Math 340: Discrete Structures II

Practice Exam 2

Instructions. The exam is 3 hours long and contains 6 questions. Write your answers <u>clearly</u> in the notebook provided. You may quote any result/theorem seen in the lectures or in the assignments without proving it (unless, of course, that is what you are asked to prove).

1. Graph Theory.

(a) State Kuratowski's theorem.

[2 marks]

(b) Explain whether or not each of the following two graphs is planar. [8 marks]

2. Graph Theory.

Take a bipartite graph G = (V, E) where the two parts of V in the bipartition are $X = \{x_1, x_2, \dots, x_n\}$ and $Y = \{y_1, y_2, \dots, y_n\}$.

(a) State Hall's Theorem.

[1 mark]

- (b) Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of the numbers $\{0, 1, \dots, n-1\}$. Suppose that the degree of x_i is π_i for each $1 \leq i \leq n$. Does G contain a perfect matching? [3 marks]
- (c) Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of the numbers $\{1, 2, \dots, n\}$. Suppose that the degree of x_i is π_i for each $1 \le i \le n$. Does G contain a perfect matching? [3 marks]
- (d) Let $\pi_1 \pi_2 \cdots \pi_n$ be a permutation of the numbers $\{n+1, n+2, \dots, 2n\}$. Suppose that the degree of x_i is $(\pi_i i)$ for each $1 \le i \le n$. Does G contain a perfect matching?

3. Probability.

(a) i. State Bayes Theorem.

[1 mark]

- ii. A large company gives a new employee a drug test. The False-Positive rate is 1% and the False-Negative rate is 1%. In addition, 1% of the population use the drug. The employee tests positive for the drug. What is the probability the employee uses the drug? [4 marks]
- (b) Suppose I roll an *n*-sided die¹ once. Now you repeatedly roll the die until you roll a number *at least* as large as I rolled. What is the expected number of rolls you have to make? [5 marks]

4. Probability.

(a) i. State Boole's Inequality.

[1 mark]

ii. State the Chernoff bound.

[2 marks]

- (b) In a random graph, for each pair of vertices i and j, we independently include the edge (i, j) in the graph with probability $\frac{1}{2}$.
 - i. Prove that, with high probability, every vertex in a random graph has degree at least $\frac{1}{2}n 3\sqrt{n \ln n}$, where n is the number of vertices. [3 marks]
 - ii. The distance between a pair of vertices i and j is the length of the shortest path between them. The diameter of a graph is the maximum distance between any pair of vertices. Prove that, with high probability, a random graph has diameter 2. [4 marks]

¹That is, its faces have the values $\{1, 2, ..., n\}$.

5. Combinatorics.

(a) i. Use the Binomial Theorem to prove the following identity: [2 marks]

$$3^n = \sum_{k=0}^n 2^k \binom{n}{k}$$

- ii. Give a combinatorial proof. [3 marks]
- (b) i. Give an algebraic proof of the following identity: [2 marks]

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

ii. Give a combinatorial proof. [3 marks]

6. Combinatorics.

Consider strings of length n that use the digits $\{0,1,2\}$. Let f(n) be the number of such strings that contain an *even* number of 0s.

(a) Prove that f(n) satisfies the recurrence relation [4 marks]

$$f(n) = f(n-1) + 3^{n-1}$$

- (b) Use the recurrence to find the ordinary generating function F(x). [3 marks]
- (c) Use the generating function to obtain a closed formula for f(n). [3 marks]