

History

- discovery of benzene (M.Faraday 1825)
- structure of benzene (F.A.Kekulé 1864)
- conjugation, resonance structures

Aromaticity

Delocalisation of π – electrons

- is it favourfable process ???

Aromaticity

"Hückel rule"

Aromatic compounds have to have

- cyclic structure
- conjugated systém of double bonds
- -4n + 2 (n = 1,2,3,4..... Π electrons
- planar structure (shape) of aromatic part

Aromaticity – π - orbital picture

Aromatic compounds

Heteroaromatic compounds

pyridine

quinoline

isoquinoline

pyrrole

furane

thiophene

porfyrine

Aromatic compounds - reactivity

Aromatic compounds – reactivity – S_E aromatic

Aromatic compounds – retention of aromatic character

Aromatic compounds - reactivity - S_E aromatic

"base"

$$\sigma$$
-complex

 σ -complex

Aromatic compounds – reactivity – S_E aromatic

 π – complexes

C-T (charge-transfer) complexes

Aromatic compounds – reactivity – S_E aromatic

Aromatic compounds – reactivity – S_E aromatic

Aromatic compounds $-S_E$ aromatic - halogenation

Aromatic compounds $-S_E$ aromatic - nitration

stable salts $NO_2^+X^-(X = BF_4, ClO_4, PF_6)$

Aromatic compounds $-S_E$ aromatic - sulfonation

$$H = OSO_3H$$

$$H =$$

benzenesulfonic acid

natrium-benzenesulfonate

Aromatic compounds $-S_E$ aromatic -F-C alkylation

$$\mathsf{CH_3CH_2} \hspace{-0.2cm} - \hspace{-0.2cm} \overline{\mathsf{CI}} \hspace{-0.2cm} \stackrel{\mathsf{AlCl_3}}{\longleftarrow} \hspace{-0.2cm} \mathsf{CH_3CH_2} \hspace{-0.2cm} - \hspace{-0.2cm} \overline{\mathsf{CI}} \hspace{-0.2cm} ^+ \hspace{-0.2cm} \mathsf{AlCl_3} \hspace{-0.2cm} \stackrel{\longleftarrow}{\longleftarrow} \hspace{-0.2cm} \mathsf{CH_3CH_2} \hspace{-0.2cm} ^+ \hspace{-0.2cm} [\mathsf{AlCl_4}] \hspace{-0.2cm} ^-$$

Aromatic compounds $-S_E$ aromatic -F-C alkylation

Aromatic compounds $-S_E$ aromatic -F-C alkylation

propylbenzene

isopropylbenzene

Aromatic compounds $-S_E$ aromatic -F-C acylation

Aromatic compounds $-S_E$ aromatic -F-C acylation

Aromatic compounds $-S_E$ aromatic - varia

+
$$IC=\overline{Q}$$
 + $IC=\overline{Q}$ HCI H_3C P -methylbenzaldehyde

 $H-C = \overline{O}$

HO OH +
$$H_3C-C\equiv N$$
 $\frac{1) HCI/Zn(CN)_2}{2) H_2O}$ HO OH CH_3

2,4,6-trihydroxyacetophenone

Aromatic compounds – varia

$$R_2$$
CuLi + R'X \longrightarrow R-R + RCu + LiX

$$(CH_3)_2CuLi$$
 + $CH_3(CH_2)_8CH_2I$ \xrightarrow{ether} $CH_3(CH_2)_8CH_2CH_3$ lithiumdimethylcuprate 1-iododekane undekane (90%)

$$(C_6H_5)_2CuLi + CH_3(CH_2)_6CH_2I$$
 \xrightarrow{ether} $CH_3(CH_2)_6CH_2C_6H_5$ lithiumdiphnylcuprate 1-iodooktane 1-phenyloktane (99%)

Aromatic compounds – varia

Negishi reaction:

Aromatic compounds – varia

Aromatic compounds $-S_E$ aromatic - directive effect

2-nitro(trifluoromethyl)benzene (6%) 3-nitro(trifluoromethyl)benzene (91%)

4-nitro(trifluoromethyl)benzene (3%)

Aromatic compounds $-S_E$ aromatic - directive effect

relative velocity of nitration

Aromatic compounds $-S_E$ aromatic - directive effect

ortho substitution

para substitution

meta substitution

Aromatic compounds $-S_E$ aromatic - directive effect

ortho substitution

para substitution

meta substitution

Aromatic compounds $-S_E$ aromatic - directive effect

Steric effect

Aromatic compounds $-S_E$ aromatic - directive effect

- I +M substituents

Aromatic compounds $-S_E$ aromatic - directive effect

Velocity of S _E Ar	Substituent	Name	Oriention
super activating	$-\bar{N}H_2$	amino	ortho/para
	$-\overline{N}$ R_1 R_2	alkylamino (R_1 =H) dialkylamino (R_1 , R_2 ≠H)	ortho/para
Strongly activating	<u>—</u> <u>ō</u> н	hydroxy	ortho/para
	IOI -HN-C-R	acylamino	ortho/para
	<u></u> <u>0</u> −R	alkoxy	ortho/para
	IOI II — <u>ō</u> —C—R	acyloxy	ortho/para
activating	-R, -Ar	alkyl, aryl	ortho/para
	-CH=CR ₂	alkenyl	ortho/para
reference	Н		

Velocity S _E Ar	Substituent	Name	Oriention
reference weakly deactivating	H $-\overline{X}I$	halogen	ortho/para
	$(X=F, Cl, Br, I)$ $-CH_{2}\overline{X}I$	halogenmethyl	ortho/para
strongly deactivating	IOI II —C—Y	acyl (Y=R) acylchloride (Y=Cl) carboxylic acid (Y=OH) ester (Y=OR)	meta
	—C≣NI	cyano	meta
	$-SO_3H$	sulfonic acid	meta
Very strongly deactivating	$-CF_3$	trifluormethyl	meta
	-ħ(O) -	nitro	meta

Aromatic compounds $-S_E$ aromatic - directive effect

Aromatic compounds $-S_E$ aromatic - multiple effect

a)

c)

Aromatic compounds $-S_E$ aromatic - naphthalene

Aromatic compounds $-S_E$ aromatic - naphthalene

naphthalene-1-sulfonic acid acid (98 %)

naphthalene-2-sulfonic acid (88 %)

Aromatic compounds $-S_E$ aromatic - naphthalene

this nucleus is activated

$$Me = CH_3$$

this nucleus is deactivated

8-nitronaphthalene-1-sulfonic acid

5-nitronaphthalene-1-sulfonic acid

Aromatic compounds $-S_E$ aromatic - reduction

Aromatic compounds $-S_E$ aromatic - reduction

$$Et = C_2H_5$$

Aromatic compounds $-S_E$ aromatic - reduction

$$Me = CH_3, Et = C_2H_5$$

Aromatic compounds $-S_E$ aromatic - oxidation

$$\frac{\text{vzduch}}{\text{V}_2\text{O}_5,\,400\,^\circ\text{C}} \qquad \qquad \frac{\text{vzduch}}{\text{ftalanhydride}} \qquad \qquad \text{maleinanhydride}$$

Aromatic compounds $-S_E$ aromatic - oxidation

p-nitrobenzoic acid

$$\begin{array}{c|c} & & & \\ &$$

benzene-1,4-dicarboxylic acid (tereftaphthalic acid)

Aromatic compounds – technically important

Phenols - S_N on aromatic halogen

CI
$$\frac{1. \text{ NaOH, H}_2\text{O, }370^{\circ}\text{C}}{2. \text{ H}^+}$$
 OH chlorobenzene phenol (97%)

$$O_2N$$
 — CI + NaOCH₃ O_2N — OCH₃ + NaCl 4-chloronitrobenzene O_2N — methyl(4-nitrophenyl)ether (92%)

Phenols - S_N on aromatic skeleton

Relative velocity reaction with NaOCH₃:

chlorobenzene

1,0

1-chloro-4-nitrobenzene

7x10¹⁰

1-chloro-2,4-dinitrobenzene

 $2,4x10^{15}$

$$O_2N$$
 NO_2
 NO_2

2,4,6-trinitrochlorobenzene

too high to be determined

Phenols - S_N on aromatic skeleton - mechanism

1. step:

4-chloronitrobenzene

cyclohexadienyl anion

2. step:

cyclohexadienyl anion

methyl(4-nitrophenyl)ether

Phenols - S_N on aromatic skeleton - mechanism

4-nitrochlorobenzene:

The most stable mesomeric structure (negative charge on oxygen)

3-nitrochlorobenzene:

Negative charge can be located on carbon atoms only

S_N on aromatic skeleton – addition-elimination mechanism

chlorobenzene

aniline (52%)

O-methylaniline CH₃ NH₂ +

$$\frac{\text{KNH}_2, \text{NH}_3}{\text{-33 °C}}$$

p-bromotoluene

Br

$$\frac{\text{CH}_3}{\text{Br}}$$
 $\frac{\text{KNH}_2, \text{NH}_3}{\text{-33 °C}}$

m-bromotoluene

p-methylaniline

S_N on aromatic skeleton – addition-elimination mechanism

1. step - elimination:

chlorobenzene

benzyne

2. step - addition amide anion:

3. step - protonation:

 S_N on aromatic skeleton – addition-elimination mechanism

Phenols – acidity – stabilisation od anion by resonance

Compounds	pK _a	Compounds	pK _a
Phenol	10,0	3-nitrophenol	8,4
2-methylphenol	10,3	4-nitrophenol	7,2
3-methylphenol	10,1	2.4-dinitrophenol	4,0
4-methylphenol	10,3	3,5-dinitrophenol	6,7
2-nitrophenol	7,2	2,4,6-trinitrophenol	0,4

Phenols – are extremely reactive aromatics

phenol 4-bromophenol (93%)

Phenols – are extremely reactive aromatics

$$\begin{array}{c} \text{OH} \\ \\ \text{NaNO}_2 \\ \\ \text{H}_2\text{SO}_4, \text{H}_2\text{O} \\ \\ \text{Phenol} \end{array}$$

phenyl-acetate

phenol

4-hydroxyacetophenone (74%) 2-hydroxyacetophenone (16%)

Phenols – are extremely reactive aromatics

Phenols – oxidation to quinones

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & &$$

$$OH$$
 OH
 Ag_2O
 CH_3
 CH_3

4-methylbenzene-1,2-diol

4-methylbenzo-1,2-quinone (68%)

Phenols – oxidation to quinones and cleavage of ethers

$$CH_{3}O$$
 CH_{3}
 $CH_{3}O$
 $CH_{2}CH=CCH_{2})_{n}H$
 $CH_{3}O$
 $CH_{3}O$
 $CH_{2}CH=CCH_{2}O$

ubiquinone (koenzyme Q)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & &$$

vitamine K

no reaction here
$$OH$$
 in OH in OH

Phenols – Claisen rearrangement of allylarylethers

(enolform of product)

Aromatic amines – preparation – reduction of nitrocompounds

$$C_{6}H_{5} - N_{+} - \frac{\text{redukce}}{\text{O}_{6}} - C_{6}H_{5} - N_{-} = 0 \qquad \frac{\text{redukce}}{\text{N-phenylhydroxylamine}} - C_{6}H_{5} - N_{-} = 0 \qquad \frac{\text{redukce}}{\text{N-phenylhydroxylamine}} - C_{6}H_{5} - N_{-} = 0 \qquad \text{aniline}$$

$$CI$$
 NO_2 $1. Fe, HCI$ $2. NaOH$ CI NH_2 $4-chloroaniline (95%)$

$$\begin{array}{c} \text{CH(CH}_3)_2 \\ \text{NO}_2 \\ \hline \\ \text{methanol} \end{array}$$

2-isopropyl-1-nitrobenzene

2-isopropylaniline (92%)

Aromatic amines – preparation – reduction of nitrocompounds

azobenzene

azoxybenzene

Aromatic amines - structure

aniline benzenamine aminobenzene phenylamine

Aromatic amines - structure

aniline - conjugation of nonbonded electrons

methylamine

sp³ hybridisationace on N

sp² hybridisation on N

Aromatic amines – structure, chirality

mirror plane

mirror plane

Amines – natural compounds

nicotine

$$O = C$$
 $O = C$
 $O =$

adrenaline

serotonine

L-phenylalanine

Amines – basicity

$$R_3NI$$
 + $H-\overline{\underline{O}}-H$ \longrightarrow R_3N-H + $\overline{I}\overline{\underline{O}}-H$

$$K_b = \frac{[R_3NH^+][OH^-]}{[R_3N]}$$
 $pK_b = -\log K_b$

Amine	pK_b	Amine	pK_b
amoniak	4,7	secondary amines	
primary amines		$(CH_3)_2NH$	3,3
CH ₃ NH ₂	3,4	(CH ₃ CH ₂)NH	2,9
CH ₃ CH ₂ NH ₂	3,2	C ₆ H ₅ NHCH ₃	9,2
(CH ₃) ₂ CHNH ₂	3,4	Tertiary amines	
(CH ₃) ₃ CNH ₂	3,6	$(CH_3)_3N$	4,3
C ₆ H ₅ NH ₂	9,4	$(CH_3CH_2)_3N$	3,2
		$C_6H_5N(CH_3)_2$	8,9

Aromatic amines – basicity – role of substituent

Amines – as acids – deprotonation of them

$$R-NH_2$$
 + $H-O-H$ K_a $R-NH$ + $H-O-H$

$$K_a = \frac{[RNH^-][H_3O^+]}{[RNH_2]} = \sim 10^{-35} \quad pK_a = -\log K_a = \sim 35$$

Aromatic amines – reactivity S_EAr

Aromatic amines – reactivity S_EAr

4-isopropylaniline

4-isopropylacetanilide (98%)

4-isopropyl-2-nitroacetanilide (94%)

4-isopropyl-2-nitroaniline (100%)

of aniline

hydrogensulphate of 3-nitroaniline

NO₂ 3-nitroaniline

Aromatic amines – reactivity S_EAr

N,N-diethyl-4-nitrosoaniline (95%)

Aromatic amines – reactivity S_EAr

$$R_2NI + IN = \overline{O} \longrightarrow R_2N - N = O \xrightarrow{-H^+} R_2\overline{N} - \overline{N} = \overline{O}$$

N-nitrosoamine

$$(CH_3)_2\overline{N}H \xrightarrow{NaNO_2, HCI} (CH_3)_2\overline{N} - \overline{N} = \overline{\underline{O}}$$

$$\cdot \qquad \qquad (CH_3)_2\overline{N} - \overline{N} = \overline{\underline{O}}$$

$$\cdot \qquad \qquad N-\text{nitrosodimethylamine}$$

$$(90\%)$$

$$N$$
-methylaniline N -methyl- N -nitrosoaniline N -methyl- N -ni

Aromatic amines – reactivity S_EAr

N-nitrosodimethylamine (found e.g. in beer)

N-nitrosopyrrolidine (in roasted beans)

N-nitrosonornicotin (i tobacco smoke)

Amines – reactivity – diazonium salt formation

Amines – reactivity – diazonium salt formation

benzendiazoniumchloride

Amines – reactivity - diazonium salt synthetic utilisation – $S_{N(R)}$

$$Ar_{-}\stackrel{+}{N}\equiv NI$$
 $\stackrel{-N_2}{\longrightarrow}$ Ar^+ $\stackrel{H_2O}{\longrightarrow}$ $Ar-OH$ + H^+

2-bromoaniline

- 1. NaNO₂, HCl, H₂O, 0-5°C
- 2. KI, ambient temperature

1-bromo-2-iodobenzene (72-83%)

Amines – reactivity - diazonium salt synthetic utilisation – $S_{N(R)}$

$$\begin{array}{c}
\text{CH}_{3} \\
\text{NH}_{2}
\end{array}$$
1. NaNO₂, HCl, 0°C
2. CuCl, 60°C

2-chlorotoluene (79%)

2-chloroaniline

1-bromo-2-chlorobenzene (73%)

Amines – reactivity - diazonium salt synthetic utilisation – $S_{N(R)}$

$$\begin{array}{c|c} & & & \text{CN} \\ \hline & & 1. \text{ NaNO}_2, \text{ HCI, 0°C} \\ \hline & & 2. \text{ CuCN, NaCN, 50°C} \\ \hline & & \text{CH}_3 \end{array}$$

 $Ar - \stackrel{+}{N} \equiv NI BF_4 \longrightarrow Ar - F + BF_3 + N_2$

$$\begin{array}{c|c} & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\$$

1-(3-aminophenyl)propane-1-one

4-methylaniline

1-(3-fluorophenyl)propane-1-one (68%)

4-methylbenzonitrile (70%)

Amines – reactivity - diazonium salt synthetic utilisation – $S_{N(R)}$

$$Ar \stackrel{+}{-} N \equiv NI$$
 $\stackrel{H_3PO_2}{-}$ $Ar \stackrel{-}{-} H$ + N_2

$$\begin{array}{c} CH_3 \\ \hline \\ NH_2 \end{array} \qquad \begin{array}{c} 1. \ NaNO_2, \ HCI, \ H_2O \\ \hline \\ 2. \ H_3PO_2, \ H_2O \end{array} \qquad \begin{array}{c} CH_3 \\ \hline \\ 3-bromotoluene \ (85\%) \end{array}$$

2-bromo-4-methylaniline

$$\begin{array}{c} \text{CH(CH}_3)_2 \\ \hline \\ \text{NO}_2 \\ \\ \text{NH}_2 \end{array} \\ \begin{array}{c} \text{1. NaNO}_2, \text{ HCI, H}_2\text{O} \\ \hline \\ \text{2. CH}_3\text{CH}_2\text{OH} \\ \\ \text{1-isopropyl-3-nitrobenzene (59\%)} \end{array}$$

4-isopropyl-2-nitroaniline

Amines – reactivity - diazonium salt synthetic utilisation – $S_{N(R)}$

4-(4-nitrophenyldiazenyl)-1-naphtol

Amines – reactivity - diazonium salt synthetic utilisation – $S_{N(R)}$

$$(CH_3)_2$$
 $\stackrel{+}{N} = \stackrel{-}{N} = \stackrel{-$