

南开大学

计算机学院

"先导杯"校内赛赛题实现报告

基于矩阵乘法优化实现的多层感知机性能优化

姓名:申健强

学号: 2313119

专业:计算机科学与技术

指导教师:师建新 张金

目录

一、赛题背景	1
二、赛题题面	1
(一) 基础题:智能矩阵乘法优化挑战	1
(二) 进阶题 1:基于矩阵乘法的多层感知机(MLP)实现和性能优化挑战	1
(三) 进阶题 2:基于 MLP 的低轨卫星网络带宽预测性能优化挑战	1
(四) 实验环境和代码	2
三、优化原理	2
(一) 矩阵乘法优化原理	2
(二) MLP 前向传播原理	5
1. MLP 前向传播	5
2. MLP 前向传播优化	6
(三) 基于 MLP 的低轨卫星网络带宽预测性能优化原理	7
四、优化实现	8
(一) 矩阵乘法算法优化实现	8
(二) MLP 前向传播优化实现	12
1. GPU 优化实现	12
(三) 基于 MLP 的低轨卫星网络带宽预测实现及性能优化	13
1. 核心 GPU 实现	13
五、实验结果与分析	14
(一) 矩阵乘法优化实验结果分析	14
(二) MLP 前向传播过程优化结果分析	15
1. 前向传播过程的进一步优化	16
(三) MLP 的低轨卫星网络带宽预测结果分析	17
六、 总结	18

一、 赛题背景

低轨(LEO)卫星网络因其低时延、高覆盖的优势,正成为未来全球广域网络服务的重要补充。目前,SpaceX、OneWeb等公司已部署数千颗卫星,初步形成星座网络;我国星网工程也在加快推进,积极构建天地一体化信息网络。LEO 卫星网络具备动态拓扑、链路多变、频繁切换等特点,使其网络服务面临带宽波动性大、链路预测难等挑战。因此,提升服务质量的关键之一在于精准的网络带宽预测。借助机器学习模型,可实现对历史网络状态的深度建模与未来网络带宽的有效预测,但如何实现高效且实时的预测,要求对机器学习的计算过程进行深度优化。

机器学习过程的核心计算单元是矩阵乘法运算。在实际应用中,如何高效利用加速硬件(如 曙光 DCU,英伟达 GPU 等)和并行计算算法完成大规模矩阵乘,成为智能计算系统设计的关键问题。

二、 赛题题面

(一) 基础题:智能矩阵乘法优化挑战

已知两个矩阵: 矩阵 $A(大小 N \times M)$, 矩阵 $B(大小 M \times P)$ 。

问题一: 完成标准的矩阵乘算法,并支持浮点型输入,输出矩阵为 $C = A \times B$ 并对随机生成的浮点数矩阵输入 (N = 1024, M = 2048, P = 512),验证输出是否正确。

问题二: 采用至少两种方法加速以上矩阵运算,鼓励采用多种优化方法和混合优化方法;理论分析优化算法的性能提升,并可通过 hipprof、hipgdb、rocm - smi 等工具进行性能分析和检测。

(二) 进阶题 1:基于矩阵乘法的多层感知机(MLP)实现和性能优化挑战

基于矩阵乘法,实现 MLP 神经网络计算,可进行前向传播、批处理,要求使用 DCU 加速卡,以及矩阵乘法优化方法,并进行全面评测。输入、权重矩阵由随机生成的浮点数组成:输入层:一个大小为 B×I 的随机输入矩阵 (B 是 batch size = 1024, I 是输入维度 = 10)。

以三层 MLP 为例, 假设: 输入层: 1024×10 隐藏层: 10×20 (ReLU) 输出层: 20×5 (无激活)

变量定义: X 是输入矩阵 (Batch× 输入维度), W 是权重矩阵 (输入维度 × 输出维度), B 是偏置向量。

第一层前向传播: $H_1 = ReLU(X@W_1 + B_1)$, 其中 $X: [1024 \times 10]$, $W_1: [10 \times 20]$, $B_1: [1 \times 20]$, $H_1: [1024 \times 20]$ 。

第二层前向传播:
$$Y = H_1@W_2 + B_2$$
,其中 $ReLU(x) = \begin{cases} x & if x > 0 \\ 0 & if x \leq 0 \end{cases}$

(三) 进阶题 2: 基于 MLP 的低轨卫星网络带宽预测性能优化挑战

完成 MLP 网络设计,要求能够进行前向传播,反向传播和通过梯度下降方法训练,并实现准确的 LEO 卫星网络下行带宽预测,需使用 DCU 加速卡,并对训练和推理性能进行全面评测。输入:每次输入 t_0, t_1, \ldots, t_N 时刻的网络带宽值(N=10)。数据集:一维的带宽记录,每个数据对应一个时刻的带宽值(已上传到测试环境中),文件为 starlink bw.json。

(四) 实验环境和代码

实验环境:

• DCU: 曙光异构加速卡 1/16GB

• 线上测试平台:

• IDE: Vscode

• 编译器: hipcc

实验代码: 在本报告中我们将展示算法思路和关键的代码片段, 具体实现可以在https:// github.com/sjq0098/MatSatMLP.git中查看。

三、 优化原理

(→**)** 矩阵乘法优化原理

矩阵乘法的原始算法(即三重循环)在计算上具有极高的算术强度(Arithmetic Intensity), 其时间复杂度为

$$T_{\mathrm{baseline}} = O(N \times M \times P)$$
 FLOPs $\approx 2 N M P$.

并且总浮点运算量为

FLOPs
$$\approx 2 N M P$$
.

然而,单纯地依赖这一算法往往无法在现代 CPU/GPU 架构上充分发挥硬件性能,瓶颈常常来 自于内存层次结构的访问开销。为了提升性能、需要从以下几个数学原理角度进行优化:

1. 数据局部性与块划分 (Blocking/Tiling)

空间局部性与时间局部性 在经典的三重循环算法中, 内层循环访问形如 $A[i, m \cdot k + k]$ 和 $B[k, p \cdot$ i+i] 的内存地址, 其中对于固定的 i 和 j, k 从 0 遍历到 M-1。此时对于矩阵 A,一行元素被 连续访问,可以较好利用行优先存储 (Row-major order) 带来的空间局部性;但对于矩阵 B,访 问模式为跳跃式读取、无法充分利用缓存的空间局部性、导致频繁的缓存失效率(Cache Miss)。

块划分的思想 若将矩阵分块,将矩阵 A 和 B 划分为若干个大小为 $b \times b$ 的子块,则可以将三 个循环等价改写为对块(Block)的遍历, 再在块内部进行常规的矩阵乘法。设块大小为 b, 则有:

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots \\ A_{21} & A_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} & \cdots \\ B_{21} & B_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} & \cdots \\ C_{21} & C_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix},$$

其中每个 A_{pq}, B_{pq}, C_{pq} 均为 $b \times b$ 大小的子矩阵。对应的乘法可写为:

$$C_{ij} + = \sum_{k} A_{ik} \times B_{kj}, \quad \not \exists r \vdash A_{ik}, B_{kj}, C_{ij} \in \mathbb{R}^{b \times b}.$$

这样做能够使得每次对一个 $b \times b$ 子块进行运算时: 1. 将 A_{ik} 子块和 B_{kj} 子块从主存或更低级 缓存(如 L2/L3)加载到更高效的缓存(如 L1)。2. 在 L1 缓存中连续地对这两个子块进行 b^3 次浮点计算, 直到用尽, 再将结果写回。

其核心数学收益在于:

- 减少缓存缺失 (Cache Miss) 次数传统三重循环中, 每次 k 的迭代都会针对 B 进行跨行 访问,而块化后,在读取 B_{ki} 的整个 $b \times b$ 子块后,可重用其中的所有元素 b 次,从而提 升空间局部性。
- 提高缓存重用率 (Reuse Factor) 假设矩阵维度较大, 整行或整列无法全部容纳于 L1 缓 存,则将 b 选取为与缓存容量相匹配的合适大小,使得一个块在一次加载后能被充分重复 利用,降低内存带宽需求。

若令 b 为合理选取的块大小,则在 $N \times M \times P$ 的总体工作量中,块划分后内存访问的浮点 数近似为:

$$\mathrm{Mem_{blocked}} \approx \frac{N\,M + M\,P + N\,P}{b} \times b = N\,M + M\,P + N\,P,$$

相比未经分块时频繁的缓存失效数目大大减少。

2. 转置 (Transpose)

访问模式重排 在基于内存行优先(Row-major)布局的环境下,直接访问 B 的 B[k][j] 会导致 跨行跳转,无法在一次 cache line 加载后复用多个元素。为此可以先将矩阵 B 转置为 \widetilde{B} ,使得 原本按列访问的模式转换为按行访问。设

$$B \in \mathbb{R}^{M \times P}, \qquad \widetilde{B} = B^T \in \mathbb{R}^{P \times M},$$

其元素对应关系为

其元素对应关系为
$$\widetilde{B}[j][k] = B[k][j], \quad k=0,\dots,M-1, \ j=0,\dots,P-1.$$
 则在计算内层循环时,可直接令
$$\frac{M-1}{2}$$

$$\sum_{k=0}^{M-1} A[i][k] \times B[k][j] \; \equiv \; \sum_{k=0}^{M-1} A[i][k] \times \widetilde{B}[j][k],$$

其中 $\widetilde{B}[j][k]$ 在内存中相邻存储。这样,对于固定的 i,j,k 的循环访问只涉及两行数据: A 的第 i 行和 \tilde{B} 的第 j 行,均为顺序访问,能够极大提高缓存命中率。转置操作本身的开销为 O(MP), 但当 $M,P \gg$ 缓存大小时,通过重排访问能显著降低内层循环的内存延迟,从而整体上减少运 行时间。

3. SIMD 向量化 (Single Instruction Multiple Data)

向量寄存器与批量浮点运算 现代处理器支持向量寄存器(如 AVX2 的 256-bit 寄存器),一次 可以并行处理 v 个相同类型的数据 (例如 v = 4 个 double-precision)。在数学上,将标量乘加运 算

$$c_j = \sum_{k=0}^{M-1} a_{i,k} \, b_{k,j} \quad (标量模式)$$

拓展为向量模式时, 可在一次指令中完成

$$(c_j, c_{j+1}, \ldots, c_{j+v-1}) = \sum_{k=0}^{M-1} a_{i,k} \times (b_{k,j}, b_{k,j+1}, \ldots, b_{k,j+v-1}),$$

其中 $(b_{k,i},\ldots,b_{k,i+v-1})$ 为 v 个连续位置的元素。同样, $a_{i,k}$ 被广播(broadcast)到向量寄存器, 赋值给每个分量。这样,每完成一次 k 的迭代,实际同时更新了 v 个不同的 j 下标对应的累加 值,从而将原本的 M 次标量乘法变为 M 次向量乘法,整体浮点运算吞吐提高约 v 倍。

对齐与捕获内存局部性 为了最大化性能,需要保证内存访问的对齐(aligned load/store)或至 少利用 loadu 进行无对齐访问,以减少对内存子块的额外开销。此外,SIMD 向量化常常与块划 分结合,以保证 B 在连续内存上的 v 个元素能够被一次读入向量寄存器。

4. 多线程并行 (Parallelism)

循环并行化 矩阵乘法天然具有 $\mathcal{O}(N \times P)$ 个独立输出元素,每个元素对应于一个向量点积。可通过对最外层的循环(例如迭代 i 或迭代 (i,j))进行并行,令不同线程负责计算不同的行或行列组合。在 OpenMP 中可使用类似

#pragma omp parallel for collapse(2) schedule(static)

的指令,将二维循环 (i,j) 打平后在多个线程间静态分配任务,从而获得接近线性加速。

负载均衡与内存冲突 并行化时,还需关注线程间负载均衡:若将循环分配为等量的迭代次数,则可确保各线程工作量相近;此外,在写入结果矩阵时,避免多个线程同时写入同一缓存行,从而产生伪共享(false sharing)。通过合适的索引映射与块划分,可降低此类冲突。

5. GPU 上的块(Tiling)与共享内存(Shared Memory)

分层存储访存模型 GPU(如使用 HIP/DCU)拥有更深的存储层次: 全局内存(Global Memory)、 片上共享内存(Shared Memory)及寄存器(Registers)。全局内存带宽虽高,但延迟也大;而 共享内存带宽更高、延迟更低,适合多次重用。

线程块与瓦片 (**Tile**) 策略 在 GPU 中, 通常将二维输出矩阵 C 分为 $(T \times T)$ 大小的瓦片 (Tile), 每个线程块 (block) 负责计算一个瓦片中的所有元素。设:

$$T=16$$
, 则瓦片大小为 16×16 .

每个线程块中,先从全局内存加载对应的 A 子矩阵 $T \times T$ 块以及 B 子矩阵 $T \times T$ 块到共享内存(Shared Memory),然后在共享内存中对这两个小块执行 T^3 次标量乘累加运算。数学上,每个瓦片遍历 $\lceil M/T \rceil$ 个阶段,每阶段完成

$$T \times T \times T = T^3$$

次乘加操作。全部阶段结束后,得到该线程块负责区域的最终结果。

共享内存重用(Data Reuse) 假设 $A_{\text{tile}} \in \mathbb{R}^{T \times T}$ 与 $B_{\text{tile}} \in \mathbb{R}^{T \times T}$ 被加载后,可在共享内存中重复使用 T 次内层迭代,直到该瓦片完成对 $\sum_t A_{\text{tile}}^{(t)} \times B_{\text{tile}}^{(t)}$ 的汇总。相比直接从全局内存加载,使用共享内存能将对同一数据的访问次数从 $\lceil M/T \rceil$ 减少为仅一次加载并在共享内存中重复 T 次提取,从而显著降低全局内存带宽压力。

6. 算术强度与 Roofline 模型

算术强度 (Arithmetic Intensity) 定义算术强度为

 $AI = \frac{$ 总浮点运算量 (FLOPs)}{ 总内存访问量 (Bytes)}.

对于矩阵乘法, 若仅按最简模型假设每个元素仅被读取一次、写入一次, 则

FLOPs = 2 N M P, Bytes $\approx 8 (N M + M P + N P)$.

因此

$${\rm AI_{ideal}} = \frac{2 \, N \, M \, P}{8 \, (N \, M + M \, P + N \, P)}.$$

当 N, M, P 相近且很大时,AI 会趋近于常数。但在真实场景中,由于缓存缺失、重复载入等因素导致的内存访问远超理想情况,从而降低了实际算术强度。通过块划分、转置及共享内存重用,可加大 AI,使得更多的浮点运算在数据被加载之后立即进行,从而更接近计算带宽限制,而非由内存带宽瓶颈所主导。

Roofline 模型 在 Roofline 模型中,性能上限取决于较低的两者:处理器峰值计算能力 \times 软件实现效率,或内存带宽 \times 算术强度。随着优化手段(块划分、转置、向量化、并行化、共享内存等)的引入,算术强度提高,计算性能逐渐从"带宽受限"向"计算受限"转移,最终可能达到硬件的顶点性能。

后续我们将会介绍上述方法的具体实现。

(二) MLP 前向传播原理

1. MLP 前向传播

设批量大小为 B,输入维度为 I,隐藏层维度为 H,输出维度为 O。定义:

$$X \in \mathbb{R}^{B \times I}, \quad W_1 \in \mathbb{R}^{I \times H}, \quad b_1 \in \mathbb{R}^H, \quad W_2 \in \mathbb{R}^{H \times O}, \quad b_2 \in \mathbb{R}^O.$$

前向传播分两步计算:

1. 第一层(线性变换 + 偏置 + ReLU)

对于第 b 个样本 ($b=1,\ldots,B$) 和第 h 个隐藏元 ($h=1,\ldots,H$),

$$H_{b,h} = \max\left(0, \sum_{i=1}^{I} X_{b,i} W_{1,i,h} + b_{1,h}\right).$$
 线性変換

矩阵形式可写为

$$H = \text{ReLU}(X W_1 + \mathbf{1}_B b_1^T), \quad H \in \mathbb{R}^{B \times H},$$

其中 $\mathbf{1}_B \in \mathbb{R}^B$ 为全 1 列向量, $\mathbf{1}_B b_1^T$ 对应对每一行加同一个偏置向量。

2. 第二层(线性变换 + 偏置)

对于第 b 个样本和第 o 个输出神经元 (o = 1, ..., O),

$$Y_{b,o} = \sum_{h=1}^{H} H_{b,h} W_{2,h,o} + b_{2,o}.$$

矩阵形式为

$$Y = H W_2 + \mathbf{1}_B b_2^T, \quad Y \in \mathbb{R}^{B \times O}.$$

综上、MLP 的前向传播即

$$H = \text{ReLU}(X W_1 + \mathbf{1}_B b_1^T), \qquad Y = H W_2 + \mathbf{1}_B b_2^T.$$

其中 ReLU 激活函数定义为

$$ReLU(z) = max(0, z)$$
 (逐元素操作).

2. MLP 前向传播优化

在 GPU 上实现 MLP 前向传播时,主要优化思路包括:将偏置加法与激活函数融合、利用常量内存存储偏置、以及优化网格和线程配置,以减少内存访问并提高吞吐率。具体数学原理如下:

1. 融合偏置与激活 (Bias + ReLU)

对第一层隐藏层计算而言,单独执行矩阵乘法后再分别进行偏置加法和 ReLU 激活会产生 两次对隐藏矩阵 H 的全局内存读写。设中间结果为

$$Z_{b,h} = \sum_{i=1}^{I} X_{b,i} W_{1,i,h} + b_{1,h}, \quad H_{b,h} = \max(0, Z_{b,h}).$$

如果将偏置加法与 ReLU 激活合并为一个操作,则可在读出 $Z_{b,h}$ 的寄存器后,直接执行

$$H_{b,h} = \max(0, Z_{b,h} + b_{1,h}),$$

并将结果一次写回全局内存。这样,矩阵乘法内核只负责计算 $\sum XW_1$ 并将中间结果保存在全局内存,后续融合内核一次性完成"加偏置 + ReLU":

$$H_{b,h} = \max(0, H_{b,h} + b_{1,h}).$$

由于融合操作只需要对每个元素做一次读—算—写,减少了额外的内存往返,降低了带宽 开销。

2. 利用常量内存存储偏置(Constant Memory)

偏置向量 $b_1 \in \mathbb{R}^H$ 和 $b_2 \in \mathbb{R}^O$ 的长度远小于激活矩阵,且每个偏置在所有线程中频繁读取。将它们拷贝到 GPU 常量内存(Constant Memory)后,各线程读取偏置时可共享同一个 L1/L2 缓存副本,访问延迟更低,并且带宽需求更小。数学上,相当于在计算

$$Z_{b,h} + b_{1,h}$$
 和 $Y_{b,o} + b_{2,o}$

时, $b_{1,h}, b_{2,o}$ 的读取成本被降至常量。此时融合内核仅需在每个线程中通过:

$$A_{idx} = A_{idx} + c_B[\operatorname{col}(idx)],$$

读取对应列的常量偏置,完成更新。

3. 优化网格与线程配置 (Grid & Block)

对于每个 GEMM 内核($H = XW_1$ 和 $Y = HW_2$),设线程块大小为 (16×16),则需要满足:

$$grid.x = \lceil K/16 \rceil$$
, $grid.y = \lceil M/16 \rceil$,

其中对于第一层,M = B(批量大小)、K = H;对于第二层,M = B、K = O。这样可保证每个线程对应输出矩阵中 (row, col) 的一个元素,且能对连续列或行进行 coalesced 访问,数学上减少了线程间因"非对齐"导致的内存分裂访问。

4. 内存访问与算术密集度提升

将偏置与激活融合后,每个隐藏元素仅需一次全局写回,原本的额外写-读过程被消除。记 第一层计算产生的浮点运算量为

$$FLOPs_1 = 2BIH$$
,

而融合后对 H 的内存访问量从原先

$$8BH(5) + 3H = 16BH + 8H$$

减少为

从而算术强度(Arithmetic Intensity)得以提升。第二层类似,只需一次写入:

$$FLOPs_2 = 2BHO$$
, $Bytes_2 = 8BO + 8O$.

总体来看, 融合操作使得整个前向传播的内存带宽需求在全局内存层面降低近 2×, 更接近 于计算带宽平衡点。

以上优化手段在数学上共同作用,减少了不必要的全局内存往返、提高了偏置读取效率,并 通过合理的线程映射实现了对连续内存的共聚访问,从而提升了 GPU 上 MLP 前向传播的整体 性能。"'

(=) 基于 MLP 的低轨卫星网络带宽预测性能优化原理

针对低轨卫星带宽时序预测的 MLP 训练与推理过程, 主要优化思路可概括如下:

• **数据预处理与滑动窗口**对原始时序 $\{d_t\}$ 做最小—最大归一化:

$$d_t' = \frac{d_t - d_{\min}}{d_{\max} - d_{\min}},$$

然后以窗口大小 I 构造样本

$$d_t'=rac{d_t-d_{\min}}{d_{\max}-d_{\min}},$$
 $\mathbf{x}^{(i)}=[\,d_i',\ldots,d_{i+I-1}'],\quad y^{(i)}=d_{i+I}'.$

归一化保证训练数值尺度一致,有助于梯度稳定。

• 小批量并行(Batch)将训练集划分为大小为 $b = BATCH_SIZE$ 的小批量,

$$\mathbf{X}_{\mathrm{batch}} \in \mathbb{R}^{b \times I}, \quad \mathbf{y}_{\mathrm{batch}} \in \mathbb{R}^{b \times 1}.$$

在 GPU 上仅调用一次显存分配、并在每个批次中复用缓冲区、减少 hipMalloc 开销。

• 前向传播: 矩阵乘法与并行化第一层线性变换:

$$\mathbf{H}_{\text{lin}} = \mathbf{X}_{\text{batch}} W_1, \quad W_1 \in \mathbb{R}^{I \times H}.$$

使用自定义 GEMM 内核 matmul_kernel, 令线程块大小 (16×16), 并行计算 $b \times H$ 个元 素。加偏置与 ReLU 分两步:

$$H_{\text{act}, ij} = \max(0, H_{\text{lin}, ij} + b_{1,j}),$$

通过 add_bias_kernel 和 relu_kernel 并行完成。第二层同理:

$$\mathbf{Y}_{\text{pred}} = \mathbf{H}_{\text{act}} W_2 + b_2, \quad W_2 \in \mathbb{R}^{H \times 1}.$$

• **反向传播:并行梯度计算**损失为均方误差 (MSE):

$$\mathcal{L} = \frac{1}{b} \sum_{i=1}^{b} (\hat{y}_i - y_i)^2.$$

1. 输出层梯度:

$$\delta_i^{(2)} = \frac{2}{b} (\hat{y}_i - y_i), \quad i = 1, \dots, b.$$

2. 隐层误差:

$$\delta_{ii}^{(1)} = \delta_i^{(2)} W_{2,j} \mathbf{1}(H_{\text{lin},ij} > 0), \quad j = 1, \dots, H.$$

均由 compute_output_grad 和 compute_relu_backward 内核并行计算。

3. 梯度归约:将 $\mathbf{H}_{\mathrm{act}}$ 、 $\boldsymbol{\delta}^{(2)}$ 及 $\boldsymbol{\delta}^{(1)}$ 拷回 Host 后,用双重循环计算

$$\nabla W_{2,j} = \sum_{i} H_{\text{act, }ij} \, \delta_i^{(2)}, \quad \nabla b_2 = \sum_{i} \delta_i^{(2)},$$

$$\nabla b_{1,j} = \sum_{i} \delta_{ij}^{(1)}, \quad \nabla W_{1,kj} = \sum_{i} X_{ik} \, \delta_{ij}^{(1)}.$$

• 参数更新: SGD 并行内核使用简单的随机梯度下降:

$$W \leftarrow W - \eta \, \nabla W, \quad b \leftarrow b - \eta \, \nabla b, \quad \eta = \text{LEARNING_RATE}.$$

在 GPU 上调用 sgd_update, 让每个线程负责一个参数元素, 完成并行更新。

• 数据传输优化

- 一次性分配所有 GPU 缓冲区, 避免频繁 hipMalloc。
- 每个小批量只拷贝 $\mathbf{X}_{\mathrm{batch}}$ 和对应标签到设备,完成所有计算后,再分批将必要向量拷回 Host 进行归约。
- 所有矩阵、向量按行优先存储、保证内核中对连续元素的访问可合并、提高全局内存 带宽利用。
- **Xavier 初始化与数值稳定**权重 W₁, W₂ 采用 Xavier 均匀分布:

$$W_{1,ij} \sim \mathcal{U}\left[-\sqrt{\frac{6}{I+H}}, \sqrt{\frac{6}{I+H}}\right], \quad W_{2,j1} \sim \mathcal{U}\left[-\sqrt{\frac{6}{H+1}}, \sqrt{\frac{6}{H+1}}\right],$$

使前向激活和反向梯度方差均衡,加速收敛并减少数值不稳定风险。

简而言之,通过归一化、批处理并行、定制化 GEMM 内核、逐元素并行操作、Host 归约与 GPU 并行更新,以及一次性显存分配和连续内存访问等策略,最大化利用 GPU 计算单元与内存带宽,从而显著提升低轨卫星带宽预测任务的训练与推理性能。

四、优化实现

(一) 矩阵乘法算法优化实现

首先我们实现基线矩阵乘法方法,这也将作为我们对后续方法正确性验证的基础,对于正确性的检验,我们验证两个矩阵的差值是否在我们的误差允许范围内:

```
void matmul_baseline(const std::vector<double>& A,

const std::vector<double>& B,

std::vector<double>& C,

int n, int m, int p) {

for (int i = 0; i < n; ++i) {

for (int j = 0; j < p; ++j) {</pre>
```

```
bool validate(const std::vector<double>& A, const std::vector<double>& B,
    int rows, int cols, double tol = 1e-6) {
    for (int i = 0; i < rows * cols; ++i) {
        if (std::abs(A[i] - B[i]) > tol) return false;
    }
    return true;
}
```

我们自然能想到使用 openmp 并行后面的两层循环, 于是就有:

在 openmp 的基础上我们进一步对矩阵进行展开并行计算:

基于 cpu 的架构,我们优化访问顺序,对 cache 的访问进行了优化:

```
void matmul_transpose(const std::vector<double>& A,
                           const std::vector<double>& B,
                           std::vector<double>& C,
                           int n, int m, int p) {
       // 先转置 B -> Bt (维度 p x m)
       std::vector<double> Bt(p * m);
       for (int k = 0; k < m; ++k) {
           for (int j = 0; j < p; +++j) {
                Bt[j * m + k] = B[k * p + j];
           }
       }
       std::fill(C.begin(), C.end(), 0.0);
      #pragma omp parallel for collapse(2) schedule(static)
       for (int i = 0; i < n; ++i) {
           for (int j = 0; j < p; +++j) {
                \mathbf{const} \ \mathbf{double} * \ \mathbf{a} \ \mathbf{row} = \& A[\ \mathbf{i} \ * \ \mathbf{m}];
                const double* b_row = &Bt[j * m];
                double sum = 0.0;
                for (int k = 0; k < m; ++k) {
                    sum += a_row[k] * b_row[k];
                C[i * p + j] = sum;
      }
24
  }
```

在并行程序设计的课程中我们学习到 simd 方法:

```
void matmul_simd(const std::vector<double>& A,

const std::vector<double>& B,

std::vector<double>& C,

int n, int m, int p) {

std::fill(C.begin(), C.end(), 0.0);

for (int i = 0; i < n; ++i) {

const double* a_row = &A[i * m];

for (int j = 0; j < p; j += 4) {</pre>
```

GPU (DCU) 加速实现基于 HIP 框架, 我们实现了高效 tile-based 并行矩阵乘法。核函数如下:

```
// TILE 为线程块尺寸
                global___ void matmul_kernel(const double* A, const double* B, double* C,
                                                                                                                int n, int m, int p) {
                       __shared__ double tileA [TILE] [TILE];
                        __shared___ double tileB[TILE][TILE];
                     int row = blockIdx.y * TILE + threadIdx.y;
                     int col = blockIdx.x * TILE + threadIdx.x;
                     double sum = 0.0;
                     for (int t = 0; t < (m + TILE - 1) / TILE; ++t) {
                                    \begin{tabular}{ll}  \begin
                                                 tileA[threadIdx.y][threadIdx.x] = A[row * m + t * TILE +
                                                               threadIdx.x];
                                   else
                                                 tileA[threadIdx.y][threadIdx.x] = 0.0;
                                    \begin{tabular}{ll} \textbf{if} & (col 
                                                 tileB[threadIdx.y][threadIdx.x] = B[(t * TILE + threadIdx.y) * p]
                                                             + col];
                                   else
                                                 tileB[threadIdx.y][threadIdx.x] = 0.0;
                                    __syncthreads();
                                   for (int i = 0; i < TILE; ++i)
                                                 sum += tileA[threadIdx.y][i] * tileB[i][threadIdx.x];
                                    __syncthreads();
                     }
                     if (row < n \&\& col < p)
                                  C[row * p + col] = sum;
31
```

主机端通过如下调用流程完成执行:

- 使用 hipMalloc 分配显存;
- 调用 hipMemcpy 拷贝主机数据至设备;
- 配置 dim3 gridDim, blockDim 启动核函数;
- 使用 hipEventRecord 记录执行时间;
- 使用 hipMemcpy 拷回计算结果并与 CPU 验证;

在这里我们分配资源后,对 DCU 进行分配计算任务,调用核函数进行任务,同时也对运算进行计时,最终我们将结果写回,获得结果。

我们也测试了这些方法的杂交方法、在后续实验结果部分将会对他们进行分析。

(二) MLP 前向传播优化实现

在本节中,我们介绍一个两层全连接神经网络(MLP)的前向传播在 GPU 上的优化实现。该网络包含一个隐藏层,并使用 ReLU 激活函数。我们利用 GPU 的并行计算能力加速计算过程。以下是实现中的关键部分,主机端的数据准备和性能度量等非核心部分将通过文字描述衔接。

1. GPU 优化实现

GPU 实现基于 HIP API,设计了三个核心内核函数来完成矩阵乘法、偏置相加和 ReLU 激活。

1. 矩阵乘法内核 矩阵乘法是前向传播中最耗时的操作。我们实现了一个通用的矩阵乘法内核,计算 $C = A \times B$,适用于输入到隐藏层和隐藏层到输出层的计算。

该内核使用二维线程块组织,每个线程计算结果矩阵 ${\bf C}$ 的一个元素,通过并行化行和列充分利用 ${\bf GPU}$ 并行性。

2. 加偏置内核 矩阵乘法后需为每列添加偏置值,这一操作高度并行化。

```
global___ void add_bias_kernel(double* A, const double* bias, int rows, int
    cols)

int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int total = rows * cols;
    if (idx < total) {
        int col = idx % cols;
        A[idx] += bias[col];
    }
}</pre>
```

此内核采用一维线程组织、每个线程根据列索引添加对应的偏置值。

3. ReLU 激活内核 ReLU 函数对隐藏层输出应用 ReLU $(x) = \max(0, x)$,同样适合并行执行。

```
global___ void relu_kernel(double* A, int size)

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < size) {
        A[idx] = A[idx] > 0.0 ? A[idx] : 0.0;
}

7
```

与加偏置内核类似,每个线程处理一个元素,完成激活操作。

主机端代码负责数据初始化、内存分配和数据传输。例如,输入数据和网络参数使用随机值初始化,并通过 hipMalloc 和 hipMemcpy 管理设备内存。内核启动时,配置二维网格和块尺寸(如 16 × 16)以计算隐藏层和输出层结果,随后同步设备并拷回结果。性能通过 GFLOPS 和内存带宽评估,验证则比较 CPU 和 GPU 输出的一致性。

在后续的过程中, 我们也将展示将 relu 核与偏置内核进行融合对性能的优化。

(三) 基于 MLP 的低轨卫星网络带宽预测实现及性能优化

我们接下来实现多层感知器(MLP)预测低轨卫星网络带宽的 GPU 优化。通过滑动窗口生成输入输出对,使用 Xavier 初始化权重,并采用带动量的 SGD 优化器训练模型。以下聚焦核心 GPU 内核实现。

1. 核心 GPU 实现

GPU 实现利用 HIP API, 关键内核包括矩阵乘法、ReLU 激活和带动量的参数更新。

1. 矩阵乘法内核 矩阵乘法处理 $\mathbf{H} = \mathbf{X} \times \mathbf{W} \mathbf{1}$ 和 $\mathbf{Y} = \mathbf{H} \times \mathbf{W} \mathbf{2}$,并行计算提升效率。

```
__global___ void matmul_kernel(const double* __restrict__ A,
const double* __restrict__ B,
double* __restrict__ C,
int M, int N, int K)

{
int row = blockIdx.y * blockDim.y + threadIdx.y;
```

```
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (row < M && col < K) {
    double sum = 0.0;
    for (int n = 0; n < N; ++n) {
        sum += A[row * N + n] * B[n * K + col];
}
C[row * K + col] = sum;
}
</pre>
```

2. ReLU 激活内核 ReLU 函数 ReLU(x) = max(0, x) 对隐藏层输出并行应用。

```
global___ void relu_kernel(double* A, int size)

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < size) {
         A[idx] = (A[idx] > 0.0) ? A[idx] : 0.0;
    }

}
```

3. 带动量的 SGD 更新内核 参数更新结合动量加速梯度下降, 计算 $v = \text{momentum} \cdot v + \text{lr} \cdot \text{grad}$ 并更新权重。

数据从 JSON 文件加载并归一化后,通过滑动窗口生成训练和测试样本。权重采用 Xavier 初始化,训练过程分批执行前向传播、梯度计算和参数更新,损失以 MSE 评估。测试阶段计算归一化和反归一化后的 MSE,验证预测精度。

五、 实验结果与分析

(一) 矩阵乘法优化实验结果分析

我们利用下列的方法对矩阵乘法进行优化的结果列表格如下:

将表格进行可视化: 由图和表我们可以很明显的看出: 所有的方法都通

由图和表我们可以很明显的看出: 所有的方法都通过了正确性检验。基线实现(Baseline)未采用任何并行或优化技术, 计算耗时最长, 性能最差。引入 OpenMP 并行后性能有明显提升, 而

Method	Time (ms)	${ m GFLOP/s}$	BW (GB/s)	Valid	Speedup
CPU (Baseline)	10875.7	0.197	0.0027	_	1.00×
CPU (OpenMP)	1407.37	1.526	0.0209	True	$7.73 \times$
CPU (Block Tiling)	61.89	34.699	0.4744	True	$175.74\times$
CPU (Transpose)	299.24	7.176	0.0981	True	$36.35\times$
CPU (SIMD)	2605.42	0.824	0.0113	True	$4.17\times$
CPU (SIMD+OpenMP)	360.4	5.959	0.0815	True	$30.17 \times$
CPU (SIMD+Block)	386.33	5.559	0.0760	True	$28.15\times$
GPU (HIP/DCU)	3.27	655.928	8.9678	PASS	3325.58×

表 1: Matrix Multiplication Benchmark Results

图 1: 矩阵乘法优化可视化,采用对数坐标轴

块划分 (Block Tiling) 策略则进一步优化了缓存局部性,使得性能大幅提升至约 34.7 GFLOP/s。转置优化改善了访问模式,但整体效果不及块划分。

使用 SIMD 指令集后,性能有所提升,但若未结合并行或块划分,其优势未能充分发挥。将 SIMD 与 OpenMP 或 Block 技术联合使用时,能有效兼顾向量化与并行性,取得更优性能。

相比之下,基于 HIP 的 GPU 实现充分利用了 DCU (Data Center GPU) 的高吞吐能力, 计算时间仅为 3.27 毫秒,性能达到 655.9 GFLOP/s,远超 CPU 上的各类优化方案。此外,所有 CPU 和 GPU 实现均通过了结果验证、保证了数值正确性。

(二) MLP 前向传播过程优化结果分析

我们首先将我们实现的 MLP 前向传播过程与对应的 CPU 实现对比, 我们一开始使用了参考代码中的尺寸进行实现和对比, 但我们发现一个问题: **在这个情形下 DCU 的计算表现居然不如 CPU 串行实现**

GPU 性能未达预期的原因分析 如表 2 所示,在小规模输入(例如 1024×10 与 1024×20 的矩阵乘法)下,CPU 的前向传播耗时仅为 $0.14\,\mathrm{ms}$,而 GPU 执行同样操作的总时间却高达 $0.65\,\mathrm{ms}$,导致其 GFLOP/s 与内存带宽均远低于 CPU。究其原因,主要包括以下几点:

• 问题规模太小, GPU 并未充分利用: 当前矩阵乘操作的维度过小, GPU 无法调度足够的

\mathbf{Size}	Time	(ms)	Performance (GFLOP/s)		Bandwidth (GB/	
	CPU	DCU	CPU	DCU	CPU	DCU
1024	0.14133	0.64957	4.35	0.95	3.21	0.70
4096	0.56410	0.69469	4.36	3.54	3.20	2.60
8192	1.13315	0.69853	4.34	7.04	3.18	5.16

表 2: CPU 与 DCU 在不同矩阵尺寸下的性能对比

图 2: CPU 与 DCU 在不同矩阵尺寸下的性能变化对比, GPU 代指 DCU

线程参与计算,导致并行度严重不足。相反,CPU 更能在缓存中完成小矩阵乘法,并通过向量化等优化方式获得更优性能。

- 核函数启动与同步开销显著:每个 GPU 操作(如矩阵乘、加偏置、ReLU)都需单独启动一个 kernel,并进行一次同步。由于每个 kernel 仅进行少量计算,启动与同步成本在总时间中占据主导,导致效率低下。
- **带宽利用率不高:** 尽管理论上 GPU 拥有远高于 CPU 的显存带宽,但由于问题规模小、访问不连续、操作频繁切换等原因,未能实现流式高带宽访问,实测仅为 0.7 GB/s,远低于 CPU 的 3.2 GB/s。
- **算力密度不足**: 与卷积操作或大规模矩阵乘法不同,全连接层的计算密集度较低。GPU 需要足够大的工作负载才能让大量计算单元并行运行,而当前任务不足以激发其峰值性能。

于是我们尝试修改 batch 大小得到了如上的表格中的数据,可视化如下:我们不难发现:

- 运行时间: 随着尺寸增大, CPU 用时线性增加, 而 GPU 用时变化不大, 主要受启动与同步开销影响。
- 性能 (GFLOP/s): GPU 性能随尺寸明显上升, CPU 基本持平, 说明 GPU 对问题规模更敏感。
- 内存带宽: GPU 在大尺寸下带宽大幅提升, 而 CPU 相对稳定, 表明 GPU 在数据量大时 能更有效地利用内存带宽。

1. 前向传播过程的进一步优化

我们尝试把"加偏置+ReLU"融合到每个 matmul Kernel 里,使得"第一层 matmul+bias+ReLU" 合成一个 kernel, "第二层 matmul+bias" 合成一个 kernel。这样仅需 2 次 kernel 启动,能省下 3 次启动/同步开销。与原本的实现进行对比,实验数据表格如下:

阶段	融核后时间	融核前时间
第一层(GEMM + Bias + ReLU)	0.1467	0.7438
第二层(GEMM + Bias)	0.0789	0.0570
Memcpy / 总前向	0.0370	0.1003

表 3: MLP 前向传播各阶段耗时对比(单位: ms)

图 3: MLP 前向传播各阶段耗时对比(单位: ms)

可视化如下:

我们可以很明显地看到性能有所提升。

(三) MLP 的低轨卫星网络带宽预测结果分析

我们首先完全参考代码框架中的 MLP 实现, 使用

原始数据 \rightarrow 滑动窗口 \rightarrow Minmax 归一化 \rightarrow [-1,1] 均匀初始化 \rightarrow GPU 前向传播 \rightarrow MSE 损失计算 \rightarrow GPU 反向传播 \rightarrow 普通 SGD 更新 \rightarrow 反归一化评估

来搭建我们的 MLP 模型,模型收敛时,MSE=0.0456248,我们随后对其进行优化尝试。我们对初始化过程进行修改,我们使用 Xavier 初始化来作为新的初始化方式替代 [-1,1] 均匀初始化,这可以加速模型的收敛,模型表现有所优化,MSE=0.0130282,进一步地,我们替换 SGD 更新方式,变为带动量的 SGD,模型再次优化,MSE=0.00841459。

于是, 我们得到了一个表现尚为不错的 MLP 模型, 其训练过程可视化如下:

可以看到模型迅速收敛, 而在 DCU 计算加速卡的作用下, 我们得以快速地对模型进行调整 优化, 减少了时间成本。

图 4: 最终模型的训练过程可视化

六、 总结

在本赛题中,我们通过实现和优化多层感知机(MLP)模型,探索了低轨(LEO)卫星网络带宽预测的高效解决方案:

• 基础任务完成: 矩阵乘法优化

- 成功实现了标准矩阵乘法算法,支持浮点输入,针对 N=1024、M=2048、P=512 的随机矩阵验证了正确性。
- 采用多种优化策略 (块划分、转置、SIMD 向量化、OpenMP 并行、DCU 加速), 显著提升性能: CPU 优化后最高达 34.7 GFLOP/s, GPU (HIP/DCU) 实现 655.9 GFLOP/s, 远超基线 (0.197 GFLOP/s)。

• 进阶任务一: MLP 前向传播优化

- 基于矩阵乘法实现了三层 MLP (输入层 1024×10 , 隐藏层 10×20 , 输出层 20×5), 支持前向传播和批处理(batch size = 1024)。
- 通过融合"加偏置 + ReLU"操作、优化线程配置和内存访问,GPU 实现大幅减少 kernel 启动和同步开销,前向传播总耗时从 $0.7438~\mathrm{ms}$ 优化至 $0.1467~\mathrm{ms}$ (第一层),性能随矩阵规模增大而提升。

• 进阶任务二: LEO 带宽预测优化

- 设计并实现了支持前向传播、反向传播和梯度下降训练的 MLP 模型,基于 starlink bw.json 数据集完成 LEO 卫星网络下行带宽预测。
- 优化措施包括数据归一化、Xavier 初始化、带动量的 SGD 更新和 GPU 并行计算,最终模型 MSE 从 0.0456248 优化至 0.00841459,展现快速收敛和高预测精度。
- 利用 DCU 加速卡提升训练和推理效率,显著降低时间成本,验证了硬件加速在实践中的价值。

• 未来展望

- 模型复杂度提升:探索更深层次或更复杂模型 (如 LSTM、Transformer),以捕捉 LEO 网络带宽的时序动态特性。

- **数据扩展:**结合真实卫星运行数据(如轨道参数、干扰因素),进一步验证和优化模型的泛化能力。
- **硬件与算法协同:** 深入研究 DCU 架构特性,结合高级优化技术(如张量核心、混合精度计算),进一步提升计算效率。
- **实时应用:** 开发实时带宽预测系统,针对动态拓扑和链路切换场景,测试模型在实际 网络环境中的鲁棒性。

本实验我们通过软硬件结合优化,成功提升了矩阵运算效率和 LEO 卫星带宽预测性能,从 而体会到了计算机系统设计时的一系列深刻的设计思想和历练。

致谢:特别感谢师建新老师和张金老师的悉心指导与支持。感谢曙光 DCU 训练平台的计算资源支持和实训平台支持。

