

EXPRESS MAIL LABEL NO. EL254116444US Attorney Docket No. XGEN-110 USA

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 13/00, C12N 5/06, 15/12 C12N 15/67, 15/85

(11) International Publication Number:

WO 90/05745

A1 (43)

(43) International Publication Date:

31 May 1990 (31.05.90)

(21) International Application Number:

PCT/US89/05234

(22) International Filing Date:

20 November 1989 (20.11.89)

(30) Priority data:

272,980

18 November 1988 (18.11.88) US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 272,980 (CIP) 18 November 1988 (18.11.88)

(71) Applicant (for all designated States except US): THE GENERAL HOSPITAL CORPORATION [US/US]; Fruit Street, Boston, MA 02114 (US).

(72) Inventors; and

(75) Inventors (Applicants (for US only): HABENER, Joel, F. [US/US]; 217 Plymouth Road, Newton Highlands, MA 02161 (US). HOEFFLER, James, P. [US/US]; 210 North Street, North Reading, MA 01864 (US).

(74) Agents: GOLDSTEIN, Jorge, A. et al.; Saidman, Sterne, Kessler & Goldstein, 1225 Connecticut Avenue, N.W., Suite 300, Washington, DC 20036 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: A cAMP-RESPONSIVE TRANSCRIPTIONAL ENHANCER BINDING PROTEIN

(57) Abstract

This invention is directed toward the characterization and cloning of a cAMP-responsive transcription enhancer binding protein (CREB). This protein, CREB, is a transcriptional activator which activates transcription in eukaryotic cells. This CREB protein can be used to increase or decrease production of proteins by stimulating expresssion of a recombinant gene that is operably-linked to the CREB enhancer element and responsibe to cAMP.

1)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BF BG BI CA CF CG CH CM DE DK	Austria Australia Barbados Belgium Burkina Fasso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Cameroon Germany, Federal Republic of Denmark	ES FR GA GB HU IT JP KP KR U LK LU MC	Spain Finland France Gabon United Kingdom Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Licchtenstein Sri Lanka Luxembourg Monaco	MG ML MR MV NL NO RO SO SE SN ST TG US	Madagascar Mali Mauritania Malawi Netherlands Norway Romania Sudan Sweden Senegal Soviet Union Chad Togo United States of America

- 1 -

TITLE OF THE INVENTION:

A CAMP-RESPONSIVE TRANSCRIPTIONAL ENHANCER BINDING PROTEIN

The research underlying this patent application was supported by National Institutes of Health Grant DK-25532; the government has certain rights in this invention.

Field of the Invention

This invention is in the field of genetic engineering, specifically directed toward the characterization and cloning of a cAMP-responsive transcription enhancer binding protein (CREB). The invention is also directed to methods for the use of the CREB protein to increase or decrease the production of specific proteins in eukaryotic cells by activating transcription of a recombinant gene in response to cAMP.

BACKGROUND OF THE INVENTION

Within the cell, transcriptional selectivity of eukaryotic genes is mediated by complex control regions composed of different combinations of promoter and enhancer elements. These regions are arrayed in tandem to allow multiple distinct regulatory factors to function coordinately to potentiate RNA synthesis. This mosaic arrangement of eukaryotic transcriptional regulatory elements provides different genes with the possibility of utilizing some of the same regulatory elements.

Enhancers are sequence-specific DNA transcriptional regulatory elements that function in <u>cis</u> to stimulate the transcription of genes placed in proximity to them. Generally, elements that function in <u>cis</u> are recognition sites for cellular proteins (Dynan, W.S. <u>et al.</u>, <u>Nature 316</u>:774-778 (1985)). The cellular proteins which recognize enhancer sequences are often expressed in a manner which is tissue-specific or species-specific, or dependent upon the hormonal environment. Upon binding of the appropriate protein to the enhancer region, transcription of genes under the control of, that is, operably-linked to the enhancer is facilitated, resulting in an increased transcriptional expression of the gene, and thus in an increased expression of any protein for which the gene codes.

Enhancers are not orientation dependent elements like promoter regions are. Enhancer sequences can be oriented in either direction relative to the direction of transcription of the operably-linked gene. In addition, the sequence itself may be located anywhere in the general area of the gene, such as 5' to the promoter region, 3' to the transcriptional termination site, or even within a transcribed region of the gene, for example, in an intron. A gene may be under the transcriptional regulatory influence of multiple copies of the same enhancer, or the gene may be under the transcriptional regulatory influence of a group of different enhancers, each enhancer in the group conferring a different regulatory response on the operably-linked gene. Examples of these responses include an ability to transcriptionally respond to different agents or hormones, and tissue-specific expression of the gene.

Because of their relative orientation independence, enhancers can be located at varying distances from the promoter and transcription unit of the gene and yet still be operably-linked to that gene. The transcription unit is that sequence of a gene which is transcribed. The distance will vary with the transcriptional strength of the promoter and enhancer. Typically, on the average, enhancers are located within 200 bases upstream from the promoter site which itself determines the base at which transcription begins.

Cyclic adenosine monophosphate (cAMP) is the intracellular second messenger for many hormones or biological mediators and is known to be active in the regulation of gene expression in both prokaryotes and In eukaryotes, the regulation of transcription by cAMP has been extensively studied in animals and tissue culture cells. Increasing the intracellular cAMP concentration with hormones such as glucagon or other agents such as cAMP analogs or beta-adrenergic agonists induces the transcription of many genes in a tissue-specific manner, including somatostatin (Montminy, M.R. et al., Proc. Natl. Acad. Sci. USA 83:6682 (1986)), the alpha subunit of human chorionic gonadotropin (Silver, B.J. et al., Proc. Natl. Acad. Sci. USA 84:2198 (1987); Jameson, J.L. et al., Endocrinology 119:2570 (1986); Delegeane, A.M. et al., Mol. Cell. Biol. 7:3994 (1987); Jameson, J.L. et al., Mol. and Cell. Biol. 7:3032 (1987); Deutsch, P.J. et al., Bio. Chem. 262:12169 (1987)); phosphoenolpyruvate carboxykinase (Short, J.M. et al., Biol. Chem. 261:9721-9726 (1986)), tyrosine hydroxylase (Lewis, E.J. et al., Proc. Natl. Acad. Sci. USA 84:3550-3554 (1987)), and c-fos (Greenberg, M.E. et al., J. Biol. Chem. 160:14101-14110 (1985)).

Cyclic AMP-responsive genes contain a sequence homologous to the sequence TGACGTCA located on the 5' side of their mRNA cap sites. This sequence has been termed a cAMP-responsive enhancer element (CRE). Deletion mutagenesis of cAMP-inducible genes has shown that the cAMP-responsive enhancer element is contained within a domain necessary for cAMP-mediated induction of transcription.

Similar consensus DNA regulatory elements involved in the stimulation of gene transcription have been identified for other molecules, such as for the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) (Imbra, R.J. et al., Mol. and Cell. Bio. 7:1358 (1987); Angel, P. et al., Cell 49:729 (1987); Tsukada, T. et al., Bio. Chem. 262:8743 (1987); Angel, P. et al., Mol. and Cell. Biol. 6:1760

(1986); Chiu, R. et al., Nature 329:648 (1987); Angel, P: et al., Mol. and Cell. Biol. 74:2256 (1987); Comb, M. et al., Nature 323:353 (1986)). However, notably, the sequence of the octameric cAMP-response element, CRE, (5'-TGACGTCA-3') differs from that of the heptameric TPA-response element, TRE, (5'-TGAGTCA-3') by a single base.

Early studies suggested that transcriptional stimulation by both cAMP and TPA was mediated through a common DNA sequence present in the 5' regulatory region of the enkephalin gene, 5'-TGCGTCA-3'(Comb, M. et al., Nature 323:353 (1986)). However, a DNA binding protein of 47 Kd (AP-I or c-jun) was isolated and shown to mediate TPA but not cAMP induction of SV40 gene transcription through a mechanism involving sequence-specific binding to the TRE motif (Lee, W. et al., Cell 49:741 (1987)). Similarly, a 43 Kd protein termed CRE-binding protein (CREB) has been identified that binds to a CRE sequence in the 5' regulatory region of the rat somatostatin gene (Montminy, M.R. et al., Nature 328:175 (1987)). In placental JEG-3 cells, a 38 Kd protein was shown to bind to CRE (Deutsch, P.J., et al., Proc. Natl. Acad. Sci. USA 85:7922 (1988)). However, the sequence of CREB had not previously been determined, precluding the undertaking of detailed structural or functional studies.

Anti-sense RNA refers to RNA synthesized with a sequence complementary to that found in a specific mRNA. Anti-sense RNA has been used to inhibit, in a specific manner, the expression of the protein whose mRNA is being hybridized by the anti-sense RNA. Inhibition by hybridization in eukaryotes is thought to occur at the level of processing of the mRNA (thus preventing its translocation to the cytoplasm) while in prokaryotes it is thought to occur at translation of the mRNA. At either step, the ultimate result is to effectively stop expression of the target protein whether the system is bacteria, plants or other eukaryotic systems (Knecht, D.A. et al., Science 236:1081-1086 (1987); Van Der Krol, A.R. et al., Nature 333:866-869 (1988); Cabrera, C.V. et al., Cell 50:659-663 (1987); Boulay, J.L. et

al., Nature 330:395-398 (1987); Rothstein, S.J. et al., Proc. Natl. Acad. Sci. USA 84:8439-8443 (1987); Ecker, J.R. et al., Proc. Natl. Acad. Sci. USA 83:5372-5376 (1986); Lichtenstein, D., Nature 333:801-802 (1988)). However, it has not previously been known to use cAMP with anti-sense RNA technology to control the expression of specific proteins in a manner capable of acute regulation in response to the levels of cAMP in the system.

SUMMARY OF THE INVENTION

This invention is directed toward the characterization and cloning of a cAMP-responsive transcription enhancer binding protein (CREB). This protein, CREB, is a DNA binding protein and is capable of recognizing and binding to DNA containing the cAMP enhancer element, CRE, and selectively activating transcription of genes operably-linked to the enhancer element in eukaryotic cells. present invention also provides methods for the selective stimulation of transcription of recombinant genes using the CREB protein. Especially, the present invention provides methods for the selective stimulation of transcription of recombinant genes using the CREB protein in response to cAMP. The present invention further provides methods for the selective inhibition of protein expression using the CREB protein of the invention and cAMP to stimulate the synthesis of an anti-sense RNA. The methods of the invention allow, for the first time, the acute regulation of specific protein levels, in both a positive and negative manner using cAMP or hormones or other agents which act through cAMP to enhance transcription.

DESCRIPTION OF THE FIGURES

Figure 1. Primary structure of CREB.

The basic region and leucine zipper sequence located at the carboxyl terminus of the protein are underlined. The periodic array

of leucine residues (circled) spaced seven residues apart would form the hypothetical alpha helix involved in protein-protein contacts (Landschultz, W.H. et al., Science 240:1760 (1988)). Preliminary evidence indicates that the methionine at a position one is the translational start site in vivo. Amino acid sequence is in single letter code.

Figure 2. Diagram of the hypothetical functional domains of CREB.

Basic region and leucine zipper sequence at the carboxyl terminus provide the putative DNA binding domain. The amino terminal residues 1-268 constitute the proposed negatively charged activation domain in which 25 of the 36 charged amino acids (exclusive of the two histidine residues) are glutamic and aspartic acids. This region of the protein has characteristics of a "negative noodle" hypothesized to be involved in the coupling of DNA binding proteins to other transcriptional factors (Sigler, P.S., Nature 333:210 (1988); Hope, I.A. et al., Nature 333:635 (1988); Ma, J. et al., Cell 48:847 (1987); and Gill, G. et al., Cell 51:121 (1987)).

Figure 3. Comparisons of leucine zipper regions in the structure of CREB and other DNA binding proteins.

Alignment of leucine zipper regions of CREB and several other proteins. Leucines reside at every seventh position, a periodicity required for hypothetical alignment of the leucines on the same spoke of an idealized alpha helix.

Figure 4. Comparison of sequence similarities between CREB and c-jun.

A region of primary sequence similarity between CREB and c-jun is localized to the basic region that is adjacent to the leucine zipper region. Boxed residues are shared by the two DNA binding proteins. Arginine and lysine are considered interchangeable. Arrows point to

leucines in the zipper region. Sequence positions numbered correspond to those of CREB, Figure 2, and c-<u>jun</u> (Bohmann, D. <u>et al.</u>, <u>Science</u> <u>238</u>:1386 (1987); and Angel, P. <u>et al.</u>, <u>Nature</u> <u>332</u>:166 (1988)).

Figure 5. Secondary structure comparisons of CREB and c-jun.

The plots compare four parameters of secondary structures: alpha helix (A), beta strand (B), random coil (C), beta turn (T), as well as hydrophobicities (H) (Garnier, J. et al., J. Mol. Biol. 120:97 (1978); and Kyte, J. et al., J. Mol. Biol. 157:105 (1982)) (MacGene Plus computer program). Numbers at top refer to the sequence of CREB (326 residues) and c-jun (331 residues). Note overall similarities in the secondary structures of the two proteins despite notable absence of similarities of the primary amino acid sequence as seen in Figure 1 between CREB and c-jun as cited in Bohmann, D., et al., Science 238:1386 (1987) and Angel, P., et al., Nature 332:166 (1988).

DEFINITIONS

In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

<u>Selectively activate transcription</u>. To "selectively activate transcription" means to activate or increase the transcription of a heterologous gene or group of genes, without activating transcription in general.

<u>Selectively inhibit expression</u>. To "selectively inhibit expression of a protein means to inhibit, decrease or stop the expression, transcription, mRNA processing, translation or synthesis of a specific protein or group of proteins, either endogenous or heterologous, without inhibiting the ability of the cell to express, transcribe, process, translate or synthesize proteins in general.

<u>DNA element</u>. A "DNA element" is a DNA sequence which confers a unique property on a gene which is operably-linked to it. DNA

elements include enhancer sequences and may confer hormonal responsiveness or tissue-specific expression on a gene.

Minimal selectable region. The term "minimal selectable region" refers to an isolatable DNA region or sequence containing the sequence information required to confer a unique function or other property on a DNA construct which contains the minimal selectable region. Examples of minimal selectable regions are a promoter sequence, the CREB sequence, the CREB enhancer element, a heterologous gene, transcriptional stop sites, and the like.

Operably-linked. By "operably-linked" is meant that a DNA element or minimal selectable region is located at a site which places a gene or group of genes under the control or influence of that element or region. For example, an operably-linked promoter sequence is the promoter for the gene; an operably-linked enhancer sequence is capable of enhancing the transcription of genes operably-linked to it.

DETAILED DESCRIPTION OF THE INVENTION

Cyclic AMP is an intracellular second messenger that activates transcription of many cellular genes. A cAMP-responsive transcriptional element (CRE) has been identified as a palindromic consensus DNA sequence, TGACGTCA. This sequence functions as a DNA enhancer specific for cAMP regulatory events. Although the CRE is a component of the regulatory region of cAMP-responsive genes, the presence of this sequence is not itself sufficient for cAMP inducibility. Exposure of the cell to stimuli that increase cAMP is necessary to stimulate a cascade of events which ultimately produces a transcriptionally active (or activated) complex between the CRE element and a specific transcriptional factor which binds to this element. According to this invention, the transcriptional factor has now been characterized and cloned. This transcriptional factor is a unique CREbinding protein, abbreviated CREB. CREB is a DNA binding protein which specifically responds to cAMP-induced regulatory events by

binding DNA that contains the CRE enhancer element and stimulating transcription. The CREB protein of the invention can be used to regulate the transcription of recombinant genes that have been operably-linked to the CRE enhancer. Such constructs can be used to increase or decrease the expression of specific proteins in a cAMP-dependent manner.

The CREB of the invention was found by screening a placental λ gtll library for expression of specific CRE-recognition and binding proteins using the CRE sequence as a radioactive probe. A cDNA encoding a protein of 326 amino acids with the binding properties of a specific CRE-recognition and binding protein (CREB) was isolated. The isolated CREB contains a carboxy terminal basic region adjacent to a leucine zipper sequence which is similar to sequences believed to be involved in DNA binding and in protein-protein contacts in several other DNA-associated transcriptional proteins, including c-myc, c-fos, c-jun and GCN4. CREB also contains an amino terminal acidic region proposed to be a potential transcriptional activation domain. The putative DNA binding domain of CREB is structurally similar to the corresponding domains in the phorbol ester-responsive proto-oncogene c-jun and the yeast transcription factor GCN4 that bind to a heptameric DNA element, TGAGTCA, closely related to the CRE octamer.

Based upon the deduced protein sequence of this cloned cDNA, the cDNA encodes a full-length CREB protein with a calculated molecular mass of 35,024 daltons. This conclusion is consistent with the finding of a 38 Kd CREB protein present in extracts of JEG-3 human choriocarcinoma cells, assuming that the cellular protein is post-translationally modified. The apparent discrepancy in molecular weights between this human placental CREB of 38 Kd and the 43 Kd CREB identified in rat adrenal cells (PC-12) by Montminy and Bilzikjian (Montminy, M.R. et al., Nature 328:175 (1987)) could be due to species-specific differences in primary structure, post-translational modifications, or the existence of multiple CREB proteins which are part of a larger family of CREB transcriptional activators. Recent

reports have suggested that a 45 Kd ElA-regulated cellular transcription factor (ATF) is similar or identical to CREB and that ATF/CREB can be regulated in vivo by both the adenovirus ElA protein and cAMP (Lin, Y-S. et al., Proc. Natl. Acad. Sci. USA 85:3396 (1988); and Hardy, S. et al., Proc. Natl. Acad. Sci. USA 85:4171 (1988)).

Isolation of the cDNA encoding CREB will facilitate studies aimed at addressing the basis for the molecular heterogeneity of CREB and CREB-like proteins and the interactions of CREB-like, <u>fos</u>-related, and <u>jun</u>-related proteins in the transcriptional activation of genes.

In addition a recombinant source of CREB will greatly facilitate studies directed towards elucidating the mechanisms through which cAMP modulates intracellular metabolism by directing transcriptional events. Genes suspected of being under cAMP control can be evaluated in terms of their ability to respond to, or bind, the CREB of the invention. Recombinant CREB will also facilitate studies directed towards elucidating the transcriptional mechanism-of-action of hormones and other agents suspected of acting through cAMP by examining their ability to influence CREB-directed transcription.

Further, since CREB is a transcriptional activator which activates transcription of genes operably-linked to the CRE element in eukaryotic cells, according to the methods of this invention, CREB can be used in conjunction with CRE and especially with cAMP to increase production of heterologous proteins and polypeptides by stimulating expression of recombinant genes. The CREB protein of the invention can also be used to activate the transcription of an RNA sequence which is not translated, such as an RNA sequence complementary to a known mRNA, or anti-sense RNA. Expression of an anti-sense RNA can be used to block the expression of endogenous or heterologous proteins.

Lastly, the CREB-CRE transcription methods of the invention provide methods of cAMP-controlled mutagenesis in eukaryotic cells.

Thus, the invention encompasses any construct or set of constructs which relies on CREB and CRE recognition or binding to alter the expression of a homologous or heterologous gene product by enhancing the transcription of a recombinant RNA.

The preferred hosts are mammalian cells, grown <u>in vitro</u> in tissue culture, or <u>in vivo</u> in animals. Mammalian cells provide post translational modifications to proteins and polypeptides including correct folding or glycosylation at correct sites.

Mammalian cells which may be useful as hosts include cells of fibroblast origin such as VERO or Chinese hamster ovary CHO-K1, or cells of lymphoid origin, such as the hybridoma SP2/0-AG14 or the myeloma P3x63Sq8, and their derivatives. Preferred mammalian host cells include SP2/0 and J558L. In one preferred embodiment the CREB sequence of the invention is provided to the host cell in a transcribable and translatable minimal selectable region on the same vector construct as that providing the CRE minimal selectable region operably-linked to a recombinant gene. In another preferred embodiment, the CREB sequence of the invention is provided to the host cell in a transcribable and translatable minimal selectable region on a vector construct which is separate and maintained as a separate replicating unit from that providing the CRE minimal selectable region operably-linked to a recombinant gene.

The CREB protein of the invention, in an expressible form, can also be inserted into the chromosome of the host cell. CREB functions in <u>trans</u> which means that it is the diffusible product of the CREB gene which functionally activates expression of genes operably-linked to the CRE element in response to cAMP. Therefore, it is necessary only that the minimal selectable region bearing the CREB gene of the invention be present in the same cell as the minimal selectable region providing the CRE element; the CREB DNA sequence need not be physically linked to the plasmid or element bearing the CRE sequence.

The CREB protein as depicted in Figure 1, or active CRE recognition and binding fragments thereof, may be used in the method of this invention in several embodiments. It is to be understood that while the full octameric CRE sequence is necessary to the construct, it is

not necessary that the full-length CREB sequence be used. Only the portion of the CREB sequence necessary to functionally activate transcription and recognize and bind to DNA containing the CRE sequence is needed. Active CRE recognition and binding fragments may be determined by routine screening. Further, Figure 2 provides a diagram of the proposed functional domains of CREB.

It is also to be understood that by using techniques known to those of ordinary skill in the art it is possible to design chimeric constructs of the CREB protein which contain the ability to recognize the CRE element and thus respond to cAMP in a highly specific manner but which bind to or activate different targets in DNA. Such a chimeric construct might ligate the amino-terminal portion of the CREB protein of the invention with the DNA binding and "zipper" region from another DNA binding protein, or, place the DNA binding and zipper portion of the CREB protein with an alternate amino-terminal domain thus altering the transcriptional targets of the cAMP response.

The promoter chosen to regulate expression of the CREB protein of the invention may be the same or different from the promoter chosen to regulate the recombinant gene. In one embodiment, no enhancer is operably-linked to the promoter operably-linked to CREB. preferred embodiment, the CRE element is operably-linked to the CREB promoter so that CREB synthesis enhances its own transcription and In another embodiment, enhancers conferring tissue or species specificity, such as GCN4 in yeast, are operably-linked to the CREB promoter, which may or may not be operably-linked to CRE also. Any promoter capable of directing the RNA polymerase II transcription of the operably-linked recombinant CREB gene is applicable to the RNA polymerase II is that RNA polymerase methods of the invention. which specifically transcribes DNA into mRNA. Promoter selection is important only in that it allows the host cell to express enough of the CREB protein of the invention so that the level of CREB protein is not a factor limiting the stimulation of the CRE-recombinant gene construct.

In one embodiment the promoter used for the CREB construct of the invention is the homologous CREB promoter from the human placenta. In another embodiment, the CREB promoter from the tissue or cell line of interest is used. Because CREB should not be in limiting quantities it is desirable that a strong promoter be used. By strong promoter is meant a promoter possessing a high affinity for RNA polymerase, as one which provides an accessible RNA polymerase entry site. Examples of strong eukaryotic promoters include promoters from SV40, actin, Rous sarcoma virus, herpes virus, thymidine kinase, and adenovirus MLTV.

The CREB construct as shown in Figure 1 provides the translational stop and start sites and capping site necessary for the proper translation of the sequence into a functional CREB protein in eukaryotic systems.

For a mammalian host, several possible vector systems available for the expression of either or both the CREB protein of the invention and the heterologous recombinant protein. One class of vectors utilizes DNA elements which provide autonomously replicating extra-chromosomal plasmids, derived from animal viruses such as bovine papilloma virus, polyomavirus, adenovirus, or SV40 virus. class of vectors relies upon the integration of the desired gene sequences into the host cell chromosome. Cells which have stably integrated the introduced DNA into their chromosomes can be selected by also introducing one or more markers which allow for selection of host cells which contain the expression vector. The marker may provide for prototrophy to an auxotrophic host, biocide resistance, e.g. antibiotics, or heavy metals, such as copper, or the like. selectable marker gene can either be directly linked to the DNA gene sequences to be expressed, or introduced into the same cell by cotransfection. Preferably the marker is a dominant-acting marker which produces a discernable change in the phenotype of normal cells. Colbere-Garapin, F. et al., J. Mol. Biol. 150:1 (1980).

The construct(s) may be introduced into a host cell by transformation in conjunction with a gene allowing for selection where the

construct will become integrated into the host genome. Usually the construct will be part of a vector having a replication system recognized by the host cell. In another embodiment of this invention, the host cell has been modified prior to transformation with the construct containing the CRE and the heterologous gene so that the cell is already actively expressing the CREB protein, or active CRE recognition and binding fragments, or, maintains the CREB protein or active CRE recognition and binding fragment integrated in its genome.

When the CREB of the invention is inserted into the host cell chromosome, DNA amplification techniques can be used to increase the copy number of the CREB gene. Amplification serves the same purpose as a multi-copy plasmid in so far as it results in multiple copies of a functional gene.

Another preferred host is yeast. Yeast provide substantial advantages in that yeast are capable of post-translational peptide modifications including glycosylation (Kukuruzinaka, M.A. et al., Ann. Rev. Biochem. 56:915-944 (1987)), and a number of recombinant DNA strategies exist which utilize strong promoter sequences and high copy number plasmids which promote the production of large amounts of the desired protein. Yeast also recognize leader sequences on cloned mammalian gene products, and can secrete peptides bearing leader sequences (i.e., pre-peptides). Botstein, D. et al., Science 240:1439-1443 (1988); Struhl, K., Nature 305:391-397 (1983); Sherman, F. et al., Methods in Yeast Genetics-Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1983.

Any of a series of yeast gene expression systems incorporating promoter and termination elements from the actively expressed yeast genes coding for proteins, especially glycolytic enzymes such as phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, glucokinase, hexokinase, pyruvate kinase, pyruvate decarboxylate, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, triosephosphate isomerase, phosphoglucose isomerase, alcohol dehydrogenase, isocytochrome C and the like, produced in large

quantities when yeast are grown in medium rich in glucose can be utilized. See, for example, Broach, J.R., Meth. Enz. 101:307 (1983); Stinchcomb et al., Nature 282:39 (1979); Tschempe et al., Gene 10:157 (1980); and Clark, L., et al., Meth. Enz. 101:300 (1983). Known glycolytic genes can also provide very efficient transcription control signals. Hess et al., J. Adv. Enzyme Reg. 7:149 (1968); Hitzeman et al., J. Biol. Chem. 255:2073 (1980); and Holland, M.J., J. Biol. Chem. 256:1385 (1981).

Another preferred host is insect cells, for example the <u>Drosophila</u> larvae. Using insect cells as hosts, the <u>Drosophila</u> alcohol dehydrogenase promoter can be used. Rubin, G.M., <u>Science 240</u>:1453-1459 (1988). Alternatively, baculovirus vectors can be engineered to express large amounts of protein in insects (Jasny, B.R., <u>Science 238</u>:1653 (1987); Miller, D.W., <u>et al.</u>, in <u>Genetic Engineering</u> (1986), Setlow, J.K., <u>et al.</u>, eds., <u>Plenum</u>, Vol. 8, pp. 277-297).

To express a heterologous protein in the method according to this invention, transcriptional and translational eukaryotic signals recognized by the eukaryotic host are necessary. Expression vehicles for production of heterologous protein include plasmids or other vectors as described for the CREB protein of the invention. The vector chosen to carry the CREB minimal selectable region and the vector chosen to carry the minimal selectable region containing the CRE element operably-linked to a heterologous recombinant gene, must also contain replicon and control sequences which are derived from species compatible with the host cell and used in connection with the host. The vector ordinarily carries a replicon site, as well as specific genes which are capable of providing phenotypic selection in transformed cells.

The DNA sequence coding for the heterologous protein may be obtained in association with its homologous promoter region from genomic DNA. To the extent that the host cells recognize the transcriptional and translational regulatory signals and the mRNA processing signals associated with the heterologous protein's gene, then the

regions 5' or 3' to the heterologous protein's transcribed coding sequence and the introns may be retained and employed for transcriptional and translational processing and regulation.

In another embodiment the minimal selectable region containing the recombinant gene construct operably links a homologous promoter region for the recombinant gene or a heterologous promoter to a recombinant gene containing no introns.

According to the methods of the invention, stimulation of transcription in response to cAMP can be used in combination with other transcriptional and translational regulatory sequences. Other transcriptional and translational regulatory signals may be derived from viral sources, such as adenovirus, bovine papilloma virus, simian virus, or the like, where the regulatory signals are associated with a particular gene which has a high level of expression. Alternatively, promoters from mammalian expression products, such as actin, collagen, myosin, etc., may be employed. Transcriptional initiation regulatory signals may be selected which allow for repression or activation, so that expression of the genes can be modulated.

The contiguous non-coding region 5' to the heterologous protein which is retained after processing the introns out of the mRNA precursor will normally include those sequences involved with initiation of transcription and translation, such as the TATA box, capping sequence, CAAT sequence, and the like. Usually the 5'-non-coding sequence will be at least 150bp, more usually at least 200bp, usually not exceeding about 1kbp.

The non-coding region 3' to the heterologous protein coding sequence in the native gene may be retained for its transcriptional termination regulatory sequences, such as termination and polyadenylation. Thus, by retaining the 3'-region naturally contiguous to the DNA sequence coding for the translated region, the transcriptional termination signals may be provided. Where the transcriptional termination signals are not satisfactorily functional in the expression host cell, then a 3' untranslated region functional in the host

cell may be substituted with the 3' region of a highly transcribed protein. In this method, the choice of protein for the substituted 3' region would depend on the cell system chosen for production.

The construct for the heterologous protein will comprise the CRE sequence. CRE is a palindrome, which is a bilaterally symmetrical DNA sequence which, therefore, reads the same in both directions. In the methods according to this invention, to express a protein, a construct is made which contains minimal selectable regions comprising a CRE element operably-linked to a promoter which is operably-linked to a heterologous gene. The orientation of the CRE sequence of the invention can be either 5' or 3' relative to the direction of transcription of the recombinant gene. The CRE element may be located either 5' to 3' to, or within the transcriptional unit itself. By transcriptional unit is meant the DNA sequence that is transcribed into RNA.

More than one CRE sequence may be inserted into the construct and operably-linked to the promoter of the heterologous gene if the addition of additional CRE elements does not detrimentally alter the ability of cAMP to stimulate transcription of the gene. In addition, CRE elements may be separated by DNA spacers of variable length and sequences so long as those spacer regions are not detrimental to the ability of the CREB protein to recognize, bind and stimulate the transcription of the heterologous gene.

Once the vectors or minimal selectable regions containing the construct(s) have been prepared for expression, they may be introduced into the appropriate host. Various techniques may be employed to transform the host with the vectors or constructs, such as protoplast fusion, calcium phosphate-precipitation, electroporation, viral infection or other conventional techniques. After the transformation or transfection, the cells are grown in a selective medium, where untransformed cells are killed, leaving only cells transformed with the constructs of the invention.

Expression of the heterologous gene(s) is stimulated by the addition of cAMP or, by the addition of any analog or hormone acting through cAMP to which the cell is responsive, directly to the culture medium or animal containing the host cell. Cell-membrane permeable, stable analogues of cAMP such as 8-Bromo-cAMP or dibutyryl cAMP may be used. Alternatively, the turpene compound forskolin can be used to stimulate the enzyme adenylate cyclase within the cell, thereby resulting in the cellular synthesis of cAMP.

In a preferred embodiment, 0.1-5 mM 8-Bromo-cAMP or dibutyryl cAMP is used in the method of the invention to stimulate transcription. Alternatively, any concentration of cAMP or an active derivative thereof may be used. The concentration which is required is limited only by the ability of that concentration to effectively induce the desired transcriptional response.

In addition to direct addition of cAMP or an active derivative thereof to the host cell or animal or medium containing the host cell, any hormone or other agent which is able to increase levels of cAMP in the host cell may be used, such as glucagon or β -adrenergic agents. The hormone or agent is limited only by the ability of the cell to respond to the hormone or agent in a cAMP dependent manner.

Although the exact mechanism of the regulatory steps are not known, it is believed that the presence of cAMP may influence the synthesis, activity, recognition ability and/or binding affinity of the CREB protein, which in turn, binds to the CRE palindrome, signalling the expression of the heterologous or recombinant gene.

The expressed heterologous protein or polypeptide may be isolated and purified in accordance with conventional conditions, such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis, or the like.

Accordingly, it is within the scope of the methods of the present invention to stimulate the transcription of a heterologous translatable mRNA by cAMP where the increased levels of the heterologous,

translatable mRNA results in an enhanced expression of a heterologous protein.

It is also within the methods of the invention to stimulate the synthesis of a heterologous but non-translatable RNA.

Accordingly, the recombinant gene may comprise any regulatory RNA sequence capable of being transcribed under direction of a CREregulatable promoter, but not able to be translated. By regulatory RNA is meant an RNA sequence capable of influencing the transcription, processing or translation of another RNA sequence. In a preferred embodiment, the transcribed recombinant RNA sequence is an anti-sense RNA; that is, it is complementary to, and capable of hybridizing with. According to the methods of the invention, upon the a known mRNA. induction of the transcription of an anti-sense RNA under the direction of the cAMP-regulatable CREB-CRE recognition and binding, expression of the protein for which a mRNA codes would decrease or stop due to hybridization of the anti-sense strand of RNA with the sense strand. Accordingly, levels of the protein for which the mRNA The mRNA whose processing or translation is being inhibited by hybridization to the anti-sense RNA may be homologous to the host cell or heterologous to it. The method of the invention is especially applicable to the insertion of the minimal selectable region containing the CRE element operably-linked to a promoter directing the transcription of an anti-sense RNA sequence into the genome of the host cell, in a manner which allows it, in a cAMP dependent manner, to inhibit the over-expression of a protein detrimental to the viability of the cell. Such expression may utilize the CREB protein of the invention or the host's endogenous CREB protein.

The methods of the invention are also adaptable as methods of <u>in vivo</u> mutagenesis. For example, in yeast, by encoding a transposase in the cAMP- regulatable recombinant gene, transposition-dependent DNA mutational events may be placed under the control of cAMP. Cells exhibiting the desired mutant phenotype could then be isolated and characterized.

Alternatively the methods of the invention may be used as a method of mutagenesis which examines function of a protein by using the methods of the invention not to alter the genotype itself, but to effectively create cells deficient in a protein in response to a cAMP-directed transcription of an anti-sense RNA.

The advantage of the methods of the invention include their ability to provide reversible, acute methods of target-specific control of RNA expression or protein expression. The effect of the methods of the invention are reversible by decreasing, removing or metabolizing the levels of cAMP in the medium or cell. That is, by merely manipulating the levels of cAMP in the host cell for a desired period of time, expression of the gene operably-linked to the CRE element is controlled. In addition, the methods are acute because they are rapid and do not depend on the ability of the cell to replicate.

Having now generally described this invention, the same will be better understood by reference to specific examples, which are included herein for purposes of illustration only, and are not intended to be limiting unless otherwise specified.

EXAMPLES

A screening technique recently described by Singh and co-workers (Singh, H. et al., Cell 52:415 (1988)) was used to isolate a cDNA encoding an expressed protein that binds specifically to the CRE recognition site.

A primary screening of a human placental expression library with a radioactive synthetic CRE duplex probe yielded 23 positive recombinant phage plaques. After plaque purification through four successive screenings, only five positive clones remained. A recombinant phage that did not bind the radioactive probe was also plaque purified as a negative control. To establish the specificity of the binding of the radioactive probes, an array of synthetic oligonucleotide duplexes for

which transcriptional activities and protein-binding characteristics have been elucidated in detail was utilized (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. USA 85:7922 (1988); Deutsch, P.J. et al., J. Bio. Chem. (in press)). These duplex DNAs fall into three groups. The "active CRE's" consisted of the CRE octamer element flanked by several bases as they occur in the cAMP responsive chorionic gonadotropin α subunit and somatostatin genes and the collagenase gene in which the TRE heptamer was converted to a transcriptionally active CRE octamer (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. USA 85:7922 These sequences could impart transcriptional stimulation in response to 8-bromo-cAMP, when linked to a minimal promoter element, and could successfully compete for binding to a labeled "active CRE" in gel-shift assays. The corresponding TRE's produced band-shift patterns different from those of the CRE's and could not compete for binding to a labeled "active CRE." Finally, the "inactive CRE's" consisted of the CRE octamer in the contexts of the surrounding bases of the cAMP-unresponsive parathyroid hormone and glucagon genes and gave no transcriptional responses to 8-bromo-cAMP, nor could they produce specific gel-shift patterns or compete for binding to a labeled "active CRE.". The first group consists of CRE sequences that contain the 8 bp palindrome 5'-TGACGTCA-3', flanked by several bases that are known to be permissive for both transcriptional activity and specific protein binding (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. <u>USA</u> <u>85</u>:7922 (1988); Deutsch, P.J. <u>et al., J. Bio. Chem.</u> (in press)). The second group consists of the identical oligonucleotide duplexes in which the core 8 bp element was mutated by the deletion of a single base to form the phorbol ester-responsive sequence 5'-TGAGTCA-3'. Although structurally very similar to CREs, these sequences exhibit functional and binding properties that allow exclusion of recombinant phage expressing TRE-binding proteins and other proteins that may recognize the CRE/TRE motifs non-specifically. The final group corresponds to "inactive CRE's." These oligonucleotide duplexes contain the CRE motif 5'-TGACGTCA-3', but are flanked by the sequences

that are not permissive for either cAMP stimulated gene transcription or specific protein binding to the CRE.

Using this strategy only recombinant phage that bind the active CREs and not the mutant TREs or the inactive CREs were considered to be true positives. Only two of the five recombinant phages initially identified fulfilled all of the binding criteria specific to the native CREB protein from JEG-3 human choriocarcinoma cells (Fig. 1A). Analysis of the cDNA inserts from these two phages indicated that they contained identical 2.4 kb DNA inserts and probably represent duplicates of the same phage.

The specific procedure for detection of a positive recombinant fusion protein in a λ gtll expression library containing human placental cDNAs was as follows:

IPTG-induced proteins from plates containing plaque-purified recombinant phages were bound to nitrocellulose filters and probed separately as described (Singh, H. et al., Cell 52:415 (1988)) with radioactive duplex oligonucleotides containing either an octomeric cAMP response element (CRE) or heptomeric TPA response element (TRE). The CRE-containing probe, but not the TRE-containing probe, was specifically bound by the protein encoded by the recombinant phage. The TRE-containing probe was designed according to the sequence outlined by Angel, P. et al., Cell 49:729 (1987). Previously the element has been shown to be incapable of competing for specific binding to labeled CRE-containing probes in gel-shift assays (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. USA 85:7922 (1988)). probe differed from the TRE probe only by the additional C-G base-pair in parentheses, and was shown to impart a 15-30 fold stimulation of transcription in response to 8-bromo cAMP when placed upstream of a minimal promoter element.

- 5'- GATCCGGCTGAC(G)TCATCAAGCTA-3' CRE probe
- 3'- GCCGACTG(C)AGTAGTTCGATCTAG-5' TRE probe

The cDNA library was obtained from Clontech Laboratories, Inc., Palo Alto, California.

The radioactive CRE-containing probe used to select the recombinant phage will likewise bind to a protein present in a cell line of placental origin (JEG-3). Proteins in whole cell extracts of placental JEG-3 cells were separated by electrophoresis on a SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The membrane was incubated with the radioactive CRE probe, revealing two intensely radioactive bands corresponding to proteins of apparent molecular weights of 38 Kd and 36 Kd.

The Southwestern blot analysis of DNA binding activity in extracts of placental JEG-3 cells was as follows:

To demonstrate that the radioactive CRE-containing probe, used to select the recombinant phage, also binds to the 38 kd CREB protein from JEG-3 cells when immobilized on nitrocellulose membranes, a Southwestern analysis was performed. 50 ug of extract was separated on 10% denaturing SDS gels and then electrotransferred to nitrocellulose membranes. The membranes were then exposed as described (Singh, H. et al., Cell 52:415 (1988)) to radioactive binding site probes containing either a CRE probe or TRE probe. The labeled CRE probe bound strongly to proteins of 38 Kd and 36 Kd, and weakly to a 26 Kd protein in these extracts after 24 h of autoradiography. The specific binding of this protein(s) to the CRE element is a finding that is consistent with our earlier observations using UV-crosslinking (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. USA 85:7922 (1988)). However, the TRE probe gave only weak signals even after five days of autoradiography. These differences in signal strengths may be a consequence of the relative abundances of the proteins which bind these elements, or to differences in the degree of renaturation achieved after transfer to nitrocellulose. Molecular weights of marker proteins are shown on the left of the autoradiograms.

The protein encoded by the beta-galactosidase fusion gene was analyzed by UV-crosslinking in the presence or absence of unlabeled competitor DNAs followed by transfer to nitrocellulose.

Ultraviolet light cross-linking of lysogen extracts was used to demonstrate the galactosidase fusion protein responsible for specific binding to the labeled CRE probe. UV-crosslinking was performed as described earlier (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. USA 85:7922 (1988)) using 50 ug of total protein from lysogen extracts from either the recombinant phage (center panel) or the negative control λ gt11 recombinant phage. The body-labeled, bromo-deoxyuridine incorporated probes were prepared by primed synthesis of the synthetic oligonucleotide 5'-AAAGCCAGAGGTGTCTGAC(G)TCATGCTTTATAACATCC-TCTTGATTAG-CTA-3' using the 15 base primer 5'-TAGCTAATCAAGAGG-3'. The G in parentheses represents the single base insertion in the CRE relative to the TRE. After separating bound proteins on10% SDS-gels, the proteins were transferred to nitrocellulose membranes and stained using anti- β -galactosidase antibodies. The major galactosidase species account for most of the specific binding. However, there were faint bands at lower molecular weights which presumably are due to binding to breakdown products of the apparent 137 Kd fusion protein, because negative control lysogens from the same Y1089 host cells showed no specific (or non-specific) binding to the CRE-containing probe. The specificity of binding to the CRE probe was confirmed by the lack of competition by the unlabeled TRE-containing probe.

Thus, the results confirmed that the B-galactosidase fusion protein was responsible for binding to the radioactive CRE-probe and that this binding is prevented in the presence of unlabeled CRE, but not unlabeled TRE, even at a 1000-fold molar excess.

Finally, to demonstrate that the fusion protein bound specifically to the CRE element in the context of a cellular promoter, a footprint analysis using the technique of digestion of DNA with exonuclease III was performed (Shalloway, D. et al., Cell 20:411 (1980)). The DNA construction comprised of the somatostatin CRE

oligonucleotide duplex joined to the promoter sequence of the α -gonadotropin gene at position-100 (Deutsch, P.J. <u>et al.</u>, <u>Proc. Natl. Acad. Sci. USA 85</u>:7922 (1988)). The bacterial lysogen extract and extracts of JEG-3 cells provide similar protection of the CRE.

The exonuclease III protection footprinting procedure of the CRE by DNA binding activity in lysogen extracts of phage Gl is described as follows:

The radioactive probe used consisted of a CRE flanked by the native sequences found surrounding this element in the somatostatin gene linked to a 144 bp fragment of the α-gonadotropin gene promoter extending from -100 to +44 (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. USA 85:7922 (1988)). Both sense and antisense DNA strands were 5′ end-labeled with ³²P, cut with a restriction endonuclease and the single end labeled DNAs were isolated by electrophoresis on 4% polyacrylamide gels. Binding reactions with lysogen and JEG-3 whole cell extracts were performed as described previously for gel shift assays (Deutsch, P.J. et al., Proc. Natl. Acad. Sci. USA 85:7922 (1988); Deutsch, P.J. et al., J. Bio. Chem. (in press)). The radioactive probes in the presence of cell extracts were then exposed to 100 units of Exonuclease III for 10 minutes at 37°C. The final radioactive products were analyzed by electrophoresis on 8% sequencing gels.

The amino acid sequence of 326 residues (m.w. 35,024) deduced from the nucleotide sequence of the subcloned cDNA shows several interesting structural features characteristic of DNA-binding transcription factors belonging to a new class recognized as leucine zipper proteins (Landschultz, W.H. et al., Science 240:1760 (1988)) as shown in Figure 1. This class of proteins includes myc, fos, C/EBP, GCN4 and c-jun. Comparisons of leucine zipper regions in the structure of CREB and then other DNA binding proteins are shown in Figure 3. A hypothetical "leucine zipper sequence" in which four leucines are spaced seven residues apart is located near the carboxyl terminus of the protein. The sequence was recently proposed by Landschultz,

WO 90/05745 PCT/US89/05234

Johnson, and McKnight (Landschultz, W.H. et al., Science 240:1760 (1988)) to be a region involved in the formation of protein homodimers or other protein-protein interactions.

A computer search for sequence similarities between CREB and cjun revealed a single region of 61% identity of amino acids (19 of 31 residues) between positions 270 to 300 of CREB and 254 to 284 of c-jun as shown in Figure 4. These regions of similarity are located adjacent to the leucine zipper regions of the two proteins and constitute basic domains in which over 50% of the residues are either arginine or lysine. There is also a similarity of sequence in this region with GCN4, a protein previously noted to have similarity to cjun (Bohmann, D. et al., Science 238:1386 (1987); and Angel, P. et al., Nature 332:166 (1988)). Without being bound by the theory, the similarities of sequences limited to this basic domain suggests that all these proteins bind to similar palindromic sequences; either TGACGTCA (CREB) or TGAGTCA (c-jun and GCN4). The high positive charge densities of these regions of the DNA binding proteins would be compatible with close contact with the negatively charged phosphate backbone of the DNA.

Although no additional regions of similarity were discerned for the primary sequence of CREB and c-jun, comparison of the predicted secondary structures shows several notable features as shown in Figure 5. As expected, the zipper regions at the carboxyl terminus of the two proteins consist entirely of alpha helix (Landschultz, W.H. et al., Science 240:1760 (1988)). However, the remainder of the sequences located amino terminal to the basic domains of both proteins are predominantly random coil and are highly acidic. The sequences of CREB (residues 1-268) and c-jun (residues 1-225) have ratios of acidic to basic residues of 2.5 and 2.0, respectively. The sequence of CREB between residues 1 to 268 contains 25 glutamic acids and aspartic acids and 11 Tysines and arginines. The corresponding sequence of c-jun between residues 1 to 225 contains 22 glutamic acids and aspartic acids and 11 Tysines and arginines. These acidic regions of tran-

scriptional proteins may be important activator regions for interactions with the basic transcriptional machinery and have been referred to as "acid blobs" or "negative noodles" to describe the conformationally poorly-defined structure of a polypeptide that can function almost irrespective of sequence provided that there are a sufficient number of acidic residues clustered or scattered about (Sigler, P.S., Nature 333:210 (1988); Hope, I.A. et al., Nature 333:635 (1988); Ma, J. et al., Cell 48:847 (1987); and Gill, G. et al., Cell 51:121 (1987)).

WHAT IS CLAIMED IS:

- 1. A substantially purified cAMP-responsive transcription enhancer binding protein (CREB) having the nucleotide sequence as shown in Figure 1.
- 2. Active CRE recognition or binding fragments of the CREB protein of claim 1.
- 3. A construct comprising the CREB protein of claim 1 or an active recognition or binding fragment of claim 2.
- 4. A construct comprising a promoter operably-linked to a heterologous gene coding for a protein or polypeptide and comprising the CRE palindrome with the nucleotide sequence TGACGTCA and the CREB protein of claim I wherein said CRE palindrome is operably-linked to said promoter's regulation of said heterologous gene.
- 5. A construct comprising a promoter operably-linked to a heterologous gene coding for a protein or polypeptide and comprising the CRE palindrome with the nucleotide sequence TGACGTCA and an active CRE recognition or binding fragment of the CREB protein of claim 2 wherein said CRE palindrome is operably-linked to said promoter's regulation of said heterologous gene.
- 6. A eukaryotic host cell comprising the CREB protein of claim 1 integrated in its genome.
- 7. A eukaryotic host cell comprising an active CRE recognition or binding fragment of the CREB protein of claim 2 integrated in its genome.

- 8. A method of increasing production of a heterologous protein or polypeptide comprising:
- (a) transforming a eukaryotic host cell with a construct comprising
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to a heterologous gene,
 - a minimum selectable region comprising the CRE palindrome with the nucleotide sequence TGACGTCA operably-linked to a recombinant gene,
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to the CREB protein as shown in Figure 1;
- (b) culturing said transformed eukaryotic host cell under conditions selected for favorable growth of said host cell; and
- (c) adding cAMP to said host cell to stimulate said heterologous gene to express the encoded protein or polypeptide.
- 9. A method of increasing production of a heterologous protein or polypeptide comprising:
- (a) transforming a eukaryotic host cell with a construct comprising
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to a transcription unit,
 - a minimum selectable region comprising the CRE palindrome with the nucleotide sequence TGACGTCA;
- (b) transforming said eukaryotic cell with a construct comprising
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to the CREB protein as shown in Figure 1:
- (c) culturing said transformed eukaryotic host cell under conditions selected for favorable growth of said host cell; and

- (d) adding cAMP to said host cell to stimulate transcription of said transcription unit.
 - 10. A method for increasing transcription of DNA comprising:
- (a) transforming a eukaryotic host cell with a construct comprising
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to a heterologous gene,
 - a minimum selectable region comprising the CRE palindrome with the nucleotide sequence TGACGTCA operably-linked to a recombinant gene,
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to the CREB protein as shown in Figure I;
- (b) culturing said transformed eukaryotic host cell under conditions selected for favorable growth of said host cell; and
- (c) adding cAMP to said host cell to stimulate transcription of said transcription unit.
 - 11. A method for increasing transcription of DNA comprising:
- (a) transforming a eukaryotic host cell with a construct comprising
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to a transcription unit,
 - a minimum selectable region comprising the CRE palindrome with the nucleotide sequence TGACGTCA;
- (b) transforming said eukaryotic cell with a construct comprising
 - a minimum selectable region comprising a eukaryotic promoter operably-linked to the CREB protein as shown in Figure 1;
- (c) culturing said transformed eukaryotic host cell under conditions selected for favorable growth of said host cell; and

- (d) adding cAMP to said host cell to stimulate transcription of said transcription unit.
- 12. The method of claim 8, 9, 10 or 11 wherein the promoter operably-linked to the heterologous gene is the same sequence as the promoter operably-linked to the CREB protein.
- 13. The method of claim 8, 9, 10 or 11 wherein the promoter operably-linked to the transcription unit uses RNA Polymerase II.
- 14. The method of claim 8, 9, 10 or 11 wherein the transcription unit codes for a transposase.
- 15. The method of claim 10 or 11 wherein the heterologous gene transcribes an anti-sense RNA.
 - 16. A method for decreasing expression of a protein comprising:
- (a) transforming a eukaryotic host cell with the construct(s) of claims 10 or 11 wherein said transcription unit transcribes the sequence of an anti-sense RNA;
- (b) culturing said transformed eukaryotic host cell under conditions selected for favorable growth of said host cell;
- (c) adding cAMP to said host cell to stimulate transcription of said anti-sense RNA; and
- (d) culturing said host cell under conditions favorable to hybridization of said anti-sense RNA to said mRNA.
- 17. The method of claim 16, wherein said mRNA is homologous to said host cell.
- 18. The method of claim 16, wherein said mRNA is heterologous to said host cell.

19. The methods of claims 10, 11 or 16, wherein said construct(s) are integrated into the host's genome.

Translation of CREBCDNA3 over region 126-1106;.

CAG GTC Q + TAA CAG GTC Q-Y CTG GAC L ACA TGT ATT 60 AAA TTT 120 GTA CAT GTT CAA AGG TCC R CAG GTC AGT S AAT TTA ೮೮೦ 299 990 869 8 GTA AGG TCC CAT CCA TTA GTA CAT TCA AGT S Ω GCT 50 GGA CCT 110 350 CCA GGT 410 GAA 470 TCA AGT S 230 ACA TGT CIL 290 CTA GAT L CAT CTT GTA M 170 GCA CGT K AGT CTT GAA L ၁၁၁ ၁၁၁ ၁ CAG GTC Q TCA 000 CCC GAA ACT TGA T CAT GAA CTT ALT TAA I GAG GTA CAT V 950 CGG ATT TAA GGA CAG GCG GTC CGC Q A ATT GCA TAA CGT I A AGG GAA TCC CTT R E CCC ACC GGG TGG P T GTG TTA CCA CAG ACG GAG TGC CTC GIC TCA CAG AGT GGT ø GTC CAC CCA GTG ATT TAA I ACT CGA GGT CAG GTC GGA CGA TGA CAG GTC GGA GTC ZCT CCT CAG Y CAA AAC GTT TTC TCA TCT AGT AGA S S ATT TCA TAA AGT I S GCA ၁၅၁ ၁၂၁ ၁၂၁ CGG CAA GCC 150 GAG AAC CTC TTG 450 270 30 TGA ACT 90 AAA TTT GTT Ø M CAA ACG GTT CAT GTA H CAG GTC CAA V ACA TGT TCC AGG S GTT ပ္သင္ဟ CGG GTA CAT TGA ACA TGT T GTC CAG GTT CAA V GAT CTA D GCA CGT GGA 200 ATG TAC M CCA 80 CCG 299 320 CAA GIT 380 ACA TGT 440 ACT TGA T 260 CAT GTA H 20 GGT 140 TCT AGA Ø TCC GCG GCC GGA CCG CCT CAA GCT GTT CAA V CAA GTT GTA CAT GAA 闰 ACA TGT T GTC CAG AGT TCA S CAA GIT GCA CGT ATG TAC M 370 CAA GTT Q 430 GAT GGG CAG CCC GTC G Q 909 000 090 999 ATG CCA TAC GGT GAA AAC CTT TTG E N CGC TCT GCG AGA CITA GGT P ATG ACC TAC TGG CCA GGT GTG CAC GGT GCT CGA A TCT ACA S AAG AAT TTA N TCA AGT S CCA TCT ACA S AA TT 360 CAG GTC Q ညည GAG CTT GGG P GTA CAT 300

SUBSTITUTE SHEET

F16.1B

GCA CGT A CAG GTC CAG GTC Q TAC ATG ACT TGA T GAA CAG GTC Q ACA TGT CCA GGT P ATA TAT I AAT TTA N TCC AGG S AGG TCC ACC TGG T GGA CAA GTT GCA TCC AGG S GTG CAC 710 ATG TAC 770 GAT CTA D 890 GCA CGT 530 CCA GGT 650 GGA CCT 830 GTA CAT 590 ACG TGC ACC TGG ACT TGA T GTG CAC GTA CAT GGA GAC CTG D ATG TAC M GGA ACC TGG GGA GTT CAA V TTA AAT L ACT TGA T CAG GTC 880 GTT CAA (700 ACA TGT 580 ACC TGG 760 CAG GTC Q 640 ATT ACC TAA TGG I T 820 GCC TCT CGG AGA A S CCA GGT GCA CGT CAA GIT GCA CGT ATC TAG I GGA CCT 6 GAT CTA D CTG GAC L 600 066 TAT ATA Y GCT CGA CCT GGA P 000 000 000 000 ATT GCC TAA CGG CTA CAG GAT GTC L Q 570 GCA CCT CGT GGA 690 CAG GGC GTC CCG Q G GTT CAA CAA GTT V Q 630 TAT ATT ATA TAA Y I TCT AGA S 870 750 810 510 TCT ' AGA S GTA CAT TTA AAT L TCA AGT S ATT TAA I GTT CAA CAG GTC Q ACT TGA T GAC CTG D ACT TGA T ACC TGG GGA ည် ညည် သ GTT CAA V AGC TCG 740 ACT TGA T 860 ACT TGA 500 AAT TTA N 560 GAG CTC 620 AGT TCA S 800 CAA GTT 680 GAT CTA D TTG AAC L GAG CTC AGC TCG ACC TGG T GGT CCA AAC TTG N CCC 666 P ATT TAA I GAA CTT GGT GCA ACT TGA T 000 000 P ACC TCG GCA CGT 550 TCT AGA 490 AAA TTT K 610 CAA GTT Q 730 CAG GTC Q 850 ACA TGT 790 CCC GGG 670 AAC AAT TTG TTA N N AAG TTC K TAC ATG Y AGG TCC ACT TGA T GTG CAC TAC ATG Y GAG CTC E GCT CGA A TTA AAT L ATT TAA I ATT TAA I 000 000 000 600 CCA GGT P 660 CTG GAC L 540 GAA CTT 720 GCA CGT A 780 ATC TAG I

						-	2	
		•					F16. 10	
GAG GTC CGT CTA ATG AAG CTC CAG GCA GAT TAC TTC E V R L M K Basic Region	GTG AAA TGT TTA GAA CAC TTT ACA AAT CTT V K C (L) E	1070 GAG CTA AAA GCA CTT CTC GAT TTT CGT GAA E L K A Û-	1130 TTT TCA CCT GTT AAC AAA AGT GGA CAA TTC	1190 CAT TTT ATT TTC TAA GTA AAA TAA AAG ATT	1250 GAA TTT CAT TCA TTT CTT AAA GTA ACT AAA	1310 TCT CCC CTC AAG ACA GGG CAG TTC	1370 CAC CCT CCT CAA GAA GTG GGA GGA GTT CTT	
CGA AAG AGA GCT TTC TCT R K R	AAG AAA GAA TAT TTC TTT CTT ATA K K E Y	1060 ACA TTG ATT GAG TGT AAC TAA CTC T (L) I E	1120 GGA TTT AAA CCT AAA TTT	1180 AGA CAA AAT AAA TCT GTT TTA TTT	1240 AAA GCA ACT ACA TTT CGT TGA TGT	1300 CCT GCC TCC ACT GGA CGG AGG TGA	1360 CTT TTC AAC CCC GAA AAG TTG GGG	
GAA GCA CCA CTT CGT CGT E A A	990 CGT AGA AAG GCA TCT TTC R R K	1050 AAC AAG TTG TTC N K	1110 GAT T AAT TTG CTA A TTA AAC D-	1170 CAA CCT GAA GTT GGA CTT	1230 AAC TGC CTG TTG ACG GAC	1290 GTT CCA ACA CAA GGT TGT	AGA CTT CTG TCT GAA GAC	
GAA CTT E	980 GAG TGT CTC ACA E C	1040 GAA AAT CTT TTA E N Leucir	1100 AAA TCA TTT AGT K S	1160 TGG CCA ACC GGT	1220 GCG CAA CGC GTT	1280 GTG AAT CAC TTA	1340 ATG AAG TAC TTC	
ACA CAG CO TGT GTC GO TQ	970 GCA GCT CGA CGT CGA GCT A A R	1030 GTG GCA GTG CTT CAC CGT CAC GAA V A V (L)	CTT TAC TGC CAC GAA ATG ACG GTG L Y C H	1150 AAT GGA CTG GCT TTA CCT GAC CGA	1210 TTT CTT TTT TTC TAT AAA GAA AAA AAG ATA	1270 CAT TAA ACT GTA ATT TGA	1330 CCA GGA ATC GGT CCT TAG	
GCA CTT CCT ACA CAG CCT GCT CGT GAA GGA TGT GTC GGA CGA A L P T Q P A	960 AAC AGG GAA TTG TCC CTT N R E	1020 AAC AGA GTG TTG TCT CAC N R V	1080 AAG GAC CTT TTC CTG GAA K D L	1140 GTG GAA AAT CAC CTT TTA	1200 ACA TTT CTT TGT AAA GAA	1260 GTG CTT TTG CAC GAA AAC	1320 TTT TCA ACG CCA GG AAA AGT TGC GGT CC	
	-				•	•	•	

SUBSTITUTE SHEET

									છ
									F16.
AAA TTT	၁၁၅	AAG TTC	TAA	TTG	AAA TTT	TGT ACA	GGT	ACT	TTT
TTT AAA	CCA	AAG TTC	TGT	AAT	TTA	TTC	CAT	AGT TCA	ATT
1430 T CTT 'A GAA	1490 ATT ACC TAA TGG	1550 GCA ATG CGT TAC	10 AGT TCA	1670 GAA ATG CTT TAC	1730 TGG TTC ACC AAG	1790 ATT CAG TAA GTC	50 AAG TTC	1910 TTA GTT AAT CAA	70 AAG TTC
1430 AAT CTT TTA GAA			16 TAA ATT				1850 ACA AA TGT TT		19' AAC TTG
GAA	AGA TCT	GGT	ATG	TTA	CCT	TTA	ACG TGC	ATT	TAT ATA
1420 GGA AAA CCT TTT	1480 AGG GAC TCC CTG	1540 AAG TAA TTC ATT	1600 TGA ATT ACT TAA	1660 AAG GAA TTC CTT	1720 ATT TGT TAA ACA	1780 TGC TTC ACG AAG	1840 AAC TGA TTG ACT	1900 AAG CAT TTC GTA	50 TTA AAT
						1780 TGC T			1960 GAG TY CTC AA
TGA	CTT	AGT	TTG	TTG	AAA TTT	TGT	ACC	ACA	CTT
AAA TTT	TGC	TAA ATT	TCA	GTA	CTG	AGT	GTA	AGT	TCC
1410 GAG	1470 CTT GAT GAA CTA	1530 GCA CGT	1590 TTC	1650 AGC ATG TCG TAC	1710 ATA TAT	1770 TAG GGC ATC CCG	1830 GAA CTT	1890 AAA TTT	1950 CAA GTT
TGG		CAT	ACA		TCA		AAA TTT	AAT TTA	AAC
TGA	CTC	000 000	GTC	TTT	TCT	CCA	TTA	GTA	GTA
1400 'A AAT 'I TIA	1460 GCT GAG CGA CTC	1520 TGT GGG ACA CCC	1580 CAT GTT GTA CAA	1640 AAG AAC TTC TTG	1700 TTG TCT AAC AGA	1760 GCT CTT CGA GAA	1820 T ACA A TGT	1880 C AAA G TTT	1940 3A TCA 3T AGT
14 GTA CAT		15 TGT ACA	15 CAT GTA		1 TTG AAC		AA	AG	T &
CTT	1450 AAG GTT TGT TTC CAA ACA	ATG	TGA	AAA TIT	ATG	1750 ACT AAT ACA TGA TTA TGT	TTG	TAA	TGC
1390 TGT TTA ACA AAT	50 GTT CAA	10 GTA ATG CAT TAC	70 AAT TTA	O CTA GAT	90 TGT ACA	50 AAT TTA	10 TTT AAA	1870 TTA AAT AAT TTA	A FI
139 TGT ACA		151 GAA CTT	CCA A GGT T		1690 TTA T(AAT A(ACA TGT		19. GTA CAT
ATT TAA	TTC	GCT	TTG	TAC	TTT	TTC TGT AAG ACA	TCA	ATT	TTA
ATA TAT	GAT	00 TCT TGA GCT ACA ACT CCA	TGA	ACA	80 CAG TGC CTC ACG		TGT ACA	TGA	TTC
1380 GTA CAT	1440 AAT TTA	1500 TCT ACA	1560 TGT ACA	1620 GAG CTC	1680 CAG CTC	1740 GCA CGT	1800 ATG TAC	1860 ATT TAA	1920 AAA TTT
			S	UBSTI	TUTE	SHEET	• • •		

5/9

AAA TTT	TCA AGT	AAT TTA	TTA AAT	TAT	AAC TTG	TGC	GTA	
GTA	CCT	AAA TTT	TTT	AGT TCA	CAA GTT	ATA TAT	TGT ACA	
2030 T TAC A ATG	2090 A AAG	2150 G TAG KC ATC	2210 G AAT K TTA	70 GAA CTT	2330 C TTA G AAT	2390 T CCA A GGT	2450 F ATT	
2030 ATT TAC TAA ATG	2090 AGA AAG TCT TTC	AT	2210 GTG AAT CAC TTA	2270 AAG GAA TTC CTT	2330 TTC TTA AAG AAT	2390 TTT CCA AAA GGT	2450 TGT ATT ACA TAA	
CTC	CCA	TAC	CTA	CAC	TCA	AGC	GTC	
2020 TTG TCA AAC AGT	2080 CCA CCA GGT GGT	2140 AAA TGT TTT ACA	2200 GAA TCT CTT AGA	2260 GAT GTG CTA CAC	2320 GGA TTG CCT AAC	2380 TGC TTT ACG AAA	2440 AAA ACA TTT TGT	
							2440 AAA A(TTT T(
ATA TAT	ATA TAT	ATG	AGA	TTA	TTT AAA	TTC	ATT TAA	
TTT AAA	TAC	TTT AAA	AAC TTG	GTG	ATA	TAG	CTG	
2010 AAA ATA TTT TAT	2070 TGC ACT ACG TGA	2130 TAT TTG ATA AAC	2190 CAA TTT GTT AAA	2250 AGT ACA TCA TGT	2310 GCA CGT	2370 AGT TAT TCA ATA	2430 TAA TTC ATT AAG	
AAA TTT			CAA		ACT	AGT	TAA	
TCA	CAT	ATA TAT	TAA ATT	AAA TTT	TGT	ACT	TTT	
2000 TCA CCT AGT GGA	2060 GTT GCC CAA CGG	2120 AGT GAT TCA CTA	2180 A TAT	2240 GAT ATA CTA TAT	2300 GAC TGC CTG ACG	2360 AAA AAC TTT TTC	2420 TTA TAA AAT ATT	•
TCA AGT			21 CCA GGT		23 GAC CTG	2 AAA TTT		
1990 TTA TTG TCC AAT AAC AGG	2050 TAA TTT ACT ATT AAA TGA	CAA	TTT	AAG	AAT	2350 TTC TCT TCT AAG ACA ACA	ALT	TTC
90 TTG AAC	50 TTT AAA	2110 ATA AAG TAT TTC	2170 AAA TAT TTT ATA	2230 AGT TGT TCA ACA	2290 TAT TTG ATA AAC	50 TCT ACA	2410 TTT GTC AAAA CAG	2470 CCC GAA GGG CTT
							2410 TTT GI	2470 CCC GR GGG CT
ATG	TTC	CAA	TTT AAA	AGA	ACA	TTG	ອອນ ນນອ	ე ე
TAA ATT	TAT ATA	TGT ACA	GAT	GAA	CAG	40 ATT TTT TAA AAA	ATA TAT	CAT
1980 AAA TTT	2040 AGA TCT	2100 AGA TCT	2160 ACT TGA	2220 AAT TTA	2280 TTT AAA	2340 ATT TAA	2400 TGT ACA	2460 TAT ATA
		•						

F16.1E

AMINO ACID RESIDUES

SUBSTITUTE SHEET

7/9

FIG.3

8/9

FIG. 4

FIG.5

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US89/05234

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 6								
According to International Patent Classification (IPC) or to both National Classification and IPC								
IPC(5): CO7K 13/00; C12N 5/06, 15/12,15/67,15/85								
U.S.: 536/27; 530/350; 435/240.2, 320, 172.3								
Minimum Documentation Searched 7								
Classification	on System Classification Symbols							
US 530/350; 435/320, 240.2, 172.3, 536/27								
<u> </u>	Documentation Searched other than Minimum Documentation							
<u></u>	to the Extent that such Documents are Included in the Fields Search	ed ⁸						
	mical Abstract Service, Swiss Prot & Pir amino acid abases, Automated Patent Search	l sequence						
III. DOCL	JMENTS CONSIDERED TO BE RELEVANT 9							
Category *	Citation of Document, 11 with indication, where appropriate, of the relevant passages	12 Relevant to Claim No. 13						
<u>X</u>	Nature, 9 July 1987. V. 328,pp 175-178.	1,2,6,7,						
Y	Montminy. See page 176, first paragraph; abstract	; 3-5,8-12						
	page 177, first paragraph.							
Y	Cell, 12 February 1988.v. 52 pp 415-423.	3-5						
	Singh. See "summary".							
X,P	Proc. Natl. Acad. Sci, USA. v. 85, pp 7922-7926.	8-12						
	Deutsch. See "abstract"							
•								
"A" doc	cument defining the general state of the art which is not cited to understand the	d after the international fifing date in conflict with the application but principle or theory underlying the						
con	invention lier document but published on or after the international "X" document of particular	relevance: the claimed invention						
filin	filing date cannot be considered to							
whi	which is cited to establish the publication date of another which is cited to establish the publication date of another wy" document of particular relevance; the claimed invention citation or other special reason (as specified)							
	cument referring to an oral disclosure; use, exhibition or document is combined with ments, such combination	with one or more other such docu- r being obvious to a person skilled						
"P" document published prior to the international filing date but in the art. "at document member of the same patent family taker than the priority date claimed "&" document member of the same patent family								
IV. CERTIFICATION								
Date of the Actual Completion of the International Search Date of Mailing of this International Search Report								
05 March 1990 2 2 MAR 1990								
International Searching Authority Signature of Authorized Officer								
IS/t								