Non-excludable Bilateral Trade between Groups

Yixuan Even Xu Tsinghua

Hanrui Zhang SLMath

Vincent Conitzer Carnegie Mellon

Bilateral Trade (Classic Setting)

Buyer
Private value: $v \sim F$ Seller
Private cost: $c \sim G$ Public: F, G

Based on interactions with the players, a mechanism decides: Whether to **trade** x, **payment** of the buyer p, **receipt** of the seller r.

Revelation principle: WLOG, interactions can be viewed as a sealed **bid** *b* from the buyer and a sealed **ask** *a* from the seller.

A mechanism: $\{x(a,b), p(a,b), r(a,b)\}$

Utilities: $u_b(a,b) = v \cdot x(a,b) - p(a,b), u_s(a,b) = r(a,b) - c \cdot x(a,b)$

Desiderata of a mechanism:

- Incentive compatible (IC): Players bid and ask truthfully
- Individually rational (IR): Players' utilities are non-negative
- Budget balanced (BB): Buyer's payment ≥ seller's receipt
- **Efficient:** A trade happens whenever v > c

Myerson and Satterthwaite (1983): It is impossible to achieve all of {IC, IR, BB, Efficient} in bilateral trade, i.e, efficient bilateral trade cannot be implemented in a feasible way.

Bilateral Trade (Our Setting)

Group Trading: We consider a richer paradigm, with many buyers and sellers on both sides of a trade, hoping to bypass the impossibility.

Non-Excludability: the mechanism guarantees

- The players share the same allocation x
- The **buyers share** the same **payment** *p*
- The **sellers share** the same **receipt** *r*

Desiderata of a mechanism:

- Incentive compatible (IC): Players bid and ask truthfully
- Individually rational (IR): Groups' utilities are non-negative
- Budget balanced (BB): Buyer's payment ≥ seller's receipt
- Efficient (in the limit): As $n \to \infty$, GFT/FB $\to 1$

Asymptotics: Real life intuition shows that although negotiation between individuals are inefficient, that of two sizeable organizations is usually better. Thus, we treat n as the only asymptotic variable, and let $n \to \infty$. Note that when n = 1, we recover the classic setting.

Our Results

A **dichotomy** in the possibility of trading efficiently.

If the buyers value the item (strictly) more than the sellers:

• A mechanism achieving all desiderata in the limit is given.

If the sellers value the item (weakly) more than the buyers:

• No mechanisms can achieve all desiderata in the limit. Both deterministic ($x(b, a) \in \{0, 1\}$), and smooth randomized

 $(x(b, a) \in [0, 1]$, twice continuously differentiable) mechanisms are studied.

Why Two Cases?

Lemma 4.1. Consider the first best (FB) in both cases.

- a) If $E_{v \sim F}[v] > E_{c \sim G}[c]$, then $FB = \Omega(n)$.
- b) If $E_{v \sim F}[v] \leq E_{c \sim G}[c]$, then $FB = O(\sqrt{n})$.

Lemma 4.1 naturally divides the problem into two cases. When the sellers value item more, even FB goes to zero (per agent).

Characterization of IC Mechanisms

Theorem 4.1. Deterministic allocation x(b, a) can be implemented by an IC deterministic mechanism if and only if:

- a) For any a, there is τ_a and a monotone Boolean function f_a , such that $x(\boldsymbol{b}, \boldsymbol{a}) = f_{\boldsymbol{a}}(\mathbf{1}[b_1 \ge \tau_{\boldsymbol{a}}], \mathbf{1}[b_2 \ge \tau_{\boldsymbol{a}}], ..., \mathbf{1}[b_n \ge \tau_{\boldsymbol{a}}])$
- b) For any **b**, there is θ_b and a monotone Boolean function g_h , such that $x(b, a) = g_b(1[a_1 \le \theta_b], 1[a_2 \le \theta_b], ..., 1[a_n \le \theta_b])$

Informally: An IC mechanism should decide in a voting-like way.

Theorem 5.1. Smooth randomized allocation x(b, a) can be implemented by an IC randomized mechanism if and only if:

- a) For any a, there are n non-decreasing differentiable functions $f_{a,i}$, such that $x(\mathbf{b}, \mathbf{a}) = f_{\mathbf{a},1}(b_1) + f_{\mathbf{a},2}(b_2) + ... + f_{\mathbf{a},n}(b_n)$
- b) For any **b**, there are n non-increasing differentiable functions $g_{b,i}$, such that $x(\mathbf{b}, \mathbf{a}) = g_{\mathbf{b},1}(a_1) + g_{\mathbf{b},2}(a_2) + ... + g_{\mathbf{b},n}(a_n)$

Informally: An IC mechanism must be separable across agents.

Buyers Value More: Positive Result

Algorithm 1: Always trade at price $\frac{1}{2}(E_{v\sim F}[v] + E_{c\sim G}[c])$.

Theorem 4.3. Algorithm 1 is IC and SBB. When $E_{v\sim F}[v] > E_{c\sim G}[c]$, w.p. $1 - e^{-\Omega(n)}$, it is IR, and its efficiency is $1 - e^{-\Omega(n)}$.

Informally: Algorithm 1 achieves all desiderata in the limit (in this case).

Sellers Value More: Negative Result

Theorem 4.4. When $E_{v\sim F}[v] \leq E_{c\sim G}[c]$, no deterministic IC mechanisms can be efficient in the limit.

Theorem 5.2. When $E_{v\sim F}[v] \leq E_{c\sim G}[c]$, no smooth randomized IC mechanisms can be a constant approximation of FB in the limit.