Hotelling's T^2

Model

- Let X_1, \ldots, X_n be iid $d \times 1$ random vectors each distributed as $\mathbf{N}_d(0, \Sigma)$, $\Sigma > 0$ (i.e. Σ is positive definite). It is assumed throughout that Σ is positive definite, and that $n-1 \geq d$.
- MLE's and their distributions:

The MLE's are

$$\hat{\mu} = \bar{X} = (1/n) \sum_{i=1}^{n} X_i,$$

$$\hat{\Sigma} = Q/n,$$

where $Q := \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^{\top}$.

• Note that the usual sample covariance matrix is S = Q/(n-1). The sample mean $\bar{X} \sim \mathbf{N}_d(\mu, \Sigma/n)$, and is independent of Q = (n-1)S.

Hotelling's T^2

$$T^2 := n(\bar{X} - \mu)^{\top} S^{-1}(\bar{X} - \mu) \sim T_{d,n-1}^2,$$

and

$$n(\bar{X} - \mu)^{\top} \Sigma^{-1} (\bar{X} - \mu) \sim \chi_d^2$$
.

Hypothesis testing, the one-sample problem

- $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0.$
- Under H_0 ,

$$T_0^2 := n(\bar{X} - \mu_0)^{\top} S^{-1}(\bar{X} - \mu_0) \sim T_{d,n-1}^2, \qquad F_0 := \frac{n-d}{(n-1)d} T_0^2 \sim F_{d,n-d}.$$

- For a size- α test, reject H_0 if F_0 exceeds the $1-\alpha$ quantile of the $F_{d,n-d}$ distribution.
- T_0^2 is the likelihood-ratio statistic for H_0 against H_1 .
- The case d = 1?

Idea: Reduction to univariate

- Linear combinations
- If H_0 is true then $H_a: a^{\top}\mu = a^{\top}\mu_0$ will be true for all $a \in R^d$.
- H_a can be tested by a univariate one-sample t-test (of H_a : $\mathbf{E}[a^{\top}X_i] = a^{\top}\mu_0$, since $a^{\top}X_i$ and $a^{\top}\mu_0$ are scalars).
- The "most-significant" univariate test (the largest possible |t|) is obtained by $a \propto S^{-1}(\bar{X} \mu_0)$.
- Since we maximized over all possible linear combinations a, the usual t_{n-1} is not valid if d > 1. The correct distribution under H_0 is Hotelling's T^2 .
- Power:
 - If H_0 is false then $F_0 \sim F_{d,n-d,\delta}$ where $\delta = n(\mu \mu_0)^\top \Sigma^{-1}(\mu \mu_0)$. Power of the test is $\operatorname{pr}\{F_{d,n-d,\delta} > F_{d,n-d,0,1-\alpha}\}$.
- Note that the non-centrality parameter is proportional to sample size n. This fact will be used later in sample size calculations.

Idea: Using Contrasts

- Linear combinations
- Suppose that H_0 states that the means $\mu_1, \mu_2, ..., \mu_d$ follow a linear trend, while the alternative, H_1 , places no restrictions at all.
- H_0 does not specify what the linear trend is (intercept and slope unspecified).
- H_0 can be written as

$$\mu_1 = \alpha,$$

$$\mu_2 = \alpha + \beta,$$

$$\mu_3 = \alpha + 2\beta,$$

$$\mu_4 = \alpha + 3\beta,$$

$$\dots$$

for some unspecified (α, β) .

- $\bullet \mathbf{E}[X_{i2} X_{i1}] = \beta$ $\mathbf{E}[X_{i3} X_{i2}] = \beta$ $\mathbf{E}[X_{i4} X_{i3}] = \beta$
- Define

$$Y_{i1} := X_{i3} - 2X_{i2} + X_{i1}$$

$$Y_{i2} := X_{i4} - 2X_{i3} + X_{i2}$$

$$Y_{i3} := X_{i5} - 2X_{i4} + X_{i3}$$

Y is
$$(d-2) \times 1$$
.

- If H_0 is true then $H_0^* : \mathbf{E}[Y] = 0$ will be true.
- If H_0^* is true then H_0 will be true.
- $H_0^* = H_0$. H_0 can be tested by testing H_0^* .
- Hotelling's T^2 can be used.
- Converted a "linear trend" problem to a "one-sample problem"

• Profile analysis

The two-sample problem

- Hypothesis testing, the two-sample problem with a common covariance matrix:
- The two independent samples are:

 X_1, \ldots, X_n are iid $d \times 1$ random vectors each distributed as $\mathbf{N}_d(\mu_1, \Sigma)$, Y_1, \ldots, X_m are iid $d \times 1$ random vectors each distributed as $\mathbf{N}_d(\mu_2, \Sigma)$, $\Sigma > 0$.

Define

$$\theta = \mu_1 - \mu_2,$$

$$\hat{\mu}_1 = \bar{X} = (1/n) \sum_{i=1}^n X_i,$$

$$\hat{\mu}_2 = \bar{Y} = (1/m) \sum_{i=1}^m Y_i,$$

$$Q_1 := \sum_{i=1}^n (X_i - \bar{X}) (X_i - \bar{X})^\top,$$

$$Q_2 := \sum_{i=1}^m (Y_i - \bar{Y}) (Y_i - \bar{Y})^\top,$$

$$Q = Q_1 + Q_2,$$

$$S_n = Q/(n + m - 2).$$

• Distributions:

 $ar{X}, ar{Y}, Q_1, Q_2$ are mutually independent.

$$ar{X} \sim \mathbf{N}_d(\mu_1, \Sigma/n),$$

 $ar{Y} \sim \mathbf{N}_d(\mu_2, \Sigma/m),$
 $ar{X} - ar{Y} \sim \mathbf{N}_d(\theta, (1/n + 1/m)\Sigma).$

 $T^{2} = (\frac{1}{n} + \frac{1}{m})^{-1}(\bar{X} - \bar{Y} - \theta)^{\top} S_{p}^{-1}(\bar{X} - \bar{Y} - \theta) \sim T_{d,n+m-2}^{2},$ $T^{2} \frac{n + m - d - 1}{(n + m - 2)d} \sim F_{d,n+m-d-1}.$

• To test $H_0: \theta = 0$ against $H_1: \theta \neq 0$, the test statistic T_0^2 is obtained as T^2 above with θ replaced by 0, and $F_0 = T_0^2(n+m-d-1)/\{(n+m-2)d\}$. For a size- α test, reject H_0 if F_0 exceeds the $1-\alpha$ quantile of the $F_{d,n+m-d-1}$ distribution.

Strengths

- ullet Exact in small samples
- Easy to apply.

Weaknesses

- Rely on normality and equal variance
- Missing data not easily handled
- All subjects must be observed at the same time points

Non-normality, unequal variance

- Large sample tests, but need large samples
- Missing data not easily handled
- All subjects must be observed at the same time points
- Still need more general approaches to ...
- allow unequal number of observations per subject
- allow different observation times for different subject

Regression models (marginal)

- Based on normal theory
- Non-normal data
- In *both* of the above, we'll rely on large-sample methods (standard errors, confidence intervals, hypothesis test)

Likelihood methods