1 O notation

 $\geq \Omega$

 $=\Theta$

 $\leq O$

2 Minimum Spanning Tree

Input: Connected undirected weighted G=(V,E) $W:E\to\mathbb{R}$ Output: Subset of edges $T\subseteq E$ that connects all vertices and $\min w(e)$, $e\in T$. (T=tree)

2.1 Example

The edge between 2 and 3 with a weight of 10 is an edge to definitely remove because it is unnecessary (since there is a cycle) and it also weighs a lot.

Green good edges to keep as their weights are small. Red not so good due to large weights.

2.2 Applications:

- network design
- clustering
- \bullet vision
- approximation algorithms

2.3 Cut Lemma

Lemma 2.1. Let $C \subseteq V$ $(u, v) \in E$, $v \notin C$, $u \in C$. (u, v) is a lightest edge of this kind. There there exists a minimum spanning tree that contains (u, v).

Proof. Suppose T is a MST that does not contain (u, v).

T connected u and v

 $\Rightarrow \text{ There must exist an edge } (u',v') \in T \ u' \in C \ , v' \notin C \quad w(u',v') \geq w(u,v)$ Thus, weight of $T \bigcup \{(u,v)\} - \{(u',v')\} \triangleq T' \text{ is no larger than } T \text{'s weight.}$ Note 2.1. Note that T' is a tree that connects all vertices. Because a path $a \leadsto u' \to v' \leadsto b$ in T becomes a path $a \leadsto u' \leadsto u \to v \leadsto v' \leadsto b$

Note 2.2. Observation: If all edge weights are distinct, the MST is unique, because the weight of T' is strictly smaller than the weight of T

3 Prim's Algorithm

Chose the shortest edge when in a cut.

Notice that the edges we choose here are the same as in the previous example.

3.1 Algorithm

Please refer Algorithm 1. $\Pi(u)$ holds the parent for u. The Tree T is constructed using edge $(\Pi(u), u)$.

Algorithm 1 Prim's Algorithm

```
1: procedure PRIM'S ALGORITHM(G, s)
                                                                    \triangleright G(V, E) weighted graph
    w/non-negative weights, s \in V, s is an arbitary vertex in V
                                         \triangleright Q is a priority queue containing all vertices.
 2:
        \forall v \in V - \{s\}\,, \quad key(v) \leftarrow \infty
 3:
                                                              \triangleright for all vertices except for s(
         key(s) \leftarrow 0
                                                                    \triangleright s is an arbitrary vertex
 4:
        T \leftarrow \{\}
 5:
 6:
         while Q \neq 0 do
             u \leftarrow \text{Extract-Min}(Q)
                                                     \triangleright The edge we take to T is (\Pi(u), u)
 7:
             T \leftarrow T \bigcup (\Pi(u), u)
 8:
             for all neighbor v of u do
 9:
                 if v \in Q then
10:
                                                                  \triangleright if key(v) \ge w(u, v) then
                      Decrease-Key(Q, v, w(u, v))
11:
    key(v) = w(u, v)
                      \Pi(v) \leftarrow u
12:
                  end if
13:
             end for
14:
         end while
15:
         return MST for G
16:
17: end procedure
```

3.2 Run Time

```
\begin{split} m &= |E| \text{ ($\#$ of edges)} \\ n &= |V| \text{ ($\#$ of nodes)} \\ \text{Runtime: } O(n \log n + m \log n) \\ \text{Runtime does not change on where you start.} \end{split}
```