Machine Learning: Introduction and Overview

STOR 565

Andrew Nobel

January, 2020

Background: The Scientific Method

The Scientific Method (from science buddies.org)

Paradigm Shift

Traditional Scientific Method: Hypothesis Driven

- Formulate a hypothesis
- Collect data to confirm/refute hypothesis

Modern Scientific Method: Data Driven

- Acquire data from high-throughput measurement technologies
- Mine the data for possible hypotheses
- Use the data again to test selected hypotheses

Scientific Discovery: Needles and Haystacks

General Principle: If you have enough data, and you ask enough questions, you are bound to find something interesting, **just by chance.**

Bob: I found a needle in a haystack!

Amy: That's surprising! How many haystacks did you look in?

Bob: A thousand.

Amy: Oh, maybe that's not so surprising.

Machine Learning

High-profile applications

- Spam filtering, threat detection
- ► Machine translation, facial recognition
- Recommender systems, targeted marketing,
- Personalized medicine, automated diagnoses

Key steps

- Data acquisition and preprocessing [Stat, CS]
- Model development and implementation [Stat, Math, CS]
- Model fitting and assessment [Stat, Optimization, CS]

Machine Learning

Study and development of general computational methods and models for extracting information from data. Two flavors.

Unsupervised: Finding structure in data

- Dimension reduction, principal component analysis (PCA)
- Finding well-defined subgroups, clustering

Supervised: Building predictive models

- Classification, pattern recognition
- Regression, curve fitting

Machine Learning, cont.

Machine Learning is NOT

- A grab-bag of methods for data analysis
- Magic or computational alchemy

Statistical Caveats

- Use elementary methods before more sophisticated ones
- Don't forget about uncertainty and noise
- Be aware of multiple testing and correlation vs. causation

Unsupervised Learning

Given: Data x_1, \ldots, x_n taking values in *feature space* \mathcal{X} , usually \mathbb{R}^d

Clustering

Partition x_1, \ldots, x_n into a small number of disjoint groups (clusters) so that points in the same group are close together, and points in different groups are far apart.

Dimension reduction (PCA)

Find a low dimensional subspace V of \mathbb{R}^d so that the projection of x_1, \ldots, x_n onto V captures most of the variation in the data.

*Mixture modeling

Fit a mixture of multivariate normal densities to x_1, \ldots, x_n

Supervised Learning

Given: Data $D_n = (x_1, y_1), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$

- ightharpoonup Component x_i called *input, predictor, or feature*
- ▶ Set \mathcal{X} called *feature space*, usually \mathbb{R}^d
- ightharpoonup Component y_i called *output or response*
- Set y called response space

Task: Use data $(x_1,y_1),\ldots,(x_n,y_n)$ to find a rule (function) $f:\mathcal{X}\to\mathcal{Y}$ that will predict the output of a new input $x\in\mathcal{X}$ when the output y is unknown or difficult to obtain.

Classification and Regression

Classification: Response $\mathcal{Y} = \{-1, +1\}$. Use data D_n to predict label y of new input x. Example: email spam detection

- $ightharpoonup x_i = ext{vector of features extracted from email message}$
- ▶ $y_i = +1$ if email i is spam, $y_i = -1$ otherwise

Task: predict whether new email with feature vector x is spam or not

Regression: Response $\mathcal{Y} = \mathbb{R}$. Use data D_n to predict output value y of a new input x. Example: predicting individual income

- $ightharpoonup x_i = ext{vector of features regarding education, address, car ownership}$
- $ightharpoonup y_i = ext{income of individual}$

Task: predict income y of new individual with feature vector x

The Usual Order Relation

Definition: For $a,b\in\mathbb{R}$ write $a\geq b$ if $a-b\geq 0$.

Basic Properties

- (1) If $a \le b$ then $-b \le -a$
- (2) If $a \le b$ and $c \le d$ then $a + c \le b + d$
- (3) If $0 \le a \le b$ and $0 \le c \le d$ then $ac \le bd$

Order Relations for Maxima and Minima

Fact: Let a_1, \ldots, a_n and b_1, \ldots, b_n be real numbers.

(1)
$$\min\{a_i\} \le a_j \le \max\{a_i\}$$
 for $1 \le j \le n$

(2)
$$-\max\{a_i\} = \min\{-a_i\}$$

(3)
$$-\min\{a_i\} = \max\{-a_i\}$$

(4)
$$\max\{a_i + b_i\} \le \max\{a_i\} + \max\{b_i\}$$

(5)
$$\min\{a_i + b_i\} \ge \min\{a_i\} + \min\{b_i\}$$

(6)
$$\max\{a_i\} - \max\{b_i\} \le \max\{a_i - b_i\}$$

Fact: For real numbers a, b we have $2ab \le a^2 + b^2$.

Order Relations for Maxima and Minima of Functions

Fact: Let $f, g: \mathcal{X} \to \mathbb{R}$ be functions.

- (1) $\min_{x \in \mathcal{X}} f(x) \leq f(x_0) \leq \max_{x \in \mathcal{X}} f(x)$ for every $x_0 \in \mathcal{X}$
- (2) $-\max_{x \in \mathcal{X}} f(x) = \min_{x \in \mathcal{X}} (-f(x))$
- (3) $\max_{x \in \mathcal{X}} \{ f(x) + g(x) \} \le \max_{x \in \mathcal{X}} f(x) + \sup_{x \in \mathcal{X}} g(x)$
- (4) If $\mathcal{X}_0 \subseteq \mathcal{X}$ then $\max_{x \in \mathcal{X}_0} f(x) \leq \max_{x \in \mathcal{X}} f(x)$

Euclidean Norm and Inner Product

Given: Vector
$$x = (x_1, \dots, x_d)^t \in \mathbb{R}^d$$

- ▶ Inner product $\langle x, y \rangle = x^t y = \sum_{i=1}^d x_i y_i$
- Norm $||x|| = (x_1^2 + \dots + x_d^2)^{1/2} = (x^t x)^{1/2}$

Basic Properties

- $|x| \ge 0$ with equality if and only if x = 0
- ▶ For $a \in \mathbb{R}$, ||a x|| = |a| ||x||
- $||x+y|| \le ||x|| + ||y||$, the triangle inequality
- $| ||x|| ||y|| | \le ||x y||$
- $ightharpoonup |x^ty| \le ||x|| ||y||$, the Cauchy-Schwartz inequality