Mapping Techniques for Load Balancing

Parallelization

- Decomposition
- Mapped to processes
- Overhead reduction

Good Mapping

- Finding a good mapping is a nontrivial problem
- Twin objectives
 - reducing the amount of time processes spend in interacting with each other,
 - reducing the total amount of time some processes are idle while the others are engaged in performing some tasks.
- They conflict each other
 - Less interaction---->unbalanced workload
 - Good balance--→ high interaction

Good Mapping

 A good mapping must ensure that the computations and interactions among processes at each stage of the execution of the parallel algorithm are well balanced

Two mappings of a hypothetical decomposition with a synchronization.

Task 9,10,11,12 can start after completion of first eight tasks Different completion times for the two mappings

Two categories

- Static
- Dynamic

Static

- Used in conjunction with a decomposition based on data partitioning
- Used for mapping certain problems that are expressed naturally by a static task-dependency graph

Mappings Based on Data Partitioning

 Mappings based on partitioning two of the most common ways of representing data in algorithms, namely, arrays and graphs

Array Distribution Schemes

- The tasks are closely associated with portions of data by the ownercomputes rule
- Therefore, mapping the relevant data onto the processes is equivalent to mapping tasks onto processes

Block Distributions

- A d-dimensional array is distributed among the processes
 - such that each process receives a contiguous block of array entries along a specified subset of array dimensions.
- Block distributions of arrays are particularly suitable when there is a locality of interaction, i.e.,
 - computation of an element of an array requires other nearby elements in the array.

1D partitioning among 8 processes

row-wise distribution	column-wise distribution				n			
P_0								
P_1								
P_2								
P_3	P_0	P_1	P_2	P_3	P_4	P_5	P ₆	$ _{P_7} $
P_4			_					
P ₅								
P_6								
P_7								

For example, consider an $n \times n$ two-dimensional array A with n rows and n columns. Now select one of these dimensions, e.g., the first dimension, and partition the array into p parts such that the kth part contains rows kn/p...(k+1)n/p-1, where $0 \le k < p$. That is, each partition contains a block of n/p consecutive rows of A. Similarly, if we partition A along the second dimension, then each partition contains a block of n/p consecutive columns.

Block Distribution and Data Sharing for Dense Matrix Multiplication

P_0	P_1	P ₂	P ₃	
P_4	P ₅	P_6	P ₇	
P_8	P ₉	P_{10}	P ₁₁	
P ₁₂	P ₁₃	P_{14}	P ₁₅	
(a)				

Two-dimensional distributions of an array, (a) on a 4 x 4 process grid, and (b) on a 2 x 8 process grid.

Instead of selecting a single dimension, we can select multiple dimensions to partition. For instance, in the case of array A we can select both dimensions and partition the matrix into blocks such that each block corresponds to a $n/p_1 \times n/p_2$ section of the matrix, with $p = p_1 \times p_2$ being the number of processes

- For example, consider the $n \times n$ matrix multiplication $C = A \times B$
- One way of decomposing this computation is to partition the output matrix C.
- Since each entry of *C* requires the same amount of computation, we can balance the computations by using either a one- or two-dimensional block distribution to partition *C* uniformly among the *p* available processes.
- In the first case, each process will get a block of n/p rows (or columns) of C, whereas in the second case, each process will get a block of size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$.
- In either case, the process will be responsible for computing the entries of the partition of C assigned to it.

- In the case of matrix-matrix multiplication, a one-dimensional distribution will allow us to use up to n processes by assigning a single row of C to each process.
- On the other hand, a two-dimensional distribution will allow us to use up to n² processes by assigning a single element of C to each process.

 In addition to allowing a higher degree of concurrency, higher dimensional distributions also sometimes help in reducing the amount of interactions among the different processes for many problems.

- With a one-dimensional partitioning along the rows, each process needs to access the corresponding n/p rows of matrix A and the entire matrix B, for process P_5 .
- Thus the total amount of data that needs to be accessed is $n^2/p + n^2$

- However, with a two-dimensional distribution, each process needs to access $\frac{n}{\sqrt{p}}$ rows of matrix A and $\frac{n}{\sqrt{p}}$ columns of matrix B for process P_5 .
- In the two-dimensional case, the total amount of shared data that each process needs to access is $\frac{n^2}{\sqrt{p}}$, which is significantly smaller compared to $O(n^2)$ shared data in the one-dimensional case.

Cyclic and Block Cyclic Distributions

- If the amount of work differs for different elements of a matrix, a block distribution can potentially lead to load imbalances.
- A classic example of this phenomenon is LU factorization of a matrix, in which the amount of computation increases from the top left to the bottom right of the matrix.

LU Factorization of a Dense Matrix

A decomposition of LU factorization into 14 tasks

$$\begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix} \rightarrow \begin{pmatrix} L_{1,1} & 0 & 0 \\ L_{2,1} & L_{2,2} & 0 \\ L_{3,1} & L_{3,2} & L_{3,3} \end{pmatrix} \cdot \begin{pmatrix} U_{1,1} & U_{1,2} & U_{1,3} \\ 0 & U_{2,2} & U_{2,3} \\ 0 & 0 & U_{3,3} \end{pmatrix}$$

1:
$$A_{1,1} \to L_{1,1}U_{1,1}$$

2:
$$L_{2,1} = A_{2,1}U_{1,1}^{-1}$$

3:
$$L_{3,1} = A_{3,1}U_{1,1}^{-1}$$

4:
$$U_{1,2} = L_{1,1}^{-1} A_{1,2}$$

5:
$$U_{1,3} = L_{1,1}^{-1} A_{1,3}$$

6:
$$A_{2,2} = A_{2,2} - L_{2,1}U_{1,2}$$
 11: $L_{3,2} = A_{3,2}U_{2,2}^{-1}$

7:
$$A_{3,2} = A_{3,2} - L_{3,1}U_{1,2}$$
 12: $U_{2,3} = L_{2,2}^{-1}A_{2,3}$

8:
$$A_{2,3} = A_{2,3} - L_{2,1}U_{1,3}$$
 13: $A_{3,3} = A_{3,3} - L_{3,2}U_{2,3}$

9:
$$A_{3,3}=A_{3,3}-L_{3,1}U_{1,3}$$
 14: $A_{3,3}\to L_{3,3}U_{3,3}$ 10: $A_{2,2}\to L_{2,2}U_{2,2}$

10:
$$A_{2,2} \to L_{2,2}U_{2,2}$$

11:
$$L_{3,2} = A_{3,2}U_{2,2}^{-1}$$

12:
$$U_{2,3} = L_{2,2}^{-1} A_{2,3}$$

13:
$$A_{3,3} = A_{3,3} - L_{3,2}U_{2,3}$$

14:
$$A_{3,3} \rightarrow L_{3,3}U_{3,3}$$

Block Distribution for LU

Notice the significant load imbalance

P ₀	P ₃	P ₆		
T ₁	T ₄	T ₅		
P ₁	P ₄	P ₇		
T ₂	T_6 T_{10}	T ₈ T ₁₂		
P ₂	P ₅	P ₈		
Т3	T ₇ T ₁₁	$T_{9}T_{13}T_{14}$		

Block Cyclic Distributions

- Variation of the block distribution scheme
 - Partition an array into many more blocks (i.e. tasks) than the number of available processes.
 - Blocks are assigned to processes in a roundrobin manner so that each process gets several non-adjacent blocks.
 - N-1 mapping of tasks to processes

Block-Cyclic Distribution for Gaussian Elimination

- Active submatrix shrinks as elimination progresses
- Assigning blocks in a block-cyclic fashion
 - Each PEs receives blocks from different parts of the matrix
 - In one batch of mapping, the PE doing the most will most likely receive the least in the next batch

Block-Cyclic Distribution

- A cyclic distribution: a special case with block size = 1
- A block distribution: a special case with block size = n/p
- n is the dimension of the matrix and p is the #of processes

Block Partitioning and Random Mapping

Sparse matrix computations

P_0	P_1	P_2	P ₃	P_0	P_1	P_2	<i>P</i> ₃
P_4	P ₅	P ₆	P ₇	P_4	P ₅	P_6	P7
P_8	P9	P_{10}	P ₁₁	P_8	P9	P_{10}	P_{11}
P_{12}	P_{13}	P_{14}	P ₁₅	P_{12}	P_{13}	P_{14}	P_{15}
P_0	P_1	P_2	P ₃	P_0	P_1	P_2	<i>P</i> ₃
P_4	P ₅	P_6	P ₇	P_4	P ₅	P_6	P7
P_8	P9	P_{10}	P_{11}	P_8	P9	P_{10}	P_{11}
P_{12}	P_{13}	P_{14}	P ₁₅	P_{12}	P_{13}	P_{14}	P_{15}

(b)

block-cyclic
partitioning/mapping
— more non-zero blocks
to diagonal processes
P0, P5, P10, and
P15 than others

Load imbalance using

Block Partitioning and Random Mapping

Graph Partitioning Based Data Decomposition

- Array-based partitioning and static mapping
 - Regular domain, i.e. rectangular, mostly dense matrix
 - Structured and regular interaction patterns
 - Quite effective in balancing the computations and minimizing the interactions
- Irregular domain
 - Sparse matrix-related
 - Numerical simulations of physical phenomena
 - Car, water/blood flow, geographic
- Partition the irregular domain so as to
 - Assign equal number of nodes to each process
 - Minimizing edge count of the partition.

Schemes for Dynamic Mapping

- Also referred to as dynamic load balancing
- Load balancing is the primary motivation for dynamic mapping.
- Dynamic mapping schemes can be
 - Centralized
 - Distributed

Centralized Dynamic Mapping

- Processes are designated as masters or slaves
 - Workers (slave is politically incorrect)
- General strategies
 - Master has pool of tasks and as central dispatcher
 - When one runs out of work, it requests from master for more work.
- Challenge
 - When process # increases, master may become the bottleneck.
- Approach
 - Chunk scheduling: a process picks up multiple tasks at once
 - Chunk size:
 - Large chunk sizes may lead to significant load imbalances as well
 - Schemes to gradually decrease chunk size as the computation progresses.

Distributed Dynamic Mapping

- All processes are created equal
 - Each can send or receive work from others
 - Alleviates the bottleneck in centralized schemes.
- Four critical design questions:
 - how are sending and receiving processes paired together
 - who initiates work transfer
 - how much work is transferred
 - when is a transfer triggered?

Reference

- http://parallelcomp.uw.hu/ch03lev1s ec4.html
- https://passlab.github.io/CSCE569/n otes/lecture10 design02.pdf