Esame scritto di Calcolo Scientifico 9 luglio 2018

Tutte le function sono scaricabili dalla pagina paola-gervasio.unibs.it/CS/matlab.

Esercizio 1. Sia A la matrice di Vandermonde costruita a partire da 10 punti equispaziati sull'intervallo [0.1, 1.1].

Si vuole eseguire la fattorizzazione LU di A sia senza che con la pivotazione per righe, per capire se quest'ultima apporta effettivi vantaggi alla risoluzione di un sistema lineare avente A come matrice.

Definiamo il vettore colonna ${\bf b}$ moltiplicando la matrice A per il vettore colonna ${\tt xex=(1:10)}$, e consideriamo il sistema lineare

$$A\mathbf{x} = \mathbf{b}.\tag{1}$$

Punto 1.1. Utilizzando la function lufact, calcolare la fattorizzazione LU di A senza eseguire la pivotazione, quindi calcolare la soluzione del sistema (1), denotando con $\hat{\mathbf{x}}_0$ la soluzione ottenuta.

Punto 1.2. Sempre utilizzando la function lufact, calcolare la fattorizzazione LU di A con pivotazione per righe, quindi calcolare la soluzione del sistema (1), denotando con $\hat{\mathbf{x}}_1$ la soluzione ottenuta.

Punto 1.3. Sapendo che la soluzione esatta del sistema (1) è il vettore $\mathbf{x} = [1, 2, \dots, 10]^T$, calcolare gli errori

$$e_0 = \frac{\|\mathbf{x} - \hat{\mathbf{x}}_0\|}{\|\mathbf{x}\|}, \quad e_1 = \frac{\|\mathbf{x} - \hat{\mathbf{x}}_1\|}{\|\mathbf{x}\|}$$

e confrontarli. A cosa è dovuto il fatto che e_0 è di gran lunga maggiore di e_1 ?

Punto 1.4. Calcolare il numero di condizionamento di A, dire se A è bene o mal condizionata e verificare che l'errore e_1 soddisfa la stima a priori

$$\frac{\|\mathbf{x} - \hat{\mathbf{x}}_1\|}{\|\mathbf{x}\|} \le K(A) \left(\frac{\|\mathbf{A} - \hat{\mathbf{A}}\|}{\|\mathbf{A}\|} + \frac{\|\mathbf{b} - \hat{\mathbf{b}}\|}{\|\mathbf{b}\|} \right),$$

prendendo come unici errori sui dati quelli dovuti all'arrotondamento di macchina.

Esercizio 2 Un drone che deve effettuare delle riprese aeree decolla da terra e segue una traiettoria ad elica conica descritta dalle seguenti equazioni parametriche:

$$\gamma(t) = \begin{cases} x(t) = t\cos(t), & 0 \le t \le 20\\ y(t) = t\sin(t)\\ z(t) = t. \end{cases}$$
 (2)

Si vuole calcolare numericamente la lunghezza del percorso effettuato dal drone in 20 secondi.

Punto 2.1. Utilizzando il comando plot3 (che serve per disegnare curve nello spazio), rappresentare graficamente la traiettoria (2) del drone per valori di $t \in [0, 20]$.

Punto 2.2. Ricordando che la lunghezza di una curva $\gamma(t) \in \mathbb{R}^3$ con $t \in [t_a, t_b]$ è data dalla formula

$$L = \int_{t_a}^{t_b} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt,$$
(3)

calcolare numericamente la lunghezza del percorso effettuato dal drone. A tal proposito utilizzare il metodo del punto medio composito (si utilizzi pmedioc.m) con un numero M di intervalli tale da garantire un errore dell'ordine di 10^{-2} . Spiegare il ragionamento svolto per giungere alla scelta di M.

Punto 2.3. Non conoscendo il valore esatto dell'integrale (3), è possibile stimare a priori l'errore commesso al punto precedente? Giustificare esaurientemente la risposta data ed, in caso affermativo, fornire una stima dell'errore.

Esercizio 3 Si vuole risolvere numericamente il seguente problema di Cauchy del secondo ordine:

$$\begin{cases} 5 \cdot 10^{-3} y''(t) + 10^{-2} y'(t) + 5 \cdot 10^{-2} y(t) = 5e^{-t} \sin(10t), & t \in (0, 10) \\ y(0) = 0.1, & y'(0) = 0. \end{cases}$$
(4)

Punto 3.1. Dopo aver riscritto il problema di Cauchy dato come un problema vettoriale del primo ordine, scrivere un m-file che:

- definisca i dati iniziali,
- richiami lo schema Runge-Kutta 2 (rk2.m) e lo schema Runge Kutta 4 (rk4.m) per la risoluzione del sistema dato utilizzando h = 1/100,
- rappresenti graficamente la soluzione del sistema e dire quale dei due schemi fornisce la soluzione più accurata (giustificare la risposta).
- **Punto 3.2.** Calcolare le soluzioni numeriche di entrambi gli schemi utilizzando $h \in \{0.1, 0.5, 0.8\}$ e, per ciascuno dei valori di h considerati, dire se gli schemi sono assolutamente stabili o meno nella risoluzione del problema dato.
- **Punto 3.3.** Facendo riferimento alle regioni di assoluta stabilità dei metodi utilizzati, per ognuno dei due metodi determinare il valore h_0 (con una sola cifra decimale) tale che per ogni $h < h_0$ lo schema risulti assolutamente stabile nel risolvere il problema dato.

