Final Syllabus Stats

1. Normal Dist.

Find the value of z according to this formula if X is given. And then find area by seeing corresponding value of z.

$$Z = \frac{X - \mu}{\sigma}$$

Normal dist in reverse:

- If area is above then write + with value of z.
- If area is below then write with value of z.

Binomial:

- If less than X: find prob. till X-0.5 e.g X=30 then $P(x \le 29.5)$
- If less than equal to X: Find prob till X+0.5 e.g X=30 then P(x<=30.5)
- If greater than X: then X+0.5 e.g, X=60 then P(x>=60.5)
- If at least X: then X-0.5 e.g, X=60 then P(x>=59.5)
- If in between X1 and X2: X1-0.5 and X2+0.5 e.g, X1=40 and X2=60 P(39.5<=X<=60.5)
- Exactly X: make X1=X-0.5 and X2=X+0.5 e.g, X=50 then find P(49.5 <= X <= 50.5)

2. Linear Regression:

• Co-eff. Of Correlation "r":

$$r = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sqrt{\left[\sum x^2 - \frac{(\sum x)^2}{n}\right]\left[\sum y^2 - \frac{(\sum y)^2}{n}\right]}}$$

Or
$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \cdot \sum (y - \bar{y})^2}}$$

Y on X:

$$Y = \alpha + \beta x$$

$$\alpha = \bar{y} - \beta \bar{x}$$

$$\beta_{yx} = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{[\sum x^2 - \frac{(\sum x)^2}{n}]}$$
Or
$$\beta_{yx} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

• X on Y:

$$x = \alpha + \beta y$$

$$\alpha = \bar{x} - \beta \bar{y}$$

$$\beta_{xy} = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{[\sum y^2 - \frac{(\sum y)^2}{n}]}$$

$$\text{Or } \beta_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (y - \bar{y})^2}$$

• Properties:

$$Rxy = \sqrt{\beta_{xy} * \beta_{yx}}$$

• **SSE**:

$$\sum e^2 = \sum (y - \hat{y})^2$$

• Co-eff. Of determination:

$$R^2 = \frac{\sum (y - \hat{y})^2}{\sum (y - \bar{y})^2}$$

It is percentage that x% times our estimation is right.

3. Testing and Hypothesis:

1. General Procedure of Testing Mean (for large data):

If $n \ge 30$. And population is known.

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

And

$$Z = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

X bar = Sample Mean.

 $\mu = Population Mean$

 $\sigma = Population S.D$

 $\sigma^2 = Pop. Variance$

S²= Sample Variance

s²= Unbiased Sample Variance

N= Population

N=Sample Size

Note:

if there is discussion of equality in question then put this in H0.

If there is not discussion of equality in question then put in H1.

2. Testing of Mean for Small Data:

If pop. Is unknown and n<30.

Apply t-test.

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

And $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$ and calculate s according to this formula in 5th step calculation.

3. Testing of Proportion: (don't apply t-test in this)

P= Proportion of Population

$$q=1-p$$

n= Sample Size

In this we change mu to P and P0. In 1st step

$$Z = \frac{X - np}{\sqrt{npq}} \text{ for } 5^{\text{th}} \text{ step calculation}$$

4. Testing of Difference of Two Means:

Use mu1 and mu2 in hyp.

$$Z = \frac{(\overline{x1} - \overline{x2})}{\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}}$$

5. Testing of Difference of Two Proportions:

Use P1 and P2 in hyp.

$$Z = \frac{(\widehat{P1} - \widehat{P2})}{\sqrt{\frac{\widehat{P1}\widehat{q1}}{n_1} + \frac{\widehat{P2}\widehat{q2}}{n_2}}}$$

$$\widehat{P1} = X1/n1$$

$$\widehat{P2} = X2/n2$$

$$\widehat{q1} = 1 - \widehat{P1}$$

$$\widehat{q2} = 1 - \widehat{P2}$$