2.7 Propriedades das Linguagens Regulares

♦ LR podem ser representadas por formalismos

- baixa complexidade
- grande eficiência
- fácil implementação

♦ Entretanto, é uma classe de linguagens

- restrita
- limitada
- é fácil definir linguagens que *não* são regulares

♦ Algumas questões sobre LR necessitam ser analisadas

- como determinar se uma
 - * linguagem é regular?
- como verificar se uma LR é
 - * infinita?
 - * finita?
 - * vazia?
- é possível analisar duas LR e concluir se são
 - * iguais?
 - * diferentes?
- ou seja, é possível verificar
 - * se duas especificações são equivalentes?
 - * se dois compiladores são equivalentes?

- * se o compilador aceita exatamente a linguagem especificada?
- a classe das LR é fechada para operações de

```
* união?* concatenação?
```

* intersecção?

♦ A análise de cada propriedade

- é desenvolvida para um formalismo
- demais formalismos
 - * é suficiente traduzir
 - * AFD → ER não foi apresentada

♦ Bombeamento para as LR

- proposição útil no estudo das propriedades
- LR
 - * é aceita por um AFD com n estados
- AFD reconhece w tq $|w| \ge n$
 - * obrigatoriamente assume algum estado q mais de uma vez
 - * existe um ciclo no programa que passa por q
- logo, w pode ser dividida em três subpalavras
 - * w = uvz, onde $|uv| \le ne |v| \ge 1$
 - * V é a parte reconhecida pelo ciclo
- claramente uvⁱz para qq i ≥ 0
 - * é aceita pelo AFD executando o ciclo i vezes

♦ Teorema: Se L é LR, então

- existe n tq,
- para qq $w \in L$ onde $|w| \ge n$,
- w pode ser definida como w = uvz

*
$$|uv| \le n e |v| \ge 1$$

• para todo $i \ge 0$, $uv^i z \in L$

♦ Prova

- L é LR
 - * existe AFD M = $(\Sigma, Q, \delta, q_0, F)$ tq L(M) = L
- seja n o cardinal de Q
- seja $w = a_1 a_2 ... a_m \in L tq m \ge n$
- suponha $\delta(q_0,a_1) = q_1$, $\delta(q_1,a_2) = q_2$,..., $\delta(q_{m-1},a_m) = q_m$

- como $m \ge n$ existem r, s onde $0 \le r < s \le n$ tq
 - $* q_r = q_s$
 - * $\underline{\delta}(q_0, a_1...a_r) = q_r, \underline{\delta}(q_r, a_{r+1}...a_s) = q_s$
 - * $\underline{\delta}(q_s, a_{s+1}...a_m) = q_m$
- sejam $u = a_1...a_r$, $v = a_{r+1}...a_s$ e $z = a_{s+1}...a_m$
- como $r < s \le n$, então $|v| \ge 1$ e $|uv| \le n$
- como qr = qs, então
 - * V é reconhecida em um ciclo
 - * portanto, $uv^iz \in L$, para todo $i \ge 0$

Lema do Bombeamento como um jogo de dois Adversários

- 1.0 jogador 1 escolhe a linguagem L para provar que não é regular
- 2.O jogador 2 escolhe n, mas não revela para o jogador 1 que n foi escolhido; o jogador 1 deve inventar uma jogada para cada n possível.
- 3.O jogador 1 escolhe w, que deve depender do n e que deve ser no mínimo de tamanho n.
- 4.O jogador 2 divide w em u, v e z, obedecendo o lema do bombeamento (v≠ε e |uv|≤n). Novamente, o jogador 2 não informa o jogador 1 quais são u, v e z.
- 5.0 jogador 1 "ganha" escolhendo um k, que deve ser uma função de n, u, v e z, a qual uv^kz não está em L.

- Exemplo Provar que a linguagem L, que consiste em todas as palavras com um número igual de 0's e 1's (não tendo restrição na ordem), não é uma LR.
- Em termos do lema do bombeamento como um jogo, somos o jogador 1 e devemos lidar com qualquer escolha que o jogador 2 faça. Se o jogador escolhe n, nós devemos escolher w = 0ⁿ1ⁿ, que certamente esta em L.
- O jogador 2 quebra w em uvz.
- Sabendo que v≠ε e |uv|≤n, sabemos que uv só tem 0's. O lema do bombeamento diz que uz está em L se L é regular (k = 0). No entanto, uz tem n 1's, já que todos os 1's de w estão em z, e uz tem menos de n 0's já que perdemos os 0's de v.
 Como v≠ε então sabemos que pode ter até que n-1 0's entre x e z.
- Então, como uz não é palavra de L, L não é regular!

Exemplo. Bombeamento das LR

- n = 4
- no caso particular de w = abbba

$$* q_r = q_s = q_1$$

- * **u** = **a**
- * **v** = **bb**
- *z = ba

E com n qualquer e $w = ab^na$?

Linguagem Regular × Não-Regular

\bullet \acute{E} regular

- é suficiente representar usando
 - * autômato finito
 - * expressão regular
 - * gramática regular

♦ Não é regular

- necessita ser desenvolvida para cada caso
- algumas ferramentas específicas
 - * ex: bombeamento
 - * em geral, demonstração por absurdo

♦ Exemplo: Não é LR

L = {w | w possui o mesmo número de símbolos a e b, seguindo a ordem indicada}

Prova

- bombeamento + absurdo
- suponha que L é LR
- então existe AFD M com n estados que aceita L
- seja $w = a^n b^n$
- pelo bombeamento
 - * w = uvz onde $|uv| \le n$, $|v| \ge 1$
 - * para todo i ≥ 0, uvⁱz é palavra de L
- ABSURDO!!!
 - * | uv | ≤ n e uv é composta exclusivamente por símbolos a
 - * então, por exemplo uv²z, *não* pertence a L (não possui o mesmo número de símbolos a e b)

Operações Fechadas sobre LR

♦ Obs

- para uma linguagem L sobre Σ*,
 L' denota o seu complemento em Σ*
- ♦ Teorema: A classe das LR é fechada para
 - união
 - concatenação
 - complemento
 - intersecção

♦ Prova

- união e concatenação
 - * decorrem trivialmente da definição de ER
- complemento
 - * a idéia consiste em inverter as condições de ACEITA/REJEITA do AF
- inversão das condições ACEITA/REJEITA
 - * modifica o AF, garantindo que somente irá parar ao terminar de ler toda a entrada
 - * transforma os estados finais em não-finais e vice-versa
- intersecção
 - * tratar a intersecção em termos da união e complemento

♦ Complemento

- seja L uma LR sobre Σ^*
- seja M = $(\Sigma, Q, F, q_0, \delta)$ um AFD tq ACEITA(M) = L
- seja M' = $(\Sigma, Q', F', q_0, \delta')$ tq ACEITA(M') = L'
 - $* \mathbf{Q'} = \mathbf{Q} \cup \{\mathbf{d}\}$
 - * F' = Q' F
 - * δ' é como δ , excetuando-se
 - $\delta'(q, a) = d \operatorname{se} \delta(q, a) \operatorname{não} \operatorname{\acute{e}} \operatorname{definida}$
 - $\delta'(d, a) = d$

♦ Intersecção

- Sejam L₁ e L₂ LR
- $L_1 \cap L_2 = (L_1' \cup L_2')'$
- como a classe das LR é fechada para
 - * complemento
 - * união

então é fechada para a intersecção

Investigação se uma LR é Vazia, Finita ou Infinita

- ◆ Teorema: Se L é LR aceita por um AF M com n estados, então L
 é:
 - vazia sse M $n\tilde{a}o$ aceita qualquer w tq |w| < n
 - **finita** sse M *não* aceita w tq n ≤ |w| < 2n
 - infinita sse M aceita w tq n ≤ |w| < 2n
- ♦ Ou seja, prova-se que
 - *existe um algoritmo* para verificar se uma LR representada por um AF é *vazia*, *finita* ou *infinita*

♦ Pelo bombeamento

- se aceita w tq $|w| \ge n$
- então a linguagem é infinta

♦ Exemplo. LR Infinita

- infinita sse aceita w tq $n \le |w| < 2n$
- menor palavra aceita de comprimento maior ou igual a 3
 - * aabaa
 - * possui comprimento 5
 - * ou seja, 3 ≤ | aabaa | < 6

- ♦ Aceita w tq n ≤ |w| < 2n, então é Infinita</p>
 - seja $w \in L tq n \le |w| < 2n$
 - bombeamento
 - * w = uvz onde $|uv| \le n, |v| \ge 1$
 - * para todo i ≥ 0, uvⁱz é palavra de L
 - logo, L é infinita

- ♦ Infinita, então aceita w tq n ≤ |w| < 2n</p>
 - se é infinita, então existe w tq |w| ≥ n
 - se | w | < 2n, então a prova esta completa
 - suponha que $n\tilde{a}o$ existe w tq |w| < 2n
 - suponha $|w| \ge 2n$
 - * mas de comprimento menor ou igual a qualquer outra t tq |t| ≥ 2n
 - então w = uvz onde $|uv| \le n$, $|v| \ge 1$ e $uv^iz \in L$
 - em, particular, $1 \le |v| \le n e uz \in L$
 - ABSURDO!!!, pois relativamente a uz tem-se que:
 - se |uz| ≥ 2n
 - * w *não* é a menor palavra tq | w | ≥ 2n!!!
 - se | uz | < 2n

* como $|uvz| \ge 2n$ e $1 \le |v| \le n$ * então $n \le |uz| < 2n$ * logo existe w = uz tq $n \le |w| < 2n$

- ♦ Vazia sse não aceita qualquer w tq |w| < n
 - processa M
 - * para todo w tq |w| < n
 - se rejeita todas as palavras
 - * a linguagem é *vazia*
 - prova
 - * simples usando o bombeamento
 - * exercício

- ♦ Finita sse não aceita w tq n ≤ |w| < 2n</p>
 - consequência direta do caso infinita
 - * negação do caso infinita
 - processa M
 - * para todo w tq $n \le |w| < 2n$
 - se rejeita todas as palavras
 - * a linguagem é finita

Igualdade de Linguagens Regulares

♦ Teorema.

- se M₁ e M₂ são AF
- então existe algoritmo para determinar se
 - * $ACEITA(M_1) = ACEITA(M_2)$

♦ Portanto

- existe um algoritmo para verificar se
 - * dois AF são equivalentes
 - * reconhecem a mesma linguagem

♦ Prova

- sejam M₁ e M₂ AF tq
 - * $ACEITA(M_1) = L_1 e ACEITA(M_2) = L_2$
- seja $L_3 = (L_1 \cap L_2') \cup (L_1' \cap L_2)$
- portanto, é possível construir um AF M3 tq

* ACEITA(M₃) =
$$L_3$$
 = ($L_1 \cap L_2$ ') \cup ($L_1' \cap L_2$)

- claramente, L₁ = L₂ sse L₃ é *vazia*
 - * existe algoritmo para verificar se LR é vazia
 - * existe algoritmo para \cup , \cap e complemento

Eficiência de um AF como Algoritmo de Reconhecimento

♦ Simulador de qualquer AFD

- fácil implementação
- algoritmo que
 - * controla a mudança de estado
 - * a cada símbolo lido da entrada

♦ Tempo de processamento

- para aceitar ou rejeitar
 - * diretamente proporcional ao tamanho da entrada
- em termos de Complexidade
 - * pertence à mais rápida classe de algoritmos

♦ Tempo de processamento

- *não* depende do AFD
- qq AFD que reconheça a linguagem
 - * terá a mesma eficiência

♦ Otimização?

- redução do número de estados
- existe um algoritmo para construir
 - * AFD mínimo
 - * AFD com o menor número de estados