Appunti Primo Esonero

Federico De Sisti 2024-11-11

1 Preambolo

Qui sono scritti i principali concetti, teoremi, e definizioni che sono utili per lo svolgimento degli esercizi del primo esonero

2 Appunti

2.1 Curve

Definizione 1 (Curva parametrica)

Una curva parametrica in \mathbb{R}^n è una funzione a valori vettoriali $\varphi: I \to \mathbb{R}^n$, $\varphi(t) = (\varphi_1(t), \dots, \varphi_n(t))$ per la quale ogni componente φ_i è continua in I. Se I = [a,b] allora i punti $\varphi(a)$ e $\varphi(b)$ sono detti estremi della curva, la sua immagine viene detta sostegno della curva parametrica

Definizione 2 (Curva chiusa, curva semplice)

Una curva parametrica $\varphi: [a,b] \to \mathbb{R}^n$ si dice chiusa se $\varphi(a) = \varphi(b)$. Una curva parametrica si dice semplice se per ogni $t_1 \neq t_2 \in [a,b]$ con t_1 o $t_2 \in (a,b)$ si ha $\varphi(t_1) \neq \varphi(t_2)$

Definizione 3 (Curve equivalenti)

Le curve parametriche $\varphi \in C(I, \mathbb{R}^n)$ e $\psi \in C(J, \mathbb{R}^n)$ si dicono equivalenti se esiste una funzione $g \in C^1(I, J)$ suriettiva, tale che $g' \neq_0 \in I$ interno e $\varphi = \psi \circ g$ in I

Il diffeomorfismo g è detto cambiamento di variabile ammissibile

Proposizione 1 (Curve come classi di equivalenza)

La relazione definita da $\varphi \sim \psi$ se φ e ψ sono equivalenti secondo la precedente definizione è una relazione di equivalenza. Ogni classe di equivalenza $\gamma = [\varphi]$, sarà detta curva

Definizione 4 (Curve orientate)

Due curve parametriche equivalenti, $\varphi \in C(I, \mathbb{R}^n)$ e $\psi \in C(J, \mathbb{R}^n)$ hanno verso concorde se $\phi = \psi \circ g$ con g' > 0 in I, discorde altrimenti

Definizione 5 (versore tangente)

Una curva γ si dice regoalre se $\gamma = [\varphi]$ con $\varphi \in C^1(I, \mathbb{R}^n)$ tale che $||\varphi'(t)|| \neq 0$ per ogni $t \in I$ interno. In questo caso è ben definito il vettore

$$T(P) = \frac{\varphi'(t)}{||\varphi'(t)||}.$$

che prende il nome di versore tangente a γ nel punto $P = \varphi(t)$

Definizione 6 (Lunghezza e curva rettificabile)

La lunghezza di una curva $\varphi \in C([a,b],\mathbb{R}^n)$ è definita da

$$l(\varphi) := \sup\{l(P) : P \in \mathcal{P}\}.$$

dove P è una partizione della curva nell'insieme delle partizioni e l(P) è definito come

$$l(p) := \sum_{i=1}^{n} ||\varphi(t_i) - \varphi(t_{i-1})||.$$

se $l(\varphi) < +\infty$ la curva viene detta rettificabile

Teorema 1 (Rettificabilità delle curve C^1)

Se $\varphi \in C^1([a,b],\mathbb{R}^n)$, allora $\gamma = [\varphi]$ è rettificabile e

$$l(\gamma) = \int_{a}^{b} ||\varphi'(t)|| dt.$$

Definizione 7 (Connessione per archi)

 $E \subseteq R^n$ si dice connesso per archi se per ogni $x, y \in E$ esiste una curva tutta contenuta in E che ha questi due punti come estremi

Teorema 2

sia $g: E \subset \mathbb{R}^n \to \mathbb{R}^m$, $n, m \ge 1$ una funzione continua, Allora se E è un insieme connesso, anche f(E) è un insieme connesso

Teorema 3

Ogni insieme aperto $A\subseteq\mathbb{R}^n$ si può scrivere come unione di aperti connessi disgiunti a due a due. Ognuno di questi aperti prende il nome di componente connessa di A

2.2 Limiti e continuità

Teorema 4 (Teorema ponte sulle curve)

Data una funzione $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ e un punto x_0 di accumulazione per l'insieme aperto Ω , allora si ha che

$$\lim_{x \to x_0} f(x) = l.$$

se e solo se per ogni curva $\varphi \in C([a,b],\Omega \cup \{x_0\})$ tale che $\varphi(t_0)=x_0$ e $\varphi(t)\neq x_0$ se $t\neq t_0$ si ha

$$\lim_{t \to t_0} f(\varphi(t)) = l.$$

In particolare, il limite è indipendente dalla curva scelta

Definizione 8 (grafico)

Data una funzione $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ il suo grafico è definito da

$$\Gamma(f) = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : x \in \Omega, y = f(x)\}.$$

Definizione 9 (Restrizione ad una curva)

Data una $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ e una curva parametrica $\varphi \in C(I,\Omega), I \subset \mathbb{R}$ intervallo, la restrizione di $fa\gamma = [\varphi]$ è la composizione tra $f \in \varphi, f(\varphi(t)), t \in I$ (notazione: $f_{|\gamma}$)

Definizione 10 (Insieme di livello)

Data una funzione $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ e $\lambda \in \mathbb{R}$, il suo insieme di livello λ

$$L_{\lambda} = \{x \in \Omega : f(x) = \lambda\}.$$

Definizione 11

dato $\alpha \in \mathbb{R}$, una funzione $f: \mathbb{R}^n \to \mathbb{R}$ è positivamente α -omogenea se $f(tx) = t^{\alpha} f(x)$ per ogni $x \in \mathbb{R}^n, t > 0$

Definizione 12 (Simmetria radiale)

Una funzione $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ è a simmetria radiale se esiste una funzione $g: [0, +\infty) \to \mathbb{R}$ tale che f(x) = g(||x||) per ogni $x \in \mathbb{R}^n$

Definizione 13 (Forma polare di un numero complesso)

Ogni numero complesso si può scrivere nella forma

$$z = \rho(\cos\theta + i\sin\theta) = \rho e^{i\theta}.$$

dove $\rho=|z|$ e $\theta\in\mathbb{R}$, se $z\neq 0$, è un angolo che determina z nel piano complesso in coordinate polari

2.3 Calcolo differenziale per funzioni scalari di più variabli

Definizione 14 (Derivate parziali)

Sia $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}, \Omega$ insieme aperto, $x_0 \in \Omega$ Indichiamo con e_i l'i-esimo vettore della base canonica. Diremo che f è derivabile parzialmente rispetto alla variabile x_i in x_0 se esiste finito il limite

$$\lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}.$$

rispetto ad x_i nel punto x_0 , con notazione $f_{x_i}(x_0)$. Se esistono in x_0 tutte le derivate parziali di f diremo che f è derivabile in x_0 . In questo caso il vettore di \mathbb{R}^n

$$Df(x_0) = (f_{x_1}(x_0), \dots, f_{x_n}(x_n)).$$

prenderà il nome di gradiente di f in x_0

Definizione 15 (Derivata direzionale)

Sia $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}, \Omega$ insieme aperto, $x_0 \in \Omega$ e $v \in \mathbb{R}^n$ con ||v|| = 1. La derivata direzionale di f in x_0 nella direzione v è data dal limite

$$\lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}.$$

posto che tale limite esista e sia finito. La derivata direzionale sarà indicata con $f_v(x_0)$

Definizione 16 (Differenziabilità)

Sia $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}, \Omega$ insieme aperto, $x_0 \in \Omega$ la funzione f è differenziabile in x_0 se esiste $v \in \mathbb{R}^n$ tale che

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - \langle v, h \rangle}{||h||} = 0.$$

o equivalentemente

$$f(x_0 + h) = f(x_0) + \langle v, h \rangle + o(||h||) \quad ||h|| \to 0.$$

Teorema 5

Se f è differenziabile in x_0 allora è derivabile in x_0 e $v = Df(x_0)$

Teorema 6

Se f è differenziabile in x_0 , allora è continua in x_0

Teorema 7 (Derivabilità delle restrizioni)

Sia $\varphi \in C([a,b],\mathbb{R}^n)$ derivabile in $t_0 \in (a,b)$ e sia f differenziabile in $x_0 = \varphi(t_0)$. Allora la composizione f(phi(t)) è derivabile in t_0 e si ha

$$\left[\frac{d}{dt}f(\varphi(t))\right]_{t=t_0} = \langle Df(\varphi(t_0)), \varphi'(t_0)\rangle.$$

Teorema 8 (Formula del gradiente)

Se f e'differenziabile in x_0 allora esistono tutte le derivate direzionali di f in x_0 e $f_v(x_0) = \langle Df(x_0), v \rangle$

Teorema 9 (Del differenziale totale)

Sia $x_0 \in \mathbb{R}^n, \delta > 0$ e $f: B_{\delta}(x_0) \to \mathbb{R}$ Supponiamo che tutte le derivate parziali

- esistano in $B_{\delta}(x_0)$
- $siano\ continue\ in\ x_0$

Allora f è differenziabile in x_0

Proposizione 2 (Lipschitzianità delle funzioni a gradiente limitato) Se f è una funzione differenziabile in un aperto convesso $\Omega \subseteq \mathbb{R}^n$ e se esiste una costante M>0 tale che $||Df||\leq M$ allora f è Lipschitziana in Ω con costante di Lipschitz minore o uguale ad M

Proposizione 3

Sia f una funzione differenziabile in un insieme $\Omega \subseteq \mathbb{R}^n$ aperto connesso. Se Df(x) = 0, allora f è costante in Ω

Definizione 17 (Matrice Hessiana)

Se esistonno tutte le n^2 derivate parziali seconde di f in un punto x_0 diremo che la funzione f è derivabile due volte in x_0 . In questo caso

$$D^{2}f(x_{0}) = (f_{x_{i}x_{j}}(x_{0}))_{i,j=1,\dots,n}.$$

prende il nome di matrice Hessiana di f in x_0 .

Se la funzione è derivabile due volte ion tutti i punti di un aperto Ω e le detrivate parziali seconde sono tutte continue in Ω diremo che f è di classe C^2 in Ω

Teorema 10 (Schwarz)

Sia $f: \Omega\mathbb{R}^n \to \mathbb{R}$ una funzione derivabile nell'aperto Ω e sia $x_0 \in \Omega$. Supponiamo che esista in Ω la derivata parziale seconda $f_{x_ix_j}$ e sia continua in x_0 . Allora esiste anche $f_{x_jx_i}$ e

$$f_{x_i x_j}(x_0) = f_{x_j x_i}(x_0).$$

Proposizione 4 (Derivate seconde delle restrizioni)

Se $f \in C^2(\Omega)$, $\Omega \in \mathbb{R}^n$ aperto, e se $x, x+h \in \Omega$ sono tali che il segmento che li congiunge sia tutto contenuto in Ω , allora la restrizione g(t) = f(x+th) è di classe C^2 nell'intervallo [0,1]e

$$\frac{d^2g}{dt^2}(t) = \langle D^2f(x+th)h, h \rangle \quad t \in [0,1].$$

Teorema 11 (Foruma di Taylor al secondo ordine con resto di Lagrange) Sia $f \in C^2(\Omega)$ e siano $x, x + h \in \Omega$ tali che il segmento che li congiunge sia tutto contenuto in Ω Allora esiste $\in (0,1), \theta = \theta(x,h)$ tale che

$$f(x+h) = f(x) + \langle Df(x), h \rangle + \frac{1}{2} \langle D^2 f(x+\theta h)h, h \rangle.$$

2.4 Ottimizzazione libera

Definizione 18

Data $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}, x_0 \in \Omega$ è un punto di massimo relativo per $f \in \Omega$ se esiste $\delta > 0$ tale che

$$f(x) \le f(x_0) \quad \forall x \in B_{\delta}(x_0) \cap \Omega.$$

Analogamente, $x_0 \in \Omega$ è un punto di minimo relativo per $f \in \Omega$ se esiste $\delta > 0$ tale che

$$f(x) \ge f(x_0) \quad \forall x \in B_{\delta}(x_0) \cap \Omega.$$

In entrambi i casi parleremo di punti di estremo relativo.

Teorema 12 (Fermat in \mathbb{R}^n)

Sia $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ e sia x_0 un punto interno ad Ω . Se f è derivabile in x_0 e x_0 è un punto di estremo relativo, allora $Df(x_0) = 0$

Proposizione 5 (Condizione necessaria del secondo ordine) Sia $f \in C^2(\Omega), \Omega$ aperto, $x_0 \in \Omega$ punto di estremo relativo per f in Ω . Allora

 x_0 punto di minimo relativo $\Rightarrow \langle D^2 f(x_0)h, h \rangle \geq 0 \quad \forall h \in \mathbb{R}^n$.

 x_0 punto di massimo relativo $\Rightarrow \langle D^2 f(x_0)h, h \rangle \leq 0 \quad \forall h \in \mathbb{R}^n$.

Teorema 13

Una matrice simmetrica $A \in M_n$ è definita positiva se e solo se tutti i suoi autovalori sono positivi ed è definita negativa se e solo se tutti i suoi autovalori sono negativi.

Definizione 19

 $Sia\ A \in M_n$.

- A è definita positiva se $\langle Ah, h \rangle > 0$ per ogni $h \neq 0$
- A è definita negativa se $\langle Ah, h \rangle < 0$ per ogni $h \neq 0$

Teorema 14

Sia $f \in C^2(\Omega), \Omega$ aperto, $x_0 \in \Omega$ punto critico per g. Allora si ha

- $D^2 f(x_0)$ definita positiva $\Rightarrow x_0$ punto di minimo relativo;
- $D^2 f(x_0)$ definita negativa $\Rightarrow x_0$ punto di massimo relativo;
- $D^2 f(x_0)$ indefinita $\Rightarrow x_0$ punto né di massimo né di minimo

Teorema 15 (Dei minori principali del nord-ovest)

Sia $A = (a_{ij}) \in M_n$ una matrice simmetrica. Se per ogni k = 1, ..., n si ha che

$$d_k = det[(a_{ij})_{i,j=1}^k] \neq 0.$$

Allora:

A è definita positiva se e solo se $d_k > 0$ per ogni k = 1, ..., n; A è definita negativa se e solo se $(-1)^k d_k > 0$ per ogni k = 1, ..., n; negli altri casi è indefinita

Teorema 16

Sia $f \in C^2(\Omega), \Omega \subset \mathbb{R}^2$ aperto, $(x_0, y_0) \in \Omega$. Allora se

$$Df(x_0, y_0) = 0$$
, $det D^2 f(x_0, y_0) > 0$, $f_{xx}(x_0, y_0) > 0$.

allora (x_0, y_0) è un punto di minimo relativo per f in Ω Se invece

$$Df(x_0, y_0) = 0$$
, $det D^2 f(x_0, y_0) > 0$, $f_{xx}(x_0, y_0) < 0$.

allora (x_0, y_0) è un punto di massimo relativo per f in Ω Infine se

$$Df(x_0, y_0) = 0$$
, $det D^2 f(x_0, y_0) < 0$.

Allora (x_0, y_0) è un punto di sella per f

2.5 Calcolo differenziale per funzioni a valori vettoriali

Definizione 20 (Derivabilità e matrice Jacobiana)

Sia $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ una funzione definita nell'insieme Ω aperto e sia $x_0 \in \Omega$. Diremo che f è derivabile in x_0 se ogni sua componente è derivabile. Le derivate parziali delle componenti saranno raccolte in una matrice $m \times n$

$$Df(x_0) = \left(\frac{\partial f_i}{\partial x_j}(x_0)\right)_{i,j=1}^{n,m}.$$

che prende il nome di matrice Jacobiana di f nel punto x_0

Definizione 21 (Differenziabilità)

Sia $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ una funzione definita nell'insieme Ω aperto e sia $x_0 \in \Omega$. Diremo che f è differenziabile in x_0 se esiste una matrice $A \in M_{m \times n}$ tale che

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{||h||} = 0.$$

Teorema 17 (Differenziabilità delle funzioni composte)

Se f e g sono differenziabili allora

$$D(f \circ g)(x_0) = Df(g(x_0))Dg(x_0).$$

Definizione 22 (Jacobiano)

Se $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$ è una funzione derivabile in $x_0 \in \Omega$, la matrice Jacobiana è quadrata. Il suo determinante viene indicato con $J_f(x_0) = det Df(x_0)$ e prende il nome di determinante Jacobiano o, semplicemente, Jacobiano

Definizione 23 (Diffeomorfismo)

Una funzione $f :\subset \mathbb{R}^n \to \tilde{\Omega} \subset \mathbb{R}^n$ è un diffeomorfismo di Ω in $\tilde{\Omega}$ se è una funzione $C^1(\Omega, \mathbb{R}^n)$ invertibile con inversa $f^{-1} \in C^1(\tilde{\Omega}, \mathbb{R}^n)$

Teorema 18 (Invertibilità locale)

Una funzione $f \in C^1(\Omega, \mathbb{R}^n)$ Ω aperto, $x_0 \in \Omega$ take che $J_f(x_0) \neq 0$ è un diffemorfismo locale in x_0

Corollario 1 (Teorema della mappa aperta)

Se $f \in C^1(\Omega, \mathbb{R}^n)$, Ω aperto, è tale che $J_f(x) \neq 0$ per ogni $x \in \Omega$, allora f è una mappa aperta, ovvero manda aperti in aperti

Teorema 19

Sia $f \in C^1(\Omega, \mathbb{R}^m), \Omega \subseteq \mathbb{R}^n \times \mathbb{R}^m$ aperto, $(x_0, y_0) \in \Omega$ tale che

- (1) $f(x_0, y_0) = 0$
- (2) $det D_y f(x_0, y_0) \neq 0$

Allora esistono un intorno U di x_0 in \mathbb{R}^n , un intorno A di (x_0, y_0) in $\mathbb{R}^n \times \mathbb{R}^m$ e una funzione $g \in C^1(U; \mathbb{R}^m)$ tali che per ogni $(x, y) \in A$ si ha

$$f(x,y) = 0 \Leftrightarrow y = g(x).$$

Definizione 24 (Varietà grafico)

Una varietà grafico di dimensione k in \mathbb{R}^n è un insieme della forma

$$\Sigma = \{(x, y) \in \mathbb{R}^n : x \in \Omega, y = f(x_1, \dots, x_k)\}.$$

dove $\Omega \subseteq \mathbb{R}^k$ e $f: \Omega \to \mathbb{R}^{n-k}$

Definizione 25 (k-varietà differenziabile)

Sia U un aperto di \mathbb{R}^n e sia $g \in C^1(U, \mathbb{R}^{n-k})$, k < n. Allora la k-varietà differenziabile in \mathbb{R}^n definita da g è l'insieme

$$\Sigma := \{ x \in U : g(x) = 0 \text{ } e \text{ } Dg(x) \text{ } ha \text{ } rango \text{ } n-k \}.$$

Definizione 26 (Spazio tangente)

Sia Σ una k-varietà differenziabile in \mathbb{R}^n e sia $x_0 \in \Sigma$. Lo spazio tangente a Σ in x_0 è

$$T_{\Sigma}(x_0) := \{ h \in \mathbb{R}^n : \exists \tilde{\varphi} \in C^1((-\delta, \delta), \Sigma) \text{ regolare, t.c. } \tilde{\varphi}(0) = x_0 \text{ e } \varphi'(0) = h \}.$$

Proposizione 6

 $Sia\ g \in C^1(U,\mathbb{R}^{n-k}), U \subseteq \mathbb{R}^n$ aperto, una funzione tale che il rango della matrice Jacobiana Dg sia uguale a n-k in U e sia

$$\Sigma = \{ x \in U : g(x) = 0 \}.$$

Allora lo spazio tangente $T_{\Sigma}(x_0)$ a Σ in $x_0 \in U$ coincide con il sottospazio $kerDg(x_0)$ ossia

$$T_{\Sigma}(x_0) = \{ h \in \mathbb{R}^n : Dg(x_0)h = 0 \}.$$

Definizione 27 (Spazio normale)

Sia Σ una k-varietà differenziabile in \mathbb{R}^n . Lo spazio normale a Σ in x_0 è il completamento ortogonale $T_{\Sigma}^{\perp}(x_0)$ al sottospazio $T_{\Sigma}(x_0)$ in \mathbb{R}^n

2.6 Ottimizzazione vincolata

Definizione 28 (Punti di estremo vincolato)

Sia $f: \Omega \to \mathbb{R}$ una funzione definita in un sottoinsieme Ω di \mathbb{R}^n e sia $\Sigma \subseteq \Omega$. Diremo che $x_0 \in \Sigma$ è un punto di minimo di f vincolato in Σ se esiste un intorno U di x_0 tale che $f(x_0) \leq f(x)$ $\forall x \in U \cap \Sigma$

Teorema 20 (Moltiplicatori di Lagrange)

Sia $\Sigma \subset \mathbb{R}^n$ una k-varietà differenziabile della forma $\Sigma = \{x \in \mathbb{R}^n : g(x) = 0\}$ dove $g \in C^1(U, \mathbb{R}^{n-k} \ \text{è una funzione tale che il rango } Dg \ \text{è uguale a } n-k \text{ su } \Sigma$. Supponiamo che $x_0 \in \Sigma$ sia un punto di massimo o minimo vincolato in Σ per la funzione $f \in C^1(B_r(x_0))$. Allora esiste $\Lambda = (\lambda_1, \ldots, \lambda_{n-k}) \in \mathbb{R}^{n-k}$ tale che

$$Df(x_0) = \lambda_1(Dg_1(x_0) + \ldots + \lambda_{n-k}Dg_{n-k}(x_0).$$

 $\textit{Tale Λ prende il nome di moltiplicatore di Lagrange}$