Материал курса Функциональный анализ, 2025

Содержание

1.	Теоремы Бэра о категориях	2
2.	Топологические векторные пространства	3
	2.1. Основные понятия	
	2.2. Топологические свойства	4
	2.3. Линейные операторы	7
	2.4. Конечномерные пространства	8
	2.5. Метризуемость	
	2.6. Полунормы и локальная выпуклость	
3.	Полнота	16
	3.1. Теорема Банаха-Штейнгауза	16
	3.2. Билинейные операторы	18
	3.3. Теорема о неподвижной точке	
4.	Обобщённая теорема Стоуна-Вейерштрасса	20

1. Теоремы Бэра о категориях

Определение 1.1. (плотность): Пусть X — топологическое пространство. Множество $A \subset X$ называется всюду плотным в X, если $\overline{A} = X$. Множество A называется нигде не плотным, если $\left(\overline{A}\right)^{\circ} = \emptyset$, иначе говоря, если замыкание множества A не содержит ни одного открытого подмножества X.

Упражнение 1.2. Покажите, что если A нигде не плотно в X, то его дополнение $A^C = X - A$ всюду плотно в X. Верно ли обратное?

<u>Определение 1.3.</u> (категории Бэра): Подмножество $A \subset X$ является множеством I категории, если A представляется как счётное объединение нигде не плотных множеств:

$$A = \bigcup_{n \in \mathbb{N}} S_n, \quad S_n$$
 нигде не плотны в $X.$

Mножества II категории состоят из всех подмножеств X, не относящихся к I категории.

<u>Определение 1.4.</u> (локальная компактность): Топологическое пространство X называется локально компактным, если каждая точка $x \in X$ имеет окрестность V_x такую, что $\overline{V_x}$ компактно.

<u>Утверждение 1.5.</u> Пусть X локально компактно и хаусдорфово. Тогда каждое непустое открытое множество $U \subset X$ содержит замыкание \overline{V} некоторого непустого относительно компактного открытого множества V.

Доказательство: Рассмотрим открытое множество U и точку $x\in U$. По локальной компактности точка x имеет относительно компактную окрестность V_x . Рассмотрим множество $W=U\cap V_x$. Теперь для каждой точки $y\in \overline{V_x}\cap W^C$ рассмотрим множества A_y и B_y такие, что $y\in A_y, x\in B_y, A_y\cap B_y=\varnothing$. Множество $\overline{V_x}\cap W^C$ компактно, а значит мы имеем

$$\overline{V_x}\cap W^C\subset A_{y_1}\cup A_{y_2}\cup\ldots\cup A_{y_n}.$$

Наконец, положим $V=B_{y_1}\cap B_{y_2}\cap\ldots\cap B_{y_n}$. Множество V непусто, так как оно содержит точку x. Так как V не пересекается с $\bigcup_{k=1}^n A_{y_k}\supset W^C\cap \overline{V_x}$ и $V\subset \overline{V_x}$, мы видим, что $\overline{V}\subset W\subset U$. Кроме того, \overline{V} компактно, как замкнутое подмножество компактного множества $\overline{V_x}$.

<u>Определение 1.6.</u> (полнота): Метрическое пространство (M,d) называется *полным*, если каждая ϕ ундаментальная последовательность, т.е. такая последовательность $x_n \in M$, что

$$d(x_n, x_m) \xrightarrow[n, m \to \infty]{} 0,$$

имеет некий предел $x_{\infty} \in M$.

Теорема 1.7. (Первая теорема Бэра о категориях): *Пусть* $X - \pi u \delta o$

- (а) полное метрическое пространство, либо
- (b) локально компактное хаусдорфово пространство.

Тогда пересечение счётного семейства открытых всюду плотных множеств также всюду плотно.

Доказательство: Пусть $\left\{U_n\right\}_{n\in\mathbb{N}}$ — семейство открытых всюду плотных множеств. Мы будем индуктивно строить последовательность открытых множеств B_n таким образом, чтобы выполнялось свойство

$$\overline{B_n} \subset U_n \cap B_{n-1}$$
.

1. В качестве B_1 возьмём произвольное открытое непустое подмножество X.

2. Пусть множество B_{n-1} уже построено. Тогда в случае (а) можно рассмотреть некий шар B_n с радиусом не более 1/n, такой что $\overline{B_n} \subset U_n \cap B_{n-1}$, так как множество $U_n \cap B_{n-1}$ открыто. В случае (b) <u>утверждение 1.5</u> позволяет выбрать множество B_n таким образом, что $\overline{B_n}$ компактно и $\overline{B_n} \subset U_n \cap B_{n-1}$.

Теперь рассмотрим множество

$$K := \bigcap_{n \in \mathbb{N}} \overline{B_n}.$$

В случае (а) центры x_n указанных шаров образуют фундаментальную последовательность, так как $d(x_n,x_m)<1/n$ всякий раз когда $m\geqslant n$. Следовательно, множество K содержит предел этой последовательности и потому непусто.

В случае (b) множество K является пересечением вложенной последовательности компактных множеств и потому непусто. В обоих случаях мы получили, что множество

$$K \subset B_1 \cap \bigcap_{n \in \mathbb{N}} U_n$$

непусто. Так как B_1 было выбрано произвольно, мы показали, что пересечение семейства $\{U_n\}_{n\in\mathbb{N}}$ всюду плотно.

2. Топологические векторные пространства

2.1. Основные понятия

<u>Определение 2.1.1.</u> (ТВП): Пусть X — векторное пространство над полем $\mathbb R$, и пусть τ — топология на множестве X. Тогда X называется топологическим векторным пространством, если

- (1) каждая точка $x \in X$ является замкнутым множеством;
- (2) операции $(+): X \times X \to X$ и $(\cdot): \mathbb{R} \times X \to X$ непрерывны относительно топологии τ .

В таком случае au называется векторной топологией.

Определение 2.1.2. Пусть X — топологическое векторное пространство. Подмножество $C\subset X$ называется

- (1) выпуклым, если $tC + (1-t)C \subset C$ при всех $t \in [0,1]$;
- (2) уравновешенным, если $\alpha C \subset C$ при всех $|\alpha| \leq 1$;
- (3) поглощающим, если $X = \bigcup_{\alpha > 0} \alpha C$.
- (4) ограниченным, если для любой окрестности нуля V найдётся число s>0, такое что $C\subset tV$ при $t\geqslant s$.

Замечание 2.1.3. Условие (2) означает, что

(1) для любой окрестности U точки $x_1+x_2\in X$, существуют окрестности V_1 и V_2 точек x_1 и x_2 , такие, что

$$V_1 + V_2 \subset U$$
.

(2) Для любой окрестности U точки $\alpha x \in X$, существуют окрестности $V_{\alpha} \subset \mathbb{R}$ и $V_x \subset X$, такие, что

$$V_{\alpha}\cdot V_{x}=\{\beta y\ |\ \beta\in V_{\alpha},y\in V_{x}\}\subset U.$$

<u>Утверждение 2.1.4.</u> Отображения $T_a=\lambda x.\ x+a\ u\ M_{\alpha}=\lambda x.\ \alpha x$ являются гомеоморфизмами.

Доказательство: Упражнение.

Замечание 2.1.5. По утверждению 2.1.4, векторная топология инвариантна относительно сдвигов: множество U открыто тогда и только тогда, когда открыты все сдвиги a+U, где $a\in X$. Таким образом, топология определяется любой своей локальной базой. Термин локальная база всегда будет означать локальную базу в нуле.

Определение 2.1.6. (типы ТВП): Топологическое пространство X называется

- (1) локально выпуклым, если в нём есть локальная база, состоящая из выпуклых множеств;
- (2) локально ограниченным, если существует ограниченная окрестность нуля;
- (3) локально компактным, если существует относительно компактная окрестность нуля;
- (4) метризуемым, если его топология совместима с некоторой метрикой;
- (5) пространством Фреше, если топология на X порождается некоторой полной инвариантной метрикой d (в том смысле, что d(x+z,y+z)=d(x,y));
- (6) нормируемым, если его топология порождается некоторой нормой;
- (7) пространством Банаха, если X нормируемо и его норма индуцирует полную метрику.

2.2. Топологические свойства

<u>Определение 2.2.1.</u> (аксиомы отделимости): Пусть X — топологическое пространство. Выделяют 5 основных *аксиом отделимости*:

- (1) \mathbb{T}_0 : для любых отличных точек $x,y\in X$, одна из них имеет окрестность, не содержащую другую;
- (2) \mathbb{T}_1 : для любых двух точек $x \neq y$, каждая содержит окрестность, не содержащую другую;
- (3) \mathbb{T}_2 : Каждые две отличные точки X имеют непересекающиеся окрестности;

(хаусдорфово пространство)

- (4) \mathbb{T}_3 : Каждые точка $x \in X$ и замкнутое множество $E \not\ni x$ имеют непересекающиеся окрестности; (регулярное пространство)
- (5) \mathbb{T}_4 : Каждая пара непересекающихся замкнутых множеств имеет непересекающиеся окрестности. (нормальное пространство)

Утверждение 2.2.2. Каждая окрестность нуля U в ТВП X допускает симметричную окрестность нуля W (в том смысле, что -W=W), такую, что $W+W\subset U$.

Доказательство: По непрерывности сложения имеем окрестности V_1, V_2 со свойством $V_1 + V_2 \subset U$. Теперь, полагая

$$W = V_1 \cap V_2 \cap (-V_1) \cap (-V_2),$$

имеем искомую окрестность нуля.

Теорема 2.2.3. Пусть $X - TB\Pi, K, E \subset X$, причём K компактно, E замкнуто, и $K \cap E = \emptyset$. Тогда существует такая окрестность нуля V, что

$$(K+V)\cap (E+V)=\varnothing.$$

(заметим, что множества K + V и E + V открыты)

Доказательство: Заметим, что по предыдущему утверждению для любой окрестности U найдётся симметричная окрестность V таким образом, что

$$V + V + V + V \subset U$$
.

Теперь предположим, что множество K непусто, $x \in K$. Так как E замкнуто, имеем окрестность нуля V_x такую, что

$$V_x + V_x + V_x + V_x \subset E^C - x \Longrightarrow (x + V_x + V_x + V_x) \cap E = \varnothing.$$

Следовательно,

$$(x + V_x + V_x) \cap (E + V_x) = (x + V_x + V_x) \cap (E - V_x) = \emptyset.$$

Так как множество K компактно, найдётся конечное число точек $x_1, x_2, ..., x_n \in K$, таких что

$$K \subset \bigcup_{k=1}^{n} \left(x_k + V_{x_k} \right)$$

Положим $V \coloneqq V_{x_1} \cap ... \cap V_{x_n}$. Имеем

$$\begin{split} K+V \subset \bigcup_{k=1}^n \left(x_k + V_{x_k} + V\right) \subset \bigcup_{k=1}^n \left(x_k + V_{x_k} + V_{x_k}\right) \subset (E+V)^C \\ \Longrightarrow (K+V) \cap (E+V) = \varnothing, \end{split}$$

и доказательство завершено.

<u>Следствие 2.2.4.</u> Всякое ТВП X удовлетворяет аксиомам \mathbb{T}_0 - \mathbb{T}_3 отделимости (упражнение).

<u>Следствие 2.2.5.</u> Если \mathcal{B} — локальная база ТВП X, то <u>Теорема 2.2.3</u>, применённая ко множествам $\{0\}$ и $U \in \mathcal{B}$, влечёт существование некой другой окрестности $V \in \mathcal{B}$, такой, что $\overline{V} \subset U$.

Следующее техническое утверждение содержит некоторые свойства операторов замыкания и внутренности:

<u>**Пемма 2.2.6.**</u> Пусть X — топологическое векторное пространство.

- (a) Для всякого $A\subset X$, имеем $\overline{A}=\bigcap_{0\in V}(A+V)$, где V пробегает все окрестности нуля;
- (b) Если $A, B \subset X$, то $\overline{A} + \overline{B} \subset \overline{A + B}$. Если $\alpha \in \mathbb{R}$, то $\alpha \overline{A} = \overline{\alpha A}$;
- (c) Eсли $Y\leqslant X$, то $\overline{Y}\leqslant X$; (замыкание подпространства есть подпространство)
- (d) Если $C \subset X$ выпукло, то множества \overline{C} и C° также выпуклы;
- (e) Если $B \subset X$ уравновешено, то \overline{B} также уравновешено. Если к тому же $0 \in B^\circ$, то B° уравновешено;
- (f) Если $E\subset X$ ограничено, то \overline{E} ограничено.

Доказательство:

- (a) $x \in \overline{A}$ тогда и только тогда, когда $(x+V) \cap A \neq \emptyset$ для любой окрестности нуля V. Это эквивалентно условию $x \in A V$ для всех V, что равносильно $x \in \bigcap_{0 \in V} (A+V)$, так как (-V) окрестность нуля $\iff V$ окрестность нуля.
- (b) По непрерывности операции сложения, имеем $(x_n+y_n)\to x+y$ при $x_n\to x$ и $y_n\to y$. Равенство $\alpha\overline{A}=\overline{\alpha A}$ остаётся как упражнение.
- (с) Достаточно воспользоваться предыдущим утверждением:

$$\alpha \overline{Y} + \beta \overline{Y} = \overline{\alpha Y} + \overline{\beta Y} \subset \overline{\alpha Y + \beta Y} \subset \overline{Y},$$

а значит \overline{Y} — подпространство X.

(d) Пусть $C\subset X$ выпукло. Выпуклость \overline{C} — упражнение. Теперь, так как $C^\circ\subset C$ и C выпукло, имеем

$$tC^{\circ} + (1-t)C^{\circ} \subset tC + (1-t)C \subset C$$

при $0 \leqslant t \leqslant 1$. Оба слагаемых слева являются открытыми множествами, я значит их сумма тоже открыта. Так как внутренность C есть объединение всех открытых множеств, содержащихся в C, имеем

$$tC^{\circ} + (1-t)C^{\circ} \subset C^{\circ}$$

и C° выпукло.

(e) Пусть $B\subset X$ уравновешено. Уравновешенность \overline{B} — упражнение. Если $0\in B^\circ$, то имеем $0\cdot B^\circ\subset B^\circ$. В то же время, при $0<|\alpha|\leqslant 1$ имеем

$$\alpha B^{\circ} = (\alpha B)^{\circ} \subset \alpha B \subset B$$
,

так как λx . αx — гомеоморфизм. Но αB° открыто, а значит $\alpha B^{\circ} \subset B^{\circ}$.

(f) Пусть $E\subset X$ ограничено и пусть V — произвольная окрестность нуля. По следствию 2.2.5 имеем такую окрестность нуля W, что $\overline{W}\subset V$. Далее, при достаточно больших t имеем

$$E \subset tW \Longrightarrow \overline{E} \subset \overline{tW} = t\overline{W} \subset tV,$$

и доказательство завершено.

Лемма 2.2.7. Пусть $X - TB\Pi$. Тогда:

- (а) Каждая окрестность нуля содержит уравновешенную окрестность нуля;
- (b) Каждая выпуклая окрестность нуля содержит выпуклую уравновешенную окрестность нуля.

Доказательство:

- (a) Пусть U произвольная окрестность нуля в X. Так как операция умножения непрерывна, найдутся такое число $\delta>0$ и такая окрестность нуля W, что $\alpha W\subset U$ при $|\alpha|<\delta$. Рассмотрим окрестность $V:=\bigcup_{|\alpha|<\delta}\alpha W$. Очевидно, что $V\subset U$ и что V уравновешено.
- (b) Пусть U выпуклая окрестность нуля. Рассмотрим множество $A=U\cap (-U)$. Как пересечение выпуклых множеств, A выпукло. Кроме того, A симметрично. Теперь, если $|t|\leqslant 1$, мы имеем

$$tA = |t| \ A \subset |t| \ A + (1 - |t|)A \subset A,$$

то есть множество A уравновешено,

что и требовалось доказать.

<u>Следствие 2.2.8.</u> Каждое ТВП X имеет уравновешенную локальную базу. Если же X локально выпукло, оно имеет выпуклую уравновешенную локальную базу.

Теорема 2.2.9. Пусть X — топологическое векторное пространство, а V — окрестность нуля.

(a) Если $r_n \to \infty$ при $n \to \infty$, то

$$X = \bigcup_{n=1}^{\infty} r_n V;$$

- (b) Каждое компактное подмножество $K \subset X$ ограничено;
- (c) Если окрестность V ограничена и $\delta_n \to 0$ при $n \to \infty$, то семейство

$$\{\delta_n V \mid n \in \mathbb{N}\}$$

является локальной базой пространства X.

Доказательство:

(a) Фиксируем точку $x\in X$. Так как Отображение $\lambda\alpha$. αx непрерывно, множество $\{\alpha\in\mathbb{R}\mid \alpha x\in V\}$ — окрестность нуля в \mathbb{R} . Оно содержит $1/r_n$, НСНМ. Тогда для некоторого n имеем

$$(1/r_n) \cdot x \in V \Longrightarrow x \in r_n V.$$

(b) Пусть $W\subset V$ — уравновешенная окрестность нуля. Согласно (a), имеем

$$K \subset \bigcup_{n \in \mathbb{N}} nW.$$

Поскольку K компактно, найдётся такой конечный набор $n_1 < n_2 < \ldots < n_k$, что

$$K \subset n_1 W \cup n_2 \cup \ldots \cup n_k W = n_k W.$$

Отсюда следует, что $K \subset tW \subset tV$ при $t \geqslant n_k$.

(c) Пусть U — произвольная окрестность нуля в X. Поскольку V ограничена, то $V\subset tU$ при $t\geqslant s$, для некоторого s>0. Тогда $(1/t)V\subset U$ при больших t, а значит $\delta_n V\subset U$, HCHM.

2.3. Линейные операторы

Определение 2.3.1. Напомним, что отображение $\Lambda: X \to Y$ называется линейным, если

$$\Lambda(\alpha x + \beta y) = \alpha \Lambda x + \beta \Lambda y.$$

Линейное отображение пространства в его поле скаляров называется линейным функционалом.

Упражнение 2.3.2. Пусть $\Lambda: X \to Y$ линейно. Тогда

- (a) $\Lambda 0 = 0$;
- (b) Если A подпространство X (или выпуклое, или уравновешенное множество), тогда то же справедливо и для $\Lambda(A)$.
- (c) Если B подпространство Y (или выпуклое/уравновешенное/поглощающее множество), тогда то же справедливо и для $\Lambda^{-1}(B)$.
- (d) В частности, множество $\ker \Lambda = \{x \in X \mid \Lambda x = 0\}$ является подпространством X и называется ядром Λ .

Теорема 2.3.3. Пусть $\Lambda: X \to Y$ — линейный оператор между двумя ТВП. Тогда если Λ непрерывно в нуле, то Λ непрерывно на всём X, причём более того, **равномерно непрерывно:** для каждой окрестности W нуля в Y, найдётся окрестность V нуля в X, так что

$$y - x \in V \Longrightarrow \Lambda y - \Lambda x \in W.$$

Доказательство: Пусть W — окрестность нуля в Y. Тогда по непрерывности в нуле, найдётся такая окрестность нуля $V\subset X$, что $\Lambda(V)\subset W$. Тогда $y-x\in V$ влечёт $\Lambda y-\Lambda x=\Lambda(y-x)\subset W$. Наконец, при всех $x\in X$, оператор Λ отображает окрестность x+V в окрестность $\Lambda x+W$, так что Λ непрерывно в точке x.

Теорема 2.3.4. Пусть Λ — линейный функционал на ТВП X. Допустим также, что $\Lambda x \neq 0$ для некоторого $x \in X$. Тогда СУР:

- (a) Λ непрерывен;
- (b) ядро $\ker \Lambda$ замкнуто в X;
- (c) ядро $\ker \Lambda$ не плотно в X;
- (d) функционал Λ ограничен в некоторой окрестности нуля V.

Доказательство:

 $(a)\Longrightarrow (b):$ Рассмотрим последовательность $x_n\in\ker\Lambda,$ сходящуюся к точке $x\in X.$ В силу непрерывности, имеем

$$\Lambda x = \Lambda \Bigl(\lim_{n \to \infty} x_n \Bigr) = \lim_{n \to \infty} \Lambda x_n = \lim_{n \to \infty} 0 = 0,$$

откуда мы заключаем, что $x \in \ker \Lambda$.

- $(b)\Longrightarrow (c)$: По условию $\ker\Lambda\neq X$, так что замкнутое множество $\ker\Lambda$ не пересекается с непустым открытым множеством $X\setminus\ker\Lambda$, откуда следует, что $\ker\Lambda$ не плотно в X.
- $(c)\Longrightarrow (d)$: Условие (c) равносильно тому, что множество $X\setminus\ker\Lambda$ имеет непустую внутренность. По теореме 2.2.7 имеем такую уравновешенную окрестность нуля V и такую точку $x\in X$, что

$$(x+V) \cap \ker \Lambda = \emptyset. \tag{1}$$

Тогда образ $\Lambda(V)$ — уравновешенное подмножество \mathbb{R} . Следовательно, либо $\Lambda(V)$ ограничено, либо $\Lambda(V)=\mathbb{R}$ (упражнение). В первом случае всё доказано. Во втором, найдётся такой элемент $y\in V$, что $\Lambda y=-\Lambda x$. Тогда имеем $x+y\in (x+V)\cap\ker\Lambda$, что невозможно в силу (1).

 $(d)\Longrightarrow (a)$: Пусть для некоторой окрестности V и числа M>0 справедливо $|\Lambda x|< M$ при $x\in V$. Тогда для любого r>0, положив W=(r/M)V, имеем $|\Lambda x|< r$ для всех $x\in W$. Следовательно, функционал Λ непрерывен в нуле, а значит непрерывен.

2.4. Конечномерные пространства

<u>Пример 2.4.1.</u> Самый простой пример n-мерного пространства — \mathbb{R}^n , с нормой

$$||x||_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}.$$

Можно также рассмотреть другие нормы:

$$\|x\|_1 = \sum_{k=1}^n |x_k|, \qquad \|x\|_\infty = \max_{1 \leqslant k \leqslant n} |x_k|.$$

Нетрудно проверить, что все они индуцируют одну и ту же топологию. Кроме того, всякое n-мерное пространство над \mathbb{R} естественно изоморфно \mathbb{R}^n . Мы докажем, что естественная топология на \mathbb{R}^n — это единственная векторная топология, возможная в произвольном вещественном n-мерном ТВП.

<u>Определение 2.4.2.</u> Система множеств \mathcal{B} называется *центрированной*, если для всякого конечного набора $B_1, B_2, ..., B_n \in \mathcal{B}$, его пересечение непусто:

$$\bigcap_{k=1}^{n} B_k \neq \emptyset.$$

Упражнение 2.4.3. Покажите, что пересечение всякой центрированной системы компактов непусто.

<u>Пемма 2.4.4.</u> Пусть $X - TB\Pi$, а Y - локально-компактное (в индуцированной топологии) подпространство <math>X. Тогда множество Y замкнуто в X.

Доказательство: Существует такое компактное множество $K\subset Y$, что $0\in K^\circ$ в топологии Y. Следовательно, найдётся такая окрестность U нуля в X, что $U\cap Y\subset K$. Выберем симметричную окрестность $V\subset X$ таким образом, чтобы $\overline{V}+\overline{V}\subset U$.

Далее, мы покажем, что $\overline{Y}=Y$. Рассмотрим $x\in \overline{Y}$. Пусть $\mathcal B$ содержит все окрестности нуля в X, которые включены в V. Каждому $W\in \mathcal B$ сопоставим множество

$$E_W = Y \cap \left(x + \overline{W}\right).$$

Так как $x\in \overline{Y}$, каждое из множеств E_W непусто. Рассмотрим множество $W\in \mathcal{B}$ и фиксируем точку $y_0\in E_W$. Для любой точки $y\in E_W$, имеем

$$y-y_0=(y-x)+(x-y_0)\in \overline{W}+\left(-\overline{W}\right)\subset \overline{V}+\overline{V}\subset U.$$

Кроме того, $E_W \subset Y$. Следовательно, $E_W \subset Y \cap U \subset K$, а значит E_W компактно как замкнутое подмножество компакта K. Наконец, конечное пересечение множеств из $\mathcal B$ остаётся в $\mathcal B$. Другими словами, $\{E_W \mid W \in \mathcal B\}$ — центрированная система компактных множеств, а значит существует точка $z \in \bigcap_{W \in \mathcal B} E_W$.

С одной стороны, $z\in Y$. Однако в то же время $z\in x+\overline{W}$ для всех $W\in \mathcal{B}$, а значит z=x, так как пространство X хаусдорфово. Значит, $x\in Y$.

Теорема 2.4.5. Пусть $X-TB\Pi,Y-$ его подпространство $u\dim Y=n,$ где $n\in\mathbb{N}.$ Тогда

- (a) Каждый изоморфизм пространства \mathbb{R}^n на Y является гомеоморфизмом;
- (b) Y замкнуто.

Доказательство: Мы будем проводить индукцию по n.

- <u>База:</u> n = 1.
 - Пусть $\Lambda:\mathbb{R} \to Y$ изоморфизм векторных пространств. Возьмём $u=\Lambda 1$. Тогда по линейности $\Lambda \alpha = \alpha u$, и из непрерывности умножения на скаляр следует, что Λ непрерывно. Заметим, что Λ^{-1} линейный функционал $Y \to \mathbb{R}$ с ядром $\{0\}$, а значит по теореме 2.3.4 отображение Λ^{-1} также непрерывно. Наконец, заметим, что $Y \cong \mathbb{R}$ локально компактно, и по лемме 2.4.4 Y замкнуто.
- <u>Переход:</u> $n-1 \to n$. Пусть $\Lambda:\mathbb{R}^n \to Y$ изоморфизм. Определим $u_k=\Lambda e_k$, где $\{e_1,...,e_n\}$ стандартный базис в \mathbb{R}^n . Тогда

$$\Lambda(\alpha_1, \alpha_2, ..., \alpha_n) = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n,$$

и по непрерывности операции (\cdot) на Y мы заключаем, что Λ непрерывно. Теперь, для каждого $y \in Y$ имеем

$$y=\Lambda\big(\Lambda^{-1}y\big)=\gamma_1(y)u_1+\ldots+\gamma_n(y)u_n.$$

Ядро каждого из функционалов γ_k является (n-1)-мерным подпространством Y, и по предположению индукции $\ker \gamma_k$ замкнуто. Тогда по теореме 2.3.4 каждый функционал γ_k непрерывен, а значит

$$\Lambda^{-1}(y)=(\gamma_1(y),\gamma_2(y),...,\gamma_n(y))$$

также непрерывно, что доказывает (a). Наконец, поскольку $Y\cong \mathbb{R}^n$ локально компактно, по <u>лемме 2.4.4</u> мы видим, что (b) также справедливо.

Замечание 2.4.6. Таким образом, всякое n-мерное ТВП X гомеоморфно \mathbb{R}^n .

Теорема 2.4.7. Пусть X — локально компактное ТВП. Тогда X конечномерно.

Доказательство: Пусть V — окрестность нуля в X, и \overline{V} компактно. Окрестность V ограничена (упражнение), а значит по теореме 2.2.9 множества $\left\{2^{-n}V\right\}_{n\in\mathbb{N}}$ образуют локальную базу X. Так как \overline{V} компактно, найдётся такой конечный набор $x_1,x_2,...,x_m\in X$, что

$$\overline{V} \subset \left(x_1 + \frac{1}{2}V\right) \cup \ldots \cup \left(x_m + \frac{1}{2}V\right).$$

Пусть Y — подпространство X, порождённое векторами $x_1,...,x_m$. Тогда $\dim Y\leqslant m$. По теореме 2.4.5 множество Y замкнуто в X.

Поскольку $V\subset Y+\frac{1}{2}V$ и $\alpha Y=Y$ для любого скаляра α , имеем

$$\frac{1}{2}V\subset\frac{1}{2}Y+\frac{1}{4}V=Y+\frac{1}{4}V,$$

откуда

$$V \subset Y + \frac{1}{2}V \subset Y + Y + \frac{1}{4}V = Y + \frac{1}{4}V.$$

Продолжая этот принцип, мы видим, что

$$V \subset \bigcap_{n=1}^{\infty} (Y + 2^{-n}V).$$

Так как $\{2^{-n}V\}$ — локальная база, из утверждения (а) <u>леммы 2.2.6</u> следует, что $V\subset \overline{Y}$. Однако $\overline{Y}=Y$, а значит $V\subset Y$. Тогда $kV\subset kY=Y$ при всех $k\in\mathbb{N}$, и, согласно утверждению (а) <u>теоремы 2.2.9</u>, $X=\bigcup_{k\in\mathbb{N}}kV=Y$. Следовательно, $\dim X\leqslant m$.

Теорема 2.4.8. Пусть X — локально ограниченное ТВП, обладающее свойством Гейне-Бореля. Тогда X конечномерно.

Доказательство: По условию в X существует ограниченная окрестность нуля V. По <u>лемме 2.2.6,</u> \overline{V} также ограничено. По свойству Гейне-Бореля \overline{V} компактно. Следовательно, пространство X локально компактно и потому конечномерно.

<u>Пример 2.4.9.</u> Рассмотрим пространство $F=\left\{\left\{x_n\right\}_{n\in\mathbb{N}}\subset\mathbb{R}\mid x_n=0 \text{ HCHM}\right\}$, с нормой

$$\|x\| = \sum_{n=1}^{\infty} |x_n| = \sum_{n=1}^{N} |x_n|.$$

Очевидно, что это ТВП над полем \mathbb{R} . В нём есть *счётный базис*

$$\{e_k \mid k \in \mathbb{N}, e_k = \lambda n \text{ if } n = k \text{ then } 1 \text{ else } 0\}.$$

Следовательно, F не локально компактно.

2.5. Метризуемость

Замечание 2.5.1. Пусть X — ТВП, топология которого совместима с некоторой метрикой d. Тогда в X нетрудно построить счётную локальную базу: $V_n = B_{1/n}(0)$. Поэтому метризуемость влечёт существование счётной базы. Оказывается, что для ТВП справедливо и обратное:

Теорема 2.5.2. Пусть X — $TB\Pi$, и в X есть счётная локальная база $\{V_n\}_{n\in\mathbb{N}}$. Тогда существует такая метрика d на X, что

- $(a) \ d \ coвместима \ c \ monoлогией пространства <math>X$;
- (b) открытые шары с центром в точке 0 уравновешены;
- (c) d инвариантна (m.e. d(x+z,y+z) = d(x,y) для всех $x,y,z \in X$).

Доказательство: По <u>лемме 2.2.7</u> и <u>утверждению 2.2.2</u> можно считать, что все окрестности V_n уравновешены, и

$$V_{n+1} + V_{n+1} \subset V_n, \quad \forall n \in \mathbb{N}.$$

Пусть $D\subset \mathbb{Q}$ — множество всех рациональных чисел r, представимых в виде конечной суммы

$$r = \sum_{k=1}^{n(r)} \frac{c_k(r)}{2^k},$$

где «двоичный разряд» $c_k(r)$ равен 0 или 1, и $n(r) \in \mathbb{N}$. Таким образом, $0 \leqslant r < 1$ для всех $r \in D$

Далее, положим A(r)=X для $r\geqslant 1$, а для $r\in D$ определим

$$A(r) = \sum_{k=1}^{n(r)} c_k(r) V_k.$$

Для всякого $x \in X$ положим

$$f(x) = \inf \{r \mid x \in A(r)\}$$
 и $d(x, y) = f(x - y)$.

Нам нужно доказать три свойства метрики:

1. $d(x,y) = 0 \Longleftrightarrow x = y$. Имеем

$$d(x,y)=0$$
 $\iff f(x-y)=0$ $\iff x-y\in A(r)$ для сколь угодно малых r $\iff x-y\in V_n$ для сколь угодно больших n $\iff x-y=0$ $\iff x=y.$

- 2. d(x,y) = d(y,x). Заметим, что все множества V_n , а значит и A(r), симметричны. Отсюда и следует симметричность метрики (упражнение).
- 3. $d(x,z) \le d(x,y) + d(y,z)$. Для доказательства неравенства треугольника мы докажем по индукции следующее утверждение:

$$\forall N \in \mathbb{N}, \quad \forall r,s \in D: n(r) \leqslant N \land n(s) \leqslant N \land r+s < 1, \quad A(r) + A(s) \subset A(r+s).$$

- <u>База:</u> N=1. В таком случае A(0)+A(1/2)=A(1/2).
- <u>Переход:</u> $N-1 \to N$. Рассмотрим r,s как в условии. Положим

$$r = r' + \frac{c_N(r)}{2^N}, \quad s = s' + \frac{c_N(s)}{2^N}.$$

Мы сразу же имеем

$$A(r) + A(s) = A(r') + A(s') + c_N(r)V_N + c_N(s)V_N \subset A(r' + s') + c_N(r)V_N + c_N(s)V_N.$$

Рассмотрим три случая:

- 1) $c_N(r) = c_N(s) = 0$. Тогда всё очевидно.
- 2) $c_N(r) = 1, c_N(s) = 0$ (не умаляя общности). Тогда $r + s = r' + s' + 2^{-N}$, и мы имеем

$$A(r'+s') + V_N = A\big(r'+s'+2^{-N}\big) = A(r+s),$$

и утверждение доказано.

3) $c_N(r) = c_N(s) = 1$. Тогда

$$\begin{split} A(r'+s') + V_N + V_N \subset A(r'+s') + V_{N-1} &= A(r'+s') + A(2^{-N+1}) \subset \\ &\subset A(r'+s'+2^{-N+1}) = A(r+s). \end{split}$$

Заметим, что, так как каждое из множеств A(r) содержит 0, при r < s выполнено включение

$$A(r)\subset A(r)+A(s-r)\subset A(s).$$

Иными словами, семейство множеств $\{A(r)\}$ линейно упорядочено по включению. Мы утверждаем, что для всех $x,y\in X$,

$$f(x+y) \leqslant f(x) + f(y). \tag{2}$$

Если $f(x)+f(y)\geqslant 1$, то неравенство очевидно. В противном случае, фиксируем $\varepsilon>0$. Найдутся такие $r,s\in D$, что

$$f(x) \leqslant r$$
, $f(y) \leqslant s$, $r + s \leqslant f(x) + f(y) + \varepsilon$.

Таким образом, $x \in A(r), y \in A(s)$, и потому

$$x + y \in A(r) + A(s) \subset A(r + s)$$
$$\implies f(x + y) \leqslant r + s \leqslant f(x) + f(y) + \varepsilon.$$

Так как ε взято произвольно, мы убеждаемся в справедливости (2), и неравенство треугольника доказано.

Теперь, по построению d — инвариантная метрика. Открытые шары с центром в нуле являются открытыми множествами:

$$B_\varepsilon^d(0) = \{x \in X \mid f(x) < \varepsilon\} = \bigcup_{r < \varepsilon} A(r)$$

(упражнение). Если $\varepsilon < 1/2^n$, то $B^d_\varepsilon(0) \subset V_n$. Следовательно, $\left\{B^d_\varepsilon(0)\right\}$ — локальная база топологии на X, а значит метрика d совместима с топологией. Так как все A(r) уравновешены (упражнение), то такими же являются и $B^d_\varepsilon(0)$. Теорема доказана.

<u>Определение 2.5.3.</u> Пусть (X,d) — метрическое пространство. Последовательность $x_n \in X$ называется d-фундаментальной, если

$$\begin{split} &\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n,m \geqslant N, \quad d(x_n,x_m) < \varepsilon \\ &\iff d(x_n,x_m) \xrightarrow[n,m\to\infty]{} 0. \end{split}$$

В ТВП X с топологией au, последовательность $x_n \in X$ называется au-фундаментальной, если

$$\begin{split} \forall V\ni 0, \quad \exists N\in\mathbb{N}, \quad \forall n,m\geqslant N, \quad x_n-x_m\in V\\ &\iff (x_n-x_m)\xrightarrow[n,m\to\infty]{}0. \end{split}$$

<u>Упражнение 2.5.4.</u> Пусть d — инвариантная метрика, совместимая с топологией τ на ТВП X. Покажите, что для всякой последовательности $x_n \in X$,

$$x_n$$
 d -фундаментальна $\Longleftrightarrow x_n$ au -фундаментальна.

Пусть d_1, d_2 — две инвариантные метрики на ТВП X, совместимые с топологией τ на X. Покажите, что d_1 полна \iff d_2 полна.

2.6. Полунормы и локальная выпуклость

Определение 2.6.1. Вещественная функция $p: X \to \mathbb{R}$ на векторном пространстве X называется полунормой, если для всех $x, y \in X$, $\alpha \in \mathbb{R}$,

(a) $p(x + y) \le p(x) + p(y)$;

(полуаддитивность)

(b) $p(\alpha x) = |\alpha| p(x)$.

(мультипликативность)

Полунормы отличаются от норм отсутствием условия $p(x) = 0 \iff x = 0$.

Семейство $\mathcal P$ полунорм на X называется разделяющим, если для всякого $x \neq 0$ найдётся такая полунорма $p \in \mathcal P$, что $p(x) \neq 0$.

<u>Определение 2.6.2.</u> Пусть $A\subset X$ — выпуклое, поглощающее множество (например, выпуклая окрестность нуля) в векторном пространстве X. Функционал Минковского μ_A определяется как

$$\mu_A(x) = \inf\{t > 0 \mid x \in tA\}.$$

Заметим, что $\mu_A(a) < \infty$ для всех $x \in X$, поскольку A поглощает X.

Упражнение 2.6.3. Пусть C — выпуклое подмножество векторного пространства X. Докажите, что $\alpha C + \beta C = (\alpha + \beta)C$ при всех $\alpha, \beta \geqslant 0$.

<u>**Пемма 2.6.4.**</u> Пусть A- выпуклое, поглощающее множество в векторном пространстве X. Тогда

- (a) $\mu_A(x+y) \leq \mu_A(x) + \mu_A(y)$;
- (b) $\mu_A(\alpha x) = \alpha \mu_A(x)$ npu $\sec x \alpha \geqslant 0$;
- (c) Если A уравновешено, то μ_A полунорма;
- $(d) \ \textit{Если } B = \{x \mid \mu_A(x) < 1\} \ \textit{u } C = \{x \mid \mu_A(x) \leqslant 1\}, \ \textit{mo } B \subset A \subset C \ \textit{u } \mu_A = \mu_B = \mu_C.$

Доказательство:

(a) Полуаддитивность следует из выпуклости. Фиксируем $\varepsilon > 0$. Тогда

$$\left. \begin{array}{l} x \in (\mu_A(x) + \varepsilon)A \\ y \in (\mu_A(y) + \varepsilon)A \end{array} \right\} \Longrightarrow x + y \in (\mu_A(x) + \varepsilon)A + (\mu_A(y) + \varepsilon)A = (\mu_A(x) + \mu_A(y) + 2\varepsilon)A \\ \Longrightarrow \mu_A(x + y) \leqslant \mu_A(x) + \mu_A(y) + 2\varepsilon.$$

Так как ε выбрано произвольно, полуаддитивность доказана.

- (b) Так $\alpha x \in tA \iff x \in \frac{\alpha}{t}A$, свойство очевидно (упражнение).
- (c) Пусть $\alpha < 0$. Тогда, поскольку A = -A, имеем $\alpha x \in tA \iff (-\alpha)x \in tA$, а значит

$$\mu_A(\alpha x) = \mu_A((-\alpha)x) = (-\alpha)\mu_A(x) = |\alpha| \ \mu_A(x).$$

(d) Для $x \in X$, пусть $H_A(x) = \{t > 0 \mid x \in tA\}$. Предположим, что $\mu_A(x) < 1$. Тогда $1 \in H_A(x)$, а значит $x \in A$. Ясно, что если $x \in A$, то $\mu_A(x) \leqslant 1$, так как $1 \in H_A(x)$. Поэтому $B \subset A \subset C$. Отсюда следует, что $H_B(x) \subset H_A(x) \subset H_C(x)$. Следовательно,

$$\mu_C(x) \leqslant \mu_A(x) \leqslant \mu_B(x).$$

Чтобы доказать, что $\mu_B(x)\leqslant \mu_C(x)$, допустим, что $\mu_C(x)< s< t$. Тогда $x\in sC\Longrightarrow s^{-1}x\in C$, а значит $\mu_A(s^{-1}x)\leqslant 1$, так что

$$\mu_A(t^{-1}x) = \mu_A\left(\frac{s}{t} \cdot s^{-1}x\right) = \frac{s}{t}\mu_A(s^{-1}x) \leqslant \frac{s}{t} < 1.$$

Следовательно, $t^{-1}x \in B$, а значит $\mu_B(t^{-1}x) \leqslant 1$ и $\mu_{B(x)} \leqslant t$. Так как s и t взяты произвольно, мы заключаем, что $\mu_B(x) \leqslant \mu_C(x)$.

<u>**Пемма 2.6.5.**</u> Пусть p- полунорма на векторном пространстве X. Тогда

- (a) p(0) = 0;
- (b) $|p(x) p(y)| \le p(x y)$, в частности, $p(x) \ge 0$;
- (c) Множество $\{x \in X \mid p(x) = 0\}$ является подпространством X.
- (d) Множество $B = \{x \mid p(x) < 1\}$ выпукло, уравновешено и поглощает, причём $p = \mu_B$.

Доказательство: Свойства (a), (b), (c) остаются как упражнение читателю. Докажем (d).

• Выпуклость. При $x,y\in B,\,t\in [0,1]$, имеем

$$p(tx + (1-t)y) \le tp(x) + (1-t)p(y) < t + (1-t) = 1 \Longrightarrow tx + (1-t)y \in B.$$

• Уравновешенность. Если $|\alpha| \leqslant 1$ и $x \in B$, имеем

$$p(\alpha x) = |\alpha| \ p(x) < 1 \Longrightarrow \alpha x \in B.$$

• Поглощение. Для каждого $x \in X$ рассмотрим $\alpha = p(x) + 1$. Тогда

$$p\left(\frac{1}{\alpha}x\right) = \frac{p(x)}{\alpha} = \frac{p(x)}{p(x)+1} < 1 \Longrightarrow \frac{1}{\alpha}x \in B \Longrightarrow x \in \alpha B,$$

что и требовалось.

Теорема 2.6.6. Пусть $\mathcal{B}-$ выпуклая уравновешенная локальная база в ТВП X. Тогда семейство $\{\mu_V \mid V \in \mathcal{B}\}-$ разделяющее семейство непрерывных полунорм на X.

Доказательство: Поскольку каждая окрестность $V \in \mathcal{B}$ — выпуклое уравновешенное поглощающее множество, μ_V является полунормой.

Далее, если $x \neq 0$, то $x \notin V$ для некоторой $V \in \mathcal{B}$, а значит $\mu_V(x) \geqslant 1$. Тогда $\{\mu_V \mid V \in \mathcal{B}\}$ — разделяющее семейство.

Теперь покажем, что каждая полунорма μ_V непрерывна. Если $x \in V$, то по непрерывности операций на X, имеем $tx \in V$ для некоторого t > 1. Тогда

$$\mu_V(x) \leqslant 1/t < 1.$$

Теперь пусть $x\in X$ и $\varepsilon>0$. Для каждого $y\in x+\varepsilon V$, имеем $(y-x)/\varepsilon\in V$ и

$$|\mu_V(y) - \mu_V(x)| \leqslant \mu_V(y-x) = \varepsilon \cdot \mu_V \bigg(\frac{y-x}{\varepsilon}\bigg) < \varepsilon.$$

Следовательно, μ_V непрерывно в точке x.

Теорема 2.6.7. Пусть $\mathcal{P}-$ разделяющее семейство полунорм на векторном пространстве X. Для $p \in \mathcal{P}$ и $n \in \mathbb{N}$ положим

$$V(p,n) = \left\{ x \in X \mid p(x) < \frac{1}{n} \right\}.$$

Пусть \mathcal{B} — совокупность всех конечных пересечений множеств V(p,n):

$$\mathcal{B} = \{V(p_1, n_1) \cap \ldots \cap V(p_k, n_k) \mid k \in \mathbb{N}, p_k \in \mathcal{P}, n_k \in \mathbb{N}\}.$$

Тогда $\mathcal{B}-$ выпуклая уравновешенная локальная база топологии τ в X, которая превращает X в локально выпуклое ТВП, причём все полунормы $p \in \mathcal{P}$ непрерывны относительно τ ;

Доказательство: Обозначим множество $A\subset X$ открытым, если вместе со всякой точкой $x\in A$ оно содержит множество x+U, где $U\in \mathcal{B}$. Очевидно, что такое определение рождает на X топологию (упражнение), инвариантную относительно сдвигов.

Также заметим, что по <u>лемме 2.6.5</u> каждое множество $U \in \mathcal{B}$ выпукло, уравновешено и

поглощает, и $\mathcal B$ является локальной базой топологии au в нуле.

Далее, нужно показать, что всякое множество $\{x\}$ замкнуто в X. Пусть $x\in X$ и $x\neq 0$. Тогда найдётся полунорма $p\in \mathcal{P}$ со свойством p(x)>0. Выбирая такое $n\in \mathbb{N}$, что $p(x)>\frac{1}{n}$, мы видим, что $x\notin V(p,n)$, а следовательно $0\notin x+V(p,n)$. Тогда $x\notin \overline{\{0\}}$. Так как $x\neq 0$ было взято произвольно, мы видим, что $\overline{\{0\}}=\{0\}$. Поскольку топология τ инвариантна относительно сдвигов, имеем $\overline{\{x\}}=\{x\}$ для всех $x\in X$.

Теперь докажем непрерывность сложения. Пусть U — окрестность нуля в X,

$$U\supset V(p_1,n_1)\cap\ldots\cap V(p_k,n_k).$$

Рассмотрим окрестность

$$V=V(p_1,2n_1)\cap\ldots\cap V(p_k,2n_k).$$

Так как каждая полунорма p_i полуаддитивна, имеем $V(p_i,2n_i)+V(p_i,2n_i)\subset V(p_i,n_i)$ и следовательно $V+V\subset U.$ Этим доказана непрерывность сложения.

Теперь пусть $\alpha \in \mathbb{R}$, $x \in X$, U — окрестность нуля. Рассмотрим, как прежде, такую V, что $V+V\subset U$. Тогда $x\in sV$ для некоторого s>0. Положим $t=s/(1+|\alpha|s)$. Если $y\in x+tV$ и $|\beta-\alpha|<1/s$, то, поскольку $|\beta|t\leqslant 1$, имеем

$$\begin{split} \beta y - \alpha x &= \beta (y - x) + (\beta - \alpha) x \in |\beta| \ tV + |\beta - \alpha| \ sV \subset V + V \subset U \\ \Longrightarrow \beta y \in \alpha x + U, \end{split}$$

что доказывает непрерывность умножения. Таким образом, (X,τ) — локально выпуклое ТВП. Из определения V(p,n) следует, что все полунормы $p\in\mathcal{P}$ непрерывны в нуле. По <u>лемме 2.6.5</u> все они непрерывны на всём X (упражнение).

Замечание 2.6.8. Если рассмотреть просто все множества V(p,n), то полученное семейство будет *предбазой* топологии τ , но не базой.

Замечание 2.6.9. Возникает следующая естественная задача. Если \mathcal{B}_1 — выпуклая уравновешенная локальная база топологии τ_1 в ТВП X, то, согласно теореме 2.6.6, \mathcal{B}_1 порождает разделяющее семейство \mathcal{P} непрерывных полунорм на X. В свою очередь, P индуцирует в X топологию τ_2 с базой \mathcal{B}_2 . Верно ли, что $\tau_1=\tau_2$? Оказывается, да.

Локазательство:

 $au_1 \subset au_2$: Пусть $V \in \mathcal{B}$. Тогда $\mu_V \in \mathcal{P}$, и по <u>лемме 2.6.4</u> мы имеем

$$W\coloneqq V(\mu_V,1)=\{x\in X\mid \mu_V(x)<1\}\subset V,$$

причём $W \in \mathcal{B}_2$. Тогда $au_1 \subset au_2$.

 $au_2 \subset au_1$: Так как все полунормы $p \in \mathcal{P}$ непрерывны относительно au_1 , каждое из множеств

$$V(p_1,n_1)\cap\ldots\cap V(p_k,n_k)=p_1^{-1}\left(\left(-\infty,\frac{1}{n_1}\right)\right)\cap\ldots\cap p_k^{-1}\left(\left(-\infty,\frac{1}{n_k}\right)\right)$$

открыто в τ_1 . Поэтому $\tau_2 \subset \tau_1$.

<u>Упражнение 2.6.10.</u> Пусть X — векторное пространство, \mathcal{P}_1 — разделяющее семейство полунорм на X. Правда ли, что семейство \mathcal{P}_2 полунорм, полученное переходом $\mathcal{P}_1 \to \mathcal{B} \to \mathcal{P}_2$ совпадает с \mathcal{P}_1 ?

Упражнение 2.6.11. Пусть $\mathcal{P} = \{\|\cdot\|\}$ — семейство, состоящее из единственной нормы $\|\cdot\|$ на пространстве X. Покажите, что \mathcal{P} — разделяющее семейство полунорм, и что топология τ , порождённая этим семейством по <u>теореме 2.6.7</u>, совпадает со стандартной топологией, порождённой нормой.

Теорема 2.6.12. $TB\Pi X$ нормируемо тогда и только тогда, когда X обладает выпуклой ограниченной окрестностью нуля.

Доказательство:

Если пространство X нормируется нормой $\|\cdot\|$, то открытый шар $B_1(0) = \{x \in X \mid \|x\| < 1\}$ – выпуклое ограниченное множество (упражнение).

Напротив, пусть V — выпуклая ограниченная окрестность нуля в X. По <u>лемме 2.2.7</u> она содержит выпуклую уравновешенную окрестность нуля U. Разумеется, U также ограничена. Положим

$$||x|| = \mu_U(x), \quad x \in X.$$

Мы сразу видим, что $\|\cdot\|$ — полунорма. Теперь, если $x \neq 0$, то по теореме 2.2.9 $x \notin rU$ для некоторого r > 0, так как множества rU образуют локальную базу в X. Следовательно, $\|x\| \geqslant r > 0$. Таким образом, $\|\cdot\|$ — норма. Из того факта, что

$$\{x \mid \|x\| < r\} = \{x \mid \exists s < r, \ x \in sU\} = \bigcup_{s < r} sU = rU$$

(упражнение: проверить последний переход), мы видим, что топология, индуцированная полученной нормой, совпадает с исходной.

3. Полнота

3.1. Теорема Банаха-Штейнгауза

Определение 3.1.1. (равностепенная непрерывность): Пусть X и Y — ТВП. Семейство Γ линейных операторов X в Y называется равностепенно непрерывным, если для любой окрестности нуля $U \subset Y$, найдётся такая окрестность нуля $V \subset X$, что $\Lambda(V) \subset U$ для всех $\Lambda \in \Gamma$.

<u>Пемма 3.1.2.</u> Пусть X и $Y-TB\Pi$, $\Gamma-$ равностепенно непрерывное семейство линейных операторов $\Lambda: X \to Y$. Тогда для любого ограниченного множества $E \subset X$, найдётся такое ограниченное множество $F \subset Y$, что $\Lambda(E) \subset F$ для всех $\Lambda \in \Gamma$.

Доказательство: Пусть $E\subset X$ ограничено. Положим

$$F = \bigcup_{\Lambda \in \Gamma} \Lambda(E).$$

Покажем, что F также ограничено. Пусть U — окрестность нуля в Y. Тогда существует такая окрестность нуля $V\subset X$, что $\Lambda(V)\subset U$ для всех $\Lambda\in\Gamma$. Поскольку E ограничено, $E\subset tV$ при достаточно больших t>0. Следовательно, при больших t,

$$\Lambda(E) \subset \Lambda(tV) = t\Lambda(V) \subset tU \Longrightarrow F \subset tU$$
,

что и требовалось доказать.

Теорема 3.1.3. (Банаха-Штейнгауза): Пусть X и $Y - TB\Pi$, Γ — некоторое семейство непрерывных линейных операторов из X в Y, а B — множество всех таких $x \in X$, орбиты которых

$$\Gamma(x) = \{\Lambda x \mid \Lambda \in \Gamma\}$$

ограничены в Y. Если B принадлежит II категории в X, то B=X и Γ равностепенно непрерывно.

Доказательство: Пусть U и W — такие окрестности нуля в Y, что $\overline{U}+\overline{U}\subset W$. Положим

$$E = \bigcap_{\Lambda \in \Gamma} \Lambda^{-1} \left(\overline{U} \right).$$

Если $x \in B$, то $\Gamma(x) \subset nU$ для некоторого $n \in \mathbb{N}$, так что $x \in n\Lambda^{-1}(U)$ и поэтому $x \in nE$. Тогда

$$B \subset \bigcup_{n \in \mathbb{N}} nE$$
.

Так как B — множество II категории, то по крайней мере одно из множеств nE, а значит и само множество E, тоже принадлежит II категории. Однако E замкнуто, как пересечение замкнутых множеств, поэтому

$$(\overline{E})^{\circ} \neq \varnothing \Longrightarrow E^{\circ} \neq \varnothing \Longrightarrow \exists x_0 \in E^{\circ}.$$

Множество x_0-E содержит некоторую окрестность нуля V, причём

$$\Lambda(V) \subset \Lambda(x_0 - E) = \Lambda x_0 - \Lambda(E) \subset \overline{U} - \overline{U} \subset W$$

для всякого $\Lambda \in \Gamma$. Это показывает, что Γ равностепенно непрерывно.

По <u>лемме 3.1.2</u> семейство Γ равномерно ограничено. В частности, каждое из множеств $\Gamma(x)$ ограничено в Y, так как $\{x\}$ ограничено в X. Следовательно, что B=X.

Во многих приложениях условие, что B принадлежит II категории Бэра, проверяется при помощи следствия из теоремы Бэра:

S полное метрическое S локально компактное хаусдорфово $\bigg]\Longrightarrow S$ принадлежит II категории в себе.

Теорема 3.1.4. Пусть Γ — семейство непрерывных линейных отображений пространства Фреше X в ТВП Y, и пусть при каждом $x \in X$ множество

$$\Gamma(x) = \{\Lambda x \mid \Lambda \in \Gamma\}$$

ограничено в Y. Тогда семейство Γ равностепенно непрерывно.

Доказательство: Упражнение.

Существует также и более специальная версия для нормированных пространств:

Теорема 3.1.5. Пусть X — Банахово пространство, Y — нормированное пространство, а Γ — семейство непрерывных линейных операторов из X в Y. Тогда выполняется импликация

$$\left(\forall x \in X, \quad \sup_{\Lambda \in \Gamma} \|\Lambda x\|_Y < \infty\right) \Longrightarrow \sup_{\Lambda \in \Gamma} \sup_{\|x\| \leqslant 1} \|\Lambda x\|_Y < \infty.$$

Доказательство: Упражнение.

Теорема 3.1.6. Пусть $\{\Lambda_n\}$ — последовательность непрерывных линейных отображений пространства Фреше X в ТВП Y. Если для каждого $x \in X$ существует предел

$$\Lambda x = \lim_{n \to \infty} \Lambda_n x,$$

то отображение Λ непрерывно.

Доказательство: Для начала покажем, что семейство $\Gamma = \{\Lambda_n\}_{n \in \mathbb{N}}$ равностепенно непрерывно, воспользовавшись теоремой 3.1.4.

Пусть $x\in X$, и пусть V — уравновешенная окрестность нуля в Y. Последовательность $\{\Lambda_n x\}$ сходится к Λx . По <u>теореме 2.2.9</u>, для некоторого $t_0>0$ имеем $\Lambda x\in t_0V$. Так как множество t_0V открыто, оно содержит Λx вместе с некоторой окрестностью $\Lambda x+W$. Начиная с некоторого $N\in\mathbb{N}$, мы имеем

$$\Lambda_n x \in \Lambda x + W \subset t_0 V.$$

Для $1\leqslant k < N$, выберем такое t_k , что $\Lambda_k x \in t_k V$. Тогда для всех $s\geqslant \max_{0\leqslant k < N}$, имеем

$$(\forall n, \quad \Lambda_n x \in sV) \Longrightarrow \Gamma(x) \subset sV.$$

Это показывает, что орбита точки x ограничена. Следовательно, Γ равностепенно непрерывно. Теперь мы покажем, что линейный оператор Λ непрерывен. Пусть U — окрестность нуля в Y. Выберем такую окрестность нуля $W \subset Y$, что $\overline{W} \subset U$. В силу равностепенной непрерывности Γ , в X существует такая окрестность нуля V, что $\Lambda_n(V) \subset W$. Тогда для всех $x \in V$,

$$(\forall n \in \mathbb{N}, \quad \Lambda_n x \in W) \Longrightarrow \Lambda x \in \overline{W},$$

откуда мы выводим $\Lambda(V) \subset \overline{W} \subset U$. Поэтому Λ непрерывно.

3.2. Билинейные операторы

Определение 3.2.1. Пусть X,Y,Z — вещественные векторные пространства и B — отображение пространства $X\times Y$ в Z. Для каждого $x\in X$ и $y\in Y$ положим

$$B_x(y) = B(x,y) = B_y(x).$$

Таким образом, $B_x: Y \to Z$ и $B_y: X \to Z$. Отображение B называется билинейным оператором, если отображения B_x и B_y линейны при всех $x \in X$ и $y \in Y$.

Определение 3.2.2. Пусть X,Y,Z — ТВП, и пусть $B:X\times Y\to Z$. Если для всех $x\in X$ и $y\in Y$ отображения B_x и B_y непрерывны, то B называется раздельно непрерывным.

Упражнение 3.2.3. Покажите, что если отображение $B: X \times Y$ непрерывно (в смысле топологии произведения $X \times Y$), то оно раздельно непрерывно.

Теорема 3.2.4. Пусть X есть пространство Фреше, а Y и Z — $TB\Pi$. Пусть также $B: X \times Y$ — билинейный раздельно непрерывный оператор. Тогда

$$\left. \begin{array}{l} x_n \to x_0 \\ y_n \to y_0 \end{array} \right\} \Longrightarrow B(x_n,y_n) \to B(x_0,y_0). \tag{1}$$

Eсли же пространство Y метризуемо, то отсюда следует, что оператор B непрерывен.

Доказательство: Пусть W — произвольная окрестность нуля в Z и U такова, что $U+U\subset W$. Рассмотрим последовательности $x_n\to x_0$ и $y_n\to y_0$. Положим

$$b_n(x) = B(x,y_n) \qquad (x \in X, n \in \mathbb{N}).$$

Так как B раздельно непрерывно, то для всех $x \in X$

$$y_n \to y_0 \Longrightarrow b_n(x) = B(x,y_n) \to B(x,y_0).$$

Поэтому для любого $x \in X$ множество $\{b_n(x)\}$ ограничено в Z, как сходящаяся последовательность (см. доказательство <u>теоремы 3.1.6</u>). Следовательно, по <u>теореме 3.1.4</u> семейство $\{b_n\}$ равностепенно непрерывно. Тогда в X найдётся такая окрестность нуля V, что

$$\forall n \in \mathbb{N}, \quad b_n(V) \subset U.$$

Заметим, что

$$B(x_n,y_n) - B(x_0,y_0) = B(x_n - x_0,y_n) + B(x_0,y_n) - B(x_0,y_0) = b_n(x_n - x_0) + B(x_0,y_n - y_0).$$

При достаточно больших $n\in\mathbb{N}$, имеем $x_n\in x_0+V$, так что $x_n-x_0\in V$ и $b_n(x_n-x_0)\in U$, а также $B(x_0,y_n-y_0)\in U$, так как B непрерывно по второй компоненте и $y_n-y_0\to 0$. Следовательно, для таких $n\in\mathbb{N}$ выполняется

$$b_n(x_n-x_0)+B(x_0,y_n-y_0)\in U+U\subset W\Longrightarrow B(x_n,y_n)\in B(x_0,y_0)+W.$$

Отсюда следует (1).

Наконец, если пространство Y метризуемо, то тогда метризуемо и $X \times Y$, и непрерывность B следует из (1) (упражнение).

3.3. Теорема о неподвижной точке

Теорема 3.3.1. Пусть (M,d) — полное непустое метрическое пространство. Рассмотрим такое отображение $f: X \to X$, что для некоторой константы $\alpha \in (0,1)$ выполняется

$$\forall x, y \in X, \quad d(f(x), f(y)) \leq \alpha \cdot d(x, y).$$

(в таком случае отображение f называется **сжимающим**). Тогда существует единственная точка $x^* \in X$ со свойством $f(x^*) = x^*$.

Доказательство: Рассмотрим точку $x_1 \in X$. Определим последовательность $\{x_n\}$ соотношением

$$x_{n+1} = f(x_n).$$

Мы покажем, что последовательность $\{x_n\}$ фундаментальна. Действительно, имеем

$$d(x_{n+1},x_n)=d(f(x_n),f(x_{n-1}))\leqslant \alpha\cdot d(x_n,x_{n-1}),$$

и следовательно

$$d(x_{n+1},x_n)\leqslant \alpha^{n-1}d(x_1,x_2)$$

$$\Longrightarrow d(x_n,x_m)\leqslant \sum_{k=m}^{n-1}d\big(x_{k+1},x_k\big)\leqslant d(x_1,x_2)\cdot\alpha^{m-1}\cdot\sum_{k=0}^{n-m-1}\alpha^k=\alpha^{m-1}\cdot\frac{d(x_1,x_2)}{1-\alpha}\xrightarrow[n,m\to\infty]{}0.$$

В силу полноты, последовательность $\{x_n\}$ имеет предел x^* . Однако так как отображение f непрерывно (упражнение), имеем

$$f(x^*) = f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x^*.$$

Наконец, если нашлась ещё одна точка $y^* \in X$ с тем же свойством, то

$$d(x*,y^*) = d(f(x^*), f(y^*)) \leqslant \alpha \cdot d(x^*,y^*) \Longrightarrow d(x^*,y^*) = 0 \Longrightarrow x^* = y^*,$$

что доказывает единственность.

<u>Определение 3.3.2.</u> Отображение $f: X \to Y$ между метрическими пространствами называется липшицевым, если существует такая константа M > 0, что

$$d_Y(f(x),f(y))\leqslant M\cdot d_X(x,y)$$

для всех $x, y \in X$.

Упражнение 3.3.3. Докажите, что всякая липшицева функция непрерывна.

Следствие 3.3.4. (теорема Пикарда-Линделёфа): Пусть $D \subset \mathbb{R} \times \mathbb{R}$ — замкнутый прямоугольник, $(0,y_0) \in D^\circ$. Рассмотрим функцию $f(t,x):D \to \mathbb{R}$, которая непрерывна по переменной t и липшицева по переменной y. Тогда найдётся такое число $\varepsilon>0$, что система

$$y'(t) = f(t, y(t)), y(0) = y_0 (2)$$

имеет единственное решение y(t) на интервале [-arepsilon,arepsilon]

Доказательство: Сначала система (2) переводится в интегральную форму:

$$y(t) = y_0 + \int_0^t f(s, y(s)) ds.$$

Далее, можно показать, что оператор T:C[-arepsilon,arepsilon] o C[-arepsilon,arepsilon], определённый формулой

$$T(\varphi)(t) = y_0 + \int_0^t f(s, \varphi(s)) \ ds,$$

является сжимающим в пространстве $(C[-\varepsilon,\varepsilon],\|\cdot\|_{\infty})$ для достаточно малых значений ε . Следовательно, по предыдущей теореме существует требуемая функция, и она единственна.

4. Обобщённая теорема Стоуна-Вейерштрасса

Теорема 4.1. (Урысон): Пусть X — нормальное топологическое пространство (то есть, оно удовлетворяет аксиоме \mathbb{T}_4 отделимости), и пусть A, B — непересекающиеся замкнутые множества в X. Тогда существует такая вещественная непрерывная функция $f: X \to [0,1]$, что

$$f(x) = 0$$
 на A , $f(x) = 1$ на B .

Доказательство: Для начала построим семейство отрытых множеств, с помощью которого мы определим функцию f.

Покажем, что каждому двоично-рациональному числу $r=k/2^n$ $(k=0,1,...,2^n)$ можно поставить в соответствие некоторое открытое множество G(r) таким образом, чтобы:

- (a) $A \subset G(0)$;
- (b) $B = X \setminus G(1)$;
- (c) Если $r_1 < r_2$, то $\overline{G(r_1)} \subset G(r_2)$.

Мы построим такое соответствие с помощью индукции по n.

• <u>База:</u> n=0. Так как пространство X нормально, существуют открытые множества G_0 и G_1 со свойствами $A\subset G_0$, $B\subset G_1$, $G_0\cap G_1=\varnothing$. Положив $G(0)=G_0$ и $G(1)=X\setminus B$, мы видим, что

$$G(0) = G_0 \subset X \smallsetminus G_1 \Longrightarrow \overline{G(0)} \subset X \smallsetminus G_1 \subset X \smallsetminus B = G(1).$$

• <u>Переход:</u> $n-1 \to n$. Пусть для чисел вида $r=k/2^{n-1}$ множества B(r) уже определены с выполнением условий (a), (b), (c). Рассмотрим некоторое нечётное k>0 и $r=k/2^n$. В таком случае, положив $r_1=(k-1)/2^n$ и $r_2=(k+1)/2^n$, мы имеем

$$\overline{G(r_1)} \subset G(r_2),$$

по предположению индукции. Следовательно, в силу нормальности X, существуют открытые множества U и V со свойствами

$$\overline{G(r_1)} \subset U, \quad X \smallsetminus G(r_2) \subset V, \quad U \cap V = \varnothing. \tag{1}$$

Положим G(r) = U. Тогда из (1) следует, что

$$\overline{G(r_1)}\subset G(r), \quad \overline{G(r)}\subset G(r_2)$$

(упражнение). Таким образом, доказательство по индукции завершено.

Теперь определим функцию f соотношениями

$$f(x) = 0 \qquad \qquad \text{ на множестве } G(0),$$

$$f(x) = \sup \left\{ r \mid x \notin G(r) \right\} \qquad \text{ если } x \notin G(0).$$

По построению f(x) = 0 на A и f(x) = 1 на B.

Остаётся показать, что f непрерывна. Фиксируем точку $x_0 \in X$ и число $\varepsilon > 0$. Мы должны предъявить окрестность точки x_0 , образ которой укладывается в ε -окрестность $f(x_0)$. Пусть $n \in \mathbb{N}$ таково, что $1/2^n < \varepsilon$. Выберем двоично-рациональное число r таким образом,

чтобы $f(x_0) < r < f(x_0) + 1/2^{n+1}$. Положим

$$U = G(r) \cap \left(X \setminus \overline{G(r-1/2^n)}\right).$$

(мы условимся, что $G(s)=\varnothing$ при s<0 и G(s)=X при s>1)

Множество U открыто и содержит точку x_0 (упражнение). Далее, если $x\in U$, то $x\in G(r)$, и потому $f(x)\leqslant r$. Кроме того,

$$x \in U \subset X \setminus \overline{G(r-1/2^n)} \subset X \setminus G(r-1/2^n) \Longrightarrow x \not\in G(r-1/2^n),$$

а значит $r-1/2^n\leqslant f(x)$. Следовательно, $f(x_0),f(x)\in [r-1/2^n,r]$, откуда

$$|f(x)-f(x_0)|\leqslant 1/2^n<\varepsilon,$$

и функция f непрерывна.

Упражнение 4.2. Пусть X — компактное топологическое пространство. Покажите, что X нормально.

<u>Лемма 4.3.</u> (теорема Вейерштрасса об аппроксимации непрерывных функций полиномами): Пусть $f:[a,b]\to\mathbb{R}$ непрерывная функция. Тогда для всякого $\varepsilon>0$ существует такой полином $P:[a,b]\to\mathbb{R}$, что

$$\|f-P\|_{\infty} = \max_{[a,b]} |f(x)-P(x)| < \varepsilon.$$

<u>Определение 4.4.</u> Пусть X — компактное топологическое пространство. Через C(X) обозначим множество всех непрерывных вещественных отображений $f:X\to\mathbb{R}$. Поточечные операции

$$(f+g)(x)=f(x)+g(x),\quad (\alpha f)(x)=\alpha f(x),\quad (fg)(x)=f(x)g(x)$$

превращают его в алгебру. Кроме того, на C(X) существует норма

$$||f|| = \max_{x \in X} |f(x)|,$$

вместе с которой C(X) становится *Банаховой алгеброй* (упражнение).

Определение 4.5. Пусть \mathcal{A} — некоторое семейство функций на множестве S. Тогда говорят, что семейство \mathcal{A} разделяет точки множества S, если для всякой пары (s_1, s_2) различных элементов из S, найдётся функция $f \in \mathcal{A}$ со свойством $f(s_1) \neq f(s_2)$.

Упражнение 4.6. Пусть \mathcal{P} — такое семейство полунорм на векторном пространстве X, что \mathcal{P} разделяет точки X. Докажите, что тогда \mathcal{P} — разделяющее семейство полунорм. Верно ли обратное?

Теорема 4.7. (Стоун-Вейерштрасс): Пусть X — компактное топологическое пространство, и пусть $B \subset C(X)$ — замкнутая подалгебра. Тогда

$$B = C(X) \iff B$$
 разделяет точки X .

Доказательство:

 \Longrightarrow : Покажем, что C(X) разделяет точки X. Будучи компактным, пространство X нормально, а значит по теореме Урысона, если $x_1 \neq x_2$, существует непрерывное отображение $f: X \to [0,1]$ со свойством $f(x_1) = 0, f(x_2 = 1)$. Отображение $f \in C(X)$ и есть разделяющая функция. \Longleftrightarrow : Введём некоторые обозначения:

$$(f \lor g)(x) = \max(f(x), g(x)), \quad (f \land g)(x) = \min(f(x), g(x)), \quad |f|(x) = |f(x)|.$$

1. Пусть $f \in B$. Функция f ограничена по причине непрерывности и компактности X. Пусть $a \leqslant f(x) \leqslant b$ для всех $x \in X$. Согласно <u>лемме 4.3</u>, функция λx . |x| сколь угодно точно приближается полиномами. Тогда для любого $n \in \mathbb{N}$ найдётся такой полином P_n , что

$$||y|-P_n(y)|<rac{1}{n}$$
 при $a\leqslant y\leqslant b.$

Тогда имеем

$$\left(\forall x \in X, \quad ||f(x)| - P_n(f(x))| < \frac{1}{n}\right) \Longrightarrow \||f| - P_n(f)\| \leqslant \frac{1}{n}.$$

Следовательно, $P_n(f) \xrightarrow[n \to \infty]{} |f|$. Так как B — подалгебра, имеем $P_n(f) \in B$ и потому $|f| \in B$, в силу замкнутости B. Тогда, учитывая соотношения

$$f\vee g=\frac{f+g}{2}+\frac{|f+g|}{2}\quad \text{if}\quad f\wedge g=\frac{f+g}{2}-\frac{|f-g|}{2},$$

мы заключаем, что подалгебра B замкнута относительно взятия минимума/максимума.

Теперь мы должны показать, что B = C(X). Пусть $h \in C(X)$.

2. Выберем пару различных точек $x_1, x_2 \in X$. Тогда мы можем найти такую функцию $f_{x_1}^{x_2} \in B$, что

$$f_{x_1}^{x_2}(x_1) = h(x_1) \quad \text{if} \quad f_{x_1}^{x_2}(x_2) = h(x_2).$$

Действительно, рассмотрим $g\in B$ со свойством $g(x_1)\neq g(x_2)$ и положим $f=\alpha g+\beta$, где α,β решают систему уравнений

$$\begin{cases} \alpha g(x_1) + \beta = h(x_1) \\ \alpha g(x_2) + \beta = h(x_2) \end{cases}$$

Возьмём произвольное число $\varepsilon>0$. Мы должны показать, что в B найдётся такая функция f, что $\|h-f\|<\varepsilon$. Пусть $x\in X$. Тогда для всякой точки $y\in X$ найдётся такая окрестность U(y), что $f_x^y(t)>h(t)-\varepsilon$ для всех $t\in U(y)$. Так как X компактно, оно покрывается конечным числом таких окрестностей:

$$X=U(y_1)\cup U(y_2)\cup\ldots\cup U(y_n).$$

Положим $f_x = f_x^{y_1} \vee f_x^{y_2} \vee ... \vee f_x^{y_n} \in B$. Тогда $f_x(t) > h(t) - \varepsilon$ для всех $t \in X$. Но заметим, что $f_x(x) = h(t)$, так как $f_x^{y_k}(x) = h(x)$. Следовательно, существует такая окрестность V(x) точки x, что $f_x(t) < h(t) + \varepsilon$ для всех $t \in V(x)$. Так как X компактно, оно покрывается конечным числом таких окрестностей:

$$X = V(x_1) \cup V(x_2) \cup \ldots \cup V(x_m).$$

Тогда положим $f=f_{x_1}\wedge f_{x_2}\wedge \ldots \wedge f_{x_m}\in B.$ По построению получаем, что

$$h(t) - \varepsilon < f(t) < h(t) + \varepsilon$$

для всех $t\in X$. Следовательно, $\|h-f\|<\varepsilon$, и $h\in B$. Таким образом, B=C(X).

Упражнение 4.8. Докажите <u>лемму 4.3</u> при помощи теоремы Стоуна-Вейерштрасса.