Eli Griffiths Homework #6

9.1

$$O_{\sigma}(1) = O_{\sigma}(2) = O_{\sigma}(5) = \{1, 5, 2\}$$

 $O_{\sigma}(4) = O_{\sigma}(6) = \{4, 6\}$
 $O_{\sigma}(3) = \{3\}.$

9.6

$$O_{\sigma}(3n) = 3\mathbb{Z}$$

$$O_{\sigma}(3n+1) = 3\mathbb{Z} + 1$$

$$O_{\sigma}(3n+2) = 3\mathbb{Z} + 2.$$

9.9

$$(1,2)(4,7,8)(2,1)(7,2,8,1,5) = (1,5,8)(2,4,7).$$

9.13(a)

Let $\sigma = (1, 4, 5, 7)$.

$$\sigma^2 = (1,5)(4,7)$$
 $\sigma^3 = (1,7,5,4)$
 $\sigma^4 = e.$

Therefore $|\sigma| = 4$.

9.16

The maximum order of an element is going to be the maximum value that can be obtained from lcm(a, b) where a + b = 7 and $a, b \ge 0$. This is because the order of an element is the least common multiple of the order's of it's disjoint cycles, which is maximized with 2 cycles. Consider all the ways to add 2 numbers to get seven and their lcm:

$$\begin{array}{ccc}
1+6 & \Longrightarrow & 6 \\
2+5 & \Longrightarrow & 10 \\
3+4 & \Longrightarrow & 12.
\end{array}$$

Therefore the maximum order of an element in S_7 is 12.

Eli Griffiths Homework #6

9.29

Proof. Let $H \leq S_n$ with $n \geq 2$. If H does not contain any odd permutations, then all the permutations of H are even. Examine the case if there exists an odd permutation in H, that is some $\sigma \in H$ that is odd. Define the mapping $\phi : H \to H : \mu \mapsto \sigma \mu$. Let $\mu_1, \mu_2 \in H$ and assume that $\phi(\mu_1) = \phi(\mu_2)$. Then $\sigma \mu_1 = \sigma \mu_2$ which by cancellation implies $\mu_1 = \mu_2$, hence ϕ is one-to-one. Let $\mu \in H$. Note that $\phi(\sigma^{-1}\mu) = \mu$, hence ϕ is onto. Therefore ϕ is a bijection on H. Note that ϕ takes an odd permutation to an even permutation and takes an even permutation to an odd permutation. Therefore since ϕ is bijective, there must be an equal amount of even elements as odd elements otherwise the swapping would not be one-to-one and onto. Therefore if H has an odd permutation, exactly half of its permutations are even.

9.34

Proof. It can be assumed without loss of generality that an odd cycle can be represented as $\sigma = (1, 2, 3, ..., m)$ where m is an odd number. Computing its square results in

$$\sigma^2 = (1, 3, 5, \dots, m, 2, 4, 6, \dots, m-1)$$

which is a cycle.