MATHEDA Engineering Data Analysis

Descriptive Statistics

Performance analysis for Jaguar and Panther Equipment

Conducted By: Joshua M. Bito-on BSCPE-2A

Chapter 1: Introduction

Due to the inconsistent performance metrics of the equipment manufactured by *Jaguar* and *Panther*, Ms. Ada Lovelace has tasked me to conduct a *Performance Analysis* for the Resistors provided by both *Jaguar* and *Panther*. The report includes the manual calculations and boxplots and along with the Operations Manager request to analyze the:

- Mean
- Median
- Mode
- Range
- Variance
- Standard Deviation
- Coefficient of Variance

Chapter 2: Overview
Performance Data Provided and Summary Statistics

	Lot_No	Jaguar	Panther				
0	1	997	1035	15	16	933	935
1	2	1153	975	16	17	790	1710
2	3	920	982	17	18	999	946
3	4	1074	1038	18	19	1028	1073
4	5	1013	891	19	20	976	986
5	6	960	907	20	21	1015	1078
6	7	890	960	21	22	932	969
7	8	910	978	22	23	957	1083
8	9	944	1041	23	24	936	790
9	10	1065	1026	24	25	977	1007
10	11	1083	590	25	26	1037	934
11	12	1820	990	26	27	997	999
12	13	859	1076	27	28	1730	1011
13	14	1043	1092	28	29	1046	942
14	15	1710	1026	29	30	1840	1090

	Lot_No	Jaguar	Panther
count	30.000000	30.000000	30.000000
mean	15.500000	1087.800000	1005.333333
std	8.803408	284.165129	166.261392
min	1.000000	790.000000	590.000000
25%	8.250000	938.000000	949.500000
50%	15.500000	998.000000	994.500000
75%	22.750000	1060.250000	1040.250000
max	30.000000	1840.000000	1710.000000

Chapter 3: Jaguar Performance Analysis

Mean:

Mean
$$(\bar{x}) = \frac{\sum x}{n}$$

(997+1153+920+1074+1013+960+890+910+ 944+1065+1083+1820+859+1043+1710+933 +790+999+1028+976+1015+932+957+936+ 977+1037+997+1730+1046+1840)/30

= 1087.8

Median:

$$median = \frac{\left(\frac{n}{2}\right)^{th} \text{ term} + \left(\frac{n}{2} + 1\right)^{th} \text{ term}}{2}$$

$$(997+999) / 2$$

= 998

Mode:

= 997

Range:

Range= Maximum - Minimum

1840-790

= 1050

Variance:

Variance = $\Sigma(xi - \mu)^2 / (N-1)$

 $(997-1082.90)^2 + (1153-1082.90)^2 +$ $(920-1082.90)^2 + (1074-1082.90)^2 +$ $(1013-1082.90)^2 + (960-1082.90)^2 +$ $(890-1082.90)^2 + (910-1082.90)^2 +$ $(944-1082.90)^2 + (1065-1082.90)^2 +$ $(1083-1082.90)^2 + (1820-1082.90)^2 +$ $(859-1082.90)^2 + (1043-1082.90)^2 +$ $(1710-1082.90)^2 + (933-1082.90)^2 +$ $(790-1082.90)^2 + (999-1082.90)^2 +$ $(1028-1082.90)^2 + (976-1082.90)^2 +$ $(1015-1082.90)^2 + (932-1082.90)^2 +$ $(957-1082.90)^2 + (936-1082.90)^2 +$ $(977-1082.90)^2 + (1037-1082.90)^2 +$ $(997-1082.90)^2 + (1730-1082.90)^2 +$ $(1046-1082.90)^2 + (1840-1082.90)^2$ / (30-1)

= 80749.82

Standard Deviation:

Standard Deviation = sqrt(Variance) = sqrt[
$$\Sigma(xi - \mu)^2 / (N-1)$$
]

 $sgrt[(997-1082.90)^2 + (1153-1082.90)^2 +$ $(920-1082.90)^2 + (1074-1082.90)^2 +$ $(1013-1082.90)^2 + (960-1082.90)^2 +$ $(890-1082.90)^2 + (910-1082.90)^2 +$ $(944-1082.90)^2 + (1065-1082.90)^2 +$ $(1083-1082.90)^2 + (1820-1082.90)^2 +$ $(859-1082.90)^2 + (1043-1082.90)^2 +$ $(1710-1082.90)^2 + (933-1082.90)^2 +$ $(790-1082.90)^2 + (999-1082.90)^2 +$ $(1028-1082.90)^2 + (976-1082.90)^2 +$ $(1015-1082.90)^2 + (932-1082.90)^2 +$ $(957-1082.90)^2 + (936-1082.90)^2 +$ $(977-1082.90)^2 + (1037-1082.90)^2 +$ $(997-1082.90)^2 + (1730-1082.90)^2 +$ $(1046-1082.90)^2 + (1840-1082.90)^2$ / (30-1)

= 284.16

Coefficient of Variation:	Nothing Follows
Coefficient of Variation = (Standard Deviation / Mean) * 100	
(284.16 / 1087.8) * 100	
= <u>0.2612</u> or <u>≈26%</u>	

Chapter 4: Panther Performance Analysis

Mean:

Mean
$$(\bar{x}) = \frac{\sum x}{n}$$

(1035+975+982+1038+891+907+960+978+1 041+1026+590+990+1076+1092+1026+935+ 1710+946+1073+986+1078+969+1083+790+ 1007+934+999+1011+1090+942) / 30

= 1005.33

Median:

$$\mathrm{median} = \frac{\left(\frac{n}{2}\right)^{th} \ \mathrm{term} + \left(\frac{n}{2} + 1\right)^{th} \ \mathrm{term}}{2}$$

$$(990 + 999) / 2$$

= 994.5

Mode:

= 1026

Range:

Range= Maximum - Minimum

1710 - 590

= <u>1120</u>

Variance:

Variance =
$$\Sigma(xi - \mu)^2 / (N-1)$$

 $[(1035-1000.73)^2 + (975-1000.73)^2 +$ $(982-1000.73)^2 + (1038-1000.73)^2 +$ $(891-1000.73)^2 + (907-1000.73)^2 +$ $(960-1000.73)^2 + (978-1000.73)^2 +$ $(1041-1000.73)^2 + (1026-1000.73)^2 +$ $(590-1000.73)^2 + (990-1000.73)^2 +$ $(1076-1000.73)^2 + (1092-1000.73)^2 +$ $(1026-1000.73)^2 + (935-1000.73)^2 +$ $(1710-1000.73)^2 + (946-1000.73)^2 +$ $(1073-1000.73)^2 + (986-1000.73)^2 +$ $(1078-1000.73)^2 + (969-1000.73)^2 +$ $(1083-1000.73)^2 + (790-1000.73)^2 +$ $(1007-1000.73)^2 + (934-1000.73)^2 +$ $(999-1000.73)^2 + (1011-1000.73)^2 +$ $(1090-1000.73)^2 + (942-1000.73)^2$ / (30-1)

= 27642.85

Standard Deviation:

Standard Deviation = sqrt(Variance) = sqrt[
$$\Sigma(xi - \mu)^2 / (N-1)$$
]

 $sgrt[((1035-1000.73)^2 + (975-1000.73)^2 +$ $(982-1000.73)^2 + (1038-1000.73)^2 +$ $(891-1000.73)^2 + (907-1000.73)^2 +$ $(960-1000.73)^2 + (978-1000.73)^2 +$ $(1041-1000.73)^2 + (1026-1000.73)^2 +$ $(590-1000.73)^2 + (990-1000.73)^2 +$ $(1076-1000.73)^2 + (1092-1000.73)^2 +$ $(1026-1000.73)^2 + (935-1000.73)^2 +$ $(1710-1000.73)^2 + (946-1000.73)^2 +$ $(1073-1000.73)^2 + (986-1000.73)^2 +$ $(1078-1000.73)^2 + (969-1000.73)^2 +$ $(1083-1000.73)^2 + (790-1000.73)^2 +$ $(1007-1000.73)^2 + (934-1000.73)^2 +$ $(999-1000.73)^2 + (1011-1000.73)^2 +$ $(1090-1000.73)^2 + (942-1000.73)^2$ / (30-1)

= 166.26

Chapter 5: Hypothesis

Hypothesis:

Jaguar and Panther exhibit comparable performance overall, with Jaguar demonstrating a slightly higher average and greater variability. However, Panther shows a more consistent performance with less extreme variations and is closer to the 1000 ohm target. The most noticeable outlier is in Lot 12 for Jaguar, with a value of 1820, significantly exceeding other Jaguar values. This outlier might mean that there is something wrong with the manufacturing overall.