

Tutorium 5: Sortieren

Matthias Schimek | 3. Juni 2017

TUTORIUM ZUR VORLESUNG ALGORITHMEN I IM SS17

Gliederung

Letztes Blatt

2 Sortieren

3 Aufgaben

Matthias Schimek - Tutorium 5: Sortieren

- Dummy-Header
- 1. Aufgabe Aufgabenstellung
- wesentliche Funktionen programmieren

Grundlagen

Laufzeit

- best case
- average case
- worst case

Speicherverbrauch

inplace

Reihenfolge

stabil: bei gleichen Element bleibt Reihenfolge erhalten

Matthias Schimek - Tutorium 5: Sortieren

Insertionsort

Procedure insertionSort(a: Array [1..n] of Element)

for
$$i := 2$$
 to n do
invariant $a[1] \le \cdots \le a[i-1]$
move $a[i]$ to the right place

- langsam: $\mathcal{O}(n^2)$
- inplace
- stabil

¹Folien 'Algorithmen I', KIT

Selectionsort


```
1 Function selectionSort(A: array [1...n] of \mathbb{N}): array [1...n] of \mathbb{N}
       for i := 1 to n do
           min = i
          for j := i + 1 to n do
               if A[min] > A[j] then
                  min := j
7
               end
          end
8
           tmp := A[min]
          A[min] := A[i]
10
          A[i] := tmp
11
12
       end
       return A
13
```

- langsam $\mathcal{O}(n^2)$
- inplace
- stabil

Selectionsort


```
1 Function selectionSort(A: array [1...n] of \mathbb{N}): array [1...n] of \mathbb{N}
       for i := 1 to n do
           min = i
          for j := i + 1 to n do
               if A[min] > A[j] then
                  min := j
7
               end
          end
8
           tmp := A[min]
          A[min] := A[i]
10
          A[i] := tmp
11
12
       end
       return A
13
```

- langsam $\mathcal{O}(n^2)$
- inplace
- stabil

Mergesort

Idee: Teile und Herrsche

Gegeben:

zwei sortierte Folgen a und b

Berechne:

sortierte Folge der Elemente aus a und b

2

- schnell: $\mathcal{O}(n \log n)$
- auch im Worstcase

²Folien 'Algorithmen I', KIT

Quicksort

Function quickSort(s : Sequence of Element) : Sequence of Element

```
if |s| < 1 then return s
pick "some" p \in s
a := \langle e \in s : e 
b := \langle e \in s : e = p \rangle
c := \langle e \in s : e > p \rangle
```

return concatenation of quickSort(a), b, and quickSort(c)

Quicksort

Function quickSort(s : Sequence of Element) : Sequence of Element

```
if |s| \le 1 then return s
pick "some" p \in s
a := \langle e \in s : e 
<math>b := \langle e \in s : e = p \rangle
c := \langle e \in s : e > p \rangle
return concatenation of quickSort(a), b, and quickSort(c)
```

- average case: $\mathcal{O}(n \log n)$
- worst case: $\mathcal{O}(n^2)$
- man kann optimieren

Procedure qSort(a: Array of Element; $\ell, r: \mathbb{N}$) if $\ell \ge r$ then return $k := pickPivotPos(a, \ell, r)$ $m := partition(a, \ell, r, k)$

jetzt 'inplace'?

 $qSort(a, \ell, m-1)$ qSort(a, m+1, r)

⁴Folien 'Algorithmen I', KIT

イロト イタト イミト イミト

3. Juni 2017

Matthias Schimek - Tutorium 5: Sortieren

Letztes Blatt

Sortieren 00000000

200

Procedure qSort(a : Array of Element; $\ell, r : \mathbb{N}$) if $\ell \ge r$ then return

 $k:= \operatorname{pickPivotPos}(a, \ell, r)$ $m:= \operatorname{partition}(a, \ell, r, k)$ $\operatorname{qSort}(a, \ell, m-1)$ $\operatorname{qSort}(a, m+1, r)$

- jetzt 'inplace'?
- man kann optimieren

⁴Folien 'Algorithmen I', KIT

4 D > 4 B > 4 E > 4 E > 9 Q C

Matthias Schimek - Tutorium 5: Sortieren

Letztes Blatt

ren

Sortieren 00000•00

3. Juni 2017

9/13

Aufgaben

- Problem: schlimmstenfalls n rekursive Aufrufe \Rightarrow stackoverflow
- Lösung: halbrekursive Implementierung

```
Procedure qSort(a: Array of Element; \ell, r: \mathbb{N})
     while r - \ell + 1 > n_0 do
           k := pickPivotPos(a, \ell, r)
           m := partition(a, \ell, r, k)
          if m < (\ell + r)/2 then
                                            qSort(a, \ell, m-1); \ell := m+1
                                            qSort(a, m+1, r): r := m-1
          else
     insertionSort(a[\ell..r])
```


- Problem: schlimmstenfalls n rekursive Aufrufe \Rightarrow stackoverflow
- Lösung: halbrekursive Implementierung

```
Procedure \operatorname{qSort}(a:\operatorname{Array}\ \text{of}\ \operatorname{Element};\ \ell,r:\mathbb{N}) while r-\ell+1>n_0 do k:=\operatorname{pickPivotPos}(a,\ell,r) m:=\operatorname{partition}(a,\ell,r,k) if m<(\ell+r)/2 then \operatorname{qSort}(a,\ell,m-1);\ \ell:=m+1 \operatorname{qSort}(a,m+1,r);\ r:=m-1 insertionSort(a[\ell..r])
```

⁵Folien 'Algorithmen I', KIT

Aufgaben

10/13

5

Sortieren - Theorie

Satz: Deterministische, vergleichsbasierte Sortieralgorithmen brauchen $n \log n - \mathcal{O}(n)$ Vergleiche im schlechtesten Fall

⇒ Mergesort in dieser Hinsicht optimal

Autovermietung

Du bist der Manager eines Autoverleihs. Deine Firma besitzt $k \in \mathbb{N}$ unterschiedliche Fahrzeugtypen, die alle verliehen werden können. Von jedem Fahrzeugtyp $t \in \{1 \dots k\}$ besitzt die Firma $c_t \in \mathbb{N}$ Fahrzeuge. Es liegen die n nächsten Buchungen(Abholzeitpunkt, Rückgabezeitpunkt, Fahrzeugtyp) vor. Überprüfe, ob mit den vorhandenen Fahrzeugen alle Buchungen erfüllt werden können. Zum aktuellen Zeitpunkt sind keine Fahrzeuge verliehen. Ein Fahrzeug kann, ab dem Moment, in dem es zurückgegeben wird, sofort wieder verliehen werden.

Finde einen Algorithmus in $\mathcal{O}(n \log n)$

Autovermietung

Du bist der Manager eines Autoverleihs. Deine Firma besitzt $k \in \mathbb{N}$ unterschiedliche Fahrzeugtypen, die alle verliehen werden können. Von jedem Fahrzeugtyp $t \in \{1 \dots k\}$ besitzt die Firma $c_t \in \mathbb{N}$ Fahrzeuge. Es liegen die n nächsten Buchungen(Abholzeitpunkt, Rückgabezeitpunkt, Fahrzeugtyp) vor. Überprüfe, ob mit den vorhandenen Fahrzeugen alle Buchungen erfüllt werden können. Zum aktuellen Zeitpunkt sind keine Fahrzeuge verliehen. Ein Fahrzeug kann, ab dem Moment, in dem es zurückgegeben wird, sofort wieder verliehen werden.

Finde einen Algorithmus in $\mathcal{O}(n \log n)$

Kreativaufgabe

Gegeben sei ein Array mit n verschiedenen Elementen (unsortiert, aber mit Ordnung) und eine Medianfunktion, die für ein (Teil-)Array mit m Elementen den Median deterministisch in $\mathcal{O}(m)$ berechnet.

- Finde einen Algorithmus, der das $\frac{1}{3}$ -Perzentil deterministisch in $\mathcal{O}(n)$ berechnet.
- Finde einen Algorithmus, der die $\frac{1}{3^{k-1}}, \frac{1}{3^{k-2}}, \dots, \frac{1}{3}$ -Perzentile deterministisch in O(n) berechnet. (Nicht in O(nk)!)

Kreativaufgabe

Gegeben sei ein Array mit n verschiedenen Elementen (unsortiert, aber mit Ordnung) und eine Medianfunktion, die für ein (Teil-)Array mit m Elementen den Median deterministisch in $\mathcal{O}(m)$ berechnet.

- Finde einen Algorithmus, der das $\frac{1}{3}$ -Perzentil deterministisch in $\mathcal{O}(n)$ berechnet.
- Finde einen Algorithmus, der die $\frac{1}{3^{k-1}}, \frac{1}{3^{k-2}}, \dots, \frac{1}{3}$ -Perzentile deterministisch in O(n) berechnet. (Nicht in O(nk)!)

Kreativaufgabe

Gegeben sei ein Array mit n verschiedenen Elementen (unsortiert, aber mit Ordnung) und eine Medianfunktion, die für ein (Teil-)Array mit m Elementen den Median deterministisch in $\mathcal{O}(m)$ berechnet.

- Finde einen Algorithmus, der das $\frac{1}{3}$ -Perzentil deterministisch in $\mathcal{O}(n)$ berechnet.
- Finde einen Algorithmus, der die $\frac{1}{3^{k-1}}, \frac{1}{3^{k-2}}, \dots, \frac{1}{3}$ -Perzentile deterministisch in O(n) berechnet. (Nicht in O(nk)!)