Introdução ao Reinforcement Learning

Introdução ao Reinforcement Learning

- Tipos de aprendizado de máquina: supervisionado, não-supervisionado, por reforço
- Peculiaridades do RL: feedback por tentativa, dependência de ambiente, retorno atrasado, *moving target*, *exploration vs. exploitation*

Introdução ao Reinforcement Learning

- Aplicações de RL:
 - jogos,
 - robótica,
 - recomendação,
 - finanças,
 - *Ilm, etc.*

Elementos de RL

- Agente: quem aprende
- Ambiente: onde ocorre a interação (environment)
- Estado ou observação: o que o agente percebe (state)
- Recompensa: o sinal de feedback (reward)
- Taxa de desconto (γ): peso das recompensas futuras (discount)

Interação Agente-Ambiente

- Em cada passo t:
 - O agente observa o estado s□
 - Escolhe uma ação a□
 - O ambiente devolve nova observação s□+1 e recompensa r□+1
- Objetivo: aprender uma política ótima que maximize a soma de TODAS as recompensas (não apenas a imediata!).

Dynamic Programming

- Requer modelo completo do ambiente (transições e recompensas)
- Algoritmos: GPI (General Policy Iteration): evaluation e improvement
- Usa Bellman Equations para avaliar e melhorar políticas

Bellman Equations

Expectation

$$V(s) = \mathbb{E}\left[G_t \mid S_t = s\right],$$

where:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t} R_T.$$

$$V(s) = \mathbb{E}\left[R_{t+1} + \gamma G_{t+1} \mid S_t = s\right]. \tag{1}$$

$$V(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) (r + \gamma V(s')).$$

Optimallity

$$v_*(s) = \max_a R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_*(s')$$

$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

Monte Carlo e TD Learning

Model free learning, ambos usam value function:

- Monte Carlo: aprende por episódios completos, sem modelo
- Temporal Difference (TD): atualiza após cada passo (bootstrapping)

SARSA vs. Q-Learning

- SARSA: on-policy (segue a política atual)
- Q-Learning: off-policy (usa a melhor ação na atualização)
- Ambos usam TD para atualizar Q(s,a)
- Muito usados em ambientes com ações discretas (necessário) e estados com pouca dimensionalidade

Resumo comparação métodos de RL

- DP: requer modelo, computacionalmente caro
- Monte Carlo: sem modelo, usa episódios completos
- TD: sem modelo, atualiza por passo
- Q-Learning: off-policy, converge para política ótima
- SARSA: on-policy, mais conservador

Exploração vs. Exploitação (rs)

- Exploração: experimentar ações novas para aprender
- Exploitação: escolher a melhor ação conhecida
- ε decrescente é muito usado em SARSA e Q-Learning

Deep Q-Network (DQN)

Substitui a tabela Q por uma rede neural (Q-table inviável com muitos

estados)

• Replay buffer: armazena e reutiliza experiências

- Target network: reduz instabilidade no treinamento
- Aprendizado eficiente mesmo com estados complexos

Encerramento e Revisão

- RL: interação, recompensa,
 aprendizado com tentativa e erro
- Evolução:
 - DP → MC/TD → Q-Learning → DQN
- Depois: policy gradient...
- Conceitos-chave: política, valor, exploração, estabilidade
- Aplicações reais

RL Algorithms

This table displays the RL algorithms that are implemented in the Stable Baselines3 project, along with some useful characteristics: support for discrete/continuous actions, multiprocessing.

Name	Box	Discrete	MultiDiscrete	MultiBinary	Multi Processing
ARS ¹	4	~	×	×	•
A2C	~	~	~	✓	✓
CrossQ ¹	~	×	×	×	•
DDPG	~	×	×	×	~
DQN	×	~	X	×	•
HER	~	✓	×	×	1
PPO	~	*	✓	✓	•
QR-DQN ¹	×	~	×	×	✓
RecurrentPPO 1	~	•	~	•	•
SAC	~	×	X	×	~
TD3	~	×	X	×	~
TQC ¹	~	×	×	×	•
TRPO ¹	~	~	✓	V.	•
Maskable PPO 1	×	✓	· ·	V	~