Lab 5 – miejsca zerowe funkcji i rozwiązywanie układów nieliniowych metodą Newtona

Barbara Doncer

1. Polecenie nr 1

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania f(x)=0 w zadanym przedziale [a,b]. Dla metody Newtona wybierz punkty startowe rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [a,b]. Porównaj liczbę iteracji dla obu tych metod (dla różnych dokładności ρ), stosując jako kryterium stopu:

$$\bullet \quad \left| x^{(i+1)} - x^{(i)} \right| < \rho$$

$$\bullet \quad \left| f(x^{(i)}) \right| < \rho$$

2. Zadana funkcja

$$f(x) = x^{14} + x^{13}$$
$$x \in [-1.4, 0.6]$$

miejsca zerowe: - 1,0

Wykres 2.1 Wykres funkcji f(x)

3. Wyniki dla metody Newtona

N — liczba iteracji

warunek brzegowy 1: $\left|x^{(i+1)} - x^{(i)}\right| < \rho$

warunek brzegowy 2: $\left| f(x^{(i)}) \right| < \rho$

		$\rho_1 =$	0.01			$\rho_2 = 0$. 000	1	$ ho_3 = 0.000001$					
	W	arunek stopu 1	W	arunek stopu 2	W	arunek stopu 1	W	arunek stopu 2	war	unek stopu 1	,	warunek stopu 2		
x_0	N	miejsce zerowe N miejsce zerowe		N	N miejsce zerowe		miejsce zerowe	N	miejsce	N	miejsce zerowe			
										zerowe				
-1,4	8	-1,0006	1	0.6	10	-1	6	0,475312	11	-1	13	0,325076		
-1,3	7	-1,0003	1	0.6	9	-1	6	0,475464	10	-1	13	0,325179		
-1,2	6	-1,00006	1	0.6	7	-1	6	0,476119	8	-1	13	0,325624		
-1,1	4	-1,00027	1	0.6	6	-1	7	0,454661	6	-1	13	0,328431		
-1	1	-1	1	0.6	1	-1	2	-1	1	-1	2	-1		
-0,9	22	-0,11516	1	0.6	79	-0,00119	4	0,446084	134	-3,70E-05	10	0,323566		
-0,8	23	-0,1107	1	0.6	80	-0,00115	2	0,376413	134	-3,75E-05	5	0,332263		
-0,7	22	-0,10935	1	0.6	79	-0,00113	2	0,056282	133	-3,74E-05	2	0,056282		
-0,6	20	-0,113	1	0.6	77	-0,00117	2	-0,36	132	-3,68E-05	4	-0,33083		
-0,5	18	-0,11272	1	0.6	75	-0,00117	2	-0,46878	130	-3,68E-05	7	-0,35611		
-0,4	15	-0,11651	1	0.6	73	-0,00111	2	-0,39808	127	-3,72E-05	5	-0,3473		
-0,3	12	-0,11253	1	0.6	69	-0,00116	2	-0,29995	124	-3,68E-05	2	-0,29995		
-0,2	7	-0,11322	1	0.6	64	-0,00117	2	-0,2	119	-3,68E-05	2	-0,2		
-0,1	1	-0,09224	1	0.6	56	-0,00112	2	-0,1	110	-3,73E-05	2	-0,1		
0	1	0	1	0.6	1	0	2	0	1	0	2	0		
0,1	1	0,092361	1	0.6	56	0,00114	2	0,1	110	3,75E-05	2	0,1		
0,2	7	0,114906	1	0.6	65	0,001118	2	0,2	119	3,72E-05	2	0,2		
0,3	12	0,116266	1	0.6	70	0,001131	2	0,29997	124	3,74E-05	2	0,29997		
0,4	16	0,113264	1	0.6	73	0,001193	2	0,399097	128	3,71E-05	6	0,332367		
0,5	19	0,112001	1	0.6	76	0,00118	4	0,449778	131	3,69E-05	10	0,32621		
0,6	21	0,115101	1	0.6	79	0,00112	6	0,475312	133	3,73E-05	13	0,325076		

Tabela 3.1 Wyniki dla metody Newtona

4. Wnioski dla metody Newtona

Dla obu warunków brzegowych najlepsze wyniki uzyskałam przy ho_3 .

Lepsze wyniki dawał warunek stopu 1 niż warunek stopu 2.

5. Wyniki dla metody siecznych

			$ ho_1 =$	0.01			$ ho_2 =$	1	$ \rho_3 = 0.000001 $				
		W	arunek stopu 1	W	arunek stopu 2	wa	runek stopu 1	wa	runek stopu 2	warı	unek stopu 1		warunek stopu 2
x_0	x_1	N	miejsce zerowe	N	miejsce zerowe	N	miejsce	N	miejsce zerowe	N	miejsce	Ν	miejsce zerowe
							zerowe				zerowe		
-1,4	0.6	1	0,600132	8	-1,0006	107	0,00171	10	-1	190	1,74E-05	1 1	-1
-1,3		1	0,600437	7	-1,0003	107	0,00171	9	-1	190	0,056282	1 0	-1
-1,2		1	0,60176	6	-1,00006	107	0,001713	7	-1	190	-1,75E-05	8	-1
-1,1		24	0,170544	4	-1,00027	107	0,001728	6	-1	190	-1,67E-05	6	-1
-1		2	-1	1	-1	2	-1	1	-1	2	-1,72E-05	1	-1
-0,9		2	0,478765	1	-0,675	104	0,001702	1	-0,675	187	-1,74E-05	1	-0,675
-0,8		2	0,375964	1	-0,71111	99	0,001744	1	-0,71111	182	-0,2	1	-0,71111
-0,7		2	0,056282	1	-0,63438	2	0,056282	1	-0,63438	2	-0,1	1	-0,63438
-0,6		2	-0,3595	1	-0,54783	97	-0,00175	1	-0,54783	180	0	1	-0,54783
-0,5		19	-0,16939	1	-0,45833	102	-0,00167	1	-0,45833	185	0,1	1	-0,45833
-0,4		2	-0,39627	1	-0,36757	99	-0,00172	1	-0,36757	182	0,2	1	-0,36757
-0,3		2	-0,2999	1	-0,27614	2	-0,2999	1	-0,27614	177	1,73E-05	1	-0,27614
-0,2		2	-0,2	1	-0,18431	2	-0,2	1	-0,18431	2	1,75E-05	1	-0,18431
-0,1		2	-0,1	1	-0,09224	2	-0,1	1	-0,09224	2	1,72E-05	1	-0,09224
0		2	0	1	0	2	0	1	0	2	1,74E-05	1	0
0,1		2	0,1	1	0,092361	2	0,1	1	0,092361	2	0,056282	1	0,092361
0,2		2	0,2	1	0,18481	2	0,2	1	0,18481	2	-1,75E-05	1	0,18481
0,3		2	0,299941	1	0,277326	2	0,299941	1	0,277326	178	-1,67E-05	1	0,277326
0,4		2	0,398216	1	0,369892	100	0,001751	1	0,369892	183	-1,72E-05	4	0,292332
0,5		2	0,482442	1	0,4625	104	0,001716	2	0,427768	187	-1,74E-05	7	0,289104
0,6		1	0,600132	1	0,55514	107	0,00171	4	0,439416	190	-0,2	9	0,297025

Tabela 5.1 Wyniki dla metody siecznych przy zwiększanym x0

			$ ho_1 =$	0.01			$ ho_2 = 0$. 0001	1		$ ho_3 = 0.000001$			
		W	arunek stopu 1	W	arunek stopu 2	W	arunek stopu 1	W	arunek stopu 2	warı	ınek stopu 1		warunek stopu 2	
x_0	x_1	N	miejsce zerowe	N	miejsce zerowe	N	miejsce zerowe	N	miejsce zerowe	N	miejsce	N	miejsce zerowe	
											zerowe			
-1,4	0,6	1	0,600132	1	0,600132	107	0,00171	6	0,450061	190	1,71E-05	1 3	0,307863	
	0,5	1 0,500011 1 0,500011		1	0,500011	3	0,441968	187	1,67E-05	9	0,318361			
	0,4	4 1 0,400001 1 0,		0,400001	1	0,400001	1	0,400001	1	0,400001	5	0,316328		
	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	1	0,3	
	0,2	1	0,2	1	0,2	1	0,2	1	0,2	1	0,2	1	0,2	
	0,1	1 1 0,1 1 0,1		1	0,1	1	0,1	1	0,1	1	0,1			
	0	1 0		1	0	1	0	1	0	1	0	1	0	
	-0,1	1	-0,1	1	-0,1	1	-0,1	1	-0,1	1	-0,1	1	-0,1	
	-0,2	1	-0,2	1	-0,2	1	-0,2	1	-0,2	1	-0,2	1	-0,2	
	-0,3	1	-0,3	1	-0,3	1	-0,3	1	-0,3	1	-0,3	1	-0,3	
	-0,4	1	-0,4	1	-0,4	1	-0,4	1	-0,4	1	-0,4	4	-0,32907	
	-0,5	1	-0,5	1	-0,5	1	-0,5	1	-0,5	185	-1,71E-05	8	-0,32443	
	-0,6	1	-0,60001	1	-0,60001	1	-0,60001	4	-0,48756	188	-1,70E-05	1 1	-0,32313	
	-0,7	1	-0,70006	1	-0,70006	1	-0,70006	7	-0,46798	190	-1,73E-05	1 3	-0,32882	
	-0,8	1	-0,80021 3		-0,67081	109	-0,0017	8	-0,48718	192	-1,70E-05	1 5	-0,32257	
	-0,9	1	-0,9004	3	-0,65543	108	-0,00175	8	-0,4734	191	-1,75E-05	1 4	-0,33253	
	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	
	-1,1	1	-1,0967	6	-1,00069	8	-1	8	-1	9	-1	9	-1	
	-1,2	2 8 -1,00122 8 -1,00122		10	-1	10	-1	12	-1	1 2	-1			
	-1,3	9	-1,0039	10	-1,00059	12	-1	12	-1	13	-1	1 3	-1	
	-1,4	1	1,003895	1	1,000592	107	0,00171	6	0,450061	188	1,71E-05	1	-1	

6. Wnioski dla metody siecznych

Dla obu warunków brzegowych najlepsze wyniki uzyskałam przy ho_3 . Lepsze wyniki otrzymałam przy pierwszym warunku stopu niż przy drugim.

7. Polecenie nr 2

Rozwiąż wskazany układ równań metodą Newtona:

$$\begin{cases} x_1^2 - 4x_2^2 + x_3^3 = 1\\ 2x_1^2 + 4x_2^2 - 3x_3 = 0\\ x_1^2 - 2x_2 + x_3^2 = 1 \end{cases}$$

8. Rozwiązanie

Oczekiwane rozwiązania (5) jakie otrzymałam na stronie wolframaalpha.com.

$$x2 \approx 0.5 \land x3 = 1 \land x1 = -1$$

$$x2 \approx 0.5 \land x3 = 1 \land x1 = 1$$

$$x2 \approx 0.0840583 \land x3 \approx 0.570889 \land x1 \approx -0.917716$$

$$x2 \approx 0.0840583 \land x3 \approx 0.570889 \land x1 \approx 0.917716$$

$$x2 \approx -4.29006 \land x3 \approx 4.70817 \land x1 \approx -5.45408 i$$

Wyznaczyłam jakobian:

2 warunki brzegowe jakich użyłam to:

- $\max(|F[0]|, |F[1]|, |F[2]|) > \rho$ $\max(|\Delta X[0]|, |\Delta X[1]|, |\Delta X[2]|) > \rho$

	ho = 0.1					$\rho =$	0.01			ρ =	= 0.001		
	warı	unek stopu 1	wa	runek stopu 2	wa	runek stopu 1	wa	runek stopu 2	war	unek stopu 1	\	warunek stopu 2	
W	N	$[x_1, x_2, x_3]$	N	$[x_1, x_2, x_3]$	N	$[x_1, x_2, x_3]$	N	$[x_1, x_2, x_3]$	N	$[x_1, x_2, x_3]$	N	$[x_1, x_2, x_3]$	
[-8.4, -4.3, -	12	[-0.91760,	102	[-7.03531, -	13	[-0.91771,	102	[-7.03531, -	13	[-0.91771,	102	[-7.03531, -	
<mark>5.64]</mark>		0.08364,		4.29006,		0.08405,		4.29006,		0.08405,		4.29006, 4.70817]	
		0.57046]		4.70817]		0.57088]		4.70817]		0.57088]			
[-2.34, -3.234, -	102	[-7.03530,	4	[-1.00061,	102	[-7.03530,	5	[-1.0, 0.50001,	102	[-7.03530,	6	[-1.0, 0.5, 1.0]	
2.3244]		-4.29006,		0.5024,		-4.29006,		1.00001]		-4.29006,			
		4.70817]		1.00239]		4.70817]				4.70817]			
[-1, 1, 1]	5	[-1.00000,	5	[0.91686,	5	[-1.00000,	6	[0.91771,	6	[-1. 0.5 1.]	7	[0.91772, 0.08406,	
		0.50001,		0.08067,		0.50001,		0.08403,				0.57089]	
		1.00001]		0.56745]		1.00001]		0.57086]					
[1, -1, 1]	5	[0.91685,	4	[1.00061,	6	[0.91770,	5	[1.0, 0.50001,	7	[0.91771,	6	[1.0, 0.5, 1.0]	
		0.08066,		0.5024,		0.08402,		1.00001]		0.08405,			
		0.56745]		1.00239]		0.57085]				0.57088]			
[1, 1, 1]	5	[1.00000,	102	[-0.08423,	5	[1.00000,	102	[-0.08423,	6	[1. 0.5 1.]	102	[-0.08423,	
		0.50001,		1.37744,		0.50001,		1.37744,				1.37744, 2.09817]	
		1.00001]		2.09817]		1.00001]		2.09817]					
[2.2, 8, 3.1]	102	[-0.08422,	102	[-0.62696,	102	[-0.08422,	102	[-0.62696,	102	[-0.08422,	102	[-0.62696,	
		1.37744,		1.37744,		1.37744,		1.37744,		1.37744,		1.37744, 2.09817]	
		2.09817]		2.09817]		2.09817]		2.09817]		2.09817]			
[3.5, 15, 10]	102	[-0.62695,	102	[20.23925,	102	[-0.62695,	102	[20.23925,	102	[-0.62695,	102	[20.23925,	
		1.37744,		1.37744,		1.37744,		1.37744,		1.37744,		1.37744, 2.09817]	
		2.09817]		2.09817]		2.09817]		2.09817]		2.09817]			
[10.1, 10, 10.7]	102	[20.23924,	102	[-1.39099,	102	[20.23924,	102	[-1.39099,	102	[20.23924,	102	[-1.39099,	
		1.37744,		1.37744,		1.37744,		1.37744,		1.37744,		1.37744, 2.09817]	
		2.09817]		2.09817]		2.09817]		2.09817]		2.09817]			
[13, 32, 65]	102	[-1.39098,	102	[-7.03531, -	102	[-1.39098,	102	[-7.03531, -	102	[-1.39098,	102	[-7.03531, -	
		1.37744,		4.29006,		1.37744,		4.29006,		1.37744,		4.29006, 4.70817]	
		2.09817]		4.70817]		2.09817]		4.70817]		2.09817]			

Tabela 8.1 Wyniki układu równań

9. Wnioski

Udało się rozwiązać układ równań nieliniowych za pomocą metody Newtona. Zgodnie z przewidywaniami zwiększanie liczby iteracji i zmniejszanie ρ prowadzi do dokładniejszych wyników kosztem dłuższego czasu obliczeń. W trakcie testowania programu natrafiono na problem, gdzie dla niektórych wektorów początkowych otrzymane wyniki wydawały się losowe. Najprawdopodobniej wynika to z tego, że równanie ma też wyniki zawierające liczby zespolone, które nie są poprawnie interpretowane przez algorytm.