Heuristic Analysis

In the project we defined three different problems in classisical PDDM for the air cargo domain as discussed by Peter Norvig in his book on Artificial Intelligence. We apply several searh strategies, both uninformed and informed to find an optimal solution. The difference between the two approaches is that uninformed algorithms doesn't use any specific knowledge of the domain.

Next in the document we will discuss the performance of the search strategies applied, comparing them in terms of speed, optimality and memory usage.

Problem 1

Definition:

```
Init(At(C1, SFO) ∧ At(C2, JFK)

∧ At(P1, SFO) ∧ At(P2, JFK)

∧ Cargo(C1) ∧ Cargo(C2)

∧ Plane(P1) ∧ Plane(P2)

∧ Airport(JFK) ∧ Airport(SFO))
```

Goal(At(C1, JFK) \wedge At(C2, SFO))

Optimal path:

Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)

Search Strategy	Search Type	Plan Length	Time Elapsed	# Node Expanded	Goal Tests	Optimality
Uninformed	Breadth first search	6	0.0362	43	56	Yes
	Breadth first tree search	6	1.0640	1468	1459	Yes
	Depth first graph search	20	0.0195	21	22	No
	Depth limited search	50	0.1453	101	271	No
	Uniform cost search	6	0.0589	55	57	Yes
	Recursive best first search with h_1	6	3.2698	4229	4230	Yes
	Greedy best first graph search with h_1	6	0.0059	7	9	Yes
Informed	A*search with h_1	6	0.04253	55	57	Yes
	A*search with h_ignore_preconditions	6	0.05649	41	43	Yes
	A*search with h_pg_levelsum	6	0.6424	11	13	Yes

As depicted in the table above, in case of uninformed search algorithms, **BFS**, **GBFGS**, **RBFS** and **UCS** yield to optimal results. In terms of execution time GBFGS results to be the fastest, as well as the one with the least number of nodes expanded. Also BFS performs quire well. RBFS find the optimal path buti it has the highest number of nodes expanded. DFS find a solution very quickly, but the resulting plan is longer than necessary.

The heuristic planning was performed with: **h_1**, **h_ignore_preconditions** and **h_pg_levelsum**. All the heuristics find optimal plan for the first problem, h_1 was the quickest while h_pg_levelsum was the one with least number of nodes expanded.

Problem 2

Definition:

```
\begin{split} & \text{Init}(\text{At}(\text{C1, SFO}) \land \text{At}(\text{C2, JFK}) \ \land \text{At}(\text{C3, ATL}) \\ & \land \text{At}(\text{P1, SFO}) \land \text{At}(\text{P2, JFK}) \land \text{At}(\text{P3, ATL}) \\ & \land \text{Cargo}(\text{C1}) \land \text{Cargo}(\text{C2}) \ \land \text{Cargo}(\text{C3}) \\ & \land \text{Plane}(\text{P1}) \ \land \text{Plane}(\text{P2}) \ \land \text{Plane}(\text{P3}) \\ & \land \text{Airport}(\text{JFK}) \land \text{Airport}(\text{SFO}) \land \text{Airport}(\text{ATL})) \end{split}
```

Goal(At(C1, JFK) \wedge At(C2, SFO) \wedge At(C3, SFO))

Optimal path:

Load(C3, P3, ATL) Fly(P3, ATL, SF0) Unload(C3, P3, SF0) Load(C1, P1, SF0) Fly(P1, SF0, JFK) Unload(C1, P1, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SF0) Unload(C2, P2, SF0)

Search Strategy	Search Type	Plan Length	Time Elapsed	# Node Expanded	Goal Tests	Optimality
Uninformed	Breadth first search	9	14.9574	3343	4609	Yes
	Breadth first tree search	???	???	???	???	No
	Depth first graph search	619	4.0132	624	625	No
	Depth limited search	???	???	???	???	No
	Uniform cost search	9	13.1602	4849	4851	Yes
	Recursive best first search with h_1	???	???	???	???	No
	Greedy best first graph search with h_1	12	2.5814	966	968	No

Informed	A*search with h_1	9	13.0823	4849	4851	Yes
	A*search with h_ignore_preconditions	9	4.7573	1443	1445	Yes
	A*search with	9	51.8104	85	87	Yes
	h_pg_levelsum					

BFS and UCS yield optimal results. DFS is quicker, but the resulting plani s the longest among the uninfirmed search strategies. BFTS and DLS took more than 10 minutes and so they were stopped. Regarding informed search all of them yield optimal results: h_pg_levelsum is the one with least nodes expanded but h_1 and h_ignore_preconditions are better in terms of execution time.

Problem 3

Definition:

```
\begin{split} Init(At(C1,SFO) \wedge At(C2,JFK) \wedge At(C3,ATL) \wedge At(C4,ORD) \\ & \wedge At(P1,SFO) \wedge At(P2,JFK) \\ & \wedge Cargo(C1) \wedge Cargo(C2) \wedge Cargo(C3) \wedge Cargo(C4) \\ & \wedge Plane(P1) \wedge Plane(P2) \\ & \wedge Airport(JFK) \wedge Airport(SFO) \wedge Airport(ATL) \wedge Airport(ORD)) \end{split}
```

Goal(At(C1, JFK) \land At(C3, JFK) \land At(C2, SFO) \land At(C4, SFO))

Optimal path:

Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P2, ORD, SFO)

Unload(C4, P2, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C3, P1, JFK)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)

Search Strategy	Search Type	Plan Length	Time Elapsed	# Node Expanded	Goal Tests	Optimality
Uninformed	Breadth first search	12	14.9574	14463	18098	Yes
	Breadth first tree search	???	???	???	???	No
	Depth first graph search	392	2.0198	408	409	No
	Depth limited search	???	???	???	???	No
	Uniform cost search	12	55.6888	18235	18237	Yes
	Recursive best first search with h_1	???	???	???	???	No
	Greedy best first graph search with h_1	21	17.2825	5462	5464	No
Informed	A*search with h_1	12	56.3599	18235	18237	Yes
	A*search with h_ignore_preconditions	12	18.3654	4945	4947	Yes
	A*search with h_pg_levelsum	???	???	???	???	Yes

Even in this case BFS and UCS yield the best results among uninformed search strategies. Like for the problem N.2 BFTS and DLS took more than ten minutes. DFS is the best search strategy in of execution time but not in terms of plan length.

Among informed strategies h_ignore_preconditions performs the best in terms of time execution and number of nodes expanded. In this case h_pg_levelsum took more than ten minutes adnd were skipped.