

Bruce M. Boghosian

Loose end

One more example of Bayesian estimation

Hypothesis Testing

Summar

Hypothesis testing and decision rules

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M Boghosia

Loose end

One more example c Bayesian estimatior

Hypothesis Testing

Summa

- 1 Loose ends
- 2 One more example of Bayesian estimation
- 3 Hypothesis Testing
- 4 Summary

Correction to use of z_{α}

Bruce M. Boghosian

Loose ends

one more example of Bayesian estimation

Hypothesis Testing

Summai

• On lecture slides earlier in the semester, I used a definition of z_{α} that differs from that in the book. Let me call it z'_{α} ,

$$\alpha = \int_{-\infty}^{z_{\alpha}'} dx \, \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

■ The actual definition of z_{α} used by the book is, in fact,

$$\alpha = \int_{z_{\alpha}}^{+\infty} dx \; \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

■ Note that $z_{\alpha} = z'_{1-\alpha} = -z'_{\alpha}$ since

$$1 - \alpha = \int_{-\infty}^{+\infty} dx \, \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) - \int_{z_{\alpha}}^{+\infty} dx \, \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) = \int_{-\infty}^{z_{\alpha}} dx \, \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

- No credit was lost for mixing this up on homework
- I am slowly correcting the slides. We will use the book's definition henceforth.

Asymptotic unbiasedness

Bruce M. Boghosian

Loose ends

One more example of Bayesian estimation

Hypothesis Testing -

Summa

For a sequence \vec{Y} of n random variables

- Use $\hat{\sigma}_n^2(\vec{Y})$ to denote the MLE estimator for the variance of the normal.
- Recall $\hat{\sigma}_n^2(\vec{Y})$ is *not unbiased* since

$$E\left(\hat{\sigma}_{n}^{2}\right) = E\left[\frac{1}{n}\sum_{j=1}^{n}\left(Y_{j} - \overline{Y}\right)^{2}\right] = \frac{n-1}{n}\sigma^{2} \neq \sigma^{2}$$

- but it is asymptotically unbiased since $\lim_{n\to\infty} E\left(\hat{\sigma_n^2}\right) = \sigma^2$
- More generally, if $\hat{x_n}$ is a sequence of estimators for parameter x
 - If $E(\hat{x_n}) = x$ for all n, then $\hat{x_n}$ is unbiased.
 - If $\lim_{n\to\infty} E(\hat{x_n}) = x$, then $\hat{x_n}$ is asymptotically unbiased.

Consistency

Bruce M. Boghosiar

Loose ends

One more example of Bayesian estimation

Hypothesis Festing

Summa

Consistency is a stronger condition

- For consistency, it is not enough that $\lim_{n\to\infty} E(\hat{x_n}) = x$
- For consistency, we demand that $\lim_{n\to\infty}\hat{x_n} = x$
 - This means that not only must the mean of the estimator approach x, but the variance of the estimator must approach zero.
- Consistency implies asymptotic unbiasedness, but the reverse is not true.

Tufts Consistency (continued)

Loose ends

For $y \in \mathbb{R}$, you can show that this pdf has mean μ and unit variance

$$p_Y(y; \mu) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|y-\mu|}$$

- Now consider a sequence of random variables \vec{Y} where Y_n is sampled from $p(y; x + \frac{1}{n})$
- For random variables \vec{Y} generated in this way, can we find an estimator for x?
- Consider the estimator for x.

$$\hat{x}_n(\vec{Y}) = Y_n$$

Note that $E(\hat{x}_n) = E(Y_n) = x + \frac{1}{n}$, so this is not unbiased, but it is asymptotically unbiased since

$$\lim_{n\to\infty} E(\hat{x}_n) = \lim_{n\to\infty} \left(x + \frac{1}{n}\right) = x.$$

Consistency (continued)

Bruce M. Boghosiar

Loose ends

one more example o Bayesian estimation

Hypothesis Testing

Summa

- We are considering a sequence of random variables \vec{Y} where Y_n is sampled from $p(y; x + \frac{1}{n})$, where in turn $p_Y(y; \mu) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|y-\mu|}$.
- We have shown the estimator for x given by $\hat{x}_n(\vec{Y}) = Y_n$ is asymptotically unbiased. But is it consistent?
- With elementary integration and a bit of work, you can show

$$P(|\hat{x_n} - x| < \epsilon) = \int_{x - \epsilon}^{x + \epsilon} dy \ p_Y(y; \mu) = \begin{cases} 1 - e^{-\sqrt{2}\epsilon} \cosh\left(\sqrt{2}/n\right) & \text{if } n\epsilon > 1 \\ e^{-\sqrt{2}/n} \sinh(\sqrt{2}\epsilon) & \text{otherwise} \end{cases}$$

■ Fixing $\epsilon > 0$, however small, and letting $n \to \infty$, we find

$$\lim_{n\to\infty} P(|\hat{x_n}-x|<\epsilon) = 1 - e^{-\sqrt{2}\epsilon} \neq 1,$$

so $\hat{x_n}$ is *not consistent*, according to Definition 5.7.1 in the L&M text.

Example of Bayesian estimation

Bruce M. Boghosian

Loose end

One more example of Bayesian estimation

Hypothesis Testing

Summa

Exponentially distributed random variable W

$$f_W(w \mid \lambda) = \lambda e^{-\lambda w}$$

- Recall the mean is $E(w) = 1/\lambda$
- Suppose also that your prior for λ is the uniform distribution on [a, b],

$$f_{\Lambda}(\lambda) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq \lambda \leq b \\ 0 & \text{otherwise} \end{cases}$$

■ Suppose that you sample W and find a value w_s .

Example of Bayesian estimation (continued)

Bruce M. Boghosian

Loose end

One more example of Bayesian estimation

Hypothesis Testing

Summar

■ Suppose that you sample W and find a value w_s .

■ The posterior distribution of λ is

$$g_{\Lambda}(\lambda \mid W = w_{s}) = \frac{f_{W}(w_{s} \mid \lambda)f_{\Lambda}(\lambda)}{\int_{-\infty}^{+\infty} d\xi f_{W}(w_{s} \mid \xi)f_{\Lambda}(\xi)}$$

$$= \begin{cases} \frac{\lambda e^{-\lambda w_{s}} \frac{1}{b-a}}{\int_{a}^{b} d\xi \xi e^{-\xi w_{s}} \frac{1}{b-a}} & \text{if } a \leq \lambda \leq b \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{\lambda w^{2} e^{-\lambda w_{s}}}{(1+aw_{s})e^{-aw_{s}} - (1+bw_{s})e^{-bw_{s}}} & \text{if } a \leq \lambda \leq b \\ 0 & \text{otherwise} \end{cases}$$

■ What does this posterior distribution look like for various samples w_s ?

Example of Bayesian estimation (continued)

Bruce M. Boghosian

Loose end

One more example of Bayesian estimation

Hypothesis Testing

Summai

■ Suppose your prior for $f_{\Lambda}(\lambda)$ has a=1 and b=3

■ The posterior distribution of λ is

$$g_{\Lambda}(\lambda \mid W = w_{s}) = \begin{cases} \frac{\lambda w^{2}e^{-\lambda w_{s}}}{(1 + aw_{s})e^{-aw_{s}} - (1 + bw_{s})e^{-bw_{s}}} & \text{if } a \leq \lambda \leq b \\ 0 & \text{otherwise} \end{cases}$$

A potential drawback of Bayesian estimation

Bruce M. Boghosian

Loose end

One more example of Bayesian estimation

Hypothesis Testing

Summary

There is no way that the posterior $g_{\Lambda}(\lambda \mid W = w_s)$ can be nonzero anywhere outside of the region [a, b], where the prior $f_{\Lambda}(\lambda)$ was nonzero.

It is clear that this is generally true from the equation

$$g_{\Lambda}(\lambda \mid W = w_{s}) = \frac{f_{W}(w_{s} \mid \lambda)f_{\Lambda}(\lambda)}{\int_{-\infty}^{+\infty} d\xi f_{W}(w_{s} \mid \xi)f_{\Lambda}(\xi)}$$

Tufts The Decision Rule

- Imagine a ves/no question about random data.
 - Deciding whether or not a person on trial is or is not guilty
 - Testing mileage on cars to decide if a fuel additive is or is not effective
- In both examples, there is a *null hypothesis* H_0 : This is the thing you would suppose to be true by default – in the absence of evidence to the contrary.
 - In a trial, the null hypothesis in the U.S. is "innocent until proven guilty"
 - In a fuel additive test, the null hypothesis is that the additive is ineffective.
- There is also an alternative hypothesis H_1 : This might be the thing you are trying to use evidence to prove is true.
 - In a trial, the alternative hypothesis might be that the defendant is guilty.
 - In fuel additive test, alternative hypothesis is that additive is proven effective.

Tufts The fuel additive problem

- We have a fleet of *n* cars whose mileage is $\overline{y} = 25$ mpg.
- In test with the additive, we found mileages y_1, \ldots, y_n with sample mean

$$\overline{y} = \frac{1}{n} \sum_{j=1}^{n} y_j = 26.3 \text{ mpg}$$

- Sample mean is normally distributed with known variance of $\sigma = 2.4$ mpg.
- The competing hypotheses are
 - H_0 : $\mu = 25.0$ so the additive is ineffective
 - H_1 : $\mu > 25.0$ so the additive is effective
- Note \overline{y} < 25.0 is certainly not grounds to reject H_0 .
- Even values of \overline{y} slightly greater than 25.0 might not contradict H_0 .
- The question is "How large must \overline{y} be before we stop believing H_0 ?"

Tufts The fuel additive problem (continued)

- How large must $\overline{\nu}$ be before we stop believing H_0 ?
- There is no right answer to this question.
- It depends how much confidence you want in your answer.
- Suppose we want 95% confidence. Then we seek y^* such that we can reject H_0 whenever $\overline{y} > y^*$, and have 95% confidence that our judgement is correct.

$$P(\text{We reject } H_0 \mid H_0 \text{ is true}) = 0.05$$

$$\therefore P(\overline{y} > y^* \mid \mu = 25.0) = 0.05$$

$$\therefore P(\overline{y} > y^* \mid \mu = 25.0) = 0.05$$

$$\therefore P\left(\frac{\overline{y} - \mu}{2.4/\sqrt{30}} > \frac{y^* - \mu}{2.4/\sqrt{30}} \mid \mu = 25.0\right) = 0.05$$

$$\therefore P\left(Z > \frac{y^* - \mu}{2.4/\sqrt{30}}\right) = 0.05$$

The fuel additive problem (continued)

Bruce M. Boghosian

Loose end

One more example of Bayesian estimation

Hypothesis Testing

Summary

■ We can have the desired confidence if

$$P\left(Z > \frac{y^* - \mu}{2.4/\sqrt{30}}\right) = 0.05$$

$$\therefore \frac{y^* - 25.0}{2.4/\sqrt{30}} = z_{0.05} = 1.64$$

$$\therefore y^* = 25.0 + 1.64 \frac{2.4}{\sqrt{30}} = 25.7186$$

■ So we should reject the null hypothesis if $\overline{y} > 25.7186$.

Testing for equality

Bruce M. Boghosian

Loose end

One more example o Bayesian estimation

Hypothesis Testing

Summai

- Suppose we wish to test H_0 : $\mu = \mu_0$.
- This might have been $\mu_0 = 25$ in the previous example.
- We wish to have 95% confidence that we are right, so $\alpha = 0.05$.
- Suppose we accept H_0 if $\mu \Delta y \leq \overline{y} \leq \mu + \Delta y$, and reject otherwise.
- Demand

$$P(\text{We reject } H_0 \mid H_0 \text{ is true}) = \alpha$$

$$\therefore P(\overline{y} < \mu - \Delta y \mid \mu = \mu_0) + P(\overline{y} > \mu + \Delta y \mid \mu = \mu_0) = \alpha$$

$$\therefore P(\overline{y} > \mu + \Delta y \mid \mu = \mu_0) = \alpha/2$$

$$\therefore P\left(\frac{\overline{y}-\mu}{\sigma/\sqrt{n}} > \frac{\Delta y}{\sigma/\sqrt{n}} \mid \mu = \mu_0\right) = \alpha/2$$

■ We know $Z = \frac{\overline{y} - \mu}{\sigma/\sqrt{n}}$ is distributed as a standard normal, so $\frac{\Delta y}{\sigma/\sqrt{n}} + z_{\alpha/2}$, or

$$\Delta y = +z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Tufts Summary of the above

- Easier to state in terms of $z := \frac{\overline{y} \mu_0}{\sigma/\sqrt{n}}$
- Let y_1, \ldots, y_n be a random sample from a normal distribution for which σ is known.
- To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu > \mu_0$ at the α level of significance, reject H_0 if $z > z_{ox}$.
- To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu < \mu_0$ at the α level of significance, reject H_0 if $z < -z_{\alpha}$.
- To test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ at the α level of significance, reject H_0 if either $z \leq -z_{\alpha/2}$ or $z \geq +z_{\alpha/2}$.

Caveats and pitfalls

Bruce M. Boghosiar

Loose end

One more example o Bayesian estimation

Hypothesis Testing

Summa

- All of the above tests are designed to accept or reject the null hypothesis.
- The above analysis worked because assuming the null hypothesis H_0 means assuming that $\mu=\mu_0$. We could then subtract μ_0 across the inequality and divide by the variance to obtain a random variable distributed like a standard normal.
- We do not have a way to accept or reject the alternative hypothesis.
- If H_0 is not rejected, it is better to characterize that as "failure to reject the null hypothesis," rather than "accept the null hypothesis".

Summary

Bruce M Boghosia

Loose end

One more example o Bayesian estimation

Hypothesis Festing

Summary

- We straightened out the definition of the z_n .
- We discussed the difference between asymptotic unbiasedness and consistency.
- We gave a concrete example of Bayesian parameter estimation.
- We discussed null and alternate hypotheses.
- We discussed hypothesis testing and decision rules.