Pattern Classification and Recognition:

Bayes Classifiers

ECE 681

Spring 2016

Stacy Tantum, Ph.D.

Bayesian Decision Theory

Quantifies trade-offs between decisions using

Available data

- Probability
 - o prior

o evidence

Costs of decision outcomes

Bayes' Theorem

Rev. Thomas Bayes presented a solution to the problem of *inverse probability*

- Given data, what can we say about the process that generated it?
- What is the probability of the underlying state from which observed data was generated?

Rev. Thomas Bayes

$$P(\check{S}_{j} \mid x) = \frac{p(x \mid \check{S}_{j})P(\check{S}_{j})}{p(x)} \qquad posterior = \frac{likelihood \times prior}{evidence}$$

Making Decisions

$$P(\check{S}_j \mid x) = \frac{p(x \mid \check{S}_j)P(\check{S}_j)}{p(x)}$$

Making Decisions

Bayes Decision Rule (alternate form)

Decide \check{S}_0 if $p(x | \check{S}_0) P(\check{S}_0) > p(x | \check{S}_1) P(\check{S}_1)$ Decide \check{S}_1 otherwise

$$P(\check{S}_j \mid x) = \frac{p(x \mid \check{S}_j)P(\check{S}_j)}{p(x)} \propto p(x \mid \check{S}_j)P(\check{S}_j)$$

Making Cost-Aware Decisions

Every action (decision) has a cost, which depends on the "truth"

$$c_{ij} = \operatorname{cost}(\Gamma_i \mid \check{S}_i)$$

Risk of a decision = expected cost

$$R(\Gamma_0 \mid x) = c_{00} P(\check{S}_0 \mid x) + c_{01} P(\check{S}_1 \mid x)$$

$$R(\Gamma_1 \mid x) = c_{10} P(\check{S}_0 \mid x) + c_{11} P(\check{S}_1 \mid x)$$

Likelihood Ratio

Discriminant Functions

Generalized function of the data, $g_i(x)$, that supports discriminating class i from other candidate classes

Decide
$$\check{S}_0$$
 if $g_0(x) > g_1(x)$

Decide
$$\check{S}_1$$
 if $g_1(x) > g_0(x)$

For the general case with risks

$$g_i(x) = -R(\Gamma_i \mid x)$$

Two-Class Discriminant Functions

Combine $g_0(x)$ and $g_1(x)$ into a single function

$$g(x) \equiv g_1(x) - g_0(x)$$

Decide
$$\check{S}_1$$
 if $g(x) > 0$

Discriminant Function for Normal Densities

$$p(\mathbf{x} \mid \tilde{S}_i) \sim N(\boldsymbol{\mu}_i, \quad i) = \frac{1}{(2f)^{d/2} \left| \left| \left| \right|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \right|^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) \right]$$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \quad _i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2f - \frac{1}{2} \ln | \quad _i | + \ln P(\check{S}_i)$$

Decision Regions for Gaussian Data

$$\mathbf{\mu}_{B} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$\mathbf{\mu}_B = \begin{bmatrix} 3 \\ 6 \end{bmatrix} \qquad \qquad_B = \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu_R = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\boldsymbol{\mu}_R = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \qquad \qquad _R = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

T07: Bayes Classifiers ECE 681 (Tantum, Spring 2016)

Discrete Data

Data **x** takes on only 1 of m discrete values \mathbf{v}_1 , \mathbf{v}_2 , ... \mathbf{v}_m

Binary Data

Data **x** takes on only 1 of 2 discrete values, i.e., 0 or 1

Relation to KNN

Numerical estimate of pdfs

- Total of *n* samples
- What proportion of the k samples in a volume V belong to class i?

KNN... Hmm...

T07: Bayes Classifiers ECE 681 (Tantum, Spring 2016)

Distance Likelihood Ratio Test (DLRT)

Use KNN density estimation to estimate the likelihood ratio

Considers distance to neighbors

KNN and DLRT Comparison

Decision Statistic: $g_1(x) - g_0(x)$

Bayes (Gaussian pdfs)
$$= \left[-\frac{1}{2} (x - \gamma_1)^T \Sigma^{-1} (x - \gamma_1) - \frac{1}{2} \ln |\Sigma_1| + \ln P(\check{S}_1) \right]$$

(Generalized) Likelihood Ratio Test

 $-\left| -\frac{1}{2} (x - \gamma_0)^T \Sigma^{-1} (x - \gamma_0) - \frac{1}{2} \ln |\Sigma_0| + \ln P(\tilde{S}_0) \right|$

See Matlab functions mean, cov, and diag

Decision Statistic: $g_1(x) - g_0(x)$

Bayes (Gaussian pdfs)

$$= \left[-\frac{1}{2} (x - \gamma_1)^T \Sigma^{-1} (x - \gamma_1) - \frac{1}{2} \ln |\Sigma_1| + \ln P(\tilde{S}_1) \right]$$

$$- \left[-\frac{1}{2} (x - \gamma_0)^T \Sigma^{-1} (x - \gamma_0) - \frac{1}{2} \ln |\Sigma_0| + \ln P(\tilde{S}_0) \right]$$

Training a Bayes classifier:

• What do we need to run it?

Running a Bayes classifier:

• How do we get a decision statistic?

Decision Statistic:
$$\ln \left(\frac{n_0}{n_1} \right) + D \left[\ln \Delta_{k0} - \ln \Delta_{k1} \right]$$

Like KNN, but takes into account the distance to the kth neighbor

DLRT

Training a DLRT:

• What do we need to run it?

Decision Statistic:
$$\ln \left(\frac{n_0}{n_1} \right) + D \left[\ln \Delta_{k0} - \ln \Delta_{k1} \right]$$

See Matlab function log (for In, log10 is for log_{10})

Running a DLRT:

• How do we get a decision statistic?