Matemática Discreta Aulas 1 e 2 Lógica Matemática

Profa. Rosane Rossato Binotto E-mail: rosane.binotto@uffs.edu.br

16/08/2023 e 23/08/2023

Tópicos

- Plano de Ensino.
- Introdução à lógica, lógica proposicional, conectivos, tabela-verdade e proposições compostas.
- Tautologias e Contradições. Proposições logicamente equivalentes. Exemplos e exercícios.

Introdução

Questões:

- O que é matemática discreta?
- Por que estudar matemática discreta?
- Por que estudar lógica matemática?

Introdução

- Lógica Booleana ou lógica de Boole é o estudo dos princípios e métodos usados para distinguir sentenças (proposições) verdadeiras de falsas.
- É também a construção de novas proposições a partir do que já temos.
- George Boole (1815-1864) matemático inglês, um dos precursores do estudo da lógica.

Lógica Proposicional

Definição 1:

Uma **proposição** é uma sentença declarativa (isto é, que declara um fato), que pode ser verdadeira ou falsa, mas não ambas.

Exemplos de sentenças que são proposições:

- 1) Brasília é a capital do Brasil.
- 2) Chapecó é a capital de Santa Catarina.
- 3) 1+1=2.
- 4) 2 + 3 = 4.
- **Resposta:** As proposições 1 e 3 são verdadeiras, e as proposições 2 e 4 são falsas.

Lógica Proposicional

Exemplos de sentenças que não são proposições:

- 1) Que horas são?
- 2) Leia isso com cuidado.
- 3) x + 1 = 2.
- 4) x + y = z.

• Resposta:

- As sentenças 1 e 2 não são proposições porque não são declarativas.
- As sentenças 3 e 4 não são proposições porque não são nem verdadeiras nem falsas.

Conectivos ou Operadores Lógicos

- Os conectivos ou operadores lógicos são:
 e. ou. não. se-então e se-e-somente-se.
- Eles podem ser utilizados para criar novas proposições a partir de proposições dadas.
- As novas proposições são chamadas de proposições compostas.

Conectivos ou Operadores Lógicos

Exemplos de proposições compostas:

- 1) Windows é um sistema operacional e Pascal é uma linguagem de programação.
- 2) Vou comprar um PC ou um Mac.
- 3) Linux não é um software livre.
- 4) Se eu for eleito, então vou diminuir os impostos.
- 5) Você pode tomar o avião se e somente se você comprou uma passagem.
- **OBS**: Nem todas essas proposições são verdadeiras.

Negação de uma Proposição

Definição 2:

- Seja p uma proposição. A **negação de** p, indicada por $\neg p$ ou \overline{p} , é a sentença "Não é o caso de p."
- A proposição $\neg p$ é lida "não p".

Negação de uma Proposição

Exemplos:

- 1) Proposição p: Brasil é um país.
 Negação ¬p: Brasil não é um país.
- 2) q: Linux é um software livre.
 ¬q: Linux não é um software livre.
- 3) r: 3 + 4 > 5.
 ¬r: Não é fato que 3 + 4 > 5.
 Outra possibilidade para
 ¬r: 3 + 4 < 5.

Conclusão:

- Se p é verdadeira, então $\neg p$ é falsa.
- Se p é falsa, então $\neg p$ é verdadeira.
- Tabela-Verdade para a negação

р	$\neg \mathbf{p}$
V	F
F	V

- Para uma proposição p denotamos por V(p) o seu valor verdade, de modo que:
 - V(p) = V, se p é verdadeira;
 - V(p) = F, se p é falsa.

Conjunção

Definição 3:

Sejam p e q proposições. A **conjunção de** p e q, indicada por $p \land q$ é a proposição "p e q".

Exemplo:

- Dadas as proposições: p: Um quadrado tem os quatros lados de mesma medida.
 - q: Um retângulo tem os quatros ângulos de mesma medida.
 - Assim, $p \land q$: Um quadrado tem os quatros lados de mesma medida **e** um retângulo tem os quatros ângulos de mesma medida.

- São 2 proposições então todas as combinações de V e F são: VV, VF, FV e FF.
- Tabela-Verdade para a conjunção de duas proposições

р	q	p ∧ q
V	V	V
V	F	F
F	V	F
F	F	F

Disjunção

Definição 4:

Sejam p e q proposições. 4 disjunção de p e q, indicada por $p \lor q$ é a proposição "p ou q".

Exemplos:

- 1) Hoje é segunda-feira ou está chovendo.
- 2) Sopa ou salada é servida como entrada.
- O ou do Exemplo 1 é inclusivo, mas o ou do Exemplo 2 é exclusivo, isto é, o restaurante anuncia que uma das duas entradas pode ser pedida, mas não ambas.

 Tabela-Verdade para a disjunção de duas proposições, isto é, para o ou inclusivo

р	q	p ∨ q
V	V	V
V	F	V
F	V	V
F	F	F

 Tabela-Verdade para o ou exclusivo ou disjunção exclusiva de duas proposições

р	q	$p \oplus q$
V	V	F
V	F	V
F	V	V
F	F	F

Proposições Condicionais

- A proposição Se-então é denominada proposição condicional.
- A proposição Se-e-somente-se é denominada proposição bicondicional.

Proposição Condicional ou Implicação

Definição 5:

Sejam p e q proposições. A **proposição condicional** $p \rightarrow q$ é a proposição "se p, então q".

Na condicional p → q, p é chamada de hipótese (ou antecedente ou premissa) e q é chamada de conclusão (ou consequência ou tese).

Exemplo:

 Se você tirar 10 no exame final, então terá conceito A.

Proposição Condicional ou Implicação

- Algumas formas de expressar a condicional:
 - "Se *p*, então *q*";
 - "p é suficiente para q";
 - "uma condição necessária para p é q";
 - "*p* implica *q*";
 - " *q* segue de *p*";
 - " *q* sempre *p*";
 - "q é necessário para p".

Tabela-Verdade - Exemplos

Exemplos:

- 1) Se Windows é um sistema operacional, então Pascal é uma linguagem de programação.
 Verdadeira.
- 2) Se Windows é um sistema operacional, então Pascal é uma planilha eletrônica. Falsa.
- 3) Se Windows é um editor de texto, então Pascal é uma linguagem de programação. Verdadeira.
- 4) Se Windows é um editor de texto, então Pascal é uma planilha eletrônica. Verdadeira.

 Tabela-Verdade para a condicional de duas proposições

р	q	$\mathbf{p} o \mathbf{q}$
V	V	V
V	F	F
F	V	V
F	F	V

Linguagem de Programação

- A construção se-então usada em muitas linguagens de programação é diferente da usada em lógica.
- Muitas linguagens usam declarações tais como: if p
 then S, onde p é uma proposição e S é um segmento do programa (uma ou mais declarações a serem executadas);
- Quando a execução do programa encontra tal declaração, então:
 - *S* é executado se *p* é verdadeira;
 - S não é executado se p é falsa.

Linguagem de Programação

Exemplo:

Qual o valor da variável x depois da declaração

if
$$2 + 2 = 4$$
 then $x : x = x + 1$

se x = 0 antes da declaração a ser encontrada?

Solução:

- A proposição p: 2+2=4 é verdadeira, então a declaração S: x=x+1 será executada.
- Como x = 0, então o novo valor de x será 0 + 1 = 1.

Oposta, Contrapositiva e Inversa

- Dada a proposição condicional $p \rightarrow q$. Podemos obter outras proposições, tais como:
 - A proposição $q \rightarrow p$, que é chamada de **oposta** de $p \rightarrow q$.
 - A proposição $\neg q \rightarrow \neg p$, que é chamada de **contrapositiva** de $p \rightarrow q$.
 - A proposição $\neg p \rightarrow \neg q$, que é chamada de **inversa** de $p \rightarrow q$.

Oposta, Contrapositiva e Inversa

- Qual é a contrapositiva, a oposta e a inversa da proposição condicional "O time da casa ganha sempre que está chovendo"?
- Reescrevendo essa proposição: "Se está chovendo, então o time da casa ganha."
 - Oposta: Se o time da casa ganha, então está chovendo.
 - Contrapositiva: Se o time da casa não ganha, então não está chovendo.
 - Inversa: Se não está chovendo, então o time da casa não ganha.

Tabela-Verdade

				Condic.	Oposta	Contrapos.	Inversa
р	q	¬ p	¬ q	p o q	$\mathbf{q} o \mathbf{p}$	$\neg q \rightarrow \neg p$	$\neg p \rightarrow \neg q$
V	V	F	F	V	V	V	V
V	F	F	V	F	V	F	V
F	V	V	F	V	F	V	F
F	F	V	V	V	V	V	V

- Destas 3 proposições apenas a contrapositiva tem o mesmo valor verdade que a condicional dada.
- Dizemos que as proposições $p \to q$ e $\neg q \to \neg p$ são proposições equivalentes ou logicamente equivalentes.

Bicondicional

Definição 6:

Sejam p e q proposições. A **proposição bicondicional** $p \leftrightarrow q$ é a proposição "p se e somente se q".

- A proposição bicondicional $p \leftrightarrow q$, significa: $p \rightarrow q$ (proposição de "ida") e $q \rightarrow p$ (proposição de "volta").
- $p \leftrightarrow q$ é equivalente a $(p \rightarrow q) \land (q \rightarrow p)$.
- Algumas formas de expressar a bicondicional:
 - "p é necessária e suficiente para q";
 - "se p então q, e vice-versa".

Exemplos

Exemplos:

- 1) Windows é um sistema operacional se e somente se Pascal é uma linguagem de programação.
 Verdadeira.
- 2) Windows é um sistema operacional se e somente se Pascal é uma planilha eletrônica. Falsa.
- 3) Windows é um editor de texto se e somente se Pascal é uma linguagem de programação. Falsa.
- 4) Windows é um editor de texto se e somente se Pascal é uma planilha eletrônica. Verdadeira.

 Tabela-Verdade para a bicondicional de duas proposições

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Prioridade dos Conectivos

Prioridade dos conectivos ou operadores lógicos

Operador	Prioridade
一	1
\wedge	2
V	3
\rightarrow	4
\leftrightarrow	5

Tabela-Verdade para Proposições Compostas

Exemplo:

Construa a tabela-verdade para a proposição composta

$$p \wedge \neg q$$
.

Solução:

р	q	¬ q	p ∧ ¬ q
V	V	F	F
V	F	V	V
F	V	F	F
F	F	V	F

Tabela-Verdade para Proposições Compostas

Exercício 1:

Construa a tabela-verdade para a proposição composta

$$(p \lor \neg q) \to p.$$

Solução:

p	q	¬ q	$p \lor \neg q$	$\big \; (p \; \vee \neg q) \; \to \; p \; \big $
V	V	F	V	V
V	F	V	V	V
F	V	F	F	V
F	F	V	V	F

Observações:

- 1) $\neg p \land q \neq \neg (p \land q)$;
- 2) $\neg p \wedge q = (\neg p) \wedge q$.

Exercício 2:

Mostre a observação 1 construindo a tabela-verdade de

$$\neg p \land q \ e \ \neg (p \land q).$$

Exercício 3:

Dadas as proposições p, q e r, construa a tabela-verdade de

$$(\neg p \wedge q) \vee (p \wedge r).$$

- Comentar resultado geral: a tabela-verdade de n proposições contém 2ⁿ linhas, para n um número natural.
- Por exemplo, para n = 3 todas as combinações de V e F são: VVV, VVF, VFV, VFF, FFF, FVV, FVF e FFV.
- Usar essa informação para construir a tabela-verdade.

Tautologia e Contradição

Definição 7:

- Uma proposição que é verdadeira em todas as possibilidades lógicas é dita ser uma tautologia.
- Quando ela for falsa para todas as possibilidades lógicas é dita ser uma contradição.
- Quando a tabela-verdade da proposição contém V e F ela é dita ser uma contingência.

Exemplos:

- 1) Tautologia: $p \vee \neg p$.
- 2) Contradição: $p \wedge \neg p$.

Tautologia e Contradição

Exercício 4:

Mostre que

$$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$$

é uma tautologia.

Fazer em aula.

Proposições Logicamente Equivalentes

Definição 8:

Dizemos que duas proposições são **logicamente equivalentes** se elas têm a mesma tabela-verdade, ou seja, elas têm o mesmo valor verdade para cada uma das possibilidades lógicas.

- De modo análogo, duas proposições compostas p e q são logicamente equivalentes se $p \rightarrow q$ é uma tautologia.
- A notação $p \equiv q$ indica que p e q são logicamente equivalentes.

Proposições Logicamente Equivalentes

Exemplo:

Já vimos que $p \to q$ é logicamente equivalente a $\neg q \to \neg p$ (contrapositiva), isto é, $(p \to q) \equiv (\neg q \to \neg p)$, sendo p e q proposições.

Exercício 5:

Mostre que a redução ao absurdo é uma tautologia, isto é,

$$(p \rightarrow q) \rightarrow [(p \land \neg q) \rightarrow F],$$

sendo p e q proposições.

Proposições Logicamente Equivalentes

Exercício 6:

Mostre a lei de Morgan

$$\neg(p\vee q)\equiv(\neg p)\wedge(\neg q),$$

sendo p e q proposições.

 Mostre as demais proporiedades logicamente equivalentes dadas na tabela do próximo slide.

Algumas Equivalências Lógicas

• **Teorema:** Sejam p, q e r proposições. Então:

Propriedade	Lógica
Elementos neutros	$p \wedge V \equiv p; p \vee F \equiv p$
Denominação	$p \lor V \equiv V; p \land F \equiv F$
Reflexiva	$p \equiv p$
Dupla negação	$\sim (\sim p) \equiv p$
Comutativa	$p \wedge q \equiv q \wedge p; p \vee q \equiv q \vee p$
Associativa	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
	$p \vee (q \vee r) \equiv (p \vee q) \vee r$
Distributiva	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
De Morgan	$\sim (p \wedge q) \equiv \sim p \vee \sim q$
	$ \sim (p \lor q) \equiv \sim p \land \sim q$
Absorção	$p \wedge (p \vee q) \equiv p$
	$p \lor (p \land q) \equiv p$
Contrapositiva	$(p \rightarrow q) \equiv (\sim q \rightarrow \sim p)$
Regra do condicional	$(p \rightarrow q) \equiv (\sim p \lor q)$
Bicondicional	$(p \leftrightarrow q) \equiv (p \rightarrow q) \land (q \rightarrow p)$

Referências

- LIPSCHUTZ, S.; LIPSON, M. Teoria e Problemas de Matemática Discreta. 2. ed. Bookman, 2004.
- MENEZES, P. B. Matemática Discreta para Computação e Informática. 3. ed. Bookman, 2010.
- ROSEN, K. H. Matemática Discreta e Suas Aplicações. 6. ed. McGraw-Hill, 2009.