Actividad 1.2

1) Un sistema clásico de dos interfaces con CLK independientes es la configuración de transferencia de datos a velocidad de CLK de una interfaz a otra.

En el caso que los relojes independiente compartan frecuencia y fase no habría inconvenientes, pero como esto no es posible que suceda se pueden dar problemas importantes en la sincronización de los datos, problemas que pueden ir desde metaestabilidades a la hora de leer un dato que justo está cambiando de estados con el CLK de la interfaz emisora, o potenciales pérdida de datos si la combinación de Jitter y fase de ambos CLKs logran correrse un ciclo de reloj completo.

2) Se puede tratar como una señal asincrónica no coherente e ingresarla al sistema por el método de la doble registración, asegurando que se cumple $t_{\rm clk} > t_{\rm coM} + t_{\rm su}$ como se mostró en la clase

3) Implementación del circuito propuesto de sincronización y detección de flancos


```
Implementación
                                                                               Simulación
library IEEE;
                                                         LIBRARY ieee;
use IEEE.STD_LOGIC_1164.ALL;
                                                         USE ieee.std_logic_1164.ALL;
entity En_SincroAndEdge is
                                                         ENTITY TB_SincroAndEdge IS
 Port (CLK
                : in STD_LOGIC;
                                                         END TB_SincroAndEdge;
     D
                : in STD_LOGIC;
                : out STD_LOGIC;
                                                         ARCHITECTURE behavior OF TB_SincroAndEdge IS
     D_Reg
                : out STD_LOGIC
     Edge
                                                          COMPONENT En_SincroAndEdge
                          );
end En_SincroAndEdge;
                                                           PORT(
                                                             CLK
                                                                     : IN std_logic;
architecture Arq_SincroAndEdge of En_SincroAndEdge is
                                                                    : IN std_logic;
                                                             D
                                                             D_Reg : OUT std_logic;
 signal Q1, Q2, D3: STD_LOGIC;
                                                                     : OUT std_logic
                                                             Edge
begin
                                                           END COMPONENT;
 D_Reg <= Q2;
                                                          --Inputs
       <= Q1 XOR Q2;
                                                          signal CLK_TB : std_logic := '0';
                                                          signal D
                                                                         : std_logic := '0';
                                                          --Outputs
 process(CLK)
                                                          signal D_Reg
                                                                         : std_logic;
 begin
   if rising_edge(CLK) then
                                                          signal Edge
                                                                         : std_logic;
         <= D;
    Q1
         <= Q1;
    Q2
                                                         BEGIN
    Edge <= D3;
                                                           uut: En_SincroAndEdge PORT MAP (
   end if;
                                                              CLK
                                                                                  => CLK_TB,
 end process;
                                                              D
                                                                         => D,
                                                              D_Reg
                                                                         => D_Reg,
end Arq_SincroAndEdge;
                                                              Edge
                                                                         => Edge);
                                                          CLK_TB <= not CLK_TB after 10ns;
                                                          D
                                                                   <= '0', '1' after 200ns, '0' after 300ns;
                                                         END;
```


4) Xilinx

			FL	F _H	Half-period	K2
MTBF =	e ^{K2*t} F1*F2*K1	Device	(MHz)	(MHZ)	Difference (ns)	(1/ ns)
		XC4005E-3 IOB	111.5	131.6	0.685	16.1
		XC4005E-3 CLB	109.0	124.4	0.568	19.4
		XC4005-6 IOB	73.0	90.0	1.294	8.5
		XC4005-6 CLB	71.2	88.8	1.392	7.9
		XC5206-5 CLB	70.8	79.8	0.80	13.7
		XC3142A-09 IOB	152.2	206.6	0.87	12.7
		XC3142A-09 CLB	107.4	211.3	2.29	4.8
		XC3042-70 IOB	46.6	61.5	2.60	4.2
		XC3042-70 CLB	41.9	64.8	4.22	2.6

donde K1 erepresenta la probabilidad de que suceda una metaestabilidad en una cierta ventana de tiempo (experimental y estimado en 0.1 ns en la experiencia de la referencia).

Altera

Device	τ (ns)	T_o (s)	$t_{ m r}$ (ns)
74LS74	1.50	$4.0 \cdot 10^{-1}$	77.71
74S74	1.70	$1.0\cdot 10^{-6}$	66.14
74S174	1.20	$5.0\cdot 10^{-6}$	48.62
74S374	0.91	$4.0\cdot 10^{-4}$	40.86
74F74	0.40	$2.0\cdot 10^{-4}$	17.68
PALC16R8-25	0.52	$9.5 \cdot 10^{-12}$	14.22*
PALC22V10B-20	0.26	$5.6\cdot 10^{-11}$	7.57*
PALCE22V10-7	0.19	$1.3\cdot 10^{-13}$	4.38*
7300-series CPLD	0.29	$1.0\cdot 10^{-15}$	5.27*
9500-series CPLD	0.17	$9.6 \cdot 10^{-18}$	2.30*
	74LS74 74S74 74S174 74S374 74F74 PALC16R8-25 PALC22V10B-20 PALCE22V10-7 7300-series CPLD	74LS74 1.50 74S74 1.70 74S174 1.20 74S374 0.91 74F74 0.40 PALC16R8-25 0.52 PALC22V10B-20 0.26 PALCE22V10-7 0.19 7300-series CPLD 0.29	74LS741.50 $4.0 \cdot 10^{-1}$ 74S741.70 $1.0 \cdot 10^{-6}$ 74S1741.20 $5.0 \cdot 10^{-6}$ 74S3740.91 $4.0 \cdot 10^{-4}$ 74F740.40 $2.0 \cdot 10^{-4}$ PALC16R8-250.52 $9.5 \cdot 10^{-12}$ PALC22V10B-200.26 $5.6 \cdot 10^{-11}$ PALCE22V10-70.19 $1.3 \cdot 10^{-13}$ 7300-series CPLD0.29 $1.0 \cdot 10^{-15}$

5) Partiendo de la ecuación de la metaestabilidad, se puede proceder experimentalmente a estimar el valor de la misma sabiento el Tmet del sistema

MTBF =
$$e^{C2 * Tmet} / (C1 * f_d * f_c)$$

donde

C1 y C2 = constantes características del sistema y son independientes a las frecuencias tanto de clock como de datos (según la teoría de la metaestabilidad)

Tmet = tiempo adicional que debe esperarse al Tco para asegurarse que el muestreo de la salida del Flip-Flop es realmente lo que debe haber (tiempo de posible metaestabilidad)

Fd = frecuencia de datos

Fc = frecuencia de clock

El siguiente esquema es un clásico setup de medición de metaestabilidad

Donde el FFD entrega a la salida pulsos cuando la salidad del FFA presenta metaestabilidades en el semiperíodo del clock (diferencia detectada cuando las salidas de FFB y FFC son diferentes).

Los diferentes puntos del experimento se van logrando variado el Duty-Cicle del clock de entrada, pudiento testear la frecuencia de aparición de las metaestabilidades, ya que cuanto menor sea el Duty más rápida será la comparación entre FFB y FFC. Así, se logran resultados como el siguiente, pudiendo caracterizar el comportamiento metaestable del sistema en ensayo.

Referencias

- Xilinx Metaestabilidad http://userweb.eng.gla.ac.uk/scott.roy/DCD3/technotes.pdf
- Altera Metaestabilidad http://www.ee.ic.ac.uk/pcheung/teaching/ee3 DSD/9-metastability.pdf
- Microsemi Metaestablidad https://www.microsemi.com/document-portal/doc view/129929-hb-metastability-characterization-report-for-microsemi-flash-fpgas