		1	1					
Reg. No.					111	14		

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18CSE389T - FUZZY LOGIC AND ITS APPLICATIONS

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

(i) (ii)	Part - A should be answered in ON over to hall invigilator at the end of Part - B & Part - C should be answered.	40 th minute		set shour	u ve	пал	ICI
Time: 3	hours			Max. N	/lark	s: 1	00
				Marks	BL	со	PO
	PART – A (20						
	Answer AL			1	1	1	1
1.	Which of the following logic is a	1 10III 01 1	Many valued logic				
	(A) Two valued logic	` '	Binary set logic				
	(C) Crisp set logic	(D)	Billary set logic				
2	The values of set membership is	renresente	ed by	1	1	1	1
۷.	(A) Discrete set	(B)	Degree of truth				
	(C) Probabilities		Both degree of truth an	d			
	(0) 110000		probabilities				
					1	1	1
3.	The value $\mu_A(x) = 1$ is			1	1	1	1
	(A) Core	` '	Support				
	(C) Boundary	(D)	Support and boundary				
				1	1	1	1
4.	The relation A is			•	-	_	
	1 0.2 0.3						
	$A = \begin{bmatrix} 0.3 & 1 & 0.4 \end{bmatrix}$						
	0.2 0.2 1						
	(A) Symmetric	(B)	Transitive				
	(C) Reflexive		Reflexive and symmetric	*			
	(0)				•	•	
5.	Select correct answer			1	2	2	1
	Statement 1 : Divisive clustering	g belongs 1	to hierarchical clustering				
	Statement 2: A cluster data poin	nt cannot b	e a data point of other clusters	***			
	(A) Statement 1 and statement	ent 2 (B)	Statement 1 and statement 2 a	16			
	are true	and (D)	false Statement 1 is false as	nd			
	(C) Statement 1 is true statement 2 is false	and (D)	statement 2 is true	.i.u			
	statement 2 is raise		Statement 2 is true				
6	. Which of the following method	is used for	r recommendation system?	1	2	2	2
	(i) Classification	(ii	i) Clustering				
	(iii) Reinforcement learning	ng (i	v) Regression				
	(A) (i) and (ii)	(B)	(ii) and (iii)				
	(C) (i), (ii) and (iv)	(D)	(i) and (iv)				

Note:

7	. To	handle noise in data regression fir	nds tl	ne	1	1	2	1
	(A) (C)	Best fit line	(B)	Unfit line Overfit line		_		
8	. Bac	k propagation is		W. 7	1	1	2	
		Curvy function	(B)	through network to allow	1	1	2	J
	(C)	It adjust input	(D)	weights to be adjusted Transmission of signal				
9.	Ass	ume a data point (DP1) lies on ter is called	both	cluster C_1 and C_2 . This type of	1	1	3	1
	(A)	Hard cluster	(B)	Soft cluster				
	(C)	Normal cluster	٠,,	Multi cluster				
10.	Whi	ch of the following cluster identif	fies e	llipsoid cluster?	1	1	3	1
	(A)	K-means cluster		DBscan cluster				-
	(C)	Fuzzy C-means cluster		Gustafson Kessel cluster				
11.	Whi	ch of the following algorithm is u	sed t	o find the line sooment	1	1	3	1
	(A)	Adaptive fuzzy clustering	(R)	Fuzzy k mong elystering	•	•	,	1
				Fuzzy k-means clustering Type clustering				
12	C 1		` /	,1 · · · · · · · · · · · · · · · · · · ·				
12.		ose the correct option			1	1	3	1
	(i) (ii	0	.1	1				
	. `	(1) 1 (11)						
				(i) and (ii) are false				
	(C)	(i) is true and (ii) is false	(D)	(i) is false and (ii) are true				
13.	The	rule that shifts the focus away from	m the	e worst case into the best case	1	1	4	1
	(A)	Union		Intersection				
	(C)			Product				
14.	Whic	ch function in input case returns	the i	nteger in the range zero through	1	2	4	1
	ncias	ses-1 that signifies the chose ncla	ss					
		Reduce()	(B)	Merge ()				
	(C)	Classify ()	(D)	Cluster ()				
15.	The	relationship between ou	tput	and input is an internet property	1	1	4	1
	or ruz	zzy system.						
				Coupling relationship				
	(C)	Addictive relationship	(D)	Monotonic relationship				
16.	Whic	h of the following methods best f	it the	data in logistic regression?	1	1	4	1
	(A)	Least square error	(B)	Maximum linkelihood				
	(C)	Jacaard distance	(D)	Both (A) and (B)				
l7.	What	is odds ratio?			1	1	5	1
	(A)	Probability of an event ((B)	Probability of an event not	•	1	J	1
		occurring		occurring				
			(D)	Probability of an event not occurring to occurring				

	12	In ANFIS the output of layer 3 is	1	2	5	2
	10.	(A) Binary value (B) Normalized firing strength (C) Defuzzified value (D) Consequent parameter			2	
			1	1	5	1
	19.	RBFN stands for (A) Radial basis function network (C) Radial bias function network (D) Radial bias frequency network				
	20.	In conventional fuzzy inference system the number of rules is determined	1	2	5	2
		by (A) Previous analysis (B) Trial and error method (C) Model analysis method (D) Target system model				
		PART – B (5 \times 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	CO	PO
	21.	Find the max-max composition of the given fuzzy set $ \underline{A} = \left\{ \frac{1.0}{x_1} + \frac{0.3}{x_2} + \frac{0.4}{x_3} + \frac{0.8}{x_4} \right\}, \qquad \underline{B} = \left\{ \frac{0.8}{y_1} + \frac{0.7}{y_2} + \frac{0.2}{y_3} + \frac{0.6}{y_4} \right\}, $ $ \underline{C} = \left\{ \frac{0.2}{z_1} + \frac{0.1}{z_2} + \frac{0.5}{z_3} + \frac{0.7}{z_4} \right\}, $ $ \text{Where, } R = A \times B, S = B \times C $	4	4	1	2
	22.	Explain crisp logic and fuzzy logic, give real-life example for each.	4	3	1	1
	23.	What is machine learning? List and explain its types.	4	2	2	_ 1
	24.	Explain about perceptron with an example.	4	1	2	1
	25.	Compare soft cluster and hard cluster.	4	2	3	1
	26.	Which rule is more suitable for information discard? Write it briefly.	4	3	4	2
	27.	Explain the uses of ANFIS.		1	5	1
		PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	co	PO
2	8. a.i.	What are all the features of membership function? Explain it with neat diagram.	6	4	1	1
	ii.	Explain the LAMBDA-cut method of defuzzification of crisp sets. Give example.	6	2	1	1
		(OR)	12	3	1	2
	b.	Explain in detail about the composition method with example.	12	3	1	2

29. a. Find the cluster for following data point using single link technique. Use 12 4 2 4 Euclidean distance and draw a dendrogram.

	Х	у
p ₁	0.40	0.53
p ₂	0.22	0.38
p ₃	0.08	0.41
p ₄	0.45	0.30

(OR)

b .]	Explain about K-means clustering discuss it merits and demerits.	12	2	2	4
--------------	--	----	---	---	---

30. a. What are all the merits of fuzzy based clustering? Compare it with normal 12 4 3 clustering algorithm.

(OR)

- b. Explain in detail about any two soft clusters which detect ellipsoid clusters. 12 4 3
- 31. a. Discus intersection and union rules required by a component model for building a Neuro fuzzy system.

(OR)

- b.i. Maximizing the fuzzy integral results in positive (or) negative way? What 8 4 4 condition is used to measure it?
- ii. Define the pairwise coupling and writes its importance.
- 32. a. Explain the layers of ANFIS in detail with neat diagram.

(OR)

- b.i. What is hybrid algorithm? Explain it.
 - ii. The product of the output of two fuzzy inference is expressed by which 6 4 6 algebric closure? Explain it.

* * * * *

. 2