

arm

THIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DATA, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

BOW models introduction.

- This analysis has been done on a BOW channel that contains 3 stacks of 4 slices deep.
- 40 ports models have been generated for slice A (layer 2), slice B (layer 4) and slice D (layer 8)
- Package type
 - Stack-up: 8-2-8 (4 slices deep)
 - Build-up material:ABF-GXT31
 - Build-up thickness:30um
 - Metal thickness:15um
 - Trace width: 21um
- Routing strategy:
 - Signal routing is done in Layer 2,4,6 and 8 for slice A, B,C and D
 - All Slices are striplines.
 - The signal routing has been done to have direct connections between the 2 dies (straight lines: see slide 3 &4)
 - Ground planes are in layer 1,3,5,7 and 9
 - VDD plane is in layer 10

Layout samples

Layer 4

Layer 6 Layer 8

© 2021 Arm

Layout samples (zoom on Slice A)

GND is in green

BOW Channel models

- Slide 28 summary table is based on February 1st optimized Channel model.
 - These models are an optimized version of the January 19th
- Slide 7 to 27 are still based on January 19th models
 - The S-parameters and eye diagram curves have not been updated
 - S-parameters are very similar between these 2 models.

20mm wire length channel: S parameter results

Slice A layout (layer 2)

- 3 stacks layout.
- Models created for the middle stack (40 ports model)

Important notice: To have a good return path, it is important to have extra VSS bumps on layer 1, close to Slice A signal pads.

If not, it will have a big impact on Slice A performances (see picture on the right)

- Extra GND bumps on Layer 1 are highlighted in red.
- This is just an example, other configurations to add GND bumps can be considered

Extra GND bumps

Return Loss Slice A stripline(layer2) -19/01 models

Insertion Loss Slice A stripline (layer2) -19/01 models

Far end Xtalk with A_CK_M victim (Stripline -layer2) – Only close aggressors -19/01 models

Slice B layout (layer 4)

- 3 stacks layout.
- Models created for the middle stack (40 ports model)

Return Loss Slice B stripline (layer4) -19/01 models

Insertion Loss Slice B stripline (layer4) -19/01 models

Far end Xtalk with B_CK_M victim (Stripline – layer4) – Only close aggressors -19/01 models

Slice D layout (layer 8)

- 3 stacks layout.
- Models created for the middle stack (40 ports model)

Return Loss Slice D stripline (layer8) -19/01 models

Insertion Loss Slice D stripline (layer8) -19/01 models

Far end Xtalk with D_CK_M victim (Stripline – layer8) – Only close aggressors -19/01 models

Eye Diagram 20mm channel: Transient simulations

Simulation Setup

The number of aggressors can vary from 1 to 20 The worst case channel is monitored.

CK_P and CK_M (in the centre of the stack) are also considered as signal in this analysis.

The following conditions are applied (worst case from the BOW current spec):

- 16GBPs
- VDD= 0.75V
- 20% 80% rise time: 0.32*UI
- 50 Ohms RX/Tx termination
- 300fF capacitance on TX/RX

Additional simulation have been done with 200fF load cap

Target is to reach 68% eye opening:

50% BOW spec +18% worst case jitter

The Picture below shows a portion of the schematic

The BOW channel is simulated using a Statistical method (VerifEYE from ANSYS)

Slice A (LO2) 300fF- 20 aggressors-Rise Time 0.32% UI (20/80%) 19/01 models

Slice B(LO4) 300fF - 20 aggressors-Rise Time 0.32% UI (20/80%) 19/01 models

Slice D(L08) 300fF - 20 aggressors-Rise Time 0.32% UI (20/80%) 19/01 models

Slice A 200fF- 20mm – 20 aggressors -32%UI- 19/01 models

Slice B 200fF- 20mm – 20 aggressors -32%UI- 19/01 models

Slice D 200fF- 20mm – 20 aggressors -32%UI- 19/01 models

Eye diagram Summary table for the different slices-01/02 models

Eye opening measurements done under the following conditions:

- CK_M/CK_P treated as signals
- Measurements done on the net in the centre of the channel (CK_M in this case)
- Clock Jitter not taken into account
- Rx sensitivity (Vrx_eye) =75mV (latest proposals on Tx/Rx Jitter not taken into account in this analysis)
- No Low-Pass_filter at Rx side

Fully Stripline (latest Design)	Slice D		Slice C		Slice B		Slice A	
C _{load} (Tx/Rx)	300fF Tr=32% UI	200fF Tr=23% UI						
20 aggressors	53%	<mark>65%</mark>	57%	69%	63%	74%	71%	80%

SliceC & SliceD: Main degradation is due to coupling in the vias

Further optimization is possible, but these numbers can only be improved by few %:

- Updating the material (gain <2%)
- Improving the GND connections around the signal vias (few %)

Conclusion

• These latest results seems fine for all Slices, considering the updated specifications from ODSA.

S parameters models guidelines

- Current models are 40 ports models: 20 ports on each DIE (16 signals, 2 clocks, FEC and AUX optional signals).
- The naming convention is pretty simple, for example: D1.211.LINK2_D_D15 or D2.230.LINK2_D_D15
 - D1 is for die1 and D2 is for die 2.
 - D_D15 is for slice D signal D15.
 - I added a "LINK2" prefix because there are 3 stacks in the design, and I only extracted the "middle" stack (in RED in below picture)

This Snapshot illustrates how to use the model for eye diagram simulations

D1.220.LINK2_	D_AUX	D2.221 LINK2_D_AUX
D1.230.LINK2	D_D0	D2.21 LINK2_D_D0
D1.219.LINK2	D_D1	D2.222.LINK2_D_D1
D1.229.LINK2	D_D2	D2.212.LINK2_D_D2
D1.218.LINK2	D_D3	D2.228.LINK2_D_D3
D1.228.LINK2	D_D4	D2.218.LINK2_D_D4
D1.217.LINK2	D_D5	D2.22 <mark>4.LINK2_D_D5</mark>
D1.227.LINK2	D_D6	D2.214.LINK2_D_D6
D1.216.LINK2	D_D7	D2.225.LINK2_D_D7
D1.226.LINK2_[_CK_P	D2.215.LINK2_D_CK_P
D1.215.LINK2_0	_ск_м	D2.226INK2_D_CK_M
D1.225.LINK2	D_D8	D2.216.LINK2_D_D8
D1.214.LINK2	D_D9	D2.227.LINK2_D_D9
D1.224.LINK2_	D_D10	D2.217.LINK2_D_D10
D1.213.LINK2_	D_D11	D2.228.LINK2_D_D11
D1.223.LINK2_	D_D12	D2.218.LINK2_D_D12
D1.212.LINK2_	D_D13	D2.229.LINK2_D_D13
D1.222.LINK2_	D_D14	D2.219.LINK2_D_D14
D1.211.LINK2	D_D15	D2.230.LINK2_D_D15
DILETTENTE_		

arm

Thank You Danke Gracias

ありがとう

Asante

谢谢

Merci

감사합니다

धन्यवाद

Kiitos

شکرًا

ধন্যবাদ

תודה

© 2021 Arm

[†]The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks