数学物理方法(上)第五次作业参考答案

鲍雷栋*1, 王思越^{†1}, and 禹凯耀^{‡1}

1北京大学物理学院

2025年4月3日

题 1. 求下列函数在对应环域上的 Laurent 展开:

1.
$$\frac{z}{z+2}$$
, $|z| > 2$.

2.
$$\sin \frac{1}{z}, |z| > 0$$
.

3.
$$\cos \frac{1}{z}, |z| > 0$$
.

4.
$$\frac{1}{z-3}$$
, $|z| > 3$.

解. 1. 直接计算即可

$$\frac{z}{z+2} = \frac{1}{1+\frac{2}{z}} = \sum_{n=0}^{\infty} (-2)^n z^{-n}, \quad |z| > 2.$$

2. 直接展开即可

$$\sin\frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-2n-1}, \quad |z| > 0.$$

3. 直接展开即可

$$\cos\frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{-2n}, \quad |z| > 0.$$

4. 直接计算即可

$$\frac{1}{z-3} = \frac{1}{z} \frac{1}{1-\frac{3}{z}} = \sum_{n=0}^{\infty} 3^n z^{-n-1}, \quad |z| > 3.$$

题 2. 证明 $\frac{1}{e^z-1}$ 在原点处的 Laurent 展开具有形式

$$\frac{1}{z} - \frac{1}{2} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} B_k}{(2k)!} z^{2k-1}, \quad 0 < |z| < 2\pi.$$
 (1)

其中 B_k 称作 Bernoulli 数. 求出 B_1, B_2, B_3 .

^{*2100011330@}stu.pku.edu.cn

 $^{^{\}dagger}2100016344$ @stu.pku.edu.cn

 $^{^{\}ddagger}2301110114@stu.pku.edu.cn$

证明. 设 $f(z) = \frac{z}{e^z - 1}$,有 $z = 2k\pi i, k \in \mathbb{Z}$ 为 f(z) 的奇点,根据

$$\lim_{z\to 0} f(z) = 1, \quad \lim_{z\to 2k\pi\mathrm{i}} (z-2k\pi\mathrm{i}) f(z) = 2k\pi\mathrm{i},$$

有 z=0 是可去奇点,其余奇点为 1 阶极点.由于

$$f(z) = \frac{z}{2} \frac{2e^{-z/2}}{e^{z/2} - e^{-z/2}} = \frac{z}{2} \coth \frac{z}{2} - \frac{z}{2},$$

而 $\frac{z}{2}$ coth $\frac{z}{2}$ 是偶函数,可以设原点附近的 Taylor 展开为

$$f(z) = \sum_{n=0}^{\infty} \frac{b_n}{n!} z^n = 1 - \frac{1}{2} z + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} B_k}{(2k)!} z^{2k}, \quad |z| < 2\pi,$$

因此 $\frac{1}{a^z-1}$ 在原点附近的 Laurent 展开为

$$\frac{1}{e^z - 1} = \frac{f(z)}{z} = \frac{1}{z} - \frac{1}{2} + \sum_{k=1}^{\infty} \frac{(-1)^{k-1} B_k}{(2k)!} z^{2k-1}, \quad 0 < |z| < 2\pi.$$

根据待定系数法的计算有

$$1 = \frac{e^z - 1}{z} \sum_{n=0}^{\infty} \frac{b_n}{n!} z^n = \sum_{k=0}^{\infty} \frac{z^k}{(k+1)!} \sum_{n=0}^{\infty} \frac{b_n}{n!} z^n = \sum_{l=0}^{\infty} \sum_{n=0}^{l} \frac{b_n}{n!(l-n+1)!} z^l,$$

可以得到递推公式

$$b_0 = 1$$
, $\sum_{n=0}^{l} \frac{b_n}{n!(l-n+1)!} = 0$, $(l \ge 1)$,

直接计算即可得到

$$B_1 = b_2 = \frac{1}{6}, \quad B_2 = -b_4 = \frac{1}{30}, \quad B_3 = b_6 = \frac{1}{42}.$$

注. 实际上 b_n 才是现代标准的 Bernoulli 数的定义.

题 3. 证明: ∞ 是整函数 f(z) 的可去奇点当且仅当 f 是常函数.

证明. (方法 1)

- 1. 若 f(z) = C 是常函数,则由 $\lim_{z \to \infty} f(z) = C$ 有 ∞ 是 f 的可去奇点.
- 2. 若 ∞ 是 f 的可去奇点,可以设 $\lim_{z\to\infty} f(z) = C_1$,于是存在 R>0 使得

$$|f(z)| - |C_1| \le |f(z) - C_1| < |C_1|, \quad \forall |z| > R,$$

由于 f(z) 在 $|z| \leq R$ 上有界,可以设一个上界为 C_2 ,从而有

$$|f(z)| < M = \max\{2|C_1|, C_2\}, \quad \forall z \in \mathbb{C},$$

因此根据 Liouville 定理有 f 是常函数.

证明. (方法 2) 设 t=1/z,根据定义 ∞ 是 f(z) 的可去奇点等价于 t=0 是 f(1/t)的可去奇点. 由于 f(z) 是整函数,于是 f(1/t) 在 |t| > 0 上有 Laurent 展开

$$f(1/t) = \sum_{n=0}^{\infty} a_n t^{-n}, \quad |t| > 0,$$

因此这又等价于 $a_n = 0 (n \ge 1)$, 从而等价于 f 是常函数.

题 4. 求出下列函数在延展复平面 $\mathbb{C} \cup \{\infty\}$ 上的所有奇点和留数.

1.
$$f(z) = \frac{z^{2n}}{(1+z)^n}, n \in \mathbb{N}$$
.

2.
$$f(z) = \frac{e^z}{z^2(z^2+9)}$$
.

1. f(z) 在 \mathbb{C} 上的奇点为 z = -1. 根据 $f(1/t) = \frac{1}{t^n(1+t)^n}$ 有 $z = \infty$ 也是 f(z) 的奇点,因此 f(z) 在 $\overline{\mathbb{C}}$ 上的奇点为 z=-1 和 $z=\infty$. 计算 Laurent 展开

$$f(z) = \frac{(z+1-1)^{2n}}{(z+1)^n} = \sum_{k=0}^{2n} \frac{(-1)^k (2n)!}{k! (2n-k)!} (z+1)^{k-n}, \quad |z+1| > 0,$$

$$f(1/t) = \frac{1}{t^n (1+t)^n} = \sum_{k=0}^{\infty} \frac{(-1)^k (n+k-1)!}{k! (n-1)!} t^{k-n}, \quad 0 < |t| < 1,$$

由此可以得到

$$\operatorname{Res}(f,-1) = \frac{(-1)^{n-1}(2n)!}{(n-1)!(n+1)!}, \quad \operatorname{Res}(f,\infty) = \frac{(-1)^n(2n)!}{(n-1)!(n+1)!}.$$

2. f(z) 在 \mathbb{C} 上的奇点为 $z = 0, \pm 3i$. 根据 $f(1/t) = \frac{t^4 e^{1/t}}{1 + 9t^2}$ 有 $z = \infty$ 也是 f(z) 的 奇点,因此 f(z) 在 $\overline{\mathbb{C}}$ 上的奇点为 $z=0,\pm 3i$ 和 $z=\infty$. 利用公式计算得到

$$\operatorname{Res}(f,0) = \frac{\mathrm{d}}{\mathrm{d}z} [z^2 f(z)] \Big|_{z=0} = \frac{(z^2 - 2z + 9)e^z}{(z^2 + 9)^2} \Big|_{z=0} = \frac{1}{9},$$

$$\operatorname{Res}(f, \pm 3i) = \lim_{z \to \pm 3i} (z \mp 3i) f(z) = \frac{e^z}{z^2 \cdot 2z} \Big|_{z=\pm 3i} = \pm \frac{\mathrm{i}}{54} e^{\pm 3i},$$

$$\operatorname{Res}(f, \infty) = -\operatorname{Res}(f, 0) - \operatorname{Res}(f, 3i) - \operatorname{Res}(f, -3i) = -\frac{1}{9} + \frac{1}{27} \sin 3.$$

题 5. 求出下列函数在复平面 C 上的所有奇点, 判断其是本性奇点还是极点, 求出 其极点阶数和留数.

$$1. \ f(z) = \frac{\sin z - z}{z \sinh z}.$$

2.
$$f(z) = \frac{1}{\sin^2 z}$$
.

$$3. \ f(z) = \frac{\cos 1/z}{\sin z}.$$

4.
$$f(z) = \frac{1}{e^{2z} + e^z + 1}$$
.

解. 1. f(z) 在 \mathbb{C} 上的奇点为 $z=k\pi i, k\in\mathbb{Z}$. 这些点都是 $\sinh z$ 的 1 阶零点,由于 z=0 点是 $\sin z-z$ 的 3 阶零点,因此 z=0 是可去奇点,其余奇点为 1 阶极点. 利用公式计算得到

$$\operatorname{Res}(f, k\pi i) = \lim_{z \to k\pi i} (z - k\pi i) f(z) = \frac{\sin z - z}{z \cosh z} \Big|_{z = k\pi i} = (-1)^k \frac{\sinh k\pi - k\pi}{k\pi}, \quad k \neq 0.$$

- 2. f(z) 在 \mathbb{C} 上的奇点为 $z = k\pi, k \in \mathbb{Z}$, 且为 2 阶极点. 由于 f(z) 为偶函数有 $\mathrm{Res}(f,0) = 0$, 再根据 $f(z) = f(z + k\pi)$ 可以得到 $\mathrm{Res}(f,k\pi) = 0$.
- 3. f(z) 在 \mathbb{C} 上的奇点为 $z=k\pi, k\in\mathbb{Z}$,其中 z=0 是本性奇点,其余为 1 阶极点. 利用公式计算得到

$$\operatorname{Res}(f, k\pi) = \lim_{z \to k\pi} (z - k\pi) f(z) = \frac{\cos 1/z}{\cos z} \bigg|_{z = k\pi} = (-1)^k \cos \frac{1}{k\pi}, \quad k \neq 0.$$

对于 z=0 点,根据 Bernoulli 数的定义有

$$\frac{z}{2}\cot\frac{z}{2} = \frac{iz}{2}\coth\frac{iz}{2} = \sum_{n=0}^{\infty} \frac{(-1)^n b_{2n}}{(2n)!} z^{2n}, \quad |z| < 2\pi,$$

利用三角恒等式可以得到

$$\frac{z}{\sin z} = z \cot \frac{z}{2} - z \cot z = \sum_{n=0}^{\infty} \frac{(-1)^n (2 - 2^{2n}) b_{2n}}{(2n)!} z^{2n}, \quad |z| < \pi,$$

于是 f(z) 在 z=0 附近可以展开为

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{-2n} \sum_{k=0}^{\infty} \frac{(-1)^k (2 - 2^{2k}) b_{2k}}{(2k)!} z^{2k-1}, \quad 0 < |z| < \pi,$$

对于 z^{-1} 项的求和有 n = k,因此

Res
$$(f,0)$$
 = $\sum_{n=0}^{\infty} \frac{(2-2^{2n})}{[(2n)!]^2} b_{2n} \approx 0.917474009464329$.

4. f(z) 在 \mathbb{C} 上的奇点为 $z=\frac{2\pi}{3}$ $\mathrm{i}+2k\pi\mathrm{i}$ 和 $z=\frac{4\pi}{3}$ $\mathrm{i}+2k\pi\mathrm{i}$, $k\in\mathbb{Z}$,且为 1 阶极点. 利用公式计算得到

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

$$= \frac{1}{2e^{2z} + e^z} \Big|_{z=z_0} = \begin{cases} \frac{-3 + \sqrt{3}i}{6}, & z_0 = \frac{2\pi}{3}i + 2k\pi i, \\ \frac{-3 - \sqrt{3}i}{6}, & z_0 = \frac{4\pi}{3}i + 2k\pi i. \end{cases} \square$$

题 6. 用留数定理计算积分

$$\int_{|z|=2} \frac{z^2 + 4}{(z - i)(z + i)} dz.$$
 (2)

北京大学物理学吃 ţuā 数学物理方法(上)第五次作业参考答案

解. (方法 1) 设 $f(z)=\frac{z^2+4}{(z-\mathrm{i})(z+\mathrm{i})}$,有 f(z) 在 |z|<2 中的奇点为 $z=\pm\mathrm{i}$,且

Res
$$(f, \pm i) = \lim_{z \to \pm i} (z \mp i) f(z) = \frac{z^2 + 4}{2z} \Big|_{z=\pm i} = \mp \frac{3}{2}i,$$

因此根据留数定理得到

$$\int_{|z|=2} f(z) dz = 2\pi i [\operatorname{Res}(f, i) + \operatorname{Res}(f, -i)] = 0.$$

解. (方法 2) 设 $f(z) = \frac{z^2 + 4}{(z - i)(z + i)}$,有 f(z) 在 |z| > 2 上无奇点,由于 f(z) 为 偶函数有 $\operatorname{Res}(f,\infty)=0$,因此根据留数定

$$\int_{|z|=2} f(z) dz = -2\pi i \operatorname{Res}(f, \infty) = 0.$$

题 7. 用留数定理计算积分

$$\int_{|z|=2} z \sin\left(\frac{1}{z-1}\right) dz. \tag{3}$$

解. 设 $f(z) = z \sin\left(\frac{1}{z-1}\right)$, 有 f(z) 在 |z| < 2 中的奇点为 z = 1. 计算 Laurent 展开

$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} [(z-1)^{-2n} + (z-1)^{-2n-1}], \quad |z-1| > 0.$$

由此可以得到 Res(f,1) = 1, 因此根据留数定理得到

$$\int_{|z|=2} f(z) dz = 2\pi i \operatorname{Res}(f, 1) = 2\pi i.$$

题 8. 用留数定理计算积分

$$\int_{|z|=a} \frac{\mathrm{d}z}{z^* - b},\tag{4}$$

分别讨论 a > |b| 和 |b| > a > 0 的情形.

解. 根据 $zz^* = a^2$ 设 $f(z) = \frac{z}{a^2 - bz}$. 当 a > |b| 时,有 f(z) 在 |z| < a 中无奇点, 因此

$$\int_{|z|=a} f(z) \, \mathrm{d}z = 0.$$

当 |b|>a>0 时,有 f(z) 在 |z|<a 中的奇点为 $z=a^2/b$,且为 1 阶极点. 利用公式 计算得到

$$\operatorname{Res}(f, a^{2}/b) = \lim_{z \to a^{2}/b} (z - a^{2}/b) f(z) = -\frac{z}{b} \Big|_{z=a^{2}/b} = -\frac{a^{2}}{b^{2}},$$

因此根据留数定理得到

$$\int_{|z|=a} f(z) dz = 2\pi i \operatorname{Res}(f, a^2/b) = -2\pi i \frac{a^2}{b^2}.$$

ル京大学物理学院 ţuā 数学物理方法(上)第五次作业参考答案

题 9. 用留数定理计算积分

$$\int_{|z|=5} \frac{e^z}{z^2(z^2+9)} \, \mathrm{d}z. \tag{5}$$

解. 设
$$f(z) = \frac{e^z}{z^2(z^2+9)}$$
, 根据题 4 中的结论有

$$\int_{|z|=5} f(z) \, dz = -2\pi i \operatorname{Res}(f, \infty) = \frac{2\pi i}{27} (3 - \sin 3).$$