Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT

Tugas Akhir

Kelompok Keahlian: Telematics

Muhammad Alif Akbar NIM: 1103132163

Program Studi Sarjana Teknik Informatika
Fakultas Informatika
Universitas Telkom
Bandung
2017

Lembar Pengesahan

Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT

Muhammad Alif Akbar NIM: 1103132163

Tugas Akhir ini diterima dan disahkan untuk memenuhi sebagian dari syarat untuk memperoleh gelar sarjana Teknik Informatika
Program Studi Sarjana Teknik Informatika
Fakultas Informatika Universitas Telkom

Bandung, 1 Agustus 2017

Menyetujui, Pembimbing

<u>Satria Mandala, S.T, M.Sc, Ph.D</u> <u>NIP: 15731897-3</u>

Mengesahkan, Kepala Program Studi Teknik Informatika

Ir. Moch. Arif Bijaksana, M.Tech, Ph.D NIP: 03650312-4

Abstrak

Abstrak Bahasa Indonesia

Kata Kunci: Shallow, water, equations.

Abstract

My abstract here

 ${\bf Keywords:} \ {\bf Shallow, \ water, \ equations.}$

Lembar Persembahan

Sata persembahkan

- 1. Kepada Tuhan Yang Maha Esa
- 2. Kepada Kedua Orangtua saya
- 3. Kepada Rekan kerja dll

Kata Pengantar

Puja dan puji syukur saya panjatkan...

Daftar Isi

Al	ostra	k	i
Al	ostra	$\operatorname{\mathbf{ct}}$	ii
Le	mba	r Persembahan	iii
Ka	ata P	Pengantar	iv
Da	aftar	Isi	\mathbf{v}
Da	aftar	Gambar	vi
Da	aftar	Tabel	vii
Ι	1.1	dahuluan Latar Belakang	1 1
II		ian Pustaka Persamaan Air Dangkal	2 2 2
II	3.1 3.2	Flowchart sistem Algoritma	3 3 4
Da	aftar	Pustaka	5
$\mathbf{L}\mathbf{a}$	mpir	an	5

Daftar Gambar

2.1	Caption		٠	•	•	•	•	•				•		•	•	•		•	•	2
3.1	Caption flowchar	t.																		3

Daftar Tabel

Bab I

Pendahuluan

1.1 Latar Belakang

Menulis Latar Belakang

1.2 Perumusan Masalah

Berikut rumusan masalah yang ingin saya angkat adalah

- 1. Mengapa ini terjadi?
- 2. Bagaimana proses kejadiannya?
- 3. Apa saja yang dipengaruhinya?

1.3 Tujuan

Berikut adalah tujuan yang ingin dicapai pada penulisan proposal/TA.

- 1. Untuk mengetahui mengapa ini terjadi;
- 2. Untuk mempelajari proses kejadian masalah;
- 3. Untuk melihat dampak yang dipengaruhi oleh kejadian ini.

1.4 Hipotesis (opsional)

Hipotesis dari tulisan ini adalah

- 1. Masalah timbul karena A;
- 2. Hasil numeriknya menuju $x\to\infty$

Bab II

Kajian Pustaka

2.1 Persamaan Air Dangkal

Berikut diberikan persamaan pengatur dari persamaan gelombang pada gitar

 $\int_0^1 \frac{f(x)}{g(x)} \, \mathrm{dx} = \sin x \tag{2.1}$

Rumus (2.1) merupakan contoh persamaan matematika. persamaan matematika diatas diberi nama \label{nama-rumus}.

Gambar 2.1: Caption

2.1.1 Cara memanggil pustaka

Contoh pustaka prosiding [?], jurnal [?] dan buku [?]. Atau dapat juga mengguanakan dua pustaka atau lebih dalam [?, ?].

Bab III Metodologi dan Desain Sistem

3.1 Flowchart sistem

Gambar 3.1: Caption flowchart

3.2 Algoritma

Atau dalam bentuk algoritma seperti contoh pada Algoritma 1 berikut ini:

Algorithm 1 Prosedur simulasi dinamika lalu lintas menggunakan FVDM.

```
1: procedure FVDM(Tfinal, \Delta t)
 2:
       Start
       For n = 1 : N \ do
                                                          ⊳ Pemberian nilai awal
 3:
           Input nilai x[n]
 4:
           Input nilai v[n]
 5:
       EndFor
 6:
       time=0
 7:
       while time < T final do
 8:
 9:
              time = time + \Delta t
               Hitung jarak bamper menggunakan rumus untuk n = 2, \dots, N
10:
              If (S(n) \leq 0m) then return End If.
11:
               Tentukan \lambda menggunakan.
12:
               Hitung kecepatan optimal v_o(t) menggunakan.
13:
              Hitung percepatan a_n(time) menggunakan .
14:
               Hitung kecepatan baru dengan v_n(time) = v_n(time - \Delta t) +
15:
    a_n(time)\Delta t.
               Hitung posisi baru dengan x_n(time) = x_n(time - \Delta t) +
16:
    v_n(time)\Delta t.
              If (\Delta v \le 10^{-5} \&\& a_n(time) \le 10^{-5}) then
17:
                  OUTPUT Cetak hasil data a_n, v_n, x_n.
18:
                  return.
19:
              End If.
20:
       end while
21:
22:
       End
23: end procedure
```

Lampiran