FIELD COORDINATOR WORKSHOP

Manage Successful Impact Evaluations

18 - 22 JUNE 2018 WASHINGTON, DC

Data Visualization

Stata Track 2

Prepared by **DIME Analytics**<u>DIMEAnalytics Internal Use Only@worldbank.org</u>

Presented by **Benjamin Daniels and Sakina Shibuya**bdaniels@worldbank.org / sshibuya@worldbank.org

http://www.worldbank.org/en/research/dime June 21, 2018

Tables give all the details

 What's happening in this regression table? What's important?

TABLE 3—MEASURES OF ACCESS TO CARE JUST BEFORE 65 AND ESTIMATED DISCONTINUITIES AT 65

	1997-2003 NHIS				1992-2003 NHIS			
	Delayed care last year		Did not get care last year		Saw doctor last year		Hospital stay last year	
	Age 63-64 (1)	RD at 65 (2)	Age 63-64 (3)	RD at 65 (4)	Age 63-64 (5)	RD at 65 (6)	Age 63-64 (7)	RD at 65 (8)
Overall sample	7.2	-1.8 (0.4)	4.9	-1.3 (0.3)	84.8	1.3 (0.7)	11.8	1.2 (0.4)
Classified by ethnicity and o	education:							
White non-Hispanic:								
High school dropout	11.6	-1.5 (1.1)	7.9	-0.2 (1.0)	81.7	(1.3)	14.4	(1.3)
High school graduate	7.1	(2.8)	5.5	-1.3 (2.8)	85.1	-0.4 (1.5)	12.0	(0.7)
At least some college	6.0	-1.5 (0.4)	3.7	-1.4 (0.3)	87.6	(1.3)	9.8	(0.7)
Minority:		(-11)		(015)		(210)		(011)
High school dropout	13.6	-5.3 (1.0)	11.7	-4.2 (0.9)	80.2	5.0 (2.2)	14.5	(1.4)
High school graduate	4.3	-3.8 (3.2)	1.2	1.5	84.8	1.9	11.4	1.8
At least some col lege	5.4	-0.6 (1.1)	4.8	-0.2 (0.8)	85.0	3.7 (3.9)	9.5	0.7
Classified by ethnicity only.								
White non-Hispanic	6.9	-1.6 (0.4)	4.4	-1.2 (0.3)	85.3	0.6	11.6	1.3 (0.5)
Black non-Hispanic (all)	7.3	-1.9 (1.1)	6.4	-0.3 (1.1)	84.2	3.6	14.4	0.5
Hispanic (all)	11.1	-4.9 (0.8)	9.3	-3.8 (0.7)	79.4	8.2	11.8	1.0

Note: Entries in odd numbered columns are mean of variable in column heading among people ages 63–64. Entries in even numbered columns are estimated regression discontinuties at age 65, from models that include linear control for age interacted with dummy for age 65 or older (columns 2 and 4) or quadratic control for age, interacted with dummy for age 65 and older (columns 6 and 8). Other controls in models include indicators for gender, race/ethnicity, education, region, and sample year. Sample in columns 1–4 is pooled 1997–2003 NHIS. Sample in columns 5–8 is pooled 1992–2003 NHIS. Samples for regression models include people ages 55–75 only. Standard errors (in parentheses) are clustered by quarter of age.

But figures tell the story

- This is the data that generates those estimates.
- You can see exactly what is happening very quickly!

Even more importantly:
You don't have to look for it.
The eye is drawn to the story!

Examples: Examining distributions

Examples: comparing means

Some examples: comparing correlations

Examples: Searching for patterns

Examples: telling a story about treatment takeup

Why do these charts look so good?

- They tell a story
- They use consistent visual (design) language
- They draw the eye to what is important

Stata default graphs are not very attractive

Stata has three core built-in graph functions

[graph graphtype]

graphs which plot one or more variables on one axis

[twoway graphtype]

graphs which plot two variables
 together on an x,y axis

[histogram], [kdensity], [lowess]

Essential distributional commands

The other graph commands are implemented in terms of graph, which provides the following capabilities:

graph bar bar charts graph pie pie charts graph dot dot charts graph matrix scatterplot matrices graph twoway twoway (y-x) graphs, including graph twoway scatter scatterplots graph twoway line line plots graph twoway function function plots graph twoway histogram graph twoway * more	Command	Description
	graph pie graph dot graph matrix graph twoway graph twoway scatter graph twoway line graph twoway function graph twoway histogram	pie charts dot charts scatterplot matrices twoway (y-x) graphs, including scatterplots line plots function plots histograms

Smoothing and densities:

Command	Description
kdensity	kernel density estimation, univariate
lowess	lowess smoothing
lpoly	local polynomial smoothing

Oneway [graph] plots can be very informative

https://github.com/qutubproject/lancetid2015/blob
/master/tables figures.do (Figure S1)

https://github.com/qutubproject/lancetid2016/blob/master/tables figures.do (Figure 2)

[twoway] graphs can be stacked up

- The axes are abstract, so you do not need to use the same variables or the same units for each graph!
- Syntax:

```
[tw ///
(type var1 var2 , opts) ///
(type var3 var4 , opts) ///
, opts]
```

Each can have its own if/in and options

Charts show information across dimensions

http://socviz.co

Design with dimensions in mind

 A chart with a lot of information can blend together like TV static

Use design language to give charts meaning

Anatomy of most graphs

Components of Stata graphs

Interpretation of clock position()ring(k), k > 0 and ring(0)

	11	12	1	
10	10 or 11	12	1 or 2	2
9	9	0	3	3
8	7 or 8	6	4 or 5	4
	7	6	5	

Best place to start: [h tw]

Best place to start: [h twoway_options]

- Major graphing elements:
 - Lines
 - Shapes
 - Points
- Major styling elements:
 - Fill color
 - Outlines
 - Sizes
- Major graphing elements:
 - Lines
 - Labels

Working with shapes

Working with colors

Every graph starts from the basics

```
tw ///
(qfitci length weight) ///
(scatter length weight
     if foreign == 0) ///
(scatter length weight
     if foreign == 1)
```


With styling, we have a pretty graph

Options ... everywhere!

```
* Graph for slides
   sysuse auto , clear
   global graph opts ///
     title(, justification(left) color(black) span pos(11)) ///
     graphregion(color(white) lc(white) lw(med) la(center)) ///
     vlab(,angle(0) nogrid) xtit(,placement(left) justification(left)) ///
     vscale(noline) xscale(noline) legend(region(lc(none) fc(none)))
10
11
   tw ///
     (qfitci length weight ///
       , lp(dash) lc(black) lw(medthick) cip(rarea) alw(none)) ///
      (scatter length weight if foreign = 0 ///
15
       , ms(X) mc(maroon)) ///
16
      (scatter length weight if foreign = 1 ///
       , ms(Oh) mc(navy)) ///
      , ${graph opts} ///
19
       xtitle("Vehicle Weight (lbs) {&rarr}") ///
20
21
       vtitle("Vehicle Length (in)") ///
       title("Length and Weight of Cars") ///
       legend(order(3 "Domestic Makes" 4 "Foreign Makes") ///
         ring(0) pos(5) c(1)
```


Graphs can be combined and exported


```
graph export ///
    "filename" /// (.png or .eps)
    , replace
```

With .png, specify "width(1000)" for higher resolution

.eps files can scale to any size on most modern software (but hard to preview on older systems)

DIME Resources (please contribute!)

https://worldbank.github.io/Stata-IE-Visual-Library/

https://worldbank.github.io/stata/

IE Visual Library in Stata

Bar plots

Bar plot of two variables by treatment

stata

Stata Commands for Data Management and Analysis

View the Project on GitHub worldbank/stata

Commands for Data Analysis

betterBar

betterBar creates bar graphs for multiple variables with confidence intervals, setting by() and over() groups, adding labels and legends, and various styling commands.

wb_git_install betterBar
sysuse auto , clear
betterBar mpg trunk turn ///
, over(foreign) se ///
barlook(1 lw(thin) lc(white) fi(100))

Thank you!

