

RF TEST REPORT

Applicant iRay Technology Co. Ltd.

FCC ID 2ACHK-01070189

Product DIRECT DIGITIZER SKR 4000

Model P-41

Report No. R1907A0346-R1V1

Issue Date August 1, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2018)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Report No: R1907A0346-R1V1

TABLE OF CONTENT

1. Test Laboratory	4
1.1. Notes of the test report	
1.2. Test facility	
1.3. Testing Location	5
2. General Description of Equipment under Test	
3. Applied Standards	7
4. Test Configuration	8
5. Test Case Results	9
5.1. Unwanted Emission	
5.2. Conducted Emission	42
6. Main Test Instruments	45
ANNEX A: EUT Appearance and Test Setup	46
A.1 EUT Appearance	
A.2 Test Setup	47

Report No: R1907A0346-R1V1

Summary of measurement results

Number	Summary of measurements of results	Clause in FCC rules	Verdict					
1	Maximum Average conducted output power	15.247(b)(3)	Refer to the module report:					
'	waximum Average conducted output power	13.247 (6)(3)	R1905A0235-R3					
2	6 dB bandwidth	15.247(a)(2)	Refer to the module report:					
۷	o db balldwidtil	13.247 (a)(2)	R1905A0235-R3					
3	Power spectral density	15.247(e)	Refer to the module report					
3	Power spectral density	15.247 (e)	R1905A0235-R3					
4	Dand Edge	15.247(d)	Refer to the module report:					
4	Band Edge	15.247 (u)	R1905A0235-R3					
5	Spurious DE Conducted Emissions	45.047(4)	Refer to the module report:					
3	Spurious RF Conducted Emissions	15.247(d)	R1905A0235-R3					
6	Harris de l'Entrata de	15.247(d),15.20	DACC					
0	Unwanted Emissions	5,15.209	PASS					
7	Conducted Emissions	15.207	PASS					
Date of Te	Date of Testing: July 3, 2019 ~ July 22, 2019							

The module WIFI-2-V897EA1 is a part of the EUT P-41. FCC ID duplicated from the module for the EUT.

Only Unwanted Emissions and Conducted Emissions were tested for P-41 in this report. Other conducted test items refer to the WIFI-2-V897EA1 Module report (Report No. : R1905A0235-R3).

WIFI-2-V897EA1 (Report No.: R1905A0235-R3) is a variant model of WIFI-2-V897EA1 (Report No.: SHEM180400246701). Test values partial duplicated from Original for variant. There is tested Unwanted Emissions, Conducted Emissions and Other test items only test 802.11g CH1, 802.11n HT20 CH 1, 802.11n HT40 CH 3/9 for variant in this report. The detailed product change description please refers to the FCC class II permissive change application letter.

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

CNAS (accreditation number: L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

Report No: R1907A0346-R1V1

2. General Description of Equipment under Test

Client Information

Applicant	iRay Technology Co. Ltd.
Applicant address	RM 202, Building 7, No. 590, Ruiqing RD., Pudong, Shanghai, China
Manufacturer	KONICA MINOLTA, INC.
Manufacturer address	1 Sakura-machi, Hino-shi, Tokyo, 191-8511, Japan

General information

	EUT Description				
Model:	P-41				
IMEI:	1				
Hardware Version:	V2.2				
	ARM:Core:1.9				
	Kernel:1.19				
Software Version:	FPGA microblaze:2.25				
Contware version.	FPGA main:2.15				
	MCU:1.0				
	SDK:4.0				
Power Supply:	Battery /AC adapter				
Antenna Type:	Coupling type (LDS)				
Antenna Connector:	A permanently attached antenna (meet with the standard FCC				
7 intornia derinioter.	Part 15.203 requirement)				
Antenna Gain:	1.80dBi				
Directional Gain:	N/A				
additional beamforming gain:	N/A				
Test Mode:	802.11b				
rest wode.	802.11g, 802.11n(HT20/HT40);				
Madulation Type:	802.11b: DSSS;				
Modulation Type:	802.11g/n(HT20/HT40): OFDM				
Occupies Francisco Bassada	802.11b/g/n(HT20): 2412 ~ 2462 MHz				
Operating Frequency Range(s)	802.11n(HT40): 2422 ~ 2452 MHz				
	EUT Accessory				
	Manufacturer: iRay Technology Co. Ltd.				
Battery	Model: BATTERY-KV				
	Ratings:10.8Vdc,4125mAh				
Note: The information of the EU	Γ is declared by the manufacturer.				

TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards

- FCC CFR47 Part 15C (2018) Radio Frequency Devices
- · ANSI C63.10 (2013)
- KDB 558074 D01 15.247 Meas Guidance v05r02

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Report No: R1907A0346-R1V1

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Band	Data Rate				
Ballu	Antenna 1	Antenna 2	MIMO		
802.11b	1 Mbps	1 Mbps	1		
802.11g	6 Mbps	6 Mbps	1		
802.11n HT20	MCS0	MCS0	MCS0		
802.11n HT40	MCS0	MCS0	MCS0		

The worst case Antenna mode for each of the following tests for Wi-Fi:

Test Cases	Antenna 1	Antenna 2	MIMO
Radiates Emission	0		0
Conducted Emission	0		
Note: "O": test all bands			

5. Test Case Results

5.1. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

This method refer to ANSI C63.10-2013.

The procedure for peak unwanted emissions measurements above 1000 MHz is as follows:

- I) Peak emission levels are measured by setting the instrument as follows:
- 1) RBW = 1 MHz.
- 2) VBW ≥ [3 × RBW]
- 3) Detector = peak.
- 4) Sweep time = auto.
- 5) Trace mode = max hold.
- 6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D, where D is the duty cycle.
- II) Average emission levels are measured by setting the instrument as follows:
- a) RBW = 1 MHz.
- b) VBW ≥ [3 × RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the

condition is not satisfied, then the detector mode shall be set to peak.

- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

The test is in transmitting mode.

Report No: R1907A0346-R1V1

Test setup 9KHz ~ 30MHz

30MHz ~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Report No: R1907A0346-R1V1

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009-0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m

Average Limit=54 dBuV/m

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz		
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15		
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46		
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75		
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5		
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2		
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5		
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7		
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4		
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5		
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2		
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4		
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12		
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0		
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8		
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5		
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)		
13.36 - 13.41					

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty
9KHz-30MHz	3.55 dB
30MHz-200MHz	4.02 dB
200MHz-1GHz	3.28 dB
1-18GHz	3.70 dB
18-26.5GHz	5.78 dB

Report No: R1907A0346-R1V1

Test Results:

Report No: R1907A0346-R1V1

Result of RE

Test result

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11n (HT20) CH6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Continuous TX mode:

RE 0.03-1GHz QP Class B

Radiates Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
30.606250	32.1	100.0	V	37.0	14.5	7.9	40.0
39.457500	35.7	100.0	V	92.0	16.9	4.3	40.0
64.798750	32.5	100.0	V	79.0	11.9	7.5	40.0
77.160000	31.1	100.0	V	236.0	10.3	8.9	40.0
138.391250	24.2	100.0	V	300.0	9.7	19.3	43.5
282.440000	23.1	100.0	Н	294.0	14.9	22.9	46.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

2. Margin = Limit - Quasi-Peak

802.11b CH1

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 200.0 ٧ 1105.250000 45.4 32.0 -1.4 28.6 74.0 ٧ 1351.750000 46.5 100.0 315.0 -0.9 27.5 74.0 ٧ 1700.250000 47.5 200.0 26.5 74.0 11.0 0.4 1790.250000 46.6 100.0 Н 194.0 0.6 27.4 74.0 2017.250000 48.0 200.0 V 1.2 26.0 74.0 98.0 4.7 2968.000000 52.0 200.0 Н 293.0 22.0 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1125.000000	34.6	100.0	Н	176.0	-1.3	19.4	54.0
1375.000000	34.9	100.0	V	13.0	-0.8	19.1	54.0
1709.750000	36.0	200.0	V	98.0	0.4	18.0	54.0
1800.000000	36.9	100.0	V	356.0	0.6	17.1	54.0
2022.750000	36.0	200.0	Н	252.0	1.2	18.0	54.0
2901.000000	39.0	100.0	V	64.0	4.5	15.0	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11b CH6

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 1147.000000 200.0 45.5 Н 201.0 -1.3 28.5 74.0 ٧ 1231.250000 46.0 100.0 334.0 -1.2 28.0 74.0 1644.750000 46.7 200.0 284.0 0.2 27.3 74.0 Н 2038.250000 48.3 100.0 V 0.0 1.3 25.7 74.0 2255.750000 48.3 100.0 V 349.0 2.5 25.7 74.0 ٧ 2897.500000 50.7 100.0 278.0 4.5 23.3 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1175.000000	33.9	100.0	V	229.0	-1.3	20.1	54.0
1375.000000	35.0	100.0	V	357.0	-0.8	19.0	54.0
1680.000000	36.1	200.0	V	6.0	0.3	17.9	54.0
2066.750000	36.8	200.0	V	3.0	1.5	17.2	54.0
2255.500000	37.3	200.0	V	0.0	2.5	16.7	54.0
2932.250000	39.1	200.0	V	1.0	4.6	14.9	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11b CH11

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height **Azimuth** Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 200.0 ٧ 1183.000000 46.4 116.0 -1.3 27.6 74.0 ٧ 1429.250000 47.0 200.0 201.0 -0.6 27.0 74.0 ٧ 1722.250000 47.1 100.0 269.0 26.9 74.0 0.4 1957.000000 48.3 200.0 V 11.0 1.0 25.7 74.0 2232.500000 49.6 200.0 V 15.0 2.4 24.4 74.0 ٧ 2885.000000 50.8 200.0 133.0 4.5 23.2 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1124.750000	34.1	200.0	Н	210.0	-1.3	19.9	54.0
1375.000000	36.5	100.0	V	357.0	-0.8	17.5	54.0
1624.750000	36.7	200.0	V	306.0	0.1	17.3	54.0
1799.750000	37.4	100.0	V	64.0	0.6	16.6	54.0
2227.500000	36.9	200.0	V	0.0	2.4	17.1	54.0
2826.750000	39.3	100.0	V	244.0	4.4	14.7	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height **Azimuth** Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 200.0 1168.250000 45.9 Н 309.0 -1.3 28.1 74.0 1353.500000 46.8 100.0 Η 141.0 -0.9 27.2 74.0 1702.250000 46.9 100.0 27.1 74.0 Н 0.0 0.4 1995.750000 49.2 200.0 Н 176.0 1.1 24.8 74.0 2219.000000 49.4 200.0 V 2.3 24.6 74.0 30.0 2990.750000 50.6 100.0 Н 4.8 23.4 74.0 3.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1125.000000	34.4	200.0	Н	354.0	-1.3	19.6	54.0
1375.000000	36.0	100.0	V	358.0	-0.8	18.0	54.0
1625.000000	36.6	200.0	V	214.0	0.1	17.4	54.0
2038.750000	36.9	100.0	V	210.0	1.3	17.1	54.0
2216.750000	36.8	100.0	Н	278.0	2.3	17.2	54.0
2893.500000	39.2	200.0	Н	12.0	4.5	14.8	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11g CH6

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 200.0 ٧ 1119.000000 46.1 0.0 -1.4 27.9 74.0 ٧ 1424.750000 46.4 100.0 358.0 -0.6 27.6 74.0 1674.500000 ٧ 47.6 200.0 167.0 0.3 26.4 74.0 1797.250000 46.7 100.0 Н 134.0 0.6 27.3 74.0 2050.250000 48.0 100.0 V 116.0 1.4 26.0 74.0 2879.000000 51.1 200.0 Н 4.5 22.9 74.0 141.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1199.250000	33.8	200.0	V	0.0	-1.2	20.2	54.0
1375.000000	36.0	100.0	V	0.0	-0.8	18.0	54.0
1624.750000	36.2	200.0	V	307.0	0.1	17.8	54.0
1799.750000	37.0	100.0	V	228.0	0.6	17.0	54.0
2048.750000	36.6	100.0	Н	28.0	1.4	17.4	54.0
2956.250000	39.3	100.0	V	348.0	4.7	14.7	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11g CH11

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height **Azimuth** Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 200.0 1166.250000 46.6 Н 159.0 -1.3 27.4 74.0 ٧ 1439.000000 46.6 100.0 89.0 -0.6 27.4 74.0 ٧ 1673.500000 47.5 100.0 301.0 0.3 74.0 26.5 1853.250000 46.6 200.0 V 50.0 8.0 27.4 74.0 2055.750000 48.1 200.0 317.0 1.4 25.9 74.0 Н ٧ 2915.000000 51.5 100.0 4.5 22.5 284.0 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1125.000000	34.6	200.0	Н	218.0	-1.3	19.4	54.0
1375.000000	36.7	100.0	V	0.0	-0.8	17.3	54.0
1625.000000	36.6	100.0	V	325.0	0.1	17.4	54.0
1860.000000	36.9	100.0	V	62.0	0.8	17.1	54.0
2060.250000	36.0	100.0	V	301.0	1.4	18.0	54.0
2970.750000	39.1	200.0	V	100.0	4.7	14.9	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH1

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 1124.500000 200.0 46.0 Н 356.0 -1.3 28.0 74.0 1322.000000 47.0 200.0 Η 345.0 -0.9 27.0 74.0 ٧ 1590.250000 47.4 100.0 354.0 -0.1 26.6 74.0 1807.750000 46.7 100.0 V 302.0 0.7 27.3 74.0 2010.000000 48.8 200.0 151.0 1.1 25.2 74.0 Н 2818.750000 51.1 100.0 Н 77.0 4.3 22.9 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1125.000000	34.0	200.0	Н	219.0	-1.3	20.0	54.0
1375.000000	36.1	100.0	V	0.0	-0.8	17.9	54.0
1625.000000	36.3	100.0	V	210.0	0.1	17.7	54.0
1800.000000	37.3	100.0	V	54.0	0.6	16.7	54.0
2009.250000	36.0	200.0	V	250.0	1.1	18.0	54.0
2925.500000	39.2	200.0	V	156.0	4.6	14.8	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH6

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 1004.750000 100.0 45.6 Н 51.0 -1.9 28.4 74.0 1349.000000 47.0 100.0 Η 187.0 -0.9 27.0 74.0 1698.750000 47.6 100.0 Н 0.4 26.4 74.0 6.0 2040.000000 48.9 100.0 Н 4.0 1.3 25.1 74.0 2240.000000 49.2 100.0 100.0 2.4 24.8 74.0 Н 2864.500000 51.8 100.0 Н 83.0 4.4 22.2 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1151.250000	34.4	100.0	Н	178.0	-1.3	19.6	54.0
1375.000000	35.7	100.0	V	0.0	-0.8	18.3	54.0
1624.750000	36.3	200.0	V	239.0	0.1	17.7	54.0
2073.000000	37.1	100.0	Н	178.0	1.5	16.9	54.0
2244.000000	37.7	100.0	Н	100.0	2.4	16.3	54.0
2999.250000	40.2	100.0	Н	51.0	4.8	13.8	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH11

Radiates Emission from 3GHz to 18GHz

Frequency Correct Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 100.0 ٧ 1125.250000 45.8 72.0 -1.3 28.2 74.0 ٧ 1315.750000 46.0 100.0 338.0 -0.9 28.0 74.0 47.7 ٧ 1704.250000 200.0 0.0 0.4 26.3 74.0 1968.750000 48.4 100.0 Н 297.0 1.0 25.6 74.0 2247.000000 49.2 200.0 340.0 2.4 24.8 74.0 Н 2762.250000 50.5 200.0 Н 4.2 23.5 74.0 167.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1176.250000	34.0	100.0	Н	0.0	-1.3	20.0	54.0
1375.000000	35.9	100.0	V	13.0	-0.8	18.1	54.0
1625.000000	36.7	200.0	V	90.0	0.1	17.3	54.0
1800.000000	37.1	100.0	V	355.0	0.6	16.9	54.0
2239.000000	37.4	100.0	Н	66.0	2.4	16.6	54.0
2763.750000	38.7	200.0	Н	359.0	4.2	15.3	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH3

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 1004.750000 100.0 ٧ 45.3 189.0 -1.9 28.7 74.0 1394.250000 46.7 100.0 Η 96.0 -0.7 27.3 74.0 ٧ 1695.750000 46.6 200.0 0.0 27.4 74.0 0.4 1759.500000 47.1 100.0 Н 3.0 0.5 26.9 74.0 2099.000000 47.6 200.0 V 124.0 1.7 26.4 74.0 ٧ 2844.250000 50.4 200.0 25.0 4.4 23.6 74.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1046.750000	33.5	100.0	Н	0.0	-1.7	20.5	54.0
1374.750000	35.5	100.0	V	359.0	-0.8	18.5	54.0
1625.000000	35.6	200.0	V	316.0	0.1	18.4	54.0
1800.000000	36.7	100.0	V	222.0	0.6	17.3	54.0
2095.250000	35.6	100.0	Н	47.0	1.6	18.4	54.0
2833.000000	38.6	200.0	V	234.0	4.4	15.4	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Report No: R1907A0346-R1V1

FCC RF Test Report No: R1907A0346-R1V1

802.11n (HT40) CH6

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 200.0 1121.750000 45.3 Н 36.0 -1.4 28.7 74.0 ٧ 1430.250000 46.1 200.0 116.0 -0.6 27.9 74.0 ٧ 1610.500000 47.4 100.0 340.0 0.0 26.6 74.0 1826.750000 48.1 200.0 V 150.0 0.7 25.9 74.0 2138.250000 47.4 200.0 V 34.0 1.9 26.6 74.0 ٧ 2728.250000 50.1 100.0 4.1 23.9 74.0 218.0

Report No: R1907A0346-R1V1

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1200.000000	33.5	200.0	V	209.0	-1.2	20.5	54.0
1374.750000	35.3	100.0	V	358.0	-0.8	18.7	54.0
1625.000000	36.5	200.0	V	307.0	0.1	17.5	54.0
1860.250000	36.2	200.0	V	50.0	0.8	17.8	54.0
2137.000000	35.6	200.0	V	8.0	1.9	18.4	54.0
2727.500000	38.2	200.0	V	16.0	4.1	15.8	54.0

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

FCC RF Test Report No: R1907A0346-R1V1

802.11n (HT40) CH9

Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz

Radiates Emission from 3GHz to 18GHz

Correct Frequency Peak Height Azimuth Margin Limit **Polarization** (dBuV/m) Factor (dB) (dBuV/m) (MHz) (cm) (deg) (dB) 1173.000000 200.0 V 45.0 216.0 -1.3 29.0 74 1258.000000 45.3 100.0 Η 315.0 -1.1 28.7 74 1703.250000 46.3 100.0 114.0 0.4 27.7 74 Н 1907.250000 46.4 200.0 V 4.0 0.9 27.6 74 2151.500000 46.8 100.0 30.0 1.9 27.2 74 Н ٧ 2710.250000 49.2 100.0 135.0 4.1 74 24.8

Report No: R1907A0346-R1V1

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
1124.750000	33.7	200.0	Н	228.0	-1.3	20.3	54
1374.750000	35.4	100.0	V	0.0	-0.8	18.6	54
1624.750000	35.0	200.0	V	305.0	0.1	19.0	54
1800.250000	35.2	100.0	V	0.0	0.6	18.8	54
2151.750000	35.2	200.0	V	216.0	1.9	18.8	54
2711.750000	37.4	100.0	V	299.0	4.1	16.6	54

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

5.2. Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Report No: R1907A0346-R1V1

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10-2013. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

The test is in transmitting mode.

Test Setup

Note: AC Power source is used to change the voltage 110V/60Hz.

Limits

Frequency	Conducted Limits(dBμV)						
(MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56 *	56 to 46 [*]					
0.5 - 5	56	46					
5 - 30	60	50					
* Decreases with the logarithm of the frequency.							

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.

FCC RF Test Report No: R1907A0346-R1V1

Test Results:

Following plots, Blue trace uses the peak detection and Green trace uses the average detection. During the test, the Conducted Emission was performed in all modes (WIFI 2.4G) with all channels, 802.11n (HT20) CH6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	39.43		65.63	26.20	1000.0	9.000	L1	ON	19.09
0.21		24.32	53.09	28.77	1000.0	9.000	L1	ON	19.16
0.43		21.88	47.32	25.44	1000.0	9.000	L1	ON	19.23
0.43	26.84		57.27	30.43	1000.0	9.000	L1	ON	19.23
2.02		18.53	46.00	27.47	1000.0	9.000	L1	ON	19.13
2.12	20.45		56.00	35.55	1000.0	9.000	L1	ON	19.08
2.89		25.47	46.00	20.53	1000.0	9.000	L1	ON	19.07
2.97	31.67		56.00	24.33	1000.0	9.000	L1	ON	19.10
8.91		28.40	50.00	21.60	1000.0	9.000	L1	ON	19.28
8.93	33.39		60.00	26.61	1000.0	9.000	L1	ON	19.28
23.48	35.55		60.00	24.45	1000.0	9.000	L1	ON	19.66
23.55		31.29	50.00	18.71	1000.0	9.000	L1	ON	19.67

L line Conducted Emission from 150 KHz to 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15	39.71		65.88	26.17	1000.0	9.000	N	ON	19.07
0.17		25.60	54.73	29.13	1000.0	9.000	N	ON	19.16
0.43		21.17	47.27	26.10	1000.0	9.000	N	ON	19.23
0.43	25.99		57.23	31.24	1000.0	9.000	N	ON	19.23
2.01		18.00	46.00	28.00	1000.0	9.000	N	ON	19.13
2.11	20.79		56.00	35.21	1000.0	9.000	N	ON	19.08
2.86	33.09		56.00	22.91	1000.0	9.000	N	ON	19.05
2.89		25.25	46.00	20.75	1000.0	9.000	N	ON	19.06
8.92	33.48		60.00	26.52	1000.0	9.000	N	ON	19.29
8.97		28.69	50.00	21.31	1000.0	9.000	N	ON	19.30
23.17		31.55	50.00	18.45	1000.0	9.000	N	ON	19.54
23.52	36.05		60.00	23.95	1000.0	9.000	N	ON	19.56

N line Conducted Emission from 150 KHz to 30 MHz

CC RF Test Report No: R1907A0346-R1V1

6. Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Date
Spectrum Analyzer	R&S	FSV30	100815	2018-12-16	2019-12-15
EMI Test Receiver	R&S	ESCI	100948	2019-05-20	2020-05-19
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2017-09-26	2019-09-25
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-201	2017-11-18	2019-11-17
Double Ridged Waveguide Horn Antenna	R&S	HF907	100126	2018-07-07	2020-07-06
Standard Gain Horn	ETS-Lindgren	3160-09	00102643	2018-06-20	2020-06-19
EMI Test Receiver	R&S	ESR	101667	2019-05-20	2020-05-19
LISN	R&S	ENV216	101171	2016-12-16	2019-12-15
Spectrum Analyzer	Agilent	N9010A	MY47191109	2019-05-20	2020-05-19
Power Meter	R&S	NRP	104306	2019-05-20	2020-05-19
Power Sensor	R&S	NRP-Z21	104799	2019-05-20	2020-05-19
20dB Attenuator	Star River Highlight	UCL-TS2S- 20	18013001	2018-12-16	2019-12-15
RF Cable	Agilent	SMA 15cm	0001	2019-06-14	2019-09-13
Software	R&S	EMC32	9.26.0	1	1

*****END OF REPORT *****

CC RF Test Report No: R1907A0346-R1V1

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

a: EUT Picture 1 EUT and Accessory

A.2 Test Setup

30M Hz-1GHz

Above 1GHz

Picture 2 Radiated Emission Test Setup

Picture 3 Conducted Emission Test Setup