

Chapter 22 – Project Management

Lecture 1

Topics covered

- ♦ Risk management
- ♦ Managing people
- ♦ Teamwork

Software project management

- ♦ Conderned with activities involved in ensuring that software is delivered on time and on schedule and in accordance with the requirements of the organisations developing and procuring the software.
- Project management is needed because software development is always subject to budget and schedule constraints that are set by the organisation developing the software.

Success criteria

- ♦ Deliver the software to the customer at the agreed time.
- ♦ Keep overall costs within budget.
- ♦ Deliver software that meets the customer's expectations.
- Maintain a happy and well-functioning development team.

Software management distinctions

- ♦ The product is intangible.
 - Software cannot be seen or touched. Software project managers cannot see progress by simply looking at the artifact that is being constructed.
- ♦ Many software projects are 'one-off' projects.
 - Large software projects are usually different in some ways from previous projects. Even managers who have lots of previous experience may find it difficult to anticipate problems.
- ♦ Software processes are variable and organization specific.
 - We still cannot reliably predict when a particular software process is likely to lead to development problems.

Management activities

♦ Project planning

 Project managers are responsible for planning. estimating and scheduling project development and assigning people to tasks.

♦ Reporting

Project managers are usually responsible for reporting on the progress of a project to customers and to the managers of the company developing the software.

♦ Risk management

Project managers assess the risks that may affect a project, monitor these risks and take action when problems arise.

Management activities

 Project managers have to choose people for their team and establish ways of working that leads to effective team performance

♦ Proposal writing

■ The first stage in a software project may involve writing a proposal to win a contract to carry out an item of work. The proposal describes the objectives of the project and how it will be carried out.

Risk management

- Risk management is concerned with identifying risks and drawing up plans to minimise their effect on a project.
- - Project risks affect schedule or resources;
 - Product risks affect the quality or performance of the software being developed;
 - Business risks affect the organisation developing or procuring the software.

Examples of common project, product, and business risks

Risk	Affects	Description
Staff turnover	Project	Experienced staff will leave the project before it is finished.
Management change	Project	There will be a change of organizational management with different priorities.
Hardware unavailability	Project	Hardware that is essential for the project will not be delivered on schedule.
Requirements change	Project and product	There will be a larger number of changes to the requirements than anticipated.
Specification delays	Project and product	Specifications of essential interfaces are not available on schedule.
Size underestimate	Project and product	The size of the system has been underestimated.
CASE tool underperformance	Product	CASE tools, which support the project, do not perform as anticipated.
Technology change	Business	The underlying technology on which the system is built is superseded by new technology.
Product competition	Business	A competitive product is marketed before the system is completed.

The risk management process

- → Risk identification
 - Identify project, product and business risks;
- ♦ Risk analysis
 - Assess the likelihood and consequences of these risks;
- - Draw up plans to avoid or minimise the effects of the risk;
- ♦ Risk monitoring
 - Monitor the risks throughout the project;

The risk management process

Risk identification

- May be a team activities or based on the individual project manager's experience.
- A checklist of common risks may be used to identify risks in a project
 - Technology risks.
 - People risks.
 - Organisational risks.
 - Requirements risks.
 - Estimation risks.

Risk type	Possible risks	
Technology	The database used in the system cannot process as many transactions per second as expected. (1) Reusable software components contain defects that mean they cannot be reused as planned. (2)	
People	It is impossible to recruit staff with the skills required. (3) Key staff are ill and unavailable at critical times. (4) Required training for staff is not available. (5)	
Organizational	The organization is restructured so that different management are responsible for the project. (6) Organizational financial problems force reductions in the project budget. (7)	
Tools	The code generated by software code generation tools is inefficient. (8) Software tools cannot work together in an integrated way. (9)	
Requirements	Changes to requirements that require major design rework are proposed. (10) Customers fail to understand the impact of requirements changes. (11)	
Estimation	The time required to develop the software is underestimated. (12) The rate of defect repair is underestimated. (13) The size of the software is underestimated. (14)	

Risk analysis

- ♦ Assess probability and seriousness of each risk.
- Probability may be very low, low, moderate, high or very high.
- ♦ Risk consequences might be catastrophic, serious, tolerable or insignificant.

Risk types and examples

Risk		Probability	Effects
Organization project budge	al financial problems force reductions in the et (7).	Low	Catastrophic
It is impossible to recruit staff with the skills required for the project (3).		High	Catastrophic
Key staff are ill at critical times in the project (4).		Moderate	Serious
Faults in reusable software components have to be repaired before these components are reused. (2).		Moderate	Serious
Changes to requirements that require major design rework are proposed (10).		Moderate	Serious
The organi management	zation is restructured so that different are responsible for the project (6).	High	Serious
	e used in the system cannot process as many per second as expected (1).	Moderate	Serious

Risk planning

- Consider each risk and develop a strategy to manage that risk.
- ♦ Avoidande strategies
 - The probability that the risk will arise is reduced;
- ♦ Minimisation strategies
 - The impact of the risk on the project or product will be reduced;
- ♦ Contingency plans
 - If the risk arises, contingency plans are plans to deal with that risk;

Risk monitoring

- → Assess each identified risks regularly to decide whether
 or not it is becoming less or more probable.
- Also assess whether the effects of the risk have changed.

Key points

- Good project management is essential if software engineering projects are to be developed on schedule and within budget.
- ♦ Software management is distinct from other engineering management. Software is intangible. Projects may be novel or innovative with no body of experience to guide their management. Software processes are not as mature as traditional engineering processes.
- ♦ Risk management is now recognized as one of the most important project management tasks.
- ♦ Risk management involves identifying and assessing project risks to establish the probability that they will occur and the consequences for the project if that risk does arise. You should make plans to avoid, manage or deal with likely risks if or when they arise.

Chapter 22 – Project Management

Lecture 2

Managing people

- ♦ People are an organisation's most important assets.
- The tasks of a manager are essentially people-oriented. Unless there is some understanding of people, management will be unsuccessful.
- Poor people management is an important contributor to project failure.

People management factors

♦ Consistency

 Team members should all be treated in a comparable way without favourites or discrimination.

♦ Respect

 Different team members have different skills and these differences should be respected.

♦ Inclusion

 Involve all team members and make sure that people's views are considered.

♦ Honesty

 You should always be honest about what is going well and what is going badly in a project.

Motivating people

- ♦ An important role of a manager is to motivate the people working on a project.
- Motivation means organizing the work and the working environment to encourage people to work effectively.
 - If people are not motivated, they will not be interested in the work they are doing. They will work slowly, be more likely to make mistakes and will not contribute to the broader goals of the team or the organization.
- Motivation is a complex issue but it appears that their are different types of motivation based on:
 - Basic needs (e.g. food, sleep, etc.);
 - Personal needs (e.g. respect, self-esteem);
 - Social needs (e.g. to be accepted as part of a group).

Human needs hierarchy

Need satisfaction

In software development groups, basic physiological and safety needs are not an issue.

♦ Social

- Provide communal facilities;
- Allow informal communications e.g. via social networking

♦ Esteem

- Recognition of achievements;
- Appropriate rewards.

♦ Self-realization

- Training people want to learn more;
- Responsibility.

Personality types

- ♦ The needs hierarchy is almost certainly an oversimplification of motivation in practice.
- Motivation should also take into account different personality types:
 - Task-oriented;
 - Self-oriented;
 - Interaction-oriented.

Personality types

- ♦ Task-oriented.
 - The motivation for doing the work is the work itself;
- ♦ Self-oriented.
 - The work is a means to an end which is the achievement of individual goals e.g. to get rich, to play tennis, to travel etc.;
- ♦ Interaction-oriented
 - The principal motivation is the presence and actions of co-workers. People go to work because they like to go to work.

Teamwork

- ♦ Most software engineering is a group activity
 - The development schedule for most non-trivial software projects is such that they cannot be completed by one person working alone.
- → A good group is cohesive and has a team spirit. The people involved are motivated by the success of the group as well as by their own personal goals.
- ♦ Group interaction is a key determinant of group performance.
- ♦ Flexibility in group composition is limited
 - Managers must do the best they can with available people.

The effectiveness of a team

♦ The people in the group

You need a mix of people in a project group as software development involves diverse activities such as negotiating with clients, programming, testing and documentation.

♦ The group organization

 A group should be organized so that individuals can contribute to the best of their abilities and tasks can be completed as expected.

♦ Technical and managerial communications

 Good communications between group members, and between the software engineering team and other project stakeholders, is essential.

Selecting group members

- A manager or team leader's job is to create a cohesive group and organize their group so that they can work together effectively.
- This involves creating a group with the right balance of technical skills and personalities, and organizing that group so that the members work together effectively.

Assembling a team

- May not be possible to appoint the ideal people to work on a project
 - Project budget may not allow for the use of highly-paid staff;
 - Staff with the appropriate experience may not be available;
 - An organisation may wish to develop employee skills on a software project.
- Managers have to work within these constraints especially when there are shortages of trained staff.

Group composition

- ♦ Group composed of members who share the same motivation can be problematic
 - Task-oriented everyone wants to do their own thing;
 - Self-oriented everyone wants to be the boss;
 - Interaction-oriented too much chatting, not enough work.
 - An effective group has a balance of all types.
 - This can be difficult to achieve software engineers are often task-oriented.
- ♦ Interaction-oriented people are very important as they can detect and defuse tensions that arise.

Group organization

- ♦ The way that a group is organized affects the decisions that are made by that group, the ways that information is exchanged and the interactions between the development group and external project stakeholders.
 - Key questions include:
 - Should the project manager be the technical leader of the group?
 - Who will be involved in making critical technical decisions, and how will these be made?
 - How will interactions with external stakeholders and senior company management be handled?
 - How can groups integrate people who are not co-located?
 - How can knowledge be shared across the group?

Group organization

- Small software engineering groups are usually organised informally without a rigid structure.
- ♦ For large projects, there may be a hierarchical structure where different groups are responsible for different subprojects.
- Agile development is always based around an informal group on the principle that formal structure inhibits information exchange

Informal groups

- ♦ The group acts as a whole and comes to a consensus on decisions affecting the system.
- ♦ The group leader serves as the external interface of the group but does not allocate specific work items.
- Rather, work is discussed by the group as a whole and tasks are allocated according to ability and experience.
- This approach is successful for groups where all members are experienced and competent.

Group communications

- ♦ Good communications are essential for effective group working.
- Information must be exchanged on the status of work, design decisions and changes to previous decisions.
- Good communications also strengthens group cohesion as it promotes understanding.

Group communications

The larger the group, the harder it is for people to communicate with other group members.

 Communication is better in informally structured groups than in hierarchically structured groups.

 Communication is better when there are different personality types in a group and when groups are mixed rather than single sex.

♦ The physical work environment

 Good workplace organisation can help encourage communications.

Key points

- People are motivated by interaction with other people, the recognition of management and their peers, and by being given opportunities for personal development.
- ♦ Software development groups should be fairly small and cohesive. The key factors that influence the effectiveness of a group are the people in that group, the way that it is organized and the communication between group members.
- Communications within a group are influenced by factors such as the status of group members, the size of the group, the gender composition of the group, personalities and available communication channels.