SCHEMAT PUNKTOWANIA ZADAŃ ARKUSZ II – POZIOM ROZSZERZONY

Nr zadania	Etapy rozwiązania zadania	Maksymalna liczba punktów za dany etap
11. (4 pkt)	1. Wyznaczenie współrzędnych wierzchołka paraboli: $W(3,4)$.	1p.
	2. Obliczenie wartości $f(0) = -5$.	1p.
	3. Obliczenie wartości $f(7) = -12$.	1p.
	4. Zapisanie odpowiedzi: Funkcja f w przedziale $\langle 0;7 \rangle$ osiąga największą wartość równą 4, zaś najmniejszą równą (-12) .	1р.
12. (4 pkt)	5. Przekształcenie danego równania do postaci np. równania: $x(a-1)(a+1) = a+1$	1p.
	6. Zapisanie, że dla $a = 1$ dane równanie nie ma żadnego rozwiązania.	1p.
	7. Zapisanie, że dla $a = -1$ dane równanie ma nieskończenie wiele rozwiązań.	1p.
	8. Zapisanie, że dla $a \ne 1$ i $a \ne -1$ dane równanie ma dokładnie jedno rozwiązanie.	1p.
13. (4 pkt)	9. Zapisanie, że warunkiem koniecznym ciągłości danej funkcji w punkcie $x=2$ jest istnienie skończonej granicy w tym punkcie. Uzasadnienie, że dwumian $(x-2)$ jest podzielnikiem dwumianu (x^2+a) , zatem parametr a przyjmuje wartość: $a=-4$. (1punkt przyznajemy za podanie odpowiedzi $a=-4$ bez uzasadnienia)	2p.
	10. Obliczenie granicy danej funkcji w punkcie $x = 2$: $\lim_{x\to 2} \frac{x^2 - 4}{x - 2} = 4$.	1p.
	11. Porównanie obliczonej granicy z wartością funkcji g w punkcie $x = 2$: $\lim_{x\to 2} g(x) = 4 = g(2) = b$ oraz zapisanie odpowiedzi: Funkcja g jest ciągła w punkcie $x = 2$ gdy $a = -4$ oraz $b = 4$.	1p.
14. (5 pkt)	12. Zapisanie, że $a_{n+1} = S_{n+1} - S_n = 2n + 4$	2p.
	13. Obliczenie n - tego wyrazu ciągu: $a_n = 2n + 2$.	1p.
	14. Zapisanie różnicy dwóch dowolnych, kolejnych wyrazów tego ciągu: $r = a_{n+1} - a_n$	1p.
	15. Obliczenie różnicy ciągu i stwierdzenie, że jest to ciąg arytmetyczny.	1p.
15. (5 pkt)	16. Oznaczenie pierwszego wyrazu tego ciągu, np. przez a_1 oraz ilorazu, np. przez q i zapisanie, że $a_1 \cdot q^9 = 10$.	1р.
	17. Doprowadzenie iloczynu dziewiętnastu początkowych, kolejnych wyrazów danego ciągu do postaci $a_1^{19} \cdot q^{1+2++18}$.	1p.
	18. Przekształcenie iloczynu dziewiętnastu początkowych, kolejnych wyrazów danego ciągu do postaci $a_1^{19} \cdot q^{19 \cdot 9}$.	1p.
	19. Przekształcenie iloczynu dziewiętnastu początkowych, kolejnych wyrazów danego ciągu do postaci $(a_1 \cdot q^9)^{19}$	1p.
	20. Zapisanie odpowiedzi: Iloczyn dziewiętnastu początkowych, kolejnych wyrazów tego ciągu jest równy 10 ¹⁹ .	1p.

	21. Zavyvočanja i zanisanja ża dana daćyvia dozanja losovya można anisać	
16. (4 pkt)	21. Zauważenie i zapisanie, że dane doświadczenie losowe można opisać	
	schematem Bernoullego, w którym prawdopodobieństwo sukcesu $p = \frac{1}{6}$,	
	0	1p.
	prawdopodobieństwo porażki $q = \frac{5}{6}$, liczba prób $N = 5$, liczba sukcesów	
	$k \ge 4$.	
	22. Zapisanie prawdopodobieństwa szukanego zdarzenia w postaci:	4
	$P_5(k \ge 4) = P_5(k = 4) + P_5(k = 5)$.	1p.
	23. Wykorzystanie wzorów i zapisanie prawdopodobieństwa szukanego	
	zdarzenia w postaci: $P_5(k \ge 4) = {5 \choose 4} \cdot \left(\frac{1}{6}\right)^4 \cdot \left(\frac{5}{6}\right) + {5 \choose 5} \cdot \left(\frac{1}{6}\right)^5 \cdot \left(\frac{5}{6}\right)^0$.	1p.
	24. Poprawne obliczenie prawdopodobieństwa szukanego zdarzenia:	
	$P(k > 4) = \frac{25}{100} + \frac{1}{100} = \frac{26}{100} = \frac{13}{100} \approx 0.00334$	1p.
	$P_5(k \ge 4) = \frac{25}{7776} + \frac{1}{7776} = \frac{26}{7776} = \frac{13}{3888} \approx 0,00334.$	
17. (5 pkt)	25. Zapisanie warunku (1) $\overrightarrow{CA} \circ \overrightarrow{CB} = 0$, gdzie $C(0, y)$.	1p.
	26. Obliczenie współrzędnych wektora $\overrightarrow{CA} = [-9, -2 - y].$	1p.
	27. Obliczenie współrzędnych wektora $\overrightarrow{CB} = \begin{bmatrix} 4, 2 - y \end{bmatrix}$.	1p.
	28. Obliczenie iloczynu skalarnego wektorów \overrightarrow{CA} i \overrightarrow{CB} : $-36-(2-y)\cdot(2+y)$	1p.
	29. Rozwiązanie równania (1) i zapisanie odpowiedzi: Istnieją dwa takie	1p.
	punkty: $C(0,2\sqrt{10})$ lub $C(0,-2\sqrt{10})$.	-P*
18. (4 pkt)	30. Sporządzenie rysunku i zaznaczenie na nim szukanego kąta.	1p.
	31. Wykorzystanie twierdzenia cosinusów i zapisanie równania np.	
	$a^2 = \frac{3}{4}a^2 + \frac{3}{4}a^2 - 2 \cdot \frac{3}{4}a^2 \cdot \cos \alpha$, gdzie a - długość krawędzi sześcianu,	2p.
	zaś α - miara kąta ostrego między przekątnymi sześcianu	
	32. Obliczenie wartości cosinusa kąta ostrego: $\cos \alpha = \frac{1}{3}$. (Albo: $\cos \beta = -\frac{1}{3}$)	1p.
	gdzie β jest katem rozwartym).	
	33. Wykorzystanie faktu istnienia okręgu wpisanego w dany trapez i zapisanie, że suma długości podstaw <i>a</i> i <i>b</i> trapezu jest równa 10 <i>cm</i> .	2p.
	34. Zauważenie i zapisanie, że wysokość trapezu, opuszczona z wierzchołka	-
1.0	kąta rozwartego, dzieli dłuższą podstawę na odcinki o długościach:	1p.
19. (5 pkt)))
	$\frac{a+b}{2}$ oraz $\frac{a-b}{2}$.	,
	35. Obliczenie długości wysokości trapezu: $h = 4 \ cm$.	1p.
	36. Obliczenie pola danego trapezu: $P = 20cm^2$.	
		1p.
20.	37. Wyznaczenie warunków określających dziedzinę równania	2p.
(10 pkt)	$h(x) - \log_2 k = 0$: $x > 5$ i $k > 0$.	
	38. Przekształcenie równania $h(x) - \log_2 k = 0$ do postaci: $\frac{x^2 - 4}{x - 5} = k$	1p.
	39. Przekształcenie równania do postaci: $x^2 - kx + 5k - 4 = 0$.	1p.
I	<u>, </u>	

	40. Zapisanie układu warunków $\begin{cases} \Delta > 0 \\ x_w > 5 \end{cases}, \text{ gdzie } x_w \text{ oznacza odciętą} \\ f(5) > 0 \end{cases}$ wierzchołka paraboli, będącej wykresem funkcji $f = x^2 - kx + 5k - 4$, przy pewnej wartości k .	1p.
	41. Obliczenie wyróżnika trójmianu: $\Delta = k^2 - 20k + 16$.	1p.
	42. Rozwiązanie nierówności $\Delta > 0$: $\Delta > 0 \Leftrightarrow k \in (-\infty; 10 - 2\sqrt{21}) \cup (10 + 2\sqrt{21}; \infty).$	1p.
	43. Rozwiązanie nierówności $x_w > 5$: $k \in (10, \infty)$.	1p.
	44. Sprawdzenie, że warunek $f(5) > 0$ zachodzi dla każdej rzeczywistej wartości parametru k .	1p.
	44. Zapisanie odpowiedzi, uwzględniającej zbiór rozwiązań układu nierówności z p.40 oraz warunku $k > 0$: Dla wszystkich $k \in (10 + 2\sqrt{21}; \infty)$ równanie $h(x) - \log_2 k = 0$ ma dwa różne pierwiastki.	1p.
	45. Zapisanie zależności między zmiennymi: $\frac{R}{H-R} = \frac{r}{\sqrt{H^2 + r^2}}.$	1p.
21. (10 pkt)	46. Wyznaczenie jednej zmiennej z powyższej zależności, np. $r^2 = \frac{16H}{H-8}$.	1p.
	47. Wyznaczenie objętości stożka, jako funkcji jednej zmiennej: $V(H) = \frac{\pi}{3} \cdot \frac{16H^2}{H-8}.$	1p.
	48. Wyznaczenie dziedziny funkcji $V(H)$: $D_V = (8, \infty)$.	1p.
	49. Obliczenie pochodnej funkcji objętości: $V'(H) = \frac{16\pi}{3} \cdot \frac{H(H-16)}{(H-8)^2}$, $D_{V'} = D_{V}$.	1p.
	50. Wyznaczenie miejsca zerowego pochodnej funkcji objętości: $H = 16$.	1p.
	51. Zbadanie znaku pochodnej funkcji objętości: $V'(H) > 0 \Leftrightarrow H \in (16; \infty)$ oraz $V'(H) < 0 \Leftrightarrow H \in (8;16)$.	1p.
	52. Stwierdzenie i zapisanie, że dla $H=16$ funkcja V osiąga lokalne minimum równe $V(16)=\frac{512\pi}{3}$.	1p.
	53. Uzasadnienie, że minimum lokalne funkcji objętości stożka jest wartością najmniejszą tej funkcji, np. poprzez powołanie się na dwa fakty: $\lim_{H \to 8^+} V(H) = +\infty$ oraz $\lim_{H \to \infty} V(H) = +\infty$.	1p.
	54. Podanie wymiarów stożka o najmniejszej objętości opisanego na kuli o promieniu $R=4cm$: wysokość stożka, $H=16cm$, promień podstawy stożka $r=4\sqrt{2}cm$.	1p.

Uwaga:

Za prawidłowe rozwiązanie każdego z zadań inną metodą (zgodną z poleceniem) od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.