Lecture 2. What's Vis and Why Do It? (Munzner Ch.1)

Sim, Min Kyu, Ph.D. mksim@seoultech.ac.kr

아래의 그림에서 7은 몇 개?

 $6101563835383231819102163381632931895051\\4989465595985193061840014983159453393102\\4615630369379482483344869800605212398415\\3351540193315731981536924216582571505648\\9059394122352959923236942390253408435898\\4816263233334199225643322196640390120029\\6303236031266358233358089941278335683463\\4990643445530053035706180100612298866236\\9811356385949423313261362680935981049291\\1052242090380363325491411415855382362239$

지금은 잘 보이나요?

79482483344869800605212398415 **7**319815369242165825**7**1505648 **7**8335683463 **7**06180100612298866236

시각기능의 강력함

시각 (Human Vision)

- 감각기관중 가장 월등한 정보처리 기능을 가지고 있음
- "몸이 100냥이면 눈이 90냥이다."
- 감각기관을 통한 정보처리 속도의 비교
 - 시각: 1250MB/s
 - 촉각: 125MB/s
 - 청각, 후각: 12.5MB/s

그림 1: The bandwidth of our senses by Tor Norretranders

The beauty of data visualization

- Ted Talk by David McCandless (2010)
- https://youtu.be/pLqjQ55tz-U

타 감각기관과의 비교

- 시각: 두뇌와 높은 대역의 채널로 교류
 - 이미지의 일부를 보고도 상상이 가능
 - 보는 행위는 집중력이 덜 요구됨
- 청각: 낮은 대역의 채널 사용
 - 훑어보기가 불가능
 - 주관적인 경험을 제공
- 촉각: 매우 낮은 대역의 채널 사용
- 후각, 미각: 기록할수도 재생할 수도 없음

Why vis?

Anscombe's Quarter

• Mean, Variance, Correlation이 모두 같은 4개의 데이터 셋

Anscombe	rs Quartet: Ra	w Data
1	2	3

	1		2		3		4	
	X	Υ	X	Υ	X	Υ	X	Υ
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816		0.8	16	0.8	316	0.8	316

그림 2: Raw Data - Anscombe's Quarter

Summarized statistics may not tell the whole story.

그림 3: Scatterplot - Anscombe's Quarter

Most designs are ineffective

• Design space(가능한 모든 시각화 객체물들)에 비해서 effective design은 한정적이다.

그림 4: A search space metaphor

- Takeaway
 - 넓은 공간에 대한 지식 (known space)에서 시작하여 대안을 좁혀나간다.
 - 여러가지 대안을 제안하고 이중에서 하나를 선택한다.

Resource Limitation

- 1. Computer has time and memory limitation
- 2. Human has memory and attention limitation
- 3. Display has finite capacity. Information density must be high enough.

 $information \ density = \frac{the \ amount \ of \ information \ encoded}{the \ amount \ of \ unused \ space}$

그림 5: Info density for tree dataset

- (a) Low information density.
- (b) High information density, but the tree depth is not noticeable.
- (c) High information density.

"Data Visualization"

[1] "Data Visualization"