Lois de probabilités

Exercice 1

Calculez les valeurs de la fonction de probabilité d'une variable $X \sim \mathcal{B}(15; 0,03)$, et vérifiez numériquement les propriétés E(X) = np et Var(X) = npq.

Exercice 2

Calculez les valeurs de la fonction de probabilité d'une variable $X \sim \mathcal{H}(15; 20, 30)$, et vérifiez numériquement les propriétés E(X) = np et Var(X) = npq(N-n)/(N-1).

Exercice 3

Calculez les valeurs de la fonction de probabilité d'une variable de loi $\mathfrak{F}(0,3)$ pour $x=0,1,\ldots,20$, et vérifiez approximativement les propriétés $\mathrm{E}(X)=\lambda$ et $\mathrm{Var}(X)=\lambda$.

Exercice 4

Le poids du contenu des boîtes de conserves dans une certaine usine est de moyenne $\mu = 300 \ g$ et d'écart-type $\sigma = 4 \ g$. Soit \overline{X} le poids moyen d'un échantillon de n boîtes. Calculez la probabilités que \overline{X} soit supérieure à 302 pour des valeurs de n allant de 10 à 200. Faites le graphique qui exprime la probabilité calculée en fonction de n.

Exercice 5

Le poids du contenu des boîtes de conserves dans une certaine usine est de moyenne $\mu = 300 \ g$ et d'écart-type $\Box = 4 \ g$. Soit \overline{X} le poids moyen d'un échantillon de n boîtes (n=8). Calculez la probabilité que \overline{X} soit supérieure à 302.

Estimez cette même probabilité par simulation. En générant 1000 échantillons de taille n=8 suivant une loi normale de moyenne m=300 et d'écart-type $\sigma = 4$.