. The unmapped node is mapped to the mapped node's neighborhood, which satisfies the connectivity of part of the structure and reduces the length of the shortest path.
- 4. Transforming logical circuits to meet physical constraints Circuit transformation problems need to be solved before implementing quantum circuits since quantum algorithms are usually designed without referring to any specific hardware's connectivity constraints. Therefore, circuit transformation forms a necessary stage of any quantum compiler.

4 Solution

The solution proposed in this paper mainly includes preprocessing, initial mapping, and circuit transformation algorithm based on Tabu Search.

4.1 Preprocessing

Before transforming the SWAP circuit based on Tabu Search, we need to preprocess it to get more convenient data to shorten our search time and space. In the preprocessing stage, we adjust the circuit of the input openQASM program to shorten the life cycle of qubits. Then we use Breadth-First Search (BFS) to calculate the shortest distance between each node on the architecture graph.

Circuit Adjustment In order to shorten the life cycle of qubits and improve the parallelism of qubits, we use a layered method to analyze the life cycle of qubits [24] and pack the operations that can be executed in parallel into a bundle, forming a layered bundle format. A conversion method is designed to use the layered bundle format to determine which operations can be moved, which reduces the life cycle of these qubits. The algorithm reduces the error rate of quantum programs by 11%. On most quantum workloads, the longest qubit lifetime and the average qubit lifetime can be reduced by more than 20%, and the execution time of some quantum programs can also be reduced.

Shortest Distance Given PAG, the shortest distance between two qubits can be calculated. In this paper, the shortest distance matrix dist[i][j] is calculated by Floyd-Warshall algorithm, which represents the shortest distance from q_i to q_i , and the distance of each edge is 1.

For IBM QX2, QX3, QX4, QX5, the SWAP operation needs 7 gates (3 CNOT gates and 4 H gates). Only 4 H gates are needed to change directions between two adjacent qubits. For a CNOT gate $\langle q_i, q_i \rangle$, Two qubits are mapped

to \mathbf{q}_i and \mathbf{q}_j respectively, with $\tau(q_i) = \mathbf{q}_i$, $\tau(q_j) = \mathbf{q}_j$. then the cost of executing g under the shortest distance path is $cost_{cnot}(q_i,q_j) = 7 \times (dist[i][j]-1)$. If they move to adjacent positions, but there is no edge from \mathbf{q}_i to \mathbf{q}_j , we need to add 4 H gates to adjust their directions. For IBM Q20, in which all edges are bidirectional, the SWAP operation requires 3 gates (3 CNOT gates), and there is no need to change the direction. Thus the cost between them is $cost_{cnot}(q_i,q_j)=3\times (dist[i][j]-1)$. The time complexity of this step is $O(N^3)$.

Example 2. Take the QX5 structure as an example. Suppose there is a CNOT gate $g = \langle q_i, q_j \rangle$, q_i is mapped to q_1 , q_j is mapped to q_{14} , and the shortest distance between them is dist[1][14] = 3. There are 3 shortest paths to move q_1 to the adjacent position of q_{14} : $II = \{\pi_0, \pi_1, \pi_2\}$ $\pi_0 = q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_{14}$, $\pi_1 = q_1 \rightarrow q_2 \rightarrow q_{15} \rightarrow q_{14}$, $\pi_2 = q_1 \rightarrow q_0 \rightarrow q_{15} \rightarrow q_{14}$. Their costs are $cost_{\pi_0} = 18$, $cost_{\pi_1} = 14$, $cost_{\pi_2} = 14$, respectively.

Circuit Layering Quantum gates acting on different qubits can be executed in parallel, so we can layer quantum circuits to improve the parallelism of qubits and shorten the life cycle of qubits. Thus, we layer the adjusted circuit, traverse the entire program sequentially, and add gates that can be executed parallel to one layer. Otherwise, a new layer is added. The CNOT gate is represented by $\langle q_i, q_j \rangle$, q_i is the control qubit, and q_j is the target qubit. $L(LC) = \{\mathcal{L}_0, \mathcal{L}_1, ..., \mathcal{L}_n\}$ represents the layered circuit, and \mathcal{L}_i $(0 \le i \le n)$ represents a quantum gate set that can be executed in parallel. The quantum gate set separated by the dotted line in Fig. 2 are the following $\mathcal{L}_0 = \{g_0, g_1\}, \mathcal{L}_1 = \{g_2\}, \mathcal{L}_2 = \{g_3, g_4\}, \mathcal{L}_3 = \{g_5, g_6\}, \mathcal{L}_4 = \{g_7\}, \mathcal{L}_5 = \{g_8\}.$

At the same time, we generate logical circuit architecture graph $\mathcal{AG}_{\mathcal{L}} = (V_L, E_L)$, which is an undirected graph. V_L contains the vertices and the degree of each vertex, and E_L represents the set of undirected edges that the CNOT gates can execute.

4.2 Initial Mapping

It has been proved that the initial mapping has an important influence on *qubit assignment*, and the subgraph isomorphism can be reduced to *qubit assignment*, so we want to use the subgraph isomorphism algorithm to find an initial mapping that helps to minimize auxiliary gates in transformation stage.

In PAG, it is almost impossible to find a subgraph that exactly matched nodes LAG, so we hope to find a partial mapping that can maximize the number of match. SubgraphCompare [20] compares several state-of-the-art subgraph isomorphism algorithm composition. It shows that using the filtering and sorting ideas of GraphQL algorithm to process candidate nodes, and the local candidates' calculation method LFTJ based on set-intersection to enumerate the results is the best. Since SubgraphCompare used in this paper is only suitable for fully connected subgraph isomorphism, there may be no 2-qubit gate operation between one qubit and other qubits in our circuit. The architecture graph formed in this way cannot use SubgraphCompare to generate part of the initial mapping

because the subgraph isomorphism will first match the node with the largest degree, and we hope to minimize the impact on the logical dependency graph. Therefore, we artificially connect the isolating qubit to the qubit with the largest degree in the logical architecture diagram.

We use SubgraphCompare generate partial mappings denoted by T. The logical architecture graph $\mathcal{AG}_{\mathcal{L}}$ and physical architecture graph $\mathcal{AG}_{\mathcal{D}}$ generated by the preprocessing process regard as undirected graph as input. The output of CSI algorithm is a file containing all the isomorphism processes. We only choose the case with the most homogeneous nodes as the CSI result, since only some nodes may be matched during the algorithm. Then we complete the unmapped nodes in the partial mapping based on the connectivity of the nodes or the degree of the nodes. The mapping completion algorithm based on node connectivity is show in Algorithm 1.

The input of Algorithm 1 is a target graph (\mathcal{AG}_P) , query graph (\mathcal{AG}_L) , and the partial mappings T. First, we initialize an empty queue Q, which stores unmatched nodes in the map $\tau \in T$. Then it traverses τ and adds the unmatched nodes to the queue. For the remaining unmatched points, we try to map them with the nodes that do not match in the more concentrated area of \mathcal{AG}_P . Finally, a dense isomorphic subgraph is generated, which can reduce subsequent SWAP operations. We would try to match the remaining unmatched nodes randomly, but this may lead to mapping to a position far away from other nodes. If the unmatched point has an edge adjacent to the matched point in the query graph, it will be matched to its adjacent position first. If the adjacent position has been matched, it will be matched to the adjacent unmatched node. Finally, it gets all initial candidate mappings and outputs them to the file.

Lines 2-7 calculate the maximum number of qubits l that match in the mapping relations between logical qubits and physical qubits obtained by the SubgraphCompare algorithm. Lines 8-49 completes the logical qubit unmapped nodes in the mapping algorithm with the number of matches equal to l in the mapping relations, and we use the greedy strategy to allocate. In line 11, we initialized an empty queue Q, which stores unmapped logical qubits. In lines 12-18, we traverse the map and add the unmapped qubits to Q. We loop until Qbecomes empty, and all logical qubits map to physical qubits. We take out the first element in Q. Lines 21 and 22 respectively are used to get the adjacency matrices of \mathcal{AG}_{P} and \mathcal{AG}_{L} . Line 23 initializes an empty map cans, and the keys sort in descending order. The key consists of the number of nodes connected to $q_{-i}d$ in the adjacency matrix and map in the current mapping algorithm, and the nodes constitute a unique key. Lines 25-31 traverse the point m connected to $q_{-i}d$ in the adjacency matrix. If the node m has not been mapped, the node stores in cans. Lines 32-47 traverse the cans, select the node with the largest number of connections to q_id in the cans, and it has been mapped to the node (cans. first) on PAG. The t_{-id} in line 33 is the node with the largest number of $q_{-i}d$ connections corresponding to the node on PAG. Line 35 removes the object to match in the cans from the cans. Lines 36-43 select the node adjacent to the t_{-id} in the adjacency matrix of the t_{-id} , and map the q_{-id} to the node.

Algorithm 1: initial mapping algorithm CSI

```
Input: \mathcal{AG}_{\mathcal{L}}: The architecture of logical circuit
    \mathcal{AG}_{\mathcal{P}}: The architecture of physical circuit
    T: A partial mapping set obtained by SubgraphCompare
    Output: result: A collection of mapping relations between \mathcal{AG}_{\mathcal{L}} and \mathcal{AG}_{\mathcal{P}}
 1 Initialize result = \emptyset;
 2 l \leftarrow max_{\tau \in T} \tau.length;
 3 for \tau \in T do
         if l = \tau.length then
 4
              result.add(\tau);
              Q \leftarrow \text{initialing an empty unmapped node queue}
 6
              i \leftarrow 1;
 7
              while i \leq \tau.length do
 8
                   if \tau[i] = -1 then
 9
                    Q \leftarrow i;
10
                   \mathbf{end}
11
                   i \leftarrow i + 1;
12
              \mathbf{end}
13
              while Q is not empty do
                   int q\_id \leftarrow Q.poll();
15
                   targetAdj \leftarrow \mathcal{AG}_{\mathcal{P}}.adjacencyMatrix();
16
17
                   queryAdj \leftarrow \mathcal{AG}_{\mathcal{L}}.adjacencyMatrix();
                   cans \leftarrow initialing an empty candidate node list;
                                                                                         // sorted by
18
                     the connectivity of nodes
                   m \leftarrow 1;
19
                   while m \leq queryAdj[q\_id].length do
20
                        if \tau[m] \neq -1 then
21
                         cans \leftarrow cans \cup \{m\};
22
                        end
23
                        m \leftarrow m + 1;
24
                   end
25
26
                   while cans is not empty do
                        t\_id \leftarrow \tau[cans.first];
27
                        k \leftarrow 0;
28
                        cans \leftarrow cans \backslash cans.first;
29
                        while k < targetAdj[t\_id].length do
30
                             if (targetAdj[t\_id][k] \neq -1 \text{ or } targetAdj[k][t\_id] \neq -1)
31
32
                              and not \tau.contains(k) then
33
                                  \tau[q\_id] \leftarrow k;
                                  break;
34
                             \mathbf{end}
35
36
                             k \leftarrow k + 1;
                        \mathbf{end}
37
                        if k \neq targetAdj[t\_id].length then
38
39
                            break;
40
                        end
                   end
41
42
              end
         end
43
44 end
```

Example 3. Following the previous example, we first use CSI algorithm for LAG(see Fig. 4 (a)) and PAG (see Fig. 7 (e)) to obtain the partial mapping set $T = \{\tau_0, \tau_1, ..., \tau_n\}$. We use one of the partial mapping set as an example $au_0=\{q_0 o \mathbf{q}_{10}, q_1 o -1, q_2 o \mathbf{q}_6, q_3 o \mathbf{q}_5, q_4 o \mathbf{q}_{11}\}, \ 0 \le i < n. \ q_1 o -1$ means that q_1 is not mapped to the physical structure in the subgraph isomorphisms. phism stage, so we need to perform mapping completion. Algorithm 1 completes the partial mapping with the maximum mapped nodes in T as the initial mapping. In this example, the maximum number of mapped nodes is 4. Next, we demonstrate that τ_0 is mapped and completed, and the unmapped nodes in τ_0 are added to the queue Q, $Q = \{q_1\}$, and the loop ends until Q is empty. We put the first element of Q into $q_{-}id$, and delete it from Q. Then we get the adjacency matrix of the query graph and the target graph, and traversing the node q_m connected to q_id in the adjacency matrix. If the node q_m is matched, then we put q_m into the candidate nodes list cans, which is sorted by the connectivity of q_m and q_{-id} . Thus we get $cans = [q_3, q_2, q_4, q_0]$. Thereafter, we traverse cansand take out of the first element $value = q_3$ in cans, and calculate the value $t_{-id} = q_5$ of q_m in the current mapping $\tau_0(q_3)$. Finally, we map q_{-id} to the node connected to t_{-id} and not yet mapped. If the nodes connected to t_{-id} have been mapped, the loop continues. In this example, it can be directly mapped to q_0 . In the end, we get $\tau_0 = \{q_0 \rightarrow q_{10}, q_1 \rightarrow q_0, q_2 \rightarrow q_6, q_3 \rightarrow q_5, q_4 \rightarrow q_{11}\}.$

4.3 Swap Minimization

Tabu Search Tabu Search algorithm [6] is a type of heuristic algorithm. Tabu Search uses a tabu table to avoid searching for repeated spaces, thereby avoiding deadlock. The algorithm uses amnesty rules to jump out of the optimal local solution to ensure the diversity of transformed results. The circuit transformation operation in this paper mainly relies on the idea of the Tabu Search algorithm, aiming to deal with the large-scale circuits that the current algorithm is difficult to handle and hoping to get a result closer to the optimum solution in a short time.

There are mainly the following objects in Tabu Search: neighborhood fields, neighborhood action, tabu table, candidate set sum, tabu object, evaluation function, and amnesty rules. All the edges that can be swapped in the current map are the neighborhood fields in Tabu Search. The tabu table fits the parallelism requirements of qubits. We try not to use the recently operated qubits as much as possible, which are added to the tabu table, at the same time. The candidate set selects several neighborhood objects with the best target value or evaluation value from the neighborhood fields to join the candidate set. It can be obtained by the observation that many SWAP operations are meaningless, so in order to save search space, we should perform pruning. Only the swap of edges adjacent to the gate node with at least one edge is meaningful. Thus our neighborhood fields are the shortest path on PAG of the gates. Their qubits are not adjacent to the current layer, and the edges on these shortest paths are all part of the neighborhood fields. The tabu object is the object in the tabu table. The evaluation function selects a SWAP evaluation formula from the candidate set,

generally taking the objective function as the evaluation function. The evaluation function satisfies some gate mapping operations, and the number of SWAP gates added should be small, and the depth of the entire circuit should be small. The amnesty rule is that when all objects in the candidate set are banned, or after one object is banned, the target value will be greatly reduced. In order to achieve the global optimum, the tabu object can be added to the candidate set.

The calculation of the neighborhood fields is shown in Algorithm 2. The input is the current circuit mapping $\tau_p, qubits$ represents the mapping of physical qubits to logical qubits, Where j=qubits[i] means that the ith physical qubit has been mapped to the j-th logical qubit. locations represents the mapping of logical qubits to physical qubits, Where j=locations[i] means that the ith logical qubit has been mapped to the j-th physical qubit. the current layer list of all gates currentLayers cl, all the gates nextLayer of the next layer nl, and the output is a candidate set of the current mapping, The mapping generated by a transformation, where the physical mapping qubits and the logical mapping locations are changed synchronously. E is the edge of all the shortest paths in the physical architecture graph of all gates in the current layer. The weight of the edge is the number of times each edge appears in the path. Lines 22-37 swap all the edges of this path and add them to the candidate set, and calculate the cost of each candidate.

Example 4. Under the mapping $\tau_0 = \{q_0 \to q_{10}, q_1 \to q_0, q_2 \to q_6, q_3 \to q_5, q_4 \to q_{11}\}$, for $L_0 = \{g_0, g_1\}$, $dist_{cnot}(g_0) = 3$, $dist_{cnot}(g_1) = 3$. Gate g_1 can be executed directly under the τ_0 mapping, so it is directly deleted from L_0 , but g_0 cannot be executed under the mapping τ_0 . Now the gate that cannot be executed in L_0 is g_0 . Thus circuit transformation is required. Nodes that cannot be exchanged join the set to be swapped $swap_nodes = \{q_0, q_6\}$ The shortest path is $paths = \{\{q_6 \to q_1 \to q_0\}, \{q_6 \to q_5 \to q_0\}\}$, and then we traverse the shortest path to calculate candidate set. The two endpoints of the edge passed by the shortest path should intersect the swap set and join the candidate set. so the current candidate set is $\{SWAP(q_6, q_1), SWAP(q_1, q_0), SWAP(q_6, q_5), SWAP(q_5, q_0)\}$.

The circuit mapping algorithm based on Tabu Search takes a layered circuit and an initial mapping as input and outputs a circuit that can be executed on the specified architecture graph. Algorithm 3 performs a Tabu Search on the gates of each layer of the layered circuit and obtains the transformed circuit of each layer. The transformed circuit mapping of each layer is used as the initial mapping of the circuit of the next layer. Lines 2 to 3 regard the initial mapping τ_{ini} as the best mapping τ_{best} and the current mapping τ_{curr} . Lines 4 to 17 cyclically check whether all the current layer gates can be executed under the mapping τ_{curr} . If it does not satisfy the execution of all gates or the number of iterations has not reached the given maximum number, the search will continue. Otherwise, the search will terminate. Line 5 gets the current mapping candidate, and line 6 finds the best mapping in the candidate set. The mapping will first remove the overlapping elements of the candidate set and the Tabu table. Then from the

Algorithm 2: Calculate the candidate sets

```
Input: dist: The shortest paths of physical architecture
    qubits: The mapping from physical qubits to logical qubits
    locations: The mapping from logical qubits to physical qubits
    cl: Gates included in the current layer of circuits
    nl: Gates included in the next d layer of circuits
    Output: results: The set of candidate solution
 1 Initialize results \leftarrow \emptyset;
 2 E_w \leftarrow \text{Calculate the weight of each edge}
 swap\_nodes \leftarrow An empty set of candidate swap nodes
 4 for
each g \in cl do
        q_1 \leftarrow locations[g.control];
        q_2 \leftarrow locations[g.target];
 6
        if g is executable then
 8
             cl \leftarrow cl \backslash g;
 9
            continue;
10
        swap\_nodes.add(q_t);
11
12
        swap\_nodes.add(q_2);
13 end
14 foreach g \in cl do
15
        q_1 \leftarrow locations[g.control];
16
        q_2 \leftarrow locations[g.target];
        foreach path \in paths[q_1][q_2] do
17
             foreach e \in path do
18
                 if swap\_nodes.contains(sour\_node) or
19
                  swap\_nodes.contains(tar\_node) then
                      new\_qubits \leftarrow qubits;
20
21
                      new\_locations \leftarrow locations;
                      q_1 \leftarrow new\_qubits[e.source];
22
                      q_2 \leftarrow new\_qubits[e.target];
23
                      new\_qubits[e.source] \leftarrow q_2 \; ;
24
                      new\_qubits[e.target] \leftarrow q_1;
25
                      if q_1 \neq -1 then
26
27
                      new\_locations[q_1] \leftarrow q_2;
28
                      if q_2 \neq -1 then
29
                       | new\_locations[q_2] \leftarrow q_1;
30
                      end
31
32
                      s.value \leftarrow compute\_evaluate\_value(dist, new\_locations, cl);
33
                      results \leftarrow results \cup s;
34
                 end
35
             end
36
        end
37
38 end
39 return results;
```

remaining candidates, we choose a mapping with the lowest cost. Lines 7 to 12 are the amnesty rules. When the best candidate is not found, the candidate set elements are all the same as the tabu list elements. The amnesty rule selects the lowest cost mapping in the candidate set as the best candidate mapping. Lines 13-16 update the best mapping τ_{best} and the current mapping τ_{curr} , and add the SWAPs operation performed by the best mapping to the tabu list tl, indicating that this SWAPs has just been performed, and the algorithm should try to avoid re-swap the just swapped qubits. Then it will judge whether the algorithm stop condition is satisfied. The stopping condition determines whether the number of iterations has reached the maximum number, or the current mapping satisfies the execution of all gates in the current layer. If the stop condition is not satisfied, continue to loop.

Example 5. We continue the previous example. Tabu Search requires an initial solution and then searches based on this solution. Before searching, we need to get a series of initial candidate SWAP sets and select the one with the lower evaluation score as the initial solution. For $L_0 = \{g_0, g_1\}$, the initial candidate set is $\{SWAP(q_6, q_1), SWAP(q_1, q_0), SWAP(q_6, q_5), SWAP(q_5, q_0)\}$, and the costs are $cost(SWAP(q_6, q_1)) = 3.0$, $cost(SWAP(q_5, q_0)) = 3.0$, $cost(SWAP(q_5, q_0)) = 3.0$, respectively. The algorithm will choose the first SWAP operation, at this time the mapping becomes $\tau_0 = \{q_0 \to q_{10}, q_1 \to q_0, q_2 \to q_1, q_3 \to q_5, q_4 \to q_{11}\}$. The Tabu Search loops to determine whether it has reached the stop condition when the current iteration number reaches the limits or the current mapping satisfies the execution of all gates in L_0 . It can be seen that the current mapping has satisfied the execution of g_0 . Thus the search of the current layer is over, and the Tabu Search of the next layer is continued.

Evaluation function design The main purpose of this article is to add as few auxiliary gates as possible or the depth of the generated circuit is relatively small.

The longer the quantum execution time, the greater the error introduced, so we want to shorten the life cycle of qubits as much as possible. In the algorithm based on Tabu Search, there is a Tabu list naturally, which satisfies our needs. This paper tested two evaluation functions, one uses the depth of the generated circuit as the evaluation criterion 4, and the other uses the number of auxiliary gates in the generated circuit as the evaluation criterion 3.

$$cost(SWAP(q_m, q_n)) = \sum_{g \in L_i} (dist[g.control][g.target])$$
 (1)

$$cost(SWAP(q_i, q_i)) = Depth(L_i)$$
(2)

 $cost_{L_i}(SWAP(\mathbf{q_i}, \mathbf{q_j}))$ represents the cost of executing all gates of the current layer L_i after swapping $\mathbf{q_i}$, $\mathbf{q_j}$. We only calculate the distance of the unmapped gates of the after the SWAP operation as in the equation (4) or the depth between the unmapped gates as in the equation (3).

Algorithm 3: Tabu Search

```
Input: \tau_{ini}: The initial mapping
    tl: Tabu list
    Output: \tau_{best}: The final state and SWAPs
  1 Initialize \tau_{best} \leftarrow \tau_{ini};
  \mathbf{2} \ \tau_{curr} \leftarrow \tau_{ini} \ ;
 3 iter \leftarrow 1;
                                                                          // Number of iterations
 4 while not mustStop(iter, \tau_{best}) do
          C \leftarrow \tau_{curr}.candidates();
                                                                                      // candidate set
  5
          C_{best} \leftarrow find\_best\_candidates(C, tl);
  6
          if C_{best} is empty then
  7
               if C = NULL then
  8
                   break;
  9
               end
10
               C_{best} \leftarrow find\_amnesty\_candidates(C, tl);
11
          end
12
          \tau_{best} \leftarrow C_{best};
13
          \tau_{curr} \leftarrow C_{best};
14
          tl \leftarrow tl \cup \{C_{best}.swap\};
15
         iter \leftarrow iter + 1;
17 end
18 return \tau_{best}
```

Look ahead Since the number of qubits used in current quantum circuits is small, the number of gates in each layer after layering is small. If we only consider the gates of one layer when choosing the swap algorithm, the swap algorithm selected by the algorithm only satisfies the requirement of the i-th layer. The output of the i-th (i < n) layer is used as the input of the (i + 1)th layer. Note that the swap algorithm of the i-th layer will affect the mapping of the (i + 1)th layer. Thus we take the circuit of the (i+x)th (i+x < n) layer into consideration. However, in terms of priority, it is necessary to give priority to the execution of the gate set of the i-th layer, so we introduce an attenuation factor δ , which controls the influence of the (i+x)th layer gate set on the circuit swap of the i-th layer. Each time the algorithm is swapped, the gates of the latter layer or several layers are considered together. Experiments show that for x = 2, $\delta = 0.9$, the final effect is the best. Our evaluation function can be rewritten as

$$cost(SWAP(\mathbf{q_m}, \mathbf{q_n})) = \sum_{g \in L_i} (dist[g.control][g.target]) + \\ \delta \times \sum_{j=i}^{i+x} \sum_{g \in L_j} (dist[g.control][g.target])$$

$$(3)$$

$$cost(SWAP(\mathbf{q_m}, \mathbf{q_n})) = Depth(L_i) + \delta \times Depth(\sum_{j=i}^{i+x} L_j). \tag{4}$$

Complexity Given logical circuit architecture graph $\mathcal{AG}_{\mathcal{L}} = (V_L, E_L)$, physical circuit architecture graph $\mathcal{AG}_{\mathcal{P}} = (V_P, E_P)$, the initial mapping τ , the depth of the circuit d, the number of qubits V_L , TS deals with one layer at a time, and searches at most d times. Starting from the initial mapping, we first delete the executable gates of the first layer under the initial mapping. Then, the edges of all the shortest paths of all the gates that are not executed in the current layer are added to the candidate set where at least one node is a node of the gate mapping. In the worst case, the shortest path length is $(|E_P|-1)$, and the candidate set size is $(|E_P|-1)$. Each SWAP will make the total distance between the gates smaller. In the worst case, the number of SWAPs is $(|E_P|-1)^{|E_P|-2}$, but our selection strategy will make the number of SWAPs significantly reduced. Our time complexity is $d * ((|E_P|-1))^{(|E_P|-2)}$, and the space complexity is the size of our candidate set (E_P-1) .

5 Experiment

The experiment in this paper is performed on a 2.3GHz Linux machine with 64G memory. This paper compares CSI algorithm and circuit transformation algorithm based on Tabu Search QCTS with the wghtgraph in [10] and the heuristic algorithm A^* in [25].

First, we compared the efficiency of initial mapping on τ_{optm} [25], τ_{CSI} and $\tau_{wghtgraph}$ [10]. In order to observe the results of these two initial mapping algorithms intuitively, we used the same circuit transformation A^* algorithm to compare the initial mapping algorithms [25].

Among 159 circuits, experiments show that within five minutes τ_{optm} can deal with 121 circuits, $\tau_{wghtgraph}$ can deal with 106 circuits, τ_{CSI} can deal with 131 circuits. There are 103 circuits that they can handle. Comparing $\tau_{wghtgraph}$ algorithm and τ_{CSI} algorithm, the $\tau_{wghtgraph}$ algorithm has 21 circuits with fewer SWAPs and 19 circuits with a small depth, and the τ_{CSI} algorithm has 54 circuits with fewer SWAPs and 60 circuits with a small depth, and they have 25 circuits with equal depth and 29 circuits with equal SWAPs. The SWAPs of the τ_{CSI} algorithm is relatively reduced by 22.4418%, and the depth is reduced by 11.2482%.

Comparing τ_{optm} algorithm and τ_{CSI} algorithm, the τ_{optm} algorithm has one circuit with fewer SWAPs and two circuits with a small depth, and the τ_{CSI} algorithm has 99 circuits with fewer SWAPs and 98 circuits with a small depth, and they have 4 circuits with equal depth and 4 circuits with equal SWAPs. The SWAPs of the τ_{CSI} algorithm is relatively reduced by 27.0219%, and the depth is reduced by 14.1242%. As shown in Table 1, there are 104 circuits. Three initial mappings are compared with the depth of the generated circuits under the A^* algorithm, and the number of SWAP gates added. τ_{CSI}/τ_{optm} calculate the efficiency improvement of the former upon the latter, the formula is $(n_{optm}-n_{CSI})/n_{optm}$.

We compared the use of two indicators $(QCTS_{dep} \text{ and } QCTS_{num})$ that prioritize smaller depth and fewer auxiliary gates. The two indicators were used as

	$ au_{optm}$	$ au_{wghtgraph}$	$ au_{CSI}$	$ au_{CSI}/ au_{optm}$	$ au_{CSI}/ au_{wghtgraph}$
depth	168895	163422	145040	14.1241%	11.2482%
added	20439	19232	14916	27.0219%	22.4418%

Table 1. Compare τ_{optm} , $\tau_{wghtgraph}$, and τ_{CSI}

objective functions, and 159 circuits were tested. The depth of the final circuit obtained by $QCTS_{num}$ is 1.93% smaller than $QCTS_{dep}$ on average, and the number of auxiliary gates added is 4.53% smaller on average. Inserting a SWAP gate, the circuit needs to add 3 CNOT gates, and the depth will be increased by 3. While the number of SWAP gates added is small, the circuit depth reduces accordingly. Thus we use SWAP quantity first to give better results.

Finally, we compared QCTS transformation and wgtgraph calculation. Since the wqtqraph algorithm only uses 2-qubit gates, it is impossible to compare the depth of the generated circuit, So we compared the number of SWAP gates added and compared the time. Since large circuits may not successfully handle for a long time, we consider it meaningless. This paper sets a five-minute timeout period and tested 159 circuits. $QCTS_{num}$ only takes 461 seconds, $QCTS_{dep}$ takes 485 seconds, and wgtgraph run 159 circuits in 1908 seconds, but only 98 files get results, 64 of them there are 66 circuits for small circuits to get results, 49 medium circuits only have 35 circuits for results, and no circuit output in 44 large circuits. Although Tabu Search can quickly produce results on large circuits, in contrast, more auxiliary gates are added. In 98 small and medium-sized circuits with the results obtained by wgtgraph, the number of SWAP gates added by wgtgraph is 26.87% less than $QCTS_{num}$ on average, and the number of SWAP gates added by wgtgraph is 24.89% less than $QCTS_{dep}$ on average. Tabu Search can quickly output converted circuits on large circuits, but wqtqraph cannot get results in a short time. The detailed results of the circuit comparisons are in the appendix.

benchmarks	#circ.	$QCTS_{num}$		$QCTS_{dep}$		wgtgraph		SABRE	
Dencimarks		#succ.	time	#succ.	time	#succ.	time	#succ.	time
small	66	66	32	66	29	64	1908		
medium	49	49	45	49	40	35	1908		
large	44	44	407	44	432	0	1908		
total	159	159	461	159	485	98	1908		

Table 2. Compare τ_{optm} , $\tau_{wghtgraph}$, and τ_{QCTS}

6 Conclusion

This paper proposed a heuristic SWAP method QCTS based on Tabu Search to overcome the shortcomings of previous works, and proposed CSI algorithm to generate high-quality initial mapping. Experimental results showed that the initial mapping generated by QCTS dramatically reduced the number of SWAP gates inserted and achieved multiple optimization goals in the circuit transformation phase, and results could be obtained in a short time. Most small and medium-sized circuits could be obtained in a few seconds. The result could be obtained within a few minutes, even for a large circuit, but the cost of insertion might be equal to or more than wgtgraph. We introduced a look-ahead plan to make each selected SWAP more in line with the constraints of the back gates. In future, we would study how to reduce the number of auxiliary gates inserted as much as possible based on increasing speed, and apply the proposed method to more NISQ devices to get useful experimental data. Since our analog circuit ignores the noise generated by the circuit, we would introduce quantum noise to the circuits.

A Experimental details of the SWAP gates added by the output circuit

ntgr led 6
6
)
Į.
3
4
2
2
2
)
Į.
3
7
)
3
3
3
)
7
2
3
2
Į.
2
2
2
)
1
0
)
4
7
3
)
)
)
)
)
5
)
5
)
)
3
Į.
2
)
0
6
3
5

Table 3. Comparison of the number of SWAP gates added by the output circuit on the IBM $\mathrm{Q}20$

G: :	1	CNIOTE	OCTUC	OCTO		1.
Circuit	qubit		$QCTS_{num}$	$QCTS_{dep}$	optm	wghtgr
name	no.	no.	added	added	added	added
rd53_130	7	448	89	100	190	49
rd53_251	8	564	104	131	230	45
$4 \mod 5 - v1_2 4$	5	16	0	0	3	0
$mod5adder_{-}127$	6	239	21	56	111	20
4_49_16	5	99	20	17	40	10
$hwb5_53$	6	598	141	168	173	59
ex3_229	6	175	10	9	50	11
4gt10-v1_81	5	66	14	15	28	6
alu-v2_32	5	72	15	17	27	7
alu-v2_31	5	198	42	54	85	13
alu-v2_30	6	223	41	45	96	20
$sf_{-}276$	6	336	12	52	138	12
$decod24-v1_41$	5	38	4	4	14	3
sf_274	6	336	34	21	82	12
4gt4-v1_74	6	119	17	24	37	9
alu-v2_33	5	17	4	4	8	2
$cnt3-5_{-}179$	16	85	6	6	35	4
$4 \mod 5 - v1_2 $	5	11	0	0	5	0
$4 \mod 5 - v1_2 3$	5	32	5	5	4	3
mini_alu_305	10	77	10	20	28	8
alu-v0_26	5	38	7	10	13	3
alu-bdd_288	7	38	4	12	16	6
alu-v0_27	5	17	2	4	11	2
4gt13_91	5	49	7	7	10	2
4gt5_77	5	58	12	12	20	6
4gt13_92	5	30	0	0	14	0
$4gt5_{-}76$	5	46	7	10	24	5
4gt5_75	5	38	5	12	16	4
4gt12-v1_89	6	100	11	21	38	4
one-two-three-v1_99	5	59	12	10	26	7
4gt13_90	5	53	7	7	13	3
ising_model_10	10	90	0	0	5	0
4gt11_84	5	9	0	0	3	0
4gt11_83	5	14	0	0	0	0
mod5d1_63	5	13	0	0	1	0
4gt11_82	5	18	1	1	1	1
decod24-v3_45	5	64	15	15	32	8
rd32-v1_68	4	16	0	0	6	0
mini-alu_167	5	126	27	27	49	11
one-two-three-v2_100	5	32	3	4	8	3
4mod7-v0_94	5	72	8	13	36	9
cm82a_208	8	283	41	69	84	33
mod8-10_178	6	152	5	20	13	7
mod8-10_177	6	196	14	33	58	13
majority_239	7	267	39	43	105	33
miller_11	3	23	0	0	9	0
decod24-bdd_294	6	32	$\begin{array}{c c} & 0 \\ 4 \end{array}$	$\frac{0}{4}$	9	4
total	551	9244	1372	1738	3481	800
เบเลเ	991	3244	13/2	1130	0401	000

Table 4. Comparison of the number of SWAP gates added by the output circuit on the IBM $\mathbf{Q}20$

name no. no. added added added max46.240 10 11844 3473 4545 - - rd73.252 10 2319 5866 761 - - cycle10.2.110 12 2648 919 1216 961 - sqrt8.260 12 1314 379 492 457 - sqn.258 10 4459 11199 1420 - - f2.322 8 525 87 124 218 - radd.250 13 1405 386 489 511 - sao2.257 14 16864 5346 7178 - - symb.148 10 9408 1865 2432 - - symb.148 10 9408 1865 2432 - - symb.49 91 23764 6989 8730 - - symb.5-9	Circuit	and:	CNOT	OCTC	OCTE	000	
max46.240 10 11844 3473 4545 - - rd73.252 10 2319 586 761 - - cycle10.2.110 12 2648 919 1216 961 - sqrt8.260 12 1314 379 492 457 - urf4.187 11 224028 5488 60140 - - f2.332 8 525 87 124 218 - ham15.107 15 3858 1326 1689 511 - sym9.148 10 9408 1865 2432 - - urf5.280 9 23764 6989 8730 - - sy		_	ł	1	$QCTS_{dep}$	optm	wghtgr
rd73.252 10 2319 586 761 - - cycle10.2.110 12 2648 919 1216 961 - sqrt8.260 12 1314 379 492 457 - urf4.187 11 224028 54785 60140 - - gen.258 10 4459 1199 1420 - - f2.232 8 525 87 124 218 - f2.232 8 525 87 124 218 - ham15.107 15 3858 1326 1689 511 - sao2.257 14 16864 5346 7178 - - sym9.148 10 9408 1865 2432 - - sym9.148 10 9408 812 2150 - - sym6-0-111 10 98 23 26 38 - <						added	added
cycle10_2_110 12 2648 919 1216 961 - sqtt8_260 12 1314 379 492 457 - urf4_187 11 224028 54785 60140 - - sqn_258 10 4459 11199 1420 - - f2_232 8 525 87 124 218 - f2_232 8 525 87 124 218 - ham15_107 15 3858 1326 1689 51 - sao2_257 14 16864 5346 7178 - - sym9_148 10 9408 1865 2432 - - urf5_280 9 23764 6989 8730 - - sym9_1446 12 148 38 55 54 - sym9_146 12 148 38 55 54 - <t< td=""><td></td><td></td><td>1</td><td></td><td>!</td><td>-</td><td>-</td></t<>			1		!	-	-
sqrt8.260 12 1314 379 492 457 - urf4.187 11 224028 54785 60140 - - sqn.258 10 4459 11199 1420 - - f2.232 8 525 87 124 218 - radd.250 13 1405 386 489 511 - ham15.107 15 3858 1326 1689 - - sao2.257 14 16864 5346 7178 - - sym9.148 10 9408 1865 2432 - - urf5.280 9 23764 6989 8730 - - sym9.148 10 9408 1865 2432 - - urf5.280 9 23764 6989 8730 - - sym6-v0.1111 10 98 23 26 38 -			1			- 001	-
urf4.187 11 224028 54785 60140 - - sqn.258 10 4459 1199 1420 - - f2.232 8 525 87 124 218 - radd.250 13 1405 386 489 511 - ham15.107 15 3858 1326 1689 - - sao2.257 14 16864 5346 7178 - - sym9.148 10 9408 1865 2432 - - square.root.7 15 3089 812 2150 - - syse-v0.111 10 98 23 26 38 - hwb7.59 8 10681 2687 3551 3722 - syse-v0.111 10 98 23 26 38 - wim.266 11 427 93 120 147 -							
sqn.258 10 4459 1199 1420 - - f2.232 8 525 87 124 218 - radd.250 13 1405 386 489 511 - ham15.107 15 3858 1326 1689 - - sym9.148 10 9408 1865 2432 - - urf5.280 9 23764 6989 8730 - - sym9.148 10 9408 1865 2432 - - urf5.280 9 23764 6989 8730 - - syse6-v0.111 10 98 23 26 38 - hwb7.59 8 10681 2687 3551 3722 - sym9.146 12 148 38 55 54 - urf2.152 8 35210 9181 11921 10577 - <t< td=""><td>-</td><td></td><td>1</td><td></td><td>l</td><td>457</td><td></td></t<>	-		1		l	457	
Paradicide 8 525 87 124 218 - radd.250 13 1405 386 489 511 - ham15.107 15 3858 1326 1689 - - sym9.148 10 9408 1865 2432 - - urf5.280 9 23764 6989 8730 - - square.root.7 15 3089 812 2150 - - sys6-v0.111 10 98 23 26 38 - hwb7.59 8 10681 2687 3551 3722 - sym9.146 12 148 38 55 54 - wim.266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf5.159 9 71932 20258 25505 - -			1		l	-	
radd_250			1			-	-
ham15_107 15 3858 1326 1689 - - sao2_257 14 16864 5346 7178 - - sym9_148 10 9408 1865 2432 - - urf5_280 9 23764 6989 8730 - - sym9_146 12 3089 812 2150 - - sym9_146 12 148 38 55 54 - wim_266 11 427 93 120 147 - urf2_152 8 35210 9181 11921 10577 - urf2_157 8 10066 2807 3798 3782 - urf2_277 8 10066 2807 3766 - - jegsym10_262 12 28084 8534 11033 - - ot_227 13 7493 2128 3035 - -			1				-
sao2.257 14 16864 5346 7178 - - sym9.148 10 9408 1865 2432 - - urf5.280 9 23764 6989 8730 - - symer.16 15 3089 812 2150 - - sys6-v0.111 10 98 23 26 38 - hwb7.59 8 10681 2687 3551 3722 - sym9.146 12 148 38 55 54 - wim.266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf2.152 8 35210 9181 11921 10577 - urf2.277 8 10066 2807 3798 3782 - life_238 11 9800 2762 3576 - -						511	-
sym9.148 10 9408 1865 2432 - - square.root.7 15 3089 812 2150 - - sys6-v0.111 10 98 23 26 38 - hwb7.59 8 10681 2687 3551 3722 - sym9.146 12 148 38 55 54 - wim.266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf2.277 8 10666 2807 3798 3782 - life.238 11 9800 2762 3576 - - sym10.262 12 28084 8534 11033 - - gym10.262 12 28084 8534 11033 - - sym10.262 12 28084 8534 11033 - -			1		l	-	-
urf5_280 9 23764 6989 8730 - - square_root.7 15 3089 812 2150 - - sys6-v0.111 10 98 23 26 38 - hwb7.59 8 10681 2687 3551 3722 - sym9.146 12 148 38 55 54 - wim_266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf2.159 9 71932 20258 25050 - - urf2.277 8 10066 2807 3798 3782 - life_238 11 9800 2762 3576 - - sym10_262 12 28084 8534 11033 - - sym10_262 12 28084 8534 11033 - -			1			-	-
square_root_7 15 3089 812 2150 - - sys6-v0_1111 10 98 23 26 38 - hwb7_59 8 10681 2687 3551 3722 - sym9_146 12 148 38 55 54 wim_266 11 427 93 120 147 - urf2_152 8 35210 9181 11921 10577 - urf2_177 8 10666 2807 3798 3782 - life_238 11 9800 2762 3576 - - root_255 13 7493 2128 3035 - - sym10_262 12 28084 8534 11033 - - dc1_220 11 833 226 207 371 - cm42a_207 14 771 182 229 294 - rd53_31	v		l			-	
sys6-v0.111 10 98 23 26 38 - hwb7.59 8 10681 2687 3551 3722 - sym9.146 12 148 38 55 54 - wim.266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf2.277 8 10066 2807 3798 3782 - life.238 11 9800 2762 3576 - - root.255 13 7493 2128 3035 - - sym10.262 12 28084 8534 11033 - - sym10.262 12 28084 8534 11033 - - cm42a.207 14 771 182 229 294 - rd53.311 13 124 26 48 47 -			1			-	-
hwb7.59 8 10681 2687 3551 3722 - sym9.146 12 148 38 55 54 - wim.266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf2.277 8 10666 2807 3798 3782 - life.238 11 9800 2762 3576 - - root.255 13 7493 2128 3035 - - sym10.262 12 28084 8534 11033 - - sym10.262 12 28084 8534 11033 - - cm42a.207 14 771 182 229 294 - rd53.311 13 124 26 48 47 - dc2.222 15 4131 1383 1773 - -	-		l	l	l	-	-
sym9.146 12 148 38 55 54 - wim.266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf5.159 9 71932 20258 25505 - - urf2.277 8 10066 2807 3798 3782 - life.238 11 9800 2762 3576 - - root.255 13 7493 2128 3035 - - 9symml.195 11 15232 4553 5986 - - sym10.262 12 28084 8534 11033 - - dcl.220 11 833 226 207 371 - cm42a.207 14 771 182 229 294 - rd53.311 13 124 26 48 47 -			!	l	!		-
wim.266 11 427 93 120 147 - urf2.152 8 35210 9181 11921 10577 - urf5.159 9 71932 20258 25505 - - urf2.277 8 10066 2807 3798 3782 - life.238 11 9800 2762 3576 - - root.255 13 7493 2128 3035 - - 9symml.195 11 15232 4553 5986 - - sym10.262 12 28084 8534 11033 - - dc1.220 11 833 226 207 371 - cm42a.207 14 771 182 229 294 - rd53.311 13 124 26 48 47 - dc42.222 15 4131 1383 1773 - -					l		-
urf2.152 8 35210 9181 11921 10577 - urf2.159 9 71932 20258 25505 - - urf2.277 8 10066 2807 3798 3782 - life_238 11 9800 2762 3576 - - root_255 13 7493 2128 3035 - - sym10_262 12 28084 8534 11033 - - sym10_262 12 28084 8534 11033 - - dc1_220 11 833 226 207 371 - cm42a_207 14 771 182 229 294 - rd53_311 13 124 26 48 47 - dc2_222 15 4131 1383 1773 - - rd84_142 15 154 49 58 50 -	-					-	-
urf5_159 9 71932 20258 25505 - - life_238 11 9800 2762 3576 - - root_255 13 7493 2128 3035 - - 9symml_195 11 15232 4553 5986 - - sym10_262 12 28084 8534 11033 - - cm42a_207 14 771 182 229 294 - cm42a_207 14 771 182 229 294 - rd53_311 13 124 26 48 47 - dc2_222 15 4131 1383 1773 - - rd84_142 15 154 49 58 50 - sym6_145 7 1701 317 449 750 - cot14_215 15 7840 3078 3819 - -			1		l		-
urf2_277 8 10066 2807 3798 3782 - life_238 11 9800 2762 3576 - - root_255 13 7493 2128 3035 - - 9symml_195 11 15232 4553 5986 - - sym10_262 12 28084 8534 11033 - - dc1_220 11 833 226 207 371 - cm42a_207 14 771 182 229 294 - rd53_311 13 124 26 48 47 - dc2_222 15 4131 1383 1773 - - rd84_142 15 154 49 58 50 - sym6_145 7 1701 317 449 750 - cot14_215 15 7840 3078 3819 - - <			1		l	10577	-
life_238		_	l		l	-	-
root_255 13 7493 2128 3035 - - 9symml_195 11 15232 4553 5986 - - sym10_262 12 28084 8534 11033 - - dc1_220 11 833 226 207 371 - cm42a_207 14 771 182 229 294 - rd53_311 13 124 26 48 47 - dc2_222 15 4131 1383 1773 - - rd84_142 15 154 49 58 50 - sym6_145 7 1701 317 449 750 - co14_215 15 7840 3078 3819 - - cnt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sy				1		3782	-
9symml.195 11 15232 4553 5986 - - sym10_262 12 28084 8534 11033 - - dc1_220 11 833 226 207 371 - cm42a_207 14 771 182 229 294 - rd53_311 13 124 26 48 47 - dc2_222 15 4131 1383 1773 - - rd84.142 15 154 49 58 50 - sym6.145 7 1701 317 449 750 - co14.215 15 7840 3078 3819 - - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - ml4_245 16 8232 2780 3490 - - hwb8_			1			-	-
sym10.262 12 28084 8534 11033 - - dc1.220 11 833 226 207 371 - cm42a.207 14 771 182 229 294 - rd53.311 13 124 26 48 47 - dc2.222 15 4131 1383 1773 - - rd84.142 15 154 49 58 50 - sym6.145 7 1701 317 449 750 - co14.215 15 7840 3078 3819 - - cnt3-5.180 16 215 59 74 79 - cm152a.212 12 532 103 129 168 - sym6.316 14 123 30 39 56 - mlp4.245 16 8232 2780 3490 - - qft.16 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td>-</td>			1			-	-
dc1_220 11 833 226 207 371 - cm42a_207 14 771 182 229 294 - rd53_311 13 124 26 48 47 - dc2_222 15 4131 1383 1773 - - rd84_142 15 154 49 58 50 - sym6_145 7 1701 317 449 750 - co14_215 15 7840 3078 3819 - - cmt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - qft_16 16 240 90 147 - - plus63mod4096_163<			1	1	!	-	-
cm42a_207 14 771 182 229 294 - rd53_311 13 124 26 48 47 - dc2_222 15 4131 1383 1773 - - rd84_142 15 154 49 58 50 - sym6_145 7 1701 317 449 750 - co14_215 15 7840 3078 3819 - - cnt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_			1			-	-
rd53.311 13 124 26 48 47 - dc2.222 15 4131 1383 1773 - - rd84.142 15 154 49 58 50 - sym6.145 7 1701 317 449 750 - co14.215 15 7840 3078 3819 - - cnt3-5.180 16 215 59 74 79 - cm152a.212 12 532 103 129 168 - sym6.316 14 123 30 39 56 - mlp4.245 16 8232 2780 3490 - - hwb8.113 9 30372 10749 16489 - - qft.16 16 240 90 147 - - plus63mod4096.163 13 56329 19759 24273 - - urf3.279 10 60380 17999 23318 - - hwb9		11	833		207	371	-
dc2_222 15 4131 1383 1773 - - rd84_142 15 154 49 58 50 - sym6_145 7 1701 317 449 750 - co14_215 15 7840 3078 3819 - - cnt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - -				l	_	-	-
rd84_142 15 154 49 58 50 - sym6_145 7 1701 317 449 750 - co14_215 15 7840 3078 3819 - - cnt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - - urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - -			ļ	l .		47	-
sym6_145 7 1701 317 449 750 - co14_215 15 7840 3078 3819 - - cnt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - - urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - pm1_249 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 -			1		!	-	-
co14_215 15 7840 3078 3819 - - cnt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - - urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - pml_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - -			1			50	-
cnt3-5_180 16 215 59 74 79 - cm152a_212 12 532 103 129 168 - sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - - urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - <	=	7	1701	317		750	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	co14_215	15	7840	3078	3819	-	-
sym6_316 14 123 30 39 56 - mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - - urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - - plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - -	cnt3-5_180	16	215	59	74	79	-
mlp4_245 16 8232 2780 3490 - - hwb8_113 9 30372 10749 16489 - - qft_16 16 240 90 147 - - plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - - urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - - plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600	$cm152a_{-}212$	12	532	103		168	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sym6_316	14	123	30	39	56	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$mlp4_{-}245$	16	8232	2780	3490	-	-
plus63mod4096_163 13 56329 19759 24273 - - urf1_149 9 80878 22551 28516 - - urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - - plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	hwb8_113	9	30372	10749	16489	-	-
urf1_149 9 80878 22551 28516 - - urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - - plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	$qft_{-}16$	16	240	90	147	-	-
urf3_155 10 185276 50842 62903 - - urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - - plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	plus63mod4096_163	13	56329	19759	24273	-	-
urf3_279 10 60380 17999 23318 - - hwb9_119 10 90955 22946 30031 - - plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	urf1_149	9	80878	22551	28516	-	-
hwb9_119 10 90955 22946 30031 - - plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	urf3_155	10	185276	50842	62903	-	-
plus63mod8192_164 14 81865 28022 36207 - - pm1_249 14 771 182 229 294 - sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	urf3_279	10	60380	17999	23318	-	-
pm1.249 14 771 182 229 294 - sym9.193 11 15232 4382 5518 - - misex1.241 15 2100 480 754 600 - urf1.278 9 26692 8010 10217 - - squar5.261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	hwb9_119	10	90955	22946	30031	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$plus63mod8192_164$	14	81865	28022	36207	-	-
sym9_193 11 15232 4382 5518 - - misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	pm1_249	14	771		229	294	-
misex1_241 15 2100 480 754 600 - urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -	-	11	!	1	5518	-	-
urf1_278 9 26692 8010 10217 - - squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - -		15	l	!	!	600	-
squar5_261 13 869 219 313 290 - ground_state_estimation_10 13 154209 11671 22886 - - -		9	!	1	!	_	-
ground_state_estimation_10 13 154209 11671 22886 - -		13				290	-
			l		!	_	-
mara=rai	adr4_197	13	1498	516	670	-	-

 ${\bf Table~5.}$ Comparison of the number of SWAP gates added by the output circuit on the IBM Q20

F. Author et al.

Circuit	qubit	CNOT	$QCTS_{num}$	$QCTS_{dep}$	optm	wghtgr
name	no.	no.	added	added	added	added
hwb6_56	7	2952	698	933	909	-
clip_206	14	14772	5430	6865	-	_
cm85a_209	14	4986	2088	2225	-	-
rd84_253	12	5960	1849	2333	-	_
dist_223	13	16624	5623	7431	-	-
inc_237	16	4636	1193	1667	-	-
$qft_{-}10$	10	90	23	34	30	_
urf6_160	15	75180	27524	32452	-	_
con1_216	9	415	86	118	177	-

Table 6. Comparison of the number of SWAP gates added by the output circuit on the IBM $\mathrm{Q}20$

B Experimental details of the depth of the output circuit

Circuit	aubit	CNOT	depths	$QCTS_{num}$	$QCTS_{dep}$	optm
name	no.	no.	no.	depths	depths	depths
decod24-enable_126	6	149	190	233	275	470
4mod5-v0_19	5	16	21	16	16	21
4mod5-v0_18	5	31	40	37	46	54
mod5d2_64	5	25	32	40	43	67
4gt4-v0_72	6	113	137	155	143	297
alu-v3_35	5	18	22	24	30	60
4gt4-v0_73	6	179	227	260	281	586
alu-v3_34	5	24	30	30	33	63
3_17_13	3	17	22	17	17	52
4gt4-v0_78	6	109	137	145	133	352
4gt4-v0_79	6	105	132	156	156	345
4mod7-v1_96	5	72	94	120	129	218
mod10_171	5	108	139	159	168	335
ex2_227	7	275	355	419	452	899
mod10_176	5	78	101	120	120	274
cycle10_2_110	12	2648	3386	5405	6296	7467
0410184_169	5	9	6	15	15	253
4mod5-v0_20	5	10	12	10	10	32
sqrt8_260	12	1314	1661	2451	2790	3561
aj-e11_165	5	69	86	93	93	250
alu-v1_28	5	18	22	24	30	70
f2_232	8	525	668	786	897	1672
radd_250	13	1405	1781	2563	2872	3985
4gt12-v0_86	6	116	135	200	215	334
4gt12-v0_87	6	112	131	193	208	324
4gt12-v0_88	6	86	108	101	101	222
alu-v1_29	5	17	22	29	29	64
ham7_104	7	149	185	233	251	491
C17_204	7	205	253	283	364	688
xor5_254	6	5	5	5	5	10
hwb4_49	5	107	134	149	152	308
rd73_140	10	104	92	173	182	185
$decod24-v0_{-}38$	4	23	30	23	23	61
rd53_131	7	200	261	317	317	677
rd53_133	7	256	327	367	397	777
rd53_135	7	134	159	218	221	331
sys6-v0_111	10	98	75	167	176	188
$decod24-v2_43$	4	22	30	22	22	75
hwb7_59	8	10681	13437	18742	21334	29601
rd53_138	8	60	56	102	108	114
rd32-v0_66	4	16	20	16	16	51
sym9_146	12	148	127	262	313	309
4gt13-v1_93	5	30	39	30	30	102
graycode6_47	6	5	5	5	5	5
wim_266	11	427	514	706	787	1180
urf2_152	8	35210	44100	62753	70973	90299
urf2_277	8	10066	11390	18487	21460	26548
4mod5-bdd_287	7	31	41	40	49	71
ham3_102	3	11	13	11	11	28
4gt4-v0_80	6	79	101	94	94	206

Table 7. Comparison of the depth of the output circuit on the IBM $\mathrm{Q}20$

G: :	1	CNIOT	1 (1	OCTO	OCTUC	
Circuit	qubit		_	$QCTS_{num}$	$QCTS_{dep}$	optm
name	no.	no.	no.	depths	depths	depths
ex-1_166	3	9	12	9	9	28
mod5mils_65	5	16	21	16	16	52
0example	5	9	6	12	15	15
alu-v4_36	5	51	66	87	75	170
alu-v4_37	5	18	22	24	30	60
ex1_226	6	5	5	5	5	10
one-two-three-v0_98	5	65	82	98	104	234
one-two-three-v0_97	5	128	163	197	197	443
one-two-three-v3_101	5	32	40	41	44	95
rd32_270	5	36	47	45	45	76
dc1_220	11	833	1041	1511	1454	2711
rd53_130	7	448	569	715	748	1417
rd53_251	8	564	712	876	957	1767
cm42a_207	14	771	940	1317	1458	2279
rd53_311	13	124	130	202	268	300
4mod5-v1_24	5	16	21	16	16	36
mod5adder_127	6	239	302	302	407	817
4_49_16	5	99	125	159	150	320
hwb5_53	6	598	758	1021	1102	1560
ex3_229	6	175	226	205	202	462
rd84_142	15	154	110	301	328	253
4gt10-v1_81	5	66	84	108	111	210
alu-v2_32	5	72	92	117	123	215
alu-v2_31	5	198	255	324	360	650
alu-v2_30	6	223	285	346	358	734
$sym6_{-}145$	7	1701	2187	2652	3048	5716
sf_276	6	336	435	372	492	1096
decod24-v1_41	5	38	50	50	50	120
sf_274	6	336	436	438	399	822
4gt4-v1_74	6	119	154	170	191	329
alu-v2_33	5	17	22	29	29	59
cnt3-5_180	16	215	209	392	437	482
cm152a_212	12	532	684	841	919	1423
cnt3-5_179	16	85	61	103	103	166
sym6_316	14	123	135	213	240	378
4mod5-v1_22	5	11	12	11	11	37
4mod5-v1_23	5	32	41	47	47	55
mini_alu_305	10	77	71	107	137	187
alu-v0_26	5	38	49	59	68	108
alu-bdd_288	7	38	48	50	74	112
alu-v0_27	5	17	21	23	29	63
4gt13_91	5	49	61	70	70	108
4gt5_77	5	58	74	94	94	170
4gt13_92	5	30	38	30	30	103
4gt5_76	5	46	56	67	76	171
4gt5_75	5	38	47	53	74	127
4gt12-v1_89	6	100	130	133	163	313
one-two-three-v1_99	5	59	76	95	89	194
4gt13_90	5	53	65	74	74	124
pm1_249	14	771	940	1317	1458	2279

Table 8. Comparison of the depth of the output circuit on the IBM $\mathrm{Q}20$

Circuit	qubit	CNOT	depths	$QCTS_{num}$	$QCTS_{dep}$	optm
name	no.	no.	no.	depths	depths	depths
ising_model_10	10	90	52	90	90	107
misex1_241	15	2100	2676	3540	4362	5326
4gt11_84	5	9	11	9	9	25
4gt11_83	5	14	16	14	14	16
mod5d1_63	5	13	13	13	13	17
4gt11_82	5	18	20	21	21	25
squar5_261	13	869	1051	1526	1808	2309
$decod24-v3_45$	5	64	84	109	109	244
rd32-v1_68	4	16	21	16	16	52
hwb6_56	7	2952	3736	5046	5751	7773
mini-alu_167	5	126	162	207	207	400
one-two-three-v2_100	5	32	40	41	44	80
4mod7-v0_94	5	72	92	96	111	270
cm82a_208	8	283	340	406	490	699
mod8-10_178	6	152	193	167	212	243
mod8-10_177	6	196	251	238	295	525
majority_239	7	267	344	384	396	839
$qft_{-}10$	10	90	37	159	192	135
miller_11	3	23	29	23	23	75
decod24-bdd_294	6	32	40	44	44	86
con1_216	9	415	508	673	769	1197
total	823	83416	103023	145372	164848	224731

Table 9. Comparison of the depth of the output circuit on the IBM $\mathrm{Q}20$

		CNT OF		Lo om o	0.000	
Circuit	_	CNOT	1 1	$QCTS_{num}$		optm
name	no.	no.	no.	depths	depths	depths
$max46_240$	10	11844	14257	22263	25479	-
$rd73_252$	10	2319	2867	4077	4602	-
urf4_187	11		264330	388383	404448	-
sqn_258	10	4459	5458	8056	8719	-
$ham15_{-}107$	15	3858	4819	7836	8925	-
$sao2_257$	14	16864	19563	32902	38398	-
sym9_148	10	9408	12087	15003	16704	-
urf5_280	9	23764	27822	44731	49954	-
$square_root_7$	15	3089	3847	5525	9539	-
urf5_159	9	71932	89148	132706	148447	-
life_238	11	9800	12511	18086	20528	-
$root_255$	13	7493	8839	13877	16598	-
$9 symml_{-}195$	11	15232	19235	28891	33190	-
$sym10_{-}262$	12	28084	35572	53686	61183	-
$dc2_222$	15	4131	5242	8280	9450	-
$co14_{-}215$	15	7840	8570	17074	19297	-
$mlp4_{-}245$	16	8232	10328	16572	18702	-
hwb8_113	9	30372	38717	62619	79839	-
$qft_{-}16$	16	240	61	510	681	-
plus63mod4096_163	13	56329	72246	115606	129148	-
$urf1_{-}149$	9	80878	99586	148531	166426	-
urf3_155	10	185276	229365	337802	373985	-
urf3_279	10	60380	70702	114377	130334	_
hwb9_119	10	90955	116199	159793	181048	_
plus63mod8192_164	14	81865	105142	165931	190486	-
sym9_193	11	15232	19235	28378	31786	_
ising_model_13	13	120	46	120	120	_
urf1_278	9	26692	30955	50722	57343	_
ising_model_16	16	150	57	150	150	_
ground_state_estimation_10	13	154209	217236	189222	222867	_
adr4_197	13	1498	1839	3046	3508	_
clip_206	14	14772	17879	31062	35367	_
cm85a_209	14	4986	6374	11250	11661	_
$rd84_{-}253$	12	5960	7261	11507	12959	_
$dist_{-}223$	13	16624	19694	33493	38917	_
inc_237	16	4636	5864	8215	9637	_
urf6_160	15	75180	93645	157752	172536	_
						l

Table 10. Comparison of the depth of the output circuit on the IBM $\mathrm{Q}20$

References

1. Almeida, A., Dueck, G., Silva, A.: Finding optimal qubit permutations for ibm's quantum computer architectures pp. 1–6 (08 2019). https://doi.org/10.1145/3338852.3339829

- Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52 (03 1995). https://doi.org/10.1103/PhysRevA.52.3457
- 3. Bernal, D., Booth, K., Dridi, R., Alghassi, H., Tayur, S., Venturelli, D.: Integer programming techniques for minor-embedding in quantum annealers (12 2019)
- 4. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah, S.: On the qubit routing problem (02 2019)
- Daei, O., Navi, K., Zomorodi, M.: Optimized quantum circuit partitioning (05 2020)
- Glover, F.: Tabu search—part ii. ORSA Journal on Computing 2, 4–32 (02 1990). https://doi.org/10.1287/ijoc.2.1.4
- Guerreschi, G.G., Park, J.: Two-step approach to scheduling quantum circuits. Quantum Science and Technology 3 (06 2018). https://doi.org/10.1088/2058-9565/aacf0b
- Kissinger, A., Meijer, A.: Cnot circuit extraction for topologically-constrained quantum memories (04 2019)
- 9. Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for nisq-era quantum devices (09 2018)
- 10. Li, S., Zhou, X., Feng, Y.: Qubit mapping based on subgraph isomorphism and filtered depth-limited search (2020)
- 11. Matsuo, A., Yamashita, S.: An efficient method for quantum circuit placement problem on a 2-d grid pp. 162–168 (05 2019). https://doi.org/10.1007/978-3-030-21500-2_10
- Murali, P., Linke, N., Martonosi, M., Abhari, A., Nguyen, N., Huerta Alderete, C.: Full-stack, real-system quantum computer studies: architectural comparisons and design insights pp. 527–540 (06 2019). https://doi.org/10.1145/3307650.3322273
- 13. Möttönen, M., Vartiainen, J.: Decompositions of general quantum gates. Frontiers in Artificial Intelligence and Applications (05 2005)
- 14. Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for nisq architectures. Quantum Science and Technology $\bf 5$ (02 2020). https://doi.org/10.1088/2058-9565/ab79b1
- 15. Paler, A.: On the influence of initial qubit placement during nisq circuit compilation $(11\ 2018)$
- 16. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2 (2018)
- 17. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. Proceedings Design Automation Conference pp. 1–6 (05 2013). https://doi.org/10.1145/2463209.2488785
- 18. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures (2013)
- 19. Siraichi, M.Y., dos Santos, V.F., Collange, S., Pereira, F.M.Q.: Qubit allocation (2018)
- Sun, S., Luo, Q.: In-memory subgraph matching: An in-depth study pp. 1083–1098 (06 2020). https://doi.org/10.1145/3318464.3380581
- 21. Tannu, S., Qureshi, M.: Not all qubits are created equal: A case for variability-aware policies for nisq-era quantum computers pp. 987–999 (04 2019). https://doi.org/10.1145/3297858.3304007
- 22. Venturelli, D., do, M., Rieffel, E., Frank, J.: Temporal planning for compilation of quantum approximate optimization circuits pp. 4440–4446 (08 2017). https://doi.org/10.24963/ijcai.2017/620

- 23. Xiangzhen, Z., Li, S., Feng, Y.: Quantum circuit transformation based on simulated annealing and heuristic search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems **PP**, 1–1 (01 2020). https://doi.org/10.1109/TCAD.2020.2969647
- 24. Zhang, Y., Deng, H., Li, Q., Haoze, S., Nie, L.: Optimizing quantum programs against decoherence: Delaying qubits into quantum superposition pp. 184–191 (07 2019). https://doi.org/10.1109/TASE.2019.000-2
- 25. Zulehner, A., Paler, A., Wille, R.: Efficient mapping of quantum circuits to the ibm qx architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (12 2017). https://doi.org/10.1109/TCAD.2018.2846658