Networks and Distributed Systems

Lecture 23 - Mobile Communication basics

- Many people used communication before in different forms:
 - Light, flags (Semaphore)
 - Signaling towers in China (206 BC)
 - Smoke signals in Greece (150 BC)

- Beginning of electromagnetic wave communication:
 - 1831 Faraday demonstrated electromagnetic induction
 - 1864 J. Maxwell proposed the theory of electromagnetic fields, wave equations
 - 1876 Alexander Graham Bell invented the telephone

 1895 Guglielmo Marconi demonstrated for the first time wireless

transmission

- 1911 mobile transmitter on Zeppelin
- 1926 Transmission on a train from Hamburg to Berlin
- 1924 first car radio
- 1940s first mobile communication system started in the US and in the 50s in Europe

- 1987 Formation of the GSM association
- 1990 Freezing phase 1 of the GSM specification
- 1998 UMTS specifications started
- 2001 Start operation of the first 3G network in Japan
- 2004 LTE was proposed
- 2008 LTE standard was finalized

Mobile Comm. Basic Terms

 There are three main components of a mobile radio network:

- A telecommunication system
- Mobility
- Radio channel

Cellular Mobile Radio Networks

- Consists of one or several fixed radio Base Stations (BS)
- Each BS covers a certain area called radio cell
- Transmission from BS to MS is called downlink
- Transmission from MS to BS is called uplink

Radio Comm. System components

Signal Propogation

- Propagation in free space always like light (straight line)
- Receiving power in free space proportional to 1/d.
 (d = distance between sender and receiver)
- Sources of distortion
 - Reflection/refraction bounce of a surface; enter material
 - Scattering multiple reflections at rough surfaces
 - Diffraction start "new wave" from a sharp edge
 - Doppler fading shift in frequencies (loss of center)
 - Attenuation energy is distributed to larger areas with increasing distance

Radio Channel

- The signal sent from the sender undergoes several effects:
 - Path-loss: the signal is attenuated with distance
 - Slow fading: due to the change of the propagation environment (shadowing)
 - Fast fading: due to the superposition of different phases (scattering)

Radio Channel

SINR

Signal-to-Interference-Noise-Ratio: is the quality of the transmission, i.e., the ratio of the received signal to the interference and noise

$$SINR = P / (I + N)$$

P: received power

I: Interference power of other simultaneous transmissions

N: background noise power

Modulation

- Transformation of the signal into the frequency domain (carrier frequency)
- Conversion of the signal to an electromagnetic wave with high carrier frequency
- Modulation techniques used in mobile communications:
 - Binary Phase Shift Keying (BPSK)
 - Quadrature Phase Shift Keying (QPSK)
 - Quadrature Amplitude Modulation (QAM)

Constellation Diagram

- Represents the transmitted symbol with complex number and modulating a cosine and sine carrier signal with the real and imaginary parts
 - In-Phase axis or I
 - Quadrature axis or Q

BPSK (Binary Phase-shift Keying)

- The simplest form of PSK.
- Uses two phases that are separated by 180°

QPSK and M-QAM

- Quadrature Phase Shift Keying (QPSK)
- Quadrature Amplitude Modulation (QAM)

16 QAM

Multiple Access Schemes

- A way used to access the radio channel
- Limited number of radio channels → need Multiple Access
- Common schemes used in mobile comm.
 Systems:
 - Frequency Division Multiple Access (FDMA)
 - Time Division Multiple Access (TDMA)
 - Code Division Multiple Access (CDMA)
 - Orthogonal Frequency Division Multiple Access (OFDMA)
 - Space Division Multiple Access (SDMA)

Time Division Multiple Access (TDMA)

- Used in GSM (2G)
- Splitting the frequency carrier into N time slots
- All users use the same frequency
- Different users gains access to the frequency at different time periods

Frequency Division Multiple Access (FDMA)

- Splitting the frequency into N sub-bands
- Every sub-band is used by one user/connection
- In GSM, uplink is assigned different carrier frequency that the downlink (Frequency Division Duplex FDD)

Code Division Multiple Access (CDMA)

- Used in UMTS (3G)
- All users send at the same time and with the same frequency
- Users are separated by codes

CDMA

- Each user has a unique code c(t) with a symbol size (Tc) smaller than the data symbol (Tb)
- Each user data is multiplied by its code and then everything is summed together

CDMA example

User 1

User 2

Transmitted Signal (superposition)

User 1 receiver

Sample and Hold

OFDMA (used in LTE 4G)

- The resources are divided into time and frequency dimensions
- The frequency is divided into smaller subbands each with a sub-carrier

Each different block can be assigned to a

different user

