05. Аппроксимация функций. Задача интерполирования.

Андрей Бареков Ярослав Пылаев По лекциям Устинова С.М.

January 5, 2020

1 Введение в аппроксимацию

Исходная функция чаще всего записывается в следующем виде:

- 1. Аналитически
- 2. Графически
- 3. Таблично
- 4. Алгоритмически

Аппроксимирующая функция должна быть достаточно простой с точки зрения решаемой задачи.

Для сравнения различных аппроксимирующих функций вводится критерий близости:

Пусть f(x) - исходная функция, g(x) - её аппроксимация.

1.
$$(\delta = \max_{x \in [a,b]} |f(x) - g(x)| \to \min)$$
 минимаксный критерий.

$$2. \boxed{(\rho^2 = \int_a^b (f(x) - g(x))^2 \to \min)}$$
 среднеквадратичный критерий.

Если функция задана таблично, то есть дискретный аналог среднеквадратичного критерия: $(\rho^2 = \sum_{k=1}^n (f(x_k) - g(x_k))^2 \to \min)$

1.1 Сравнение критериев

Функция $g_1(x)$ лучше аппроксимирует по критерию 2, а $g_2(x)$ - по критерию 1.

На практике лучше та аппроксимация, которая нужна для конкретной задачи.

2 Основы интерполирования функций

Будем приближать исходную функцию, заданную таблично.

$$\begin{array}{c|c}
x & f(x) \\
\hline
x_0 & f(x_0) \\
x_1 & f(x_1)
\end{array}
\qquad Q_m(x) = \sum_{k=0}^m a_k \varphi_k(x) \tag{1}$$

 $x_1 \mid f(x_1)$ Аппроксимирующая функция (1) - обобщённый $x_m \mid f(x_m)$ многочлен, где $\phi_k(x)$ - заданный набор линейно независимых функций, a_k подлежат определению.

Потребуем, чтобы во всех узлах таблицы $annpoксимирующая\ u\ ucxodная\ функции\ cosnadanu.$

$$Q_m(x_i) = f(x_i), i = 0, 1, \dots, m$$
 (2)

Если эти условия выполняются, то $Q_m(x)$ - интерполяционный многочлен, а x_k - узлы интерполирования.

Система (2) - это линейная система из m+1 уравнения относительно m+1 неизвестных a_k .

Если определитель этой системы не равен 0, то задача всегда имеет единственное решение.

Самая популярная интерполяция - интер-ия полиномом - $\varphi_k(x) = x^k$. При такой интерполяции определитель системы 2 приобретает следующий вид:

$$\begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^m \\ 1 & x_1 & x_1^2 & \cdots & x_1^m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^m \end{vmatrix}$$
(3)

Определитель ()3) - определитель Вандермонда, не равный 0.

По n точкам однозначно строится интер-ый полином (n-1)й степени.