Contents

0	Wee	ek U
	0.1	Notation
	0.2	Maps
		0.2.1 Composition
		0.2.2 Identity
		0.2.3 Properties
		0.2.4 Surjective
		0.2.5 Bijective
		0.2.6 Inverse Maps
	0.3	Integers
		0.3.1 Induction I
		0.3.2 Induction II (Strong Induction)
		0.3.3 Division of Integers
		ololo Bivilion di modgolo
1	Wee	ek 1
	1.1	Prime Numbers
		1.1.1 Unique Factorization
		1.1.2 Fundamental Theorem of Arithmetic
		1.1.3 Euclid's Theorem
	1.2	Congruences
		1.2.1 Properties
		1.2.2 Linear Congruence
	1.3	Equivalence Relations
	1.0	1.3.1 Equivalence Classes
		13.1 Equivalence classes
2	Wee	ek 2
	2.1	Congruence and Equivalent Classes
		2.1.1 Equivalence Classes
		2.1.2 Congruence Classes modulo m
		2.1.3 Invertability
		2.1.4 Set of Invertible Classes
	2.2	Euler Totient Function
		2.2.1 Properties
		2.2.2 Chinese Remainder Theorem
	2.3	Groups
		2.3.1 Abelian Groups
		2.3.2 Properties
		21012 110pol0200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	Wee	ek 3
	3.1	Homomorphisms of Groups
		3.1.1 Properties
	3.2	Isomorphisms of Groups
		3.2.1 Properties
	3.3	Cyclic Groups
		2.2.1 Consentor

3.3.2	Order of a Group	21
	Cyclicity	

Chapter 0

Week 0

0.1 Notation

Let X, Y be sets. Then, we introduce some simple notation: inclusion

 $x \in X$

union

 $X \cup Y$

intersection

 $X \cap Y$

and the cartesian product

$$X\times Y=\{(x,y):x\in X,y\in Y\}$$

We call the Natural Numbers \mathbb{N} , Integers \mathbb{Z} , Rationals \mathbb{Q} (:= $\{\frac{a}{b}: a, b, \in \mathbb{Z}\}$), Reals \mathbb{R} , and Complex Numbers \mathbb{C} . Notice that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

0.2 Maps

Let X, Y be two sets. A map f between X and Y denoted as

$$f: X \to Y$$

is a rule that takes every element of $x \in X$ to an element $y = f(x) \in Y$.

0.2.1 Composition

Let X, Y, Z be sets. Suppose $X \xrightarrow{f} Y \xrightarrow{g} Z$. Then a function $h: X \to Z$, $h(x) - g(f(x)) \in Z$ is called the *composition* denoted as $h = g \circ f$.

0.2.2 Identity

The *identity map* is denoted as $\mathrm{Id}_x: X \to X$, and is defined to be $\mathrm{Id}(x) = x$

0.2.3 Properties

Let X, Y, Z be sets.

Injective

A map $f: X \to Y$ is *injective (into/one-to-one)* if for every $x_1, x_2 \in X$, we have $f(x_1) \neq f(x_2)$ Taking the contrapositve, we get the statement: If $f(x_1) = f(x_2)$, then $x_1 = x_2$. In shorthand, it is

$$\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \iff f(x_1) = f(x_2) \implies x_1 = x_2 \forall x_1, x_2 \in X$$

0.2.4 Surjective

A map $f: X \to Y$ is *surjective (onto)* if for every $y \in Y$, there exists some $x \in X$ such that y = f(x). In shorthand, it is

$$\forall y \in Y, \exists x \in X : y = f(x)$$

0.2.5 Bijective

A map $f: X \to Y$ is **bijective** if it is both *injective* and *surjective*.

0.2.6 Inverse Maps

Let $f: X \to Y$ be a map. A map $g: Y \to X$ is called the *inverse of* f if the composition is the Identity map; that is, $g \circ f = \mathrm{Id}_x$, $f \circ g = \mathrm{Id}_y$ and is denoted as $g = f^{-1}$.

Proposition

A map $f: X \to Y$ has an inverse if and only if f is bijective.

Proof. (\Longrightarrow) Let $g: Y \to X$ be an inverse of f. Then $g \circ f = \mathrm{Id}_x$, $f \circ g = Id_y$. Let $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Then,

$$\begin{aligned} x_1 &= \mathrm{Id}_x(x_1) \\ &= (g \circ f)(x_1) \\ &= g(f(x_1)) \\ &= g(f(x_2)) \\ &= (g \circ f)(x_2) \\ &= \mathrm{Id}_x(x_2) \\ x_1 &= x_2 \end{aligned}$$
 $f(x_1) = f(x_2)$ by assumption

so f is injective.

Take any $y \in Y$. Then x := g(y) for some $x \in X$. Then,

$$f(x) = f(g(y)) = (f \circ g)(y) = \mathrm{Id}_{y}(y) = y$$

so f is surjective. Because f is both injective and surjective, it is bijective.

(\Leftarrow) Assume f be bijective. Then let $g: Y \to X$. Take any $y \in Y$. There exists a unique $x \in X$ such that y = f(x) because f is bijective. Therefore, g is an inverse of f.

0.3 Integers

0.3.1 Induction I

Let $n_0 \in \mathbb{Z}$, and P(n) be a statement for all $n \geq n_0$. Suppose

- (i) $P(n_0)$ is true.
- (ii) $P(n) \implies P(n+1)$ for every $n \ge n_0$.

Then P(n) is true for all $n \geq n_0$.

Proposition

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Proof. Let $P(n) := 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$. We will induct on n.

- (i) P(1) is true.
- (ii) $P(n) \implies P(n+1)$

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{(n+1)(n+2)}{2}$$

so P(n+1) is true, completing the induction.

0.3.2 Induction II (Strong Induction)

Let $n_0 \in \mathbb{Z}$, and P(n) be a statement for all $n \geq n_0$. Suppose

- (i) P(n) is true.
- (ii) For every $n > n_0$, if P(k) is true for every $n_0 \le k \le n$, then P(n) is true.

Then P(n) is true for all $n \ge n_0$.

Proposition

Every positive integer can be written in the form

$$n = 2^{K_1} + 2^{K_2} + \dots + 2^{K_m}$$

where $K_i \in \mathbb{Z}$ and $0 \le K_1, < K_2, \dots < K_m$.

Proof. We will induct on n.

- (i) P(1) is true.
- (ii) We know that P(k) is true for k = 1, 2, ..., n 1. Then for n, we find the largest s such that $2^s \le n$. There are two cases:
 - (i) $n=2^s$. Then P(n) is true.
 - (ii) $2^{s} < n, p := n 2^{s} > 0.$ Apply P(p): $p = 2^{K_{1}} + \cdots 2^{K_{m}}, 0 \le K_{1}, < K_{2} < \cdots K_{m}.$ $\implies n = 2^{K_{1}} + \cdots 2^{K_{m}} + 2^{s}$ Then, $p > 2^{K_{m}}$, so $2^{s} > 2^{K_{m}}$ $\implies s > k_{m}$, completing the induction.

0.3.3 Division of Integers

Let $n, m \in \mathbb{Z}, m \neq 0$. Then, n is divisible by m if there exists some $q \in \mathbb{Z}$ such that $n = mq (\iff \frac{n}{m} \in \mathbb{Z})$ and we denote this as $m \mid n$, read as "m divides n".

Properties

- (i) $1 \mid n$ for every $n \in \mathbb{Z}$ and $m \mid 0$ for every $m \neq 0$.
- (ii) If $m \mid n_1$ and $m \mid n_2$, then $m \mid (n_1 \pm n_2)$.

Proof.
$$n_1 = mq_1$$
 and $n_2 = mq_2$
 $\implies n_1 \pm n_2 = mq_1 \pm mq_2 = m(q_1 + q_2) \implies m \mid (n_1 \pm n_2) \text{ since } q_1 + q_2 \in \mathbb{Z}.$

(iii) If $m \mid n$, then $m \mid an$ for all $a \in \mathbb{Z}$.

Proof.
$$n = m \cdot q, q \in \mathbb{Z}, an = m \cdot (aq), aq \in \mathbb{Z} \implies m \mid an.$$

(iv) If $m \mid n_1$ and $m \mid n_2$, then $m \mid a_1n_1 + a_2n_2$ for every $a_1, a_2 \in \mathbb{Z}$.

Proof. By (iii),
$$m \mid a_1 n_1 \text{ and } m \mid a_2 n_2$$
. By (ii), $m \mid a_1 n_1 + a_2 n_2$.

(v) If $m \mid n, n \neq 0$, then $|m| \leq |n|$.

Proof.
$$n = m \cdot q, q \in \mathbb{Z}, q \neq 0, |n| = |m| \cdot |q| \ge |m|.$$

(vi) If $m \mid n$ and $n \mid m$, then $n = \pm m$.

Proof. By
$$(v)$$
, $|m| \le |n| \le |m| \implies n = \pm m$.

Division Algorithm

Theorem

Let $n, m \in \mathbb{Z}, m \neq 0$. Then, there are unique $q, r \in \mathbb{Z}$ such that

$$n = m \cdot q + r, \ 0 < r < m$$

where q is the partial quotient and r is the remainder on dividing n by m.

Proof. Existence

Define an infinite set $S = \{n - mx, x \in \mathbb{Z}\}$ containing nonnegative integers. Take $S \cap \mathbb{Z}^{\geq 0} \neq \emptyset$, so S is non-empty. Then by the well ordering principle, every non-empty set of $\mathbb{Z}^{\geq 0}$ has a least element,

$$n - mx \in S \cap \mathbb{Z}^{\geq 0}$$

Call $q = x, r := n - mx \ge 0$. Then

$$n = mx + r = mq + r$$

To show that r < m,

$$r - m = (n - mq) - m = n - m(q + 1) \in S$$

This shows that r - m < r, but since we chose r to be the *least* element in $S \cap \mathbb{Z}^{\geq 0}$, $r - m \notin S$. So $r - m < 0 \implies r < m$.

Uniqueness

Let $n = mq_1 + r_1 = mq_2 + r_2$ where $0 \le r_1, r_2 < m$. Then,

$$0 = m(q_1 - q_2) + (r_1 - r_2)$$

so

$$r_1 - r_2 = m(q_2 - q_1)$$

but

$$q_1 - q_2 = 0$$

so

$$r_1 = r_2$$

Remark: $r = 0 \iff m \mid n \text{ and } r \text{ contains } m - 1 \text{ distinct integers.}$

Divisors

Let n > 0. A non-zero integer d is called a divider of n if $d \mid n$. Moreover,

$$|d| \le |n| = n \iff -n \le d \le n$$

Proposition

Every n > 0 has finitely many unique divisors.

Proof. Let $X := \{1, 2, ..., n\}$. Then, the set of divisors of n are a subset of X. Since X is finite, any subset of X is also finite. Therefore, n has a finite number of unique divisors.

Greatest Common Divisor

Take n, m > 0 and d the largest common divisor of m and n. Then,

$$d = \gcd(n, m) = (n, m) \ge 1$$

Euclidean Algorithm

Let n, m > 0. Then,

$$n = mq_1 + r_1$$
 $0 \le r_1 < m$
 $m = r_1q_2 + r_2$ $0 \le r_2 < r_1$
 $r_1 = r_2q_3 + r_3$ $0 \le r_3 < r_2$
 \vdots
 $r_{k-2} = r_{k-1}q_k + r_k$ $0 \le r_k < r_{k-1}$
 $r_{k-1} = r_kq_{k+1}$ $r_{k+1} = 0$

Theorem

$$r_k = \gcd(n, m)$$

Proof. Let $d = \gcd(n, m)$. Then,

$$\begin{array}{lll} d \mid r_{1} = n - mq_{1} \\ d \mid r_{2} = m - r_{1}q_{2} & r_{k} \mid r_{k-1} = r_{k}q_{k+1} \\ d \mid r_{3} = r_{1} - r_{2}q_{3} & r_{k} \mid r_{k-2} = r_{k-1}q_{k} + r_{k} \\ \vdots & \vdots & \vdots \\ d \mid r_{k} = r_{k-2} - r_{k-1}q_{k} & r_{k} \mid n = mq_{1} + r_{1} \end{array}$$

So $d \mid r_k \implies d \leq r_k$, a common divisor of n and m. So, $r_k \leq d$. Thus, $d = r_k$.

Bezout's Identity

Theorem

Let n, m > 0 and $d = \gcd(n, m)$. Then, there are $x, y \in \mathbb{Z}$ such that

$$d = nx + my$$

Another way of writing this is

$$nx + my = nx + (nm - nm) + my = n(x + m) + m(y - n)$$

Moreover, n and m are relatively prime (coprime) if gcd(n, m) = 1.

Proof. Let $S := \{nx + my, x, y \in \mathbb{Z}\}$. We claim that s = d. Then,

$$s = nx + my, \ n = sq + r, \ 0 \le r < s$$

Rearranging the second equation, we get

$$r = n - sq$$

$$= n - (nx + my)q$$

$$= n(1 - x) - myq \in S$$

Substitute equation 1

This implies that $r=0 \implies (s\mid n \text{ and } s\mid m) \implies s\leq d.$ But $d\mid n \text{ and } d\mid m, \text{ so } d\mid s \implies d\leq s.$ Therefore,

$$d = s = nx + my$$

Corollary

Let n, m > 0. Then, n and m are relatively prime if and only if there exists some $x, y \in \mathbb{Z}$ such that nx + my = 1

Proof. (\Longrightarrow) Bezout's Identity

(\iff) $nx + my = 1, d = \gcd(n, m)$. Then $d \mid n$ and $d \mid m$ by definition. This implies that $d \mid (nx + my) \iff d \mid 1$. But $d \geq 1 \implies d = 1$.

Chapter 1

Week 1

1.1 Prime Numbers

An integer p > 1 is called **prime** if the *only* divisors of p are ± 1 and $\pm p$. If n > 0 and p prime, then $\gcd(n,p) = \begin{cases} 1 & n \text{ and } p \text{ are coprime} \\ p & p \mid n \end{cases}$

Proposition

Every integer n > 1 is a product of prime integers.

Proof. We will use strong induction on $n \geq 2$.

(i) $(n_0 = 2)$ 2 is prime.

(ii) $(k \implies k+1)$

Assume P(k) is true for all k such that $2 \le k < n$. There are two cases.

Case I: n is prime. Then we are done.

Case II: n is composite. Then, there are integers p and q such that $n = p \cdot q$. By definition, 1 < p, q < n. Then, by the Inductive Hypothesis, P(p) and P(q) are true; i.e. p and q are products of primes. Therefore, $n = p \cdot q$ is a product of primes.

Lemma

Let p be a prime integer and n, m > 0 such that $p \mid nm$. Then, either

$$p \mid n \text{ or } p \mid m$$

Proof. There are two cases.

Case I: $p \mid n$. Then we are done.

Case II: p and n are coprime. Then, by Bezout's Identity we get

$$px + ny = 1$$

 $m(px + ny) = m$ multiply both sides by m
 $mpx + mny = m$ $p \mid pmx, p \mid nm \cdot y$

so $p \mid m$.

Corollary

Let p be prime, $n_1, n_2, \ldots, n_s > 0$ such that $p \mid n_1 n_2 \cdots n_s$. Then $p \mid n_i$ for some i < s.

Proof. We will induct on $s \in \mathbb{N}$.

- (i) (s = 1)This is true by the *Lemma* above.
- (ii) $(s-1 \implies s)$ Consider $p \mid (n_1 n_2 \cdots n_s - 1) \cdot n_s$. Then either $p \mid (n_1 n_2 \cdots n_s - 1)$ by the Inductive Hypothesis or $p \mid n_s$.

1.1.1 Unique Factorization

Let $n = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t$ and p_i, q_j be prime for all i, j < s, t. Then, their factorizations are the same if s = t and $q_j = p_{\alpha(j)}$ for every j = 1, 2, ..., t where $\alpha : \{1, 2, ..., s\} = \{1, 2, ..., t\}$

1.1.2 Fundamental Theorem of Arithmetic

Theorem

Every integer n > 1 admits a unique factorization into a product of primes.

Proof. Let $n = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t$ and p_i, q_j be prime for all i, j < s, t. We will induct on $s \in \mathbb{N}$.

- (i) (s = 1) $n = p_1 = q_1$ is true.
- (ii) $(s-1 \implies s)$ $p_s \mid n = q_1q_2\cdots q_t \stackrel{Corollary}{\implies} p_s \mid q_j$ for some integer $j \implies p_s = q_j$. Reorder the terms to get j = t. Then, $p_s = q_t$. We are left with $p_1p_2\cdots p_{s-1} = q_1q_2\cdots q_{t-1}$. Apply P(s-1) to get that s-1=t-1. Then, $q_j=p_i$ up to the permutation. That is, $p_s=q_s$.

Proposition

Let $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ and $m = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$, $a_k, b_k \ge 0$. Then $m \mid n$ if and only if $b_1 \le a_1, b_2 \le a_2, \cdots, b_k \le a_k$.

Proof. (\Longrightarrow)

$$n = m$$

$$p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} = \left(p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k} \right) \cdot q$$

Then, $b_1 \le a_1 \iff a_1 = b_1 + c, \ q = p_1^{c_1} \cdots p_k^{c_k}, c_k \ge 0.$

 $(\longleftarrow) \ n = mq \ \text{where} \ q = p_1^{a_1 - b_1} \cdots p_k^{a_k - b_k}. \ \text{Since} \ a_i \ge b_i, \ a_i - b_i \ge 0 \ \forall i < k \implies m \mid n$

1.1.3 Euclid's Theorem

Theorem

There are infinitely many primes.

Proof. Suppose by contradiction that there are exactly n primes $\{p_1, p_2, \dots, p_n\}$. Define $N := p_1 p_2 \cdots p_n + 1 > 1$. Let p be a divisor of N and $p = p_i$ for some i. Then, $1 = N - p_1 p_2 \cdots p_n \implies p_i \mid 1$, a contradiction.

1.2 Congruences

Let m > 0 be an integer. We say that two integers are **congruent** modulo m if

$$m \mid (b-a)$$

and denote it as

$$a \equiv b \pmod{m}$$

Proposition

 $a \equiv b \pmod{m}$ if and only if a and b have the same remainder on dividing by m.

Proof. (\Longrightarrow) $a \equiv b \pmod{m}$ can be rewritten as $m \mid (b-a)$ or b-a = mx where $a = mq+r, \ 0 \le r < m$. Then,

$$b = a + mx$$

$$= (mq + r) + mx$$
 substitute a

$$= m(q + x) + r$$

 (\Leftarrow) Suppose a = mq + r and b = ms + r, where $0 \le r < m$. Then

$$b-a=ms-mq=m(s-q) \implies m \mid (b-a) \iff a \equiv b \pmod{m}$$

Corollary

Every integer is congruent modulo m to exactly one integer in the set

$$\{0, 1, \ldots, m-1\}$$

Proof. Let a = mq + r where $0 \le r < m$. Then, $r = m \cdot 0 + r \implies a \equiv r \pmod{m}$ where $r = \{0, 1, \dots, m-1\}$

1.2.1 Properties

(i) $a \equiv b \pmod{m} \implies ax \equiv b \pmod{m}$ for every $x \in \mathbb{Z}$.

Proof.
$$m \mid (b-a) \implies m \mid (b-a)x = bx - ax$$

(ii) $a_1 \equiv b_1 \pmod{m}$, $a_1 \equiv b_1 \pmod{m} \implies a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.

Proof.
$$m \mid (b_1 - a_1)$$
 and $m \mid (b_1 - a_1) \implies m \mid (b_1 - a_1) + (b_2 - a_2) = (b_1 + b_2) - (a_1 + a_2)$.

(iii) $a_1 \equiv b_1 \pmod{m}$, $a_1 \equiv b_1 \pmod{m} \implies a_1 a_2 \equiv b_1 b_2 \pmod{m}$.

Proof. $b_1b_2 - a_1a_2 = b_1b_2(-a_1b_2 + a_1b_2) + a_1a_2 = (b_1 - a_1)b_2 + a_1(b_2 - a_2)$. Here, $m \mid (b_1 - a_1)$ and $m \mid (b_2 - a_2)$ by assumption. Then, $m \mid (b_1b_2 - a_1a_2)$.

1.2.2 Linear Congruence

 $ax \equiv b \pmod{m}$ for m > 0, $a, b \in \mathbb{Z}$.

Proposition

If gcd(a, n) = 1, then there is an integer solution x.

Proof.

$$ay + mz = 1$$
 Bezout's Identity $b(ay + mz) = b$ multiply both sides by b $aby + mbz = b$ \iff $b - aby = mbz$

Take x := aby.

1.3 Equivalence Relations

Let X be a set. A **relation** $a \sim b$ on X is a subset $\Omega \subset X \times X$. That is, for every $a, b \in X$, $a \sim b$ if $(a, b) \in \Omega$. A relation on X is called an **equivalence relation** if

- (i) Reflexive: $a \sim a$ for every $a \in X$
- (ii) Symmetric $a \sim b \implies b \sim a$ for every $a, b \in X$
- (iii) Transitive $a \sim b, b \sim c \implies a \sim c$ for every $a, b, c \in X$

1.3.1 Equivalence Classes

Let X be a set and \sim an equivalence relation. Then,

$$a \in X, X_a := \{b \in X : b \sim a\} \subset X$$

is an $equivalence \ class$ of a.

Proposition

Let \sim be an equivalence relation on a set X. Then

- (i) If $a \sim b$, $X_a = X_b$. If $a \not\sim b$, then $X_a \cap X_b = \emptyset$.
- (ii) a and b belong to the same equivalence class if and only if $a \sim b$.
- (iii) X is the disjoint union of all equivalence classes.

Proof. (i) Suppose $a \sim b$. Take any $c \in X_a$. Then

$$c \sim a \implies c \sim b \implies c \in X_b \implies X_a \subset X_b$$

$$c \sim b \implies c \sim a \implies c \in X_a \implies X_b \subset X_a$$

so
$$X_a = X_b$$
.

Assume $a \not\sim b$ by contradiction. Take $c \in X_a \cap X_b \implies c \sim a$ and $c \sim b \implies a \sim b$, a contradiction.

- (ii) (\Longrightarrow) Suppose $a, b \in X_c$. Then $a \sim c, b \sim c \implies c \sim b \implies a \sim b$.
 - (\longleftarrow) Suppose $a \sim b$. Then by (i), $a \in X_a = X_b \ni b$.
- (iii) Suppose $a \in X_a$. Then, $\bigcup X_a = X$.

Note: The set of all equivalence relations on X is the same as the set of all partitions of X into disjoint union of subsets. That is, $X = \bigcup X_a$.

Chapter 2

Week 2

2.1 Congruence and Equivalent Classes

Proposition

 $\equiv \pmod{m}$ is an equivalence relation for all $m \in \mathbb{N}$.

Proof. (i) Reflexive: Let $a, m \in \mathbb{Z}$. Then $m \mid a - a = 0$. So $a \equiv a \pmod{m}$.

- (ii) Symmetric: Suppose $a \equiv b \pmod{m}$. Then $m \mid (b-a)$. Then $a-b=-(b-a) \implies b \equiv a \pmod{m}$.
- (iii) Transitive: Suppose $a \equiv b, b \equiv c$. Then,

$$c - a = c(-b + b) - a = (c - b) + (b - a) \implies m \mid (c - a)$$

2.1.1 Equivalence Classes

The $congruence \ class$ of m is denoted as

$$[a] := [a]_m := \{b \in \mathbb{Z} : b \equiv a \pmod{m}\}$$

For example, $[2]_5 = \{\ldots, -8, -3, 2, 7, \ldots\}.$

Properties

- (i) $[a] = [b] \iff a \equiv b \pmod{m}$.
- (ii) $[a] \cap [b] = \emptyset \iff a \not\equiv b \pmod{m}$.
- (iii) Integers a, b belong to the same congruence class if and only if $a \equiv b \pmod{m}$.
- (iv) \mathbb{Z} is a disjoint union of congruence classes.
- (v) There are exactly m congruence classes modulo m ([0], [1], \cdots [m 1]).

Proof. (At least)

Suppose $0 \le j < k \le m-1$. Then

$$0 < k - j < m - 1 < m \implies m / (k - j) \implies j \not\equiv k \pmod{m}$$

(No more)

Let [k] be a congruence class. Then k = am + r where $0 \le r < m$. We can rewrite this as

$$k-r=am \implies m \mid (k-r) \implies [k]=[r]$$

Therefore, there are exactly m congruence classes modulo m.

2.1.2 Congruence Classes modulo m

We denote congruence clases modulo m as

 $\mathbb{Z}/m\mathbb{Z} := \{congruence \ classes \ mod \ m\}$

Addition

We will define addition as

$$[a]_m + [b]_m = [a+b]_m$$

Proof. We know

$$a' \equiv a \pmod{m}$$

$$b' \equiv b \ (mod \ m)$$

Then

$$m \mid a - a'$$

$$m \mid b - b'$$

or

$$(a+b) - (a'+b') = (a-a') + (b-b') \implies m \mid (a-a') + (b-b')$$

So + is well-defined.

Properties

(i) Commutativity: $[a]_m + [b]_m = [b]_m + [a]_m$.

Proof.
$$[a]_m + [b]_m = [a+b]_m = [b+a]_m = [b]_m + [a]_m.$$

(ii) Associativity: $([a]_m + [b]_m) + [c]_m = [a]_m + ([b]_m + [c]_m)$.

(iii) Identity: $[a]_m + [0]_m = [a]_m$.

Proof.
$$[a]_m = [a+0]_m = [a]_m + [0]_m = [a]_m.$$

(iv) Inverse: $[a]_m + [-a]_m = [0]_m$.

Proof.
$$[a]_m + [-a]_m = [a + (-a)]_m = [0]_m$$
.

Multiplication

We will define multiplication as

$$[a]_m \cdot [b]_m = [a \cdot b]_m$$

Proof. We know

$$a' \equiv a \pmod{m}$$

$$b' \equiv b \pmod{m}$$

Then

$$m \mid a - a'$$

$$m \mid b - b'$$

or

$$(a \cdot b) \cdot (a' \cdot b') = ab - ab' - a'b + a'b' = a(b - b') + a'(b - b') \implies m \mid (a'b' - ab)$$

So \cdot is well-defined.

Properties

(i) Commutativity: $[a]_m \cdot [b]_m = [b]_m \cdot [a]_m$.

Proof.
$$[a]_m \cdot [b]_m = [a \cdot b]_m = [b \cdot a]_m = [b]_m \cdot [a]_m$$
.

(ii) Associativity: $([a]_m \cdot [b]_m) \cdot [c]_m = [a]_m \cdot ([b]_m \cdot [c]_m)$.

(iii) Identity: $[a]_m \cdot [1]_m = [a]_m$.

Proof.
$$[a]_m = [a \cdot 1]_m = [a]_m \cdot [1]_m = [a]_m$$
.

(iv) Distributivity: $[a]_m \cdot ([b]_m + [c]_m) = [a]_m [b]_m + [a]_m [c]_m$.

Proof.
$$[a]_m \cdot ([b]_m + [c]_m) = [a \cdot (b+c)]_m = [ab+ac]_m = [ab]_m + [ac]_m = [a]_m [b]_m + [a]_m [c]_m \quad \Box$$

2.1.3 Invertability

We say that $[a]_m$ is *invertible* if there exists some $[a]_m^{-1}$ such that

$$[a]_m[b]_m = [1]_m$$

Theorem

A class $[a]_m$ is invertible if and only if gcd(a, m) = 1.

Proof. (\Longrightarrow) Assume $[a]_m$ is invertible. Then by definition there is some $[b]_m$ such that $[a]_m[b]_m = [ab]_m = 1 \Longrightarrow m \mid (ab-1) \Longrightarrow ab-1 = km \iff ab-km = 1$. Suppose $d \mid a$ and $d \mid m$. Then

$$d \mid (ab - km) = 1$$

$$d \mid 1 \implies d = 1$$

(\iff) Assume $\gcd(a,m)=1$. Then, there is an integer solution to $ax\equiv 1\pmod m$. Then, $[ax]_m:=[a]_m[x]_m=1\implies [a]_m$ is invertible.

2.1.4 Set of Invertible Classes

We denote the set of invertible classes as

$$(\mathbb{Z}/m\mathbb{Z})^{\times} := \{[a]_m : [a]_m \text{ is invertible}\}$$

Note: m = p a prime $\implies |(\mathbb{Z}/m\mathbb{Z})^{\times} = p - 1$.

2.2 Euler Totient Function

We denote the number of integers $1, \ldots, m-1$ coprime to m as

$$\varphi(m)$$

2.2.1 Properties

(i) m = p a prime $\implies \varphi(p) = p - 1$.

(ii)
$$m = p^k \implies \varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1).$$

Proof. In the set $\{1, 2, ..., p^k\}$, every p-th number is a multiple of p. There are p^{k-1} such elements in this set. Therefore, the elements that are coprime to p are $p^k - p^{k-1} = p^{k-1}(p-1)$. \square

2.2.2 Chinese Remainder Theorem

Lemma

Let $a \mid n$ and $b \mid n$. If gcd(a, b) = 1, then $ab \mid n$.

Proof. Let gcd(a, b) = 1. Then,

$$ax + by = 1$$
$$n(ax + by) = n$$
$$nax + nby = n$$

Bezout's Identity multiply both sides by n

By assumption, $a \mid n$ and $b \mid n$ so $ab \mid an$ and $ab \mid bn \implies ab \mid n$.

Corollary

Suppose $m_1 \mid n, m_2 \mid n, ..., m_k \mid n$ for $m_i \neq m_j, i \neq j$ (pairwise relatively prime). Then $m_1 m_2 \cdots m_k \mid n$.

Proof. We will induct on $k \geq 2$.

- (i) (k = 2) By the Lemma, this is true.
- (ii) (k = k + 1) Consider $m_1(m_2 \cdots m_k)$. Then $\gcd(m_1, m_i) = 1$ for $i \leq k$. Then $(m_1, m_2 \cdots m_k) = 1$. By the Inductive Hypothesis, $m_2 \cdots m_k \mid n$. By the Lemma, $m_1 m_2 \cdots m_k \mid n$.

Proposition

If $m \mid n$, then $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$. That is,

$$[a]_n \mapsto [a]_m$$

Proof. Suppose $[a]_n = [a']_n$. Then $a \equiv a' \pmod{n}$. So

$$m \mid n \mid (a - a') \implies m \mid (a - a') \implies [a]_m = [a']_m$$

So \mapsto is well-defined.

We will now consider $n := m_1 m_2 \cdots m_k$ for some integer k. Then

$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$$

or

$$[a]_n \mapsto ([a]_{m_1}] \mapsto [a]_{m_2} \mapsto \cdots \mapsto [a]_{m_k})$$

Theorem

If m_i are pairwise relatively prime, then f (defined above) is a bijection.

Proof. Injective

Assume $f([a]_n) = f([b]_n)$. Then

$$([a]_{n_1}, \cdots, [a]_{n_k}) = ([b]_{n_1}, \cdots, [b]_{n_k})$$

$$[a]_i = [b]_i \ \forall i < n \implies m_i \mid (b-a) \implies \prod m_i \mid (b-a) \iff n \mid (b-a) \implies [a]_n = [b]_n$$

Surjective

Trivial. Since f is both injective and surjective, f is a bijection.

Note: the size of $\mathbb{Z}/n\mathbb{Z}$ is $|\mathbb{Z}/n\mathbb{Z}| = |\mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}|$

Theorem

Consider the following system of congruences:

$$x \equiv b_1 \pmod{m_1}$$

$$x \equiv b_2 \pmod{m_2}$$

:

$$x \equiv b_k \pmod{m_k}$$

If m_1, \ldots, m_k are pairwise relatively prime, then there is an integer solution to the above system of congruences.

Proof. Since $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$ is a bijection, there is some $[x]_n$ such that $f([x]_n) = ([b]_{m_1}, \dots, [b]_{m_k})$ by surjectivity, so $[x]_{m_i} = [b_i]_{m_i} \implies x \equiv b_i \pmod{m_i} \ \forall i < k$. (i)

Suppose $[x]_{m_i} = [y]_{m_1}$. Then,

$$m_i \mid (x-y) \implies \prod m_i \mid (x-y)$$

so $[x]_n = [y]_n$. Let $[x]_n$ be a solution; i.e. $y \in [x]_n$. Then

$$m_i \mid n \mid (y - x) \implies m_i \mid (y - x) \implies [y]_m = [x]_m$$

2.3 Groups

Let G be a set. A binary operation, \cdot , on G is a map

$$G \times G \to G$$

such that

$$(a,b) \mapsto a \cdot b$$

A set G with a binary operation \cdot is a **group** if

- (i) Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (ii) Unique Identity: There exists an $e \in G$ such that $a \cdot e = e \cdot a = a$.
- (iii) Unique Inverse: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

2.3.1 Abelian Groups

A group is said to be **abelian** if for every $a, b \in G$, · is commutative; i.e.

$$a \cdot b = b \cdot a$$

Note: If G is abeliean, we usually denote the binary operator as +, inverse as -a, and identity as 0.

2.3.2 Properties

(i) Unique Identity e.

Proof. Let e_1, e_2 be two identities. Then, since e_1 is an identity, we get

$$e_1 \cdot e_2 = e_2$$

but since e_2 is an identity, we get

$$e_1 \cdot e_2 = e_1$$

so $e_1 = e_2$.

(ii) Unique Inverse e.

Proof. Let a_1, a_2 be two inverses. Then

$$a_1 = a_1 \cdot e = a_1 \cdot (a \cdot a_2) = (a_1 \cdot a) \cdot a_2 = e \cdot a_2 = a_2$$

(iii) Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

(iv) $(a^{-1})^{-1} = a$

Proof.
$$a^{-1} \cdot a = a \cdot a^{-1} = e \implies a = (a^{-1})^{-1}$$

(v) Powers.

$$a^{0} = e$$

$$a^{n} = a \cdot a \cdots a$$

$$n \text{ times}$$

$$a^{-n} = (a^{n})^{-1} = (a^{-1})^{n} = a^{-1} \cdot a^{-1} \cdots a^{-1}$$

$$n \text{ times}$$

(vi) Inverse: $a, b \in G$. Then $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.
$$e = (ab) \cdot (b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$
.
 $e = (b^{-1}a^{-1}) \cdot (ab) = a^{-1}(b^{-1}b)a = a^{-1}ea = a^{-1}a = e$.

(vii) Cancellation: $ax = bx \implies a = b$.

Proof.
$$a = ae = a(xx^{-1}) = (ax)x^{-1} = (bx)x^{-1} = b(xx^{-1}) = be = b$$
.

Note: $xa = xb \implies a = b$ but $ax = xb \implies a = b$ since G need not be abelian!

Chapter 3

Week 3

3.1 Homomorphisms of Groups

Let G, H be two groups. A **homomorphism** between G and H is a map

$$f:G\to H$$

such that

$$H \ni f(x \cdot y) = f(x) \cdot f(y) \in H$$

for every $x, y \in G$.

3.1.1 Properties

Let $f: G \to H$ be a homomorphism.

(i) $f(e_G) = e_H$.

Proof.
$$f(e_G) \cdot f(e_G) = f(e_G \cdot e_G) = f(e_G) = e_H$$

(ii) $f(x^{-1} = f(x)^{-1}$ for every $x \in G$.

Proof.

$$e_H = f(x^{-1}) \cdot f(x) = f(x^{-1} \cdot x) = f(e_G) = e_H$$

 $e_H = f(x) \cdot f(x^{-1}) = f(x \cdot x^{-1}) = f(e_G) = e_H$

3.2 Isomorphisms of Groups

A homomorphism $f: G \to H$ is an **isomorphism** if f is a bijection. Two groups are called **isomorphic** if there is an isomorphism $f: G \to H$.

3.2.1 Properties

- (i) $\mathrm{Id}_G:G\to G$ is an isomorphism.
- (ii) If f is an isomorphism, so is $f^{-1}: H \to G$.

Proof. Let f^{-1} be a bijection. Then,

$$\exists x \in G : f(x) = a \implies x = f^{-1}(a)$$

$$\exists y \in G : f(y) = b \implies y = f^{-1}(b)$$

Then,

$$f(x \cdot y) = f(x) \cdot f(y) = ab$$

 $f^{-1}(ab) = xy = f^{-1}(a) \cdot f^{-1}(b)$

(iii) If $f: G \to H$ and $f': H \to K$ are isomorphisms, then so is $f' \circ f: G \to K$.

Theorem

The relation \simeq is an equivalence relation.

Proof. (i) $\mathrm{Id}_G: G \to G$ is an isomorphism.

(ii) If f is an isomorphism, so is $f^{-1}: H \to G$.

Proof. Let f^{-1} be a bijection. Then,

$$x \in G: f(x) = a \implies x = f^{-1}(a)$$

$$y \in G: f(y) = b \implies y = f^{-1}(b)$$

Then,

$$f(x \cdot y) = f(x) \cdot f(y) = ab$$

$$f^{-1}(ab) = xy = f^{-1}(a) \cdot f^{-1}(b)$$

(iii) If $f: G \to H$ and $f': H \to K$ are isomorphisms, then so is $f' \circ f: G \to K$.

3.3 Cyclic Groups

3.3.1 Generator

Let G be a group, and $a \in G$. The element **generates** G if every $x \in G$ can be written as

$$x = a^i$$

for some $i \in \mathbb{Z}$. We say that a is a **generator** of G.

3.3.2 Order of a Group

Let G be a group, and $a, \in G$. The smallest n > 0 such that $a^n = e$ is called the **order** of a and is denoted as

$$ord(a) = n$$

Note that $ord(a) = \infty$ if such an n does not exist.

3.3.3 Cyclicity

A group G is called cyclic if G has a generator.

Theorem

Every cyclic group is isomorphic to either \mathbb{Z} or $\mathbb{Z}/\mathbb{Z}\mathbb{Z}$ for some $n \geq 0$.

Properties

Proposition

 $[a]_n \in \mathbb{Z}/n\mathbb{Z}$ a generator if and only if gcd(a,n) = 1. There are $\varphi(n)$ generators of $\mathbb{Z}/n\mathbb{Z}$.

Proof. (\Longrightarrow) There exists some $i \in \mathbb{Z}$ such that $i \cdot [a]_n = [1]_n$. Then

$$[ia]_n = [1]_n \implies ia \equiv 1 \pmod{n} \iff n \mid ia - 1 \iff ia - 1 = nm \iff \gcd(a, n) = 1$$

 (\Leftarrow) Let gcd(a, n) = 1. Then for some $x, y \in \mathbb{Z}$,

$$1 = ax + ny$$

But 1 - ax is divisible by n, so we get

$$1 \equiv ax \pmod{n} \iff [1]_n = [ax]_n = x \cdot [a]_n$$

Now, take any $[b]_n \in \mathbb{Z}/n\mathbb{Z}$. We have that

$$[b]_n \equiv bx[a]_n$$

so $[a]_n$ is a generator of $\mathbb{Z}/n\mathbb{Z}$.

Proposition

Let G be a cyclic group of order n. Then $\sigma \in G$ be a generator if and only if $\operatorname{ord}(\sigma) = n$.

Proof. (\Longrightarrow) Consider the powers of σ . $\sigma^0 = e$, $\sigma^1 = \sigma$, ..., $\sigma^k = e$, $\sigma^{k+1} = \sigma$, ..., $\sigma^{2k} = e$. Take k to be the smallest integer such that $\sigma^k = \sigma^i$ for $i \le i \le k$. We claim that i = 0.

If i > 0, we have $\sigma^{k-1} = \sigma^{i-1}$ for $0 \le i < k$; a contradiction. Then $\sigma^k = \sigma^0 = e$. So $n = |G| = k \implies n$ is the smallest integer such that $\sigma^n = e$. So $n = \operatorname{ord}(\sigma)$.

 (\longleftarrow) By definition, n is the smallest integer such that $\sigma^n = e$. Then,

$$\{e, \sigma^1, \sigma^2, \dots, \sigma^{n-1}\}$$

are distinct elements. This shows that

$$G = \left\{ e, \sigma, \sigma^2, \dots, \sigma^{n-1} \right\}$$

That is, σ generates G. Thus, $|G| = n = \operatorname{ord}(\sigma)$.