Vzorové řešení úkolu 5

Zadání: Spočtěte Fourierův obraz vektoru $x:=(1,i,-1,-i,1,i,-1,-i,\dots)$ délky n dělitelné 4.

Řešení:

Uvažme nejprve definici diskrétní Fourierovy transformace z přednášky: Vektor $x=(x_0,x_1,\ldots,x_{n-1})$ se zobrazí na vektor $y=(y_0,y_1,\ldots,y_{n-1})$, tž.

$$y_j = \sum_{k=0}^{n-1} x_k \cdot \omega^{jk},$$

kde ω značí libovolnou fixní primitivní n-touodmocninu z jedné. Pojďme jednu konkrétní odmocninu zafixovat, tedy mějme

$$\omega := e^{\frac{2\pi i}{n}}.$$

Můžeme si všimnout, že zadané x se na k-tém indexu (indexováno od nuly) rovná $e^{\frac{2\pi i \cdot k}{4}}$, neboli

$$x_k = \omega^{\frac{n}{4}k}.$$

Jeden ze způsobů, jak tohle pozorování využít, je následující: Uvažme definici y_j :

$$y_j = \sum_{k=0}^{n-1} x_k \cdot \omega^{jk}$$

$$y_j = \sum_{k=0}^{n-1} \omega^{\frac{n}{4}k} \cdot \omega^{jk}.$$

Obě strany rovnosti můžeme vynásobit koeficientem $\omega^{\frac{n}{4}}\cdot\omega^{j}.$

$$\omega^{\frac{n}{4}} \cdot \omega^{j} \cdot y_{j} = \omega^{\frac{n}{4}} \cdot \omega^{j} \cdot \sum_{k=0}^{n-1} \omega^{\frac{n}{4}k} \cdot \omega^{jk}$$

$$\omega^{\frac{n}{4}} \cdot \omega^{j} \cdot y_{j} = \sum_{k=0}^{n-1} \omega^{\frac{n}{4}k} \cdot \omega^{\frac{n}{4}} \cdot \omega^{jk} \cdot \omega^{j}$$

$$\omega^{\frac{n}{4}} \cdot \omega^{j} \cdot y_{j} = \sum_{k=0}^{n-1} \omega^{\frac{n}{4}(k+1)} \cdot \omega^{j(k+1)}$$

$$\omega^{\frac{n}{4}} \cdot \omega^{j} \cdot y_{j} = \left(\sum_{k=1}^{n-1} x_{k} \cdot \omega^{jk}\right) + \omega^{\frac{n}{4}n}$$

$$\omega^{\frac{n}{4}} \cdot \omega^{j} \cdot y_{j} = \sum_{k=0}^{n-1} x_{k} \cdot \omega^{jk}$$

$$\omega^{\frac{n}{4}} \cdot \omega^{j} \cdot y_{j} = \sum_{k=0}^{n-1} x_{k} \cdot \omega^{jk}$$

$$\omega^{\frac{n}{4}} \cdot \omega^{j} \cdot y_{j} = y_{j}.$$

S tím už se pracuje jednoduše: aby poslední rovnost platila, musí být buď $\omega^{\frac{n}{4}} \cdot \omega^{j}$ rovno jedné, nebo musí být $y_{j} = 0$. Protože ω je primitivní n-tá odmocnina, platí $\omega^{\frac{n}{4}} \cdot \omega^{j} = 1$ právě pro $j = \frac{3n}{4} + \ell \cdot n$ (kde $\ell \in \mathbb{Z}$), tedy (indexy jdou jen od 0 do n-1) na všech indexech kromě $j = \frac{3n}{4}$ bude $y_{j} = 0$. Na samotném indexu $j = \frac{3n}{4}$ pak dostaneme

$$y_{\frac{3n}{4}} = \sum_{k=0}^{n-1} x_k \cdot \omega^{\frac{3n}{4}k}$$

$$y_{\frac{3n}{4}} = \sum_{k=0}^{n-1} \omega^{\frac{n}{4}k} \cdot \omega^{\frac{3n}{4}k}$$

$$y_{\frac{3n}{4}} = \sum_{k=0}^{n-1} \omega^{n \cdot k}$$

$$y_{\frac{3n}{4}} = \sum_{k=0}^{n-1} 1$$

$$y_{\frac{3n}{4}} = n.$$

Fourierova transformace jako přechod z kanonické báze na jinou

Pojďme ale ještě připomenout definici Fourierovy transformace z prezentace na cviku. Říkali jsme, že množina

$$B = \{ \frac{1}{\sqrt{n}} \left(e^{\frac{(2\pi i)jk}{n}} \right)_{k=0}^{n-1} \mid j = 0 \dots n-1 \}$$

tvoří ortonormální bázi prostoru \mathbb{C}^n (chápaného s indexací od nuly do n-1) se standardním komplexním skalárním součinem

$$\langle u,v \rangle = \sum_{k=0}^{n-1} u_k \overline{v_k}$$
 (\overline{a} značí číslo komplexně sdružené s a).

V pořadí j-tý bázický vektor označme $b_j := \frac{1}{\sqrt{n}} \left(e^{\frac{(2\pi i)jk}{n}}\right)_{k=0}^{n-1}$. Důkaz toho, že jde o ortonormální bázi, dám pro zájemce na konec tohoto dokumentu. Pojďme tomu zatím jen věřit, a definujme (diskrétní) Fourierovu transformaci y vektoru x tak, že $x = \sum_{j=0}^{n-1} y_j b_j$. Tedy y_j je koeficient u bázického vektoru b_j a Fourierova transformace není nic než lineární zobrazení kanid $_B$ přechodu z kanonické báze na Fourierovu bázi B.

Z toho máme snadné alternativní řešení úlohy 5: Vžimněme si, že zadaný vektor x je přesně roven \sqrt{n} -násobku bázického vektoru $b_{\frac{n}{4}}$, takže (dle této definice DFT) je $y_{\frac{n}{4}} = \sqrt{n}$ a všechna ostatní y_j jsou 0.

S tímto chápáním DFT je tak řešení úlohy na první pohled zjevné (jen jsme si museli všimnout, že zadaný vektor je periodický, a bude tak násobkem nějakého bázického vektoru). Pojďme promyslet, čím přesně se tato definice DFT liší od té z přednášky. Nepracujeme zde s obecnou primitivní n-tou odmocninou z jedničky ω , ale s konkrétními mocninami $e^{\frac{2\pi i}{n}}$. Pro každou ortonormální bázi $B = \{b_0, \ldots, b_{n-1}\}$ pak platí, že je-li $x = \sum_{k=0}^{n-1} y_k \cdot b_k$, pak

$$\langle x, b_i \rangle = \left\langle \sum_{k=0}^{n-1} y_k \cdot b_k, b_i \right\rangle = \sum_{k=0}^{n-1} y_k \left\langle b_k, b_i \right\rangle = \left(\sum_{\substack{k \in \{0, \dots, n-1\}\\k \neq i}} 0 \right) + y_i \left\langle b_i, b_i \right\rangle = y_i,$$

takže koeficient y_k se dá spočítat jednoduše jako skalární součin $y_j = \langle x, b_j \rangle$, a pro naši konkrétní volbu báze B máme

$$y_j = \langle x, b_j \rangle = \sum_{k=0}^{n-1} x_k \cdot \frac{1}{\sqrt{n}} e^{\frac{(2\pi i)jk}{n}} = \frac{1}{\sqrt{n}} \cdot \sum_{k=0}^{n-1} x_k \cdot e^{-\frac{(2\pi i)jk}{n}}.$$

Vídíme tak, že tahle definice DFT se od té přednáškové liší jen konkrétní volbou ω , škálováním normovacím koeficientem $\frac{1}{\sqrt{n}}$ a minusem v exponentu (v přednášce se používalo násobení po složkách, tady používáme skalární součin; to je taky důvod, proč teď nenulový index vyšel jako $\frac{n}{4}$, zatímco s přednáškovou definicí to bylo $\frac{3n}{4}$).

Důkaz, že jde o ortonormální bázi

Takže Vám nestačí jen věřit, že o ortonormální bázi jde (to je dobře!). Dokažme to formálně. Budeme na to potřebovat dokázat, že B je ortonormální systém, tj.

- 1. že $||b_k|| = 1$ pro každé $k \in \{0, \dots, n-1\}$, tzn. každý bázický vektor je normální (má jednotkovou velikost),
- 2. a že $\langle b_k, b_\ell \rangle = 0$ jakmile $k \neq \ell$, tzn. že bázické vektory jsou po dvou ortogonální.

Jakmile to dokážeme, fakt, že jde o bázi prostoru \mathbb{C}^n už máme zadarmo, protože po dvou ortogonální systém je nutně lineárně nezávislý a n-prvková množina lineárně nezávislých vektorů n-rozměrného prostoru nutně tvoří bázi tohoto prostoru.

Pojďme to tedy ověřit.

První vlastnost, normalita b_k , je snadná: Máme

$$||b_k|| = \sqrt{\langle b_k, b_k \rangle} = \sqrt{\sum_{j=0}^{n-1} \frac{1}{\sqrt{n}} e^{\frac{(2\pi i)jk}{n}} \cdot \frac{1}{\sqrt{n}} e^{-\frac{(2\pi i)jk}{n}}} = \sqrt{\sum_{j=0}^{n-1} \frac{1}{n} e^{\frac{(2\pi i)jk}{n} - \frac{(2\pi i)jk}{n}}} = \frac{1}{\sqrt{n}} \sqrt{\sum_{j=0}^{n-1} e^{0}} = 1.$$

Druhou vlastnost, ortogonalitu vektorů, nahlédneme podobným trikem, jakým jsme aritmeticky vyřešili úlohu 5. Buďte $k \neq \ell$, takže

$$\langle b_k, b_\ell \rangle = \frac{1}{n} \sum_{j=0}^{n-1} e^{\frac{(2\pi i)jk}{n} - \frac{(2\pi i)j\ell}{n}}$$
$$= \frac{1}{n} \sum_{j=0}^{n-1} e^{(k-\ell)\frac{(2\pi i)j}{n}},$$

kde koeficient $(k - \ell)$ je nenulový.

Přenásobme obě strany konstantou $e^{(k-\ell)\frac{2\pi i}{n}}$

$$e^{(k-\ell)\frac{2\pi i}{n}} \langle b_k, b_\ell \rangle = \frac{1}{n} \sum_{j=0}^{n-1} e^{(k-\ell)\frac{2\pi i}{n}} e^{(k-\ell)\frac{(2\pi i)j}{n}}$$

$$e^{(k-\ell)\frac{2\pi i}{n}} \langle b_k, b_\ell \rangle = \frac{1}{n} \sum_{j=0}^{n-1} e^{(k-\ell)\frac{(2\pi i)(j+1)}{n}}$$

$$e^{(k-\ell)\frac{2\pi i}{n}} \langle b_k, b_\ell \rangle = \frac{1}{n} \left(\sum_{j=1}^{n-1} e^{(k-\ell)\frac{(2\pi i)j}{n}} + e^{(k-\ell)\frac{(2\pi i)n}{n}} \right)$$

$$e^{(k-\ell)\frac{2\pi i}{n}} \langle b_k, b_\ell \rangle = \frac{1}{n} \left(\sum_{j=1}^{n-1} e^{(k-\ell)\frac{(2\pi i)j}{n}} + e^{(k-\ell)\frac{(2\pi i)0}{n}} \right)$$

$$e^{(k-\ell)\frac{2\pi i}{n}} \langle b_k, b_\ell \rangle = \frac{1}{n} \sum_{j=0}^{n-1} e^{(k-\ell)\frac{(2\pi i)j}{n}}$$

$$e^{(k-\ell)\frac{2\pi i}{n}} \langle b_k, b_\ell \rangle = \langle b_k, b_\ell \rangle.$$

Konstanta $(k-\ell)$ nemůže být násobkem n (není to nula a její absolutní hodnota je nanejvýš (n-1)), proto $e^{(k-\ell)\frac{2\pi i}{n}}$ nutně není rovno jedné. Díky tomu jediný způsob, jak může platit poslední rovnost je, že $\langle b_k, b_\ell \rangle = 0$. Máme dokázáno.

Proč je zrovna tahle báze zajímavá? Je složena z periodických vektorů se zkracující se periodou. Volně podáno nám tak říká, že libovolný n-složkový vektor (který si taky můžeme představit jako n rovnoměrně sebraných vzorků funkce z $\mathbb R$ do $\mathbb C$) lze vyjádřit jako součet nějakých n frekvencí.