计算机硬件系统设计 譚志虎

同步时序逻辑设计

同步时序逻辑电路概述

- 同步时序电路特征

- □ 由组合逻辑和存储单元构成
- □ 电路存在反馈
- □ 公共时钟进行同步

同步时序逻辑设计流程

- □ 构建状态图
- □ 构建状态转换逻辑
- □ 构建输出函数逻辑
- □ 实现电路

【状态转换逻辑设计

- 填写EXCEL真值表
- 根据功能需求填写状态转换表
- 自动生成状态转换电路逻辑表达式 (触发器输入函数)

S3	S2	S1	S0	In1	In2	In3	In4	In5	In6	In7	In8	最小项表达式	N3	N2	N1	NO
~S3&	~S2&	~S1&	~S0&	In1&	In2&	In3&	~In4&	In5&	~In6&			`s3ê`s2ê`s1ê`s0êIn1êIn2êIn3ê`In4êIn5ê`In6				на на на населенов селон се-
~S3&	~S2&	~S1&	S0&	In1&		In3&	~In4&					~S3&~S2&~S1&S0&In1&In3&~In4	"Ste"Ste"SteSoethtethte"In4+			~53&~52&~51&50&In1&In3&~In4+
逻辑表达式->>>											218 218 2182281-181-18 1-4					

状态转换表

触发器输入函数自动生成

输出函数真值表

输出函数自动生成

輸出函数组合逻辑设计

- 填写EXCEL真值表
- 根据功能需求填写输出函数真值表
- 自动生成输出函数逻辑表达式

S3	S2	S1	S0	In1	In2	In3	In4	In5	In6	In7	In8	最小项表达式	Out1	Out2	Out3	Out4	Out5
~S3&	~S2&	~S1&	~S0&	In1&		~In3&						~S3&~S2&~S1&~S0&In1&~In3	`83&`82&`81&`80&In1&`In3+				
~S3&	~S2&				In2&							~S3&~S2&~S1&S0&In2					~S3&~S2&~S1&S0&In2+
~S3&	~S2&	~S1&				In3&						~S3&~S2&~S1&S0&In3				~S3&~S2&~S1&S0&In3+	
~S3&	~S2&		S0&							In7&		~S3&~S2&~S1&S0&In7					
~S3&	~S2&		~S0&		In2&						In8&	~S3&~S2&S1&~S0&In2&In8		`S3&`S2&S1&`S0&In2&In8+	`S3&`S2&S1&`S0&In2&In8+		
~S3&	~S2&	S1&	~S0&									~S3&~S2&S1&~S0					
	逻辑表达式->>>													`83&`82&81&`80&In2&In8	`83&`82&81&`80&In2&In8	`S3&`S2&`S1&S0&In3	`S3&`S2&`S1&S0&In2

实验终极目标

- 构建小型数字系统:运动码表
 - □ 组合逻辑电路设计
 - □ 同步时序电路设计
 - □ 寄存器数据传输

4 位 计 数 模 块记录存储模块数字系统总控模块

• Start: 计时器归零,重新开始计时

• Stop:停止计时,显示计时数据

Store:尝试更新系统记录,并显示系统记录

• Reset:复位,计时=00.00,系统记录=99.99

同步时序逻辑设计

_ 实验目标

- □ 帮助学生理解同步时序逻辑设计基本流程
- □ 熟练利用Logisim构建数字码表中时序逻辑部分

- 实验任务

- □ 构建16位寄存器(存储历史记录数据)
- □ 设计4位正向时间计数器
- □ 实现码表计数器

16位寄存器SD **〈**

实验电路

- 1. 16位并行加载寄存器
- 2. 4位并行加载寄存器
- 3. 4位BCD计数器
- 4. BCD计数器状态转换逻辑
- 5. 码表计数器
- 6. 码表计数器自动测试

|||实验1:16位并行加载寄存器

■ 输入:16位输入Din , 使能信号En ,

■ 输出:16位输出Q

■ 功能: Q<=Din

■ 约束:由4位寄存器模块构成

4位并行加载寄存器设计

■ 输入:4位输入Din ,使能信号En ,

- 输出:4位输出Q

■ 功能: Q<=Din

■ 约束:使用D触发器构成

实验2: 4位BCD计数器

■ 输入:时钟信号,使能信号En,异步复位Rst

■ 输出:4位输出Q,进位输出信号Cout

■ 功能: Q<=(Q==9)?0:Q+1;

$$Cout = (Q = 9)?1:0;$$

同步时序逻辑

- 4状态位,4个D触发器
- 输出就是状态位
- 重点考虑状态转换逻辑

|||实验3:码表计数器

■ 输入:时钟信号Clk,使能En,异步复位Rst

■ 输出:16位输出Q

■ 功能:包含4个BCD码计数器

低位计数器从9到0时,高位计数器加1

低位计数到9时,相邻高位在时钟到来时加1。

设计约束:利用BCD计数器级联而成

Ctrl+K驱动时钟自动测试

En: 使能端; **Rst**: 异步复位;

11

下节课再见...

stan@hust.edu.cn

