UNIOESTE Ciência da Computação

Sistemas Digitais Circuitos Combinacionais

Prof. Jorge Habib El Khouri Prof. Antonio Marcos Hachisuca

Referências Bibliográficas

- 1. Digital Fundamentals, Thomas L. Floyd; Editora: Pearson; Edição: 11; Ano: 2015;
- Sistemas Digitais Princípios e Aplicações, Ronald J. Tocci; Editora: Pearson; Edição: 11; Ano: 2011;
- 3. Computer Organization and Design, David A. Patterson; Editora: Elsevier; Edição: 1; Ano: 2017
- 4. Digital Design: Principles and Practices, John F. Wakerly; Editora: Pearson; Edição: 5; Ano: 2018;
- 5. Guide to Assembly Language Programming in Linux, Sivarama P. Dandamudi; Editora: Springer; Edição: 1; Ano: 2005.

Regras Básicas da Álgebra Booleana

 $A \oplus 0 = A$

 $A \oplus 1 = \bar{A}$

$$A + B = B + A$$

$$-D + A$$

$$AB = BA$$

Associativa

$$(A+B)+C=A+(B+C)$$

$$(AB)C = A(BC)$$

Distributiva

$$\Lambda(R \perp C) - \Lambda R \perp \Lambda C$$

$$A(B+C) = AB + AC$$

$$= AB + AC$$

$$3 + AC$$

$$A \cdot \bar{A} = 0$$

A + 0 = A

A + 1 = 1

A + A = A

 $A + \bar{A} = 1$

 $\bar{\bar{A}} = A$

 $A \cdot 0 = 0$

 $A \cdot 1 = A$

$$A \cdot A = A$$

 $\overline{X \cdot Y \cdot Z} = \overline{X} + \overline{Y} + \overline{Z}$

$$A \oplus \bar{A} = 1$$
$$A + AB = A$$

$$\bigoplus \bar{A} = 0$$
 $\bigoplus \bar{A} = 1$

 $A + \overline{A}B = A + B$

 $A \oplus B = A \overline{B} + \overline{A} B$

 $A \oplus B = AB + AB$

 $\overline{X+Y+Z} = \overline{X} \cdot \overline{Y} \cdot \overline{Z}$

(A+B)(A+C) = A+BC

Elementos Lógicos Universais

- A porta NAND é considerada universal porque pode ser utilizada para produzir todas as demais portas lógicas;
- A implementação de algumas Portas pode ser feita como segue:

Equivalência de Portas Porta NAND

Equivalência de Portas Porta NAND

Equivalência de Portas Porta NOR

$$X = \bar{A} + B$$

$$X = A * (B * B)$$

$$X = A\bar{B}$$

$$T_1 = A * (B * B)$$

$$X = T_1 * T_1$$

$$X = AB + CD$$

$$X = (A * B) * (C * D)$$

$$X = ABCD$$

$$X = (A+B) \cdot (C+D)$$

CIRCUITOS COMBINACIONAIS

Circuitos Combinacionais

- Um <u>circuito combinacional</u> consiste em portas lógicas cujas saídas, em qualquer momento, são determinadas pela combinação dos valores das entradas
- Para n variáveis de entrada, existem 2^n combinações de entrada binária possíveis
- Para cada combinação binária das variáveis de entrada, existe uma saída possível

Circuitos Combinacionais vs circuitos sequenciais

- Os circuitos combinacionais não possuem memória interna
 - O valor de saída depende apenas dos valores atuais de entrada
- Os <u>circuitos sequenciais</u> contem lógica combinacional, e elementos de memória (usados para armazenar estados de circuito)
 - As saídas dependem dos valores de entrada atuais e dos valores de entrada anteriores (mantidos nos elementos de memória)

Circuitos Combinacionais vs circuitos sequenciais

Circuitos Combinacionais vs circuitos sequenciais

CIRCUITOS COMBINACIONAIS

- 1. Codificador/decodificador
- 2. Comparadores
- 3. Geradores de paridade
- 4. Multiplexador/Demux
- 5. PLAs
- 6. Memórias ROM
- 7. Somador / Subtrator
- 8. ULA
- 9. Multiplicadores / Divisores

CIRCUITOS SEQUENCIAIS

- 1. Latches
- 2. Flip-Flop
- 3. Registradores
- 4. Contadores
- 5. Máquina de Estados
- 6. Geradores de clock
- 7. Memória RAM
- 8. Sequenciadores

SOMADOR

Circuito Somador Half-Adder

$$S = A \oplus B$$
$$C = AB$$

C_{in}	Α	В	S	C_{out}				$\overline{C_{in}}$	C_{in}
0	0	0	0	0			\sim C	0	1
0	0	1	1	0			AB	U	
0	1	0	1	0	$S = A \oplus B \oplus C_{in}$	$ar{A}ar{B}$	00	0	1
0	1	1	0	1				U	
1	0	0	1	0	$C_{out} = ??$	$ar{A}B$	01	2	$\left \begin{array}{c c} 1 \end{array} \right _3$
1	0	1	0	1	out	A D	11	1	1
1	1	0	0	1		AB	11	1 6	
1	1	1	1	1		$A ar{B}$	10		1
C_{out} (C_{in}		C_{out}	$=AB\bar{C}_{ii}$	$C_{in} + \bar{A}BC_{in} + A\bar{B}C_{in} + A\bar{B}C_{in}$	BC_{in}		4 C	D.C.

 $\begin{array}{c}
C_{out} C_{in} \\
+ \frac{A}{B} \\
\hline
S
\end{array}$

 $C_{out} = AB(\bar{C}_{in} + C_{in}) + C_{in}(\bar{A}B + A\bar{B})$ $C_{out} = AB + C_{in}(A \oplus B)$

 $C_{out} = AB + C_{in}(A + B)_{20}$

Soma de dois números de 4 bits: $S_{0...3} = A_{0...3} + B_{0...3}$

CARRY = flag para soma de inteiros sem sinal: se 1 então Erro

OVFL = flag para soma de inteiros com sinal: se 1 então Erro

OVFL = flag para soma de inteiros com sinal: se 1 então Erro

Soma de Inteiros

Soma de Inteiros com Sinal *OVERFLOW*

	SINAIS	S	
Α	В	R	OVFL
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$OVFL = AB\bar{R} + \bar{A}\bar{B}R$$

$$OVFL = A_3 B_3 \bar{S}_3 + \bar{A}_3 \bar{B}_3 S_3$$

$$AB\bar{R} + \bar{A}\bar{B}R$$

Soma de Inteiros com Sinal OVERFLOW

 $C_3C_2C_1C_0$

_			
C	ΓΛ	II	ΓTC
		$V \angle$	IIS
	1	$V \perp \perp$	U

		,		
A	В	R	OVFL	$C_3 \oplus C_2$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

	<u>00</u> 01	
	0101	
+	0001	
	0110	
	<u>11</u> 11	
	1111	
+	0001	
	0000	

+	0111 0001
	1000
+	<u>00</u> 11 1011 0001 1100

$$OVFL = C_3 \oplus C_2$$

Circuito Subtrator Full-Subtractor

B_{in}	Α	В	S	B_{out}				$\overline{B_{in}}$	
0	0	0	0	0			C	Ω	
0	0	1	1	1			AB	<u> </u>	
0	1	0	1	0	$S = A \oplus B \oplus B_{in}$	$ar{A}ar{B}$	00	0	
0	1	1	0	0				0	
1	0	0	1	1	$B_{out} = ??$	$ar{A}B$	01	1 2	
1	0	1	0	1	- out	A D	11		
1	1	0	0	0		AB	11	6	_
1	1	1	1	1		$A \overline{B}$	10		
							-0	4	

 $B_{out} = \bar{A}B + B_{in}(\bar{A} + B)$

Circuito Subtrator *Full-Subtractor*

B_{in}	A	В	S	B_{out}				$\overline{B_{in}}$	B_{in}
0	0	0	0	0			C	0	1
0	0	1	1	1			AB	U	1
0	1	0	1	0	$S = A \oplus B \oplus B_{in}$	$ar{A}ar{B}$	00	0	$\begin{bmatrix} 1 \end{bmatrix}_1$
0	1	1	0	0		_		0	1
1	0	0	1	1	$B_{out} = ??$	$\bar{A}B$	01	1_{2}	$\begin{bmatrix} 1 \end{bmatrix}_3$
1	0	1	0	1	out	AB	11		1
1	1	0	0	0		AD		6	7
1	1	1	1	1		$Aar{B}$	10		_
	_		_					4	5
-1 0 _ 0	-1 -1 _ 0	-1 -1 _ 0	L)				$\overline{\overline{A}B}$ +	ABB_{in}	$+ \left(\bar{A}\bar{B}B_{in}\right)$

 $B_{out} = \bar{A}B + B_{in}(AB + \bar{A}\bar{B})$ $B_{out} = \bar{A}B + B_{in}(\bar{A} \oplus \bar{B})$

REPRESENTAÇÃO DE DADOS INTEIROS SEM E COM SINAL

- Como obter um Binário que represente um número inteiro?
- Inteiro sem sinal e Inteiro com sinal;
- Para os casos exemplos será utilizado N=4bits;
- Inteiro sem sinal contém apenas a magnitude do número:
 - o binário correspondente pode ser obtido pela conversão do número para a base 2;

•
$$X = 8$$
 $BIN = 1000$

•
$$X = 13$$
 $BIN = 1101$

•
$$X = 19$$
 $BIN = 10011$

•
$$BIN = 1001$$
 $X = 9$

$$\bullet \quad BIN = 0000 \qquad \quad X = 0$$

Assim, a faixa de representação é dada por:

$$0 \le X_4 \le 15$$

$$0 \le X_{16} \le 65535$$

$$0 \le X_N \le 2^N - 1$$

- Para número inteiro com sinal há a necessidade de codificar o sinal e a magnitude:
- O método Complemento de 2 ou C-2 consiste em:
- Se o sinal de X for positivo, converter o número para a base 2 e verificar se o MSB resultou em 0:

$$X = +4$$
 0100 \rightarrow Sinal Ok.
 $X = +9$ 1001 \rightarrow Sinal inconsistente
 $X = +0$ 0000 \rightarrow Sinal Ok.
 $X = +7$ 0111 \rightarrow Sinal Ok.

• Se o sinal de *X* for negativo, seguir o processo indicado abaixo e verificar se o *MSB* resultou em 1:

$$X = -1$$
 $(|X|)_2$: 0001 $X = -8$ $(|X|)_2$: 1000 $X = -9$ $(|X|)_2$: 1001 $0 \Leftrightarrow 1$: 0111 $+$ 1

Assim, a faixa de representação para C-2 é dada por:

$$-8 \le X_4 \le +7$$

$$-32768 \le X_{16} \le +32767$$

$$-2^{N-1} \le X_N \le +(2^{N-1} - 1)$$

O método C-2 proporciona a mesma representação para o +0 e -0.

• Decodificar os seguintes binários que representam inteiros com sinal em $\mathcal{C}-2$:

$$BIN = 0010$$

$$X = +2$$

$$BIN = 1001$$

$$X = -7$$

$$BIN = 1101$$

$$X = -3$$

$$BIN = 1001$$

$$X = -7$$

$$BIN = 1101$$

$$X = -3$$

$$BIN = 0111$$

$$X = +7$$

$$BIN = 0111$$

$$X = +7$$

$$BIN = 1100$$

$$0 \Leftrightarrow 1: 0010$$

$$0 \Leftrightarrow 1: 0010$$

$$+ 1$$

$$0 \Leftrightarrow 1: 0011$$

$$X = -4$$

$$X = -$$

ENCADEANDO SOMADOR/SUBTRATOR

Circuito Somador *Somador de 4 Bits*

Circuito Somador *Somador de 8 Bits*

Integrando Somador/Subtrator Somador de 4 Bits

É possível implementar o SUBTRATOR com o SOMADOR?

$$S[3...0] = A[3...0] - B[3...0]$$

Circuito Subtrator Subtrator de 4 Bits

É possível implementar o SUBTRATOR com o SOMADOR?

$$D[3...0] = -B[3..0]$$

A transformação deverá converter um inteiro sem sinal em seu equivalente negativo em $\mathcal{C}-2$.

Exemplo: 5 em -5.

$$B = 0101$$

$$\bar{B} = 1010$$

$$+ 1$$

$$-B = 1011$$

Circuito Somador/Subtrator

Podemos pensar em um circuito que integra a SOMA e SUBTRAÇÃO, acrescentando um $flag\ M$ que seleciona a operação desejada.

Circuito Somador/Subtrator

OTIMIZAÇÃO DO SOMADOR

- O circuito SOMADOR forma um importante componente da Unidade de Aritmética e Lógica;
- Assim, é importante avaliar o possibilidade de otimização da lógica utilizada.

- Nesta arquitetura, denominada *Ripple Carry Adder* (Somador com Propagação de *Carry*), cada estágio consome um tempo Δt , em função da dependência do *Carry* produzido pelo estágio anterior;
- A estratégia é buscar uma forma de obtenção do Carry em paralelo com cálculo da soma;
- A nova arquitetura, denominada Look-Ahead Carry Adder (Somador com Antecipação do Carry), implementa uma lógica que calcula o Carry final em paralelo com as somas de cada estágio;

• Observando um estágio do *SOMADOR*, temos:

- O C_{out} será 1 em uma destas situações:
 - \square Quando $A \in B$ forem 1; ou
 - Quando A ou B for 1, sendo C_{in} também 1;
- Assim, duas variáveis de apoio são criadas:
 - \square Carry generation: $C_g = AB$
 - \Box Carry propagagion: $C_p = A + B$

$$C_{out} = C_g + C_p C_{in}$$

 $C_{p1} = A_1 + B_1$ $C_{p0} = A_0 + B_0$

Para cada estágio, começando em FA_0 , serão calculados os respectivos C_{out} , c_{out3} até alcançarmos o C_{out} final.

• Estágio FA_0

$$C_{outo} = C_{g0} + C_{p0}C_{in0}$$

Estágio FA₁

$$C_{in1} = C_{out0}$$

$$C_{out1} = C_{g1} + C_{p1}C_{in1} = C_{g1} + C_{p1}C_{out0} = C_{g1} + C_{p1}(C_{g0} + C_{p0}C_{in0})$$

$$C_{out1} = C_{g1} + C_{p1}C_{g0} + C_{p1}C_{p0}C_{in0}$$

Para cada estágio, começando em FA_0 , serão calculados os respectivos C_{out} , c_{out3} até alcançarmos o C_{out} final.

Estágio FA₂

$$C_{in2} = C_{out1}$$

$$C_{out1} = C_{g1} + C_{p1}C_{g0} + C_{p1}C_{p0}C_{in0}$$

$$C_{out2} = C_{g2} + C_{p2}C_{in2} = C_{g2} + C_{p2}C_{out1} = C_{g2} + C_{p2}(C_{g1} + C_{p1}C_{g0} + C_{p1}C_{p0}C_{in0})$$

$$C_{out2} = C_{g2} + C_{p2}C_{g1} + C_{p2}C_{p1}C_{g0} + C_{p2}C_{p1}C_{p0}C_{in0}$$

Para cada estágio, começando em FA_0 , serão calculados os respectivos C_{out} , c_{out3} até alcançarmos o C_{out} final.

 $C_{out3} \leftarrow FA_3 \qquad FA_2 \qquad FA_2 \qquad FA_1 \qquad FA_0 \qquad FA_$

$$C_{in3} = C_{out2}$$

$$C_{out2} = C_{g2} + C_{p2}C_{g1} + C_{p2}C_{p1}C_{g0} + C_{p2}C_{p1}C_{p0}C_{in0}$$

$$C_{out3} = C_{g3} + C_{p3}C_{in3} = C_{g3} + C_{p3}C_{out2}$$

$$C_{out3} = C_{g3} + C_{p3}(C_{g2} + C_{p2}C_{g1} + C_{p2}C_{p1}C_{g0} + C_{p2}C_{p1}C_{p0}C_{in0})$$

$$C_{out3} = C_{g3} + C_{p3}C_{g2} + C_{p3}C_{p2}C_{g1} + C_{p3}C_{p2}C_{p1}C_{g0} + C_{p3}C_{p2}C_{p1}C_{p0}C_{in0}$$

Circuito Somador/Subtrator Look-Ahead Carry

Circuito Somador Look-Ahead Carry

S Cin

Circuito Somador/Subtrator

Look-Ahead Carry