UNISONIC TECHNOLOGIES CO., LTD

UZ1085

LINEAR INTEGRATED CIRCUIT

3A ADJUSTABLE/FIXED LOW DROPOUT LINEAR REGULATOR

DESCRIPTION

The UZ1085-xx series are low dropout three-terminal regulators with 3A output current capability. These devices have been optimized for low voltage applications including VTT bus termination, where transient response and minimum input voltage are critical.

Current limit is trimmed to ensure specified output current and controlled short-circuit current. On-chip thermal limiting provides protection against any combination of overload and ambient temperature that would create excessive junction temperatures.

*Pb-free plating product number: UZ1085L-xx

FEATURES

- *Fast transient response
- *Low dropout voltage at up to 3A
- *Load regulation:0.05% typical
- *Trimmed current limit
- *On-chip thermal limiting

ORDERING INFORMATION

Order Number		Dookogo	Pin Assignment			Dooking	
Normal	Lead Free Plating	Package	1	2	3	Packing	
UZ1085-xx-TA3-T	UZ1085L-xx-TA3-T	TO-220	A/G	0	I	Tube	
UZ1085-xx-TN3-R	UZ1085L-xx-TN3-R	TO-252	A/G	0	I	Tape Reel	
UZ1085-xx-TN3-T	UZ1085L-xx-TN3-T	TO-252	A/G	0	I	Tube	
UZ1085-xx-TQ2-R	UZ1085L-xx-TQ2-R	TO-263	A/G	0	I	Tape Reel	
UZ1085-xx-TQ2-T	UZ1085L-xx-TQ2-T	TO-263	A/G	0	ı	Tube	
UZ1085-xx-TQ3-R	UZ1085L-xx-TQ3-R	TO-263-3	A/G	0	Ī	Tape Reel	
UZ1085-xx-TQ3-T	UZ1085L-xx-TQ3-T	TO-263-3	A/G	0	I	Tube	

Note: 1. xx: Output Voltage, refer to Marking Information.

2. A: ADJ (for adjustable regulator), G: GND (for fixed regulator)

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
TO-220 TO-252 TO-263 TO-263-3	15 :1.5V 18 :1.8V 25 :2.5V 33 :3.3V 50 :5.0V AD :ADJ	VOLTAGE CODE UTC UZ1085 DATE CODE 1 2 3

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT		
	TO-252		12		
Thermal Resistance Junction-Case	TO-220	Θ_{JC}	4	°C/W	
	TO-263		4		

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	18	V
(V _{IN} – V _{OUT}) * I _{OUT}		See Figure 1	
Junction Temperature	T_J	+125	
Operating Temperature	T_{OPR}	-20 ~ +85	
Storage Temperature	T_{STG}	-40 ~ +150	

- Note 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. The device is guaranteed to meet performance specification within 0 ~+70 operating temperature range and assured by design from -20 ~+85 .
- ELECTRICAL CHARACTERISTICS (Ta=25 , C_{OUT}=22 µ F, unless otherwise specified.)

For UZ1085-ADJ(Adjustable)

SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{REF}	1.5V (V _{IN} – V _{OUT}) 8.25V 10mA I _{OUT} 3A	1.225	1.25	1.275	٧
ΔV_{OUT}	(V _{OUT} +1.5V) V _{IN} 12V, I _{OUT} =10mA		0.005	0.2	%
ΔV_{OUT}	$(V_{IN} - V_{OUT})=3V$, 10mA I_{OUT} 3A		0.05	0.5	%
V_D	V _{REF} %=1%, I _{OUT} =3A		1.30	1.40	>
I _{LIMIT}	(V _{IN} -V _{OUT})=2V	3.1	4		Α
ladj			35	120	μΑ
∆ladj	1.5V (V _{IN} – V _{OUT}) 12V, 10mA I _{OUT} 3A		0.2	5	μΑ
I _{O(MIN)}	1.5V (V _{IN} -V _{OUT}) 12V			10	mA
ΙQ	V _{IN} =12V		4	13	mA
RR	f=120Hz,Tantalum,(V _{IN} –V _{OUT})=3V I _{OUT} =3A	60	72		dB
	Ta=25 ,30ms pulse		0.004	0.02	%/W
ΔV_{OUT}			0.5		%
ΔV_{OUT}	Ta=125 , 1000hr		0.03	1.0	%
eN	Ta=25 ,10Hz f 10kHz		0.003		%
			150		°C
	V _{REF} ΔV _{OUT} V _D I _{LIMIT} Iadj ΔIadj I _{O(MIN)} I _Q RR ΔV _{OUT}	V _{REF} 1.5V (V _{IN} - V _{OUT}) 8.25V 10mA I _{OUT} 3A ΔV _{OUT} (V _{OUT} +1.5V) V _{IN} 12V, I _{IOUT} =10mA ΔV _{OUT} (V _{IN} - V _{OUT})=3V, 10mA I _{OUT} 3A V _D V _{REF} %=1%, I _{OUT} =3A I _{LIMIT} (V _{IN} -V _{OUT})=2V Iadj ΔIadj 1.5V (V _{IN} - V _{OUT}) 12V , 10mA I _{OUT} 3A I _{O(MIN)} 1.5V (V _{IN} -V _{OUT}) 12V I _Q V _{IN} =12V RR f=120Hz,Tantalum,(V _{IN} -V _{OUT})=3V I _{OUT} =3A Ta=25 ,30ms pulse ΔV _{OUT} ΔV _{OUT} ΔV _{OUT} Τa=125 , 1000hr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{REF} 1.5V (V _{IN} - V _{OUT}) 8.25V 10mA I _{OUT} 3A 1.225 1.25 ΔV _{OUT} (V _{OUT} +1.5V) V _{IN} 12V, I _{OUT} =10mA 0.005 ΔV _{OUT} (V _{IN} - V _{OUT})=3V, 10mA I _{OUT} 3A 0.05 V _D V _{REF} %=1%, I _{OUT} =3A 1.30 I _{LIMIT} (V _{IN} -V _{OUT})=2V 3.1 4 Iadj 35 ΔIadj 1.5V (V _{IN} - V _{OUT}) 12V , 10mA I _{OUT} 3A 0.2 I _{O(MIN)} 1.5V (V _{IN} -V _{OUT}) 12V 4 I _Q V _{IN} =12V 4 RR f=120Hz,Tantalum,(V _{IN} -V _{OUT})=3V I _{OUT} =3V I _{OUT} =3A 60 72 RR Ta=25 ,30ms pulse 0.004 ΔV _{OUT} Ta=125 , 1000hr 0.03 eN Ta=25 ,10Hz f 10kHz 0.003	VREF 1.5V (V _{IN} - V _{OUT}) 8.25V 10mA I _{OUT} 3A 1.225 1.25 1.275 ΔV _{OUT} (V _{OUT} +1.5V) V _{IN} 12V, I _{OUT} = 10mA 0.005 0.2 ΔV _{OUT} (V _{IN} - V _{OUT}) = 3V, 10mA I _{OUT} 3A 0.05 0.5 V _D V _{REF} %=1%, I _{OUT} =3A 1.30 1.40 I _{LIMIT} (V _{IN} -V _{OUT}) = 2V 3.1 4 Iadj 35 120 Δladj 1.5V (V _{IN} - V _{OUT}) 12V, 10mA I _{OUT} 3A 0.2 5 I _{O(MIN)} 1.5V (V _{IN} -V _{OUT}) 12V 10 10 I _Q V _{IN} =12V 4 13 RR f=120Hz,Tantalum,(V _{IN} -V _{OUT})=3V I _{OUT} =3A 60 72 RR Ta=25 ,30ms pulse 0.004 0.02 ΔV _{OUT} Ta=125 ,1000hr 0.5 AV _{OUT} Ta=25 ,10Hz f 10kHz 0.003

For UZ1085-xx(Fixed Voltage)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
	UZ1085-15		3.0V V _{IN} 8.5V, 10mA I _{OUT} 3A	1.470	1.5	1.530	V
	UZ1085-18		3.3V V _{IN} 8.8V, 10mA I _{OUT} 3A	1.764	1.8	1.830	
Output Voltage	UZ1085-25		4.0V V _{IN} 9.5V, 10mA I _{OUT} 3A	2.450	2.5	2.550	
	UZ1085-33		4.8V V _{IN} 10.3V, 10mA I _{OUT} 3A	3.234	3.3	3.366	
	UZ1085-50		6.5V V _{IN} 12V, 10mA I _{OUT} 3A	4.900	5.0	5.100	
Line Regulation		ΔV_{OUT}	(V _{OUT} +1.5V) V _{IN} 12V,I _{OUT} =10mA		0.005	0.2	%
Load Regulation		ΔV_{OUT}	$(V_{IN} - V_{OUT})=3V$, 10mA I_{OUT} 3A		0.05	0.5	%
Dropout Voltage		V_D	V _{REF} %=1%, I _{OUT} =3A		1.30	1.40	٧
Current Limit		I _{LIMIT}	$(V_{IN}-V_{OUT})=2V$	3.1	4		Α
Minimum Load Current		I _{O(MIN)}	1.5V (V _{IN} -V _{OUT}) 12V			10	mA
Quiescent Current		IQ	V _{IN} =12V		4	13	mA
Ripple Rejection		RR	f=120Hz, Tantalum,	60	72		dB
		KK	$(V_{IN} - V_{OUT})=3V, I_{OUT}=3A$	60	12		uB
Thermal Regulation			Ta=25 ,30ms pulse		0.004	0.02	%/W
Temperature Stability		ΔV_{OUT}	Ta=125 , 1000hr		0.5		%
Long-Term Stability		ΔV_{OUT}			0.03	1.0	%
Output Noise(% of V _{OUT})		eN	Ta=25 ,10Hz f 10kHz		0.003		%
Thermal shutdown					150		°C

■ TYPICAL APPLICATION CIRCUIT

■ TYPICAL CHARACTERISTICS

Figure 1. Absolute Maximum Sate Operating Area

Figure 3. Load Regulation vs.Temperature

Figure 5. Output Voltage vs. Temperature

Figure 2. Dropout Voltage vs.Output Current

Figure 4. Reference Voltage vs.Temperature

Figure 6. Minimum Load Current vs. Temperature

■ TYPICAL CHARACTERISTICS(Cont.)

Figure 7. Adjust Pin Current vs. Temperature

Figure 9. Ripple Rejection vs.Frequency

Figure 8. Short-Circuit Current vs.Temperature

Figure 10. Maximum Power Dissipation

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.