• 椭球面
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

• 旋转曲面
$$y_{2p}$$
 如,曲线 $y_{z=0}$ 经 z 轴的旋转曲面: • 双曲面: 单叶双曲面

(1)
$$(C)' = 0$$
.
(2) $(x^a)' = ax^{a-1}$, 特别地, $f(\sqrt{x})' = \frac{1}{2\sqrt{x}}$, $(\frac{1}{x})' = -\frac{1}{x^2}$.

$$(3)(a^x)' = a^x \ln a$$
,特别地,有 $(e^x)' = e^x$.

$$(4)(\log_a x)' = \frac{1}{r \ln a}$$
,特别地,有 $(\ln x)' = \frac{1}{r}$.

$$(5) (\sin x)' = \cos x.$$

$$(\cos x)' = -\sin x.$$

$$(\tan x)' = \sec^2 x.$$

$$(\cot x)' = -\csc^2 x.$$

$$(\sec x)' = \sec x \tan x.$$

$$(\csc x)' = -\csc x \cot x.$$

(6)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
.

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
.

$$(\arctan x)' = \frac{1}{1+x^2}$$
.

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}.$$

(7)
$$(\sin x)^{(n)} = \sin(x + \frac{n\pi}{2});$$

 $(\cos x)^{(n)} = \cos(x + \frac{n\pi}{2});$
 $\left(\frac{1}{ax+b}\right)^{(n)} = \frac{(-1)^n n! \ a^n}{(ax+b)^{n+1}}.$

$$(1) \int k \, dx = kx + C.$$

$$(2) \int x^a \, dx = \frac{1}{a+1} x^{a+1} + C(a \neq -1);$$

$$\int \frac{1}{x} \, dx = \ln |x| + C.$$

$$(3) \int a^x \, dx = \frac{a^x}{\ln a} + C.$$

$$(4) \int \sin x \, dx = -\cos x + C;$$

$$\int \cos x \, dx = \sin x + C;$$

$$\int \tan x \, dx = -\ln |\cos x| + C;$$

$$\int \cot x \, dx = \ln |\sin x| + C;$$

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C;$$

$$\int \csc^2 x \, dx = \tan x + C;$$

$$\int \sec^2 x \, dx = -\cot x + C;$$

$$\int \sec x \tan x \, dx = \sec x + C;$$

$$\int \csc x \cot x \, dx = -\csc x + C.$$

$$(5) \int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin \frac{x}{a} + C;$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C;$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C;$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C;$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x + C;$$

$$\int \frac{1}{1+x^2} \, dx = -1 + C;$$

 $\int \frac{1}{r^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{r + a} \right| + C.$

$$\int \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C.$$

公式 7. 分部积分法公式

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

华里士公式

设
$$f(x) \in C[0,1]$$
,则 $\int_0^{\frac{\pi}{2}} f(\sin x) dx = \int_0^{\frac{\pi}{2}} f(\cos x) dx$,特别地,

$$\begin{split} &\int_{0}^{\frac{\pi}{2}} \sin^{n}x \, \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \cos^{n}x \, \mathrm{d}x = I_{n} \,, \\ &I_{n} = \frac{n-1}{n} I_{n-2} \,, I_{0} = \frac{\pi}{2} \,, I_{1} = 1. \\ &I_{2k} = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{(2k-1)!!}{(2k)!!} \cdot \frac{\pi}{2} \,, \\ &I_{2k+1} = \frac{2k}{2k+1} \cdot \frac{2k-2}{2k-1} \cdot \dots \cdot \frac{2}{3} \cdot 1 = \frac{(2k)!!}{(2k+1)!!} \,. \end{split}$$

三重积分的对称性(二重积分思路一样的)

(1) 设 Ω 关于xOy平面对称,位于xOy平面上方的区域为 Ω_1 ,则

当
$$f(x,y,-z) = -f(x,y,z)$$
 时, $\iint_{\Omega} f(x,y,z) dv = 0$;

当
$$f(x,y,-z) = f(x,y,z)$$
 时, $\iint_{a} f(x,y,z) dv = 2 \iint_{a} f(x,y,z) dv$.

(2) 设 Ω 关于 yOz 平面对称,位于 yOz 一侧的区域为 Ω_1 ,则

(3) 设 Ω 关于xOz 平面对称,位于xOz 平面上方的区域为 Ω_1 ,则

当
$$f(x, -y, z) = -f(x, y, z)$$
 时, $\iint_{a} f(x, y, z) dv = 0$;
当 $f(x, -y, z) = f(x, y, z)$ 时, $\iint_{a} f(x, y, z) dv = 2 \iint_{a} f(x, y, z) dv$.

投影法(先一后二)、截面法(先二后一)

公式 38. 三重积分的计算方法:投影法

设
$$\Omega = \{(x,y,z) \mid (x,y) \in D, \varphi_1(x,y) \leqslant z \leqslant \varphi_2(x,y)\},$$
则
$$\iiint_{\sigma} f(x,y,z) dv = \iint_{D} dx dy \int_{\varphi_1(x,y)}^{\varphi_2(x,y)} f(x,y,z) dz;$$

公式 39. 三重积分的计算方法: 切片法

设
$$\Omega = \{(x,y,z) \mid (x,y) \in D_z, c \leq z \leq d\}, 则$$

$$\iint_{\Omega} f(x,y,z) dv = \int_{c}^{d} dz \iint_{D} f(x,y,z) dx dy.$$

公式 40. 三重积分的计算方法:柱面坐标变换法

$$\diamondsuit \begin{cases} x = r \cos \theta, \\ y = r \sin \theta, \\ z = z, \end{cases} \Leftrightarrow \begin{cases} \alpha \leqslant \theta \leqslant \beta, \\ r_1(\theta) \leqslant r \leqslant r_2(\theta), \\ \varphi_1(r,\theta) \leqslant z \leqslant \varphi_2(r,\theta), \end{cases}$$

$$\iiint\limits_{\Omega} f(x,y,z) dv = \int_{\alpha}^{\beta} d\theta \int_{r_{1}(\theta)}^{r_{2}(\theta)} dr \int_{\varphi_{1}(r,\theta)}^{\varphi_{2}(r,\theta)} f(r\cos\theta,r\sin\theta,z) r dz.$$

公式 41. 三重积分的计算方法: 球面坐标变换法

$$\Rightarrow \begin{cases} x = r \cos\theta \sin\varphi, \\ y = r \sin\theta \sin\varphi, \\ z = r \cos\varphi, \end{cases}$$

其中
$$\alpha \leq \theta \leq \beta, \delta_1 \leq \varphi \leq \delta_2, r_1(\theta, \varphi) \leq r \leq r_2(\theta, \varphi),$$
则

$$\iiint_{\Omega} f(x,y,z) dv = \int_{\alpha}^{\beta} d\theta \int_{\delta_{1}}^{\delta_{2}} d\varphi \int_{r_{1}(\theta,\varphi)}^{r_{2}(\theta,\varphi)} f(r\cos\theta\sin\varphi,r\sin\theta\sin\varphi,r\cos\varphi) r^{2}\sin\varphi dr.$$

公式 51. 对弧长的曲线积分的对称性

(1) 设L关于x轴对称,位于x轴上方部分为 L_1 ,

若
$$f(x, -y) = -f(x,y),$$
则 $\int_{L} f(x,y) ds = 0;$

若
$$f(x, -y) = f(x,y),$$
则 $\int_{L} f(x,y) ds = 2 \int_{L_1} f(x,y) ds.$

(2) 设 L 关于 y 轴对称,位于 y 轴右侧的部分为 L_1 ,

若
$$f(-x,y) = -f(x,y),$$
则 $\int_{L} f(x,y) ds = 0;$ 若 $f(-x,y) = f(x,y),$ 则 $\int_{L} f(x,y) ds = 2\int_{L} f(x,y) ds.$

(3) 若
$$L$$
 关于直线 $y = x$ 对称,则 $\int_{L} f(x,y) ds = \int_{L} f(y,x) ds$.

(4) 若
$$L$$
 关于直线 $y = -x$ 对称,则 $\int_{L} f(x,y) ds = \int_{L} f(-y,-x) ds$.

公式 55. 格林公式

设 D 为平面单连通或多连通区域,P(x,y),Q(x,y) 在 D 上具有一阶连续偏导数,其中 L 为其正向边界,则有

$$\oint_{L} P(x,y) dx + Q(x,y) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

公式 61. 高斯公式

设 Σ 为封闭曲面的外侧,其所围成的几何体为 Ω ,且 P(x,y,z),Q(x,y,z), R(x,y,z) 在 Ω 上一阶连续可偏导,则有

$$\oint_{S} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}z \, \mathrm{d}x + R \, \mathrm{d}x \, \mathrm{d}y = \iint_{O} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}v.$$

运用格林公式或高斯公式注意曲线或曲面是封闭的!

公式 58. 对面积的曲面积分的对称性

(1) 设 Σ 关于 xOy 平面对称,其中 Σ_1 为 Σ 位于 xOy 平面上方的部分,

若
$$f(x,y,-z) = -f(x,y,z),$$
则 $\int_{\Sigma} f(x,y,z) dS = 0;$
若 $f(x,y,-z) = f(x,y,z),$ 则 $\int_{\Sigma} f(x,y,z) dS = 2 \iint_{\Sigma_1} f(x,y,z) dS.$

(2) 设 Σ 关于 xOz 平面对称,其中 Σ_1 为 Σ 位于 xOz 平面的右侧部分,

若
$$f(x, -y, z) = -f(x, y, z),$$
则 $\iint_{\Sigma} f(x, y, z) dS = 0;$ 若 $f(x, -y, z) = f(x, y, z),$ 则 $\iint_{\Sigma} f(x, y, z) dS = 2\iint_{\Sigma_{1}} f(x, y, z) dS.$

(3) 设 Σ 关于 yOz 平面对称,其中 Σ_1 为 Σ 位于 yOz 平面的前侧部分,

若
$$f(-x,y,z) = -f(x,y,z)$$
,则 $\iint_{\Sigma} f(x,y,z) dS = 0$;
若 $f(-x,y,z) = f(x,y,z)$,则 $\iint_{\Sigma} f(x,y,z) dS = 2\iint_{\Sigma} f(x,y,z) dS$.

(3)
$$\iint_{\Sigma} P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}x \, \mathrm{d}z + R \, \mathrm{d}x \, \mathrm{d}y = \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \, \mathrm{d}S$$
,
其中 $\cos \alpha$, $\cos \beta$, $\cos \gamma$ 为有侧曲面 Σ 上一点处法向量的方向余弦.

公式 60. 对坐标的曲面积分的对称性

设 Σ 关于xOy 平面对称(Σ 的侧也是对称的),其中 Σ_1 为 Σ 位于xOy 平面上侧.

(1) 若
$$R(x,y,-z) = -R(x,y,z)$$
,则 $\int_{\Sigma} R(x,y,z) dx dy = 2 \iint_{\Sigma_1} R(x,y,z) dx dy$;

(2) 若
$$R(x,y,-z) = R(x,y,z)$$
,则 $\iint_{\Sigma} R(x,y,z) dx dy = 0$.

公式 62. 梯度

设
$$u = f(x,y,z)$$
 连续可偏导,称 $\{\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\}$ 为函数 $u = f(x,y,z)$ 的梯度,记为 $\mathbf{grad}u$,即 $\mathbf{grad}u = \{\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\}$.

上述截自文都考研整理公式,特此感谢!

3. 几个重要级数的收敛性

- (1) 等比级数(几何级数) $\sum_{n=1}^{\infty} aq^{n-1} (a \neq 0)$ 当|q| < 1时收敛于 $\frac{a}{1-q}$; 当 $|q| \ge 1$ 时发散。
- (2) 调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散。

(3)
$$p$$
-级数当 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (p >0) p >1 时收敛,当 0 < p ≤ 1 时发散。

- 4. 收敛级数的必要条件 若 $\sum_{n=1}^{\infty}u_n$ 收敛,则 $\lim_{n\to 0}u_n=0$. 反之不然。
- 5. 常数项级数敛散性判别法
- (1) 正项级数敛散性判别法:
- ①比较判别法及其极限形式:

比较判别法: 正项级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$, 且 $\exists N$, 当 n>N 时,有 $u_n \le kv_n$, (k>0)

i) 若
$$\sum_{n=1}^{\infty} v_n$$
 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

ii) 若
$$\sum_{n=1}^{\infty} u_n$$
 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散

极限形式: 正项级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$, 若 $\lim_{n\to\infty} \frac{u_n}{v_n} = l(v_n \neq 0)$ 则

i) 当
$$0 < l < +\infty$$
时, $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 同敛散

ii) 当
$$l=0$$
 时,若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛

iii) 当
$$l=+\infty$$
 ,若 $\sum_{n=1}^{\infty}v_n$ 发散,则 $\sum_{n=1}^{\infty}u_n$ 发散

②比值判别法(达朗贝尔判别法)

设
$$\sum_{n=1}^{\infty} u_n$$
为正项级数,则 $\lim_{n\to 0} \frac{u_{n+1}}{u_n} = \rho$

i) 当
$$\rho$$
<1时, $\sum_{n=1}^{\infty} u_n$ 收敛

ii) 当
$$\rho > 1$$
或 $\rho = +\infty$ 时, $\sum_{n=1}^{\infty} u_n$ 发散

iii) 当
$$ho=1$$
 时, $\sum_{n=1}^{\infty}u_n$ 敛散性不能确定

③极限判别法(柯西判别法)

设
$$\sum_{n=1}^{\infty} u_n$$
为正项级数,则 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$

i) 当
$$\rho$$
<1时, $\sum_{n=1}^{\infty}u_n$ 收敛 ii) 当 ρ >1时, $\sum_{n=1}^{\infty}u_n$ 发散

iii) 当
$$\rho = 1$$
时, $\sum_{n=1}^{\infty} u_n$ 敛散性不能确定

(2) 交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ ($u_n > 0$) 敛散性判别法:

莱布尼兹定理: 若交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 满足:

i)
$$u_n \ge u_{n+1}$$
 (n=1, 2, 3 ······)

ii)
$$\lim_{n\to\infty} u_n = 0$$

则级数收敛,且和 $s \le u_1$,余项绝对值 $|r_n| \le u_{n+1}$

- (3) 任意项级数 $\sum_{n=1}^{\infty} u_n$ (u_n 为任意实数) 敛散性判别法
 - 1) 若 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 绝对收敛
 - 2) 若 $\sum_{n=1}^{\infty} |u_n|$ 发散,但 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 条件收敛
- (2) 敛散半径 R 的求法

设
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$
 其中 a_n , a_{n+1} 为级数 (\mathbf{II}) 相邻两项系数,则 $R = \begin{cases} \frac{1}{\rho} & \rho \neq 0 \\ +\infty & \rho = 0 \\ 0 & \rho = +\infty \end{cases}$

① 常用函数的幂级数展开式

•
$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots = \sum_{n=0}^{\infty} x^n$$
 $x \in (-1,1)$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $x \in R$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 $x \in \mathbb{R}$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 $x \in \mathbb{R}$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$
 $x \in (-1,1]$

•
$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)\dots(m-n+1)}{n!}x^n + \dots$$

$$=1+\sum_{n+1}^{\infty}\frac{m(m-1)...(m-n+1)}{n!}x^{n}. \qquad x\in (-1,1)$$

1. 傅里叶级数

(1) 傅立叶级数与傅立叶系数

• 设 f(x) 是周期为 2 π 的周期函数, 它在 $[-\pi,\pi]$ 上可积, 称三角级数

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin x)$$
 (IV) 为 $f(x)$ 的傅立叶级数,其中 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $n = 0,1,2...$, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$ $n = 1,2...$ 称为 $f(x)$ 的傅立叶系数

- 当 f(x) 是奇函数时, a_n = 0 (n = 0,1,2...), $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx$ n = 1,2... 此时, (IV) 变为正弦函数 $\sum_{n=0}^{\infty} b_n \sin nx$
- 当 f(x) 是偶函数时, b_n = 0 (n=1,2...), $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$ n=1,2... 此时,(IV) 变为余弦函数 $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx$
- (2) 收敛定理:设f(x)是周期为 2π 的函数,若满足:
 - ① f(x)在一个周期内连续或只有有限个第一类间断点
 - ② f(x)在一个周期内只有有限个极值点

则 f(x) 的傅立叶级数收敛,并且

- 1) 当x是f(x)的连续点时,级数收敛于f(x)
- 2) 当 x 是 f(x) 的间断点时,级数收敛于 $\frac{1}{2}[f(x-0)+f(x+0)]$