Lecture 02: A SingleServer Queue

Swakkhar Shatabda

CSI 423, Simulation and Modeling, Spring 2014
Department of Computer Science and Engineering
United International University

A SingleServer Queue

- A single-sever service node consists of a server plus its queue
- Example: ATM booth.

Queue Discipline

Queue Discipline: the algorithm used when a job is selected from the queue to enter service

- FIFO first in first out
- LIFO last in first out
- SIRO serve in random order
- Priority shortest job first / other schemes

Queue Assumptions

- FIFO is also known as first come, first serve (FCFS)
 - The order of arrival and departure are the same
 - Unless otherwise specified, assume FIFO with infinite queue capacity.
- Service is non-preemptive
 - Once initiated, service of a job will continue until completion
- Service is conservative
 - Server will never remain idle if there is one or more jobs in the service node

The problem model

Initial Conditions

- Queue empty
- Server idle

Events

- Arrival
- Departure

Variables

Two input variables

- Arrival times, A;
- Service times, Si
- IID (Independent and identically distributed) random variables

Performance measures

- Delay
- Customers in Queue
- Utilization of the server

Delay

Expected average delay in queue

$$\hat{d}(n) = \frac{\sum_{i=1}^{i=n} D_i}{n}$$

 D_i is the delay for the customer i Gives the system performance from customer's point of view.

Customers in Queue

Expected number of customers in Queue

$$\hat{q}(n) = \frac{\sum_{i=1}^{\infty} iT_i}{T(n)}$$

 T_i is the total time of simulation that number of customers in the queue is i

Who wants this information? customer/service provider?

Customers in Queue

Utilization of the server

Expected utilization of the server

$$\hat{u}(n) = \frac{\int_0^{T(n)} B(t) dt}{T(n)}$$

B(t) = 1, if the server is busy at time tB(t) = 0, if the server is idle at time t

Utilization of the server

Suppose inter-arrival times are
$$A_1 = 0.4$$
, $A_2 = 1.2$, $A_3 = 0.5$, $A_4 = 1.7$, $A_5 = 0.2$, $A_6 = 1.6$, $A_7 = 0.2$, $A_8 = 1.4$, $A_9 = 1.9$, \cdots
Service times are $S_1 = 2.0$, $S_2 = 0.7$, $S_3 = 0.2$, $S_4 = 1.1$, $S_5 = 3.7$, $S_6 = 0.6$, \cdots
Next event time advance mechanism.

An Arrival Event

A Departure Event

Thats it!

Thank you