Topologie

Exercice 1 Soit (X, d) un espace métrique compact. On veut redémontrer quelques propriétés du cours en utilisant la caractérisation des compacts par le théorème de Borel-Lebesgue et non par les valeurs d'adhérence des suites. Soit (Y, δ) un autre espace métrique, et $f: X \to Y$ continue.

- 1. Montrer que f(X) est compact.
- 2. Soit $\varepsilon > 0$. Montrer que pour tout $x \in X$, il existe $\eta_x > 0$ tel que pour tout $y, z \in B(x, \eta_x)$, on a $\delta(f(y), f(z)) < \varepsilon$. En déduire que f est uniformément continue.
- 3. Faire la même chose pour d'autres résultats du cours.

Exercice 2 Soit (X, d) un espace métrique, et (x_n) une suite d'éléments de X. On suppose que x_n a une limite x. Montrer que l'ensemble $\{x_n, n \in \mathbb{N}\} \cup \{x\}$ est compact.

Exercice 3 Soit (E, d_E) et (F, d_F) deux espaces métriques. On suppose que F est compact.

- 1. Montrer que la projection $p: E \times F \to E$ est fermée
- 2. Soit f une application de E dans F. On suppose que le graphe de f est fermé dans $E \times F$ muni de la distance $d((x,y),(x',y')) = \max(d_E(x,x'),d_F(y,y'))$. Montrer que f est continue.
- 3. On suppose f continue, montrer que le graphe de f est fermé.

Exercice 4 On considère un espace métrique compact (E, d) et une application $f: E \to E$. On suppose que f est une application continue et que $d(f(x), f(y)) \ge d(x, y)$ pour tous x et y. Montrer que f est bijective et c'est une isométrie.

Exercice 5 Soit (X, d) un espace métrique compact. Montrer que X est séparable.

Exercice 6 Soit $C = [0,1]^{\mathbb{N}}$. On le munit d'une métrique δ par $\delta(x,y) = \sum_{n = 1 \choose 2^n} |x_n - y_n|$. Montrer que (C,δ) est compact. Cet espace s'appelle le cube de Hilbert.

Exercice 7 Soit (X, d) un espace métrique dont la distance est bornée par un réel a > 0, et qui est séparable. On note (u_n) une famille dénombrable dense dans X.

On définit une application $\phi: X \to C$ (où (C, δ) est l'espace défini dans l'exercice précédent) par $: \phi(x) = (d(x, u_n)/a)_n$.

- 1. Montrer que ϕ est continue et injective.
- 2. Montrer que ϕ est un homéomorphisme de X sur $\phi(X)$.
- 3. Montrer que tout compact est homéomorphe à un sous-espace fermé de C.

Exercice 8 Soit $\alpha = (\alpha_n)_{n\geq 0}$ une suite de nombres réels positifs et K_α le sous-ensemble suivant de $\ell^1(\mathbb{N}, \mathbb{R})$:

$$\{(u_n)_{n\geq 0}\in \ell^1: |u_n|\leq \alpha_n\}.$$

Montrer que K_{α} est compact si et seulement si α appartient à $\ell^{1}(\mathbb{N}, \mathbb{R})$.

Exercice 9 Soit E l'espace des fonctions \mathcal{C}^{∞} de [0,1] dans \mathbb{R} . On munit E d'une métrique par : $d(f,g) = \sum_{k\geq 0} \frac{1}{2^k} \min(1, \|f^{(k)} - g^{(k)}\|_{\infty})$.

- 1. Montrer que (E, d) est un espace métrique complet.
- 2. On dit qu'une partie X de E est très bornée si pour tout r > 0, il existe $\lambda > 0$ tel que $X \subset \lambda B(0, r)$. Montrer que E est borné mais pas très borné.
- 3. Montrer que les parties compactes de E sont exactement les parties fermées et très bornées. Indication : on pourra montrer que si X est très borné, il existe (M_k) une suite de réels > 0 tels que pour tout $f \in X$, $||f^{(k)}||_{\infty} \leq M_k$.
- 4. En déduire qu'il n'existe pas de norme sur E qui définisse les mêmes ouverts que d.

Exercice 10 Soit (X, d_X) et (Y, d_Y) deux espaces métriques. Soit \mathcal{F} l'ensemble des fonctions bornées de X dans Y, muni de la distance $d(f, g) = \sup_{x \in X} d_Y(f(x), g(x))$.

- 1. Montrer que si Y est complet, alors (\mathcal{F}, d) est complet.
- 2. Soit \mathcal{C} l'ensemble des fonctions continues bornées de X dans Y. Montrer que c'est une partie fermée de \mathcal{F} .
- 3. Soit Z une partie fermée de Y. Montrer que le sous-ensemble \mathcal{C}_Z de \mathcal{C} formé des fonctions dont l'image est contenue dans Z est un fermé de \mathcal{C} .
- 4. Supposons X compact, et soit U une partie ouverte de Y. Montrer que le sousensemble \mathcal{C}_U de \mathcal{C} formé des fonctions dont l'image est contenue dans U est un ouvert de \mathcal{C} . Montrer que la propriété n'est pas nécessairement vraie si X n'est pas compact.
- 5. Si a > 0, on note \mathcal{L}_a l'ensemble des fonctions a-lipschitziennes de X dans Y. Montrer que c'est un fermé de \mathcal{C} .

- 6. On suppose X et Y compacts. Montrer que chaque \mathcal{L}_a est compact.
- 7. Montrer que C n'est pas forcément compact même si X et Y sont compacts, et que \mathcal{L}_a n'est pas forcément compact si X ou Y n'est pas compact.

Exercice 11 Soit (X, d) un espace métrique, et (K_n) une suite de compacts connexes de X, vérifiant $K_{n+1} \subset K_n$. Montrer que $\cap_n K_n$ est connexe. La propriété reste-elle vraie si on ne suppose pas les K_n compacts?

Exercice 12 Soit (X, d) un espace métrique compact, et (x_n) une suite d'éléments de X telle que $d(x_n, x_{n+1}) \to 0$. Montrer que l'ensemble des valeurs d'adhérence de (x_n) est connexe. La propriété reste-elle vraie si on ne suppose pas X compact?

Exercice 13 Soit (X, d) un espace métrique. Si $x \in X$, on note C(x) la composante connexe de x, et C'(x) l'intersection des ouverts fermés de X contenant x.

- 1. Montrer que $C(x) \subset C'(x)$.
- 2. Soit $\varepsilon > 0$. On dit que y est ε -relié à x s'il existe x_0, \ldots, x_n avec $x_0 = x$ et $x_n = y$ et $d(x_i, x_{i+1}) < \varepsilon$. On note $C_{\varepsilon}(x)$ l'ensemble des points qui sont ε -reliés à x. Montrer que $C_{\varepsilon}(x)$ est ouvert et fermé, et en déduire que $C'(x) \subset C_{\varepsilon}(x)$.
- 3. Supposons X compact. Montrer que $\cap_{\varepsilon>0}C_{\varepsilon}(x)\subset C(x)$, et en déduire que C(x)=C'(x).
- 4. On considère le sous-espace de \mathbb{R}^2 suivant : $X = D_1 \cup D_{-1} \cup (\bigcup_{n \geq 2} R_n)$, où D_a est la droite d'équation y = a et R_n est le rectangle de sommets $(\pm n, \pm (1 1/n))$. Donner les composantes connexes de X, et vérifier qu'il existe x tel que $C(x) \neq C'(x)$.

Calcul différentiel

Exercice 14 Soit $E = \mathbb{R}^n$.

- 1. Montrer que $x \mapsto ||x||_2$ est différentiable sur $E \setminus \{0\}$ et calculer sa différentielle.
- 2. Montrer que $x \mapsto ||x||_{\infty}$ est différentiable exactement aux points $x = (x_1, \ldots, x_n)$ tels qu'il existe i tel que $|x_i| > |x_j|$ pour tout $j \neq i$, et calculer sa différentielle en ces points.
- 3. Montrer que $x \mapsto ||x||_1$ est différentiable exactement aux points $x = (x_1, \dots, x_n)$ tels que $x_i \neq 0$ pour tout i, et calculer sa différentielle en ces points.

Exercice 15 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction $f(x,y) = \frac{xy^2}{x^2+y^2}$. Montrer que pour tout $u \in \mathbb{R}^2 \setminus (0,0)$, la fonction $t \mapsto f(tu)$ est dérivable en 0, mais que f n'est pas différentiable en (0,0).

Exercice 16 Soit E et F deux evn de dimension finie, et $f: E \to F$ une fonction C^1 . On suppose que f est homogène de degré 1, c'est-à-dire que pour tout $x \in E$, pour tout $t \in \mathbb{R}$, f(tx) = tf(x). Montrer que f est linéaire.

Exercice 17 (lemme de Rolle) Soit $U \subset \mathbb{R}^n$ un ouvert borné non vide, et f une fonction continue sur \overline{U} à valeurs dans \mathbb{R} , différentiable sur U, et nulle sur la frontière de U. Montrer qu'il existe $a \in U$ tel que $df_a = 0$.