MEASI INSTITUTE OF INFORMATION TECHNOLOGY

(Approved by AICTE & Affiliated to University of Madras) CHENNAI – 600 014

MASTER OF COMPUTER APPLICATIONS

ACADEMIC YEAR 2024-2025 SEMESTER – III

Practical Record

ADVANCED MACHINE LEARNING LAB (535S3A)

REG. NO	:
NAME	:
BATCH	:

MEASI INSTITUTE OF INFORMATION TECHNOLOGY

(Approved by AICTE & Affiliated to University of Madras) CHENNAI- 600 014

MCA PRACTICALS

ADVANCED MACHINE LEARNING LAB (535S3A)

Academic Year 2024-2025 Semester - III

NAME	:	CLASS	:
REG-NO	:	BATCH	:
This is	s to certify that this is the bonafide record of w	ork done in the Com	nputer Science
Laboratory of	of MEASI Institute of Information T	echnology, subm	itted for the
University	of Madras Practical Examination held or	ı	at MEASI
Institute of	Information Technology, Chennai-600 01	1.	
STAFF IN-	CHARGE PRO	FESSOR & ASSIS	ST.DIRECTOR
INTERPORTATI	L EXAMINER EX		HAIDD
INTERNAL	LEXAMINER E2	KTERNAL EXAM	IINEK
DATE:			

INDEX

S.No.	DATE	Program Name	Page No.	Signature
01		Write a python program to compute the Central Tendency Measures: Mean, Median, Mode, Measure of Dispersion: Variance, Standard Deviation.		
02		 a) - Implement a Linear Regression and Multiple Linear Regression with a Real Dataset. b) - Implement a Linear Regression and Multiple Linear Regression with a Real 		
03		Dataset. Implementation of Logistic Regression using sklearn.		
04		Implement a binary classification model.		
05		Classification with Nearest Neighbours and NavieBayes Algorithm.		
06		Implementation Decision tree for classification using sklearn and its parameter tuning.		
07		Implement the k-means algorithm.		
08		Implement an Image Classifier using CNN in TensorFlow/Keras.		
09		Implement an Autoencoder in TensorFlow/Keras.		
10		Implement a Simple LSTM using TensorFlow/Keras.		

Write a python program to compute the Central Tendency Measures: Mean, Median, Mode, Measure of Dispersion: Variance, Standard Deviation.

EX No: 01

Date:

Aim:

Write a python program to compute the Central Tendency Measures: Mean, Median, Mode, Measure of Dispersion: Variance, Standard Deviation.

Algorithm:

Step 1 : Start the program.

Step 2 : Import Statistics package.

Step 3 : Create a function and give the parameter as numbers.

Step 4 : In that, create Central Tendency Measures (mean, median, and mode) and Measures of Dispersion (variance and standard deviation) and then return the values as dictionary.

Step 5 : Outside the function create a list of numerical values, numbers then call the function.

Step 6 : Finally, create a 'for loop' for getting the values as Key, Value pair.

Step 7 : Execute the program.

```
import statistics
# statistics is an inbuilt python libary
def compute_central_tendency_and_dispersion(numbers):
#Central Tendency Measures
mean = statistics.mean(numbers)
median = statistics.median(numbers)
try:
mode = statistics.mode(numbers)
except statistics.StatisticsError:
mode = "No unique mode"
# Measures of Dispersion
variance = statistics.variance(numbers)
std_deviation = statistics.stdev(numbers)
return {
"Mean": mean,
"Median": median,
"Mode": mode,
"Variance": variance,
"Standard Deviation": std_deviation
# You can replace "numbers" variable data with any data of your choice
numbers = [1, 2, 2, 3, 4, 4, 4, 5, 6]
results = compute_central_tendency_and_dispersion(numbers)
print("Central Tendency Measures and Measures of Dispersion:")
for key, value in results.items():
print(f"{key}: {value}")
```

Central Tendency Measures and Measures of Dispersion:

Mean: 3.444444444444446

Median: 4

Mode: 4

Variance: 2.527777777777777

Standard Deviation: 1.5898986690282428

RESULT:

a) - Implement a Linear Regression and Multiple Linear Regression with a Real Dataset.

EX No: 02.

Date:

Aim:

Implement a Linear Regression and Multiple Linear Regression with a Real Dataset.

Algorithm:

- **Step 1**: Start the program.
- **Step 2**: Import pandas as pd, matplotlib.pyplot as plt and Then from sklearn import train_test_split, LinearRegression, mean_squared error, r2_score.
- **Step 3**: A CSV file named 'ish.csv' containing the dataset and read the dataset from the CSV file into pandas DataFrame.
- **Step 4**: Extract the feature column SepalLengthCm as X and extract the target column Id as y.
- **Step 5**: Split the dataset into training and testing subsets and set random_state to 0.
- **Step 6**: Create a LinearRegression model instance and fit the model using the training data (X_train, y_train).
- **Step 7**: Predict the target values for the test data using the trained model.
- **Step 8**: Compute and Calculate the values.
- **Step 9**: Then plot and display the values.
- **Step 10 :** Execute the program.

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
data = pd.read_csv('ish.csv')
X = data[['SepalLengthCm']]
y = data['Id']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(f'Coefficients: {model.coef_}')
print(f'Intercept: {model.intercept_}')
# Evaluate the model
print(f'Mean squared error: {mean_squared_error(y_test, y_pred)}')
print(f'Coefficient of determination (R^2): {r2_score(y_test, y_pred)}')
# Plot the results
plt.scatter(X_test, y_test, color='black', label='Actual data')
plt.plot(X_test, y_pred, color='blue', linewidth=2, label='Regression line')
plt.title('Simple Linear Regression')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
```


RESULT:

b) - Implement a Linear Regression and Multiple Linear Regression with a Real Dataset.

EX No: 02

Date:

Aim:

Implement a Linear Regression and Multiple Linear Regression with a Real Dataset.

Algorithm:

Step 1 : Start the program.

Step 2 : Import numpy as np, pandas as pd, matplotlib.pyplot as plt and Then from sklearn import train_test_split, LinearRegression, mean_squared error, r2_score.

Step 3 : Set the random seed to 0.

Step 4 : Generate random values for two features, X1 and X2 and create the target variable y using a linear combination of X1 and X2 with added random noise.

Step 5 : Combine X1, X2, and y into a single array X, then create a DataFrame df with columns 'X1', 'X2', and 'y'.

Step 6 : Split the dataset into training and testing subsets.

Step 7 : Set random_state to 0 and store the features in X_train and X_test, and the target in y_train and y_test.

Step 8 : Create an instance of LinearRegression and fit the model using the training data (X_train, y_train).

Step 9: Predict target values for the test data (X_{test}) using the trained model and store these predictions in y_{pred} .

Step 10 : Compute and Calculate the values.

Step 11: Then plot and display the values.

Step 12 : Execute the program.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
np.random.seed(0)
X1 = np.random.rand(100, 1)
X2 = np.random.rand(100, 1)
y = 3 * X1 + 5 * X2 + np.random.randn(100, 1)
X = np.hstack((X1, X2))
df = pd.DataFrame(np.hstack((X, y)), columns=['X1', 'X2', 'y'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(f'Coefficients: {model.coef_}')
print(f'Intercept: {model.intercept_}')
print(f'Mean squared error: {mean_squared_error(y_test, y_pred)}')
print(f'Coefficient of determination (R^2): {r2_score(y_test, y_pred)}')
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
```

```
plt.scatter(X_test[:, 0], y_test, color='black', label='Actual data')
plt.scatter(X_test[:, 0], y_pred, color='blue', linewidth=1, label='Predicted data')
plt.title('X1 vs y')
plt.xlabel('X1')
plt.ylabel('y')
plt.legend()
plt.subplot(1, 2, 2)
plt.scatter(X_test[:, 1], y_test, color='black', label='Actual data')
plt.scatter(X\_test[:,\,1],\,y\_pred,\,color='blue',\,linewidth=1,\,label='Predicted\,\,data')
plt.title('X2 vs y')
plt.xlabel('X2')
plt.ylabel('y')
plt.legend()
plt.tight_layout()
plt.show()
```

```
Coefficients: [[2.29553585 4.72302943]]
Intercept: [0.4563786]
Mean squared error: 0.7093845759110844
Coefficient of determination (R^2): 0.7668355529878372
```


RESULT:

Implementation of Logistic Regression using sklearn.

EX No: 03

Date:

Aim:

Implementation of Logistic Regression using sklearn.

Algorithm:

- **Step 1**: Start the program.
- **Step 2**: Import necessary libraries such as NumPy, pandas, Matplotlib, and sklearn for data generation, manipulation, model training, and evaluation.
- **Step 3**: Set the random seed to 0.
- **Step 4**: Create random features X and a binary target y based on a threshold.
- **Step 5**: Store X and y in pandas DataFrame.
- **Step 6**: Divide the data into training (80%) and testing (20%) sets.
- **Step 7**: Fit a logistic regression model on the training set
- **Step 8**: Predict target labels on the test set.
- **Step 9**: Compute accuracy, confusion matrix, and classification report.
- **Step 10 :** Calculate ROC curve and AUC.
- **Step 11:** Plot the ROC curve and display the AUC value.
- **Step 12 :** Execute the program.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix,
accuracy_score, roc_curve, auc
np.random.seed(0)
X = np.random.rand(100, 2)
y = (X[:, 0] + X[:, 1] > 1).astype(int)
df = pd.DataFrame(np.hstack((X, y.reshape(-1, 1))), columns=['Feature1',
'Feature2', 'Target'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=0)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')
print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred))
print('Classification Report:')
print(classification_report(y_test, y_pred))
```

```
y_pred_proba = model.predict_proba(X_test)[:, 1]

fpr, tpr, _ = roc_curve(y_test, y_pred_proba)

roc_auc = auc(fpr, tpr)

plt.figure()

plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.ylabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curve')

plt.legend(loc="lower right")

plt.show()
```

```
Accuracy: 1.0
Confusion Matrix:
[[ 7 0]
[ 0 13]]
Classification Report:
               precision
                             recall f1-score
                                                 support
                    1.00
                               1.00
                                          1.00
            0
            1
                    1.00
                               1.00
                                          1.00
                                                       13
                                                       20
    accuracy
                                          1.00
   macro avg
                    1.00
                               1.00
                                          1.00
                                                       20
weighted avg
                    1.00
                               1.00
                                          1.00
                                                       20
```


RESULT:

Implement a binary classification model.

EX No: 04

Date:

Aim:

Implement a binary classification model.

Algorithm:

Step 1: Start the program.

Step 2: Load necessary libraries: numpy, pandas, and sklearn modules for model training and evaluation.

Step 3: Use load_iris() to load the Iris dataset from sklearn and extract feature matrix x and target variable y.

Step 4: Split the filtered dataset into training (80%) and testing (20%) sets using train_test_split.

Step 5: Initialize and train a logistic regression model using the training data (x_train, y_train).

Step 6: Use the trained model to predict class labels (y_pred) for the test data (x_test).

Step 7 : Calculate accuracy using accuracy_score.

Step 8: Calculate and print confusion_matrix and classification_report.

Step 9: Display the accuracy score, confusion matrix, and classification report.

Step 10 : Execute the program.

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import
accuracy_score,confusion_matrix,classification_report
from sklearn.datasets import load_iris
iris=load_iris()
x=iris.data
y=iris.target
x=x[y!=2]
y=y[y!=2]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=4)
model=LogisticRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
accuracy_accuracy_score(y_test,y_pred)
print(f'Accuracy: {accuracy:.2f}')
conf_matrix=confusion_matrix(y_test,y_pred)
print('Confusion matrix')
print(conf_matrix)
class_report=classification_report(y_test,y_pred)
```

print('Classification Report')

print(class_report)

sample dataset:

Iris.csv dataset

Id	SepalLenghCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa
12	4.8	3.4	1.6	0.2	Iris-setosa
13	4.8	3	1.4	0.1	Iris-setosa
14	4.3	3	1.1	0.1	Iris-setosa
15	5.8	4	1.2	0.2	Iris-setosa
16	5.7	4.4	1.5	0.4	Iris-setosa
17	5.4	3.9	1.3	0.4	Iris-setosa
18	5.1	3.5	1.4	0.3	Iris-setosa
19	5.7	3.8	1.7	0.3	Iris-setosa

```
Accuracy: 1.00
Confusion matrix
[[12 0]
[ 0 8]]
Classification Report
             precision
                          recall f1-score
                                             support
                  1.00
                            1.00
                                      1.00
                                                  12
          0
                  1.00
                            1.00
          1
                                      1.00
                                                   8
   accuracy
                                      1.00
                                                  20
                                      1.00
  macro avg
                  1.00
                            1.00
                                                  20
weighted avg
                  1.00
                            1.00
                                      1.00
                                                  20
```

RESULT:

Classification with Nearest Neighbours and NavieBayes Algorithm.

EX No: 05

Date:

Aim:

Classification with Nearest Neighbours and NavieBayes Algorithm.

Algorithm:

Step 1 : Start the program.

Step 2 : Load required libraries: datasets, train_test_split, StandardScaler,
GaussianNB, KNeighborsClassifier, confusion_matrix, and classification_report
from sklearn.

Step 3 : Use datasets.load_iris() to load the Iris dataset and store the feature matrix in X and target values in y.

Step 4 : Split the dataset into training and testing sets using train_test_split with 80% training data and 20% testing data (X_train, X_test, y_train, y_test) and set the random state=1.

Step 5 : Initialize a StandardScaler object, fit and transform the training set (X_train) using StandardScaler to normalize the features and apply the same scaling to the test set (X_test).

Step 6 : Initialize a KNN classifier with n_neighbors=3, fit the KNN model on the scaled training data (X_train, y_train) and predict the class labels for the test set (X_test) using the trained KNN model.

Step 7 : Print confusion_matrix and classification_report.

Step 8: Execute the program.

```
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix,classification_report
iris = datasets.load_iris()
X=iris.data
y=iris.target
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2,random_state=1)
sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X_test=sc.transform(X_test)
knn=KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
y_pred=knn.predict(X_test)
print("KNN CLASSIFICATION")
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
gnb=GaussianNB()
gnb.fit(X_train,y_train)
y_pred=gnb.predict(X_test)
```

```
print("NAIVEBAYES CLASSIFICATION")
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

KNN CLASSIFIC	CATION				
[[11 0 0]					
[0 13 0]					
[0 0 6]]					
-	precision	recall	f1-score	support	
	1 00	1 00	1 00	11	
0	1.00		1.00		
1					
2	1.00	1.00	1.00	6	
accuracy			1.00		
macro avg	1.00	1.00	1.00	30	
weighted avg	1.00	1.00	1.00	30	
NAIVEBAYES C	LASSIFICATION	V			
[[11 0 0]					
[0 12 1]					
[0 0 6]]					
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	11	
1	1.00	0.92	0.96	13	
2		1.00	0.92	6	
accuracy			0.97	30	
macro avg		0.97	0.96	30	
weighted avg		0.97	0.97	30	

	ŗ
RESU	I T.
KESU.	L1;
	This are grown has been executed executed the
	This program has been executed successfully.

Implementation Decision tree for classification using sklearn and its parameter tuning.

EX No: 06

Date:

Aim:

Implementation Decision tree for classification using sklearn and its parameter tuning.

Algorithm:

Step 1 : Start the program.

Step 2: Load necessary libraries: pandas, matplotlib.pyplot, GridSearchCV,

DecisionTreeClassifier, tree, confusion_matrix, classification_report, and warnings.

Step 3 : Load the Iris dataset and store features in X and target in y.

Step 4 : Use train_test_split to divide data into training (80%) and testing (20%) sets.

Step 5 : Initialize and fit a DecisionTreeClassifier on the training set and plot the decision tree structure using tree.plot_tree().

Step 6 : Predict the test set labels (y_pred) using the trained model.

Step 7 : Define hyperparameters and use GridSearchCV to find the best model.

Step 8 : Print the parameters, accuracy_score, confusion_matrix and classification_report.

Step 9 : Execute the program.

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.metrics import confusion_matrix,classification_report
import warnings
#load iris data set
iris=load_iris()
#print("train value")
#print(iris['DESCR'])
#print(iris['target'])
##independent features
X=pd.DataFrame(iris["data"],columns=['sepal length in cm','sepal width','petal
length','petal width'])
##dependent features
y=iris['target']
#print ('predicted value')
#print(iris['DESCR'])
#print(iris['target'])
##train test plot
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
```

apply Decision Tree Classifier

```
treeclassifier=DecisionTreeClassifier()
treeclassifier.fit(X_train,y_train)
DecisionTreeClassifier()
##Visualize the Decision Tree
plt.figure(figsize=(15,10))
tree.plot_tree(treeclassifier,filled=True)
y_pred=treeclassifier.predict(X_test)
#Hyperparameter
param={
    'criterion':['gini','entropy', 'log_loss'],
    'splitter':['best','random'],
    'max_depth':[1,2,3,4,5],
    'max_features':['auto','sqrt','log2']
treemodel=DecisionTreeClassifier()
grid=GridSearchCV(treeclassifier,param_grid=param,cv=5,scoring='accuracy')
warnings.filterwarnings('ignore')
grid.fit(X_train,y_train)
print("grid parameters",grid.best_params_)
print("grid score " , grid.best_score_)
y_pred=grid.predict(X_test)
cm=confusion_matrix(y_test,y_pred)
print("confusion matrix ",cm)
print("classification report", classification_report(y_test,y_pred))
```

```
grid parameters {'criterion': 'log_loss', 'max_depth': 2, 'max_features': 'log2', 'splitter': 'best'}
grid score 0.95
confusion matrix [[10 0 0]
 [ 0 13 0]
  0 0 7]]
classification report
                                    precision
                                                 recall f1-score
                                                                    support
                                       1.00
          0
                   1.00
                            1.00
                                                   10
          1
                  1.00
                            1.00
                                      1.00
                                                   13
           2
                   1.00
                             1.00
                                       1.00
                                       1.00
                                                   30
   accuracy
  macro avg
                   1.00
                             1.00
                                       1.00
                                                   30
weighted avg
                   1.00
                             1.00
                                       1.00
                                                   30
```


RESULT:

Implement the k-means algorithm.

EX No: 07
Date:
Aim: Implement the k-means algorithm.
Algorithm:
Step 1: Start the program.
Step 2: Define the KMeans class with two parameters:
n_clusters: Number of clusters (k).
 max_iters: Maximum iterations for convergence.
Step 3: Randomly select initial centroids.
Step 4: Repeat until max_iters.
Step 5: Assign and update points to nearest centroids.
Step 6: Create 100 random 2D points.
Step 7: Fit the KMeans model and assign cluster labels and visualize clusters
and centroids using a scatter plot.
Step 8: Display the final clustering result.
Step 9: Execute the program.

```
import numpy as np
import matplotlib.pyplot as plt
class KMeans:
  def __init__(self, n_clusters, max_iters=100):
     self.n\_clusters = n\_clusters
     self.max_iters = max_iters
  def fit(self, X):
       centroids_idx = np.random.choice(X.shape[0], size=self.n_clusters,
       replace=False)
       self.centroids = X[centroids_idx]
     for _ in range(self.max_iters):
       labels = self._assign_clusters(X)
       new_centroids = np.array([X[labels == k].mean(axis=0) for k in
       range(self.n_clusters)])
       if np.allclose(self.centroids, new_centroids):
          break
       self.centroids = new_centroids
  def _assign_clusters(self, X):
     distances = np.linalg.norm(X[:, np.newaxis] - self.centroids, axis=2)
     return np.argmin(distances, axis=1)
if __name__ == "__main__":
  np.random.seed(42)
  X = np.random.rand(100, 2)
```

```
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
labels = kmeans._assign_clusters(X)
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], marker='X', c='red', s=200, label='Centroids')
plt.title('K-means Clustering')
plt.xlabel('X1')
plt.ylabel('X2')
plt.legend()
plt.show()
```


RESULT:

Implement an Image Classifier using CNN in TensorFlow/Keras.


```
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,
Droupout
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_{train} = X_{train.astype(np.float32) / 255.0
X_{\text{test}} = X_{\text{test.astype}}(\text{np.float32}) / 255.0
X_train = np.expand_dims(X_train, axis=-1)
X_{\text{test}} = \text{np.expand\_dims}(X_{\text{test}}, \text{axis}=-1)
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,
28,1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
```

model.add(Dense(128, activation='relu'))

```
model.add(Dense(10, activation='softmax')
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=10, batch_size=32,
validation_data=(X_test, y_test))
loss, accuracy = model.evaluate(X_test, y_test)
print("Loss: ", loss)
print("Accuracy: ", accuracy)
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
plt.plot(acc)
plt.plot(val_acc)
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
```

```
Epoch 1/10
1875/1875
                               14s 6ms/step - accuracy: 0.8882 - loss: 0.3488 - val_accuracy: 0.9833 -
val_loss: 0.0536
Epoch 2/10
1875/1875
                               11s 6ms/step - accuracy: 0.9798 - loss: 0.0618 - val_accuracy: 0.9895 -
val_loss: 0.0336
Epoch 3/10
1875/1875
                               11s 6ms/step - accuracy: 0.9866 - loss: 0.0426 - val_accuracy: 0.9910 -
val_loss: 0.0261
Epoch 4/10
1875/1875
                               11s 6ms/step - accuracy: 0.9895 - loss: 0.0335 - val_accuracy: 0.9904 -
val_loss: 0.0283
Epoch 5/10
                               11s 6ms/step - accuracy: 0.9913 - loss: 0.0266 - val_accuracy: 0.9903 -
1875/1875
val loss: 0.0300
Epoch 6/10
1875/1875
                               11s 6ms/step - accuracy: 0.9924 - loss: 0.0226 - val_accuracy: 0.9927 -
val_loss: 0.0283
Epoch 7/10
1875/1875
                               12s 6ms/step - accuracy: 0.9937 - loss: 0.0194 - val accuracy: 0.9926 -
val_loss: 0.0211
Epoch 8/10
                               12s 6ms/step - accuracy: 0.9947 - loss: 0.0169 - val_accuracy: 0.9929 -
1875/1875
val_loss: 0.0231
Epoch 9/10
                               12s 6ms/step - accuracy: 0.9944 - loss: 0.0167 - val_accuracy: 0.9914 -
1875/1875
val loss: 0.0305
Epoch 10/10
                               11s 6ms/step - accuracy: 0.9951 - loss: 0.0156 - val_accuracy: 0.9926 -
1875/1875
val_loss: 0.0243
313/313
                             1s 2ms/step - accuracy: 0.9910 - loss: 0.0309
Loss: 0.024255603551864624
Accuracy: 0.9926000237464905
```


RESULT:

Implement an Autoencoder in TensorFlow/Keras.

EX No: 09

Date:

Aim:

Implement an Autoencoder in TensorFlow/Keras.

Algorithm:

Step 1: Start the program.

Step 2: Load TensorFlow, NumPy, and Matplotlib.

Step 3: Create input layer with shape (784,).

Step 4: Add a dense layer with a bottleneck size of 32 and ReLU activation.

Step 5: Add a dense layer to reconstruct the image, using sigmoid activation.

Step 6: Load MNIST data and normalize the pixel values.

Step 7: Fit the model using training data for 30 epochs with a batch size of 256, and validate on test data.

Step 8: Predict reconstructed images using the autoencoder on the test set.

Step 9: Display original and reconstructed images side by side using Matplotlib.

Step 10 : Loop through the first 10 images, showing both the original and the corresponding reconstructed image.

Step 11: Execute the program.

```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
bottleneck=32
input_image=tf.keras.layers.Input(shape=(784,))
encoded_input=tf.keras.layers.Dense(bottleneck,activation='relu')(input_image)
decoded_output = tf.keras.layers.Dense(784, activation='sigmoid')(encoded_input)
autoencoder=tf.keras.models.Model(input image,decoded output)
autoencoder.compile(optimizer='adam',loss='binary_crossentropy')
(X_train,_),(X_test,_)=tf.keras.datasets.mnist.load_data()
X_{train} = X_{train.astype}(float32)/255
X_{\text{test}} = X_{\text{test.astype}} (\frac{1}{25}
X train = X train.reshape((len(X train),np.prod(X train.shape[1:])))
X_{\text{test}} = X_{\text{test.reshape}}((\text{len}(X_{\text{test}}), \text{np.prod}(X_{\text{test.shape}}[1:])))
autoencoder.fit(X_train,X_train,epochs = 30,batch_size = 256, shuffle = True,
validation_data = (X_test, X_test)
reconstructed_img = autoencoder.predict(X_test)
n=10
plt.figure(figsize=(20,4))
for i in range(n):
  ax=plt.subplot(2,n,i+1)
  plt.imshow(X_test[i].reshape(28,28))
  plt.gray()
```

```
ax.get_xaxis().set_visible(False)

ax.get_yaxis().set_visible(False)

ax=plt.subplot(2,n,i+1+n)

plt.imshow(reconstructed_img[i].reshape(28,28))

plt.gray()

ax.get_xaxis().set_visible(False)

ax.get_yaxis().set_visible(False)

plt.show()
```

```
Epoch 1/30
235/235
                             2s 4ms/step - loss: 0.3826 - val loss: 0.1938
Epoch 2/30
235/235
                             1s 3ms/step - loss: 0.1829 - val_loss: 0.1545
Epoch 3/30
235/235
                             1s 3ms/step - loss: 0.1504 - val_loss: 0.1345
Epoch 4/30
235/235
                             1s 3ms/step - loss: 0.1324 - val_loss: 0.1223
Epoch 5/30
                             1s 3ms/step - loss: 0.1214 - val_loss: 0.1137
235/235
Epoch 6/30
                             1s 3ms/step - loss: 0.1137 - val_loss: 0.1079
235/235
Epoch 7/30
                             1s 3ms/step - loss: 0.1080 - val_loss: 0.1039
235/235
Epoch 8/30
235/235
                             1s 3ms/step - loss: 0.1043 - val_loss: 0.1006
Epoch 9/30
235/235
                             1s 3ms/step - loss: 0.1012 - val_loss: 0.0981
Epoch 10/30
235/235
                             1s 3ms/step - loss: 0.0988 - val_loss: 0.0963
Epoch 11/30
235/235
                             1s 3ms/step - loss: 0.0971 - val_loss: 0.0949
Epoch 12/30
235/235
                             1s 3ms/step - loss: 0.0957 - val_loss: 0.0940
Epoch 13/30
                             1s 3ms/step - loss: 0.0952 - val_loss: 0.0935
235/235
Epoch 14/30
235/235
                             1s 3ms/step - loss: 0.0947 - val_loss: 0.0932
Epoch 15/30
235/235
                             1s 3ms/step - loss: 0.0943 - val_loss: 0.0929
Epoch 16/30
                             1s 3ms/step - loss: 0.0941 - val_loss: 0.0926
235/235
Epoch 17/30
235/235
                             1s 3ms/step - loss: 0.0938 - val_loss: 0.0925
Epoch 18/30
```

Epoch 15/30	13 July Step 1033, 0.0347 Val_1033, 0.0332
235/235	1s 3ms/step - loss: 0.0943 - val_loss: 0.0929
Epoch 16/30	4- 2/ 1 0.0044 1.1 0.0005
235/235 Epoch 17/30	1s 3ms/step - loss: 0.0941 - val_loss: 0.0926
235/235	1s 3ms/step - loss: 0.0938 - val loss: 0.0925
Epoch 18/30	
235/235	1s 3ms/step - loss: 0.0936 - val_loss: 0.0924
Epoch 19/30 235/235	1s 3ms/step - loss: 0.0935 - val loss: 0.0923
Epoch 20/30	13 3m3/3ccp 1033: 0.0333 Val_1033: 0.0323
235/235	1s 3ms/step - loss: 0.0935 - val_loss: 0.0923
Epoch 21/30	
235/235 Epoch 22/30	1s 3ms/step - loss: 0.0936 - val_loss: 0.0922
235/235	1s 3ms/step - loss: 0.0932 - val loss: 0.0922
Epoch 23/30	·
235/235	1s 3ms/step - loss: 0.0933 - val_loss: 0.0920
Epoch 24/30 235/235	1s 3ms/step - loss: 0.0933 - val loss: 0.0921
Epoch 25/30	13 3m3/3ccp 10331 010333 Val_10331 010321
235/235	1s 3ms/step - loss: 0.0931 - val_loss: 0.0921
Epoch 26/30	4- 2/ 1 0 00201 1 0 0020
235/235 Epoch 27/30	1s 3ms/step - loss: 0.0930 - val_loss: 0.0920
235/235	1s 3ms/step - loss: 0.0931 - val loss: 0.0919
Epoch 28/30	
235/235	1s 3ms/step - loss: 0.0930 - val_loss: 0.0919
Epoch 29/30 235/235	1s 3ms/step - loss: 0.0928 - val loss: 0.0919
Epoch 30/30	23 3m3/300p 2035/ 0/0320 Vd1_1033/ 0/0313
235/235	1s 3ms/step - loss: 0.0930 - val_loss: 0.0919
313/313	0s 687us/step

RESULT:

Implement a Simple LSTM using TensorFlow/Keras.

EX No: 10
Date:
Aim:
Implement a Simple LSTM using TensorFlow/Keras.
Algorithm:
Step 1: Start the program.
Step 2: Import necessary libraries (numpy, TensorFlow/Keras modules for model
building and training).
Step 3: Create a dataset of shape (100, 10), split into X (first 9 columns) and y

Step 4 : Create an LSTM model with 50 units, add a dense layer with 1 output.

Step 5 : Compile using adam optimizer and mse loss, train for 200 epochs.

(last column), reshape X to 3D.

Step 7 : Print predicted value.

Step 8 : Execute the program.

Step 6 : Reshape test input, predict next value.

```
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM,Dense
data= np.array([[i for i in range(10)] for _ in range(100)])
X,y=data[:,:-1],data[:,-1]
X=X.reshape((X.shape[0],X.shape[1],1))
model=Sequential()
model.add(LSTM(50,activation='relu',input_shape=(9,1)))
model.add(Dense(1))
model.compile(optimizer='adam',loss='mse')
model.fit(X,y,epochs=200,verbose=0)
test_input=np.array([7,8,9,10,11,12,13,14,15])
test_input=test_input.reshape((1,9,1))
predicted_value=model.predict(test_input,verbose=0)
print(f'Predicted value: {predicted_value[0][0]}')
```

```
In [22]: runfile('C:/Users/day1/Desktop/ish
Desktop/ishtiyaaq-aml')
Predicted value: 90.44569396972656
In [23]:
```

RESULT: