Lecture 2.b Networking 1 Protocol Stacks

Dr. Gabriele Pierantoni 27.01.2020

Networking: Handling Complexity

Networking: Handling Complexity

- Network communications are complex, and are made out of many pieces
 - hosts
 - routers
 - various media
- Is there any hope of organizing the structure of network communications? Or at least our discussion of network communications?
- Divide up communication task into different smaller tasks, each task relying upon the work done by another.

Protocol Hierarchies

- Reduce the complexity of network communication design
- Organise network communication as a series of layers

Layers

- Layering the model allows us to solve a different problem at each layer.
 - Each layer builds on services of the layer below it to other higher level services to the layer above it *interface*
 - Higher layers are shielded from lower level implementation details *transparency*
- Physical communication takes place at the lowest layer.
- Logically layer n on one machine carries on a conversation with layer n on another machine
 - Equivalent layers are known as peers
 - Notice though that the actual communication takes place down the layer stack
- Rules and conventions used in a logical conversation are called the layer n protocol

Layers

- Lets draw an analogy to introduce the idea
 - Assume two philosophers need to converse:
 - Philosopher A speaks Urdu and English
 - Philosopher B speaks Chinese and French
- Since neither have a common language they each employ a translator,
 The translators agree a common language: Dutch
- Each translator employs a secretary who has a fax machine, email and telephone on his desk

- Lets examine the features of this three layer protocol suite:
 - Each layer carries out a distinct task
 - Each layer offers a service to the layer above it.
- On each layer, on one side there is an entity which is having a conversation with an entity on the same layer (its peer) on the other side
 - Philosopher to philosopher
 - Translator to translator
 - Secretary to secretary
- These are called peer entities
- The conversation they are having is called *logical communication*

- The peer entities (philosopher, translator, secretary) take responsibility only for the their own task.
- For instance, the only thing the philosopher takes responsibility for is making and listening to philosophical pronouncements.
 - Philosopher A speaks in English, and expects replies in English
 - Philosopher B speaks in French and receives replies in French
 - No concern with the translator or the intermediary language
- As far as philosopher A is concerned he is having a direct conversation with philosopher B
- The choice of philosophy as the subject is the protocol in the philosopher-philosopher layer (layer 3)
 - A and B assume a particular type of discourse is about to occur
 - They understand the rules of philosophical discourse

- The translator's responsibility is to accept reams of paper shoved through their letter box and translate these into Dutch/English
 - Doesn't care about the philosopher's preoccupations
 - Only concerned about translation
 - I.e. Translator A receives Dutch from Translator B and translates it into English. Also translates English placed in the letterbox by the philosopher into Dutch.
- Each translator is under the assumption that he/she is having a direct communication with the other
- The choice of Dutch as the language is the protocol in the translatortranslator layer (layer 2)
- Translators can agree to change languages (say, to Swedish) without informing the other layers as long as they offer the same service to the upper layer - translation

- Responsibility: accept pieces of A4 with writing on it and send them to the secretary at the location specified.
- Secretary can make the choice to send the document by fax, email or to read it over the telephone without informing the other layers
- The secretaries have agreed a form of physical transmission (and perhaps timing arrangements)
- Again, each secretary assumes one to one communication with the other. (in this case, true)
- In this layer the protocol is the arrangement agreed by the secretaries for transmission

Headers

- Each entity may add some additional information intended only for its peer
 - Each translator may include translator's notes and clarifications, or if there are several translators working on either side, a translator name
 - Secretary may attach a cover sheet to the fax, or a greeting in the email message
- These extra pieces of information are stripped away by each peer on the other side before passing the message on to the higher layer

Protocol Suite/Stack

- A set of related protocols that are designed for compatibility is called a protocol suite
- Protocol suite designers:
 - Analyse communication problem
 - Divide problems into sub-problems
 - Design a protocol for each sub-problem
- A well-designed protocol suite
 - Is **efficient and effective** solves the problem without redundancy and makes the best use of network capacity
 - Allows replacement of individual protocols without changes to other protocols (this is called "modularity")

Why layering?

- Allows network designers to break up the complex issues in communication.
 - Explicit structure allows identification and modelling of the relationships of the pieces of a complex system
 - Generally we use the 7-layered OSI model as a reference model
 - Breaking communication task into modules eases maintenance and updating of systems
 - Change of implementation of any layers service should be transparent to rest of the system.
 - i.e. change in procedure in one layer shouldn't effect the rest of system.

Designing a protocol

- Transmission of data on a network needs to address the following issues:
 - Physical Transmission (What media?)
 - Addressing (Identifying senders and receivers)
 - Encoding Techniques
 - Flow Control (Simplex, half duplex or full duplex)
 - Error Detection and Correction(Physical communication circuits are not perfect how will errors be handled?)
 - Sequencing (Messages can arrive out of order how will this be handled?)

How many layers?

- A protocol stack should divide up these issues so that:
 - A layer is created where a different level of abstraction is needed
 - Each layer has a well defined function
 - Function of each layer should be chosen with an eye towards defining internationally standardized protocols
 - Layer boundaries should be chosen to minimise information ow across layer interfaces
 - The number of layers should be large enough so that distinct functions are not thrown together in one layer out of necessity
 - The number of layers should be small enough so that the protocol does not become unwieldy

OSI Reference Model

 The ISO have divided up these issues over a layered hierarchy of 7 levels called the ISO Open Systems Interconnection (OSI) Reference Model

OSI vs TCP/IP

Internet Protocol Stack (TCP/IP)

- Application: how one particular application uses the network. This Species
 details of how an application program on one machine makes a request and
 how the application machine responds.
- Transport: details of reliable data transfer between two hosts (perhaps distant)
 - Fragments incoming byte stream (from application layer) into segments and passes them to the internet layer (which routes them)
 - At the destination, the receiving TCP process reassembles the segments in to an output stream
 - Handles flow control fast sender cannot swamp a slow receiver
 - Congestion control: slows down if it detects network congestion
- Network: details of routing of datagrams from source to destination
 - Permit hosts to inject packets into any network and have them travel independently to the destination (often via another network)
 - Analogy with snail mail
 - IP, routing protocols

Internet Protocol Stack (TCP/IP)

- Link: Controls the link between adjacent nodes
 - Concerned with using physical layer to transmit chunks (frames) of information reliably from node to node
 - Handles sharing of the medium
 - Provides flow control and error handling
 - Provides frame transmission/reception service to the layer above it
- Physical: Implements a "bit pipe"
 - Provides unreliable bit transmission/reception service to layer above
 - Concerned with wiring and electrical standards