Capítulo 12

Problema 01

(a)

 $P(\text{Erro I}) = P(\text{dizer que são de B} \mid \text{na verdade são de A}) = P(\overline{X} > 176 \mid \overline{X} \sim N(175;1)) = P(Z > \frac{176 - 175}{1}) = P(Z > 1) = 15,87\%$

 $P(\text{Erro II}) = P(\text{dizer que são de A} \mid \text{na verdade são de B}) = P(\overline{X} \le 176 \mid \overline{X} \sim N(177;1)) = P(Z \le \frac{176 - 177}{1}) = P(Z \le -1) = 15,87\%$

(b)

$$P(\text{Erro I}) = 5\% \iff P\left(\overline{X} > \overline{X}_C | \overline{X} \sim N(175;1)\right) = 5\% \iff P\left(Z > \frac{\overline{X}_C - 175}{1}\right) = 5\% \iff \frac{\overline{X}_C - 175}{1} = 1,645 \iff \overline{X}_C = 176,645$$

Regra de decisão: Se $\overline{X} > 176,645$, dizer que habitantes da ilha são descendentes de B; caso contrário, dizer que são descendentes de A.

$$P(\text{Erro II}) = P(\overline{X} \le 176,645 | \overline{X} \sim N(177;1)) = P\left(Z \le \frac{176,645 - 177}{1}\right) = P(Z \le -0.355) = 36.13\%$$

(c)

$$P(\text{Erro I}) = 5\% \iff P\left(\overline{X} > \overline{X}_C | \overline{X} \sim N(175;0,5^2)\right) = 5\% \iff P\left(Z > \frac{\overline{X}_C - 175}{0,5}\right) = 5\% \iff \frac{\overline{X}_C - 175}{0.5} = 1,645 \iff \overline{X}_C = 175,823$$

$$P(\text{Erro II}) = P(\overline{X} \le 176,645|\overline{X} \sim N(177;1)) = P\left(Z \le \frac{175,823 - 177}{1}\right) = P(Z \le -1,177) = 11,96\%$$

 μ_B

 $P(\text{Erro II} \mid \mu_{\text{B}})$

180 0,040%

181 0,001%

(d)

Problema 02

(a)

$$\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ verdadeir a}) = P(\overline{X} > 1170 \mid \overline{X} \sim N(1150;15^2)) =$$

$$= P\left(Z > \frac{1170 - 1150}{15}\right) = P(Z > 1,333) = 9,12\%$$

(b)

$$\beta = P(\text{aceitar H}_0 \mid \text{H}_1 \text{ \'e verdadeir a}) = P(\overline{X} < 1170 \mid \overline{X} \sim \text{N}(1200; 20^2) =$$

$$= P\left(Z < \frac{1170 - 1200}{20}\right) = P(Z < -1, 5) = 6,68\%$$

(c)

$$\begin{split} \alpha &= \beta \iff P\left(\overline{X} > \overline{X}_C \mid \overline{X} \sim N(1150;15^2)\right) = P\left(\overline{X} < \overline{X}_C \mid \overline{X} \sim N(1200;20^2)\right) \iff \\ &\iff P\left(Z > \frac{\overline{X}_C - 1150}{15}\right) = P\left(Z < \frac{\overline{X}_C - 1200}{20}\right) \iff \frac{\overline{X}_C - 1150}{15} = -\frac{\overline{X}_C - 1200}{20} \iff \\ &\iff \overline{X}_C = 1171,429 \\ RC &= 1171,429; +\infty \right[. \end{split}$$

Problema 03

(a) H_0 : Está começando um ataque.

 H_1 : Está acontecendo uma leve interferência.

Erro I: Dizer que está acontecendo uma leve interferência, quando na verdade está começando um ataque;

Erro II: Dizer que está começando um ataque, quando na verdade está acontecendo uma leve interferência.

(b) H_0 : O acusado é inocente.

 H_1 : O acusado é culpado.

Erro I: Dizer que o acusado é culpado, quando na verdade é inocente.

Erro II: Dizer que o acusado é inocente, quando na verdade é culpado.

(c) H_0 : A vacina não é eficaz.

 H_1 : A vacina é eficaz.

Erro I: Dizer que a vacina é eficaz, quando na verdade não é eficaz.

Erro II: Dizer que a vacina não é eficaz, quando na verdade é eficaz.

Problema 04

X: número de coroas em 3 lançamentos.

 $X \sim \text{Binomial}(3;p)$.

$$H_0: p = 0.5 \text{ versus } H_1: p \neq 0.5.$$

$$P(\text{Erro I}) = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ verdadeir a}) = P(X = 3 \mid p = 0.5) = 12,50\%$$
.

 $P(\text{Erro II}) = P(\text{não rejeitar H}_0 \mid \text{H}_0 \text{ falsa}) = P(X < 3|p = 0.667) = 70.37\%$.

- (a) $H_0: \mu = 200 \text{ versus } H_1: \mu = 210.$
- (b) Por exemplo: Se $\overline{X} < 205$, dizer que $\mu = 200$. Caso contrário, dizer que $\mu = 210$.

$$P(\text{Erro I}) = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ verdadeir a}) = P(\overline{X} > 205 \mid \overline{X} \sim N(200; 4^2)) =$$

$$= P\left(Z > \frac{205 - 200}{4}\right) = P(Z > 1, 25) = 10,56\%$$

$$\begin{split} &P(\text{Erro II}) = P(\text{n\~ao rejeitar } \text{H}_0 \mid \text{H}_0 \text{ falsa}) = P(\overline{X} < 205 \mid \overline{X} \sim N(210; 4^2)) = \\ &= P\bigg(Z < \frac{205 - 210}{4}\bigg) = P(Z < -1, 25) = 10,56\% \end{split}$$

Problema 06

(a)

Passo 1: $H_0: \mu \ge 8$ versus $H_1: \mu < 8$.

Passo 2: $\overline{X} \sim N(\mu; 0, 4^2)$.

Passo 3:

$$\alpha = P(\text{rejeitar } \mathbf{H}_0 \mid \mathbf{H}_0 \text{ \'e verdadeir a}) = P(\overline{X} < \overline{X}_C \mid \overline{X} \sim N(8;0,4^2)) =$$

$$= P\left(Z < \frac{\overline{X}_C - 8}{0,4}\right) = 5\% \Leftrightarrow \frac{\overline{X}_C - 8}{0,4} = -1,645 \Leftrightarrow \overline{X}_C = 7,342$$

$$RC =]-\infty;7,342[$$

Passo 4: $\overline{X} = 7,2$.

Passo 5: O valor observado pertence à RC. Logo, rejeita-se H_0 , ou seja, com base na amostra colhida, a diretoria deve decidir por retirar o produto da linha de produção.

(b) $\beta = P(\text{Erro II}) = P(\text{não rejeitar } H_0 \mid H_0 \text{ falsa}) = P(\overline{X} \ge 7,342 \mid \overline{X} \sim N(7,8;0,4^2)) = P\left(Z \ge \frac{7,342 - 7,8}{0,4}\right) = P(Z > -1,145) = 87,4\%$

(c) $\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ \'e verdadeir a}) = P(\overline{X} < \overline{X}_C \mid \overline{X} \sim N(8;0,4^2)) =$ $= P\left(Z < \frac{\overline{X}_C - 8}{0,4}\right) = 1\% \Leftrightarrow \frac{\overline{X}_C - 8}{0,4} = -2,326 \Leftrightarrow \overline{X}_C = 7,07$ $RC =] - \infty;7,07[...]$

O valor observado não pertenceria à RC. Logo, a decisão seria diferente, isto é, H_0 não seria rejeitada.

(d)

$$\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ \'e verdadeir a}) = P(\overline{X} < \overline{X}_C \mid \overline{X} \sim N(8;0,8^2)) =$$

$$= P\left(Z < \frac{\overline{X}_C - 8}{0,8}\right) = 5\% \Leftrightarrow \frac{\overline{X}_C - 8}{0,8} = -1,645 \Leftrightarrow \overline{X}_C = 6,684$$

 $RC =]-\infty;6,684[$.

Novamente, o valor observado não pertenceria à RC, e portanto, H_0 não seria rejeitada.

Problema 07

Passo 1: $H_0: \mu = 60$ versus $H_1: \mu < 60$.

Passo 2: $\overline{X} \sim N(\mu; 6,667^2)$.

Passo 3:
$$\alpha = 0.05$$
 $\frac{\overline{X}_C - 60}{6.667} = -1.645 \Leftrightarrow \overline{X}_C = 49.03$. $RC =]-\infty;49.03[$

Passo 4: $\overline{X} = 50$.

Passo 5: O valor observado não pertence à RC. Logo, não se rejeita H_0 . Não há evidências de melhoria.

Problema 08

Passo 1: $H_0: \mu = 2.5$ versus $H_1: \mu < 2.5$.

Passo 2: $\overline{X} \sim N(\mu; 0.0714^2)$.

Passo 3:
$$\alpha = 0.05$$
 $\frac{\overline{X}_C - 2.5}{0.0714} = -1.645 \Leftrightarrow \overline{X}_C = 2.38$. $RC =]-\infty; 2.38[$

Passo 4: $\overline{X} = 2,3$.

Passo 5: Como o valor observado pertence à RC, rejeita-se H_0 , ou seja, há evidências de que esta indústria paga salários inferiores, em média.

Problema 09

Passo 1: $H_0: \mu \le 23$ versus $H_1: \mu > 23$.

Passo 2: $\bar{X} \sim N(\mu; 0.9^2)$.

Passo 3:
$$\alpha = 0.10$$
 $\frac{\overline{X}_C - 23}{0.9} = 1,282 \Leftrightarrow \overline{X}_C = 24,15$. $RC =]24,15;+\infty[$

Passo 4: $\overline{X} = 24,17$.

Passo 5: Como o valor observado pertence à RC, rejeita-se H_0 , ou seja, há evidências de que a informação do fabricante é falsa, ao nível significância de 10%.

Problema 10

Passo 1: $H_0: p = 0.5$ versus $H_1: p > 0.5$.

Passo 2:
$$\hat{p} \sim N\left(p; \frac{p(1-p)}{6}\right)$$
.

Passo 3:

$$\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ \'e verdadeir a}) = P(\hat{p} > \hat{p}_C \mid \hat{p} \sim N(0.5; 0.25/6)) =$$

$$= P\left(Z > \frac{\hat{p}_C - 0.5}{\sqrt{0.25/6}}\right) = 5\% \Leftrightarrow \frac{\hat{p}_C - 0.5}{\sqrt{0.25/6}} = 1.645 \Leftrightarrow \hat{p}_C = 0.836$$

$$RC = \{p: p > 0.836\}$$

Passo 4: $\hat{p} = 0.833$.

Passo 5: Como o valor observado não pertence à RC, não se rejeita H_0 , ou seja, não há evidências de que a pessoa acerta mais que metade das vezes.

Problema 11

Passo 1: $H_0: p \le 0.2$ versus $H_1: p > 0.2$.

Passo 2:
$$\hat{p} \sim N\left(p; \frac{p(1-p)}{50}\right)$$
.

Passo 3:
$$\alpha = 0.10$$
. $\frac{\hat{p}_C - 0.2}{\sqrt{0.2 \times 0.8/50}} = 1.282 \Leftrightarrow \hat{p}_C = 0.273$ $RC = \{p: p > 0.273\}$

Passo 4: $\hat{p} = 0.270$.

Passo 5: Como o valor observado não pertence à RC, aceita-se H_0 , ou seja, não há evidências de que a proporção de peças defeituosas seja maior que 20%.

Problema 12

i. $\alpha = 0.05$

Passo 1: H_0 : p = 0.90 versus H_1 : p < 0.90.

Passo 2:
$$\hat{p} \sim N\left(p; \frac{p(1-p)}{200}\right)$$
.

Passo 3:
$$\alpha = 0.05$$
. $\frac{\hat{p}_C - 0.9}{\sqrt{0.9 \times 0.1/200}} = -1.645 \Leftrightarrow \hat{p}_C = 0.865$. $RC = \{p : p < 0.865\}$

Passo 4: $\hat{p} = 0.875$.

Passo 5: Como o valor observado não pertence à RC, aceita-se H_0 , ou seja, não há evidências de que a proporção de peças de acordo com as especificação seja menor que 90%.

ii. $\alpha = 0.01$

Passo 3:
$$\alpha = 0.01$$
. $\frac{\hat{p}_C - 0.9}{\sqrt{0.9 \times 0.1/200}} = -2.326 \Leftrightarrow \hat{p}_C = 0.851$. $RC = \{p : p < 0.851\}$

Passo 4: $\hat{p} = 0.875$.

Passo 5: A conclusão é a mesma obtida com $\alpha = 0.05$.

Problema 13

Passo 1: $H_0: p \ge 0.25$ versus $H_1: p < 0.25$.

Passo 2:
$$\hat{p} \sim N \left(p; \frac{p(1-p)}{400} \right)$$
.

Passo 3:
$$\alpha = 0.05$$
. $\frac{\hat{p}_{c} - 0.25}{\sqrt{0.25 \times 0.75/400}} = -1.645 \Leftrightarrow \hat{p}_{c} = 0.214$. $RC = \{p: p < 0.214\}$

Passo 4: $\hat{p} = 0.200$.

Passo 5: Como o valor observado pertence à RC, rejeita-se H_0 , ou seja, há evidências de que a proporção de possuidores de TV que assistem ao programa é menor que 25%. Logo, a decisão dos produtores deve ser modificar o programa.

Problema 14

(a) X: número de sucessos em 10 tentativas. $\Rightarrow X \sim \text{Binomial}(10;p)$

 $\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ \'e verdadeir a}) = P(X \in RC \mid p = 0.5) = 0.109.$

(b) $\pi(p) = P(\text{rejeitar } H_0 \mid p) = P(X \in RC \mid p)$

p

0,2

0,4

0,5

0,6

0,8

 $\pi(p)$

0,678

0,180

0,109

0,180

0,678

(c) $\pi(0.5) = P(\text{rejeitar H}_0 \mid p = 0.5) = \alpha = 0.109$.

Problema 15

(a) Passo 1: $H_0: \mu = 200 \text{ versus } H_1: \mu > 200$.

Passo 2: $\overline{X} \sim N(\mu; 4^2)$.

Passo 3: $\alpha = 0.05$ $\frac{\overline{X}_C - 200}{4} = 1.645 \Leftrightarrow \overline{X}_C = 206.58$. $RC =]206.58; +\infty[$

(b) $\pi(\mu) = P(\text{rejeitar H}_0 \mid \mu) = P(\overline{X} > 206,58 \mid \overline{X} \sim N(\mu;4^2)) = P\left(Z > \frac{206,58 - \mu}{4}\right)$

μ

195

200

205

210

215

220

225

 $\pi(\mu)$

0,002

0,050

0,346

0,804

0,982

1,000

1,000

(c)
$$\pi(\mu) = P\left(Z > \frac{206,58 - \mu}{4}\right) = 50\% \Leftrightarrow \frac{206,58 - \mu}{4} = 0 \Leftrightarrow \mu = \overline{X}_C = 206,58$$
. Logo, para $\mu > 206,58$, o poder do teste será maior que 50%.

Problema 16

$$\hat{\alpha} = P(\overline{X} > 52 | \overline{X} \sim N(50;5^2)) = P(Z > \frac{52 - 50}{5}) = P(Z > 0,4) = 0,345.$$

Problema 17

Passo 1: $H_0: \mu = 25$ versus $H_1: \mu < 25$.

Passo 2: $\bar{X} \sim N(\mu; 2, 5^2)$.

Passo 3: $\overline{X} = 20.5$

$$\hat{\alpha} = P(\overline{X} < 20.5 \mid \overline{X} \sim N(25;2,5^2)) = P(Z < \frac{20.5 - 25}{2.5}) = P(Z < -1.8) = 0.036.$$

Passo 4: Rejeitamos H_0 para qualquer nível de significância $\alpha > \hat{\alpha}$. Por exemplo, fixando $\alpha = 5\%$, rejeita-se H_0 , isto é, há evidências de que a nova técnica é melhor que a anterior.

$$n\frac{\hat{\sigma}_{*}^{2}}{\sigma^{2}} \sim \chi^{2}(n)$$
 ; $(n-1)\frac{S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$.
 $n = 10$; $\sigma^{2} = 100$.

(a)
$$P(\hat{\sigma}_*^2 > a) = P\left(\chi^2(n) > \frac{n}{\sigma^2}a\right) = 10\% \Leftrightarrow \frac{n}{\sigma^2}a = 15,987 \Leftrightarrow a = 15,987 \times \frac{100}{10} = 159,87$$

(b)
$$P(S^2 < a) = P\left(\chi^2(n-1) < \frac{n-1}{\sigma^2}a\right) = 5\% \Leftrightarrow \frac{n-1}{\sigma^2}a = 3,325 \Leftrightarrow a = 3,325 \times \frac{100}{9} = 36,95.$$

$$P(S^2 > b) = P\left(\chi^2(n-1) > \frac{n-1}{\sigma^2}b\right) = 5\% \Leftrightarrow \frac{n-1}{\sigma^2}b = 16,919 \Leftrightarrow b = 16,919 \times \frac{100}{9} = 187,99$$

(c)
$$\alpha = P(S^2 < 163,16) = P\left(\chi^2(n-1) < \frac{n-1}{\sigma^2} \times 163,16\right) = P\left(\chi^2(9) < 14,684\right) = 0,90.$$

(d)
$$\alpha = P(S^2 > 100) = P\left(\chi^2(n-1) > \frac{n-1}{\sigma^2} \times 100\right) = P\left(\chi^2(9) > 9\right) = 0.437$$
.

(e)
$$\alpha = P(S^2 < 18) = P\left(\chi^2(n-1) < \frac{n-1}{\sigma^2} \times 18\right) = P(\chi^2(9) < 1.62) = 0.004$$
.

(f)
$$P(S^2 > 180) = P\left(\chi^2(n-1) > \frac{n-1}{\sigma^2} \times 180\right) = P\left(\chi^2(9) > 16, 2\right) = 0,063.$$

Problema 19

Passo 1: $H_0: \sigma^2 = 300 \text{ versus } H_1: \sigma^2 \neq 300.$

Passo 2:
$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(23)$$
.

Passo 3: $\alpha = P(\text{rejeitar } H_0 \mid H_0 \text{ é verdadeir a}) = P(\chi^2 < \chi_1^2 \text{ ou } \chi^2 < \chi_2^2) = 20\%$

$$\chi_1^2 = 14,848 \text{ e } \chi_2^2 = 32,007 . \Rightarrow RC = \{\chi^2 : \chi^2 < 14,84 \text{ ou } \chi^2 > 32,007\}.$$

Passo 4:
$$\chi_{obs}^2 = \frac{23}{300} \times 400 = 30,667$$

Passo 5: Como o valor observado não pertence à RC, aceita-se H_0 , ou seja, não há evidências de que a variância mudou, ao nível de 20%.

Problema 20

- (a) A variância, já que a mesma é uma medida de dispersão em torno da média.
- **(b)**

$$S^2 = 114,09. \Longrightarrow$$

$$IC(\sigma^{2};95\%) = \left[\frac{(n-1)S^{2}}{\chi_{2}^{2}};\frac{(n-1)S^{2}}{\chi_{1}^{2}}\right] = \left[\frac{10\times114,09}{20,483};\frac{10\times114,09}{3,247}\right] = \left[55,7;351,38\right]$$

(a)
$$P(|\overline{X} - 50| < tS/\sqrt{10}) = P(|T_9| < t) = 10\% \Leftrightarrow P(T_9 < t) = 5\% \Leftrightarrow t = 0.129$$
.

(b)
$$t_o = \frac{\overline{x} - \mu}{s / \sqrt{n}} = \frac{48 - 50}{\sqrt{120 / 10}} = -0.577 \implies P(T_9 < -0.577) = 0.289$$
.

(c)
$$P(|\overline{X} - 50| < 2) = P(|T_9| < \frac{2}{S/\sqrt{n}}) = P(|T_9| < \frac{2}{\sqrt{120/10}}) = P(|T_9| < 0.577) = 0.422$$
.

Problema 22

Passo 1: $H_0: \mu = 100 \text{ versus } H_1: \mu < 100.$

Passo 2: Sob
$$H_0$$
, $\frac{\overline{X} - 100}{S/4} \sim t(15)$.

Passo 3: $\alpha = 0.05$

$$\alpha = P(\text{rejeitar } \text{H}_0 \mid \text{H}_0 \text{ \'e verdadeir a}) = P(T_{15} < t_c) = 5\% \implies t_c = -1,753. \implies$$

$$RC = \{t : t < -1,753\}$$

Passo 4: $t_0 = -5$.

Passo 5: Como t_o pertence à RC, rejeita-se H_o . Logo, há evidências de melhora no tempo médio de execução da tarefa.

Problema 23

(a) Passo 1: $H_0: \mu = 1229 \text{ versus } H_1: \mu > 1229$.

Passo 2: Sob
$$H_0$$
, $\frac{\overline{X} - 1229}{S/\sqrt{10}} \sim t(9)$.

Passo 3:
$$\alpha = 0.05$$
, $\alpha = P(T_9 < t_c) = 5\% \Rightarrow t_c = 1.833 \Rightarrow RC = \{t: t > 1.833\}$

Passo 4:
$$t_o = \frac{1350 - 1229}{675.82 / \sqrt{10}} = 0,566$$
.

Passo 5: Como t_o não pertence à RC, aceita-se H_o . Logo, não há evidências de que a média das cidades pequenas seja diferente da média do estado.

(b) Isso ocorre devido à grande variância da renda dos municípios.

Problema 24

(a)
$$IC(\mu;95\%) = \overline{x} \pm t_{15} \frac{s}{\sqrt{n}} = 41,563 \pm 2,131 \times \frac{10,35}{4} = 41,563 \pm 5,514 = [36,05;47,08].$$

(b) Suposições: a porcentagem da receita gasta com alimentação pelos moradores dessa vila tem distribuição normal; foi feita uma amostragem aleatória simples.

(a) Passo 1: $H_0: \mu \le 30$ versus $H_1: \mu > 30$.

Passo 2: $\bar{X} \sim N(\mu; 1,033^2)$.

Passo 3:
$$\alpha = 0.05$$
, $\frac{\overline{X}_C - 30}{1,033} = 1,645 \Leftrightarrow \overline{X}_C = 31,70 \Rightarrow RC =]31,70;+\infty[$

Passo 4: $\bar{X} = 30,044$.

Passo 5: Como \overline{X} não pertence à RC, aceita-se H_0 , ou seja, não há evidências de que a média de precipitação pluviométrica anual é maior que 30,0.

(b) Passo 2: Sob
$$H_0$$
, $\frac{\overline{X} - 30}{5/3} \sim t(8)$.

Passo 3:
$$\alpha = 0.05$$
, $\alpha = P(T_8 < t_c) = 5\% \Rightarrow t_c = 1.860$. $\Rightarrow RC = \{t : t > 1.860\}$

Passo 4:
$$t_o = \frac{30,004 - 30}{3,153/3} = 0,042$$
.

Passo 5: A conclusão é a mesma do item (a).

(c)

$$\beta = P(\text{aceitar H}_0 \mid \text{H}_0 \text{ \'e falsa}) = P(\overline{X} < 31,70 \mid \overline{X} \sim \text{N}(33;1,033^2)) =$$

$$= P\left(Z < \frac{31,70 - 33}{1,033}\right) = P(Z < -1,258) = 0,1042.$$

Problema 26

$$\overline{X} = 50.4$$
; $S^2 = \sigma^2 = 175.84$; n=50

Passo 1: $H_0: \mu = 30 \text{ versus } H_1: \mu \neq 30.$

Passo 2: $\overline{X} \sim N(\mu;1,875^2)$.

Passo 3:
$$\alpha = 0.05 \Rightarrow \frac{\overline{X}_{C1} - 30}{1,875} = -1.96 \Leftrightarrow \overline{X}_{C1} = 26.33; \frac{\overline{X}_{C2} - 30}{1,875} = 1.96 \Leftrightarrow \overline{X}_{C2} = 33.68.$$

$$RC = \{ \overline{x} : \overline{x} < 26,33 \text{ ou } \overline{x} > 33,68 \}$$

Passo 4: $\bar{X} = 50.4$.

Passo 5: Como \overline{X} pertence à RC, rejeita-se H_0 , ou seja, há evidências de que o número médio de funcionários é diferente de 30.

$$IC(\mu;95\%) = \bar{x} \pm z \frac{\sigma}{\sqrt{n}} = 50.4 \pm 1.96 \times \frac{13,260}{\sqrt{50}} = 50.4 \pm 3.675 = [46,72;54,08].$$

Problema 27

Passo 1: $H_0: \mu = 11 \text{ versus } H_1: \mu > 11.$

Passo 2: $\bar{X} \sim N(\mu; 0.135^2)$.

Passo 3:
$$\alpha = 0.1 \Rightarrow \frac{\overline{X}_C - 11}{0.135} = 1,282 \Leftrightarrow \overline{X}_C = 11,17 \Rightarrow RC = \{\overline{x} : \overline{x} > 11,17\}$$

Passo 4: $\bar{X} = 11,3$.

Passo 5: O valor observado pertence à RC. Logo, há evidências de que o consumo é maior que o anunciado pela fábrica.

Problema 28

- (a) $H_0: \mu = 50 \text{ versus } H_1: \mu \in \{45,58\}$
- (b) Erro I: Rejeitar H_0 sendo que H_0 é verdadeira, isto é, dizer que o valor real é diferente do declarado, quando na verdade o valor declarado está correto.

Erro II: Aceitar H_0 sendo que H_0 é falsa, isto é, dizer que o valor declarado está correto, quando na verdade não está.

(c) $\alpha = P(\text{rejeitar } H_0 \mid H_0 \text{ \'e verdadeir a}) = P(\overline{X} < \overline{X}_{C1} \text{ ou } \overline{X} > \overline{X}_{C2} \mid \overline{X} \sim \text{N}(50;100)) =$ $= P\left(Z < \frac{\overline{X}_{C1} - 50}{10}\right) + P\left(Z > \frac{\overline{X}_{C2} - 50}{10}\right) = 10\% \Rightarrow$ $\frac{\overline{X}_{C1} - 50}{10} = -1,645 \Rightarrow \overline{X}_{C1} = 33,55$ $\frac{\overline{X}_{C2} - 50}{10} = 1,645 \Rightarrow \overline{X}_{C2} = 66,45$

$$RC = \{ \overline{x} : \overline{x} < 33,55 \text{ ou } \overline{x} > 66,45 \}.$$

(d) Se $\mu = 45$:

$$\beta = P(\text{aceitar H}_0 \mid \text{H}_0 \text{ \'e falsa}) = P(33,55 < \overline{X} < 66,45 \mid \overline{X} \sim \text{N}(45;100)) =$$

$$= P\left(\frac{33,55 - 45}{10} < Z < \frac{66,45 - 45}{10}\right) = P(-1,145 < Z < 2,145) = 0,858$$

Se $\mu = 58$:

$$\beta = P(\text{aceitar H}_0 \mid \text{H}_0 \text{ \'e falsa}) = P(33,55 < \overline{X} < 66,45 \mid \overline{X} \sim \text{N}(58;100)) =$$

$$= P\left(\frac{33,55 - 58}{10} < Z < \frac{66,45 - 58}{10}\right) = P(-2,445 < Z < 0,845) = 0,794$$

 (e) α : probabilidade de erro tipo I, isto é, probabilidade de afirmar que o valor declarado está incorreto, quando na verdade está correto.

 β : probabilidade de erro tipo II, isto é, probabilidade de afirmar que o valor declarado está correto, quando na verdade está incorreto (depende do verdadeiro valor de μ).

Problema 29

Passo 1:
$$H_0: \mu_A - \mu_B = 0$$
 versus $H_1: \mu_A - \mu_B \neq 0$.

Passo 2:
$$Var(\overline{X}_{A} - \overline{X}_{B}) = Var(\overline{X}_{A}) + Var(\overline{X}_{B}) = 100/25 + 100/16 = 10,25$$

$$\overline{X}_{A} - \overline{X}_{B} \sim N(\mu_{A} - \mu_{B}; 10,25) \Leftrightarrow Z = \frac{(\overline{X}_{A} - \overline{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{10,25}} \sim N(0,1).$$
Sob H_{0} : $Z = \frac{(\overline{X}_{A} - \overline{X}_{B})}{\sqrt{10,25}} \sim N(0,1)$

Passo 3:
$$\alpha = 0.05$$
, $\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ é verdadeir a}) = P(\mid Z \mid > z_C) = 5\% \Rightarrow z_c = 1.96$.
 $RC = \{z : \mid z \mid > 1.96\}$

Passo 4: $z_o = 1.918$.

Passo 5: Como o valor observado não pertence à RC, não rejeitamos H_0 , ou seja, não há evidências de que as médias são diferentes.

Problema 30

Passo 1:
$$H_0: p_S = p_N = p_0$$
 versus $H_1: p_S \neq p_N$.

Passo 2:
$$Var(\hat{p}_{S} - \hat{p}_{N}) = Var(\hat{p}_{S}) + Var(\hat{p}_{N}) = \frac{p_{S}(1 - p_{S})}{n_{S}} + \frac{p_{N}(1 - p_{N})}{n_{N}}$$

$$\hat{p}_{S} - \hat{p}_{N} \sim N(p_{S} - p_{N}; Var(\hat{p}_{S} - \hat{p}_{N})) \Leftrightarrow Z = \frac{(\hat{p}_{S} - \hat{p}_{N}) - (p_{S} - p_{N})}{\sqrt{Var(\hat{p}_{S} - \hat{p}_{N})}} \sim N(0,1).$$
Sob H_{0} : $Z = \frac{\hat{p}_{S} - \hat{p}_{N}}{\sqrt{\frac{p_{0}(1 - p_{0})}{n_{S}} + \frac{p_{0}(1 - p_{0})}{n_{N}}}} \sim N(0,1).$

É preciso estimar o denominador de $Z \operatorname{sob} H_0$. Sob H_0 , a estimativa

de
$$p_S = p_N = p_0$$
 é dada por: $\hat{p}_0 = \frac{n_s \hat{p}_S + n_N \hat{p}_N}{n_s + n_N} = 0.150$.

Passo 3:
$$\alpha = 0.05$$
, $\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ é verdadeir a}) = P(\mid Z \mid > z_C) = 5\% \Rightarrow z_c = 1.96$.
 $RC = \{z : \mid z \mid > 1.96\}$

Passo 4:
$$z_o = \frac{\hat{p}_S - \hat{p}_N}{\sqrt{\frac{\hat{p}_0(1 - \hat{p}_0)}{n_S} + \frac{\hat{p}_0(1 - \hat{p}_0)}{n_N}}} = \frac{0,150 - 0,178}{\sqrt{0,00089}} = -0,932.$$

Passo 5: Como o valor observado não pertence à RC, aceita-se H₀, ou seja, não há evidências de que as proporções nas duas regiões são diferentes.

Problema 31

Passo 1: $H_0: p_1 = p_2 = p_0$ versus $H_1: p_1 \neq p_2$.

Passo 2: Sob
$$H_0$$
: $Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_0(1-p_0)}{n_1} + \frac{p_0(1-p_0)}{n_2}}} \sim N(0,1)$. $\Rightarrow \hat{p}_0 = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2} = 0,310$.

Passo 3: $\alpha = 0.05$, $\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ é verdadeir a}) = P(\mid Z \mid > z_C) = 5\% \Rightarrow z_c = 1.96$. $RC = \{z : \mid z \mid > 1.96\}$

Passo 4:
$$z_o = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_0(1 - \hat{p}_0)}{n_1} + \frac{\hat{p}_0(1 - \hat{p}_0)}{n_2}}} = \frac{0,330 - 0,290}{\sqrt{0,0107}} = 1,223$$
.

Passo 5: Como o valor observado não pertence à RC, aceita-se H_0 , ou seja, não há evidências de que as preferências nos dois anos sejam diferentes.

Problema 32

(a)

$$P(\text{Erro I}) = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ é verdadeir a}) = P(X \in \{0,1,2\} \mid X \sim Binomia(15;0,5)) = 0,0037$$

 $P(\text{Erro II}) = P(\text{não rejeitar } H_0 \mid X \sim Binomial(15;0,3)) = P(X > 2 \mid X \sim Binomial(15;0,3)) = 0.8732$

(b)

$$\pi(\mu) = P(\text{rejeitar H}_0 \mid p) = P(X > 2 \mid X \sim Binomial(15; p))$$

(c)

0,6

0,8

 $\pi(p)$

0,964

0,816

0,398

0,127

0,027

0,004

0,000

0,000

Problema 33

(a) $H_0: \mu = 200 \text{ versus } H_1: \mu > 200.$

$$\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ \'e verdadeir a}) = P(\overline{X} > \overline{X}_C \mid \overline{X} \sim N(200;400/n)) =$$

$$= P\left(Z > \frac{\overline{X}_C - 200}{20/\sqrt{n}}\right) = 5\% \Leftrightarrow \frac{\overline{X}_C - 200}{20/\sqrt{n}} = 1,645 \Leftrightarrow \overline{X}_C = 200 + 32,9/\sqrt{n}$$

$$\beta = P(\text{aceitar H}_0 \mid \overline{X} \sim N(210; /n)) = P(\overline{X} < \overline{X}_C \mid \overline{X} \sim N(210; 400/n)) =$$

$$= P\left(Z < \frac{\overline{X}_C - 210}{20/\sqrt{n}}\right) = 10\% \Leftrightarrow \frac{\overline{X}_C - 210}{20/\sqrt{n}} = -1,282 \Leftrightarrow \overline{X}_C = 210 - 25,64/\sqrt{n}$$

Logo: $200 + 32.9 / \sqrt{n} = 210 - 25.64 / \sqrt{n} \Leftrightarrow n = 34.27 \cong 35$.

(b) $\overline{X}_C = 200 + 32.9 / \sqrt{n} = 200 + 32.9 / \sqrt{34.27} = 205.62$. Nesse caso, a RC é dada por: $RC = |205.62; +\infty[$.

Problema 34

Teste para a variância

Passo 1: $H_0: \sigma^2 = 80^2 \text{ versus } H_1: \sigma^2 \neq 80^2.$

Passo 2:
$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(24)$$
.

Passo 3: $\alpha = P(\text{rejeitar } H_0 \mid H_0 \text{ é verdadeir a}) = P(\chi^2 < \chi_1^2 \text{ ou } \chi^2 < \chi_2^2) = 5\%$.

$$\chi_1^2 = 12,401 \text{ e } \chi_2^2 = 39,364 \implies RC = \{\chi^2 : \chi^2 < 12,401 \text{ ou } \chi^2 > 39,364\}.$$

Passo 4:
$$\chi_{obs}^2 = \frac{24}{80^2} \times 2500 = 9,375$$
.

Passo 5: Como o valor observado pertence à RC, há evidências de que a variância tenha se alterado.

Teste para a média

Passo 1: $H_0: \mu = 250$ versus $H_1: \mu > 250$.

Passo 2: Sob
$$H_0$$
, $\frac{\overline{X} - 250}{S/5} \sim t(24)$.

Passo 3:
$$\alpha = 0.05$$
, $\alpha = P(T_{24} > t_c) = 5\% \implies t_c = 1.711 \implies RC = \{t : t > 1.711\}$

Passo 4:
$$t_o = \frac{280 - 250}{50/5} = 3$$
.

Passo 5: Como to pertence à RC, rejeita-se H_0 . Logo, há evidências de que o número médio diário de clientes tenha aumentado.

Suposições: Amostragem aleatória simples; número diário de clientes do posto de gasolina tem distribuição normal.

Problema 35

Passo 1: $H_0: \mu = 7 \text{ versus } H_1: \mu > 7$.

Passo 2: Sob
$$H_0$$
, $\frac{\overline{X}-7}{S/3} \sim t(8)$.

Passo 3:
$$\alpha = 0.05$$
, $\alpha = P(T_8 > t_c) = 5\% \Rightarrow t_c = 1.860 \Rightarrow RC = \{t : t > 1.860\}$

Passo 4:
$$t_o = \frac{10,556 - 7}{2,555/3} = 4,175$$
.

Passo 5: Como t_0 pertence à RC, rejeita-se H_0 . Logo, há evidências de melhoria.

$$IC(\mu;95\%) = \overline{x} \pm t_8 \frac{s}{\sqrt{n}} = 10,556 \pm 2,306 \times \frac{2,555}{3} = 10,556 \pm 1,964 = [8,59;12,52].$$

Problema 36

$$S^{2} = 6,528. \Rightarrow IC(\sigma^{2};90\%) = \left[\frac{(n-1)S^{2}}{\chi_{2}^{2}}; \frac{(n-1)S^{2}}{\chi_{1}^{2}}\right] = \left[\frac{8 \times 6,528}{19,11}; \frac{8 \times 6,528}{3,37}\right] = \left[3,37;19,11\right]$$

Problema 37

(a)
$$\frac{erro}{\sqrt{\frac{p(1-p)}{n}}} = 1,645 \Leftrightarrow n = \left(\frac{1,645}{erro}\right)^2 p(1-p)$$
. Tomando $p=0,5$ (para maximizar $p(1-p)$):
$$n = 270,6 \cong 271$$
.

(b)
$$IC(p;0.95) = \hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.40 \pm 1.96 \sqrt{\frac{0.4 \times 0.6}{400}} = 0.40 \pm 0.048 = [0.352;0.448]$$

Intervalo conservador:

$$IC(p;0.95) = \hat{p} \pm z \sqrt{\frac{1}{4n}} = 0.40 \pm 1.96 \sqrt{\frac{1}{4 \times 400}} = 0.40 \pm 0.049 = [0.351;0.449]$$

Problema 38

$$IC(p;0.90) = \hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.40 \pm 1.645 \sqrt{\frac{0.4 \times 0.6}{2000}} = 0.40 \pm 0.018 = [0.382;0.418]$$

Intervalo conservador:

$$IC(p;0,90) = \hat{p} \pm z\sqrt{\frac{1}{4n}} = 0,40 \pm 1,645\sqrt{\frac{1}{4 \times 2000}} = 0,40 \pm 0,018 = [0,382;0,418]$$

Problema 39

Passo 1: $H_0: \sigma^2 \le 25$ versus $H_1: \sigma^2 > 5$.

Passo 2:
$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(10)$$
.

Passo 3: $\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ é verdadeir a}) = P(\chi^2 > \chi_2^2) = 5\% \implies \chi_2^2 = 18,307.$

$$RC = \{\chi^2 : \chi^2 > 18,307\}.$$

Passo 4:
$$\chi_{obs}^2 = \frac{10}{25} \times 48 = 19,2$$
.

Passo 5: Como o valor observado pertence à RC, rejeita-se H_0 , ou seja, há evidências de que a variância seja maior que a anunciada pelo fabricante.

Teste para a variância

Passo 1: $H_0: \sigma^2 = 25 \text{ versus } H_1: \sigma^2 < 25$.

Passo 2:
$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2(7)$$
.

Passo 3: $\alpha = P(\text{rejeitar H}_0 \mid \text{H}_0 \text{ é verdadeir a}) = P(\chi^2 < \chi_1^2) = 5\% \implies \chi_1^2 = 2,167$

$$RC = \{\chi^2 : \chi^2 < 2,167\}.$$

Passo 4:
$$\chi_{obs}^2 = \frac{7}{25} \times 1,351 = 0,378$$
.

Passo 5: Como o valor observado pertence à RC, há evidências de que a variância tenha diminuído.

Teste para a média

Passo 1: $H_0: \mu = 24$ versus $H_1: \mu \neq 24$.

Passo 2: Sob
$$H_0$$
, $\frac{\overline{X} - 24}{S/\sqrt{8}} \sim t(7)$.

Passo 3:
$$\alpha = 0.05$$
, $\alpha = P(|T_7| > t_c) = 5\% \implies t_c = 2.365 \implies RC = \{t : |t| > 2.365\}$

Passo 4:
$$t_o = \frac{24,6-24}{1,162/\sqrt{8}} = 1,369$$
.

Passo 5: Como t_o não pertence à RC, não rejeitamos H_0 . Ou seja, não há evidências de que o rendimento médio seja diferente de 24%.

Problema 41

- (a) $X \sim \text{Binomial}(10; p) \Rightarrow H_0: p = 0.6 \Rightarrow \hat{\alpha} = P(X \le 3 \mid X \sim \text{Binomial}(10; 0.6)) = 0.055$.
- **(b)** $\hat{\alpha} = 2 \times P(X \le 3 \mid X \sim Binomial(10,0,6)) = 0,110$.

Problema 42

$$\hat{\alpha} = 2 \times P(X \le 6 \mid X \sim Binomial(10,0,6)) = 1,266.$$

Problema 43

Exemplo 12.7

$$\hat{\alpha} = P(\overline{X} > 314 | \overline{X} \sim N(300;90)) + P(\overline{X} < 300 - (314 - 300) | \overline{X} \sim N(300;90)) =$$

$$= P\left(Z > \frac{314 - 300}{\sqrt{90}}\right) + P\left(Z < \frac{286 - 300}{\sqrt{90}}\right) = 2 \times P(Z > 1,476) = 0,14$$

$$\hat{\alpha} = P(X \ge 6 \mid X \sim Binomial\,(10;0,6)) + P(X \le 6 - (6 - 6) \mid X \sim Binomial\,(10;0,6)) = \\ = 1 + P(X = 6 \mid X \sim Binomial\,(10;0,6)) = 1,251$$