Euclid's Elements

Book I

If Euclid did not kindle your youthful enthusiasm, you were not born to be a scientific thinker.

Albert Einstein

Table of Contents, Chapter 1

- 1 Construct an equilateral triangle
- 2 Copy a line
- 3 Subtract one line from another
- 4 Equal triangles if equal side-angle-side
- 5 Isosceles triangle gives equal base angles
- 6 Equal base angles gives isosceles triangle
- 7 Two sides of triangle meet at unique point
- 8 Equal triangles if equal side-side-
- 9 How to bisect an angle
- 10 Bisect a line
- 11 Construct right angle, point on line
- 12 Construct perpendicular, point to line
- 13 Sum of angles on straight line = 180
- 14 Two lines form a single line if angle = 180

- 15 Vertical angles equal one another
- 16 Exterior angle larger than interior angle
- 17 Sum of two interior angles less than 180
- 18 Greater side opposite of greater angle
- 19 Greater angle opposite of greater side
- 20 Sum of two angles greater than third
- 21 Triangle within triangle has smaller sides
- 22 Construct triangle from given lines
- 23 Copy an angle
- 24 Larger angle gives larger base
- 25 Larger base gives larger angle
- 26 Equal triangles if equal angle-side-angle
- 27 Alternate angles equal then lines parallel
- 28 Sum of interior angles = 180, lines parallel

- 29 Lines parallel, alternate angles are equal
- 30 Lines parallel to same line are parallel to themselves
- 31 Construct one line parallel to another
- 32 Sum of interior angles of a triangle = 180
- 33 Lines joining ends of equal parallels are parallel
- 34 Opposite sides-angles equal in parallelogram
- 35 Parallelograms, same base-height have equal area
- 36 Parallelograms, equal base-height have equal area
- 37 Triangles, same base-height have equal area
- 38 Triangles, equal base-height have equal area

Table of Contents, Chapter 1

- 39 Equal triangles on same base, have equal height
- 40 Equal triangles on equal base, have equal height
- 41 Triangle is half parallelogram with same base and height
- 42 Construct parallelogram with equal area as triangle
- 43 Parallelogram complements are equal
- 44 Construct parallelogram on line, equal to triangle
- 45 Construct parallelogram equal to polygon
- 46 Construct a square
- 47 Pythagoras' theorem
- 48 Inverse Pythagoras' theorem

Proposition 12 of Book I

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Definition - Right Angle

When a straight line standing on a straight line makes the adjacent angles equal to one another, each of the equal angles is right, and the straight line standing on the other is called a perpendicular to that on which it stands.

 $\angle ACD = \angle BCD = \bot$ (right angle) DC is perpendicular to AB

Proposition 12 of Book I

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line Construct a circle with center C, and radius CD

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

Line CG is perpendicular to EF

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

Line CG is perpendicular to EF

Proof

Proposition 12 of Book I To draw a straight line perpendicular to a given infinite straight line from a given point not on it. CE = CF = r1

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

Line CG is perpendicular to EF

Proof

Create lines CE and CF

CE and CF are equal since they are radii of the same circle

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

Line CG is perpendicular to EF

Proof

Create lines CE and CF

CE and CF are equal since they are radii of the same circle EG and GF are equal since G bisects EF

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

Line CG is perpendicular to EF

Proof

Create lines CE and CF

CE and CF are equal since they are radii of the same circle

EG and GF are equal since G bisects EF

Triangles ECG and FCG have three congruent sides

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

Line CG is perpendicular to EF

Proof

Create lines CE and CF

CE and CF are equal since they are radii of the same circle EG and GF are equal since G bisects EF

Triangles ECG and FCG have three congruent sides

hence the triangles are congruent, and all the angles are congruent

To draw a straight line perpendicular to a given infinite straight line from a given point not on it.

Construction:

Start with an arbitrary line segment AB and an arbitrary point C not on the line

Define another point D on the other side of the line

Construct a circle with center C, and radius CD

Define points E and F as the intersection between line and the circle

Bisect line EF at point G (I-9)

Create line CG

Line CG is perpendicular to EF

Proof

Create lines CE and CF

CE and CF are equal since they are radii of the same circle

EG and GF are equal since G bisects EF

Triangles ECG and FCG have three congruent sides

hence the triangles are congruent, and all the angles are congruent

Since CGE and CGF are equal, and EF is a line, by definition the angles are right angles, and CG is perpendicular to EF

Youtube Videos

https://www.youtube.com/c/SandyBultena

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc/3.0