Measure Theory

Alec Zabel-Mena

 $\underline{\text{Text}}$

Real Analysis (4^{th} edition) P.M. Fitzpatrick & H.L. Royden

December 27, 2022

Contents

1	The	Real Numbers	5
	1.1	Open Sets, and σ -Algebras	
	1.2	Sequences of Real Numbers	7

4 CONTENTS

Chapter 1

The Real Numbers

1.1 Open Sets, and σ -Algebras

Definition. We call a set U of real numbers **open** provided for any $x \in U$, there is an r > 0 such that $(x - r, x + r) \subseteq U$.

Lemma 1.1.1. The set of real numbers \mathbb{R} , together with open sets defines a topology on \mathbb{R} .

Proof. Notice that both \mathbb{R} and \emptyset are open sets. Moreover, if $\{U_n\}$ is a collection of open sets, then so is thier union. Now, consider the fintie collection $\{U_k\}_k = 1^n$ and let $U = \bigcap_{k=1}^n U_k$. If U is empty, we are done. Otherwise, let $x \in U$. Then $x \in U_k$ for every $1 \le k \le n$, and since each U_k is open, choose an $r_k > 0$ for which $(x - r_k, x + r_k) \subseteq U_k$. Then let $r = \min\{r_1, \ldots, r_n\}$. Then r > 0, and we have $(x - r, x + r) \subseteq U$, which makes U open in \mathbb{R}

Lemma 1.1.2. Every nonempty set is the disjoint union of a countable collection of open sets.

Proof. Let U be nonempty and open in \mathbb{R} . LEt $x \in U$. Then there is a y > x for which $(x,y) \subseteq U$ and there is a z < x for which $(z,x) \subseteq U$. Now, let $a_x = \inf\{z : (z,x) \subseteq U\}$ and $b_x = \sup\{y : (x,y) \subseteq U\}$, and let $I_x = (a_x,b_x)$. Then we have

$$x \in I_x$$
 and $a_x \notin I_x$ and $b_x \notin I_x$

Let $w \in I_x$ such that $x < w < b_x$. Then there is a y > w such that $(x,y) \subseteq U$ so that $w \in U$. Now, if $b_x \in U$, then there is an r > 0 for which $(b_x - r, b_x + r) \subseteq U$, in particular, $(x, b_x + r) \subseteq U$. But b_r is the least upperbound of all such numbers, and $b_x < b_x + r$, a contradiction. Thus $b_x \notin U$, and hence $b_x \notin I_x$. A similar argument shows that $a_x \notin I_x$.

Consider now the collection $\{I_x\}_{x\in U}$. Then $U=\bigcup I_x$ and since $a_x,b_x\notin I_x$ for each x, the collection $\{I_x\}$ is a disjoint collection. Lastly, by the density of $\mathbb Q$ in $\mathbb R$ there is a 1–1 mapping between this collection and $\mathbb Q$, making it countable.

Definition. Let $E \subseteq \mathbb{R}$ a set. We call a point $x \in \mathbb{R}$ a **point of closure** of E if every open interval containing x also contains a point of E. We call the collection of all such points the **closure** of E, and denote it $\operatorname{cl} E$. If $E = \operatorname{cl} E$, then we say that E is **closed**.

Lemma 1.1.3. For any set E of real numbers, $\operatorname{cl} E$ is closed; i.e. $\operatorname{cl} E = \operatorname{cl} (\operatorname{cl} E)$. Moreover, $\operatorname{cl} E$ is the smallest closed set containing E.

Lemma 1.1.4. Every set E of rea numbers is open if, and only if $\mathbb{R}\setminus E$ is closed.

Definition. Let $E \subseteq \mathbb{R}$ a set. We call a collection $\{E_{\lambda}\}$ a **cover** of E if $E \subseteq \bigcup E_{\lambda}$. If each E_{λ} is open, then we call this collection an **open cover** of E.

Theorem 1.1.5 (Heine-Borel). For any closed and bounded set F of \mathbb{R} , every open cover of F has a finite subcover.

Proof. Suppose first that F = [a, b], for $a \leq b$ real numbers. Then F is closed and bounded. Let \mathcal{F} be an open cover of [a, b], and deifne $E = \{x \in [a, b] : [a, x] \text{ has a finite subcover by sets in } \mathcal{F}\}$. Notice that $a \in E$, so that E is nonempty. Now, since E is bounded by b, by the completeness of \mathbb{R} , let $c = \sup\{E\}$. Then $c \in [a, b]$ and there is a set $U \in \mathcal{F}$ with $c \in U$. Since U is open, there exists an $\varepsilon > 0$ such that $(c - \varepsilon, c + \varepsilon) \subseteq U$. Now, $c - \varepsilon$ is not an upperbound of E, so there is an $x \in E$ with $c - \varepsilon < x$, and a finite collection of open sets $\{U_i\}_{i=1}^k$ covering [a, x]. Then the collection $\{U_i\}_{i=1}^k \cup U$ covers [a, x] so that c = b, and we have found a finite subcover of F.

Now, let F be closed and bounded. Then it is contained in a closed bounded interval [a, b]. Now, let $U = \mathbb{R} \setminus F$ open and \mathcal{F} an open cover of F. Let $\mathcal{F}' = \mathcal{F} \cup U$. Since \mathcal{F} covers F, \mathcal{F}' covers [a, b]. By above, there is a finite subcover of [a, b], and hence of F by sets in \mathcal{F}' . Removine U from \mathcal{F}' , we get a finite subcover of F by sets in \mathcal{F} .

Theorem 1.1.6 (The Nested Set Theorem). Let $\{F_n\}$ be a descending collection of nonempty closed sets of \mathbb{R} , for which F_1 is bounded. Then

$$\bigcap F_n \neq \emptyset$$

Proof. Let $F = \bigcap F_n$, and suppose to the contrary that F is empty. Then for all $x \in \mathbb{R}$, there is an $n \in \mathbb{Z}^+$ for which $x \notin F_n$. So that $x \in U_n = \mathbb{R} \setminus F_n$. Tyhen $U_n = \mathbb{R}$, and each U_n is open. So $\{U_n\}$ is an open cover of \mathbb{R} , and hence F_1 . By the theorem of Heine-Borel, there is an N > 0 such that $F \subseteq \bigcup_{n=1}^N U_n$. Since $\{F_n\}$ is descending, the collection $\{U_n\}$ is ascending, and hence $\bigcup U_n = U_N = \mathbb{R} \setminus F_N$ which makes $F_1\mathbb{R} \setminus F_N$, a contradiction.

Definition. Let X be a set. We call a collection \mathcal{A} of subsets of X σ -algebra if

- $(1) \emptyset \in \mathcal{A}.$
- (2) For any $A \in \mathcal{A}$, $X \setminus A \in \mathcal{A}$.
- (3) If $\{A_n\}$ is a countable collection of elements of \mathcal{A} , then their union is an element of \mathcal{A} .

Lemma 1.1.7. Let \mathcal{F} a collection of subsets of a set X. The intersection of all σ -algebras containing \mathcal{F} is a σ -algebra. Moreover, it is the smallest such σ -algebra.

Definition. We define the **Borel sets** of \mathbb{R} to be the σ -algebra of \mathbb{R} cotnaining all open sets in \mathbb{R}

Lemma 1.1.8. Every closed set of \mathbb{R} is a Borel set.

Definition. We call a countable intersection of open sets of \mathbb{R} a G_{δ} -set and we call a countable union of closed sets of \mathbb{R} an F_{σ} -set.

1.2 Sequences of Real Numbers

Definition. A sequence $\{a_n\}$ of real numbers is said to **converge** to a point a, if, for every $\varepsilon > 0$, there is an N > 0 such that

$$|a - a_n| < \varepsilon$$
 whenever $n \ge N$

We call a the **limit** of $\{a_n\}$ and write $\{a_n\} \to a$, or

$$\lim_{n \to \infty} \{a_n\} = a$$

Lemma 1.2.1. Let $\{a_n\} \to a$ a sequence of real numbers converging to $a \in \mathbb{R}$. Then the limit of $\{a_n\}$ is unique, $\{a_n\}$ is bounded, and for any $c \in \mathbb{R}$, if $a_n \leq c$ for all n, then $a \leq c$.

Theorem 1.2.2 (The Monoton CVonvergence Theorem). A monotone sequence of real numbers converges to a point if, and only if it is bounded.

Proof. Without loss of generality, suppose that the sequence $\{a_n\}$ is increasing. If $\{a_n\} \to a$, by lemma 1.2.1, $\{a_n\}$ is bounded. On the otherhand, suppose that $\{a_n\}$ is bounded. Let $S = \{a_n : n \in \mathbb{Z}^+\}$, then by the completeness of \mathbb{R} , let $a = \sup S$. Let $\varepsilon > 0$. Notice that $a_n \leq a$ for all n. Now, since $a - \varepsilon$ is not an upperbound, there exists an N > 0 for which $a_N > a - \varepsilon$, then since $\{a_n\}$ is increasing, $a_n > a - \varepsilon$ whenever $n \geq N$. So we get

$$|a - a_n| < \varepsilon$$
 whenever $n \ge N$

Which makes $\{a_n\} \to a$.

Theorem 1.2.3 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Proof. Let $\{a_n\}$ be a bounded sequence, and let M>0 such that $|a_n|\geq M$ for all $n\in\mathbb{Z}^+$. Define $E_n=\operatorname{cl}\{a_j:j\geq n\}$. Then $EE\subseteq [-M,M]$. Thus $\{E_n\}$ is a decreasing sequence of closed, bounded, and nonempty sets of \mathbb{R} . By the nested set theorem, the intersection $E=\bigcap E_n$ is nonempty. Choose an $a\in E$. Then for every $k\in\mathbb{Z}^+$, a is a point of closure of the set $\{a_j:j\geq k\}$. SO that $a_j\in(a-\frac{1}{k},a+\frac{1}{k})$ whenever $j\geq k$. By induction, construct a strictly increasing sequence $\{n_k\}$ of natural numbers for which $|a-a_{n_k}|<\varepsilon$. Then by the principle of Archimedes, $\{a_{n_k}\}\to a$, and we have a convergent subsequence.

Definition. We call a sequence $\{a_n\}$ Cauchy if for every $\varepsilon > 0$, there is an N > 0 for which

$$|a_m - a_n| < \varepsilon$$
 whenever $m, n \ge N$

Theorem 1.2.4 (The Cauchy Convergence Criterion). A sequence of real numbers converges if, and only if it is Cauchy.

Proof. Suppose that the sequence $\{a_n\} \to a$ converges to $a \in \mathbb{R}$. Then for any $m, n \in \mathbb{Z}^+$, notice that $|a_m - a_n| \le |a_m - a| + |a - a_n|$. Let $\varepsilon > 0$ and choose N > 0 such that $|a - a_n| < \frac{\varepsilon}{2}$, and $|a_m - a| < \frac{\varepsilon}{2}$. Then if $n, m \ge N$, we get $|a_m - a_n| < \varepsilon$, which makes $\{a_n\}$ Cauchy.

Conversely, suppose that $\{a_n\}$ is Cauchy. Let $\varepsilon=1$ and choose N>0 such that if $m,n\geq N$, then $|a_m-a_n|<1$. Then we get $|a_n|\leq 1+|a_N|$ for all $n\geq N$. Define $M=1+\max\{|a_1|,\ldots,|a_N|\}$. Then $|a_n|\leq M$ for all n. This makes $\{a_n\}$ bounded. By the theorem of Bolzano-Weierstrass, $\{a_n\}$ has a convergent subsequence $\{a_{n_k}\}\to a$. Let $\varepsilon>0$, since $\{a_n\}$ is Cauchy, choose an N>0 such that $|a_m-a_n|<\frac{\varepsilon}{2}$ whenever $n,m\geq N$. Likewise, we get $|a-a_{n_k}|<\frac{\varepsilon}{2}$ and $n_k\geq N$. Thus we observe that $|a_n-a|\leq |a_n-a_{n_k}|+|a-a_{n_k}|<\varepsilon$ and so $\{a_n\}\to a$.

Theorem 1.2.5. Let $\{a_n\} \to a$ and $\{b_n\} \to b$ be convergent sequences. Then for any $\alpha, \beta \in \mathbb{R}$, we have that the sequence $\{\alpha a_n + \beta b_n\}$ converges and that

$$\lim_{n \to \infty} \{\alpha a_n + \beta b_n\} = \alpha a + \beta b$$

Definition. We say a sequence $\{a_n\}$ of real numbers **converges to infinity** $\infty \in \mathbb{R}_{\infty}$ if for every $c \in \mathbb{R}$, there is an N > 0 such that $a_n \geq c$ whenver $n \geq N$. We write $\{a_n\} \to \infty$, or

$$\lim_{n \to \infty} \{a_n\} = \infty$$

Definition. Let $\{a_n\}$ be a sequence of real numbers. We define the **limit superior** of $\{a_n\}$ to be

$$\lim \sup \{a_n\} = \lim_{n \to \infty} (\sup \{a_k : k \ge n\})$$

Similarly, we define the **limit inferiro** of $\{a_n\}$ to be

$$\lim\inf \{a_n\} = \lim_{n \to \infty} \left(\inf \{a_k : k \ge n\}\right)$$

Theorem 1.2.6. For any sequences $\{a_n\}$ and $\{b_n\}$ of real numbers, the following are true:

- (1) $\limsup \{a_n\} = l \in \mathbb{R}_{\infty}$ if, and only if for every $\varepsilon > 0$, there exists infinitely many $n \in \mathbb{Z}^+$ such that $a_n > l \varepsilon$ and finitely many $n \in \mathbb{Z}^+$ for which $a_n > l + \varepsilon$.
- (2) $\limsup \{a_n\} = \infty$ if, and only if $\{a_n\}$ is not bounded above.
- (3) $\limsup \{a_n\} = -\liminf \{-a_n\}$
- (4) $\{a_n\} \to a \in \mathbb{R}_{\infty}$ if, and only if $\limsup \{a_n\} = \liminf \{a_n\}$.
- (5) If $a_n \leq b_n$ for all n, then $\limsup \{a_n\} \leq \limsup \{b_n\}$.

Definition. Let $\{a_n\}$ a sequence of real numbers. We call the series $\sum_{k=1}^{\infty} a_k$ summable if the sequence of partial sums $\{s_n = \sum_{k=1}^n a_k\} \to s$ converges to a point $s \in \mathbb{R}$.

Lemma 1.2.7. Let $\{a_n\}$ a sequence of real numbers. Then the following are true.

(1) The series $\sum a_k$ is summable if, and only if for every $\varepsilon > 0$, there is an N > 0 such that

$$\left|\sum_{k=n}^{n+m} a_k\right| < \varepsilon \text{ for all } m \in \mathbb{Z}^+ \text{ whenever } n \ge N$$

- (2) If $\sum |a_k|$ is summable, then so is $\sum a_k$.
- (3) If $a_k \geq 0$, then $\sum a_k$ is summable if, and only if the sequence of partial sums $\{s_n\}$ is bounded.

Bibliography

- [1] W. R. Wade, An introduction to analysis. Upper Saddle River, NJ: Pearson Education, 2004.
- [2] W. Rudin, Principles of mathematical analysis. New York: McGraw-Hill, 1976.