

JPL

OBPR Product Lines, Human Research Initiative, and Physics Roadmap for Exploration

April 20, 2004

Ulf Israelsson

*Jet Propulsion Laboratory
California Institute of Technology*

This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

- *Changes since last year*
- *OBPR Product Lines*
- *Human Research Initiative*
- *Fundamental Physics for Exploration Roadmap*
- *Conclusions*

Changes since last year

- ***OBPR Implications from President's Exploration Vision***
 - *OBPR WILL deliver methods and technology to assure human health and performance extra-terrestrially*
 - *OBPR WILL deliver advanced life support systems and technology that are reliable, capable, simpler, less massive, smaller, and energy efficient*
 - *OBPR MAY provide other necessary expertise in areas such as low-gravity behavior*
- ***Focus on products – not research***
- ***No FORMAL direction yet, but..***
 - *LTMPF and PARCS ISS flight projects slated to terminate in October 2004*
 - *All flight investigations returned to ground program and phased out by end of FY07*
 - *Physics ground program intact – for now, but to survive must shift ~ 50% of research to support exploration*
- ***Other disciplines basic research program being cancelled***

■ ***Human Health and Countermeasures***

- *Guy Foglieman, NASA HQ Point of Contact*

■ ***Human Life Support Systems***

- *Eugene Trinh, NASA HQ Point of Contact*

■ ***Radiation Protection and Countermeasures***

- *Terri Lomax, NASA HQ Point of Contact*

■ *Exercise Systems*

■ *Behavioral Health*

■ *Pharmacology/Immunology/Nutrition*

■ *Artificial Gravity/Gravity Thresholds*

■ *Technology for Research*

■ *Autonomous Medical Care*

— *Monitoring*

— *Prevention*

— *Diagnosis*

— *Treatment*

- **Advanced Life Support (ALS)**
- **Advanced EVA Systems (AEVA)**
- **Advanced Environmental Monitoring & Control (AEMC)**
- **Advanced Food Technology (AFT)**
- **Space Human Factors**
- **Fire Prevention, Detection, and Suppression**
- **In Situ fabrication and Repair**
- **In Situ Resource Utilization**

- *Mission & Operations Requirements*
- *Shielding Solutions*
- *Risk Assessment & Projection*
- *Biological Countermeasures*
- *Measurement Technologies*

- **Human Health and Countermeasures**
 - Low-gravity simulators to determine gravity thresholds for biological processes and systems
 - Non-invasive medical sensors based on SQUID technology
 - Advanced NMR/MRI concepts
- **Human Life Support Systems**
 - Remote resource location technology (gravity gradient, magnetic)
 - Advanced Sensor technology
 - Low-gravity simulators to validate designs for Space, Moon, and Mars fluid systems
- **Radiation Protection and Countermeasures**
 - Neutron detectors and other sensors
 - Low-gravity simulators to investigate possible interactions between low-gravity effects and radiation damage
- **Cross-cutting technology**
 - Clocks, Navigation, and Communication technology

- **New initiative to fill in perceived funding gaps to ensure human safety and productivity in space.**
- **Approximately \$90M annually of directed research funding**
- **Solicitation is limited to NASA centers in the first year**
 - *Universities must team with JPL or other centers to participate*
- **Future years solicitations may be more open**
- **Proposals are solicited at a high summary level with points of contacts identified to work through**
 - *Funding expected to be in the \$1–10M range*
- **Solicitation released April 1**
- **Proposals are due May 15**
- **Selection process goes through June**
- **Funding start in October**

- *Draft Roadmap discussed at last years PI conference*
- *Initial Roadmap completed in December 2003. Strong community participation.*
- *Publication was placed on hold pending rumored changes to a NASA exploration focus.*
- *Following the President's announcement in January, the Roadmap is undergoing some minor changes to point more clearly to how fundamental physics research can and does support exploration*
- *JPL will use the new Roadmap to argue for support for fundamental physics research not just to Code U, but to Code S and Code T as well*
 - *We enlist the support of the physics community in this endeavor*

■ **Old Roadmap Goals:**

- 1. Discover new physics beyond today's knowledge of fundamental laws governing matter, space, and time**
 - A. Determine the range of validity of Einstein's relativity theories**
 - B. Discover evidence for New Physics beyond the Standard Model**
 - C. Find answers to questions of cosmological significance**
- 2. Understand organizing principles of nature from which structure and complexity emerge**
 - A. Acquire a deeper understanding of organizing principles in condensed matter systems and incorporate in new advanced technologies**
 - B. Discover new knowledge about interactions in cold gasses of atoms and incorporate in new advanced technologies**
- 3. Apply physics results to enable technologies that allow human space exploration far beyond what is possible today**
 - A. Demonstrate benefits of novel physics technologies to solve human space exploration challenges**

■ **New Roadmap Goals:**

1. Apply physics technologies to solve today's human space exploration challenges

- A.** Develop physics-based advanced communication and navigation products for Moon, Mars, and beyond
- B.** Develop physics-based advanced resource-location products for human and robotic exploration in the solar system
- C.** Develop physics-based tools for enhanced studies of living systems

2. Understand organizing principles of nature from which structure and complexity emerge and apply to tomorrow's exploration needs

- A.** Acquire a deeper understanding of organizing principles in condensed matter systems and incorporate in exploration technologies
- B.** Discover new knowledge about interactions in cold gasses of atoms and incorporate in exploration technologies

3. Discover new physics beyond today's knowledge of fundamental laws governing matter, space, and time to enable exploration far beyond what is possible today

- A.** Determine the range of validity of Einstein's relativity theories
- B.** Discover evidence for New Physics beyond the Standard Model
- C.** Find answers to questions of cosmological significance

- *The pace of change has increased at NASA*
- *OBPR's focus is now on the Human interface as it relates to the new Exploration vision*
- *The fundamental physics community must demonstrate how we can contribute*
 - *If we do, it is likely that our basic research program will continue*
- *Many opportunities exist for physicists to participate in addressing NASA's cross-disciplinary exploration challenges*
 - *Physicists can contribute to elucidating basic operating principles for complex biological systems*
 - *Physics technologies can contribute to developing miniature sensors and systems required for manned missions to Mars*
- *NASA Codes other than OBPR may be viable sources of funding for physics research*

