Convolutional Neural Networks Introduction

Piotr Mazur

Agenda

- Introduction
- Basic CNN architecture
- Convolutional Network Layers
 - Convolutional Layer
 - Pooling Layer
- Layer sizing
- Important CNN architectures
- Coding session

Fully-connected Neural Network

Source: https://cs231n.github.io/convolutional-networks

"Big" Data

Source: CIFAR-10

32x32x3

"Big" Data

Source: CIFAR-10

3.072 features

Fully-connected Neural Network

Source: https://cs231n.github.io/convolutional-networks

"Big" Data

Source: CIFAR-10

12.288 parameters

Data arrangement

Source: CIFAR-10

Source: https://cs231n.github.io/convolutional-networks

Convolutional Layer

Source: https://cs231n.github.io/convolutional-networks

Convolutional Layer – single kernel

input neurons

Source: http://neuralnetworksanddeeplearning.com

Convolutional Layer – single kernel

input neurons

Source: http://neuralnetworksanddeeplearning.com

Convolutional Layer – Hyperparameters

- Parameter sharing
- Depth
- Stride
- Padding
- Dilation

Convolutional Layer – depth

 28×28 input neurons

first hidden layer: $3 \times 24 \times 24$ neurons

Source: http://neuralnetworksanddeeplearning.com

Convolutional Layer – Hyperparameters

- Parameter sharing
- Depth

Stride

- Padding
- Dilation

Convolutional Layer – Hyperparameters

- Parameter sharing
- Depth
- Stride

Padding

Dilation

Convolutional Layer – padding

Convolutional Layer – dilated convolution

Source: https://www.researchgate.net/publication/320195101_Spinal_cord_gray_matter_segmentation_using_deep_dilated_convolutions

Convolutional Layer – final view

Source: https://cs231n.github.io/convolutional-networks

Convolutional Layer - example

Source: CIFAR-10

Source: https://cs231n.github.io/convolutional-networks

Convolutional Layer - example

Source: CIFAR-10

375 parameters

Pooling Layer

Source: https://cs231n.github.io/convolutional-networks

Pooling Layer - hyperparameters

- Spatial Extent
- Stride
- Type

Pooling Layer - example

• Input many times divisible by 2 (e.g. 32, 64, 96, 224, 384, 512...)

- Input many times divisible by 2 (e.g. 32, 64, 96, 224, 384, 512...)
- Kernel should have small size (3x3, 5x5), stride = 1 and zero-padding

- Input many times divisible by 2 (e.g. 32, 64, 96, 224, 384, 512...)
- Kernel should have small size (3x3, 5x5), stride = 1 and zero-padding
- Conv Layers should preserve spatial dimensions of input

- Input many times divisible by 2 (e.g. 32, 64, 96, 224, 384, 512...)
- Kernel should have small size (3x3, 5x5), stride = 1 and zero-padding
- Conv Layers should preserve spatial dimensions of input
- Max-pooling layer should be 2x2 with stride = 2

- Input many times divisible by 2 (e.g. 32, 64, 96, 224, 384, 512...)
- Kernel should have small size (3x3, 5x5), stride = 1 and zero-padding
- Conv Layers should preserve spatial dimensions of input
- Max-pooling layer should be 2x2 with stride = 2
- Be cautious when resizing in Conv Layer

Important CNN architectures

- Basic LeNet (1990)
- AlexNet (2012)
- GoogleNet (2014)
- ResNet (2015)
- MobileNet (2017)

LeNet (2012)

Source: LeCun Y., et al. "Gradient-Based Learning Applied to Document Recognition"

AlexNet (2012)

Source: https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/

GoogleNet/InceptionNet (2014)

GoogleNet (2014) – inception layer

Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html

GoogleNet (2014) – vanishing gradient

ResNet (2015) – shortcut connection

Source: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

ResNet (2015) – shortcut connection

Source: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

MobileNet (2017) – Depthwise Separable Convolution

Source: https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69

MobileNet (2017)

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

Source: Howard A. G., et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications."

Convolutional Neural Networks Summary

Questions?

Coding

LeNet (2012)

Source: LeCun Y., et al. "Gradient-Based Learning Applied to Document Recognition"

Questions?

Thanks for your attention

Piotr Mazur

piotrmmazur@outlook.com

kontakt@piomazur.pl