Introduction to Artificial Intelligence Machine Learning

greenwich.edu.vn

Machine Learning Introduction

- An agent is learning if it improves its performance after making observations about the world.
- When the agent is a computer, we call it machine learning.
- Machine learning is:
 - a computer software
 - has been built with a model based on the data,
 - and uses the model as a hypothesis about the world to solve problems.

Machine Learning Basic concepts

- Model: is a simplified representation of a system. Models may be atomic, factored and relational and can be based on logic or probability.
- **Training Data:** contains the knowledge that the learning algorithm extracts and learns.
- **Testing Data:** used to test the generalization capability of the learning algorithm on unknown data.
- Loss function: is a function evaluate the error between hypothesis and the real output value.
- Weight space: The space defined by all possible settings of the weights or model's parameters.
- Training: involves modifying a model's parameters (weights) to minimize the loss function on the training set.

Forms of Learning

- Any component of an agent program can be improved by machine learning. The improvements, and the techniques used to make them, depend on these factors:
 - Which component is to be improved.
 - ➤ What **prior knowledge** the agent has, which influences the model it builds.
 - > What data and feedback on that data is available.

Forms of Learning

- There are 3 types of feedback that determine three main types of learning:
 - ➤ Supervised learning: the agent observes input-output pairs and learns a function that maps from input to output. An output in this case is called a label.
 - ➤ Unsupervised learning: the agent learns patterns in the input without any explicit feedback.
 - ➤ Reinforcement learning: the agent learns from a series of reinforcements feedback: rewards and punishments.

Forms of Learning

- Some main types of model based on its output:
 - ➤ Classification: when the output is one of a finite set of values (such as sunny/cloudy/rainy or true/false).
 - > Regression: when the model's output is a number.
 - ➤ Clustering: the output that groups data points into clusters based on similarity.
 - ➤ **Dimensionality Reduction:** when the output creates a lower-dimensional representation of the data while preserving important information.
 - ➤ Association Rule Learning: discovers relationships between variables in large datasets.
 - **➢Others:** generation, reinforcement.

Key concepts of Machine Learning

LOSS function

• •Loss function: cost function or error function $\ L(f,\hat{f}\,) = \|f-\hat{f}\,\|_2^2$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

$$MBE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)}{n}$$

• • Mean Squared Logarithmic Error
$$MSLE = \frac{1}{n} \sum_{i=1}^{n} (\log(Y_i) - \log(\hat{Y}_i))^2$$

And many others loss function

Activation functions: This function determines the output.

Activation function

ML core – Optimization (Training)

- Optimization Algorithms refer to a procedure for finding the input parameters or arguments to a function that result in the minimum or maximum output of the function.
- Optimization in ML: finding the parameters or arguments to get the minimum of Loss Function
- Some optimize algorithms:
 - ✓ Gradient Descent
 - ✓ Momentum
 - ✓ Adagrad
 - **✓** RMSProp
 - ✓ Adam
 - ✓ And many others ...

Optimizer

- Optimizer: is an algorithm
 used to adjust the network's
 parameters (weights) to
 minimize the loss function on
 the training set.
- This process is crucial for training the neural network and enabling it to learn from data.

ML core – Optimization (Training)

Data preprocessing

- **Data preprocessing** involves transforming raw data into a format suitable for machine learning models.
- Importance: Real-world data is often incomplete, noisy, and inconsistent, requiring preprocessing for effective analysis.

Data preprocessing Common techniques

- Data Cleaning: correcting errors and inconsistencies in the data.
- Handling Missing Values: addressing missing values through imputation or removal.

Data Normalization:

- ✓ Scaling variables to a specific range to prevent variables with larger domains from dominating the analysis.
- ✓ Min-Max Normalization: Scales data linearly onto the interval.
- ✓ Standardization: Centers data around zero with a standard deviation of one.

Data preprocessing Common techniques

- Feature Engineering: transforming categorical attributes into numerical format, such as one-hot encoding.
- Feature Selection: discards attributes that appear to be irrelevant.
- Quantization: forcing continuous valued input into fixed bins.

Data analysis

- Data analysis involves describing data with simple parameters to understand its characteristics.
- This is **especially important** for analyzing training data in machine learning.

Key Statistical MeasuresAverage Value

• The average value µi for each variable xi is defined as:

$$\mu_i := \frac{1}{N} \sum_{p=1}^{N} x_i^{(p)}$$

- Where:
 - ✓ N is the total number of patients (data points)
 - ✓ xi(p) is the value of variable xi

Key Statistical MeasuresStandard deviation

• The **standard deviation** σi measures the average difference from the average value.

$$\sigma_i := \sqrt{\frac{1}{N-1} \sum_{p=1}^{N} (x_i^{(p)} - \mu_i)^2}$$

Key Statistical MeasuresCovariance & Correlation Coefficience

• Covariance (σij) indicates how two variables change together.

$$\sigma_{ij} = \frac{1}{N-1} \sum_{p=1}^{N} (x_i^{(p)} - \mu_i)(x_j^{(p)} - \mu_j)$$

• The **correlation coefficient** (Kij) is a normalized covariance that measures the strength and direction of a linear relationship between two variables i and j.

$$K_{ij} = \frac{\sigma_{ij}}{\sigma_i \cdot \sigma_j}$$

Correlation Matrix

- A correlation matrix contains the correlation coefficients between all pairs of variables.
- The matrix is symmetric, and all diagonal elements are 1.
- It can be visualized as a density plot to quickly identify strong or weak dependencies between variables

Correlation Matrix

Example of correlation matrix.

Student task: Try to interpret the correlation matrix?

electrolyte	1	-0.24	-0.45	-0.25	-0.56	0.012	-0.25	- 1.0
MW	-0.24	1	0.041	-0.044	0.15	-0.22	-0.033	- 0.8 - 0.6
unit_MW	-0.45	0.041	1	0.73	0.24	0.19	0.19	- 0.4
ge_density	-0.25	-0.044	0.73	1	0.25	0.12	0.13	- 0.2
ncentration	-0.56	0.15	0.24	0.25	1	0.25	0.58	- 0.0
Viability	0.012	-0.22	0.19	0.12	0.25	1	0.46	0.2
)_secretion	-0.25	-0.033	0.19	0.13	0.58	0.46	1	0.4
	polyelectrolyte	MM	unit_MW	Charge_density	Concentration	Viability	NO_secretion	

 Demonstrate common techniques for data preprocessing and analysis based on Week4-Data1.csv dataset.

Supervised LearningDefinition

• More formally, the task of supervised learning is this:

Given a training set of N example input—output pairs training set:

where each pair was generated by an unknown function y = f(x), the goal is discovering a function h that approximates the true function f.

The function h is called a hypothesis about the world.

Supervised Learning Model Selection and Optimization

- The goal is to select a hypothesis (h) that will optimally fit future examples.
- Optimal Fit: The hypothesis that **minimizes the error** rate. The error rate of a hypothesis can be estimated by measuring its performance on a **test set** of examples.

Supervised Learning Key features

- Learning from labeled data: Supervised learning relies on a training set of input-output pairs, where each input is accompanied by a label that represents the correct output.
- Function approximation: learn a hypothesis h that closely approximates the true function f mapping inputs x to outputs y.
- Tasks: classification and regression.
- Stationarity assumption Supervised learning relies on the stationarity assumption, which posits that future examples will be similar to those in the past.
- **Realizability:** A learning problem is considered realizable if the hypothesis space *H* actually contains the true function *f*.

The Learning Process

- Data Collection: Gather a dataset of input-output.
- **Model Selection**: Choose a hypothesis space H (e.g., polynomials, decision trees, neural networks).
- **Training** (Optimization): Find the best hypothesis h within H that minimizes the error on the training data.
- **Testing**: Evaluate the performance of h on a separate test set to estimate its error rate.
- Goal: Select a hypothesis that will optimally fit future examples

Example Problem: Restaurant Waiting

- Problem: Deciding whether to wait for a table at a restaurant.
- Output (y): Boolean variable willWait (true if we wait).
- Input (x): Vector of ten attribute values:
 - ✓ Alternate: Suitable alternative restaurant nearby
 - ✓ Bar: Comfortable bar area
 - ✓ Fri/Sat: True on Fridays and Saturdays
 - ✓ Hungry: Whether we are hungry
 - ✓ Patrons: How many people are in the restaurant (None, Some, Full)
 - ✓ Price: Restaurant's price range (\$, \$\$, \$\$\$)
 - ✓ Raining: Whether it is raining outside
 - ✓ Reservation: Whether we made a reservation
 - ✓ Type: Kind of restaurant (French, Italian, Thai, burger)
 - ✓ WaitEstimate: Host's wait estimate (0-10, 10-30, 30-60, >60 minutes)

Introduction to Linear Regression

- **Linear regression** is a parametric supervised learning model that predicts a continuous output variable based on a linear combination of input features.
- Model: Assumes a linear relationship between the input variables (x) and the output variable (y): y=w1.x+ w0
 - y is the predicted output.
 - xi are the input featur
 - wi are the weights (coefficients) for each feature.
 - w0 is the bias (intercept)
- Goal: find the best set of weights that minimize the difference between the predicted and actual values:

$$h_{\mathbf{w}}(x) = w_1 x + w_0$$

Introduction to Linear Regression

 Multivariable Linear regression: our hypothesis space is the set of functions of the form:

$$h_{\mathbf{w}}(\mathbf{x}_j) = w_0 + w_1 x_{j,1} + \dots + w_n x_{j,n} = w_0 + \sum_i w_i x_{j,i}$$

Introduction to Linear RegressionHow it works

- Training Phase: Given a set of training examples, the algorithm learns the weights (w) that best fit the data.
- Loss Function: typical the squared-error loss (L2), which measures the difference between the predicted and actual values.

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\mathbf{w}}(x_j)) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

- Optimization: The weights are adjusted using optimization algorithms to minimize the Loss such as:
 - **Gradient Descent**: Iteratively updates the weights by moving in the direction of the negative gradient of the loss function.
 - Normal Equations: Solve directly for the weights that minimize the loss function.
- **Prediction Phase:** Once the model is trained, it can predict the output for new input values using the learned weights as the function h(x).

Introduction to Linear Regression Applications

- Economics: Predicting economic indicators such as GDP, inflation, and unemployment rates.
- Finance: Estimating stock prices, real estate values, and credit risk.
- Marketing: Predicting sales, customer behavior, and advertising effectiveness.
- Environmental Science: Modeling climate change, pollution levels, and resource depletion.
- Medicine: Determining a linear score in medical diagnosis, such as for appendicitis.
- And so much more ...

Introduction to Linear RegressionPractice

- Example: Advertising results prediction
- Problem: Sales (in thousands of units) for a particular product as a function of advertising budgets (in thousands of dollars) for TV, radio, and newspaper media. The requirements are:
 - ✓ Which media contribute to sales?
 - √ Visualize the relationship between the features and the response using scatter plots.
 - ✓ Find a model that given input budgets for TV, radio and newspaper predicts the output sales.
- Data: Week 4 dataset_2_advertising.csv
- Model: A simple linear regression model.
- See the Week 4 Tutorial.docx for more detail.

Introduction to Logistic Regression

- A method for classification, where the output is one of a finite set of values.
- Uses a logistic function (sigmoid function) to classify data or also known as log-linear classifier.

$$f(x)=rac{L}{1+e^{-k(x-x_0)}}$$

• Applies a soft threshold to the output of a linear function to classify data, called **activation function**.

Decision Tree

- A decision tree is a model that maps attribute values to a single output value or decision.
- A decision tree is a model that maps attribute values to a single output value or decision.
- It consists of a sequence of tests performed in a hierarchical structure.
- Each internal node represents a test on an attribute.
- Branches represent the outcomes of the test.
- Leaf nodes represent the final decision or classification.

Decision Tree Example

 A decision tree for deciding whether to wait for a table.

Decision TreeHow it works

- The Decision Tree learning algorithm uses a greedy divide-and-conquer strategy.
- Chooses the attribute with the highest IMPORTANCE, using the notion of information gain, which is defined in terms of entropy.
- The entropy of a random variable V with values v_k having probability $P(v_k)$ is defined as:

$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- Choose the most important attribute to test first.
- Recursively solve smaller subproblems based on the test results.
- The algorithm generates a tree, and one may use pruning to combat overfitting.

Decision TreeApplications

- Classification: Predict a category or class label.
- Regression: Predict a continuous numeric value.
- Decision trees can be used in:
 - ✓ Medical diagnosis.
 - ✓ Autonomous robots.
 - ✓ Data mining, ...

Random Forest

- A random forest is an ensemble learning method that operates by constructing a *multitude of decision trees* during training and outputting the mode of the classes (classification) or mean prediction (regression) of the individual trees.
- Random forests correct for decision trees' habit of overfitting to their training set.
- Random forests are complex, unpruned models that are resistant to overfitting.
- Random forests can be used for both classification and regression tasks.

Random Forest

Random forest

Support Vector Machines (SVM)

- A Support Vector Machine (SVM) is a model that constructs a maximum margin separator, a decision boundary with the largest possible distance to example points.
- SVMs aim to find a hyperplane that best divides the data into different classes with the maximum margin.
- SVMs are effective for high-dimensional data.
- SVMs can be used for both classification and regression problems.

Support Vector Machines (SVM)How it works

- SVMs work by constructing a maximum margin separator, which serves as the decision boundary.
- Support Vectors are data points that are closest to the maximum margin separator. Finding the support vectors involves an efficient optimization algorithm.
- The **hyperplane** is defined as the set of points $\{x : w \cdot x + b = 0\}$. We could search the space of w and b to find the parameters that maximize the margin while correctly classifying all the examples.

Support Vector Machines (SVM) Applications

- General Use: SVMs can be applied to both classification and regression problems.
- Pattern Recognition: SVMs are useful in pattern recognition.
- Robotics: SVMs have applications in robotics.
- **Text Classification:** SVM is applied in spam filters, tracking websites with criminal content and customize search engines, ...
- Medical Diagnosis: SVMs are used in medical expert systems for diagnosis.
- Bioinformatics: SVMs are used for identifying human genes by reference to mouse genes.
- Other fields: SVMs have a range from simple calculation of averages to the construction of complex models, throughout computer science, engineering, computational biology, neuroscience, psychology, and physics

k-Nearest Neighbors Models (k-NN)

- The **k-Nearest Neighbors** (k-NN) algorithm is a simple and both **supervised and unsupervised** *machine learning algorithm* used for both **classification** and **regression** tasks.
- It's a non-parametric method, meaning it doesn't make any assumptions about the underlying distribution of the data.
- But k-NN is a *uncertain reasoning model*, cause of uncertainty in data, uncertainty in prediction and the k as a factor of uncertainty.

k-Nearest Neighbors Models (k-NN)

• KNN

All these resources belong to FPT Greenwich. Any unauthorized copying, alteration, distributionoutside our organization is strictly prohibited

k-Nearest Neighbors Models How it works

- Store the training data: k-NN memorizes all the training data points.
- Calculate distances: to predict, k-NN calculates the distance between this new point and all the points in the training data. Common distance metrics include Euclidean distance, Manhattan distance, and Minkowski distance.
- Find the nearest neighbors: It identifies the k closest data points (neighbors) to the new point based on the calculated distances.
- Make a prediction:
 - **Classification:** k-NN assigns the class that is most frequent among the *k* neighbors to the new data point.
 - Regression: k-NN predicts the average (or weighted average) of the target values of the k neighbors as the value for the new data point.

Applications of k-NN

- Recommendation systems: Suggesting products or content based on user preferences.
- Image recognition: Classifying images based on their similarity to known images.
- Spam detection: Identifying spam emails based on their content and features.
- **Customer segmentation:** Grouping customers based on their behavior and characteristics.

Discovery and discussion on Supervised Learning models

- There are still many machine learning / Supervised Learning models out there that cannot be introduced within the framework of this course.
- Students try to list them out and try to understand their algorithms.
- Some suggestions: Kernel ridge regression (KRR), Stochastic Gradient Descent (SGD), Gaussian Processes (GP), Gradient Boosted Decision Trees (GBDT), Bagging, Voting, AdaBoost, XGBoost, ...

Thank you