

Using QAOA to solve the Clique-problem

Johannes Kroll

Technical University of Munich Department of Informatics Advanced Topics in Quantum Computing

Munich, 30. June 2022

Motivation

Motivation

Objective function on bit string z for m clauses:

$$C(z) = \sum_{a=1}^{m} C_a(z)$$
 (1)

Objective function on bit string z for m clauses:

$$C(z) = \sum_{a=1}^{m} C_a(z) \tag{1}$$

Unitary operator $U(C, \gamma)$ depending on angle γ between 0 and 2π :

$$U(C,\gamma) = e^{-i\gamma C} = \prod_{a=1}^{m} e^{-i\gamma C_a}$$
 (2)

Objective function on bit string z for m clauses:

$$C(z) = \sum_{a=1}^{m} C_a(z)$$
 (1)

Unitary operator $U(C, \gamma)$ depending on angle γ between 0 and 2π :

$$U(C, \gamma) = e^{-i\gamma C} = \prod_{a=1}^{m} e^{-i\gamma C_a}$$
(2)

Operator B:

$$B = \sum_{i=1}^{n} \sigma_{i}^{x} \tag{3}$$

Objective function on bit string z for m clauses:

$$C(z) = \sum_{a=1}^{m} C_a(z) \tag{1}$$

Unitary operator $U(C, \gamma)$ depending on angle γ between 0 and 2π :

$$U(C, \gamma) = e^{-i\gamma C} = \prod_{i=1}^{m} e^{-i\gamma C_a}$$
 (2)

Operator B:

$$B = \sum_{i=1}^{n} \sigma_{i}^{x} \tag{3}$$

Unitary operator $U(B, \beta)$ depending on angle β between 0 and π :

$$U(B,\beta) = e^{-i\beta B} = \prod_{i=1}^{m} e^{-i\beta \sigma_{i}^{x}}$$
(4)

Layer architecture

Initial state uniform superposition:

$$|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{z} |z\rangle \tag{5}$$

Layer architecture

Initial state uniform superposition:

$$|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{z} |z\rangle \tag{5}$$

p layers of operator with each different γ_p and β_p :

$$|\gamma, \beta\rangle = U(B, \beta_p)U(C, \gamma_p)...U(B, \beta_1)U(C, \gamma_1)|s\rangle$$
 (6)

Layer architecture

Initial state uniform superposition:

$$|s\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{z} |z\rangle \tag{5}$$

p layers of operator with each different γ_p and β_p :

$$|\gamma, \beta\rangle = U(B, \beta_p)U(C, \gamma_p)...U(B, \beta_1)U(C, \gamma_1)|s\rangle$$
 (6)

 F_p is the expectation of C in this state:

$$F_{p}(\gamma, \beta) = \langle \gamma, \beta | C | \gamma, \beta \rangle \tag{7}$$

F_p is the expectation of C in this state:

$$F_{p}(\gamma, \beta) = \langle \gamma, \beta | C | \gamma, \beta \rangle \tag{7}$$

 M_p in the maximum of F_p for angles γ and β :

$$M_{p}(\gamma, \beta) = \max_{\gamma, \beta} F_{p}(\gamma, \beta)$$
(8)

F_p is the expectation of C in this state:

$$F_{p}(\gamma, \beta) = \langle \gamma, \beta | C | \gamma, \beta \rangle \tag{7}$$

 M_p in the maximum of F_p for angles γ and β :

$$M_{p}(\gamma, \beta) = \max_{\gamma, \beta} F_{p}(\gamma, \beta)$$
 (8)

Maximum of layer p-1 is constrained by Maximum of layer p:

$$M_{p} \ge M_{p-1} \tag{9}$$

F_p is the expectation of C in this state:

$$F_{p}(\gamma,\beta) = \langle \gamma,\beta | C | \gamma,\beta \rangle \tag{7}$$

 M_p in the maximum of F_p for angles γ and β :

$$M_{p}(\gamma, \beta) = \max_{\gamma, \beta} F_{p}(\gamma, \beta)$$
 (8)

Maximum of layer p-1 is constrained by Maximum of layer p:

$$M_p \ge M_{p-1} \tag{9}$$

With the number of layer p high enough we can find a good approximation:

$$\lim_{p \to \infty} M_p = \max_{z} C(z) \tag{10}$$

MaxCut

Hamiltonians:

$$H_{cost} = \frac{1}{2} \sum_{(i,j) \in E(G)} (Z_i Z_j - I) \qquad (11)$$

$$H_{\text{mixer}} = \sum_{i \in V(G)} X_i \tag{12}$$

Solution for this Graph, represented by bit string $z=z_0z_1z_2z_3$: z=0101 and z=1010

Optimal State on Bloch Sphere

MaxCut result for 1 and 2 layers

MaxClique

Hamiltionians

$$H_{cost} = 3 \sum_{(i,j) \in E(\overline{G})} (Z_i Z_j - Z_i - Z_j) + \sum_{i \in V(G)} Z_i$$
(13)

$$H_{\text{mixer}} = \sum_{i \in V(G)} X_i \tag{14}$$

MaxClique example

MaxClique result for example with different layers

MaxClique result with different initial values

${\bf MaxClique\ example\ solution}$

MaxClique large example

MaxClique result for large example with different layers

MaxClique large and complex example

MaxClique result for large and complex example with different lay

MaxClique small example

MaxClique result for small example with different layers

MaxClique simple example

MaxClique result for simple example with different layers

 \blacksquare QAOA uses multiple layers with each the angles γ and β

- \blacksquare QAOA uses multiple layers with each the angles γ and β
- Cost and Mixer Hamiltonian have to be defined for each problem

- \blacksquare QAOA uses multiple layers with each the angles γ and β
- Cost and Mixer Hamiltonian have to be defined for each problem
- \blacksquare Then Optimize the angles of each layer

- \blacksquare QAOA uses multiple layers with each the angles γ and β
- Cost and Mixer Hamiltonian have to be defined for each problem
- Then Optimize the angles of each layer
- Experiment with different optimizers, layers and optimization steps

- QAOA uses multiple layers with each the angles γ and β
- Cost and Mixer Hamiltonian have to be defined for each problem
- Then Optimize the angles of each layer
- Experiment with different optimizers, layers and optimization steps
- Initial value of the angles has a big impact on the approximation

- QAOA uses multiple layers with each the angles γ and β
- Cost and Mixer Hamiltonian have to be defined for each problem
- Then Optimize the angles of each layer
- Experiment with different optimizers, layers and optimization steps
- Initial value of the angles has a big impact on the approximation
- Further work: Find optimal parameters for MaxClique

Thank you for your attention!

Any questions?

References

- Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm, 2014.
- John Golden, Andreas Bärtschi, Stephan Eidenbenz, and Daniel O'Malley. Evidence for super-polynomial advantage of qaoa over unstructured search, 2022.
- Stuart Hadfield, Zhihui Wang, Bryan O'Gorman, Eleanor Rieffel, Davide Venturelli, and Rupak Biswas.
 - From the quantum approximate optimization algorithm to a quantum alternating operator ansatz.
 - Algorithms, 12(2):34, feb 2019.
- Alicia B. Magann, Kenneth M. Rudinger, Matthew D. Grace, and Mohan Sarovar. Feedback-based quantum optimization, 2021.

Gate representation MaxCut

