$(1) \quad (1) \quad (1)$

U;+1+U;-1= ZU; + Z u''(x;)h2+ Z u''(x;)h2 -> Rearrange to fit problem:

$$u''(x;)h^2 = u_{i+1} - 2u_i + u_{i-1} - \frac{1}{12}u^{(4)}(x;)h^4$$

$$C = -\frac{1}{12}$$

```
% Question 2
clc; close all;
n = 10;
h = 1/(n+1);
tri = full(gallery('tridiag',n,1,-2,1));
func = @(x) (4*pi)^2*cos(4*pi*x)*h^2;
f = [];
x = [];
for i=1:n
   x(i) = h*i;
    f(i) = func(x(i));
end
f(n) = f(n) - 2;
f(1) = 0;
x = [0 \ x \ 1];
x = x';
u = tri f';
u = [0;u;2];
ax = solutionAN10000(:,1);
ay = solutionAN10000(:,2);
figure
plot(x,u);
hold on
plot(ax,ay)
title('U vs. x')
legend('U','Exact')
xlim([0 1])
xlabel('x')
ylabel('U')
fid = fopen('q2data.txt','w');
fprintf(fid, '\tx\t\tu\n');
fprintf(fid, '%f\t%f\n', [x,u].');
```


Data	for	question 2
х		u
0.000	0000	0.000000
0.090	909	1.327214
0.181	1818	2.654429
0.272	2727	3.127003
0.363	3636	2.347370
0.454	4545	1.382006
0.545	5455	1.514538
0.636	6364	2.744966
0.72	7273	3.789664
0.818	3182	3.582154
0.909	9091	2.520004
1.000	0000	2.000000

```
% Question 3
clc; clear all; close all;
N = [5,10,20,40,80,160,320,640,1280];
f = [];
n = 10^4;
h = 1/(n+1);
tri = full(gallery('tridiag',n,1,-2,1));
func = @(x) (4*pi)^2*cos(4*pi*x)*h^2;
f1 = [];
x1 = [];
for i=1:n
   x1(i) = h*i;
   f1(i) = func(x1(i));
end
f1(n) = f1(n) - 2;
x1 = [0 x1 1];
x1 = x1';
u1 = tri\f1';
u1 = [0;u1;2];
for i=1:9
    n = N(i);
    h = 1/(n+1);
    tri = full(gallery('tridiag',n,1,-2,1));
    x = [];
    func = @(x) (4*pi)^2*cos(4*pi*x)*h^2;
    for j=1:n
        x(j) = h*j;
        f(j) = func(x(j));
    end
    f(n) = f(n) - 2;
    f(1) = 0;
    x = [0 \ x \ 1];
    x = x';
   u = tri\f';
   u = [0;u;2];
    E = [];
    for j=1:n
       E(j) = (u(j) - u1(j))^2;
    end
    E_sum = sum(E);
    E_final = sqrt(E_sum);
    e = E_final/n;
    E_vec(i) = E_final;
    e_vec(i) = e;
end
loglog(1./N,E_vec)
loglog(1./N,e_vec)
hold on
title('E and e vs. 1/h')
legend('E', 'e')
xlabel('1/h')
dim = [.2.4.3.2];
str = 'We can see that E is order O(h) while e is O(h^2)';
annotation('textbox', dim, 'String', str, 'FitBoxToText', 'on');
```


(4) U:+ = U:+ U'(x) h + U'(x) h u'(x) h = au; +bu;+1 + CU;+2 U1+2= 4: +2hu'(x:) +2h2 u"(x:) u'(x:)h = au; +b[u; +u'(x:)h+u"(x:)+] + ([u; +2hu'(1:)+2h²u"(xi)] "(x:)h=1ah; +1bh; + (bh'(x:)h+1bh"(x:)h2 +(c)2h2"(x:) a+b+c=0 a=-3/2, b=2, c=-1/2 b+2c=1b + 2c = 0

```
% Question 5
clc; close all;
n = 10;
h = 1/(n+1);
tri = full(gallery('tridiag',n,1,-2,1));
tri(1,1) = -2/3;
tri(1,2) = 2/3;
func = @(x) (4*pi)^2*cos(4*pi*x)*h^2;
f = [];
x = [];
for i=1:n
   x(i) = h*i;
    f(i) = func(x(i));
end
f(1) = f(1) + (20/3)*h;
f(n) = f(n) - 2;
x = [0 \ x \ 1];
x = x';
u = tri f';
u0 = -(20/3)*h+(4/3)*u(1)-(1/3)*u(2);
u = [u0;u;2];
ax = solutionBN10000(:,1);
ay = solutionBN10000(:,2);
figure
plot(x,u)
hold on
plot(ax,ay)
title('U vs. x')
legend('Numerical Solution', 'Exact', 'Location', 'northwest')
xlabel('x')
ylabel('u')
fid = fopen('q5data.txt','w');
fprintf(fid, '\tx\t\tu\n');
fprintf(fid,'%f\t%f\n',[x,u].');
```


Data	for	qeustion 5
x		u
0.000	0000	-3.803911
0.090	909	-2.623747
0.18	1818	-0.901436
0.272	2727	-0.033766
0.363	3636	-0.418303
0.454	1545	-0.988571
0.545	455	-0.460943
0.636	5364	1.164582
0.727	7273	2.604375
0.818	3182	2.791961
0.909	9091	2.124908
1.000	0000	2.000000