

Departamento de Matemática, Universidade de Aveiro

Cálculo II-C — 1º Teste (V1)

17 de abril de 2024 Duração: **2h00**

N.º Mec.:			No	ome: _								
(Declaro que desisto:) N. folhas suplementares:												
Questă [Cotaçã		pts]	2 [15pts]	3 [20pts]	4a [15pts]	4b [15pts]	4c [20pts]	5 [25pts]	6a [15pts]	6b [15pts]	Classificação (valores)	

- Nas questões 2 a 6 justifique todas as respostas e indique os cálculos efetuados -

Sempre que necessitar de continuar uma resposta numa folha suplementar, indique, no sítio assinalado para o efeito, o número da folha suplementar que usou.

[60pts]	1.	Nas alíneas seguintes assinale com uma cruz a opção correta. A cotação a atribuir a cada resposta é a
		eguinte:

- (i) resposta correta: 10 pontos;
- (ii) resposta errada: -3 pontos;
- (iii) ausência de resposta ou resposta nula: 0 pontos.

- (b) A soma da série $\sum_{n=0}^{+\infty} \frac{2^{2n}-1}{6^n}$ é:

 - $\square \frac{9}{5}$

(c) Sejam $\sum_{n=1}^{+\infty} a_n$ e $\sum_{n=1}^{+\infty} b_n$ duas séries numéricas tais que $b_n \neq 0, \forall n \in \mathbb{N},$ e $\lim_{n \to +\infty} \left| \frac{a_n}{b_n} \right| = 3$. Se a

série $\sum_{n=1}^{+\infty} |b_n|$ é convergente, podemos concluir que:

- $\sum_{n=1}^{+\infty} a_n \text{ \'e divergente.}$

- (d) Seja $\sum_{n=1}^{+\infty} a_n$ uma série numérica convergente de termos positivos. Então, $\sum_{n=1}^{+\infty} (-1)^{n-1} (a_n)^n$ é uma
 - série alternada absolutamente convergente.
 - série alternada divergente.
 - série alternada simplesmente convergente.
 - série de termos não negativos divergente.
- (e) Seja $\sum_{n=0}^{+\infty} a_n (x-1)^n$ uma série de potências divergente em x=2. Podemos afirmar que a série é:
 - divergente em x = 1.
 - divergente em x = -1.
 - convergente em x = -1.
 - convergente em x = 3.
- (f) Sabendo que $\frac{1}{1-x}=\sum_{n=0}^{+\infty}x^n$ para |x|<1, podemos afirmar que uma representação em série de potências de $f(x)=\frac{1}{3-2x}$ é:

N ° Mec:	Nome:		
11 111001	1 1011101		

[15pts]

2. Sabendo que $\sum_{n=1}^{+\infty} a_n$ é uma série numérica de termos positivos convergente, indique, justifi-

cando, a natureza da série $\sum_{n=1}^{+\infty} \frac{1}{a_n} \arctan(n)$.

				_
C4:	 £_11	1	 ъто	ı

[20pts]

3. Mostre que a série de Mengoli $\sum_{n=1}^{+\infty} \left(\ln \frac{n}{n+1} - \ln \frac{n+2}{n+3} \right)$ é convergente e determine a sua

Continua na folha suplementar Nº

4.	Estude a natureza das seguintes séries,	indicando,	em caso	de convergência,	se se trata	a de
	convergência simples ou absoluta.					

[15pts]

(a)
$$\sum_{n=1}^{+\infty} \frac{\operatorname{sen}(n^3 - 1)}{(n^2 + 1)(n^2 + 2)}$$

Continua na folha suplementar No

[15pts]

(b)
$$\sum_{n=1}^{+\infty} (-2)^n \frac{(2n)!}{n^n}$$

[20pts]

(c)	$\frac{1}{1}$	$(-1)^{n}$
(0)	\angle_{1}	$\sqrt{n+1}$

Co	ontinua	na	folha	sup	lementar	N ^ο
----	---------	----	-------	-----	----------	----------------

[25pts]	5.	Determine o raio e o domínio de convergência da série de potências	$\sum_{n=0}^{+\infty} rac{(x+6)^n}{3^n n^2}$, indicando
		os pontos onde a convergência é simples ou absoluta.	n=1

	6.	Cons	sidere a função f dada por $f(x) = x + sen(x)$.	
[15pts]		(a)	Determine o polinómio de Taylor de ordem 3 da função f centrado em $c=\pi,T_\pi^3f$.	
			Continua na folha suplementar Nº	_
[15pts]		(b)	Justifique que o erro absoluto na aproximação de $f(2)$ por $T_{\pi}^3 f(2)$ é inferior ou igual a $(\pi-2)^4$	
ſ			$\frac{(\pi-2)^4}{4!}.$	

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva
$ \begin{array}{c} u^r u' \\ (r \neq -1) \end{array} $	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u' \sec u$	$ \ln \sec u + \operatorname{tg} u $
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot g u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arccos u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$

Algumas fórmulas trigonométricas

	$sen(x \pm y) = sen x cos y \pm cos x sen y$		
$\sec x = \frac{1}{\cos x}$	$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\cos^2 x = \frac{1 + \cos(2x)}{2}$	$1 + \operatorname{tg}^2 x = \sec^2 x$
$\csc x = \frac{1}{\sec x}$	$\operatorname{sen}(2x) = 2\operatorname{sen}x\operatorname{cos}x$	$\sin^2 x = \frac{1 - \cos(2x)}{2}$	$1 + \cot^2 x = \csc^2 x$
3314	$\cos(2x) = \cos^2 x - \sin^2 x$	-	