DECISION TREES AND RANDOM FORESTS:

Classifier: type Ml systems

- BAYESIAN NETWORK

 Ly Classifier.
- Neural Nethorks Classifier
 - "ENTROPY": Quantity uncertainty

ENTROPY:

	Far thquake	Burglary	Alarm 0.2442		
True	۱ ۰ ۵	0.2			
False	0.9	0.8	0.7558		
	1		\		
	Most certain		Least certain		
(x) T	0-4b9	0.722	0-802		

CONDITIONAL ENTROPY:

	b, b Burglary	a Burglary A= true	ā Burglary Az false
True	0.2	0.74)	0 - 025
False	0.8	D-259	0 - 975
ENT	0-722	0-825	0-169
		more uncertain	mbre certain

ENT (Burglary | Alarm) = ENT (Bla) Pr(a) + ENT (Bla) Pr (a)
$$= 0.329 \leq 0.722$$

CLASSIFIERS:

Supervised Learning

Labeled Data

fe atured attributes J e,	F,	F	,	Fn	C
و٢					
:					
6					

Decision Tree

"Bandom Forest".

LABELED DATA:

Example		Attributes							Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

12 examples

depth

Leaves (Classes)

Splitting / Branching

- 2,11

ENT [
$$WV | Patrons$$
] = $\frac{2}{12} \propto + \frac{4}{12} + \frac{6}{12}$ 78
+50
-50


```
function DECISION-TREE-LEARNING(examples, attributes, parent_examples) returns a tree
            if examples is empty then return PLURALITY-VALUE(parent_examples)
            else if all examples have the same classification then return the classification
            else if attributes is empty then return PLURALITY-VALUE(examples)
            else
                                                -> Conditional entropy
                A \leftarrow \operatorname{argmax}_{a \in attributes} \operatorname{IMPORTANCE}(a, examples)
                tree ← a new decision tree with root test A
                for each value v_k of A do
                     exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}
                    subtree ← DECISION-TREE-LEARNING(exs, attributes - A, examples)
                     add a branch to tree with label (A = v_k) and subtree subtree
                return tree
                                                  PLURALITY ~ VALUE -> Majority
            attribute
           to split just return majority
                                         the examples left.
                                                              COMPARE
                                                    To
                                       training 2 atoset
                        80
991
                                                                                             BAYES
                                                                                 NAINE
                                                                                  CLASSIFIER
                                        testing dataset
                        50
                         Tree
              Decision
                              80: 20 - Stine, [ CROSS VALIDATION]
                         - Accuracy
                   Take overage accuracy
```

left to split, regionity of parents'

onshere

RANDOM FORESTS:

Build bunch of frees.

Instance

yes

 $\langle \lambda \rangle$

9

6

=7 00

ensemble

Persing

Methods

BOOTSTRAPPED DATASET

3 - 2 - 2 - 4 - 1

3,5

evample >

n = [10 attributes]

If m=3, then at any point we

choose 3 attributes to choose from.

À /| \ Say m can be in

Evaluate accuracy on Out-of-bag examples.

- 1. Ensemble (Majority Voting)
- 2. Bootstrapped Dataset

(Randomly Pick examples to create dataset)

3. Choose Random Subset of attributes while deciding next attribute.

Effectiveness;

Random Forest < Bayesian Network < Neural Network.

Threshold

0 (9. dw)

trees - 6:1

Naive Bayes Classifier is a tree

NAZVE BAYES CLASSIFIER:

$$\frac{e^{x/\underline{c}} e^{\underline{x}/\underline{c}}}{e^{x/\underline{c}}} \underbrace{e^{\underline{x}/\underline{c}}}_{\varphi^{\underline{c}}} \underbrace{x}_{\varphi^{\underline{c}}}$$

Pr(x, y)c) = Pr(x)c) Pr(y)c)

ا ههاد ه ليآد ا

Pr(cl x,y): Pr(x,y)(c) Pr(c)

Pr(x,y)

Pr(x,y)

Rule

= Pr(«IC) Prly/C) Pr(C)

> Pr(z,y(c) Pr(i) +

Prlangie) Priz)

So all the values are directly available from the CPT!

EXPLAINABLE AI:

Tractable

Circuits

Circuits

T NNP

S=1, (5=0, F=1, M=) => Success

Why Success?

Possible Answer: Based on F=1, N=1.

This is PI- explanation.

2 Steps:

- -> Compile ML System into Symbolic Representation that

 Capture I/O behavior.
- Use Symbolic Reasoning to reason about the behavior.