CS 451: Computational Intelligence

Assignment 1 Evolutionary Algorithms

Mustafa Sohail | ms
06860@st.habib.edu.pk Muhammad Azeem Haider | mh
06858@st.habib.edu.pk

February 11, 2024

Dhanani School of Science and Engineering Habib University Fall 2023

Copyright @ 2023 Habib University

Contents

1 Introduction

The first assignment of the course Computational Intelligence (CS-451) required us to implement evolutionary algorithms for three problems which are as followed:

- 1. **Travelling Salesman Problem:** The Travelling Salesman Problem (TSP) is a classic problem in combinatorial optimization. It is the problem of finding a tour of a set of n cities that is of minimum cost. A tour is a permutation of the cities, and the cost of a tour is the sum of the distances between adjacent cities in the tour.
- 2. **Job-Shop Scheduling Problem:** The job-shop scheduling problem is a classic problem in combinatorial optimization. It is the problem of scheduling a set of n jobs on a set of m machines. Each job consists of a sequence of operations, each of which must be processed on a specific machine for a specific amount of time.
- 3. Evolutionary Art (Mona Lisa): The evolutionary art problem is a classic problem in evolutionary computation. It is the problem of evolving a population of images to match a target image. Each image in the population is represented as a string of genes, and the fitness of an image is the similarity between the image and the target image.

2 Travelling Salesman Problem

2.1 Problem Formulation

The travelling salesman problem requires finding of the minimum cost (distance) to cover all the cities. The **chromosome generation** is being carried out by randomly shuffling the cities of the Qatar dataset.

Furthermore, the **mutate function** assigns each chromosome a random number from 0 to 1, and if the number is less than the mutation rate, mutation occurs.

Finally, the **crossover function** once again, carries out crossover between two parents by assigning the crossover point, and all the repeated cities from the second parent, that are already added in the first part, are added linearly in the end.

2.2 Analysis

While carrying out initial combination for selection schemes for parent selection and survival selection, it was clear that a combination of an explorative scheme as a parent selection and an exploitative scheme as a survival selection would be the best. As a result, the main combinations that were tested were the following:

• Parent Selection: Random Survival Selection: truncation

Our best score for TSP was just under 17500. The result reported in *Figure 1*, was obtained by the following parameters:

Figure 1: TSP - Best score graph

1. Population Size: 1000

2. Offspring Size: 200

3. Number of Generations: 5000

4. Mutation Rate: 0.45

5. Iterations: 10

The following graph Figure 2, has the same selection schemes and parameters, except for the fact that it is ran on 25 generations, to attach statistics for the Best Fitness and Average Fitness.

Figure 2: TSP - Best score graph with fewer generations

Table 1: Best Fitness Score Across generations for 10 iterations

Generations	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Best Fitness Score
Gen 1	82057	83328	85114	83051	82434	84352	84152	83083	85161	85063	82057
Gen 2	72757	71186	72579	72855	72946	73058	72463	73370	73611	73278	71186
Gen 3	69428	66881	66965	66927	65977	70057	70021	67938	69691	67122	65977
Gen 4	67481	64362	66965	66927	64392	68479	64360	66363	64316	66668	64316
Gen 5	64840	64362	65886	61476	62560	64157	64360	65278	64311	64785	61476
Gen 6	62950	63512	64510	61476	62560	63938	64360	64894	64311	64785	61476
Gen 7	62950	63512	61883	61476	62147	62418	62384	63854	60865	63241	60865
Gen 8	61595	60080	61358	61398	61788	60598	62103	61661	60865	59061	59061
Gen 9	61595	60080	61358	59119	60343	60598	61586	60238	60865	59061	59061
Gen 10	60322	60080	60330	56919	60062	60598	60953	60238	60865	59061	56919
Gen 11	58853	59368	58523	56919	55649	59813	57890	58235	58962	56718	55649
Gen 12	58853	58297	58523	56919	55649	59232	56851	58235	58962	56718	55649
Gen 13	58853	57651	58523	56919	55649	59232	56851	57703	56276	56718	55649
Gen 14	58523	57651	58135	55778	55649	59232	56851	57703	56276	56718	55649
Gen 15	57789	56022	58135	55778	55638	57492	56851	57703	56276	56343	55638
Gen 16	57789	55946	55068	55778	55638	57234	56851	55921	56276	55681	55068
Gen 17	55403	55946	55068	55778	55638	56635	56851	55921	56276	55681	55068
Gen 18	55403	55946	54933	55008	55638	56187	56851	55921	56276	55681	54933
Gen 19	55403	55946	54933	54031	55422	56187	56851	55921	54689	55681	54031
Gen 20	55403	52948	54712	51538	54981	55864	56447	55921	54689	54883	51538
Gen 21	54895	52948	52891	51538	54934	55864	56447	53395	54689	54883	51538
Gen 22	54895	52948	52891	51538	54934	55864	56015	53395	54689	54859	51538
Gen 23	54895	52948	52891	51538	54934	55503	56015	53395	54689	54859	51538
Gen 24	54895	52948	52891	51538	54934	54710	55802	53395	54689	54754	51538
Gen 25	54895	52948	52891	51538	54678	54710	55802	53395	54689	54754	51538

Table 2: Average Fitness Scores Across generations for 10 iterations

		0					0				
Generations	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Average Fitness Score
Gen 1	82057	83328	85114	83051	82434	84352	84152	83083	85161	85063	83660
Gen 2	72757	71186	72579	72855	72946	73058	72463	73370	73611	73278	72702
Gen 3	69428	66881	66965	66927	65977	70057	70021	67938	69691	67122	67829
Gen 4	67481	64362	66965	66927	64392	68479	64360	66363	64316	66668	65899
Gen 5	64840	64362	65886	61476	62560	64157	64360	65278	64311	64785	63937
Gen 6	62950	63512	64510	61476	62560	63938	64360	64894	64311	64785	63695
Gen 7	62950	63512	61883	61476	62147	62418	62384	63854	60865	63241	62561
Gen 8	61595	60080	61358	61398	61788	60598	62103	61661	60865	59061	60999
Gen 9	61595	60080	61358	59119	60343	60598	61586	60238	60865	59061	60595
Gen 10	60322	60080	60330	56919	60062	60598	60953	60238	60865	59061	59570
Gen 11	58853	59368	58523	56919	55649	59813	57890	58235	58962	56718	58073
Gen 12	58853	58297	58523	56919	55649	59232	56851	58235	58962	56718	58050
Gen 13	58853	57651	58523	56919	55649	59232	56851	57703	56276	56718	57897
Gen 14	58523	57651	58135	55778	55649	59232	56851	57703	56276	56718	57781
Gen 15	57789	56022	58135	55778	55638	57492	56851	57703	56276	56343	57021
Gen 16	57789	55946	55068	55778	55638	57234	56851	55921	56276	55681	56342
Gen 17	55403	55946	55068	55778	55638	56635	56851	55921	56276	55681	56175
Gen 18	55403	55946	54933	55008	55638	56187	56851	55921	56276	55681	55918
Gen 19	55403	55946	54933	54031	55422	56187	56851	55921	54689	55681	55577
Gen 20	55403	52948	54712	51538	54981	55864	56447	55921	54689	54883	54728
Gen 21	54895	52948	52891	51538	54934	55864	56447	53395	54689	54883	54323
Gen 22	54895	52948	52891	51538	54934	55864	56015	53395	54689	54859	54120
Gen 23	54895	52948	52891	51538	54934	55503	56015	53395	54689	54859	53844
Gen 24	54895	52948	52891	51538	54934	54710	55802	53395	54689	54754	53645
Gen 25	54895	52948	52891	51538	54678	54710	55802	53395	54689	54754	53456

3 Job-Shop Scheduling Problem

3.1 Problem Formulation

The job-shop scheduling problem requires finding the minimum time to complete all the jobs on all the machines.

The chromosome is generated by providing each job with an index, and repeating that number of index for the number of operations on that job. For example for abz5, if there are 10 jobs with 10 operations each, each job will be given an index from 0-9 and each number from 0-9 will repeat exactly 10 times. In this manner, we have flattened our chromosome.

The mutate and crossover function work in similar fashion to the travelling salesman problem. The mutate function checks probability assigned and if it is less than mutation rate, mutation occurs, and crossover occurs between two parents, and repeated jobs from parent two are added in the end of the new offsprings.

3.2 Analysis

Unlike, the travelling salesman problem, the job-shop scheduling problem had three input files which were abz(5-7). The analysis for each file will be divided into subsections.

3.2.1 First input file "abz5"

The strategy to solve the job-shop scheduling problem was to use the same combination of parent selection and survival selection as the travelling salesman problem. Since keeping the parent selection scheme entirely explorative through random function or on the higher exploration through rank-based selection or tournament selection. The survival selection was to be kept entirely exploitative through truncation or on the higher exploitation through fitness proportional selection. The best score achieved **1242** was through **random** and **truncation**, with the following parameters.

1. Population Size: 200

2. Offspring Size: 60

3. Number of Generations: 2000

4. Mutation Rate: 0.5

5. Iterations: 10

Figure 3: JSSP - Best score graph

The following graph Figure 4, has the same selection schemes and parameters, except for the fact that it is ran on 25 generations, to attach statistics for the Best Fitness and Average Fitness.

Table 3 and 4 highlight the scores between the generations for 10 iterations, and the best and average scores amongst the generations.

Figure 4: JSSP - Best score graph with fewer generations

Table 3: Best Fitness Score Across generations for 10 iterations

${\it Generations}$	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Best Fitness Score
Gen 1	1718	1658	1741	1583	1640	1559	1656	1560	1533	1587	1533
Gen 2	1622	1658	1699	1583	1640	1559	1656	1560	1533	1587	1533
Gen 3	1622	1646	1699	1583	1640	1559	1656	1560	1533	1587	1533
Gen 4	1622	1646	1699	1583	1640	1559	1656	1560	1533	1587	1533
Gen 5	1622	1646	1699	1583	1640	1559	1656	1560	1533	1587	1533
Gen 6	1622	1632	1654	1583	1640	1559	1656	1560	1533	1587	1533
Gen 7	1622	1607	1631	1583	1640	1559	1656	1560	1533	1587	1533
Gen 8	1588	1593	1631	1551	1640	1559	1601	1560	1533	1587	1533
Gen 9	1588	1593	1631	1551	1582	1559	1601	1560	1533	1587	1533
Gen 10	1588	1573	1631	1551	1582	1559	1601	1527	1533	1587	1527
Gen 11	1588	1573	1631	1551	1582	1559	1601	1527	1533	1587	1527
Gen 12	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1502
Gen 13	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1502
Gen 14	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1502
Gen 15	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1502
Gen 16	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1502
Gen 17	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1502
Gen 18	1588	1573	1502	1551	1582	1559	1601	1527	1529	1587	1502
Gen 19	1574	1573	1502	1551	1582	1559	1601	1527	1501	1587	1501
Gen 20	1574	1573	1502	1515	1540	1559	1601	1527	1501	1587	1501
Gen 21	1574	1573	1502	1515	1540	1559	1579	1527	1501	1587	1501
Gen 22	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1484
Gen 23	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1484
Gen 24	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1484
Gen 25	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1484

Table 4: Average Fitness Scores Across generations for 10 iterations

Generations	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Average Fitness Score
Gen 1	1718	1658	1741	1583	1640	1559	1656	1560	1533	1587	1612.8
Gen 2	1622	1658	1699	1583	1640	1559	1656	1560	1533	1587	1613.8
Gen 3	1622	1646	1699	1583	1640	1559	1656	1560	1533	1587	1612.2
Gen 4	1622	1646	1699	1583	1640	1559	1656	1560	1533	1587	1612.4
Gen 5	1622	1646	1699	1583	1640	1559	1656	1560	1533	1587	1612.4
Gen 6	1622	1632	1654	1583	1640	1559	1656	1560	1533	1587	1608.0
Gen 7	1622	1607	1631	1583	1640	1559	1656	1560	1533	1587	1603.0
Gen 8	1588	1593	1631	1551	1640	1559	1601	1560	1533	1587	1595.3
Gen 9	1588	1593	1631	1551	1582	1559	1601	1560	1533	1587	1592.7
Gen 10	1588	1573	1631	1551	1582	1559	1601	1527	1533	1587	1588.5
Gen 11	1588	1573	1631	1551	1582	1559	1601	1527	1533	1587	1588.5
Gen 12	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1576.5
Gen 13	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1576.5
Gen 14	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1576.5
Gen 15	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1576.5
Gen 16	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1576.5
Gen 17	1588	1573	1502	1551	1582	1559	1601	1527	1533	1587	1576.5
Gen 18	1588	1573	1502	1551	1582	1559	1601	1527	1529	1587	1575.5
Gen 19	1574	1573	1502	1551	1582	1559	1601	1527	1501	1587	1567.0
Gen 20	1574	1573	1502	1515	1540	1559	1601	1527	1501	1587	1564.9
Gen 21	1574	1573	1502	1515	1540	1559	1579	1527	1501	1587	1562.9
Gen 22	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1556.6
Gen 23	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1556.6
Gen 24	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1556.6
Gen 25	1574	1573	1502	1515	1540	1484	1579	1527	1501	1587	1556.6

Figure 5: JSSP, Rank-based selection and Truncation, Population Size: 150, Offspring Size: 40, Number of Generations: 2000, Mutation Rate: 0.5, Iterations: 10

3.2.2 Input files "abz6" and "abz7"

The combination of schemes for both the input files are random and truncation with the following parameters:

1. Population Size: 1000

2. Offspring Size: 200

3. Number of Generations: 500

4. Mutation Rate: 0.45

5. Iterations: 10

The best score for the input file "abz6" was **972**. Whereas, the best score for the input file "abz7" was **776**. The reason for the scores of input file "abz6" and "abd7" being lower than the input "abz5" is due to the fact that the time needed by each process on each machine is significantly low.

Figure 6: Job-shop Scheduling Problem: Input file abz6

The following table and graph are generated on the same selection schemes and parameters, except for the fact that the generation size is 25.

Figure 7: Job-shop Scheduling Problem: Input file abz6 with fewer generations

Table 5: Generation-wise Best Fitness Scores for Input File abz6

Generations	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Best Fitness Score
Gen 1	1204	1240	1279	1224	1193	1288	1279	1214	1264	1231	1193
Gen 2	1204	1240	1279	1224	1193	1288	1279	1214	1264	1231	1193
Gen 3	1204	1240	1279	1224	1193	1288	1279	1214	1264	1231	1193
Gen 4	1204	1172	1279	1224	1193	1288	1279	1214	1264	1231	1172
Gen 5	1204	1172	1279	1224	1193	1273	1250	1214	1264	1231	1172
Gen 6	1204	1172	1279	1224	1193	1273	1250	1214	1264	1231	1172
Gen 7	1204	1172	1279	1224	1193	1273	1250	1214	1252	1231	1172
Gen 8	1204	1172	1274	1190	1193	1273	1250	1176	1252	1231	1172
Gen 9	1204	1172	1251	1190	1193	1273	1250	1176	1252	1231	1172
Gen 10	1204	1172	1251	1190	1182	1273	1250	1176	1252	1231	1172
Gen 11	1204	1172	1207	1190	1182	1273	1250	1176	1252	1231	1172
Gen 12	1204	1172	1207	1190	1182	1273	1250	1176	1252	1231	1172
Gen 13	1204	1172	1180	1190	1182	1273	1232	1176	1252	1231	1172
Gen 14	1204	1172	1180	1190	1182	1273	1232	1176	1252	1214	1172
Gen 15	1204	1172	1180	1190	1094	1232	1232	1176	1252	1214	1094
Gen 16	1196	1172	1180	1190	1094	1232	1232	1176	1252	1214	1094
Gen 17	1196	1172	1180	1190	1094	1232	1232	1176	1252	1214	1094
Gen 18	1196	1172	1180	1190	1094	1232	1232	1176	1243	1214	1094
Gen 19	1196	1172	1180	1190	1094	1232	1232	1176	1243	1214	1094
Gen 20	1196	1172	1180	1173	1094	1211	1204	1176	1243	1214	1094
Gen 21	1196	1172	1180	1173	1094	1211	1204	1176	1243	1214	1094
Gen 22	1196	1172	1180	1173	1094	1211	1204	1176	1219	1214	1094
Gen 23	1196	1172	1180	1173	1094	1211	1192	1176	1210	1214	1094
Gen 24	1196	1172	1180	1173	1070	1211	1192	1131	1210	1214	1070
Gen 25	1196	1172	1180	1173	1070	1211	1163	1131	1200	1193	1070

Table 6: Generation-wise Average Fitness Scores for Input File abz6
tion 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10 Ave

Generations	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Average Fitness Score
Gen 1	1204	1240	1279	1224	1193	1288	1279	1214	1264	1231	1231.3
Gen 2	1204	1240	1279	1224	1193	1288	1279	1214	1264	1231	1231.3
Gen 3	1204	1240	1279	1224	1193	1288	1279	1214	1264	1231	1231.3
Gen 4	1204	1172	1279	1224	1193	1288	1279	1214	1264	1231	1215.1
Gen 5	1204	1172	1279	1224	1193	1273	1250	1214	1264	1231	1213.1
Gen 6	1204	1172	1279	1224	1193	1273	1250	1214	1264	1231	1213.1
Gen 7	1204	1172	1279	1224	1193	1273	1250	1214	1252	1231	1210.6
Gen 8	1204	1172	1274	1190	1193	1273	1250	1176	1252	1231	1199.6
Gen 9	1204	1172	1251	1190	1193	1273	1250	1176	1252	1231	1199.6
Gen 10	1204	1172	1251	1190	1182	1273	1250	1176	1252	1231	1197.6
Gen 11	1204	1172	1207	1190	1182	1273	1250	1176	1252	1231	1195.6
Gen 12	1204	1172	1207	1190	1182	1273	1250	1176	1252	1231	1195.6
Gen 13	1204	1172	1180	1190	1182	1273	1232	1176	1252	1231	1192.5
Gen 14	1204	1172	1180	1190	1182	1273	1232	1176	1252	1214	1191.8
Gen 15	1204	1172	1180	1190	1094	1232	1232	1176	1252	1214	1179.6
Gen 16	1196	1172	1180	1190	1094	1232	1232	1176	1252	1214	1179.4
Gen 17	1196	1172	1180	1190	1094	1232	1232	1176	1252	1214	1179.4
Gen 18	1196	1172	1180	1190	1094	1232	1232	1176	1243	1214	1176.4
Gen 19	1196	1172	1180	1190	1094	1232	1232	1176	1243	1214	1176.4
Gen 20	1196	1172	1180	1173	1094	1211	1204	1176	1243	1214	1173.4
Gen 21	1196	1172	1180	1173	1094	1211	1204	1176	1243	1214	1173.4
Gen 22	1196	1172	1180	1173	1094	1211	1204	1176	1219	1214	1171.9
Gen 23	1196	1172	1180	1173	1094	1211	1192	1176	1210	1214	1168.8
Gen 24	1196	1172	1180	1173	1070	1211	1192	1131	1210	1214	1163.6
Gen 25	1196	1172	1180	1173	1070	1211	1163	1131	1200	1193	1155.6

Figure 8: Job-shop Scheduling Problem: Input file abz7

Figure 9: Job-shop Scheduling Problem: Input file abz7 with 25 generations

Table 7: Generation-wise Fitness Scores for Input File abz7

Generations	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Best Fitness Score
Gen 1	1102	1081	1067	1053	1049	980	1092	1067	1061	1097	980
Gen 2	1102	1081	1067	1053	1049	980	1092	1067	1061	1097	980
Gen 3	1102	1081	1067	1053	1049	980	1038	1067	1061	1097	980
Gen 4	1102	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 5	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 6	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 7	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 8	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 9	1098	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 10	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 11	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 12	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 13	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	980
Gen 14	1066	1081	1050	1053	1010	980	1038	1067	1061	1080	980
Gen 15	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	980
Gen 16	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	980
Gen 17	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	980
Gen 18	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	980
Gen 19	1066	1063	1050	1053	1010	980	1038	1067	1061	1070	980
Gen 20	1066	1040	1050	1053	1010	980	1038	1067	1061	1070	980
Gen 21	1066	1040	1050	1053	1010	980	1038	1067	1061	1070	980
Gen 22	1066	1040	1050	1044	1010	980	1038	1067	1061	1070	980
Gen 23	1066	1040	1050	1044	1010	980	1038	1067	1061	1056	980
Gen 24	1066	1040	1050	1041	1010	980	1038	1067	1061	1056	980
Gen 25	1066	1040	1050	1041	1010	980	1038	1065	1020	1056	980

Table 8: Generation-wise Average Fitness Scores for Input File abz7
tion 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10 Av

Generations	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7	Iteration 8	Iteration 9	Iteration 10	Average Fitness Score
Gen 1	1102	1081	1067	1053	1049	980	1092	1067	1061	1097	1051.9
Gen 2	1102	1081	1067	1053	1049	980	1092	1067	1061	1097	1051.9
Gen 3	1102	1081	1067	1053	1049	980	1038	1067	1061	1097	1052.5
Gen 4	1102	1081	1050	1053	1049	980	1038	1067	1061	1097	1048.8
Gen 5	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	1049.5
Gen 6	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	1049.5
Gen 7	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	1049.5
Gen 8	1099	1081	1050	1053	1049	980	1038	1067	1061	1097	1049.5
Gen 9	1098	1081	1050	1053	1049	980	1038	1067	1061	1097	1049.4
Gen 10	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	1047.2
Gen 11	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	1047.2
Gen 12	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	1047.2
Gen 13	1066	1081	1050	1053	1049	980	1038	1067	1061	1097	1047.2
Gen 14	1066	1081	1050	1053	1010	980	1038	1067	1061	1080	1046.8
Gen 15	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	1045.6
Gen 16	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	1045.6
Gen 17	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	1045.6
Gen 18	1066	1081	1050	1053	1010	980	1038	1067	1061	1070	1045.6
Gen 19	1066	1063	1050	1053	1010	980	1038	1067	1061	1070	1044.8
Gen 20	1066	1040	1050	1053	1010	980	1038	1067	1061	1070	1043.5
Gen 21	1066	1040	1050	1053	1010	980	1038	1067	1061	1070	1043.5
Gen 22	1066	1040	1050	1044	1010	980	1038	1067	1061	1070	1042.4
Gen 23	1066	1040	1050	1044	1010	980	1038	1067	1061	1056	1040.4
Gen 24	1066	1040	1050	1041	1010	980	1038	1067	1061	1056	1039.6
Gen 25	1066	1040	1050	1041	1010	980	1038	1065	1020	1056	1039.0

4 Evolutionary Art: Mona Lisa

4.1 Problem Formulation

Our chromosome follows a similar pattern to the previously mentioned ones. Each chromosome is a tuple with the first index containing the actual chromosome and the second index storing its fitness value. The main chromosome itself is a list of n polygons, P. In our case, n = 50, and each polygon P is represented in the following form as a Python dictionary:

$$P: \{x: [x_1, x_2, x_3], y: [y_1, y_2, y_3], color: (R, G, B, A)\}$$

Since each polygon is a triangle, we need 3 x and y values to represent them and a fill color in the RGBA form.

For crossover, we are simply generating a random crossover point and splitting the parents list there. Each offspring takes an alternate half of the parents. Offspring A takes the first half of parent A and second half of parent B and vice versa for Offspring B. These halves are generated by dissecting the list according to the generated crossover point

Our idea of mutation is to modify a single polygon inside the chromosome which comprises n polygons. For this, we simply remove the last triangle by popping from the list and then add a randomly generated polygon in order to mutate the chromosome.

4.2 Analysis

Figure 10: Evolutionary art Mona Lisa

Figure 11: Evolutionary art Mona Lisa: First Generation of Mona Lisa

Figure 12: Evolutionary art Mona Lisa: 50th Generation of Mona Lisa

5 Discussion and General Analysis

In all the problems, we noticed the trend that exploitative methods worked better as survival selection schemes while explorative fared better as parent selection schemes. This is the reason why we largely kept truncation as our survival selector.

Looking at our scores, we can probably conclude that even though it does provide good scores in earlier generations it is possible to reach a local maxima quickly through this approach. This is down to the fact that our survival selection is truncation and as a result the tradeoff is while we get better scores quicker, the possibility of hitting local minimas are very high.

We mostly used tried working with random, rank-based selection, or binary tournament selection as our parent selection schemes to balance out the exploitative nature of truncation. The opposite ends of the spectrum that two of our selection schemes provided proved to work well for us.

However, it was interesting to notice how a selection scheme used for both parent and survival selection did not work well. While this is obvious in the case of using random, or truncation as both parent and survival schemes. It was interesting to see how none of the schemes when used twice were giving great results. Discussing this we realized that every selection scheme inherently lies either towards the exploitative side or the explorative side, and for an evolutionary alogrithm, ideally the sweet spot should be equal exploitative and explorative. This is why a combination of two different schemes worked better always.

While trying to improve our scores, we also slightly noticed a pattern between keep a specific ratio between population, offspring size, and mutation rate. We noticed a higher population size with a ratio of 5:1 or 4:1 to offspring size is a good spot, while keeping the mutation rate at a moderate central level of 0.5 or 0.45.