Einführung in die Geometrie und Topologie Blatt 3

Jendrik Stelzner

29. April 2014

Aufgabe 3.1:

Es sei X ein quasikompakter Raum. Wir nehmen an, dass X nicht folgenkompakt ist. Dann gibt es eine Folge $(x_n)_{n\in\mathbb{N}}$ auf X, die keinen Häufungspunkt besitzt.

Es gibt also für jedes $x \in X$ eine Umgebung U_x von x, so dass nur endlich viele Folgeglieder in U_x sind. Da U_x eine offene Umgebung von x enthält, können wir o.B.d.A. davon ausgehen, dass die U_x alle offen sind.

Es ist $\{U_x:x\in X\}$ eine offene Überdeckung von X. Da X quasikompakt ist gibt es daher $x_1,\ldots,x_n\in X$ mit $X=U_{x_1}\cup\ldots\cup U_{x_n}$. Da U_{x_1},\ldots,U_{x_n} jeweils nur endlich viele Folgeglieder enthalten, enthält X nur endlich viele Folgeglieder — ein offensichtlicher Widerspruch.

Das zeigt, dass $(x_n)_{n\in\mathbb{N}}$ einen Häufungspunkt besitzt, und damit, dass X folgenkompakt ist. Also ist jeder quasikompakte Raum folgenkompakt.