# Una mirada demográfica a los nichos ecológicos

Ecología Teórica II



$$N=n-m$$

- Tamaño de población dado por balance entre nacimientos y muertes
  - Clima puede influenciar ambos

$$n(T^{\circ}, P, R, ...) = \beta_1 T^{\circ} + \beta_2 P + \beta_3 R + ...$$
  
 $m(T^{\circ}, P, R, ...) = \beta_1 T^{\circ} + \beta_2 P + \beta_3 R + ...$ 

Cantidad neta de nacimientos ó muertes son funciones de variables climáticas...

Sólo es cuestión de obtener los datos ...





Pues, noooo, mejor trabajaremos con ....



# Por simplicidad, nos enfocaremos en:

$$m(T^{\circ}, P, R, ...) = \beta_1 T^{\circ} + \beta_2 P + \beta_3 R + ...$$

Modelar el proceso de muerte como función de condiciones físicas

#### Recordatorio

$$\frac{dS}{dt} = -\mu S$$
$$S(t) = S_0 e^{-\mu t}$$

Ignoraremos el caso donde r > 0, o sea que nuestros virus no se reproducen

## ¿Qué requerimos para generar:

$$\mu(T^{\circ},...)$$

?

### Ejercicio No. 1

 Utilizando los conocimientos de diseño experimental, diseña un experimento para medir el efecto de una variable ambiental sobre tasa de mortalidad

Paréntesis: Análisis de supervivencia



### El problema



# Estadísticas del tiempo transcurrido hasta que

Análisis de supervivencia:

ocurre evento

| Individuo | Tiempo |
|-----------|--------|
| 1         | 0.5    |
| 2         | 1      |
| 3         | 1      |
| 4         | 1      |
| 5         | 1.5    |
| 6         | 1.5    |
| 7         | 2      |
| 8         | 4      |





### Tipos de curva de supervivencia



- I → Supervivencia aumenta con tiempo
- II → Supervivencia es constante
- III → Supervivencia disminuye



## Distribuciones de tiempos

| Distribución | Función de densidad                                      | Función de supervivencia |
|--------------|----------------------------------------------------------|--------------------------|
| Exponencial  | $ ho { m e}^{- ho t}$                                    | $e^{- ho t}$             |
| Weibull      | $\kappa \rho (\rho t)^{\kappa-1} e^{-(\rho t)^{\kappa}}$ | $e^{-( ho t)^{\kappa}}$  |



#### Hendra virus survival does not explain spillover patterns and implicates relatively direct transmission routes from flying foxes to horses

#### Correspondence

<sup>&</sup>lt;sup>1</sup>James Cook University, Townsville, Queensland, Australia

<sup>&</sup>lt;sup>2</sup>Montana State University, Bozeman, MT, USA

<sup>&</sup>lt;sup>3</sup>Pennsylvania State University, State College, PA, USA

<sup>&</sup>lt;sup>4</sup>Monash University, Melbourne, Victoria, Australia

<sup>&</sup>lt;sup>5</sup>Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia







#### Veremos el resto de esta historia aquí...