Shri Ramdeobaba College of Engineering and Management, Nagpur-13. Department of Electronics Engineering

Analog and Digital Communication Engineering Lab [ENP357]

Even Semester – 2023-24

Lab 02

Frequency Modulation

Name:	Pawan Dilip Sorte		
Batch / Roll No. :	A1/12		
Semester/Section:	$6^{ m th}$ /A		
Date of Performance:	23/1/2024		
Date of Submission:	17/04/2024		
Name & Signature of Faculty:	Mrs.Rohini Ochawar		

Lab-02

- 1. **Aim:** Transmission and Reception of an audio signal using Frequency Modulation / Demodulation Technique and computation of modulation index of FM waveform.
- 2. Tool Required: Frequency modulation and demodulation kit [VCO].
- 3. Circuit Diagram:

4. Observation Table:

Table No. 1: Calculation of Modulation Index M_f

Case	Amplitude of	Frequency of	Frequency	Modulation
	Message Signal(V)	Message	Deviation(δ) in	Index M _f
		Signal(Hz)	Hz	
1	3V	3 KHz	52 KHz	15.75
2	2.6V	1.9 KHz	7.7 KHz	4.05
3	3V	1.1 KHz	-	-

5. Calculations:

- Modulation Index, $MI = \partial/f_m$
- $\delta = \frac{f_{max} f_{min}}{2}$
- $T_{clk} = (F_{max} \ scale) \ x \ (time/div)$
- $F_{max} = 1/T_{clk}$

Modulation:

1.
$$f_{m} = 3 \text{ KHz}$$

Time = 0.1ms x 3
 $f_{m} = \frac{1}{3 \times 0.1 \times 10^{-3}}$
 $f_{m} = 3 \text{ KHz}$

$$f_{min} = \frac{1}{6.4 \times 5 \times 10^{-6}} = 312 \text{ KHz}$$

$$f_{max} = \frac{1}{4.8 \times 5 \times 10^{-6}} = 416 \text{ KHz}$$

$$d = \frac{f_{max} - f_{min}}{2}$$

$$= \frac{416 - 312}{2}$$

$$= 52 \text{ KHz}$$

$$MI = \frac{\Box}{\Box}$$

$$= \frac{52}{3.3} = 15.75$$

2.
$$f_{m} = 1.9 \text{ KHz}$$

Time = 0.2ms x 2.6
 $f_{m} = \frac{1}{2.6 \times 0.2 \times 10^{-3}}$
 $f_{m} = 1.9 \text{ KHz}$
 $f_{min} = \frac{1}{4.6 \times 5 \times 10^{-6}} = 43.4 \text{ KHz}$
 $f_{max} = \frac{1}{3.4 \times 5 \times 10^{-6}} = 58.8 \text{ KHz}$

$$\partial = \frac{f \max - f \min}{2}$$
$$= \frac{58.8 - 43.4}{2}$$
$$= 7.7 \text{ KHz}$$

$$MI = \frac{\Box}{\Box}$$
$$= \frac{7.7}{1.9}$$
$$= 4.05$$

Demodulation:

$$T = 3 \times 0.3 \text{ ms}$$

= 0.9 ms
 $F = 1/T$
= 1/0.9ms
= 1.1 KHz

6. Obtained Waveforms/Simulation Results:

1. $f_m = 3 \text{ KHz}$

2. $f_m = 1.9 \text{KHz}$

3. Demodulation:

7. Discussion and Conclusion:

- 1) For first set of reading MI = 15.75 kHz
- 2) For second set of reading MI = 4.05 kHz

In radio transmission, frequency modulation has a good advantage over other modulations. It has a larger signal-to-noise ratio meaning it will reject radio frequency interference much better than an equal power amplitude modulation (AM) signal.

The frequency modulation & demodulation of the signal for Narrowband & wideband F are observed. We can vary frequency by varying inductive reactance or capacitive reactance. The modulation index is higher for the fm = 3KHz compared to the fm = 1.9 KHz. This difference suggests a greater degree of signal modulation in the second set, potentially influencing factors such as signal clarity, bandwidth usage, and transmission efficiency.