Halting Problem Part 2

Adam Wyner CS3518, Spring 2017 University of Aberdeen

The Halting Problem

- One of the most important theorems in CS theory
 - A specific problem algorithmically unsolvable
 - A proof that there isn't an algorithm for a problem!
- Computers are very powerful
 - Will every problem be solved with Pentium XI?
 - No: computing is limited in a fundamental way
- Is the following possible? Write a program to:
 - 1. read any program p plus any input i to p
 - 2. decide if p terminates for i

The Russell Paradox

- The proof will use a technique invented by Bertrand Russell in 1901
- The original home of the paradox is axiomatic set theory:
 - a formally precise way of dealing with sets
 - aims to make set theory the foundation of maths
- Various axioms, e.g.
 - the union of two given sets is a set
 - the intersection of two sets is a set, etc.

The Russell Paradox

- One key axiom. Given a predicate P, the following is also a set: all those elements x such that P(x) is true.
- The resulting theory turns out to be logically inconsistent
 - This means, there exist set theory propositions p such that both p and ¬p follow logically from the axioms of the theory!
 - ∴ The conjunction of the axioms is a contradiction
 - This theory is fundamentally flawed because any possible statement in it can be (very trivially) "proved" by contradiction

This version of Set Theory is inconsistent

Russell's paradox:

• Consider the set that corresponds with the predicate $x \notin x$:

$$S = \{x \mid x \notin x \}$$

• Now ask: is $S \subseteq S$?

Russell's paradox

Let $S = \{x \mid x \notin x \}$. Is $S \in S$?

- If $S \subseteq S$, then S is one of those objects x for which $x \notin x$. In other words, $S \notin S$
- If $S \notin S$, then S is not one of those objects x for which $x \notin x$. In other words, $S \in S$
- We conclude that both $S \subseteq S$ and $S \notin S$

Paradox!

A playful version of Russell's paradox

- x is a barber who cuts the hair of exactly those people who do not cut their own hair
- Does x cut his own hair?

One example of 'sophisticated' set theory:

To avoid inconsistency, set theory had to somehow change.
 One way is to replace the old axiom by a new one:

Given a set S and a predicate P, construct a new set S' consisting of those elements x of S such that P(x) is true.

 We will not worry about the possibility of logical inconsistency, but we'll use Russell's trick.

The Halting problem

One of the first problems to have been shown uncomputable; many other results in computability have been proven as a corollary

The Halting problem

- Halting is of intrinsic interest. Just like we want to know if a given program can sometimes come up with the wrong answer, we want to know if a program can sometimes come up with no answer.
- Recall the difference between recognising and deciding.
- We focus on a different problem first: the problem of whether a TM accepts a given string.
 - "Yes" implies that the TM halts on this string
 - Problem is similar to, but much harder than A_{DFA} (start of this lecture)
 - $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$

The Halting Problem (Cont'd)

- A_{TM} is known as the acceptance problem $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input string } w\}$
- Theorem we'll prove: A_{TM} is undecidable
- First: A_{TM} is Turing-recognisable:

 $U = \text{On input } \langle M, w \rangle$ where M is a TM and w is a string:

- 1. Simulate M on input w
- 2. If *M* enters its accept state, accept; If *M* enters its reject state, reject

Universal Turing Machine U

- U simulates another Turing Machine M using the same coding that we used when proving the set of TMs to be countable
- But that encoding "only" encoded $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$
- A simulation of M has to encode also the way in which U "runs" this encoding of M
- Here is a sketch

Simulation of a TM on the tape of a TM

- Put the input string w on the tape
- Encode the encoding of M on a tape as shown
- Mark the current state
- Mark the current position of the head.
- All of this is part of the input string to the TM (separate everything using suitable characters)
- So far, sounds familiar, but note the next move to add some aspects that are distinct to TMs.

Simulation of a TM on the tape of a TM

- Add transition rules to make sure that, e.g.: In q_0 , reading the first symbol w' of w,
 - Find on the tape the (encoded) transition rule that is applicable (i.e., the encoding for a rule <q₀,w',q₁,w'',R> or <q₀,w',q₁,w'',L>)
 - Replace q_0 by q_1 as the current state
 - Update the position of the head (R or L, depending on the rule)
- If/when current state = q_{acc} then accept w
- If/when current state = q_{rej} then reject w

Universal Turing Machine

- TM U is important in its own right
- U is a universal TM
 - Able to simulate any other TM (given its description)
- The first stored-program computer
 - Compare: No need to assemble a PC differently for each Java program we need to run!

Universal Turing Machine

- TM U loops on (M,w) if M loops on w!
 - That's why it is not a decider

U = On input \langle M, w \rangle where M is a TM and w is a string:

 Simulate M on input w
 If M enters its accept state, accept;
 If M enters its reject state, reject;
 If M loops, reject

But is there a TM to check this?

A_{TM} is undecidable

- Let's now prove the undecidability of
 - $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input string } w\}$
- Proof by contradiction:
 - Assume A_{TM} is decidable and obtain a contradiction
- Decidable → there exists a decider H for A_{TM}

$$H(\langle M, w \rangle) = \begin{cases} \text{accept if } M \text{ accepts } w \\ \text{reject if } M \text{ does not accept } w \end{cases}$$

Think about what this means: w could be any string! For instance, w might encode a TM

We build a new decider D with H as a "subroutine"

– D says: M does not accept $\langle M \rangle$ D ($\langle M \rangle$) = not H $\langle M, \langle M \rangle \rangle$

D = On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. Output the opposite of what H outputs; that is if H accepts, reject and if H rejects, accept.

D is like the barber who cuts the hair of exactly those people who do not cut their own hair!

- This is like running a program with itself as an input
- For instance, a Java compiler written in Java...

In summary

$$D(\langle M \rangle) = \begin{cases} \text{accept if } M \text{ does not accept } \langle M \rangle \\ \text{reject if } M \text{ accepts } \langle M \rangle \end{cases}$$

What happens if we run D with its own description \(D \) as input? In this case we shall get:

$$D (\langle D \rangle) = \begin{cases} \text{accept if } D \text{ does not accept } \langle D \rangle \\ \text{reject if } D \text{ accepts } \langle D \rangle \end{cases}$$

- This is a contradiction!
 - D cannot exist; therefore H cannot exist

- The steps of the proof are:
 - Assume that a TM H decides A_{TM}
 - Use H to build a TM D which accepts (M) iff M does not accept (M)
 - Run D on itself
- Acceptance:
 - H accepts $\langle M, w \rangle$ iff M accepts w
 - D accepts (M) iff M rejects (M)
 - D accepts $\langle D \rangle$ iff D rejects $\langle D \rangle$
 - Contradiction!

- So far, we have "only" proven that A_{TM} is not decidable....
- We return to the halting problem next week.