Herstein Topics in Algebra Exercise Solutions

Gaurish Sharma

November 22, 2023

Contents

L	\mathbf{Set}	Theory	3
	1.1	Question 1	3
	1.2	Question 9	:

1 Set Theory

1.1 Question 1

- 1. If A is a subset of B and B is a subset of C, prove that A is a subset of C.
- 2. If $B \subset A$, prove that $A \cup B = A$, and conversely.
- 3. If $B \subset A$, prove that for any set C both $B \cup C \subset A \cup C$ and $B \cap C \subset A \cap C$.

1.2 Question 9

Let S be a set and let S^* be the set whose elements are the various subsets of S. In S^* we define an addition and multiplication as follows: If $A, B \in S^*$ (remember, this means that they are substes of S):

- 1. $A + B = (A B) \cup (B A)$.
- $2. A \cdot B = A \cap B.$

Prove the following laws that governs these operations:

- 1. (A+B)+C=A+(B+C).
- $2. \ A \cdot (B+C) = A \cdot B + A \cdot C.$
- 3. $A \cdot A = A$.
- 4. $A + A = \emptyset$.
- 5. If A + B = A + C then B = C.

(The system described is an example of a boolean algebra.)

Solution.

$$(A+B) + C = ((A-B) \cup (B-A)) + C$$

= $(((A-B) \cup (B-A)) - C) \cup (C - ((A-B) \cup (B-A)))$.

Now we expand the RHS,

$$A + (B + C) = A + ((B - C) \cup (C - B))$$

= $(A - ((B - C) \cup (C - B))) \cup (((B - C) \cup (C - B)) - A)$.

Now, let $x \in (A + B) + C$, then there are two cases

- x is an element of $((A-B)\cup(B-A))-C$. If this is the case then we know that $x\in(A-B)$ or $x\in(B-A)$. However, in either case $x\notin C$. We examine both cases,
 - $-x \in (A-B)$ and $x \notin C$: In this case we know that $x \notin B \cup C$. So it is definitely not in a reduced version of this union which is $(B-C) \cup (C-B)$ as this is just removing further elements from B and C before doing a union. Hence $x \notin (B-C) \cup (C-B)$ but $x \in A$. Therefore, $x \in A - ((B-C) \cup (C-B))$ and hence

 $x \in (A - ((B - C) \cup (C - B))) \cup (((B - C) \cup C - B) - A)$. Hence, in this case the subset relation $(A + B) + C \subset A + (B + C)$ holds.

– Fix this $x \in (B-A)$ and $x \notin C$. Hence, $x \notin B \cap C$. So, it is in $(B-C) \cup (C-B)$ as this is the same as $(B \cup C) - (B \cap C)$ by definition of B+C. However, $x \notin A$. Therefore, $x \in ((B-C) \cup (C-B)) - A$ and hence $x \in (A-((B-C) \cup (C-B))) \cup (((B-C) \cup (C-B)) - A)$. Hence, in this case the subset relation $(A+B) + C \subset A + (B+C)$ holds.

- a