JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering

Signals and Systems (18B11EC214) - 2020 ODD-SEM

SOLUTION TUTORIAL-1

Sol. 1

CO1

CO1

Sol. 2

Sol. 3 (a) $x_1(t)$ is not periodic because it is zero for t < 0.

(b) $x_2[n] = 1$ for all n. Therefore, it is periodic with a fundamental period of 1.

$$x_1(t) = je^{j10t} = e^{j(10t + \frac{\pi}{2})}$$

The fundamental period of $x_1(t)$ is $\frac{2\pi}{10} = \frac{\pi}{5}$.

- (b) $x_2(t)$ is a complex exponential multiplied by a decaying exponential. Therefore, $x_2(t)$ is not periodic.
- (c) x₃[n] is a periodic signal.

$$x_3[n] = e^{j7\pi n} = e^{j\pi n}$$

 $x_3[n]$ is a complex exponential with a fundamental period of $\frac{2\pi}{\pi}=2$.

- (d) $x_4[n]$ is a periodic signal. The fundamental period is given by $N=m(\frac{2\pi}{3\pi/5})=m(\frac{10}{3})$. By choosing m=3, we obtain the fundamental period to be 10.
- (e) $x_5[n]$ is not periodic. $x_5[n]$ is a complex exponential with $\omega_0 = 3/5$. We cannot find any integer m such that $m(\frac{2\pi}{\omega_0})$ is also an integer. Therefore, $x_5[n]$ is not periodic.

