CSCI 150 Discrete Mathematics Homework 3

Saad Mneimneh Computer Science Hunter College of CUNY

Problem 0

- Review sets and the connection between the binomial coefficient and number of subsets of a given size
- Understand one-to-one, onto, and bijections

Problem 1: Prove in two ways

Prove the following:

$$n + \left(\begin{array}{c} n \\ 2 \end{array}\right) = \left(\begin{array}{c} n+1 \\ 2 \end{array}\right)$$

- (a) Algebraically
- (b) By a combinatorial argument (count in two ways)

Problem 2: A truncated sum

In class, we saw that

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^{n}$$

Assume that n > 1 is odd, and consider this truncated sum:

$$\left(\begin{array}{c} n \\ 0 \end{array}\right) + \left(\begin{array}{c} n \\ 1 \end{array}\right) + \left(\begin{array}{c} n \\ 2 \end{array}\right) + \ldots + \left(\begin{array}{c} n \\ \frac{n-1}{2} \end{array}\right)$$

- (a) Write this sum using \sum notation.
- (b) How many terms does this sum have?
- (c) Show that the sum has an even number of terms that are odd. *Hint*: use the fact that $\binom{n}{k} = \binom{n}{n-k}$.

Problem 3

For each of the following functions, indicate which ones are one-to-one, which ones are onto, and which ones are a bijection (one-to-one correspondence).

- (a) $f: \mathbb{N} \to \mathbb{R}$, f(x) = 1/x.
- (b) $g: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}^+$, g(x,y) = x/y, where \mathbb{Q}^+ is the set of all rational numbers greater than zero (the positive rational numbers).
- (c) $h: \mathbb{Z} \to \mathbb{Z}$, $h(x) = x^2$.
- (d) $w : \mathbb{R} \to \mathbb{R}$, w(x) = 3x + 1.

Problem 4: Itsy Bitsy spider

Itsy Bitsy has one sock and one shoe for each of its 8 legs. On each leg, the sock must be put on before the shoe.

For instance, let a_i be the i^{th} sock, and b_i be the i^{th} shoe. An order is good for leg i if a_i appears before b_i . An order is good if it is good for all legs. The following two orders are good (but there are many others):

$$a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8 \ b_1 \ b_2 \ b_3 \ b_4 \ b_5 \ b_6 \ b_7 \ b_8$$

$$a_1 \ b_1 \ a_2 \ b_2 \ a_3 \ b_3 \ a_4 \ b_4 \ a_5 \ b_5 \ a_6 \ b_6 \ a_7 \ b_7 \ a_8 \ b_8$$

An order is bad, if b_i appears before a_i for some i. For instance, below (and there are many others):

$$b_1$$
 a_1 a_2 b_2 a_3 b_3 a_4 b_4 a_5 b_5 a_6 b_6 a_7 b_7 a_8 b_8

How many good orders are there? We will solve this problem in multiple steps:

- (a) Consider the set of orders that are good for leg 1 and the set of orders that are bad for leg 1. Prove that the two sets have the same size. *Hint*: define a one-to-one correspondence.
- (b) Consider the set of orders that are good for leg 1 and divide it into two sets of orders: those that are good for leg 2 and those that are bad for leg 2. Prove that these two sets have the same size.
- (c) Can you now figure out how many good orders Itsy Bitsy has (answer by more than YES or NO)?

Hint: Try your strategy on a human being (two legs) instead of a spider, and see if your answer makes sense. What if we add two gloves? (not graded)

Problem 5 (will not be graded)

Do exercises 1-6 in:

http://www2.math.ou.edu/~amiller/2513/review/CountingProblemsAnswer.pdf