November 1995

CD4046BM/CD4046BC Micropower Phase-Locked Loop

General Description

The CD4046B micropower phase-locked loop (PLL) consists of a low power, linear, voltage-controlled oscillator (VCO), a source follower, a zener diode, and two phase comparators. The two phase comparators have a common signal input and a common comparator input. The signal input can be directly coupled for a large voltage signal, or capacitively coupled to the self-biasing amplifier at the signal input for a small voltage signal.

Phase comparator I, an exclusive OR gate, provides a digital error signal (phase comp. I Out) and maintains 90° phase shifts at the VCO center frequency. Between signal input and comparator input (both at 50% duty cycle), it may lock onto the signal input frequencies that are close to harmonics of the VCO center frequency.

Phase comparator II is an edge-controlled digital memory network. It provides a digital error signal (phase comp. II Out) and lock-in signal (phase pulses) to indicate a locked condition and maintains a 0° phase shift between signal input and comparator input.

The linear voltage-controlled oscillator (VCO) produces an output signal (VCO Out) whose frequency is determined by the voltage at the VCOIN input, and the capacitor and resistors connected to pin C1A, C1B, R1 and R2.

The source follower output of the VCO_{IN} (demodulator Out) is used with an external resistor of 10 k Ω or more.

The INHIBIT input, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode is provided for power supply regulation, if necessary.

Features

- Wide supply voltage range
- 3.0V to 18V
- Low dynamic power consumption
- 70 μW (typ.) at $f_0 = 10 \text{ kHz}, V_{DD} = 5V$
- VCO frequency
- 1.3 MHz (typ.) at $V_{DD} = 10V$
- Low frequency drift with temperature
- 0.06%/°C at $V_{DD} = 10V$
- High VCO linearity

1% (typ.)

Applications

- FM demodulator and modulator
- Frequency synthesis and multiplication
- Frequency discrimination
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Tone decoding
- FSK modulation
- Motor speed control

© 1995 National Semiconductor Corporation

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2)

if Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

DC Supply Voltage (V_{DD})

-0.5 to +18 V_{DC}

Input Voltage (V_{IN})

Small Outline

-0.5 to $V_{\mbox{\scriptsize DD}} + 0.5\,V_{\mbox{\scriptsize DC}}$

Storage Temperature Range (T_S)

-65°C to +150°C

Power Dissipation (PD) Dual-In-Line

700 mW 500 mW

260°C

Lead Temperature (T_L)

(Soldering, 10 seconds)

Recommended Operating

Conditions (Note 2)

DC Supply Voltage (V_{DD})

3 to 15 V_{DC} 0 to $V_{\mbox{\scriptsize DD}}\,V_{\mbox{\scriptsize DC}}$

Input Voltage (VIN)

Operating Temperature Range (TA)

CD4046BM CD4046BC

-55°C to +125°C

-40°C to +85°C

DC Electrical Characteristics CD4046BM (Note 2)

Symbol	Parameter	Conditions	-55°C		+ 25°C			+ 125°C		Units	
		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units	
I _{DD}	Quiescent Device Current	Pin 5 = V_{DD} , Pin 14 = V_{DD} , Pin 3, 9 = V_{SS}		·							
		$V_{DD} = 5V$		5		0.005	5		150	μА	
		V _{DD} = 10V		10		0.01	10		300	μΑ	
		V _{DD} = 15V		20		0.015	20		600	μΑ	
		Pin 5 = V_{DD} , Pin 14 = Open, Pin 3, 2 = V_{SS}									
		$V_{DD} = 5V$		45		5	35		185	μА	
		$V_{DD} = 10V$		450		20	350		650	μΑ	
		V _{DD} = 15V		1200		50	900		1500	μΑ	
VOL	Low Level Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	V	
		V _{DD} = 10V		0.05		0	0.05		0.05	V	
		V _{DD} = 15V		0.05		0	0.05		0.05	<u> </u>	
VOH	High Level Output Voltage	00	4.95		4.95	5		4.95		V	
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V	
		V _{DD} = 15V	14.95	ļ	14.95	15		14.95		V	
V _{IL}	Low Level Input Voltage Comparator and Signal In	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	V	
		$V_{DD} = 10V$, $V_{O} = 1V$ or $9V$		3.0		4.5	3.0		3.0	٧	
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6.25	4.0		4.0		
VIH	High Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		l v	
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$	7.0		7.0	5.5		7.0		V	
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	8.25		11.0		V	
IOL	(Note 4)	$V_{DD} = 5V, V_O = 0.4V$	0.64		0.51	0.88		0.36		mA	
		$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA	
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4	L	mA	
ЮН	High Level Output Current	, 0	-0.64		-0.51	-0.88		-0.36		mA	
	(Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	1.6		-1.3	-2.25		-0.9		mA	
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4	ļ	mA	
IN	Input Current	All Inputs Except Signal Input				İ					
		$V_{DD} = 14V, V_{IN} = 0V$		-0.1		-10-5			-1.0	μΑ	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10-5	0.1		1.0	μΑ	
CIN	Input Capacitance	Any Input (Note 3)							7.5	рF	
P _T	Total Power Dissipation	$f_0 = 10 \text{ kHz}, R1 = 1 \text{ M}\Omega$ $R2 = \infty, VCO_{IN} = V_{DD}/2$									
		$V_{DD} = 5V$				0.07				mW	
		V _{DD} = 10V				0.6				mW	
		$V_{DD} = 15V$		l		2.4	l			mW	

Symbol	Parameter	Conditions	-40°C			+ 25°C		+85°C		
			Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	Pin 5 = V_{DD} , Pin 14 = V_{DD} , Pin 3, 9 = V_{SS}								
		V _{DD} = 5V V _{DD} = 10V		20		0.005	20		150	μΑ
		V _{DD} = 15V		40 80		0.01 0.015	40 80		300 600	μΑ
		Pin 5 = V _{DD} , Pin 14 = Open, Pin 3, 9 = V _{SS} V _{DD} = 5V		70		***				
		V _{DD} = 10V		70 530		5 20	55 410		205 710	μΑ
		V _{DD} = 15V		1500		50	1200		1800	μA μA
VOL	Low Level Output Voltage	V _{DD} = 5V		0.05		0	0.05		0.05	v
		V _{DD} = 10V		0.05		0	0.05		0.05	V
		V _{DD} = 15V		0.05		0	0.05		0.05	V
V _{OH}	High Level Output Voltage		4.95		4.95	5		4.95		v
		V _{DD} = 10V V _{DD} = 15V	9.95 14.95		9.95	10		9.95		V
VIL	Low Level Input Voltage		14.85	4 5	14.95	15		14.95		V
	Comparator and Signal In	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$ $V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$		1.5 3.0		2.25 4.5	1.5 3.0		1.5 3.0	V
	,	$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6.25	4.0		4.0	v
V _{IH}	High Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		v
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$	7.0		7.0	5.5		7.0		v
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	8.25		11.0		V
lOL	Low Level Output Current	$V_{DD} = 5V, V_O = 0.4V$	0.52		0.44	0.88		0.36		mA
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
1	High I good Outgot Comment	$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
ЮН	High Level Output Current (Note 4)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$	-0.52 -1.3		-0.44	-0.88		-0.36		mA
	(1010 4)	$V_{DD} = 15V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-1.3		1.1 3.0	-2.25 -8.8		-0.9 -2.4		mA mA
I _{IN}	Input Current	All Inputs Except Signal Input VDD = 15V, VIN = 0V		-0.3		-10-5	-0.3	2.4	-1.0	μА
		V _{DD} = 15V, V _{IN} = 15V		0.3		10-5	0.3		1.0	μΑ
C _{IN}	Input Capacitance	Any Input (Note 3)					7.5			pF
PŢ	Total Power Dissipation	$f_0 = 10$ kHz, R1 = 1 M Ω , R2 = ∞ , VCO _{IN} = V _{DD} /2 V _{DD} = 5V V _{DD} = 10V				0.07 0.6				mW
1		V _{DD} = 15V				2.4			1	mW mW

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = ov$ unless otherwise specified.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: $I_{\mbox{\scriptsize OH}}$ and $I_{\mbox{\scriptsize OL}}$ are tested one output at a time.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VCO SECT	TION		·····		·	l.,,,
IDD	Operating Current	$f_0 = 10 \text{ kHz}, R1 = 1 \text{ M}\Omega,$ $R2 = \infty, VCO_{IN} = V_{DD}/2$ $V_{DD} = 5V$		20		μА
		V _{DD} = 10V V _{DD} = 15V		90 200		μA μA
^f MAX	Maximum Operating Frequency	C1 = 50 pF, R1 = 10 k Ω , R2 = ∞ , VCO _{IN} = V _{DD} V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V	0.4 0.6 1.0	0.8 1.2 1.6		MHz MHz MHz
	Linearity	$VCO_{IN} = 2.5V \pm 0.3V,$ $R1 \ge 10 k\Omega, V_{DD} = 5V$ $VCO_{IN} = 5V \pm 2.5V,$	1.0	1		%
		R1 ≥ 400 kΩ, V_{DD} = 10V VCO _{IN} = 7.5V ±5V, R1 ≥ 1 MΩ, V_{DD} = 15V		1		% %
	Temperature-Frequency Stability No Frequency Offset, f _{MIN} = 0	$\%/^{\circ}C \propto 1/f. V_{DD}$ $R2 = \infty$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.12-0.24 0.04-0.08 0.015-0.03		%/°(%/°(%/°(
	Frequency Offset, f _{MIN} ≠ 0	V _{DD} = 5V V _{DD} = 10V V _{DD} = 15V	· · · · · · · · · · · · · · · · · · ·	0.06-0.12 0.05-0.1 0.03-0.06		%/°C %/°C
VCOIN	Input Resistance	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		10 ⁶ 10 ⁶ 10 ⁶		MΩ MΩ MΩ
vco	Output Duty Cycle	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		50 50 50		% % %
t _{THL}	VCO Output Transition Time	$V_{DD} = 5V$		90	200	ns
^t THL		V _{DD} = 10V V _{DD} = 15V		50 45	100 80	ns ns

*AC Parameters are guaranteed by DC correlated testing.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
PHASE CO	MPARATORS SECTION			·		<u></u>
R _{IN}	Input Resistance					
	Signal Input	$V_{DD} = 5V$	1	3		МΩ
		V _{DD} = 10V	0.2	0.7		MΩ
		V _{DD} = 15V	0.1	0.3		MΩ
	Comparator Input	$V_{DD} = 5V$		106	:	MΩ
		V _{DD} = 10V		106		MΩ
		V _{DD} = 15V	<u> </u>	106		MΩ
	AC-Coupled Signal Input Voltage	C _{SERIES} = 1000 pF				
	Sensitivity	f = 50 kHz				
		$V_{DD} = 5V$		200	400	m∨
		V _{DD} = 10V		400	800	mV
		V _{DD} = 15V		700	1400	mV
DEMODUL	ATOR OUTPUT			<u> </u>		
VCO _{IN} -	Offset Voltage	$RS \ge 10 \text{ k}\Omega, V_{DD} = 5V$		1.50	2.2	V
V_{DEM}		$RS \ge 10 \text{ k}\Omega, V_{DD} = 10V$		1.50	2.2	v
		$RS \ge 50 \text{ k}\Omega, V_{DD} = 15V$		1.50	2.2	v
	Linearity	RS ≥ 50 kΩ				
		$VCO_{1N} = 2.5V \pm 0.3V, V_{DD} = 5V$		0.1		%
	İ	$VCO_{IN} = 5V \pm 2.5V, V_{DD} = 10V$		0.6		%
		$VCO_{IN} = 7.5V \pm 5V, V_{DD} = 15V$		0.8		%
ZENER DIC	DDE					
V _Z	Zener Diode Voltage	I _Z = 50 μA	6.3	7.0	7.7	٧
RZ	Zener Dynamic Resistance	I _Z = 1 mA		100		Ω

^{*}AC Parameters are guaranteed by DC correlated testing.

FIGURE 5a

FIGURE 5b

C1 – VCO TIMING CAPACITOR (μ F)

TL/F/5968-13

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, PD (Total) = PD (f₀) + PD (f_{MIN}) + PD (Rs); Phase Comparator II, PD (Total) = PD (f_{MIN}).

FIGURE 7. Typical VCO Linearity vs R1 and C1

Note: To obtain approximate total power dissipation of PLL system for no-signal input. Phase Comparator I, PD (Total) = PD (f₀) + PD (f_{MIN}) + PD (Rs); Phase Comparator II, PD (Total) = PD (f_{MIN}).

Design Information

This information is a guide for approximating the value of external components for the CD4046B in a phase-locked-loop system. The selected external components must be within the following ranges: R1, R2 \geq 10 k Ω , RS \geq 10 k Ω , C1 \geq 50 pF.

In addition to the given design information, refer to *Figure 5* for R1, R2 and C1 component selections.

Characteristics		Comparator I	Using Phase Comparator II			
Citaracteristics	VCO Without Offset R2 = ∞	VCO With Offset	VCO Without Offset R2 = ∞	VCO With Offset		
VCO Frequency	V _B O ² V _B O VEB INVIT VOLTAGE TL/F/5968-7	VDDYZ VDD VCO IMPUT VDLTAGE TL/F/5968-B	NAIN VBD-2 VBD VCO INPUT VGLTAGE TL/F/5968-9	V _{0D} /2 V _{0D} V _{0D} /2 V _{0D} V ₀ /2		
For No Signal Input	VCO in PLL sy to center f	ystem will adjust requency, f _o	VCO in PLL system will adjust to lowest operating frequency, f _{min}			
Frequency Lock Range, 2 f _L		2 f _L = full VCO 2 f _L = f _n	frequency range			
Frequency Capture Range, 2 f _C	18 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$2\mathrm{f_C}pproxrac{1}{\pi}\sqrt{rac{2\pi\mathrm{f_L}}{ au^{1}}}$	f _C = f _L			
Loop Filter Component Selection	R3 → ○ 8UT R4 ← C2 TL/F/5968-12	For 2 f _C , see Ref.				
Phase Angle Between Single and Comparator		ncy (f _o), approximating Is of lock range (2 f _l)	Always 0° in lock			
Locks on Harmonics of Center Frequency		/es	No			
Signal Input Noise Rejection	F	ligh	L)W		
VCO Component Selection	Given: f ₀ . Use f ₀ with Figure 5a to determine R1 and C1.	Given: f_o and f_L . Calculate f_{min} from the equation $f_{min} = f_o - f_L$. Use f_{min} with Figure 5b to determine R2 and C1. Calculate $\frac{f_{max}}{f_{min}}$ from the equation $\frac{f_{max}}{f_{min}} = \frac{f_o + f_L}{f_o - f_L}$. Use $\frac{f_{max}}{f_{min}}$ with Figure 5c f _{min} to determine ratio R2/	Given: f_{max} . Calculate f_0 from the equation $f_0 = \frac{f_{max}}{2}.$ Use f_0 with Figure 5a to determine R1 and C1.	Given: f _{min} and f _{max} . Use f _{min} with Figure 5b to determine R2 and C1. Calculate f _{max} /f _{min} Use f _{max} /f _{min} to determine ratio R2/R1 to obtain R1.		

References

G.S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965. Floyd Gardner, "Phaselock Techniques", John Wiley & Sons, 1966.

Physical Dimensions inches (millimeters) (Continued) ह्वि ६५ ६४ । १३ ६४ । १५ । १५ । 16 15 T INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 2 3 4 5 6 7 8 1 2 IDEN1 OPTION 01 OPTION 02 0.065 4º TYP OPTIONAL 0.060 (1.524) TYP $\frac{0.300 - 0.320}{(7.620 - 8.128)}$ (3.302 ± 0.127) Ŧ $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ Ŧ 95° ± 5° 0.008 = 0.016 (0.203 = 0.406) TYP 0.020 90°±4° TYP 0.280 (7.112) 0.125 - 0.150 (3.175 - 3.810) (0.762 ± 0.381) MIN 0.014 - 0.023 0.100 ± 0.010 (2.540 ± 0.254) TYP (0.325^{+0.040} -0.015 0.050 ± 0.010 (1.270 ± 0.254) N16E (REV F) (8.255 +1.016 -0.381 Order Number CD4046BMN or CD4046BCN NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch 16: (+49) 0-180-530 85 85 English 7el: (+49) 0-180-532 78 32 Français 7el: (+49) 0-180-532 78 36 Italiano 7el: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent ticenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

12