Sequence Analysis

Liliana Patricia Calderón Bernal Gonzalo Daniel Garcia Ainhoa-Elena Leger

14/4/2021

Load necessary packages.

```
# Call TraMineR library
library(TraMineR)

# Call other required libraries
library(ggplot2)
library(grDevices)
library(graphics)
library(foreign)
library(cluster)
library(Hmisc)
library(TraMineRextras)
library(WeightedCluster)
library(RColorBrewer)
library(colorspace)
```

Exercise 1

1) Input the Dataset 2

[Sol.]

```
data2 <- read.csv("SFS2018_Data2.csv", na.strings=c(".",".a",".b"))
```

2) Define a sequence object with elements in data columns 2:61 and alphabet 1:6, using the following state names and labels

```
1 SNP "Single, childless",
2 SBP "Single, child b/separat.",
3 SAP "Single, child a/separat.",
4 UNP "Union, childless",
5 UBP "Union, child b/separat.",
6 UAP "Union, child a/separat."
```

3) Display (print) the first 10 sequences in extended and compact form [Sol.]

```
#display the first 5 sequences, and sequence elements 1-20 (STS format - default).
print(seqObj2[1:10, ], format ="STS")
#display the first 5 sequences, and sequence elements 1-20 (SPS format)
print(seqObj2[1:10, ], format ="SPS")
```

4) Plot a full representation of sequences, and order them from the first state

border=NA, sortv="from.start")

All sequences


```
    □ Single, childless
    □ Single, child a/separat.
    □ Union, child b/separat
    □ Union, child a/separat
    □ Union, child a/separat
```

5) Plot the 5 most frequent sequences. Comment the plot

```
[Sol.]
```

5 most frequent sequences

6) Create a state distribution plot for each birthcohort (BIRTHCOH). What are the cross-cohort differences in the distribution of states overtime?

```
seqdplot(seqObj2, group=data2$BIRTHCOH, with.legend=TRUE,
    main= "State distribution. Cohort", use.layout=FALSE,
    border=NA, xtlab=xtlab, ylab=NA, xlab="Time (months)")
```

State distribution. Cohort - 1

0 6 13 21 29 37 45 53 Time (months)

State distribution. Cohort - 2

State distribution. Cohort - 3

7) What are the most frequent states one and five years after break-up? Use a modal state plot for illustration.

Modal states

- Single, childless
 Single, child a/separat.
 Union, child b/separat
 Union, child a/separat
 Union, child a/separat
- 8) Assess the cross-sectional state diversity plotting a measure of entropy. At what time after separation is the cross-sectional diversity of the states at its highest?

Transversal entropies

9) Display side by side in a same plot area the mean times spent in each of the states and the sequence of modal states.

Mean duration in state

Modal states

10) Compute the (overall) transition rate matrix. What is the largest transition rate between two different states?

[Sol.]

seqtrate(seq0bj2)

11) Compute the sequence length, the number of transitions, the number of subsequences and the longitudinal entropy

```
# Sequence lenght - number of elements with valid cases (print results for first five sequences)
length <-seqlength(seqObj2)
length[1:5]

# Number of transitions between state episodes in each sequence (print results for first five sequences
transn <-seqtransn(seqObj2)
transn[1:5]

# Number of subsequences contained in a sequence
subseq <- seqsubsn(seqObj2)
table(subseq)

# Longitudinal or within-sequence entropy</pre>
```

```
entropy <- seqient(seqObj2)
par(mfrow=c(1,1))
hist(entropy)</pre>
```

Histogram of entropy

12) Using summary(), look at the min, max, mean, median and quartiles of the distribution of each of the computed longitudinal characteristics.

```
[Sol.]
```

```
summary(length)
summary(transn)
summary(subseq)
summary(entropy)
```

Exercise 2

1) Input the Dataset 2

```
[Sol.]
```

```
data2 <- read.csv("SFS2018_Data2.csv", na.strings=c(".",".a",".b"))
```

2) Define a sequence object with elements in data columns 2:61 and alphabet 1:6, using the following state names and labels

```
1 SNP "Single, childless",
     2 SBP "Single, child b/separat.",
     3 SAP "Single, child a/separat.",
     4 UNP "Union, childless",
     5 UBP "Union, child b/separat.",
     6 UAP "Union, child a/separat."
[Sol.]
#vector for the state labels
seqlab <-c("Single, childless",</pre>
            "Single, child b/separat.",
            "Single, child a/separat.",
            "Union, childless",
            "Union, child b/separat.",
            "Union, child a/separat.")
#vector of short state names (default would be alphabet labels)
sllist <- c("SNP", "SBP", "SAP", "UNP", "UBP", "UAP")
### Generate sequence object
seqObj2 <- seqdef(data2,</pre>
                   var=2:61,
                   alphabet=c(1:6),
                   cpal=color1,
                   states=sllist,
                   labels=seqlab)
```

3) Compute the matrix of pairwise distances - OM with constant costs - between all sequences and display the results for the first 5 sequences.

[Sol.]

```
#OM with CONSTANT subcosts (OM with indel=1, subs=2)
Matrix.OM.Const <- seqdist(seqObj2, method="OM", indel=1, sm="CONSTANT")
#display matrix
print(Matrix.OM.Const[1:5,1:5])</pre>
```

4) Plot the first 2 sequences and check that the OM distance is the number of non matching positions between them.

First two sequences

Single, childless Single, child b/se Single, child a/se Jnion, childless Jnion, child b/sep Jnion, child a/sep

age

48*2 + 12 = 108

5) Check data that the LCS distance provides the same (non-normalized) distances as OM with indel=1 and a constant substitution cost of 2

[Sol.]

```
#Longest common subsequence
Matrix.LCS <- seqdist(seqObj2,method="LCS")
#display matrix
print(Matrix.LCS[1:5,1:5])
#Compare
print(Matrix.OM.Const[1:5,1:5])</pre>
```

6) Define a substitution cost matrix reflecting what (according to your prior knowledge) are the distances between two states (i.e. customize state-dependent substitution costs)

7) Compute the OM dissimilarity matrix using the previously derived substitution. Set the indel cost as half the maximum substitution cost.

[Sol.]

```
Matrix.OM.State.dep <- seqdist(seqObj2, method="OM", indel=3, sm=submatrix)
#display matrix
print(Matrix.OM.State.dep[1:5,1:5])</pre>
```

8) From the previously computed OM dissimilarity matrix, create a hierarchical cluster tree object with Ward method. Display the hierarchical tree

```
# cluster sequences using the OM distances with state-dependent costs and Ward method
ward.OM <- hclust(as.dist(Matrix.OM.State.dep), method = "ward.D2")

###dendogram
# plot basic dendograms
plot(ward.OM, labels=FALSE)</pre>
```

Cluster Dendrogram

as.dist(Matrix.OM.State.dep) hclust (*, "ward.D2")

9) Calculate appropriate cluster cut-off criteria. Assess what is an empirically optimal cluster solution. [Sol.]

```
### Generate an obseject with 1-10 cluster solutions for each prior anal
wardrange.OM <-as.clustrange(ward.OM, diss=Matrix.OM.State.dep, ncluster=10)

### show cluster cut-off measure values - indicate three optimal cluster solutions
summary(wardrange.OM, max.rank=3)

### plot ASW, HGSD and PBC
plot(wardrange.OM, stat=c("ASW", "HGSD", "PBC"), norm="zscore")</pre>
```


10) Select the six-cluster solution from the Ward analysis, check cluster consistency, and label the clusters by looking at the full sequence index plots (or the relative frequency version) by cluster.

Silhouette - OM 6 cluster

Average silhouette width: 0.68

 $11)\,$ Repeat steps 8-10 using a DHD dissimilarity matrix

[Sol.]

 $\,$ 12) Compare the results between the OM and the DHD approaches [Sol.]

References