

Introduction To Python

Bonface Onyango

Outline: Session I

- What is Python
- Why Python
- Python Interpreter
- Applications of Python in Data Science
- Installation of Python
- Writing your first python code
- Python as a Calculator
- Overview of Jupyter Notebook
- Running Python Code

Mode of Lesson Delivery

- Theory lectures and video recordings
- Live coding
- Practicals

What is python

 Python is a general-purpose, high-level, interpreted, object-oriented programming language.

Why python?

Applications of python in data science

Healthcare

Agriculture

Gaming

Politics and Governance

Email Classification

Python interpreter

- Python is an interpreted language because it executes line-by-line instructions
- Bridge the gap between what a human programmer writes and what the machine understands and thus executes

Installing python

>> https://www.python.org/downloads/

Checking whether python has been installed

```
>>> python
>>> python 3
boni@DESKTOP-F0TRJ7B:~$ python
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

NOTE: 'python' should be typed in small letters! Can you tell the python version?

Your first python code

>>> print('Hello world')

```
Python 3.9.12 (main, Apr 5 2022, 06:56:58)

[GCC 7.5.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> print('Hello, World!')

Hello, World!

>>> print('My name is Bonface')

My name is Bonface

>>>
```

Basic Python syntax >>>

Syntax is a Set of rules for a particular programming language

- Indentation of code block
- Variables: no spaces, case sensitive
- Strings enclosed with double or single quotation marks
- The new line symbol is '\'
- Comments start with a #

```
Color=["red", "blue", "green"]

for color in colors:
    print(color)
```

max_num=90

Var1='Hello world" var2 'Hello world'

add=20+50+\ 60+70

print my name
print("my name")

Other Basic Rules

Python is Case sensitive

```
input:
PRINT('hello world!')
Output:
NameError: name 'PRINT' is not defined
```

Indexing in python starts from 0: ATGC

```
Example
my_dna=['ATGC']
My_dna[0]
Output: A
```

Using Python as a calculator

Multiply

>>> 3*3

C

Add

>>> 3+3

6

Divide

>>> 4/2

2

Installation of Jupyter Notebook

JupyterLab

Install JupyterLab with pip:

pip install jupyterlab

Note: If you install JupyterLab with conda or mamba, we recommend using the condaforge channel.

Once installed, launch JupyterLab with:

jupyter lab

Jupyter Notebook

Install the classic Jupyter Notebook with:

pip install notebook

To run the notebook:

jupyter notebook

Jupyter Notebook

 Jupyter Notebook is used to create interactive notebook documents that can contain live code, equations, visualizations, media and other computational output

Installing Jupyter Notebook using Miniconda

 It is recommended to install Jupyter Notebook through Anaconda or as an add-on to Miniconda.

 While it's possible to install Jupyter Notebook on its own, using Anaconda or Miniconda simplifies the process.

Running Python Code

GNU nano 6.2

a=10 b=12

c=a+b

print(c)

Interactive mode

>>> b=12

>>>

>>> c=a+b

>>> print(c)

```
(base) root@DESKTOP-FOTRJ7B:/mnt/c/Users/HP/Desktop# python
Python 3.9.12 (main, Apr 5 2022, 06:56:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
```

Script mode/Python prompts

Create a python file e.g addition.py

addition.pv

Above python program:

- takes two inputs as a and b
- Prints the sum in the third variable which is c.
- It follows sequential as well as functional execution of programs

To escape python console: Control + D

- Write each line of the python code using
 - any editor (nano, Vscode..etc)
- Cd to the file directory

Run code below?

Python addition.py Output: 22

Live coding

- Python console
- Check if python is installed
- Write your first code
- Use python as a calculator

Let's Recap

- Python is a high-level, interpreted programming language known for its easy-to-read syntax, dynamic typing, and versatility
- Indentation is used to define code blocks instead of braces or keywords.
- Python is case-sensitive, and variables do not require explicit declaration.
- Jupyter notebook combines code, narrative text, visualizations, and other rich media into a single document

Time for Break!

SEE YOU IN THE NEXT SESSION!

Introduction to Python: Session II

Mode of Lesson Delivery

- Theory lectures and video recordings
- Live coding
- Practicals

Outline: Session II

- What is Algorithm in python
- Assigning variables
- Python operators
- Basic data types and operations
- Data structures
- Control statements
- For loop

Algorithms in python

• Are set of instructions for solving problems programmatically

Real life example (cooking ugali) Steps to follow	Code problem example (Find mean of numbers)
Ingredients: 2 cups of maize flour 4 cups of boiling water	numbers=[1,2,3,4] Input: numbers
 Buy unga Bring 4 cups of water to a boil in a kettle of other pan Pour Unga after the water have boiled Stir briskly with a cooking stick Cook to a firm texture Turn the cooked ugali onto a serving plate 	3. Divide sum by length

Assigning variables

```
a=10
b=20
c=a+b
print(c)
```

A variable names a value that we want to use later in a program.

Note:

- The symbol = is pronounced "gets" not "equals"!
- Avoid using python keywords in naming variables e.g list=[1,2,3]

Assigning variables...

Python allows you to assign values to multiple variables in one line:

```
>>>a,b,c=10,20,30
```

- >>>print(a)
- >>>print(b)
- >>>print(c)

Data Types

Python operators

Can you check what this operator (**) do in python? E.g 3**3=?

Python operators

You check what these operators (**) do in python: <= and >=

Strings

What to know about strings in python

- Sequence of characters
- index starts from 0
- Case sensitive
- Immutable

Example
My_fast_string='Hello word'

String manipulation

- Indexing
- Negative Indexing
- Splicing

my_dna='TGCGTAGC'

String Built In Functions

Use case: my_protein="ALTPPPTA"

- len()
- str()
- split()
- strip()
- reverse
- startswith()
- endswith()

Why know data types

Know which operators to use

Data Structures in Python

[Lists]

- Group of items
- Different data types
- Mutable: items can be added or removed
- Index starts from 0

Example

diseases=['cancer',
 covid19,diabetes]

{Dictionaries}

- consists of a key and then an associated value
- Heterogeneous objects
- Mutable

Example

my_dict={UUU:'Phe',AGU:
'Ser}

(Tuples)

- Allow duplicate values
- Indexed and starts from 0

Example

locus=(gene A,2000,7)

Why know data structures

Acts as a guide on data storage, and manipulation

[Python Lists]

- Sequence of objects
- Comma used to separate list items

List Operators

Usage	Explanation
x in lst	x is an item of lst
x not in lst	x is not an item of lst
lst + lstB	Concatenation of Ist and IstB
lst*n, n*lst	Concatenation of n copies of lst
lst[i]	Item at index i of Ist
len(lst)	Number of items in Ist
min(lst)	Minimum item in Ist
max(lst)	Maximum item in Ist
sum(lst)	Sum of items in Ist

List Build In Functions

- len()
- max()
- min()
- reverse()
- insert()
- index()

Use case my_list= [1,2,3,'a','b',c,7]

{Python Dictionaries}

- General syntax: {key:value}
- Creating dictionary in python my_dict={}
- Build in Functions for Python dictionary
 - -get()
 - keys()

Loops

For Loop

- Iterate over items in a list, dictionary,tuple
- Used if we know how many iterations must occur

List=["Orange","Pink','Red"]
for color in list:
 Print(color)

Orange Pink Red

While Loop

- Loops through a series of code until a specific condition is met
- Used if we do not know how many iterations must occur

```
count = 0
while (count < 3):
    count = count + 1
    print("Hello Geek")

Hello Geek
Hello Geek</pre>
```

Conditional Statements

if,else, el if:

Example use case: Simulation of how DNA makes a copy of itself


```
#Code for DNA replication
#original DNA strand
dna strand = "ATCGATCGTAGC"
replicated strand = ""
# use conditional statements to replicate the DNA strand
for nucleotide in dna strand:
    if nucleotide == 'G':
        new strand += 'C'
    elif nucleotide == 'T':
        new strand += 'A'
    elif nucleotide == 'A':
        new strand += 'T'
    elif nucleotide == 'C':
        new strand += 'G'
    else:
        new strand += nucleotide
print("Original DNA Strand:", dna strand)
print("Replicated DNA Strand:", replicated strand)
```

Original DNA Strand: ATCGATCGTAGC Replicated DNA Strand:

Practice Question

Practice Exercise

Using strings, lists, and dictionaries concepts, find the DNA copy (replicate) of:

GTGGGATGGTTTGGGTTGGCCGTG

Practicals

 Fork and clone the github repository below https://github.com/kipkurui/Python4BioinformaticsV2

Contacts

Email: bonfaceb21@gmail.com

GitHub: https://github.com/bonfaceonyango

LinkedIn: https://www.linkedin.com/in/bonface-onyango-927145161

Thank you!

