修改记录

12 12 41 = 141			
更新日期	更新类型	更新人	更新内容
2015-1-25	Α	Echo	新建文档
2015-5-30	М	Echo	基于 V1.1 硬件更新 FAQ 文档
2017-12-10	М	Echo	基于 V2.0 硬件更新 FAQ 文档
			XX
· · ·			

注:

M-->修改

A -->添加

作者 Echo <echo.xjtu@gmail.com>保留本文档最终解释权

保留文档更新但不在第一时间通知用户的权利

请使用 PDF 书签阅读本文档,快速定位所需内容!

更多信息请关注

作者博客: http://blog.sina.com.cn/xjtuecho

作者微博: http://weibo.com/eth0

作者淘宝: http://shop114445313.taobao.com/ 作者 github 主页: https://github.com/xjtuecho/

最新文档和设备固件请访问 github 项目主页: https://github.com/xjtuecho/uimeter/

UIMeter FAQ

1 整机与接口

1.1 几个版本差异是什么

UIMeter V2.0 主板分 2 个版本:标准版、高分辨率版,主要差异在电流分辨率和电流测量范围。

标准版: 电流 25mR 取样, 0.1mA 分辨率, 电流正负 10A。

高分辨率版: 电流 2.2R 取样, 1uA 分辨率, 电流正负 100mA。

所有版本离线存储都是 4096 点,都可以选配 TFT 屏幕和电池模块。

1.2 V2.0 硬件有什么变化?

主要变化是 MCU 从 8 位的 C51 升级到了 ARM 32 位 MCU,处理能力更强,功耗更低。冷端温度测量元件从 18B20 更换为 TMP75。

MicroUSB 更换为更加坚固的型号。

1.3 USB接口怎么处理的?

MicroUSB接口输入J2只连接VCC和GND,D+和D-悬空。

标准 USB 母口输出 J3 连接 VCC 和 GND, D+和 D-通过跳线 J8 接出。默认使用跳线短接,即 J3 默认为短接 D+和 D-。用户可以去掉短路跳线,使用杜邦线连接标准 USB 公头。

1.4 MicroUSB接口能否支持5V以外电压?

可以支持,实际上, MicroUSB接口和 5.08接口的 2 3 脚并联在一起。大于 5V 小于 5V 均可。

1.5 MicroUSB 能否支持高通 QC2.0?

高通 QC2.0 通过操作 D+和 D-让充电器输出 9V、12V 电压,虽然 UIMeter 的 MicroUSB接口 D+、D-悬空,但是用户可以通过 J6 和 J8 外接 USB 公头,完整连接 VCC、D-、D+、GND。因此可以支持 QC2.0.

某些 apple、samsung 设备需要充电器识别电阻,也可以通过该方法支持。

注意:由于不能承受超过 5V 以上电压,使用高通 QC2.0 的时候,UIMeter 必须断开 J4 使用 TTL 接口单独供电。

1.6 J4 跳线作用是什么?

J4 共 3 位, 1、2 两位为自身供电选择, 2、3 两位为分压电阻屏蔽跳线。使用一个 2 位 短路冒进行操作,有以下三种配置:

- 1) 短接 1、2, 悬空 3。UIMeter 工作电压 5V 可以从 MicroUSB 接口, 5.08 接口取电, 此时 MicroUSB 接口, 5.08 接口输入电压需要在 5-24V 之间。
- 2) 1、2、3 全部悬空。UIMeter 只能从 TTL 接口供电,而 MicroUSB 和 5.08 端子可以 支持 5V 以外的电压测量。
- 3) 悬空 1,短接 2、3. UIMeter 只能从 TTL 接口供电,此时电压采样的分压电阻被屏蔽,电压分辨率达到 2uV,可通过在 J6 外接 K 型热电偶进行测温。

1.7 为什么接 iPad 充电只有 1A?

UIMeter 的标准 USB 输出默认短接了 D+和 D-, iOS 固件限制为 1A 充电。 通过 J6 和 J8 外接 USB 公头配合带识别电阻的充电器充电电流可以达到 2A 充电。

2 UI 测量

2.1 检流电阻多少?

标准版和高配版 25mR, 两颗 2512 封装的 50mR 电阻并联,可选 25mR 锰铜丝采样。 高分辨率版 2.2R。

2.2 检测电流中包括 UIMeter 自身工作电流吗?

不包括。

2.3 电压测量输入阻抗多少?

1MR。

2.4 如何降低压降?

避免使用 MicroUSB 接口,使用 5.08 端子接线。必要时从 5.08 端子底部焊盘焊线。

2.5 可以测量负电流吗?

可以。电流从5.08端子1脚流入,2脚流出为正;反之为负。

2.6 可以测量负电压吗?

可以。5.08 端子 2 脚为 GND, 3 脚为电压测量。负电压测量范围-10V 以内。

2.7 如何提高大电流测量精度?

大电流测量主要误差来自于检流电阻温度系数,可以更换锰铜丝电流采样,UIMeter 留有接口。

2.8 如何测量更大的电流?

使用分流器扩大电流量程。参考文档《UIMeter 使用外接电流采样电阻》。

3 联机记录数据

3.1 应该用什么联机线?

普通的 USB 转 TTL 线,电平 5V,玩单片机路由器必备的那种。 常见方案 CH340G,PL2303HX,FT232R,CP2102。 推荐 CH340G 和 PL2303HX 方案,价格便宜(<10 Y),性能稳定。

3.2 为什么通信不上?

检查 UIMeter 协议选择是否正确。

检查电脑 COM 口选择是否正确。

检查 USBTTL 线的 TXD 和 RXD 是否接反。

检查 TTL 线质量,可以做自发自收测试,很多质量差的 TTL 线无法可靠工作在 115200 波特率。

3.3 能否无线联机?

可以。

设计时考虑使用 HC06 蓝牙模块无线连接。TTL 接口可以直接对接。其它蓝牙模块理论上也可以。

3.4 一台电脑能否连接多个 UIMeter?

可以。每个 UIMeter 分配一个 COM 口。选择对应 COM 口即可。

3.5 可以组网吗?

默认 TTL 串口为点对点网络无法组网。

通过 TTL 转 485 模块转换成 485 接口以后可以组一主多从的 MODBUS 网络。软件可以设置从机 MODBUS 地址。

3.6 可以用 TTL 线供电吗?

可以。连接 5V TTL 线的 VCC 到对应端子即可。注意取下按键右边的短路跳线 J4。

3.7 可以记录多长时间数据?数据量多大?

原则上数据记录时间长度没有上限,可以一直记录。

数据记录约 62 字节/s,因此一小时数据量大约 223.2kB;每天数据量大约 5.4MB;每周数据量大约 37.5MB。

3.8 如何分析记录的数据?

监控软件 UIMeterMon 自带数据分析绘图功能。

此外数据格式为 CSV,可以直接使用 Excel 进行分析。Matlab 当然更好。

4 离线记录数据

4.1 什么是离线记录?和在线记录什么差别?

离线记录是在测量过程中将测量数据存储到 UIMeter 内部存储器,测试完成以后统一导出数据。优点是测量过程中无需连接电脑,缺点是记录条数受限。

在线记录将采集数据实时存储到电脑,优点记录条数无上限,缺点采集时必须连接电脑。

4.2 能记录多长时间?

记录时间=采样间隔*存储深度。

采样间隔最大 254s,标准版最长记录时间为: 254*4096/3600=289 小时。

实际中根据需要选择合适的采样间隔。

4.3 如何访问离线数据?

使用超级终端访问 UIMeter 命令接口,log dump 命令导出。 或者使用最新版 UIMeterMon 软件导出。

4.4 数据可以保存吗?

可以。使用超级终端捕获文字功能。或者使用 UIMeterMon 软件导出。

4.5 保存格式是什么?

.csv 文件,实际上是文本文件,也可以用 Excel 分析。

4.6 存储器会写坏吗?

离线存储使用 EEPROM,每个存储单元写入寿命一百万次,100 年保存时间。寿命远远高于 FLASH。手动启动一次记录算一次写入。

5 电池放电测试

5.1 电池放电为何要外部供电?

一般电池电压无法满足 UIMeter 工作电压。推荐使用 TTL 线供电,注意拔掉 J4。

5.2 电池放电可以自动关断吗?

可以。设定电压下限,比如锂电 3.0V,镍氢 0.9V,然后去掉 J5 跳线.

5.3 I5 跳线的作用是什么?

短路输出回路上的 MOSFET,降低压降。

5.4 设置了截止电压,为什么电池放到 0V 了?

忘记拔掉 J5 跳线了。

5.5 电池放到 0V 了怎么办?

默哀一分钟, 然后扔掉换个新电池。

6 LCD 显示

6.1 LCD 可以自己更换吗?

可以。LCD 屏幕为标准 1602 屏幕,常见有蓝色、黄色,还有更酷的黑色。可以自己更换。

6.2 TFT 屏幕和 1602 屏幕是否可以互换?

可以。固件同时支持 TFT 屏幕和 1602 屏幕,需要通过串口命令设置屏幕类型然后保存。

6.3 没有屏幕可以工作吗?

可以。不装屏幕,PC 上使用超级终端,或者 UIMeterMon 可以正常使用。

6.4 可以关闭 LCD 背光吗?

可以。UIMeter 支持背光亮度调节,调节到最暗即关闭 LCD 背光。

6.5 如何降低 UIMeter 自身功耗?

调低 LCD 背光亮度。

7 温度测量

7.1 如何测 0℃以下低温?

除了 LCD, 其余器件工作温度可达-40℃, 拆掉 LCD 以后测量 0℃以下温度。

7.2 支持什么热电偶?

支持 K 型热电偶。

7.3 支持什么 NTC 探头?

支持 5k NTC 探头。即 25℃时阻值为 5kR 的热敏电阻。

7.4 如何获得更好的 NTC 测温效果?

请使用高分辨率版本 UIMeter。

使用 NTC 测温时,NTC 电压为 5V,25 $^{\circ}$ C时电流为 5V/5k=1mA。标准版 UIMeter 电流分辨率为 0.1mA,仅仅有 10 个字,因此电阻测量不准。高分辨率版本有 1000 个字,可以准确测量 k 级电阻。