DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation

CVPR 2023 (Award Candidate)

[paper] [project]

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, Kfir Aberman (Google Research)

2024.01.17

Mijin Koo

Contents

- Paradigm of Text-to-Image models
- Introduction to the concept of Personalization
- Diffusion Model
 - DDPM
 - Latent Diffusion Model
- DreamBooth
 - Overview
 - Method
 - Experiments
 - Ablation Study

Text-to-Image models

Paradigm of text-to-image task

- GAN-based
- DALLE: autoregressive methods (not diffusion)
- GLIDE, Imagen: image synthesis with diffusion models
- Stable diffusion: image synthesis in latent space with diffusion models (LDM)
- You 컴퓨터비전을 연구하는 MIPAL 연구실에서 논문 세미나 발표하는 인턴의 모습

DALL-E

Here are two images showing an intern presenting a paper at a seminar in the MIPAL research laboratory, focused on computer vision research.

Text-to-image Diffusion Models in Generative AI: A Survey (arXiv, 2023)

Personalization with Diffusion Models

Introduction to the concept of Personalization

Multi-concept customization of text-to-image diffusion (CVPR, 2023)

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation (CVPR, 2023)

Diffusion Models | DDPM

Unconditional generation

Figure 6: Unconditional CIFAR10 progressive generation ($\hat{\mathbf{x}}_0$ over time, from left to right). Extended samples and sample quality metrics over time in the appendix (Figs. 10 and 14).

Denoising diffusion probabilistic models (NIPS, 2020)

Diffusion Models | LDM

Motivation

• Diffusion models typically **operate directly in pixel space**, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations.

Proposed Method

• We apply them in the **latent space** of powerful pretrained autoencoders.

Diffusion Models | LDM

Method

- 1. Train autoencoder (Perceptual compression)
 - Train an autoencoder which provides a lower-dimensional (and thereby efficient) representational space which is perceptually equivalent to the data space.
- 2. Train DM in latent space
 - We do not need to rely on excessive spatial compression, as we train DMs in the learned latent space
 - The reduced complexity also provides efficient image generation from the latent space with a single network pass.

Diffusion Models | LDM

For conditional generation

- Conditioning mechanism
 - Modeling conditional distributions of the form p(z|y)
 - This can be implemented with a conditional denoising autoencoder $\epsilon_{\theta}(z_t, t, y)$
 - y can be text, semantic maps, or other image for image-to-image translation tasks
 - Integrates transformers with the DM's UNet backbone, allowing for various types of token-based conditioning mechanisms
- Cross-attention mechanism
 - Effective for learning attention-based models of various input modalities
 - Domain specific encoder $\tau_{\theta}(y)$

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$$
, with

$$Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_\theta(y), \ V = W_V^{(i)} \cdot \tau_\theta(y).$$

Unconditional

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right]$$

Conditional

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x)}[y] \epsilon \sim \mathcal{N}(0,1), t \left[\|\epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y))\|_2^2 \right],$$

DreamBooth | Overview

Motivation

• Large text-to-image models enable high-quality and diverse synthesis of images form a given text prompt. However, they lack the ability mimic the appearance of subjects in a given reference set and synthesize novel renditions of them in different contexts.

Proposed method

- So we present a new approach for "personalization" of text-to-image diffusion models.
- Given as input just a few images of a subject, we fine-tune a pretrained text-to-image model such that it learns to bind a unique identifier with that specific subject.

Input images

in the Acropolis

in a doghouse in a bucket

getting a haircut

- Personalizatoin of Text-to-image models
 - Designing prompts for few-shot personalization
 - Input images paired with a text prompt containing a **unique identifier** and the **name of the class** the subject belongs to (e.g., "A [V] dog"- "a [identifier] [class noun]")
 - > Unique identifier for implanting specific subject
 - > Class descriptor for providing prior of the class
 - Leverage the model's prior of the specific class and entangle it with the embedding of our subject's unique identifier

Input images

A [V] teapot

Input images

Detailed prompt, Imagen

"retro style yellow alarm clock with a white clock face and a yellow number three on the right part of the clock face ~"

Detailed prompt, DALLE-2

Ours "a [V] clock in the ~"

Personalizatoin of Text-to-image models

- Rare-token identifier (unique identifier)
 - Problem with existing English words
 - Existing English words(e.g. "unique", "special") are suboptimal for identifiers, since model has to learn to disentangle them for their original meaning and re-entangle them to reference the subject
 - Random character approach
 - Hazardous method: Select random English characters for an identifier (e.g., "xxy5syt00").
 - Tokenizer might treat each letter separately, leading to similar weaknesses as common English words.

Rare token approach

- Unique identifier needs to be a weak prior in both the language model and diffusion model
- 1. Find rare tokens in vocabulary
- 2. Invert these tokens into text space to minimize strong priors ([V]="sks")

Class-specific Prior Preservation Loss

- [Goal] Achieve maximum subject fidelity by fine-tuning all model layers.
- Challenge 1 Language drift
 - Fine-tuning layers conditioned on text embeddings may lead to language drift.
 - Language drift observed in both language and diffusion models.
 - Diffusion model forgets how to generate subjects of the same class during fine-tuning.
- Challenge 2 Reduced output diversity
 - Fine-tuning on a small image set may limit output diversity in viewpoints, poses, and articulations.
 - Model training only with reconstruction loss, it can lead to reduce variability in output poses and views.

Class-specific Prior Preservation Loss

- Proposed solution: Autogenous Class-specific Prior Preservation Loss (PPL)
 - [Goal] Mitigate diversity reduction and language drift.
 - Supervise the model with its own generated samples during few-shot fine-tuning.
 - Generate data using ancestral sampler on frozen pre-trained diffusion model.
 - Loss Function
 - Combines reconstruction loss and prior-preservation term.
 - Prior-preservation term: Supervises the model with its own generated images.
 - \bullet λ controls the relative weight of the prior-preservation term.

Reconstruction loss

$$\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon},\boldsymbol{\epsilon}',t} [w_t || \hat{\mathbf{x}}_{\theta}(\alpha_t \mathbf{x} + \sigma_t \boldsymbol{\epsilon}, \mathbf{c}) - \mathbf{x} ||_2^2 + \lambda w_{t'} || \hat{\mathbf{x}}_{\theta}(\alpha_{t'} \mathbf{x}_{pr} + \sigma_{t'} \boldsymbol{\epsilon}', \mathbf{c}_{pr}) - \mathbf{x}_{pr} ||_2^2]$$

Prior-preservation loss

Class-specific Prior Preservation Loss

Reconstruction loss

$$\mathbb{E}_{\mathbf{x},\mathbf{c},\boldsymbol{\epsilon},\boldsymbol{\epsilon}',t} [w_t \| \hat{\mathbf{x}}_{\theta}(\alpha_t \mathbf{x} + \sigma_t \boldsymbol{\epsilon}, \mathbf{c}) - \mathbf{x} \|_2^2 + \lambda w_{t'} \| \hat{\mathbf{x}}_{\theta}(\alpha_{t'} \mathbf{x}_{pr} + \sigma_{t'} \boldsymbol{\epsilon}', \mathbf{c}_{pr}) - \mathbf{x}_{pr} \|_2^2]$$

Prior-preservation loss

- Generated data $x_{pr} = \hat{x}(z_{t_1}, c_{pr})$
- Random initial noise $z_{t_1} \sim N(0, I)$
- Conditioning vector $c_{pr} = \tau(f("a [class]"))$
 - Tokenizer *f*

Class-specific Prior Preservation Loss

- Prior-preservation loss encourages output diversity and overcomes language drift
- Naive fine-tuning can result in overfitting to input image context and subject appearance (e.g. pose).
- PPL acts as a regularizer that alleviates overfitting and encourages diversity, allowing for more pose variability and appearance diversity.

Input images

w/o prior-preservation loss

with prior-preservation loss

Experiments Details

- Dreambooth capabilities
 - Enables text-guided semantic modifications of subject instances.
 - Modifications include recontextualization, subject property changes (material and species), art rendition, and viewpoint modifications.
 - Preserves unique visual features, maintaining subject identity and essence.
- Datasets
 - Collection of 30 subjects, including objects and live subjects/pets
 - Data sources: Authors' collection and Unsplash

Evaluation metrics

- 1. Subject fidelity evaluation
 - CLIP-I (Cosine Similarity)
 - Average pairwise cosine similarity between CLIP embeddings of generated and real images.
 - CLIP-I commonly used but may not distinguish between different subjects with highly similar text descriptions.
 - DINO (ViTS/16 DINO Embeddings)
 - Average pairwise cosine similarity between ViTS/16 DINO embeddings of generated and real images.
 - DINO is our preferred metric, since it measures similarity considering unique features rather than ignoreing differences between subjects of the same class
- 2. Prompt fidelity evaluation
 - CLIP-T (Cosine Similarity)
 - Average cosine similarity between prompt and image CLIP embeddings.
 - Measure the similarity between the prompt and the corresponding image embeddings.

Comparison with Textual Inversion

- Evaluation setup
 - Comparative analysis with Textual Inversion, recent concurrent work by Gal et al. [20].
 - Utilization of hyperparameters provided in the Textual Inversion work.
 - Image generation
 - DreamBooth: Imagen, Stable Diffusion
 - Textual Inversion: Stable Diffusion

Comparison with Textual Inversion

Results

Method	DINO ↑	CLIP-I↑	CLIP-T↑
Real Images	0.774	0.885	N/A
DreamBooth (Imagen)	0.696	0.812	0.306
DreamBooth (Stable Diffusion)	0.668	0.803	0.305
Textual Inversion (Stable Diffusion)	0.569	0.780	0.255

Table 1. Subject fidelity (DINO, CLIP-I) and prompt fidelity (CLIP-T, CLIP-T-L) quantitative metric comparison.

Method	Subject Fidelity ↑	Prompt Fidelity ↑
DreamBooth (Stable Diffusion)	68%	81%
Textual Inversion (Stable Diffusion)	22%	12%
Undecided	10%	7%

Table 2. Subject fidelity and prompt fidelity user preference.

DreamBooth (Imagen)

DreamBooth (Stable Diffusion)

Textual Inversion (Stable Diffusion)

DreamBooth | Ablation Study

Prior Preservation Loss Ablation

- PPL substantially counters language drift and helps retain the ability to generate diverse images of the prior class.
- Higher diversity observed in the model trained with PPL, with slightly diminished subject fidelity.
- Model trained with PPL overfits less to the reference images' environment.
- Generates the dog in more diverse poses and articulations.

Method	$PRES\downarrow$	DIV ↑	DINO ↑	CLIP-I ↑	CLIP-T↑
DreamBooth (Imagen) w/ PPL DreamBooth (Imagen)	0.493 0.664	0.391 0.371	0.684 0.712	0.815 0.828	0.308 0.306

Table 3. Prior preservation loss (PPL) ablation displaying a prior preservation (PRES) metric, diversity metric (DIV) and subject and prompt fidelity metrics.

Input images

w/o prior-preservation loss

with prior-preservation loss

DreamBooth | Ablation Study

Class-Prior Ablation

- Correct class noun.
 - Allows faithful fitting to the subject and leverages the class prior.
 - Enables generation of the subject in various contexts.
- No class noun.
 - Model struggles to learn the subject, has difficulty converging, and can generate erroneous samples.
- Randomly sampled incorrect class noun.
 - Contentions observed, resulting in misshapen or erroneous subjects.

Method	DINO ↑	CLIP-I↑
Correct Class	0.744	0.853
No Class	0.303	0.607
Wrong Class	0.454	0.728

Table 4. Class name ablation with subject fidelity metrics.

DreamBooth | Results

Input images

Input images

on a table

Input images

Vincent Van Gogh

A [V] vase in the ocean

Johannes Vermeer Pierre-Auguste Renoir Expression modification ("A [state] [V] dog")

a [V] teapot

Milk poured into

a [V] vase

Input images

depressed sleeping sad

crying

barking

A [V] teapot pouring tea

DreamBooth | Results

Thank you!