实验3 图型结构及其应用

(以下两个实验题目二选一)

实验项目:图型结构及其应用实验题目1:最小生成树算法

实验内容:

最小生成树是数据结构与算法中图的一种重要应用,在图中对于具有 n 个顶点的连通网可以建立许多不同结构的生成树,最小生成树就是在所有生成树中边权值之和最小的生成树。在计算机领域和实际工程中具有广泛的应用,如局域网的搭建,道路网(畅通工程)、地下管网的设计等。本实验要求设计和实现 Prim和 Kruskal 等算法,求解最小生成树问题。

实验要求:

- 1. 选择并建立加权连通图的存储结构,实现求解加权连通图的 Prim 算法,并 输出连接各项点的最小生成树。
- 2. 利用并查集,实现求解加权连通图的 Kruskal 算法,并输出连接各顶点的最小生成树。
- 3. 以文件形式输入图的顶点和边,并以适当的方式展示相应的结果。要求顶点不少于 10 个,边不少于 13 个(图的规模越大越好)。
- 4. 选做:通过实验的方法,比较 Prim 和 Kruskal 算法的时间性能,并与理论分析结果进行比较。你的实验结果是否与理论分析结果一致?你的实验结果是否支持"Prim 算法对边稠密的图更有优势,而 Kruskal 算法对边稀疏的图更具优势"这个结论?
- 5. 选做:利用堆结构(优先级队列)改进和优化 Prim 算法,实现改进和优化的 Prim 算法,并与原算法进行实验比较。
- 6. 选做:设计并实现其他最小生成树算法。例如,管梅谷破圈算法、Sollin (Boruvka)算法等。

实验题目 2: 最短路径算法

实验内容:

最短路径问题研究的主要有:单源最短路径问题和所有顶点对之间的最短路径问题。在计算机领域和实际工程中具有广泛的应用,如集成电路设计、GPS/游戏地图导航、智能交通、路由选择、铺设管线等。本实验要求设计和实现 Dijkstra 算法和 Floyd-Warshall 算法,求解最短路径问题。

实验要求:

- 1. 实现单源最短路径的 Dijkstra 算法,输出源点及其到其他顶点的最短路径长度和最短路径。
- 2. 实现全局最短路径的 Floyd-Warshall 算法。计算任意两个顶点间的最短距离矩阵和最短路径矩阵,并输出任意两个顶点间的最短路径长度和最短路径。
- 3. 利用 Dijkstra 或 Floyd-Warshall 算法解决单目标最短路径问题: 找出图中每个顶点 v 到某个指定顶点 c 最短路径。
- 4. 利用 Dijkstra 或 Floyd-Warshall 算法解决单项点对间最短路径问题:对于某对顶点 u 和 v,找出 u 到 v 和 v到 u 的一条最短路径。
- 5. 以文件形式输入图的顶点和边,并以适当的方式展示相应的结果。要求顶点不少于10个,边不少于13个。
- 6. 选做:实现 Warshall 算法,计算有向图的可达矩阵,理解可达矩阵的含义;
- 7. 选做:利用堆结构(优先级队列)改进和优化 Dijkstra 算法,实现改进和优化的 Dijkstra 算法,并与原算法进行实验比较。

实验说明:

- 1. 提交内容: (1) 源程序文件; (2) 实验测试数据和实验结果数据; (3) 实验报告(参见"实验报告参考模板-DSA2023")。
- 2. 提交格式: (1) 打包为 rar 或 zip 文件; (2) 命名规则: 学号姓名-实验编号, 如 2022110924 王梓诺-实验 3.rar。注意: 必须用一个且仅一个压缩文件。
- 3. 提交方法:

同时发送至老师和助教邮箱: 1444528362@qq.com 和 1797990956@qq.com

4. 提交截止时间: 2023 年 10 月 29 日 (第 9 周星期日) 23:59:59 之前