Федеральное государственное автономное образовательное учреждение высшего образования

Национальный Исследовательский Университет ИТМО

Лабораторная работа 4

«Аппроксимация функции методом наименьших квадратов»

Дисциплина: Вычислительная математика Вариант 13

Выполнил: Терехин Никита Денисович

Факультет: Программной инженерии и компьютерной техники

Группа: Р3208

Преподаватель: Машина Екатерина Алексеевна

Оглавление

Цель работы	3
Текст задания	3
Рабочие формулы методов	
Линейная	
Квадратичная	
Вычислительная реализация	
Программная реализация	
Листинг программы	
Выводы	

Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов

Текст задания

Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена только в отчете.

Задание:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой
- 4. Выбрать наилучшее приближение
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения
- 6. Привести в отчете подробные вычисления

Программная реализация задачи

Для исследования использовать:

- линейную функцию
- полиномиальную функцию 2-й степени
- полиномиальную функцию 3-й степени
- экспоненциальную функцию
- логарифмическую функцию
- степенную функцию

Методика проведения исследования:

- 1. Вычислить меру отклонения: $S = \sum_{i=1}^{n} \left[\phi(x_i) y_i \right]^2$ для всех исследуемых функций
- 2. Уточнить значения коэффициентов эмпирических функций, минимизируя функцию S

- 3. Сформировать массивы предполагаемых эмпирических зависимостей ($\phi(x_i)$, ε_i)
- 4. Определить среднеквадратичное отклонение для каждой аппроксимирующей функции. Выбрать наименьшее значение и, следовательно, наилучшее приближение
- 5. Построить графики полученных эмпирических функций.

Задание:

- 1. Предусмотреть ввод исходных данных из файла/консоли (таблица y = f(x) должна содержать от 8 до 12 точек);
- 2. Реализовать метод наименьших квадратов, исследуя все указанные функции
- 3. Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений x_i , y_i , $\phi(x_i)$, ε_i
- 4. Для линейной зависимости вычислить коэффициент корреляции Пирсона
- 5. Вычислить коэффициент детерминации, программа должна выводить соответствующее сообщение в зависимости от полученного значения R^2
- 6. Программа должна отображать наилучшую аппроксимирующую функцию
- 7. Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом)
- 8. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных;

Рабочие формулы методов

Линейная

$$S = \sum_{i=1}^{n} (ax_i + b - y_i)^2 \to min$$

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

$$r = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}} \delta = \sqrt{\frac{S}{n}}$$

Квадратичная

$$\begin{split} S &= \sum_{i=1}^{n} \left(ax_{i}^{-} + b - y_{i}^{-}\right)^{2} \rightarrow min \\ \begin{cases} a_{0}n + a_{1} \sum_{i=1}^{n} x_{i} + a_{2} \sum_{i=1}^{n} x_{i}^{2} &= \sum_{i=1}^{n} y_{i} \\ a_{0} \sum_{i=1}^{n} x_{i} + a_{1} \sum_{i=1}^{n} x_{i}^{2} + a_{2} \sum_{i=1}^{n} x_{i}^{3} &= \sum_{i=1}^{n} x_{i}y_{i} \\ a_{0} \sum_{i=1}^{n} x_{i}^{2} + a_{1} \sum_{i=1}^{n} x_{i}^{3} + a_{2} \sum_{i=1}^{n} x_{i}^{4} &= \sum_{i=1}^{n} x_{i}^{2}y_{i} \end{cases} \end{split}$$

Вычислительная реализация

Исходные данные

№ варианта	Функция	Исследуемый интервал
13	$y = \frac{31x}{x^4 + 13}$	$x \in [0,4]$ $h = 0,4$

Таблица табулирования

x	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4
f(x)	0	0,952	1,849	2,468	2,537	2,138	1,611	1,166	0,842	0,617	0,461

Линейное приближение

Вычисляем суммы

$$SX = \sum_{i=1}^{n} x_i = 22$$

$$SXX = \sum_{i=1}^{n} x_i^2 = 61, 6$$

$$SY = \sum_{i=1}^{n} y_i = 14,64$$

$$SXY = \sum_{i=1}^{n} x_i y_i = 27,044$$

Получаем систему линейных уравнений:

$$\begin{cases} 61, 6a + 22b = 27,044 \\ 22a + 11b = 14,64 \end{cases}$$

$$\Delta = SXX \cdot n - SX \cdot SX = 61, 6 \cdot 11 - 22^{2} = 193, 6$$

$$\Delta_{a} = SXY \cdot n - SX \cdot SY = 27,044 \cdot 11 - 22 \cdot 14, 64 = -24,596$$

$$\Delta_{b} = SXX \cdot SY - SX \cdot SXY = 61, 6 \cdot 14, 64 - 22 \cdot 27,044 = 306,856$$

$$a = \frac{\Delta_{a}}{\Delta} = \frac{-24,596}{193.6} \approx -0,127 \qquad b = \frac{\Delta_{b}}{\Delta} = \frac{306,856}{193.6} = 1,585$$

Аппроксимирующая линейная функция имеет вид

$$P(x) = 1,585 - 0,127x$$

x	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4
f(x)	0	0,952	1,849	2,468	2,537	2,138	1,611	1,166	0,842	0,617	0,461
P(x)	1,585	1,534	1,483	1,433	1,382	1,331	1,28	1,229	1,178	1,128	1,077
3	1,585	0,582	-0,366	-1,035	-1,155	-0,807	-0,331	0,063	0,336	0,511	0,616

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = 6,908$$

$$\delta = \sqrt{\frac{S}{n}} = \sqrt{\frac{6,908}{11}} \approx 0,792$$

Квадратичное приближение

Вычисляем суммы

$$SX = \sum_{i=1}^{n} x_i = 22$$

$$SX^2 = \sum_{i=1}^n x_i^2 = 61, 6$$

$$SX^3 = \sum_{i=1}^n x_i^3 = 193, 6$$

$$SX^{4} = \sum_{i=1}^{n} x_{i}^{4} = 648,525$$

$$SY = \sum_{i=1}^{n} y_{i} = 14,64$$

$$SXY = \sum_{i=1}^{n} x_{i}y_{i} = 27,044$$

$$SX^{2}Y = \sum_{i=1}^{n} x_{i}^{2}y_{i} = 62,352$$

Получаем систему линейных уравнений:

$$\begin{cases} 11a_0 + 22a_1 + 61, 6a_2 = 14, 64 \\ 22a_0 + 61, 6a_1 + 193, 6a_2 = 27, 044 \\ 61, 6a_0 + 193, 6a_1 + 648, 525a_2 = 62, 352 \end{cases}$$

$$\Delta = 11 \cdot 61, 6 \cdot 193, 6 + 22 \cdot 193, 6 \cdot 61, 6 + 22 \cdot 193, 6 \cdot 61, 6 - 61, 6^{3} - 22^{2} \cdot 648, 525 - 193, 6^{2} \cdot 11 = 4252, 424$$

$$\Delta_{a_{0}} = 14, 64 \cdot 61, 6 \cdot 193, 6 + 27, 044 \cdot 193, 6 \cdot 61, 6 + 22 \cdot 193, 6 \cdot 62, 352 - 61, 6^{2} \cdot 62, 352 - 22 \cdot 648, 525 \cdot 27, 044 - 193, 6^{2} \cdot 14, 64 = 1774, 02$$

$$\Delta_{a_{1}} = 7736, 536 \qquad \Delta_{a_{2}} = -2069, 197$$

$$a_{0} = \frac{\Delta_{a_{0}}}{\Delta} = \frac{1774, 02}{4252, 424} \approx 0, 417 \qquad a_{1} = \frac{\Delta_{a_{1}}}{\Delta} = \frac{7736, 536}{4252, 424} \approx 1,819$$

$$a_{2} = \frac{\Delta_{a_{2}}}{\Delta} = \frac{-2069, 197}{4252, 424} \approx -0,487$$

Аппроксимирующая квадратичная функция имеет вид

$$P(x) = -0,487x^2 + 1,819x + 0,417$$

x	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4
f(x)	0	0,952	1,849	2,468	2,537	2,138	1,611	1,166	0,842	0,617	0,461
P(x)	0,417	1,067	1,561	1,899	2,081	2,107	1,977	1,692	1,251	0,654	-0,099
3	0,417	0,115	-0,288	-0,569	-0,456	-0,031	0,366	0,526	0,409	0,037	-0,56

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = 1,696$$

$$\delta = \sqrt{\frac{S}{n}} = \sqrt{\frac{1,696}{11}} \approx 0,393$$

Функции на графике

Программная реализация

Листинг программы

```
# approx.py
import math
from abc import abstractmethod
from typing import Final, Callable

from P3208.Terekhin_367558.lab2.functions import Describable

class Approximation(Describable):
    def __init__(self, description: str):
        super().__init__(description)
        self.func: Callable[[float], float] | None = None
        self.view: str = ''
```

```
@abstractmethod
  def build approximation(self, points: list[tuple[float,
float]]) -> None:
  def gauss matrix solve(self, matrix: list[list[float]]) ->
list[float]:
      n = len(matrix)
       for i in range(n):
          max value = abs(matrix[i][i])
               if abs(matrix[k][i]) > max value:
matrix[i]
           pivot = matrix[i][i]
               factor = matrix[j][i] / pivot
                   matrix[j][k] -= factor * matrix[i][k]
       for i in range (n - 1, -1, -1):
               matrix[j][n] -= matrix[j][i] * solution[i]
       return solution
class LinearApproximation(Approximation):
      super(). init ("Linear Approximation")
       self.coefficients = []
float]]) -> None:
       sum_x = sum(x for x, _ in points)
       sum y = sum(y for , y in points)
      sum_x_squared = sum(x ** 2 for x, _ in points)
       sum_xy = sum(x * y for x, y in points)
```

```
n = len(points)
       average x = sum x / n
      average y = sum y / n
       a, b = map(lambda x: round(x, 3),
self.gauss matrix solve([[sum x squared, sum x, sum xy],
                                        [sum x, n, sum y]]))
       self.coefficients = [a, b]
       self.view = f'{a}x + {b}'
           sum((x - average x) * (y - average y) for x, y in
points) / (sum((x - average_x) ** 2 for x, y in points) * sum((y - average_x)) **
average y) ** 2 for x, y in points)) ** 0.5,
      self.func = lambda x: a * x + b
class SquaredApproximation(Approximation):
  def build approximation(self, points: list[tuple[float,
float]]) -> None:
      sum_x = sum(x for x, _ in points)
      sum y = sum(y for , y in points)
      sum_x\_cubed = sum(x ** 3 for x, _ in points)
      sum x quad = sum(x ** 4 for x, _ in points)
      sum_xy = sum(x * y for x, y in points)
      sum_x_squared_y = sum(x ** 2 * y for x, y in points)
      n = len(points)
       c, b, a = map(lambda x: round(x, 3),
self.gauss matrix solve([[n, sum x, sum x squared, sum y],
                                           [sum x, sum x squared,
sum x cubed, sum xy],
                                           [sum x squared,
sum x cubed, sum x quad, sum x squared y]]))
class CubedApproximation(Approximation):
```

```
def build approximation(self, points: list[tuple[float,
float]]) -> None:
                   sum x squared = sum(x ** 2 for x, in points)
                   sum_x_quad = sum(x ** 4 for x, _ in points)
                   sum_x = sixth = sum(x ** 6 for x, _ in points)
                   sum_xy = sum(x * y for x, y in points)
                   sum_x = sum_y = sum_y = sum_y = sum_y = sum_x = sum_y = sum_
                  n = len(points)
                   d, c, b, a = map(lambda x: round(x, 3),
 self.gauss matrix solve([[n, sum x, sum x squared, sum x cubed,
sum y],
                                                                                                                              [sum x,
sum x squared, sum x cubed, sum x quad, sum xy],
                                                                                                                              [sum x squared,
sum x cubed, sum x quad, sum x fifth, sum x squared y],
                                                                                                                              [sum x cubed,
sum x quad, sum x fifth, sum x sixth, sum x cubed y]]))
                   self.func = lambda x: a * x ** 3 + b * x ** 2 + c * x + d
class DegreeApproximation(Approximation):
                  super().__init ("Degree Approximation")
                   self.linear = LinearApproximation()
       def build approximation(self, points: list[tuple[float,
float]]) -> None:
                   In points = list(map(lambda x: (math.log(x[0]),
math.log(x[1])), points))
                   self.linear.build approximation(ln points)
                   self.view = f'{round(math.exp(b), 3)}x^{round(a, 3)}'
                   self.func = lambda x: math.exp(b) * x ** a
class ExponentialApproximation(Approximation):
```

```
self.linear = LinearApproximation()
   def build approximation(self, points: list[tuple[float,
float]]) -> None:
      In points = list(map(lambda x: (x[0], math.log(x[1])),
points))
       self.linear.build approximation(ln points)
       a, b = self.linear.coefficients
       self.view = f'{round(math.exp(b), 3)}e^{a}x'
       self.func = lambda x: math.exp(b) * math.exp(a * x)
class LogarithmicApproximation(Approximation):
       self.linear = LinearApproximation()
  def build approximation(self, points: list[tuple[float,
float]]) -> None:
       ln_points = list(map(lambda x: (math.log(x[0]), x[1]),
points))
       self.linear.build approximation(ln points)
       a, b = self.linear.coefficients
       self.func = lambda x: a * (math.nan if x <= 0 else</pre>
math.log(x)) + b
APPROXIMATIONS: Final[list[Approximation]] = [
   LinearApproximation(),
   SquaredApproximation(),
  CubedApproximation(),
  DegreeApproximation(),
   ExponentialApproximation(),
   LogarithmicApproximation()
```

```
# main.py
import math
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from tabulate import tabulate
from P3208.Terekhin_367558.lab2.main import request_from_list
```

```
from P3208.Terekhin 367558.lab2.readers import AbstractReader,
READERS
from P3208.Terekhin 367558.lab4.approx import APPROXIMATIONS,
Approximation, LinearApproximation
if name == ' main ':
   reader: AbstractReader = request from list(READERS)
  points: list[tuple[float, float]] = reader.read points()
   x values: list[float] = [x for x, y in points]
  y values: list[float] = [y for x, y in points]
  x range = [i / 100 for i in range(math.floor(min(x values)),
  ax.spines['left'].set position('zero')
  ax.spines['bottom'].set position('zero')
  ax.spines['right'].set color('none')
   ax.spines['top'].set color('none')
  best: float = math.inf
   ind: int = 0
   for i in range(len(APPROXIMATIONS)):
      method: Approximation = APPROXIMATIONS[i]
      method.build approximation(points)
       print(tabulate([method.description]))
       results: list[list[float]] = []
       y approx: list[float] = []
           y range = [method.func(x) for x in x range]
           plt.plot(x range, y range)
           for x, y in points:
               approx = round(method.func(x), 3)
               y approx.append(approx)
               deviation += (y - approx) ** 2
       average approx = sum(y approx) / len(y approx)
       average deviation = round((deviation / len(points)) ** 0.5,
       if average deviation < best:</pre>
           best = average deviation
       R = round(1 - sum([(y values[i] - y approx[i]) ** 2 for i
in range(len(y values))]) / sum([(y - average approx) ** 2                 for y
in y values]), 3)
       stat = [[average deviation, R, method.view]]
```

```
if isinstance(method, LinearApproximation):
    headers.append('Pearson coefficient')
    stat[0].append(method.r)

print(tabulate(stat, headers, numalign="center"), '\n')

plt.plot(x_values, y_values, 'ro')

print(tabulate(results, headers=['X', 'Y', 'Approximation', 'Epsilon'], numalign="center"))

print(tabulate(["Best approximation"]))
print(APPROXIMATIONS[ind].description)
plt.show()
```

Выводы

В ходе выполнения работы удалось найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов

В конечном итоге использование того или иного вида аппроксимации зависит от исходных данных. На основе нескольких гипотез можно получить наиболее точное приближение для конкретных данных