

Make computers/robots understand images and video

- * Specific Recognition Tasks
 - * Outdoor, indoor.
 - * City, forest, factory.
- Image Annotation
 - * street
 - * people
 - building
 - * mountain
 - * tourism
 - * cloudy
 - * brick

Make computers/robots understand images and video

- * Object Detection
 - * Find Pedestrian

Image Segmentation

Computer Vision Scope

- Where was this picture taken?
- How many people are there?
- What are they doing?
- What is the object the person on the left is standing on?
- Why is this a funny picture?

Computer Vision is **Challenging...**

Where was this picture taken?

How many people are there?

What are they doing?

What is the object the person on the left is standing on?

Why is this a funny picture?

- Where was this picture taken?
- How many people are there?
- What are they doing?
 - What is the object the person on the left is standing on?
- * Why is this a funny picture?

- Where was this picture taken?
- How many people are there?
- What is the object the person on the left is standing on?
- What are they doing?
- Why is this a funny picture?

- Where was this picture taken?
- How many people are there?
- What are they doing?
 - What is the object the person on the left is standing on?
- Why is this a funny picture?

Fundamentals and Applications - 2D Vision

Enhancing software module reusability using port plug-ins an experiment with the iCub robot

Task 1: Object Identification learning

Online Learning Object Detection Pipeline for Humanoid Robots

Elisa Maiettini, Vadim Tikhanoff, Giulia Pasquale Lorenzo Natale, Lorenzo Rosasco

Session Outline

- * Assignment #1
 - * Port callbacks
 - Integration of OpenCV
 - Find Closest Blob
 - Images processing
 - Play with streams of images
 - Extract closest blob

YARP Port Callbacks

RFmodule — Update with fixed time

RFmodule
+ Callback depending of input
Callbacks

Module Structure

Image Processing

Blurring image

Transforming image

- · Erode original image.
- Dilate eroded image.
- Smooths object boundaries, eliminates noise (isolated pixels) and maintains object size.

Original

Image Processing

Thresholding image

Find contours in image

