Instrucciones:

- 1. Conteste cada una de las preguntas.
- 2. La primera pregunta se activará a las 8 am, la segunda a las 8:40 am y la tercera a las 9:20 am.
- 3. Tome una fotografía a cada uno de los enunciados que se le asignará.
- 4. Debe enviar una fotografía de sus respuestas a las 3 preguntas al WhatsApp del profesor a más tardar a las 10 am. Cada minuto tarde será penalizado con 5 puntos de 100.
- 5. Luego de enviar las fotografías, debe enviar un <u>único</u> archivo pdf con sus respuestas las cuales deben ser idénticas a las fotografías enviadas. Cualquier alteración en relación con las fotografías lo harán perder la totalidad de los puntos.
- 6. Estructura del pdf. El archivo pdf debe estructurarse de la siguiente manera:
 - Enunciado pregunta 1 respuesta pregunta 1.
 - Enunciado pregunta 2 respuesta pregunta 2.
 - Enunciado pregunta 3 respuesta pregunta 3.
- 7. El nombre del archivo pdf debe ser: Carné Primer apellido, Segundo apellido, Nombre, carné. Ejemplo: C01234 Alfaro Bravo Carla

Pregunta 1. Relaciones entre las demandas hicksianas y marshallianas

Encuentre la demanda marshalliana, hicksiana, la función de costos y la función de utilidad indirecta de las siguientes funciones de utilidad:

a.
$$U(x_1, x_2) = x_1 - x_1/x_2$$

$$\frac{U_1}{U_2} = \frac{1 - \frac{1}{x_2}}{\frac{x_1}{x_2^2}} = \frac{x_2(x_2 - 1)}{x_1} = \frac{P_1}{P_2}$$

Marshallianas

$$P_2 x_2(x_2 - 1) + P_2 x_2 = m \to P_2 x_2^2 = m \to x_2^M = \left(\frac{m}{P_2}\right)^{\frac{1}{2}}$$

$$P_1 x_1 + P_2 \left(\frac{m}{P_2}\right)^{1/2} = m \to x_1^M = \frac{m - (mP_2)^{1/2}}{P_1}, x_1^M > 0$$

Función de utilidad indirecta

$$V = \frac{m - (mP_2)^{1/2}}{P_1} \left(1 - \left(\frac{P_2}{m}\right)^{\frac{1}{2}} \right)$$

Hicksianas

$$U = \frac{P_2 x_2 (x_2 - 1)}{P_1} - \frac{\frac{P_2 x_2 (x_2 - 1)}{P_1}}{x_2} \rightarrow U P_1 = P_2 x_2^2 - 2P_2 x_2 + P_2$$

$$\rightarrow x_2^2 - 2x_2 + \left(1 - \frac{U P_1}{P_2}\right) = 0$$

$$\rightarrow x_2^h = \frac{2 + \left[4 - 4\left(1 - \frac{U P_1}{P_2}\right)\right]^{1/2}}{2} = 1 + \frac{1}{2}\left(\frac{U P_1}{P_2}\right)^{1/2}$$

$$x_1^h = \frac{P_2}{P_1} \left[1 + \frac{1}{2}\left(\frac{U P_1}{P_2}\right)^{1/2}\right] \frac{1}{2}\left(\frac{U P_1}{P_2}\right)^{1/2} = \frac{1}{2}\left(\frac{U P_2}{P_1}\right)^{1/2} + \frac{1}{4}U$$

Costo mínimo

$$C^* = P_1 \left[\frac{1}{2} \left(\frac{U P_2}{P_1} \right)^{1/2} + \frac{1}{4} U \right] + P_2 \left[1 + \frac{1}{2} \left(\frac{U P_1}{P_2} \right)^{1/2} \right] = \frac{1}{2} (U P_1 P_2)^{1/2} + \frac{1}{4} U P_1 + P_2$$

b.
$$U(x_1, x_2) = (x_1 + x_2)x_2$$

$$\frac{U_1}{U_2} = \frac{x_2}{x_1 + 2x_2} = \frac{P_1}{P_2} \to P_1 x_1 = x_2 (P_2 - 2P_1)$$

Hay 2 casos: $P_1 > \frac{1}{2}P_2 \rightarrow Solo$ se consume x_2y la solución es trivial

$$x_2^M = \frac{m}{P_2}, V = \left(\frac{m}{P_2}\right)^2, C^* = U^{\frac{1}{2}}P_2, x_2^h = U^{\frac{1}{2}}, x_1^h = x_1^M = 0$$

Si
$$P_1 < \frac{1}{2}P_2$$
, la solución es:

<u>Marshallianas</u>

$$x_2(P_2-2P_1)+P_2x_2=x_2(2P_2-2P_1)=m\to x_2^M=\frac{m}{2P_2-2P_1}$$

$$P_1x_1 + P_2\frac{m}{2P_2 - 2P_1} = m \rightarrow x_1^M = \frac{m\left(1 - \frac{P_2}{2P_2 - 2P_1}\right)}{P_1} = \frac{m(P_2 - 2P_1)}{P_1(2P_2 - 2P_1)}, x_1^M > 0$$

Función de utilidad indirecta

$$V = \left(\frac{m\left(1 - \frac{P_2}{2P_2 - 2P_1}\right)}{P_1} + \frac{m}{2P_2 - 2P_1}\right) \frac{m}{2P_2 - 2P_1}$$

Hicksianas

$$U = \left(\frac{x_2(P_2 - 2P_1)}{P_1} + x_2\right) x_2 \to UP_1 = x_2^2(P_2 - P_1) \to x_2^h = \left(\frac{UP_1}{P_2 - P_1}\right)^{\frac{1}{2}}$$
$$x_1^h = \frac{\left(\frac{UP_1}{P_2 - P_1}\right)^{\frac{1}{2}}(P_2 - 2P_1)}{P_1} = \left[\frac{U}{P_1(P_2 - P_1)}\right]^{\frac{1}{2}}(P_2 - 2P_1)$$

Costo mínimo

$$C^* = P_1 \frac{\left(\frac{UP_1}{P_2 - P_1}\right)^{\frac{1}{2}} (P_2 - 2P_1)}{P_1} + P_2 \left(\frac{UP_1}{P_2 - P_1}\right)^{\frac{1}{2}} = 2[UP_1(P_2 - P_1)]^{\frac{1}{2}}$$

c.
$$U(x_1, x_2) = x_1 + x_2^2$$

$$\frac{U_1}{U_2} = \frac{1}{2x_2}$$

La TMS es creciente. Por lo tanto, existen soluciones de esquina. Hay tres casos:

a) $P_1^2 > P_2 \rightarrow Solo$ se consume x_2y la solución es:

$$x_2^M = \frac{m}{P_2}, V = \left(\frac{m}{P_2}\right)^2, C^* = U^{\frac{1}{2}}P_2, x_2^h = U^{\frac{1}{2}}, x_1^h = x_1^M = 0$$

b) $P_1^2 < P_2 \rightarrow Solo$ se consume x_1 y la solución es:

$$x_1^M = \frac{m}{P_1}, V = \frac{m}{P_1}, C^* = UP_1, x_1^h = U, x_2^h = x_2^M = 0$$

c) $P_1^2 = P_2$, la solución se indefine entre a) y b)

d.
$$U(x_1, x_2) = \frac{x_1 + x_2}{x_2 - x_1}, x_1 < x_2$$

$$\frac{U_1}{U_2} = \frac{\frac{2x_2}{(x_2 - x_1)^2}}{\frac{2x_1}{(x_2 - x_1)^2}} = -\frac{x_2}{x_1}$$

La TMS es negativa, lo que significa que uno de los dos bienes es un mal, en este caso x_2 . Sin embargo, la restricción me obliga a consumir algo del mal, pues $x_1 < x_2$. Por lo tanto, la solución óptima sería no gastar todo el ingreso, consumir una cantidad infinitesimal de x_2 y nada de x_1 . Así se obtendría una utilidad máxima U=1. En este caso no se gasta todo el ingreso.

En el límite:

$$x_1^h = x_1^M = 0$$
; $x_2^h = x_2^M \sim 0$, $V = 1$, $C^* \sim 0$

e.
$$U(x_1, x_2) = \left(\alpha x_1^{-\rho} + (1 - \alpha) x_2^{-\rho}\right)^{-1/\rho}$$

$$\frac{U_1}{U_2} = \frac{-\frac{1}{\rho} \left(\alpha x_1^{-\rho} + (1 - \alpha) x_2^{-\rho}\right)^{-\frac{1}{\rho} - 1} (-\rho) \alpha x_1^{-\rho - 1}}{-\frac{1}{\rho} \left(\alpha x_1^{-\rho} + (1 - \alpha) x_2^{-\rho}\right)^{-\frac{1}{\rho} - 1} (-\rho) (1 - \alpha) x_2^{-\rho - 1}} = \frac{\alpha}{(1 - \alpha)} \left(\frac{x_2}{x_1}\right)^{1 + \rho} = \frac{P_1}{P_2}$$

$$\frac{x_2}{x_1} = \left(\frac{(1 - \alpha) P_1}{\alpha P_2}\right)^{\frac{1}{1 + \rho}}$$

Marshallianas

$$\begin{split} P_1 x_1 + P_2 \left(\frac{(1-\alpha)P_1}{\alpha P_2} \right)^{\frac{1}{1+\rho}} &= m; x_1^M = \frac{m}{P_1 + P_2 \left(\frac{(1-\alpha)P_1}{\alpha P_2} \right)^{\frac{1}{1+\rho}}} \\ x_2^M &= \frac{m}{P_2 + P_1 \left(\frac{\alpha P_2}{(1-\alpha)P_1} \right)^{\frac{1}{1+\rho}}} \end{split}$$

Función de utilidad indirecta

$$V = \left\{ \alpha \left[\frac{m}{P_1 + P_2 \left(\frac{(1-\alpha)P_1}{\alpha P_2} \right)^{\frac{1}{1+\rho}}} \right]^{-\rho} + (1-\alpha) \left[\frac{m}{P_2 + P_1 \left(\frac{\alpha P_2}{(1-\alpha)P_1} \right)^{\frac{1}{1+\rho}}} \right]^{-\rho} \right\}^{-1/\rho}$$

Hicksianas

$$U^{-\rho} = \alpha x_1^{-\rho} + (1 - \alpha) \left[\left(\frac{(1 - \alpha)P_1}{\alpha P_2} \right)^{\frac{1}{1+\rho}} x_1 \right]^{-\rho} = x_1^{-\rho} \left[\alpha + (1 - \alpha) \left(\frac{(1 - \alpha)P_1}{\alpha P_2} \right)^{\frac{-\rho}{1+\rho}} \right]^{1/\rho}$$

$$\to x_1^h = U \left[\alpha + (1 - \alpha) \left(\frac{(1 - \alpha)P_1}{\alpha P_2} \right)^{\frac{-\rho}{1+\rho}} \right]^{1/\rho} = U \left[\alpha + (1 - \alpha)^{\frac{1}{1+\rho}} \left(\frac{\alpha P_2}{P_1} \right)^{\frac{\rho}{1+\rho}} \right]^{1/\rho}$$

$$x_2^h = U \left[(1 - \alpha) + (\alpha)^{\frac{1}{1+\rho}} \left(\frac{(1 - \alpha)P_1}{P_2} \right)^{\frac{\rho}{1+\rho}} \right]^{1/\rho}$$

Costo mínimo

$$C^* = UP_1 \left[\alpha + (1-\alpha)^{\frac{1}{1+\rho}} \left(\frac{\alpha P_2}{P_1} \right)^{\frac{\rho}{1+\rho}} \right]^{1/\rho} + UP_2 \left[(1-\alpha) + (\alpha)^{\frac{1}{1+\rho}} \left(\frac{(1-\alpha)P_1}{P_2} \right)^{\frac{\rho}{1+\rho}} \right]^{1/\rho}$$

Pregunta 2. Óptimo del consumidor

Un consumidor que posee un ingreso igual a m presenta la siguiente función de utilidad:

$$U(x_1, x_2, ..., x_n) = \prod_{i=2}^{n} (x_1 - 1)x_i = (x_1 - 1)^{n-1} \prod_{i=2}^{n} x_i$$

Encuentre:

$$\begin{split} \frac{U_1}{U_i} &= \frac{(n-1)\frac{U}{x_1-1}}{\frac{U}{x_i}} = = \frac{(n-1)x_i}{(x_1-1)} = \frac{P_1}{P_i}, \ \frac{U_i}{U_j} = \frac{x_j}{x_i} = \frac{P_i}{P_j} \\ P_1x_1 + \sum_{j=2}^n P_jx_j &= P_1x_1 + (n-1)P_ix_i = P_1x_1 + P_1(x_1-1) = m \to x_1^M = \frac{m}{2P_1} + \frac{1}{2}; \\ x_i^M &= \frac{P_1\left(\frac{m}{2P_1} + \frac{1}{2} - 1\right)}{(n-1)P_i} = \frac{m-P_1}{2(n-1)P_i} = \frac{m}{2(n-1)P_i} - \frac{P_1}{2(n-1)P_i} \\ U &= (x_1-1)^{n-1} \prod_{i=2}^n x_i = (x_1-1)^{n-1} \prod_{i=2}^n \frac{P_1(x_1-1)}{(n-1)P_i} = \frac{P_1^{n-1}[(x_1-1)]^{2n-2}}{(n-1)^{n-1} \prod_{i=2}^n P_i} \\ x_1^h &= \frac{U^{\frac{1}{2(n-1)}}(n-1)^{\frac{1}{2}} \prod_{j=2}^n \left(P_j\right)^{\frac{1}{2(n-1)}}}{P_i^{\frac{1}{2}}} + 1; \qquad x_i^h &= \frac{U^{\frac{1}{2(n-1)}}P_1^{\frac{1}{2}} \prod_{j=2}^n \left(P_j\right)^{\frac{1}{2(n-1)}}}{P_i(n-1)^{\frac{1}{2}}} \end{split}$$

a. Si el precio del bien 1 cambia encuentre la proporción que el efecto ingreso y sustitución representan del efecto total sobre el consumo del bien x_1 .

$$ES: \frac{\partial x_{1}^{h}}{\partial P_{1}} = \left(-\frac{1}{2}\right) \frac{(x_{1}^{h} - 1)}{P_{1}};$$

$$EI: -\frac{\partial x_{1}^{M}}{\partial m} x_{1}^{h} = -\left(\frac{1}{2P_{1}}\right) \left[x_{1}^{h}\right]$$

$$\frac{ES}{ET} = \frac{x_{1}^{h} - 1}{2x_{1}^{h} - 1}; \qquad \frac{EI}{ET} = \frac{x_{1}^{h}}{2x_{1}^{h} - 1}$$

b. Si el precio del bien j cambia, j \neq 1 encuentre la proporción que el efecto ingreso y sustitución representan del efecto total sobre el consumo del bien x_i .

$$\frac{ES: \ \partial x_i^h}{\partial P_i} = \left[\frac{3-2n}{2(n-1)}\right] \frac{x_i^h}{P_i}; \qquad EI: \ -\frac{\partial x_1^M}{\partial m} x_i^h = -\left[\frac{1}{2(n-1)P_i}\right] x_i^h$$

$$\frac{ES}{ET} = \frac{\frac{3-2n}{2(n-1)}}{\frac{3-2n}{2(n-1)} - \frac{1}{2(n-1)}} = \frac{2n-3}{2(n-1)}; \qquad \frac{EI}{ET} = \frac{-\frac{1}{2(n-1)}}{\frac{3-2n}{2(n-1)} - \frac{1}{2(n-1)}} = \frac{1}{2(n-1)}$$

c. Compruebe la agregación de Engels para esta función de utilidad.

$$\eta_{1m}^{M} = \frac{\partial x_{1}^{M}}{\partial m} \frac{m}{x_{1}^{M}} = \left(\frac{1}{2P_{1}}\right) \frac{m}{x_{1}^{M}} = \frac{1}{2\alpha_{1}}; \quad \eta_{im}^{M} = \frac{\partial x_{i}^{M}}{\partial m} \frac{m}{x_{i}^{M}} = \left(\frac{1}{2(n-1)P_{i}}\right) \frac{m}{x_{i}^{M}} = \frac{1}{2(n-1)\alpha_{i}}$$

$$\sum_{i=1}^{n} \alpha_{i} \, \eta_{im}^{M} = \frac{\alpha_{1}}{2\alpha_{1}} + \sum_{i=2}^{n} \alpha_{i} \, \frac{1}{2(n-1)\alpha_{i}} = \frac{1}{2} + \frac{1}{2} = 1$$

d. Compruebe la agregación de Cournot para esta función de utilidad para todos los bienes.

$$\alpha_{j} + \sum_{i=1}^{n} \alpha_{i} \, \eta_{ij}^{M} = 0;$$

$$\eta_{jj}^{M} = \frac{\partial \ln (x_{j}^{M})}{\partial \ln (P_{j})} = -1; \eta_{ij}^{M} = 0, i \neq j, \eta_{1j}^{M} = 0$$

$$\alpha_{j} + (-\alpha_{j}) = 0$$

e. Compruebe la simetría de Hicks para todos los bienes.

$$\begin{split} \frac{\partial x_i^h}{\partial P_j} &= \left(\frac{1}{2(n-1)} - 1\right) \frac{U^{\frac{1}{n}} \prod_{k=1}^n (P_k)^{\frac{1}{n}}}{P_i P_j (n-1)^{\frac{1}{2}}} = \frac{\partial x_j^h}{\partial P_i} \\ \frac{\partial x_i^h}{\partial P_1} &= \left(\frac{1}{2}\right) \frac{U^{\frac{1}{2(n-1)}} \prod_{j=2}^n (P_j)^{\frac{1}{2(n-1)}}}{P_1^{\frac{1}{2}} P_i (n-1)^{\frac{1}{2}}} = \frac{\partial x_1^h}{\partial P_i} \end{split}$$

f. Compruebe para esta función de utilidad que $\eta_{im}^M + \sum_{j=1}^n \eta_{ij}^M = 0$, para todos los bienes, donde el primer elemento es la elasticidad ingreso de la demanda marshalliana del bien i y el segundo elemento es la elasticidad precio cruzada de la demanda marshalliana del bien i con respecto al precio del bien j.

$$\begin{split} \eta^{M}_{im} &= \frac{\partial x^{M}_{i}}{\partial m} \frac{m}{x^{M}_{i}} = \left(\frac{1}{2(n-1)P_{i}}\right) \frac{m}{x^{M}_{i}}; \eta^{M}_{ii} = -\frac{m-P_{1}}{2(n-1)P_{i}x^{M}_{i}}; \eta^{M}_{ij} = 0, j \neq i \neq 1; \\ \eta^{M}_{i1} &= -\frac{P_{1}}{2(n-1)P_{i}x^{M}_{i}} \\ \eta^{M}_{im} &+ \eta^{M}_{i1} + \eta^{M}_{ii} = 0 \\ \eta^{M}_{1m} &= \left(\frac{1}{2P_{1}}\right) \frac{m}{x^{M}_{i}}; \eta^{M}_{11} = \left(-\frac{m}{2P_{1}^{2}}\right) \frac{P_{1}}{x^{M}_{i}}; \eta^{M}_{1j} = 0, j \neq 1; \\ \eta^{M}_{1m} &+ \eta^{M}_{11} = 0 \end{split}$$

Pregunta 3. Preferencias reveladas y medidas de bienestar

23. Considere un individuo con preferencias representadas por $U(X_1, X_2, X_3) = X_1 X_2 X_3$, donde $X_1 y$ X_2 son bienes cuyos precios son iguales a 1.000 colones, $y X_3$ es un índice de calidad del aire que se respira.

Mientras más lejos esté la vivienda del centro de San José, mejor será la calidad del aire, por lo que $X_3 = 100$ d, donde d es la distancia desde el centro de San José.

El individuo tiene un ingreso mensual de 750.000 colones pero debe pagar de allí el monto de arrendamiento de su vivienda (P_V).

Suponga que este individuo puede elegir su lugar de residencia y que el arriendo es igual a P_V = 10.000d.

i. Si el precio de la vivienda se duplica. Calcule el cambio en el bienestar asociado a este cambio en el precio de la vivienda, usando la variación compensatoria.

$$P_{1}x_{1} = P_{2}x_{2} = P_{3}x_{3} \rightarrow x_{1} = \frac{P_{3}x_{3}}{P_{1}}; x_{2} = \frac{P_{3}x_{3}}{P_{2}} \rightarrow U = \frac{P_{3}x_{3}}{P_{1}} \frac{P_{3}x_{3}}{P_{2}} x_{3}$$

$$x_{3}^{h} = \left(\frac{U_{0}P_{1}P_{2}}{P_{3}^{2}}\right)^{1/3} \text{ of } d = \left(\frac{U_{0}}{P_{3}^{2}}\right)^{1/3} \text{ cuando } P_{1} = P_{2} = 1000$$

$$x_{i} = \frac{1}{3}\frac{m}{P_{i}} \rightarrow x_{1} = x_{2} = 250; x_{3} = \frac{25}{d} = 100d \rightarrow d = \frac{1}{2}$$

$$U_{0} = x_{1}x_{2}x_{3} = (250)(250)(50) \rightarrow x_{3}^{h} = \left(\frac{(250)(250)(50)(1000)(1000)}{P_{3}^{2}}\right)^{1/3} = 5000 \left(\frac{5}{P_{3}}\right)^{\frac{2}{3}}$$

$$\int_{10000}^{5000} 5000 \left(\frac{5}{P_{3}}\right)^{\frac{2}{3}} dP_{3} = \left(\frac{3}{5}\right) 5000(5)^{\frac{2}{3}} \left\{ [5.000]^{\frac{1}{3}} - [10.000]^{\frac{1}{3}} \right\} = -38.988,16$$

 ii. Cuál medida de bienestar es mayor: la compensada, la equivalente, la del excedente del consumidor marshalliano o la del excedente del consumidor hicksiano.

Las demandas son de bienes normales. Por lo tanto: VE>ECM>VC>ECH

b. Considere un individuo con preferencias representadas por $U(X_1, X_2, X_3) = X_1 X_2 X_3$, donde $X_1 y X_2$ son bienes cuyos precios son iguales a 2.000 colones, y X_3 es un índice de calidad del aire que se respira.

Mientras más lejos esté la vivienda del centro de San José, mejor será la calidad del aire, por lo que $X_3 = 100$ d, donde d es la distancia desde el centro de San José.

El individuo tiene un ingreso mensual de 500.000 colones pero debe pagar de allí el monto de arrendamiento de su vivienda (P_V).

Suponga que este individuo puede elegir su lugar de residencia y que el arriendo es igual a P_V = 10.000d. Encuentre la máxima utilidad que puede alcanzar el individuo eligiendo X_1 , X_2 y d.

i. Si el precio de la vivienda cae a la mitad. Calcule el cambio en el bienestar asociado a este cambio en el precio de la vivienda, usando la variación equivalente.

$$\begin{split} P_1 x_1 &= P_2 x_2 = P_3 x_3 \to x_1 = \frac{P_3 x_3}{P_1}; x_2 = \frac{P_3 x_3}{P_2} \to U = \frac{P_3 x_3}{P_1} \frac{P_3 x_3}{P_2} x_3 \\ x_3^h &= \left(\frac{U_0 P_1 P_2}{P_3^2}\right)^{1/3} \text{ of } d = \left(\frac{4U_0}{P_3^2}\right)^{1/3} \text{ cuando } P_1 = P_2 = 2000 \\ x_i &= \frac{1}{3} \frac{m}{P_i} \to x_1 = x_2 = \frac{250}{3}; x_3 = \frac{100}{3d} = 100d \to d = \frac{\sqrt{3}}{3} \\ U_0 &= x_1 x_2 x_3 = \left(\frac{250}{3}\right) \left(\frac{250}{3}\right) \left(100 \frac{\sqrt{3}}{3}\right) \to x_3^h = \left(\frac{\left(\frac{250}{3}\right) \left(\frac{250}{3}\right) \left(100 \frac{\sqrt{3}}{3}\right) (2000)(2000)}{P_3^2}\right)^{1/3} \\ &= \frac{10000}{3} \left(\frac{15}{P_3}\right)^{\frac{2}{3}} \\ \int_{5000 \frac{\sqrt{3}}{3}}^{10000} \frac{\left(155\right)^{\frac{2}{3}}}{3} dP_3 = 2000(15)^{\frac{2}{3}} \left\{ \left[10.000 \frac{\sqrt{3}}{3}\right]^{\frac{1}{3}} - \left[5.000 \frac{\sqrt{3}}{3}\right]^{\frac{1}{3}} \right\} \end{split}$$

ii. ¿Cuál medida de bienestar es mayor: la compensada, la equivalente, la del excedente del consumidor marshalliano o la del excedente del consumidor hicksiano?

Las demandas son de bienes normales. Por lo tanto: VE>ECM>VC>ECH

c. Considere un individuo con preferencias representadas por $U(X_1, X_2, X_3) = X_1 X_2 X_3$, donde $X_1 y X_2$ son bienes cuyos precios son 1000 y 2.000 colones respectivamente, y X_3 es un índice de calidad del aire que se respira.

Mientras más lejos esté la vivienda del centro de San José, mejor será la calidad del aire, por lo que $X_3 = 100$ d, donde d es la distancia desde el centro de San José.

El individuo tiene un ingreso mensual de 500.000 colones pero debe pagar de allí el monto de arrendamiento de su vivienda (P_V).

Suponga que este individuo puede elegir su lugar de residencia y que el arriendo es igual a P_V = 5.000d. Encuentre la máxima utilidad que puede alcanzar el individuo eligiendo X_1 , X_2 y d.

i. Si el precio de la vivienda se duplica. Calcule el cambio en el bienestar asociado a este cambio en el precio de la vivienda, usando la variación compensada.

$$\begin{split} P_1 x_1 &= P_2 x_2 = P_3 x_3 \to x_1 = \frac{P_3 x_3}{P_1}; x_2 = \frac{P_3 x_3}{P_2} \to U = \frac{P_3 x_3}{P_1} \frac{P_3 x_3}{P_2} x_3 \\ x_3^h &= \left(\frac{U_0 P_1 P_2}{P_3^2}\right)^{1/3} \circ d = \left(\frac{U_0}{P_3^2}\right)^{1/3} cuando \ P_1 = 1000; \ P_2 = 2000 \\ x_i &= \frac{1}{3} \frac{m}{P_i} \to x_1 = \frac{500}{3}; \ x_2 = \frac{250}{3}; x_3 = \frac{100}{3d} = 100d \to d = \frac{\sqrt{3}}{3} \\ U_0 &= x_1 x_2 x_3 = \left(\frac{500}{3}\right) \left(\frac{250}{3}\right) \left(100 \frac{\sqrt{3}}{3}\right) \to x_3^h = \left(\frac{\left(\frac{500}{3}\right) \left(\frac{250}{3}\right) \left(100 \frac{\sqrt{3}}{3}\right) \left(1000\right) (2000)}{P_3^2}\right) \\ &= \frac{10000}{3} \left(5\sqrt{3}\right)^{\frac{1}{3}} \left(\frac{1}{P_3}\right)^{\frac{2}{3}} dP_3 = \left(\frac{3}{5}\right) 10000 \left(5\sqrt{3}\right)^{\frac{1}{3}} \left\{\left[5.000 \frac{\sqrt{3}}{3}\right]^{\frac{1}{3}} - \left[10.000 \frac{\sqrt{3}}{3}\right]^{\frac{1}{3}} \right\} \end{split}$$

ii. ¿Cuál medida de bienestar es mayor: la compensada, la equivalente, la del excedente del consumidor marshalliano o la del excedente del consumidor hicksiano?

Las demandas son de bienes normales. Por lo tanto: VE>ECM>VC>ECH