```
In [1]:  #Importing required Libraries
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import json as r
```

In [2]: #importing important libraries for prediction
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

#loading the dataset file =

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

768 rows × 9 columns

In [12]: ► data.shape

Out[12]: (768, 9)

```
M data.columns
In [13]:
   Out[13]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
             'Insulin',
                    'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                   dtype='object')
In [14]:

▶ data.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 768 entries, 0 to 767
             Data columns (total 9 columns):
                  Column
                                            Non-Null Count Dtype
                  ----
                                            -----
                                                           ----
              0
                  Pregnancies
                                            768 non-null
                                                            int64
                  Glucose
                                            768 non-null
              1
                                                            int64
              2
                  BloodPressure
                                            768 non-null
                                                           int64
              3
                  SkinThickness
                                            768 non-null
                                                           int64
              4
                  Insulin
                                            768 non-null
                                                            int64
              5
                                            768 non-null
                                                            float64
              6
                  DiabetesPedigreeFunction 768 non-null
                                                            float64
              7
                                            768 non-null
                                                            int64
                  Age
                                            768 non-null
              8
                  Outcome
                                                            int64
             dtypes: float64(2), int64(7)
             memory usage: 54.1 KB
```

In [5]:

#checking for missing values
sns.heatmap(data.isnull())

Out[5]: <Axes: >

In [6]: ► #Co

#Co relation matrix
correlation = data.corr()
print(correlation)

	Pregnanci	es	Glucos	se Blood	Pressure	Skin
Thickness \ Pregnancies	1.0000	00	0.12945	i9 (0.141282	
-0.081672 Glucose 0.057328	0.1294	59	1.00000	00 (0.152590	
BloodPressure 0.207371	0.1412	82	0.15259	90 :	1.000000	
SkinThickness 1.000000	-0.0816	72	0.05732	28	0.207371	
Insulin 0.436783	-0.0735	35	0.33135	57 (0.088933	
BMI 0.392573	0.0176	83	0.22107	'1 (0.281805	
DiabetesPedigreeFunction 0.183928	-0.0335	23	0.13733	37 (0.041265	
Age -0.113970	0.5443	41	0.26351	.4 (0.239528	
Outcome 0.074752	0.2218	98	0.46658	31 (0.065068	
	Insulin		BMI	Diabetes	PedigreeF	uncti
on \ Pregnancies 23	-0.073535	0.	017683		-0	.0335
Glucose 37	0.331357	0.	221071		6	.1373
BloodPressure 65	0.088933	0.	281805		6	.0412
SkinThickness 28	0.436783	0.	392573		e	.1839
Insulin 71	1.000000	0.	197859		6	.1850
BMI 47	0.197859	1.	000000		6	.1406
DiabetesPedigreeFunction 00	0.185071	0.	140647		1	.0000
Age 61	-0.042163	0.	036242		e	.0335
Outcome 44	0.130548	0.	292695		6	.1738
	Age		utcome			
Pregnancies Glucose	0.544341 0.263514		221898 466581			
BloodPressure	0.239528		466561 065068			
SkinThickness	-0.113970		074752			
Insulin	-0.042163	0.	130548			
BMI	0.036242		292695			
DiabetesPedigreeFunction	0.033561		173844			
Age Outcome	1.000000 0.238356		238356 000000			

```
In [7]:  plt.figure(figsize=(12, 10))
  p=sns.heatmap(correlation, annot=True, cmap='coolwarm')
  plt.title('Correlation Matrix')
  plt.show()
```



```
In [8]: N X =data.drop("Outcome",axis=1)
Y =data['Outcome']
X_train,X_test,Y_train,Y_test =train_test_split(X,Y,test_size=0.2)
In [9]: N model = LogisticRegression(max_iter = 1000) #Adjusting the number of impodel.fit(X train, Y train)
```

```
Out[9]: 

LogisticRegression i ? (https://scikit-learn.org/1.4/modules/generated/sklearn.linear
```

```
In [10]:
     #Making Prediction
     predictions = model.predict(X_test)
     print(predictions)
     0 1 0
      000
      0 1 1
      0 1 0 0 0 1]
In [15]:
     accuracy = accuracy_score(predictions,Y_test)
     print(accuracy)
     0.7987012987012987
```

This (accuracy) means that the model correctly predicted the outcome of diabetes in approximately 79.87% of the cases in the test set