TD n°3: Quotients et groupes usuels 3 et 6/10/2023

Nous traiterons dans l'ordre les exercices 1, 3, 4, 6 et 8. Vous pouvez naviguer librement parmi les exercices restants ou parmi ceux de votre polycopié. Les exercices les plus délicats de la feuille sont marqués d'un .

Je reste disponible pour toute question concernant le TD, des maths, ou toute autre chose au bureau T13 (j'y suis à coups sûrs les mardis et vendredis juste avant le TD). Vous pouvez également m'envoyer un mail à nataniel.marquis@dma.ens.fr.

1 Groupes quotients

Exercice 1. Centre et automorphismes intérieurs

Soit G un groupe. Nous notons $Z(G) = \{g \in G \mid \forall h \in G, gh = hg\}$ le centre de G.

1. Démontrer que l'application

Int:
$$G \to \operatorname{Aut}(G), g \mapsto [h \mapsto ghg^{-1}]$$

qui à tout élément g associe la conjugaison par g est bien définie et qu'il s'agit d'un morphisme de groupes de noyau $\mathbf{Z}(G)$.

2. Nous définissons le sous-groupe des automorphismes intérieurs comme l'image Int(G). Déduire de la question précédente que Z(G) est un sous-groupe distingué de G et qu'il existe un isomorphisme de groupes

$$\operatorname{Int}(G) \cong G/\operatorname{Z}(G)$$
.

3. Démontrer que Int(G) est un sous-groupe distingué de Aut(G).

Exercice 2. Conjugués et ordre

- 1. Soit G un groupe fini. Montrer que deux éléments conjugués de G ont même ordre. La réciproque est-elle vraie?
- 2. Trouver tous les groupes abéliens finis pour lesquels la réciproque est vérifiée.

Exercice 3. Quotient par le centre

Soit G un groupe tel que G/Z(G) est monogène. Démontrer que G est abélien. Que pouvons-nous déduire de ce résultat concernant le quotient de H_8 par son centre?

Exercice 4. Sous-groupes d'un quotient

Soit G un groupe, soit $H \triangleleft G$ l'un de ses sous-groupes distingués et $\pi: G \to G/H$ la projection associée.

1. Soit K un sous-groupe de G. Démontrer que $K\cap H \triangleleft K$ puis que π induit un isomorphisme

$$K/K \cap H \cong \pi(K)$$
.

Nous voulons à présent décrire les sous-groupes de G/H en fonction de ceux de G, puis les quotients correspondant à ceux des sous-groupes qui sont distingués.

2. Démontrer que l'application suivante est une bijection :

$$\{K \le G \mid H \subseteq K\} \to \{\Delta \le G/H\}, K \mapsto \pi(K).$$

- 3. Démontrer que cette bijection est croissante pour l'inclusion et qu'elle envoie les sous-groupes distingués de G contenant H exactement sur les sous-groupes distingués de G/H.
- 4. Soit K un sous-groupe distingué de G contenant H. Construire un isomorphisme

$$G/K \cong (G/H)/(K/H)$$
.

Exercice 5. Simplification des groupes finis

Le but de cet exercice est de montrer que si G, H et K sont trois groupes finis et si on a un isomorphisme $G \times H \cong G \times K$ alors $H \cong K$. On notera M(G,H) le nombre de morphismes de groupes de G dans H et I(G,H) le nombre de morphismes de groupes de G dans H qui sont injectifs.

1. Soit G et H deux groupes finis, montrer que

$$\mathcal{M}(G,H) = \sum_{\Gamma \triangleleft G} \mathcal{I}(G/\Gamma,H).$$

En déduire qu'il existe une famille d'entiers $(a_{\Gamma})_{\Gamma \triangleleft G}$ indexée sur les sous-groupes distingués de G telle que

$$I(G, H) = \sum_{\Gamma \triangleleft G} a_{\Gamma} M (G/\Gamma, H).$$

- 2. Soit G, H, K trois groupes finis tels qu'on ait un isomorphisme $G \times H \cong G \times K$. Montrer que pour tout groupe fini X on a I(X, H) = I(X, K). Conclure que $H \cong K$.
- 3. Trouver un contre-exemple si G est infini.

2 Groupes usuels

Exercice 6. Sous-groupes de Q, première édition

L'exercice suivant porte sur les sous-groupes de \mathbb{Q} . On note \mathbb{P} l'ensemble des nombres premiers, s'inspirant de Steinitz, on appelle nombre superrationnel toute collection $s=(s_p)_{p\in\mathbb{P}}$ telle que pour tout premier p on a $s_p\in\mathbb{Z}\coprod\{+\infty\}$ et que seul un nombre fini des s_p est négatif. On note \mathcal{S} l'ensemble des nombres superrationnels. On appelle entiers supernaturels les nombres superrationnels dont toutes les "coordonnées" sont positives.

On dispose d'une application naturelle $\iota: \mathbb{Q} \to \mathcal{S}$, associant à $r \in \mathbb{Q}_+$ l'élément $(\mathbf{v}_p(r))_{p \in \mathbb{P}}$, où $\mathbf{v}_p: \mathbb{Q} \to \mathbb{Z} \coprod \{+\infty\}$ est la valuation p-adique ². Deux rationnels ret r' ont même image si et seulement si $r = \pm r'$. Cette application envoie les entiers sur des entiers supernaturels.

On munit l'ensemble S des nombres superrationnels de la relation d'ordre $s \leq s' \Leftrightarrow s_p \leq s'_p$ pour tout $p \in \mathbb{P}$.

^{1.} Un nombre superrationnel est parfois noté suggestivement $\prod_{p\in\mathbb{P}} p^{s_p}$, en omettant éventuellement les exposants nuls, par exemple on a $2^{+\infty} 3 5^{+\infty} / 7^2 \in \mathcal{S}$.

^{2.} Par définition $\mathbf{v}_p(x)$ vaut $+\infty$ si $x \in \mathbb{Q}$ est nul, et sinon, c'est l'unique entier $m \in \mathbb{Z}$ tel que x s'écrive sous la forme $p^m a/b$ avec a et b entiers et premiers à p.

1. Vérifier les affirmations des paragraphes précédents. Montrer ensuite que l'on a n|m dans \mathbb{N} si et seulement si $\iota(n) \leq \iota(m)$.

- 2. Démontrer que tout superrationnel s'écrit de manière unique comme $s_+ s_-$ où s_+ est un entier supernaturel, s_- est l'image d'un vrai entier par ι , et où s_+ et s_- n'ont pas de coordonnées simultanément non nulles.
- 3. Montrer que toute famille de (S, \preceq) possède une borne supérieure.

Pour $s \in \mathcal{S}$ on note $H_s \subset \mathbb{Q}$ l'ensemble des rationnels r = a/b sous forme irréductible tels que $s_- \leq \iota(a)$ et que $\iota(b) \leq s_+$. On se propose de montrer que $s \mapsto H_s$ est une bijection croissante de \mathcal{S} sur l'ensemble des sous-groupes non réduits à $\{0\}$ de \mathbb{Q} .

- 3. Montrer que H_s est un sous-groupe de \mathbb{Q} , et que l'on a $H_s \subset H_{s'} \Leftrightarrow s \leq s'$. Décrire $H_{\iota(r_1)}$ pour $r_1 \in \mathbb{Q}^{\times}$.
- 4. Soit G un sous-groupe de \mathbb{Q} contenant \mathbb{Z} . En posant s_G la borne supérieure de tous les dénominateurs des éléments de G, démontrer que $G = H_{s_G}$.
- 5. Conclure à la bijectivité (sans l'hypothèse que G contienne \mathbb{Z}).
- 6. À quels nombres superrationnels les sous-groupes \mathbb{Z} et \mathbb{O} correspondent-ils?

Exercice 7. Sous-groupes de Q, deuxième édition

Cet exercice va un peu plus loin dans la description des sous-groupes de \mathbb{Q} . Il répond d'abord à la question de classement à isomorphisme près. Nous fournissons moins d'étapes intermédiaires qu'à l'exercice précédent.

- 1. Démontrer que $H_s \cong H_{s'}$ en tant que groupes si et seulement si s et s' diffère en un nombre fini de coordonées et qu'ils sont différents de $+\infty$ en ces coordonnées.
- 2. Démontrer que pour tout sous ensemble $\mathcal{T} \subseteq \mathcal{S}$, nous avons l'identité

$$\sum_{t \in \mathcal{T}} H_t = H_{\sup \mathcal{T}}.$$

Nous finissons par quelques questions questions concernant les sous-groupes de \mathbb{Q}/\mathbb{Z} .

- 3. Quels sont les sous-groupes de \mathbb{Q}/\mathbb{Z} ?
- 4. Le groupe de Prüfer associé à p, $\mathbb{U}_{p^{\infty}}$, est défini comme le sous-groupes de \mathbb{C}^{\times} formé des racines p^n -ièmes de l'unité pour un certain n. Démontrer que les groupes de Prüfer sont deux à deux non isomorphes.
- 5. En démontrant que le sous-groupes des racines de l'unité dans \mathbb{C}^{\times} est isomorphe à \mathbb{Q}/\mathbb{Z} , trouver les sous-groupes du sous-groupe $\mathbb{U}_{p^{\infty}}$.
- 6. Démontrer que

$$\mathbb{Q}/\mathbb{Z} = \bigoplus_{p \in \mathbb{P}} H_{p^{\infty}}/\mathbb{Z}$$

où la somme directe est définie de manière analogue aux espaces vectoriels. Déterminer tous les sous-groupes de \mathbb{Q}/\mathbb{Z} et démontrer qu'ils sont deux à deux non isomorphes.

Exercice 8. Théorème de Kronecker et conséquences

Cet exercice a pour but de démontrer et d'utiliser le théorème de Kronecker sur les sous-groupes de \mathbb{R} .

1. Démontrer qu'un sous-groupe de $\mathbb R$ est soit dense, soit de la forme $x\mathbb Z$ pour un certain réel positif x.

2. Déterminer lesquels des sous-groupes denses 3 de $\mathbb R$ suivants sont isomorphes :

$$\mathbb{R}, \ \mathbb{Q}, \ H_{p^{\infty}} \ \text{pour} \ p \ \text{premier}, \ \mathbb{Z} + \sqrt{2}\mathbb{Z}, \ \mathbb{Z} + \sqrt{3}\mathbb{Z}, \ \sum_{i \in I \backslash \{i_0\}} x_i \mathbb{Q}$$

où $(x_i)_{i\in I}$ est une \mathbb{Q} -base de \mathbb{R} et où $i_0\in I$.

- 3. Démontrer que pour tout irrationnel α , le sous-groupe $\mathbb{Z} + \alpha \mathbb{Z}$ est dense dans \mathbb{R} . En déduire que la suite $(\cos(n))_{n>1}$ est dense dans [-1,1].
- 4. Démontrer que le sous-groupe $2^{\mathbb{Z}}3^{\mathbb{Z}}$ de \mathbb{R}_{+}^{\times} est dense.
- 5. \blacksquare Démontrer que le sous-monoïde $2^{\mathbb{N}}3^{-\mathbb{N}}$ de \mathbb{R}_+^{\times} est dense.

igoplus Exercice 9. Sous-groupes de \mathbb{R}^n

Nous fixons dans cet exercice un entier naturel n. Nous cherchons à comprendre davantage les sous-groupes de \mathbb{R}^n .

1. Soit G un sous-groupe fermé de \mathbb{R}^n . Démontrer qu'il existe (V, W), sous-espaces vectoriels supplémentaires de \mathbb{R}^n et un sous-groupe discret $\Gamma \subset W$ tel que

$$G = V \oplus \Gamma$$
.

Indication : on pourra considérer le sous-R-espace vectoriel maximal inclus dans G.

2. Soit G un sous-groupe de \mathbb{R}^n . Démontrer qu'il existe (V, W), sous-espaces vectoriels supplémentaires de \mathbb{R}^n , un sous-groupe dense $\tilde{G} \subseteq V$ et un sous-groupe discret $\Gamma \subset W$ tel que

$$G = \tilde{G} \oplus \Gamma$$
.

Exercice 10. Morphismes vers $\mathbb C$

1. Démontrer que pour tout $\alpha \in \mathbb{C}$, l'application

$$\varphi_{\alpha}: \mathbb{R} \to \mathbb{C}, \ x \mapsto \alpha x$$

est un morphisme de groupe continu de $(\mathbb{R},+)$ vers $(\mathbb{C},+)$, puis que ce sont les seuls. Sont-ce les seuls?

2. Démontrer que pour tout $\alpha \in \mathbb{C}$, l'application

$$\exp_{\alpha}: \mathbb{R} \to \mathbb{C}^{\times}, \ x \mapsto e^{\alpha x}$$

est un morphisme de groupe continu de $(\mathbb{R},+)$ vers $(\mathbb{C}^{\times},\times)$, puis que ce sont les seuls.

3. En déduire que tout morphisme de groupes continu de \mathbb{U} vers \mathbb{C}^{\times} est de la forme $z\mapsto z^n$ pour un certain $n\in\mathbb{Z}$.

^{3.} On pourra vérifier qu'ils sont effectivement denses.

3 Inclassé

Exercice 12. Autour de symboles de Legendre

Nous commençons par faire une analyse de certains symboles de Legendre.

1. Soit p un nombre premier impair. Démontrer de deux manières différentes que -3 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $X^2 + X + 1$ possède une racine dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $X^3 - 1$ y est scindé 4 .

<u>Remarque</u>: on pourra considérer le discriminant du polynôme, ou bien s'inspirer de l'identité $2e^{2i\pi/3} = -1 + i\sqrt{3}$ valable dans \mathbb{C} .

- 2. En déduire que -3 est un carré modulo p si et seulement si p=2,3 ou si $p\equiv 1$ [3].
- 3. En s'inspirant de l'égalité $e^{2i\pi/8} + e^{-2i\pi/8}$ dans \mathbb{C} , démontrer que 2 est un carré modulo p dès lors que $p \equiv 1$ [8].

Nous finissons l'exercice par l'analyse d'un cas particulier. Nous supposons que $p=2^m-1$ pour un entier $m\geq 3$.

- 4. Donner un exemple de tel premier, puis démontrer que m doit être premier.
- 5. Démontrer que -3 et 2 sont des carrés. Ceci prouve en particulier que la question 3 n'est pas une équivalence 5 . Quels carrés se trouvent parmi 3 et 6?

FIGURE 1 – Puissance 702^{iéme} appliquée aux racines 1002-ièmes.

 $^{4.\ {\}rm Cela}$ signifie qu'il se factorise comme produit de polynômes de degré 1.

^{5.} L'exercice 2.20 du polycopité répond complètement à la question du symbole de Legendre de 2.