WUOLAH

final_febrero_resuelto_2017.pdf

- 1° Cálculo
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR Universidad de Granada

Como aún estás en la portada, es momento de redes sociales. Cotilléanos y luego a estudiar.

Wuolah

Wuolah

Wuolah_apuntes

WUOLAH

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Examen Final de Cálculo Curso 2016/2017

1. (1.5 puntos) Calcula la imagen de la función $f: \mathbb{R} \to \mathbb{R}$ definida como

$$f(x) = e^{-x^2 + x} (1 - 2x) .$$

Solución.

La función es continua y derivable en todo \mathbb{R} , así que la imagen debe ser un intervalo (por ser continua y estar definida en un intervalo). Para calcular la imagen, vamos a calcular los puntos críticos, decidir si en ellos se alcanza algún extremo relativo y, estudiando el comportamiento en $-\infty$ y $+\infty$, calcular los extremos absolutos, si los tuviera.

La derivada de la función vale

$$f'(x) = e^{-x^2 + x} (1 - 2x)^2 + e^{-x^2 + x} (-2) = e^{-x^2 + x} ((1 - 2x)^2 - 2)$$
$$= e^{-x^2 + x} (4x^2 - 4x - 1).$$

Teniendo en cuenta que la función exponencial nunca vale 0, tenemos que

$$f'(x) = 0 \iff 4x^2 - 4x - 1 = 0 \iff x = \frac{1}{2} \pm \frac{\sqrt{2}}{2}$$
.

Vamos a llamar $x_0 = \frac{1}{2} - \frac{\sqrt{2}}{2}$ y $x_1 = \frac{1}{2} + \frac{\sqrt{2}}{2}$.

Para estudiar si en estos puntos se alcanza algún extremo relativo, vamos a estudiar el signo de la segunda derivada en dichos puntos. La segunda derivada vale

$$f''(x) = e^{-x^2 + x} (1 - 2x) (4x^2 - 4x - 1) + e^{-x^2 + x} (8x - 4).$$

Teniendo en cuenta que los puntos x_0 y x_1 son las soluciones de $4x^2 - 4x - 1 = 0$, el primer sumando de la expresión de f''(x) vale 0 en ambos puntos con lo que tenemos que

$$f''(x_0) = e^{-x_0^2 + x_0} (8x_0 - 4) = e^{-x_0^2 + x_0} = -4\sqrt{2} < 0,$$

con lo que en x_0 se alcanza un máximo relativo y

$$f''(x_1) = e^{-x_1^2 + x_1} (8x_1 - 4) = e^{-x_1^2 + x_1} = 4\sqrt{2} > 0$$

y en x_1 se alcanza un mínimo relativo.

El valor de la función en el punto x_0 , donde se alcanza el máximo relativo, vale

$$f(x_0) = e^{-x_0^2 + x_0} (1 - 2x_0) = \sqrt{2} e^{-\frac{1}{4}}$$

y el valor de f en el punto x_1 , donde se alcanza el mínimo relativo, vale

$$f(x_1) = e^{-x_1^2 + x_1} (1 - 2x_1) = -\sqrt{2} e^{-\frac{1}{4}}.$$

Finalmente, vamos a estudiar el comportamiento de la función tanto en $-\infty$ como en $+\infty$. El tratamiento es similar así que haremos los dos casos a la vez. Tanto en $-\infty$ como en $+\infty$ se presenta una indeterminación de la forma $0 \cdot \infty$. Si la manipulamos para poder aplicar la segunda regla de L'Hôpital tendremos que

$$\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}e^{-x^2+x}\left(1-2x\right)=\lim_{x\to\pm\infty}\frac{1-2x}{e^{x^2-x}},$$

que es una indeterminación de la forma $\frac{\infty}{\infty}.$ Aplicando la segunda regla de L'Hôpital obtenemos

$$\lim_{x \to \pm \infty} \frac{-2}{e^{x^2 - x} (2x - 1)} = 0.$$

Entonces la imagen quedaría el intervalo $\left[-\sqrt{2}\,e^{-\frac{1}{4}},\sqrt{2}\,e^{-\frac{1}{4}}\right]$.

- 2. Calcula los siguientes límites:
 - a) (1.25 puntos) $\lim_{x\to 0^+} \frac{\log(\sin(2x))}{\log(\sin(x))}$

Solución.

Como $\lim_{x\to 0^+} \operatorname{sen}(2x) = \lim_{x\to 0^+} \operatorname{sen}(x) = 0$ y función logaritmo neperiano diverge negativamente en 0, entonces estamos ante una indeterminación de la forma $\frac{\infty}{\infty}$ y podemos aplicar la segunda regla de L'Hôpital. Entonces nos queda

$$\lim_{x \to 0^+} \frac{2\cos(2x)\sin(x)}{\sin(2x)\cos(x)} = \lim_{x \to 0^+} \frac{2\cos(2x)}{\cos(x)} \lim_{x \to 0^+} \frac{\sin(x)}{\sin(2x)} = 2\lim_{x \to 0^+} \frac{\sin(x)}{\sin(2x)}.$$

Si ahora aplicamos la primera regla de L'Hôpital al lím $_{x\to 0^+} \frac{\mathrm{sen}(x)}{\mathrm{sen}(2x)}$ obtenemos

$$\lim_{x \to 0^+} \frac{\cos(x)}{2\cos(2x)} = 2,$$

y el límite buscado vale 1.

b) (1.5 puntos)
$$\lim_{x\to 0^+} \frac{\int_x^{\sqrt{x}} \log(1+t^2) dt}{\sqrt{x}}$$
.

Solución.

La función $f\colon\mathbb{R}^+_0\to\mathbb{R}$ definida por $f(x)=\int_x^{\sqrt{x}}\log{(1+t^2)}$ dt, aplicando el teorema fundamental del cálculo, es continua en \mathbb{R}^+_0 y derivable en \mathbb{R}^+ y además $f(0)=\int_0^0\log(1+t^2)\,\mathrm{d}t=0$. En la misma situación (continua en \mathbb{R}^+_0 y derivable en \mathbb{R}^+) está la función \sqrt{x} del denominador, que también vale 0 en 0. Estamos entonces ante una indeterminación de la forma $\frac{0}{0}$ y estamos en condiciones de aplicar la primera regla de L'Hôpital para intentar conocer el comportamiento del cociente de las funciones en 0 y obtenemos

$$\lim_{x \to 0^+} \frac{\frac{\log(1+x)}{2\sqrt{x}} - \log(1+x^2)}{\frac{1}{2\sqrt{x}}} = \lim_{x \to 0^+} \left(\log(1+x) - 2\sqrt{x} \log(1+x^2) \right) = 0.$$

3. (1.5 puntos) Un triángulo rectángulo OAB, inscrito en la circunferencia de ecuación $(x-1)^2 + y^2 = 1$, tiene un vértice en la origen, otro A en el eje horizontal y el tercero B en dicha circunferencia. Si uno de los catetos es horizontal, calcula B de forma que el triángulo OAB tenga área máxima.

Solución.

Si llamamos x a la primera coordenada del punto A = (x, 0), entonces B = (x, y), por estar en la circunferencia, tiene que verificar $(x - 1)^2 + y^2 = 1$. Despejando,

$$(x-1)^2 + y^2 = 1 \iff y^2 = 1 - (x-1)^2 = 2x - x^2 \iff y = \sqrt{2x - x^2}.$$

Observa que hemos elegido la solución positiva al despejar. El área del triángulo es la mitad de la base por la altura:

$$f: [0,2] \to \mathbb{R}, \quad f(x) = \frac{x\sqrt{2x - x^2}}{2}.$$

Su derivada, salvo en los extremos es,

$$f'(x) = \frac{\sqrt{2x - x^2}}{2} + \frac{(2 - 2x)x}{4\sqrt{2x - x^2}} = -\frac{2x^2 - 3x}{2\sqrt{2x - x^2}}$$

que se anula si, y sólo si,

$$2x^2 - 3x = 0 \iff x(2x - 3) = 0 \iff x = 0 \text{ o } x = \frac{3}{2}.$$

Podemos justificar que el máximo se alcanza en 3/2 de varias formas:

- a) podríamos calcular la segunda derivada y comprobar que es negativa con lo que tendríamos un único máximo relativo que será el máximo absoluto;
- b) podríamos estudiar la monotonía de f estudiando el signo de la derivada: como f'(1) > 0 y f'(1.75) < 0, la función pasa de crecer a decrecer y, por tanto, tiene un máximo en 3/2;
- c) por último, quizá la forma más sencilla, se puede usar que una función continua en un intervalo cerrado y acotado alcanza su máximo y su mínimo absoluto. Dichos extremos se tienen que alcanzar en 0, 3/2 o 2. Como f(0) = f(2) = 0 y f(3/2) > 0, la función alcanza su mínimo en los extremos y su máximo en 3/2.

Por tanto, el punto pedido B sería el punto $(3/2, \sqrt{3-(3/2)^2}) = (3/2, \sqrt{3}/2)$.

4. (1.5 puntos) Calcula $\int (\log(x))^2 dx$.

Solución.

Si uno aplica el método de integración por partes, con $u = (\log(x))^2$ y dv = dx (entonces $du = 2\log(x)\frac{1}{x}dx$ y v = x), se tiene que

$$\int (\log(x))^2 dx = x (\log(x))^2 - \int 2x \log(x) \frac{1}{x} dx = x (\log(x))^2 - 2 \int \log(x) dx.$$

Por lo tanto, basta emplear de nuevo dicha fórmula, con $u = \log(x)$ y d $v = \mathrm{d}x$, para calcular

$$\int \log(x) \, \mathrm{d}x = x \log(x) - \int 1 \, \mathrm{d}x.$$

Combinando las dos expresiones anteriores, se llega a

$$\int (\log(x))^2 dx = x (\log(x))^2 - 2x \log(x) + 2x + C.$$

5. Estudia la convergencia de las series:

(a) **(1.5 puntos)**
$$\sum \left(\frac{2(n+1)}{e}\right)^n \frac{1}{n!}$$
.

Solución.

Sea $x_n = \left(\frac{2(n+1)}{e}\right)^n \frac{1}{n!}$ estrictamente positiva, se puede aplicar el criterio del cociente. Notando que

$$\frac{x_{n+1}}{x_n} = \frac{\left(\frac{2(n+2)}{e}\right)^{(n+1)} \frac{1}{(n+1)!}}{\left(\frac{2(n+1)}{e}\right)^n \frac{1}{n!}} = \frac{2}{e} \frac{(n+2)^{n+1}}{(n+1)^n} \frac{1}{n+1} = \frac{2}{e} \left(\frac{n+2}{n+1}\right)^{n+1},$$

el objetivo del ejercicio propuesto se centra en calcular

$$\lim_{n \to +\infty} \left(\frac{n+2}{n+1} \right)^{n+1} = \lim_{n \to +\infty} \left(1 + \frac{1}{n+1} \right)^{n+1} = e.$$

Este último límite también se puede obtener por medio de la regla del n'umero e. Por tanto, se obtiene que

$$\lim_{n\to +\infty}\frac{x_{n+1}}{x_n}=\frac{2}{e}\lim_{n\to +\infty}\left(\frac{n+2}{n+1}\right)^{n+1}=2>1,$$

con lo cual la serie diverge positivamente.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

(b) **(1.25 puntos)**
$$\sum \left(\frac{1 \cdot 4 \cdots (3n-2)}{4 \cdot 8 \cdots (4n)}\right)^2$$
.

Solución.

Sea $x_n=\left(\frac{1\cdot 4\cdots (3n-2)}{4\cdot 8\cdots (4n)}\right)^2$ estrictamente positiva, se puede proceder como en el ejercicio anterior. Se calcula

$$\frac{x_{n+1}}{x_n} = \frac{\left(\frac{1\cdot 4\cdots (3n-2)(3(n+1)-2)}{4\cdot 8\cdots (4n)(4(n+1))}\right)^2}{\left(\frac{1\cdot 4\cdots (3n-2)}{4\cdot 8\cdots (4n)}\right)^2} = \left(\frac{3n+1}{4n+4}\right)^2.$$

Por tanto, como

$$\lim_{n\to +\infty}\frac{3n+1}{4n+4}=\frac{3}{4},$$

se tiene que

$$\lim_{n \to +\infty} \frac{x_{n+1}}{x_n} = \left(\frac{3}{4}\right)^2 = \frac{9}{16} < 1.$$

De esta forma, el criterio del cociente implica la convergencia de la serie dada.

Granada, 2 de febrero de 2017

