- 1. $\forall y_1 = f(x_1), y_2 = f(x_2)$, where $y_i \in C, i = 1,2$ and $\theta \in [0,1]$, need to show that $\theta x_1 + \bar{\theta} x_2 \in f^{-1}(C)$, namely $f(\theta x_1 + \bar{\theta} x_2) \in C$. Since f is an affine function, $\theta y_1 + \bar{\theta} y_2 = \theta f(x_1) + \bar{\theta} f(x_2) = A(\theta x_1 + \bar{\theta} x_2) + b$. Since C is convex set, $\theta y_1 + \bar{\theta} y_2 = A(\theta x_1 + \bar{\theta} x_2) + b \in C$. So, $\theta x_1 + \bar{\theta} x_2 \in f^{-1}(C)$, $f^{-1}(C)$ is convex set.
- 2. $\forall \theta \in [0,1], \ x_{11}, x_{12} \in C_1, \ x_{21}, x_{22} \in C_2$, then $x_{11} x_{21}$ and $x_{12} x_{22} \in C$. Since C_1 and C_2 are convex set, $\theta x_{11} + \bar{\theta} x_{12} \in C_1$ and $\theta x_{21} + \bar{\theta} x_{22} \in C_2$. Then $\theta(x_{11} x_{21}) + \bar{\theta}(x_{12} x_{22}) = (\theta x_{11} + \bar{\theta} x_{12}) (\theta x_{21} + \bar{\theta} x_{22})$. Thus, $\theta(x_{11} x_{21}) + \bar{\theta}(x_{12} x_{22}) \in C$. If $0 \in C$, $\exists x_1 \in C_1$ and $x_2 \in C_2$ such that $x_1 = x_2$. While $C_1 \cap C_2 = \emptyset$. Therefore, $0 \notin C$.
- 3. a) $\forall x_i \in int \ C, i = 1, 2 \ \text{and} \ \theta \in [0,1].$ Since C is convex set, $\theta x_1 + \bar{\theta} x_2 \in C$. Since $x_i \in int \ C, i = 1, 2$, there exists r such that $B(x_i, r) \subset C, i = 1, 2$. Select a ρ which $\|\rho\| < r$, $(x_i + \rho) \in B(x_i, r) \subset C, i = 1, 2$. Therefore, $\theta(x_1 + \rho) + \bar{\theta}(x_2 + \rho) \in C$. Thus, $\theta x_1 + \bar{\theta} x_2 \in int \ C$, namely $int \ C$ is convex set.
 - b) Let $x_i \in \bar{C}$, i=1,2, need to show that $\forall \, \theta \in [0,1]$, $\theta x_1 + \bar{\theta} x_2 \in \bar{C}$. $\exists \, r \, such \, that \, B(x_i, \, r) \, \cap C \neq \emptyset, i=1,2$. Let $y_i \in B(x_i, \, r) \, \cap C \neq \emptyset, i=1,2$. Since C is convex set, $\forall \, \theta \in [0,1], \theta y_1 + \bar{\theta} y_2 \in C \subset \bar{C}$. Because $\|(\theta y_1 + \bar{\theta} y_2) (\theta x_1 + \bar{\theta} x_2)\| \leq r, \, \theta x_1 + \bar{\theta} x_2 \in \bar{C}$. Namely, \bar{C} is convex set.
- 4. a) $\forall y_i = \sum_{k=1}^m \theta_{ik} x_k$, where $\sum_{k=1}^m \theta_{ik} = 1$ and i = 1, 2 $\forall \alpha \in [0, 1]$, $\alpha y_1 + (1 \alpha) y_2 = \sum_{k=1}^m (\alpha \theta_{1k} + (1 \alpha) \theta_{2k}) x_k$, Since $\sum_{k=1}^m \theta_{ik} = 1$, i = 1, 2, $\sum_{k=1}^m \alpha \theta_{1k} = \alpha$ and $\sum_{k=1}^m (1 \alpha) \theta_{2k} = 1 \alpha$, $\sum_{k=1}^m \alpha \theta_{1k} + (1 \alpha) \theta_{2k} = 1$. So $\alpha y_1 + (1 \alpha) y_2 \in C$. Namely, C is convex set.
 - $\text{b)} \quad \forall \, x_k \, \in S \, \text{ and } \, \alpha \, \in [0,1], \, \text{let} \, \, k=i, \\ \text{j}, \, \, \theta_k = \begin{cases} \alpha, k=j \\ (1-\alpha), \, k=i, \\ 0, \, k\neq i, \\ j \end{cases}$

So C = conv S. 5. $||x_0 - x||_2 < ||x_i - x||_2, i = 1, 2, ..., k$ $(x_0^T - x^T)(x_0 - x) \le (x_i^T - x^T)(x_i - x)$ $2(x_i^T - x_0^T)x \le x_i^T x_i - x_0^T x_0$ Let $A = 2(x_1^T - x_0^T, x_2^T - x_0^T, ..., x_k^T - x_0^T)^T$ and $b = (x_2^T x_1 - x_0^T x_0, x_2^T x_2 - x_0^T x_0, ..., x_k^T x_k - x_0^T x_0)^T$. Then, $V = \{x : Ax \le b\}$.