

Lectures 12-14.

Resource Definition Framework (RDF)

Alexandra V. Vitko

Description of Semantic Properties of the Web Resources and Semantic Relationships between them is Extremely Important for

the Intelligent Web Applications

- Information Overload
 - Information on the Web currently aiming at Human Consumption
 - Information Consumption is too time consuming
- Search Engines fail more and more
 - combined coverage is less than 42% of the HTML-Web
- Data Interchange growing (e.g. B2B)
 - needs a common semantics

Can't we just use XML?

This is what a web-page in natural language looks like for a machine

林克昌 根留台灣 可能增高

在愛戴者熱心奔走之下,華裔名指揮家林克昌根留台灣的可行性又提升了幾分。兩廳院主任李炎、國家音樂廳樂團副團長黄奕明日前親赴林克昌、石聖芳寓所拜會,並提出多場客席邀約。此外,台灣省立交響樂團團長陳澄雄也早早「下訂」,邀請林克昌赴台中霧峰,從八月十日起訓練省交,為期長達一個月。

在台灣諸多公家樂團中,陳澄雄是以實際行動表達對 林克昌肯定的樂界人士之一,曾多次公開表示對林克昌 指揮才華的欽佩,而且幾乎每個樂季都邀請林克昌客席 演出。

此外,林克昌上個月赴俄羅斯與頂尖的「俄羅斯國家管絃樂團」灌錄了柴可夫斯基晚期三大交響曲以及「羅密歐與菜麗葉」、「斯拉云進行曲」、「義大利隨想曲」,最後的DAT母帶也在前兩天寄回台灣。製作人楊忠衡與林克昌試聽之後,都對錄音效果—尤其音質表現感到相當滿意,楊忠衡估計呈現了七分林克昌指揮神韻

俄羅斯國家管絃樂團首席布魯尼日前也讚譽林克昌的 指揮藝術有三大特點:一是控制自如的彈性速度;二是 强烈的動態對比;三是宛如呼吸歌唱的旋律處理。這些 對錄音師而言都構成很大挑戰。俄國錄音師雖然採用多 軌混音,但定位、場面都有可觀之處。。

XML helps

XML allows "meaningful tags" to be added to parts of the text

林克昌 根留台灣 可能增高

<name>

<education>

在愛戴者熱心奔走之下,華裔名指揮家林克昌根留台灣的可行性又提升了幾分。兩廳院主任李炎、國家音樂廳樂團副團長黄奕明日前親赴林克昌、石聖芳寓所拜會,並提出多場客席邀約。此外,台灣省立交響樂團團長陳澄雄也早早「下訂」,邀請林克昌赴台中霧峰,從八月十日起訓練省交,為期長達一個月。

在台灣諸多公家樂團中,陳澄雅是以實際行動表達對 林克昌肯定的樂界人士之一,曾多次公開表示對林克昌 指揮才華的欽佩,而且幾乎每個樂季都邀請林克昌客席 演出。

<work>

此外,林克昌上個月赴俄羅斯與頂尖的「俄羅斯國家管絃樂團」灌錄了樂可犬斯基晚期三大交響曲以及「羅密歐與英麗葉」、「斯拉夫進行曲」、「義大利隨想由」,最後的DAT母帶也在前兩天客回台灣。製作人楊忠衡與林克昌試聽之後,都對錄音效果-尤其音質表現感到相當滿意,楊忠衡估計呈現了七分林克昌指揮神龍

< private>

俄羅斯國家管絃樂團首席布魯尼日前也讚譽林克昌的 指揮藝術有三大特點:一是控制自如的彈性速度;二是 强烈的動態對比;三是宛如呼吸歌唱的旋律處理。這些 對錄音師而言都構成很大挑戰。我國錄音師雖然採用多 軌混音,但定位、場面都有可觀之處。。 <CV>

XML ≠ machine accessible meaning

<πρισατε>

But to your machine, the tags look like this....

對錄音師而言都構成很大挑戰。我國錄音師雖然採用

Schemas take a step in the right direction

But other people use other schemas

Someone else has one like this....

林克昌 根留台灣 可能增高

5**3**42>>

< 1 \(\subseteq \)

Why XML is Not Enough

- Many different possibilities to encode a domain of discourse
- Leads to difficulties when understanding of foreign documents is required
- ==> Next step: separate content from structure!

Encoding of Knowledge: Example

Endless encoding possibilities in XML:

<Document uri="http://www.w3.org/Home/Lassila" Creator="Ora Lassila"/>

WWW - Many Previously Unknown Communication Partners

New Partners Don't Understand Each Other

Merging Steps Between

Models

Costly and complicated

Postulates: Fundamental Requirements for Knowledge Representation on the Web

- 1. Knowledge on the Web is distributed
- 2. Knowledge on the Web is subjective there is no universal truth (it must be possible to dispute statements)
- 3. Many different user communities (extensibility and simplicity is needed)

==> Resource Description Framework (RDF)

- Resource Definition Framework:
 - from Machine Readable
 - to Machine Understandable

W3C Recommendation

- RDF consist of two parts:
 - RDF Model
 - RDF Syntax

What is RDF?

- Resource Description Framework (RDF) is a foundation for processing metadata in the Web;
- It provides interoperability between applications that exchange machine-understandable information on the Web;
- RDF emphasises facilities to enable automated processing of Web resources;
- It is a mechanism for describing resources that makes no assumptions about a particular application domain.

Why RDF?

- for resource discovery to provide better search engine capabilities;
- for describing the content and content relationships available at a particular Web site;
- for intelligent software agents to facilitate knowledge sharing and exchange;
- for expressing the privacy preferences of a user as well as the privacy policies of a Web site;
- RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications.

RDF Data Model

- Resources
- Properties
- Statements

Resources

All things being described by RDF expressions are called *resources*:

- entire Web page;
- part of a Web page (e.g. a specific XML element within the document source);
- whole collection of pages (e.g. an entire Web site);
- an object that is not directly accessible via the Web (e.g. a printed book, a Web user).

"A resource is a thing you talk about (can reference)"

RDF description is itself a resource

Resources and URIs

- A resource can be anything that has identity
- Uniform Resource Identifiers (URI) provide a simple and extensible means for identifying a resource
- Not all resources are network "retrievable";
 e.g., human beings, corporations, and books in a library can also be considered resources

Properties

A *property* is a specific aspect, characteristic, attribute, or relation used to describe a resource.

Each property has a specific meaning, defines its <u>permitted values</u>, the <u>types</u> of resources it can describe, and its <u>relationship</u> with other properties.

Statements

A specific resource together with a named property plus the value of that property for that resource is an RDF *statement*.

«Resource R has the property P with the value V"

The value of the property can be either symbolic data or other resource

Subject, Predicate and Object

Parts of a Statement are

- Subject of an RDF statement is a resource
- Predicate of an RDF statement is a property of a resource
- Object of an RDF statement is the value of a property of a resource

Example of RDF Statement

Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.

Subject (resource)	http://www.w3.org/Home/Lassila
Predicate (property)	Creator
Object (literal)	"Ora Lassila"

RDF Property with Structural Value Example (1)

The individual whose name is Ora Lassila, email <lassila@w3.org>, is the creator of http://www.w3.org/Home/Lassila.

Property with Structural Value Example (2)

Subject (resource)	http://www.w3.org/Home/Lassila
Predicate (property)	Creator
Object (resource)	SOMETHING
Subject (resource)	SOMETHING
Predicate (property)	Name
Object (literal)	"Ora Lassila"
Subject (resource)	SOMETHING
Predicate (property)	Email
Object (literal)	lassila@w3.org

Property with Structural Value Example (3)

The individual referred to by employee id 85740 is named Ora Lassila and has the email address lassila@w3.org. The resource http://www.w3.org/Home/Lassila was created by this individual.

Property with Structural Value Example (4)

Subject (resource)	http://www.w3.org/Home/Lassila
Predicate (property)	Creator
Object (resource)	http://www.w3.org/staffid/85740
Subject (resource)	http://www.w3.org/staffid/85740
Predicate (property)	Name
Object (literal)	"Ora Lassila"
Subject (resource)	http://www.w3.org/staffid/85740
Predicate (property)	Email
Object (literal)	lassila@w3.org

RDF Serialisation Syntax

- [1] RDF ::= ['<*rdf*:RDF>'] description* ['</*rdf*:RDF>']
- [2] description ::= '<rdf:Description' idAboutAttr? '>' propertyElt* '</rdf:Description> '
- [3] idAboutAttr ::= idAttr | aboutAttr
- [4] aboutAttr ::= 'about="' URI-reference '"'
- [5] idAttr ::= 'ID="' IDsymbol '"'
- [6] propertyElt ::= '<' propName '>' value '</' propName '>' | '<' propName resourceAttr '/>'
- [7] propName ::= Qname
- [8] value ::= description | string
- [9] resourceAttr ::= 'resource="' URI-reference '"'
- [10] Qname ::= [NSprefix ':'] name
- [11] URI-reference ::= string, interpreted per [URI]
- [12] IDsymbol ::= (any legal XML name symbol)
- [13] name ::= (any legal XML name symbol)
- [14] NSprefix ::= (any legal XML namespace prefix)
- [15] string ::= (any XML text, with "<", ">", and "&" escaped)

+ обязательный, не менее 1 раза

* необязательный, любое кол-во раз ? необязательный, только 1 раз или

RDF Example

Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.

's' is a specific namespace prefix, e.g.

xmlns:s="http://description.org/schema/"

</rdf:RDF>

RDF Example

Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.

's' is a specific namespace prefix, e.g.

xmlns:s="http://description.org/schema/"

RDF Validator

Online: W3C RDF Validator

http://www.w3.org/rdf/validator

! Now demands everywhere prefix rdf:

RDF Abbreviated Syntax

- While the serialisation syntax shows the structure of an RDF model most clearly, often it is desirable to use a more compact XML form.
- The RDF abbreviated syntax accomplishes this.

RDF Abbreviated Syntax

```
[2a] description ::= '<rdf:Description' idAboutAttr? propAttr* '/>'
                    | '<rdf:Description' idAboutAttr? propAttr* '>'
                           propertyElt* '</rdf:Description>'
                    | typedNode
                  ::= '<' propName '>' value '</' propName '>'
[6a] propertyElt
                    '<' propName resourceAttr? propAttr* '/>'
                 ::= propName '="' string '"'
[16] propAttr
                     (with embedded quotes escaped)
[17] typedNode
                   ::= '<' typeName idAboutAttr? propAttr* '/>'
                    | '<' typeName idAboutAttr? propAttr* '>'
                        property* '</' typeName '>'
```


Abbreviated Syntax Example

Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila.

```
<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:s="http://description.org/schema/">
    <rdf:Description
        rdf:about="http://www.w3.org/Home/Lassila"
        s:Creator="Ora Lassila" />
        </rdf:RDF>
```

RDF Serialisation vs. Abbreviated Syntax Example (1)

The individual referred to by employee id 85740 is named Ora Lassila and has the email address lassila@w3.org. The resource http://www.w3.org/Home/Lassila was created by this individual.

```
<rdf:RDF xmlns...>
  <rdf:Description rdf:about="http://www.w3.org/Home/Lassila">
   <s:Creator>
    <rdf:Description rdf:about="http://www.w3.org/staffId/85740">
     <v:Name>Ora Lassila</v:Name>
     <v:Email>lassila@w3.org</v:Email>
    </rdf:Description>
   </s:Creator>
  </rdf:Description>
 </rdf:RDF>
```

Serialisation syntax used

Serialisation vs. Abbreviated Syntax Example (2)

```
<rdf:RDF>
  <rdf:Description rdf:about="http://www.w3.org/Home/Lassila">
   <s:Creator rdf:resource="http://www.w3.org/staffId/85740"
     v:Name="Ora Lassila"
     v:Email="lassila@w3.org"/>
  </rdf:Description>
 </rdf:RDF>
                                      Abbreviated syntax used
```


Containers

- Frequently it is necessary to refer to a collection of resources. RDF containers are used to hold such lists of resources or literals. There are three types of a container:
 - bag
 - sequence
 - alternative

Container Syntax

```
[18] container ::= sequence | bag | alternative
[19] sequence ::= '<rdf:Seq' idAttr? '>' member* '</rdf:Seq>'
[20] bag ::= '<rdf:Bag' idAttr? '>' member* '</rdf:Bag>'
[21] alternative ::= '<rdf:Alt' idAttr? '>' member+ '</rdf:Alt>'
[22] member ::= referencedItem | inlineItem
[23] referencedItem ::= '<rdf:li' resourceAttr '/>'
[24] inlineItem ::= '<rdf:li>' value '</rdf:li>'
```


Containers. Bag.

- An unordered list of resources or literals.
- Bags are used to declare that a property has multiple values and that there is no significance to the order in which the values are given.
- Bag might be used to give a list of part numbers where the order of processing the parts does not matter. Duplicate values are permitted.

Bag Example (1)

The students in course 6.001 are Amy, Tim, John, Mary, and Sue

Bag Example (2)

The graph has eight nodes and seven arcs. The first node is the resource /courses/6.001. An arc labelled students connects this node to an unnamed node. An arc labelled rdf:type connects the unnamed node to a node labelled rdf:Bag. Five additional arcs labelled rdf:_1, rdf:_2, rdf:_3, rdf:_4, and rdf:_5 connect the unnamed node to nodes labelled, respectively, /Students/Amy, /Students/Tim, /Students/John, /Students/Mary, and /Students/Sue. All the nodes are represented as ovals.

Bag Example (3)

The students in course 6.001 are Amy, Tim, John, Mary, and Sue

```
<rdf:RDF>
  <rdf:Description rdf:about="http://mycollege.edu/courses/6.001">
    <s:students>
      <rdf:Bag>
        <rdf:li rdf:resource="http://mycollege.edu/students/Amy"/>
        <rdf:li rdf:resource="http://mycollege.edu/students/Tim"/>
        <rdf:li rdf:resource="http://mycollege.edu/students/John"/>
        <rdf:li rdf:resource="http://mycollege.edu/students/Mary"/>
        <rdf:li rdf:resource="http://mycollege.edu/students/Sue"/>
      </rdf:Bag>
    </s:students>
  </rdf:Description>
 </rdf:RDF>
```


Containers. Sequence.

- An ordered list of resources or literals.
- Sequence is used to declare that a property has multiple values and that the order of the values is significant.
- Sequence might be used, for example, to preserve an alphabetical ordering of values.
- Duplicate values are permitted.

Sequence Example

```
<rdf:RDF>
<rdf:Description rdf:about="...">
<s:students>
<rdf:Seq>
<rdf:li rdf:resource="..."/>
<rdf:li rdf:resource="..."/>
<rdf:li rdf:resource="..."/>
</rdf:Seq>
</rdf:Seq>
</rdf:Description>
</rdf:RDF>
```


Containers. Alternative.

- A list of resources or literals that represent alternatives for the (single) value of a property.
- An application using a property whose value is an Alternative collection is aware that it can choose any one of the items in the list as appropriate.

Alternative Example (1)

The source code for X11 may be found either at ftp.x.org or ftp.cs.purdue.edu, or ftp.eu.net

Alternative Example (2)

The source code for X11 may be found either at ftp.x.org or ftp.cs.purdue.edu, or ftp.eu.net

```
<rdf:RDF>
  <rdf:Description rdf:about="http://x.org/packages/X11">
   <s:DistributionSite>
     <rdf:Alt>
      <rdf:li rdf:resource="ftp://ftp.x.org"/>
      <rdf:li rdf:resource="ftp://ftp.cs.purdue.edu"/>
      <rdf:li rdf:resource="ftp://ftp.eu.net"/>
     </rdf:Alt>
   </s:DistributionSite>
  </rdf:Description>
 </rdf:RDF>
```


Consider the case of specifying 3 collected works of an author, sorted once by publication date and sorted again alphabetically by subject.

Sharing Values between Sequences (2)

```
<rdf:RDF xmlns="http://w3.org/TR/1999/PR-rdf-syntax-19990105#">
  <rdf:Seq rdf:ID="JSPapersByDate">
   <rdf:li resource="http://www.dogworld.com/Aug96.doc"/>
   <rdf:li resource="http://www.webnuts.net/Jan97.html"/>
   <rdf:li resource="http://www.carchat.com/Sept97.html"/>
  </rdf:Seq>
  <rdf:Seq rdf:ID="JSPapersBySubj">
   <rdf:li resource="http://www.carchat.com/Sept97.html"/>
   <rdf:li resource="http://www.dogworld.com/Aug96.doc"/>
   <rdf:li resource="http://www.webnuts.net/Jan97.html"/>
  </rdf:Seq>
 </rdf:RDF>
```


Containers vs. Repeated Properties (1)

Sue has written "Anthology of Time", "Zoological Reasoning", "Gravitational Reflections".

Containers vs. Repeated RDF Properties (2)

The committee of Fred, Wilma, and Dino approved the resolution.

Statements about Statements (1)

For example, let us consider the sentence:

"Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila".

RDF would regard this sentence as a fact. If, instead, we write the sentence:

"Alexandra Vitko says that Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila"

 ... we have said nothing about the resource http://www.w3.org/Home/Lassila; instead, we have expressed a fact about a statement Alexandra Vitko has made.

53

Statements about Statements (2)

- To model statements RDF defines the following properties:
 - subject
 - The subject property identifies the resource being described by the modelled statement; that is, the value of the subject property is the resource about which the original statement was made (e.g., http://www.w3.org/Home/Lassila).

predicate

The predicate property identifies the original property in the modelled statement. The value of the predicate property is a resource representing the specific property in the original statement (in our example, creator).

object

The object property identifies the property value in the modelled statement. The value of the object property is the object in the original statement (in our example, "Ora Lassila").

type

The value of the type property describes the type of the new resource. All reified statements are instances of RDF:Statement; that is, they have a type property whose object is RDF:Statement.
54

Example (1)

"Alexandra Vitko says that Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila"

Example (2)

"Alexandra Vitko says that Ora Lassila is the creator of the resource http://www.w3.org/Home/Lassila"

```
<rdf:RDF
  xmlns:rdf="http://w3.org/TR/1999/PR-rdf-syntax-19990105#"
  xmlns:a="http://description.org/schema/">
  <rdf:Description>
   <rdf:subject rdf:resource="http://www.w3.org/Home/Lassila"/>
   <rdf:predicate rdf:resource="http://description.org/schema#Creator" />
   <rdf:object>Ora Lassila</rdf:object>
   <rdf:type rdf:resource="http://w3.org/TR/1999/PR-rdf-syntax-
                                            19990105#Statement" />
   <a:belongsTo>Alexandra Vitko</a:belongsTo>
  </rdf:Description>
 </rdf:RDF>
```


Complex Values (1)

John Smith's weight is 200 pounds

Complex Values (2)

John Smith's weight is 200 pounds

```
<rdf:RDF
  xmlns="http://w3.org/TR/1999/PR-rdf-syntax-19990105#"
  xmlns:rdf="http://w3.org/TR/1999/PR-rdf-syntax-19990105#"
  xmlns:n="http://www.nist.gov/units/">
   <rdf:Description rdf:about="John_Smith">
     <n:weight rdf:parseType="Resource">
      <rdf:value>200</rdf:value>
      <n:units rdf:resource="http://www.nist.gov/units/Pounds"/>
     </n:weight>
   </rdf:Description>
</rdf:RDF>
```


Read More in

World Wide Web Consortium

http://www.w3.org/RDF/