6. Übungsblatt zu Analysis (WS 20/21)

Name(n): Joshua Detrois, Leo Knapp, Juan Provencio

Gruppe: F

Punkte: ___/___ Σ ___

6.1 Aufgabe 1: Peer Feedback

Siehe Rückseite

6.2 Aufgabe 2: Eigenschaften von Limiten

Geg.:

- $(a_n)_{n\in\mathbb{N}}$ mit $\lim_{n\to\infty} a_n = a > 0$
- a) Z.z.: $\exists N \in \mathbb{N} \ \forall n \geq N : 2a > a_n > 0$

Da (a_n) konvergiert, können sir schreiben:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ n \ge n_0 \ : |a_n - a| < \varepsilon \tag{1}$$

O.B.d.A. können wir $\varepsilon < a$ definieren, also

$$|a_n - a| < \varepsilon < a \tag{2}$$

$$|a_n - a| < a \tag{3}$$

und durch Fallunterscheidung des Betrages können wir bestimmen, dass

i.
$$(a_n - a) < 0$$
, also

$$-a_n + a < a \tag{4}$$

$$-a_n < 0 \tag{5}$$

$$a_n > 0 \tag{6}$$

ii. $(a_n - a) > 0$, also

$$a_n - a < a \tag{7}$$

$$a_n < 2a \tag{8}$$

und daraus folgt, dass

$$2a > a_n > 0$$

b) Z.z.: $\lim_{n \to \infty} a_n^2 = a^2$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ : |a_n^2 - a^2| < \varepsilon \tag{9}$$

Es gilt

$$a_n^2 - a^2 \le |a_n^2 - a^2| \tag{10}$$

Wir betrachten $(a_n^2 - a^2)$ also Folge, die kann man schreiben als

$$(a_n^2 - a^2) = (a_n + a)(a_n - a)$$
(11)

Wir wissen, dass (a_n) konvergiert, also steht hier das Produkt einer beschränkten Folge mit einer Nullfolge, was wiederum eine Nullfolge ergibt.

D.h.,

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ : |a_n^2 - a^2| < \varepsilon \tag{12}$$

Somit gilt dann, dass $a_n^2 \to a^2$ konvergiert

6.3 Aufgabe 3: Goldener Schnitt

Geg.:

- Sei $(F_n)_{n\in\mathbb{N}}$ in \mathbb{R}
- $F_1 = 1$
- $F_2 = 1$
- $F_{n+2} = F_{n+1} + F_n$ für $n \in \mathbb{N}$
- a) Geg.:

$$\bullet \ x_n := \frac{F_{n+1}}{F_n}$$

Ges.: x_{n+1}

$$x_{n+1} = \frac{F_{n+2}}{F_{n+1}} \tag{13}$$

$$=\frac{F_{n+1}+F_n}{F_{n+1}}\tag{14}$$

$$=\frac{F_{n+1}}{F_{n+1}} + \frac{F_n}{F_{n+1}} \tag{15}$$

$$=1+\frac{F_n}{F_{n+1}} (16)$$

$$=1+\frac{1}{x_n}\tag{17}$$

Z.z.:

Weil $x_n > 0$, wissen wir, dass

$$1 + \frac{1}{x_n} > 1 \tag{18}$$

und weil $\frac{1}{x_n} = \frac{F_n}{F_{n+1}}$ und da jedes Glied der Folge kleiner oder gleich das letzte Glied ist, wissen wir auch, dass

$$\frac{F_n}{F_{n+1}} \ge 1 \tag{19}$$

also ist

$$x_n \in [1, 2] \ \forall n \in \mathbb{N} \tag{20}$$

b) Z.z.: $x_{2n} \ge x_{2n+2}$ und $x_{2n-1} \le x_{2n+1}$ Wir wissen, dass

$$x_{n+1} = 1 + \frac{1}{x_n} \tag{21}$$

$$x_{n+2} = 1 + \frac{1}{x_{n+1}} \tag{22}$$

$$= 1 + \frac{1}{1 + \frac{1}{x_n}}$$

$$= 1 + \frac{x_n}{1 + x_n}$$
(23)

$$=1+\frac{x_n}{1+x_n}$$
 (24)

Wir setzen 2n=m für Veranschaulichkeit und damit können wir zeigen, dass

$$x_{m+2} = 1 + \frac{x_m}{1 + x_m} \tag{25}$$

Mit diesem Ansatz können wir mit der vollständigen Induktion anfangen: Induktionsanfang:

Für n = 1:

$$x_2 \ge x_{2+2} \tag{26}$$

$$2 \ge \frac{5}{3} \tag{27}$$

Induktionsschritt:

Für $n \implies n+1$:

Aus der folgenden Annahme

$$x_{2n} \ge x_{2n+2} \tag{28}$$

lässt sich folgendes schliessen:

$$1 + \frac{x_{2n}}{1 + x_{2n}} \ge 1 + \frac{x_{2n+2}}{1 + x_{2n+2}}$$

$$\frac{x_{2n}}{1 + x_{2n}} \ge \frac{x_{2n+2}}{1 + x_{2n+2}}$$
(29)

$$\frac{x_{2n}}{1+x_{2n}} \ge \frac{x_{2n+2}}{1+x_{2n+2}} \tag{30}$$

und

$$x_{2n+2} = \frac{x_{2n}}{1 + x_{2n}} \ge \frac{x_{2n+2}}{1 + x_{2n+2}} = x_{2n+4}$$
(31)

Somit gilt die Aussage beweisen.

Nun betrachten wir $x_{2n-1} \le x_{2n+1}$

Für den folgenden Fall setzen wir 2n - 1 = m

Induktionsanfang:

Für n = 1:

$$x_1 \le x_3 \tag{32}$$

$$x_1 \le x_3 \tag{32}$$

$$1 \le \frac{3}{2} \tag{33}$$

Induktionsschritt:

 $F\ddot{u}r \ n \implies n+1$

$$x_{2n+1} \le x_{2n+3} \tag{34}$$

$$= 1 + \frac{1}{1 + \frac{1}{x_{2n-1}}} \le 1 + \frac{1}{1 + \frac{1}{x_{2n+1}}}$$

$$= \frac{x_{2n-1}}{x_{2n-1} + 1} \le \frac{x_{2n+1}}{x_{2n+1} + 1}$$
(35)

$$=\frac{x_{2n-1}}{x_{2n-1}+1} \le \frac{x_{2n+1}}{x_{2n+1}+1} \tag{36}$$

und weil $x \mapsto \frac{x}{x+1}$ monoton steigend ist, kann man den vorigen Schritt beweisen

c) in a) wurde, dass x_n sich immer im Interval I = [1, 2] befindet.

in b) wurde gleichzeitg gezeigt, dass für x_{2n} stets grösser ist als x_{2n+2} . Somit werden gerade Glieder der Folge x_{2n} immer kleiner, aber befinden sich immer noch im Intervall aus a). Sie müssen also gegen einen bestimmten Wert gehen.

Ebenso ist x_{2n+1} stets grösser als x_{2n-1} , bleibt aber dennoch im gleichen Intervall, muss also gegen einen Wert konvergieren.

d) Wir definieren

$$y: \lim_{n \to \infty} y_n = \lim_{n \to \infty} \tag{37}$$

$$y: \lim_{n \to \infty} y_n = \lim_{n \to \infty}$$

$$= 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$
(38)

und

$$z: \lim_{n \to \infty} = \lim_{n \to \infty} 1 + \frac{1}{x_{2n}}$$

$$= 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

$$(40)$$

$$=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}\tag{40}$$

Daraus können wir sagen:

$$\lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} x_{2n} \tag{41}$$

$$\lim_{n \to \infty} 1 + \frac{1}{x_2 n} = \lim_{n \to \infty} x_{2n} \tag{42}$$

$$1 + \frac{1}{x} = x \tag{43}$$

$$x + 1 = x^2 \tag{44}$$

$$0 = x^2 + x + 1 \tag{45}$$

$$\to x_1 = \frac{1 + \sqrt{5}}{2} \tag{46}$$

$$x_2 = \frac{1 - \sqrt{5}}{2} \tag{47}$$

Da unsere Folgen sich im Intervall I = [1, 2] befinden, ist

$$\phi = y = z = \frac{1 + \sqrt{5}}{2} \approx 1.61803398875$$

6.4 Aufgabe 4: Komplexe Grenzwerte

Geg.:

- Sei $(z_n)_{n\in\mathbb{N}}$ eine Folge komplexer Zahlen
- a) (z_n) konvergiert \iff $(\text{Re}(z_n))$ und $\text{Im}(z_n)$ konvergieren

" \(\sim \)" Nach Lemma 3.5 gilt für zwei konvergente Folgen, dessen Addition konvergiert, und zwar gegen den Grenzwert der einzelnen Folgen addiert.

$$\lim_{n \to \infty} (\operatorname{Re}(z_n)) + \lim_{n \to \infty} (\operatorname{Im}(z_n)) = \lim_{z_n} = \operatorname{Re}(z) + \operatorname{Im}(z)i = z$$
 (48)

" \Rightarrow " Durch Kontraposition: $(A \Longrightarrow B \iff \neg B \Longrightarrow \neg A)$

Konvergieren ($\text{Re}(z_n)$) oder ($\text{Im}(z_n)$) nicht, sind also divergent, so kann man nicht davon ausgehen, dass (z_n), da s nicht gilt, dass

$$\lim_{n\to\infty} ((\operatorname{Re}(\mathbf{z}_n)\operatorname{Re}(\mathbf{z}_n)\operatorname{Re}(\mathbf{z}_n)) + \operatorname{Im}(\mathbf{z}_n)) = \lim_{n\to\infty} (\mathbf{z}_n)^{(49)}$$

bzw. es gibt zumindest für mindestens einen der bieden keinen Grenzwert und somit auch nicht für

$$Re(z_n) + Im(z_n)i = z \tag{50}$$

b) $(z_n)_{n\in\mathbb{N}}$ konvergiert $\iff (z_n^*)_{n\in\mathbb{N}}$ konvergiert

" \Rightarrow " Wie wir in a) gezeigt haben, wenn Real- und Imaginärteil konvergieren, so konvergiert auch die Folge. Nach Lemma 3.5 gilt, dass $\lambda a_n \to \lambda a$

Hier ist $a_n := (\operatorname{Im}(z_n))$ und $\lambda = -1$. Somit konvergiert auch (z_n^+)

" \Leftarrow " Betrachte $(a_n) := (z_n^*)$ und betrachte a_n^* . Hier gilt das gleiche wie bei " \Rightarrow "

c) $(z_n)_{n\in\mathbb{N}}$ konvergiert $\Longrightarrow (|z_n|)$ konvergiert

Nach Lemma 3.5 und a), (z_n) konvergiert heisst, dass Real- und Imaginärteil konvergieren.

Da

$$|z| := \sqrt{x^2 + y^2}$$
 mit $Re(z) = x$ und $Im(z) = y$

Somit konvergiert aber auch $x^2 + y^2$ und damit $\sqrt{x^2 + y^2}$ gegen einen Grenzwert

d) \exists Folgen $(z_n)_{n\in\mathbb{N}}$ die divergent sind mit konvergentem Betrag

Wir definieren

$$(\operatorname{Re}(z_n)) := \begin{cases} 1 \text{wenn n ungerade} \\ -1 \text{wenn n gerade} \end{cases}$$

$$(\operatorname{Im}(z_n)) := \begin{cases} -1 \text{wenn n ungerade} \\ 1 \text{wenn n gerade} \end{cases}$$

Mit dieser Definition von (z_n) ist die Folge ersichtlich divergent, aber für $|z_n|$ gilt immer $|z_n| = |z_{2n+1}| = 1$