Лабораторная работа № 4. Шум.

3530901/80201, Шелаев Н. Р.

 $30\,$ мая $2021\,$ г.

Оглавление

1	Некоррелированный шум	5
2	Броуновский шум	8
3	Розовый шум	11
4	Гауссов шум	13
5	Упражнения	16
	5.1 Задание 1	. 16
	5.2 Задание 2	. 19
	5.3 Задание 3	. 20
	5.4 Задание 4	. 22
	5.5 Задание 5	. 25
6	Вывол	28

Список иллюстраций

1.1 1.2 1.3	Сегмент полученного сигнала	5 6 6
2.1 2.2 2.3	Сигнал с Броуновским шумом	8
3.1	Результаты построения Розового шума с различным зна-	9
4.1	чением аргумента	12 13
4.2	Зависимость энергии от частоты	14
4.3	Распределение действительной части спектра является гаус-	
	совым	15
4.4	Также как и его мнимая часть	15
5.1	Спектр сигнала	17
5.2	Логарифмический масштаб	17
5.3	Спектрограмма шума для первого сегмента	18
5.4	Нашли его спектр	18
5.5	Очень интересная форма	19
5.6	Спектрограмма первого сегмента сигнала	19
5.7	Результат применения метода Бартлетта к сигналу шума	
	моря	20
5.8	Визуализация изменений цен BitCoin	$\overline{21}$
5.9	Спектр полученного сигнала в логарифмическом масштабе	22
5.10	Полученный сигнал	23
5.11	Спектр счетчика Гейгера	23
	Увеличили амплитуду сигнала	$\frac{29}{24}$
5.13		$\frac{24}{24}$

5.14	Мнимая часть сигнала	25
5.15	Сигнал, полученный с помощью этой функции	26
5.16	Спектр сигнала в логарифмическом масштабе	26
5.17	Спектр сигнала с более длинной выборкой в логарифмиче-	
	ском масштабе	27

Листинги

1.1	Строим и исследуем некоррелированный шум	5
1.2	Строим интегральный спектр шума	6
2.1	Построение сигнала с Броуновским шумом	8
2.2	Сигнал с Броуновским шумом в логарифмическом масштабе	9
3.1	Построение Розового шума	11
4.1	Гауссов шум	13
4.2	График нормальной вероятности	14
5.1	Два сегмента сигнала с шумом моря	16
5.2	Взяли другой сигнал	18
5.3	Метод Бартлетта	19
5.4	BitCoin	21
5.5	Реализация счётчика Гейгера	22
5.6	Сравнение спектра с гауссовым шумом	23
5.7	Итоговая функция	25
5.8	Более длинная выборка	26

Некоррелированный шум

Генерируем некоррелированнный равномерный шум.

```
from thinkdsp import UncorrelatedUniformNoise

np.random.seed(17)
signal = UncorrelatedUniformNoise()
wave = signal.make_wave(duration = 1, framerate = 11025)
segment = wave.segment(duration = 0.1)
segment.plot()
spectrum = wave.make_spectrum()
spectrum.plot_power(linewidth = 0.5)
```

Листинг 1.1: Строим и исследуем некоррелированный шум

Рис. 1.1: Сегмент полученного сигнала

Рис. 1.2: Спектр энергии сигнала (квадрат амплитуды)

Некоррелированный шум в среднем имеет одинаковую мощность на всех частотах, что мы можем подтвердить, построив интегральный спектр (нормализованная сумма мощности).

```
integ = spectrum.make_integrated_spectrum()
integ.plot_power()
```

Листинг 1.2: Строим интегральный спектр шума

Рис. 1.3: Результат

Шум с одинаковой мощностью на всех частотах называется «Белым» шумом.

Броуновский шум

Изучим Броуновский шум.

```
from thinkdsp import BrownianNoise

signal = BrownianNoise()
wave = signal.make_wave(duration = 1, framerate = 11025)

wave.plot(linewidth = 1)
spectrum = wave.make_spectrum()
spectrum.plot_power(linewidth = 0.5)
```

Листинг 2.1: Построение сигнала с Броуновским шумом

Рис. 2.1: Сигнал с Броуновским шумом

Рис. 2.2: Его зависимость энергии от частоты

Вся энергия сигнала находится на низких частотах. Поэтому, применим логарифмический масштаб.

```
spectrum.hs[0] = 0
spectrum.plot_power(linewidth = 0.5)
loglog = dict(xscale = 'log', yscale = 'log')
result = spectrum.estimate_slope().slope
```

Листинг 2.2: Сигнал с Броуновским шумом в логарифмическом масштабе

Рис. 2.3: Так лучше видна зависимость энергии сигнала от его частоты

Наклон этой линии приблизительно равен -2, что указывает на зависимость $\frac{1}{f^2}$.

Розовый шум

Изучаем Розовый шум. Розовый шум характеризуется параметром β , обычно между 0 и 2.

Листинг 3.1: Построение Розового шума

Рис. 3.1: Результаты построения Розового шума с различным значением аргумента

При $\beta=0$ Розовый шум - «Белый» шум, а при $\beta=2$ - «Красный» шум (Броуновский).

Гауссов шум

А теперь посмотрим на некоррелированный гауссов шум.

```
from thinkdsp import UncorrelatedGaussianNoise

signal = UncorrelatedGaussianNoise()

wave = signal.make_wave(duration=1, framerate=11025)

wave.plot(linewidth = 0.5)

spectrum = wave.make_spectrum()

spectrum.plot_power(linewidth = 1)
```

Листинг 4.1: Гауссов шум

Рис. 4.1: Сигнал с гауссовым шумом

Рис. 4.2: Зависимость энергии от частоты

```
def normal_prob_plot(sample, fit_color = '0.8', **
     options):
              n = len(sample)
              xs = np.random.normal(0, 1, n)
3
              xs.sort()
              ys = np.sort(sample)
              mean, std = np.mean(sample), np.std(sample)
6
              fit_ys = mean + std * xs
              plt.plot(xs, fit_ys, color = 'gray', alpha = 0.5,
      label = 'model')
              plt.plot(xs, ys, **options)
10
          normal_prob_plot(spectrum.real, color = 'CO', label =
       'real part')
          normal_prob_plot(spectrum.imag, color = 'C1', label =
12
       'imag part')
```

Листинг 4.2: График нормальной вероятности

13

Рис. 4.3: Распределение действительной части спектра является гауссовым

Рис. 4.4: Также как и его мнимая часть

Упражнения

5.1 Задание 1

Исследование природных источников шума.

```
from thinkdsp import read_wave
          wave=read_wave('132736__ciccarelli__ocean-waves.wav')
          segment = wave.segment(start = 5.0, duration = 1.0)
          segment2 = wave.segment(start = 10.0, duration = 1.0)
          spectrum = segment.make_spectrum()
          spectrum2 = segment2.make_spectrum()
          spectrum.plot_power(alpha = 0.5)
          spectrum2.plot_power(alpha = 0.5)
10
          decorate(xlabel = 'Frequency (Hz)', ylabel = '
     Amplitude')
12
          spectrum.plot_power(alpha = 0.5)
13
          spectrum2.plot_power(alpha = 0.5)
14
          decorate(xlabel = 'Frequency (Hz)', ylabel = '
15
     Amplitude', **loglog)
16
          segment.make_spectrogram(512).plot(high = 5000)
18
```

Листинг 5.1: Два сегмента сигнала с шумом моря

Рис. 5.1: Спектр сигнала

Рис. 5.2: Логарифмический масштаб

Рис. 5.3: Спектрограмма шума для первого сегмента

Общая амплитуда падает, но смесь частот кажется последовательной.

```
wave = read_wave('fire.wav')
segment = wave.segment(start = 1.0, duration = 1.0)
segment2 = wave.segment(start = 2.5, duration = 1.0)
...
```

Листинг 5.2: Взяли другой сигнал

Рис. 5.4: Нашли его спектр

Рис. 5.5: Очень интересная форма

Рис. 5.6: Спектрограмма первого сегмента сигнала

Сигнал чем-то напоминает «Розовый» шум, но очень отдаленно.

5.2 Задание 2

Метод Бартлетта и оценка спектра мощности шумового сигнала. from thinkdsp import Spectrum

2

```
def bartlett_method(wave, seg_length = 512, win_flag
     = True):
               spectro = wave.make_spectrogram(seg_length,
     win_flag)
               spectrums = spectro.spec_map.values()
              psds = [spectrum.power for spectrum in spectrums]
              hs = np.sqrt(sum(psds) / len(psds))
              fs = next(iter(spectrums)).fs
               spectrum = Spectrum(hs, fs, wave.framerate)
               return spectrum
10
          psd = bartlett_method(segment)
          psd2 = bartlett_method(segment2)
          psd.plot_power()
          psd2.plot_power()
15
```

Листинг 5.3: Метод Бартлетта

Рис. 5.7: Результат применения метода Бартлетта к сигналу шума моря

Мы можем более лучше видеть взаимосвязь между мощностью и частотой. Это не простая линейная зависимость, но она последовательна в разных сегментах.

5.3 Задание 3

Спектр цен BitCoin.

16

```
import pandas as pd
from thinkdsp import Wave

df = pd.read_csv('BTC_USD_2013-10-01_2020-03-26-
CoinDesk.csv', parse_dates=[0])

ys = df['Closing Price (USD)']

ts = df.index

wave = Wave(ys, ts, framerate = 1)

wave.plot()

spectrum = wave.make_spectrum()
spectrum.plot_power()
spectrum.estimate_slope()[0]
```

Листинг 5.4: BitCoin

Рис. 5.8: Визуализация изменений цен BitCoin

Рис. 5.9: Спектр полученного сигнала в логарифмическом масштабе

Наклон этой кривой близок к 1.7, поэтому трудно сказать, это «Красный» шум или своего рода «Розовый» шум.

5.4 Задание 4

Счётчик Гейгера

```
from thinkdsp import Noise
           class UncorrelatedPoissonNoise(Noise):
               def evaluate(self, ts):
                   ys = np.random.poisson(self.amp, len(ts))
                   return ys
           amp = 0.001
9
           framerate = 10000
10
           duration = 2
           signal = UncorrelatedPoissonNoise(amp = amp)
12
           wave = signal.make_wave(duration = duration,
      framerate = framerate)
           expected = amp * framerate * duration
14
           actual = sum(wave.ys)
15
16
           wave.plot()
           spectrum = wave.make_spectrum()
17
           spectrum.plot_power()
18
19
```

Листинг 5.5: Реализация счётчика Гейгера

Рис. 5.10: Полученный сигнал

Рис. 5.11: Спектр счетчика Гейгера

Наклон прямой близок к 0, поэтому можно сказать, что это «Белый» шум.

```
1     amp = 1
2     framerate = 10000
3     duration = 2
4     signal = UncorrelatedPoissonNoise(amp = amp)
5     wave = signal.make_wave(duration = duration, framerate = framerate)
```

```
spectrum = wave.make_spectrum()
spectrum.hs[0] = 0
normal_prob_plot(spectrum.real, label = 'real')
normal_prob_plot(spectrum.imag, label = 'imag', color
= 'C1')
```

10

Листинг 5.6: Сравнение спектра с гауссовым шумом

Рис. 5.12: Увеличили амплитуду сигнала

Рис. 5.13: Вещественная часть сигнала

Рис. 5.14: Мнимая часть сигнала

5.5 Задание 5

Алгоритм Vocc-McCartney для генерации «Розового» шума.

```
def voss(nrows, ncols=16):
               array = np.empty((nrows, ncols))
               array.fill(np.nan)
               array[0, :] = np.random.random(ncols)
               array[:, 0] = np.random.random(nrows)
               n = nrows
               cols = np.random.geometric(0.5, n)
               cols[cols >= ncols] = 0
               rows = np.random.randint(nrows, size = n)
               array[rows, cols] = np.random.random(n)
               df = pd.DataFrame(array)
               df.fillna(method = 'ffill', axis = 0, inplace =
      True)
               total = df.sum(axis = 1)
13
               return total.values
14
           ys = voss(12500)
           wave = Wave(ys)
           wave.plot()
18
           spectrum = wave.make_spectrum()
19
           spectrum.hs[0] = 0
           spectrum.plot_power()
21
```

Листинг 5.7: Итоговая функция

Рис. 5.15: Сигнал, полученный с помощью этой функции

Рис. 5.16: Спектр сигнала в логарифмическом масштабе

Наклон прямой близок к -1.

```
seg_length = 64 * 1024
ters = 100
wave = Wave(voss(seg_length * iters))
spectrum = bartlett_method(wave, seg_length = seg_length, win_flag = False)
spectrum.hs[0] = 0
spectrum.plot_power()
```

Листинг 5.8: Более длинная выборка

Рис. 5.17: Спектр сигнала с более длинной выборкой в логарифмическом масштабе

Наклон прямой очень близок к -1. Теперь точно можно сказать, что это «Розовый» шум.

Вывод

В данной работе мы познакомились с различными видами шума: «Белым», «Розовым» и «Красным». Определили, что их отличает друг от друга. Также рассмотрели спектры некоторых сигналов в логарифмическом масштабе.