Practice of logarithm functions

Fco. Javier Vázquez Tavares

Exercise 1 What is the base of the function $f(x) = \log_9 x$. Evaluate the function at x = 9, 1, 1/9, 81 and 3.

Exercise 2 The natural logarithmic function $f(x) = \ln x$ has a vertical or horizontal asymptote at x = 0.

Exercise 3 The natural logarithmic function $f(x) = \ln(x-1)$ has a vertical or horizontal asymptote at x = 0.

Exercise 4 Find the domain of the functions, $f(x) = \log_{10}(x+3)$, $g(x) = \ln(x-x^2)$.

Exercise 5 Let a be a positive number, with $a \neq 1$. Let A, B and C be any real numbers with A > 0 and B > 0. Write the 3 laws of logarithms.

Exercise 6 Use the Laws of Logarithms to combine the following expressions,

$$\log_4(6) + 2\log_4(7), \quad 2\log(x) - 3\log(x+1)$$

$$4\log x - \frac{1}{3}\log(x^2+1) + 2\log(x-1), \quad \log_a b + c\log_a(d) - r\log_a(s)$$

Exercise 7 Perform the indicated operations and simplify,

$$\frac{1+\frac{1}{c-1}}{1-\frac{1}{c-1}}, \quad \left(-\frac{2r}{s}\right)\left(-\frac{s^2}{6t}\right)$$

Exercise 8 Using the Law of Exponents to rewrite and simplify the expressions,

$$\frac{x^9(2x)^4}{x^3}$$
, $\frac{a^n(a^{2n+1})}{a^{n-2}}$, $(2x^2y^4)^{3/2}$

Extra Exercise Proof the 3 laws of logarithms.