PRØVEEKSAMEN MAT1110 - VÅR 2014

1. Oppgaven

Oppgave 1

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 3 & 1 & 8 \\ 1 & 1 & 2 \end{array}\right)$$

- a) Finn den reduserte trappeformen til A. Finn alle løsninger til matriseligningen $A\mathbf{x}=\mathbf{0}$
- b) Finn en lineær avhengighetsrelasjon mellom søylene i matrisen A.

Oppgave 2

$$B = \left(\begin{array}{cc} 1 & -1 \\ 2 & 4 \end{array}\right)$$

- a) Finn egenverdiene og egenvektorene til matrisen A.
- b) La $\mathbf{w} = (1, -3)$. Fin $\lim_{n \to \infty} (1/3)^n \cdot A^n \mathbf{w}$.

Oppgave 3 Avgjør om rekkene $\sum_{n=0}^{\infty} \frac{n^3+2n+1}{n+3}$ og $\sum_{n=0}^{\infty} \frac{e^n}{(n+1)!}$ konvergerer eller divergerer.

Oppgave 4

Bruk Lagrange til å finne punktet på flaten $x^2 + 2y^2 - z^2 = 1$ i \mathbb{R}^3 som er nærmest origo.

Oppgave 5

Flatene $z=2-x^2-y^2$ og $z=x^2-2x+y^2-2y$ skjærer hverandre i en lukket kurve Γ .

- a) Finn en parametrisering av kurven Γ .
- b) Finn volumet av området mellom de to flatene.

Oppgave 6 Vi definerer et vektorfelt

$$\mathbf{F}(x, y, z) = (2xy + zy + y^2, x^2 + xz + 2xy + y^2, xy + z).$$

- a) Vis at \mathbf{F} er konservativt ved å finne et potensiale til \mathbf{F} .
- b) Finn

$$\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$$

der Γ er kurven fra forrige oppgave.

Date: June 2, 2014.