Microprocessor Principles and Applications –Midterm (Hands-on Test) Nov. 5, 2020

- 1. Implement a sorting algorithm to sort the given five 8-bit numbers.
 - (a) (25%) Write a macro called INITIALIZE(arg1, arg2, arg3, arg4, arg5) to locate the given five 8-bit numbers (e.g., 0xA5, 0xF4, 0x64, 0x6F, 0x87) at 0x100 to 0x104 in memory. You are required to use at least one kind of register regarding addressing mode.
 - (b) (25%) Write a subroutine called SORTING to implement the sorting algorithm and store the sorting results at 0x100 to 0x104 in memory.

Note: You have to allocate memory for the five numbers by yourself and we may change those numbers when you demonstrate to us.

2. (50%) Write a program to compute the product of two 16-bit signed integers. You should store high byte of the first number in [0x00], the low byte of the first number in [0x01], high byte of the second number in [0x02], low byte of the second number in [0x03], and store the result in [0x04 to 0x07]..

EXAMPLE:

8345₁₆ * 8147₁₆ (-31931₁₀ * -32441₁₀) = 3DBE2D23₁₆ (1035873571₁₀)
1FF4₁₆ * 82C4₁₆(8180₁₀ * -32060₁₀)= F05E5ED0₁₆ (-262250800₁₀)

Addr	ress	00	01	02	03	04	05	06	07	08	09	AO	OB	00	OD	0E	OF	ASCII
000		183	45	81	47	3D	BE	2D	23	00	00	00	00	00	00	00	00	.E.G=#
010	-	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
020		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
030		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
040		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

You can refer to the following steps:

STEP1. multiply 2 operands disregarding their signs (hint: mulwf,addwf,addwfc)

- compute (low byte of the first number) * (low byte of the second number)
 - store the low byte of the result in [0x07]
 - store the high byte of the result in [0x06]
- compute (high byte of the first number) * (high byte of the second number)
 - store the high byte of the result in [0x05]
 - store the low byte of the result in [0x04]
- compute (low byte of the first number) * (high byte of the second number)

- \blacksquare add the result to [0x06]
- \blacksquare add the result and carry to [0x05]
- add carry to [0x04]
- compute (high byte of the first number) * (low byte of the second number)
 - \blacksquare add the result to [0x06]
 - add the result and carry to [0x05]
 - add carry to [0x04]

STEP2. check the sign of the first number (hint: subwf,subwfb)

If negative, then subtract the first operand from the upper 16 bits of the product.

STEP3. check the sign of the second number (hint: subwf,subwfb)

If negative, then subtract the second operand from the upper 16 bits of the product.

ADDWFC	ADD W and Carry bit to f								
Syntax:	[label] ADDWFC f [,d [,a]								
Operands:	$0 \le 1 \le 255$ $d \in [0,1]$ $a \in [0,1]$								
Operation:	$(W) + (f) + (C) \rightarrow dest$								
Status Affected:	N,OV, C,	N,OV, C, DC, Z							
Encoding:	0010	00da	rrrr	rrrr					
Description:	Add W, the Carry Flag and data memory location 'f'. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in data memory location 'f'. If 'a' is 0, the Access Bank will be selected. If 'a' is 1, the BSR will not be overridden.								
	tion 'f'. If 's	a' is 0, the ected. If 'a	Access a' is 1, th	Bank					
Words:	tion 'f'. If 's	a' is 0, the ected. If 'a	Access a' is 1, th	Bank					
Words: Cycles:	tion 'f'. If 'a will be sel will not be	a' is 0, the ected. If 'a	Access a' is 1, th	Bank					
	tion 17. If 3 will be sel will not be 1	a' is 0, the ected. If 'a	Access a' is 1, th	Bank					
Cycles:	tion 17. If 3 will be sel will not be 1	a' is 0, the ected. If 'a	Access a' is 1, then.	Bank ne BSR					
Cycles: Q Cycle Activity:	tion 'f'. If 's will be sel will not be 1	a' is 0, the ected. If 'a overridde	Access a' is 1, then.	Bank ne BSR					
Cycles: Q Cycle Activity: Q1	tion 'f'. If 's will be sel will not be 1 1 O2 Read	a' is 0, the ected. If 'a overridde	Access a' is 1, then.	Bank ne BSR					

After Instruction

Carry bit = 0

REG = 0x02

W = 0x50

SUBW	/FB	Subtract W from f with Borrow							
Syntax	C:	[label] SUBWFB f[,d[,a]							
Opera	nds;	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Opera	ition:	(f) - (V	$V) - (\overline{C}) - \overline{C}$	→ dest					
Status	Affected:	N, OV, C, DC, Z							
Enco	ding:	0101	100	a fff:	tttt				
Desci	ription:	row) fr metho in W. I back i the Ad overri then t	om regis d). If 'd' is If 'd' is 1, n registe ccess Ba ding the the bank	ter f' (2's o s 0, the result the result r f' (defau nk will be BSR valu	ult). If 'a' is 0, selected, ne. If 'a' is 1, nected as pe				
Word	ds:	1							
Cycl	es:	1							
QC	ycle Activit Q1		22	Q3	Q4				
	Decode		ead ster 'f'	Process	Write				
Exar	mple 1:	su	BWFB !	REG, 1,	0				
	Before Inst	truction							
	REG	=	0x19 0x0D	(0001	1001)				
	W C	=	1	(0000)	1101/				
	After Instru	uction							
	REG	=	0x0C 0x0D	(0000)	1011)				
	W C	=	1	(0000)	1101/				
	Ž N	=	0	: result	is positive				
Evo				REG, O,					
LXa	mple 2: Before Ins								
	REG	=	0x1B	(0001	1011)				
	W	=	0x1A	(0001	1010)				
	After Instr	=	0						
	REG W	=	0x1B 0x00	(0001	1011)				
	C Z N	= =	1 1 0	; result	is zero				
Exa	ample 3:	2	UBWFB	REG, 1	, 0				
	Before In	structio	n						
	REG		0x03		0 0011)				
	W	=	0x0E	(000	0 1101)				
	C	=	1						
	After Inst		0xF5	(111	1 0100)				
	nLG			; [2's	comp]				
	W	=	0x0E	(000	0 1101)				
	C Z N	=	0		di in manati				
	N	=	1	; res	ult is negativ	9			