14. Aufgabenblatt

(Besprechung in den Tutorien 05.02.2024–09.02.2024)

Aufgabe 1. Subset Sum

Betrachten Sie das folgende Problem und den dazugehörigen Algorithmus.

Subset Sum

Eingabe: Eine Multimenge $U := \{u_1, u_2, \dots, u_m\}$ von natürlichen Zahlen

und eine Zahl $B \in \mathbb{N}$.

Existiert eine Teilmenge $U' \subseteq U$, die sich zu B aufsummiert? Frage:

Algorithm 1: Algorithmus für Subset Sum

Input: Eine Multimenge $U := \{u_1, u_2, \dots, u_m\}$ von natürlichen Zahlen und eine natürliche Zahl B.

Output: true genau dann, wenn es eine Teilmenge $U' \subseteq U$ mit $\sum_{u \in U'} u = B$ gibt. $1 \mathrel{\triangleright} \mathrm{Sei}\ T[i,j]$ eine Boolesche Tabelle mit $0 \leq i \leq m$ und $0 \leq j \leq B,$ die angibt, ob es in $\{u_1, u_2, \dots, u_i\}$ eine Teilmenge gibt, die sich zu j aufsummiert. Initial sind alle Einträge false.

```
2 foreach 0 \le i \le m do
        T[i,0] \leftarrow \texttt{true}
 3
 4 end
 5 foreach i = 1 \dots m do
        for each j = 1 \dots B do
            if j \geq u_i then
 7
                 T[i,j] \leftarrow T[i-1,j] \lor T[i-1,j-u_i]
 8
 9
             T[i,j] \leftarrow T[i-1,j]
10
             \mathbf{end}
11
        end
12
```

13 end

14 return T[m, B]

1. Analysieren Sie die Laufzeit des Algorithmus.

–Lösungsskizze–

Zunächst müssen wir alle $(m+1) \cdot (B+1)$ Einträge in der Tabelle auf false setzen. Das kostet O(mB) Zeit.

Die for-Schleife in Zeile 2 wird m mal durchlaufen, wobei jeder Durchlauf konstante Zeit benötigt. Somit benötigt die for-Schleife in Zeile 2 O(m) Zeit.

Zeile 7-11 kann in konstanter Zeit durchgeführt werden. Somit kann die innere for-Schleife in Zeile 6 in Zeit O(B) durchgeführt werden. Daher benötigt die äußere for-Schleife in Zeile 5 insgesamt O(mB) Zeit.

Zeile 14 benötigt konstante Zeit.

Somit läuft der Algorithmus in O(mB + m + mB + 1) = O(mB) Zeit.

2.	Ist dadurch gezeigt,	dass Subset	Sum in	P liegt?
Lösungsskizze				

Nein. Da Zahlen mit logarithmisch vielen Bits dargestellt werden können, ist die Eingabegröße in $O(\sum_{i=1}^m \log u_i + \log B)$. Somit ist eine Laufzeit in $O(mB) = O(m2^{\log B})$ exponentiell in der Eingabegröße.

Hinweis: Eine Multimenge ist eine Menge, in der Elemente mehrfach vorkommen können, d.h. $\{1,1\} \neq \{1\}$.

Aufgabe 2. NP, PSPACE, und deterministische Exponentialzeit

Diskutieren Sie, warum NP \subseteq PSPACE $\subseteq \bigcup_{k\geq 1}$ DTIME (2^{n^k}) gilt. _____Lösungsskizze_____

Sei $L \in \text{NP}$. Dann existiert eine NTM N, sowie ein Polynom p mit time $N(n) \leq p(n)$ und T(N) = L. Wir erstellen nun eine DTM D, welche auf Eingabe w alle möglichen (nichtdeterministischen) Übergänge von N nacheinander ausprobiert (Tiefensuche im Berechnungsbaum bis zur Tiefe p(|w|)). Wenn einer der Versuche in p(|w|) Schritten akzeptiert, so akzeptiert auch D. Damit ist T(D) = L. Ein jeder dieser Versuche von D kann aber maximal p(|w|) viele Bandzellen beschreiben (höchstens eine pro Schritt). Also ist $L \in \text{PSPACE}$.

Sei nun $L \in PSPACE$. Dann existieren eine DTM $M = (Z, \Sigma, \Gamma, \delta, q_0, F, \square)$ und ein Polynom p, sodass M bei Eingabe w höchstens p(|w|) viele Bandzellen manipuliert und T(M) = L gilt. Wir konstruieren nun eine Maschine M', die wie folgt agiert:

- Input: w mit n := |w|
- Simuliere M auf w für $p(n) \cdot |Z| \cdot |\Gamma|^{p(n)} + 1$ viele Schritte.
- Falls Simulation akzeptiert hat, so akzeptiere, andernfalls verwerfe.

Dabei ist $p(n)\cdot |Z|\cdot |\Gamma|^{p(n)}$ die Anzahl der möglichen Konfigurationen von M auf w und setzt sich wie folgt zusammen:

- \bullet p(n) mögliche Kopfpositionen
- \bullet |Z| mögliche Zustände
- Auf jeder der p(n) Zellen kann jedes Zeichen aus Γ stehen, also $|\Gamma|^{p(n)}$ Möglichkeiten.

Wenn M nach dieser Zeit nicht hielt, muss eine Konfiguration doppelt vorgekommen sein. Damit geriet M jedoch in eine Endlosschleife, also akzeptieren wir nicht. Somit gilt T(M') = L.

Das Simulieren von M und das Zählen der Schritte benötigt O(p(n)) Zeit (man beachte, dass $|\Gamma|$ und |Z| konstant groß sind). Damit gilt

$$time_{M'}(n) \in O((p(n))^2 \cdot |\Gamma|^{p(n)}) \subseteq O(2^{(1+\log|\Gamma|)p(n)}) \subseteq O(2^{(p(n))^2}).$$

Aufgabe 3. Generalized Geography

In der Vorlesung wurde das generalisierte Geographiespiel eingeführt:

Eingabe: Ein gerichteter Graph G mit Startknoten v.

Spielregeln: Die Spielerinnen wählen abwechselnd einen "nächsten Knoten" unter den noch nicht gewählten Nachfolgern des aktuellen Knotens. Wer keinen Nachfolger mehr auswählen kann, verliert das Spiel.

Wir betrachten das dazugehörige Entscheidungsproblem.

GENERALIZED GEOGRAPHY (GG)

Eingabe: Ein gerichteter Graph G = (V, E) und $v \in V$.

Frage: Hat Spielerin 1 eine Gewinnstrategie, die mit einem Nachbarn von v startet?

- 1. Zeigen Sie, dass entweder Spielerin 1 oder Spielerin 2 eine Gewinnstrategie hat.
- 2. Sei $\phi = \exists x_1 \forall x_2 \exists x_3 \dots \exists x_n F$ eine quantifizierte aussagenlogische Formel, wobei F in konjunktiver Normalform mit freien Variablen x_1, \dots, x_n ist.

Geben Sie eine polynomzeitberechenbare Instanz (G, v) an, sodass ϕ genau dann wahr ist, wenn $(G, v) \in GG$.

-Lösungsskizze----

1. DaG endlich ist, kann es keine unendliche Folge von Zügen geben. Außerdem gewinnt Spielerin 1 per Definition genau dann wenn Spielerin 2 verliert.

Es gilt also: Spielerin 1 hat eine Gewinnstrategie \iff Spielerin 1 kann einen Nachbarknoten u von v auswählen kann, sodass Spielerin 2 von dort aus immer verliert \iff Spielerin 2 hat keine Gewinnstrategie.

- 2. Seien C_1, \ldots, C_m die Klauseln von F. Der Graph G hat folgende Knoten $V := \{a_i, b_i, x_i, \overline{x}_i \mid i = 1, \ldots, n\} \cup \{c, c_1, \ldots, c_m\}$ und folgende Kanten:
 - $(a_i, x_i), (a_i, \overline{x}_i), (x_i, b_i), (\overline{x}_i, b_i)$ für alle $i = 1, \ldots, n$
 - $(b_1, a_2), (b_2, a_3), \ldots, (b_{n-1}, a_n), (b_n, c)$
 - (c, c_j) für alle $j = 1, \ldots, m$
 - $(c_j, \bar{\ell})$ für jede Klausel C_j und jedes Literal $\ell \in C_j$.

Der Startknoten ist $v := a_1$.

Falls ϕ wahr ist, hat Spielerin 1 eine Gewinnstrategie für (G, v), denn sie kann immer eine Zugfolge (entsprechend der Variablenbelegung) finden, die einen Pfad zu einer erfüllten Klausel ergibt (Spielerin 2 wählt immer irgendeinen Knoten c_j). Da diese Klausel erfüllt ist, gibt es darin ein Literal ℓ , das wahr ist. Also wurde der Knoten $\overline{\ell}$ zuvor nicht gewählt und Spielerin 1 kann diesen wählen, wodurch sie gewinnt.

Falls ϕ falsch ist, kann Spielerin 2 immer einen Pfad zu einer nicht erfüllten Klausel finden, womit dann Spielerin 1 keinen möglichen Zug hat und verliert. Somit hat Spielerin 1 keine Gewinnstrategie.