Double dissociation of fMRI activity in caudate nucleus supports human de novo motor skill learning

Yera Choi, Emily Yunha Shin, Sungshin Kim*

696.09/AA37

Introduction

- Motor skill learning is a complex process of generating new movement patterns reinforced by evaluative feedbacks to perform a motor task better, faster and more accurately
- The separate cognitive/sensorimotor loops of the basal ganglia (BG) play differential roles in learning motor skills
- Recent non-human primate studies suggest rostro-caudally separated circuits in the caudate nucleus for learning objectvalue association (object skill learning)
- In human de novo motor skill learning, little has been known about the exact role of BG, especially caudate nucleus, and its interaction with cortical regions during the course of learning

Research questions

- Is the human caudate nucleus functionally separated for the early and advanced stages of *de novo* motor skill learning, as suggested by previous non-human primate studies on object skill learning?
- How can the cortical-caudate interaction predict individual performance of motor skill learning?

Experimental design

- Participants: 30 young healthy right-handed (12 females)
- Task: To move cursor to reach a target on 5 x 5 grid, using MR-compatible data glove with 14 sensors measuring hand joint angles
- 14D vector (h) linearly mapped onto 2D cursor position (p) using PCA (Ranganathan et al., 2013)
- Targets: Presented every 5 seconds at one of 4 grid corners
- Mappings: First 2 PCs used as either X or Y, with X-Y combinations switched for Practiced and Unpracticed mappings (counterbalanced)
- e.g., Practiced (X: 1st, Y: 2nd PC), Unpracticed (X: 2nd, Y: 1st PC)
- Learning schedule
- Day 1: Calibration, Pre-Training, rs-fMRI, fMRI 1 ("Early", 97 trials x 7 runs, Practiced/Unpracticed)
- Days 2-6: Behavior Training 1-5 (Practiced only)
- Day 7: fMRI 2 ("Late", 97 trials x 7 runs, Practiced/Unpracticed), rs-fMRI

Behavioral analysis

- Participants successfully acquired the skill to the plateau level
- Reward rate per block (12 trials): proportion of time rewarded (i.e., target in red)

GLM-analysis

Neural correlates of reward modulation in early and advanced stages of learning

- Whole-brain voxel-wise GLM analysis with a parametric regressor modulating reward rate estimated every 1 second (uncorrected p < 0.001, cluster > 30 voxels)
- Regions showing positive reward modulation in Early and Late stages

Conetusion

- Double dissociation of responses to reward in caudate nucleus in early and advanced stages of learning (first demonstrated in human de novo motor skill learning using fMRI)
 - In line with studies reporting learning-related rostro-caudal transition of activities in BG including caudate nucleus (e.g., Kim et al., 2015)
- Better skill performance with (1) weaker FC between rostral "goal-directed" caudate head and PFC and (2) stronger FC between caudal "automatic" caudate tail and M1/S1
- **Future works**: TMS-fMRI study selectively targeting DLPFC in early and M1 in advanced stages of learning to perturb early skill acquisition and later skill consolidation

Resting-state finiti analysis

- Individual performance of motor skill learning (overall reward rate for Practiced mapping) is predicted by resting-state functional connectivity (FC) prior to learning
- Lower caudate head-DLPFC FC

 → better performance
- Higher caudate tail-left M1/S1 FC ↔ better performance

Gradual transition of reward modulation in the caudate nucleus during *de novo* motor skill learning

- Higher reward modulation in Early (blue) vs. Late stage (red)
- - Transition of reward modulation from rostral to caudal caudate
 - Significant transition in caudate head/tail only for Practiced mapping

References

Ranganathan, R., Adewuyi, A., & Mussa-Ivaldi, F. A. (2013). Learning to be lazy: exploiting redundancy in a novel task to minimize movement-related effort. Journal of Neuroscience, 33(7), 2754-2760.

Kim, H. F., & Hikosaka, O. (2015). Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain, 138(7), 1776-1800.

Acknowledgments

This study was supported by IBS-R015-Y1 from the Institute for Basic Science. Neuroimaging was performed at the Center for Neuroscience Imaging Research and supported by the Institute for Basic Science and Sungkyunkwan University.

Contact | clmnlab@gmail.com