

생산계획 기말 발표

산업경영공학부 2017170813 정종혁 2017170820 민재원 2017170827 이병주 2018170807 남이량

Contexts

- 1. Inputs
- 2. Modeling
- 3. Updating
- 4. Impression

Problem Situation

- 1. MTO Process
- 2. MPS Batch or Chasing
- 3. MRP Batch or Lot for Lot

Problem Situation

- LT : Lead time / (#) : 개수

Problem Situation

	Alls						N	Ionth						
	예)	On- hand	1	2	3	4	5	6	7	8	9	10	11	12
_	Forecasts	160	100	100	100	120	150	150	150	200	200	200	200	200
A	Orders	100	120	80	50	30	20	10	0	0	0	0	0	0
В	Forecasts	200	150	150	180	180	180	180	230	230	230	230	230	230
В	Orders	200	180	120	80	50	30	20	0	0	0	0	0	0
	Forecasts	240	200	200	200	240	240	240	280	280	280	280	280	280
	Orders	240	200	180	120	80	40	10	0	0	0	0	0	0

• MRP record for PIB Input값

Olls	Month												
예)	On- hand	1	2	3	4	5	6	7	8	9	10	11	12
Gross requirement													
Scheduled receipts													
PIB	뒷장												
Net requirements													
Planned receipts													
Plan. order release													

각 item별 PIB

A:160

B:200

C: 240

D:220

E:300

F:360

G:280

H:400

1:350

J:300

Data form conversion

Data -> CSV or Excel -> DataFrame -> Modeling

		. 1						IV	ionin				-			
	예	l) [On- hand	1	2	3	4	5	6	7	8	9	0			160
l	A Fo	recasts	160	100	100	100	120	150	150	150	200	200	1	100	100	00
		Orders	100	120	80	50	30	20	10	0	0	0	2	80	40	10
		precasts	200	150	150	180	180	180	180	230	230	230	2			
ŀ	_	Orders orecasts		180	200	200	240	240	240	280	280	280	3	70	20	
		Orders	240	200	180	120	80	40	10	0	0	0	4	70	10	df a- nd maad aygal/nath . LMM input/a input ylayl)
Ľ		_		2.2		. 7 L							5	120	0	df_a= pd.read_excel(path + '생계_input/a_input.xlsx')
													6	100	0	o df_b= pd.read_excel(path + '생계_input/b_input.xlsx')
													7	120	0	o df_c= pd.read_excel(path + '생계_input/c_input.xlsx')
													8	60	0	MPS_a, MPS_b, MPS_c = MPS(df_a, 10, 120), MPS(df_b, 10, 120), MPS(df_c, 10, 120)
													9	70	0	
													10	80	0	0
													11	110	0	0
													12	100	0	0

week Forecast Orders Available(ending) ATP MPS

Data form conversion

Select Options(ss, Batch_size, Type of MPS, PIB)

							N	Ionth						
	예)	On- hand	1	2	3	4	5	6	7	8	9	10	11	12
_	Forecasts	160	100	100	100	120	150	150	150	200	200	200	200	200
A	Orders	100	120	80	50	30	20	10	0	0	0	0	0	0
В	Forecasts	200	150	150	180	180	180	180	230	230	230	230	230	230
B	Orders	200	180	120	80	50	30	20	0	0	0	0	0	0
	Forecasts	240	200	200	200	240	240	240	280	280	280	280	280	280
	Orders	240	200	180	120	80	40	10	0	0	0	0	0	0

각 item 별 PIB

A: 160, B: 200, C: 240, D: 220, E: 300,

F: 360, G: 280, H: 400, I: 250, J: 300

1		Safety Stock	Batch	Chasing	Initial Inventory
2	Α	10	120	N	160
3	В	10	120	N	200
4	С	10	120	N	240
5	D	0	0	Υ	220
6	E	0	0	Υ	300
7	F	0	0	Υ	360
8	G	0	0	Υ	280
9	Н	0	0	Υ	400
10	I	0	0	Υ	350
11	J	0	0	Υ	300

MPS Modeling - Chasing

```
def chasing_MPS(data):
    mps_df = pd.DataFrame(columns = ['week', 'Forecast', 'Order', 'Available(ending)', 'ATP', 'MPS'])
    mps df['week'] = data['week']
    mps_df['Forecast']=data['Forecast']
    mps df['Order'] = data['Orders']
    mps_df['Available(ending)'] = data['Available(ending)']
    for i in range(1,13):
        mps_df['Available(ending)'][i] = mps_df['Available(ending)'][i-1] - max(mps_df['Forecast'][i],
                                                                                   mps_df['Order'][i])
        if mps_df['Available(ending)'][i]<0:</pre>
            mps_df['Available(ending)'][i] = 0
        else:
            pass
        mps_df['MPS'][i] = mps_df['Forecast'][i] - mps_df['Available(ending)'][i-1]
        if mps_df['MPS'][i] < 0:</pre>
            mps_df['MPS'][i] = 0
        else:
            pass
        mps_df['ATP'][i] = mps_df['MPS'][i] - mps_df['Order'][i]
        if mps_df['ATP'][i] < 0:</pre>
            mps_df['ATP'][i] = 0
        else:
            pass
    return mps_df
```


MPS Modeling - Batch

```
def MPS(data, safety_stock, lot_size=0):
    data = data.fillna(0)
    max lot = max (max (data["Forecast"]), max(data["Orders"]) )
    if lot_size == 0 :
        lot_size = max_lot
    for i in range(0,len(data)-1):
        data["Available(ending)"][i+1]=data["Available(ending)"][i]-max(data["Orders"][i+1],data["Forecast"][i+1])
        if data["Available(ending)"][i+1] < safety_stock:</pre>
            data["MPS"][i+1]= lot size
        else:
            data["MPS"][i+1]=0
        data["Available(ending)"][i+1]=data["Available(ending)"][i]-max(data["Orders"][i+1],
                                                                         data["Forecast"][i+1])+data["MPS"][i+1]
    for i in range(1,len(data)):
        if i==1:
            if data["MPS"][i]==0:
                data["ATP"][i]=data["Available(ending)"][0]
            else:
                a=data["Orders"][i]
                for j in range(i+1,len(data)-1):
                    if data["MPS"][i] ==0:
                        a += data["0rders"][j]
                    else:
                        break
                data["ATP"][i]=data["Available(ending)"][0] + data["MPS"][i] -a
        else:
            if data["MPS"][i]==0:
                data["ATP"][i]=0
            else:
                a=data["Orders"][i]
                for j in range(i+1,len(data)):
                    if data["MPS"][j] ==0:
                        a += data["Orders"][j]
                    else:
                        break
                data["ATP"][i]= data["MPS"][i] -a
    return data
```

MRP Modeling - Level 0 product A,B,C

Choose the type of MPS method

-> Running MPS -> MPS = MRP's Gross requirement

MRP of A, B, C

```
def mrp_abc(MPS, lead_time) :
    mrp = pd.read_excel(input_file)
    mrp = mrp.fillna(0)
    #lead time 설정
    mrp["Gross Requirement"] = MPS["MPS"]
    for idx, i in enumerate(mrp["Gross Requirement"]) :
        if i != 0 :
            if idx - lead_time <= 0 :
                 mrp["Scheduled Receipts"][idx] = i
                 else :
                       mrp["Planned Receipts"][idx] = i
                       mrp["Planned Order Release"][idx - lead_time] = i
                       return mrp
```

MRP Modeling - Level 1 product without duplication D, J

D, J's MRP's Gross requirement = Level 0's Gross requirement * Required number of parts

```
def mrp_dj(MRP_a, inventory, safety_stock = 0, batch = 0) :
    mrp = pd.read_excel(input_file)
    mrp = mrp.fillna(0)
    mrp["Gross Requirement"] = MRP_a["Planned Order Release"]
    mrp["PIB"][0] = inventory
    lead time = 1
    for idx, i in enumerate(mrp["Gross Requirement"]) :
        if idx == 0:
            continue
        if i == 0 :
            mrp["PIB"][idx] = mrp["PIB"][idx-1]
        else :
            if mrp["PIB"][idx-1] - i >= safety stock :
                mrp["PIB"][idx] = mrp["PIB"][idx-1] - i
            else:
                if idx - lead time <= 0 :</pre>
                    mrp["Scheduled Receipts"][idx] = i - mrp["PIB"][idx]
                if batch != 0 :
                    mrp["PIB"][idx] = mrp["PIB"][idx-1] + batch - i
                    mrp["Planned Receipts"][idx] = batch
                else :
                    mrp["PIB"][idx] = 0
                mrp["Net Requirements"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Receipts"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Order Release"][idx - lead time] = mrp["Planned Receipts"][idx]
    return mrp
```

MRP Modeling - E

```
def mrp_e(MRP_a, MRP_b, inventory, safety_stock = 0, batch = 0) :
    mrp = pd.read_excel(input_file)
    mrp = mrp.fillna(0)
    mrp["Gross Requirement"] = MRP_a["Planned Order Release"] * 2 + MRP_b["Planned Order Release"] * 2
    mrp["PIB"][0] = inventory
    lead_time = 1
    for idx, i in enumerate(mrp["Gross Requirement"]) :
        if idx == 0:
            continue
        if i == 0 :
            mrp["PIB"][idx] = mrp["PIB"][idx-1]
        else :
            if mrp["PIB"][idx-1] - i >= safety_stock :
                mrp["PIB"][idx] = mrp["PIB"][idx-1] - i
            else :
                if idx - lead_time <= 0 :</pre>
                    mrp["Scheduled Receipts"][idx] = i - mrp["PIB"][idx]
                if batch != 0 :
                    mrp["PIB"][idx] = mrp["PIB"][idx-1] + batch - i
                    mrp["Planned Receipts"][idx] = batch
                else:
                    mrp["PIB"][idx] = 0
                mrp["Net Requirements"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Receipts"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Order Release"][idx - lead_time] = mrp["Planned Receipts"][idx]
    return mrp
```

Modeling by Python MRP Modeling - F

MRP of F

```
def mrp_f(MRP_d, MRP_h, inventory, safety_stock = 0, batch = 0) :
   mrp = pd.read_excel(input_file)
   mrp = mrp.fillna(0)
   mrp["Gross Requirement"] = MRP_d["Planned Order Release"] * 3 + MRP_h["Planned Order Release"] * 2
   mrp["PIB"][0] = inventory
   lead_time = 2
   for idx, i in enumerate(mrp["Gross Requirement"]) :
        if idx == 0:
            continue
       if i == 0 :
            mrp["PIB"][idx] = mrp["PIB"][idx-1]
        else:
            if mrp["PIB"][idx-1] - i >= safety_stock :
                mrp["PIB"][idx] = mrp["PIB"][idx-1] - i
            else:
                if idx - lead time <= 0 :</pre>
                    mrp["Scheduled Receipts"][idx] = i - mrp["PIB"][idx]
                if batch != 0 :
                    mrp["PIB"][idx] = mrp["PIB"][idx-1] + batch - i
                    mrp["Planned Receipts"][idx] = batch
                else :
                    mrp["PIB"][idx] = 0
                mrp["Net Requirements"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Receipts"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Order Release"][idx - lead_time] = mrp["Planned Receipts"][idx]
    return mrp
```

MRP Modeling - G

MRP of G

```
def mrp_g(MRP_d, MRP_c, inventory, safety_stock = 0, batch = 0) :
   mrp = pd.read_excel(input_file)
   mrp = mrp.fillna(0)
   mrp["Gross Requirement"] = MRP_d["Planned Order Release"] + MRP_c["Planned Order Release"] * 2
   mrp["PIB"][0] = inventory
   lead time = 1
   for idx, i in enumerate(mrp["Gross Requirement"]) :
       if idx == 0:
            continue
       if i == 0 :
           mrp["PIB"][idx] = mrp["PIB"][idx-1]
        else :
            if mrp["PIB"][idx-1] - i >= safety_stock :
                mrp["PIB"][idx] = mrp["PIB"][idx-1] - i
            else :
                if idx - lead_time <= 0 :</pre>
                    mrp["Scheduled Receipts"][idx] = i - mrp["PIB"][idx]
                if batch != 0 :
                    mrp["PIB"][idx] = mrp["PIB"][idx-1] + batch - i
                    mrp["Planned Receipts"][idx] = batch
                else:
                    mrp["PIB"][idx] = 0
                mrp["Net Requirements"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Receipts"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Order Release"][idx - lead time] = mrp["Planned Receipts"][idx]
    return mrp
```

MRP Modeling - H

MRP of H

```
def mrp_h(MRP_b, MRP_c, inventory, safety_stock = 0, batch = 0) :
   mrp = pd.read_excel(input_file)
   mrp = mrp.fillna(0)
   mrp["Gross Requirement"] = MRP_b["Planned Order Release"] + MRP_c["Planned Order Release"] * 2
   mrp["PIB"][0] = inventory
   lead time = 2
   for idx, i in enumerate(mrp["Gross Requirement"]) :
        if idx == 0:
            continue
        if i == 0 :
            mrp["PIB"][idx] = mrp["PIB"][idx-1]
        else :
            if mrp["PIB"][idx-1] - i >= safety_stock :
                mrp["PIB"][idx] = mrp["PIB"][idx-1] - i
            else :
                if idx - lead time <= 0 :</pre>
                    mrp["Scheduled Receipts"][idx] = i - mrp["PIB"][idx]
                if batch != 0 :
                    mrp["PIB"][idx] = mrp["PIB"][idx-1] + batch - i
                    mrp["Planned Receipts"][idx] = batch
                else :
                    mrp["PIB"][idx] = 0
                mrp["Net Requirements"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Receipts"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Order Release"][idx - lead_time] = mrp["Planned Receipts"][idx]
    return mrp
```

MRP Modeling - I

MRP of I

```
def mrp_i(MRP_h, inventory, safety_stock = 0, batch = 0) :
   mrp = pd.read_excel(input_file)
   mrp = mrp.fillna(0)
   mrp["Gross Requirement"] = MRP_h["Planned Order Release"] * 3
   mrp["PIB"][0] = inventory
    lead time = 1
    for idx, i in enumerate(mrp["Gross Requirement"]) :
        if idx == 0:
            continue
        if i == 0 :
            mrp["PIB"][idx] = mrp["PIB"][idx-1]
        else :
            if mrp["PIB"][idx-1] - i >= safety_stock :
                mrp["PIB"][idx] = mrp["PIB"][idx-1] - i
            else:
                if idx - lead time <= 0 :</pre>
                    mrp["Scheduled Receipts"][idx] = i - mrp["PIB"][idx]
                if batch != 0 :
                    mrp["PIB"][idx] = mrp["PIB"][idx-1] + batch - i
                    mrp["Planned Receipts"][idx] = batch
                else :
                    mrp["PIB"][idx] = 0
                mrp["Net Requirements"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Receipts"][idx] = i - mrp["PIB"][idx-1]
                mrp["Planned Order Release"][idx - lead_time] = mrp["Planned Receipts"][idx]
    return mrp
```

Printing - Put in the path of dataset

```
def print_all(path) :
   info_data = pd.read_excel(path + '/data_input.xlsx')
   info = info_data.rename(index={0: 'A', 1: 'B', 2: 'C', 3 : 'D', 4 : 'E', 5: 'F', 6: 'G', 7: 'H', 8:'I' ,9:'J'} )
   df_a= pd.read_excel(path + '/a_input.xlsx')
   df_b= pd.read_excel(path + '/b_input.xlsx')
   df_c= pd.read_excel(path + '/c_input.xlsx')
   input_file = path + "/d_input.xlsx"
   if info["Chasing"]["A"] == "N" :
       MPS_a = MPS(df_a, info["Safety Stock"]["A"], lot_size = info["Batch"]["A"])
       MPS_b = MPS(df_b, info["Safety Stock"]["B"], lot_size = info["Batch"]["B"])
       MPS_c = MPS(df_c, info["Safety Stock"]["C"], lot_size = info["Batch"]["C"])
   else :
       MPS a = MPS(df a)
       MPS_b = MPS(df_b)
       MPS_c = MPS(df_c)
    print(color.BOLD + "MPS of A" + color.END)
   print(tabulate(MPS_a, headers='keys', tablefmt='pretty', showindex=False))
   print(color.BOLD + "MPS of B" + color.END)
   print(tabulate(MPS_b, headers='keys', tablefmt='pretty', showindex=False))
   print(color.BOLD + "MPS of C" + color.END)
   print(tabulate(MPS_c, headers='keys', tablefmt='pretty', showindex=False))
   input_file = path + "/d_input.xlsx"
```

check the available order

주어진 MPS 상황에서 최대로 받을 수 있는 Order 수 산출

```
In [66]:

def order_okay(MPS, order, week):
    cum_ATP = 0
    i = 0
    while i <= week:
        cum_ATP += MPS["ATP"][i]
        i += 1

if cum_ATP >= order:
    print(color.BOLD + "Order can be accepted." +color.END)
    print("Availabe Order is " + str(cum_ATP) + " 입니다.")

else:
    print(color.BOLD + "Order can not be accepted." +color.END)
    print("Availabe Order is " + str(cum_ATP) + " 입니다.")

In [67]: order okay(MPS a, 300, 4)
```

Order can not be accepted. Availabe Order is 230.0 입니다.

Result

Modeling process

Updating

Updating

Order Changes or Batch Size Changes

-> Need MPS, MRP changes

	1		Safety Stock	Batch	Chasing	Initial Inventory
	2	Α	10	120	N	160
	3	В	10	120	N	200
	4	С	10	120	N	240
	5	D	0	0	Υ	220
	6	E	0	0	Υ	300
	7	F	0	0	Υ	360 -
	8	G	0	0	Υ	280
	9	Н	0	0	Υ	400
_	10	I	0	0	Υ	350
	11	J	0	0	Υ	300

	Α	В	С	D	E
1		Safety Stock	Batch	Chasing	Initial Inventory
2	Α	10	200	N	160
3	В	10	0	Υ	200
4	С	10	280	N	240
5	D	0	250	N	220
6	E	0	0	Υ	300
7	F	0	0	Υ	360
8	G	0	<u>650</u>	N	280
9	Н	0	0	Υ	400
10	I	0	0	Υ	350
11	J	0	0	Υ	300
12					
13					
1/					

Updating Updating

EXCEL's Result
=
PYTHON's Result

Impression

IE Challenge

1. Connectivity

2. BOM Complexity

3. Importance of Forecast

