Multiple Features

Multivariate Linear Regression

Linear Regression with Multiple Variables

Introduction

- Linear regression with multiple variables is also known as "multivariate linear regression".
- We now introduce notation for equations where we can have any number of input variables.

Multiple features (variables).

Size (feet²)	Price (\$1000)
x	y
2104	460
1416	232
1534	315
852	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
×1	Xz	×3	**	9	
2104	5	1	45	460 7	_
-> 1416	3	2	40	232	M= 47
1534	3	2	30	315	
852	2	1	36	178	
					<u>=</u> ; ==
Notation:	*	7	1	~	$(z) = \begin{bmatrix} 3 \\ 1416 \end{bmatrix}$
$\rightarrow n$ = number of features $n = 4$					
$x^{(i)}$ = input (features) of i^{th} training example.					

 $\rightarrow x^{**}$ = input (reatures) of i training example.

 $x_i^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$. $(x_0) = 0$

$$\begin{aligned}
\chi &= \begin{bmatrix} \chi_0 \\ \chi_1 \\ \chi_2 \\ \chi_N \end{bmatrix} \in \mathbb{R}^{M1} & O &= \begin{bmatrix} O_0 \\ O_1 \\ O_2 \\ O_N \end{bmatrix} \in \mathbb{R}^{M1} & \begin{bmatrix} O_0 & O_1 & \cdots & O_n \end{bmatrix} \begin{bmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_N \end{bmatrix} \\
&= \begin{bmatrix} O_0 & \chi_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_0 & O_1 & \cdots & O_n \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1 & \cdots & O_1 \\ \vdots \\ O_N \end{bmatrix} = \begin{bmatrix} O_1$$

Multivariate linear regression.

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

4

Gradient Descent For MLR

Hypothesis:
$$h_{\theta}(x)=\theta^Tx=\theta_0x_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

n+1 - diversion vector

Cost function:

$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{\preceq_{(\bullet)}} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat { $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n) - \beta \text{ (simultaneously update for every 3 sure Kinn Quinnek için, Ayana) a gidin.}$

- We can speed up gradient descent by having each of our input values in roughly the same range.
- This is because θ will descend
 - quickly on small ranges and
 - slowly on large ranges,
- So it will oscillate inefficiently down to the optimum when the variables are very uneven.

Idea: Make sure features are on a similar scale.

```
E.g. x_1 = size (0-2000 feet²)

x_2 = number of bedrooms (1-5)
```

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²) \leftarrow
 x_2 = number of bedrooms (1-5) \leftarrow

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$\rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$$

Get every feature into approximately a

$$\times_{o} = 1$$

Exercise

- Suppose you are using a learning algorithm to estimate the price of houses in a city. You want one of your features x_i to capture the age of the house.
- In your training set, all of your houses have an age between 30 and 50 years, with an average age of 38 years.
- How do you normalize your data using mean normalization?

Normal Equation

Computing Parameters Analytically

Linear Regression with Multiple Variables

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve for ϕ

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$ (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m=4.

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Examples: m=4.

J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	_
1	2104	5	1	45	460	٦
1	1416	3	2	40	232	1
1	1534	3	2	30	315	
1_	852	2	_1	36	178	7
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $M \times \binom{n+1}{2}$	30 36	$y = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	160 232 315 178	Vest or

Examples: m=4.

1	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	_
1	2104	5	1	45	460	٦
1	1416	3	2	40	232	1
1	1534	3	2	30	315	1
1	852	2	_1	36	178	
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $M \times (n+1)$	30 36	$\underline{y} = $	460 232 315 178	Vestor

Exercise

Suppose you have the training in the table below:

age (<i>x</i> ₁)	height in cm (x_2)	weight in kg (y)
4	89	16
9	124	28
5	103	20

- You would like to predict a child's weight as a function of his age and height with the model
- $weight = \theta_0 + \theta_1 x_1 + \theta_2 x_2$
- What are X and y?

How to choose them?

Gradient Descent	Normal Equation
Need to choose alpha	No need to choose alpha
Needs many iterations	No need to iterate
O (<i>kn</i> ²)	O (n^3), need to calculate inverse of X^TX
Works well when n is large	Slow if n is very large