ANALISI 1

LEZIONE 105

Esercizio 1	(3/	q×
	o V log x	

$$\int_{0}^{4} \sqrt{\frac{1}{\log x}} dx$$

Ju o uou ci souo probleui.

$$\int_{0}^{4} \dots = \int_{0}^{4} \dots + \int_{1}^{4} \dots$$

Idea: portare in problema in 1 in 0.

$$\int_{1}^{4} \frac{1}{\sqrt{\log x}} dx = \int_{3}^{3} \frac{1}{\sqrt{\log (1+y)}} dy$$

$$\int_{4}^{3} \frac{1}{\sqrt{\log x}} dx = \int_{3}^{3} \frac{1}{\sqrt{\log (1+y)}} dy$$

$$\int_{4}^{3} \frac{1}{\sqrt{\log x}} dx = \int_{3}^{3} \frac{1}{\sqrt{\log (1+y)}} dy$$

e questo couverge per confronto asintolico con g(y) = 3/4

$$\int_{0}^{1} \frac{1}{3\sqrt{\log x}} dx = -\int_{0}^{1} \frac{1}{3\sqrt{\log (1-y)}} dy = \int_{0}^{1} \frac{1}{3\sqrt{\log (1-y)}} dy$$

$$dy = -dx$$

Brutale: 3/Log (1-4) = -3/4 quindi converge

Direttamente dall'inizio potevo scrivere

$$\frac{1}{\sqrt[3]{\log x}} = \frac{1}{\sqrt[3]{\log (1 + (x-1))}}$$

$$\frac{3}{\sqrt[3]{\log x}} = \frac{1}{\sqrt[3]{\log (1 + (x-1))}}$$
 couverge
$$\frac{1}{\sqrt[3]{\log x}} = \frac{1}{\sqrt[3]{\log x}}$$

Per il problema a + 00 il log x è troppo debole per failo convergere, quiudi l'idea è du diverga a + 00.

Confronto asimbolico con
$$\frac{1}{x} = g(x)$$
.

lim $\frac{g(x)}{g(x)} = \lim_{x \to +\infty} \frac{1}{y(x)} = +\infty$... caso Dinute

 $\frac{g(x)}{x \to +\infty} = \frac{1}{y(x)} \ge 1$ per $\frac{g(x)}{y(x)} = +\infty$... caso Dinute

quindi $\frac{g(x)}{g(x)} \ge 1$ per $\frac{g(x)}{y(x)} = +\infty$... $\frac{g(x)}{y(x)} = -\infty$... \frac

arctau (
$$x^2$$
) dx

arctau (x^2) dx

 $(x+1)(x-1)$
 $(x-1)$
 $($