$\boxed{2.1}$ Prove that for any class **K** of algebras we have $\mathbf{SHK} \subseteq \mathbf{HSK}$.

Suppose that $\overline{M} \in \mathbf{SHK}$. Then there are $\overline{N} \in \mathbf{K}$ and \overline{P} such that there is a homomorphism f from \overline{N} onto \overline{P} and \overline{M} is a subalgebra of \overline{P} . Let $Q = f^{-1}[M]$. Clearly Q is a subuniverse of \overline{N} . Let \overline{Q} be the associated subalgebra of \overline{N} . Then $f \upharpoonright Q$ is a homomorphism from \overline{Q} onto \overline{M} . Hence $\overline{M} \in \mathbf{HSK}$.

2.2 Give an example of a class **K** of algebras such that $\mathbf{SHK} \neq \mathbf{HSK}$.

Let $\mathbf{K} = {\mathbb{Q}}$ in the signature of rings. Then \mathbb{Z} is a subalgebra of \mathbb{Q} , and \mathbb{Z}_4 is a homomorphic image of \mathbb{Z} . Thus $\mathbb{Z}_4 \in \mathbf{HSK}$. But \mathbf{HK} has only two elements, \mathbb{Q} and the one-element ring, and \mathbf{SHK} does not have any finite member with more than one element.

[2.3] Prove that for any class **K** of algebras we have $PHK \subseteq HPK$.

Let $\overline{M} \in \mathbf{PHK}$. Then there is a system $\langle \overline{N}_i : i \in I \rangle$ of members of \mathbf{K} , another system $\langle \overline{P}_i : i \in I \rangle$ of algebra, a system $\langle f_i : i \in I \rangle$ of functions, and a function g, such that $\forall i \in I[f_i \text{ is a homomorphism from } \overline{N}_i \text{ onto } \overline{P}_i, \text{ and } g \text{ is an isomorphism from } \prod_{i \in I} \overline{P}_i \text{ onto } \overline{M}.$ Define $h: \prod_{i \in I} N_i \to \overline{M}$ by setting

$$h(x) = g(\langle f_i(x_i) : i \in I \rangle)$$

for any $x \in \prod_{i \in I} N_i$. Then h is a homomorphism from $\prod_{i \in I} \overline{N}_i$ onto \overline{M} , hence $\overline{M} \in \mathbf{HPK}$.

[2.4] Give an example of a class K of algebras such that $PHK \neq HPK$. Hint: let K consist of all fields \mathbb{Z}_p for p a prime, and take an ultraproduct of them with a nonprincipal ultrafilter. Show that the result is an infinite field.

Let $I=\{p:p \text{ is a prime}\}$, and let D be a nonprincipal ultrafilter on I. We use the signature $+,\cdot,-,0,1$ for the fields \mathbb{Z}_p . Now $A \stackrel{\mathrm{def}}{=} \prod_{i \in I} \mathbb{Z}_p/D$ is a commutative ring with identity, since equations are used to define such. Now take a nonzero element [x] of A. Then $M \stackrel{\mathrm{def}}{=} \{p \in I : x(p) \neq 0\}$ is in D. There is a y such that y(p) = 1/x(p) for all $p \in M$. It follows that $\{p \in I : x(p) \cdot y(p) = 1\} \in D$; hence $[x] \cdot [y] = [1]$. So A is a field. Now suppose that A is finite; say $A = \{[x_i] : i < n\}$. Let $N = \{p \in I : n < p\}$. If $p \in N$, then there is a $y(p) \in \mathbb{Z}_p$ such that $y(p) \notin \{x_i(p) : i < n\}$. Define y(p) = 0 for $p \in I \setminus N$. Then for any i < n,

$$N \subseteq \{p \in I : y(p) \neq x_i(p)\},\$$

hence the set on the right is in D, and so $[y] \neq [x_i]$. This contradiction shows that A is infinite after all.

Note that $A \in \mathbf{HPK}$. Now a product of two or more fields in not a field, as there are zero divisors in such a product. Hence the only fields in \mathbf{PHK} are isomorphic to members of \mathbf{K} , and so are finite. So $A \notin \mathbf{PHK}$.

2.5 Prove that for any class **K** of algebras we have $PSK \subseteq SPK$.

Let $\overline{M} \in \mathbf{PSK}$. Then there exist a system $\langle \overline{N}_i : i \in I \rangle$ of members of \mathbf{K} , a system $\langle \overline{P}_i : i \in I \rangle$ of algebras such that \overline{P}_i is a subalgebra of \overline{N}_i for each $i \in I$, and an

isomorphism f from \overline{M} onto $\prod_{i\in I} \overline{P_i}$. Then $\prod_{i\in I} \overline{P_i}$ is a subalgebra of $\prod_{i\in I} \overline{N_i}$. By Proposition 1.5 there exist an algebra \overline{C} and an isomorphism g from \overline{C} onto $\prod_{i\in I} \overline{N_i}$ such that \overline{M} is a subalgebra of \overline{C} and $f\subseteq g$. Thus $\overline{C}\in \mathbf{PK}$, so $\overline{M}\in \mathbf{SPK}$.

 $\boxed{2.6}$ Give an example of a class **K** of algebras such that $\mathbf{PSK} \neq \mathbf{SPK}$.

Let $\mathbf{K} = \{\mathbb{Z}_2\}$, the 2-element field. Then every member of \mathbf{PSK} is finite or nondenumerable, but \mathbf{SPK} has a countably infinite member.

2.7 Prove that **HSPK** is closed under **H**, **S**, and **P**. Infer that for any class **K** of structures, **HSPK** is the smallest variety containing **K**.

 $\mathbf{HHSPK} = \mathbf{HSPK}$. Next, using exercise 2.1, $\mathbf{HSPK} \subseteq \mathbf{SHSPK} \subseteq \mathbf{HSSPK} = \mathbf{HSPK}$. Finally, using exercises 2.3 and 2.5,

$$\mathbf{HSPK} \subset \mathbf{PHSPK} \subset \mathbf{HPSPK} \subset \mathbf{HSPPK} = \mathbf{HSPK}.$$

For the second part of the exercise, suppose that **K** is a class of algebras, **L** is a variety, and $\mathbf{K} \subset \mathbf{L}$. Then $\mathbf{HSPK} \subset \mathbf{HSPL} = \mathbf{L}$.

- 2.8 Prove that the following hold in any proper relation algebra with unit R:
 - (i) $S^{-1}|[-(S|T)] \subseteq -T$.
 - (ii) $((S|R) \cap id)|R = S|R$.
 - (iii) $S \subset S|S^{-1}|S$.
- (i): suppose that $(a, b) \in S^{-1}|[-(S|T)]$ and also $(a, b) \in T$; we want to get a contradiction. Choose c such that $(a, c) \in S^{-1}$ and $(c, b) \in -(S|T)$. Then $(c, a) \in S$ and $(a, b) \in T$, so $(c, b) \in (S|T)$, contradiction.
 - (ii): We have

$$(a,b) \in ((S|R) \cap id)|R \quad \text{iff} \quad \exists c[(a,c) \in ((S|R) \cap id) \text{ and } (c,b) \in R$$

$$\text{iff} \quad (a,a) \in (S|R) \text{ and } (a,b) \in R$$

$$\text{iff} \quad (a,a) \in (S|R)$$

$$\text{iff} \quad \exists d[(a,d) \in S \text{ and } (d,a) \in R]$$

$$\text{iff} \quad \exists d[(a,d) \in S \text{ and } (d,b) \in R]$$

$$\text{iff} \quad (a,b) \in (S|R).$$

(iii): suppose that $(a, b) \in S$. Then $(b, a) \in S^{-1}$, hence $(a, a) \in (S|S^{-1})$, hence $(a, b) \in [S|S^{-1}|S]$.