

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/43
Paper 4 Mechanics	1 (M1)	Od	tober/November 2019
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This document consists of 13 printed pages and 3 blank pages.

Cambridge Assessment
International Education

[Turn over

BLANK PAGE

A crate of mass 500 kg is being pulled along rough horizontal ground a winch. The winch produces a constant pulling force of 2500 N and speed. Find the coefficient of friction between the crate and the ground	I the crate is moving at constant

t	A train of mass $150000\mathrm{kg}$ ascends a straight slope inclined at α° to the horizontal with a constant driving force of $16000\mathrm{N}$. At a point A on the slope the speed of the train is $45\mathrm{ms^{-1}}$. Point B on the slope is $500\mathrm{m}$ beyond A . At B the speed of the train is $42\mathrm{ms^{-1}}$. There is a resistance force acting on the train and the train does $4\times10^6\mathrm{J}$ of work against this resistance force between A and B . Find the value of α .
•	
•	
•	
•	
•	
•	
•	
•	
•	

has magnitude R N. The directions of these forces are shown in the diagram. and α .	Find the values of <i>R</i> [6]
	••••••

•••••
•••••
••••••
••••••

(ii)	Find the distance QS and hence find the average speed of the car between Q and S . [3]

(i)	Show that the resistance to the cyclist's motion is 16 N.	[3
		••••
		••••
		••••
		••••
		••••
		••••
• `		
11)	Find the steady speed that the cyclist can maintain if his power output and the resistance for are both unchanged.	orc [2

(iii)	The cyclist later ascends a straight hill inclined at 3° to the horizontal. His power output and the resistance force are still both unchanged. Find his acceleration when he is travelling at $4 \mathrm{ms^{-1}}$. [3]

6	Particle <i>P</i> travels in a straight line from <i>A</i> to <i>B</i> . The velocity of <i>P</i> at time <i>t</i> s after leaving <i>A</i> is denoted by $v \text{m s}^{-1}$, where
	$v = 0.04t^3 + ct^2 + kt.$
	P takes 5 s to travel from A to B and it reaches B with speed $10 \mathrm{ms^{-1}}$. The distance AB is 25 m.
	(i) Find the values of the constants c and k . [6]

(ii)	Show that the acceleration of P is a minimum when $t = 2.5$. [3]

7

Two particles A and B have masses $m \log a$ and $k m \log a$ respectively, where k > 1. The particles are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley and the particles hang vertically below it. Both particles are at a height of 0.81 m above horizontal ground (see diagram). The system is released from rest and particle B reaches the ground 0.9 s later. The particle A does not reach the pulley in its subsequent motion.

)	Find the value of k and show that the tension in the string before B reaches the ground is equate $12m \text{N}$.	
		. •
		•
		. •
		· •
		· •
		. •
		•
		. •
		•
		•
		· •
		•
		•
		. .

At the instant when B reaches the ground, the string breaks.

and find the time taken, after the string breaks, for A to reach the ground.
Sketch a velocity-time graph for the motion of particle <i>A</i> from the instant when the syster released until <i>A</i> reaches the ground.

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

老师微信: liuxue119118 (题目有修改过,请加微信确认是否完整,以免影响您的学习!