线性代数 A 练习题 Set 1

1. True or false? No justification is necessary.

判断对错. 不需要给出解释.

(1) Suppose $\alpha_1, \alpha_2, \dots, \alpha_n$ are column vectors of length n, and A is an $n \times n$ matrix. If $\alpha_1, \alpha_2, \cdots, \alpha_n$ are linearly independent, then $A\alpha_1, A\alpha_2, \cdots, A\alpha_n$ are linearly independent dent.

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 均为 n 维列向量, A 是 $n\times n$ 矩阵, 若 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关, 则 $A\alpha_1, A\alpha_2, \cdots, A\alpha_n$ 线性无关.

(2) For the matrices
$$A = \begin{bmatrix} 2018 & & & \\ & 2019 & & \\ & & 2019 & \\ & & & 2020 \end{bmatrix}$$
 and $A' = \begin{bmatrix} 2020 & & \\ & 2019 & & \\ & & & 2018 & \\ & & & & 2019 \end{bmatrix}$

$$A\alpha_{1}, A\alpha_{2}, \cdots, A\alpha_{n}$$
 英王无夫.

(2) For the matrices $A = \begin{bmatrix} 2018 \\ 2019 \\ 2020 \end{bmatrix}$ and $A' = \begin{bmatrix} 2020 \\ 2019 \\ 2018 \end{bmatrix}$, there exists an invertible real matrix P of order 4 such that $P^{-1}AP = A'$.

对于矩阵 $A = \begin{bmatrix} 2018 \\ 2019 \\ 2019 \end{bmatrix}$ 和 $A' = \begin{bmatrix} 2020 \\ 2019 \\ 2018 \end{bmatrix}$, 存在可 逆的 A 阶实矩阵 P 使得 $P^{-1}AP = A'$

(3) Let A be a real square matrix. Then a real number λ is an eigenvalue of A if and only if it is an eigenvalue of the transpose A^T .

设 A 为实方阵. 则一个实数 λ 是 A 的特征值当且仅当它是转置矩阵 A^T 的特征值.

- (4) If H is a Hermitian matrix, then I + iH is an invertible matrix. 若 H 为 Hermite 矩阵, 则 I + iH 是可逆矩阵.
- (5) Suppose $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$, where a, b, c are positive real numbers. Then for all nonzero column vectors \bar{x} in \mathbb{R}^2 , $x^T A x \geq 0$.

设
$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$
, 其中 a, b, c 均为正实数. 则对于 \mathbb{R}^2 中所有的非零列向量 x , 均有 $x^T A x \geq 0$.

- 2. Write down your answers to the following questions. No further explanation is needed. 请直接写出以下问题的答案. 不需要做进一步解释.
 - (1) Let U be the subspace of \mathbb{R}^4 spanned by the two column vectors $u=(1,\,0,\,1,\,-1)^T$ and $v=(0,1,0,-1)^T$. Let $W=U^{\perp}$ be the orthogonal complement of U in \mathbb{R}^4 , that is, W is the subspace of \mathbb{R}^4 consisting of vectors orthogonal to all vectors in U.

Find a basis of W.

设 U 为 \mathbb{R}^4 中的两个列向量 $u = (1, 0, 1, -1)^T$ 和 $v = (0, 1, 0, -1)^T$ 张成 (生成) 的子空 间. 设 $W = U^{\perp}$ 为 U 在 \mathbb{R}^4 中的正交补, 即, W 由 \mathbb{R}^4 中与 U 中向量全都正交的向量组 成.

找出 W 的一组基.

(2) Consider the following points in the plane \mathbb{R}^2 :

$$O(0,\,0)\,;\;\;A(2,\,0)\,,\;B(2,\,1)\,,\;C(0,\,1)\,;\;\;\;A'(2,\,-1)\,,\;B'(3,\,-0.5)\,,\;C'(1,\,0.5)\,.$$

(Here we write M(a, b) to mean that the point M has coordinates (a, b) in the plane.) Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that transforms the rectangular OABC (with sides and interior) onto the parallelogram OA'B'C'. (Please write down the expression T(x, y) in terms of the coordinate (x, y) of a general point in \mathbb{R}^2 .)

考虑平面 №2 内的下列各点:

$$O(0, 0)$$
; $A(2, 0)$, $B(2, 1)$, $C(0, 1)$; $A'(2, -1)$, $B'(3, -0.5)$, $C'(1, 0.5)$.

(这里我们用 M(a, b) 表示点 M 的坐标为 (a, b).)

找出一个线性变换 $T: \mathbb{R}^2 \to \mathbb{R}^2$, 它将长方形 OABC (包含四条边和内部) 变换成 (映射为) 平行四边形 OA'B'C'. (请通过 \mathbb{R}^2 中一般点的坐标 (x, y) 写出 T(x, y) 的表达式.)

线性代数 A 练习题 Set 1

3. For each natural number
$$n \ge 3$$
, consider the $n \times n$ matrix $A_n = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 & \ddots \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{bmatrix}$

- and define $a_n = \det(A_n)$.
- (a) Compute a_3 and a_4 .
- (b) For each $n \ge 5$, find a recursive formula relating a_n to a_{n-1} and a_{n-2} .
- (c) For general $n \geq 3$, find an explicit expression of a_n (in terms of n).

对每个自然数
$$n \geq 3$$
,考虑 $n \times n$ 矩阵 $A_n = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & \ddots & & \\ & & \ddots & \ddots & -1 & \\ & & & -1 & 2 & \end{bmatrix}$ 并设 $a_n = \det(A_n)$.

- (a) 计算 a3 和 a4.
- (b) 对每个 $n \ge 5$, 找出一个递推公式将 a_n 和 a_{n-1} , a_{n-2} 联系起来.
- (c) 对一般的 $n \ge 3$, 找出 a_n (关于 n) 的一个显式表达式.
- 4. Suppose that a data set consists of points (-6, -1), (-2, 2), (1, 1) and (7, 6) on the xy-plane. Find an equation for the line that best models the relation between the x and y coordinates of these sample values in the sense of least-squares.

假设一组数据由 xy-平面内的点 (-6,-1), (-2,2), (1,1) 和 (7,6) 给出.

求能够在最小二乘法意义下最好地拟合这些样本点 x 和 y 坐标关系的直线方程.

- 5. Consider the quadratic form $f(x_1, x_2, x_3) = -x_1^2 5x_2^2 9x_3^2 4x_1x_2 6x_1x_3 8x_2x_3$.
 - (a) Find the matrix A of the quadratic form $f(x_1, x_2, x_3)$.
 - (b) Decide for or against the positive definiteness of A.
 - (c) Is there a real solution to the quadratic equation $f(x_1, x_2, x_3) = 1$ (in the unknowns x_1, x_2, x_3)? Explain why.

考虑二次型
$$f(x_1, x_2, x_3) = -x_1^2 - 5x_2^2 - 9x_3^2 - 4x_1x_2 - 6x_1x_3 - 8x_2x_3$$

- (a) 求二次型 $f(x_1, x_2, x_3)$ 的矩阵 A.
- (b) 判定矩阵 A 的正定性.
- (c) (以 x_1, x_2, x_3 为未知数的) 二次方程 $f(x_1, x_2, x_3) = 1$ 是否有实数解? 请阐述理由.
- 6. For any real matrix M, let C(M) be its column space, N(M) be its null space and rank(M) be its rank.

- (a) Write down a 2×3 real matrix A such that C(A) has dimension 2.
- (b) For the matrix A you give in the previous question, find dim N(A) and rank (A^TA) .
- (c) Is there a real matrix M such that $\operatorname{rank}(M^T M) < \operatorname{rank}(M)$? If yes, provide such an example; otherwise, explain why such a matrix cannot exist.

对任意实矩阵 M, 以 C(M) 表示它的列空间, N(M) 表示它的零空间 (也称零化空间), rank(M) 表示它的秩.

- (a) 写出一个 2×3 实矩阵 A 使 C(A) 的维数是 2.
- (b) 对于你在上一个问题中写出的矩阵 A, 求 dim N(A) 和 rank(A^TA).
- (c) 是否存在实矩阵 M 满足 $\operatorname{rank}(M^TM) < \operatorname{rank}(M)$? 若是, 请给出一个这样的例子; 若否, 请解释为什么这样的矩阵不存在.
- 7. Let A be a square matrix of order n and $\alpha_1, \alpha_2, \dots, \alpha_n$ be column vectors in \mathbb{R}^n . Suppose that

$$\alpha_i^T A \alpha_i = 0$$
 whenever $i \neq j$, and $\alpha_i^T A \alpha_i = 1$ for all $i = 1, 2, \dots, n$.

Show that $\alpha_1, \alpha_2, \dots, \alpha_n$ are linearly independent.

设 A 是一个 n 阶方阵, $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是 \mathbb{R}^n 中的列向量. 假设

当
$$i \neq j$$
 时, 总有 $\alpha_i^T A \alpha_i = 0$ 且 $\alpha_i^T A \alpha_i = 1$ 对所有 $i = 1, 2, \dots, n$ 成立.

证明 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关.

- 8. Let A be a square matrix of order n such that $A^2 = A$.
 - (a) Show that if λ is an eigenvalue of A, then $\lambda = 0$ or $\lambda = 1$.
 - (b) Suppose $A \neq I$ (where I is the identity matrix of order n). Show that $\det(A) = 0$.
 - (c) Suppose B is a square matrix of order n, and the only eigenvalues of B are 0 and 1. Is it necessarily true that $B^2 = B$? If yes, provide a proof. Otherwise give a counterexample.

设 A 为 n 阶方阵, $A^2 = A$.

- (a) 证明: 若 λ 是 A 的特征值, 则 $\lambda = 0$ 或 $\lambda = 1$.
- (b) 假设 $A \neq I$ (这里 I 表示 n 阶单位矩阵). 证明 $\det(A) = 0$.
- (c) 假设 $B \in n$ 阶方阵, 且 B 的特征值只有 0 和 1. 等式 $B^2 = B$ 是否一定成立? 若是, 请给出证明. 若否, 请举出反例.
- 9. Let

线性代数 A 练习题 Set 1

(a) Prove that every eigenvector of A is an eigenvector of B.

(b) Show that B is diagonalizable.

设

- (a) 证明 A 的特征向量都是 B 的特征向量.
- (b) 证明 B 可以对角化.
- 10. Let v be a nonzero column vector in \mathbb{R}^n with $n \geq 2$.
 - (a) Find all the eigenvalues of the $n \times n$ matrix $v v^T$.
 - (b) Let I_n be the identity matrix of order n and

$$H = I_n - 2\frac{vv^T}{v^Tv} .$$

Find the rank of the matrix $I_n + H$.

设 v 为 \mathbb{R}^n 中的非零列向量, 其中 $n \geq 2$.

- (a) 求出 $n \times n$ 矩阵 vv^T 的所有特征值.
- (b) 令 I_n 为 n 阶单位矩阵,

$$H = I_n - 2 \frac{vv^T}{v^T v}.$$

求矩阵 $I_n + H$ 的秩.