LOGIC

Asst. Prof. Nattapol Aunsri, Ph.D.
CCC Group
IATE Unit
School of IT, MFU

Summer 21
Prepared for DII, CAMT, CMU

PROPOSITION

Definition

A proposition (p, q, r, ...) is simply a statement (i.e., a declarative sentence) with a definite meaning, having a truth value that's either **true** (**T**) or **false** (**F**) (**never** both, neither, or somewhere in between).

Example

- > p: Today is Sunday.
- > q: 1+1=9-8.
- r: Bangkok is the capital of Thailand.
- > t: I got "A" in Math for IT I.

PROPOSITION

• Example: Not Proposition

- > p: Let's drink.
- → q: a+b.
- r: Take a rest.
- ➤ S: A-B=3.
- > t: DO IT NOW!
- > u: The School of IT

WHY? Because we cannot tell the truth of the given statements.

PROPOSITION

Negative Operator (NOT)

• Let p be a proposition. The Negation of p, denoted by $\sim p$ (or $\neg p$), is the statement

"It is not the case that p.", "not p"

Example: Find the negation of the proposition "Today is Friday."

Solution: The negation is

T F

"It is not the case that today is Friday."
In simple English, "Today is not Friday." or "It is not Friday today."

CONJUNCTION

Conjunction

- Let \mathbf{p} and \mathbf{q} be propositions. The conjunction of \mathbf{p} and \mathbf{q} , denoted by $\mathbf{p} \wedge \mathbf{q}$, is the proposition " \mathbf{p} and \mathbf{q} ."
 - Following shows the "Truth Table" for conjunction.

\overline{P}	Q	$P \wedge Q$
F	F	F
F	\mathbf{T}	\mathbf{F}
T	\mathbf{F}	\mathbf{F}
Τ	Τ	T

DISJUNCTION

Disjunction

- Let p and q be propositions. The disjunction of p and q, denoted by p v q, is the proposition "p or q."
 - Following shows the "Truth Table" for disjunction.

\overline{P}	\overline{Q}	$P \lor Q$
F	F	F
F	T	T
T	\mathbf{F}	T
Τ	Τ	Τ

TRUTH TABLE

If the statement from S has three variables P_1 , P_2 , and P_3 , then the setup of truth table will look like.

$\overline{P_1}$	P_2	P_3
F	F	F
F	\mathbf{F}	T
F	${ m T}$	\mathbf{F}
F	${ m T}$	\mathbf{T}
Τ	\mathbf{F}	F
Τ	\mathbf{F}	T
Τ	${ m T}$	F
Τ	Τ	Τ

Example

- When the following statement is false?
 - I am a singer OR the queen of Hollywood.

Example

- When the following statement is false?
 - I am a singer OR the queen of Hollywood.

Sol

P: I am a singer

Q: I am the queen of Hollywood

- The proposition is represented by the Symbolic Notation P v Q
- The above statement is false if both P and Q are both false.

Example

Represent the statement

"I will go to the movies on Friday or Sunday, but not on both days" by a sentential form.

Represent the statement
 "I will go to the movies on Friday or Sunday, but not on both days"
 by a sentential form.

Sol

- P: I will go to the movies on Friday.
- Q: I will go to the movies on Sunday.

Represent the statement

"I will go to the movies on Friday or Sunday, but not on both days" by a sentential form.

Sol

- P: I will go to the movies on Friday.
- Q: I will go to the movies on Sunday.

• The first clause of the given statement is represented by $P \lor Q$, and the last by $\sim (P \land Q)$, so the complete answer in **Symbolic Notation** is

$$(P VQ) \land \sim (P \land Q)$$

Let K be the following sentential form

$$\sim (P \land Q) \land (P \land (\sim Q \lor (\sim P \lor Q)))$$

Under what truth values for propositions *P* and *Q* is the proposition represented by *K* true?

Let K be the following sentential form

$$\sim (P \land Q) \land (P \land (\sim Q \lor (\sim P \lor Q)))$$

Under what truth values for propositions *P* and *Q* is the proposition represented by *K* true?

Sol Let $J=(P \land (\sim Q \lor (\sim P \lor Q)))$, construct the truth table for K, we have

\overline{P}	\overline{Q}	$P \wedge Q$	$\sim Q$	$\sim P$	$\sim P \vee Q$	$\sim Q \vee (\sim P \vee Q)$	J	$\sim (P \wedge Q)$	\overline{K}
F	F	F	Τ	Τ	${ m T}$	T	F	T	F
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${f T}$	${ m T}$	${ m T}$	\mathbf{F}	${f T}$	\mathbf{F}
T	\mathbf{F}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{T}	${f T}$	\mathbf{T}
T	Τ	Т	F	F	Τ	T	Τ	F	F

We conclude that K is true only when P is true and Q is simultaneously false.

CONDITIONAL STATEMENT

Conditional Proposition or a Material Implication

$\begin{array}{cccc} \overline{F} & \overline{F} & \overline{T} \\ \overline{F} & \overline{T} & \overline{T} \\ \overline{T} & \overline{F} & \overline{F} \end{array}$	$\rightarrow Q$
T F F	
T T T	

Note: there are other common notations, e.g., $p \rightarrow q$, $q \leftarrow p$, $q \in p$

CONDITIONAL STATEMENT

Example

Construct the truth table for $J = P \Rightarrow ((\sim Q \Rightarrow P) \land (Q \lor \sim P))$.

CONDITIONAL STATEMENT

Example

Construct the truth table for $J = P \Rightarrow ((\sim Q \Rightarrow P) \land (Q \lor \sim P))$.

Sol

Let $K = ((\sim Q \Rightarrow P) \land (Q \lor \sim P))$, we have:

\overline{P}	\overline{Q}	$\sim P$	$\sim Q$	$\sim Q \Longrightarrow P$	$Q \lor \sim P$	K	\overline{J}
F	F	Τ	Τ	F	Τ	F	Τ
F	\mathbf{T}	\mathbf{T}	F	${ m T}$	${ m T}$	T	T
Τ	F	F	\mathbf{T}	${ m T}$	\mathbf{F}	F	F
Τ	Τ	F	F	Τ	Τ	Τ	Τ

BICONDITIONAL PROPOSITION

Biconditional Proposition or a Material Equivalence, P ↔ Q

\overline{P}	Q	$P \Longrightarrow Q$	$P \longleftarrow Q$	$P \Longleftrightarrow Q$
F	F	${ m T}$	${ m T}$	T
F	\mathbf{T}	${ m T}$	\mathbf{F}	\mathbf{F}
Τ	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{T}	Τ	Τ	Τ	T

BICONDITIONAL PROPOSITION

Example Construct the truth table of

$$(P \land Q) \Rightarrow (((\sim P) \lor R) \leftrightarrow (R \Rightarrow S)).$$

TAUTOLOGY

Tautology

- A **tautology** is a sentential form that becomes a true proposition whenever the letters in the expression are replaced by actual propositions. In other words, a compound statement is a tautology if it is always true, regardless of the truth values of the simple statements from which it is constructed.
- A statement that is <u>always false</u> is called a contradiction;
 - A very simple example is $p \land \sim p$.
- Other statements that do <u>not fall into either</u> category are called contingent.
- the expressions $PV \sim P$ and $(PVQ) \leftrightarrow (QVP)$ are both tautologies, for e.g.

TAUTOLOGY

Examples

Use the truth table to determine if the following is tautology

$$P \rightarrow ((\sim P) \rightarrow Q)$$

Determine if the following is tautology

$$PV \sim (P \wedge Q)$$

Determine if the following is tautology

$$(P \land Q) \rightarrow (P \lor R)$$

LOGICALLY EQUIVALENT

Logically equivalent

The compound propositions p and q are called logically equivalent if p q is a tautology. The notation p ≡ q denotes that p and q are logically equivalent, e.g.

$$- \sim P \lor Q$$
 and $\sim P \land \sim Q$

- Practice
 - Determine if $((\sim P) \rightarrow Q)$ and $P \land \sim Q$ is logically equivalent

LOGICALLY EQUIVALENT

TABLE Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws