第7章脉冲波形的产生与变换

Pulse Circuits

- §7.1 555定时器 555 Timer
- §7.2 施密特触发器 Schmitt Trigger
- §7.3 单稳态触发器 One-Shots (Monostable Multivibrators)
- §7.4 多谐振荡器 Astable Multivibrators (Oscillators)

脉冲信号:作用在电路中<u>短暂的电压或电流</u>信号 (既非直流又非正弦交流的电压或电流)

脉冲信号的参数

数字电路中用的脉冲信号为矩形波

- 一个脉冲中有效的脉冲比
- 一个脉冲中高电平占的比例 4

在同步时序电路中,作为时钟信号的矩形脉冲控制和 协调整个系统的工作

因此, 时钟脉冲的特性直接关系

M Pos: -40,00ns 美团 M 10.0ns 28-Apr-16 07:31 1.00000kHz

扫描时间250µs/格

扫描时间10ns/格

上升和下降时间对数字电路的工作有重要影响

脉冲信号如何产生?

获取方法有两种:

- (1) 直接产生,采用多谐振荡器
- (2) 利用已有信号整形或变换得到,采用<u>施密</u>特触发器或单稳态触发器

§ 7.1 555定时器

555 Timer

电路

阻R = 5 kΩ

比较器 C_1 、 C_2

本 RS-FF

比较器

$$+ \ge - C = 1$$

 $+ < - C = 0$

$\overline{S} \overline{R}$		$Q \bar{Q}$		FF state				
0	0	1	1	\overline{SR}	0→1			
0	1	1	0	Set	(1)	$S \neq \overline{R}$		
1	0	0	1	Rese	et (0)	$Q=\overline{R}$		
1	1	保 持		No- change				

555 定时器功能

	$\overline{R}_{\mathrm{D}}$	TH (6)	TR (2)	\overline{R} (C ₁)	\overline{S} (C ₂)	Q(3)	\overline{Q}	T 状态 (7)
			$<\frac{1}{3}V_{\rm CC}$					截止 (断开)
不起作用	Ò	$<\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3} V_{\rm CC}$	1	1	1保持	0	保持
cchi	1	$> \frac{2}{3} V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	0	1	0	1	导通 (GND)
	0	Ф	Ф	Ф	Φ	0	1	导通 (GND)

555 定时器

GND
$$\frac{1}{7}$$
 $\frac{1}{2}$ $\frac{8}{555}$ $\frac{7}{6}$ $\frac{1}{7}$ DIS $\frac{2}{7}$ $\frac{7}{7}$ $\frac{1}{7}$ $\frac{2}{7}$ $\frac{7}{7}$ $\frac{1}{7}$ $\frac{2}{7}$ $\frac{7}{7}$ $\frac{7}$

总结
$$\begin{cases}
\textbf{①} & V_2 < \frac{1}{3}V_{CC}, \quad V_6 < \frac{2}{3}V_{CC}, \quad Q = 1 \quad \overline{Q} = 0 \quad \mathbf{T} \text{ 截止} \\
\textbf{②} & V_2 > \frac{1}{3}V_{CC}, \quad V_6 > \frac{2}{3}V_{CC}, \quad Q = 0 \quad \overline{Q} = 1 \quad \mathbf{T} \text{ 导通} \\
\textbf{③} & V_2 > \frac{1}{3}V_{CC}, \quad V_6 < \frac{2}{3}V_{CC}, \quad \mathbf{Q} \text{ 保持} \\
\mathbf{若用}V_{CO}, \quad V_6 : V_{CO} \text{ 为参考电压} \\
V_2 : \frac{1}{2}V_{CO} \text{ 为参考电压}
\end{cases}$$

V₂: ½ V_{CO} 为参考电压

§7.2 施密特触发器 Schmitt Trigger

测量电网工频原理框图

施密特触发器: 基于波形整形的脉冲信号产生电路

施密特触发器: 具有滞后特性的数字传输门

(1) 双稳态

$$\begin{cases} Q = 1, \overline{Q} = 0 \\ Q = 0, \overline{Q} = 1 \end{cases}$$

(2) 滞后 Hysteresis

输入电压增大和减小过程中,输出翻转 电平不同

回差(Backlash)电压

$$\Delta V = V_{\text{T+}} - V_{\text{T-}}$$

符号

电压传输特性

同怕施密特触发器

反相施密特触发器

施密特触发器和电压比较器的区别

电压比较器工作波形

施密特触发器工作波形

施密特触发器有更好的噪声抑制特性

§7.2.1 由555定时器构成的施密特触发器

电路:

- · 2 端和6 端接在一起 $(V_2=V_6,$ 两个比较器输入一致)
- · 4端R_D矮高电平

工作原理 设输入为三角形波形

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \quad V_{\rm 2}, V_{\rm 6} < 1/3 \ V_{\rm CC}$$
 $Q = 1$

$$V_{\rm i}$$
 ↑, $V_{\rm 2}$ > 1/3 $V_{\rm CC}$, $V_{\rm 6}$ < 2/3 $V_{\rm CC}$ Q 保持

$$Q$$
 保持 $V_{i} > 2/3 V_{CC}, V_{2}, V_{6} > 2/3 V_{CC}$ $Q = 0$

$$Q=0$$
 $V_{\rm i}\downarrow$, 1/3 $V_{\rm CC}< V_{\rm i}<2/3~V_{\rm CC}$ Q 保持

$$Q$$
 保持 $V_{\rm i} < 1/3 \ V_{\rm CC}, \ V_{\rm 2}, \ V_{\rm 6} < 1/3 \ V_{\rm CC}, \ Q = 1$

555

 $V_{\rm O}$

小结

1) 波形转换:

三角波 → 矩形波

2) 滞后

連連
$$\Delta V = V_{T+} - V_{T-} = \frac{2}{3}V_{cc} - \frac{1}{3}V_{cc} = \frac{1}{3}V_{cc}$$

3) 滞后的原因

555 定的器分压结构, 使基本RS-FF工作在保 持状态

一个 555定时器构成的施密特触发器以及输入波形如下 图所示. $V_{cc}=12$ V. V_{co} 悬空. 求: (1) V_{T+} , V_{T-} 及 ΔV 的值; (2) 根据 V_i 波形画出输出 V_o 波形; (3) 求出当 $V_{co}=10$ V时 V_{T+} $V_{\rm T}$ 及 ΔV 的值

(1)
$$V_{T+} = \frac{2}{3}V_{cc} = \frac{2}{3} \times 12 \text{ V} = 8 \text{ V}$$

$$V_{T-} = \frac{1}{3}V_{cc} = \frac{1}{3} \times 12 \text{ V} = 4 \text{ V}$$

$$\Delta V = V_{T+} - V_{T-} = 8 - 4 = 4 \text{ V}$$

(1)
$$V_{T+} = \frac{2}{3}V_{cc} = \frac{2}{3} \times 12 \text{ V} = 8 \text{ V}$$

 $V_{T-} = \frac{1}{3}V_{cc} = \frac{1}{3} \times 12 \text{ V} = 4 \text{ V}$
 $\Delta V = 5 \text{ V}$
(3) $V_{co} = 10 \text{ V}$
 $V_{T+} = V_{co} = 10 \text{ V}, \quad V_{T-} = \frac{1}{2}V_{co} = 5 \text{ V}$

§7.2.2 门电路构成的施密特触发器

同相施密特触发器

(1)
$$\stackrel{\text{def}}{=} v_{\text{I}} = 0$$
 $\stackrel{\text{left}}{=} v_{\text{I}}$, $v_{\text{I}} \stackrel{\text{def}}{=} v_{\text{I}}$, $v_{\text{O}} \approx 0$ $\stackrel{\text{def}}{=} v_{\text{I}} = 0$ $\stackrel{\text{d$

(2) 当 ν_I 升高时, ν_I '也升高。当 ν_I '达到 $1/2V_{DD}$ 时, G_1 、 G_2 输出状态将发生翻转。此时对应的 ν_I 值称为

$$v_{\rm I}' = \frac{V_{\rm T+}}{R_1 + R_2} \cdot R_2 = \frac{1}{2} V_{\rm DD}$$
 $V_{\rm T+} = \frac{1}{2} V_{\rm DD} (1 + \frac{R_1}{R_2})$

(3) 当 v_1 大于 V_{T+} 时,电路转到另一稳态: $v_{O1} \approx 0$ V $v_O \approx V_{DD}$ 。

(4) 当 ν_{I} 由高变低时, ν_{I} '也由高变低。当 $\nu_{\text{I}} \leq 1/2 V_{\text{DD}}$ 时,电路又将发生转换。此时对应的 ν_{I} 称为 $V_{\text{T-}}$ 。

$$v_{\rm I}' = \frac{(V_{\rm DD} - V_{\rm T-}) \cdot R_{\rm I}}{R_{\rm 1} + R_{\rm 2}} + V_{\rm T-} = \frac{1}{2} V_{\rm DD}$$
 $V_{\rm T-} = \frac{1}{2} V_{\rm DD} (1 - \frac{R_{\rm 1}}{R_{\rm 2}})$

「(5) 当 ν 小子 V_{T} 时,电路转到另一稳态: $\nu_{\text{Ol}} \approx V_{\text{DD}}$, $\nu_{\text{O}} \approx 0$ V。

工作波形

$$V_{\Gamma^{+}} = \frac{1}{2}V_{\text{DD}}(1 + \frac{R_{1}}{R_{2}})$$

$$V_{\text{T-}} = \frac{1}{2} V_{\text{DD}} (1 - \frac{R_1}{R_2})$$

宣差电压、
$$\Delta V = V_{\text{T+}} - V_{\text{T-}} = \frac{1}{2} V_{\text{DD}} (1 + \frac{R_1}{R_2}) - \frac{1}{2} V_{\text{DD}} (1 - \frac{R_1}{R_2}) = \frac{R_1}{R_2} V_{\text{DD}}$$

§7.2.3 集成施密特触发器 IC Schmitt Trigger

TTL集成施密特触发器74LS132由4个独立的两输入与非门构成

正向阈值

 $V_{T+} = 1.5 \sim 2.0 \text{ V}$

典型回差电压

 $\Delta V = 0.8 \text{ V}$

反向阈值

$$V_{T_{-}} = 0.6 \sim 1.1 \text{ V}$$

管脚图

符号

A 或 B 或二者 $< V_{T-}, Y=1$ 只有当 A 和 B 都 $> V_{T+}, Y=0$

逻辑功能

$$Y = \overline{AB}$$

具有滞后特性

§7.2.4 Schmitt 触发器应用

Applications of Schmitt Trigger

1. 波形转换

将一周期性信号变换为矩形波,其输出脉冲宽度 $T_{\rm W}$ 可通过改变 ΔV 进行调节。

$$\Delta V = V_{\mathrm{T+}} - V_{\mathrm{T-}}$$

2. 信号整型 将不规则的信号波形整成矩形脉冲。

3. 幅度鉴别

Schmitt-FF的输出状态取决于输入信号的电压值, 因此可用作幅度鉴别。

输出信号的振荡幅度是门电路的高(3.6V), 低(0.1V) 电平, 与 V_{T+} , V_{T-} 无关

施密特触发器的应用——光控路灯开关

天亮, R_L 小, V_i 大, $V_i > (2/3 V_{CC})$, Q=0继电器不吸合开关, 路灯不亮;

工作原理

天暗, R_L 大, V_i 小, V_i <(1/3 V_{CC}), Q=1继电器吸合开关,路灯亮。