# CSC 2305 Numerical Methods for Optimization Problems (Winter 2016) Assignment # 4

1002119049 Hao Wang (UTORid: wangh110)

March 14, 2016

# 1 Problem 1

## 1.1 Plots



Figure 1: Contour lines of  $m_k(p)$ .



Figure 2: Family of solutions as the trust region varies from 0 to 1.001133.

#### 1.2 Comments

- (a) We use MATLAB ezcontour to plot the contour lines of the quadratic model.
- (b) Based on the Theorem 4.1 on Numerical Optimization, 2nd Edition, p70, we will have:

$$(B + \lambda I)p^* = -g \tag{1}$$

$$\lambda(\Delta - \|p^*\|) = 0 \tag{2}$$

$$(B + \lambda I)$$
 is positive semidefinite. (3)

$$||p^*|| \le \Delta \tag{4}$$

$$\lambda \ge 0 \tag{5}$$

Let  $p^* = [p_1, p_2]^T$ . For  $x = [0, -1]^T$ , by equation (1), we have

$$p_1 = \frac{2}{\lambda + 42}, \ p_2 = \frac{20}{\lambda + 20}$$
 (6)

When  $\lambda > 0$ , we have  $||p^*|| = \Delta$ . Then we have:

$$\sqrt{(\frac{2}{\lambda+42})^2 + (\frac{20}{\lambda+20})^2} = \Delta \tag{7}$$

By (5) and (7), we could know the  $\Delta_{max} = \sqrt{\frac{1}{21^2} + 1} = 1.001133$ . So we calculate  $p^*$  when decrease  $\Delta$  from  $\Delta_{max}$  to 0. (Please refer to the MATLAB function lambda in the source code list) For For  $x = [0, 0.5]^T$ , it is similar. (Please refer to the MATLAB function lambda2 in the source code list)

#### 1.3 Source code list

```
1 function a4_1()
        x = [0, -1]';
      x = [0, 0.5]';
      %% draw contour lines
      fig = figure;
      ezcontour(@(p1, p2) mk(x, [p1, p2]'));
      set(gcf, 'Position', [0 0 500 400]);
      set(gca,'FontSize',14);
8
      title('x = [0, 0.5]^T');
9
      print(fig, '-depsc', '-r0', '../figs/q1-2');
10
11
      %% family of solutions
12
      d = sqrt(1+(1/21^2));
      figure;
14
      hold on;
15
      scatter(x(1), x(2), '.');
16
17
      while d >= 0
18
          new_x = lambda(d, x);
```

```
20 %
           new_x = lambda2(d, x);
21 %
           disp(new_x);
         scatter(new_x(1), new_x(2), '.');
          d = d - 0.001;
      end
24
25
      set(qcf, 'Position', [0 0 500 400]);
26
      set(gca,'FontSize',14);
27
      grid on;
     box on;
      xlabel('x_1');
      ylabel('x_2');
32 end
1 function [ y, gy, hy ] = objFunc(x)
     t = num2cell(x);
     [x1, x2] = t\{:\};
      y = 10 * (x2 - x1^2)^2 + (1 - x1)^2;
      qy = [2*x1 - 40*x1*(-x1^2 + x2) - 2;...
         -20*x1^2 + 20*x2;
     hy = [120*x1^2 - 40*x2 + 2, -40*x1;...]
         -40 * x1,
                     20];
10 end
1 function [ m_k ] = mk( x_k, p )
     [y_k, gy_k, hy_k] = objFunc(x_k);
     m_k = y_k + gy_k' * p + 0.5 * p' * hy_k * p;
4 end
1 function [ y ] = lambda( delta, x )
     syms 1 positive;
     norm = sqrt(4/(42+1)^2 + 400/(20+1)^2);
     sol = vpasolve(norm == delta, 1);
      y = [x(1) + 2 / (42 + sol); x(2) + 20 / (20 + sol)];
6 end
1 function [ y ] = lambda2( delta, x )
      syms 1 positive;
     norm = sqrt(4/(1-18)^2 + 100/(20+1)^2);
     sol = vpasolve(norm == delta, 1);
      y = [x(1) + 2 / (sol-18); x(2) - 10 / (20 + sol)];
6 end
```

# 2 Problem 2

## 2.1 Plots



Figure 3: Convergence of x with different  $\Delta_0$  and different  $\eta$ .

#### 2.2 Comments

The start point is  $x = [1.2, 1.2]^T$  and the convergence is  $x = [1, 1]^T$ . By changing the value of  $\Delta_0$  and  $\eta$ , we obtain the Figure 3. As we can see, the value of  $\Delta_0$  has a dominant effect on the convergence of x, compared to  $\eta$ . When the  $\Delta_0$  gets larger, it takes more iterations to reach the

convergence. The reason is the larger  $\Delta_0$  might not provide sufficient reduction ratio  $\rho_k$  in this case.

# 2.3 Output:

# **2.3.1** $\Delta_{max} = 100, \ \eta = 0.15 \ \text{and} \ \Delta_0 = 0.1.$

| 1  | 응 i    | $x_k(1)$ | $x_k(2)$ | $p_k(1)$      | $p_k(2)$    |
|----|--------|----------|----------|---------------|-------------|
| 2  | 1      | 1.2      | 1.2      | 0             | 0           |
| 3  | 2      | 1.12979  | 1.22915  | -0.0702097    | 0.0291528   |
| 4  | 3      | 1.12646  | 1.23061  | -0.00332595   | 0.00145426  |
| 5  | 4      | 1.12425  | 1.23158  | -0.00221506   | 0.000968995 |
| 6  | 5      | 1.12265  | 1.23227  | -0.00159684   | 0.000698256 |
| 7  | 6      | 1.12144  | 1.2328   | -0.00121242   | 0.000529674 |
| 8  | 7      | 1.12048  | 1.23322  | -0.000955195  | 0.000416788 |
| 9  | 8      | 1.11971  | 1.23356  | -0.000773773  | 0.000337144 |
| 10 | 9      | 1.11907  | 1.23384  | -0.000640613  | 0.000278685 |
| 11 | 10     | 1.11853  | 1.23407  | -0.000539763  | 0.000234418 |
| 12 |        |          |          |               |             |
| 13 | 109643 | 1.00011  | 1.00023  | -1.47544e-07  | -2.86525e   |
| 14 | 109644 | 1.00011  | 1.00023  | -3.02519e-08  | -6.5147e-   |
| 15 | 109645 | 1.00011  | 1.00023  | -2.0697e - 07 | -4.23272e-  |
| 16 | 109646 | 1.00011  | 1.00022  | -2.92272e-08  | -5.44762e   |
| 17 | 109647 | 1.00011  | 1.00022  | -1.64695e-07  | -3.209e-0   |
| 18 | 109648 | 1.00011  | 1.00022  | -2.59721e-08  | -5.61525e   |
| 19 | 109649 | 1.00011  | 1.00022  | -1.57679e-07  | -3.25178e   |
| 20 | 109650 | 1.00011  | 1.00022  | -2.91813e-08  | -5.43982e   |
| 21 | 109651 | 1.00011  | 1.00022  | -1.64369e-07  | -3.20309e   |
| 22 | 109652 | 1.00011  | 1.00022  | -2.60094e-08  | -5.62204e   |
|    |        |          |          |               |             |

## 2.4 Source code list

```
function a4_2()

TOL = 0.0001;

[xiter, output] = trustRegion([1.2, 1.2]', TOL);

fig = draw(xiter);

fig.PaperUnits = 'inches';

fig.PaperPosition = [0 0 6 3];

print(fig, '-depsc', '-r0', '../figs/q4-2-10');

dlmwrite('../output/q4-2.txt', ...

output, 'delimiter','\t', 'precision', '%6.6g');

end
```

```
1 function [ xiter, outputlist ] = trustRegion( x0, TOL )
      delta_max = 100;
      eta = 0.15;
      delta = 0.1;
      x = x0;
      it = 1;
      xiter{it} = x;
      outputlist(it, :) = [it, x(1), x(2), 0, 0];
8
      [\tilde{g}, gy, \tilde{g}] = rosenbrock(x);
10
      while norm(qy) > TOL
12
           p_k = dogleg(@rosenbrock, x, delta);
13
14
           [y, gy, \tilde{}] = rosenbrock(x);
15
           [y1, \tilde{x}, \tilde{y}] = rosenbrock(x + p_k);
16
           rho_k = (y - y1) / (mk_rosenbrock(x, [0, 0]') - mk_rosenbrock(x, p_k));
17
18
           if rho_k < 0.25
               delta = 0.25 * norm(p k);
20
           elseif rho_k > 0.75 \&\& norm(p_k) == delta
21
               delta = min(2*delta old, delta max);
22
           end
23
24
           if rho_k > eta
25
               x = x + p_k;
           end
           it = it + 1;
28
29
           xiter{it} = x;
30
           outputlist(it, :) = [it, x(1), x(2), p_k(1), p_k(2)];
      end
32
33 end
1 function [ p_k ] = dogleg( func, x, delta )
      [\tilde{g}, gy, hy] = func(x);
      p_u = - (gy' * gy) / (gy' * hy * gy) * gy;
      p_b = -inv(hy)*gy;
      % gauchy point (4.8)
      if gy'*hy*gy <= 0
8
           tau = 1;
      else
10
           tau = min(norm(gy)^3/(delta*gy'*hy*gy), 1);
11
12
      end
```

```
if tau >= 0 && tau <=1
p_k = tau * p_u;
elseif tau > 1 && tau <= 2
p_k = p_u + (tau - 1) * (p_b - p_u);
end
end</pre>
```

```
function [ m_k ] = mk_rosenbrock( x, p )

[y_k, gy_k, hy_k] = rosenbrock(x);

m_k = y_k + gy_k' * p + 0.5 * p' * hy_k * p;

end
```

```
1 function [ fig ] = draw(x)
      figure;
      set(gcf, 'Position', [0 0 500 200]);
      set(gca,'FontSize',14);
      hold on;
      grid on;
      box on;
10
      X = NaN(length(x), 2);
11
      Y = NaN(length(x), 2);
12
      for i = 1:length(x)
13
          X(i,:) = [i, x\{i\}(1)];
14
          Y(i,:) = [i, x{i}(2)];
      end
17
18
      plot(X(:,1), X(:,2));
      plot(Y(:,1), Y(:,2));
20
      xlabel('Iteration');
21
      ylabel('x');
      fig = gcf;
25 end
```

# 3 Problem 3

## 3.1 Solution

$$\min_{p} m(p) = f + g^{T} p + \frac{1}{2} p^{T} B p, \ \|p\| \le \Delta, \ p \in span[g, B^{-1}g]$$

Let  $p = \alpha g + \beta B^{-1}g$  and  $u = (\alpha, \beta)^T$ .

$$J(u) := \|p\|^2 = \alpha^2 \|g\|^2 + \beta^2 \|B^{-1}g\|^2 + 2\alpha\beta(g, B^{-1}g) = \frac{1}{2}u^T \bar{B}u$$

And,

$$\bar{B} = 2 \begin{bmatrix} ||g||^2 & (B^{-1}g, g) \\ (B^{-1}g, g) & ||B^{-1}g||^2 \end{bmatrix}$$

Obviously,  $\bar{B}$  is symmetric positive definite. We derive the constraint for u from  $||p|| \leq \Delta$ :

$$J(u) \le \Delta^2 \tag{8}$$

Let h(u) := m(p):

$$h(u) = f + (\alpha g + \beta B^{-1}g, g) + \frac{1}{2}(\alpha g + \beta B^{-1}g, \alpha Bg + \beta g)$$
$$= f + \tilde{g}^T u + \frac{1}{2}u^T \tilde{B}u$$

$$\tilde{g} = \begin{bmatrix} \|g\|^2 \\ (B^{-1}g, g) \end{bmatrix}, \ \tilde{B} = \begin{bmatrix} (Bg, g) & \|g\|^2 \\ \|g\|^2 & (B^{-1}g, g) \end{bmatrix}$$

Therefore the problem could be reduced to the following two dimensional problem: under the constraint 8, we have:

$$\min_{u \in R^2} h(u) \tag{9}$$

Let  $u^*$  be the minimizer of 9 with no constraint:

$$u^* = -\tilde{B}^{-1}g$$

If  $J(u^*) \leq \Delta^2$ , then  $u^*$  is the solution.

If  $J(u^*) > \Delta^2$ , solve the following problem: for  $\lambda \geq 0$ ,  $\nabla h(u) + \lambda \nabla J(u) = 0$ .

This problem is equivalent to

$$(\tilde{B} + \lambda \bar{B})u = -\tilde{g}$$

 $(\tilde{B}+\lambda\tilde{B}$  is symmetric positive definite. Then the solution is:

$$-(\tilde{B} + \lambda \bar{B})^{-1}\tilde{g}$$

To this end, we have: with the constrain  $J(u) \leq \Delta^2$ ,

$$\text{argmin } h(u) = \left\{ \begin{array}{ll} u^*, & J(u^*) \leq \Delta^2 \\ -(\tilde{B} + \lambda \bar{B})^{-1} \tilde{g} & J(u^*) > \Delta^2 \end{array} \right.$$

And  $\lambda \leq 0$  satisfies the following equation:

$$J(-(\tilde{B} + \lambda \bar{B})^{-1}\tilde{g}) = \Delta^2$$