FACTOR ANALYSIS

Vitastata Sharma

Table of Contents

Introduction/Problem Description:
Executive summary/Findings:
Advantages of Factor Analysis:
Technical Appendix
Data Description:
About the data:
Data Dictionary:
Methods Adopted:
Programs

Problem Description:

Analysis in this report is done on a commodity data to identify the themes (i.e. factors) in the data. The given data has 26 variables that will categorized into different themes using Factor Analysis.

We use Factor Analysis technique to

- Reduce the number of variables
- To analyze and find the relationship structure among the variables
- Determine the minimum number of factors in the global market that can adequately account for the variance in the data
- Find simpler, easier to interpret factors through rotating the factors
- Determine a meaningful interpretation of the factors that provides insight into the data for use with further analysis.

Executive Summary:

As per my analysis I have identified 4 factors- Metals, Raw Material, Utilities and Household to classify the given 26 variables. In the process the data was first imported to SAS Studio, missing values in the data were identified using NMISS and then the data was standardized to have a Mean = 0 and variance of one, each observed variable contributes one unit of variance to the "total variance" in the data set. The initial Factor Analysis report shows Eigenvalues and the Scree Plot. The Eigenvalues are obtained from a principal components analysis. The Scree Plot graphs these eigenvalues. The number of factors equals the number of eigenvalues that exceed 1.0.

Per our analyses, we have identified 4 main factors/themes with eigenvalues >1.0 without rotation.

Variance Explained by Each Factor						
Factor1 Factor2 Factor3 Factor4						
13.14725 4.547741 1.523902 1.119675						

As you observe below, through this factor analysis technique we are now able to show how strongly our dataset variables are associated with each of the four factors. These associations with the factors can vary from -100% to 100%. Numbers having larger absolute values indicate a stronger association with that particular factor.

Three rotation methods were applied on the same data-set-

Orthogonal Rotation [which retain uncorrelated factors]: VARIMAX, EQUAMAX

Oblique Rotation [which create correlated factors]: PROMAX

Based on the factor parameters and variance explained by each factor table EQUAMAX was the best rotation method.

Variance Explained by Each Factor					
Factor1 Factor2 Factor3 Factor4					
5.350281	5.173427	5.119436	4.695427		

Factor1: Metals

Below are the commodities with their variance that come under Metals.

COMMODITIES	DESCRIPTION (HOUSEHOLDS)	Factor Loadings
PZINC_USD	Zinc, high grade 98% pure, US\$ per metric ton	0.89472
PNICK_USD	Nickel, melting grade, LME spot price, CIF European ports, US\$ per metric ton	0.87307
PURAN_USD	Uranium, NUEXCO, Restricted Price, Nuexco exchange spot, US\$ per pound	0.75712
PCOPP_USD	Copper, grade A cathode, LME spot price, CIF European ports, US\$ per metric ton	0.68367
PLEAD_USD	Lead, 99.97% pure, LME spot price, CIF European Ports, US\$ per metric ton	0.65761

Factor2: Raw Material

Below are the commodities with their variance that come under Raw Material.

COMMODITIES	DESCRIPTION (UTILITIES)	Factor Loadings
PCOTTIND_USD	Cotton, Cotton Outlook 'A Index', Middling 1-3/32 inch staple, CIF Liverpool, US cents per pound	0.81408
PCOFFOTM_USD	Coffee, Other Mild Arabicas, International Coffee Organization New York cash price, ex-dock New York, US cents per pound	0.75385
PIORECR_USD	China import Iron Ore Fines 62% FE spot (CFR Tianjin port), US dollars per metric ton	0.73854
PSMEA_USD	Soybean Meal, Chicago Soybean Meal Futures (first contract forward) Minimum 48 percent protein, US\$ per metric ton	0.66693
PWHEAMT_USD	Wheat, No.1 Hard Red Winter, ordinary protein, FOB Gulf of Mexico, US\$ per metric ton	0.59169
PROIL_USD	Rapeseed oil, crude, fob Rotterdam, US\$ per metric ton	0.57476
PSALM_USD	Fish (salmon), Farm Bred Norwegian Salmon, export price, US\$ per kilogram	0.23423

Factor3: Utilities

Below are the commodities with their variance that come under Utilities.

COMMODITIES	DESCRIPTION (RAW MATERIALS)	Factor Loadings
PSAWORE_USD	Soft Sawnwood, average export price of Douglas Fir, U.S. Price, US\$ per cubic meter	0.91273
PSAWMAL_USD	Hard Sawnwood, Dark Red Meranti, select and better quality, C&F U.K port, US\$ per cubic meter	0.74174
PPOULT_USD	Poultry (chicken), Whole bird spot price, Ready-to-cook, whole, iced, Georgia docks, US cents per pound	0.74118
POLVOIL_USD	Olive Oil, extra virgin less than 1% free fatty acid, ex-tanker price U.K., US\$ per metric ton	0.70558
PLAMB_USD	Lamb, frozen carcass Smithfield London, US cents per pound	0.62552

PHIDE_USD	Hides, Heavy native steers, over 53 pounds, wholesale dealer's price, US, Chicago, fob Shipping Point, US cents per pound	0.44373
PSHRI_USD	Shrimp, No.1 shell-on headless, 26-30 count per pound, Mexican origin, New York port, US cents per pound	-0.02417

Factor4: Household

Below are the commodities with their variance that come under Household.

COMMODITIES	DESCRIPTION (RAW MATERIALS)	Factor Loadings
PPORK_USD	Swine (pork), 51-52% lean Hogs, U.S. price, US cents per pound.	0.08219
PCOCO_USD	Cocoa beans, International Cocoa Organization cash price, CIF US and European ports, US\$ per metric ton	0.68908
POILDUB_USD	Oil; Dubai, medium, Fateh 32 API, fob Dubai Crude Oil (petroleum), Dubai Fateh Fateh 32 API, US\$ per barrel	0.6238
POILAPSP_USD	Crude Oil (petroleum), Price index, 2005 = 100, simple average of three spot prices; Dated Brent, West Texas Intermediate, and the Dubai Fateh	0.62167
PFISH_USD	Fishmeal, Peru Fish meal/pellets 65% protein, CIF, US\$ per metric ton	0.60842
PORANG_USD	Oranges, miscellaneous oranges CIF French import price, US\$ per metric ton	0.52859

Advantages of Factor Analysis:

- 1. It simplifies the data into categories.
- 2. It is a multivariate statistical technique that is used to summarize the information contained in many variables into a smaller number of subsets or factors.
- 3. With Factor Analysis there is no distinction between dependent and Independent variable; rather all variables under investigation are analyzed together to identify underlying factors.

Technical Appendix

This appendix introduces the various technical issues that were encountered during the factor analysis of the commodities data which is represented above. The analysis was based on a set of 397 observations that were collected from the global commodity market prices.

Data Description:

There were 26 Variables and 397 Rows of data. NMISS was used to determine the missing values in the data. And no missing values were observed in the data-set as shown in the figure below:

•	Missing Values Report The MEANS Procedure				
Variable	N	N Miss			
PCOCO USD	397	0			
PCOFFOTM USD	397	0			
PROIL_USD	397	0			
PCOPP USD	397	0			
PCOTTIND_USD	397	0			
PFISH_USD	397	0			
PHIDE_USD	397	0			
PIORECR_USD		0			
PLAMB_USD	397	0			
	397	0			
	397	0			
POILAPSP_USD		0			
	397	0			
	397	0			
	397	0			
PPORK_USD	397	0			
PPOULT_USD		0			
	397	0			
PSAWMAL_USD	397	0			
	397	0			
	397	0			
	397	0			
PURAN_USD	397	0			
PWHEAMT_USD		0			
PZINC_USD	397	0			

Each of the 25 variables represented the US dollars of the commodity. The Proc CONTENTS shows the variable Type and Length as shown below:

Al	Alphabetic List of Variables and Attributes				
#	Variable	Type	Len		
1	PCOCO_USD	Num	8		
2	PCOFFOTM_USD	Num	8		
4	PCOPP_USD	Num	8		
5	PCOTTIND_USD	Num	8		
6	PFISH_USD	Num	8		
7	PHIDE_USD	Num	8		
8	PIORECR_USD	Num	8		
9	PLAMB_USD	Num	8		
10	PLEAD_USD	Num	8		
11	PNICK_USD	Num	8		

12	POILAPSP_USD	Num	8
13	POILDUB_USD	Num	8
14	POLVOIL_USD	Num	8
15	PORANG_USD	Num	8
16	PPORK_USD	Num	8
17	PPOULT_USD	Num	8
3	PROIL_USD	Num	8
18	PSALM_USD	Num	8
19	PSAWMAL_USD	Num	8
20	PSAWORE_USD	Num	8
21	PSHRI_USD	Num	8
22	PSMEA_USD	Num	8
23	PURAN_USD	Num	8
24	PWHEAMT_USD	Num	8
25	PZINC_USD	Num	8

Methods Adopted

The factor analysis was performed with assigning variance as one to each variable. The number of factors was initially selected by retaining only those factors with an eigenvalue greater than one. Among the various methods—list here Principal Component Analysis, Principal Factor Analysis, Harris Component Analysis, unweighted least squares factor analysis etc. *Principal Component Analysis* was use for the data analysis here. The Principal Components Analysis (PCA) method (PRINCIPAL) was chosen for the initial factor extraction. The PCA method simply transforms the set of variables into another set of variables; that is, the data is summarized by means of a linear combination of the observed data. This transformation is performed because of the objective mentioned earlier to account for as much variation as possible in the data.

Scree plot of Eigen values: The SCREE PLOT simply displays the eigenvalues for each of the factors in a plot, from the first eigenvalue (the one that explains the most variance) to the last eigenvalue. Also, where the lines levels off indicates the point of diminishing returns

FACTOR PATTERN: The elements of the Factor Pattern reflect the unique variance each factor contributes to the variance of an observed variable.

VARIANCE EXPLAINED BY EACH FACTOR: This output simply summarizes the amount of variance in the data that is explained by each factor

In the Factor Pattern, you can see that most of the variables have high loadings on Factor 3 followed by Factor 1, Factor 2 and Factor 4. The interpretation will become clearer after the rotation. The various rotation methods used for this factor analysis were- VARIMAX, EQUAMAX [they are orthogonal rotation methods] and PROMAX [Oblique Rotation].

Factor analysis which uses an orthogonal rotation creates a solution that is easier to grasp and interpret than a solution obtained from an oblique rotation. Of the three Rotation methods used *EQUAMAX* rotation (Orthogonal Rotation) outperformed to the others as it was able to categorize the data into relevant themes as listed earlier.

After the rotation, you can see that each variable has a high loading on one factor and a low loading on the other. Therefore, it is easier to interpret the factors.

EQUAMAX Rotation Output:

Rotated Factor Pattern					
	Factor1	Factor2	Factor3	Factor4	
PZINC_USD	0.89472	0.20019	0.22392	0.11401	
PNICK_USD	0.87307	0.20102	0.24666	0.24049	
PURAN_USD	0.75712	0.23529	0.04693	0.49629	
PCOPP_USD	0.68367	0.54438	0.25143	0.37731	
PLEAD_USD	0.65761	0.48841	0.20056	0.46034	
PCOTTIND_USD	0.12118	0.81408	- 0.19533	0.00311	
PCOFFOTM_USD	0.14128	0.75385	- 0.25531	0.16338	
PIORECR_USD	0.28672	0.73854	0.17007	0.46422	
PSMEA_USD	0.23159	0.66693	0.24034	0.45298	
PWHEAMT_USD	0.43155	0.59169	0.1944	0.46868	
PROIL_USD	0.45346	0.57476	0.2909	0.51169	
PSAWORE_USD	0.2832	0.05651	0.91273	- 0.01978	
PSAWMAL_USD	0.38222	0.42828	0.74174	0.04277	
PPOULT_USD	0.33142	0.36052	0.74118	0.37264	
POLVOIL_USD	0.413	- 0.06674	0.70558	-0.0708	
PLAMB_USD	0.38386	- 0.05311	0.62552	0.2853	
PPORK_USD	0.04132	0.07468	- 0.74235	0.08219	
PSALM_USD	0.18697	0.23423	- 0.81347	0.00902	
PCOCO_USD	0.14205	0.48062	0.26549	0.68908	
POILDUB_USD	0.47932	0.52072	0.1772	0.6238	
POILAPSP_USD	0.50058	0.49551	0.19603	0.62167	
PFISH_USD	0.45047	0.54058	-0.0102	0.60842	
PORANG_USD	0.51375	0.20373	0.46683	0.52859	
PHIDE_USD	0.12073	0.31427	0.44373	-	

				0.67973
PSHRI_USD	-	-	-	-
	0 28182	0.19105	0.02417	0 70624

Orthogonal Transformation Matrix							
	1	2	3	4			
1	0.58982	0.53321	0.33729	0.50402			
2	0.08971	0.34249	-0.8756	0.32859			
3	- 0.21557	0.75771	0.08977	0.60939			
4	0.77304	- 0.15579	0.33392	- 0.51637			

PROGRAMS

```
/* Project 1 */
/* Vitastata Sharma */
/* FACTOR ANALYSIS*/
/*******************************
libname mylib "/home/vitastasharma110/";
filename project1 "/home/vitastasharma110/project1_data_25.csv";
/*Import file*/
data mylib.project2;
 drop PBEVE_Index;
 infile project1 dlm=',' Firstobs= 9;
 input PBEVE_Index PCOCO_USD
                            PCOFFOTM_USD PROIL_USD PCOPP_USD
 PCOTTIND_USD PFISH_USD PHIDE_USD PIORECR_USD PLAMB_USD
PLEAD_USD
 PNICK_USD POILAPSP_USD POILDUB_USD POLVOIL_USD PORANG_USD
PPORK_USD
```

PPOULT USD PSALM USD PSAWMAL USD PSAWORE USD PSHRI USD PSMEA_USD PWHEAMT_USD PZINC_USD; **PURAN USD** run; proc print data= mylib.project2; run; **/********************************** /*Determining Missing Values In The Dataset*/ proc means data= mylib.project2 n nmiss; title "Missing Values Report"; run; title; /*Result: No missing values in the data-set*/ /* Stardardizing the Data */ proc standard data=mylib.project2 out=mylib.standard mean=0 std=1; var _numeric_; run; proc means data=mylib.standard nmiss mean std maxdec= 0; title "Report After Data Standardization"; run; title; **/*********************************** /* Without rotation*/ ods graphics on; PROC FACTOR DATA= mylib.standard METHOD=PRINCIPAL

```
Reorder
      Corr
      plot= all;
      VAR PCOCO_USD--PZINC_USD;
 TITLE "Factor Analysis Without Rotation";
RUN;
ods graphics off;
/*Analysis- Number of Factors= 4*/
/************************
/* With Rotation*/
/*Orthogonal Rotation*/
/* Rotation- VARIMAX*/
ods graphics on;
PROC FACTOR DATA= mylib.standard
    METHOD=PRINCIPAL
    ROTATE= VARIMAX reorder
    Corr
    plot = SCREE
    PRIORS=ONE
    NFACTORS= 4 OUT=mylib.rotated;
    VAR PCOCO_USD--PZINC_USD;
 TITLE "Factor Analysis With Rotation = VARIMAX";
RUN;
ods graphics off;
```

```
/* Rotation- 2*/
ods graphics on;
PROC FACTOR DATA= mylib.standard
     METHOD=PRINCIPAL
        ROTATE=EQUAMAX reorder
        Corr
     plots=SCREE
     PRIORS=ONE
     NFACTORS= 4 OUT=mylib.rotated2;
     VAR PCOCO_USD--PZINC_USD;
 TITLE "Factor Analysis With Rotation = EQUAMAX";
RUN;
ods graphics off;
/* Rotation- 3 */
/* Oblique Rotations-In oblique rotations the new axes are free to take any position in the factor
space, but the degree of correlation allowed among factors is, in general, small because two highly
correlated factors are better interpreted as only one factor. Oblique rotations, therefore, relax the
orthogonality constraint in order to gain simplicity in the interpretation*/
ods graphics on;
PROC FACTOR DATA= mylib.standard
        METHOD=PRINCIPAL
     rotate= promax reorder
     Corr
     plots=SCREE
     PRIORS=ONE
     NFACTORS= 4 OUT=mylib.rotated3;
     VAR PCOCO_USD--PZINC_USD;
```

TITLE "Factor Analysis With Rotation = PROMAX ";

RUN;

ods graphics off;