

Python Tsunami

Part 1: Intro to Python by HeaDS

Who are we?

Center for Health Data Science (HeaDS)

The mission of the Center is to strengthen health data science within the Faculty:

- Active and visible hub for Health Data Science
- Providing data science support for researchers at SUND
- Courses, workshops and training environments to improve data science skills
- Support a network of researchers and educators

https://heads.ku.dk

CENTER STRUCTURE

DataLab services

Teaching

Courses

Workshops

Seminars

Consultations

Drop in Thursday

Sparring

Commissioned **Projects**

Complete Analysis

(paid service)

Originally developed at the Center for Protein Research (CPR) by:

- Alberto Santos Delgardo (University of Oxford)
- Henry Webel (NNF CPR)
- Annelaura Bach Nielsen (NNF CPR)
- Rita Colaço (PRI)

We say thank you for the course material which we have adapted.

Your teachers:

Thilde Terkelsen (HeaDS)

Rita Colaço (PRI)

Valentina Sora (HeaDS)

Henrike Zschach (HeaDS)

Inigo Prada Luengo (HeaDS)

Starting time	Day 1 (Hannover Aud.)	Day 2 (Holst Aud.)	Day 3 (Holst Aud.)
8:30	Morning coffee (optional)		
8:45	Motivation	Pandas: Series and dataframes, import and examine data, Renaming index/colum	Yesterday Questions + Recap Quiz
9:05	Variables & Data types		
9:45	Coffee break		Coffee break
10	Iterables I: Lists		Visualization
10:15		Coffee break	
10:30		Pandas: Indexing and	
11:30	Iterables II: sets, dicts, tuples	Selecting Data, Summary functions	
12:00	Lunch		
13:00	Booleans, operators & conditions	Pandas: Modifying data	Virtual environments and local python installations
13:30			Dataset exercise
14:00		Coffee break	
14:15	Coffee break	Pandas: GroupBy Operations, Sorting and Imputation Pandas Q + A	
14:30	Loops		
15:30	23373		
16:00	- END -		

What is programming?

What is programming?

Programming is a set of **machine-readable** instructions that transform your input into your desired output.

Why is programming nice?

- Learning by doing:
 - Difficult to 'break' a computer with wrong programming
- Reproducibility:
 - The same thing should happen every time you run (*though some tasks involve some randomness)
- Transferable:
 - Easily share your work with colleagues
- Many useful online resources
- Automate complex analysis workflows
- Important tool for working since we live in a data driven world

Why Python?

Python is a great programming language for both beginners and advanced programmers:

- Easy to grasp, close to natural language
- Many learning resources available
- Large community (i.e. stackoverflow for questions)
- Libraries
- Can do very advanced things like neural networks

Online communities - Where to get help

UCPH HeaDS

Online communities such as stackoverflow are an important tool in programming.

Nobody knows everything, but together we know more than ever before!

Online communities - Where to get help

You have a question

Someone out there has an answer!

Python environments

Jupyter notebook

The Jupyter Notebook is an **open-source application** to create and share documents that contain code, equations, visualizations and text (markdown).

 Browser-based development environment for creating, running and sharing Python code

UCPH HeaDS

- Combine code with text and output
- Runs from your local installation. I.e., you need Python and the libraries you want to use installed on your computer

Google Colab

Google Colab is a Jupyter Notebook hosted on Google's servers, not your own machine. It still runs in your browser.

- tool to write, execute and share Python code through the browser
- requires no setup to use and provides free access to computing resources on Google's servers including GPUs
- is connected to a Google account and data and notebooks can be accessed through Google Drive.

We'll use Colab during the course.

Course material

You can find the course material here:

https://github.com/Center-for -Health-Data-Science/Python Tsunami

Course material

Course material

UCPH HeaDS

Remember to **save** a **copy** to your own google drive so you can save your notes and exercises!

Short Introduction

Take the next 5 mins to introduce yourself at your table:

- Name
- Position
- Unit
- What you do (very briefly!)

Using libraries/packages

Libraries

Python has many libraries, also called packages, that other programmers have developed. Find and **use** them!

Well-maintained libraries generally are:

- Tested
- Optimized
- Documented

There is no need to reinvent the wheel. During this course we will use:

- Pandas (all the data analysis!)
- Math (basic math)
- Plotly express (visualization)

Libraries

If you are running Python from a local installation, you need to have libraries **installed** before you can use them.

On Google Colab you can generally just import, they are already installed.

Import the math library:

```
import math
```

• Now I can use functions from that library, i.e. calculating the logarithm or square root:

```
math.log(3)
math.sqrt(4)
```


Objects, variables, references

The language of python

Python is an **object-oriented** programming language. Therefore it helps if you primarily think of two different things:

Objects and functions*

- Objects are **pieces of information** (i.e. a number, a string of letters, a data table).
- We perform functions on objects. They are what we do to the information pieces.
- Which functions we can perform depends on the type of the object.

^{*}technically functions are objects too, but let's not get too technical

An example

An object:

$$my_int = 3$$

A function:

```
math.log(my_int)
```

This does not work because the object is the wrong type:

```
math.log('hello')
```

Variables and Objects

Every piece of data you use in Python is stored somewhere in physical memory as an **object.**

Variables are **references** to the stored object.