Proyecto 2

Dataset

Para el dataset de entrenamiento y testing se utilizó house_rent_result90, el cual se dividió en un **80%** para el entrenamiento del modelo y un **20%** para el testeo del mismo.

6 rows | 1-8 of 13 columns

Feature Engineering

1. Limpieza de Campos Nulos

Para que nuestros datos fueran correctos y precisos se inició limpiando los datos nulls de cada una de las columnas del dataset las cuales tuvieran dichos datos.

2. Cambios de datos categóricos

Se agrupará por categoría y se obtendrá el promedio de la renta por categoría.

Furnishing.Status

• Floor

A tibble: 460 × 2	
Floor <chr></chr>	MeanFloor <dbl></dbl>
24 out of 24	700000.00
7 out of 20	600000.00
36 out of 81	380000.00
18 out of 20	353500.00
19 out of 85	350000.00
39 out of 60	350000.00
45 out of 60	350000.00
20 out of 41	330000.00
8 out of 27	330000.00
19 out of 33	310000.00
AA A COR	210000 00

• Area.Type

A tibble: 3×2

Area.Type <chr></chr>	MeanAreaT <dbl></dbl>
Carpet Area	51414.02
Super Area	18436.71
Built Area	10500.00

• Area.Locality

A tibble: 2,098 x 2

Area.Locality <chr></chr>	MeanAreaL <dbl></dbl>
Marathahalli	715780.00
Lady Ratan Tower, Worli	700000.00
Bandra East	600000.00
Vettuvankeni	600000.00
Altamount Road	500000.00
Rustomjee Elements, Andheri West	400000.00
World One Tower Mumbai, Worli	380000.00
Deonar	350000.00
Green Park	350000.00
Indiabulls Blu, Worli Naka Acharaya Atre Chowk	350000.00
Lodha World Crest, Lower Parel	350000.00
Sundar Nagar	350000.00
Anand Miketan	330000 00

• City

A tibble: 6×2

City <chr></chr>	MeanCity <dbl></dbl>
Mumbai	81103.28
Delhi	30230.35
Bangalore	25593.93
Chennai	21568.14
Hyderabad	20442.06
Kolkata	11599.94

Tenant.Preferred

A tibble: 3 x 2

Tenant.Preferred <chr></chr>	MeanTenant <dbl></dbl>
Family	46744.58
Bachelors	43689.01
Bachelors/Family	30616.38

3 rows

Point.of.Contact

A tibble: 3 x 2

Point.of.Contact <chr></chr>	MeanPoC <dbl></dbl>
Contact Agent	72098.91
Contact Owner	16630.84
Contact Builder	5500.00

3 rows

3. Cambio de columnas (Datos calculados)

Se remplazan las columnas del dataset original por las columnas con las medias calculadas.

1	Description: df [4,278 x 12]											
	X <int></int>	BHK <int></int>	Rent <int></int>	Size <int></int>	Bathroom <int></int>	MeanFurnish <dbl></dbl>	MeanFloor <dbl></dbl>	MeanAreaT <dbl></dbl>	MeanAreaL <dbl></dbl>	MeanCity <dbl></dbl>	MeanTenant <dbl></dbl>	MeanPoC <dbl></dbl>
	2803	1	8500	550	1	-11813.013	17742.20	51414.02	17550.000	30230.35	43689.01	72098.91
	597	3	75000	1150	3	-11813.013	75000.00	51414.02	72500.000	81103.28	30616.38	72098.91
	4744	3	35000	1750	3	3131.599	20684.17	51414.02	29428.571	20442.06	30616.38	72098.91
	1805	1	10000	650	1	3131.599	75831.88	51414.02	19250.000	25593.93	43689.01	72098.91
	4369	3	95000	2700	3	21274.797	95000.00	51414.02	45019.231	20442.06	43689.01	72098.91
	950	2	40000	755	2	3131.599	40000.00	51414.02	40000.000	81103.28	43689.01	72098.91
	1219	1	21000	450	2	-11813.013	40500.00	51414.02	21000.000	81103.28	43689.01	72098.91
	674	3	160000	1050	3	21274.797	86000.00	51414.02	160000.000	81103.28	43689.01	72098.91
	476	2	7000	600	1	-11813.013	14169.31	18436.71	6200.000	11599.94	43689.01	72098.91
	4003	3	49000	1800	3	-11813.013	64500.00	18436.71	59500.000	20442.06	43689.01	72098.91
	1691	1	10000	415	1	3131.599	26060.44	51414.02	10000.000	25593.93	30616.38	72098.91
	73	2	16000	850	1	3131.599	14204.05	51414.02	22857.143	11599.94	43689.01	72098.91

Correlación de los datos

La variable con la mayor correlación con la variable Rent es: MeanAreaL

Pruebas y Experimentos realizados

• Experimento 1

```
{r}
experimento1 <- dstrain %>%
    lm(formula = Rent-MeanAreaL)# Pruebas, realizar operaciones entre las columnas
del dataset
yhat <- predict(experimento1, dstest)
rmseExp1 <- rmse(yhat,dstest$Rent)
rmseExp1
EXP1<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP1</pre>
```

RMSE = 19790.35

Experimento 2

Se agrega la columna MeanFloor

```
experimento2 <- dstrain %>%
  lm(formula = Rent-MeanAreaL+MeanFloor)# Pruebas, realizar operaciones entre las
columnas del dataset

yhat <- predict(experimento2, dstest)

rmseExp2 <- rmse(yhat,dstest$Rent)
rmseExp2
EXP2<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP2</pre>
```

RMSE = 19210.67

Experimento 3

Se le agregan todas las columnas

```
experimento3 <- dstrain %>%
    lm(formula = Rent-MeanAreaL+MeanFloor+MeanFurnish+BHK+Size+Bathroom+MeanAreaT
    +MeanCity+MeanTenant+MeanPoC)# Pruebas, realizar operaciones entre las columnas del
    dataset
    yhat <- predict(experimento3, dstest)
    rmseExp3 <- rmse(yhat,dstest$Rent)
    rmseExp3
    EXP3<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
    EXP3
    EXP3<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
    EXP3
```

RMSE = 17370.65

• Experimento 4

Se le quita la columna MeanPoC

```
experimento4 <- dstrain %>%
  lm(formula = Rent-MeanAreaL+MeanFloor+MeanFurnish+BHK+Size+Bathroom+MeanAreaT
+MeanCity+MeanTenant)# Pruebas, realizar operaciones entre las columnas del dataset
yhat <- predict(experimento4, dstest)

rmseExp4 <- rmse(yhat,dstest$Rent)
rmseExp4
EXP4<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP4</pre>
```

RMSE = 17376.38

• Experimento 5

Se le quita la columna MeanTenant

Universidad Rafael Landívar Facultad de Ingeniería Análisis de Datos

```
experimento5 <- dstrain %>%
    lm(formula = Rent~MeanAreaL+MeanFloor+MeanFurnish+BHK+Size+Bathroom+MeanAreaT
+MeanCity)# Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento5, dstest)

rmseExp5 <- rmse(yhat,dstest$Rent)
rmseExp5
EXP5<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP5</pre>
```

RMSE = 17345.21

Experimento 6

Se le agrega la columna MeanPoc

RMSE = 17339.99

Experimento 7

Se elimina MeanCity

```
experimento7 <- dstrain %>%

Im(formula = Rent~MeanAreaL+MeanFloor+MeanFurnish+BHK+Size+Bathroom+MeanAreaT
+MeanPoC)# Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento7, dstest)

rmseExp7 <- rmse(yhat,dstest$Rent)
rmseExp7

EXP7<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)

EXP7
```

RMSE = 17329.79

Experimento 8

Se elimina MeanAreaT

```
experimento8 <- dstrain %>%
    Im(formula = Rent~MeanAreaL+MeanFloor+MeanFurnish+BHK+Size+Bathroom+MeanPoC)#
Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento8, dstest)

rmseExp8 <- rmse(yhat,dstest$Rent)
rmseExp8
EXP8<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP8</pre>
```

RMSE = 17339.58

Experimento 9

Se agrega MeanAreaT y se elimina Bathroom

```
experimento9 <- dstrain %>%
    lm(formula = Rent-MeanAreaL+MeanFloor+MeanFurnish+BHK+Size+MeanAreaT+MeanPoC)#
Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento9, dstest)

rmseExp9 <- rmse(yhat,dstest$Rent)
rmseExp9
EXP9<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP9</pre>
```

RMSE = 17354.42

Experimento 10

Se agrega Bathroom y se elimina Size

```
experimento10 <- dstrain %>%
    lm(formula = Rent~MeanAreaL+MeanFloor+MeanFurnish+BHK+Bathroom+MeanAreaT+MeanPoC
)# Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento10, dstest)

rmseExp10 <- rmse(yhat,dstest$Rent)
rmseExp10 <- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP10</pre>
```

RMSE = 17403.06

Experimento 11

Se agrega Size y se elimina BHK

```
experimento11 <- dstrain %>%
    lm(formula = Rent~MeanAreaL+MeanFloor+MeanFurnish+Size+Bathroom+MeanAreaT+MeanPoC
)# Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento11, dstest)

rmseExp11 <- rmse(yhat,dstest$Rent)
rmseExp11 <- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP11</pre>
```

RMSE = 17321.37

Experimento 12

Se elimina MeanFurnish

RMSE = 17324.27

Experimento 13

Se agrega MeanFurnish y se elimina MeanFloor

```
experimento13 <- dstrain %>%
    lm(formula = Rent~MeanAreaL+MeanFurnish+Size+Bathroom+MeanAreaT+MeanPoC)# Pruebas
, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento13, dstest)

rmseExp13 <- rmse(yhat,dstest$Rent)
rmseExp13
EXP13<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP13</pre>
```

RMSE = 17847.21

• Experimento 14

Se agrega MeanFloor y se elimina MeanAreaL

```
experimento14 <- dstrain %>%
    lm(formula = Rent~MeanFloor+MeanFurnish+Size+Bathroom+MeanAreaT+MeanPoC)# Pruebas
, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento14, dstest)

rmseExp14 <- rmse(yhat,dstest$Rent)
rmseExp14
EXP14<- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP14</pre>
```

RMSE = 31151.22

Experimento 15

Se cambia Bathroom por MeanBathroom

```
experimento15 <- dstrain %>%
    lm(formula = Rent-MeanAreaL+MeanFloor+MeanFurnish+Size+MeanBathroom+MeanAreaT
+MeanPoC)# Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento15, dstest)

rmseExp15 <- rmse(yhat,dstest$Rent)
rmseExp15 <- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP15</pre>
```

RMSE = 29654.54

Experimento 16

```
experimento16 <- dstrain %>%
   lm(formula = Rent-MeanAreaL+MeanFloor+MeanFurnish+Size+Bathroom+MeanAreaT)#
Pruebas, realizar operaciones entre las columnas del dataset

yhat <- predict(experimento16, dstest)

rmseExp16 <- rmse(yhat,dstest$Rent)
rmseExp16 <- data.frame("Rownum"= dstest$X, "RentP" = yhat, "Rent"=dstest$Rent)
EXP16</pre>
```

RMSE = 17318.53

Experimento 17

Debido a que se existen categorías en el archivo testing (el de 10%) que no estaban en el archivo de pruebas, se le agrego la media de la categoría para reemplazar los nulls que se agregaron.

```
#Experimento 17 - Se cambiaron los nulls de las categorías inexistentes del archivo testing por el promedio de las medias de los de esa categoría (r) experimento (r) de de las medias de los de esa categoría (r) media experimento (r) de las medias de los de esa categoría (r) media experimento (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de esa categoría (r) de las medias de los de las medias de los de las medias de las medias de las medias de las medias de los de las medias de las
```

RMSE = 17.318.53

Universidad Rafael Landívar Facultad de Ingeniería Análisis de Datos Jorge García, 1220019 Tito Fajardo, 1201619

```
datasetPredict$MeanFurnish[is.na(datasetPredict$MeanFurnish)] <- FurnM datasetPredict$MeanFloor[is.na(datasetPredict$MeanFloor)] <- FloorM datasetPredict$MeanAreaT[is.na(datasetPredict$MeanAreaT)] <- AreaTM datasetPredict$MeanAreaL[is.na(datasetPredict$MeanAreaL)] <- AreaLM datasetPredict$MeanCity[is.na(datasetPredict$MeanCity)] <- CityM datasetPredict$MeanTenant[is.na(datasetPredict$MeanTenant)] <- TenM datasetPredict$MeanPoC[is.na(datasetPredict$MeanPoC)] <- PoCM datasetPredict
```

Repositorio de Github: https://github.com/tjfv02/Proyecto2 Analisis-de-Datos.git