1

NOMBRE Y APELLIDO:

CARRERA:

CONDICIÓN (R o L):

*Para aprobar el examen, debe estar correctamente resuelto en un 50%, lo que equivale a 50 puntos.

*Quienes hayan regularizado la materia durante el segundo cuatrimestre de 2017 tendrán un puntaje **extra** de acuerdo a la notas de los parciales.

*Los alumnos en Condición Regular no deben resolver el ítem (b) del Ejercicio 1: el puntaje del mismo se les sumará automáticamente por revestir esta condición.

Justificar todas las respuestas. No está permitido el uso de calculadoras o dispositivos electrónicos.

Ejercicio 1. (a) (10 pts.) Describir de manera paramétrica el conjunto solución del sistema homogéneo:

$$\begin{cases} 2y + z = 0\\ -x + y + 2z = 0\\ x + 3y = 0 \end{cases}$$

(b) (5 pts.) (solo alumnos libres) Indicar cuál es la MERF asociada al sistema anterior.

Ejercicio 2. (10 pts.) Sea
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$
 la matriz

- (a) Calcular el determinante de A.
- (b) Calcular la inversa de A.

Ejercicio 3. (15 pts.) Sea $S = \{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^4$ donde

$$v_1 = (-1, 0, 1, 2)$$
 $v_2 = (3, 4, -2, 5)$ $v_3 = (0, 4, 1, 11)$ $v_4 = (1, 4, 0, 9).$

- (a) Describir implícitamente el subespacio $W=\langle S \rangle$, es decir, hallar un sistema de ecuaciones lineales homogéneas para las cuáles el espacio de soluciones sea exactamente W.
- (b) Si $W_1 = \langle v_1, v_2, v_3 + v_4 \rangle$ y $W_2 = \langle v_3, v_4 \rangle$ describir $W_1 \cap W_2$ implícitamente.

Ejercicio 4. (15 pts.) Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, la transformación lineal definida

$$T(x,y) = (x - y, x + y, 2x + 3y).$$

(a) Dar una base del núcleo y la imagen de T.

(b) Dar la matriz de T en las bases $\mathcal{B}_2 = \{(1,0),(1,1)\}$ y $\mathcal{B}_3 = \{(1,0,0),(1,1,0),(1,1,1)\}$ de \mathbb{R}^2 y \mathbb{R}^3 , respectivamente.

Ejercicio 5. (15 pts.) Sea
$$A = \begin{bmatrix} 7 & 1 \\ 2 & 8 \end{bmatrix}$$
.

- (a) Calcular los autovalores de A.
- (b) Decidir si A es diagonalizable.

Ejercicio 6. (15 pts.)

- (a) Si A, B son matrices $n \times n$ inversibles, entonces AB es una matriz inversible.
- (b) Sea V espacio vectorial y sea $T:V\to V$ una aplicación lineal. Sean v_1,\ldots,v_m autovectores de T, con autovalores $\lambda_1,\ldots,\lambda_m$ respectivamente. Si $\lambda_1,\ldots,\lambda_m$ son distintos entre si, entonces v_1,\ldots,v_m son linealmente independientes.
- Ejercicio 7. (15 pts.) Sea $T:V\to W$ una transformación lineal entre dos espacios vectoriales. Supongamos que $T(v_1)=w_1,\ldots,T(v_n)=w_n$, para vectores v_1,\ldots,v_n de V y w_1,\ldots,w_n de W. Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar la respuesta con una demostración o contraejemplo, según corresponda.
 - (a) Si w_1, \ldots, w_n es un conjunto linealmente independiente, entonces v_1, \ldots, v_n linealmente independiente.
 - (b) Si w_1, \ldots, w_n genera W, entonces v_1, \ldots, v_n genera V.
 - (c) Si v_1, \ldots, v_n genera V, entonces w_1, \ldots, w_n genera Im(T).

Ejercicio	1	2	3	4	5	6	7
Puntaje							

P. Extra	Total