Albert Bifet (@abifet)

Paris, 18 October 2015 albert.bifet@telecom-paristech.fr

Definition

Clustering is the distribution of a set of instances of examples into non-known groups according to some common relations or affinities.

Example

Market segmentation of customers

Example

Social network communities

Definition

Given

- a set of instances I
- a number of clusters K
- an objective function cost(I)

a clustering algorithm computes an assignment of a cluster for each instance

$$f: I \rightarrow \{1, \ldots, K\}$$

that minimizes the objective function *cost(I)*

Definition

Given

- a set of instances I
- a number of clusters K
- an objective function cost(C, I)

a clustering algorithm computes a set C of instances with |C| = K that minimizes the objective function

$$cost(C, I) = \sum_{x \in I} d^2(x, C)$$

where

- ightharpoonup d(x,c): distance function between x and c
- ► $d^2(x, C) = min_{c \in C}d^2(x, c)$: distance from x to the nearest point in C

k-means

- ▶ 1. Choose k initial centers $C = \{c_1, \dots, c_k\}$
- ▶ 2. while stopping criterion has not been met
 - ▶ For i = 1, ..., N
 - ▶ find closest center $c_k \in C$ to each instance p_i
 - assign instance p_i to cluster C_k
 - ▶ For k = 1, ..., K
 - ightharpoonup set c_k to be the center of mass of all points in C_i

k-means++

- ▶ 1. Choose a initial center c₁
- For k = 2, ..., K
 - ▶ select $c_k = p \in I$ with probability $d^2(p, C)/cost(C, I)$
- 2. while stopping criterion has not been met
 - ▶ For i = 1, ..., N
 - ▶ find closest center $c_k \in C$ to each instance p_i
 - assign instance p_i to cluster C_k
 - ▶ For k = 1, ..., K
 - ightharpoonup set c_k to be the center of mass of all points in C_i

Performance Measures

Internal Measures

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measure how distinct or well separated a cluster is from other clusters
- ▶ Silhouette Coefficient: 1 a/b if a < b
 - a = average distance of i to the points in its cluster
 - ▶ b = min (average distance of i to points in another cluster)

External Measures

- Rand Measure
- F Measure
- Jaccard
- Purity

Distances

Numeric features

Euclidean:

$$d(x,y) = ||x - y||_2 = \sum (x_i - y_i)^2$$

Manhattan distance:

$$d(x,y) = ||x-y||_1 = \sum |x_i - y_i|$$

BIRCH

BALANCED ITERATIVE REDUCING AND CLUSTERING USING HIERARCHIES

- ▶ Clustering Features CF = (N, LS, SS)
 - N: number of data points
 - LS: linear sum of the N data points
 - SS: square sum of the N data points
 - Properties:
 - Additivity: $CF_1 + CF_2 = (N_1 + N_2, LS_1 + LS_2, SS_1 + SS_2)$
 - Easy to compute: average inter-cluster distance and average intra-cluster distance
- Uses CF tree
 - Height-balanced tree with two parameters
 - B: branching factor
 - T: radius leaf threshold

BIRCH

BALANCED ITERATIVE REDUCING AND CLUSTERING USING HIERARCHIES

- Phase 1: Scan all data and build an initial in-memory CF tree
- Phase 2: Condense into desirable range by building a smaller CF tree (optional)
- Phase 3: Global clustering
- Phase 4: Cluster refining (optional and off line, as requires more passes)

Clu-Stream

Clu-Stream

- Uses micro-clusters to store statistics on-line
 - ► Clustering Features *CF* = (*N*, *LS*, *SS*, *LT*, *ST*)
 - N: numer of data points
 - LS: linear sum of the N data points
 - SS: square sum of the N data points
 - LT: linear sum of the time stamps
 - ST: square sum of the time stamps
- Uses pyramidal time frame

Clu-Stream

On-line Phase

- For each new point that arrives
 - the point is absorbed by a micro-cluster
 - the point starts a new micro-cluster of its own
 - delete oldest micro-cluster
 - merge two of the oldest micro-cluster

Off-line Phase

Apply k-means using microclusters as points

Density based methods

- ϵ -neighborhood(p): set of points that are at a distance of p less or equal to ϵ
- ▶ Core object: object whose ϵ -neighborhood has an overall weight at least μ
- ► A point *p* is *directly density-reachable* from *q* if
 - p is in ε-neighborhood(q)
 - q is a core object
- ► A point *p* is *density-reachable* from *q* if
 - ▶ there is a chain of points $p_1, ..., p_n$ such that p_{i+1} is directly density-reachable from p_i
- A point p is density-connected from q if
 - there is point o such that p and q are density-reachable from o

Density based methods

- ▶ A *cluster C* of points satisfies
 - ▶ if $p \in C$ and q is density-reachable from p, then $q \in C$
 - ▶ all points $p, q \in C$ are density-connected
- A cluster is uniquely determined by any of its core points
- A cluster can be obtained
 - choosing an arbitrary core point as a seed
 - retrieve all points that are density-reachable from the seed

Density based methods

- select an arbitrary point p
- retrieve all points density-reachable from p
- ▶ if p is a core point, a cluster is formed
- If p is a border point
 - no points are density-reachable from p
 - DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

Figure: DBSCAN Point Example with μ =3