

根据密码学的需要,对线性反馈移位寄存器(LFSR)主要考虑下面两个问题:

- (1)如何利用级数尽可能短的LFSR产生周期大、随机性能良好的序列,即固定级数时,什么样的移存器序列周期最长。这是从密钥生成角度考虑,用最小的代价产生尽可能好的、参与密码变换的序列。
- (2) 当已知一个长为*N*序列<u>a</u>时,如何构造一个级数尽可能小的LFSR来产生它。这是从密码分析角度来考虑,要想用线性方法重构密钥序列所必须付出的最小代价。这个问题可通过B-M算法来解决。

1、概念简介

设 $\underline{a} = (a_0, a_1, \dots, a_{N-1})$ 是 F_2 上的长度为N的序列,而

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_l x^l$$
 是 F_2 上的多项式, $c_0 = 1$.

如果序列中的元素满足递推关系:

$$a_k = c_1 a_{k-1} + c_2 a_{k-2} + \dots + c_l a_{k-l}, k = l, l+1, \dots, N-1$$
 (2)

则称 $\langle f(x),l\rangle$ 产生二元序列 \underline{a} 。其中 $\langle f(x),l\rangle$ 表示以 $\langle f(x),l\rangle$ 为反馈多项式的l级线性移位寄存器。

如果f(x)是一个能产生a并且级数最小的线性移位寄存器的反馈多项式,l是该移存器的级数,则称 $\langle f(x),l \rangle$ 为**序列**a的**线性综合解**。

线性移位寄存器的综合问题可表述为: 给定一个N长二元序列<u>a</u>,如何求出产生这一序列的最小级数的线性移位寄存器,即最短的线性移存器?

几点说明:

- 1、反馈多项式f(x)的次数 $\leq l$ 。因为产生a且级数最小的线性移位寄存器可能是退化的,在这种情况下f(x)的次数< l;并且此时f(x)中的 $c_i=0$,因此在反馈多项式f(x)中 $c_0=1$,但不要求 $c_i=1$ 。
- 2、规定: 0级线性移位寄存器是以f(x)=1为反馈多项式的线性移位寄存器,且n长(n=1,2,...,N)全零序列,仅由0级线性移位寄存器产生。事实上,以f(x)=1为反馈多项式的递归关系式是: a_k =0,k=0,1,...,n-1.因此,这一规定是合理的。
 - 3、给定一个N长二元序列 \underline{a} ,求能产生 \underline{a} 并且级数最小的线性移位寄存器,就是求 \underline{a} 的线性综合解。利用B-M算法可以有效的求出。

用归纳法求出一系列线性移位寄存器:

$$\langle f_n(x), l_n \rangle$$
 $\partial^0 f_n(x) \leq l_n, \quad n = 1, 2, \dots, N$

每一个 $\langle f_n(x), l_n \rangle$ 都是产生序列 \underline{a} 的前n项的最短线性移位寄存器,在 $\langle f_n(x), l_n \rangle$ 的基础上构造相应的,使 $\langle f_{n+1}(x), l_{n+1} \rangle$ 是产 $\langle f_{n+1}(x), l_{n+1} \rangle$ 前n+1项的最短移存器,则最后得到的 就是产生 $\langle f_N(x), l_N \rangle$ 二元序列 \underline{a} 的最短的线性移位寄存器。

3、B-M算法

任意给定一个N长序列<u>a</u> = $(a_0, a_1, \dots, a_{N-1})$, 按n归纳定义 $\langle f_n(x), l_n \rangle$ $n = 0, 1, 2, \dots, N-1$

- 1、取初始值: $f_0(x) = 1$, $l_0 = 0$
- 2、设 $\langle f_0(x), l_0 \rangle, \langle f_1(x), l_1 \rangle, \dots, \langle f_n(x), l_n \rangle$ $(0 \le n < N)$

均已求得,且 $l_0 \le l_1 \le \cdots \le l_n$

记:
$$f_n(x) = c_0^{(n)} + c_1^{(n)}x + \cdots + c_{l_n}^{(n)}x^{l_n}, c_0^{(n)} = 1$$
, 再计算:

$$d_n = c_0^{(n)} a_n + c_1^{(n)} a_{n-1} + \dots + c_{l_n}^{(n)} a_{n-l_n}$$

称dn为第n步差值。然后分两种情形讨论:

(i) 若d_n=0,则令:

$$f_{n+1}(x) = f_n(x), \quad l_{n+1} = l_n \circ$$

- (ii) 若 d_n =1,则需区分以下两种情形:
 - ① 当: $l_0 = l_1 = \cdots = l_n = 0$ 时, 取: $f_{n+1}(x) = 1 + x^{n+1}, l_{n+1} = n+1$.
 - ② 当有 m ($0 \le m < n$), 使: $l_m < l_{m+1} = l_{m+2} = \cdots = l_n$ 。

说:
$$f_{n+1}(x) = f_n(x) + x^{n-m} f_m(x), l_{n+1} = \max\{l_n, n+1-l_n\}$$

最后得到的 $\langle f_N(x), l_N \rangle$ 便是产生序列 \underline{a} 的最短线性移位寄存器。

4、实例

例2、求产生周期为7的m序列一个周期: 001110f的最短线性移位寄存器。

解:设 $a_0a_1a_2a_3a_4a_5a_6 = 0011101$,首先取初值 $f_0(x)=1$, $l_0=0$,则由 $a_0=0$ 得 $d_0=1$ • $a_0=0$ 从而 $f_1(x)=1$, $l_1=0$; 同理由 $a_1=0$ 得 $d_1=1$ • $a_1=0$ 从而 $f_2(x)=1$, $l_2=0$ 。

由
$$a_2$$
=1得 d_2 =1• a_2 =1,从而根据 l_0 = l_1 = l_2 =0知 $f_3(x)$ =1+ x^{2+1} =1+ x^3 , l_3 =3

第1步,计算 d_3 : d_3 =1· a_3 + 0· a_2 + 0· a_1 + 1· a_0 =1 因为 l_2 < l_3 ,故m=2,由此

$$f_4(x) = f_3(x) + x^{3-2} f_2(x) = 1 + x + x^3$$

 $l_4 = \max\{3, 3 + 1 - 3\} = \max\{3, 1\} = 3$

第2步,计算 d_4 : d_4 =1· a_4 + 1· a_3 + 0· a_2 + 1· a_1 =0,从而

$$f_5(x) = f_4(x) = 1 + x + x^3$$

 $l_5 = l_4 = 3$

第3步,计算 d_5 : d_5 =1· a_5 + 1· a_4 + 0· a_3 + 1· a_2 =0,从而

$$f_6(x) = f_5(x) = 1 + x + x^3$$

 $l_6 = l_5 = 3$

第4步,计算 d_6 : d_6 =1· a_6 + 1· a_5 + 0· a_4 + 1· a_3 =0,从而

$$f_7(x) = f_6(x) = 1 + x + x^3$$

 $l_7 = l_6 = 3$

这表明、〈1+x+x³,3〉即为产生所给序列一个周期的最短线性移位奇仔器。