Section 4.5: The Dimension of a Vector Space

Definition 1. If V is spanned by a finite set, then V is said to be a **finite-dimensional**, and the **dimension** of V, written $\dim(V)$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

Example 2. Let's discuss the dimension of vector spaces we have already studied.

1. $\dim(\mathbb{R}^n) = n$

Why: The standard basis for \mathbb{R}^n is the set $\{e_1, e_2, \dots e_n\}$. Since this set has n vectors we have $\dim(\mathbb{R}^n) = n$.

2. $\dim(\mathbb{P}_n) = n+1$

Why: The standard basis for \mathbb{P}_n is the set $\{1, x, x^2, \dots, x^n\}$. Since this set has n+1 vectors in it we have $\dim(\mathbb{P}_n) = n+1$.

3. $\dim(M_{2\times 2}(\mathbb{R}))=4$

Why: The standard basis for $M_{n\times n}(\mathbb{R})$ is the set $\left\{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right\}$. Since this set has n+1 vectors in it we have $\dim(M_{n\times n}(\mathbb{R}))=4$.

In general dim $(M_{m \times n}(\mathbb{R})) = mn$.

4. P is infinite dimensional

Why: The standard basis for \mathbb{P} is the set $\{1, x, x^2, x^3, x^4, \dots\}$. Since this set is an infinite set we have \mathbb{P} is an infinite dimensional v vector space.

5. Let A be a $m \times n$ matrix. The dimension of the subspaces Nul(A) and Col(A) are:

 $\dim(\text{Nul}(A)) = \text{ the number of free variables (non pivot columns)}$

 $\dim(\operatorname{Col}(A)) = \text{ the number of pivot columns}$

Theorem 3. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Remark: This theorem tells us that if $\dim(V) = n$, then every single basis for V must have n vectors.

Theorem 4. If a vector space V has a basis $\mathcal{B} = \{b_1, \ldots, b_n\}$, then any set in V containing more than n vectors must be linearly dependent.

Example 5. Determine which sets are a basis for \mathbb{R}^3 .

Solution: Since $\dim(\mathbb{R}^3) = 3$, we know every basis for \mathbb{R}^3 must contain exactly 3 vectors.

- $\left\{ \begin{bmatrix} 1\\5\\0 \end{bmatrix}, \begin{bmatrix} -1\\3\\5 \end{bmatrix}, \begin{bmatrix} 0\\2\\4 \end{bmatrix}, \begin{bmatrix} 7\\9\\3 \end{bmatrix} \right\}$; not a basis since it contains 4 vectors and thus linearly dependent.
- $\left\{ \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} \right\}$; not a basis since it contains 2 vectors.
- $\left\{ \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\4\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\0 \end{bmatrix} \right\}$; although this set contains 3 vectors it is not a basis since it is not a linearly independent set.
- $\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$; is a basis since it contains 3 vectors AND is a linearly independent set.

Theorem 6. Let H be a subspace of a finite dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is a finite-dimensional and

$$\dim(H) \leq \dim(V).$$

Remark 7. This theorem tells us the dimension of a subspace H of a vector space V is at most the dimension of V.

Theorem 8. Let V be a p-dimensional vector space, for $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Remark 9. The $\dim(\text{Nul}(A))$ is the number of free variables in the equation Ax = 0 and $\dim(\text{Col}(A))$ is the number of pivot columns in A.

Example 10. Suppose $A = \begin{bmatrix} -2 & 4 & -2 \\ 2 & -6 & -3 \\ -3 & 8 & 2 \end{bmatrix}$ is row equivalent to $\begin{bmatrix} 1 & 0 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 0 \end{bmatrix}$. Find the dimension of subspaces Nul(A) and Col(A).

Solution: Since A has two pivot columns (columns 1 and 2) we have $\dim(\operatorname{Col}(A)) = 2$. Also, since A has 1 free variable we have $\dim(\operatorname{Nul}(A)) = 1$.

Example 11. Find a basis for the subspace $H = \left\{ \begin{bmatrix} 2c \\ a-b \\ b-3c \\ a+2b \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$ of \mathbb{R}^4 .

Solution: Observe, vectors in H have the form

$$\begin{bmatrix} 2c \\ a-b \\ b-3c \\ a+2b \end{bmatrix} = a \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ -1 \\ 1 \\ 2 \end{bmatrix} + c \begin{bmatrix} 2 \\ 0 \\ -3 \\ 0 \end{bmatrix}$$

Therefore we have $H = \operatorname{span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -3 \\ 0 \end{bmatrix} \right\}$. Next, we determine if this set is

linearly independent. Since

$$\begin{bmatrix} 0 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -3 \\ 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

and we have a pivot in every column, we have the set $\left\{\begin{bmatrix}0\\1\\0\\1\end{bmatrix},\begin{bmatrix}0\\-1\\1\\2\end{bmatrix},\begin{bmatrix}2\\0\\-3\\0\end{bmatrix}\right\}$ is linearly independent. Therefore this set forms a basis for H, and thus $\dim(H) = 3$.

Example 12. Find the dimension of the subspace spanned by the given vectors.

$$\bullet \left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} -7\\-3\\1 \end{bmatrix}, \begin{bmatrix} 9\\4\\-2 \end{bmatrix}, \begin{bmatrix} 3\\1\\1 \end{bmatrix} \right\}$$

Solution: So we have our subspace is the

$$H = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -7 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} \right\} = \operatorname{Col}(A),$$

where $A = \begin{bmatrix} 1 & -7 & 9 & 3 \\ 0 & -3 & 4 & 1 \\ 2 & 1 & -2 & 1 \end{bmatrix}$. We row reduce A to find our pivot columns. This gives

$$\begin{bmatrix} 1 & -7 & 9 & 3 \\ 0 & -3 & 4 & 1 \\ 2 & 1 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -7 & 9 & 3 \\ 0 & 1 & -4/3 & -1/3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Therefore, our pivot columns are the first 2 columns so we have a basis for H is the set $\left\{\begin{bmatrix}1\\0\\2\end{bmatrix},\begin{bmatrix}-7\\-3\\1\end{bmatrix}\right\}$ and thus $\dim(H)=2$.

Textbook Practice Problems: Section 4.5 (page 231-232) # 1-6, 11,12, 13-18.

END OF SECTION 4.5