

## **POWER SPECTRAL DENSITY, CHAIN 2**







## **POWER SPECTRAL DENSITY, CHAIN 3**







REPORT NO: 11U13957-1C DATE: December 20, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

#### 7.8.6. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

#### **RESULTS**

#### **CHAIN 1 SPURIOUS EMISSIONS**













## **CHAIN 2 SPURIOUS EMISSIONS**













## **CHAIN 3 SPURIOUS EMISSIONS**













REPORT NO: 11U13957-1C DATE: December 20, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

# 7.9. 802.11n HT20 MCS0 3TX MODE IN THE 5.8 GHz BAND

### **7.9.1. 6 dB BANDWIDTH**

#### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

## **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Minimum Limit |
|---------|-----------|---------|---------|---------|---------------|
|         |           | 6 dB BW | 6 dB BW | 6 dB BW |               |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   | (MHz)         |
| Low     | 5745      | 17.83   | 17.83   | 17.83   | 0.5           |
| Middle  | 5785      | 17.75   | 17.83   | 17.83   | 0.5           |
| High    | 5825      | 17.83   | 17.83   | 17.83   | 0.5           |

## 6 dB BANDWIDTH, CHAIN 1







## 6 dB BANDWIDTH, CHAIN 2







#### 6 dB BANDWIDTH, CHAIN 3







REPORT NO: 11U13957-1C DATE: December 20, 2011 FCC ID: ZZ6-AR5BXB112 IC: 9909A-AR5BXB112

#### 7.9.2. 99% BANDWIDTH

# **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

| Channel | Frequency       | Chain 1       | Chain 2       | Chain 3       |  |
|---------|-----------------|---------------|---------------|---------------|--|
|         |                 | 99% Bandwidth | 99% Bandwidth | 99% Bandwidth |  |
|         | (MHz)           | (MHz)         | (MHz)         | (MHz)         |  |
| Low     | 5745            | 17.7734       | 17.7485       | 17.696        |  |
| Middle  | 5785            | 17.7260       | 17.8287       | 17.6544       |  |
| High    | gh 5825 17.6939 |               | 17.7422       | 17.6115       |  |

#### 99% BANDWIDTH, CHAIN 1





DATE: December 20, 2011



#### 99% BANDWIDTH, CHAIN 2





DATE: December 20, 2011



## 99% BANDWIDTH, CHAIN 3





DATE: December 20, 2011



#### 7.9.3. OUTPUT POWER

# **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

| Antenna | 10 Log        |      | Effective   |      |
|---------|---------------|------|-------------|------|
| Gain    | (# Tx Chains) |      | Legacy Gain |      |
| (dBi)   | (dB)          |      | (dBi)       |      |
| 4.5     |               | 4.77 |             | 9.27 |

The maximum effective legacy gain is 9.27 dBi for other than fixed, point-to-point operations, therefore the limit is 26.73 dBm.

## **TEST PROCEDURE**

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

Peak power is measured using a wide bandwidth Peak Power Meter.

#### **RESULTS**

| Channel | Frequency | Chain 1  | Chain 2  | Chain 3  | Attenuator + | Total | Limit | Margin |
|---------|-----------|----------|----------|----------|--------------|-------|-------|--------|
|         |           | PK Power | PK Power | PK Power | Cable Loss   | Power |       |        |
|         | (MHz)     | (dBm)    | (dBm)    | (dBm)    | (dB)         | (dBm) | (dBm) | (dB)   |
| Low     | 5745      | 8.73     | 6.88     | 6.16     | 11.50        | 23.67 | 26.73 | -3.06  |
| Mid     | 5785      | 8.00     | 6.28     | 6.41     | 11.50        | 23.24 | 26.73 | -3.49  |
| High    | 5825      | 7.91     | 5.92     | 6.39     | 11.50        | 23.10 | 26.73 | -3.63  |

DATE: December 20, 2011 IC: 9909A-AR5BXB112

#### **CHAIN 1 OUTPUT POWER**







## **CHAIN 2 OUTPUT POWER**







# **CHAIN 3 OUTPUT POWER**





DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000



# 7.9.4. AVERAGE POWER

# **LIMITS**

None; for reporting purposes only.

### **TEST PROCEDURE**

The transmitter output is connected to a power meter.

## **RESULTS**

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Chain 1 Power | Chain 2 Power | Chain 3 Power | Total Power |  |
|---------|-----------|---------------|---------------|---------------|-------------|--|
|         | (MHz)     | (dBm)         | (dBm)         | (dBm)         | (dBm)       |  |
| Low     | 5745      | 13.80         | 13.80         | 13.80         | 18.57       |  |
| Middle  | 5785      | 13.70         | 13.70         | 13.70         | 18.47       |  |
| High    | 5825      | 13.20         | 13.20         | 13.20         | 17.97       |  |

#### 7.9.5. POWER SPECTRAL DENSITY

## **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

#### **RESULTS:**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Total | Limit | Margin |
|---------|-----------|---------|---------|---------|-------|-------|--------|
|         |           | PSD     | PSD     | PSD     | PSD   |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm)   | (dBm) | (dBm) | (dB)   |
| Low     | 5745      | -10.89  | -13.85  | -15.31  | -8.18 | 8     | -16.18 |
| Middle  | 5785      | -12.59  | -15.44  | -15.77  | -9.58 | 8     | -17.58 |
| High    | 5825      | -12.38  | -14.5   | -15.59  | -9.18 | 8     | -17.18 |

### **POWER SPECTRAL DENSITY, CHAIN 1**







### **POWER SPECTRAL DENSITY, CHAIN 2**







### **POWER SPECTRAL DENSITY, CHAIN 3**







### 7.9.6. CONDUCTED SPURIOUS EMISSIONS

## **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

### **RESULTS**

#### **CHAIN 1 SPURIOUS EMISSIONS**













### **CHAIN 2 SPURIOUS EMISSIONS**













### **CHAIN 3 SPURIOUS EMISSIONS**













## 7.10. 802.11n HT20 MCS8 3TX MODE IN THE 5.8 GHz BAND

### 7.10.1. 6 dB BANDWIDTH

### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

## **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

### **RESULTS**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Minimum Limit |
|---------|-----------|---------|---------|---------|---------------|
|         |           | 6 dB BW | 6 dB BW | 6 dB BW |               |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   | (MHz)         |
| Low     | 5745      | 17.83   | 17.83   | 17.75   | 0.5           |
| Middle  | 5785      | 17.83   | 17.83   | 17.75   | 0.5           |
| High    | 5825      | 17.75   | 17.83   | 17.67   | 0.5           |

### 6 dB BANDWIDTH, CHAIN 1







### 6 dB BANDWIDTH, CHAIN 2





TEL: (510) 771-1000



#### 6 dB BANDWIDTH, CHAIN 3







#### 7.10.2. 99% BANDWIDTH

# **LIMITS**

None; for reporting purposes only.

### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

### **RESULTS**

| Channel | Frequency | Chain 1       | Chain 2       | Chain 3       |  |
|---------|-----------|---------------|---------------|---------------|--|
|         |           | 99% Bandwidth | 99% Bandwidth | 99% Bandwidth |  |
|         | (MHz)     | (MHz)         | (MHz)         | (MHz)         |  |
| Low     | 5745      | 17.6492       | 17.6674       | 17.7183       |  |
| Middle  | 5785      | 17.9693       | 17.6112       | 17.6928       |  |
| High    | 5825      | 17.7388       | 17.3365       | 17.6561       |  |

#### 99% BANDWIDTH, CHAIN 1





DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000



### 99% BANDWIDTH, CHAIN 2





DATE: December 20, 2011

IC: 9909A-AR5BXB112



### 99% BANDWIDTH, CHAIN 3





DATE: December 20, 2011

IC: 9909A-AR5BXB112



### 7.10.3. OUTPUT POWER

## **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

# **TEST PROCEDURE**

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

### **RESULTS**

| Channel | Frequency | Chain 1  | Chain 2  | Chain 3  | Attenuator + | Total | Limit | Margin |
|---------|-----------|----------|----------|----------|--------------|-------|-------|--------|
|         |           | PK Power | PK Power | PK Power | Cable Loss   | Power |       |        |
|         | (MHz)     | (dBm)    | (dBm)    | (dBm)    | (dB)         | (dBm) | (dBm) | (dB)   |
| Low     | 5745      | 9.99     | 7.98     | 7.19     | 11.50        | 24.82 | 30.00 | -5.18  |
| Mid     | 5785      | 9.20     | 7.30     | 7.16     | 11.50        | 24.26 | 30.00 | -5.74  |
| High    | 5825      | 9.07     | 7.48     | 6.92     | 11.50        | 24.19 | 30.00 | -5.81  |

#### **CHAIN 1 OUTPUT POWER**







### **CHAIN 2 OUTPUT POWER**





DATE: December 20, 2011

IC: 9909A-AR5BXB112



# **CHAIN 3 OUTPUT POWER**







#### 7.10.4. AVERAGE POWER

# **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

## **RESULTS**

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Chain 1 Power | Chain 2 Power | Chain 3 Power | Total Power |  |
|---------|-----------|---------------|---------------|---------------|-------------|--|
|         | (MHz)     | (dBm)         | (dBm)         | (dBm)         | (dBm)       |  |
| Low     | 5745      | 13.70         | 13.70         | 13.70         | 18.47       |  |
| Middle  | 5785      | 13.70         | 13.70         | 13.70         | 18.47       |  |
| High    | 5825      | 13.30         | 13.30         | 13.30         | 18.07       |  |

## 7.10.5. POWER SPECTRAL DENSITY

## **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

#### **RESULTS:**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Total | Limit | Margin |
|---------|-----------|---------|---------|---------|-------|-------|--------|
|         |           | PSD     | PSD     | PSD     | PSD   |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm)   | (dBm) | (dBm) | (dB)   |
| Low     | 5745      | -11.25  | -13.92  | -14.85  | -8.29 | 8     | -16.29 |
| Middle  | 5785      | -12.06  | -14.51  | -15.39  | -8.98 | 8     | -16.98 |
| High    | 5825      | -12.45  | -15.81  | -14.73  | -9.33 | 8     | -17.33 |

## **POWER SPECTRAL DENSITY, CHAIN 1**







## **POWER SPECTRAL DENSITY, CHAIN 2**







## **POWER SPECTRAL DENSITY, CHAIN 3**







#### 7.10.6. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

## **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

### **RESULTS**

#### **CHAIN 1 SPURIOUS EMISSIONS**













#### **CHAIN 2 SPURIOUS EMISSIONS**













#### **CHAIN 3 SPURIOUS EMISSIONS**













# 7.11. 802.11n HT20 MCS16 3TX MODE IN THE 5.8 GHz BAND

### 7.11.1. 6 dB BANDWIDTH

#### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

## **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Minimum Limit |  |
|---------|-----------|---------|---------|---------|---------------|--|
|         |           | 6 dB BW | 6 dB BW | 6 dB BW |               |  |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   | (MHz)         |  |
| Low     | 5745      | -17.83  | -17.75  | -17.83  | 0.5           |  |
| Middle  | 5785      | -17.83  | -17.75  | -17.83  | 0.5           |  |
| High    | 5825      | -17.83  | -17.83  | -17.83  | 0.5           |  |

## 6 dB BANDWIDTH, CHAIN 1







#### 6 dB BANDWIDTH, CHAIN 2







### 6 dB BANDWIDTH, CHAIN 3







### 7.11.2. 99% BANDWIDTH

# **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

| Channel | Frequency | Chain 1       | Chain 2       | Chain 3       |  |
|---------|-----------|---------------|---------------|---------------|--|
|         |           | 99% Bandwidth | 99% Bandwidth | 99% Bandwidth |  |
|         | (MHz)     | (MHz)         | (MHz)         | (MHz)         |  |
| Low     | 5745      | 17.7271       | 17.7332       | 17.7786       |  |
| Middle  | 5785      | 17.7229       | 17.6879       | 17.7411       |  |
| High    | 5825      | 17.7826       | 17.6759       | 17.6421       |  |

## 99% BANDWIDTH, CHAIN 1





DATE: December 20, 2011

IC: 9909A-AR5BXB112



## 99% BANDWIDTH, CHAIN 2





DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000



## 99% BANDWIDTH, CHAIN 3





DATE: December 20, 2011

IC: 9909A-AR5BXB112



## 7.11.3. OUTPUT POWER

# **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

## **TEST PROCEDURE**

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

## **RESULTS**

| Channel | Frequency | Chain 1  | Chain 2  | Chain 3  | Attenuator + | Total | Limit | Margin |
|---------|-----------|----------|----------|----------|--------------|-------|-------|--------|
|         |           | PK Power | PK Power | PK Power | Cable Loss   | Power |       |        |
|         | (MHz)     | (dBm)    | (dBm)    | (dBm)    | (dB)         | (dBm) | (dBm) | (dB)   |
| Low     | 5745      | 8.74     | 7.67     | 6.68     | 11.50        | 24.05 | 30.00 | -5.95  |
| Mid     | 5785      | 7.91     | 7.16     | 7.01     | 11.50        | 23.65 | 30.00 | -6.35  |
| High    | 5825      | 8.96     | 6.72     | 6.51     | 11.50        | 23.82 | 30.00 | -6.18  |

### **CHAIN 1 OUTPUT POWER**





DATE: December 20, 2011

IC: 9909A-AR5BXB112



### **CHAIN 2 OUTPUT POWER**





DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000



## **CHAIN 3 OUTPUT POWER**





DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000



#### 7.11.4. AVERAGE POWER

# **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to a power meter.

### **RESULTS**

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Chain 1 Power | Chain 2 Power | Chain 3 Power | Total Power |  |
|---------|-----------|---------------|---------------|---------------|-------------|--|
|         | (MHz)     | (dBm)         | (dBm)         | (dBm)         | (dBm)       |  |
| Low     | 5745      | 13.70         | 13.70         | 13.70         | 18.47       |  |
| Middle  | 5785      | 13.60         | 13.60         | 13.60         | 18.37       |  |
| High    | 5825      | 13.50         | 13.50         | 13.50         | 18.27       |  |

### 7.11.5. POWER SPECTRAL DENSITY

### **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

#### **RESULTS:**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Total | Limit | Margin |
|---------|-----------|---------|---------|---------|-------|-------|--------|
|         |           | PSD     | PSD     | PSD     | PSD   |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm)   | (dBm) | (dBm) | (dB)   |
| Low     | 5745      | -12.54  | -13.86  | -15.24  | -8.97 | 8     | -16.97 |
| Middle  | 5785      | -12.51  | -15.71  | -14.91  | -9.38 | 8     | -17.38 |
| High    | 5825      | -11.27  | -14.36  | -15.83  | -8.62 | 8     | -16.62 |

### **POWER SPECTRAL DENSITY, CHAIN 1**





TEL: (510) 771-1000



### **POWER SPECTRAL DENSITY, CHAIN 2**







### **POWER SPECTRAL DENSITY, CHAIN 3**







#### 7.11.6. CONDUCTED SPURIOUS EMISSIONS

### **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

#### **RESULTS**

#### **CHAIN 1 SPURIOUS EMISSIONS**













#### **CHAIN 2 SPURIOUS EMISSIONS**













#### **CHAIN 3 SPURIOUS EMISSIONS**













### 7.12. 802.11n HT40 MCS0 3TX MODE IN THE 5.8 GHz BAND

### 7.12.1. 6 dB BANDWIDTH

#### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Minimum Limit |
|---------|-----------|---------|---------|---------|---------------|
|         |           | 6 dB BW | 6 dB BW | 6 dB BW |               |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   | (MHz)         |
| Low     | 5755      | 36.5    | 36.5    | 36.5    | 0.5           |
| High    | 5795      | 36.5    | 36.5    | 36.5    | 0.5           |

#### 6 dB BANDWIDTH, CHAIN 1





TEL: (510) 771-1000

#### 6 dB BANDWIDTH, CHAIN 2





#### 6 dB BANDWIDTH, CHAIN 3





#### 7.12.2. 99% BANDWIDTH

## **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

| Channel | Frequency | Chain 1       | Chain 2       | Chain 3       |  |
|---------|-----------|---------------|---------------|---------------|--|
|         |           | 99% Bandwidth | 99% Bandwidth | 99% Bandwidth |  |
|         | (MHz)     | (MHz)         | (MHz)         | (MHz)         |  |
| Low     | 5755      | 36.3088       | 36.1014       | 36.4250       |  |
| High    | 5795      | 35.6039       | 36.3606       | 36.3649       |  |

#### 99% BANDWIDTH, CHAIN 1





#### 99% BANDWIDTH, CHAIN 2





### 99% BANDWIDTH, CHAIN 3





### 7.12.3. OUTPUT POWER

# **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

| Antenna | 10 Log        | Effective   |
|---------|---------------|-------------|
| Gain    | (# Tx Chains) | Legacy Gain |
| (dBi)   | (dB)          | (dBi)       |
| 4.5     | 4.7           | 7 9.27      |

The maximum effective legacy gain is 9.27 dBi for other than fixed, point-to-point operations, therefore the limit is 26.73 dBm.

### **TEST PROCEDURE**

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

#### **RESULTS**

| Channel | Frequency | Chain 1  | Chain 2  | Chain 3  | Attenuator + | Total | Limit | Margin |
|---------|-----------|----------|----------|----------|--------------|-------|-------|--------|
|         |           | PK Power | PK Power | PK Power | Cable Loss   | Power |       |        |
|         | (MHz)     | (dBm)    | (dBm)    | (dBm)    | (dB)         | (dBm) | (dBm) | (dB)   |
| Low     | 5755      | 6.92     | 5.14     | 4.69     | 11.50        | 21.97 | 26.73 | -4.76  |
| High    | 5795      | 6.81     | 5.04     | 4.20     | 11.50        | 21.76 | 26.73 | -4.97  |

### **CHAIN 1 OUTPUT POWER**





### **CHAIN 2 OUTPUT POWER**





### **CHAIN 3 OUTPUT POWER**





#### 7.12.4. AVERAGE POWER

# **LIMITS**

None; for reporting purposes only.

#### **TEST PROCEDURE**

The transmitter output is connected to a power meter.

## **RESULTS**

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Chain 1 Power | Chain 2 Power | Chain 3 Power | Total Power |
|---------|-----------|---------------|---------------|---------------|-------------|
|         | (MHz)     | (dBm)         | (dBm)         | (dBm)         | (dBm)       |
| Low     | 5755      | 12.10         | 12.10         | 12.10         | 16.87       |
| High    | 5795      | 12.60         | 12.60         | 12.60         | 17.37       |

## 7.12.5. POWER SPECTRAL DENSITY

#### **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

## **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

#### **RESULTS:**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Total  | Limit | Margin |
|---------|-----------|---------|---------|---------|--------|-------|--------|
|         |           | PSD     | PSD     | PSD     | PSD    |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 5755      | -16.53  | -18.28  | -19.74  | -13.21 | 8     | -21.21 |
| High    | 5795      | -17.12  | -18.3   | -19.72  | -13.48 | 8     | -21.48 |













#### 7.12.6. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

## **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

### **RESULTS**

#### **CHAIN 1 SPURIOUS EMISSIONS**









## **CHAIN 2 SPURIOUS EMISSIONS**









# **CHAIN 3 SPURIOUS EMISSIONS**





TEL: (510) 771-1000





## 7.13. 802.11n HT40 MCS8 3TX MODE IN THE 5.8 GHz BAND

## 7.13.1. 6 dB BANDWIDTH

#### **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

## **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Minimum Limit |
|---------|-----------|---------|---------|---------|---------------|
|         |           | 6 dB BW | 6 dB BW | 6 dB BW |               |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   | (MHz)         |
| Low     | 5755      | 36.33   | 36.50   | 36.50   | 0.5           |
| High    | 5795      | 36.50   | 36.50   | 36.50   | 0.5           |

### 6 dB BANDWIDTH, CHAIN 1





### 6 dB BANDWIDTH, CHAIN 2





TEL: (510) 771-1000

### 6 dB BANDWIDTH, CHAIN 3





#### 7.13.2. 99% BANDWIDTH

# **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

| Channel | Frequency | Chain 1       | Chain 2       | Chain 3       |
|---------|-----------|---------------|---------------|---------------|
|         |           | 99% Bandwidth | 99% Bandwidth | 99% Bandwidth |
|         | (MHz)     | (MHz)         | (MHz)         | (MHz)         |
| Low     | 5755      | 36.3446       | 35.8310       | 36.1862       |
| High    | 5795      | 36.2095       | 36.1835       | 36.4309       |

### 99% BANDWIDTH, CHAIN 1





### 99% BANDWIDTH, CHAIN 2





### 99% BANDWIDTH, CHAIN 3





FAX: (510) 661-0888

#### 7.13.3. OUTPUT POWER

# **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

## **TEST PROCEDURE**

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

#### **RESULTS**

| Channel | Frequency | Chain 1  | Chain 2  | Chain 3  | Attenuator + | Total | Limit | Margin |
|---------|-----------|----------|----------|----------|--------------|-------|-------|--------|
|         |           | PK Power | PK Power | PK Power | Cable Loss   | Power |       |        |
|         | (MHz)     | (dBm)    | (dBm)    | (dBm)    | (dB)         | (dBm) | (dBm) | (dB)   |
| Low     | 5755      | 7.79     | 5.60     | 4.83     | 11.50        | 22.53 | 30.00 | -7.47  |
| High    | 5795      | 7.80     | 5.44     | 5.12     | 11.50        | 22.56 | 30.00 | -7.44  |

## **CHAIN 1 OUTPUT POWER**





## **CHAIN 2 OUTPUT POWER**





DATE: December 20, 2011

IC: 9909A-AR5BXB112

## **CHAIN 3 OUTPUT POWER**





#### 7.13.4. AVERAGE POWER

# **LIMITS**

None; for reporting purposes only.

#### **TEST PROCEDURE**

The transmitter output is connected to a power meter.

## **RESULTS**

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Chain 1 Power | Chain 2 Power | Chain 3 Power | Total Power |
|---------|-----------|---------------|---------------|---------------|-------------|
|         | (MHz)     | (dBm)         | (dBm)         | (dBm)         | (dBm)       |
| Low     | 5755      | 12.00         | 12.00         | 12.00         | 16.77       |
| High    | 5795      | 12.60         | 12.60         | 12.60         | 17.37       |

## 7.13.5. POWER SPECTRAL DENSITY

## **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

## **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

#### **RESULTS:**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Total  | Limit | Margin |
|---------|-----------|---------|---------|---------|--------|-------|--------|
|         |           | PSD     | PSD     | PSD     | PSD    |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 5755      | -16.25  | -19.47  | -19.74  | -13.41 | 8     | -21.41 |
| High    | 5795      | -18.82  | -18.94  | -20.08  | -14.47 | 8     | -22.47 |













#### 7.13.6. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

# **RESULTS**

#### **CHAIN 1 SPURIOUS EMISSIONS**









## **CHAIN 2 SPURIOUS EMISSIONS**









# **CHAIN 3 SPURIOUS EMISSIONS**









# 7.14. 802.11n HT40 MCS16 3TX MODE IN THE 5.8 GHz BAND

# 7.14.1. 6 dB BANDWIDTH

# **LIMITS**

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

# **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

#### **RESULTS**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Minimum Limit |
|---------|-----------|---------|---------|---------|---------------|
|         |           | 6 dB BW | 6 dB BW | 6 dB BW |               |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   | (MHz)         |
| Low     | 5755      | 36.5    | 36.5    | 36.5    | 0.5           |
| High    | 5795      | 36.5    | 36.5    | 36.5    | 0.5           |

#### 6 dB BANDWIDTH, CHAIN 1





TEL: (510) 771-1000

#### 6 dB BANDWIDTH, CHAIN 2





#### 6 dB BANDWIDTH, CHAIN 3





#### 7.14.2. 99% BANDWIDTH

# **LIMITS**

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

| Channel | Frequency | Chain 1       | Chain 2       | Chain 3       |
|---------|-----------|---------------|---------------|---------------|
|         |           | 99% Bandwidth | 99% Bandwidth | 99% Bandwidth |
|         | (MHz)     | (MHz)         | (MHz)         | (MHz)         |
| Low     | 5755      | 36.1848       | 36.2660       | 36.4114       |
| High    | 5795      | 36.4726       | 36.1347       | 36.2548       |

#### 99% BANDWIDTH, CHAIN 1





#### 99% BANDWIDTH, CHAIN 2





# 99% BANDWIDTH, CHAIN 3





#### 7.14.3. OUTPUT POWER

# **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

#### **TEST PROCEDURE**

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

#### **RESULTS**

| Channel | Frequency | Chain 1 Chain 2   |       | Chain 3               | Attenuator + | Total | Limit | Margin |
|---------|-----------|-------------------|-------|-----------------------|--------------|-------|-------|--------|
|         |           | PK Power PK Power |       | PK Power   Cable Loss |              | Power |       |        |
|         | (MHz)     | (dBm)             | (dBm) | (dBm)                 | (dB)         | (dBm) | (dBm) | (dB)   |
| Low     | 5755      | 7.12              | 6.14  | 5.23                  | 11.50        | 22.50 | 30.00 | -7.50  |
| High    | 5795      | 7.03              | 5.47  | 5.11                  | 11.50        | 22.22 | 30.00 | -7.78  |

# **CHAIN 1 OUTPUT POWER**





# **CHAIN 2 OUTPUT POWER**





# **CHAIN 3 OUTPUT POWER**





TEL: (510) 771-1000

#### 7.14.4. AVERAGE POWER

# **LIMITS**

None; for reporting purposes only.

#### **TEST PROCEDURE**

The transmitter output is connected to a power meter.

# **RESULTS**

The cable assembly insertion loss of 11.5 dB (including 10 dB pad and 1.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | Chain 1 Power | Chain 2 Power | Chain 3 Power | Total Power |
|---------|-----------|---------------|---------------|---------------|-------------|
|         | (MHz)     | (dBm)         | (dBm)         | (dBm)         | (dBm)       |
| Low     | 5755      | 12.00         | 12.00         | 12.00         | 16.77       |
| High    | 5795      | 12.50         | 12.50         | 12.50         | 17.27       |

# 7.14.5. POWER SPECTRAL DENSITY

# **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### **TEST PROCEDURE**

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

#### **RESULTS:**

| Channel | Frequency | Chain 1 | Chain 2 | Chain 3 | Total  | Limit | Margin |
|---------|-----------|---------|---------|---------|--------|-------|--------|
|         |           | PSD     | PSD     | PSD     | PSD    |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 5755      | -16.30  | -18.17  | -19.41  | -13.00 | 8     | -21.00 |
| High    | 5795      | -17.46  | -17.80  | -19.81  | -13.47 | 8     | -21.47 |

# **POWER SPECTRAL DENSITY, CHAIN 1**





# **POWER SPECTRAL DENSITY, CHAIN 2**





TEL: (510) 771-1000

# **POWER SPECTRAL DENSITY, CHAIN 3**





#### 7.14.6. CONDUCTED SPURIOUS EMISSIONS

# **LIMITS**

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

#### **RESULTS**

#### **CHAIN 1 SPURIOUS EMISSIONS**









# **CHAIN 2 SPURIOUS EMISSIONS**









# **CHAIN 3 SPURIOUS EMISSIONS**





TEL: (510) 771-1000





REPORT NO: 11U13957-1C FCC ID: ZZ6-AR5BXB112

# 8. RADIATED TEST RESULTS

#### 8.1. LIMITS AND PROCEDURE

## **LIMITS**

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

| Frequency Range (MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit (dBuV/m) at 3 m |  |  |  |
|-----------------------|---------------------------------------|--------------------------------------|--|--|--|
| 30 - 88               | 100                                   | 40                                   |  |  |  |
| 88 - 216              | 150                                   | 43.5                                 |  |  |  |
| 216 - 960             | 200                                   | 46                                   |  |  |  |
| Above 960             | 500                                   | 54                                   |  |  |  |

#### **TEST PROCEDURE**

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: December 20, 2011

IC: 9909A-AR5BXB112

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

#### TRANSMITTER ABOVE 1 GHz 8.2.

# <u> 2.4GHz BAND - MONOPOLE ANTENNA; 4dBi</u>

# 8.2.1. 802.11g 3TX MODE IN THE 2.4 GHz BAND

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





# RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)





TEL: (510) 771-1000

# RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





# **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**





TEL: (510) 771-1000

# **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/20/11 Date: Project #: 11U13957 Varian Card Access Company:

Test Target:

Mode Oper: Tx On, 2.4 GHz, g Mode 9 Mbps

> Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit 
>  Read
>  Analyzer Reading
>  Avg
>  Average Field Strength @ 3 m
>  Margin vs. Average Limit
>
>
>  AF
>  Antenna Factor
>  Peak
>  Calculated Peak Field Strength
>  Margin vs. Peak Limit
>
>
>  CL
>  Cable Loss
>  HPF
>  High Pass Filter

Average Field Strength Limit

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit             | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|-------------------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | $dBuV/\mathbf{m}$ | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 412 MH  | z    |      |     |       |        |      |        |                   |        |           |        |          |             |       |
| 4.824     | 3.0     | 36.6 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.2   | 74.0              | -30.8  | V         | P      | 158.0    | 99.0        |       |
| 4.824     | 3.0     | 24.3 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.9   | 54.0              | -23.1  | V         | A      | 158.0    | 99.0        |       |
| 4.824     | 3.0     | 36.6 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.2   | 74.0              | -30.8  | H         | P      | 162.0    | 114.0       |       |
| 4.824     | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8   | 54.0              | -23.2  | H         | A      | 162.0    | 114.0       |       |
| Mid Ch. 2 | 437 MH  | Z    |      |     |       |        |      |        |                   |        |           |        |          |             |       |
| 4.874     | 3.0     | 36.2 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.9   | 74.0              | -31.1  | V         | P      | 98.0     | 163.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0              | -23.5  | V         | A      | 98.0     | 163.0       |       |
| 4.874     | 3.0     | 35.7 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.4   | 74.0              | -31.6  | H         | P      | 177.0    | 178.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0              | -23.5  | H         | A      | 177.0    | 178.0       |       |
| High Ch.  | 2462 MI | Ιz   |      |     |       |        |      |        |                   |        |           |        |          |             |       |
| 4.924     | 3.0     | 36.9 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.7   | 74.0              | -30.3  | V         | P      | 125.0    | 230.0       |       |
| 4.924     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0              | -23.1  | V         | A      | 125.0    | 230.0       |       |
| 4.924     | 3.0     | 36.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 42.9   | 74.0              | -31.1  | H         | P      | 155.0    | 335.0       |       |
| 4.924     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0              | -23.2  | H         | A      | 155.0    | 335.0       |       |

Note: No other emissions were detected above the system noise floor.

#### 8.2.2. 802.11n HT20 MCS0 3TX MODE IN THE 2.4 GHz BAND

# RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





# RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)





# RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





# **RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)**





# **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/20/11 11U13957 Project #: Company: Varian Card Access

Test Target: Mode Oper:

Tx On, 2.4 GHz, HT20 Mode MCS0

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
CL Cable Loss HPF High Pass Filter

CL Cable Loss HPF High Pass Filter

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dΒ  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 2412 MH | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.824     | 3.0     | 36.9 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.5   | 74.0   | -30.5  | V         | P      | 104.0    | 64.0        |       |
| 4.824     | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | V         | A      | 104.0    | 64.0        |       |
| 4.824     | 3.0     | 36.3 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 42.9   | 74.0   | -31.1  | H         | P      | 121.0    | 62.0        |       |
| 4.824     | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | H         | A      | 121.0    | 62.0        |       |
| Mid Ch. 2 | 2437 MH | Z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 36.3 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | V         | P      | 119.0    | 144.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | V         | A      | 119.0    | 144.0       |       |
| 4.874     | 3.0     | 36.5 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.2   | 74.0   | -30.8  | H         | P      | 190.0    | 312.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 190.0    | 312.0       |       |
| High Ch.  | 2462 MI | Ηz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.924     | 3.0     | 35.7 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 42.5   | 74.0   | -31.5  | V         | P      | 103.0    | 130.0       |       |
| 4.924     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | V         | A      | 103.0    | 130.0       |       |
| 4.924     | 3.0     | 35.8 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 42.6   | 74.0   | -31.4  | H         | P      | 115.0    | 190.0       |       |
| 4.924     | 3.0     | 23.9 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.7   | 54.0   | -23.3  | H         | A      | 115.0    | 190.0       |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

#### 8.2.3. 802.11n HT20 MCS8 3TX MODE IN THE 2.4 GHz BAND

# RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)









TEL: (510) 771-1000

#### HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Date: 09/20/11 11U13957 Project #: Varian Card Access Company:

Cable Loss

Test Target: Mode Oper:

CL

Tx On, 2.4 GHz, HT20 Mode MCS8

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit Antenna Factor AF Peak Calculated Peak Field Strength Margin vs. Peak Limit

HPF High Pass Filter

0.0

0.0

0.0 43.1

0.0 30.8

 
 Read
 AF
 CL
 Amp
 D Corr
 Fltr
 Corr
 Limit
 Margin
 Ant. Pol.

 dBuV
 dB/m
 dB
 dB
 dB
 dBuV/m
 dBuV/m
 dB
 V/H
 Det. Dist Read Ant.High Table Angle Notes GHz (m) P/A/OP Low Ch. 2412 MHz 6.8 -34.1 0.0 43.8 128.0 4.824 3.0 24.3 33.9 6.8 -34.1 0.0 0.0 30.9 54.0 128.0 41.0 3.0 37.0 33.9 6.8 3.0 24.2 33.9 6.8 4.824 -34.1 0.0 0.0 43.6 Н 193.0 224.0 4.824 -34.1 193.0 224.0 0.0 0.0 A Mid Ch. 2437 MHz 3.0 36.7 33.9 3.0 23.9 33.9 4.874 6.8 -34.0 0.0 0.0 43.4 74.0 -30.6 P 169.0 237.0 4.874 6.8 -34.0 0.0 0.0 30.6 54.0 74.0 -23.4 169.0 237.0 33.9 4.874 3.0 36.2 6.8 -34.0 0.0 0.0 42.9 -31.1 H 155.0 362.0 4.874 3.0 23.9 33.9 6.8 -34.0 0.0 0.0 30.6 54.0 -23.4 Н A 155.0 362.0 High Ch. 2462 MHz 3.0 36.5 34.0 6.8 -34.0 156.0 66.0 4.924 0.0 
 3.0
 24.0
 34.0
 6.8
 -34.0

 3.0
 36.3
 34.0
 6.8
 -34.0

 3.0
 24.0
 34.0
 6.8
 -34.0
 4.924 -23.2 -30.9 -23.2 54.0 74.0 156.0 66.0 0.0 0.0 30.8

54.0

н

140.0

140.0

252.0

252.0

Rev. 4.1.2.7

4.924

4.924

Note: No other emissions were detected above the system noise floor.

#### 8.2.4. 802.11n HT20 MCS16 3TX MODE IN THE 2.4 GHz BAND

## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)









REPORT NO: 11U13957-1C FCC ID: ZZ6-AR5BXB112

#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang
Date: 09/20/11
Project #: 11U13957
Company: Varian Card Access

Test Target: Mode Oper:

Tx On, 2.4 GHz, HT20 Mode MCS16

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter
 Margin vs. Peak Limit

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 2412 MH | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.824     | 3.0     | 36.6 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.2   | 74.0   | -30.8  | V         | P      | 136.0    | 6.0         |       |
| 4.824     | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | V         | A      | 136.0    | 6.0         |       |
| 4.824     | 3.0     | 36.6 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.2   | 74.0   | -30.8  | H         | P      | 98.0     | 309.0       |       |
| 4.824     | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | H         | A      | 98.0     | 309.0       |       |
| Mid Ch. 2 | 2437 MH | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 36.0 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.7   | 74.0   | -31.3  | V         | P      | 98.0     | 283.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | V         | A      | 98.0     | 283.0       |       |
| 4.874     | 3.0     | 36.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | H         | P      | 131.0    | 59.0        |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | H         | A      | 131.0    | 59.0        |       |
| High Ch.  | 2462 M  | Hz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.924     | 3.0     | 36.6 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.4   | 74.0   | -30.6  | V         | P      | 130.0    | 308.0       |       |
| 4.924     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | V         | A      | 130.0    | 308.0       |       |
| 4.924     | 3.0     | 36.2 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | H         | P      | 154.0    | 214.0       |       |
| 4.924     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | н         | A      | 154.0    | 214.0       |       |

DATE: December 20, 2011

IC: 9909A-AR5BXB112

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

#### 8.2.5. 802.11n HT40 MCS0 3TX MODE IN THE 2.4 GHz BAND

## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









TEL: (510) 771-1000

#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)









TEL: (510) 771-1000

REPORT NO: 11U13957-1C FCC ID: ZZ6-AR5BXB112

#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/20/11 Project #: 11U13957 Company: Varian Card Access

Test Target: Mode Oper:

Tx On, 2.4 GHz, HT40 Mode MCS0

Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 422 MH  | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.844     | 3.0     | 36.3 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | V         | P      | 98.0     | 173.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | V         | A      | 98.0     | 173.0       |       |
| 4.844     | 3.0     | 35.7 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.3   | 74.0   | -31.7  | H         | P      | 98.0     | 358.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 98.0     | 358.0       |       |
| Mid Ch. 2 | 437 MH  |      |      | •   |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 36.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | V         | P      | 161.0    | 256.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | V         | A      | 161.0    | 256.0       |       |
| 4.874     | 3.0     | 36.3 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | H         | P      | 148.0    | 349.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | H         | A      | 148.0    | 349.0       |       |
| High Ch.  | 2452 MI | Ηz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.904     | 3.0     | 36.5 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.3   | 74.0   | -30.7  | V         | P      | 148.0    | 233.0       |       |
| 4.904     | 3.0     | 24.2 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | V         | A      | 148.0    | 233.0       |       |
| 4.904     | 3.0     | 36.3 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.1   | 74.0   | -30.9  | H         | P      | 109.0    | 4.0         |       |
| 4.904     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | Н         | A      | 109.0    | 4.0         |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

#### 8.2.6. 802.11n HT40 MCS8 3TX MODE IN THE 2.4 GHz BAND

## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









TEL: (510) 771-1000

#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)









#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/20/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 2.4 GHz, HT40 Mode MCS8

> Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 2422 MH | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.844     | 3.0     | 36.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.7   | 74.0   | -31.3  | V         | P      | 151.0    | 285.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 151.0    | 285.0       |       |
| 4.844     | 3.0     | 36.2 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | H         | P      | 123.0    | 121.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 123.0    | 121.0       |       |
| Mid Ch. 2 | 437 MH  | Z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 35.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.5   | 74.0   | -31.5  | V         | P      | 164.0    | 58.0        |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 164.0    | 58.0        |       |
| 4.874     | 3.0     | 36.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | H         | P      | 187.0    | 349.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 187.0    | 349.0       |       |
| High Ch.  | 2452 MI | Hz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.904     | 3.0     | 36.4 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.1   | 74.0   | -30.9  | V         | P      | 182.0    | 177.0       |       |
| 4.904     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | V         | A      | 182.0    | 177.0       |       |
| 4.904     | 3.0     | 36.5 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.3   | 74.0   | -30.7  | H         | P      | 159.0    | 282.0       |       |
| 4.904     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | H         | A      | 159.0    | 282.0       |       |
|           |         |      |      |     |       |        |      |        |        |        |           |        |          |             |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

## 8.2.7. 802.11n HT40 MCS16 3TX MODE IN THE 2.4 GHz BAND

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





TEL: (510) 771-1000





#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)









#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: 09/20/11 Date: 11U13957 Project #: Company: Varian Card Access

Test Target: Mode Oper:

Tx On, 2.4 GHz, HT40 Mode MCS16

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Avg Average Field Strength Lim

AF Antenna Factor Peak Calculated Peak Field Strength
CL Cable Loss HPF High Pass Filter

Average Field Strength Lim

Peak Field Strength Margin vs. Average Limit

Margin vs. Peak Limit

Margin vs. Peak Limit

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 2422 MH | z    |      |     |       |        |      | 1      |        |        |           |        |          |             |       |
| 4.844     | 3.0     | 35.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.4   | 74.0   | -31.6  | V         | P      | 193.0    | 196.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 193.0    | 196.0       |       |
| 4.844     | 3.0     | 36.6 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.2   | 74.0   | -30.8  | H         | P      | 115.0    | 97.0        |       |
| 4.844     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 115.0    | 97.0        |       |
| Mid Ch. 2 | 2437 MH |      |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 36.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.6   | 74.0   | -30.4  | V         | P      | 99.0     | 230.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 99.0     | 230.0       |       |
| 4.874     | 3.0     | 35.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.6   | 74.0   | -31.4  | H         | P      | 158.0    | 162.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 158.0    | 162.0       |       |
| High Ch.  | 2452 MI | Ηz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.904     | 3.0     | 36.7 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.5   | 74.0   | -30.5  | V         | P      | 130.0    | 118.0       |       |
| 4.904     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | V         | A      | 130.0    | 118.0       |       |
| 4.904     | 3.0     | 36.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | H         | P      | 134.0    | 8.0         |       |
| 4.904     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.7   | 54.0   | -23.3  | H         | A      | 134.0    | 8.0         |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

# <u> 2.4GHz BAND - FRACTAL ANTENNA; -6dBi</u>

## 8.2.8. 802.11g 3TX MODE IN THE 2.4 GHz BAND

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





#### RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang 09/22/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Tx On, 2.4 GHz, g Mode 9 Mbps Mode Oper:

> Average Field Strength Limit Peak Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dΒ  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 2412 MH | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.824     | 3.0     | 36.7 | 33.9 | 6.8 | -34.1 | 0.0    | 10.0 | 53.3   | 74.0   | -20.7  | V         | P      | 151.0    | 156.0       |       |
| 4.824     | 3.0     | 24.1 | 33.9 | 6.8 | -34.1 | 0.0    | 10.0 | 40.7   | 54.0   | -13.3  | V         | A      | 151.0    | 156.0       |       |
| 4.824     | 3.0     | 36.2 | 33.9 | 6.8 | -34.1 | 0.0    | 10.0 | 52.8   | 74.0   | -21.2  | H         | P      | 184.0    | 337.0       |       |
| 4.824     | 3.0     | 24.1 | 33.9 | 6.8 | -34.1 | 0.0    | 10.0 | 40.7   | 54.0   | -13.3  | H         | A      | 184.0    | 337.0       |       |
| Mid Ch. 2 | 2437 MH | Z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 35.7 | 33.9 | 6.8 | -34.0 | 0.0    | 10.0 | 52.4   | 74.0   | -21.6  | H         | P      | 141.0    | 38.0        |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 10.0 | 40.6   | 54.0   | -13.4  | H         | A      | 141.0    | 38.0        |       |
| 4.874     | 3.0     | 35.9 | 33.9 | 6.8 | -34.0 | 0.0    | 10.0 | 52.6   | 74.0   | -21.4  | V         | P      | 146.0    | 153.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 10.0 | 40.6   | 54.0   | -13.4  | V         | A      | 146.0    | 153.0       |       |
| High Ch.  | 2462 MI | Ηz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.924     | 3.0     | 37.0 | 34.0 | 6.8 | -34.0 | 0.0    | 10.0 | 53.8   | 74.0   | -20.2  | V         | P      | 136.0    | 220.0       |       |
| 4.924     | 3.0     | 23.9 | 34.0 | 6.8 | -34.0 | 0.0    | 10.0 | 40.7   | 54.0   | -13.3  | V         | A      | 136.0    | 220.0       |       |
| 4.924     | 3.0     | 36.3 | 34.0 | 6.8 | -34.0 | 0.0    | 10.0 | 53.1   | 74.0   | -20.9  | H         | P      | 120.0    | 242.0       |       |
| 4.924     | 3.0     | 23.9 | 34.0 | 6.8 | -34.0 | 0.0    | 10.0 | 40.7   | 54.0   | -13.3  | H         | A      | 120.0    | 242.0       |       |

Note: No other emissions were detected above the system noise floor.

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

#### 8.2.9. 802.11n HT20 MCS0 3TX MODE IN THE 2.4 GHz BAND

## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









#### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





#### RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





#### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang
Date: 09/22/11
Project #: 11U13957
Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 2.4 GHz, HT20 Mode MCS0

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

AF Antenna Factor Peak Calculated Peak Field Strength

CL Cable Loss HPF High Pass Filter

Average Field Strength Limit

Margin vs. Peak Limit

Margin vs. Peak Limit

| f                | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|------------------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz              | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2412 MHz |         |      |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.824            | 3.0     | 36.4 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | V         | P      | 98.0     | 214.0       |       |
| 4.824            | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | V         | A      | 98.0     | 214.0       |       |
| 4.824            | 3.0     | 36.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | H         | P      | 157.0    | 162.0       |       |
| 4.824            | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | H         | A      | 157.0    | 162.0       |       |
| Mid Ch. 2        | 2437 MH | Z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874            | 3.0     | 36.4 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.1   | 74.0   | -30.9  | H         | P      | 184.0    | 234.0       |       |
| 4.874            | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 184.0    | 234.0       |       |
| 4.874            | 3.0     | 36.3 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | V         | P      | 152.0    | 46.0        |       |
| 4.874            | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 152.0    | 46.0        |       |
| High Ch.         | 2462 MI | Iz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.924            | 3.0     | 36.2 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | V         | P      | 186.0    | -2.0        |       |
| 4.924            | 3.0     | 23.8 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | V         | A      | 186.0    | -2.0        |       |
| 4.924            | 3.0     | 36.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 42.9   | 74.0   | -31.1  | H         | P      | 169.0    | 342.0       |       |
| 4.924            | 3.0     | 23.7 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 169.0    | 342.0       |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0 This report shall not be reproduced except in full, without the written approval of UL CCS.

#### 802.11n HT20 MCS8 3TX MODE IN THE 2.4 GHz BAND 8.2.10.

#### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)









## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





REPORT NO: 11U13957-1C FCC ID: ZZ6-AR5BXB112

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/22/11 Project #: 11U13957 Company: Varian Card Access

Test Target: Mode Oper:

Tx On, 2.4 GHz, HT20 Mode MCS8

Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

| f          | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|------------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz        | (m)     | dBuV | dB/m | dΒ  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2  | 412 MH  | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.824      | 3.0     | 36.4 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.1   | 74.0   | -30.9  | V         | P      | 99.0     | 249.0       |       |
| 4.824      | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | V         | A      | 99.0     | 249.0       |       |
| 4.824      | 3.0     | 36.9 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.5   | 74.0   | -30.5  | H         | P      | 149.0    | 34.0        |       |
| 4.824      | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | H         | A      | 149.0    | 34.0        |       |
| Mid Ch. 24 | 437 MH  | Z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874      | 3.0     | 35.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.5   | 74.0   | -31.5  | H         | P      | 113.0    | 174.0       |       |
| 4.874      | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 113.0    | 174.0       |       |
| 4.874      | 3.0     | 36.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | V         | P      | 98.0     | 183.0       |       |
| 4.874      | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 98.0     | 183.0       |       |
| High Ch.   | 2462 MI | Ιz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.924      | 3.0     | 36.5 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.3   | 74.0   | -30.7  | V         | P      | 181.0    | 118.0       |       |
| 4.924      | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | V         | A      | 181.0    | 118.0       |       |
| 4.924      | 3.0     | 36.2 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0   | 74.0   | -31.0  | H         | P      | 103.0    | 218.0       |       |
| 4.924      | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | H         | A      | 103.0    | 218.0       |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: December 20, 2011

IC: 9909A-AR5BXB112

#### 8.2.11. 802.11n HT20 MCS16 3TX MODE IN THE 2.4 GHz BAND

# RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





TEL: (510) 771-1000

## RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





TEL: (510) 771-1000

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/22/11 Date: 11U13957 Project #: Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 2.4 GHz, HT20 Mode MCS16

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit 
>  Read
>  Analyzer Reading
>  Avg
>  Average Field Strength @ 3 m
>  Margin vs. Average Limit
>
>
>  AF
>  Antenna Factor
>  Peak
>  Calculated Peak Field Strength
>  Margin vs. Peak Limit
>
>
>  CL
>  Cable Loss
>  HPF
>  High Pass Filter

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Flte | Corr    | Limit   | Margin | Ant. Pol. | Det.   | Ant High | Table Angle | Notes  |
|-----------|---------|------|------|-----|-------|--------|------|---------|---------|--------|-----------|--------|----------|-------------|--------|
| GHz       | (m)     | dBuV | dB/m |     | dB    | dB     |      | 1       | dBuV/m  |        | V/H       | P/A/QP | cm       | Degree      | 110163 |
|           |         |      | dD/m | ФD  | dD.   | ub     | Ф    | uDu v/m | dDu v/m | : ub   | V/11      | F/M/QF | cm       | Degree      |        |
| Low Ch. 2 | 2412 MH | z    |      |     |       |        |      |         |         |        |           |        |          |             |        |
| 4.824     | 3.0     | 36.4 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 43.0    | 74.0    | -31.0  | V         | P      | 196.0    | 308.0       |        |
| 4.824     | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8    | 54.0    | -23.2  | V         | A      | 196.0    | 308.0       |        |
| 4.824     | 3.0     | 37.8 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 44.4    | 74.0    | -29.6  | H         | P      | 109.0    | 260.0       |        |
| 4.824     | 3.0     | 24.2 | 33.9 | 6.8 | -34.1 | 0.0    | 0.0  | 30.8    | 54.0    | -23.2  | H         | A      | 109.0    | 260.0       |        |
| Mid Ch. 2 | 437 MH  | z    |      |     |       |        |      |         |         |        |           |        |          |             |        |
| 4.874     | 3.0     | 36.6 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.3    | 74.0    | -30.7  | H         | P      | 131.0    | 318.0       |        |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5    | 54.0    | -23.5  | H         | A      | 131.0    | 318.0       |        |
| 4.874     | 3.0     | 36.6 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.3    | 74.0    | -30.7  | V         | P      | 146.0    | 7.0         |        |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5    | 54.0    | -23.5  | V         | A      | 146.0    | 7.0         |        |
| High Ch.  | 2462 M  | Ιz   |      |     |       |        |      |         |         |        |           |        |          |             |        |
| 4.924     | 3.0     | 36.2 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.0    | 74.0    | -31.0  | V         | P      | 107.0    | 136.0       |        |
| 4.924     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8    | 54.0    | -23.2  | V         | A      | 107.0    | 136.0       |        |
| 4.924     | 3.0     | 36.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8    | 74.0    | -31.2  | H         | P      | 98.0     | 270.0       |        |
| 4.924     | 3.0     | 24.0 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.8    | 54.0    | -23.2  | н         | A      | 98.0     | 270.0       |        |

#### 802.11n HT40 MCS0 3TX MODE IN THE 2.4 GHz BAND 8.2.12.

### RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

## RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)





### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/22/11 Project #: 11U13957 Company: Varian Card Access

Test Target: Mode Oper:

Tx On, 2.4 GHz, HT40 Mode MCS0

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr |     | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|-----|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dΒ  | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 2422 MH | z    |      |     |       |        |     |        |        |        |           |        |          |             |       |
| 4.844     | 3.0     | 36.7 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 43.4   | 74.0   | -30.6  | V         | P      | 134.0    | 183.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 30.6   | 54.0   | -23.4  | V         | A      | 134.0    | 183.0       |       |
| 4.844     | 3.0     | 37.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 43.8   | 74.0   | -30.2  | H         | P      | 100.0    | 245.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 30.6   | 54.0   | -23.4  | H         | A      | 100.0    | 245.0       |       |
| Mid Ch. 2 | 437 MH  | Z    |      |     |       |        |     |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 35.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 42.6   | 74.0   | -31.4  | H         | P      | 194.0    | 271.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 30.6   | 54.0   | -23.4  | H         | A      | 194.0    | 271.0       |       |
| 4.874     | 3.0     | 36.6 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 43.3   | 74.0   | -30.7  | V         | P      | 197.0    | 315.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0 | 30.6   | 54.0   | -23.4  | V         | A      | 197.0    | 315.0       |       |
| High Ch.  | 2452 MI | Ιz   |      |     |       |        |     |        |        |        |           |        |          |             |       |
| 4.904     | 3.0     | 36.8 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0 | 43.6   | 74.0   | -30.5  | V         | P      | 190.0    | 16.0        |       |
| 4.904     | 3.0     | 24.2 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0 | 30.9   | 54.0   | -23.1  | V         | A      | 190.0    | 16.0        |       |
| 4.904     | 3.0     | 36.6 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0 | 43.3   | 74.0   | -30.7  | H         | P      | 154.0    | 209.0       |       |
| 4.904     | 3.0     | 24.2 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0 | 30.9   | 54.0   | -23.1  | H         | A      | 154.0    | 209.0       |       |

Rev. 4.1.2.7

#### 802.11n HT40 MCS8 3TX MODE IN THE 2.4 GHz BAND 8.2.13.

# RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





REPORT NO: 11U13957-1C FCC ID: ZZ6-AR5BXB112

DATE: December 20, 2011

IC: 9909A-AR5BXB112

## **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang
Date: 09/22/11
Project #: 11U13957
Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 2.4 GHz, HT40 Mode MCS8

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch.   | 2422 MH | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.844     | 3.0     | 36.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.5   | 74.0   | -30.5  | V         | P      | 158.0    | 27.0        |       |
| 4.844     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.4   | 54.0   | -23.6  | V         | A      | 158.0    | 27.0        |       |
| 4.844     | 3.0     | 36.6 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.2   | 74.0   | -30.8  | H         | P      | 188.0    | 8.0         |       |
| 4.844     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.4   | 54.0   | -23.6  | H         | A      | 188.0    | 8.0         |       |
| Mid Ch. 2 | 2437 MH |      |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 36.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | H         | P      | 113.0    | 344.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 113.0    | 344.0       |       |
| 4.874     | 3.0     | 36.7 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.4   | 74.0   | -30.6  | V         | P      | 177.0    | 323.0       |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 177.0    | 323.0       |       |
| High Ch.  | 2452 M  | Ηz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.904     | 3.0     | 37.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.9   | 74.0   | -30.1  | V         | P      | 105.0    | 248.0       |       |
| 4.904     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | V         | A      | 105.0    | 248.0       |       |
| 4.904     | 3.0     | 37.3 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 44.1   | 74.0   | -29.9  | H         | P      | 118.0    | 355.0       |       |
| 4.904     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | H         | A      | 118.0    | 355.0       |       |

Rev. 4.1.2.7

#### 802.11n HT40 MCS16 3TX MODE IN THE 2.4 GHz BAND 8.2.14.

# RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)





### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)





## RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)





### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/22/11 Project #: 11U13957 Varian Card Access Company:

Test Target:

Tx On, 2.4 GHz, HT40 Mode MCS16 Mode Oper:

> Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters
>
> Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
>
> AF Antenna Factor Peak Calculated Peak Field Strength
>
> CL Cable Loss HPF High Pass Filter
>
> Are Angel Field Strength Margin vs. Peak Limit

| f         | Dist    | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB  | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 2 | 2422 MH | z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.844     | 3.0     | 36.1 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.8   | 74.0   | -31.2  | V         | P      | 198.0    | 95.0        |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 198.0    | 95.0        |       |
| 4.844     | 3.0     | 36.4 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 43.1   | 74.0   | -30.9  | H         | P      | 150.0    | 209.0       |       |
| 4.844     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | H         | A      | 150.0    | 209.0       |       |
| Mid Ch. 2 | 437 MH  | Z    |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.874     | 3.0     | 36.2 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.9   | 74.0   | -31.1  | H         | P      | 110.0    | 345.0       |       |
| 4.874     | 3.0     | 23.9 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.6   | 54.0   | -23.4  | H         | A      | 110.0    | 345.0       |       |
| 4.874     | 3.0     | 35.7 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 42.4   | 74.0   | -31.6  | V         | P      | 112.0    | 5.0         |       |
| 4.874     | 3.0     | 23.8 | 33.9 | 6.8 | -34.0 | 0.0    | 0.0  | 30.5   | 54.0   | -23.5  | V         | A      | 112.0    | 5.0         |       |
| High Ch.  | 2452 MI | Iz   |      |     |       |        |      |        |        |        |           |        |          |             |       |
| 4.904     | 3.0     | 37.9 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 44.6   | 74.0   | -29.4  | V         | P      | 137.0    | 147.0       |       |
| 4.904     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | V         | A      | 137.0    | 147.0       |       |
| 4.904     | 3.0     | 36.9 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 43.6   | 74.0   | -30.4  | H         | P      | 113.0    | 130.0       |       |
| 4.904     | 3.0     | 24.1 | 34.0 | 6.8 | -34.0 | 0.0    | 0.0  | 30.9   | 54.0   | -23.1  | H         | A      | 113.0    | 130.0       |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

This report shall not be reproduced except in full, without the written approval of UL CCS.

# 5.8GHz BAND - MONOPOLE ANTENNA; 4.5dBi

#### 8.2.15. 802.11a MODE IN THE 5.8 GHz BAND

### HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: Date: 09/21/11 Project #: 11U13957 Company: Varian Card Access Test Target:

Tx On, 5.8 GHz, a Mode 9 Mbps Mode Oper:

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit
>
> AF Antenna Factor Peak Calculated Peak Field Strength
>
> CL Cable Loss HPF High Pass Filter
>
> CL Cable Loss

| f         | Dist    | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | Ant.High | Table Angle | Notes |
|-----------|---------|------|------|------|-------|--------|------|--------|--------|--------|-----------|--------|----------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dB   | dB    | dB     | dB   | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm       | Degree      |       |
| Low Ch. 5 | 745 MH  | z    |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 11.490    | 3.0     | 37.8 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 55.7   | 74.0   | -18.3  | V         | P      | 146.0    | 50.0        |       |
| 11.490    | 3.0     | 24.6 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 42.4   | 54.0   | -11.6  | V         | A      | 146.0    | 50.0        |       |
| 11.490    | 3.0     | 38.0 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 55.9   | 74.0   | -18.1  | H         | P      | 133.0    | 235.0       |       |
| 11.490    | 3.0     | 26.3 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 44.2   | 54.0   | -9.8   | H         | A      | 133.0    | 235.0       |       |
| Mid Ch. 5 | 785 MH  | Z    |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 11.570    | 3.0     | 35.6 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 53.7   | 74.0   | -20.3  | V         | P      | 98.0     | 48.0        |       |
| 11.570    | 3.0     | 23.6 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 41.7   | 54.0   | -12.3  | V         | A      | 98.0     | 48.0        |       |
| 11.570    | 3.0     | 35.5 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 53.6   | 74.0   | -20.4  | H         | P      | 121.0    | 27.0        |       |
| 11.570    | 3.0     | 22.7 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 40.8   | 54.0   | -13.2  | H         | A      | 121.0    | 27.0        |       |
| High Ch.  | 5825 MI | Iz   |      |      |       |        |      |        |        |        |           |        |          |             |       |
| 11.650    | 3.0     | 37.8 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 56.1   | 74.0   | -17.9  | V         | P      | 191.0    | -2.0        |       |
| 11.650    | 3.0     | 24.8 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 43.1   | 54.0   | -10.9  | V         | A      | 191.0    | -2.0        |       |
| 11.650    | 3.0     | 34.6 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 53.0   | 74.0   | -21.0  | H         | P      | 158.0    | 115.0       |       |
| 11.650    | 3.0     | 21.2 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 39.6   | 54.0   | -14.4  | H         | A      | 158.0    | 115.0       |       |

Rev. 4.1.2.7

#### 8.2.16. 802.11n HT20 MCS 0 MODE IN THE 5.8 GHz BAND

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT20 Mode MCS0

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter

Peak Field Strength Limit Margin vs. Average Limit

| f         | Dist    | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant Pol | Det.   | AntHigh | Table Angle | Notes |
|-----------|---------|------|------|------|-------|--------|------|--------|--------|--------|---------|--------|---------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dВ   | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ     | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch. 5 | 745 MH  | ĺz   |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.490    | 3.0     | 37.9 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 55.8   | 74.0   | -18.2  | V       | P      | 168.0   | 142.0       |       |
| 11.490    | 3.0     | 24.5 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 42.4   | 54.0   | -11.6  | V       | A      | 168.0   | 142.0       |       |
| 11.490    | 3.0     | 33.5 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.4   | 74.0   | -22.6  | H       | P      | 156.0   | 30.0        |       |
| 11.490    | 3.0     | 21.2 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | H       | A      | 156.0   | 30.0        |       |
| Mid Ch. 5 | 785 MH  | Z    |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.570    | 3.0     | 33.5 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.6   | 74.0   | -22.4  | H       | P      | 153.0   | 290.0       |       |
| 11.570    | 3.0     | 21.1 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8  | H       | A      | 153.0   | 290.0       |       |
| 11.570    | 3.0     | 35.5 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 53.6   | 74.0   | -20.4  | V       | P      | 138.0   | 108.0       |       |
| 11.570    | 3.0     | 22.8 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 40.9   | 54.0   | -13.1  | V       | A      | 138.0   | 108.0       |       |
| High Ch.  | 5825 MI | Ηz   |      |      |       |        |      |        |        |        |         |        |         | ĺ           |       |
| 11.650    | 3.0     | 35.0 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 53.4   | 74.0   | -20.6  | V       | P      | 98.0    | 223.0       |       |
| 11.650    | 3.0     | 23.1 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 41.5   | 54.0   | -12.5  | v       | A      | 98.0    | 223.0       |       |
| 11.650    | 3.0     | 33.2 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 51.6   | 74.0   | -22.4  | H       | P      | 167.0   | 353.0       |       |
| 11.650    | 3.0     | 21.0 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 39.4   | 54.0   | -14.6  | H       | A      | 167.0   | 353.0       |       |

Rev. 4.1.2.7

#### 8.2.17. 802.11n HT20 MCS8 MODE IN THE 5.8 GHz BAND

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT20 Mode MCS8

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

|           |         |               |      | :    | _     |        |      | 1      |        |        |         | _      |         |             |       |
|-----------|---------|---------------|------|------|-------|--------|------|--------|--------|--------|---------|--------|---------|-------------|-------|
| f         | Dist    | Read          | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant Pol | Det    | AntHigh | Table Angle | Notes |
| GHz       | (m)     | dBuV          | dB/m | dВ   | dВ    | dB     | dВ   | dBuV/m | dBuV/m | dB     | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch. 5 | 745 MH  | Z             |      |      |       |        |      |        |        |        |         |        |         | l l         |       |
| 11.490    | 3.0     | 37.9          | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 55.8   | 74.0   | -18.2  | V       | P      | 160.0   | 109.0       |       |
| 11.490    | 3.0     | 23.9          | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 41.7   | 54.0   | -12.3  | V       | A      | 160.0   | 109.0       |       |
| 11.490    | 3.0     | 33.2          | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.1   | 74.0   | -22.9  | H       | P      | 140.0   | 74.0        |       |
| 11.490    | 3.0     | 21.1          | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H       | A      | 140.0   | 74.0        |       |
| Mid Ch. 5 | 785 MH  | Z             |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.570    | 3.0     | 34.3          | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 52.4   | 74.0   | -21.6  | H       | P      | 102.0   | 7.0         |       |
| 11.570    | 3.0     | 21.0          | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8  | H       | A      | 102.0   | 7.0         |       |
| 11.570    | 3.0     | 33.9          | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 52.0   | 74.0   | -22.0  | V       | P      | 197.0   | 98.0        |       |
| 11.570    | 3.0     | 22.1          | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 40.2   | 54.0   | -13.8  | V       | A      | 197.0   | 98.0        |       |
| High Ch.  | 5825 MI | <del>Iz</del> |      |      |       |        |      |        |        |        |         |        |         | i i         |       |
| 11.650    | 3.0     | 35.1          | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 53.5   | 74.0   | -20.5  | V       | P      | 98.0    | 116.0       |       |
| 11.650    | 3.0     | 22.9          | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 41.3   | 54.0   | -12.7  | V       | A      | 98.0    | 116.0       |       |
| 11.650    | 3.0     | 33.2          | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 51.6   | 74.0   | -22.4  | H       | P      | 153.0   | 339.0       |       |
| 11.650    | 3.0     | 21.2          | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 39.5   | 54.0   | -14.5  | H       | A      | 153.0   | 339.0       |       |

Rev. 4.1.2.7

#### 802.11n HT20 MCS 16 MODE IN THE 5.8 GHz BAND 8.2.18.

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT20 Mode MCS16

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

|           |         |      |      |      |       | · n. a. : |      |        | 7      |                |         | <b>.</b> |         |             |       |
|-----------|---------|------|------|------|-------|-----------|------|--------|--------|----------------|---------|----------|---------|-------------|-------|
| Í         | Dist    | Read | AF   | CL   | Amp   | D Corr    | řitr | Corr.  | Limit  | Margin         | Ant Pol | Det      | AntHigh | Table Angle | Notes |
| GHz       | (m)     | dBuV | dB/m | dВ   | dВ    | dB        | dВ   | dBuV/m | dBuV/m | dВ             | V/H     | P/A/QP   | cm      | Degree      |       |
| Low Ch. 5 | 745 MH  | Z    |      |      |       |           |      |        |        |                |         |          |         | l l         |       |
| 11.490    | 3.0     | 34.3 | 39.1 | 11.2 | -32.4 | 0.0       | 0.0  | 52.2   | 74.0   | -21.8          | V       | P        | 153.0   | 181.0       |       |
| 11.490    | 3.0     | 22.7 | 39.1 | 11.2 | -32.4 | 0.0       | 0.0  | 40.6   | 54.0   | -13.4          | V       | A        | 153.0   | 181.0       |       |
| 11.490    | 3.0     | 32.8 | 39.1 | 11.2 | -32.4 | 0.0       | 0.0  | 50.7   | 74.0   | -23.3          | H       | P        | 198.0   | 267.0       |       |
| 11.490    | 3.0     | 21.0 | 39.1 | 11.2 | -32.4 | 0.0       | 0.0  | 38.9   | 54.0   | -15.1          | H       | A        | 198.0   | 267.0       |       |
| Mid Ch. 5 | 785 MH  | Z    |      |      |       |           |      |        |        |                |         |          |         |             |       |
| 11.570    | 3.0     | 34.4 | 39.2 | 11.3 | -32.4 | 0.0       | 0.0  | 52.5   | 74.0   | -21.5          | H       | P        | 141.0   | 158.0       |       |
| 11.570    | 3.0     | 21.1 | 39.2 | 11.3 | -32.4 | 0.0       | 0.0  | 39.2   | 54.0   | -14.8          | H       | A        | 141.0   | 158.0       |       |
| 11.570    | 3.0     | 34.8 | 39.2 | 11.3 | -32.4 | 0.0       | 0.0  | 52.9   | 74.0   | -21.1          | V       | P        | 102.0   | 98.0        |       |
| 11.570    | 3.0     | 22.5 | 39.2 | 11.3 | -32.4 | 0.0       | 0.0  | 40.6   | 54.0   | -13.4          | V       | A        | 102.0   | 98.0        |       |
| High Ch.  | 5825 MI | -Tz  |      |      |       |           |      |        |        |                |         |          |         | i i         |       |
| 11.650    | 3.0     | 35.4 | 39.3 | 11.4 | -32.4 | 0.0       | 0.0  | 53.7   | 74.0   | - <b>20.</b> 3 | V       | P        | 169.0   | 115.0       |       |
| 11.650    | 3.0     | 23.0 | 39.3 | 11.4 | -32.4 | 0.0       | 0.0  | 41.4   | 54.0   | -12.6          | V       | A        | 169.0   | 115.0       |       |
| 11.650    | 3.0     | 34.1 | 39.3 | 11.4 | -32.4 | 0.0       | 0.0  | 52.4   | 74.0   | -21.6          | H       | P        | 120.0   | 128.0       |       |
| 11.650    | 3.0     | 21.0 | 39.3 | 11.4 | -32.4 | 0.0       | 0.0  | 39.4   | 54.0   | -14.6          | H       | A        | 120.0   | 128.0       |       |

Rev. 4.1.2.7

#### 802.11n HT40 MCS 0 MODE IN THE 5.8 GHz BAND 8.2.19.

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT40 Mode MCS0

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

| f        | Dist     | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin        | Ant Pol | Det    | AntHigh | Table Angle | Notes |
|----------|----------|------|------|------|-------|--------|------|--------|--------|---------------|---------|--------|---------|-------------|-------|
| GHz      | (m)      | dBuV | dB/m | dВ   | đВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ            | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch.  | 5755 MIH | [z   |      |      |       |        |      |        |        |               |         |        |         |             |       |
| 11.510   | 3.0      | 34.0 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.9   | 74.0   | -22.1         | V       | P      | 130.0   | 47.0        |       |
| 11.510   | 3.0      | 21.2 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8         | V       | A      | 130.0   | 47.0        |       |
| 11.510   | 3.0      | 33.4 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.3   | 74.0   | -22.7         | H       | P      | 169.0   | 326.0       |       |
| 11.510   | 3.0      | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0         | H       | A      | 169.0   | 326.0       |       |
| High Ch. | 5795 MI  | Hz   |      |      |       |        |      |        |        |               |         |        |         |             |       |
| 11.590   | 3.0      | 33.4 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.6   | 74.0   | -22.4         | H       | P      | 128.0   | 362.0       |       |
| 11.590   | 3.0      | 20.8 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0         | H       | A      | 128.0   | 362.0       |       |
| 11.590   | 3.0      | 32.5 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 50.6   | 74.0   | - <b>23.4</b> | V       | P      | 182.0   | 298.0       |       |
| 11.590   | 3.0      | 21.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9         | V       | A      | 182.0   | 298.0       |       |
| D 412    | 7        |      |      |      |       |        |      |        |        |               |         |        |         |             |       |

#### 8.2.20. 802.11n HT40 MCS8 MODE IN THE 5.8 GHz BAND

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT40 Mode MCS8

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

| f        | Dist      | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant Pol | Det    | AntHigh | Table Angle | Notes |
|----------|-----------|------|------|------|-------|--------|------|--------|--------|--------|---------|--------|---------|-------------|-------|
| GHz      | (m)       | dBuV | dB/m | dВ   | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ     | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch.  | 5755 MIH  | [z   |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.510   | 3.0       | 34.5 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 52.4   | 74.0   | -21.6  | V       | P      | 191.0   | 51.0        |       |
| 11.510   | 3.0       | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | V       | A      | 191.0   | 51.0        |       |
| 11.510   | 3.0       | 33.2 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.1   | 74.0   | -22.9  | H       | P      | 184.0   | 156.0       |       |
| 11.510   | 3.0       | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H       | A      | 184.0   | 156.0       |       |
| High Ch. | . 5795 MI | Hz   |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.590   | 3.0       | 33.3 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.5   | 74.0   | -22.5  | H       | P      | 98.0    | 281.0       |       |
| 11.590   | 3.0       | 20.9 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | H       | A      | 98.0    | 281.0       |       |
| 11.590   | 3.0       | 33.1 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.2   | 74.0   | -22.8  | V       | P      | 174.0   | 122.0       |       |
| 11.590   | 3.0       | 21.2 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.3   | 54.0   | -14.7  | V       | A      | 174.0   | 122.0       |       |
| D 412    |           |      |      |      |       |        |      |        |        |        |         |        |         |             |       |

#### 8.2.21. 802.11n HT40 MCS16 MODE IN THE 5.8 GHz BAND

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT40 Mode MCS16

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

| f       | Dist      | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant Pol | Det    | AntHigh | Table Angle | Notes |
|---------|-----------|------|------|------|-------|--------|------|--------|--------|--------|---------|--------|---------|-------------|-------|
| GHz     | (m)       | dBuV | dB/m | dВ   | đВ    | dВ     | đВ   | dBuV/m | dBuV/m | dВ     | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch. | 5755 MIH  | z    |      |      |       |        |      | l l    |        |        |         |        |         |             |       |
| 11.510  | 3.0       | 34.5 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 52.4   | 74.0   | -21.6  | V       | P      | 169.0   | 151.0       |       |
| 11.510  | 3.0       | 22.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 40.1   | 54.0   | -13.9  | V       | A      | 169.0   | 151.0       |       |
| 11.510  | 3.0       | 33.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.1   | 74.0   | -22.9  | H       | P      | 194.0   | -2.0        |       |
| 11.510  | 3.0       | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H       | A      | 194.0   | -2.0        |       |
| High Ch | . 5795 MD | Ιz   |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.590  | 3.0       | 33.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.2   | 74.0   | -22.8  | H       | P      | 103.0   | 326.0       |       |
| 11.590  | 3.0       | 20.9 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | H       | A      | 103.0   | 326.0       |       |
| 11.590  | 3.0       | 33.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.2   | 74.0   | -22.8  | V       | P      | 106.0   | 237.0       |       |
| 11.590  | 3.0       | 21.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8  | V       | A      | 106.0   | 237.0       |       |

# 5.8GHz BAND - FRACTAL ANTENNA; -1dBi

### 8.2.22. 802.11a MODE IN THE 5.8 GHz BAND

### HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang
Date: 09/23/11
Project #: 11U13957
Company: Varian Card Access
Test Target:

Mode Oper: Tx On, 5.8 GHz, A Mode 9Mbps

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit
Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Avg Average Field Strength @ 3 m
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Average Limit
CL Cable Loss HPF High Pass Filter

Average Field Strength Margin vs. Peak Limit
Margin vs. Peak Limit

Read AF CL Amp D Corr Fltr Corr. Limit Margin Ant. Pol. Dist Det. Ant.High Table Angle Notes GHz dBuV dB/m dB dB dB dB dBuV/m dBuV/m V/H P/A/OP (m) dΒ Low Ch. 5745 MHz 11.490 3.0 36.0 39.1 11.2 -32.4 0.0 0.0 53.9 74.0 152.0 180.0 -12.5 -22.2 11.490 3.0 23.7 39.1 11.2 -32.4 0.0 0.0 41.5 54.0 152.0 180.0 33.9 39.1 11.2 21.1 39.1 11.2 -32.4 11.490 3.0 0.0 0.0 51.8 74.0 Н 172.0 12.0 -15.0 11.490 -32.454.0 Н 172.0 12.0 0.0 0.0 39.0 Mid Ch. 5785 MHz 3.0 32.9 39.2 11.3 -32.4 0.0 51.0 134.0 39.2 11.3 -32.4 39.2 11.3 -32.4 3.0 21.2 0.0 0.0 54.0 -14.6 134.0 57.0 35.6 39.2 11.3 22.2 39.2 11.3 11.570 3.0 0.0 0.0 53.7 74.0 145.0 179.0 11.570 3.0 -32.4 0.0 0.0 40.3 54.0 -13.7V 145.0 179.0 High Ch. 5825 MHz 3.0 33.3 39.3 11.4 -32.4 0.0 0.0 51.6 74.0 11.650 98.0 223.0 21.3 39.3 11.4 -32.4 0.0 11.650 0.0 39.6 98.0 223.0 -14.4 11.650 3.0 34.4 39.3 11.4 -32.4 0.0 0.0 52.8 74.0 -21.2 -13.9 150.0 178.0 11.650 3.0 21.8 39.3 11.4 -32.4 0.0 0.0 54.0 150.0 178.0

Rev. 4.1.2.7

### 8.2.23. 802.11n HT20 MCS 0 MODE IN THE 5.8 GHz BAND

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

 Test Engr:
 William Zhuang

 Date:
 09/23/11

 Project #:
 11U13957

 Company:
 Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT20 Mode MCS0

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Ave
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

Dist Read AF CL Amp D Corr Fltr Corr. Limit Margin Ant. Pol. Det Ant.High Table Angle Notes GHz dBuV dB/m dB dВ dВ dB dBuV/m dBuV/m dВ V/H P/A/QP (m) Degree cm Low Ch. 5745 MHz 39.1 11.2 -32.4 39.1 11.2 -32.4 55.8 74.0 168.0 142.0 11.490 3.0 37.9 0.00.0 -18.211.490 3.0 0.0 -11.6 168.0 142.0 24.5 0.042.4 54.0 33.5 н 11.490 3.0 39.1 11.2 -32.4 0.0 0.0 51.4 74.0 156.0 30.0 3.0 39.1 11.2 -32.4 11.490 21.2 39.1 -14.9 0.00.0 54.0 A 156.0 30.0 Mid Ch. 5785 MHz 11.570 3.0 33.5 39.2 11.3 -32.4 0.0 51.6 74.0 -22.4 153.0 290.0 39.2 11.3 -32.4 39.2 11.3 -32.4 11.570 3.0 21.1 0.0 11.570 3.0 35.5 0.0 53.6 74.0 108.0 11.570 3.0 22.8 39.2 11.3 -32.4 0.0 40.9 54.0 -13.1 138.0 108.0 0.0 High Ch. 5825 MHz 3.0 39.3 11.4 -32.4 0.0 74.0 223.0 11.650 35.0 0.0 98.0 11.650 3.0 23.1 39.3 11.4 -32.4 0.0 0.0 41.5 54.0 -12.5 A 98.0 223.0 11.650 3.0 33.2 39.3 11.4 -32.4 0.0 0.0 51.6 74.0 н P 167.0 353.0

54.0

0.0 39.4

-14.6

н

A

167.0

353.0

11.650 Rev. 4.1.2.7

3.0

Note: No other emissions were detected above the system noise floor.

21.0 39.3 11.4 -32.4 0.0

#### 802.11n HT20 MCS8 MODE IN THE 5.8 GHz BAND 8.2.24.

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957

Varian Card Access Company:

Test Target:

Tx On, 5.8 GHz, HT20 Mode MCS8 Mode Oper:

Measurement Frequency Amp Preamp Gain

Dist Distance to Antenna D Corr Distance Correct to 3 meters

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir

AF Antenna Factor Peak Calculated Peak Field Strength

CL Cable Loss HPF High Pass Filter

Average Field Strength Limit Peak Field Strength Limit Margin vs. Average Limit

| f         | Dist     | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant Pol | Det    | AntHigh | Table Angle | Notes |
|-----------|----------|------|------|------|-------|--------|------|--------|--------|--------|---------|--------|---------|-------------|-------|
| GHz       | (m)      | dBuV | dB/m | dВ   | аВ    | dВ     | đВ   | dBuV/m | dBuV/m | : -    | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch. 5 | 5745 MIH | ĺz   |      |      |       |        |      |        |        | !      |         |        | !       |             |       |
| 11.490    | 3.0      | 37.9 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 55.8   | 74.0   | -18.2  | V       | P      | 160.0   | 109.0       |       |
| 11.490    | 3.0      | 23.9 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 41.7   | 54.0   | -12.3  | V       | A      | 160.0   | 109.0       |       |
| 11.490    | 3.0      | 33.2 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.1   | 74.0   | -22.9  | Н       | P      | 140.0   | 74.0        |       |
| 11.490    | 3.0      | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H       | A      | 140.0   | 74.0        |       |
| Mid Ch. 5 | 785 MH   | Z    |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.570    | 3.0      | 34.3 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 52.4   | 74.0   | -21.6  | H       | P      | 102.0   | 7.0         |       |
| 11.570    | 3.0      | 21.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8  | H       | A      | 102.0   | 7.0         |       |
| 11.570    | 3.0      | 33.9 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 52.0   | 74.0   | -22.0  | V       | P      | 197.0   | 98.0        |       |
| 11.570    | 3.0      | 22.1 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 40.2   | 54.0   | -13.8  | V       | A      | 197.0   | 98.0        |       |
| High Ch.  | 5825 MI  | Hz   |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.650    | 3.0      | 35.1 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 53.5   | 74.0   | -20.5  | V       | P      | 98.0    | 116.0       |       |
| 11.650    | 3.0      | 22.9 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 41.3   | 54.0   | -12.7  | V       | A      | 98.0    | 116.0       |       |
| 11.650    | 3.0      | 33.2 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 51.6   | 74.0   | -22.4  | Н       | P      | 153.0   | 339.0       |       |
| 11.650    | 3.0      | 21.2 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 39.5   | 54.0   | -14.5  | н       | A      | 153.0   | 339.0       |       |

Rev. 4.1.2.7

#### 802.11n HT20 MCS 16 MODE IN THE 5.8 GHz BAND 8.2.25.

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957

Varian Card Access Company:

Test Target:

Tx On, 5.8 GHz, HT20 Mode MCS16 Mode Oper:

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
>
> Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir
>
> AF Antenna Factor Peak Calculated Peak Field Strength
>
> CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

| f         | Dist    | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin        | Ant Pol | Det.   | AntHigh | Table Angle | Notes |
|-----------|---------|------|------|------|-------|--------|------|--------|--------|---------------|---------|--------|---------|-------------|-------|
| GHz       | (m)     | dBuV | dB/m | dВ   | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ            | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch. 5 | 5745 MH | z    |      |      |       |        |      |        |        | !             |         |        | !       |             |       |
| 11.490    | 3.0     | 34.3 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 52.2   | 74.0   | -21.8         | V       | P      | 153.0   | 181.0       |       |
| 11.490    | 3.0     | 22.7 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 40.6   | 54.0   | -13.4         | v       | A      | 153.0   | 181.0       |       |
| 11.490    | 3.0     | 32.8 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 50.7   | 74.0   | - <b>23.3</b> | H       | P      | 198.0   | 267.0       |       |
| 11.490    | 3.0     | 21.0 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 38.9   | 54.0   | -15.1         | H       | A      | 198.0   | 267.0       |       |
| Mid Ch. 5 | 785 MH  | Z    |      |      |       |        |      |        |        |               |         |        |         |             |       |
| 11.570    | 3.0     | 34.4 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 52.5   | 74.0   | -21.5         | H       | P      | 141.0   | 158.0       |       |
| 11.570    | 3.0     | 21.1 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8         | H       | A      | 141.0   | 158.0       |       |
| 11.570    | 3.0     | 34.8 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 52.9   | 74.0   | -21.1         | V       | P      | 102.0   | 98.0        |       |
| 11.570    | 3.0     | 22.5 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 40.6   | 54.0   | -13.4         | V       | A      | 102.0   | 98.0        |       |
| High Ch.  | 5825 MI | Ιz   |      |      |       |        |      |        |        |               |         |        |         |             |       |
| 11.650    | 3.0     | 35.4 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 53.7   | 74.0   | -20.3         | V       | P      | 169.0   | 115.0       |       |
| 11.650    | 3.0     | 23.0 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 41.4   | 54.0   | -12.6         | v       | A      | 169.0   | 115.0       |       |
| 11.650    | 3.0     | 34.1 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 52.4   | 74.0   | -21.6         | Н       | P      | 120.0   | 128.0       |       |
| 11.650    | 3.0     | 21.0 | 39.3 | 11.4 | -32.4 | 0.0    | 0.0  | 39.4   | 54.0   | -14.6         | н       | A      | 120.0   | 128.0       |       |

Rev. 4.1.2.7

#### 8.2.26. 802.11n HT40 MCS 0 MODE IN THE 5.8 GHz BAND

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957

Varian Card Access Company:

Test Target: Mode Oper:

Tx On, 5.8 GHz, HT40 Mode MCS0

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

AF Antenna Factor Peak Calculated Peak Field Strength

CL Cable Loss HPF High Pass Filter

Meaning vs. Peak Limit

Margin vs. Peak Limit

| f       | Dist              | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant Pol | Det.   | AntHigh | Table Angle | Notes |
|---------|-------------------|------|------|------|-------|--------|------|--------|--------|--------|---------|--------|---------|-------------|-------|
| GHz     | (m)               | dBuV | dB/m | dВ   | dВ    | dВ     | đВ   | dBuV/m | dBuV/m | dВ     | V/H     | P/A/QP | cm      | Degree      |       |
| Low Ch. | 5755 MIH          | ĺz   |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.510  | 3.0               | 34.0 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.9   | 74.0   | -22.1  | v       | P      | 130.0   | 47.0        |       |
| 11.510  | 3.0               | 21.2 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8  | V       | A      | 130.0   | 47.0        |       |
| 11.510  | 3.0               | 33.4 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.3   | 74.0   | -22.7  | H       | P      | 169.0   | 326.0       |       |
| 11.510  | 3.0               | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H       | A      | 169.0   | 326.0       |       |
| High Ch | High Ch. 5795 MHz |      |      |      |       |        |      |        |        |        |         |        |         |             |       |
| 11.590  | 3.0               | 33.4 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.6   | 74.0   | -22.4  | H       | P      | 128.0   | 362.0       |       |
| 11.590  | 3.0               | 20.8 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H       | A      | 128.0   | 362.0       |       |
| 11.590  | 3.0               | 32.5 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 50.6   | 74.0   | -23.4  | v       | P      | 182.0   | 298.0       |       |
| 11.590  | 3.0               | 21.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | V       | A      | 182.0   | 298.0       |       |
| D 41    | 2.7               |      |      |      |       |        |      |        |        |        |         |        |         |             |       |

Rev. 4.1.2.7

#### 802.11n HT40 MCS8 MODE IN THE 5.8 GHz BAND 8.2.27.

### **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957

Varian Card Access Company:

Test Target: Mode Oper:

Tx On, 5.8 GHz, HT40 Mode MCS8

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters

Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit

AF Antenna Factor Peak Calculated Peak Field Strength

CL Cable Loss HPF High Pass Filter

Meaning vs. Peak Limit

Margin vs. Peak Limit

| f         | Dist     | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det    | AntHigh | Table Angle | Notes |
|-----------|----------|------|------|------|-------|--------|------|--------|--------|--------|-----------|--------|---------|-------------|-------|
| GHz       | (m)      | dBuV | dB/m | dВ   | đВ    | dВ     | đВ   | dBuV/m | dBuV/m | dВ     | V/H       | P/A/QP | cm      | Degree      |       |
| Low Ch. : | 5755 MIH | ĺz   |      |      |       |        |      |        |        |        |           |        |         |             |       |
| 11.510    | 3.0      | 34.5 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 52.4   | 74.0   | -21.6  | V         | P      | 191.0   | 51.0        |       |
| 11.510    | 3.0      | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | V         | A      | 191.0   | 51.0        |       |
| 11.510    | 3.0      | 33.2 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.1   | 74.0   | -22.9  | Н         | P      | 184.0   | 156.0       |       |
| 11.510    | 3.0      | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H         | A      | 184.0   | 156.0       |       |
| High Ch.  | 5795 MD  | Ηz   |      |      |       |        |      |        |        |        |           |        |         |             |       |
| 11.590    | 3.0      | 33.3 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.5   | 74.0   | -22.5  | H         | P      | 98.0    | 281.0       |       |
| 11.590    | 3.0      | 20.9 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | H         | A      | 98.0    | 281.0       |       |
| 11.590    | 3.0      | 33.1 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.2   | 74.0   | -22.8  | V         | P      | 174.0   | 122.0       |       |
| 11.590    | 3.0      | 21.2 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.3   | 54.0   | -14.7  | V         | A      | 174.0   | 122.0       |       |
|           |          |      |      |      |       |        |      |        |        |        |           |        |         |             |       |

Rev. 4.1.2.7

#### 8.2.28. 802.11n HT40 MCS16 MODE IN THE 5.8 GHz BAND

# **HARMONICS AND SPURIOUS EMISSIONS**

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang 09/23/11 Project #: 11U13957 Company: Varian Card Access

Test Target:

Mode Oper: Tx On, 5.8 GHz, HT40 Mode MCS16

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
> AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

| f       | Dist      | Read | AF   | CL   | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | AntHigh | Table Angle | Notes |
|---------|-----------|------|------|------|-------|--------|------|--------|--------|--------|-----------|--------|---------|-------------|-------|
| GHz     | (m)       | dBuV | dB/m | đВ   | đВ    | dВ     | đВ   | dBuV/m | dBuV/m | dВ     | V/H       | P/A/QP | cm      | Degree      |       |
| Low Ch. | 5755 MIH  | z    |      |      |       |        |      |        |        |        |           |        |         |             |       |
| 11.510  | 3.0       | 34.5 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 52.4   | 74.0   | -21.6  | V         | P      | 169.0   | 151.0       |       |
| 11.510  | 3.0       | 22.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 40.1   | 54.0   | -13.9  | V         | A      | 169.0   | 151.0       |       |
| 11.510  | 3.0       | 33.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 51.1   | 74.0   | -22.9  | H         | P      | 194.0   | -2.0        |       |
| 11.510  | 3.0       | 21.1 | 39.1 | 11.2 | -32.4 | 0.0    | 0.0  | 39.0   | 54.0   | -15.0  | H         | A      | 194.0   | -2.0        |       |
| High Ch | . 5795 MI | Ιz   |      |      |       |        |      |        |        |        |           |        |         |             |       |
| 11.590  | 3.0       | 33.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.2   | 74.0   | -22.8  | H         | P      | 103.0   | 326.0       |       |
| 11.590  | 3.0       | 20.9 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.1   | 54.0   | -14.9  | H         | A      | 103.0   | 326.0       |       |
| 11.590  | 3.0       | 33.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 51.2   | 74.0   | -22.8  | V         | P      | 106.0   | 237.0       |       |
| 11.590  | 3.0       | 21.0 | 39.2 | 11.3 | -32.4 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8  | V         | A      | 106.0   | 237.0       |       |
|         |           |      |      |      |       |        |      |        |        |        |           |        |         |             |       |

# 8.3. RECEIVER ABOVE 1 GHz

# <u> 2.4GHz BAND - MONOPOLE ANTENNA; 4dBi</u>

#### 8.3.1. 20 MHz BANDWIDTH IN THE 2.4 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang
Date: 09/26/11
Project #: 11U13957
Company: Varian Card Access

Test Target:

Mode Oper: Rx On, 2.4 GHz, HT20 Mode MCS16, Mid Ch. 2437 MHz

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

| -     | Dist | Read | AF   | $\mathbf{CL}$ | A     | D Corr | 171±- | Com    | Limit  | Manain | Ant. Pol. | Det    | And High | Table Angle | Notes  |
|-------|------|------|------|---------------|-------|--------|-------|--------|--------|--------|-----------|--------|----------|-------------|--------|
|       |      |      |      |               | -     | 1 1    |       |        | :      | -      |           |        | _        | :           | 140162 |
| GHz   | (m)  | dBuV | dB/m | dВ            | dВ    | dВ     | dВ    | dBuV/m | dBuV/m | dВ     | V/H       | P/A/QP | cm       | Degree      |        |
| 1.550 | 3.0  | 53.7 | 26.7 | 3.5           | -37.0 | 0.0    | 0.0   | 46.9   | 74.0   | -27.1  | v         | P      | 101.0    | 5.0         |        |
| 1.550 | 3.0  | 43.4 | 26.7 | 3.5           | -37.0 | 0.0    | 0.0   | 36.6   | 54.0   | -17.4  | V         | A      | 101.0    | 5.0         |        |
| 1.550 | 3.0  | 61.4 | 26.7 | 3.5           | -37.0 | 0.0    | 0.0   | 54.6   | 74.0   | -19.4  | H         | P      | 98.0     | 46.0        |        |
| 1.550 | 3.0  | 50.8 | 26.7 | 3.5           | -37.0 | 0.0    | 0.0   | 44.0   | 54.0   | -10.0  | H         | A      | 98.0     | 46.0        |        |
| 2.490 | 3.0  | 53.3 | 29.0 | 4.6           | -35.6 | 0.0    | 0.0   | 51.3   | 74.0   | -22.7  | H         | P      | 118.0    | 25.0        |        |
| 2.490 | 3.0  | 33.6 | 29.0 | 4.6           | -35.6 | 0.0    | 0.0   | 31.7   | 54.0   | -22.3  | H         | A      | 118.0    | 25.0        |        |
| 2.490 | 3.0  | 51.1 | 29.0 | 4.6           | -35.6 | 0.0    | 0.0   | 49.1   | 74.0   | -24.9  | V         | P      | 127.0    | 15.0        |        |
| 2.490 | 3.0  | 32.8 | 29.0 | 4.6           | -35.6 | 0.0    | 0.0   | 30.8   | 54.0   | -23.2  | V         | A      | 127.0    | 15.0        |        |
| 3.550 | 3.0  | 47.6 | 31.9 | 5.7           | -34.8 | 0.0    | 0.0   | 50.5   | 74.0   | -23.5  | V         | P      | 108.0    | 153.0       |        |
| 3.550 | 3.0  | 36.1 | 31.9 | 5.7           | -34.8 | 0.0    | 0.0   | 39.0   | 54.0   | -15.0  | V         | A      | 108.0    | 153.0       |        |
| 3.550 | 3.0  | 44.1 | 31.9 | 5.7           | -34.8 | 0.0    | 0.0   | 47.0   | 74.0   | -27.0  | H         | P      | 98.0     | 95.0        |        |
| 3.550 | 3.0  | 32.8 | 31.9 | 5.7           | -34.8 | 0.0    | 0.0   | 35.7   | 54.0   | -18.3  | H         | A      | 98.0     | 95.0        |        |

Rev. 4.1.2.7

# 8.3.2. 40 MHz BANDWIDTH IN THE 2.4 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang Date: Project #: 11U13957 Varian Card Access Company:

Test Target:

Mode Oper:

Rx On, 2.4 GHz, HT40 Mode MC\$16, Mid Ch. 2437 MHz

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit 
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength

 CL
 Cable Loss
 HPF
 High Pass Filter
 Margin vs. Average Limit Margin vs. Peak Limit

| f     | Dist | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | AntHigh | Table Angle | Notes |
|-------|------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|---------|-------------|-------|
| GHz   | (m)  | dBuV | dB/m | đВ  | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ     | V/H       | P/A/QP | cm      | Degree      |       |
| 1.017 | 3.0  | 59.9 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 49.6   | 74.0   | -24.4  | V         | P      | 100.0   | 10.0        |       |
| 1.017 | 3.0  | 43.6 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 33.3   | 54.0   | -20.7  | V         | A      | 100.0   | 10.0        |       |
| 1.017 | 3.0  | 65.7 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 55.5   | 74.0   | -18.5  | H         | P      | 98.0    | 199.0       |       |
| 1.017 | 3.0  | 49.9 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 39.6   | 54.0   | -14.4  | H         | A      | 98.0    | 199.0       |       |
| 1.550 | 3.0  | 57.7 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 50.9   | 74.0   | -23.1  | н         | P      | 101.0   | -2.0        |       |
| 1.550 | 3.0  | 46.2 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 39.4   | 54.0   | -14.6  | Н         | A      | 101.0   | -2.0        |       |
| 1.550 | 3.0  | 54.9 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 48.1   | 74.0   | -25.9  | V         | P      | 100.0   | 9.0         |       |
| 1.550 | 3.0  | 44.6 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 37.8   | 54.0   | -16.2  | V         | A      | 100.0   | 9.0         |       |
| 2.500 | 3.0  | 51.1 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 49.2   | 74.0   | -24.8  | V         | P      | 100.0   | 18.0        |       |
| 2.500 | 3.0  | 32.8 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 30.8   | 54.0   | -23.2  | V         | A      | 100.0   | 18.0        |       |
| 2.500 | 3.0  | 54.6 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 52.6   | 74.0   | -21.4  | H         | P      | 98.0    | 23.0        |       |
| 2.500 | 3.0  | 34.4 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 32.5   | 54.0   | -21.5  | Н         | A      | 98.0    | 23.0        |       |
| 3.508 | 3.0  | 44.8 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 47.5   | 74.0   | -26.5  | Н         | P      | 101.0   | 23.0        |       |
| 3.508 | 3.0  | 32.5 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 35.2   | 54.0   | -18.8  | H         | A      | 101.0   | 23.0        |       |
| 3.508 | 3.0  | 47.3 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 49.9   | 74.0   | -24.1  | V         | P      | 109.0   | 174.0       |       |
| 3.508 | 3.0  | 35.3 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 38.0   | 54.0   | -16.0  | v         | A      | 109.0   | 174.0       |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: December 20, 2011

# 2.4GHz - FRACTAL ANTENNA; -6dBi

#### 8.3.3. 20 MHz BANDWIDTH IN THE 2.4 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang
Date: 09/26/11
Project #: 11U13957
Company: Varian Card Access

Test Target: Mode Oper:

Rx On, 2.4 GHz, HT20 Mode MCS16, Mid Ch. 2437 MHz

 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

| •     | Dist | Read | AF   | CL  | Ann   | D Corr | Elte | Com  | Limit  | Manrin        | Ant Pol | Det.   | Ant High | Table Angle | Notes |
|-------|------|------|------|-----|-------|--------|------|------|--------|---------------|---------|--------|----------|-------------|-------|
| GHz   | (m)  | dBuV | dB/m | dВ  | dB    | dB     |      |      | dBuV/m | -             | V/H     | P/A/QP | cm       | Degree      | notes |
| 1.550 | 3.0  | 54.8 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 48.0 | 74.0   | -26.0         | v       | P      | 98.0     | 270.0       |       |
| 1.550 | 3.0  | 43.4 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 36.6 | 54.0   | -17.4         | V       | A      | 98.0     | 270.0       |       |
| 1.550 | 3.0  | 60.6 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 53.8 | 74.0   | -20.2         | H       | P      | 100.0    | 38.0        |       |
| 1.550 | 3.0  | 49.4 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 42.6 | 54.0   | -11.4         | H       | A      | 100.0    | 38.0        |       |
| 2.490 | 3.0  | 44.7 | 29.0 | 4.6 | -35.6 | 0.0    | 0.0  | 42.7 | 74.0   | -31.3         | H       | P      | 192.0    | 6.0         |       |
| 2.490 | 3.0  | 29.6 | 29.0 | 4.6 | -35.6 | 0.0    | 0.0  | 27.6 | 54.0   | -26.4         | H       | A      | 192.0    | 6.0         |       |
| 2.490 | 3.0  | 51.6 | 29.0 | 4.6 | -35.6 | 0.0    | 0.0  | 49.6 | 74.0   | -24.4         | V       | P      | 98.0     | 146.0       |       |
| 2.490 | 3.0  | 32.7 | 29.0 | 4.6 | -35.6 | 0.0    | 0.0  | 30.7 | 54.0   | - <b>23.3</b> | V       | A      | 98.0     | 146.0       |       |
| 3.550 | 3.0  | 47.2 | 31.9 | 5.7 | -34.8 | 0.0    | 0.0  | 50.1 | 74.0   | -23.9         | V       | P      | 109.0    | 2.0         |       |
| 3.550 | 3.0  | 36.4 | 31.9 | 5.7 | -34.8 | 0.0    | 0.0  | 39.3 | 54.0   | -14.7         | V       | A      | 109.0    | 2.0         |       |
| 3.550 | 3.0  | 46.7 | 31.9 | 5.7 | -34.8 | 0.0    | 0.0  | 49.6 | 74.0   | -24.4         | H       | P      | 98.0     | 21.0        |       |
| 3.550 | 3.0  | 35.0 | 31.9 | 5.7 | -34.8 | 0.0    | 0.0  | 37.9 | 54.0   | -16.1         | H       | A      | 98.0     | 21.0        |       |

Rev. 4.1.2.7

# 8.3.4. 40 MHz BANDWIDTH IN THE 2.4 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang Date: 09/26/11 Project #: 11U13957 Varian Card Access Company:

Test Target:

Rx On, 2.4 GHz, HT40 Mode MC\$16, Mid Ch. 2437 MHz Mode Oper:

> Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

| f     | Dist | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant Pol | Det.   | AntHigh | Table Angle | Notes |
|-------|------|------|------|-----|-------|--------|------|--------|--------|--------|---------|--------|---------|-------------|-------|
| GHz   | (m)  | dBuV | dB/m | đВ  | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ     | V/H     | P/A/QP | cm      | Degree      |       |
| 1.017 | 3.0  | 58.7 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 48.4   | 74.0   | -25.6  | v       | P      | 98.0    | 9.0         |       |
| 1.017 | 3.0  | 42.5 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 32.3   | 54.0   | -21.7  | V       | A      | 98.0    | 9.0         |       |
| 1.017 | 3.0  | 65.0 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 54.7   | 74.0   | -19.3  | H       | P      | 107.0   | 299.0       |       |
| 1.017 | 3.0  | 52.2 | 24.7 | 2.8 | -37.8 | 0.0    | 0.0  | 41.9   | 54.0   | -12.1  | H       | A      | 107.0   | 299.0       |       |
| 1.550 | 3.0  | 61.1 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 54.3   | 74.0   | -19.7  | H       | P      | 98.0    | 39.0        |       |
| 1.550 | 3.0  | 50.6 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 43.8   | 54.0   | -10.2  | н       | A      | 98.0    | 39.0        |       |
| 1.550 | 3.0  | 57.1 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 50.3   | 74.0   | -23.7  | v       | P      | 98.0    | 270.0       |       |
| 1.550 | 3.0  | 46.3 | 26.7 | 3.5 | -37.0 | 0.0    | 0.0  | 39.5   | 54.0   | -14.5  | V       | A      | 98.0    | 270.0       |       |
| 2.500 | 3.0  | 52.2 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 50.2   | 74.0   | -23.8  | V       | P      | 101.0   | 146.0       |       |
| 2.500 | 3.0  | 33.5 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 31.6   | 54.0   | -22.4  | V       | A      | 101.0   | 146.0       |       |
| 2.500 | 3.0  | 53.0 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 51.0   | 74.0   | -23.0  | H       | P      | 98.0    | 356.0       |       |
| 2.500 | 3.0  | 33.9 | 29.1 | 4.6 | -35.6 | 0.0    | 0.0  | 32.0   | 54.0   | -22.0  | H       | A      | 98.0    | 356.0       |       |
| 3.508 | 3.0  | 46.4 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 49.0   | 74.0   | -25.0  | Н       | P      | 101.0   | 21.0        |       |
| 3.508 | 3.0  | 34.4 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 37.1   | 54.0   | -16.9  | Н       | A      | 101.0   | 21.0        |       |
| 3.508 | 3.0  | 43.6 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 46.2   | 74.0   | -27.8  | V       | P      | 98.0    | 2.0         |       |
| 3.508 | 3.0  | 31.6 | 31.8 | 5.7 | -34.8 | 0.0    | 0.0  | 34.3   | 54.0   | -19.7  | v       | A      | 98.0    | 2.0         |       |

DATE: December 20, 2011

IC: 9909A-AR5BXB112

Rev. 4.1.2.7

# 5.8GHz BAND - MONOPOLE ANTENNA; 4.5dBi

#### 8.3.5. 20 MHz BANDWIDTH IN THE 5.8 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang Date: 09/26/11 Project #: 11U13957 Varian Card Access Company:

Test Target: Mode Oper:

Rx On, 5.8 GHz, HT20 Mode MC\$16, Mid Ch. 5785 MHz

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength ⊗ 3 m

AF Antenna Factor Peak Calculated Peak Field Strength

CL Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

| f     | Dist | Read | AF   | CL  | Amp   | D Corr | Пtr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | AntHigh | Table Angle | Notes |
|-------|------|------|------|-----|-------|--------|-----|--------|--------|--------|-----------|--------|---------|-------------|-------|
| GHz   | (m)  | dBuV | dB/m | dВ  | dB    | dВ     | dВ  | dBuV/m | dBuV/m | dB     | V/H       | P/A/QP | cm      | Degree      |       |
| 1.000 | 3.0  | 60.5 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0 | 50.1   | 74.0   | -23.9  | V         | P      | 98.0    | 39.0        |       |
| 1.000 | 3.0  | 38.6 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0 | 28.2   | 54.0   | -25.8  | V         | A      | 98.0    | 39.0        |       |
| 1.000 | 3.0  | 65.7 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0 | 55.3   | 74.0   | -18.7  | H         | P      | 100.0   | 193.0       |       |
| 1.000 | 3.0  | 49.5 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0 | 39.1   | 54.0   | -14.9  | Н         | A      | 100.0   | 193.0       |       |
| 1.560 | 3.0  | 61.4 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0 | 54.6   | 74.0   | -19.4  | Н         | P      | 100.0   | 48.0        |       |
| 1.560 | 3.0  | 50.4 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0 | 43.7   | 54.0   | -10.3  | H         | A      | 100.0   | 48.0        |       |
| 1.560 | 3.0  | 54.3 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0 | 47.5   | 74.0   | -26.5  | V         | P      | 98.0    | 235.0       |       |
| 1.560 | 3.0  | 43.1 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0 | 36.4   | 54.0   | -17.6  | V         | A      | 98.0    | 235.0       |       |
| 3.613 | 3.0  | 47.1 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0 | 50.3   | 74.0   | -23.7  | V         | P      | 108.0   | 145.0       |       |
| 3.613 | 3.0  | 36.1 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0 | 39.2   | 54.0   | -14.8  | V         | A      | 108.0   | 145.0       |       |
| 3.613 | 3.0  | 45.7 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0 | 48.9   | 74.0   | -25.1  | Н         | P      | 98.0    | 94.0        |       |
| 3.613 | 3.0  | 34.5 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0 | 37.7   | 54.0   | -16.3  | H         | A      | 98.0    | 94.0        |       |
| 4.990 | 3.0  | 39.8 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0 | 46.7   | 74.0   | -27.3  | H         | P      | 101.0   | 336.0       |       |
| 4.990 | 3.0  | 24.1 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0 | 31.0   | 54.0   | -23.0  | H         | A      | 101.0   | 336.0       |       |
| 4.990 | 3.0  | 40.9 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0 | 47.8   | 74.0   | -26.2  | V         | P      | 98.0    | 16.0        |       |
| 4.990 | 3.0  | 24.7 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0 | 31.6   | 54.0   | -22.4  | v         | A      | 98.0    | 16.0        |       |

Rev. 4.1.2.7

# 8.3.6. 40 MHz BANDWIDTH IN THE 5.8 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang Date: Project #: 11U13957 Varian Card Access Company:

Test Target: Mode Oper:

Rx On, 5.8 GHz, HT40 Mode MCS16, Low Ch. 5755 MHz

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit 
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength

 CL
 Cable Loss
 HPF
 High Pass Filter
 Margin vs. Average Limit Margin vs. Peak Limit

| f     | Dist | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | AntHigh | Table Angle | Notes |
|-------|------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|---------|-------------|-------|
| GHz   | (m)  | dBuV | dB/m | dВ  | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ     | V/H       | P/A/QP | cm      | Degree      |       |
| 1.000 | 3.0  | 58.6 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 48.2   | 74.0   | -25.8  | v         | P      | 101.0   | 130.0       |       |
| 1.000 | 3.0  | 42.8 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 32.4   | 54.0   | -21.6  | V         | A      | 101.0   | 130.0       |       |
| 1.000 | 3.0  | 65.6 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 55.2   | 74.0   | -18.8  | H         | P      | 100.0   | 198.0       |       |
| 1.000 | 3.0  | 49.9 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 39.5   | 54.0   | -14.5  | H         | A      | 100.0   | 198.0       |       |
| 1.480 | 3.0  | 61.0 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 53.7   | 74.0   | -20.3  | H         | P      | 100.0   | 47.0        |       |
| 1.480 | 3.0  | 48.1 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 40.8   | 54.0   | -13.2  | H         | A      | 100.0   | 47.0        |       |
| 1.480 | 3.0  | 57.1 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 49.9   | 74.0   | -24.1  | V         | P      | 98.0    | 326.0       |       |
| 1.480 | 3.0  | 43.6 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 36.3   | 54.0   | -17.7  | V         | A      | 98.0    | 326.0       |       |
| 3.667 | 3.0  | 46.7 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 50.1   | 74.0   | -23.9  | V         | P      | 109.0   | 143.0       |       |
| 3.667 | 3.0  | 35.8 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 39.2   | 54.0   | -14.8  | V         | A      | 109.0   | 143.0       |       |
| 3.667 | 3.0  | 42.2 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 45.6   | 74.0   | -28.4  | H         | P      | 98.0    | 91.0        |       |
| 3.667 | 3.0  | 30.5 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 34.0   | 54.0   | -20.0  | Н         | A      | 98.0    | 91.0        |       |
| 5.000 | 3.0  | 36.3 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 43.2   | 74.0   | -30.8  | Н         | P      | 101.0   | 216.0       |       |
| 5.000 | 3.0  | 23.8 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 30.7   | 54.0   | -23.3  | H         | A      | 101.0   | 216.0       |       |
| 5.000 | 3.0  | 41.0 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 47.9   | 74.0   | -26.1  | V         | P      | 98.0    | 19.0        |       |
| 5.000 | 3.0  | 24.8 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 31.7   | 54.0   | -22.3  | v         | А      | 98.0    | 19.0        |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: December 20, 2011

# 5.8GHz BAND - FRACTAL ANTENNA; -1dBi

#### 8.3.7. 20 MHz BANDWIDTH IN THE 5.8 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang
Date: 09/26/11
Project #: 11U13957
Company: Varian Card Access

Test Target:
Mode Oper: Rx On, 5.8 GHz, HT20 Mode MC\$16, Mid Ch. 5785 MHz

 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

| f     | Dist | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin | Ant. Pol. | Det.   | AntHigh | Table Angle | Notes |
|-------|------|------|------|-----|-------|--------|------|--------|--------|--------|-----------|--------|---------|-------------|-------|
| GHz   | (m)  | dBuV | dB/m | dВ  | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ     | V/H       | P/A/QP | cm      | Degree      |       |
| 1.000 | 3.0  | 60.0 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 49.6   | 74.0   | -24.4  | v         | P      | 111.0   | 143.0       |       |
| 1.000 | 3.0  | 42.8 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 32.4   | 54.0   | -21.6  | V         | A      | 111.0   | 143.0       |       |
| 1.000 | 3.0  | 65.6 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 55.2   | 74.0   | -18.8  | H         | P      | 101.0   | 296.0       |       |
| 1.000 | 3.0  | 52.2 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 41.8   | 54.0   | -12.2  | H         | A      | 101.0   | 296.0       |       |
| 1.560 | 3.0  | 61.1 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0  | 54.3   | 74.0   | -19.7  | H         | P      | 100.0   | 41.0        |       |
| 1.560 | 3.0  | 50.2 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0  | 43.5   | 54.0   | -10.5  | H         | A      | 100.0   | 41.0        |       |
| 1.560 | 3.0  | 56.2 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0  | 49.5   | 74.0   | -24.5  | V         | P      | 98.0    | 270.0       |       |
| 1.560 | 3.0  | 45.2 | 26.8 | 3.5 | -37.0 | 0.0    | 0.0  | 38.4   | 54.0   | -15.6  | V         | A      | 98.0    | 270.0       |       |
| 3.613 | 3.0  | 46.3 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0  | 49.4   | 74.0   | -24.6  | V         | P      | 101.0   | 173.0       |       |
| 3.613 | 3.0  | 34.9 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0  | 38.0   | 54.0   | -16.0  | V         | A      | 101.0   | 173.0       |       |
| 3.613 | 3.0  | 43.2 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0  | 46.3   | 74.0   | -27.7  | H         | P      | 98.0    | 102.0       |       |
| 3.613 | 3.0  | 31.3 | 32.1 | 5.8 | -34.7 | 0.0    | 0.0  | 34.5   | 54.0   | -19.5  | H         | A      | 98.0    | 102.0       |       |
| 4.990 | 3.0  | 38.2 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 45.1   | 74.0   | -28.9  | H         | P      | 101.0   | 314.0       |       |
| 4.990 | 3.0  | 24.3 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 31.2   | 54.0   | -22.8  | H         | A      | 101.0   | 314.0       |       |
| 4.990 | 3.0  | 42.8 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 49.7   | 74.0   | -24.3  | v         | P      | 98.0    | 356.0       |       |
| 4.990 | 3.0  | 25.4 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 32.3   | 54.0   | -21.7  | V         | A      | 98.0    | 356.0       |       |

Rev. 4.1.2.7

# 8.3.8. 40 MHz BANDWIDTH IN THE 5.8 GHz BAND

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: William Zhuang Date: Project #: 11U13957 Varian Card Access Company:

Test Target: Mode Oper:

Rx On, 5.8 GHz, HT40 Mode MCS16, Low Ch. 5755 MHz

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit 
 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength

 CL
 Cable Loss
 HPF
 High Pass Filter
 Margin vs. Average Limit Margin vs. Peak Limit

| f     | Dist | Read | AF   | CL  | Amp   | D Corr | Fltr | Corr.  | Limit  | Margin         | Ant. Pol. | Det.   | AntHigh | Table Angle | Notes |
|-------|------|------|------|-----|-------|--------|------|--------|--------|----------------|-----------|--------|---------|-------------|-------|
| GHz   | (m)  | dBuV | dB/m | đВ  | dВ    | dВ     | dВ   | dBuV/m | dBuV/m | dВ             | V/H       | P/A/QP | cm      | Degree      |       |
| 1.000 | 3.0  | 59.8 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 49.4   | 74.0   | -24.6          | v         | P      | 101.0   | 144.0       |       |
| 1.000 | 3.0  | 40.5 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 30.1   | 54.0   | -23.9          | V         | A      | 101.0   | 144.0       |       |
| 1.000 | 3.0  | 65.0 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 54.6   | 74.0   | -19.4          | H         | P      | 116.0   | 290.0       |       |
| 1.000 | 3.0  | 52.1 | 24.6 | 2.8 | -37.8 | 0.0    | 0.0  | 41.7   | 54.0   | -12.3          | H         | A      | 116.0   | 290.0       |       |
| 1.480 | 3.0  | 59.9 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 52.6   | 74.0   | -21.4          | H         | P      | 100.0   | 200.0       |       |
| 1.480 | 3.0  | 46.1 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 38.8   | 54.0   | -15.2          | H         | A      | 100.0   | 200.0       |       |
| 1.480 | 3.0  | 58.7 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 51.5   | 74.0   | -22.5          | V         | P      | 98.0    | 318.0       |       |
| 1.480 | 3.0  | 45.4 | 26.4 | 3.4 | -37.1 | 0.0    | 0.0  | 38.1   | 54.0   | -15.9          | V         | A      | 98.0    | 318.0       |       |
| 3.667 | 3.0  | 47.0 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 50.4   | 74.0   | - <b>23.6</b>  | v         | P      | 106.0   | 356.0       |       |
| 3.667 | 3.0  | 36.6 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 40.0   | 54.0   | -14.0          | V         | A      | 106.0   | 356.0       |       |
| 3.667 | 3.0  | 43.3 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 46.7   | 74.0   | - <b>27.</b> 3 | H         | P      | 100.0   | 104.0       |       |
| 3.667 | 3.0  | 32.5 | 32.2 | 5.8 | -34.7 | 0.0    | 0.0  | 35.9   | 54.0   | -18.1          | H         | A      | 100.0   | 104.0       |       |
| 5.000 | 3.0  | 38.8 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 45.7   | 74.0   | - <b>28.</b> 3 | н         | P      | 99.0    | 319.0       |       |
| 5.000 | 3.0  | 24.2 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 31.1   | 54.0   | -22.9          | H         | A      | 99.0    | 319.0       |       |
| 5.000 | 3.0  | 41.4 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 48.4   | 74.0   | -25.6          | v         | P      | 98.0    | 155.0       |       |
| 5.000 | 3.0  | 24.9 | 34.0 | 6.9 | -34.0 | 0.0    | 0.0  | 31.8   | 54.0   | -22.2          | V         | A      | 98.0    | 155.0       |       |

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

#### 8.4. **WORST-CASE BELOW 1 GHz**

# SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



DATE: December 20, 2011

IC: 9909A-AR5BXB112

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.



DATE: December 20, 2011

REPORT NO: 11U13957-1C DATE: December 20, 2011 IC: 9909A-AR5BXB112 FCC ID: ZZ6-AR5BXB112

# **HORIZONTAL AND VERTICAL DATA**

| 2.4 & 5.8 GHz<br>5.785 GHz, 1 |                               |                  |                         |                          |                                    |                                            |                                                    |                              |                |          |                  |
|-------------------------------|-------------------------------|------------------|-------------------------|--------------------------|------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------|----------------|----------|------------------|
| Fractal Ante                  |                               |                  |                         |                          |                                    |                                            |                                                    |                              |                |          |                  |
| Test<br>Frequency<br>(MHz)    | Analyzer<br>Reading<br>(dBuV) | Detector<br>Type | Cable<br>Factor<br>(dB) | PreAmp<br>Factor<br>(dB) | Bilog<br>Antenna<br>Factor<br>(dB) | Corrected<br>Analyzer<br>Reading<br>(dBuV) | CFR 47<br>Part 15<br>Class B 3m<br>Limit<br>(dBuV) | Margin<br>to Limit<br>(dBuV) | Height<br>(cm) | Polarity | Azimuth<br>(Deg) |
| Range 1 30 - :                | L000MHz                       |                  |                         |                          |                                    |                                            |                                                    |                              |                |          |                  |
| 143.9808                      | 53.58                         | PK               | 1.3                     | -28.1                    | 13                                 | 39.78                                      | 43.5                                               | -3.72                        | 200            | Horz     |                  |
| 232.3741                      | 59.81                         | PK               | 1.6                     | -28.1                    | 11.9                               | 45.21                                      | 46                                                 | -0.79                        | 100            | Horz     |                  |
| 233.1345                      | 54.62                         | QP               | 1.6                     | -28.1                    | 11.9                               | 40.02                                      | 46                                                 | -5.98                        | 118            | Horz     | 194              |
| 299.8321                      | 51.48                         | PK               | 1.9                     | -28                      | 13.4                               | 38.78                                      | 46                                                 | -7.22                        | 100            | Horz     |                  |
| Range 2 30 - 1                |                               |                  |                         | •                        |                                    |                                            |                                                    |                              |                |          |                  |
| 143.9808                      | 52                            | PK               | 1.3                     | -28.1                    | 13                                 | 38.2                                       | 43.5                                               | -5.3                         | 100            | Vert     |                  |
| 232.9556                      | 54.38                         | PK               | 1.6                     | -28.1                    | 11.9                               | 39.78                                      | 46                                                 | -6.22                        | 200            | Vert     |                  |
| 499.6863                      | 43.93                         | PK               | 2.5                     | -27.7                    | 16.7                               | 35.43                                      | 46                                                 | -10.57                       | 100            | Vert     |                  |
| PK - Peak det                 | octor                         |                  |                         |                          |                                    |                                            |                                                    |                              |                |          |                  |
| QP - Quasi-P                  |                               | ır               |                         |                          |                                    |                                            |                                                    |                              |                |          |                  |
| Qi - Quasi-i                  | ak detecto                    |                  |                         |                          |                                    |                                            |                                                    |                              |                |          |                  |
|                               |                               |                  |                         |                          |                                    |                                            |                                                    |                              |                |          |                  |





DATE: December 20, 2011

# **HORIZONTAL AND VERTICAL DATA**

| 11U13957                   |                               |                  |                                 |                                      |                                                    |                                |                                                    |                              |                |                   |                   |
|----------------------------|-------------------------------|------------------|---------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------|----------------------------------------------------|------------------------------|----------------|-------------------|-------------------|
| Varian Inc.                |                               |                  |                                 |                                      |                                                    |                                |                                                    |                              |                |                   |                   |
| 2.4 & 5.8GH                | lz WLAN ra                    | dio module       | 9                               |                                      |                                                    |                                |                                                    |                              |                |                   |                   |
| 5.785GHz,1                 | 5.5dBm,9n                     | nbs              |                                 |                                      |                                                    |                                |                                                    |                              |                |                   |                   |
| w/Monopo                   | le Antenna                    | a                |                                 |                                      |                                                    |                                |                                                    |                              |                |                   |                   |
| Test<br>Frequency<br>(MHz) | Analyzer<br>Reading<br>(dBuV) | Detector<br>Type | 5m A<br>Cable<br>Factor<br>(dB) | 5m A T64<br>PreAmp<br>Factor<br>(dB) | 5m A<br>T122<br>Bilog<br>Antenna<br>Factor<br>(dB) | Corrected<br>Reading<br>(dBuV) | CFR 47<br>Part 15<br>Class B<br>3m Limit<br>(dBuV) | Margin<br>to Limit<br>(dBuV) | Height<br>(cm) | Polarity<br>(Deg) | Azimuth<br>[Degs] |
| Range 1 30 -               | 1000MHz                       |                  |                                 | •                                    |                                                    | !                              |                                                    |                              |                | •                 |                   |
| 143.9808                   | 58.01                         | PK               | 1.3                             | -28.1                                | 13                                                 | 44.21                          | 43.5                                               | 0.71                         | 200            | Horz              |                   |
| 144.0013                   | 57.19                         | QP               | 1.3                             | -28.1                                | 13                                                 | 43.39                          | 43.5                                               | -0.11                        | 232            | Horz              | 222               |
| 166.4668                   | 53.87                         | PK               | 1.4                             | -28.1                                | 11.1                                               | 38.27                          | 43.5                                               | -5.23                        | 200            | Horz              |                   |
| 233.1495                   | 56.58                         | PK               | 1.6                             | -28.1                                | 11.9                                               | 41.98                          | 46                                                 | -4.02                        | 100            | Horz              |                   |
| Range 2 30 -               | 1000MHz                       |                  |                                 |                                      |                                                    |                                |                                                    |                              |                |                   |                   |
| 143.9808                   | 54.24                         | PK               | 1.3                             | -28.1                                | 13                                                 | 40.44                          | 43.5                                               | -3.06                        | 100            | Vert              |                   |
| 165.8853                   | 49.81                         | PK               | 1.4                             | -28.1                                | 11.2                                               | 34.31                          | 43.5                                               | -9.19                        | 100            | Vert              |                   |
| 232.9556                   | 54.22                         | PK               | 1.6                             | -28.1                                | 11.9                                               | 39.62                          | 46                                                 | -6.38                        | 200            | Vert              |                   |
| PK - Peak de               | etector                       |                  |                                 |                                      |                                                    |                                |                                                    |                              |                |                   |                   |
| QP - Quasi-I               | Peak detec                    | tor              |                                 |                                      |                                                    |                                |                                                    |                              |                |                   |                   |

# 9. AC POWER LINE CONDUCTED EMISSIONS

# **LIMITS**

FCC §15.207 (a)

RSS-Gen 7.2.2

| Frequency of Emission (MHz) | Conducted L | imit (dBuV) |
|-----------------------------|-------------|-------------|
|                             | Quasi-peak  | Average     |
| 0.15-0.5                    | 66 to 56 °  | 56 to 46 *  |
| 0.5-5                       | 56          | 46          |
| 5-30                        | 60          | 50          |

Decreases with the logarithm of the frequency.

# **TEST PROCEDURE**

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

DATE: December 20, 2011 IC: 9909A-AR5BXB112 REPORT NO: 11U13957-1C DATE: December 20, 2011 IC: 9909A-AR5BXB112 FCC ID: ZZ6-AR5BXB112

# **RESULTS**

# **6 WORST EMISSIONS**

| COMPANY: Varia                                                                                                                                                                                                         | ın                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                           |                                                                                        |                                                                      |                                                                                                  |                                                                              |                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| PROJECT #: 11U13957                                                                                                                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                           |                                                                                        |                                                                      |                                                                                                  |                                                                              |                                                                                                |
|                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                           |                                                                                        |                                                                      |                                                                                                  |                                                                              |                                                                                                |
| Line-L1 .15 - 30MHz                                                                                                                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                           |                                                                                        |                                                                      |                                                                                                  |                                                                              |                                                                                                |
|                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Conducted                                 |                                                                                        | Class B                                                              |                                                                                                  | Class B                                                                      |                                                                                                |
|                                                                                                                                                                                                                        | Meter                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LISN                                 | Emission                                  |                                                                                        | QP                                                                   |                                                                                                  | Avg                                                                          |                                                                                                |
| Test Frequency                                                                                                                                                                                                         | Reading                                                                                                                                                                    | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [dB]                                 | Cable [dB]                                | dB[uVolts]                                                                             | Limit                                                                | Margin                                                                                           | Limit                                                                        | Margin                                                                                         |
| 0.231                                                                                                                                                                                                                  | 52.41                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 52.41                                                                                  | 62.4                                                                 | -9.99                                                                                            | 52.4                                                                         | 0.01                                                                                           |
| 0.231                                                                                                                                                                                                                  | 34.68                                                                                                                                                                      | Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 34.68                                                                                  | 62.4                                                                 | -27.72                                                                                           | 52.4                                                                         | -17.72                                                                                         |
| 0.3615                                                                                                                                                                                                                 | 45.62                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 45.62                                                                                  | 58.7                                                                 | -13.08                                                                                           | 48.7                                                                         | -3.08                                                                                          |
| 0.3615                                                                                                                                                                                                                 | 31.01                                                                                                                                                                      | Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 31.01                                                                                  | 58.7                                                                 | -27.69                                                                                           | 48.7                                                                         | -17.69                                                                                         |
| 0.4965                                                                                                                                                                                                                 | 42.08                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 42.08                                                                                  | 56.1                                                                 | -14.02                                                                                           | 46.1                                                                         | -4.02                                                                                          |
| 0.4965                                                                                                                                                                                                                 | 25.70                                                                                                                                                                      | Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 25.70                                                                                  | 56.1                                                                 | -30.40                                                                                           | 46.1                                                                         | -20.40                                                                                         |
| 0.987                                                                                                                                                                                                                  | 36.55                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 36.55                                                                                  | 56.0                                                                 | -19.45                                                                                           | 46.0                                                                         | -9.45                                                                                          |
| 0.987                                                                                                                                                                                                                  | 18.79                                                                                                                                                                      | Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 18.79                                                                                  | 56.0                                                                 | -37.21                                                                                           | 46.0                                                                         | -27.21                                                                                         |
| 4.3395                                                                                                                                                                                                                 | 33.89                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 33.89                                                                                  | 56.0                                                                 | -22.11                                                                                           | 46.0                                                                         | -12.11                                                                                         |
| 4.3395                                                                                                                                                                                                                 | 22.60                                                                                                                                                                      | Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 22.60                                                                                  | 56.0                                                                 | -33.40                                                                                           | 46.0                                                                         | -23.40                                                                                         |
| 15.8685                                                                                                                                                                                                                | 35.77                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 35.77                                                                                  | 60.0                                                                 | -24.23                                                                                           | 50.0                                                                         | -14.23                                                                                         |
| 15.8685                                                                                                                                                                                                                | 21.79                                                                                                                                                                      | Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 21.79                                                                                  | 60.0                                                                 | -38.21                                                                                           | 50.0                                                                         | -28.21                                                                                         |
|                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                           |                                                                                        |                                                                      |                                                                                                  |                                                                              |                                                                                                |
| Line-L2 .15 - 30M                                                                                                                                                                                                      | Hz                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                           |                                                                                        |                                                                      |                                                                                                  |                                                                              |                                                                                                |
|                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Conducted                                 |                                                                                        | Class B                                                              |                                                                                                  | Class B                                                                      |                                                                                                |
|                                                                                                                                                                                                                        | Meter                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LISN                                 | Emission                                  |                                                                                        | QP                                                                   |                                                                                                  | Avg                                                                          |                                                                                                |
| Test Frequency                                                                                                                                                                                                         | Reading                                                                                                                                                                    | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [dB]                                 | Cable [dB]                                | dB[uVolts]                                                                             | Limit                                                                | Margin                                                                                           | Limit                                                                        | Margin                                                                                         |
| 0.15                                                                                                                                                                                                                   | 58.31                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 58.31                                                                                  | 66.0                                                                 | -7.69                                                                                            | 56.0                                                                         | 2.31                                                                                           |
|                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                    | <u> </u>                                  | 36.31                                                                                  | 00.0                                                                 | -7.03                                                                                            | 56.0                                                                         | 2.31                                                                                           |
| 0.15                                                                                                                                                                                                                   | 33.77                                                                                                                                                                      | Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 33.77                                                                                  | 66.0                                                                 | -32.23                                                                                           | 56.0                                                                         | -22.23                                                                                         |
| 0.15<br>0.222                                                                                                                                                                                                          | 33.77<br>47.14                                                                                                                                                             | Av<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                           |                                                                                        |                                                                      |                                                                                                  |                                                                              |                                                                                                |
|                                                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                    | 0                                         | 33.77                                                                                  | 66.0                                                                 | -32.23                                                                                           | 56.0                                                                         | -22.23                                                                                         |
| 0.222                                                                                                                                                                                                                  | 47.14                                                                                                                                                                      | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                    | 0                                         | 33.77<br>47.14                                                                         | 66.0<br>62.7                                                         | -32.23<br>-15.56                                                                                 | 56.0<br>52.7                                                                 | -22.23<br>-5.56                                                                                |
| 0.222<br>0.222                                                                                                                                                                                                         | 47.14<br>32.00                                                                                                                                                             | PK<br>Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>0                          | 0<br>0<br>0                               | 33.77<br>47.14<br>32.00                                                                | 66.0<br>62.7<br>62.7                                                 | -32.23<br>-15.56<br>-30.70                                                                       | 56.0<br>52.7<br>52.7                                                         | -22.23<br>-5.56<br>-20.70                                                                      |
| 0.222<br>0.222<br>0.5775                                                                                                                                                                                               | 47.14<br>32.00<br>39.00                                                                                                                                                    | PK<br>Av<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0                          | 33.77<br>47.14<br>32.00<br>39.00                                                       | 66.0<br>62.7<br>62.7<br>56.0                                         | -32.23<br>-15.56<br>-30.70<br>-17.00                                                             | 56.0<br>52.7<br>52.7<br>46.0                                                 | -22.23<br>-5.56<br>-20.70<br>-7.00                                                             |
| 0.222<br>0.222<br>0.5775<br>0.5775                                                                                                                                                                                     | 47.14<br>32.00<br>39.00<br>18.93                                                                                                                                           | PK<br>Av<br>PK<br>Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0                          | 33.77<br>47.14<br>32.00<br>39.00<br>18.93                                              | 66.0<br>62.7<br>62.7<br>56.0<br>56.0                                 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07                                                   | 56.0<br>52.7<br>52.7<br>46.0<br>46.0                                         | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07                                                   |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915                                                                                                                                                                           | 47.14<br>32.00<br>39.00<br>18.93<br>35.96                                                                                                                                  | PK<br>Av<br>PK<br>Av<br>PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                     | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96                                     | 66.0<br>62.7<br>62.7<br>56.0<br>56.0                                 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04                                         | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0                                 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04                                         |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115                                                                                                                                                       | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94                                                                                                       | PK Av PK Av PK Av PK Av Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0                | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94          | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0         | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06           | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0                 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06           |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115                                                                                                                                                       | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08                                                                                                                | PK Av PK Av PK Av PK Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08                   | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0                 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92                     | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0                         | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92                     |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115                                                                                                                                                       | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94                                                                                                       | PK Av PK Av PK Av PK Av Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94          | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0         | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06           | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0                 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055                                                                                                                                  | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79<br>23.05                                                                                     | PK AV PK AV PK AV PK AV PK AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06           |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055                                                                                                                       | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79<br>23.05                                                                                     | PK AV PK AV PK AV PK AV PK AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055                                                                                                                       | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79<br>23.05                                                                                     | PK AV PK AV PK AV PK AV PK AV AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055<br>PK - Peak detect<br>QP - Quasi-Peak                                                                                | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79<br>23.05                                                                                     | PK Av PK Av PK Av PK Av PK Av Av PK Av CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055<br>PK - Peak detect<br>QP - Quasi-Peak<br>LnAv - Linear Ave                                                           | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79<br>23.05<br>or<br>detector<br>erage detector                                                 | PK Av PK Av PK Av PK Av PK Av Av PK Av CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055<br>PK - Peak detect<br>QP - Quasi-Peak<br>LnAv - Linear Ave<br>LgAv - Log Avera                                       | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79<br>23.05<br>or<br>detector<br>erage detector<br>tector                                       | PK Av PK Av PK Av PK Av PK Av Av CONTRACT CONTRA | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055<br>PK - Peak detect<br>QP - Quasi-Peak<br>LnAv - Linear Ave<br>LgAv - Log Avera<br>Av - Average de                    | 47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79<br>23.05<br>or<br>detector<br>erage detector<br>tector<br>rage detector                      | PK Av PK Av PK Av PK Av PK Av Av CONTRACT CONTRA | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055<br>PK - Peak detect<br>QP - Quasi-Peak<br>LnAv - Linear Ave<br>LgAv - Log Avera<br>Av - Average de<br>CAV - CISPR Ave | 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05  or detector erage detector tector rage detector                                                               | PK Av PK Av PK Av PK Av PK Av COT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |
| 0.222<br>0.222<br>0.5775<br>0.5775<br>0.9915<br>0.9915<br>4.4115<br>4.4115<br>17.6055<br>17.6055<br>PK - Peak detect<br>QP - Quasi-Peak<br>LnAv - Linear Ave<br>LgAv - Log Avera<br>Av - Average de<br>CAV - CISPR Ave | 47.14 32.00 39.00 18.93 35.96 19.16 34.08 23.94 36.79 23.05 or detector erage detector tector rage detector tector rage detector tector rage detector tector rage detector | PK Av PK Av PK Av PK Av PK Av COT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 33.77<br>47.14<br>32.00<br>39.00<br>18.93<br>35.96<br>19.16<br>34.08<br>23.94<br>36.79 | 66.0<br>62.7<br>62.7<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0<br>56.0 | -32.23<br>-15.56<br>-30.70<br>-17.00<br>-37.07<br>-20.04<br>-36.84<br>-21.92<br>-32.06<br>-23.21 | 56.0<br>52.7<br>52.7<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0<br>50.0 | -22.23<br>-5.56<br>-20.70<br>-7.00<br>-27.07<br>-10.04<br>-26.84<br>-11.92<br>-22.06<br>-13.21 |

# **LINE 1 RESULTS**



DATE: December 20, 2011 IC: 9909A-AR5BXB112

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.



DATE: December 20, 2011 IC: 9909A-AR5BXB112

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS.

#### **10**. MAXIMUM PERMISSIBLE EXPOSURE

#### **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency range<br>(MHz)                                | Electric field<br>strength<br>(V/m)              | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²)                | Averaging time<br>(minutes) |  |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------|-------------------------------------|------------------------------------------|-----------------------------|--|--|--|--|--|
| (A) Lim                                                 | (A) Limits for Occupational/Controlled Exposures |                                     |                                          |                             |  |  |  |  |  |
| 0.3-3.0<br>3.0-30<br>30-300<br>300-1500<br>1500-100,000 | 614<br>1842#<br>61.4                             | 1.63<br>4.89#<br>0.163              | *(100)<br>*(900/f²)<br>1.0<br>f/300<br>5 | 6<br>6<br>6<br>6            |  |  |  |  |  |
| (B) Limits                                              | for General Populati                             | on/Uncontrolled Exp                 | posure                                   |                             |  |  |  |  |  |
| 0.3–1.34                                                | 614<br>824/f                                     | 1.63<br>2.19/f                      | *(100)<br>*(180/f²)                      | 30<br>30                    |  |  |  |  |  |

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

| Frequency range<br>(MHz)           | Electric field<br>strength<br>(V/m) | Magnetic field<br>strength<br>(A/m) | Power density<br>(mW/cm²) | Averaging time<br>(minutes) |  |
|------------------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------------------|--|
| 30–300<br>300–1500<br>1500–100,000 | 27.5                                | 0.073                               | 0.2<br>f/1500<br>1.0      | 30<br>30<br>30              |  |

f = frequency in MHz

\* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

REPORT NO: 11U13957-1C FCC ID: ZZ6-AR5BXB112

### **IC RULES**

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: December 20, 2011

IC: 9909A-AR5BXB112

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

| 1<br>Frequency<br>(MHz) | 2<br>Electric Field<br>Strength; rms<br>(V/m) | 3<br>Magnetic Field<br>Strength; rms<br>(A/m) | 4<br>Power<br>Density<br>(W/m <sup>2</sup> ) | 5<br>Averaging<br>Time<br>(min) |
|-------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|---------------------------------|
| 0.003–1                 | 280                                           | 2.19                                          |                                              | 6                               |
| 1–10                    | 280/f                                         | 2.19/ <i>f</i>                                |                                              | 6                               |
| 10–30                   | 28                                            | 2.19/f                                        |                                              | 6                               |
| 30–300                  | 28                                            | 0.073                                         | 2*                                           | 6                               |
| 300–1 500               | 1.585 $f^{0.5}$                               | 0.0042f <sup>0.5</sup>                        | f/150                                        | 6                               |
| 1 500–15 000            | 61.4                                          | 0.163                                         | 10                                           | 6                               |
| 15 000–150 000          | 61.4                                          | 0.163                                         | 10                                           | 616 000 /f <sup>1.2</sup>       |
| 150 000–300 000         | 0.158f <sup>0.5</sup>                         | 4.21 x 10 <sup>-4</sup> f <sup>0.5</sup>      | 6.67 x 10 <sup>-5</sup> f                    | 616 000 /f <sup>1.2</sup>       |

<sup>\*</sup> Power density limit is applicable at frequencies greater than 100 MHz.

**Notes:** 1. Frequency, f, is in MHz.

2. A power density of 10 W/m<sup>2</sup> is equivalent to 1 mW/cm<sup>2</sup>.

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG). REPORT NO: 11U13957-1C FCC ID: ZZ6-AR5BXB112

#### **EQUATIONS**

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$ 

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$ 

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power \* Gain product (in linear units) of each transmitter.

Total EIRP = 
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

#### **LIMITS**

From FCC  $\S1.1310$  Table 1 (B), the maximum value of S = 1.0 mW/cm<sup>2</sup>

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

DATE: December 20, 2011

# **RESULTS**

(MPE distance equals 20 cm)

| Multiple c | Multiple chain or colocated transmitters |       |            |        |         |       |      |          |           |  |
|------------|------------------------------------------|-------|------------|--------|---------|-------|------|----------|-----------|--|
| Band       | Mode                                     | Chain | Separation | Output | Antenna | EIRP  | EIRP | IC Power | FCC Power |  |
|            |                                          | for   | Distance   | Power  | Gain    |       |      | Density  | Density   |  |
|            |                                          | MIMO  | (m)        | (dBm)  | (dBi)   | (dBm) | (W)  | (W/m^2)  | (mW/cm^2) |  |
| 2.4 GHz    | WLAN                                     | 1     |            | 14.20  | 4.00    | 18.20 | 0.07 |          |           |  |
| 2.4 GHz    | WLAN                                     | 2     |            | 14.20  | 4.00    | 18.20 | 0.07 |          |           |  |
| 2.4 GHz    | WLAN                                     | 3     |            | 14.20  | 4.00    | 18.20 | 0.07 |          |           |  |
|            | Combined                                 |       | 0.20       |        |         |       | 0.20 | 0.39     | 0.039     |  |

| Multiple o | Multiple chain or colocated transmitters |       |            |        |         |       |      |          |           |  |
|------------|------------------------------------------|-------|------------|--------|---------|-------|------|----------|-----------|--|
| Band       | Mode                                     | Chain | Separation | Output | Antenna | EIRP  | EIRP | IC Power | FCC Power |  |
|            |                                          | for   | Distance   | Power  | Gain    |       |      | Density  | Density   |  |
|            |                                          | МІМО  | (m)        | (dBm)  | (dBi)   | (dBm) | (W)  | (W/m^2)  | (mW/cm^2) |  |
| 5 GHz      | WLAN                                     | 1     |            | 15.50  | 4.50    | 20.00 | 0.10 |          |           |  |
| 5 GHz      | WLAN                                     | 2     |            | 15.50  | 4.50    | 20.00 | 0.10 |          |           |  |
| 5 GHz      | WLAN                                     | 3     |            | 15.50  | 4.50    | 20.00 | 0.10 |          |           |  |
|            | Combined                                 |       | 0.20       |        |         |       | 0.30 | 0.60     | 0.060     |  |