Homework 4

Michael Pham

Fall 2023

Contents

1	When Does Linearity Occur	3
2	Linear Maps and Span	5
3	Maps and Linear Independence	6
4	Testing for Commutativity	8
5	Linear Maps and Dimensionality	ç

1 When Does Linearity Occur

Problem 1.1. Let $a,b \in \mathbb{R}$. Define $T: \mathscr{P}(\mathbb{R}) \to \mathbb{R}^2$ by

$$Tp := (2p(1) + 5p'(2) + ap(-1)p(3), \int_{-1}^{1} x^3 p(x) dx + b \sin p(0)).$$

Under what conditions on a, b is the map T linear?

Solution. We observe that for a map to be linear, it must be that for all $p, q \in \mathcal{P}(\mathbb{R})$, and $\alpha, \beta \in \mathbb{R}$, we have:

$$T(\alpha p + \beta q) = \alpha T(p) + \beta T(q).$$

Now, suppose we had some polynomial p such that p(1) = 1, p'(2) = 1, p(-1) = -1, p(3) = 3.

Similarly, suppose we had a polynomial q such that q(1) = 2, p'(2) = 1, p(-1) = 0, p(3) = 4.

Then, we observe the following for the first component of T(p+q):

$$T(p+q) = 2((p+q)(1)) + 5((p+q)'(2)) + a((p+q)(-1))((p+q)(3))$$

$$= 2(1+2) + 5(1+1) + a(-1+0)(3+4)$$

$$= 6+10-7a$$

$$= 16-7a.$$

However, we observe that T(p) + T(q) we have:

$$T(p) + T(q) = 2p(1) + 5p'(2) + ap(-1)p(3) + 2q(1) + 5q'(2) + aq(-1)q(3)$$

$$= 2(1) + 5(1) + a(-1)(3) + 2(2) + 5(1) + a(0)(4)$$

$$= 2 + 5 - 3a + 4 + 5 + 0a$$

$$= 16 - 3a$$

However, we see that for 16 - 7a = 16 - 3a, we must have that $4a = 0 \implies a = 0$.

Now, we consider some polynomial p such that $p(0) = \frac{\pi}{2}$.

Similarly, let us have some polynomial q such that $q(0) = \frac{\pi}{2}$.

For the second component of Tp, we know that $\int_{-1}^1 x^3 p(x) \mathrm{d}x$ isn't multiplied by b, so we can instead just look at the $b \sin p(0)$ portion of it. Then, we observe the following for part of the second component of T(p+q), we have that:

$$b\sin((p+q)(0)) = \sin(\pi)$$
$$= 0b$$

However, for T(p) + T(q), we see that we get:

$$b\sin(p(0)) + b\sin(q(0)) = b\sin(\frac{\pi}{2}) + b\sin(\frac{\pi}{2})$$
$$= b + b$$
$$= 2b$$

Then, we see that for 2b = 0, we must have that b = 0.

So, we know that if we want T to possibly be linear, we need a=b=0. Then, we have the following for Tp

$$Tp := (2p(1) + 5p'(2), \int_{-1}^{1} x^3 p(x) dx).$$

Now, we will confirm that this is, indeed, linear. To do so, we observe the following:

$$T(\alpha p + \beta q) = \left(2((\alpha p + \beta q)(1)) + 5((\alpha p + \beta q)'(2)), \int_{-1}^{1} x^{3}((\alpha p + \beta q)(x)) dx\right)$$

$$= \left(2(\alpha p(1) + \beta q(1)) + 5(\alpha p'(2) + \beta q'(2)), \int_{-1}^{1} x^{3}(\alpha p(x) + \beta q(x)) dx\right)$$

$$= \left(2\alpha p(1) + 2\beta q(1) + 5\alpha p'(2) + 5\beta q'(2), \int_{-1}^{1} x^{3}\alpha p(x) + x^{3}\beta q(x) dx\right)$$

$$= \left((2\alpha p(1) + 5\alpha p'(2)) + (2\beta q(1) + 5\beta q'(2)), \int_{-1}^{1} x^{3}\alpha p(x) dx + \int_{-1}^{1} x^{3}\beta q(x) dx\right)$$

$$= \left(2\alpha p(1) + 5\alpha p'(2), \int_{-1}^{1} x^{3}\alpha p(x) dx\right) + \left(2\beta q(1) + 5\beta q'(2), \int_{-1}^{1} x^{3}\beta q(x) dx\right)$$

$$= \left(\alpha(2p(1) + 5p'(2)), \alpha \int_{-1}^{1} x^{3}p(x) dx\right) + \left(\beta(2q(1) + 5q'(2)), \beta \int_{-1}^{1} x^{3}q(x) dx\right)$$

$$= \alpha \left(2p(1) + 5p'(2), \int_{-1}^{1} x^{3}p(x) dx\right) + \beta \left(2q(1) + 5q'(2), \int_{-1}^{1} x^{3}q(x) dx\right)$$

$$= \alpha Tp + \beta Tq.$$

Thus, we see that since $T(\alpha p + \beta q) = \alpha T p + \beta T q$ for a = b = 0, then it follows that T is a linear map.

2 Linear Maps and Span

Problem 2.1. Suppose $T \in \mathcal{L}(V,W), v_1,\ldots,v_w \in V$ and the list $Tv_1,\ldots Tv_m$ spans W. Prove or disprove that the list v_1,\ldots,v_m spans V.

Solution. We shall disprove this statement.

Let us consider the vector spaces $V=\mathbb{R}^3$ and $W=\mathbb{R}^2$ over the field $\mathbb{F}=\mathbb{R}$.

Then, let us consider the following linear map T which sends any vector (a,b,c) in V to the vector (a,b) in W

To verify that T is indeed linear, we observe that for vectors $v_1 \coloneqq (a,b,c), v_2 \coloneqq (d,e,f) \in V$, along with scalars $\alpha, \beta \in \mathbb{R}$, we have:

$$T(\alpha v_1 + \beta v_2) = T(\alpha(a, b, c) + \beta(d, e, f))$$

$$= T((\alpha a, \alpha b, \alpha c) + (\beta d, \beta e, \beta f))$$

$$= T((\alpha a + \beta d, \alpha b + \beta e, \alpha c + \beta f))$$

$$= (\alpha a + \beta d, \alpha b + \beta e)$$

$$\alpha T(v_1) + \beta T(v_2) = \alpha T((a, b, c)) + \beta T((d, e, f))$$

$$= \alpha(a, b) + \beta(d, e)$$

$$= (\alpha a, \alpha b) + (\beta d, \beta e)$$

$$= (\alpha a + \beta d, \alpha b + \beta e)$$

Therefore, since $T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2)$, we observe that T is indeed a linear map.

Next, let us consider the following vectors in V:

Then, applying T on these vectors, we get:

We observe that since these two vectors Tv_1, Tv_2 are the canonical basis for \mathbb{R}^2 , it follows that they span W. However, we observe that the list v_1, v_2 does not span V, as a spanning list for V must be at least length 3.

3 Maps and Linear Independence

Problem 3.1. Let $V = \mathcal{P}_2(\mathbb{R}), W = \mathbb{R}$. Are the maps

$$T_1: f \mapsto f(0), \quad T_2: f \mapsto f'(1), \quad T_3: f \mapsto \int_0^1 f(x) dx$$

in $\mathcal{L}(V, W)$? Are they linearly independent?

Solution. First, we will test whether $T_1, T_2, T_3 \in \mathcal{L}(V, W)$. Suppose we have $p, q \in \mathcal{P}_2(\mathbb{R})$, and $\alpha, \beta \in \mathbb{R}$. Then, we observe the following:

$$T_1(\alpha p + \beta q) = (\alpha p + \beta q)(0)$$

$$= \alpha p(0) + \beta q(0)$$

$$= \alpha T_1 p + \beta T_1 q$$

$$T_{2}(\alpha p + \beta q) = (\alpha p + \beta q)'(1)$$

$$= \alpha p'(1) + \beta q'(1)$$

$$= \alpha T_{2}p + \beta T_{2}q$$

$$T_{3}(\alpha p + \beta q) = \int_{0}^{1} (\alpha p + \beta q)(x) dx$$

$$= \int_{0}^{1} \alpha p(x) + \beta q(x) dx$$

$$= \int_{0}^{1} \alpha p(x) dx + \int_{0}^{1} \beta q(x) dx$$

$$= \alpha \int_{0}^{1} p(x) dx + \beta \int_{0}^{1} q(x) dx$$

$$= \alpha T_{3}p + \beta T_{3}q$$

Now, we want to prove linear independence. We observe that for linear independence to hold, only the trivial solution satisfies the following equation:

$$a_1T_1 + a_2T_2 + a_3T_3 = T_0$$
$$(a_1T_1 + a_2T_2 + a_3T_3)(p) = T_0(p)$$
$$= 0.$$

where T_0 is the linear map such that for all $p \in V$, we have $T_0(p) = 0$.

To do this, let us first consider $p_1 = 1$. Applying the different transformations, we get:

$$T_1(p_1) = 1$$

 $T_2(p_1) = 0$
 $T_3(p_1) = 1$

Then, putting p_1 into our equation we get $a_1 + a_3 = 0$.

Next, consider $p_2 = 2x$. We see that

$$T_1(p_2) = 0$$

 $T_2(p_2) = 2$
 $T_3(p_2) = 1$

Thus, putting p_2 into our equation yields us $2a_2 + a_3 = 0$.

Finally, for $p_3 = 3x^2$, we observe that

$$T_1(p_3) = 0$$

$$T_2(p_3) = 6$$

$$T_3(p_3) = 1$$

So, putting p_3 into our equation yields us $6a_2+a_3=0$.

Then from here, we can construct the following system of linear equations:

$$a_1 + a_3 = 0$$

$$2a_2 + a_3 = 0$$

$$6a_2 + a_3 = 0$$

$$4a_2 = 0$$

$$a_2 = 0$$

$$2a_2 + a_3 = 0$$

$$2(0) + a_3 = 0$$

$$a_3 = 0$$

$$a_1 + a_3 = 0$$

$$a_1 + 0 = 0$$

$$a_1 = 0$$

Thus, we see that since $a_1=a_2=a_3=0$, it follows then that T_1,T_2,T_3 are linearly independent.

4 Testing for Commutativity

Problem 4.1. Suppose that V is a vector space and $S, T \in \mathcal{L}(V, V)$ are such that

range $S \subset \text{null } T$.

Prove or disprove that ST = TS = 0.

Solution. We first note that, by definition, we have that $\operatorname{null} T = \{v \in V : Tv = 0\}$, and $\operatorname{range} S = \{Sv : v \in V\}$.

Then, from these definitions, we observe that because range $S \subset \operatorname{null} T$, then this implies that every vector in the form of Sv, for $v \in V$, gets mapped to 0 by T. In other words, we have that TS(v) = T(Sv) = 0.

Now, we shall show that it is possible to have $ST \neq TS = 0$. To do this, let us first consider the vector space $V = \mathbb{R}^2$. Now, we recall that a linear map between two finite-dimensional vector spaces can be represented with a matrix. So, let us consider some linear map T defined by:

$$T \coloneqq \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

Then, we want to find some linear map S such that TS=0. In other words, we have:

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-c & b-d \\ a-c & b-d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

With this in mind, we see that we have the following system of equations:

$$a - c = 0$$

$$b - d = 0$$

Thus, a = c and b = d. Then, we can let a = c = 2, and b = d = 3. This then yields us the following:

$$S := \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$$

We then observe:

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 2-2 & 3-3 \\ 2-2 & 3-3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

However, we see that

$$\begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2+3 & -2+-3 \\ 2+3 & -2+-3 \end{bmatrix} = \begin{bmatrix} 5 & -5 \\ 5 & -5 \end{bmatrix}$$

Therefore, we see that while TS=0, we have that $ST\neq 0$.

5 Linear Maps and Dimensionality

Problem 5.1. Suppose V is a nonzero finite-dimensional vector space, and $\mathcal{L}(V,W)$ is finite-dimensional for some vector space W. Prove or disprove that W is finite-dimensional.

Solution. Let us suppose for the sake of contradiction that W is infinite-dimensional.

As W is infinite-dimensional, then we have infinitely many linearly independent vectors $w_1, w_2, \ldots, w_n, \ldots$

Now, let us consider some vector space V , where $\dim(V)=n>0$. We now consider some basis $\{v_1,\ldots,v_n\}$ of V.

Now, let us define some linear map T_i to be as follows:

$$T_i(v_j) = \begin{cases} w_i, & j = 1\\ 0, & 2 \le j \le n \end{cases}$$

We observe then that each T_i maps v_1 to a vector w_i . Now, we will show that $T_1, T_2, \dots, T_n, \dots$ is also linearly independent. To do this, we observe the following:

$$a_1T_1(v_1) + a_2T_2(v_1) + \dots + a_nT_n(v_1) + \dots = 0$$

 $a_1w_1 + a_2w_2 + \dots + a_nw_n + \dots = 0$

And since $w_1, w_2, \ldots, w_n, \ldots$ is linearly independent, it follows then that $a_1 = a_2 = \cdots = a_n = \cdots = 0$.

So, we see that T_1, \ldots, T_n, \ldots is linearly independent.

It follows then that since $T_1, T_2, \ldots, T_n, \ldots \subset \mathcal{L}(V, W)$, then $\mathcal{L}(V, W)$ must be infinite-dimensional. However, this is a contradiction as we said that $\mathcal{L}(V, W)$ is finite-dimensional+.

Therefore, we see that W must be finite-dimensional.