

Software Testing for Continuous Delivery

Seminar 13: UBST & OPs

Dr. Byron J. Williams October 16, 2019

Department of Computer & Information Science & Engineering

UNIVERSITY of FLORIDA

What is Site (system) Reliability Engineering?

- Assigned Reading: "What is Site Reliability Engineering?"
 - https://landing.google.com/sre/interview/ben-treynor.html

"Fundamentally, it's what happens when you ask a software engineer to design an operations function."

- Ben Treynor, VP Engineering, Google

OP (Operational Profile)

- **Definition**: a list of disjoint set of operations and their associated probabilities of occurrence
- A quantitative way characterization of the way a software system is or will be used

John D. Musa (RE) Pioneer

- Obtained via measurement, survey, & expert opinion
- Operations: multiple possible test cases or multiple runs
 - Each operation corresponds to an individual sub-domain in domain partitions, thus representing a whole equivalence class.

Telemetry

Enable Crash Reporter

Enable crash reports to be sent to a Microsoft online service. This option requires restart to take effect.

Enable Telemetry

Enable usage data and errors to be sent to a Microsoft online service.

Comparing UBST with CBT

	UBST / BBT	CBT / WBT
Perspective	external behavior (functional)	internal implementation (structural)
Stopping Criteria	reliability goals	coverage goals
Scale	large software (as a whole)	small objects (looking inside)
Timeline	later (e.g., acceptance testing)	earlier (e.g., unit testing)
Tester	IV&V	developers themselves

OP: Example

The usage of

www.seas.smu.edu (School of Eng. And Applied Science at Southern Methodist Univ.) over 26 days

→ Operations: requests (hits)

→ Probability: file types & % of total

File type	Hits	% of total	File type	Hits	% of total
.gif	438536	57.47%	.css	2008	0.26%
.html	128869	16.89%	.txt	1597	0.21%
directory	87067	11.41%	.doc	1567	0.21%
.jpg	65876	8.63%	.c	1254	0.16%
.pdf	10784	1.41%	.ico	849	0.11%
.class	10055	1.32%			
.ps	2737	0.36%	Cumulati	ve 753709	98.78%
.ppt	2510	0.33%	Total	763021	100%

OP: Graphical Form Example

Figure 8.1 An operational profile (OP) of requested file types for the SMU/SEAS web site

OP: Basic Concepts

- Profiles: Disjoint alternatives and their associated probabilities
 - Occurrence or weighting factors
 - Representation: graphs and/or tables
 - Often sorted in decreasing probabilities
- Principle:
 - The number of test runs for each operation in the OP is proportional to its probability
- General observations
 - Uneven distribution: basis for UBST (otherwise uniform sampling adequate)
 - Very low probability of usage → cutoff threshold

OP Usage

- Usage of OP in UBST
 - Pure random sampling rare
 - Requires dynamic (on-the-fly) decisions; Might interfere with system functions (because the system is under constant usage monitoring → significant overhead)
 - More often: pre-prepared test cases → "pseudo" randomness
 - Other variations
 - Progressive testing: lower threshold step by step
- OP and SRE (Software / Site Reliability Engineering)
 - SRE assumes OP-based UBST (availability)
 - OP sometimes directly used in reliability evaluations and improvement

UBST: General Issues

General steps

- Information collection
 - Usage scenarios, usage frequency, etc.
- OP construction
- UBST under OP
- Analysis (reliability!) and follow-up (feedback)
- Linkage to development process
 - Construction: Requirements/specification and in later phases
 - Usage: Testing techniques and SRE

UBST Benefits

Primary benefits

- Overall reliability management
- Focus on high leverage parts → productivity and schedule gains:
 - Same effort on most-used parts
 - Reduced effort on lesser-used parts
 - Reduction of 56% system testing cost or 11.5% overall cost (Musa study)

Gains vs. savings situations

- Savings situations
 - Reliability goal within reach
 - Not to over test lesser-used parts
- Gains situation: more typical
 - Re-focusing testing effort
 - Constrained reliability maximization

UBST: Other Benefits

- Introducing new product
 - Highly-used features quickly
 - Lesser-used: subsequent releases
- Better communications/customer relations
 - Customer perspective & involvement → closer ties to customers
 - More precise requirements/specification
 - After all, UBST
- High return on investment (Musa AT&T study)
 - OP cost for an "average" product: ~1 staff-month
 - Defining "average": 10 developers, 100KLOC, 18 months
 - Sub-linear increase for larger ones
 - Cost-benefit ratio is reported to be about 1:10

OP: Development

One OP or more than one?

One OP for each stakeholder role (homogeneous group), e.g., customer, user, DBA, etc.

OP: Development (Cont'd)

Approaches

- Measurement
 - Accurate can be costly; limitations for new products
- Customer survey
 - Less accurate and costly; sampling challenges over the customer population
- Expert opinion
 - Least accurate and costly; a rough starting point

Sample OP developments

- Top-down/Musa-1
 - Customer profiles (end-users, DBA, etc.) & functional profiles
 - OP (combining customer & functional profiles)
- Musa-2
 - Operational mode
 - Graphical (joint probability = product of indiv. prob.)

 \triangleright Musa-1: customer \rightarrow user \rightarrow sys. modes

 \rightarrow functional \rightarrow operational

OP	Deve	lop	me	en	t:
Musa		•			

Customer Type	Weight
corporation	0.5
government	0.4
education	0.05
other	0.05

User Type	User Profiles by Customer Type				Overall User	
	ctype	com	gov	edu	etc	Profile
	weight	0.5	0.4	0.05	0.05	
End user		8.0	0.9	0.9	0.7	0.84
Dba		0.02	0.02	0.02	0.02	0.02
Programm	er	0.18			0.28	0.104
Third party	/		0.08	0.08		0.036
				0.08		0.036

OP Development: Musa-2

Figure 8.2 A tree-structured or graphical operational profile

Test Management

Scenario

Total budget for testing = H hours

tests during that time = T

Time each test takes = t

% of tests that reveal faults = f

Time required to remove a fault = r

Estimation:

$$T*t + (f*T*r) = H$$

$$T [t + (f*r)] = H$$

$$T = H / (t + f*r)$$

Example:

Total budget = 1000 hours

tests: T = ?

Time for a test = 1 hour

% tests with faults = 20

Fault removal time = 2 hours

of tests within the budget:

$$T = 1000 / (1 + 0.2 * 2)$$

= 714 tests

How would you manage the (714) tests by using CBT, PBT, and UBST method?

Test Management (Cont'd)

How would you manage the tests using checklist method (CBT)?

 How would you manage the tests using partition-based method (PBT)?

How would you manage the tests using usage-based statistical method (UBST)?

18

Department of Computer & Information Science & Engineering

Test Management (Cont'd)

Suppose I have to manage 714 tests...

File type	Probability	<u>Tests</u>
.gif	0.57	407
.html	0.17	122
directory	0.11	86
.jpg	0.09	70
.pdf	0.01	7
.class	0.01	7
.ps	0.004	3
.ppt	0.003	3

File type	Proba	bility	Tests
.CSS		0.003	2
.txt		0.002	2
.doc		0.002	2
.C		0.002	2
.ico		0.001	1
Cumulative Total	0.977	1.00	

The number of test runs for each operation in the OP is proportional to its probability.

