Introduction to Quantum Mechanics

—David J. Griffiths

Wei Wang* 2019-6

^{*}Copyright © Wei Wang 2019. All rights reserved.

Contents

\mathbf{A}	bstract		
1	Wave Function		2
2	2 Time-independent Schrödinger Equation		3
	2.1 Stationary States		3
	2.2 Infinite Square Well		3
	2.3 Harmonic Oscillator		4
	2.3.1 Ladder Operator		4
	2.3.2 Analytic Method		6
	2.4 Free Particle		7
	2.5 Delta-function Potential		7
	2.6 Finite Square Well		9
3	3 Formalism	1	1
	3.1 Hilbert Space	1	. 1
	3.2 Observables	1	. 1
	3.3 Discrete Spectrum	1	.2
	3.4 Continuous Spectrum	1	.2
	3.5 The Uncertainty Principle	1	.3
	3.6 Dirac Notation	1	4
4	1 Quantum Mechanics in Three Dimensions	1	5
	4.1 Spherical Coordinates	1	.5
	4.2 Hydrogen Atom	1	6
	4.3 Angular Momentum	1	7
	4.4 Spin	1	8
5	5 Identical Particles	2	0
	5.1 Two-Particle System	2	20
6		2	
	6.1 Nondegenerate Perturbation	2	1
	6.2 Degenerate Perturbation	2	1
	6.3 Fine Structure of Hydrogen	2	1
	6.3.1 Relativistic Correction	2	1
	6.3.2 Spin-Orbit Coupling		
	6.3.3 Zeeman Effect	2	:3
7	Variational Principle	2	4
8	8 WKB Approximation	2	4

Abstract

To review the textbook used in Tongji University — *Introduction to Quantum Mechanics*, written by David J. Griffiths. You can browse through the contents to prepare the final exam of Quantum Mechanics. Also, it will be a good choice for you to prepare the GRE Physics Test...

1 Wave Function

1. General Schrödinger equation:

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V\Psi \tag{1}$$

p.s., the energy operator is $i\hbar \frac{\partial \Psi}{\partial t}$.

- 2. Indeterminacy
- 3. Interpretation: Orthodox position = Copenhagen interpretation Agnostic position

4.

$$\left\{ \begin{array}{l} \text{Variance} \\ \text{Standarddeviation}: \ \sigma = \sqrt{< j^2 > - < j >^2} \end{array} \right.$$

5. Normalization

Prove:
$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} |\Psi(x,t)|^2 \mathrm{d}x = 0$$

Proof:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} |\Psi|^2 \mathrm{d}x = \int_{-\infty}^{\infty} \frac{\partial}{\partial t} |\Psi|^2 \mathrm{d}x$$

and

$$\begin{split} \frac{\partial}{\partial t} |\Psi|^2 &= \Psi^* \frac{\partial \Psi}{\partial t} + \Psi \frac{\partial \Psi^*}{\partial t} \quad \text{(Schrödinger equation)} \\ &= \frac{i\hbar}{2m} \left(\Psi^* \frac{\partial^2 \Psi}{\partial x^2} - \Psi \frac{\partial^2 \Psi^*}{\partial x^2} \right) \\ &= \frac{\partial}{\partial x} \left[\frac{i\hbar}{2m} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \Psi \frac{\partial \Psi^*}{\partial x} \right) \right] \end{split}$$

Q. E. D.

7.

$$< x > = \int \Psi^*(x) \Psi dx$$

$$= \int \Psi^* \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \Psi dx$$

8. The uncertainty principle:

$$p = \frac{h}{\lambda} = \hbar k$$
$$\sigma_x \sigma_p \geqslant \frac{h}{2}$$

2 Time-independent Schrödinger Equation

2.1 Stationary States

Solve Schrödinger equation (1) by the method of separation of variables:

$$\begin{cases} \frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\frac{iE}{\hbar}\varphi \Rightarrow \varphi = \exp(-i\frac{E}{\hbar}t) \\ -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = E\psi \end{cases}$$

and
$$\hat{H} = \frac{p^2}{2m} + V = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V \ (p \to \frac{\hbar}{i} \frac{\partial}{\partial x})$$
, namely:

$$\hat{H}\Psi = E\Psi \tag{2}$$

$$\Psi(x,t) = \sum_{n=1}^{\infty} C_n \psi_n(x) e^{-iE_n t/\hbar}$$

$$\sum_{n=1}^{\infty} |C_n|^2 = 1,\tag{3}$$

$$\langle H \rangle = \sum_{n=1}^{\infty} |C_n|^2 E_n. \tag{4}$$

2.2 Infinite Square Well

In a infinite square well:

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} = E\psi \ (0 \leqslant x \leqslant a)$$

namely:

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -\frac{2mE}{\hbar}\psi = -k^2 \psi \tag{5}$$

in which:

$$k = \frac{\sqrt{2mE}}{\hbar}.$$

We know the solution to equation (5) is:

$$\psi = A\sin kx + B\cos kx. \tag{6}$$

Boundary conditions:

$$\psi(0) = \psi(a) = 0,$$

we can get B = 0, and $ka = 0, \pm \pi, \pm 2\pi...$, namely:

$$k_n = \frac{n\pi}{a}, \ n = 1, 2, 3...$$

Therefore,

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}.$$

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \tag{7}$$

$$\Psi_n(x,t) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right) \exp\left(-i\frac{n^2\pi^2\hbar}{2ma^2}t\right). \tag{8}$$

2.3 Harmonic Oscillator

Hooke's Law:

$$F = -kx = m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$$
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{k}{m}x = 0,$$

let $\omega = \sqrt{\frac{k}{m}}$, so $V(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2x^2$, substituting into eq(2), we can get the Schrödinger equation of harmonic oscillator:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi + \frac{1}{2}m\omega^2 x^2\psi = E\psi. \tag{9}$$

2.3.1 Ladder Operator

1. Hamiltanion: $H = \frac{1}{2m} [p^2 + (m\omega x)^2]$, ladder operators: $a_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (\mp ip + m\omega x)$. And we know the commutator of x and p is $[x, p] = i\hbar$, therefore:

$$\begin{cases} a_{-}a_{+} = \frac{1}{\hbar\omega}H - \frac{i}{2\hbar}[x,p] = \frac{1}{\hbar\omega}H + \frac{1}{2}, \\ a_{+}a_{-} = \frac{1}{\hbar\omega}H - \frac{1}{2}. \end{cases}$$

The commutator of a_{+} and a_{-} is: $[a_{-}, a_{+}] = a_{-}a_{+} - a_{+}a_{-} = 1$.

So the Hamiltanion:

$$H = \hbar\omega \left(a_{\pm} a_{\mp} \pm \frac{1}{2} \right),\,$$

and Schrödinger equation (9) become:

$$\hbar\omega \left(a_{\pm}a_{\mp} \pm \frac{1}{2}\right)\psi = E\psi. \tag{10}$$

2. If $H\psi = E\psi$, prove:

$$\begin{cases} H(a_+\psi) = (E + \hbar\omega)(a_+\psi), \\ H(a_-\psi) = (E - \hbar\omega)(a_-\psi). \end{cases}$$

Proof:

$$H(a_{+}\psi) = \hbar\omega(a_{+}a_{-} + \frac{1}{2})(a_{+}\psi)$$

$$= \hbar\omega a_{+}(a_{-}a_{+} + \frac{1}{2})\psi$$

$$= \hbar\omega a_{+}(\frac{1}{\hbar\omega}H + 1)\psi$$

$$= a_{+}(H + \hbar\omega)\psi$$

$$= a_{+}(E + \hbar\omega)\psi$$

$$= (E + \hbar\omega)(a_{+}\psi)$$

similarly, we can get

$$H(a_{-}\psi) = (E - \hbar\omega)(a_{-}\psi).$$

Q. E. D.

3. Ground state ψ_0 satisfy: $a_-\psi_0 = 0$, where $a_- = \frac{1}{\sqrt{2\hbar m\omega}} \left(\hbar \frac{\partial}{\partial x} + m\omega x\right)$, solution:

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2}.$$

Substituting ψ_0 into Schrödinger equation (10):

$$\hbar\omega(a_{+}a_{-} + \frac{1}{2})\psi_{0} = E_{0}\psi_{0}$$

$$\hbar\omega \cdot \frac{1}{2}\psi_{0} = E_{0}\psi_{0},$$

 $\hbar\omega \cdot \frac{1}{2}\psi_0 = E_0\psi_0,$

Therefore,

$$E_0 = \frac{1}{2}\hbar\omega,\tag{11}$$

and

$$\psi_n = A_n (a_+)^n \psi_0 = \frac{1}{\sqrt{n!}} (a_+)^n \psi_0 ,$$

$$E_n = (n + \frac{1}{2}) \hbar \omega .$$

4. Prove $A_n = \frac{1}{\sqrt{n!}}$.

Proof: First, we have to get the Hermitian operator of the raising/lowering ladder operator:

$$a_{\pm}^{\dagger} = a_{\mp}.$$

Then, we substitute the E_n back into Schrödinger equation (10):

$$\hbar\omega(a_{\pm}a_{\mp}\pm\frac{1}{2})\psi_n=E_n\psi_n=(n+\frac{1}{2})\hbar\omega\psi_n,$$

namely,

$$a_{+}a_{-}\psi_{n} = n\psi_{n} \tag{12}$$

$$a_-a_+\psi_n = (n+1)\psi_n. (13)$$

If $a_+\psi_n = c_n\psi_{n+1}$ and $a_-\psi_n = d_n\psi_{n-1}$,

$$\int (a_{+}\psi_{n})^{*}(a_{+}\psi_{n})dx = |c_{n}|^{2} \int |\psi_{n+1}|^{2}dx = |c_{n}|^{2}$$
$$= \int (a_{-}a_{+}\psi_{n})^{*}\psi_{n}dx = (n+1) \int |\psi_{n}|^{2}dx = n+1$$

namely: $a_+\psi=\sqrt{n+1}\ \psi_{n+1}$, similarly: $a_-\psi_n=\sqrt{n}\ \psi_{n-1}$, Therefore,

$$A_n = \frac{1}{\sqrt{n!}}.$$

Q. E. D.

5. Prove $\int_{-\infty}^{\infty} \psi_m^* \psi_n = \delta_{mn}$ (Kronecker Delta).

Proof:

$$\int_{-\infty}^{\infty} \psi_m^*(a_+ a_-) \psi_n \mathrm{d}x = n \int_{-\infty}^{\infty} \psi_m^* \psi_n \mathrm{d}x$$
$$= \int_{-\infty}^{\infty} (a_+ a_- \psi_m)^* \psi_n \mathrm{d}x = m \int_{-\infty}^{\infty} \psi_m^* \psi_n \mathrm{d}x.$$

Unless $m \neq n$, $\int_{-\infty}^{\infty} \psi_m^* \psi_n dx = 0$. O. E. D.

2.3.2 Analytic Method

Schrödinger equation of harmonic oscillator (9):

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi + \frac{1}{2}m\omega^2x^2\psi = E\psi.$$

Let $\xi = \sqrt{\frac{m\omega}{\hbar}}x$ and $K = \frac{2E}{\hbar\omega}$, then:

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}\xi^2} = (\xi^2 - K)\psi.$$

Solution to this equation:

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2},$$

where $H_n(\xi)$ is Hermite polynomials:

$$H_0 = 1, \ H_1 = 2\xi, \ H_2 = 4\xi^2 - 2.$$

2.4 Free Particle

Schrödinger equation with V=0:

$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} = E\psi,$$

then

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -k^2 \psi$$
, where $k = \frac{\sqrt{2mE}}{\hbar}$.

Solution to this equation:

$$\psi(x) = Ae^{ikx} + Be^{-ikx}.$$

Therefore,

$$\Psi(x,t) = Ae^{ik(x - \frac{\hbar k}{2m}t)}.$$

$$k = \pm \frac{\sqrt{2mE}}{\hbar} \begin{cases} + : \text{ right;} \\ - : \text{ left.} \end{cases}$$

And

$$v_{phase} = v_{quantum} = \frac{\hbar |k|}{2m} = \sqrt{\frac{E}{2m}}$$

$$v_{class} = \frac{2E}{m} = 2v_{quantum}.$$

k is continuous spectrum, so

$$\Psi(x,t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk$$

and

$$\Psi(x,0) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \phi(k) e^{ikx} dk$$

the coefficient:

$$\phi(k) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \Psi(x,0) e^{-ikx} dx$$
 (Fourier Transform).

and

$$v_{group} = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{\hbar k}{m} = 2v_{phase} = v_{class}.$$

2.5 Delta-function Potential

For different E:

boundary state : E < 0; scattering state : E > 0.

For $V(x) = -\alpha \delta(x)$, Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi - \alpha\delta(x)\psi = E\psi.$$

(1) E < 0:

For x < 0, V(x) = 0, Schrödinger equation:

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -\frac{2mE}{\hbar^2} \psi = \kappa^2 \psi, \ \kappa = \frac{\sqrt{-2mE}}{\hbar}.$$

Solution to this equation:

 $\psi(x) = Ae^{-\kappa x} + Be^{\kappa x} = Be^{\kappa x}$ (we choose A = 0, for the first term blows up when $x \to -\infty$),

similarly, $\psi(x) = Fe^{-\kappa x} \ (x > 0)$

The standard boundary conditions for ψ :

 $\begin{cases} \psi, \text{ always continuous.} \\ \mathrm{d}\psi/\mathrm{d}x, \text{ continuous except at point where potential is infinite.} \end{cases}$

Integrating Schrödinger equation:

$$-\frac{\hbar^2}{2m} \int_{-\varepsilon}^{\varepsilon} \frac{\partial^2 \psi}{\partial x^2} dx + \int_{-\varepsilon}^{\varepsilon} V(x) \psi dx = E \int_{-\varepsilon}^{\varepsilon} \psi dx,$$

when $\varepsilon \to 0$, $\int_{-\varepsilon}^{\varepsilon} \frac{\partial^2 \psi}{\partial x^2} dx = \Delta \left(\frac{\partial \psi}{\partial x} \right)$ and $\int_{-\varepsilon}^{\varepsilon} \psi dx = 0$, therefore,

$$\Delta\left(\frac{\partial\psi}{\partial x}\right) = \frac{2m}{\hbar^2} \int_{-\varepsilon}^{\varepsilon} V(x)\psi dx = -\frac{2m}{\hbar^2} \int_{-\varepsilon}^{\varepsilon} \alpha \delta(x)\psi(x) dx = -\frac{2m\alpha}{\hbar^2} \psi(0).$$

Now, we know that B = F, and $\frac{\mathrm{d}\psi}{\mathrm{d}x}\Big|_{-} = B\kappa$, $\frac{\mathrm{d}\psi}{\mathrm{d}x}\Big|_{+} = -B\kappa$, so

$$\Delta \left(\frac{\mathrm{d}\psi}{\mathrm{d}t} \right) = -2B\kappa = -\frac{2m\alpha}{\hbar^2}B \implies \kappa = \frac{m\alpha}{\hbar^2}.$$

then,

$$E = -\frac{\hbar^2 \kappa^2}{2m} = -\frac{m\alpha^2}{2\hbar^2}.$$

Normalizing ψ ,

$$\int_{-\infty}^{\infty} |\psi|^2 \mathrm{d}x = 2 \int_{0}^{\infty} |B|^2 e^{-2\kappa x} \mathrm{d}x = \frac{|B|^2}{\kappa} = 1 \implies |B| = \sqrt{\kappa},$$

namely,

$$\psi(x) = \frac{\sqrt{m\alpha}}{\hbar} e^{-\frac{m\alpha}{\hbar^2}|x|},$$

$$E = -\frac{m\alpha^2}{2\hbar^2}$$

(2) E > 0:

When $x \neq 0$, Schrödinger equation:

$$\frac{\partial^2}{\partial x^2}\psi = -k^2\psi, \ k = \frac{\sqrt{2mE}}{\hbar}.$$

Solution to this equation:

$$\psi = Ae^{ikx} + Be^{-ikx}, \ x < 0$$

$$\psi = Fe^{ikx} + Ge^{-ikx}, \ x > 0$$

using the standard boundary conditions again:

$$A + B = F + G$$

and

$$\frac{\mathrm{d}\psi}{\mathrm{d}x}\Big|_{-} = ik(A - B), \ \frac{\mathrm{d}\psi}{\mathrm{d}x}\Big|_{+} = ik(F - G),$$

SO

$$\Delta\left(\frac{\mathrm{d}\psi}{\mathrm{d}x}\right) = ik(F - G - A + B) = -\frac{2m\alpha}{\hbar^2}(A + B).$$

Consider only the incident wave, namely G = 0, let $\beta = \frac{m\alpha}{\hbar^2 k}$, then

$$B = \frac{i\beta}{1 - i\beta} A, \ F = \frac{1}{1 - i\beta} A.$$

The reflection coefficient R and transmission coefficient T:

$$R = \frac{|B|^2}{|A|^2}, \ T = \frac{|F|^2}{|A|^2}.$$

2.6 Finite Square Well

The potential function of a finite square well is

$$V(x) = \begin{cases} -V_0, & -a \leqslant x \leqslant a \\ 0, & |x| > a \end{cases}$$

(1) E < 0:

When x < -a, Schrödinger equation:

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = \kappa^2 \psi, \ \kappa = \frac{\sqrt{-2mE}}{\hbar}.$$

so, $\psi = Be^{\kappa x}$, similarly $\psi = Fe^{-\kappa x}$ (x > a).

When -a < x < a, Schrödinger equation:

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} = -l^2\psi, \ l = \frac{\sqrt{2mE - V_0}}{\hbar}.$$

Solution to this equation:

$$\psi(x) = C\sin(lx) + D\cos(lx).$$

We can assume that $\psi(x)$ is an even function, namely:

$$\psi(x) = \begin{cases} Fe^{-\kappa x} &, x > a \\ D\cos(lx) &, 0 < x < a \\ \psi(-x) &, x < 0 \end{cases}$$

Applying the standard boundary conditions:

$$Fe^{-\kappa a} = D\cos(la),$$

$$-\kappa F e^{-\kappa a} = -lD\sin(la),$$

SO

$$\kappa = l \tan(la).$$

let z = la, then

$$\tan z = \sqrt{\left(\frac{z_0}{z}\right)^2 - 1}$$
, where $z_0 = \frac{\sqrt{2mV_0}}{\hbar}a$.

(2) E > 0:

When x < -a, Schrödinger equation:

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = -k^2 \psi, \ k = \frac{\sqrt{2mE}}{\hbar}.$$

Solution to this equation:

$$\psi(x) = Ae^{ikx} + Be^{-ikx},$$

similarly, $\psi(x) = Fe^{ikx} + Ge^{-ikx}$ (x > a). Schrödinger equation is the same in the square well, namely

$$\psi(x) = C\sin(lx) + D\cos(lx).$$

Consider only the incident wave, namely G = 0...

3 Formalism

3.1 Hilbert Space

Square-integrable function:

$$f(x) \Rightarrow \int_a^b |f(x)|^2 \mathrm{d}x < \infty,$$

all such functions constitutes a vector space **Hilbert Space**¹. Inner product of two functions:

$$\langle f|g\rangle = \int_a^b f(x)^* g(x) dx,$$

and

$$\langle f|g\rangle = \langle g|f\rangle^*$$
.

Schwarz inequality:

$$\left| \int_a^b f(x)^* g(x) dx \right| \leqslant \sqrt{\int_a^b |f(x)|^2 dx} \int_a^b |g(x)|^2 dx. \tag{14}$$

A set of function is complete is:

$$f(x) = \sum_{n=1}^{\infty} C_n f_n(x),$$

where $\langle f_m | f_n \rangle = \delta_{mn}$ and $C_n = \langle f_n | f \rangle$.

3.2 Observables

1. Hermitian Operator

$$\langle Q \rangle = \langle \psi | \hat{Q} | \psi \rangle$$
$$\langle Q \rangle = \langle Q \rangle^*$$
$$\langle \psi | \hat{Q} \psi \rangle = \langle \hat{Q} \psi | \psi \rangle$$

2. Determined States

The value is q when you measure \hat{Q} every time: $\langle \hat{Q} \rangle = q$, and

$$\sigma^{2} = 0$$

$$= \langle (\hat{Q} - \langle Q \rangle)^{2} \rangle$$

$$= \langle \psi | (\hat{Q} - \langle Q \rangle)^{2} \psi \rangle$$

$$= \langle (\hat{Q} - q)\psi | (\hat{Q} - q)\psi \rangle,$$

therefore: $\hat{Q}\psi = q\psi$.

¹Mathematicians call it $L_2(a,b)$.

3.3 Discrete Spectrum

1. Prove: Hermitian Operator's eigenvalues are real.

Proof: First, we know $\hat{Q}f = qf$, and

$$\langle f|\hat{Q}f\rangle = \langle \hat{Q}f|f\rangle$$
,

and

$$\begin{split} \langle f|\hat{Q}f\rangle &= q \, \langle f|F\rangle \,, \\ \langle \hat{Q}f|f\rangle &= \langle qf|f\rangle = \int (qf)^* f \mathrm{d}x = q^* \int f^* f \mathrm{d}x = q^* \, \langle f|f\rangle \,, \end{split}$$

therefore: $q = q^*$. Q. E. D.

- 2. Eigenfunctions belonging to distinct eigenvalues are orthogonal.
- 3. The eigenfunctions of an observable operator are complete.

3.4 Continuous Spectrum

For example, the \hat{x} and \hat{p} .

1. Dirac orthonormality:

$$\langle f_m | f_n \rangle = \delta(m-n)$$

- 2. Eigenfunctions are not orthonormal but dirac orthonormal, and not in the Hilbert Space.
- 3. Eigenfunctions of \hat{x} and \hat{p} :

$$\hat{p} \rightarrow f_p = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$
, (eigenvalue is p)
 $\hat{x} \rightarrow g_y = \delta(x - y)$, (eigenvalue y).

Momentum space wave function:

$$\begin{split} \Phi(p,t) &= \langle f_p | \Psi(x,t) \rangle \\ &= \frac{1}{\sqrt{2\pi\hbar}} \int e^{-ipx/\hbar} \Psi(x,t) \mathrm{d}x. \end{split}$$

(Position space) wave function:

$$\Psi(x,t) = \int c(p) f_p dp = \frac{1}{\sqrt{2\pi\hbar}} \int e^{ipx/\hbar} \Phi(p,t) dp.$$

3.5 The Uncertainty Principle

1. $\sigma_A^2 = \langle (\hat{A} - \langle A \rangle) \psi | (\hat{A} - \langle A \rangle) \Psi \rangle = \langle f | f \rangle$, similarly $\sigma_B^2 = \langle g | g \rangle$, where $g = \hat{B} - \langle B \rangle$. For Schwarz inequality:

$$\sigma_A^2 \sigma_B^2 = \langle f | f \rangle \, \langle g | g \rangle \geqslant | \, \langle f | g \rangle \, |^2,$$

and $|z^2| \geqslant \left|\frac{1}{2i}(z-z^*)\right|^2$, so

$$\sigma_A^2 \sigma_B^2 \geqslant \left(\frac{1}{2i} \left[\langle f|g \rangle - \langle g|f \rangle \right] \right)^2 = \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2.$$

We know $[x, p] = i\hbar$, so $\sigma_x^2 \sigma_p^2 \geqslant \left(\frac{\hbar}{2}\right)^2$.

2. When g = cf and $Re(\langle f|g\rangle) = 0$, where c is a constant, the inequality becomes a equality, namely:

$$\operatorname{Re}(c\langle f|f\rangle) = 0 \implies c = ia,$$

so $g = iaf = ia(x - \langle x \rangle)$. For operators \hat{x} and \hat{p} , the minimum-uncertainty wave packet is:

$$\left(\frac{\hbar}{i}\frac{\partial}{\partial x} - \langle p \rangle\right)\psi = ia(x - \langle x \rangle)\psi.$$

3. The Energy-Time Uncertainty Principle: $\Delta t \Delta E \geqslant \frac{\hbar}{2}$. Proof:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle Q \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{Q} \psi \rangle = \langle \frac{\partial \psi}{\partial t} | \hat{Q} \psi \rangle + \langle \psi | \frac{\partial \hat{Q}}{\partial t} \psi \rangle + \langle \psi | \hat{Q} \frac{\partial \psi}{\partial t} \rangle.$$

And we know the time-dependent Schrödinger equation $i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi$, so:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle Q \right\rangle = \frac{i}{\hbar} \left\langle \hat{H}\psi | \hat{Q}\psi \right\rangle - \frac{i}{\hbar} \left\langle \psi | \hat{Q}\hat{H}\psi \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle = \frac{i}{\hbar} \left\langle [\hat{H}, \hat{Q}] \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle,$$

if \hat{Q} does not depend explicitly on time, which means $\frac{\partial \hat{Q}}{\partial t} = 0$, we can get:

$$\frac{\mathrm{d}\langle Q\rangle}{\mathrm{d}t} = \frac{i}{\hbar}\langle [\hat{H}, \hat{Q}]\rangle. \tag{15}$$

Therefore:

$$\sigma_H^2 \sigma_Q^2 \geqslant (\frac{1}{2i} \langle [\hat{H}, \hat{Q}] \rangle)^2 = \left(\frac{\hbar}{2}\right)^2 \left(\frac{\mathrm{d} \langle Q \rangle}{\mathrm{d}t}\right)^2.$$

Define

$$\Delta E = \sigma_H$$

$$\Delta t = \frac{\sigma_Q}{|d\langle Q\rangle/dt|}, \text{ namely } : \sigma_Q = \left|\frac{d\langle Q\rangle}{dt}\right| \Delta t.$$

3.6 Dirac Notation

1. We use a vector in Hilbert Space $|\Im(t)\rangle$ to represent the state of a system (maybe not a function, such as the eigenstates of spin). Then we have $\hat{Q}|f\rangle = f|f\rangle$, so $|\Im(t)\rangle = \int c|f\rangle dq$.

(1) If
$$\hat{Q} = \hat{x}$$
, and $|f\rangle = |x\rangle = g_y$, then

$$c = \Psi(x, t) = \langle x | \Im(t) \rangle$$
.

(2) If
$$\hat{Q} = \hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$$
, and $|f\rangle = |p\rangle = f_p$, then
$$c = \Phi(p, t) = \langle p | \Im(t) \rangle.$$

(3) If
$$\hat{H} = \hat{H}$$
, and $|f\rangle = |n\rangle$, then
$$c_n = \langle n|\Im(t)\rangle.$$

2. Operators (representint Observables) are linear transformations:

$$|\beta\rangle = \hat{Q} |\alpha\rangle$$
,

where $|\alpha\rangle = \sum a_n |e_n\rangle$ and $|\beta\rangle = \sum b_n |e_n\rangle$. And

$$|\beta\rangle = \sum b_n |e_n\rangle = \hat{Q} |\alpha\rangle = \sum_n a_n \hat{Q} |e_n\rangle,$$

taking the inner product with $|e_m\rangle$:

$$b_m = \sum_n a_n \langle e_m | \hat{Q} | e_n \rangle = \sum_n Q_{mn} a_n,$$

namely:

$$Q_{mn} = \langle e_m | \hat{Q} | e_n \rangle. \tag{16}$$

3. Projection Operator: $\hat{P} = |\alpha\rangle\langle\alpha|$, where $|\alpha\rangle$ is a normalized vector.

e. g.
$$\hat{P} |\beta\rangle = |\alpha\rangle \langle \alpha|\beta\rangle = \langle \alpha|\beta\rangle |\alpha\rangle$$
,

where $\langle \alpha | \beta \rangle$ is the projection of $|\beta\rangle$ in the direction of $|\alpha\rangle$. Therefore, we know:

$$\sum_{n} |e_n\rangle \langle e_n| = 1,$$

for $\sum_{n} |e_n\rangle \langle e_n|\beta\rangle = |\beta\rangle$.

4. Commutator's property:

$$[AB, C] = A[B, C] + [A, C]B$$
 (17)

4 Quantum Mechanics in Three Dimensions

4.1 Spherical Coordinates

Schrödinger equation $i\hbar \frac{\partial \Psi}{\partial t} = \hat{H}\Psi$, and $\hat{p} = \frac{\hbar}{i}\nabla$, namely:

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi. \tag{18}$$

The time-independent schrödinger equation:

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi. \tag{19}$$

In spherical coordinates:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial t} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2} \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

where θ is the polar angle and ϕ is the azimuthal angle. Solve Schrödinger equation (19) by the method of separation of variables:

$$\psi(x,\theta,\psi) = R(r)Y(\theta,\psi)$$
, and $Y(\theta,\psi) = \Theta(\theta)\Phi(\phi)$,

and the separation constant is l(l+1) and m^2 respectively. Therefore:

$$\Phi(\psi) = e^{im\phi},$$

and we know $\Phi(\phi + 2\pi) = \Phi(\phi)$, so $m = 0, \pm 1, \pm 2...$ And

$$\Theta(\theta) = AP_l^m(\cos\theta),$$

so
$$l > 0$$
, and $l \ge |m|$. For $\forall l = 0, 1, 2..., m = \underbrace{-l, -l + 1, ..., -1, 0, 1, ... l - 1, l}_{2l+1 \text{ terms}}$.

The normalization condition of angular equation is:

$$\int_0^{2\pi} \int_0^{\pi} |Y|^2 \sin \theta d\theta d\phi = 1,$$

and the normalized angular wave function are called **Spherical Harmonics**:

$$Y_l^m(\theta,\phi) = \varepsilon \sqrt{\frac{(2l-a)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{im\phi} P_l^m(\cos\theta),$$

where $\varepsilon = (-1)^m$ when $m \geqslant 0$, and $\varepsilon = 1$ when $m \leqslant 0$. And

$$\int_0^{2\pi} \int_0^{2\pi} Y_l^m Y_{l'}^{m'} \sin\theta d\theta d\phi = \delta_{ll'} \delta_{mm'},$$

where l is called azimuthal quantum number and m is called magnetic quantum number.

To solve the radial equation, let u(r) = rR(r), so that the normalization condition becomes:

$$\int_0^\infty |R(r)|^2 r^2 dr = 1 \ \Rightarrow \ \int_0^\infty |u|^2 dr = 1,$$

and the radial function becomes:

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\right]u = Eu,\tag{20}$$

we can see that there exists an effective potential:

$$V_{\text{eff}} = \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}.$$

Then We can get the solution to the radial equation:

$$R(r) = Aj_l(kr), \ k = \frac{\sqrt{2mE}}{\hbar},$$

where $j_l(x)$ is the spherical Bessel function of order l. And the boundary conditions:

$$R(a) = 0;$$

 $ka = \beta_{nl},$

in which β_{nl} is the nth zero of the lth spherical Bessel function.

4.2 Hydrogen Atom

1. For hydrogen atom, potential energy:

$$V(r) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r},$$

and the radial equation 20 says:

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[-\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r} + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2} \right] u = Eu.$$

Let $\kappa = \frac{\sqrt{-2mE}}{\hbar}$, and $\rho = \kappa r$, $\rho_0 = \frac{me^2}{2\pi\varepsilon_0\hbar^2\kappa}$, we can get the famous **Bohr Formula**:

$$E_n = -\left[\frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2\right] \frac{1}{n^2} = \frac{E_1}{n^2}, \ n = 1, 2, 3, \dots$$
 (21)

and from $\rho_0 = 2n$ and $n \equiv j_{max} + l + 1$, we can derive that

$$\kappa = \left(\frac{me^2}{4\pi\varepsilon_0\hbar^2}\right)\frac{1}{n} = \frac{1}{an}, \text{ and } \rho = \frac{r}{an},$$

and the so-called **Bohr Radius**:

$$a = \frac{4\pi\varepsilon_0\hbar^2}{me^2} \approx 0.529 \times 10^{-10} m.$$

Also l = 0, 1, ..., n - 1, the total degeneracy of energy level E_n is $d(n) = \sum_{l=0}^{n-1} (2l+1) = n^2$. Therefore, the normalized hydrogen wave function is (associated Laguerre polynomial) ...

2. The spectrum of hydrogen:

$$E_{\gamma} = E_i - E_f = E_1 \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right),$$

namely,

$$h\nu = E_1 \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
, where $\hbar = \frac{h}{2\pi}$,

$$\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right), \text{ where the Rydberg Constant is } R = \frac{m}{4\pi c\hbar^3} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2.$$

And

$\overline{n_f}$	Spectrum series
1	Lyman
2	Balmer
3	Paschen

4.3 Angular Momentum

Angular momentum: $\vec{L} = \vec{r} \times \vec{p}$, and

$$L_x = yp_z - zp_y, \ L_y = zp_x - xp_z, \ L_z = xp_y - yp_x.$$

We can derive that

$$[r_i, r_j] = [p_i, p_j] = 0,$$

and

$$[r_i, p_j] = i\hbar \delta_{ij} = -[p_i, r_j].$$

Therefore, $[L_x, L_y] = i\hbar L_z$... and

$$\sigma_{L_x}^2 \sigma_{L_y}^2 \geqslant \left(\frac{1}{2i} \left\langle i\hbar L_z \right\rangle\right)^2 = \frac{\hbar^2}{4} \left\langle L_z \right\rangle^2,$$

namely, $\sigma_{L_x}\sigma_{L_y} \geqslant \frac{\hbar}{2} |\langle L_z \rangle| \dots$ And

$$[L^2, L_x] = [L^2, L_y] = [L^2, L_z] = 0,$$

namely $[L^2, \vec{L}] = 0$.

$$L^2 f = \lambda f$$
$$L_z f = \mu f,$$

let $L_{\pm} = L_x \pm iL_y$, we know $[L_z, L_{\pm}] = \pm \hbar L_{\pm}$ and $[L^2, L_{\pm}] = 0$, then

$$L^{2}(L_{\pm}f) = \lambda(L_{\pm}f)$$

$$L_{z}(L_{\pm}f) = (\mu + \hbar)(L_{\pm}f).$$

Then $L^2 = L_{\pm}L_{\mp} + L_z^2 \mp \hbar L_z$, we can derive that:

$$L^{2}f_{l}^{m} = \hbar^{2}l(l+1)f_{l}^{m}$$

$$L_{z}f_{l}^{m} = \hbar m f_{l}^{m},$$

where $m = -l, -l + 1, \dots, l - 1, l$ and $l = 0, 1/2, 1, 3/2 \dots$, also

$$L_{\pm}f_l^m = \hbar\sqrt{l(l+1) - m(m\pm 1)}f_l^{m\pm 1}.$$
 (22)

4.4 Spin

Similarly,

$$[S_x, S_y] = i\hbar S_z, \ [S_y, S_z] = i\hbar S_x, \ [S_z, S_x] = i\hbar S_y.$$

Also

$$S^{2}|sm\rangle = \hbar^{2}s(s+1)|sm\rangle;$$

 $S_{z}|sm\rangle = \hbar m |sm\rangle,$

where $|sm\rangle$ is the eigenstate of spin, and it is not a function, so we use a vector to represent it. Let $S_{\pm} = S_x \pm iS_y$, then

$$S_{\pm} |sm\rangle = \hbar \sqrt{s(s+1) - m(m\pm 1)} |s(m\pm 1)\rangle, \qquad (23)$$

where s = 0, 1/2, 1, 3/2... and m = -s, -s + 1, ..., s - 1, s.

For s=1/2, there are just two eigenstate $|\frac{1}{2} \frac{1}{2}\rangle$ and $|\frac{1}{2} (-\frac{1}{2})\rangle$, which we call spin up (\uparrow) and spin down (\downarrow) . Then we can use spinor to represent the general state:

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-,$$

in which $\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (\uparrow) and $\chi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (\downarrow) . Therefore:

$$S^2\chi_+ = S^2\,|\frac{1}{2}\,\,\frac{1}{2}\rangle = \hbar^2\frac{1}{2}\times\frac{3}{2}\,|\frac{1}{2}\,\,\frac{1}{2}\rangle = \frac{3}{4}\hbar^2\chi_+,$$

similarly, $S^2\chi_- = \frac{3}{4}\hbar^2\chi_-$, so

$$S^2 = \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

And $S_z \chi_+ = \frac{1}{2} \hbar \chi_+, S_z \chi_- = -\frac{1}{2} \hbar \chi_-, \text{ so}$

$$S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Also $S_{+}\chi_{+} = S_{-}\chi_{-} = 0$, $S_{+}\chi_{-} = \hbar\chi_{+}$, $S_{-}\chi_{+} = \hbar\chi_{-}$, so

$$S_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, S_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

then, we can use $S_{\pm} = S_x \pm iS_y$ to get S_x and S_y . Therefore,

$$\vec{S} = \frac{\hbar}{2}\sigma,$$

where σ is called **Pauli Spin Matrix**:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Magnetic dipole momentum

$$\vec{\mu} = \gamma \vec{S},$$

and Hamiltanion

$$H = -\vec{\mu} \cdot \vec{B} = -\gamma \vec{B} \cdot \vec{S}$$

..

Two spin-1/2 particle:

$$s = 1 \text{ (triplet)} \begin{cases} |11\rangle = \uparrow \uparrow \\ |10\rangle = \frac{1}{\sqrt{2}} (\uparrow \downarrow + \downarrow \uparrow) \\ |1 - 1\rangle = \downarrow \downarrow \end{cases}$$

and

$$s = 0 \text{ (singlet)}: |00\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow).$$

5 Identical Particles

5.1 Two-Particle System

Wave function $\Psi(\vec{r}_1, \vec{r}_2, t)$ satisfy Schrödinger equation:

$$i\hbar\frac{\partial\Psi}{\partial t} = H\Psi,$$

in which
$$H=-rac{\hbar^2}{2m}\nabla_1^2-rac{\hbar^2}{2m}\nabla_2^2+V(\vec{r_1},\vec{r_2},t).$$

1. Distinguishable particles:

$$\Psi(\vec{r}_1, \vec{r}_2) = \Psi_a(\vec{r}_1)\Psi_b(\vec{r}_2).$$

2. Indistinguishable particles:

$$\Psi_{\pm}(\vec{r}_1, \vec{r}_2) = A[\Psi_a(\vec{r}_1)\Psi_b()\vec{r}_2) \pm \Psi_a(\vec{r}_2)\Psi_b(\vec{r}_1)],$$

where "+" represents **Bosons** (integer spin), and "-" represents **Fermions** (half integer spin).

- 3. Pauli Exlusion Principle: if $\Psi_a = \Psi_b$, then $\Psi_-(\vec{r}_1, \vec{r}_2) = 0$.
- 4. Exchange symmetric/antisymmetric: $\Psi(\vec{r}_1, \vec{r}_2) = \pm \Psi(\vec{r}_2, \vec{r}_1)$.
- 5. Exchange force:

$$\langle (x_1 - x_2)^2 \rangle_{\pm} = \langle (x_1 - x_2)^2 \rangle_d \mp 2 \left| \langle x \rangle_{ab} \right|^2,$$

where $\langle (x_1 - x_2)^2 \rangle_d = \langle x^2 \rangle_a + \langle x^2 \rangle_b - 2 \langle x \rangle_a \langle x \rangle_b$, and $\langle x \rangle_{ab} = \int x \Psi_a^* \Psi_b dx$. Therefore,

the upper sign : bosons \Rightarrow bonding

the lower sign : fermion \Rightarrow antibonding.

For electrons: the complete state is

$$\Psi(\vec{r})\chi(\vec{s}),$$

where $\Psi(\vec{r})$ is antisymmetric with respect to exchange. So if $\chi(\vec{s})$ is singlet (antisymmetric), the complete state is symmetric which should lead to bonding (**Covalent Bond**). And if $\chi(\vec{s})$ is triplet (symmetric), it should lead to antibonding.

6 Time-Independent Perturbation Theory

6.1 Nondegenerate Perturbation

1. First-Order Theory:

$$E_n^1 = \langle \psi_n^0 | H' | \psi_n^0 \rangle, \tag{24}$$

and $\psi_n^1 = \sum_{m \neq n} C_m^{(n)} \psi_m^0$, then

$$\psi_n^1 = \sum_{m \neq n} \frac{\langle \psi_m^0 | H' | \psi_n^0 \rangle}{(E_n^0 - E_m^0)} \psi_m^0.$$

2. Second-Order Energies

$$\begin{split} E_n^2 &= & \left\langle \psi_m^0 \right| H' \left| \psi_n^1 \right\rangle \\ &= & \sum_{m \neq n} \frac{\left\langle \psi_m^0 \right| H' \left| \psi_n^0 \right\rangle \left\langle \psi_n^0 \right| H' \left| \psi_m^0 \right\rangle}{\left(E_n^0 - E_m^0 \right)} \\ &= & \sum_{m \neq n} \frac{\left| \left\langle \psi_m^0 \right| H' \left| \psi_n^0 \right\rangle \right|^2}{\left(E_n^0 - E_m^0 \right)}. \end{split}$$

6.2 Degenerate Perturbation

The matrix elements of H': $W_{ij} = \langle \psi_i^0 | H' | \psi_j^0 \rangle$. And $W_{ab} = W_{ba}^* = \langle \psi_a^0 | H' | \psi_b^0 \rangle$, then

$$E_{\pm}^{1} = \frac{1}{2} \left[W_{aa} + W_{bb} \pm \sqrt{(W_{aa} - W_{bb})^{2} + 4|W_{ab}|^{2}} \right].$$

Matrix form:

$$\begin{pmatrix} W_{aa} & W_{ab} \\ W_{ba} & W_{bb} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = E^1 \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

If [A, H'] = 0, $Af = \mu f$, and we use f as ψ_n^0 , the W matrix will automatically be diagonal.

6.3 Fine Structure of Hydrogen

Two distinct mechanisms: **Relativistic Correction** and **Spin-Orbit Coupling**. And the famous FineStructureConstant:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}.$$

6.3.1 Relativistic Correction

The relativistic kinetic energy:

$$T = \sqrt{p^{2}c^{2} + m^{2}c^{4}} - mc^{2}$$

$$= mc^{2}(\sqrt{1 + \left(\frac{p}{mc}\right)^{2}} - 1)$$

$$= mc^{2}(\frac{1}{2}\left(\frac{p}{mc}\right)^{2} - \frac{1}{8}\left(\frac{p}{mc}\right)^{4} + \dots)$$

$$= \frac{p^{2}}{2m} - \frac{p^{4}}{8m^{3}c^{2}} + \dots$$

so
$$H_r^1 = -\frac{p^4}{9m^3c^2}$$
. With equation (24)

$$E_n^1 = \langle H_r^1 \rangle = -\frac{1}{8m^3c^2} \langle \psi | p^4 | \psi \rangle = -\frac{1}{8mc^3c^2} \langle p^2\psi | p^2\psi \rangle ,$$

and $p^2\psi=2m(E-V)\psi$ (Schrödinger equation), then

$$E_n^1 = -\frac{1}{2mc^2} \left\langle (E - B)^2 \right\rangle = -\frac{1}{2mc^2} (E^2 - 2E \left\langle V \right\rangle + \left\langle V^2 \right\rangle)$$

. For hydrogen atom:

$$\left\langle \frac{1}{r} \right\rangle = \frac{1}{n^2 a},$$

where a is Bohr radius.

Spin-Orbit Coupling 6.3.2

From electron's point of view:

- (1) proton circling around electron $\Rightarrow \vec{B} \Rightarrow$ orbit, (2) electron spin $\Rightarrow \vec{\mu} \Rightarrow$ spin,
- (1) The magnetic field:

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I}{r^2} d\vec{l} = \frac{\mu_0 I}{2r},$$

where $I = \frac{e}{T}, \ L = rp = rm\frac{2\pi r}{T} = \frac{2\pi mr^2}{T}.$ Therefore:

$$\vec{B} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{e}{mc^2r^3} \vec{L}.$$

(2) The magnetic dipole momentum:

$$\mu = I \cdot \pi r^2, \ I = \frac{q}{T}, \ S = \frac{2\pi m r^2}{T},$$

where S is the spin angular momentum. Therefore the **Gyromagnetic Ratio**:

$$\gamma = \frac{\mu}{S} = \frac{q}{2m},$$

namely $\vec{\mu} = \left(\frac{q}{2m}\right) \vec{S}$. For electrons, it actually is $\vec{\mu} = -\frac{e}{m} \vec{S}$. Therefore,

$$H'_{\rm so} = -\vec{\mu} \cdot \vec{B} = \left(\frac{e^2}{4\pi\varepsilon_0}\right) \frac{1}{m^2 c^2 r^3} \vec{S} \cdot \vec{L},$$

after making a appropriate correction, it becomes:

$$H'_{\rm so} = \left(\frac{e^2}{8\pi\varepsilon_0}\right) \frac{1}{m^2 c^2 r^3} \vec{S} \cdot \vec{L}.$$

The total angular momentum $\vec{J} = \vec{L} + \vec{S}$. The Hamiltanion no longer commutes with \vec{L} and \vec{S} , $H'_{\rm so}$ does commutes with L^2 , S^2 and \vec{J} , and

$$\vec{L} \cdot \vec{S} = \frac{1}{2}(J^2 - L^2 - S^2) = \frac{\hbar^2}{2}[j(j+1) - l(l+1) - s(s+1)].$$

Zeeman Effect 6.3.3

For a single electron, the perturbation is

$$H_Z' = -(\vec{\mu}_l + \vec{\mu}_s) \cdot \vec{B}_{\text{ext}},$$

where $\vec{\mu}_l = -\frac{e}{2m}\vec{L}$ is the dipole momentum associated with orbital motion, and $\vec{\mu}_s = -\frac{e}{m}\vec{S}$ is the magnetic dipole momentum associated with electron spin. Then

$$H_Z' = \frac{e}{2m}(\vec{L} + 2\vec{S}) \cdot \vec{B}_{\text{ext}}.$$

(1) When $B_{\rm ext} \ll B_{\rm int}$, the fine structure dominates, H_z' is perturbation. Then

$$E_Z^1 = \frac{e}{2m} \vec{B}_{\rm ext} \cdot \langle \vec{L} + 2\vec{S} \rangle \,.$$

We know $\vec{L}+2\vec{S}=\vec{J}+\vec{S}$, and the total angular momentum \vec{J} is a constant (see Figure 1), so the average value of \vec{S} :

$$\vec{S}_{\text{ave}} = \frac{(\vec{S} \cdot \vec{J})}{J^2} \vec{J},$$

therefore,

$$\begin{split} \langle \vec{L} + 2\vec{S} \rangle &= \langle (1 + \frac{\vec{S} \cdot \vec{J}}{J^2}) \vec{J} \rangle \\ &= \left[1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)} \right] \langle \vec{J} \rangle \\ &= g_J \langle \vec{J} \rangle \,, \end{split}$$

where g_J is known as **Landé g-factor**. Then

$$|\vec{J}\rangle$$
, as **Landé g-factor**. Then

$$E_Z^1 = \frac{e}{2m} g_J \vec{B}_{\rm ext} \cdot \langle \vec{J} \rangle \,,$$

: wqif we choose $\vec{B}_{\rm ext}$ along z-axis, then

$$E_Z^1 = \frac{e}{2m} g_J B_{\text{ext}} \hbar m_j = \mu_B g_J B_{\text{ext}} m_j,$$

where $\mu_B = \frac{e\hbar}{2m}$ is the so-called **Bohr Magneton**.

- (2) When $B_{\text{ext}} \gg B_{\text{int}} \dots$
- (3) Neither H_Z' or H_{fs}' dominates, then $H' = H_Z' + H_{\mathrm{fs}}'$...

Figure 1: $\vec{J} = \vec{L} + \vec{S}$ is a constant.

7 Variational Principle

$$E_{\rm gs} \leqslant \langle \psi | H | \psi \rangle \equiv \langle H \rangle$$

Poof: we can express ψ as $\psi = \sum C_n \psi_n$, then

$$1 = \langle \psi | \psi \rangle = \left\langle \sum C_m \psi_m | \sum C_n \psi_n \right\rangle = \sum_m \sum_n C_m^* C_n = \sum_n |C_n|^2,$$

therefore

$$\langle H \rangle = \sum_{n} E_n |C_n|^2 \geqslant \sum_{n} E_{gs} |C_n|^2 = E_{gs}.$$

The most common "trial" wave function is

$$\psi(x) = Ae^{-bx^2},$$

and the ground state hydrogen atom wave function

$$\psi_{100} = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}.$$

8 WKB Approximation

The classic momentum of a particle is $p(x) \equiv \sqrt{2m[E - V(x)]}$, then

$$\psi(x) \approx \frac{C}{\sqrt{p(x)}} e^{\pm \frac{i}{\hbar} \int p(x) dx}.$$