Quantum Computing

2. Algorithms

Frank C Langbein

```
[1]: from qutip import *
  from qutip.qip.operations import *
  import numpy as np
```

Deutsch-Jozsa Problem

- Let f(x) be a function mapping n-bit strings x to $\{0,1\}$
 - f is either a **constant** function (taking the same value $c \in \{0,1\}$ for all inputs) or
 - -f is a **balanced** function (taking each value 0, 1 for exactly half of the inputs)
- Determine if f is **constant** or **balanced** by making as few calls to f as possible
- Classical algorithm
 - In the worst case, $2^{n-1} + 1$ evaluations of f needed (test one more than half of the inputs)
- Quantum algorithm
 - Only one evaluation of f is required
- First algorithm showing separation between quantum and classical complexity
 - Crucially, it uses the phase information

Oracles

- A quantum representation of f is required
 - Note, a reversible classical representation of any Boolean function f is

$$[x_1,\ldots,x_n,y]\mapsto [x_1,\ldots,x_n,y\oplus f(x_1,\ldots,x_n)]$$

where \oplus is the addition modulo 2.

- We already had this for CCNOT (Toffoli gate)

$$[x_1, x_2, y] \mapsto [x_1, x_2, y \oplus AND(x_1, x_2)]$$

as reversible AND gate

- Note, this means a quantum computer can calculate everything a classical computer can
 - There is a reversible version of any Boolean function
 - Represent input x of f as n qubits $|x\rangle$, encoding the bits in x as $|0\rangle$, $|1\rangle$ instead
 - Add an output qubit $|y\rangle$, representing the result of f(x)
- We still need the unitary operation U_f for f(x)
 - This is referred to as oracle
 - "all powerful", telling us the function value on any given input (e.g. whether it is correct or not)

Bit Oracles

• Create unitary operator U_f such that

$$U_f|x_n,\ldots,x_1,y\rangle=|x_n,\ldots,x_1,y\oplus f(x_1,\ldots,x_n)\rangle$$

• For a one-bit $f(x_1) = x_1$:

$$U_{\text{const}}|x_1,y\rangle = |x_1,y \oplus x_1\rangle$$

- This is a CNOT gate (control is x_1 and target is y)
- For three-bit $f(x_1, x_2, x_3) = (x_1 \text{ AND } x_2) \text{ OR } x_3$

$$U_f|x_3, x_2, x_1, y\rangle = |x_3, x_2, x_1, y \oplus f(x_1, x_2, x_3)\rangle$$

- circuit

Sign Oracles

- We can apply the oracle to general quantum states, not just the Z-basis
 - This enables us to ask quantum questions, not just classical questions
- What if we replace $|y\rangle$ on the first qubit with $|-\rangle$?

$$U_f(|x_n, \dots, x_1\rangle \otimes |-\rangle) = U_f\left(\frac{1}{\sqrt{2}}|x_n, \dots, x_1, 0\rangle - \frac{1}{\sqrt{2}}|x_n, \dots, x_1, 1\rangle\right)$$

$$= \frac{1}{\sqrt{2}}\left(|x_n, \dots, x_1, f(x_1, \dots, x_n)\rangle - |x_n, \dots, x_1, 1 \oplus f(x_1, \dots, x_n)\rangle\right)$$

$$= |x_n, \dots, x_1\rangle \otimes \frac{1}{\sqrt{2}}\left(|f(x_1, \dots, x_n)\rangle - |f(x_1, \dots, x_n) \oplus 1\rangle\right)$$

$$= (-1)^{f(x_1, \dots, x_n)}\left(|x_n, \dots, x_1\rangle \otimes |-\rangle\right)$$

- $-\mid \mid \mid$ remains unchanged, but we pick up an overall minus sign if $f(x_1, \dots, x_n) = 1$
- This is the same than applying the sign oracle O_f on the first n qubits

$$O_f|x\rangle = (-1)^{f(x)}|x\rangle$$

- For Z-basis states, this does not do much (the overall sign is not observable)
- For superposition states, this can introduce "relative signs"
- Practically this flips the phase for the states for which f is 1
 - Note HXH = Z and HZH = X
 - * A many-controlled NOT gate can be turned into a many-controlled phase gate and vice versa by bracketing the gate (not the controls) with H
 - * Braket any controls that switch on 0 instead of 1 with X
 - Flip the phase of $|111\rangle$: circuit
 - Flip the phase of $|101\rangle$: circuit
- Balanced example: f = 1 for even number of bits, otherwise 0 circuit
- Constant example: $f \equiv 1$ on 3 bits circuit

Deutsch Josza Algorithm

- 1. Initial state: $|0...0\rangle$
- 2. Apply $H^{\otimes n}$
- 3. Apply oracle U_f
- 4. Apply $H^{\otimes n}$
- 5. Measure all qubits:
 - If all outcomes are 0, then the function is constant
 - Otherwise it is balanced

Constant $f \equiv 1$ example

Balanced f, f = 1 for even number of bits, otherwise 0 example

Proof of Deutsch Josza Algorithm

• With normalisation constant C and $x_l, y_l \in \{0, 1\}, l \in \{1, \dots, n\}$

$$H|x_1\rangle = C \sum_{y_1 \in \{0,1\}} (-1)^{x_1 y_1} |y_1\rangle$$

$$(H \otimes H)|x_2 x_1\rangle = C^2 \left(\sum_{y_2 \in \{0,1\}} (-1)^{x_2 y_2} |y_2\rangle \right) \otimes \left(\sum_{y_1 \in \{0,1\}} (-1)^{x_1 y_1} |y_1\rangle \right)$$

$$= C^2 \sum_{y \in \{0,1\}^2} (-1)^{x_1 y_1 + x_2 y_2} |y\rangle$$

• This generalizes to

$$H^{\otimes n}|x\rangle = C^n \sum_{y \in \{0,1\}^n} (-1)^{x \odot y} |y\rangle$$

with

$$x \odot y = \sum_{l} x_l y_l \pmod{2}$$

• First Hadamard transforms give the state

$$C^n \sum_{x \in \{0,1\}^n} |x\rangle$$

• O_f maps this to

$$C^n \sum_{x \in \{0,1\}} (-1)^{f(x)} |x\rangle$$

• The second Hadamard transforms then give

$$C^{2n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \left(\sum_{y \in \{0,1\}^n} (-1)^{x \odot y} |y\rangle \right) = C^{2n} \sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \odot y} |y\rangle$$

• Thus, probability of measuring state $|0...0\rangle$ is

$$|C^{2n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)}|^2 = \begin{cases} 1 & \text{if } f \text{ is constant} \\ 0 & \text{if } f \text{ is balanced} \end{cases}$$

Grover's Search Algorithm

- Given a list of N items, find one with a unique property
 - -f(x) = 1 iff x is the unique item, 0 otherwise
 - As before, we assume x is an n-bit string
 - * Can use a sign oracle
- Classical algorithm
 - In the worst case, we need to look at all N items
 - Expected number of items is N/2 (if probability is uniform)
- Quantum algorithm
 - With Grover's algorithm we can find the item in about \sqrt{N} steps
 - * Quadratic speed-up
 - Hard limit for possible speedup
- Provides a quadratic speedup generically for many classical problems

Amplitude Amplification

- Core of Grover's algorithm
- Any initial guess for the unique item is fine, so start with a uniform superposition

$$|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

- Guessing the correct value is therefore 1 in 2^n
- Expect to guess $N=2^n$ times to find the item
- Amplitude amplification
 - Increase probability to guess the correct item
- $|s\rangle$ and the item $|\omega\rangle$, we wish to find, span a 2D plane in \mathbb{C}^N
 - Not orthogonal, as $|\omega\rangle$ is part of $|s\rangle$
 - Remove $|\omega\rangle$ from $|s\rangle$ and normalise to get $|s'\rangle$, orthogonal to $|\omega\rangle$
 - Implement a rotation to increase probabiltiy of find $|\omega\rangle$

Amplitude Amplification Procedure

- 0. Start with $|\Psi_0\rangle = |s\rangle = H^{\otimes n}|0\rangle^n$, t=0
 - All states are equally likely, have equal amplitudes $1/\sqrt{N}$
- 1. Apply $U_{\omega} = O_f$: $|\Psi_{t'}\rangle = O_f |\Psi_t\rangle$
 - Reflection of $|\Psi_t\rangle$ about $|s'\rangle$
 - Amplitude of $|\omega\rangle$ becomes negative, meaning average amplitude is lowered
- 2. Apply $U_s=2|s\rangle\langle s|-I\colon |\Psi_{t+1}\rangle=U_s|\Psi_{t'}\rangle=U_sO_f|\Psi_t\rangle$
 - Two reflections always create a rotation
 - U_sO_f rotate the state closer to $|\omega\rangle$
 - Increases the amplitude of $|\omega\rangle$ and lowers all others
- 3. $t \leftarrow t + 1$, repeat from 1

Roughly \sqrt{N} repeats suffice to get close to probability 1 for $|\omega\rangle$ * Amplitude grows approximately linear with t: $\sim t/\sqrt{N}$ * Probability is square of amplitude, i.e. $t \sim \sqrt{N}$ * Additional repeats may reduce the amplitude again!

Example 5-bit cirtcuit

- Note, instead of $H^{\otimes n}$, we can initially apply $(HX)^{\otimes n}$
 - Creates superposition state with "mixed phases"
- O_f still inverts the phase of $|\omega\rangle$
- A multi-anti-controlled not gate then provides the equivalent U_s operation

Example 5-bit circuit

Factorisation

• Factorise an integer R with d digits

- Brute force
 - * Find all prime numbers p up to \sqrt{R} and check whether p divides R
 - * This is exponential in d
- Quadratic sieve
 - * Construct a, b such that $a^2 b^2$ is a multiple of R
 - * Check whether $a \pm b$ have common factors with R
 - * This is exponential in \sqrt{d}
- General number field sieve (GNFS) best known classical approach
 - * Exponential in $d^{1/3}$
- Shor's algorithm
 - * Polynomial in d

Period Finding

- Given integers R and a
 - Find smallest positive integer p such that $a^p 1$ is a multiple of R
 - -p is called the period of a modulo R
 - * The period of a modulo R is the smallest ineger p such that $a^p = 1 \pmod{R}$
 - In general well defined if R and a are co-prime (have no common factors)
- E.g. R = 15, a = 7:
 - $-7^2 = 4 \pmod{15}$
 - $-7^3 = 4 * 7 = 13 \pmod{15}$
 - $-7^4 = 13 * 7 = 1 \pmod{15}$
 - 7 has period 4 modulo 15

Factoring and Period Finding

- Assume we can find the period r of a modulo R, given a and R are co-prime
- For simplicity, assume $R = f_1 f_2$ has only two prime factors
- Procedure to find the prime factors of *R*:
 - Pick a random integer a between 2 and R-1
 - -g = GCD(R, a) is greatest common divisor (Euclid's algorithm)
 - If we are lucky, a and R have some common prime factors, i.e. g is either f_1 or f_2 :
 - * We are done.
 - Compute the period p of a modulo R
 - Repeat above (with new random a) until p is even
 - * A significant fraction of all integers a have even period
- If p is even:
 - Note, $u 1 = (\sqrt{u} 1)(\sqrt{u} + 1)$ with $u = a^p$
 - So $a^{p/2}-1$ is not a multiple of R (otherwise the period of a modulo R would be p/2)
 - If $a^{p/2} + 1$ is not a multiple of R:
 - * That means f_1 is a prime factor of $a^{p/2}-1$ and f_2 is a prime factor of $a^{p/2}+1$ (or vice versa)
 - * So we can find f_1, f_2 by $GCD(R, a^{p/2} \pm 1)$
 - If, unluckily, $a^{p/2} + 1$ is a multiple of R
 - * Give up and try a different a (not too common)
- On average we only have to call the period finding machine twice to factor R!
 - The core of Shor's algorithm uses a quantum computer, mainly computing the Quantum Fourier Transform, to find the period

Quantum Fourier Transform

- QFT circuit and inverse QFT
- Inverse QFT of a periodic state
 - The output has a number of peaks equal to the period of the input
- Prepare a periodic quantum state
 - We do not see the probability distribution on a quantum computer, only the measurements
 - We would have to sample the output $O(\sqrt{p})$ times if there were p peaks to get a reasonable idea

Guessing the period from a sample

- Suppose we are sampling from a frequency space of size 1024
 - We do not know the peiord of the input
 - We got a frequency sample 339
 - Looks like... 3 $(1024/3 \sim 341)$
- For huge ranges of possible periods, we use the "continued fractions algorithms for the best rational approximation" (also Diophantine approximation and Pade approximant)

```
[2]: from fractions import Fraction

def sampled_freq_to_period(sample_freq, num_freqs, max_period):
    f = Fraction(sample_freq, num_freqs).limit_denominator(max_period)
    return f.denominator

print(sampled_freq_to_period (339, 1024, 10))
```

3

- We may be unlucky and get a sample frequency close to 0, but that is unlikley
- Note, when factoring a number R with d bits, the maximum period will be 2^d
 - We need $O(\lg 2^d) = O(d)$ qubits

Preparing states with unknown periods

- So far we only produced states with modular addition
 - We knew the modulus when we created the circuit!
 - In order to do something interesting, we have to be able to make a period state producing circuit from start to finish and still not know what period its state will have
- Period of $f(x) = 2^x \pmod{23}$

```
[3]: print(sampled_freq_to_period(186,512,50))
```

11

• Period of $f(x) = 7^x \pmod{58}$

```
[4]: print(sampled_freq_to_period(878,1024,58))
```

7

Shor's Algorithm

