2022 年上海市虹口区中考数学一模试卷

2022.1

一、选择题: (本大题共6题,每题4分,满分24分)

【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上. 】

- 1. 下列选项中的两个图形一定相似的是()
 - A. 两个等腰三角形 B. 两个矩形 C. 两个菱形
- D. 两个正方形
- 2. 在Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$,BC = 12,AC = 5,那么 $\cot B$ 等于(

 - A. $\frac{5}{13}$ B. $\frac{12}{13}$ C. $\frac{12}{5}$
- 3. 已知 $\vec{a} = 7\vec{b}$,下列说法中不正确的是()

 - A. $\vec{a} 7\vec{b} = 0$ B. $\vec{a} = \vec{b}$ 方向相同 C. $\vec{a} / / \vec{b}$

4. 下列函数中,属于二次函数的是(

$$A. \quad y = \sqrt{x^2 + x}$$

B.
$$y = (x-1)^2 - x^2$$

C.
$$y = 5x^2$$

D.
$$y = \frac{2}{x^2}$$

- 5. 在 $\triangle ABC$ 中, 点 $E \times D \times F$ 分别在边 $AB \times BC \times AC$ 上, 联结 $DE \times DF$, 如果 DE //AC, DF // AB, AE: EB = 3:2, 那么 AF: FC 的值是 ()
- B. $\frac{2}{3}$ C. $\frac{2}{5}$ D. $\frac{3}{5}$
- 6. 如图所示,一座抛物线形的拱桥在正常水位时,水而 AB 宽为 20 米, 拱桥的最高点 O 到水面 AB 的距离为 4×1 如果此时水位上升 3×3 米就 达到警戒水位 CD, 那么 CD 宽为 ()

- A. $4\sqrt{5}$ **
- B. 10 \pm C. $4\sqrt{6}$ \pm D. 12 \pm
- 二、填空题: (本大题共12题,每题4分,满分48分)

【请直接将结果填入答题纸的相应位置】

7. 如果
$$\frac{m}{n} = \frac{5}{6}$$
, 那么 $\frac{m-n}{n} = _____$.

8. 已知点 P 是线段 AB 的黄金分割点 (AP > PB), 如果 AB = 2, 那么线段 AP =

- 10. 如果二次函数 $y = (m-1)x^2 + x + m^2 1$ 的图像经过原点,那么 $m = ____.$
- 11. 如果抛物线 $y = (2-a)x^2 + 2$ 开口向下,那么 a 的取值范围是 .
- 12. 如果抛物线过点(-2,3),且与y轴的交点是(0,3),那么抛物线的对称轴是直线_____.
- 14. 如果一个斜坡的坡度 $i=1:\frac{\sqrt{3}}{3}$,那么该斜坡的坡角度数是_____。
- 15. 已知 $Rt \triangle ABC$ 的两直角边之比为 3:4,若 $\triangle DEF$ 与 $\triangle ABC$ 相似,且 $\triangle DEF$ 最长的 边长为 20,则 $\triangle DEF$ 的周长为_____.
- 16. 如图,过 $\triangle ABC$ 的重心G作ED//AB分别交边AC、BC于点E、D,联结AD,如果AD平分 $\angle BAC$, AB=6,那么EC=_____.

第16题图

第17题图

- 17. 在网格中,每个小正方形的顶点称为格点,以格点为项点的三角形称为"格点三角形".如图,在 4×4 的网格中, $\triangle ABC$ 是一个格点三角形,如果 $\triangle DEF$ 也是该网格中的一个格点三角形,它与 $\triangle ABC$ 相似且面积最大,那么 $\triangle DEF$ 与 $\triangle ABC$ 相似比的值是
- 18. 如图,在 $\triangle ABC$ 中,AB = AC = 15, $\sin \angle A = \frac{4}{5}$. 点 D、E 分别在 AB 和 AC 边上, AD = 2DB ,把 $\triangle ADE$ 沿着直线 DE 翻折得 $\triangle DEF$,如果射线 $EF \perp BC$,那么 $AE = \underline{\hspace{1cm}}$.
- 三、解答题: (本大题共7题,满分78分)
- 19. (本题满分10分)

计算:
$$\frac{2\sin 60^{\circ} + 3\tan 30^{\circ}}{\cot 30^{\circ} - \cot 45^{\circ}}$$
.

20. (本题满分10分,第(1)小题5分,第(2)小题5分)

已知抛物线 $y = ax^2 + bx + c(a \neq 0)$ 上部分点的横坐标 x 与纵坐标 y 的对应值如下表:

- (1) 求该抛物线的表达式;
- (2) 将抛物线 $y = ax^2 + bx + c$ 沿 x 轴向右平移 m(m>0) 个单位,使得新抛物线经过原点 O,求 m 的值以及新抛物线的表达式.

X	•••	-2	-1	0	1	2	
у		3	4	3	0	-5	

21. (本题满分10分,第(1)小题6分,第(2)小题4分)

如图,在平行四边形 ABCD 中,延长 BC 到点 E,使 CE=BC,联结 AE 交 DC 于点 F, 设 $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AD}=\overrightarrow{b}$.

- (1) 用向量 \vec{a} 、 \vec{b} 表示 \vec{DE} ;
- (2) 求作: 向量 \overrightarrow{AF} 分别在 \overrightarrow{a} 、 \overrightarrow{b} 方向上的分向量.

(不要求写作法,但要写明结论.)

22. (本题满分10分)

图 1 是一款平板电脑支架,由托板、支撑板和底座构成. 工作时,可将平板电脑吸附在托板上,底座放置在桌面上,图 2 是其侧面结构示意图,已知托板 AB 长 200mm,支撑板 CB 长 80mm,当 $\angle ABC$ = 130°, $\angle BCD$ = 70°时,求托板顶点 A 到底座 CD 所在平面的距离(结果精确到 1mm).

(参考数据: $\sin 70^\circ \approx 0.94$, $\cos 70^\circ \approx 0.34$, $\tan 70^\circ \approx 2.75$, $\sqrt{2} \approx 1.41$, $\sqrt{3} \approx 1.73$)

23. (本题满分 12 分, 第 (1) 小题 6 分, 第 (2) 小题 6 分)

如图,在梯形 ABCD 中, $\angle ABC = 90^{\circ}$, $AD /\!/ BC$, BC = 2AD , 对角线 AC = BD 交于点 E . 点 F 是线段 EC 上一点,且 $\angle BDF = \angle BAC$.

- (1) 求证: $EB^2 = EF \cdot EC$;
- (2) 如果BC = 6, $\sin \angle BAC = \frac{2}{3}$, 求FC的长.

24. (本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)

已知开口向上的抛物线 $y = ax^2 - 4ax + 3$ 与 y 轴的交点为 A,顶点为 B,点 A 与点 C 关于对称轴对称,直线 AB 与 OC 交于点 D.

- (1) 求点 C 的坐标,并用含 a 的代数式表示点 B 的坐标;
- (2) 当 $\angle ABC = 90^{\circ}$ 时,求抛物线 $y = ax^2 4ax + 3$ 的表达式;
- (3) 当 $\angle ABC = 2\angle BCD$ 时,求 OD 的长.

25. (本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)

已知:如图,在 $\triangle ABC$ 中, $\angle ACB$ =90°,AB=10, $\tan B = \frac{3}{4}$,点D是边BC延长线上的一点,在射线AB上取一点E,使得 $\angle ADE$ = $\angle ABC$,过点A作AF \bot DE 于点F.

- (1) 当点 E 在线段 AB 上时,求证: $\frac{AF}{AC} = \frac{DE}{BD}$;
- (2) 在 (1) 题的条件下,设CD=x,DE=y,求y关于x的函数关系式,并写出 x的取值范围;
 - (3) 记 DE 交射线 AC 于点 G, 当 $\triangle AEF \hookrightarrow \triangle AGF$ 时,求 CD 的长.

2022 年上海市虹口区中考数学一模试卷

答案

一、选择题

- 3. A 4. C 5. B 6. B 1. D 2. C
- 二、填空题

7.
$$-\frac{1}{6}$$
. 8. $\sqrt{5}-1$. 9. $\vec{a}-3\vec{b}$.

8.
$$\sqrt{5}-1$$

9.
$$\vec{a} - 3\vec{b}$$

11
$$a > 2$$

11.
$$a > 2$$
. 12. $x = -1$. 13. < 14. 60° .

17.
$$\sqrt{2}$$

17.
$$\sqrt{2}$$
. 18. $8\sqrt{5}$ –10

三、解答题

19. 解:
$$\frac{2\sin 60^{\circ} + 3\tan 30^{\circ}}{\cot 30^{\circ} - \cot 45^{\circ}}$$

$$=\frac{2\times\frac{\sqrt{3}}{2}+3\times\frac{\sqrt{3}}{3}}{\sqrt{3}-1}$$

$$=\frac{2\sqrt{3}}{\sqrt{3}-1}$$

$$=\frac{2\sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$$

$$=3+\sqrt{3}.$$

- 20. 【答案】 (1) y=- (x+1) 2+4;
- (2) m=3; $y=-(x-2)^{-2}+4$.

【解析】

【分析】 (1) 利用抛物线的对称性得到抛物线的顶点坐标为 (-1, 4) ,则可设顶点式 y=a $(x+1)^{2}+4$, 然后把 (0,3) 代入求出 a 即可;

(2) 根据平移的规律得到 $y=-(x+1-m)^2+4$,把原点代入即可求得 m 的值,从而求得平移 后的抛物线的不等式.

【小问1详解】

x=-2, y=3; x=0, y=3,

:. 抛物线的对称轴为直线 x=-1,则抛物线的顶点坐标为(-1,4), 设抛物线解析式为 $y=a(x+1)^2+4$,

把 (0, 3) 代入得 a (0+1) 2+4=3, 解得 a=-1,

∴ 抛物线解析式为 y=- (x+1) ²+4;

【小问2详解】

将抛物线 $y=ax^2+bx+c$ 沿 x 轴向右平移 m (m>0) 个单位,得到 $y=-(x+1-m)^2+4$,

- :经过原点,
- $\therefore 0 = -(0+1-m)^{-2}+4$,

解得 m₁=3, m₂=-1 (舍去),

- $\therefore m=3$,
- :: 新抛物线的表达式为 $y=-(x-2)^{2}+4$.
- 21. 【答案】 (1) $\vec{a} + \vec{b}$ (2) 向量 \overrightarrow{AD} 、 \overrightarrow{AM} 是向量 \overrightarrow{AF} 分别在 \vec{a} 、 \vec{b} 方向上的分向量.

【解析】

- 【分析】 (1) 连接 AC, 证四边形 ACED 是平行四边形,得出 DE//AC, 根据平行四边形法则求解即可;
- (2) 过点 F 作 FM//AB 交 AB 于 M,根据平行四边形法则即可求得答案.

【小问1详解】

解: 连接 AC,

- :在平行四边形 ABCD 中,
- $\therefore AD // CB$, AD = CB,
- : CE = BC,
- ∴四边形 ACED 是平行四边形,
- $\therefore DE //AC$,

$$\overrightarrow{DE} = \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{a} + \overrightarrow{b}$$
;

【小问2详解】

解: 过点 F 作 FM//AB 交 AB 于 M,则向量 \overrightarrow{AD} 、 \overrightarrow{AM} 是向量 \overrightarrow{AF} 分别在 \overrightarrow{a} 、 \overrightarrow{b} 方向上的分向量.

【点睛】此题考查了平面向量的知识以及平行四边形的性质. 注意掌握平行四边形法则与三角形法则的应用是解此题的关键.

22.

【答案】托板顶点 A 到底座 CD 所在平面的距离为 248mm.

【解析】

【分析】过点 B 作 BE // CD , $BG \perp CD$, 交 CD 于点 G ,过点 A 作 $AF \perp BE$, 交 BE 于点 F ,由平行线的性质可得 $\angle BCD = \angle CBE = 70^\circ$,得出 $\angle ABE = 60^\circ$,在 $Rt \spadesuit AFB$ 与 $Rt \spadesuit BCG$ 中,分别利用锐角三角函数求解得出 $BG \approx 75.2mm$, $AF \approx 173mm$,托板顶点 A 到底座 CD 所在平面的距离即可得出.

【详解】解:如图所示:过点B作BE // CD, $BG \perp CD$, 交CD 于点G, 过点A作 $AF \perp BE$, 交BE 于点F,

: BE // CD,

$$\therefore \angle BCD = \angle CBE = 70^{\circ}$$
,

$$\therefore \angle ABE = \angle ABC - \angle CBE = 130^{\circ} - 70^{\circ} = 60^{\circ}$$
,

在 Rt◆AFB 中,

$$\sin \angle ABE = \frac{AF}{AB},$$

$$\therefore AF = AB \cdot \sin \angle ABE = 200 \times \frac{\sqrt{3}}{2} = 100\sqrt{3} \approx 173mm,$$

在 Rt◆BCG 中,

$$\sin \angle BCG = \frac{BG}{CR}$$
,

- $BG = BC \cdot \sin \angle BCG = 80 \times \sin 70^{\circ} \approx 75.2 mm$
- $AF + BG = 173 + 75.2 \approx 248mm$

答: 托板顶点 A 到底座 CD 所在平面的距离为 248mm.

23. 【答案】 (1) 见解析 (2) 2

【解析】

【分析】 (1) 根据 AD //BC ,可得 $\triangle EAD \sim \triangle ECB$,从而得到 $\frac{EA}{ED} = \frac{EC}{EB}$,再由 $\angle BDF = \angle BAC$,可得 $\triangle ABE \sim \triangle DFE$,从而得到 $\frac{EA}{ED} = \frac{EB}{EF}$,进而得到 $\frac{EC}{EB} = \frac{EB}{EF}$,即可求证;

(2) 根据锐角三角函数,可得 AC=9,从而得到 AB = $3\sqrt{5}$,再由 BC = 2AD ,可得 AD=3, 根据 AD // BC ,可得 BD = $3\sqrt{6}$,再由 $\triangle EAD$ $\triangle ECB$,可得 $\frac{EA}{AC}$ = $\frac{1}{3}$, $\frac{ED}{BD}$ = $\frac{1}{3}$,

从而得到 EC=6, $BE=2\sqrt{6}$,再由 $EB^2=EF\cdot EC$,可得 EF=4,即可求解.

【小问1详解】

证明: : AD // BC,

 $\therefore \triangle EAD \hookrightarrow \triangle ECB$,

$$\therefore \frac{EA}{EC} = \frac{ED}{EB} , \quad \mathbb{P} \frac{EA}{ED} = \frac{EC}{EB} ,$$

- $\therefore \angle BDF = \angle BAC$, $\angle AEB = \angle DEF$,
- $\therefore \triangle ABE \hookrightarrow \triangle DFE$,

$$\therefore \frac{EA}{ED} = \frac{EB}{EF} ,$$

$$\therefore \frac{EC}{EB} = \frac{EB}{EF},$$

$$\therefore EB^2 = EF \cdot EC ;$$

【小问2详解】

解:
$$\angle ABC = 90^{\circ}$$
, $BC = 6$, $\sin \angle BAC = \frac{2}{3}$,

$$\therefore \frac{BC}{AC} = \frac{2}{3} , \mathbb{P} AC = 9,$$

$$\therefore AB = \sqrt{AC^2 - BC^2} = 3\sqrt{5} \quad ,$$

- $\therefore BC = 2AD$.
- $\therefore AD=3$,
- : AD // BC,
- $\therefore \angle BAD = 90^{\circ}$.

$$\therefore BD = \sqrt{AB^2 + AD^2} = 3\sqrt{6} \quad ,$$

 $:: \triangle EAD \hookrightarrow \triangle ECB$,

$$\therefore \frac{EA}{EC} = \frac{ED}{EB} = \frac{AD}{BC} = \frac{3}{6} = \frac{1}{2} ,$$

$$\therefore \frac{EA}{AC} = \frac{1}{3} , \frac{ED}{BD} = \frac{1}{3} ,$$

:
$$EA = \frac{1}{3}AC = 3$$
, $ED = \frac{1}{3}BD = \sqrt{6}$,

$$\therefore EC=6$$
, $BE=2\sqrt{6}$,

$$: EB^2 = EF \cdot EC,$$

$$\therefore \left(2\sqrt{6}\right)^2 = 6EF \quad ,$$

- $\therefore EF=4$.
- $\therefore FC = EC EF = 6 4 = 2$.
- 24. 【答案】 (1) 点 C 的坐标为 (4,3), 点 B 的坐标为 (2,-4a+3)

(2)
$$y = \frac{1}{2}x^2 - 2x + 3$$
 $\equiv y = -\frac{1}{2}x^2 + 2x + 3$

$$(3) \frac{15}{11}$$
 或 3

【解析】

【分析】(1) 令 x=0,求得 y 的值,即可确定点 A 的坐标,再确定抛物线的对称轴,进而确定点 C 的坐标;再将对称轴代入求出顶点的纵坐标,即可确定点 B;

- (2) 如图,当 $\angle ABC = 90^{\circ}$ 时,即 $\triangle ABC$ 是直角三角形,然后根据勾股定理列方程求解即可;
- (3) 先说明 BE=EC, 再求出直线 OC 的解析式, 进而确定点 E 的坐标, 然后根据 BE=EC

运用两点间距离公式求得 a,确定点 B 的坐标,再求得直线 AB 的解析式,之后与直线 OC 的解析式联立求得 D 点坐标,最后求出 OD 的长度即可.

【小问1详解】

解: 令 x=0, 可得 $y = a \times 0^2 - 4 \times 0 \times a + 3 = 3$

∴A 点的坐标为 (0,3)

∵抛物线的对称轴为: $x=\frac{-4a}{-2a}=2$

∴点 C 的坐标为 (4,3),

令 x=2, 可得 $y = a \times 2^2 - 4 \times 2 \times a + 3 = -4a + 3$

∴顶点 B 的坐标为 (2,-4a+3) .

【小问2详解】

解:如图:当 $\angle ABC = 90$ °时,即 $\triangle ABC$ 是直角三角形

 $AC^2=AB^2+BC^2$

∴
$$(4-0)^{2}+(3-3)^{2}=(2-0)^{2}+(-4a+3-3)^{2}+(2-4)^{2}+(-4a+3-3)^{2}$$
,解得 $a=\frac{1}{2}$ 或 $-\frac{1}{2}$

∴ 抛物线的表达式为:
$$y = \frac{1}{2}x^2 - 2x + 3$$
 或 $y = -\frac{1}{2}x^2 + 2x + 3$.

【小问3详解】

解:如图: :EB 在抛物线的对称轴上

$$\therefore \angle EBC = \angle ABE = \frac{1}{2} \angle ABC$$

$$\therefore \angle ABC = 2\angle BCD$$

$$\therefore \angle BCD = \angle EBC$$

 $\therefore BE = EC$

∵点 O (0,0) , 点 C(4,3)

∴直线 OC 的解析式为 $y=\frac{3}{4}x$

$$\therefore E$$
 点坐标为 (2, $\frac{3}{2}$)

BE=CE

$$\therefore \frac{3}{2} - (-4a + 3) = \sqrt{(4 - 2)^2 + (3 - \frac{3}{2})^2}$$
 或-4a+3- $\frac{3}{2} = \sqrt{(4 - 2)^2 + (3 - \frac{3}{2})^2}$,解得 a=1 或 a=- $\frac{1}{4}$

∴点 B 的坐标为 (2, -1) 或 (2,4)

设直线 AB 的解析式为 y=kx+b

则
$$\begin{cases} 3 = b \\ -1 = 2k + b \end{cases}$$
 或
$$\begin{cases} 3 = b \\ 4 = -2k + b \end{cases}$$

解得:
$$\begin{cases} b=3 \\ k=-2 \end{cases} \begin{cases} b=3 \\ k=-\frac{1}{2} \end{cases}$$

∴直线 *AB* 的解析式为 y=-2x+3 或 $y=-\frac{1}{2}x+3$

$$\therefore \begin{cases} y = \frac{3}{4}x \\ y = -2x + 3 \end{cases} \vec{\mathbf{g}} \begin{cases} y = \frac{3}{4}x \\ y = -\frac{1}{2}x + 3 \end{cases} \text{ af } \vec{\mathbf{f}} : \begin{cases} x = \frac{12}{11} \\ y = \frac{9}{11} \end{cases} \vec{\mathbf{g}} \begin{cases} x = \frac{12}{5} \\ y = \frac{9}{5} \end{cases}$$

:.点
$$D$$
的坐标为 $(\frac{12}{11}, \frac{9}{11})$ 或 $(\frac{12}{5}, \frac{9}{5})$

$$\therefore OD$$
 的长为 $\frac{15}{11}$ 或 3.

25. 【答案】(1) 证明见解析; (2)
$$y = \frac{8+x}{10}\sqrt{36+x^2}$$
, $0 \le x \le 8$; (3) $CD = 3$.

【解析】

【分析】(1)根据相似三角形的判定定理可得 $\triangle ADE \backsim \triangle ABD$, $\triangle ADF \backsim \triangle ABC$,由其性质:相似三角形的对应边成比例,进行等量代换即可证明;

- (2) 根据正切函数设 AC = 3a , BC = 4a ,利用勾股定理确定三边长度,根据 (1) 中 $\frac{DE}{BD} = \frac{AD}{AB}$,代入可确定 y 与 x 的函数关系式,考虑当 x = 0 时, $DE \perp AB$,当 CD = CB = 8 时,点 E 与点 B 重合,点 F 与点 C 重合,此时 x 取得最大值;当 x > 8 时, $\angle ADB < \angle B$,不符合题意,不进行讨论;综合即可得出自变量的取值范围;
- (3) 分两种情况进行讨论: 当点 G 在线段 AC 上时,延长 AF 交 BC 于点 M,作 $MN \perp AB$ 于点 N,根据相似三角形的性质及角之间的关系可得 $\angle EAF = \angle GAF = \frac{1}{2} \angle BAC$,再由等 腰三角形三线合一的性质得出 MN = CM ,根据三角形等面积法即可得出 CM = 3 ,由此 确定 CD;当点 G 在 AC 的延长线上时,根据相似三角形的性质及三角形外角的性质可得这种情况不存在,综合两种情况即可得出结果.

【小问1详解】

证明: $\therefore \angle ADE = \angle ABC$, $\angle DAE = \angle BAD$,

 $\therefore \triangle ADE \hookrightarrow \triangle ABD$,

$$\therefore \frac{DE}{BD} = \frac{AD}{AB},$$

 $: AF \perp DE$,

$$\therefore \angle AFD = \angle ACB = 90^{\circ}$$
,

$$\therefore \angle ADE = \angle ABC$$

 $\therefore \triangle ADF \hookrightarrow \triangle ABC$,

$$\therefore \frac{AF}{AC} = \frac{AD}{AB},$$

$$\therefore \frac{AF}{AC} = \frac{DE}{BD};$$

【小问2详解】

解:
$$\angle ACB = 90^{\circ}$$
, $\tan B = \frac{3}{4}$,

$$\therefore \tan B = \frac{AC}{BC} = \frac{3}{4},$$

设
$$AC = 3a$$
, $BC = 4a$,

$$\therefore AC^2 + BC^2 = AB^2,$$

$$\therefore (3a)^2 + (4a)^2 = 10^2$$
,

解得: a = 2,

$$\therefore AC = 6$$
, $BC = 8$,

$$\therefore AD = \sqrt{AC^2 + CD^2} = \sqrt{36 + x^2},$$

由 (1) 得
$$\frac{DE}{BD} = \frac{AD}{AB}$$
,

$$\therefore \frac{y}{8+x} = \frac{\sqrt{36+x^2}}{10},$$

$$\therefore y = \frac{8+x}{10}\sqrt{36+x^2}$$
,

当x = 0时, $DE \perp AB$, 符合题意,

 $\therefore x > 0$;

当CD = CB = 8时,点E与点B重合,点F与点C重合,此时x取得最大值,

 $\therefore x \leq 8$,

当x > 8时,

 $\angle ADB < \angle B$,不符合题意,不进行讨论;

综上可得: $0 \le x \le 8$;

【小问3详解】

解: 如图所示: 当点 G 在线段 AC 上时, 延长 AF 交 BC 于点 M, 作 $MN \perp AB$ 于点 N,

 $: \triangle AEF \circ \triangle AGF$,

$$\therefore \angle AEF = \angle AGF$$
,

$$\therefore AE = AG$$
,

$$\therefore \angle EAF = \angle GAF = \frac{1}{2} \angle BAC$$
,

$$\therefore \angle DAF = \angle BAC$$
,

$$\therefore \angle DAC = \angle GAF$$
,

$$\therefore AC \perp BD$$

$$\therefore \angle AMC = \angle ADC$$
,

$$\therefore AM = AD$$
,

$$\therefore CM = CD$$
,

$$\therefore MN = CM$$
,

由
$$S_{\triangle ABC} = S_{\triangle ABM} + S_{\triangle ACM}$$
得,

$$\frac{1}{2} \times 6 \times 8 = \frac{1}{2} \times 6 \cdot CM + \frac{1}{2} \times 10 \cdot MN ,$$

解得: CM = 3,

$$\therefore CD = 3;$$

如图所示: 当点 G 在 AC 的延长线上时,

 $: \triangle AEF \sim \triangle AGF$,

 $\therefore \angle AEF = \angle AGF$,

 $: \angle AGF$ 是 $\triangle AEG$ 的外角,

 $\therefore \angle AGF > \angle AEF$,

这种情况不存在,

 $\therefore CD = 3$.

