

A framework for fully autonomous design of materials via multiobjective optimization and active learning

Tyler Chang¹, Jakob Elias¹, Stefan Wild², Santanu Chaudhuri^{1,3} and Joseph Libera¹

¹Argonne National Laboratory

²Lawrence Berkeley National Laboratory

³University of Illinois Chicago

Our (Big) Goals

- Design a software framework for self-driving labs
- Accelerate discovery via intelligent experimentation
- Democratize lab-work by building open-source tools

Streaming data from multiple sources

- How to collect and analyze data?
- MDML is a platform for streaming, analyzing, and logging experiment and simulation data

Model-based optimization

 ParMOO (multiobjective optimization) library is used to implement an active learning loop

Our framework and software stack

- MDML gives us access to heterogeneous data from laboratory sources
- ParMOO gives us modular/customizable modeling, embedding, and solvers

Build & deploy custom solvers for computational and experimental problem!

Example: TFMC Manufacturing Conditions

Optimize the production of TFMC via a known reaction...

Base: N,N-Diisopropylethylamine

... in LabVIEW automated CFR and measured via NMR

> Left to right: PC running LabVIEW CFR and feed NMR spectroscope

Design variables and bound constraints for experiment

Parameter	Lower bound	Upper bound
Temperature (degrees C)	40	150
Reaction time (seconds)	60	300
Equivalence ratio (no units)	0.9	2

Experiment Results

- Want to maximize TFMC production at high temperatures
- High temperatures trigger a side-reaction and produces byproduct (TFE)
- 15-pt Latin hypercube, Gaussian RBF surrogate, L-BFGS-B optimizer
- 3 scalarizations per batch, sorted by temp
- evaluated batch on CFR, TFMC and TFE peaks recorded by NMR

Results after 41 experiments steered by our solver

Get this code!

git clone https://github.com/parmoo/cfr-materials pip install REQUIREMENTS.txt

Next Steps

Need to handle more complex design spaces:

- Generative AI for embeddings
- Trust-region descent methods
- Subspace iterations
- Custom surrogate models
- Structure-exploiting optimizers

(Top) using custom embedders to optimize in latent space

(Bottom) exploiting problem structure using composite objectives

This material was based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics and SciDAC programs under Contract Nos. DE-AC02-05CH11231 and DE-AC02-06CH11357 and by the Argonne LDRD program.