E 6885: Reinforcement Learning Tashrif Billah (tb2699)

PhD Student, Electrical Engineering

1. (1)

For value iteration, we have used the following algorithm in Lecture-3, page 17-Initialize array v arbitrarily (e.g., v(s) = 0 for all $s \in S^+$)

Repeat
$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{For each } s \in \mathbb{S} \text{:} \\ temp \leftarrow v(s) \\ v(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) [r(s,a,s') + \gamma v(s')] \\ \Delta \leftarrow \max(\Delta, |temp - v(s)|) \\ \text{until } \Delta < \theta \text{ (a small positive number)} \end{array}$$

Output a deterministic policy,
$$\pi$$
, such that
$$\pi(s) = \arg\max_{a} \sum_{s'} p(s'|s, a) \Big[r(s, a, s') + \gamma v(s') \Big]$$

Please see the attached code vi.py.

1.(2)

On the other hand, for policy iteration, we have used the following algorithm from Lecture-3, page 12-

- 1. Initialization $v(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathbb{S}$
- 2. Policy Evaluation

Repeat $\Delta \leftarrow 0$ For each $s \in \mathbb{S}$: $temp \leftarrow v(s)$ $v(s) \leftarrow \sum_{s'} p(s'|s, \pi(s)) \Big[r(s, \pi(s), s') + \gamma v(s') \Big]$ $\Delta \leftarrow \max(\Delta, |temp - v(s)|)$ until $\Delta < \theta$ (a small positive number)

3. Policy Improvement $policy\text{-stable} \leftarrow true$ For each $s \in \mathcal{S}$: $temp \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma v(s') \right]$ If $temp \neq \pi(s)$, then $policy\text{-stable} \leftarrow false$ If policy-stable, then stop and return v and π ; else go to 2

Please see the attached code pi.py.

In the main functions, they produce outputs for optimal value function and optimal policy. Also, they print the average rewards on 100 episodes using the optimal policy.

1. (3) The optimal value function for both the value iteration and policy iteration-

_					_	-	
119.877	82.823	146.66	122.89	55.584	82.823	79.786	96.385
72.797	55.584	146.66	96.385	48.215	55.584	79.786	122.89
127.239	88.234	155.432	130.411	112.883	77.682	138.327	115.746
59.562	88.234	85.038	102.511	68.158	51.805	138.327	90.566
51.805	59.562	85.038	130.411	119.877	93.931	146.66	138.327
93.931	63.75	115.746	96.385	72.797	106.239	102.511	122.89
63.75	48.215	130.411	85.038	55.584	63.75	90.566	138.327
99.927	112.883	138.327	146.66	88.234	59.562	108.959	90.566
77.682	112.883	108.959	130.411	59.562	44.804	122.89	79.786
59.562	68.158	96.385	146.66	93.931	119.877	130.411	155.432
82.823	55.584	102.511	85.038	82.823	119.877	115.746	138.327
55.584	41.564	115.746	74.796	55.584	63.75	90.566	138.327
88.234	127.239	122.89	146.66	112.883	77.682	138.327	115.746
59.562	88.234	85.038	102.511	77.682	59.562	155.432	102.511
51.805	59.562	85.038	130.411	119.877	93.931	164.665	138.327
106.239	72.797	130.411	108.959	63.75	93.931	90.566	108.959
72.797	55.584	146.66	96.385	55.584	63.75	90.566	138.327
112.883	99.927	155.432	146.66	99.927	68.158	122.89	102.511
68.158	99.927	96.385	115.746	68.158	51.805	138.327	90.566
59.562	68.158	96.385	146.66	106.239	106.239	146.66	155.432
93.931	63.75	115.746	96.385	72.797	106.239	102.511	122.89
63.75	48.215	130.411	85.038	63.75	72.797	102.511	155.432
99.927	112.883	138.327	164.665	88.234	59.562	108.959	90.566
77.682	112.883	108.959	130.411	59.562	44.804	122.89	79.786
59.562	68.158	96.385	146.66	93.931	119.877	130.411	155.432
106.239	72.797	130.411	108.959	55.584	82.823	79.786	96.385
82.823	63.75	164.665	108.959	55.584	63.75	90.566	138.327
112.883	88.234	174.385	146.66	99.927	68.158	122.89	102.511
					59.562		102.511
59.562	68.158	96.385	146.66	106.239	93.931	164.665	155.432

93.931	63.75	115.746	96.385	72.797	106.239	102.511	122.89
63.75	48.215	130.411	85.038	63.75	72.797	102.511	155.432
99.927	112.883	138.327	164.665	88.234	59.562	108.959	90.566
77.682	112.883	108.959	130.411	59.562	44.804	122.89	79.786
59.562	68.158	96.385	146.66	93.931	119.877	130.411	155.432
106.239	72.797	130.411	108.959	55.584	82.823	79.786	96.385
82.823	63.75	164.665	108.959	55.584	63.75	90.566	138.327
112.883	88.234	174.385	146.66	99.927	68.158	122.89	102.511
59.562	88.234	85.038	102.511	77.682	59.562	155.432	102.511
59.562	68.158	96.385	146.66	106.239	93.931	164.665	155.432
93.931	63.75	115.746	96.385	63.75	93.931	90.566	108.959
72.797	55.584	146.66	96.385	63.75	72.797	102.511	155.432
99.927	99.927	155.432	164.665	88.234	59.562	108.959	90.566
68.158	99.927	96.385	115.746	68.158	51.805	138.327	90.566
68.158	77.682	108.959	164.665	93.931	106.239	146.66	174.385
82.823	55.584	102.511	85.038	72.797	106.239	102.511	122.89
63.75	48.215	130.411	85.038	63.75	72.797	102.511	155.432
88.234	112.883	138.327	164.665	99.927	68.158	122.89	102.511
51.805	77.682	74.796	90.566	88.234	68.158	174.385	115.746
51.805	59.562	85.038	130.411	106.239	82.823	184.615	138.327
93.931	63.75	115.746	96.385	55.584	82.823	79.786	96.385
72.797	55.584	146.66	96.385	55.584	63.75	90.566	138.327
99.927	88.234	155.432	146.66	88.234	59.562	108.959	90.566
59.562	88.234	85.038	102.511	68.158	51.805	138.327	90.566
59.562	68.158	96.385	146.66	93.931	93.931	146.66	155.432
82.823	55.584	102.511	85.038	63.75	93.931	90.566	108.959
63.75	48.215	130.411	85.038	72.797	82.823	115.746	174.385
88.234	99.927	138.327	184.615	77.682	51.805	96.385	79.786
68.158	99.927	96.385	115.746	59.562	44.804	122.89	79.786
68.158	77.682	108.959	164.665	82.823	106.239	130.411	174.385
93.931	63.75	115.746	96.385	48.215	72.797	70.057	85.038
93.931	72.797	184.615	122.89	48.215	55.584	79.786	122.89
99.927	77.682	195.385	130.411	88.234	59.562	108.959	90.566
51.805	77.682	74.796	90.566	68.158	51.805	138.327	90.566
51.805	59.562	85.038	130.411	93.931	82.823	146.66	138.327
82.823	55.584	102.511	85.038	55.584	82.823	79.786	96.385
63.75	48.215	130.411	85.038	55.584	63.75	90.566	138.327
88.234	88.234	138.327	146.66	77.682	51.805	96.385	79.786
59.562	88.234	85.038	102.511			122.89	79.786
77.682	88.234	122.89	184.615	82.823	93.931	130.411	195.385
72.797	48.215	90.566	74.796	63.75	93.931	90.566	108.959
55.584	41.564	115.746	74.796	72.797	82.823	115.746	174.385
77.682	99.927	122.891	184.615]				

The above set of values are part of a 500x1 dimension vector corresponding to 500 states. However, Python console plots them in the above format to fit in the terminal.

The optimal policy for both the value iteration and policy iteration-

The above set of actions are part of a 500x1 dimension vector corresponding to 500 states. However, Python console plots them in the above format to fit in the terminal.

Result comparison

Algorithm	Average	# of iteration to	Convergence time in
	reward	converge	seconds
Value iteration	8.6868	146	0.6191
Policy iteration	8.5757	17	4.6816

Note: If the code is run, it may produce slightly different value for the above, given the state space is probabilistic.

Discussion

- 1. The value iteration takes more number of iteration while policy iteration takes less. But, the time of convergence of the latter is greater than the former.
- 2. The above observation is justified, because in each iteration of the policy iteration, a complete value iteration is performed. This step is called policy evaluation. Thereby, a lot of value iteration yields a larger convergence time for policy iteration.
- 3. However, the average reward of the both the policies are nearly same. It implies that, whatever policy we choose, that would yield the same result. This attribute is further justified by the exact similarity of the optimal value function and optimal policy yielded by both value and policy iteration.

For SARSA learning, we have used the following policy from Lecture-5, slide-21 With probability $1-\epsilon$ choose the greedy action With probability ϵ choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ & \epsilon/m & ext{otherwise} \end{array}
ight.$$

Initialize $Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode): Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Repeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]$ $S \leftarrow S'$; $A \leftarrow A'$; until S is terminal

Please see the attached code ql_sarsa.py.

The output is produced in required format. Since the Q(s,a) is of big dimension 500x6, the output is not shown here. Please see the attached QL and SARSA Output.txt

For Q learning, we have used the same greedy policy as above. However, for the complete algorithm, we have used the following pseudocode from page 145, Sutton's book-

With probability $1-\epsilon$ choose the greedy action With probability ϵ choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ \epsilon/m & ext{otherwise} \end{array}
ight.$$

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]S \leftarrow S';until S is terminal
```

Please see the attached code ql_sarsa.py.

The output is produced in required format. Since the Q(s,a) is of big dimension 500x6, the output is not shown here. Please see the attached QL and SARSA Output.txt

Convergence time comparison

Algorithm	Convergence time in
	seconds
Q-Learning	4.2066
SARSA Learning	4.3681

Note: If the code is run, it may produce slightly different value for the above, given the state space is probabilistic.

Discussion

1. As we have taken, the cumulative average reward is given by-

$$R_{cavg} = \frac{1}{n} \sum_{i=1}^{n} \sum_{l=1}^{L_i} R_l(s, a, s')$$

where, n is the number of iteration performed up to any point, and L_i is the length of i^{th} episode, i = 1, 2, ..., n. $R_l(s, a, s')$ is the reward at l^{th} step of the i^{th} episode.

- 2. As we can see in the vertical axis of the graph, the Q learning cumulative reward graph converges to the steady state value quicker than the SARSA learning.
- 3. The action-value function Q(s, a) for Q-learning approximates q^* , the optimal action-value function, irrespective of the policy being followed. This attribute is conducive to the early convergence of Q learning compared to SARSA.

Discussion

The SARSA learning algorithm takes more number of steps to complete an episode compared to Q learning as can be seen in the above figures. After an initial transient, Q-learning learns values for the optimal policy. However, due to greedy choice of Q(s,a) to update at each step, it sometimes makes a bad decision by running into more negative rewards in future.

On the other hand, SARSA learning algorithm makes greedy action selection at each step of an episode and learns the longer but safer path towards the terminal state. For this reason, SARSA has relatively more number of steps in each episode compared to the Q learning algorithm.

Note: The above description is the expected behavior for both the learning algorithms. However, the above two figures do not completely point it out. Rather, for both the learning algorithms, the number of steps decay look similar.