HOMEWORK ASSIGNMENT #1, Math 253

- 1. Sketch the curve $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$, and find the area it encloses.
- 2. Find the dot product $\vec{a} \cdot \vec{b}$ in the following cases:
 - (a) $\vec{a} = <1, 0, -2>, \vec{b} = <2, 0, 1>$. Are these vectors orthogonal?
 - (b) $\vec{a} = \langle x_2y_3 x_3y_2, x_3y_1 x_1y_3, x_1y_2 x_2y_1 \rangle, \vec{b} = \langle x_1, x_2, x_3 \rangle$, where the x_i, y_i are any real numbers. Are these vectors orthogonal?
 - (c) \vec{a} is a unit vector having the same direction as $\vec{i} + \vec{j}$ and \vec{b} is a vector of magnitude 2 in the direction of $\vec{i} + \vec{j} \vec{k}$.
- 3. Use cross products to find the following areas:
 - (a) the area of the triangle through the points P = (1, 1, 0), Q = (1, 0, 1), R = (0, 1, 1).
 - (b) the area of the parallelogram spanned by the vectors $\vec{u}=<1,2,0>,\vec{v}=< a,b,c>$.
 - (c) the areas of all 4 faces of the tetrahedron whose vertices are (0,0,0), (a,0,0), (0,b,0) and (0,0,c), where a,b,c are positive numbers.
- 4. Suppose \vec{a} is a vector in 3-space. Show that $\left(\frac{\vec{a} \cdot \vec{i}}{|\vec{a}|}\right)^2 + \left(\frac{\vec{a} \cdot \vec{j}}{|\vec{a}|}\right)^2 + \left(\frac{\vec{a} \cdot \vec{k}}{|\vec{a}|}\right)^2 = 1$.

Remark: The direction cosines of the vector \vec{a} are by definition

$$\cos \alpha = \frac{\vec{a} \cdot \vec{i}}{|\vec{a}|}, \cos \beta = \frac{\vec{a} \cdot \vec{j}}{|\vec{a}|}, \cos \gamma = \frac{\vec{a} \cdot \vec{k}}{|\vec{a}|}.$$

The angles α, β, γ are the angles \vec{a} makes with the positive directions of the x, y, z axes respectively.

- 5. (a) Find all vectors of length 2 that make equal angles with the positive directions of the 3 co-ordinate axes.
 - (b) Find all unit vectors $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ making respective angles of $\pi/3, \pi/4$ with the positive directions of the x, y axes.
 - (c) Find the angles of the triangle whose vertices are (1,0,0),(0,2,0),(0,0,3).
 - (d) Find the angle(s) between a diagonal of a cube and one of its edges.
- 6. A straight river 400m wide flows due west at a constant speed of 3km/hr. If you can row your boat at 5km/hr in still water, what direction should you row in if you wish to go from a point A on the south shore to the point B directly opposite on the north shore? How long will the trip take?

- 7. Find equations of the planes satisfying the following conditions:
 - (a) Passing through the point (0,2,-3) and normal to the vector $4\vec{i}-\vec{j}-2\vec{k}$.
 - (b) Passing through the point (1,2,3) and parallel to the plane 3x + y 2z = 15.
 - (c) Passing through the 3 points $(\lambda, 0, 0), (0, \mu, 0), (0, 0, \nu)$, where λ, μ, ν are non-zero real numbers.
 - (d) Passing through the point (-2, 0, -1) and containing the line which is the intersection of the 2 planes 2x + 3y z = 0 and x 4y + 2z = -5.
- 8. Let $v_1 = (0, -1, 0), v_2 = (0, 1, 0), v_3, v_4$ be the 4 vertices of a regular tetrahedron. Suppose $v_3 = (x, 0, 0)$ for some positive x and v_4 has a positive z component. Find v_3 and v_4 .