

KAGGLE COMPETITION BY TUWAIQ ACADEMY

TASK 5 ...

"Mulhum ملهم Team"

Names of trainees: Safa Nasser, Anwar, lujain

Introduction

In an increasingly competitive world, the need for elite training programs is more important than ever. These programs aim to discover and develop exceptional talent, supporting them to achieve their full potential and make a positive impact in their fields. We are pleased to offer you the opportunity to participate in the Kaggle competition entitled "Unlocking the Potential of Elite Training Programs". This competition aims to provide a platform for trainees in elite programs to test their skills and gain practical experience in the field of machine learning using the famous Kaggle platform.

Student ID Age Gender Home Region Home City Program ID Program
Main Category Code Program Sub Category Code Technology Type
Program Skill Level ... Completed Degree Level of Education Education
Speaciality College University Degree Score University Degree Score
System Employment Status Job Type Still Working

What we did

Clean the data and convert it into a format suitable for analysis

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque non elit mauris. Cras euismod, metus ac finibus finibus, felis dui suscipit purus, a maximus leo ligula

Measure model accuracy and improve it using different techniques.

Download the competition datasets provided on the Kaggle competition page.

```
[1] #Import library
   import pandas as pd
   import numpy as np
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.linear_model import LogisticRegression
   from sklearn.model_selection import cross_val_score
```

[2] pip install colorama

Requirement already satisfied: colorama in /usr/local/lib/python3.10/dist-packages (0.4.6)

a. Download the competition datasets provided on the Kaggle competition page.

First, we'll load the data from the files you've uploaded using the pandas library, which is a powerful tool in Python for data manipulation and analysis

```
[3] test_data = pd.read_csv('test.csv')
    train_data = pd.read_csv('train.csv')
```

Explore the datasets to understand the features and target variables.

b. Explore the datasets to understand the features and target variables.

```
[4] print(train_data.shape[0])
print(test_data.shape[0])

6548
818
```

• display Type data

5] -			++		
,	- -=================================	Train Data Types	Test Data Types		
	Age	float64	float64		
	College	object	object		
	Completed Degree	object	object		
	Education Speaciality	object	object		
	Employment Status	object	object		
	Gender	object	object		
	Home City	object	object		
	Home Region	object	object		
	Job Type	object	object		
	Level of Education	object	object		
	Program Days	int64	int64		
	Program End Date	object	object		
	Program ID	object	object		
	Program Main Category Code	object	object		
	Program Presentation Method	object	object		
	Program Skill Level	object	object		

Identifying Numerical and Categorical Columns

After loading the data, we need to identify which columns are numerical and which are categorical. This is crucial because it determines how we'll process these columns moving forward

```
[6] numerical_cols = train_data.select_dtypes(include=['int64', 'float64']).columns.tolist()
    categorical_cols = train_data.select_dtypes(include=['object']).columns.tolist()
    numerical_cols = test_data.select_dtypes(include=['int64', 'float64']).columns.tolist()
    categorical_cols = test_data.select_dtypes(include=['object']).columns.tolist()
```

c. Perform data preprocessing tasks

change Type data

```
" (الالتربية الغنية': (Operated table Train data:

train_data['Program Presentation Method'] = train_data['Program Presentation Method'].replace(('ونون': 0), 'عن بعد': 1})

train_data['Program Presentation Method'] = train_data['Program Presentation Method'].astype(int)

#train_data['Program Start Date'] = pd.to_datetime(train_data['Program Start Date'])

#train_data['Program End Date'] = pd.to_datetime(train_data['Program End Date'])

train_data['Program Presentation Method'] = train_data['Program Presentation Method'].replace(('product Design': '0, 'بعن نه ': 1}))

train_data['Education Speaciality'] = train_data['Education Speaciality'].replace(('Product Design': 'نصور و الهندية': 'Business Administration': 'التربية الغنية', 'art education': 'مناوم الكومبيوتر و الهندية': 'Omputer Science and Engineering': 'مناوم الكومبيوتر و الهندية': '0, 'بعن نه '1))

test_data['Program Presentation Method'] = test_data['Program Presentation Method'].astype(int)

test_data['Program Presentation Method'] = test_data['Program Presentation Method'].astype(int)

test_data['Education Speaciality'] = test_data['Education Speaciality'].replace(('Biology': 'بحبا-','Chemistry': 'بحبا-','Chemistry': 'بحبا-','Computer Ne

'applied network systems engineering': 'ait astronomy': 'applied network systems engineering': 'applied netwo
```

Before and after data cleaning

	+	+
	Train Data Null	Test Data Null
Age	92	14
College	3890	492
Completed Degree	0	0
Education Speaciality	277	37
Employment Status	566	70
Gender	0	0
Home City	2	1
Home Region	2	1
Job Type	4567	581
Level of Education	26	3
Program Days	0	0
Program End Date	0	0
Program ID	0	0
Program Main Category Code	0	0
Program Presentation Method	0	0

	Train Data Null	Test Data Null
Age	0	0
College	0	0
Completed Degree	0	0
Education Speaciality	0	0
Employment Status	0	0
Gender	0	0
Home City	0	0
Home Region	0	0
Job Type	0	0
Level of Education	0	0
Program Days	0	0
Program End Date	0	0
Program ID	0	0
Program Main Category Code	0	0
Program Presentation Method	0	0
Program Skill Level	0	0

Scaling numerical features and encoding categorical variables

Finally, we'll encode categorical data and scale numerical data to prepare it for modeling

Summary:

Encoding transforms categorical data into a format that is easier for ML models to understand.

Scaling adjusts the range of numerical features so that different scales do not distort the learning process of the model.

Both steps help in enhancing model performance and are crucial for achieving accurate predictions.

We transformed the data using ColumnTransformer from the Scikit-learn library. This allows us to apply different transformations to different columns in the data set.

• Implement machine learning models to predict student persistence and completion

```
try:
        modelL = LogisticRegression(C=1.0, max_iter=1000)
        modelL.fit(X_train, y_train)
        predictions = modelL.predict(X_test)
        print("The model was trained successfully.")
        scoring = ['accuracy', 'precision', 'recall', 'f1']
        scores = cross_validate(modelL, X_train, y_train, scoring=scoring, cv=5)
        print("Cross-Validation Scores:")
        cv_results = pd.DataFrame(scores)
        table = tabulate(cv_results, headers=['Fit_time', 'Score_time', 'Test_accuracy', 'Test_precision', 'Test_recall', 'Test_f1'], tablefmt='grid')
        colored_tableM = table.replace('-', Fore.BLUE + '-')
        print(colored_tableM)
        avg_accuracy = scores['test_accuracy'].mean()
        avg_f1 = scores['test_f1'].mean() # Calculate average F1 score
        print("Average test accuracy:", avg_accuracy)
        print("Average F1 score:", avg_f1)
    except Exception as e:
        print("Failure to train:", e)
```

The model was trained successfully.

Cross-Validation Scores:

				Test_precision		_
0	1.43223	0.0257907	0.89542	0.741497		0.614085
1	0.826078	0.0348432	0.905344	0.7625	0.586538	0.663043
2	0.844897	0.0157795	0.885496	0.683544	0.519231	0.590164
3	0.630645	0.0294232	0.879297	0.658065	0.492754	0.563536
4	1.00152	0.0194485	0.884645	0.681529	0.514423	

Average test accuracy: 0.8900402964794523

Average F1 score: 0.6034258402389152

• Experiment with different machine learning algorithms and techniques to improve model performance.

```
/ [17] from sklearn.model_selection import cross_val_score
       from sklearn.preprocessing import StandardScaler
       from sklearn.svm import SVC
       from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
       # Standardize the data
       scaler = StandardScaler(with mean=False)
       X_scaled = scaler.fit_transform(X_train)
       # Support Vector Machine
       svm_model = SVC(kernel='linear')
       # Random Forest
       rf_model = RandomForestClassifier(n_estimators=100)
       # Gradient Boosting
       gb_model = GradientBoostingClassifier(n_estimators=100)
       # Evaluate models using cross-validation
       svm_scores = cross_val_score(svm_model, X_scaled,y_train, cv=5)
       rf_scores = cross_val_score(rf_model, X_scaled, y_train, cv=5)
       gb_scores = cross_val_score(gb_model, X_scaled, y_train, cv=5)
       print("SVM Accuracy: %0.2f (+/- %0.2f)" % (svm scores.mean(), svm scores.std() * 2))
       print("Random Forest Accuracy: %0.2f (+/- %0.2f)" % (rf_scores.mean(), rf_scores.std() * 2))
       print("Gradient Boosting Accuracy: %0.2f (+/- %0.2f)" % (gb_scores.mean(), gb_scores.std() * 2))
       # create Dictionary content all accuracy
       model_scores = {'SVM': (svm_scores.mean(), svm_scores.std()), 'Random Forest': (rf_scores.mean(), rf_scores.std()), 'Gradient Boosting': (gb_scores.mean(), gb_scores.std())}
       # find max accuracy
       best_model = max(model_scores, key=lambda k: model_scores[k][0])
       print('----')
       print(f"The best performing model is {best_model} with an accuracy of {model_scores[best_model][0]:.2f} ")
```

SVM Accuracy: 0.80 (+/- 0.01)

Random Forest Accuracy: 0.89 (+/- 0.02)

Gradient Boosting Accuracy: 0.89 (+/- 0.02)

The best performing model is Gradient Boosting with an accuracy of 0.89

• Fine-tune hyperparameters of the selected models to optimize performance.

```
[21]
     from sklearn.model_selection import GridSearchCV
     from sklearn.ensemble import GradientBoostingClassifier
     # Create Gradient Boosting Classifier
     gb_clf = GradientBoostingClassifier()
     # Hyperparameters to tune
     param_grid = {
         'n_estimators': [100, 200],
         'learning_rate': [0.05, 0.1],
         'max_depth': [3, 5]
     # Create the GridSearchCV object
     grid_search = GridSearchCV(gb_clf, param_grid, cv=5, verbose=0)
     grid_search.fit(X_train, y_train)
     best_rf_scores = cross_val_score(gb_clf, X_scaled, y_train, cv=5)
     b=np.mean(best_rf_scores)
     print(f"Tuned model Accuracy: {np.mean(best_rf_scores):.2f} (+/- {np.std(best_rf_scores) * 2:.2f})")
     print("Best parameters:", grid_search.best_params_)
     Tuned model Accuracy: 0.89 (+/- 0.02)
     Best parameters: {'learning_rate': 0.05, 'max_depth': 5, 'n_estimators': 100}
```

```
scoring = ['accuracy', 'precision', 'recall', 'f1']
scores = cross validate(grid_search, X_train, y_train, scoring=scoring, cv=5)
print("Cross-Validation Scores:")

cv_results = pd.DataFrame(scores)
table = tabulate(cv_results, headers=['Fit_time', 'Score_time', 'Test_accuracy', 'Test_precision', 'Test_recall', 'Test_f1'], tablefmt='grid')
colored_tableM = table.replace('-', Fore.BLUE + '-')
print(colored_tableM)
avg_accuracy = scores['test_accuracy'].mean()
avg_f1 = scores['test_accuracy'].mean() # Calculate average F1 score
print("Average test accuracy:", avg_accuracy)
print("Average F1 score:", avg_f1)
```

Cross-Validation Scores:

i i	Fit_time	Score_time	Test_accuracy	Test_precision	Test_recall	Test_f1
0	281.158	0.0111201	0.89771		0.552885	0.631868
1 1	284.504	0.0109675	0.903817	0.715789	0.653846	0.683417
2	287.037		0.880916	0.638298		0.606061
3	285.547		0.877005	0.629213	0.541063	0.581818
4	290.524		0.89152	0.663366		0.653659

Average test accuracy: 0.8901936680293213 Average F1 score: 0.6313645083518844 • Explore feature engineering techniques to extract more meaningful insights from the data.

train_data.drop(['Student ID', 'Program ID'], axis=1)
test_data.drop(['Student ID', 'Program ID'], axis=1)

	Age	Gender	Home Region	Home City	Program Main Category Code	Program Sub Category Code	Technology Type	Program Skill Level	Program Presentation Method	Program Start Date	 Program Days	Completed Degree	Level of Education	Education Speaciality	College	University Degree Score	University Degree Score System	Employment Status	Job Type	Still Working
0	23.0	أنثى	منطقة الرياض	الرياض	CAUF	SWPS	تقليدية	متوسط	1	2023- 10-08	 5.0	У	البكالوريوس	علوم الحاسب الالي	تكثولوجيا الاتصالات والمعلومات	3.72	4.0	خريج	دوام کامل	Yes
1	31.0	أنثى	منطقة الرياض	الرياض	PCRF	PCRF	تقليدية	مبتدئ	1	2023- 07-16	 19.0	Я	البكالوريوس	ثقنية المعلومات	تكنولوجيا الاتصالات والمعلومات	2.00	4.0	موظف	دوام کامل	Yes
2	29.0	أنثى	منطقة الرياض	الرياض	CAUF	SWPS	تقليدية	مئوسط	1	2022- 12-25	 12.0	لعم	البكالوريوس	شبكات الحاسب الألي	تكنولوجيا الاتصالات والمعلومات	3.72	5.0	موظف	دوام کامل	Yes
3	23.0	أنثى	منطقة الرياض	الرياض	PCRF	PCRF	تقليدية	متقدم	0	2023- 03-19	 5.0	لعم	البكالوريوس	الاحياء	تكنولوجيا الاتصالات والمعلومات	4.47	5.0	عدِر موظف	دوام کامل	Yes
4	30.0	أنثى	منطقة الرياض	الرياض	TOSL	SWPS	داعمة	متقدم	0	2023- 11-12	 33.0	لعم	الدبلوم	تقتية المعلومات	تكثولوجيا الاتصالات والمعلومات	4.46	5.0	عدِر موظف	دوام کامل	No
81	3 36.0	نكر	منطقة الرياض	الرياض	GRST	INFA	تقليبية	مئوسط	0	2023- 08-13	 5.0	لعم	البكالوريوس	علوم حاسب	تكنولوجيا الاتصالات والمعلومات	2.55	5.0	موظف	دوام کامل	Yes

Conclusion

The Conclusion Of This Thesis

In conclusion, we conclude that the best algorithm is logistical and Gradient Boosting.One of the difficulties we faced was that the data had an Arabic part and an English part, and this was solved by converting the English parts to Arabic and the missing data is large.

The Conclusion Of This Thesis

the best model is Gradient Boosting Classifier Average test accuracy: 0.8901936680293213 Average F1 score: 0.6313645083518844

THANKS

