Mathematical Modeling of System Biology Homework 1

Yi Hsiao

October 10, 2016

1 Problem Set 2.4.7

- a) Consider the closed reaction network in Figure 2.16 with reaction rates v_i as indicated. Suppose that the reaction rates are given by mass action as $v_1 = k_1 [A] [B]$, $v_2 = k_2 [D]$ and $v_3 = k_3 [C]$.
 - i) Construct a differential equation model for the network. Use moiety conservations to reduce your model to three differential equations and three algebraic equations.

Initially, we can construct a set of differential equations of every species.

$$\frac{d[A]}{dt} = -v_1, \qquad \qquad \frac{d[B]}{dt} = -v_1 + v_2, \qquad \qquad \frac{d[C]}{dt} = v_1 - v_3,$$

$$\frac{d[D]}{dt} = v_1 - v_2, \qquad \qquad \frac{d[E]}{dt} = v_3, \qquad \qquad \frac{d[F]}{dt} = v_3$$

Then, we can further combine many differential equation to make this set of equations smaller, because there are only three independent variables. Actually, we only need three linearly independent equations. That is, the three differential equations can be derived by moiety conservations:

$$\frac{d\left[A\right]}{dt} + \frac{d\left[C\right]}{dt} + \frac{d\left[E\right]}{dt} = 0, \qquad \frac{d\left[A\right]}{dt} + \frac{d\left[C\right]}{dt} + \frac{d\left[F\right]}{dt} = 0, \qquad \frac{d\left[B\right]}{dt} + \frac{d\left[D\right]}{dt} = 0,$$

where the three algebraic equations are

$$v_1 = k_1 [A] [B],$$
 $v_2 = k_2 [D],$ $v_3 = k_3 [C]$

- ii) Solve for the steady-state concentrations as functions of the rate constants and the initial concentrations. (Note, because the system is closed, some of the steady-state concentrations are zero.)
- iii) Verify your result in part (ii) by running a simulation of the system from initial conditions (in mM) of ([A], [B], [C], [D], [E], [F]) = (1, 1, 1, 0, 0, 0). Take rate constants k1 = 3/mM/sec, k2 = 1/sec, k3 = 4/sec.
- b) Next consider the open system in Figure 2.17 with reaction rates vi as indicated. Suppose that the reaction rates are given by mass action as v0 = k0, v1 = k1[A][B], v2 = k2[D], v3 = k3[C], v4 = k4[E], and v5 = k5[F].

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

$$(x+y)^{3} = (x+y)^{2}(x+y)$$

$$= (x^{2} + 2xy + y^{2})(x+y)$$

$$= (x^{3} + 2x^{2}y + xy^{2}) + (x^{2}y + 2xy^{2} + y^{3})$$

$$= x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$
(1.1)

Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies

1.1 HEADING ON LEVEL 2 (SUBSECTION)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

$$A = \begin{bmatrix} A_{11} & A_{21} \\ A_{21} & A_{22} \end{bmatrix} \tag{1.2}$$

Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem.

1.1.1 HEADING ON LEVEL 3 (SUBSUBSECTION)

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

HEADING ON LEVEL 4 (PARAGRAPH) Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

- 2 PROBLEM SET 2.4.8
- 3 Problem Set 2.4.9

4 Lists

4.1 Example of List (3*ITEMIZE)

- First item in a list
 - First item in a list
 - * First item in a list
 - * Second item in a list
 - Second item in a list
- · Second item in a list

4.2 EXAMPLE OF LIST (ENUMERATE)

- 1. First item in a list
- 2. Second item in a list
- 3. Third item in a list