The Online Perceptron Algorithm And Linear Support Vector Machine

Scribe: Matteo Sammut

November 16, 2023

1 Linear Discrimination

1.1 Formulation

Let $D = \{(x_i, y_i) \in \mathcal{X} \times \{-1, 1\}\}_{i=1}^n$ be a set of labeled points. From D we want to construct a function $f: \mathcal{X} \to \{-1, 1\}$ or $f: \mathcal{X} \to \mathbb{R}$ that predicts the class -1 or 1 of a point $x \in \mathcal{X}$.

Let the input space be $\mathcal{X} = \mathbb{R}^d$. We can construct a scoring function: $f: \mathbb{R}^d \to \mathbb{R}$ such that:

$$f(x) = \begin{cases} f(x) < 0 & \text{assign } x \text{ to class } -1\\ f(x) > 0 & \text{assign } x \text{ to class } 1 \end{cases}$$

A linear scoring function has the following expression: $f(x) = w^T x + b$, where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

Definition 1.1 Linearly Separable Problem

The points $\{(x_i, y_i)\}$ are linearly separable if there exists a hyperplane that correctly discriminates the entire set of data. Otherwise, the points are non-linearly separable examples.

Some examples are shown on the figure 1.

Figure 1: Linear separability examples

1.2 Linear Separator and Maximization of the Margin

Proposition 1.0.1 Distance from a Point to the Decision Boundary Let $H(w,b) = \{z \in \mathbb{R}^d \mid f(z) = w^Tz + b = 0\}$ be a hyperplane, and let $x \in \mathbb{R}^d$. The distance from the point x to the hyperplane H is $d(x,H) = \frac{|w^Tx + b|}{\|w\|} = \frac{|f(x)|}{\|w\|}$.

Proof 1.0.1 Let's denote x_p the projection of x on the hyperplane, and suppose that $x - x_p$ is on the

Figure 2: Distance from a Point to the Decision Boundary

same direction than w. As we can see on the figure 2:

$$x = x_p + \frac{w}{\|w\|} \times d(x, H)$$

$$w^T x = w^T x_p + w^T \frac{w}{\|w\|} \times d(x, H)$$

$$\|w\| \times d(x, H) = w^T x - w^T x_p$$

$$\|w\| \times d(x, H) = (w^T x + b) - (w^T x_p + b)$$

$$d(x, H) = \frac{w^T x + b}{\|w\|}$$

If now we suppose that $x - x_p$ is on the opposite direction than w, we can conclude:

$$d(x,H) = \frac{|w^T x + b|}{\|w\|}$$

Definition 1.2 Canonical Hyperplane

An hyperplane is said to be canonical with respect to the data $\{x_1, \ldots, x_N\}$ if $\min_i |w^T x_i + b| = 1$.

Definition 1.3 Geometric Margin The geometric margin is $M = \frac{2}{\|\mathbf{w}\|}$

Definition 1.4 Optimal Canonical Hyperplane

An optimal canonical hyperplane respects the following properties (cf figure 3:

- It maximizes the margin
- It correctly classifies each point: $\forall i, y_i f(x_i) \geq 1$

1.3 Perceptron Algorihm

We first consider an homogeneous linear classifier: $f(x) = w^T x$. The perceptron algorithm can be written as follow:

Figure 3: Example of an optimal canonical hyperplane

Algorithm 1 Perceptron algorithm

```
\begin{aligned} w_0 &\leftarrow 0 \\ \text{for } t = 1 \text{ to } T \text{ do} \\ \text{receive } x_t \\ \text{predict } \hat{y_t} &= sign(w_t^T x_t) \\ \text{receive } y_t &\in \{-1, 1\} \\ \text{if } \hat{y_t} \neq y_t \text{ then} \\ w_{t+1} &\leftarrow w_t + y_t x_t \\ \text{else} \\ w_{t+1} \leftarrow w_t \\ \text{end if} \end{aligned}
```

Theorem 1.1 Block Norikoff

Assume $||x_t|| < R$ for all t and $y_t \in \{-1, 1\}$.

Assume there exists a canonical hyperplane w^* classyfing data perfectly, passing through the origin with half a margin $\rho = \frac{1}{\|w^*\|}$.

Then, then number of mistakes of perceptron is at most of $\frac{R^2}{\rho^2}$.

Proof 1.1.1 *Step 1)*

After an update (a prediction error), w_{t+1} is more aligned' to w^* :

$$\langle w_{t+1}, w^* \rangle = \langle w_t + y_t x_t, w^* \rangle$$
$$\langle w_{t+1}, w^* \rangle = \langle w_t, w^* \rangle + y_t \langle x_t, w^* \rangle$$

 w^* is a canonical hyperplane, then $y_t\langle x_t, w^*\rangle \geq 1$.

$$\langle w_{t+1}, w^{\star} \rangle \ge \langle w_t, w^{\star} \rangle + 1$$

By unrolling we get: $\langle w_t, w^* \rangle \geq t_e$ with t_e the number of mistakes.

Step 2)

After an update (classification error) we have:

$$||w_{t+1}||^2 = \langle w_t + y_t x_t, w_t + y_t x_t \rangle$$

$$||w_{t+1}||^2 = ||w_t||^2 + 2y_t \langle w_t, y_t \rangle + ||y_t x_t||^2$$

The misclassification at this step leads to $2y_t\langle w_t, y_t \rangle \leq 0$.:

$$||w_{t+1}||^2 \le ||w_t||^2 + R^2$$

By unrolling we get: $||w_t||^2 \le t_e R^2$

Step 3)

Using Cauchy-Scharwtz inequality:

$$t_e \le \langle w_t, w^* \rangle \le ||w_t|| ||w^*|| \le \sqrt{t_e} R ||w^*||$$

$$\implies \sqrt{t_e} \le \frac{R}{\rho}$$

$$\implies t \le \frac{R^2}{\rho^2}$$

1.3.1 Perceptron as a 'SGD' online learner

Perceptron algorithm can be rewrite as an SGD algorithm. T

Let $S_t = w_t^T x_t$:

$$l(s_t, y_t) = \begin{cases} 0 & \text{if } y_t s_t \ge 0\\ -y_t s_t & \text{otherwise} \end{cases}$$

Applying SGD algorithm here gives:

$$w_{t+1} \leftarrow w_t - \alpha \begin{cases} 0 & \text{if } y_t s_t \ge 0 \\ -y_t s_t & \text{otherwise} \end{cases}$$

Which is equivalent to the perceptron algorithm and $l^{perceptron}(s_t, y) = \max(0, 1 - ys_t)$. One can compare $l^{perceptron}$ and $l^{0,1}$ in Figure 4.

Figure 4: Comparison of $l^{perceptron}$ and $l^{0,1}$

1.3.2 Margin and Generalization Bound

Considering the VC generalization bound on a function class \mathcal{H} , with probability $1 - \delta$:

$$R(h) \le R_{emp}(h) + C\sqrt{\frac{D(\log(2N/D) + 1 + \log(4\delta))}{N}}$$

where D is the VC dimension of \mathcal{H} .

If we consider \mathcal{H} as the class of linear function $f(x) = w^T x + b$ with a margin ρ to the training set, we can born the relative VC dimension as follow:

$$D \le 1 + \min(d, \frac{R^2}{\rho^2})$$

where R is the radius of a ball containing the training data.

The main idea here is that increasing the margin allows to reduce the VC dimension D. Hence, a large margin is a good way to prevent from overfitting.

2 Solving the SVM problem

2.1 Linearly separable problems

We first suppose in this section that the points $D = \{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n$ are linearly separable.

Our objective is to find a decision function $f(x) = w^T x + b$ that maximizes the margin and correctly discriminates the points in D.

The formulation of this problem is given as follow:

$$\min_{w \in \mathbb{R}, b \in \mathbb{R}} \quad \frac{1}{2} ||w||^2$$
s.t.
$$y_i(w^T x_i + b) \ge 1 \ \forall i = 1, ..., n$$

The Lagrangian of this problem is given by:

$$L(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \alpha_i (y_i(w^T x_i + b) - 1)$$

The stationary conditions gives us :

•
$$\frac{\partial L(w,b,\alpha)}{\partial b} = 0$$
 • $\frac{\partial L(w,b,\alpha)}{\partial w} = 0$

wich can be written as:

•
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 • $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

By substituting into the Lagrangian, the dual problem is written as:

$$\max_{\{\alpha_i\}} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$
s.t.
$$\alpha_i \ge 0 \ \forall i = 1, ..., n$$

$$\sum_{i,j=1}^n \alpha_i y_i = 0$$

The condition of complementary slackness is written as:

$$\alpha_i(y_i(w^Tx_i + b) - 1) = 0$$

By solving the dual problem to find the n parameters $\{\alpha_i\}$, two cases are obtained:

- For a point x_j , if $y_j(w^Tx_j + b) > 1$, then $\alpha_j = 0$
- For a point x_i , if $y_i(w^Tx_i + b) = 1$, then $\alpha_i \geq 0$

Hence, the solution $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ is uniquely defined by points such as $y_i(w^T x_i + b) = 1$. This is what we called the **support vectors**. In other words, the hyperplane is entirely defined by a linear combination of support vectors (cf figure 5)

2.2 Non-linearly separable problems

Linearly separable problems is a too restrictive hypothesis. One way to consider non-linearly separable problems, is to allow misclassification.

• Relaxing
$$y_i(w^Tx_i + b) = \ge 1$$

Figure 5: Example of the result of the SVM problem. Here the hyperplane is defined by this linear combination: $w = 0.167x_7 - 0.064x_5 - 0.103x_6$. Here, x_5 , x_6 and x_7 are the support vectors.

- Accept $y_i(w^Tx_i + b) \ge 1 \epsilon_i$ with ϵ_i the error term.
- Include the sum of errors $\sum_{i=1}^{n} \epsilon_i$ in the SVM problem.

The non-linearly separable SVM problem can be formulize as follow:

$$\min_{w \in \mathbb{R}, b \in \mathbb{R}, \{\epsilon_i\}} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \epsilon_i$$
s.t.
$$y_i(w^T x_i + b) \ge 1 - \epsilon_i \ \forall i = 1, ..., n$$

$$\epsilon_i \ge 0 \ \forall i = 1, ..., n$$

where C > 0 is a regularisation parameter defined by the user.

Figure 6: Example of a non-linearly separable SVM problem. The support vectors are indicates by the purple bounding boxes

We consider the Lagrangian:

$$L(w, b, \epsilon, \alpha, \nu) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \epsilon_i - \sum_{i=1}^n \alpha_i (y_i(w^T x_i + b) - 1 + \epsilon_i) - \sum_{i=1}^n \nu_i \epsilon_i$$

where α_i , $\nu_i \geq 0 \ \forall i = 1, ..., n$.

The stationary conditions gives us:

•
$$\frac{\partial L(w,b,\epsilon_i,\alpha)}{\partial b} = 0$$
 • $\frac{\partial L(w,b,\epsilon_i,\alpha)}{\partial w} = 0$ • $\frac{\partial L(w,b,\epsilon_i,\alpha)}{\partial \epsilon_k} = 0$

wich can be written as:

•
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 • $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ • $C - \alpha_i - \nu_i = 0 \ \forall i = 1, ..., n$

By substituting into the Lagrangian, the dual problem is written as:

$$\max_{\{\alpha_i\}} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$
s.t.
$$0 \le \alpha_i \le C \ \forall i = 1, ..., n$$

$$\sum_{i,j=1}^n \alpha_i y_i = 0$$

Theorem 2.1 Solution of a linear SVM: no-separable case

Consider a linear non-separable SVM problem with a decision function $f(x) = w^T x + b$. The vector w is defined as $w = \sum_{i=1}^{n} \alpha_i y_i x_i$, where the coefficients α_i are the solutions of the dual problem above.

Compared to the previous separable case, very few things have changed. The condition on α_i is now different since we have $0 \le \alpha_i \le C$. The influence of the C parameter is shown on the figure 7.

Figure 7: Example of the influence of C parameter. If C is small (left) then the margin is big and we accept a lot of errors. If C is big (right) then the margin is small and we accept a small amount of errors.

In practice, given labelled data $\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\}\}_{i=1}^n$, the methodology is as follow:

- 1. Centered the data
- 2. Choose parameter C > 0 of SVM
- 3. Use a solver to solve the dual problem an obtain the $\alpha_i \neq 0$, corresponding support vectors x_i , and the bias b
- 4. Evaluate the generalization error of the obtained SVM model (cross validation...) Restart the procedure from step 2 if needed.

3 Relation Between soft SVM, Hinge-loss and Hinge-loss Perceptron

The soft-SVM optimization problem is written as follow :

$$\min_{w \in \mathbb{R}, b \in \mathbb{R}, \{\epsilon_i\}} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \epsilon_i$$
s.t.
$$y_i(w^T x_i + b) \ge 1 - \epsilon_i \ \forall i = 1, ..., n$$

$$\epsilon_i \ge 0 \ \forall i = 1, ..., n$$

We writing the constraints on ξ_i with $s_i = \langle w, x_i \rangle + b$ we obtain :

$$\xi_i \ge \max(0, 1 - y_i s_i)$$

The soft SVM problem become :

$$\min_{w \in \mathbb{R}, b \in \mathbb{R}, \{\epsilon_i\}} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\langle w, x_i \rangle + b))$$

which is equivalent to:

$$\min_{w \in \mathbb{R}, b \in \mathbb{R}, \{\epsilon_i\}} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n l^{\text{hindge}} (\langle w, x_i \rangle + b, y_i)$$

where $l^{\text{hindge}}(s_i, y_i) = \max(0, 1 - y_i s_i)$.

One can compare visually the difference between l^{hindge} , $l^{0,1}$ and $l^{\text{perceptron}}(s_t, y_t) = \max(0, -y_t s_t)$ in Figure 8. Notice that $l^{\text{hindge}} > l^{0,1}$.

Figure 8: Losses comparison

4 Conclusion

- Construction of an optimal hyperplane for Margin Maximization
- A thorough theoretical analysis shows that maximizing the margin is equivalent to minimizing a bound on the generalization error
- The non-linear case (where a non-linear decision function is sought) can be addressed using kernels
- Generalization is possible to cases with multiple classes
- This is a classification algorithm widely used in practice...