$20241101 \ \mathrm{MATH} 3541 \ \mathrm{NOTE} \ 8[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: $+852\ 5693\ 2134;\ +86\ 19921823546;$

Contents

1	Intr	roduction	3
2	Metrics on Y^X		
	2.1	Uniform Norm	3
	2.2	<i>p</i> -norm	5
	2.3	Operator Norm	8
	2.4	Examples	9
3	Topologies on Y^X		
	3.1	Product Space Topology	2
	3.2	Uniform Topology	0
4	Homotopy Relation on Y^X		
	4.1	Path Connectedness Relation and Homotopy Relation	1
	4.2	The Fundamental Group	3

1 Introduction

How to treat a function $f: X \to Y$ as a point in Y^X .

- (1) First, we discuss metrics on Y^X .
- (2) Second, we discuss topologies on Y^X .
- (3) Third, we discuss homotopy relation on Y^X .

2 Metrics on Y^X

2.1 Uniform Norm

Definition 2.1. (Uniform Norm)

Let $\mathcal{B}(X,\mathbb{R})$ be the set of all bounded functions from a nonempty set X to \mathbb{R} . Define $\| \bullet \| : \mathcal{B}(X,\mathbb{R}) \to \mathbb{R}, f \mapsto \sup_{x \in X} |f(x)|$ as the uniform norm on $\mathcal{B}(X,\mathbb{R})$.

Proposition 2.2. The uniform norm $\| \bullet \|$ is a well-defined norm on $B(X, \mathbb{R})$.

Proof. We may divide our proof into four parts.

Part 1: For all $f \in \mathcal{B}(X,\mathbb{R})$, construct the following set.

$$\operatorname{Im}(|f|) = \{|f(x)| \in \mathbb{R} : x \in X\}$$

 $\operatorname{Im}(|f|)$ is bounded above, so a unique supremum $||f|| = \sup_{x \in X} |f(x)|$ exists.

Hence, $\| \bullet \|$ is well-defined.

Part 2: For all $f \in \mathcal{B}(X, \mathbb{R})$:

$$\left[\|f\| = \sup_{x \in X} |f(x)| \ge 0\right] \text{ and } \left[\|f\| = 0 \implies \sup_{x \in X} |f(x)| = 0 \implies f = 0\right]$$

Hence, $\| \bullet \|$ is positive definite.

Part 3: For all $\lambda \in \mathbb{R}$ and $f \in \mathcal{B}(X, \mathbb{R})$:

$$\|\lambda f\| = \sup_{x \in X} |\lambda f(x)| = |\lambda| \sup_{x \in X} |f(x)| = |\lambda| \|f\|$$

Hence, $\| \bullet \|$ is absolute homogeneous.

Part 4: For all $f, f' \in \mathcal{B}(X, \mathbb{R})$:

$$||f + f'|| = \sup_{x \in X} |f(x) + f'(x)| \le \sup_{x \in X} (|f(x)| + |f'(x)|)$$

$$\le \sup_{x \in X} |f(x)| + \sup_{x' \in X} |f'(x')| = ||f|| + ||f'||$$

Hence, $\| \bullet \|$ is subadditive.

Combine the four parts above, we've proven that $\| \bullet \|$ is a well-defined norm on $B(X, \mathbb{R})$. Quod. Erat. Demonstrandum.

Proposition 2.3. Continuity is preserved under uniform limit.

Proof. Take a sequence $(f_n)_{n\in\mathbb{N}}$ of functions in $\mathcal{B}(X,\mathbb{R})$, all of which are continuous at some $x\in X$. Assume that $(f_n)_{n\in\mathbb{N}}$ converges to some $f_*\in\mathcal{B}(X,\mathbb{R})$ uniformly. For all $\epsilon>0$, we wish to find $\delta>0$, such that for all $x'\in\mathcal{B}(x,\delta)$:

$$|f_*(x) - f_*(x')| < \epsilon$$

Step 1: As $(f_n)_{n\in\mathbb{N}}$ converges to f_* uniformly, there exists $N\in\mathbb{N}$, such that:

$$\sup_{x \in X} |f_N(x) - f_*(x)| = ||f_N - f_*|| < \frac{\epsilon}{3}$$

Step 2: As f_N is continuous at x, there exists $\delta > 0$, such that for all $x' \in B(x, \delta)$:

$$|f_N(x) - f_N(x')| < \frac{\epsilon}{3}$$

Step 3: For this $\epsilon > 0$, there exists $\delta > 0$, such that for all $x' \in B(x, \delta)$:

$$|f_*(x) - f_*(x')| \le |f_*(x) - f_N(x)| + |f_N(x) - f_N(x')| + |f_N(x') - f_*(x')| < \epsilon$$

Hence, f_* is continuous at this $x \in X$, continuity is preserved under uniform limit.

Quod. Erat. Demonstrandum.

Remark: Continuity is not preserved under pointwise limit, consider the sequence $(x^n)_{n\in\mathbb{N}}$ of continuous functions in $\mathcal{B}([0,1],\mathbb{R})$. The pointwise limit f is discontinuous.

$$f: [0,1] \to \mathbb{R}, f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1; \\ 1 & \text{if } x = 1; \end{cases}$$

Proposition 2.4. Uniform continuity is preserved under uniform limit.

Proof. Take a sequence $(f_n)_{n\in\mathbb{N}}$ of functions in $\mathcal{B}(X,\mathbb{R})$, all of which are uniformly continuous on X. Assume that $(f_n)_{n\in\mathbb{N}}$ converges to some $f_*\in\mathcal{B}(X,\mathbb{R})$ uniformly. For all $\epsilon>0$, we wish to find $\delta>0$, such that for all $x,x'\in X$ within distance δ :

$$|f_*(x) - f_*(x')| < \epsilon$$

Step 1: As $(f_n)_{n\in\mathbb{N}}$ converges to f_* uniformly, there exists $N\in\mathbb{N}$, such that:

$$\sup_{x \in X} |f_N(x) - f_*(x)| = ||f_N - f_*|| < \frac{\epsilon}{3}$$

Step 2: As f_N is uniformly continuous on X, there exists $\delta > 0$,

such that for all $x, x' \in X$ within distance δ :

$$|f_N(x) - f_N(x')| < \frac{\epsilon}{3}$$

Step 3: For this $\epsilon > 0$, there exists $\delta > 0$, such that for all $x, x' \in X$ within distance δ :

$$|f_*(x) - f_*(x')| \le |f_*(x) - f_N(x)| + |f_N(x) - f_N(x')| + |f_N(x') - f_*(x')| < \epsilon$$

Hence, f_* is uniformly continuous on X, uniform continuity is preserved under uniform limit.

Quod. Erat. Demonstrandum.

Proposition 2.5. k-Lipschitz continuity is preserved under uniform limit.

Proof. Take a sequence $(f_n)_{n\in\mathbb{N}}$ of functions in $\mathcal{B}(X,\mathbb{R})$, all of which are k-Lipschitz continuous on X. Assume that $(f_n)_{n\in\mathbb{N}}$ converges to some $f_* \in \mathcal{B}(X,\mathbb{R})$ uniformly. For all $\epsilon > 0$, for all $x, x' \in X$, we wish to prove that:

$$|f_*(x) - f_*(x')| < kd_X(x, x') + \epsilon$$

Step 1: As $(f_n)_{n\in\mathbb{N}}$ converges to f_* uniformly, there exists $N\in\mathbb{N}$, such that:

$$\sup_{x \in X} |f_N(x) - f_*(x)| = ||f_N - f_*|| < \frac{\epsilon}{3}$$

Step 2: As f_N is k-Lipschitz continuous on X, for all $x, x' \in X$:

$$|f_N(x) - f_N(x')| < kd_X(x, x') + \frac{\epsilon}{3}$$

Step 3: For this $\epsilon > 0$, for all $x, x' \in X$:

$$|f_*(x) - f_*(x')| \le |f_*(x) - f_N(x)| + |f_N(x) - f_N(x')| + |f_N(x') - f_*(x')| < kd_X(x, x') + \epsilon$$

Hence, f_* is k-Lipschitz continuous on X,

k-Lipschitz continuity is preserved under uniform limit.

Quod. Erat. Demonstrandum.

2.2 *p*-norm

Definition 2.6. (p-norm)

Let $p \geq 1$ be a number, $\ell^p(K, \mathbb{R})$ be the set of all sequence a

from a nonempty subset K of $\mathbb Z$ to $\mathbb R$ such that $\sum_K |a_k|^p$ converges.

Define $\| \bullet \|_p : \ell^p(K, \mathbb{R}) \to \mathbb{R}, a \mapsto (\sum_K |a_k|^p)^{1/p}$ as the *p*-norm on $\ell^p(K, \mathbb{R})$

Definition 2.7. (p-norm)

Let $p \ge 1$ be a number, $L^p(I,\mathbb{R})$ be the set of all continuous function f from a nonempty interval I to \mathbb{R} such that $\int_I |f(x)|^p dx$ converges.

Define $\| \bullet \|_p : L^p(I, \mathbb{R}) \to \mathbb{R}, f \mapsto \left(\int_I |f(x)|^p dx \right)^{1/p}$ as the *p*-norm on $L^p(I, \mathbb{R})$.

Theorem 2.8. (Young's Inequality)

Let A, B, p, q be four nonnegative numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. We have:

$$\frac{A^p}{p} + \frac{B^q}{q} \ge AB$$
, with equality iff $A^p = B^q$

Proof. WLOG, assume that A, B > 0. As ln is strictly concave, we have:

$$\ln\left(\frac{A^p}{p} + \frac{B^q}{q}\right) \ge \frac{\ln(A^p)}{p} + \frac{\ln(B^q)}{q}, \text{ with equality iff } A^p = B^q$$

It suffices to apply the exponential map $x \mapsto e^x$. Quod. Erat. Demonstrandum.

Theorem 2.9. (Hölder's Inequality)

Let p, q be two positive numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, and a, b be two sequences in $\ell^p(K, \mathbb{R}), \ell^q(K, \mathbb{R})$ respectively. We have:

$$||ab||_1 \le ||a||_p ||b||_q$$
, with equality iff $\operatorname{Rank}(|a|^p, |b|^q) < 2$

Proof. WLOG, assume that $||a||_p, ||b||_q > 0$. For each $k \in K$, define:

$$A_k = \frac{|a_k|}{\|a\|_p}, B_k = \frac{|b_k|}{\|b\|_q} \ge 0$$

Apply Young's Inequality, and we get:

$$\frac{|a_k|^p}{p\|a\|_p^p} + \frac{|b_k|^q}{q\|b\|_q^q} \ge \frac{|a_kb_k|}{\|a\|_p\|b\|_q}, \text{ with equality iff } \frac{|a_k|^p}{\|a\|_p^p} = \frac{|b_k|^q}{\|b\|_q^q}$$

Sum both sides over K, we get:

$$1 \geq \frac{\|ab\|_1}{\|a\|_p \|b\|_q}, \text{ with equality iff } \operatorname{Rank}(|a|^p, |b|^q) < 2$$

It suffices to multiply both sides by $||a||_p ||b||_q$. Quod. Erat. Demonstrandum.

Theorem 2.10. (Hölder's Inequality)

Let p,q be two positive numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, and f,g be two functions in $L^p(I,\mathbb{R}), L^q(I,\mathbb{R})$ respectively. We have:

$$\|fg\|_1 \le \|f\|_p \|g\|_q$$
, with equality iff $\operatorname{Rank}(|f|^p, |g|^q) < 2$

Proof. WLOG, assume that $||f||_p$, $||g||_q > 0$. For each $x \in I$, define:

$$A(x) = \frac{|f(x)|}{\|f\|_p}, B(x) = \frac{|g(x)|}{\|g\|_q} \ge 0$$

Apply **Young's Inequality**, and we get:

$$\frac{|f(x)|^p}{p\|f\|_p^p} + \frac{|g(x)|^q}{q\|g\|_q^q} \ge \frac{|f(x)g(x)|}{\|f\|_p\|g\|_q}, \text{ with equality iff } \frac{|f(x)|^p}{\|f\|_p^p} = \frac{|g(x)|^q}{\|g\|_q^q}$$

Integrate both sides over I, we get:

$$1 \ge \frac{\|fg\|_1}{\|f\|_p \|g\|_q}$$
, with equality iff $\operatorname{Rank}(|f|^p, |g|^q) < 2$

It suffices to multiply both sides by $||a||_p ||b||_q$. Quod. Erat. Demonstrandum.

Theorem 2.11. (Minkowski's Inequality)

Let $p \geq 1$ be a number, and a, a' be two sequences in $\ell^p(K, \mathbb{R})$. We have:

$$||a + a'||_p \le ||a||_p + ||a'||_p$$

Proof. WLOG, assume that $||a + a'||_p > 0$.

$$\begin{aligned} \|a+a'\|_p^p &= \sum_K |a_k+a_k'|^p \le \sum_K (|a_k|+|b_k|)|a_k+a_k'|^{p-1} \\ &= \sum_K |a_k||a_k+a_k'|^{p-1} + \sum_K |a_k'||a_k+a_k'|^{p-1} \\ &= \|a|a+a'|^{p-1}\|_1 + \|a'|a+a'|^{p-1}\|_1 \\ &\le \|a\|_p \||a+a'|^{p-1}\|_{\frac{p}{p-1}} + \|a'\|_p \||a+a'|^{p-1}\|_{\frac{p}{p-1}} \\ &= (\|a\|_p + \|a'\|_p)\|a+a'\|_p^{p-1} \end{aligned}$$

It suffices to cancel $||a + a'||_p^{p-1}$. Quod. Erat. Demonstrandum.

Remark: As a direct consequence, the p-norm is a norm on $\ell^p(K,\mathbb{R})$.

Theorem 2.12. (Minkowski's Inequality)

Let $p \geq 1$ be a number, and f, f' be two functions in $L^p(I, \mathbb{R})$. We have:

$$||f + f'||_p \le ||f||_p + ||f'||_p$$

Proof. WLOG, assume that ||f + f'|| > 0.

$$||f + f'||_p^p = \int_I |f(x) + f'(x)|^p dx \le \int_I [|f(x)| + |f'(x)|] |f(x) + f'(x)|^{p-1} dx$$

$$= \int_I |f(x)| |f(x) + f'(x)|^{p-1} dx + \int_I |f'(x)| |f(x) + f'(x)|^{p-1} dx$$

$$= ||f|f + f'|^{p-1} ||_1 + ||f'|f + f'|^{p-1} ||_1$$

$$\le ||f||_p ||f + f'|^{p-1} ||_{\frac{p}{p-1}} + ||f'||_p ||f + f'|^{p-1} ||_{\frac{p}{p-1}}$$

$$= (||f||_p + ||f'||_p) ||f + f'||_p^{p-1}$$

It suffices to cancel $||f + f'||_p^{p-1}$. Quod. Erat. Demonstrandum.

Remark: As a direct consequence, the p-norm is a norm on $L^p(I,\mathbb{R})$.

2.3 Operator Norm

Definition 2.13. (Operator Norm)

Let U, V be two nontrivial normed vector spaces,

and $\mathcal{L}(U,V)$ be the set of all continuous linear operators from U to V.

Define $\| \bullet \| : \mathcal{L}(U, V) \to \mathbb{R}, A \mapsto \sup_{\mathbf{u} \neq \mathbf{0}} \frac{\|A\mathbf{u}\|_{V}}{\|\mathbf{u}\|_{U}}$ as the operator norm on $\mathcal{L}(U, V)$.

Proposition 2.14. The operator norm $\| \bullet \|$ is a well-defined norm on $\mathcal{L}(U, V)$.

Proof. We may divide our proof into four parts.

Part 1: For all $A \in \mathcal{L}(U, V)$, since A is continuous, $||A\mathbf{u}||_V$ has some upperbound β on some hypersphere S centred at $\mathbf{0} \in U$ with radius r > 0. This implies:

$$\forall \mathbf{u} \neq \mathbf{0}, \exists \mathbf{u}_0 = \frac{r}{\|\mathbf{u}\|_U} \mathbf{u} \neq \mathbf{0}, \frac{\|A\mathbf{u}\|_V}{\|\mathbf{u}\|_U} = \frac{\|A\mathbf{u}_0\|_V}{\|\mathbf{u}_0\|_U} \leq \frac{\beta}{r}$$

Hence, $\| \bullet \|$ is well-defined.

Part 2: For all $\mathbf{u} \neq \mathbf{0}$:

$$||A|| = \sup_{\mathbf{u} \neq \mathbf{0}} \frac{||A\mathbf{u}||_V}{||\mathbf{u}||_U} \ge 0$$

Hence, $\| \bullet \|$ is positive definite.

Part 3: For all $\lambda \in \mathbb{R}$ and $A \in \mathcal{L}(U, V)$:

$$\|\lambda A\| = \sup_{\mathbf{u} \neq \mathbf{0}} \frac{\|\lambda A \mathbf{u}\|_V}{\|\mathbf{u}\|_U} = |\lambda| \sup_{\mathbf{u} \neq \mathbf{0}} \frac{\|A \mathbf{u}\|_V}{\|\mathbf{u}\|_U} = |\lambda| \|A\|$$

Hence, $\| \bullet \|$ is absolute homogeneous.

Part 4: For all $A, A' \in \mathcal{L}(U, V)$:

$$||A + A'|| = \sup_{\mathbf{u} \neq \mathbf{0}} \frac{||(A + A')\mathbf{u}||_{V}}{||\mathbf{u}||_{U}} \le \sup_{\mathbf{u} \neq \mathbf{0}} \frac{||A\mathbf{u}||_{V} + ||A'\mathbf{u}||_{V}}{||\mathbf{u}||_{U}}$$
$$\le \sup_{\mathbf{u} \neq \mathbf{0}} \frac{||A\mathbf{u}||_{V}}{||\mathbf{u}||_{U}} + \sup_{\mathbf{u}' \neq \mathbf{0}} \frac{||A'\mathbf{u}'||_{V}}{||\mathbf{u}'||_{U}} = ||A|| + ||A'||$$

Hence, $\| \bullet \|$ is subadditive.

Combine the four parts above, we've proven that $\|\cdot\|$ is a well-defined norm on $\mathcal{L}(U, V)$. Quod. Erat. Demonstrandum.

Proposition 2.15. The operator norm $\| \bullet \|$ is also submultiplicative.

Proof. For all $A \in \mathcal{L}(U, V)$ and $B \in \mathcal{L}(V, W)$, as topology and linear structure are preserved under composition, $BA \in \mathcal{L}(U, W)$. Besides, for all $\mathbf{u} \in U$:

$$||BA\mathbf{u}||_W \le ||B|| ||A\mathbf{u}||_V \le ||B|| ||A|| ||\mathbf{u}||_U$$

Hence, $||BA|| \le ||B|| ||A||$, $|| \bullet ||$ is submultiplicative. Quod. Erat. Demonstrandum. \square

2.4 Examples

Lemma 2.16. In a series RC circuit, assume that the resistance R and the capacitance C are positive. The solution to the following Kirchhoff's equation:

$$\frac{Q_{\text{out}}(t)}{C} + R\dot{Q}_{\text{out}}(t) = V_{\text{in}}(t)$$

is:

$$Q_{\text{out}}(t) = Q_{\text{out}}(0)e^{-\frac{t}{RC}} + \frac{1}{R} \int_0^t V_{\text{in}}(u)e^{\frac{u-t}{RC}} du$$

Proof.

$$\begin{split} \frac{Q_{\mathrm{out}}(t)}{C} + R\dot{Q}_{\mathrm{out}}(t) &= V_{\mathrm{in}}(t) \iff \dot{Q}_{\mathrm{out}}(t) + \frac{Q_{\mathrm{out}}(t)}{RC} = \frac{V_{\mathrm{in}}(t)}{R} \\ &\iff \frac{\mathrm{d}}{\mathrm{d}t} \left[Q_{\mathrm{out}}(t) \mathrm{e}^{\frac{t}{RC}} \right] = \frac{1}{R} V_{\mathrm{in}}(t) \mathrm{e}^{\frac{t}{RC}} \\ &\iff Q_{\mathrm{out}}(t) \mathrm{e}^{\frac{t}{RC}} - Q_{\mathrm{out}}(0) = \frac{1}{R} \int_{0}^{t} V_{\mathrm{in}}(u) \mathrm{e}^{\frac{u}{RC}} \mathrm{d}u \\ &\iff Q_{\mathrm{out}}(t) = Q_{\mathrm{out}}(0) \mathrm{e}^{-\frac{t}{RC}} + \frac{1}{R} \int_{0}^{t} V_{\mathrm{in}}(u) \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u \end{split}$$

Quod. Erat. Demonstrandum.

Proposition 2.17. If the input signal V_{in} is k-Lipschitz continuous, then:

$$\overline{\lim}_{t \to +\infty} |Q_{\text{out}}(t) - CV_{\text{in}}(t)| \le kRC^2$$

Proof. As $t \to +\infty$, we have:

$$\begin{aligned} |Q_{\text{out}}(t) - CV_{\text{in}}(t)| &= \left| Q_{\text{out}}(0) \mathrm{e}^{-\frac{t}{RC}} + \frac{1}{R} \int_{0}^{t} V_{\text{in}}(u) \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u - \frac{1}{R} \int_{-\infty}^{t} V_{\text{in}}(t) \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u \right| \\ &= \left| \frac{1}{R} \int_{0}^{t} V_{\text{in}}(u) \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u - \frac{1}{R} \int_{0}^{t} V_{\text{in}}(t) \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u \right| + \mathcal{O}(1) \\ &\leq \frac{1}{R} \int_{0}^{t} |V_{\text{in}}(u) - V_{\text{in}}(t)| \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u + \mathcal{O}(1) \\ &\leq \frac{1}{R} \int_{0}^{t} k(t-u) \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u + \mathcal{O}(1) \\ &\leq \frac{1}{R} \int_{-\infty}^{t} k(t-u) \mathrm{e}^{\frac{u-t}{RC}} \mathrm{d}u + \mathcal{O}(1) = kRC^{2} + \mathcal{O}(1) \end{aligned}$$

It suffices to take upper limit $t \to +\infty$. Quod. Erat. Demonstrandum.

Remark: Notice that we have a uniform upper bound kRC^2 for the error induced in the approximation $\hat{Q}_{out}(t) = CV_{in}(t)$, which is proportional to the resistance R.

Proposition 2.18. Let ω be a positive constant. For certain input signal:

$$V_{\rm in}(t) = V_{\rm in}(0)\cos(\omega^2 t^2)$$

We have:

$$\lim_{t \to +\infty} |Q_{\text{out}}(t)| = 0$$

Proof. As $t \to +\infty$, we have:

$$\begin{aligned} |Q_{\text{out}}(t)| &= \left| Q_{\text{out}}(0) e^{-\frac{t}{RC}} + \frac{1}{R} \int_0^t V_{\text{in}}(u) e^{\frac{u-t}{RC}} du \right| \\ &= \frac{1}{R} \left| \int_0^t \dot{\Phi}_{\text{in}}(u) e^{\frac{u-t}{RC}} du \right| + \mathcal{O}(1) \\ &= \frac{1}{R} \left| \Phi_{\text{in}}(u) e^{\frac{u-t}{RC}} \right|_0^t - \int_0^t \Phi_{\text{in}}(u) \frac{de^{\frac{u-t}{RC}}}{du} du \right| + \mathcal{O}(1) \\ &= \frac{1}{R^2 C} \left| \int_0^t \Phi_{\text{in}}(u) e^{\frac{u-t}{RC}} du \right| + \mathcal{O}(1) \end{aligned}$$

Here, $\Phi_{\rm in}(t) = \int_{+\infty}^{t} V_{\rm in}(u) du$ is the integrated input signal with $\lim_{t \to +\infty} \Phi_{\rm in}(t) = 0$. According to **Silverman-Toeplitz Theorem**, the last integral converges to 0. Quod. Erat. Demonstrandum.

Remark: Notice that if $V_{\rm in}(0) \neq 0$, then we no longer have the upperbound kRC^2 because the input signal $V_{\rm in}(t) = V_{\rm in}(0)\cos(\omega^2 t^2)$ is not k-Lipschitz continuous.

Theorem 2.19. (Cantor's Lemma)

Let X be a compact metric space, Y be an arbitrary metric space, and $f: X \to Y$ be a function. f is pointwisely continuous implies f is uniformly continuous.

Proof. Assume to the contrary that f is not uniformly continuous, that is, for some $\epsilon_0 > 0$, there exist two sequences $(x_n)_{n \in \mathbb{N}}$, $(x'_n)_{n \in \mathbb{N}}$, such that:

$$\lim_{n\to +\infty} d_X(x_n,x_n') = 0 \text{ and } \inf_{n\in \mathbb{N}} d_Y(f(x_n),f(x_n')) \geq \epsilon_0$$

As X is (sequentially) compact, $(x_n)_{n\in\mathbb{N}}$ has a convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$ with limit $x_*\in X$, and $\lim_{n\to+\infty}d_X(x_n,x_n')=0$ suggests $\lim_{k\to+\infty}x_{n_k}'=\lim_{k\to+\infty}x_{n_k}=x_*$. As f is continuous, we have:

$$\lim_{k \to +\infty} x'_{n_k} = \lim_{k \to +\infty} x_{n_k} = x_* \implies \lim_{k \to +\infty} f(x'_{n_k}) = \lim_{k \to +\infty} f(x_{n_k}) = f(x_*)$$

This contradicts to $\inf_{n\in\mathbb{N}} d_Y(f(x_n), f(x_n')) \geq \epsilon_0$. Quod. Erat. Demonstrandum.

Theorem 2.20. (Banach Fixed Point Theorem)

Let X be a complete metric space, $0 \le k < 1$ be number, and $T: X \to X$ be a k-Lipschitz continuous function.

- (1) T has a unique fixed point $x_* \in X$.
- (2) For all $x \in X$, the sequence $(x_n)_{n=0}^{+\infty}$ defined below converges to x_* .

$$x_n = \begin{cases} x & \text{if } n = 0; \\ T(x_{n-1}) & \text{if } n > 0; \end{cases}$$

Proof. We may divide our proof into four steps.

Step 1: For all $x \in X$, we wish to prove that $(x_n)_{n=0}^{+\infty}$ is Cauchy.

The recurrence relation $d_X(x_{n+2}, x_{n+1}) \leq k d_X(x_{n+1}, x_n)$ suggests that:

$$d_X(x_{n+1}, x_n) \le k^n d_X(x_1, x_0)$$

where the convention $0^0 = 1$ is made. For all $\epsilon > 0$, choose $N \in \mathbb{N}$ such that:

$$\frac{k^N d_X(x_1, x_0)}{1 - k} < \epsilon$$

For this $N \in \mathbb{N}$, for all $n, m \geq N$, WLOG, assume that n > m, then:

$$d_X(x_n, x_m) \le d_X(x_n, x_{n-1}) + d_X(x_{n-1}, x_{n-2}) + \dots + d_X(x_{m+1}, x_m)$$

$$\le k^{n-1} d_X(x_1, x_0) + k^{n-2} d_X(x_1, x_0) + \dots + k^m d_X(x_1, x_0)$$

$$= \frac{k^m - k^n}{1 - k} d_X(x_1, x_0) \le \frac{k^N}{1 - k} d_X(x_1, x_0) < \epsilon$$

Step 2: For all $x, x' \in X$, we wish to prove that $\lim_{n \to +\infty} d_X(x_n, x'_n) = 0$.

The recurrence relation $d_X(x_{n+1}, x'_{n+1}) \leq k d_X(x_n, x'_n)$ suggests that:

$$d_X(x_n, x_n') \le k^n d_X(x_0, x_0')$$

For all $\epsilon > 0$, choose $N \in \mathbb{N}$ such that:

$$k^N d_X(x_0, x_0') < \epsilon$$

For this $N \in \mathbb{N}$, for all $n \geq N$:

$$d_X(x_n, x_n') \le k^n d_X(x_0, x_0') \le k^N d_X(x_0, x_0') < \epsilon$$

Step 3: Assume that the common limit is x_* .

As $\lim_{n\to+\infty} x_n = x_*$, its subsequence $(T(x_n) = x_{n+1})_{n\in\mathbb{N}}$ converges to x_* as well, so:

$$x_* = \lim_{n \to +\infty} T(x_n) = T\left(\lim_{n \to +\infty} x_n\right) = T(x_*)$$

That is, x_* is fixed under T.

Step 4: For all fixed points x_*, x^* under T:

$$d_X(x_*, x^*) = d_X(T(x_*), T(x^*)) \le kd_X(x_*, x^*)$$

As $0 \le k < 1$, the only real number $d_X(x_*, x^*)$ satisfying this is 0, and the positive definiteness of d_X suggests that $x_* = x^*$, so the fixed point is unique.

Quod. Erat. Demonstrandum.

3 Topologies on Y^X

3.1 Product Space Topology

Definition 3.1. (Product Space Topology)

Let $(X_{\lambda})_{\lambda \in I}$ be an indexed family of topological spaces, and X be the Cartesian product of $(X_{\lambda})_{\lambda \in I}$. Define the product space topology \mathcal{O}_X of $(X_{\lambda})_{\lambda \in I}$ on X as the topology generated by the subbasis \mathcal{B}_X , where \mathcal{B}_X is the union of each initial topology $\mathcal{O}_X^{(\lambda)}$ of X_{λ} on X via $\pi_{\lambda}: X \to X_{\lambda}, x \mapsto x(\lambda)$.

Proposition 3.2. Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces, and X be the product space of $(X_{\lambda})_{{\lambda}\in I}$. Each map $\pi_{\mu}: X \to X_{\mu}, x \mapsto x(\mu)$ is open.

Proof. For each π_{μ} , for each open subset U of X,

we wish to show that $\pi_{\mu}(U)$ is open in X_{μ} .

As X has a subbasis, we may shrink U to $\bigcap_{k=1}^{m} \pi_{\lambda_k}^{-1}(U_{\lambda_k})$,

where each U_{λ_k} is a nonempty open subset of X_{λ_k} .

Case 1: If μ is equal to some λ_k , then $\pi_{\mu}(U) = U_{\mu}$ is open in X_{μ} .

Case 2: If μ is equal to no λ_k , then $\pi_{\mu}(U) = X_{\mu}$ is open in X_{μ} .

Hence, π_{μ} is open. Quod. Erat. Demonstrandum.

Remark: In \mathbb{R}^2 , consider the map $\pi_1 : \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto x_1$.

 $U = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 = 1\}$ is closed in \mathbb{R}^2 and $\pi_1(U) = \{0\}^c$ is not closed in \mathbb{R}

V = [0,1] is compact in \mathbb{R} and $\pi_1^{-1}(V) = [0,1] \times \mathbb{R}$ is not compact in \mathbb{R}^2

Hence, π_{μ} is neither closed nor proper in general.

Proposition 3.3. Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces, and X be the product space of $(X_{\lambda})_{{\lambda}\in I}$. X is Hausdorff iff each X_{μ} is Hausdorff.

Proof. We may divide our proof into two parts.

"if" direction: Assume that each X_{μ} is Hausdorff.

For all distinct $x, x' \in X$, some $x(\lambda) \neq x'(\lambda)$.

As X_{λ} is Hausdorff, there exist open subsets $U_{\lambda}, U'_{\lambda}$ of X_{λ} , such that:

$$x(\lambda) \in U_{\lambda}$$
 and $x'(\lambda) \in U'_{\lambda}$ and $U_{\lambda} \cap U'_{\lambda} = \emptyset$

Hence, there exist open subsets $\pi_{\lambda}^{-1}(U_{\lambda}), \pi_{\lambda}^{-1}(U'_{\lambda})$ of X, such that:

$$x \in \pi_{\lambda}^{-1}(U_{\lambda})$$
 and $x' \in \pi_{\lambda}^{-1}(U'_{\lambda})$ and $\pi_{\lambda}^{-1}(U_{\lambda}) \cap \pi_{\lambda}^{-1}(U'_{\lambda}) = \emptyset$

To conclude, X is Hausdorff.

"only if" direction: Assume that X is Hausdorff.

Fix an arbitrary element ξ in X.

For each X_{μ} , for all distinct $x_{\mu}, x'_{\mu} \in X_{\mu}$,

construct the following two distinct elements of X:

$$x, x': I \to \bigcup_{\lambda \in I} X_{\lambda}, x, x'(\lambda) \begin{cases} = x_{\mu}, x'_{\mu} & \text{if } \lambda = \mu; \\ = \xi(\lambda) & \text{if } \lambda \neq \mu; \end{cases}$$

As X is Hausdorff, there exists open subsets U, U' of X, such that:

$$x \in U$$
 and $x' \in U'$ and $U \cap U' = \emptyset$

As X has a subbasis, we may shrink U, U' to $\bigcap_{k=1}^m U_{\lambda_k}, \bigcap_{k=1}^m U'_{\lambda_k}$, where each $U_{\lambda_k}, U'_{\lambda_k}$ are nonempty open subsets of X_{λ_k} . As the only different component of x, x' is the μ^{th} component, μ is equal to some λ_k and $U_{\mu} \cap U'_{\mu} = \emptyset$, so there exist open subsets U_{μ}, U'_{μ} of X_{μ} , such that:

$$x_{\mu} \in U_{\mu}$$
 and $x'_{\mu} \in U'_{\mu}$ and $U_{\mu} \cap U'_{\mu} = \emptyset$

To conclude, X_{μ} is Hausdorff.

Combine the two parts above, we've proven the logical equivalence.

Quod. Erat. Demonstrandum.

Proposition 3.4. Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces, and X be the product space of $(X_{\lambda})_{{\lambda}\in I}$. X is regular iff each X_{μ} is regular.

Proof. We may divide our proof into two parts.

"if" direction: Assume that each X_{μ} is regular.

For all closed subset V of X and element x of V^c .

As X has a subbasis, we may shrink V^c to $\bigcap_{k=1}^m \pi_{\lambda_k}^{-1}(U_{\lambda_k})$,

where each U_{λ_k} is a nonempty open subset of X_{λ_k} .

As each X_{λ_k} is regular, there exist open subsets $W_{\lambda_k}, W'_{\lambda_k}$ of X_{λ_k} , such that:

$$x(\lambda_k) \in W_{\lambda_k}$$
 and $\pi_{\lambda_k}^{-1}(U_{\lambda_k}^c) \subseteq W_{\lambda_k}'$ and $W_{\lambda_k} \cap W_{\lambda_k}' = \emptyset$

Hence, there exist open subsets $W = \bigcap_{k=1}^m \pi_{\lambda_k}^{-1}(W_{\lambda_k})$, $W' = \bigcup_{k=1}^m \pi_{\lambda_k}^{-1}(W'_{\lambda_k})$ of X, such that:

$$x \in W$$
 and $\bigcup_{k=1}^m \pi_{\lambda_k}^{-1}(U_{\lambda_k}^c) \subseteq W'$ and $W \cap W' = \emptyset$

To conclude, X is regular.

"only if" direction: Assume that X is regular.

Fix an arbitrary element ξ in X.

For each X_{μ} , for all closed subset V_{μ} of X_{μ} and an element x_{μ} of V_{μ}^{c} , construct the following element of X and the following subset of X:

$$x: I \to \bigcup_{\lambda \in I} X_{\lambda}, x(\lambda) \begin{cases} = & x_{\mu} & \text{if} \quad \lambda = \mu; \\ = & \xi(\lambda) & \text{if} \quad \lambda \neq \mu; \end{cases}$$

$$V = \left\{ x' : I \to \bigcup_{\lambda \in I} X_{\lambda}, x'(\lambda) \right\} \left\{ \begin{matrix} \in & V_{\mu} & \text{if } \lambda = \mu; \\ = & \xi(\lambda) & \text{if } \lambda \neq \mu; \end{matrix} \right\}$$

As X is regular, there exist open subsets W, W' of X, such that:

$$x \in W$$
 and $V \subseteq W'$ and $W \cap W' = \emptyset$

As X has a subbasis, we may shrink W to $\bigcap_{k=1}^m \pi_{\lambda_k}^{-1}(W_{\lambda_k})$, where each U_{λ_k} is a nonempty open subset of X_{λ_k} .

As X has a subbasis, we may shrink W' to a union of such cuboids.

As the only different component of x, V is the μ^{th} component,

 μ is equal to some λ_k and $W_{\mu} \cap \pi_{\mu}(W') = \emptyset$,

so there exist open subsets W_{μ} , $\pi_{\mu}(W')$ of X_{μ} , such that:

$$x_{\mu} \in W_{\mu}$$
 and $V_{\mu} \subseteq \pi_{\mu}(W')$ and $W_{\mu} \cap \pi_{\mu}(W') = \emptyset$

To conclude, X_{μ} is regular.

Combine the two parts above, we've proven the logical equivalence.

Quod. Erat. Demonstrandum.

Remark: The result proven by Dowker in 1951 suggests that the Cartesian product of normal spaces may not be normal even if each component space is normal.

Lemma 3.5. Let X be a metrizable space with metric $d_X: X \times X \to \mathbb{R}$, and $f:[0,+\infty) \to [0+\infty)$ be an embedding. If $\lim_{\alpha \to 0^+} \frac{f(\alpha)}{\alpha} > 0$ and f is concave, then: (1) $d_X' = f \circ d_X$ is a well-defined metric on X.

- (2) d'_X generates the same topology as d_X .

Proof. We may divide our proof into four steps.

Step 1: We prove that f is positive definite, so d'_X is positive definite.

f is an embedding and $\lim_{\alpha \to 0^+} \frac{f(\alpha)}{\alpha} > 0$ suggests that f(0) = 0.

Assume to the contrary that for some $\beta > 0$, $f(\beta) = 0$.

As $\lim_{\alpha \to 0^+} \frac{f(\alpha)}{\alpha} > 0$, choose $0 < \alpha < \beta$, such that $f(\alpha) > 0$.

As f is concave, $f(2\beta - \alpha) < 0$, contradicting to $f(2\beta - \alpha) \in [0, +\infty)$.

Hence, our assumption is false, and we've proven that f is positive definite.

Step 2: We prove that d'_X is symmetric.

For all $x_1, x_2 \in X$:

$$d'_X(x_1, x_2) = f \circ d_X(x_1, x_2) = f \circ d_X(x_2, x_1) = d'_X(x_2, x_1)$$

Hence, f is symmetric.

Step 3: We prove that f is subadditive and increasing, so d'_X is subadditive.

On the open set $(0, +\infty)$, f is concave implies f is continuous.

At $\alpha = 0$, $\lim_{\alpha \to 0^+} \frac{f(\alpha)}{\alpha} > 0$ implies f is continuous. For all $0 < \alpha < \beta$, construct a parallelogram by the following vertices:

$$(0,0), (\alpha, f(\alpha)), (\beta, f(\beta)), (\alpha + \beta, f(\alpha) + f(\beta))$$

The concavity of f suggests that:

$$\frac{f(\alpha)}{\alpha} \ge \frac{f(\alpha) + f(\beta)}{\alpha + \beta} \ge \frac{f(\beta)}{\beta}$$

The intermediate value theorem suggests the existence of $\alpha < \xi < \beta$, such that:

$$\frac{f(\xi)}{\xi} = \frac{f(\alpha) + f(\beta)}{\alpha + \beta}$$

The concavity of f suggests that:

$$\frac{f(\alpha) + f(\beta)}{\alpha + \beta} = \frac{f(\xi)}{\xi} \ge \frac{f(\alpha + \beta)}{\alpha + \beta}$$

Hence, f is subadditive.

Assume to the contrary that for some $0 < \alpha < \beta$, $f(\alpha) > f(\beta)$.

As f is concave, $\lim_{\gamma \to +\infty} f(\gamma) = -\infty < 0$, contradiction to $f(\gamma) \ge 0$.

Hence, our assumption is false, and we've proven that f is increasing.

Step 4: As there exist c, c' > 0, such that cx < f(x) < c'x near x = 0, U is an open ball with respect to d_X iff U is an open ball with respect to d_X' when radii are small. Hence, d_X' generates the same topology as d_X .

Quod. Erat. Demonstrandum.

Remark: Notice that it is always possible to choose a bounded embedding $f:[0,+\infty) \to [0,+\infty)$, $f(x) = \frac{x}{1+x}$, so when discussing metric spaces, we can always assume that X is bounded without loss of generality.

Definition 3.6. (Pointwise Metric)

Let Y be a bounded metric space, Y^K be the set of all sequence y from a nonempty subset K of \mathbb{Z} to Y, and a be a sequence in $\ell^1(K, (0, +\infty))$. Define:

$$d_{Y^K}: Y^K \times Y^K \to \mathbb{R}, d_{Y^K}(y, y') = \sum_K a_k d_Y(y_k, y'_k)$$

as the pointwise metric on Y^K induced by a.

Proposition 3.7. Let Y be a bounded metric space, Y^K be the set of all sequence y from a nonempty subset K of \mathbb{Z} to Y, and a be a sequence in $\ell^1(K, (0, +\infty))$. The pointwise metric d_{Y^K} is a metric on Y^K , which generates the product space topology on Y^K .

Proof. We may divide our proof into four parts.

Part 1: We prove that d_{Y^K} is positive definite.

For all $y, y' \in Y^K$:

$$d_{Y^K}(y, y') = \sum_{K} a_k d_Y(y_k, y'_k) \ge 0$$

$$d_{Y^K}(y, y') = \sum_K a_k d_Y(y_k, y'_k) = 0 \implies \text{Each } d_Y(y_k, y'_k) = 0$$

$$\implies \text{Each } y_k = y'_k \implies y = y'$$

Hence, d_{Y^K} is positive definite.

Part 2: We prove that d_{Y^K} is symmetric.

For all $y, y' \in Y^K$:

$$d_{Y^K}(y,y') = \sum_K a_k d_Y(y_k,y_k') = \sum_K a_k d_Y(y_k',y_k) = d_{Y^K}(y',y)$$

Hence, d_{Y^K} is symmetric.

Part 3: We prove that d_{YK} is subadditive.

For all $y, y', y'' \in Y^K$:

$$\begin{aligned} d_{Y^K}(y, y'') &= \sum_{K} a_k d_Y(y_k, y_k'') \\ &\leq \sum_{K} a_k d_Y(y_k, y_k') + \sum_{K} a_k d_Y(y_k', y_k'') \\ &= d_{Y^K}(y, y') + d_{Y^K}(y', y'') \end{aligned}$$

Part 4: We prove that d_{Y^K} generates the product space topology on Y^K .

WLOG, assume that $K = \mathbb{N}$ and $\sum_{k=1}^{+\infty} a_k = 1$.

For all basis element $U = \bigcap_{k=1}^m \pi_k^{-1}(B(y_k, r_k))$ of the product space topology on Y^K :

For all $y' \in U$, choose the following radius:

$$r' = \min_{1 \le k \le m} a_k (r_k - d_Y(y_k, y'_k))$$

Notice that $V' = B(y', r') \subseteq U$,

so $U = \bigcup_{v' \in U} V'$ is in the metric space topology of Y^K .

For all basis element V = B(y, r) of the metric space topology on Y^K :

For all $y' \in V$, choose the following sequence of radii:

$$r'_{k} \begin{cases} = & r/2 & \text{if } y \neq y'; \\ = & [r/d_{Y^{K}}(y, y') - 1][d_{Y}(y_{k}, y'_{k})/2] & \text{if } y \neq y'; \end{cases}$$

Notice that $\exists m \in \mathbb{N}, U' = \bigcap_{k=1}^m B(y'_k, r'_k) \subseteq V$,

so $V = \bigcup_{y' \in V} U'$ is in the product space topology of Y^K .

Hence, d_{Y^K} generates the product space topology on Y^K .

Quod. Erat. Demonstrandum.

Remark: This implies Y^K is always metrizable when Y is metrizable and $K \subseteq \mathbb{Z}$.

Theorem 3.8. (Alexander's Subbasis Theorem[2])

Let X be a topological space, and \mathcal{B}_X be a subbasis of X. X is compact if and only if every open cover $\mathcal{V} \subseteq \mathcal{B}_X$ of X has a finite subcover.

Proof. It suffices to prove "if" direction.

Assume to the contrary that X is not compact.

Step 1: Define Φ as the set of all open cover \mathcal{U} of X with no finite subcover.

Define a partial order $\leq : \Phi \to \Phi, \mathcal{U}_1 \leq \mathcal{U}_2$ if $\mathcal{U}_1 \subseteq \mathcal{U}_2$ on Φ .

For all nonempty totally ordered subset Ψ of Φ :

Property 1.1: $\forall (U_k)_{k=1}^m \text{ in } \bigcup_{\mathcal{U} \in \Psi} \mathcal{U}, \exists (\mathcal{U}_k)_{k=1}^m \text{ in } \Psi, \text{ each } U_k \in \mathcal{U}_k.$

Without loss of generality, assume that $(\mathcal{U}_k)_{k=1}^m$ is ascending.

This implies $(U_k)_{k=1}^m$ in \mathcal{U}_m , so $(U_k)_{k=1}^m$ doesn't cover X. Hence, $\bigcup_{\mathcal{U}\in\Psi}\mathcal{U}\in\Phi$.

Property 1.2: $\forall \mathcal{V} \in \Psi, \mathcal{V} \leq \bigcup_{\mathcal{U} \in \Psi} \mathcal{U}$. Hence, $\bigcup_{\mathcal{U} \in \Psi} \mathcal{U}$ is an upper bound of Ψ .

According to **Zorn's Lemma**, Φ has a maximal element \mathcal{V} .

Step 2: Assume to the contrary that $\mathcal{V} \cap \mathcal{B}_X$ is an open cover of X.

 \mathcal{V} has no finite subcover, neither does $\mathcal{V} \cap \mathcal{B}_X$.

However, $\mathcal{V} \cap \mathcal{B}_X \subseteq \mathcal{B}_X$, which has a finite subcover, a contradiction.

Hence, our assumption is false, and we've proven $\mathcal{V} \cap \mathcal{B}_X$ is not an open cover of X.

Step 3: Assume that $V \cap \mathcal{B}_X = (V_\lambda)_{\lambda \in J}$, where $J \subset I$, and fix $x_0 \in \bigcup_{\lambda \in I \setminus J} V_\lambda$.

As \mathcal{B}_X is a subbasis of X, $x_0 \in \bigcap_{k=1}^m W_k \subseteq V_{\lambda_*}$, where each $W_k \in \mathcal{B}_X$, $\lambda_* \in I$.

Assume to the contrary that some $W_k \in \mathcal{V}$.

As $W_k \in \mathcal{B}_X$, $x_0 \in W_k \in \mathcal{V} \cap \mathcal{B}_X$, but $\mathcal{V} \cap \mathcal{B}_X$ doesn't cover x_0 , a contradiction.

Hence, our assumption is false, and we've proven each $W_k \notin \mathcal{V}$.

Step 4: For each W_k , define \mathcal{V}_k as a finite subcover of $\mathcal{V} \cup \{W_k\}$.

Assume to the contrary that $W_k \notin \mathcal{V}_k$.

This implies V has a finite subcover V_k , a contradiction.

Hence, each V_k is in the form $(W_k, V_{\lambda_{kl_k}})_{l_k=1}^{n_k}$. This implies:

$$X = W_k \cup \bigcup_{l_k = 1}^{n_k} V_{\lambda_{kl_k}} \implies \bigcap_{l_k = 1}^{n_k} V_{\lambda_{kl_k}}^c \subseteq W_k \implies \bigcap_{k = 1}^m \bigcap_{l_k = 1}^{n_k} V_{\lambda_{kl_k}}^c \subseteq \bigcap_{k = 1}^m W_k \subseteq V_{\lambda_*}$$

To conclude, our assumption is false, as we've constructed a finite subcover $(V_{\lambda_*}, V_{\lambda_{kl_k}})$ of \mathcal{V} . Quod. Erat. Demonstrandum.

Theorem 3.9. (Tychonoff Theorem[2])

Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces,

and X be the product space of $(X_{\lambda})_{{\lambda}\in I}$.

If each X_{λ} is compact, then X is compact.

Proof. For all $\lambda \in I$, define \mathcal{U}_{λ} as the initial topology of X_{λ} on X via π_{λ} .

It suffices to show that each open cover $\mathcal{V} \subseteq \bigcup_{\lambda \in I} \mathcal{U}_{\lambda}$ of X has a finite subcover.

Step 1: Assume to the contrary that no $\pi_{\lambda}(\mathcal{V} \cap \mathcal{U}_{\lambda})$ covers X_{λ} .

For all $\lambda \in I$, the assumption above guarantees the existence of $\xi_{\lambda} \in (\pi(\mathcal{V} \cap \mathcal{U}_{\lambda}))^{c}$.

Construct $x \in X, x(\lambda) = \xi_{\lambda}$.

As each $\mathcal{V} \cap \mathcal{U}_{\lambda}$ doesn't cover x, neither does $\mathcal{V} = \bigcup_{\lambda \in I} (\mathcal{V} \cap \mathcal{U}_{\lambda})$, a contradiction.

Hence, our assumption is wrong, and we've proven that some $\pi_{\lambda}(\mathcal{V} \cap \mathcal{U}_{\lambda})$ covers X_{λ} .

Step 2: As some $\pi_{\lambda}(\mathcal{V} \cap \mathcal{U}_{\lambda})$ covers X_{λ} , a finite subcover $\pi_{\lambda}(\mathcal{W})$ exists.

Hence, we've reduced our original open cover \mathcal{V} to a finite subcover \mathcal{W} .

Quod. Erat. Demonstrandum.

Remark: Product space inherits compactness.

Lemma 3.10. Let X_1, X_2 be two topological spaces, and X be the product space of X_1, X_2 . If X_1, X_2 are connected, then X is connected.[3]

Proof. It suffices to notice the following identity:

$$X = \bigcup_{(x_1, x_2) \in X} (X_1 \times \{x_2\}) \cup (\{x_1\} \times X_2)$$

Quod. Erat. Demonstrandum.

Lemma 3.11. Let $(X_{\lambda})_{\lambda \in I}$ be an indexed family of topological spaces, X be the product space of $(X_{\lambda})_{\lambda \in I}$, and ξ be an element of X. For all $J \subseteq I$, define $X_J = \{x \in X : \forall \lambda \in J^c, x(\lambda) = \xi(\lambda)\}$. $X' = \bigcup_{|J| < +\infty} X_J$ is dense in X.[3]

Proof. Assume to the contrary that some nonempty open subset U of X doesn't intersect X'. As X has a subbasis, we may shrink U to $\bigcap_{k=1}^{m} \pi_{\lambda_k}^{-1}(U_{\lambda_k})$, where each $U_{\lambda_k} \in \mathcal{O}_{X_{\lambda_k}}$ is a nonempty open subset of X_{λ_k} . Fix $x \in U$, and construct $x' \in X$ by:

$$x'(\lambda) = \begin{cases} x(\lambda_k) & \text{if} \quad \lambda \text{ is equal to some } \lambda_k; \\ \xi(\lambda) & \text{if} \quad \lambda \text{ is equal to no } \lambda_k; \end{cases}$$

As each $x'(\lambda_k) = x(\lambda_k) \in U_{\lambda_k}, x' \in U$.

As $J = \{\lambda_k\}_{k=1}^m$ is finite and $\forall \lambda \in J^c, x'(\lambda) = x(\lambda), x' \in X_J \subseteq X'$.

This contradicts to $U \cap X' = \emptyset$.

Hence, our assumption is false, and we've proven that X' is dense in X.

Quod. Erat. Demonstrandum.

Proposition 3.12. Let $(X_{\lambda})_{\lambda \in I}$ be an indexed family of topological spaces, and X be the product space of $(X_{\lambda})_{\lambda \in I}$. If each X_{λ} is connected, then X is connected.[3]

Proof. The $X' = \bigcup_{|J| < +\infty} X_J$ constructed in **Lemma 3.11.** satisfies:

$$\bigcap_{|J|<+\infty} X_J = \{x\} \neq \emptyset$$

Hence, the union X' is connected, and the closure X of X' is connected. Quod. Erat. Demonstrandum.

Remark: Product space inherits connectedness.

Proposition 3.13. Let $(X_{\lambda})_{{\lambda}\in I}$ be an indexed family of topological spaces, and X be the product space of $(X_{\lambda})_{{\lambda}\in I}$.

If each X_{λ} is path connected, then X is path connected.

Proof. For all $x_0, x_1 \in X$, for each $\lambda \in I$:

As X_{λ} is path connected, there exists a path γ_{λ} from $x_0(\lambda)$ to $x_1(\lambda)$ in X_{λ} . Hence, there exists a path $\gamma:[0,1]\to X, t\mapsto (\gamma_{\lambda}(t))_{\lambda\in I}$ in X from x_0 to x_1 . To conclude, X is path connected. Quod. Erat. Demonstrandum.

Remark: Product space inherits path connectedness.

3.2 Uniform Topology

Proposition 3.14. In $\mathcal{B}([0,1],\mathbb{R})$ under uniform metric $\| \bullet \|$, the closed ball B(0,1) is not compact, so the whole space $\mathcal{B}([0,1],\mathbb{R})$ is not compact.

Proof. Consider the sequence $(f_n)_{n\in\mathbb{N}}$ in $\mathcal{B}(\mathbb{R},\mathbb{R})$ defined below:

$$f_n(x) = \begin{cases} |\sin \frac{\pi}{x}| & \text{if } x \in [\frac{1}{n+1}, \frac{1}{n}]; \\ 0 & \text{if } x \notin [\frac{1}{n+1}, \frac{1}{n}]; \end{cases}$$

As $||f_n - f_m|| = \delta_{nm}$, every subsequence of $(f_n)_{n \in \mathbb{N}}$ is not Cauchy, so every subsequence of $(f_n)_{n \in \mathbb{N}}$ is not convergent, B(0,1) is not sequentially compact, B(0,1) is not compact. Quod. Erat. Demonstrandum.

Proposition 3.15. In $\mathcal{B}(X,\mathbb{R})$ under uniform metric $\| \bullet \|$, the whole space $\mathcal{B}(X,\mathbb{R})$ is complete.

Proof. For all Cauchy sequence $(f_n)_{n\in\mathbb{N}}$ in $\mathcal{B}(X,\mathbb{R})$, each $(f_n(x))_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} . As \mathbb{R} is complete, $(f_n(x))_{n\in\mathbb{N}}$ converges to some $f(x)\in\mathbb{R}$, which gives a limit function $f:X\to\mathbb{R}$. Note that:

$$||f|| \le ||f - f_n|| + ||f_n|| < +\infty$$

This implies $f \in \mathcal{B}(X,\mathbb{R})$, so X is complete.

Quod. Erat. Demonstrandum.

Proposition 3.16. In $\mathcal{B}(X,\mathbb{R})$ under uniform metric $\| \bullet \|$, the whole space $\mathcal{B}(X,\mathbb{R})$ and every open ball B(f,r) are convex, so $\mathcal{B}(X,\mathbb{R})$ is path connected and locally path connected.

Proof. It suffices to notice that $\|(1-\lambda)f + \lambda f'\| \le \max\{\|f\|, \|f'\|\} < +\infty$. Quod. Erat. Demonstrandum.

4 Homotopy Relation on Y^X

4.1 Path Connectedness Relation and Homotopy Relation

Recall that a path is a continuous function from [0,1] to a topological space X. What about "a path in Y^X "? A homotopy!

Definition 4.1. (Homotopy Relation)

Let X, Y be two topological spaces, f, f' be two continuous functions from X to Y, and H be a continuous function from $X \times [0,1]$ to Y. If for all $x \in X$:

$$H(x,0) = f(x)$$
 and $H(x,1) = f'(x)$

then $f \sim f'$, i.e., f is homotopic to f'.

Remark: Notice that it is not enough to force all component functions $H(x, \bullet), H(\bullet, t)$ to be continuous. For the following function:

$$H: [0,1]^2 \to [0,1], H(x,t) = \begin{cases} 0 & \text{if } (x,t) = (0,0) \\ \frac{2xt}{x^2 + t^2} & \text{if } (x,t) \neq (0,0) \end{cases}$$

Although all component functions $H(x, \bullet)$, $H(\bullet, t)$ are continuous, the bivariate function H(x, t) fails to be continuous at (x, t) = (0, 0).

Proposition 4.2. Homotopic relation \sim is an equivalence relation on $\mathcal{C}(X,Y)$.

Proof. We may divide our proof into three parts.

Part 1: For all $f \in \mathcal{C}(X,Y)$, define:

$$H: X \times [0,1] \to Y, H(x,t) = f(x)$$

For all open subset V of Y, $H^{-1}(V) = f^{-1}(V) \times [0,1]$ is open in $X \times [0,1]$. Hence, H is continuous, and $f(x) = H(x,0) \sim H(x,1) = f(x)$.

Part 2: For all $f, f' \in \mathcal{C}(X, Y)$, if $f \sim f'$,

then there exists a continuous function H from $X \times [0,1]$ to Y, such that for all $x \in X$:

$$H(x,0) = f(x)$$
 and $H(x,1) = f'(x)$

Define:

$$H': X \times [0,1] \to Y, H'(x,t) = H(x,1-t)$$

As $e_X: X \to X, x \mapsto x$ and $\tau_{[0,1]}: t \to 1-t$ are continuous, the map $(e_X, \tau_{[0,1]})$ is continuous.

Hence, $H' = H \circ (e_X, \tau_{[0,1]})$ is continuous, and $f'(x) = H'(x,0) \sim H'(x,1) = f(x)$.

Part 3: For all $f, f', f'' \in \mathcal{C}(X, Y)$, if $f \sim f'$ and $f' \sim f''$,

then there exist continuous functions H, H' from $X \times [0, 1]$ to Y, such that for all $x \in X$:

$$H(x,0) = f(x)$$
 and $H(x,1) = H'(x,0) = f'(x)$ and $H'(x,1) = f''(x)$

Choose a constant 0 < c < 1, and define:

$$H'': X \times [0,1], H''(x,t) = \begin{cases} H\left(x, \frac{t-0}{c-0}\right) & \text{if } 0 \le t \le c; \\ H'\left(x, \frac{t-c}{1-c}\right) & \text{if } c \le t \le 1; \end{cases}$$

According to **The Gluing Lemma**, $H'' = H \cup H'$ is continuous.

Hence, $H'' = H \cup H'$ is continuous, and $f(x) = H''(x, 0) \sim H''(x, 1) = f''(x)$.

Combine the three parts above, \sim is an equivalence relation on $\mathcal{C}(X,Y)$.

Quod. Erat. Demonstrandum.

Remark: We shall develop a method to prove that certain map $H: X \times [0,1] \to Y$ is a homotopy, and here is the crucial lemma.

Proposition 4.3. Let X, Y, Z be three metric spaces,

 $H: X \times Y \to Z$ be a bounded function, and x_*, y_* be points in X, Y respectively. Equip $X \times Y$ with the product metric:

$$d_{X\times Y}(x_1, y_1, x_2, y_2) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}\$$

Equip $\mathcal{B}(Y, Z)$ with the uniform metric:

$$d(f, f') = \sup_{y \in Y} d_Z(f(y), f'(y))$$

If the following conditions hold, then H is continuous:

- (1) $f_{x_*}(y) = H(x_*, y)$ is continuous at y_* .
- (2) $g(x) = f_x$ is a continuous at x_* .

Proof. For all $\epsilon > 0$, we wish to find $\delta > 0$, such that for all $(x, y) \in B(x_*, y_*, \delta)$:

$$d_Z(H(x_*, y_*), H(x, y)) < \epsilon$$

Step 1: As f_* is continuous at y_* , there exists $\delta_1 > 0$, such that for all $y \in B(y_*, \delta_1)$:

$$d_Z(f_{x_*}(y), f_{x_*}(y_*)) < \frac{\epsilon}{2}$$

Step 2: As g is continuous at x_* , there exists $\delta_2 > 0$, such that for all $x \in B(x_*, \delta_2)$:

$$d(f_{x_x}, f_x) < \delta_2$$

Step 3: There exists $\delta = \min\{\delta_1, \delta_2\} > 0$, such that for all $(x, y) \in B(x_*, y_*, \delta)$:

$$d_Z(H(x_*, y_*), H(x, y)) \le d_Z(H(x_*, y_*), H(x_*, y)) + d_Z(H(x_*, y), H(x, y))$$

$$= d_Z(f_{x_*}(y_*), f_{x_*}(y)) + d_Z(f_{x_*}(y), f_x(y))$$

$$\le d_Z(f_{x_*}(y_*), f_{x_*}(y)) + d(f_{x_*}, f_x) < \epsilon$$

Hence, H is continuous at (x_*, y_*) . Quod. Erat. Demonstrandum.

Remark: Homotopy is compatible with homeomorphism.

```
Proposition 4.4. Let X_1, X_2, Y_1, Y_2 be four topological spaces, f_1, f'_1: X_1 \to Y_1 be two homotopic functions, and \sigma: X_1 \to X_2, \tau: Y_1 \to Y_2 be two homeomorphisms. \tau \circ f_1 \circ \sigma^{-1} is homotopic to \tau \circ f'_1 \circ \sigma^{-1}.
```

Proof. Assume that $H_1: X_1 \times [0,1] \to Y_1$ is a homotopy from f_1 to f'_1 . We can construct a homotopy $(\tau,e) \circ H_1 \circ (\sigma^{-1},e)$ from $\tau \circ f_1 \circ \sigma^{-1}$ to $\tau \circ f'_1 \circ \sigma^{-1}$, so $\tau \circ f_1 \circ \sigma^{-1}$ is homotopic to $\tau \circ f'_1 \circ \sigma^{-1}$. Quod. Erat. Demonstrandum.

Remark: Homotopy is compatible with composition.

```
Proposition 4.5. Let X, Y, Z be three topological spaces, f, f': X \to Y be two homotopic functions, and g, g': Y \to Z be two homotopic functions. g \circ f is homotopic to g' \circ f'.
```

Proof. Assume that H is a homotopy from f to f', and I is a homotopy from g to g'. We can construct a homotopy $I \circ (H, e)$ from $g \circ f$ to $g' \circ f'$, so $g \circ f$ is homotopic to $g' \circ f'$. Quod. Erat. Demonstrandum.

4.2 The Fundamental Group

First, we restrict homotopy to relative homotopy.

```
Definition 4.6. (Relative Homotopy)
Let X, Y be two topological spaces, A be a subset of X, and H: X \times [0,1] \to Y be a homotopy.
If \forall x \in A and t \in [0,1], H(a,0) = H(a,t) = H(a,1), then H is a homotopy relative to A.
```

Remark: Similarly, we may prove that relative homotopy is an equivalence relation. Second, we define concatenation.

Definition 4.7. (Concatenation)

Let X be a topological space, x, x', x'' be three points in X,

 $\gamma: [0,1] \to X$ be a path from x to x',

and $\gamma':[0,1]\to X$ be a path from x' to x''.

Fix 0 < c < 1, define:

$$\gamma \star_c \gamma' : [0,1] \to X, \gamma \star_c \gamma'(t) = \begin{cases} \gamma \left(\frac{t-0}{c-0}\right) & \text{if} \quad 0 \le t \le c; \\ \gamma' \left(\frac{t-c}{1-c}\right) & \text{if} \quad c \le t \le 1; \end{cases}$$

as the concatenation from γ to γ' at c.

Remark: The gluing lemma suggests that $\gamma \star_c \gamma'$ is continuous. Homotopy relation is compatible with homeomorphism suggests that every $\gamma \star_{c_1} \gamma'$ and $\gamma \star_{c_2} \gamma'$ are homotopic relative to $\{x, x''\}$. Homotopy relation is compatible with composition suggests that $\star : [\mathcal{C}]([0, 1], X, x, x') \times [\mathcal{C}]([0, 1], X, x', x'') \to [\mathcal{C}]([0, 1], X, x, x'')$ is well-defined:

$$[\gamma] \star [\gamma'] \mapsto [\gamma \star_c \gamma']$$

In general, let $\gamma^{(0)}, \dots, \gamma^{(n-1)} : [0,1] \to X$ be n paths connected from tip to tail. Fix $0 = c_0 < c_1 < \dots < c_{n-1} < c_n = 1$, define:

$$\gamma^{(0)} \star_{c_1} \cdots \star_{c_{n-1}} \gamma^{(n-1)} : [0,1] \to X$$

$$\gamma^{(0)} \star_{c_1} \cdots \star_{c_{n-1}} \gamma^{(n-1)}(t) = \begin{cases} \gamma^{(0)} \left(\frac{t-c_0}{c_1-c_0}\right) & \text{if } c_0 \le t \le c_1; \\ \vdots & \vdots \\ \gamma^{(n-1)} \left(\frac{t-c_{n-1}}{c_n-c_{n-1}}\right) & \text{if } c_{n-1} \le t \le c_n; \end{cases}$$

As the concatenation of $\gamma^{(0)}, \dots, \gamma^{(n-1)}$ at $c_0, c_1, \dots, c_{n-1}, c_n$.

The relative homotopy class of $\gamma^{(0)} \star_{c_1} \cdots \star_{c_{n-1}} \gamma^{(n-1)}$ doesn't depend on the choice of $c_0, c_1, \cdots, c_{n-1}, c_n$, so we can use this construction to prove the associativity of \star .

$$\begin{aligned} ([\gamma] \star [\gamma']) \star [\gamma''] &= [\gamma \star_c \gamma'] \star [\gamma''] = [(\gamma \star_c \gamma') \star_{c'} \gamma''] \\ &= [\gamma \star_{0+(c-0)(c'-0)} \gamma' \star_{c'} \gamma''] \\ &= [\gamma \star_c \gamma' \star_{1-(1-c')(1-c)} \gamma''] \\ &= [\gamma \star_c (\gamma' \star_{c'} \gamma'')] = [\gamma] \star [\gamma' \star_{c'} \gamma''] = [\gamma] \star ([\gamma'] \star [\gamma'']) \end{aligned}$$

It follows directly that the set [C]([0,1],X,x,x) forms a group under concatenation.

Definition 4.8. (The Fundamental Group)

Let X be a topological space, x be a point in X.

Define $[\mathcal{C}]([0,1],X,x,x)$ as the fundamental group of X at x.

References

- [1] H. Ren, "Template for math notes," 2021.
- [2] sumeragi693, "拓扑学入门 16——吉洪诺夫(tychonoff)定理," 2023. [Online]. Available: https://zhuanlan.zhihu.com/p/556647150
- [3] J. R. Munkres, *Topology*, 2nd ed. Massachusetts Institute of Technology: Pearson, 2000.