UNIDAD II

2.10 METODO DE MULLER

1. INTRODUCCIÓN

Los polinomios tienen muchas aplicaciones en ciencia e ingeniería, como es el caso de su utilización en ajuste de curvas. Sin embargo, se considera que una de las aplicaciones mas interesantes y potentes es en los sistemas dinámicos, particularmente en los lineales.

El polinomio más conocido en el mundo científico, es el denominado, ecuación característica, que es de la forma:

$$a_2 x^2 + a_1 x + a_0 = 0$$

Donde las raíces de este polinomio satisfacen:

$$x_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2a_0}}{2a_0}$$

También denominados eigenvalores del sistema. Los eigenvalores pueden utilizarse para analizar un sistema, para nuestro caso es muy útil en lo concerniente a la estabilidad. Con base en lo anterior, encontrar las raíces en sistemas de segundo orden es prácticamente sencillo, pero para sistemas de orden superior, puede resultar en un arduo trabajo.

2. OBJETIVO

Definir y Comparar el método matemáticos de la Bisección, con otros métodos, en base a los criterios de eficiencia, precisión y tolerancia. Se Analizara una muestra de datos empleando cada uno de los métodos matemáticos de Bisección con otros métodos Estudiar los métodos matemáticos modificados en base a los criterios de eficiencia, precisión y tolerancia. Aprender y aplicar el método acelerado de Muller.

3. MÉTODO DE MULLER

Un predecesor del método de Muller, es el método de la secante, el cual obtiene raíces, estimando una proyección de una línea recta en el eje x, a través de dos valores de la función (Figura 1). El método de Muller toma un punto de vista similar, pero proyecta una parábola a través de tres puntos (Figura 2).

El método consiste en obtener los coeficientes de los tres puntos, sustituirlos en la fórmula cuadrática y obtener el punto donde la parábola intercepta el eje x. La aproximación es fácil de escribir, en forma conveniente esta sería:

$$f_2(x) = a(x-x_2)^2 + b(x-x_2) + c$$

Figura 2

Así, se busca esta parábola para intersectar los tres *puntos* $[x_0, f(x_0)], [x_1, f(x_1)]$ y $[x_2, f(x_2)].$ Los coeficientes de la ecuación anterior se evalúan al sustituir uno de esos tres puntos para dar:

$$f(x_0) = a(x_0 - x_2)^2 + b(x_0 - x_2) + c$$

$$f(x_1) = a(x_1 - x_2)^2 + b(x_1 - x_2) + c$$

$$f(x_2) = a(x_2 - x_2)^2 + b(x_2 - x_2) + c$$

La última ecuación genera que, $f(x_2) = c$, de esta forma, se puede tener un sistema de dos ecuaciones con dos incógnitas:

$$f(x_0) - f(x_2) = a(x_0 - x_2)^2 + b(x_0 - x_2)$$

$$f(x_1) - f(x_2) = a(x_1 - x_2)^2 + b(x_1 - x_2)$$

Definiendo de esta forma:

$$h_0 = x_1 - x_0 \qquad h_1 = x_2 - x_1$$

$$\delta_0 = \frac{f(x_1) - f(x_2)}{x_1 - x_0} \quad \delta_1 = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Sustituyendo en el sistema:

$$(h_0 - h_1)b - (h_0 + h_1)^2 a = h_0 \delta_0 + h_1 \delta_1$$

 $h_1 b - h_1^2 a = h_1 \delta_1$

Teniendo como resultado los coeficientes:

$$a = \frac{\delta_1 - \delta_0}{h_1 + h_0}$$
 $b = ah_1 + \delta_1$ $c = f(x_2)$

Encontrando la raíz, se implementar la solución convencional, pero debido al error de redondeo potencial, se usará una formulación alternativa:

$$x_3 - x_2 = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$
 despejando $x_3 = x_2 + \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$

La gran ventaja de este método es que se pueden localizar tanto las raíces reales como las imaginarias.

Hallando el error este será:

$$E_a = \left| \frac{x_3 - x_2}{x_3} \right| \cdot 100\%$$

Al ser un método de aproximación, este se realiza de forma secuencial e iterativamente, donde x_1 , x_2 , x_3 reemplazan los puntos x_0 , x_1 , x_2 llevando el error a un valor cercano a cero

Programa

Por ser un método que trabaja de forma lineal, es posible una aplicación computacional en forma sencilla, la cual sería:

```
SubMuller (x<sub>r</sub>, h, eps, maxit)
         x_2 = x_r
         x_1 = x_r + h * x_r
         x_0 = x_r - h^*x_r
         Do
                  iter = iter + 1
                  h_0 = x_1 + x_0
                  h_1 = x_2 - x_1
                  d_0 = (f(x_1)-f(x_0))/h_0
                   d_1 = (f(x_2)-f(x_1))/h_1
                   a = (d_1 - d_0)/(h_1 + h_0)
                  b = a*h_1 + d_1
                  c = f(x_2)
                   rad = sqrt (b*b - 4*a*c)
                  if I b+ rad I > I b - rad I then
                            den = b + rad
                   Else
                            den = b - rad
                  End if
                  dx_r = -2*c/den
                  x_r = x_2 + dx_r
                  Print iter, x<sub>r</sub>
                  IF (Idx_rI < eps*x_r or iter>maxit) exit
                  x_0 = x_1
                  x_1 = x_2
                  x_2 = x_r
         End do
End Muller
```

Ejemplo:

$$f(x) = x^3 - 13x - 12$$
 h = 0,1

$$x_2 = 5$$
 $x_1 = 5.5$ $x_0 = 4.5$

Con un análisis previo, las raíces son -3, -1 y 4

Solución

$$f(4,5) = 20,625$$
 $f(5,5) = 82,875$ $f(5) = 48$

Calculando

$$h_0 = 5,5 - 4,5 = 1$$
 $h_1 = 5 - 5,5 = -0,5$

$$\delta_0 = \frac{82,875 - 20,625}{5,5 - 4,5} = 62,25$$

$$\delta_1 = \frac{48 - 82,875}{5 - 5,5} = 69,75$$

Hallando los coeficientes

$$a = \frac{69,75 - 62,25}{-0.5 + 1} = 15 \ b = 15(-0.5) + 69,75 = 62,25$$
 $c = 48$

La raíz cuadrada del discriminante es:

$$\sqrt{62,25^2 - 4 \cdot 15 \cdot 48} = 31,544$$

Así
$$x_3 = 5 + \frac{-2 \cdot 48}{62.25 + 31.544} = 3,9765$$

Y el error estimado

$$E_a = \left| \frac{-1,0235}{x_3} \right| \cdot 100\% = 25,74\%$$

Ahora $x_2 = 3,9765 \ x_1 = 5 \ x_0 = 5,5$

Haciendo uso de un programa y realizando diferentes iteraciones:

i	X _r	E _a %
0	5	
1	3,9465	25,740
2	4,0011	0,614
3	4,0000	0,026
4	4,0000	0,000

4. ENLACES SUGERIDOS

https://pt.wikipedia.org/wiki/M%C3%A9todo de Muller

5. BIBLIOGRAFÍA

- Análisis Numérico, Richard L. Burden/J. Douglas Faires, Editorial Thomson Learning Inc.
- Métodos Numéricos Con SCILAB, Héctor Manuel Mora Escobar, Abril 2010

6. GLOSARIO

Muller: es un método rápido de convergencia para encontrar las raíces de una función polifónica

7. PREGUNTAS DE AUTOEVALUACIÓN

- 1. ¿Cuántos puntos necesita este Método para converger?
- 2. ¿Cuál puede ser una desventaja?
- 3. Muller es el mejor método visto?

UNIDAD II

2.10 METODO DE MULLER

1. PREGUNTAS DE AUTOEVALUACIÓN

1. ¿Cuántos puntos necesita este Método para converger?

<u>Respuesta:</u> Utiliza tres puntos iniciales, con los que tiene más información para aproximarse en forma acelerada al cero del polinomio.

2. ¿Cuál puede ser una desventaja?

<u>Respuesta:</u> Que es necesario conocer tres puntos iniciales para que el método arranque y que puede ser en algunos casos no ser conocido.

¿Es hasta hoy el mejor método visto, cuál es su opinión?
 Respuesta: Si, es mucho más exacto ya que tiene más puntos de apoyo para calcular el resultado.