Software Design of a DDD Pacemaker

Vera Zhang

Step1. Natural pacemaker: Periodically generates electrical impulses to initialize heart beats

Step2. An impulse first triggers muscle contractions in the atria, pushing blood into the ventricles

Step3. Delay at AV node allows the blood to fill fully in ventricles

Step4. Strong muscle contractions pump blood out of the ventricles

Normal Sinus Rhythm

Bradycardia

Supraventricular tachycardia (SVT)
Tachycardia

Motivation

Heart contraction can be triggered by external electrical events

Problem

Design a dual-chamber pacemaker giving electrical pacing whenever need to:

- Treat Bradycardia safely
- Not make Tachycardia worse (SVT → VT)

Slow generation

Delayed conduction

Blocked conduction

Atrial Tachycardia Response

Thanks to **ERP** of **AV** Node, ventricle beats at a **safe** rate.

ERP of AV Node won't work, and Pacemaker gives VP at rate of URL

Problem

Design a dual-chamber pacemaker giving electrical pacing whenever need to:

- Treat Bradycardia safely
- Not make Tachycardia worse (SVT → VT)

Basic requirements for any heart condition:

- 1. No deadlock
- 2. Ventricular rate no less than 60 bpm
- 3. Ventricular rate no more than 150bpm

Additional requirement for ATR:

4. The pacemaker should not convert SVT into VT.

- 600,000 pacemaker recalled during 1990-2000
- 15% medical device recalls due to software errors

- How to validate the software design at an early development stage?
- How to ensure the software works as intended?
- Whether identified hazards have been mitigated?

- 600,000 pacemaker recalled during 1990-2000
- 15% medical device recalls due to software errors

- How to validate the software design at an early development stage?
- How to ensure the software works as intended?
- Whether identified hazards have been mitigated?

- 600,000 pacemaker recalled during 1990-2000
- 15% medical device recalls due to software errors

- How to validate the software design at an early development stage?
- How to ensure the software works as intended?
- Whether identified hazards have been mitigated?

- 600,000 pacemaker recalled during 1990-2000
- 15% medical device recalls due to software errors

- How to validate the software design at an early development stage?
- How to ensure the software works as intended?
- Whether identified hazards have been mitigated?

Basic requirements for any heart condition:

- 1. No deadlock
- 2. Ventricular rate no less than 60 bpm
- 3. Ventricular rate no more than 150bpm

Additional requirement for ATR:

4. The pacemaker should not convert SVT into VT.

- 1. A[] (not deadlock)
- 2. A[] (PLRL.two_v imply PLRL.t<=TLRI)
- 3. A[] (PURL.interval imply PURL.t==TURI)

4. A[] (not PPersist.err)

E1:Model Checking

Heart Model

Monitor for Requirement 3

DDD Pacemaker

basic requirements for all the possible heart conditions

A[] (not deadlock) 满足该性质. A[] (PLRL.two_v imply PLRL.t<=TLRI) 满足该性质. A[] (PURL.interval imply PURL.t>=TURI) 满足该性质.

E1:Model Checking

DDD Pacemaker

specific requirement for ATR

A[] (not PPersist.err) 满足该性质.

Heart Model

Conduction Path Model

Monitor for Requirement 4

E2:UPPAAL to Stateflow Model

Clocks were translated into counters

t<=trigger rate

atrFast! t=0

• Events were set to True for 1 time cycle

counter<=0_back!_durCount=0.if_switch=false

atrSlow?

E2:UPPAAL to Stateflow Model

Index	In matlab	In Simulink	test case(part)	Correspondence in UPP	ASpecification					
	Parameters									
1	Param.TLRI def	TLRI def		TLRI	The maximum interval between 2 ventricular events					
2	Param.TAVI_def	TAVI_def		TAVI	The minimum delay between a ventricular event and an atrial event					
3	Param.TPVARP def	TPVARP def		TPVARP	The period after each atrial event in which no Ain is accepted					
4	Param.TVRP def	TVRP def		TVRP	The period after each ventricular event in which no Vin is accepted					
- 5	Param.TURI def	TURI def		TURI	The minimal interval between 2 ventricular events					
6	Param.URI block	URI block		URI Block	The variable to record the state of URI (if it is in block state)					
7	Param.duration def	duration def		duration	A monitor counter to start Duration from Pre-duration					
8	Param.entry count def	entry count def		entry count	A counter measures fast-events in Pre-duration					
9	Param.triggerRate	triggerRate		triggerRate	sensing threshold for SVT Detector(ATR)					
	Local Varibales/Signals									
10	States.ifSwitch	ifSwitch		Switch!	Switch to VDI Pacemaker					
11	States.VS	VS		VS	Internal event indicating sensed ventricular event					
12	States.VP_internal	VP_internal		all VP	Internal event indicating VP is true					
13	States.AS	AS		PVARP-3	Internal event indicating sensed atrial event					
14	States.AR	AR		PVARP-7	Internal event indicating unsensed atrial event					
15	States.AP_internal	AP_internal		LRI-5,6	Internal event indicating AP is true					
16	States.AP_up	AP_up			additional variable used in simulink&matlab for track in LRI: To classify If there exists a AS when LRI is in the initial state or tigger a VP					
17	States.URI_block	URI_block		URI_Block	A varibale monitoring if URI is in block state, avi need to wait until URI unlocked to send a VP					
18	States.TVRP_cur	TVRP_cur		VRP-t	clock in VRP					
19	States.TPVARP_cur	TPVARP_cur		PVARP-t	clock in PVARP					
20	States.TAVI_cur	TAVI_cur		AVI-t	clock in AVI					
21	States.TLRI_cur	TLRI_cur		LRI-t	clock in LRI					
22	States.TURI_cur	TURI_cur		URI-t	clock in URI					
23	States.TMon_cur	TMon_cur		CounterModel-t	clock in CounterModel					
24	States.monitor	monitor		Pre_duration-2	Start monitors on intervals between two atrial events					
25	States.preCounter	preCounter		CounterModel-counter	A counter to record number of fast-interval					
26	States.durCounter	durCounter		Duration-durCount	Ventricular-event-timer for duration					
<u> </u>					Initialization					
0	T1	T1		Initial State	Initial internal events, output events and timers					
ļ					VRP					
	TV_1	TV_1	6,12,61,65,69,73,79		receive a sensed Vin, sent VS to Pacemaker, and get into VRP					
	TV_3	TV_3	7,13,62,66,70,74,80	3						
	TV_2	TV_2	21,27,34,41,48,87	2	receive VP and get into VRP-period					
	TV_4	TV_4	8,9,10,14,21,28,35,4		VRP-period					
31	TV_5	TV_5	11,15,22,29,36,43,60	5	get out of VRP-period					
<u> </u>					PVARP					
	TP_1	TP_1	2,4,16,24,31,38,83		receive a sensed Ain, sent AS to Pacemaker					
	TP_3	TP_3	3,5,17,25,32,39,84							
	TP_2	TP_2	6,12,20,27,34,41,48,		receive Ventricular event and get into PVARP-period					
	TP_5	TP_5	7,13,62,66,70,74,90		PVARP-period					
1	TP_4	TP_4	8,49,51,53,55,57,75,		receive a unsensed Ain, sent AR to Pacemaker					
	TP_7	TP_7	9,50,54,56,68,76,89							
37	TP_6	TP_6	10,14,21,28,35,42,59	6	get out of PVARP-period					

E3:Stateflow Model to Matlab Code

- 1-to-1 translation from the Stateflow model
- Function called every 1ms

```
switch States.Cur stateLRI
     case 'LRI off'
        if States.ifSwitch==1 %%% TL 1
            States.TLRI cur = States.TLRI cur-1;
            States.Cur stateLRI='SM LRI';
        elseif States.ifSwitch==0&&(States.VS==1||States.VP internal==1) %%% TL 2
             States.TLRI cur=Param.TLRI def;
        elseif States.ifSwitch==0&&States.AS==1 %%% TL 3
             States.TLRI cur = States.TLRI cur-1;
            States.Cur stateLRI='LRI wait';
        elseif States.ifSwitch==0 && States.TLRI cur>Param.TAVI def %%% TL 4
             States.TLRI cur=States.TLRI cur-1;
        elseif States.ifSwitch==0 && States.TLRI cur<=Param.TAVI def %%% TL 5
            AP=1:
            States.AP up=1;
            States.AP internal=1;
            States.TLRI cur = States.TLRI cur-1;
            States.Cur stateLRI='LRI wait';
        else
         end
    case 'LRI wait'
        if States.AP up==1 %%% TL 6
            States.AP up=States.AP up+1;
            AP=0:
            States.AP internal=0;
             States.TLRI cur = States.TLRI cur-1;
        elseif States.ifSwitch==0&&(States.VS==1 || States.VP internal==1) %%% TL 7
             States.TLRI cur=Param.TLRI def;
             States.Cur stateLRI='LRI off';
         elseif States.ifSwitch==0 && States.TLRI cur>0 %%% TL 8
             States.TLRI cur=States.TLRI cur-1;
        elseif States.ifSwitch==0&&States.TLRI cur<=0 %%% TL 9
            VP=1;
            States.VP internal=1;
            States.Cur stateLRI='LRI VP up';
        else
         end
```

```
function [States, AP, VP] = HW3 YediZhang PM (Ain, Vin, States, Param)
AP=States.AP internal;
VP=States.VP internal;
switch States.Cur stateVRP
    case 'VRP off'
        if Vin==1 %%% TV 1
            States.VS=1;
            States.Cur stateVRP='VS up';
        elseif States.VP internal==1 %%% TV 2
            States.TVRP cur=Param.TVRP def;
            States.Cur stateVRP='VRP on';
        else
        end
    case 'VS up' %%% TV 3
        States.TVRP cur=Param.TVRP def;
        States.VS=0:
        States.Cur stateVRP='VRP on';
    case 'VRP on'
        if States.TVRP cur>0 %%% TV 4
            States.TVRP cur=States.TVRP cur-1;
        elseif States.TVRP cur<=0 %%% TV 5
            States.Cur stateVRP='VRP off';
        else
        end
end
switch States.Cur stateURI
    case 'URI off'
        if States.VS==1 || States.VP internal==1 %%% TU 1
            States.TURI cur=Param.TURI def;
            States.URI block=1;
            States.Cur stateURI='URI on';
        else
        end
    case 'URI on'
        if States.VS==1 || States.VP internal==1 %%% TU 2
            States.TURI cur=Param.TURI def;
            States.URI block=1;
        elseif States.TURI cur>0 %%% TU 3
            States.TURI cur=States.TURI cur-1;
        elseif States.TURI cur<=0 %%% TU 4
            States.URI block=0;
            States.Cur stateURI='URI off';
        end
end
```


• Test case generation (90')

		PO		P1				P2								P3/D0					P-1		PO		P1		P2		P3/D0				D1
						Test-	-Case N	lode Swit	ch (3,3)														Test-	Case N	node Swit	ch (3,3)							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
time(ms)	49	50	51	150	151	169	170	220	221	270	320	330	331	441	490	500	time(ms)	3423	3572	3574	3600	3601	3610	3611	3620	3621	3630	3631	3640	3641	3674	3724	3730
start state	S1	S1	\$103	\$31	\$103	\$31	\$436	8724	\$796	\$724	\$590	84	\$436	\$724	\$590	\$4	start state	\$7	S31	\$37	\$724	S796	\$724	S796	8724	\$796	\$724	S796	8724	\$797	\$725	\$581	S5
Input	49ms	Ain	1ms	Ain	1ms	Vin	1ms	Ain	1ms	49ms	50ms	Vin	1ms	100ms	50ms	Ain	Input	1ms	149ms	1ms	Ain	1ms	Ain	1ms	Ain	1ms	Ain	1ms	Ain	1ms	33ms	50ms	Vin
VRP						1	3	4	4	4	5	1	3	4	5		VRP			2	4	4	4	4	4	4	4	4	4	4	4	5	1
PVARP		1	3	1	3	2	5	4	7	6		2	5	6		1	PVARP			2	4	7	4	7	4	7	4	7	4	7	6		2
AVI		2	4	4	4	3										2	AVI	2	4	7													
LRI	4	3	8	8	8	7	4	4	4	4	4	2	4	4	4	3	LRI	6	9	11	4	4	4	4	4	4	4	4	4	4	4	4	2
URI						1	3	3	3	3	3	2	3	3	3	3	URI			1	3	3	3	3	3	3	3	3	3	3	3	3	2
Pre		1	2	2	4	2	2	4	4	2	2	2	2	2	2	4	Pre	2	2	2	4	2	4	2	4	2	4	2	4	2	2	2	2
Dur																1	Dur												1				2
output		AS		AS		VS		AR				VS				AS	output		VP		AR		AR		AR		AR		AR				VS
finish state	S1	\$103	\$31	\$103	\$31	\$436	\$724	\$796	\$724	\$580	\$4	\$436	\$724	\$580	\$4	\$107	finish state	\$31	\$37	\$724	S796	\$724	S796	\$724	8796	\$724	\$796	\$724	\$797	\$725	\$581	\$5	\$437
	P3/D0			D1					P2		D2					P1		D1				D2				D3				D4		P2	
						Test	-Case N	lode Swit	ch (3,3)														Test-	Case N	node Swit	ch (3,3)							
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
time(ms)	500	501	651	731	732	832	882	1132	1210	1211	1361	1362	1462	1512	1762	1860	time(ms)	3730	3731	3831	3881	3900	3901	4001	4051	4100	4101	4201	4251	4300	4301	4350	4351
start state	\$4	\$107	\$35	\$35	S50	\$725	\$581	S5	S2	\$104	\$32	S50	\$725	S581	S5	\$2	start state	\$5	\$437	\$725	\$581	\$5	\$437	\$725	S581	S5	\$437	\$725	S581	\$5	\$438	8744	\$816
Input	Ain	1ms	150ms	80ms	1ms	100ms	50ms	250ms	Ain	1ms	150ms	1ms	100ms	50ms	250ms	Ain	Input	Vin	1ms	100ms	50ms	Vin	1ms	100ms	50ms	Vin	1ms	100ms	50ms	Vin	1ms	Ain	1ms
VRP					2	4	5					2	4	5			VRP	1	3	4	5	1	3	4	5	1	3	4	5	1	3	4	4
PVARP	1	3			2	6			1	3		2	6			1	PVARP	2	5	6		2	5	6		2	5	6		2	5	4	7
AVI	2	4	6	5	7				2	4	5	7				2	AVI														1	1	1
LRI	3	8	8	7	4	4	4	4	3	8	7	4	4	4	4	3	LRI	2	4	4	4	2	4	4	4	2	4	4	4	2	1	15	15
URI	3	3	3	4	1	3	3	4				1	3	3	4		URI	2	3	3	3	2	3	3	3	2	3	3	3	2	3	3	3
Pre	4	2	2	2	2	2	2	2	3	2	2	2	2	2	2	3	Pre	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	2
Dur	1			2							2						Dur	2				2				2				3	5	5	5
output	AS			VP					AS		VP					AS	output	VS				VS				VS				VS		AR	
finish state	\$107	S35	\$35	S50	\$725	\$581	S5	\$2	\$104	\$32	S50	S725	\$581	S5	S2	\$104	finish state	\$437	\$725	\$581	85	\$437	S725	S581	S5	\$437	\$725	S581	S5	\$438	S744	S816	S744
			D3					PO		D4															P1					PO			
							-Case N																		rode Swit								
	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46		76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	
time(ms)	1860	1861	2011	2012	2112	2162	2412	2420	2421	2571	2572	2672	2722	2972	3422	3423	time(ms)	4351	4401	4451	4500	4501	4601	4651	4800	4901	4901	5501	5502	5550	5551	5552	
start state	S2	\$104	\$32	\$50	\$725	\$581	\$5	\$2	\$104	\$32	\$49	S724	\$580	\$4	S1	S7	start state	\$816	S744	\$600	\$24	\$456	S744	S600	\$24	S96	\$24	S21	\$15	\$744	\$816	S742	
Input	Ain	1ms	150ms	1ms	100ms	50ms	250ms	Ain	1ms	150ms	1ms	100ms	50ms	250ms	450ms	1ms	Input	1ms	50ms	50ms	Vin	1ms	100ms	50ms	Ain	1ms	100ms	600ms	1ms	Ain	1ms	1ms	
VRP				2	4	5			_		2	4	5				VRP	4	4	5	1	3	4	5					2	4	4	4	
PVARP	1	3		2	6			1	3		2	6					PVARP	7	6		2	2	6		1	3			2	4	7	5	
AVI	2	4	5	7				2	4	5	7					2	AVI	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
LRI	3	8	7	4	4	4	4	3	8	7	4	4	4	4	5	6	LRI	15	15	15	13	13	15	15	15	15	15	12	14	15	15	16	
URI				1	3	3	4				1	3	3	4			URI	3	3	3	2	3	3	3	3	3	4		1	3	3	3	
Pre	3	2	2	2	2	2	2	3	2	2	2	2	2	2	2	2	Pre	2	2	2	2	2	2	2	3	2	2	2	2	3	2	2	
Dur			2							4							Dur	5	5	5	5	5	5	5	5	5	5	5	5	5	6		
output	AS		VP					AS		VP					AP		output				VS				AS			VP		AR	-		
finish state	\$104	S32	\$50	\$725	\$581	\$5	S2	\$104	S32	\$49	\$724	\$580	\$4	\$1	S7	\$31	finish state	\$744	S600	\$24	\$456	\$744	S600	\$24	S96	\$24	\$21	S15	S744	\$816	8742	S724	

Test case generation

• Test case coverage criteria: 100%

27	TV_1	TV_1	6,12,61,65,69,73,79
28	TV_3	TV_3	7,13,62,66,70,74,80
29	TV_2	TV_2	21,27,34,41,48,87
30	TV_4	TV_4	8,9,10,14,21,28,35,42
31	TV_5	TV_5	11,15,22,29,36,43,60
32	TP_1	TP_1	2,4,16,24,31,38,83
34	TP_3	TP_3	3,5,17,25,32,39,84
33	TP_2	TP_2	6,12,20,27,34,41,48,6
36	TP_5	TP_5	7,13,62,66,70,74,90
35	TP_4	TP_4	8,49,51,53,55,57,75,8
38	TP_7	TP_7	9,50,54,56,68,76,89
37	TP_6	TP_6	10,14,21,28,35,42,59
39	TPC_1	TPC_1	2
40	TPC_2	TPC_2	3,4,6,7,10,11-15,17-
41	TPC_3	TPC_3	24,31,38,75,83,88
42	TPC_4	TPC_4	5,8,9,16,49,51,53,55,
43	TD_1	TD_1	16,57
44	TD_2	TD_2	19,26,33,61,65,69
45	TD_3	TD_3	73
46	TD_4	TD_4	40
47	TD_5	TD_5	74-88
48	TD_6	TD_6	89
49	TA_1	TA_1	74-89
50	TA_2	TA_2	2,16,24,31,38,46
51	TA_3	TA_3	6
52	TA_4	TA_4	3,4,5,17,25,32,39,47
53	TA_5	TA_5	19,26,33,40
54	TA_6	TA_6	18
55	TA_7	TA_7	20,27,34,41,48

56	TL_1	TL_1	74
57	TL_2	TL_2	12,61,65,69,73
58	TL_3	TL_3	2,16,24,31,38
59	TL_4	TL_4	1,7-11,13-15,20-23
60	TL_5	TL_5	45
61	TL_6	TL_6	46
62	TL_7	TL_7	6,19,26,33,40
63	TL_8	TL_8	3,4
64	TL_9	TL_9	47
66	TL_11	TL_11	48
67	TL_12	TL_12	86
69	TL_14	TL_14	87
68	TL_13	TL_13	79,80
70	TL_15	TL_15	75-78,81-85,88,89
71	TL_16	TL_16	90
72	TU_1	TU_1	6,20,27,34,41,48,87
73	TU_2	TU_2	12,61,65,69,73,79
74	TU_3	TU_3	7-11,13-18,21,22,28
75	TU_4	TU_4	19,23,30,37,44,85

Evaluation the conformance: the Stateflow Model and the Matlab Code

Validate on Matlab Code, using common Physiological Heart Models

S1.3: Hazard Analysis

- Hazard 1~5 were sufficiently mitigated
- Hazard 6 cannot be addressed with the current system architecture
- Hazard 6 was deemed tolerable

Index	Hazard	Severity	Frequency	Mitigation	Remaining Risks		
1	Slow ventricular rate	Intolerable	Frequent	Ventricular	None		
	-1		-	pacing			
2	Slow atrial rate	Intolerable	Frequent	Atrial pacing	None		
3	Pace on T wave	Intolerable	Probable	Ventricular	None		
	Taccom wave	mitorerubie	Trobuble	sensing	IVOITE		
4	Pacemaker Syndrome	Minor	Frequent	Timing Cycles	None		
4	i acemaker Symurome	IVIIIIOI	rrequent	monitoring	None		
5	Atrial Tachycardia	Minor	Probable	Mode Switch	None		
3	Response (ATR)	IVIIIIOI	Probable	Algorithm			
6	Endless loop	Minor	Probable	None	All		
6	tachycardia (ELT)	TOTTIVI	Probable	None	All		

Summary

Revision History

 Remove a lot of redundant transitions and invariants safely without losing any functionality when designing DDD pacemaker in UPPAAL.

Revision History

- Add Mode Switch functionality
- Remove one transition again when doing conformance testing with test cases safely without losing any functionality

PVARP

AVI

URI

t>=TVRP

Remaining Problems -- ELT

Remaining Problems -- ELT

For above solution

Not robust \rightarrow False negative when conduction delay $T_{cond} \in (100 \, \mathrm{ms}, 118 \, \mathrm{ms}) \cup (182 \, \mathrm{ms}, 250 \, \mathrm{ms})$

More Generally Speaking
 Direction undistinguishable → False positive when Atrial event is from SA node with AV block

Remaining Problems -- ELT

Add another lead → monitor path, instead of time

URI_Block==true

A[] (not PPersist.err)

Thank you!

Any Question?