QUIZ 3: ABSTRACT ALGEBRA

Problem 1. Fill in the Cayley table below for the group (\mathbb{Z}_8, \oplus) where $x \oplus y$ represents $(x+y) \mod 8$.

\oplus	0	1	2 3 4 5 6 7	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	
2	2	3	4	5	6	7		1
3	3	4	5	6	7		1	
4	4	5	6	7		1		3
5	5	6	7		1		3	
6	6	7		1		3		5
7	7		1		3		5	6

Problem 2. Fill in the Cayley table below for the monoid (\mathbb{Z}_5, \otimes) where $x \otimes y$ represents $(x \cdot y) \mod 5$.

Problem 3. Let $S = \{-1, 1\}$. Define a binary operation * on S by the usual notion of multiplication of numbers. Is (S, *) a group? If so, fill in the Cayley table below.