INNOLUX DISPLAY CORPORATION LCD FOG SPECIFICATION

Customer:	
Model Name:	EE101IA-01D
Date:	2014/12/29
Version:	04
Version.	<u>04</u>
version.	04
	y Specification
	y Specification

For Customer's Acceptance

Comment

Approved by	Reviewed by	Prepared by
David Lee	Sunny Sun	Henry01 li

Record of Revision

Version	Revise Date	Page	Content
Pre-Spec.01	2012/11/13	All	Initial Release
Fin-Spec.01	2013/05/20	1	Update Panel power consumption& Weight
		5	Update Vcom from 3.3 to 3.0
		6	Add 3.3 Current Consumption
		7	Update Power sequence
		8	Update LVDS Differential voltage min. values from 200 to 100 mV
		11	Update Panel transmission& Test Conditions 1
		16	Modify Mechanical Drawing
			Modify Package Drawing
Fin-Spec.02	2014/01/24	2	Modify connect type
		6	Modify unit of I _{GH} and I _{GL} from mA to uA
		7	Modify power sequence
		11	Modify panel transmission typ. values from 3.4% to 5.4%
Fin-Spec.03	2014/08/18	1	Panel size update
Fin-Spec.04	2014/12/29	16	Modify Mechanical Drawing
		17~18	Modify Package Drawing

CHIMEI INNOLUX

Contents

1.	General Specifications	1
2.	Pin Assignment	2
3.	Operation Specifications	4
	3.1. Absolute Maximum Ratings	4
	3.2. Typical Operation Conditions	5
	3.3. Power Sequence	7
	3.4. LVDS Signal Timing Characteristics	8
	3.4.1. AC Electrical Characteristics	8
	3.4.2. Timing Table	9
	3.4.3. LVDS Data Input Format	.10
4.	Optical Specifications	. 11
5.	Reliability Test Items	.14
6.	General Precautions	. 15
	6.1. Safety	. 15
	6.2. Handling	. 15
	6.3. Static Electricity	.15
	6.4. Storage	.15
	6.5. Cleaning	. 15
7.	Mechanical Drawing	.16
8.	Package Drawing	. 17
	8.1. Packaging Material Table	. 17
	8.2. Packaging Quantity	. 17
	8.3. Packaging Drawing	. 18

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	10.1 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	1280 × 3(RGB) × 800	
4	Display mode	Normally Black, Transmissive	
5	Dot pitch	0.0565(W) × 0.1695(H) mm	
6	Active area	216.96(W) × 135.60(H) mm	
7	Panel size	223.95(W) ×144.24(H) ×1.07(D) mm	Note 1
8	Surface treatment	нс	
9	Color arrangement	RGB-stripe	
10	Interface	LVDS	
11	View direction(Gray Inversion)	free	
12	Panel power consumption	0.7W (Typ)	Note 2
13	Weight	80g(Typ)	

Note 1: Refer to Mechanical Drawing. Note 2: Including T-con Board power consumption

A 40pin connector is used for the module electronics interface. The recommended model is F62240-H1210B manufactured by Vigorconn.

Pin No.	Symbol	I/O	Function	Remark
1	VCOM	Р	Common Voltage	
2	VDD	Р	Power Supply	
3	VDD	Р	Power Supply	
4	NC		No connection	
5	NC		No connection	
6	NC		No connection	
7	GND	Р	Ground	
8	Rxin0-	-	-LVDS Differential Data Input	D0 D5 C0
9	Rxin0+	-	+LVDS Differential Data Input	R0-R5, G0
10	GND	Р	Ground	
11	Rxin1-	-	-LVDS Differential Data Input	C1 C5 D0 D1
12	Rxin1+	-	+LVDS Differential Data Input	G1~G5, B0,B1
13	GND	Р	Ground	
14	Rxin2-	ı	-LVDS Differential Data Input	B2-B5,HS,VS,
15	Rxin2+	-	+LVDS Differential Data Input	DE
16	GND	Р	Ground	
17	RxCLK-	Ι	-LVDS Differential Clock Input	LVDS CLK
18	RxCLK+	I	+LVDS Differential Clock Input	LVDS CLK
19	GND	Р	Ground	
20	Rxin3-	-	-LVDS Differential Data Input	R6, R7, G6, G7,
21	Rxin3+	-	+LVDS Differential Data Input	B6, B7
22	GND	Р	Ground	
23	NC		No connection	
24	NC		No connection	
25	GND	Р	Ground	
26	NC		No connection	

Date: 2014/12/30 Page:3/18

				,
27	LED_PWM	0	CABC controller signal output for backlight	Note2
28	NC		No connection	
29	AVDD	Р	Power for Analog Circuit	
30	GND	Р	Ground	
31	LED-	Р	LED Cathode	
32	LED-	Р	LED Cathode	
33	NC		No connection	
34	NC	-	No connection	
35	VGL	Р	Gate OFF Voltage	
36	NC		No connection	
37	CABC_EN	I	CABC Enable Input	Note1
38	VGH	Р	Gate ON Voltage	
39	LED+	Р	LED Anode	
40	LED+	Р	LED Anode	

I: input, O: output, P: Power

Note1: The setting of CABC function are as follows.

Pin	Enable	Disable
CABC_EN	High Voltage	Low Voltage or open

Note2: LED_PWM is used to adjust backlight brightness.

3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note 1)

ltem	Symbol	Val	ues	Unit	Remark
item	Symbol	Min. Max.		Offic	Kemark
Power voltage	VDD	-0.3	3.9	V	
	AVDD	-0.3	14	V	
	V_{GH}	-0.3	42.0	V	
	V_{GL}	-19	0.3	V	
	V _{GH} -V _{GL}	12	40.0	V	
Operation Temperature	T _{OP}	-0	50	$^{\circ}\!\mathbb{C}$	
Storage Temperature	T _{ST}	-20	60	$^{\circ}\!\mathbb{C}$	

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Date: 2014/12/30 Page:5/18

Typical Operation Conditions 3.2.

(Note 1)

ltem	Symbol		Values	Unit	Remark	
item	Symbol	Min. Typ. Max.		Max.		Offic
Power voltage	VDD	2.3	2.5	2.7	V	Note 2
	AVDD	8.0	8.2	8.4	V	
	V_{GH}	21.7	22	22.3	V	
	V_{GL}	-7.3	-7	-6.7	V	
Input signal voltage	VCOM	2.7	3.0	3.3	V	Note 4
Input logic high voltage	V _{IH}	0.8 VDD	-	3.6	V	Note 3
Input logic low voltage	V _{IL}	0	-	0.2 DV _{DD}	V	Note 3

- Note 1: Be sure to apply VDD and V_{GL} to the LCD first, and then apply V_{GH} . Note 2: VDD setting should match the signals output voltage (refer to Note 3) of customer's system board.
- Note 4: Typical VCOM is only a reference value, it must be optimized according to each LCM. Be sure to use VR.

3.3. Current Consumption

	Symbol	Values			Unit	Remark	
Item	Symbol	Min.	Тур.	Max.	Offic	Keillaik	
Current for Driver	I _{GH}	-	705	750	uA	V _{GH} =22V	
	I _{GL}	-	705	750	uA	$V_{GL} = -7V$	
	IV_{DD}	-	95	120	mA	V _{DD} =2.5V	
	IAV _{DD}	-	45	70	mA	AV _{DD} =8.2V	

Date: 2014/12/30 Page:7/18

3.4. Power Sequence

a. Power on:

b. Power off:

Date: 2014/12/30 Page:8/18

3.5. LVDS Signal Timing Characteristics

3.5.1. AC Electrical Characteristics

Parameter	Symbol	Values			Unit	Remark	
		Min.	Typ.	Max.			
LVDS Differential input high Threshold voltage		-	-	+100	mV	R _{XVCM} =1.2V	
LVDS Differential input low Threshold voltage	R _{xVTL}	-100	-	-	mV	11XVCM—1.2 V	
LVDS Differential input common mode voltage	R _{xVCM}	0.7	-	1.6	V		
LVDS Differential voltage	V _{ID}	200	-	600	mV		

3.5.2. Timing Table

Date: 2014/12/30 Page:9/18

ltem	Symbol	Values			Unit	Remark
item	Symbol	Min.	Тур.	Max.	Onit	Kemark
Clock Frequency	1/Tc	(68.9)	71.1	(73.4)	MHz	Frame rate =60Hz
Horizontal display area	tHD	1280		Tc		
HS period time	tн	(1410)	1440	(1470)	Тс	
HS Width +Back Porch +Front Porch	thw+ thbp +thfp	(60)	160	(190)	Тс	
Vertical display area	tvD	800		tн		
VS period time	tv	(815)	823	(833)	tн	
VS Width +Back Porch +Front Porch	tvw+ tvbp +tvfp	(15)	23	(33)	tн	

3.5.3. LVDS Data Input Format

Date: 2014/12/30 Page:10/18

4. Optical Specifications

ltem	Symbol	bol Condition		Values			Remark
iteiii	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	θ_{L}	Φ=180(9 o'clock)	75	85	-	degree	Note 1
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	75	85	-		
(CR≥ 10)	θτ	Φ=90°(12 o'clock)	75	85	-		
	θв	Φ=270(6 o'clock)	75	85	-		
Posponso timo	T _{ON}		-	10	20	msec	Note 3
Response time	T _{OFF}	Normal θ=Φ=0°	-	15	30	msec	Note 3
Contrast ratio	CR		600	800	-	-	Note 4
Color chromaticity	W _X		0.27	0.31	0.35	-	Note 2
	W _Y		0.28	0.32	0.36	-	Note 5 Note 6
Panel transmission	%		4.8%	5.4%		-	

Test Conditions:

- 1. VDD=2.5V,, the ambient temperature is 25° C...
- 2. The test systems refer to Note 2.
- 3. The optical specificaitons are measured base on Innolux LCM

Note 1: Definition of viewing angle range

Note 2: Definition of optical measurement system.

6 o'clock

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm, Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/ Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel.

(Note3)

Item	Test	Conditions	Remark
High Temperature Storage	Ta = 60°C	120hrs	Note 1, Note 4
Low Temperature Storage	Ta = -20°C	120hrs	Note 1, Note 4
High Temperature Operation	Ts = 50°C	120hrs	Note 2, Note 4
Low Temperature Operation	Ta = 0°C	120hrs	Note 1, Note 4
Operate at High Temperature and Humidity	+40℃, 90%RH	120hrs	Note 4
Thermal Shock		C/30 min for a total 100 old temperature and end ure.	Note 4
Package Vibration Test	Random Vibration ISTA-3A 1Hz~200I Half hours for direc	Hz,Grms=0.53	
Package Drop Test	Height:60 cm 1 corner, 3 edges,	6 surfaces	

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

INNOLUX

Date: 2014/12/30 Page:15/18

6.General Precautions

6.1.Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

- 1. Store the module in a dark room where must keep at 25±10°C and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5.Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

7. Mechanical Drawing

8.1. Packaging Material Table

No.	Item	Model (Material)	Dimensions(mm)	Unit Weight (kg)	Quantity	Remark
1	FOG	EE101IA-01D	223.95 X144.24X 1.07	0.08	40	
2	Partition	BC Corrugated paper	512 X 349 X 226	0.29	1	
3	PET Tray	PET	511 X 342X16	0.21	21	
4	Cushion	Anti-static LDPE	300 X 225X2	0.005	40	
5	Dust-Proof Bag	LDPE	700 X 530X0.05	0.06	1	
6	Carton	Corrugated paper	525X362X250	1.10	1	
7	Total weight	9.26Kg±5%				

8.2. Packaging Quantity

(1) FOG quantity per PET-Tray:	2pcs
(2) Total FOG quantity in Carton:	20 layer x 2pcs/PET-Tray = 40pcs

Date: 2014/12/30 Page:18/18

8.3. Packaging Drawing

