# 이변량\_숫자 vs 숫자

- 우리가 사용하는 도구는...
  - 두 변수와의 관계를 살펴보기 위해, 두가지 도구(시각화, 수치화)를 이용합니다.
  - 이 도구들도 각각 한계가 있습니다. 보이는게 전부가 아님을 꼭 명심하세요!
  - 특히 수치화 도구(가설검정 도구)는 많은 가정들이 전제 됩니다.
  - 그래서 이번 과정에서는 그 도구를 사용하는 데에 집중합니다.

### 1.환경준비

• 라이브러리 불러오기

In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

- 데이터 불러오기 : 다음의 예제 데이터를 사용합니다.
  - ① 타이타닉 생존자 ② 뉴욕 공기 오염도
- In [2]: # **타이타닉 데이터**

titanic = pd.read\_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/titanic.0.csv') titanic.head()

| Out[2]: |   | PassengerId | Survived | Pclass | Name                                                          | Sex    | Age  | SibSp | Parch | Ticket              | Fare    | Cabin | Eı |
|---------|---|-------------|----------|--------|---------------------------------------------------------------|--------|------|-------|-------|---------------------|---------|-------|----|
|         | 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male   | 22.0 | 1     | 0     | A/5<br>21171        | 7.2500  | NaN   |    |
|         | 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 | C85   |    |
|         | 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | NaN   |    |
|         | 3 | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.1000 | C123  |    |
|         | 4 | 5           | 0        | 3      | Allen, Mr.<br>William<br>Henry                                | male   | 35.0 | 0     | 0     | 373450              | 8.0500  | NaN   |    |
|         |   |             |          |        |                                                               |        |      |       |       |                     |         | 1     | •  |

In [3]: # 뉴욕시 공기 오염도 데이터
air = pd.read\_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/air2.csv')
air['Date'] = pd.to\_datetime(air['Date'])
# air['Month'] = air.Date.dt.month
# air['Weekday'] = air.Date.dt.weekday
air.head()

| t[3]: |   | Ozone | Solar.R | Wind | Temp | Date       |
|-------|---|-------|---------|------|------|------------|
|       | 0 | 41    | 190.0   | 7.4  | 67   | 1973-05-01 |
|       | 1 | 36    | 118.0   | 8.0  | 72   | 1973-05-02 |
|       | 2 | 12    | 149.0   | 12.6 | 74   | 1973-05-03 |
|       | 3 | 18    | 313.0   | 11.5 | 62   | 1973-05-04 |
|       | 4 | 19    | NaN     | 14.3 | 56   | 1973-05-05 |

## 2.시각화:산점도

- 상관 분석에 대해서 이야기 해봅시다.
  - 상관 분석은 연속형 변수 X에 대한 연속형 변수 Y의 관계를 분석할 때 사용됩니다.
  - Scatter를 통해 시각화 합니다.
- 가설 : 온도(x)가 상승하면 아이스크림 판매량(y)을 증가할까?

- 어떤 관계가 보이나요?
- 얼마나 강한 관계인가요?
- 숫자 vs 숫자를 비교할 때 중요한 관점이 '직선' (Linearity)입니다.



### (1) 산점도

- 문법
  - plt.scatter( x축 값, y축 값 )
  - plt.scatter( 'x변수', 'y변수', data = dataframe이름)

```
In [4]: sns.scatterplot(x='Temp', y='Ozone', data = air)
   plt.show()
```



그래프를 그렸으면, 그래프로부터 정보를 파악해야 합니다.

무엇이 보이나요?

- 유독 오존이 높은 것이 보임(이상값)
- 온도에 따라 온존도 증가하는 것으로 보임
- 온도가 70이후로 기울기가 증가가 보임

## -연합문제-

• [문1] Temp, Wind, Solar.R 과 Ozone 과의 관계를 시각화 해 봅시다.

```
In [5]: plt.figure(figsize=(15,4))

plt.subplot(1, 3, 1)
    sns.scatterplot(x='Temp', y='Ozone', data=air)
    plt.grid()

plt.subplot(1, 3, 2)
    sns.scatterplot(x='Wind', y='Ozone', data=air)
    plt.grid()

plt.subplot(1, 3, 3)
    sns.scatterplot(x='Solar.R', y='Ozone', data=air)
    plt.grid()

plt.show()
```

#### 05\_이변량\_숫자 vs 숫자



- [문2] Ozone과 가장 강한 관계의 x변수는?
- Temp 변화에 따라 오존이 증가하고 70구간 부터 기울기가 증가
- Wind 변화에 따라 오존이 감소하고 7.5구간 부터 기울기가 완만해짐
- 두 변수의 관계
  - 산점도에서 또렷한 패턴이 보인다면, 강한 관계로 볼 수 있습니다.
  - 특히, 직선의 패턴이 보인다면



### (2) pairplot으로 한꺼번에 시각화 할 수 있습니다.

- 숫자형 변수들에 대한 산점도를 한꺼번에 그려줍니다.
- 그러나 시간이 많이걸립니다.

In [6]: sns.pairplot(air, kind='reg')
plt.show()



## (3) (추가) jointplot 로 살펴보기

- jointplot은 산점도와 각각의 히스토그램을 함께 보여줍니다.
- Temp --> Ozone

```
In [7]: sns.jointplot(x='Temp', y='Ozone', data = air)
   plt.show()
```



• Wind --> Ozone

```
In [8]: sns.jointplot(x='Wind', y='Ozone', data = air)
  plt.show()
```



• Solar.R --> Ozone

```
In [9]: sns.jointplot(x='Solar.R', y='Ozone', data = air)
   plt.show()
```



In [10]: sns.regplot(x='Solar.R', y='Ozone', data = air) # regplot 95% 신뢰구간 plt.show()



### 3.수치화: 상관분석

### (1) 상관계수, p-value

- 상관계수 r
  - 공분산을 표준화 한 값
  - -1 ~ 1 사이의 값
  - -1, 1에 가까울 수록 강한 상관관계를 나타냄.
- 경험에 의한 대략의 기준(절대적인 기준이 절대 아닙니다.)
  - 강한: 0.5 < |r| ≤ 1
  - **■** 중간: 0.2 < |r| ≤ 0.5
  - **●** 약한: 0.1 < |r| ≤ 0.2
  - (거의)없음: |r| ≤ 0.1

```
In [11]: import scipy.stats as spst
```

In [12]: # 상관계수와 p-value #pvalue 0에 가까움 # 즉 관계가 있다
spst.pearsonr(air['Temp'], air['Ozone'])
# 상관대수 # p-Value

Out[12]: PearsonRResult(statistic=0.6833717861490114, pvalue=2.197769800200284e-22)

#### 결과는 튜플로 나오는데

- 1. 튜플의 첫 번째 값 : 상관계수를 뜻합니다.
- 2. 두번째 값 : p-value
  - 귀무가설: 상관 관계가 없다.(상관계수가 0이다.)
  - 대립가설: 상관 관계가 있다.(상관계수가 0이 아니다.)
- 3. 주의 사항 : 값에 NaN이 있으면 계산되지 않습니다. 반드시 .notnull()로 제외하고 수행해야합니다.

#### (2) 데이터프레임 한꺼번에 상관계수 구하기

In [13]: # 데이터프레임으로 부터 수치형 데이터에 대한 상관계수 구하기 air.corr()

| Out[13]: |         | Ozone     | Solar.R   | Wind      | Temp      | Date      |
|----------|---------|-----------|-----------|-----------|-----------|-----------|
|          | Ozone   | 1.000000  | 0.280068  | -0.605478 | 0.683372  | 0.170271  |
|          | Solar.R | 0.280068  | 1.000000  | -0.056792 | 0.275840  | -0.104682 |
|          | Wind    | -0.605478 | -0.056792 | 1.000000  | -0.457988 | -0.168683 |
|          | Temp    | 0.683372  | 0.275840  | -0.457988 | 1.000000  | 0.385605  |
|          | Date    | 0.170271  | -0.104682 | -0.168683 | 0.385605  | 1.000000  |

#### 위 결과로 부터,

- 1. 같은 변수끼리 구한 값 1은 의미 없다.
- 2. 상관계수의 절대값이
  - 1에 가까울 수록 강한 상관관계
  - 0에 가까울 수록 약한 상관관계
- 3. +는 양의 상관관계, -는 음의 상관관계

### (3) (추가) 상관계수를 heatmap으로 시각화

In [14]: # seaborn 문제 발생 시 실행 # 커널 restart

!pip install seaborn --upgrade

Requirement already satisfied: seaborn in c:\users\user\anaconda3\lib\site-packages (0.13.2)
Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\users\user\anaconda3\lib\site-packag
es (from seaborn) (1.24.3)

Requirement already satisfied: pandas>=1.2 in c:\users\user\anaconda3\lib\site-packages (from seaborn) (2.0.3)

Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\user\\anaconda3\\lib\\site-pac kages (from seaborn) (3.8.3)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\user\anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.0.5)

Requirement already satisfied: cycler>=0.10 in c:\users\user\anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\user\anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.25.0)

Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\user\anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.4)

Requirement already satisfied: packaging>=20.0 in c:\users\user\anaconda3\lib\site-packages (f rom matplotlib!=3.6.1,>=3.4->seaborn) (23.1)

Requirement already satisfied: pillow>=8 in c:\users\user\anaconda3\lib\site-packages (from ma tplotlib!=3.6.1,>=3.4->seaborn) (10.0.1)

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\user\anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.0.9)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\user\anaconda3\lib\site-packag es (from matplotlib!=3.6.1,>=3.4->seaborn) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\user\anaconda3\lib\site-packages (from pandas>=1.2->seaborn) (2023.3.post1)

Requirement already satisfied: tzdata>=2022.1 in c:\users\user\anaconda3\lib\site-packages (fr om pandas>=1.2->seaborn) (2023.3)

Requirement already satisfied: six>=1.5 in c:\users\user\anaconda3\lib\site-packages (from pyt hon-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.16.0)



칼라를 변경하려면 아래 링크로 가서 color map 을 확인하고 조정하세요. cmap(color map): https://matplotlib.org/stable/tutorials/colors/colormaps.html

# -연합문제-

- 다음의 변수에 대해서 상관분석을 수행하시오.
- [문1] Temp --> Ozone

```
In [37]: spst.pearsonr(air['Temp'], air['Ozone'])
```

Out[37]: PearsonRResult(statistic=0.6833717861490114, pvalue=2.197769800200284e-22)

• [문2] Wind --> Ozone

```
In [39]: spst.pearsonr(air['Wind'], air['Ozone'])
Out[39]: PearsonRResult(statistic=-0.6054782354684075, pvalue=1.1255146087637916e-16)
```

• [문3] Solar.R --> Ozone

■ 단, Solar.R 에는 NaN이 있습니다. NaN을 제외(.notnull())하고, 상관분석을 수행하시오.

```
In [41]: #air['Solar.R'].isna().sum()
# NaN값 제거
air_clean = air[air['Solar.R'].notnull()]
spst.pearsonr(air_clean['Solar.R'], air_clean['Ozone'])
```

Out[41]: PearsonRResult(statistic=0.2800681334905377, pvalue=0.0006175878788566504)

### 4.복습문제

• 보스톤 집값 데이터를 이용하여 다음의 복습문제를 풀어 봅시다.

#### 변수설명

- medv: 1978 보스턴 주택 가격, 506개 타운의 주택 가격 중앙값 (단위 1,000 달러) <== Target</li>
- crim 범죄율
- zn 25,000 평방피트를 초과 거주지역 비율
- indus 비소매상업지역 면적 비율
- chas 찰스강변 위치(범주: 강변1, 아니면 0)
- nox 일산화질소 농도
- rm 주택당 방 수
- age 1940년 이전에 건축된 주택의 비율
- dis 직업센터의 거리
- rad 방사형 고속도로까지의 거리
- tax 재산세율
- ptratio 학생/교사 비율
- Istat 인구 중 하위 계층 비율

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as spst
```

```
In [18]: # 보스톤 집값 데이터
boston = pd.read_csv('https://raw.githubusercontent.com/DA4BAM/dataset/master/boston.csv')
boston.head()
```

| Out[18]: |   | crim    | zn   | indus | chas | nox   | rm    | age  | dis    | rad | tax | ptratio | Istat | medv |
|----------|---|---------|------|-------|------|-------|-------|------|--------|-----|-----|---------|-------|------|
|          | 0 | 0.00632 | 18.0 | 2.31  | 0    | 0.538 | 6.575 | 65.2 | 4.0900 | 1   | 296 | 15.3    | 4.98  | 24.0 |
|          | 1 | 0.02731 | 0.0  | 7.07  | 0    | 0.469 | 6.421 | 78.9 | 4.9671 | 2   | 242 | 17.8    | 9.14  | 21.6 |
|          | 2 | 0.02729 | 0.0  | 7.07  | 0    | 0.469 | 7.185 | 61.1 | 4.9671 | 2   | 242 | 17.8    | 4.03  | 34.7 |
|          | 3 | 0.03237 | 0.0  | 2.18  | 0    | 0.458 | 6.998 | 45.8 | 6.0622 | 3   | 222 | 18.7    | 2.94  | 33.4 |
|          | 4 | 0.06905 | 0.0  | 2.18  | 0    | 0.458 | 7.147 | 54.2 | 6.0622 | 3   | 222 | 18.7    | 5.33  | 36.2 |

```
In [19]: def eda_2_nn(data, feature, target) :
    # 산점도
    temp = data.loc[data[feature].notnull()]
    sns.scatterplot( x= feature, y = target, data = temp)
    plt.grid()
    plt.show()
    result = spst.pearsonr(temp[feature], temp[target])
    print(f'상관계수 : {result[0]}, P-value : {result[1]}')
```

• 1) crim(범죄율) --> medv(집값) 에 대해 시각화와 수치화(상관분석)을 수행후 관계를 평가하시오.





상관계수 : -0.3883046085868116, P-value : 1.1739870821943826e-19

• 2) tax(제산세율) --> medv(집값) 에 대해 시각화와 수치화(상관분석)을 수행후 관계를 평가하시오.





상관계수 : -0.4685359335677671, P-value : 5.637733627690444e-29

• 3) Istat(하위계층비율) --> medv(집값) 에 대해 시각화와 수치화(상관분석)을 수행후 관계를 평가하시오.

```
In [22]: eda_2_nn(boston, 'lstat', 'medv')
```



상관계수 : -0.7376627261740148, P-value : 5.081103394387554e-88

• 4) ptratio(교사1명당 학생수) --> medv(집값) 에 대해 시각화와 수치화(상관분석)을 수행후 관계를 평가하시오.

In [23]: eda\_2\_nn(boston, 'ptratio', 'medv')



상관계수 : -0.507786685537562, P-value : 1.6095094784727943e-34





In [ ]:

• 5) 전체 변수들끼리의 상관계수를 구하고, 가장 강한 상관관계와 가장 약한 상관관계를 찾아 봅시다.

#### 변수설명

- medv: 1978 보스턴 주택 가격, 506개 타운의 주택 가격 중앙값 (단위 1,000 달러) <== Target</li>
- crim 범죄율
- zn 25,000 평방피트를 초과 거주지역 비율
- indus 비소매상업지역 면적 비율
- chas 찰스강변 위치(범주: 강변1, 아니면 0)
- nox 일산화질소 농도
- rm 주택당 방 수
- age 1940년 이전에 건축된 주택의 비율
- dis 직업센터의 거리
- rad 방사형 고속도로까지의 거리
- tax 재산세율
- ptratio 학생/교사 비율
- Istat 인구 중 하위 계층 비율

| In [56]: | boston.corr() |    |       |      |     |    |     |     |    |
|----------|---------------|----|-------|------|-----|----|-----|-----|----|
| Out[56]: | crim          | zn | indus | chas | nox | rm | age | dis | ra |

|         | crim      | zn        | indus     | chas      | nox       | rm        | age       | dis       | ra       |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| crim    | 1.000000  | -0.200469 | 0.406583  | -0.055892 | 0.420972  | -0.219247 | 0.352734  | -0.379670 | 0.62550  |
| zn      | -0.200469 | 1.000000  | -0.533828 | -0.042697 | -0.516604 | 0.311991  | -0.569537 | 0.664408  | -0.31194 |
| indus   | 0.406583  | -0.533828 | 1.000000  | 0.062938  | 0.763651  | -0.391676 | 0.644779  | -0.708027 | 0.59512  |
| chas    | -0.055892 | -0.042697 | 0.062938  | 1.000000  | 0.091203  | 0.091251  | 0.086518  | -0.099176 | -0.00736 |
| nox     | 0.420972  | -0.516604 | 0.763651  | 0.091203  | 1.000000  | -0.302188 | 0.731470  | -0.769230 | 0.61144  |
| rm      | -0.219247 | 0.311991  | -0.391676 | 0.091251  | -0.302188 | 1.000000  | -0.240265 | 0.205246  | -0.20984 |
| age     | 0.352734  | -0.569537 | 0.644779  | 0.086518  | 0.731470  | -0.240265 | 1.000000  | -0.747881 | 0.45602  |
| dis     | -0.379670 | 0.664408  | -0.708027 | -0.099176 | -0.769230 | 0.205246  | -0.747881 | 1.000000  | -0.49458 |
| rad     | 0.625505  | -0.311948 | 0.595129  | -0.007368 | 0.611441  | -0.209847 | 0.456022  | -0.494588 | 1.00000  |
| tax     | 0.582764  | -0.314563 | 0.720760  | -0.035587 | 0.668023  | -0.292048 | 0.506456  | -0.534432 | 0.91022  |
| ptratio | 0.289946  | -0.391679 | 0.383248  | -0.121515 | 0.188933  | -0.355501 | 0.261515  | -0.232471 | 0.46474  |
| Istat   | 0.455621  | -0.412995 | 0.603800  | -0.053929 | 0.590879  | -0.613808 | 0.602339  | -0.496996 | 0.48867  |
| medv    | -0.388305 | 0.360445  | -0.483725 | 0.175260  | -0.427321 | 0.695360  | -0.376955 | 0.249929  | -0.38162 |

```
In [65]: eda_2_nn(boston, 'age', 'lstat')
```



상관계수 : 0.6023385287262399, P-value : 2.783923998501396e-51

In [31]: boston.loc[:, boston.corr()['rad'] > 0.7]

| Out[31]: |     | rad | tax |
|----------|-----|-----|-----|
|          | 0   | 1   | 296 |
|          | 1   | 2   | 242 |
|          | 2   | 2   | 242 |
|          | 3   | 3   | 222 |
|          | 4   | 3   | 222 |
|          | ••• |     |     |
|          | 501 | 1   | 273 |
|          | 502 | 1   | 273 |
|          | 503 | 1   | 273 |
|          | 504 | 1   | 273 |
|          | 505 | 1   | 273 |

506 rows × 2 columns

In [ ]: