

Algoritmos Genéticos e suas Aplicações

Joseana Macêdo Fechine

Campina Grande maio, 2011

Sumário

- Introdução
- Características
- Conceitos Básicos
- Aplicações
- Considerações Finais

A Origem das Espécies

□ 1859 - Charles Darwin publica o livro "A Origem das Espécies":

Charles Darwin

"As espécies evoluem pelo principio da seleção natural e sobrevivência do mais apto."

AG - Introdução

- □ Algoritmos genéticos (AG) são um ramo dos algoritmos evolucionários.
- Adotam a metáfora da teoria da evolução das espécies iniciada por Charles Darwin.
- □ Desenvolvido por John Holland (1975) e seus alunos.
- □ Popularizado por David Goldberg (1989).
- □ Podem ser definidos como uma técnica de busca baseada numa metáfora do processo biológico de evolução natural.
- □ São técnicas heurísticas de otimização global.

AG - Características ...

- Princípio básico do funcionamento dos AG: um critério de seleção vai fazer com que, depois de muitas gerações, o conjunto inicial de indivíduos gere indivíduos mais aptos.
- □ É um algoritmo estocástico (não é determinístico).
- □ Trabalha com uma população de soluções, simultaneamente.
- ☐ Utiliza apenas informações de custo e recompensa. Não requer nenhuma outra informação auxiliar.

AG - Características

- □ São fáceis de serem implementados em computadores.
- Adaptam-se bem a computadores paralelos.
- □ São facilmente utilizados de forma híbrida com outras técnicas.
- □ Funcionam com parâmetros contínuos ou discretos.

- Manipulam uma população de indivíduos.
- Indivíduos são possíveis soluções do problema.
- Os indivíduos são combinados (crossover) uns com os outros, produzindo filhos que podem sofrer ou não mutação.
- ☐ As populações evoluem a partir de sucessivas gerações até encontrar a solução ótima.

Funcionamento:

Linguagem natural	Algoritmos Genéticos	
cromossomo	indivíduo,string, cromossomo, árvore	
gene	característica	
alelo	valor	
locus	posição	
genótipo	estrutura	
fenótipo	conjunto de parâmetros	

Evolução Natural	Problema Computacional
Indivíduo	Solução de um problema
População	Conjunto de soluções
Cromossomo	Representação de uma solução
Gene	Parte da representação de uma
	solução
Crossover	Operador de Busca
Mutação	Operador de Busca
Seleção natural	Reutilização de boas
-	aproximações

Cromossomo

- □ Estrutura de dados que representa uma possível solução para o problema.
- Os parâmetros do problema de otimização são representados por cadeias de valores.
- □ Exemplos:
- Vetores de reais (2.345, 4.3454, 5.1, 3.4)
- Cadeias de bits (111011011)
- Vetores de inteiros (1,4,2,5,2,8)

Seleção

- Uso de função objetivo como avaliação de aptidão.
- A aptidão pode ser vista como uma nota que mede o quão boa é a solução codificada por um indivíduo.
- Baseada, normalmente, no valor da função-objetivo, específica para cada problema
- Métodos de Seleção
 - Roleta
 - Torneio
 - Amostragem Universal Estocástica

Métodos de Seleção - Roleta

- Aptidão usada para definir fatia
- Valor aleatório para selecionar cromossomo
- □ Processo repetido até gerar os n indivíduos necessários

Métodos de Seleção - Torneio

- Escolha aleatória de m indivíduos
- Uso de função de aptidão para escolher o melhor
- Processo repetido até gerar os n indivíduos necessários

Métodos de Seleção - Amostragem

- Método da roleta com n agulhas igualmente espaçadas
- □ Roleta é girada uma única vez

Operadores Genéticos

- Recombinação (cruzamento)
 - Cruzamento de pais para gerar filhos
 - Merge entre dois ou mais indivíduos (n:1): r(i1, i2, ...) = i_x
 - A maneira com que é feito depende da representação dos indivíduos:
 - Binária
 - Inteira
 - Ponto flutuante
 - Objetos Compostos
 - Acrescenta indivíduos à população

Recombinação (exemplo):

Operadores Genéticos

Recombinação (cruzamento)

- Tipos
 - Ponto Único
 - Dois Pontos
 - Multiponto
- Importante: taxa de cruzamento

Cruzamento - Ponto Único

$$\begin{array}{c|c}
Pais & 11001 \\
01111 \\
\hline
11011 \\
Fillhos & 01101
\end{array}$$

Cruzamento - Dois Pontos

Cruzamento - Multipontos

Operadores Genéticos

□ Mutação

- Ocorre na relação de 1:1
 m(i₁) = i_x
- A maneira com que é feito depende da representação dos indivíduos:
 - Binária
 - Inteira
 - Ponto flutuante
 - Objetos Compostos
- Não afeta o tamanho da população

Mutação (exemplo):

Operadores Genéticos

- Mutação
 - Mudança aleatória de alelo
 - Taxa de mutação
 - Significativamente inferior a de cruzamento

```
Antes da 01101
mutação Depois 00101
```


(a) **(b)** Pai 1 Pai 1 Selecionamos um ponto de corte Pai 2 Pai 2 Depois do operador de crossover Filho 1 Filho 1 Depois do operador de mutação Gene alterado Filho 2 Filho 2 pela mutação (d) (c)

Operadores em Conjunto

Elitismo

- Um elemento que tenha maior aptidão do que outro tem também maior probabilidade de ser selecionado.
- Nada impede que seja selecionado o pior, perdendose assim talvez o melhor elemento da população, que poderia levar a uma convergência mais rápida.
- □ Para tentar minimizar este possível problema, elitismo pode ser adicionado à seleção.
 - Percentual de indivíduos com melhor aptidão é mantido na nova geração.

Cortes a serem

Resumo do Funcionamento:

Parâmetros Genéticos

- Tamanho da população
- Taxa de cruzamento
- Taxa de mutação
- Intervalo de geração
 - Percentual de renovação da população

Parâmetros Genéticos

Critério de parada

- Número de gerações
- Convergência da função de aptidão na população
- Não melhoria da aptidão do melhor indivíduo após um número de gerações

Caracterização

- Problema a ser otimizado
- 2. Representação das Soluções de Problema
- 3. Decodificação do Cromossomo
- 4. Avaliação
- 5. Seleção
- 6. Operadores Genéticos
- 7. Inicialização da População

Questões importantes

- Como criar cromossomos e qual tipo de codificação usar?
 - É a primeira pergunta que deve ser feita ao resolver um problema com AG.
 - A codificação dependerá fortemente do problema.
- Como escolher os pais para a realização do crossover?
- A geração de uma população a partir de duas soluções pode causar a perda da melhor solução. O que fazer?

- Em problemas díficeis de otimização, quando não existe nenhuma outra técnica específica para resolver o problema.
- Otimização de funções numéricas em geral
- Otimização combinatória
 - □ Problema do caixeiro viajante
 - □ Problema de empacotamento
 - □ Alocação de recursos (job shop schedulling)
- □ Aprendizado de Máquina

Exemplo 1: Uso de AG para encontrar o ponto máximo da função

$$f(x) = x^2$$

com x sujeito às seguintes restrições:

 $0 \le x \le 31$ x é inteiro

- Cromossomos binários com 5 bits
 - 0 = 00000
 - **31** = 11111
- Aptidão
 - Neste problema a aptidão pode ser a própria função objetivo
 - Exemplo: Aptidão(00011) = f(3) = 9

Exemplo 1:

Probabilidade de seleção

Proporcional à aptidão

$$p_i = \frac{f(x_i)}{\sum_{k=1}^{N} f(x_k)}$$

A população inicial é aleatória (mas quando possível, o conhecimento da aplicação pode ser utilizado para definir população inicial).

cror	nossomos	х	<i>f</i> (<i>x</i>)	prob. de seleção
1	11011	27	729	29,1%
2	11001	25	625	24,9%
3	11001	25	625	24,9%
4	10111	23	529	21,1%

AG - Aplicações

Exemplo 2: Uso de AG para obter o Mínimo de uma Função

Fonte: http://www.obitko.com/tutorials/genetic-algorithms/portuguese/example-function-minimum.php

AG - Aplicações

Exemplo 3: Algoritmo Genético Aplicado ao Problema do Caixeiro Viajante

- Uma população inicial é gerada aleatoriamente. Cada indivíduo da população é uma rota. Lembrando que as cidades não podem ser repetidas.
- 2. Cada indivíduo é avaliado definindo seu *fitness* (valor de adequação) que é inversamente proporcional à distância total da rota.
- 3. Um número aleatório de indivíduos (pode ser pré-definido) é selecionado na roleta.
- 4. Alguns dos indivíduos selecionados passam por alterações, a partir dos operadores genéticos (*crossover* e mutação).
- 5. Uma nova população é gerada e repete-se os passos do 2 ao 5 até que um número pré-definido de gerações seja alcançado.

AG - Aplicações

Exemplo 3: Algoritmo Genético Aplicado ao Problema do Caixeiro Viajante

Fonte: http://www.obitko.com/tutorials/genetic-algorithms/portuguese/tsp-example.php

Considerações Finais ...

Aspectos Práticos

- A implementação prática de um AG requer atenção para várias questões:
 - 1. Escolha da Função de Avaliação/Aptidão
 - 2. Problemas de convergência
 - 3. Escolha da Técnica de Seleção
 - 4. Lacuna entre gerações (generation gap)

Considerações Finais ...

- □ AG são técnicas probabilísticas, e não técnicas determinísticas.
- Iniciando um AG com a mesma população inicial e o mesmo conjunto de parâmetros, é possível encontrar soluções diferentes a cada vez que se executa o programa.

Considerações Finais

- □ AG não ficarão estagnados simplesmente pelo fato de terem encontrado um máximo local.
- □ Eles se parecem com a evolução natural, que só porque encontrou um indivíduo que é instantaneamente o melhor de um certo grupo não deixa de "procurar" outros indivíduos ainda melhores.
- □ Na evolução natural isto também decorre proveniente de circunstâncias que mudam de um momento para outro.

Referências Bibliográficas

- Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall, 2a Edição, 2003;
- Luger, G. F., Inteligência Artificial Estruturas e Estratégias para a Solução de Problemas Complexos, 4<u>a</u> Edição, Bookman, 2004;
- Bittencourt, G., *Inteligencia Artificial Ferramentas e Teorias*, Editora de UFSC, 1998;
- Flach, P., Simply Logical Intelligent Reasoning by Example, John Wiley & Sons, 1994;
- Costa, A. H. R. e Sichman, J. S., Inteligência Artificial
- Linden, R., Algoritmos Genéticos Uma importante ferramenta da Inteligência Computacional, Brasport Livros e Multimídia Ltda, 2006.

Algoritmos Genéticos

"Quanto melhor um indivíduo se adaptar ao seu meio ambiente, maior será sua chance de sobreviver e gerar descendentes."

(DARWIN, 1859)

Algoritmos Genéticos e suas Aplicações

Joseana Macêdo Fechine

