

CONTINUITÉ

Nous nous initions ici à une notion cruciale en analyse pour l'étude de fonctions : la continuité. Le principe est naïf mais les conséquences sont colossales.

1 Fonction continue

Définition | Continuité en un point *a*

Soient f une fonction définie sur un intervalle I et $a \in I$. f est dite **continue en** a si $\lim_{x \to a} f(x) = f(a)$.

Exemples \blacktriangleright f est continue en a.

ightharpoonup f n'est pas continue en a

Définition | **Continuité sur un intervalle** *I*

f est **continue sur un intervalle** I si f est continue en a pour tout $a \in I$.

Remarque Graphiquement, la courbe d'une fonction continue sur un intervalle peut être tracée "sans lever le stylo".

Exemples ▶ Une fonction polynomiale est continue sur **R**.

▶ sin et cos sont continues sur **R**

► exp est continue sur **R**

► $x \mapsto \sqrt{x}$ est continue sur \mathbf{R}_+

Théorème | Opérations sur les fonctions continues

Soient f et g deux fonctions continues sur I, et $\lambda \in \mathbf{R}$.

- ▶ f + g est continue sur I.
- ► $f \times g$ est continue sur I.
- ► Si g ne s'annule pas sur I, alors $\frac{f}{g}$ est continue sur I.
- ▶ Si g est continue sur J, l'ensemble des images f(x) pour tout $x \in I$, alors : $g \circ f$ est continue sur I.

Démonstration. Admise.

Propriété | Lien dérivabilité/continuité

Si f est dérivable sur un intervalle I alors f est continue en I.

Démonstration. Admise.

2 Application aux suites

Propriétés

- ▶ Soient f une fonction continue sur un intervalle I et (u_n) une suite de I. Si (u_n) converge vers $\ell \in I$ et f est continue en ℓ alors $(f(u_n))$ converge vers $f(\ell)$.
- ▶ Soient f une fonction continue sur un intervalle I et (u_n) une suite définie par la récurrence $u_{n+1} = f(u_n)$.

Si (u_n) converge vers $\ell \in I$, alors $\ell = f(\ell)$.

Démonstration. Admise.

- **Exemples** Nous savons que la suite de terme général $2 \frac{4}{n+1}$ converge vers 2. Ainsi, la suite de terme général $e^{2-\frac{4}{n+1}}$ converge vers e^2 car exp est continue en 2.
- Soit (u_n) une suite définie par $u_{n+1} = \sqrt{4u_n + 12}$ et $u_0 = -1$. Posons $f: x \mapsto \sqrt{4x + 12}$.

On remarque, en dérivant, que f est **croissante** sur $[-2; +\infty[$.

En effet,
$$f'(x) = 4 \times \frac{1}{2\sqrt{4x+12}} > 0$$
 pour tout $x \in [-2; +\infty[$.

 \triangleright Montrons que (u_n) converge.

On peut prouver par récurrence que :

pour tout
$$n \in \mathbb{N}$$
, $-2 \le u_n \le u_{n+1} \le 6$.

Initialisation : La propriété est vraie au rang 0 ($u_1 = 4$).

Hérédité : Supposons la propriété vraie au rang n et montrons la pour n+1.

Comme $-2 \le u_n \le u_{n+1} \le 6$, on a par croissance de f:

$$f(-2) \le f(u_n) \le f(u_{n+1}) \le f(6)$$
.

Finalement, $-2 \le u_{n+1} \le u_{n+2} \le 6$ par définition de la suite.

Nous venons de prouver que (u_n) est **croissante et majorée** par 6 donc **converge**.

 \triangleright Par la propriété précédente, comme (u_n) converge, sa limite ℓ est forcément un point fixe de $f(f(\ell) = \ell)$.

Cherchons tous les points fixes possibles. Soit x tel que $\sqrt{4x+12} = x$. SI x > 0, alors :

$$\sqrt{4x+12} = x$$

$$\Leftrightarrow 4x+12 = x^2$$

$$\Leftrightarrow x^2 - 4x + 12 = 0$$

Une telle équation admet pour solutions −2 exclu et 6.

Enfin,
$$\lim_{n\to+\infty} u_n = 6$$
.

3 Résolution d'équations

Théorème | Théorème des valeurs intermédiaires

Soient f une fonction continue sur un intervalle [a;b]. Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel $c \in [a;b]$ tel que f(c) = k.

Démonstration. Admise.

Corollaire

Soit f continue et **strictement monotone** sur un intervalle [a;b].

Pour tout réel k compris entre f(a) et f(b), il existe une unique solution x_0 dans [a;b] à l'équation f(x) = k.

Démonstration. En utilisant le théorème des valeurs intermédiaires, on sait qu'il existe au moins une solution $c \in [a;b]$ à l'équation f(x) = k. Supposons par l'absurde qu'il y en a au moins une autre, c'.

Ainsi, nous avons soit c > c' soit c' > c.

Par stricte monotonie de f, soit f(c) > f(c') soit f(c') > f(c) ce qui est absurde puisque

$$f(c) = f(c') = k.$$

Exemples Soit f continue sur \mathbf{R} telle que f(3) = 23 et f(12) = 2.

Par le théorème des valeurs intermédiaires, il existe au moins une solution à l'équation f(x) = 10.

► Soit *g* définie sur]5;+∞] par $g(x) = 4x - \frac{1}{x-5}$. Il existe une unique solution à l'équation $g(x) = \pi$.

En effet, sur $[5; +\infty]$, g est strictement croissante :

$$\forall x \in]5; +\infty], g'(x) = 4 + \frac{1}{(x-5)^2} > 0.$$

On conclut par le corollaire du théorème des valeurs intermédiaires car $\lim_{x\to +\infty} g(x) = +\infty$ et $\lim_{x\to 5} g(x) = -\infty$.

🌣 Méthode | Algorithme de dichotomie

Pour résoudre certaines équations, on peut se résoudre à utiliser des **méthodes numériques**. La résolution numérique par **dichotomie** en est une.

Prenons l'exemple d'une fonction continue sur [a;b] telle que :

$$f(a) \times f(b) < 0.$$

Par le théorème des valeurs intermédiaires (ou son corollaire), il existe une unique solution x_0 à l'équation f(x) = 0 dans [a;b].

Nous allons construire une suite $(x_n)_{n \in \mathbb{N}^*}$ qui converge vers x_0 .

Posons
$$x_1 = \frac{a+b}{2}$$
.

Si $f(x_1) = 0$, c'est terminé. Sinon :

- ► Si $f(a) \times f(x_1) < 0$, on pose $a_1 = a$ et $b_1 = x_1$ et $x_2 = \frac{a_1 + b_1}{2}$.
- ► Si $f(a) \times f(x_1) > 0$, on pose $a_1 = x_1$ et $b_1 = b$ et $x_2 = \frac{a_1 + b_1}{2}$.

Si $f(x_2) = 0$, c'est terminé. Sinon :

- ► Si $f(a) \times f(x_2) < 0$ on pose $a_2 = a$ et $b_2 = x_2$ et $x_2 = \frac{a_2 + b_2}{2}$.
- ► Si $f(a) \times f(x_2) > 0$ on pose $a_2 = x_2$ et $b_2 = b$ et $x_2 = \frac{a_2 + b_2}{2}$.

On continue ce processus pour obtenir une valeur approchée de x_0 à $\frac{b-a}{2^n}$ près.

Remarque Par construction, $0 \le |x_n - x_0| \le \frac{b-a}{2^n}$ et par le théorème des gendarmes, $\lim_{n \to +\infty} x_n - x_0 = 0$ donc $\lim_{n \to +\infty} x_n = x_0$.

Exercice

Donner un encadrement à 10^{-2} près de la solution de $x^3 - 3x + 1$ dans]1; $+\infty$ [. On admet qu'elle existe et qu'elle est unique.

Algorithmique & Programmation

Nous pouvons écrire un programme python procédant à l'algorithme de dichotomie. Faisons-le pour pour l'exercice précédent.

Ici, la fonction dichotomie renvoie x_n et si on demande dichotomie(1,1000,100), nous obtenons 1.5320888862379562 donc on peut estimer à 10^{-2} près que $x_0 \approx 1,53$.

Exercice

Écrire un programme python permettant de résoudre numériquement l'équation $4x - \frac{1}{x-5} = 1000$ par dichotomie. Donner une solution à 10^{-5} près.