При увеличении T энергия реализации $E_T^{(k)}$ тоже увеличивается, но величина $P_T^{(k)}$ стремится к некоторому пределу. Тогда

$$P_T^{(k)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{\left| S_T^{(k)}(j\omega) \right|^2}{T} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_x(\omega) d\omega, \text{ где}$$

$$G_x(\omega) = \lim_{T \to \infty} \frac{\left| S_T^{(k)}(j\omega) \right|^2}{T}. \tag{6.5}$$

Формула (6.5) — **спектральная плотность мощности** СП, показывает, как распределена мощность процесса по частоте. Это так называемый **двусторонний** (математический) спектр, он содержит как положительные, так и отрицательные частоты. СПМ — функция действительная, четная:

$$G_x(\omega) = G_x(-\omega)$$
.

Односторонний (физический) спектр определяется следующим образом:

$$F_x(\omega) = 2G_x(\omega)$$
.

Размерность СПМ: Вт/Гц.

Классифкация случайных процессов по ширине спектра

1. Узкополосные случайные процессы.

Стационарный в широком смысле СП $\zeta(t)$ называется узкополосным, если его спектральная плотность мощности $G_x(\omega)$ или $F_x(\omega)$ сосредоточена в