Family-Wise Error Rate Coursell of U we like to course)

• The **family-wise error rate** is defined as the probability of committing a Type I Error in *any* of the *M* hypothesis tests.

$$\frac{FWER = \Pr(V \ge 1)}{\text{Ct least }} \text{ Type I enso$$

- If each of the M tests are carried out with a significance level α , the FWER will be much greater than α
- Boole's inequality provides an upper bound:

 P(V 71) = P(V) M Type I envor on test K)

 \$ ZMPLType I envor test K) = Ma(< 1)

 \bullet If we're willing to assume that the M tests are independent then:

 \bullet This error rate, as a function of M is plotted below:

- A common value of M is $\binom{m}{2}$: the number of pairwise comparisons necessary to compare each condition to every other condition.
 - Example: m = 5
- Available to us are a variety of different statistical techniques that may be used to ensure the FWER does not exceed some threshold

$$FWER \leq \alpha^* \in [0,1]$$

• Some general notation:

- Denote the M null hypotheses as: $H_{0,1}, H_{0,2}, \dots, H_{0,M}$
- Denote their corresponding p-values as: p_1, p_2, \ldots, p_M

• A specific example:

– Suppose M=4 hypotheses are tested and the resulting p-values are $p_1=0.015,\ p_2=0.029,\ p_3=0.008,$ and $p_4=0.026$

The Bonferroni Correction

- This is the simplest method
- Reject $H_{0,k}$ if

 $p_k \leq \frac{\alpha^\star}{M}$ for $k=1,2,\ldots,M$

• The procedure ensures $FWER \leq \alpha^*$

(Boole's Ineq.)

 \bullet When independence is assumed the Bonferroni-corrected FWER becomes 1-(1-

indui

- Four-test Example: $p_1 = 0.015, p_2 = 0.029, p_3 = 0.008, p_4 = 0.026$
 - Suppose that we wish to ensure $FWER \le \alpha^* = 0.05$

The Šidák Correction

- This approach exploits the FWER formula derived when we assumed the M tests were independent.
- Reject $H_{0,k}$ if

$$p_k \le 1 - (1 - \alpha^*)^{\frac{1}{M}}$$

for k = 1, 2, ..., M

• This is actually not much different from the Bonferroni correction since

$$\frac{\alpha^{\star}}{M} \approx 1 - (1 - \alpha^{\star})^{\frac{1}{M}}$$

- For instance, take $\alpha^* = 0.05$ and M = 10
- Four-test Example: $p_1 = 0.015, p_2 = 0.029, p_3 = 0.008, p_4 = 0.026$
 - Suppose that we wish to ensure $FWER \leq \alpha^* = 0.05$

Holm's "Step-Up" Procedure

- \bullet The Bonferroni and Šidák corrections methods are very strict for large M
 - In these cases *most* null hypotheses will not be rejected

Type I emy M

- Ideally we would have an approach that is less strict but still controls the FWER at some α^*
- This is exactly what Holm's Procedure gives us!
 - 1. Order the M p-values from smallest to largest:

$$p_{(1)}, p_{(2)}, \ldots, p_{(M)}$$

where $p_{(k)}$ is the k^{th} smallest p-value.

2. Starting from k=1 and continuing incrementally, compare $p_{(k)}$ to $\frac{\alpha^*}{M-k+1}$. Determine k^* the smallest value of k such that

$$p_{(k)} > \frac{\alpha^*}{M - k + 1}$$

3. Reject the null hypotheses $H_{0,(1)},\ldots,H_{0,(k^{\star}-1)}$ and do not reject $H_{0,(k^{\star})},\ldots,H_{0,(M)}$.

Thus, fuel = $P(\exists K \in K_0 \text{ s.t. } P_K = \frac{O^{x}}{M_0})$ (for Holm's)

= $P(\bigcup_{k \in K_0} P_k \leq \frac{O^{x}}{M_0})$ = $Z_{k \in K_0} \frac{O^{x}}{M_0}$ = $Z_{k \in$

- Four-test Example: $p_1 = 0.015, p_2 = 0.029, p_3 = 0.008, p_4 = 0.026$
 - Suppose that we wish to ensure $FWER \leq \alpha^{\star} = 0.05$

• The decision process for all three of these methods can be visualized by plotting the ordered p-values $p_{(k)}$ vs. their ranks $k=1,2,\ldots,M$ and overlay the significance thresholds

• The Bonferroni correction is most strict, followed by the Šidák correction, then by Holm's procedure.

Adjusted p-values (inflate the I values or shink the throughbli)

- So far we have framed each of the correction procedures above as an adjustment to the significance threshold against which each p-value is compared.
- Alternatively (and equivalently) we could invert this process and frame the decision in terms of a comparison of adjusted p-values to α^*
- This is more familiar
 - We just need to adjust our p-values first
- The decisions made with the following adjusted p-values are identical to that achieved by comparing unadjusted p-values to the methods' adjusted significance thresholds
 - Bonferroni: Reject $H_{0,k}$ if $p_k^{\star} \leq \alpha^{\star}$ where

$$p_k^{\star} = M p_k$$

– Šidák: Reject $H_{0,k}$ if $p_k^{\star} \leq \alpha^{\star}$ where

$$p_k^{\star} = 1 - (1 - p_k)^M$$
 $(1 - p_k)^M = 1 - p_k$
 $p_k^{\star} = 1 - (1 - p_k)^M = 1 - p_k$
 $p_k^{\star} = 1 - (1 - p_k)^M = 1 - p_k$
 $p_k^{\star} = 1 - (1 - p_k)^M = 1 - p_k$

- Holm: Reject $H_{0,(k)}$ if $p_{(k)}^{\star} \leq \alpha^{\star}$ where

where
$$p_{(k)}^{\star} = \max_{j \leq k} \{p_{(j)}(M-j+1)\}$$

K	Piki	M-1281	Por x (M-k-1)	Pher	03° M-k-1	Rejecti
_	6	U	0.032	0.032		Y
	J. 088		•	0.045	0.017	Y
)	SI 6.0	3	2,845		•	
3	1.026	2	٢ ٥٠ ٠	9.00	0.029	N
4	2.029	1.	7 مره. ه	6.052	0.020	\bigvee

Sample Size Determination

- So what does all of this mean for power analyses and sample size calculations?
- There is a duality between significance level and power.
 - All else equal, reducing a test's significance level will increase the Type II Error rate and hence decrease power
 - Play around with this interactive app to gain comfort with this notion.
- Since all of our correction methods decrease the effective significance levels, the power of such tests is negatively impacted
- In order to maintain power at some pre-specified level, we must compensate by increasing the sample size
- Therefore, the more complicated your experiment (i.e., the more conditions it has), the larger your sample sizes will need to be
 - Such modifications can be accounted for when selecting a sample size
 - The significance level you use in your sample size calculations should be the adjusted one based on whichever correction method you use.
 - This is easier to do with *some* correction methods than others.

Optional Exercises:

• Proofs: 11, 12, 19

• R Analysis: 9, 14, 15, 16(f,g), 17(f,g,h), 23(g,h,k,l,m)

• Communication: 1(a), 1(b)

Primer on Logistic Regression

- Linear regression is an effective method of modeling the relationship between a single response variable (Y), and one or more explanatory variables (x_1, x_2, \ldots, x_p)
 - However, ordinary linear regression assumes that the response variable follows a normal distribution (i.e., $Y \sim N(\mu, \sigma^2)$)
 - When the response variable is binary, this assumption is no longer valid
- When we have a binary response, the Bernoulli distribution (i.e., $Y \sim BIN(1,\pi)$) is a much more appropriate distributional assumption
 - But ordinary linear regression is no longer appropriate
 - Instead we use **logistic regression**
- In the context of a linear regression model, the model is formulated so that the expected response (given the values of the explanataory variables) is equated to the **linear predictor** $\beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$:

$$E[Y|x_1, x_2, \dots, x_p] = \mu = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- In the context of logistic regression we also want to relate the expected response to the linear predictor
 - But now $E[Y] = \pi \in [0, 1]$
 - And equating π and $\beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$ does not make sense
- Instead we relate the linear predictor to $E[Y] = \pi$ through a monotonic differentiable link function that maps $[0,1] \to \mathbb{R}$
 - Logistic regression arises when this link function is chosen to be the **logit** function:

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- Inverting this yields the expected response (given the values of the explanataory variables):

$$E[Y|x_1, x_2, \dots, x_p] = \pi = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

- To interpret β_0 we set each explanatory variable to zero (i.e., $x_1 = x_2 = \cdots = x_p = 0$)
 - We see that β_0 is the **log-odds** that Y=1 when $x_1=x_2=\cdots=x_p=0$
 - Equivalently, e^{β_0} is the **odds** that the response would equal 1 when $x_1 = x_2 = \cdots = x_p = 0$

- The interpretation of β_j , for j = 1, 2, ..., p, is uncovered by considering the logistic regression equation for different values of x_j
 - Let π_x be the value of π when $x_j = x$ and let π_{x+1} be the value of π when $x_j = x + 1$

$$\log\left(\frac{\pi_{x+1}}{1-\pi_{x+1}}\right) - \log\left(\frac{\pi_x}{1-\pi_x}\right) = (\beta_0 + \beta_1 x_1 + \dots + \beta_j (x+1) + \dots + \beta_p x_p)$$
$$-(\beta_0 + \beta_1 x_1 + \dots + \beta_j x + \dots + \beta_p x_p)$$
$$= \beta_j$$

- Thus:

$$\log\left(\frac{\pi_{x+1}}{1-\pi_{x+1}} \middle/ \frac{\pi_x}{1-\pi_x}\right) = \beta_j$$

and so β_j is interpreted as a **log-odds ratio** comparing the odds that Y = 1 when $x_j = x + 1$ vs. when $x_j = x$ (all else being equal)

- Equivalently, e^{β_j} is interpreted as the **odds ratio**, comparing the odds that Y = 1 when $x_j = x+1$ vs. when $x_j = x$ (all else being equal)
- Parameter estimation in a logistic regression model is typically carried out with **maximum likelihood** estimation
 - This means that the $\hat{\beta}$'s are maximum likelihood estimates, whose corresponding estimators have nice properties, such as

$$\widetilde{\beta} \stackrel{\cdot}{\sim} N\left(\beta, \frac{1}{J(\beta)}\right)$$

- A consequence of this is that hypotheses of the form

$$H_0: \beta_i = 0 \text{ vs. } H_A: \beta_i \neq 0$$

are done with Z-tests with test statistics given by

$$t = \frac{\widehat{\beta}_j}{\text{SE}\left[\widehat{\beta}_j\right]}$$

– In order to test hypotheses about several β 's being simultaneously equal to zero, we use *likelihood* ratio tests.