

University of Vavuniya

First Examination in Information Technology - 2019

First Semester - December 2020/January 2021

Held on October/November 2021

IT1122 Foundation of Mathematics

Online Examination

Question-Set 1 of 2

- Time Allowed : 30 Minutes
- This is a closed-book examination.
- 1. (a) Suppose A is the set of distinct letters in the word "MATHEMATICS", B is the set of distinct letters in the word "STATISTICS", C is the set of distinct letters in the word "CHEMIST", and D is the set of distinct letters in the word "TACTICS". The universe U is the set of English alphabet. Find each of the following:
 - i. $A \cap B$
 - ii. $A \cup (B \cap C)$
 - iii. $B \cap (C \cup D)$

iv. $(A \cup B \cup C \cup D)^c$ [20%]

(b) Let $A = \{x, y\}, B = \{1, 2, 3\}, \text{ and } C = \{a, b\}.$ Find each of the following:

i. P(B)

ii. $A \times B \times C$ [15%]

[This question is continued on the next page]

- (c) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by f(x) = 3x + 1. Determine whether the function f(x) invertible. If so, find the inverse function f^{-1} . [20%]
- (d) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by f(x) = 4x 3 and $g(x) = x^2 + 2$ for all $x \in \mathbb{R}$. Find $g \circ f$ and $f \circ g$.
- (e) Let R be the relation on the set $A = \{1, 2, 3, 4, 5\}$. The relation R: $A \longrightarrow A$, $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$. Determine whether R is **reflexive**, symmetric or transitive. [15%]
- (f) Find R^2 if R is a relation from $\{0, 1, 2, 3\}$ to $\{1, 2, 3\}$ where $R = \{(1, 1), (2, 4), (3, 4), (4, 2)\}$.

University of Vavuniya

First Examination in Information Technology - 2019

First Semester - December 2020/January 2021

Held on October/November 2021

IT1122 Foundation of Mathematics

Online Examination

Question-Set 2 of 2

- Time Allowed : 30 Minutes
- Answer any **one** question only.
- This is a closed-book examination.
- 2. (a) State the converse, contrapositive, and inverse of the following conditional statement.

"If the square of an integer m is even, then the integer m must be even." [15%]

- (b) Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent using Boolean algebra identities. [15%]
- (c) Prove each of the following using truth table:

i.
$$(p \longrightarrow q) \longleftrightarrow (\sim p \lor q)$$
 is a tautology.

ii.
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
 [30%]

[This question is continued on the next page]

- (d) Express each of the following statements in a symbolic form by defining propositions:
 - i. "I am innocent and i have an alibi."
 - ii. "If the label does not read 'POISON' then i can drink it."
 - iii. "You can take the flight if and only if you buy a ticket."
 - iv. "You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."

[20%]

- (e) Express each of the following statements in symbolic form using quantifiers, predicates, and logical connectives:
 - i. "All hummingbirds are richly colored."
 - ii. "No large bird live on honey."
 - iii. "There is an adult in your neighbourhood who knows kung-fu but not karate."
 - iv. "Not everybody is your friend or someone is not perfect." [20%]
- 3. (a) Using properties of Boolean algebra, simplify each of the following functions:
 - i. (A + B)(A + C)

ii.
$$\overline{AB}(\overline{A}+B)(\overline{B}+B)$$

(b) Simplify each of the following Boolean expressions using Karnaugh map:

i.
$$F(A, B, C) = \bar{A}\bar{B}\bar{C} + \bar{A}BC + \bar{A}B\bar{C} + AB\bar{C} + A\bar{B}C + ABC$$

ii.
$$F(A, B, C) = \bar{A}BC + A\bar{B}C + AB\bar{C} + AB\bar{C}$$
 [20%]

- (c) Draw a reduced circuit for the simplified Boolean expressions obtained in part (b). [20%]
- (d) Define a Finite State Machine. [10%]

[This question is continued on the next page]

(e) Consider the finite-state machine M defined by the state table shown in Table 1.

Table 1

	Input	
State	0	1
S_0	S_1	S_2
S_1	S_1	S_2
S_2	S_3	S_4
S_3	S_1	S_2
S_4	S_3	S_4

Draw the state diagram for the finite state machine M.

[30%]