Meta-langage endomorphique et planification abstraite pour la reconnaissance d'intention en temps réel

Soutenance de Thèse

Antoine Gréa

- Encadrants
 - Samir Aknine
- Rapporteurs Jury
 - Eva Onaindia Hamamache Kheddouci
- Laetitia Matignon Damien Pellier Ivan Varzinczak

1 Introduction

- Financements
- Contexte
- Sujet
- Problématique

Plan

2 Fondamentaux

Fondation et Formalismes

- Qu'est-ce qu'une fondation ?
 - Abstraction
 - Formalisation
 - Circularité

Théorie Fonctionnelle

*l*egend

literal

- Basé sur la théorie des Catégories
- Axiomes
- Définitions
- Algèbre fonctionnelle

Logique et Raisonnements

- Logique du premier ordre
 - Booléen
- Logique d'ordre supérieure
- Logique Modale

Théorie des Ensembles

- Définitions
- Opération
- ZFC

Graphes

- Adjacence, Incidence v₁
 et Connectivité
- Propriétés
- Quotient

Hypergraphs

Faisseaux

Legend

- Germ
- Connector
- **** Edge

Section

Stalk

Stalk Field

Sheaf

Grammaire

Legend Process - Evaluator Input - Data - Output

Grammaire Dynamique

Logique de Description

Ontologies

- Formes
- Langages
- Limites

SELF

Interprétation

```
f (x) = (x
g(x) = x
h(x) = 42
literal
variable
```


Inférence

Exemple

4 Formalisme de Planification Générale

Domaine

- Fluents
- États
- Action

Problèmes et Solutions

Espace de Recherche

Algorithme général

Instances Classiques

5 Cadriciel COLOR

PDDL et Autre Langages

Le Cadriciel COLOR

6 Algorithmes de Planification Temps-réel et Flexible

Algorithmes Existants

• Espace de Plan

• HTN

PSP

HTN

- + make_tea
 - + infuse_tea_in_water

take_tea_bag heat_water

use_coffee_machine

insert_capsule start_machine

LOLLIPOP

Résultats

HEART

Résultats

7 Vers la Reconnaissance d'Intention

Approches Classiques

Planification inverse

Adaptation de HEART

8 Conclusion

Merci de votre écoute!

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.