

#### MMG1001 Genomics Week 3 Tutorial

### Systematic functional analysis of the Caenorhabditis elegans genome using RNAi

TA: Heather Gibling



#### C. elegans quick facts



- First multicellular organism to have genome sequenced (1998-2002)
- Only organism to have neuronal connections fully described ("connectome")
- Diploid genome with five autosomes, one sex choromosome
  - 1mb, ~20k genes
  - XX hermaphrodite, X0 male
  - no centromeres, but central clusters of genes with low recombination rates (autosomes)
- Good models for genetic screens

#### Genetic screens

Experimental technique to **test multiple genes simultaneously** to determine **gene function**, often by looking at phenotypes

In a **screen**, you have to look at (or otherwise examine) a large number of variants – e.g. mutants – in order to find a small number that have a property you are interested in.

Today, we often automate screens (or use reporters, the FACS machine, etc). But, historically, since this is difficult, screens were often staged (and still are, if the assays are challenging or expensive).

In a **selection**, only a small subset of mutated cells/organisms with a property of interest is able to grow. *Example: antibiotic resistance*.



### RNA interference (RNAi)

### RNA interference (RNAi)

- Inhibition of gene expression or translation by RNA molecules
  - siRNA: exogenous RNAs (e.g. viruses)
  - miRNA: endogenous RNAs (encoded in genome)
- Used in labs for gene knockdown experiments
- Easy to use in C. elegans
  - Engineer E. coli with dsRNA for target gene, feed to worms
  - Well-defined libraries available



# Systematic functional analysis of the *Caenorhabditis elegans* genome using RNAi

Ravi S. Kamath\*† Andrew G. Fraser\*†§, Yan Dong\*, Gino Poulin\*, Richard Durbin‡, Monica Gotta\*§, Alexander Kanapin||, Nathalie Le Bot\*, Sergio Moreno\*¶, Marc Soinmann‡§, David P. Welchman\*, Peder Zipperlen\* & Julie Ahringer\*







### What are the main goals of the paper?

- Perform genome-wide knockdowns to determine phenotypic effects of as many C. elegans genes as possible
- Determine how genes with related phenotypic effects are organized throughout the genome
- Develop and share an RNAi library for others to use

### How did they do it?

#### How did they do it?

- Constructed a library of bacterial strains (16,757), each capable of expressing dsRNA designed to target to a single gene
  - 85% of 19,427 predicted *C. elegans* genes (in 2002)
  - Similar coverage across each chromosome
- Fed worms the bacterial library to knockdown target genes and create loss of function phenotypes
- Screened wild-type hermaphrodites to identify genes that result in phenotype classes:
  - Nonviable: sterility, embryonic or larval lethality
  - Growth defects: slow post-embryonic growth
  - Viable post-embryonic: defects in post-embryonic development

What were the major findings?

#### Phenotypes observed across C. elegans genome

| а                                                                                                                                                              |                                                                           | Chr I (2,445 clones) (2,978 clone                  |                                                                    |                                                      | Chr III<br>(2,132 clones)                                                 |                                                     | Chr IV<br>(2,693 clones)                                           |                                                    | Chr V<br>(4,152 clones)                                            |                                                  | Chr X<br>(2,357 clones)                                            |                                                      | Total<br>(16,757 clones)                                           |                                                             |                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                                                                                                | Phe                                                                       | Num                                                | %                                                                  | Num                                                  | %                                                                         | Num                                                 | %                                                                  | Num                                                | · %                                                                | Num                                              | %                                                                  | Num                                                  | %                                                                  | Num                                                         | %                                                                         |
|                                                                                                                                                                | All                                                                       | 334                                                | 13.7                                                               | 354                                                  | 11.9                                                                      | 395                                                 | 18.5                                                               | 293                                                | 10.9                                                               | 215                                              | 5.2                                                                | 131                                                  | 5.6                                                                | 1722                                                        | 10.3                                                                      |
| Nonviable<br>Growth defects<br>Viable post-embryonic                                                                                                           | Nonv<br>Grow<br>Vpep                                                      | 253<br>37<br>44                                    | 10.3<br>1.5<br>1.8                                                 | 240<br>41<br>73                                      | 8.1<br>1.4<br>2.5                                                         | 298<br>59<br>38                                     | 14.0<br>2.8<br>1.8                                                 | 187<br>70<br>36                                    | 6.9<br>2.6<br>1.3                                                  | 145<br>46<br>24                                  | 3.5<br>1.1<br>0.6                                                  | 47<br>23<br>61                                       | 2.0<br>1.0<br>2.6                                                  | 1170<br>276<br>276                                          | 7.0<br>1.6<br>1.6                                                         |
| Embryonic lethal                                                                                                                                               | Emb                                                                       | 226                                                | 9.2                                                                | 204                                                  | 6.9                                                                       | 220                                                 | 10.3                                                               | 143                                                | 5.3                                                                | 108                                              | 2.6                                                                | 28                                                   | 1.2                                                                | 929                                                         | 5.5                                                                       |
| Sterile<br>Sterile progeny                                                                                                                                     | Ste<br>Stp                                                                | 83<br>15                                           | 3.4<br>0.6                                                         | 43<br>33                                             | 1.4<br>1.1                                                                | 132<br>18                                           | 6.2<br>0.8                                                         | 58<br>14                                           | 2.2<br>0.5                                                         | 44<br>19                                         | 1.1<br>0.5                                                         | 12<br>3                                              | 0.5<br>0.1                                                         | 372<br>102                                                  | 2.2<br>0.6                                                                |
| Slow post-embryonic growth / Larval arrest<br>Larval lethality                                                                                                 | Gro/Lva<br>Lvl                                                            | 147<br>38                                          | 6.0<br>1.6                                                         | 129<br>61                                            | 4.3<br>2.0                                                                | 161<br>35                                           | 7.6<br>1.6                                                         | 131<br>18                                          | 4.9<br>0.7                                                         | 102<br>20                                        | 2.5<br>0.5                                                         | 34<br>24                                             | 1.4<br>1.0                                                         | 704<br>196                                                  | 4.2<br>1.2                                                                |
| Adult lethal Blistering of cuticle Body morphological defects Clear Dumpy Egg-laying defective High incidence of males Long Moult defects Multivulva Paralyzed | Adl<br>Bli<br>Bmd<br>Clr<br>Dpy<br>Egl<br>Him<br>Lon<br>Mlt<br>Muv<br>Prz | 3<br>4<br>27<br>14<br>19<br>6<br>12<br>2<br>8<br>2 | 0.1<br>0.2<br>1.1<br>0.6<br>0.8<br>0.2<br>0.5<br>0.1<br>0.3<br>0.1 | 19<br>3<br>89<br>84<br>39<br>29<br>4<br>11<br>8<br>4 | 0.6<br>0.1<br>3.0<br>2.8<br>1.3<br>1.0<br>0.1<br>0.4<br>0.3<br>0.1<br>1.4 | 34<br>1<br>32<br>45<br>16<br>18<br>1<br>9<br>4<br>5 | 1.6<br>0.0<br>1.5<br>2.1<br>0.8<br>0.8<br>0.0<br>0.4<br>0.2<br>0.2 | 7<br>1<br>17<br>45<br>20<br>13<br>2<br>8<br>2<br>2 | 0.3<br>0.0<br>0.6<br>1.7<br>0.7<br>0.5<br>0.1<br>0.3<br>0.1<br>0.1 | 7<br>0<br>15<br>18<br>7<br>8<br>1<br>3<br>2<br>0 | 0.2<br>0.0<br>0.4<br>0.4<br>0.2<br>0.2<br>0.0<br>0.1<br>0.0<br>0.0 | 16<br>2<br>14<br>38<br>16<br>21<br>2<br>5<br>13<br>1 | 0.7<br>0.1<br>0.6<br>1.6<br>0.7<br>0.9<br>0.1<br>0.2<br>0.6<br>0.0 | 86<br>11<br>194<br>244<br>117<br>95<br>22<br>38<br>37<br>14 | 0.5<br>0.1<br>1.2<br>1.5<br>0.7<br>0.6<br>0.1<br>0.2<br>0.2<br>0.1<br>0.7 |
| Protruding vulva<br>Roller<br>Ruptured<br>Sick<br>Uncoordinated                                                                                                | PvI<br>RoI<br>Rup<br>Sck<br>Unc                                           | 32<br>2<br>10<br>6<br>72                           | 1.3<br>0.1<br>0.4<br>0.2<br>2.9                                    | 39<br>5<br>39<br>32<br>111                           | 1.3<br>0.2<br>1.3<br>1.1<br>3.7                                           | 37<br>1<br>25<br>67<br>55                           | 1.7<br>0.0<br>1.2<br>3.1<br>2.6                                    | 17<br>2<br>18<br>44<br>46                          | 0.6<br>0.1<br>0.7<br>1.6<br>1.7                                    | 13<br>1<br>11<br>25<br>40                        | 0.3<br>0.0<br>0.3<br>0.6<br>1.0                                    | 9<br>2<br>16<br>6<br>64                              | 0.4<br>0.1<br>0.7<br>0.3<br>2.7                                    | 147<br>13<br>119<br>180<br>388                              | 0.9<br>0.1<br>0.7<br>1.1<br>2.3                                           |

1,722 genes had observable phenotypes

~10.7% of targeted genes

Many genes associated with multiple phenotypes



### Chromosome X has predominantly viable phenotypes







### Chromosome X has predominantly viable phenotypes



Nonviable
Gro Growth defects
Vpep Viable post-embryonic

Autosomes had similar distributions of phenotypes, with mostly nonviable phenotypes.

What does this say about selection on chrom X?



### RNAi phenotypes for 33 human homologs/diseases

| Predicted gene | C. elegans locus | Human disease                        | Human gene  | BlastP E value         | RNAi phenotype               |
|----------------|------------------|--------------------------------------|-------------|------------------------|------------------------------|
| B0035.5        |                  | G6PD deficiency                      | G6PD        | 1 × 10 <sup>-176</sup> | Emb, Clr, Gro                |
| B0350.2A       | unc-44           | Hereditary spherocytosis             | ANK1        | 0.00                   | Slu                          |
| C01G6.8        | cam-1/kin-8      | Insulin-resistant diabetes mellitus  | INSR        | $6 \times 10^{-55}$    | Unc, Pvl, clear patch        |
| C01G8.5A       |                  | Neurofibromatosis                    | NF2         | $1 \times 10^{-123}$   | Unc, LvI, Gro                |
| C06A1.1        |                  | Zellweger syndrome                   | PEX1        | $3 \times 10^{-67}$    | Emb, Bmd, Sck, Gro           |
| C07H6.7        | lin-39           | MODY, type IV                        | IPF1        | $5 \times 10^{-14}$    | Egl, Vul, Muv                |
| C17E4.5        |                  | Oculopharyngeal muscular dystrophy   | PABPN1      | $3 \times 10^{-41}$    | Emb, Unc, Lva                |
| C29A12.3       | lig-1            | DNA ligase I deficiency              | DNA ligase1 | $1 \times 10^{-167}$   | Emb                          |
| C48A7.1        | egl-19           | Long QT syndrome 3                   | SCN5A       | $2 \times 10^{-64}$    | Egl, Clr                     |
| C50H2.1        |                  | Leydig cell hypoplasia               | LHCGR       | $9 \times 10^{-76}$    | Gro                          |
| D2045.1        |                  | Spinocerebellar ataxia 2             | SCA2        | $7 \times 10^{-09}$    | Emb                          |
| F01G10.1       |                  | Wernicke-Korsakoff syndrome          | TKT         | 0.00                   | Emb, Clr, Gro                |
| F07A5.7        | unc-15           | Tuberous sclerosis                   | TSC1        | $1 \times 10^{-07}$    | Unc, Prz, Egl                |
| F11C1.6        | nhr-25           | Pseudohyperaldosteronism             | NR3C2       | $7 \times 10^{-24}$    | Unc, Prz, Clr, Egl           |
| F11H8.4        | cyk-1            | Nonsyndromic sensorineural deafness  | DFNA1       | $9 \times 10^{-49}$    | Emb, Adl, Rup, Clr           |
| F20B6.2        | vha-12           | Renal tubular acidosis               | ATP6B1      | 0.00                   | Emb, Ste, Adl, Lvl, Prz      |
| F54D8.1        |                  | Ehlers-Danlos syndrome, type IV      | COL3A1      | $1 \times 10^{-06}$    | Dpy                          |
| F53G12.3       |                  | Chronic Granulomatous Disease        | X-CGD       | $3 \times 10^{-34}$    | Bli, Mlt, Lvl                |
| F58A3.2A       | egl-15           | Multiple venous malformations        | VMCM        | $1 \times 10^{-62}$    | Egl                          |
| K04G2.8A       | apr-1            | Adenomatous polyposis of the colon   | APC         | $9 \times 10^{-34}$    | Unc, Bmd, Lvl                |
| K07A1.12       | rba-2            | Cockayne syndrome                    | CKN1        | $6 \times 10^{-13}$    | Emb, Pvl, Lvl                |
| K08A8.2        |                  | Gonadal dysgenesis                   | SRY         | $3 \times 10^{-31}$    | Unc, Egl                     |
| K08C7.3        | epi-1            | Usher syndrome 2a                    | USH2A       | $1 \times 10^{-112}$   | Ste, Unc, Muv, Dpy, Pvl, Rug |
| K11D9.2A       | 555-7650 /5      | Darier-White disease                 | SERCA       | 0.00                   | Ste, Sck                     |
| M02A10.2       |                  | Hyperinsulinism                      | KCNJ11      | $4 \times 10^{-78}$    | Unc                          |
| R107.8         | lin-12           | Alagille syndrome                    | JAG1        | $2 \times 10^{-90}$    | Egl                          |
| R12B2.1        | sma-4            | Pancreatic carcinoma                 | MADH4       | $2 \times 10^{-39}$    | Sma, Dpy                     |
| T03F6.5        | lis-1            | Miller-Dieker lissencephaly syndrome | PAF         | $1 \times 10^{-148}$   | Emb                          |
| W05E10.3       | ceh-32           | Holoprosencephaly                    | SIX3        | $1 \times 10^{-69}$    | Unc                          |
| W10G6.3        | ifa-2            | Keratoderma                          | KRT9        | $7 \times 10^{-26}$    | Unc, Lvl, Mlt                |
| Y47D3A.6A      | tra-1            | Grieg cephalopolysyndactyly syndrome | GLI         | $6 \times 10^{-58}$    | Rup, clear patch             |
| Y76A2A.2       |                  | Menkes disease                       | ATP7A       | 0.00                   | Prz, Adl, Unc                |
| ZC506.4        | mgl-1            | Hypercalcemia                        | CASR        | $2 \times 10^{-77}$    | Gro                          |

C. elegans genes with a human disease gene homologue are defined as those with a BlastP E value less than  $1.0 \times 10^{-6}$ , taken from refs 38, 39. Shown are those with an RNAi phenotype. The phenotypes are defined in Methods. MODY, maturity onset diabetes of the young. G6PD, glucose-6-phosphate dehydrogenase.



#### RNAi phenotypes for 33 human homologs/diseases

| Table 1 Thirty-three human disease gene homologues with an RNAi phenotype |                     |                                      |             |                        |                             |  |  |
|---------------------------------------------------------------------------|---------------------|--------------------------------------|-------------|------------------------|-----------------------------|--|--|
| Predicted gene                                                            | C. elegans locus    | Human disease                        | Human gene  | BlastP <i>E</i> value  | RNAi phenotype              |  |  |
| B0035.5                                                                   |                     | G6PD deficiency                      | G6PD        | 1 × 10 <sup>-176</sup> | Emb, Clr, Gro               |  |  |
| B0350.2A                                                                  | unc-44              | Hereditary spherocytosis             | ANK1        | 0.00                   | Slu                         |  |  |
| C01G6.8                                                                   | cam-1/kin-8         | Insulin-resistant diabetes mellitus  | INSR        | $6 \times 10^{-55}$    | Unc, Pvl, clear patch       |  |  |
| C01G8.5A                                                                  |                     | Neurofibromatosis                    | NF2         | $1 \times 10^{-123}$   | Unc, Lvl, Gro               |  |  |
| C06A1.1                                                                   |                     | Zellweger syndrome                   | PEX1        | $3 \times 10^{-67}$    | Emb, Bmd, Sck, Gro          |  |  |
| C07H6.7                                                                   | lin-39              | MODY, type IV                        | IPF1        | $5 \times 10^{-14}$    | Egl, Vul, Muv               |  |  |
| C17E4.5                                                                   |                     | Oculopharyngeal muscular dystrophy   | PABPN1      | $3 \times 10^{-41}$    | Emb, Unc, Lva               |  |  |
| C29A12.3                                                                  | lig-1               | DNA ligase I deficiency              | DNA ligase1 | $1 \times 10^{-167}$   | Emb                         |  |  |
| C48A7.1                                                                   | egl-19              | Long QT syndrome 3                   | SCN5A       | $2 \times 10^{-64}$    | Egl, Clr                    |  |  |
| C50H2.1                                                                   |                     | Leydig cell hypoplasia               | LHCGR       | $9 \times 10^{-76}$    | Gro                         |  |  |
| 02045.1                                                                   |                     | Spinocerebellar ataxia 2             | SCA2        | $7 \times 10^{-09}$    | Emb                         |  |  |
| F01G10.1                                                                  |                     | Wernicke-Korsakoff syndrome          | TKT         | 0.00                   | Emb, Clr, Gro               |  |  |
| F07A5.7                                                                   | unc-15              | Tuberous sclerosis                   | TSC1        | $1 \times 10^{-07}$    | Unc, Prz, Egl               |  |  |
| F11C1.6                                                                   | nhr-25              | Pseudohyperaldosteronism             | NR3C2       | $7 \times 10^{-24}$    | Unc, Prz, Clr, Egl          |  |  |
| F11H8.4                                                                   | cvk-1               | Nonsyndromic sensorineural deafness  | DFNA1       | $9 \times 10^{-49}$    | Emb, Adl, Rup, Clr          |  |  |
| F20B6.2                                                                   | vha-12              | Renal tubular acidosis               | ATP6B1      | 0.00                   | Emb, Ste, Adl, Lvl, Prz     |  |  |
| -54D8.1                                                                   |                     | Ehlers-Danlos syndrome, type IV      | COL3A1      | $1 \times 10^{-06}$    | Dpy                         |  |  |
| -53G12.3                                                                  |                     | Chronic Granulomatous Disease        | X-CGD       | $3 \times 10^{-34}$    | Bli, Mlt, Lvl               |  |  |
| -58A3.2A                                                                  | egl-15              | Multiple venous malformations        | VMCM        | $1 \times 10^{-62}$    | Egl                         |  |  |
| K04G2.8A                                                                  | apr-1               | Adenomatous polyposis of the colon   | APC         | $9 \times 10^{-34}$    | Unc, Bmd, Lvl               |  |  |
| K07A1.12                                                                  | rba-2               | Cockayne syndrome                    | CKN1        | $6 \times 10^{-13}$    | Emb, Pvl, Lvl               |  |  |
| (08A8.2                                                                   |                     | Gonadal dysgenesis                   | SRY         | $3 \times 10^{-31}$    | Unc, Egl                    |  |  |
| (08C7.3                                                                   | epi-1               | Usher syndrome 2a                    | USH2A       | $1 \times 10^{-112}$   | Ste, Unc, Muv, Dpy, Pvl, Ru |  |  |
| <11D9.2A                                                                  | 500 <b>2</b> 000 10 | Darier-White disease                 | SERCA       | 0.00                   | Ste, Sck                    |  |  |
| M02A10.2                                                                  |                     | Hyperinsulinism                      | KCNJ11      | $4 \times 10^{-78}$    | Unc                         |  |  |
| R107.8                                                                    | lin-12              | Alagille syndrome                    | JAG1        | $2 \times 10^{-90}$    | Egl                         |  |  |
| R12B2.1                                                                   | sma-4               | Pancreatic carcinoma                 | MADH4       | $2 \times 10^{-39}$    | Sma, Dpy                    |  |  |
| T03F6.5                                                                   | lis-1               | Miller-Dieker lissencephaly syndrome | PAF         | $1 \times 10^{-148}$   | Emb                         |  |  |
| V05E10.3                                                                  | ceh-32              | Holoprosencephaly                    | SIX3        | $1 \times 10^{-69}$    | Unc                         |  |  |
| V10G6.3                                                                   | ifa-2               | Keratoderma                          | KRT9        | $7 \times 10^{-26}$    | Unc, Lvl, Mlt               |  |  |
| /47D3A.6A                                                                 | tra-1               | Grieg cephalopolysyndactyly syndrome | GLI         | $6 \times 10^{-58}$    | Rup, clear patch            |  |  |
| 76A2A.2                                                                   |                     | Menkes disease                       | ATP7A       | 0.00                   | Prz, Adl, Unc               |  |  |
| ZC506.4                                                                   | mgl-1               | Hypercalcemia                        | CASR        | $2 \times 10^{-77}$    | Gro                         |  |  |

Many of these (50%) had viable post-embryonic phenotypes

Why might it be useful to identify C. elegans homologs for disease-causing genes in humans?

C. elegans genes with a human disease gene homologue are defined as those with a BlastP E value less than 1.0 × 10<sup>-6</sup>, taken from refs 38, 39. Shown are those with an RNAi phenotype. The phenotypes are defined in Methods. MODY, maturity onset diabetes of the young. G6PD, glucose-6-phosphate dehydrogenase.



# Phenotype classes have different over representations in functional classes of genes





## Phenotype classes have different over representations in functional classes of genes



Gene classes involved with basic metabolism and maintenance of the cell are enriched for nonviable phenotypes; more complex processes classes enriched for viable post-embryonic phenotypes.

What is observed for chromosome X?



## Several abundant protein domains have significant associations with particular RNAi phenotypes

Table 2 InterPro domains associated with RNAi phenotypes

Elongation factor, GTP-binding Cyclin Ubiquitin domain

TPR repeat

Zinc-finger, CCHC type
Myb DNA-binding domain
Laminin-type EGF-like domain
DEAD/DEAH box helicase

Ubiquitin-associated domain Zinc-finger, C<sub>2</sub>H<sub>2</sub> type

Mitochondrial substrate carrier

Protein kinase C. phorbol ester/DAG binding

Nonviable

**Growth defects** 

Viable post-embryonic

#### Gro only

Nonv only

Glycosyl transferase, family 2 Zinc-finger, RING

Phosphotyrosine interaction domain

Proline-rich extensin

#### Nonv and Gro

G-protein β-subunit WD40 repeat

AAA ATPase KH domain

Zinc-finger, C-X<sub>8</sub>-C-X<sub>5</sub>-C-X<sub>3</sub>-H type

RNA-binding region RNP-1 (RNA recognition)

#### Vpep

Immunoglobulin/major histocompatibility complex

Collagen triple helix repeat Immunoglobulin-like

EGF-like calcium-binding

Aspartic acid and asparagine hydroxylation site

Fibronectin, type III
Worm-specific repeat type 1

Most viable post-embryonic associated domains are found in flies and humans, but not budding yeast or *Arabidopsis* (plants).

What does this suggest about animal-specific domains?



## Genes with a nonviable phenotype are enriched for being in the ancient gene class





### Genes with a nonviable phenotype are enriched for being in the ancient gene class



Almost none of the worm class genes have a nonviable phenotype.

What does this suggest about these worm-specific genes?



### RNAi phenotypes are enriched in central chromosome cluster regions







### RNAi phenotypes are enriched in central chromosome cluster regions



Of genes with phenotypes:

- 14.9% in clusters
- 7.6% in arms

Where does recombination tend to occur? Which areas are more conserved?





### Nonviable genes over-enriched in three chromosome clusters, under-enriched in chromosome X









### Nonviable genes over-enriched in three chromosome clusters, under-enriched in chromosome X



36% of genes with nonviable phenotype enriched strongly enriched in clusters of chromosomes I, II, and III (13% of genome)

What might explain the under-enrichment of phenotypic genes in the chromosome arms?







### Other fun findings

- C. elegans genes with an ortholog in another eukaryote are more likely to have a detectable RNAi phenotype than all other genes (21% versus 6%)
- Highly conserved genes present as single copy in the *C. elegans* genome are more than twice as likely to have phenotype as those present in more than one copy (31% versus 12%)
  - Suggests that many recently duplicated paralogs are at least partially functionally redundant or have specialized functions that are not detectable in this screen
- Highest cross-species conservation seen among genes with a nonviable phenotype (52% have an ortholog in another eukaryote)
  - Similar essential basal cellular machinery common to all eukaryotes

### Why does it matter?

### Why does it matter?

- First systematic functional analysis of a metazoan genome
- Over two-thirds of genes annotated with an RNAi phenotype in this study had previously not been associated with a biological function in vivo
- Created genome-wide RNAi library for others to use
  - Ahringer library for C. elegans
  - o influenced library development for other species



Assignment: Using RNAi screens to predict phenotypes of orthologous genes

# Assignment: Using RNAi screens to predict phenotypes of orthologous genes

Homologs: Genes that are descended from a common ancestor. (vs. Analog, which has a similar function, but different origin)

Orthologs: Derived from a single ancestral gene, arising due to speciation.

Paralogs: Homologous sequences that are separated by gene duplication.

