Esame di Ricerca Operativa del 18/09/18

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema:

$$\begin{cases} \min 17 \ y_1 + 3 \ y_2 + 28 \ y_3 + 16 \ y_4 + 3 \ y_5 + 5 \ y_6 \\ -6 \ y_1 - 2 \ y_2 + 7 \ y_3 + 4 \ y_4 - 2 \ y_5 - 2 \ y_6 = 2 \\ 10 \ y_1 + 2 \ y_2 + 2 \ y_3 - 3 \ y_4 - 4 \ y_5 + 3 \ y_6 = -1 \\ y \ge 0 \end{cases}$$

	Base	x	degenere	y	Indice	Rapporti	Indice
					entrante		uscente
passo 1	{2,4}						
passo 2							

Esercizio 2. Un'azienda produce tre tipi di prodotti, A, B e C, utilizzando tra le diverse materie prime anche l'alluminio. Di quest'ultima materia prima, per il prossimo mese sono disponibili dal fornitore 400 kg. Un chilogrammo di alluminio costa all'azienda 7 euro. La seguente tabella mostra i kg di alluminio richiesti per produrre un kg di A, B e C, i costi di produzione (in euro per kg di prodotto) al netto delle materie prime, e i ricavi (in euro per kg di prodotto) di vendita per ognuno dei prodotti A, B e C:

prodotti	alluminio (kg)	costo (euro/kg)	ricavo (euro/kg)
A	0.3	12	26
В	0.6	6	31
С	0.9	7	39

Determinare la produzione mensile che massimizza i profitti sapendo che per produrre A non si deve utilizzare più di 1/3 dell'alluminio utilizzato in totale.

ariabili decisionali: nodello:
iodeno:
COMANDI DI MATLAB

	COMANDI DI MATLAB	
C=	intcon=	
A=	b=	
Aeq=	beq=	
lb=	ub=	

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema di flusso di costo minimo sulla seguente rete (su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	1° iterazione	2° iterazione
Archi di T	(1,2) (2,4) (3,5) (4,6) (5,7) (6,5)	
Archi di U	(5,4)	
x		
degenere		
π		
degenere		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 14 \ x_1 + 5 \ x_2 \\ 17 \ x_1 + 12 \ x_2 \le 66 \\ 7 \ x_1 + 19 \ x_2 \le 45 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\begin{array}{c} \text{insieme} \\ Q \end{array}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Esercizio 6. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	30	25	29	47
2		18	94	61
3			54	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

ļ	b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal noc	do 1.
	ciclo:	$v_S(P) =$

 $v_I(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{23} , x_{14} , x_{34} dicendo se l'algoritmo si é concluso o dovrebbe

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = 2x_1 + 3x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : 9 - x_1^2 - x_2^2 \le 0, \quad x_1 - x_2 \le 0\}.$$

Soluzioni del sistema	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(-\frac{3\sqrt{2}}{2},\ -\frac{3\sqrt{2}}{2}\right)$							
$\left(\frac{3\sqrt{2}}{2}, \ \frac{3\sqrt{2}}{2}\right)$							
$\left(\frac{6\sqrt{13}}{13}, \frac{9\sqrt{13}}{13}\right)$							

Esercizio 8. Si consideri il seguente problema:

2-albero:

$$\begin{cases} \min -2 \ x_1^2 - 12 \ x_1 \ x_2 - 6 \ x_2^2 + 5 \ x_1 \\ x \in P \end{cases}$$

e i vertici di P sono (-3,-1) , (-4,2) , (1,-2) e (5,2). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{10}{3},0\right)$						

SOLUZIONI

Esercizio 1.

	Base	x	y	Indice entrante	Rapporti	Indice uscente
				CHICAGING		ascerre
1° iterazione	{2, 4}	$\left(\frac{41}{2}, 22\right)$	(0, 1, 0, 1, 0, 0)	1	$\frac{1}{11}, \frac{1}{4}$	2
2° iterazione	{1, 4}	$\left(\frac{211}{22}, \frac{82}{11}\right)$	$\left(\frac{1}{11},\ 0,\ 0,\ \frac{7}{11},\ 0,\ 0\right)$	3	$\frac{2}{29}, \frac{7}{41}$	1

Esercizio 2.

COMANDI DI MATLAB

c = [-11.9; -20.8; -25.7] $A = [0.3 \ 0.6 \ 0.9; \ 0.2 \ -0.2 \ -0.3]$ $b = [400; \ 0]$

Aeq=[] beq=[]

lb=[0;0;0] ub=[]

Esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,2) $(2,4)$ $(3,5)$ $(4,6)$ $(5,7)$ $(6,5)$	(1,2) (1,3) (2,4) (4,6) (5,7) (6,5)
Archi di U	(5,4)	(3,5) (5,4)
x	(3, 0, 0, 9, 4, 0, 10, 6, 0, 5, 0)	(3, 0, 0, 9, 4, 0, 10, 6, 0, 5, 0)
π	(0, 8, 16, 12, 24, 18, 27)	(0, 8, 3, 12, 24, 18, 27)
Arco entrante	(1,3)	(1,4)
ϑ^+,ϑ^-	0,3	6,3
Arco uscente	(3,5)	(1,2)

Esercizio 4.

$$\begin{cases} \max 14 \ x_1 + 5 \ x_2 \\ 17 \ x_1 + 12 \ x_2 \le 66 \\ 7 \ x_1 + 19 \ x_2 \le 45 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $\left(\frac{66}{17}, 0\right)$ $v_S(P) = 54$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = (3,0)

c) Calcolare un taglio di Gomory.

r = 1 $x_1 \le 3$ r = 4 $10 x_1 + 7 x_2 \le 38$

Esercizio 5.

	iter 1		iter	· 2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		5		4		4.0	}	7	7	(5
nodo 2	4	1	4	1	4	1	4	1	4	1	4	1	4	1
nodo 3	14	1	14	1	14	1	14	1	14	1	14	1	14	1
nodo 4	$+\infty$	-1	21	2	12	5	12	5	12	5	12	5	12	5
nodo 5	$+\infty$	-1	9	2	9	2	9	2	9	2	9	2	9	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	20	4	20	4	17	7	17	7
nodo 7	$+\infty$	-1	$+\infty$	-1	14	5	14	5	14	5	14	5	14	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2,	3	3, 4	, 5	3, 4	, 7	3, 6	5, 7	6,	7	(3	Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	7	(5, 7, 0, 5, 0, 7, 0, 0, 12, 0, 0)	12
1 - 3 - 2 - 5 - 7	3	(5, 10, 0, 8, 3, 7, 0, 0, 15, 0, 0)	15

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 6.

città	2	3	4	5
1	30	25	29	47
2		18	94	61
3			54	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando il 2-albero di costo minimo.

2-albero:
$$(1, 2) (1, 3) (2, 3) (3, 5) (4, 5)$$
 $v_I(P) = 119$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:
$$1 - 3 - 2 - 5 - 4$$
 $v_S(P) = 153$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{23} , x_{14} , x_{34} .

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = 2x_1 + 3x_2$ sull'insieme

$${x \in \mathbb{R}^2 : 9 - x_1^2 - x_2^2 \le 0, \quad x_1 - x_2 \le 0}.$$

Soluzioni del sisten	Mass	imo	Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(-\frac{3\sqrt{2}}{2},\ -\frac{3\sqrt{2}}{2}\right)$	$\left(-\frac{5\sqrt{2}}{12},\frac{1}{2}\right)$		NO	NO	NO	NO	SI
$\left(\frac{3\sqrt{2}}{2},\ \frac{3\sqrt{2}}{2}\right)$	$\left(\frac{5\sqrt{2}}{12}, \frac{1}{2}\right)$		NO	NO	NO	SI	NO
$\left(\frac{6\sqrt{13}}{13}, \frac{9\sqrt{13}}{13}\right)$	$\left(\frac{\sqrt{13}}{6}, 0\right)$		NO	NO	NO	NO	SI

Esercizio 8. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 - 12 \ x_1 \ x_2 - 6 \ x_2^2 + 5 \ x_1 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (-3,-1), (-4,2), (1,-2) e (5,2). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{10}{3},0\right)$	(-3, -1)	$\begin{pmatrix} 1/10 & -3/10 \\ -3/10 & 9/10 \end{pmatrix}$	$\left(\frac{61}{6}, -\frac{61}{2}\right)$	$\frac{2}{61}$	$\frac{2}{61}$	(-3, -1)