Contents

	0.1	How can I print off and use this document?	ii
	0.2	How to contribute to GitHub	iii
	0.3	Who comprises this class and how can they be reached?	iv
		0.3.1 The Captain at the helm	${\rm iv}$
		0.3.2 The A-Team	iv
		0.3.3 You, yourselves	iv
	0.4	The policies of this class	v
Ι	Cir	cuits	1
1	I. P	otential, current, energy, conservation	3
	1.1	What is electricity?	3
	1.2	Charge	3
	1.3	Current	4
		1.3.1 The directionality of current	4
		1.3.2 The at times deadly serious nature of current	5
		1.3.3 The "speed" of current	5
	1.4	Potential (difference)	6
	1.5	Power	6
	1.6	Energy	7
	1.7	Conservation	7
	1.8	Worksheet	8
		1.8.1 Problem 1, constant charge through a cross-section	8
		1.8.2 Problem 2, arbitrary charge through a cross-section .	8
		1.8.3 Problem 3, a "tera" ble puzzle	8
		1.8.4 Problem 4, power necessary to run a pacemaker	8
		1.8.5 Problem 5, energy needed to excite a neuron	8
		1.8.6 Problem 6, a thump to the chest	9

ii CONTENTS

2	II. (Circuit elements	11
	2.1	Active v. passive	11
	2.2	Ohm's Law and what it means	11
	2.3	Sources	12
	2.4	Resistors	12
		2.4.1 Resistance, R	12
		2.4.2 Resistivity, ρ	12
		2.4.3 Resistance, R	14
		2.4.4 Conductance	14
	2.5	Capacitors	14
		2.5.1 Its time varying behavior	14
		2.5.2 Charge accumulation	14
		2.5.3 A simple example	14
	2.6	Inductors	14
	2.7	Impedance	14
		2.7.1 A quick note on "imaginary" numbers	14
	2.8	Equivalent impedance	14
		2.8.1 Impedances in general	14
		2.8.2 Resistors	14
		2.8.3 Capacitors	14
		2.8.4 Delta-Wye (Δ - Y) transformations	14
		2.8.5 A few examples	14
	2.9	Grounds	14
	2.10	Conductors	14
	2.11	Operational amplifiers	14
	2.12	Diodes	14
	2.13	Switches	14
		Transistors	14
		Transformers	14
	2.16	Worksheet	15
		2.16.1 Problem 1, expressing power in ohms	15
		2.16.2 Problem 2, a couple toaster based problems	15
		2.16.3 Problem 3, currently conducting power	15
		2.16.4 Problem 4, conductance of a sodium channel	15
		2.16.5 Problem 5, resistance of a simple tissue	15
3	TTT	Operational amplifiers	17
J	3.1	Some details	17
	3.1	Some rules	17
	3.3	Some conveniences	17
	0.0	20110 0011011011000	- 1

CONTENTE	•••
CONTENTS	111
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

		3.4.3 Voltage follower	17 17
		3.4.5 Differential amplifier (as homework)	17
4		cuit analysis: I. Nodal analysis	19
	4.1	Nodes and branches	19
	4.2	Kirchhoff's Laws	19
		4.2.1 Kirchhoff's Current Law	19
		4.2.2 Kirchhoff's Voltage Law	19
	4.3	Nodal analysis	19
	4.4	Solving simultaneous equations	19
		4.4.1 Cramer's Rule	19
5	Cir	cuit analysis: II. Mesh analysis; Homework I	21
	5.1	Mesh analysis	21
	5.2	Steps of mesh analysis	21
	5.3	Writing mesh equations directly in matrix form	21
6	Cir	cuit analysis: III. Supernodes and supermeshes	23
	6.1	Nodal analysis with an independent current source	23
	6.2	Nodal analysis with voltage sources, Supernodes	23
	6.3	Nodal analysis with controlled sources	23
	6.4	Mesh analysis with current sources	23
	6.5	Mesh analysis with controlled sources, Supermeshes	23
7	Cir	cuit analysis: IV. Circuit theorems	25
	7.1	Circuit theorems	25
	7.2	Linearity	25
	7.3	Superposition	25
		Source transformation	25
	7.4		
	7.5	Thevenin equivalents	25
	7.5 7.6	Thevenin equivalents	25
	7.5	Thevenin equivalents	
8	7.5 7.6 7.7	Thevenin equivalents	25
	7.5 7.6 7.7 Cir	Thevenin equivalents	25 25 27
8	7.5 7.6 7.7 Cir	Thevenin equivalents	25 25

iv CONTENTS

II	Systems 3
10	The Laplace Transform: I. What it is and why it is impor-
	tant
	10.1 How do we know our world looks like this?
	10.2 Euler's identity / Euler's formula
	10.3 The Laplace transform
	10.4 The Laplace transform of 1
	10.5 The <i>s</i> -plane
	10.6 The linearity of the Laplace transform
	10.7 The Laplace transform of e^{at}
	10.8 The Laplace transform of dx/dt
	10.9 The Laplace transform in RLC circuits
	10.9.1 Resistors
	10.9.2 Inductors
	10.9.3 Capacitors
	10.9.4 RLC
	10.10Two important places, zeros and poles
11	The Laplace Transform: II. How to use it
	11.1 The inverse Laplace transform
	11.2 The Laplace transform of sin
	11.3 The Laplace transform of t^n
	11.4 Some applicability
12	Circuits as ODEs: I. First-order
	12.1 Source-free RC circuits
	12.1.1 One resistor, one capacitor
	12.1.2 Two or more resistors and/or capacitors
	12.2 Source-free "active" circuits
	12.3 First-order systems with sources
	12.4 Several singular functions
	12.4.1 Unit step function, $u(t - t_0) = 1, t > t_0$
	12.4.2 Unit impulse function, $\delta(t) = du(t)/dt$
	12.4.3 Unit ramp function, $r(t) = \int u(t)dt$
13	Circuits as ODEs: II. Second-order
	13.1 A series RLC circuit

CONTENTS v

14	System response: I. Convolution; Homework III	43
	14.1 An introduction to thinking in systems	43
	14.1.1 Domains of interest, of command	43
	14.1.2 The time-domain, or: our typical realm	43
	14.1.3 The frequency-domain, or: our new realm	43
	14.1.4 The s-domain, or: our magical realm	43
	14.2 Inputs and outputs	43
	14.3 Somewhere in the between	43
	14.4 Convolution in the time-domain	43
	14.5 Multiplication in the frequency- and s -domain	43
15	System response: II. Stability	45
	15.1 An introduction	45
	15.1.1 What do we mean by stability?	45
	15.2 Undamped, $\zeta = 0 \dots \dots \dots \dots \dots \dots \dots \dots$	45
	15.3 Underdamped, $0 < \zeta < 1 \dots \dots \dots \dots$	45
	15.4 Overdamped, $\zeta > 1 \dots \dots \dots \dots \dots$	45
II	I & Signals	47
16	System response: III. The frequency domain	49
17	System response: IV. Filters	5 1
18	System response: V. Feedback; Homework IV	53
ΙV	in Biomedical Engineering	57
19	Bioelectricity: I. Passive properties	59
	19.1 Modeling biological material with a simple circuit, $R_1 + (R_2 C)$	59
	19.2 Resistance-Reactance Plane	59
	19.3 What can we do with this information?	59
20	Bioelectricity: II. Active properties	61
2 1	Bioelectricity: III. Measurement	63
22	Digital circuits: I. Discretization	65
23	Digital circuits: II. Logic; Homework V	67

vi	CONTENTS

24	Happenstance: A few BME specific situations	6 9
25	Circumstance: A few BME specific standards	71
2 6	A philosophy of circuits, systems, and signals; Homework VI	7 3

0.1 How can I print off and use this document?

Frankly, in just about any way thats useful to you. I am going to try something here, where I will try to make more or less the entirety of the notes associated with the Winter 2019 semester of BIOMEDE 211, Circuits, Systems, and Signals in Biomedical Engineering, to you, dear reader.

Please don't plagiarize this. If you were raised right, you ought to know what that is. If youd like my judgment on any sort of action, my opinions can be laid bare.

The first assignment I am giving you (worth 4% of your grade and which must be completed by the end of the semester) is to figure out where this document is located online, download it, print it off, sign your name to it, and get it to me. If you know who I am, I would expect a competent engineer to find that without much to-do about it. Start with Google, go from there. Further, for those in the class, BIOMEDE 211, Winter 2019, you must join Github and make at least four substantive contributions to this repository. The term all you engineers (and lawyers) cant wait to parse is substantive to which I will always enter a judgment which I deem final in this class, and I am ever in favor of beneficence over stricture. So, just help out the class in a way you think is helpful and watch those around you do the same. Failure to contribute to this living document by the end of the semester for those in this class will result in a loss of up to 4% of one's total grade outright.

viii CONTENTS

0.2 How to contribute to GitHub

Follow these general steps to propose a change to this online document:

1. Create a GitHub account

This should be rather self-explanatory. Use your e-mail account and verify it to be able to edit. You should proceed with the following steps while logged onto your account.

2. Find Dr. Belmont's GitHub page and go to the biomede-211-w19 repository ("repo"). Then click on the biomede-211-w19.tex file.

3. Edit the file

You will find a small pencil icon on the right side of the page. Click on this to create your own branch ("forking"), and edit the file as you wish.

4. Propose file change

After making your changes, you should scroll to the bottom of the page, find the message box that says, 'Propose file change', and fill it out. The first line should say what you have updated and can be explained in the description.

5. Create pull request

After finishing your file, you will be brought to a page that displays what you have modified on the original document. Press the green 'Create pull request' button to let Dr. Belmont know that you want to create a change. Once he has approved via his own GitHub account, your changes should now be in the updated master branch!

0.3 Who comprises this class and how can they be reached?

0.3.1 The Captain at the helm

Barry Belmont Wednesdays 11:00 a.m. — 1:00 p.m., 2130 LBME belmont@umich.edu

0.3.2 The A-Team

Annabelle St. Pierre Wednesdays 5:00 p.m. — 6:30 p.m., UGLI basement astpierr@umich.edu

Alice Tracey Wednesdays 4:00 p.m. — 5:00 p.m., UGLI basement atracey@umich.edu

0.3.3 You, yourselves

In this class, we will be learning a lot from each other. You are encouraged to learn from one another. You are encouraged to talk to one another. You are are encouraged to share ideas and at times data. You are not encouraged and are hereby expressly forbidden to submit the work of another as your own. If you get help from others, you will put their name on it somewhere. Too much of this and you are committing plagiarism, not enough and you are committing fraud. Please be honest and let's all learn together.

x CONTENTS

0.4 The policies of this class

Part I Circuits

I. Potential, current, energy, conservation

01/10/2019

Contents

1.1

1.8.2

1.8.3 1.8.4

1.8.5

1.8.6

1.2 Charge	3
1.3 Current	4
1.3.1 The directionality of current	4
1.3.2 The at times deadly serious nature of current	5
1.3.3 The "speed" of current	5
1.4 Potential (difference)	6
1.5 Power	6
1.6 Energy	7
1.7 Conservation	7
1.8 Worksheet	8
1.8.1 Problem 1, constant charge through a cross-section	8

Problem 2, arbitrary charge through a cross-section

Problem 3, a "tera" ble puzzle

Problem 4, power necessary to run a pacemaker. .

Problem 5, energy needed to excite a neuron . . .

Problem 6, a thump to the chest

1.1 What is electricity?

1.

2.

3.

1.2 Charge

- 1. Charge is the property of matter that causes it to experience a force when placed in an electromagnetic field; measured in coulombs (C)
- 2.
- 3. How many electrons are needed to form one coulomb? (What is the weight of all those electrons?)
- 4. One byte is eight bits. Bits are essentially a single electron stored in a transistor. If we were to take all the electrons from one terabyte of well distributed information (equal number of ones and zeros), how many coulombs would we have?

1.3 Current

1. The time rate of charge (charged particles) in motion; measured in amperes (A); defined mathematically as

$$i := dq/dt \tag{1.1}$$

where i is current, q is charge, and t is time

2. Conversely, the total charge transferred over time can be expressed as

$$Q := \int_{t_0}^t idt \tag{1.2}$$

- 3. 1 ampere is equal to 1 coulomb/second
- 4. Direct current, "DC"
- 5. Alternative current, "AC"

1.3. CURRENT 5

1.3.1 The directionality of current

Ultimately, the direction in which we say "current" flows is largely arbitrary. As arbitrary as choosing one type of charge and calling it "positive" and another "negative". The reason it doesn't matter is that the only consequence of having chosen a "wrong direction" for the current in a given analysis is that we have to switch the sign of the value. Thus, 3 amps in one direction is the exact same thing as -3 in the opposite direction.

- 1. Thanks to Benjamin Franklin we say that current is
 - i. Positive in the direction in which positively charged particles flow and
 - ii. Negative in the direction in which negatively charged particles
 - iii. We also now know that current results primarily from the movement of negatively charged particles (electrons) and therefore our convention is wrong in one sense, though convenient and entrenched enough that were not liable to change it in our life time (besides, the math comes out the same, and the actual flow of electrons will only matter to us in a few special circumstances, diodes)

1.3.2 The at times deadly serious nature of current

Much of the point of learning this material here is its eventual application by our hands or by the hands of those we work with. Before we put any of this stuff in our hands, we should probably know what is and is not safe.

- 1. 1 mA
- 2. 10 mA
- 3. 100 mA
- 4. 1000 mA

1.3.3 The "speed" of current

A possible misconception is that the electrons inside a wire travels at the speed of light. The speed of current is actually relatively slow. If one were to imagine an electron starting at the wire next to a light switch in an average classroom, it would take a very long period of time for it to travel to the light itself. The light's immediate reaction to a switch is due to a "hose

6CHAPTER 1. I. POTENTIAL, CURRENT, ENERGY, CONSERVATION

effect"; the electrons inside the wire push other electrons in the direction opposite to the [conventional] current. This cascade of electrons is what happens close to the speed of light, not the electron movement itself.

7

1.4 Potential (difference)

- 1. The amount of work needed to move a unit of (positive) charge from a reference point to another point [without producing an acceleration]).
- 2. Potential is measured in "volts" and is often called "voltage". In this class we will endeavor to avoid such a term as it can be very confusing to talk about potential as if there were such a *thing* as voltage.
- 3. Defined as

$$v := \frac{dw}{dq} \tag{1.3}$$

- 4. Potential describes the *potential* to do something. Increasing the potential is akin to increasing the height of a cliff. The height does not do anything other than increase what can be done on the drop. If potential is the cliff's height, charge would be pebbles you'd drop off the side, and current describes how fast those pebble fall.
- 5. In this class, and for the vast vast majority of electrical engineering work, we care about the *difference* in potential. One element held at 100 billion volts and another held at 100 billion + 1 volts has a potential difference of 1 V, which is less than a single AA battery.
- 6. Some typical voltages to be aware of

Consumer level batteries (AA, AAA):

Car batteries:

The "mains" (levels provided by power companies to consumers):

Power transmission lines:

1.5 Power

- 1. The time rate of expending or absorbing energy.
- 2. Quantifies the rate of energy transfer.
- 3. Mathematically:
- 4. Measured in watts: 1 W =
- 5. Passive sign convention:

1.6 Energy

- 1.
- 2.
- 3.
- 4.

1.7 Conservation

Here, as elsewhere, things will be conserved. In electrical circuits there are two laws of conservation that will matter most for us:

- 1. The Conservation of Mass.
- 2. The Conservation of Energy.

In evaluating circuits, the main focus of the first third of this class, it will be the application of these two conservative laws that will enable us to "solve" them. That is, by understanding (1) how energy is generated and used and (2) how charges move around in closed loops ("circuits") we will be able to predict the behavior of the myriad electrical systems which may cross our paths.

9

Worksheet 1.8

1.8.1Problem 1, constant charge through a cross-section

How much charge passes through a cross-section of a conductor in 60 seconds if a DC current value is measured at 0.1 mA? Solution

1.8.2 Problem 2, arbitrary charge through a cross-section

Determine the total charge entering a terminal between t=0 seconds and t = 10 seconds if the current (in amps) passing through is

$$i(t) = \frac{1}{\sqrt{5t+2}}. (1.4)$$

Solution

Problem 3, a "tera" ble puzzle 1.8.3

Approximately how much current is necessary to transmit one terabyte of information in an hour? Solution

1.8.4 Problem 4, power necessary to run a pacemaker

A cardiac pacemaker will provide approximately 5,000 J of energy over 5 years. Determine the capacity of a 5 V lithium battery necessary to drive this pacing such that only 40% of its energy is spent over that time. **Solution**

1.8.5Problem 5, energy needed to excite a neuron

A colleague of yours has been in their lab ginning up new neurons. You, as their resident electrical expert, are tasked with determining the energy consumed by the cell. If the current and voltage variations are found to be functions of time $(t \ge 0)$

$$i(t) = 3t \tag{1.5}$$

$$i(t) = 3t$$
 (1.5)
 $v(t) = 10e^{6t}$ (1.6)

determine the energy consumed between 0 and 2 ms. Solution

1.8.6 Problem 6, a thump to the chest

- (a) A typical defibrillator delivers $200\text{-}1000~\mathrm{V}$ in less than $10~\mathrm{ms}$. How much current is needed to deliver $120,\ 240,\ \mathrm{and}\ 360~\mathrm{Joules}$?
- (b) A human heart ways about 300 grams. From approximately how high of a cliff would one have to drop a heart such that the impact was equivalent to the energy delivered to someone's chest from a defibrillator? **Solution**

II. Circuit elements

01/15/2019

2.1 Active v. passive

Active elements are electrical components that can generate their own energy. Examples of active elements would include generators, batteries, and transistors. Due to the fact that they produce energy, active elements are often known as sources. In contrast to this, passive circuit elements do not produce their own energy. Examples of passive elements would be resistors, capacitors, and inductors.

2.2 Ohm's Law and what it means

Ohm's Law is concerned with the relationship between voltage, or potential difference, and current across a conductor. The potential difference across a conductor is proportional to the current flowing thorugh the conductor with the proportionality constant being denoted as R, or resistance. This can be expressed as:

$$V := iR \tag{2.1}$$

This essentially states that the drop in potential across the conductor, or resistor, is equivalent to the current flowing through the conductor and its resistance. When considering impedance, the equation can be modified to state:

$$V := iZ \tag{2.2}$$

2.3 Sources

2.4 Resistors

Electrical circuit elements that resist the flow of electricity and electric charge Passive two terminal element (does not generate its own energy)

2.4.1 Resistance, R

Resistance = R and is measured in Ohms 1 = 1V/1A Resistance is the subset of a broad phenomenon known as impedence (Z), which is an element's total opposition to a current when a potential is applied.

2.4.2 Resistivity, ρ

Resistivity: based on 3 parameters

- 1. $\rho \to \text{materials ability to resist flow } (\Omega \text{m})$
- 2. $l \rightarrow \text{length of the element (m)}$
- 3. $A \to \text{cross sectional area of element (m}^2)$

$$R = \rho \frac{l}{A} \tag{2.3}$$

Resistivity and Materials Materials that exhibit a high resistivity are things that are classified as conductors. Conductors are commonly associated with metals such as silver. In contrast, materials that exhibit a low resistivity are called insulators. Some common examples of insulators would be polymers such as plastics, ceramics and glass.

Here is a link to a video that further explains the concepts of resistivity and resistance: https://www.youtube.com/watch?v=4rsswT_Rv1M>.

2.4. RESISTORS

13

- 2.4.3 Resistance, R
- 2.4.4 Conductance
- 2.5 Capacitors
- 2.5.1 Its time varying behavior
- 2.5.2 Charge accumulation
- 2.5.3 A simple example
- 2.6 Inductors
- 2.7 Impedance
- 2.7.1 A quick note on "imaginary" numbers
- 2.8 Equivalent impedance
- 2.8.1 Impedances in general
- 2.8.2 Resistors
- 2.8.3 Capacitors
- 2.8.4 Delta-Wye (Δ -Y) transformations
- 2.8.5 A few examples
- 2.9 Grounds
- 2.10 Conductors
- 2.11 Operational amplifiers
- 2.12 Diodes
- 2.13 Switches
- 2.14 Transistors
- 2.15 Transformers

2.16 Worksheet

2.16.1 Problem 1, expressing power in ohms

Utilizing Ohm's law, express units of power to include ohms.

Solution

2.16.2 Problem 2, a couple toaster based problems

A toaster draws 2 A at 120 V. What is its resistance? Solution

How much current is drawn by a toaster with a resistance of 10 Ω at 110 V? **Solution**

2.16.3 Problem 3, currently conducting power

In the circuit shown, calculate the current, i, the conductance, G, and the power, p.

Solution

2.16.4 Problem 4, conductance of a sodium channel

Conductance (G/A) of a sodium channel of a cell membrane at a specific time is 10 mS/cm^2 . If the channel length as 100 nm, what is its conductivity? Solution

2.16.5 Problem 5, resistance of a simple tissue

Determine the resistance of a homogenous and isotropic tissue with a cross-sectional area which can be described by the functions $y=8-x^2$ from x=-2 cm to x=+2 cm, a length of 10 cm (parallel to the z-axis), and a resistivity of 80 Ω m.

Solution

III. Operational amplifiers

01/17/2019

- 3.1 Some details
- 3.2 Some rules
- 3.3 Some conveniences
- 3.4 Some examples
- 3.4.1 Inverting amplifier
- 3.4.2 Non-inverting amplifier
- 3.4.3 Voltage follower
- 3.4.4 Summing amplifier
- 3.4.5 Differential amplifier (as homework)

Circuit analysis: I. Nodal analysis

01/22/2019

- 4.1 Nodes and branches
- 4.2 Kirchhoff's Laws
- 4.2.1 Kirchhoff's Current Law
- 4.2.2 Kirchhoff's Voltage Law
- 4.3 Nodal analysis
- 4.4 Solving simultaneous equations
- 4.4.1 Cramer's Rule

Circuit analysis: II. Mesh analysis; Homework I

01/24/2019

- 5.1 Mesh analysis
- 5.2 Steps of mesh analysis
- 5.3 Writing mesh equations directly in matrix form

$22 CHAPTER \ 5. \ CIRCUIT \ ANALYSIS: II. \ MESH \ ANALYSIS; HOMEWORK \ I$

Circuit analysis: III. Supernodes and supermeshes

01/29/2019 Lecture 6.

- 6.1 Nodal analysis with an independent current source
- 6.2 Nodal analysis with voltage sources, Supernodes
- 6.3 Nodal analysis with controlled sources
- 6.4 Mesh analysis with current sources
- 6.5 Mesh analysis with controlled sources, Supermeshes

24CHAPTER 6. CIRCUIT ANALYSIS: III. SUPERNODES AND SUPERMESHES

Circuit analysis: IV. Circuit theorems

01/31/2019 Lecture 7.

- 7.1 Circuit theorems
- 7.2 Linearity
- 7.3 Superposition
- 7.4 Source transformation
- 7.5 Thevenin equivalents
- 7.6 Norton equivalents
- 7.7 Equivalents with dependents

Circuit analysis: V. When to choose between analyses

02/05/2019 Lecture 8.

28CHAPTER 8. CIRCUIT ANALYSIS: V. WHEN TO CHOOSE BETWEEN ANALYSES

A review of the material thus far; Homework II

02/07/2019 Lecture 9.

9.1 How to measure voltage and current

 $30CHAPTER\ 9.$ A REVIEW OF THE MATERIAL THUS FAR; HOMEWORK II

Exam I

02/12/2019

32 CHAPTER~9.~~A~REVIEW~OF~THE~MATERIAL~THUS~FAR; HOMEWORK~II

Part II Systems

The Laplace Transform: I. What it is and why it is important

36CHAPTER 10. THE LAPLACE TRANSFORM: I. WHAT IT IS AND WHY IT IS IMPORT

- 10.1 How do we know our world looks like this?
- 10.2 Euler's identity / Euler's formula
- 10.3 The Laplace transform
- 10.4 The Laplace transform of 1
- **10.5** The *s*-plane
- 10.6 The linearity of the Laplace transform
- 10.7 The Laplace transform of e^{at}
- 10.8 The Laplace transform of dx/dt
- 10.9 The Laplace transform in RLC circuits
- 10.9.1 Resistors
- 10.9.2 Inductors
- 10.9.3 Capacitors
- 10.9.4 RLC
- 10.10 Two important places, zeros and poles

The Laplace Transform: II. How to use it

02/19/2019 Lecture 11.

- 11.1 The inverse Laplace transform
- 11.2 The Laplace transform of sin
- 11.3 The Laplace transform of t^n
- 11.4 Some applicability

Circuits as ODEs: I. First-order

02/21/2019 Lecture 12.

12.1	Source-	free	RC	circuits
	Source	1100	- 00	CII C GII US

- 12.1.1 One resistor, one capacitor
- 12.1.2 Two or more resistors and/or capacitors
- 12.2 Source-free "active" circuits
- 12.3 First-order systems with sources
- 12.4 Several singular functions
- **12.4.1** Unit step function, $u(t t_0) = 1, t > t_0$

The Laplace transform of the unit step function

12.4.2 Unit impulse function, $\delta(t) = du(t)/dt$

Its "sifting" abilities

The Laplace transform of the unit impulse function

12.4.3 Unit ramp function, $r(t) = \int u(t)dt$

The Laplace transform of the unit impulse function

Circuits as ODEs: II. Second-order

02/26/2019 Lecture 13.

13.1 A series RLC circuit

System response: I. Convolution; Homework III

02/28/2019 Lecture 14.

14.1 An introduction to thinking in systems

Viewing everything as a "system".

- 14.1.1 Domains of interest, of command
- 14.1.2 The time-domain, or: our typical realm
- 14.1.3 The frequency-domain, or: our new realm
- 14.1.4 The s-domain, or: our magical realm
- 14.2 Inputs and outputs
- 14.3 Somewhere in the between
- 14.4 Convolution in the time-domain
- 14.5 Multiplication in the frequency- and s-domain

44CHAPTER 14. SYSTEM RESPONSE: I. CONVOLUTION; HOMEWORK III

System response: II. Stability

03/12/2019 Lecture 15.

- 15.1 An introduction
- 15.1.1 What do we mean by stability?
- 15.2 Undamped, $\zeta = 0$
- 15.3 Underdamped, $0 < \zeta < 1$
- 15.4 Overdamped, $\zeta > 1$

Part III & Signals

System response: III. The frequency domain

03/14/2019 Lecture 16.

$50 CHAPTER\ 16.\ SYSTEM\ RESPONSE; III.\ THE\ FREQUENCY\ DOMAIN$

System response: IV. Filters

03/19/2019 Lecture 17.

System response: V. Feedback; Homework IV

03/21/2019 Lecture 18.

54CHAPTER 18. SYSTEM RESPONSE: V. FEEDBACK; HOMEWORK IV

Exam II

03/26/2019

56CHAPTER~18.~SYSTEM~RESPONSE:~V.~FEEDBACK;~HOMEWORK~IV

Part IV in Biomedical Engineering

Bioelectricity: I. Passive properties

03/28/2019 Lecture 19.

- 19.1 Modeling biological material with a simple circuit, $R_1 + (R_2||C)$
- 19.2 Resistance-Reactance Plane
- 19.3 What can we do with this information?

Bioelectricity: II. Active properties

04/02/2019 Lecture 20.

Bioelectricity: III. Measurement

04/04/2019 Lecture 21.

Digital circuits: I. Discretization

04/09/2019 Lecture 22.

Digital circuits: II. Logic; Homework V

04/11/2019 Lecture 23.

Happenstance: A few BME specific situations

04/16/2019 Lecture 24.

70CHAPTER 24. HAPPENSTANCE: A FEW BME SPECIFIC SITUATIONS

Circumstance: A few BME specific standards

04/18/2019 Lecture 25.

72CHAPTER 25. CIRCUMSTANCE: A FEW BME SPECIFIC STANDARDS

A philosophy of circuits, systems, and signals; Homework VI

04/23/2019 Lecture 26.

 $74 CHAPTER\ 26.\ A\ PHILOSOPHY\ OF\ CIRCUITS,\ SYSTEMS,\ AND\ SIGNALS;\ HOMEWORDS$

Exam III

04/26/2019