CS221: Digital Design

QM Logic Minimization

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Study of Components
 - Logic Implementation Using MUX & Decoder
 - 4 Bit Adder, BCD adder
- Quine-McCluskey (QM) Logic Minimization
- Examples
- Writing C/C++ program for QM Method

Decoders

- Internal design
 - AND gate for each output to detect input combination
- Decoder with enable e
 - Outputs all 0 if e=0, Regular behavior if e=1

Boolean Function Implementation using Decoders

- Using a n-to-2n decoder and OR gates any functions of n variables can be implemented.
- Example:

$$S(x,y,z) = \Sigma(1,2,4,7)$$
, $C(x,y,z) = \Sigma(3,5,6,7)$

 Functions S and C can be implemented using a 3-to-8 decoder and two 4-input OR gates

Decoder: Covers All Minterms

<u>Mux</u>

4x1 mux

Implementing logic Function using MUX

Adding Two One-bit Operands

• One-bit Half Adder:

• One-bit Full Adder:

$\mathbf{A} \mathbf{B}$	$Sum = A \oplus B \oplus Cir$
C_{out} $\leftarrow C_{in}$	Cout = A.B + B.Cin + A.Cin

A	В	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

C_{in}	A	В	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

N-Bit Ripple-Carry Adder: Series of FA Cells

To add two n-bit numbers

- Adder delay = Tc * n
- $Tc = (C_{in} \text{ to } C_{out} \text{ delay}) \text{ of a FA}$

4 bit Binary Adder

Binary Adder (Two Level)

- Treat as 9 input & 5 output functions
- Generate Truth Table for each outputs
- Solve each function using KMAP/QM Method
- Only Two Level: No carry Propagation

<u>Decimal Adder</u>

- Decimal numbers are represented with BCD code.
- When two BCD digits A and B are added
 - if A+B<10 result is a valid BCD digit
 - if A+B>9 result will not be valid BCD digit. It must be corrected by adding 6 to the result
- If A+B >9 add 6 to solve this issue

Decimal Adder

BCD Adder (Two Level)

- Treat as 9 input & 5 output functions
- Generate Truth Table for each outputs
- Solve each function using KMAP/QM Method
- Only Two Level: No carry Propagation

Quine-McCluskey Method for Minimization

- KMAP methods was practical for at most 6 variable functions
- Larger number of variables: need method that can be applied to computer based minimization
- Quine-McCluskey method
- For example:

$$\sum m(0,1,2,3,5,7,13,15)$$

- Phase I : finding Pis
 - Tabular methods: Grouping and combining
- Phase II: Covers minimal Pls

- Minterms that differ in one variable's value can be combined.
- Thus we list our minterms so that they are in groups with each group having the same number of 1s.
- So the first step is ordering the minterms according to their number of 1s (0-cube list)
- only minterms residing in adjacent groups have the chance to be combined.):

 $\sum m(0,1,2,3,5,7,13,15)$

0_Cube		
0	0000	
1	0001	
	0010	
2	0011	
	0101	
3	0111	
	1101	
4	1111	

QM Method: Combining Adjacent

- Compare minterms of a group with those of an adjacent one to form 1-cube list.
- When doing the combining, we put checkmark alongside the minterms in the 0-cube list that have been combined.

QM Method: Combining Adjacent

- Do same combination of comparing adjacent group minterms
 - —To form 2-cubes, 3-cubes and so on.

- Only minterms of adjacent groups have the chance of being combined
 - -Which have an X in the same position.

Q-M Method: Cover Pls

- PIs: terms left without checkmarks.
- After identifying our PIs, we list them against the minterms needed to be covered

$$\sum m(0,1,2,3,5,7,13,15)$$

QM Method : Covers

- To find a minimal cover, we first need to find essential PIs
- To do this we need to find columns that only have one checkmark in them, the according row will thus show the essential PI.
- After identifying essential PIs, that are necessarily part of the cover, we cover any remaining minterms using a minimal set of PIs.

In this example: F(a,b,c,d) = ab + bd

Thanks