Week 2 Summary Sheet

Wanrong Yang 04/10/2024

More Examples in DFA Application

1. Not substring problem

construct DFA for the language over $\Sigma = \{a, b\}$ that dose not contain substring abb

- start wiht a DFA that do contain substring abb
- identify the final accepted states

2. Binary number is even

- design a DFA which checks whether the given binary number is even
- binary number over $\Sigma = \{0,1\}$, eg. 0100=4(even number), 0101=5 (odd number)
- binary strings ending with 0 means even number, and ending with 1 means odd

3. Divisible by 3

- construct a DFA which accepts set of all binary strings divisible by 3
- reminders are always 0, 1, 2, so 3 states q_0, q_1, q_2 in total

4. Even O's and even 1's

- construct a DFA to accept the language over $\Sigma = \{0,1\}$, and sepecifically in this $L = \{\omega | \omega \text{ has even number of 0's and even number of 1's}\}$
- q_0 means even 0's & even 1's
- q_1 means even 0's & odd 1's
- q_2 means odd O's & even 1's
- q_3 means odd 0's & odd 1's

5. Extended transition function for DFA

- $\hat{\delta}(q,\omega) = p$ read as delta-hat, and ω is a string
- after reading a string ω as an input, it will transferred from state q to state p
- language of a DFA

DFA,
$$A = (Q, \Sigma, \delta, q_0, F)$$
 then $L(A) = \{\omega | \hat{\delta}(q_0, \omega) \in F\}$

Non-Deterministic Finite Automata (NFA)

1. Introduction

- NFA,
$$N = (Q, \Sigma, \delta, q_0, F)$$

- keep it in mind that $\delta(q, a) = \{q_1, q, q_3, \dots, q_k\}$
- it may have multiple next states, given a fixed current state and input
- 1.1 example 1, common problems

construct NFA to accept the strings of O's and 1's that finally end with OO

try to construct a DFA to accept the strings

find at least <u>one path</u> leading to an accepted state, if not, leading to a rejection empty set or state \emptyset means a rejection

1.2 example 2, substring problems

construct NFA and DFA which accept set of all strings over an $\Sigma = \{0,1\}$, where each string contains substring 101

eg. $\{001011,101,11011,...\}$ can be accepted

eg. {00100,1100,00110,.....} can not be accepted

NFA should looks like this

DFA should looks like this

NFA to DFA Conversion (Equivalence of NFA and DFA)

- 1. Introduction
 - every DFA is an NFA
 - not every NFA can be transferred into a DFA
- 2. Subset construction method
 - 2.1 get transition table of a given NFA
 - 2.2 calculate transition table for a DFA
 - if NFA has n states, then targeted DFA will have 2^n states in total
 - Identify starting state and final states, means just to find any state set including at least 1 original accepted state)
 - union operation
 - 2.3 identify all accessible states from starting state
 - 2.4 get the transition diagram

