Homework 4

Kaushik Manivannan (km6329@nyu.edu)

Question 9:

A. Exercise 4.1.3

(b)
$$f(x) = 1/(x^2 - 4)$$

The function f is not well-defined for x = 2 and x = -2.

$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 1/(x^2 - 4)$ is not a function.

(c)
$$f(x) = \sqrt{x^2}$$

The function f has a well-defined value for every real number x.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x^2}$$
 is a function.

Range of $f = [0, \infty)$

B. Exercise 4.1.5

(b) Let A =
$$\{2, 3, 4, 5\}$$
. f: A $\to \mathbb{Z}$ such that $f(x) = x^2$.

: Range of
$$f = \{4, 9, 16, 25\}$$

(d) f: $\{0, 1\}^5 \to \mathbb{Z}$. For $x \in \{0, 1\}^5$, f(x) is the number of 1's that occur in x. For example f(01101) = 3, because there are three 1's in the string "01101".

 \therefore Range of $f = \{0, 1, 2, 3, 4, 5\}$ since a 5-bit number can possibly have number of 1's ranging from 0 to 5.

(h) Let $A = \{1, 2, 3\}$. $f: A \times A \to \mathbb{Z} \times \mathbb{Z}$, where f(x,y) = (y, x). $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ $\therefore \text{Range of } f = \{(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3)\}$

(i) Let $A = \{1, 2, 3\}$. f: $A \times A \to \mathbb{Z} \times \mathbb{Z}$, where f(x,y) = (x,y+1). $A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ $\therefore \text{Range of } f = \{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$

(l) Let
$$A = \{1, 2, 3\}$$
. f: $P(A) \rightarrow P(A)$. For $X \subseteq A$, $f(X) = X - \{1\}$.
$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{3, 1\}, \{1, 2, 3\}\}$$
$$\therefore \text{Range of } f = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$$

Question 10:

I. A. Exercise 4.2.2

(c) h:
$$\mathbb{Z} \to \mathbb{Z}$$
, $h(x) = x^3$

If $x \neq y$, then $x^3 \neq y^3$. Therefore, h is one-to-one. However, h is not onto because there is no integer x such that $x^3 = 5$.

∴ h is **one-to-one**, **but not onto**.

(g) f:
$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
, $f(x, y) = (x + 1, 2y)$

f is one-to-one since every element in the domain maps to a unique element in the target. However, f is not onto because 2y is even for any integer $y \in \mathbb{Z}$. For example, there is no $y \in \mathbb{Z}$ such that 2y = 3.

∴ f is **one-to-one**, **but not onto**.

(k) f:
$$\mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$$
, $f(x, y) = 2^x + y$

f is not one-to-one because f(2, 1) = f(1, 3) = 5. Moreover, f is not onto since there is no $(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ such that $2^x + y = 1$.

: f is neither one-to-one nor onto.

I. B. Exercise 4.2.4

(b) $f:\{0, 1\}^3 \rightarrow \{0, 1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110.

f(000) = f(100) = 100. Hence, f is not one-to-one. Let y be an element from the target such that y = 000. But, there is no x in the domain which makes f(x) = y = 000. Thus, f is not onto.

: f is **neither one-to-one nor onto**.

(c) f: $\{0, 1\}^3 \rightarrow \{0, 1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example f(011) = 110.

Every element in the domain $\{0, 1\}^3$ maps to a unique value of y in the target. Therefore, f is one-to-one. In addition, f is onto as the range of f is equal to the co-domain of f.

: f is **one-to-one and onto**.

(d) $f:\{0, 1\}^3 \rightarrow \{0, 1\}^4$. The output of f is obtained by taking the input string and adding an extra copy of the first bit to the end of the string. For example, f(100) = 1001.

Every element in the domain $\{0, 1\}^3$ maps to a unique value of y in the target $\{0, 1\}^4$. Therefore, f is one-to-one. Let y be an element from the target such that y = 0001. However, there is no x in the domain which makes f(x) = y = 0001. Thus, f is not onto.

: f is one-to-one, but not onto.

(g) Let A be defined to be the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and let $B = \{1\}$. f: $P(A) \rightarrow P(A)$. For $X \subseteq A$, f(X) = X - B. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

 $f(\{1,3\}) = f(\{3\}) = \{3\}$. Therefore, f is not one-to-one. Let Y be a set from the target such that it contains the element 1. But, there is no set $X \subseteq A$ in the domain which makes f(X) = X - B = Y. For instance, when $Y = \{1, 3\}$, there exists no $X \subseteq A$ that can make $X - B = Y = \{1, 3\}$. Thus, f is not onto.

: f is neither one-to-one nor onto.

II.

(a) f:
$$\mathbb{Z} \to \mathbb{Z}^+$$
, $f(x) = \{3x \text{ if } x > 0; 3|x| + 1 \text{ if } x \le 0\}$

(b) f:
$$\mathbb{Z} \to \mathbb{Z}^+$$
, $f(x) = |x| + 1$

(c) f:
$$\mathbb{Z} \to \mathbb{Z}^+$$
, $f(x) = \{2x \text{ if } x > 0; 2|x| + 1 \text{ if } x \le 0\}$

(d) f:
$$\mathbb{Z} \to \mathbb{Z}^+$$
, $f(x) = x^2 + 1$

Question 11:

A. Exercise 4.3.2

(c) f:
$$\mathbb{R} \to \mathbb{R}$$
, $f(x) = 2x + 3$

Since f is both one-to-one and onto, it is a bijection. Therefore, the function has a well-defined inverse.

$$f^{-1}(x) = \frac{x-3}{2}$$

(d) Let A be defined to be the set {1, 2, 3, 4, 5, 6, 7, 8}.

f:
$$P(A) \rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

For
$$X \subseteq A$$
, $f(X) = |X|$.

 $f(\{1, 2\}) = f(\{2, 3\}) = 2$. So, the function f is not one-to-one and hence does not have a well-defined inverse.

(g) f: $\{0, 1\}^3 \rightarrow \{0, 1\}^3$. The output of f is obtained by taking the input string and reversing the bits.

Since f is both one-to-one and onto, it is a bijection. Therefore, the function has a well-defined inverse.

$$f^{-1} = f = \{0, 1\}^3$$

(i) f:
$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
, $f(x, y) = (x + 5, y - 2)$

Since f is both one-to-one and onto, it is a bijection. Therefore, the function has a well-defined inverse.

$$f^{-1}(x, y) = (x - 5, y + 2)$$

B. Exercise 4.4.8

(c) foh

$$f \circ h = f(h(x))$$

= $f(x^2 + 1)$
= $2(x^2 + 1) + 3$
= $2x^2 + 5$

(d) hof

$$h \circ f = h(f(x))$$

= $h(2x + 3)$
= $(2x + 3)^2 + 1$
= $4x^2 + 12x + 10$

C. Exercise 4.4.2

(b) Evaluate (f o h)(52)

$$(f \circ h)(52) = f(h(52))$$

= $f(\lceil \frac{52}{5} \rceil)$
= $f(11)$
= 11^2
= 121

(c) Evaluate (g o h o f)(4)

$$(g \circ h \circ f)(4) = g(h(f(4)))$$

= $g(h(4^{2}))$
= $g(h(16))$
= $g(\lceil \frac{16}{5} \rceil)$
= $g(4)$
= $g(4)$

(d) Give a mathematical expression for h o f

$$h \circ f = h(f(x))$$
$$= h(x^{2})$$
$$= \left\lceil \frac{x^{2}}{5} \right\rceil$$

= 16

D. Exercise 4.4.6

(c) $(h \circ f)(010)$

$$(h \circ f)(010) = h(f(010))$$

$$= h(110)$$

$$= 111$$

(d) What is the range of h o f?

Range of h o $f = \{ 101, 111 \}$

(e) What is the range of g o f?

Range of g o $f = \{001, 101, 011, 111\}$

E. Exercise 4.4.4

(c) **No.**

If f: X \rightarrow Y is not one-to-one, then $\exists x_1, x_2 \in X : x_1 \neq x2$ and $f(x_1) = f(x_2)$. Moreover, $g(f(x_1)) = g(f(x_2))$ and $x_1 \neq x_2$. Therefore g o f is not one-to-one.

(d) Yes.

For example,

A f B g C
a
$$\longrightarrow$$
 1 \longrightarrow x
b \longrightarrow 2 \longrightarrow y
c \longrightarrow 3 \longrightarrow z