Import the important Libraries

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import plotly .express as px
```

Loading the dataset

```
In [2]: data = pd.read_csv('Unemployment.csv')
    data
```

Out[2]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude	latitude
0	Andhra Pradesh	31- 01- 2020	M	5.48	16635535	41.02	South	15.9129	79.740
1	Andhra Pradesh	29- 02- 2020	М	5.83	16545652	40.90	South	15.9129	79.740
2	Andhra Pradesh	31- 03- 2020	М	5.79	15881197	39.18	South	15.9129	79.740
3	Andhra Pradesh	30- 04- 2020	М	20.51	11336911	33.10	South	15.9129	79.740
4	Andhra Pradesh	31- 05- 2020	М	17.43	12988845	36.46	South	15.9129	79.740
•••									
262	West Bengal	30- 06- 2020	M	7.29	30726310	40.39	East	22.9868	87.855
263	West Bengal	31- 07- 2020	М	6.83	35372506	46.17	East	22.9868	87.855
264	West Bengal	31- 08- 2020	М	14.87	33298644	47.48	East	22.9868	87.855
265	West Bengal	30- 09- 2020	М	9.35	35707239	47.73	East	22.9868	87.855
266	West Bengal	31- 10- 2020	М	9.98	33962549	45.63	East	22.9868	87.855

```
# checking dataset information
In [3]:
         data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 267 entries, 0 to 266
        Data columns (total 9 columns):
             Column
                                                            Non-Null Count Dtype
        --- ----
                                                            -----
                                                                             ____
         0
            Region
                                                            267 non-null
                                                                             object
                                                            267 non-null
         1
            Date
                                                                             object
         2
            Frequency
                                                            267 non-null object
         3
            Estimated Unemployment Rate (%)
                                                           267 non-null float64
                                                                          int64
              Estimated Employed
                                                            267 non-null
         5
             Estimated Labour Participation Rate (%) 267 non-null float64
                                                            267 non-null object
            Region.1
         7
             longitude
                                                            267 non-null
                                                                           float64
              latitude
                                                            267 non-null
                                                                             float64
        dtypes: float64(4), int64(1), object(4)
        memory usage: 18.9+ KB
         # describing the dataset
In [4]:
         data.describe()
Out[4]:
                 Estimated Unemployment
                                             Estimated
                                                        Estimated Labour Participation
                                                                                    longitude
                                                                                               latitude
                                             Employed
                               Rate (%)
                                                                          Rate (%)
                             267.000000
                                          2.670000e+02
                                                                        267.000000
                                                                                   267.000000
                                                                                             267.000000
         count
         mean
                              12.236929
                                           1.396211e+07
                                                                         41.681573
                                                                                    22.826048
                                                                                              80.532425
                              10.803283
                                          1.336632e+07
                                                                          7.845419
                                                                                    6.270731
                                                                                               5.831738
           std
                                           1.175420e+05
                                                                         16.770000
          min
                               0.500000
                                                                                    10.850500
                                                                                              71.192400
          25%
                               4.845000
                                          2.838930e+06
                                                                         37.265000
                                                                                    18.112400
                                                                                              76.085600
          50%
                               9.650000
                                          9.732417e+06
                                                                                    23.610200
                                                                                              79.019300
                                                                         40.390000
          75%
                              16.755000
                                          2.187869e+07
                                                                         44.055000
                                                                                   27.278400
                                                                                              85.279900
                              75.850000
                                          5.943376e+07
                                                                                    33.778200
                                                                                              92.937600
                                                                         69.690000
          max
         # check null/missing values
In [5]:
         data.isnull().sum()
                                                         0
        Region
Out[5]:
         Date
                                                         0
         Frequency
                                                         \cap
         Estimated Unemployment Rate (%)
         Estimated Employed
         Estimated Labour Participation Rate (%)
        Region.1
                                                         0
        longitude
                                                        0
        latitude
                                                         0
        dtype: int64
         # rename columns
In [6]:
         data.columns = ['States','Date','Frequency','Estimated Unemployment Rate',
                          'Estimated Employed', 'Estimated Labour Participation Rate',
                          'Region','Longitude','Latitude']
```

In [7]: # analysing top rows of dataset
 data.head()

_				
n	1.1	+	17	
\cup	u	_	1 /	

•		States	Date	Frequency	Estimated Unemployment Rate	Estimated Employed	Estimated Labour Participation Rate	Region	Longitude	Latitude
	0	Andhra Pradesh	31- 01- 2020	М	5.48	16635535	41.02	South	15.9129	79.74
	1	Andhra Pradesh	29- 02- 2020	M	5.83	16545652	40.90	South	15.9129	79.74
	2	Andhra Pradesh	31- 03- 2020	М	5.79	15881197	39.18	South	15.9129	79.74
	3	Andhra Pradesh	30- 04- 2020	М	20.51	11336911	33.10	South	15.9129	79.74
	4	Andhra Pradesh	31- 05- 2020	М	17.43	12988845	36.46	South	15.9129	79.74

CHECKING THE CORRELATION BETWEEN THE FEATURE OF DATASET

```
In [8]: # Set the style
    plt.style.use('seaborn-whitegrid')

# Set the figure size
    plt.figure(figsize=(8, 6))

# Compute the correlation matrix
    corr_matrix = data.corr()

# Set tick parameters
    plt.tick_params(size=10, color='w', labelsize=10, labelcolor='w')

# Create the correlation heatmap
    sns.heatmap(corr_matrix, annot=True, linewidth=3, cmap='coolwarm')

# Show the plot
    plt.show()
```

C:\Users\Administrator\AppData\Local\Temp\ipykernel_16948\729498097.py:2: MatplotlibDepr ecationWarning: The seaborn styles shipped by Matplotlib are deprecated since 3.6, as th ey no longer correspond to the styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>'. Alternatively, directly use the seaborn API instead. plt.style.use('seaborn-whitegrid')
C:\Users\Administrator\AppData\Local\Temp\ipykernel_16948\729498097.py:8: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version,

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corr matrix = data.corr()

Estimated no of employee according to different region of india

C:\Users\Administrator\AppData\Local\Temp\ipykernel_16948\3026068327.py:13: UserWarning: The palette list has more values (12) than needed (5), which may not be intended.

sns.histplot(data=data, x='Estimated Employed', hue='Region', element="step", common_n
orm=False, kde=True, palette=custom palette)

Distribution of Estimated Employed in Different Regions

Unemployment rate according to different regions of india

```
# Set the figure size
In [10]:
         plt.figure(figsize=(10, 8))
         # Rename the columns
         data.columns = ['States', 'Date', 'Frequency', 'Estimated Unemployment Rate',
                         'Estimated Employed', 'Estimated Labour Participation Rate',
                         'Region', 'Longitude', 'Latitude']
         # Specify a custom color palette (e.g., 'Set3')
         custom palette = sns.color palette("Set3")
         # Create a histogram with separate bars for each region and set the color palette
         sns.histplot(data=data, x="Estimated Unemployment Rate", hue="Region", element="step", c
         # Set plot title
         plt.title("Distribution of Estimated Unemployment Rate in Different Regions")
         # Show the plot
         plt.show()
        C:\Users\Administrator\AppData\Local\Temp\ipykernel 16948\1085341482.py:13: UserWarning:
```

The palette list has more values (12) than needed (5), which may not be intended.

common norm=False, kde=True, palette=custom palette)

sns.histplot(data=data, x="Estimated Unemployment Rate", hue="Region", element="step",

Dashboard to analyze the unemployment rate of each Indian state

Unemployment Rate in India

In []: