

Kwikbit, Inc.

M4-2000

FCC 15.407:2017

Wideband UNII Radio

Report # MAX40004

NVLAP Lab Code: 200881-0

CERTIFICATE OF TEST

Last Date of Test: November 16, 2017 Kwikbit, Inc. Model: M4-2000

Radio Equipment Testing

Standards

Specification	Method
FCC 15.407:2017	ANSI C63.10:2013, KDB 789033, KDB 662911

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 12.7	Spurious Radiated Emissions	Yes	Pass	
6.5 6.6, 12.7	Spurious Radiated Emissions – Intermodulation	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	
12.2	Duty Cycle	Yes	N/A	Characterization of radio operation.
12.3.2.4	Maximum Conducted Output Power	Yes	Pass	
12.4.1	Emission Bandwidth	Yes	Pass	Applies to the 5.2 GHz band.
12.4.2	Occupied Bandwidth	Yes	Pass	Applies to the 5.8 GHz band.
12.4.2	Band Edge	Yes	Pass	
12.5	Maximum Power Spectral Density	Yes	Pass	
KDB 789033 -H	Measurement of Emission at Elevation Angle Higher Than 30 Degrees From Horizon	No	N/A	Not required per 15.407 (a)(1)(iii) for outdoor Point-to-point devices.

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. MAX40004 2/633

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. MAX40004 3/633

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. MAX40004 4/633

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

<u>Test</u>	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. MAX40004 5/633

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066

TexasLabs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600	
NVLAP						
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	MI			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
		VC	CI			
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

Report No. MAX40004 6/633

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. MAX40004 7/633

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Kwikbit, Inc.
Address:	7801 E Bush Lake Rd Suite 300
City, State, Zip:	Minneapolis, MN 55439
Test Requested By:	Tim Blom
Model:	M4-2000
First Date of Test:	August 15, 2017
Last Date of Test:	November 16, 2017
Receipt Date of Samples:	August 14, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The M4-2000 is a Non-Line-of-Sight (NLoS), wireless, point-to-point backhaul solution designed and optimized to serve street-level small cells. The M4-2000 contains two radio modules with two RF channels each (vertical and horizontal polarization). Each radio channel can operate up to 24 dBm of RF power. The product contains an integrated dual polarization patch antenna with ~20 dBi of gain. Power is supplied to the device thru a power over Ethernet (PoE) midspan.

Testing Objective:

To demonstrate compliance of the radio under FCC 15.407 for operation in the 5.2 GHz and 5.8 GHz band(s).

Report No. MAX40004 8/633

Configuration MAX40002- 2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
M4-2000	Kwikbit, Inc.	M4-2000	47

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Netgear 8-Port Switch	Netgear	ProSafe GS108 v2	1DR1853MO1644		
Power Supply (Netgear 8-Port Switch)	Netgear	332-10066-01	0946		
Power Over Ethernet Supply	PowerDsine	PD-9501G0/AC-NA	N12346532A00294		
TP-Link 8 Port Switch	TP-Link	TL-SG108E	2159A76005432		
Power Supply (TP-Link 8-Port Switch)	TP-Link	T090085-2B1	None		
Netgear 5-Port Switch	Netgear	ProSafe GS105 v4	2N113934010B4		
Power Supply (Netgear 5-Port Switch)	OEM	ADS0128-W 120100	0385RD1244871120		
Surge Protector	Wiremold	77000N	None		

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop	Dell	Latitude E6410	HFVC0P1			
Power Supply (Laptop)	Dell	FA90PS0-00	CN-0GX808-73245-840-2837			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Ethernet Cable (D/P)	No	>3.0m	No	M4-2000	Power Over Ethernet Supply
AC Cable (Power Over Ethernet Supply)	No	2.5m	No	Power Over Ethernet Supply	AC Mains
Ethernet Cable (M/P)	No	>3.0m	No	M4-2000	Netgear 5-Port Switch
DC Power Cable (Netgear 8-Port Switch)	No	1.5m	No	Netgear 8-Port Switch	Power Supply (Netgear 8-Port Switch)
DC Power Cable (TP-Link 8-Port Switch)	No	1.7m	No	TP-Link 8 Port Switch	Power Supply (TP-Link 8-Port Switch)
DC Power Cable (Netgear 5-Port Switch)	No	1.5m	No	Netgear 5-Port Switch	Power Supply (Netgear 5-Port Switch)
AC Power Cable (Surge Protector)	No	1.6m	No	Surge Protector	AC Mains
AC Power Cable (Laptop)	No	0.9m	No	AC Mains	Power Supply (Laptop)
DC Power Cable (Laptop)	No	2.0m	Yes	Power Supply (Laptop)	Laptop
Ethernet Cable	Yes	2.0m	No	Power Over Ethernet Supply	TP-Link 8 Port Switch
Ethernet Cable (D)	No	>3.0m	No	M4-2000	Netgear 8-Port Switch

Report No. MAX40004 9/633

Configuration MAX40003-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
M4-2000	Kwikbit, Inc.	M4-2000	33

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Netgear 5-Port Switch	Netgear	ProSafe GS105 v4	2N113934010B4		
Netgear 8-Port Switch	Netgear	ProSafe GS108 v2	1DR1853MO1644		
Power Over Ethernet Supply	PowerDsine	9601G	N13446610000025A00		
Power Supply (Netgear 5-Port Switch)	OEM	ADS0128-W 120100	0385RD1244871120		
Power Supply (Netgear 8-Port Switch)	Netgear	332-10066-01	0946		
Power Supply (TP-Link 8-Port Switch)	TP-Link	T090085-2B1	None		
TP-Link 8-Port Switch	TP-Link	TL-SG108E	2159A76005432		

Remote Equipment Outside of Test Setup Boundary								
Description Manufacturer Model/Part Number Serial Number								
Laptop	Dell	Latitude E6410	HFVC0P1					
Power Supply (Laptop)	Dell	FA90PS0-00	CN-0GX808-73245-840-2837					
Surge Protector	Wiremold	77000N	None					

Report No. MAX40004 10/633

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable (Power Over Ethernet Supply)	No	2.5m	No	AC Mains	Power Over Ethernet Supply	
AC Power Cable (Laptop)	No	0.9m	No	AC Mains	Power Supply (Laptop)	
AC Power Cable (Surge Protector)	No	1.6m	No	AC Mains	Surge Protector	
DC Power Cable (Laptop)	No	2.0m	Yes	Power Supply (Laptop)	Laptop	
DC Power Cable (Netgear 5-Port Switch)	No	1.5m	No	Power Supply (Netgear 5-Port Switch)	Netgear 5-Port Switch	
DC Power Cable (Netgear 8-Port Switch)	No	1.5m	No	Power Supply (Netgear 8-Port Switch)	Netgear 8-Port Switch	
DC Power Cable (TP- Link 8-Port Switch)	No	1.7m	No	Power Supply (TP-Link 8-Port Switch)	TP-Link 8-Port Switch	
Ethernet Cable	Yes	2.0m	No	Power Over Ethernet Supply	TP-Link 8 Port Switch	
Ethernet Cable (D/P)	No	>3.0m	No	M4-2000	Power Over Ethernet Supply	
Ethernet Cable (M/P)	No	>3.0m	No	M4-2000	Netgear 5-Port Switch	
Ethernet Cable (D)	No	>3.0m	No	M4-2000	Netgear 8-Port Switch	
Ethernet Cable	No	>3.0m	No	Netgear 8-Port Switch	LAN	
Ethernet Cable	No	2.0m	No	LAN	Laptop	

Report No. MAX40004 11/633

Configuration MAX40003- 2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
M4-2000	Kwikbit, Inc.	M4-2000	33

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Laptop	Dell	Latitude E6410	HFVC0P1			
Netgear 5-Port Switch	Netgear	ProSafe GS105 v4	2N113934010B4			
Netgear 8-Port Switch	Netgear	ProSafe GS108 v2	1DR1853MO1644			
Power Over Ethernet Supply	PowerDsine	9601G	N13446610000025A00			
Power Supply (Laptop)	Dell	FA90PS0-00	CN-0GX808-73245- 840-2837			
Power Supply (Netgear 5-Port Switch)	OEM	ADS0128-W 120100	0385RD1244871120			
Power Supply (Netgear 8-Port Switch)	Netgear	332-10066-01	0946			
Power Supply (TP-Link 8-Port Switch)	TP-Link	T090085-2B1	None			
Surge Protector	Wiremold	77000N	None			
TP-Link 8-Port Switch	TP-Link	TL-SG108E	2159A76005432			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable (Power Over Ethernet Supply)	No	2.5m	No	AC Mains	Power Over Ethernet Supply
AC Power Cable (Laptop)	No	0.9m	No	AC Mains	Power Supply (Laptop)
AC Power Cable (Surge Protector)	No	1.6m	No	AC Mains	Surge Protector
Ethernet Cable	No	2.0m	No	Laptop	Netgear 8-Port Switch
DC Power Cable (Laptop)	No	2.0m	Yes	Power Supply (Laptop)	Laptop
DC Power Cable (Netgear 5-Port Switch)	No	1.5m	No	Power Supply (Netgear 5-Port Switch)	Netgear 5-Port Switch
DC Power Cable (Netgear 8-Port Switch)	No	1.5m	No	Power Supply (Netgear 8-Port Switch)	Netgear 8-Port Switch
DC Power Cable (TP- Link 8-Port Switch)	No	1.7m	No	Power Supply (TP-Link 8-Port Switch)	TP-Link 8-Port Switch
Ethernet Cable	Yes	2.0m	No	Power Over Ethernet Supply	TP-Link 8 Port Switch
Ethernet Cable (D/P)	No	>3.0m	No	M4-2000	Power Over Ethernet Supply
Ethernet Cable (M/P)	No	>3.0m	No	M4-2000	Netgear 5-Port Switch
Ethernet Cable (D)	No	>3.0m	No	M4-2000	Netgear 8-Port Switch

Report No. MAX40004 12/633

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	8/15/2017	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	10/12/2017	Spurious Radiated Emissions - Intermodulation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	10/16/2017	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	10/20/2017	Emission Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	10/23/2017	Maximum Conducted Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	10/24//2017	Maximum Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	10/24/2017	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	11/26/2017	Band Edge	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. MAX40004 13/633

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR7	ARI	6/4/2017	6/4/2018
Cable - Conducted Cable Assembly	Element	MNC, HGN, TYK	MNCA	1/27/2017	1/27/2018
LISN	Solar Electronics	9252-50-R-24-BNC	LIQ	10/26/2016	10/26/2017
LISN	Solar Electronics	9252-50-R-24-BNC	LIO	10/26/2016	10/26/2017

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

MAX40002-2

MODES INVESTIGATED

Transmit operation mode, Radio 1 and 2 @5200MHz. 20MHz channel bandwidth, 200Mbit. All CAT6 cables connected. Transmit operation mode, Radio 1 and 2 @5785MHz. 20MHz channel bandwidth, 200Mbit. All CAT6 cables connected.

Report No. MAX40004 14/633

EUT:	M4-2000	Work Order:	MAX40002
Serial Number:	33	Date:	08/15/2017
Customer:	Kwikbit, Inc.	Temperature:	22.8°C
Attendees:	Tim Blom	Relative Humidity:	55.6%
Customer Project:	None	Bar. Pressure:	1017 mb
Tested By:	Kyle McMullan	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	MAX40002-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.407:2016	ANSI C63.10:2013, KDB 789033, KDB 905462

TEST PARAMETERS

Run #:	10	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Transmit operation mode, Radio 1 and 2 @5200MHz. 20MHz channel bandwidth, 200Mbit. All CAT6 cables connected.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. MAX40004 15/633

RESULTS - Run #10

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
2.149	33.6	20.4	54.0	56.0	-2.0
8.597	28.5	20.7	49.2	60.0	-10.8
1.343	23.4	20.3	43.7	56.0	-12.3
4.343	21.3	20.4	41.7	56.0	-14.3
0.537	21.4	20.3	41.7	56.0	-14.3
4.379	20.6	20.4	41.0	56.0	-15.0
1.612	20.2	20.3	40.5	56.0	-15.5
2.060	19.0	20.3	39.3	56.0	-16.7

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
2.149	24.5	20.4	44.9	46.0	-1.1
0.537	21.4	20.3	41.7	46.0	-4.3
8.597	24.4	20.7	45.1	50.0	-4.9
1.612	17.3	20.3	37.6	46.0	-8.4
1.343	15.8	20.3	36.1	46.0	-9.9
4.343	13.2	20.4	33.6	46.0	-12.4
4.379	12.4	20.4	32.8	46.0	-13.2
2.060	7.2	20.3	27.5	46.0	-18.5

CONCLUSION

Pass

Tested By

Report No. MAX40004 16/633

EUT:	M4-2000	Work Order:	MAX40002
Serial Number:	33	Date:	08/15/2017
Customer:	Kwikbit, Inc.	Temperature:	22.8°C
Attendees:	Tim Blom	Relative Humidity:	55.6%
Customer Project:	None	Bar. Pressure:	1017 mb
Tested By:	Kyle McMullan	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	MAX40002-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.407:2016	ANSI C63.10:2013, KDB 789033, KDB 905462

TEST PARAMETERS

_	_					
Run #:	11	Line:	High Line	Add. Ext. Attenuation (d	dB):	0

COMMENTS

None

EUT OPERATING MODES

Transmit operation mode, Radio 1 and 2 @5200MHz. 20MHz channel bandwidth, 200Mbit. All CAT6 cables connected.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. MAX40004 17/633

RESULTS - Run #11

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
2.148	33.9	20.4	54.3	56.0	-1.7		
0.537	24.9	20.3	45.2	56.0	-10.8		
8.591	28.4	20.7	49.1	60.0	-10.9		
1.343	23.6	20.3	43.9	56.0	-12.1		
1.610	21.9	20.3	42.2	56.0	-13.8		
4.344	21.4	20.4	41.8	56.0	-14.2		

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
2.148	24.7	20.4	45.1	46.0	-0.9	
0.537	24.3	20.3	44.6	46.0	-1.4	
8.591	24.3	20.7	45.0	50.0	-5.0	
1.610	17.9	20.3	38.2	46.0	-7.8	
1.343	15.9	20.3	36.2	46.0	-9.8	
4.344	13.2	20.4	33.6	46.0	-12.4	

CONCLUSION

Pass

Tested By

Report No. MAX40004 18/633

EUT:	M4-2000	Work Order:	MAX40002
Serial Number:	33	Date:	08/15/2017
Customer:	Kwikbit, Inc.	Temperature:	22.8°C
Attendees:	Tim Blom	Relative Humidity:	55.6%
Customer Project:	None	Bar. Pressure:	1017 mb
Tested By:	Kyle McMullan	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	MAX40002-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.407:2016	ANSI C63.10:2013, KDB 789033, KDB 905462

TEST PARAMETERS

	_					
Run #:	14	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Transmit operation mode, Radio 1 and 2 @5785MHz. 20MHz channel bandwidth, 200Mbit. All CAT6 cables connected.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. MAX40004 19/633

RESULTS - Run #14

Quasi Peak Data - vs - Quasi Peak Limit

4,000.000.000.000.000.000.000.000.000.00							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
2.146	34.8	20.4	55.2	56.0	-0.8		
8.585	28.6	20.7	49.3	60.0	-10.7		
1.342	23.9	20.3	44.2	56.0	-11.8		
1.609	22.1	20.3	42.4	56.0	-13.6		
0.537	21.7	20.3	42.0	56.0	-14.0		
2.063	19.6	20.3	39.9	56.0	-16.1		

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
2.146	25.6	20.4	46.0	46.0	0.0
8.585	24.6	20.7	45.3	50.0	-4.7
0.537	20.6	20.3	40.9	46.0	-5.1
1.609	18.3	20.3	38.6	46.0	-7.4
1.342	16.3	20.3	36.6	46.0	-9.4
2.063	7.4	20.3	27.7	46.0	-18.3

CONCLUSION

Pass

Tested By

Report No. MAX40004 20/633

EUT:	M4-2000	Work Order:	MAX40002
Serial Number:	33	Date:	08/15/2017
Customer:	Kwikbit, Inc.	Temperature:	22.8°C
Attendees:	Tim Blom	Relative Humidity:	55.6%
Customer Project:	None	Bar. Pressure:	1017 mb
Tested By:	Kyle McMullan	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	MAX40002-2

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.407:2016	ANSI C63.10:2013, KDB 789033, KDB 905462

TEST PARAMETERS

Run #:	15	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None

EUT OPERATING MODES

Transmit operation mode, Radio 1 and 2 @5785MHz. 20MHz channel bandwidth, 200Mbit. All CAT6 cables connected.

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. MAX40004 21/633

RESULTS - Run #15

Quasi Peak Data - vs - Quasi Peak Limit

	aaoi i oak	Data 10	<u> </u>	Our Elline	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
2.146	34.4	20.4	54.8	56.0	-1.2
0.537	26.3	20.3	46.6	56.0	-9.4
8.581	28.3	20.7	49.0	60.0	-11.0
1.340	23.6	20.3	43.9	56.0	-12.1
6.971	26.1	20.5	46.6	60.0	-13.4
1.609	21.8	20.3	42.1	56.0	-13.9

	Average	Data - vs	<u>- Average</u>	Limit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.537	25.4	20.3	45.7	46.0	-0.3
2.146	25.1	20.4	45.5	46.0	-0.5
8.581	24.3	20.7	45.0	50.0	-5.0
1.609	17.9	20.3	38.2	46.0	-7.8
1.340	16.0	20.3	36.3	46.0	-9.7
6.971	17.8	20.5	38.3	50.0	-11.7

CONCLUSION

Pass

Tested By

Report No. MAX40004 22/633

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 802.11 - channel 36 (5160 MHz) with10 and 20 MHz channel bandwidths; channel 38 (5190 MHz) with 40 MHz channel bandwidth. 4-QAM, 16-QAM, 64-QAM, 256-QAM, and 1024-QAM modulation types.

Transmitting 802.11 - channel 147 (5735 MHz) and channel 169 (5845 MHz) with 10 MHz channel bandwidth; channel 147 (5735 MHz) and channel 168 (5840 MHz) with 20 MHz channel bandwidth; channel 151 (5755 MHz) and channel 166 (5830 MHz) with 40 MHz channel bandwidth. 4-QAM, 16-QAM, 64-QAM, 256-QAM, and 1024-QAM modulation types.

Transmitting 802.11 - channel 32 (5160 MHz), channel 39 (5195 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), channel 159 (5795 MHz), and channel 169 (5845 MHz) with 10 MHz channel bandwidth; channel 32 (5160 MHz), channel 40 (5200 MHz), channel 48 (5240 MHz), channel 147 (5735 MHz), channel 158 (5785 MHz), and channel 168 (5840 MHz) with 20 MHz channel bandwidth; channel 38 (5190 MHz), channel 46 (5230 MHz), channel 151 (5755 MHz), channel 159 (5795 MHz), and channel 166 (5830 MHz) with 40 MHz channel bandwidth. 4-QAM, 16-QAM, 64-QAM, 256-QAM, and 1024-QAM modulation types.

Transmitting 802.11 - channel 32 (5160 MHz), channel 39 (5195 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), channel 159 (5795 MHz), and channel 169 (5845 MHz) with 10 MHz channel bandwidth. 4-QAM modulation type.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MAX40003 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency | 30 MHz | Stop Frequency | 40000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

1EST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	9/20/2017	12 mo
Filter - Band Pass/Notch	Micro-Tronics	BRC50705	LFI	9/20/2017	12 mo
Filter - Band Pass/Notch	Micro-Tronics	BRC50704	LFH	9/20/2017	12 mo
Filter - Band Pass/Notch	Micro-Tronics	BRC50703	LFG	9/20/2017	12 mo
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNO	6/12/2017	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIB	8/25/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/1/2016	12 mo
Cable	ESM Cable Corp.	Bilog Cables	HNM	12/1/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	9/12/2017	12 mo
Antenna	AH Systems	SAS-588	AJO	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	NCR	0 mo
Cable	Northwest EMC	TTBJ141-KMKM-72	MNQ	9/12/2017	12 mo
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVN	9/12/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	2/14/2017	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	0 mo
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/12/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2/14/2017	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2/14/2017	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Receiver	Rohde & Schwarz	ESR7	ARI	6/4/2017	12 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	12 mo

Report No. MAX40004 23/633

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Some measurements at the edges of the allowable band may also have been made using the integration method detailed in section 12.7.4.4.3 of ANSI C63.10. These will be denoted in the individual comments for each data point.

10/	anla Ondana	1 140	V40002		Data	40/	40/47			EmiR5 2017.09.18.1		PSA-ESCI 2017.06.0	1
VVC	ork Order: Project:		X40003 None	Te	Date: mperature:		12/17 .2 °C						
	Job Site:	N	/N05		Humidity:		% RH			la a			
Seria	I Number: EUT:	M4-2000	33	Barom	etric Pres.:	1022	2 mbar		Tested by:	Dustin Spa	arks		-
	iguration:	1											-
	Customer:												-
	Attendees: JT Power:	Tim Blom 110VAC/											-
	ing Mode:	Transmitt	ting 802.11 -								5190 MHz)	with 40	-
		MHz cha	nnel bandwid	th. 4-QAN	1, 16-QAM, 6	4-QAM, 2	56-QAM, and	d 1024-QA	M modulation	on types.			<u>-</u>
D	eviations:	None											
		Emission	s initially cha	racterized	using radio	1, worst ca	se emission	s repeated	using radio	2 (see cor	nments).		
C	omments:												
Test Spec	ifications						Test Meth	od					1
FCC 15.40							ANSI C63.						-
Run#	22	Test D	istance (m)	1	Antenna	Height(s)		1(m)		Results	P	ass	-
80								-			+	+	
								\perp			4		
70													
								1 [
60												++	
								₩			4		
⁵⁰ ء													
w//\n g p													
<u>ब</u> 40 +													
•													
30 -													
20													
10 +													
0 + 10)		100			1000			10000			100000	
						MHz				■ PK	◆ AV	• QP	
										FR	▼ AV	T QF	
E	Calculated	Ecotor	Antone	Andrewath	Took Pinton	External	Polarity/ Transducer	Detrois	Distance	Adirected	Cons. Live	Compared to	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	Attenuation (dB)	Type	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	
5149.500	27.8	35.6	1.7	286.9	1.0	0.0	Horz	AV	-9.5	53.9	54.0	-0.1	Ch 38, 5190 MHz, 16-QAM, EUT on side, 40 MHz BW, integrated
5149.500 5149.500	27.6 27.5	35.6 35.6	1.7 1.7	286.9 286.9	1.0 1.0	0.0	Horz Horz	AV AV	-9.5 -9.5	53.7 53.6	54.0 54.0	-0.3 -0.4	Ch 36, 5160 MHz, 4-QAM, EUT on side, 20 MHz BW, integrated Ch 38, 5190 MHz, 4-QAM, EUT on side, 40 MHz BW, integrated
5149.500	27.1	35.6	1.7	285.5	1.0	0.0	Horz	AV	-9.5	53.2	54.0	-0.8	Ch 38, 5190 MHz, 16-QAM, EUT on side, 40 MHz BW, radio 2, integrated
5147.500 5147.500	23.9 23.9	35.6 35.6	1.7 1.7	284.2 284.2	1.0 1.0	0.0	Horz Horz	AV AV	-9.5 -9.5	50.0 50.0	54.0 54.0	-4.0 -4.0	Ch 36, 5160 MHz, 16-QAM, EUT on side, 10 MHz BW Ch 36, 5160 MHz, 64-QAM, EUT on side, 10 MHz BW
5147.500 5147.500	23.9 23.8	35.6 35.6	1.7 1.7	284.2 284.2	1.0 1.0	0.0	Horz Horz	AV AV	-9.5 -9.5	50.0 49.9	54.0 54.0	-4.0 -4.1	Ch 36, 5160 MHz, 256-QAM, EUT on side, 10 MHz BW Ch 36, 5160 MHz, 1024-QAM, EUT on side, 10 MHz BW
5147.500	22.6	35.6	1.7	280.2	1.0	0.0	Horz	AV	-9.5	48.7	54.0	-5.3	Ch 36, 5160 MHz, 4-QAM, EUT on side, 10 MHz BW
5147.500 5147.500	22.0 20.7	35.6 35.6	1.7 1.7	281.9 277.9	1.0 1.0	0.0	Vert Horz	AV AV	-9.5 -9.5	48.1 46.8	54.0 54.0	-5.9 -7.2	Ch 36, 5160 MHz, 4-QAM, EUT on side, 10 MHz BW Ch 36, 5160 MHz, 4-QAM, EUT vert, 10 MHz BW
5147.500 5147.500	20.6 17.3	35.6 35.6	1.7 1.7	278.3 65.1	1.0 1.0	0.0	Vert Vert	AV AV	-9.5 -9.5	46.7 43.3	54.0 54.0	-7.3 -10.7	Ch 36, 5160 MHz, 4-QAM, EUT vert, 10 MHz BW Ch 36, 5160 MHz, 4-QAM, EUT horz, 10 MHz BW
5147.500	17.2	35.6	1.7	194.0	1.0	0.0	Horz	AV	-9.5	43.3	54.0	-10.7	Ch 36, 5160 MHz, 4-QAM, EUT horz, 10 MHz BW
5149.500 5149.500	36.0 35.7	35.6 35.6	1.7 1.7	286.9 286.9	1.0 1.0	0.0	Horz Horz	PK PK	-9.5 -9.5	62.1 61.8	74.0 74.0	-11.9 -12.2	Ch 38, 5190 MHz, 16-QAM, EUT on side, 40 MHz BW, integrated Ch 36, 5160 MHz, 4-QAM, EUT on side, 20 MHz BW, integrated
5149.500	35.7	35.6	1.7	286.9	1.0	0.0	Horz	PK	-9.5	61.8	74.0	-12.2	Ch 38, 5190 MHz, 4-QAM, EUT on side, 40 MHz BW, integrated Ch 36, 5160 MHz, 16-QAM, EUT on side, 10 MHz BW
5147.500 5147.500	35.6 35.6	35.6 35.6	1.7 1.7	284.2 284.2	1.0 1.0	0.0	Horz Horz	PK PK	-9.5 -9.5	61.7 61.7	74.0 74.0	-12.3 -12.3	Ch 36, 5160 MHz, 64-QAM, EUT on side, 10 MHz BW
5147.500 5149.500	35.3 35.2	35.6 35.6	1.7 1.7	284.2 285.5	1.0 1.0	0.0	Horz Horz	PK PK	-9.5 -9.5	61.4 61.3	74.0 74.0	-12.6 -12.7	Ch 36, 5160 MHz, 1024-QAM, EUT on side, 10 MHz BW Ch 38, 5190 MHz, 16-QAM, EUT on side, 40 MHz BW, radio 2, integrated
5147.500	35.0	35.6	1.7	284.2	1.0	0.0	Horz	PK	-9.5	61.1	74.0	-12.9	Ch 36, 5160 MHz, 256-QAM, EUT on side, 10 MHz BW
5147.500 5147.500	34.8 33.9	35.6 35.6	1.7 1.7	280.2 281.9	1.0 1.0	0.0	Horz Vert	PK PK	-9.5 -9.5	60.9 60.0	74.0 74.0	-13.1 -14.0	Ch 36, 5160 MHz, 4-QAM, EUT on side, 10 MHz BW Ch 36, 5160 MHz, 4-QAM, EUT on side, 10 MHz BW
5147.500 5147.500	32.6 32.0	35.6 35.6	1.7 1.7	277.9 278.3	1.0 1.0	0.0	Horz Vert	PK PK	-9.5 -9.5	58.7 58.1	74.0 74.0	-15.3 -15.9	Ch 36, 5160 MHz, 4-QAM, EUT vert, 10 MHz BW Ch 36, 5160 MHz, 4-QAM, EUT vert, 10 MHz BW
5147.500	28.9	35.6	1.7	194.0	1.0	0.0	Horz	PK	-9.5	55.0	74.0	-19.0	Ch 36, 5160 MHz, 4-QAM, EUT horz, 10 MHz BW
5147.500	28.8	35.6	1.7	65.1	1.0	0.0	Vert	PK	-9.5	54.9	74.0	-19.1	Ch 36, 5160 MHz, 4-QAM, EUT horz, 10 MHz BW

Report No. MAX40004 25/633

				EmiR5 2017.09.18.1 PSA-ESCI 2017.06.0
Work Order:	MAX40003	Date:	10/12/17	
Project:	None	Temperature:	22.2 °C	
Job Site:	MN05	Humidity:	41.7% RH	
Serial Number:	33	Barometric Pres.:	1022 mbar	Tested by: Dustin Sparks
EUT:	M4-2000			
Configuration:	1			
Customer:	Kwikbit, Inc.			
Attendees:	Tim Blom			
EUT Power:	110VAC/60Hz			
Operating Mode:	(5735 MHz) and chan	nel 168 (5840 MHz) with	n 20 MHz channel bar	6845 MHz) with 10 MHz channel bandwidth; channel 147 ndwidth; channel 151 (5755 MHz) and channel 166 -QAM, 256-QAM, and 1024-QAM modulation types.
Deviations:	None			
Comments:	Emissions initially cha	racterized using radio 1	, worst case emission	ns repeated using radio 2 (see comments).
T			T (B# - ()	

Test Specifications
FCC 15.407:2017

Test Method ANSI C63.10:2013

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments	
5850.004	1.7	286.0	Horz	AV	4.24E-02	16.3	27.0	-10.7	Ch 169, 5845 MHz, 16-QAM, EUT on side, 10 MHz BW	
5850.004	1.7	286.0	Horz	AV	3.95E-02	16.0	27.0	-11.0	Ch 169, 5845 MHz, 16-QAM, EUT on side, 10 MHz BW, radio 2	2
5850.004	1.7	286.0	Horz	AV	3.61E-03	5.6	27.0	-21.4	Ch 166, 5830 MHz, 16-QAM, EUT on side, 40 MHz BW	
5850.004	1.7	286.0	Horz	AV	5.85E-04	-2.3	27.0	-29.3	Ch 168, 5840 MHz, 16-QAM, EUT on side, 20 MHz BW	
5724.996	1.7	286.9	Horz	AV	5.46E-04	-2.6	27.0	-29.6	Ch 147, 5735 MHz, 16-QAM, EUT on side, 20 MHz BW	
5724.988	1.7	286.9	Horz	AV	1.98E-05	-17.0	27.0	-44.0	Ch 147, 5735 MHz, 16-QAM, EUT on side, 10 MHz BW	
5855.004	1.7	286.0	Horz	AV	1.77E-05	-17.5	15.6	-33.1	Ch 169, 5845 MHz, 16-QAM, EUT on side, 10 MHz BW	
5724.813	1.7	286.9	Horz	AV	7.54E-06	-21.2	26.6	-47.8	Ch 151, 5755 MHz, 16-QAM, EUT on side, 40 MHz BW	
5875.079	1.7	286.0	Horz	AV	2.38E-07	-36.2	9.9	-46.2	Ch 169, 5845 MHz, 16-QAM, EUT on side, 10 MHz BW	
5926.610	1.7	286.0	Horz	AV	1.25E-07	-39.0	-27.0	-12.0	Ch 169, 5845 MHz, 16-QAM, EUT on side, 10 MHz BW	

Report No. MAX40004 26/633

										F'D5 0047 0744			~
	Work Order		(40003		Date:		16/17			EmiR5 2017.07.11		PSA-ESCI 2017.06.0	u.
	Project		one	Те	mperature:		.4 °C						
Sei	Job Site		N05 33	Barom	Humidity: etric Pres.:		6% RH 6 mbar	-	Tested by:	Dustin Spa	arks		<u></u>
		M4-2000	,										- .
Co	onfiguration												
	Customer: Attendees:												_
	EUT Power												- .
Oper	rating Mode	MHz), cha channel 4 (5840 MH	annel 159 (5 0 (5200 MH: lz) with 20 M	795 MHz), z), channe Hz chann	2 (5160 MHz and channe d 48 (5240 M el bandwidth hannel 166 (l 169 (584 Hz), chan channel	5 MHz) with nel 147 (57 38 (5190 MI	n 10 MHz ch 35 MHz), ch Hz), channe	nannel band nannel 158 el 46 (5230	dwidth; cha (5785 MHz MHz), char	nnel 32 (51), and char nnel 151 (5	60 MHz), nnel 168 755 MHz),	
	Deviations	QAM, and	1024-QAM										_
	Comments		s initially cha	racterized	using radio	1, worst c	ase emissio	ns repeated	d using radi	o 2 (see co	omments).		_
Tost Sn	ecifications						Test Meth	od	l				=
	407:2017						ANSI C63.		l				_
Run	# 83	Test D	istance (m)	3	Antenna	Height(s))	1 to 4(m)		Results	Pa	ass	
80													
70											-		
60													
50 ع													
₩//ngp													
30													
00													
20													
10													
0	10		100			1000			10000			100000	
						MHz				■ PK	◆ AV	• QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
15582.99 15737.41	0 27.5	9.3 8.9	1.0 1.0	143.0 232.0	3.0 3.0	0.0 0.0	Horz Horz	AV AV	0.0 0.0	36.5 36.4	54.0 54.0	-17.5 -17.6	Ch 39, 5195 MHz, 4-QAM, 10 MHz BW, EUT on side Ch 49, 5245 MHz, 4-QAM, 10 MHz BW, EUT on side
15477.68 11590.09		9.0 -1.2	1.0 1.0	125.0 336.0	3.0 3.0	0.0	Horz Horz	AV AV	0.0 0.0	35.9 34.2	54.0 54.0	-18.1 -19.8	Ch 36, 5160 MHz, 4-QAM, 10 MHz BW, EUT on side Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT on side
11589.88	35.2	-1.2	1.1	61.0	3.0	0.0	Horz	AV	0.0	34.0	54.0	-20.0	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT vert
11692.11 11589.99		-2.2 -1.2	1.8 2.7	350.0 337.9	3.0 3.0	0.0	Horz Horz	AV AV	0.0 0.0	34.0 33.7	54.0 54.0	-20.0 -20.3	Ch 169, 5845 MHz, 4-QAM, 10 MHz BW, EUT on side Ch 159, 5795 MHz, 16-QAM, 10 MHz BW, EUT on side
11589.86 11590.20		-1.2 -1.2	2.7 2.7	337.9 337.9	3.0 3.0	0.0	Horz Horz	AV AV	0.0 0.0	33.6 33.5	54.0 54.0	-20.4 -20.5	Ch 159, 5795 MHz, 64-QAM, 10 MHz BW, EUT on side Ch 159, 5795 MHz, 1024-QAM, 10 MHz BW, EUT on side
11590.43	34.6	-1.2	2.7	337.9	3.0	0.0	Horz	AV	0.0	33.4	54.0	-20.6	Ch 159, 5795 MHz, 256-QAM, 10 MHz BW, EUT on side
11679.89 11470.01		-2.1 -2.5	2.0 2.2	343.9 354.0	3.0 3.0	0.0	Horz Horz	AV AV	0.0 0.0	32.8 32.6	54.0 54.0	-21.2 -21.4	Ch 168, 5840 MHz, 4-QAM, 20 MHz BW, EUT on side Ch 147, 5735 MHz, 4-QAM, 10 MHz BW, EUT on side
11590.05 11660.21		-1.2 -1.8	1.0 2.7	2.0 336.0	3.0 3.0	0.0	Vert Horz	AV AV	0.0 0.0	32.5 31.8	54.0 54.0	-21.5 -22.2	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT vert Ch 166, 5830 MHz, 4-QAM, 40 MHz BW, EUT on side
11569.84	0 33.1	-1.5	1.0	336.9	3.0	0.0	Horz	AV	0.0	31.6	54.0	-22.4	Ch 157, 5785 MHz, 4-QAM, 20 MHz BW, EUT on side
11589.88 11589.88		-1.2 -1.2	2.6 1.8	337.9 339.0	3.0 3.0	0.0	Horz Vert	AV AV	0.0 0.0	31.4 30.8	54.0 54.0	-22.6 -23.2	Ch 159, 5795 MHz, 4-QAM, 40 MHz BW, EUT on side Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT on side
11590.23	31.7	-1.2	1.1	122.0	3.0	0.0	Vert	AV	0.0	30.5	54.0	-23.5	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT horz
11469.99 11589.79		-2.5 -1.2	1.9 1.1	339.0 27.0	3.0 3.0	0.0	Horz Horz	AV AV	0.0 0.0	30.1 30.0	54.0 54.0	-23.9 -24.0	Ch 147, 5735 MHz, 4-QAM, 20 MHz BW, EUT on side Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT on side, radio 2
11590.38 11591.21		-1.2 -1.2	1.0 2.7	176.0 337.9	3.0 3.0	0.0	Horz Horz	AV PK	0.0 0.0	29.9 49.9	54.0 74.0	-24.1 -24.1	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT horz Ch 159, 5795 MHz, 16-QAM, 10 MHz BW, EUT on side
11589.86	50 51.1	-1.2	2.7	337.9	3.0	0.0	Horz	PK	0.0	49.9	74.0	-24.1	Ch 159, 5795 MHz, 64-QAM, 10 MHz BW, EUT on side
11469.79 11507.93		-2.5 -2.4	2.2 1.0	354.0 23.1	3.0 3.0	0.0	Horz Horz	PK AV	0.0 0.0	49.4 29.0	74.0 54.0	-24.6 -25.0	Ch 147, 5735 MHz, 4-QAM, 10 MHz BW, EUT on side Ch 151, 5755 MHz, 4-QAM, 40 MHz BW, EUT on side
11588.76	60 49.8	-1.2	1.0	336.0	3.0	0.0	Horz	PK	0.0	48.6	74.0	-25.4	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT on side
11589.82 11589.58		-1.2 -1.2	2.7 2.7	337.9 337.9	3.0 3.0	0.0	Horz Horz	PK PK	0.0 0.0	48.6 48.4	74.0 74.0	-25.4 -25.6	Ch 159, 5795 MHz, 256-QAM, 10 MHz BW, EUT on side Ch 159, 5795 MHz, 1024-QAM, 10 MHz BW, EUT on side
11590.10	00 49.5	-1.2	1.1	61.0	3.0	0.0	Horz	PK PK	0.0	48.3	74.0	-25.7	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT vert
15587.46 11689.96	50.0	9.3 -2.2	1.0 1.8	143.0 350.0	3.0 3.0	0.0	Horz Horz	PK	0.0 0.0	48.1 47.8	74.0 74.0	-25.9 -26.2	Ch 39, 5195 MHz, 4-QAM, 10 MHz BW, EUT on side Ch 169, 5845 MHz, 4-QAM, 10 MHz BW, EUT on side
15734.82		8.9	1.0	232.0	3.0	0.0	Horz	PK	0.0	47.6	74.0	-26.4	Ch 49, 5245 MHz, 4-QAM, 10 MHz BW, EUT on side

Report No. MAX40004 27/633

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
15480.940	38.2	9.1	1.0	125.0	3.0	0.0	Horz	PK	0.0	47.3	74.0	-26.7	Ch 36, 5160 MHz, 4-QAM, 10 MHz BW, EUT on side
11680.080	49.2	-2.1	2.0	343.9	3.0	0.0	Horz	PK	0.0	47.1	74.0	-26.9	Ch 168, 5840 MHz, 4-QAM, 20 MHz BW, EUT on side
11589.820	47.4	-1.2	1.0	2.0	3.0	0.0	Vert	PK	0.0	46.2	74.0	-27.8	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT vert
11660.130	47.4	-1.8	2.7	336.0	3.0	0.0	Horz	PK	0.0	45.6	74.0	-28.4	Ch 166, 5830 MHz, 4-QAM, 40 MHz BW, EUT on side
11569.990	46.7	-1.5	1.0	336.9	3.0	0.0	Horz	PK	0.0	45.2	74.0	-28.8	Ch 157,5785 MHz, 4-QAM, 20 MHz BW, EUT on side
11590.030	45.2	-1.2	1.8	339.0	3.0	0.0	Vert	PK	0.0	44.0	74.0	-30.0	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT on side
11469.890	46.4	-2.5	1.9	339.0	3.0	0.0	Horz	PK	0.0	43.9	74.0	-30.1	Ch 147, 5735 MHz, 4-QAM, 20 MHz BW, EUT on side
11589.850	44.9	-1.2	2.6	337.9	3.0	0.0	Horz	PK	0.0	43.7	74.0	-30.3	Ch 159, 5795 MHz, 4-QAM, 40 MHz BW, EUT on side
11588.200	43.6	-1.2	1.1	122.0	3.0	0.0	Vert	PK	0.0	42.4	74.0	-31.6	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT horz
11588.690	43.4	-1.2	1.0	176.0	3.0	0.0	Horz	PK	0.0	42.2	74.0	-31.8	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT horz
11590.080	43.2	-1.2	1.1	27.0	3.0	0.0	Horz	PK	0.0	42.0	74.0	-32.0	Ch 159, 5795 MHz, 4-QAM, 10 MHz BW, EUT on side, radio 2
11510.730	43.0	-2.4	1.0	23.1	3.0	0.0	Horz	PK	0.0	40.6	74.0	-33.4	Ch 151, 5755 MHz, 4-QAM, 40 MHz BW, EUT on side

Report No. MAX40004 28/633

	01	BAAT	10000		·		140/47	1		EmiR5 201			TORTE	SCI 2017.06.0
	Order:	MAX4			Date:		0/16/17 1.4 °C	4						
	Project: ob Site:		one N05	1e	mperature: Humidity:		1.4 °C .5% RH	-						
Serial N			33	Barom	etric Pres.:		26 mbar		Tested by:	Duetin	Spark	rs		
Jonai II		M4-2000		Daroni	C. 10 1 165.	102	_o moai		. soled by.	- GUGUII	Spain			
Config	uration:													
		Kwikbit, Inc	C.											
		Tim Blom	-											
EUT	Power:	110VAC/60	0Hz											
Operating	g Mode:				2 (5160 MHz) hannel 169 (5									5 MHz),
Dev	iations:	None												
Con	nments:	EUT on sid	le											
t Specific	ations						Test Met	nod						
2 15.407:2							ANSI C63							
Run #	85	Toot Dis	stance (n	n) 3	Antenna	Hoight/	6)	1 to 4(m)		Res	ulto		Pass	
Xun #	65	Test Dis	stance (II	<u>ற</u>	Antenna	пеідпіц	5)	1 10 4(111)		Res	นแร		Pass	
														7
-5						+++								-
15														
-15														1
-25						+++				-				-
_														
-35														1
-45														
-45														
-43														
-55								*						-
								•						
-55 —								*						
								*						-
-55								*						-
-55 —						•	•	*						_
-65						•	•	*						
-55 -65 -75							•	*						_
-55 -65 -75 -85						1000	•	*					100	
-556575						1000		*					100	0000
-55 -65 -75 -85						1000 MH.		*			PK .	◆ AV		00000 QP
-55 -65 -75 -85	Freq	Antenna Height	Azimuth	Polarity/ Transducer Type	Detector			\$ Spec. Limit	Compared to Spec.	■ F		◆ AV	•	
-55 -65 -75 -85	Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Transducer Type	Detector	МН	z	Spec. Limit (dBm)		■ F			•	
-55	(MHz)	(meters)	(degrees)	Transducer Type		EIRP (Watts)	EIRP (dBm)	(dBm)	Spec. (dB)		C	Commer	nts	QP
-55 -65 -75 -85 1000	-			Transducer Type	Detector AV AV	MH.	EIRP (dBm)		Spec.	Ch 159,	5795 N	Commer	nts	
-55 -65 -75 -85 1000	(MHz) 7383.190 7382.880 7202.880	1.0 1.2 1.0	(degrees) 127.1 74.0 66.1	Transducer Type Horz Horz Horz Horz	AV AV AV	MH. EIRP (Watts) 3.00E-09 3.00E-09 1.81E-09	EIRP (dBm) 9 -55.2 9 -55.2 9 -57.4	-27.0 -27.0 -27.0 -27.0	Spec. (dB) -28.2 -28.2 -30.4	Ch 159, Ch 169, Ch 147,	5795 M 5845 M 5735 M	Ommer //Hz, 4-0 //Hz, 4-0 //Hz, 4-0	nts QAM, 10 QAM, 10 QAM, 10	QP 0 MHz B' 0 MHz B' 0 MHz B' 0 MHz B'
-55 -65 -75 -85 1000	(MHz) 7383.190 7382.880	1.0 1.2	(degrees) 127.1 74.0	Transducer Type Horz Horz	AV AV	EIRP (Watts) 3.00E-09 3.00E-09	EIRP (dBm) 9 -55.2 9 -55.2 9 -57.4 0 -65.9	-27.0 -27.0	Spec. (dB) -28.2 -28.2	Ch 159, Ch 169, Ch 147, Ch 32, §	5795 N 5845 N 5735 N 5160 MH	//Hz, 4-0 //Hz, 4-0 //Hz, 4-0 //Hz, 4-Q	QAM, 10 QAM, 10 QAM, 10 QAM, 10	QP 0 MHz B' 0 MHz B'

Report No. MAX40004 29/633

Report No. MAX40004 30/633

SPURIOUS RADIATED EMISSIONS - INTERMODULATION

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 802.11 - channel 36 (5160 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), and channel 169 (5845 MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously.

Transmitting 802.11 - channel 32 (5160 MHz), channel 39 (5195 MHz), and channel 49 (5245 MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously.

Transmitting 802.11 - channel 147 (5735 MHz), channel 159 (5795 MHz), and channel 169 (5845 MHz) with 10 MHz channel bandwidth; channel 147 (5735 MHz), channel 157 (5785 MHz), and channel 168 (5840 MHz) with 20 MHz channel bandwidth; channel 151 (5755 MHz), channel 159 (5795 MHz), and channel 166 (5830 MHz) with 40 MHz channel bandwidth. 4-QAM, 16-QAM, 64-QAM, 256-QAM, and 1024-QAM modulation types. Radio 1 and radio 2 transmitting simultaneously.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

MAX40003 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MH	Sto	top Frequency	40 GHz
-----------------------	-----	---------------	--------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Filter - Low Pass	Micro-Tronics	LPM50004	LFK	9/20/2017	12 mo
Filter - Band Pass/Notch	Micro-Tronics	BRC50705	LFI	9/20/2017	12 mo
Filter - Band Pass/Notch	Micro-Tronics	BRC50704	LFH	9/20/2017	12 mo
Filter - Band Pass/Notch	Micro-Tronics	BRC50703	LFG	9/20/2017	12 mo
Cable	Element	TTBJ141-KMKM-72	MNQ	9/12/2017	12 mo
Cable	ESM Cable Corp	TTBJ141 KMKM-72	MNP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	9/12/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVN	9/12/2017	12 mo
Antenna	AH Systems	SAS-588	AJO	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	NCR	0 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIB	8/25/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	2/14/2017	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AIQ	NCR	0 mo
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/12/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2/14/2017	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2/14/2017	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	12 mo
Receiver	Rohde & Schwarz	ESR7	ARI	6/4/2017	12 mo

Report No. MAX40004 31/633

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured to transmit two channels simultaneously, either from the same UNII band or one from each of the two available UNII bands.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The purpose of the test is to insure that no additional signals are creating by having multiple carriers in the passband of the EUT. The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A test receiver was used to take the individual measurements in order to provide enough dynamic range while closer to the transmit bands. A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity during the pre-scans.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Report No. MAX40004 32/633

SPURIOUS RADIATED EMISSIONS -INTERMODULATION

				EmiR5 2017.09.18.1 PSA-ESCI 2017.06.01							
Work Order:	MAX40003	Date:	10/12/17	A O							
Project:	None	Temperature:	22.2 °C	Tustin Xones							
Job Site:	MN05	Humidity:	41.7% RH	3/							
Serial Number:	33	Barometric Pres.:	1022 mbar	Tested by: Dustin Sparks							
EUT:	M4-2000	•									
Configuration:	1										
Customer:	Kwikbit, Inc.										
Attendees:	None										
EUT Power:	110VAC/60Hz										
Operating Mode:	channel bandwidth; channel bandwidth; ch	nannel 147 (5735 MHz) nannel 151 (5755 MHz) -QAM, 16-QAM, 64-QA	, channel 157 (5785 N , channel 159 (5795 N	5 MHz), and channel 169 (5845 MHz) with 10 MHz MHz), and channel 168 (5840 MHz) with 20 MHz MHz), and channel 166 (5830 MHz) with 40 MHz 24-QAM modulation types. Radio 1 and radio 2							
Deviations:	None										
	Intermodulation produ / (Radio 2 channel).	icts - see comments for	more details. Channe	els in the comments are formatted as (Radio 1 channel)							
T (0)(()			T . 15 .1								

Test Specifications FCC 15.407:2017

Test Method ANSI C63.10:2013

Run #	25	Test Distance (m)	1 Antenn	a Height(s)	1(m)	Results	Pass
40							
30			,				
20			$\int \cdot \cdot \cdot $				
10							
0							
-10							
-20						$\overline{}$	
-30		_/			•		
-40						•	
-50 5600		5650 5700	5750	5800	5850 590	0 5950	6000

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments	
5885.510	1.7	286.2	Horz	AV	9.27E-07	-30.3	2.2	-32.5	Ch 169 (5845 MHz)/Ch 159 (5795 MHz	
5885.510	1.7	286.2	Horz	AV	9.06E-07	-30.4	2.2	-32.6	Ch 159 (5795 MHz)/Ch 169 (5845 MHz), 4-QAM, 10 MHz BW, EUT on side
5885.510	1.7	286.2	Horz	AV	9.06E-07	-30.4	2.2	-32.6	Ch 159 (5795 MHz)/Ch 169 (5845 MHz), 64-QAM, 10 MHz BW, EUT on side
5885.510	1.7	286.2	Horz	AV	9.06E-07	-30.4	2.2	-32.6	Ch 159 (5795 MHz)/Ch 169 (5845 MHz), 256-QAM, 10 MHz BW, EUT on side
5885.510	1.7	286.2	Horz	AV	9.06E-07	-30.4	2.2	-32.6), 1024-QAM, 10 MHz BW, EUT on side
5884.800	1.7	286.0	Horz	AV	8.65E-07	-30.6	2.7	-33.4	Ch 159 (5795 MHz)/Ch 169 (5845 MHz), 16-QAM, 10 MHz BW, EUT on side
5857.240	1.7	286.0	Horz	AV	7.36E-07	-31.3	15.0	-46.3	Ch 147 (5735 MHz/Ch 159 (5795 MHz)	, 16-QAM, 10 MHz BW, EUT on side
5671.250	1.7	286.0	Horz	AV	7.54E-07	-31.2	-11.2	-20.0	Ch 147 (5735 MHz/Ch 159 (5795 MHz)	
5755.530	1.7	282.4	Vert	AV	7.54E-07	-31.2	30.0	-61.2	Ch 159 (5795 MHz)/Ch 169 (5845 MHz), 16-QAM, 10 MHz BW, EUT vert
5754.780	1.7	286.2	Horz	AV	6.87E-07	-31.6	30.0	-61.6	Ch 159 (5795 MHz)/Ch 169 (5845 MHz	
5755.530	1.7	282.9	Horz	AV	6.56E-07	-31.8	30.0	-61.8	Ch 159 (5795 MHz)/Ch 169 (5845 MHz	
5755.530	1.7	286.0	Horz	AV	6.41E-07	-31.9	30.0	-61.9	Ch 159 (5795 MHz)/Ch 169 (5845 MHz	
5755.530	1.7	283.2	Vert	AV	6.27E-07	-32.0	30.0	-62.0	Ch 159 (5795 MHz)/Ch 169 (5845 MHz	
5951.690	1.7	286.0	Horz	AV	5.21E-07	-32.8	-27.0	-5.8	Ch 147 (5735 MHz)/Ch 169 (5845 MHz	
5663.270	1.7	286.2	Horz	AV	5.09E-07	-32.9	-17.1	-15.8	Ch 151 (5755 MHz)/Ch 166 (5830 MHz	
5899.930	1.7	286.2	Horz	AV	4.65E-07	-33.3	-8.5	-24.8	Ch 157 (5785 MHz)/Ch 168 (5840 MHz	
5627.990	1.7	286.0	Horz	AV	4.24E-07	-33.7	-27.0	-6.7	Ch 147 (5735 MHz)/Ch 169 (5845 MHz	
5730.000	1.7	286.2	Horz	AV	3.95E-07	-34.0	30.0	-64.0	Ch 157 (5785 MHz)/Ch 168 (5840 MHz	
5905.460	1.7	286.2	Horz	AV	3.00E-07	-35.2	-12.6	-22.7	Ch 151 (5755 MHz)/Ch 166 (5830 MHz), 16-QAM, 40 MHz BW, EUT on side

Report No. MAX40004 33/633

SPURIOUS RADIATED EMISSIONS - INTERMODULATION

				EmiR5 2017.09.18.1 PSA-ESCI 2017.06.01
Work Order:	MAX40003	Date:	10/12/17	A O
Project:	None	Temperature:	22.2 °C	Justin Xonne
Job Site:	MN05	Humidity:	41.7% RH	3/100
Serial Number:	33	Barometric Pres.:	1022 mbar	Tested by: Dustin Sparks
EUT:	M4-2000			
Configuration:	1			
Customer:	Kwikbit, Inc.			
Attendees:	None			
EUT Power:	110VAC/60Hz			
				MHz), and channel 49 (5245 MHz). 4-QAM modulation
Operating wode.	type. Radio 1 and rad	io 2 transmitting simultan	eously.	
Deviations:	None			
201141101101				
		cts - see comments for r	nore details. Chann	els in the comments are formatted as (Radio 1 channel)
Comments:	/ (Radio 2 channel).			
Test Specifications			Test Meth	od
ECC 15 407:2017	•		ANSI C63	10:2013

 Test Specifications
 Test Method

 FCC 15.407:2017
 ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
5145.200	26.1	35.6	1.7	286.2	1.0	0.0	Horz	AV	-9.5	52.2	54.0	-1.8	Ch 39 (5195 MHz)/Ch 49 (5245 MHz), 4-QAM, 10 MHz BW, EUT on side
5124.820	24.6	35.6	1.7	286.2	1.0	0.0	Horz	AV	-9.5	50.6	54.0	-3.4	Ch 32 (5160 MHz)/Ch 39 (5195 MHz), 4-QAM, 10 MHz BW, EUT on side
5075.320	22.7	35.6	1.7	286.2	1.0	0.0	Horz	AV	-9.5	48.8	54.0	-5.2	Ch 32 (5160 MHz)/Ch 49 (5245 MHz), 4-QAM, 10 MHz BW, EUT on side
5145.200	40.7	35.6	1.7	286.2	1.0	0.0	Horz	PK	-9.5	66.8	74.0	-7.2	Ch 39 (5195 MHz)/Ch 49 (5245 MHz), 4-QAM, 10 MHz BW, EUT on side
5124.820	37.1	35.6	1.7	286.2	1.0	0.0	Horz	PK	-9.5	63.2	74.0	-10.8	Ch 32 (5160 MHz)/Ch 39 (5195 MHz), 4-QAM, 10 MHz BW, EUT on side
5075.320	36.8	35.6	1.7	286.2	1.0	0.0	Horz	PK	-9.5	62.9	74.0	-11.1	Ch 32 (5160 MHz)/Ch 49 (5245 MHz), 4-QAM, 10 MHz BW, EUT on side

Report No. MAX40004 34/633

SPURIOUS RADIATED EMISSIONS -INTERMODULATION

W										EmiR5 2017.09.18.1		PSA-ESCI 2017.06.0	01_
	ork Order:				Date:		2/17	_/	+ 1			0	
	Project:				perature:		2 °C	~	ust	mx	Dave	20	
	Job Site:		5		Humidity:		% RH			-(
Seria	l Number:			Barome	tric Pres.:	1022	mbar		Tested by	: Dustin Spa	rks		_
0		M4-2000											_
	figuration:												_
	Attendees:	Kwikbit, Inc.											_
		110VAC/60H	1-7										_
	ing Mode:	Transmitting type. Radio 1	802.11 - 0				39 (5195	MHz), and o	hannel 49	(5245 MHz)	4-QAM	modulation	_
D	eviations:	Mono	and radii	o z transm	itting simuli	aneousiy.							_
С	omments:	Intermodulati channel) / (R			omments fo	r more det	ails. Chan	nels in the c	omments	are formatted	d as (Rad	lio 1	_
act Snac	ifications						Test Met	hod					=
CC 15.40		1					ANSI C63		I				_
Run #	26	Test Dista	ince (m)	1	Antenna	Height(s)		1(m)		Results	F	Pass	_
TOIL #		TOOL DISTA			7 iii.Ciiiia			. (111)		riodulid			_
-5 -													
-15 -													
-15 -													
-25 -													
0.5													
-35 -													
Ε									*				
표 명 -45 -									•				
_													
-55 -													
-65 -													
											_		
-75 -													
-75 - -85 -	000											10000	
-75 - -85 -	000					MHz							
-75 - -85 -	000					MHz				■ PK	◆ AV	10000 • QP	
-75 - -85 -	Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	MHz EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)		◆ AV Comment	• QP	
-75 - -85 -	Freq			Transducer	Detector	EIRP			Spec.	Ch 39 (5195	Comment MHz)/Ch 4	• QP), 4-QAM, 10 MHz BW, EUT on sic
-75 - -85 -	Freq (MHz)	(meters)	(degrees)	Transducer Type		EIRP (Watts)	(dBm)	(dBm)	Spec. (dB)	Ch 39 (5195 Ch 32 (5160	Comment MHz)/Ch 4 MHz)/Ch 4	• QP 9 (5245 MHz) 9 (5245 MHz)), 4-QAM, 10 MHz BW, EUT on sic , 4-QAM, 10 MHz BW, EUT on sic , 4-QAM, 10 MHz BW, EUT on sic

Report No. MAX40004 35/633

SPURIOUS RADIATED EMISSIONS - INTERMODULATION

										EmiR5 2017.	09.18.1		PSA-ESCI 2	017.06 C
Wo	rk Order:	MAX	40003		Date:		12/17	1	7				art and fact of	
	Project:		one	Tei	mperature:		2 °C		ust	w	5	Sará	20	_
	Job Site: Number:		N05 33	Danama	Humidity: etric Pres.:		% RH ! mbar		Tested by:	Dustin	Cara	al. a		
Seriai		M4-2000	33	Barome	etric Pres.:	1022	mbar		rested by:	Dustin	Spar	rks		
Confi	guration:													
		Kwikbit, In	IC.											
At	ttendees:	None												
EU	T Power:	110VAC/6												
Operati	ng Mode:	MHz). 4-0	ng 802.11 - o QAM modulat							35 MHz)	, and	d channel	169 (5	345
De	eviations:	None												
Co	mments:	Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel / (Radio 2 channel).											nei)	
Test Speci	fications						Test Meth	od						_
FCC 15.407	7:2017						ANSI C63	.10:2013						
Run#	28	Test Di	stance (m)	1	Antenna	Height(s)		1 to 4(m)		Resi	ults	F	Pass	
80														
80														
_														
70												-	_	
60														
00														
-													-	
ے ⁵⁰								•						
m//mgp														
æ 40 ⊢														
8 "														
30														
20														
10														
10														
0 ↓														
1000)												1000	0
						MHz				■ F	ok .	◆ AV	• Q	P
_											^	~ AV	- 4	_
						External	Polarity/ Transducer		Distance				Compa	red to
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjuste		Spec. Limit	Sp	ec.
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/	m)	(dBuV/m)	(d	3)
4755.000	24.2	35.2	1.7	286.2	1.0	0.0	Horz	AV	-9.5	49.9		54.0	-4	
4755.000	39.9	35.2	1.7	286.2	1.0	0.0	Horz	PK	-9.5	65.6	3	74.0	-8	.4

Report No. MAX40004 36/633

SPURIOUS RADIATED EMISSIONS -INTERMODULATION

Work Order: MAX40003 Date: 10/12/17 Project: None Temperature: 22.2 °C Job Site: NM05 Humidity: 41.7% RH																	
Serial Number: 33 Barometric Pres.: 1022 mbar Tested by: Dustin Sparks				-		\bigcirc	,	+ 1	1								Wo
Serial Number: 33 Barometric Pres.: 1022 mbar Tested by: Dustin Sparks		1	2	2	Dave	X	m	ust	~				Ten				
Configuration: 1 Customer: Kwikbit, Inc. Attendees: None EUT Power: 110VAC/60Hz Operating Mode: MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously. None Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel). Test Method CC 15.407:2017 ANSI C63.10:2013 Test Method ANSI C63.10:2013		_				-(-						_				
Configuration: 1 Customer: Kwikbit, Inc. Attendess: None EUT Power: 110VAC/60Hz Transmitting 802.11 - channel 36 (5160 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), and channel 169 (5845 MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously. None Comments: Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel). Eest Specifications CC 15.407:2017 Run # 28 Test Distance (m) 1 Antenna Height(s) 1 to 4(m) Results Pass		_			rks	n Spa	Dustir	Tested by		mbar	1022	etric Pres.:	Barome	33			Serial
Customer: Kwikbit, Inc. Attendees: None EUT Power: 110VAC/60Hz Operating Mode: Transmitting 802.11 - channel 36 (5160 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), and channel 169 (5845 MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously. None Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel). Rest Specifications CC 15.407:2017 Run # 28 Test Distance (m) 1 Antenna Height(s) 1 to 4(m) Results Pass -5		_															
Attendees: None EUT Power: 110VAC/60Hz Operating Mode: Transmitting 802.11 - channel 36 (5160 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), and channel 169 (5845 MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously. None Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel). Sest Specifications CC 15.407:2017 Run # 28 Test Distance (m) 1 Antenna Height(s) 1 to 4(m) Results Pass -5		_															
EUT Power: 110VAC/60Hz Operating Mode: Transmitting 802.11 - channel 36 (5160 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), and channel 169 (5845 MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously. None Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel). Set Specifications CC 15.407:2017 Run # 28 Test Distance (m) 1 Antenna Height(s) 1 to 4(m) Results Pass -5		_												C.			
Operating Mode: Transmitting 802.11 - channel 36 (5160 MHz), channel 49 (5245 MHz), channel 147 (5735 MHz), and channel 169 (5845 MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously. None Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel). Test Method ANSI C63.10:2013 Run # 28 Test Distance (m) 1 Antenna Height(s) 1 to 4(m) Results Pass		_												011			
Deviations: MHz). 4-QAM modulation type. Radio 1 and radio 2 transmitting simultaneously. None Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel).		_	00 /50 45				705 1411	1 4 47 /5:		10 (50 15	\ 1	0 (5400 1411	1 10			I Power:	EU
Deviations: None Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel). East Specifications Test Method)	69 (5845	nnei 16	nd chann	ız), ar	35 MH									ng Mode:	Operation
Intermodulation products - see comments for more details. Channels in the comments are formatted as (Radio 1 channel) / (Radio 2 channel).		_						SIY.	<u>imultaneou</u>	nsmitting s	radio 2 tra	Radio 1 and	ation type. F	AM modula			
Comments: channel) / (Radio 2 channel).															None	viations:	De
Run # 28 Test Distance (m) 1 Antenna Height(s) 1 to 4(m) Results Pass -5		-	1	ladio 1	d as (Rad	matte	are forn	omments	nels in the c	ails. Chan	or more det	omments fo				mments:	Co
ANSI C63.10:2013		=							nod	Tost Mot						ications	st Specif
Run # 28 Test Distance (m) 1 Antenna Height(s) 1 to 4(m) Results Pass -5		_															
-5		_		Pac		culte	Pas		1 to 4(m)		Hoight(s)	Antenna	I 1	stance (m)	Tost Dis	28	Pun #
		_	3	газа		suits	Nes		1 10 4(111)		i neigiii(s)	Antenna	<u> </u>	stance (iii)	I EST DIS	20	Kull #
			\neg									-					Γ
-15			_			-											-5
-15																	
-15																	
			\dashv	_													-15
-25																	25
-25			_	$\overline{}$													-25
-35							•										-35
							•										
E 0 -45																	<u></u> ∃
-45			_			-											병 -45 🕂
									•								
EE																	-55
-55																	
-55						1											-65
-65				_													-75
-65																	-85
-65			10000	1												0	
-65 -75 -85																-	100
-65 -75 -85 1000											MHZ						100
-65 -75 -85					◆ AV	PK					MHz						100
-65 -75 -85 1000				V •		PK		Spec.			EIRP	Detector	Transducer				100
-65 -75 -85 1000 MHz Freq (MHz) Antenna Height (meters) Azimuth (degrees) Transducer Type Detector EIRP (Watts) (dBm) (dBm)			QP (5735 MHz).	vents	Commen	(5245	Ch 49 (Spec. (dB)	(dBm) -27.0	(dBm) -32.7	EIRP (Watts)	AV	Transducer Type	(degrees)	(meters)	(MHz) 6225.000	100
-65 -75 -85 1000 MHz Polarity/ Transducer Type Detector EIRP (Watts) (dBm) Spec. Limit (dBm) Compared to Spec. (dB) Comments Comments Comments	10 MHz BW, EUT or	z), 4-QAM, 10	QP (5735 MHz): (5845 MHz):	ents th 147 (5	Commen MHz)/Ch 1 MHz)/Ch 1	(5245 (5160	Ch 49 (Ch 32 (Spec. (dB) -5.7 -10.8	-27.0 -27.0	-32.7 -37.8	EIRP (Watts) 5.33E-07 1.65E-07	AV AV	Transducer Type Horz Horz	(degrees) 286.2 286.2	1.7 1.7	(MHz) 6225.000 6530.000	100

Report No. MAX40004 37/633

XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	117	MLS	23-Jan-17	23-Jan-20
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-32-3.5-SCT/AC	TBF	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUB	3-Nov-14	3-Nov-17
Generator - Signal	Agilent	N5183A	TIK	29-Sep-17	29-Sep-20
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	11-Sep-17	11-Sep-18
Attenuator	Fairview Microwave	SA18S5W-20	RFX	12-Jun-17	12-Jun-18
Block - DC	Fairview Microwave	SD3379	AMI	12-Sep-17	12-Sep-18
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAX	16-Mar-17	16-Mar-18

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made at the edges of the main transmit bands as called out on the data sheets. Testing was done with an absence of modulation in a CW mode of operation.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 $^{\circ}$ to +50 $^{\circ}$ C) and at 10 $^{\circ}$ C intervals.

Where a ppm limit applies: ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

Per the requirements of FCC 15.407:

"Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual."

No specific limits are provided in either FCC 15.407, the product specific rule part, or FCC 2.1055, the equipment authorization procedure for testing frequency stability. While there are no limits called out, any results less than 100ppm will still allow the radio to be operating within the band.

Report No. MAX40004 38/633

							TbtTx 2017.09.26	XMit 20
EUT:	: M4-2000					Work Order:	MAX40003	
Serial Number:	: 33					Date:	24-Oct-17	
Customer:	: Kwikbit, Inc.					Temperature:	21.3 °C	
Attendees:	: None					Humidity:		
Project:						Barometric Pres.:		
	: Dustin Sparks		Power: 110VAC/60Hz			Job Site:		
ST SPECIFICAT			Test Method					
C 15.407:2017			ANSI C63.10:2013					
			7.1101.000.10.2010					
OMMENTS								
	taken on port RF0 of radio 1.							
	M TEST STANDARD							
ne			6					
onfiguration #	2		Dustingparls					
		Signature	-(Measured	Assigned	Error	Limit	
				Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
0 MHz - 5250 M	MHz - Low Channel, 5160 MHz							
	Voltage: 115%			5159.987362	5160	2.5	100	Pass
	Voltage: 100%			5159.98777	5160	2.4	100	Pass
	Voltage: 85%			5159.987403	5160	2.4	100	Pass
	Temperature: +50°			5159.984576	5160	3	100	Pass
	Temperature: +40°			5159.985312	5160	2.9	100	Pass
	Temperature: +30°			5159.9913	5160	1.7	100	Pass
	Temperature: +20°			5159.99997	5160	0	100	Pass
	Temperature: +10°			5159.987286	5160	2.5	100	Pass
	Temperature: 0°			5159.990007	5160	1.9	100	Pass
	Temperature: -10°			5159.991568	5160	1.6	100	Pass
	Temperature: -20°			5159.990587	5160	1.8	100	Pass
	Temperature: -30°			5159.988449	5160	2.2	100	Pass
60 MHz - 5250 M	MHz - High Channel, 5245 MHz							
	Voltage: 115%			5244.987207	5245	2.4	100	Pass
	Voltage: 100%			5244.987238	5245	2.4	100	Pass
	Voltage: 85%			5244.987253	5245	2.4	100	Pass
	Temperature: +50°			5244.984305	5245	3	100	Pass
	Temperature: +40°			5244.985053	5245	2.9	100	Pass
	Temperature: +30°			5244.991234	5245	1.7	100	Pass
				5244.999809	5245 5245	0	100	
	Temperature: +20°							Pass
	Temperature: +10°			5244.987141	5245	2.5	100	Pass
	Temperature: 0°			5244.989786	5245	2	100	Pass
	Temperature: -10°			5244.991437	5245	1.6	100	Pass
	Temperature: -20°			5244.990457	5245	1.8	100	Pass
	Temperature: -30°			5244.98828	5245	2.2	100	Pass
5 MHz - 5850 M	MHz - Low Channel, 5735 MHz							
	Voltage: 115%			5734.986209	5735	2.4	100	Pass
	Voltage: 100%			5734.986191	5735	2.4	100	Pass
	Voltage: 85%			5734.98617	5735	2.4	100	Pass
	Temperature: +50°			5734.982817	5735	3	100	Pass
	Temperature: +40°			5734.98364	5735	2.9	100	Pass
	Temperature: +30°			5734.990357	5735	1.7	100	Pass
	Temperature: +30° Temperature: +20°			5734.990357	5735 5735	0	100	Pass
	Temperature: +10°			5734.985922	5735	2.5	100	Pass
	Temperature: 0°			5734.988872	5735	1.9	100	Pass
	Temperature: -10°			5734.990715	5735	1.6	100	Pass
	Temperature: -20°			5734.989526	5735	1.8	100	Pass
	Temperature: -30°			5734.987206	5735	2.2	100	Pass
5 MHz - 5850 M	MHz - High Channel, 5845 MHz							
	Voltage: 115%			5844.985953	5845	2.4	100	Pass
	Voltage: 100%			5844.985873	5845	2.4	100	Pass
	Voltage: 85%			5844.985888	5845	2.4	100	Pass
	Temperature: +50°			5844.982443	5845	3	100	Pass
	Temperature: +40°			5844.983323	5845	2.9	100	Pass
	Temperature: +30°			5844.990196	5845	1.7	100	Pass
	Temperature: +20°			5845.000206	5845	0	100	Pass
				5845.000206 5844.985646	5845 5845	2.5	100	Pass
								Pass
	Temperature: +10°							
	Temperature: 0°			5844.98858	5845	2	100	Pass
	Temperature: 0° Temperature: -10°			5844.98858 5844.990464	5845 5845	2 1.6	100 100	Pass Pass
	Temperature: 0°			5844.98858	5845	2	100	Pass

Report No. MAX40004 39/633

						TbtTx 2017.09.26	XMit 2017.09.21
	5150 MHz - 5250 MHz	 Low Channel, 51 	60 MHz, Voltage	: 115%			
	Measured	Assigned	Error	Limit			
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
	5159.987362	5160	2.5	100	Pass	ľ	

	5150 MHz - 5250 MHz -	- Low Channel, 51	160 MHz, Voltage	: 100%	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5159.98777	5160	2.4	100	Pass

Report No. MAX40004 40/633

						TbtTx 2017.09.26	XMit 2017.09.2
	5150 MHz - 5250 MHz	- Low Channel, 5	160 MHz, Voltage	e: 85%			
	Measured	Assigned	Error	Limit			
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
	5159.987403	5160	2.4	100	Pass		

	5150 MHz - 5250 MHz - I	Low Channel, 516	0 MHz, Temperat	ture: +50°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5159.984576	5160	3	100	Pass

Report No. MAX40004 41/633

						TbtTx 2017.09.26	XMit 2017.09.2
	5150 MHz - 5250 MHz - L	ow Channel, 516	0 MHz, Tempera	ture: +40°			
	Measured	Assigned	Error	Limit			
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
	5159 985312	5160	2.9	100	Pass	Í	

	5150 MHz - 5250 MHz	- Low Channel, 516	60 MHz, Tempera	ture: +30°	
	Measured	I Assigned	Error	Limit	
	Value (MH	z) Value (MHz)	(ppm)	(ppm)	Results
	5159.9913	5160	1.7	100	Pass

Report No. MAX40004 42/633

TbtTx 2017.09.26

5150 MHz - 5250 MHz -	Low Channel, 516	0 MHz, Temperat	ure: +10°	
Measured	Assigned	Error	Limit	
Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
5159.987286	5160	2.5	100	Pass

Report No. MAX40004 43/633

	5150 MHz - 5250 MHz - L	ow Channel, 516	0 MHz, Temperat	ture: -10°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5159.991568	5160	1.6	100	Pass

Report No. MAX40004 44/633

Telft x 2017 20 28 **

| 5150 MHz - 5250 MHz - Low Channel, 5160 MHz, Temperature: -20°
| Measured Assigned Error Limit | Value (MHz) Value (MHz) (ppm) (ppm) Results |
| 5159.990587 5160 1.8 100 Pass

5150 MHz - 5250 MHz -	Low Channel, 516	0 MHz, Tempera	ture: -30°	
Measured	Assigned	Error	Limit	
Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
5159.988449	5160	2.2	100	Pass

Report No. MAX40004 45/633

						TbtTx 2017.09.26	XMit 2017.09.2
	5150 MHz - 5250 MHz -	- High Channel, 52	245 MHz, Voltage	e: 115%			
	Measured	Assigned	Error	Limit			
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
	5244 987207	5245	2.4	100	Pass		

	5150 MHz - 5250 MHz -	High Channel, 52	245 MHz, Voltage	: 100%	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5244.987238	5245	2.4	100	Pass

Report No. MAX40004 46/633

5150 MHz - 5250 MHz - High Channel, 5245 MHz, Voltage: 85%

Measured Assigned Error Limit

Value (MHz) Value (MHz) (ppm) (ppm) Results

5244.987253 5245 2.4 100 Pass

	5150 MHz - 5250 MHz - F	ligh Channel, 524	5 MHz, Tempera	ture: +50°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5244.984305	5245	3	100	Pass

Report No. MAX40004 47/633

	5150 MHz	z - 5250 MHz - H	igh Channel, 524	5 MHz, Temperat	ture: +40°		
		Measured	Assigned	Error	Limit		
<u></u>		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		5244.985053	5245	2.9	100	Pass	<u> </u>

	5150 MHz - 5250 MHz - H	igh Channel, 524	5 MHz, Temperat	ture: +30°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
, [5244.991234	5245	1.7	100	Pass

Report No. MAX40004 48/633

TbtTx 2017.09.26

	5150 MHz - 5250 MHz - H	ligh Channel, 524	5 MHz, Tempera	ture: +10°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
, [5244.987141	5245	2.5	100	Pass

Report No. MAX40004 49/633

							TbtTx 2017.09.26	XMit 2017.09.21
	5150 MH	łz - 5250 MHz - I	High Channel, 52	45 MHz, Tempera	ature: 0°			
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		5244.989786	5245	2	100	Pass	1	

	5150 MHz - 5250 MHz -	High Channel, 524	15 MHz, Tempera	ture: -10°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
ı	5244.991437	5245	1.6	100	Pass

Report No. MAX40004 50/633

							TbtTx 2017.09.26	XMit 2017.09.2
	5150 MH	z - 5250 MHz - H	ligh Channel, 524	5 MHz, Tempera	ture: -20°			
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		5244 990457	5245	1.8	100	Pass		

	5150 MHz - 5250 MHz -	High Channel, 524	15 MHz, Tempera	ture: -30°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
l –	5244.98828	5245	2.2	100	Pass

Report No. MAX40004 51/633

							TbtTx 2017.09.26	XMit 2017.09.21
	5725 MHz	- 5850 MHz -	Low Channel, 57	35 MHz, Voltage	: 115%			
		Measured	Assigned	Error	Limit			
	٧	alue (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
	5	734.986209	5735	2.4	100	Pass		l.

	5725 MHz - 5850 MHz -	Low Channel, 57	735 MHz, Voltage	: 100%	
	Measured	Assigned	Error	Limit	
_	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
i	5734.986191	5735	2.4	100	Pass

Report No. MAX40004 52/633

TbtTx 2017.09.26

5725 MHz - 5850 MHz - Low Channel, 5735 MHz, Voltage: 85%

Measured Assigned Error Limit

Value (MHz) Value (MHz) (ppm) (ppm) Results

5734.98617 5735 2.4 100 Pass

	5725 MHz - 5850 MHz - L	ow Channel, 573	5 MHz, Temperat	ure: +50°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5734.982817	5735	3	100	Pass

Report No. MAX40004 53/633

							TbtTx 2017.09.26	XMit 2017.09.2
	5725 MHz	z - 5850 MHz - L	ow Channel, 573	5 MHz, Temperat	ure: +40°			
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		E704 00004	F70F	2.0	400	D		

ſ	5725 MHz - 5850 MHz - L	ow Channel, 573	5 MHz, Temperat	ure: +30°	
I	Measured	Assigned	Error	Limit	
	 Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
1	5734.990357	5735	1.7	100	Pass

Report No. MAX40004 54/633

	5725 MH	z - 5850 MHz - L	ow Channel, 573	5 MHz, Temperat	ure: +20°	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		5734.999862	5735	0	100	Pass

	5725 MH	z - 5850 MHz - L	ow Channel, 573	5 MHz, Temperat	ure: +10°	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		5734.985922	5735	2.5	100	Pass

Report No. MAX40004 55/633

TbtTx 2017.09.26

Pass

5725 MHz - 5850 MHz - Low Channel, 5735 MHz, Temperature: 0°
Measured Assigned Error Limit
Value (MHz) Value (MHz) (ppm) (ppm) Results

5735

1.9

5734.988872

	5725 MHz - 5850 MHz - L	ow Channel, 573	5 MHz, Temperat	ture: -10°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5734.990715	5735	1.6	100	Pass

Report No. MAX40004 56/633

						TbtTx 2017.09.26	XMit 2017.09.21
	5725 MHz - 5850 MHz -	Low Channel, 573	5 MHz, Tempera	ture: -20°			
	Measured	Assigned	Error	Limit			
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
	5734.989526	5735	1.8	100	Pass	Í	

	5725 MHz - 5850 MHz -	Low Channel, 573	5 MHz, Tempera	ture: -30°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
i	5734.987206	5735	2.2	100	Pass

Report No. MAX40004 57/633

	5725 MHz - 5850 MHz -	High Channel, 58	845 MHz, Voltage	e: 100%	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5844.985873	5845	2.4	100	Pass

Report No. MAX40004 58/633

5725 MHz - 5850 MHz - High Channel, 5845 MHz, Voltage: 85%

Measured Assigned Error Limit

Value (MHz) Value (MHz) (ppm) (ppm) Results

5844.985888 5845 2.4 100 Pass

	5725 MHz - 5850 MHz - H	ligh Channel, 584	5 MHz, Temperat	ture: +50°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
ı	5844.982443	5845	3	100	Pass

Report No. MAX40004 59/633

	5725 MHz	z - 5850 MHz - H	igh Channel, 584	5 MHz, Temperat	ure: +40°		
		Measured	Assigned	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
		5844.983323	5845	2.9	100	Pass	

	5725 MHz - 5850 MHz - H	ligh Channel, 584	5 MHz, Tempera	ture: +30°	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5844.990196	5845	1.7	100	Pass

Report No. MAX40004 60/633

							TbtTx 2017.09.26	XMit 2017.09.21
	5725 MHz	z - 5850 MHz - H	igh Channel, 584	5 MHz, Temperat	ture: +20°			
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		5845 000206	5845	0	100	Pass		

5725 MHz - 5850 MHz - High Channel, 5845 MHz, Temperature: +10°						
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		5844.985646	5845	2.5	100	Pass

Report No. MAX40004 61/633

	5725 MHz - 5850 MHz -	High Channal 59	15 MUz Tompor	atura: 0º		
	3723 MITZ - 3630 MITZ -	riigii Charirei, 36	+5 Minz, Temper	aluie. U		
1	Measured	Assigned	Error	Limit		
İ	Micasurca	Assigned	LIIOI	L		
İ	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
	Value (IVII IZ)	Value (WITIZ)	(ppiii)	(PPIII)	Nesuits	
	5844 98858	5845	2	100	Pass	

5725 MHz - 5850 MHz -	High Channel, 584	5 MHz, Tempera	ture: -10°	
Measured	Assigned	Error	Limit	
Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
5844.990464	5845	1.6	100	Pass

Report No. MAX40004 62/633

						TbtTx 2017.09.26	XMit 2017.09.21
	5725 MHz - 5850 MHz - F	ligh Channel, 584	5 MHz, Tempera	ture: -20°			
	Measured	Assigned	Error	Limit			
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
	5844.989287	5845	1.8	100	Pass	Ī	

	5725 MHz - 5850 MHz - F	ligh Channel, 584	5 MHz, Tempera	ture: -30°	
	Measured	Assigned	Error	Limit	
_	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	5844.986977	5845	2.2	100	Pass

Report No. MAX40004 63/633

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

Report No. MAX40004 64/633