פונקציות ממשיות - חורף תשס"א - פתרון חלקי לגליון תרגילים מס' 3

$$\sum_{i=1}^{n} \left[\mu(B_i \backslash D_i) + \mu(D_i) \right] = \left[\sum_{i=1}^{n} \mu(B_i \backslash D_i) \right] + \mu(C_k)$$

הנחת , נקבל, ע"פ הנחת , $\{B_i \backslash D_i\}_{i=1}^n$ מהקבוצות הרון שכל איבר ב- מופיע בדיוק ב- ג תוון שכל איבר ב- האינדוקציה, מש"ל. \Box

x שט"ם אם הטריק מתקיים f(x)=k מתקיים , $f(x)=\sum_{i=1}^n\chi_{A_i}(x)$ אם הטריק הבא: נתבונן בפונקציה $\sum_{i=1}^n\chi_{A_i}(x)=\sum_{k=1}^nk\chi_{C_k}(x)$ אינטגרציה של השוויון ל- x מהקבוצות הנתונות, כלומר - x מהקבוצות הנתונות, בחודה הנתונות הנת

. היא מידה חיובית. $|\mu|$ היא מידה μ אם μ צ"ל אם μ בי"ל אם μ

פתרון: עלינו להוכיח $-\infty$ אדטיביות של $|\mu|$. תהיינה $\{B_i\}_{i=1}^\infty$ קבוצות מדידות וזרות בזוגות ורות בזוגות וועלינו להוכיח $-\infty$ אדטיביות של $|\mu|$. תהיינה $\{C_n^i\}_{i,n\in\mathbb{N}}^\infty$ אז B_i אז B_i היא חלוקה מדידה של B_i לכל B_i לכל B_i לכן B_i ולכן B_i ולכן B_i ולכן B_i אף היא כזו והיא B_i היא חלוקה מדידה של B_i על-כן, B_i של החלוקה המקורית וכן לכל B_i וועל B_i בלומר, B_i היא חלוקה B_i ב B_i ביידון של החלוקה במקורית וכן לכל B_i ביידו B_i ביידו B_i היא חלוקה במקורית וכן לכל B_i ביידו B_i בלומר, B_i בלומר, B_i ביידו B_i ב

(ב) צ"ל של- μ ממשית, ש- μ^+,μ^- הן מידות חיוביות.

 $\emptyset \subset A$ $A \in \mathcal{M}$ פתרון: נוכיח רק עבור רק עבור μ^+ . $\mu^- = (-\mu)^+$. $\mu^- = (-\mu)^+$ כנ μ^+ כנ μ^+ . $\mu^- = (-\mu)^+$ כנ μ^+ . μ^+ פתרון: נוכיח רק עבור רק $\mu^+(A) \geq \mu(\emptyset) = 0$ ולכן $\{B_i\}_{i=1}^\infty$, B מדידות לכל B אז $i \in \mathbb{N}$ אז $i \in \mathbb{N}$ אז $i \in \mathbb{N}$ מזה נובע ש- $C_i \subset B_i$ מדידות לכל E אז E מדידה אז לכל E ואז E ואז E ואז E בכיוון ההפוך - אם E מדידה אז לכל E מדידה אז לכל E ואז E ואז E ואז E ואז E ביוון ההפוך - אם E ואך E מדידה אז לכל E ולכן: E ולכן: E ואך E ולכן: E ולכן: E ממשית E ממשית E ממשית E וואך E ממשית E מרידות החור בריים וואר ביירים אורן ביירים א

פתרון: $\mu=\mu^+-\mu^-$ (כל הקבוצות להלן מדידות): $\mu=\mu^+-\mu^-$ פתרון: בהנתן קבוצה $\mu(C)\geq \mu^+(A)-\varepsilon$ עם $\mu(C)\geq \mu^+(A)-\varepsilon$ נקבל:

$$\mu(A \setminus C) = \mu(A) - \mu(C) \le \mu(A) - \mu^{+}(A) + \varepsilon$$

$$\Rightarrow \mu^{-}(A) \ge -\mu(A \setminus C) \ge \mu^{+}(A) - \mu(A) - \varepsilon$$

ומכך נסיק ש- μ במקום μ . מצד שני, אותו שיקול עבור $\mu^+ \geq \mu^+ - \mu$ ייתן $\mu^+ = (-\mu)^+ \geq (-\mu)^+ - (-\mu) = \mu^- + \mu$ ובסה"כ נקבל מש"ל.

 $|\mu| = \mu^+ + \mu^-$ בראה ש-

נטים לב שלכל $|\mu(B)| \leq \mu^+(B) + \mu^-(B)$ נטים לב שלכל B מדידה מתקיים (שים לב שלכל וואר) ולכן לכל $\{A_n\}_{n=1}^\infty$ מדידה מדידה וולכן לכל $\{A_n\}_{n=1}^\infty$ של A נקבל וולכן לכל חלוקה מדידה וואר (שואר) וולכן לכל וואר) וואר (שואר) וואר) וואר)

$$\sum_{n=1}^{\infty} |\mu(A_n)| \leq \sum_{n=1}^{\infty} [\mu^+(A_n) + \mu^-(A_n)] = \mu^+(A) + \mu^-(A)$$

כלומר, $\mu(C) \geq \mu^+(A) - \varepsilon$ כך ש- $C \subset A$ כא שני, אם היא חלוקה של $\mu(A) \leq \mu^+(A) + \mu^-(A)$ אז $\{C,A \setminus C\}$

$$|\mu|(A) \ge |\mu(C)| + |\mu(A \setminus C)| \ge \mu^{+}(A) - \varepsilon + [\underbrace{\mu^{+}(A) - \mu^{(A)}}_{=\mu^{-}(A)} - \varepsilon] = \mu^{+}(A) - \mu^{-}(A) - 2\varepsilon$$

ובסה"כ קיבלנו מש"ל. □

3. נתון: μ מינסופית של קבוצות מדידות עבורה $\{A_i\}_{i\in I}$. $\forall i\in I: \mu(A_i)\geq \alpha>0$

 $\mu(A_{i_k}) \geq \alpha > 0$. $\bigcap_{n=1}^{\infty} A_{i_n} \neq \emptyset$ ש- $\{i_n\}_{n=1}^{\infty} \in I$ (שונים) פתרון: ניקח סדרת אינדקסים (שונים) $\{A_{i_k}\}_{k=1}^{\infty}$. $\{A_{i_k}\}_{k=1}^{\infty}$. ע"פ הנתון, סברה כלשהי של קבוצות מתוך המשפחה: $\{A_{i_k}\}_{k=1}^{\infty}$. ע"פ הנתון, האי-שונינו שהובחנו בביתה בינונ לבל $\{A_{i_k}\}_{k=1}^{\infty}$. ע"פ אונינו שהובחנו בביתה בינונ

לכל $k\in\mathbb{N}$ ולכן (מדוע?) מדוע?) $k\in\mathbb{N}$ ווע"פ האי-שוויון שהוכחנו בכיתה, כיוון $\mu(\limsup_{k\to\infty}\mu(A_{i_k})\geq \alpha>0$ ובפרט, שהמידה $\mu(\limsup_{k\to\infty}A_{i_k})\geq \limsup_{k\to\infty}\mu(A_{i_k})\geq \alpha>0$

, $x\in A_{i_k}$ -ים ש-k יים אינסוף אז יש אינסוף . $\lim\sup_{k\to\infty}A_{i_k}$ או הם ניקח איזשהו . $\lim\sup_{k\to\infty}A_{i_k}\neq\emptyset$ ולכן יש תת-סדרה $\{A_{i_{k_n}}\}_{n\in\mathbb{N}}$ עם $\{A_{i_{k_n}}\}_{n\in\mathbb{N}}$

אם"ם $\int_X f\,d\mu=0$ מדידה, $f:X o[0,\infty]$ אם"ם .4 $\mu\big(\{x\in X:f(x)>0\}\big)=0$

פתרון: נסמן $A_n=\{x\in X: f(x)\geq \frac{1}{n}\}$, $A=\{x\in X: f(x)\neq 0\}$ עבור $n\in\mathbb{N}$, $n\in\mathbb{N}$, ומכיוון פתרון: נסמן $n\in\mathbb{N}$, ומכיוון ש- $n\in\mathbb{N}$, $n\in\mathbb{N}$, ומכיוון ש- $n\in\mathbb{N}$, ומכיון ש- $n\in\mathbb{N}$, ומכיוון ש- $n\in\mathbb{N}$,

$$\int_X f \, d\mu = 0 \iff \forall n \in \mathbb{N} \quad \int_{A_n} f \, d\mu = 0 \iff \forall n \in \mathbb{N} \quad \mu(A_n) = 0 \iff \mu(A) = 0. \quad \Box$$

. $\int_X f\,d\mu=lpha<\infty$ מדידה עם $f:X o [0,\infty]$ חיובית ופונקציה .5 נתון: μ מדידה עם $f:X o [0,\infty]$ היא פופית. איז צ"ל שהקבוצה $\{x\in X:f(x)\neq 0\}$ היא איזוד בן-מנייה של קבוצות בעלות מידה סופית.

הוכחה: לכל $n\in\mathbb{N}$ הקבוצה $\{x\in X: f(x)\geq rac{1}{n}\}$ מקיימת, ע"פ אי-שוויון צ'בישב: $n\in\mathbb{N}$ הוכחה: לכל $\{x\in X: f(x)\neq 0\}=\bigcup_{n\in\mathbb{N}}A_n$, ובודאי: $\mu(A_n)\leq n\alpha<\infty$

. $\mu(\{x\in X:f(x)\geq y\})<arepsilon$ בך שלכל $y\in\mathbb{R}$ קיים arepsilon>0 קיים arepsilon>0

. $n>rac{lpha}{arepsilon}$ פתרון: קחו את A_n מהסעיף הקודם עם

. $\int_A f \ d\mu < \varepsilon$ אז $\mu(A) < \delta$ בך שאם $\delta > 0$ בך קיים $\varepsilon > 0$ אז צ"ל שלכל (ג)

 $f \geq 0$ -פתרון: נראה קודם שעבור N גדול דיו מתקיים $f \, d\mu < arepsilon$. נבחין ש- (כיוון ש- (כיוון ש- $N \leq N$ נבחין בראה קודם שעבור $N \in \mathbb{N}$ גדול דיו נקבל $\alpha = \sum_{n=1}^{\infty} \int_{\{n-1 \leq f(x) < n\}} f \, d\mu$ גדול דיו נקבל $\delta = \frac{\varepsilon}{N}$ התכנסות מונוטונית) - $\int_{\{f(x) \geq N\}} f \, d\mu = \sum_{n=N}^{\infty} \int_{\{n-1 \leq f(x) < n\}} f \, d\mu < \varepsilon$ ונקבל שעבור כל A מדידה עם $A \leq N$ מתקיים

$$\begin{split} \int_A f \ d\mu &= \int_{A \cap \{f(x) \geq N\}} f \ d\mu + \int_{A \cap \{f(x) < N\}} f \ d\mu \\ &\leq \int_{\{f(x) \geq N\}} f \ d\mu + \int_A N \ d\mu &\leq \varepsilon + N \mu(A) < 2\varepsilon \quad \Box \end{split}$$

. |
u(A)|<arepsilon אז $\mu(A)<\delta$ בך שאם $\delta>0$ קיים arepsilon>0 אם $\delta>0$

הוכחה: לא (א) \Rightarrow לא (ב) - ברור. נוכיח לא (ב) \Rightarrow לא (א);

אם (ב) לא מתקיים אז קיים $\varepsilon>0$ וקיימת סדרת קבוצות מדידות $\{A_n\}_{n=1}^\infty$ כך ש- $\{A_n\}_{n=1}^\infty$ ו- , $\sum_{n=1}^\infty \mu(A_n)<\infty$, הרי $\{A_n\}_{n=1}^\infty + \alpha$, נסמן $\{A_n\}_{n=1}^\infty + \alpha$, הרי ווע"פ בורל קנטלי $\{\mu(A_n)<\alpha\}$. מצד שני, כיוון ש- $\{\nu(A_n)\}$ מידה חיובית וחופית, וש"פ בורל קנטלי - $\{\mu(A_n)=\alpha\}$. מצד שני, כיוון ש- $\{\mu(A_n)=\alpha\}$

-ט מדידה עם |
u(B)|>0 מדידה שו $B\subset A$ ולכן יש ולכן $|
u|(A)\geq \limsup_{n\to\infty}|
u|(A_n)\geq \varepsilon$

 \square . נקבל ש- (א) לא מתקיים. $\mu(B)=0$

אם $\{A_n\}_{n=1}^\infty\subset\mathcal{M}$ טופית) אדיטיבית $u:\mathcal{M}\to\mathbb{C}$ אדיטיבית פופית) אם $1:\mathcal{M}\to\mathbb{C}$ אם $0:\lim_{n\to\infty}\mu(A_n)=0$ אם $0:\lim_{n\to\infty}\mu(A_n)=0$

. (X,\mathcal{M}) א"ל: ν היא מידה על על

פתרון: תהיינה $\{A_n\}_{n=1}^\infty$ זרות בזוגות, נסמן $\{A_n\}_{k=n}^\infty$. כיוון ש- $\{A_n\}_{n=1}^\infty$ זרות בזוגות, נסמן $\{A_n\}_{n=1}^\infty$. כיוון ש- $\{A_n\}_{n=1}^\infty$ (ע"פ ב'). $\{A_n\}_{n\to\infty}^\infty$ (ע"פ ב'). בהנתן $\{B_n\}_{n\to\infty}$ נבחר $\{A_n\}_{n\to\infty}$ דו כך ש- $\{B_n\}_{n=1}$ ונקבל $\{A_n\}_{n\to\infty}$

$$\nu\left(\bigcup_{i=1}^{\infty} A_i\right) = \nu\left(\bigcup_{i=1}^{n} A_i \cup B_n\right) = \sum_{i=1}^{n} \nu(A_i) + \nu(B_n)$$

כלומר,

$$\left|\nu\left(\bigcup_{i=1}^{\infty}A_i\right) - \sum_{i=1}^{n}\nu(A_i)\right| < \varepsilon \quad \Rightarrow \quad \sum_{i=1}^{\infty}\nu(A_i) \triangleq \lim_{n\to\infty}\sum_{i=1}^{n}\nu(A_i) = \nu\left(\bigcup_{i=1}^{\infty}A_i\right). \quad \Box$$