Camera and Viewing Transforms

Raghavendra G S

First calculate the look-at vector and normalize $\vec{l} = p - e$ $\hat{l} = \frac{\vec{l}}{|\vec{l}|}$

Compute right vector and normalize

$$\vec{r} = \vec{l} \times \vec{u}_a$$
 $\hat{r} = \frac{\vec{r}}{|\vec{r}|}$

Finally, compute up vector by similar procedure.

$$\hat{\mathbf{u}} = \hat{\mathbf{r}} \times \hat{\mathbf{l}}$$

Also handle translation

$$\begin{bmatrix} \hat{r}_x & \hat{r}_y & \hat{r}_z & 0 \\ \hat{u}_x & \hat{u}_y & \hat{u}_z & 0 \\ -\hat{l}_x & -\hat{l}_y & -\hat{l}_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \hat{r} & -\hat{r} \cdot \vec{e} \\ \hat{u} & -\hat{u} \cdot \vec{e} \\ -\hat{l} & \hat{l} \cdot \vec{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Projection transformation

Orthographic projection

Orthographics projection is simple

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Normalized device coordinates

Normalized device coordinates

$\lceil x' \rceil$		$\int \frac{2}{r-l}$	0	0	$\frac{-(r+l)}{r-l}$	$\lceil x \rceil$
$\begin{bmatrix} y' \\ z' \\ 1 \end{bmatrix}$ =		0	$\frac{2}{t-b}$	0	$\frac{-(t+b)}{t-b}$	y
	=	0	0	$\frac{2}{f-n}$	$\frac{-(f+n)}{f-n}$	z
		0	0	0	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\lfloor 1 \rfloor$

Projection transformation

Orthographic projection

$$\begin{bmatrix} wx' \\ wy' \\ wz' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

wx'		2 <u>·near</u> right–left	0	_(right+left) right–left	0	$\lceil \mathbf{x} \rceil$
wy'	_	0	2·near top–bottom	-(top+bottom) top-bottom	0	у
wz'		0	0	<u>far+near</u> far-near	<u>–2·far·near</u> far–near	z
W		0	0	1	0	[1]

Demo

https://jdeokkim.github.io/projects/mvp-demo/

Change the parameters in the Model, view and projection matrices to see how the final rendering changes