Chapter 3

Determinant

3. Constructing the determinant

Exercise 3.4 A square $(n \times n)$ matrix is called skew-symmetric (or antisymmetric) if $A^{T} = -A$. Prove that if A is skew-symmetric and n is odd, then det A = 0. Is it true for even n?

Proof. When *n* is odd, we have

$$\det A = \det A^{\mathrm{T}} = \det(-A) = (-1)^n \det A = -\det A$$

This implies that $\det A = 0$ whenever n is odd. For even n, the determinant $\det A$ doestn't necessarily zero, for instance

$$B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

is a skew-symmetric matrix, yet $\det B = 1$.

Exercise 3.5 A square matrix is called *nilpoten* if $A^k = 0$ for some $k \in \mathbb{N}$. Show that if A is nilpoten, then $\det A = 0$.

Proof. We use the property of determinant,

$$\det 0 = \det A^k = (\det A)^k$$

This shows that $\det A = 0$.

Exercise 3.6 Prove that if the matrices A and B are similar, then $\det A = \det B$.

Proof. Since $A \sim B$, hence there's invertable Q such that $A = QBQ^{-1}$. Therefore

$$\det A = \det QBQ^{-1} = (\det Q)(\det B)(\det Q^{-1})$$

$$= \det(Q)(\det Q^{-1})(\det B) = \det(QQ^{-1})(\det B)$$

$$= \det B.$$

Exercise 3.7 A real square matrix Q is called *othogonal* if $Q^TQ = I$. Prove that if Q is a n orthogonal matrix then $\det Q = \pm 1$.

Proof. We have

$$1 = \det Q^{\mathsf{T}} Q = (\det Q^{\mathsf{T}})(\det Q) = (\det Q)^2$$

this implies that $\det Q = \pm 1$.

4. Formal definition

Exercise 4.2 Let *P* be a permutation matrix.

- Can you describe the correspoding linear transformation?
- Show that P is invertable. Can you describe P^{-1} .
- Show that for some N > 0, $P^N = I$.

Proof. Suppose that *P* is an $n \times n$ matrix.

- The linear transformation looks like it's swapping the axis in \mathbb{R}^n .
- If we interchange columns of P, we'll get the indentity matrix hence $\det P = \pm 1$. The direct computation shows that $P^{-1} = P^{T}$.
- \circ Because there are finitely many permutations, the sequence $\{P^n\}$ will eventually have repetitions. Hence we're sure there is i,j with i>j such that $P^i=P^j$. Since P is invertable, we can multiply both sides by P^{-j} . Therefore

$$P^{i-j} = I$$
.

now choose N := i - j and this completes the proof.

Exercise 4.3 Why is there an even number of permutations of (1, 2, ..., 9) and why are exactly half of them odd permutations?

Proof. There are 9! permutations of $(1,2,\ldots,9)$, which is an even number. To prove that there are exactly half of them odd (and other half even) we consider a 9×9 matrix A with all the entries are 1. The determinant is $\det A = 0$. However,

$$\det A = \sum_{\sigma \in \operatorname{perm}(9)} a_{\sigma(1),1} \cdots a_{\sigma(n),n} \operatorname{sign}(\sigma)$$

Since all the $a_{ik} = 1$, we get

$$\sum_{\sigma} \operatorname{sign} \sigma = \det A = 0$$

Because there are even number of permutations, and $sign \sigma = \pm 1$ we must have half of them has sign = 1 and the other half has sign = -1.

5. Cofactor

6. Minor and rank

Exercise 6.2 Let A be an $n \times n$ matrix. How are det(3A), det(-A) and $det(A^2)$ related to det A?

Proof. It follows immediately that

$$det(-A) = (-1)^n det A,$$

$$det(3A) = 3^n det A,$$

$$det(A^2) = (det A)^2.$$

Exercise 6.3 If the entries of both A and A^{-1} are integers, is it possible that det A = 3?

Proof. It's impossible. If it was such a case, we'll get $\det A^{-1} = 1/\det A = 1/3$. Since all the entries of A^{-1} are integers, so

$$\det A^{-1} = \sum_{\sigma} a_{\sigma(1),1} \cdots a_{\sigma(n),n} \operatorname{sign} \sigma \in \mathbb{Z}$$

which is a contradiction that det $A^{-1} = 1/3$.

Exercise 6.4 Let $\mathbf{v_1}$, $\mathbf{v_2}$ be vectors in \mathbb{R}^2 and let A be the 2×2 matrix with columns $\mathbf{v_1}$, $\mathbf{v_2}$. Prove that $|\det A|$ is the area of parallelogram with two sides given by vectors $\mathbf{v_1}$ and $\mathbf{v_2}$.

Proof. Let α be angle between $\mathbf{v_1}$ and the x-axis, and let R be the matrix of rotation by $-\alpha$ angle. Denote

$$\tilde{\mathbf{v}}_1 := R\mathbf{v}_1 = (a, 0)$$
 and $\tilde{\mathbf{v}}_2 := R\mathbf{v}_2 = (b, c)$.

for some reals a,b,c. Note that after the transformation, the area stays the same, i.e. $area(\mathbf{v_1},\mathbf{v_2})=area(\tilde{\mathbf{v_1}},\tilde{\mathbf{v_2}})$. It's easy to see that the area of the new parallelogram is

$$|ac| = |\det(\mathbf{\tilde{v}_1}, \mathbf{\tilde{v}_2})|$$

(it has base |a|, and height |c|). But

$$\det(\tilde{\mathbf{v}}_1, \tilde{\mathbf{v}}_2) = \det(R\mathbf{v}_1, R\mathbf{v}_2) = \det(RA) = \det A$$

because $\det R = 1$ (rotation matrix). This implies that the area of the parallelogram is $|\det A|$.

Exercise 6.5 Let $\mathbf{v_1}$, $\mathbf{v_2}$ be vectors in \mathbb{R}^2 . Show that $\det(\mathbf{v_1}, \mathbf{v_2}) > 0$ if and only if there's a rotation T_α such that $T_\alpha \mathbf{v_1}$ parallel to $\mathbf{e_1}$ and $T_\alpha \mathbf{v_2}$ is in the upper half-plane.

Proof.

(\Rightarrow) For this direction, the proof is almost identical to the previous exercise. We claim that $T_{\alpha} = R$ (R defined in the previous exercise). We now wanna show that $\tilde{\mathbf{v}}_2 = (b,c)$ is in the upper-half plane, meaning c > 0. But this immediately true from the fact that a > 0, $\det(\mathbf{v}_1, \mathbf{v}_2) > 0$ and

$$\det(\mathbf{v_1}, \mathbf{v_2}) = \det(\mathbf{\tilde{v}_1}, \mathbf{\tilde{v}_2}) = ac > 0$$

 (\Leftarrow)