Domaći zadatak br. 3

- 1. Neka su $Q \in \mathcal{M}_{n \times n}$ i $U \in \mathcal{M}_{m \times m}$ ortogonalne matrice. Dokazati da je tada ortogonalna i matrica $\begin{bmatrix} Q & O_{n \times m} \\ O_{m \times n} & U \end{bmatrix}$, gde su O nula matrice odgovarajućih dimenzija.
- 2. Neka su ${\cal H}_1$ i ${\cal H}_2$ elementarne refleksije. Da li su to i matrice

$$\begin{bmatrix} I & O \\ O & H_2 \end{bmatrix}, \qquad \begin{bmatrix} H_1 & O \\ O & H_2 \end{bmatrix}?$$

3. Neka je $v\in\mathbb{R}^{n-1}$ i $a\neq 0$ tako da je $x=\begin{bmatrix} a\\v\end{bmatrix}\in\mathbb{R}^n$ normiran vektor. Dokazati da je

$$Q = \begin{bmatrix} a & v^T \\ v & I - \frac{vv^T}{1 - a} \end{bmatrix}$$

simetrična ortogonalna matrica.

Napomena 1. Ovim je opisan jednostavan postupak formiranja ortonormirane baze prostora \mathbb{R}^n koja sadrži dati normiran vektor x.

- 4. Odrediti matricu rotacije u 3D oko z-ose za ugao 30° .
- 5. Odrediti matrice baznih rotacija, tj. rotacija oko svake od koordinatnih osa za ugao θ . Interesantno je pogledati WikiDodatak o rotacijama.