CCP 2006. Filière MP. MATHÉMATIQUES 1.

Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

PREMIER EXERCICE.

a.
$$u_n = \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right) - \frac{1}{n+2}$$
 de sorte que $\sum_{k=1}^n u_k = \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{n+1} + \frac{1}{n+2} \right) - \frac{1}{2} - \frac{1}{n+1}$. Il en découle que $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$. \square

b.
$$\sum_{k=1}^{n} \frac{2^k}{(k-1)!} = 2 \sum_{k=0}^{n-1} \frac{2^k}{k!} \text{ donc } \sum_{n=1}^{+\infty} \frac{2^n}{(n-1)!} = 2e^2.$$

SECOND EXERCICE.

Il est immédiat que f est continue sur \mathbb{R} et de classe \mathcal{C}^1 par morceaux donc, d'après le théorème de Dirichlet, sa série de Fourier converge normalement sur \mathbb{R} vers f.

- a. Avec les notations classiques, il vient que $b_n = 0$ puisque f est paire et $a_n = \frac{1}{\pi} \int_{2\pi} f(t) \cos(nt) \, \mathrm{d} \, t = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(nt) \, \mathrm{d} \, t = \frac{2}{\pi} \int_0^{\pi} t^2 \cos(nt) \, \mathrm{d} \, t$. Donc $a_0 = \frac{2\pi^2}{3}$ et $a_n = (-1)^n \frac{4}{n^2}$ par deux intégrations par parties. Ainsi $f(t) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nt)$ pour tout réel t. \square
- **b.** En particulier pour t = 0 il vient $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$. \square Or $\sum_{n=1}^{2N+1} \frac{(-1)^n}{n^2} = \frac{1}{4} \sum_{n=1}^{N} \frac{1}{n^2} \sum_{n=0}^{N} \frac{1}{(2n+1)^2} = \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n^2} \sum_{n=1}^{2N+1} \frac{1}{n^2}$ (1).

En faisant tendre N vers l'infini (ce qui est licite vu la convergence des séries), il vient $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. \square En reprenant alors la première égalité de (1), on obtient de même $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}$. \square

c. D'après le théorème de Parseval de convergence quadratique, on a $||f||_2^2 = \frac{\pi^4}{9} + 8\sum_{n=1}^{+\infty} \frac{1}{n^4}$. Or $||f||_2^2 = \frac{1}{2\pi} \int_{2\pi} f(t)^2 dt = \frac{1}{\pi} \int_0^{\pi} f(t)^2 dt = \frac{\pi^4}{5}$. D'où $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

PROBLÈME.

Découverte des fonctions tests.

nulle au voisinage de 0 ce qui n'est pas.

- **1.** Si \overline{A} est compacte alors elle est bornée donc A également puisque $A \subset \overline{A}$. Réciproquement si A est bornée alors il existe R > 0 tel que $A \subset [-R, R]$ ce qui entraı̂ne $\overline{A} \subset \overline{[-R, R]} = [-R, R]$ et donc \overline{A} est bornée donc compacte car fermée. \square
- 2. Il est immédiat que u est continue à support compact ([-2,2]) mais n'est pas une fonction test car elle n'est pas dérivable en 2 $(u'_d(2)=0$ et $u'_g(2)=-4)$. \square La fonction sinus n'est pas une fonction test car elle n'est pas à support compact (la suite $(\frac{\pi}{2}+2n\pi)_{n\in\mathbb{N}}$ est incluse dans le support qui de ce fait n'est pas borné). \square
- 3. Soit le prédicat \mathcal{P}_k : " $h^{(k)}(x) = P_k \left(\frac{1}{x}\right) h(x)$ pour tout x > 0 avec P_k polynôme de degré 2k". \mathcal{P}_0 est vrai et en supposant que \mathcal{P}_k soit vrai pour $k \le n$ il vient $h^{(n+1)}(x) = Q\left(\frac{1}{x}\right) h(x)$ pour x > 0 avec $Q(u) = u^2 \left(P_n(u) P_n'(u)\right)$ qui est bien un polynôme de degré 2 + 2n = 2(n+1) puisque $P_n P_n'$ est de degré 2n. \square Il en découle par croissances comparées que $\lim_{x \to 0^+} h^{(k)}(x) = 0$ pour tout $k \in \mathbb{N}^*$. Par ailleurs h est de classe \mathcal{C}^{∞} sur $|-\infty,0[$ et $\lim_{x \to 0^-} h^{(k)}(x) = 0$. Comme en outre h est continue sur \mathbb{R} , le théorème de prolongement \mathcal{C}^1 itéré prouve que h est de classe \mathcal{C}^{∞} sur \mathbb{R} (et $h^{(k)}(0) = 0$ pour tout entier k). \square h n'est pas une fonction test car de support $[0, +\infty[$ non borné. Elle n'est pas non plus développable en série entière au voisinage de 0 car si elle l'était on aurait $h(x) = \sum_{k=0}^{+\infty} \frac{h^{(k)}(0)}{k!} x^k$ au voisinage de 0 donc h serait identiquement

4.	x appartient au support de φ si et seulement si $1-x^2\geqslant 0$ donc le support de φ est le segment $[-1,1]$. Comme h est de classe \mathcal{C}^{∞} sur \mathbb{R} (question 3), par composition la fonction φ l'est également ce qui prouve que φ est une fonction test.
	φ est paire, nulle pour $x \geqslant 1$ et comme $\varphi'(x) = -2xh'(1-x^2)$ elle est décroissante sur $[0,1]$. Allure du graphe immédiate. \square
	Pour $-\infty < a < b < +\infty$ soit $\varphi_{a,b} : x \longmapsto \varphi(\alpha x + \beta)$ avec $\alpha = 2/(b-a)$ et $\beta = -(a+b)/(b-a)$. Il est immédiat que $\varphi_{a,b}$ est une fonction test de support $[a,b]$ et que si $[a,b] \cap [c,d]$ est vide alors $\varphi_{a,b} + \varphi_{c,d}$ est une fonction test de support $[a,b] \cup [c,d]$. \square
5.	Une telle fonction est nulle au voisinage de l'infini donc y admet des limites nulles. \qed
6.	φ est continue donc localement intégrable sur $\mathbb R$. Étant nulle au voisinage de $-\infty$ et $+\infty$, elle et intégrable en
	$-\infty$ et $+\infty$ donc sur \mathbb{R} et $I = \int_{\mathbb{R}} \varphi(t) dt = \int_{-1}^{1} \varphi(t) dt > 0$ car φ est positive et en outre strictement positive et continue en 1. \square
	Il en découle $\rho: x \longmapsto \frac{1}{I}\varphi(t)$ est une fonction test de support $[-1,1]$, positive et telle que $\int_{\mathbb{R}} \rho(t) dt = 1$. \square
	Il en résulte immédiatement que ρ_n est une fonction test positive de support $\left[-\frac{1}{n}, \frac{1}{n}\right]$ telle que $\int_{\mathbb{R}} \rho_n(t) dt = 1$
	Il existe une suite régularisante c'est à dire une suite (ρ_n) de fonctions tests positives telles que :
	Supp $(\rho_n) = [-\frac{1}{n}, \frac{1}{n}]$ et $\int_{\mathbb{R}} \rho_n(t) dt = 1$.
Approximation uniforme sur $\mathbb R$ par des fonctions de classe $\mathcal C^\infty$ ou par des fonctions tests.	
7.	Si la suite (P_n) converge uniformément sur $\mathbb R$ vers une fonction f alors elle satisfait le critère de Cauchy de convergence uniforme sur $\mathbb R$. En particulier pour $\varepsilon=1$, il existe N tel que $\ P_p-P_q\ _{\infty}\leqslant 1$ pour $p,q\geqslant N$. En particulier $\ P_n-P_N\ _{\infty}\leqslant 1$ pour $n\geqslant N$. \square
	Il en découle que $P_n - P_N$ est une constante C pour $n \ge N$ car sinon ce serait un polynôme de degré au moins 1 donc non borné sur \mathbb{R} .
	En d'autres termes $P_n(x) = P_N(x) + C$ pour $n \ge N$ ce qui prouve que la suite (P_n) est stationnaire donc que $f = P_N + C$ et donc que f est un polynôme. \square
8.	z_n est continue affine par morceaux, identiquement égale à 1 sur $[-n,n]$, nulle sur $]-\infty,-(n+1)] \cup [n+1,+\infty[$. Pour tout x_0 fixé quelconque dans $\mathbb R$ on a $z_n(x_0)=1$ pour $n\geqslant \mathrm{Int}(x_0)+1$ ce qui prouve que la suite (z_n) converge simplement sur $\mathbb R$ vers la fonction constante égale à 1 . La convergence n'est pas uniforme sur $\mathbb R$ car $\ z_n-1\ _\infty=1$.
	En traduisant le fait que g est nulle à l'infini avec $\varepsilon=1$ il vient qu'il existe $A>0$ tel que $ g(x) \leqslant 1$ pour $ x \geqslant A$. Par ailleurs g est bornée car continue sur le compact $[-A,A]$. Il en découle que g est bornée sur \mathbb{R} . \square Naturellemnt la suite (α_n) est décroissante et minorée par 0 donc convergente vers une limite $\ell\geqslant 0$. Pour tout $\varepsilon>0$, il existe A_ε tel que $ g(x) \leqslant \varepsilon$ pour $ x \geqslant A_\varepsilon$ puisque g est nulle à l'infini. Donc $\alpha_n\leqslant \varepsilon$ pour $n\geqslant \mathrm{Int}(A_\varepsilon)+1$. Ce qui prouve que $\ell=0$. \square
	Pour $ x \leqslant n$ on a $g_n(x) = g(x)$ donc $ g(x) - g_n(x) = 0$. Pour $ x \geqslant n+1$ on a $g_n(x) = 0$ donc $ g(x) - g_n(x) = g(x) \leqslant \alpha_n$. Pour $n \leqslant x \leqslant n+1$ on a $g_n(x) = (n+1- x)g(x)$ donc $ g(x) - g_n(x) = (x -n)g(x) = (x -n) g(x) \leqslant g(x) \leqslant \alpha_n$. En conclusion : $ g - g_n _{\infty} \leqslant \alpha_n$ pour tout n . \square Comme la suite (α_n) tend vers 0, il en résulte que la suite (g_n) converge uniformémént sur $\mathbb R$ vers g .
	Ainsi une fonction continue sur $\mathbb R$ nulle à l'infini est-elle limite uniforme sur $\mathbb R$ d'une suite de fonctions continues à support compact. \square
9.	Pour tout $x, t \mapsto g(t)f(x-t)$ est continue à support compact (inclus dans $\mathrm{Supp}(g)$) donc intégrable sur \mathbb{R} . De même pour $t \mapsto f(t)g(x-t)$ (support inclus dans $[-R+x,R+x]$). Le changement de variable $t \mapsto u = x-t$, qui est bien un \mathcal{C}^1 -difféomorphisme de \mathbb{R} sur \mathbb{R} prouve que $f*g = g*f$.
	Ainsi peut-on définir le produit de convolution d'une fonction continue et d'une fonction continue à support compact et cette opération est commutative.
10 Si $x > R + S$ on a, pour tout $t \in [-R, R], x - t > (R + S) - R = S$ donc $f(x - t) = 0$.	
	Donc $(f * g)(x) = (g * f)(x) = \int_{\mathbb{R}} g(t)f(x-t) dt = \int_{-R}^{R} g(t)f(x-t) = 0$. De même si $x < -(R+S)$.
	Ainsi le produit de convolution de deux fonctions continues à support compact est il à support compact. □

11 Si $x \in [-a, a]$ et si t > a + R alors x - t < a - (a + R) = -R donc g(x - t) = 0. De même si t < -a - R.

Ainsi
$$(f * g)(x) = \int_{\mathbb{R}} f(t)g(x-t) dt = \int_{-a-R}^{a+R} f(t)g(x-t) dt$$
. \square

Pour prouver que f * g est de classe C^1 sur $I_a = [-a, a]$ et y est en outre dérivable sous le signe intégrale, il suffit de vérifier que (intégrale propre dépendant d'un paramètre) :

 $1/\forall x \in I_a, t \longmapsto f(t)g(x-t)$ est continue par morceaux sur le segment $K_a = [-a-R, a+R]$.

 $2/\ h(x,t)=f(t)g(x-t)$ est partiellement dérivable par rapport à x et :

 $a/\forall x \in I_a, t \longmapsto \frac{\partial h}{\partial x}(x,t)$ est continue par morceaux sur K_a .

b/ $\forall t \in K_a, x \longmapsto \frac{\partial h}{\partial x}(x,t)$ est continue sur I_a .

Or 1/ est clair et $\frac{\partial h}{\partial x}(x,t) = f(t)g'(x-t)$ continue en (x,t) (car g est \mathcal{C}^1) ce qui rend clair les hypothèses /a et b/.

Ainsi
$$f * g$$
 est de classe \mathcal{C}^1 sur $[-a,a]$ et $(f*g)'(x) = \int_{-a-R}^{a+R} f(t)g'(x-t) \, \mathrm{d}t = \int_{\mathbb{R}} f(t)g'(x-t) \, \mathrm{d}t = (f*g')(x).$

Comme cela est vrai pour tout a > 0, on en déduit que le résultat précédent est vrai sur \mathbb{R} . Par une itération évidente, on en déduit :

Si f est continue sur \mathbb{R} et si g est à support compact et de classe \mathcal{C}^n sur \mathbb{R} alors f * g est de classe \mathcal{C}^n sur \mathbb{R} et $(f * g)^{(k)} = f * g^{(k)}$ pour tout $k \leq n$. \square

12 Comme $\int_{\mathbb{R}} \rho_n(t) dt = 1$ on a $f(x) = \int_{\mathbb{R}} f(x) \rho_n(t) dt$. Donc, pour tout réel x, on a :

$$(f * \rho_n)(x) - f(x) = (\rho_n * f)(x) - f(x) = \int_{\mathbb{R}} \rho_n(t) (f(x-t) - f(x)) dt = \int_{-1/n}^{1/n} \rho_n(t) (f(x-t) - f(x)) dt$$

d'où l'inégalité demandée (puisque ρ_n est positive). \square

Supposons désormais que f soit en outre uniformément continue sur $\mathbb R$ et donnons nous $\varepsilon>0$ quelconque. Il existe alors $N=N_\varepsilon$ tel que $|f(u)-f(v)|\leqslant \varepsilon$ dès que $|u-v|\leqslant 1/N$. Il résulte alors de l'inégalité précédente que :

 $|(f*\rho_n)(x) - f(x)| \le \varepsilon \int_{-1/n}^{1/n} \rho_n(t) dt = \varepsilon$ pour tout x de \mathbb{R} et tout $n \ge N$ ce qui prouve la convergence uniforme sur \mathbb{R} de la suite $(f*\rho_n)$ vers f. Or $f*\rho_n$ est de classe \mathcal{C}^{∞} d'après la question 11. Ainsi :

Si f est uniformément continue sur \mathbb{R} et si (ρ_n) est une suite régularisante alors la suite $(f * \rho_n)$ converge uniformément sur \mathbb{R} vers f. En particulier f est uniformément approximable par une suite de fonction \mathcal{C}^{∞} \square

Si f est continue sur \mathbb{R} et nulle à l'infini (ou plus généralement admet des limites finies à l'infini), il est classique (et facile à vérifier) que f est uniformément continue sur \mathbb{R} . En particulier si f est à support compact. Mais alors $f * \rho_n$ est à support compact (question 10) donc est une fonction test. Ainsi :

Une fonction continue à support compact est limite uniforme d'une suite de fonctions tests.

Théorème de Whitney.

13 Si f est continue, F est fermé dans \mathbb{R} en tant qu'image réciproque du singleton $\{0\}$ qui est un fermé. \square

14 Si $x \in Z(d_F)$ alors d(x, F) = 0 donc classiquement $x \in \overline{F}$ donc $x \in F$ puisque F est fermé. Ainsi $Z(d_f) \subset F$ et comme l'inclusion inverse est évidente, on a $Z(d_F) = F$.

Comme l'application d_F est continue (et même lipschitzienne de rapport 1, résultat classique de cours), cela prouve que tout fermé de \mathbb{R} est du type Z(f) où f est continue.

Mais cela ne prouve pas le théorème de Whitney car d_F n'est pas forcément \mathcal{C}^{∞} . En effet dans l'exemple proposé, d_F est la fonction paire telle que $d_F(x) = 1 - x$ pour $x \in [0,1]$ et $d_F(x) = 0$ si $x \ge 1$ et cette fonction n'est pas dérivable en 1. \square

15 Si $-\infty < a < b < +\infty$ alors $F = Z(\varphi_{a,b})$ (Cf question 4).

Si $b = +\infty$ alors $\varphi_{a,+\infty} : x \longmapsto h(x-a)$ est positive, de classe \mathcal{C}^{∞} et $Z(\varphi_{a,+\infty}) = F$. Idem si $a = -\infty$.

Donc si F est le complémentaire d'un intervalle ouvert I, borné ou non, il existe une fonction φ_I positive et de classe \mathcal{C}^{∞} telle que $Z(\varphi_I) = F$. \square

Si F est le complémentaire de la réunion $\bigcup_{n=1}^{N} I_n$ d'un nombre fini d'intervalle ouverts I_n deux à deux disjoints, alors

$$F = Z(\psi)$$
 avec $\psi = \sum_{n=1}^{N} \varphi_{I_n}$ positive et de classe \mathcal{C}^{∞} . \square

Notons $\varphi_n = \varphi_{I_n}$.

Si I_n est borné alors φ_n est une fonction test donc toutes ses dérivées sont à support compact donc, pour tout entier k, $\varphi_n^{(k)}$ est bornée sur \mathbb{R} . On note $M_{n,k} = \sup_{x \in \mathbb{P}} |\varphi_n^k(x)|$.

Si I_n n'est pas borné par exemple $I_n =]a, +\infty[$ alors $\varphi_n(x) = h(x-a)$. D'après la question 3.a, $h^{(k)}$ admet une limite nulle en 0 et une limite finie $P_k(0)$ en $+\infty$. Donc $h^{(k)}$ est bornée sur \mathbb{R}^+ donc sur \mathbb{R} car nulle sur \mathbb{R}^- . On peut donc encore considérer $M_{n,k}$ dans ce cas.

Soit α_n tel que $1/\alpha_n = n^2 \operatorname{Max} \{M_{n,0}, \ldots, M_{n,n}\}$. Alors on a $|\alpha_n \varphi_n^{(k)}(x)| \leq 1/n^2$ pour tout réel x, tout entier non nul n et tout entier k tel que $0 \leq k \leq n$.

Soit alors $\psi = \sum_{n=1}^{+\infty} \alpha_n \varphi_n$. Cette série converge normalement sur \mathbb{R} ainsi que toutes ses séries dérivées. En effet pour

k entier quelconque fixé on a $|\alpha_n \varphi_n^{(k)}(x)| \leq 1/n^2$ dès que $n \geq k$ et cela pour tout réel x. Ce qui prouve que ψ est définie et de classe \mathcal{C}^{∞} sur \mathbb{R} .

En outre comme $\alpha_n \varphi_n$ est positive, on a $\psi(x) = 0$ si et seulement si $\varphi_n(x) = 0$ pour tout n (car $\alpha_n > 0$) donc si et seulement si x appartient au complémentaire de la réunion des I_n c'est à dire à F.

Le théorème de Whitney est ainsi démontré : si F est un fermé de \mathbb{R} il existe une fonction ψ positive de classe \mathcal{C}^{∞} telle que $F = Z(\psi)$. \square