al) e) $g_1(x) = ln(P(x|\omega_1)) + ln P(\omega_1)$ ω_1, ω_2 : class 1 does 2 resp. 92(21) = ln(P(x | w2)) + ln P(w2) number of training samples for both samples is equal to $P(\omega_1) = P(\omega_2) = 1$ hence the term $\ln(P(\omega_1))$ and $\ln(P(\omega_2))$ can be ignored As there is independence byw the 2 Bernoulli RVs; P(x/w) = P(x/w) · P(x2/w) 6: parameter & $= \theta_1^{\chi_1} (1-\theta_1)^{(1-\chi_2)} \cdot \theta_2^{\chi_2} (1-\theta_2)^{(1-\chi_2)}$ distribution ln(P(x1ω)) = x, 1nθ, + (1-x1)ln(1-θ1) + x2 lnθ2 + (1-x2) ln & (1-02) = q(x)

1

We will compare the values of the discriminant corresponding to both clauses and whichever is larger, it will classified to that class

for Bernoulli RV, the parameter of saa is some as the mean and hence of iso the expression can be deplaced with μ or the μ found from MLE.

. $g(x) = \chi_{+i} \ln(\text{MLE}_{+i}) + (-\chi_{+i}) \ln(1-\text{MLE}_{+i}) + \chi_{2i} \ln(\text{MLE}_{2i}) + (1-\chi_{2i}) \ln(1-\text{MLE}_{2i})$ (i is for ith class)

Prior for
$$\theta = \theta_1 \theta_2 \dots \theta_d \cdot e^{(\theta_1 \cdot \theta_2 \dots \theta_d)}$$

= $\theta_1 e^{-\theta_1} \cdot \theta_2 e^{-\theta_2} \dots \theta_d e^{-\theta_d}$

for MAP we need to maximise the product

 θ_1 likelihood and prior θ_2

likelihood = $\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1$

$$\frac{\sum x_{ij}}{\beta_{j}} = \frac{N\theta_{j} - \theta_{j}^{2} + 2\theta_{j}^{2} - 1}{\beta_{j}^{2} + (1 - \sum x_{ij}^{2})} = 0$$

$$= \frac{N+2}{2} + \frac{N+2}{2} +$$

b) Using	the above expression
	X= [10 11]
	0 1 00
	here N=4
	here $N=4$ $\sum_{i=1}^{N} x_{i1} = 3$ $\sum_{i=1}^{N} x_{i2} = 1$
	i=1
OI =	$\frac{6+\sqrt{44}}{2}=3+\sqrt{11}$
O2 =	$6\pm\sqrt{36} = 606 \text{ or } 0$

$$X = \begin{bmatrix} 4 & 7 \\ 2 & 3 \end{bmatrix}$$

$$X_{x} = \begin{bmatrix} \frac{4 - 7}{2} \\ \frac{2 - 1}{2} \end{bmatrix} = \begin{bmatrix} 5.5 \\ 2.5 \end{bmatrix}$$

$$X_{y} = X - \mu_{x} = \begin{bmatrix} -1.5 & 1.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$X_{y} = X - \mu_{x} = \begin{bmatrix} -1.5 & 1.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$X_{y} = X - \mu_{x} = \begin{bmatrix} -1.5 & 1.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$X_{y} = X - \mu_{x} = \begin{bmatrix} -1.5 & 1.5 \\ -0.5 & 0.5 \end{bmatrix}$$

$$X_{y} = X - \mu_{x} = \begin{bmatrix} -1.5 & 1.5 \\ 2.5 \end{bmatrix} + \begin{bmatrix} Var(x_{c_{1}}) & cav(x_{2}, x_{c_{2}}) \\ var(x_{2}, x_{c_{2}}) & var(x_{c_{2}}, x_{c_{2}}) \end{bmatrix}$$

$$Var(x_{c_{1}}) = \begin{bmatrix} -1.5 - (15.15)^{2} \\ 2.5 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 4.5 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 4.5 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 4.5 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25 \times 2 \end{bmatrix} + \begin{bmatrix} 1.5 - (15-1.5)^{2} \\ 2.25$$

1) Y = U'xc
= [3/50 V50] [-1.5 1.6] -1/50 3/50] [-0.5 0.5]
b) $UY + mean(x) = ux UY + \mu_X$
$= \begin{bmatrix} \frac{3}{510} & \frac{-1}{510} \\ \frac{1}{510} & \frac{3}{510} \end{bmatrix} \begin{bmatrix} \frac{-5}{510} & \frac{5}{510} \\ \frac{5}{510} & \frac{5}{510} \end{bmatrix} + \begin{bmatrix} 5.5 \\ 2.5 \end{bmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 4 & 7 \\ 2 & 3 \end{bmatrix}$
$x = \begin{bmatrix} 4 & 7 \\ 2 & 3 \end{bmatrix}$
MSE between $UY + \mu_X$ and $X = (4-4)^2 + (7-7)^2 + (2-2)^2 + (3-3)^2$
- 0
The calculations match with the code's output