

Interpretable AI

How I Learned to Stop Worrying and Trust Al

Ajay Thampi (PhD)Lead Data Scientist

Microsoft

Learning – Detecting Malaria

INFECTED

UNINFECTED

Testing (1/3)

UNINFECTED

Testing (2/3)

INFECTED

Testing (3/3)

INFECTED

Understanding

UNINFECTED

INFECTED

Modelling and Deployment

Transparent Models

Decision Trees - Simple

Iris Flower Dataset

Setosa¹

Versicolor²

Virginica³

Features:

- Petal Length
- Petal Width
- Sepal Length
- Sepal Width

petal length (cm) ≤ 2.5 gini = 0.7 samples = 150 value = [50, 50, 50] class = setosa

¹ https://en.wikipedia.org/wiki/Iris_setosa#/media/File:Kosaciec_szczecinkowaty_Iris_setosa.jpg (CC BY-SA licence)

² https://en.wikipedia.org/wiki/Iris versicolor#/media/File:Blue Flag, Ottawa.jpg (CC BY-SA licence)

³ https://en.wikipedia.org/wiki/Iris virginica#/media/File:Iris virginica 2.jpg (CC BY-SA licence)

Decision Trees – More Complex

Breast Cancer Dataset

Other Transparent Models

- Linear Regression
- Logistic Regression
- Generalized Additive Models (GAMs)

$$g(E[y]) = \sum f_i(x_i)$$

GA2Ms

$$g(E[y]) = \sum f_i(x_i) + \sum f_{ij}(x_i, x_j)$$

Data & Features

Going Beyond Feature Importance

Feature Importance

Problem: Predict high-school student grades for math, reading and writing

Features:

- Gender
- Race/Ethnicity
- Parent Level of Education
- Lunch
- Test Preparation

Partial Dependency Plots (PDPs)

Parent Level Education

Feature Interactions

Feature Interactions

Feature Interactions

PDP in Python

from pdpbox import pdp

```
pdp_race = pdp.pdp_isolate(model=math_model,
```



```
dataset=df,
model_features=features,
feature='race')
```

pdp_race_parent = pdp.pdp_interact(model=math_model,

```
| Part | American - 144 | Class | Clas
```

```
dataset=df,
model_features=features,
features=['race', 'parent'])
```

Black-Box Models

Post-Hoc Explanations

Post-Hoc Explanations

SHAP = Shapley Additive exPlanations

2016 2017

SHAP Tree Ensemble Explainer

Breast Cancer Detection

SHAP Deep Learning Explainer

Look at 5 Examples in the Test Set

SHAP Deep Learning Explainer – Explained!

Mitigating Bias

Algorithmic Debiasing

Adversarial Debiasing

- Demographic Parity: Ŷ ⊥ Z
- Equality of Odds: Ŷ ⊥ Z | Y
- Equality of Opportunity: $\hat{Y} \perp Z \mid Y = y$

Adversarial Debiasing Demo

Word Embedding Analogy Task

He: She:: Doctor:?

Word	Score
Nurse	0.62
Her	0.60
Woman	0.58
Mother	0.57
Doctors	0.55
Physician	0.53
Pregnant	0.51

Summary

- Include model understanding in your data science process
- Be mindful of your audience interpretability means different things to different people
- Apply interpretability techniques (like PDPs, LIME, SHAP, etc.) to improve model understanding
- Build fair models by mitigating bias

Additional Resources (1/2)

- Source code of demos: https://github.com/thampiman/interpretability
- Blog post on interpretability: https://towardsdatascience.com/interpretable-ai-or-how-i-learned-to-stop-worrying-and-trust-ai-e61f9e8ee2c2
- Saliency Maps: https://distill.pub/2018/building-blocks/
- Representational Learning: https://www.cl.uni-heidelberg.de/courses/ws14/deepl/BengioETAL12.pdf
- t-SNE: https://lvdmaaten.github.io/tsne/
- PDP Box: https://github.com/SauceCat/PDPbox
- LIME: https://arxiv.org/pdf/1602.04938.pdf
- Kernel SHAP: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions

Additional Resources (2/2)

- SandDance: https://www.microsoft.com/en-us/research/project/sanddance/
- GAMut: https://www.microsoft.com/en-us/research/uploads/prod/2019/01/19 gamut chi.pdf
- Datasheets for Datasets: https://arxiv.org/pdf/1803.09010.pdf
- Challenges for Transparency: https://arxiv.org/pdf/1708.01870.pdf
- Synthetic Data (MSR): https://arxiv.org/pdf/1810.00471.pdf
- Counterfactual Explanations: https://arxiv.org/abs/1711.00399
- Noise Audit: https://hbr.org/2016/10/noise
- Interpretable ML: https://christophm.github.io/interpretable-ml-book/limo.html

Thank You

Q&A

@thampiman

