Matthew Powers

J 620-386-4502 — ■ matthew.powers@ku.edu — ⊕ matthew.powers018.github.io — 🕥 github.com/matthew.powers018 —

Objective — To secure experiences that will provide insight to learn and gain experience in the aerospace community.

Education

University of Kansas, Lawrence KS

May 2025

Bachelor of Science in Aerospace Engineering

GPA: 4.0/4.0

Honors

Highest Distinction Graduate

May 2025

School of Engineering, University of Kansas, Lawrence KS

University Honors Graduate

May 2025

University of Kansas, Lawrence KS

Funding Advisory Committee

Aug. 2024 - May 2025

School of Engineering, University of Kansas, Lawrence KS

 Nominated as one of two aerospace seniors to serve on the student-led funding committee to allocate funds for School of Engineering organizations for the 2024-2025 academic year

Undergraduate GNC Scholar

Jan. 2025

AIAA SciTech Forum, Orlando FL

 Awarded one of five positions as an Undergraduate Guidance, Navigation, and Control Scholar for the AIAA SciTech Forum

Experience

Automatic Flight Controls System Intern

May 2025 - Aug. 2025

Garmin, Olathe KS

- Developed Monte Carlo analysis simulation for analysis of Emergency Autoland for a Non-Linear Aircraft Model to analyze the performance envelope of the algorithm
- Investigated impact of inner-loop gains on Emergency Autoland performance to recommend improvements to algorithm
- Consolidated findings into report and presentation delivered to a large audience (50 100 people)

Undergraduate Research Assistant

Sept. 2023 - Present

Garrison Flight Research Laboratory, University of Kansas, Lawrence KS

- Focused in Guidance, Navigation, and Control
- Independently researched and developed Lyapunov vector field based guidance algorithm for UAS target tracking
- Developed sensitivity analysis and Monte Carlo simulation for an optimized autonomous landing algorithm

Aviation Systems Test Intern

Sept. 2024 - Aug. 2024

Garmin, Olathe KS

- Utilized Hardware-in-the-Loop systems to test avionic products for both bench and flightworthy candidacy
- Conceptualized and created automated testing scripts in Python following aircraft manufacturer requirements
- Collaborated with small team to troubleshoot testing for avionics suite

Projects

Unsteady Wildfire Boundary Tracking

Jan. 2025 - Present

- Led research development of guidance algorithm utilizing Lyapunov potential fields to track and follow an unsteady, time-varying boundary
- Flight tested algorithm for proof-of-concept using a ground vehicle to simulate an unfixed desired waypoint
- Consolidated methodology into report for NSF FIRE grant proposal

Dynamic Modeling Method Comparison

Nov. 2023 - Dec. 2024

- Led a small team (3) to design, build, and fly UAS aircraft to verify CFD and dynamic modeling techniques
- Condensed research into a publication and presented at AIAA SciTech 2025

Design, Build, Fly

Sept. 2021 - Dec. 2021

- Collaborated with large team (20) to conceptualize and materialize a functioning flying-wing UAS capable of autonomous flight
- Condensed research into a tangible final report and presented to peers

Publications and Presentations

- Jeffrey Xu, Jeb Marshall, Matthew Powers, and Shawn S. Keshmiri, "Guaranteed Fixed-Wing UAS Lateral Safety Via Control Barrier Functions," 2025 International Conference on Unmanned Aircraft Systems (ICUAS). doi: 10.1109/ICUAS65942.2025.11007881
- Jeffrey Xu, Matthew Powers, Yuwen Li, and Shawn S. Keshmiri, "Time-Fixed, State Constrained, Optimal Landing Trajectory for Fixed-Wing UAVs," AIAA Aviation Forum and Ascend 2024. doi: 10.2514/6.2024-3656
- Matthew Powers, Adam Baruth, and Avery Hantla, "Comparison of Low and High Fidelity Dynamic Modeling Software for Small UAS Based on Flight Data," AIAA SciTech 2025. doi: 101.2516/6.2025-0140

Skills

Languages MATLAB/Simulink, Python

Programs Advanced Aircraft Analysis (AAA), Sparse Nonliner Optimization (SNOPT), Athena

Vortex Lattice (AVL)

Other Proficiency in Lyapunov vector field guidance, Nonlinear Dynamic Inversion Control/Linear Dynamic Inversion Control, Model Predictive Control/Quadratic Programming Model Predictive Control, Model Following Control, Rate-Based LQR Control, Observer-based Control, L1/LN guidance, LQR-based guidance, classical control theory, optimal control theory, and robust control theory; familiarity with EICAS and avionic systems