Regression

李宏毅、吳沛遠

Regression: Output a scalar

Stock Market Forecast

) = Dow Jones Industrial Average at tomorrow

Self-driving Car

) = 方向盤角度

Recommendation

$$f($$
 使用者A 商品B $)=$ 購買可能性

Example Application

Estimating the Combat Power (CP) of a pokemon after evolution

Step 1: Model

$$y = b + w \cdot x_{cp}$$

A set of function Model

$$f_1, f_2 \cdots$$

w and b are parameters (can be any value)

$$f_1$$
: y = 10.0 + 9.0 · x_{cp}

$$f_2$$
: y = 9.8 + 9.2 · x_{cp}

$$f_3$$
: y = -0.8 - 1.2 · x_{cp}

infinite

x) =

CP after evolution

Linear model:
$$y = b + \left| w_i x_i \right|$$

 x_i : x_{cp} , x_{hp} , x_w , x_h ...

feature

 w_i : weight, b: bias

 $y = b + w \cdot x_{cp}$

A set of function

Model

 $f_1, f_2 \cdots$

Training Data function function input: Output (scalar):

Source: https://www.openintro.org/stat/data/?data=pokemon

$$y = b + w \cdot x_{cp}$$

$$A \text{ set of function } f_1, f_2 \cdots$$

$$L(f) = \sum_{n=1}^{10} \frac{\text{Estimation error}}{\left(\hat{y}^n - f(x_{cp}^n)\right)^2}$$

$$L(w, b) = \sum_{n=1}^{10} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)^2$$

$$= \sum_{n=1}^{10} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)^2$$

Step 3: Best Function

$$w^* = arg \min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

$$w^* = arg \min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

$$w^* = arg \min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

Step 3: Gradient Descent $\left| \frac{\partial L}{\partial w} \right|_{\mathcal{S}}$

$$\begin{bmatrix} \frac{\partial L}{\partial w} \\ \frac{\partial L}{\partial b} \end{bmatrix}$$
 gradient

- How about two parameters? $w^*, b^* = arg \min_{w,b} L(w,b)$
 - (Randomly) Pick an initial value w⁰, b⁰
 - ightharpoonup Compute $\frac{\partial L}{\partial w}|_{w=w^0,b=b^0}$, $\frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$

$$w^{1} \leftarrow w^{0} - \frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}} \qquad b^{1} \leftarrow b^{0} - \frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}}$$

ightharpoonup Compute $\frac{\partial L}{\partial w}|_{w=w^1,b=b^1}$, $\frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$

$$w^2 \leftarrow w^1 - \frac{\partial L}{\partial w}|_{w=w^1,b=b^1} \qquad b^2 \leftarrow b^1 - \frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$$

• When solving:

$$\theta^* = \arg \max_{\theta} L(\theta)$$
 by gradient descent

• Each time we update the parameters, we obtain θ that makes $L(\theta)$ smaller.

$$L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$$

Is this statement correct?

• Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{10} (\hat{y}^n - (b + w \cdot x_{cp}^n))^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)$$

$$\frac{\partial L}{\partial h} = ?$$

• Formulation of $\partial L/\partial w$ and $\partial L/\partial b$

$$L(w,b) = \sum_{n=1}^{10} \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right) \left(-x_{cp}^n\right)$$

$$\frac{\partial L}{\partial b} = ? \sum_{n=1}^{10} 2 \left(\hat{y}^n - \left(b + w \cdot x_{cp}^n \right) \right)$$

How's the results?

How's the results?

- Generalization

What we really care about is the error on new data (testing data)

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

Best Function

$$b = -10.3$$

$$W_1 = 1.0, W_2 = 2.7 \times 10^{-3}$$

Average Error = 15.4

Testing:

Average Error = 18.4

Better! Could it be even better?

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

Best Function

$$b = 6.4$$
, $w_1 = 0.66$

$$w_2 = 4.3 \times 10^{-3}$$

 $w_3 = -1.8 \times 10^{-6}$

Average Error = 15.3

Testing:

Average Error = 18.1

Slightly better. How about more complex model?

y = b +
$$w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

+ $w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$

Best Function

Average Error = 14.9

Testing:

Average Error = 28.8

The results become worse ...

y = b +
$$w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

+ $w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$
+ $w_5 \cdot (x_{cp})^5$

Best Function

Average Error = 12.8

Testing:

Average Error = 232.1

The results are so bad.

Model Selection

1.
$$y = b + w \cdot x_{cp}$$

2.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

3.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

4.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$$

5.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$$

Training Data

A more complex model yields lower error on training data.

If we can truly find the best function

Model Selection

A more complex model does not always lead to better performance on *testing data*.

This is **Overfitting**.

Select suitable model

Let's collect more data

What are the hidden factors?

Back to step 1: Redesign the Model

$$y = b + \sum w_i x_i$$

Linear model?

$$x_s = \text{species of } x$$

If
$$x_s = \text{Pidgey}$$
: $y = b_1 + w_1 \cdot x_{cp}$

If
$$x_s$$
 = Weedle: $y = b_2 + w_2 \cdot x_{cp}$

If
$$x_S$$
 = Caterpie: $y = b_3 + w_3 \cdot x_{cp}$

If
$$x_s$$
 = Eevee: $y = b_4 + w_4 \cdot x_{cp}$

Back to step 1: Redesign the Model

$$y = b + \sum w_i x_i$$

Linear model?

$$y = b_1 \cdot \begin{vmatrix} 1 \\ +w_1 \end{vmatrix} = \begin{vmatrix} 1 \\ x_{cp} \end{vmatrix}$$
 $+b_2 \cdot \begin{vmatrix} 0 \\ +w_2 \end{vmatrix} = \begin{vmatrix} 0 \\ +b_3 \cdot \end{vmatrix}$
 $+b_3 \cdot \begin{vmatrix} 0 \\ +w_4 \end{vmatrix} = \begin{vmatrix} 0 \\ +w_4 \end{vmatrix}$

$$\delta(x_S = \text{Pidgey})$$

$$\begin{cases} = 1 & \text{If } x_S = \text{Pidgey} \\ = 0 & \text{otherwise} \end{cases}$$

$$\text{If } x_S = \text{Pidgey}$$

$$y = b_1 + w_1 \cdot x_{cp}$$

Are there any other hidden factors?

1500

Back to step 1: Redesign the Model Again

If
$$x_{S} = \text{Pidgey:}$$
 $y' = b_{1} + w_{1} \cdot x_{cp} + w_{5} \cdot (x_{cp})^{2}$

If $x_{S} = \text{Weedle:}$ $y' = b_{2} + w_{2} \cdot x_{cp} + w_{6} \cdot (x_{cp})^{2}$

If $x_{S} = \text{Caterpie:}$ $y' = b_{3} + w_{3} \cdot x_{cp} + w_{7} \cdot (x_{cp})^{2}$

If $x_{S} = \text{Eevee:}$ $y' = b_{4} + w_{4} \cdot x_{cp} + w_{8} \cdot (x_{cp})^{2}$
 $y = y' + w_{9} \cdot x_{hp} + w_{10} \cdot (x_{hp})^{2}$
 $y = y' + w_{11} \cdot x_{h} + w_{12} \cdot (x_{h})^{2} + w_{13} \cdot x_{w} + w_{14} \cdot (x_{w})^{2}$

Training Error = 1.9

Testing Error = 102.3

Overfitting!

Back to step 2: Regularization

$$y = b + \sum w_i x_i$$

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i} \right) \right)^{2} + \lambda \sum_{i} (w_{i})^{2}$$

The functions with smaller w_i are better

$$+\lambda\sum(w_i)^2$$

 \triangleright Smaller w_i means ... smoother

moother
$$y = b + \sum w_i x_i$$
$$y + \sum w_i \Delta x_i = b + \sum w_i (x_i + \Delta x_i)$$

> We believe smoother function is more likely to be correct Do you have to apply regularization on bias?

- \triangleright Training error: larger λ , considering the training error less
- > We prefer smooth function, but don't be too smooth.

Matrix Form $y = X\theta + \varepsilon$

With bias term: d = m + 1 (denote $x_{i m+1} = 1$)

No bias term: d = m

Sum of Squared Error:

$$\varepsilon_1^2 + \dots + \varepsilon_n^2 = \|\boldsymbol{\varepsilon}\|_2^2$$

Sum of Absolute Error:

$$|\varepsilon_1| + \dots + |\varepsilon_n| = ||\varepsilon||_1$$

Famous Regression Methods

$$y = X\theta + \varepsilon \Rightarrow \varepsilon = y - X\theta$$

			$\mathbf{\Omega} = diag(\omega_1)$
Regression methods	$L(oldsymbol{ heta})$	Matrix form	$= \begin{bmatrix} \omega_1 & 0 \\ 0 & \omega_2 \\ \vdots \end{bmatrix}$
Least-squares linear regr.	$\sum_{i} (y_i - X_i \boldsymbol{\theta})^2$	$\ \mathbf{y} - \mathbf{X}\boldsymbol{\theta}\ _2^2$	
Weighted least squares	$\sum_{i} \omega_{i} (y_{i} - \boldsymbol{X}_{i} \boldsymbol{\theta})^{2}$	$(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})^T \boldsymbol{\Omega} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})$	Quadratic co minimize w/
Ridge regr.	$\sum_{i} (y_i - X_i \boldsymbol{\theta})^2 + \lambda \sum_{i} w_i^2$	$\ \mathbf{y} - \mathbf{X}\boldsymbol{\theta}\ _2^2 + \lambda \ \mathbf{w}\ _2^2$	
LASSO	$\sum_{i} (y_i - X_i \boldsymbol{\theta})^2 + \lambda \sum_{i} w_i $	$\ \mathbf{y} - \mathbf{X}\boldsymbol{\theta}\ _2^2 + \lambda \ \mathbf{w}\ _1$	Quadratic programmin
Least absolute deviations	$\sum_{i} y_i - X_i \boldsymbol{\theta} $	$\ \mathbf{y} - \mathbf{X}\boldsymbol{\theta}\ _1$	Linear
Chebyshev criterion	$\max_{i} y_{i}-\boldsymbol{X}_{i}\boldsymbol{\theta} $	$\ \mathbf{y} - \mathbf{X}\boldsymbol{\theta}\ _{\infty}$	programmin

$$\mathbf{\Omega} = diag(\omega_1, \dots, \omega_n)
= \begin{bmatrix} \omega_1 & 0 & \dots & 0 \\ 0 & \omega_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \omega_n \end{bmatrix}$$

ost; /calculus

ng

ng

We usually do not pose regularization on the bias term b(a larger bias does not make the model more "non-smooth")

Minimize Quadratic Cost with Calculus

For least-squares linear regr., write

$$L(\boldsymbol{\theta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{2}^{2} = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

= $\mathbf{y}^{T}\mathbf{y} - \boldsymbol{\theta}^{T}\mathbf{X}^{T}\mathbf{y} - \mathbf{y}^{T}\mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^{T}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\theta}$

Taking gradient

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

Optimal solution occurs when gradient vanishes, namely

$$\boldsymbol{\theta}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

For students obsessed with rigorous math:

Q: Does gradient equals zero implies minimal solution?

A: Counter-examples exist (think of functions like θ^3).

A more rigorous proof is to write

$$L(\boldsymbol{\theta}) = (\boldsymbol{\theta} - \boldsymbol{\theta}^*)^T (\boldsymbol{X}^T \boldsymbol{X}) (\boldsymbol{\theta} - \boldsymbol{\theta}^*) + (\boldsymbol{y}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y})$$
 and recognize the fact that $\boldsymbol{X}^T \boldsymbol{X}$ is positive semi-definite.

Q: What if X^TX is not invertible?

A: The optimal solution is not unique. The optimal solution with the minimum 2-norm is given by $\theta^* = X^{\dagger}y$, where X^{\dagger} is the pseudo-inverse of X. (Rather technically involved)

Minimize Quadratic Cost with Calculus

Regression methods	$L(oldsymbol{ heta})$	Matrix form	Optimal solution (For simplicity assume no bias, namely $ heta=w$)
Least-squares linear regr.	$\sum_{i} (y_i - X_i \boldsymbol{\theta})^2$	$\ \mathbf{y} - \mathbf{X}\boldsymbol{\theta}\ _2^2$	$\boldsymbol{\theta}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$ (assume $\boldsymbol{X}^T \boldsymbol{X}$ is invertible)
Weighted least squares	$\sum_{i} \omega_{i} (y_{i} - \boldsymbol{X}_{i} \boldsymbol{\theta})^{2}$	$(y_i - \boldsymbol{X}_i \boldsymbol{\theta})^T \boldsymbol{\Omega} (y_i - \boldsymbol{X}_i \boldsymbol{\theta})$	$oldsymbol{ heta}^* = (oldsymbol{X}^T oldsymbol{\Omega} oldsymbol{X})^{-1} oldsymbol{X}^T oldsymbol{\Omega} oldsymbol{y}$ (assume $oldsymbol{X}^T oldsymbol{\Omega} oldsymbol{X}$ is invertible)
Ridge regr.	$\sum_{i} (y_i - X_i \boldsymbol{\theta})^2 + \lambda \sum_{i} w_i^2$	$\ \boldsymbol{y} - \mathbf{X}\boldsymbol{\theta}\ _2^2 + \lambda \ \boldsymbol{w}\ _2^2$	$\boldsymbol{\theta}^* = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$

$$\begin{aligned} & \boldsymbol{\Omega} = diag(\omega_1, \dots, \omega_n) \\ & = \begin{bmatrix} \omega_1 & 0 & \dots & 0 \\ 0 & \omega_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \omega_n \end{bmatrix} \end{aligned}$$

Homework questions ©

 $=\begin{bmatrix} \omega_1 & 0 & & & \\ 0 & \omega_2 & & & \\ & \vdots & \ddots & \vdots \end{bmatrix}$ Besides intuitive "proof" (like setting derivatives to zero), you may challenge yourself to give rigorous proofs that really convince you, and/or cover the more general cases (say when $X^T \Omega X$ is not invertible, considering the bias term b, etc.).