Семинар 13

8 декабря 2020 г.

Задача 1.

Пусть X_1, \ldots, X_n – выборка независимых одинаково распределённых случайных величин, имеющих распределение Бернулли с параметром p. Рассмотрим в качестве априорного распределения параметра p равномерное на подходящем интервале, то есть f(p) = 1.

- а) Выпишите апостериорное распределение p с точностью до константы.
- b) Бета-распределение с параметрами α и β задаётся плотностью:

$$f(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}.$$

Подберите такие параметры α и β , чтобы показать, что полученное апостериорное распределение представимо в виде $p|x \sim C \mathrm{Beta}(\alpha,\beta)$, где C – некоторая константа.

- с) Восстановите константу C.
- d) Найдите точечную оценку параметра p.
- e) Заметим, что \bar{p} представляется в виде

$$\bar{p} = \frac{n}{n+2} \frac{s}{n} + \left(1 - \frac{n}{n+2}\right) \frac{1}{2}.$$

Прокомментируйте интуицию такого разложения.

- f) Запишите формулу расчёта 95%-го апостериорного доверительного интервала для p.
- g) Теперь предположим, что априорное распределение параметра p это Бета-распределение $p\sim \mathrm{Beta}(\alpha,\beta)$. Вычислите апостериорное распределение p.

Задача 2.

Рассмотрим выборку независимых одинаково распределённых нормальных случайных величин $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Для простоты будем считать, что σ известна. Пусть априорное распределение параметра μ имеет вид $\mu \sim \mathcal{N}(a, b^2)$.

- а) Пусть функция правдоподобия строится лишь по наблюдению X_1 . Выведите примерное апостериорное распределение параметра μ . Является ли априорное распределение сопряжённым?
- b) Можно показать, что в общем случае апостериорное распределение μ имеет вид

$$\mu | X \sim \mathcal{N}(\bar{\mu}, w^2),$$

где
$$\bar{\mu}=\lambda \bar{X}+(1-\lambda)a, \lambda=\frac{1/s^2}{1/s^2+1/b^2}, s=\sigma/\sqrt{n}, 1/w^2=1/s^2+1/b^2.$$

Что происходит с λ и w/s при $n\to\infty$? Выпишите приблизительное апостериорное распределение μ при $n\to\infty$.

с) Постройте 95% асимптотический байесовский доверительный интервал для μ .

Задача 3.

Пусть X_1, \ldots, X_n – выборка независимых одинаково распределённых случайных величин из распределения Бернулли с параметром p. Апостериорное распределение задаётся как f(p)=1. Пусть $\psi=\log\left(\frac{p}{1-p}\right)$. Найдите апостериорную функцию распределения и функцию плотности ψ .

Задача 4.

Компания тестирует новый вид удобрений, для чего создаёт контрольную группу размером n_1 и тестовую группу размером n_2 . После проведения эксперимента оказалось, что в контрольной группе лучший рост по-казали X_1 растений, а в тестовой – X_2 растений. Пусть $f(p_1,p_2)=1$.

- а) Выведите апостериорное распределение $f(p_1,p_2|x_1,x_2)$ с точностью до константы.
- b) Являются ли $p_1|x_1$ и $p_2|x_2$ независимыми?
- с) Опишите процесс байесовской оценки величины p_2-p_1 через симуляцию.