1. a) Every set con	tains @ least o	ine subset bei	ause an empt	y set is a subset hat means the pr	of every set
Connot be empty					
				set is a subset	of a, and
				ided in the power	
	\$ ⊆ ₹a	3		24327	
	€az ⊆	र्वर	(yes		
	P({a}) = {\phi, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•		1
c) Subsets of	₹0,03 ave	ξφ3, φ, ξα3.	₹Ø3 15 not	an element of Ed	, ६०३,६०,०३३
SO 1+ 15	not a power	set	NO	2 x 2 x 3 20 3 CO	
d) \$5	a, 63		W(#) }	ma 9080919 60	
žaž.	£a, 63	there fore	P(\$a,63) = 20	1 2 4 3, 203, 20, 53 3	
363	< 3a,63	and old species	(405)	The second second	
	3 = 30,63		0		

2.	(A-B)-C= (A-C) - (B-C)
	-(A-C)-(B-C)= 8x1x = (A-C)-(B-C)3
	8x1x € (A-C) 1 - (x6B-C)3
	ξx ((x ∈ A Λ ¬ (xec)) Λ ¬ (xeB Λ ¬ (xec))}
	EXI(XEAN - (XEC)) A - (XEBV - (- (XEC)) }
	{ X ((X E A A T (X E C)) A (T (X E B) V X E C) }
	2X1 XEA A (- (X6C) A (- (XEB) V XEC)))3
	EXIXEN A (7 (XEC) A (7 (XEB) Y (7 (XEC) A XEC)))}
	EXIXEN AT (XEB) A T(XEC)
	{x (x∈A ∧ ¬ (x∈B)) ∧ ¬ (x∈C)}
	£x1(x ∈ (A-B) 1 ¬ (x ∈ c) }
	3×1∈(A-B)-C3 /
	CATC (H-6)-CZ
	Check:

A	18	C	1 A-B	A-C	1 B-C	(A-B)-C 1	(A-C)-(B-C)
1	1	1	0	0	0	0	0
1	1	0	0	1	1	0	0
1	0	1	1	0	0	0	0
1	0	0	1	1	0	1	1
0	1	1	0	0	0	6	0
0	1	0	0	0	1	0	0
0	0	1	0	0	0	0	6
6	0	0	0	0	0	0	0
		1 10				~~	

Both columns are the same,
... (A-B)-C=(A-C)-(B-C)

3. f: A=B

one to one: f(a) = f(b) implies a=b for all a and b onto: for every b & B there exists an element a & A such that f(a) = b

a) f(n) = 2n

 $f(a) = f(b) \rightarrow 2a = 2b$: a = b one to one $\sqrt{}$

fco = 3 does not exist 6nto x

