Digital Signature

Def. Digital signature consists of (KeyGen, Sign, Verify):

- $(vk, sk) \leftarrow \mathsf{KeyGen}(1^{\lambda});$
 - \circ Input: a security parameter λ
 - \circ Output: a verification key vk and a signing key sk
- $\sigma \leftarrow \mathsf{Sign}(m, sk)$;
 - \circ Input: a message m and a signing key sk
 - \circ Output: a signature σ of m
- $b \leftarrow \mathsf{Verify}(m, \sigma, vk)$;
 - \circ Input: a message m, a signature σ and a verification key vk
 - $\circ~$ Output: a bit b=1 when σ is a valid siganture of m

RSA Signature

- KeyGen (1^{λ}) ;
 - $\circ \;\;$ Choose two large primes p and q and n:=pq
 - Choose e such that $1 < e < \phi(n) = (p-1)(q-1)$ and $\gcd(e,\phi(n)) = 1$
 - \circ Compute d such that $ed \equiv 1 \bmod p$
 - \circ Output $vk=\{e,n\}$ and $sk=\{d,p,q\}$
- Sign(m, sk);
 - $\circ \quad \text{Output } m^d \mod n$
- Verify (m, σ, vk) ;
 - \circ Compute $m' := \sigma^e \mod n$
 - \circ If m=m', output 1
 - Otherwise, output 0

ElGamal Signature

- KeyGen (1^{λ}) ;
 - \circ Choose a large prime p and $g \leftarrow \mathbb{Z}_p^*$
 - $\circ \ \ \text{Choose a secret key} \ s \leftarrow \mathbb{Z}_p^*$
 - \circ Compute $y := g^s \mod p$.
 - $\quad \text{Output} \ vk = \{p,g,y\} \ \text{and} \ sk = \{s\}$
- Sign(m, sk);
 - \circ Choose a random $r \leftarrow \mathbb{Z}_p^*$
 - \circ Compute $\sigma_1 := g^r mod p$ and $\sigma_2 := r^{-1}(m-s\cdot \sigma_1) mod p 1$
 - \circ Output $\sigma = (\sigma_1, \sigma_2)$
- Verify (m, σ, vk) ;
 - $\circ \;\;$ Compute $g_1:=y^{\sigma_1}\sigma_1^{\sigma_2} \; \mathrm{mod} \; p$

```
\circ Compute g_2 := g^m \mod p
```

- $\circ \hspace{0.1in}$ If $g_1 \equiv g_2$, output 1
- Otherwise, output 0
- A signed message m is revealed.
- How to generate a signature while protecting a message?
 - use Blind signature which will be covered in the next time.
- If m is long, use $(m, \sigma(H(m)))$ instead of $(m, \sigma(m))$ where H is a cryptographic hash function.

Digital Signature Algorithm (DSA)

- KeyGen (1^{λ}) ;
 - Choose a prime q and p such that q|p-1.
 - \circ Choose $g \leftarrow \mathbb{Z}_p^*$ and compute $y_1 := g^{rac{p-1}{q}} mod p$
 - \circ Choose a secret $s \leftarrow \mathbb{Z}_p^*$ and $y_2 = y_1^s$
 - \circ Output $vk = \{p, g, y_1, y_2\}$ and $sk = \{s\}$
- Sign(m, sk);
 - Choose a random 0 < r < q 1.
 - \circ Compute $\sigma_1 := y_1^r \mod p \mod q$
 - \circ Compute $\sigma_2 := r^{-1}(m+s\cdot\sigma_1) mod q$
 - \circ Output (σ_1, σ_2)
- Verify (m, σ, vk) ;
 - Parse σ as (σ_1, σ_2) .
 - $\circ \;\;$ Compute $u_1 \equiv \sigma_2^{-1} m mod q$
 - \circ Compute $u_2 \equiv \sigma_2^{-1} \sigma_1 mod q$
 - \circ Compute $v \equiv y_1^{u_1}y_2^{u_2} mod p mod q$
 - If $v = \sigma_1$, output 1.
 - Otherwise, output 0.

Correctness

Since
$$m \equiv -s\sigma_1 + r\sigma_2 mod q$$
, $\sigma_2^{-1} m \equiv -s\sigma_1\sigma_2^{-1} + r mod q$.

Then,
$$r\equiv\sigma_2^{-1}m+s\sigma_1\sigma_2^{-1}\equiv u_1+su_2 mod q$$

Therefore,
$$v\equiv y_1^r\equiv y_1^{u_1+su_2}\equiv y_1^{u_1}y_2^{u_2} mod p mod q$$