Weisfeiler—Leman for Group Isomorphism: Action Compatibility Joshua A. Grochow, Michael Levet* University of Colorado Boulder

Introduction

- Weisfeiler--Leman (WL) captures essentially all combinatorial algorithms for Graph Isomorphism (GI), and is the key subroutine in state-of-the-art GI algorithms.
- Recently adapted from graphs to groups [BS20].

Weisfeiler—Leman for Graphs

- k-WL colors the k-tuples of vertices in an isomorphism invariant manner.
- Tuples initially colored according to their marked isomorphism type.
- The color assigned to a k-tuple u at round r takes into account:
 - The color of u at round r-1
 - The multiset of colors at round r-1 of nearby k-tuples
- Algorithm terminates when partition on the k-tuples induced by the coloring is not refined

Motivation

- For which families of groups does Weisfeiler—Leman serve as a polynomial-time isomorphism test?

Our Results

Theorem. Groups in the following families can be identified by O(1)-dimensional Weisfeiler—Leman in O(1) rounds:

- Coprime Extensions $H \ltimes N$, where H is O(1)-generated and N Abelian[†]
- Groups without Abelian normal subgroups (aka semisimple groups).
- These are two of the few major classes of groups for which polynomial-time algorithms were previously known.

Groups	Previous Bounds	WL
Abelian	- O(n) time [Kav07] - L n TCº(FOLL) [CTW11]	- P [BS20] - TC ⁰ [GL21]
O(1)- generated	- P (attributed to Tarjan) - L [Tan13]	- P [BS20] - AC ⁰ [GL21]
Semisimple	- P [BCQ12]	- TC ⁰ [GL21]
†Coprime Extensions	- P [QST11]	- TC ⁰ [GL21]

Weisfeiler—Leman for Groups

- For a group G, construct a graph Γ_G .
- Run k-WL for graphs on Γ_G .
- Pull back the coloring to k-tuples of group elements.

Reduction

- For each group element g, we have a vertex in Γ_G .
- For each pair $g,h \in G$, we have a multiplication gadget M(g,h) to encode the relation g * h.
- For a group G of order n, Γ_G has $\Theta(n^2)$ vertices.
- Runtime of WL for Groups is $O(n^{2k+1} \log n)$

Figure. Multiplication Gadget M(g, h) [BS20]

Weisfeiler—Leman for Group Isomorphism: Action Compatibility

- ▶ Joshua A. Grochow^{1,2} and Michael Levet¹
- ▶¹University of Colorado Boulder- Department of Computer Science
- ▶²University of Colorado Boulder- Department of Mathematics

