PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 14

MAT1106 — Introducción al Cálculo Fecha: 2020-10-15

Problema 1:

Sea
$$x_n = 1 - 0, \underbrace{99 \dots 9}_{\text{n 9s}}$$
. Demuestre que $\lim_{n \to \infty} x_n = 0$

Solución problema 1:

Problema 2:

Demuestre que las siguientes sucesiones convergen a cero:

$$1) x_n = \frac{\sin(n)}{n}$$

2)
$$x_n = n\sin(1/n) - 1$$

Solución problema 2:

- $1) |\sin(n)| \le 1$
- 2) Ver circulo unitario y notar que $\sin(\theta) \le \theta \le \tan(\theta)$, para $\theta \le \tan \theta$ ver áreas del triángulo exterior

Problema 3:

Demuestre que si $\lim_{n\to\infty} x_n = \infty$, entonces $\lim_{n\to\infty} \frac{1}{x_n} = 0$. ¿Es verdad el recíproco? Si lo es, demuestrelo, si no lo es, encuentre condiciones necesarias y suficientes.

Solución problema 3:

Problema 4:

Sea x_n una sucesión de enteros que converge a L, demuestre que x_n es eventualmente constante.

Solución problema 4:

Problema 5:

Demuestre que lím $_{n\to\infty} x_n = L$ si y solo si lím $_{n\to\infty} y_n = 0$, donde $y_n = x_n - L$.

Solución problema 5: