MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

21 de agosto de 2023

1 Prova por redução ao absurdo

2 Perguntas, observações, comentários?

Prova por redução ao absurdo

Se fizermos uma hipótese H e, a partir dela, derivarmos uma conclusão que é claramente falsa. O que podemos dizer sobre H?

Se fizermos uma hipótese H e, a partir dela, derivarmos uma conclusão que é claramente falsa. O que podemos dizer sobre H? Nessa situação, se H vale, então temos um absurdo ou uma contradição.

Se fizermos uma hipótese H e, a partir dela, derivarmos uma conclusão que é claramente falsa. O que podemos dizer sobre H? Nessa situação, se H vale, então temos um absurdo ou uma contradição.

■ Você assume que a Terra é plana, mas isso implica em você poder ver a costa da África da costa brasileira...

2 | 9

Se fizermos uma hipótese H e, a partir dela, derivarmos uma conclusão que é claramente falsa. O que podemos dizer sobre H? Nessa situação, se H vale, então temos um absurdo ou uma contradição.

- Você assume que a Terra é plana, mas isso implica em você poder ver a costa da África da costa brasileira...
- Você "prova" que um algoritmo você inventou tem complexidade sublinear. Mas, mais tarde, percebe que, usando esse algoritmo, é possível criar um algoritmo que multiplica duas matrizes $n \times n$ em tempo $O(n^{1.5})...$

Se fizermos uma hipótese H e, a partir dela, derivarmos uma conclusão que é claramente falsa. O que podemos dizer sobre H? Nessa situação, se H vale, então temos um absurdo ou uma contradição.

- Você assume que a Terra é plana, mas isso implica em você poder ver a costa da África da costa brasileira...
- Você "prova" que um algoritmo você inventou tem complexidade sublinear. Mas, mais tarde, percebe que, usando esse algoritmo, é possível criar um algoritmo que multiplica duas matrizes $n \times n$ em tempo $O(n^{1.5})...$

Nesses casos, podemos concluir que a hipótese é falsa.

Matematicamente:

- lacksquare Lembrem-se da tabela verdade de p o q.
- lacktriangle Assuma $\neg q$ e chegue em F. Ou seja, $\neg q
 ightarrow F$ é verdade.
- Logo, $\neg q = F$, portanto, q = V.

Matematicamente:

- lacktriangle Lembrem-se da tabela verdade de p o q.
- Assuma $\neg q$ e chegue em F. Ou seja, $\neg q \rightarrow F$ é verdade.
- Logo, $\neg q = F$, portanto, q = V.
- Precisamente,

$$p \rightarrow q \Leftrightarrow (p \land \neg q) \rightarrow F$$

Matematicamente:

- lacksquare Lembrem-se da tabela verdade de p o q.
- lacktriangle Assuma $\neg q$ e chegue em F. Ou seja, $\neg q
 ightarrow F$ é verdade.
- Logo, $\neg q = F$, portanto, q = V.
- Precisamente,

$$p \rightarrow q \Leftrightarrow (p \land \neg q) \rightarrow F$$

Ou seja, para provar $H \Rightarrow C$

- assumimos *H* (normal nesse tipo de prova);
- assumimos ¬C (buscando uma contradição);
- tentamos chegar numa expressão falsa (contradição)

O famoso exemplo do aluno que quase passou

Suponha que 4,99 = 5.

O famoso exemplo do aluno que quase passou

Suponha que 4,99 = 5.

$$4,99 = 5$$

 $\Leftrightarrow 0 = 0,01$
 $\Leftrightarrow 0 = 10$

Exemplo: uma prova simples por contradição

Teorema

Se x e y são números reais positivos, então $x+y \geq 2\sqrt{xy}$

Segundo exemplo de prova por contradição

Teorema

Não existem números inteiros x e y tais que $x^2 + 8 \cdot y = 2$

Prólogo: números racionais e irracionais

Números racionais:

- $\blacksquare \mathbb{Q} = \{ n/d : (n,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \}$
- \blacksquare n é o numerador e d é o denominador
- Equivalente a $n \in \mathbb{Z}$ e $d \in \mathbb{N} \setminus \{0\}$
- Podemos sempre assumir que se um deles é par, o outro é ímpar

Prólogo: números racionais e irracionais

Números racionais:

- $\blacksquare \mathbb{Q} = \{ n/d : (n,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \}$
- \blacksquare n é o numerador e d é o denominador
- Equivalente a $n \in \mathbb{Z}$ e $d \in \mathbb{N} \setminus \{0\}$
- Podemos sempre assumir que se um deles é par, o outro é ímpar

■ Na verdade, é mais geral: nunca há fator em comum (além do 1)

Prólogo: números racionais e irracionais

Números racionais:

- $\blacksquare \mathbb{Q} = \{ n/d : (n,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \}$
- \blacksquare n é o numerador e d é o denominador
- Equivalente a $n \in \mathbb{Z}$ e $d \in \mathbb{N} \setminus \{0\}$
- Podemos sempre assumir que se um deles é par, o outro é ímpar

■ Na verdade, é mais geral: nunca há fator em comum (além do 1)

Números irracionais: números reais que não são racionais

$$\mathbb{I} = \{ r \in \mathbb{R} : r \notin \mathbb{Q} \}$$

Terceiro exemplo de prova por contradição

Teorema

A soma de um número racional com um número irracional é também irracional.

Quarto exemplo de prova por contradição

Teorema

A raíz quadrada de dois é irracional.

Perguntas.	observações.	comentários?
i ciganitas,	observações,	comentarios.

=	=	=	=	=