Luku 1

Pallogeometriaa

1.1 Kuun mitat ja pinnanmuodot

Kuun keskimääräinen säde on 1737.1 kilometriä. Suurimmat pinnanmuodot ovat varhaisia törmäyskraattereita. Kappaleen törmätessä kuun pintaan sula basalttinen laava täytti kraatterin muodostaen tumman tasaisen alangon, joita nykyisin nimitämme kuun meriksi (maria), järviksi (lacus), lahdiksi (sinus) ja soiksi (paludes).

Oletamme, että käytössämme on kuvan 1 mukainen listaus kuun merkittävimmistä pinnanmuodoista tekstitiedostona. Kukin rivi koostuu tabulaattorimerkein erotetuista kentistä. Kentät ovat muodostuman latinankielinen nimi, suomenkielinen nimi, latitudi, longitudi ja halkaisija.

1.2 Funktio splitOn

Kun annamme muuttujan str arvoksi esimerkkirivin tiedostosta, voimme jakaa merkkijonon osiin kirjaston Data.List.Split funktiolla split0n. Funktio saa argumentteinaan katkaisevan ja katkaistavan merkkijonon. Funktio palauttaa listan syntyneistä merkkijonon osista.

> import Data.List.Split

Oceanus Procellarum Mare Frigoris	Myrskyjen valtameri Kylmyyden meri	18.4 N 56.0 N	57.4 W 1.4 E	2568 1596
Mare Imbrium	Sateiden meri	32.8 N	15.6 W	1123
Mare Fecunditatis	Hedelmällisyyden meri	7.8 S	51.3 E	909
Mare Tranquillitatis	Rauhallisuuden meri	8.5 N	31.4 E	873
Mare Nubium	Pilvien meri	21.3 S	16.6 W	715
Mare Serenitatis	Hiljaisuuden meri	28.0 N	17.5 E	707
Mare Australe	Eteläinen meri	38.9 S	93.0 E	603
Mare Insularum	Saarten meri	7.5 N	30.9 W	513
Mare Marginis	Reunameri	13.3 N	86.1 E	420
Mare Crisium	Vaarojen meri	17.0 N	59.1 E	418
Mare Humorum	Kosteuden meri	24.4 S	38.6 W	389
Mare Cognitum	Tunnettu meri	10.0 S	23.1 W	376
Mare Smythii	Smythin meri	1.3 N	87.5 E	373
Mare Nectaris	Nektarinmeri	15.2 S	35.5 E	333
Mare Orientale	Itäinen meri	19.4 S	92.8 W	327
Mare Ingenii	Nerokkuuden meri	33.7 S	163.5 E	318
Mare Moscoviense	Moskovan meri	27.3 N	147.9 E	277
Mare Humboldtianum	Humboldtin meri	56.8 N	81.5 E	273
Mare Vaporum	Höyryjen meri	13.3 N	3.6 E	245
Mare Undarum	Aaltojen meri	6.8 N	68.4 E	243
Mare Anguis	Käärmeitten meri	22.6 N	67.7 E	150
Mare Spumans	Vaahdon meri	1.1 N	65.1 E	139
Lacus Veris	Kevään järvi	16.5 S	86.1 W	396
Lacus Somniorum	Unelmien järvi	38.0 N	29.2 E	384
Lacus Excellentiae	Erinomaisuuden järvi	35.4 S	44.0 W	184
Lacus Autumni	Syksyn järvi	9.9 S 45.0 N	83.9 W 27.2 E	183
Lacus Mortis	Kuoleman järvi		104.3 E	151 139
Lacus Solitudinis Lacus Temporis	Yksinäisyyden järvi	27.8 S 45.9 N	58.4 E	117
Lacus Temporis Lacus Timoris	Ajan järvi Pelon järvi	38.8 S	27.3 W	117
Lacus Gaudii	Ilon järvi	16.2 N	12.6 E	113
Lacus Doloris	Kärsimyksen järvi	17.1 N	9.0 E	110
Lacus Bonitatis	Hyvyyden järvi	23.2 N	43.7 E	92
Lacus Aestatis	Kesän järvi	15.0 S	69.0 W	90
Lacus Felicitatis	Onnellisuuden järvi	19.0 N	5.0 E	90
Lacus Lenitatis	Pehmeyden järvi	14.0 N	12.0 E	80
Lacus Spei	Toivon järvi	43.0 N	65.0 E	80
Lacus Odii	Vihan järvi	19.0 N	7.0 E	70
Lacus Perseverantiae	Sinnikkyyden järvi	8.0 N	62.0 E	70
Lacus Hiemalis	Talven järvi	15.0 N	14.0 E	50
Lacus Luxuriae	Ylellisyyden järvi	19.0 N	176.0 E	50
Lacus Oblivionis	Unohduksen järvi	21.0 S	168.0 W	50
Sinus Medii	Keskilahti	2.4 N	1.7 E	335
Sinus Aestuum	Helteen lahti	10.9 N	8.8 W	290
Palus Epidemiarum	Tautien suo	32.0 S	28.2 W	286
Sinus Iridum	Sateenkaarten lahti	44.1 N	31.5 W	236
Sinus Asperitatis	Kovuuden lahti	3.8 S	27.4 E	206
Sinus Roris	Aamukasteen lahti	54.0 N	56.6 W	202 161
Palus Putredinis Palus Somni	Mätänemisen suo	26.5 N 14.1 N	0.4 E 45.0 E	143
Sinus Concordiae	Unien suo	14.1 N 10.8 N	43.0 E 43.2 E	143
Sinus Concordiae Sinus Successus	Sopusoinnun lahti Menestyksen lahti	0.9 N	59.0 E	132
Sinus Amoris	Rakkauden lahti	18.1 N	39.1 E	130
Sinus Lunicus	Lunan lahti	31.8 N	1.4 W	126
Sinus Honoris	Kunnian lahti	11.7 N	18.1 Ë	109
Sinus Fidei	Luottamuksen lahti	18.0 N	2.0 E	70
		· · · ·	- -	

 ${\bf Kuva~1.~}$ Kuun merkittävimmät pinnanmuodot tekstitiedostona. Kentät on erotettu tabulaattorimerkein.

```
> str = "Mare Smythii\tSmythin meri\t1.3 N\t87.5 E\t373"
> splitOn "\t" str
["Mare Smythii","Smythin meri","1.3 N","87.5 E","373"]
```

1.3 Pallokoordinaatisto

Voimme muuntaa koordinaatteja pallokoordinaatistosta karteesiseen koordinaatistoon kaavalla (http://mathworld.wolfram.com/SphericalCoordinates.html)

$$x = r \cos \theta \sin \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \phi$$

Tässä r on säde eli etäisyys origosta, θ kulma x-akselista xy-tasossa ja ϕ kulma ylöspäin osoittavasta z-akselista.

Maantieteellisessä koordinaatistossa merkitsemme leveysastetta (*latitudi*) symbolilla δ , jolloin $\phi = 90^{\circ} - \delta$ sekä pituusastetta (*longitudi*) symbolilla λ ($\lambda = \theta$).

Koordinaattilyhenteissä kirjain N(north)merkitsee pohjoista leveyttä, S(south)eteläistä leveyttä, E(east)itäistä pituutta ja W(west)läntistä pituutta. Maapallolla leveysaste δ kasvaa päiväntasaajalta pohjoiseen kuljettaessa ja pituusaste λ Greenwichin nollameridiaanilta itään kuljettaessa. Nimitykset leveys ja pituus juontuvat Välimeren alueen kulttuureista: Välimeri on "pitkä" itä-länsi-suunnassa ja "leveä" pohjois-etelä-suunnassa. Pituuspiirejä sanotaan myös meridiaaneiksi. Termi meridiaani johtuu latinan puolipäivää tai etelää merkitsevästä sanasta meridies.

Määrittelemme tietotyypin Point3D pisteelle kolmiulotteisessa karteesisessa xyz-koordinaatistossa. Pallokoordinaatistossa määrittelemme pisteen Spheric3D kulmien θ ja ϕ avulla. Maantieteellisen koordinaatin GeographicNE määrittelemme kulmien δ ja λ avulla. Pallokoordinaatisto on vasenkätinen koordinaatisto ja maantieteellinen koordinaatisto oikeakätinen koordinaatisto, joten konstruktorien parametrit tulevat päinvastaisessa järjestyksessä.

-- | Point3D x y z, RH cartesian coordinates

```
data Point3D = Point3D Double Double
```

1.4 Ortografinen projektio

Asetamme kuun säteeksi r=1737.1 km. Yksinkertaisimman muunnoksen kolmiulotteisesta koordinaatistosta kaksiulotteiseen koordinaatistoon saamme pudottamalla x-koordinaatin pois. Funktio cartesian on monimuotoinen funktio, joka muuntaa pallokoordinaatiston pisteen Spheric ja maantieteellisen koordinaatin GeographicNE karteesiseksi xyz-koordinaatiksi.

```
r = 1737.1

orthoYZ (Point3D x y z) = Point y z

perspective = orthoYZ

cartesian (GeographicNE delta lambda) =
   cartesian (Spheric3D theta phi)
   where
     theta = lambda
     phi = (DEG 90) `subAngles` delta

cartesian (Spheric3D theta phi) = Point3D x y z
   where
     x = r * cos1 theta * sin1 phi
     y = r * sin1 theta * sin1 phi
     z = r * cos1 phi
```

Saamme hahmotelman leveyspiireistä pallon etupuoliskolla algoritmilla

```
latitudes = [PolyLine [(perspective . cartesian)
  (GeographicNE (DEG d) (DEG 1))
  | 1 <- lambda]
  | d <- delta]
  where
  delta = [-90,-75..90]
  lambda = [-90,-70..90]</pre>
```

Etupuoliskon pituuspiirit eli meridiaanit saamme algoritmilla

```
meridians = [PolyLine [(perspective . cartesian)
  (GeographicNE (DEG d) (DEG 1))
  | d <- delta]
      | 1 <- lambda]
  where
    delta = [-90,-80..90]
  lambda = [-90,-75..90]</pre>
```

Olemme esittäneet leveys- ja pituuspiirien muodostaman kuvion kuvassa 2.

Kuva 2. Karttapallon puolisko, jossa kuvattuna leveyspiirit ja pituuspiirit eli meridiaanit 15 asteen välein.

1.5 Vinoprojektion perspektiivimatriisi

Niin sanotussa *vinoprojektiossa* kuvaamme kaksi akselia suoraan kulmaan toistensa kanssa ja kolmannen akselin tiettyyn kulmaan näiden välillä.

Kuva 3. Vinoprojektioiden perspektiivimatriiseja.

Kuvassa 3 esiintyvät vakiot a, b, c ja d olemme määritelleet seuraavasti kulman α avulla:

$$a = \frac{1}{2} \cdot \cos \alpha$$

$$b = \frac{1}{2} \cdot \sin \alpha$$

$$c = -a$$

$$d = -b$$

Matriiseista järjestysluvultaan parittomat antavat kuvauskoordinaatistoksi vasenkätisen ja parilliset oikeakätisen koordinaatiston. Haskell-kielelle muunnettuna voimme esittää perspektiivimatriisit $\mathbf{M}_{1..12}$ case-lauseen avulla.

```
matrix1 m alpha = case m of
  1 -> [ [1,0,a], [0,1,b], z]
  2 \rightarrow [[1,a,0], [0,b,1], z]
  3 \rightarrow [[a,1,0], [b,0,1], z]
  4 \rightarrow [[0,1,a],[1,0,b],z]
  5 -> [ [0,a,1], [1,b,0], z]
  6 \rightarrow [[a,0,1], [b,1,0], z]
  7 \rightarrow [[1,c,0], [0,d,1], z]
  8 \rightarrow [[1,0,c],[0,1,d],z]
  9 \rightarrow [[0,1,c],[1,0,d],z]
  10 \rightarrow [[c,1,0], [d,0,1], z]
  11 \rightarrow [[c,0,1], [d,1,0], z]
  12 \rightarrow [[0,c,1],[1,d,0],z]
  where
    a = 0.5 * cos1 alpha
    b = 0.5 * sin1 alpha
    c = -a; d = -b
    z = [0,0,0]
```

Asetamme nyt muunnosmatriiseiksi matriisit \mathbf{M}_2 ja \mathbf{M}_8 (kuva 4).

$$\mathbf{M}_{2} = \begin{pmatrix} 1 & 1/2 \cdot \cos 30^{\circ} & 0 \\ 0 & 1/2 \cdot \sin 30^{\circ} & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{M}_{8} = \begin{pmatrix} 1 & 0 & -1/2 \cdot \cos 35^{\circ} \\ 0 & 1 & -1/2 \cdot \sin 35^{\circ} \\ 0 & 0 & 0 \end{pmatrix}$$

Kuva 4. Karttapallon puoliskot muunnosmatriiseja M_2 ja M_8 käyttäen.

1.6 Mare Serenitatis

Haluamme seuraavaksi kuvata Hiljaisuuden meren karttapallolle. Kraatterin läpimitta on d=707 km, ja säde näin ollen r=d/2=353.5 km. Hiljaisuuden meren keskipisteen koordinaatit ovat (28.0° N, 17.5° E).

Kuun säteen ollessa $r=1737.1~\mathrm{km},$ saamme kuvan 5 merkinnöillä keskuskulmaksi

$$\theta = 2\pi \cdot \frac{353.5}{2\pi \cdot 1737.1} = 0.2035 \text{ rad} = 11.65^{\circ}$$

Kuva 5. Kraatterin säteen r = 353.5 km muodostama keskuskulma.

Aiemmin esitellyn perusteella osaamme jo sijoittaa pohjoisnavalle ympyrän, jonka säde on annettu. Käytämme tällöin Hiljaisuuden merelle laskemaamme keskuskulmaa ylimääräisenä leveyspiirinä, jonka piirrämme täytettynä monikulmiona (kuva 6).

Kuva 6. Hiljaisuuden meri pohjoisnavalle siirrettynä.

```
serenitatis = [ Filled $ Polygon [
  (perspective . cartesian) (Spheric3D (DEG th) phi)
  | th <- theta]]
  where
    phi = RAD (halfpi - 0.2035)
    theta = [-180,-160..160]</pre>
```

1.7 Kiertomatriisit kolmessa ulottuvuudessa

Kiertomatriisit kolmessa ulottuvuudessa kulman θ verran akselien x, y ja z suhteen ovat (https://en.wikipedia.org/wiki/Rotation_matrix)

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \qquad \mathbf{R}_{y} = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$
$$\mathbf{R}_{z} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Haskell-kielelle muunnettuna nämä ovat

Latitudin δ komplementtikulma $\phi=90^\circ-\delta$ määrittää kierron y-akselin suhteen ja longitudi λ kierron z-akselin suhteen.

```
rotYZ delta lambda (Point3D x1 y1 z1) = Point3D x y z
where
```

```
[x,y,z] = foldr matrixTimes3 [x1,y1,z1] rts
rts = [rotationZ lambda,rotationY phi]
phi = DEG 90 `subAngles` delta
```

Valitsemme perspektiivimatriisin \mathbf{M}_{10} .

```
perspective = matr1 pv pAlpha
where
   pv = 10 -- matrix M10
   pAlpha = 35
```

Yleisessä muodossaan määrittelemme kuun meren piirtoalgoritmin funktiossa mare, joka saa parametrinaan d meren halkaisijan ja parametrinaan pos maantieteellisen pohjois-itä-koordinaatin tyyppiä GeographicNE.

```
data GeographicNE = GeographicNE Angle Angle
marePg1 d pos = Filled $ Polygon $ marePts d pos

marePts d pos = [ perspective $ rotYZ delta lambda $
  cartesian $ Spheric3D (DEG 1) phi | 1 <- lambdaRim ]
  where
    GeographicNE delta lambda = pos
    phi = DEG 90 `subAngles` (RAD theta)
        theta = (d/2) / r
        lambdaRim = [-180,-160..160]

Hiljaisuuden meri saa nyt muodon

serenitatis = marePg1 d pos
  where
    d = 707
    pos = GeographicNE (DEG 28) (DEG 17.5)</pre>
```

Piirrämme kuvaan 7 myös Myrskyjen valtameren, jonka halkaisija on d=2568 km, ja jonka keskipiste sijaitsee pisteessä (18.4° N, 57.4° W).

```
procellarum = marePg1 d pos
  where
    d = 2568
    pos = GeographicNE (DEG 18.4) (DEG (-57.4))
```


Kuva 7. Hiljaisuuden meri ja Myrskyjen valtameri.

Merkitsemme myös koordinaatiston nollapisteen funktiolla proto0.

```
proto0 = marePg1 160 (GeographicNE (DEG 0) (DEG 0))
```

1.8 Monikulmion paloittelu

Olemme koordinaattimuunnoksissa huomioineet ainoastaan täytetyn monikulmion reunapisteet, joten esimerkiksi Myrskyjen valtameren keskiosat piirtyivät väärin kuvassa 7.

Parempaan tulokseen päädymme paloittelemalla monikulmiot asteverkon mukaisesti. Käytämme aluksi tasavälistä lieriöprojektiota (equirectangular projection), jossa pituus- ja leveysasteet kuvautuvat sellaisenaan koordinaattipisteiksi.

```
equirect (Spheric3D lambda delta) = Point 1 d
  where
    DEG 1 = degrees lambda
    DEG d = degrees delta
```

Mittakaavakertoimena on seuraavassa $\frac{2\pi \cdot r}{360}$, missä r=1737.1 km on kuun säde.

```
marePg2 d pos = Polygon (marePts2 d pos)
```

```
marePts2 d pos = [ pt0 `addCoords`
  pointFromPolar (DEG 1) r2 | 1 <- lambdaRim ]
  where
    r2 = (d/2) / (twopi * r / 360)
    pt0 = equirect (Spheric3D lambda delta)
    GeographicNE delta lambda = pos
    lambdaRim = [-180,-140..140]</pre>
```

Muunnamme polaarikoordinaatit pisteeksi Point funktiolla pointFromPolar.

```
pointFromPolar t s = Point x y
  where
    x = s * cos1 t
    y = s * sin1 t
```

Olemme kuvassa 8 esittäneet suorakulmaisessa koordinaatistossa Hedelmällisyyden meren, jonka halkaisija on d=909 km, ja jonka keskipiste sijaitsee pisteessä (7.8° S, 51.3° E).

Kuva 8. Hedelmällisyyden meri suorakulmaisessa koordinaatistossa.

```
fecunditatis = marePts2 d pos
  where
    d = 909
    pos = GeographicNE (DEG (-7.8)) (DEG 51.3)
```

1.9 Pisteet monikulmion sisä- ja ulkopuolella

Käytämme monikulmion paloitteluun *Sutherland-Hodgmanin algoritmia* (https://en.wikipedia.org/wiki/Sutherland-Hodgman_algorithm).

Paloittelussa muokkaamme monikulmion kärkipistejoukkoa vertaamalla sitä leikkaavan monikulmion sivuihin sivu kerrallaan. Leikkauksen lähtöjoukkona toimii aina edellisessä vaiheessa saatu kärkipistejoukko. Kukin sivu leikkaa osan kärkipisteistä pois sekä muodostaa uusia kärkipisteitä paloiteltavan ja leikkaavan monikulmion sivujen leikkauspisteisiin. Paloittelualgoritmia varten tarvitsemme tiedon siitä, kummalla puolella annettua sivua tietty kärkipiste sijaitsee.

Saamme selville kummalla puolella sivua piste sijaitsee muodostamalla kolmion, jonka kärkipisteet ovat sivun alkupiste, sivun loppupiste ja vertailtava piste. Kun piste sijaitsee sivun oikealla puolella, muodostuneen kolmion kiertosuunta on myötäpäivään, jolloin sen ala determinanttisäännön mukaan on negatiivinen. Kun piste sijaitsee sivun vasemmalla puolella, kiertosuunta on vastapäivään ja muodostuneen kolmion ala positiivinen.

```
data InOut = In | Out
    deriving Show

sign x = if x < 0 then (-1) else 1
around xs = zip xs ((tail . cycle) xs)

inOut1 p1 p2 pts = [
    (inOut . sign . area . Polygon) [p1,p2,p3] | p3 <- pts]
    where
        inOut 1 = In
        inOut (-1) = Out

gridGreatCircles = concat [[[
    xpt 11 d1, xpt 12 d1, xpt 12 d2, xpt 11 d2]
    | (d1,d2) <- zip vb3 (tail vb3)]
    | (11,12) <- zip vb2 (tail vb2)]
    where
        xpt 1 d = equirect (Spheric3D (DEG 1) (DEG d))</pre>
```

```
vb3 = visible3 delta
vb2 = visible2 lambda
delta = [-90,-75..90]
lambda = [-90,-75..90]

visible2 = filter (\l -> l > 29 && l < 76)
visible3 = filter (\l -> d > -31 && d < 16)</pre>
```

Determinanttisääntöä käytämme, kun määrittelemme funktion area monikulmiolle Polygon. Determinantin saamme matematiikasta tutulla kaavalla

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - b \cdot c$$

1.10 Rajauksen ensimmäinen vaihe

Aloitamme kuvion paloittelun neliöstä $(\mathbf{s}_1\mathbf{s}_2\mathbf{s}_3\mathbf{s}_4)$ alueen vasemmassa alanurkassa (kuva 9).

```
parte = 0
[s1,s2,s3,s4] = gridGreatCircles !! parte
fc0 = fecunditatis
```

Rajattavan monikulmion sivut jakautuvat neljään ryhmään suhteessa rajaavaan monikulmioon:

(In,In): sivu alkaa sisäpuolelta ja päättyy sisäpuolelle. (In,Out): sivu alkaa sisäpuolelta ja päättyy ulkopuolelle. (Out,Out): sivu alkaa ulkopuolelta ja päättyy ulkopuolelle.

Kuva 9. Ensimmäinen tarkasteltava ruutu.

(Out,In): sivu alkaa ulkopuolelta ja päättyy sisäpuolelle.

Sutherland-Hodgmanin algoritmin mukaiset toimenpiteet sivutyypeille ovat

(In, In): säilytämme kärkipisteet.

(In,Out): säilytämme lähtöpisteen ja siirrämme loppupisteen.

(Out,Out): poistamme kärkipisteet.

(Out,In): siirrämme alkupisteen ja säilytämme loppupisteen.

Haskell-kielelle muunnettuna saamme uudet kärkipisteet monikulmion pistejoukosta fc suoran (s1,s2) suhteen funktiokutsulla nextGen fc s1 s2.

```
nextGen fc s1 s2 = concat [new i1 i2 p1 p2
  | ((i1,i2),(p1,p2)) <- zip io2 pts]
  where
    io1 = inOut1 s1 s2 fc
    io2 = around io1
    pts = around fc
    new In In    p1 p2 = [p1]
    new In Out p1 p2 = [p1,
        fromJust (intersection s1 s2 p1 p2)]
    new Out Out p1 p2 = []
    new Out In    p1 p2 = [
        fromJust (intersection s1 s2 p1 p2)]</pre>
```

Ensimmäinen rajaava suora on neliön alareuna s_1s_2 . Monikulmion pistejoukon fc0 kaikki kärkipisteet kuuluvat alueen sisäpuolelle.

```
> io1 = inOut1 s1 s2 fc0
> io1
[In,In,In,In,In,In,In,In,In]
```

Pistejoukon kaikki pisteet kuuluvat luokkaan (In,In), joten alareuna säilyttää kaikki monikulmion pisteet ($\mathbf{p}_1 \cdots \mathbf{p}_9$).

Saamme uuden pistejoukon fc1 funktiokutsulla nextGen fc0 s1 s2.

```
fc1 = nextGen fc0 s1 s2
```

1.11 Rajauksen toinen vaihe

Toinen rajaava suora on neliön oikea reuna $\mathbf{s}_2\mathbf{s}_3$. Nyt rajaavan suoran vasemmalle puolelle eli alueen sisäpuolelle jäävät monikulmion pisteet $(\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_9)$. Alueen ulkopuolelle jäävät monikulmion pisteet $(\mathbf{p}_3 \cdots \mathbf{p}_8)$.

```
> io2 = inOut1 s2 s3 fc1
> io2
[In,In,Out,Out,Out,Out,Out,In]
```

Monikulmion sivut suhteessa rajaavan neliön oikeaan reunaan $\mathbf{s}_2\mathbf{s}_3$ kuuluvat nyt seuraaviin luokkiin:

```
> around io2
[ (In,In),(In,Out),(Out,Out),(Out,Out),(Out,Out),
    (Out,Out),(Out,In),(In,In) ]
```

Luokat (In,Out) ja (Out,In) tuottavat uuden kärkipisteen \mathbf{i}_1 suorien $\mathbf{s}_2\mathbf{s}_3$ ja $\mathbf{p}_2\mathbf{p}_3$ leikkauspisteeseen sekä pisteen \mathbf{i}_4 suorien $\mathbf{s}_2\mathbf{s}_3$ ja $\mathbf{p}_8\mathbf{p}_9$ leikkauspisteeseen.

```
i1 = intersection s2 s3 p2 p3
i2 = intersection s2 s3 p8 p9
```

Kuvan 10 merkinnöillä suoran $\mathbf{s}_2\mathbf{s}_3$ suhteen leikattu toinen monikulmio koostuu kärkipisteistä ($\mathbf{p}_1 \mathbf{p}_2 \mathbf{i}_1 \mathbf{i}_2 \mathbf{p}_9$).

Kuva 10. Toinen leikkaus antaa monikulmion kärkipisteet ($\mathbf{p}_1 \, \mathbf{p}_2 \, \mathbf{i}_1 \, \mathbf{i}_2 \, \mathbf{p}_9$).

Saamme nyt uuden pistejoukon fc2 funktiokutsulla nextGen fc1 s2 s3.

fc2 = nextGen fc1 s2 s3

1.12 Rajauksen kolmas vaihe

Kolmas leikkaus tapahtuu suoran $\mathbf{s}_3\mathbf{s}_4$ suhteen edellä saadulle kärkipistejoukolle ($\mathbf{i}_1 \mathbf{p}_2 \mathbf{p}_3 \mathbf{p}_4 \mathbf{i}_2$).

fc3 = nextGen fc2 s3 s4

Saamme pisteväleille uudet luokat

> io3 = inOut1 s3 s4 fc2

> io3

[Out, In, Out, Out, Out]

> around io3

[(Out,In),(In,Out),(Out,Out),(Out,Out),(Out,Out)]

Tässä luokat (\mathtt{Out} , \mathtt{In}) ja (\mathtt{In} , \mathtt{Out}) tuottavat uuden kärkipisteen \mathbf{i}_3 suorien $\mathbf{s}_3\mathbf{s}_4$ ja \mathbf{p}_1 \mathbf{p}_2 leikkauspisteeseen sekä pisteen \mathbf{i}_4 suorien $\mathbf{s}_3\mathbf{s}_4$ ja \mathbf{i}_1 \mathbf{i}_2 leikkauspisteeseen.

i3 = intersection s3 s4 p1 p2

i4 = intersection s3 s4 i1 i2

Leikattu monikulmio koostuu nyt kärkipisteistä ($\mathbf{i}_3 \mathbf{p}_2 \mathbf{i}_1 \mathbf{i}_4$) (kuva 11).

Kuva 11. Kolmas leikkaus antaa monikulmion kärkipisteet $(\mathbf{i}_3 \mathbf{p}_2 \mathbf{i}_1 \mathbf{i}_4)$.

1.13 Rajauksen neljäs vaihe

Viimeinen leikkaus tapahtuu suoran $\mathbf{s}_4\mathbf{s}_1$ suhteen. Leikkaus säilyttää kärkipistejoukon ($\mathbf{i}_3 \mathbf{p}_2 \mathbf{i}_1 \mathbf{i}_4$) sellaisenaan (kuva 12).

Kuva 12. Ensimmäisen alueen valmis kärkipistejoukko $(i_3 p_2 i_1 i_4)$.

Kun kokoamme yhteen funktiokutsut

fc0 = fecunditatis

fc1 = nextGen fc0 s1 s2

fc2 = nextGen fc1 s2 s3

fc3 = nextGen fc2 s3 s4

fc4 = nextGen fc3 s4 s1

saamme seuraavan rekursiivisen määrittelyn funktiolle fc:

```
fc 0 = fecunditatis
fc n = nextGen1 (fc (n - 1)) ((around square1) !! (n - 1))
  where
    nextGen1 f (a,b) = nextGen f a b
```

block1 = fc 4

Neljästä suunnasta leikattu valmis pistejoukko on nyt muuttujassa block1.

Voimme nyt esittää Hedelmällisyyden meren kokonaisuudessaan paloiteltuna (kuva 13).

Kuva 13. Hedelmällisyyden meri paloiteltuna.

1.14 Muunnos takaisin pallokoordinaatistoon

Paloittelemme monikulmiot asteviivojen mukaan, joten joudumme palaamaan karteesisesta koordinaatistosta takaisin maantieteelliseen koordinaatistoon. Määrittelemme tätä varten funktion geog. Maantieteellisen koordinaatin saamme kahdella erillisellä suuntakulman laskennalla, joista ensimmäinen on kulma λ xy-tasossa ja toinen kulma δ edellisen ja z-akselin muodostamassa tasossa.

```
geog (Point3D x y z) = GeographicNE delta lambda
where
```

```
delta = directionAngle vect2
vect2 = Vector rProjXy z
rProjXy = sqrt (sqr x + sqr y)
lambda = theta
theta = directionAngle vect1
vect1 = Vector x y
r = sqrt (sqr x + sqr y + sqr z)
sqr x = x * x
```

Olemme luetteloineet merien pintabasaltin iät ja piirrämme ne harmaan eri sävyinä. Monikulmion muunnoskaavat olemme keränneet funktioon marePg.

```
marePg d pos = pg
  where
    pg = map Polygon blocks2
    blocks2 = [map (perspective . cartesian .
      ptToSpheric3D) pts | pts <- blocks1]</pre>
    blocks1 = cutEqui pts3
    pts3 = map (equirect . geog) pts2
    pts2 = [ (rotYZ delta lambda . cartesian)
      (Spheric3D (DEG th) phi)
      l th <- lambdaRiml</pre>
    GeographicNE delta lambda = pos
    phi = RAD ((d/2) / r)
    lambdaRim = [-180, -160..160]
mare2 t = map (FilledWith rgb) (marePg d pos)
  where
    rgb = RGB v v v
    v = 1.0 - (0.05 + 0.8 * ((g - 3100) / 1000))
    (name,n,e,d,g) = t
    pos = GeographicNE (DEG n) (DEG e)
maria ts = ts2
  where
    ts2 = concatMap mare2 (filter visible ts)
    visible (name, n, e, d, g) = e \ge -90 \&\& e \le 90
```

Funktio ptToSpheric3D muuntaa tasopisteen Point pallokoordinaatiksi Spheric3D.

```
ptToSpheric3D (Point x y) = Spheric3D theta phi
  where
    theta = lambda
    phi = (DEG 90) `subAngles` delta
    delta = DEG y
    lambda = DEG x
```

Myös varsinainen paloittelualgoritmi on hyvin samankaltainen aiemman kanssa, mutta olemme parametrisoineet siinä monikulmiot.

```
fc mre sq 0 = mre
fc mre sq n = nextGen1 (fc mre sq nm) ((around sq) !! nm)
  where
    nm = n - 1
    nextGen1 f (a,b) = nextGen f a b

blocksEqui mre = b2
  where
    b2 = filter (not . null) b1
    b1 = map (blockE mre) squares
    blockE mre sq = fc mre sq 4
    squares = gridGreatCircles

cutEqui mre = blocksEqui mre
```

1.15 Paikannimet

Luemme paikannimet ja pintabasaltin iät kahdesta eri tiedostosta pääohjelmassa.

```
main = do
  content <- readFile "../moon-random/moon-list.txt"
  content2 <- readFile "../moon-random/surface-basalt-age.txt"
  let</pre>
```

```
moon = filter (not . null) (lines content)
ageText = filter (not . null) (lines content2)
c1 = map tabulated moon
aged1 = map aged ageText
c2 = map (lookup1 aged1) c1
c3 = filter valid1 c2
c4 = map aged2 c3
putStrLn (tpict c4)
```

Kentät on tiedostoissa erotettu tabulaattorimerkein ('\t'), joten pilkomme tekstin niiden mukaan. Luemme numerot standardikirjaston funktiolla read. Funktio read on monimuotoinen funktio, ja vaatii siksi kohdetyypin tyyppimäärittelyn.

```
tabulated str = map trim (splitOn "\t" str)
aged2 xs = (a,b1,c1,d1,e1)
where
  [a,b,c,d,e] = xs
  [b1,c1,d1,e1] = map readd [b,c,d,e]
readd x = read x :: Double
```

Voimme käyttää listoja kuin ne olisivat tietokannan tauluja, mutta helpommin. Funktio lookup palauttaa arvon $Just\ x$, jos haku onnistui, muutoin se palauttaa arvon lookup palauttaa arvon l

```
lookup1 table2 table1 = [a,c1,d1,e,f]
where
  [c1,d1] = map brt [c,d]
  [a,b,c,d,e] = table1
  f = case lookup a table2 of
   Just x -> x
   Nothing -> ""
  brt s = addMinus s ++ takeWhile (/= ' ') s
  addMinus s = if last s `elem` "SW" then "-" else ""
```

Asettelemme vielä paikannimet kartan vasemmalle ja oikealle puolelle. Olemme esittäneet syntyneen kartan kuvassa 14.

```
data LeftRight = L | R deriving Eq
```


Kuva 14. Valmis kartta selitteineen.

```
getSide (Point x1 y1) (Point x2 y2)
  | x1 <= x2 = L
  | otherwise = R
name2 t = (name, side, posXY)
  where
    side = getSide posXY pt1
    pt1 = Point (-70) (-70)
    posXY = (perspective . cartesian)
      (GeographicNE (DEG n) (DEG e))
    (name,n,e,d,g) = t
sortOnY = sortOn ((n,s,Point x y) \rightarrow -y)
names ts = concat (lx ++ rx)
  where
    lx = map (\(n,s,p,pt) \rightarrow [Texttt pt n "left",
      Arrow "" pt p]) 13
    rx = map (\(n,s,p,pt) \rightarrow [Texttt pt n "right",
      Arrow "" pt p]) r3
    13 = map f3 12
    r3 = map f3 r2
```

```
f3 = \langle (y,(n,s,p)) \rightarrow (n,s,p,crc s y)
    12 = zip [dy*sL-d,dy*(sL-1)-d..] 11
    r2 = zip [dy*sR-d,dy*(sR-1)-d..] r1
    d = 70
    sL = intToDouble (length 11) / 2
    sR = intToDouble (length r1) / 2
    dy = 2 * r / max ln rn
    [ln,rn] = map (intToDouble . length) [left,right]
    11= refineOrder L 10
    r1= refineOrder R r0
    [10,r0] = map sortOnY [left,right]
    right = filter (\((n,s,p) -> s == R) n1
    left = filter (\((n,s,p) -> s == L) n1
    n1 = map name2 (filter visible ts)
    visible (name,n,e,d,g) = e > -90 \&\& e < 90
crc s y = p4
  where
    p4 = if d1 < d2 then p1 else p2
    [d1,d2] = map (dist (p3 s)) [p1,p2]
    [p1,p2] = intersect1 circle1 pt1 pt2
    pt1 = Point (-r) y
    p0 = Point (-70) (-70)
    circle1 = Circle (r+300) p0
    pt2 = Point r y
    p3 L = pt1
    p3 R = pt2
```

1.16 Maan ääriviivat

Lataamme verkosta tiedoston gshhg-bin-2.3.7.zip ja puramme sen kansioon coastline/. Tiedosto gshhs_c.b sisältää nyt mantereiden ääriviivat binäärimuodossa. Kutsumalla ohjelmaa gmt voimme muuntaa binääritiedoston tekstimuotoon.

```
gmt gshhg gshhs_c.b > gshhs_c.txt
```

Tiedosto gshhs_c.txt sisältää nyt monikulmion kärkipisteiden koordinaatit longitudi-latitudi-pareina tabulaattorimerkillä '\t' erotettuina seuraavasti:

```
180 68.993778

176.081639 69.883722

173.223194 69.765361

170.549917 70.119556

170.162361 69.5975

...
```

Käytämme funktiota splitWhen tiedoston jakamiseen monikulmioihin kommenttimerkillä '#' tai otsikkomerkillä '>' alkavien rivien kohdalta. Määrittelemme katkaisuehdon funktiossa isCommentEtc. Kun olemme jakaneet tiedoston monikulmioihin, erotamme longitudin ja latitudin tabulaattorimerkin '\t' kohdalta funktiolla splitOn. Tämän jälkeen voimme lukea liukulukuarvot funktiolla read.

```
coastFile = "coastline/gshhs_c.txt"
untab str = splitOn "\t" str

untabPts str = Point x2 y
  where
    x2 = if x > 180 then 180 else x
    [x,y] = map readd [a,b]
    [a,b] = untab str
    readd x = read x :: Double

pgPts xs = map untabPts xs

isCommentEtc str =
    "#" `isPrefixOf` str || ">" `isPrefixOf` str

main = do
    content <- readFile coastFile
    let
     x1 = splitWhen isCommentEtc (lines content)
     x2 = filter (not . null) x1</pre>
```

```
x3 = map pgPts x2
x4 = map simplify x3
x5 = map PolyLine x4
```

Päättelemme, että karttamme on tarkoituksiimme liian yksityiskohtainen ja yksinkertaistamme siksi kärkipisteluettelon määrittelemällä rekursion avulla funktion simplify.

```
simplify (x:y:zs)
  | dist x y < 1.2 = simplify (x:zs)
  | otherwise = x : y : simplify zs
simplify xs = xs</pre>
```

Olemme esittäneet piirroksen kuvassa 15. Havaitsemme, että osa monikulmioista ulottuu päivämäärärajan ylitse ja piirtyy siksi häiritsevinä poikkiviivoina.

Kuva 15. Mantereet suorakulmaisessa koordinaatistossa.

Kärkipistekoordinaatit muuntuvat maantieteellisiksi koordinaateiksi konstruktorilla GeographicNE ja koordinaatit asteiksi konstruktorilla DEG.

```
untabPts str = GeographicNE (DEG y) (DEG x)
where
    [x,y] = map readd [a,b]
    [a,b] = untab str
    readd x = read x :: Double
```

Pääohjelmassa kuvaamme maantieteelliset koordinaatit tuttuun tapaan funktioille cartesian ja perspective.

```
main = do
  content <- readFile coastFile</pre>
```

```
let
  x1 = splitWhen isCommentEtc (lines content)
  x2 = filter (not . null) x1
  x3 = map pgPts x2
  x4 = [map (perspective . cartesian) pts | pts <- x3]
  x5 = map simplify x4
  x6 = map PolyLine x5</pre>
```

Syntynyt kuvio on kuvassa 16.

 ${\bf Kuva}$ 16. Mantereiden ääriviivat pallokoordinaatistossa.