

S2-20_DSECLZC415
Data Exploration

BITS Pilani

Pilani | Dubai | Goa | Hyderabad

- The slides presented here are obtained from the authors of the books and from various other contributors. I hereby acknowledge all the contributors for their material and inputs.
- I have added and modified a few slides to suit the requirements of the course.

Agenda

- Data objects and Attributes types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity

Data Description

Types of Data Sets

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: termfrequency vector
 - Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

	team	coach	рlа У	ball	score	game	m In	lost	timeout	uoseas
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	D	2	1	0	D	3	0	D
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Important Characteristics of Structured Data

- Dimensionality
 - Curse of dimensionality
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Distribution
 - Centrality and dispersion

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- Types:
 - Nominal
 - Binary
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- <u>Symmetric binary</u>: both outcomes equally important
 - e.g., gender
- <u>Asymmetric binary</u>: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C°or F°, calendar dates
 - No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

1500

700

44

Measuring the Central Tendency

• Mean (algebraic measure) (sample vs. population):

Note: n is sample size and N is population size.

ze.
$$x = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\mu = \sum_{i=1}^{N} x_i$$

$$\mu = \sum_{i=1}^{N} x_i$$
 Median
$$\frac{d}{dx}$$

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

Median	age	frequency
interval	1-5	200
	6 - 15	450
	16-20	300

51 - 80

81 - 110

Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Estimated by interpolation (for grouped data):

median=
$$L_1 + (\frac{n/2 - (\sum_{i \in A_{normal}} fre \hat{q}_{i})}{fre \hat{q}_{normal}})$$
 width

Mode

- Value that occurs most frequently in the data
- · Unimodal, bimodal, trimodal
- Empirical formula:

mean- mode= 3× (mean- mediai)

Symmetric vs. Skewed Data

Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- · Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃ − Q₁
 - Five number summary: min, Q₁, median, Q₃, max
 - **Boxplot**: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR (on both sides of box from Q1 to Q3)
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

• Standard deviation s (or σ) is the square root of variance $s^2(or \sigma^2)$

Boxplot Analysis

- **Five-number summary** of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

Data is represented with a box

- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Example

Following is an ordered list of observations of a variable. Compute 5 point summary.

13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 36, 40, 45, 46, 52, 70

Solution:

Min: 13

Q1:20

Median: 25

Q3: 35

Max: 70

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately $100 f_i$ % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and

Positively and Negatively Correlated Data

Uncorrelated Data

Data Similarity/Dissimilarity

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- **Dissimilarity** (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

- n data points with p dimensions
- Two modes

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix
- Single mode

$$\begin{bmatrix} 0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
 - creating a new binary attribute for each of the M nominal states

Proximity Measure for Binary Attributes

A contingency table for binary data

Object i

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity measure for asymmetric binary variables):

	Obje	ect	
	j	0	sum
1	q	r	q+r
0	8	t	s+t
sum	q + s	r+t	p

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Note: Jaccard coefficient is the same as "coherence":

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Υ	N	Р	N	N	N
Mary	F	Υ	N	Р	N	Р	N
Jim	М	Υ	Р	N	N	N	N

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0 (to match contingency table of prev slide)
- Following are distances based on asymmetric binary variables:

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Standardizing Numeric Data

Z-score:

$$z=\frac{x-\mu}{\sigma}$$

- X: raw score to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

where

$$m_f = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf})$$
 $Z_{if} = \frac{x_{if} - m_f}{S_f}$

- standardized measure (*z-score*):
- Using mean absolute deviation is more robust than using standard deviation

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
x2	3	5
х3	2	0
х4	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	x1	x2	х3	x4
x1	0			
x2	3.61	0		
х3	2.24	5.1	0	
x4	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

• Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
 - d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i, j) = |x_{j_1} - x_{j_1}| + |x_{j_2} - x_{j_2}| + ... + |x_{j_p} - x_{j_p}|$$

• h = 2: (L₂ norm) Euclidean distance

$$d(i, j) = \sqrt{(|x_{j_1} - x_{j_1}|^2 + |x_{j_2} - x_{j_2}|^2 + ... + |x_{j_p} - x_{j_p}|^2)}$$

- $h \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f}^{p} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

I 1

(Dissimilarity Matrices)

L1	x1	x2	х3	х4
x1	0			
x2	5	0		
х3	3	6	0	
х4	6	1	7	0

Euclidean (L₂)

Manhattan (L₁)

L2	x1	x2	х3	x4
x1	0			
x2	3.61	0		
x3 x4	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

Lo	x1	x2	х3	x4
x1	0			
x2	3	0		
х3	2	5	0	
х4	3	1	5	0

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank

$$r_{if} \in \{1, ..., M_f\}$$

• map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise
- *f* is numeric: use the normalized distance
- *f* is ordinal
 - Compute ranks r_{if} and
 - Treat z_{if} as interval-scaled

$$Z_{if} = \frac{I_{ii} - 1}{M_{i} - 1}$$

Example

Based on the information given in the table below, find most similar and most dissimilar persons among them. Apply min-max normalization on income to obtain [0,1] range. Consider profession and mother tongue as nominal. Consider native place as ordinal variable with ranking order of [Village, Small Town, Suburban, Metropolitan]. Give equal weight to each attribute.

Name	Income	Profession	Mother tongue	Native Place
Ram	70000	Doctor	Bengali	Village
Balram	50000	Data Scientist	Hindi	Small Town
Bharat	60000	Carpenter	Hindi	Suburban
Kishan	80000	Doctor	Bhojpuri	Metropolitan

Solution

After normalizing income and quantifying native place, we get

Name	Income	Profession	Mother tongue	Native Place
Ram	0.67	Doctor	Bengali	1
Balram	0	Data Scientist	Hindi	2
Bharat	0.33	Carpenter	Hindi	3
Kishan	1	Doctor	Bhojpuri	4

$$d(Ram, Balram) = 0.67 + 1 + 1 + (2 - 1)/(4 - 1) = 3 \\ d(Ram, Bharat) = 0.33 + 1 + 1 + (3 - 1)/(4 - 1) = 3 \\ d(Ram, Kishan) = 0.33 + 0 + 1 + (4 - 1)/(4 - 1) = 2.33 \\ d(Balram, Bharat) = 0.33 + 1 + 0 + (3 - 2)/(4 - 1) = 1.67 \\ d(Balram, Kishan) = 1 + 1 + 1 + (4 - 2)/(4 - 1) = 3.67 \\ d(Bharat, Kishan) = 0.67 + 1 + 1 + (4 - 3)/(4 - 1) = 3 \\ d(Balram, Kishan) = 0.67 + 1 + 1 + (4 - 3)/(4 - 1) =$$

Most similar – Balram and Bharat; Most dissimilar – Balram and Kishan

Cosine Similarity

• A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$,

where \cdot indicates vector dot product, ||d||: the length of vector d

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where · indicates vector dot product, ||d|: the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$d_1 \cdot d_2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25$$

$$||d_1|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{0.5} = (17)^{0.5} = 4.12$$

$$\cos(d_1, d_2) = 0.94$$

Thank You