To find following the Machine Learning Regression method using in R² value.

- 01) Problem Statement or Requirement is Insurance Charge Prediction.
- 02) Total Number of Rows-6, columns-1338
- 03) I did Preprocessing for sex (male & female) and smoker (yes & no)

1.MULTIPLE LINEAR REGRESSION:

Best Value from MLR:

 R^2 value = 0.78913454847886

2. SUPPORT VECTOR MACHINE:

i. General Process:

S.NO	LINEAR (R_VALUE)	RBF(NON LINEAR) (R_VALUE)	POLY (R_VALUE)	SIGMOID (R_VALUE)
01.	-0.111536454002	-0.088442509991	-0.064569828857	-0.089943469577

ii. C_Penalty:

S.NO	HYPER PARAMETER (C_VALUE)	LINEAR (R_VALUE)	RBF (NON- LINEAR) (R_VALUE)	POLY (R_VALUE)	SIGMOID (R_VALUE)
01.	0.01	-0.07976404 743917187	-0.089716397 18848179	-0.08931659343 18183	-0.08973333 276340734
02.	0.1	-0.12212950 264630229	-0.089596413 10657296	-0.08621827721 504305	-0.08976530 80593388
03.	1.0	-0.11153645 400200585	-0.088 44 25099 9130221	-0.06456982885 737417	-0.08994346 957721744
04.	10	-0.00170192 21645011573	-0.081880995 05418855	-0.09309903399 514141	-0.09093075 300415654
05.	100	0.543221029 625509	-0.124506970 22511292	-0.09923857592 1484	-0.11850300 514767609
06.	1000	0.633867642 6907017	-0.117617560 75675889	-0.05465623844 1107785	-1.71123067 0174268

iii. Standardisation:

S.NO	LINEAR (R_VALUE)	RBF (NON-LINEAR) (R_VALUE)	POLY (R_VALUE)	SIGMOID (R_VALUE)
01.	-0.010195463359	-0.08340516096	-0.075717337715	-0.07544638548539
	872203	481387	84865	218

iv. Standardisation with C_Penalty:

S.NO	HYPER PARAMETER (C_VALUE)	LINEAR (R_VALUE)	RBF (NON- LINEAR) (R_VALUE)	POLY (R_VALUE)	SIGMOID (R_VALUE)
01.	0.01	-0.088851825	-0.089666333	-0.089589028	-0.089585755
02.	0.1	-0.080977866	-0.089095494	-0.088322830	-0.088290328
03.	1.0	-0.010195463	-0.083405160	-0.075717337	-0.075446385
04.	10	0.4624263375	-0.032380600	0.0386251874	0.0394401214
05.	100	0.6289632029	0.3196645450	0.6164698351	0.5268415404
06.	1000	0.7648394817	0.8107195705	0.8546515591	0.2120454187
07.	10000	0.7413290358	0.8780047074	0.8572189614	-28.34165163

Best Value in SVM:

The SVM Regressor R²value (Nonlinear (kernel = "rbf") and Hyper Tuning Parameter (C = 10000)) = 0.8780047074440409

3.DECISION TREE:

i. Method-01

SL.NO	CRITERION	SPLITTER	R_VALUE
01.	Squared error	Best	0.6883908191578559
02.	Friedman_mse	Best	0.6947229954874397
03.	Absolute error	Best	0.7256157571187167
04.	Poisson	Best	0.681133272801491
05.	Squared error	Random	0.7584876928301207
06.	Friedman_mse	Random	0.7113158437852314
07.	Absolute error	Random	0.7307449040119351
08.	Poisson	Random	0.7036416536724851

ii. Method-02

SL.NO	CRITERION	SPLITTER	MAX_FEATURES	R_VALUE
01.	Squared error	<mark>Best</mark>	<mark>sqrt</mark>	0.7707800713119641
02.	Squared error	Best	log2	0.7614300534063496
03.	Friedman_mse	Best	sqrt	0.7445140572039232

04.	Friedman_mse	Best	log2	0.6550595115312327
05.	Absolute error	Best	sqrt	0.6796749073935946
06.	Absolute error	Best	log2	0.7114261542959275
07.	Poisson	Best	sqrt	0.6472164304876127
08.	Poisson	Best	log2	0.6886508984873159
09.	Squared error	Random	sqrt	0.71627952103802
10.	Squared error	Random	log2	0.6799131775438025
11.	Friedman_mse	Random	sqrt	0.624486713670842
12.	Friedman_mse	Random	log2	0.6782144931247716
13.	Absolute error	Random	sqrt	0.59835828495019
14.	Absolute error	Random	log2	0.6342130151276348
15.	Poisson	Random	sqrt	0.6958752685032943
16.	Poisson	Random	log2	0.6003749187441639

Best Value in Decision Tree:

The Decision Tree Regressor R²value (criterion='squared_error', splitter='random') = 0.7707800713119641

4.RANDOM FOREST:

i.Method-1

S.No	Estimators	R_Value
01.	10	0.8254024480527736
02.	20	0.8366366754276282
03.	30	0.8464896719139645
04.	40	0.8513626150908182
05.	50	0.8519160896863027
06.	60	0.8504610239826466
07.	70	0.8513009178708844
08.	80	0.8514864766488272
09.	90	0.8519445579703155
10.	100	0.8524645431942335

ii.Method-2

S.No	Estimators	CRITERION	R_Value
01.	10	Squared error	0.8254024480527736
02.	50	Squared error	0.8519160896863027
03.	100	Squared error	0.8524645431942335
04.	10	Absolute error	0.841182394066486
05.	50	Absolute error	0.8576522515477305
06.	100	Absolute error	0.8565701539573851
07.	10	Friedman_mse	0.8254024480527736
08.	50	Friedman_mse	0.8519160896863027
09.	100	Friedman_mse	0.8524645431942335
10.	10	Poisson	0.8280224559126734
11.	50	Poisson	0.8495669971089854
12.	100	Poisson	0.8505020311598165

iii.Method-3

SL.NO	ESTIMATORS	CRITERION	MAX_FEATURES	R_VALUE
01.	10	Squared error	sqrt	0.841371714130463
02.	50	Squared error	sqrt	0.860384255362958
03.	100	Squared error	sqrt	0.866171806423152
04.	10	Squared error	log2	0.841371714130463
05.	50	Squared error	log2	0.860384255362958
06.	100	Squared error	log2	0.866171806423152
07.	10	Absolute error	sqrt	0.844185275693034
08.	50	Absolute error	sqrt	0.862123099996750
09.	<mark>100</mark>	Absolute error	sqrt	0.866661872028384
10.	10	Absolute error	log2	0.844185275693034
11.	50	Absolute error	log2	0.862123099996750
12.	<mark>100</mark>	Absolute error	log2	0.866661872028384
13.	10	Friedman_mse	sqrt	0.841371714130463
14.	50	Friedman_mse	sqrt	0.860384255362958
15.	100	Friedman_mse	sqrt	0.866171806423152

16.	10	Friedman_mse	log2	0.841371714130463
17.	50	Friedman_mse	log2	0.860384255362958
18.	100	Friedman_mse	log2	0.866171806423152
19.	10	Poisson	sqrt	0.836605439397253
20.	50	Poisson	sqrt	0.854826201808691
21.	100	Poisson	sqrt	0.859143407373711
22.	10	Poisson	log2	0.836605439397253
23.	50	Poisson	log2	0.854826201808691
24.	100	Poisson	log2	0.859143407373711

Best Value in Random Forest:

```
Random Forest Regressor R<sup>2</sup>value (Estimators = 100, criterion='absolute_error', max_features='sqrt' and 'log2') = 0.866661872028384
```

The final Machine Learning Best Algorithm:

Support Vector Machine output is Best in this Dataset:

This is Best model said reason for these model is made the high value of R² value

The SVM Regressor R²value (Nonlinear (kernel = "rbf") and Hyper Tuning Parameter (C = 10000)) = 0.8780047074440409

(OR)

Random Forest Regressor R²value (Estimators = 100, criterion='absolute_error', max_features='sqrt' and 'log2') = 0.866661872028384