Niveaux: SM PC SVT | Matière: Physique

PROF:Zakaryae Chriki | Résumé N:14

Mouvement de rotation

1. Définition:

Un mouvement de rotation est tout mouvement qu'effectue un corps autours d'un axe fixe (Δ) selon une trajectoire circulaire de rayon R autour de cet axe.

Repérage d'un point du mobile:

On peut déterminer la position d'un point M en mouvement le long d'un trajet circulaire de rayon R soit par:

- Les coordonnées cartésiennes (x , y) dans un référentiel (Oxy) $x=R.cos(\theta)$ et $y=R.sin(\theta)$
- L'abscisse angulaire θ tel que $\theta = (\widehat{\mathbf{0x}, \mathbf{0M}})$
- L'abscisse curvilignes S(t) et c'est l'arc AM avec $S = \widehat{AM} = R$. θ avec A:

l'origine des abscisses curvilignes S(A)=0

- $(x-a)^2+(y-b)^2=R^2$: L'équation d'un cercle de rayon R et les cordonnées de son centre (a,b)
- L'angle balayé entre deux instants est $\theta = 2\pi$.n ou $\Delta \theta = 2\pi$.n avec n le nombre de tours effectués entre les deux instants

Les équations horaires du mouvement circulaires

Accélération angulaire (rad.s ⁻²)
Vitesse angulaire (rad.s ⁻¹)
Abscisse angulaire (rad)

Mouvement circulaire uniforme				
Nulle				
$\ddot{m{\Theta}} = 0$				
Constante $\dot{\theta} = C^{te} \neq 0$				
$\theta = \dot{\theta}.t + \theta_0$ Une fonction affine de temps d'où				
$\dot{m{\Theta}} = rac{\Delta m{\Theta}}{\Delta m{t}}$				

Mouvement circulaire uniformement varié				
Constante				
$\ddot{\mathbf{\Theta}} = \mathbf{C}^{te} \neq 0$				
Varie en fonction du temps				
$\dot{\boldsymbol{\theta}} = \ddot{\boldsymbol{\theta}}.\mathbf{t} + \dot{\boldsymbol{\theta}}_{0}$				
Une fonction affine de temps d'où $\ddot{\theta} = \frac{\Delta \dot{\theta}}{\Delta t}$				
$\theta = \frac{1}{2}\ddot{\theta}.t^2 + \dot{\theta}_0.t + \theta_0$				

NB: Tous les points d'un solide en rotation autour d'un axe fixe et à tout moment tourne avec :

- Le même abscisse angulaire $oldsymbol{\theta}$ ou la même variation angulaire $oldsymbol{\Delta}oldsymbol{\theta}$
- La même vitesse angulaire $\dot{m{ heta}} = m{ extbf{C}}^{te}$
- La même accélération angulaire $\ddot{m{ heta}} = {m{ extbf{C}}}^{te}$

Relation entre grandeur linèaire (translation) et angulaire (rotation) :

- La relation entre l'abscisse curviligne et l'abscisse angulaire $S=R.\theta$
- La relation entre la vitesse linéaire et la vitesse angulaire $\mathbf{V} = \mathbf{R} \cdot \dot{\mathbf{\theta}}$
- La relation entre l'accélération tangentielle (linéaire) et l'accélération angulaire $\mathbf{a}_{\mathbf{u}} = \mathbf{a}_{\mathbf{t}} = \frac{d\mathbf{v}}{d\mathbf{t}} = \mathbf{R}$. $\ddot{\boldsymbol{\theta}}$
- La relation entre l'accélération normale et la vitesse angulaire $a_n = \frac{V^2}{R} = R. \dot{\theta}^2$

 $\mathbf{a}_{G} = \sqrt{\mathbf{a}_{t}^{2} + \mathbf{a}_{n}^{2}}$: accélération du mobile en rotation autour d'un axe fixe (Δ)

Les points A et B:

Parcours les même distances S.

$S_1=S_2$

Avec la même vitesse,

$V_1=V_2$

Et la même accélération,

Les points A et B:

- Parcours des distances différentes $S_1{=}r_1.\theta$ et $S_2{=}r_2.\theta$ d'où $\frac{S_2}{S_1}=\frac{r_2}{r_1}$
- avec des vitesses différentes

$$V_1 = r_1 \cdot \dot{\theta}$$
 et $V_2 = r_2 \cdot \dot{\theta}$ d'où $\frac{v_2}{v_1} = \frac{r_2}{r_1}$

- $\begin{aligned} &V_1 = r_1.\,\dot{\theta} \ \text{ et } \ V_2 = r_2.\,\dot{\theta} \ \text{ d'où } \ \frac{V_2}{V_1} = \frac{r_2}{r_1} \\ &\bullet \quad \text{Et des accélérations différentes} \\ &a_1 = r_1.\,\ddot{\theta} \ \text{ et } \ a_2 = r_2.\,\ddot{\theta} \ \text{ d'où } \ \frac{a_2}{a_1} = \frac{r_2}{r_1} \end{aligned}$

5. Relation fondamentale ed la dynamique (RFD):

$$\sum M_{\Delta}(\vec{F}) = J_{\Delta}.\,\ddot{\theta}$$

Dans un référentiel galiléen, la somme des moments des forces , appliquées à un corps en rotation autour d'un axe fixe (Δ) , est proportionnelle à l'accélération angulaire $\ddot{\theta}$ subie par ce corps

 J_{Δ} : moment d'inertie du mobile par rapport à l'axe de rotation (Δ)

Comment exploiter la relation fondamentale de la dynamique (RFD)

Pour résoudre un problème de dynamique en utilisant la RFD, la méthode est toujours la même :

- 1. Préciser le système à étudier
- 2. Faire le bilan de toutes les forces qui agissent sur le point matériel étudié (ou le centre d'inertie de l'objet étudié).
 - 2.1. Forces de contact
 - 2.2. Forces à distance
- 3. Faire un schéma précis et suffisamment grand pour pouvoir y représenter (tant que c'est possible) toutes les forces dont les caractéristiques bien connues.

Exemples : le poids \vec{P} et \vec{R} la réaction de l'axe (Δ)

- 4. Choisir un sens positif de rotation (Souvent identique au sens de mouvement)
- 5. Déterminer l'expression du travail de chacune des forces du bilan
- 6. Appliquer la RFD
- 7. Répondre !!!

6. Moment d'une force par rapport à un axe fixe

$$M(\vec{F}_{/\Delta}) = \pm F.d$$

• Préciser l'axe (Δ)

• Choisir un sens positif (Souvent dans le sens de mouvement)

• Prolonger (D) la direction (Droite d'action) de la force \vec{F}

• Tracer la perpendiculaire à (D) la direction de la force \vec{F} et passant par l'axe (Δ)

Déterminer la distance d'entre l'axe (Δ) et (D) la direction de la force \vec{F}

NB:

 $M(\vec{F}_{/\Delta}) = 0$: le moment d'une force est nul pour toute force dont la direction est parallèle ou sécante l'axe (Δ)

7. Moment d'inertie du mobile par rapport à l'axe de rotation

 $J_{\Delta} = \sum m_i . r_i^2$:

- Moment d'inertie du mobile par rapport à l'axe de rotation (Δ)
- S'exprime en Kg.m²
- Exprime la répartition de la matière autour de l'axe (Δ)
- Varie si:
 - On ajoute des masses au système
 - On modifie la position d'au corps du système (modifier la distance r_i)
 - La position de l'axe (Δ) change

Tige	Tige mince de longueur L tournant autour d'un axe perpendiculaire à ellemême passant par son centre	axe M	$I = \frac{1}{12}ML^2$
	Tige mince de longueur L tournant autour d'un axe perpendiculaire à ellemême passant par une extrémité	axe M L	$I = \frac{1}{3}ML^2$