FCC 15.249 2.4 GHz Report

for

Fanimation Inc.

10983 Bennett Pkwy, Zionsville, Indiana, United States, 46077

Product Name : Ceiling Fan Remote Controller

Model Name : (1)JY1004 (2)RC205QBT-D1

FCC ID : 2ABGUJY1004

TABLE OF CONTENTS

Description	Page
TEST REPORT CERTIFICATION	4
1. REPORT HISTORY	
2. SUMMARY OF TEST RESULTS	5
3. GENERAL INFORMATION	
3.1. Description of EUT	
3.2. EUT Specifications Assessed in Current Report	
3.3. Antenna Information	
3.4. Test Configuration	
3.5. Setup Configuration	
3.6. Operating Condition of EUT	
3.7. Description of Test Facility	9
3.8. Measurement Uncertainty	9
4. MEASUREMENT EQUIPMENT LIST	
4.1. Conducted Emission Measurement	10
4.2. Radiated Emission Measurement	10
5. CONDUCTED EMISSION MEASUREMET	
5.1. Block Diagram of Test Setup	
5.2. Power Line Conducted Emission Limit	
5.3. Test Procedure	
5.4. Conducted Emission Measurement Results	12
6. RADIATED EMISSION MEASUREMENT	
6.1. Block Diagram of Test Setup	12
6.2. Radiated Emission Limits	15
6.3. Test Procedure	
6.4. Measurement Result Explanation	
6.5. Test Results	
7. OCCUPIED BANDWIDTH 99% POWER MEASUREM	ENT 30
9 DEVIATION TO TEST SPECIFICATIONS	30

APPENDIX A TEST PHOTOGRAPHS

TEST REPORT CERTIFICATION

Applicant : Fanimation Inc.

Manufacturer #1 : Satellite Electronic (Zhongshan)., Ltd.

Manufacturer #2 : Chungear Industrial Co., Ltd.

Manufacturer #3 : Zhongshan Amity Electronic Ltd.

Product Name : Ceiling Fan Remote Controller

Model No. : (1)JY1004 (2)RC205QBT-D1

Serial No. : N/A

Power Supply : AC 120V/60Hz

Rules of Compliance and Measurement Standards:

FCC CFR 47 Part 15 Subpart C/Oct. 2014 ANSI C63.4-2003 ANSI C63.10-2009

AUDIX Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. **AUDIX Technology Corp.** does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Test: 2015. 12. 02 ~ 07 Date of Report: 2015. 12. 08

Producer: Sabrina Wang

(Sabrina Wang/Administrator)

Signatory: She Chang

File Number: C1M1511309 Report Number: EM-F150776

1. REPORT HISTORY

Revision	Date	Revision Summary	Report Number
0	2015. 12. 08	Original Report.	EM-F150776

2. SUMMARY OF TEST RESULTS

Rule	Description	Results
15.207	Conducted Emission	PASS
15.205/15.209/ 15.249(a)	Radiated Band Edge and Radiated Spurious Emission Fundamental Frequency	PASS
	Occupied Bandwidth 99% Power	Reference only
15.203	Antenna Requirement	PASS

3. GENERAL INFORMATION

3.1. Description of EUT

Product	Ceiling Fan Remote Controller
Model Number	(1)JY1004 (2)RC205QBT-D1 Above all models have the same circuit and hardware. The differences are in marketing. The M/N RC205QBT-D1 was tested in this report.
Serial Number	N/A
Applicant	Fanimation Inc. 10983 Bennett Parkway, Zionsville, Indonesia 46077, U.S.A.
Manufacture#1	Satellite Electronic (Zhongshan)., Ltd. 8 Chuang Ye Rd. Torch Development Zone Zhongshan. Guangdong. 528437 China
Manufacture#2	Chungear Industrial Co., Ltd. 106 Kanho Rd, Taichung, Taiwan
Manufacture#3	Zhongshan Amity Electronic Ltd. No.16, Torch Hi-Tech Industrial Development Zone, Zhongshan City Guangdong Province China
RF Features	Bluetooth Low Energy (BLE)
Transmit Type	1T1R
Power Wire	Non-Shielded, Undetachable, 0.1m*2
Date of Receipt of Sample	2015. 11. 25

3.2. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
BLE	2402-2480	40	GFSK	1

Channel List						
BLE						
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)			
00	2402	20	2442			
01	2404	21	2444			
02	2406	22	2446			
03	2408	23	2448			
04	2410	24	2450			
05	2412	25	2452			
06	2414	26	2454			
07	2416	27	2456			
08	2418	28	2458			
09	2420	29	2460			
10	2422	30	2462			
11	2424	31	2464			
12	2426	32	2466			
13	2428	33	2468			
14	2430	34	2470			
15	2432	35	2472			
16	2434	36	2474			
17	2436	37	2476			
18	2438	38	2478			
19	2440	39	2480			

3.3. Antenna Information

Antenna Part Number	Manufacture	Antenna Type	Frequency	Max Gain (dBi)
		PCB Antenna	2.4GHz	4.33

3.4. Test Configuration

Mode	Duty Cycle (x)	T (ms)	Duty Cycle Factor (dB)
BLE	1	N/A	N/A

Note: When duty cycle is less than 98% (0.98) that duty cycle factor $10\log(1/x)$ is needed to add in conducted test items measured in average detector.

	AC Conduction
Test Case	Normal operation

Item		Mode	Data Rate	Test Channel
	Radiated Band Edge Note1	BLE	1Mbps	00/39
Radiated	Radiated Spurious Emission Note1	BLE	1Mbps	00/19/39
Test Case	Fundamental Frequency	BLE	1Mbps	00/19/39
	Occupied Bandwidth 99% Power	BLE	1Mbps	00/19/39

Note 1:

_			
N / 1	1 . 1	\mathbf{r}	evice
	nıla	1/	211100
	. , , , , ,		
1110		-	

Portable Device, and 3 axis	were assessed.	The worst	scenario 1	for Radiated	Spurious
Emission as follow:					

Lie

Side

Stand

3.5. Setup Configuration

3.5.1. EUT Configuration for Power Line and Radiated Emission

3.6. Operating Condition of EUT

To set EUT RF function under continues transmitting and choosing channel.

File Number: C1M1511309 Report Number: EM-F150776

3.7. Description of Test Facility

Test Firm Name : AUDIX Technology Corporation

EMC Department

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Test Location & Facility : No. 8 Shielded Room

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Semi-Anechoic Chamber

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Fully Anechoic Chamber

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

NVLAP Lab. Code : 200077-0

TAF Accreditation No : 1724

3.8. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty
Conduction Test	150kHz~30MHz	±3.5dB
Radiation Test (Distance: 3m)	30MHz~300MHz	± 2.91dB
	300MHz~1000MHz	± 2.74dB
	Above 1GHz	± 5.02dB

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty		
Occupied Bandwidth 99% Power	± 1kHz		

4. MEASUREMENT EQUIPMENT LIST

4.1. Conducted Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Test Receiver	R&S	ESR3	101774	2015. 02. 06	1 Year
2.	A.M.N.	R&S	ENV4200	100169	2015. 05. 08	1 Year
3.	L.I.S.N.	Kyoritsu	KNW-407	8-855-9	2014. 12. 26	1 Year
4.	Pulse Limiter	R&S	ESH3-Z2	100354	2015. 01. 17	1 Year

4.2. Radiated Emission Measurement

4.2.1. Frequency Range 30MHz~1000MHz (Semi-Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2015. 09. 14	1 Year
2.	Test Receiver	R & S	ESCS30	100338	2015. 06. 24	1 Year
3.	Amplifier	HP	8447D	2944A06305	2015. 02. 12	1 Year
4.	Bilog Antenna	CHASE	CBL6112D	33821	2015. 02. 27	1 Year

4.2.2. Above 1000MHz (Fully Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300366	2015. 08. 20	1 Year
2.	Test Receiver	R & S	ESCS30	100338	2015. 06. 24	1 Year
3.	Amplifier	Agilent	8449B	3008A02676	2015. 02. 11	1 Year
4.	2.4GHz Notch Filter	K&L	7NSL10-2441. 5E130.5-00	1	2015. 07. 22	1 Year
5.	3G High Pass Filter	Microware Circuits	H3G018G1	484796	2015. 08. 24	1 Year
6.	Horn Antenna	EMCO	3115	9609-4927	2015. 06. 22	1 Year
7.	Horn Antenna	EMCO	3116	2653	2015. 10. 20	1 Year

File Number: C1M1511309 Report Number: EM-F150776

5. CONDUCTED EMISSION MEASUREMET

5.1. Block Diagram of Test Setup

Shielded Room Setup Diagram

Ground Plane

5.2. Power Line Conducted Emission Limit

Eraguanav	Conducted Limit			
Frequency	Quasi-Peak Level	Average Level		
150kHz ~ 500kHz	66 ~ 56 dBμV	$56 \sim 46 \; dB \mu V$		
500kHz ~ 5MHz	56 dBμV	46 dBμV		
5MHz ~ 30MHz	60 dBμV	50 dBμV		

Remark 1.: If the average limit is met when using a Quasi-Peak detector, the measurement using the average detector is not required.

2.: The lower limit applies to the band edges.

5.3. Test Procedure

- 5.3.1. To set up the EUT as indicated in ANSI C 63.4. The EUT was placed on the table which has 80 cm height to the ground and 40 cm distance to the conducting wall.
- 5.3.2. Power supplier of the EUT was connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 5.3.3. The AC power supplies to all peripheral devices must be provided through line impedance stabilization network (L.I.S.N.)
- 5.3.4. Checking frequency range from 150 kHz to 30 MHz and record the emission which does not have 20 dB below limit.

5.4. Conducted Emission Measurement Results PASSED.

Test Date	2015/12/07	Temp./Hum.	26°C/50%
Test Voltage	A	C 120V, 60Hz	

AUDIX Technology Corp. EMC Department No.53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan R.O.C.

Tel:+886-2-26092133 Fax:+886-2-26099303

Email:emc@audixtech.com

Site no. : No.8 Shielded Room Data no. : 2 : NEUTRAL Condition : ENV4200 358 (H) Phase Limit : FCC PART 15C

: 26*C / 50% ESR3 (1774) Engineer : Tim Env. / Ins.

: RC205QBT-D1 EUT Power Rating : 120Vac/60Hz Test Mode : Operating

	Freq.	AMN Factor (dB)	Cable Loss (dB)	Pulse Att. (dB)	Reading (dBµV)	Emission Level (dBµV)	Limits (dBµV)	Margin (dB)	Remark
			(45)					(ub)	
1	0.263	10.25	0.03	9.87	19.40	39.55	51.34	11.79	Average
2	0.263	10.25	0.03	9.87	24.74	44.89	61.34	16.45	QP
3	0.651	10.19	0.04	9.88	17.80	37.91	46.00	8.09	Average
4	0.651	10.19	0.04	9.88	22.10	42.21	56.00	13.79	QP
5	2.554	10.19	0.10	9.88	16.66	36.83	46.00	9.17	Average
6	2.554	10.19	0.10	9.88	21.30	41.47	56.00	14.53	QP
7	14.138	10.15	0.24	9.92	22.11	42.42	50.00	7.58	Average
8	14.138	10.15	0.24	9.92	30.47	50.78	60.00	9.22	QP
9	15.307	10.14	0.25	9.92	22.50	42.81	50.00	7.19	Average
10	15.307	10.14	0.25	9.92	29.33	49.64	60.00	10.36	QP
11	26.900	10.35	0.30	9.99	18.55	39.19	50.00	10.81	Average
12	26.900	10.35	0.30	9.99	25.54	46.18	60.00	13.82	QР

Remarks: 1. Emission Level= AMN Factor + Cable Loss + Pulse Att. + Reading.

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan Tel: +886 2 26099301 Fax: +886 2 26099303

AUDIX Technology Corp. EMC Department
No.53-11, Dingfu, Linkou Dist., New Taipei City
244, Taiwan R.O.C.
Tel:+886-2-26092133 Fax:+886-2-26099303

Email:emc@audixtech.com

 Site no.
 : No.8 Shielded Room
 Data no.
 : 1

 Condition
 : ENV4200 358 (H)
 Phase
 : LINE

 Limit
 : FCC PART 15C

 Env. / Ins.
 : 26*C / 50% ESR3 (1774)
 Engineer
 : Tim

EUT : RC205QBT-D1 Power Rating : 120Vac/60Hz Test Mode : Operating

	Freq. (MHz)	AMN Factor (dB)	Cable Loss (dB)	Pulse Att. (dB)	Reading (dBμV)	Emission Level (dBµV)	Limits (dBμV)	Margin (dB)	Remark
1	0.182	10.28	0.03	9.87	19.81	39.99	54.37	14.38	Average
2	0.182	10.28	0.03	9.87	25.50	45.68	64.37	18.69	QP
3	0.611	10.22	0.04	9.88	10.68	30.82	46.00	15.18	Average
4	0.611	10.22	0.04	9.88	18.00	38.14	56.00	17.86	QP
5	1.178	10.20	0.06	9.87	18.06	38.19	46.00	7.81	Average
6	1.178	10.20	0.06	9.87	22.38	42.51	56.00	13.49	QP
7	4.478	10.21	0.14	9.89	9.70	29.94	46.00	16.06	Average
8	4.478	10.21	0.14	9.89	19.54	39.78	56.00	16.22	QP
9	14.540	10.13	0.25	9.92	23.22	43.52	50.00	6.48	Average
10	14.540	10.13	0.25	9.92	31.08	51.38	60.00	8.62	QP
11	26.984	10.53	0.30	9.99	18.44	39.26	50.00	10.74	Average
12	26.984	10.53	0.30	9.99	27.26	48.08	60.00	11.92	QP

Remarks: 1. Emission Level= AMN Factor + Cable Loss + Pulse Att. + Reading.

6. RADIATED EMISSION MEASUREMENT

6.1. Block Diagram of Test Setup

- 6.1.1. Block Diagram of EUT Indicated as section 3.6
- 6.1.2. Semi-Anechoic Chamber (3m) Setup Diagram for 30-1000 MHz

6.1.3. Fully Anechoic Chamber (3m) Setup Diagram for above 1GHz

File Number: C1M1511309 Report Number: EM-F150776

6.2. Radiated Emission Limits

6.2.1. General Limit

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with section 6.2.2. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Eraguanay (MHz)	Distance (m)	Field Strengths Limits		
Frequency (MHz)	Distance (m)	μV/m	dBμV/m	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	216 ~ 960 3		46.0	
Above 960	3	500	54.0	
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)		

Remark : (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI 63.4: 8.3.1.2, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.2.2. Limite for Fundamental & Harmonics Frequency

Fundamental	Field stren	gth of fundamental	Field strength of harmonics		
Frequency	mV/m	$dB\mu V/m$	μV/m	$dB\mu V/m$	
902-928MHz	50	114 (Peak)	500	74 (Peak)	
902-926MITZ	30	94 (Average)	300	54 (Average)	
2400-2483.5MHz	50	114 (Peak)	500	74 (Peak)	
2400-2483.3MITZ	30	94 (Average)	300	54 (Average)	
5725-5875MHz	50	114 (Peak)	500	74 (Peak)	
3/23-38/3WITZ	30	94 (Average)	300	54 (Average)	
24.0.24.25GHz	250	128 (Peak)	2500	88 (Peak)	
24.0-24.25GHz	250	108 (Average)	2300	68 (Average)	

Remark: $mV/m = 1000 \mu V/m$; $dB\mu V/m = 20 \log (\mu V/m)$

6.3. Test Procedure

The EUT setup on the turn table which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4-2003 regulation.

Frequency below 1 GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1) RBW = 120KHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required. Otherwise using Q.P. for finally measurement.

Frequency above 1GHz to 10th harmonic:

Peak Detector:

- (1) RBW = 1MHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required. Otherwise using average for finally measurement.

Average Measurement:

Option 1:

- (1) RBW = 1 MHz
- (2) VBW = 1/T, where T is Tx-on presented in Appendix A.3.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

\square Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

- Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading
- Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading
- □ Average Emission Level= Peak Emission Level+ DCCF

 Duty Cycle Correction Factor (DCCF)= 20log (TX on/TX on+off) presented in section 3.4

6.5. Test Results

PASSED.

Test Date	2015/12/07	Temp./Hum.	24°C/56%
Test Voltage	A	C 120V, 60Hz	

6.5.1. Emissions within Restricted Frequency Bands

6.5.1.1. Frequency Below 1 GHz

Mode	BLE	Frequency	TX 2402MHz
80 Level (dBuV/m)			
70			
60			
50			30M-1G 6dB
10			
30	M	Manhaman at a state of the same of the sam	with the party and work and the same printed and the same of the s
20	V and the washing continued and	NP No Artificial Control of the Cont	
10			
0 30 100.	200. 300. 400.	500. 600. 700.	800. 900. 1000

Antenna at Horizontal Polarization

•	Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
	(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
-	139.61	11.25	3.52	24.53	39.30	43.50	4.20	Peak
	249.22	12.35	4.32	5.61	22.28	46.00	23.72	Peak
	917.55	20.67	7.64	-1.17	27.14	46.00	18.86	Peak

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
30.97	18.07	2.34	13.18	33.59	40.00	6.41	Peak
93.05	9.67	3.17	21.21	34.05	43.50	9.45	Peak
138.64	11.30	3.51	21.29	36.10	43.50	7.40	Peak

Mode **BLE** Frequency TX 2440MHz 80 Level (dBuV/m) 60 30M-1G 50 40 30 20 10 800. 1000 600. 900.

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
138.64	11.30	3.51	24.60	39.41	43.50	4.09	Peak
250.19	12.40	4.33	4.54	21.27	46.00	24.73	Peak
917.55	20.67	7.64	-2.30	26.01	46.00	19.99	Peak

Frequency (MHz)

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
30.00	18.62	2.32	12.96	33.90	40.00	6.10	Peak
93.05	9.67	3.17	20.79	33.63	43.50	9.87	Peak
138.64	11.30	3.51	21.12	35.93	43.50	7.57	Peak

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
138.64	11.30	3.51	24.49	39.30	43.50	4.20	Peak
248.25	12.30	4.32	4.20	20.82	46.00	25.18	Peak
922.40	20.70	7.67	-3.90	24.47	46.00	21.53	Peak

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
30.00	18.62	2.32	12.59	33.53	40.00	6.47	Peak
93.05	9.67	3.17	20.57	33.41	43.50	10.09	Peak
136.70	11.39	3.50	21.00	35.89	43.50	7.61	Peak

6.5.1.2. Frequency Above 1 GHz to 10th harmonics

Band Edge:

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2380.42	32.13	5.71	7.10	44.94	74.00	29.06	Peak
2389.94	32.16	5.72	4.83	42.71	74.00	31.29	Peak
2402.12	32.16	5.72	36.10	73.98			Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2315.32	32.03	5.65	-6.30	31.38	54.00	22.62	Average
2389.94	32.16	5.72	-6.59	31.29	54.00	22.71	Average
2402.12	32.16	5.72	35.03	72.91			Average

Antenna at Vertical Polarization

Emission	Antenna Factor	Cable	Meter Reading	Emission Level	Limits	Margin	Detector
Frequency (MHz)	(dB/m)	Loss (dB)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	Detector
2321.90	32.06	5.67	6.63	44.36	74.00	29.64	Peak
2389.94	32.16	5.72	3.97	41.85	74.00	32.15	Peak
2402.12	32.16	5.72	39.70	77.58			Peak

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2325.68	32.06	5.67	-6.41	31.32	54.00	22.68	Average
2389.94	32.16	5.72	-6.60	31.28	54.00	22.72	Average
2401.98	32.16	5.72	38.80	76.68			Average

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level		J	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2479.76	32.28	5.82	35.98	74.08			Peak
2483.52	32.28	5.82	5.00	43.10	74.00	30.90	Peak
2487.60	32.30	5.84	6.78	44.92	74.00	29.08	Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2480.00	32.28	5.82	35.11	73.21			Average
2483.52	32.28	5.82	-5.30	32.80	54.00	21.20	Average
2483.76	32.28	5.82	-5.80	32.30	54.00	21.70	Average

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	D
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2479.76	32.28	5.82	37.91	76.01			Peak
2483.52	32.28	5.82	5.83	43.93	74.00	30.07	Peak
2496.64	32.30	5.84	7.00	45.14	74.00	28.86	Peak

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$(dB\mu V/m)$	(dB)	
2480.00	32.28	5.82	36.95	75.05			Average
2483.52	32.28	5.82	- 4.71	33.39	54.00	20.61	Average
2483.92	32.28	5.82	-5.82	32.28	54.00	21.72	Average

6.5.2. Emissions outside the frequency band:

The emissions	(up to 25GHz)	not reported for there	is no e	emission b	oe found.
1110 011110	(o.p oc _c _c_	, 1100100000000000000000000000000000000		•	, • • • • • • • • • • • • • • • • • • •

Mode		BLE	<u> </u>	Frequency		X 2402N	
Antonna	t Honizon	tal Dalam	pization				
Antenna a Emission	Antenna	Cable	<u>ization</u> Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Readin		Lillius	Maigiii	Detector
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	(dBµV/m)	(dB)	Detector
4810.00	34.22	7.86	5.52	47.60	54.00	6.40	Peak
Antenna a	t Vortical	Doloriza	tion				
				Emission	Limita	Manain	
Emission Frequency	Antenna Factor	Cable Loss	Meter Readin		Limits	Margin	Datastar
(MHz)	(dB/m)	(dB)	(dBµV		(dBµV/m)	(dB)	Detector
4810.00	34.22	7.86	6.82	48.90	54.00	5.10	Peak
Mode		BLE		Frequency	T	X 2440M	ſНz
	t Harizan		rization	Frequency	T	X 2440N	ſНz
Antenna a		tal Polar		1			ſНz
	t Horizon Antenna Factor		rization Meter Readin	Emission	Limits	X 2440M Margin	
Antenna a Emission	Antenna	tal Polar Cable	Meter	Emission g Level			MHz Detector
Antenna a Emission Frequency	Antenna Factor	tal Polar Cable Loss	Meter Readin	Emission g Level	Limits	Margin	
Antenna a Emission Frequency (MHz)	Antenna Factor (dB/m) 34.26	tal Polar Cable Loss (dB) 8.47	Meter Readin (dBμV 5.79	Emission g Level (dBμV/m)	Limits $(dB\mu V/m)$	Margin (dB)	Detector
Antenna a Emission Frequency (MHz) 4885.00	Antenna Factor (dB/m) 34.26	tal Polar Cable Loss (dB) 8.47	Meter Readin (dBμV 5.79	Emission g Level (dBμV/m) 48.52	Limits $(dB\mu V/m)$	Margin (dB)	Detector
Antenna a Emission Frequency (MHz) 4885.00 Antenna a	Antenna Factor (dB/m) 34.26 t Vertical	tal Polar Cable Loss (dB) 8.47 Polariza	Meter Readin (dBµV 5.79	Emission Level (dBμV/m) 48.52 Emission	Limits (dBµV/m) 54.00	Margin (dB) 5.48	Detector
Antenna a Emission Frequency (MHz) 4885.00 Antenna a Emission	Antenna Factor (dB/m) 34.26 t Vertical Antenna	tal Polar Cable Loss (dB) 8.47 Polariza Cable	Meter Readin (dBµV 5.79 ation	Emission Level (dBμV/m) 48.52 Emission Level	Limits (dBµV/m) 54.00	Margin (dB) 5.48	Detector Peak

Mode		BLE		Frequency	T	TX 2480MHz	
Antenna a	t Horizo	ontal Polar	ization				
Emission Frequency	Antenn Factor	-	Mete Readir	2 21111001011	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	V) ($dB\mu V/m$)	$\left(dB\mu V/m\right)$	(dB)	
4960.00	34.29	8.68	4.29	47.26	54.00	6.74	Peak
Antenna a	t Vertic	al Polariza	tion				
Emission Frequency	Antenn Factor		Mete Readir		Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	V) ($dB\mu V/m$)	$\left(dB\mu V/m\right)$	(dB)	
4960.00	34.29	8.68	5.85	48.82	54.00	5.18	Peak

6.5.3. Fundamental Frequency:

Mode	BLE	Frequency	TX 2402MHz
------	-----	-----------	------------

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
2402.20	32.16	5.72	38.17	76.05	94.00	17.95	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor		Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
2440.23	32.23	5.78	39.85	77.86	94.00	16.14	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor		Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2479.65	32.28	5.82	41.50	79.60	94.00	14.40	Peak

Remark: Horizontal is the strongest polarization and peak value has complied with limit, so vertical won't be listed in test report.

7. OCCUPIED BANDWIDTH 99% POWER MEASUREMENT

Test Date	2015/12/02	Temp./Hum.	23°C/52%
Cable Loss		Test Voltage	AC 120V, 60Hz

7.1.1. Occupied Bandwidth 99% Power Result

Modulation Type	Centre Frequency (MHz)	Occupied Bandwidth 99% Power (MHz)	
	2402	1.0861	
BLE	2440	1.2070	
	2480	1.0786	

File Number: C1M1511309 Report Number: EM-F150776

Tel: +886 2 26099301

Fax: +886 2 26099303

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

7.1.2. Measurement Plots

8. DEVIATION TO TEST SPECIFICATIONS

[NONE]