

Operation Deep^(Learning)Breath

Saving Lives by Increasing Access to Healthcare Diagnostics Technology

Roadmap for today

- Problem Overview No child should die from pneumonia
- Partner Background The Gates Foundation is well-positioned to make a difference
- AllD's Solution & Demo We have developed an app that can save lives
- Next Steps & Deployment Our solution is relatively cheap and scalable
- Q&A

We have options

A Dignity Health Member

Pneumonia is a serious problem

- Pneumonia is the leading cause of death in children worldwide
- Although most cases of pneumonia can be easily treated with antibiotics, "only one third of children with pneumonia receive the antibiotics they need"
- Most prevalent in South Asia and sub-Saharan Africa
- Causes: Viruses, bacteria, or fungi

Protect, prevent, treat framework

Global Action Plan for Pneumonia and Diarrhea created by the WHO and Unicef

The Gates Foundation's Global Health Division Strategy

- Increase access to pneumococcal and meningococcal vaccines
- Improve access to appropriate diagnostic and treatment options
- Improve quality of pneumonia-related data collection
- Researching links between pneumonia and indoor air pollution

Areas of Focus

- Countries where the introduction to vaccines is lagging
- Prioritizing children under the age of 5

How can we make a difference? Scalable solutions...

Current

Widespread lack of access to:

- X-ray facilities
- Doctors who can interpret X-rays
- Speedy diagnosis

Future

- Mobile X-Ray Pop-Up Shops
 - Low capital expenditures and allows for easy and configurable deployment
- Machine Learning
 - · Remove bottleneck and quickly scale up
- Easy-to-use Dashboard
 - Identify areas in greatest need of mobile X-rays
 - Measure performance, bring accountability

Labeled images from UCSD used to train & test CNN

Pneumonia

Healthy

Sources: https://data.mendeley.com/datasets/rscbjbr9sj/2
University of California San Diego

CNN model architecture predicting pneumonia

Heat map allows doctors to interpret the X-ray image

Improper diagnoses are common – a low bar

A recent Harvard study showed that an astounding 79% of children in Malawi with pneumonia were misdiagnosed

	Pneumonia	
Predicted	Precision = 33%	
class	Not Pneumonia	
	Precision = 84%	

Our model diagnosed 88% of children with pneumonia correctly

Our model only misdiagnosed **12%** of children.

	Pneumonia	
Predicted	Precision = 49%	
class	Not Pneumonia	
	Precision = 96%	

19%	20%	
3%	59%	
Pneumonia	Not Pneumonia	
Recall = 88%	Recall = 75%	
Actual class		

Given 100,000 children are seen, we estimate...

= 100 patient deaths due to misdiagnosis

Given 100,000 children are seen, we estimate...

= 100 patient deaths due to misdiagnosis

600 lives saved.

= 100 patient deaths due to misdiagnosis

We utilize the ROC curve to risk-stratify patients

We utilize the ROC curve to risk-stratify patients

We utilize the ROC curve to risk-stratify patients

For a subset of <u>medium-risk</u> patients, the algorithm does not perform as well

Epic

As Tara the technician, I want to upload an X-ray image of a child presented with pneumonia symptoms to an internet portal and immediately receive an automated pneumonia diagnosis, such that I can determine whether the patient needs antibiotics.

Dashboard Demo

Iterative Process

We will continue to iterate and improve our app based on the following KPIs:

- 1. # of images successfully evaluated / # of total attempts (app opened)
- 2. # of images successfully evaluated after an error message is presented (are people giving up after 1 attempt?)
- 3. # of X-rays scanned
- 4. # of patients seen
- 5. Average wait time of patients
- 6. Miles traveled by pop-ups

Next Steps

- Roll out an initial test pilot phase
 - Identify five areas where:
 - Pneumonia deaths are forecasted to be higher than average
 - Infrastructure is in place to easily deploy mobile X-ray pop-ups (roads, safe to travel, etc.)
 - Gates Foundation already operates in
 - Identify technicians who can operate X-rays
 - Train technicians on using AIID's app
- Track pneumonia deaths for one year and compare against control areas

AIID

Stethoscope with Built-In Machine Learning App

- Diagnoses pneumonia based on the sound of patient breathing
- Cheaper in the longer-term and even more scalable
- Potentially just as effective as X-rays in diagnosing pneumonia

Q&A

Supplemental material

Backup for 600 lives calculation

False negatives: patient does not receive antibiotic and has a 5% chance of fatality

Pneumonia

Predicted Precision = 49%

class Not Pneumonia

Precision = 96%

False positives: 0.3% change of drug resistance and 29% chance of developing pneumonia again

Actual class

We estimate our lung scans will save over 600 lives if 100,000 patients are seen

Currently in Malawi: 727 deaths given 100,000 patients

FN Cost = $100,000 \times 15\%$ FN $\times 5\%$ = 725 deaths

 $FP Cost = 100,000 \times 8\% FP \times 0.3\% \times 29\% \times 25\% = 2 deaths$

727 total deaths

After our scans: 104 deaths given 100,000 patients

 $FN Cost = 100,000 \times 3\% FN \times 5\% = 99 deaths$

 $FP Cost = 100,000 \times 20\% FP \times 0.3\% \times 29\% \times 25\% = 5 deaths$

104 total deaths

Additional information on treatment of data

The majority of samples are pneumonia

Our sample is a much different population than those patients actually presenting with pneumonia

https://data.mendeley.com/datasets/rscbjbr9sj/2 https://gh.bmj.com/content/bmjgh/3/2/e000506.full.pdf

There is a class imbalance between healthy and pneumonia patients

We correct for the sample bias and class imbalance

- (1) We evaluate model performance by reweighting the test sample to reflect the presenting population.
- (2) We apply class weighting to apply a greater weight on pneumonia than healthy samples, putting greater emphasis on FN than FP.

