let Tijk, where (i,;, K) 6 30,133,

populations, who have allelic pair (i, j) and are in population K.

 $\Pi_{ijk} = \frac{1}{2N} \underbrace{\frac{1}{2}}_{2N} \underbrace{\frac{1}{2}}_{m=1} \underbrace{\frac{1}{2}}_{indianobask} \underbrace{\frac{1}{2}}_{indianobask} \underbrace{\frac{1}{2}}_{indianobask} \underbrace{\frac{1}{2}}_{in} \underbrace{\frac{1}{2}}_$

The mill to is that the 2 populations are in equilibrium

Ho: $T_{Ajk} = \lambda_A \beta_j \gamma_k$ S.t. $\beta_0 + \beta_1 = 1$ $\gamma_0 + \gamma_4 = 1$

=> dim Ho = 3

Ha: $\pi_{i;k}$ for $(i_i;i_k) \in \{0,1\}^3$ are unconstrained i.e. $\xi \pi_{i;k} = 1$

=) olim H = 7

let's use a likelihood ratio statistic:

$$\Lambda = 2 \left(\sup_{H_4} \ell(\pi) - \sup_{H_0} \ell(\pi) \right) \approx \chi^2_{7-3}$$

Plugging in MIS extimates
$$\hat{x}$$
 \hat{x} , \hat{y} , \hat{y} :

$$\Lambda = 2 \left(\frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{N} \right) - \frac{2}{2} \left(\frac{2}{2} \frac{2}{N} \frac{2}{N} \right) - \frac{2}{2} \left(\frac{2}{2} \frac{2}{N} \frac{2}{N} \right) - \frac{2}{2} \left(\frac{2}{2} \frac{2}{N} \frac{2}{N} \right) - \frac{2}{2} \left(\frac{2}{N} \frac{2$$

where M_{ijk} : # of the 2N gameter in category (i.i.k) M_{ij} : # of the 2N gameter with 2nd variable equal to j

where Oise = observed # gameles in category (iii, 14)

Using the fact that
$$x \log(\frac{x}{a}) \times (x-a) + \frac{(x-a)^2}{2a}$$

=) joint
$$\pi^2 := P(\Lambda \leq \chi_4^2)$$