

Pendulo Gravítico

Determinação do período do pêndulo simples e aferição com o valor da Aceleração da Gravidade local g

1 Procedimento Experimental

Material

- Suporte do Pêndulo
- Massas de Chumbo, linha inextensível e com massa desprezável
- Régua graduada, Cronómetro, Fita métrica, transferidor, balança

Comece a sessão de laboratório por estimar a precisão que obtém na medição do tempo com o cronómetro, tendo em conta o tempo de reacção do corpo humano. Com a ajuda de um colega e de uma régua graduada obtenha 15 medidas da queda da régua e a partir da média e desvio padrão obtenha o seu tempo de reação e a incerteza ¹

Ensaio	A - Distância	B - Distância	C - Distância
#	de queda (cm)	de queda (cm)	de queda (cm)
1			
2			
3			
4			
5			
Média \overline{D} (m)			
Desvio padrão (m)			
Erro da Média $e_{\overline{D}}$ (m)			
Tempo de reação $\bar{t} \pm e_{\bar{t}}$ (s)	\pm (m)	± (m)	± (m)

Monte o sistema de pêndulo gravítico e obtenha o seu período para diversos comprimentos do fio. Obtenha o valor de g_{exp} para estes ensaios, usando a expressão (9) do texto de apoio, bem como a respectiva incerteza experimental. Compare o valor final de g_{exp} obtido com o valor tabelado g_{tab} e estime o desvio à exactidão que obteve.

Tenha em atenção os seguintes aspectos:

• Uma massa pendurada num fio tem mais que o grau de liberdade em θ . Tente assegurar-se que o pêndulo oscila apenas ao longo de um plano.

- Tente minimizar o efeitos de paralaxe na determinação do ângulo máximo, quer no posição usada para cronometrar um período
- \bullet Naturalmente a massa utilizada, não é pontual. Qual é o efeito na medida e incerteza do comprimento l?
- ullet Como pode minimizar a incerteza da medição do período? Usando um ou N ciclos?

Actividades adicionais, se tiver tempo:

- Utilize a montagem para medição precisa do Periodo. Compare com os outros resultados.
- Verifique experimentalmente que o período do pêndulo não depende do valor da massa.
- Verifique experimentalmente a dependência do ângulo máximo no período do pêndulo. Para que valores de θ_0 o valor calculado de g_{exp} se afasta de $\overline{g_{exp}}$ com desvio de 0.05?
- \bullet Tente estimar a percentagem de energia devido ao atrito que se perde em cada ciclo

.