PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A61K 39/02	A1	(11) International Publication Number: WO 94/21290 (43) International Publication Date: 29 September 1994 (29.09.94)
(21) International Application Number: PCT/US (22) International Filing Date: 15 March 1994 ((81) Designated States: AU, BR, CA, FI, JP, KR, NO, RU, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB,
(30) Priority Data: 038,682 16 March 1993 (16.03.93)	τ	Published With international search report.
(71)(72) Applicants and Inventors: BARENKAMP, Ste [US/US]; 16 Villawood Lane, Webster Grove, M(4954 (US). ST. GEME, Joseph, William, III [US Bershire Drive, St. Louis, MO 63117 (US).	0 6311)
(74) Agent: BERKSTRESSER, Jerry, W.; Shoemaker and Ltd., 2001 Jefferson Davis Highway, 1203 Crys Building 1, P.O. Box 2286, Arlington, VA 223 (US).	tal Pla:	a l

(54) Title: HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS

(57) Abstract

High molecular weight surface proteins of non-typeable *Haemophilus influenzae* which exhibit immunogenic properties and genes encoding the same are described. Specifically, genes coding for two immunodominant high molecular weight proteins, HMW1 and HMW2, have been cloned, expressed and sequenced, while genes coding for high molecular proteins HMW3 and HMW4 have been cloned, expressed and partially sequenced.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon				

WO 94/21290 PCT/US94/02550

TITLE OF INVENTION

HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS

FIELD OF INVENTION

This invention relates to high molecular weight proteins of non-typeable haemophilus.

BACKGROUND TO THE INVENTION

Non-typeable <u>Haemophilus influenzae</u> are non-encapsulated organisms that are defined by their lack of reactivity with antisera against known <u>H. influenzae</u> capsular antigens.

inhabit the commonly organisms These humans and are frequently of respiratory tract responsible for infections, as otitis media, such sinusitis, conjunctivitis, bronchitis and pneumonia. Since these organisms do not have a polysaccharide by the present capsule, they are not controlled Haemophilus influenzae type b (Hib) vaccines, which are directed towards Hib bacterial capsular polysaccharides. The non-typeable strains, however, do produce surface antigens that can elicit bactericidal antibodies. Two of the major outer membrane proteins, P2 and P6, have been identified as targets of human serum bactericidal activity. However, it has been shown that the P2 protein sequence is variable, in particular in the non-typeable Haemophilus strains. Thus, a P2-based vaccine would not protect against all strains of the organism.

There have previously been identified by Barenkamp et al (<u>Pediatr. Infect. Dis. J.</u>, 9:333-339, 1990) a group of high-molecular-weight (HMW) proteins that appeared to be major targets of antibodies present in human convalescent sera. Examination of a series of middle ear isolates revealed the presence of one or two such proteins in most strains. However, prior to the present invention, the structures of these proteins were unknown as were pure isolates of such proteins.

5

10

15

20

25

30

10

15

20

25

30

SUMMARY OF INVENTION

The inventors, in an effort to further characterize the high molecular weight (HMW) Haemophilus proteins, have cloned, expressed and sequenced the genes coding for two immunodominant HMW proteins (designated HMW1 and HMW2) from a prototype non-typeable Haemophilus strain cloned, expressed and have almost completely sequenced the genes coding for additional two immunodominant HMW proteins (designated HMW3 and HMW4) from another non-typeable Haemophilus strain.

In accordance with one aspect of the present invention, therefore, there is provided an isolated and purified gene coding for a high molecular weight protein of a non-typeable <u>Haemophilus</u> strain, particularly a gene coding for protein HMW1, HMW2, HMW3 or HMW4, as well as any variant or fragment of such protein which retains the immunological ability to protect against disease caused by a non-typeable <u>Haemophilus</u> strain. In another aspect, the invention provides a high molecular weight protein of non-typeable <u>Haemophilus</u> influenzae which is encoded by these genes.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 is a DNA sequence of a gene coding for protein HMW1 (SEQ ID NO: 1);

Figure 2 is a derived amino acid sequence of protein HMW1 (SEQ ID NO: 2);

Figure 3 is a DNA sequence of a gene coding for protein HMW2 (SEQ ID NO: 3);

Figure 4 is a derived amino acid sequence of HMW2 (SEQ ID NO: 4);

Figure 5A shows restriction maps of representative recombinant phages which contained the HMW1 or HMW2 structural genes, the locations of the structural genes being indicated by the shaded bars;

Figure 5B shows the restriction map of the T7 expression vector pT7-7;

10

15

20

25

30

35

Figure 6 contains the DNA sequence of a gene cluster for the https://mxx.pm.nucleotides 351 to 4958 (ORF a) (as in Figure 1), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5114-6748 and c onucleotides 7062-9011;

Figure 7 contains the DNA sequence of a gene cluster for the https://mxx.pmc.nc.edu/mw2 gene (SEQ ID NO: 6), comprising nucleotides 792 to 5222 (ORF a) (as in Figure 3), as well as two additional downstream genes in the 3' flanking region, comprising ORFs b, nucleotides 5375-7009, and c, nucleotides 7249-9198;

Figure 8 is a partial DNA sequence of a gene coding for protein HMW3 (SEQ ID NO: 7);

Figure 9 is a partial DNA sequence of a gene coding for protein HMW4 (SEQ ID NO: 8); and

Figure 10 is a comparison table for the derived amino acid sequence for proteins HMW1, HMW2, HMW3 and HMW4.

GENERAL DESCRIPTION OF INVENTION

The DNA sequences of the genes coding for HMW1 and HMW2, shown in Figures 1 and 3 respectively, were shown to be about 80% identical, with the first 1259 base pairs of the genes being identical. The derived amino acid sequences of the two HMW proteins, shown in Figures 2 and 4 respectively, are about 70% identical. Furthermore. the encoded proteins are antigenically related to the filamentous hemagglutinin surface protein of Bordetella A monoclonal antibody prepared against pertussis. filamentous hemagglutinin (FHA) of Bordetella pertussis was found to recognize both of the high molecular weight This data suggests that the HMW and FHA proteins. proteins may serve similar biological functions. The derived amino acid sequences of the HMW1 and HMW2 proteins show sequence similarity to that for the FHA protein. It has further been shown that

antigenically-related proteins are produced by the majority of the non-typeable strains of <u>Haemophilus</u>. Antisera raised against the protein expressed by the HMW1 gene recognizes both the HMW2 protein and the <u>B. pertussis</u> FHA. The present invention includes an isolated and purified high molecular weight protein of non-typeable haemophilus which is antigenically related to the <u>B. pertussis</u> FHA, which may be obtained from natural sources or produced recombinantly.

A phage genomic library of a known strain of non-typeable <u>Haemophilus</u> was prepared by standard methods and the library was screened for clones expressing high molecular weight proteins, using a high titre antiserum against HMW's. A number of strongly reactive DNA clones were plaque-purified and sub-cloned into a T7 expression plasmid. It was found that they all expressed either one or the other of the two high-molecular-weight proteins designated HMW1 and HMW2, with apparent molecular weights of 125 and 120 kDa, respectively, encoded by open reading

frames of 4.6 kb and 4.4 kb, respectively.

Representative clones expressing either HMW1 or HMW2 were further characterized and the genes isolated, purified and sequenced. The DNA sequence of HMW1 is shown in Figure 1 and the corresponding derived amino acid sequence in Figure 2. Similarly, the DNA sequence of HMW2 is shown in Figure 3 and the corresponding derived amino acid sequence in Figure 4. Partial purification of the isolated proteins and N-terminal sequence analysis indicated that the expressed proteins are truncated since their sequence starts at residue number 442 of both full length HMW1 and HMW2 gene products.

5

10

15

20

25

30

reading frames (ORFs), designated \underline{b} and \underline{c} , respectively, (see Figures 6 and 7).

The <u>b</u> ORFs are 1635 bp in length, extending from nucleotides 5114 to 6748 in the case of <u>hmwl</u> and nucleotides 5375 to 7009 in the case of <u>hmw2</u>, with their derived amino acid sequences 99% identical. The derived amino acid sequences demonstrate similarity with the derived amino acid sequences of two genes which encode proteins required for secretion and activation of hemolysins of <u>P. mirabilis</u> and <u>S. marcescens</u>.

The <u>c</u> ORFs are 1950 bp in length, extending from nucleotides 7062 to 9011 in the case of <u>hmwl</u> and nucleotides 7249 to 9198 in the case of <u>hmw2</u>, with their derived amino acid sequences 96% identical. The <u>hmwl</u> <u>c</u> ORF is preceded by a series of 9 bp direct tandem repeats. In plasmid subclones, interruption of the <u>hmwl</u> <u>b</u> or <u>c</u> ORF results in defective processing and secretion of the <u>hmwl</u> structural gene product.

The two high molecular weight proteins have been isolated and purified and shown to be partially protective against otitis media in chinchillas and to function as adhesins. These results indicate the potential for use of such high molecular proteins and structurally-related proteins of other non-typeable strains of Haemophilus influenzae as components in non-typeable Haemophilus influenzae vaccines.

Since the proteins provided herein are good cross-reactive antigens and are present in the majority of non-typeable <u>Haemophilus</u> strains, it is evident that these HMW proteins may become integral constituents of a universal <u>Haemophilus</u> vaccine. Indeed, these proteins may be used not only as protective antigens against otitis, sinusitis and bronchitis caused by the non-typeable <u>Haemophilus</u> strains, but also may be used as carriers for the protective Hib polysaccharides in a conjugate vaccine against meningitis. The proteins also

5

10

15

20

25

30

10

15

20

25

30

35

may be used as carriers for other antigens, haptens and polysaccharides from other organisms, so as to induce immunity to such antigens, haptens and polysaccharides.

The nucleotide sequences encoding two high molecular weight proteins of a different non-typeable <u>Haemophilus</u> strain (designated HMW3 and HMW4) have been largely elucidated, and are presented in Figures 8 and 9. HMW3 has an apparent molecular weight of 125 kDa while HMW4 has an apparent molecular weight of 123 kDa. These high molecular weight proteins are antigenically related to the HMW1 and HMW2 proteins and to FHA. Sequence analysis of HMW3 is approximately 85% complete and of HMW4 95% complete, with short stretches at the 5'-ends of each gene remaining to be sequenced.

Figure 10 contains a multiple sequence comparison of the derived amino acid sequences for the four high molecular weight proteins identified herein. As may be seen from this comparison, stretches of identical peptide sequence may be found throughout the length of the comparison, with HMW3 more closely resembling HMW1 and HMW4 more closely resembling HMW2. This information is highly suggestive of a considerable sequence homology between high molecular weight proteins from various non-typeable Haemophilus strains.

In addition, mutants of non-typeable <u>H. influenzae</u> strains that are deficient in expression of HMW1 or HMW2 or both have been constructed and examined for their capacity to adhere to cultured human epithelial cells. The hmw1 and hmw2 gene clusters have been expressed in <u>E. coli</u> and have been examined for in vitro adherence. The results of such experimentation demonstrate that both HMW1 and HMW2 mediate attachment and hence are adhesins and that this function is present even in the absence of other <u>H. influenzae</u> surface structures.

With the isolation and purification of the high molecular weight proteins, the inventors are able to

determine the major protective epitopes by conventional epitope mapping and synthesize peptides corresponding to these determinants to be incorporated in fully synthetic or recombinant vaccines. Accordingly, the invention also comprises a synthetic peptide having an amino acid sequence corresponding to at least one protective epitope of a high molecular weight protein of a non-typeable Haemophilus influenzae. Such peptides are of varying that constitute portions of the molecular-weight proteins, that can be used to induce immunity, either directly or as part of a conjugate, against the relative organisms and thus constitute vaccines for protection against the corresponding diseases.

The present invention also provides any variant or fragment of the proteins that retains the potential immunological ability to protect against disease caused by non-typeable <u>Haemophilus</u> strains. The variants may be constructed by partial deletions or mutations of the genes and expression of the resulting modified genes to give the protein variations.

EXAMPLES

Example 1:

5

10

15

20

25

30

Non-typeable <u>H.influenzae</u> strains 5 and 12 were isolated in pure culture from the middle ear fluid of children with acute otitis media. Chromosomal DNA from strain 12, providing genes encoding proteins HMW1 and HMW2, was prepared by preparing Sau3A partial restriction digests of chromosomal DNA and fractionating on sucrose gradients. Fractions containing DNA fragments in the 9 to 20 kbp range were pooled and a library was prepared by ligation into λ EMBL3 arms. Ligation mixtures were packaged in vitro and plate-amplified in a P2 lysogen of <u>E. coli</u> LE392.

For plasmid subcloning studies, DNA from a representative recombinant phage was subcloned into the

10

15

20

25

30

35

T7 expression plasmid pT7-7, containing the T7 RNA polymerase promoter Φ 10, a ribosome-binding site and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (see Figure 5B).

DNA sequence analysis was performed by the dideoxy method and both strands of the HMW1 gene and a single strand of the HMW2 gene were sequenced.

immunoblot analysis was Western performed identify the recombinant proteins being produced by reactive phage clones. Phage lysates grown in LE392 cells or plaques picked directly from a lawn of LE392 ΥT plates were solubilized in gel electrophoresis sample buffer prior to electrophoresis. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was performed on 7.5% 11% polyacrylamide modified Laemmli gels. After transfer of the proteins to nitrocellulose sheets, the sheets were probed sequentially with an E. coli-absorbed human serum sample containing high-titer antibody to the highmolecular-weight proteins and then with alkaline phosphatase-conjugated goat anti-human immunoglobulin G (IgG) second antibody. Sera from healthy adults contains high-titer antibody directed against surface-exposed high-molecular-weight proteins of non-typeable H. influenzae. One such serum sample was used as the screening antiserum after having been extensively absorbed with LE392 cells.

To identify recombinant proteins being produced by $E.\ coli$ transformed with recombinant plasmids, the plasmids of interest were used to transform $E.\ coli$ BL21 (DE3)/pLyss. The transformed strains were grown to an A_{600} of 0.5 in L broth containing 50 μg of ampicillin per ml. IPTG was then added to 1 mM. One hour later, cells were harvested, and a sonicate of the cells was prepared. The protein concentrations of the samples were determined by the bicinchoninic acid method. Cell sonicates

containing 100 μ g of total protein were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The nitrocellulose was then probed sequentially with the <u>E. coli</u>-absorbed adult serum sample and then with alkaline phosphatase-conjugated goat antihuman IgG second antibody.

Western immunoblot analysis also was performed to determine whether homologous and heterologous typeable H. influenzae strains expressed high-molecularweight proteins antigenically related to the protein encoded by the cloned HMW1 gene (rHMW1). Cell sonicates of bacterial cells were solubilized in electrophoresis sample buffer, subjected to SDS-polyacrylamide and transferred to nitrocellulose. electrophoresis, Nitrocellulose was probed sequentially with polyclonal then rabbit rHMW1 antiserum and with alkaline phosphatase-conjugated goat anti-rabbit IqG second antibody.

Finally, Western immunoblot analysis was performed to determine whether non-typeable Haemophilus strains expressed proteins antigenically related to the filamentous hemagglutinin protein of Bordetella pertussis. Monoclonal antibody X3C, murine a immunoglobulin antibody which G (IgG) recognizes filamentous hemagglutinin, was used to probe sonicates by Western blot. An alkaline phosphataseconjugated goat anti-mouse IgG second antibody was used for detection.

To generate recombinant protein antiserum, <u>E. coli</u> BL21(DE3)/pLysS was transformed with pHMW1-4, and expression of recombinant protein was induced with IPTG, as described above. A cell sonicate of the bacterial cells was prepared and separated into a supernatant and pellet fraction by centrifugation at 10,000 x g for 30 min. The recombinant protein fractionated with the

5

10

15

20

25

30

10

15

20

25

30

35

pellet fraction. A rabbit was subcutaneously immunized on biweekly schedule with 1 mg of protein from the pellet fraction, the first dose given with Freund's complete adjuvant and subsequent doses with Freund's incomplete adjuvant. Following the fourth injection, the rabbit was bled. Prior to use in the Western blot assay, the antiserum was absorbed extensively with sonicates of the host <u>E. coli</u> strain transformed with cloning vector alone.

To assess the sharing of antigenic determinants between HMW1 and filamentous hemagglutinin, enzyme-linked immunosorbent assay (ELISA) plates (Costar, Cambridge, Mass.) were coated with 60 μ l of a 4-ug/ml solution of filamentous hemagglutinin in Dulbecco's phosphatebuffered saline per well for 2 h at room temperature. Wells were blocked for 1 h with 1% bovine serum albumin in Dulbecco's phosphate-buffered saline prior to addition of serum dilutions. rHMWl antiserum was serially diluted in 0.1% Brij (Sigma, St. Louis, Mo.) in Dulbecco's phosphate-buffered saline and incubated for 3 h at room temperature. After being washed, the plates were incubated with peroxidase-conjugated goat anti-rabbit 1gG antibody (Bio-Rad) for 2 h at room temperature and subsequently developed with 2,2'-azino-bis(3ethylbenzthiazoline-6-sulfonic acid) (Sigma) concentration of 0.54 in mg/ml in 0.1 M sodium citrate buffer, pH 4.2, containing 0.03% H₂O₂. Absorbances were read on an automated ELISA reader.

Recombinant phage expressing HMW1 or HMW2 were recovered as follows. The non-typeable <u>H. influenzae</u> strain 12 genomic library was screened for clones expressing high-molecular-weight proteins with an <u>E. coli</u>-absorbed human serum sample containing a high titer of antibodies directed against the high-molecular-weight proteins.

10

15

20

25

30

35

Numerous strongly reactive clones were identified along with more weakly reactive ones. Twenty strongly reactive clones were plaque-purified and examined by Western blot for expression of recombinant proteins. Each of the strongly reactive clones expressed one of two types of high-molecular-weight proteins, designated HMW1 and HMW2. The major immunoreactive protein bands in the HMW1 and HMW2 lysates migrated with apparent molecular masses of 125 and 120 kDa, respectively. In addition to the major bands, each lysate contained minor protein bands of higher apparent molecular weight. Protein bands seen in the HMW2 lysates at molecular masses of less than 120 kDa were not regularly observed and presumably represent proteolytic degradation products. Lysates of LE392 infected with the λEMBL3 cloning vector alone were non-reactive when immunologically screened with the same serum sample. Thus, the observed activity was not due to cross-reactive E. coli proteins or \(\lambda \text{EMBL3-encoded pro-} \) Furthermore, the recombinant proteins were not simply binding immunoglobulin nonspecifically, since the proteins were not reactive with the goat anti-human IgG conjugate alone, with normal rabbit sera, or with serum from a number of healthy young infants.

Representative clones expressing either the HMW1 or HMW2 recombinant proteins were characterized further. The restriction maps of the two phage types were different from each other, including the regions encoding the HMW1 and HMW2 structural genes. Figure 5A shows restriction maps of representative recombinant phage which contained the HMW1 or HMW2 structural genes. The locations of the structural genes are indicated by the shaded bars.

HMW1 plasmid subclones were constructed by using the T7 expression plasmid T7-7 (Fig. 5A and B). HMW2 plasmid subclones also were constructed, and the results with

10

15

20

25

30

35

these latter subclones were similar to those observed with the HMW1 constructs.

The approximate location and direction transcription of the HMW1 structure gene were initially determined by using plasmid pHMW1 (Fig. 5A). plasmid was constructed by inserting the 8.5-kb BamHI-SalI fragment from \(\lambda \text{HMW1} \) into \(\text{BamHI-} \) and \(\text{SalI-cut pT7-7.} \) E. coli transformed with pHMW1 expressed immunoreactive recombinant protein with an apparent molecular mass of 115 kDa, which was strongly inducible with IPTG. This protein was significantly smaller than the 125-kDa major protein expressed by the parent phage, indicating that it either was being expressed as a fusion protein or was truncated at the carboxy terminus.

To more precisely localize the 3' end of the structural gene, additional plasmids were constructed with progressive deletions from the 3' end of the pHMW1 construct. Plasmid pHMW1-1 was constructed by digestion of pHMWl with PstI, isolation of the resulting 8.8-kb and religation. Plasmid pHMW1-2 constructed by digestion of pHMW1 with HindIII, isolation of the resulting 7.5-kb fragment, and religation. coli transformed with either plasmid pHMW1-1 or pHMW1-2 also expressed an immunoreactive recombinant protein with an apparent molecular mass of 115 kDa. These results indicated that the 3' end of the structural gene was 5' of the HindIII site.

To more precisely localize the 5' end of the gene, plasmids pHMW1-4 and pHMW1-7 were constructed. Plasmid pHMW1-4 was constructed by cloning the 5.1-kb BamHI-HindIII fragment from \(\lambda \text{HMW1} \) into a pT7-7-derived plasmid containing the upstream 3.8-kb EcoRI-BamHi fragment. E. coli transformed with pHMW1-4 expressed an immunoreactive protein with an apparent molecular mass of approximately 160 kDa. Although protein production was inducible with IPTG, the levels of protein production in these

10

15

20

25

30

35

transformants were substantially lower than those with the pHMW1-2 transformants described above. Plasmid pHMW1-7 was constructed by digesting pHMW1-4 with NdeI and SpeI. The 9.0-kbp fragment generated by this double digestion was isolated, blunt ended, and religated. E. <u>coli</u> transformed with pHMW1-7 also expressed an immunoreactive protein with an apparent molecular mass of 160 kDa, a protein identical in size to that expressed by the pHMW1-4 transformants. The result indicated that the initiation codon for the HMW1 structural gene was 3' of the SpeI site. DNA sequence analysis confirmed this conclusion.

As noted above, the \(\lambda\)HMW1 phage clones expressed a major immunoreactive band of 125 kDa, whereas the HMW1 plasmid clones pHMW1-4 and pHMW1-7, which contained what was believed to be the full-length gene, expressed an immunoreactive protein of approximately 160 kDa. size discrepancy was disconcerting. One possible an additional gene or genes explanation was that necessary for correct processing of the HMW1 gene product were deleted in the process of subcloning. this possibility, plasmid pHMW1-14 was constructed. This construct was generated by digesting pHMW1 with NdeI and MluI and inserting the 7.6-kbp NdeI-MluI fragment isolated from pHMW1-4. Such a construct would contain the full-length HMW1 gene as well as the DNA 3' of the HMW1 gene which was present in the original HMW1 phage. E. coli transformed with this plasmid expressed major immunoreactive proteins with apparent molecular masses of 125 and 160 kDa -as-well as additional degradation The 125- and 160-kDa bands were identical to the major and minor immunoreactive bands detected in the phage lysates. Interestingly, the pHMW1-14 construct also expressed significant amounts of protein in the uninduced condition, a situation not observed with the earlier constructs.

The relationship between the 125- and 160-kDa proteins remains somewhat unclear. Sequence analysis, described below, reveals that the HMW1 gene would be predicted to encode a protein of 159 kDa. It is believed that the 160-kDa protein is a precursor form of the mature 125-kDa protein, with the conversion from one protein to the other being dependent on the products of the two downstream genes.

Sequence analysis of the HMW1 gene (Figure 1) revealed a 4,608-bp open reading frame (ORF), beginning with an ATG codon at nucleotide 351 and ending with a TAG stop codon at nucleotide 4959. A putative ribosomebinding site with the sequence AGGAG begins 10 bp upstream of the putative initiation codon. Five other inframe ATG codons are located within 250 bp of the beginning of the ORF, but none of these is preceded by a typical ribosome-binding site. The 5'-flanking region of the ORF contains a series of direct tandem repeats, with the 7-bp sequence ATCTTTC repeated 16 times. tandem repeats stop 100 bp 5' of the putative initiation codon. An 8-bp inverted repeat characteristic of a rhoindependent transcriptional terminator is present, beginning at nucleotide 4983, 25 bp 3' of the presumed translational stop. Multiple termination codons are present in all three reading frames both upstream and downstream of the ORF. The derived amino acid sequence of the protein encoded by the HMW1 gene (Figure 2) has a molecular weight of 159,000, in good agreement with the apparent molecular weights of the proteins expressed by the HMW1-4 and HMW1-7 transformants. The derived amino acid sequence of the amino terminus does not demonstrate the characteristics of a typical signal sequence. BamHI site used in generation of pHMWl comprises bp 1743 through 1748 of the nucleotide sequence. downstream of the BamHI site would be predicted to encode a protein of 111 kDa, in good agreement with the 115 kDa

5

10

15

20

25

30

10

15

20

25

30

35

estimated for the apparent molecular mass of the pHMW1-encoded fusion protein.

The sequence of the HMW2 gene (Figure 3) consists of a 4,431-bp ORF, beginning with an ATG ccdon at nucleotide 352 and ending with a TAG stop codon at nucleotide 4783. The first 1,259 bp of the ORF of the HMW2 gene are identical to those of the HMW1 gene. Thereafter, the sequences begin to diverge but are 80% identical overall. With the exception of a single base addition nucleotide 93 of the HMW2 sequence, the 5'-flanking regions of the HMW1 and HMW2 genes are identical for 310 bp upstream from the respective initiation codons. Thus, the HMW2 gene is preceded by the same set of tandem repeats and the same putative ribosome-binding site which lies 5' of the HMW1 gene. A putative transcriptional terminator identical to that identified 3' of the HMW1 is noted, beginning at nucleotide 4804. The in the discrepancy lengths of the two principally accounted for by a 186-bp gap in the HMW2 sequence, beginning at nucleotide position 3839. derived amino acid sequence of the protein encoded by the HMW2 gene (Figure 4) has a molecular weight of 155,000 and is 71% identical with the derived amino acid sequence of the HMW1 gene.

The derived amino acid sequences of both the HMW1 and HMW2 genes (Figures 2 and 4) demonstrated sequence similarity with the derived amino acid sequence of filamentous hemagglutinin of Bordetella pertussis, a surface-associated protein of this organism. The initial and optimized TFASTA scores for the HMW1-filamentous hemagglutinin sequence comparison were 87 and 186, respectively, with a word size of 2. The z score for the comparison was 45.8. The initial and optimized TFASTA scores for the HMW2-filamentous hemagglutinin sequence comparison were 68 and 196, respectively. The z score for the latter comparison was 48.7. The magnitudes of

10

15

20

25

30

35

the initial and optimized TFASTA scores and the z scores suggested that a biologically significant relationship existed between the HMW1 and HMW2 gene products and filamentous hemagglutinin. When the derived amino acid sequences of HMW1, HMW2, and filamentous hemagglutinin genes were aligned and compared, the similarities were most notable at the amino-terminal ends of the three Twelve of the first 22 amino acids in the sequences. predicted peptide sequences were identical. additional, the sequences demonstrated a common fiveamino-acid stretch, Asn-Pro-Asn-Gly-Ile, and several shorter stretches of sequence identity within the first 200 amino acids.

Example 2:

To further explore the HMW1-filamentous hemagglutinin relationship, the ability of antiserum prepared against the HMW1-4 recombinant protein (rHMW1) to recognize purified filamentous hemagglutinin was The rHMW1 antiserum demonstrated ELISA assessed. reactivity with filamentous hemagglutinin in a dosedependent manner. Preimmune rabbit serum had minimal reactivity in this assay. The rHMW1 antiserum also was examined in a Western blot assay and demonstrated weak positive reactivity with purified filamentous hemagglutinin in this system also.

To identify the native <u>Haemophilus</u> protein corresponding to the HMW1 gene product and to determine the extent to which proteins antigenically related to the HMW1 cloned gene product were common among other non-typeable <u>H. influenzae</u> strains, a panel of <u>Haemophilus</u> strains was screened by Western blot with the rHMW1 antiserum. The antiserum recognized both a 125- and a 120-kDa protein band in the homologous strain 12, the putative mature protein products of the HMW1 and HMW2 genes, respectively.

10

15

20

25

30

35

When used to screen heterologous non-typeable <u>H. influenzae</u> strains, rHMWl antiserum recognized high-molecular-weight proteins in 75% of 125 epidemiologically unrelated strains. In general, the antiserum reacted with one or two protein bands in the 100- to 150-kDa range in each of the heterologous strains in a pattern similar but not identical to that seen in the homologous strain.

Monoclonal antibody X3C is a murine IgG antibody directed against the filamentous hemagglutinin protein of B. pertussis. This antibody can inhibit the binding of B. pertussis cells to Chinese hamster ovary cells and HeLa cells in culture and will inhibit hemagglutination of erythrocytes by purified filamentous hemagglutinin. A Western blot assay was performed in which this monoclonal antibody was screened against the same panel of non-typeable H. influenzae strains discussed above. Monoclonal antibody X3C recognized both the highmolecular-weight proteins in non-typeable H. influenzae strain 12 which were recognized by the recombinantprotein antiserum. In addition, the monoclonal antibody recognized protein bands in a subset of heterologous nontypeable H. influenzae strains which were identical to those recognized by the recombinant-protein antiserum. On occasion, the filamentous hemagglutinin monoclonal antibody appeared to recognize only one of the two bands which had been recognized by the recombinant-protein antiserum. Overall, monoclonal antibody X3C recognized high-molecular-weight protein bands identical to those recognized by the rHMW1 antiserum in approximately 35% of our collection of non-typeable H. influenzae strains. Example 3:

Mutants deficient in expression of HMW1, MW2 or both proteins were constructed to examine the role of these proteins in bacterial adherence. The following strategy was employed. pHMW1-14 (see Example 1, Figure 5A) was

WO 94/21290 PCT/US94/02550

18

digested with BamHI and then ligated to a kanamycin cassette isolated on a 1.3-kb BamHl fragment from pUC4K. The resultant plasmid (pHMW1-17) was linearized by digestion with XbaI and transformed into non-typeable H. influenzae strain 12, followed by selection for kanamycin resistant colonies. Southern analysis of a series of colonies demonstrated two populations transformants, one with an insertion in the HMW1 structural gene and the other with an insertion in the HMW2 structural gene. One mutant from each of these classes was selected for further studies.

Mutants deficient in expression of both proteins were recovered using the following protocol. After deletion of the 2.1-kb fragment of DNA between two EcoRI sites spanning the 3'-portion of the HMW1 structural gene in pHMW-15, the kanamycin cassette from pUC4K was inserted as a 1.3-kb EcoRl fragment. The resulting plasmid (pHMW1-16) was linearized by digestion with XbaI and transformed into strain 12, followed again by selection for kanamycin resistant colonies. Southern analysis of a representative sampling of these colonies demonstrated that in seven of eight cases, insertion into both the HMW1 and HMW2 loci had occurred. One such mutant was selected for further studies.

To confirm the intended phenotypes, the mutant strains were examined by Western blot analysis with a polyclonal antiserum against recombinant HMW1 protein. The parental strain expressed both the 125-kD HMW1 and the 120-kD HMW2 protein. In contrast, the HMW2 mutant failed to express the 120-kD protein, and the HMW1 mutant failed to express the 125-kD protein. The double mutant lacked expression of either protein. On the basis of whole cell lysates, outer membrane profiles, and colony morphology, the wild type strain and the mutants were otherwise identical with one another. Transmission

5

10

15

20

25

30

10

15

20

25

30

35

electron microscopy demonstrated that none of the four strains expressed pili.

The capacity of wild type strain 12 to adhere to Chang epithelial cells was examined. In such assays, bacteria were inoculated into broth and allowed to grow to a density of ~2 x 10^9 cfu/ml. Approximately 2 x 10^7 cfu were inoculated onto epithelial cell monolayers, and plates were gently centrifuged at 165 x g for 5 minutes to facilitate contact between bacteria and the epithelial surface. After incubation for 30 minutes at 37°C in 5% CO, monolayers were rinsed 5 times with PBS to remove nonadherent organisms and were treated with trypsin-EDTA (0.05% trypsin, 0.5% EDTA) in PBS to release them from the plastic support. Well contents were agitated, and dilutions were plated on solid medium to yield the number of adherent bacteria per monolayer. Percent adherence was calculated by dividing the number of adherent cfu per monolayer by the number of inoculated cfu.

As depicted in Table 1 below (the Tables appear at the end of the descriptive text), this strain adhered quite efficiently, with nearly 90% of the inoculum binding to the monolayer. Adherence by the mutant expressing HMW1 but not HMW2 (HMW2') was also quite efficient and comparable to that by the wild type strain. In contrast, attachment by the strain expressing HMW2 but deficient in expression of HMW1 (HMW1') was decreased about 15-fold relative to the wild type. Adherence by the double mutant (HMW1'/HMW2') was decreased even further, approximately 50-fold compared with the wild type and approximately 3-fold compared with the HMW1 mutant. Considered together, these results suggest that both the HMW1 protein and the, HMW2 protein influence attachment to Chang epithelial cells. Interestingly, optimal adherence to this cell line appears to require HMW1 but not HMW2.

10

15

20

25

30

35

Example 4:

Using the plasmids pHMW1-16 and pHMW1-17 Example 3) and following a scheme similar to that employed with strain 12 as described in Example 3, three non-typeable Haemophilus strain 5 mutants were isolated, including one with the kanamycin gene inserted into the hmwl-like (designated hmw3) locus, a second with an insertion in the hmw2-like (designated hmw4) locus, and a third with insertions in both loci. As predicted, Western immunoblot analysis demonstrated that the mutant with insertion of the kanamycin cassette into the hmwllike locus had lost expression of the HMW3 125-kD protein, while the mutant with insertion into the hmw2like locus failed to express the HMW4 123-kD protein. The mutant with a double insertion was unable to express either of the high molecular weight proteins.

As shown in Table 1 below, wild type strain 5 demonstrated high level adherence, with almost 80% of the inoculum adhering per monolayer. Adherence by the mutant deficient in expression of the HMW2-like protein was also quite high. In contrast, adherence by the mutant unable to express the, HMW1-like protein was reduced about 5-fold relative to the wild type, and attachment by the double mutant was diminished even further (approximately 25-fold). Examination of Giemsa-stained samples confirmed these observations (not shown). Thus, the results with strain 5 corroborate the findings with strain 12 and the HMW1 and HMW2 proteins.

Example 5:

To confirm an adherence function for the HMW1 and HMW2 proteins and to examine the effect of HMW1 and HMW2 independently of other <u>H. influenzae</u> surface structures, the <u>hmw1</u> and the <u>hmw2</u> gene clusters were introduced into <u>E. coli</u> DH5α, using plasmids pHMW1-14 and pHMW2-21, respectively. As a control, the cloning vector, pT7-7, was also transformed into <u>E. coli</u> DH5α. Western blot

15

20

25

30

35

analysis demonstrated that <u>E. coli</u> DH5 α containing the <u>hmwl</u> genes expressed a 125 kDa protein, while the same strain harboring the <u>hmw2</u> genes expressed a 120-kDa protein. <u>E. coli</u> DH5 α containing pT7-7 failed to react with antiserum against recombinant HMW1. Transmission electron microscopy revealed no pili or other surface appendages on any of the <u>E. coli</u> strains.

Adherence by the E. coli strains was quantitated and compared with adherence by wild type non-typeable H. influenzae strain 12. As shown in Table 2 below, adherence by E. coli DH5 α containing vector alone was less than 1% of that for strain 12. In contrast, E. coli DH5α harboring the <u>hmwl</u> gene cluster demonstrated adherence levels comparable to those for strain 12. Adherence by E. coli DH5 α containing the hmw2 genes was approximately 6-fold lower than attachment by strain 12 but was increased 20-fold over adherence by E. coli DH5a with pT7-7 alone. These results indicate that the HMW1 and HMW2 proteins are capable of independently mediating attachment to Chang conjunctival cells. These results are consistent with the results with the H. influenzae mutants reported in Examples 3 and 4, providing further evidence that, with Chang epithelial cells, HMW1 is a more efficient adhesin than is HMW2.

Experiments with <u>E. coli</u> HB101 harboring pT7-7, pHMW1-14, or pHMW2-21 confirmed the results obtained with the DH5 α derivatives (see Table 2).

Example 6:

HMW1 and HMW2 were isolated and purified from non-typeable <u>H. influenzae</u> (NTHI) strain 12 in the following manner. Non-typeable <u>Haemophilus</u> bacteria from frozen stock culture were streaked onto a chocolate plate and grown overnight at 37°C in an incubator with 5% CO_2 . 50ml starter culture of brain heart infusion (BHI) broth, supplemented with 10 μ g/ml each of hemin and NAD was inoculated with growth on chocolate plate. The starter

10

15

20

25

30

35

culture was grown until the optical density (O.D. -600nm) reached 0.6 to 0.8 and then the bacteria in the starter culture was used to inoculate six 500 ml flasks of supplemented BHI using 8 to 10 ml per flask. The bacteria were grown in 500 ml flasks for an additional 5 to 6 hours at which time the O.D. was 1.5 or greater. Cultures were centrifuged at 10,000 rpm for 10 minutes.

Bacterial pellets were resuspended in a total volume of 250 ml of an extraction solution comprising 0.5 M Na, EDTA, 0.01 M Tris 50 μМ 0.01 M phenanthroline, pH 7.5. The cells were not sonicated or otherwise disrupted. The resuspended cells were allowed to sit on ice at 0°C for 60 minutes. The resuspended cells were centrifuged at 10,000 rpm for 10 minutes at 4°C to remove the majority of intact cells and cellular debris. The supernatant was collected and centrifuged at 100,000 xq for 60 minutes at 4°C. The supernatant again was collected and dialyzed overnight at 4°C against 0.01 M sodium phosphate, pH 6.0.

The sample was centrifuged at 10,000 rpm for 10 minutes at 4°C to remove insoluble debris precipitated from solution during dialysis. The supernatant was applied to a 10 ml CM Sepharose column which has been pre-equilibrated with 0.01 M sodium phosphate, pH 6. Following application to this column, the column was washed with 0.01 M sodium phosphate. Proteins were elevated from the column with a 0 - 0.5M KCl gradient in 0.01 M Na phosphate, pH 6 and fractions were collected for gel examination. Coomassie gels of column fractions were carried out to identify those fractions containing high molecular weight proteins. The fractions containing high molecular weight proteins were pooled and concentrated to a 1 to 3 ml volume in preparation for application of sample to gel filtration column.

A Sepharose CL-4B gel filtration column was equilibrated with phosphate-buffered saline, pH 7.5. The

10

15

20

25

30

35

concentrated high molecular weight protein sample was applied to the gel filtration column and column fractions were collected. Coomassie gels were performed on the column fractions to identify those containing high molecular weight proteins. The column fractions containing high molecular weight proteins were pooled.

The proteins were tested to determine whether they would protect against experimental otitis media caused by the homologous strain.

Chinchillas received three monthly subcutaneous injections with 40 μg of an HMW1-HMW2 protein mixture in Freund's adjuvant. One month after the last injection, the animals were challenged by intrabullar inoculation with 300 cfu of NTHI strain 12.

Infection developed in 5 of 5 control animals versus 5 of 10 immunized animals. Among infected animals, geometric mean bacterial counts in middle ear fluid 7 days post-challenge were 7.4×10^6 in control animals verus 1.3×10^5 in immunized animals.

Serum antibody titres following immunization were comparable in uninfected and infected animals. However, infection in immunized animals was uniformly associated with the appearance of bacteria down-regulated in expression of the HMW proteins, suggesting bacterial selection in response to immunologic pressure.

Although this data shows that protection following immunization was not complete, this data suggests the HMW adhesin proteins are potentially important protective antigens which may comprise one component of a multicomponent NTHI vaccine.

These animal challenge tests were repeated in Chinchillas at a lower dose challenge than the 300 cfu employed above. In this instance, complete protection was achieved. In these experiments, groups of five animals were immunized with 20 μ g of the HMW1-HMW2

mixture on days 1, 28, and 42 in the presence of Alpo₄. Blood samples were collected on day 53 to monitor the antibody response. On day 56, the left ear of animals was challenged with about 10 cfu of <u>H. influenzae</u> strain 12. Ear infection was monitored on day 4. Four animals in Group 3 were infected previously by <u>H. influenzae</u> strain 12 and were recovered completely for at least one month before the second challenge. The results are outlined in the following Table A:

10

5

TABLE A

Protective ability of HMW protein against non-typeable <u>H. influenzae</u> challenge in chinchilla model

15

20

Group **Antigens** Total Number of Animals Showed Animals Positive Ear Infection (#) Tympano-Otoscocfu of gram pic Bac-Examinteria/ ation 10 µL **HMW** 1 5 0 0 0 2 None 5 5 5 850-3200 (4/5)3 Convalescent 4 0 0 0

25

30

Example 7:

A number of synthetic peptides were derived from Antisera then was raised to these peptides. The anti-peptide antisera to peptide HMW1-P5 was shown to recognize HMW1. Peptide HMW1-P5 covers amino acids 1453 to 1481 of HMW1, has the sequence **VDEVIEAKRILEKVKDLSDEEREALAKLG** (SEQ ID NO:9), and represents bases 1498 to 1576 in Figure 10.

This finding demonstrates that the DNA sequence and the derived protein is being interpreted in the correct

WO 94/21290 PCT/US94/02550

25

reading frame and that peptides derived from the sequence can be produced which will be immunogenic.

SUMMARY OF DISCLOSURE

In summary of this disclosure, the present invention provides high molecular weight proteins of non-typeable <u>Haemophilus</u>, genes coding for the same and vaccines incorporating such proteins. Modifications are possible within the scope of this invention.

Table 1. Effect of mutation of high molecular weight proteins on adherence to Chang epithelial cells by nontypable H. influenzae.

ADHERENCE*

Strain	<u> </u>	relative to wild type†
Strain 12 derivatives		
wild type	87.7 ± 5.9	100.0 ± 6.7
HMW1-mutant	6.0 ± 0.9	6.8 ± 1.0
HMW2-mutant	89.9 ± 10.8	102.5 ± 12.3
HMW1-/HMW2- mutant	2.0 ± 0.3	2.3 ± 0.3
Strain 5 derivatives		
wild type	78.7 ± 3.2	100.0 ± 4.1
HMW1-like mutant	15.7 ± 2.6	19.9 ± 3.3
HMW2-like mutant	103.7 ± 14.0	131.7 ± 17.8
double mutant	3.5 <u>+</u> 0.6	4.4 ± 0.8
		·

^{*}Numbers represent mean (± standard error of the mean) of measurements in triplicate or quadruplicate from representative experiments.

[†] Adherence values for strain 12 derivatives are relative to strain 12 wild type; values for strain 5 derivatives are relative to strain 5 wild type.

Table 2. Adherence by $E.\ coli$ DH5 α and HB101 harboring hmwl or hmw2 gene clusters.

	Adnerence relative to
Strain*	H. influenzae strain 12†
DH5α (pT7-7)	0.7 ± 0.02
DH5α (pHMW1-14)	114.2 ± 15.9
DH5α (pHMW2-21)	14.0 ± 3.7
HB101 (pT7-7)	1.2 ± 0.5
HB101 (pHMW1-14)	93.6 ± 15.8
HB101 (pHMW2-21)	3.6 ± 0.9

^{*} The plasmid pHMW1-14 contains the *hmw1* gene cluster, while pHMW2-21 contains the *hmw2* gene cluster; pT7-7 is the cloning vector used in these constructs.

[†] Numbers represent the mean (+ standard error of the mean) of measurements made in triplicate from representative experiments.

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

- (i) APPLICANT: BARENKAMP, STEPHEN J ST. GEME III, JOSEPH W
 - (ii) TITLE OF INVENTION: HIGH MOLECULAR WEIGHT SURFACE PROTEINS OF NON-TYPEABLE HAEMOPHILUS
- (iii) NUMBER OF SEQUENCES: 8
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Shoemaker and Mattare, Ltd
 - (B) STREET: 2001 Jefferson Davis Hwy., 1203 Crystal Plaza Bldg. 1
 - (C) CITY: Arlington
 - (D) STATE: Virginia
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 22202-0286
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/038,682
 - (B) FILING DATE: 16-MAR-1993
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: BERKSTRESSER, JERRY W
 (B) REGISTRATION NUMBER: 22,651

 - (C) REFERENCE/DOCKET NUMBER: 1038-293
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (703) 415-0810
 - (B) TELEFAX: (703) 415-0813
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAGCGTTCT	CTTAATACTA	GTACAAACCC	ACAATAAAAT	ATGACAAACA	ACAATTACAA	60
CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAATA	GTATAAATCC	GCCATATAAA	120
ATGGTATAAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	180
TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	240
ACATGCCCTG	ATGAACCGAG	GGAAGGGAGG	GAGGGGCAAG	AATGAAGAGG	GAGCTGAACG	300

AACGCAAATG	ATAAAGTAAT	TTAATTGTTC	AACTAACCTT	AGGAGAAAT	ATGAACAAGC	360
TATATCGTCT	CAAATTCAGC	AAACGCCTGA	ATGCTTTGGT	TGCTGTGTCT	GAATTGGCAC	420
GGGGTTGTGA	CCATTCCACA	GAAAAAGGCA	GCGAAAAACC	TGCTCGCATG	AAAGTGCGTC	480
ACTTAGCGTT	AAAGCCACTT	TCCGCTATGT	TACTATCTTT	AGGTGTAACA	TCTATTCCAC	540
AATCTGTTTT	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA	GCCACTATGC	600
AAGTAGATGG	TAATAAAACC	ATTATCCGCA	ACAGTGTTGA	CGATATCATT	AATTGGAAAC	660
AATTTAACAT	CGACCAAAAT	GAAATGGTGC	AGTTTTTACA	AGAAAACAAC	AACTCCGCCG	720
TATTCAACCG	TGTTACATCT	AACCAAATCT	CCCAATTAAA	AGGGATTTTA	GATTCTAACG	780
GACAAGTCTT	TTTAATCAAC	CCAAATGGTA	TCACAATAGG	TAAAGACGCA	ATTATTAACA	840
CTAATGGCTT	TACGGCTTCT	ACGCTAGACA	TTTCTAACGA	AAACATCAAG	GCGCGTAATT	900
TCACCTTCGA	GCAAACCAAA	GATAAAGCGC	TCGCTGAAAT	TGTGAATCAC	GGTTTAATTA	960
CTGTCGGTAA	AGACGGCAGT	GTAAATCTTA	TTGGTGGCAA	AGTGAAAAAC	GAGGGTGTGA	1020
TTAGCGTAAA	TGGTGGCAGC	ATTTCTTTAC	TCGCAGGGCA	AAAAATCACC	ATCAGCGATA	1080
TAATAAACCC	AACCATTACT	TACAGCATTG	CCGCGCCTGA	AAATGAAGCG	GTCAATCTGG	1140
GCGATATTTT	TGCCAAAGGC	GGTAACATTA	ATGTCCGTGC	TGCCACTATT	CGAAACCAAG	1200
GTAAACTTTC	TGCTGATTCT	GTAAGCAAAG	ATAAAAGCGG	CAATATTGTT	CTTTCCGCCA	1260
AAGAGGGTGA	AGCGGAAATT	GGCGGTGTAA	TTTCCGCTCA	AAATCAGCAA	GCTAAAGGCG	1320
GCAAGCTGAT	GATTACAGGC	GATAAAGTCA	CATTAAAAAC	AGGTGCAGTT	ATCGACCTTT	1380
CAGGTAAAGA	AGGGGGAGAA	ACTTACCTTG	GCGGTGACGA	GCGCGGCGAA	GGTAAAAAGG	1440
GCATTCAATT	AGCAAAGAAA	ACCTCTTTAG	AAAAAGGCTC	AACCATCAAT	GTATCAGGCA	1500
AAGAAAAAGG	CGGACGCGCT	ATTGTGTGGG	GCGATATTGC	GTTAATTGAC	GGCAATATTA	1560
ACGCTCAAGG	TAGTGGTGAT	ATCGCTAAAA	CCGGTGGTTT	TGTGGAGACG	TCGGGGCATG	1620
ATTTATTCAT	CAAAGACAAT	GCAATTGTTG	ACGCCAAAGA	GTGGTTGTTA	GACCCGGATA	1680
ATGTATCTAT	TAATGCAGAA	ACAGCAGGAC	GCAGCAATAC	TTCAGAAGAC	GATGAATACA	1740
CGGGATCCGG	GAATAGTGCC	AGCACCCCAA	AACGAAACAA	AGAAAAGACA	ACATTAACAA	1800
ACACAACTCT	TGAGAGTATA	CTAAAAAAAG	GTACCTTTGT	TAACATCACT	GCTAATCAAC	1860
GCATCTATGT	CAATAGCTCC	ATTAATTTAT	CCAATGGCAG	CTTAACTCTT	TGGAGTGAGG	1920
GTCGGAGCGG	TGGCGGCGTT	GAGATTAACA	ACGATATTAC	CACCGGTGAT	GATACCAGAG	1980
GTGCAAACTT	AACAATTTAC	TCAGGCGGCT	GGGTTGATGT	TCATAAAAAT	ATCTCACTCG	2040
GGGCGCAAGG	TAACATAAAC	ATTACAGCTA	AACAAGATAT	CGCCTTTGAG	AAAGGAAGCA	2100
ACCAAGTCAT	TACAGGTCAA	GGGACTATTA	CCTCAGGCAA	TCAAAAAGGT	TTTAGATTTA	2160
ATAATGTCTC	TCTAAACGGC	ACTGGCAGCG	GACTGCAATT	CACCACTAAA	AGAACCAATA	2220
AATACGCTAT	CACAAATAAA	TTTGAAGGGA	CTTTAAATAT	TTCAGGGAAA	GTGAACATCT	2280
CAATGGTTTT	ACCTAAAAAT	GAAAGTGGAT	ATGATAAATT	CAAAGGACGC	ACTTACTGGA	2340

ATTTAACCTC	CTTAAATGTI	TCCGAGAGTG	GCGAGTTTAA	CCTCACTATT	GACTCCAGAG	240
GAAGCGATAG	TGCAGGCACA	CTTACCCAGC	CTTATAATTT	AAACGGTATA	TCATTCAACA	246
AAGACACTAC	CTTTAATGTT	GAACGAAATG	CAAGAGTCAA	CTTTGACATC	AAGGCACCAA	252
TAGGGATAAA	TAAGTATTCI	' AGTTTGAATT	ACGCATCATT	TAATGGAAAC	ATTTCAGTTT	258
CGGGAGGGG	GAGTGTTGAT	TTCACACTTC	TCGCCTCATC	CTCTAACGTC	CAAACCCCCG	264
GTGTAGTTAT	AAATTCTAAA	TACTTTAATG	TTTCAACAGG	GTCAAGTTTA	AGATTTAAAA	270
CTTCAGGCTC	AACAAAAACT	GGCTTCTCAA	TAGAGAAAGA	TTTAACTTTA	AATGCCACCG	2760
GAGGCAACAT	AACACTTTTG	CAAGTTGAAG	GCACCGATGG	AATGATTGGT	AAAGGCATTG	2820
TAGCCAAAAA	AAACATAACC	TTTGAAGGAG	GTAACATCAC	CTTTGGCTCC	AGGAAAGCCG	2880
TAACAGAAAT	CGAAGGCAAT	GTTACTATCA	ATAACAACGC	TAACGTCACT	CTTATCGGTT	2940
CGGATTTTGA	CAACCATCAA	AAACCTTTAA	CTATTAAAAA	AGATGTCATC	ATTAATAGCG	3000
GCAACCTTAC	CGCTGGAGGC	AATATTGTCA	ATATAGCCGG	AAATCTTACC	GTTGAAAGTA	3060
ACGCTAATTT	CAAAGCTATC	ACAAATTTCA	CTTTTAATGT	AGGCGGCTTG	TTTGACAACA	3120
AAGGCAATTC	AAATATTTCC	ATTGCCAAAG	GAGGGGCTCG	CTTTAAAGAC	ATTGATAATT	3180
CCAAGAATTT	AAGCATCACC	ACCAACTCCA	GCTCCACTTA	CCGCACTATT	ATAAGCGGCA	3240
ATATAACCAA	TAAAAACGGT	GATTTAAATA	TTACGAACGA	AGGTAGTGAT	ACTGAAATGC	3300
AAATTGGCGG	CGATGTCTCG	CAAAAAGAAG	GTAATCTCAC	GATTTCTTCT	GACAAAATCA	3360
ATATTACCAA	ACAGATAACA	ATCAAGGCAG	GTGTTGATGG	GGAGAATTCC	GATTCAGACG	3420
CGACAAACAA	TGCCAATCTA	ACCATTAAAA	CCAAAGAATT	GAAATTAACG	CAAGACCTAA	3480
ATATTTCAGG	TTTCAATAAA	GCAGAGATTA	CAGCTAAAGA	TGGTAGTGAT	TTAACTATTG	3540
GTAACACCAA	TAGTGCTGAT	GGTACTAATG	CCAAAAAAGT	AACCTTTAAC	CAGGTTAAAG	3600
ATTCAAAAAT	CTCTGCTGAC	GGTCACAAGG	TGACACTACA	CAGCAAAGTG	GAAACATCCG	3660
GTAGTAATAA	CAACACTGAA	GATAGCAGTG	ACAATAATGC	CGGCTTAACT	ATCGATGCAA	3720
AAAATGTAAC	AGTAAACAAC	AATATTACTT	CTCACAAAGC	AGTGAGCATC	TCTGCGACAA	3780
GTGGAGAAAT	TACCACTAAA	ACAGGTACAA	CCATTAACGC	AACCACTGGT	AACGTGGAGA	3840
TAACCGCTCA	AACAGGTAGT	ATCCTAGGTG	GAATTGAGTC	CAGCTCTGGC	TCTGTAACAC	3900
TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	GCAATATTTC	GGGCAACACC	GTTACTGTTA	3960
		ACCACTTTGG				4020
TAACCACTTC	AAGTCAATCA	GGCGATATCG	GCGGTACGAT	TTCTGGTGGC	ACAGTAGAGG	4080
TTAAAGCAAC	CGAAAGTTTA	ACCACTCAAT	CCAATTCAAA	AATTAAAGCA	ACAACAGGCG	4140
AGGCTAACGT	AACAAGTGCA	ACAGGTACAA	TTGGTGGTAC	GATTTCCGGT	AATACGGTAA	4200
					AATGCGACAG	4260
		ACATCATCGG				4320
TTACTTCAGC	CAAGGGTCAG	GTAAATCTTT	CAGCTCAGGA	TGGTAGCGTT	GCAGGAAGTA	4380

TTAATGCCGC	CAATGTGACA	CTAAATACTA	CAGGCACTTT	AACTACCGTG	AAGGGTTCAA	444
ACATTAATGC	AACCAGCGGT	ACCTTGGTTA	TTAACGCAAA	AGACGCTGAG	CTAAATGGCG	450
CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC	GGCAGCGTAA	4560
TCGCGACAAC	CTCAAGCAGA	GTGAACATCA	CTGGGGATTT	AATCACAATA	AATGGATTAA	4620
ATATCATTTC	AAAAAACGGT	ATAAACACCG	TACTGTTAAA	AGGCGTTAAA	ATTGATGTGA	4680
AAȚACATTCA	ACCGGGTATA	GCAAGCGTAG	ATGAAGTAAT	TGAAGCGAAA	CGCATCCTTG	4740
AGAAGGTAAA	AGATTTATCT	GATGAAGAAA	GAGAAGCGTT	AGCTAAACTT	GGAGTAAGTG	4800
CTGTACGTTT	TATTGAGCCA	AATAATACAA	TTACAGTCGA	TACACAAAAT	GAATTTGCAA	4860
CCAGACCATT	AAGTCGAATA	GTGATTTCTG	AAGGCAGGGC	GTGTTTCTCA	AACAGTGATG	4920
GCGCGACGGT	GTGCGTTAAT	ATCGCTGATA	ACGGGCGGTA	GCGGTCAGTA	ATTGACAAGG	4980
TAGATTTCAT	CCTGCAATGA	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	TGGGTTAAAG	5040
TTCAGTACGG	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	AGTATTTTTA	5100
ACAGGTTATT	ATTATG					5116

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1536 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu 1 5 10 15

Val Ala Val Ser Glu Leu Ala Arg Gly Cys Asp His Ser Thr Glu Lys 20 25 30

Gly Ser Glu Lys Pro Ala Arg Met Lys Val Arg His Leu Ala Leu Lys 35 40 45

Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln 50 55 60

Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr 70 75 80

Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val 85 90 95

Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met
100 105 110

Val Gln Phe Leu Gln Glu Asn Asn Asn Ser Ala Val Phe Asn Arg Val 115 120 125

Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly 130 140

Gln Val Phe Leu Ile Asn Pro Asn Gly Ile Thr Ile Gly Lys Asp Ala Ile Ile Asn Thr Asn Gly Phe Thr Ala Ser Thr Leu Asp Ile Ser Asn Glu Asn Ile Lys Ala Arg Asn Phe Thr Phe Glu Gln Thr Lys Asp Lys . 185 Ala Leu Ala Glu Ile Val Asn His Gly Leu Ile Thr Val Gly Lys Asp Gly Ser Val Asn Leu Ile Gly Gly Lys Val Lys Asn Glu Gly Val Ile Ser Val Asn Gly Gly Ser Ile Ser Leu Leu Ala Gly Gln Lys Ile Thr 230 235 Ile Ser Asp Ile Ile Asn Pro Thr Ile Thr Tyr Ser Ile Ala Ala Pro Glu Asn Glu Ala Val Asn Leu Gly Asp Ile Phe Ala Lys Gly Gly Asn Ile Asn Val Arg Ala Ala Thr Ile Arg Asn Gln Gly Lys Leu Ser Ala Asp Ser Val Ser Lys Asp Lys Ser Gly Asn Ile Val Leu Ser Ala Lys Glu Gly Glu Ala Glu Ile Gly Gly Val Ile Ser Ala Gln Asn Gln Gln Ala Lys Gly Gly Lys Leu Met Ile Thr Gly Asp Lys Val Thr Leu Lys Thr Gly Ala Val Ile Asp Leu Ser Gly Lys Glu Gly Gly Glu Thr Tyr Leu Gly Gly Asp Glu Arg Gly Glu Gly Lys Asn Gly Ile Gln Leu Ala Lys Lys Thr Ser Leu Glu Lys Gly Ser Thr Ile Asn Val Ser Gly Lys Glu Lys Gly Gly Arg Ala Ile Val Trp Gly Asp Ile Ala Leu Ile Asp 390 Gly Asn Ile Asn Ala Gln Gly Ser Gly Asp Ile Ala Lys Thr Gly Gly Phe Val Glu Thr Ser Gly His Asp Leu Phe Ile Lys Asp Asn Ala Ile Val Asp Ala Lys Glu Trp Leu Leu Asp Phe Asp Asn Val Ser Ile Asn Ala Glu Thr Ala Gly Arg Ser Asn Thr Ser Glu Asp Asp Glu Tyr Thr 455 Gly Ser Gly Asn Ser Ala Ser Thr Pro Lys Arg Asn Lys Glu Lys Thr Thr Leu Thr Asn Thr Thr Leu Glu Ser Ile Leu Lys Lys Gly Thr Phe 490

Val Asn Ile Thr Ala Asn Gln Arg Ile Tyr Val Asn Ser Ser Ile Asn Leu Ser Asn Gly Ser Leu Thr Leu Trp Ser Glu Gly Arg Ser Gly Gly 520 Gly Val Glu Ile Asn Asn Asp Ile Thr Thr Gly Asp Asp Thr Arg Gly 535 Ala Asn Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn Ile Ser Leu Gly Ala Gln Gly Asn Ile Asn Ile Thr Ala Lys Gln Asp Ile Ala Phe Glu Lys Gly Ser Asn Gln Val Ile Thr Gly Gln Gly Thr Ile Thr Ser Gly Asn Gln Lys Gly Phe Arg Phe Asn Asn Val Ser Leu 600 Asn Gly Thr Gly Ser Gly Leu Gln Phe Thr Thr Lys Arg Thr Asn Lys Tyr Ala Ile Thr Asn Lys Phe Glu Gly Thr Leu Asn Ile Ser Gly Lys Val Asn Ile Ser Met Val Leu Pro Lys Asn Glu Ser Gly Tyr Asp Lys Phe Lys Gly Arg Thr Tyr Trp Asn Leu Thr Ser Leu Asn Val Ser Glu Ser Gly Glu Phe Asn Leu Thr Ile Asp Ser Arg Gly Ser Asp Ser Ala 680 Gly Thr Leu Thr Gln Pro Tyr Asn Leu Asn Gly Ile Ser Phe Asn Lys Asp Thr Thr Phe Asn Val Glu Arg Asn Ala Arg Val Asn Phe Asp Ile Lys Ala Pro Ile Gly Ile Asn Lys Tyr Ser Ser Leu Asn Tyr Ala Ser Phe Asn Gly Asn Ile Ser Val Ser Gly Gly Ser Val Asp Phe Thr Leu Leu Ala Ser Ser Ser Asn Val Gln Thr Pro Gly Val Val Ile Asn Ser Lys Tyr Phe Asn Val Ser Thr Gly Ser Ser Leu Arg Phe Lys Thr Ser Gly Ser Thr Lys Thr Gly Phe Ser Ile Glu Lys Asp Leu Thr Leu 795 Asn Ala Thr Gly Gly Asn Ile Thr Leu Leu Gln Val Glu Gly Thr Asp Gly Met Ile Gly Lys Gly Ile Val Ala Lys Lys Asn Ile Thr Phe Glu 825 Gly Gly Asn Ile Thr Phe Gly Ser Arg Lys Ala Val Thr Glu Ile Glu

Gly Asn Val Thr Ile Asn Asn Asn Ala Asn Val Thr Leu Ile Gly Ser 855 Asp Phe Asp Asn His Gln Lys Pro Leu Thr Ile Lys Lys Asp Val Ile 875 Ile Asn Ser Gly Asn Leu Thr Ala Gly Gly Asn Ile Val Asn Ile Ala Gly Asn Leu Thr Val Glu Ser Asn Ala Asn Phe Lys Ala Ile Thr Asn 905 Phe Thr Phe Asn Val Gly Gly Leu Phe Asp Asn Lys Gly Asn Ser Asn Ile Ser Ile Ala Lys Gly Gly Ala Arg Phe Lys Asp Ile Asp Asn Ser Lys Asn Leu Ser Ile Thr Thr Asn Ser Ser Ser Thr Tyr Arg Thr Ile Ile Ser Gly Asn Ile Thr Asn Lys Asn Gly Asp Leu Asn Ile Thr Asn 970 Glu Gly Ser Asp Thr Glu Met Gln Ile Gly Gly Asp Val Ser Gln Lys 985 Glu Gly Asn Leu Thr Ile Ser Ser Asp Lys Ile Asn Ile Thr Lys Gln 1000 Ile Thr Ile Lys Ala Gly Val Asp Gly Glu Asn Ser Asp Ser Asp Ala Thr Asn Asn Ala Asn Leu Thr Ile Lys Thr Lys Glu Leu Lys Leu Thr 1035 1030 Gln Asp Leu Asn Ile Ser Gly Phe Asn Lys Ala Glu Ile Thr Ala Lys 1045 1050 Asp Gly Ser Asp Leu Thr Ile Gly Asn Thr Asn Ser Ala Asp Gly Thr 1065 Asn Ala Lys Lys Val Thr Phe Asn Gln Val Lys Asp Ser Lys Ile Ser 1080 Ala Asp Gly His Lys Val Thr Leu His Ser Lys Val Glu Thr Ser Gly 1095 Ser Asn Asn Asn Thr Glu Asp Ser Ser Asp Asn Asn Ala Gly Leu Thr Ile Asp Ala Lys Asn Val Thr Val Asn Asn Asn Ile Thr Ser His Lys 1125 1130 Ala Val Ser Ile Ser Ala Thr Ser Gly Glu Ile Thr Thr Lys Thr Gly 1145 Thr Thr Ile Asn Ala Thr Thr Gly Asn Val Glu Ile Thr Ala Gln Thr 1160 Gly Ser Ile Leu Gly Gly Ile Glu Ser Ser Ser Gly Ser Val Thr Leu 1175 1180 Thr Ala Thr Glu Gly Ala Leu Ala Val Ser Asn Ile Ser Gly Asn Thr 1195 1190

Val	Thr	Val	Thr	Ala 120		Ser	Gly	Ala	Leu 121		Thr	Leu	Ala	Gly 1215	
Thr	Ile	Lys	Gly 1220		Glu	Ser	Val	Thr 1225		Ser	Ser	Gln	Ser 123	Gly	Asp
Ile	Gly	Gly 1235		Ile	Ser	Gly	Gly 1240		Val	Glu	Val	Lys 1249		Thr	Glu
Ser	Leu 1250		Thr	Gln	Ser	Asn 1255		Lys	Ile	Lys	Ala 1260		Thr	Gly	Glu
Ala 1265		Val	Thr	Ser	Ala 1270		Gly	Thr	Ile	Gly 127	_	Thr	Ile	Ser	Gly 1280
Asn	Thr	Val	Asn	Val 1285		Ala	Asn	Ala	Gly 1290		Leu	Thr	Val	Gly 1295	
Gly	Ala	Glu	Ile 1300		Ala	Thr	Glu	Gly 1305		Ala	Thr	Leu	Thr 1310	Thr	Ser
Ser	Gly	Lys 1315		Thr	Thr	Glu	Ala 1320		Ser	His	Ile	Thr 1325		Ala	Lys
Gly	Gln 1330		Asn	Leu	Ser	Ala 1335		Asp	Gly	Ser	Val 1340		Gly	Ser	Ile
Asn 1345		Ala	Asn	Val	Thr 1350		Asn	Thr	Thr	Gly 1355		Leu	Thr	Thr	Val 1360
Lys	Gly	Ser	Asn	Ile 1365		Ala	Thr	Ser	Gly 1370		Leu	Val	Ile	Asn 1375	
Lys	Asp	Ala	Glu 1380		Asn	Gly	Ala	Ala 1385		Gly	Asn	His	Thr 1390	Val	Val
Asn	Ala	Thr 1395		Ala	Asn	Gly	Ser 1400		Ser	Val	Ile	Ala 1405		Thr	Ser
Ser	Arg 1410		Asn	Ile	Thr	Gly 1415		Leu	Ile	Thr	Ile 1420		Gly	Leu	Asn
Ile 1425		Ser	Lys	Asn	Gly 1430		Asn	Thr	Val	Leu 1435		Lys	Gly	Val	Lys 1440
Ile	Asp	Val			Ile									Glu 1455	
Ile	Glu	Ala	Lys 1460	_	Ile	Leu	Glu	Lys 1465		Lys	Asp	Leu	Ser 1470	qaA (Glu
Glu	Arg	Glu 1475		Leu	Ala	Lys	Leu 1480	-	Val	Ser	Ala	Val 1485	_	Phe	Ile
Glu	Pro 1490		Asn	Thr	Ile	Thr 1495		Asp	Thr	Gln	Asn 1500		Phe	Ala	Thr
Arg 1505		Leu	Ser	Arg	Ile 1510		Ile	Ser	Glu	Gly 1519	_	Ala	Сув	Phe	Ser 1520
Asn	Ser	Asp	Gly	Ala 1525		Val	Cys	Val	Asn 1530		Ala	Asp	Asn	Gly 1535	

36

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4937 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TAAATATACA	AGATAATAAA	AATAAATCAA	GATTTTTGTG	ATGACAAACA	ACAATTACAA	60
CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAAT	AGTATAAATC	CGCCATATAA	120
AATGGTATAA	TCTTTCATCT	TTCATCTTTA	ATCTTTCATC	TTTCATCTTT	CATCTTTCAT	180
CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	240
CACATGAAAT	GATGAACCGA	GGGAAGGGAG	GGAGGGGCAA	GAATGAAGAG	GGAGCTGAAC	300
GAACGCAAAT	GATAAAGTAA	TTTAATTGTT	CAACTAACCT	TAGGAGAAAA	TATGAACAAG	360
ATATATCGTC	TCAAATTCAG	CAAACGCCTG	AATGCTTTGG	TTGCTGTGTC	TGAATTGGCA	420
CGGGGTTGTG	ACCATTCCAC	AGAAAAAGGC	TTCCGCTATG	TTACTATCTT	TAGGTGTAAC	480
CACTTAGCGT	TAAAGCCACT	TTCCGCTATG	TTACTATCTT	TAGGTGTAAC	ATCTATTCCA	540
CAATCTGTTT	TAGCAAGCGG	CTTACAAGGA	ATGGATGTAG	TACACGGCAC	AGCCACTATG	600
CAAGTAGATG	GTAATAAAAC	CATTATCCGC	AACAGTGTTG	ACGCTATCAT	TAATTGGAAA	660
CAATTTAACA	TCGACCAAAA	TGAAATGGTG	CAGTTTTTAC	AAGAAAACAA	CAACTCCGCC	720
GTATTCAACC	GTGTTACATC	TAACCAAATC	TCCCAATTAA	AAGGGATTTT	AGATTCTAAC	780
GGACAAGTCT	TTTTAATCAA	CCCAAATGGT	ATCACAATAG	GTAAAGACGC	AATTATTAAC	840
ACTAATGGCT	TTACGGCTTC	TACGCTAGAC	ATTTCTAACG	AAAACATCAA	GGCGCGTAAT	900
TTCACCTTCG	AGCAAACCAA	AGATAAAGCG	CTCGCTGAAA	TTGTGAATCA	CGGTTTAATT	960
ACTGTCGGTA	AAGACGGCAG	TGTAAATCTT	ATTGGTGGCA	AAGTGAAAAA	CGAGGGTGTG	1020
ATTAGCGTAA	ATGGTGGCAG	CATTTCTTTA	CTCGCAGGGC	AAAAAATCAC	CATCAGCGAT	1080
ATAATAAACC	CAACCATTAC	TTACAGCATT	GCCGCGCCTG	AAAATGAAGC	GGTCAATCTG	1140
GGCGATATTT	TTGCCAAAGG	CGGTAACATT	AATGTCCGTG	CTGCCACTAT	TCGAAACCAA	1200
GGTAAACTTT	CTGCTGATTC	TGTAAGCAAA	GATAAAAGCG	GCAATATTGT	TCTTTCCGCC	1260
AAAGAGGGTG	AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC	AAAATCAGCA	AGCTAAAGGC	1320
GGCAAGCTGA	TGATTACAGG	CGATAAAGTC	ACATTAAAAA	CAGGTGCAGT	TATCGACCTT	1380
TCAGGTAAAG	AAGGGGGAGA	AACTTACCTT	GGCGGTGACG	AGCGCGGCGA	AGGTAAAAAC	1440
GGCATTCAAT	TAGCAAAGAA	AACCTCTTTA	GAAAAAGGCT	CAACCATCAA	TGTATCAGGC	1500
AAAGAAAAAG	GCGGACGCGC	TATTGTGTGG	GGCGATATTG	CGTTAATTGA	CGGCAATATT	1560
AACGCTCAAG	GTAGTGGTGA	TATCGCTAAA	ACCGGTGGTT	TTGTGGAGAC	ATCGGGGCAT	1620

TATTTATCCA	TTGACAGCAA	TGCAATTGTT	AAAACAAAAG	AGTGGTTGCT	AGACCCTGAT	1680
GATGTAACAA	TTGAAGCCGA	AGACCCCCTT	CGCAATAATA	CCGGTATAAA	TGATGAATTC	1740
CCAACAGGCA	CCGGTGAAGC	AAGCGACCCT	AAAAAAAATA	GCGAACTCAA	AACAACGCTA	1800
ACCAATACAA	CTATTTCAAA	TTATCTGAAA	AACGCCTGGA	CANTGAATAT	AACGGCATCA	1860
AGAAAACTTA	CCGTTAATAG	CTCAATCAAC	ATCGGAAGCA	ACTCCCACTT	AATTCTCCAT	1920
AGTAAAGGTC	AGCGTGGCGG	AGGCGTTCAG	ATTGATGGAG	ATATTACTTC	TAAAGGCGGA	1980
AATTTAACCA	TTTATTCTGG	CGGATGGGTT	GATGTTCATA	AAAATATTAC	GCTTGATCAG	2040
GGTTTTTTAA	ATATTACCGC	CGCTTCCGTA	GCTTTTGAAG	GTGGAAATAA	CAAAGCACGC	2100
GACGCGGCAA	ATGCTAAAAT	TGTCGCCCAG	GGCACTGTAA	CCATTACAGG	AGAGGGAAAA	2160
GATTTCAGGG	CTAACAACGT	ATCTTTAAAC	GGAACGGGTA	AAGGTCTGAA	TATCATTTCA	2220
TCAGTGAATA	ATTTAACCCA	CAATCTTAGT	GGCACAATTA	ACATATCTGG	GAATATAACA	2280
ATTAACCAAA	CTACGAGAAA	GAACACCTCG	TATTGGCAAA	CCAGCCATGA	TTCGCACTGG	2340
AACGTCAGTG	CTCTTAATCT	AGAGACAGGC	GCAAATTTTA	CCTTTATTAA	ATACATTTCA	2400
AGCAATAGCA	AAGGCTTAAC	AACACAGTAT	AGAAGCTCTG	CAGGGGTGAA	TTTTAACGGC	2460
GTAAATGGCA	ACATGTCATT	CAATCTCAAA	GAAGGAGCGA	AAGTTAATTT	CAAATTAAAA	2520
CCAAACGAGA	ACATGAACAC	AAĢCAAACCT	TTACCAATTC	GGTTTTTAGC	CAATATCACA	2580
GCCACTGGTG	GGGGCTCTGT	TTTTTTTGAT	ATATATGCCA	ACCATTCTGG	CAGAGGGGCT	2640
GAGTTAAAAA	TGAGTGAAAT	TAATATCTCT	AACGGCGCTA	ATTTTACCTT	AAATTCCCAT	2700
GTTCGCGGCG	ATGACGCTTT	TAAAATCAAC	AAAGACTTAA	CCATAAATGC	AACCAATTCA	2760
AATTTCAGCC	TCAGACAGAC	GAAAGATGAT	TTTTATGACG	GGTACGCACG	CAATGCCATC	2820
AATTCAACCT	ACAACATATC	CATTCTGGGC	GGTAATGTCA	CCCTTGGTGG	ACAAAACTCA	2880
AGCAGCAGCA	TTACGGGGAA	TATTACTATC	GAGAAAGCAG	CAAATGTTAC	GCTAGAAGCC.	2940
AATAACGCCC	CTAATCAGCA	AAACATAAGG	GATAGAGTTA	TAAAACTTGG	CAGCTTGCTC	3000
GTTAATGGGA	GTTTAAGTTT	AACTGGCGAA	AATGCAGATA	TTAAAGGCAA	TCTCACTATT	3060
TCAGAAAGCG	CCACTTTTAA	AGGAAAGACT	AGAGATACCC	TAAATATCAC	CGGCAATTTT	3120
ACCAATAATG	GCACTGCCGA	ATTAATAA	ACACAAGGAG	TGGTAAAACT	TGGCAATGTT	3180
ACCAATGATG	GTGATTTAAA	CATTACCACT	CACGCTAAAC	GCAACCAAAG	AAGCATCATC	3240
GGCGGAGATA	TAATCAACAA	AAAAGGAAGC	TTAAATATTA	CAGACAGTAA	TAATGATGCT	3300
GAAATCCAAA	TTGGCGGCAA	TATCTCGCAA	AAAGAAGGCA	ACCTCACGAT	TTCTTCCGAT	3360
ATAATTAAAA	TCACCAAACA	GATAACAATC	AAAAAGGGTA	TTGATGGAGA	GGACTCTAGT	3420
					ATTGACAGAA	3480
GACCTAAGTA	TTTCAGGTTT	CAATAAAGCA	GAGATTACAG	CCAAAGATGG	TAGAGATTTA	3540
	ACAGTAATGA					3600
AATGTTAAAG	ATTCAAAAAT	CTCTGCTGAC	GGTCACAATG	TGACACTAAA	TAGCAAAGTG	3660

AAAACATCTA	A GCAGCAATGO	G CGGACGTGA	A AGCAATAGCO	ACAACGATA	CCGGCTTAACT	3720
ATTACTGCAA	AAAATGTAG!	AGTAAACAA	A GATATTACT	CTCTCAAAA	AGTAAATATC	3780
ACCGCGTCGG	AAAAGGTTAC	CACCACAGC	GGCTCGACC	TTAACGCAAC	AAATGGCAAA	3840
GCAAGTATTA	CAACCAAAAC	AGGTGATATO	CAGCGGTACGA	TTTCCGGTA	CACGGTAAGT	3900
GTTAGCGCGA	CTGGTGATTI	AACCACTAAA	TCCGGCTCAA	AAATTGAAGO	GAAATCGGGT	3960
GAGGCTAATG	TAACAAGTGC	AACAGGTACA	ATTGGCGGTA	CAATTTCCGG	TAATACGGTA	4020
AATGTTACGG	CAAACGCTGG	CGATTTAACA	GTTGGGAATG	GCGCAGAAAT	TAATGCGACA	4080
GAAGGAGCTG	CAACCTTAAC	CGCAACAGGG	AATACCTTGA	CTACTGAAGC	CGGTTCTAGC	4140
ATCACTTCAA	CTAAGGGTCA	GGTAGACCTC	TTGGCTCAGA	ATGGTAGCAT	CGCAGGAAGC	4200
ATTAATGCTG	CTAATGTGAC	ATTAAATACT	ACAGGCACCT	TAACCACCGT	GGCAGGCTCG	4260
GATATTAAAG	CAACCAGCGG	CACCTTGGTT	ATTAACGCAA	AAGATGCTAA	GCTAAATGGT	4320
GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	GCAGTCAACG	CAAGCGGCTC	TGGTAGTGTG	4380
ACTGCGGCAA	CCTCAAGCAG	TGTGAATATC	ACTGGGGATT	TAAACACAGT	AAATGGGTTA	4440
AATATCATTT	CGAAAGATGG	TAGAAACACT	GTGCGCTTAA	GAGGCAAGGA	AATTGAGGTG	4500
AAATATATCC	AGCCAGGTGT	AGCAAGTGTA	GAAGAAGTAA	TTGAAGCGAA	ACGCGTCCTT	4560
GAAAAAGTAA	AAGATTTATC	TGATGAAGAA	AGAGAAACAT	TAGCTAAACT	TGGTGTAAGT	4620
GCTGTACGTT	TTGTTGAGCC	AAATAATACA	ATTACAGTCA	ATACACAAAA	TGAATTTACA	4680
ACCAGACCGT	CAAGTCAAGT	GATAATTTCT	GAAGGTAAGG	CGTGTTTCTC	AAGTGGTAAT	4740
	TATGTACCAA					4800
	TCCTGCAATG					4860
	GGCTTTACCC	ATCTTGTAAA	AAATTACGGA	GAATACAATA	AAGTATTTT	4920
ACAGGTTAT	TATTATG					4937

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1477 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Asn Lys Ile Tyr Arg Leu Lys Phe Ser Lys Arg Leu Asn Ala Leu

Val Ala Val Ser Glu Leu Ala Arg Gly Cys Asp His Ser Thr Glu Lys

Gly Ser Glu Lys Pro Ala Arg Met Lys Val Arg His Leu Ala Leu Lys

Pro Leu Ser Ala Met Leu Leu Ser Leu Gly Val Thr Ser Ile Pro Gln Ser Val Leu Ala Ser Gly Leu Gln Gly Met Asp Val Val His Gly Thr Ala Thr Met Gln Val Asp Gly Asn Lys Thr Ile Ile Arg Asn Ser Val Asp Ala Ile Ile Asn Trp Lys Gln Phe Asn Ile Asp Gln Asn Glu Met 100 105 Val Gln Phe Leu Gln Glu Asn Asn Asn Ser Ala Val Phe Asn Arg Val Thr Ser Asn Gln Ile Ser Gln Leu Lys Gly Ile Leu Asp Ser Asn Gly 135 Gln Val Phe Leu Ile Asn Pro Asn Gly Ile Thr Ile Gly Lys Asp Ala 150 Ile Ile Asn Thr Asn Gly Phe Thr Ala Ser Thr Leu Asp Ile Ser Asn 170 Glu Asn Ile Lys Ala Arg Asn Phe Thr Phe Glu Gln Thr Lys Asp Lys 185 Ala Leu Ala Glu Ile Val Asn His Gly Leu Ile Thr Val Gly Lys Asp 200 Gly Ser Val Asn Leu Ile Gly Gly Lys Val Lys Asn Glu Gly Val Ile 215 Ser Val Asn Gly Gly Ser Ile Ser Leu Leu Ala Gly Gln Lys Ile Thr 235 Ile Ser Asp Ile Ile Asn Pro Thr Ile Thr Tyr Ser Ile Ala Ala Pro Glu Asn Glu Ala Val Asn Leu Gly Asp Ile Phe Ala Lys Gly Gly Asn 265 Ile Asn Val Arg Ala Ala Thr Ile Arg Asn Gln Gly Lys Leu Ser Ala 280 Asp Ser Val Ser Lys Asp Lys Ser Gly Asn Ile Val Leu Ser Ala Lys Glu Gly Glu Ala Glu Ile Gly Gly Val Ile Ser Ala Gln Asn Gln Gln 310 315 Ala Lys Gly Gly Lys Leu Met Ile Thr Gly Asp Lys Val Thr Leu Lys 330 Thr Gly Ala Val Ile Asp Leu Ser Gly Lys Glu Gly Gly Glu Thr Tyr Leu Gly Gly Asp Glu Arg Gly Glu Gly Lys Asn Gly Ile Gln Leu Ala 360 Lys Lys Thr Ser Leu Glu Lys Gly Ser Thr Ile Asn Val Ser Gly Lys 375 Glu Lys Gly Gly Phe Ala Ile Val Trp Gly Asp Ile Ala Leu Ile Asp

Gly Asn Ile Asn Ala Gln Gly Ser Gly Asp Ile Ala Lys Thr Gly Gly Phe Val Glu Thr Ser Gly His Asp Leu Phe Ile Lys Asp Asn Ala Ile Val Asp Ala Lys Glu Trp Leu Leu Asp Phe Asp Asn Val Ser Ile Asn 435 Ala Glu Asp Pro Leu Phe Asn Asn Thr Gly Ile Asn Asp Glu Phe Pro 455 Thr Gly Thr Gly Glu Ala Ser Asp Pro Lys Lys Asn Ser Glu Leu Lys 470 Thr Thr Leu Thr Asn Thr Thr Ile Ser Asn Tyr Leu Lys Asn Ala Trp 485 Thr Met Asn Ile Thr Ala Ser Arg Lys Leu Thr Val Asn Ser Ser Ile Asn Ile Gly Ser Asn Ser His Leu Ile Leu His Ser Lys Gly Gln Arg 520 Gly Gly Gly Val Gln Ile Asp Gly Asp Ile Thr Ser Lys Gly Gly Asn Leu Thr Ile Tyr Ser Gly Gly Trp Val Asp Val His Lys Asn Ile Thr 555 Leu Asp Gln Gly Phe Leu Asn Ile Thr Ala Ala Ser Val Ala Phe Glu Gly Gly Asn Asn Lys Ala Arg Asp Ala Ala Asn Ala Lys Ile Val Ala Gln Gly Thr Val Thr Ile Thr Gly Glu Gly Lys Asp Phe Arg Ala Asn Asn Val Ser Leu Asn Gly Thr Gly Lys Gly Leu Asn Ile Ile Ser Ser 615 Val Asn Asn Leu Thr His Asn Leu Ser Gly Thr Ile Asn Ile Ser Gly 635 Asn Ile Thr Ile Asn Gln Thr Thr Arg Lys Asn Thr Ser Tyr Trp Gln Thr Ser His Asp Ser His Trp Asn Val Ser Ala Leu Asn Leu Glu Thr 665 Gly Ala Asn Phe Thr Phe Ile Lys Tyr Ile Ser Ser Asn Ser Lys Gly Leu Thr Thr Gln Tyr Arg Ser Ser Ala Gly Val Asn Phe Asn Gly Val Asn Gly Asn Met Ser Phe Asn Leu Lys Glu Gly Ala Lys Val Asn Phe 710 Lys Leu Lys Pro Asn Glu Asn Met Asn Thr Ser Lys Pro Leu Pro Ile Arg Phe Leu Ala Asn Ile Thr Ala Thr Gly Gly Ser Val Phe Phe 740

Asp	Ile	Tyr 755	Ala	Asn	His	Ser	Gly 760	Arg	Gly	Ala	Glu	Leu 765	Lys	Met	Ser
Glu	Ile 770	Asn	Ile	Ser	Asn	Gly 775	Ala	Asn	Phe	Thr	Leu 780	Asn	Ser	His	Val
Arg 785	Gly	Asp	Asp	Ala	Phe 790	Lys	Ile	Asn	Lys	Asp 795	Leu	Thr	Ile	Asn	Ala 800
Thr	Asn	Ser	Asn	Phe 805	Ser	Leu	Arg	Gln	Thr 810	Lys	Asp	Asp	Phe	Tyr 815	Asp
Gly	Tyr	Ala	Arg 820	Asn	Ala	Ile	Asn	Ser 825	Thr	Тут	Asn	Ile	Ser 830	Ile	Leu
Gly	Gly	Asn 835	Val	Thr	Leu	Gly	Gly 840	Gln	Asn	Ser	Ser	Ser 845	Ser	Ile	Thr
Gly	Asn 850	Ile	Thr	Ile	Glu	Lys 855	Ala	Ala	Asn	Val	Thr 860	Leu	Glu	Ala	Asn
Asn 865	Ala	Pro	Asn	Gln	Gln 870	Asn	Ile	Arg	Asp	Arg 875	Val	Ile	Lys	Leu	Gly 880
Ser	Leu	Leu	Val	Asn 885	Gly	Ser	Leu	Ser	Leu 890	Thr	Gly	Glu	Asn	Ala 895	Asp
Ile	Lys	Gly	Asn 900	Leu	Thr	Ile	Ser	Glu 905	Ser	Ala	Thr	Phe	Lys 910	Gly	Lys
Thr	Arg	Asp 915	Thr	Leu	Asn	Ile	Thr 920	Gly	Asn	Phe	Thr	Asn 925	Asn	Gly	Thr
Ala	Glu 930	Ile	Asn	Ile	Thr	Gln 935	Gly	Val	Val	Lys	Leu 940	Gly	Asn	Val	Thr
Asn 945	Asp	Gly	Asp	Leu	Asn 950	Ile	Thr	Thr	His	Ala 955	Lys	Arg	Asn	Gln	Arg 960
Ser	Ile	Ile	Gly	Gly 965	Asp	Ile	Ile	Asn	Lys 970	Lys	Gly	Ser	Leu	Asn 975	Ile
Thr	Asp	Ser	Asn 980	Asn	Asp	Ala	Glu	Ile 985	Gln	Ile	Gly	Gly	Asn 990	Ile	Ser
Gln	Lys	Glu 995	Gly	Asn	Leu	Thr	Ile 1000		Ser	Asp	Lys	Ile 1009	Asn	Ile	Thr
Lys	Gln 1010		Thr	Ile	Lys	Lys 1015		Ile	Asp	Gly	Glu 1020		Ser	Ser	Ser
Asp 1025		Thr	Ser	Asn	Ala 1030		Leu	Thr	Ile	Lys 1035		Lys	Glu	Leu	Lys 1040
Leu	Thr	Glu	Asp	Leu 1045		Ile	Ser	Gly	Phe 1050		Lys	Ala	Glu	Ile 1055	
Ala	Lys	Asp	Gly 1060		Asp	Leu	Thr	Ile 1065		Asn	Ser	Asn	Asp 1070		Asn
Ser	Gly	Ala 1075		Ala	Lys	Thr	Val 1080		Phe	Asn	Asn	Val 1089	Lys	Asp	Ser
Lys	Ile 1090		Ala	Asp	Gly	His 1095		Val	Thr	Leu	Asn 1100		Lys	Val	Lys

Thr	Ser	Ser	Ser	Asn	Gly	Gly	Arg	Glu	Ser	Asn	Ser	Asp	Asn	Asp	Thr
1105	5				1110)				1115		•			1120

- Gly Leu Thr Ile Thr Ala Lys Asn Val Glu Val Asn Lys Asp Ile Thr 1125 1130 1135
- Ser Leu Lys Thr Val Asn Ile Thr Ala Ser Glu Lys Val Thr Thr 1140 1145 1150
- Ala Gly Ser Thr Ile Asn Ala Thr Asn Gly Lys Ala Ser Ile Thr Thr
- Lys Thr Gly Asp Ile Ser Gly Thr Ile Ser Gly Asn Thr Val Ser Val 1170 1180
- Ser Ala Thr Val Asp Leu Thr Thr Lys Ser Gly Ser Lys Ile Glu Ala 1185 1190 1195 1200
- Lys Ser Gly Glu Ala Asn Val Thr Ser Ala Thr Gly Thr Ile Gly Gly
 1205 1210 1215
- Thr Ile Ser Gly Asn Thr Val Asn Val Thr Ala Asn Ala Gly Asp Leu 1220 1225 1230
- Thr Val Gly Asn Gly Ala Glu Ile Asn Ala Thr Glu Gly Ala Ala Thr 1235 1240 1245
- Leu Thr Ala Thr Gly Asn Thr Leu Thr Thr Glu Ala Gly Ser Ser Ile 1250 1260
- Thr Ser Thr Lys Gly Gln Val Asp Leu Leu Ala Gln Asn Gly Ser Ile 1265 1270 1275 1280
- Ala Gly Ser Ile Asn Ala Ala Asn Val Thr Leu Asn Thr Thr Gly Thr 1285 1290 1295
- Leu Thr Thr Val Ala Gly Ser Asp Ile Lys Ala Thr Ser Gly Thr Leu 1300 1305 1310
- Val Ile Asn Ala Lys Asp Ala Lys Leu Asn Gly Asp Ala Ser Gly Asp 1315 1320 1325
- Ser Thr Glu Val Asn Ala Val Asn Ala Ser Gly Ser Gly Ser Val Thr 1330 1335 1340
- Ala Ala Thr Ser Ser Ser Val Asn Ile Thr Gly Asp Leu Asn Thr Val 1345 1350 1355 1360
- Asn Gly Leu Asn Ile Ile Ser Lys Asp Gly Arg Asn Thr Val Arg Leu 1365 1370 1375
- Arg Gly Lys Glu Ile Glu Val Lys Tyr Ile Gln Pro Gly Val Ala Ser 1380 1385 1390
- Val Glu Glu Val Ile Glu Ala Lys Arg Val Leu Glu Lys Val Lys Asp 1395 1400 1405
- Leu Ser Asp Glu Glu Arg Glu Thr Leu Ala Lys Leu Gly Val Ser Ala 1410 1415 1420
- Val Arg Phe Val Glu Pro Asn Asn Thr Ile Thr Val Asn Thr Gln Asn 1425 1430 1435 1440
- Glu Phe Thr Thr Arg Pro Ser Ser Gln Val Ile Ile Ser Glu Gly Lys 1445 1450 1455

Ala Cys Phe Ser Ser Gly Asn Gly Ala Arg Val Cys Thr Asn Val Ala 1460 1465

Asp Asp Gly Gln Pro 1475

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9171 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ACAGCGTTCT	CTTAATACTA	GTACAAACCC	ACAATAAAAT	ATGACAAACA	ACAATTACAA	60
CACCTTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAATA	GTATAAATCC	GCCATATAAA	120
ATGGTATAAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	180
TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	TTCATCTTTC	240
ACATGAAATG	ATGAACCGAG	GGAAGGGAGG	GAGGGGCAAG	AATGAAGAGG	GAGCTGAACG	300
AACGCAAATG	ATAAAGTAAT	TTAATTGTTC	AACTAACCTT	AGGAGAAAAT	ATGAACAAGA	360
TATATCGTCT	CAAATTCAGC	AAACGCCTGA	ATGCTTTGGT	TGCTGTGTCT	GAATTGGCAC	420
GGGGTTGTGA	CCATTCCACA	GAAAAAGGCA	GCGAAAAACC	TGCTCGCATG	AAAGTGCGTC	480
ACTTAGCGTT	AAAGCCACTT	TCCGCTATGT	TACTATCTTT	AGGTGTAACA	TCTATTCCAC	540
AATCTGTTTT	AGCAAGCGGC	TTACAAGGAA	TGGATGTAGT	ACACGGCACA	GCCACTATGC	600
AAGTAGATGG	TAATAAAACC	ATTATCCGCA	ACAGTGTTGA	CGCTATCATT	AATTGGAAAC	660
AATTTAACAT	CGACCAAAAT	GAAATGGTGC	AGTTTTTACA	AGAAAACAAC	AACTCCGCCG	720
TATTCAACCG	TGTTACATCT	AACCAAATCT	CCCAATTAAA	AGGGATTTTA	GATTCTAACG	780
GACAAGTCTT	TTTAATCAAC	CCAAATGGTA	TCACAATAGG	TAAAGACGCA	ATTATTAACA	840
CTAATGGCTT	TACGGCTTCT	ACGCTAGACA	TTTCTAACGA	AAACATCAAG	GCGCGTAATT	900
TCACCTTCGA	GCAAACCAAA	GATAAAGCGC	TCGCTGAAAT	TGTGAATCAC	GGTTTAATTA	960
CTGTCGGTAA	AGACGGCAGT	GTAAATCTTA	TTGGTGGCAA	AGTGAAAAAC	GAGGGTGTGA	1020
TTAGCGTAAA	TGGTGGCAGC	ATTTCTTTAC	TCGCAGGGCA	AAAAATCACC	ATCAGCGATA	1080
TAATAAACCC	AACCATTACT	TACAGCATTG	CCGCGCCTGA	AAATGAAGCG	GTCAATCTGG	1140
GCGATATTTT	TGCCAAAGGC	GGTAACATTA	ATGTCCGTGC	TGCCACTATT	CGAAACCAAG	1200
CTTTCCGCCA	AAGAGGGTGA	AGCGGAAATT	GGCGGTGTAA	TTTCCGCTCA	AAATCAGCAA	1260
GCTAAAGGCG	GCAAGCTGAT	GATTACAGGC	GATAAAGTCA	CATTAAAAAC	AGGTGCAGTT	1320
ATCGACCTTT	CAGGTAAAGA	AGGGGGAGAA	ACTTACCTTG	GCGGTGACGA	GCGCGGCGAA	1380
GGTAAAAACG	GCATTCAATT	AGCAAAGAAA	ACCTCTTTAG	AAAAAGGCTC	AACCATCAAT	1440

GTATCAGGCA	A AAGAAAAAGG	GGGACGCGC'I	TATTGTGTGGG	GCGATATTGC	GTTAATTGAC	150
GGCAATATT	A ACGCTCAAGG	TAGTGGTGAT	ATCGCTAAAA	CCGGTGGTTT	TGTGGAGACG	156
TCGGGGCAT	ATTTATTCAT	CAAAGACAAT	GCAATTGTTG	ACGCCAAAGA	GTGGTTGTTA	162
GACCCGGATA	ATGTATCTAT	TAATECAGAA	ACAGCAGGAC	GCAGCAATAC	TTCAGAAGAC	168
GATGAATACA	CGGGATCCGG	GAATAGTGCC	AGCACCCCAA	AACGAAACAA	AGAAAAGACA	174
ACATTAACAA	ACACAACTCT	TGAGAGTATA	CTAAAAAAAG	GTACCTTTGT	TAACATCACT	180
GCTAATCAAC	GCATCTATGT	CAATAGCTCC	ATTAATTTAT	CCAATGGCAG	CTTAACTCTT	186
TGGAGTGAGG	GTCGGAGCGG	TGGCGGCGTT	GAGATTAACA	ACGATATTAC	CACCGGTGAT	192
GATACCAGAG	GTGCAAACTT	AACAATTTAC	TCAGGCGGCT	GGGTTGATGT	TCATAAAAAT	1986
ATCTCACTCG	GGGCGCAAGG	TAACATAAAC	ATTACAGCTA	AACAAGATAT	CGCCTTTGAG	204
AAAGGAAGCA	ACCAAGTCAT	TACAGGTCAA	GGGACTATTA	CCTCAGGCAA	TCAAAAAGGT	2100
TTTAGATTTA	ATAATGTCTC	TCTAAACGGC	ACTGGCAGCG	GACTGCAATT	CACCACTAAA	2160
AGAACCAATA	AATACGCTAT	CACAAATAAA	TTTGAAGGGA	CTTTAAATAT	TTCAGGGAAA	2220
GTGAACATCT	CAATGGTTTT	ACCTAAAAAT	GAAAGTGGAT	ATGATAAATT	CAAAGGACGC	2280
ACTTACTGGA	ATTTAACCTC	GAAAGTGGAT	ATGATAAATT	CAAAGGACGC	CCTCACTATT	2340
GACTCCAGAG	GAAGCGATAG	TGCAGGCACA	CTTACCCAGC	CTTATAATTT	AAACGGTATA	2400
TCATTCAACA	AAGACACTAC	CTTTAATGTT	GAACGAAATG	CAAGAGTCAA	CTTTGACATC	2460
AAGGCACCAA	TAGGGATAAA	TAAGTATTCT	AGTTTGAATT	ACGCATCATT	TAATGGAAAC	2520
ATTTCAGTTT	CGGGAGGGG	GAGTGTTGAT	TTCACACTTC	TCGCCTCATC	CTCTAACGTC	2580
CAAACCCCCG	GTGTAGTTAT	AAATTCTAAA	TACTTTAATG	TTTCAACAGG	GTCAAGTTTA	2640
AGATTTAAAA	CTTCAGGCTC	AACAAAAACT	GGCTTCTCAA	TAGAGAAAGA	TTTAACTTTA	2700
AATGCCACCG	GAGGCAACAT	AACACTTTTG	CAAGTTGAAG	GCACCGATGG	AATGATTGGT	2760
AAAGGCATTG	TAGCCAAAAA	AAACATAACC	TTTGAAGGAG	GTAAGATGAG	GTTTGGCTCC	2820
AGGAAAGCCG	TAACAGAAAT	CGAAGGCAAT	GTTACTATCA	ATAACAACGC	TAACGTCACT	2880
CTTATCGGTT	CGGATTTTGA	CAACCATCAA	AAACCTTTAA	CTATTAAAAA	AGATGTCATC	2940
ATTAATAGCG	GCAACCTTAC	CGCTGGAGGC	AATATTGTCA	ATATAGCCGG	AAATCTTACC	3000
GTTGAAAGTA	ACGCTAATTT	CAAAGCTATC	ACAAATTTCA	CTTTTAATGT	AGGCGGCTTG	3060
TTTGACAACA	AAGGCAATTC	AAATATTTCC	ATTGCCAAAG	GAGGGGCTCG	CTTTAAAGAC	3120
ATTGATAATT	CCAAGAATTT	AAGCATCACC	ACCAACTCCA	GCTCCACTTA	CCGCACTATT	3180
ATAAGCGGCA	ATATAACCAA	TAAAAACGGT	GATTTAAATA	TTACGAACGA	AGGTAGTGAT	3240
ACTGAAATGC	AAATTGGCGG	CGATGTCTCG	CAAAAAGAAG	GTAATCTCAC	GATTTCTTCT	3300
GACAAAATCA	ATATTACCAA	ACAGATAACA	ATCAAGGCAG	GTGTTGATGG	GGAGAATTCC	3360
GATTCAGACG	CGACAAACAA	TGCCAATCTA	ACCATTAAAA	CCAAAGAATT	GAAATTAACG	3420
CAAGACCTAA	ATATTTCAGG	TTTCAATAAA	GCAGAGATTA	CAGCTAAAGA	TGGTAGTGAT	3480

TTAACTATTG	GTAACACCAA	TAGTGCTGAT	GGTACTAATG	CCAAAAAAGT	AACCTTTAAC	3540
CAGGTTAAAG	ATTCAAAAAT	CTCTGCTGAC	GGTCACAAGG	TGACACTACA	CAGCAAAGTG	3600
GANACATCCG	GTAGTAATAA	CAACACTGAA	GATAGCAGTG	ACAATAATGC	CGGCTTAACT	3660
ATCGATGCAA	AAAATGTAAC	AGTAAACAAC	AATATTACTT	CTCACAAAGC	AGTGAGCATC	3720
TCTGCGACAA	GTGGAGAAAT	TACCACTAAA	ACAGGTACAA	CCATTAACGC	AACCACTGGT	3780
AACGTGGAGA	TAACCGCTCA	AACAGGTAGT	ATCCTAGGTG	GAATTGAGTC	CAGCTCTGGC	3840
TCTGTAACAC	TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	GCAATATTTC	GGGCAACACC	3900
GTTACTGTTA	CTGCAAATAG	CGGTGCATTA	ACCACTTTGG	CAGGCTCTAC	AATTAAAGGA	3960
ACCGAGAGTG	TAACCACTTC	AAGTCAATCA	GGCGATATCG	GCGGTACGAT	TTCTGGTGGC	4020
ACAGTAGAGG	TTAAAGCAAC	CGAAAGTTTA	ACCACTCAAT	CCAATTCAAA	AATTAAAGCA	4080
ACAACAGGCG	AGGCTAACGT	AACAAGTGCA	ACAGGTACAA	TTGGTGGTAC	GATTTCCGGT	4140
AATACGGTAA	ATGTTACGGC	AAACGCTGGC	GATTTAACAG	TTGGGAATGG	CGCAGAAATT	4200
AATGCGACAG	AAGGAGCTGC	AACCTTAACT	ACATCATCGG	GCAAATTAAC	TACCGAAGCT	4260
AGTTCACACA	TTACTTCAGC	CAAGGGTCAG	GTAAATCTTT	CAGCTCAGGA	TGGTAGCGTT	4320
GCAGGAAGTA	TTAATGCCGC	CAATGTGACA	CTAAATACTA	CAGGCACTTT	AACTACCGTG	4380
AAGGGTTCAA	ACATTAATGC	AACCAGCGGT	ACCTTGGTTA	TTAACGCAAA	AGACGCTGAG	4440
CTAAATGGCG	CAGCATTGGG	TAACCACACA	GTGGTAAATG	CAACCAACGC	AAATGGCTCC	4500
GGCAGCGTAA	TCGCGACAAC	CTCAAGCAGA	GTGAACATCA	CTGGGGATTT	AATCACAATA	4560
AATGGATTAA	ATATCATTTC	AAAAAACGGT	ATAAACACCG	TACTGTTAAA	AGGCGTTAAA	4620
ATTGATGTGA	AATACATTCA	ACCGGGTATA	GCAAGCGTAG	ATGAAGTAAT	TGAAGCGAAA	4680
CGCATCCTTG	AGAAGGTAAA	AGATTTATCT	GATGAAGAAA	GAGAAGCGTT	AGCTAAACTT	4740
GGCGTAAGTG	CTGTACGTTT	TATTGAGCCA	AATAATACAA	TTACAGTCGA	TACACAAAAT	4800
GAATTTGCAA	CCAGACCATT	AAGTCGAATA	GTGATTTCTG	AAGGCAGGGC	GTGTTTCTCA	4860
AACAGTGATG	GCGCGACGGT	GTGCGTTAAT	ATCGCTGATA	ACGGGCGGTA	GCGGTCAGTA	4920
ATTGACAAGG	TAGATTTCAT	CCTGCAATGA	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	4980
TGGGTTAAAG	TTCAGTACGG	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	5040
AGTATTTTTA	ACAGGTTATT	ATTATGAAAA	ATATAAAAAG	CAGATTAAAA	CTCAGTGCAA	5100
TATCAGTATT	GCTTGGCCTG	GCTTCTTCAT	CATTGTATGC	AGAAGAAGCG	TTTTTAGTAA	5160
AAGGCTTTCA	GTTATCTGGT	GCACTTGAAA	CTTTAAGTGA	AGACGCCCAA	CTGTCTGTAG	5220
CAAAATCTTT	ATCTAAATAC	CAAGGCTCGC	AAACTTTAAC	AAACCTAAAA	ACAGCACAGC	5280
TTGAATTACA	GGCTGTGCTA	GATAAGATTG	AGCCAAATAA	GTTTGATGTG	ATATTGCCAC	5340
AACAAACCAT	TACGGATGGC	AATATTATGT	TTGAGCTAGT	CTCGAAATCA	GCCGCAGAAA	5400
GCCAAGTTTT	TTATAAGGCG	AGCCAGGGTT	ATAGTGAAGA	AAATATCGCT	CGTAGCCTGC	5460
CATCTTTGAA	ACAAGGAAAA	GTGTATGAAG	ATGGTCGTCA	GTGGTTCGAT	TTGCGTGAAT	5520

ICAAIAIGGC	AMAMOAMAAI	CCACTIAAAG	1CAC1CGCG1	GCATTACGAG	TIMAMCCCIA	3361
AAAACAAAAC	CTCTGATTTG	GTAGTTGCAG	GTTTTTCGCC	TTTTGGCAAA	ACGCGTAGCT	5640
TTGTTTCCTA	TGATAATTTC	GGCGCAAGGG	AGTTTAACTA	TCAACGTGTA	AGTCTAGGTT	5700
TTGTAAATGC	CAATTTGACC	GGACATGATG	ATGTATTAAA	TCTAAACCCA	TTGACCAATG	5760
TAAAAGCACC	ATCAAAATCT	TATGCGGTAG	GCATAGGATA	TACTTATCCG	TTTTATGATA	5820
AACACCAATC	CTTAAGTCTT	TATACCAGCA	TGAGTTATGC	TGATTCTAAT	GATATCGACG	5880
GCTTACCAAG	TGCGATTAAT	CGTAAATTAT	CAAAAGGTCA	ATCTATCTCT	GCGAATCTGA	5940
AATGGAGTTA	TTATCTCCCG	ACATTTAACC	TTGGAATGGA	AGACCAGTTT	TTAATTAAAA	6000
TAGGCTACAA	CTACCGCCAT	ATTAATCAAA	CATCCGAGTT	AAACACCCTG	GGTGCAACGA	6060
AGAAAAATT	TGCAGTATCA	GGCGTAAGTG	CAGGCATTGA	TGGACATATC	CAATTTACCC	6120
CTAAAACAAT	CTTTAATATT	GATTTAACTC	ATCATTATTA	CGCGAGTAAA	TTACCAGGCT	6180
CTTTTGGAAT	GGAGCGCATT	GGCGAAACAT	TTAATCGCAG	CTATCACATT	AGCACAGCCA	6240
GTTTAGGGTT	GAGTCAAGAG	TTTGCTCAAG	GTTGGCATTT	TAGCAGTCAA	TTATCGGGTC	6300
AGTTTACTCT	ACAAGATATA	AGTAGCATAG	ATTTATTCTC	TGTAACAGGT	ACTTATGGCG	6360
TCAGAGGCTT	TAAATACGGC	GGTGCAAGTG	GTGAGCGCGG	TCTTGTATGG	CGTAATGAAT	6420
TAAGTATGCC	AAAATACACC	CGCTTTCAAA	TCAGCCCTTA	TGCGTTTTAT	GATGCAGGTC	6480
AGTTCCGTTA	TAATAGCGAA	AATGCTAAAA	CTTACGGCGA	AGATATGCAC	ACGGTATCCT	6540
CTGCGGGTTT	AGGCATTAAA	ACCTCTCCTA	CACAAAACTT	AAGCTTAGAT	GCTTTTGTTG	6600
CTCGTCGCTT	TGCAAATGCC	AATAGTGACA	ATTTGAATGG	CAACAAAAAA	CGCACAAGCT	6660
CACCTACAAC	CTTCTGGGGT	AGATTAACAT	TCAGTTTCTA	ACCCTGAAAT	TTAATCAACT	6720
GGTAAGCGTT	CCGCCTACCA	GTTTATAACT	ATATGCTTTA	CCCGCCAATT	TACAGTCTAT	6780
ACGCAACCCT	GTTTTCATCC	TTATATATCA	AACAAACTAA	GCAAACCAAG	CAAACCAAGC	6840
AAACCAAGCA	AACCAAGCAA	ACCAAGCAAA	CCAAGCAAAC	CAAGCAAACC	AAGCAAACCA	6900
AGCAAACCAA	GCAAACCAAG	CAAACCAAGC	AAACCAAGCA	ATGCTAAAAA	ACAATTTATA	6960
TGATAAACTA	AAACATACTC	CATACCATGG	CAATACAAGG	GATTTAATAA	TATGACAAAA	7020
GAAAATTTAC	AAAGTGTTCC	ACAAAATACG	ACCGCTTCAC	TTGTAGAATC	AAACAACGAC	7080
CAAACTTCCC	TGCAAATACT	TAAACAACCA	CCCAAACCCA	ACCTATTACG	CCTGGAACAA	7140
CATGTCGCCA	AAAAAGATTA	TGAGCTTGCT	TGCCGCGAAT	TAATGGCGAT	TTTGGAAAAA	7200
ATGGACGCTA	ATTTTGGAGG	CGTTCACGAT	ATTGAATTTG	ACGCACCTGC	TCAGCTGGCA	7260
TATCTACCCG	AAAAACTACT	AATTCATTTT	GCCACTCGTC	TCGCTAATGC	AATTACAACA	7320
CTCTTTTCCG	ACCCCGAATT	GGCAATTTCC	GAAGAAGGGG	CATTAAAGAT	GATTAGCCTG	7380
CAACGCTGGT	TGACGCTGAT	TTTTGCCTCT	TCCCCCTACG	TTAACGCAGA	CCATATTCTC	7440
ATAAATAA	ATATCAACCC	AGATTCCGAA	GGTGGCTTTC	ATTTAGCAAC	AGACAACTCT	7500
ייריים ייירכריי ם	אמייריריבידאיי	<u> Առեռեսեր Մահեր</u>	CCCGAATCCA	ልጥርጥር እ ልጥልጥ	GAGTTTAGAT	7560

GCGTTAT	rggg	CAGGGAATCA	ACAACTTTGT	GCTTCATTGT	GTTTTGCGTT	GCAGTCTTCA	7620
CGTTTT	ATTG	GTACTGCATC	TGCGTTTCAT	AAAAGAGCGG	TGGTTTTACA	GTGGTTTCCT	7680
) AAAAA	CTCG	CCGAAATTGC	TAATTTAGAT	GAATTGCCTG	CAAATATCCT	TCATGATGTA	7740
TATATGO	CACT	GCAGTTATGA	TTTAGCAAAA	AACAAGCACG	ATGTTAAGCG	TCCATTAAAC	7800
GAACTTO	STCC	GCAAGCATAT	CCTCACGCAA	GGATGGCAAG	ACCGCTACCT	TTACACCTTA	7860
GGTAAAA	AAGG	ACGGCAAACC	TGTGATGATG	GTACTGCTTG	AACATTTTAA	TTCGGGACAT	7920
ICGATTI	CATC	GCACGCATTC	AACTTCAATG	ATTGCTGCTC	GAGAAAAATT	CTATTTAGTC	7980
GCTTAG	GCC	ATGAGGGCGT	TGATAACATA	GGTCGAGAAG	TGTTTGACGA	GTTCTTTGAA	8040
ATCAGTA	AGCA	TAATATAAT	GGAGAGACTG	TTTTTTATCC	GTAAACAGTG	CGAAACTTTC	8100
CAACCCC	CAG	TGTTCTATAT	GCCAAGCATT	GGCATGGATA	TTACCACGAT	TTTTGTGAGC	8160
AACACTO	CGGC	TTGCCCCTAT	TCAAGCTGTA	GCCTTGGGTC	ATCCTGCCAC	TACGCATTCT	8220
ATTTAAE	ATTG	ATTATGTCAT	CGTAGAAGAT	GATTATGTGG	GCAGTGAAGA	TTGTTTTAGC	8280
SAAACCC	CTTT	TACGCTTACC	CAAAGATGCC	CTACCTTATG	TACCATCTGC	ACTCGCCCCA	8340
DAAAAAC	TGG	ATTATGTACT	CAGGGAAAAC	CCTGAAGTAG	TCAATATCGG	TATTGCCGCT	8400
ACCACAA	YGA	AATTAAACCC	TGAATTTTTG	CTAACATTGC	AAGAAATCAG	AGATAAAGCT	8460
AAAGTCA	AAA	TACATTTTCA	TTTCGCACTT	GGACAATCAA	CAGGCTTGAC	ACACCCTTAT	8520
STCAAAI	GGT	TTATCGAAAG	CTATTTAGGT	GACGATGCCA	CTGCACATCC	CCACGCACCT	8580
TATCACG	ATT	ATCTGGCAAT	ATTGCGTGAT	TGCGATATGC	TACTAAATCC	GTTTCCTTTC	8640
GTAATA	CTA	ACGGCATAAT	TGATATGGTT	ACATTAGGTT	TAGTTGGTGT	ATGCAAAACG	8700
GGGATG	AAG	TACATGAACA	TATTGATGAA	GGTCTGTTTA	AACGCTTAGG	ACTACCAGAA	8760
rggctga	TAG	CCGACACACG	AGAAACATAT	ATTGAATGTG	CTTTGCGTCT	AGCAGAAAAC	8820
CATCAAG	AAC	GCCTTGAACT	CCGTCGTTAC	ATCATAGAAA	ACAACGGCTT	ACAAAAGCTT	8880
TTACAG	GCG	ACCCTCGTCC	ATTGGGCAAA	ATACTGCTTA	AGAAAACAAA	TGAATGGAAG	8940
GGAAGC	ACT	TGAGTAAAAA	ATAACGGTTT	TTTAAAGTAA	AAGTGCGGTT	AATTTTCAAA	9000
CGTTTT	'AAA'	AACCTCTCAA	AAATCAACCG	CACTTTTATC	TTTATAACGC	TCCCGCGCGC	9060
GACAGT	'TTA	TCTCTTTCTT	AAAATACCCA	TAAAATTGTG	GCAATAGTTG	GGTAATCAAA	9120
TCAATT	GTT	GATACGGCAA	ACTAAAGACG	GCGCGTTCTT	CGGCAGTCAT	С	9171

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9323 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

CGCCACTTCA ATTTTGGATT GTTGAAATTC AACTAACCAA AAAGTGCGGT TAAAATCTGT 60 GGAGAAAATA GGTTGTAGTG AAGAACGAGG TAATTGTTCA AAAGGATAAA GCTCTCTTAA 120 TTGGGCATTG GTTGGCGTTT CTTTTTCGGT TAATAGTAAA TTATATTCTG GACGACTATG 180 CAATCCACCA ACAACTTTAC CGTTGGTTTT AAGCGTTAAT GTAAGTTCTT GCTCTTCTTG 240 GCGAATACGT AATCCCATTT TTTGTTTAGC AAGAAAATGA TCGGGATAAT CATAATAGGT 300 GTTGCCCAAA AATAAATTTT GATGTTCTAA AATCATAAAT TTTGCAAGAT ATTGTGGCAA 360 TTCAATACCT ATTTGTGGCG AAATCGCCAA TTTTAATTCA ATTTCTTGTA GCATAATATT 420 TCCCACTCAA ATCAACTGGT TAAATATACA AGATAATAAA AATAAATCAA GATTTTTGTG 480 ATGACAAACA ACAATTACAA CACCTTTTTT GCAGTCTATA TGCAAATATT TTAAAAAAAAT 540 AGTATAAATC CGCCATATAA AATGGTATAA TCTTTCATCT TTCATCTTTC ATCTTTCATC 600 TTTCATCTTT CATCTTTCAT CTTTCATCTT TCATCTTTCA TCTTTCATCT TTCATCTTTC 660 ATCTTTCATC TTTCATCTTT CACATGAAAT GATGAACCGA GGGAAGGGAG GGAGGGGCAA 720 GAATGAAGAG GGAGCTGAAC GAACGCAAAT GATAAAGTAA TTTAATTGTT CAACTAACCT 780 TAGGAGAAAA TATGAACAAG ATATATCGTC TCAAATTCAG CAAACGCCTG AATGCTTTGG 840 TTGCTGTGTC TGAATTGGCA CGGGGTTGTG ACCATTCCAC AGAAAAAGGC AGCGAAAAAC 900 CTGCTCGCAT GAAAGTGCGT CACTTAGCGT TAAAGCCACT TTCCGCTATG TTACTATCTT 960 TAGGTGTAAC ATCTATTCCA CAATCTGTTT TAGCAAGCGG CAATTTAACA TCGACCAAAA 1020 TGAAATGGTG CAGTTTTTAC AAGAAAACAA GTAATAAAAC CATTATCCGC AACAGTGTTG 1080 ACGCTATCAT TAATTGGAAA CAATTTAACA TCGACCAAAA TGAAATGGTG CAGTTTTTAC 1140 AAGAAAACAA CAACTCCGCC GTATTCAACC GTGTTACATC TAACCAAATC TCCCAATTAA 1200 AAGGGATTTT AGATTCTAAC GGACAAGTCT TTTTAATCAA CCCAAATGGT ATCACAATAG 1260 GTAAAGACGC AATTATTAAC ACTAATGGCT TTACGGCTTC TACGCTAGAC ATTTCTAACG 1320 AAAACATCAA GGCGCGTAAT TTCACCTTCG AGCAAACCAA AGATAAAGCG CTCGCTGAAA 1380 TTGTGAATCA CGGTTTAATT ACTGTCGGTA AAGACGGCAG TGTAAATCTT ATTGGTGGCA 1440 AAGTGAAAAA CGAGGGTGTG ATTAGCGTAA ATGGTGGCAG CATTTCTTTA CTCGCAGGGC 1500 AAAAATCAC CATCAGCGAT ATAATAAACC CAACCATTAC TTACAGCATT GCCGCGCCTG 1560 AAAATGAAGC GGTCAATCTG GGCGATATTT TTGCCAAAGG CGGTAACATT AATGTCCGTG 1620 CTGCCACTAT TCGAAACCAA GGTAAACTTT CTGCTGATTC TGTAAGCAAA GATAAAAGCG 1680 GCAATATTGT TCTTTCCGCC AAAGAGGGTG AAGCGGAAAT TGGCGGTGTA ATTTCCGCTC 1740 AAAATCAGCA AGCTAAAGGC GGCAAGCTGA TGATAAAGTC CGATAAAGTC ACATTAAAAA 1800 CAGGTGCAGT TATCGACCTT TCAGGTAAAG AAGGGGGAGA AACTTACCTT GGCGGTGACG 1860 AGCGCGGCGA AGGTAAAAAC GGCATTCAAT TAGCAAAGAA AACCTCTTTA GAAAAAGGCT 1920 CAACCATCAA TGTATCAGGC AAAGAAAAAG GCGGACGCGC TATTGTGTGG GGCGATATTG 1980

CGTTAATTGA CGGCAATATT	AACGCTCAAG	GTAGTGGTGA	TATCGCTAAA	ACCGGTGGTT	2040
TTGTGGAGAC ATCGGGGCAT	TATTTATCCA	TTGACAGCAA	TGCAATTGTT	AAAACAAAAG	2100
AGTGGTTGCT AGACCCTGAT	GATGTAACAA	TTGAAGCCGA	AGACCCCCTT	CGCAATAATA	2160
CCGGTATAAA TGATGAATTC	CCAACAGGCA	CCGGTGAAGC	AAGCGACCCT	АЛААААААТА	2220
GCGAACTCAA AACAACGCTA	ACCAATACAA	CTATTTCAAA	TTATCTGAAA	AACGCCTGGA	2280
CAATGAATAT AACGGCATCA	AGAAAACTTA	CCGTTAATAG	CTCAATCAAC	ATCGGAAGCA	2340
ACTCCCACTT AATTCTCCAT	AGTAAAGGTC	AGCGTGGCGG	AGGCGTTCAG	ATTGATGGAG	2400
ATATTACTTC TAAAGGCGGA	AATTTAACCA	TTTATTCTGG	CGGATGGGTT	GATGTTCATA	2460
AAAATATTAC GCTTGATCAG	GGTTTTTTAA	ATATTACCGC	CGCTTCCGTA	GCTTTTGAAG	2520
GTGGAAATAA CAAAGCACGC	GACGCGGCAA	ATGCTAAAAT	TGTCGCCCAG	GGCACTGTAA	2580
CCATTACAGG AGAGGGAAAA	GATTTCAGGG	CTAACAACGT	ATCTTTAAAC	GGAACGGGTA	2640
AAGGTCTGAA TATCATTTCA	TCAGTGAATA	ATTTAACCCA	CAATCTTAGT	GGCACAATTA	2700
ACATATCTGG GAATATAACA	ATTAACCAAA	CTACGAGAAA	GAACACCTCG	TATTGGCAAA	2760
CCAGCCATGA TTCGCACTGG	AACGTCAGTG	CTCTTAATCT	AGAGACAGGC	GCAAATTTTA	2820
CCTTTATTAA ATACATTTCA	AGCAATAGCA	AAGGCTTAAC	AACACAGTAT	AGAAGCTCTG	2880
CAGGGGTGAA TTTTAACGGC	GTAAATGGCA	ACATGTCATT	CAATCTCAAA	GAAGGAGCGA	2940
AAGTTAATTT CAAATTAAAA	CCAAACGAGA	ACATGAACAC	AAGCAAACCT	TTACCAATTC	3000
GGTTTTTAGC CAATATCACA	GCCACTGGTG	GGGGCTCTGT	TTTTTTTGAT	ATATATGCCA	3060
ACCATTCTGG CAGAGGGGCT	GAGTTAAAAA	TGAGTGAAAT	TAATATCTCT	AACGGCGCTA	3120
ATTTTACCTT AAATTCCCAT	GTTCGCGGCG	ATGACGCTTT	TAAAATCAAC	AAAGACTTAA	3180
CCATAAATGC AACCAATTCA	AATTTCAGCC	TCAGACAGAC	GAAAGATGAT	TTTTATGACG	3240
GGTACGCACG CAATGCCATC	AATTCAACCT	ACAACATATC	CATTCTGGGC	GGTAATGTCA	3300
CCCTTGGTGG ACAAAACTCA	AGCAGCAGCA	TTACGGGGAA	TATTACTATC	GAGAAAGCAG	3360
CAAATGTTAC GCTAGAAGCC	AATAACGCCC	CTAATCAGCA	AAACATAAGG	GATAGAGTTA	3420
TAAAACTTGG CAGCTTGCTC	GTTAATGGGA	GTTTAAGTTT	AACTGGCGAA	AATGCAGATA	3480
TTAAAGGCAA TCTCACTATT	TCAGAAAGCG	CCACTTTTAA	AGGAAAGACT	AGAGATACCC	3540
TAAATATCAC CGGCAATTTT	ACCAATAATG	GCACTGCCGA	AATTAATATA	ACACAAGGAG	3600
TGGTAAAACT TGGCAATGTT	ACCAATGATG	GTGATTTAAA	CATTACCACT	CACGCTAAAC	3660
GCAACCAAAG AAGCATCATC	GGCGGAGATA	TAATCAACAA	AAAAGGAAGC	TTAAATATTA	3720
CAGACAGTAA TAATGATGCT	GAAATCCAAA	TTGGCGGCAA	TATCTCGCAA	AAAGAAGGCA	3780
ACCTCACGAT TTCTTCCGAT	ATAATTAAAA	TCACCAAACA	GATAACAATC	AAAAAGGGTA	3840
TTGATGGAGA GGACTCTAGT	TCAGATGCGA	CAAGTAATGC	CAACCTAACT	ATTAAAACCA	3900
AAGAATTGAA ATTGACAGAA	GACCTAAGTA	TTTCAGGTTT	CAATAAAGCA	GAGATTACAG	3960
CCAAAGATGG TAGAGATTTA	ACTATTGGCA	ACAGTAATGA	CGGTAACAGC	GGTGCCGAAG	4020

CCAAAACAGT	AACTTTTAAC	AATGTTAAAG	ATTCAAAAAT	CTCTGCTGAC	GGTCACAATG	4080
TGACACTAAA	TAGCAAAGTG	AAAACATCTA	GCAGCAATGG	CGGACGTGAA	AGCAATAGCG	4140
ACAACGATAC	CGGCTTAACT	ATTACTGCAA	AAAATGTAGA	AGTAAACAAA	GATATTACTT	4200
CTCTCAAAAC	AGTAAATATC	ACCGCGTCGG	AAAAGGTTAC	CACCACAGCA	GGCTCGACCA	4260
TTAACGCAAC	AAATGGCAAA	GCAAGTATTA	CAACCAAAAC	AGGTGATATC	AGCGGTACGA	4320
TTTCCGGTAA	CACGGTAAGT	GTTAGCGCGA	CTGGTGATTT	AACCACTAAA	TCCGGCTCAA	4380
AAATTGAAGC	GAAATCGGGT	GAGGCTAATG	TAACAAGTGC	AACAGGTACA	ATTGGCGGTA	4440
CAATTTCCGG	TAATACGGTA	AATGTTACGG	CAAACGCTGG	CGATTTAACA	GTTGGGAATG	4500
GCGCAGAAAT	TAATGCGACA	GAAGGAGCTG	CAACCTTAAC	CGCAACAGGG	AATACCTTGA	4560
CTACTGAAGC	CGGTTCTAGC	ATCACTTCAA	CTAAGGGTCA	GGTAGACCTC	TTGGCTCAGA	4620
ATGGTAGCAT	CGCAGGAAGC	ATTAATGCTG	CTAATGTGAC	ATTAAATACT	ACAGGCACCT	4680
TAACCACCGT	GGCAGGCTCG	GATATTAAAG	CAACCAGCGG	CACCTTGGTT	ATTAACGCAA	4740
AAGATGCTAA	GCTAAATGGT	GATGCATCAG	GTGATAGTAC	AGAAGTGAAT	GCAGTCAACG	4800
ACTGGGGATT	TGGTAGTGTG	ACTGCGGCAA	CCTCAAGCAG	TGTGAATATC	ACTGGGGATT	4860
TAAACACAGT	AAATGGGTTA	AATATCATTT	CGAAAGATGG	TAGAAACACT	GTGCGCTTAA	4920
GAGGCAAGGA	AATTGAGGTG	AAATATATCC	AGCCAGGTGT	AGCAAGTGTA	GAAGAAGTAA	4980
TTGAAGCGAA	ACGCGTCCTT	GAAAAAGTAA	AAGATTTATC	TGATGAAGAA	AGAGAAACAT	5040
TAGCTAAACT	TGGTGTAAGT	GCTGTACGTT	TTGTTGAGCC	AAATAATACA	ATTACAGTCA	5100
ATACACAAAA	TGAATTTACA	ACCAGACCGT	CAAGTCAAGT	GATAATTTCT	GAAGGTAAGG	5160
CGTGTTTCTC	AAGTGGTAAT	GGCGCACGAG	TATGTACCAA	TGTTGCTGAC	GATGGACAGC	5220
CGTAGTCAGT	AATTGACAAG	GTAGATTTCA	TCCTGCAATG	AAGTCATTTT	ATTTTCGTAT	5280
TATTTACTGT	GTGGGTTAAA	GTTCAGTACG	GGCTTTACCC	ATCTTGTAAA	AAATTACGGA	5340
GAATACAATA	AAGTATTTT	AACAGGTTAT	TATTATGAAA	AATATAAAA	GCAGATTAAA	5400
ACTCAGTGCA	ATATCAGTAT	TGCTTGGCCT	GGCTTCTTCA	TCATTGTATG	CAGAAGAAGC	5460
GTTTTTAGTA	AAAGGCTTTC	AGTTATCTGG	TGCACTTGAA	ACTTTAAGTG	AAGACGCCCA	5520
ACTGTCTGTA	GCAAAATCTT	TATCTAAATA	CCAAGGCTCG	CAAACTTTAA	CAAACCTAAA	5580
AACAGCACAG	CTTGAATTAC	AGGCTGTGCT	AGATAAGATT	GAGCCAAATA	AATTTGATGT	5640
GATATTGCCG	CAACAAACCA	TTACGGATGG	CAATATCATG	TTTGAGCTAG	TCTCGAAATC	5700
AGCCGCAGAA	AGCCAAGTTT	TTTATAAGGC	GAGCCAGGGT	TATAGTGAAG	AAAATATCGC	5760
TCGTAGCCTG	CCATCTTTGA	AACAAGGAAA	AGTGTATGAA	GATGGTCGTC	AGTGGTTCGA	5820
TTTGCGTGAA	TTTAATATGG	CAAAAGAAAA	CCCGCTTAAG	GTTACCCGTG	TACATTACGA	5880
ACTAAACCCT	AAAAACAAAA	CCTCTAATTT	GATAATTGCG	GGCTTCTCGC	CTTTTGGTAA	5940
AACGCGTAGC	TTTATTTCTT	ATGATAATTT	CGGCGCGAGA	GAGTTTAACT	ACCAACGTGT	6000
AAGCTTGGGT	TTTGTTAATG	CCAATTTAAC	TGGTCATGAT	GATGTGTTAA	TTATACCAGT	6060

ATGAGTTATG	CTGATTCTAA	TGATATCGAC	GGCTTACCAA	GTGCGATTAA	TCGTAAATTA	6120
TCAAAAGGTC	AATCTATCTC	TGCGAATCTG	AAATGGAGTT	ATTATCTCCC	AACATTTAAC	6180
CTTGGCATGG	AAGACCAATT	TAAAATTAAT	TTAGGCTACA	ACTACCGCCA	TATTAATCAA	6240
ACCTCCGCGT	TAAATCGCTT	GGGTGAAACG	AAGAAAAAT	TTGCAGTATC	AGGCGTAAGT	6300
GCAGGCATTG	ATGGACATAT	CCAATTTACC	CCTAAAACAA	TCTTTAATAT	TGATTTAACT	6360
CATCATTATT	ACGCGAGTAA	ATTACCAGGC	TCTTTTGGAA	TGGAGCGCAT	TGGCGAAACA	6420
TTTAATCGCA	GCTATCACAT	TAGCACAGCC	AGTTTAGGGT	TGAGTCAAGA	GTTTGCTCAA	6480
GGTTGGCATT	TTAGCAGTCA	ATTATCAGGT	CAATTTACTC	TACAAGATAT	TAGCAGTATA	6540
GATTTATTCT	CTGTAACAGG	TACTTATGGC	GTCAGAGGCT	TTAAATACGG	CGGTGCAAGT	6600
GGTGAGCGCG	GTCTTGTATG	GCGTAATGAA	TTAAGTATGC	CAAAATACAC	CCGCTTCCAA	6660
ATCAGCCCTT	ATGCGTTTTA	TGATGCAGGT	CAGTTCCGTT	ATAATAGCGA	AAATGCTAAA	6720
ACTTACGGCG	AAGATATGCA	CACGGTATCC	TCTGCGGGTT	TAGGCATTAA	AACCTCTCCT	6780
ACACAAAACT	TAAGCCTAGA	TGCTTTTGTT	GCTCGTCGCT	TTGCAAATGC	CAATAGTGAC	6840
AATTTGAATG	GCAACAAAAA	ACGCACAAGC	TCACCTACAA	CCTTCTGGGG	GAGATTAACA	6900
TTCAGTTTCT	AACCCTGAAA	TTTAATCAAC	TGGTAAGCGT	TCCGCCTACC	AGTTTATAAC	6960
TATATGCTTT	ACCCGCCAAT	TTACAGTCTA	TAGGCAACCC	TGTTTTTACC	CTTATATATC	7020
AAATAAACAA	GCTAAGCTGA	GCTAAGCAAA	CCAAGCAAAC	TCAAGCAAGC	CAAGTAATAC	7080
таааааааса	ATTTATATGA	TAAACTAAAG	TATACTCCAT	GCCATGGCGA	TACAAGGGAT	7140
TATAATATT	GACAAAAGAA	AATTTGCAAA	ACGCTCCTCA	AGATGCGACC	GCTTTACTTG	7200
CGGAATTAAG	CAACAATCAA	ACTCCCCTGC	GAATATTTAA	ACAACCACGC	AAGCCCAGCC	7260
TATTACGCTT	GGAACAACAT	ATCGCAAAAA	AAGATTATGA	GTTTGCTTGT	CGTGAATTAA	7320
TGGTGATTCT	GGAAAAAATG	GACGCTAATT	TTGGAGGCGT	TCACGATATT	GAATTTGACG	7380
CACCCGCTCA	GCTGGCATAT	CTACCCGAAA	AATTACTAAT	TTATTTTGCC	ACTCGTCTCG	7440
CTAATGCAAT	TACAACACTC	TTTTCCGACC	CCGAATTGGC	AATTTCTGAA	GAAGGGGCGT	7500
TAAAGATGAT	TAGCCTGCAA	CGCTGGTTGA	CGCTGATTTT	TGCCTCTTCC	CCCTACGTTA	7560
ACGCAGACCA	TATTCTCAAT	ATATATAAA	TCAACCCAGA	TTCCGAAGGT	GGCTTTCATT	7620
TAGCAACAGA	CAACTCTTCT	ATTGCTAAAT	TCTGTATTTT	TTACTTACCC	GAATCCAATG	7680
TCAATATGAG	TTTAGATGCG	TTATGGGCAG	GGAATCAACA	ACTTTGTGCT	TCATTGTGTT	7740
TTGCGTTGCA	GTCTTCACGT	TTTATTGGTA	CCGCATCTGC	GTTTCATAAA	AGAGCGGTGG	7800
TTTTACAGTG	GTTTCCTAAA	AAACTCGCCG	AAATTGCTAA	TTTAGATGAA	TTGCCTGCAA	7860
ATATCCTTCA	TGATGTATAT	ATGCACTGCA	GTTATGATTT	AGCAAAAAAC	AAGCACGATG	7920
TTAAGCGTCC	ATTAAACGAA	CTTGTCCGCA	AGCATATCCT	CACGCAAGGA	TGGCAAGACC	7980
GCTACCTTTA	CACCTTAGGT	AAAAAGGACG	GCAAACCTGT	GATGATGGTA	CTGCTTGAAC	8040
שייים על שיייים ע	CCCACATTCC	מחיידים ידיכיניי א	CACATTCAAC	יייי מבו ערכם יייי	CCTCCTCCAC	8100

AAAAATTCTA	TTTAGTCGGC	TTAGGCCATG	AGGGCGTTGA	TAAAATAGGT	CGAGAAGTGT	8160
TTGACGAGTT	CTTTGAAATC	AGTAGCAATA	ATATAATGGA	GAGACTGTTT	TTTATCCGTA	8220
AACAGTGCGA	AACTTTCCAA	CCCGCAGTGT	TCTATATGCC	AAGCATTGGC	ATGGATATTA	8280
CCACGATTTT	TGTGAGCAAC	ACTCGGCTTG	CCCCTATTCA	AGCTGTAGCC	CTGGGTCATC	8340
CTGCCACTAC	GCATTCTGAA	TTTATTGATT	ATGTCATCGT	AGAAGATGAT	TATGTGGGCA	8400
GTGAAGATTG	TTTCAGCGAA	ACCCTTTTAC	GCTTACCCAA	AGATGCCCTA	CCTTATGTAC	8460
CTTCTGCACT	CGCCCCACAA	AAAGTGGATT	ATGTACTCAG	GGAAAACCCT	GAAGTAGTCA	8520
ATATCGGTAT	TGCCGCTACC	ACAATGAAAT	TAAACCCTGA	ATTTTTGCTA	ACATTGCAAG	8580
AAATCAGAGA	TAAAGCTAAA	GTCAAAATAC	ATTTTCATTT	CGCACTTGGA	CAATCAACAG	8640
GCTTGACACA	CCCTTATGTC	AAATGGTTTA	TCGAAAGCTA	TTTAGGTGAC	GATGCCACTG	8700
CACATCCCCA	CGCACCTTAT	CACGATTATC	TGGCAATATT	GCGTGATTGC	GATATGCTAC	8760
TAAATCCGTT	TCCTTTCGGT	AATACTAACG	GCATAATTGA	TATGGTTACA	TTAGGTTTAG	8820
TTGGTGTATG	CAAAACGGGG	GATGAAGTAC	ATGAACATAT	TGATGAAGGT	CTGTTTAAAC	8880
GCTTAGGACT	ACCAGAATGG	CTGATAGCCG	ACACACGAGA	AACATATATT	GAATGTGCTT	8940
TGCGTCTAGC	AGAAAACCAT	CAAGAACGCC	TTGAACTCCG	TCGTTACATC	ATAGAAAACA	9000
ACGGCTTACA	AAAGCTTTTT	ACAGGCGACC	CTCGTCCATT	GGGCAAAATA	CTGCTTAAGA	9060
AAACAAATGA	ATGGAAGCGG	AAGCACTTGA	GTAAAAAATA	ACGGTTTTTT	AAAGTAAAAG	9120
TGCGGTTAAT	TTTCAAAGCG	TTTTAAAAAC	CTCTCAAAAA	TCAACCGCAC	TTTTATCTTT	9180
ATAACGATCC	CGCACGCTGA	CAGTTTATCA	GCCTCCCGCC	ATAAAACTCC	GCCTTTCATG	9240
GCGGAGATTT	TAGCCAAAAC	TGGCAGAAAT	TAAAGGCTAA	AATCACCAAA	TTGCACCACA	9300
AAATCACCAA	TACCCACAAA	AAA				9323

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4287 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GATCAATCTG	GGCGATATTT	TTGCCAAAGG	TGGTAACATT	AATGTCCGCG	CTGCCACTAT	60
TCGCAATAAA	GGTAAACTTT	CTGCCGACTC	TGTAAGCAAA	GATAAAAGTG	GTAACATTGT	120
TCTCTCTGCC	AAAGAAGGTG	AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC	AAAATCAGCA	180
AGCCAAAGGT	GGTAAGTTGA	TGATTACAGG	CGATAAAGTT	ACATTGAAAA	CGGGTGCACT	240
TATCGACCTT	TCGGGTAAAG	AAGGGGGAGA	AACTTATCTT	GGCGGTGACG	AGCGTGGCGA	300
AGGTAAAAAC	GGCATTCAAT	TAGCAAAGAA	AACCACTTTA	GAAAAAGGCT	CAACAATTAA	360

TGTGTCAGGT	AAAGAAAAAG	CTGGGCGCGC	TATTGTATGG	GGCGATATTG	CGTTAATTGA	420
CGGCAATATT	AATGCCCAAG	GTAAAGATAT	CGCTAAAACT	GGTGGTTTTG	TGGAGACGTC	480
GGGGCATTAC	TTATCCATTG	ATGATAACGC	AATTGTTAAA	ACAAAAGAAT	GGCTACTAGA	540
CCCAGAGAAT	GTGACTATTG	AAGCTCCTTC	CGCTTCTCGC	GTCGAGCTGG	GTGCCGATAG	600
GAATTCCCAC	TCGGCAGAGG	TGATAAAAGT	GACCCTAAAA	AAAAATAACA	CCTCCTTGAC	660
AACACTAACC	AATACAACCA	TTTCAAATCT	TCTGAAAAGT	GCCCACGTGG	TGAACATAAC	720
GGCAAGGAGA	AAACTTACCG	TTAATAGCTC	TATCAGTATA	GAAAGAGGCT	CCCACTTAAT	780
TCTCCACAGT	GAAGGTCAGG	GCGGTCAAGG	TGTTCAGATT	GATAAAGATA	TTACTTCTGA	840
AGGCGGAAAT	TTÄACCATTT	ATTCTGGCGG	ATGGGTTGAT	GTTCATAAAA	ATATTACGCT	900
TGGTAGCGGC	TTTTTAAACA	TCACAACTAA	AGAAGGAGAT	ATCGCCTTCG	AAGACAAGTC	960
TGGACGGAAC	AACCTAACCA	TTACAGCCCA	AGGGACCATC	ACCTCAGGTA	ATAGTAACGG	1020
CTTTAGATTT	AACAACGTCT	CTCTAAACAG	CCTTGGCGGA	AAGCTGAGCT	TTACTGACAG	1080
CAGAGAGGAC	AGAGGTAGAA	GAACTAAGGG	TAATATCTCA	AACAAATTTG	ACGGAACGTT	1140
AAACATTTCC	GGAACTGTAG	ATATCTCAAT	GAAAGCACCC	AAAGTCAGCT	GGTTTTACAG	1200
AGACAAAGGA	CGCACCTACT	GGAACGTAAC	CACTTTAAAT	GTTACCTCGG	GTAGTAAATT	1260
TAACCTCTCC	ATTGACAGCA	CAGGAAGTGG	CTCAACAGGT	CCAAGCATAC	GCAATGCAGA	1320
ATTAAATGGC	ATAACATTTA	ATAAAGCCAC	TTTTAATATC	GCACAAGGCT	CAACAGCTAA	1380
CTTTAGCATC	AAGGCATCAA	TAATGCCCTT	TAAGAGTAAC	GCTAACTACG	CATTATTTAA	1440
TGAAGATATT	TCAGTCTCAG	GGGGGGTAG	CGTTAATTTC	AAACTTAACG	CCTCATCTAG	1500
CAACATACAA	ACCCCTGGCG	AAATTATAAA	ATCTCAAAAC	TTTAATGTCT	CAGGAGGGTC	1560
AACTTTAAAT	CTCAAGGCTG	AAGGTTCAAC	AGAAACCGCT	TTTTCAATAG	AAAATGATTT	1620
AAACTTAAAC	GCCACCGGTG	GCAATATAAC	AATCAGACAA	GTCGAGGGTA	CCGATTCACG	1680
CGTCAACAAA	GGTGTCGCAG	ССААААААА	CATAACTTTT	AAAGGGGGTA	ATATCACCTT	1740
CGGCTCTCAA	AAAGCCACAA	CAGAAATCAA	AGGCAATGTT	ACCATCAATA	AAAACACTAA	1800
CGCTACTCTT	CGTGGTGCGA	ATTTTGCCGA	AAACAAATCG	CCTTTAAATA	TAGCAGGAAA	1860
TGTTATTAAT	AATGGCAACC	TTACCACTGC	CGGCTCCATT	ATCAATATAG	CCGGAAATCT	1920
TACTGTTTCA	AAAGGCGCTA	ACCTTCAAGC	TATAACAAAT	TACACTTTTA	ATGTAGCCGG	1980
CTCATTTGAC	AACAATGGCG	CTTCAAACAT	TTCCATTGCC	AGAGGAGGGG	CTAAATTTAA	2040
AGATATCAAT	AACACCAGTA	GCTTAAATAT	TACCACCAAC	TCTGATACCA	CTTACCGCAC	2100
CATTATAAAA	GGCAATATAT	CCAACAAATC	AGGTGATTTG	AATATTATTG	ATAAAAAAAG	2160
CGACGCTGAA	ATCCAAATTG	GCGGCAATAT	CTCACAAAAA	GAAGGCAATC	TCACAATTTC	2220
TTCTGATAAA	GTAAATATTA	CCAATCAGAT	AACAATCAAA	GCAGGCGTTG	AAGGGGGGCG	2280
TTCTGATTCA	AGTGAGGCAG	AAAATGCTAA	CCTAACTATT	CAAACCAAAG	AGTTAAAATT	2340
GGCAGGAGAC	CTAAATATTT	CAGGCTTTAA	TAAAGCAGAA	ATTACAGCTA	AAAATGGCAG	2400

PCT/US94/02550

TGATTTAACT	ATTGGCAATG	CTAGCGGTGG	TAATGCTGAT	GCTAAAAAAG	TGACTTTTGA	2460
CAAGGTTAAA	GATTCAAAAA	TCTCGACTGA	CGGTCACAAT	GTAACACTAA	ATAGCGAAGT	2520
GAAAACGTCT	AATGGTAGTA	GCAATGCTGG	TAATGATAAC	AGCACCGGTT	TAACCATTTC	2580
CGCAAAAGAT	GTAACGGTAA	ACAATAACGT	TACCTCCCAC	AAGACAATAA	ATATCTCTGC	2640
CGCAGCAGGA	AATGTAACAA	CCAAAGAAGG	CACAACTATC	AATGCAACCA	CAGGCAGCGT	2700
GGAAGTAACT	GCTCAAAATG	GTACAATTAA	AGGCAACATT	ACCTCGCAAA	ATGTAACAGT	2760
GACAGCAACA	GAAAATCTTG	TTACCACAGA	GAATGCTGTC	ATTAATGCAA	CCAGCGGCAC	2820
AGTAAACATT	AGTACAAAAA	CAGGGGATAT	TAAAGGTGGA	ATTGAATCAA	CTTCCGGTAA	2880
TGTAAATATT	ACAGCGAGCG	GCAATACACT	TAAGGTAAGT	AATATCACTG	GTCAAGATGT	2940
AACAGTAACA	GCGGATGCAG	GAGCCTTGAC	AACTACAGCA	GGCTCAACCA	TTAGTGCGAC	3000
AACAGGCAAT	GCAAATATTA	CAACCAAAAC	AGGTGATATC	AACGGTAAAG	TTGAATCCAG	3060
CTCCGGCTCT	GTAACACTTG	TTGCAACTGG	AGCAACTCTT	GCTGTAGGTA	ATATTTCAGG	3120
TAACACTGTT	ACTATTACTG	CGGATAGCGG	TAAATTAACC	TCCACAGTAG	GTTCTACAAT	3180
TAATGGGACT	AATAGTGTAA	CCACCTCAAG	CCAATCAGGC	GATATTGAAG	GTACAATTTC	3240
TGGTAATACA	GTAAATGTTA	CAGCAAGCAC	TGGTGATTTA	ACTATTGGAA	ATAGTGCAAA	3300
AGTTGAAGCG	AAAAATGGAG	CTGCAACCTT	AACTGCTGAA	TCAGGCAAAT	TAACCACCCA	3360
AACAGGCTCT	AGCATTACCT	CAAGCAATGG	TCAGACAACT	CTTACAGCCA	AGGATAGCAG	3420
TATCGCAGGA	AACATTAATG	CTGCTAATGT	GACGTTAAAT	ACCACAGGCA	CTTTAACTAC	3480
TACAGGGGAT	TCAAAGATTA	ACGCAACCAG	TGGTACCTTA	ACAATCAATG	CAAAAGATGC	3540
CAAATTAGAT	GGTGCTGCAT	CAGGTGACCG	CACAGTAGTA	AATGCAACTA	ACGCAAGTGG	3600
CTCTGGTAAC	GTGACTGCGA	AAACCTCAAG	CAGCGTGAAT	ATCACCGGGG	ATTTAAACAC	3660
AATAAATGGG	TTAAATATCA	TTTCGGAAAA	TGGTAGAAAC	ACTGTGCGCT	TAAGAGGCAA	3720
GGAAATTGAT	GTGAAATATA	TCCAACCAGG	TGTAGCAAGC	GTAGAAGAGG	TAATTGAAGC	3780
SAAACGCGTC	CTTGAGAAGG	TAAAAGATTT	ATCTGATGAA	GAAAGAGAAA	CACTAGCCAA	3840
ACTTGGTGTA	AGTGCTGTAC	GTTTCGTTGA	GCCAAATAAT	GCCATTACGG	TTAATACACA	3900
AAACGAGTTT	ACAACCAAAC	CATCAAGTCA	AGTGACAATT	TCTGAAGGTA	AGGCGTGTTT	3960
CTCAAGTGGT	AATGGCGCAC	GAGTATGTAC	CAATGTTGCT	GACGATGGAC	AGCAGTAGTC	4020
AGTAATTGAC	AAGGTAGATT	TCATCCTGCA	ATGAAGTCAT	TTTATTTTCG	TATTATTTAC	4080
rgtgtgggtt	AAAGTTCAGT	ACGGGCTTTA	CCCACCTTGT	AAAAAATTAC	GAAAAATACA	4140
ATAAAGTATT	TTTAACAGGT	TATTATTATG	AAAAACATAA	AAAGCAGATT	AAAACTCAGT	4200
CAATATCAA	TATTGCTTGG	CTTGGCTTCT	TCATCGACGT	ATGCAGAAGA	AGCGTTTTTA	4260
TAAAAGGCT	TTCAGTTATC	TGGCGCG				4287

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4702 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGGAATGAGC	GTCGTACACG	GTACAGCAAC	CATGCAAGTA	GACGGCAATA	AAACCACTAT	60
CCGTAATAGC	ATCAATGCTA	TCATCAATTG	GAAACAATTT	AACATTGACC	AAAATGAAAT	120
GGAGCAGTTT	TTACAAGAAA	GCAGCAACTC	TGCCGTTTTC	AACCGTGTTA	CATCTGACCA	180
AATCTCCCAA	TTAAAAGGGA	TTTTAGATTC	TAACGGACAA	GTCTTTTTAA	TCAACCCAAA	240
TGGTATCACA	ATAGGTAAAG	ACGCAATTAT	TAACACTAAT	GGCTTTACTG	CTTCTACGCT	300
AGACATTTCT	AACGAAAACA	TCAAGGCGCG	TAATTTCACC	CTTGAGCAAA	CCAAGGATAA	360
AGCACTCGCT	GAAATCGTGA	ATCACGGTTT	AATTACCGTT	GGTAAAGACG	GTAGCGTAAA	420
CCTTATTGGT	GGCAAAGTĠA	AAAACGAGGG	CGTGATTAGC	GTAAATGGCG	GTAGTATTTC	480
TTTACTTGCA	GGGCAAAAAA	TCACCATCAG	CGATATAATA	AATCCAACCA	TCACTTACAG	540
CATTGCTGCA	CCTGAAAACG	AAGCGATCAA	TCTGGGCGAT	ATTTTTGCCA	AAGGTGGTAA	600
CATTAATGTC	CGCGCTGCCA	CTATTCGCAA	TAAAGGTAAA	CTTTCTGCCG	ACTCTGTAAG	660
CAAAGATAAA	AGTGGTAACA	TTGTTCTCTC	TGCCAAAGAA	GGTGAAGCGG	AAATTGGCGG	720
TGTAATTTCC	GCTCAAAATC	AGCAAGCCAA	AGGTGGTAAG	TTGATGATTA	CAGGTGATAA	780
AGTCACATTA	AAAACAGGTG	CAGTTATCGA	CCTTTCAGGT	AAAGAAGGGG	GAGAGACTTA	840
TCTTGGCGGT	GATGAGCGTG	GCGAAGGTAA	AAATGGTATT	CAATTAGCGA	AGAAAACCTC	900
TTTAGAAAAA	GGCTCGACAA	TTAATGTATC	AGGCAAAGAA	AAAGGCGGGC	GCGCTATTGT	960
ATGGGGCGAT	ATTGCATTAA	TTAATGGTAA	CATTAATGCT	CAAGGTAGCG	ATATTGCTAA	1020
AACTGGCGGC	TTTGTGGAAA	CATCAGGACA	TGACTTATCC	ATTGGTGATG	ATGTGATTGT	1080
TGACGCTAAA	GAGTGGTTAT	TAGACCCAGA	TGATGTGTCC	ATTGAAACTC	TTACATCTGG	1140
ACGCAATAAT	ACCGGCGAAA	ACCAAGGATA	TACAACAGGA	GATGGGACTA	AAGAGTCACC	1200
TAAAGGTAAT	AGTATTTCTA	AACCTACATT	AACAAACTCA	ACTCTTGAGC	AAATCCTAAG	1260
AAGAGGTTCT	TATGTTAATA	TCACTGCTAA	TAATAGAATT	TATGTTAATA	GCTCCATCAA	1320
CTTATCTAAT	GGCAGTTTAA	CACTTCACAC	TAAACGAGAT	GGAGTTAAAA	TTAACGGTGA	1380
TATTACCTCA	AACGAAAATG	GTAATTTAAC	CATTAAAGCA	GGCTCTTGGG	TTGATGTTCA	1440
TAAAAACATC	ACGCTTGGTA	CGGGTTTTTT	CAATATTGTC	GCTGGGGATT	CTGTAGCTTT	1500
TGAGAGAGAG	GGCGATAAAG	CACGTAACGC	AACAGATGCT	CAAATTACCG	CACAAGGGAC	1560
GATAACCGTC	AATAAAGATG	ATAAACAATT	TAGATTCAAT	AATGTATCTA	TTAACGGGAC	1620

GGGCAAGGG	TTAAAGTTT	A TTGCAAATC	A AAATAATTTC	ACTCATAAAT	TTGATGGCGA	168
AATTAACATA	A TCTGGAATA	G TAACAATTA	CCAAACCACG	AAAAAAGATG	TTAAATACTG	174
GAATGCATCA	AAAGACTCT	r actggaatgi	TTCTTCTCTT	' ACTTTGAATA	CGGTGCAAAA	180
ATTTACCTTT	TAAAATTC	TTGATAGCGG	CTCAAATTCC	CAAGATTTGA	GGTCATCACG	186
TAGAAGTTTT	GCAGGCGTAG	CATTTTAACGO	CATCGGAGGC	AAAACAAACT	TCAACATCGG	1920
AGCTAACGCA	AAAGCCTTAT	AAATTAAATT 1	ACCAAACGCC	GCTACAGACC	CAAAAAAAGA	1980
ATTACCTATI	ACTTTTAAC	CCAACATTAC	AGCTACCGGT	AACAGTGATA	GCTCTGTGAT	2040
GTTTGACATA	CACGCCAATC	TTACCTCTAG	AGCTGCCGGC	ATAAACATGG	ATTCAATTAA	2100
CATTACCGGC	: GGGCTTGACT	TTTCCATAAC	ATCCCATAAT	CGCAATAGTA	ATGCTTTTGA	2160
AATCAAAAA	GACTTAACTA	TAAATGCAAC	TGGCTCGAAT	TTTAGTCTTA	AGCAAACGAA	2220
AGATTCTTTT	' TATAATGAAT	CACAGCAAACA	CGCCATTAAC	TCAAGTCATA	ATCTAACCAT	2280
TCTTGGCGGC	AATGTCACTC	TAGGTGGGGA	AAATTCAAGC	AGTAGCATTA	CGGGCAATAT	2340
CAATATCACC	AATAAAGCAA	ATGTTACATT	ACAAGCTGAC	ACCAGCAACA	GCAACACAGG	2400
CTTGAAGAAA	AGAACTCTAA	CTCTTGGCAA	TATATCTGTT	GAGGGGAATT	TAAGCCTAAC	2460
TGGTGCAAAT	GCAAACATTG	TCGGCAATCT	TTCTATTGCA	GAAGATTCCA	CATTTAAAGG	2520
AGAAGCCAGT	GACAACCTAA	ACATCACCGG	CACCTTTACC	AACAACGGTA	CCGCCAACAT	2580
AAAATATAAT	CAAGGAGTGG	TAAAACTCCA	AGGCGATATT	ATCAATAAAG	GTGGTTTAAA	2640
TATCACTACT	AACGCCTCAG	GCACTCAAAA	AACCATTATT	AACGGAAATA	TAACTAACGA	2700
AAAAGGCGAC	TTAAACATCA	AGAATATTAA	AGCCGACGCC	GAAATCCAAA	TTGGCGGCAA	2760
			TTCTTCTGAT			2820
GATAACAATC	AAAGCAGGCG	TTGAAGGGGG	GCGTTCTGAT	TCAAGTGAGG	CAGAAAATGC	2880
			ATTGGCAGGA			2940
			CAGTGATTTA			3000
			TGACAAGGTT			3060
IGACGGTCAC	AATGTAACAC	TAAATAGCGA	AGTGAAAACG	TCTAATGGTA	GTAGCAATGC	3120
			TTCCGCAAAA			3180
					CAACCAAAGA	3240
			CGTGGAAGTA			3300
			AGTGACAGCA			3360
			CACAGTAAAC	•		3420
			TAATGTAAAT			3480
					CAGGAGCCTT	3540
			GACAACAGGC .			3600
ACAGGTGAT	ATCAACGGTA	AAGTTGAATC	CAGCTCCGGC	TCTGTAACAC	TTGTTGCAAC	3660

TGGAGCAACI	CTTGCTGTAG	GTAATATTTC	AGGTAACACT	GTTACTATTA	CTGCGGATAG	372
CGGTAAATTA	ACCTCCACAG	TAGGTTCTAC	AATTAATGGG	ACTAATAGTG	TAACCACCTC	3780
AAGCCAATCA	GGCGATATTG	AAGGTACAAT	TTCTGGTAAT	ACAGTAAATG	TTACAGCAAG	3840
CACTGGTGAT	TTAACTATTG	GAAATAGTGC	AAAAGTTGAA	GCGAAAAATG	GAGCTGCAAC	3900
CTTAACTGCI	GAATCAGGCA	AATTAACCAC	CCAAACAGGC	TCTAGCATTA	CCTCAAGCAA	3960
TGGTCAGACA	ACTCTTACAG	CCAAGGATAG	CAGTATCGCA	GGAAACATTA	ATGCTGCTAA	4020
TGTGACGTTA	AATACCACAG	GCACTTTAAC	TACTACAGGG	GATTCAAAGA	TTAACGCAAC	4080
CAGTGGTACC	TTAACAATCA	ATGCAAAAGA	TGCCAAATTA	GATGGTGCTG	CATCAGGTGA	4140
CCGCACAGTA	GTAAATGCAA	CTAACGCAAG	TGGCTCTGGT	AACGTGACTG	CGAAAACCTC	4200
AAGCAGCGTG	AATATCACCG	GGGATTTAAA	CACAATAAAT	GGGTTAAATA	TCATTTCGGA	4260
AAATGGTAGA	AACACTGTGC	GCTTAAGAGG	CAAGGAAATT	GATGTGAAAT	ATATCCAACC	4320
AGGTGTAGCA	AGCGTAGAAG	AGGTAATTGA	AGCGAAACGC	GTCCTTGAGA	AGGTAAAAGA	4380
ITTATCTGAT	GAAGAAAGAG	AAACACTAGC	CAAACTTGGT	GTAAGTGCTG	TACGTTTCGT	4440
TGAGCCAAAT	AATGCCATTA	CGGTTAATAC	ACAAAACGAG	TTTACAACCA	AACCATCAAG	4500
ICAAGTGACA	ATTTCTGAAG	GTAAGGCGTG	TTTCTCAAGT	GGTAATGGCG	CACGAGTATG	4560
PACCAATGTT	GCTGACGATG	GACAGCAGTA	GTCAGTAATT	GACAAGGTAG	ATTTCATCCT	4620
GCAATGAAGT	CATTTTATTT	TCGTATTATT	TACTGTGTGG	GTTAAAGTTC	AGTACGGGCT	4680
TACCCACCT	TGTAAAAAAT	TA				4702

58

CLAIMS

What we claim is:

- 1. A vaccine against disease caused by non-typeable Haemophilus influenzae, including otitis media, sinusitis and bronchitis, comprising an effective amount of a high molecular weight protein of non-typeable Haemophilus influenzae which is protein HMW1, HMW2, HMW3 or HMW4 or a variant or fragment of said protein retaining immunological properties thereof or a synthetic peptide having an amino acid sequence corresponding to that of said protein, and a physiological carrier therefor.
- 2. The vaccine of claim 1 wherein said protein is HMW1 encoded by the DNA sequence shown in Figure 1 (SEQ ID NO:1), having the derived amino acid sequence of Figure 2 (SEQ ID NO:2) and having an apparent molecular weight of 125 kDa.
- 3. The vaccine of claim 1 wherein said protein is HMW2 encoding by the DNA sequence shown in Figure 3 (SEQ ID NO:3), having the derived amino acid sequence of Figure 4 (SEQ ID NO:4) and having an apparent molecular weight of 120 kDa.

PROTEIN HIGH MOLECULAR WEIGHT FIG. 1A. DNA SEQUENCE OF (HMM1

ATGAACCGAG GGAAGGGAGG GAGGGGCAAG AATGAAGAGG GAGCTGAACG ACAGCGTTCT CTTAATACTA GTACAAACCC ACAATAAAAT ATGACAAACA CATCTTTCAT ACATGCCCTG AGGAGAAAAT ACTTAGCGTT AAAGCCACTT AATCTGTTTT CGATATCATT TTAAAAATA TCATCTTTCA ATGCTTTGGT CCATTCCACA GAAAAAGGCA GCCACTATGC TGTTACATCT AACCAAATCT AAACGCCTGA ACACGGCACA ATTATCCGCA ACAGTGTTGA AACTAACCTT TCTATTCCAC CTTTCATCTT TTCATCTTTC TGCAAATATT TTTCATCTTT GAAATGGTGC TGGATGTAGT GCAGTCTATA CAAATTCAGC TGCTGTGTCT GAATTGGCAC GGGGTTGTGA GTATAAATCC GCCATATAAA ATGGTATAAT TTAATTGTTC AAAGTGCGTC AGGTGTAACA TCTTTCATCT TATTCAACCG ATCTTTCATC CGACCAAAAT ACAATTACAA CACCTTTTTT TGCTCGCATG TTACAAGGAA TAATAAAACC AATTTAACAT TTCATCTTTC TCATCTTTCA ATAAAGTAAT TATATCGTCT TACTATCTTT AGAAAACAAC AACTCCGCCG TCCGCTATGT AGCAAGCGGC AAGTAGATGG AATTGGAAAC TCTTTCATCT CTTTCATCTT AACGCAAATG ATGAACAAGC GCGAAAAACC 51 101 151 201 251 301 351 401 451 501 601 701 551 651

1/68

FIG. 1B

GCGCGTAATT TGTGAATCAC TTGGTGGCAA	rgtgaatcac rtggtggcaa atttctttac	FTGGTGGCAA ATTTCTTTAC	ATTTCTTTAC		AACCATTACT N	GCGATATTTT ®	CGAAACCAAG	CAATATTGTT	TTTCCGCTCA	GATAAAGTCA	AGGGGGAGAA	GCATTCAATT	GTATCAGGCA	GTTAATTGAC
	AAACATCAAG (GTAAATCTTA	TGGTGGCAGC 1	TAATAAACCC ;	GTCAATCTGG	TGCCACTATT (ATAAAAGCGG (GGCGGTGTAA	GATTACAGGC	CAGGTAAAGA AGGGGGAGAA		AACCATCAAT (
	TTTCTAACGA		AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA	AAATGAAGCG	ATGTCCGTGC	GTAAGCAAAG		GCAAGCTGAT	ATCGACCTTT	GCGGTGACGA GCGCGGAA GGTAAAAAGG	AAAAAGGCTC	CGGACGCGCT ATTGTGTGGG GCGATATTGC
)	ACGCTAGACA		CTGTCGGTAA AGACGGCAGT	GAGGGTGTGA	AAAAATCACC	CCGCGCCTGA AAATGAAGCG	GGTAACATTA	TGCTGATTCT	AAGAGGGTGA AGCGGAAATT	GCTAAAGGCG GCAAGCTGAT	AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG	CGGACGCGCT
	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	GTAAACTTTC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG
TOO	851	901	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501

C	ز
7	1
כ	• 9
_	1
þ	4

	ගු	A	ტ	A	EH	3 	•		უ	A	E	E	Ą	E	บ
	GCAATTGTTG	TAATGCAGAA	CGGGATCCGG	ACATTAACAA	TAACATCACT	CCAATGGCAG	GAGATTAACA	AACAATTTAC	GGGCGCAAGG	AAAGGAAGCA	TCAAAAAGGT	GACTGCAATT	TTTGAAGGGA	ACCTAAAAAT	ATTTAACCTC
ייי ככל המחוד הכלל היי	CAAAGACAAT	ATGTATCTAT	TTCAGAAGAC GATGAATACA	AGAAAAGACA	GTACCTTTGT	CAATAGCTCC ATTAATTTAT	TGGCGGCGTT	GTGCAAACTT	TCATAAAAT ATCTCACTCG	CGCCTTTGAG	CCTCAGGCAA	ACTGGCAGCG	CACAAATAAA	CAATGGTTTT	ACTTACTGGA
	ATTTATTCAT	GACCCGGATA	TTCAGAAGAC	AGCACCCCAA AACGAAACAA AGAAAAGACA	CTAAAAAAAG	CAATAGCTCC	GTCGGAGCGG	GATACCAGAG	TCATAAAAAT	AACAAGATAT	TACAGGTCAA GGGACTATTA	TCTAAACGGC	AATACGCTAT	TTCAGGGAAA GTGAACATCT CAATGGTTTT	CAAAGGACGC
	TCGGGGCATG	GTGGTTGTTA	GCAGCAATAC	AGCACCCCAA	TGAGAGTATA	GCATCTATGT	TGGAGTGAGG	CACCGGTGAT	GGGTTGATGT	ATTACAGCTA	TACAGGTCAA	ATAATGTCTC	AGAACCAATA	TTCAGGGAAA	ATGATAAATT
	TGTGGAGACG	ACGCCAAAGA	ACAGCAGGAC	GAATAGTGCC	ACACAACTCT	GCTAATCAAC	CTTAACTCTT	ACGATATTAC	TCAGGCGGCT	TAACATAAAC	ACCAAGTCAT	TTTAGATTTA	CACCACTAAA	CTTTAAATAT	GAAAGTGGAT
	1601	1651	1701	1751	1801	1851	1901	1951	2001	2051	2101	2151	2201	2251	2301

FIG. 1D

	TTTGAAGGAG CGAAGGAAT CGGATTTTGA ATTAATAGCG AAATCTTACC CTTTTAATGT ATTGCCAAAG	·	CTTTGGCTCC AGGAAAGCCG ATAACAACGC TAACGTCACT AAACCTTTAA CTATTAAAAA CGCTGGAGGC AATATTGTCA ACGCTAATTT CAAAGCTATC TTTGACAACA AAGGCAATTC CTTTAAAGAC ATTGATAATT		GTAACATCAC GTTACTATCA CAACCATCAA GCAACCTTAC GTTGAAAGTA AGGCGGCTTG
	CGGATTTTGA	CTTATCGGTT	TAACGTCACT		CTATCA
	CGAAGGCAAT		AGGAAAGCCG	CTTTGGCTCC	CATCAC
	TTTGAAGGAG	TAGCCAAAAA AAACATAACC	TAGCCAAAAA	AAAGGCATTG	AATGATTGGT
3	GCACCGATGG	CAAGTTGAAG	AACACTTTTG	AATGCCACCG GAGGCAACAT	CCACCG
/68	TTTAACTTTA	TAGAGAAAGA	GGCTTCTCAA	CTTCAGGCTC AACAAAACT	AGGCTC
4	AGATTTAAAA	TTTCAACAGG GTCAAGTTTA		TACTTTAATG	AAATTCTAAA
	GTGTAGTTAT	CAAACCCCCG	CTCTAACGTC	TCGCCTCATC	TTCACACTTC
	GAGTGTTGAT	CGGGAGGGGG	ATTTCAGTTT	TAATGGAAAC	ACGCATCATT
	AGTTTGAATT	TAAGTATTCT	TAGGGATAAA	CTTTGACATC AAGGCACCAA	TGACATC
	CAAGAGTCAA	GAACGAAATG	CTTTAATGTT	TCATTCAACA AAGACACTAC	TTCAACA
	AAACGGTATA	CTTATAATTT	CTTACCCAGC	TGCAGGCACA	GAAGCGATAG
	GACTCCAGAG	CTTAAATGTT TCCGAGAGTG GCGAGTTTAA CCTCACTATT GACTCCAGAG	GCGAGTTTAA	TCCGAGAGTG	AAATGTT

FIG. 1E

3201	ACCAACTCCA	GCTCCACTTA	GCTCCACTTA CCGCACTATT	ATAAGCGGCA ATATAACCAA	ATATAACCAA
3251	TAAAAACGGT	GATTTAAATA	TTACGAACGA	TTACGAACGA AGGTAGTGAT	ACTGAAATGC
3301	AAATTGGCGG	CGATGTCTCG	CAAAAAGAAG	GTAATCTCAC	GATTTCTTCT
3351	GACAAAATCA	ATATTACCAA	ACAGATAACA	ATATTACCAA ACAGATAACA ATCAAGGCAG GTGTTGATGG	GTGTTGATGG
3401	GGAGAATTCC	GATTCAGACG	GATTCAGACG CGACAAACAA TGCCAATCTA	TGCCAATCTA	ACCATTAAAA
3451	CCAAAGAATT	GAAATTAACG	GAAATTAACG CAAGACCTAA	ATATTTCAGG	TTTCAATAAA
3501	GCAGAGATTA	CAGCTAAAGA	CAGCTAAAGA TGGTAGTGAT	TTAACTATTG GTAACACCAA	GTAACACCAA U
3551	TAGTGCTGAT	GGTACTAATG	CCAAAAAAGT	AACCTTTAAC	CAGGTTAAAG ®
3601	ATTCAAAAAT	CTCTGCTGAC	GGTCACAAGG	CTCTGCTGAC GGTCACAAGG TGACACTACA CAGCAAAGTG	CAGCAAAGTG
3651	GAAACATCCG	GTAGTAATAA	GTAGTAATAA CAACACTGAA GATAGCAGTG	GATAGCAGTG	ACAATAATGC
3701	CGGCTTAACT	ATCGATGCAA	AAAATGTAAC	ATCGATGCAA AAAATGTAAC AGTAAACAAC AATATTACTT	AATATTACTT
3751	CTCACAAAGC	AGTGAGCATC	AGTGAGCATC TCTGCGACAA GTGGAGAAAT	GTGGAGAAAT	TACCACTAAA
3801	ACAGGTACAA	CCATTAACGC	CCATTAACGC AACCACTGGT	AACGTGGAGA	TAACCGCTCA
3851	AACAGGTAGT	ATCCTAGGTG	ATCCTAGGTG GAATTGAGTC	CAGCTCTGGC	TCTGTAACAC
3901	TTACTGCAAC	CGAGGGCGCT	CTTGCTGTAA	CTTGCTGTAA GCAATATTTC	GGGCAACACC
3951	GTTACTGTTA		CGGTGCATTA	CTGCAAATAG CGGTGCATTA ACCACTTTGG CAGGCTCTAC	CAGGCTCTAC

FIG. 1F

TACACAAAAT	TTACAGTCGA	AATAATACAA	TATTGAGCCA	CTGTACGTTT	4801
GGAGTAAGTG	AGCTAAACTT	GAGAAGCGTT	GATGAAGAAA	AGATTTATCT	4751
AGAAGGTAAA	CGCATCCTTG	TGAAGCGAAA	ATGAAGTAAT	GCAAGCGTAG	4701
ACCGGGTATA	AATACATTCA	ATTGATGTGA	AGGCGTTAAA	TACTGTTAAA	4651
ATAAACACCG	AAAAAACGGT	ATATCATTTC	AATGGATTAA	AATCACAATA	4601
CTGGGGATTT	GTGAACATCA	CTCAAGCAGA	TCGCGACAAC	GGCAGCGTAA	4551
AAATGGCTCC	CAACCAACGC	GTGGTAAATG	TAACCACACA	CAGCATTGGG	4501
CTAAATGGCG	AGACGCTGAG	TTAACGCAAA	ACCTTGGTTA	AACCAGCGGT	4451
ACATTAATGC	AAGGGTTCAA	AACTACCGTG	CAGGCACTTT	СТАААТАСТА	4401
CAATGTGACA	TTAATGCCGC	GCAGGAAGTA	TGGTAGCGTT	CAGCTCAGGA	4351
GTAAATCTTT	CAAGGGTCAG	TTACTTCAGC	AGTTCACACA	TACCGAAGCT	4301
GCAAATTAAC	AACCTTAACT ACATCATCGG	AACCTTAACT	AAGGAGCTGC	AATGCGACAG	4251
CGCAGAAATT	TTGGGAATGG	GATTTAACAG	AAACGCTGGC	ATGTTACGGC	4201
AATACGGTAA	GATTTCCGGT	TTGGTGGTAC	ACAGGTACAA	AACAAGTGCA	4151
AGGCTAACGT	ACAACAGGCG	AATTAAAGCA	CCAATTCAAA	ACCACTCAAT	4101
CGAAAGTTTA	TTAAAGCAAC	ACAGTAGAGG	TTCTGGTGGC	GCGGTACGAT	4051
GGCGATATCG	AAGTCAATCA	TAACCACTTC	ACCGAGAGTG	AATTAAAGGA	4001

6/68

7/68

FIG. 1G.

			ልሞሞልሞር	ACAGGTTATT ATTATC	5101
AGTATTTTA	GCTTTACCCA TCTTGTAAAA AATTACGGAG AATACAATAA AGTATTTTTA	AATTACGGAG	TCTTGTAAAA	GCTTTACCCA	5051
TTCAGTACGG	AGTCATTTTA TTTTCGTATT ATTTACTGTG TGGGTTAAAG TTCAGTACGG	ATTTACTGTG	TTTTCGTATT	AGTCATTTTA	5001
CCTGCAATGA	ACGGGCGGTA GCGGTCAGTA ATTGACAAGG TAGATTTCAT CCTGCAATGA	ATTGACAAGG	GCGGTCAGTA	ACGGGCGGTA	4951
ATCGCTGATA	GTGTTTCTCA AACAGTGATG GCGCGACGGT GTGCGTTAAT ATCGCTGATA	GCGCGACGGT	AACAGTGATG	GTGTTTCTCA	4901
AAGGCAGGGC	GAATTTGCAA CCAGACCATT AAGTCGAATA GTGATTTCTG AAGGCAGGGC	AAGTCGAATA	CCAGACCATT	GAATTTGCAA	4851

HIGH MOLECULAR WEIGHT OF. FIG. 2A. AMINO ACID SEQUENCE PROTEIN

8/68 YSIAAPENEA VNLGDIFAKG GNINVRAATI RNQGKLSADS VSKDKSGNIV KVRHLALKPL DSNGQVFLIN DKALAEIVNH **DFDNVSINAE** IIRNSVDAII IDLSGKEGGE IVWGDIALID GTITSGNOKG ISDIINPTIT LKKGTFVNIT DTRGANLTIY VNISMVLPKN ISVSGGGSVD LTOPYNLNGI ELARGCDHST EKGSEKPARM EMVQFLQENN NSAVFNRVTS NQISQLKGIL DKVTLKTGAV ARNFTFEQTK ISLLAGOKIT VSGKEKGGRA SGHDLFIKDN AIVDAKEWLL TLTNTTLESI FEGTLNISGK EINNDITTGD KGSNQVITGQ ATMQVDGNKT DSRGSDSAGT SLNYASFNGN TLDISNENIK LQGMDVVHGT EGVISVNGGS TSLEKGSTIN AKGGKLMITG STPKRNKEKT WSEGRSGGGV ITAKQDIAFE RTNKYAITNK SESGEFNLTI KAPIGINKYS GGVISAQNQQ KRLNALVAVS SIPQSVLASG GKNGIQLAKK INLSNGSLTL VNLIGGKVKN IAKTGGFVET ISLGAQGNIN IINTNGFTAS DEYTGSGNSA TGSGLOFTTK TYWNLTSLNV ERNARVNFDI MNKIYRLKFS GNINAQGSGD SAMLLSLGVT NWKQFNIDQN PNGITIGKDA GLITVGKDGS SGGWVDVHKN LSAKEGEAEI TYLGGDERGE TAGRSNTSED ANORIYVNSS FRFNNVSLNG SFNKDTTFNV ESGYDKFKGR 51 101 151 201 251 301 351 401 451 501 551 601 651 701

FIG. 2B

		IADNGR	NSDGATVCVN	VISEGRACFS	EFATRPLSRI	501
	NNTITVDTQN	GVSAVRFIEP	DEEREALAKL	RILEKVKDLS	ASVDEVIEAK	451
	IDVKYIQPGI	INTVLLKGVK	NGTNIISKNG	VNITGDLITI	GSVIATTSSR	401
	VVNATNANGS	LNGAALGNHT	TLVINAKDAE	KGSNINATSG	LNTTGTLTTV	351
	AGSINAANVT	SSHITSAKGQ VNLSAQDGSV	SSHITSAKGQ	TSSGKLTTEA	NATEGAATLT	301
	DLTVGNGAEI	NTVNVTANAG	TGTIGGTISG	TTGEANVTSA	TTQSNSKIKA	251
	TVEVKATESL	TESVTTSSQS GDIGGTISGG	TESVTTSSQS	TTLAGSTIKG	VTVTANSGAL	201
	LAVSNISGNT	SVTLTATEGA	ILGGIESSSG	NVEITAQTGS	TGTTINATTG	151
/68	SATSGEITTK	NITSHKAVSI	IDAKNVTVNN	DSSDNNAGLT	ETSGSNNNTE	101
9,	GHKVTLHSKV	QVKDSKISAD	GTNAKKVTFN	LTIGNTNSAD	AEITAKDGSD	051
	QDLNI SGFNK	TIKTKELKLT	DSDATNNANL	IKAGVDGENS	DKINITKQIT	001
	QKEGNLTISS	TEMQIGGDVS	DLNITNEGSD	ISGNITNKNG	TNSSSTYRTI	951
	IDNSKNLSIT	IAKGGARFKD	FDNKGNSNIS	TNFTFNVGGL	VESNANFKAI	901
	NIVNIAGNLT	INSGNLTAGG	KPLTIKKDVI	LIGSDFDNHQ	VTINNNANVT	851
	FEGGNITFGS RKAVTEIEGN	FEGGNITFGS	KGIVAKKNIT	QVEGTDGMIG	NATGGNITLL	801
	GFSIEKDLTL	QTPGVVINSK YFNVSTGSSL RFKTSGSTKT	YFNVSTGSSL	QTPGVVINSK	FTLLASSSNV	751

HIGH MOLECULAR WEIGHT OF FIG. 3A. AMINO ACID SEQUENCE PROTEIN II (HMWZ)

⊣	TAAATATACA		AGATAATAAA AATAAATCAA GATTTTTGTG ATGACAAACA	GATTTTTGTG	ATGACAAACA	
	ACAATTACAA	ACAATTACAA CACCTTTTTT	GCAĞTCTATA	TGCAAATATT	TTAAAAAAT	
	AGTATAAATC	CGCCATATAA	AATGGTATAA	TCTTTCATCT	TTCATCTTTA	
	ATCTTTCATC	TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	
	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CACATGAAAT	
	GATGAACCGA	GGGAAGGGAG	GGAGGGGCAA	GAATGAAGAG	GGAGCTGAAC Ö	10
	GAACGCAAAT	GATAAAGTAA	TTTAATTGTT	CAACTAACCT	TAGGAGAAAA 0	169
	TATGAACAAG	ATATATCGTC	TCAAATTCAG	CAAACGCCTG	AATGCTTTGG	2
	TTGCTGTGTC	TGAATTGGCA	CGGGGTTGTG	ACCATTCCAC	AGAAAAAGGC	
	TTCCGCTATG	TTACTATCTT	TAGGTGTAAC CACTTAGCGT		TAAAGCCACT	
	TTCCGCTATG	TTACTATCTT	TAGGTGTAAC	ATCTATTCCA	CAATCTGTTT	
	TAGCAAGCGG	CTTACAAGGA	ATGGATGTAG	TACACGGCAC AGCCACTATG	AGCCACTATG	
	CAAGTAGATG	GTAATAAAAC	CATTATCCGC	AACAGTGTTG	ACGCTATCAT	
	TAATTGGAAA	TAATTGGAAA CAATTTAACA	TCGACCAAAA TGAAATGGTG		CAGTTTTTAC	
	AAGAAAACAA	CAACTCCGCC	GTATTCAACC		TAACCAAATC	

FIG. 3B

751	TCCCAATTAA	TCCCAATTAA AAGGGATTTT		AGATTCTAAC GGACAAGTCT	TTTTAATCAA
801	CCCAAATGGT	ATCACAATAG	GTAAAGACGC	ATCACAATAG GTAAAGACGC AATTATTAAC ACTAATGGCT	ACTAATGGCT
851	TTACGGCTTC	TACGCTAGAC	ATTTCTAACG	ATTTCTAACG AAAACATCAA	GGCGCGTAAT
901	TTCACCTTCG	AGCAAACCAA	AGCAAACCAA AGATAAAGCG	CTCGCTGAAA TTGTGAATCA	TTGTGAATCA
951	CGGTTTAATT	ACTGTCGGTA	ACTGTCGGTA AAGACGGCAG	TGTAAATCTT	ATTGGTGGCA
1001	AAGTGAAAAA	CGAGGGTGTG	ATTAGCGTAA	ATGGTGGCAG	CATTTCTTTA
1051	CTCGCAGGGC	AAAAAATCAC	CATCAGCGAT	ATAATAAACC	CAACCATTAC =
1101	TTACAGCATT	вссесесств	AAAATGAAGC	GGTCAATCTG	GGCGATATTT 0
1151	TTGCCAAAGG	CGGTAACATT	AATGTCCGTG	CTGCCACTAT	TCGAAACCAA
1201	GGTAAACTTT	CTGCTGATTC	TGTAAGCAAA GATAAAAGCG	GATAAAAGCG	GCAATATTGT
1251	TCTTTCCGCC	AAAGAGGGTG	AAGCGGAAAT	TGGCGGTGTA	ATTTCCGCTC
1301	AAAATCAGCA	AGCTAAAGGG	AGCTAAAGGC GGCAAGCTGA	TGATTACAGG CGATAAAGTC	CGATAAAGTC
1351	ACATTAAAAA	CAGGTGCAGT	TATCGACCTT	TCAGGTAAAG AAGGGGGAGA	AAGGGGGAGA
1401	AACTTACCTT	GGCGGTGACG	AGCGCGGCGA	AGCGCGCGA AGGTAAAAAC GGCATTCAAT	GGCATTCAAT
1451	TAGCAAAGAA	AACCTCTTTA GAAAAAGGCT	GAAAAAGGCT	CAACCATCAA	TGTATCAGGC
1501	AAAGAAAAAG	GCGGACGCGC		TATTGTGG GGCGATATTG CGTTAATTGA	CGTTAATTGA

FIG. 3C

1551	CGGCAATATT	AACGCTCAAG	GTAGTGGTGA	TATCGCTAAA	ACCGGTGGTT
1601	TTGTGGAGAC	ATCGGGGCAT	TATTTATCCA	TTGACAGCAA	TGCAATTGTT
1651	AAAACAAAAG	AGTGGTTGCT	AGACCCTGAT	GATGTAACAA	TTGAAGCCGA
1701	AGACCCCCTT	CGCAATAATA	CGCAATAATA CCGGTATAAA	TGATGAATTC	CCAACAGGCA
1751	CCGGTGAAGC		AAGCGACCCT AAAAAAATA	GCGAACTCAA	AACAACGCTA
1801	ACCAATACAA	CTATTTCAAA	TATCTGAAA A	CTATTTCAAATTATCTGAAA AACGCCTGGA CAATGAATAT	CAATGAATAT
1851	AACGGCATCA	AGAAAACTTA	CCGTTAATAG	AGAAAACTTA CCGTTAATAG CTCAATCAAC ATCGGAAGCA	ATCGGAAGCA
1901	ACTCCCACTT	AATTCTCCAT	AGTAAAGGTC	AGTAAAGGTC AGCGTGGCGG	AGGCGTTCAG
1951	ATTGATGGAG	ATATTACTTC	TAAAGGCGGA	AATTTAACCA	TTTATTCTGG
2001	CGGATGGGTT	GATGTTCATA	AAAATATTAC	GCTTGATCAG	GGTTTTTTAA
2051	ATATTACCGC	CGCTTCCGTA	GCTTTTGAAG	GTGGAAATAA	CAAAGCACGC
2101	GACGCGGCAA	ATGCTAAAAT	TGTCGCCCAG	GGCACTGTAA	CCATTACAGG
2151	AGAGGGAAAA	GATTTCAGGG	CTAACAACGT	ATCTTTAAAC	GGAACGGGTA
2201	AAGGTCTGAA	TATCATTTCA	TCAGTGAATA	ATTTAACCCA	CAATCTTAGT
2251	GGCACAATTA	ACATATCTGG	GAATATAACA	ATTAACCAAA	CTACGAGAAA
2301	GAACACCTCG	TATTGGCAAA	CCAGCCATGA	TTCGCACTGG	AACGTCAGTG
2351	CTCTTAATCT	AGAGACAGGC	GCAAATTTTA	AGAGACAGGC GCAAATTTTA CCTTTATTAA ATACATTTCA	ATACATTTCA

12 /68

FIG. 3D

GTGATTTAAA	ACCAATGATG	TGGCAATGTT	TGGTAAAACT	ACACAAGGAG	3151
AATTAATATA	GCACTGCCGA	ACCAATAATG	CGGCAATTTT	TAAATATCAC	3101
AGAGATACCC	AGGAAAGACT	CCACTTTTAA	TCAGAAAGCG	TCTCACTATT	3051
TTAAAGGCAA	AATGCAGATA	AACTGGCGAA	GTTTAAGTTT	GTTAATGGGA	3001
CAGCTTGCTC	TAAAACTTGG	GATAGAGTTA	AAACATAAGG	CTAATCAGCA	2951
AATAACGCCC	GCTAGAAGCC	CAAATGTTAC	GAGAAAGCAG	TATTACTATC	2901
TTACGGGGAA	AGCAGCAGCA	ACAAAACTCA	CCCTTGGTGG	GGTAATGTCA	2851
CATTCTGGGC	ACAACATATC	AATTCAACCT	CAATGCCATC	GGTACGCACG	2801
TTTTATGACG	GAAAGATGAT	TCAGACAGAC	AATTTCAGCC	AACCAATTCA	2751
CCATAAATGC	AAAGACTTAA	TAAAATCAAC	ATGACGCTTT	GTTCGCGGCG	2701
AAATTCCCAT	ATTTTACCTT	AACGGCGCTA	TAATATCTCT	TGAGTGAAAT	2651
GAGTTAAAAA	CAGAGGGGCT	ACCATTCTGG	ATATATGCCA	TTTTTTTGAT	2601
GGGGCTCTGT	GCCACTGGTG	CAATATCACA	GGTTTTTAGC	TTACCAATTC	2551
AAGCAAACCT	ACATGAACAC	CCAAACGAGA	CAAATTAAAA	AAGTTAATTT	2501
GAAGGAGCGA	CAATCTCAAA	ACATGTCATT	GTAAATGGCA	TTTTAACGGC	2451
CAGGGGTGAA	AGAAGCTCTG	AACACAGTAT	AAGGCTTAAC	AGCAATAGCA	2401

13/68

FIG. 3E

3201	CATTACCACT	CACGCTAAAC	CACGCTAAAC GCAACCAAAG AAGCATCATC GGCGGAGATA	AAGCATCATC	GGCGGAGATA	
3251	TAATCAACAA	AAAAGGAAGC	TTAAATATTA CAGACAGTAA	CAGACAGTAA	TAATGATGCT	
3301	GAAATCCAAA	TTGGCGGCAA	TATCTCGCAA	TATCTCGCAA AAAGAAGGCA	ACCTCACGAT	
3351	TTCTTCCGAT	AAAATTAATA	TCACCAAACA	TCACCAAACA GATAACAATC	AAAAGGGTA	
3401	TTGATGGAGA	TTGATGGAGA GGACTCTAGT	TCAGATGCGA CAAGTAATGC	CAAGTAATGC	CAACCTAACT	
3451	ATTAAAACCA	AAGAATTGAA	ATTGACAGAA	GACCTAAGTA	TTTCAGGTTT	
3501	CAATAAAGCA	GAGATTACAG	GAGATTACAG CCAAAGATGG	TAGAGATTTA	ACTATTGGCA	
3551	ACAGTAATGA	CGGTAACAGC	GGTGCCGAAG	CCAAAACAGT	AACTTTTAAC >	
3601	AATGTTAAAG	ATTCAAAAAT	CTCTGCTGAC GGTCACAATG	GGTCACAATG	TGACACTAAA	
3651	TAGCAAAGTG	AAAACATCTA	AAAACATCTA GCAGCAATGG CGGACGTGAA	CGGACGTGAA	AGCAATAGCG	
3701	ACAACGATAC	CGGCTTAACT	ATTACTGCAA	ATTACTGCAA AAAATGTAGA	AGTAAACAAA	
3751	GATATTACTT	CTCTCAAAAC	CTCTCAAAAC AGTAAATATC ACCGCGTCGG AAAAGGTTAC	ACCGCGTCGG	AAAAGGTTAC	
3801	CACCACAGCA	GGCTCGACCA	TTAACGCAAC	TTAACGCAAC AAATGGCAAA GCAAGTATTA	GCAAGTATTA	
3851	CAACCAAAAC	AGGTGATATC	AGCGGTACGA	TTTCCGGTAA CACGGTAAGT	CACGGTAAGT	
3901	GTTAGCGCGA	CTGGTGATTT	CTGGTGATTT AACCACTAAA	TCCGGCTCAA AAATTGAAGC	AAATTGAAGC	
3951	GAAATCGGGT	GAGGCTAATG	TAACAAGTGC	AACAGGTACA ATTGGCGGTA	ATTGGCGGTA	

WO 94/21290 PCT/US94/02550

FIG. 3F.

						1	5/6	68								
CGATTTAACA	CAACCTTAAC	ATCACTTCAA	CGCAGGAAGC	TAACCACCGT	ATTAACGCAA	AGAAGTGAAT	CCTCAAGCAG	AATATCATTT	AATTGAGGTG	TTGAAGCGAA	AGAGAAACAT	AAATAATACA	CAAGTCAAGT	GGCGCACGAG	AATTGACAAG	TATTTACTGT
CAATTICCGG TAATACGGTA AATGTTACGG CAAACGCTGG CGATTTAACA	TAATGCGACA GAAGGAGCTG	CGGTTCTAGC	ATGGTAGCAT	ACAGGCACCT	CACCTTGGTT	GTGATAGTAC	ACTGCGGCAA	AAATGGGTTA	GTGCGCTTAA GAGGCAAGGA AATTGAGGTG	AGCAAGTGTA GAAGAAGTAA TTGAAGCGAA	TGATGAAGAA	TTGTTGAGCC	TGAATTTACA ACCAGACCGT	CGTGTTTCTC AAGTGGTAAT	CGTAGTCAGT	ATTTTCGTAT
AATGTTACGG	TAATGCGACA	CTACTGAAGC	TTGGCTCAGA	ATTAAATACT	CAACCAGCGG	GATGCATCAG	TGGTAGTGTG	TAAACACAGT	GTGCGCTTAA	AGCAAGTGTA	AAGATTTATC	GCTGTACGTT	TGAATTTACA	CGTGTTTCTC	TGTTGCTGAC GATGGACAGC CGTAGTCAGT	AAGTCATTTT
TAATACGGTA	GCGCAGAAAT	AATACCTTGA	GGTAGACCTC	CTAATGTGAC	GATATTAAAG CAACCAGCGG	GCTAAATGGT	CAAGCGGCTC	ACTGGGGATT	TAGAAACACT	AGCCAGGTGT	GAAAAAGTAA	TGGTGTAAGT	ATACACAAAA	GAAGGTAAGG	TGTTGCTGAC	TCCTGCAATG
CAATTTCCGG	GTTGGGAATG	CGCAACAGGG	CTAAGGGTCA	ATTAATGCTG	GGCAGGCTCG	AAGATGCTAA	GCAGTCAACG	TGTGAATATC	CGAAAGATGG	AAATATATCC AGCCAGGTGT	ACGCGTCCTT	TAGCTAAACT	ATTACAGTCA	GATAATTTCT	TATGTACCAA	GTAGATTTCA
1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501	1551	4601	1651	4701	1751	4801

16/68

FIG. 3G.

GTGGGTTAAA GTTCAGTACG GGCTTTACCC ATCTTGTAAA AAATTACGGA GAATACAATA AAGTATTTTT AACAGGTTAT TATTATG 4851 4901

WEIGHT MOLECULAR HIGH FIG. 4A. AMINO ACID SEQUENCE OF PROTEIN

17/68 VSKDKSGNIV DFDNVSINAE KGGNLTIYSG KARDAANAKI VAQGTVTITG TQYRSSAGVN KRLNALVAVS ELARGCDHST EKGSEKPARM KVRHLALKPL DSNGOVFLIN DKALAEIVNH IDLSGKEGGE IVWGDIALID NITINQTTRK NITATGGGSV ISDIINPTIT IIRNSVDAII YLKNAWTMNI RNQGKLSADS VSGKEKGGRA ISLLAGOKIT NLSGTINISG YISSNSKGLT SKPLPIRFLA AIVDAKEWLL TTLTNTTISN GVQIDGDITS DKVTLKTGAV ATMOVDGNKT NQISQLKGIL ARNFTFEQTK TSLEKGSTIN ILHSKGQRGG ASVAFEGGNN TLDISNENIK **EGVI SVNGGS** SGHDLFIKDN SDPKKNSELK HIRNNASII LQGMDVVHGT NSAVFNRVTS GNINVRAATI GGVISAQNQQ AKGGKLMITG ETGANFTFIK KLKPNENMNT GKNGIQLAKK SIPQSVLASG GLITVGKDGS VNLIGGKVKN SINIGSNSHL LDQGFLNITA SHWINSALNL IINTNGFTAS VNLGDIFAKG IAKTGGFVET DEFPTGTGEA SLNGTGKGLN NLKEGAKVNF EMVQFLQENN MNKIYRLKFS TYLGGDERGE TASRKLTVNS FNGVNGNMSF PNGITIGKDA YSIAAPENEA GNINAQGSGD GWVDVHKNIT SAMLLSLGVT NWKOFNIDON LSAKEGEAEI DPLRNNTGIN NTSYWOTSHD EGKDFRANNV 51 201 451 501 551 651 701 301 351 401 601 101 151 251

FIG. 4B

			VADDGQP	SGNGARVCTN	IISEGKACFS	451
	EFTTRPSSQV	NNTITVNTON	GVSAVRFVEP NNTITVNTQN	DEERETLAKL	RVLEKVKDLS	401
	ASVEEVIEAK	VNITGDLNTV NGLNIISKDG RNTVRLRGKE IEVKYIQPGV	RNTVRLRGKE	NGLNIISKDG	VNITGDLNTV	.351
	GSVTAATSSS	EVNAVNASGS	TLVINAKDAK LNGDASGDST	TLVINAKDAK	AGSDIKATSG	.301
	LNTTGTLTTV	AGSINAANVT	VDLLAQNGSI	GSSITSTKGQ VDLLAQNGSI	ATGNTLTTEA	.251
	NATEGAATLT	DLTVGNGAEI	NTVNVTANAG	TGTIGGTISG	KSGEANVTSA	.201
	TTKSGSKIEA	TVSVSATVDL	GDISGIISGN	NGKASITTKT	TTAGSTINAT	151
68	VNITASEKVT	VNKDITSLKT	GLTITAKNVE	GRESNSDNDT	SKVKTSSSNG	.101
8/6	SADGHNVTLN	TFNNVKDSKI	GNSGAEAKTV	RDLTIGNSND	NKAEITAKDG	051
1	LTEDLSISGF	NLTIKTKELK	DSSSDATSNA	ITIKKGIDGE	SSDKINITKQ	001
	ISQKEGNLTI	NDAEIQIGGN	KGSLNITDSN	SIIGGDIINK	ITTHAKRNQR	951
	GNVTNDGDLN	INITQGVVKL	GNFTNNGTAE	GKTRDTLNIT	LTISESATFK	901
	TGENADIKGN	SLLVNGSLSL	NIRDRVIKLG	LEANNAPNQQ	ITIEKAANVT	851
	ILGGNVTLGG QNSSSSITGN		KDDFYDGYAR NAINSTYNIS	KDDFYDGYAR	TNSNFSLRQT	801
	KINKDLTINA	NISNGANFTL NSHVRGDDAF	NISNGANFTL	RGAELKMSEI	FFDIYANHSG	751

WO 94/21290 PCT/US94/02550

FIG.5A.

cec ecc dee eea tob tot ada etc eab offe cae coc aag off atc atc dat ... SallPstl Smal BamHI Xbal

F16.5B

shaded boxes indicate the locations of the structural genes. In the recombinant phage, transcription proceeds from left to right for the HMW1 gene and from right to left for the HMW2 gene. The methods used for construction of the plasmids shown are (A) Partial restriction maps of representative HMW1 and HMW2 recombinant phage and of HMW1 plasmid subclones. The described in the text. (B) Restriction map of the T7 expression vector pT7-7. This vector contains the T7 RNA polymerase promoter 410, a ribosome - binding site (rbs), and the translational start site for the T7 gene 10 protein upstream from a multiple cloning site (37).

FIG. 6A

AAACA	TTAAAAAATA	TCATCTTTCA	CATCTTTCAT	ACATGAAATG	GAACG	AGGAGAAAAT -	ATGCTTTGGT ®	AGGCA	AAAGCCACTT	AATCTGTTTT	TATGC	CGCTATCATT	AGTTTTACA	AATCT	TTTAATCAAC
ATGACAAACA	TTAAA	TCATC	CATCT	ACATG	GAGCT	AGGAG	ATGCT	GAAAA	AAAGC	AATCT	GCCAC	CGCTA	AGTTT	AACCA	TTTAA
CTTAATACTA GTACAAACCC ACAATAAAAT	TGCAAATATT	CTTTCATCTT	TTTCATCTTT	TTCATCTTTC	GAGGGCCAAG AATGAAGAGG GAGCTGAACG	TTAATTGTTC AACTAACCTT	CAAATTCAGC AAACGCCTGA	CCATTCCACA GAAAAAGGCA	AAAGTGCGTC ACTTAGCGTT	TCTATTCCAC	ACACGGCACA GCCACTATGC	ACAGTGTTGA	GAAATGGTGC	TGTTACATCT AACCAAATCT	GACAAGTCTT
GTACAAACCC	GCAGTCTATA	ATGGTATAAT	ATCTTTCATC	TCTTTCATCT		TTAATTGTTC	CAAATTCAGC	GGGGTTGTGA		AGGTGTAACA	TGGATGTAGT	ATTATCCGCA	CGACCAAAAT	TATTCAACCG	CCCAATTAAA AGGGATTTTA GATTCTAACG
CTTAATACTA	CACCTTTTTT	GCCATATAAA	TTCATCTTTC	TCATCTTTCA	GGAAGGGAGG	ATAAAGTAAT	TATATCGTCT	GAATTGGCAC	TGCTCGCATG	TACTATCTTT	TTACAAGGAA	TAATAAAACC	AATTTAACAT	AACTCCGCCG	AGGGATTTTA
ACAGCGTTCT	ACAATTACAA	GTATAAATCC	TCTTTCATCT	CTTTCATCTT	ATGAACCGAG	AACGCAAATG	ATGAACAAGA	TGCTGTGTCT	GCGAAAAACC	TCCGCTATGT	AGCAAGCGGC	AAGTAGATGG	AATTGGAAAC	AGAAAACAAC AACTCCGCCG	CCCAATTAAA
\leftarrow	51	101	151	201	251	301	351	401	451	501	551	501	551	701	751

FIG. 6B

						22	2/6	8							
CTAATGGCTT	GCGCGTAATT	TGTGAATCAC	TTGGTGGCAA	ATTTCTTTAC	AACCATTACT	GCGATATT'I'T	CGAAACCAAG	TTTCCGCTCA	GATAAAGTCA	CAGGTAAAGA AGGGGGAGAA	GCATTCAATT	GTATCAGGCA	GTTAATTGAC	CCGGTGGTTT	GCAATTGTTG
TAAAGACGCA ATTATTAACA CTAATGGCTT	TTTCTAACGA AAACATCAAG GCGCGTAATT	TCGCTGAAAT	GTAAATCTTA	TGGTGGCAGC	TAATAAACCC AACCATTACT	GTCAATCTGG GCGATATTTT	TGCCACTATT	GGCGGTGTAA	GATTACAGGC	CAGGTAAAGA	GCGGTGACGA GCGCGGAA GGTAAAAACG GCATTCAATT	AACCATCAAT	ATTGTGTGGG GCGATATTGC	ATCGCTAAAA	ATTTATTCAT CAAAGACAAT GCAATTGTTG
TAAAGACGCA	TTTCTAACGA	GATAAAGCGC	AGACGGCAGT	TTAGCGTAAA	ATCAGCGATA	CCGCGCCTGA AAATGAAGCG	ATGTCCGTGC	AGCGGAAATT	GCAAGCTGAT	ATCGACCTTT	GCGCGGCGAA	AAAAAGGCTC	ATTGTGTGGG	TAGTGGTGAT	ATTTATTCAT
TCACAATAGG	ACGCTAGACA	GCAAACCAAA	CTGTCGGTAA AGACGGCAGT	GAGGGTGTGA	AAAAATCACC ATCAGCGATA	CCGCGCCTGA	GGTAACATTA	AAGAGGGTGA AGCGGAAATT	GCTAAAGGCG GCAAGCTGAT	AGGTGCAGTT	GCGGTGACGA	ACCTCTTTAG	CGGACGCGCT	ACGCTCAAGG	TCGGGGCATG
CCAAATGGTA	TACGGCTTCT	TCACCTTCGA	GGTTTAATTA	AGTGAAAAAC	TCGCAGGGCA	TACAGCATTG	TGCCAAAGGC	CTTTCCGCCA	AAATCAGCAA	CATTAAAAAC	ACTTACCTTG	AGCAAAGAAA	AAGAAAAAGG	GGCAATATTA	TGTGGAGACG
801	851	901	951	1001	1051	1101	1151	1251	1301	1351	1401	1451	1501	1551	1601

FIG. 6C

CAAGAGTCAA	GAACGAAATG	CTTTAATGTT	AAGACACTAC	TCATTCAACA	2451
AAACGGTATA	CTTATAATTT	CTTACCCAGC	TGCAGGCACA	GAAGCGATAG	2401
GACTCCAGAG	CCTCACTATT	CAAAGGACGC	ATGATAAATT	GAAAGTGGAT	2351
ATTTAACCTC	ACTTACTGGA	CAAAGGACGC	ATGATAAATT	GAAAGTGGAT	2301
ACCTAAAAAT	CAATGGTTTT	GTGAACATCT	TTCAGGGAAA	CTTTAAATAT	2251
TTTGAAGGGA	CACAAATAAA	AATACGCTAT	AGAACCAATA	CACCACTAAA	2201
GACTGCAATT	ACTGGCAGCG	TCTAAACGGC	ATAATGTCTC	TTTAGATTTA	2151
TCAAAAAGGT	CCTCAGGCAA	GGGACTATTA	TACAGGTCAA	ACCAAGTCAT	2101
AAAGGAAGCA	CGCCTTTGAG	AACAAGATAT	ATTACAGCTA	TAACATAAAC	2051
GGGCGCAAGG	ATCTCACTCG	TCATAAAAAT	GGGTTGATGT	TCAGGCGGCT	2001
AACAATTTAC	GTGCAAACTT	GATACCAGAG	CACCGGTGAT	ACGATATTAC	1951
GAGATTAACA	TGGCGGCGTT	GTCGGAGCGG	TGGAGTGAGG	CTTAACTCTT	1901
CCAATGGCAG	ATTAATTTAT	CAATAGCTCC	GCATCTATGT	GCTAATCAAC	1851
TAACATCACT	GTACCTTTGT	CTAAAAAAAG	TGAGAGTATA	ACACAACTCT	1801
ACATTAACAA	AGAAAAGACA	AACGAAACAA	AGCACCCCAA	GAATAGTGCC	1751
CGGGATCCGG	GATGAATACA	TTCAGAAGAC	GCAGCAATAC	ACAGCAGGAC	1701
TAATGCAGAA	ATGTATCTAT	GACCCGGATA	GTGGTTGTTA	ACGCCAAAGA	1651

23 / 68

FIG. 6D

2501	CTTTGACATC	CTTTGACATC AAGGCACCAA	TAGGGATAAA	TAAGTATTCT AGTTTGAATT	AGTTTGAATT
2551	ACGCATCATT	TAATGGAAAC	ATTTCAGTTT	CGGGAGGGGG	GAGTGTTGAT
2601	TTCACACTTC	TCGCCTCATC	CTCTAACGTC	CAAACCCCCG	GTGTAGTTAT
2651	AAATTCTAAA	TACTTTAATG	TTTCAACAGG	GTCAAGTTTA	AGATTTAAAA
2701	CTTCAGGCTC	CTTCAGGCTC AACAAAACT	GGCTTCTCAA	TAGAGAAAGA	TTTAACTTTA
2751	AATGCCACCG	GAGGCAACAT	AATGCCACCG GAGGCAACAT AACACTTTTG	CAAGTTGAAG	GCACCGATGG
2801	AATGATTGGT	AATGATTGGT AAAGGCATTG	TAGCCAAAAA	TAGCCAAAAA AAACATAACC	TTTGAAGGAG &
2851	GTAAGATGAG	GTTTGGCTCC	AGGAAAGCCG	TAACAGAAAT	CGAAGGCAAT ®
2901	GTTACTATCA	ATAACAACGC	TAACGTCACT	CTTATCGGTT	CGGATTTTGA
2951	CAACCATCAA	CAACCATCAA AAACCTTTAA	CTATTAAAAA	AGATGTCATC	ATTAATAGCG
3001	GCAACCTTAC	GCAACCTTAC CGCTGGAGGC	AATATTGTCA	ATATAGCCGG AAATCTTACC	AAATCTTACC
3051	GTTGAAAGTA	GTTGAAAGTA ACGCTAATTT	CAAAGCTATC	CAAAGCTATC ACAAATTTCA	CTTTTAATGT
3101	AGGCGGCTTG	TTTGACAACA	AAGGCAATTC	AAATATTTCC	ATTGCCAAAG
3151	GAGGGGCTCG	CTTTAAAGAC	ATTGATAATT	CCAAGAATTT AAGCATCACC	AAGCATCACC
3201	ACCAACTCCA	ACCAACTCCA GCTCCACTTA	CCGCACTATT	ATAAGCGGCA	ATATAACCAA
3251	TAAAAACGGT	GATTTAAATA	TTACGAACGA	AGGTAGTGAT ACTGAAATGC	ACTGAAATGC

FIG. 6E

GTGTTGATGG		ACCATTAAAA	TTTCAATAAA	GTAACACCAA	CAGGTTAAAG	NAAGTG O	ACAATAATGC 8	AATATTACTT	TACCACTAAA	TAACCGCTCA	TCTGTAACAC	GGGCAACACC	CAGGCTCTAC	NTATCG	CGAAAGTTTA
						CAGC	ACAA	AATA						29299	
	ATCAAGGCAG	TGCCAATCTA	ATATTTCAGG	TTAACTATTG	AACCTTTAAC	TGACACTACA	GATAGCAGTG	AGTAAACAAC	TCTGCGACAA GTGGAGAAAT	AACGTGGAGA	CAGCTCTGGC	CTTGCTGTAA GCAATATTTC	ACCACTTTGG	AAGTCAATCA GGCGATATCG	TTAAAGCAAC
	ATATTACCAA ACAGATAACA ATCAAGGCAG	CGACAAACAA	CAAGACCTAA	TGGTAGTGAT	CCAAAAAAGT	CTCTGCTGAC GGTCACAAGG	GTAGTAATAA CAACACTGAA GATAGCAGTG	AAAATGTAAC	TCTGCGACAA	AACCACTGGT	GAATTGAGTC	CTTGCTGTAA	CGGTGCATTA	TAACCACTTC	TTCTGGTGGC ACAGTAGAGG
	ATATTACCAA	GATTCAGACG	GAAATTAACG	CAGCTAAAGA	GGTACTAATG	CTCTGCTGAC	GTAGTAATAA	ATCGATGCAA	CTCACAAAGC AGTGAGCATC	CCATTAACGC	ATCCTAGGTG	CGAGGGCGCT	CTGCAAATAG	ACCGAGAGTG	TTCTGGTGGC
	GACAAAATCA	GGAGAATTCC	CCAAAGAATT	GCAGAGATTA	TAGTGCTGAT	ATTCAAAAT	GAAACATCCG	CGGCTTAACT	CTCACAAAGC	ACAGGTACAA	AACAGGTAGT	TTACTGCAAC	GTTACTGTTA	AATTAAAGGA	GCGGTACGAT
	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951	1001	1051

FIG. 6F.

TACAA TTGGTGGTAC GATTTCCGGT AATACGGTAA	CTGGC GATTTAACAG TTGGGAATGG CGCAGAAATT	GCTGC AACCTTAACT ACATCATCGG GCAAATTAAC	ACACA TTACTTCAGC CAAGGGTCAG GTAAATCTTT	GCGTT GCAGGAAGTA TTAATGCCGC CAATGTGACA	ACTIT AACTACCGIG AAGGGITCAA ACATTAAIGC N	TTAACGCAAA AGACGCTGAG CTAAATGGCG	GTGGTAAATG CAACCAACGC AAATGGCTCC	TCGCGACAAC CTCAAGCAGA GTGAACATCA CTGGGGATTT	ATTAA ATATCATTTC AAAAAACGGT ATAAACACCG	TTAAA ATTGATGTGA AATACATTCA ACCGGGTATA	STAAT TGAAGCGAAA CGCATCCTTG AGAAGGTAAA	AGAAA GAGAAGCGTT AGCTAAACTT GGCGTAAGTG	AGCCA AATAATACAA TTACAGTCGA TACACAAAAT	CCATT AAGTCGAATA GTGATTTTCTG AAGGCAGGGC	FGATG GCGCGACGGT GTGCGTTAAT ATCGCTGATA
ACAGGTACAA TTGGTGGTA	AAACGCTGGC GATTTAACA	AAGGAGCTGC AACCTTAACT	AGTTCACACA TTACTTCAGO	TGGTAGCGTT GCAGGAAGT	CAGGCACTTT AACTACCGTC	ACCTTGGTTA TTAACGCAAA	TAACCACACA GTGGTAAATC	GCGACAAC CTCAAGCAG	AATCACAATA AATGGATTAA ATATCATTTC	GCGTTAAA ATTGATGTG	ATGAAGTAAT TGAAGCGAAA	GATGAAGAAA GAGAAGCGTT	TATTGAGCCA AATAATACAA		GTGTTTCTCA AACAGTGATG GCGCGACGGT
AACAAGTGCA AC	ATGTTACGGC AA	AATGCGACAG AA	TACCGAAGCT AG	CAGCTCAGGA TG	CTAAATACTA CA	AACCAGCGGT AC	CAGCATTGGG TA	GGCAGCGTAA TC	AATCACAATA AA	TACTGTTAAA AGGCGTTAAA	GCAAGCGTAG AT	AGATTTATCT GA	CTGTACGTTT TA	GAATTTGCAA CCAGACCATT	GTGTTTCTCA AA
4151	4201	4251	4301	4351	4401	4451	4501	4551	4601	4651	4701	4751	4801	4851	4901

FIG. 6G

4951	ACGGGCGGTA	GCGGTCAGTA	GCGGTCAGTA ATTGACAAGG	TAGATTTCAT CCTGCAATGA	CCTGCAATGA
5001.	AGTCATTTTA	TTTTCGTATT	ATTTACTGTG	TGGGTTAAAG	TTCAGTACGG
5051	GCTTTACCCA	TCTTGTAAAA	AATTACGGAG	AATACAATAA	AGTATTTTA
5101	ACAGGTTATT	ATTATGAAAA	ATATAAAAAG	CAGATTAAAA	CTCAGTGCAA
5151	TATCAGTATT	GCTTGGCCTG	GCTTGGCCTG GCTTCTTCAT	CATTGTATGC AGAAGAAGCG	AGAAGAAGCG
5201	TTTTAGTAA	AAGGCTTTCA	GTTATCTGGT	GCACTTGAAA	CTTTAAGTGA
5251	AGACGCCCAA	CTGTCTGTAG	CAAAATCTTT	ATCTAAATAC	CAAGGCTCGC
5301	AAACTTTAAC	AAACCTAAAA	AAACCTAAAA ACAGCACAGC	TTGAATTACA	TTGAATTACA GGCTGTGCTA $\overset{\mathfrak{O}}{\mathfrak{D}}$
5351	GATAAGATTG	AGCCAAATAA	GTTTGATGTG	ATATTGCCAC	AACAAACCAT
5401	TACGGATGGC	AATATTATGT	TTGAGCTAGT	CTCGAAATCA GCCGCAGAAA	GCCGCAGAAA
5451	GCCAAGTTTT	TTATAAGGCG	AGCCAGGGTT	ATAGTGAAGA	AAATATCGCT
5501	CGTAGCCTGC	CATCTTTGAA	ACAAGGAAAA	GTGTATGAAG	ATGGTCGTCA
5551	GTGGTTCGAT	TTGCGTGAAT	TCAATATGGC	TCAATATGGC AAAAGAAAAT	CCACTTAAAG
5601	TCACTCGCGT	GCATTACGAG	TTAAACCCTA	AAAACAAAAC	CTCTGATTTG
5651	GTAGTTGCAG	GTTTTTCGCC	TTTGGCAAA	TTTTGGCAAA ACGCGTAGCT	TTGTTTCCTA
5701	TGATAATTTC	GGCGCAAGGG	AGTTTAACTA	TCAACGTGTA	AGTCTAGGTT

FIG. 6H

CTGCGGGTTT	ACGGTATCCT	AGATATGCAC	CTTACGGCGA	AATGCTAAAA	5551
TAATAGCGAA	AGTTCCGTTA	GATGCAGGTC	TGCGTTTTAT	TCAGCCCTTA	5501
CGCTTTCAAA	AAAATACACC	TAAGTATGCC	CGTAATGAAT	TCTTGTATGG	5451
GTGAGCGCGG	GGTGCAAGTG	TAAATACGGC	TCAGAGGCTT	ACTTATGGCG	6401
TGTAACAGGT	ATTTATTCTC	AGTAGCATAG	ACAAGATATA	AGTTTACTCT	6351
TTATCGGGTC	TAGCAGTCAA	GTTGGCATTT	TTTGCTCAAG	GAGTCAAGAG	5301
GTTTAGGGTT	AGCACAGCCA	CTATCACATT	TTAATCGCAG	GGCGAAACAT	5251
GGAGCGCATT	CTTTTGGAAT	TTACCAGGCT	CGCGAGTAAA	ATCATTATTA	6201
GATTTAACTC	CTTTAATATT	CTAAAACAAT	CAATTTACCC	TGGACATATC	5151
CAGGCATTGA	GGCGTAAGTG	TGCAGTATCA	AGAAAAATT	GGTGCAACGA	5101
AAACACCCTG	CATCCGAGTT	ATTAATCAAA	CTACCGCCAT	TAGGCTACAA	5051
AAAATTAATT	AGACCAGTTT	TTGGAATGGA	ACATTTAACC	TTATCTCCCG	5001
AATGGAGTTA	GCGAATCTGA	ATCTATCTCT	CAAAAGGTCA	CGTAAATTAT	5951
TGCGATTAAT	GCTTACCAAG	GATATCGACG	TGATTCTAAT	TGAGTTATGC	5901
TATACCAGCA	CTTAAGTCTT	AACACCAATC	TTTTATGATA	TACTTATCCG	5851
GCATAGGATA	TATGCGGTAG	ATCAAAATCT	TAAAAGCACC	TTGACCAATG	5801
TCTAAACGCA	ATGTATTAAA	GGACATGATG	CAATTTGACC	TTGTAAATGC	5751

28/68

FIG. 6I

						29	/68	}							
)	CAACAAAAAA	TCAGTTTCTA	GTTTATAACT	GTTTTCATCC	AAACCAAGCA	AAGCAAACCA	ATGCTAAAAA 00	CAATACAAGG	ACAAAATACG	TGCAAATACT	CATGTCGCCA	TTTGGAAAAA	ACGCACCTGC	GCCACTCGTC	GGCAATTTCC
	ATTTGAATGG	AGATTAACAT	CCGCCTACCA	ACGCAACCCT	CAAACCAAGC AAACCAAGCA	CCAAGCAAAC CAAGCAAACC AAGCAAACCA W	CAAACCAAGC AAACCAAGCA	CATACCATGG	TATGACAAAA GAAAATTTAC AAAGTGTTCC ACAAAATACG	CAAACTTCCC	CCTGGAACAA	TAATGGCGAT	ATTGAATTTG	AATTCATTTT	ACCCCGAATT
	TGCAAATGCC AATAGTGACA	CTTCTGGGGT	GGTAAGCGTT	TACAGTCTAT	GCAAACCAAG	CCAAGCAAAC	CAAACCAAGC	AAACATACTC	GAAAATTTAC	AAACAACGAC	TAAACAACCA CCCAAACCCA ACCTATTACG CCTGGAACAA	TGCCGCGAAT	CGTTCACGAT	TATCTACCCG AAAAACTACT AATTCATTTT	CTCTTTTCCG
	TGCAAATGCC	CACCTACAAC	TTAATCAACT	CCCGCCAATT	AACAAACTAA	AACCAAGCAA ACCAAGCAAA	GCAAACCAAG	TGATAAACTA	TATGACAAAA	TTGTAGAATC	CCCAAACCCA	TGAGCTTGCT	ATTTTGGAGG	TATCTACCCG	AATTACAACA
	CTCGTCGCTT	CGCACAAGCT	ACCCTGAAAT	ATATGCTTTA CCCGCCAATT	TTATATATCA	AACCAAGCAA	AGCAAACCAA	ACAATTTATA	GATTTAATAA	ACCGCTTCAC	TAAACAACCA	AAAAAGATTA	ATGGACGCTA	TCAGCTGGCA	TCGCTAATGC
	5651	5701	5751	5801	5851	5901	5951	7001	7051	7101	7151	7201	7251	7301	7351

FIG. 6J.

	ATATA	ACTCT	AATAT	ATTGT	TTCAT	ATTGC &	TATATGCACT 0	TAAAC	TACCT	SCTTG	CAATG	3GCGT	ragca	TTTC	ACGAT
	AATAAATATA	AGACAACTCT	ATGTC	GCTTCATTGT	TGCGTTTCAT	CCGAA	TATAT	TCCATTAAAC	ACCGC	GTACTGCTTG	AACTTCAATG	ATGAGGGCGT	ATCAGTAGCA	CGAAACTTTC	TTACCACGAT
	TTAACGCAGA CCATATTCTC	ATTTAGCAAC	CCCGAATCCA ATGTCAATAT	CAGGGAATCA ACAACTTTGT	GTACTGCATC	GIGGITICCI AAAAAACTCG	TCATGATGTA	ATGTTAAGCG	CCTCACGCAA GGATGGCAAG ACCGCTACCT	TGTGATGATG	GCACGCATTC	CTATITAGIC GGCTTAGGCC	GTTCTTTGAA	GTAAACAGTG	GGCATGGATA
CA.	TTAACGCAGA	GGTGGCTTTC	TTTTACTTA	CAGGGAATCA	CGTTTTATTG	GIGGILICCI	CAAATATCCT	AACAAGCACG	CCTCACGCAA	ACGCCAAACC	TCGATTTATC	CTATTTAGTC	TGTTTGACGA	TTTTTATCC	TGTTCTATAT GCCAAGCATT
	TCCCCCTACG	ATATCAACCC AGATTCCGAA	AATTCTGTAT	T GCGTTATGGG	GCAGTCTTCA	TGGTTTTACA	GAATTGCCTG	TTTAGCAAAA	C GCAAGCATAT	TTACACCTTA GGTAAAAGG	TTCGGGACAT	GAGAAAATŢ	GGTCGAGAAG	GGAGAGACTG	TGTTCTATAT
	TTTTGCCTCT	ATATCAACCC	TCTATTGCTA	GAGTTTAGAT	GTTTTGCGTT	AAAAGAGCGG	TAATTTAGAT	GCAGTTATGA	GAACTTGTCC	TTACACCTTA	AACATTTTAA	ATTGCTGCTC GAGAAAATT	TGATAACATA	ATAATATAAT	CAACCCGCAG
	451	501	551	601	651	701	751	801	851	901	951	001	051	101	151

FIG. 6K

8201	TTTTGTGAGC	AACACTCGGC	TTGCCCCTAT	TTTTGTGAGC AACACTCGGC TTGCCCCTAT TCAAGCTGTA GCCTTGGGTC	GCCTTGGGTC	
8251	ATCCTGCCAC	TACGCATTCT GAATTTATTG	GAATTTATTG	ATTATGTCAT	CGTAGAAGAT	
8301	GATTATGTGG	GCAGTGAAGA	TTGTTTAGC	GAAACCCTTT	TACGCTTACC	
8351	CAAAGATGCC	CTACCTTATG	TACCATCTGC	ACTCGCCCCA	CAAAAAGTGG	
8401	ATTATGTACT	CAGGGAAAAC	CCTGAAGTAG	TCAATATCGG	TATTGCCGCT	
8451	ACCACAATGA	ACCACAATGA AATTAAACCC	TGAATTTTTG	CTAACATTGC AAGAAATCAG	AAGAAATCAG	
8501	AGATAAAGCT	AAAGTCAAAA	TACATTTTCA	TTTCGCACTT GGACAATCAA	GGACAATCAA	
8551	CAGGCTTGAC	ACACCCTTAT	GTCAAATGGT	TTATCGAAAG	CTATTTAGGT 7	
8601	GACGATGCCA	CTGCACATCC	CCACGCACCT	TATCACGATT	ATCTGGCAAT [©]	
8651	ATTGCGTGAT	TGCGATATGC	TACTAAATCC	GTTTCCTTTC	GGTAATACTA	
8701	ACGCCATAAT	TGATATGGTT	ACATTAGGTT	TAGTTGGTGT	ATGCAAAACG	
8751	GGGGATGAAG	TACATGAACA	TATTGATGAA	TATTGATGAA GGTCTGTTTA	AACGCTTAGG	
8801	ACTACCAGAA	TGGCTGATAG	CCGACACACG	CCGACACACG AGAAACATAT	ATTGAATGTG	
8851	CTTTGCGTCT	AGCAGAAAAC	CATCAAGAAC GCCTTGAACT	GCCTTGAACT	CCGTCGTTAC	
8901	ATCATAGAAA	ATCATAGAAA ACAACGGCTT ACAAAAGCTT	ACAAAAGCTT	TTTACAGGCG	ACCCTCGTCC	
8951	ATTGGGCAAA	ATTGGGCAAA ATACTGCTTA	AGAAAACAAA	TGAATGGAAG	CGGAAGCACT	
9001	TGAGTAAAAA	TGAGTAAAA ATAACGGTTT	TTTAAAGTAA	TTTAAAGTAA AAGTGCGGTT	AATTTTCAAA	

BNSDOCID: <WO___9421290A1_I_>

32 /68

FIG. 6L

					0201
GCAATAGTTG GGTAATCAAA TTCAATTGTT GATACGGCAA ACTAAAGACG	GATACGGCA	TTCAATTGTT	GGTAATCAAA	GCAATAGTTG	9151
TCCCGCGCGC TGACAGTTTA TCTCTTTTCTT AAAATACCCA TAAAATTGTG	AAAATACCC	TCTCTTTCTT	TGACAGTTTA	TCCCGCGCGC	9101
GOGIIIIAAA AACUICICAA AAAICAACCG CACTTTTATC TTTATAACGC	CACTTTTAI	AAATCAACCG	AACCICICAA	GCGITIAAA	100

FIG. 7A

Н	CGCCACTTCA	CGCCACTTCA ATTTTGGATT	GTTGAAATTC	GTTGAAATTC AACTAACCAA AAAGTGCGGT	AAAGTGCGGT	
51	TAAAATCTGT	GGAGAAAATA	GGTTGTAGTG	AAGAACGAGG	TAATTGTTCA	
101	AAAGGATAAA	GCTCTCTTAA	TTGGGCATTG	GTTGGCGTTT	CTTTTTCGGT	
151	TAATAGTAAA	TTATATTCTG	GACGACTATG	CAATCCACCA	ACAACTTTAC	
201	CGTTGGTTTT	AAGCGTTAAT	GTAAGTTCTT	GCTCTTCTTG	GCGAATACGT	
251	AATCCCATTT	TTTGTTTAGC	AAGAAAATGA	TCGGGATAAT	CATAATAGGT	
301	GTTGCCCAAA	AATAAATTTT	GATGTTCTAA AATCATAAAT	AATCATAAAT	TTTGCAAGAT W	33 /
351	ATTGTGGCAA	TTCAATACCT	ATTTGTGGCG	AAATCGCCAA	TTTTAATTCA ®	68
401	ATTTCTTGTA	GCATAATATT	TCCCACTCAA	ATCAACTGGT	TAAATATACA	
451	AGATAATAAA	AATAAATCAA	GATTTTTGTG	ATGACAAACA	ACAATTACAA	
501	CACCTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAAT	AGTATAAATC	
551	CGCCATATAA	AATGGTATAA	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	
601	TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	
651	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CACATGAAAT	GATGAACCGA	
701	GGGAAGGGAG	GGGAAGGGAG GGAGGGGCAA	GAATGAAGAG GGAGCTGAAC GAACGCAAAT	GGAGCTGAAC	GAACGCAAAT	
751	GATAAAGTAA	TTTAATTGTT	CAACTAACCT	TAGGAGAAAA	TATGAACAAG	

FIG. 7B

34/68	AAGAAAACAA PO TCCCAATTAA OO CCCAAATGGT TTACGGCTTC TTCACCTTCG CGGTTTAATT AAGTGAAAAA CTCGCAGGGC TTACAGCATT TTACAGCATT TTACAGCAAAGG	CAGTTTTTAC TAACCAAATC TTTTAATCAA ACTAATGGCT GGCGCGTAAT TTGTGAATCA ATTGGTGAATCA CATTTCTTTA		TCGACCAAAA GTATTCAACC AGATTCTAACG ATTTCTAACG AGATAAAGCG AGATAAAGCG AAGACGGCAG AAGACGCCAG	CAATTTAACA CAACTCCGCC AAGGGATTTT ATCACAATAG TACGCTAGAC AGCAAACCAA ACTGTCGGTA CGAGGGTGTG AAAAAATCAC
ATGGT GCTTC CTTCG	CCCAA TTACG TTCAC	TTTTAATCAA ACTAATGGCT GGCGCGTAAT	GGACAAGTCT AATTATTAAC AAAACATCAA	AGATTCTAAC GTAAAGACGC ATTTCTAACG	TTT
TAA	TCCCAAT	TAACCAAATC	GTGTTACATC	GTATTCAACC	BCC
A.A	AAGAAAAC	CAGTTTTTAC		TCGACCAAAA	ACA
Æ	TAATTGGAAA	ACGCTATCAT	AACAGTGTTG	CATTATCCGC	GTAATAAAAC
~	AAGAAAACAA	CAGTTTTTAC	TGAAATGGTG	TCGACCAAAA	CAATTTAACA
	TAGCAAGCGG	CAATCTGTTT	ATCTATTCCA	TAGGTGTAAC	TTACTATCTT
	TTCCGCTATG	TAAAGCCACT	CACTTAGCGT	GAAAGTGCGT	CTGCTCGCAT
. .	AGCGAAAAAC	AGAAAAAGGC	CGGGGTTGTG ACCATTCCAC	CGGGGTTGTG	TGAATTGGCA
	TIGCIGIGIC	TCAAATTCAG CAAACGCCTG AATGCTTTGG TTGCTGTGTC	CAAACGCCTG		ATATATCGTC

FIG. 7C

	CGGATGGGTT	TTTATTCTGG CGGATGGGTT	AATTTAACCA	TAAAGGCGGA	ATATTACTTC	401
	ATTGATGGAG	AGGCGTTCAG	AGCGTGGCGG	AGTAAAGGTC	AATTCTCCAT	351
	ACTCCCACTT	ATCGGAAGCA ACTCCCACTT	CTCAATCAAC	CCGTTAATAG	AGAAAACTTA	301
	AACGGCATCA	CAATGAATAT AACGGCATCA	AACGCCTGGA	TTATCTGAAA	CTATTTCAAA	251
	ACCAATACAA	GCGAACTCAA AACAACGCTA	GCGAACTCAA	AAAAAAATA	AAGCGACCCT	201
	CCGGTGAAGC	TGATGAATTC CCAACAGGCA	TGATGAATTC	CCGGTATAAA	CGCAATAATA	151
	AGACCCCCTT	TTGAAGCCGA AGACCCCCTT	GATGTAACAA	AGACCCTGAT	AGTGGTTGCT	101
	AAAACAAAAG	TGCAATTGTT	TTGACAGCAA	TATTTATCCA	ATCGGGGCAT	2051
88	TTGTGGAGAC	ACCGGTGGTT	TATCGCTAAA	GTAGTGGTGA	AACGCTCAAG	2001
5/6	CGGCAATATT	CGTTAATTGA	GGCGATATTG	TATTGTGTGG	GCGGACGCGC	951
3	AAAGAAAAAG	TGTATCAGGC	CAACCATCAA	AACCTCTTTA GAAAAAGGCT	AACCTCTTTA	901
	TAGCAAAGAA	AGGTAAAAAC GGCATTCAAT	AGGTAAAAAC	AGCGCGGCGA	GGCGGTGACG	851
	AACTTACCTT	AAGGGGAGA AACTTACCTT	TCAGGTAAAG	TATCGACCTT	CAGGTGCAGT	801
	ACATTAAAAA	CGATAAAGTC	TGATTACAGG	AGCTAAAGGC GGCAAGCTGA	AGCTAAAGGC	.751
	AAAATCAGCA	ATTTCCGCTC AAAATCAGCA	TGGCGGTGTA	AAAGAGGTG AAGCGGAAAT	AAAGAGGGTG	1701
	TCTTTCCGCC	GATAAAAGCG GCAATATTGT		TGTAAGCAAA	CTGCTGATTC	651
	GGTAAACTTT	AATGTCCGTG CTGCCACTAT TCGAAACCAA GGTAAACTTT	CTGCCACTAT		CGGTAACATT	.601

FIG. 7D

ر د د د	ביים	AAA	GAA	TTA	TCG	7. ACT	GCA 00	2660	\TTT	TTC	GAT	AAT	3,60,6	TCA	ACG
	GACGCGC	AGAGGGAAAA	AAGGTCI	GGCACAATTA	GAACACC	CTCTTAATCT	AGCAATA	TTTTAACGGC	AAGTTAATTT	TTACCAATTC	TTTTTTGAT	TGAGTGAAAT	GTTCGCGGCG	AACCAA	GGTACG(
	GCTTTTGAAG GTGGAAATAA CAAAGCACGC GACGCGGCAA	CCATTACAGG	ATCTTTAAAC GGAACGGGTA AAGGTCTGAA	CAATCTTAGT	CTACGAGAAA GAACACCTCG	TTCGCACTGG AACGTCAGTG	ATACATTTCA AGCAATAGCA	CAGGGGTGAA	GAAGGAGCGA	ACATGAACAC AAGCAAACCT	GGGGCTCTGT	GAGTTAAAAA	AAATTCCCAT	CCATAAATGC AACCAATTCA	TTTTATGACG GGTACGCACG
	GTGGAAATAA	TGTCGCCCAG GGCACTGTAA	ATCTTTAAAC	ATTTAACCCA	ATTAACCAAA	TTCGCACTGG	CCTTTATTAA	AGAAGCTCTG	CAATCTCAAA	ACATGAACAC	GCCACTGGTG	CAGAGGGGCT	ATTTTACCTT	TAAAATCAAC AAAGACTTAA	TCAGACAGAC GAAAGATGAT
	GCTTTTGAAG	TGTCGCCCAG	CTAACAACGT	TCAGTGAATA	GAATATAACA ATTAACCAAA	CCAGCCATGA	GCAAATTTTA	AAGGCTTAAC AACACAGTAT	ACATGTCATT	CAAATTAAAA CCAAACGAGA	GGTTTTTAGC CAATATCACA GCCACTGGTG	ACCATTCTGG	AACGGCGCTA	TAAAATCAAC	TCAGACAGAC
	CGCTTCCGTA	ATGCTAAAAT	GATTTCAGGG	TATCATTTCA	ACATATCTGG	TATTGGCAAA	AGAGACAGGC	AAGGCTTAAC	GTAAATGGCA	CAAATTAAAA	GGTTTTTAGC	ATATATGCCA	TAATATCTCT	ATGACGCTTT	AATTTCAGCC
	2501	2551	2601	2651	2701	2751	2801	2851	2901	2951	3001	3051	3101	3151	3201

FIG. 6I

	AGGCATTAAA	AGGCATTAAA ACCTCTCCTA	CACAAAACTT	AAGCTTAGAT	GCTTTTGTTG
CIC	CTCGTCGCTT	TGCAAATGCC	TGCAAATGCC AATAGTGACA	ATTTGAATGG	CAACAAAAA
SSS	CGCACAAGCT	CACCTACAAC	CTTCTGGGGT	AGATTAACAT	TCAGTTTCTA
ACC	ACCCTGAAAT	TTAATCAACT	GGTAAGCGTT	CCGCCTACCA	GTTTATAACT
AT.	ATATGCTTTA	CCCGCCAATT	TACAGTCTAT	ACGCAACCCT	GTTTTCATCC
TT.	TTATATATCA	AACAAACTAA	GCAAACCAAG	CAAACCAAGC	AAACCAAGCA
AA	AACCAAGCAA	ACCAAGCAAA	CCAAGCAAAC	CAAGCAAACC	AAGCAAACCA 🖔
AG	AGCAAACCAA	GCAAACCAAG	CAAACCAAGC	AAACCAAGCA	CAAACCAAGC AAACCAAGCA ATGCTAAAAA 00
AC	ACAATTTATA	TGATAAACTA	AAACATACTC	CATACCATGG	CAATACAAGG
GA	GATTTAATAA	TATGACAAAA	GAAAATTTAC	TATGACAAAA GAAAATTTAC AAAGTGTTCC ACAAAATACG	ACAAAATACG
AC	ACCGCTTCAC	TTGTAGAATC	AAACAACGAC	CAAACTTCCC	TGCAAATACT
TA	TAAACAACCA	CCCAAACCCA	ACCTATTACG	CCTGGAACAA	CATGTCGCCA
AA	AAAAAGATTA	TGAGCTTGCT	TGCCGCGAAT	TAATGGCGAT	TTTGGAAAAA
AT	ATGGACGCTA	ATTTTGGAGG	CGTTCACGAT	ATTGAATTTG	ACGCACCTGC
Ţ	TCAGCTGGCA	TATCTACCCG	TATCTACCCG AAAAACTACT	AATTCATTTT	GCCACTCGTC
JC	TCGCTAATGC	AATTACAACA	CTCTTTTCCG	ACCCCGAATT	GGCAATTTCC

FIG. 6J

7401	GAAGAAGGGG	CATTAAAGAT	GATTAGCCTG	GATTAGCCTG CAACGCTGGT	TGACGCTGAT	
7451	TTTTGCCTCT	TCCCCCTACG	TTAACGCAGA	CCATATTCTC	AATAAATATA	
7501	ATATCAACCC	AGATTCCGAA	GGTGGCTTTC	ATTTAGCAAC	AGACAACTCT	
7551	TCTATTGCTA	AATTCTGTAT	TTTTTACTTA	CCCGAATCCA	ATGTCAATAT	
7601	GAGTTTAGAT	GCGTTATGGG	CAGGGAATCA	ACAACTTTGT	GCTTCATTGT	
7651	GTTTTGCGTT	GCAGTCTTCA	CGTTTTATTG	GTACTGCATC	TGCGTTTCAT	
7701	AAAAGAGCGG	TGGTTTTACA	GTGGTTTCCT	AAAAAACTCG	CCGAAATTGC W	3C
7751	TAATTTAGAT	GAATTGCCTG	CAAATATCCT	TCATGATGTA	TATATGCACT 0) /68
7801	GCAGTTATGA	TTTAGCAAAA	TTTAGCAAAA AACAAGCACG	ATGTTAAGCG	TCCATTAAAC	3
7851	GAACTTGTCC	GCAAGCATAT	CCTCACGCAA	GGATGGCAAG	ACCGCTACCT	
7901	TTACACCTTA	GGTAAAAAGG	ACGGCAAACC	TGTGATGATG	GTACTGCTTG	
7951	AACATTTTAA	TTCGGGACAT	TCGATTTATC	GCACGCATTC AACTTCAATG	AACTTCAATG	,
8001	ATTGCTGCTC	GAGAAAAATT	CTATTTAGTC	GGCTTAGGCC	ATGAGGGCGT	
8051	TGATAACATA	GGTCGAGAAG	TGTTTGACGA	GTTCTTTGAA	ATCAGTAGCA	
8101	АТААТАТААТ	GGAGAGACTG	TTTTTATCC	GTAAACAGTG	CGAAACTTTC	
8151	CAACCCGCAG	TGTTCTATAT	GCCAAGCATT	GGCATGGATA	TTACCACGAT	

FIG. 6K.

						3	31/6	8								
GCCTTGGGTC	CGTAGAAGAT	TACGCTTACC	CAAAAAGTGG	TATTGCCGCT	AAGAAATCAG	GGACAATCAA	CTATTTAGGT 5	ATCTGGCAAT	GGTAATACTA	ATGCAAAACG	AACGCTTAGG	ATTGAATGTG	CCGTCGTTAC	TTTACAGGCG ACCCTCGTCC	CGGAAGCACT	AATTTTCAAA
TITIGIGAGC AACACTCGGC TIGCCCCTAI TCAAGCTGIA GCCTIGGGIC	ATTATGTCAT	GAAACCCTTT	ACTCGCCCCA	TCAATATCGG	CTAACATTGC	TTTCGCACTT	TTATCGAAAG	TATCACGATT	GTTTCCTTTC	TAGTTGGTGT	GGTCTGTTTA	AGAAACATAT	CATCAAGAAC GCCTTGAACT	TTTACAGGCG	TGAATGGAAG	TTTAAAGTAA AAGTGCGGTT
TIGCCCCTAT	GAATTTATTG	TTGTTTAGC	TACCATCTGC	CCTGAAGTAG	TGAATTTTTG	TACATTTTCA	GTCAAATGGT	CCACGCACCT	TACTAAATCC	ACATTAGGTT	TATTGATGAA	CCGACACACG	CATCAAGAAC	ACAAAAGCTT	AGAAAACAAA	TTTAAAGTAA
AACACTCGGC	TACGCATTCT	GCAGTGAAGA	CTACCTTATG	CAGGGAAAAC	ACCACAATGA AATTAAACCC TGAATTTTTG	AAAGTCAAAA	ACACCCTTAT	CTGCACATCC	TGCGATATGC	TGATATGGTT	TACATGAACA	TGGCTGATAG	AGCAGAAAAC	ATCATAGAAA ACAACGGCTT	ATACTGCTTA	ATAACGGTTT
TTTTGTGAGC	ATCCTGCCAC	GATTATGTGG	CAAAGATGCC	ATTATGTACT	ACCACAATGA	AGATAAAGCT	CAGGCTTGAC	GACGATGCCA	ATTGCGTGAT	ACGGCATAAT	GGGGATGAAG	ACTACCAGAA	CTTTGCGTCT	ATCATAGAAA	ATTGGGCAAA	TGAGTAAAA
8201	8251	8301	8351	8401	8451	8501	8551	8601	8651	8701	8751	8801	8851	8901	8951	9001

32 /68

FIG. 6L

9051	GCGTTTTAAA	AACCTCTCAA	GCGTTTTAAA AACCTCTCAA AAATCAACCG CACTTTTATC TTTATAACGC	CACTTTTATC	TTTATAACGC
1 F	プランランランフェ 日本では、 日本では 日本では 日本では 日本では 日本でも 日本でも 日本でも 日本でも 日本でも 日本でも 日本でも 日本でも	יייייייייייייייייייייייייייייייייייייי	10000000 10000111A 1010111 AAAA1ACCCA TAAAA1"1GTG	AAAATACCCA	TAAAATTGTG
9151	GCAATAGTTG	I'G GGT'AA'I'CAAA 'I'	GCAATAGIIIG GGIAATICAAA 1"ICAATIGTT GATACGGCAA ACTAAAGACG	GATACGGCAA	ACTAAAGACG

FIG. 7A

 1	CGCCACTTCA	CGCCACTTCA ATTTTGGATT		GTTGAAATTC AACTAACCAA AAAGTGCGGT	AAAGTGCGGT	
51	TAAAATCTGT	T GGAGAAAATA	GGTTGTAGTG AAGAACGAGG	AAGAACGAGG	TAATTGTTCA	
01	AAAGGATAAA	GCTCTCTTAA	TTGGGCATTG	GTTGGCGTTT	CTTTTTCGGT	
51	TAATAGTAAA	TTATATTCTG	GACGACTATG	CAATCCACCA	ACAACTTTAC	
01	CGTTGGTTTT	AAGCGTTAAT	GTAAGTTCTT	GCTCTTCTTG	GCGAATACGT	
51	AATCCCATTT	TTTGTTTAGC	AAGAAAATGA	TCGGGATAAT	CATAATAGGT	
01	GTTGCCCAAA	AATAAATTTT	GATGTTCTAA AATCATAAAT	AATCATAAAT	TTTGCAAGAT W	33 /
51	ATTGTGGCAA	TTCAATACCT	ATTTGTGGCG	AAATCGCCAA	TTTTAATTCA @	68
01	ATTTCTTGTA	GCATAATATT	TCCCACTCAA	ATCAACTGGT	TAAATATACA	
51	AGATAATAAA	AATAAATCAA	GATTTTTGTG	ATGACAAACA	ACAATTACAA	
01	CACCTTTTT	GCAGTCTATA	TGCAAATATT	TTAAAAAAAT	AGTATAAATC	
51	CGCCATATAA	AATGGTATAA	TCTTTCATCT	TTCATCTTTC	ATCTTTCATC	
01	TTTCATCTTT	CATCTTTCAT	CTTTCATCTT	TCATCTTTCA	TCTTTCATCT	
51	TTCATCTTTC	ATCTTTCATC	TTTCATCTTT	CACATGAAAT	GATGAACCGA	
01	GGGAAGGGAG	GGGAAGGGAG GGAGGGGCAA GAATGAAGAG GGAGCTGAAC GAACGCAAAT	GAATGAAGAG	GGAGCTGAAC	GAACGCAAAT	
51	GATAAAGTAA	TTTAATTGTT	CAACTAACCT	TAGGAGAAAA	TATGAACAAG	

FIG. 7B

TTGCCAAAGG	GGCGATATTT	GGTCAATCTG	AAAATGAAGC	GCCGCGCCTG	1551
TTACAGCATT	CAACCATTAC	ATAATAAACC	CATCAGCGAT	AAAAAATCAC	1501
CTCGCAGGGC	CATTTCTTTA	ATGGTGGCAG	ATTAGCGTAA	CGAGGGTGTG	1451
AAGTGAAAAA	ATTGGTGGCA	TGTAAATCTT	AAGACGGCAG	ACTGTCGGTA	1401
CGGTTTAATT	TTGTGAATCA	CTCGCTGAAA	AGATAAAGCG	AGCAAACCAA	1351
TTCACCTTCG	GGCGCGTAAT	AAAACATCAA	ATTTCTAACG	TACGCTAGAC	1301
TTACGGCTTC	ACTAATGGCT	AATTATTAAC	GTAAAGACGC	ATCACAATAG	1251
CCCAAATGGT	TTTTAATCAA	GGACAAGTCT	AGATTCTAAC	AAGGGATTTT	1201
TCCCAATTAA	TAACCAAATC	GTGTTACATC	GTATTCAACC	CAACTCCGCC	1151
AAGAAAACAA	CAGTTTTTAC	TGAAATGGTG	TCGACCAAAA	CAATTTAACA	1101
TAATTGGAAA	ACGCTATCAT	AACAGTGTTG	CATTATCCGC	GTAATAAAAC	1051
AAGAAAACAA	CAGTTTTAC	TGAAATGGTG	TCGACCAAAA	CAATTTAACA	1001
TAGCAAGCGG	CAATCTGTTT	ATCTATTCCA	TAGGTGTAAC	TTACTATCTT	951
TTCCGCTATG	TAAAGCCACT	CACTTAGCGT	GAAAGTGCGT	CTGCTCGCAT	901
AGCGAAAAAC	AGAAAAAGGC	ACCATTCCAC	CGGGGTTGTG	TGAATTGGCA	851
TTGCTGTGTC	AATGCTTTGG	CAAACGCCTG	TCAAATTCAG	ATATATCGTC	801

34/68

FIG.7C

ບ	Æ	Æ	E	Æ	3 ප	5/6 E	88 ບ	_{CD}	F	ບ	Æ	Æ	F	ניז	IJ
TCTTTCCGCC	AAAATCAGCA	ACATTAAAAA	AACTTACCT	TAGCAAAGA	AAAGAAAAA	CGGCAATATT	TTGTGGAGAC	AAAACAAAAG	AGACCCCCT	CCGGTGAAGC	ACCAATACA	AACGGCATC,	ACTCCCACT	ATTGATGGA	CGGATGGGT
GCAATATTGT	ATTTCCGCTC	CGATAAAGTC	TCAGGTAAAG AAGGGGGAGA AACTTACCTT	AGGTAAAAAC GGCATTCAAT TAGCAAAGAA	CAACCATCAA TGTATCAGGC AAAGAAAAG	CGTTAATTGA	ACCGGTGGTT	TGCAATTGTT	TTGAAGCCGA AGACCCCCTT	CCAACAGGCA	AACAACGCTA ACCAATACAA	CAATGAATAT	ATCGGAAGCA ACTCCCACTT	AGGCGTTCAG ATTGATGGAG	AATTTAACCA TTTATTCTGG CGGATGGGTT
GATAAAAGCG GCAATATTGT	TGGCGGTGTA	TGATTACAGG	TCAGGTAAAG	AGGTAAAAAC	CAACCATCAA	GGCGATATTG	TATCGCTAAA	TTGACAGCAA	GATGTAACAA	TGATGAATTC	GCGAACTCAA	TTATCTGAAA AACGCCTGGA CAATGAATAT AACGGCATCA	CTCAATCAAC	AGCGTGGCGG	
CTGCTGATTC TGTAAGCAAA	AAGCGGAAAT	GGCAAGCTGA	TATCGACCTT	GGCGGTGACG AGCGCGGCGA	AACCTCTTTA GAAAAAGGCT	TATTGTGTGG	GTAGTGGTGA	TATTTATCCA	AGTGGTTGCT AGACCCTGAT	CCGGTATAAA TGATGAATTC	AAAAAAATA	TTATCTGAAA	CCGTTAATAG	AGTAAAGGTC	TAAAGGCGGA
CTGCTGATTC	AAAGAGGTG AAGCGGAAAT	AGCTAAAGGC	CAGGTGCAGT	GGCGGTGACG	AACCTCTTTA	GCGGACGCGC	AACGCTCAAG	ATCGGGGCAT	AGTGGTTGCT	CGCAATAATA	AAGCGACCCT	CTATTTCAAA	AGAAAACTTA	AATTCTCCAT	ATATTACTTC
1651	1701	1751	1801	1851	1901	1951	2001	2051	2101	2151	2201	2251	2301	2351	2401

FIG. 7D

2451	GATGTTCATA		GCTTGATCAG	AAAATATTAC GCTTGATCAG GGTTTTTTAA ATATTACCGC	ATATTACCGC	
2501	CGCTTCCGTA	GCTTTTGAAG	GTGGAAATAA	GCTTTTGAAG GTGGAAATAA CAAAGCACGC GACGCGGCAA	GACGCGGCAA	
2551	ATGCTAAAAT	TGTCGCCCAG	GGCACTGTAA	CCATTACAGG AGAGGGAAAA	AGAGGGAAAA	
2601	GATTTCAGGG	CTAACAACGT	ATCTTTAAAC	ATCTTTAAAC GGAACGGGTA AAGGTCTGAA	AAGGTCTGAA	
2651	TATCATTTCA	TCAGTGAATA	ATTTAACCCA	CAATCTTAGT	GGCACAATTA	
2701	ACATATCTGG	GAATATAACA	ATTAACCAAA	CTACGAGAAA GAACACCTCG	GAACACCTCG	
2751	TATTGGCAAA	TATTGGCAAA CCAGCCATGA	TTCGCACTGG	TTCGCACTGG AACGTCAGTG	CTCTTAATCT 9	
2801	AGAGACAGGC	AGAGACAGGC GCAAATTTTA	CCTTTATTAA	ATACATTTCA	AGCAATAGCA ®	
2851	AAGGCTTAAC	AACACAGTAT	AGAAGCTCTG	CAGGGGTGAA	TTTTAACGGC	
2901	GTAAATGGCA	ACATGTCATT	CAATCTCAAA GAAGGAGCGA	GAAGGAGCGA	AAGTTAATTT	
2951	CAAATTAAAA	CCAAACGAGA	ACATGAACAC AAGCAAACCT	AAGCAAACCT	TTACCAATTC	
3001	GGTTTTTAGC	CAATATCACA	GGTTTTTAGC CAATATCACA GCCACTGGTG GGGGCTCTGT	GGGGCTCTGT	$ ext{TTTTTGAT}$	
3051	ATATATGCCA	ACCATTCTGG	ACCATTCTGG CAGAGGGGCT	GAGTTAAAAA	TGAGTGAAAT	
3101	TAATATCTCT	AACGGCGCTA	ATTTTACCTT	AAATTCCCAT	GTTCGCGGCG	
3151	ATGACGCTTT	TAAAATCAAC	TAAAATCAAC AAAGACTTAA	CCATAAATGC AACCAATTCA	AACCAATTCA	
3201	AATTTCAGCC	TCAGACAGAC	TCAGACAGAC GAAAGATGAT	TTTTATGACG GGTACGCACG	GGTACGCACG	

FIG. 7E

						3	7/6	88							
GGTAATGTCA	TATTACTATC	CTAATCAGCA	GTTAATGGGA	TTAAAGGCAA TCTCACTATT	TAAATATCAC	ACACAAGGAG	CATTACCACT	TAATCAACAA	GAAATCCAAA	TTCTTCCGAT	TTGATGGAGA	ATTAAAACCA	CAATAAAGCA	ACAGTAATGA	AATGTTAAAG
CAATIGCCATIC AATITCAACCT ACAACATATC CATITCTGGGC GGTAATGTCA	TTACGGGGAA	AATAACGCCC	CAGCTTGCTC	TTAAAGGCAA	AGAGATACCC	AATTAATATA ACACAAGGAG	ACCAATGATG GTGATTTAAAA CATTACCACT	GGCGGAGATA	TAATGATGCT GAAATCCAAA	ACCTCACGAT	AAAAAGGGTA	TCAGATGCGA CAAGTAATGC CAACCTAACT	TTTCAGGTTT	CCAAAGATGG TAGAGATTTA ACTATTGGCA ACAGTAATGA	GGTGCCGAAG CCAAAACAGT AACTTTTAAC AATGTTAAAG
ACAACATATC	ACAAAACTCA AGCAGCAGCA	CAAATGTTAC GCTAGAAGCC AATAACGCCC	TAAAACTTGG	AATGCAGATA	AGGAAAGACT	GCACTGCCGA	ACCAATGATG	GCAACCAAAG AAGCATCATC	TTAAATATTA CAGACAGTAA	TATCTCGCAA AAAGAAGGCA ACCTCACGAT	TCACCAAACA GATAACAATC AAAAAGGGTA	CAAGTAATGC	GACCTAAGTA	TAGAGATTTA	CCAAAACAGT
AATTCAACCT	ACAAAACTCA	CAAATGTTAC	GATAGAGTTA	AACTGGCGAA AATGCAGATA	CCACTTTTAA AGGAAAGACT	ACCAATAATG	TGGCAATGTT	GCAACCAAAG	TTAAATATTA	TATCTCGCAA	TCACCAAACA	TCAGATGCGA	ATTGACAGAA GACCTAAGTA	CCAAAGATGG	GGTGCCGAAG
CAATGCCATC	CCCTTGGTGG	GAGAAAGCAG	AAACATAAGG	GTTTAAGTTT	TCAGAAAGCG	CGGCAATTTT	TGGTAAAACT	CACGCTAAAC	AAAAGGAAGC	TTGGCGGCAA	AAAATTAATA	GGACTCTAGT	AAGAATTGAA	GAGATTACAG	CGGTAACAGC
1221	3301	3351	3401	3451	3501	3551	3601	3651	3701	3751	3801	3851	3901	3951	1001

FIG.7F

AC		TT	CA	AC	GA		8/6 99		999	CA	5T.C	5 5 2	'AA	₹CG	\TC	.GG
	ACAACGAT	GATATTAC	CACCACAGCA	CAACCAAAAC	GTTAGCGCGA	GAAATCGG	CAATTTCCGG	GTTGGGAATG	CGCAACAGGG	CTAAGGGTCA	ATTAATGCTG	GGCAGGCTCG	AAGATGCI	GCAGTCA	TGTGAATATC	CGAAAGA
	AGCAATAGCG	AGTAAACAAA	AAAAGGTTAC	GCAAGTATTA	TTTCCGGTAA CACGGTAAGT	AAATTGAAGC	ATTGGCGGTA	CGATTTAACA	CAACCTTAAC	ATCACTTCAA	CGCAGGAAGC	TAACCACCGT	ATTAACGCAA AAGATGCTAA	GTGATAGTAC AGAAGTGAAT GCAGTCAACG	CCTCAAGCAG	AAATGGGTTA AATATCATTT CGAAAGATGG
	GCAGCAATGG CGGACGTGAA AGCAATAGCG ACAACGATAC	ATTACTGCAA AAAATGTAGA AGTAAACAAA GATATTACTT	ACCGCGTCGG	AAATGGCAAA GCAAGTATTA	TTTCCGGTAA	AACCACTAAA TCCGGCTCAA AAATTGAAGC GAAATCGGGT	AACAGGTACA	CAAACGCTGG	TAATGCGACA GAAGGAGCTG	CTACTGAAGC CGGTTCTAGC	ATGGTAGCAT	ACAGGCACCT	CACCTTGGTT		ACTGCGGCAA	
	GCAGCAATGG	ATTACTGCAA	AGTAAATATC	TTAACGCAAC	AGCGGTACGA	AACCACTAAA	TAACAAGTGC	AATGTTACGG	TAATGCGACA	CTACTGAAGC	TTGGCTCAGA	ATTAAATACT	GATATTAAAG CAACCAGCGG	GATGCATCAG	TGGTAGTGTG	TAAACACAGT
	AAAACATCTA	CGGCTTAACT	CTCTCAAAAC	GGCTCGACCA	AGGTGATATC	CTGGTGATTT	GAGGCTAATG	TAATACGGTA	GCGCAGAAAT	AATACCTTGA	GGTAGACCTC	CTAATGTGAC	GATATTAAAG	GCTAAATGGT	ACTGGGGATT	ACTGGGGATT
4	1101	1151	1201	1251	1301	1351	4401	4451	4501	4551	4601	4651	4701	4751	4801	4851

FIG. 7G

4901	TAGAAACACT	GTGCGCTTAA	GAGGCAAGGA	TAGAAACACT GTGCGCTTAA GAGGCAAGGA AATTGAGGTG AAATATATCC	AAATATATCC
4951	AGCCAGGTGT	AGCAAGTGTA	GAAGAAGTAA	TTGAAGCGAA	ACGCGTCCTT
5001	GAAAAAGTAA	AAGATTTATC	TGATGAAGAA	AGAGAAACAT	TAGCTAAACT
5051	TGGTGTAAGT	GCTGTACGTT	TTGTTGAGCC	TTGTTGAGCC AAATAATACA	ATTACAGTCA
5101	ATACACAAAA	TGAATTTACA	ACCAGACCGT	CAAGTCAAGT	GATAATTTCT
5151	GAAGGTAAGG	CGTGTTTCTC AAGTGGTAAT	AAGTGGTAAT	GGCGCACGAG	TATGTACCAA
5201	TGTTGCTGAC	GATGGACAGC	CGTAGTCAGT	AATTGACAAG	GTAGATTTCA &
5251	TCCTGCAATG	AAGTCATTTT	ATTTCGTAT	TATTTACTGT	GTGGGTTAAA 9
5301	GTTCAGTACG	GTTCAGTACG GGCTTTACCC	ATCTTGTAAA AAATTACGGA	AAATTACGGA	GAATACAATA
5351	AAGTATTTT	AACAGGTTAT	TATTATGAAA	AATATAAAA	GCAGATTAAA
5401	ACTCAGTGCA	ATATCAGTAT	TGCTTGGCCT	GGCTTCTTCA	TCATTGTATG
5451	CAGAAGAAGC	CAGAAGAAGC GTTTTTAGTA AAAGGCTTTC	AAAGGCTTTC	AGTTATCTGG	TGCACTTGAA
5501	ACTTTAAGTG	AAGACGCCCA	ACTGTCTGTA	GCAAAATCTT	TATCTAAATA
5551	CCAAGGCTCG	CAAACTTTAA	CAAACCTAAA	AACAGCACAG	CTTGAATTAC
5601	AGGCTGTGCT	AGATAAGATT	GAGCCAAATA AATTTGATGT	AATTTGATGT	GATATTGCCG
5651	CAACAAACCA	TTACGGATGG	CAATATCATG	TTTGAGCTAG	TCTCGAAATC

FIG. 7H

GATTTATTCT	TAGCAGTATA	TACAAGATAT	CAATTTACTC	ATTATCAGGT	6601
TTAGCAGTCA	GGTTGGCATT	GTTTGCTCAA	TGAGTCAAGA	AGTTTAGGGT	6551
TAGCACAGCC	GCTATCACAT	TTTAATCGCA	TGGCGAAACA	TGGAGCGCAT	6501
TCTTTTGGAA	ATTACCAGGC	ACGCGAGTAA	CATCATTATT	TGATTTAACT	6451
TCTTTAATAT	CCTAAAACAA	CCAATTTACC	ATGGACATAT	GCAGGCATTG	6401
AGGCGTAAGT	TTGCAGTATC	AAGAAAAAT	GGGTGAAACG	TAAATCGCTT	6351
ACCTCCGCGT	TATTAATCAA	ACTACCGCCA	TTAGGCTACA	TAAATTAAT	6301
AAGACCAATT	CTTGGCATGG	AACATTTAAC	ATTATCTCCC	AAATGGAGTT	6251
TGCGAATCTG	AATCTATCTC	TCAAAAGGTC	TCGTAAATTA	GTGCGATTAA	6201
GGCTTACCAA	TGATATCGAC	CTGATTCTAA	ATGAGTTATG	TTATACCAGT	6151
GATGTGTTAA	TGGTCATGAT	CCAATTTAAC	TTTGTTAATG	AAGCTTGGGT	6001
ACCAACGTGT	GAGTTTAACT	CGGCGCGAGA	ATGATAATTT	TTTATTTCTT	5951
AACGCGTAGC	CTTTTGGTAA	GGCTTCTCGC	GATAATTGCG	CCTCTAATTT	5901
AAAAACAAAA	ACTAAACCCT	TACATTACGA	GTTACCCGTG	CCCGCTTAAG	5851
CAAAAGAAAA	TTTAATATGG	TTTGCGTGAA	AGTGGTTCGA	GATGGTCGTC	5801
AGTGTATGAA	AACAAGGAAA	CCATCTTTGA	TCGTAGCCTG	AAAATATCGC	5751
TATAGTGAAG	GAGCCAGGGT	TTTATAAGGC	AGCCAAGTTT	AGCCGCAGAA	5701

40/68

FIG. 7I

	GCTTTACTTG ACAACCACGC AAGATTATGA GACGCTAATT	AATTTGCAAA ACGCTCCTCA AGATGCGACC GCTTTACTTG CAACAATCAA ACTCCCTGC GAATATTTAA ACAACCACGC TATTACGCTT GGAACAACAT ATCGCAAAAA AAGATTATGA CGTGAATTAA TGGTGATTCT GGAAAAAATG GACGCTAATT	AATTTGCAAA ACGCTCCTCA AGATGCGACC CAACAATCAA ACTCCCCTGC GAATATTTAA TATTACGCTT GGAACAACAT ATCGCAAAAAA CGTGAATTAA TGGTGATTCT GGAAAAAATG	AATTTGCAAA CAACAATCAA TATTACGCTT CGTGAATTAA	GACAAAAGAA CGGAATTAAG AAGCCCAGCC
	ATTTATATGA TTAATAATAT	TAAAAAAACA TACAAGGGAT	TCAAGCAAGC CAAGTAATAC TATACTCCAT GCCATGGCGA	TCAAGCAAGC TATACTCCAT	CCAAGCAAAC TAAACTAAAG
	GCTAAGCAAA	CTTATATATC AAATAAACAA GCTAAGCTGA	AAATAAACAA	CTTATATATC	TGTTTTACC
	TAGGCAACCC	TTACAGTCTA	ACCCGCCAAT	TATATGCTTT	AGTTTATAAC
68	TCCGCCTACC	TGGTAAGCGT	TTTAATCAAC	AACCCTGAAA	TTCAGTTTCT
41/	GAGATTAACA	ACGCACAAGC TCACCTACAA CCTTCTGGGG GAGATTAACA	TCACCTACAA	ACGCACAAGC	GCAACAAAA
	AATTTGAATG	CAATAGTGAC	TTGCAAATGC	GCTCGTCGCT	TGCTTTTGTT
	TAAGCCTAGA	TAGGCATTAA AACCTCTCCT ACACAAACT	AACCTCTCCT	TAGGCATTAA	TCTGCGGGTT
	CACGGTATCC	AAGATATGCA	ACTTACGGCG	AAATGCTAAA	ATAATAGCGA
	CAGTTCCGTT	TGATGCAGGT	ATGCGTTTTA	ATCAGCCCTT	CCGCTTCCAA
	CAAAATACAC	TTAAGTATGC CAAAATACAC	GCGTAATGAA	GTCTTGTATG GCGTAATGAA	GGTGAGCGCG
	CGGTGCAAGT	CTGTAACAGG TACTTATGGC GTCAGAGGCT TTAAATACGG CGGTGCAAGT	GTCAGAGGCT	TACTTATGGC	AGG

FIG. 7J

7451	TTGGAGGCGT		GAATTTGACG	TCACGATATT GAATTTGACG CACCCGCTCA GCTGGCATAT	GCTGGCATAT
7501	CTACCCGAAA	AATTACTAAT	TTATTTGCC	ACTCGTCTCG	CTAATGCAAT
7551	TACAACACTC	TTTCCGACC	CCGAATTGGC	AATTTCTGAA	GAAGGGGCGT
7601	TAAAGATGAT	TAGCCTGCAA	CGCTGGTTGA	CGCTGATTTT	TGCCTCTTCC
7651	CCCTACGTTA	ACGCAGACCA	TATTCTCAAT	AAATATAATA	TCAACCCAGA
7701	TTCCGAAGGT	TICCGAAGGI GGCTITCAIT	TAGCAACAGA	CAACTCTTCT	ATTGCTAAAT
7751	ТСТСТАТТТТ		TTACTTACCC GAATCCAATG	TCAATATGAG	TTTAGATGCG &
7801	TTATGGGCAG	GGAATCAACA	ACTTTGTGCT	TCATTGTGTT	TTGCGTTGCA
7851	GTCTTCACGT	TTTATTGGTA	CCGCATCTGC	GTTTCATAAA	AGAGCGGTGG
7901	TTTTACAGTG	GTTTCCTAAA	TTTTACAGTG GTTTCCTAAA AAACTCGCCG AAATTGCTAA	AAATTGCTAA	TTTAGATGAA
7951	TTGCCTGCAA	ATATCCTTCA	TGATGTATAT	ATGCACTGCA	GTTATGATTT
8001	AGCAAAAAAC	AGCAAAAAC AAGCACGATG	TTAAGCGTCC	ATTAAACGAA	CTTGTCCGCA
8051	AGCATATCCT	CACGCAAGGA	TGGCAAGACC	GCTACCTTTA	CACCTTAGGT
8101	AAAAAGGACG	GCAAACCTGT	GATGATGGTA	CTGCTTGAAC	ATTTTAATTC
8151	GGGACATTCG	ATTTATCGTA	CACATTCAAC	TTCAATGATT	GCTGCTCGAG
8201	AAAAATTCTA	TTTAGTCGGC	TTAGGCCATG	AGGGCGTTGA	TAAAATAGGT

FIG. 7K

ATAGAAAACA	TCGTTACATC	TTGAACTCCG	CAAGAACGCC	AGAAAACCAT	9051
TGCGTCTAGC	GAATGTGCTT	AACATATATT	ACACACGAGA	CTGATAGCCG	9001
ACCAGAATGG	GCTTAGGACT	CTGTTTAAAC	TGATGAAGGT	ATGAACATAT	8951
GATGAAGTAC	CAAAACGGGG	TTGGTGTATG	TTAGGTTTAG	TATGGTTACA	8901
GCATAATTGA	AATACTAACG	TCCTTTCGGT	TAAATCCGTT	GATATGCTAC	8851
GCGTGATTGC	TGGCAATATT	CACGATTATC	CGCACCTTAT	CACATCCCCA	3801
GATGCCACTG	TTTAGGTGAC	TCGAAAGCTA	AAATGGTTTA	CCCTTATGTC	8751
GCTTGACACA	CAATCAACAG	CGCACTTGGA	ATTTTCATTT	GTCAAAATAC	8701
TAAAGCTAAA	AAATCAGAGA	ACATTGCAAG	ATTTTGCTA	TAAACCCTGA	8651
ACAATGAAAT	TGCCGCTACC	ATATCGGTAT	GAAGTAGTCA	GGAAAACCCT	8601
ATGTACTCAG	AAAGTGGATT	CGCCCCACAA	CTTCTGCACT	CCTTATGTAC	8551
AGATGCCCTA	GCTTACCCAA	ACCCTTTTAC	TTTCAGCGAA	GTGAAGATTG	3501
TATGTGGGCA	AGAAGATGAT	ATGTCATCGT	TTTATTGATT	GCATTCTGAA	8451
CTGCCACTAC	CTGGGTCATC	AGCTGTAGCC	CCCCTATTCA	ACTCGGCTTG	3401
TGTGAGCAAC	CCACGATTTT	ATGGATATTA	AAGCATTGGC	TCTATATGCC	3351
CCCGCAGTGT	AACTTTCCAA	AACAGTGCGA	TTTATCCGTA	GAGACTGTTT	3301
ATATAATGGA	AGTAGCAATA	CTTTGAAATC	TTGACGAGTT	CGAGAAGTGT	3251

44/68

FIG. 7L

		AAA	AA TACCCACAAA AAA	AAATCACCAA	9401
TTGCACCACA	TAGCCAAAAC TGGCAGAAAT TAAAGGCTAA AATCACCAAA TTGCACCACA	TAAAGGCTAA	TGGCAGAAAT	TAGCCAAAAC	9351
GCGGAGATTT	CAGTTTATCA GCCTCCCGCC ATAAAACTCC GCCTTTCATG GCGGAGATTT	ATAAAACTCC	CCTCCCGCC	CAGTTTATCA	9301
CGCACGCTGA	CTCTCAAAAA TCAACCGCAC TTTTATCTTT ATAACGATCC CGCACGCTGA	TTTTATCTTT	TCAACCGCAC	CTCTCAAAAA	9251
TTTTAAAAAC	ACGGTTTTTT AAAGTAAAAG TGCGGTTAAT TTTCAAAGCG TTTTAAAAAC	TGCGGTTAAT	AAAGTAAAAG	ACGGTTTTTT	9201
GTAAAAATA	CTGCTTAAGA AAACAAATGA ATGGAAGCGG AAGCACTTGA GTAAAAATA	ATGGAAGCGG	AAACAAATGA	CTGCTTAAGA	9151
GGGCAAAATA	CA AAAGCTTTTT ACAGGCGACC CTCGTCCATT GGGCAAATA	ACAGGCGACC	AAAGCTTTTT	ACGGCTTACA	9101

FIG.8A

GAAGGTCAGG	TCTCCACAGT	CCCACTTAAT	GAAAGAGGCT	TATCAGTATA	751
TTAATAGCTC	AAACTTACCG	GGCAAGGAGA	TGAACATAAC	GCCCACGTGG	701
TCTGAAAAGT	TTTCAAATCT	AATACAACCA	AACACTAACC	CCTCCTTGAC	651
AAAAATAACA	GACCCTAAAA	TGATAAAAGT	TCGGCAGAGG	GAATTCCCAC	601
GTGCCGATAG	GTCGAGCTGG	CGCTTCTCGC	AAGCTCCTTC	GTGACTATTG	551
CCCAGAGAAT	GGCTACTAGA	ACAAAAGAAT	AATTGTTAAA	ATGATAACGC	501
TTATCCATTG	GGGCCATTAC	TGGAGACGTC	GGTGGTTTTG	CGCTAAAACT	451
GTAAAGATAT	AATGCCCAAG	CGGCAATATT	CGTTAATTGA	GGCGATATTG	401
TATTGTATGG	GTGGGGGGG	AAAGAAAAAG	TGTGTCAGGT	CAACAATTAA	351
GAAAAAGGCT	AACCACTTTA	TAGCAAAGAA	GGCATTCAAT	AGGTAAAAAC	301
AGCGTGGCGA	GGCGGTGACG	AACTTATCTT	AAGGGGGAGA	TCGGGTAAAG	251
TATCGACCTT	CGGGTGCAGT	ACATTGAAAA	CGATAAAGTT	TGATTACAGG	201
GGTAAGTTGA	AGCCAAAGGT	AAAATCAGCA	ATTTCCGCTC	TGGCGGTGTA	151
AAGCGGAAAT	AAAGAAGGTG	TCTCTCTGCC	GTAACATTGT	GATAAAAGTG	101
TGTAAGCAAA	CTGCCGACTC	GGTAAACTTT	TCGCAATAAA	CTGCCACTAT	51
AATGTCCGCG	TGGTAACATT	TTGCCAAAGG	GGCGATATTT	GATCAATCTG	\vdash

FIG. 8B

801 851 901	GCGGTCAAGG TTAACCATTT TGGTAGCGGC		GATAAAGATA ATGGGTTGAT TCACAACTAA AACCTAACCA	TGTTCAGATT GATAAAGATA TTACTTCTGA AGGCGGAAAT ATTCTGGCGG ATGGGTTGAT GTTCATAAAA ATATTACGCT TTTTTAAACA TCACAACTAA AGAAGGAGAT ATCGCCTTCG TGGACGGAAC AACCTAACCA TTACAGCCCA AGGGACCATC	AGGCGGAAAT ATATTACGCT ATCGCCTTCG AGGGACCATC	
1001	ACCTCAGGTA CCTTGGCGGA	ACCTCAGGTA ATAGTAACGG CCTTGGCGGA AAGCTGAGCT	CTTTAGATTT TTACTGACAG	CTTTAGATTT AACAACGTCT TTACTGACAG CAGAGAGGAC	CTCTAAACAG AGAGGTAGAA	
1101	GAACTAAGGG	TAATATCTCA	AACAAATTTG		AAACATTTCC	
1151	GGAACTGTAG		GAAAGCACCC	ATATCTCAAT GAAAGCACCC AAAGTCAGCT	GGTTTTACAG 00 GTTACAGG 00	
1251	GTAGTAAATT		ATTGACAGCA	CAGGAAGTGG	CTCAACAGGT	
1301	CCAAGCATAC	CCAAGCATAC GCAATGCAGA ATTAAATGGC	ATTAAATGGC	ATAACATTTA ATAAAGCCAC	ATAAAGCCAC	
1351	TTTTAATATC	TTTTAATATC GCACAAGGCT CAACAGCTAA	CAACAGCTAA	CTTTAGCATC AAGGCATCAA	AAGGCATCAA	
1401	TAATGCCCTT	TAAGAGTAAC	GCTAACTACG	CATTATTAA	TGAAGATATT	
1451	TCAGTCTCAG	TCAGTCTCAG GGGGGGTAG	CGTTAATTTC	AAACTTAACG	CCTCATCTAG	
1501	CAACATACAA	CAACATACAA ACCCCTGGCG	TAATTATAAA	ATCTCAAAAC	TTTAATGTCT	
1551	CAGGAGGGTC	AACTTTAAAT	CTCAAGGCTG	CTCAAGGCTG AAGGTTCAAC AGAAACCGCT	AGAAACCGCT	
1601	TTTTCAATAG	AAAATGATTT		AAACTTAAAC GCCACCGGTG GCAATATAAC	GCAATATAAC	

FIG.8C

GCTAAAAAAG	TAATGCTGAT	CTAGCGGTGG	ATTGGCAATG	TGATTTAACT	2401
AAATGGCAG	ATTACAGCTA	TAAAGCAGAA	CAGGCTTTAA	CTAAATATTT	2351
GGCAGGAGAC	AGTTAAAATT	CAAACCAAAG	CCTAACTATT	AAAATGCTAA	2301
AGTGAGGCAG	TTCTGATTCA	AAGGGGGGCG	GCAGGCGTTG	AACAATCAAA	2251
CCAATCAGAT	GTAAATATTA	TTCTGATAAA	TCACAATTTC	GAAGGCAATC	2201
CTCACAAAAA	GCGGCAATAT	ATCCAAATTG	CGACGCTGAA	ATAAAAAAG	2151
AATATTATTG	AGGTGATTTG	CCAACAAATC	GGCAATATAT	CATTATAAAA	2101
CTTACCGCAC	TCTGATACCA	TACCACCAAC	GCTTAAATAT	AACACCAGTA	2051
AGATATCAAT	CTAAATTTAA	AGAGGAGGG	TTCCATTGCC	CTTCAAACAT	2001
AACAATGGCG	CTCATTTGAC	ATGTAGCCGG	TACACTTTTA	TATAACAAAT	1951
ACCTTCAAGC	AAAGGCGCTA	TACTGTTTCA	CCGGAAATCT	ATCAATATAG	1901
CGGCTCCA'LT	TTACCACTGC	AATGGCAACC	TGTTATTAAT	TAGCAGGAAA	1851
CCTTTAAATA	AAACAAATCG	ATTTTGCCGA	CGTGGTGCGA	CGCTACTCTT	1801
AAAACACTAA	ACCATCAATA	CAGAAATCAA AGGCAATGTT	CAGAAATCAA	AAAGCCACAA	1751
CGGCTCTCAA	ATATCACCTT	AAAGGGGGTA	CATAACTTT	CCAAAAAAA	1701
GGTGTCGCAG	CGTCAACAAA	CCGATTCACG	GTCGAGGGTA	AATCAGACAA GTCGAGGGTA	1651

FIG.8D

ATAGTGCAAA	ACTATTGGAA	TGGTGATTTA	CAGCAAGCAC	GTAAATGTTA	3251
TGGTAATACA	GTACAATTTC	GATATTGAAG	CCAATCAGGC	CCACCTCAAG	3201
AATAGTGTAA	TAATGGGACT	GTTCTACAAT	TCCACAGTAG	TAAATTAACC	3151
CGGATAGCGG	ACTATTACTG	TAACACTGTT	ATATTTCAGG	GCTGTAGGTA	3101
AGCAACTCTT	TTGCAACTGG	GTAACACTTG	CICCGGCICI	TTGAATCCAG	3051
AACGGTAAAG	AGGTGATATC	CAACCAAAAC	GCAAATATTA	AACAGGCAAT	3001
TTAGTGCGAC	GGCTCAACCA	AACTACAGCA	GAGCCTTGAC	GCGGATGCAG	2951
AACAGTAACA	GTCAAGATGT	AATATCACTG	TAAGGTAAGT	GCAATACACT	2901
ACAGCGAGCG	TGTAAATATT	CTTCCGGTAA	ATTGAATCAA	TAAAGGTGGA	2851
CAGGGGATAT.	AGTACAAAAA	AGTAAACATT	CCAGCGGCAC	ATTAATGCAA	2801
GAATGCTGTC	TTACCACAGA	GAAAATCTTG	GACAGCAACA	ATGTAACAGT	2751
ACCTCGCAAA	AGGCAACATT	GTACAATTAA	GCTCAAAATG	GGAAGTAACT	2701
CAGGCAGCGT	AATGCAACCA	CACAACTATC	CCAAAGAAGG	AATGTAACAA	2651
CGCAGCAGGA	ATATCTCTGC	AAGACAATAA	TACCTCCCAC	ACAATAACGT	2601
GTAACGGTAA	CGCAAAAGAT	TAACCATTTC	AGCACCGGTT	TAATGATAAC	2551
GCAATGCTGG	AATGGTAGTA	GAAAACGTCT	ATAGCGAAGT	GTAACACTAA	2501
CGGTCACAAT	TCTCGACTGA	GATTCAAAAA	CAAGGTTAAA	TGACTTTTGA	2451

FIG.8E

AAAGTTCAGT	TGTGTGGGTT	TATTATTAC	TTTATTTCG	ATGAAGTCAT	4051
TCATCCTGCA	AAGGTAGATT	AGTAATTGAC	AGCAGTAGTC	GACGATGGAC	4001
CAATGTTGCT	GAGTATGTAC	AATGGCGCAC	CTCAAGTGGT	AGGCGTGTTT	3951
TCTGAAGGTA	AGTGACAATT	CATCAAGTCA	ACAACCAAAC	AAACGAGTTT	3901
TTAATACACA	GCCATTACGG	GCCAAATAAT	GTTTCGTTGA	AGTGCTGTAC	3851
ACTTGGTGTA	CACTAGCCAA	GAAAGAGAAA	ATCTGATGAA	TAAAAGATTT	3801
CTTGAGAAGG	GAAACGCGTC	TAATTGAAGC	GTAGAAGAGG	TGTAGCAAGC	3751
TCCAACCAGG	GTGAAATATA	GGAAATTGAT	TAAGAGGCAA	ACTGTGCGCT	3701
TGGTAGAAAC	TTTCGGAAAA	TTAAATATCA	AATAAATGGG	ATTTAAACAC	3651
ATCACCGGGG	CAGCGTGAAT	AAACCTCAAG	GTGACTGCGA	CTCTGGTAAC	3601
ACGCAAGTGG	AATGCAACTA	CACAGTAGTA	CAGGTGACCG	GGTGCTGCAT	3551
CAAATTAGAT	CAAAAGATGC	ACAATCAATG	TGGTACCTTA	ACGCAACCAG	3501
TCAAAGATTA	TACAGGGGAT	CTTTAACTAC	ACCACAGGCA	GACGTTAAAT	3451
CTGCTAATGT	AACATTAATG	TATCGCAGGA	AGGATAGCAG	CTTACAGCCA	3401
TCAGACAACT	CAAGCAATGG	AGCATTACCT	TAACCACCCA AACAGGCTCT	TAACCACCCA	3351
TCAGGCAAAT	AACTGCTGAA	CTGCAACCTT	AAAAATGGAG	AGTTGAAGCG	3301

50/68

FIG. 8F

	FUTUTU	TTCAGTTATC	AGCGTTTTTA GTAAAAGGCT TTCAGTTATC TGGCGCG	AGCGTTTTTA	4251
ATGCAGAAGA	TCATCGACGT	CTTGGCTTCT	TATTGCTTGG CTTGGCTTCT	GCAATATCAA	4201
AAAACTCAGT	TATTATTATG AAAAACATAA AAAGCAGATT AAAACTCAGT	AAAAACATAA	TATTATTATG	TTTAACAGGT	4151
ATAAAGTATT	ACGGGCTTTA CCCACCTTGT AAAAATTAC GAAAAATACA ATAAAGTATT	AAAAAATTAC	CCCACCTTGT	ACGGGCTTTA	4101

FIG.9A

	AAAACAGGTG	CAGGTGATAA AGTCACATTA AAAACAGGTG	CAGGTGATAA	TTGATGATTA	AGGTGGTAAG	751
	AGCAAGCCAA	TGTAATTTCC GCTCAAAATC	TGTAATTTCC	AAATTGGCGG	GGTGAAGCGG	701
	TGCCAAAGAA	TTGTTCTCTC	AGTGGTAACA	CAAAGATAAA	ACTCTGTAAG	651
	CTTTCTGCCG	TAAAGGTAAA	CTATTCGCAA	CGCGCTGCCA	CATTAATGTC	601
	AAGGTGGTAA	ATTTTTGCCA AAGGTGGTAA	TCTGGGCGAT	AAGCGATCAA	CCTGAAAACG	551
	CATTGCTGCA	TCACTTACAG	AATCCAACCA	CGATATAATA	TCACCATCAG	501
	GGGCAAAAAA	TTTACTTGCA	GTAGTATTTC	GTAAATGGCG	CGTGATTAGC	451
	AAAACGAGGG	GGCAAAGTGA	CCTTATTGGT	GTAGCGTAAA	GGTAAAGACG	401
8	AATTACCGTT	ATCACGGTTT	GAAATCGTGA	AGCACTCGCT	CCAAGGATAA	3.51
31/6	CTTGAGCAAA /	TAATTTCACC	TCAAGGCGCG	AACGAAAACA	AGACATTTCT	301
5	CTTCTACGCT	GGCTTTACTG	TAACACTAAT	ACGCAATTAT	ATAGGTAAAG	251
	TGGTATCACA	TCAACCCAAA	GTCTTTTAA	TAACGGACAA	TTTTAGATTC	201
	TTAAAAGGGA	AATCTCCCAA	CATCTGACCA	AACCGTGTTA	TGCCGTTTTC	151
	GCAGCAACTC	TTACAAGAAA	GGAGCAGTTT	AAAATGAAAT	AACATTGACC	101
	GAAACAATTT	TCATCAATTG	CCGTAATAGC GTCAATGCTA	CCGTAATAGC	AAACCACTAT	51
	GACGGCAATA	GTCGTACACG GTACAGCAAC CATGCAAGTA GACGGCAATA	GTACAGCAAC	GTCGTACACG	GGGAATGAGC	\vdash

FIG.9B

TTGCAAATCA	TTAAAGTTTA	GGGCAAGGGT	TTAACGGGAC	AATGTATCTA	1601
TAGATTCAAT	ATAAACAATT	AATAAAGATG	GATAACCGTC	CACAAGGGAC	1551
CAAATTACCG	AACAGATGCT	CACGTAACGC	GGCGATAAAG	TGAGAGAGAG	1501
CTGTAGCTTT	GCTGGGGATT	GAATATTGTC	CGGGTTTTTT	ACGCTTGGTA	1451
TAAAAACATC	TTGATGTTCA	GGCTCTTGGG	CATTAAAGCA	GTAATTTAAC	1401
AACGAAAATG	TATTACCTCA	TTAACGGTGA	GGAGTTAAAA	TAAACGAGAT	1351
CACTTCACAC	GGCAGTTTAA	CTTATCTAAT	GCTCCATCAA	TATGTTAATA	1301
TAATAGAATT	TCACTGCTAA	TATGTTAATA	AAGAGGTTCT	AAATCCTAAG	1251
ACTCTTGAGC	AACAAACTCA	AACCTACATT	AGTATTTCTA	TAAAGGTAAT	1201
AAGAGTCACC	GATGGGACTA	TACAACAGGA	ACCAAGGATA	ACCGGCGAAA	1151
ACGCAATAAT	TTACATCTGG	ATTGAAACTC	TGATGTGTCC	TAGACCCAGA	1101
GAGTGGTTAT	TGACGCTAAA	ATGTGATTGT	ATTGGTGATG	TGACTTATCC	1051
CATCAGGACA	TTTGTGGAAA	AACTGGCGGC	ATATTGCTAA	CAAGGTAGCG	1001
CATTAATGCT	TTAATGGTAA	ATTGCATTAA	ATGGGGCGAT	GCGCTATTGT	951
AAAGGCGGGC	AGGCAAAGAA	TTAATGTATC	GGCTCGACAA	TTTAGAAAAA	901
AGAAAACCTC	CAATTAGCGA	AAATGGTATT	GCGAAGGTAA	GATGAGCGTG	851
TCTTGGCGGT	GAGAGACTTA	AAAGAAGGGG	CCTTTCAGGT	CAGTTATCGA	801

WO 94/21290 PCT/US94/02550

53/68

FIG.9C

GAGGGGAATT	TATATCTGTT	CTCTTGGCAA	AGAACTCTAA	CTTGAAGAAA	2401
GCAACACAGG	ACCAGCAACA	ACAAGCTGAC	ATGTTACATT	AATAAAGCAA	2351
CAATATCACC	CGGGCAATAT	AGTAGCATTA	AAATTCAAGC	TAGGTGGGGA	2301
AATGTCACTC	TCTTGGCGGC	ATCTAACCAT	TCAAGTCATA	CGCCATTAAC	2251
ACAGCAAACA	TATAATGAAT	AGATTCTTTT	AGCAAACGAA	TTTAGTCTTA	2201
TGGCTCGAAT	TAAATGCAAC	GACTTAACTA	AATCAAAAAA	ATGCTTTTGA	2151
CGCAATAGTA	ATCCCATAAT	TTTCCATAAC	GGGCTTGACT	CATTACCGGC	2101
ATTCAATTAA	ATAAACATGG	AGCTGCCGGC	TTACCTCTAG	CACGCCAATC	2051
GTTTGACATA	GCTCTGTGAT	AACAGTGATA	AGCTACCGGT	CCAACATTAC	2001
ACTTTTAACG	ATTACCTATT	CAAAAAAAGA	GCTACAGACC	ACCAAACGCC	1951
TTAAATTAAA	AAAGCCTTAT	AGCTAACGCA	TCAACATCGG	AAAACAAACT	1901
CATCGGAGGC	ATTTTAACGG	GCAGGCGTAC	TAGAAGTTTT	GGTCATCACG	1851
CAAGATTTGA	CTCAAATTCC	TTGATAGCGG	ATAAAATTCG	ATTTACCTTT	1801
CGGTGCAAAA	ACTTTGAATA	TTCTTCTT	ACTGGAATGT	AAAGACTCTT	1751
GAATGCATCA	TTAAATACTG	AAAAAAGATG	CCAAACCACG	TAACAATTAA	1701
TCTGGAATAG	AATTAACATA	TTGATGGCGA	ACTCATAAAT	AAATAATTTC	1651

FIG.9D

ATGGTACAAT	ACTGCTCAAA	CGTGGAAGTA	CCACAGGCAG	ATCAATGCAA	3251
AGGCACAACT	CAACCAAAGA	GGAAATGTAA	TGCCGCAGCA	TAAATATCTC	3201
CACAAGACAA	CGTTACCTCC	TAAACAATAA	GATGTAACGG	TTCCGCAAAA	3151
GTTTAACCAT	AACAGCACCG	TGGTAATGAT	GTAGCAATGC	TCTAATGGTA	3101
AGTGAAAACG	TAAATAGCGA	AATGTAACAC	TGACGGTCAC	AAATCTCGAC	3051
AAAGATTCAA	TGACAAGGTT	AAGTGACTTT	GATGCTAAAA	TGGTAATGCT	3001
ATGCTAGCGG	ACTATTGGCA	CAGTGATTTA	CTAAAAATGG	GAAATTACAG	2951
TAATAAAGCA	TTTCAGGCTT	GACCTAAATA	ATTGGCAGGA	AAGAGTTAAA	2901
ATTCAAACCA	TAACCTAACT	CAGAAAATGC	TCAAGTGAGG	GCGTTCTGAT	2851
TTGAAGGGGG	AAAGCAGGCG	GATAACAATC	TTACCAATCA	AAAGTAAATA	2801
TTCTTCTGAT	ATCTCACAAT	AAAGAAGGCA	TATCTCACAA	TTGGCGGCAA	2751
GAAATCCAAA	AGCCGACGCC	AGAATATTAA	TTAAACATCA	AAAAGGCGAC	2701
TAACTAACGA	AACGGAAATA	AACCATTATT	GCACTCAAAA	AACGCCTCAG	2651
TATCACTACT	GTGGTTTAAA	ATCAATAAAG	AGGCGATATT	TAAAACTCCA	2601
CAAGGAGTGG	TAATATAAAA	CCGCCAACAT	AACAACGGTA	CACCTTTACC	2551
ACATCACCGG	GACAACCTAA	AGAAGCCAGT	CATTTAAAGG	GAAGATTCCA	2501
TTCTATTGCA	GCAAACATTG TCGGCAATCT TTCTATTGCA	SCAAACATTG	TGGTGCAAAT (TAAGCCTAAC	2451

FIG.9E

TTAACAATCA	CAGTGGTACC	TTAACGCAAC	GATTCAAAGA	TACTACAGGG	4051
GCACTTTAAC	AATACCACAG	TGTGACGTTA	ATGCTGCTAA	GGAAACATTA	4001
CAGTATCGCA	CCAAGGATAG	ACTCTTACAG	TGGTCAGACA	CCTCAAGCAA	3951
TCTAGCATTA	CCAAACAGGC	AATTAACCAC	GAATCAGGCA	CTTAACTGCT	3901
GAGCTGCAAC	GCGAAAAATG	AAAAGTTGAA	GAAATAGTGC	TTAACTATTG	3851
CACTGGTGAT	TTACAGCAAG	ACAGTAAATG	TTCTGGTAAT	AAGGTACAAT	3801
GGCGATATTG	AAGCCAATCA	TAACCACCTC	ACTAATAGTG	AATTAATGGG	3751
TAGGTTCTAC	ACCTCCACAG	CGGTAAATTA	CTGCGGATAG	GTTACTATTA	3701
AGGTAACACT	GTAATATTTC	CTTGCTGTAG	TGGAGCAACT	TTGTTGCAAC	3651
TCTGTAACAC	CAGCTCCGGC	AAGTTGAATC	ATCAACGGTA	AACAGGTGAT	3601
TTACAACCAA	AATGCAAATA	GACAACAGGC	CCATTAGTGC	GCAGGCTCAA	3551
GACAACTACA	CAGGAGCCTT	ACAGCGGATG	TGTAACAGTA	CTGGTCAAGA	3501
AGTAATATCA	ACTTAAGGTA	GCGGCAATAC	ATTACAGCGA	TAATGTAAAT	3451
CAACTTCCGG	GGAATTGAAT	TATTAAAGGT	AAACAGGGGA	ATTAGTACAA	3401
CACAGTAAAC	CAACCAGCGG	GTCATTAATG	AGAGAATGCT	TTGTTACCAC	3351
ACAGAAAATC	AGTGACAGCA	AAAATGTAAC	ATTACCTCGC	TAAAGGCAAC	3301

FIG. 9F

					TA	4701
	TGTAAAAAT	TTACCCACCT	GTTAAAGTTC AGTACGGGCT	GTTAAAGTTC	TACTGTGTGG	4651
	TCGTATTATT	CATTTTATTT	GCAATGAAGT	ATTTCATCCT	GACAAGGTAG	4601
	GTCAGTAATT	GACAGCAGTA	GCTGACGATG	TACCAATGTT	CACGAGTATG	4551
	GGTAATGGCG	TTTCTCAAGT	GTAAGGCGTG	ATTTCTGAAG	TCAAGTGACA	4501
8		TTTACAACCA AACCATCAAG	CGGTTAATAC ACAAAACGAG	CGGTTAATAC	AATGCCATTA	4451
6/6	TGAGCCAAAT	TACGTTTCGT	GTAAGTGCTG	CAAACTTGGT	AAACACTAGC	4401
5	GAAGAAAGAG	TTTATCTGAT	AGGTAAAAGA	GTCCTTGAGA	AGCGAAACGC	4351
	AGGTAATTGA	ATATCCAACC AGGTGTAGCA AGCGTAGAAG AGGTAATTGA	AGGTGTAGCA	ATATCCAACC	GATGTGAAAT	4301
	CAAGGAAATT	AAATGGTAGA AACACTGTGC GCTTAAGAGG	AACACTGTGC	AAATGGTAGA	TCATTTCGGA	4251
	GGGTTAAATA	AATATCACCG GGGATTTAAA CACAATAAAT	GGGATTTAAA	AATATCACCG	AAGCAGCGTG	4201
	CGAAAACCTC	AACGTGACTG	CTAACGCAAG TGGCTCTGGT AACGTGACTG	CTAACGCAAG	GTAAATGCAA	4151
	CCGCACAGTA	TGCCAAATTA GATGGTGCTG CATCAGGTGA CCGCACAGTA	GATGGTGCTG	TGCCAAATTA	ATGCAAAAGA	4101

NEPTWEN COMPARTSON OF

		TRAKISON OF	UEKIVED A	COMPARISON OF DERIVED AMINO ACID SEQUENCE	SEQUENCE 50
•	•		•	•	•
•	•	•	•	•	•
MINK	MNKIYRLKFS	KRLNALVAVS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
MNK	MNKIYRLKFS	KRLNALVAVS	ELARGCDHST	EKGSEKPARM	KVRHLALKPL
51					100
•	•	•	•	•	•
:	•	•	GMSVVHGT	ATMQVDGNKT	TIRNSVNALI
SAN	SAMLLSLGVT	SIPQSVLASG	LQGMSVVHGT	ATMQVDGNKT	TIRNSVNAII
SAN	SAMLLSLGVT	SIPQSVLASG	LQGMSVVHGT	ATMQVDGNKT	TIRNSVNAII
101					150
•	•	•	•	•	•
NWK	NWKQFNIDQN	EMEQFLQESS	NSAVFNRVTS	DQISQLKGIL	DSNGQVFLIN

NWKQFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL DSNGQVFLIN	QFNIDQN EMVQFLQENN NSAVFNRVTS NQISQLKGIL DSNGQVFLIN
NQISQLKGIL	NQISQLKGIL
NSAVFNRVTS	NSAVFNRVTS
EMVQFLQENN	EMVQFLQENN
NWKQFNIDQN	NWKQFNIDQN
Hmw1com	Hmw2com

Hmw1com	NWKQFNIDQN	NWKQFNIDQN EMVQFLQENN NSAVFNRVTS		NQISQLKGIL	DSNGQVFLIN
Hmw2com	NWKQFNIDQN	EMVQFLQENN	NSAVFNRVTS	NQISQLKGIL	DSNGQVFLIN
	151				200
Hmw3com	•	•	•	•	•
Hmw4com	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTLEQTK	DKALAEIVNH
Hmw1com	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTLEQTK	DKALAEIVNH G
Hmw2com	PNGITIGKDA	IINTNGFTAS	TLDISNENIK	ARNFTLEQTK	DKALAEIVNH 9
				•	
	201				250
Hmw3com		•	•	•	•
Hmw4com	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGOKIT	ISDIINPTIT
Hmw1com	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGOKIT	ISDIINPTIT
Hmw2com	GLITVGKDGS	VNLIGGKVKN	EGVISVNGGS	ISLLAGQKIT	ISDIINPTIT
	251				300
Hmw3com	•	INLGDIFAKG	INLGDIFAKG GNINVRAATI	RNKGKLSADS	VSKDKSGNIV

FIG. 10C.

VSKDKSGNIV VSKDKSGNIV RNKGKLSADS VSKDKSGNIV RNKGKLSADS RNKGKLSADS INLGDIFAKG GNINVRAATI GNINVRAATI GNINVRAATI YSIAAPENEA VNLGDIFAKG VNLGDIFAKG YSIAAPENEA YSIAAPENEA Hmw4com Hmw1com Hmw2com

59/68 350 IDLSGKEGGE IDLSGKEGGE IDLSGKEGGE DKVTLKTGAV IDLSGKEGGE DKVTLKTGAV DKVTLKTGAV DKVTLKTGAV GGVISAQNQQ AKGGKLMITG GGVISAQNQQ AKGGKLMITG GGVISAQNQQ AKGGKLMITG LSAKEGEAEI GGVISAQNQQ AKGGKLMITG LSAKEGEAEI LSAKEGEAEI LSAKEGEAEI 301 Hmw3com Hmw2com Hmw4com Hmw1com

400 IVWGDIALID IVWGDIALID IVWGDIALID TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA IVWGDIALID TYLGGDERGE GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA GKNGIQLAKK TTLEKGSTIN VSGKEKGGRA TYLGGDERGE TYLGGDERGE 351 Hmw2com Hmw1com Hmw3com Hmw4com

FIG. 10D.

401

450

SGHYLSIESN AIVKTKEWLL DPDDVTIEAE AIVDAKEWLL DPDNVTINAE IAKTGGFVET SGHYLSIDDN AIVKTKEWLL DPENVTIEAP DPDDVSIETL SGHDLSIGDD VIVDAKEWLL SCHDLFIKDN IAKTGGFVET IAKTGGFVET IAKTGGFVET GNINAQGK.D GNINAQGSGD GNINAQGSGD GNINAQGS.D Hmw3com Hmw4com Hmw1com Hmw2com 500

60

/68

LLKSAHVVNI ILRRGSYVNI ILKKGTFVNI YLKNAWTMNI SASRVELGAD RNSHSAEVIK VTLKKNNTSL TTLTNTTISN SDPKKNSELK TTLTNTTISN STPKRNKE.K TTLTNTTLES PTLTNSTLEQ ESPKGNSISK DEYTGSGNSA DEFPTGTGEA QGYTTGDGTK TAGRSNTSED DPLRNNTGIN TSGRNNTGEN Hmw3com Hmw2com Hmw1com Hmw4com

451

550

501

... SKGGNLT NE...NGNLT .E...GGNLT TLWSEGRSGG GVEINNDITT GDDTRGANLT TLHTK...RD GVKINGDITS ILHSEGQGGQ GVQIDKDITS ILHSKGQRGG GVQIDGDIT. SINLSNGS.L SINGSNGSHL SISIERGSHL SINL. SNGSL TASRKLTVNS TANQRIYVNS TARRELTVNS TANNRIYVNS Hmw3com Hmw1com Hmw2com Hmw4com

FIG. 10E.

551

					61/68
009	NNLTITAQ	KNITLGT.GF LNIVAGDS.V AFEREGDKAR NATDAQITAQ	OSLI	KNITLD.QGF LNITA.AS.V AFEGGNNKAR DANNLTITAQ	61/68 029
	AFEDKSGR	AFEREGDKAR	AFEKGSNQV.	AFEGGNNKAR	
	LNITTKEGDI	LNIVAGDS.V	KNISLGAQGN INITAKQD.I AFEKGSNQV.	LNITA.AS.V	
	KNITLGS.GF LNITTKEGDI AFEDKSGR	KNITLGT.GF	KNISLGAQGN	KNITLD.QGF	
551	IYSGGWVDVH	IKAGSWVDVH	IYSGGWVDVH	IYSGGWVDVH	601
	Hmw3com	Hmw4com	Hmw1com	Hmw2com	

,	•			
620	GNISNKFDGT	.NFTHKFDGE	YAITNKFEGT	LTHNLSGT
	GTITSG.NSN GFRFNNVSLN SLGGKLSFTD SREDRGRRTK GNISNKFDGT	GTITVNKDDK QFRFNNVSIN GTGKGLKFIA NQNNFTHKFDGE	GTIT.SGNQK GFRFNNVSLN GTGSGLQFTT KRTNK YAITNKFEGT	SVININ
	SLGGKLSFTD	GTGKGLKFIA	GTGSGLQFTT	GTGKGLNIIS
	GFRFNNVSLN	QFRFNNVSIN	GFRFNNVSLN	DFRANNVSLN
601	GTITSG.NSN	GTITVNKDDK	GTIT. SGNQK	GTVTITGEGK DFRANNVSLN GTGKGLNIIS SVNNLTHNLSGT
	Hmw3com	Hmw4com	Hmw1com	Hmw2com

700 LNISGTVDIS MKAPKVSWFY RD.KGRTYWN VTTLNVTSGS KFNLSIDSTG LNISGKVNIS MVLPKNESGY DKFKGRTYWN LTSLNVSESG EFNLTIDSRG KFTF.IKFVD INISGIVTIN QTTKKDVKYW NA.SKDSYWN VSSLTLNTVQ 651 Hmw1com Hmw4com Hmw3com

FIG. 10F.

					62	/68	_				
NFTF. IKYIS	750	NFSIKASIMP	LFKLKPNAAT	TFNVERNARV NFDIKAPIGI	SFNLKEGAKV NFKLKPNENM		800	VIIKSQNFNV	AGINMDSINI	VINSKYFNV	AELKMSEINI
VSALNLETGA		ITFNKA TFNIAQGSTA NFSIKASIMP	NFNIGANAKA					GGSVNFKLN ASSSNIQTPG VIIKSQNFNV	SDSSVMFDIH ANLTSRA AGINMDSINI	ASSSNVQTPG 1	ANHSGRG
TIN QTTRKNTSYW QTSHD.SHWN VSALNLETGA NFTF.IKYIS			LRSSRRSFAG VHFNGIGGKT NFNIGANAKA LFKLKPNAAT	ISFNKDT	RSSAGVNFNG VNGNM			.GGSVNFKLN	SDSSVMFDIH	AS FNGNISVSG. GGSVDFTLL ASSSNVQTPG VVINSKYFNV	GGSVFFDIY ANHSGRG AELKMSEINI
QTTRKNTSYW		IRNAELNG	LRSSRRSFAG	PYNLNG				FNEDISVSG.	FNANITATGN	FNGNISVSG.	R FLANITATG.
INISGNITIN	701	SGSTGPS	SGSNSQD	SDSAGTLTQ.	SNSKGLTTQY		751	FKSNANYAL.	DPKKELPIT.	NKYSSLNYAS	NTSKPLPI.R
Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com			Hmw3com	Hmw4com	Hmw1com	Hmw2com

850 SGGSTLNLKA EGSTETAFSI ENDLNLNATG GNITIRQVEG T..DSRVNKG SNFSLKQTKD SFYNEYSKHA TGGLDFSITS HNRNSNAFEI KKDLTINATG 801 Hmw3com Hmw4com

FIG. 10G.

SGSTKTGFSI EKDLTLNATG GNITLLQVEG T..DGMIGKG SNFSLRQTKD DFYDGYARNA HVRGDDAFKI NKDLTINATN SNGANFTLNS STGSSLRFKT Hmw1com Hmw2com

900 INKNTNATLR GANFAEN. VAAKKNITFK GGNITFGSQK ATTEIKGNVT 851 Hmw3com

63/68 ITNKANVTLQ ADTSNSNTGL GSDFDNHQ.. INNNANVTLI SSSSITGNIN AVTEIEGNVT GGNITFGSRK GGNVTLGGEN INSSHNLTIL IVAKKNITFE Hmw4com Hmw1com

IEKAANVTLE ANNAPNQQNI SSSSITGNIT INSTYNISIL GGNVTLGGQN Hmw2com

950 901

INNGNLTTAG SIINIAGNLT VSKGANLQAI TNYTFNVAGS SVEGNLSLTG ANANIVGNLS IAEDSTFKGE ASDNLNITGT KSPLNIAGNV KKRTLTLGNI Hmw3com Hmw4com

TNFTFNVGGL NIVNIAGNLT VESNANFKAI INSGNLTAGG KPLTIKKDVI Hmw1com

ISESATFKGK TRDTLNITGN ENADIKGNLT RDRVIKLGSL LVNGSLSLTG Hmw2com

1000 951

FIG. 10H.

IIKGNISNKS IINGNITNEK IISGNITNKN I IGGDI INNK TTHAKRNQRS TINSDITYRI TINSSSTYRT TTNASGTOKT ITQGVVKLG. NVTNDGDLNI DINNTSSLNI DIDNSKNLSI DINNKGGINI IARGGAKFK. IKQGVVKLQG IAKGGARFK. FTNNGTAEIN FDNNGASNIS FTNNGTANIN FUNKGNSNIS Hmw3com Hmw2com Hmw4com Hmw1com

64/68 1050 TIKAGVEGGR TIKAGVEGGR TIKAGVDGEN TIKKGIDGED SQKEGNLTIS SDKVNITNQI SDKINITKQI SDKINITKQI SDKVNITNQI SQKEGNLTIS SOKEGNLTIS SOKEGNLTIS GDLNIIDKKS DAEIQIGGNI DAEIQIGGNI DTEMQIGGDI DAEIQIGGNI GDLNIKNIKA GSLNITDSNN GDLNITNEGS 1001 Hmw3com Hmw4com Hmw1com Hmw2com

1100 DLTIGNASGG DLTIGNASGG DLTIGNTNSA KAEITAKDGR DLTIGNSNDG SDSSEAENAN LTIQTKELKL AGDLNISGFN KAEITAKNGS LTIQTKELKL AGDLNISGFN KAEITAKNGS TODLNISGFN KAEITAKDGS TEDLSISGFN LTIKTKELKL LTIKTKELKL SDSSEAENAN SDSDATNNAN SSSDATSNAN 1051 Hmw3com Hmw4com Hmw1com Hmw2com

FIG.101.

						5/6	8						
1	SNAGNDNSTG	SNAGNDNSTG	TEDSSDNNAG	RESNSDNDTG	1200	TGSVEVTAQN	TGSVEVTAQN	TGNVEIT	NGKASIT	1250	TGDIKGGIES	TGDIKGGIES	TGDIKGGIES
	TDGHNVTLNS EVKTSNGS SNAGNDNSTG	EVKTSNGS	KVETSGSNNN	KVKTSSSNGG		TKEGTTINAT	TKEGTTINAT	TKTGTTINAT	TTAGSTINAT		TSGTVNISTK	TSGTVNISTK	AA0
	TDGHNVTLNS	TDGHNVTLNS	ADGHKVTLHS	ADGHNVTLNS		NISAAAGNVT	NISAAAGNVT	SISATSGEIT	NITA. SEKVT		VTTENAVINA	VTTENAVINA	•
	FDKVKDSKIS	FDKVKDSKIS	FNQVKDSKIS	FNNVKDSKIS		NNNVTSHKTI	NNNVTSHKTI	NNNITSHKAV	NKDVTSLKTV		NVTVTATENL	NVTVTATENL	•
	NADAKKVT	N. ADAKKVT	D.GTNAKKVT	NSGAEAKKVT	1151	LTISAKDVTV	LTISAKDVTV	LTIDAKNVTV	LTITAKNVEV	1201	GTIKGNITSQ	GTIKGNITSQ	•
	Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com	Hmw1com

FIG. 10J

					6	56 /	68							
T	1300	ISATTGNANI	ISATTGNANI	IKG.TESVTT	•	•	1350	ADSGKLTSTV	ADSGKLTSTV	ATESLTTQSN	ATVDLTTKSG	1400	NSAKVEAKNG	NSAKVEAKNG
TK		GALTTTAGST	GALTTTAGSŤ	GALTTLAGST	•			NISGNTVTIT	NISGNTVTIT	TISGGTVEVK	TISGNTVSVS		GTISGNTVNV TASTGDLTIG	TASTGDLTIG
•		GQDVTVTADA	GQDVTVTADA	GNTVTVTANS	•			VATGATLAVG	VESSSGSVTL VATGATLAVG	· · · · · · · · · · · · · · · · · · ·	9			GTISGNTVNV
•		GNTLKVSNIT	GNTLKVSNIT	EGALAVSNIS	•			VESSSGSVTL	VESSSGSVTL	•	•		TTSSQSGDIE	TTSSQSGDIE
•	1251	TSGNVNITAS	TSGNVNITAS	SSGSVTLTAT	•		1301	TTKTGDINGK	TTKTGDINGK	ssosgnig	GDIS	1351	GSTINGTNSV	GSTINGTNSV
Hmw2com		Hmw3com	Hmw4com	Hmw1com	Hmw2com			Hmw3com	Hmw4com	Hmw1com	Hmw2com		Hmw3com	Hmw4com

Æ,

1550

SKIKATTGEA NVTSATGTIG GTISGNTVNV TANAGDLTVG NGAEINATEG NGAEINATEG TANAGDLTVG GTISGNTVNV NVTSATGTIG SKIEAKSGEA Hmw1com Hmw2com

1450 1401

67/68 SSNGQTTLTA KDSSIAGNIN AANVTLNTTG AANVTLNTTG AANVTLNTTG AANVTLNTTG SSNGQTTLTA KDSSIAGNIN QDSSVAGSIN STKGQVDLLA QNSSIAGNIN SAKGQVNLSA AATLTAESGK LTTQTGSSIT AATLTAESGK LTTQTGSSIT LTTEASSHIT LTTEAGSSIT AATLTTSSGK AATLTATGNT Hmw3com Hmw1com Hmw4com Hmw2com

1500 NASGSGNVTA NASGSGNVTA NANGSGSVIA SGDSTEVNAV NASGSGSVTA SGDRTVVNAT SGDRTVVNAT LGNHTVVNAT NATSGTLTIN AKDAELNGAA TLTTTGDSKI NATSGTLTIN AKDAKLDGAA AKDAKLDGAA KATSGTLTIN AKDAKLNGDA NATSGTLTIN TLTTVAGSDI TLTTGDSKI TLTTVKGSNI 1451 Hmw1com Hmw3com Hmw2com Hmw4com

1501

FIG. 10L

IQPGVASVEE IQPGVASVEE IQPGIASVDE IQPGVASVEE ISKNGINTVL LKGVKIDVKY ISKDGRNTVR LRGKEIEVKY ISENGRNTVR LRGKEIDVKY LRGKEIDVKY ISENGRNTVR DLNTINGLNI DLNTVNGLNI DLITINGLNI DLNTINGLNI TTSSRVNITG KTSSSVNITG KTSSSVNITG ATSSSVNITG Hmw3com Hmw1com Hmw2com Hmw4com

68/68 VNTONEFTTK VNTQNEFTTK VDTQNEFATR VNTQNEFTTR TLAKLGVSAV RFVEPNNAIT ALAKLGVSAV RFIEPNNTIT RFVEPNNAIT TLAKLGVSAV RFVEPNNTIT TLAKLGVSAV VIEAKRILEK VKDLSDEERE VIEAKRVLEK VKDLSDEERE VKDLSDEERE VKDLSDEERE VIEAKRVLEK VIEAKRVLEK 1551 Hmw3com Hmw1com Hmw2com Hmw4com

1632 QP ŏ RVCTNVADDG KACFSSGNGA RVCTNVADDG RVCTNVADDG RACFSNSDGA TVCVNIADNG PSSQVTISEG KACFSSGNGA KACFSSGNGA PSSQVTISEG PLSRIVISEG PSSQVIISEG Hmw3com Hmw1com Hmw2com Hmw4com

INTERNATIONAL SEARCH REPORT

In ational application No. PCT/US94/02550

A. CLASSIFICATION OF SUBJECT MATTER IPC(5) :A61K 39/02 US CL :424/92 —			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols)			
U.S. : 424/92; 435/851			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
Gene-Seq, APS, Biosis, Embase, Scisearch, Chem Abstracts			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
Y	Pediatric Infectious Disease Journal, Volume 9, No. 5, issued 05 May 1990, Barenkamp et al, "Development of Serum Bactericidal Activity Following Nontypable Haemophilus influenzae Acute Otitis Media", pages 333-339, see page 337.		1-3
Υ	Pediatric Research, Volume 29, No. 4 part 2, issued 1991, Barenkamp S. J., "DNA Sequence Analysis of Genes for Nontypable Haemophilus influenza High Molecular Weight Outer Membrane Proteins which are Targets of Bactericidal Antibody", see page 167A, column 1, abstract no. 985.		
Further documents are listed in the continuation of Box C. See patent family annex.			
• Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the			
"A" document defining the general state of the art which is not considered principle or theory underlying the invention to be part of particular relevance			ention
"E" earlier document published on or after the international filing date "X" document of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an inventive a inventive and the document in taken the document in taken the document.			
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		when the document is taken alone "Y" document of particular relevance; the	e claimed invention cannot be
O document referring to an oral disclosure, use, exhibition or other combined with o		considered to involve an inventive combined with one or more other such being obvious to a person skilled in the	step when the document is a documents, such combination
	document published prior to the international filing date but later than *&* document member of the same patent family the priority date claimed		
		Date of mailing of the international search report	
09 MAY 1994		JUN 02 1994	
	nailing address of the ISA/US	Authorized officer	71) 1 /
Commissioner of Patents and Trademarks Box PCT		JULIE KRSEK-STAPLES Jell Warden for	
Washington, D.C. 20231 Facsimile No. (703) 305-3230		Telephone No. (703) 308-0196	

Form PCT/ISA/210 (second sheet)(July 1992)*

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTIO)