

DECISION SUPPORT SYSTEM

ANALYTICAL HIERARCHY PROCESS (AHP)

TEACHING TEAM
DECISION SUPPORT SYSTEM COURSE

AHP Definition

- An analysis technique that organizes complex problems into levels called hierarchies.
- The hierarchical elements in AHP consist of:
 - 1. Objectives/Goals
 - 2. Criteria (subcriteria are included)
 - 3. Alternatives

1. Arrange a hierarchy of the problems faced

2. Pairwise comparison

Comparisons are made in pairs between each **criterion** or each **alternative**

Intensity of Interest	Information
1	Both elements are equally important
3	One element is slightly more important than the others
5	One element is more important than the others
7	One element is clearly more important than the other
9	One element is absolutely more important than the others
2,4,6,8	Values between two values of adjacent considerations

(Saaty, 1986)

Intensity of Importance	<u>Definition</u>
1	Equal Importance
3	Moderate Importance
5	Strong Importance
7	Very Strong Importance
9	Extreme Importance
2, 4, 6, 8	For compromises between the above
Reciprocals of above	In comparing elements i and j - if i is 3 compared to j - then j is 1/3 compared to i
Rationals	Force consistency Measured values available

(Saaty, T. Lorie. 1993)

• The pairwise comparison process starts from the top hierarchical level which is aimed at selecting criteria, for example A1, then the elements to be compared are taken, namely: A1, A2, and A3.

	A1	A2	A3
A1	1		
A2		1	
A3			1

Pairwise Comparison Matrix

Kriteria	Alt 1	Alt 2	Alt 3	Alt 4	Alt 5
Alt 1	1	a_{12}	a_{13}	a_{14}	a ₁₅
Alt 2	$1/a_{12}$	1	a ₂₃	a_{24}	a_{25}
Alt 3	$1/a_{13}$	$1/a_{23}$	1	a ₃₄	a ₃₅
Alt 4	$1/a_{14}$	$1/a_{24}$	$1/a_{34}$	1	a ₄₅
Alt 5	$1/a_{15}$	$1/a_{25}$	1/a ₃₅	1/a ₄₅	1

element

			Cicilicit		
	X	А	В	С	
Fyenenie	А	1	3	5	
Example	В	1/3	1	5/3	
,	С	1/5	3/5	1	

3. Determination of Priority Weights

- a) Divide each cell value by the sum of each corresponding column.
- b) Add up and average each row.
- c) The average value shows the Priority Weight (PW) value for each corresponding row.

- 4. Calculate the Consistency Ratio
- a) Multiplying the matrix by PW
- b) Divide the results of these calculations with PW
- c) Calculating λmax

$$\lambda_{max} = \frac{\sum calculation \ results \ in \ step \ b}{the \ number \ of \ criteria \ elements}$$

d) Calculating the Consistency Index (CI)

$$CI = \frac{(\lambda_{max} - n)}{(n-1)}$$
, where n is the number of criteria elements

e) Calculating the Consistency Ratio (CR) = CI/RI, where RI is the random consistency index

n	1	2	3	4	5	6	7	8	9	10
RI	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.51

If the consistency ratio \leq 0.1, the data calculation results can be justified

- 5. Calculate pairwise comparisons for each alternative on each criterion in the same way (steps 1-4)
- 6. Decision-making

Decision making is based on a comparison of the multiplication calculation of the **PW of criteria** with the **PW of alternative**.

Case Study

• The case to be resolved is the **selection of distributors**. The alternatives to be selected are 3 distributors (**Makmur Jaya**, **Anugerah**, **and Permata**) with 3 criteria used as assessment parameters, namely **network breadth**, **credibility**, and **payment system**.

1. Arrange a hierarchy of the problems faced

2. Pairwise Comparison Matrix

Intensity of Interest	Information
1	Both elements are equally important
3	One element is slightly more important than the others
5	One element is more important than the others
7	One element is clearly more important than the other
9	One element is absolutely more important than the others
2,4,6,8	Values between two values of adjacent considerations

How to read:

Network breadth is 5x more important than the payment system, or 5 to 1

Criteria	Network	Credibility	Payment
Network	1/1	1/3	<mark>5/1</mark>
Credibility	3/1	1/1	6/1
Payment	1/5	1/6	1/1
Total	4.2	1.5	12

2. Pairwise Comparison Matrix

Network Breadth		Von						Very	Pay	ment System
	Extreme favors	Very Strong favors	Strongly favors	Slightly favors	Equal	Slightly favors	Strongly favors	Strong	Extreme favors	
	+	+	$-\sqrt{}$	+	-	-	-	+		Elul
	9	7	5	3	1	3	5	7	9	

Credibility									Ne	etwork Breadth
	Extreme favors	Very Strong favors	Strongly favors	Slightly favors	Equal	Slightly favors	Strongly favors	Very Strong favors	Extreme favors	
	+	-	-	$\sqrt{}$		-	-	-		
	9	7	5	3	1	3	5	7	9	

Criteria	Network	Credibility	Payment
Network	1/1	1/3	<mark>5/1</mark>
Credibility	3/1	1/1	6/1
Payment	1/5	1/6	1/1
Total	4.2	1.5	12

3. Determination of Priority Weights

- 4. Calculate the Consistency Rasio
- a) Multiplying the matrix by PW

Criteria

$$\begin{bmatrix}
 1 & 0.333 & 5 \\
 3 & 1 & 6 \\
 0.2 & 0.167 & 1
 \end{bmatrix}$$
 $\begin{bmatrix}
 0.905 \\
 1.988 \\
 0.244
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 1 & 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 1.988 \\
 0.244
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 1 & 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 0.627 \\
 0.081
 \end{bmatrix}$
 $\begin{bmatrix}
 1 & 0.333 & 5 \\
 0.627 \\
 0.081
 \end{bmatrix}$

 Criteria weight matrix
 PW

- b) Divide the results of these calculations with PW
 - Network Breadth = 0.905/0.292 = 3.095
 - Credibility = 1.988/0.627 = 3.171
 - Payment System = 0.244/0.081 = 3.020

c) Calculating
$$\lambda max \rightarrow \lambda_{max} = \frac{\sum calculation results in step b}{the number of criteria elements}$$

$$\lambda_{max} = \frac{3.095 + 3.171 + 3.020}{3} = 3.09$$

d) Calculating the Consistency Index (CI) $\rightarrow CI = \frac{(\lambda_{max} - n)}{(n-1)}$

$$CI = \frac{(3.09 - 3)}{(3 - 1)} = 0.047$$
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51

e) Calculating the Consistency Ratio (CR) = CI/RI

Based on the table, n = 3, then RI = 0.58

Consistency Ratio(CR) = 0.047/0.58 = 0.082 (≤ 0.1, so it is consistent)

- 5. Calculate pairwise comparisons for each alternative Using the same calculation method, Consistency Ratio (CR) is calculated for pairwise comparisons between alternatives
- a. Consistency Ratio(CR) for Network Breadth

Network Breadth	Makmur Jaya	Anugerah	Permata	Priority Weight	CR
Makmur Jaya	1	5/1	7/1	0.724	
Anugerah	1/5	1	3/1	0.193	0.057
Permata	1/7	1/3	1	0.083	

Consistency Ratio (CR) = $0.057 \le 0.1$, so it is consistent)

b. Consistency Ratio(CR) for Credibility

Credibility	Makmur Jaya	Anugerah	Permata	Priority Weight	CR
Makmur Jaya	1	5/1	9/1	0.748	
Anugerah	1/5	1	3/1	0.180	0.025
Permata	1/9	1/3	1	0.071	

Consistency Ratio (CR) = 0.025 (≤ 0.1 , so it is consistent)

c. Consistency Ratio(CR) for Payment System

Payment System	Makmur Jaya	Anugerah	Permata	Priority Weight	CR
Makmur Jaya	1	5/1	7/1	0.724	
Anugerah	1/5	1	3/1	0.193	0.038
Permata	1/7	1/3	1	0.083	

Consistency Ratio (CR) = 0.038 (≤ 0.1 , so it is consistent)

Decision-making 6.

Decision making is based on a comparison of the multiplication calculation of the PW of criteria with the PW of alternative.

	Network	Credibility	Payment	Evaluation Weight
Priority Weight	0.292	0.627	0.081	
Makmur Jaya	0.724	0.748	0.724	0.739
Anugerah	0.193	0.180	0.193	0.171
Permata	0.083	0.071	0.083	0.069

Rank 1

Evaluation Weight

- $= (0.292 \times 0.724) + (0.627 \times 0.748) + (0.081 \times 0.724)$
- = 0.739 (Makmur Jaya)

Conclusion:

• From the calculation results, it can be concluded that based on the criteria of network breadth, credibility and payment system, Makmur Jaya was selected as a distributor because it has the highest Evaluation Weight value of 0.739.

Additional Information

Variations of other ways to calculate eigenvectors

Initial matrix

Criteria	Network	Credibility	Payment
Network	1	0.333	5
Credibility	3	1	6
Payment	0.2	0.167	1

Criteria	Network	Credibility	Payment
Network	1	0.333	5
Credibility	3	1	6
Payment	0.2	0.167	1

$$(1*1)+(0.333*3)*(5*0.2)=2.999$$

The matrix used as a multiplier in the 2nd iteration

Criteria	Network	Credibility	Payment
Network	2.999	1.501	11.998
Credibility	7.2	3.001	27
Payment	0.901	0.401	3.002

Result	Eigenvector
= 16.948	= 0.284
= 37.201	= 0.641
= 4.3036 58.0026	= 0.074 +
58.0026	= 1.000

The matrix multiplication will be iterated between the old orange matrix and the new blue matrix until the difference in the eigenvectors resulting from n iterations compared to n-1 is equal to zero or does not change. If these conditions are met, the final eigenvector value is selected

Additional Information

- Cost Criteria in AHP
 - a) Separate the hierarchy of costs and benefits
 - b) Combine the results

Example:

Final Value for AHP calculation (benefit)

	Evaluation Weight
Makmur Jaya	0.686
Anugerah	0.171
Permata	0.069

Final Value for AHP calculation (cost)

	Evaluation Weight
Makmur Jaya	0.549
Anugerah	0.176
Permata	0.035

Notes:

Values are in final calculation form

Final Value for AHP calculation (benefit-cost)

	Calculation	Evaluation Weight
Makmur Jaya	0.686/0.549	1.249
Anugerah	0.171/0.176	0.971
Permata	0.069/0.035	1.971

Rank 1: Permata