

Faculty of Engineering
Mechanical Engineering Department

Depreciation Methods

Introduction

- Depreciation is the reduction in value of an asset because of age, wear, and obsolescence.
- Assets: equipment, computers, vehicles, buildings, and machinery.
- The method used to depreciate an asset is a way to account for the decreasing value of the asset to the owner and to represent the diminishing value (amount) of the capital funds invested in it.

Introduction

- Book depreciation and tax depreciation are terms used to describe the purpose for reducing asset value.
- Depreciation may be performed for two reasons:
- Use by a corporation or business for internal financial accounting. This is book depreciation.
- 2. Use in tax calculations per government regulations. This is tax depreciation.

Depreciation Terminology

- First cost (basis) is the delivered and installed cost of the asset including purchase price, installation fees, and any other depreciable direct costs.
- Book value represents the remaining, undepreciated investment after the total amount of depreciation charges to date have been removed.
 The book value is determined at the end of each year.
- Recovery period is the depreciable life n in years. Often there are different n values for book and tax depreciation.
- Market value is the estimated amount realizable if the asset were sold on the open market.

Depreciation Terminology

- **Depreciation rate** or **recovery rate** d_t is the fraction of the first cost removed by depreciation each year.
- Personal property, one of the two types of property for which depreciation is allowed, is the income-producing, tangible possessions of a corporation.
 - Vehicles, manufacturing equipment, computer equipment, chemical processing equipment, and construction assets.
- Real property includes real estate and all improvements office buildings, factories, warehouses, apartments, and other structures.

Depreciation Models

- The straight line (SL) model.
- Accelerated models, such as the declining balance (DB) model.
- Accelerated Cost Recovery System (ACRS).
 - MACRS (Modified ACRS).

Straight Line (SL) Depreciation

- The straight line (SL) model is used, historically and internationally, considered the standard against which any depreciation method is compared.
- It derives its name from the fact that the book value decreases linearly with time.
- For book depreciation purposes, it offers an excellent representation of book value for any asset that is used regularly over a number of years.

Straight Line (SL) Depreciation

 The annual SL depreciation is determined by multiplying the first cost minus the salvage value by the depreciation rate.

$$D_t = (B - S)d$$
$$= \frac{B - S}{n}$$

where D_t = depreciation charge for year t (t = 1, 2, . . . , n)

B = first cost

S =estimated salvage value

n = recovery period

d = depreciation rate = 1/n

Straight Line (SL) Depreciation

Since the asset is depreciated by the same amount each year, the book value after t years of service (BV_t), is the first cost B minus the annual depreciation times t.

$$BV_t = B - tD_t$$

 If an asset has a first cost of \$50,000 with a \$10,000 estimated salvage value after 5 years, calculate the annual SL depreciation and plot the yearly book value.

Solution

The depreciation each year for 5 years is:

$$D_t = \frac{B - S}{n} = \frac{50,000 - 10,000}{5} = \$8000$$

$$BV_5 = 50,000 - 5(8000) = $10,000 = S$$

Declining Balance (DB) Depreciation

- Declining balance is also known as the fixed percentage or uniform percentage method.
- The declining balance model, decrease the book value to the salvage value more rapidly than the straight line method.
- The depreciation for year t is the fixed rate d times the book value at the end of the previous year.

$$D_t = (d)BV_{t-1}$$

Book value in year t is determined by:

$$BV_t = B(1-d)^t$$

Declining Balance (DB) Depreciation

 The maximum annual depreciation rate for the DB method is twice the straight line rate.

$$d_{\text{max}} = 2/n$$

- This is called double declining balance (DDB).
- If n = 5 years, the DDB rate is 0.4; so 40% of the book value is removed annually.
- Another commonly used percentage is 150% of the SL rate, where d = 1.5/n.

Albertus Natural Stone Quarry purchased a computer-controlled saw for \$80,000. The unit has an anticipated life of 5 years and a salvage value of \$10,000. Compare the schedules for annual depreciation and book value using two methods: DB at 150% of the straight line rate and at the DDB rate.

Solution

150% DB: The depreciation rate is d = 1.5/5 = 0.30

$$D_2 = 0.30(56,000) = $16,800$$

 $BV_2 = 80,000(0.70)^2 = $39,200$

DDB: The rate is
$$d_{\text{max}} = 2/5 = 0.40$$

 $D_3 = 0.40(28,800) = \$11,520$
 $BV_3 = 80,000(0.60)^3 = \$17,280$

Modified Accelerated Cost Recovery System (MACRS)

- In the 1980s, the U.S. introduced MACRS as the required tax depreciation method for all depreciable assets.
- MACRS rates take advantage of the accelerated DB and DDB methods.
 However corporations are still free to apply any of the classical methods for book depreciation.
- MACRS determines annual depreciation amounts using the relation:

$$D_t = d_t B$$

Where the depreciation rate is tabulated in next table.

MACRS Depreciation Rates

	Depreciation Rate (%)					
Year	n = 3	n = 5	n = 7	n = 10	n = 15	n = 20
1	33.33	20.00	14.29	10.00	5.00	3.75
2	44.45	32.00	24.49	18.00	9.50	7.22
3	14.81	19.20	17.49	14.40	8.55	6.68
4	7.41	11.52	12.49	11.52	7.70	6.18
5		11.52	8.93	9.22	6.93	5.71
6		5.76	8.92	7.37	6.23	5.29
7			8.93	6.55	5.90	4.89
8			4.46	6.55	5.90	4.52
9				6.56	5.91	4.46
10				6.55	5.90	4.46
11				3.28	5.91	4.46
12					5.90	4.46
13					5.91	4.46
14					5.90	4.46
15					5.91	4.46
16					2.95	4.46
17-20						4.46
21						2.23

Modified Accelerated Cost Recovery System (MACRS)

 The book value in year t is determined by subtracting the annual depreciation from the previous year's book value:

$$BV_t = BV_{t-1} - D_t$$

• The MACRS assumes that S = o (the first cost is always completely depreciated), even though there may be an estimated positive salvage.

Depletion Methods

- Depletion is another method to write off investment that is applicable only to natural resources.
- When the resources are removed, they cannot be replaced or repurchased in the same manner as can a machine, or structure.
- Depletion is applicable to mines, wells, quarries, geothermal and forests.
- There are two methods of depletion- percentage and cost depletion.
- Percentage depletion is a special consideration given for natural resources, while cost depletion (also called factor depletion), is based on the level of activity or usage.

Percentage Depletion

Percentage depletion amount = percentage × gross income from property

Deposit	Percentage
Sulfur, uranium, lead, nickel, zinc, and some other ores and minerals	22%
Gold, silver, copper, iron ore, and some oil shale	15
Oil and natural gas wells (varies)	15-22
Coal, lignite, sodium chloride	10
Gravel, sand, some stones	5
Most other minerals, metallic ores	14

 A gold mine was purchased for \$10 million. It has an anticipated gross income of \$8 million per year for years 1 to 5 and \$5 million per year after year 5. Compute the annual depletion amount.

Solution

A 15% depletion applies for gold.

Years 1 to 5: 0.15(8.0 million) = \$1.2 million

Years thereafter: 0.15(5.0 million) = \$750,000

A total of \$6 million is written off in 5 years, and the remaining \$4 million is written off at \$750,000 per year.