

Maticový LED displej - III

PŮVODNÍ ZAPOJENI MATICOVÉHO LED DISPLEJE ROZŠÍŘÍTE O
PŘIPOJENÍ AKCELEROMETRU. V ZÁVISLOSTI NA POLOZE BUDE
POSKYTOVAT DATA PRO POZICI ROZSVÍCENÉ DIODY NA MATICOVÉM
DISPLEJI.

Sestavení obvodu

Co budeme potřebovat?

Ko nta ktní pole

Elektronický obvod

Schéma zapojení

Otázky pro vás

Víte kde se můžete setkat se zařízením akcelerometr?

V dnešní době má akcelerometr takřka každý mobilní telefon. Dále jej nalezneme v automobilech, letadlech apod.

Víte, co akcelerometr měří?

Měří pohybové zrychlení, a to nejlépe ve všech třech osách.

Zapojení akcelerometru

Krátce o akcelerometru

Akcelerometr je malé pohybové čidlo, které měří pohybové zrychlení a to nejlépe ve všech třech osách.

Ze znalosti zrychlení a hmotnosti lze zjistit sílu působící na těleso.

Akcelerometry jsou vhodné nejen pro měření odstředivých a setrvačných sil, ale i pro určování pozice tělesa, jeho náklon nebo vibrace.

Akcelerometry jsou dnes i v mobilních telefonech a využívají se v leteckém a automobilovém průmyslu.

Krátce o akcelerometru

$$pitch = arctan\left(\frac{G_y}{\sqrt{G_x^2 + G_x^2}}\right) \qquad roll = arctan\left(\frac{-G_x}{G_z}\right)$$

Arduino a akcelerometr

Vzorce lze v Arduino kódu přepsat v následujícím tvaru:

```
roll = (atan2(-Yg, Zg)*180.0)/M_PI;
pitch = (atan2(Xg, sqrt(Yg*Yg + Zg*Zg))*180.0)/M_PI;
```

Připojení knihoven pro práci s akcelerometrem je následující:

```
#include <Wire.h>
#include <ADXL345.h>
acc.read(&Xg, &Yg, &Zg);
```


Úkol pro vás

Inovujte programový kód tak, abyste aplikovali vzorec pro výpočet úhlů roll a pitch. Nezapomeňte definovat všechny proměnné.

```
#include <Wire.h>
#include <ADXL345.h>
ADXL345 acc;
const int row[8] = {2, 7, 19, 5, 13, 18, 12, 16};
const int col[8] = \{6, 11, 10, 3, 17, 4, 8, 9\};
int pixels[8][8];
int x = 5;
int y = 5;
void setup(){
    acc.begin();
    for(int i = 0; i < 8; i++){
        pinMode(col[i], OUTPUT);
        pinMode(row[i], OUTPUT);
        digitalWrite(row[i], LOW);
for(int x = 0; x < 8; x++) {
      for(int y = 0; y < 8; y++) {
        pixels[x][y] = HIGH;
```

```
void loop(){
    readSensors();
    refreshScreen();
void readSensors(){
  double pitch, roll, Xg, Yg, Zg;
  acc.read(&Xg, &Yg, &Zg);
  roll = (atan2(-Yg, Zg)*180.0)/M PI;
  pitch = (atan2(Xg, sqrt(Yg*Yg + Zg*Zg))*180.0)/M_PI;
  pixels[x][v] = HIGH;
 x = 7 - map(roll, -20, 20, 0, 7);
  y = map(pitch, -20, 20, 0, 7);
  pixels[x][y] = LOW;
void refreshScreen(){
 for(int j = 0; j < 8; j++){
   digitalWrite(row[j], HIGH);
    for(int k = 0; k < 8; k++){
     int thisPixel = pixels[j][k];
      digitalWrite(col[k], thisPixel);
     if (thisPixel == LOW) {
        digitalWrite(col[k], HIGH);
   digitalWrite(row[j], LOW);
```

