International Rectifier

PD - 91514B

IRF1310NS/L

HEXFET® Power MOSFET

- Advanced Process Technology
- Surface Mount (IRF1310NS)
- Low-profile through-hole (IRF1310NL)
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF1310NL) is available for low-profile applications.

Absolute Maximum Ratings

	<u> </u>			
	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ^⑤	42		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V ^⑤	30	Α	
I _{DM}	Pulsed Drain Current ① ⑤	140		
P _D @T _A = 25°C	Power Dissipation	3.8	W	
P _D @T _C = 25°C	Power Dissipation	160	W	
	Linear Derating Factor	1.1	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy②⑤	420	mJ	
I _{AR}	Avalanche Current®	22	A	
E _{AR}	Repetitive Avalanche Energy①	16	mJ	
dv/dt	Peak Diode Recovery dv/dt 3 S	5.0	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		∞	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.95	0000
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted, steady-state)**		40	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Parameter	Min.	Тур.	Max.	Units	Conditions
Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA ^⑤
Static Drain-to-Source On-Resistance			0.036	Ω	V _{GS} = 10V, I _D = 22A ④
Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
Forward Transconductance	14			S	V _{DS} = 25V, I _D = 22A ^⑤
Drain to Source Leakage Current			25	пΔ	V _{DS} = 100V, V _{GS} = 0V
Diam-to-Source Leakage Current			250	"	V _{DS} = 80V, V _{GS} = 0V, T _J = 150°C
Gate-to-Source Forward Leakage			100	n ^	$V_{GS} = 20V$
Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
Total Gate Charge			110		I _D = 22A
Gate-to-Source Charge			15	nC	$V_{DS} = 80V$
Gate-to-Drain ("Miller") Charge			58		V_{GS} = 10V, See Fig. 6 and 13 \oplus \odot
Turn-On Delay Time		11			$V_{DD} = 50V$
RiseTime		56			$I_D = 22A$
Turn-Off Delay Time		45		ns	$R_G = 3.6\Omega$
FallTime		40			$R_D = 2.9\Omega$, See Fig. 10 \oplus \odot
Internal Source Inductance		7.5		ьЫ	Between lead,
				''''	and center of die contact
Input Capacitance		1900			$V_{GS} = 0V$
Output Capacitance		450		pF	$V_{DS} = 25V$
Reverse Transfer Capacitance		230		1	f = 1.0MHz, See Fig. 5©
	Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Source Inductance Input Capacitance Output Capacitance	Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance 14 Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Source Inductance Input Capacitance Output Capacitance ———————————————————————————————————	Drain-to-Source Breakdown Voltage 100 — Breakdown Voltage Temp. Coefficient — 0.11 Static Drain-to-Source On-Resistance — — Gate Threshold Voltage 2.0 — Forward Transconductance 14 — — Drain-to-Source Leakage Current — — — — — — — — — — — — — — — — — — —	Drain-to-Source Breakdown Voltage 100 — — Breakdown Voltage Temp. Coefficient — 0.11 — Static Drain-to-Source On-Resistance — 0.036 Gate Threshold Voltage 2.0 — 4.0 Forward Transconductance 14 — — Drain-to-Source Leakage Current — 25 — 250 Gate-to-Source Forward Leakage — — 100 Gate-to-Source Reverse Leakage — — 110 Gate-to-Source Charge — — 15 Gate-to-Drain ("Miller") Charge — 58 Turn-On Delay Time — 11 — Rise Time — 56 — Turn-Off Delay Time — 45 — Fall Time — 40 — Internal Source Inductance — 7.5 — Input Capacitance — 450 —	Drain-to-Source Breakdown Voltage 100 — V Breakdown Voltage Temp. Coefficient — 0.11 — V/°C Static Drain-to-Source On-Resistance — 0.036 Ω Gate Threshold Voltage 2.0 — 4.0 V Forward Transconductance 14 — — S Drain-to-Source Leakage Current — — 25 μA Gate-to-Source Forward Leakage — — 100 nA Gate-to-Source Forward Leakage — — 100 nA Total Gate Charge — — 110 nC Gate-to-Source Charge — — 15 nC Gate-to-Drain ("Miller") Charge — 58 — — ns Turn-On Delay Time — — 56 — ns Fall Time — 45 — ns Internal Source Inductance — 7.5 — nH Input Capacitance — </td

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current	s Source Current	42		MOSFET symbol	
	(Body Diode)		42	42	A	showing the
I _{SM}	Pulsed Source Current			140		integral reverse
	(Body Diode) ①⑤	-		140		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S =22A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		180	270	ns	$T_J = 25^{\circ}C, I_F = 22A$
Q _{rr}	Reverse Recovery Charge		1.2	1.8	μC	di/dt = 100A/µs ⊕ ⑤
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ & Starting $T_J = 25^\circ$C, $L = 1.7mH$\\ $R_G = 25\Omega, $I_{AS} = 22A.$ (See Figure 12) \\ \hline \end{tabular}$
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- ⑤ Uses IRF1310N data and test conditions

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended soldering techniques refer to application note #AN-994.

1000
TOP VGS
TOP 15V
10V
8.0V
7.0V
8.0V
6.0V
6.5.0V
BOTTOM 4.5V

20us PULSE WIDTH
TJ= 175 °C
10.1
1 10 100
VDS, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit Peak Diode Recovery dv/dt Test Circuit

* $V_{GS} = 5V$ for Logic Level Devices

Ripple ≤ 5%

Fig 14. For N-Channel HEXFETS

 I_{SD}

D²Pak Package Outline

Part Marking Information D²Pak

Package Outline

TO-262 Outline

Part Marking Information

TO-262

Tape & Reel Information D²Pak

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 5/98