$$\sum_{i} Q_{i} = 0$$
 con

$$\sum_{i} Q_{i} = 0 \quad \text{con} \qquad Q_{i} = m_{i} \cdot C_{i} \cdot \Delta T_{i}$$

$$Q_{i} = m_{i} \cdot L^{(i)}$$

Cambio de fase

Variación de Temp

$$\Delta S_{\text{univ}} = \sum_{i} \Delta S_{i}$$

$$\int \Delta S_{i} = \int \frac{dQ_{i}}{T} = \int \frac{mi.ci.dT}{T}$$
273 k

Cambio de fase

Fluidos

PV	_	a R	T
J 1 V	=	112 1	•

atm 1	A 35	
క్ -	-	
- ح	c	
4	11 Vp 3L	→ V

	Pata	V	7
А	S	1	
\mathfrak{Z}	S	3	
С	Z	3	
Q,	2	Vp	

$$P_{A} \cdot V_{A} = P_{D} \cdot V_{D}$$

$$P_{A} \cdot V_{A} = P_{D} \cdot V_{D}$$

$$V_{D} = P_{A} \cdot V_{A} = Sot_{M} \cdot LL = 2.5L$$

$$P_{D} = Sot_{M} \cdot LL = 2.5L$$

1º Principio:

	Δυ	Q	W
$A \rightarrow B$			10
B → C			
$C \Rightarrow D$			
D → A			

$$A \rightarrow B$$
: Pote $\Rightarrow W = \int P \cdot dV = P_A \cdot (V_8 - V_A)$

$$= satm. 2L = 10 atm. L$$

gar ideal
$$\Delta U \stackrel{!}{=} \Omega \cdot Cv \cdot \Delta T \qquad T_{A} = \underbrace{P_{A} \cdot V_{A}}_{\Omega \cdot R} \qquad T_{B} = \underbrace{P_{B} \cdot V_{B}}_{\Omega \cdot R} \\
= \Omega \cdot Cv \cdot \left(\underbrace{P_{B} \cdot V_{B}}_{\Omega \cdot R} - \underbrace{P_{A} \cdot V_{A}}_{\Omega \cdot R}\right)$$

$$\Delta U = \cancel{A} \cdot \frac{3}{2} \cdot \cancel{R} \cdot \left(\frac{5.3 - 5.1}{\cancel{A} \cancel{R}} \right) \text{ atm.}$$

$$\Delta U = \frac{3}{2}$$
. 10 = 15 atm.L

	Δυ	Q	W
$A \rightarrow B$	IS	25	10
B → C			
$C \rightarrow \mathcal{D}$			
D → A			

$$= 0.\frac{3}{2}R.\left(\frac{P_{c}.V_{c}}{0.R} - \frac{P_{s}.V_{s}}{0.R}\right)$$

$$= \frac{3}{2} \cdot \left(2.3 - 5.3\right) \text{ atm L}$$

	Δυ	Q	W
$A \rightarrow B$	IS	25	10
B → C	- 2	- 2	0
$C \Rightarrow D$			
D → A			

P.V= n.R.T

$$DU = \Omega \cdot Cv \cdot \left(To - Tc\right)$$

$$= 9 \cdot \frac{3}{2} R \cdot \left(\frac{P_0 V_0}{9R} - \frac{P_c V_c}{9R}\right)$$

$$= \frac{3}{2} \cdot \left(2 \cdot 2.5 - 2.3\right) \text{ atm. }$$

$$-\frac{3}{z} \text{ atm.L} = Q + 1 \text{ atm.L}$$

$$\Rightarrow Q = -\frac{5}{z} \text{ atm.L}$$

	Δυ	٩	W
A→B	IS	25	10
B → C	- 27	- 5	0
$C \Rightarrow \mathcal{D}$	- 3/2	<u>n</u> [N	- 1
⊅ → A			

$$\omega = \int P \cdot dV = \Omega \cdot R \cdot T_A \cdot \int_{z,s}^{L} \frac{1}{v} dv$$

=
$$\bigcap_{z \in S} R \cdot T_{A} \cdot \ln \left(\frac{1}{z_{1}s}\right)$$

= $P_{A} \cdot V_{A} \cdot \ln \left(o_{1}u\right)$

=
$$5 atm. 1L. ln (0,4)$$

 $W = 5 ln (0,4) atml = -4,58 atml$
=> $Q = -4,58 atml$

	Δυ	Q	W
$A \rightarrow B$	IS	25	10
B → C	- 2	- <u>5</u>	0
$C \Rightarrow D$	- 3/2	- <u>%</u>	- 1
$\mathcal{D} \rightarrow A$	0	-4,58	-4,58

b) Eficiencis:

Expansión!

 $E = \frac{\omega_{\text{Tot}}}{Q_{\text{Abs}}} = \frac{4.42}{25}$

as er máquins

Recordor

Térmicz,

Absorve Q>0 Pierde Q<0

E = 0, 18

c) DU er función de Estado .º. siempre vale cero para un ciclo cerrado, no importa si est rev. ó irrev.

Rearder

Latin + C.g. H =
$$\frac{1}{2}$$
 e. $\frac{1}{2}$ e.

204 CHH

$$\theta_{B} = \left[2g(H-L.\sin\theta) \right]$$

$$\theta = 30^{\circ}$$

$$y_0 = 4m$$
 $y_0 = 4m$
 $y_0 = 4m$

$$\mathcal{F}(t) = t_{y} - g \cdot t$$

$$0 \frac{m}{s} = \frac{1}{Z} \cdot 13.42 \frac{m}{s} - 10 \frac{m}{s^{2}} \cdot t$$

$$t_{max} = 0,671 s$$

$$\Rightarrow y_{\text{mex}} = y(t_{\text{mex}})$$

$$= 1 m + \frac{1}{2} \cdot 13.42 \frac{m}{s} \cdot 0,671 s - \frac{1}{2} \cdot 10 \frac{m}{s^2} \cdot (0,671 s)^2$$

