<u>Help</u>

sandipan_dey >

Course

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 10 Systems of Linear Differential Equatio... / 10.1 Systems of Linear Differenti...

(10.4)

8/6/23, 12:57 PM

Next >

Discussions

All posts sorted by recent activity

10.1.6 System at Rest: Equilibrium

☐ Bookmark this page

MO2.8

A common interest of IVPs is to determine the state of the system under a steady (i.e. time-independent) forcing after a long time. We will call this the equilibrium condition, and the corresponding equilibrium state will be $\underline{u}_{\rm eq}$ and forcing $\underline{b}_{\rm eq}$. Specifically, we wish to determine if a steady solution exists (i.e. $d\underline{u}/dt=0$). For the linear system case, the equation that must be solved to determine $\underline{u}_{\rm eq}$ is:

$$rac{\mathrm{d} \underline{u}_{\mathrm{eq}}}{\mathrm{d} t} = A \underline{u}_{\mathrm{eq}} + \underline{b}_{\mathrm{eq}} = 0 \Rightarrow A \underline{u}_{\mathrm{eq}} = -\underline{b}_{\mathrm{eq}}$$

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>