# Chapitre 19 - Matrices et applications linéaires

### 1 Matrices d'une application linéaire

#### 1.1 Matrice d'une famille de vecteurs

**Définition 1.1.** Soit E un  $\mathbb{K}$ -espace vectoriel de dimension n et  $\mathscr{B} = (e_1, e_2, \dots, e_n)$  une base de E. Soit  $x \in E$ , on appelle matrice de x dans la base  $\mathscr{B}$ , la matrice colonne notée  $M_{\mathscr{B}}(x)$  dont les coefficients sont les coordonnées de x dans la base  $\mathscr{B}$ :

Si 
$$x = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$
, alors  $M_{\mathscr{B}}(x) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ .

La matrice dans la base  $\mathscr{B}$  d'une famille de vecteurs  $(x_1, x_2, \ldots, x_p)$  de E notée  $M_B(x_1, x_2, \ldots, x_p)$  est la matrice dont la j-ième colonne pour  $j \in [[1, p]]$  est constituée des n coordonnées de  $x_j$  dans la base  $\mathscr{B}$ .

Si pour 
$$j \in [[1, p]]$$
,  $x_j = \sum_{i=1}^n a_{ij} e_i$  alors

$$\mathbf{M}_{B}(x_{1}, x_{2}, \dots, x_{p}) = \left(a_{i,j}\right)_{i \in [[1,n]], j \in [[1,p]]} = \left(\begin{array}{cccc} a_{11} & \dots & a_{1j} & \dots & a_{1p} \\ \vdots & \dots & \vdots & \dots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{np} \end{array}\right)$$

Remarque 1.1. La matrice de la famille  $\mathcal{B}$  dans la base  $\mathcal{B}$  est la matrice identité  $I_n$ .

**Exemple 1.1.** Dans le plan  $\mathbb{R}^2$ , on note  $(e_1, e_2)$  une base. Soit  $u = 4e_1 - 3e_2$  et  $v = 2e_1 - e_2$ . Donner les matrices  $M_{(e_1, e_2)}(u, v)$  et  $M_{(u, v)}(e_1, e_2)$ .

La première matrice se trouve directement en écrivant, en colonne, les coordonnées dans la base  $(e_1,e_2)$  de chaque vecteur  $u,v: M_{(e_1,e_2)}(u,v)=\begin{pmatrix} 4 & 2 \\ -3 & -1 \end{pmatrix}$ 

Remarque : On pourra noter au brouillon les vecteurs en colonne haut dessus de la matrice et sur

le côté les vecteurs de la base  $\begin{pmatrix} u & v \\ 4 & 2 \\ -3 & -1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$ 

Mais, CELA NE DOIT PAS APPARAÎTRE SUR VOTRE COPIE DE DEVOIR.

Pour la matrice  $M_{(u,v)}(e_1,e_2)$ , il faut d'abord calculer les coordonnées de  $(e_1,e_2)$ : on cherche  $(\alpha_1,\beta_1,\alpha_2,\beta_2) \in \mathbb{R}^4$  tels que  $\left\{ \begin{array}{ll} e_1 &= \alpha_1 u + \beta_1 v \\ e_2 &= \alpha_2 u + \beta_2 v \end{array} \right.$ 

On résout le système suivant par opérations sur les lignes :

$$\left\{ \begin{array}{ll} u & = 4e_1 - 3e_2 \\ v & = 2e_1 - e_2 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} u - 3v & = -2e_1 \\ u - 2v & = -e_2 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} e_1 & = \frac{1}{2}(-u + 3v) \\ e_2 & = -u + 2v) \end{array} \right.$$

Ce qui nous donne la matrice  $\begin{pmatrix} e_1 & e_2 \\ -1/2 & -1 \\ 3/2 & 2 \end{pmatrix} u \quad \text{soit} \quad M_{(u,v)}(e_1,e_2) = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$ 

**Exemple 1.2.** Dans  $\mathbb{R}^3$ , écrivons la matrice de u=(1,2,-1), v=(1,3,0), w=(-2,0,1), et t=(0,0,-1) dans la base canonique  $\mathscr{B}_0$  de  $\mathbb{R}^3$ .





#### 1.2 Matrice d'une application linéaire

**Définition 1.2.** Soit E et F deux espaces vectoriels de dimension finie et  $\mathscr{B}_1 = (e_1, e_2, \dots, e_p)$  une base de E,  $\mathscr{B}_2 = (f_1, f_2, \dots, f_q)$  une base de F. Soit  $u \in \mathscr{L}(E, F)$  une application linéaire de E dans F.

On appelle matrice de l'application linéaire u dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_2$ , la matrice, notée  $M_{\mathcal{B}_1,\mathcal{B}_2}(u)$ , de la famille de vecteurs  $(u(\mathcal{B}_1))$  dans la base  $\mathcal{B}_2$ :

$$\mathbf{M}_{\mathscr{B}_1,\mathscr{B}_2}(u) = \mathbf{M}_{\mathscr{B}_2}(u(\mathscr{B}_1)) = \mathbf{M}_{\mathscr{B}_2}(u(e_1), u(e_2), \dots, u(e_p))$$

On a  $M_{\mathcal{B}_1,\mathcal{B}_2}(u) \in \mathcal{M}_{q,p}(\mathbb{K})$ .

Si on note  $\mathscr{B}_2 = (f_1, f_2, \dots, f_n)$  et  $\forall j \in [[1, p]], \quad u(e_j) = \sum_{i=1}^n a_{ij} f_i$  où  $(a_{1j}, a_{2j}, \dots, a_{nj})$  sont les coordonnés du vecteur  $u(e_i)$  dans la base  $\mathscr{B}_2$ ,

$$\operatorname{alors} M_{\mathscr{B}_{1},\mathscr{B}_{2}}(u) = \begin{pmatrix} a_{11} & a_{1j} & a_{1p} \\ \vdots & \vdots & \vdots \\ a_{i1} & a_{ij} & a_{ip} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{nj} & a_{np} \end{pmatrix} \begin{matrix} f_{1} \\ f_{i} \\ \vdots \\ f_{n} \end{matrix}$$

Remarque 1.2. Le nombre de lignes de la matrice est égal à la dimension de l'espace d'arrivée. Le nombre de colonnes est égal à la dimension de l'espace de départ.

**Exemple 1.3.** Soit 
$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
  $(x,y,z) \longmapsto (x+2y-z,3x-2y+4z)$ .

Donnons la matrice de g dans les bases canoniques  $\mathcal{B}_3$  et  $\mathcal{B}_2$  de  $\mathbb{R}^3$  et  $\mathbb{R}^2$ .

On calcule les images des vecteurs de la base  $\mathcal{B}_3$  par g:

$$g(1,0,0) = (1,3), \quad g(0,1,0) = (2,-2) \quad g(0,0,1) = (-1,4)$$

Les images donnent directement les coordonnées dans la base canonique  $\mathcal{B}_2:(1,3)=1(1,0)+3(0,1)...$ 

Alors, on a la matrice:

$$\mathbf{M}_{\mathcal{B}_{3},\mathcal{B}_{2}}(g) = \begin{pmatrix} g(\mathbf{e}_{1}) & g(\mathbf{e}_{2}) & g(\mathbf{e}_{3}) \\ 1 & 2 & -1 \\ 3 & -2 & 4 \end{pmatrix} \frac{\mathbf{f}_{1}}{\mathbf{f}_{2}}$$

**Exercice 1.1.** Dans le plan  $\mathbb{R}^2$ , soit  $(e_1, e_2)$  une base. On pose  $u = 2e_1 + e_2$  et  $v = e_1 - e_2$ . Soit f l'endomorphisme de  $\mathbb{R}^2$  défini par  $f(e_1) = u$  et  $f(e_2) = 3v$ . Calculer  $M_{(e_1,e_2)(u,v)}(f)$  et  $M_{(u,v)(e_1,e_2)}(f)$ .

On remarque que u et v ne sont pas colinéaires donc ils forment une base de  $\mathbb{R}^2$ .

On a directement les coordonnées des images de  $(e_1, e_2)$  dans la base (u, v), alors,

$$\mathbf{M}_{(e_1,e_2)(u,v)}(f) = \begin{pmatrix} f(e_1) & f(e_2) \\ 1 & 0 \\ 0 & 3 \end{pmatrix} \frac{\mathbf{u}}{\mathbf{v}}$$

Pour l'autre matrice, il faut calculer f(u) et f(v).

On a  $u = 2e_1 + e_2$  qui donne  $f(u) = 2f(e_1) + f(e_2)$  soit f(u) = 2u + 3v et finalement,

$$f(u)=2(2e_1+e_2)+3(e_1-e_2)=7e_1-e_2$$
 De même, on calcule  $f(v)=f(e_1)-f(e_2)=(2e_1+e_2)-3(e_1-e_2)=-e_1+4e_2$  Alors,

$$\mathbf{M}_{(u,v)(e_1,e_2)}(f) = \begin{pmatrix} f(u) & f(v) \\ 7 & -1 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$$

On peut également calculer les deux matrices

$$M_{(u,v)(u,v)}(f) = \begin{pmatrix} 2 & 1 \\ 3 & -3 \end{pmatrix}$$
 et  $M_{(e_1,e_2)(e_1,e_2)}(f) = \begin{pmatrix} 2 & 3 \\ 1 & -3 \end{pmatrix}$ 

où on utilise la même base au départ et à l'arrivée. Cela est possible car f est un endomorphisme.





#### 1.3 Matrice d'un endomorphisme

**Définition 1.3.** Soit E un espace vectoriel de dimension finie et  $\mathcal{B} = (e_1, e_2, \dots, e_p)$  une base de E. Soit  $v \in \mathcal{L}(E)$  un endomorphisme de E.

On appelle matrice de l'endomorphisme v dans la base  $\mathcal{B}$ , la matrice, notée  $M_{\mathcal{B}}(v)$ , de l'application linéaire v dans le couple de bases  $\mathcal{B}$  et  $\mathcal{B}$ 

$$\mathbf{M}_{\mathscr{B}}(\nu) = \mathbf{M}_{\mathscr{B},\mathscr{B}}(\nu) = \mathbf{M}_{\mathscr{B}}(\nu(e_1), \nu(e_2), \dots, \nu(e_p))$$

Remarque 1.3. On utilise la même base au départ et à l'arrivée.

La matrice de l'identité  $id_E$  est la matrice identité  $I_p$ .

**Exercice 1.2.** Donner la matrice dans la base canonique de  $\mathbb{R}_3[X]$  de l'endomorphisme

$$\begin{array}{cccc} \varphi: & \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}_3[X] \\ & P & \longmapsto & 2P-2(X+1)P'+X^2P'' \end{array}.$$

On commence par calculer l'image des vecteurs de la base par  $\varphi$  :

$$\varphi(1) = 2$$
,  $\varphi(X) = 2X - 2(X+1) = -2$ ,  $\varphi(X^2) = 2X^2 - 2(X+1)2X + 2X^2 = -4X$ ,  $\varphi(X^3) = 2X^3 - 2(X+1)3X^2 + 6X^3 = -4X = 2X^3 - 6X^2$ 

Alors, on peut écrire la matrice de  $\varphi$  dans la base canonique :

$$\begin{pmatrix} \varphi(1) & \varphi(X) & \varphi(X^2) & \varphi(X^3) \\ 2 & -2 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{matrix} 1 \\ X \\ X^2 \\ X^3 \end{matrix} \quad \text{soit} \quad M_{(1,X,X^2,X^3)}(\varphi) = \begin{pmatrix} 2 & -2 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

**Remarque :** La base canonique de  $\mathbb{R}_3[X]$  peut aussi s'écrire dans l'ordre décroissant des puissances :  $(X^3, X^2, X, 1)$ . C'est une autre base.

La matrice de 
$$\varphi$$
 dans cette base s'écrit :  $M_{(X^3,X^2,X,1)}(\varphi) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ -6 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -2 & 2 \end{pmatrix}$ 





### 1.4 Matrice d'une combinaison linéaire d'applications linéaires

**Proposition 1.1.** Soit E un espace vectoriel de dimension finie de base  $\mathscr{B}$ . soit  $x, y \in E$  et  $\alpha \in \mathbb{K}$ , on a  $\mathrm{M}_{\mathscr{B}}(\alpha x + y) = \alpha \, \mathrm{M}_{\mathscr{B}}(x) + \mathrm{M}_{\mathscr{B}}(y)$ 

**Proposition 1.2.** Soit E, F deux espaces vectoriels de dimension finie.

Soit  $\mathcal{B}_1$  une base de E et  $\mathcal{B}_2$  une base de F.

Soit 
$$u, v \in \mathcal{L}(E, F)$$
 et  $\alpha \in \mathbb{K}$ .

$$\mathbf{M}_{\mathscr{B}_{1},\mathscr{B}_{2}}(\alpha u + \nu) = \alpha \,\mathbf{M}_{\mathscr{B}_{1}\mathscr{B}_{2}}(u) + \mathbf{M}_{\mathscr{B}_{1}\mathscr{B}_{2}}(\nu).$$



### 2 Matrices et applications linéaires

#### 2.1 Calcul des coordonnées de l'image

**Proposition 2.1.** Soit E et F deux espaces vectoriels de dimension p et q,  $\mathcal{B}_1$  une base de E et  $\mathcal{B}_2$  une base de F.

Soit  $u \in \mathcal{L}(E, F)$  de matrice A dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_2 : A = M_{\mathcal{B}_1, \mathcal{B}_2}(u)$ .

Si  $x \in E$  a pour matrice X dans  $\mathcal{B}_1$  et y = u(x) a pour matrice Y dans  $\mathcal{B}_2$ , alors on a

$$Y = AX$$
 soit  $M_{\mathcal{B}_2}(u(\mathbf{x})) = M_{\mathcal{B}_1,\mathcal{B}_2}(u).M_{\mathcal{B}_1}(\mathbf{x}).$ 

Démonstration.

Soit 
$$x \in E$$
 de matrice dans la base  $\mathcal{B}_1 = (e_1, e_2, \dots, e_p) : X = M_{\mathcal{B}_1}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$  avec dim  $E = p$ .

On note 
$$y = u(x)$$
 de matrice dans la base  $\mathscr{B}_2 = (f_1, f_2, \ldots, f_q) : Y = M_{\mathscr{B}_1}(x) = \begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix}$  avec

 $\dim F = q$ .

On note  $M_{\mathcal{B}_1,\mathcal{B}_2}(u) = (a_{ij})_{\substack{i \in [\![1,q]\!] \\ j \in [\![1,p]\!]}} = A$  la matrice de u dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_2$ ,

c'est à dire 
$$u(e_j) = \sum_{i=1}^q a_{ij} f_i$$
 pour tout  $j \in [[1, p]]$ 

On a alors,

$$u(x) = u\left(\sum_{j=1}^{p} x_{j} e_{j}\right) = \sum_{j=1}^{p} x_{j} u(e_{j}) = \sum_{j=1}^{p} x_{j} \sum_{i=1}^{q} a_{ij} f_{i}$$

soit

$$y = u(x) = \sum_{i=1}^{q} \left(\sum_{j=1}^{p} a_{ij} x_j\right) f_i$$
 Mais, on a également,  $y = \sum_{i=1}^{q} y_i f_i$ . Alors par unicité des coordonnées

dans la base 
$$\mathcal{B}_2$$
, on a  $\forall i \in [[1,q]], \quad y_j = \sum_{i=1}^p a_{ij} x_j$ 

C'est exactement la définition du produit AX. On a donc montré Y = AX.

**Exemple 2.1.** Soit  $u \in \mathcal{L}(\mathbb{R}^2)$  de matrice  $U = M_{\mathscr{B}_0} = \begin{pmatrix} 3 & -1 \\ 2 & 4 \end{pmatrix}$  dans la base canonique.

On peut calculer l'image d'un vecteur  $\mathbf{a} = (x, y)$  en passant par sa matrice par  $U\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x - y \\ 2x + 4y \end{pmatrix}$ 

Alors, u(a) a pour coordonnées (3x - y, 2x + 4y) ce qui donne ici, u(a) = (3x - y, 2x + 4y) car on a utilisé la base canonique de  $\mathbb{R}^2$ .

L'expression analytique de u est :  $\begin{cases} x' = 3x - 2y \\ y' = 2x + 4y \end{cases}$ 

**Exemple 2.2.** Soit r la rotation de matrice  $R = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$  dans la base canonique  $\mathcal{B}_0$  de  $\mathbb{R}^2$ 

Calculer l'image des vecteurs (1,0) puis (0,1). En déduire l'angle de la rotation.

Calculer l'image du vecteur de coordonnése (2,3).

Déterminer la matrice d'une rotation d'angle  $\theta$  dans la base canonique de  $\mathbb{R}^2$ .

Remarque 2.1. On considère 
$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
  $(x,y) \longmapsto (2x+y,x-y,3x+2y)$ .

Calculer la matrice de g dans les bases canoniques de  $\mathbb{R}^2$  et  $\mathbb{R}^3$ .





#### 2.2 Matrice de la composée de deux applications linéaires

**Théorème 2.2.** Soit n, p, q des entiers non nuls. Soit E, F, G des espaces vectoriels de dimensions respectives n, p et q et ayant pour bases respectives  $\mathcal{B}_1$   $\mathcal{B}_2$  et  $\mathcal{B}_3$ .

Soit  $u \in \mathcal{L}(E, F)$  de matrice A dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_2$  et  $v \in \mathcal{L}(F, G)$  de matrice B dans les bases  $\mathcal{B}_2$  et  $\mathcal{B}_3$ .

Alors BA est la matrice de  $v \circ u$  dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_3$ :

$$\mathbf{M}_{\mathscr{B}_1\mathscr{B}_2}(v \circ u) = \mathbf{M}_{\mathscr{B}_2\mathscr{B}_2}(v). \mathbf{M}_{\mathscr{B}_1\mathscr{B}_2}(u).$$

Démonstration. On a par définition de la matrice de l'application linéaire  $v \circ u$ :

$$\mathbf{M}_{\mathscr{B}_{1}\mathscr{B}_{3}}(v \circ u) = \mathbf{M}_{\mathscr{B}_{3}}(v \circ u)(\mathscr{B}_{1}) = \mathbf{M}_{\mathscr{B}_{3}}(v(u(\mathscr{B}_{1})))$$

 $= M_{\mathscr{B}_2 \mathscr{B}_3}(v).M_{\mathscr{B}_2}(u(\mathscr{B}_1))$  par propriété du calcul de l'image d'un vecteur par v

 $= M_{\mathscr{B}_2\mathscr{B}_3}(v). M_{\mathscr{B}_1\mathscr{B}_2}(u). M_{\mathscr{B}_1}(\mathscr{B}_1)$  par calcul de l'image d'un vecteur par u

Or, on a  $M_{\mathcal{B}_1}(\mathcal{B}_1)$  qui est la matrice identité d'où

$$\mathbf{M}_{\mathscr{B}_1\mathscr{B}_3}(v \circ u) = \mathbf{M}_{\mathscr{B}_2\mathscr{B}_3}(v).\,\mathbf{M}_{\mathscr{B}_1\mathscr{B}_2}(u).$$





#### 2.3 Matrices inversibles et isomorphismes

**Théorème 2.3.** Soit E et F deux espaces vectoriels de dimensions finies de bases  $\mathcal{B}_1$  et  $\mathcal{B}_2$ . Soit  $f \in \mathcal{L}(E,F)$ .

f est un isomorphisme si et seulement si la matrice de f dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_2$  est carrée et inversible.

Dans ce cas, la matrice de l'application réciproque  $f^{-1}$  est la matrice inverse de la matrice de l'application f:

$$\mathbf{M}_{\mathscr{B}_{2}\mathscr{B}_{1}}(f^{-1}) = \left(\mathbf{M}_{\mathscr{B}_{1}\mathscr{B}_{2}}(f)\right)^{-1}$$

Démonstration.

Si f est un isomorphisme de E dans F, alors f a une réciproque  $f^{-1}$  de F dans E et  $f^{-1}$  est linéaire. On a  $f \circ f^{-1} = id_F$ .

De plus, E et F sont des espaces vectoriels de même dimension n car ils sont isomorphes. Alors les matrices de f et  $f^{-1}$  dans n'importe quelles bases sont carrées.

En utilisant les bases  $\mathscr{B}_1$  et  $\mathscr{B}_2$ , on a  $M_{\mathscr{B}_2}(f \circ f^{-1}) = M_{\mathscr{B}_2}(id_F) = I_n$ 

Mais la matrice de la composée de deux applications est le produit des matrices des applications :

$$M_{\mathcal{B}_2}(f \circ f^{-1}) = M_{\mathcal{B}_1, \mathcal{B}_2}(f). M_{\mathcal{B}_2, \mathcal{B}_1}(f^{-1})$$

On a donc  $M_{\mathcal{B}_1,\mathcal{B}_2}(f)$ .  $M_{\mathcal{B}_2,\mathcal{B}_1}(f^{-1}) = I_n$ 

Ce qui prouve que la matrice de f est inversible et  $M_{\mathcal{B}_1,\mathcal{B}_1}(f^{-1}) = (M_{\mathcal{B}_1,\mathcal{B}_2}(f))^{-1}$ 

Réciproquement, si la matrice de f dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_2$  est carrée et inversible, alors soit B son inverse.

On sait que E et F ont la même dimension car la matrice de f est carrée.

B est une matrice carrée qui correspond à une unique application linéaire g de F dans E dont B est la matrice dans les bases  $\mathcal{B}_2$  et  $\mathcal{B}_1: B = M_{\mathcal{B}_2, \mathcal{B}_1}(g)$ .

En effet, une application linéaire est définie de manière unique par l'image d'une base et chaque colonne de B définit l'image d'un des vecteurs de la base  $\mathcal{B}_2$ .

Alors, on a 
$$M_{\mathcal{B}_1,\mathcal{B}_2}(f)$$
.  $M_{\mathcal{B}_2,\mathcal{B}_1}(g) = I_n$  qui donne  $M_{\mathcal{B}_2}(f \circ g) = M_{\mathcal{B}_2}(id_F)$  et  $M_{\mathcal{B}_2,\mathcal{B}_1}(g)$ .  $M_{\mathcal{B}_1,\mathcal{B}_2}(f) = I_n$  qui donne  $M_{\mathcal{B}_1}(g \circ f) = M_{\mathcal{B}_1}(id_E)$ 

On en déduit, par isomorphisme entre l'application linéaire et sa matrice quand les bases sont fixées, que  $f \circ g = id_F$  et  $g \circ f = id_E$  ce qui prouve que f est bijective et  $f^{-1} = g$ . Donc f est un isomorphisme.

On a bien prouvé l'équivalence :

f est un isomorphisme si et seulement si la matrice de f dans les bases  $\mathcal{B}_1$  et  $\mathcal{B}_2$  est carrée et inversible.





### 3 Changements de bases

#### 3.1 Matrices de passage

**Définition 3.1.** Soit E un espace de dimension n,  $\mathcal{B} = (e_1, e_2, \dots, e_n)$  et  $\mathcal{B}' = (e'_1, e'_2, \dots, e'_n)$  deux bases de E.

On appelle matrice de passage de  $\mathcal{B}$  à  $\mathcal{B}'$  notée  $P_{B\to B'}$  la matrice de la famille  $\mathcal{B}'$  dans la base  $\mathcal{B}$ :  $P_{B\to B'}=\mathrm{M}_{\mathcal{B}}(\mathcal{B}')$ 

**Lemme 3.1.** La matrice de passage de  $\mathscr{B}$  à  $\mathscr{B}'$  est  $P_{B\to B'}=M_{\mathscr{B}'\mathscr{B}}(id_E)$ .

**Théorème 3.2.** Une matrice de passage est inversible et  $P_{B'\to B} = (P_{B\to B'})^{-1}$ .

*Démonstration*.  $P_{B\to B'}$  est la matrice de l'application identité qui est un isomorphisme, alors  $P_{B\to B'}$  est inversible et

$$(P_{B\to B'})^{-1}=\mathrm{M}_{\mathscr{B}\mathscr{B}'}(id_E^{-1})\,\mathrm{M}_{\mathscr{B}\mathscr{B}'}(id_E)=P_{B'\to B}.$$

**Lemme 3.3.** Soit  $\mathcal{B}$  une base de E de dimension n et  $x_1, x_2, \ldots, x_n$  une famille de vecteurs de E.  $(x_1, x_2, \ldots, x_n)$  est une base de E si et seulement si  $M_{\mathcal{B}}(x_1, x_2, \ldots, x_n)$  est inversible.



#### 3.2 Effet d'un changement de base sur la matrice d'un vecteur

**Théorème 3.4.** Soit E un espace de dimension finie,  $\mathscr{B}$  et  $\mathscr{B}'$  deux bases et P la matrice de passage de  $\mathscr{B}$  à  $\mathscr{B}'$ .

Si  $x \in E$ , on note  $X = M_{\mathscr{B}}(x)$  et  $X' = M_{\mathscr{B}'}(x)$ , alors, on a la relation X = PX' qui donne les coordonnées dans l'ancienne base en fonction des coordonnées dans la nouvelle base.

$$\mathbf{M}_{\mathscr{B}}(x) = \mathbf{M}_{\mathscr{B}'\mathscr{B}}(id_{E}).\,\mathbf{M}_{\mathscr{B}'}(x)$$

Démonstration. La relation:

$$X=\mathrm{M}_{\mathscr{B}}(x)=\mathrm{M}_{\mathscr{B}}(id_{E}(x))=\mathrm{M}_{\mathscr{B}'\mathscr{B}}(id_{E}).\,\mathrm{M}_{\mathscr{B}'}(x)=P_{B\to B'}.\,\mathrm{M}_{\mathscr{B}'}(x)=PX'$$
 prouve le théorème.

Démonstration. Par calcul direct :

Soit  $x \in E$ . x s'écrit  $x = \sum_{j=1}^{p} x_j e_j$  dans la base  $\mathcal{B} = (e_1, e_2, \dots, e_p)$  ce qui donne la matrice de x dans

$$\mathscr{B}: X = M_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
 avec dim  $E = p$ .

Mais x s'écrit aussi  $x = \sum_{j=1}^p x_j' e_j'$  dans la base  $\mathscr{B}' = (e_1', e_2', \dots, e_p')$ 

On note X' la matrice dans la base  $\mathscr{B}'$  de  $\mathbf{x}: X' = \mathbf{M}_{\mathscr{B}'_1}(\mathbf{x}) = \begin{pmatrix} x_1' \\ \vdots \\ x_p' \end{pmatrix}$ .

On note la matrice de passage de  $\mathscr{B}$  à  $\mathscr{B}': P = P_{B \to B'} = (a_{ij})_{\substack{i \in [\![ 1,p ]\!] \\ j \in [\![ 1,p ]\!]}}$  avec  $\forall j \in [\![ 1,p ]\!], \quad \boldsymbol{e}'_j = \sum_{i=1}^P a_{ij} \boldsymbol{e}_i$ 

Alors, 
$$\mathbf{x} = \sum_{j=1}^p x_j' \mathbf{e}_j' = \sum_{j=1}^p x_j' \left( \sum_{i=1}^p a_{ij} \mathbf{e}_i \right)$$
 soit  $\mathbf{x} = \sum_{i=1}^p \left( \sum_{j=1}^p a_{ij} x_j' \right) \mathbf{e}_i$ 

On reconnaît les coefficients de la matrec PX' car  $PX' = \left(\sum_{j=1}^p a_{ij} x_j'\right)_{j \in [\![1,p]\!]}$ .

Alors,  $\forall i \in [[1, p]], \quad x_i = \sum_{j=1}^p a_{ij} x_j'$  ce qui prouve que X = PX'.



#### 3.3 Effet d'un changement de base sur la matrice d'une application linéaire

**Théorème 3.5.** Soit E un espace de dimension finie et deux bases  $\mathcal{B}_1$  et  $\mathcal{B}'_1$ . Soit F un espace vectoriel de dimension finie et deux bases  $\mathcal{B}_2$  et  $\mathcal{B}'_2$ . Soit P la matrice de passage de  $\mathcal{B}_1$  à  $\mathcal{B}'_1$ . Soit Q la matrice de passage de  $\mathcal{B}_2$  à  $\mathcal{B}'_2$ . Soit Q la matrice de passage de  $\mathcal{B}_2$  à  $\mathcal{B}'_2$ . Soit Q la matrice Q dans les bases  $\mathcal{B}'_1$  à  $\mathcal{B}'_2$ . On Q la matrice Q dans les bases  $\mathcal{B}'_1$  à  $\mathcal{B}'_2$ . On Q la matrice Q dans les bases  $\mathcal{B}'_1$  à  $\mathcal{B}'_2$ . On Q la matrice Q dans les bases  $\mathcal{B}'_1$  à  $\mathcal{B}'_2$ .

Remarque 3.1. On a le schéma suivant qui n'a aucune valeur sauf mnémotechnique :





### 3.4 Effet d'un changement de base sur la matrice d'un endomorphisme

**Théorème 3.6.** Soit E un espace de dimension finie,  $\mathscr{B}$  et  $\mathscr{B}'$  deux bases et P la matrice de passage de  $\mathscr{B}$  à  $\mathscr{B}'$ .

Soit u un endomorphisme de E de matrice A dans la base  $\mathcal{B}$  et de matrice A' dans la base  $\mathcal{B}'$ .

On a 
$$A' = P^{-1}AP$$
. soit  $M_{\mathscr{B}'}(u) = M_{\mathscr{B}\mathscr{B}'}(id_E).M_{\mathscr{B}}(u).M_{\mathscr{B}'\mathscr{B}}(id_E)$ 



## 4 Rang d'une matrice

### 4.1 Application linéaire canoniquement associée à une matrice

**Définition 4.1.** Soit A matrice de  $\mathcal{M}_{np}(\mathbb{K})$ . On appelle application linéaire canoniquement associée à A, l'unique application linéaire de  $\mathbb{K}^p$  dans  $\mathbb{K}^n$  dont la matrice dans les bases canoniques de  $\mathbb{K}^p$  et  $\mathbb{K}^n$  est A.





### 4.2 Image et noyau d'une matrice

**Définition 4.2.** Soit  $A \in \mathcal{M}_{n,p}(\mathbb{K})$  une matrice. On appelle noyau et image de A notés  $\operatorname{Ker} A$  et  $\operatorname{Im} A$  les noyaux et images de l'application linéaire canoniquement associée à A.

**Proposition 4.1.** Le noyau d'une matrice A est l'ensemble des solutions du système AX = 0. L'image d'une matrice A est l'ensemble des seconds membres B pour lesquels le système AX = B a au moins une solution.





#### 4.3 Rang d'une matrice

**Théorème 4.2.** Le rang d'une matrice  $A \in \mathcal{M}_{n,p}(\mathbb{K})$  qui est le nombre de pivots de sa matrice échelonnée réduite par lignes est égal au rang de l'application linéaire associée à A.

On a rgA = dim Im A.

**Corollaire 4.3.** Le rang d'une matrice  $A \in \mathcal{M}_{n,p}(\mathbb{K})$  est égal au rang des vecteurs colonnes de A dans  $\mathbb{K}^n$ .

**Corollaire 4.4.** Étant donnée une base  $\mathcal{B}$  d'un espace vectoriel E, le rang d'une famille de vecteurs  $(x_1, x_2, \ldots, x_p)$  de E est égal au rang de la matrice des vecteurs dans la base  $\mathcal{B}$ :  $\operatorname{rg}(x_1, x_2, \ldots, x_n) = \operatorname{rg} M_{\mathcal{B}}(x_1, x_2, \ldots, x_n)$ 

**Corollaire 4.5.** Le rang d'une application linéaire u de E dans F est le rang de la matrice de u dans n'importe quelles bases de E et F.





### 4.4 Rang et matrice inversible

**Théorème 4.6.** Une matrice carrée est inversible si et seulement si elle est de rang maximal si et seulement si ses vecteurs colonnes forment une base de  $\mathbb{K}^n$ 

**Théorème 4.7.** Si  $A \in \mathcal{M}_n(\mathbb{K})$ ,  $B \in \mathcal{M}_p(\mathbb{K})$  sont des matrices inversibles et si  $M \in \mathcal{M}_{n,p}(\mathbb{K})$  est une matrice, alors  $\operatorname{rg}(AM) = \operatorname{rg}(M) = \operatorname{rg}(MB)$ : on ne change pas le rang quand on multiplie par une matrice inversible.

**Théorème 4.8.** Deux matrices équivalentes par lignes ont le même rang.





## 4.5 Rang de la transposée

**Proposition 4.9.** Le rang d'une matrice est égal : au rang de ses vecteurs colonnes et au rang de ses vecteurs lignes et au rang de sa transposée.

Théorème 4.10. Deux matrices équivalentes par colonnes ont le même rang.



## 5 Exemples de transformations vectorielles du plan euclidien

#### 5.1 Rotations vectorielles

**Définition 5.1.** Dans le plan euclidien, on appelle rotation vectorielle d'angle  $\theta \in \mathbb{R}$ , l'application  $r_{\theta}$  telle que pour tout vecteur  $\vec{u}$  on ait  $(\vec{u}, r_{\theta}(\vec{u})) = \theta [2\pi]$  et  $||\vec{u}|| = ||r_{\theta}(\vec{u})||$ .

**Proposition 5.1.** Si f est un endomorphisme d'un espace vectoriel euclidien, alors f conserve le produit scalaire si et seulement si f conserve la norme.

Alors f est un automorphisme. On dit que f est un automorphisme orthogonal.





### 5.2 Matrice d'une rotation dans une BOND

**Théorème 5.2.** La matrice de  $r_{\theta}$  dans une BOND est  $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ .





## 5.3 Composée de deux rotations

**Proposition 5.3.** La composée des rotations  $r_{\theta}$  et  $r_{\varphi}$  donne la rotation  $r_{\theta+\varphi}$ 

$$r_\theta \circ r_\varphi = r_\varphi \circ r_\theta = r_{\theta + \varphi}$$

Corollaire 5.4. Matriciellement,

$$R_{\theta} \times R_{\varphi} = R_{\varphi} \times R_{\theta} = R_{\theta + \varphi}$$

**Théorème 5.5.** Une rotation  $r_{\theta}$  est un automorphisme du plan et  $r_{\theta}^{-1} = r_{-\theta}$ .





### 5.4 Symétrie orthogonale vectorielle

**Proposition 5.6.** Soit  $\vec{v}$  un vecteur non nul du plan euclidien. L'ensemble des vecteurs orthogonaux à  $\vec{v}$  est un sous-espace vectoriel du plan noté  $\vec{v}^{\perp}$ .

De plus,  $\operatorname{Vect} \vec{v}$  et  $\vec{v}^{\perp}$  sont supplémentaires dans le plan.

**Définition 5.2.** Soit  $\vec{v}$  un vecteur non nul du plan euclidien. On appelle symétrie vectorielle orthogonale par rapport à  $\vec{v}$ , la symétrie par rapport à Vect  $\vec{v}$  parallèlement à  $\vec{v}^{\perp}$ .

C'est à dire que  $s_{\vec{v}}$  est définie par  $s_{\vec{v}} = \vec{u}_1 - \vec{u}_2$  où  $\vec{u}_1 \in \text{Vect } \vec{v}$  et  $\vec{u}_2 \in \vec{v}^{\perp}$  avec  $\vec{v} = \vec{u}_1 + \vec{u}_2$ .

**Théorème 5.7.** Pour  $\vec{v} \neq 0$ , l'application  $s_{\vec{v}}$  est un automorphisme du plan vectoriel.  $s_{\vec{v}}$  conserve le produit scalaire, la norme, change l'orientation des angles et vérifie  $s_{\vec{v}} \circ s_{\vec{v}} = id_p$ .





## 5.5 Matrice d'une symétrie orthogonale dans une BOND

**Théorème 5.8.** Soit P le plan euclidien muni d'une BOND  $(\vec{i}, \vec{j})$ .

Si  $\vec{v}$  fait un angle  $(\vec{i}, \vec{v}) = \varphi$  avec le vecteur  $\vec{i}$ , alors  $s_{\vec{v}}$  a pour matrice  $S_{2\varphi} = \begin{pmatrix} \cos 2\varphi & \sin 2\varphi \\ \sin 2\varphi & -\cos 2\varphi \end{pmatrix}$ .





# 5.6 Composée de deux symétries orthogonales

Théorème 5.9. Soit  $\vec{v}_1$  et  $\vec{v}_2$  deux vecteurs non nuls du plan vectoriel. La composée de deux symétries orthogonales  $s_{\vec{v}_1}$  et  $s_{\vec{v}_2}$  est une rotation d'angle  $\theta=2(\vec{v}_1,\vec{v}_2)$   $[2\pi]$ .





# 6 Exemples de transformations vectorielles de l'espace euclidien

#### 6.1 Rotation vectorielle de l'espace

**Définition 6.1.** Soit  $\vec{n}$  un vecteur normé de l'espace euclidien  $\mathbb{R}^3: ||\vec{n}|| = 1$  et  $\theta \in \mathbb{R}$ . Tout vecteur  $\vec{u}$  se décompose de manière unique en  $\vec{u} = \vec{u}_1 + \vec{u}_2$  avec  $\vec{u}_1 \in \text{Vect } \vec{n}$  et  $\vec{u}_2 \perp \vec{n}$ . On appelle rotation vectorielle d'axe dirigé par  $\vec{n}$  et d'angle  $\theta$ , l'application  $r_{\theta,\vec{n}}$  définie par  $r_{\theta,\vec{n}}(\vec{u}) = \vec{u}_1 + \cos\theta\vec{u}_2 + \sin\theta\vec{n} \wedge \vec{u}_2$ .

**Proposition 6.1.** Une rotation vectorielle est linéaire, bijective, conserve la norme, le produit scalaire et les angles.





## 6.2 Matrice d'une rotation dans une BOND adaptée

**Théorème 6.2.** Soit  $\vec{n}$  un vecteur normé,  $\vec{i} \perp \vec{n}$  avec  $||\vec{i}|| = 1$ , un vecteur normé orthogonal à  $\vec{n}$ . Alors  $(\vec{n}, \vec{i}, \vec{n} \wedge \vec{i})$  est une BOND de l'espace.





### 6.3 Réflexion

**Définition 6.2.** On appelle réflexion par rapport au plan P, la symétrie par rapport au plan P parallèlement à la droite vectorielle D orthogonale à P.

C'est à dire l'application  $s_P$  telle que pour un vecteur  $\vec{x}$  qui se décompose en  $\vec{x} = \vec{y} + \vec{z}$  avec  $\vec{y} \in P$  et  $\vec{z} \perp P$ , on a  $s_P(\vec{x}) = \vec{y} - \vec{z}$ .





### 6.4 Matrice d'une réflexion dans une BOND adaptée

**Théorème 6.3.** Soit P un plan vectoriel et  $(\vec{u}_1, \vec{u}_2)$  une base de P. On note  $\vec{n}$  un vecteur normé normal à  $P: \vec{n} = \frac{1}{||\vec{u}_1 \wedge \vec{u}_2||} \cdot \vec{u}_1 \wedge \vec{u}_2$ .

Soit 
$$\vec{v}_1 = \frac{1}{||\vec{u}_1||} \cdot \vec{u}_1$$
, la famille  $(\vec{n}, \vec{v}_1, \vec{n} \wedge \vec{v}_1)$  est une BOND de l'espace et 
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. la matrice de  $s_P$  dans cette base est











