Trójkąt Stirlinga dla cykli:

Trójkąt Stirlinga dla cykli:

Twierdzenie

Wzór

$$x^{\overline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

zachodzi dla każdej liczby całkowitej dodatniej n.

- ullet Zauważmy, że jak w powyższym wzorze podstawimy x=1, to otrzymamy jeden z omawianych wcześniej wzorów.
- Dowód powyższego twierdzenia można przeprowadzić indukcyjnie podobnie do przeprowadzonego wcześniej dowodu analogicznego twierdzenia dla liczb Stirlinga drugiego rodzaju (należy pamiętać, że $x^{\overline{n}}=(x+n-1)x^{\overline{n-1}}$).

Trójkąt Stirlinga dla podzbiorów:

Trójkąt Stirlinga dla podzbiorów:

Twierdzenie

Dla n > 0 zachodzi zależność rekurencyjna

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \cdot \begin{bmatrix} n-1 \\ k \end{bmatrix}.$$

Poniższy dowód jest modyfikacją wcześniej przedstawionego dowodu zależności rekurencyjnej dla liczb Stirlinga drugiego rodzaju.

Dowód. (1/2)

Niech $S=\{a_1,a_2,\ldots,a_n\}$. Określimy liczbę podziałów S na k cykli C_1,C_2,\ldots,C_k . Zauważmy, że w każdym takim podziale elementy a_1,a_2,\ldots,a_{n-1} można rozmieścić <u>albo</u> w cyklach C_1,C_2,\ldots,C_{k-1} <u>albo</u> w cyklach $C_1,C_2,\ldots,C_{k-1},C_k$.

W pierwszym przypadku mamy $\begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$ możliwości. Zayważmy, że dla każdego takiego podziału element a_n tworzy ostatni, jednoelementowy cykl $C_k = [a_n]$.

- $\binom{n}{k}$ liczba k-elementowych podzbiorów zbioru n-elementowego
- \bullet ${n \brace k}$ liczba podziałów n-elementowegozbioru na k niepustych podzbiorów
- ullet ${n\brack k}$ liczba permutacji n-elementowego zbioru zawierających k cykli

Liczby Stirlinga pierwszego rodzaju nazywane są liczbami cyklicznymi Stirlinga, a drugiego rodzaju — liczbami podzbiorowymi Stirlinga.

Wartości $\begin{bmatrix} n \\ k \end{bmatrix}$ dla małych wartości k:

• k = 0.

Podobnie jak w przypadku liczb Stirlinga drugiego rodzaju mamy $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$

 $\operatorname{oraz} \begin{bmatrix} n \\ 0 \end{bmatrix} = 0 \text{ dla } n > 0.$

• k = 1

Oczywiście $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$. Pamiętamy, że zbiór n-elementowy ma dokładnie n! permutacji. Każdemu cyklowi odpowiada dokładnie n permutacji (każda rozpoczyna się od innego elementu danego zbioru), zatem

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = \frac{n!}{n} = (n-1)!$$

Liczby Stirlinga drugiego rodzaju

Definicja

Podziałem skończonego zbioru S nazywamy rodzinę parami rozłącznych podzbiorów $\{S_1,S_2,\ldots,S_k\}$ zbioru S taką, że

$$S_1 \cup S_2 \cup \ldots \cup S_k = S$$
.

Definicja (liczby Stirlinga drugiego rodzaju)

Symbol $\binom{n}{k}$ (czyt. k podzbiorów n) oznacza liczbę sposobów podziału zbioru n-elementowego na k niepustych podzbiorów.

Liczby Stirlinga drugiego rodzaju występują częściej niż liczby Stirlinga pierwszego rodzaju, więc zaczynamy od nich — tak jak James Stirling w swojej książce *Methodus Differentialis* (1730).

Dowód. (2/2)

W drugim przypadku mamy ${n-1 \brace k}$ możliwości podziału zbioru $\{a_1,a_2,\ldots,a_{k-1}\}$ na S_1,S_2,\ldots,S_k . Zauważmy, że w przypadku każdego takiego podziału element a_n może trafić do jednego z k zbiorów S_1,S_2,\ldots,S_k . Zatem w tym przypadku mamy $k \cdot {n-1 \brace k}$ możliwości.

Ostatecznie

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}.$$

Wartości $\binom{n}{k}$ dla małych n i k:

n	0	1	2	3	4	5	6	7	8	9
0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0	0
3	0	1	3	1	0	0	0	0	0	0
4	0	1	7	6	1	0	0	0	0	0
5	0	1	15	25	10	1	0	0	0	0
6	0	1	31	90	65	15	1	0	0	0
7	0	1	63	301	350	140	21	1	0	0
8	0	1	127	966	1701	1050	266	28	1	0
9	0	1	255	3025	7770	6951	2646	462	36	1

Uwaga!

W przypadku, gdy $n\geqslant 0$ i k<0 zakładamy, że $\displaystyle {n\choose k}=0.$

Wartości $\binom{n}{k}$ dla małych wartości k:

- k=0. Przyjmujemy, że $egin{cases} 0 \\ 0 \end{pmatrix} = 1$. Jeżeli n>0 to, oczywiście, $\genfrac{\{}{\}}{0}{0} = 0$.
- k=1. Mamy $\begin{cases} 0 \\ 1 \end{cases} = 0$. Dla n>0 istnieje dokładnie jeden n-elementowy podział n-elementowego zbioru, więc

$$\binom{n}{1} = 1.$$

• k=2. Oczywiście $\binom{0}{2}=0$. Załóżmy, że n>0. Chcemy rozbić zbiór $S=\{a_1,a_2,\ldots,a_n\}$ na dwa podzbiory S_1 i S_2 . Bez straty ogólności możemy przyjąć, że $a_1\in S_1$. Pozostałe a_i możemy przypisać do zbioru S_1 na 2^{n-1} sposobów, ale musimy pamiętać, że nie możemy do niego przypisać wszystkich elementów zbioru S. Zatem

$$\begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} - 1.$$

40 + 40 + 43 + 43 + 3 + 990

Odwrotny algorytm Euklidesa

Algorytm służy wyznaczenia u i v takich, że $a \cdot u + b \cdot v = \mathsf{NWD}(a, b)$.

$$a = q_1 \cdot b + r_1, \quad b = q_2 \cdot r_1 + r_2, \quad r_1 = q_3 \cdot r_2 + r_3, \quad \dots,$$

 $r_{n-3} = q_{n-1} \cdot r_{n-2} + r_{n-1}, \quad r_{n-2} = q_n \cdot r_{n-1} + r_n, \quad r_{n-1} = q_{n+1} \cdot r_n.$

- Z i-tego równania wyznaczamy wartość r_i dla każdego $i=1,2,\ldots,n$ (więc pomijamy ostatnie równanie).
- Wyliczone r_n daje nam równanie $\mathsf{NWD}(a,b) = r_{n-2} q_n \cdot r_{n-1}.$ Do tego równania wstawiamy wyliczoną wartość r_{n-1} (w ten sposób otrzymujemy $\mathsf{NWD}(a,b)$ w kombinacji liniowej r_{n-2} i r_{n-3}).
- ullet Kontynuujemy podstawianie r_{n-2} , r_{n-3} itd. aż do r_1 , po drodze upraszczając współczynniki. W efekcie dostajemy zapis implikujący wartości u i v.

Słowniczek

```
wartość bezwzględna liczby x
     |x|
NWD(a, b)
                największy wspólny dzielnik liczb a i b
NWW(a, b)
                najmniejsza wspólna wielokrotność liczb a i b
\min\{a,b\}
                niewiększa z liczb a i b
\max\{a,b\}
                niemniejsza z liczb a i b
    a|b
                liczba a jest dzielnikiem liczby b
   a\perp b
                liczby a i b są względnie pierwsze
     \mathbb{N}
                zbiór liczb naturalnych, \mathbb{N} = \{1, 2, 3, \ldots\}
     \mathbb{Z}
                zbiór liczb całkowitych, \mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}
    \mathbb{Z}_n
                zbiór reszt z dzielenia przez n, \mathbb{Z}_n = \{0, 1, \dots, n-1\}
                zbiór liczb pierwszych
                i-ta liczba pierwsza
     p_i
```

Definicja

Liczba $n \in \mathbb{N}$ jest **liczbą pierwszą**, jeżeli n ma dokładnie dwa dodatnie dzielniki.

- 0 nie jest liczbą pierwszą (po pierwsze nie jest liczbą dodatnią, a po drugie ma nieskończenie wiele dzielników).
- 1 nie jest liczbą pierwszą (ma dokładnie jeden dodatni dzielnik).
- Początkowe liczby pierwsze: 2, 3, 5, 7, 11, 13, 17, 19, 23.
- Liczby naturalne większe od 1 dzielimy na liczby pierwsze i liczby złożone (złożone to te, które nie są pierwsze).
- 1 nie jest ani liczbą pierwszą, ani liczbą złożoną.
- ullet Zbiór liczb pierwszych oznaczamy przez ${\mathbb P}.$

Definicja NWW

Niech $a,b\in\mathbb{Z}/\{0\}$. Liczbę $D\in\mathbb{N}$ nazywamy **najmniejszą wspólną wielokrotnością** liczb a i b, gdy

- a|D i b|D,
- ullet jeżeli dla $c\in\mathbb{N}$ mamy a|c i b|c, to D|c.

Najmniejszą wspólną wielokrotność liczba i boznaczamy jako $\mathsf{NWW}(a,b).$

Przykład

NWW(6,8) = 24, NWW(14,-17) = 238, NWW(-3,-9) = 9.

W literaturze często można spotkać się z oznaczeniami $\mathsf{NWD}(a,b) = (a,b)$ i $\mathsf{NWW}(a,b) = [a,b].$

Definicja NWD

Niech $a,b\in\mathbb{Z}$ i niech co najmniej jedna z nich jest różna od 0. Liczbę naturalną d nazywamy **największym wspólnym dzielnikiem** liczb a i b, gdy

- d|a i d|b,
- jeżeli dla $c \in \mathbb{N}$ mamy c|a i c|b, to c|d.

Największy wspólny dzielnik liczba i b oznaczamy jako NWD(a,b).

Przykład

$$\mathsf{NWD}(6,8) = 2, \quad \mathsf{NWD}(14,-17) = 1, \quad \mathsf{NWD}(-3,-9) = 3, \quad \mathsf{NWD}(0,24) = 24.$$

Przykład

Wyznaczyć największy wspólny dzielnik oraz najmniejszą wspólną wielokrotność liczb $48\ {\rm i}\ 180.$

Stosując algorytm Euklidesa otrzymujemy

$$180 = 3 \cdot 48 + 36$$
$$48 = 1 \cdot 36 + 12$$
$$36 = 3 \cdot 12$$

Zatem NWD(48, 180) = 12.

Zatem

$$NWW(48, 180) = \frac{48 \cdot 180}{12} = \frac{4 \cdot 180}{1} = 720.$$

Czy z powyższego dowodu wynika, że liczba ${\cal P}$ jest liczbą pierwszą? Nie!

$$2+1=3\in\mathbb{P}$$

$$2\cdot 3+1=7\in\mathbb{P}$$

$$2\cdot 3\cdot 5+1=31\in\mathbb{P}$$

$$2\cdot 3\cdot 5\cdot 7+1=211\in\mathbb{P}$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11+1=2311\in\mathbb{P}$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11+1=2311\in\mathbb{P}$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13+1=59\cdot 509$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17+1=19\cdot 97\cdot 277$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19+1=347\cdot 27\, 953$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19+1=347\cdot 27\, 953$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23+1=317\cdot 703\, 763$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29+1=331\cdot 571\cdot 34\, 231$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31+1=200\, 560\, 490\, 131\in\mathbb{P}$$

$$2\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 37+1=181\cdot 60\, 611\cdot 676\, 421$$

Zatem konstrukcja w powyższym dowodzie nie daje przepisu na tworzenie coraz większych liczb pierwszych, a jedynie wskazuje, że istnieją liczby pierwsze nienależące do dowolnego skończonego zbioru liczb pierwszych.

Stwierdzenie

Dla dowolnej liczby pierwszej p i liczby całkowitej dodatniej α zachodzi:

- $\varphi(p) = p 1$,
- $\varphi(p^{\alpha}) = p^{\alpha} \cdot \left(1 \frac{1}{p}\right)$.

Dowód.

- ullet Liczba pierwsza p jest względnie pierwsza z każdą z liczb $1,2,\ldots,p-1.$
- Zauważmy, że jedynie wielokrotności liczby pierwszej p mają wspólny nietrywialny dzielnik z p^{α} . Zatem w zbiorze $\{1,2,\ldots,p^{\alpha}-1\}$ liczbami niebędącymi liczbami względnie pierwszymi z p^{α} są

$$1 \cdot p, \ 2 \cdot p, \ \dots, \ (p^{\alpha-1}-1) \cdot p,$$

więc ich liczba wynosi $p^{\alpha-1}-1$. Zatem

$$\varphi\left(p^{\alpha}\right)=\left(p^{\alpha}-1\right)-\left(p^{\alpha-1}-1\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{n}\right).$$

Definicja

Dla każdej liczby $n\in\mathbb{N}/\{1\}$ określamy liczbę $\varphi(n)$ jako liczbę dodatnich liczb całkowitych mniejszych od n i względnie pierwszych z n:

$$\varphi(n) = \Big| \{ 1 \leqslant k < n : k \perp n \} \Big|.$$

Funkcję $\varphi = \varphi(n)$ nazywamy funkcją φ -Eulera.

Przykład

Obliczmy NWD(k, 12) dla k mniejszych od 12:

$$\begin{array}{llll} \mathsf{NWD}(1,12) = \mathbf{1}, & \mathsf{NWD}(4,12) = 4, & \mathsf{NWD}(7,12) = \mathbf{1}, & \mathsf{NWD}(10,12) = 2, \\ \mathsf{NWD}(2,12) = 2, & \mathsf{NWD}(5,12) = \mathbf{1}, & \mathsf{NWD}(8,12) = 4, & \mathsf{NWD}(11,12) = \mathbf{1}. \\ \mathsf{NWD}(2,12) = 2, & \mathsf{NWD}(6,12) = 6, & \mathsf{NWD}(6,12) = 2. \end{array}$$

NWD(3, 12) = 3, NWD(6, 12) = 6, NWD(9, 12) = 3,

7atem

$$\varphi(12) = |\{1, 5, 7, 11\}| = 4.$$

Twierdzenie

Liczb pierwszych jest nieskończenie wiele.

Dowód.

Załóżmy nie wprost, że teza twierdzenia jest fałszywa, tj. zbiór liczb pierwszych jest skończony. Zatem dla pewnej liczby naturalnej n mamy

$$\mathbb{P} = \{p_1, p_2, \ldots, p_n\}.$$

Niech P będzie następnikiem iloczynu wszystkich elementów powyższego zbioru \mathbb{P} :

$$P = 1 + \prod_{i=1}^{n} p_i.$$

Zauważmy, że liczba P przy dzieleniu przez p_i (dla $i=1,2,\ldots,n$) daje resztę 1, zatem liczba P nie jest podzielna przez żadną liczbę pierwszą — uzyskaliśmy sprzeczność.

Powyższy dowód ma ~2500 lat (*Elementy* Euklidesa).

