TAD et Implémentation

Introduction

Manipulation de TAD

- Pour cela, on a besoin seulement :
 - d'une **notation** pour décrire les données
 - des primitives
 - de la sémantique des primitives
- Écriture alors de divers algorithmes sur les TAD (parcours, recherche, mise à jour, etc...) à l'aide des primitives

Implémentation de TAD

- C'est la détermination :
 - de la représentation concrète des données
 - des algorithmes utilisés au sein des primitives
- Contrainte importante : respecter les spécifications abstraites sans négliger l'efficacité
 - s'appuyer sur des types existants adéquats

maitriser les <mark>complexités</mark> en espace et en temps des algorithmes mis en œuvre

Exemple le TAD Pile

Sol 1: allocation statique

Tableau de taille variable, avec une taille maximum « suffisamment » grande...

- ⇒ **limitation** imposée à la taille de la pile!
- ⇒ rajout d'une primitive spéciale Fonction pilePleine(P: TPile): booléen

Sol 2: allocation dynamique

Le tableau est alloué dynamiquement à la construction de la pile, et désalloué à la destruction

- Lorsque la pile est saturée (≡ tableau plein)
 - ⇒ « agrandir » le tableau...
 - ⇒ invisible pour l'utilisateur du TAD Pile...

1. on alloue un bloc plus grand

2. on y recopie l'ancienne pile

3. on libère l'ancien bloc

4. on fait pointer la pile sur le nouveau bloc

