Kernel Mean Embedding (Part II)

Maximum Mean Discrepancy (MMD)

Recap: RKHS

Kernel

• A kernel is a "similarity" measure: Given $x, y \in \mathcal{X}$ and a feature map $\phi : \mathcal{X} \to \mathcal{F}$ for some Hilbert space \mathcal{F} ,

$$k: (\boldsymbol{x}, \boldsymbol{y}) \mapsto \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle_{\mathcal{F}}.$$

• We don't care about ϕ : If k is positive definite (pd), then such ϕ must exists (aka canonical feature map).

Reproducing Kernel Hilbert Space (RKHS)

• RKHS $\mathcal H$ of space $\mathcal X$ is a Hilbert space of functions $f:\mathcal X\to\mathbb R$ such that: every $x\in\mathcal X$ uniquely corresponds to $k_x\in\mathcal H$ and

$$f(\mathbf{x}) = \langle k_{\mathbf{x}}, f \rangle_{\mathcal{H}}, \ \forall f \in \mathcal{H}.$$

(Reproducing property)

H uniquely corresponds to a pd kernel

$$k(\boldsymbol{x}, \boldsymbol{y}) = \langle k_{\boldsymbol{x}}, k_{\boldsymbol{y}} \rangle_{\mathcal{H}}.$$

(Reproducing kernel)

Every pd kernel uniquely corresponds to an RKHS.

Recap: RKHS

To illustrate how an RKHS is constructed:

Recap: Kernel Mean Embedding

• Let $\mathcal X$ be a probability space and $\mathcal H$ be an RKHS of $\mathcal X$ with reproducing kernel k. The kernel mean embedding of $\mathbb P$, $\mu_{\mathbb P}\in\mathcal H$, is defined as

$$\mu_{\mathbb{P}}: m{y} \mapsto \mathop{\mathbb{E}}_{X \sim \mathbb{P}}[k(X, m{y})],$$
recall $k_{m{x}}: m{y} \mapsto k(m{x}, m{y}).$

• Reproducing property: Every distribution $\mathbb P$ that satisfies $\mathbb E_{X\sim \mathbb P}[\sqrt{k(X,X)}]<\infty$ has a unique kernel mean embedding $\mu_{\mathbb P}$ such that

$$\begin{split} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] &= \langle \mu_{\mathbb{P}}, f \rangle_{\mathcal{H}}, \ \forall f \in \mathcal{H} \\ \text{recall } f(X) &= \langle k_{\boldsymbol{x}}, f \rangle_{\mathcal{H}}. \end{split}$$

Generalized kernel trick:

$$\begin{split} \mathbb{E}_{X,Y \sim \mathbb{P}, \mathbb{Q}}[k(X,Y)] &= \langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle_{\mathcal{H}}, \\ \text{recall } k(X,Y) &= \langle k_{\boldsymbol{x}}, k_{\boldsymbol{y}} \rangle_{\mathcal{H}}. \end{split}$$

Maximum Mean Discrepancy

From now on, let $\mathcal X$ be a probability space and $\mathcal H$ be an RKHS of $\mathcal X$ with reproducing kernel k. Also assume all distributions have mean embedding.

 \bullet The maximum mean discrepancy (MMD) between two distributions \mathbb{P},\mathbb{Q} on \mathcal{X} is defined as

$$\mathrm{MMD}^{2}(\mathbb{P},\mathbb{Q}) \coloneqq \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^{2}.$$

Q: How to estimate MMD in practice?

$$\begin{aligned} \mathrm{MMD}^{2}(\mathbb{P}, \mathbb{Q}) &= \|\mu_{\mathbb{P}}\|_{\mathcal{H}}^{2} + \|\mu_{\mathbb{Q}}\|_{\mathcal{H}}^{2} - 2\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\rangle_{\mathcal{H}} \\ &= \mathbb{E}_{X, X' \sim \mathbb{P}, \mathbb{P}}[k(X, X')] + \mathbb{E}_{Y, Y' \sim \mathbb{Q}, \mathbb{Q}}[k(Y, Y')] \\ &- 2\mathbb{E}_{X, Y \sim \mathbb{P}, \mathbb{Q}}[k(X, Y)]. \end{aligned}$$

• Suppose we sample $X_1,\ldots,X_n\sim\mathbb{P},Y_1,\ldots,Y_m\sim\mathbb{Q}$ i.i.d., then we have an unbiased estimator

$$\widehat{\mathrm{MMD}^2(\mathbb{P},\mathbb{Q})} := \frac{1}{n(m-1)} \sum_{i \neq j} k(X_i,X_j) + k(Y_i,Y_j) - 2k(X_i,Y_j).$$

Maximum Mean Discrepancy

MMD as integral probability metric

• Given a collection $\mathcal{F} = \{f : \mathcal{X} \to \mathbb{R}\}$, the integral probability metric is defined as

$$D_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) := \sup_{f \in \mathcal{F}} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)].$$

• When \mathcal{F} is the unit ball in \mathcal{H} , namely $\mathcal{F} = \{f \in \mathcal{H} : ||f||_{\mathcal{H}} \leq 1\}$, $D_{\mathcal{F}}(\mathbb{P}, \mathbb{Q})^2 = \mathrm{MMD}^2(\mathbb{P}, \mathbb{Q})$. The key is applying the reproducing property:

$$\begin{split} \sup_{f \in \mathcal{H}, \|f\|_{\mathcal{H}} \leq 1} & \underbrace{\mathbb{E}_{X \sim \mathbb{P}}[f(X)]}_{\langle \mu_{\mathbb{P}}, f \rangle_{\mathcal{H}}} - \underbrace{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)]}_{\langle \mu_{\mathbb{Q}}, \rangle_{\mathcal{H}}} \\ = & \sup_{f \in \mathcal{H}, \|f\|_{\mathcal{H}} \leq 1} \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, f \rangle_{\mathcal{H}} = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}. \end{split}$$

- Consider a binary hypothesis test with null hypothesis $h_0: \mathbb{P} = \mathbb{Q}$ and alternative hypothesis $h_1: \mathbb{P} \neq \mathbb{Q}$.
- Suppose we sample $X_1, \ldots, X_n \sim \mathbb{P}, Y_1, \ldots, Y_n \sim \mathbb{Q}$ i.i.d. Our goal is to design a decision criterion whether we should reject h_0 or not.

- Instead of comparing empirical mean, we can use the empirical estimator of MMD.
- From left to right: two distributions are harder to distinguish, so we should use more complicated kernels.

Key facts [Gretton et. al. (2006), Theorem 8]

• When $\mathbb{P} \neq \mathbb{Q}$,

$$\sqrt{n} \cdot \frac{\widehat{\mathrm{MMD}^2(\mathbb{P}, \mathbb{Q})} - \widehat{\mathrm{MMD}^2(\mathbb{P}, \mathbb{Q})}}{\sigma(\mathbb{P}, \mathbb{Q})} \to \mathcal{N}(0, 1).$$

 $\bullet \ \, \text{Example: let} \, \mathbb{P} = \mathcal{N}(0,1), \mathbb{Q} = \mathcal{N}(1,1), \, \text{then} \, \sqrt{n} \cdot \tfrac{\text{MMD}^2(\mathbb{P},\mathbb{Q}) - 1}{\sqrt{12}} \to \mathcal{N}(0,1).$

Key facts [Gretton et. al. (2006), Theorem 8]

• When $\mathbb{P} = \mathbb{Q}$,

$$n \cdot \widehat{\mathrm{MMD}^2(\mathbb{P}, \mathbb{Q})} \to \sum_{i=1}^{\infty} 2\lambda_i (Z_i^2 - 1),$$

where $Z_i \sim \mathcal{N}(0,1)$ i.i.d. and λ_i 's are eigenvalues of

$$f\mapsto \mathbb{E}_{X,X'\sim \mathbb{P}}[\tilde{k}(X,X')f(X)],\quad \tilde{k}(\boldsymbol{x},\boldsymbol{x}')=\langle k_{\boldsymbol{x}}-\mu_{\mathbb{P}},k_{\boldsymbol{x}'}-\mu_{\mathbb{P}}\rangle_{\mathcal{H}}.$$

Decision rule

• Let $T_0 := n \cdot \widehat{\mathrm{MMD}^2(\mathbb{P}, \mathbb{Q})}$, then

$$T_0 \approx \left\{ \begin{array}{ll} n \cdot \mathrm{MMD}^2(\mathbb{P}, \mathbb{Q}) + \sqrt{n} \cdot \mathcal{N}(0, \sigma^2), & \mathbb{P} \neq \mathbb{Q} \\ \sum_{i=1}^{\infty} 2\lambda_i(Z_i^2 - 1), & \mathbb{P} = \mathbb{Q}. \end{array} \right.$$

• If T_0 is large, then we should believe h_0 is unlikely.

Decision rule: reject h_0 if $T_0 \ge c_{\alpha}$.

• The goal is to determine c_{α} so that the error $\mathbb{P}\{T_0 \geq c_{\alpha} | h_0\} \leq \alpha$, where α is some fixed confidence level.

In other words, c_{α} is the $1-\alpha$ quantile of $T_0|h_0 \Rightarrow$ this is impractical to compute.

A more feasible decision rule

• Suppose we can sample T from the same distribution as T_0 . Given $T_0 = t_0$,

$$\mathbb{P}_T\{T \geq t_0\} \leq \alpha \implies t_0 \geq c_\alpha.$$

In other words, t_0 is above the $1 - \alpha$ quantile.

• Instead of directly computing c_{α} , estimate $\mathbb{P}_T\{T \geq T_0\}$: Given T_1, \ldots, T_m sampled i.i.d. under h_0 ,

$$\mathbb{P}_T\{T \ge T_0\} \approx \frac{1}{m} \sum_{i=1}^m \mathbb{1}\{T_i \ge T_0\}.$$

Permutation test

• Given $X_1,\ldots,X_n\sim\mathbb{P},Y_1,\ldots,Y_n\sim\mathbb{Q}$, permute all samples and partition into $\tilde{X}_1,\ldots,\tilde{X}_n,\tilde{Y}_1,\ldots,\tilde{Y}_n$. Then compute

$$T_l = \widehat{\mathrm{MMD}^2(\tilde{\mathbb{P}}, \tilde{\mathbb{Q}})} \coloneqq \frac{1}{n(n-1)} \sum_{i \neq j} k(\tilde{X}_i, \tilde{X}_j) + k(\tilde{Y}_i, \tilde{Y}_j) - 2k(\tilde{X}_i, \tilde{Y}_j).$$

Under null hypothesis $h_0: \mathbb{P} = \mathbb{Q}$, T_l and T_0 have the same distribution.

• New decision rule: Permute samples and compute T_l for l = 1, ..., m. Reject h_0 if

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{T_i \ge T_0\} \le \alpha.$$

Example