Линейная алгебра и геометрия

Slava Boben

September 9, 2019

Содержание

1	Лев	кция 1	2		
	1.1	Общая информация	2		
		1.1.1 Контакты	2		
		1.1.2 О дисциплине	2		
		1.1.3 Оценка	2		
		1.1.4 Содержание курса	2		
	1.2	Матрицы	2		
		1.2.1 Операции над матрицами	3		
		$1.2.2$ \mathbb{R}^n	3		
		1.2.3 Транспонирование	3		
		1.2.4 Умножение матриц	4		
2	Леъ	кция 2	4		
-	2.1	Сумма	4		
	2.2	Умножение матриц	4		
	2.3	Системы линейных уравнений	6		
3	Лекция 3				
	3.1	Как решить СЛУ?	7		
		3.1.1 Элементарные преобразования СЛУ и её расширенная матрица	7		
	3.2	Ступенчатые матрицы	8		
	3.3	Применение элементарных преобразований СЛУ к матрицам	6		
4	Me	тод Гаусса решения СЛУ (метод исключения неизвестных)	10		
-	4.1		10		
	4.2		11		
	4.3		11		
	1.0	That printing production is a contract of the			
		4 3 1 Twn (T)	11		
	4.4		11 12		

1 Лекция 1

1.1 Общая информация

1.1.1 Контакты

Авдеев Роман Сергеевич

- suselr@yandex.ru
- ravdeev@hse.ru

1.1.2 О дисциплине

1 - 4 модули

Письменный экзамен: 2, 4 модули

1.1.3 Оценка

- 1. Экзамен
- 2. Коллоквиум
- 3. Контрольная работа
- 4. Больше ДЗ
- 5. Работа на семинарах
- 6. Бонус Задачи из листков

$$O_{\rm Итог} = \min(10, {\rm Округлениe}(0.4*O_{\rm Экз} + 0.22*O_{\rm Колл} + 0.16*O_{\rm KP} + 0.16*O_{\rm ДЗ} + 0.08*O_{\rm Cem} + 0.08*O_{\rm Л}), 10)$$

Округление
$$(x) = [x]$$

1.1.4 Содержание курса

- 1. Начало алгебры 9 10 занятий
 - Матрицы
 - Системы линейных уравнений
 - Определители
 - Комплексные числа
- 2. Собственно линейная алгебра
 - Вектороное пространство

1.2 Матрицы

Определение 1. Матрица размера $n \times m$ — это прямоугольная таблица высоты m и ширины n

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 $a_i j$ – элемент на пересечении і-й строки и ј-го столбца

Краткая запись – $A = (a_{ij})$

Множество всех матриц размера $m \times n$ с коэффициентами из \mathbb{R} (множество всех действительных чисел) — $\mathrm{Mat}_{n * m}(\mathbb{R})$ или $\mathrm{Mat}_{n * m}$

Определение 2. Две матрицы $A \in \mathrm{Mat}_{n \times m}$ и $B \in \mathrm{Mat}_{p \times q}$ называются *равными*, если m = p, n = q, и соответствующие элементы равны

2

Пример.
$$\begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \end{pmatrix} \neq \begin{pmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{pmatrix}$$

Операции над матрицами

 $A, B \in \operatorname{Mat}_{m * n}$

- $Cymma\ A + B := (a_{ij} + b_{ij})$
- Произведение на скаляр $\alpha \in \mathbb{R} \implies \lambda A := (\lambda a_{ij})$

Свойства суммы и произведения на скаляр

 $\forall A, B, C \in \operatorname{Mat}_{m * n} \forall \lambda, \mu \in \mathbb{R}$

- (1) A + B = B + A (коммутативность)
- (2) (A + B) + C = A + (B + C) (ассоциативность)

(3)
$$A + 0 = 0 + A = A$$
, где $0 = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$

(4) A + (-A) = 0

-A — Противоположная матрица

- (5) $(\lambda + \mu)A = \lambda A + \mu A$
- (6) $\lambda(A+B) = \lambda A + \lambda B$
- (7) $\lambda(\mu A) = \lambda \mu A$
- (8) 1A = A

Упраженение. Доказать эти свойства

Примечание. Из свойств (1)-(8) следует, что $\mathrm{Mat}_{n*m}(\mathbb{R})$ является векторным пространством над \mathbb{R}

1.2.2

$$\mathbb{R}^n \coloneqq \{(x_1, \dots, x_n) \mid x_i \in \mathbb{R} \ \forall i = 1, \dots, n\}$$

 $\mathbb{R}^1 = \mathbb{R}$ — числовая прямая

$$\mathbb{R}^1 = \mathbb{R}$$
 — числовая прямая

$$\mathbb{R}^2$$
 – плоскость

$$\mathbb{R}^3$$
 — трехмерное пространство

Договоримся отождествлять \mathbb{R}^n со столбцами высоты n

Договоримся отождествлять
$$\mathbb{R}^n$$
 со стол $(x_1,\ldots,x_n)\leftrightarrow\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$ — "вектор столбец" $\mathbb{R}^n\leftrightarrow\mathrm{Mat}_{n*m}(\mathbb{R})$

$$\mathbb{R}^n \leftrightarrow \mathrm{Mat}_{n*m}(\mathbb{R})$$

$$\left[x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n \right] \Longrightarrow \left[x = y \iff x_i = y_i \forall i\right]$$

$$x + y \coloneqq \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$\lambda \in \mathbb{R} \implies \lambda x_i := (\lambda x_1, \dots)$$

1.2.3 Транспонирование

$$A \in \operatorname{Mat}_{m * n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \rightsquigarrow A^T \in \operatorname{Mat}_{n * m} \coloneqq \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

3

 A^T — Транспонированная матрица

Свойства:

(1)
$$(A^T)^T = A$$

(1)
$$(A^T)^T = A$$

(2) $(A + B)^T = A^T + B^T$
(3) $(\lambda A)^T = \lambda A^T$

(3)
$$(\lambda A)^T = \lambda A^T$$

Пример.
$$(x_1 \ldots x_n)^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

1.2.4 Умножение матриц

$$A = (a_{ij})$$
 $A_{(i)} - i$ -я строка матрицы A $A^{(j)} - j$ -й столбец матрицы A

(1) Частный случай: Произведение строки на столбец одинаковой длинны

$$\underbrace{(x_1, \dots, x_n)}_{1 \times n} \underbrace{\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}}_{n \times 1} = x_1 * y_1 + \dots + x_n * y_n$$

(2) A - матрица размера m*n

B - матрица размера n * p

Кол-во строк матрицы A равно кол-ву столбцов матрицы B — условие согласованности матриц $AB \coloneqq C \in \operatorname{Mat}_{m*p},$ где $C_{ij} = A_{(i)}B^{(j)}$

Пример.
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} (x_1 \dots x_n) \coloneqq \begin{pmatrix} x_1y_1 & x_2y_1 & \dots & x_ny_1 \\ x_1y_2 & x_2y_2 & \dots & x_ny_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1y_n & x_2y_m & \dots & x_ny_m \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 0 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 * 2 + 0 * 0 + 2 * 1 & 1 * (-1) + 0 * 5 + 2 * 1 \\ 0 * 2 + (-1) * 0 + 3 * 1 & 0 * (-1) + (-1) * 5 + 3 * 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & -2 \end{pmatrix}$$

2 Лекция 2

2.1 Сумма

$$S_p, S_{p+1}, \dots, S_q$$
 — набор чисел $\sum_{i=p}^q S_i \coloneqq S_p + S_{p+1} + \dots + S_q$ — сумма по i от p до q $\sum_{i=1}^1 00i^2 = 1^2 + 2^2 + \dots + 100^2$ Свойства

1.
$$\lambda \sum_{i=1}^{n} S_i = \sum_{i=1}^{q} \lambda S_i$$

2.
$$\sum_{i=1}^{q} (S_i + t_i) = \sum_{i=1}^{n} S_i + \sum_{i=1}^{n} t_i$$

3.
$$\sum_{i=1}^m \sum_{j=1}^n S_{ij} = \sum_{j=1}^n \sum_{i=1}^m$$
 — Сумма всех элементов матрицы $S=(s_{ij})$

2.2 Умножение матриц

$$A \in \operatorname{Mat}_{m \times n}, B \in \operatorname{Mat}_{n \times p}$$
 $AB = C$ $c_{ij} = A_{(i)}B^{(j)} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{1n}b_{nj} = \sum_{k=1}^n a_{ik}b_{kj}$ Свойства умножения матриц:

1.
$$A(B+C) = AB + AC$$
 — левая дистрибутивность

Доказательство
$$x_{ij} = A_{(i)}(B+C)^{(j)} = \sum_{k=1}^{n} a_{ik}(b_{kj}+c_{kj}) = \sum_{k=1}^{n} (a_{ik}b_{kj}+a_{ik}c_{kj}) = \sum_{k=1}^{n} a_{ik}bkj + \sum_{k=1}^{n} a_{ik}c_{kj} = A_{(i)}B^{(j)} + A_{(i)}C^{(j)} = yij$$

2. (A+B)C = AC + BC — правая дистрибутивность, доказывается аналогично

3.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

4. (AB)C = A(BC) — ассоциативность

Доказательство

$$(AB)C = x, A(BC) = y$$

$$x_{ij} = \sum_{k=1}^{p} u_{ik} * c_{kp}$$

$$= \sum_{k=1}^{p} (\sum_{l=1}^{n} a_{il} b_{lk}) c_{kj}$$

$$= \sum_{k=1}^{p} (\sum_{l=1}^{n} a_{il} b_{lk}) c_{kj})$$

$$= \sum_{l=1}^{n} (\sum_{k=1}^{p} a_{il} b_{lk}) c_{kj}$$

$$= \sum_{l=1}^{n} a_{il} (\sum_{k=1}^{p} b_{lk} c_{kj})$$

$$= \sum_{l=1}^{n} a_{il} v_{lj}$$

$$= y_{ij}$$

$$5. \quad (AB) = B^T A^T$$

Доказательство

$$x_{ij} = [AB]_{ji} = A_{(j)}B^{(i)} = (B^T)_{(i)}(A^T)^{(j)} = y_{ij}$$

Умножение матриц не коммутативно

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Определение 3. $A \in \mathrm{Mat}_{n \times n} \Longrightarrow A$ называется $\kappa \epsilon a d p m a n o \ddot{u}$ матрицей подярка n

Обозн.:
$$M_n \coloneqq \operatorname{Mat}_{n \times n} A \in M_n$$

Определение 4. Матрица $A \in M_n$ называется *диагональной* если все ее элементы вне главной диагонали равны нулю $(a_{ij} = 0 \text{ при } i \neq j)$

$$A = \Longrightarrow A = diag(a_1, a_2, \dots, a_n)$$

Лемма. $A = diag(a_1, \ldots, a_n) \in M_n \Longrightarrow$

1.
$$\forall B \in Mat_{n \times p}, AB = \begin{pmatrix} a_1 B_{(1)} \\ a_2 B_{(2)} \\ \vdots \\ a_n B_{(n)} \end{pmatrix}$$

2. $\forall B \in Mat_{m \times n}$ – аналогично (вектор строка)

Доказательство

1.
$$[AB]_{ij} = \begin{pmatrix} 0 & \dots & 0 & a_i & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = a_i b_{ij}$$

2.
$$[BA]_{ij} =$$

Определение 5. Матрица $E = E_n = diag(1, 1, ..., 1)$ называется единичной матрицей порядка n.

Свойства

- 1. $EA = A \quad \forall A \in Mat_{n \times p}$
- 2. $AE = A \quad \forall A \in Mat_{p \times n}$
- 3. $AE = EA = A \quad \forall A \in M_n$

Определение 6. Следом матрицы $A \in M_n$ называется число $trA = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^n a_{ii}$

Свойства

- 1. tr(A+B) = trA + trB
- 2. $tr(\lambda A) = \lambda tr A$
- 3. $tr(A^T) = tr(A)$
- 4. $tr(AB) = tr(BA) \forall A \in Mat_{m \times n}, B \in Mat_{nm}$

Доказательство

$$AB = x \in M_m, BA = y \in M_n$$

$$trx = \sum_{i=1}^m x_{ii} = \sum_{i=1}^m \sum_{j=1}^n a_{ij}b_{ji} = \sum_{j=1}^n \sum_{i=1}^m b_{ji}a_{ij} = \sum_{j=1}^n y_{ij} = try$$

Пример.
$$A = (1,2,3), B = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

$$tr(AB) = tr(1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6) = 32$$

$$tr(BA) = \begin{pmatrix} 4 & 8 & 12 \\ 5 & 10 & 15 \\ 6 & 12 & 18 \end{pmatrix} = 4 + 10 + 18 = 32$$

2.3 Системы линейных уравнений

Линейное уравнение — $a_1x_1+a_2x_2+\cdots+a_nx_n=b$ $a_1,a_2,\ldots,a_n,b\in\mathbb{R}$ — коэффициенты x_1,x_2,\ldots,x_n — неизвестные Система линейных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Определение 7. Решение одного уравнение — это такой набор x_1, x_2, \ldots, x_n , при подстановке которого в уравнение получаем тождество.

Решение СЛУ – такой набор значений неизвестных, которые является решением каждого уравнения СЛУ.

Основная задача: решить СЛУ, т.е. найти все решениея.

Пример.
$$n = m = 1$$

$$ax = b$$

- 1. $a \neq 0 \implies x = \frac{b}{a}$
- $2. \ a = 0 \implies 0x = b$
 - b ≠ 0 ⇒ нет решений
 - $b = 0 \implies x \in \mathbb{R}$ бесконечно много решений.

$$A \in Mat_{m \times n}(R) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 – матрица коэффициентов

$$B\in \mathrm{Mat}_{m imes 1}=egin{pmatrix} b_1 \\ b_2 \\ dots \\ b_n \end{pmatrix}$$
 — столбец правых частей

$$X \in \mathrm{Mat}_{m \times 1} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 — столбец неизвестных

 $(*) \leftrightarrow Ax = b$ — Матричная форма записи СЛУ

Определение 8. СЛУ называется

- совместной, если у нее есть хотя бы одно решение
- несовмествной, если решений нет

3 Лекция 3

 $Ax = b, A \in \mathrm{Mat}_{m \times n}, b \in \mathbb{R}^m$

Полная информация о СЛУ содержится в её расширенной матрице (A|b).

Определение 9. Две системы уравнений от одних и тех же неизвестных называются *эквивалентными*, если они имеют одинаковые множества решений.

Пример. Рассмотрим несколько СЛУ

A)
$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

B)
$$\begin{cases} 2x_1 = 1 \\ 2x_2 = 1 \end{cases}$$

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

C)
$$x_1 + x_2 = 1$$
 (1 1 1)

А и В эквиваленты, так как обе имеют единственное решение $(\frac{1}{2}, \frac{1}{2})$.

А и С не эквивалентны, так как С имеет бесконечно много решений.

3.1 Как решить СЛУ?

Идея: выполнить преобразование СЛУ, сохраняющее множество её решений, и привести её к такому виду, в котором СЛУ легко решается.

Пример.
$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_n = b_n \end{cases}$$

3.1.1 Элементарные преобразования СЛУ и её расширенная матрица

тип	СЛУ	расширенная матрица
1.	К i -му уравнению прибавить j -ое, умноженное на $\lambda \in \mathbb{R}$ $(i \neq j)$	$\Theta_1(i,j,\lambda)$
2.	Переставить i -е и j -е уравнения $(i \neq j)$	$\Im_2(i,j)$
3.	Умножить <i>i</i> -ое уравнение на $\lambda \neq 0$	$\Im_3(i,\lambda)$

- 1. $\Theta_1(i,j,\lambda)$: к *i*-ой строке прибавить *j*-ую, умноженную на λ (покомпонентно), $a_{ik} \to a_{ik} + \lambda a_{jk} \forall k = 1, \dots, n, b_i \to b_i + \lambda b_j$.
- 2. $\Theta_2(i,j)$: переставить і-ую и ј-ую строки.
- 3. $\Theta_3(i,\lambda)$: умножить і-ю строку на λ (покомпонентно).

 $\Theta_1, \Theta_2, \Theta_3$ называются элементарными преобразованиями строк расширенной матрицы.

Лемма. Элементарные преобразования СЛУ не меняют множество решений

Доказательство. Пусть мы получили $\mathrm{CJY}(\star\star)$ из $\mathrm{CJY}(\star)$ путем элементарных преобразований.

- 1. Всякое решение системы (*) является решением (**).
- 2. (*) получается из (**) путем элементарных преобразований.

$$\begin{array}{c|ccc} (\star) \rightarrow (\star\star) & (\star\star) \rightarrow (\star) \\ \hline 9_1(i,j,\lambda) & 9_1(i,j,-\lambda) \\ 9_2(i,j) & 9_2(i,j) \\ 9_3(i,\lambda) & 9_3(i,\frac{1}{\lambda}) \end{array}$$

Следовательно, всякое решение (**) является решением (*) ⇒ множества решений совпадают. ■

3.2 Ступенчатые матрицы

Определение 10. Ведущим элементом ненулевой строки называется первый её ненулевой элемент.

Определение 11. Матрица $M \in \mathrm{Mat}_{m \times n}$ называется $\mathit{cmynen}\mathit{vamo}\check{u}$, или имеет ступенчатый вид, если:

- 1. Номера ведущих элементов её ненулевых строк строго возрастают.
- 2. Все нулевые строки стоят в конце.

 $\diamond \neq 0$, * — что угодно.

Определение 12. М имеет улучшенный ступенчатый вид, если:

- 1. М имеет обычный ступенчатый вид.
- 2. Все ведущие элементы равны 1.
- 3. В одном столбце с любым ведущим элементом стоят только нули.

Теорема 1. 1) Всякую матрицу элементарными преобразованиями можно привести к ступенчатому виду. 2) Всякую ступенчатую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Следствие. Всякую матрицу элементарными преобразованиями строк можно привести к улучшенному ступенчатому виду.

Доказательство.

- 1. Алгоритм. Если М нулевая, то конец. Иначе:
- Шаг 1 Ищем первый ненулевой столбец, пусть j его номер.
- Шаг 2 Переставляем строки, если нужно, добиваемся того, что $a_{1j} \neq 0$
- Шаг 3 Выполняем $\Theta_1(2,1,-\frac{a_{2j}}{a_{1j}}),\ldots,\Theta_1(m,1,-\frac{a_{mj}}{a_{1j}})$. В результате a_{ij} = 0 при i = 2,3,...m.

Дальше все повторяем для меньшей матрицы M'.

- 2. Алгоритм. Пусть $a_{1j_1}, a_{2j_2}, \dots, a_{rj_r}$ ведущие элементы ступенчатой матрицы.
- Шаг 1 Выполняем $\vartheta_3(1,\frac{1}{a_{1j_1}}),\ldots,\vartheta_3(r,\frac{1}{a_{rj_r}})$, в результате все ведущие элементы равны 1.
- Шаг 2 Выполняем $\Theta_1(r-1,r,-a_{r-1\ j_r}), \Theta_1(r-2,r,-a_{r-2\ j_r}),\ldots,\Theta_1(1,r,-a_{1\ j_r})$. В результате все элементы над a_{rj_r} равны 0.

Аналогично обнуляем элементы над всеми остальными ведущими.

Итог: матрица имеет улучшенный ступенчатый вид.

3.3 Применение элементарных преобразований СЛУ к матрицам

Всякое элементарное преобразование строк матрицы реализуется умножением как умножение слева на подходящую "элементарную матрицу".

• $\vartheta_1(i,j,\lambda): A \to U_1(i,j,\lambda)A$, где

$$U_1(i,j,\lambda) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & \lambda & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, на i-м j-м месте стоит λ , остальные элементы нули)

• $\Im_2(i,j): A \to U_2(i,j)A$, где

$$U_2(i,j) = \begin{pmatrix} i & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го и j-го столбца (там нули, на i-м j-м и j-м и i-м местах стоит 1, остальные нули)

• $\mathfrak{I}_3(i,\lambda): A \to U_3(i,\lambda)A$, где

$$U_3(i,\lambda) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & \lambda & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

(на диагонали стоят единицы, кроме i-го столбца, там λ , остальные элементы нули)

Упраженение. Доказательство.

Упражнение. Элементарные преобразования столбцов.

4 Метод Гаусса решения СЛУ (метод исключения неизвестных)

Дана СЛУ с расширенной матрицей (A|b)

Было: элементарные преобразования строк в (A|b) сохраняют множество решений.

4.1 Алгоритм

Прямой ход метода Гаусса

Выполняя элементарные преобразования строк в (A|b), приведем A к ступенчатому виду:

$$\begin{pmatrix} 0 & \dots & 0 & a_{ij_1} & * & \dots & \dots & b_1 \\ 0 & \dots & 0 & 0 & a_{2j_2} & * & \dots & b_2 \\ \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 & a_{rj_r} & b_r \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & b_{r+1} \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Случай 1 $\exists i \geq r+1 : b_i \neq 0$

Тогда в новой СЛУ i-е уравнение $0 \cdot x_1 + \dots + 0 \cdot x_n = b_i$, т.е. $0 = b_i \implies \text{СЛУ}$ несовместна

Случай 2 либо r = m, либо $b_i = 0 \quad \forall i \ge r + 1$

Выполняя элементарные преобразования строк приводим матрицу к улучшенному ступенчатому виду – обратный ход метода Гаусса

$$\begin{pmatrix} 0 & \dots & 0 & 1 & * & 0 & * & 0 & 0 & b_1 \\ 0 & \dots & 0 & 0 & \dots & 1 & * & 0 & 0 & b_2 \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & 1 & 0 & b_3 \\ \vdots & \vdots \\ 0 & 0 & 0 & \dots & \dots & \dots & \dots & 0 & 1 & b_r \\ 0 & 0 & 0 & \dots & \dots & \dots & \dots & 0 & 0 & 0 \end{pmatrix}$$

Неизвестные $x_{j_1}, x_{j_2}, \dots, x_{j_r}$ называются *главными*, а остальные *свободными*, где j_i – индексы столбцов с ведущими элементами.

Подслучай 2.1 r = n, т.е. все неизвестные – главные

$$\begin{pmatrix} 1 & \dots & 0 & b_1 \\ \dots & \ddots & \dots & \dots \\ 0 & \dots & 1 & b_r \\ 0 & \dots & 0 & 0 \end{pmatrix} \leftrightarrow \begin{cases} x_1 = b_1 \\ x_2 = b_2 \\ \vdots \\ x_r = b_r \end{cases} -$$
единственное решение.

Подслучай 2.2 r < n, т.е. есть хотя бы одна свободная неизвестная

Перенесем в каждом уравнении все члены со свободными неизвестными в правую часть, получаем выражения всех главных неизвестных через свободные, эти выражения называется общим решением $ucxodnoù\ CJY$.

Пример. Улучшенный ступенчатый вид:

$$\begin{pmatrix} 1 & 3 & 0 & 1 & | & -1 \\ 0 & 0 & 1 & -2 & | & 4 \end{pmatrix}.$$

Главные неизвестные: x_1, x_3

Свободные неизвестные: x_2, x_4 .

 $x_2 = t_1, x_4 = t_2 -$ параметры.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 - 3t_1 - t_2 \\ t_1 \\ 4 + 2t_2 \\ t_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

Общее решение:

$$\begin{cases} x_1 = -1 - 3x_2 - x_4 \\ x_3 = 4 + 2x_4 \end{cases}$$

Следствие. Всякая СЛУ с коэффициентами из \mathbb{R} имеет либо 0 решений, либо одно решение, либо бесконечно много решений.

Определение 13. СЛУ называется однородной (ОСЛУ), если все её правые части равны 0. Расширенная матрица: (A|0)

Очевидный факт: Всякая ОСЛУ имеет нулевое решение $(x_1 = x_2 = \cdots = x_n = 0)$.

Следствие. Всякая ОСЛУ либо имеет ровно 1 решение (нулевое), либо бесконечно много решений.

Следствие. Всякая ОСЛУ, у которой число неизвестных больше числа уравнений, имеет ненулевое решение

Доказательство. В ступенчатом виде будет хотя бы одна свободная неизвестная. Придавая ей ненулевое значение, получим ненулевое решение ■

4.2

 (\star) Ax = b, совместная

Частное решение СЛУ (\star) – это какое-то одно её решение.

Утверждение. Пусть Ax = b – совместная СЛУ.

 x_0 — частное решение

 $S \subset \mathbb{R}^n$ — множество решений ОСЛУ Ax = 0

 $L \subset \mathbb{R}^n$ – множество решений Ax = b.

Тогда, $L = x_0 + S$, где $x_0 + S = \{x_0 + v | v \in S\}$

Доказательство.

1. Пусть $u \in L$. Положим $v = u - x_0$

Тогда $u = x_0 + v$.

$$Av = A(u - x_0) = Au - Ax_0 = b - b = 0 \implies v \in S \implies L \subseteq x_0 + S$$

2. Пусть $v \in S$, положим $u = x_0 + v$.

Тогда,
$$Au = A(x_0 + v) = Ax_0 + Av = b + 0 = b \implies u \in L \implies x_0 + S \subseteq L$$

4.3 Матричные уравнения

- 1. AX = B A, B известны X неизвестная матрица
- 2. XA = C A, C известны X неизвестная матрица

 $XA = C \leftrightarrow A^T X = B^T$, т.е. достаточно уметь решать только уравнения первого типа.

4.3.1 Тип (I)

 $\underset{n\times m}{A}\underset{m\times p}{X}=\underset{n\times p}{B}$ — это уравнение равносильно системе

$$\begin{cases} AX^{(1)} = B^{(1)} \\ AX^{(2)} = B^{(2)} \\ \vdots \\ AX^{(p)} = B^{(p)} \end{cases}$$

Этот набор СЛУ надо решать одновременно методом Гаусса

Записываем матрицу (A|B) и элементарными преобразованиями строк с ней приводим A к улучшенному ступенчатому виду.

Получаем (A'|B') - A' имеет улучшенный ступенчатый вид.

Остается выписать общее решение для каждой СЛУ

$$\begin{cases} A'x^{(1)} = B^{(1)} \\ A'x^{(2)} = B^{(2)} \\ \vdots \\ A'x^{(p)} = B^{(p)} \end{cases}$$

4.4 Обратные матрицы

Определение 14. Матрица $B \in M_n$ называется *обратной*, к A, если AB = BA = E.

Обозначение: $B = A^{-1}$

Факты:

- 1. Если $\exists A^{-1}$, то она определена однозначно
- 2. Если AB = E для некоторой B є M_n , то BA = E автоматически и тогда B = A^{-1}

Следствие. A^{-1} является решение матричного уравнения AX = E (если решение существует)

4.5 Перестановки

Определение 15. *Перестановкой* (или подстановкой) на множестве $\{1, 2, ..., n\}$ называется всякое биективное (взаимно однозначное) отображение

$$\sigma: \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}$$