CS6670: Computer Vision

Noah Snavely

Lecture 2: Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

CS6670: Computer Vision Noah Snavely

Lecture 2: Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

CS6670: Computer Vision Noah Snavely

Lecture 2: Image filtering

CS6670: Computer Vision

Noah Snavely

Lecture 2: Image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Reading

• Szeliski, Chapter 3.1-3.2

Source: A. Efros

A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

- We can think of a (grayscale) image as a **function**, f, from \mathbb{R}^2 to \mathbb{R} (or a 2D *signal*):
 - -f(x,y) gives the **intensity** at position (x,y)

snoop

3D view

A digital image is a discrete (sampled, quantized) version of this function

Image transformations

 As with any function, we can apply operators to an image

 We'll talk about a special kind of operator, convolution (linear filtering)

Question: Noise reduction

 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

What's the next best thing?

Image filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3		
4	5	1		
1	1	7		

Local image data

	7	

Modified image data

Linear filtering

- One simple version: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Source: L. Zhang

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Convolution

Mean filtering

	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
H	0	0	0	0	0	0	0	0	0	0
11	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Source: D. Lowe

Shifted left By 1 pixel

Source: D. Lowe

Original

Source: D. Lowe

(accentuates edges)

Sharpening

before after

Smoothing with box filter revisited

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Gaussian filters

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

– Convolving two times with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Sharpening

before after

Sharpening revisited

What does blurring take away?

=

Let's add it back:

+ α

=

Source: S. Lazebnik

Sharpen filter

Sharpen filter

Convolution in the real world

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Questions?

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Characterizing edges

An edge is a place of rapid change in the image intensity function

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz

Image gradient

 $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

 $\frac{\partial f}{\partial x}$

Effects of noise

Noisy input image

Where is the edge?

Source: S. Seitz

Solution: smooth first

To find edges, look for peaks in $\frac{d}{dx}(f*h)$

Source: S. Seitz

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$
- This saves us one operation:

2D edge detection filters

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

Side note: How would you compute a directional derivative?

Derivative of Gaussian filter

$$\cos(\theta)$$
 + $\sin(\theta)$ =

The Sobel operator

Common approximation of derivative of Gaussian

1	1	2	1		
8	0	0	0		
	-1	-2	-1		
		$\overline{s_y}$			

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value

Sobel operator: example

Source: Wikipedia

Example

original image (Lena)

Finding edges

gradient magnitude

Finding edges

thresholding

Non-maximum supression

- Check if pixel is local maximum along gradient direction
 - requires interpolating pixels p and r

Finding edges

thresholding

Finding edges

thinning

(non-maximum suppression)

Canny edge detector

MATLAB: edge (image, 'canny')

Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Canny edge detector

 Still one of the most widely used edge detectors in computer vision

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Depends on several parameters:

 σ : width of the Gaussian blur

high threshold low threshold

Canny edge detector

- ullet The choice of ${oldsymbol{\sigma}}$ depends on desired behavior
 - large σ detects "large-scale" edges
 - small σ detects fine edges

Scale space (Witkin 83)

- Properties of scale space (w/ Gaussian smoothing)
 - edge position may shift with increasing scale (σ)
 - two edges may merge with increasing scale
 - an edge may *not* split into two with increasing scale

Questions?

• 3-minute break

Images as vectors

Very important idea!

(A 2D, n x m image can be represented by a vector of length nm formed by concatenating the rows)

Vector

Multiplying row and column vectors

```
\begin{bmatrix} 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = ?
```

Filtering as matrix multiplication

Γ	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	Γ	0	
	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0.2		0	
	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0		0	
	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0		0	
	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0		0	
	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0		0	
	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0		0	
	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0		0	
	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0		1	
	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0		1	
	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0		1	
	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0		1	
	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0		1	
	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2		1	
	0.2	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2		1	
	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	L	1 _	

What kind of filter is this?

Filtering as matrix multiplication

Another matrix transformation

1D Discrete cosine transform (DCT) basis

2D DCT basis

Another matrix transformation

2D DCT basis

A. + 6.13

1D Discrete cosine transform (DCT) basis