Deadline: 2023/03/08, 17:00.

1. Suppose that $\{a_n\}$ converges to 0 and $\{b_n\}$ is bounded. Prove that $\{a_nb_n\}$ converges.

2. Let S be a nonempty subset of \mathbb{R} which is bounded above. Set $s = \sup S$. Show that there exists a sequence $\{a_n\}$ in S which converges to s.

Definition 1. Let S be a nonempty subset of \mathbb{R} which is bounded above, we say that s is a **supremum** (最小上界) of S, denoted by $\sup S$, if s satisfying

- (i) s is an upper bound of S on, i.e. $x \leq s$ for all $x \in S$.
- (ii) if s_1 is an upper bound of S, then $s \leq s_1$.
- 3. Suppose that $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n^2$ converges. Prove that the following series

(a)
$$\sum_{n=1}^{\infty} |a_n b_n|$$
, (b) $\sum_{n=1}^{\infty} (a_n + b_n)^2$, (c) $\sum_{n=1}^{\infty} \frac{|a_n|}{n}$

converge.

4. Determine whether the sequence

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \cdots$$

converges.

5. Find the value of x for which the series converges, also find the sum of the series for those values of x.

(a)
$$\sum_{n=1}^{\infty} (-5)^n x^n$$
, (b) $\sum_{n=1}^{\infty} \frac{(x-2)^n}{3^n}$, (c) $\sum_{n=1}^{\infty} \frac{2^n}{x^n}$.

6. Use Comparison Test to determine whether the series convergent or divergent

(a)
$$\sum_{n=1}^{\infty} \frac{7n+2}{\sqrt{2n^3-1}}$$
, (b) $\sum_{n=1}^{\infty} ne^{-n^2}$, (c) $\sum_{n=1}^{\infty} \frac{2n!}{(2n)!}$.

7. Let $F(x) = \int_0^x \frac{t}{1+t^2} dt$. Find the Taylor polynomial of degree 2n of F(x) at 0.

8. Use the Maclaurin series for $f(x) = x \sin(x^2)$ to find $f^{(203)}(0)$.