1. Матрицы

(Задача 1)

$$A = egin{pmatrix} -1 & 2 & 2 \ -2 & -2 & 3 \end{pmatrix}, \quad B = egin{pmatrix} -3 & -2 & 2 \ 1 & 5 & 3 \end{pmatrix}, \quad lpha = 3, eta = -2.$$

Excel

Сначала нужно записать все данные в удобном виде:

A =	-1	2	2	B =	-3	-2	2	а (альфа)=	3	
	-2	-2	3		1	5	3	b (бета) =	-2	

Для решения задачи нам нужно знать транспонированную матрицу, поэтому запишем ее ниже:

AT =	-1	-2
	2	-2
	2	3

Для того, чтобы умножить каждую матрицу на свое число, воспользуемся средствами Excel. Используя формулы, запишем в каждую ячейку нужное значение и запишем результат ниже.

Примечание. Используйте крестик в правом нижнем углу ячейки с формулой, чтобы копировать ее в другие ячейки.

aA =	-3	6	6	bB=	6	4	-4
	-6	-6	9		-2	-10	-6

Теперь сложим матрицы по такому же принципу.

aA + bB =	3	10	2
	-8	-16	3

Далее умножим полученную матрицу на матрицу A^{T} .

В матрицах важен порядок действий при умножении, так как они не имеют свойства коммутативности.

И еще одно важное замечание. Нам нужно самостоятельно вычислить размер искомой матрицы, так как Excel нам предоставляет только формулы, а не полное представление.

Итак, мы получили ответ: матрица, размером 2х2, представленная ниже.

(aA + bB)AT =	21	-20
	-18	57

Для решения нам нужно записать все данные в переменные A, B, a и b:

- (%i1) A: matrix([-1,2,2],[-2,-2,3]);
- (A) $\begin{bmatrix} -1 & 2 & 2 \\ -2 & -2 & 3 \end{bmatrix}$
- (%i2) B: matrix([-3,-2,2],[1,5,3]);
- (B) $\begin{bmatrix} -3 & -2 & 2 \\ 1 & 5 & 3 \end{bmatrix}$
- (%i3) a: 3;
- (a) 3
- (%i4) b: -2;
- (b) -2

Для решения нам также нужна транспонированная матрица А. Для этого воспользуемся встроенной функцией Maxima:

- (%i9) AT: transpose(A);
- (AT) $\begin{bmatrix} -1 & -2 \\ 2 & -2 \\ 2 & 3 \end{bmatrix}$

Теперь умножим наши матрицы на соответствующие числа.

- (%i5) aA: a·A;
- (aA) $\begin{bmatrix} -3 & 6 & 6 \\ -6 & -6 & 9 \end{bmatrix}$
- (%i6) bB: b·B;
- (bB) $\begin{bmatrix} 6 & 4 & -4 \\ -2 & -10 & -6 \end{bmatrix}$

Сложим получившиеся матрицы и запишем результат в переменную.

(%i7) sum: aA+bB;
(sum)
$$\begin{bmatrix} 3 & 10 & 2 \\ -8 & -16 & 3 \end{bmatrix}$$

Теперь умножим сумму матриц на транспонированную матрицу А и получим искомый результат.

(%i10) result:sum.AT;
(result)
$$\begin{bmatrix} 21 & -20 \\ -18 & 57 \end{bmatrix}$$

2. СЛАУ

(Задача 4)

$$\begin{cases} 4x_1 - 5x_2 + 2x_3 = 1 \\ 3x_1 - 3x_2 + 2x_3 = 2 \\ 2x_1 - 3x_2 + x_3 = 3 \end{cases}$$

Excel

Решим СЛАУ методом Крамера. Для этого запишем систему в матричной форме (расширенную матрицу).

\pm				
	4	-5	2	1
	3	-3	2	2
I	2	-3	1	3

Далее посчитаем определитель матрицы. Для этого отдельно выпишем исходную матрицу, запишем в отдельную ячейку формулу решения и получим результат.

	4	-5	2		
det	3	-3	2	=	1
	2	-3	1		

Так как наш определитель не равен нулю, мы можем решать дальше. По методу Крамера нам нужно сосчитать еще три определителя. Для этого просто скопируем еще три раза получившуюся у нас запись и подставим нужные данные:

	1	-5	2		
det1	2	-3	2	=	-11
	3	-3	1		
	4	1	2		
det2	3	2	2	=	-5
	2	3	1		
	4	-5	1		
det3	3	-3	2	=	10
	2	-3	3		

Тогда решение получится следующим:

x1 =	-11
x2 =	-5
x3 =	10

Решим СЛАУ методом Крамера.

Чтобы не записывать каждый раз матрицу заново, чтобы считать определитель, воспользуемся хитростью и запишем каждый столбец матрицы отдельно (так как метод Крамера предполагает работу со столбцами):

```
(%i8) col1: matrix([4],[3],[2])$ col2: matrix([-5],[-3],[-3])$ col3: matrix([2],[2],[1])$ col4: matrix([1],[2],[3])$
```

Затем с помощью двух встроенных функций вычислим каждый интересующий нас определитель, комбинируя столбцы так, как нам нужно:

```
det: determinant(addcol(col1,col2,col3));
(%i9)
(det)
           1
           det1: determinant(addcol(col4,col2,col3));
(%i10)
(det1)
           -11
           det2: determinant(addcol(col1,col4,col3));
(%i11)
(det2)
           -5
(%i12)
           det3: determinant(addcol(col1,col2,col4));
(det3)
           10
```

Теперь у нас есть все нужные данные, чтобы вычислить корни СЛАУ и записать ответ.

```
(%i15) x1: det1/det;
x2: det2/det;
x3: det3/det;
(x1) -11
(x2) -5
(x3) 10
```

Также для решения СЛАУ в Maxima есть встроенная функция, которая позволяет получить результат за одно действие:

```
(%i1) linsolve([4 \cdot x1 - 5 \cdot x2 + 2 \cdot x3 = 1, 3 \cdot x1 - 3 \cdot x2 + 2 \cdot x3 = 2, 2 \cdot x1 - 3 \cdot x2 + x3 = 3], [<math>x1, x2, x3]); (%o1) [x1 = -11, x2 = -5, x3 = 10]
```

3. Вектора

(Задача 6)

$$a = (-3; 2; 1), b = (3; 1; 2), c = (3; -1; 4)$$

Excel

Чтобы узнать компланарны вектора или нет, нам нужно вычислить смешанное произведение векторов, то есть:

$$\overline{abc} = \begin{vmatrix} -3 & 2 & 1 \\ 3 & 1 & 2 \\ 3 & -1 & 4 \end{vmatrix}$$
 - определитель матрицы, образованной тремя векторами. Запишем матрицу и вычислим по методу треугольников ее определитель.

Запишем матрицу и вычислим по методу треугольников ее определитель.

	-3	2	1		
det	3	1	2	=	-36
	3	-1	4		

И за одно простое действие мы вычислили определитель нужной матрицы.

Так как определитель не равен нулю, мы можем сказать, что вектора не компланарны.

Maxima

Чтобы узнать компланарны вектора или нет, нам нужно вычислить смешанное произведение векторов, то есть:

$$\overline{abc} = \begin{vmatrix} -3 & 2 & 1 \\ 3 & 1 & 2 \\ 3 & -1 & 4 \end{vmatrix}$$
 - определитель матрицы, образованной тремя векторами. Запишем матрицу и вычислим ее определитель:

И с помощью встроенной функции мы вычислили определитель нужной матрицы.

Так как определитель не равен нулю, мы можем сказать, что вектора не компланарны.

4. Пределы

(Задача 7)

$$\lim_{x\to\infty}\left(\frac{3x^2+1}{3x^2-x+1}\right)^{3x+4}.$$

Excel

Программа не содержит функций для решения задачи с пределами.

Maxima

У Maxima есть встроенная функция limit, которая позволяет легко вычислять пределы функций.

Сначала запишем саму функцию в переменную для простоты дальнейшей записи:

(%i1) expr:
$$((3 \cdot x^2 + 1)/(3 \cdot x^2 - x + 1))^3 (3 \cdot x + 4)$$
;
(expr) $(3 x^2 + 1)^{3 x + 4} (3 x^2 - x + 1)^{-3 x - 4}$

Интересно, что Maxima представляет нашу запись вот таким образом, но это все та же функция. Поэтому теперь подставим нашу функцию в функцию limit и узнаем результат.

```
(%i3) limit(expr,x,inf);
(%o3) %e
```

5. Интегралы

(Задача 8)

$$\int \frac{4x^2 + 7x - 23}{(x^2 - 4x + 8)(x + 1)^2} dx.$$

Excel

Программа не содержит функций для решения задачи с интегралами.

Maxima

У Maxima есть встроенная функция integrate, которая позволяет легко вычислять интегралы от функций.

Сначала запишем саму функцию в переменную для простоты дальнейшей записи:

(%i1) expr:
$$(4 \cdot x^2 + 7 \cdot x - 23)/((x^2 - 4 \cdot x + 8) \cdot (x + 1)^2)$$
;

(expr)
$$\frac{4 x^2 + 7 x - 23}{(x+1)^2 (x^2 - 4 x + 8)}$$

Теперь подставим нашу функцию в функцию integrate и узнаем результат.

(%02)
$$\frac{\log(x^2 - 4x + 8)}{2} + \frac{3 \operatorname{atan}\left(\frac{2x - 4}{4}\right)}{2} - \log(x + 1) + \frac{2}{x + 1}$$

Так мы получили результат, но видно, что он слегка отличается от результата, который мы бы записали самостоятельно: не сокращена дробь внутри функции арктангенса, натуральный логарифм записан не так, как мы привыкли его записывать. Это все связано с тем, как работает Maxima и как записывает какие-либо функции. Но мы не будем разбирать, почему все так, ведь наша цель получить значение интеграла, а как мы его запишем уже не так важно.

6. Сумма последовательности

$$\frac{2n+1}{\sqrt{n2^n}}.$$

Excel

Чтобы посчитать данную сумму, нам нужно сделать несколько простых действий.

Для начала обозначим количество членов последовательности. То есть напишем первые два члена – 1 и 2 – и растянем с помощью «крестика» до 10.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Затем запишем формулу последовательности в первую ячейку справа, подставляя вместо п значение ячейки слева. И также протянем ее на все члены последовательности.

1	2.12132
2	1.767767
3	1.428869
4	1.125
5	0.869626
6	0.663403
7	0.501115
8	0.37565
9	0.279896
10	0.207524

И теперь с помощью встроенной функции СУММ() вычислим сумму по диапазону ячеек.

Сумма	9.340172

И вот мы получили ответ, пусть и не с большой точностью.

Для суммирования в Maxima есть встроенная функция sum, которой мы и воспользуемся.

(%i1)
$$sum((2\cdot n+1)/sqrt(n\cdot 2^n), n, 1, 10);$$

(%o1) $\frac{15}{8\sqrt{14}} + \frac{109}{32\sqrt{10}} + \frac{41}{8\sqrt{6}} + \frac{617}{32^{11/2}} + \frac{9}{8}$
(%i2) $float(\%);$
(%o2) 9.340172353458982

Итак, за одно простое действие мы посчитали сумму первых 10 членов последовательности и представили его в виде десятичного числа.

7. Графики функций

$$y = \frac{x}{\sqrt{x^2 + x}}$$
.

Excel

Сначала определим область допустимых значений функции. Сделать это в Excel у нас не получится, поэтому сделаем это вручную:

$$x^{2} + x > 0,$$

 $x(x+1) > 0,$
 $x_{1} = 0, x_{2} = -1.$
 $y + - +$
 $-1 = 0$

Получаем, что $D(y) = (-\infty; -1) \cup (0; +\infty)$

Для того чтобы построить график функции в Excel, нужно построить множество точек в таблице. Это множество должно состоять из диапазонов ячеек с числами для оси X и оси У. Числа оси X мы выбираем сами, а числа оси У мы будем считать с помощью формул Excel.

В итоге у нас должна получится приблизительно такая таблица:

Х	У
-6	-1.09545
-5	-1.11803
-3	-1.22474
-2	-1.41421
-1.5	-1.73205
0.1	0.301511
1.5	0.774597
3	0.866025
4	0.894427
5	0.912871

(Значения для оси X выбраны так для того, чтобы график был более плавным.)

Затем, выделив оба столбца и не снимая выделения, нужно перейти на вкладку «Вставка» и добавить там точечную диаграмму с плавными линиями. После чего у вас получится следующий график:

Сначала определим область допустимых значений функции. Для этого найдем при каких значениях х знаменатель становится равным 0:

(%i1) solve(
$$x^2+x$$
);
(%o1) $[x=-1,x=0]$

Теперь вручную установим какие промежутки нам подходят:

Получаем, что $D(y) = (-\infty; -1) \cup (0; +\infty)$

Далее для того, чтобы построить график функции на панели Меню нам нужно выбрать «Графики» и далее «Двумерный график». Затем в диалоговом окне заполнить поля следующим образом:

Двумерный графи	к	×
Выражение(ния):	x/sqrt(x^2+x)	Дополнительно
Переменная:	х От: -6 До: 6	П логарифмическая шкала
Переменная:	У От: -3 До: 3	П логарифмическая шкала
Число точек:	20	
Формат:	встроенный	
Опции:		•
Файл:		
		ОК Отмена

и далее, нажав «ОК», получить результат:

plot2d: expression evaluates to non-numeric value somewhere in plotting range.

plot2d: some values were clipped.

Мы получили график, но Maxima выдала предупреждение о том, что в указанном диапазоне есть поддиапазон, в котором функции не существует, и что данный диапазон будет изъят из графика.

8. Экстремумы

(Задача 16)

$$y=\frac{(x-2)(8-x)}{x^2}$$

Excel

Данную задачу с помощью Excel решать бессмысленно, так как встроенных функций для данного решения не предусмотрено.

Maxima

Сначала найдем область определения функции. Очевидно, что $D(y) = (-\infty; 0) \cup (0; +\infty)$, так как знаменатель не должен быть равен нулю.

Далее найдем с помощью Maxima производную функции и ее критические точки. Для этого отдельно запишем функцию и воспользуемся встроенными функциями.

f:
$$(x-2) \cdot (8-x)/x^2$$
;
f) $\frac{(8-x)(x-2)}{x^2}$

(res)
$$[x = \frac{16}{5}]$$

Мы получили единственную критическую точку. Теперь найдем значение функции в этой точке.

Чтобы определить, чем, максимумом или минимумом, является данная точка, построим график функции.

→ wxplot2d([f], [x,1,5], [y,0,1])\$

plot2d: some values were clipped.

По графику мы можем видеть, что данный экстремум является максимумом функции.

9. Дифференциальные уравнения

$$y''' = x + \cos x$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 0$.

Excel

Так же бесполезно, как и с предыдущей

Maxima

Чтобы решить данное уравнение и найти исходную функцию, проинтегрируем данное уравнение.

(%i1)
$$y3: x+cos(x)=0;$$

(y3)
$$\cos(x) + x = 0$$

(y2)
$$\sin(x) + \frac{x^2}{2} = \%c1$$

Из полученного уравнения найдем %с1 и подставим его в исходное уравнение.

$$(\%i3)$$
 y2,x=0;

$$(\%03)$$
 0 = %c1

(y2)
$$\sin(x) + \frac{x^2}{2} = 0$$

Теперь проделаем тоже самое еще 2 раза, чтобы найти искомую функцию.

(y1)
$$\frac{x^3}{6} - \cos(x) = \%c2$$

(y1)
$$\frac{x^3}{6} - \cos(x) = -1$$

(y0)
$$\frac{x^4}{24} - \sin(x) = \%c3 - x$$

$$(\%09)$$
 0 = %c3

(y0)
$$\frac{x^4}{24} - \sin(x) = -x$$

Следовательно, решением задачи Коши будет функция:

$$y = \frac{1}{24}x^4 - \sin x + x$$