=

Web scrape a Global Bike-Sharing Systems Wiki Page

Estimated time needed: 20 minutes

▼ Lab Overview:

Before getting your hands dirty on the actual data analysis tasks, you first need to obtain some background and context information about well-known bike sharing systems worldwide, such as their location, launch date, rental bike size, and so on.

You can get such information from this Wiki page:

https://en.wikipedia.org/wiki/List_of_bicycle-sharing_systems

Country +	City +	Name +	System +	Operator +	Launched +	Discontinued +	Stations +	Bicycles +	Doily ridership
Albania	Trans ^[5]	Ecovolis			March 2011		8	200	
Argentina	Mendoza ^[1]	Metrobici			2014		2	40	
	San Lorenzo, Santa Fe	Bioludad	Bicluded		27 November 2016		8	80	
	Buenos Aires ^{[7](6)}	Ecobici	Sortlel Brasil ⁽⁴⁾	Bike In Baires Consortium. [13]	2010		400	4000	21917
	Rosario	Mi Bici Tu Bio ^[51]			2 December 2015		47	480	
Australia	Melboume ^[12]	Melbourne Bike Share	PSSC & 8D	Motivate	June 2010	30 November 2019 ^[13]	53	676	
	Brisbane ⁽¹⁴⁾⁽¹⁸⁾	CityCycle	3 Gen. Cyclocity	JCDecaux	September 2010		150	2000	
	Melbourne	oBike	4 Gen. oBike		July 2017	July 2018	dockless	1250	
	Sydney	obike	4 Gen. oBike		July 2017	July 2018	dockless	1250	
	Sydney	Olo	4 Gen. Olo		October 2017		dockless	600	
	Sydney	Reddy Go	Reddy Go		July 2017			2000	
Austria	Vienna	Citytrike Wien [16]	3 Gen. Cyclocity	JCDecaux Gewista	June 2003		121	1500	2800[17]
	Burgenland	LEHIVADL nextrike	3 Gen. nextbike		2009		40		
	Lower Austria ^[18]	LEHRADL nextrike	3 Gen. nextbike		2009		295	1300	
	Salzburg	nexbike	3 Gen. nextbike		2011				
	Vienna	Vennabike	2 Gen.	Association and city council	April 2002	November 2002	200	1500	
	Vorariberg		3 Gen. nextbike		2009		14	70	
Dangladeeh	Dhaka	Jollike	Jolkie		2018		05	300	

First import necessary libraries for the webscraping task.

In this lab, you need to use the <code>rvest</code> library to obtain the bike sharing systems table from the above web page, convert the table into a data frame, and write the data frame to a csv file for future data wrangling and analysis tasks.

[1] # Check if need to install rvest` library require("rvest")

library(rvest)

Loading required package: rvest

TASK: Extract bike sharing systems HTML table from a Wiki page and convert it into a data frame

TODO: Get the root HTML node

```
[2] url <- "https://en.wikipedia.org/wiki/List_of_bicycle-sharing_systems"
# Get the root HTML node by calling the `read_html()` method with URL

[4] # Get the root HTML node by calling the `read_html()` method with URL
root_node <- read_html(url)
```

Note that this HTML page at least contains three child nodes under the root HTML node. So, you will need to use html_nodes(root_node, "table") function to get all its child nodes:

```
<html>
(table)(table)
(table)(table)
...
</html>
```

table_nodes <- html_nodes(root_node, "table")

You can use a for loop to print each table, and then you will see that the actual the bike sharing table is the second element table_nodes[[2]].

Next, you need to convert this HTML table into a data frame using the html_table() function. You may choose to include fill = TRUE argument to fill any empty table rows/columns.

```
(5] table_nodes <- html_nodes(root_node, "table")
           table_nodes
          (6] # Convert the bike-sharing system table into a dataframe
           bike_share <- html_table(table_nodes, fill=TRUE)</pre>
    Summarize the bike sharing system data frame
_{\mathbb{Q}_{\mathbb{S}}}^{\checkmark} [7] # Summarize the dataframe
           summary(bike_share)
                 Length Class Mode
2 tbl_df list
2 tbl_df list
10 tbl_df list
10 tbl_df list
2 tbl_df list
2 tbl_df list
2 tbl_df list
          [1,] 2
[2,] 2
[3,] 10
[4,] 10
[5,] 2
[6,] 2
 [8] df=bike_share[[3]]
[9] summary(df)
                                            City
              Country
                                                                       Name
                                                                                                System
                                      Length:515
Class :character
Mode :character
Launched
Length:515
            Length:515
Class :character
Mode :character
                                                                 Length:515
Class :character
Mode :character
                                                                                             Length:515
Class :character
                                                                                            Mode :character
            Operator
Length:515
                                                                  Discontinued
Length:515
                                                                                             Stations
Length:515
            Class :character
Mode :character
Bicycles
                                      Class :character
Mode :character
Daily ridership
                                                                Class :character
Mode :character
                                                                                            Class :character
Mode :character
                                      Length:515
Class :character
Mode :character
            Length:515
Class :character
            Mode :character
    Export the data frame as a csv file called <code>raw_bike_sharing_systems.csv</code>
                                                                                                                                                                                                                                              ↑ ↓ ⊖ 🗏 🛊 🖟 📑 :
```

Export the dataframe into a csv file write.csv(df,"raw_bike_sharing_systems.csv")

For more details about webscraping with <code>rvest</code>, please refer to the previous webscraping notebook here:

Webscraping in R

▼ Authors

Yan Luo

Other Contributors

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description		
2021-04-05	0.1	Yan	Initial version created		

© IBM Corporation 2021. All rights reserved.

✓ 0s completed at 2:07 PM