

Europäisches Patentamt

European Patent Office

Offic eur péen des brevets

(1) Veröffentlichungsnummer: 0 546 984 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92710035.4

(51) Int. Cl.⁵: A62D 3/00

(22) Anmeldetag : 28.11.92

30) Priorität: 04.12.91 DE 4139928

43 Veröffentlichungstag der Anmeldung: 16.06.93 Patentblatt 93/24

Benannte Vertragsstaaten : AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

71 Anmelder: SOLVAY UMWELTCHEMIE GmbH Hans-Böckler-Allee 20, Postfach 2 20 W-3000 Hannover 1 (DE)

71 Anmelder: Solvay Fluor und Derivate GmbH Hans-Böckler-Allee 20, Postfach 220 W-3000 Hannover 1 (DE) 72) Erfinder: Swidersky, Hans-Walter Zeppelinstrasse 5

W-3000 Hannover 1 (DE) Erfinder: Legat, Werner Tollenbrink 2 A

W-3000 Hannover 51 (DE) Erfinder: Born, Thomas Über der Kirche 1 W-3201 Holle 5 (DE) Erfinder: Greilich, Jürgen

Deisterstrasse 38 W-3044 Rodenberg (DE)

(Vertreter: Lauer, Dieter, Dr. c/o Solvay Deutschland GmbH, Postfach 220, Hans-Böckler-Allee 20 W-3000 Hannover 1 (DE)

(54) Halbkontinuierliche Asbestzersetzung.

ST Beschrieben wird ein halbkontinuierliches Verfahren zur Zersetzung von Asbest. Bei dem Verfahren, das einen sehr hohen Durchsatz gestattet, wird Asbest mit einer wäßrigen Lösung einer Fluor enthaltenden Säure oder eines sauren Salzes einer solchen Säure als Zersetzungsmittel kontaktiert.

5

20

30

Die Erfindung bezieht sich auf ein Verfahren zur Zersetzung von Asbest, wobei der Asbest mit einer wäßrigen Lösung einer anorganischen Fluor enthaltenden Säur od reines sauren Salzes einer solchen Säure kontakti rt wird.

Bekanntermaßen wird Asbest ein gesundheitsgefährdendes Potential zugeschrieben. Asbest wurde für eine Vielzahl von Anwendungszwecken verwendet, beispielsweise als Dichtschnur, als Flachdichtung, in Form von Platten oder als feuerfestes Gewebe. Um Asbest unschädlich zu machen, kann man ihn beispielsweise einkapseln. Der nur eingekapselte Asbest bleibt dabei natürlich latent gesundheitsgefährdend.

Besser ist die möglichst vollständige Zersetzung von Asbest unter Zerstörung der Faserstrukturmit geeigneten Zersetzungsmitteln, wobei zur Sicherstellung der zumindest annähernd vollständigen Zersetzung längere Reaktionszeiten und oftmals höhere Temperaturen aufgenommen werden müssen.

Aufgabe der vorliegenden Erfindung ist es, ein unkompliziertes Verfahren zur Zersetzung von Asbest anzugeben, mit dem bei hoher Wirksamkeit gleichzeitig ein hoher Durchsatz möglich ist. Diese Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst.

Das erfindungsgemäße Verfahren zur halbkontinuierlichen Zersetzung von Asbest sieht vor, daß man in einem ersten Reaktionszyklus Asbest mit einer wäßrigen Lösung einer anorganischen Fluor enthaltenden Säure oder eines sauren Salzes einer anorganischen Fluor enthaltenden Säure als Zersetzungsmittel in einem Reaktorkontaktiert, bis mindestens 90 Gew.-% des Asbests zersetzt sind, aber noch unzersetzter Asbest in der gebildeten Reaktionsmischung vorhanden ist, man den unzersetzten Asbest in der gebildeten Reaktionsmischung absetzen läßt, so daß sich ein asbesthaltiger Bodensatz entwickelt und ein asbestfreier Verstand, man den Überstand teilweise aus dem Reaktor abtrennt derart, daß kein Asbest aus dem Reaktor ausgetragen wird, man in den Reaktor in einem zweiten Reaktionszyklus weiteren Asbest und weitere wäßrige Lösung der anorganischen Fluor enthaltenden Saure oder eines sauren Salzes der anorganischen Fluor enthaltenden Säure einbringt und den Asbest entsprechend dem ersten Reaktionsszyklus zersetzt und den Überstand entweder mindestens teilweise im Reaktor beläßt oder teilweise abtrennt, und dann den ersten Reaktionszyklus gewünschtenfalls noch einmal oder mehrmals wiederholt mit der Maßgabe, daß man das Verfahren abbricht, sobald der asbesthaltige Bodensatz 30 Vol.-% des Reaktorvolumens eingenommen hat.

Die Säur bzw. das saure Salz kann in situ erzeugt werden, z.B. durch in Gemisch aus Mineralsäur, z.B. Schwefelsäure, und inem Erdalkali- oder Alkalifluorid.

Bei Untersuchung der Zers tzung von Asbest mit

Fluor enthaltenden anorganischen Säuren oder deren sauren Salzen wurde gefunden, daß überraschenderweise ein Großteil des Asbests sehr schnell zersetzt wird, oft schon binnen 2 bis 5 Minuten, und daß der unzersetzte Asbest sich am Boden des verwendeten Reaktors absetzt und damit leicht vom ausreagierten Überstand abgetrennt werden kann.

Die erfindungsgemäße Zersetzung läuft noch schneller ab, wenn man den Asbest in zerkleinerter Form einsetzt. Zweckmäßig liegt die Partikelgröße unterhalb von 0,5 cm, beispielsweise zwischen 0,1 und 0,4 cm.

Die Umsetzung läßt sich beschleunigen, winn man das Reaktionsgemisch während der Umsetzung rührt. Das Rühren wird danach eingestellt, wenn man den Asbest absitzen lassen will. Bevorzugt rührt man 2 bis 10 Minuten, insbesondere 2 bis 5 Minuten, und stellt dann das Rühren ein. Der Überstand kann dann abgetrennt werden, z.B. nach 2 bis 10 Minutin.

Wie gesagt wird der Überstand teilweise abgetrennt. Dabei ist darauf zu achten, daß kein Asbest aus dem Reaktor ausgetragen wird. Man wird also zweckmäßig den Überstand nur dann vollständig abtrennen, wenn man, wie später noch beschrieb n wird, die Reaktionsmischung nach Beendigung der Reaktionszyklen ohne Abtrennung des Überstand s längere Zeit stehengelassen hat. Üblicherweise trennt man mindestens 70 Vol.-% des Überstands ab. beispielsweise zwischen 85 und 90 Vol.-%.

Die Vorteile des erfindungsgemäßen Verfahrens zeigen sich bereits dann, wenn man lediglich 2 Reaktionszyklen durchführt. Bei dieser Variante könnte man bereits nach dem 2. Reaktionszyklus, wie weit runten noch beschrieben wird, den Überstand teilweise oder, ggf. zusammen mit dem sich absetzenden Feststoff, vollständig aus dem Reaktor abtrenn n. Bereits bei dieser einfachsten Ausführungsform kann man Zeit einsparen. Vorzugsweise läßt man den noch nicht zesetzten Asbest absitzen und beläßt mindestens einen Teil, gewünschtenfalls den gesamten Überstand im Reaktor. Der restliche unzersetzte Asbest wird dann völlig zersetzt.

Das erfindungsgemäße Verfahren ist jedoch besonders vorteilhaft, wenn man eine Mehrzahl, z.B. 5 bis 30 Reaktionszyklen vorsieht. Im Prinzip kann man die Reaktionszyklen beliebig oft wiederhol n; allerdings sollte die Zugabe von Asbest und Zersetzungsmittel dann beendet werden, wenn der asbesthaltige Bodensatz einen so großen Teil des Reaktorvolumens eingenommen hat, daß der Durchsatz unvorteilhaft absinkt oder die Gefahr besteht, daß asbesthaltiger Bodensatz beim Abtrennen des Überstandes aus dem Reaktor ausgetragen werden könnte. Die vorstehende Angab, daß man das V rfahr n abbricht, w nn der Bod nsatz 30 % des Reaktory lumens eingenommen hat, gibt eine zw ckmäßige Richtlinie an. Im Einzelfall kann man auch früh roder später das V rfahren abbr chen.

25

30

35

45

Nach der Durchführung des letzten Reaktionszyklus kann der asbesthaltige Rückstand auf verscniedene Weise weiterb handelt werden. Man kann ihn beispielswise bir its dann aus dem Reaktor entfernen, wenn noch Asbestfas in vorliegen, neutralisieren, z.B. mit Kalkmilch, und dann deponieren. Die zu deponierende Menge an Asbest wird bei dieser Variante des erfindungsgemäßen Verfahrens auf einen Bruchteil gesenkt. Vorzugsweise geht man jedoch so vor, daß man nach der Zugabe von Asbest und Zersetzungsmittel im letzten Reaktionszyklus den Überstand nicht entfernt, sondern die Reaktionsmischung, gewünschtenfalls unter Rühren, stehenläßt, bis der Asbest sicher vollständig zersetzt ist. Dies geschieht über Nacht oder beispielsweise in einer Zeitdauer von 2 bis 5 Stunden. Vor Durchführung der nächsten Reaktionszyklen kann der dann asbestfreie Rückstand zusammen mit dem Überstand aus dem Reaktor vollständig entfernt werden. Das Reaktionsgemisch kann ohne weiteres für die Herstellung Fluor enthaltender Verbindungen, z.B. Aluminiumfluorid oder Kryolith, verwendet werden. Man vermischt es dann mit Aluminiumverbindungen und ggf. Natriumverbidnungen. Nach Neutralisation, z.B. mit Kalkmilch, ist er als Zuschlagstoff für Baustoffe verwendbar. Bei dieser Variante fällt überhaupt kein Material an, das deponiert werden muß.

Der abgetrennte Überstand kann, gegebenenfalls unter Entfernung der mitgeführten Feststoffe oder Aufstärkung durch frisches Zersetzungsmittel, in das Verfahren rückgeführt werden. Man kann den Überstand auch neutralisieren und als Zusatzmittel bei der Baustoffherstellung verwenden oder durch Zusatz von Schwefelsäure den Fluorwasserstoff-Gehalt rückgewinnen.

Ein Vorteil des erfindungsgemäßen Verfahrens ist die hohe Flexibilität. So kann man während der Durchführung der aufein anderfolgenden Zersetzungszyklen verschiedene Asbestarten oder Asbestverarbeitungsformen in den Reaktor einbringen. Man kann auch in verschiedenen Zersetzungszyklen unterschiedliche Zersetzungsmittel verwenden oder bei unterschiedlichen Zersetzungstemperaturen arbeiten. Auch das Verhältnis von Asbest zu Zersetzungsmittel kann variieren. Falls nötig oder sinnvoll, kann man in einzelnen Zyklen auch nur Asbest oder nur Zersetzungsmittel in den Reaktor einbringen. Die Menge an Zersetzungsmittel sollte so bemessen sein, daß sie zur völligen Zersetzung des Asbests ausreicht. Zweckmäßig wird das Zersetzungsmittel im Überschuß eingesetzt. Dieser Überschuß kann dann gegebenenfalls rückgeführt werden. Die notwendige Menge kann man durch Versuche ermitteln. B i Verw ndung von 20 Gew.-% HF nthaltender Flußsäure beispielsweise s tzt man Asbest und wäßrig Lösung im Gewichtsv rhältnis von etwa 1:5 ein.

Di Konz ntration der wäßrigen Lösung an Zersetzungsmittel muß so hoch sein, daß di Reaktion

anspringt. Bevorzugt setzt man deshalb ein wäßrige Lösung ein, die mindestens 10 Gew.-% Zersetzungsmittel enthält. Zweckmäßig liegt di Konzentration an Zers tzungsmittel in der wäßrigen Lösung zwisch n 10 und 40 Gew.-%. Höh r Konzentration n sind möglich, die Reaktion wird dann aber sehr heftig.

Bevorzugte Zersetzungsmittel sind Flußsäure, Hexafluorokieselsäure und Tetrafluoroborsäure oder eine wäßrige Lösung ihrer sauer reagierend in Salze, beispielsweise NH₄HF₂, NaHF₂ oder KHF₂.

Besonders gut geeignet ist Flußsäure, vorzugsweise in einer Konzentration von 10 bis 40 Gew.-%. Gewünschtenfalls kann man aber auch in eine wäßrige Aufschlämmung von Asbest gasförmigen Fluorwasserstoff einleiten oder eine bisher konzentriert Flußsäure auf niedrige Konzentration verdünnen.

Die Zersetzung kann man vorzugsweis b i Temperaturen zwischen Umgebungstemperatur und 85 °C durchführen. Gewünschtenfalls kann man di Temperatur durch Zuführung externer Wärmeenergie, beispielsweise in einem beheizbaren Reaktor, noch erhöhen.

Bei der bevorzugten Verwendung von Ki selsäure, Tetrafluoroborsäure und insbesondere Flußsäure wird jedoch eine exotherme Reaktion beobachtet. Die Zuführung externer Wärmeenergie ist hier nicht notwendig. Gegebenenfalls kühlt man die R aktionsmischung.

Gewünschtenfalls kann man Tenside und/oder Flockungshilfsmittel zusetzen.

Das erfindungsgemäße Verfahren eignet sich sehr gut zur Zersetzung von beliebigen Asbestmodifikationen, insbesondere zur Zersetzung von Serpentin- und Amphibolasbest(-fasern). Man kann Asbest in verschiedenen Verarbeitungsformen zersetzen. Z.B. in Form von Dichtschnüren, Flachdichtung n, losen Fasern, Dämmplatten, plastischen Dichtmassen, Asbestzementplatten und anderes Asbestfasern enthaltendes Material, insbesondere Spritzasb st. Di vorherige Zerkleinerung ist empfehlenswert.

Das erfindungsemäße Verfahren g stattet di vollständige Zersetzung von Asbest bei sehr hohem Durchsatz. Die folgenden Beispiele sollen das Beispiel weiter erläutern, ohne es in seinem Umfang inzuschränken.

Beispiele

Beispiel 1:

Zersetzung von Blauasbest (Krokydolith) mit Fluß-säure

100 g zu Partikeln einer Größe von maximal 0,2 cm zerkl inerter Spritzasbest aus Krokydolith wurden in einem 1-Liter-Kunststoffgefäß aus Polyethylen vorgelegt und mit wenig Wasser (10 ml) angefeuchtet. Dann wurd n 560 g Flußsäure mit iner Konzentration von 20 Gew.-% HF zugegeben und

5

10

30

35

40

45

50

das entstehende Reaktionsgemisch gerührt. Innerhalb von 2 Minuten waren die Fasern fast vollständig aufgelöst. Das Rühren wurd dann eingestellt, es bild te sich in f ster Bod nsatz sowie ein im w sentlichen feststofffrei r Überstand. Nach 2 Minuten etwa 90 Vol.-% des Überstands abgetrennt. Hierbei wurde darauf geachtet, daß keine, an der dunklen Farbe erkennbaren Asbestfasern mit abgetrennt wurden. In einem zweiten Reaktionszyklus wurden dann 100 g des zerkleinerten Krokydoliths sowie wiederum 560 g der Flußsäure zugesetzt. Wiederum wurde der Ansatz gerührt und das Rühren nach 2 Minuten eingestellt. Dann wurden wiederum 90 Vol.-% des Überstands abdekantiert. Auf diese Weise wurden insgesamt acht Zyklen durchgeführt. Der sich bildende Überstand des achten Reaktionszyklus wurde nicht abgetrennt, sondern die gesamte Reaktionsmischung wurde über Nacht stehengelassen. Am nächsten Morgen waren sämtliche noch verbliebenen Asbestanteile zersetzt. Der Reaktionsrückstand wurde mit den in den verschiedenen Reaktionszyklen abgetrennten Verständen vereinigt und durch Zugabe von Kalkmilch neutralisiert. Der gebildete Rückstand bestand im wesentlichen aus Calciumfluorid und Wasser und wurde nach Trocknen in die HF-Produktion überführt.

Beispiel 2:

Zersetzung von Blauasbest unter HF-Rückführung 400 g zerkleinerter Blauasbest wurden in einem 5-Liter-Kunststoffgefäß aus Polyethylen unter Zugabe von 2.240 g wäßriger Flußsäure mit einem HF-Gehalt von 20 Gew.-% versetzt. Die Reaktionsmischung wurde gerührt. Nach 2 Minuten war der Asbest fast vollständig zersetzt und das Rühren wurde beendet. 85 Vol.-% des sich bildenden Überstandes wurden nach 10 Minuten abgetrennt, wobei darauf geachtet wurde, daß keine Asbestfasern aus dem Bodensatz ausgetragen wurden. Der Überstand wurde unter Zusatz von 40 Gew.-% HF enthaltender Flußsäure und Wasser aufgestärkt und mit weiteren 400 g Blauasbest im Kunststoffgefäß 2 Minuten lang umgesetzt. Wiederum wurden 85 Vol.-% des sich bildenden Überstandes nach 10 Minuten abgetrennt und wiederum mit 40 Gew.-% HF enthaltender Flußsäure und Wasser aufgestärkt. Auf diese Weise wurden 6 Reaktionszyklen durchgeführt. Im letzten Reaktionszyklus wurde der überstand nicht abgetrennt, sondern die gesamte Reaktionsmischung wurde über Nacht stehengelassen. Am nächsten Morgen waren die an ihrer dunklen Farbe erkennbaren, in geringer M ng noch vorlieg nd n Asbestfasern vöilig zersetzt. Der Überstand wurde dikantiirt und wie oben b schri ben unter Zusatz von Flußsäure wieder für die Zers tzung v rw nd t. Der v rbleibende Rückstand wurd mit Kalkmilch n utralisiert.

Beispiel 3:

Zersetzung von Blauasbest mit Ammoniumbifluorid.
Zunächst wurden 2 kg ein r gesättigt in wäßrigen
Lösung von Ammoniumbifluorid (NH₄HF₂) hergestellt. Die Konzentration betrug gemäß einer Analyse
36.4 Gew.-%.

301 g dieser Lösung wurden in ein im Polyethylen-Kunststoffgefäß vorgelegt. Unter ständigem Rühren wurden 10 g Blauasbestfasern eingetragen, die nach 2 Minuten fast vollständig zersetzt waren. Das Rühren wurde eingestellt, worauf sich die Mischung in festen Bodensatz und flüssigen Überstand trennte. und 90 Vol.-% des sich bildenden Überstandes wurden aus dem Kunststoffgefäß abgesaugt. Zum verbleibenden Rückstand, der nur noch sehr geringe Mengen Blauasbest enthielt, wurden wit re 301 g der Ammoniumbifluorid-Lösung zugesetzt und wiederum 10 g Blauasbestfasern eingerührt. Will derum nach 2 Minuten wurde das Rühren eing stellt und vom sich bildenden Überstand wurden wiederum 90 Vol.-% aus dem Kunststoffgefäß abgesaugt. Auf diese Weise wurden insgesamt sechs Reaktionszyklen durchgeführt. Im letzten Reaktionszyklus ließ man 4 Stunden bei Umgebungstemperatur stehen. Danach waren die in geringer Menge im Rückstand noch vorhandenen Asbestfasern vollkommen z rs tzt. Sowohl der abgetrennte Überstand als auch dir Reaktionsrückstand wurden mit 20 Gew.-% Calciumhydroxid enthaltender Kalkmilch neutralisiert.

Patentansprüche

1. Verfahren zur halbkontinuierlichen Zersetzung von Asbest mit mindestens zwei Reaktionszyklen, wobei man in einem ersten Reaktionszyklus Asbest mit einer wäßrigen Lösung einer anorganischen Fluor enthaltenden Säure oder eines sauren Salzes einer anorganischen Fluor enthaltenden Säure als Zersetzungsmittel in ein im Reaktor kontaktiert, bis mindestens 90 Gew.-% des Asbests zersetzt sind, aber noch unz rsetzter Asbest in der gebildeten Reaktionsmischung vorhanden ist, man den unzersetzten Asbest in der gebildeten Reaktionsmischung absetzen läßt, so daß sich ein asbesthaltiger Bodensatz ntwickelt und ein asbestfreier Überstand, man den Überstand teilweise aus dem Reaktor abtrennt derart. daß kein Asbest aus dem Reaktor ausgetragen wird, man in den Reaktor in einem zw. iten Reaktionszyklus weiteren Asbest und weitere wäßrige Lösung der anorganischen Fluor enthaltenden Saure oder ines sauren Salzes dir anorganischen Fluor enthalt nden Säure einbringt und den Asbest entsprechend dem ersten Reaktionszyklus zers tzt und den Überstand entweder mindestens teilweise im Reaktor beläßt oder teilwei-

se abtrennt, und dann den ersten Reaktionszyklus gewünschtenfalls noch einmal oder mehrmals wi derholt mit der Maßgabe, daß man das V rfahren abbricht, sobald der asb sthaltig Bodensatz 30 Vol.-% des Reaktorvolumens eingenommen hat.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man nach der Zugabe von Asbest und Zersetzungsmittel im letzten Reaktionszyklus den Überstand nicht abtrennt, sondern im Reaktor beläßt und die Reaktionsmischung weiter reagieren läßt, bis der Asbest völlig zersetzt ist.
- Verfahren nach Anspruch 1 oder 2. dadurch gekennzeichnet, daß man als Zersetzungsmittel Flußsäure, Hexafluorokieselsäure und/oder Tetrafluoroborsäure verwendet.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die wäßrige Lösung das Zersetzungsmittel in einer Konzentration von 10 bis 40 Gew.-% enthält.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Asbest und die wäßrige Lösung des Zersetzungsmittels während einer Zeitspanne von 2 und 10 Minuten unter Rühren kontaktiert.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man Asbest und wäßrige Lösung des Zersetzungsmittels beim Kontaktieren intensiv miteinander vermischt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man Tenside und/oder Flockungshilfsmittel zusetzt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man als Asbest Spritzasbest oder zerkleinertes, Asbestfasern enthaltendes Material einsetzt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man ohne Zufuhr externer Wärmeenergie zersetzt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man 70 bis 95 Vol.-% des Überstands, vorzugsweis 85 bis 90 Vol.-% des Überstands abtrennt.

- 10

15

20

25

30

35

40

45

50

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeidung

92 71 0035 ΕP

	EINSCHLÄGIG	E DOKUMENTE			
Kategorie	Kennzeichnung des Dokumm der maßgeblich	ets mit Angabe, soweit erforderlich, ben Teile		trifit preci	KLASSIFIKATION DER ANMELDUNG (Int. CL5)
Р,Х	1992	C-959)(5347) 6. Juli NIPPON STEEL CHEM CO 2		1-10	A62D3/00
X	INDUSTRIELLE DU QUE * Seite 3, Zeile 24	A-A-1 114 533 (CENTRE DE RECHERCHE 1 DUSTRIELLE DU QUEBEC ,CANADA) Seite 3, Zeile 24 - Zeile 29 * Seite 12, Zeile 7 - Zeile 19 *			
Y	WO-A-8 810 234 (FOR * Seite 8, Zeile 33 * Ansprüche 1,4,5,9	- Seite 9, Zeile 14 1	1-1	0	
Y	US-A-3 708 014 (R.F * das ganze Dokumen		1-1	0	
Y	EP-A-0 372 084 (NIPPON STEEL CHEMICAL CO LTD) * Seite 6, Zeile 1 - Zeile 17 * * Seite 7, Zeile 18 - Zeile 24 * * Seite 8, Zeile 14 - Zeile 17 * * Seite 11, Zeile 16 - Zeile 20 * * Seite 20; Beispiel 7 *		1-1	0	RECHERCHIERTE SACHGEBIETE (las. Cl.5
A	WO-A-9 015 642 (TONY NOCITO) * Seite 6, Zeile 15 - Zeile 23 * * Seite 13, Zeile 4 - Zeile 30 * * Seite 18, Zeile 1 - Seite 19, Zeile 2 * * Seite 22, Zeile 8 - Zeile 19 * * Seite 23, Zeile 17 - Zeile 24; Beispiel 4 *		0		
Derv	rortiegende Recherchenbericht wur	de für alle Patentansprüche erstellt			
	Reductions	Abschiedenten der Recherche			Produ
-	DEN HAAG	15 FEBRUAR 1993	İ		DALKAFOUKI A.
Y: vo	KATEGORIE DER GENANNTEN in besonderer Bedeutung allein betrach be besonderer Bedeutung in Verbindun aderen Veröffentlichung derneiben Kat schnologischer Hilsengrund	E : ilterus Pate anch éen A g mit einer D : in der Anm egone L : ans anders	estokawa Amerikaka Adang say Granton s	egaribri pribbrins egaribri	le Theorien eder Grundskins doch erst am oder Teoriicht vorden ist Dekument es Dekument mille, überwassinamentes

- A : rechnologischer Historgrund O : auchtschriftliche Offenburung P : Zwischenäterstur

& : Mitgliet der gleichen Patentfamilie, üb Dokument