To prove A.M. \geq G.M. by differentiation

Created by Mr. Francis Hung on 20081031

Last updated:01 September 2021

Let
$$f(x) = \log x - x$$
 for $x > 0$

$$f'(x) = \frac{1}{x} - 1$$

Let
$$f'(x) = 0 \Rightarrow x = 1$$

For
$$0 < x < 1$$
, $f'(x) > 0$; for $x > 1$, $f'(x) < 0$

$$\therefore$$
 f(1) = -1 is the absolute maximum

$$\log x - x \le -1 \ \forall x > 0$$
, equality holds when $x = 1$

$$\log x \le x - 1$$

Now suppose $x_1, x_2, \dots, x_n > 0$ such that $x_1 + x_2 + \dots + x_n = n$, where n is a positive integer.

$$\log x_1 \le x_1 - 1$$

$$\log x_2 \le x_2 - 1$$

$$\log x_n \le x_n - 1$$

Add up these *n* equations:

$$\log(x_1x_2 \cdots x_n) \le x_1 + x_2 + \cdots + x_n - n = 0$$

$$\Rightarrow x_1x_2 \cdots x_n \le 1 \text{ for } x_1, x_2, \cdots, x_n > 0 \text{ such that } x_1 + x_2 + \cdots + x_n = n$$

Suppose
$$a_1, a_2, \dots, a_n > 0$$
, let $x_i = \frac{na_i}{a_1 + a_2 + \dots + a_n}$ for $i = 1, 2, \dots, n$.

Then
$$x_i > 0$$
 and $x_1 + x_2 + \dots + x_n = \frac{n(a_1 + a_2 + \dots + a_n)}{a_1 + a_2 + \dots + a_n} = n$

By the above result, $x_1x_2 \cdots x_n \le 1$

$$\Rightarrow \frac{na_1}{a_1 + a_2 + \dots + a_n} \cdot \frac{na_2}{a_1 + a_2 + \dots + a_n} \cdot \dots \frac{na_n}{a_1 + a_2 + \dots + a_n} \le 1$$

$$\Rightarrow \frac{n^n a_1 a_2 \cdots a_n}{\left(a_1 + a_2 + \cdots + a_n\right)^n} \le 1$$

$$\Rightarrow a_1 a_2 \cdots a_n \le \left(\frac{a_1 + a_2 + \cdots + a_n}{n}\right)^n$$

$$\Rightarrow \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}$$
 for $a_1, a_2, \cdots, a_n > 0$

If
$$a_m = 0$$
 for some m , then $0 = \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}$ for $a_i \ge 0$

This proves A.M. \geq G.M.

Young's Inequality

HKAL Pure Mathematics 1982 Paper 1 O

Let $a, b \ge 0$ and p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$, then $\frac{a^p}{p} + \frac{b^q}{q} \ge ab$.

Proof: If a = 0 or b = 0, then the inequality holds obviously.

Assume a > 0 and b > 0.

If
$$a^p = b^q$$
, LHS $= \frac{a^p}{p} + \frac{b^q}{q} = a^p \left(\frac{1}{p} + \frac{1}{q} \right) = a^p$ RHS= $ab = a \left(b^q \right)^{1/q} = a \left(a^p \right)^{1/q} = a^{p/p} a^{p/q} = a^{p \left(\frac{1}{p} + \frac{1}{q} \right)} = a^p$

If
$$a^p \neq b^q$$
, $\ln(ab) = \ln a + \ln b = \frac{\ln a^p}{p} + \frac{\ln b^q}{q}$

Let $y = \ln x$, $y' = \frac{1}{x} > 0$ for all $x > 0 \Rightarrow y$ is strictly increasing for all x > 0

$$\therefore a^p \neq b^q \Rightarrow \ln a^p \neq \ln b^q$$

Let $f(x) = e^x$, $f'(x) = e^x$, $f''(x) = e^x > 0 \implies f(x)$ is a strictly convex function

$$\therefore$$
 f(tx + (1 - t)y) < tf(x) + (1 - t)f(y) for all 0 < t < 1.

Let
$$t = \frac{1}{p}$$
, $1 - t = \frac{1}{q}$, $x = \ln a^p$, $y = \ln b^b$, $tx + (1 - t)y = \frac{\ln a^p}{p} + \frac{\ln b^q}{q}$

$$\therefore e^{\frac{\ln a^p}{p} + \frac{\ln b^q}{q}} < \frac{1}{p} e^{\ln a^p} + \frac{1}{q} e^{\ln b^q}$$

$$a b < \frac{a^p}{p} + \frac{b^q}{q}$$

HKAL Pure Mathematics 1968 Paper 2 Q6 (b)

Let $\varphi(x) = 1 - \lambda + \lambda x - x^{\lambda}$ be defined on the interval $0 \le x < +\infty$, where λ is a constant and $0 < \lambda < 1$. Find the minimum value of $\varphi(x)$. Hence or otherwise, prove that for any non-negative real numbers α and β $(1 - \lambda)\alpha + \lambda\beta \ge \alpha^{1-\lambda}\beta^{\lambda}$ with equality if and only if $\alpha = \beta$.

$$\varphi'(x) = \lambda - \lambda x^{\lambda - 1} = \lambda (1 - x^{\lambda - 1})$$

For
$$0 \le x < 1$$
, $\varphi'(x) < 0$; $x = 1$, $\varphi'(1) = 0$; for $x > 1$, $\varphi'(x) > 0$

$$\therefore$$
 The absolute minimum = $\varphi(1) = 1 - \lambda + \lambda - 1 = 0$

$$\varphi(x) = 1 - \lambda + \lambda x - x^{\lambda} \ge \varphi(1) = 0$$
, with equality holds if and only if $x = 1 \cdot \cdots \cdot (1)$

For any non-negative real numbers α and β , if $\alpha=0$, then $(1-\lambda)\alpha+\lambda\beta=\lambda\beta\geq 0=\alpha^{1-\lambda}\beta^{\lambda}$

If
$$\alpha > 0$$
, let $x = \frac{\beta}{\alpha} \ge 0$, by the result of (1),

$$1 - \lambda + \lambda \cdot \frac{\beta}{\alpha} - \left(\frac{\beta}{\alpha}\right)^{\lambda} \ge 0$$
, with equality holds if and only if $\frac{\beta}{\alpha} = 1$.

$$(1-\lambda)\alpha + \lambda\beta - \alpha^{1-\lambda}\beta^{\lambda} \geq 0$$

$$\therefore (1-\lambda)\alpha + \lambda\beta \ge \alpha^{1-\lambda} \beta^{\lambda} \quad \text{with equality if and only if } \alpha = \beta \ .$$

Let
$$a = \alpha^{1-\lambda}$$
, $b = \beta^{\lambda}$, $\frac{1}{n} = 1 - \lambda$, $\frac{1}{a} = \lambda$

Then
$$\frac{1}{p} + \frac{1}{a} = 1$$
, $\alpha = a^{\frac{1}{1-\lambda}} = a^p$, $\beta = b^{\frac{1}{\lambda}} = b^q$

$$\frac{a^p}{p} + \frac{b^q}{q} \ge ab$$
 with equality if and only if $a^p = b^q$.

Last updated: 2021-09-01

Hölder's Inequality

HKAL Pure Mathematics 1982 Paper 1 Q1

Last updated: 2021-09-01

Let $0 < \lambda < 1$. Show that $\lambda t + (1 - \lambda) \ge t^{\lambda}$ for all t > 0. Deduce that $\lambda \alpha + (1 - \lambda)\beta \ge \alpha^{\lambda} \beta^{1-\lambda}$ for all $\alpha, \beta \ge 0$.

Let p, q > 0 such that $\frac{1}{p} + \frac{1}{q} = 1$ and let $\{a_1, a_2, \dots, a_n\}$ and $\{b_1, b_2, \dots, b_n\}$ be two sets of

non-negative real numbers such that $\sum_{i=1}^{n} a_i^p = \sum_{i=1}^{n} b_i^q = 1$. Using the result in (a), show that

 $\sum_{i=1}^{n} a_i b_i \le 1$. Hence show that, for any two sets of non-negative real numbers $\{x_1, x_2, \dots, x_n\}$ and

$$\{y_1, y_2, \dots, y_n\}, \sum_{i=1}^n x_i y_i \le \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n y_i^q\right)^{\frac{1}{q}}.$$

Let $f(t) = \lambda t + (1 - \lambda) - t^{\lambda}, t > 0, 0 < \lambda < 1$.

$$f'(t) = \lambda - \lambda t^{\lambda - 1} = \lambda (1 - t^{\lambda - 1})$$

For 0 < t < 1, f'(t) < 0; t = 1, f'(1) = 0; for t > 1, f'(t) > 0

 \therefore The absolute minimum = f(1) = 1 - λ + λ - 1 = 0

 $\lambda t + (1 - \lambda) \ge t^{\lambda}$ for all t > 0, with equality holds if and only if t = 1

For any non-negative real numbers α and β , if $\alpha = 0$, then $(1 - \lambda)\alpha + \lambda\beta = \lambda\beta \ge 0 = \alpha^{1-\lambda}\beta^{\lambda}$

If
$$\alpha > 0$$
, let $x = \frac{\beta}{\alpha} \ge 0$, by the result of (1),

 $1 - \lambda + \lambda \cdot \frac{\beta}{\alpha} - \left(\frac{\beta}{\alpha}\right)^{\lambda} \ge 0$, with equality holds if and only if $\frac{\beta}{\alpha} = 1$.

$$(1-\lambda)\alpha + \lambda\beta - \alpha^{1-\lambda}\beta^{\lambda} \ge 0$$

$$\begin{split} &(1-\lambda)\alpha + \lambda\beta - \alpha^{1-\lambda}\beta^{\lambda} \geq 0 \\ &\therefore (1-\lambda)\alpha + \lambda\beta \geq \alpha^{1-\lambda}\beta^{\lambda} \quad \text{with equality if and only if } \alpha = \beta. \end{split}$$

(b) Let
$$a_i = \alpha^{1-\lambda}$$
, $b_i = \beta^{\lambda}$, $\frac{1}{p} = 1 - \lambda$, $\frac{1}{q} = \lambda$

Then
$$\frac{1}{p} + \frac{1}{q} = 1$$
, $\alpha = a_i^{\frac{1}{1-\lambda}} = a_i^p$, $\beta = b_i^{\frac{1}{\lambda}} = b_i^q$

$$\frac{a_i^p}{p} + \frac{b_i^q}{q} \ge a_i b_j$$

Take summation from $i = 1, 2, \dots, n$

$$\frac{\sum_{i=1}^{n} a_{i}^{p}}{p} + \frac{\sum_{i=1}^{n} b_{i}^{q}}{q} \ge \sum_{i=1}^{n} a_{i} b_{j} \Longrightarrow \frac{1}{p} + \frac{1}{q} \ge \sum_{i=1}^{n} a_{i} b_{j} \Longrightarrow \sum_{i=1}^{n} a_{i} b_{i} \le 1$$

For any two sets of non-negative real numbers $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$,

if all items are zeros, then the inequality is obviously true. Otherwise, $\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\overline{p}}$, $\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{\overline{q}} > 0$

Let
$$a_i = \frac{x_i}{\left(\sum_{i=1}^n x_j^p\right)^{\frac{1}{p}}}$$
, $b_i = \frac{y_i}{\left(\sum_{i=1}^n y_j^q\right)^{\frac{1}{q}}}$, then $\sum_{i=1}^n a_i^p = \sum_{i=1}^n b_i^q = 1$; by the result of above,

$$\sum_{i=1}^{n} \frac{x_{i}}{\left(\sum_{j=1}^{n} x_{j}^{p}\right)^{\frac{1}{p}}} \cdot \frac{y_{i}}{\left(\sum_{j=1}^{n} y_{j}^{q}\right)^{\frac{1}{q}}} \leq 1 \implies \sum_{i=1}^{n} x_{i} y_{i} \leq \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{\frac{1}{q}}$$

Minkowski's Inequality

HKAL Pure Mathematics 1990 Paper 1 Q12

Last updated: 2021-09-01

- (a) Let p > 1 and $f(x) = x^p px$ for all x > 0.
 - (i) Find the absolute minimum of f(x) on the interval $(0, \infty)$.
 - (ii) Deduce that $x^p 1 \ge p(x 1)$ for all x > 0.
- (b) (i) Let α , β , γ and δ be positive numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ and $\gamma + \delta = 1$.

By taking $x = \alpha \gamma$ and $\beta \delta$ respectively, prove that, for p > 1, $\alpha^{p-1} \gamma^p + \beta^{p-1} \delta^p \ge 1$, where the equality holds if and only if $\alpha \gamma = \beta \delta = 1$.

(ii) Deduce that, if a, b, c and d are positive and p > 1, then

$$\left(\frac{a+b}{a}\right)^{p-1}c^p + \left(\frac{a+b}{b}\right)^{p-1}d^p \ge (c+d)^p.$$

(c) Suppose $\{a_i\}_{i=1,2,...}$ and $\{b_i\}_{i=1,2,...}$ are two sequences of positive numbers and p > 1. By

considering
$$a = \left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}}$$
 and $b = \left(\sum_{j=1}^{n} b_{j}^{p}\right)^{\frac{1}{p}}$,

prove that $\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_{i}^{p}\right)^{\frac{1}{p}} \ge \left(\sum_{i=1}^{n} (a_{i} + b_{i})^{p}\right)^{\frac{1}{p}}$,

where the equality holds if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n} = \frac{a}{b}$.

- (a) (i) Let p > 1 and $f(x) = x^p px$ for all x > 0. $f'(x) = px^{p-1} - p = p(x^{p-1} - 1)$ For 0 < x < 1, f'(x) < 0; x = 1, f'(1) = 0; for x > 1, f'(x) > 0 \therefore The absolute minimum = f(1) = 1 - p
 - (ii) $f(x) \ge f(1) \Rightarrow x^p px \ge 1 p$ for all x > 0.
- (b) (i) Let α , β , γ and δ be positive numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ and $\gamma + \delta = 1$.

Take $x = \alpha \gamma$, $(\alpha \gamma)^p - p(\alpha \gamma) \ge 1 - p$, equality holds iff $\alpha \gamma = 1$ Take $x = \beta \delta$, $(\beta \delta)^p - p(\beta \delta) \ge 1 - p$, equality holds iff $\beta \delta = 1$

$$\therefore \alpha^{p-1} \gamma^p - p \gamma \ge \frac{1-p}{\alpha} \text{ and } \beta^{p-1} \delta^p - p \delta \ge \frac{1-p}{\beta}$$

Add up these equations: $\alpha^{p-1}\gamma^p + \beta^{p-1}\delta^p - p(\gamma + \delta) \ge (1 - p)\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$

 $\alpha^{p-1}\gamma^p + \beta^{p-1}\delta^p - p \ge 1 - p \Longrightarrow \alpha^{p-1}\gamma^p + \beta^{p-1}\delta^p \ge 1,$

where the equality holds if and only if $\alpha \gamma = \beta \delta = 1$.

(ii) Let $\alpha = \frac{a+b}{a}$, $\beta = \frac{a+b}{b}$, $\gamma = \frac{c}{c+d}$, $\delta = \frac{d}{c+d}$.

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{a}{a+b} + \frac{b}{a+b} = 1, \gamma + \delta = \frac{c}{c+d} + \frac{d}{c+d} = 1$$

By the result of (b)(i), $\left(\frac{a+b}{a}\right)^{p-1} \left(\frac{c}{c+d}\right)^p + \left(\frac{a+b}{b}\right)^{p-1} \left(\frac{d}{c+d}\right)^p \ge 1$

$$\therefore \left(\frac{a+b}{a}\right)^{p-1} c^p + \left(\frac{a+b}{b}\right)^{p-1} d^p \ge (c+d)^p.$$

(c) Let
$$a = \left(\sum_{j=1}^{n} a_{j}^{p}\right)^{\frac{1}{p}}$$
, $b = \left(\sum_{j=1}^{n} b_{j}^{p}\right)^{\frac{1}{p}} c = a_{i}, d = b_{i}$, by the result of (b)(ii),

$$\left[\frac{\left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}b_{j}^{p}\right)^{\frac{1}{p}}}{\left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}}\right]^{p-1} a_{i}^{p} + \left[\frac{\left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}b_{j}^{p}\right)^{\frac{1}{p}}}{\left(\sum_{i=1}^{n}b_{j}^{p}\right)^{\frac{1}{p}}}\right]^{p-1} b_{i}^{p} \geq \left(a_{i} + b_{i}\right)^{p}$$

Take summation from i = 1, 2, ..., n

$$\left[\frac{\left[\sum_{j=1}^{n}a_{j}^{p}\right]^{\frac{1}{p}}+\left[\sum_{j=1}^{n}b_{j}^{p}\right]^{\frac{1}{p}}}{\left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}}\right]^{p-1} \sum_{i=1}^{n}a_{i}^{p} + \left[\frac{\left[\sum_{j=1}^{n}a_{j}^{p}\right]^{\frac{1}{p}}+\left[\sum_{j=1}^{n}b_{j}^{p}\right]^{\frac{1}{p}}}{\left(\sum_{i=1}^{n}a_{i}^{p}\right)^{\frac{1}{p}}}\right]^{p-1} \sum_{i=1}^{n}b_{i}^{p} \geq \sum_{i=1}^{n}(a_{i}+b_{i})^{p} \\
\left[\left(\sum_{j=1}^{n}a_{i}^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}b_{i}^{p}\right)^{\frac{1}{p}}\right]^{p-1} \left(\sum_{i=1}^{n}a_{i}^{p}\right)^{\frac{1-p-1}{p}} + \left[\left(\sum_{i=1}^{n}a_{i}^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}b_{i}^{p}\right)^{\frac{1}{p}}\right]^{p-1} \left(\sum_{i=1}^{n}b_{i}^{p}\right)^{\frac{1-p-1}{p}} \geq \sum_{i=1}^{n}(a_{i}+b_{i})^{p} \\
\left[\left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}+\left(\sum_{j=1}^{n}b_{j}^{p}\right)^{\frac{1}{p}}\right]^{p-1} \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left[\left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}+\left(\sum_{j=1}^{n}b_{j}^{p}\right)^{\frac{1}{p}}\right]^{p-1} \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}\right]^{p-1} \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}\right]^{p-1} \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}\right]^{p-1} \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n}a_{j}^{p}\right)^{\frac{1}{p}}\right)^{\frac{1}{p}} = \sum_{j=1}^{n}(a_{j}+b_{j})^{p}$$

where the equality holds if and only if $\alpha \gamma = \beta \delta = 1$.

i.e.
$$\frac{a+b}{a} \cdot \frac{c}{c+d} = \frac{a+b}{b} \cdot \frac{d}{c+d} = 1$$

$$\Leftrightarrow \frac{a+b}{a} \cdot \frac{a_i}{a_i + b_i} = 1$$
 and $\frac{a+b}{b} \cdot \frac{b_i}{a_i + b_i} = 1$

 $\left| \left(\sum_{i=1}^n a_i^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^n b_i^p \right)^{\frac{1}{p}} \right|^r \ge \sum_{i=1}^n (a_i + b_i)^p$

$$\Leftrightarrow \frac{a_i + b_i}{a_i} = \frac{a + b}{a}$$
 and $\frac{a_i + b_i}{b_i} = \frac{a + b}{b}$

$$\Leftrightarrow 1 + \frac{b_i}{a_i} = 1 + \frac{b}{a} \text{ and } \frac{a_i}{b_i} + 1 = \frac{a}{b} + 1$$

$$\Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n} = \frac{a}{b}.$$

1989 Paper 2 Q1

- 4. Let $f(x) = \frac{e^x}{x^e}$ for x > 0,
 - (a) Find the least value of f(x).
 - (b) Hence show that $e^{\pi} > \pi^{e}$.
- 4. Let $f(x) = \frac{e^x}{x^e}$ for x > 0,
 - (a) Find the least value of f(x).

$$f'(x) = \frac{x^{e}e^{x} - e^{x}x^{e-1} \cdot e}{(x^{e})^{2}}$$
$$= \frac{x^{e}e^{x}(1 - \frac{e}{x})}{(x^{e})^{2}} = \frac{e^{x}(1 - \frac{e}{x})}{x^{e}}$$

Let f'(x) =
$$0 \Rightarrow x = e$$

When
$$x > e$$
, f'(x) $> 0 \forall x > 0$

When
$$0 < x < e$$
, f'(x) < 0

$$\therefore$$
 f(e) = absolute minimum

$$f(x) \ge f(e) = \frac{e^e}{e^e} = 1$$

$$\therefore$$
 Least value of $f(x) = 1$

(b) Hence show that $e^{\pi} > \pi^{e}$.

$$\pi \approx 3.14 > 2.718 \approx e$$

$$\therefore$$
 f(π) > f(e)

$$\frac{e^{\pi}}{\pi^e} > 1$$

$$e^{\pi} > \pi^e$$

1992 Paper 2 Q12 (a)

5. If
$$x > 0$$
, prove that $\frac{x}{1+x} < \ln(1+x) < x$.

Let
$$f(x) = x - \ln(1 + x)$$

$$f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0$$
 for all $x > 0$

 \therefore f(x) is an strictly increasing function

$$f(x) > f(0) = 0 - \ln 1 = 0$$

$$x - \ln(1 + x) > 0$$

$$x > \ln(1+x) \cdot \cdots \cdot (1)$$

Let
$$g(x) = (1 + x) \ln(1 + x) - x$$
, where $x > 0$

$$g'(x) = 1 + \ln(1+x) - 1$$

$$g'(x) = \ln(1+x) > 0$$
 for all $x > 0$

$$(1+x) \ln(1+x) - x > 0$$

$$(1+x) \ln(1+x) > x$$

$$\therefore \frac{x}{1+x} < \ln(1+x) \cdot \cdots \cdot (2)$$

Combine (1) and (2),
$$\frac{x}{1+x} < \ln(1+x) < x$$
.