J. 1273

(6407)

MATHÉMATIQUES GÉNÉRALES

SESSION DE 1985

Durée: 6 heures

Préambule

Ce problème est consacré à l'étude de la question suivante : étant donné deux polygones du plan (resp. : deux polyèdres de l'espace) de même aire (resp. : de même volume), peut-on découper le premier en morceaux et déplacer ces morceaux de façon à reconstituer le second?

La partie I met en place les données et fournit quelques résultats généraux. La partie II est l'étude du problème en dimension 2 et la partie III constitue une première approche de cette étude en dimension 3. La partie IV construit les outils nécessaires à une étude plus approfondie, abordée dans la partie V.

DÉFINITIONS ET NOTATIONS

Soit n un entier naturel au moins égal à 2 et soit E un espace affine réel euclidien de dimension n, muni de sa topologie usuelle. On notera comme d'habitude \mathring{X} et \overline{X} l'intérieur et l'adhérence d'une partie X de E.

On appelle simplexe de E toute partie S de E qui est l'enveloppe convexe de n+1 points affinement indépendants de E; l'ensemble de ces n+1 points est uniquement déterminé par S : c'est l'ensemble des sommets du simplexe S.

Soient X et Y des parties de E; on dira qu'elles sont quasi disjointes lorsque leurs intérieurs sont disjoints, c'est-à-dire $\mathring{X} \cap \mathring{Y} = \varnothing$. Soient X_1, \ldots, X_k , X des parties de E; les notations

$$X = \coprod_{i=1}^{k} X_{i}$$
 ou $X = X_{1} \coprod X_{2} \coprod \ldots \coprod X_{k}$

signifient : pour tous i, j tels que $1 \le i < j \le k$ les parties X_i et X_j sont quasi disjointes et la réunion des X_i est X.

On appelle polyèdre de E toute partie (éventuellement vide) de E qui est la réunion d'un ensemble fini de simplexes deux à deux quasi disjoints.

On distingue parmi les polyèdres de E les polytopes : ce sont les polyèdres convexes non vides de E; on admettra que les polytopes de E sont aussi caractérisés parmi les polyèdres par l'une des propriétés suivantes :

- 1° Il existe une partie finie génératrice de E dont le polytope est l'enveloppe convexe;
- 2° Il existe une famille finie de demi-espaces fermés dont le polytope est l'intersection.

On admettra de plus les résultats suivants sur les polytopes : soit P un polytope; alors :

- a. Soit k le nombre minimal de points dont P est l'enveloppe convexe. Alors il existe une et une seule partie ayant k éléments dont P est l'enveloppe convexe; c'est l'ensemble des sommets de P. Dans le cas particulier des simplexes, on retrouve la même notion de sommet;
- b. Soit m le nombre minimal d'éléments d'un ensemble de demi-espaces fermés dont P est l'intersection; alors il existe un et un seul tel ensemble ayant m éléments. Soit $\{F_1, \ldots, F_m\}$ cet ensemble; la frontière H_i de F_i est un hyperplan facial de P. La frontière de P est la réunion des $H_i \cap P$, et chaque $H_i \cap P$ est un polytope de H_i , appelé face de P.

Tournez la page S. V. P.

On admettra sans démonstration que toutes les notions introduites ci-dessus sont invariantes par isométrie (et plus généralement par bijection affine).

On appellera décomposition d'un polyèdre P toute famille finie de polytopes deux à deux quasi disjoints dont P est la réunion. Soient (P_1, \dots, P_s) et (P'_1, \dots, P'_t) des décompositions du polyèdre P; on dira que (P'_1, \dots, P'_t) est plus fine que (P_1, \dots, P_s) si tout P'_t est inclus dans au moins un P_t .

PARTIE I. — LES INVARIANTS DE DÉCOUPAGE

Dans cette partie, n est quelconque.

- I.1. Soient P₁, ..., P_k des polyèdres deux à deux quasi disjoints; montrer que leur réunion est un polyèdre.
- I.2. a. Montrer que tout polyèdre est l'adhérence de son intérieur. On pourra commencer par le cas des simplexes.
 - b. Montrer que si P' est un polyèdre quasi disjoint de P, alors $\mathring{P}' \cap P = \emptyset$.
- I.3. Montrer que si P_1 , ..., P_k , P sont des polyèdres deux à deux quasi disjoints, alors les polyèdres $P_1 \perp \mid \dots \mid \mid P_k$ et P sont quasi disjoints.
- I.4. Soit P un polyèdre; soit (P_i) une décomposition de P, et soit (P'_j) une décomposition de P plus fine que (P_i); montrer que chaque P_i admet une décomposition formée de certains P'_j.
- I.5. Soit P un polyèdre; soit $(H_1, ..., H_m)$ une famille finie d'hyperplans de E, contenant les hyperplans faciaux des polytopes d'une décomposition de P; montrer qu'il existe une seule décomposition $(P_1, ..., P_r)$ de P telle que

$$P \setminus \bigcup_{i=1}^m H_i = \bigcup_{j=1}^r \mathring{P}_j$$

(on pourra, pour chaque point de \mathring{P} , considérer l'ensemble des demi-espaces ouverts qui le contiennent et qui ont pour frontière l'un des H_i).

Ce type de décomposition sera appelé dissection de P.

I.6. Étant donné deux décompositions (P_i) et (Q_j) d'un polyèdre P, montrer qu'il existe une dissection (R_k) de P telle que chaque P_i et chaque Q_j admette pour dissection une sous-famille de (R_k) .

Soit Π (resp. Π_c) l'ensemble des polyèdres (resp. des polytopes) de E. Soit A un groupe commutatif noté additivement; on dit qu'une application f de Π_c dans A est additive lorsque pour tout polytope P et toute dissection de P en deux polytopes P_1 et P_2 on a :

$$f(P) = f(P_1) + f(P_2)$$

- I.7. Soit f une application additive de Π_c dans un groupe commutatif \mathcal{A} .
 - a. Montrer que pour tout polytope P et toute décomposition (P_i) de P on a :

$$f(P) = \sum_{i} f(P_{i})$$

(on pourra traiter d'abord le cas d'une dissection).

b. Montrer qu'il existe une unique application \overline{f} de Π dans \mathcal{L} qui prolonge f et telle que l'on ait

$$\overline{f}(P \mid P') = \overline{f}(P) + \overline{f}(P')$$

pour tous polyèdres quasi disjoints P et P'.

Soit G un groupe d'isométries de E. On dira que deux polyèdres P et Q sont G-équidécomposables et l'on écrira $P \approx Q$, s'il existe des décompositions (P_i) de P, (Q_i) de Q, et des éléments (g_i) de G, i = 1, 2, ..., s, tels que l'on ait $g_i(P_i) = Q_i$ pour tout i.

- I.8. Montrer que la relation $P \approx Q$ est une relation d'équivalence sur Π .
- I.9. Montrer que si deux polyèdres admettent des décompositions (P_i) et (Q_i) telles que P_i et Q_i soient G-équidécomposables pour tout i, alors P et Q sont G-équidécomposables.

I.10. Soit f une application additive de Π_c dans le groupe \mathcal{A} et soit \overline{f} son prolongement à Π .

On suppose que pour tout g de G, et pour tout polytope P, on a f(g(P)) = f(P).

Montrer que l'on a $\overline{f}(P) = \overline{f}(Q)$ pour tout couple de polyèdres G-équidécomposables (P, Q).

Une telle application \overline{f} sera appelée dans la suite un invariant de G-découpage.

On admettra en particulier que pour n=2 (resp. 3), l'aire (resp. le volume) dans E est un invariant de G-découpage à valeurs réelles pour tout groupe d'isométries G.

PARTIE II. — ÉQUIDÉCOMPOSABILITÉ DANS LE PLAN

Dans cette partie, on suppose n = 2. Selon l'usage, on appellera polygones les polyèdres et polygones convexes les polytopes de E.

Un parallélogramme est l'enveloppe convexe de quatre points non alignés A, B, C, D, tels que $\overrightarrow{AB} = \overrightarrow{DC}$; on parlera alors du parallélogramme (ou du rectangle, ou du carré) ABCD. Les simplexes de E sont appelés triangles.

On désignera par T le groupe des translations de E et par S le groupe engendré par T et une symétrie par rapport à un point.

- II.1. Donner les éléments de S.
- II.2. Soient ABCD et A'B'C'D' deux parallélogrammes tels que A = A', B = B' et que C, D, C', D' soient alignés. Montrer que ABCD $\underset{T}{\approx}$ A'B'C'D'.
- II.3. Montrer que tout triangle est S-équidécomposable à un parallélogramme.
- II.4. En déduire que tout polygone est S-équidécomposable à une réunion de rectangles d'intérieurs disjoints.
- II.5. Soit ABCD un rectangle tel que $||\overrightarrow{AB}|| = a$, $||\overrightarrow{AD}|| = b$, 0 < b < a.
 - a. Montrer que ABCD est T-équidécomposable à un carré. On pourra considérer le carré AB'C'D' défini par $\overrightarrow{AB'} = -(\sqrt{b}/\sqrt{a})\overrightarrow{AB}$ et $\overrightarrow{AD'} = -(\sqrt{a}/\sqrt{b})\overrightarrow{AD}$.
 - b. Soit H une droite passant par A telle que ABCD soit d'un même côté de H. Soit A'B'C'D' l'image de ABCD par la réflexion de droite H. Montrer que ABCD et A'B'C'D' sont T-équidécomposables.
 - c. En déduire que deux rectangles d'aires égales sont T-équidécomposables.
- II.6. A quelle condition deux polygones sont-ils S-équidécomposables?
- II.7. Soit \mathcal{A} le groupe des applications de l'ensemble des vecteurs non nuls du plan E dans \mathbb{R} et soit l'application β de Π_c dans \mathcal{A} définie comme suit : soit P un polygone convexe de sommets consécutifs $A_1, ..., A_s, A_{s+1} = A_1$, de sorte que les droites faciales de P sont les droites A_iA_{i+1} $(1 \le i \le s)$ et M un point intérieur à P. On pose, pour tout vecteur non nul v,

$$\beta (P) (\overrightarrow{v}) = \sum_{i=1}^{s} \varepsilon_{i} (\overrightarrow{v}) || \overrightarrow{A_{i}A_{i+1}}||$$

où:

$$\begin{split} & \varepsilon_{i}(\overrightarrow{v}) = 0 \quad \text{si} \quad \overrightarrow{v}.\overrightarrow{A_{i}}\overrightarrow{A_{i+1}} \neq 0 \\ & \varepsilon_{i}(\overrightarrow{v}) = +1 \quad \text{si} \quad \overrightarrow{v}.\overrightarrow{A_{i}}\overrightarrow{A_{i+1}} = 0 \quad \text{et} \quad \overrightarrow{v}.\overrightarrow{M}\overrightarrow{A_{i}} > 0 \\ & \varepsilon_{i}(\overrightarrow{v}) = -1 \quad \text{si} \quad \overrightarrow{v}.\overrightarrow{A_{i}}\overrightarrow{A_{i+1}} = 0 \quad \text{et} \quad \overrightarrow{v}.\overrightarrow{M}\overrightarrow{A_{i}} < 0 \end{split}$$

- a. L'application \(\beta \) dépend-elle du choix de M?
- b. Montrer que β s'étend en un invariant de T-découpage.
- c. A quelle condition deux triangles sont-ils T-équidécomposables?

PARTIE III. - ÉQUIDÉCOMPOSABILITÉ DANS L'ESPACE

On suppose dorénavant n=3. Dans cette partie, on aborde l'étude de l'équidécomposabilité des polyèdres de E, c'est-à-dire de l'équidécomposabilité sous le groupe de toutes les isométries de E. On écrira simplement $P\approx Q$ si les polyèdres P et Q sont équidécomposables.

- III.1. Établir que, si P et Q sont deux parallélépipèdes rectangles de même volume, alors P & Q.
- III.2. a. Étant donné un polygone B d'un plan P et un vecteur \overrightarrow{v} non parallèle à P, montrer que l'ensemble des points $M + t \overrightarrow{v}$, où $M \in B$ et $0 \le t \le 1$, est un polyèdre, qu'on appellera un prisme de base B; ce prisme est dit droit si \overrightarrow{v} est orthogonal à P.
- b. Tout prisme est-il équidécomposable à un cube? On commencera par étudier le cas des prismes droits. III.3. On donne dans un repère orthonormé Oxyz, le tétraèdre V de sommets les points (0, 0, 0), (1, 0, 0), (1, 1, 0), et (1, 1, 1).
 - a. Montrer que le cube défini par $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ admet une décomposition en 6 tétraèdres isométriques à V.
 - b. Pour tout entier m ≥ 2, exhiber une décomposition de V en m³ tétraèdres semblables à V.
 N.B.: Ici, et dans la suite, « P est semblable à Q dans le rapport t > 0 » signifie que P se déduit de Q par la composée d'une isométrie et d'une homothétie de rapport t; on ne distingue donc pas les similitudes directes et inverses.
 - c. Déduire de ce qui précède que V est équidécomposable à un cube.

PARTIE IV. — L'ESPACE VECTORIEL R ⊗ R/Z

Une application f d'un ensemble X dans \mathbb{Z} est dite à support fini si l'ensemble des éléments x de X tels que $f(x) \neq 0$ est fini (éventuellement vide). L'ensemble des applications à support fini de X dans \mathbb{Z} est manifestement un groupe abélien pour l'addition des applications (on ne demande pas de le vérifier), noté $\mathbb{Z}^{(X)}$.

On prend désormais pour X le produit cartésien $\mathcal{A} \times \mathcal{B}$ de deux groupes abéliens \mathcal{A} et \mathcal{B} ; si, pour $a \in \mathcal{A}$ et $b \in \mathcal{B}$, $\chi_{(a,b)}$ désigne la fonction qui vaut 1 au point (a,b) et 0 en tout autre point de $\mathcal{A} \times \mathcal{B}$, tout élément f de $\mathbb{Z}^{(\mathcal{A} \times \mathcal{B})}$ a l'écriture :

$$f = \sum f(a, b) \chi_{(a, b)}$$

où les f(a, b) sont des entiers relatifs tous nuls sauf un nombre fini d'entre eux.

On désigne par $\mathcal R$ le sous-groupe de $\mathbb Z^{(\mathcal A \times \mathcal B)}$ engendré par les éléments de la forme :

$$\chi_{(a,b)} + \chi_{(a',b)} - \chi_{(a+a',b)}$$

 $\chi_{(a,b)} + \chi_{(a,b')} - \chi_{(a,b+b')}$

où a et a' (resp. b et b') varient arbitrairement dans \mathcal{A} (resp. \mathcal{B}).

On note alors $\mathcal{A} \otimes \mathcal{B}$ le groupe quotient $\mathbb{Z}^{(A \times \mathcal{B})}/\mathcal{R}$ et, pour tout (a, b) dans $\mathcal{A} \times \mathcal{B}$, on note $a \otimes b$ la classe de $\chi_{(a,b)}$ modulo \mathcal{R} .

Le groupe $\mathcal{A} \otimes \mathcal{B}$ est dit produit tensoriel de \mathcal{A} et \mathcal{B} .

- IV.1.a. Établir que l'ensemble des $a \otimes b$, où (a, b) parcourt $\mathcal{A} \times \mathcal{B}$, est une partie génératrice du groupe $\mathcal{A} \otimes \mathcal{B}$.
 - b. Une application f de $\mathbb{A} \times \mathbb{B}$ dans un groupe abélien \mathbb{C} sera dite biadditive si les applications :

$$a \longmapsto f(a, b)$$
 et $b \longmapsto f(a, b)$

de A dans C et de B dans C respectivement sont des homomorphismes.

Établir que l'application p de $\mathcal{A} \times \mathcal{B}$ dans $\mathcal{A} \otimes \mathcal{B}$ définie par :

$$(a, b) \longmapsto a \otimes b$$

est biadditive.

c. Le symbole 0 désignant indifféremment les éléments neutres de \mathcal{A} , \mathcal{B} , $\mathcal{A} \otimes \mathcal{B}$, établir :

$$\forall a \in \mathcal{A}, \forall b \in \mathcal{B}, \qquad 0 \otimes b = a \otimes 0 = 0$$

$$\forall n \in \mathbb{Z}, \ \forall a \in \mathcal{H}, \ \forall b \in \mathcal{B}, \qquad (na) \otimes b = a \otimes (nb) = n \ (a \otimes b)$$

- IV.2. Montrer que, si f est une application biadditive de $\mathcal{A} \times \mathcal{B}$ dans un groupe abélien \mathcal{C} , il existe un unique homomorphisme \overline{f} de $\mathcal{A} \otimes \mathcal{B}$ dans \mathcal{C} tel que $f = \overline{f} \cdot p$.
- IV.3. On suppose ici que $\mathcal A$ est un espace vectoriel sur le corps commutatif K, et que $\mathcal B$ est un groupe abélien quelconque. On définit une action de K sur $\mathcal A \otimes \mathcal B$ par :

$$\forall k \in \mathbb{K}, \ \forall a \in \mathcal{A}, \ \forall b \in \mathcal{B}, \ k.(a \otimes b) = (ka) \otimes b$$

Vérifier que cela définit sur A ⊗ B une structure de K-espace vectoriel.

Le seul exemple de produit tensoriel de deux groupes abéliens qui sera utilisé dans la suite sera $\mathbb{R} \otimes \mathbb{R}/\mathbb{Z}$, qui a, d'après ce que l'on vient de voir, une structure d'espace vectoriel sur \mathbb{R} telle que, si \overline{z} désigne la classe modulo \mathbb{Z} du réel z (notation qui sera désormais utilisée systématiquement).

$$\forall x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad \forall z \in \mathbb{R}, \quad (xy) \otimes \overline{z} = x (y \otimes \overline{z})$$

IV.4. Établir que l'on a dans $\mathbb{R} \otimes \mathbb{R}/\mathbb{Z}$ la propriété suivante :

$$\forall x \in \mathbb{R}, \quad \forall y \in \mathbb{Q}, \quad \forall z \in \mathbb{R}, \quad x \otimes (\overline{yz}) = (xy) \otimes \overline{z}$$

Dans la suite, on admet la possibilité de compléter toute famille de réels linéairement indépendants sur $\mathbb Q$ en une base de $\mathbb R$ sur $\mathbb Q$.

- IV.5. a. Établir l'existence, pour tout nombre irrationnel y, d'un homomorphisme du groupe $\mathbb R$ vers $\mathbb Q$ tel que 1 ait pour image 0 et y pour image 1.
 - b. Soient x et y deux réels, $x \neq 0$; montrer que l'élément $x \otimes y$ de $\mathbb{R} \otimes \mathbb{R}/\mathbb{Z}$ est nul si et seulement si y est rationnel.
 - c. Montrer que si une famille (z_j) de réels est libre sur $\mathbb Q$ et si 1 n'est pas engendré par cette famille, alors la famille $(1 \otimes \overline{z_j})$ est libre dans l'espace vectoriel réel $\mathbb R \otimes \mathbb R/\mathbb Z$.
- IV.6. a. Établir l'existence d'une suite de polynômes $(T_n)_{n\in\mathbb{N}}$ à coefficients dans \mathbb{Z} , tels que :

$$\forall n \in \mathbb{N}, \forall \theta \in \mathbb{R}, \quad T_n(\cos \theta) = \cos n\theta$$

- b. Calculer le terme de plus haut degré de \mathbf{T}_n et son terme constant.
- c. On donne un réel $\theta = \pi p/q$, où $p/q \in \mathbb{Q}$, tel que $\cos \theta \in \mathbb{Q}$. Donner les différentes valeurs possibles de $\cos \theta$; on commencera par le cas où q est impair : on montrera que $\cos \theta$ est de la forme 2^{-s} ou -2^{-s} , avec $s \in \mathbb{N}$, puis que s = 0 ou 1. On étudiera ensuite le cas où q est pair.
- d. Soit θ_0 l'angle dièdre intérieur de deux faces d'un tétraèdre régulier. Calculer cos θ_0 . Que peut-on dire de θ_0/π ?

PARTIE V. - L'INVARIANT DE DEHN

On rappelle que n=3. On se propose dans cette dernière partie de définir un invariant de découpage pour les polyèdres de l'espace.

Soit P un polyèdre convexe, c'est-à-dire un polytope de E; les côtés des faces de P sont appelés arêtes de P et constituent un ensemble de segments noté A(P); à chaque arête a est associée une unique paire $\{H, H'\}$ de plans faciaux de P telle que a soit l'intersection de P, H et H'. On désigne par $\theta(a)$ une mesure en radians de l'angle dièdre limité par H et H' qui contient P, et par $\theta(a)$ la longueur du segment $\theta(a)$ no pose enfin :

$$\Delta (P) = \sum_{a \in A(P)} l(a) \otimes \overline{(\theta(a)/\pi)} \in \mathbb{R} \otimes \mathbb{R}/\mathbb{Z}$$

ce qui définit une application de Π_c dans $\mathbb{R}\otimes\mathbb{R}/\mathbb{Z}$.

- V.1. Montrer que Δ s'étend en un invariant de découpage, qu'on appelle l'invariant de Dehn.
- V.2. a. Quel est l'invariant de Dehn du tétraèdre V étudié en III.3? Quel est celui d'un cube? Celui d'un prisme?
 - b. Quel est l'invariant de Dehn d'un tétraèdre régulier d'arête 1? Un tétraèdre régulier est-il équidécomposable à un cube?
- V.3. Soit P un polyèdre tel que $\Delta(P) \neq 0$.
 - a. On donne m réels strictement positifs t_1 , t_2 , ..., t_m et m polyèdres P_1 , P_2 , ..., P_m d'intérieurs deux à deux disjoints et tels que, pour tout i variant de 1 à m, P_i soit semblable à P dans le rapport t_i ; soit Q la réunion des P_i . Calculer le volume v(Q) de Q et $\Delta(Q)$ en fonction de v(P), de $\Delta(P)$ et des nombres t_i .
 - b. En déduire l'existence, pour tout réel $t\geqslant 1$, d'un polyèdre P_t tel que

$$v(P_t) = v(P)$$
 et $\Delta(P_t) = t \cdot \Delta(P)$

- c. Étendre ce résultat au cas 0 < t < 1.
- d. Montrer l'existence d'un polyèdre P' tel que $\Delta(P') = -\Delta(P)$.
- Étendre enfin le résultat du b, au cas d'un réel t quelconque.
- V.4. Montrer que l'ensemble des valeurs de Δ (P), lorsque P décrit l'ensemble des polyèdres ayant un volume donné non nul v_0 , est un sous-espace vectoriel non réduit à $\{0\}$ et indépendant de v_0 du \mathbb{R} -espace vectoriel $\mathbb{R} \otimes \mathbb{R}/\mathbb{Z}$.

Soit $(0, \vec{i}, \vec{j}, \vec{k})$ un repère orthonormé de E. On considère l'enveloppe convexe D des 20 points dont les coordonnées dans ce repère sont :

$$(\pm \rho/2, \pm \rho/2, \pm \rho/2), (\pm \rho^2/2, 0, \pm 1/2), (\pm 1/2, \pm \rho^2/2, 0), (0, \pm 1/2, \pm \rho^2/2)$$

où $\rho=(1+\sqrt{5})/2$ est la racine positive de l'équation $X^2-X-1=0$. Le polyèdre D est un dodécaèdre

V.5. Dessiner la projection de D sur le plan $(0, \overrightarrow{i}, \overrightarrow{j})$. Soit θ_D l'angle dièdre intérieur de deux faces adjacentes de D. Montrer que :

$$\cos\theta_{D} = -\frac{\sqrt{5}}{5}$$

Calculer $\Delta(D)$ en fonction de θ_D .

V.6. En déduire que :

$$\forall m \in \mathbb{Z} - \{0\}, \text{ tg } m \theta_D \in \mathbb{Q}^*$$

V.7. On rappelle que l'enveloppe convexe des centres de gravité des faces de D est un icosaèdre régulier. Soit $\theta_{\mathtt{I}}$ l'angle dièdre intérieur de deux faces d'un icosaèdre régulier. Montrer que :

$$\forall m \in \mathbb{Z} - \{0\}, \text{ tg } m \theta_{I} \in \mathbb{Q}^*.\sqrt{5}$$

V.8. Montrer que les réels π , θ_D , θ_I , θ_o , où l'on rappelle que θ_o est l'angle dièdre de deux faces d'un tétraèdre régulier (cf. IV.6.d.), sont Q-linéairement indépendants.

Que peut-on en conclure?