Éléments d'algorithmique Cours-TD 5 Recherche dichotomique

L2 Informatique

Université de Paris

13-10-2020

Structures de données

⇒ La plupart des bons algorithmes fonctionnent grâce à une bonne organisation des données, amenée par une méthode astucieuse.

Intuitivement, pour retrouver une carte dans un jeu, il est très utile que le jeu soit déjà trié.

Algorithme de recherche d'un élément dans un tableau

- \star Entrée : un tableau tab de taille n et un élément e.
- * Sortie : i tel que tab[i] = e ou NonTrouvé.

```
pour i de 0 à n-1 faire
    si tab[i] = e alors
    renvoyer i
renvoyer NonTrouvé
```

 \Rightarrow Complexité : O(n).

Sachant que la recherche dans un tableau est une opération de base utilisée dans de nombreux algorithmes, la complexité de cet algorithme est trop élevée.

Recherche d'un élément dans un tableau

Pour aller plus vite, on peut utiliser les tableaux triés et la dichotomie, ou méthode "diviser pour régner".

Idée : si le tableau tab est trié, pour tout indice i,

- * les éléments $e \leq tab[i]$ sont d'indice $\leq i$,
- \star les éléments e > tab[i] sont d'indice > i.
- \Rightarrow On essaye avec *i* au milieu du tableau.

Algorithme de recherche dichotomique

Algorithme RechDichoRec: recherche dans un tableau trié.

- * Entrée : un tableau trié tab de taille n, un intervalle [min, max] tel que $0 \le \min \le \max < n$ est un élément e.
- * Sortie : i tel que tab[i] = e ou NonTrouvé.

```
si min = max alors
    si tab[min] = e alors renvoyer min
    sinon renvoyer NonTrouvé
mid <- (min + max) / 2
si tab[mid] < e alors
    renvoyer RechDichoRec(tab, mid+1, max, e)
sinon
    renvoyer RechDichoRec(tab, min, mid, e)</pre>
```

 \Rightarrow Complexité : $O(\log_2(n))$.

On obtient une complexité bien meilleure que dans le cas précédent !

Remarque : la recherche dichotomique est récursive terminale.

Recherche dichotomique itérative

Voici la version itérative avec les même convention que précédemment.

Algorithme RechDicholt : recherche dans un tableau trié.

```
min < -0
          max <- n - 1
          tant que min < max faire
               mid \leftarrow (min + max) / 2
               si tab[mid] < e alors
                    min \leftarrow mid + 1
               sinon
                    max <- mid
          si tab[min] = e alors
               renvoyer min
          sinon
               renvoyer NonTrouvé
\Rightarrow Complexité : O(\log_2(n)).
```

Recherche dichotomique variante

```
min < -0
          max <- n - 1
          tant que min < max faire
              mid \leftarrow (min + max) / 2
               si tab[mid] = e alors renvoyer mid
               sinon
                   si tab[mid] < e alors
                        min \leftarrow mid + 1
                   sinon
                        max <- mid - 1
          si tab[min] = e alors
              renvoyer min
          sinon
               renvoyer NonTrouvé
\Rightarrow Complexité : O(\log_2(n)).
```

Exemple

Jeu du nombre inconnu où on répond soit "plus grand", soit "plus petit", soit "gagné!".

 \Rightarrow deviner le nombre entre 0 et 100 auquel je pense en utilisant la dichotomie.

Pour résumer

- * Trouver la position la plus centrale du tableau (si le tableau est vide, sortir).
- * Comparer la valeur de cette case à l'élément recherché.
- * Si la valeur est égale à l'élément, alors retourner la position, sinon reprendre la procédure dans la moitié de tableau pertinente.

Correction de l'algorithme

 \Rightarrow Récurrence sur la taille de l'intervalle $\beta - \alpha + 1 := m$ d'un tableau trié tab de taille > m. On recherche l'élément e.

Propriété à vérifier : pour tout tableau trié tab et pour tout intervalle $[\alpha, \beta]$ de tab, l'exécution se termine en renvoyant "NonTrouvé" si l'élément n'a pas été trouvé entre les indices α et β ou en renvoyant l'indice i dans tab tel que tab[i] = e.

Hypothèse de récurrence : la propriété est vraie pour tout tableau trié tab et pour tout intervalle $[\alpha, \beta]$ de tab tel que $\beta - \alpha + 1 \le m$

Initialisation : si m=1 alors $\alpha=\beta$. Si l'occurrence est trouvé l'algorithme renvoie α , sinon "NonTrouvé". La propriété est donc vraie pour m=1.

Correction de l'algorithme

Hérédité : soit $[\alpha, \beta]$ tel que $\beta - \alpha + 1 := m + 1$ et $\gamma := (\alpha + \beta)/2$. Alors l'exécution renvoie l'algorithme évalué soit sur (tab, $\gamma + 1, \beta$, e), soit sur (tab, α, γ , e).

Comme $\beta - (\gamma + 1) + 1 \le m$ et $\gamma - \alpha + 1 \le m$, l'hypothèse de récurrence est vraie pour ces deux intervalles.

De plus, comme tab est trié, si l'élément e est dans tab alors il est nécessairement soit dans l'intervalle $[\gamma + 1, \beta]$, soit dans l'intervalle $[\alpha, \gamma]$. Par conséquent, la propriété est vraie pour un intervalle de taille m+1.

N est la taille de tab.