EXPERT SYSTEM FOR THE DESIGN OF SHELL AND TUBE HEAT EXCHANGER WITHOUT PHASE CHANGE

by
AVINASH C. BHASKARE

ME TH ME/1986/M 1986 BH69e

M BHA

EXP

DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR

AUGUST, 1986

EXPERT SYSTEM FOR THE DESIGN OF SHELL AND TUBE HEAT EXCHANGER WITHOUT PHASE CHANGE

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

by
AVINASH C. BHASKARE

to the

DEPARTMENT OF MECHANICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

AUGUST, 1986

CENTRAL LIBRAIL

ME-1886-M-BHA-EXF

5 2 6 6 7 6 C

CERTIFICATE

This is to certify that the work entitled 'Expert System for the Design of Shell and Tube Heat Exchanger Without Phase Change' by Avinash C. Bhaskare' has been carried out under our supervision and has not been submitted elsewhere for the award of a degree.

Dr. Rajeev Sangal

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur, India.

August 1986

Dr. Keshav Kant Assistant Professor Department of Mechanical Engineering

Indian Institute of Technology Kanpur, India.

TO MY

PARENTS

<u>ACKNOWLEDGEMENTS</u>

I wish to express my deep sense of gratitude to Dr. Keshav Kant and Dr. Rajeev Sangal for giving me this opportunity to work under their able guidance, for their out keen interest and encouragement through the course of this study.

I am grateful to Dr. H. Karnick and Dr. M.S. Kalra for their moral support and encouragement during my stay over here.

I thank my friends M/s Sanjay, Prakash, Shyam, Girish for their invaluable help and Dinesh, Ravi, Ranganath, Pankaj, Gejji and all members of MMM for making my stay over here memorable.

I would like to express my appreciation to Mr. B.K. Jain for tracings, Mr. Satya Narayan Pradhan for the excellent typing and Mr. R.Y. Mishra for the cyclostyling.

Avinash C. Bhaskare'

CONTENTS

			PAGE
ABSTRAC	Γ		v
NOMENCLATURE			vi
LIST OF	FIGURES		xiii
LIST OF	TABLES		xiii
Chapter	1	INTRODUCTION	1
	1.1	Expert Systems and AI	1
	1.2	Structure of the Expert System	2
	1.3	Present Work	4
	1.4	Organisation of the Thesis	4
Chapter	2	AN EXPERT SYSTEM SHELL	5
	2.1	Review of Logic Programming	5
	2.2	Present System at the User Level	9
	2.3	Defining Rules and Facts	13
	2.4	Working of the Present System	15
Chapter	3	METHODOLOGY FOR THE DESIGN OF SHELL AND TUBE HEAT EXCHANGERS	18
	3.1	Introduction	18
1	3.2	Logic of the Design Method	19
	3.3	Approximate Sizing of the Heat Exchanger	24
	3.4	Shell Side Parameters	27
	3.5	Tube Side Parameters	46

			PAGE
Chapter	4	RULE SETS FOR THE EXPERT SYSTEM	50
	4.1	Flow Chart for the Design	50
	4.2	Generating the Query Tree	76
	4.3	Structuring of the Rules	77
	4.4	Different Predicates Used	79
	4.5	Kinds of Rules	80
	4.6	Encoding a New Rule	81
Chapter	5	RESULTS AND DISCUSSION	84
	5.1	Using the Package	84
	5.2	Sample Sessions	92
	5.3	Conclusions	93
		References	95
		Appendix Sample Sessions I,II and III	97

ABSTRACT

An expert system for the thermal design of single phase flow shell and tube heat exchangers (STHE) has been developed. The system is highly interactive which gathers information about the problem by asking the user necessary questions, and giving him help and explanation if required.

This expert system is based on logic programming where knowledge is seperate from control. The inference algorithm used in the expert system shell is SLD-resolution. The query tree is developed by this resolution and depends upon user response.

The design process of STHE has been studied and has been transformed into a knowledge base comprising of rules, facts, questions and explanations. The process of encoding knowledge into rules is also discussed. The modified Bell-Delaware method is used for the shell side analysis and Kern's method for the tube side analysis. The shell side analysis considers the non-ideal cross flow as it occurs in an actual STHE and suitable correction factors are calculated to take into account the deviation from the ideal cross flow.

NOMENCLATURE

a Constant

A Total heat transfer area, equation (3.1b), m²

A* Constant, equation (3.12), mm⁻¹

 $(A_0)_{req}$ Actual area required for heat transfer, equation

 $(3.90), m^2$

 $A_{ ext{tot}}$ Total flow area available on the tube side,

equation (3.76), mm²

 $A_{ extsf{tp}}$ Flow area per pass required to maintain a velocity

 v_+, ms^{-1} on the tube side , equation (3.77), mm^{-1}

b Constant

 B_c Segmental baffle cut as a percent of D_s , equation

(3.22)

 C_1 Tube field layout constant, equation (3.12)

C_{br}, C_{bp} Constants

Cp, Cp, Specific heat of shell and tube side fluids,

equation (3.1a) $J kg^{-1}K^{-1}$

D_{ctl} Tube bundle pitch circle diameter, equation

(3.17) mm

Dotl Outside diameter of the tube bundle, equation

(3.37), mm

D_s Shell diameter, equation (3.11), mm

D₊ Tube diameter, mm

 $D_{\rm w}$ Equivalent hydraulic diameter, equation (3.32)mm

e Constant

F Log mean temperature difference correction factor, equation (3.5)

Fraction number of tubes in pure cross flow between baffle tips, equation (3.28)

f; Ideal tube bank friction factor, equation (3.67)

 F_{shp} Ratio of bundle bypass area S_b to overall cross flow area S_m , equation (3.39)

 F_W Fraction number of tubes in the baffle window, equation (3.27)

h_{sideal} Ideal tube bank heat transfer coefficient, equation (3.60), $\text{Wm}^{-2}\text{K}^{-1}$

 h_s, h_t Heat transfer coefficients for shell side and tube side fluids, equations (3.66) and (3.87), $Wm^{-2}K^{-1}$

J_b Bundle bypass correction factor for heat transfer, (3.52)

J_c Segmental baffle window correction factor for heat transfer, equation (3.47)

j_i Ideal tube bank heat transfer factor, equations (3.57), (3.58), (3.59)

J_r Heat transfer correction factor for adverse temperature gradient in laminar flow, equations, (3.54) and (3.56)

 k_s, k_t Thermal conductivity of the shell and tube side fluid, $Wm^{-1}K^{-1}$

```
Tube wall thermal conductivity, Wm^{-1}K^{-1}
k<sub>w</sub>
           Tube bundle to shell diametral clearance, equations
L<sub>bb</sub>
           (3.13) through (3.16),mm
           Central baffle spacing, equation (3.21), mm
Lbc
           Flow direction distance between two tubes,
Lpp
           equation (3.33),mm
           Half of tube lane partition, equation (3.32),mm
Lpl
Ls
           Length of the shell, equation (3.11), mm
           Diametral shell to baffle clearance, equation
L<sub>sb</sub>
           (3.40) mm
           Effective tube length for heat transfer, equation
Lta
           (3.11). mm
           Diametral tube to baffle hole clearance, equation
Ltb
           (3.43). mm
           Nominal tube length, equation (3.18), mm
Lto
           Tube pitch, equation (3.12a),mm
Ltp
           Effective tube pitch, equation (3.25),mm
L_{\text{tp}_{\text{eff}}}
           Tube sheet thickness, equation (3.19),mm
Lts
           Effective distance of cross flow penetration,
L_{wp}
           (3.34), mm
           Mass velocity of the shell side and tube side
m_{c}, m_{+}
           fluids, equations (3.44) and (3.81). Kgm^{-2}s^{-1}
           Mass flow rates of shell side and tube side fluid,
Ms, Mt
```

Total number of baffles, equation (3.20)

 $kg s^{-1}$

 N_{b}

 $N_{\rm C}$ Number of tube rows crossed in the heat exchanger, equation (3.55) Number of sealing strip pairs, equation (3.52) Nes Total number of tubes, equation (3.79) N_{+} N_{tcc} Number of effective tube rows crossed between baffle tips. equation (3.33) N_{tcw} Effective tube rows crossed in one baffle spacing, equation (3.35) N_{tp} Number of tube side passes, equation (3.78) Number of tubes in the segmental baffle window, N_{tw} equation (3.30) Constant. equation (3.51) p P Thermal effectivess, equation (3.7) Prs,Pr+ Prandtl number of shell side and tube side fluids, equations (3.46) and (3.83)Heat duty of the heat exchanger, equation (3.1a), W 'Q R Heat capacity ratio, equation (3.6) R_{b} Bundle bypass correction factor for pressure drop, equation (3.53) Reynolds number of shell side and tube side fluids, Re, Re, equation (3.45) Rf, Rft Fouling factors for heat transfer, equation (3.2), $m^2 K W^{-1}$ Inside and outside radius of the tubes, equation

r;,r

(3.2), mm

```
R<sub>1</sub> Baffle leakage correction factor for pressure drop, equation (3.51)
```

r_{lm} Constant, equation (3.48)

 r_s, r_{ss} Constants, equation(3.49) and (3.52)

R_S End zone correction factor for pressure drop, equation (3.56a)

 S_b Bundle to shell bypass area within one baffle spacing, equation (3.36), mm²

S_m Cross flow area at shell centreline within one baffle spacing, equation (3.25),mm²

Shell to baffle leakage area, equation (3.41),mm²

S_{tb} Tube to baffle hole leakage area per baffle, equation (3.42), mm²

S_W Net cross flow area through one baffle window, equation (3.31), mm²

S Gross window flow area without tubes in one window, equation (3.26), mm^2

 $S_{\rm wt}$ Segmental baffle window flow area occupied by $N_{\rm t}$ tubes, equation(3.29), mm²

T Temperature, equation (3.63),K

Tc,,Tc Inlet and outlet temperatures of the fluid, equation (3.4), °C

Thin, Thout equation (3.4), C

 T_{si}, T_{so} Inlet and outlet temperatures of the shell side fluid, equation (3.5), $^{\circ}C$

 $T_{s_{av}}$, $T_{t_{av}}$ Average shell side and tube side temperatures, equation (3.62), ${}^{\circ}C$

 T_{ti} , T_{to} Inlet and outlet temperature of the tube side

fluid, equation (3.5), OC

 t_{t} Tube wall thickness, mm T_{w} Tube wall temperature, equation (3.62), ${}^{o}C$

U_O Overall heat transfer coefficient, equation

 $(3.2), Wm^{-2}K^{-1}$

 v_t Velocity of the tube side fluid inside the tubes, equation (3.77) ms⁻¹

GREEK LETTERS

d Constant

△ p_{bi} Ideal tube bank pressure drop, equation (371) kPa

△ P_C Pressure drop in pure cross flow, equation

(3.72), kPa

 \triangle Pressure drop in end zones, equation (3.51a)kPa

 Δ P_r Pressure drop associated with change of direction

in the tube side passes, equation (3.89), kPa

 ΔP_{S} Total shell side pressure drop, equation

(3.66a)kPa

 Δ P_t Pressure drop inside tubes, equation (3.89), kPa

 Δ P_{total} Total tube side pressure drop, equation (3.89b), kPa

 Δ T_s, Δ T_t Absolute temperature difference between inlet and outlet temperatures for the shell and tube side fluids, equation (3.1b), $^{\circ}$ C

Δ T _{LM}	Log	mean	temperature	difference,	equation
	(3.4	4),°C			

 $\eta_{\text{s}}, \eta_{\text{t}}$ Absolute viscosity of the shell side and tube side fluid at their respective average temperature, Cp

 η_{SW} Absolute viscosity of the shell side fluid at the tube wall temperature, equation (3.61)

 $\Theta_{\rm ds}$ Centriangle of baffle cut, equation (3.23), rad $\Theta_{\rm ctl}$ Upper centriangle of baffle cut, equation

(3.24), rad

 Θ_{tp} Tube layout angle, deg

 $ho_s,
ho_t$ Density of the shell side and tube side fluids, kg m⁻³

ABBREVIATIONS

AI Artificial Intelligence

HE Heat Exchanger

LMTD Log Mean temperature difference

MTD Mean temperature difference

STHE Shell and tube heat exchanger

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
3.1	Nomenclature for shell and tube heat exchangers	23
3.2	Pitch layout angle	30
3.3	Bundle geometry	30
4.1	Flow chart for approximate design of STHE	58
4.2	Flow chart for the design of STHE	60
4.3	Tree structure for thedesign of STHE	763
5.1	Methodology for using the system	85
5	LIST OF TABLES	
	Mandatory questions	90
5.2	Iterative procedure	92

CHAPTER 1

INTRODUCTION

1.1 EXPERT SYSTEMS AND AI (Sangal, 85):

It has been the aim of Artificial Intelligence (AI) to develop systems which behave like human beings. This means inventing machines which can interact like the human being, i.e. ask questions, gain knowledge and tell what they are doing.

Expert systems are problem-solving programs that solve important problems which are generally solved by human experts. In this thesis, we will be dealing with an expert system for the design of Heat Exchangers.

By looking at the scenario in which the human expert performs, one can say the following about an expert system. An expert system, besides having the ability to solve problems must engage in a dialogue with the user to acquire the relevant details of the problems, be able to explain its problem solving process, be easily modifiable to take care of new discoveries, and be able to deal with partial information.

Recently, several factors have motivated research on expert systems. These systems are designed to manipulate and explore symbolically expressed problems that are

difficult for human researchers to solve. A problem, suitable for building an expert system is one which has a number of possible solutions. As the number of solutions increase, it becomes difficult for a human being to discover the correct solutions. The ability of AI systems to deal with larger solution spaces is important in that it extends the type of problem that can be solved with the same conceptual tools.

Most notably, expert systems promise to solve hard problems that require the best (most expensive) human expertise. The very codification of expertise insuitable form for an expert system can lead to new insights into the structure of the domain, or new ideas about how to teach it.

A system is considered an expert system if it meets the following criteria:

- 1. The system gives correct answers or gives useful advice.
- 2. Interact with the user to acquire relevant data.
- 3. Justify its solutions.
- 4. Explain why it has asked a question, i.e., the line of reasoning being followed.

1.2 STRUCTURE OF THE EXPERT SYSTEM:

Building an expert system by writing a large program that incorporates all the domain knowledge prescriptively (as procedure, program steps, etc.) does not work. Such a system lacks flexibility, can not deal with partial

information easily and, is not easy to change.

In the present expert system, the knowledge about the domain of the problem (design of STHE) is different from the procedure of how to apply the knowledge. The knowledge is represented as rules and facts, and the 'expert system shell' is an intricate meachanism which decides how to select and apply the rules. This is essentially the rule based expert system'.

While developing an expert system, as mentioned earlier, enormous amount of knowledge in terms of facts and rules is required. The present work is an attempt to develop an expert system for the design of Heat Exchange Equipment.

Srinivas (1985) initiated the work in this area, and formulated rules for the selection of Heat Exchange Equipment.

It can be seen from the literature available on the design of HE that a very large number of decisions involving logic have to be made in the actual design, e.g. deciding the type of the bundle, the type of pitch layout etc.

Many times, some parameters may already be known to the designer and therefore, need not be computed. The final design is obtained, basically by trial and error until certain criteria are satisfied. There is no unique solution to the design problem. Whichever (solution) suits the needs of the user is ultimately the chosen solution. All the necessary design information needs to be structured

properly to develop an expert system.

1.3 PRESENT WORK:

The objective of the present work is to develop an expert system for the thermal design of shell and tube heat exchangers, without phase change.

1.4 ORGANISATION OF THE THESIS:

Chapter 2 discusses the Expert System Shell which is the basis for the Expert System developed during the course of present work. Chapter 3 gives all the equations and the procedure for the design of shell and Tube Heat Exchangers. Chapter 4 discusses the structuring of the knowledge base used in the expert system developed. Chapter 5 discusses how to use the system and the results obtained for a given situation including the sample sessions. Limitations of the system and suggetions for future work are also recorded.

CHAPTER 2

AN EXPERT SYSTEM SHELL

- 2.1 REVIEW OF LOGIC PROGRAMING:
- 2.1.1 Programing Language:

The programing language used here is LISP. LISP has the following distinct advantages over other languages (Avron, 1982).

- a. Applicative Style- The data structure is a list. Instead of being described as a sequence in which operations are performed, Even a LISP environment is a large LISP program. successively.
- b. Programs as Data- The other unique characteristics of LISP is that the programs are represented the same as data. LISP program. Even a LISP environment is a large.
- c. Association LISP symbols namely atoms can have one or several properties associated with different property attributes.
- 2.1.2 Predicates, Formula, Rule, Pattern Matching:
- I. Pattern Matching:

The database can be distinctly divided into 2 types:

- a. Pattern which can have zero or more occureances of the wild card and
- b. A data item or a fact which does not have a wile card

where a wild card is a variable which can take any value. Example of a Robot trying to dig a treasure (Nilsson, 1979) Goal seeking example of MARK.

MARK is a robot for finding out the buried treasure. We can define some patterns and facts for this example.

(1) (At < position>)
 (Have shovel)
 (Have map)
 (Treasure-site < position>)
 (Inview treasure)

are some examples of facts.

'At' is a predicate which has one argument i.e. position,
'Have' is a predicate which can have either'shovel' or 'map'
or any other thing as its argument. We say a pattern matches
a fact if we are able to find a value for the wild card, such
that after substituting this value in the pattern, we are
able to get the fact. e.g. if we have a fact as.

- (2) (Have shovel)
 and the pattern is
- (3) (Have ?what)

Clearly, the variable ? what matches the fact, and the corresponding match is 'shovel' matching of a fact is always a corresponding fact; a pattern may match with a fact or another pattern also.

Pattern matching with more than or one variable can be illustrated by the following example:

- (4) (Colour apple ?X)
- (5) (Colour ?Y red)

 The patterns (4) and (5) match the fact (3)
- (6) (Colour apple red) and the corresponding match of X and Y variables can be given as
- (7) ((? X Red) (?Y apple)):— ALIST

 Alist is a list of lists containing a variable and its corresponding match from the fact.

It may be noted that a variable can match with another variable also.

- e.g. the pattern (4) (Colour ?X ?Z) can match with another pattern (5) (Colour ?Y red) giving an ALIST as-
- (8) ((?X ?Y) (?Z red))

A variable is internally represented as a list (\$ var X).

This is done by the Read macro /? which automatically returns a list of \$ VAR and the atom following '?'. We can also have patterns that can match with several facts.

- e.g. a pattern (9) (Colour (fruit ?X) ?Y) can match with
- (10) (Colour (fruit apple) red)
- (11) (Colour (fruit mango) yellow) etc.

II. Rule

Now going back to our example of MARK, a robot to dig treasure. We define a Rule as an assertion of the type

(12)
$$B \leftarrow A1, A2, A3, A4 \dots AN$$

where Al, A2, A3 AN are called as atomic formulas Rule
12 states that if the atomic formulae Al to AN are true then
B is true.

III. Atomic Formula:

An atomic formula is a predicate, applied to their respective arguments, of which at least one is a variable; In our example, since MARK is a treasure seeking Robot, he is under the control of a top level action called as 'find treasure'.

We can have different rules as

(13) (have ?X)
$$\leftarrow$$
 (Inview ?X)

(14) (excavate
$$?X$$
) \leftarrow (Treasuresite $?X$)

(15) (pick-up
$$?X$$
) \leftarrow (inview $?X$)

(16) (read
$$?X$$
) \leftarrow (have ?map)

and fact like

(17) (have map)

Then the goal given as (read ?X) will infer that the Robot has to (read map) since ?X matches with map from the database (17)

After reading the map, he will come to know the treasure site \longrightarrow B.

Applying rule (14) gives him a command to excavate the treasure site B.

After exacavating treasuresite B, the 'treasure' will be inview. i.e. a new fact (inview treasure) will be generated and applying rule 13, one can infer that he has treasure i.e. (have treasure).

The above mentioned actions are done in the 'Expert system shell'.

- IV. Types of Variables (Avron. 1982):
- Open Variable- a variable which matches to any element of a list and binds itself to that matching value.
- Closed Variable A variable may already have a binding, as above, and will match henceforth only to that particular value.
- Restricted Variable— A variable may have restrictions placed on it, These restrictions are procedurally attached to it, in some way, for e.g. a Boolean predicate must be TRUE for the variable to match.
- 4. Segment Variables They match to a sublist of any length, rather than to an element.
- 2.2 PRESENT SYSTEM AT THE USER LEVEL:
- 2.2.1 Types of Data Structures.

The data structures in this expert system shell are of the following type (Sangal, Forthcoming)

a. Facts- A predicate can have one or more facts stored as property list. A fact is defined as an unconditionally true assertion hence it is a Rule with a nil antecedent.

The syntax for fact is;

(((< predicate
$$\arg_{11}$$
 \arg_{1n} >) NIL Identifier 1) ((< predicate \arg_{21} ... \arg_{2n} >) NIL Identifier 2)

. . .

((predicate $arg_{m1} \dots arg_{mn} >$) NIL Identifier m))

where The arguments are just atoms and not variables. When a goal is given to the system, a fact is generated if rules that are applied succeed, and when the same goal is given once again, the system gets the values directly from the facts, thus saving the task of applying rules every time a same goal is given. Any inference is stored as a fact only if the context for the predicate is declared as True, or the inference has been made by asking the question.

b. Rules:

As seen earlier, a rule is an assertion of the form

$$B \leftarrow A_1 A_2 \cdots A_n$$

i.e. B can be inferred if the atomic formulas $A_1, A_2, \dots A_n$ are true.

A rule for a predicate is stored as a property list under the following syntax:

 $((A_{m1})(A_{m2})\dots(A_{m}))$ Identifier m)) where at least one of the argnment should be a variable.

 $1 \longrightarrow$ no of arguments

 $I \longrightarrow$ no of rules.

P = no of atomic formulas that have to
be satisfied in order that the consequent of
of the rule can be inferred.

c. Context (Avron, 1982)

The huge data base of the system is divided into sets called contexts. The basic idea is to repace the global database with a tree of distinct data bases called contexts the contexts are arranged in a tree because each tree represent a differnt state of world. As this state of world changes, a

context naturally gives rise to 'descendent' contexts which differ slightly. Most of the information in a given context will be the same as in the parent context just above it, so to save space, only the differences are stored. A process at any given time uses one specific context as its database the current context.

When a context for a predicate is declared true, the inference is stored as a fact for that predicate.

d. Question:

A predicate may have a question stored under the property list. Question is stored as a list and when the question has to be asked, a function 'ASK-USER' gets the question and prints it, and further waits for the response from the user.

When the user types the response, depending upon the answer given,

- (1) If the response is 'Dontknow 'a tag 'T' is set under the property DONTKNOW, and this question will not be asked next time.
- (2) If the response is 'Help', it prints out the various commands that are available, like what, Dontknow etc.
- (3) If the response is 'Why', it types out the rule that has issued the current question.
- (4) If the response is 'What', it types out the exapanation

available for that predicate. Explanation is usually a form of standard value table, or guidelines on what answer should be given .

(5) If the response is none of the above, then it takes it as the answer to the question and then stores it under the property fact.

e. Question-Proc:

If the question cannot be asked in a simple sentence, and require some procedure to be called we can use a question procedure.

f. Action-Predicate:

An action predicate when applied changes the database.

2.3. DEFINING RULES AND FACTS:

2.3.1 Facts:

As stated earlier a fact is an assertion which is always true for e.g. we know that the approximate film coefficients and fouling resistances for different types of fluids are as follows:

Type	h, W/m ² K	$R_{f}, m^2 K/W$
1. Light liquid	1750.0	0.15×10^{-3}
2. Medium Liquid	1000.0	0.20X10 ⁻³
3. Heavy liquid being cooled	300.0	0.15X10 ⁻³
4. Heavy liquid being heated	500.0	0.15X10 ⁻³

We can have predicate named App-film-foul which has the following arguments-

(App-film- foul <type of the fluid> < value of film coefficient>
<value of Fouling Resistance>)

Hence the above table can be stored as a fact using the syntax of facts as follows,

(Defprop App-film-foul

Liquid being heated is the cold-fluid, and liquid being cooled is the hot-fluid hence the type of fluid is abbreviated accordingly.

2.3.2 Rules:

We know that a rule is an assertion whose consequent is true only if the atomic formulas in the antecedent are true. One can now take the example deciding which fluid to place on the shell side and tube side. The following set of rules can be used to determine which fluid is to be placed on the tube side:

The tube side will have

1. The corrosive fluid

- 2. The severely fouling fluid
- 3. The fluid having high mass-flow rate.

These rules are in order of importance i.e. if none of the two fluids is severly corrosive, then test which one is severely fouling if both the rules fail, then go in for the third rule. The third rule always succeds since either one of the fluid has a higher mass-flow rate. Rules are written as:

```
( Defprop tube-side-fluid
((( tube-side-fluid ? name-h)
  (( fluid-name hot-fluid ?name-h)
   ( corrosive ? name-h ?X)
  (= ?X YES))
ST 10)
(( tube-side-fluid ? name -c)
(( fluid-name cold-fluid ? name-c)
( corrosive ? name -C ?X)
(= ?X YES))
ST 11)
etc.
```

2.4 WORKING OF THE PRESENT SYSTEM

The heart of this 'Expert System Shell' is the infer algorithm. The system accepts any query when the function goal is used, e.g. if the query is (Area-req ?X)

then (Goal '(Area-req ?X)) will try to satisfy the query. This 'Expert System Shell' has been developed by Dr. R. Sangal, IIT Kanpur.

The infer algorithm takes query and Alist as its argument and does a series of operations as follows:

- 1. It gets the order of operation for the predicate in the given query. If there is no order of specified, order of operation is taken as (compute-pred Action-pred Facts Rules Question Question proc).
- 2. It checks whether any properties are stored under the property attributes listed in the order-op one by one.
- a. If the predicate has properties under compute predicate, then the arguments are passed on to the compute predicate after substituting for the variables in the arguments of the predicate.
- b. A similar procedure is followed in case of action-pred
- c. In case of facts, the facts are retrieved by the macro 'GET-FACTS'. A function 'INFER-UNTIL' checks whether the unification succeeds with any of the facts if it does, it returns nil since it cannot have two bindings simultaneously if the context is True, Else the match is obtained from the fact and binding is returned in the Alist.
- d. When trying to apply a rule, the antecedent is also just like a list of querries. Each of the query is

to be satisfied and hence the query is changed to a new one from the Antecedent of the rule, and this whole procedure is repeated.

- d. The question is printed and the user response is stored as the answer.
 - The '=' predicate has two meanings in this system First, it takes 2 arguments and
 - 1. If both the arguments are free of variables after ultimate substitution, returns True or False depending upon whether the binding is true or not
 - 2. If any of the argument doesn't have a binding but is a variable, a corresponding binding is created and returned in the ALIST thus returning value of the predicate as True.

CHAPTER 3

METHODOLOGY FOR THE DESIGN OF SHELL AND TUBE HEAT EXCHANGERS

3.1 INTRODUCTION:

Shell and Tube Heat Exchanger (STHE) is a very commonly used heat transfer equipment. It has no moving parts: it simply exchanges heat between two fluids. A general impression about its design is that it is simple and straightforward. Although a STHE is not a sophisticated piece of equipment, yet a large number of considerations enter the design process. If one looks at the petrochemical industry in past 25 years or so, it is seen that this industry has undergone a tremendous change as far as the use of heat exchangers in terms of their number, size and the type, is concerned. It has now become essential for the HE designer to be a specialist. A poor design or an omission of minor details in the design can lead to failures or may involve a heavy cost of repair or replacement of the HE. In this context, the development of the intended 'Expert System' should incorporate the minute design details for the successful functioning of the HE. This Chapter deals with the complete methodology of the design of STHE without phase change.

The design of STHE involves the computations for both the tube and the shell side. The flow through a tube or a bank of tubes is well defined, but that over a bank of baffled tubes having window and manufacturing tolerances is not at all defined. Hence, the tube side calculations can be made relatively easily. For the shell side a large number of methods (Devore, 1961); Dohonue, 1955; Kern, 1950; Short, 1942; Taborek, 1983 and Tinker, 1947, 1958) are available for the determination of pressure drop and the heat transfer coefficient. Owing to the extensive research work by Bell at the University of Delaware, Taborek (1983) has recommended the Bell, Delaware method, as the most suitable one which is used here to develop the expert system. The method is described in detail in Taborek (1983). The standard description of STHE components etc. can also be found in this reference.

3.2 LOGIC OF THE DESIGN METHOD:

The basic criterion that given or designed heat exchanger should satisfy is that it should perform the given heat duty within the allowable pressure drop.

The design process can briefly be summarised in the following 7 steps (Taborek, 1983).

3.2.1 Problem Identification:

STHE are extensively used in the petrochemical process industry, pharmaceutical industry, chemical process

industries just to name a few . The process designer comes up with a thermal problem of exchanging heat between t_{WO} fluids. He has the inlet as well as outlet conditions known from his process requirement.

3.2.2 Selection (Fanaritis, 1976):

Selection is the process, in which the designer selects a particular type of heat exchanger for a given application. Selection criteria are many, but primary criteria are type of fluids, operating pressures and temperatures, heat duty, and cost.

There are an almost unlimited number of alternatives for selecting a heat transfer equipment, but only
one amongst them is the best for the given set of constraints.

STHE are the most widely used type of heat exchangers.

3.2.3 Selection of a Tentative Set of Parameters:

The heat duty in KW, a heat exchanger is required to perform is given by

$$Q_{o} = M_{s} C_{p_{s}} \Delta T_{s} = M_{t} C_{pt} \Delta T_{t} \qquad(3.1a)$$
The heat duty can also be written as

$$Q_o = U_o A_o F \Delta T_{LM} \qquad ...(3.1b)$$

where

 \dot{M}_{s} , \dot{M}_{t} = mass flow rates of shell and tube-side fluids

 $\Delta T_s \Delta T_t$ = Absolute temperature differences between the inlet and the exit temperatures for the shell and tube side strems respectively.

 A_0 = Total heat transfer area

 \triangle T_{LM} = Log mean temperature difference (LMTD)

F = LMTD correction factor

U_o = Overall heat transfer coefficient

The first step is to determine U_0 which is given by

$$U_{0} = \frac{1}{\left[\frac{1}{h_{s}} + {^{R}f}_{s} + \left(\frac{r_{0} - r_{i}}{k_{w}}\right) \left(\frac{2r_{0}}{r_{0} + r_{i}} + \left({^{R}f}_{t} + \frac{1}{ht} \left(\frac{r_{0}}{r_{i}}\right)\right)\right]}$$

where

 r_i, r_0 = Inner and outer radii of the tube

 R_{fs} , R_{ft} = Fouling factors for the shelland tube-side fluids

 k_{W} = Thermal conductivity of the tube wall material

Since the tube wall thickness is very small, the mean tube area is approximated as the average of outer and inner area.

The film coefficients are assumed for the type of fluids and so are the fouling factors.

The tentative design is prepared based on the assumed values of the film coefficients.

3.2.4 Rating of the Design :

A detailed analysis of the heat transfer and pressure drop for the two process fluids is known as Rating. The Rating program takes the values of flowrates, temperatures and pressures, configuration of the heat exchanger and fluid properties as inputs, and computes the required heat transfer area for the given duty and given type of heat exchanger along with the drop in pressure.

3.2.5 Evaluation:

The rating program gives the values of the actual film coefficients and the pressure drop, for both the streams. If these parameters are acceptable, the design is complete. Mostly, it is found that the required heat transfer area does not match with the available area, or the pressure drop exceeds the permissible value. Under such circumstances, the design has to be modified.

If the design is acceptable one can proceed for the mechanical design and cost estimation.

3.2.6 Modification of the Design Parameters:

The assumed values of heat transfer coefficients seldom comply with the values of film coefficients after rating.

Nomenclature of heat-exchanger components

- 1 Stationary head—channel2 Stationary head—bonnet
- 3 Stationary head flange—channel or bonnet
- 4 Channel cover
- 5 Stationary head nozzle
- 6 Stationary tubesheet
- 7 Tubes
- 8 Shell
- 9 Shell cover
- 10 Shell flange-stationary head end
- 11 Shell flange—rear head end
- 12 Shell nozzle
- 13 Shell-cover flange

- 14 Expansion joint
- 15 Floating tubesheet
- 16 Floating head cover
- 17 Floating head flange
- 18 Floating head backing device
- 19 Split shear ring
- 20 Slip on backing flange
- 21 Floating head cover—external 22 Floating tubesheet skirt
- 23 Packing box flange
- 24 Packing
- 25 Packing follower ring
- 26 Lantern ring

- 27 Tie rods and spacers
- 28 Transverse baffles or support plates
- 29 Impingement baffle
- 20 Longitudinal baffle
- 31 Pass partition
- 32 Vent connection
- 33 Drain connection
- 34 Instrument connection
- 35 Support saddle
- 36 Lifting lug
- 37 Support bracket
- 38 Weir
- 39 Liquid level connection

Nomenclature for the shell and tube heat exchanger Fig 3.1

In this case, the heat transfer area can be decreased or increased as the case may be. Changing the HE dimensions has a remarkable effect on the film coefficients.

The film coefficients can be increased by increasing the flow velocities, changing the baffle spacing, changing the number of tube side passes etc. In an attempt to increase the heat transfer coefficient, the pressure drop also increases.

3.2.7 Mechanical Design and Cost Estimation:

Once the thermal design is complete, the various parts of the heat exchanger are checked for stresses. The costing of the heat exchanger is done only after it is found that stresses in all the parts are within the safe limit.

3.3 APPROXIMATE SIZING OF THE HEAT EXCHANGER:

The basic design equation is

$$A_{o} = \frac{Q}{U_{o}} \frac{Q}{F \Delta T_{LM}} \qquad (3.3)$$

where Q and $\rm U_{o}$ are computed from equations (3.1) and (3.2) $\rm T_{LM}$, is defined by

1. For a counter-flow HE,

$$\triangle T_{LM} = \frac{(T_{h_{in}} - T_{c_{out}}) - (T_{h_{out}} - T_{c_{in}})}{(T_{h_{in}} - T_{c_{out}})} \dots (3.4)$$

$$= \frac{(T_{h_{in}} - T_{c_{out}}) - (T_{h_{out}} - T_{c_{in}})}{(T_{h_{out}} - T_{c_{in}})}$$

2. For a single shell and tube pass HE nean temperature difference (MTD) is the same as that computed from equation (3.4), hence F=1.0. For HE with 1 shell pass and 2N tube passes, F is given by (Taborek, 1983)

$$\Gamma = \frac{e}{(\partial) \ln \left[\frac{2-P(1+R-e)}{2-P(1+R+e)} \right]}$$
(3.5a)

For a 2 shell pass and 2 tube pass HE, flow is true countercurrent hence

$$F = 1.0$$

For a 2 shell pass and 2N tube passes HE, F is given by (Kern, 1950)

$$F = \frac{\frac{e}{2(R-1)} \ln \frac{(1-P)}{(1-PR)}}{\frac{2/P-1-R+(2/P)\sqrt{(1-P)(1-PR)}+e}{2/P-1-R+(2/P)\sqrt{(1-P)(1-PR)}-e}}$$
 (3.5b)

where

$$R = \text{Heat Capacity Ratio}$$

$$= \frac{T_{\text{si}} - T_{\text{so}}}{T_{\text{to}} - T_{\text{ti}}} = \frac{\mathring{m}_{\text{s}} C_{\text{ps}}}{\mathring{m}_{\text{t}} C_{\text{pt}}} \qquad (3.6)$$

P = Thermal Effectiveness

$$= \frac{T_{to} - T_{ti}}{T_{si} - T_{ti}} \qquad \dots (3.7)$$

$$e = \sqrt{R^2 + 1}$$
 (3.8)

$$T_{si}, T_{so}$$
 = Inlet and outlet temperatures for the shell side fluid

 T_{ti}, T_{to} = Inlet and outlet temperatures for the tube side fluid

$$\partial = \frac{R-1}{\ln[(1-P)/(1-PR)]} \Big|_{R \neq 1}$$

$$= \frac{1-p}{p} \Big|_{R \rightarrow 1}$$

The MTD is computed as

$$T_{M} = F \triangle T_{LM} \qquad \dots \qquad (3.9)$$

- 3. For computing U_0 from equation (3.2) suitable values of h_s, h_t, R_{fs}, R_{ft} are assumed.
- 4. The total area required is computed using equation (3.3)
- 5. The surface area, A_0 , can be written as

 $A_{o} = A_{o} (D_{s}, L_{s}, D_{t}, \text{ type of pitch lay out })$ (3.10) where

 D_s = Diameter of the shell

 L_s = Length of the shell

 D_{+} = Outside diameter of the tube

The type of pitch layout is characterized by an angle θ_{tp} shown in Fig. 3.2. The ratio $L_{\mathrm{S}}/D_{\mathrm{S}}$ (Called Aspect Ratio) can lie anywhere between 3.0 to 15.0. Larger value gives a smaller size HE hence economical. Generally an aspect ratio of 8.0 for the shell is remommended . The relation between the heat transfer area, A_{O} , and other parameters of equation (3.10) is given by

$$A_0 = (10^{-6}) \times A^* [L_{ta} (D_{ctl})^2] m^2 \dots (3.11)$$

where $L_{ta} = L_{ength}$ of the tube between two tube-sheets (taken equal to the shell length, L_{s} , for approximate design)

 D_{ctl} = Tube bundle diameter (taken equal to the shell inside diameter, D_s , for approximate design)

 $\overset{*}{\mathsf{A}}$ is the tube layout density parameter defined as

$$A^* = 0.78\pi \left(\frac{1}{C_1} \right) \frac{D_t}{(L_{tp})^2}$$
 mm⁻¹ ...(3.12)

 L_{tp} = Tube pitch = 1.25 D_t

 C_1 = Tube field layout constant

= 1.0 for $\theta_{tp} = 45^{\circ}$ or 90°

= 0.866 for θ_{tp} = 30°

 Θ_{tp} = Tube layout angle (see Fig.3.1)

The shell diameter $(D_s=D_{ctl})$ and the length $(L_s=L_{ta})$ can be computed from equation (3.11) once the aspect ratio is known.

3.4 SHELL SIDE PARAMETERS:

3.4.1 Shell Dimensions

Knowing L_{ta} and D_{s} , the shell dimensions can be calculated as follows:

1. Bundle Shell Clearance $(L_{\rm bh})$

A suitable tube bundle is selected based on the user's requirement and the bundle shell clearance is calculated based upon the equations given below.

a. Bundle type - = fixed tube sheet

.... (3.19)

 $L_{hh} = 12.0 + 0.005 D_{s}$ mm(3.13) Bundle type = U tube sheet b.(3.13a) $L_{\rm hb} = 12.0 + 0.005 D_{\rm s}$ mm Bundle type = Packed Lantern ring C. $L_{bb} = 25.0 + 0.0175 D_{s} mm$... (3.14)Bundle type = Outside packed floating head d. $L_{\rm bb} = 25.0 + 0.0175 D_{\rm s}$ (3.14a) Bundle type = Split backing ring floating head е. (3.14b) $L_{bb} = 25.0 + 0.175 D_{s} mm$ Bundle-type = Pull through floating head f. inlet pressure for shell < 1000.0 kPa(3.15) $L_{bb} = 80.0 + 0.0325 D_{s} mm$ inlet pressure for shell ≥ 1000.0 kPa(3.16) $L_{hb} = 80.0 + 0.0413 D_{s} mm$ Bundle Diameter (D_{ctl}) is computed from the equation 2.(3.17) $D_{c\pm 1} = D_s - L_{bb}$ 3. Shell Length is taken as the overall nominal tube length, L_{to} , given by(3.18) $L_{to} = L_{ta} + 2 L_{ts}$ where L_{ts} = Tube sheet thickness

 $L_{ts} = 0.1 Ds$, $L_{ts} \ge 25.0$

- 3.4.2 Baffle Geometry:
- 1. Baffle Spacing $(L_{\rm bc})$ -A uniform baffle spacing is assumed initially, equal to $\Gamma_{\rm S}$ -which is used to compute the Number of baffles as

$$N_{b} = (\frac{L_{ta}}{D_{s}} - 1)$$
 (3.20)

This is rounded off to the lower integer and the exact central baffle spacing is then calculated by

$$L_{bc} = \frac{L_{ta}}{N_b + 1} \qquad \dots (3.21)$$

- 2. Segmental Baffle Cut, B_c , as a percent of D_s . The value depends upon the Ratio L_{bc}/D_s and is given by $B_c = 16.25 + 18.75 \; (L_{bc}/D_s) \qquad \qquad \; (3.22)$
- 3. Centriangle of Baffle Cut (Θ_{ds}) is the angle subtended at the center by the intersection of the baffle cut and the inner shell wall, see Fig.3.3). It is given by

$$\Theta_{ds} = 2 \cos^{-1} \left[1 - 2 \left(\frac{B_c}{100} \right) \right] \text{ rad} \dots (3.23)$$

4. Upper Centriangle of Baffle Cut (Θ_{Ctl}) — is the angle substended at the center by the intersection of the baffle cut and the tube bundle diameter, (see Fig.3.3) It is given by

$$\Theta_{\text{ctl}} = 2 \cos^{-1} \left[\frac{D_{\text{s}}}{D_{\text{ctl}}} \left(1 - \left(\frac{2B_{\text{c}}}{100} \right) \right) \right] \text{ rad } \dots (3.24)$$

Tube layout geometry basic parameters

Cross flow	θ _{tp}	Ltp	Lpp
L _{tp} d _{tp} L _{pn}	30°	0 5 <i>L_{tp}</i>	0 866 <i>L_{tp}</i>
L _{tp} L _{tp}	90°	L_{tp}	L_{tp}
Lipp			

45° 0 707L_{tp} 0 707L_{tp}

Fig 3.2 Pitch layout angle

Fig 3.3 Bundle Geometry

- 3.4.3 Bundle Type (Lord, 1970, 1970 and Kern, 1950):
- 1. Fixed tube sheet HE has the simplest type of shell design. The tube sheets may be welded or bolted to the shell. Since there are no packings or gaskets involved, this type of HE has the maximum possible protection against leakage of shell side fluid to ambient. The fixed tube—sheet HE does not have any provision to accommodate the differential expansion of the shell and the tubes.

2. Removable Bundle Exchangers:

Shell and Tube Floating Tubesheet

It has straight tubes secured at one fixed end and the other movable end is known as floating tube sheet.

- (i) Outside Packed Strffing Box- The shell side fluid is sealed by rings of packing compressed within a stuffing box by a follower ring. It can be used for pressures upto 2000.0 kPa and temperatures upt 300°C. They are not used when even slightest amount of leakage to the ambient cannot be tolerated.
- (ii) Outside Packed Lantern Ring The shell side and tube side fluids are each sealed by seperate rings of packing seperated by a lantern ring provided with weep holes so that leakage through either of them should be to the outside. Number of tube side passes is limited to one or two. They are used for shell side pressure < 1034. kPa

and temperatures on shell side < 260.0 C. They have a direct advantage that the tubes can be cleaned very easily

(iii) Pull Through Bundle - This type of HE has a seperate head bolted directly to the floating tube sheet. Both the assembled tubesheet and head are small enough to slide through the shell, and tube bundle can be removed without breaking the joints at the floating end .

Though this type has an advantage of very low maintenance time, it accommodates the smallest number of tubes for the given shell diameter and the bundle bypass areas are larger than all other types.

(iv) Inside Split Backing Ring- The inside split backing ring type overcomes the disadvantages of Pull through bundle. It differs from the Pull through type in the use of a split ring assembly at the floating tubesheet and an oversized cover which accommodates it. Clearances between the outermost tubes and the inside of the shell are same as that for outside peaked stuffing box type HE.

3.4.4 Various Flow Areas for the Shell Side Stream:

To compute the correction factors for heat transfer and pressure drop, calculation of various leakage and flow areas is essential.

1. Cross flow area at shell centreline within one baffle spacing , S_m , is given by

$$S_{m} = L_{bc} \left[L_{bb} + \frac{D_{ctl}}{L_{tp.eff}} (L_{tp} - D_{t}) \right]$$
 (3.25)

where

 $L_{tp,eff}$ = effective tube pitch = L_{tp} for 30° and 90° layout = $0.707 \times L_{tp}$ for 45° layout

- 2. Baffle Window Flow Areas:
- a. Gross window flow area without tubes in the window is given by

$$S_{\text{wg}} = \frac{\pi}{4} \left(D_{\text{s}} \right)^2 \left(\frac{\Theta_{\text{ds}}}{2\pi} - \frac{\sin \Theta_{\text{ds}}}{2\pi} \right) \qquad \dots (3.26)$$

b. Fraction of number of tubes in the baffle window, $\mathbf{F}_{\mathbf{w}}\text{, is given by}$

$$F_{W} = \frac{\Theta_{\text{ctl}} - \sin \Theta_{\text{ctl}}}{2\pi} \qquad \dots (3.27)$$

c. The fraction of number of tubes in pure cross flow between baffle tips is given by

$$F_{c} = 1 - 2F_{w}$$
 (3.28)

d. The segmental baffle window flow area occupied by, $\rm N_{\rm C}$, tubes is given by

$$S_{wt} = N_t F_w (\frac{\pi}{4} D_t^2)$$
 (3.2()

e. The number of tubes in one window is given by

$$N_{+w} = N_{+} F_{w}$$
 (3.30)

Hence the net cross flow area through one baffle window S_{w} is

$$S_{W} = S_{Wq} - S_{Wt} \qquad \dots \qquad (31)$$

3. Equivalent Hydraulic Diameter:

The equivalent hydraulic diameter is required only for the pressure drop calculations in laminar flow, i.e. if $R_{\rm es}$ < 100. It is calculated from the classical difinition of hydraulic diameter and is given by

$$D_{W} = \frac{4S_{W}}{\pi D_{t} N_{tW} + (\pi D_{s} \Theta_{ds}/2\pi)}$$
 (32)

4. Number of Effective Tube Rows in Cross Flow:

The determination of effective number of tubes in cross flow is essential for the calculation of heat transfer coefficient and pressure drop, and the corresponding correction factors.

The number of effective tube rows crossed between baffle tips, $N_{\mbox{tcc}}$, is given by

$$N_{tce} = \frac{D_s}{L_{pp}} [1-2 (\frac{B_c}{100})]$$
 (3.33)

where

 L_{pp} = Flow direction distance between 2 tubes = 0.866 L_{tp} for $\Theta_p = 30^\circ$ = L_{tp} for $\Theta_p = 90^\circ$ = 0.707 L_{tp} for $\Theta_p = 45^\circ$

The determination of the number of effective tube rows crossed

in a baffle window, N_{tcw} , depends on the flow pattern. Highest flow velocity exists just below the baffle tips and then decreases rapidly. Finally, the effective distance of cross flow penetration can be determined by

$$L_{wp} = 0.4 \left[D_{s}\left(\frac{B_{c}}{100}\right) - \frac{D_{s}-D_{ctl}}{2}\right] \dots (3.34)$$

This distance, $L_{\rm wp}$, is crossed twice in a baffle window, and hence effective number of tube rows crossed is

$$N_{tcw} = \frac{O.8}{L_{pp}} \left[D_s \left(\frac{B_c}{100} \right) - \frac{D_s - D_{ctl}}{2} \right]$$
 ... (3.35)

5. Bundle Shell Bypass Area Parameters:

The flow area between the shell inside surface and bundle outside diameter is the main area where flow can bypass the desirable path through the tube field. The flow in this bypass lane can attain considerable order of magnitude (20-30%), thus decreasing heat transfer and pressure drop. The bypass area within one baffle spacing is given by

$$S_b = L_{bc} [(D_s - D_{otl}) + L_{pl}]$$
(3.36)

where D_{otl} = Outer diameter of the tube bundle

$$= D_{ct1} + D_t \qquad (3.37)$$

$$L_{pl} = 1/2$$
 of tube lane partition, (mm)
= $D_{t}/2$ (3.38)

For calculations of the correction factors $J_{\underline{I}}$ and $R_{\underline{I}}$, the ratio $F_{\underline{s}bp}$, of bundle bypass area $S_{\underline{b}}$ to the overall cross

flow area S_{m} is required

$$F_{\text{sbp}} = S_{\text{b}}/S_{\text{m}}$$
 ...(3.39)

6. Shell to Baffle Leakage Areas:

This area is required for the calculation of the correction factors for baffle leakage effects J_1 and R_1 . This area calculation involves diametral shell to baffle clearance, given by

$$L_{sb} = 3.1 + 0.004 D_s$$
 (3.40)

The shell to baffle leakage area is given by

$$S_{sb} = \pi D_s \left(\frac{L_{sb}}{2} \right) \left(\frac{2\pi - \Theta_{ds}}{2\pi} \right) mm^2 \dots (3.41)$$

7. Tube to Baffle Hole Leakage Area (Stb):

This area is also needed for the calculation of correction factors \boldsymbol{J}_1 and \boldsymbol{R}_1 . It is given by

$$S_{tb} = \frac{\pi}{4} [(D_t + L_{tb})^2 - D_t^2] - D_t^2] N_t (1 - F_w) \dots (3.42)$$

where

$$L_{tb}$$
 = Tube to baffle hole clearance
= 0.8 mm for calculations(3.43)

3.4.5 Dimensionless Parameters:

Shell Side Reynolds Number - The shell side mass velocity is given by

$$\dot{m}_s = \frac{M_s}{S_m} \times (10^{-6}) \text{ kg/m}^2 \text{ Sec}$$
 (3.44)

The shell side Reynolds number is given by

$$Re_{s} = D_{t} / \mathring{m}_{s} / \eta_{s} \qquad (3.45)$$

where η_s = Absolute viscosity of the shell side fluid at average shell temperature in centipoise.

2. Shell Side Prandtl Number:

This is given by

$$Pr_s - (C_{ps} \eta_s / k_s) \times (10^{-3})$$
 (3.46)

where k_s = Thermal conductivity of the shell side fluid

3.4.6 Correction Factors:

The heat transfer coefficient for ideal cross flow over the tube banks acan be readily found out using equation (3.60). In an actual HE, the flow deviates from the ideal case. The various correction factors take into account this deviation. The value of each correction factor lies between O and I for the ideal case. When all these correction factors are multiplied together with the ideal heat transfer coefficient, one gets the actual heat transfer coefficient. Same holds good for the pressure drop also.

l. Segmental Baffle Window Correction Factor (J_c) - This factor considers the effects of baffle window on heat transfer factor j_i which is based on pure cross flow.

 $\rm J_{c}$ reaches a value of 1.0 for baffle cuts around 25% and even more than 1.0 for smaller baffle cuts. This is

so because of the fact that j_i is computed at the largest cross flows section, but as baffle cut decreases, flow velocities increase. This in turn is compensated by the fact that fewer tubes exist in the baffle window.

The net effect of these is of significance. Ar approximation of the Delaware method curve is given by,

$$J_{c} = 0.55 + 0.72 F_{c}$$
 (3.47)

2. Correction Factor for Baffle Leakage for Heat Transfer, J_1 , and Pressure Drop, R_1 - There is a significant amount of pressure difference between the two adjacent compartments. This pressure differential forces the fluid through two leakage areas- (1) shell and the baffle circumference(2) tube and the baffle tube hole. This decreases the effective cross flow stream and consequently h_s and p_s (total shell side pressure drop). These leakage streams can reach a considerable order of magnitude (40%) and hence are of great importance. Amongst the two leakage streams considered, shell to baffle stream is most detrimental to heat transfer as it does not exchange heat with the tubes.

The tube to baffle leakage stream partially exchanges heat with the tubes hence not as disastrous for the heat transfer.

The following parameters are computed to calculate the heat transfer and pressure drop correction factor:

$$r_{lm} = \frac{S_{sb} + S_{tb}}{S_m} \qquad \dots (3.48)$$

and

$$r_s = \frac{s_{sb}}{s_{sb} + s_{tb}} \qquad \dots (3.49)$$

The correction factors for heat transfer, J_1 , and for pressure drop, R_1 , have the following characteristics:

- a. Most severe condition occurs for $r_s=1$, which corresponds to the case of all leakage taking place in the shell to baffle area.
- b. The least severe condition corresponds to $r_s=0$, when all the leakage is through the tube-baffle holes.

A well designed HE should have values of J_1 not less than 0.6. The possible remedies for increasing J_1 are:

- a. Wider baffle spacing which will shift r_{lm} towards higher value.
- b. Increasing tube pitch or changing tube layout to 90° or 45° will also have a similar effect. The correction factors are computed from the following equations:

$$J_1 = 0.44 (l-r_s)+[l-0.44 (l-r_s)] \exp (-2.2 r_{lm})$$
....(3.50)

$$R_1 = \exp \left[-1.33 (1+r_s) r_{1m}^{p}\right] \dots (3.51)$$

where p = $[0.15 (1+r_s)+0.8]$

3. Correction Factors for Bundle Bypass Effects for Heat Transfer, (J_b) , and Pressure Drop (R_b) .

The flow resistance along the gap between tube bundle and the shell inner wall is substantially lower than that of the tube field. Naturally, the stream tends to flow through this flow area.

U- tube sheet and fixed tube sheet bundles have a small bundle shell clearance, hence the effect is smaller. In case of pull through bundles, this gap has to be blocked by sealing strips. Sealing strip are used in pairs (on either sides) when $L_{\rm bh}$ exceeds 30.0 mm.

The correction factors $\mathbf{J_b}$ and $\mathbf{R_b}$, are given as follows :

$$J_b = \exp(-C_{bh} F_{sbp} [1-(2 r_{ss})^{1/3}]) \dots (3.52)$$

with a limit

$$J_{b} = 1 \text{ at } r_{ss} \ge 1/2$$
 where
$$C_{bh} = 1.35 \dots R_{e_{s}} \le 100$$

and
$$r_{ss} = \frac{N_{ss}}{N_{tcc}}$$

where $N_{ss} = no of sealing strip pairs$

$$\hat{n}_b = \exp \left[- C_{bp} F_{sbp} \left(1 - (r_{ss})^{1/3} \right) \right] \qquad \dots (3.53)$$

where
$$C_{bp} = 4.5 \text{ for } Re_s \leq 100$$

= 3.7 for $Re_s \geq 100$

and other parameters have the same meaning as before.

4. Heat Transfer Correction Factor for Adverse Temperature Gradient in Laminar Flow (J_r) .

The Delaware data on laminar flow $(R_{\rm es} < 20)$ exhibited a large decrease in heat transfer which is eventually postulated as an effect of adverse temperature gradient developed through the boundary layer.

As ${\rm Re}_{\rm S}$ increases, momentum change or crtial effects begin to disturb the laminar boundary layer until it almost vanishes at ${\rm Re}_{\rm S}$ = 100.

Since the ideal tube banke curves are based on 10 rows of tubes, the corresponding correction factor can be expressed as

$$J_{r} = (\frac{10}{N_{c}})^{0.18} = \frac{1.51}{(N_{c})}0.18$$
 (3.54)

where $N_c = \text{no of tube rows crossed in the HE given by}$ $N_c = (N_{tcc} + N_{tcw}) (N_b + 1) \qquad (3.55)$

For $Re_s \ge 20$ to $Re_s = 100$

$$J_r = \frac{1.51}{(N_c)^{0.18}} + (\frac{20-R_{es}}{80}) [\frac{1.51}{(N_c)^{0.18}} - 1] ...(3.56)$$

Minimum value of $J_r = 0.4$

For $R_{c_s} > 100$, $J_r = 1$

5. Correction Factor for Pressure Drop in End Zones:

For equal baffle spacing, this accounts for the pressure drop at the inlet and outlet baffles and is

$$R_s = 1.3$$
 for U- tube bundles
= 2.0 for other cases ...(3.56a)

3.4.7 Actual Heat Transfer Coefficient on the Shell Side:

This method is based on $j_{\tt i}$ and $f_{\tt i}$ factors from the data on ideal tube bank. The ideal tube bank factor is written as

$$j_i = j_i (Re_s, \frac{L_{tp}}{D_t})$$

For a fixed value of $L_{\rm tp}/D_{\rm t}$ = 1.25, the fitted equations for j are

$$\Theta_{\text{tp}} = 30^{\circ} \text{ staggered}$$

$$j_i = 10^{[0.0533 \times ^2 - 0.7965 \times + 0.1999]} \quad(3.57)$$

 $\Theta_{tp} = 45^{\circ} \text{ staggered,}$

$$i. = 10[0.0576 \text{ m}^2 - 0.8282 \text{ m} + 0.3]$$
 (3.58)

 $\Theta_{\rm tp} = 90^{\rm o}$ inline,

$$j_i = 10 [0.05386 x^2 - 0.75432 x]$$
 (3.59)

where $x = log_{10} (Re_s)$

The ideal tube bank heat transfer coefficient then becomes,

$$h_{s_{ideal}} = j_i C_{ps} m_s (Pr_s)^{-2/3} (\phi_s)^r$$
 ...(3.60)

where j; is determined from one of the equations given above.

 $(\phi_s)^r$ = viscosity correction factor that accounts for the viscosity gradient at the tube wall versus the viscosity

at the average bulk fluid temperature, η_s . The term $(\varphi_s)^r$ is computed as follows:

1. For liquids -

$$(\phi_s)^T = (\frac{\eta_s}{\eta_{sw}})^{0.14}$$
 (3.61)

where $\eta_{\rm SW}$ is the shell fluid viscosity determined at the tube wall temperature, $T_{_{\rm W}}{}^{\bullet}$

 ϕ_s > 1.0 for shell fluid heated

and $\phi_s < 1.0$ for shell fluid cooled.

In order to determine η_{SW} , it is essential to determine T_{W} which is estimated as follows using the approximate values of h_{t} and h_{s}

$$T_{W} = T_{t_{aV}} + (\frac{T_{s_{aV}} - T_{t_{aV}}}{1 + (h_{t}/h_{s})})$$
 (3.62)

where T_{sav} , T_{tav} denote the average shell and average tube temperatures, both of them being the arithmetic means of inlet and outlet temperatures respectively. It may be noted from equation (3.62) that the tube wall temperature approaches the temperature of the fluid with higher 'h'.

If viscosity of the fluid is known at two temperatures other than $T_{\rm w}$ and $T_{\rm s,av}$, a relation of the from

$$\eta = aT^b$$
 ... (3.63)

can be used for extrapolating the viscosity within reasonable temperature limits. The temperature, T in equation (3.63)

is in degree Kelvin. Once, η_{S} and $\eta_{\text{S},W}$ are known, $\left(\varphi_{\text{S}}\right)^{\text{r}}$ can easily be computed.

2. For gases, the viscosity is a weak function of temperature and the correction factor is formulated as

For gas being cooled :
$$(\phi_s)^r = 1.0$$
 (3.64)
For gas being heated : $(\phi_s)^r = (\frac{T_{sav}}{T_w + 273.15})^{0.25}$ (3.65)
for a gas being heated, T_w is always higher than $T_{s,av}$ and hence $(\phi_s)^r < 1.0$

The actual heat transfer coefficient is calculated as

$$h_s = h_s$$
 ideal $(J_c \cdot J_1 \cdot J_b \cdot J_r)$ (3.66)

3.4.8 Shell Side Pressure Drop ($\triangle P_s$):

The shell side pressure drop is composed of three distinct components, $\Delta p_{\rm C}$ for pure cross flow, $\Delta P_{\rm W}$ for all baffle windows and $\Delta p_{\rm C}$ for end zones. Total pressure drop $\Delta p_{\rm S} = \Delta p_{\rm C} + \Delta p_{\rm W} + \Delta p_{\rm C} \qquad \qquad (3.66a)$

1. Ideal Tube Bank Pressure Drop:

The ieal tube bank friction factor is given by

$$f_{i} = (10^{3}) \frac{(\Delta p_{bi}) \, \S_{s}}{2 \, (\mathring{m}_{s})^{2} \, N_{c}} \, (\varphi_{s})^{r}$$

$$= f \, (\Re e_{s})$$
....(3.67)

The fitted equations for f; are

$$f_i = 10 [0.01535 x^2 - 1.362 x + 1.821] ... (3.69)$$

$$\Theta_{t_p} = 90^{\circ}$$

$$f_i = 10[0.099089 \text{ x}^2 - 0.9826 \text{ x} + 1.2852] \dots (3.70)$$

where $x = log_{10}(Re_s)$

The ideal tube bank pressure drop is readily computed as

$$\triangle p_{bi} = 2x10^{-3} x f_{i} x N_{tcc} x \frac{(\dot{m}_{s})^{2}}{Q_{s}} (\phi_{s})^{-r} \qquad \dots (3.71)$$

where, $\frac{9}{5}$ = dersity of shell side fluid, kg/m³.

2. Pressure Drop in Pure Cross Flow no is given by

$$\Delta pc = \Delta p_{bi} (N_{b}-1) (R_{b}) (R_{i})$$
 (3.72)

3. Pressure Drop in All the Baffle Windows Crossed (P_w):

 $$\operatorname{Mass}$ velocity based on geometric mean of the cross flow area S_{m} is given by

$$\dot{m}_{W} = \frac{\dot{M}_{S}}{\sqrt{S_{m}S_{W}}} \times 10^{6} \text{ kg/m}^{2} \text{ Sec} \qquad \dots (3.73)$$

The pressure drop in all windows crossed, $P_{\rm W}$ is given by for ${\rm Re}_{\rm S}$ \geq 100,

$$\Delta P_{W} = N_{b} \left(\frac{26 (m_{W}) \gamma_{s}}{S_{s}} \left[\frac{N_{tcw}}{L_{tp} - D_{t}} + \frac{L_{bc}}{(D_{W})^{2}} + \left[2 \times 10^{-3} \frac{(m_{W})^{2}}{2 S_{s}} \right] \right) R_{e_{s}} \cdot k P \epsilon$$
....(3.75)

4. Pressure Drop in the End Zones is given by:

$$\Delta P_{c} = \Delta P_{bi} \left(1 + \frac{N_{tcw}}{N_{tcc}} \right) R_{b} R_{s} \qquad \dots (3.75a)$$

3.5 Tube Side Parameters (Kern, 1950):

3.5.1 Tube Side Passes:

The number of tube side passes is determined on the basis of the flow velocity in the tubes. The flow velocity should be between 1.0 to 3.0 $\,\mathrm{ms}^{-1}$. The lower limit is to overcome fouling and the upper one to reduce corrosion and vibration. The total flow area available is given by

$$A_{tot} = \frac{\pi}{4} \times (D_t - t_t)^2 \times N_t$$
(3.76)

The area per pass required to maintain a velocity $\ensuremath{v_{+}}$ through the tubes $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

$$A_{t_{p}} = \frac{M_{t} \times 10^{6}}{5 \times v_{t}} \qquad \dots (3.77)$$

where,

 t_t = thickness of the tubes, mm t_t = density of tube side fluid, kg/m³

The number of tube side passes are

$$N_{tp}$$
 = Integer ($\frac{A_{tot}}{A_{tp}}$)(3.78)

3.5.2 Total Number of Tubes is given by:

$$N_{t} = \frac{0.78 D_{ct1}^{2}}{C_{1}(L_{tp})^{2}} \qquad (3.79)$$

where C_1 = tube layout constant

for
$$\theta_p = 30^\circ$$
, $C_1 = 0.866$

for
$$\Theta_{p} = 45^{\circ}$$
 and 90° , $C_{1} = 1.0$

3.5.3 Mass Velocity in Tubes is given by

$$\dot{m}_{t} = \frac{\dot{M}_{t} \times 10^{6}}{(A_{tot}/N_{to})} \dots (3.81)$$

3.5.4 Tube Side Reynolds Number (Ret):

$$Re_{t} = \left(\frac{\left(\frac{D_{t}-t_{t}\right)\dot{m}_{t}}{\eta_{+}}\right)}{\eta_{+}}$$
(3.82)

where η_t = viscosity of the tube side fluid, at average tube temperature, cp,

3.5.5 Tube Side Prandtl Number (P_{r_t})

It is given by

$$Prt = (\frac{C_{pt}\eta_t}{k_t}) \times 10^{-3}$$
 (3.83)

where k_{+} = Thermal conductivity of tube side fluid.

3.5.6 Actual Tube Side Heat Transfer Coefficient, h_t
Sieder and Tate's relation gives

$$\frac{h_t^D}{k} = 1.86 \left(\frac{4}{\pi} \frac{w_c}{kL} \right) \left(\frac{\eta_t}{\eta_w} \right)^{0.14} Re_t \le 2100 \dots (3.84)$$

$$\frac{h_t^D}{k} = 0.027 (Re_t)^{0.8} (Pr_t)^{1/3} (\phi)^{0.14} Re_t > 2100$$

The heat transfer coefficient is computed from the $j_{\dot{h}}$ curves,

$$j_h = 10^{[-0.2624 \times^2 + 3.273 \times - 7.412]} \dots (3.86)$$

where $x = log_{10}(R_{e_{t}})$

The actual heat transfer coefficient is then given by

$$h_t = j_h \frac{k_t}{D_t} (P_r)^{1/3} (\phi)^r \dots (3.87)$$

where $(\phi)^{\mathbf{r}}$ is to be computed for the tube side fluid in a manner similar to section 3.3.7.

3.5.7 Tube Side Pressure Drop:

1. Tube side friction factor is given by Sider and Tate's correlation for fluids being heated or cooled, in form of a graph (Kern, 1950).

A straight line fitted to the graph is for $\mathrm{Re}_{+}\, \leq\, 1000\,,$

$$f_{+} = 144 (10^{(-Log_{10}(Re_{t})-0.3)}) \dots (3.88)$$

and for $Re_{+} > 1000$,

$$f_t = 144 (10^{[-0.25 (Log_{10}(Re_t))-2.55]})$$

The Total Pressure Drop is Composed of 2 parts, viz, the pressure drop inside the tubes, p_{+} and the pressure drop, p_r , associated with the change of direction in the tube side passes. These are given by

$$\Delta p_{t} = \frac{f_{t}(\mathring{m}_{t})^{2} L_{ta} N_{tp}}{2.0 \times ?_{+} \times (D_{+} - t_{+}) (\phi_{+})^{r}} \dots (3.89)$$

 $\Delta p_{t} = \frac{f_{t}(\mathring{m}_{t})^{2} L_{ta} N_{tp}}{2.0 \times \mathring{\S}_{t} \times (D_{t} - t_{t}) (\phi_{t})^{r}}$ and $\Delta p_{r} = \frac{4 \times N_{tp} \times (\mathring{m}_{t})^{2}}{2.0 \times \mathring{\S}_{t}}$(3.89a)

= 4 x velocity head per pass

where N_{tp} = No of tube side passes,

The total tube side pressure drop is

$$\Delta P_{\text{total}} = \Delta P_{\text{t}} + \Delta P_{\text{r}} \qquad \dots (3.89b)$$

The Actual Overall Heat Transfer Coefficient \mathbf{U}_{O} is computed from equation (3.2) and using the values for h_s and h_t from equation (3.66) and equation (3.87) respectively. Using this value of U_{Ω} , The actual area required for the heat transfer is obtained from

$$(A_0)_{req} = \frac{Q_0}{U_0 F (LMTD)}$$
 (3.90)

Area required should always be less than the area available, while the pressure drops on the shell side and tube side are within the permissible limits. A well designed HE should be able to perform the heat duty by fully utili zing the allowable pressure drop on shell and tube sides.

CHAPTER 4

RULE SETS FOR THE EXPERT SYSTEM

4.1 FLOW CHART FOR THE DESIGN :

The overall design process of the STHE is quite complicated and lengthy, hence it was necessary to break down this process into distinct blocks and develop the system accordingly. The main blocks identified were, (Refer Fig. 4.2)

- 1. Approximate design
- 2. Evaluation of geometric parameters
- 3. Correction factors for heat transfer and pressure drop
- 4. Actual shell side heat transfer coefficient
- 5. Total shell side pressure drop
- 6. Actual tube side heat transfer coefficient
- 7. Tube side pressure drop
- 8. Comparison of the results and iteration

The flow chart and the tree structure is presented in Fig. 4.2 and 4.4 respectively. Flow chart is the representation of transfer of control whereas the tree structure is the structure generated in trying to satisfy the querries to acheive the goal.

4.1.1 Detailed Analysis of Approximate Design:

The approximate design is a tentative set of heat exchanger parameters and if the design is accepted

CC. No. 42.

after rating then this becomes the final design. This step can be further broken down into (Refer Fig.4.1)

- (i) Compute overall heat transfer coefficient
- (ii) Compute heat rate required
- (iii) Compute the area of heat transfer required
- (iv) Design the geometry

To compute the overall heat transfer coefficient, we need a tentative set of film coefficients. The film coefficients can be selected based on the type of the fluid. Since the approximate film coefficients for different type of fluids are known, we can store these values as facts. The overall heat transfer coefficient requires determination of shell side and tube side fluid.

At this point we should take the decision regarding the type of data structure we are going to use.

Here there can be two types i.e. for different properties like inlet temperature, outlet temperature, specific-heat, density etc, for both the fluids

(A)	(fluid-l	densi	ty	<val>)</val>
	(fluid-l	inlet	temperature	<val>)</val>
	(fluid-l	outle	t temperature	<val>)</val>
(B)	(density	fluid	=1	<val>)</val>
	(inlet temperature		fluid-l	<val>)</val>
	(outlet-tempe	rature	fluid-l	<val>)</val>

Type A is centred around the fluids (fluid-1, fluid-2, etc.) while type B is centred around the properties (density, inlet temperature etc.). Since there are a small number of fluids viz, 2 type A has the advantage that the questions, explanations etc. are reduced in number. But at the same time, it reduces the flexibility of asking different questions, and also giving different explanations. The data structure type B does not have such drawback since each question and explanation can be different for each property. It also has another advantage that we can refer to fluid-1 and fluid-2 as shell-side-fluids and tube-side-fluids.

Once the data for the fluids is known. the overall heat transfer coefficient is computed. Computing heat rate is a straightforward process. The area of heat transfer required is a function of heat rate, Log mean temperature difference, overall-heat transfer coefficient and LMTD correction. Once the area is known, we have choice as there can be any combination of shell diameter This and shell length for the given heat transfer area . problem can be solved by either keeping the aspect ratio fixed or keeping the shell diameter fixed. For the given shell diameter and length, we have a set of rules for designing the different components and parameters of the heat exchanger. The heat exchanger geometry should be modified to accomodate the various process constraints. concludes the first step in design process.

- 2. After this brief discussion about the various steps involved in the approximate design, we shall see the actual predicates, actual rules and actual facts used in this system.
- a. The aim is to determine the shell diameter and shell length for the given heat duty.

We can get the value of Aspect Ratio from the user by issuing him a question. If he doesn't specify the value, a value of 8.0 is assumed.

b. Area-zero is computed from the rule

c. Overall-HTC has the following rule

```
(Radius-Inside ? R-I), (Radius-Outside ?R-O),
     (App-film-foul ? Type-S ? H-S ? R-F-S),
     (App-film-foul ? Type-t ?H-T ?R-F-T),
     (=?U-0)
        (*Quo 1.0 (+ (*Quo ?1.0 ?H-S) ?R-F-S
                     (*times (*Quo 0.0025 ? wall-cond)
                              (*Quo (*Times 2.0 ? R-O)
                                   (*Plus ? R-O ?R-I)))
                     (*times (* Plus ?R-F-T (*Quo 1.0 ?H-T))
                                     ?R-O ?R-I)))))
                             (*Quo
     The shell side fluid is determined by
     (Shell-side-fluid ?Name-c ) ← (fluid-name cold-fluid
ST3:
            ? name-c).
      (Fluid-name hot fluid ? name -h),
      (Tube-side-fluid ? name-h)
     (Shell-side-fluid ?name-h) · ←
ST4:
            (Fluid-name Cold-fluid ? name-c),
      (Fluid-name hot-fluid ? name -h) ( Tube-side-fluid
            ? name-C).
The shell-side-fluid has 2 rules, ST3 and ST4.
The queries for fluid-name are satisfied by asking question.
      The tube-side-flui! has the following rules:
     (Tube-side-fluid ? name-h) ←
ST5:
      (Fluid-name hot-fluid ?name-h), (corrosive
            ?name-h ?X).
```

d.

е.

?X).

(IS-yes

ST9: (Tube-side-fluid ?name-h) (Fluid-name hot-fluid ?name-h),

(Fluid-name cold-fluid ?name-c)

(Mass-flow-rate-cold ?name -c ?X),

(Mass-flow-rate-hot ?name- h ?Y)

?Y ?X)

(>

and similar rules for the cold-fluid. These rules are checked one by one. The rule ST5 states that if the hot fluid is corrosive, then it should be placed on the tube-side. The predicate is-yes checks whether the argument is 'yes' or not.

Rule ST7 states if the hot fluid is fouling, then it should be placed on the tube side. The rule ST9 states that the tube-side has the fluid with the higher mass -flow-rate. Similar rules exist for the cold-fluid. It can be seen that the either of the rule ST9 or ST10 matches since some fluid will have mass-flow-rate higher than the other. At this step we infer the tube-side-fluid. When step c is complete, the new query is step d. This is also inferred since the tube-side-fluid is known. We then arrive at step c. The first two queries of the Antecedent are know. 3rd and 4th queries are satisfied by asking questions. This question asks the user to classify the hot and cold fluids in any one of the

given type. Queries 5 and 6 are satisfied by the rules, which require tube diameter and tube wall thickness. Tube Diameter and Tube-wall thickness are known from the question. Queries 7 and 8 are inferred from facts. The app-film-foul predicate has values of the approximate heat transfer coefficient and fouling factor for different types of fluids, stored as facts. After getting the various parameters, Uo is computed. The next query is Log-mean-temp-diff at state b.

f. Log-men-temp-diff has the following rule.

```
ST23: (Log-men-temp-diff
                          ?LMTD) ←
     (Fluid-name hot-fluid
                              ?name-h).
     (Fluid-name cold-fluid ?name -c),
     (Inlet-temp. ?name-h ?TH-I).
     (Inlet-temp. ?name-c ?TC-I),
     (Outlet-temp. ?name-h ?TH-O),
     (Outlet-temp. ?name-c ?TC-O),
     (= ?LMTD (*Quo (*Dif
                             (*Dif
                                          ?TC-0)
                                   ?TH-I
                             (*Dif ?TH-O
                                           ?TC-I))
                       (Log (*Quo
                                   (*Dif
                                           ?TH-I
                                                 ?TC-0)
                                    (*Dif
                                           ?TH-0
                                                 ?TC-I)))))
```

The fluid-name, Inlet-temp and outlet-temp are satisfied by asking questions. LMTD is computed from the equation. The next query at stage b is heat-rate.

(Fluid-name cold-fluid ?name -c),

(Mass-flow-rate-cold ?name-c ?M-c),

(Specific-heat ?name-c ?CP-c)

(Inlet-temp. ?name-c ?TC-I).

(Outlet-temp. ?name-c ?TC-O),

(= ?Q (* ?M-c ?CP-c (*Dif ?TC-I ?TC-O)))

The first 5 queries are satisfied by asking questions to the user, in the previous steps. At this stage, the variables get the values directly from the ALIST. The heat-rate is computed from the equation given. Remembering that at stage b, we had to satisfy the subqueries at stage f and g, we observe that the Area-zero can be computed by the given equation, concluding step b.

We move upwards at stage a. The first query is already satisfied at stage b. The next query is (Area-*? A-*).

h. Area-* has the following rule

(Pitch-layout ? Type),

(Constant-of-pitch-layout ?Type ?CPL),

(Tube-diameter ?D-T), (Tube-pitch ?L-TP),

(= ?A-* (* 2.45 (*Quo 1.0 ? CPL)

(*Quo ?D-T (Square ?L-TP))))

Fig. 4.1 Flow chart for approximate design of STHE.

The pitch-layout is decided by asking question pertaining to pressure-drop and mechanical-cleaning. Staggered-30 type of layout gives a higher pressure drop and mechanical cleaning is difficult. Staggered-45 has ease in mechanical-cleaning. Inline-90 is preferred for low-pressure-drop. The constant of-pitch-layout has facts stored for each one of the 3 pitch-layout-types. Tube-Diameter is known by asking question. The tube pitch is computed as 1.25 times the tube-diameter by Rule no. ST20.

(Tube-Diameter ?D-T), (= ?L-TP (* times 1.25 ?D-T)).

Area-* is computed from the equation. We move to the next query (Aspect-Ratio ? L-By-D) at the stage a. Aspect-Ratio is known by issuing a question. Hence the shell-diameter at stage a is inferred.

j. Once the shell-diameter is inferred, the shell-length is computed by rule

ST145: (Shell-length ?L-TA)

(Aspect-ratio ?L-By-D), (Shell-Diameter ? D-S),

(= ? L-TA (*times ?L-By-D ?D-S)).

The above steps can be easily summarised in the flow-chart fig.4.1.

Proceeding in the same way, the further rules were written. The remaining steps are described in short in the following sections. The detailed flow chart for the entire design process is given in Fig. 4.3.

Fig. 4.2 Flow chart for the design of STHE.

- 4.1.2 The second step is the evaluation of geometric parameters (more detailed than earlier). Geometric parameters mean various flow areas, centriangle of baffle cut etc. These parameters are required for determining the correction factors for heat transfer and pressure drop. The basic dimensions of the tube are supplied by the user. The shell dimension are computed in the step 1 and at step 2, we have 3 further steps as
- (i) Determine shell and tube geometry.
- (ii) Determine baffle and bundle geometry.

 The evaluation of bundle geometry requires determining the bundle type. Bundle type is selected from the inlet condition of the fluids and as well as users requirement.

Baffle cut is a function of shell diameter as well as central baffle spacing. The percentage of baffle cut determines the window correction factor.

- (iii) Determine the various flow areas for computing the correction factors.
- 4.1.3 Determining various correction factors:

There are methods available to compute the heat transfer coefficient and pressure drop for tube banks in pure cross flow. Since in the actual HE the flow is not pure cross flow, a measure of deviation from the cross flow is given by the correction factor.

- 4.1.4 Actual shell side heat tranfer coefficient can be easily computed once the correction factors and ideal tube bank heat transfer coefficient is known.
- 4.1.5 Total shell side pressure drop is composed of 3 distinct parts and is computed as a sum of the three pressure drops (a) pressure drop in baffle windows (b) pressure drop in cross flow and (c) pressure drop in end zones.
- 4.1.6 Actual tube side pressure drop involves computing Reynolds number and Viscosity correction factor as the main steps. The tube side Reynolds number depends upon the velocity of the tube side fluid which in turn depends upon the no of tube side passes.
- 4.1.7 Tube side pressure drop is computed after computing the Reynold number and the firction factor.
- 4.1.8 Comparision of the results and iteration is the step which deals with modifications in the design. The process from step 1 to step 7 can be termed as one cycle. At this stage the user decides whether the design is acceptable or not. The design for which the heat transfer area required is less than the area available within the permissible pressure drop is an acceptable design. The greater the difference between area required and area available, or between the pressure drop permissible and the actual pressure drop, poorer is the design. Such a design needs modification.

Fig. 4.3 Tree structure for the design of STHE.

Fig. a

 Δ - Value of the predicate argument(s) is known

Q - Question

F - Fact

Fig. b

Fig. c

Fig. e

Fig. f

Fig. g

Fig. h

Fig. i

Fig. j

Fig. k

Fig. 1

Fig. m

Fig. o

Fig. r

4.2 GENERATING THE QUERY TREE :

The query tree generated is shown in Fig. 4.2. Each block represents a sub query tree, details of which are shown in Fig. 4.4. The blocks shown in Fig. 4.3 and 4.4 are same except for the fact that Fig. 4.4 shows a detailed tree structure.

It may be pointed out that the flow chart for the design will be the same but the tree structure depends totally on the structuring of the rules and the users responses. Hence it is a dynamic structure and may vary from session to session. In the present system, the queries are to be satisfied from the left to right.

We will examine in detail a query tree for determining the bundle diameter. Bundle diameter is calculated as the difference between shell diameter and the bundle-shell clearance. The bundle shell clearence is a function of shell-diameter and the bundle type. Bundle type depends upon the fluid properties like fouling, Inlet-pressure, non-lethal characteristics and mechanical cleaning frequency. Hence it can be seen that the query (Bundle-Diameter ?X) generates question like fouling characteristics, slightly greater diameter, non-lethal characteristics and slight leakage.

In similar manner each of the block can be analysed to its detailed tree as shown in Fig. 4.3. The

symbol denotes that the query for that particular predicate is satisfied at that stage or any stage previous to that.

4.3 STRUCTURING OF THE RULES:

As explained in Chapter 2, this system is a backward driven system. When a goal is given, the system tries to satisfy that goal, by scanning through the facts, rules, etc.

A detailed rule heirarchy structure is shown in Fig.4.4.

The top level predicate is 'complete'. To satisfy this goal, 3 subgoals should be satisfied viz.

Area-req, Total-shell-side-spressure-drop and tube-side pressure drop. Area-req further requires 4 goals and so on. The order of goals to be satisfied is from left to right i.e. the left goal is to be satisfied first then the next one and so on.

It is observed that some of the goals are required to be satisfied at many places. The context is declared to be true for all the predicates except computational predicates. This means that all the inference is stored as a fact and when it is required next time in the subsequent rules, it is directly inferred from the fact itself thus saving the laborious task of applying the rule again and again.

This feature of storing the inference poses one problem. When a predicate is inferred, at some stage we may want the value of this predicate arguments to be changed. Such a thing is possible by defining it as an action predicate or defining a predicate with another name. The process of reseting the database is adopted here.

The predicates whose value of the argument needs to be changed are identified and listed. The order of operation for these predicates is changed as-

- 1. Compute-pred
- 2. Action-pred
- 3. Facts
- 4. Question
- 5. Rules
- 6. Question-proc.

This differs from the regular order of operation as mentioned in Section 2 in the sense that the question is asked before the rule.

So initially, when an approximate value is to be determined, the user has to say 'DONTKNOW' so that the rule which computes the value is applied.

After the preliminary round of rating is over, in the next round the properties are 'Reset' to the original i.e. they lose all the newly generated facts and the system is

again ready to apply the same rules. This feature of asking the question is also useful when the user knows some piece of information and wishes to override the procedure that exists for computing that value. For e.g. if he already knows the tube-side heat transfer coefficient, he can give the value and override the usual procedure of computing the tube-side heat transfer coefficient

4.4 DIFFERENT PREDICATES USED:

The computational predicates take their arguments and return True (T) or false (Nil) according to the condition e.g. <,>, =, LE,GE etc. (LE = less than or equal to and GE = Greater than or equal to.). Most of the predicates defined for this system take one argument which is a numerical value e.g. Heat-rate, no-of-tubes, shell-diameter. Such predicates essentially have a rule, and most of the time they are enferred from a rule. They can get their value from the question also as explained in the previous section.

Other types of predicates are those which have more than one argument. The need for defining such predicates arises because of change in references and requirement of storing many properties. In the initial stage when the shell side and tube-side fluids are not decided, questions are asked by referring to the fluids as hot fluids and coldfluids. All the inference till this stage is made by referring the streams as hot and cold. Once the fluids on shell

and tube side are determined, they are referred by the predicates shell-side-fluid and tube-side fluid so (Inlettemp. ?name ? T-I) is a predicate having name of the fluid as its first argument and the value as its second argument. The first argument can be had from either of the two predicates as explained -

(fluid-name hot-fluid ? name) or
(shell-side-fluid ? name)
Another example is

(App-film-foul ?type ? HTC ?Fouling-coeff)
This predicate stores the values of Heat-transfer coefficient and Fouling coefficients for different types of fluids.

4.5 KINDS OF RULES:

The rules used here are mostly of the type which use an expression for assigning value to a variable argument of the predicate .

A rule of the form

is equivalent to the expression

$$A_{req} = \frac{Q_o}{U_o(LMTD)F}$$

```
(Heat-rate ?Q-O), (LMTD-Correction ?F),
(= ?X (*Quo ?Q-O (* ?U-O ? LMTD ? F))),
```

The second type of rule is one which takes purely logical decisions. Consider the rule

```
((( Shell-side-fluid ? name -C)
  (( Fluid-name cold-fluid ? name-c)
  (Fluid-name hot-fluid ?name -h)
  (Tube-side-fluid ? name - h)
ST 3))
```

here this rule cannot be expressed as a mathematical statement, but it takes a logical decision that if it can be proved that there is hot-fluid on the Tube-side, then it can be inferred that the other (cold-fluid) is on the shell-side.

4.6 ENCODING A NEW RULE:

Here we will talk about creating new predicates and writing a rule. Consider the following statements

' The decision of tube-side, shell-side or direct condensation depends upon the following:

- 1. High pressures are best inside tubes
- 2. Shell side has a relatively low pressure drop.
- 3. Corrosive vapours should be on the tube side.
- 4. If the operating temperature is very high, use directcondensation.

- 5. If the condensate can freze during the heat transfer process, shell side condensation is preferred.
- 6. When condensing multicomponent mixtures having a substantial boiling or dew-point range, or when there are soluble gases present, it is necessary to control the condensate and vapour flow so as to enable the low boilers to condense or when stripping to prevent their condensation or absorption, use tube side-condensation.
- 7. Fouling vapours should be best placed on the tube side.
- 8. Venting:'If non-condensables are to be vented, use tube side condensation'

The first step is to arrange these statements in order of importance. This is the first and the most important step towards writing the rules.

Along with this, select the important parameters and call them as predicates. So we have-

Order of importance	Serial number	Predicates		
1	3	(corrosive <name> < yes/no>)</name>		
2	5	(freezing <name> <yes no="">)</yes></name>		
3	6	<pre>(multi-component-vapours<yes no="">)</yes></pre>		
		or (soluble-gas-present <yes no="">)</yes>		
		and(control-condensate-vapour flow		
		<yes no="">)</yes>		

Order of importance	Serial number	Predicates		
4	1	(inlet-pressure ? name ? P-I)		
		(< ?P-I 2000.0)		
5	4	(inlet-temp ? name ? I-I)		
		(> ?T-I 300.00)		
6	8	<pre>(venting-noncondensables <yes no="">)</yes></pre>		
7	2	(Pressure-drop-max-low <yes no="">)</yes>		
8	7	(fouling <name> < yes/no>)</name>		
now using	the syntax,	rules can be written. One can have		
predicate	of the type) 		
(Condensation tubeside) or				

CHAPTER 5

RESULTS AND DISCUSSION

5.1 USING THE PACKAGE:

The various steps are explained in sect.3.1.

The user is expected to identify the problem and select a

STHE as a solution. This system does all the steps in the
..... block shown in Fig.5.1. While using this system,
the user is expected to answer questions. The data are
supplied essentially by question and answer process.

Questions asked can be classified into 2 catego-

- 1. Mandatory questions and
- 2. Optional questions
- 1. Mandatory Questions:

The user may have a requirement of heat exchange between any two fluids. Since the fluids undergoing heat exchange are best known to the user and so also are the properties, the user should supply them to the system when they are asked. For mandatory questions, if the user types 'don't know' there is no way the system can get this value and hence the attempt fails. For example a typical mandatory question is 'give the inlet temperature of hot fluid in degrees celsius'. All the mandatory questions are self

Fig. 5.1 Methodology for using the system.

explanatory, and they demand certain values. There is no information stored for them (See Table 5.1).

2. Optional Questions:

Some questions help as guide lines in selecting the bundle type, fluid side etc. If all the questions are not successful, there is still some decision taken, but it becomes a conservative or extra safe, decision. Answering the optional questions helps in getting the HE design precisely to the user needs, and so user should attempt to answer these questions, These questions are interdependent i.e. a question may be asked only if the user fails to answer the previous question:

Thedatabase for the Rule based system for heat exchangers is stored in 2 files.

FIXED AND ITER

FIXED essentially consists of the parameters which will not be changed in the process of redesigning. They are essentially the fluid properties and characteristics. ITER contains the bulk of the Rule base and is the one that rates the heat exchanger. The system consists of 148 Rules, 35 questions and explanations. The user is expected to fill up the tables I and II to facilate the use of this system. Table I contains the essential questions which he should know and table II contains some questions which may be required to be answered.

The complete design of a heat exchanger is an iterative process and can be best handled by the user himself.

A. After loading the files FIXED and ITER the user can start the system by typing Design. Before answering any question, he should read the instructions for answering the question carefully. If the user does not know the answer for the question, he should first get the explanation by typing 'What' and see what are the alternatives he has got.

At the end, a short comparative table is printed which gives the values required for comparison.

This table is shown in the sample run . The user should examine the output and decide whether or not the design is acceptable. The following should be taken into consideration.

- 1. Area required for heat transfer should in no case be greater than the area available for heat transfer.
- 2. Area required may be smaller than the area available, but this descision can be made by the user himself. Larger difference is advantageous from reliability point of view, but is not economical.
- 3. The required area and available area may be acceptable, but not the pressure drop on the shell and tube sides. The initial design may have the lowest pressure drop which will result in a very expensive design of the HE.

The user should compare the actual pressure drop and the permissible pressure drop. A rough guide for determining the maximum permissible pressure drop is given below, (Lord, 1970).

Inlet pressure kPa	Maximum p erm issible pressure drop kPa
Sub atmospheric	1/10th of absolute pressure
6.8 kPa to 68.9 kPa (gauge)	1/2 of operating gauge pressure.
68.9 kPa and higher	34.5 kPa or higher

A good design is the one which utilizes the maximum permissible pressure drop, and has the highest heat transfer coefficient.

It may be noted at this point that the pressure drop, Reynolds number and Heat transfer area are mutually interdepent. Heat transfer coefficient can be encreased by increasing the Reynolds number, but this increase in Reynolds number increases the pressure drop also.

It is therefore, not possible to predict the exact behaviour of the heat transfer coefficient, pressure drop, and Area of heat transfer required simultaneously. A trial and error solution is the only way.

4. Baffle leakage correction Factor for Heat Transfer (J_1) :

A good design should have its value not less than 0.6. It can be increased by increasing the cross flow area at shell centre or by decreasing the number of baffles. The initial design has the maximum value J_1 can attain and hence

while iterating, case should be taken to see that it does not fall below 0.6.

5. Total Correction Factor:

B.

Iteration:

The product of the all 3 correction factors should be \geq 0.5 for a well designed H.E. and should never be < 0.4.

When the user is not satisfied, the system automatically iterates. The user should not down the values from the comparison table and take the decisions as explained in the previous section. He should write down what changes he wishes to make under to corresponding columns (see Table 5.3). The user can also save the previous session.

During iteration only slected questions are asked and the user should answer them if he wishes to change the values.

Many question are interdependent and the user should answer those questions only e.g. The tube side passes and flow velocity intubes. Flow velocity inside the tubes in required to determine the tube side passes, but if the user can manipulate the number of tubeside passes himself, the question regarding tubeside velocity will not be asked.

After this short session of questions, the same table of results will be displayed for the user to take his decision.

TABLE 5.1

MANDATORY QUESTIONS

Question		Ho+ fl= 1	0-7100
Name of the fluid		not IIula	Cold fluid
Specific heat Inlet temperature Outlet temperatur Mass flow rate (Liquids only) absolute viscosit average temperatu	re ^o C Kg/Sec. cp	value value value value value	value value value - value
(Liquids only) absolute viscosit some other temper	cp v at	value	value
Density	Kg/m ³	value	value

TABLE 5.2

ITERATIVE PROCEDURE

Sl. No.	Parameter	Units	Itration no
1.	Heat transfer area required	m ²	
2.	Actual Heat Transfer area available	m ²	
3.	Shell side Re		
4.	Tube side Re		
5.	Shell side fluid		
6.	Tube side fluid		
7.	Film coefficient tube side	W/m ² K	
8.	Film coefficient shell side	W/m^2K	
9.	No of Baffles		
10.	No of Tubes		
11.	Overall Heat Transfer Coefficient	W/m ² K	
12.	Total shell side pressure drop	kPa	
13.	Total Tube side pressure drop	kPa	
7 1	No of shell side pases	kPa	

It is observed that the solution is obtained faster if the actual heat transfer coefficient value from the previous round is supplied, instead of supplying the area of heat transfer.

After it is decided that there will not be any changes in the design, the final output is printed.

Results are listed in the form of a table and are devided in 3 sections. They are presented at the end of Chapter 5.

5.2 SAMPLE SESSIONS:

Three sample sessions are presented here to illustrate how the expert system will respond if the required questions are not answered or answered in a typical manner (see Appendix)

Sample sessions I and II refer only to the mandatory question. If these questions are not answered, the system just fails. If these questions are answered in a different manner, it may result in an entirely different arrangement of the heat exchanger. For example if the user has been asked, 'Is the hot gas significantly corrosive?' and the answer given is 'YES', this fluid will be placed on the tube side and the other fluid on the shell side. If the answer was 'NO', other factors will decide which fluid will be on the tube side and which one on the shell side.

Sample session III gives an idea of a normal session to the reader. It starts with the system asking questions. The

user responds to the questions by seeking various explanations, etc. The session shows iteration for 3 times. In each case the users objective was to match the actual heat transfer area required and the area available for heat transfer. It can be noted that the user has to answer very few questions while iterating since all the other properties are stored as facts. The user has the facility of storing and recording the session.

5.3 CONCLUSIONS:

An 'Expert System' based upon the logic programming for the thermal design of single phase flow STHE has been developed. The system is highly interactive which gathers information about the problem domain by asking the user relevant questions and giving him the necessary help and explanation(s) if required. The system can be used pretty easily by a commercial user for design purposes. It can also be used for learning heat exchanger design or teaching the same to a beginner.

The detailed design procedure for STHE which consists of the shell and tube side designs, has been studied. Of all the (design) procedures available for the shell side analysis, modified Bell-Delaware method has been used. As the flow in the actual STHE is a non-ideal cross flow, the relevant correction factors which can take this deviation into consideration have been calculated. Kerr's method has been used for the tube side analysis.

The complete design procedure of STHE has been transformed into a knowledge base comprising of rules, facts, questions and explanations, which gives rise to a query tree indicating the flow of control.

The expert system presented here can be modified to be able to add a new rule, change any of the value already given and obtain information about various parameters at the intermediate stage. It can be extended to incorporate the rules for the design of other types of heat exchangers.

REFERENCES

- 1. Avron, B., and Edward. A.F., The Handbook of Artificial Intelligence, Vol. II, pp 3-65, Pitman Books Ltd., 1982.
- Devore, A., Try this Simplified Method for Rating Baffled Heat Exchangers, Petroleum Refining, 40,5, pp 221-233, 1961.
- 3. Dohonue, D.A., Heat Exchanger Design., Petroleum Refining, 34,8,pp 94-100, 34, 10, pp 129-138, 34,11,pp175-184,1955, and 35,1,pp 155-160,1956.
- 4. Fanaritis. J., and Bevevino. J., How to Select the Optimum shell-and- tube heat exchanger, Process Heat Exchange, editor V. Cavaseno, pp 5-13, McGraw-Hill.
- 5. Goyal, O.P., Guidelines on Exchangers., Hydrocarbon Processing, pp 55-60, August 1985.
- 6. Kern, D.Q., Process Heat Transfer., pp 25-61, pp 85-187, McGraw-Hill, 1950.
- 7. Lord, R.C, Minton, P.E, and Slusser. R.P., Design of Heat Exchangers, Process Heat Exchange, editor V.Cavaseno, pp 15-36, McGraw-Hill, 1970.
- 8. Nilsson, N.J., Some Examples of AI Mechanisms for Goal Seeking, Planning, and Reasoning, Human and Artificial Intelligence., editor F.Klix., pp 11-35, North-Holland Publishing Company, 1979.
- 9. Sangal, R., Programming in LISP: Tools, Techniques and Principles, McGraw Hill (Forthcoming).

- 10. Sangal, R., Expert Systems, Invited Seminar at CSI-BIG-85, Pune, 1985.
- 11. Short, B.E., A Review of Heat Transfer coefficients and Friction Factors for Tubular Heat Exchangers., Transactions ASME., 64, pp 779, 1942.
- 12. Srinivas, K., Cool: An Expert System for Selection and Design of Heat Exchange Equipment, M. Tech. Thesis, Indian Institute of Technology, Kanpur., 1985.
- 13. Taborek, J., 'Charts for Mean Temperature Difference in Industrial Heat Exchanger configurations' and 'Shell-and-Tube Heat Exchangers: Single-Phase Flow', Sections 1.5 and 3.3., editors E.U. Schlunder, et al., VDI-Verlag GmbH and Hemilphere Publishing Corporation, Vol I and III., 1983.
- 14. Tinker, T, Shell side Heat Transfer Characteristics of Segmentally Baffled Shell-and-Tube Heat Exchangers.,

 Paper presented at ASME Annual Meeting, 1947.
- Tinker, T., Shell side Characteristics of Shell-and-Tube Heat Exchangers. A Simplified Rating System for Commercial Heat Exchangers, Transactions ASME., 80, pp 36-52, 1958.
- 16. Ravikumar, G., An Expert for Design of Cooling Towers, M. Tech. Thesis, I.I.T. Kanpur, 1986.

APPENDIX , SANDUF RESSTON T

RECOPO FILE DSK: SESI OPENED 04-AUG-86 10:13:41 (GIVE THE VALUE OF FILM COFFFICIENT OF THE SHELL-SIDE-FLUID IN * / SO M K) >DONTKNOW

(GIVE THE AREA OF HEAT TRANSFER IN SO M) > DUNTKNIM

(GTVS THE VALUE OF OVERALL HEAT TRANSFER CÔEPFICIENT IN W / SU M K) > DONTKNIW

(WHAT IS THE NAME OF THE HOT-FIUID) > WHAT

(THIS IS A MANDATORY ONESTION)

(NHAT IS THE DAME OF THE COLD-FLUID) >WHAT

(THIS IS A JANDATOPY OUESTOW)

(GIVE THE VALUE OF SHELL-DIAMETER IN MM) > DONIKNOW

SORPY I CAN'T HFLP YOU !

VIC <18>RECURDFILE

RETURD FILE DSK: SESI CLOSED 04-AUG-96 10:14:41

Apppendix , Sawpile Session IT

RECORD FILE DSK: SESS DPFNED 04-AUG-86 10:16:37 (GIVE THE VALUE OF FILM COFFFICIENT OF THE SHELD-SIDE-FLHID IN W / SO M K) >DONTKNOW

(GIVE THE AREA OF HEAT TRANSFER IN SO M) > DOVIKNIN

IGIVS THE VALUE OF OVERALL HEAT TRANSFER COEFFICIENT IN W / SO M K) PODNTKNOW

GHAT IS THE NAME OF THE HOT-FIUID) >MINERAL-JIG

(IS THE MINERAL-OIL SIGNIFICANTLY CUPROSIVE) >N

(AMAT IS THE NAME OF THE COLD-FLUID) >WATER

(IS THE MATER SIGNIFICASTLY COPRISIVE) >40

(DIES THE WINERAL-DIL HAVE SIGNIFICANT FOULING CHARACTERISTICS) >V

(DOES THE WATER HAVE SIGNIFICAMI FAULING CHARACIFRISTICS) >N

(PLEASE SPECIFY THE SPECIFICHHEAT OF THE MINERALHOIL IN J / KG K) >3100 40

(PLEASE SPECIEV THE SPECIFIC-SEAT OF THE WAIFA IN J / KG K) >4200.0

PUSASE SPECIFY THE INDEPTEND OF THE MINERAL-TIMEN ORG CELSIUS) >104,0

(PLEASE SPECIFY THE NUTLIFIED OF THE MINERAL-OIL IN DEG CENSIUS) >74.87

(PLEASE SPECIFY "BF INLE" "FE" DF THE WATER IN DRG CPLSIUS) >21.63

(PLEASE SPECIFY THE OUTLIT-TEAD OF THE WAITR IN DEG CELSTUS) >59.43

(MAAT IS THE AASS FLOW HATF OF THE MINERAL-OTL IN RG / SEC) >20.0

<24>RCCORDFILE

RETORU FILE DSK: SESP CLÜSFU 64-AUG-86 10:18:16

APPENDIX SAMPLE SESSION III

>WHAT RECORD FILE DSK: LELI OPENED 02-AUG-86 18:44:29 (GIVE THE VALUE OF FILM COEFFICIENT OF THE SHELL-SIDE-FLUID IN W / SY M K)

(" IF THE FLUID IS UNDERGOING CONDENSATION, HERE ARE SOME USEFUL VALUES FOR THE FILM COEFFICIENT, PICK UP A SUITABLE VALUE FROM THOSE GIVEN IN THIS TABLE:

	W / SQ m K	
T TRANSFER COEFFIC	CONDITION	KPa, NO NON-COND. KPa, 4% NON-COND. KPa, NO NON-COND. KPA, NO NON-COND.
S	ANE OF THE FLUID	SSSTEE SSSTEE SSSSSSSSSSSSSSSSSSSSSSSSS

WCNNTNCQ<

(CIVE THE AREA OF HEAT TRANSFER IN SQ M) >NHAF

× Σ SC * ("IF THIS THE FIRST ROUND OF CALCULATIONS OR IF YOU KNOW THE VALUE OF OVERALL HEAT IRANSFER COEFFICIENT IN SAY "DONIKYOM" BLSE GIVE THE VALUE FROM THE INITIAL ROUND OF CALCULATION ")

K) >wHAT (GIVE THE VALUE OF OVERALL HEAT TRANSFER COEFFICIENT IN W / SQ M (" IF THIS IS THE FIRST ROUND OF CALCULATIONS SAY DONTKNOW "ELSE GIVE THE VALUE FROM THE PREVIOUS ROUND ")

(NHAT IS THE NAME OF THE HOF-FLUID) >HOF-GAS

(IS THE HOT-GAS SIGNIFICANTLY CURROSIVE) >Y

(AHAT IS THE NAME OF THE COLD-FLUID) >WATER

** (" PLEASE CLASSIFY THE " HOT-GAS " IN ANY ONE OF THE FOLLOWING CATEGURIES

1 **					
LIGHT HEAVY-HOT HEAVY-HOT VERY-HEAVY-HOT VERY-HEAVY-HOT SAS-200 SAS-104 E VISCOSITY, >GAS-104 SIDE THE FOLLOWING CATESORIES LIGHT HEAVY-HOT VERY-HEAVY-HOT VERY-HEAVY-HOT VERY-HEAVY-HOT VERY-HEAVY-COLD GAS-200 GAS-103 GAS-104 F VISCOSITY, >LIGHT	MM) > WHAT		OUTSIDE SURFACE	00000000000000000000000000000000000000	ZH
ID 200 KPA 1000 KPA 1000 KPA absolute pressure fled on the basis of E WORD ON THE RIGHT MATER " IN ANY ONE 1000 KPA 1000 KPA 1	OUTSIVE DIAMETER IN	ENSIONS ARE :-	KNESS TUBE I.D	00 00000000000000000000000000000000000	R TUBE WA O am D.D Syalher D Hell DIAM
LIGHT LIQUID [3] HEAVY COLD LIQUID [5] VERY HEAVY COLD LIQUID [5] VERY HEAVY HOT LIQUID [5] VERY HEAVY HOT LIQUID [7] GAS AT A PRESSURE < [8] GAS AT A PRESSURE < [9] GAS AT A PRESSURE < [1] ANSWER BY TYPING THE " [1] MEDIUM LIQUID [3] HEAVY COLD LIQUID [4] HEAVY COLD LIQUID [5] VERY HEAVY HOT LIQUID [5] VERY HEAVY HOT LIQUID [5] VERY HEAVY COLD LIQUID [5] VERY HEAVY COLD LIQUID [6] GAS AT A PRESSURE < [6] GAS AT A A PRESSURE A PRES	GIVE THE VALUE OF TUBE	THE RECOVENDED TUBE	UBE O.D WALL TH		ELECT A SUITAB ABLE GENERAL HEY HAVE A LAR EAT TRANSFER A

YOU MAY SAY DONTKNOW ALSO. ")

SPECIFY THE SPECIFIC-HEAT OF THE HOI*GAS IN J / KG K) >3107." OF THE HOT-GAS IN DEG CELSIUS) >130.0 HOT-GAS IN DEG CELSIUS) >230.0 SPECIFY THE SPECIFIC-HEAT OF THE WAIER IN J / KG K) >4280.0 THE OUTLET-TEMP OF THE WATER IN DEG CELSIUS) >170.0 V 20 OF THE WATER IN DEG CELSIUS) >109.0 (IS THE REQUIREMENT OF SHELL SIDE MECHANICAL-CLEANING-FREQUENT) (AHAT IS THE MASS FLOW RATE OF THE HOT-GAS IN KG / SEC) >25.18 (IS THE LIMITATION ON SHELL SIDE PRESSURE-DROP-STRICT) >NO OF TUBE-WALL-THICKNESS IN MM) >2.0 OF THE THE OUTLET-TEMP THE INLET-TEMP THE INLET-TEMP (PLEASE SPECIFY SPECIFY SPECIFY SPECIFY (GIVE THE VALUE (PLEASE (PLEASE (PLEASE (PLEASE (PLEASE

THE HOT-GAS HAVE SIGNIFICANT FOULING CHARACTERISTICS) >NO KPA) >36951 THE INCET-PRESSURE OF THE HOT-GAS IN THE VALUE OF ASPECT-RATIO) >20.0 (D)ES (GIVE

(" THE NO OF BAFFLES DECIDE THE SHELL SIDE REYNOLDS NUMBER
LOWER VALUE GIVES A LOWER REYNOLDS NUMBER AND LOWER PRESSURE DROP
IF THE VALUE OF BAFFLE LEAKAGE CORRECTION FACTOR IS LESS THAN
0.7 REDUCE THE NUMBER OF BAFFLES. THIS INCREASES THE CROSS FLOW AREA
AT SHELL CENTRE AND HENCE THE CORRECTION FACTOR. ")

CENTIPOI ABSOLUTE VISCOSITY OF THE WATER AF 139.5 DEGREES CELSIUS IN (GIVE THE

M K) >WHAT \ 3 7 THE WATER (GIVE THE THERMAL CONDUCTIVITY OF

(THIS IS A MANDATORY QUESTION)

GIVE SOME OTHER TEMPERATURE (GIVE THE ABSOLUTE VISCOSITY OF THE THE WAIER AI THE TEMPERATURE IN DEGREES CELSIUS FOLLOWED THE VISCOSITY IN CENTIPOISE ") >109.0 2.7

7 S \ 3 OF FILM COEFFICIENT OF THE TUBE-SIDE-FLUID IN COIVE THE VALUE

SOME USEFUL VALUE FROM HERE ARE **J** IS UNDERGOING CONDENSATION FILM COEFFICIENT, PICK UP THIS TABLE :-VALUES FOR THE THE THE THE THE

1	CONC	ENSING	HEAT	CONDENSING HEAT TRANSFER CREFFICIENTS	
NAME	E L	NAME OF THE FLUID		NAME OF THE FLUID CONDITION W/Sqm K	VALUE / Sq m K
12242 20242	(2) (2) (3) (4) (5) (5) (5) (5) (6)	[1] STEAM AMMONIA [2] STEAM AMMONIA [4] STEAM AMMONIA [4] STEAM AMMONIA [5] STEAM AMMONIA		10 KPa, NO NON-COND. 10 KPa, 1% NON-COND. 10 KPa, 4% NON-COND. 2,500100 KPa, NO NON-COND. 1000 KPA, NO NON-COND. 20,00	10 000 2 500 12 500 20 000 20 000

(SIVE THE THERMAL CONDUCTIVITY OF THE HOT-GAS IN M / M K) >0,1644

CENTIP GIVE THE ABSOLUTE VISCOSITY OF THE HOT-GAS AT 180.0 DEGREES CELSIUS IN

ISE) >0.291

(GIVE THE NO OF TURE-SIDE-PASSES) >2

(GIVE THE DENSITY OF THE WAFER IN KG / CU M) >924,5

(GIVE THE DENSITY OF THE HOP-GAS IN KG / CU M) >99.5

THE HEAT TRANSFER AREA REQUIRED Sq m = 345.82829

THE HEAT TRANSFER AREA AVAILABLE Sq n = 597.61589

THE HEAT TRANSFER AREA AVAILABLE Sq n = 597.61589

THE HEAT TRANSFER AREA AVAILABLE Sq n = 597.61589

THE HEAT TRANSFER = 4968.5598

THE SHELL SIDE REYNOLDS NUMBER = 21097.693

SHELL SIDE REYNOLDS NUMBER = 21097.693

SHELL SIDE FLUID = WATER

TUBE SIDE FLUID = HOT-GAS

FILM COEFFICIENT OF THE SHELL SIDE W / Sq n K = 1416.2112

NO OF BAFFLES = 36

NO OF TUBES = 36

NO OF TUBES = 746

TOTAL SHELL SIDE PRESSURE DROP KPa = 30.586736

TOTAL TUBE SIDE PRESSURE DROP KPa = 61.123519
LM I D CORRECTIUN FACTOR = 1.0
THERMAL EFFECTIVENESS = 0.82644627
TUBE SIDE PASSES = 2
SHELL SIDE PASSES = 2

. SR ARE THE DIFFERENT CORRECTION—FACTORS FOR HEAT TRANSFER ARE WINDOW CORRECTION FACTOR = 0.80587929
BAFFLE LEAKAGE CORRECTION FACTOR = 0.67315776
BOVERSE TEMPERATURE GRADIENT CORRECTION FACTOR = 0.48646344
THE CORRECTION FACTOR = 0.48646344
THE CORRECTION FACTOR = 0.48646344
THE CORRECTION FACTOR = 0.45001159
BAFFLE LEAKAGE CORRECTION FACTOR = 0.45001159
END ZONE CORRECTION FACTOR = 2.0 0.67315776 0.89673342 ACTUR = 1.0

I THINK YOU ARE SATISFIED WITH THE DESIGN.
IF YOU ARE 'SAY YES'GN THE HEAT EXCHANGER SAY NO.

CNA

DO YOU WANT THIS SESSION TO BE STORED ? >YES

> LELS STOREL 8 E 10 TS. SESSION THIS WHICH 2 FILE THE C Fi NAME HH GIVE 2

VIERALL-HIC JVERALL-HIC OVERALL-HIC TUBE-DIAMETER TUBE-SPACING-ZERO AREA-ZERO AREA-ZERO NO-OF-BAFFLES NO-OF-BAFFLE

NO-OF-TUBES SHELL-LENGTH SHELL-LENGIH SHELL-DIAMETER SHELL-DIAMETER ASPECT-RATIO NO-OF-TUBES TUBE-LENGIH SHELL-DIAMETER E-LENGIH I SP

```
ADVERSE-TEMP-CRADIENT-CORRECTION-FACTOR ADVERSE-TEMP-CRADIENT-CORRECTION-FACTOR ADVERSE-TEMP-CRADIENT-CORRECTION-FACTOR ADVERSE-TEMP-CRADIENT-CORRECTION-FACTOR ADVERSE-TEMP-CRADIENT-CORRECTION-FACTOR ACTUAL-FILM-COEFF-SHELL ACTUAL-FILM-COEFF-SHEL
CROSS-FLOW-AREA-AT-SHELL-CENIRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          *PECTION*FACTOR *PER-WINDO FIBE*NO*PEK-WINDO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 LOW-AREA-TUBES TOTAL-FLOW-AREA-TUBES FLOW-AREA-TUBES-REQ

REA-TUBES-REQ VELOCITY-TUBES-EXACT VELDCITY-TUBES-EXACT

REA-PER-PASS TUBE-AREA-PER-PASS ACTUAL-FILM-COEFF-TUBES
-FILM-COEFF-TUBES ACTUAL-FILM-CJEFF-TUBES ACTUAL-FILM-COEFF-TUBES
-FILM-COEFF-TUBES FRICTION-FACTOR-TUBES FRICTION-FACTOR-TUBES
-FILM-COEFF-TUBES FRICTION-FACTOR-TUBES FRICTION-FACTOR-TUBES
-FILM-COEFF-TUBES FRESSURE-DROP-TUBES OVERALL-HIC-ACTUAL
-FILM-COEFF-TUBES FLOW-VELOCITY-TUBES FLOM-VELOCITY-TUBES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            A-PER-BAFFLE
-TUBES SHELL-BAFFLE.-CLEAKENC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ALING-STRIP-PAIRS
NI-VAR
SE-TEMP-GRADIENT-CORRECTION-FACT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TUBE-AALL-TAICKSE
                                                                                                                        (2)
                                                                                                                    AMEJE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             AGE-AREA
                                                   PERCENT-BAFFLE-CUT REPARTED CENTRIANGLE-DF-BAFFLE-CUT CENTRIANGLE-DF-BAFFLE-CUT REPARTED CONTRIANGLE-DF-BAFFLE-CUT REPARTED CONTRIANGLE-DF-BAFFLE-CUT REAL MINDOW AREA-WITHOUT-TUBES MINDOW FRACTION-TUBES-NOTHER MINDOW FRACTION-TUBES-NOTHER MINDOW FRACTION-TUBES-NOTHER MINDOW FRACTION-TUBES-NOTHER MINDOW FRACTION-TUBES-NOTHER MINDOW FRACTION-TUBES-BAFFLE-CUT REPARTED CONTRIBES MINDOW FRACTION TUBES-BAFFLE-CUT REPARTED CONTRIBES MINDOW-PENDING MINDOW-PENDING MINDOW-PENDING MINDOW-PENDING MINDOW-PENDING MINDOW-PENDING MINDOW-PENDING MINDOW-PENDING MINDOW-PENDING MINDOW-PACTOR MINDOW-CORRECTION-FACTOR MINDOW-CORRECTION-FACTOR MINDOW-CORRECTION-FACTOR MINDOW-PENDING MINDOW-PACTOR MINDOW-PACTOR MINDOW-PENDING MINDOW-PACTOR MIND
                                                                                                                    S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                BE-MALL-THICKNESS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            LOW-AREA
   ENTRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       医医氏
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 IP-PAIRS SE
TEMP-GRADIE
ACTOR ADVER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            R-DIST-E
SHELL-C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HICKNESS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Eowert
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FRI
FAT
ROSS-FLOW-AREA-AI-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ALING-SI
ADVERSE
RECTION-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -WALL-T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SAFFLE
SES FLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RENT VAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            REA-PER-B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LEAR
RADI
RADI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SS-FLOW-A
      C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FLE
PAPAGE
GAPAGE
-DIAMERER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LOCITY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ERSE
FRSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  82
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      M-VE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SH CA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         127.
```

J.K HYP. FIL EU. S FUBE-WALL-THICKNESS VISCOSITY-CORRECTION-FACIDR-TUBES VISCOSITY-CORRECTION-FACTOR-TUBES AREA-RED AREA-RED THERMAL-ER HEAT-CAPACITY-RATIO HEAT-CAPACITY-RATIO DELIA DELIA LMTD-CORRE LMTD-CORRECTION END-ZONE-CORRECTION-FACTOR END-ZONE-CORRECTION

FILE IN WHICH STORED :->IEL2 SESSION IS TO BE GIVE 19:00:51 FILE DSK: IEL1 CLOSED 02-AUG-86

3 S. . 7 2 19:01:02 THE SHELL-SIDE-FLUID FILE OSK: IELZ OPENED 02-AUG-86 THE VALUE OF FILM COEFFICIENT OF RECORD (GIVE 1

MONYINCO< (M IN SQ HEAT TRANSFER F AREA HE (GIVE

2 \mathbf{z} SC \ 3 2 COEFFICIENT *TRANSFER* HEAT OVERALL OF VALUE THE (GIVE

>18.0 WW) N TUBE OUTSIDE DIAMETER O Fi VALUE THE

>20.0 ASPECT-RATIO) OF VALUE THE GIVE

NO-UF-BAFFLES) >40 THE (GIVE

VDONTKNO Ş Σ O S ` 3 PUBE-SIDE-FLUID THE G. FILM COEFFICIENT Q VALUE THE SIVE

TUBE-SIDE-PASSES) >2 E, CN THE GIVE) OF TUBE-WALL-THICKNESS IN MM) >2 VALUE

58

THIS IS A TABLE FOR COMPARISION OF THE RESULTS

THE HEAT TRANSFER AREA REQUIRED Sq m = 219.89553

THE ACTUAL HEAT TRANSFER AREA AVAILABLE Sq n = 210.59501

SHELL DIAMETER mm = 468.3974.2529

SHELL SIDE FLUID = WATER

TUBE SIDE FLUID = WATER

FILM COEFFICIENT OF THE SHELL SIDE w / sq n K = 3333.5158

FILM COEFFICIENT OF THE TUBE SIDE w / sq n K = 2731.5916

NO OF BAFFLES

TOTAL HEAT TRANSFER COEFFICIENT w / sq n K = 2731.5916

TOTAL SHELL SIDE PRESSURE DROP KPa = 163.29022

L M T D CORRECTION FACTOR = 1.0

0.82644627 Ħ S ENES. 11 SES COOK とり E۵ MAL EF SIDE 203 西西亞

1	1		i
ARE	0		
SFER	196		l.
TRAN	. 700 700 900 900 100	Цы	25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HEAT			144
FOR H	m =====	DR	4.0
	OC.	UR.	
FACTORS	FACT NTTO	PRE	FACT ACTO
S		FO	N O
ECT	1- MIT-71-7-5 1	ACTORS	NE SECTION
COPR	NOUTE I	Es. I	
RENL	THE DEPART OF THE P	TIO	PASS CURS RR
7-7 8	LE BEEN TO THE BEEN TO THE BEEN TO THE BEEN TO THE BEEN T	DRRE	E LE ONE BY
THE D	BALTEC BUNDE TOTAL	E	A CONTRACTOR

S SAY EXCHANGER DESIGN. MITH THE HEAT THE THINK YOU ARE SATISFIED YOU ARE 'SAY YES' YOU AND 'YOU AND 'YO REDESIGN THE Sale.

~

SHELL-DIAMETER SHELL-LENGTH SHELL-LENGTH SHELL-DIAMETER SHELL-DIAMETER --CENIRE CROSS-FLOW-AREA-AT-SHELL-CENI NG-EXACT VIL (VERSION 140 "26-JUL-86 02:11:16") (HOLDI EQUAL) DVERALL-HTC DVERALL-HTC OVERALL-HTC TUBE-DIAMETER TUBE-EDIAMETER NO-OF-BAFFLES NO-OF-BAFFLE Z (*· STORED H CL SESSION Ø IHI AAMI CO

VEKALL-HTC SE-UIAMLTER VSIUE ERU AKEA-ZER

FLES

ASPECT-RAT

E AMETER ES BUIL PERCENT-BAFFLE-CUT PERCENT-BAFFLE-CUT CENTRIANGLE-DF-BAFFLE-CUT CENTRIANGLE-DF-BAFFLE-CUT CENTRIANGLE-DF-BAFFLE-CUT REYNOLDS-NO-SHELL REYNOLDS-NO-SHELL BUNI 3UNDLE-DIAMETER WINDOW-AREA-WITHOUT-TOBES ALNOM-AREA-WITHOUT-TOBES ALNOM-AREA-WITHOUT-TOBES ALNOM-TOBES-IN-ONE-AINDOW FRACTION-TOBES-IN-ONE-AINDOW FRACTION-TOBES-IN-ONE-AINDOW

```
SHELL-BAFFLE-CLEARENCE SEALING-STRIP-PAIRS SEALING-STRIP-PAIRS
ADVERSE-TEMP-GRADIENT-VORR ADVERSE-TEMP-GRADIENT-VAR
ADVERSE-TEMP-GRADIENT-VORR ADVERSE-TEMP-GRADIENT-VAR
ADVERSE-TEMP-GRADIENT-VORR ADVERSE-TEMP-GRADIENT-VAR
ADVERSE-TEMP-GRADIENT-VORR ADVERSE-TEMP-GRADIENT-CORRECTION-FACTO

VI-FACTOR-SHELL ACTUAL-FILM-COEFF-SHELL ACTUAL-FILM-COEFF-SHELL

FACTOR-SHELL ACTUAL-FILM-COEFF-SHELL ACTUAL-FILM-COEFF-SHELL

FACTOR-SHELL ACTUAL-FILM-COEFF-SHELL ACTUAL-FILM-COEFF-SHELL

FACTOR-SHELL ACTUAL-FILM-COEFF-SHELL

FACTOR-SHELL ACTUAL-FILM-COEFF-SHELL

FACTOR-SHELL ACTUAL-FILM-COEFF-SHELL

FACTOR-SHELL ACTUAL-FILM-COEFF-SHELL

FACTOR-SHELL

FA
                                                                                                                                                                                                                                                           LEAKAGE-AREA
FLE
OR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FLE-CLEAKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -PEt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ESE
                                                                                                            NETRALI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CTION-FACTUR
ER-WINDOW TUBE.
                                                                                                                                                                                                        SED
ELL-BAFFLE-LE
REA-PER-BAFFL
ECTION-FACTOR
ACTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IDR-IUBES
REA-REO THERMAL-EFF T
A DELTA LMID-CORRECTI
ND-ZONE-CORRECTION-FA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           R-BAFFLE
ES SHELL-BAF
                COSS-FLOW
TUBE-NO
FLOW-PEN
FRACTION-TUBES-PURE-CROSS-FLOW FRACTION-TUBES-PURE-CROSS-FLOW-TUBE-NO BAFFLE-TIP-CROSS-FLOW-TUBE-NO BAFFLE-TIP-CROSS-FLOW-TUBE-NO BAFFLE-TIP-CROSS-FLOW-TUBE-NO BAFFLE-TIP-CROSS-FLOW-TUBE-BAFFLE-HOLE-CLEARENCE EFFECTI VE-TUBE-ROWS-CROSS-FLOW-CORFELL-BYARS-CROSSED EFFECTI VE-TUBE-ROWS-CROSSED BUNDLE-SHFLLE-HOLE-ROWS-CROSSED BUNDLE-BAFFLE-HOLE-ROWS-CROSSED BAFFLE-BAFFLE-HOLE-ROWS-CROSSED BAFFLE-BAFFLE-HOLE-ROWS-CRAGE-ROWS-CORRECTION-FACTOR BAFFLE-LEARAGE-CORRECTION-FACTOR BAFFLE-LEARAGE-CORRECTION-FACTOR BAFFLE-LEARAGE-CORRECTION-FACTOR BUNDLE-BYPASS-CORRECTION-FACTOR BUNDLE-BYPASS-CORRECTION-FACTOR BUNDLE-BYPASS-CORRECTION-FACTOR BUNDLE-BYPASS-CORRECTION-FACTOR BUNDLE-BYPASS-CORRECTION-FACTOR BUNDLE-BYPASS-CORRECTION-BENDLE-BYPASS-CORRECTION-BENDLE-BAFFLE NET-CROSS-FLOW-BENDRE-BAFFLE NET-BAD-TUBES BENDRE-BAFFLE NET-CROSS-FLOW-BENDRE-BAFFLE NET-CROSS-FLOW-BENDRE-BAFFLE NET-CROSS-FLOW-BARFA-BAFFLE NET-CROSS-FLOW-BARFA-BAFFLE NET-CROSS-FLOW-BARFA-BAFFLE NET-CROSS-FLOW-BAFFLE NET-BAFFLE N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          NESS VISCOSTIY-CORRECTION-FACTORION-FACTOR-TUBES AREA-RED AFAITO HEAT-CAPACIFY-RATIO DELIMEND-ZONE-CORRECTION-FACTOR EN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          VALL-THICKN
SITY-CORRECTAPACITY-RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              YUSE-A
```

GIVE THE NAME OF THE FILE IN WHICH I'VE SESSION IS TO BE STORED :-> IEL3

RECORD FILE DSK: IELZ CLUSED 02-AUG-86 19:11:39

WONNINCO< (X M RECORD FILE DSK: IEL3 OPENED 02-AUG-86 19:11:40 CGIVE THE VALUE OF FILM COEFFICIENT OF THE SHELL-SIDE-FLUID IN W / SW

(GIVE THE AREA OF HEAT TRANSFER IN SO M) > DONIKNOW

K) >1000.0 W ČS / M GIVE THE VALUE OF OVERALL HEAT TRANSFER COEFFICIENT IN

(GIVE THE VALUE OF TUBE OUTSIDE DIAMETER IN MA) >18.0

(GIVE THE VALUE OF ASPECT-RATIO) >22.0

(GIVE THE NO-OF-BAFFLES) >50

K) >#HAT GIVE THE VALUE OF FILM CORFFICIENT OF THE FUBE-SIDE-FLUID IN W / SQ M

" IF THE FLUID IS UNDERGOING CONDENSATION, HERE ARE SOME USEFUL VALUES FOR THE FILM COEFFICIENT, PICK UP A SULFABLE VALUE FROM THOSE GIVEN IN THIS TABLE:

COND	ENSING HEAT	TRANSFER COEFFICIENTS	1
AVE OF THE	FLUID	CONDITION	W / Sq m K
LUCATION OF THE PROPERTY OF TH	AAWONIA AAWONIA AAWONIA AAWONIA	10 KPa, NO NON-COND. 10 KPa, 4% NON-COND. 100 KPa, NO NON-COND. 100 KPA, NO NON-COND.	10 000 5 000 2 500 12 500 20 000
A CANTU	1	· · · · · · · · · · · · · · · · · · ·	1

(GIVE THE NO OF TUBE-SIDE-PASSES) >2

(SIVE THE VALUE OF TUBE-WALL-THICKNESS IN MM) >WHAT

(" THE RECOMENDED TUBE DIMENSIONS ARE :- TUBE O.D WALL THICKNESS TUBE I.D OUTSIDE SURFACE on mm sq m / m 0000 0000 0031 044 72.0 10.00 0.00 2770 0000

```
1 3
                                                                                      WS E
                                                                                       A TO
                                                                                     S FROM THE
COMMENDED S
ES GIVE DAR
                                                                                                                                                                            THIS IS A TABLE FOR COMPARISION OF THE RESULTS

THE HEAT TRANSFER AREA REQUIRED Sq m = 209.11471

THE HEAT TRANSFER AREA REQUIRED Sq m = 209.11471

SHELL DIAMETER mm = 483.76443

SHELL SIDE REYNOLDS NUMBER = 12789

SHELL SIDE REYNOLDS NUMBER = 45885.944

SHELL SIDE FLUID = MATER = 45885.944

TUBE SIDE FLUID = HOT-GAS

FILM COEFFICIENT OF THE TUBE SIDE W / Sq n K = 2883.5154

NO OF TUBES = 343

OVERALL-HEAT IRANSFER COEFFICIENT W / Sq n K = 2883.5154

THER WALL SHELL SIDE PRESSURE DROP KPa = 173.33869

THER WALL EFFECTIVENESS = 0.82644627

TUBE SIDE PASSES = 2

SHELL SIDE PASSES = 2

SHELL SIDE PASSES = 2
                                                                                                                                                                                                                                                                                                    SHELL SIDE W / sq n K = 3655,1002
TUBE SIDE W / sq n K = 2883,5154
                                                                                                                                                                                                                                                                                                                                                                                                                                                               THE DIFFERENT CORRECTION FACTORS FOR HEAT IRANSFER ARE MINDOW CORRECTION FACTOR 0.87062163

BAFFLE LEAKAGE CORRECTION FACTOR 0.87062163

BOUNDLE BYPASS CORRECTION FACTOR 0.87903944

ADVERSE TEMPERATURE GRADIENT CORRECTION FACTOR 1.0

TOTAL CORRECTION FACTOR FOR PRESSURE DROP ARE
0,3737136
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FACTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CORRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   LEAKAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   AFFLE
```

BUNDLE BYPASS CORRECTION FACTOR = 0.68275479

THINK YOJ ARE SATISFIED WITH THE DESIGN. F YOU ARE SAY YES. F YOU WANT TO REDESIGN THE HEAF EXCHANGER SAY NO.

U. G.

STORED :->IEL4 BE CI THE FILE IN WHICH THE OUTPUT IS DSK: IEL3 CLUSED 02-AUG-86 19:17:48 9 THE NAME FILE

RECORD FILE DSK: IEL4 OPENED 02-AUG-86 19:20:59
THIS IS A TABLE FOR COMPARISION OF THE RESULT:
THE HEAT TRANSFER AREA REQUIRED Sq m = 209.11471
THE ACTUAL HEAT TRANSFER AVAILABLE Sq n = 210.59501
THE ACTUAL BLAMETER ME = 453.76443
SHELL DIAMETER ME = 453.76443
TUBE SIDE REVOLDS NUMBER = 12789.038
TUBE SIDE FLUID = WATER
FILM COEFFICIENT OF THE SHELL SIDE M / Sq n K = 3655.1002
FILM COEFFICIENT OF THE SHELL SIDE M / Sq n K = 2883.5154
DVERALL-HEAT TRANSFER COEFFICIENT M / Sq n K = 2883.5154
TOTAL TUBE SIDE PRESSURE DROP KPa = 98.640654
THER WAL EFFECTION FACTOR = 10.82644627
TUBE SIDE PASSES = 0.82644627

THE DIFFERENT CORRECTION FACTORS FOR HEAT TRANSFER ARE BAFFLE LEAKAGE CORRECTION FACTOR
BUNDLE BYPASS CORRECTION FACTOR
BUNDLE BYPASS CORRECTION FACTOR
TOTAL CORRECTION FACTOR
TOTAL CORRECTION FACTOR
TOTAL CORRECTION FACTOR
TOTAL CORRECTION FACTOR
THE CORRECTION FACTORS FOR PRESSURE DRUP ARE

```
张 悬 秀 素 著
BAFFLE LEAKAGE CORRECTION FATOR = 0.37371363
BUNDLE LYARSE CORRECTION FATOR = 0.68275479
FULL SIDE PARMETERS ARE
FLUID NAME = MATER ARE
FLUID NAME = MATER ARE
FLUID NAME = 13.6982.8176
FLUID NAME = 13.6982
FLUID NAME = 13.698
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2883,515
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      173,30860
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ıi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ⊻
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      /sd
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ro
C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NAME OF THE FLUID = HOT-GAS
LUSE WALL THICKNESS mm = 2.0
FILM HEAT FRANSFER CUEFFICIENT M / S
REINJLDS NUMBER = 45885,944
PRANDTL NUMBER = 5.4996168
NO OF TUBES = 343
NO OF TUBE SIDE PASSES = 2
TUBE BONDLE TYPE = U-TUBE—SHEET
TOTAL TUBE SIDE PRESSURE DROP K Pa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TUBE SIDE PARAMETERS ARE
```