Computational Analysis of Sound and Music

Audio & Time-Frequency Representations

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

- Sound & Waveform
- Signal Discretization (Sampling & Quantization)
- Short-Time Fourier Transform (STFT)
- Mel Spectrogram
- Constant-Q Spectrogram

Sound & Waveform

Acoustic wave

- Pressure fluctuation
- Emitted from vibrating object (vocal cord, membrane, string, etc.)
- Propagates through transmission medium (air, water)
- Perceived (ear) or recorded (microphone)

Sound & Waveform

Waveform

Waveform → amplitude displacement over time (at fixed position)

Periodic signals → wave cycle repeating after period T

$$x(t) = x(t+T) = x(t+2T) = \cdots$$

Sound & Waveform

Waveform

Categorization

Signal Discretization

Sampling

- Analog waveforms → digital sound signals
- Discrete in time (sampling) $x(n) := f(n \cdot T_s) = f(\frac{n}{f_s})$

Signal Discretization

Sampling

- Sampling frequency f_s
 - Commonly 44.1 / 48 / 96 kHz
- Nyquist-Shannon theorem
 - Sampling of signals with limited bandwidth

$$f_{\rm S} \ge 2 \cdot f_{+}$$

Signal Discretization

Quantization

- Continuous waveform amplitudes → discrete set of amplitudes
- Binary encoding using b bits $\rightarrow 2^b$ amplitude values
- Quantization step size

- Example
 - $x_{-} = -1$
 - $x_{+} = 1$
 - *b* = 16
 - $\Delta_q \sim 0.00003$

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT)

$$\mathcal{X}(k) \coloneqq \sum_{n=0}^{N-1} x(n)e^{-2\pi i k n/N}$$

- N number of samples
- K frequency bands $(k \in [0, K-1])$
 - Corresponding frequency: $\frac{k \cdot f_s}{N}$
 - lacktriangledown Frequency resolution increases with increasing N
- Efficient implemented as Fast Fourier Transform (FFT)
 - N must be power of 2
- Magnitude spectrum: $X(k) \coloneqq |\mathcal{X}(k)|$

Discrete Fourier Transform (DFT)

- Signal approximation using multiple sinusoidal functions
 - Only "global" view on signal
- Example
 - Two consecutive sine signals with frequencies $f=1~\mathrm{Hz}$ and $f=5~\mathrm{Hz}$

Time of frequency change cannot be detected in spectrum!

Windowed Signal Analysis

Windowed signal analysis for "local" view

- Hopsize *H*_f
- Blocksize *W*_f

© Jakob Abeßer, 2024

• Number of frames $N_{\rm f} = \left[\frac{N - W_{\rm f}}{H_{\rm f}}\right] + 1$

STFT

Short-Time Fourier Transform (STFT)

$$\mathcal{X}(m,k) \coloneqq \sum_{n=0}^{W_{\mathrm{f}}-1} x(n+mH_{\mathrm{f}})w(n)e^{-2\pi ikn/W_{\mathrm{f}}}$$

- Time frame: $m \in [0, N_{\rm f} 1] \rightarrow$ Physical time (s): $T_{\rm coef} \coloneqq \frac{m \cdot H_{\rm f}}{f_{\rm s}}$
- Frequency index $k \in [0, K-1]$) \rightarrow Frequency (Hz): $F_{\text{coef}} \coloneqq \frac{k \cdot f_S}{W_f}$
- Magnitude & phase spectrogram

$$X(m,k) \coloneqq |\mathcal{X}(m,k)|$$

$$\Phi(m,k) \coloneqq \angle \mathcal{X}(m,k)$$

Librosa: librosa.stft

STFT

- Window function
 - Reduce spectral leakage
- Example: Hamming window (N = 1024)

$$w(n) \coloneqq 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right)$$

STFT

- Example
 - Two consecutive sine signals with frequencies $f=1~\mathrm{Hz}$ and $f=5~\mathrm{Hz}$

Time of frequency change can be detected in the spectrogram!

Mel Spectrogram

- Mel frequency scale
 - Perceptually linear scale to represent pitch perception
 - Two-piece approximation

$$f_{\text{Mel}} = \begin{cases} \frac{3 \cdot f}{200} & \text{for } f < 1000 \\ 15 + 27 \log_{6.4} \left(\frac{f}{1000}\right) & \text{for } f \ge 1000 \end{cases}$$

Mel Spectrogram

- Mel spectrogram
 - Local energy distributed along K_{Mel} Mel frequency bands
 - Computed efficiently using triangular filterbank applied to power spectrogram

$$X_{\text{Mel}} \coloneqq H_{\text{Mel}} \times X^2$$

• Example ($K_{\text{Mel}} = 16$, $f_{\text{s}} = 16$ kHz)

Mel Spectrogram

- Example
 - $K_{\text{Mel}} = 16$, $f_{\text{s}} = 16 \text{ kHz}$
 - Drum beat with kick drum, snare drum, and open hi-hat

Own Aud-A2-1

- 513 frequency bands → 16 Mel bands
 - Compression by 96.9%!

Constant-Q Transform (CQT)

Geometrically spaced center frequencies

$$f_{\text{CQT}}(i) \coloneqq f_{\text{ref}} \cdot 2^{i/b}$$

Increasing filter bandwidth

$$\Delta_{CQT}(i) \coloneqq f_{i+1} - f_i = f_i \left(2^{1/b} - 1 \right)$$

Constant Q-factor

$$Q(i) \coloneqq \frac{f_{\text{CQT}}(i)}{\Delta_{CQT}(i)} = \frac{1}{2^{1/b} - 1}$$

Librosa: librosa.cqt

Constant-Q Transform (CQT)

- Properties
 - Logarithmic frequency binning (harmonic frequencies → fixed shifted pattern)
 - Variable time resolution → Longer analysis windows for low frequencies
- Example
 - Piano melody, semitone resolution (b = 12)

Constant-Q Transform (CQT)

- Properties
 - Logarithmic frequency binning (harmonic frequencies → fixed shifted pattern)
 - Variable time resolution → Longer analysis windows for low frequencies
- Example
 - Piano melody, semitone resolution (b = 12)

Programming session

Fig-A2-2

Programming session

References

Images

Fig-A2-1: D. A. Russell: Acoustics and Vibration Animations (https://www.acs.psu.edu/drussell/Demos/waves-intro/Lwave-Red-2.gif)

Fig-A2-2: Jupyter logo (https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter logo.svg/1200px-Jupyter_logo.svg.png)

References

Audio

Aud-A2-1: Daniel Lucas, "Drum beat loop 3," Website https://freesound.org/people/danlucaz/sounds/517860/, CC0 1.0 licence, 2020.

Aud-A2-2: xserra, "piano-phrase.wav," Website https://freesound.org/people/xserra/sounds/196765/, CC BY 4.0 licence, 2013.

