

Kostas Stefanidis kostas.stefanidis@uta.fi

Autumn 2016

http://www.uta.fi/sis/tie/dbir/index.html

http://people.uta.fi/~kostas.stefanidis/dbirl6/dbirl6-main.html

Motivation

- Huge amounts of available information
- Users search for interesting information without knowing the content and structure of the sources
- Users consume typically the "best" (first) matches

Rank data!

Kostas Stefanidis kostas.stefanidis@uta.fi

Autumn 2016

http://www.uta.fi/sis/tie/dbir/index.html

http://people.uta.fi/~kostas.stefanidis/dbirl6/dbirl6-main.html

Rank Aggregation

<u>Given</u>: A set of rankings $R_1, R_2, ..., R_m$ of a set of objects $X_1, X_2, ..., X_n$

<u>Produce</u>: A single ranking R that is in agreement with the existing rankings

Examples

- Voting: Rankings $R_1, R_2, ..., R_m$ are the voters, the objects $X_1, X_2, ..., X_n$ are the candidates
- Combining multiple scoring functions: Rankings $R_1, R_2, ..., R_m$ are the scoring functions, the objects $X_1, X_2, ..., X_n$ are data items
 - Combine scores for multimedia items
 - Color, shape, texture
 - Combine scores for database tuples
 - Find the best hotel according to price and location

Variants of the Problem

■ Combining scores

We know the scores assigned to objects by each ranking, and we want to compute a single score

Combining rankings

■ The scores are not known, only the ordering is known

+ Combining Scores

- Each object X_i has m scores $(\mathbf{r}_{i1},\mathbf{r}_{i2},\ldots,\mathbf{r}_{im})$
- The score of object X_i is computed using an aggregate scoring function $f(r_{i1},r_{i2},\ldots,r_{im})$

	R_1	R_2	R_3
X ₁	1	0.3	0.2
X_2	8.0	0.8	0
X_3	0.5	0.7	0.6
X ₄	0.3	0.2	0.8
X_5	0.1	0.1	0.1

+ Combining Scores

- Each object X_i has m scores $(\mathbf{r}_{i1},\mathbf{r}_{i2},\ldots,\mathbf{r}_{im})$
- The score of object X_i is computed using an aggregate scoring function $f(r_{i1},r_{i2},\ldots,r_{im})$
 - $f(r_{i1},r_{i2},...,r_{im}) = min\{r_{i1},r_{i2},...,r_{im}\}$

	R_1	R_2	R_3	R
X_1	1	0.3	0.2	0.2
X_2	8.0	8.0	0	0
X_3	0.5	0.7	0.6	0.5
X_4	0.3	0.2	8.0	0.2
X ₅	0.1	0.1	0.1	0.1

+ Combining Scores

- The score of object X_i is computed using an aggregate scoring function $f(r_{i1},r_{i2},\ldots,r_{im})$
 - $f(r_{i1},r_{i2},...,r_{im}) = max\{r_{i1},r_{i2},...,r_{im}\}$

	R_1	R_2	R_3	R
X ₁	1	0.3	0.2	1
X_2	0.8	8.0	0	8.0
X_3	0.5	0.7	0.6	0.7
X ₄	0.3	0.2	8.0	8.0
X ₅	0.1	0.1	0.1	0.1

* Combining Scores

- Each object X_i has m scores $(\mathbf{r}_{i1},\mathbf{r}_{i2},\ldots,\mathbf{r}_{im})$
- The score of object X_i is computed using an aggregate scoring function $f(r_{i1},r_{i2},\ldots,r_{im})$
 - $f(r_{i1},r_{i2},...,r_{im}) = r_{i1} + r_{i2} + ... + r_{im}$

	R_1	R_2	R_3	R
X ₁	1	0.3	0.2	1.5
X_2	0.8	8.0	0	1.6
X_3	0.5	0.7	0.6	1.8
X_4	0.3	0.2	8.0	1.3
X ₅	0.1	0.1	0.1	0.3

Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f

top-k: a set T of k objects such that $f(r_{j1},...,r_{jm}) \le f(r_{i1},...,r_{im})$ for every object X_i in T and every object X_j not in T

Assumption: The function f is monotone

•
$$f(r_1,...,r_m) \le f(r_1',...,r_m')$$
 if $r_i \le r_i'$ for all i

Objective: Compute top-k with the minimum cost

Cost function

We want to minimize the number of accesses to the scoring lists

- Sorted accesses: sequentially access the objects in the order in which they appear in a list
 - cost C_s
- Random accesses: obtain the cost value for a specific object in a list
 - cost C_r
- If s sorted accesses and r random accesses minimize s C_s + r C_r

+ Example

R_1			
X ₁	1		
X_2	8.0		
X_3	0.5		
X ₄	0.3		
X_5	0.1		

R	R_2			
X_2	8.0			
X_3	0.7			
X ₁	0.3			
X ₄	0.2			
X ₅	0.1			

R_3				
X_4	8.0			
X_3	0.6			
X ₁	0.2			
X ₅	0.1			
X_2	0			

■ Compute top-2 for the sum aggregate function

Access sequentially all lists in parallel until there are **k** objects that have been seen in all lists

R_1				
X ₁	1			
X_2	8.0			
X_3	0.5			
X ₄	0.3			
X_5	0.1			

R_2				
X_2	8.0			
X_3	0.7			
X ₁	0.3			
X ₄	0.2			
X_5	0.1			

R_3				
X_4	0.8			
X_3	0.6			
X ₁	0.2			
X_5	0.1			
X ₂	0			

F	1	R_2		R_2		3
X ₁	1	X_2	8.0		X_4	8.0
X_2	8.0	X_3	0.7		X_3	0.6
X_3	0.5	X ₁	0.3		X ₁	0.2
X ₄	0.3	X ₄	0.2		X_5	0.1
X ₅	0.1	X_5	0.1		X_2	0

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

F	R ₁	R_2		R	3
X ₁	1	X_2	8.0	X_4	0.8
X ₂	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X_1	0.2
X ₄	0.3	X_4	0.2	X_5	0.1
X_5	0.1	X_5	0.1	X_2	0

Access sequentially all lists in parallel until there are **k** objects that have been seen in all lists

R	1	R_2		R_3	
X ₁	1	X_2	8.0	X_4	8.0
X_2	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X_4	0.2	X_5	0.1
X ₅	0.1	X_5	0.1	X_2	0

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R	1	R_2		R_3	
X_1	1	X_2	0.8	X_4	0.8
X_2	0.8	X_3	0.7	X_3	0.6
X_3	0.5	X_1	0.3	$\left(\chi_{1}^{2}\right)$	0.2
X_4	0.3	X_4	0.2	X_5	0.1
X_5	0.1	X_5	0.1	X_2	0

Perform random accesses to obtain the scores of all seen objects

R	R ₁	R_2		R_3	
X ₁	1	X_2	0.8	X_4	8.0
X_2	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X_5	0.1
X_5	0.1	X ₅	0.1	X_2	0

Compute score for all objects and find the top-k 3.

R	2	R_2		R_3	
X ₁	1	X_2	8.0	X_4	8.0
X ₂	0.8	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X_5	0.1	X_2	0

R					
X_3	1.8				
X_2	1.6				
X ₁	1.5				
X ₄	1.3				

- X_5 cannot be in the top-2 because of the monotonicity property
 - $f(X_5) \le f(X_1) \le f(X_3)$

R	21	R_2		R_3	
X ₁	1	X_2	8.0	X ₄	8.0
X ₂	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X_5	0.1	X_5	0.1	X_2	0

R					
X_3	1.8				
X_2	1.6				
X_1	1.5				
X_4	1.3				

+ Threshold algorithm

R_1					
X_1	1				
X_2	8.0				
X_3	0.5				
X_4	0.3				
X_5	0.1				

R_2					
X_2	8.0				
X_3	0.7				
X ₁	0.3				
X ₄	0.2				
X ₅	0.1				

R_3					
X_4	8.0				
X_3	0.6				
X ₁	0.2				
X_5	0.1				
X ₂	0				

Threshold algorithm

- 1. At each sequential access
 - a. Set the threshold t to be the aggregate of the scores seen in this access

R	1	R_2		R_3	
X ₁	1	X_2	8.0	X ₄	8.0
X ₂	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X_5	0.1
X ₅	0.1	X ₅	0.1	X_2	0

t = 2.6

Threshold algorithm

- 1. At each sequential access
 - b. Do random accesses and compute the score of the objects seen

R	1	R_2		R_3	
X ₁	1	X_2	8.0	X_4	8.0
X ₂	0.8	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X_4	0.3	X ₄	0.2	X_5	0.1
X_5	0.1	X_5	0.1	X_2	0

t	=	2.	6
			_

X_1	1.5
X_2	1.6
X ₄	1.3

Threshold algorithm

- 1. At each sequential access
 - c. Maintain a list of top-k objects seen so far

R	1	R	2	R	3
X_1	1	X_2	8.0	X_4	8.0
X ₂	0.8	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X_5	0.1
X ₅	0.1	X_5	0.1	X ₂	0

t = 2.6

X_2	1.6
X_1	1.5

Threshold algorithm

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

R	1	R	2	R	3
X ₁	1	X_2	8.0	X_4	0.8
X_2	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X_5	0.1
X ₅	0.1	X ₅	0.1	X_2	0

t = 2.1

X_3	1.8
X_2	1.6

Threshold algorithm

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

F	R ₁	R	2	R	3
X_1	1	X_2	8.0	X ₄	8.0
X_2	0.8	X_3	0.7	X_3	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X_5	0.1	X_5	0.1	X_2	0

+ _	Λ
ι –	 .0

X_3	1.8
X_2	1.6

+ Threshold algorithm

Return the top-k seen so far

F	R ₁	R	2	R	3
X_1	1	X_2	8.0	X_4	8.0
X_2	0.8	X_3	0.7	X ₃	0.6
X_3	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X_4	0.2	X ₅	0.1
X_5	0.1	X ₅	0.1	X_2	0

1		4		$\overline{}$	
τ	=	П	_	U	

X_3	1.8
X_2	1.6

+ Threshold algorithm

- From the monotonicity property for any object not seen, the score of the object is less than the threshold
 - $f(X_5) \le t \le f(X_2)$

+ Combining Rankings

In many cases, the scores are not known, or we do not know how they were obtained

• one search engine returns score 10, the other 100. What does this mean?

Work with the rankings

The Problem

Input: A set of rankings $R_1, R_2, ..., R_m$ of the objects $X_1, X_2, ..., X_n$

- Each ranking R_i is a total ordering of the objects
 - For every pair X_i, X_j either X_i is ranked above X_j or X_j is ranked above X_i

<u>Output</u>: A total ordering R that aggregates rankings $R_1, R_2, ..., R_m$

Voting theory

A voting system is a rank aggregation mechanism

Long history and literature

criteria and axioms for good voting systems

What is a good voting system?

- The Condorcet criterion
 - If object A defeats every other object in a pair-wise majority vote, then A should be ranked first
- Extended Condorcet criterion
 - If the objects in a set X defeat in pair-wise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- Not all voting systems satisfy the Condorcet criterion!

Pair-wise majority comparisons

Unfortunately the Condorcet winner does not always exist

Irrational behavior of groups

	V_1	V_2	V_3
1	A	В	С
2	В	С	Α
3	С	Α	В

Pair-wise majority comparisons

■ Resolve cycles by imposing an agenda

	V_1	V_2	V_3
1	A	Δ	ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Ш	С	D

Pair-wise majority comparisons

■ Resolve cycles by imposing an agenda

	V_1	V_2	V_3
1	A	D	Ш
2	В	Е	Α
3	С	A	В
4	D	В	С
5	Е	С	D

Pair-wise majority comparisons

■ Resolve cycles by imposing an agenda

	V_1	V_2	V_3
1	Α	D	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

Pair-wise majority comparisons

■ Resolve cycles by imposing an agenda

	V_1	V_2	V_3
1	Α	О	ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	ш	C	D

Pair-wise majority comparisons

■ Resolve cycles by imposing an agenda

	V_1	V_2	V_3
1	Α	D	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Ш	С	D

■ C is the winner

Pair-wise majority comparisons

■ Resolve cycles by imposing an agenda

	V_1	V_2	V_3
1	A	D	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Ш	С	D

■ But everybody prefers A or B over C

Pair-wise majority comparisons

There exists another ordering that everybody prefers!

+ Plurality vote

voters	10	8	7
1	Α	С	В
2	В	Α	С
3	С	В	Α

Plurality with runoff

voters	10	8	7	2
1	Α	С	В	В
2	В	Α	С	Α
3	С	В	Α	С

first round: A 10, B 9, C 8

second round: A 18, B 9 -

winner: A

remove C from the lst position of column2

Plurality with runoff

■ If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	Α	С	В	Α
2	В	Α	С	В
3	С	В	Α	С

change the order of A and B in the last column

first round: A 12, B 7, C 8

second round: A 12, C 15

winner: C!

Borda Count

- For each ranking, assign to object X, number of points equal to the number of objects it defeats
 - first position gets n-1 points, second n-2, ..., last 0 points
- The total weight of X is the number of points it accumulates from all rankings

Borda Count

voters	3	2	2
1 (3p)	Α	В	С
2 (2p)	В	С	D
3 (1p)	С	D	Α
4 (0p)	D	Α	В

A:
$$3*3 + 2*0 + 2*1 = 11p$$

B: $3*2 + 2*3 + 2*0 = 12p$
C: $3*1 + 2*2 + 2*3 = 13p$
D: $3*0 + 2*1 + 2*2 = 6p$

Borda Count

■ Assume that D is removed from the vote

voters	3	2	2
1 (2p)	Α	В	С
2 (1p)	В	С	Α
3 (0p)	С	Α	В

A:
$$3*2 + 2*0 + 2*1 = 8p$$

B: $3*1 + 2*2 + 2*0 = 7p$
C: $3*0 + 2*1 + 2*2 = 6p$

BC A B C

■ Changing the position of D changes the order of the other elements!

The Borda Count of an object X is the aggregate number of pairwise comparisons that the object X wins

■ Follows from the fact that in one ranking X wins all the pair-wise comparisons with objects that are under X in the ranking

Kemeny Optimal Aggregation

Kemeny distance $K(R_1,R_2)$: The number of pairs of nodes that are ranked in a different order (Kendall-tau)

 number of swaps required to transform one ranking into another (or number of pairs of tuples with different order between the rankings)

Kemeny optimal aggregation minimizes

$$K(R, R_1, ..., R_m) = \sum_{i=1}^{m} K(R, R_i)$$

Spearman's footrule distance

Spearman's footrule distance: The difference between the ranks R(i) and R'(i) assigned to object i

$$F(R,R') = \sum_{i=1}^{n} |R(i) - R'(i)|$$

Relation between Spearman's footrule and Kemeny distance

$$K(R,R') \leq F(R,R') \leq 2K(R,R')$$

Spearman's footrule aggregation

Find the ranking R, that minimizes

$$F(R, R_1, ..., R_m) = \sum_{i=1}^{m} F(R, R_i)$$

Example

$$S = \{A,B,C,D,E\}$$

 σ , τ : two full list

Spearman's Footrule Distance

■
$$F(\sigma, \tau) = 1 + 2 + 1 + 0 + 2 = 6$$

■ Kendall tau distance

•
$$K(\sigma, \tau) = |\{(A,C), (B,D), (B,E), (D,E)\}| = 4$$

+ Homework (1/3)

Compare the rankings in cases 1 and 2. Use both the Kendall tau distance and the Spearman footrule distance

Case 1		<u>e 1</u>		Case	<u>e 2</u>
	σ	Т		σ	
1	Α	D	1	X	C
2	C	Α	2	C	A
3	D	С	3	Е	В
4	В	Ε	4	D	D
5	E	В	5	K	E

Homework (2/3)

Find the top-2 objects, using (i) the Fagin's and (ii) the Threshold algorithms. Show all intermediate steps. Use the *sum* aggregation function.

R1				
X1	1			
X2	0.9			
Х3	0.6			
X4	0.5			
X5	0.4			
X 6	0.2			
X7	0			

R2				
X2	0.9			
X1	8.0			
X4	0.6			
Х3	0.4			
X5	0.3			
X7	0.2			
X 6	0.1			

R3	
Х3	1
X 1	0.9
X5	0.8
X2	0.7
X6	0.6
X7	0.5
X4	0.4

R4	
X2	0.9
Х3	0.7
X1	0.6
X5	0.5
X6	0.4
X7	0.2
X4	0

+ Homework (2/3)

Before NOVEMBER 4, 2016.