

KALINKA, V.D., kand.med.nauk; SHUHMAN, F.V., kend.med.nauk; ZHURAYLEV, N.R., kand.med.nauk

Third Republican Conference of Latvien Pathologists. Arkh. pat. 27 no.31:82.84 165.

(Mina 18:12)

KA LINKEVICH, A.

Influence of nitrogen- potassium nutrition on the carbohydrate metabolism of KOK_SAGHYZ (CHAIR OF AGRICULTURAL CHEM. TIMIRYAZEV AGRICULTURAL ACADEMY) vol.4, no.4, p. 381 , 1938.

KALINKEVICH, A. F.

USSR/Biology, Agricultural - Crop Improve- Nov 51 ment

"Two Crops per Year," A. F. Kalinkevich, Cand Agric Sci

HERE CONTRACTOR STREET

"Nauka i Zhizn'" Vol XVIII, No 11, pp 22-24

Describes methods used up to the latitude of Moscow for obtaining 2 crops of cabbage, potatoes, cereals, etc. per year from the same field after only one planting. A crop very well suited for this technique of planting is millet. In the case of bread cereals, overfertilization with nitrogen is undesirable, particularly during the lat stage of growth.

STRIT

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000620110016-4

- 1. KALINKEVICH, A. F.
- USSR (600) 2.
- Fertilizers and Manures
- Using magnesium fertilizers on legume and grass crops. Sov. agron. 10 no. 11, 1952.

1953. Unclassified. Monthly List of Russian Accessions, Library of Congress, ___Fobruary

FALTHEWICH, A. F.

USSR/Agricultural Chemistry

Card 1/1

Author

Kalinkevich, A. F.

Title

Characteristics of feeding early ripening and late types of winter wheats

Periodical

Dokl. AN SSSR, 96, Ed. 2, 351 - 353, May 1954

Abstract

Study of carbohydrate and nitrogen exchange in early and late winter wheats showed that the sugar and nitrous substances in the leaves and stalks of the late wheat are slowly transferred into the ear of the wheat. This leads to a poorer quality of the grain as compared with the grain of early wheat in which the transfer of feeding substances into the ear is much faster. The investigation also showed that the early wheat requires a relative increase of nitro-phosphate and the late wheat needs an increase of phosphate-potassium feeding. Eleven references. Tables.

Institution

All-Union Scientific Research Institute of Fertilizers,

Agrotechnique and Soil Science.

Presented by

Academician A. L. Kursanov, March 11, 1954

KAIINTVICH, A. F.

KALINKHWICH, A. F. -- "Double-Petaled Park Resea of the North and Methods of Verstative Reproduction of Them." Loningrad Order of Lenin Forestry Engineering Academy imeni S. M. Kirov. Leningrad, 1955. (Dissertation for the Degree of Candidate in Agricultural Sciences)

SO: Knizhnaya Letopis', No 1, 1956

KALINKEVICH, A.F.; ALEKSANDROVSKAYA, V.A.

Physiological basis for the placement of fertilizers in potate hills [with English summary in insert]. Fiziel. rast. 3 no.3:263-271 My-Je (MIRA 9:9)

1. Vseseyuznyy institut udebreniy, agretekhniki i agrepechvevedeniya (VIUAA) Meskva. (Petatees) (Fertilizers and manures)

USSR/Cultivated Plants. Fodder Plants.

M

Abs Jour : Ref Zhur-Biol., No 15, 1958, 68210

: Kalinkevich, Λ. F., Novozhilova, H. G. : All-Union Scientific Research Institute of Author Fertilizers and Agricultural Soil Science.

The Role of Nutrition for the Ripening of Inst

Title

Clover Heads.

Orig Pub: Byul. nauchno tekhn. inform. Vses. n.-1. in-t udob. i agropochvoved., 1957, No 3, 25-27

Abstract : Pot experiments in a nutrition laboratory have demonstrated that when the phosphorous and potassium nutrition of clover under an oat cover is improved and it is fertilized in its fruit bearing year with nitrogen, it is possible to shorten the flowering time and

to accelerate riponing of clover heads. -- V.

Koperzhinskiy

: 1/1 Card

70

The Influence of Synthetic Urea on the Formation of 20-4-51/52 Sulphhydryl Groups in Plants by Means of Their Foliaceous Nutrition

special place amongst them. They form a component part of several amino acids (zystein, glutation, methionine) and are of great importance for reversible changes of proteinsubstances of most of the ferments, viz. they determine the activity of the latter. Starting from these assumptions, the author carried out tests with various forms of nitrogenous manure. Salad served as test-object. One months after sowing, the plants were sprayed with a solution (100 ml) which contained 50 mg nitrogen. The determination of the sulphhydryl groups was carried out according to a methodology modified by S. P. Prokoshev (reference 10). The results are summarized in table 1. The lowering of the air temperature was accompanied by a lowering of the activity of the sulphhydryl groups (variant 1). A certain increase in content of these groups was caused by calcium nitrate. Ammonia was much more efficient in this respect. Amonnium sulphate was inferior to ammonia and was equal to the calcium nitrate with respect to its effect. The sprinkling of the plants with the solution of the synthetic urea caused with both test-variants a rapid increase of the sulphhydryl groups with respect to

Card 2/3

20-4-51/52

The Influence of Synthetic Urea on the Formation of Sulphhydryl Groups in Plants by Means of Their Foliaceous Nutrition

their quantity and it was at the top of all tested fertilizers. There are 1 table and 10 references, 9 of which are Slavic.

ASSOCIATION: All-Union Scientific Research Institute of Fertilizers, Agricultural

Engineering and Soil Science. (Vsesoyuznyy nauchno-issledovatel skiy institut

udobreniy, agrotekhniki i agropochvovedeniya).

June 28, 1957, by A. L. Kursanov, Academician PRESENTED:

January 7, 1957 SUBMITTED:

AVAILABLE: Library of Congress

See also: Rer. Zhur. Biol. No. 1959 No. 10587 Academy of Sciences USSR.

Card 3/3

THE TAXABLE PROPERTY OF THE PR J USSR : Soil Science. Mineral Pertilizars. downthm/ Category 531.07 Abs. Jour. : : Kalinkevioh, A.F. Author : Agrochemical Symination of Acmoniated Superphos-Institut. Titie pante Orig. Pub.: Udobreniye i urozhay, 1957, No. 7, 26-33 : The results are reported of field tests made by various experimental institutions of the USSR to Abstract ascertain the effectiveness of armoniated superphosphate in relation to the W feeding level, to soil conditions, to the crops being cultivated, and also to the methods of application. The effeet of a small amount of K placed into the superphosphate may be seen only in podzolic soils lacking in N. The effectiveness can be increased by means of the local application of N. The fodder 1/3 Card:

		GENELTIK Was drawn and the same		FIRM
17	رو د د د د د د د مساعد ساد مو	a graph to the second s	a l	- 5- F
	A			
	Country		1	
	Coregory :		53407	
	has Jours:			7
	14.03 a 17.00 a .		i	¥ 31
	Author :		1	30
	Institut.		:	
	Titlo		1	
			i	3.3
	Orig. Pib. :			
		_	n managainto	
, -	La transit D	. Spring wheat with ammoniated rows produced twice (4.3 cent crop as ordinary Pc (2.0 centre for fertilizer dosage must not enter applied into the rows for grant applied into the rows for gr	nonal na large	
1	Abstract : Po	e rows produced twice (4.3 cent	mers) The nitro-	l.
•	a	crop as ordinary Pc (2.0 central	roend 10 kg/ha.	
•	Es	en fertilizer dosage must not en en applied into the rows for green applied into the rows for	rain crops, and	4
	W	nen applied into the rows for the should not exceed 2-3 kg/ha.	for corn	
	1	L AKABIA MISE STADEON PO 2 TO		
	A	.M. Shchepetil'nikova		2
V				
			ļ	
	Card:	/3		
				*
827 T #187 \$18 1212512224 \$ 1	recolling of the college with			unan mara kata
र्गाम् इन्हेल्यम् सम्बद्धाः व	ehin Hiteletter santra delli dendici i	स्टब्स्प बेबार बेसाई समामा बेबी के सिक्स की सिक्स बेबार को निर्देश किए एक महिलाई है। इस स्टब्स के प्राप्त के क इस की की कारण की	of the control of the	

"APPROVED FOR RELEASE: 08/10/2001

CIA-RDP86-00513R000620110016-4

SOV/20-126-3-63/69 Kalinkevich, A. F., Udovenko, G. V. 17(4),30(1) AUTHORS: On the Problem of Influence of Nutrition Conditions on the Content of Amino Acids in Plants (K voprosu o vliyanii usloviy TITLE: pitaniya na soderzhaniye aminokislot v rasteniyakh) Doklady Akademii nauk SSSR, 1959, Vol 126, Nr 5, pp 684-687 PERIODICAL: (USSR) The nitrogen flowing from the soil into the root system is very quickly synthesized to amino acids. Alanine as at first produced, ABSTRACT: then dicarboxylic acids (Ref 2). Only afterwards, in the course of transamination, other, more complicated, amino acids are produced. Under normal conditions, not mineral nitrogen but nitrogen in the form of amino acids (Refs 1, 2) flows into the organs above ground (stem, leaves). Proteins are synthesized in the leaves from these amino acids. The degree of supply to plants with elements of mineral nutrition affects the formation of individual amino acids. Thus, a lack of phosphorus reduces the content of free amino acids in the plant (Ref 3), a lack of potash increases it (Refs 4, 6). Also chlorine increases this content (Refs 7, 8). On the other hand, the investigation of the leaves (Refs 4, 6) cannot characterize with sufficient accuracy Card 1/4

On the Problem of Influence of Nutrition Conditions on the Content of Amino Acids in Plants

507/20-126-3-63/69

the change of the original synthesis of amino acids. For, on one hand, intense transamination and desamination processes occur in the leaves, on the other hand - the inclusion processes of the amino acids into the protein molecule. As the investigation of the emergent sap of heap (the plant chosen for the test) was not possible because of its small quantity, the lower parts of the stem were investigated which also "reflect" the content of free amino acids in the roots (Ref 1). In the case of corn, the 2 lower internodes were used. Cystine, ornithine, lysine, histidine, asparagine, arginine, asparaginic and glutamic acids, serine, glycine, alanine, proline, tyrosine, tryptophane, valine, phenyl alanine, leucine, norleucine, and another not identified amino acid were detected in a free state in the hemp stems. There was not a trace of glutamine. Asparaginic acid, valine, phonyl alanine and asparaginic amide predominate quantitatively. Chlorine increases somewhat the total content of free amino acids in the hemp stems; in individual acids of the lysine, aspartic acid and tyrosine. At an intensification of potash nutrition, the content of free acids increases even more (Table 1, Variants Nrs 3 and 4).

Card 2/4

On the Problem of Influence of Nutrition Conditions on the Content of Amino Acids in Plants

804/20-126-3-63/69

On account of the changes, the authors think that the free amino acids flowing from the roots into the leaves are quickly involved in the further synthesis and in the protein molecule. Besides, the increase in individual acids by sulphur with an ammonia- and nitrate- as well as sulphate-nutrition (Table 1, Variants Nrs 2, 5, and 1, 2, 5 respectively) is discussed. Also glutamine, threonine, &- and -alanine as well as -amino-butyric acid were observed in a free state in the corn stems. Ornithine, histidine, tryptophane, phenyl alanine, and proline were missing. The content of free amino acids is much changed in the 2nd half of the vegetation period in dependence on potash nutrition both in hemp and in corn. In case of potash hunger, the content of all acids decreases very much so that some of them cannot be detected at all (Table 2). With the

Card 3/4

On the Problem of Influence of Nutrition Conditions

807/20-126-3-63/69

on the Content of Amino Acids in Plants

aging of plants, the content of free amino acids in the stems decreases considerably. There are 2 tables and 8 references,

5 of which are Soviet.

Vsesoyuznyy institut udobreniy i agropochyovedeniya ASSOCIATION:

of the later to the liver of the later of th

(All-union Institute of Fertilizers and Agricultural Soil

Science)

February 25, 1959, by A. L. Kursanov, Academician PRESENTED:

October 21, 1958 SUBMITTED:

Card 4/4

KALINKEVICH, A.F.; MOCHALOVA, A.D.

Effect of mineral nutrition on the uptake of free amino acids by potato stems. Fiziol.rast. 8 no.5:582-586 (MIRA 14:10)

1. All-Union Scientific Research Institute of Fertilizers and Agronomical Soil Sciences, Moscow.
(Plants-Assimilation) (Amino acids)

120-3-21/40

AUTHORS: Kalinkevich, I.F. and Mamyrin, B.A. TITLE: A Generator of Delayed Pulses with Automatic Change of the Delay Time (Generator zaderzhannykh impul'sov s avtomaticheski izmenyayemym vremenem zaderzhki)

PERIODICAL: Pribory i Tekhnika Eksperimenta, 1957, Nr 3, pp.75-80 The first

ABSTRACT: The generator gives two output voltage pulses. is a periodically repeating pulse of 0.1 µsec. duration and 20 V amplitude; the repetition frequency is 20-40 kc/s (or any frequency below 60 kc/s when externally synchronized). The second pulse is the same as the first but is delayed on the first by a time which can be automatically changed, the change occurring over a period variable from 0.02 sec. the change occurring over a period variable from 0.02 Sec. to 5 min. After two examples of the application of such a generator, the block diagram (Fig.3) is described. Driving pulses are produced by the blocking oscillator 1, the output transformer of which has two output windings. From the contract 2 was a successful to make the contract of the co these windings 2 µsec. duration pulses are passed to the input of the delay line 2 (first channel) and to the input of the phantastron 5 (second channel). The pulses are delayed in the delay line by 8 psec. and after shaping and

Card 1/3

120-3-21/40

A Generator of Delayed Pulses with Autom tic Change of the Delay Time.

anylification in the amplifier, 3, trigger the blocking oscillator, 4. Pulses of 0.1 psec duration and up to 200 v amplitude are taken from the output winding of the blocking oscillator. The julees from the second winding of the driving oscillator, 1, brigger the mantastron, 5, which generates rectangular julses, the duration of which is controlled by an external voltage. After lifferentiation, shaping and amplification (stages 5, 7 and 8) pulses are obtained which are delayed by a time equal to the duration of the phantastron pulse. Thus, the delay is determined by the controlling voltage taken from the points a or b through the switch,). Position a remits hand-control of through the switch is the delay within the limits 0-35 pace. When the switch is in position b the controlling voltage is obtained from a sawtooth generator, 11, and thus the follow time varies according to the law of the sawtooth output voltage (linear or exponential with a repetition period variable from 0.2 sec to 5 min). The output pulses from the second channel are taken from the blocking oscillator 3, the presenters of which are the same as for 4. The nawtooth grangement circuit (Fig.4) is then described, followed by a detailed des-

Card 2/3

APPROVED FOR RELEASE: 08/10/2001 CIA-RDP86-00513R000620110016-4"

raherengarengari generaliser aggertegangkan diginggan di mengganggan sanggan sa kanada da dalah 🎉 dalah da da da da

120-3-01/40

A Generator of Delayed Pulses with Automatic Change of the Delay Time.

cription of the complete circuit (Fig.5). V. A. Zagulin participated in this work. There are 7 figures and 3 Russian references.

ABBOCIATION: Physico-Tachnical Institute, Academy of Sciences, USBR. (Fiziko-tekhnicheskiy institut AN BBR)

SUBMITTED: May 10, 1356.

AVAILABLE: Library of Congress.

Card 3/3 1. Pulse generators-Operation 2. Delay line-Circuits

s/057/60/030/012/009/011 B019/B056

24.2120

AUTHORS: Afrosimov, V. V., Gladkovskiy, I. P., Gordeyev, Yu. S.,

Kalinkevich, I. F., and Fedorenko, N. V.

TITLE: Investigation of Atomic Flux Emitted by Plasma

PERIODICAL: Zhurnal tekhnicheskoy fiziki, 1960, Vol. 30, No. 12,

pp. 1456 - 1468

TEXT: The authors developed a method of measuring the flux of uncharged atoms having an energy of 300 ev to some thousand kev. The method is based upon the recording of individual atoms after their ionization and acceleration to 10-20 kev. Fig.1 shows a scheme of this instrument, in which the ionized particles are directed onto an Al-Mg target, where they produced secondary ions which were measured by a scintillation counter. For the calibration of the installation, a special device for monochromatic ions and atoms was used. The calibration curves are shown and discussed in detail. Further, installations are described in detail, which permit the time dependence of the atom flux, the energy distribution, and the mass analysis of the atoms to be determined by an

Card 1/4

Investigation of Atomic Flux Emitted by Plasma

S/057/60/030/012/009/011 B019/B056

oscilloscope. The energy distribution of the atoms was studied with the relation $dJ/dE=J_{+}(E)/\bar{\alpha}_{0}(E)\mu E,$ where $J_{+}(E)$ is the current of secondary ions, and $\bar{\alpha}_{0}(E)$ the mean recording efficiency. The density of the atomic flux was determined from the relation

是这种,我们就是这种的主义,我们还是这些是是我们就是这些,我们就是不能的,我们就是不是这个,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们

 $dJ/d\mathcal{R} = (1/\bar{\Sigma} s_{eff}) \begin{cases} E_2 \\ J_+(E)dE/\bar{\alpha}_0(E)\mu E, \text{ where } \mathcal{R} \text{ is the mean solid angle,} \end{cases}$

and $S_{\mbox{eff}}$ the effective plasma surface. For calculating the concentration of atoms per unit volume the formula

 $n_0 = 2\sqrt{2M} \int_{E_1}^{E_2} (dJ/dE)dE/\sqrt{E}$ was used. By changing Ω , the light intensity μ ,

and the thickness of the gas target, it is possible to improve the sensitivity considerably. The least measured density of the flux of hydrogen atoms having an energy of 300 ev in the case of an isotropic

Card 2/4

S/057/60/030/012/009/011 B019/B056

87462

Legend to Fig.1: I plasma space. W, entrance slit of the instrument. K, capacitor for the deflection of charged particles. C ionization chamber. W2 and W3 entrance and exit slits of the ionization chamber. I and B tubes for the lead-in of a gas and pressure measurement. K2 ana-

lyzer. W4 detector-entrance slit. A detector.

РКК 1. Скема прибора для исследования потока атомов. M target. U_{M} source of acceleration voltage. CU escintillator.

 Φ) photomultiplier. H_1 , H_2 , and H_3 diffusion pumps. Φ Faraday auxiliary

875.62

Investigation of Atomic Flux Emitted by Plasma

S/057/60/030/012/009/011 B019/B056

: 5

20

1.....

velocity distribution was 1.1010 at/cm2.sec. There are 10 figures and 5 references: 4 Soviet and 1 US.

ARE IN EXTENDED AND THE OFFICE AND A SECTION AND A SECTION AND ADDRESS OF A SECTION ADDRESS OF A SEC

ASSOCIATION: Fiziko-tekhnicheskiy institut AN SSSR Leningrad

(Institute of Physics and Technology AS USSR, Leningrad)

SUBMITTED: July 15, 1960

Card 3/4

\$/057/60/030/012/010/011 B019/B056

26.2311

AUTHORS: Afrosimov, V. V., Gladkovskiy, I. P., Gordeyev, Yu. S.,

Kalinkevich, I. F., Petrov, M. P., and Fedorenko, N. V. TITLE:

Investigation of a Flux of Neutral Atomic Particles Emitted by the Plasma of "Al'fa" Research Installation

Zhurnal tekhnicheskoy fiziki, 1960, Vol. 30, No. 12, PERIODICAL:

pp. 1469 - 1484

TEXT: The authors used the device described in the present issue on p. 1456 ff. to investigate the atomic flux with energies of 300 ev to 10 kev, emitted by the plasma of "Al'fa". The measurements showed that practically all atoms recorded are hydrogen atoms. The quantity of the fast atoms grows with an increase of the capacitor voltage, with a decrease of the external magnetic field $\mathbf{H}_{\mathbf{z}}$, or with a decrease of the

hydrogen pressure in the chamber. In the course of discharge, the quantity of fast atoms reaches a maximum, while the discharge current increases to its first maximum. However, there is no considerable

Card 1/4

Investigation of a Flux of Neutral Atomic Particles S/057/60/030/012/010/011 Emitted by the Plasma of "Al'fa" Research B019/B056

difference in the energy distribution of atoms during discharge. A table gives data on the atomic flux. Analysis of the data showed that the fraction of atoms in the atomic flux generated by reflection of ions plasma. It was further shown that the energy distribution of atoms and ions in the plasma space are very similar, and that the energy distribution cannot be approximated by Maxwell distribution. The mean energy of dix. The authors thank B. P. Konstantinov for his valuable advice and discussion, D. M. Kaminker for his interest, O. V. Konstantinov and V. I. Perel' for taking part in discussions, as well as Ye. G. Komar, There are 11 figures, 1 table, and 8 references: 6 Soviet and 2 US.

Card 2/4

87463

an amendensi din mandalara persenji kan historika ang kan di dan kan di sang kan di sang kan di sang kan di sang

ES

20

25

Investigation of a Flux of Neutral Atomic Particles Emitted by the Plasma of "Al'fa" 8/057/60/030/012/010/011 Research Installation B019/B056

HER ISS

ASSOCIATION: Fiziko-tekhnicheskiy institut AN SSSR (Institute of Physics and Technology of the AS USSR). Nauchno-issledovatel'skiy institut elektrofizicheskoy apparatury (Scientific Research Institute of Electrophysical

SUBMITTED:

July 15, 1960

Card 3/4

87463 S/057/60/030/012/010/011 B019/B056 HAOTEGETS SOTORE 3 C Grad - Jasp Eap. 88 5 kg, 360 spcr. 10 kg, 360 spcr. 10 kg, 720 spcr. 15 kg, 180 spcr. 15 kg, 360 spcr. 15 kg, 720 spcr. 1.9 · 10⁻¹³ 8.6 · 10⁻¹³ 5.3 · 10⁻¹³ 5.0 · 10⁻¹³ 3.5 · 10⁻¹³ 1.2 · 1014 5.4 · 1014 3.3 · 1014 3.1 · 1014 2.2 · 1014 1.0 · 10⁻² 4.5 · 10⁻⁸ 2.5 · 10⁻² 3.1 · 10⁻² 2.3 · 10⁻² 2.4 · 10⁻² 480 530 480 3.0 13.5 7.5 9.4 7.0 7.2 67:) 4.4 - 10-13 630 2.8 - 1014 530 Legend to Table 1: 1) Experimental conditions, voltage at the discharge capacitors in kv, magnetic field in oe. 2a) Atoms per unit of solid angle. 2b) Density of atomic flux in isotropic velocity distribution. 2c) Energy of atoms in joules/cm2.

Card 4/4

S/120/62/000/001/022/061 E140/E463

AUTHORS:

Mamyrin, B.A., Anufriyev, G.S., Kalinkevich, I.F.

TITLE:

High-repetition-rate millimicrosecond pulse

generator

PERIODICAL: Pribory i tekhnika eksperimenta, no.1, 1962, 99-101 A straightforward pulse generator based on amplification of sine waves, clipping and differentiation, using vacuum tube techniques, is described. The input frequency may be varied between 10 kcs and 2 Mcs, output pulse amplitude up to 200 V (output impedance not mentioned), pulse width 5 ns at halfamplitude points. There are 3 figures and 1 table.

ASSOCIATION: Fiziko-tekhnicheskiy institut AN SSSR

(Physicotechnical Institute AS USSR)

SUBMITTED:

June 2, 1961

Card 1/1

ACCESSION NR: AP4018380

\$/0120/64/000/001/0143/0146

AUTHOR: Afrosimov, V. V.; Kalinkevich, I. F.; Serenkov, 1. T.

TITLE: Automatic stabilization of a beam of fast atomic particles

SOURCE: Pribory* i tekhnika eksperimenta, no. 1, 1964, 143-146

TOPIC TAGS: elementary particle, fast elementary particle, atom, atomic particle, particle intensity stabilization, particle direction stabilization

ABSTRACT: A stabilization method involving direct control of the beam position in a measuring outfit is proposed. The principle is illustrated in Fig 1 (see Enclosure 1) where the typical effect of the accelerating voltage on the beam current can be seen. A modulating sawtooth voltage, whose amplitude is small in comparison with the half-width ΔU of the line, is added to the d-c accelerating voltage. Modulating-frequency pulses appear in the circuit which records the beam current; the amplitude and polarity of these pulses will depend on the value

Card 1/32

ACCESSION NR: AP4018380

of the accelerating voltage which makes the detection of variations in the accelerating voltage possible. The latter is controlled by the d-c component of the pulses. This type of stabilization is independent of the spectrometer resolution. A functional diagram (see Fig 2, Enclosure 1) and principal schematics of the sawtooth-voltage generator and balanced detector are presented. It is claimed that the beam can be easily stabilized up to 10 amp intensity and that the functioning time is 0.01 sec. "The authors are deeply grateful to N. V. Fedorenko for his valuable advice in discussing the results of this project."

ASSOCIATION: Fiziko-tekhnicheskiy institut AN SSSR (Physico-Technical Institute, AN SSSR)

SUBMITTED: 04Sep62

DATE ACQ: 18Mar64

ENGL: 01

SUB CODE: 'NS

NO REF 50V: 003

OTHER: 000

Card 2/32

SOURCE: Pribory* i tekhnika eksperimenta, no. 4, 1964, 1:0-1:1

TOPIC TAGS: electron delay device, rf delay cable

ABSTRACT: The development of an instrument which permits delaying statistically time-distributed pulses for a duration exceeding the average interval between two adjacent pulses is reported. The instrument is intended for atomic collision investigations and similar work. The r-f delay-cable principle (J. Blewett, et al., Proc. IRE, 1947, 35, no. 12, 1380) was modulied, for this 0-15-microsec step application, by subdivided.

ASSOCIATION: Fiziko-tekhnicheskiy institut AN SSSR (Physicotechnica)

SUBMITTED: 18Jul63

SUB CODE: EC NO REF SOV: 002

EMCL: 00

OTHER: COL

Card 2/2

KALINKEVICH, M. I.

PA 78115

USSR/Chemistry - Oils, Essential Medicine - Plant Physiology

Jun 1948

"The Effect of Potassium on the Storage of Essential Oils in the Leaves of the Camphor Basil (Ocimum canum Sims.)," M. I. Kalinkevich, Moscow Agr Acad imeni K. A. Timiryazev, 22 pp

"Dok Ak Nauk SSSR" Vol II, No 8

conducted experiments to show that decrease of the amount of essential oils in the leaves of subject plant can lead to an increased potassium requirement by the plant, when subjected to large potassium supply. Submitted by Acad N. A. Maksimov 7 Apr 1948.

78116

KRUGER, M.Ya., inzh.; PANOV, V.A., kand. tekhn. nauk; KULAGIN, V.V., kand. tekhn. nauk; POGAREV, G.V., kand. tekhn. nauk; KRUGER, Ya.M., inzh.; LEVINZON, A.M., inzh.; Prinimal uchastiye KALINKEVICH, V.N., inzh.; KAZANSKIY, A.V., kand. tekhn. nauk, retsenzent; DMITRIYEV, A.A., inzh.; SIMONOVSKIY, N.Z., red. izd-va; MITARCHUK, G.A., red.izd-va; SHCHETININA, L.V., tekhn. red.

[Handbook for the designer of optical instruments] Spravochnik konstruktora optiko-mekhanicheskikh priborov. [By] M.IA. Kruger i dr. Moskva, Mashgiz, 1963. 803 p. (MIRA 16:12) (Optical instruments)

BELKIN, Yu.; KALINKIN, A.; KOZHATKIN, G.; LOBKO, P.; KRYUKOV, V., red.

[Device for the dynamometry of mounted machines; results of comparative tests] Pribory dlia dinamometrirovaniia navesnykh mashin; rezul'taty sravnitel'nykh ispytanii.

Moskva, Biuro tekhn. informatsii i reklamy, 1964. 103 p.

(MIRA 18:9)

KALINKIN, A.V.

Standardization of the carrier frequency of ME-B and Z-B apparatus using a reference frequency. Avtom., telem. 1 sviat'8 no.7:22-24 Jl '64. (MERA 17:12)

1. Starshiy inzh. Petrozavodskoy distantsii signalizatsii i svyazi Oktyabr'skoy dorogi.

24(5) AUTHOR:

Kalinkin, B. N.

sov/56-36-5-20/76

TITLE:

The Resonance Scattering of p-Quanta of Low Energy on Nuclei (Rezonansnoye rasseyaniye p-kvantov maloy energii na yadrakh)

PERIODICAL:

Zhurnal eksperimental'noy i teoreticheskoy fiziki, 1959, Vol 36, Nr 5, pp 1438-1442 (USSR)

ABSTRACT:

y-scattering at E <30 Mev has two maxima; one of them is in the region of gigantic resonance and may be explained by the ordinary properties of nuclear matter, the second is in the pre-threshold region. Experimental data show that within this range y-scattering depends essentially on nuclear structure. Whereas the cross section in the first maximum grows monotonously with A, the scattering cross section in the pre-threshold region has sharp oscillations in transition from nucleus to nucleus, especially in the case of nuclei with closed shells. Within this range the scattering has the character of very narrow resonances. The author of the present paper investigates the y-scattering mechanism in this pre-threshold region on the assumption that scattering occurs on individual single-nucleon levels and may be treated as nuclear resonance fluorescence.

Card 1/3

The Resonance Scattering of y-Quanta of Low Energy on Nuclei

sov/56-36-5-20/76

An expression is written down for the scattering cross section G(y,y) in dipole approximation and the quantities occurring therein are mathematically defined, as e.g. the width of the excited level by means of a Fermi gas model. The theoretical results are compared with experimental data (Ref 1). If the integral cross section averaged with respect to energy is $\overline{G(y,y)} = \frac{1}{D} \int_{D} G(y,y') dE_{y'}, \text{ one obtains, e.g. by investigation of the proton transition } 1f_{7/2} - 1g_{9/2} \text{ in Ni}^{58}$ (the proton is in the excited state $1g_{9/2}$ and is subjected to $1P_1$ -scattering on a neutron which is in the ground state $1f_{7/2}$) at $E_y = 7$ Mev: $\overline{G(y,y')} = 2.6$ mb, which agrees well with experimental results. Such comparisons are given for Cu^{63} , Pb^{208} , Bi^{209} , Sn^{118} and J^{127} . Agreement is not everywhere equally good; thus, e.g. for Cu^{63} , an experimental value of 4.8 mb is obtained as against the value of 2.5 mb.

iffen bie mir bie beiffen bien bille bild bin bille bei beiter bei beiter ber beiter ber ber ber ber ber ber ber bei beiter ber ber bei beiter ber ber bei beiter ber bei beiter bei beiter bei beiter beiter bei beiter be

Card 2/3

The Resonance Scattering of -Quanta of

SOV/56-36-5-20/76

Low Energy on Nuclei

thanks B. T. Geylikman for his valuable The author advice and his interest in this work. There are 9 references.

Fizicheskiy institut im. P. N. Lebedeva Akademii nauk SSSR ASSOCIATION:

(Physics Institute imeni P. N. Lebedev of the Academy of

Sciences, USSR)

November 5, 1958 SUBMITTED:

Card 3/3

83593

S/056/60/038/005/026/050 B006/B070

24.6600 AUTHOR:

Kalinkin, B. N.

TITLE:

Coulomb Excitation of Nuclei by Heavy Ions, Accompanied

by Emission of γ -Quanta /9

PERIODICAL:

Zhurnal eksperimental noy i teoreticheskoy fiziki, 1960,

Vol. 38, No. 5, pp. 1541 - 1543

TEXT: Since it is now possible to accelerate very heavy ions (up to Fe-ion), it is of interest to make theoretical investigations of the Coulomb excitation of nuclei by heavy ions, followed by emission of relatively hard gamma quanta (6-7 Mev). The problem may be treated within the framework of the shell model, that is, in the model of single-nucleon excitations. For lower energies (weak excitations), where collective effects play an important role, treatment of the problem on the basis of this model leads to unsatisfactory results. The shell model gives good results in the range of energies considered here, where single-nucleon transitions play a major role. As the author has shown in an earlier paper (Ref. 2), this was also confirmed by the treatment of

Card 1/3

Coulomb Excitation of Nuclei by Heavy Ions, 8/056/60/038/005/026/050 Accompanied by Emission of γ-Quanta B006/B070

resonant scattering of γ-quanta by nuclei. As a concrete example, the author considers the case of the Coulomb excitation of the Pb²⁰⁸ nucleus by an Ne²⁰ ion. Here, the Coulomb barrier is of the order of ~130 Mev. The kinetic energy of the ion is assumed to be ~100 - 120 Mev. If, for example, a neutron electric dipole transition (2f_{7/2} → 2g_{9/2}) results from the excitation, the nucleus is assumed to go to the ground state after emitting a 6-Mev gamma quantum. The energy loss of the ion is on excitation always a fraction of 1/20. Under these conditions, the excitation process may be considered to be classical. The total excitation cross section calculated for the single-nucleon level 2g_{9/2} of the Pb²⁰⁸ nucleus gives ~2.10⁻²mb. The cross section decreases practically exponentially when the energy of the ions decreases. For a bombardment of the Pb²⁰⁸ nucleus with a ~300-Mev Fe⁵⁶ ion (Coulomb barrier 360 Mev), the cross section is 0.01 mb. If it is assumed that the reverse transition is also a pure electric dipole transition, the angular distribution of the gamma quanta may be calculated. For Ne²⁰ + Pb²⁰⁸ one obtains

Card 2/3

KALINKIN, B.N.; CM SAN KHA

[Effect of deformations on elastic scattering of atomic mucleil Vlitanie deformation in proteess uprugogo rasseianiia atomnykh iader. Dubna, Ob*edinennyi in-t iadernykh issl., 1961. ll p. (MIRA 14:11) (Scattering (Physics)) (Nuclei, Atomic)

KALINKIN, B.N.; FUSTYL'NIK, B.I.; SARANTSEVA, V.R., tekhr. red.

[Elastic scattering of heavy ions in quasi-classical approximation]Uprugoe rassetanie tiazhelykh ionov v kvaziklassicheskom priblizhenii. Dubna, Ob'edinennyi in-t iadernykh issl., 1962.

7 p. (Ions—Scattering)

GRABOWSKI, J.; KALINKIN, B.N.

Effect of the nuclear potential form on the subbarrier transfer of a neutron. Acta physica Pol 22 no.5:441-443 N *62.

l. Institute of Nuclear Physics, Krakow (for Grabowski).
2. Institute of Nuclear Research, Dubna, U.S.S.R. (for Kalinkin).

IVANOVA, S.P.; KALINKIN, B.N.

On elastic scattering of heavy ions. Acta physica Pol. 24 no.1:121-124 Jl.63.

Cross section for compound-nucleus formation in heavy-ion-induced reactions. Acta physica Pol. 24 no.1:125-129 J1'63.

1. Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Dubna, USSR.

KALINKIN, B.N.; PUSTYL'NIK, B.I.

。 第一章 不知過,而不知過一個。 第一章 不知過一個。

Elastic scattering of heavy ions in the quasi-classical approximation. Acta physica Pol 23 no.3:375-381 Mr '63.

1. Ob"yedinennyy Institut yadernykh issledovaniy, Dubna, SSSR.

DIAAP/SSD/SSD(c)/AFWL/ESD(t) L 19714-65 EWT(m) JESSION NA: AP4045523 P/3045/63/024+301/0125 0.29 JIBOR: Ivanova, S. P.; Kalinkin, B. H. TITL. Cross sections for compound-nucleus forms; on in heave- one '? ind ad reactions .E: Acts physics polonics, v. 24, no. 1, 1951, 145-129 TOPIC TAGS: nuclear physics, compound nucleus formation, cross sate tion, heavy ion, nuclear reaction, nuclear interaction, elastic scattering "STRACT: Compound-nucleus formation cross sections were calculated t a number of reactions. The information about the nuclear interaction parameters (r₀ - the interaction radius and ${\bf r_0}^{\rm dff}$ - the dist ance at which effective nucleon exchange occurs) used here was the caine from quasi-classical analysis of experiments on heavy ion e.ast.c scattering. The parameter to turns out to be practically ident cal for different combinations of ions and target nuclei, with a value of approximately 1,28 f, which is an average value for the rd 1/ 3

ASSOCIATION: Theoretical Physics Laboratory, Joint Institute of Nuclear Research, Dubna

en i

KALINKIN, B.N.; GRABOWSKI, J.

The angular distribution of the transfer reaction products. Acta physica Pol 24 no.3:435-443 \$163.

1. Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Dubna, U.S.S.R.

under a men die de nie demokratie und de feite de feite de feite bestehen de feite d

KALINKIN, B.N.; KOCHKINA, T.P.; PUSTYINIK, B.I.

The quasi-classical analysis of the elastic scattering of complex nuclei. Acta physica Pol 24 no.3t427-434 S'63.

1. Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Laboratory of Nuclear Reactions, Computing Center, Dubna, U.S.S.R.

ACCESSION NR: AP4024335

P/0045/64/025/002/0265/0271

AUTHOR: Kalinkin, B. N.; Petkov, I. Zh.

TITLE: Complete nuclear fusion reaction

SOURCE: Acta physica polonica, v. 25, no. 2, 1964, 265-271

TOPIC TAGS: complete nuclear fusion, compound nucleus, potential, angular moment, heavy ion, nuclear fusion reaction

ABSTRACT: The formation cross-section of the compound nucleus of (E) has to be known in order to analyze a number of reactions involving heavy ions. Thomas (Phys. Rev., 116, 703, 1959) computed this cross-section in dependence upon the energy for a number of cases, using the approximation of a rectangular hole, heavily absorbing ions. But this approach is very rough, since the interaction of the two nuclei is actually described by the potential, which diminishes exponentially at great distances. While more realistic models have since been proposed, there are now indications that the real value of of (E) is considerably smaller than that computed for them (especially around 10 mev/nucleon), as evidenced by experiments in reactions between complex nuclei, when the heavy

Card 1/2

10314

ACCESSION NR: AP4024335

target nucleus does not split. The paper computes the effect of large angular moments on the process of formation of the compound nucleus in reactions involving heavy ions, and concludes that the problem of the balance of the complete angular moment in such reactions "largely loses its acuteness" in view of the authors' results. Original has 9 equations, 1 diagram, 5 graphs and 1 table.

ASSOCIATION: Ob"yedinennyy Institut Yadernykh Issledovaniy, Laboratoriya teoreticheskoy fiziki Dubna, SSSR (Joint Institute for Muclear Research, Laboratory of Theoretical Physics)

SURNITTED: 26Jul63 DATE ACQ: 15Apr64 EMLL: OO

SUB CODE: NS NO REF SOV: OO2 OTHER: OO6

粉連用機

GAREYEV, F.A.; KALINKIN, B.N.

HAMINIES

Inelastic scattering of complex nuclei. IAd. fiz. 2 no.4:635-642 0 65. (MIRA 18:11)

1. Obeyedinennyy institut yadernykh issledovaniy.

ACC NR: AP7012411

SOURCE CODE: UR/0367/67/005/001/0123/0128

AUTHOR: Gareyev, F. A. -- Gareev, F. A.; Grabovskiy, Ya. -- Grabowski, Ya.;

ORG: Joint Institute for Nuclear Research (Obryedinennyy institut yadernykh

TITLE: Diffraction effect in the angular distribution of transfer reaction

SOURCE: Yadernaya fizika, v. 5, no. 1, 1967, 123-128

TOPIC TAGS: angular distribution, nuclear collision

SUB CODE: 20

ABSTRACT: The diffraction effect in the angular distribution of transfer reaction products has been treated. Its relation to the parameters characterizing collisions between nuclei is established. It is qualitatively explained why an asymmetry exists in the half-widths of the stripping and pickup reaction product energy spactrum. Orig. art. has: 3 figures and 10 formulas.

Card 1/1

"A Vacuum-Tube Voltmeter Using A 6E5 Tube", Radio, No. 7, p 59, 1950.

SO: W-17985, 7 May 1951

KALINKIN, G.I.

112-3-60230

Translation from: Referativnyy Zhurnal, Elektrotekhnika, 1957, Nr 3, p. 140 (USSR)

AUTHOR:

Kalinkin, G. I.

TITLE:

Certain Problems in the Investigation of D-C Micromachines for Airplane Mechanisms (Nekotoryye voprosy issledovaniya mikromashin

postoyannogo toka dlya samoletnykh mekhanizmov)

ABSTRACT:

Bibliographic entry on the author's dissertation for the Degree of Candidate of Technical Sciences, presented to the Kazan' Aviation

Institute (Kazensk. aviats. in-t), Kazen', 1956.

ASSOCIATION: Kazan' Aviation Institute (Kazansk. aviats. in-t)

Card 1/1

STOLOV. L.I., kand.tekhn.nauk, dots.; KALINKIN, G.I., kand.tekhn.nauk.

Testing micromachines by means of an auxiliary motor. Electrichestvo no.1:68-70 Ja '58. (MIRA 11:2)

1. Kazanskiy aviatsionnyy institut.

(Electric motore--Testing)

er t. (d. - 1918) of the Complete Republic Republic Republic 1918 (1918) of the Complete Strategies of KALINKIN, GENNADI IVANOVICH

SOV/144-58-10-8/17

AUTHOR:

Kalinkin, G.I., Candidate of Technical Sciences. Docent

TITIE:

An Investigation of the Armature Reaction and Mechanical Characteristics of a Direct Current Micro-Motor by the Method of Two Speed Characteristics (Issledovaniye reaktsii yakorya i mekhanicheskoy kharakteristiki mikrodvigateley postoyannogo toka metodom dvukh

skorostnykh kharakteristik)

PERIODICAL: Izvestiya Vysshikh Uchebnykh Zavedeniy, Elektromekhanika,

1958, Nr 10, pp 87-93 (USSR)

ABSTRACT:

A good deal of work has been done on the armature reaction of d.c. machines, particularly on its experimental determination. However, all of the experimental methods have been developed primarily for large or medium sized machines and they may give considerable errors when applied to small machines. Sometimes they necessitate dismantling a small machine to install measuring devices inside it. Moreover, existing methods of determining the armature reaction do not ensure sufficiently simple construction of the mechanical characteristics of the motor. This article

Card 1/5

S0V/144-58-10-8/17

An Investigation of the Armature Reaction and Mechanical Characteristics of a Direct Current Micro-Motor by the Method of Two Speed Characteristics

describes an experimental method of determining the resultant armature reaction and the machanical characteristic of a d.c. micro-motor from two speed characteristics taken at two voltages. The armature reaction is evaluated from the ratio of the resultant flux of the machine on load to the resultant no-load flux, that is set up only by the field winding. equation of the speed characteristics, that is the speed as a function of armature current, is written for two voltages assuming the field current to be the same in both cases and then by subtraction for the same armature current expression (3) is obtained. Using this expression, the ratio of the flux on load to the flux at no-load is obtained by determining two speed characteristics for different voltages and calculating the differences of voltage and speed as illustrated diagrammatically in Fig I. Methods of determining one of the coefficients in the equation according to the method of connection of the field winding is then

Card 2/5

SOV/144-58-10-8/17

An Investigation of the Armature Reaction and Mechanical Characteristics of a Direct Current Micro-Motor by the Method of Two Speed Characteristics

explained. If commutation is linear Eq (3) gives the armature reaction at any speed. However, if commutation is not linear and there is a commutation armature reaction, the value of armature reaction determined by Eq (3) will be characteristic of some speed intermediate between those used in the experiment. Simple methods of overcoming this difficulty are explained. Eq (6) is then derived for the electro-magnetic torque of the machine and then the method of constructing the so-called "mechanical characteristic" from the two-speed characteristics is explained with reference to Fig 2. This characteristic is the speed as a function of the electromagnetic torque. The method can also be applied when the motor is supplied from a system of small capacity where there is voltage drop in the circuit as the load changes. In determining the armature reaction and the torque, the resistance of the armature circuit is not considered because it is assumed to be the same at

Card 3/5

SOV/144-58-10-8/17

An Investigation of the Armature Reaction and Mechanical Characteristics of a Direct Current Micro-Motor by the Method of Two-Speed Characteristics

性性的最大的原因性,我们也不是不是一个人,我们就是这个人,我们就是我们的人,我们就是我们的人,我们是这个人,我们是这一个人,我们是这一个人,我们是这一个人,我们是这一个人,我们是这一个人,我们是这一个人,我们就是这一个人,我们就是这一个人,我们就是这一个人,我们就是这一个人,我们就是这一个人,我们就是这一个人,我们就是这一个人,我们就是这一个人,我们就是这一个人,我们

the corresponding points on both speed characteristics. This is considered a little more closely and shown to be valid both for the brush contact resistance and for the armature winding resistance. By way of example, the method is applied to a series motor type MU-30. two speed characteristics determined by an oscillograph method are given in Fig 3, which also gives the graphical construction of the mechanical characteristic. The difference between this characteristic and that determined directly by measuring the torque on the shaft and the no-load torque is only about 3%. The results of calculation of armature reaction are given in Table 1. Velocity characteristics obtained on a shunt motor type MP-8 of 8 W output are shown in Fig 4, together with the mechanical characteristic constructed from them. The results of calculation of armature reaction are given in Table 2. In both cases the variations in armature reaction with speed and armature current are discussed. This method of determining armature reaction and

Card 4/5

SOV/144-58-10-8/17

An Investigation of the Armature Reaction and Mechanical Characteristics of a Direct Current Micro-Motor by the Method of Two Speed Characteristics

me chanical characteristics is recommended for its convenience and accuracy. There are 4 figures, 2 tables and 9 Soviet references.

ASSOCIATION: Kafedra Osnov Elektrotekhniki i Elektricheskikh Mashin Kazanskogo Aviatsionnogo Instituta (Chair of Electrical Engineering Fundamentals and Electrical Machines, Kazan'Aviation Institute)

SUBMITTED: 18th November 1958

Card 5/5

\$/144/60/000/01/011/019 \$194/\$155

AUTHOR: Kalinkin, G.I., Candidate of Technical Sciences, Docent

CALIMATA AS ACCOMPANDADA MARIAN HARRANI HARRANI MARIANI MA

TITLE: An Experimental Determination of Commutation Armature

Reaction in Fractional Horse-power d.c. Machines, 9

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy,

Card

1/5

Elektromekhanika, 1960, Nr 1, pp 93-98 (USSR)

ABSTRACT: A good deal of attention has been paid to methods of

determining experimentally the commutating armature reaction. However, the methods are specially applicable to medium-sized and large machines and are difficult to

apply to f.h.p. machines. The present article describes a method of determining the commutating armature

reaction from test results obtained on f.h.p. machines under motor and generator conditions. It is based on

determining the resultant armature reaction by the method of two speed-characteristics and does not

necessitate measurement of the armature resistance. The

machine is run first as a motor, then as a generator, with the armature and field currents the same in both

cases, and the speed the same but reversed in direction.

All the m.m.f's of the motor condition, except the

9/194/60/000/01/011/019 E194/E155

An Experimental Determination of Commutation Armature Reaction in Fractional Horse-power d.c. Machines

commutating m.m.f, are then equal in magnitude and sign with those of the generator condition, whilst the m.m.f. of commutating armature reaction is equal in magnitude but reversed in sign. Let the method of two speedcharacteristics be used to determine the resultant armature reaction for the motor condition for a given current and speed, as shown in Fig 1. The figure also shows two speed-characteristics with the machine working as a generator under conditions of dynamic retardation, with the armature connected to two different values of resistance. The speed of the motor changes during the tests and is observed oscillographically. The resistance values must be so chosen that the mean speed is appropriate to the armature current in question. resistance value may be determined from Expression (1), but may need some adjustment to obtain the correct mean The method of dynamic retardation can be used to determine the commutating armature reaction up to some critical value of current, corresponding to short-circuit

2/5

S/144/60/000/01/011/019 E194/E155

An Experimental Determination of Commutation Armature Reaction in Fractional Horse-power d.c. Machines

of the armature. The dynamic retardation method is not applicable to currents higher than this critical value, nor to speeds lower than that corresponding to it. For these latter conditions the commutating armature reaction may be determined by a method of retardation with cross-connection. The armature is connected to the supply and the motor is driven by an auxiliary motor in a direction counter to the normal direction of rotation. The machine under test of course acts as a generator. Eq (2) is derived for the voltage to be applied to the motor terminals. In this equation there is a critical value of the current similar to that obtained previously but approached from the other side. Thus, by using both conditions the commutator armature reaction may be determined for all values of current and speed, and all values of armature circuit resistance. The two speedcharacteristic method can also be used to determine the commutating armature reaction under the quadrature brushes of an amplidyne, considering the amplidyne as an ordinary

Card

0/00/60/000/01/011/019 E194/E155

An Experimental Determination of Commutation Armature Reaction in Fractional Horse-power d.c. Machines

d.c. machine whose field winding is the control winding of the amplidyne. By way of example, the commutating armature reaction is determined for a series of f.h.p. motor type MU-302 the characteristics of which have been given by the present author in this journal, Nr 10 of The test results are given, and the determination of the m.m.f. of commutating armature reaction from the no-load characteristics is described with reference to the diagram of Fig 2. It is shown that in this particular kind of motor the effect of commutating armature reaction is very marked. Fig 3 gives experimental curves of this kind, from which the commutating armature reaction may be determined. Commutating armature reaction curves for this machine are plotted in Fig 4, and it will be seen that the effect of commutating armature reaction is very marked under the quadrature brushes. It is concluded that the procedure recommended for experimental determination of commutating armature reaction in f.h.p. d.c. machines is simple and

4/5

S/144/60/000/01/011/019
E194/E155
An Experimental Determination of Commutation Armature Reaction in Fractional Horse-power d.c. Machines

sufficiently accurate.
There are 4 figures, 1 table and 7 Soviet references.

ASSOCIATION: Kafedra osnov elektrotekhniki i elektricheskikh mashin, Kazanskiy aviatsionnyy institut (Chair of Fundamentals of Electrical Engineering and Electrical Machinery, Kazan Aviation Institute)

Card 5/5

September 16, 1959

5/196/62/000/005/010/012 E194/E154

AUTHOR:

Kalinkin, G.I.

TITLE:

Special features in the use and selection of disc

diameter of electro-magnetic micro-brakes

在建筑体系的 (1955年) 是个工程中的 (1955年) 1955年 (1955年)

PERIODICAL: Referativnyy zhurnal, Elektrotekhnika i energetika,

no.5, 1962, 16, abstract 5 192. (Tr. Kazansk.

aviats. in-ta, no.59, 1960, 39-45)

TEXT: A low output electro-magnetic brake can be used to measure the torque and speed of electric motors. The braking torque of the brake disc is $M_m = K_M \cdot \delta \cdot \gamma \cdot \varphi^2 \cdot n$, where K_M is

the brake constant; \(\gamma \) disc material conductivity; \(\delta \) thickness; Φ - magnetic flux; n - speed of rotation. Expressing the flux φ in terms of the magnetising force of the field coil IbW and the reluctance of the magnetic circuit of

the brake R_{M} , we obtain Card 1/2

Special features in the use and ... $\frac{5/196/62/000/005/010/012}{E194/E154}$

The speed of rotation is conveniently determined from a calibration curve $n=f(M_m;\;I_b)$. To reduce the error in determination of n and also to increase the value of N_m the brake disc should preferably be made of alloys, used in induction tachometers, of high specific resistance and with low temperature coefficient of resistance. In selecting the disc diameter d, air resistance must be allowed for. The frictional torque $M_{\tilde{\Gamma}}$ of the disc in air may be determined from the formula:

$$M_{\mathbf{f}} = C_{\mathbf{M}} \cdot \rho_{\mathbf{m}} \cdot \omega_{\mathbf{O}} \cdot \mathbf{r}^{5}$$

where: C_M - a dimensionless coefficient; ρ_m - the mass density of air; ω_0 - angular speed of rotation of the disc; r - disc radius. The figure shows the relationship $M_f = f(d)$ at constant speed at the air temperature of +15 °C and pressure of 760 mm Hg. The air resistance of the disc is practically independent of ambient temperature. Knife edge supports should be used in micro-brakes. To reduce leakage fluxes auxiliary parts should be made of non-magnetic materials. The general appearance and characteristics of 1 W micro-brakes are given. Card 2/3 5 literature references.

Photometric determination of microquantities of copper by lead diethyldithiocarbamate. Trudy LTI no.61:144-149 '60.			
(Copper-Analysis)	(Electrolytes) (Carban	(MIRA 15:5) (Carbamic acid)	
;			
i i		•	

24 2000

1043, 1160, 1143

28081 S/181/61/003/009/013/039 B102/B104

AUTHORS:

TITLE:

Kalinkin, I. P., Sergeyeva, L. A., Aleskovskiy, V. B., and Strakhov, L. P.

Production of cadmium selenide single crystals

PERIODICAL:

Fizika tverdogo tela, v. 3, no. 9, 1961, 2640-2645

TEXT: A number of methods are known for the production of semiconductor single-crystal films, however, the properties of these films mainly depend on the type of the backing and the production conditions. To study these dependences the authors produced CdSe films on alkali halide backings under very rigorous conditions. The initial material was CdSe (impurities $6\cdot10^{-4}\%$ Fe, $2\cdot10^{-4}\%$ Cu, $2\cdot10^{-4}\%$ Ni, $5\cdot10^{-4}\%$ Co, $5\cdot10^{-5}\%$ Mn) supplied by the works "Krasnyy khimik" (Red Chemist) and was heated in a vacuum. The (111) faces of artificial NaCl, KCl, and KBr single crystals, treated by different methods and examined under a metallographic microscope, type MMM-7 (MIM-7), and a 6C-242 (BS-242) electron microscope prior to the sputtering of CdSe, were used as backings. It was found that the surface

Card 1/3

OR HERE ESCRIPTION OF THE SECOND OF THE PROPERTY OF THE PROPER

28081

Production of cadmium selenide ...

S/181/61/003/009/013/039 B102/B104

properties of the backing depend largely on the treatment methods (polishing, heating). In the production of the films sublimation temperature and sublimation rate were more important than the surface property of the backing. Also a previous annealing in a muffle furnace at 350 or 500°C for 1-3 hr proved important. In the experiments CdSe was sputtered on well and poorly polished, annealed and non-annealed backings. The experiments showed that: (1) independently of the lattice constants of the backing, hexagonal polycrystalline CdSe films with C = 7.02 Å and c = 4.3 Å were formed. Already a 15-min annealing at 350°C was sufficient to achieve partial orientation of the films. (2) At a backing temperature of 150-200°C during sputtering, the orienting effect of the backing on the film was much stronger, especially with previous annealing. 3) At 250°C the films sputtered onto annealed and non-annealed backings differed considerably. The major part of the crystals formed a mosaic single crystal with the face (0001) parallel to (111) of the backing. 4) At a backing temperature of 300-350°C during the sublimation a hexagonal monocrystalline film was formed independently of the previous annealing. 5) Purity and structure of the backing surface did not essentially influence surface and structure of the film. The single crystal films obtained under optimum

Card 2/3