Module 9(b): Synthetic Control Methods

Fall 2021

Matthew Blackwell

Gov 2003 (Harvard)

 Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."

- Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."
- Application: effect of an intervention in a single country/state at one point in time.

- Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."
- Application: effect of an intervention in a single country/state at one point in time.
- Basic idea: 1 treated group, many controls.

- Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."
- Application: effect of an intervention in a single country/state at one point in time.
- Basic idea: 1 treated group, many controls.
 - · Compare the time-series outcomes in the treated group to the control.

- Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."
- Application: effect of an intervention in a single country/state at one point in time.
- Basic idea: 1 treated group, many controls.
 - Compare the time-series outcomes in the treated group to the control.
 - But which control group should you use?

- Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."
- Application: effect of an intervention in a single country/state at one point in time.
- Basic idea: 1 treated group, many controls.
 - Compare the time-series outcomes in the treated group to the control.
 - But which control group should you use?
 - Many possible choices and they may not be comparable to the treated.

- Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."
- Application: effect of an intervention in a single country/state at one point in time.
- Basic idea: 1 treated group, many controls.
 - · Compare the time-series outcomes in the treated group to the control.
 - But which control group should you use?
 - Many possible choices and they may not be comparable to the treated.
- **Synthetic control**: use a convex combination of the controls to create a synthetic control.

- Abadie and Gardeazabal (2003) use a DID approach for "quantitative case studies."
- Application: effect of an intervention in a single country/state at one point in time.
- Basic idea: 1 treated group, many controls.
 - · Compare the time-series outcomes in the treated group to the control.
 - · But which control group should you use?
 - Many possible choices and they may not be comparable to the treated.
- **Synthetic control**: use a convex combination of the controls to create a synthetic control.
 - Choose the weights that minimize the pretreatment differences between treated and synthetic control.

			Т	ime į	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

· Treatment:

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T_0 periods.

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T_0 periods.
 - Unit 1 starts treatment at T_0 , continues until T.

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T_0 periods.
 - Unit 1 starts treatment at T_0 , continues until T.
- · Potential outcomes:

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T_0 periods.
 - Unit 1 starts treatment at T_0 , continues until T.
- · Potential outcomes:
 - $Y_{it}(1)$: potential outcome at time t if i had been in the treated group.

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T_0 periods.
 - Unit 1 starts treatment at T_0 , continues until T.
- · Potential outcomes:
 - $Y_{it}(1)$: potential outcome at time t if i had been in the treated group.
 - $Y_{it}(0)$: potential outcome at time t if i had been in the control group.

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T₀ periods.
 - Unit 1 starts treatment at T_0 , continues until T.
- · Potential outcomes:
 - $Y_{it}(1)$: potential outcome at time t if i had been in the treated group.
 - $Y_{it}(0)$: potential outcome at time t if i had been in the control group.
 - No pre-intervention impacts: $Y_{it}(1) = Y_{it}(0)$ for all $t \leq T_0$.

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T₀ periods.
 - Unit 1 starts treatment at T_0 , continues until T.
- · Potential outcomes:
 - $Y_{it}(1)$: potential outcome at time t if i had been in the treated group.
 - $Y_{it}(0)$: potential outcome at time t if i had been in the control group.
 - No pre-intervention impacts: $Y_{it}(1) = Y_{it}(0)$ for all $t \leq T_0$.
- \mathbf{X}_i is an $r \times 1$ vector of (pretreatment) covariates.

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T₀ periods.
 - Unit 1 starts treatment at T_0 , continues until T.
- · Potential outcomes:
 - $Y_{it}(1)$: potential outcome at time t if i had been in the treated group.
 - $Y_{it}(0)$: potential outcome at time t if i had been in the control group.
 - No pre-intervention impacts: $Y_{it}(1) = Y_{it}(0)$ for all $t \leq T_0$.
- \mathbf{X}_i is an $r \times 1$ vector of (pretreatment) covariates.
- Treatment effects: $\tau_{it} = Y_{it}(1) Y_{it}(0)$

			Т	ime	period		
	1	2		T_0	$T_0 + 1$		T
Treated unit $(i = 1)$	0	0	0	0	1	1	1
Control group $(i=2,\ldots,J+1)$	0	0	0	0	0	0	0

- · Treatment:
 - All units untreated for T₀ periods.
 - Unit 1 starts treatment at T_0 , continues until T.
- · Potential outcomes:
 - $Y_{it}(1)$: potential outcome at time t if i had been in the treated group.
 - $Y_{it}(0)$: potential outcome at time t if i had been in the control group.
 - No pre-intervention impacts: $Y_{it}(1) = Y_{it}(0)$ for all $t \leq T_0$.
- \mathbf{X}_i is an $r \times 1$ vector of (pretreatment) covariates.
- Treatment effects: $\tau_{it} = Y_{it}(1) Y_{it}(0)$
- Goal: estimate $\left(\tau_{1,T_0+1},\dots,\tau_{1,T}\right)$.

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0) = Y_{1t} - Y_{1t}(0)$$

• By consistency, for $t > T_0$:

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0) = Y_{1t} - Y_{1t}(0)$$

• Need to impute missing potential outcomes, $Y_{1t}(0)$.

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0) = Y_{1t} - Y_{1t}(0)$$

- Need to impute missing potential outcomes, $Y_{1t}(0)$.
- **Synthetic control**: Choose weights $(w_2, ..., w_{J+1})'$ such that:

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0) = Y_{1t} - Y_{1t}(0)$$

- Need to impute missing potential outcomes, $Y_{1t}(0)$.
- **Synthetic control**: Choose weights $(w_2, \dots, w_{J+1})'$ such that:
 - $w_j \geq 0$ and $\sum_j w_j = 1$.

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0) = Y_{1t} - Y_{1t}(0)$$

- Need to impute missing potential outcomes, $Y_{1t}(0)$.
- **Synthetic control**: Choose weights $(w_2, \dots, w_{J+1})'$ such that:
 - $w_i \ge 0$ and $\sum_i w_i = 1$.
 - for all $t \leq T_0$ minimize

$$\left| \mathbf{Y}_{1t} - \sum_{j=2}^{J+1} w_j \mathbf{Y}_{jt} \right|, \qquad \left| \mathbf{Z}_1 - \sum_{j=2}^{J+1} w_j \mathbf{Z}_j \right|$$

• By consistency, for $t > T_0$:

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0) = Y_{1t} - Y_{1t}(0)$$

- Need to impute missing potential outcomes, $Y_{1t}(0)$.
- **Synthetic control**: Choose weights $(w_2, \dots, w_{J+1})'$ such that:
 - $w_i \ge 0$ and $\sum_i w_i = 1$.
 - for all $t \leq T_0$ minimize

$$\left| \mathbf{Y}_{1t} - \sum_{j=2}^{J+1} w_j \, \mathbf{Y}_{jt} \right|, \qquad \left| \mathbf{Z}_1 - \sum_{j=2}^{J+1} w_j \mathbf{Z}_j \right|$$

· Can also add a penalty for how dispersed the weights are.

$$\tau_{1t} = Y_{1t}(1) - Y_{1t}(0) = Y_{1t} - Y_{1t}(0)$$

- Need to impute missing potential outcomes, $Y_{1t}(0)$.
- **Synthetic control**: Choose weights $(w_2, \dots, w_{J+1})'$ such that:
 - $w_j \ge 0$ and $\sum_i w_j = 1$.
 - for all $t \leq T_0$ minimize

$$\left| \mathbf{Y}_{1t} - \sum_{j=2}^{J+1} w_j \, \mathbf{Y}_{jt} \right|, \qquad \left| \mathbf{Z}_1 - \sum_{j=2}^{J+1} w_j \mathbf{Z}_j \right|$$

- · Can also add a penalty for how dispersed the weights are.
- We hope this implies for $t > T_0$: $\sum_{j=2}^{J+1} w_j Y_{jt} \approx Y_{1t}(0)$

Without synthetic controls

Figure 1. Trends in per-capita cigarette sales: California vs. the rest of the United States.

With synthetic controls

Figure 2. Trends in per-capita cigarette sales: California vs. synthetic California.

Weights

State	Weight	State	Weigh
Alabama	0	Montana	0.199
Alaska	_	Nebraska	0
Arizona	_	Nevada	0.234
Arkansas	0	New Hampshire	0
Colorado	0.164	New Jersey	-
Connecticut	0.069	New Mexico	0
Delaware	0	New York	-
District of Columbia	_	North Carolina	0
Florida	_	North Dakota	0
Georgia	0	Ohio	0
Hawaii	_	Oklahoma	0
Idaho	0	Oregon	-
Illinois	0	Pennsylvania	0
Indiana	0	Rhode Island	0
Iowa	0	South Carolina	0
Kansas	0	South Dakota	0
Kentucky	0	Tennessee	0
Louisiana	0	Texas	0
Maine	0	Utah	0.334
Maryland	_	Vermont	0
Massachusetts	_	Virginia	0
Michigan	_	Washington	_
Minnesota	0	West Virginia	0
Mississippi	0	Wisconsin	0
Missouri	0	Wyoming	0

Inference

Figure 6. Per-capita cigarette sales gaps in California and placebo gaps in 29 control states (discards states with pre-Proposition 99 MSPE five times higher than California's).

· ADH provide two **model-based** justifications for SC.

- ADH provide two model-based justifications for SC.
- · Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_i' \boldsymbol{\beta}_t + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i + \varepsilon_{it}$$

- ADH provide two model-based justifications for SC.
- · Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_{i}'\boldsymbol{\beta}_{t} + \alpha_{i} + \delta_{t} + \boldsymbol{\lambda}_{t}\boldsymbol{\mu}_{i} + \varepsilon_{it}$$

- β_t are time-varying coefficients on covariates.

- ADH provide two model-based justifications for SC.
- · Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_i' \boldsymbol{\beta}_t + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i + \varepsilon_{it}$$

- β_t are time-varying coefficients on covariates.
- λ_t is a $1 \times F$ vector of common factors

- ADH provide two model-based justifications for SC.
- · Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_i' \boldsymbol{\beta}_t + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i + \varepsilon_{it}$$

- β_t are time-varying coefficients on covariates.
- λ_t is a $1 \times F$ vector of common factors
- μ_i is a $F \times 1$ vector of factor loadings

- ADH provide two model-based justifications for SC.
- · Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_i' \boldsymbol{\beta}_t + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i + \varepsilon_{it}$$

- β_t are time-varying coefficients on covariates.
- λ_t is a $1 \times F$ vector of common factors
- μ_i is a $F \times 1$ vector of factor loadings
- $\lambda_t \mu_i$ allows time-varying confounding in a structured way.

Synthetic control justification

- ADH provide two model-based justifications for SC.
- · Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_{i}'\boldsymbol{\beta}_{t} + \alpha_{i} + \delta_{t} + \boldsymbol{\lambda}_{t}\boldsymbol{\mu}_{i} + \varepsilon_{it}$$

- β_t are time-varying coefficients on covariates.
- λ_t is a $1 \times F$ vector of common factors
- μ_i is a $F \times 1$ vector of factor loadings
- $\lambda_t \mu_i$ allows time-varying confounding in a structured way.
- · Common time shocks affect each unit in a time-constant way.

Synthetic control justification

- ADH provide two model-based justifications for SC.
- Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_i' \boldsymbol{\beta}_t + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i + \varepsilon_{it}$$

- β_t are time-varying coefficients on covariates.
- λ_t is a $1 \times F$ vector of common factors
- μ_i is a $F \times 1$ vector of factor loadings
- $\lambda_t \mu_t$ allows time-varying confounding in a structured way.
- · Common time shocks affect each unit in a time-constant way.
- · Model 2: autoregressive model without fixed effects

$$\begin{aligned} \mathbf{Y}_{i,t+1}(0) &= \alpha_t \mathbf{Y}_{it}(0) + \boldsymbol{\beta}_{t+1} \mathbf{X}_{i,t+1} + u_{i,t+1} \\ \mathbf{X}_{i,t+1} &= \gamma_t \mathbf{Y}_{it}(0) + \mathbf{\Pi}_t \mathbf{X}_{it} + \mathbf{v}_{i,t+1} \end{aligned}$$

Synthetic control justification

- ADH provide two model-based justifications for SC.
- Model 1: Interacted factor model

$$Y_{it}(0) = \mathbf{X}_i' \boldsymbol{\beta}_t + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i + \varepsilon_{it}$$

- β_t are time-varying coefficients on covariates.
- λ_t is a $1 \times F$ vector of common factors
- μ_i is a $F \times 1$ vector of factor loadings
- $\lambda_t \mu_t$ allows time-varying confounding in a structured way.
- · Common time shocks affect each unit in a time-constant way.
- · Model 2: autoregressive model without fixed effects

$$\begin{aligned} \mathbf{Y}_{i,t+1}(0) &= \alpha_t \mathbf{Y}_{it}(0) + \boldsymbol{\beta}_{t+1} \mathbf{X}_{i,t+1} + u_{i,t+1} \\ \mathbf{X}_{i,t+1} &= \gamma_t \mathbf{Y}_{it}(0) + \mathbf{\Pi}_t \mathbf{X}_{it} + \mathbf{v}_{i,t+1} \end{aligned}$$

• Either fixed effects OR lagged dependent variables, not both.

• Suppose perfect balancing weights exist $(w_2^*, ..., w_{l+1}^*)$ such that:

$$\sum_{j=2}^{J+1} w_j^* Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

• Suppose perfect balancing weights exist $(w_2^*, \dots, w_{J+1}^*)$ such that:

$$\sum_{j=2}^{J+1} w_j^* Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

• Let $\widehat{Y}_{1t}(0) = \sum_{j=2}^{J+1} w_j^* Y_{jt}$ for post-intervention periods.

• Suppose perfect balancing weights exist $(w_2^*, \dots, w_{J+1}^*)$ such that:

$$\sum_{j=2}^{J+1} w_j^* Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

- Let $\widehat{Y}_{1t}(0) = \sum_{j=2}^{J+1} w_j^* Y_{jt}$ for post-intervention periods.
- Under Model 1, $\widehat{Y}_{1t}(0) o Y_{1t}(0)$ as $T_0 o \infty$

• Suppose perfect balancing weights exist $(w_2^*, ..., w_{J+1}^*)$ such that:

$$\sum_{j=2}^{J+1} w_j^* \, Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

- Let $\widehat{Y}_{1t}(0) = \sum_{j=2}^{J+1} w_j^* Y_{jt}$ for post-intervention periods.
- Under Model 1, $\widehat{Y}_{1t}(0) o Y_{1t}(0)$ as $T_0 o \infty$
 - As length of pre-intervention period grows, estimates get better.

• Suppose perfect balancing weights exist $(w_2^*, ..., w_{J+1}^*)$ such that:

$$\sum_{j=2}^{J+1} w_j^* \, Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

- Let $\widehat{Y}_{1t}(0) = \sum_{j=2}^{J+1} w_j^* Y_{jt}$ for post-intervention periods.
- Under Model 1, $\widehat{Y}_{1t}(0) o Y_{1t}(0)$ as $T_0 o \infty$
 - As length of pre-intervention period grows, estimates get better.
- Under Model 2, $\mathbb{E}\left[\widehat{Y}_{1t}(0)\right] = \mathbb{E}[Y_{1t}(0)]$

- Suppose perfect balancing weights exist (w_2^*,\dots,w_{J+1}^*) such that:

$$\sum_{j=2}^{J+1} w_j^* \, Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

- Let $\widehat{Y}_{1t}(0) = \sum_{j=2}^{J+1} w_j^* Y_{jt}$ for post-intervention periods.
- Under Model 1, $\widehat{Y}_{1t}(0) o Y_{1t}(0)$ as $T_0 o \infty$
 - As length of pre-intervention period grows, estimates get better.
- Under Model 2, $\mathbb{E}\left[\widehat{Y}_{1t}(0)\right] = \mathbb{E}[Y_{1t}(0)]$
 - Unbiased only based on one pre-treatment periods.

- Suppose perfect balancing weights exist $(w_2^*, \dots, w_{J+1}^*)$ such that:

$$\sum_{j=2}^{J+1} w_j^* \, Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

- Let $\widehat{Y}_{1t}(0) = \sum_{j=2}^{J+1} w_j^* Y_{jt}$ for post-intervention periods.
- Under Model 1, $\widehat{Y}_{1t}(0) o Y_{1t}(0)$ as $T_0 o \infty$
 - As length of pre-intervention period grows, estimates get better.
- Under Model 2, $\mathbb{E}\left[\widehat{Y}_{1t}(0)\right] = \mathbb{E}[Y_{1t}(0)]$
 - Unbiased only based on one pre-treatment periods.
 - · But it assumes away unmeasured confounding!

• Suppose perfect balancing weights exist $(w_2^*, \dots, w_{J+1}^*)$ such that:

$$\sum_{j=2}^{J+1} w_j^* \, Y_{jt} = Y_{1t} \qquad \sum_{j=2}^{J+1} w_j^* \mathbf{X}_j = \mathbf{X}_i$$

- Let $\widehat{Y}_{1t}(0) = \sum_{j=2}^{J+1} w_j^* Y_{jt}$ for post-intervention periods.
- Under Model 1, $\widehat{Y}_{1t}(0) o Y_{1t}(0)$ as $T_0 o \infty$
 - As length of pre-intervention period grows, estimates get better.
- Under Model 2, $\mathbb{E}\left[\widehat{Y}_{1t}(0)\right] = \mathbb{E}[Y_{1t}(0)]$
 - · Unbiased only based on one pre-treatment periods.
 - · But it assumes away unmeasured confounding!
- Outside of those models: ?????

• When pre-treatment fit is imperfect \leadsto significant bias in SCM

- When pre-treatment fit is imperfect → significant bias in SCM
- Augmented SCM: use regression models to correct for bias

- When pre-treatment fit is imperfect → significant bias in SCM
- · Augmented SCM: use regression models to correct for bias
 - Let $\widehat{m}_{it} = \widehat{m}_{it}(\overline{Y}_{i,t-1})$ be predicted values for a regression of post-treatment outcomes on pre-treatment outcomes.

- When pre-treatment fit is imperfect → significant bias in SCM
- · Augmented SCM: use regression models to correct for bias
 - Let $\widehat{m}_{it} = \widehat{m}_{it}(\overline{Y}_{i,t-1})$ be predicted values for a regression of post-treatment outcomes on pre-treatment outcomes.
 - Augment estimator (Ben-Michael, et al, 2021, JASA):

$$\widehat{Y}_{1t}^{\mathrm{aug}}(0) = \sum_{j=2}^{J+1} w_j Y_{jt} + \left(\widehat{m}_{1t} - \sum_{j=2}^{J+1} w_j \widehat{m}_{jt}\right)$$

- When pre-treatment fit is imperfect → significant bias in SCM
- · Augmented SCM: use regression models to correct for bias
 - Let $\widehat{m}_{it} = \widehat{m}_{it}(\overline{Y}_{i,t-1})$ be predicted values for a regression of post-treatment outcomes on pre-treatment outcomes.
 - Augment estimator (Ben-Michael, et al, 2021, JASA):

$$\widehat{Y}_{1t}^{\mathrm{aug}}(0) = \sum_{j=2}^{J+1} w_j Y_{jt} + \left(\widehat{m}_{1t} - \sum_{j=2}^{J+1} w_j \widehat{m}_{jt}\right)$$

Can add covariates fairly easily.

- When pre-treatment fit is imperfect → significant bias in SCM
- · Augmented SCM: use regression models to correct for bias
 - Let $\widehat{m}_{it} = \widehat{m}_{it}(\overline{Y}_{i,t-1})$ be predicted values for a regression of post-treatment outcomes on pre-treatment outcomes.
 - Augment estimator (Ben-Michael, et al, 2021, JASA):

$$\widehat{Y}_{1t}^{\mathrm{aug}}(0) = \sum_{j=2}^{J+1} w_j Y_{jt} + \left(\widehat{m}_{1t} - \sum_{j=2}^{J+1} w_j \widehat{m}_{jt}\right)$$

- · Can add covariates fairly easily.
- Very similar to bias correction in matching.

• Two estimation methods to generalize to any number of treated units.

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}_{it}' \boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}'_{it}\boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$
 - Instead of weights, directly estimate IFE using iterative procedure:

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}'_{it}\boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$
 - Instead of weights, directly estimate IFE using iterative procedure:
 - 1. Treat IFE terms as fixed and fit parametric part on untreated units to get $\operatorname{new} \hat{\beta}$

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}'_{it}\boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$
 - Instead of weights, directly estimate IFE using iterative procedure:
 - 1. Treat IFE terms as fixed and fit parametric part on untreated units to get $\text{new } \hat{\beta}$
 - Treat covariate coefficients as fixed and use factor analysis to estimate IFE terms.

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}'_{it}\boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$
 - Instead of weights, directly estimate IFE using iterative procedure:
 - 1. Treat IFE terms as fixed and fit parametric part on untreated units to get $\operatorname{new} \hat{\beta}$
 - Treat covariate coefficients as fixed and use factor analysis to estimate IFE terms.
 - 3. Repeat until convergence.

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}'_{it}\boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$
 - Instead of weights, directly estimate IFE using iterative procedure:
 - 1. Treat IFE terms as fixed and fit parametric part on untreated units to get $\operatorname{new} \hat{\beta}$
 - Treat covariate coefficients as fixed and use factor analysis to estimate IFE terms.
 - 3. Repeat until convergence.
- Matrix completion methods (Athey et al, 2021)

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}'_{it}\boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$
 - Instead of weights, directly estimate IFE using iterative procedure:
 - 1. Treat IFE terms as fixed and fit parametric part on untreated units to get $\operatorname{new} \hat{\beta}$
 - Treat covariate coefficients as fixed and use factor analysis to estimate IFE terms.
 - 3. Repeat until convergence.
- Matrix completion methods (Athey et al, 2021)
 - Treat matrix of control POs, Y(0) as missing data problem.

- Two estimation methods to generalize to any number of treated units.
- Interactive fixed effects: $Y_{it}(0) = \mathbf{X}'_{it}\boldsymbol{\beta} + \alpha_i + \delta_t + \boldsymbol{\lambda}_t \boldsymbol{\mu}_i$
 - Instead of weights, directly estimate IFE using iterative procedure:
 - 1. Treat IFE terms as fixed and fit parametric part on untreated units to get $\text{new } \hat{\beta}$
 - Treat covariate coefficients as fixed and use factor analysis to estimate IFE terms.
 - 3. Repeat until convergence.
- Matrix completion methods (Athey et al, 2021)
 - Treat matrix of control POs, $\mathbf{Y}(\mathbf{0})$ as missing data problem.
 - Estimate lower-rank matrix ${\bf L}$ as best approximation to observed parts of ${\bf Y}({\bf 0})$ subject to regularization.