Klassische Verschlüsselungsmethoden

Dozent: Prof. Dr. Michael Eichberg

Version: 2024-02-28

Quelle: Im Wesentlichen: Cryptography and Network Security - Principles

and Practice, 8th Edition, William Stallings

1

Definitionen

Klartext: Plaintext

Die Originalnachricht, die verschlüsselt werden soll.

Geheimtext oder Chiffretext oder Krytogramm:

Ciphertext

Die kodierte/verschlüsselte Nachricht.

Verschlüsselung: Encryption

Der Prozess der Umwandlung von Klartext in Geheimtext.

Entschlüsselung: Decryption

Der Prozess der Wiederherstellung des Klartextes aus dem

Geheimtext.

Definitionen

Kryptographie: *Cryptography*

Das Studiengebiet der Verschlüsselungsschemata.

Kryptoanalyse: \blacksquare *Cryptanalysis*

Methoden und Techniken, die zur Gewinnung von Informationen

aus einer verschlüsselten Nachricht dienen. Analyse von

kryptographischen Verfahren.

Kryptologie:

Cryptology

Die Bereiche Kryptographie und Kryptoanalyse.

Vereinfachtes Modell der symmetrischen Verschlüsselung

Symmetrisches Verschlüsselungsmodell

Es gibt zwei Voraussetzungen für die sichere Verwendung der herkömmlichen Verschlüsselung:

- 1. Ein starker Verschlüsselungsalgorithmus.
- a. Sender und Empfänger müssen Kopien des geheimen Schlüssels auf sichere Weise erhalten haben und
 - b. den Schlüssel sicher aufbewahren.

Modell eines symmetrischen Kryptosystems

Kryptografische Systeme können entlang dreier unabhängiger Dimensionen charakterisiert werden

- 1. Die Art der Operationen, die zur Umwandlung von Klartext in Chiffretext verwendet werden.
 - Substitution
 - Transposition (Vertauschungen)
- 2. Die Anzahl der verwendeten Schlüssel.

Eine Permutation ist eine Folge von Vertauschungen (

Transposition).

Symmetrisch: Ein-Schlüssel-, **Secret-Key**-, konventionelle Verschlüsselung Asymmetrisch: Zwei-Schlüssel- oder **Public-Key**-Verschlüsselung

- 3. Die Art und Weise, in der der Klartext verarbeitet wird.
 - Blockchiffre
 - Stromchiffre

Kryptoanalyse und Brute-Force-Angriff

Kryptoanalyse

- Der Angriff beruht auf der Art des Algorithmus und einer gewissen Kenntnis der allgemeinen Merkmale des Klartextes.
- Der Angriff nutzt die Eigenschaften des Algorithmus aus, um zu versuchen, einen bestimmten Klartext zu entschlüsseln oder den verwendeten Schlüssel zu ermitteln.

Brute-force Angriff (brachiale Gewalt)

- Der Angreifer probiert jeden möglichen Schlüssel an einem Stück Chiffretext aus, bis er eine verständliche Übersetzung in Klartext erhält.
- Im Durchschnitt muss die Hälfte aller möglichen Schlüssel ausprobiert werden, um Erfolg zu haben.

Klassifizierung von Angriffen

Art des Angriffs	dem Kryptoanalytiker bekannt
Ciphertext Only	Verschlüsselungsalgorithmus und Chiffretext
Known Plaintext	Verschlüsselungsalgorithmus und Chiffretextein oder mehrere Klartext-Chiffretext-Paare, die mit dem geheimen Schlüssel verschlüsselt wurden
Chosen Plaintext	 Verschlüsselungsalgorithmus und Chiffretext Klartextnachricht, die vom Kryptoanalytiker gewählt wurde, zusammen mit dem zugehörigen Chiffretext, der mit dem geheimen Schlüssel verschlüsselt wurde.
Chosen Ciphertext	 Verschlüsselungsalgorithmus und Chiffretext Chiffretext, der vom Kryptoanalytiker gewählt wurde, zusammen mit dem zugehörigen entschlüsselten Klartext, der mit dem geheimen Schlüssel entschlüsselt wurde.
Chosen Text	 Verschlüsselungsalgorithmus und Chiffretext vom Kryptoanalytiker gewählte Klartextnachricht, zusammen mit dem zugehörigen Chiffretext, der mit dem geheimen Schlüssel verschlüsselt wurde. vom Kryptoanalytiker gewählter Chiffretext zusammen mit dem entsprechenden entschlüsselten Klartext, der mit dem geheimen Schlüssel erzeugt wurde.

Sicherheit von Verschlüsselungsschemata

Bedingungslos Sicher (Unconditionally Secure)

Egal wie viel Zeit ein Gegner hat, es ist ihm unmöglich, den Geheimtext zu entschlüsseln, weil die erforderlichen Informationen nicht vorhanden sind.

Rechnerisch Sicher (Computationally Secure)

- Die Kosten für das Brechen der Chiffre übersteigen den Wert der verschlüsselten Informationen.
- Die zum Knacken der Chiffre benötigte Zeit übersteigt die Lebensdauer der Informationen.

Frage

Wie lange könnte der Nutzen einer bestimmten Information andauern?

Brute-Force Angriff

- Es werden alle möglichen Schlüssel ausprobiert, bis eine verständliche Übersetzung des Chiffriertextes in Klartext erreicht wird.
- Im Durchschnitt muss die Hälfte aller möglichen Schlüssel ausprobiert werden, um Erfolg zu haben.
- Zur Ergänzung des Brute-Force-Ansatzes ist ein gewisses Maß an Wissen über den zu erwartenden Klartext erforderlich. Es werden Mittel zur automatischen Unterscheidung von Klartext und "Müll" benötigt.

Substitutionsverfahren

- Bei der Substitution werden die Buchstaben des Klartextes durch andere Buchstaben oder durch Zahlen oder Symbole ersetzt.
- Wenn der Klartext als eine Folge von Bits betrachtet wird, beinhaltet die Substitution das Ersetzen von Bitmustern des Klartextes durch Bitmuster des Geheimtextes.

Caesar Cipher

- Einfachste und früheste bekannte Verwendung einer Substitutions-Chiffre; verwendet von Julius Cäsar.
- Dabei wird jeder Buchstabe des Alphabets durch einen Buchstaben ersetzt, der drei Stellen weiter hinten im Alphabet steht.
- Am Ende des Alphabets wird wieder mit dem Anfang angefangen, somit folgt auf den Buchstabe Z der Buchstabe A.

Unverschlüsselt: meet me after the toga party verschlüsselt: PHHW PH DIWHU WKH WRJD SDUWB

Cäsar-Chiffre-Algorithmus - historische Verwendung

Die Transformation kann wie folgt ausgedrückt werden:

а	b	С	d	е	f	g	h	i	j	k		m	n	0	р	q	r	S	t	u	٧	W	Х	У	Z
D	Е	F	G	Ι	_	ک	Κ	Г	М	Ζ	О	Р	Q	R	S	Т	\subset	/	W	Χ	Υ	Ζ	А	В	С

Mathematisch, wenn wir jedem Buchstaben einen Wert zuweisen:

а	b	С	d	е	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	٧	W	Х
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	20

Der Algorithmus zur Verschlüsselung ist dann (p ist der Wert des zu verschlüsselnden Buchstabens):

$$Y = E(3, p) = (p + 3) \ mod \ 26$$

Verallgemeinerter Cäsar-Chiffre-Algorithmus

Eine Verschiebung kann beliebig groß sein (k), so dass der allgemeine Caesar-Algorithmus lautet:

$$Y=E(k,p)=(p+k)\ mod\ 26$$

Wobei k einen Wert im Bereich von 1 bis 25 annimmt; der Entschlüsselungsalgorithmus ist einfach:

$$p = D(k,C) = (Y-k) \bmod 26$$

Brute-Force-Kryptoanalyse der Caesar-Chiffre

Key	PHHW	PH	DIWHU	WKH	WRJD	SDUWB
1	OGGV	OG	CHVGT	VJG	VQIC	RCTVA
2	NFFU	NF	BGUFS	UIF	UPHB	QBSUZ
3	MEET	ME	AFTER	THE	TOGA	PARTY
4	LDDS	LD	ZESDQ	SGD	SNFZ	OZQSX
5	KCCR	KC	YDRCP	RFC	RMEY	NYPRW
6	JBBQ	JB	XCQBO	QEB	QLDX	MXOQV
7	IAAP	IA	WBPAN	PDA	PKCW	LWNPU
8	HZZO	HZ	VAOZM	OCZ	OJBV	KVMOT
9	GYYN	GY	UZNYL	NBY	NIAU	JULNS
10	FXXM	FX	TYMXK	MAX	MHZT	ITKMR
11	EWWL	EW	SXLWJ	LZW	LGYS	HSJLQ
12	DVVK	DV	RWKVI	KYV	KFXR	GRIKP
13	CUUJ	CU	QVJUH	JXU	JEWQ	FQHJO
14	BTTI	BT	PUITG	IWT	IDVP	EPGIN
15	ASSH	AS	OTHSF	HVS	HCUO	DOFHM
16	ZRRG	ZR	NSGRE	GUR	GBTN	CNEGL
	•••					
25	QIIX	QI	EJXIV	XLI	XSKE	TEVXC

Brute-Force-Kryptoanalyse der Caesar-Chiffre

Die Entschlüsselung ist komplizierter, wenn der Klartext bereits eine sehr hohe Entropie aufweist, wie z.B. im Falle einer komprimierten Datei:

00000000:	504b	0304	1400	0000	0800	afb1	4257	1da9	PKBW
00000010:	b0b9	4b00	0000	4f04	0000	0800	1c00	6465	K0de
00000020:	6d6f	2e74	7874	5554	0900	036a	241b	65a4	mo.txtUTj\$.e.
00000030:	a9c0	6575	780b	0001	04f8	0100	0004	1400	eux
00000040:	0000	edcc	db09	8030	0c05	d07f	a7c8	049d	0
00000050:	a28b	c4f6	6203	e983	18d0	6e2f	ee91	ffc3	bn/
00000060:	c928	b697	cb1c	2437	f569	a032	fb52	29ec	.(\$7.i.2.R).
00000070:	a8f4	340c	f206	5aca	321c	afff	8cd5	c075	4Z.2u
00000080:	d3c5	762a	d291	2389	2492	48d2	0750	4b01	v*#.\$.HPK.
00000090:	021e	0314	0000	0008	00af	b142	571d	a9b0	BW
000000a0:	b94b	0000	004f	0400	0008	0018	0000	0000	.K0
000000b0:	0001	0000	00ff	8100	0000	0064	656d	6f2e	demo.
000000c0:	7478	7455	5405	0003	6a24	1b65	7578	0b00	txtUTj\$.eux
000000d0:	0104	f801	0000	0414	0000	0050	4b05	0600	PK
000000e0:	0000	0001	0001	004e	0000	008d	0000	0000	N
000000f0:	00								

7

Monoalphabetische Chiffren

- Eine Permutation einer endlichen Menge von Elementen S ist eine geordnete Folge aller Elemente von S, wobei jedes Element genau einmal vorkommt.
- Wenn die "Chiffre"-Zeile (siehe Cäsar-Chiffre) eine beliebige Permutation der 26 alphabetischen Zeichen sein kann, dann gibt es 26! oder mehr als 4×10^{26} mögliche Schlüssel.
 - Dies ist um 10 Größenordnungen größer als der Schlüsselraum für DES!
 - Der Ansatz wird als monoalphabetische Substitutions-Chiffre bezeichnet, da pro Nachricht ein einziges Chiffre-Alphabet verwendet wird.

Häufigkeit der englischen Buchstaben [1]

[1] Analyse des Concise Oxford Dictionary (9th edition, 1995) — https://www.nd.edu

19

Angriffe auf Monoalphabetische Chiffren

Sie sind leicht zu knacken, da sie die Häufigkeitsdaten des ursprünglichen Alphabets widerspiegeln.

Die Gegenmaßnahme besteht darin, mehrere Substitute (Homophone) für einen einzigen Buchstaben anzubieten.

Playfair Cipher

Erfunden vom britischen Wissenschaftler Sir Charles Wheatstone im Jahr 1854.

- Bekannteste Chiffrierung mit mehreren Buchstaben
- Behandelt Digramme im Klartext als einzelne Einheiten und übersetzt diese Einheiten in Digramme des Geheimtextes
- Basiert auf der Verwendung einer 5 x 5
 Buchstabenmatrix, die mit Hilfe eines
 Schlüsselworts konstruiert wird.
- Wurde von der britischen Armee im ersten Weltkrieg und von der US-Armee und anderen alliierten Streitkräften im zweiten Weltkrieg als Standardfeldsystem verwendet.

Digram

- Zwei-Buchstaben-Kombination
- am häufigsten im Englischen: "th""

Trigram

- Drei-Buchstaben-Kombination
- am häufigsten im Englischen: "the"

Playfair Key Matrix

Füllen Sie die Buchstaben des Schlüsselworts (abzüglich der Duplikate) von links nach rechts und von oben nach unten aus, dann füllen Sie den Rest der Matrix mit den restlichen Buchstaben in alphabetischer Reihenfolge aus. Die Buchstaben I und J zählen als ein Buchstabe.

Sei das Schlüsselwort MONARCHY:

М	0	Ν	Α	R
С	Н	Y	В	D
Е	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	Χ	Ζ

Playfair Verschlüsselung

Die Verschlüsselung wird für jedes Buchstabenpaar des Klartextes durchgeführt.

- 1. Wenn beide Buchstaben gleich sind (oder nur ein Buchstabe übrig ist), fügen Sie ein "X" hinter dem ersten Buchstaben ein. Verschlüsseln Sie das neue Paar und fahren Sie fort. (z.B. würde statt "ballon" "ba lx lo on" verschlüsselt werden.)
- 2. Wenn die Buchstaben in der gleichen Zeile stehen, ersetzen sie sie durch die Buchstaben unmittelbar rechts davon (ggf. umbrechen). (z.B. wird *ar* als *RM* verschlüsselt.)

- Tauchen die Buchstaben in derselben Spalte auf, so sind sie durch die unmittelbar darunter liegenden Buchstaben zu ersetzen (ggf. umbrechen). (z.B. wird "mu" als "CM" verschlüsselt.)
- 4. Befinden sich die Buchstaben nicht in derselben Zeile oder Spalte, so werden sie durch die Buchstaben in derselben Zeile bzw. in dem anderen Paar von Ecken des durch das ursprüngliche Paar definierten Rechtecks ersetzt. (z.B. wird hs als BP und ea als IM verschlüsselt.)

23

Hill Chiffre

Entwickelt von dem Mathematiker Lester Hill im Jahr 1929.

- Die Stärke ist, dass sie Häufigkeit von einzelnen Buchstaben vollständig ausgeblendet wird.
 - Durch die Verwendung einer größeren Matrix werden mehr weitere Frequenzinformationen verborgen.
 - Eine 3 x 3 Hill-Chiffre verbirgt nicht nur die Häufigkeiten einzelner Buchstabend sondern auch von Digrammen.
- Stark gegen einen Angriff auf den Geheimtext, aber leicht zu brechen sobald ein Klartext vorliegt (*known plaintext attack*).

Polyalphabetische Chiffren

Polyalphabetische Substitutions-Chiffren verbessern einfache monoalphabetische Chiffren, indem sie verschiedene monoalphabetische Substitutionen verwenden, während man die Klartextnachricht verschlüsselt.

Alle diese Techniken haben die folgenden Merkmale gemeinsam:

- Es wird ein Satz verwandter monoalphabetischer
 Substitutionsregeln verwendet.
- Ein Schlüssel bestimmt,
 welche bestimmte Regel für eine bestimmte
 Umwandlung gewählt wird.

Vigenère Chiffre

- Die bekannteste und eine der einfachsten polyalphabetischen Substitutions-Chiffren
- In diesem Schema besteht die Menge der verwandten monoalphabetischen Substitutionsregeln aus den 26 Caesar-Chiffren mit Verschiebungen von 0 bis 25
- Jede Chiffre wird durch einen Schlüsselbuchstaben identifiziert, der den Klartextbuchstaben durch den Chiffretextbuchstaben ersetzt.

Aufbau

- Kopfzeile: Klartextbuchstabe
- 1. Spalte: Schlüsselbuchstabe
- Tableau: Verschlüsselter Buchstabe

Beispiel

Nehmen wir an, der Schlüssel ist "D" und der Klartextbuchstabe sei "b". Dann ist der Chiffretextbuchstabe "E".

/	а	b	С	d	е	f	g	h	i	j		I	m	n	0	р	q	r		t	u	V	w	X	у	z
Α	Α	В	\circ	D	E	F	G	Η		J	Κ	L	M	Ν	0	Ρ	Q	R	S	Т	U	٧	W	Χ	Υ	Z
В	В	$^{\circ}$	D	E	F	G	Н		J	Κ	L	M	Ν	Ο	Ρ	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α
С	С	D	E	F	G	Η		J	Κ	L	M	Ν	Ο	Ρ	Q	R	S	Т	U	٧	W	Χ	Υ	Ζ	Α	В
D	D	E	F	G	Н		J	Κ		M	Ν	0	Ρ	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	С
E	Ε	F	G	Н		J	Κ		M	Ν	0	Ρ	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D
F	F	G	Н		J	Κ	L	M	Ν	0	Ρ	Q	R	S	Т	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	E
G	G	Η		J	Κ	L	M	Ν	0	Ρ	Q	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	$^{\circ}$	D	E	F
Н	Н		J	Κ	L	M	Ν	0	Ρ	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	$^{\circ}$	D	Ε	F	G
Ī	l	J	Κ	L	M	Ν	0	Ρ	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	H
J	J	Κ	L	M	Ν	0	Ρ	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	$^{\circ}$	D	Е	F	G	Н	П
K	Κ	L	M	Ν	0	Ρ	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	С		Ε	F	G	Η		J
L	L	M	Ζ	0	Ρ	Q	R	S	T	U	V	W	Χ	Υ	Ζ	Α	В	\circ	D	Е	F	G	Н		J	K
Μ	Μ	Z	0	Ρ	Q	\mathbb{R}	ഗ	Т	\supset	>	8	Χ	Υ	Ζ	Α	В	С	\Box	E	F	G	Τ	l	\supset	Κ	
N	Ν	0	Ρ	Q	R	S	Т	U	V	W	Χ	Υ	Ζ	Α	В	\circ	D	Е	F	G	Н		J	Κ	L	M
0	0	$^{\square}$	O	R	S	Н	\supset	>	8	X	\succ		Α	В	С	\Box	Ε	ш	G	\mathbf{I}		っ	Κ	Ш	M	Ν
O P	Ρ	O	\mathbb{C}	S	Т	\supset	>	8	X	\succ	Ζ	Α	В	C	D	ш	F	O	Н		J	Κ	ш	Σ	Ν	Ο
Q	Q	\mathbb{C}	ഗ	Т	U	>	8	X	\succ	Ν	⋖	В	C	D	E	ш	G	\mathbf{I}	l	つ	K	ш	Μ	Z	0	Р
R	R	S	Τ	U	V	W	Χ	Υ	Ζ	Α	В	\bigcirc	D	Е	F	G	Н	l	J	Κ	L	M	Ν	0	Ρ	Q
S	S	Τ	J	V	W	Χ	Υ	Ζ	Α	В	\bigcirc		E	F	G	Η		J	K	L	M	Ν	0	Ρ	Q	R
T	Τ	\supset	٧	W	Χ	Υ	Ζ	Α	В	\bigcirc	\Box	Ε	F	G	Н		J	K	L	M	Ν	0	Ρ	Q	R	S
U	U	٧	W	Χ	Υ	Ζ	Α	В	\bigcirc	\Box	Е	F	G	Н		J	K	L	M	Ν	Ο	Ρ	Q	R	S	Т
٧	V	W	Χ	Υ	Ζ	Α	В	\bigcirc	$ \cap $	Ш	F	G	Н		J	Κ	L	M	Ν	0	Ρ	Q	R	ഗ	Τ	U
W	W	Χ	Υ	Ζ	Α	В	C	D	E	F	G	Η		J	Κ	L	M	Ν	O	Ρ	Q	R	S	Т	U	V
X	Χ	Υ	Z	Α	В	\bigcirc	D	Ē	F	G	Η̈́	Ī	J	Κ	Ĺ	M	Ν	0	Ρ	Q	R	ഗ	ΤĪ	Ū	V	W
Υ	Υ	Z	A	В	C	D	Ē	F	G	ΗĪ		7	K	Ĺ	M	N	Ō	Ρ	Q	R	S	T	Ū	V	W	X
Z	Z	Ā	В	C	D	Е	F	O	Η		\supset	Κ	L	M	N	0	Ρ	O	R	ഗ	Т	\supset	V	8	Χ	Υ

Beispiel einer Vigenère-Verschüsselung

- Um eine Nachricht zu verschlüsseln, wird ein Schlüssel benötigt, der so lang ist wie die Nachricht.
- In der Regel ist der Schlüssel ein sich wiederholendes Schlüsselwort.

Beispiel

Wenn das Schlüsselwort **deceptive** ist, wird die Nachricht "Wir wurden entdeckt, rette dich" wie folgt verschlüsselt:

Schlüssel: DECEPTIVEDECEPTIVE
Klartext: wearediscoveredsaveyourself
Geheimtext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Vigenère Autokey System

Ein Schlüsselwort wird mit dem Klartext selbst verkettet, um einen laufenden Schlüssel zu erhalten.

Beispiel

Schlüssel: DECEPTIVEwearediscoveredsav

Klartext..: wearediscoveredsaveyourself

Geheimtext: ZICVTWQNGKZEIIGASXSTSLVVWLA

Auch dieses Verfahren ist anfällig für eine Kryptoanalyse, da der Schlüssel und der Klartext die gleiche Häufigkeitsverteilung der Buchstaben aufweisen und eine statistische Technik angewendet werden kann.

Vernam Chiffre

One-Time Pad

- Verbesserung der Vernam-Chiffre, vorgeschlagen von dem Offizier Joseph Mauborgne des Army Signal Corp.
- Verwendung eines Zufallsschlüssels, der so lang wie die Nachricht ist, so dass der Schlüssel nicht wiederholt werden muss.
- Der Schlüssel wird zum Ver- und Entschlüsseln einer einzigen Nachricht verwendet und dann verworfen.
- Jede neue Nachricht erfordert einen neuen Schlüssel mit der gleichen Länge wie die neue Nachricht.
- Das Schema ist beweisbar unknackbar.
 - Erzeugt eine zufällige Ausgabe, die in keinem statistischen Zusammenhang mit dem Klartext steht.
 - Da der Chiffriertext keinerlei Informationen über den Klartext enthält, gibt es keine Möglichkeit, den Code zu knacken.

Schwierigkeiten bei der Verwendung eines One-Time-Pads

- Das One-Time-Pad bietet vollständige Sicherheit, hat aber in der Praxis zwei grundlegende Schwierigkeiten:
 - Es gibt das praktische Problem der Herstellung großer Mengen von Zufallsschlüsseln.
 Jedes stark genutzte System könnte regelmäßig Millionen von zufälligen Zeichen benötigen
 - Ein "gigantisches" Schlüsselverteilungsproblem
 Für jede zu übermittelnde Nachricht benötigen Sender und Empfänger einen gleich langen Schlüssel
- Aufgrund dieser Schwierigkeiten ist das One-Time-Pad nur von begrenztem Nutzen; es eignet sich vor allem für Kanäle mit geringer Bandbreite, die eine sehr hohe Sicherheit erfordern.
- Das One-Time-Pad ist das einzige Kryptosystem, das eine perfekte Geheimhaltung bietet.

Rail Fence Chiffre

- Einfachste Transpositions-Chiffre (d.h. Chiffre basierend auf *Vertauschung*).
- Der Klartext wird als eine Folge von Diagonalen aufgeschrieben und dann als eine Folge von Zeilen abgelesen.

Beispiel

Um die Nachricht "Wir treffen uns nach der Toga-Party" mit einer Rail Fence Chiffre der Tiefe 2 (Schlüssel) zu verschlüsseln, würden wir schreiben:

```
mematrhtgpry
etefeteoaat
```

Die verschlüsselte Nachricht ist: MEMATRHTGPRYETEFETEOAAT

Zeilenverschiebungs-Chiffre (Row Transposition Cipher)

- Ist eine komplexere Transposition.
- Schreiben Sie die Nachricht zeilenweise in ein Rechteck mit wohldefinierter Breite und lesen Sie die Nachricht spaltenweise ab, aber vertauschen Sie die Reihenfolge der Spalten.
- Die Reihenfolge der Spalten ist dann der Schlüssel.

Beispiel

Schlüssel: 4312567
Klartext: attackp
ostpone
duntilt
woamxyz

Geheimtext: TTNA APTM TSUO AODW COIX KNLY PETZ
(Spalte: 3--- 4--- 2--- 1--- 5--- 6--- 7---)

Steganografie

Dear Friend; We know you are interested in receiving cutting-edge announcement. If you are not interested in our publications and wish to be removed from our lists, simply do NOT respond and ignore this mail. This mail is being sent in compliance with Senate bill 1626; Title 4, Section 305. This is a ligitimate business proposal! Why work for somebody else when you can become rich in 96 months. Have you ever noticed nobody is getting any younger & nobody is getting any younger. Well, now is your chance to capitalize on this! We will help you decrease perceived waiting time by 170% and use credit cards on your website! You are guaranteed to succeed because we take all the risk! But don't believe us. Mrs Anderson of Indiana tried us and says "I was skeptical but it worked for me". We assure you that we operate within all applicable laws. You will blame yourself forever if you don't order now. Sign up a friend and you'll get a discount of 10%! Thank—you for your serious consideration of our offer!

Verwenden Sie Spammimic https://www.spammimic.com/, um die Nachricht einzublenden.

Die Nachricht ist: "Success!"

35

Auswahl anderer Steganographie-Techniken

Zeichenmarkierung

Ausgewählte Buchstaben eines gedruckten oder maschinengeschriebenen Textes werden mit Bleistift überstrichen. Die Markierungen sind nur sichtbar, wenn das Papier schräg in helles Licht gehalten wird.

Unsichtbare Tinte

Es gibt eine Reihe von Substanzen, die zum Schreiben verwendet werden können, aber keine sichtbaren Spuren hinterlassen, solange das Papier nicht erhitzt oder mit einer chemischen Substanz behandelt wird.

Nadelstiche

Kleine Nadelstiche auf ausgewählten Buchstaben sind normalerweise nicht sichtbar, es sei denn, das Papier wird vor ein Licht gehalten.

Sehr helle Tinte

Druckerhersteller drucken winzige Punktmuster in sehr hellen Farben auf die Seiten, um Dokumente ggf. rückverfolgen zu können zu dem Drucker auf dem sie gedruckt wurden.

Steganographie vs. Verschlüsselung

- Steganografie hat eine Reihe von Nachteilen im Vergleich zur Verschlüsselung:
 - Es erfordert einen hohen Overhead, um relativ wenige Bits an Informationen zu verbergen.
 - Sobald das System entdeckt wird, wird es praktisch wertlos.
- Der Vorteil der Steganografie:
 - Sie kann von Parteien eingesetzt werden, die etwas zu verlieren haben, wenn die Tatsache ihrer geheimen Kommunikation (nicht unbedingt der Inhalt) entdeckt wird.
 - Verschlüsselung kennzeichnet den Verkehr als wichtig oder geheim oder kann den Sender oder Empfänger als jemanden identifizieren, der etwas zu verbergen hat.

Übung

Playfair Chiffre

Entschlüsseln Sie: XGAWMGAZ. Das Passwort ist MONARCHY (wie auf den Folien.)

Vigenère Chiffre

Sie haben das folgende Klartext-Chiffretext-Paar:

P: secret
C: HSFGSW

- Wie ist der Schlüssel?
- 2. Welche Art von Angriff haben Sie durchgeführt?

Rail-fence Chiffre

Verschlüsseln Sie "i love crypto" mit dem Schlüssel/der Tiefe 3.

38

Übung

Zeilenverschiebungs-Chiffre

Sie haben die folgende Nachricht erhalten:

YSFRITTUNCOSPJU

Außerdem konnten Sie den Schlüssel bis auf einen Wert ermitteln: 4153.

- a. Wie viele Entschlüsselungsmöglichkeiten gibt es (noch)?
- b. Bestimmen Sie den richtigen Schlüssel und entschlüsseln Sie den Text?

39