Solar Irradiance Prediction Using Satellite data and Machine Learning

Internship Project | February - June 2025

Gaurav Lute

Outline

- ➤ Introduction
- ➤ Project Overview
- ➤ Problem Statement
- ➤ Dataset Description

- ➤ Project Workflow
- ➤ Exploratory Data Analysis
- ➤ Feature Engineering
- ➤ Models and Results
- ➤ Evaluation Table

Introduction

- Solar irradiance is the power per unit area received from the sun in the form of electromagnetic radiation, measured in watts per square meter $(\frac{W}{m^2})$.
- It represents the amount of solar solar energy hitting a surface at given time.
- Types of Solar irradiance:
 - GHI(Global Horizontal irradiance) :- Total Solar radiation received on horizontal surface including both direct and difuse sunlight.
 - Direct Normal irradiance (DNI)
 :- Radiation coming from
 directly from the sun, measured
 perpendicular to its rays.
 - Diffuse Horizontal Irradiance (DHI) :- Sunlight scattered by the atmosphere (cloud.

Project Overview

★Objective

• Forecast
Global
Horizontal
Irradiance
(GHI) using
satellite
data and
machine

learning.

☐ Dataset

- NASA POWER

 (Feb 2016
 Feb 2025),
- Pune, India.

Techniques Used

- Classical ML
- Time Series
 Models.

✓ Goal

• Predict GHI
for March
2025 to
support
short-term
solar
energy
planning.

Application

- Useful for solar panel optimizatio n,
- Grid integration .
- Renewable energy forecasting

•

Problem Statement

Problem 1: Parametric Estimation

• © Objective:

Estimate GHI using a simple parametric model based on known physical and atmospheric relationships.

• Approach:

Use meteorological features (temperature, humidity, wind, etc.) to Random forest, Gradient Boosting etc.

• Durpose:

Understand feature influence and provide quick estimates using ML.

Problem 2: ML-Based Forecasting

• Q Objective:

Forecast solar irradiance values for March 2025 using historical satellite data.

• ✓ Approach:

Use ML and time series techniques like XGBoost, LightGBM, ARIMA, Prophet.

• □ Purpose:

Build a data-driven model that learns temporal and atmospheric patterns to give accurate short-term GHI forecasts.

Dataset Description

Project Workflow

♦ Objective

Predict solar irradiance using satellite data. Build reliable models for energy planning and forecasting.

◆ Data Source

NASA POWER (2016-2025) and others like NSRDB, GHI, temperature, humidity, cloud cover, wind speed, etc.

♦ Methodology Highlights

Applied Exploratory Data Analysis (EDA) to understand patterns.

Used **feature engineering** for time-based and domain-specific variables.

Applied ML models (RF, XGBoost, LR) and forecasting models (ARIMA, Prophet).

♦ Model Evaluation Metrics

RMSE, MAE, MAPE, R² to assess model accuracy. Cross-validation or walk-forward validation (if time series).

◆ Outcome

Best-performing model identified.

Visualized predictions vs actual values.

Insights generated for solar energy planning.

Exploratory Data Analysis

✓ Seasonal Patterns:

GHI shows a clear **annual cycle** with peak values during summer and dips during monsoon/winter.

Features like T2M, RH2M, and cloudrelated variables showed moderate to strong correlation with GHI.

Circular features (wind direction) were transformed using **sine** and **cosine** encoding.

Temperature and solar radiation show nonlinear patterns;
humidity and

precipitation show
negative correlation
with GHI.

Few extreme values
found in
precipitation, wind
speed, and solar
radiation handled
using log
transformation and
boxplot analysis.

GHI shows a clear annual cycle with peak values during summer and dips during monsoon/winter.

Temperature and solar radiation show non-linear patterns; humidity and precipitation show negative correlation with GHI.

Few extreme values found in precipitation, wind speed, and solar radiation handled using log transformation and boxplot analysis.

∀ Wind Direction
 Encoding:

Circular features
(wind direction)
were transformed
using sine and
cosine encoding.

♥ Correlation
 Analysis:

Features like T2M,
RH2M, and cloudrelated variables
showed moderate to
strong correlation
with GHI.

EDA for ML Model

Feature Engineering

Classical ML Model

- Logarithmic transformation in PRECTCORR columns (Highly Right skew).
- Transform Wind direction Feature.
- Remove Highly Uncorrelated Feature.

Time Series Prediction Mode

- Developed New Lags Features.
- Lag_1 : GHI value from the previous day.
- Lag_2 : GHI value from two days prior.
- Lag_7: GHI value from the same day one week earlier.
- Lag_365 : GHI value from the same day one year earlier.

Classical Machine Learning Models

- Random Forest Model
 - A tree-based ensemble learning model.
 - Handles non-linear relationships very well.
- Result
 - Average MSE: 0.39
 - Average R2 Score: 0.98

XGBoost Model with Lag variables.

- XGBoost stands for Extreme Gradient Boosting.
- Builds trees **sequentially**, each one trying to **correct the errors** of the previous model.
- Feature Engineering Developed some lag features.
- Results
 - RMSE :- 0.192
 - R2 Score :- 0.891

XGBoost Models with Lag variables.

Light-GBM (Light Gradient Boosting Machine) model

- LightGBM (Light Gradient Boosting Machine) is fast.
- Like XG-Boost, it builds decision trees **sequentially** to minimize errors.
- But unlike traditional boosting:
 - It grows tree **leaf-wise** (best leaf first), not level-wise.
 - Uses histogram-based binning for faster split finding.
 - Works best when data is large and sparse.
- Result
 - RMSE:- 0.05
 - R 2 Score :- 0.856

Light-GBM (Light Gradient Boosting Machine) model

ARIMA (Autoregressive Integrated Moving Average)

- ARIMA is a classical time series forecasting model.
- It combines Auto-Regression (AR),
 Integration (I), and Moving
 Average (MA) to model temporal
 data.
- Component Explanation:
 - AR (Auto-Regression):

 Predicts using past values
 (lags of the target)
 - I (Integration):

 Applies differencing to make the time series stationary
 - MA (Moving Average):

 Uses past forecast errors to improve prediction.
- Results
 - RMSE :- 0.035
 - MAE :- 0.035

Facebook Prophet Model

- Prophet is an open-source time series forecasting tool developed by Facebook.
- Ideal for daily, weekly, and monthly time series with seasonality and trends.
- Automatically detects and models:
 - Trend (piecewise linear or saturating)
 - Seasonality
 - Holidays/events (Optional)
- Results
 - MAPE (Mean absolute percentage error) :- 0.03
 - Mean absolute error :- 0.17

Facebook Prophet Model

Evaluation Table

Model	RMSE ↓	R² Score ↑	Key Strength
XGBoost	0.05	0.89	Best overall accuracy & robust with lag features
Random Forest	0.39	0.98	Strong on non- linear patterns
Gradient Boosting	0.43	0.98	Good balance, slightly slower
LightGBM	0.05	0.856	Fastest training, low memory usage
ARIMA	RMSE :- 0.035	MAE :- 0.035	Simple, interpretable, but univariate
Facebook Prophet	MAPE = 0.03	0.81	Trend-aware & easy, but less flexible

Simple Streamlit UI interface

Thank you