Law And Economics

Review of Economic Concepts

 ${\bf Francisco~Poggi}$

University of Mannheim - Fall 2021

Review of Economic Concepts

- Welfare Theorems.
- Externalities.
- Game Theory.
 - Solution concepts in static and dynamic games.
 - Bayesian games.
- Choice under uncertainty.
- * Asymmetric information.
 - · Moral Hazard.
 - · Adverse Selection.

Choice Under Uncertainty

- Gains from driving: 500 EUR a month.
- Probability of accident: 0.01.
- Cost of accident. 10.000 EUR.
- Expected value of driving:

$$EV = 0.99 \times \$500 + 0.01 \times (\$500 - \$10.000)$$

Choice Under Uncertainty

- Would the person drive if the EV is positive?
- utility: $u: R_+ \to R$

$$EU = 0.99 \times u(\$500) + 0.01 \times u(\$500 - \$10.000)$$

Insurance

The driver is offered full insurance for a price z. Would the driver buy the insurance?

$$EU(\text{insured}) = 0.99 \cdot u(\$500 - z) + 0.01 \cdot u(\$500 - z) = u(\$500 - z)$$

- z = 0.01 * 10.000 = 100.
- $u \text{ concave} \Rightarrow \text{driver buys the insurance}$.

Proof.

$$u \text{ concave}$$
 \Leftrightarrow $u(\alpha \cdot x + (1-\alpha) \cdot y) > \alpha \cdot u(x) + (1-\alpha) \cdot u(y)$ $\forall \alpha \in (0,1)$ $x \neq y$

So,

$$u(0.99 \cdot 500 + 0.01 \cdot (500 - 10000) > 0.99 \cdot u(500) + 0.01 \cdot u(500 - 10000)$$
$$u(400) > 0.99 \cdot u(500) + 0.01 \cdot u(-9500)$$

4

Insurance

What if the price is not actuarial? Solve for $u(x) = \sqrt{20000 + x}$.

$$\sqrt{(20500 - \bar{z})} = 0.99 \cdot \underbrace{\sqrt{20500}}_{\sim 143.1782} + 0.01 \cdot \underbrace{\sqrt{10500}}_{102.4695}$$

$$\bar{z} = 20500 - (142.7711)^2 = \$116.41$$

- The driver is willing to pay more than the actuarial price.
- Risk-aversion.

Continuous driving

Decision to drive might not be binary.

- amount of driving $x \in R_+$.
- accident $a \in \{0,1\}$. Probability of accident p(x) increasing.
- utility from driving $u: R_+ \times \{0,1\} \to R$

$$\max_{x \in R_+} E[u(x,a)] = \max_{x \in R_+} p(x)u(x,1) + (1-p(x))u(x,0)$$

• Assumption: separable preferences with cost of accident K: $u(x,a) = \hat{u}(x) - a \cdot v(w - K)$. (Normalizing v(w) = 0).

$$\max_{x \in R_+} \hat{u}(x) - p(x)K$$

• If \hat{u} concave and p(x) convex and smooth, the FOC is $\hat{u}'(x) = p'(x)K$. Solution x^* .

Insurance

Insurance contract: driver drives x^* and pays the actuarial price $p(x^*)K$.

This contract is good for a risk-averse driver.

$$v(w - p(x^*)K) < (1 - p(x^*))v(w) + p(x^*)v(w - K)$$

Insurance company breaks even.

Two problems:

- \cdot x might not be observable.
- Different drivers might have different functions $p(\cdot)$.

7

Moral Hazard

• If x is not observable, the driver has incentives to increase the miles driven per month.

$$u'(x^*) = p'(x^*) \cdot K > 0$$

* u has a local max at \hat{x} , this is what the driver will choose

Moral Hazard

• If x is not observable, the driver has incentives to increase the miles driven per month.

$$u'(x^*) = p'(x^*) \cdot K > 0$$

• u has a local max at \hat{x} , this is what the driver will choose.

Adverse Selection

- Two type of drivers: reckless (R) and safe (S).
- $p_R(x) > p_S(x)$ for all x.
- Proportion α of reckless drivers, with

$$p(x) := \alpha \cdot p_R(x) + (1 - \alpha) \cdot p_S(x)$$

- "Actuarially fair" insurance x^* with premium $p(x^*)K$.
- Reckless driver will buy the insurance (if not risk-loving).

$$u(x^*) - p(x^*)K \ge u(\hat{x}_R) - p(\hat{x}_R)K$$

> $u(\hat{x}_R) - p_R(\hat{x}_R)K$

9

Adverse Selection

• Safe driver will NOT buy the insurance if sufficiently risk neutral:

$$u(\hat{x}_S) - p_S(\hat{x}_S)K \ge u(x^*) - p_S(x^*)K$$

> $u(x^*) - p(x^*)K$

• If only the reckless driver buys the insurance, the insurance company does not break even:

$$p(x^*)K - p_R(x^*)K < 0.$$