

FIGURE 1 – Réponse d'un filtre passe-pas à un signal créneau de fréquence $f=2\,\mathrm{kHz}$

FIGURE 4 – Signal filtré et sa décomposition en séries de FOURIER

FIGURE 2 – Acquisition du signal créneau avec $N=2000\,\mathrm{point}$ et $T_\mathrm{e}=1\,\mathrm{\mu s}$

FIGURE 3 – Décomposition en séries de FOURIER du signal créneau

FIGURE 5 – Modifications des valeurs de R et C afin de vérifier le caractère pseudo-intégrateur du filtre passe-bas

FIGURE 6 – Signal triangulaire d'entrée et sa décomposition en séries de FOURIER

FIGURE 9 – Spectre du signal audio « BACH et gazouillis » avant le filtrage

FIGURE 7 – Signal filtré et sa décomposition en séries de FOURIER

FIGURE 10 – Spectre du signal audio après un filtrage d'ordre 1

FIGURE 8 – Signal en sortie du filtre analogique

FIGURE 11 – Spectre du signal audio « Chopin, pinsons et gazouillis » avant un filtrage d'ordre 2

FIGURE 12 – Filtrage du signal avec un filtre passebas d'ordre 2

FIGURE 13 – Filtrage du signal avec un filtre passebas Butterworth