

Europäisches Patentamt

European Patent Office

Office européen des brevets

11 Publication number:

0 637 481 A1

(12)

EUROPEAN PATENT APPLICATION

2) Application number: 94101389.8

(9) Int. Cl.6: **B23K** 35/28, B32B 15/01

2 Date of filing: 31.01.94

Priority: 03.08.93 JP 212377/93
 06.08.93 JP 214879/93
 10.08.93 JP 218019/93
 31.08.93 JP 238971/93
 31.08.93 JP 240563/93
 01.09.93 JP 242106/93
 06.09.93 JP 245967/93
 06.09.93 JP 245968/93
 30.09.93 JP 267962/93

② Date of publication of application: 08.02.95 Bulletin 95/06

Designated Contracting States:
 DE FR GB

 Applicant: THE FURUKAWA ELECTRIC CO., LTD.
 6-1, Marunouchi 2-chome Chiyoda-ku
 Tokyo 100 (JP)

Inventor: Doko, Takeyoshi251, Kiyotakinakayasudomachi

Nikko,
Tochigi (JP)
Inventor: Okada, Koji
610, Kiyotakitanzemachi
Nikko,
Tochigi (JP)
Inventor: Onda, Tokinori
610, Kiyotakitanzemachi

610, Kiyotakitanzemachi Nikko,

Tochigi (JP)

Inventor: Takeuchi, Hiroaki 251, Kiyotakinakayasudomachi

Nikko, Tochigi (JP)

Inventor: Hirano, Yoji 610, Kiyotkitanzemachi

Nikko, Tochigi (JP)

Representative: TER MEER - MÜLLER -STEINMEISTER & PARTNER Mauerkircherstrasse 45 D-81679 München (DE)

- Aluminum alloy brazing material and brazing sheet for heat-exchangers and method for fabricating aluminum alloy heat-exchangers.
- The structure cladded comprises a brazing material (A), a core material (B) comprising over 0.6 wt. % and not more than 0.3 wt. % of Si, over 0.5 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities. A typical aluminum alloy brazing over 0.6 wt. % and not more than 0.3 wt. % of Sn, and the balance of Si, over 0.5 wt. % and not more than 0.3 wt. % of Sn, and the balance of Si, over 0.5 wt. % and not more than 0.3 wt. % of Sn, and the balance of Si, over 0.5 wt. % and not more than 0.5 wt. % and not more than 0.5 wt. % and not more than 0.5 wt. % of Si, over 0.5 wt. % and not more than 0.5 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Mn, and the balance of Al and inevitable impurities, and a sacrificial material comprising at least one kind selected from a group consisting of over 0.5 wt. % and not more than 0.0 wt. % of Sn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities, or comprises a core material (B) cladded both sides thereof with the brazing material (A). By using the inventive brazing materials or brazing sheets, the brazing heating can be performed at a

Fig. 1

The present invention relates to a brazing material used for fabricating aluminum alloy heat-exchangers for automobiles etc., an aluminum alloy brasing sheet for heat-exchangers used as a constitutional component of aluminum heat-exchangers, and a method for fabricating aluminum heat-exchangers used them. More specifically, it provides a brazing material and brazing sheet for fabricating aluminum alloy heat-exchangers with excellent thermal efficiency, high strength and excellent corrosion resistance by brazing technique, and a brasing method using them.

There are a radiator, condenser, evaporator, etc. for the heat-exchangers for automobiles. In the radiator there-among, as shown in Fig. 1 for example, a thin-wall fin (2) machined in corrugated shape is formed unitedly between a plurality of flat tubes (1), both ends of said flat tubes (1) open respectively in the spaces constituted by a header (3) and a tank (4), a high temperature refrigerant is fed from the space of one tank side to the space of other tank (4) side through the flat tube (1), thereby heat-exchanging at the portions of flat tube (1) and fin (2), and the refrigerant having become lower temperature is circulated again.

For the tube material and the header material of such heat-exchanger, a brazing sheet is used, comprising, for example JIS 3003 alloy (Al-0.15 wt. % Cu-1.1 wt. % Mn) core material, cladded the inside of said core material or the side always contacting with refrigerant with JIS 7072 alloy (Al-1 wt. % Zn) as a lining material and the outside of said core material, ordinarily with brazing material such as JIS 4045 alloy (Al-10 wt. % Si), and this is assembled unitedly together with the corrugated fin and other components by brazing.

Moreover, Fig. 2 shows a serpentine type condenser, in which a tube material (5) formed tubularly by hot or warm extrusion is folded serpentinely and a corrugated fin (6) comprising brazing sheet is attached between the openings of tube material. Besides, numeral (7) shows a connector. For the tube material, JIS 3003 alloy etc. are used, and, for the fin, JIS 3003 alloy or an alloy containing Zn etc. for the purpose of giving the sacrificial effect thereto is used as a core material, and a brazing material such as JIS 4045 alloy or JIS 4343 alloy (Al-7.5 wt. % Si) is cladded on both sides.

Furthermore, in Fig. 3, a multilayer type evaporator is shown. In this evaporator, fin (2) and pathway-constituting sheets (9) and (9') forming path ways (8) and (8') of refrigerant and comprising brazing sheet are layered alternatively, and they are joined by brazing. For this fin, an about 0.08 mm thick fin material is used ordinarily, and, for the refrigerant pathway-constituting sheet, on about 0.4 mm thick brazing sheet is used.

In such evaporator, for preventing the external corrosion of the pathway of refrigerant, a fin material with sacrificial anode effect is used and, for the refrigerant pathway-constituting sheet, a brazing sheet is used, comprising a core material of Al-1 wt. % Mn alloy, an alloy added with Cu, Zn, etc. thereto, if necessary, or the like, cladded the surface thereof with brasing material such as JIS 4004 alloy or JIS 4343 alloy. And, all of these heat-exchangers are assembled by brazing to heat to a temperature near 600 °C, and the brazing techniques include vacuum brazing method, flux brazing method, Nocolock brazing method using noncorrosive flux and the like.

By the way, recently, the heat-exchangers are in a direction of lightening in weight and miniaturising, and, for this reason, thinning of wall of materials is desired. However, if thinning of wall is made with conventional materials, many problems arise.

Firstly, as the wall thickness of materials for refrigerant pathway-constituting component (tube material etc.) as well as the fin decrease, it is necessary to increase the strength. Hence, several high-strength alloys have been proposed, but sufficient strength is still not obtained. This is because of that the addition of alloy elements is necessary for improved strength, but, if alloy elements are added, the melting point decreases, leading to melting during the brazing to heat to a temperature near 600 °C.

Moreover, the phenomena of the buckling of fin during brazing and the diffusion of brazing material into fin leading to melting tend to happen as the thickness of fin decrease, hence, in the case of brazing sheet fin, it is said that the thickness of $100~\mu m$ is a limit of thinning. If the buckling occurs, then the thermal efficiency of heat-exchanger decreases by the increased ventilation resistance.

As a result of intensive investigations in view of this situation, an aluminum alloy brazing sheet for heat-exchangers with excellent strength and corrosion resistance after brazing, and a production method of aluminum alloy heat-exchangers capable of lightening the weight and miniaturizing and excellent in thermal efficiency have been developed by the invention.

SUMMARY OF THE INVENTION

55

40

The first of the invention provides an aluminum alloy brazing material capable of lowering the brazing temperature, and is concerned with an aluminum alloy brazing material characterized by comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05

wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

Moreover, other brazing material of the invention is an aluminum alloy brazing material characterized by comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.8 wt. % and not more than 3.0 wt. % of Cu, over 0.05 wt. % and not more than 0.4 wt. % of Fe, over 1.0 wt. % and not more than 5.0 wt. % of Zn, or further one or two kinds of over 0.002 wt. % and not more than 0.05 wt. % of In and over 0.002 wt. % and not more than 0.05 wt. % of Sn, and the balance of Al and inevitable impurities.

Furthermore, an aluminum alloy brazing sheet of the invention with excellent strength and corrosion resistance after brazing, usable as the flat tube (1) and the header (3) comprising the seam welded pipe of radiator shown in Fig. 1, is characterized in that, in the aluminum alloy brazing sheet for heat-exchangers having a three-layer structure cladded one side of core material consisting of aluminum alloy with brazing material consisting of aluminum alloy and cladded other side with sacrificial material consisting of aluminum alloy, an aluminum alloy comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of AI and inevitable impurities is used for the brazing material, an aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Zr, over 0.03 wt. % and not more than 0.3 wt. % of Ti and over 0.03 wt. % and not more than 1.5 wt. % of Ni, and the balance of Al and inevitable impurities is used for the core material, and an aluminum alloy comprising at least one kind selected from a group consisting of over 0.5 wt. % and not more than 6.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, or further one or two kinds of over 0.05 wt. % and not more than 2.5 wt. % of Mg and over 0.05 wt. % and not more than 1.6 wt. % of Mn, and the balance of Al and inevitable impurities is used for the sacrificial material.

Still more, an aluminum alloy brazing sheet of the invention, usable as the refrigerant pathway-constituting sheets (9) and (9') of multilayer type evaporator shown in Fig. 3 or the corrugated fin (6) of condenser shown in Fig. 2, is characterized by comprising a core material used an aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Ti and over 0.03 wt. % and not more than 1.5 wt. % of Ni, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 0.5 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

Still more, an aluminum alloy brazing sheet of the invention, usable for the aluminum alloy fin for obtaining light-weight heat-exchangers with excellent thermal efficiency, is characterized by comprising a core material used an aluminum alloy comprising over 0.03 wt. % and not more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Fe, over 0.05 wt. % and not more than 2.0 wt. % of Cu, over 0.6 wt. % and not more than 2.0 wt. % of Mn, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.05 wt. % and not more than 2.0 wt. % of Ni, over 0.03 wt. % and not more than 0.3 t. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Zr and over 0.03 wt. % and not more than 0.3 wt. % of Ti, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

Still more, other aluminum alloy brazing sheet of the invention, usable as the fin material, is characterized by comprising a core material used an aluminum alloy comprising over 0.03 wt. % and not

more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Fe, over 0.05 wt. % and not more than 2.0 wt. % of Cu, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.6 wt. % of Mn, over 0.05 wt. % and not more than 0.5 wt. % of Ni, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Ti, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 0.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

Still more, a method for fabricating the aluminum alloy heat-exchangers of the invention is characterized in that, in the method for fabricating heat-exchangers by joining the aluminum alloy components by brazing technique, the brazing heating is performed at a temperature of 570 to 585 °C by using brazing materials or brazing sheets described above.

BRIEF DESCRIPTION OF THE DRAWING

20

- Fig. 1 is a partially sectional oblique view showing the radiator.
- Fig. 2 is an oblique view showing the serpentine type condenser.
- Fig. 3 is a partially sectional oblique view showing the multilayer type evaporator.

5 DETAILED DESCRIPTION OF THE INVENTION

The constitutions of the invention are as described above. In following, each invention will be illustrated further. Firstly, the inventive brazing sheet for the tube and the header having a three-layer structure cladded one side of core material with brazing material and other side with sacrificial material is assembled directing the surface of brazing material to outside and the surface of sacrificial material to refrigerant pathway-constituting side.

And, the core material of this brazing sheet for the tube and the header is an aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Ti and over 0.03 wt. % and not more than 1.5 wt. % of Ni, and the balance of Al and inevitable impurities.

The role of respective addition elements above and the reason for restriction will be illustrated.

Si contributes to the improvement in strength. However, if the amount is not more than 0.6 wt. %, then no effect is obtained. Moreover, the maximum addition level of Si at the conventional brazing temperature is 1 wt. % or so, but, in the invention, it is possible to increase the addition level of Si because of decreased brazing temperature. Moreover, if the addition level is not more than 1.2 wt. %, Si has a strength-improving effect as high as that of conventional refrigerant pathway-constituting component, but, through the simultaneous addition of Cu in amount over 0.5 wt. %, the strength improves more than conventional one, which will be described later. Further, if the addition level of Si is over 1.2 wt. %, a strength improvement larger than that of conventional one is possible. Besides, if the addition level of Si is over 1.2 wt. %, the corrosion resistance sometimes decrease. This is a phenomenon to cause through the generation of coarse Si compounds in the core material, hence it is preventable by controlling the production process so as the coarse compounds not to generate, taking the production process into consideration. And, if the addition level is over 2.5 wt. %, then the core material ends up to melt even at the brazing temperature of the invention.

Next, Cu exists in the alloy in a state of solid solution and improves the strength. If Cu is not more than 0.5 wt. %, the strength-improving effect is insufficient. The amount of Cu over 0.5 wt. % is an addition level characteristic of the invention among the addition levels of Cu. When using an alloy containing Cu for the core material, a decrease in the internal corrosion resistance (because Cu diffuses into the sacrificial layer during brazing, thereby the sacrificial layer becomes to have no effect as a sacrificial layer) and the generation of blistering corrosion (because a Cu-deficiency layer is created in the vicinity of the boundary

between brazing material and core material) take place, hence the amount of Cu actually capable of adding to core material for the strength improvement was not more than 0.5 wt. % conventionally. On the contrary, in the invention, it has become possible to add even over 0.5 wt. % for the reason shown later in the description on brazing material and sacrificial material. In addition, Cu over 1.0 wt. % is a composition not used conventionally because of a decrease in melting point. However, if the amount of Cu is over 2.5 wt. %, then the melting point decreases, leading to melting during brazing even if the brazing alloy of the invention may be used. Hence, the upper limit of Cu was made to be 2.5 wt. % and, in particular, an addition of 0.8 to 1.5 wt. % shows stable characteristics.

Mn distributes the intermetallic compounds throughout the alloy and is an essential element for improving the strength without decreasing the corrosion resistance. However, if the amount is under 0.05 wt. %, the strength is insufficient, and, if adding over 2.0 wt. %, the moldability decreases, resulting in the cracking of brazing sheet during processings such as assembling.

Mg exists in the alloy in a state of solid solution and as a fine precipitation phase of Mg₂Si to improve the strength. However, if under 0.03 wt. %, no effect is obtained, and, if adding over 0.5 wt. %, then the flux and Mg reacts making the brazing impossible when brazing with a non-corrosive flux.

Cr, Zr and Ti all form fine intermetallic compounds and have an action to improve the strength of alloy. However, if under 0.03 wt. %, no effect is obtained, and, if adding each over 0.3 wt. %, then the moldability decreases, resulting in the cracking of brazing sheet during processings such as assembling.

Ni also forms the fine intermetallic compounds and has an action to improve the strength of alloy. However, if under 0.03 wt. %, no effect is obtained, and, if adding over 1.5 wt. %, then the moldability decreases, resulting in the cracking of brazing sheet during processings such as assembling.

The ingredients of the inventive core alloy are as described above. Besides, there is Fe as a representative element among the inevitable impurities. If not more than 1.2 wt. %, Fe may be contained. Also, the elements other than above such as B to be added for making the texture of cast ingot fine may be contained respectively, if not more than 0.05 wt. %.

Moreover, the brazing material of this brazing sheet for the tube and the header is, as described above, an aluminum alloy comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

Conventionally, when using a high-strength core material alloy as in the invention, there were a problem that the external corrosion resistance of heat-exchanger decreased and a problem that the core material ally melted during brazing because of low melting point, hence the brazing sheet used such core material has not been used practically. The inventive brazing material alloy has solved these and, when combining with the inventive core material alloy, it exerts the effects. Namely, as a result of various investigations on the external corrosion resistance of heat-exchanger, it has been found that, when combining the brazing material alloy used conventionally with the inventive brazing material alloy, Cu added to the core material alloy diffuses into the brazing material during brazing to cause a low-Cu region in the vicinity of boundary between brazing material and core material and that place is corroded preferentially, thus causing an intense corrosion accompanied with the blistering. In the invention, Cu was added to the brazing material alloy to prevent the diffusion of Cu from core material to brazing material and not to cause the low-Cu region in the vicinity of boundary between brazing material and core material, thus improving the corrosion resistance. And, considering that, if the brazing can be made at a temperature near 580 °C in place of the conventional brazing at a temperature near 600 °C, the melting of core material alloy will disappear, an alloy with lower brazing temperature than that of conventional brazing material alloy has been developed.

The role of respective addition elements above and the reason for restriction will be illustrated below.

Si lowers the melting point of alloy, but, if the amount is not more than 7.0 wt. %, the melting point does not decrease enough and the brazing is impossible at a temperature below 585 °C. In addition, if the amount is over 12.0 wt. %, the melting point increases inversely, making it impossible to braze at a temperature below 585 °C.

Cu lowers the melting point of alloy and improves the flowability of brazing material. In addition, Cu has an action to enhance the external corrosion resistance of heat-exchanger when using an alloy added with Cu for the refrigerant pathway-constituting component. Namely, as described above, it makes not causing the low-Cu region in the vicinity of boundary between brazing material and pathway constituting component, thus improving the corrosion resistance. Here, if the amount of Cu is not more than 0.1 wt. %, said effect is insufficient and, if the amount is over 8.0 wt. %, then the electrical potential of brazing material becomes too noble to preferentially corrode the refrigerant pathway-constituting component, resulting in the de-

creased rolling processing of alloy as well as the decreased corrosion resistance, thus making unsuitable as a brazing material to be used for the brazing sheet for heat-exchangers. For this reason, Cu was made to be over 0.1 wt. % and not more than 8.0 wt. %, but it shows stable characteristics at 0.5 to 3.5 wt. %, in particular. Besides, it shows excellent flowability of brazing material and rolling processing at over 0.8 wt. % and not more than 3.0 wt. %, in particular, because the melting point of mother material becomes higher if not more than 0.8 wt. % and said characteristics end up to decrease if over 3.0 wt. %.

Fe has an action to enhance the strength of fillet by making the crystal grains fine at the time of the solidification of brazing material after melting. It is added for this reason. However, if the amount is not more than 0.05 wt. %, the effect is insufficient and, if over 0.5 wt. %, then the intermetallic compounds are formed when the brazing material solidifys, thus making these as starting points of corrosion. It shows excellent external corrosion resistance at not more than 0.4 wt. %, in particular.

The addition of Zn lowers the melting point of alloy. Moreover, in the case of brazing material alloy added with Cu as in the invention, the generation of blistering due to external corrosion may be suppressed, but the electrical potential of brazing material becomes nobler than that of core material, hence a problem that the external corrosion progresses pit-like at higher speed arises. For this reason, Zn is added to lower the electrical potential of brazing material and bring the electrical potential of brazing material close to that of core material, thus improving the corrosion resistance. However, if the amount is under 0.5 wt. %, the effect is insufficient and, if the amount is over 5.5 wt. %, the rolling processibility of alloy decreases, leading to unsuitable brazing material to be used for the brazing sheet for heat-exchangers. Besides, taking the flowability of brazing material into consideration, addition of 1 to 5 wt. % is recommended, in particular.

In and Sn are added also for the same purpose as Zn. Namely, they make the electrical potential of brazing material base to improve the corrosion resistance of refrigerant pathway-constituting component. However, if the amount is not more than 0.002 wt. %, the effect is insufficient and, if the amount is over 0.3 wt. %, then the rolling processibility of alloy decreases.

The alloy composition of brazing material is as described above. The inevitable impurity elements may be contained, if they are not more than 0.05 wt. %, respectively.

Furthermore, the sacrificial material of this brazing sheet for the tube and the header is, as described above, an aluminum alloy comprising at least one kind selected from a group consisting of over 0.5 wt. % and not more than 6.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, or further one or two kinds of over 0.05 wt. % and not more than 2.5 wt. % of Mg and over 0.05 wt. % and not more than 1.6 wt. % of Mn, and the balance of Al and inevitable impurities.

As a representative of conventional sacrificial material alloy, JIS 7072 alloy can be mentioned, but, when combining such conventional sacrificial material alloy with said core material alloy with high Cu content concerning with the invention, Cu added to the core material alloy diffuses into the sacrificial material during brazing to extinguish the sacrificial effect of sacrificial material. For this reason, it is conceivable to increase Zn in the sacrificial material, but, if Zn is increased, then the melting point of sacrificial material decreases, leading to melting during brazing. However, in the invention, since low-melting point brazing material alloy is used as described above, it is possible to increase Zn.

The addition of Zn provides the sacrificial effect to alloy. However, if the amount is under 0.5 wt. %, the effect is insufficient and, if the amount is over 6.0 wt. %, then the melting point decreases, leading to melting during brazing even if the inventive brazing material alloy may be used.

The addition of In and Sn also provides the sacrificial effect to alloy. However, if the amount is under 0.002 wt. %, the effect is insufficient and, if over 0.3 wt. %, then the rolling processibility of alloy decreases, leading to unsuitable sacrificial material for the brazing sheet with three-layer structure.

The addition of Mg makes the strength of sacrificial material alloy high and improves the strength of material totally. However, if the amount is under 0.05 wt. %, no effect is obtained, and if over 2.5 wt. %, then the melting point decreases, leading to melting during brazing even if the inventive brazing material ally may be used.

The addition of Mn also makes the strength of sacrificial material high and improves the strength of material totally. However, if the amount is under 0.05 wt. %, no effect is obtain and, if over 1.6 wt. %, then the rolling processibility of alloy decreases, leading to unsuitable sacrificial material to be used for the brazing sheet with three-layer structure.

The alloy elements in the inventive sacrificial material are as described above. As the inevitable impurities, Si can be contained if not more than 0.5 wt. %, but it is desirable to be not more than 0.1 wt. %. Fe can also be contained if not more than 0.8 wt. %, but is is desirable to be not more than 0.1 wt. %. Also, the elements other than above such as Cr, Zr and Ti for improving the strength may be contained as the impurity elements, if not more than 0.05 wt. %, resectively.

Next, the constitution of the inventive brazing sheet for the refrigerant pathway-constituting sheet cladded both sides of the core material with brazing sheet comprises a combination of an aluminum alloy core material comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Ti and over 0.03 wt. % and not more than 1.5 wt. % of Ni, and the balance of Al and inevitable impurities with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

Namely, these alloy compositions of core material and brazing material are same as those of core material and brazing material of said brazing sheet for the tube and the header and the role of addition elements and the reason for restriction are also same.

Next, the inventive brazing sheet for high-strength aluminum alloy fin will be illustrated. Firstly, the development thought thereof is described below.

When fabricating the aluminum alloy heat-exchanger by the brazing technique as above, the heating is conducted ordinarily at a temperature near 600 °C. Since this temperature of 600 °C is considerably high temperature for fin material, there arise following three problems: i.e. ① the fin buckles during heating, ② the intermetallic compunds in alloy reform the said solution to decrease the thermal conductivity of fin, and ③ low-melting point, high-strength alloy cannot be used.

The inventors made the investigations diligently to solve these problems and considered that it would be effective to decrease the heating temperature for brazing. As a result of the investigations on what degrees or lower the temperature should be decreased to to be able to solve these problematic points, it has been found that, if not higher than 585 °C, the buckling of fin becomes hard to occur during brazing, the decrease in thermal conductivity becomes slight, and, by increasing the addition level of Si, the strength of alloy can improve.

Said three points are explained in more detail.

15

30

35

40

45

- ① Most of the buckling of fin generates due to the high-temperature creep phenomenon causing in the fin at high temperature, and it has been found that, forming a boundary in the vicinity of 590 °C said creep phenomenon occurs suddenly at a temperature higher than that (the fin becomes weak). For this reason, if not higher than 585 °C, the buckling originating from this does not occur. In addition, there is a buckling originating from the diffusion of brazing material into fin, but it has been found that, forming a boundary in the vicinity of 595 °C, the diffusion of brazing material occurs suddenly at a temperature higher than that. For this reason, if not higher than 585 °C, the diffusion of brazing material becomes low and the buckling of fin becomes hard to occur totally.
- ② The thermal conductivity of fin to perform the brazing decreases due to that the intermetallic compounds having precipitated in aluminum alloy reform the solid solution during heating for brazing. And, the higher the heating temperature, the higher the limit of forming solid solution and the higher the diffusion velocity, thus allowing easy progress of reforming of solid solution. For this reason, it has been found that decreasing the brazing temperature has an effect to enhance the thermal conductivity and that, if not higher than 585 °C, the progressing velocity of reforming of solid solution is low and the decrease in thermal conductivity is also low.
- ③ With respect to the strength, the elements to be added for high-strength aluminum alloy include Cu, Mg, Si, etc. But, when using as a refrigerant pathway-constituting component, the corrosion resistance and the brazability should be taken into consideration, and, when using as a fin, the sacrificial effect, thermal conductivity and brazability should be considered. Hence, the elements capable of increasing the addition level for improved strength are restricted and the addition of Si is influential concretely. The amount of Si or the amount of Cu capable of adding on brazing at 600 °C is as low as 1 wt. %, but it becomes possible to add as high as 2.5 wt. % at 585 °C or lower.

Now, as a method for brazing at a temperature lower than the usual brazing temperature in this way, a method for brazing at a temperature in front and behind 500 °C, which is called low-temperature brazing, is known (e.g. Japanese Unexamined Patent Publication No. Hei 1-107961). This method has a problematic point that the brazing material tends to be corroded after brazing, since Al-Zn alloy or Zn alloy containing not less than 20 % of Zn is used usually as a brazing material, hence they are not used actually for the production of heat-exchangers. In addition, with Al-Zn alloy, if the addition level of Zn is over 8 %, the rolling property becomes very poor, making the production of brazing sheet by ply rolling, impossible,

hence no production method for supplying the brazing sheet for low-temperature brazing in stable state industrially has been established. For this reason, the brazing material must be used as pieces of brazing material etc., limiting the type of components producible. The inventors, however, have found that the improvement in the characteristics of heat-exchanger is possible even at a brazing temperature of not higher than 585 °C being far higher temperature than that of low-temperature brazing as described above, and considered that the development of fin alloy suitable therefor was possible, leading to the invention.

Here, there have been alloys known as aluminum alloy brazing materials with low melting point so far (e.g. Japanese Unexamined Patent Publication No. Hei 3-57588). These were developed mainly for brazing the castings and, since they contain a lot of Cu or they are added with Zn over 8 % as described above, they have a problem to cause cracks when performing the rolling processing, making the production of brazing sheet impossible. If impossible to use as a brazing sheet, the practicality would be poor for fabricating the heat-exchangers industrially and the inventive method would not be realized.

The type and the symbol of brazing materials used so far and laid down in JIS are shown in Table 1 and the chemical compositions in Table 2. In Table 1, the solidus line temperature, liquidus line temperature and brazing temperature are listed for reference.

Table 1 Type and symbol of brazing and skin material (JIS 2 3263)

5		Ту	pe			Reference	
•	No. of alloy	Shape	Call no. ⁽²⁾	Symbol (3)	Solidus line temp. (°C)	Liquidus line temp. (°C)	Brazing temp. (°C)
10	4343	Plate, strip	1	B A 4343 P			
	4343	Skin material			577	615	600~620
		Wire		B A 4045W			
15	4045	Rod	2	B A 4045 B		500	
	4040	Plate, strip		B A 4045 P] "	590	590~605
		Skin material					
20	4004 (1)	"	3		559	591	590~605
	4005 (1)	"	4		"	582	585~605
25	4NO4 (1)	"	5		"	579	580~600
	4104 ⁽¹⁾	"	6		"	591	590~605
	4N43	"	7		576	609	600~620
30	4N45	"	8 -		"	588	590~605
	4145	Rod		B A 4145 B	520	585	570~605
	·	Wire		B A 4047W			
35	4047	Rođ	-	B A 4047 B	517	580	580~605
		Skin material		B A 4047 P			

Note: (1) To be used as a skin material of brazing sheet for vacuum brazing.

(2) Call no. of brazing material as a skin material.

(3) Symbol on using as a brazing material solely.

40

45

55

3263)
~
(118
materials
brazing
-
composition
Chemica!
2
b

	1		Ι	Ţ		Γ	т		T		<u> </u>		1
		- - -		*	*	*	*	*	*	*	*	*	=
	Others (5)	1011	0. 15 or less	"	*	"	"	*	*	*	*	*	range is s
	0 t h	indiridual Tota	0.05 or		"	"	"	"	"	"	u	*	egulated
	.,	- a		ı	1	1		0. 02~0. 20	1	1	1	1	seding the
	., F	- -	ı	0. 20 or	ı	ı	1	ı	1	ı	1	I	gapton erc
ilion 96		= 7	0.20 or less	0. 10 or less	0. 20 or less	"	*	,	0.5~2.5	,	0.20 or less	· ·	leen or any s
Chemical composition	٠	<u> </u>	ļ	ı		1	1	1	ı		0. 15 or less	l	te is fores
Chemi	2 72	×0	1	0, 05 or less	1.0 ~2.0	0.20~1.0	1.0 ~2.0	"	ı	0.05 or less	0. 15 or less	0. 10 or less	the existen
	u M		0, 10 or less	0.05 or less	0. 10 or less	"	*	"	"	0.05 or less	-	"	ss long as
	:	3	0.25 or less	0.30 or less	0.25 or less	"	"	"	"	0.30 or less	3.3~4.7 0.15 07	0.30 or less	ements were analyzed as long as the existence is foreseen or any symptom exceeding the regulated range is seen
	Ğ	છ	0.8 or less	"	"	"	"	"	"	"	"	"	
	. 0	•	 8~8.2 	9.0~11.0	9.0~10.5	9.5~11.0	11.0~13.0	9.0~10.5	6.8~ 8.2	9.0~11.0	9.3~10.7	11. 0~13. 0	Note: (5) Other e
لـــــا «		•	1313	1015	1001	4005	10N1	1011	4N43	4845	4145	1011	Note:

The lower limit of the brazing temperature listed here is a temperature of brazing material starting to flow, which is a temperature usable on tentatively brazing small-sized items such as T joint. However, the heat-exchangers are large-sized and, when brazing them industrially, the temperatures differ by about 5 to 10 °C from place to place. For this reason, the temperature to be retained on brazing the heat-exchangers is a temperature higher by at least 5 to 10 °C than this lower-limit temperature.

Namely, at a first glance, 4047 alloy and 4N04 alloy look like brazing material alloys usable in the same temperature range as the inventive brazing material, but they are different really, and the brazing at a temperature to perform using the inventive brazing material alloy has not been carried out industrially.

Although 4145 alloy is a brazing material usable in the brazing temperature range to perform using the inventive brazing material alloy, it has not been used as a brazing material for the brazing sheet used for heat-exchangers. Detailed reason will be described in the restrictive reason for the composition of the inventive brazing material, but because of that 4145 alloy differs from the inventive composition in the points of higher upper limit of Fe than the inventive brazing material alloy and of having no Zn, In and Sn added, thus being poor in the external corrosion resistance. For this reason, no merit achievable by making the brazing temperature of heat-exchangers not higher than 585 °C as described in the invention has been known.

Moreover, the invention of USP 3,994,695 relates to a brazing sheet, but the focus is placed on the development of core material alloy, allowing to clad with any brazing material. This fact is obvious from no descriptions on the brazing material in all of Examples 1 through 4 and is also obvious from no descriptions on the adding reason of alloy elements in the specification. In this invention, the description on the brazing material covers only 12 lines from page 2, line 40 to page 2, line 52, and the difference between the alloys (4343, 4145, 4047, 4045 and X4004) described as examples and the inventive brazing materials is as described above. In addition, the brazing materials described in this invention and the inventive brazing materials are different in following points.

- ① A point approving the addition of Mg is different from the present invention. If adding Mg, then the flux and Mg react during brazing, making the brazing impossible.
- ② The composition range of Zn is wider. With an alloy over 6 % of Zn, the rolling processibility is poor in the case of amounts of Si, Cu and Fe of the present invention, making the conversion to brazing sheet impossible.
- ③ No regulation of the amount of Fe. Hence, there are problems in the rolling processibility and the external corrosion resistance.

25

Only the melting temperature of brazing materials is described and there is no description on the temperature of brazing.

Here, the core material in the first of the inventive brazing sheets for aluminum alloy fin is, as described above, an aluminum alloy comprising over 0.03 wt. % and not more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Cu, over 0.6 wt. % and not more than 2.0 wt. % of Mn, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.3 wt. % of Mg, over 0.05 wt. % and not more than 2.0 wt. % of Ni, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Zr and over 0.03 wt. % and not more than 0.3 wt. % of Ti, and the balance of Al and inevitable impurities.

The role of respective addition elements above and the reason for restriction will be illustrated.

Si contributes to the improvement in strength. However, if the amount is not more than 0.03 wt. %, then no effect is obtained. The maximum addition level of Si at the conventional brazing temperature is 1 wt. % or so, but, in the invention, it is possible to increase the addition level of Si because of decreased brazing temperature. Namely, if the addition level is not more than 1.2 wt. %, Si has a strength-improving effect as high as that of conventional fin, but, if over 1.2 wt. %, a strength improvement larger than that of conventional one is possible. Besides, as the addition level of Si increases, the thermal conductivity decreases, hence it is possible to select the composition taking either property to be regarded as important between strength and conductivity into consideration upon fabricating the heat-exchangers. Besides, if the addition level of Si is over 2.5 wt. %, the core material ends up to melt even at the brazing temperature of the invention.

Fe forms the intermetallic compounds and contributes to the improvement in strength. However, if the amount is not more than 0.05 wt. %, no effect is obtained and, if over 2.0 wt. %, recrystallized grains of fin become fine and the diffusion of brazing material becomes significant to tend to collapse the fin.

Cu improves the strength. And, if the amount is not more than 0.05 wt. %, no effect is obtained and, if over 2.0 wt. %, the core material ends up to melt even at the brazing temperature of the invention.

Mn forms the fine intermetallic compounds in alloy and not only contributes to the improvement in strength, but also has an effect to prevent the recrystallized grains from becoming fine during heating for brazing. If the amount is not more than 0.6 wt. %, no effect is obtained and, if over 2.0 wt. %, the moldability of fin decreases, making the corrugating molding impossible.

Zn, In and Sn are elements to be added for providing the sacrificial anode effect to fin material. In the case of alloy added with Cu like the inventive alloy, if these elements are not added, then the electrical potential of fin becomes nobler than that of refrigerant pathway-constituting component, thus decreasing the corrosion resistance. And, with not more than 0.05 wt. % of Zn, not more than 0.002 wt. % of In and not more than 0.002 wt. % of Sn, said effect is insufficient and, if adding over 5.0 wt. % of Zn, over 0.3 wt. % of In and over 0.3 wt. % of Sn, the thermal conductivity decreases. In particular, in a range of higher addition level of Cu in the invention, addition of much Zn is needed, but, since Zn lowers the melting point of alloy, it could be added only up to about 2 wt. %.

Mg, Ni, Cr, Zr and Ti are elements to be added for further improving the strength. And, with not more than 0.03 wt. % of Mg, not more than 0.05 wt. % of Ni and not more than 0.03 wt. % of Cr, Zr and Ti, no effect is obtained. On the other hand, over 0.5 wt. % of Mg decrease the brazability and over 2.0 wt. % of Ni and over 0.3 wt. % of Cr, Zr and Ti decrease the moldability, making the corrugating molding of fin difficult. For this reason, the addition level of these elements was laid down within said ranges. As for Ti, however, the lower limit of the addition level thereof is 0.03 wt. % due to said action, but it is sometimes added for making the ingot texture fine and the lower limit at that time is made to be 0.001 wt. %.

Next, with respect to the inevitable impurities, there are B etc. to be added for making the ingot texture fine, and these elements may be contained safely if not more than 0.03 wt. %, respectively.

Moreover, the core material in the second of the inventive brazing sheets for aluminum alloy fin is, as described above, an aluminum alloy comprising over 0.03 wt. % and not more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Fe, over 0.05 wt. % and not more than 2.0 wt. % of Cu, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, or further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.6 wt. % of Mn, over 0.05 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Zr and over 0.03 wt. % and not more than 0.3 wt. % of Ti, and the balance of Al and inevitable impurities.

Regarding the role of respective elements above and the reason for restriction, Si, Fe, Cu, Zn, In and Sn being essential elements and Mg, Ni, Cr, Zr and Ti among selective elements have the same reason as the case of said inventive core material in the first of brazing sheets for fin. However, in this core material, over 0.03 wt. % and not more than 0.6 wt. % of Mn are selective for addition elements. This Mn is added for further improving the strength of said core material similarly to other selective elements, but, if the amount is not more than 0.03 wt. %, no effect is obtained and, if over 0.6 wt. %, then the thermal conductivity ends up to decrease. Moreover, the inevitable impurities in this core material alloy may also be contained safely if not more than 0.03 wt. %, respectively, similarly to the case of said first of brazing sheets for fin.

The inventive core material alloys in the first and the second of brazing sheets for fin are as described above. On the other hand, the brazing material to clad both sides thereof is made to be an aluminum alloy comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities. The cladding rate of this brazing material onto core material is around 3 to 20 % ordinarily. This composition of brazing material alloy is the same composition as the brazing material alloy of said other brazing sheets in the invention, hence the role of addition elements and the reason for restriction are also same.

Next, the production method of aluminum alloy heat-exchangers of the invention will be illustrated.

In the invention, brazing is performed at a temperature of 570 to 585 °C using said brazing materials and brazing sheets. This is because of that, if the brazing temperature is under 570 °C, some have a composition not melting into the inventive brazing material, making the brazing impossible. Also, if over 585 °C, then the thermal conductivity of fin decreases as described above and the buckling property at high temperature also decrease, leading to melting further. Besides, decreasing the brazing temperature in this way brings about effects of prolonged life of brazing furnace and improved corrosion resistance of refrigerant pathway-constituting component.

Here, while the brazing condition of the invention restricts the temperature as above, other conditions may be same as the conventional ones. Namely, flux brazing method, Nocolock brazing method using noncorrosive fluxs (fluoride type, cesium type, etc.) and the like have only to be used without particular restriction. The assembling, washing, flux coating, if need be, etc. prior to brazing may be performed as conventional. In this case, even if a flux, for example cesium type flux, may be used, the brazing is possible

within the temperature range of the invention.

Besides, in the invention, the processes after heating are not restricted particularly. Namely, as performed so far, such processes as using treatment, flux removal and painting may be carried out.

For the production of fin of the invention, an ingot is produced by semicontinuous casting. Then, it is producible through the processes of hot rolling (ply rolling) and cold rolling-annealing, or it is also producible through the processes of continuous casting rolling and cold rolling-annealing.

In following, the invention will be illustrated concretely based on the examples.

Example 1

10

25

30

35

40

45

50

Using the inventive aluminum alloy brazing sheets with three layer structure of brazing material, core material and sacrificial material used as the flat tube and the header for radiator etc., tests were conducted as follows:

Combining the core materials, brazing materials and sacrificial materials with alloy compositions shown in Tables 3 through 9, 0.25 mm thick brazing sheets with three-layer structure were fabricated by usual method. The cladding rates are 10 % for brazing material and 15 % for sacrificial material. Besides, in the sacrificial materials, Fe and Si are contained in a range of 0.01 to 0.2 wt. %, respectively, as impurity elements.

These brazing sheets were heated in N_2 gas under the temperature conditions shown in Tables 10 through 12. With the brazing sheets after heating, the tensile test and the external corrosion resistance test and internal corrosion resistance test directing the brazing material portion to outside and the sacrificial material portion to inside were conducted.

For the external corrosion resistance test, only the central portion of the surface of brazing material was exposed and other faces were all sealed, then the CASS test (JIS H8681) was conducted for 360 hours to examine the situation of generation of pitting corrosion.

For the internal corrosion resistance test, the brazing sheet with the brazing material portion masked was dipped into tap water added with 10 ppm of Cu²⁺ ions for 5 months and a cycle corrosion test of 80 °C x 8 hr and room temperature x 16 hr was conducted. Then, the depth of pitting corrosion generated on the surface of sacrificial material was determined by the focal depth method under optical microscope.

These results are shown in Tables 10 through 12.

		_	A 1	8a1.	"	"	"	"	*	"	"	"	"	"	*	*	"	,	*	,,	"	"	"	"	"
5		ificia	Mn	=			1	-	_	-	0.5		١	!	0.5	,	ı	1	_	0.5	1	1	_	1	1
		81CF	Mg	2.0	"	"	"	"	"	ı	1.0	2.0	"	ī	1.0	2.0	,,	"	_	1. 0	2.0	"	"	"	"
		ion of alloy	Sn	1	-	1	1	1	ı	1	1	1	ı	-	1	ı	_		ı	-	_	1	ł	ī	ı
10		Composition of sacrificial material alloy 94.86	l n	i	1	-	1	1	-	_	0.01	1	1	ı	0.01	ı	ı	1	1	0.01	_	1	1	1	
٠		Co BB	u Z	4.0	,,	"	"	"	"	,,	3.0	4.0	. "	,	3.0	4.0	"	"	,,	3. 0	4.0	<i>"</i>	"	"	"
			A 1	Ba1.	*	"	"	"	*	"	"	,	,,	,,	,,	,	,,	,	,,	"	″	"	"	"	"
15			e e	0.3 B	*	"	"	,	,	"	"	"	,,	"	"		,,	,,	"	"	,,	"	"	"	_
		#t. %	I i F	-	_	-	1		1	_	_	-	-	_	-	-	-	1	1	1		1	ı	_	"
20		core material alloy	N I	0.5	1	1	ı	1	82	"	,,	"	"	"	"	,,	. "	,	. "		,		,		. "
		ierial	r	9	1	1	-	23	- 0,	_		-	-	1	_	ı	1	1	1	1		-		, 	1
		re ms	נ 2	1	_		10	6 1	-	1		1	_			1				1	-	1			<u>'</u>
25		-	υ 8			15	0							-			-								
		Composition	n M	- 6	-	ci	1	-	1		!	1	-	-	-	1	_	-	-	_	1	-	1		ł
30		Compo	M	7 0.	1 1	2	" ?	3 "	4 "	"	*	"	"	"	"	"	"	"	"	"	"		"	*	"
30				3 0.	1.		I.	i		"	*	"	"	"	"	"	"	"	"	"	"	"	"	"	"
			S	ij	"	*	"	"	"	*	*	"	"	"	*	"	"	"	"	"	"	"	"	*	*
35		alloy #t. %	A l	Bal.	*	*	*	*	*	*	*	"	"	*	*	"	*		"	"	"	"	"	"	"
			Sn	'	1		Ľ	1	١	Ľ				1	'	1	1	-	ı	1	1	1		0.05	0.02
		of brazing material	-	1	1	<u>'</u>	1	ı		1	1	<u>'</u>	1	'	1	1	١	1	1	1	'	1	1	ľ	1
40		brazin	2 n	-	*	*	*	*	1.5	*	*	2, 5	4. 5	*	*	1.0	2. 5	4.0	"	"	*	2.0	4.0	1	1.0
		10 00	o O	2.0	*	*	*	*	1.2	*	*	0.7	1. 5	*	*	3.0	2, 5	3.0	"	"	6.0	3.0	*	2. 5	"
45		osition	Eri en	⇔	*	*	*	*	0.2	*	*	0.5	0.1	*	*	0.3	0.5	0, 3	"	"	0.2	"	"	*	"
		Сопроз	S.	11.0	*	*	*	*	"	"	*	11, 5	11.0	"1	"	10.5	11.0	10.0	"	"	11.0	9.0	"	11. 0	"
50	e	No. of	oraziog sheet	1	2	က	4	5	မ	7	8	6	10	11	12	13	11	15	16	11	18	19	20	21	22
	Table 3												qms	19 ;	1411	8340									

5	

Table 4

		,				_					_	_									•		
_	A L	1.0	*	*	*	*	*	*	*	*	*	*	*	*	"		*	*	,	*	*	*	
15.	M	1	,	1	ī	9.5	1	1	-1	1	ı	1	ı	1	9	=	1	1	0.00	1	1	1	,
300	M 8	2.0	*	*	1	=	2	2.0	*	*	*		1	1	1	1	0. 2	0.5	1. 5	2. 0	*		
Composition of sacrificial material alloy we 3	Sn	ī	i	ī	1	1	0.09	0.01	1	1	1	1		16 .0	1	1	1	1	-		1	1	
nposit terial	" "	1	1	1	ı	0.0	1	0.02	90.0	1	0.02	 	5	0.02	*	1	0.02	1	1		-		١,
S =	2 n	<u>-</u>	*	*	*	0	1	1	1	-i S	0.8	9		2.5	0	3.0	,	1.5	0 %	9.			
	1 V	81 i.	*	*	*	*	*	*	,	,	*	,			*		ļ					_	_
ŀ	F e	0.3	"	*		*	"			*		*						,		1.3	9. 2	0, 3	,
₹.%		-	-	1	-	-	-	-		-	 	├.	╁.	-	 	⊢	├	-	-	 	├	├	-
10 =	i.	81		-			<u> </u>	<u>'</u>	1		1			-		<u> </u>	<u> </u>		<u> </u>	0.5	1	1.	1
material alloy	٢	=	*	*	*	*	"	*	*	*	*				Ľ	*	*	*	*	_'	0.05	2	=
ea (e	2 c	1	1	1	<u>'</u>	'	1	1	1	1	<u>'</u>	<u>'</u>	1	1	1	<u>'</u>	1	Ľ	1	<u>'</u>	1	!	9
core	ပ	-	1		1	'		•	1	1		1	Ľ	Ŀ		1	!	1	'	1	1	0. 15	1
tion of	Mg	1	1	1	!	1	1	٠	1	i	1	1	1	Ŀ	1	ı	1	1	ı	ı	0. 10	,	,
Composition	Mn	1.1	"	<i>"</i> .	*	"	"	"	"	. #	*	*	*	*	,	*	*	*	*	1. 2	1.	,	."
) Š	Cu	1. 4	"	*	*	*	"	*	*	"	,	"	*	*	*	*	*	*	*	1. 5	*	"	1.3
	S i	1.3	"	*	*	*	"	"	*	"	"	"	*	,	*	*:	*	*	"	-:	i	"	"
1 loy w. %	A 1	8a l.	,	"	"	"	"	,	,	"	"	"	"	"	*	*	*	*	"	"	"	"	"
18 8	Sn	-	_	1	,	-	-	ŧ	1	1	٦	1	1	ı	1	1	1	1	ŧ	-	1	1	ſ
01167	u I	0.03	0.05	0.01	. "	"	"	i	-	1	1	1	-	1	1	1	1	1	-	_	ı	1	ı
rzzing	2 n	1.0	_	2. 5	"	"	4.0	,	"	,,	"	1 0	"	,	"	*	"	,	"	"	"	"	*
ition of brazing naterial alloy wit.	C	1.0	3.0	2. 5	"	"	1. 2	*	*	"	"	2. 5	"	"	"	"	"	"	"	2. 0	,	"	*
	Fr)	0.2	"	"	"	*	*	*	*	"	*	,	"	"	"	,	"	"	,,	0.3	,	"	•
Сошро	s i	11.0	"	,	"	"	*	*	*	*	*	,,	"	"	,,,	,,	"	"	,	*	*	*	*
No. of	sheet	23	24	22	3.8	27	82	2.9	30	31	32	33	34	35	36	37	38	39	0.7	41	43	43	3
										•1	dw e :	()	¥11	3 2 4 0	1	'							

						,				_															
	•	_	A 1	Ba l.	*	*	*	*	"	"	"	*	"	"	"	*	*	*	į	1	"	"	"	*	"
£		sacrificia wt. K	Mn	1	١	ı	-		-	1	ı	,	_	j	1	0.5	1	1	0. 5	ı		0.5	ı	1	0.5
5			Mg	2.0	"	*	"	"	"	"	*	*	"	"	1	1.0	2.0	,	0.1	2. 0	-	 0	2. 0	7	1. 0
		Composition of material allop	Sn	,	ı	1	-	4	i	_	1	1	_	-	_	-	1	1	1	1	1	ı	1	1	1
10		Composition material al	n n	ı	-	1	1	1	1	-	1	1	1	ı	1	0.01	ı	7	0.01	1	_	0.01	ı	1	0.01
		ပိ ဦး	u Z	4.0	*	."	,,	1.0	2.0	4.0	*	*	"	"	,,	3. 0	£ 0	*	3.0	4. 0	, "	3.0	4. 0	*	 0
			A 1	Bal.	"	*	*	,	"	"	*	*	,	"	"	*	*	·	,,	,	*	. "	,	*	,,
15		×	F. e	0.2	0.3	0.5	0.9	0.3	"	0. 5	0.3	0.8	0. 5	0.4	"	*	*	<u>_</u>	,	,	*	*	,	*	"
		<u>=</u>	N II	i	1	0.10	1	ı	1	1	1	1	1	1	_	1	1	7	-	1		-	-	,	-
20		core material alloy	T i		15	10	. 15	"	. 05	-	-	-	· -	10	"	,		_	,	,	"	"	"	,	01
		terial	Zr	. 15	" O.	. 10 0.	- 0	1	- 0.	-	1	1	0.15	_ 0.	_	1	-		-	1	1	1	1		; ;
		ore ma	Cr	- G	-	. 10 0.		-	,	-	-	80.	-	_	1	1	1	1.		1	1	-	1	,	1
25			Mg	. 15	02.	. 9.	. 1	ı			22	- 0	1	1			-		-	1	1		1		1
		Composition of	Mn	1. [0.	1. 3 0.	1. 4	1.0	0.3	0.5	0.6	0.5 0.	0.3	_	0.4		,	,,	"		*	*			,,	*
30		Comp	Cu	1. 5	1. 2	1. 3	9.9	-	8 .0	*	*	,			*	,	"	"	,	,	,		*	,	
				1. 5	."	,	1. 3		*	1.	3	,	,	- i-	_		,	"	_	,	_	*		"	
		_ ><	1 S	81.	*	,	,		,		*	*		*	Į,		"	"		*				,,	
35		tion of brazing material alloy wt. %	c	8	1	_	1	1	1	,	 	 	1	-		1	-	1	-						1
		terial	S	-	· •	· -		<u> </u>	-	1	-	<u> </u>	<u> </u>	<u> </u>	'		l:		-	-	-	-	=	-	-
40		108 01	n I	-	-	-	 	-	-	-		-	-	2		-	5	!	<u> </u>	-	<u>'</u>	<u>'</u>	0	"	*
		i braz	2 n	-	*		*	*	*	*	*	*		2	*	*	5.	"	*	3.0	*	*	5.2	"	*
		0 00 0	ပ	3	*	*	*	*	*	*	*	*	*	2 1	*	*		*	*	6.2	*	*	2 2.	"	*
45		Compos i	íe.	0	-	_		<u> </u>	<u> </u>	_		*		=	-	-	=		*	0	*	*	0		*
			တ	≓	*	*	*	"	*	*	*	*	*	*	*	*	*	*		=	*	*	트	"	*
	rs.	No. 01	brazing sheet	\$\$	\$	4.1	æ	6.8	50	22	52	53	35	55	56	5.1	88	59	2	126	62	53	19	65	99 .
50	able :	ž		-	l	I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	•	das	19 :	1 1	DAED	L	<u> </u>	<u></u>	_	L_	l	<u> </u>	L	_

	$\overline{}$	1	$\overline{}$	т-	_	7	_		1	,	_			_	_			· · · · ·					
_	A L	25	*	*	*	*	*	*	*	*	*	*	*	1	*	*	*		*	*	*	*	,
sterificial	Mn	ŀ	1	,	1	1	1	ı	ı	1	ı	ı	ı	ı	1	1	7	1	ī	1	1	1	1
25.5	≥	2.0	*		*	*	*	*	*	*	*	*	1	2.0	*	*	*	*	*	*	*		
ion of	Sn	1	1	ı	,	1	,	1	1	1	,	1	1	ļ,	 -	1.	1			1	-		١,
Composition of	r.	1	1	1	1	1	1	ı	1	1	ī	-	1	-		1	1	1	1	,		-	-
ပို့ ရှိ	2 n	9	*	*	*	*	*	*	*		*	*	2. 0	0.		*	ž	*					
	A 1	84 .	*	,	*	*	-	_	*	*		*	,	,							,		
·	٥	0, 2 8	0.6	0. 5		,	,,	0.3	,		,	*	_	"		_					,		
¶1, %	. i.	0. 4	ı	1	1		-	1		-	-	1	-		-	1	-			1			
2 log	Z :-		0.5	1	0.15		0. 10	53	,	1			0. 18				 - -		,	'		,	,
Composition of core material alloy	r T	,	j 1	-	- 0	1	<i>э</i>	<i>6</i>	-		-	0, 15	G							1			
2 a B	2 1	-	_	1	1	-		1	-	<u>'</u>	=	е і І	1		'	'	,	-		1			-
) o .	ν Ο	1	1	1	ı	0. 15	1	'	•	22	9	1	-	-	-	-	-			├-	1	-	<u>'</u>
s Liga	Z Z	~	+	l. 3	1.1	" 0.	1. 2	- 6	1:1	9	<u> </u>		<u> </u>	-			<u> </u>	-	<u>'</u>				-
Compo	n M n	% 0	5 0.				1. 5 1.	7 0.	3	1. 2 "	*	1. 5 "	1. 3 "	*	* .	*	*	*	*	*	*	*	"
1	0	1. 5 0.	1. 8 1.	1. 9 0.	1.8	"		8 0.	0	-	<i>"</i>	0	-	*	*	*	*	*	*	*	*	"	"
	S	-				"	".	6	ľ	"	e;	_; 	0.	*	*	*		*	"	*	*	"	"
allor at. %	Ч	8 8 1	"	"	"	"	"	"	"	"	*	"	"	*	"	*	"	*	"	*	*	"	"
Ē	S	_	1	ı	1	1	1	ŀ	1	-	_	-	-	'	1	1	1	'	1	1	1	0.05	0.02
100	I n	1	-	-	1	1	1	1	1	١	1	1	1	_	1	1	_	ı	-	ľ	<u>'</u>	'	1
brazi	2 n	0 4. ("	"	"	*	*	"	"	"	"	"	1. \$	5 .2	4.5	-:	2. 5	-	"	2.0	3	١.	1.0
Composition of brazing material alloy et.	o o	2.	"	*.	*	"	*	"	*	"	"	"	1.2	0,7	1. 5	3.0	2.5	3.0	6.0	3.0	*	2. 5	*
posi 2.1	<u>г</u> ч	0.3	"	*	"	*	*	"	*	"	"	*	0.2	0.5	0.1	0.3	0.5	9.3	0.2	″	"	*	•
Con	S i	11.0	*	*	*	*	*	"	`	"	,,	<u>"</u>	"	11. \$	11.0	10. 5	11. 0	10.0	11.0	9.0	"	11.0	*
No. 01	sheet	67	89	69	2	11	72	73	74	75	16	11	18	19	80	81	82	83	84	85	86	8.7	≈
<u></u>		L								9 [(ut		411	9 1 0	1								

								_		_															
		_	A 1	Bal.	*	*	*	*	"	*	*	*	<i>"</i>	*	"	*	*	*	*	*	*	*	*	*	*
5		sacrificial #1, %	Mn	-	-	,	_	0.5	١	1	1	i	-	ı	_	i	0.7	1.1	1	1	0.8	1	1	1	1
J		\$20°	Mg	2.0	*	*	1	1. 0	1. 5	2. 0	*	*	"	"	į	ı	ı	1	2.0	0.5	1. 5	2.0	"	,,	"
		Composition of material alloy	Sn	ı	1	1	_	-	0.03	0.01	1	_	+	1	-	0.01	-	1	1	1	ſ	1	1	1	1
10		omposi Leria	l n	1	-	ı	ı	0.01	-	0.02	0.08	ı	0.02	+	0.01	0.02	"		0.02	_	١	_	-	ı	1
		ပြို	u Z	1.0	*	2.0	4.0	3.0	-	_	1	1. 5	0.8	3.0	0.8	2. 5	1.0	3.0	"	4. 5	5.0	4.0	"	,	"
			A 1	81.	*	*	,,	,,	,,	"	"	"	"	"	"	"		"	"	"	"	"	"	,,	"
15		×.	F.	0.	*	*	,	"	"	"	"	"	"	"	"	"	"	"	*	"	"	0.1	0.2	0.3	″
		# F	N i	1	,	1	ı	1	1	1	1	1	1	1	1	1	-	1	1	_	_	0.5	1	1	
20		material alloy	T i	9. 18	*	*	,,	"	,,	,,	"	"	,	"	"	"	"	"	į	"	"	-	0.05	0.02	01.0
		ıteria	2 c	1	-	1	1	-	-	1	_	-	1	-	1	-	-	1	 -	-	-	1	1	Ι	01.0
		COTEB	Cr	1	1	1	ı	1	_	-	_	1	1	1	1	1	-	1	i	ı	1	1	ı	0. 15	
25		Composition of core	₩ ₩	,	1	1	ı	-	1	ı	-	1	1	1	 -	1	1	1	1	1	-	,	0. 10	1	1
		positi	Z u		*	"	"	*		*	*	*	*	*	*	*	,	*	*	*	*	1. 2	1.1	"	
30		00 00	n n	1. 3	"	"				*	*	*	*	*	*	,	"	*	*	*	*	1.5	,	,	-
			S i	9.3	,	"	"	*	*	*	*	,	*	*	*	*	*	*	*	*	*	=	0.7	9.0	ļ
		107 #1. %	1 V	Bal.	,	,,	"	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	ì.	,,	-
35		-	Sn	1	1	1	1	1	1	1	1	1		,	1	1	,	1	1	ı	,	,	1	1	١,
		material	г г	0.03	0.05	0.01	,	·	1		1	1	1	1	1	1	1.	1	1	1	1	,	1	1	
40			7 u Z	- -	1	2. 5	*	,	4.0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	,
		10	J C	- -:		2. 5	*	*	1. 2	*	*	*	*	2. 5	*	*	*	*	*	*	*	2.0	*		-
		sition of brazing	(E.	0. 2	*	*	*	*	*	*	*	į		*	*	*	*	*	*	*	*	0.3	*	į	
45		Compo	S i	==	*	*	*	*	*	*	*	*	*		*	,	*	*	*	*	*	*	*	*	,
		-	<u> </u>				2		_	2	<u>_</u>			5.		_	2		_	2	_	-		_	_
50	Table 7	No. of	Sheet	2	96	<u> </u>	92	23	26	£	96	97	86	g		Ξ	102	<u>e</u>	Ē	55	9	101	108	501	-
	Tab												[dm	19	9 4 1	U D A	0 [

...

		A 1	841.	"	"	"	"	"	"	"	"	"	"	,,	*	"	,	*	*
	sacrificial vt. %	Mn	1	1	ı	-	1	ı	1	1	1	١	0.5	1	0.5	1	1	1	1
5		Μg	2.0	"	"	"	*	*	,	"	,,	-	1.0	2.0	1.0	2.0	*	*	*
į	ion of alloy	Sn	_	1	-	ι	ı	1	ı	_	1	1	1	1	1	+	1	1	1
10	Composition of material alloy	Ē	1	1	1	_	1	1	ι	1	_	1	0.01	ı	0.01	ı	1	-	ı
	္မိ	u Z	4.0	*	*	"	-:	4. 0	*	"	*	*	3.0	0 ;	3.0	4.0	*	.*	*
İ		-	Bai.	*	,	"	*	*	,	,	*	,	,	į	į	,	*	*	,
15	350	e e	0.2	0.3	0.2	0.8	0.9	0. 5	0.3	9. 5	9. 4	,	"	*	,,	,,	,,	0. 2	9. 6
	; ₩	ï.		i	0. 10	1	_	i	1	1	ï	_	ı	,	ı	1	1	7.	1
20	core material alloy	T i	1	0.15	0.01	0.03	0.15	1	1	1	0. 10	*	"	*	,,	"	,,	-	0.05
-	ateria	2 r	0.15	"	0.10		1	1	t	0.15	ı	ı	-	1	i	-	ı	1	i
	core m	C r	1	ı	0. 10	1	-	ı	ı	1	1	1	1	1	1	1	ı	i	ı
25	jo no	Mg	0.15	9. 20	"	1			0. 20	1	ι	ı	1	1	ı	1	ı	,	1
	Composition of	Мп	1.1	1.3	1, 4	0.8	1.0	0.6	0.5	3. 3	0.4	"	*	,,	"	"	"	e:	0.4
30	Com	C u	1. \$	1. 2	l. 3	9 .0	1. 2	9 .0	0.7	0.8	"	"	,	*		"	"	*	1. 5
		S i	0.9	9 .0	0.7	,,	0.8	9 .0	"	"	"	,,	"	,,	"	"	"	8 ;	0.7
	107 W. 1. %	A 1	Ba I.	"	"	*	"	"	"	"	,,	"	"	,,	"	"	"	*	"
35	1 1 1 1 1 W	Sn	ı	1	1	1	_	_	1	1	-	1	1	٦	-	1	_	ı	-
	mater	l n	1	,	ı	1	ı	1	1	1	_	ı	-	_	_	1	0.01	ı	-
40	azing	u 2	 	*	*		*	ì,		*	1. 5	"	"	4.5	"	0 7	2. 5	4.0	"
•	q jo	υΩ	2.0		*	*	*	*	*	*	1. 2	"	"	1. 5	"	 0 .:	2. 5	2.0	"
	Composition of brazing material alloy wt.	Fe	0.3	*	*	*	*		*	*	0.2	"	"	0, 1	"	0.3	0. 2	9.3	"
4 5	Comp	S i	<u></u>	*	,	*	*	*	*	į	"	"	",	"	"	10.0	11.0	. "	"
	~ .	*		~	_		٦	ی		_	o,	0	1	2	3	J		۰	1

55

			·									_			
		A I	841.	,	*	*		*	*	*	,	*	"	*	*
	Ticia	Mn		1	1	1	1	١	1	1	ı	1	ı	1	,
5	Sterif	Mg	2.0	3.0	2.0	*	*	*	,	3.0	2.0	*	*	*	1
	0 0 0	Sn	1	1	i	ī	1	,	1	1	ı	ī	ı	1	1
10	Composition of sacrificial material allor wt. %	<u>=</u>	1	1	,		1	,	1	1	1	1	1	1	,
	J ë	u Z	- -	6.5	0.		*	*	*	6.5	- 0	,	*	*	=
		A 1	811.	*	"	*	*	*	*	*	*	*	*	,	*
15	× .	F.J.	0. 4	*	0.3	*	*	*	4 .0	*	60,	*	*	*	9.
	07 W.L.	i.	,	1	1	1	1	1	1	ı	1	1	1	'	ı
20	Composition of core material alloy	T i	_	0. 10	0.18	*	*	"	1	0. 10	0.18	*	*	"	0.01
	Baleri	2 г	-	1	1	١	,	1	1	-	1	1	ı	ı	1
	9163	Cr	-	_	-	1	١	ı	1	ı	1	1	1	,	1
25	ion of	Mg	-	-	1	1	ı	-	-	ı	1	ı	,	1	1
	mposi?	Mn	1,1	"	"	."	"	"	"	"	*	*	*	"	"
30	్రి	n O	3.0	1. 4	1. 3	"	"	"	ı	3.0	1.4	"	"	"	0.1
		S i	3.0	0.8	*	"	"	"	3.0	1:	1.3	"	"	"	0.3
	11107 W. X	A 1	Bal.	"	"	"	"	"	"	*	"	"	"	"	"
35	ii.	Sn	-	ı	ı	ı	1	ı	1	-	1	-	-	1	ı
	g mate	l n	1	1	1	ı	1	-	-	-	1	-	1	1	1
40	braz i ny	Z n	4.0	"	١	0.02	1	8.0	4.0		-	0.03	1	60 60	1
	- 0 UO	Cu	2.0	"	0 ;	2.0	0.05	9. 0	2.0	"	4.0	2.0	0.05	9.0	ı
	Composition of brazing material	F e	0.3	"	0.6	0.5	0.7	0, 3	"	"	0, 6	0.5	0.1	9.3	.
45	Com	S i	11.0	"	*	6.0	& %	12.0	11.0	"	"	6.0	9.8	12.0	e0 0;
		4 t 1 1 8	133	134	135	136	137	138	139	011	141	142	143	=	145

ı

55

50

Siquera sviletsquol

Tabel 10

						· · · · · · · · · · · · · · · · · · ·			·	,		
			Heating		External	Internal			Heating		Externat	Internal
		u	condition		corrosion	corresion			condition		corrosion	corrosion
5		No. of		Tensile	resistance Max. depth	resistance Ver death		No. of		Censile		resistance
		sheet	Grazing	strengta	max. depth of pilling	Max. depth of pilling		brazing	brazing	strength	Max, depth	Max, depth
		*4661	°C		cottasion	cortosion		sheet	°c		of pitting	of pitting
			(×5min.)	MPa	μm	μm			(×5min.)	MPa	μm corrosion	corresion µm
	П	1	580	240	80	60		29	580	240	70	80
10		2	" .	250	"	70		30	"	"	"	60
		3	"	"	"	"		31	"	"	. "	<i>"</i>
		4	"	"	"	"		32	"	"		70
		5	"	"	"	"		33	"	250	80	60
15		6	"	"	70	"		34	"	220	"	80
		7	"	230	•"	"		35	"	~	~	50
		8	"	240	"	"		36	"	"	"	70
		9	"	250	60	"		37	"	230	"	"
20	-	10	"	"	100	"		38	"	"	. "	. "
		11	"	230	80	"		39	"	240	"	"
,	~	12	"	240 .		"		40	"	250	"	"
	erample	13	"	250	70	"	eramp	41	"	"	"	"
25		14	"	"	100	"		42	"	"	"	"
	arealire	15		"	80	"	nrenlire	43	"	"	"	"
	10.0	16	"	230	"	"	=	44	"	"		"
	_	17	"	240	"	"	-	45	"	. "	<i>"</i>	"
30		18	"	250	"	"		46	."	"	"	"
30		19	"			"		47		"		"
		20	"		"	"		48	"	230		
		21	"		100			49		160	"	
		22	"	"	"	"		50		170		
35		23	"	"	90	"		51		190		
			"	"	"	"		52		200		
		25	"			"	ł	53	"	~		
		27	"	230	"	"		54				
40		28	"	Z4 U			ł	55		"	70	
- 1		28			70	80		56		180	"	

50

Tabel 11

			11				_	r	r			
			ileating condition		External	Internal	i i		Heating	!	External	Internal
	1	No. of		Tensile	resistance	corrosion resistance	ļ	No. 01	condition for		corrosion	corrosion
5		brazing			Max. depth	Max. depth	j			Tensile strength	resistance Max, depth	resistance
		sheet			of pitting	of pilling	l	sheet	oracing.	, creugin	of pitting	Max. depth of pitting
			℃		corrosion	corrosion	Į		rc ·		corrosion	corrosion
			(×5min.)	MPa	μm	μm	1	Ì	(×5min.)	MPa	μm	μm
		57	580	190	70	70		85	580	220	80	70
10		58	".	200	80	"		86	"	"	"	"
		59	"	180	"	"		87	"	200	90	"
		60	"	190		"		88	"	"	70	"
		61	"	200	70	"		89	"	"	90	"
15		62	"	180	"	"		90	"	220	80	"
		63	"	190	″	"		91	"	"	"	80
		64	"	200	80	"		92	"	200	"	70
		65		180	. "	"		93	"	220	"	"
20		66	"	190	"	"	1	94	575	210	"	80
		67		200	"	"	l	95	"	"	"	90
	=	68	575	220	"	"	<u></u>	96		"	"	70
	example	69		250	"	"	example	97	"	"	"	80
25		70		"		"		98	"	"	"	"
	larentire	71	"	260		"	Inventive	99	580	220	70	"
	nre	72	"	"		"	nrei	100	"	200	"	90
		73	\$80	210		"	1	101	"	"	"	80
30		74	"	220		70 -		102	" .	"	"	"
30		75		230		80		103	"	"	"	"
		76		220	· . "	″		104	"	210	"	70
		11		"	70			105	"	"	"	"
		78	"	200	80	90		106	"	220		
35		79		220		70		107	"	"	"	"
		80		"	90	"		108	"	"	"	80
ı		81	"	"	80	"		109	~			70
,		82		"	90			110		"		"
40		83		-"	70	<i>"</i>		111		"		80
1		01						112		"		"

Tabel 12

5	-	sheet 113	brazing °C (×5min.) 580	Tensile strength MPa 220	External corrosion resistance Max. depth of pitting corrosion \$\mu\$ m	Internal corrosion resistance Max, depth of pitting corrosion µm 80		sheet 133	brazing ℃ (×5min.) 575	Tensile strength MPa Unmeasu	of pitting corrosion μm rabe due to me	
10		114	<i>"</i> .	190	"	50		134	"	·	rabe due to me	lting
		115	"	220	"	70		135	580	250	*	70
		116	"	190	"	60		136	600	Unmeaso	rabe due to me	lting
		117	"	200	"	"	ä	137	"	Unmeasu	rabe due to me	iting
15		118	"	190	"	"	erample	- 138	Vaproduci	ibe due l	o cracking on	the way of
		119	"	"	90	"	J		rolling			
	40	120	"	170	<i>"</i>	"	Comparativ	139	575	Unmeasu	rabe due to me	lling
	example	121	"	180	"	") t du	140	"	Unmersu	tabe due lo me	lting
20	=	122	<i>''</i>	190	"	70	S	141	580	250	*	70
20	entire	123	"	180	80	60	l	142	600	Uhmeasu	rabe due to me	lting
	9 2	124	"	190	70	70		143	"	Unaessa	rabe due to me	Iting
	=	125	"	"	"	"		144	Unproduc	ibe due t	o cracking on	the way of
	İ	126	"	180	80	"	l	'''	rolling			
25		127	575	200	90	90	=	145	600	130	120	140
		128	"	230	"	"	<u>.</u>	'''	***	100	100	110
		129	580	"	60	70	Conventional example	146	"	160	Generation	*
		130	"	"	100	"	33	'''		100	of blistering	
30	l	131	"	"	"	. "	*:	General	ion of pi	ercing pi	tting corrosio	A
		132	"	240	"	"	1					

As evident from Tables 10 through 12, the brazing sheets of the inventive examples show no melting during brazing, have high strength, and are excellent also in the corrosion resistance.

Whereas, in the comparative examples 133, 134, 139 and 140, wherein the core material or the sacrificial material is out of the range of the invention, they ended up to melt despite heating at 575 °C for brazing. In the comparative examples 135 and 141, wherein Zn, In and Sn are not contained in the brazing material, the external corrosion resistance decreased. In the comparative examples 136, 137, 142 and 143, wherein the brazing material is out of the range of the invention, heating was performed at 600 °C because of the brazing material not melting at 585 °C or lower, but the core material ended up to melt. In the comparative examples 138 and 144, wherein Cu and Zn in the brazing material are added more than those within the range of the invention, cracking ended to occur during rolling, making it impossible to produce the brazing sheet.

In the conventional example 145, wherein usual plate thickness of 0.4 mm was thinned, the strength and the corrosion resistance are poor over the brazing sheets of the inventive examples. In the conventional example 146, which is an example containing much Cu in the core material, the corrosion resistance is poor.

Example 2

40

45

Aluminum alloy fin materials with alloy compositions shown in Table 13 and tube material and header materials with three-layer structure of brazing material, core material and sacrificial material shown in Table 14 were combined as in Table 15 to assemble the radiators shown in Fig. 1. Besides, for the fin materials, 0.06 mm thick bare materials with alloy compositions shown in Table 13 were used, and, for tee tube materials, 0.3 mm thick coil-shaped brazing sheets cladded one side of core material with brazing material in a thickness of 10 % and other side with sacrificial material in a thickness of 15 % were produced by usual method. These coil-shaped brazing sheets were slitted adjusting to the size of seam welded pipe to

make 35.0 mm wide strip materials. These strip materials were processed to 16.0 mm wide, 2.2 mm thick seam welded pipes for fluid-passing pipe using production device of seam welded pipe. Moreover, 1.0 mm thick coil-shaped brazing sheets with the same constitution were slitted to a width of 60 mm to make strip materials for the header material.

Onto the radiators assembled, a 10 % concentration flux liquor with 3 % cesium type flux mixed with potassium fluoride type flux was coated, which was heated in N_2 gas under the conditions shown in Table 15 for brazing. The combinations of materials with heating conditions are shown in Table 15.

Of the radiators thus obtained, the collapse state of fin and tube and the formation of fillet were investigated by the observation of external appearance. Moreover, with the radiators brazed exactly, the thermal efficiency was investigated. The thermal efficiency was measured according to JIS D1618 (Test method of air conditioner for automobiles) and expressed respectively as an improvement percentage to the thermal efficiency of conventional radiator.

Moreover, the results of tensile test conducted with the tube materials after heating for brazing were also put down combiningly in Table 15..

Tabel 13

Fin material			Allo	y comp	oosition v	∕ t. %		
	Si	Cu	Mn	Zn	Zr	Ti	Fe	Al
Α	0.2	0.05	1.1	1.0	-	0.01	0.5	Bal.
В	1.10	-	-	#	0.15	*	0.65	"

Table 14

20

25

50

30	Tube material leader			ion of alloy			. Co	mposit	ion of	core	maleri	al ali	oj wt	. %	sacri	sition ficial ial al	
	naterial	Si	Fe	Сu	Ζn	Λ١	Si	Cu	Мп	Мg	Ζr	Τi	Гe	۸ ۱	Ζn	Мg	Λ١
35	а	11. 9	0. 4	1. 5	1. 5	Bal.	0. 9	1. 2	1. 1	0. 15	_	0. 11	0. 3	Bal.	4. 9	2. 0	Bal.
	b	"	0. 2	2. 5	4. 0	"	1. 0	0. 8	"	-	_	0, 18	"	"	"	"	"
	С	"	"	3. 5	3. 5	"	0.8	1. \$	0. 3	0. 15	_	0. 11	"	"	"	_	"
40	(l	9. 8	0. 6		-	"	0. 3	0. 15	1. 1	-	-	0. 01	0. 5	"	1. 0	-	"
	c	"	"	-	-	"	0. 8	0. 5	"	0. 15	0. 15	0. 10	~	"	4. 0	2. 0	"

Table 15

		Combi	nation	Reating	ļ			Tensile
	No.	Fin mterial	Tube material Header material	temp, for brazing °C (×5min.)	Location of collapse generation	Brazability	Thermal efficiency	strength of tube after heating for brazing MPa
Inventive method	(D)	٨	a .	580	None	Good	0.5% More increase than ①	220
me t n v d	2	В	"	"	"	"	2.5% More increase than ①	"
	3	٨	ь	"	"	"	0. 5% More increase than ①	200
	(1)	В	"	"	"	"	2.5% More increase than ①	"
	(5)	۸	c	"	"	"	0.5% More increase than ①	220
	0	В	"	"	- "	"	2.5% More increase than ①	~
Conventional method	7	Λ	d	600	"	"	Standard	130
Comparative method	8	В	"	"	Fin	"	2. 0% More decrease than ⑦	"
	9	Λ	e	"	Tube	"	Vamensurable	

[#] With a tube (1), measurement of thermal efficiency and tensile test could not be carried out because of melting by heating for brazing.

Moreover, aluminum alloy fins shown in Table 13 and tube materials and header materials with three-layer structure shown in Table 16 were combined to assemble the radiators shown in Fig. 1. Besides, the constitution of these fin materials, tube materials and header materials was made to be same as above.

And, onto the radiators assembled, the flux was coated similarly to above, which was heated in N_2 gas under the conditions shown in Table 17. Then, the observation of external appearance and the measurement of thermal efficiency were conducted and the results are put down in Table 17. Also, the results of tensile test of tube materials after heating for brazing are put down in Table 17.

Table 16

Tube material Header				brazi wl. %		Co	mposit	ion ol	core	maleri	al all	oy wi	. X	sacri	sition ficial ial al	
naterial	S i	Fe	Cu	Ζn	Λ1	Si	Cu	Мп	Мg	Ζr	T i	Fе	ΑI	Ζn	Мg	A 1
f	11. 0	0. 4	1. 5	1. 5	Bal.	1. 4	0. 8	1. 1	0. 15	_	0. 11	0. 5	Bal.	4. 0	2. 0	Bal.
g	9. 8	_	-	-	"	0. 3	0. 15	"	_	-	0. 01	"	"	1. 0	_	"
h	"	_	_		"	1. 6	0. 5	"	0. 15	0. 15	0. 10	"	"	4. 0	2. 0	"

Table 17

		Combi	nation	Heating temp, for	Location			Tensile strength of
	No.	719	Tube material Header material	brazing C (×5min.)	of collapse generation	Brazability	Thermal efficiency	tube after heating for brazing MPa
Inventive	0	٨	f	580	None	Good	0.5% More Increase than ②	240
method	0	В	"	"	. "	"	2.5% More increase than (2)	"
Conventiona method	1 12	٨	g	600	"	"	Standard	130
Comparative	13)	В	"	"	Fin	74	2.0% More decrease than 12	"
	100	Λ	h	"	Tabe	"	Unmeasurable	

* With a tube (12), measurement of thermal efficiency and tensile test could not be carried out because of melting by healing for brazing.

As evident from Tables 15 and 17, the radiators by the inventive method are being produced without causing the collapse of fin, have high strength after heating, and are excellent also in the thermal efficiency.

Example 3

Combining brazing materials and core materials with alloy compositions shown in Tables 18 through 21, 0.4 mm thick brazing sheets were fabricated by usual method. The cladding rate of brazing material is 10 % on both sides of brazing sheet.

These brazing sheets were heated in N_2 gas under the conditions shown in Tables 22 and 23. With the brazing sheets after heating, the tensile test and the corrosion resistance test were conducted.

For the corrosion resistance test, only the central portion of the surface of brazing material was exposed and other faces were all sealed, then the CASS test (JIS H8681) was conducted for 360 hours to examine the situation of generation of pitting corrosion.

These results are shown in Tables 22 and 23.

50

EP 0 637 481 A1

			A 1	Bal.	*	*	*	*	*	*	*	*		*	*	*	*	*	"	*	*	*	*	*
5			Eri O	0.3	*	*	*	*	*	*	*	*	<i>"</i>	"	*	*	*	0.2	0.3	0. 2	6.0	0.5	0.3	9. 5
- .		#ł. %	N i	1	1	1	1	1	1	1	ı	1	1	1	ı	1	1	ı	1	0. 10	1	1	1	1
10		alloy	T i	0.05	1		0. 18	*	*	*	*	*	"	*	*	*	*	0.05	0.11	0.01	0. 15	1	ı	1
		material	1 Z	-	1	0.15	-	1	1	1	'	1	1	1	1	ı	1	-	0.10	*	-	1	ı	0. 15
15		core ma	C r	1	1	1	1	1	ı	1	1	ı	1	1	1	1	ī	1	ı	0. 10	1	1	Ţ	1
		jo	Mg	1	7	ı	1	ı	1	1	ı	ı	1	1	1	1	ı	0.10	i	0.20	ı	1	0. 20	ı
20		Composition	Mn	0.9	 i	"	*	"	"	*	"	"	"	"	"	*	"	"	"	1.4	i. 0	0.6	0.5	0.3
		Comp	Cu	0.7	1. 4	1. 3	1. 4	"	"	"	"	"	"	"	"	"	"	1. 5	1.3	"	0.9	0.8	"	"
25			S i	1. 3	"	"	"	"	"	"	"	"	"	"	"	"	"	"	*	1. 5	1. 3	1. 4	1. 3	"
		10y #t. %	A l	Bal.	"	"	"	"	"	"	<i>"</i>	"	*	*	*	"	"	"	"	"	"	"	"	"
30		=	ਜ਼ ਹ	0.3	"	"	0, 2	0.5	0.1	0.5	0.3	0.2	*	*	*	"	"	 	*	*	<i>"</i>	"	"	"
		material	Sn	1	-	-	ı	1	ı	1	١	-	ı	0.05	0.03	1	١	1	1	١	ı	1	1	١
35		brazing	I n	1	1	1	1	1	١	1	1	1	1	ı	1	0.05	0.01	1	ı	١	_			-
		- o	2 n	4.0	"	"	1. 5	2.5	4.5	2. 5	4.0	"	*	1	1.0		2.5	- - -	*	*	<i>"</i>	"	"	"
40		Composition	Cu	2.0	"	"	1. 2	0.7	1. 5	2.5	3.0	6.0	3.0	2, 5	*	3.0	2. 5	2.0	*	*	"	"	"	"
40	• •	Compo	S i	11.0	*	*	"	11. 5	11.0	*	10.0	11.0	6. 6.	11.0	*	"	"	*	*	*	".	"	"	*
45	Tabole 18	No. of	orazing sheet	1	2	က	4	5	မ	7	∞	6	2	=	12	13	14	15	16	11	18	18	20	11
	Tabo											e f q	O C I	9 4	i Ja:	l n v								

EP 0 637 481 A1

		Г 1										_												
			A l	Bal.	*	*	*	*	*	*	"	*	*	*	"	*	*	"	*	*	*	"	"	*
5			[ተ ብ	9. 4	0.6	9. 5	*	*	"	0.3	"	"	"	"	"	"	"	"	"	,,	"	"	"	*
		₩t. %	N i	1		1	1	ı	ı	1	_	_	1	_	_	ī	-	1	-	-	l'	ı	ı	ı
10		a 107	Тi	0.10	0.05	1	0.15	"	0.10	0.05			_		0.18	"	"	"	,,	*	"	"	"	*
		material	Z r	ş	_	ı	1	1		-	1	_	_	0.15	1	-	1	1	1	-	_	_	_	1
15		core ma	C r	- '	1	1	1	ı	1	ı	1	1	0.10	ı	1	-	ï	i	1	ı	1	ı	1	
		70	Μg	_	1	1	ı	0.15	_	I	-	0.15	1	1	1	1	i	ı	1	-	1	-	1	
20		Composition	Мn	0.4	"	1. 3	1.1	"	1. 2	0.9	1.1	"	"	"	"	"	"	"	"	"	"	"	"	*
		Comp	O a	9.8	1. 5	0.8	″	"	1. 5	0.7	1.3	1, 2	"	1.5	1.3	"	"	"	"	"	"	"	"	*
25			S i	1. 4	1.8	1.9	1.8	"	"	8 '0	1.0	"	9.8	1, 0	0.8	"	"	"	"	"	"	"	"	*
		log 141. %	A l	Bal.	″	"	"	"	"	"	"	"	"	"	"	"	<i>""</i>	"	"	"	"	"	"	*
30		[1]	ፀ	0.2	0.3	"	"	"	"	"	"	"	"	"	0.2	0.5	0. 1.	0, 3	0.5	0.3	0.2	"	"	*
		materia	Sn	ı	1	1	1	ı	1	ı	1	1	1	ı	ı	ı	ı	1	ì	1	1	1	1	0.05
35		brazing	In	0.01	1	ı	1	1	ı	1	1	1	1	1	1	1	_	-	_	_	1	_	i	1
) O	2 n	2. 5	4.0	"	"	"	"	"	"	"	"	"	1. 5	2. 5	4.5	1, 0	2. 5	4.0	"	2.0	4.0	-
40		Composition	C u	2. 5	2.0	"	"	<i>"</i>	"	"	"	"	"	"	1. 2	0.7	1. 5	3.0	2. 5	3.0	6. 0	3.0	".	2. 5
40		Compo	S i	11.0	*	"	*	"	*	"	*	"	"	"	"	11. 5	11.0	10. 5	11.0	10.0	11.0	9. 0	"	11.0
45	Tabole 19	No. of	sheet	2.2	23	24	25	98	12	8.2	53	30	31	32	33	3.4	35	36	37	38	39	40	41	42
	Tabo			laventive example												va Í								

EP 0 637 481 A1

			A 1	Bal.	*	*	*	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
5			(Fri	0.3	*	*	*	0.1	0.2	0.3	"	0.2	0, 3	0.2	0.8	0.9	0.5	0.3	0.8	0.5	0.4	"	"	"
		₩t. %	Z	ı	1	١	1	0.5	1	1	1	1	-	0.10	-		1	-		-	ı	-	1	1
10		alloy	T i	0. 18	"	"	"	1	0.05	0.02	0.10	_	0.15	0.01	0.03	0.15	1	ı	-	1	0.10	"	"	"
		material	2 r	ı	ı	1	ı	ı	ı	-	0.10	0.15	"	0.10	_		-	1	1	0.15	1	ı	1	ı
15		core ma	C r	1	1	ł	ı	1	1	0.15	ı	1	1	0.10	1	ı	1	1	0.08	_	1	i	f	i
		- 0	Mg	1	ı	i	1	l	0.10		1	0.15	0.20	"	_	-	_	0.20	1	1	-	1	ı	1
20		Composition	Мn	 	*	,	*	1. 2	1.1	"	"	″	1. 3	1. 4	8 '0	1.0	0.6	0.5	0.3	"	0.4	"	"	"
		Сошр	Cu	1. 3	*	*	*	1. 5	"	"	l. 3	1. 5	1. 2	1. 3	0.6	1. 2	0.8	0.7	0.8	"	"	"	"	"
25			S i	0.8	"	*	*	1.1	0.7	0.9	"	"	0.8	0.1	"	9.8	0.9	"	"	0.8	0.9	"	"	"
		log 1008 1108	A 1	8a1.	"	. "	*	*	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
30		7	FT 6	0.2	"	*	"	0.3	"	"	"	"	"	"	<i>"</i>	"	"	"	"	"	0.2	0.1	0.3	0.2
		materia	Sn	0.02	1	1	Į	1	1	٦	1	ı	1	1	ı	1	ı		ı	-	1	1	1	ı
35		brazing	I n	ı	0.03	0.05	0.01	1	i	1	1	1	1	1	ŀ	ı	ı	1	1	ı	1	1	1	0.01
		J 0	2 n	1.0	<i>"</i>	1	2. 5	4.0	<i>"</i>	"	"	<i>"</i>	"	"	"	"	"	"	"	"	1. 5	4. 5	4. 0	2. 5
40		Composition	Cu	2.5	1.0	3.0	2. 5	2.0	"	"	"	"	"	"	"	"	"	"	"	"	1. 2	1. 5	3.0	2. 5
		Compo	S i	11.0	"	<i>"</i>	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	*	10.0	11.0
4 5	abole 20	No. of	sheet	43	44	45	46	41	48	49	9.0	51	52	53	54	\$\$	56	57	58	59	9	19	62	63
	ā											əjd	8 X 8 B	9.1	1100	104								

EP 0 637 481 A1

				<u>-</u> :	· ·	×		,	*	*	×	\ \			<u> </u>	Γ.		Ι.		
_			A	8				_		`		<u> </u>	Ľ	*	*	*	*	*	*	*
5			FJ e	0.2	0.6	0.5	0.4	"	0.3	"	"	*	0.4	"	0.3	*	*	*	0. 4	*
		¥t. %	N i	0.4	ı	ı	1	1	ı	1	ı	1	ı	ı	ı	1	,	1	1	1
10		alloy	T i	l	0.05	01 0	1	0.10	0.18	"	"	"	ı	0. 10	0.18	"	*	*	0.01	"
	•	material	2 r	1	1	ı	-	_	ı	-	_	1	-	-	ı	ı	ı	ı	l	1
15		cofe ma	Cr	ı	1	1	_	1	_	1	_	1	1	_	ı	i	ı	1	t	ı
		j o	Mg	1	_	ı	ı	0.3	ı	1	1	1	1	-	ı	1	1	ι	ì	ı
20		Composition	Mn	0.3	0.4	0.5	1.1	"	"	"	"	"	"	"	"	"	*	"	"	"
		Comp	Cu	0.8	1. 5	1. 8	3.0	3. 4	l. 3	,,	"	"	1	3.0	1. 4	"	"	"	0.1	0.5
25			S i	0.8	0.7	1.1	3.0	0.8	"	,,	"	"	3. 0	1.1	1.3	"	"	"	0.3	"
		109 104. %	A 1	Ba 1.	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
30		18	F) O	0.3	"	"	"	"	0.6	0. 5	0.7	0.3	"	"	0.6	0.5	0.7	0.3	0. 7	. "
		materia	Sn	-	_	ı	1	1	1	1	1	1	1	1	1	1	ı	1	1	ı
35		azing	ПП	1	-	1	_	1	1	1	ı	ı	1	ı	1	1	1	Į.	ŀ	ı
		of br	Z n	4.0	"	"	"	"	ı	0.02	-	8.0	4.0	"	1	0.02	-	8.0	1	ı
40		Composition of brazing	Cu	2.0	"	"	"	"	4.0	2.0	0.05	9.0	2.0	"	4.0	2.0	0.05	9.0	ı	ı
		Сошро	S i	11.0	"	"	"	"	"	6.0	9.8	12.0	11.0	"	"	6. 0	9.8	12.0	60 60	*
45	Tabole 21 ,	No. of	sheet	64	99	99	1.9	88	69	7.0	11	12	73	74	7.5	16	11	7.8	19	80
50	Tabo ,			31	i i a s i i a s i a i a s i a i a s i a s i a s i a i a s i a s i a s i a s i a s i a s i a i a s i a s i a s i a s i a i a s i a s i a i a s i a i a s i a i a i a i a i a i a i a s i a i a i a i a i a i a i a i a i a i a	101				þje	m s x	2 3 A	118	n 6 q m	0)				saoi	istaol iquers

Table 22

ſ			<u> </u>			т	<u> </u>			
ľ		No. of	Heating condition	Tensile	Max, depth			Heating		Max, depth
5			for brazing		of pitting corrosion		No. of	condition for brazing	Tensile	of pitting
ł	l	Sheet	${\mathfrak C}$				Sheet	C	strength	corrosion
			(×5min.)	MPa	μm			(×5min.)	MPa	μm
		1 .	575	210	80		29	580	190	80
10	I	2	580	220	. "		30	"	200	"
		3	"	"	"		31	"	190	90
1	l	4	"	"	70		32	575	. "	70
		5	"	"	60		33	580	170	80
15		6	"	"	100		34	"	190	"
	Į	7	"	"	"		35	"	"	90
		8	"	"	80		36	"	"	80
20		9	"	"	"		31	"	"	90
		10	"	"	"		38	"	"	70
		11	"		100		39	"	"	"
	=	12	"	"	"		40	"	"	80
25	example	13	"	"	90	example	41	"	"	"
		14	"	"	"		42	"	"	90
1	Inventive	15	"	"	80	nventive	43	"	"	70
30	=	16	"	"	"	3 4 6 8	44	"	"	90
		17	"			-	45	· 11.	"	80
		18	"	200	"		46	"	"	"
i		19	"	170			47	· //	"	70
35	-	20	"	"	"	l	48	"	"	"
		21	"	"	"		49	"	"	. "
		22	"	"	"		50	"	"	"
1		23	575	190	"		51	"	"	"
40		24		220	"		52	"	"	"
		25	"	"	"	[53	"	"	"
-		26	"	230	"	[54	"	160	"
45	L	27	"	"	"		55	"	190	"
		28	580	180			56	"	160	"

Table 23

	,									
5		No. of brazing Sheet	Heating condition for brazing °C (×5min.)	Tensile strength MPa	Max. depth of pitting corrosion um		No. of brazing Sheet	Heating condition for brazing °C (×5min.)	Tensile strength MPa	Max. depth of pitting corrosion μm
		57	580	170	70			Unproducibe		L
10		58	"	160	"		72	the way of		acking on
	9	59	"	"	"		73	575	Unmeasura	be due to
	example	- 60	"	"	90		13	575	meiling	
		61	"	"	"	e de	74	"	Unmeasura	be due to
15	lire	62	"	"	70	e I a	14	•	melting	
	inrentir	63	"	"	"	ا ہا	75	580	220	Piercing
	11	64	575	"	80	=	76	600	Unmeasura	be due to
20		65	"	170	90	omparativ	10	000	melting	
		66	"	200	"	ပိ	77		Unmeasora	be due to
		67	"	Unmeasura	be due to		· '		melting	
				metting			78	Unproducibe	due to cr	acking on
25	example	68	"	Unmeasura	be due to			the way of	rolling	
	έχg			melling		1.	79	600	130	120
	17.6	69	580	220	Piercing					Generation
30	Comparative	70	600	Unmeasura	be due to	Conrentional example	80	"	160	oi
30	omp			melting		ទូដ				blistering
	S	71	600	Unmeasura	be due to					
				melting					•	

As evident from Tables 22 and 23, the brazing sheets of the inventive examples show no melting during brazing, have high strength, and are excellent also in the corrosion resistance.

Whereas, in the comparative examples 67, 68, 73 and 74, wherein the core material is out of the range of the invention, it ended up to melt despite heating at 575 °C for brazing. In the comparative examples 69 and 75, wherein Zn, In and Sn are not contained in the brazing material, the corrosion resistance decreased. In the comparative examples 70, 71, 76 and 77, wherein the brazing material is out of the range of the invention, heating was performed at 600 °C because of the brazing material not melting at 585 °C or lower, but the core material ended up to melt. In the comparative examples 72 and 78, wherein Cu and Zn in the brazing material are added more than those within the range of the invention, cracking ended to occur during rolling, making it impossible to produce the brazing sheet.

In the conventional example 79, the strength is poor over the brazing sheets of the inventive examples. In the conventional example 80, which is an example containing much Cu, the corrosion resistance is poor.

Example 4

35

Bare fin materials A and B comprising aluminum alloys and plate materials a through c comprising brazing sheets with alloy compositions shown in Table 24 were combined to assemble the multilayer type evaporators shown in Fig. 2. The fin materials are 0.08 mm thick bare materials and the plate materials are 0.35 mm thick brazing sheets cladded both sides of core material with 10 % brazing material, respectively.

Onto the heat-exchangers assembled, a 10 % concentration flux liquor with 3 % cesium type flux mixed with potassium fluoride type flux was coated, which was heated in N_2 gas under the conditions shown in Table 25 for brazing. The combinations of materials with heating conditions are shown in Table 25.

Of the heat-exchangers thus obtained, the collapse state of fin and tube and the formation of fillet were investigated by the observation of external appearance. Moreover, with the heat-exchangers brazed exactly, the thermal efficiency was investigated. The thermal efficiency was measured according to JIS D1618 (Test method of air conditioner for automobiles) and expressed respectively as an improvement percentage to the thermal efficiency of heat-exchanger by conventional method.

Moreover, the results of tensile test conducted with the tube materials after heating for brazing were also put down combiningly in Table 25.

Table 24

10

15

20

25

30

35

40

45

	No.		mposit terial					Compo	sition	of co	re mal	erial	alloy	wt. %		C1:
		Si	Гe	Cu	Zn	Λī	Si	Fe	Cu	Мn	Mg	Ζn	Ζr	Тi	A 1	Constitution
erial	۸		No br	azing	agent		0. 2	0. 5	0. 05	1. 1	-	1. 0	-	0. 01	Bal.	Bare material
E .	В		No br	azing	ageni		1. 10	0. 65	-	-	-	"	0. 15	"	"	"
terial	a	11. 0	0. 2	2. 5	4. 0	Bal.	0. 8	0. 4	1. 3	1. 1	_	-	-	0. 18	"	10% Brazing material on both sides
le ma	ь	".	"	"	"	"	0. 9	"	0.8	0. 4	0. 10	_	_	"	"	"
- L	С	9. 8	- 0. 6	_	<u> </u>	"	0. 3	0. 5	0. 15	1. 1	_	-	_	0. 01	"	"

Table 25

		Combi	nalion	Heating	4			Tensile
•	No.	Fin mterial	Tube material Heade.r material	lemp. for brazing ℃ (×5min.)	Location of collapse generation	Brazability	Thermal efficiency	strength of tube after heating for brazing MPa
Inventive	0	Α	а	580	None	Good	0.5% Nore increase than (5)	190
example	2	В	"	"	"	"	2.5% More increase than ⑤	"
	3	Α	b	"	"	"	0.5% More increase than ⑤	160
	4	В	"	"	"	"	2.5% More increase than ⑤	"
Conventional example	(5)	٨	С	600	"	" .	Standard	130
Comparative example	6	В	.″	."	Fin	"	2.0% Nore decrease than ⑤	"

As evident from Table 25, the heat-exchangers by the inventive method are being produced without causing the collapse of fin, have high strength after heating, and are excellent also in the thermal efficiency.

Example 5

Brazing sheet fin materials cladded both sides of core materials with brazing materials with alloy compositions shown in Table 26 through 29 were fabricated. Namely, these brazing sheet fins are 0.11 mm thick H14 refinings cladded both sides of core material with each 10 % brazing material. And, these brazing sheet fin materials No. 1 through No. 67 were heated in N₂ gas under the conditions shown in Table 30 and 31 to conduct the drooping test and tensile test. And, these results are put down in Tables 30 and 31.

The drooping test was carried out at a protrusion length of 50 mm.

Moreover, in the tensile test, the brazing material exists on the surface in the case of brazing sheet fin and the accurate determination of the cross sectional area of fin after heating for brazing is difficult, hence, even if the strength may be measured, the reliability is not enough. For this reason, as for the value of strength, the measurement values for 0.06 mm thick bare fin materials comprising the same alloy composition as the alloy composition of core materials constituting these brazing sheet fin materials, which are shown in the most right column of Tables 26 through 29, are shown. Besides, it is known that the strength of brazing sheet fin shows a trend approximately corresponding to the strength of bare fin comprising the same composition of core material.

5		
10		
15		
20		
25		
30	¥	
35		
40		
45		

	No. of	Compos	sition	of br	mposition of brazing	mater	material alloy W	03 1.55				Compo	sition	Composition of core material alloy	re mat	eria –	alloy	₹t. %			
	rin material	S i	C u	u 2	I n	Sn	FJ e	A 1	S i	F e	Cu	Мп	Z n	In	Sn	™ S	z	C r	2 5	Ţ.	l A
I		11.0	2. 5	4.0	ı	1	0.3	Bal.	1. 5	0.3	0.1	1.1	1	1	0.02	1	1	1	ľ	1	<u>=</u>
I	2	*	"	"	1	1	"	"	1. 4	0.2	0.2	"	_	0.05	1	1	1	1	1	1	*
1	က	*	"	"	ŧ	ı	"	"	"	0.3	0, 3	"	1	0.03	0.02	1	'	1	1	ı	*
	4	10. 5	1. 5	2. 5	-	ı	0.3	"	"	"	"	*	-:	1	1	1	1	1	1	1	*
	5	11.0	2. 5	4.0	ŧ	1	0.3	"	*		*	*	*	1	,	1	1	!	1	1	
	9	10. 5	1.0	2.0	0.05	1	0. 1	*	*	*	*	*	*		1	1	1	,	1	1	*
	7	"	1. 5	2. 5	1	1	0.3	*	"	0. 2	0. 1	*	=	1	1	1	9.0	1	1	,	*
	∞	*	"	"	-	ł	"	"	1.3	*	3.	80	2.0	<u></u> ,_	1	1	1	ı	,	0. 18	"
1	6	"	"	"	ı	-	"	"	1.8	0.3	 	- 0	1. 5	1	1	1	ī	1	9	1	"
	1.0	"	"	"	ı	1	"	*	-;	0.2	*	:-	*		1	1		1	0. 15	0.01	*
	, II	11.0	1.0	l. 5	1	1	9.4	*	"	*	*	*	*	1	1	1	1	1	*	*	,
	13	"	3.0	2.0	,	1	9.	*	*	*	*	*	*	 -	1	,	1	1	1	*	*
	13	"	2. 5	4.0	1	1	0.2	*	"	*	*	*	,	1	ı	1	1	1	*		*
	14	10. 5	6.0	4, 5	-	1	0.3	*	*	*	*	*	*	1	1	1	1	1	*	*	*
	15	9.0	e.;	1. 5	'		0.1	*	*	*	*	2			1	1	1	1	*	*	*
	16	9. 5	3. 5	4.0	1	1	*	*	*	*		*	*	1	1	1	1	1	*	*	1
	17	11.0	2. 5	ı	1	0.05	*	*	*	*	*	*	*		1	1	1	1	*	*	*
	18	"	"	1.0	i	0.03	*	*	*	*	*	*	*		1	1	,	ı	*	*	*
	5	10. 5	1.0	2.0	0.03	1	,	,	*	*	*	*	*	1	1	1	1	1	*		"
	70	11.0	3.0	ı	0.07	-	0. 2	"	*	*	,	*	*	1	,	1		1	*		*

*

0.3

0.02

2.5

1

10.5

2 3 3 3

				_									,	,					
			A 1	B4 I.	*	:	*	*	*	*	*	*	*	*	*	*	"	"	"
5			Ţ	0.01	"	"	1	0.01	-	0.01	0.10	0.02	"	0.01	*	*		0.01	1
			1 Z	0.15	<i>"</i>	"	1	0.10	_	01 0	"	0.15	0.10	0.15	*	*	-	0.10	-
10		₩t, 58	Cr	1	-	1	01'0	"	_	_	0.10	1	1	1	ı	ı	1	_	-
		alloy	N i	-	-	-	1	0.5	-	-	f '0	١	1	1	1	1	-	_	_
15		erial	8 W	ī	-	1	i	1	0.2	"	0.1	1	-	1	1	1	_	_	ı
		Composition of core material alloy	Sn	1	1	-	1	_	-	-	1	0.03	1	0.01	*	"	"	"	1
		os jo	l n	_	1	i	1	ı	1	_	1	١	0.05	0.04	,,	"	0.01	0.02	1
20		sition	u Z	1. 5	"	"	0 7	2.0	L. 5	"	2.0	1	1	-	ı	-	1.0	0.8	3.0
		Compo	Мn	1, 1	"	"	"	"	"	0.7	1.1	"	"	"	"	"	1.0	"	"
25			ηე	0.3	"	"	"	0. 4	"	0.3	0.4	0.1	0.2	0.4	"	"	0.6	"	0.8
			FF e	0. 2	"	"	0.3	"	"	0.2	0.5	0.3	0, 2	0. 4	"	"	0.3	"	*
30			S i	1. 4	"	,	1. 6	1. 4	"	1. \$	1. 3	1. 5	1. 4	"	"	"	1.6	"	1. 5
		07 Wl. %	A 1	Bal.	"	"	"	"	"	"	"	"	"	"	"	"	"	*	*
35		8 8	(Fri	0.2	"	"	"	"	"	"	"	"	"	0.3	0.2	0.1	0.2	0.3	0. 2
		mater	Sn	-	1	ı	. 1	1	. 1	1	1	١	1	1		١	1	1	1
40		raıing	u 1	0.05	0.01	1	1	ı	-	1	ı	71	1	1	1	0.05	ı	Ţ	ı
***		o jo	u 2	1.0	4.0	3.0	4.0	"	"	"	*	"	"	2. 5	4.0	2.0	4.0	2. 5	2.
		Composition of brazing material alloy	n O	2.5	3.0	1.0	2.5	"	"	"	*	"	*	1. 5	2. 5	1.0	2. 5	1. 5	2. 5
45		Comp	S i	10.5	"	10.0	11.0	"	"	"	*	"	*	10.5	11.0	10. \$	11.0	10. 5	1.0
50	Tabele 27	No. of	material	21	22	23	24	25	36	27	28	29	30	,31	32	33	34	35	36
- -	Tabe										9	qas	199	4!1	n s v a	ı			

5	

shele 98

									_							_	_	_		
	A 1	841.	"	"	"	"	"	*	"	"	"	*	"	"	"	*	*	*	*	*
	Ţi	0.05	"	"	ı	0.01	1	0.01	ı	0.01	ı	0.01	1	0.01	1	0.01		0.01	ŀ	0.01
	2 r	0.15	"	"	ı	0.10	-	0.15	1	0.15	1	0.15	-	0.15	1	0. 10	ı	0. 10	1	0. 10
₩t. %	C r	_	_	_	i		-	_	ı	١	1	1	1	1	1	ı	ı	t	1	 -
alloy	N i	_	1	-	1.	1	_	1	ı	1	1	1	1	1	1	,	1	1	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Mg	-	-	-	1	-	1	ı	1	1	1	ı	1	1	1	ı	1	1	_	1
Composition of core material	S.n	1	1	1	0.01	"	1	1	ı	_	-	1	-	-	0.01	"	1	-	0.01	*
00 J0	l n	0.01	" .	"	0.03	0.02	_	-	1	-	0.04	"	-	1	0.03	*	ı	-	0.03	,
sition	u 2	3.0	"	."	0.8	"	2. 5	"	3.5	"		١	1.0	"	0.7	*	3. 5	0	0.8	*
Compo	Mn	0.9	"	"	1.1	"	1.0	"	"	"	"	"	1. 5	"	1.0		-:	· //	0.9	"
	Cu	0.8	"	"	l. 8	1. S	1. 2	"	1. 5	"	0.3	"	0.4	0.2	0.4	*	6 .0	0.7	0. 4	. 3
	£т. 6)	9. 4	"		0.2	"	0.3	"	1. 2	1.0	0.4	*	0.3	0.4	0.2	6.	.0.	0.3	0.9	= :
	S i		"	*	"	1. 5		"	L. 3	1.4	1.9	æ :	2.0	1. 9	-: ∞	*	1.9	2. 1	2.0	*
~ = ×	A l	8 a l .	"	"	"	"	*	"	*	"	*	*	"	*	*	*	*	*	"	*
Composition of brazing material alloy w	و (تر	0.3	0.2	9	0. 2	"	0.3	0.2	*	6.3	"	0. 2	"	0.3	*	0. 2	*	9.3	"	0. 2
maleri	Sn	-	1	1	1	1	,	1	-	١	1	1	1	1	1	ı	'	1	ı	1
a 2 i n g	I n	1	1	0.02	1	1	1	1	1	ı	1	1	1	1	1	1	1	-	1	7
of br	n Z	2. 5	-	2.0	4.0	*	2. 5	-7	*	2. 5	*	7	*	2. 5	"	-	*	2.5	"	9
sition	n O	1. 5	2.5	1.0	2.5	"	1. 5	2.5	*	1.5	*	2. 5	*	1. 5	*	2. 5	*	1. 5	"	2. 5
Compo	S i	10, 5	11.0	10.5	11.0	*	10.5	11. 0	*	10. 5	"	11. 0	*	10. 5		1:0	*	10. 5	"	11.0
No. of	rin material	17	42	43	77	45	99	41	48	49	.50	51	25	53	54	55	56	57	58	59
) l e	ms x :	3.4	ilas	Y Q]							

5	
10	
15	
20	
25	
30	
35	
40	
4 5	

							_		
	A 1	B4 I.	*	*	*	*	*	*	*
	T i	0.01	"	"	"	*	*	*	*
	1 Z	0.15 0.01 Bal.	*	*	*	*	*	,	0.15 "
₩t. %	Al Si Fe Cu Mn Zn In Sn Mg Ni Cr Zr Ti Al	1	1	1	ı	1	1	ı	1
Composition of core material alloy wt. %	N i	_	ı	ı	ı	1	,	. 1	1
eriai	Mg	-	1		1	١	ı	ı	1
re mat	Sn	1	1	1	1	ı	1	Ļ	
of co	L L	_		1	ı	1	1	1	ı
sition	u 2	1.0	"	1. 5	"	"	*	1.	"
Compo	Мп	- 1.0	" 0.2 0.3 0.01 0.1	= 1	*	"	"	// 0.2 0.5 0.04 //	ì
	ر ر	ł	0.01	0.3	"	"	" ":	0.04	1
	Er. O	0.2	0.3	0.2	"	"	<i>"</i>	0. 5	0.6
	S	- 0.2 Bal. 3.5 0.2	0. 2	- 0.3 " 1.4 0.2 0.3	*	"	*	0. 2	0, 15 0, 6 -
oy #t. %	A I	Ba 1.	"	"	*	"	*	"	*
a a	Er es	0.2	"	0.3	"	"	- 0.7 "	"	ì
materi	Sn		1	ł	+	_		ı	ı
azing	u l	-	ι	1	1	-	ı	1	1
mposition of brazing material alloy of	i Cu Zn In Sn Fe	0 2.5 4.0	,,	0 2.0 1.0	0 9.0 8.0	0.01 0.02	١	1	ı
sition	Cu	2. 5	*	2.0	9.0	0.01	1	1	1
Сопро	S i	11.0	"	6.0	0 71	"	9.8	"	"
No. of	material	0.9	19	83	63	9.4	9	99	19
		910	a e i		118	1 8 9 0	10 ე	lsaoil 3	igners igners

Thale 30

45

50

			Heating condition	Amount of	drooping	Tensile strength			Heating condition		drooping	Tensile
5		No, of fin material	for brazing (×5min.)	Bare [in material	Brazing sheet fin material	of bare fin material Mpa		No. of fin material	for (×5min.)	Bare fin material	Brazing sheet fin material	strength of bare fin material Mpa
		i	580 ℃	6	10	140		21	575 °C	5	7	160
10		2	"	"	"	"		22	580 ℃	"	8	"
·		3	,	"	"	150		23	"	"	"	"
		4	"	"	"	"		24	"	7	10	150
15		5	575 ℃	5	8	"		25	"	5	8	160
		6	"	"	"	"		26	"	"	"	"
		7	"	"	"	"		27	" .	"	"	"
20		8	"	"	"	"		28	575 ℃	" .	7	~
	mple	9	"	"	7	160	example	29	"	"	"	140
	inrentire example	10	580 ℃	"	8	"		30	<i>"</i>	"	"	<i>H</i> .
25	nlir.	11	"	"	"	"	nvenlive	31	"	"	"	150
	Inr	12	"	"	"	"	Inve	32	580 ℃	"	8	"
		13	575 ℃	"	7	" .		33	"	6	10	"
30		14	580 ℃	"	8	"		34	'n.	7	12	170
		15	"	"	"	<i>n</i> .		35	575 ℃	"	10	"
		16	575 ℃	"	7	"		36	"	8	12	"
35		17	580 ℃	"	8	"		37	580 ℃	"	"	180
		18	"	"	"	"		38	"	10	15	"
		19	"	"	"	″		39	"	"	"	"
40	L	20	"	"	"	"	<u> </u>	40	"	"	"	"

Thale 31

1									, <u>.</u>			
			Hesting	Amount of	d (coping mm	Tensile			Heating	Amount of		Tensile
		1	condition			strength	}		condition		9.0	strength
5		No. of	for		Brazing	of pare		No. of	for		Brazing	of bare
		fin	gnizard	Bare fin	sheet	fin		fin .	brazing	Bare fin	sheet	fin
		material	(×\$min.)	material	lia	materiaf		material	(×5min.)	material	fin	material
					material	Мра					material	Mpa
		41	580 ℃	8	12	170		60	575 ℃	Unmeasura	ble due to	melling
10							16					
		42	575 ℃	6	10	"	example	61	"	8	15	80
		43	. 580 °C	8	12	"		62	610 ℃	Unmeasora	ble due to	melting
		44	"	10	15	210	Comparatire	63	Fin. uapro	ducible		
15		45	"	. B	10	"	Compa	64	600 ℃	Unmeasura	ble due to	melting
		46	" "	10	15 ·	"		65	"	Unmeasura	ble due to	melting
		47	"	8	10	. "	Contentional example	66	610 ℃	25	35	110
20	4.5	48	"	10	15	"	np le					
	example	49	<i>n</i> .	8	10	"	Con	67	~	30	40	80
		50	"	10	15	180						
25	larenlire	51	"	8	10	"			-			
	_	52	"	10	15	160						
		53	"	8	10	170					•	
30		54	"	10	15	" .						
		55	"	8	.10	"					•	
05		56	. "	10	15	190						
35		57	"	9	12	"						
		58	"	10	"	170						
		59	575 ℃	8	10	"					•	
40												

While there are no fin materials excellent in the tensile strength and the drooping property in the conventional and comparative examples, all the inventive fin materials show excellent values.

5 Example 6

Brazing sheet fins cladded both sides of core materials with alloy compositions shown in Tables 32 and 33 with brazing materials with alloy compositions shown in the same tables were fabricated. These brazing sheet fins have a plate thickness of 0.11 mm and are H14 refinings cladded both sides of core material with each 10 % brazing material. These were heated in N₂ gas under the conditions shown in Table 34 to conduct the drooping test and tensile test. And, these results are put down in Table 34.

The drooping test was carried out at a protrusion length of 50 mm. Moreover, in the tensile test, measurement was made by giving the same heating to bare fins with the same composition as that of the core materials of brazing sheet fins in place of brazing sheet fins similarly to Example 5 aforementioned.

EP 0 637 481 A1

			A 1	811.	"	"	"	,	*	*	,	"	"	"	"	"	"	, ,,	"	"	"	"	"	*
5			T i	-	0.01	_	1	ı	ı	<u> </u>	_	. 1	0.15	1	0.01	Ė	ı	-1	1	-	0.01	1	i	ı
			Z r	1	1	1	ı	0.15	١	1	Ţ	_	1.	ı	0.15	"	"	ı	0.05	-	-	-	0.15	1
		wt. %	Cr	Ţ	1	1	-	1	1	0.10	t	ı	1	1	1	i	ı	1	-	1	1	1	ŀ	ı
10		1107	i Z	1	ı	ı	-	ı	ı	1	0.50	1. 50	1	ı	1	1	ı	-	ı	i	1	ı	1	ı
		Composition of core material alloy	Mg	1	1	1	0. 10	ı	ı	1	ı	1	0.10	1	ı	0.10	-	ı	-	_	0.40	0.10	*	ŧ
15		e mate	Sn	ı	1	ı	ı	ı	1	_	1	-	1	1	ï	-	-	-	1	_	-	1	1	0. 10
		of cor	l n	ı	ŀ	ı	ı	1	1	!	1	1	ı	. 1	1	1	-	0.05	*	1	ı	ı	ı	1
20		ition	u Z	0.50	0. 70	1. 00	"	0.70	1. 00	0. 10	1.00	"	0. 50	1. 00	*	0.70	1. 00	ı	1	1. 50	"	3. 50	"	1. 50
	:	Compos	Mn	e: ::	"	"	"	"	"	"	"	"	*	"	*	"	"	"	*	"	"	"	"	
25			n n	0.30	0.15	0.30	,,	0.15	0.30	0.15	0.30	"	0. 15	0.30	*	0.15	0.30	0.50	*	1. 00	"	1. 50	"	I. 00
			<u>г</u> ч	0.25	0. 20	0. 70	"	*	0.25	0. 20	0. 70	"	×	I. 50	*	0. 70	1. 50	0. 20	*	0. 25	"	*	"	*
			S i	0. 1.0	0.25	0.10	"	0.25	0.80	1. 10	0.80	*	0. 25	0. 10	*	0.25	1. 10	0.25	*	*.	"	0. 20	"	0.80
30		7 41. %	A 1	Bal.	*	,	"	*	"	*	"	*	*	*	*	*	"	"	*	*	"	"	"	*
		1 10	ري. ق	0. 20	*	*	"	*	"	*	*	*	*	*	*	*	"	, ,	*	*	<i>"</i>	*	"	*
35		ateria	Sn	1	1	1	0. 10		ı	1	1	1		1	ı	,	1	ł	1	ı	ı	ł	1	1
		2 ing	r I	1	ı	0. 10	1	1	1	1	1	1	1	1	1	1	ı	1	1		-	ı	i	1
40		Composition of brazing material alloy a	2 n	2. 00	1. 00	*	*	2.00	*	1.00	2. 00	*	1. 00	2.00	*	1.00	2. 00		*	3.00	"	4.00	"	3.00
		sition	D D	3.00	1. 50	3.00	*	*	*	L. 58	3.00	*	1. 50	3.00	*	1. 50	3.00	1. 50	*	2. 50	"	"	"	"
45		Compo	S i	9.00	10.0	*	*	9.00	10.0	9.00	10.0	*	9.00	10.0	*	9.00	10.0	11. 5	*	*	"	"	"	*
	Tabele 32	No. of	rin material	1	2	9	4	5	9	7	∞.	6	10	11:	12	13	14	15	16	1.1	18	18	2.0	21
50	Tabe											þje	e s s	9 7	i Ja:	AUI								

EP 0 637 481 A1

	ſ	 7						- 1								-т	r			
			A l	Ba-	*	*	*	*	*	*	*	*	"	*	*	*	*	*	*	*
5			Ţi	0.01	1	-	-	0.15	-	0.10	_	_	1	1	١	1	-	1	ı	1
			2 r	0. 15	1	0.15	-	0.15	ı	I ·	0.15	1	١	1	1	ı	1	ı	ı	1
10		¥1. %	S	1	Ţ	1	1	,	١	1	-	_	l	ŀ	1	-	1	1	'	١
		1109	N i	1	1	1	1	1	1	1	1	1. 50	١	1	ı	١	ī	1	ı	'.
		rtal	M g	1	1		-	-	1	1	1	1	1	ı	1	,	١	ı	1	
15		core matertal allog	Sn	0. 10	1	1	1	1	1	1	ı	1	1	1	ı	١	1	1	1	1
		0 co	r L	1	1	ı	1	1		ı	1	1	1	t	1	i	1	1	ı	,
20		Composition	u Z	1. 50	3. 50	*	*	*	*	*	"	"	0.30	0. 50	0. 70	1.50	0. 50	,	0.30	0. 70
		Compos	Mn	= =	*	*	"	*	*	,	"	"	"	"	"	"	"	.2. 20	l. 10	*
25			n O	99	1. 50	*	"	"	*	,	"	"	0.15	"	"	0. 70	0.15	".	*	0.50
			Ęri O	0.25	"	"	0.70	"	"	"	"	"	"	"	"	"	2. 50	0. 70	"	*
30			S i	0.80	1, 10	"	0.80	"	1. 10	,,	"	"	0.20	"	1.50	0. 20	"	"	"	"
		oy 1911. 18	A 1	Bal.	"	"	*	"	"	"	*	"	"	"	"	"	"	"	"	"
35		1 1 107	Ęri es	0.20	"	"	*	,,	"	"	*	*	0.70	"	0. 20	0. 70	*	"	,,	"
		material	Sn	_	1	ı	ı	1	۱,	1	1	1	1	ı	1	1	1	1	1	ı
		brazing o	u I	-	1	1	١	1	_	1	1	ı	1	ı	0. 10	1	1	1	_	l
40		=	n Z	3.00	4. 00	*	*	"	"	"	*	*	2. 00	7. 00	3.00	1	ı	1	-	ł
		osition	ηЭ	2, 50	4. 00	*	"	"	"	"	*	*	9. 00	2.50	"	1	1	,	1	1
45		Сощро	S i	11. 5	*	*	"	*	"	*	*	. *	*	*	*	10.0	*	*	"	11. 0
	33	No. of	naterial	22	23	24	25	26	2.7	28	53	30	31	132	33	34	35	36	37	38
50	Tabele 33					319	mer	3 3 4	i) a :) v a [519	w e z	3 9 4	118.	1 4 4 10	0)	Isabi	Conven Iquits

Table 34

		No. of fin material	Heating condition for brazing ×5min.	Amount of drooping mm	Tensile strength MPa		No. of fin material	Heating condition for brazing ×5min.	Amount of drooping mm	Tensile strength MPa
		1	575 ℃	12	150		21	575 ℃	7	200
10		2	"	9	"		2 2	"	"	210
	-	3	580 ℃	"	160		23	"	"	"
15	\cdot	4	"	10	"	example	24	"	"	220
		5	"	11	"	1	25	"	"	. "
		6	. "	9	170	Inventive	26	"	"	"
20		7	"	11	180	Inre	27	. "	"	240
		8	"	9	170		28	"	"	"
	example	9	"	"	" ,		29	"	"	"
		10	"	11	"		30	"	"	"
	Intentive	11	"	9	180		31	Fin unprodu	cible	
30	- B.	12	"	"	"	example	32	Fin unprodu	cible	
30		13	"	11	170		33	610 ℃	Fin melti	ng
		14	"	9	180	Comparative	34	600 ℃	25	150
35		15	"	8	190	Compa	35	610 ℃	Fin buck!	ing
		16	"	"	"		36	Corrugate v	nmoldable	
		17	"	"	210	-	37	610 ℃	- 35	130
40		18	"	"	"	Conventional example				
		19	"	"	230	53	38	"	45	150
		20	"	7	"				-	

While there are no fin materials excellent in the tensile strength and the drooping property in the conventional and comparative examples, all the inventive fin materials show excellent values.

Next, the brazing sheet fins shown in tables 32 and 33 aforementioned and JIS 1050 extrusion tube (4.00 mm) used ordinarily were combined and heated in N_2 gas for 5 minutes at 575 °C for the combinations with fin materials No. 1 through No. 30 in the inventive examples and for 5 minutes at 600 °C for ones in the comparative and conventional examples to fabricate the serpentine type condenser cores shown in Fig. 2. With these cores, the CASS test according to JIS H8681 was conducted for 750 hours and the depth of pitting corrosion of tubes after testing was measured to confirm the sacrificial effect of fins. The measurement results are shown in Table 35. Besides, the natural electrical potential of fins measured in 5 % NaCl solution is also shown in Table 35.

Table 35

5		No. of fin material	Natural electrical potential of fin material (mV vs SCE) (596NaCl)	Max depth of pitting corrosion after CASS test (mm) (tube 750hr)		No. of fin material	Natural electrical potential of fin material (mV vs SCE) (596NaC1)	Max. depth of pitting corrosion after CASS test (mm) (tube 750hr)
10		1	-800	2. 0		21	-920	1. 0
		2	-830	2. 2		22	"	"
		3.	-850	2. 0		23	-900	1. 2
15		4	"	"	example	24	"	. "
		5	-830	2. 2	e z a i	25	"	"
20		6	-850	2. 0	nrentire	26	"	"
20		7	-730	3. 2	In	27	-890	"
		8	-840	2. 0		28	"	. "
25	example	9	"	"		29	" .	"
		10	-820	2. 4		30	"	"
	nventire	11	-850	2. 0		31	Fin uaproduci	b 1 e
30 .	Inv	1 2	-840	"	example	32	Fin unproduci	ble
		13	-830	2. 2		33	Fin melting,	unmeasurable
		14		"	ratir	34	-830	Piercing
35		15	-860	1. 4	Comparatire	35	Fin buckling,	unmeasurable
		16	<i>"</i>	"	٥	36	Corragale unm	oldable
40		17	"	1. 2	a a i	37	-800	Piercing
-		18	-880	"	Conventional example			
		19	-900	"	C03	38	-780	Piercing
45		20	"	"				-

Note) No. 1-30: brazed at 575 °C No. 31-38: brazed at 600 °C

The fins of the inventive examples show baser natural electrical potential and also shallower pitting corrosion of condenser tubes over comparative and conventional examples.

Example 7

Brazing sheet fins cladded both sides of core materials with alloy compositions shown in Tables 36 through 38 with brazing materials shown in the same tables were fabricated. These brazing sheet fins have a plate thickness of 0.11 mm and are H14 refinings cladded both sides of core material with each 10 % brazing material. These were heated for brazing in N₂ gas under the conditions shown in tables 39 and 40

to conduct the drooping test, tensile test and measurement of electroconductivity. And, these results are put down in Tables 39 and 40.

The drooping test was carried out at a protrusion length of 50 mm.

Moreover, the tensile test was substituted by measuring the strength of those given the same heating to 0.06 mm thick bare fins with the same composition as that of the core materials of said brazing sheet fins similarly to Example 5 aforementioned.

Furthermore, the electroconductivity of brazing sheet fins was substituted by measuring the electroconductivity of those given to the same heating to bare fines with the same composition as that of said core materials, since the brazing material exists on the surface of these fins and the cross sectional area of fins after brazing cannot be measured accurately. It is known that the electroconductivity of brazing sheet fin shows a trend approximately corresponding to the electroconductivity of bare fin with the same composition as that of the core material of fin. Besides, the electroconductivity is an index of thermal conductivity and, as the electroconductivity of fin improves by 5 % IACS, the thermal efficiency of heat-exchanger improves by about 1 %.

					,																			
			A I	1 8 8 1.	"	"	. "	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
5			Ť i i	0.01	1	1	1	ı	1	0.01	"	0.05	"	0. 20	1	0.01	"	"	"	"	"	"	"	"
			2 r	0.10	-	1	ı	1	1	1	_	ı	1	.1	0.15	. "	0.10	"	"	"	"	"	"	"
10		#t. %	C r	-	ı	-	-	_	_	-	_	1	-	1	ı	-	-	-	1	ı	1	1	ı	
		1103	N i	0.6	i	i	1	0.3	0.9	0.4	0.3	1.0	1.1	1	1	0.2	0.6	0.7	0.6	"	,,	,	"	"
		riala	Мп	1	1	ı	1	1	1	ı	1	1	1	-	1	1	1	ı	1	1	-	1	-	1
15		core material allog	Mg	1	I	1	1	i	1	1	1	1	1	1	1	1	1	1	-	1	-	ı	1	1
			Sn	1	1	1	ı	1	1	1	1	1	1	1	1	1	0.03	ı	1	-	1	1	_	1
20		Composition of	l n	0.05	0.04	0.02	ı	0.02	0.01	0.03	0.05	0.01	1	0.01	*	*	1	0.05	1	0.02	*	*	"	"
		Compos	Z n	0.8	-	1.0	3.0	1. 0	0.9	*	1	0.9	2. 5	1.0	*	*	1	1	1.0	1. 2	*	,	"	"
25			n o	0. 2	0, 3	0.4	0.5	0.3	,,	*	"	"	*	0.4	*	*	"	"	"	0.5	,,	"	"	"
			F. e	0.1	1. 2	"	1.1	1.0	0.8	6.	1. 2	1.1	*	0.8	<u>د</u> ن	1. 2	1.0	1.1	1.0	"	"	"	"	"
30			S i	1. 5	1. 3	*	1.4	1. 5	*	*	"	"	,	*	*	*	"	"	"	"	"	"	"	"
		7 wt. %	A 1	841.	<i>"</i>	,,	″	"	*	*	*	,,	*	,,	*	"	"	"	"	"	"	"	"	"
		a 0	(Tr.	0. 2	0.3	0. 2	0. 1	0. 2		*	0.3	0. 2	 	0. 2	*	*	"	"	"	0.4	0. 1	0. 2	0.3	0. 1
35		ateria	Sn	1	1	1	1	1	ı	1	1	1	,	1	ī	1	1.	1	-	-	1	1	1	1
		2 i n g	l n	1	1	1	0.02	1	,	 -	1	1	0.02	1	 -	1	1	ı	ı	-	1	1	1	-
40		of bra	2 n	6.3	2.5	9	2.0	-	*	*	2, 5	4.0	2.0	÷	*	*	*	"	"	1. \$	2.0	4.0	4.5	1. 5
		Composition of brazing material alloy	n O	2. 5	l. 5	2. 5	<u>-</u>	2. 5	*	*	1. 5	2. 5	-:	2. 5	*	*	*	"	"	1.0	3.0	2. 5	6.0	3.0
45		Compos	S i	 	10. 5	11.0	10. 5	11.0	*	*	10. 5	0 ::1	10. 5	- -:	*	*	"	"	"	"	*	*	10.5	9.0
	36	No. of	material	1	2	3	4	2	9	7	œ	6	0.1	111	12	13	14	15	16	11	18	61	20	12
50	~	1	- e	 	L	L	L	L	L	<u> </u>	L	L	<u></u>	L	<u> </u>	L	L	L	ـــــا	لــــا	لــــــا		L	

sigmars syilnsyal

10	
15	
20	
25	
30	

Table 37

of core material alloy wt. %	Mg Mn Ni Cr Zr Ti Al	0.6 - 0.01 0.01 Bal	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " - " -	// // tr	" " "	" " " " " " " " " " " " " " " " " " " "	0.7 - 0.08 "	- " - 0.15 "		0.15	01	08 - 0.6 - 0.10 0.02	- 0.2	- 0.1 0.12 - "	- 0.08 0.3 - 0.08 0.02 "	08 0.1 0.8 0.08 0.10 " "	1 1 1		
tion of core	n S n	- 20	- "	- "	1	- "	- "	1 "	0.01	1	10	- 20	- 0) - -	1	1	1	- 0	- 80	- 05	1
Composition	Z n I	5 1. 2 0.	*	*	*	*	1	1	8 .0	3.0	2, 5 0.	1. 0	"		*	*	*	*	- O	1. 2 0.	3.5
	Fe Cu	1. 0 0. 5	"	*	"	"	"	"	1. 2 0. 4	0.5	0.4	1. 0	0.9	1. 2 "	0.9	l. 0 "	*	"	" 1. 0	1. 2	1.0
	SiF	-:	*	*	*	*	*	*	1. 4	1. 3	1. 4	*	*	*	1. 6	"	1. 5	1. 6	1. 5	*	,
1107 #1. %	e A I	1 Bal.	*	*	*	2	*	*	"	*	*	*	*.	"	"	"	"	<i>''</i>	<i>"</i>]	"	2 "
Composition of brazing material alloy F	ᄕ	9	0.05 "	03	"	3 1	"	"	<i>"</i>	"	"	1	"	"	"	"	"	"		() 	- 0 ,
ing ma	InS	1	-i	 	0.02	0.07	0.02	0.01	1	,	· 1	1	1	1	1	1	-	-	0.5	1	-
of bra	Z n	0 7	ı	1.0	2.0	1	1.0	4.0	,,	,	*	"	"	"	"	"	"	"	2.0 0.	2. 5	4. 0
ition	n O	3.5	2. 5	,	1:0	3.0	2. 5	3.0	2. 5	"	"	"	"	,	"	"	"	"	1.0	1. 5	2. 5
Compos	S i	9.5	11.0	"	10.5	11.0	10. 5	"	11.0	"	"	"	"	"	"	"	"	"	10. 5	"	11. 0
No. of	material	22	23	24	2.5	92	2.7	28	29	30	31	132	33	34	35	36	37	38	39	40	=

			A 1	8al.	*	"	,	"	"	"	"	*	. *	"	"	*	*
5			Ħ.	0.0	*	"	0.02	0.01	*	"	"	*	"	"	"	"	"
			2 r	1	ı	0.08	0. 10	"	0. 12	0.15	"	0. 10	"	"	"	1	0. 15
10		#t. %	S r	1	. 1	1	1	1	ı	ì	0.15	_	ı	1	1	1	Į.
		1107	N i	9 .6	*	"	"	0.7	0.6	1	1.0	0.6	"	"	"	ı	1
		rial a	Mn	1		1	1	ı	ı	1. 0	1. 5	ı	ι	_	ł	1:	ı
15		core material alloy	Mg	1	1	ı	ı	1	1	-	-	Ι	i	1	-	1	1
		of cor	Sn	1	1	1	1	1	i	1		ı	ı	1	1	1	1
20			l n	0.04	ı	0. 07	0.02	ı	0.03	ı	0.02	"	<i>"</i>	"	,,	1	1
		Composition	2 n	1.0	6.3	1	1. 0	3. 5	1.0	"	0.8 (1. 2	"	"	,,	1.1	,
25			Cu	9.9	9.8	l. 2	1.0	"	"	1	0.4	0.5	"	,,	"	. 04	1
			F)	1. 1	0.7	1. 0		1 1	1. 2	0.2	i. 2 0	1.0 0	"	"	,,	0.5 0.	0.6
30			S i	l. 6	1. 5	"	"	"	0.	٠ د	1.6	1. 5	,,	"	"	. 2	. 15
4		7 #t, %	A 1	Bal. 1	, ,	"	"	"	. 2.	3.	" 1	" 1	"	"	,,	,, 0,	, 0.
		a 1 o	Fe /	0.3 B	0.2	0.1	0.3	0. 2	0.1	0. 2	*	0.3	"	,,	0.7	,,	. "
35		material	Ľ	-		ı	ı	1			1		1	-	-	ı	1
			n S	_	-	20		ı	0.0	_	1		-	-	-	1	1
40		brazing	l n	2	0	0 0.		0	0 0.	0		0	. 0	0.5	_		,
		sition of	2 n	5 2.	5 4.	0 2.	5 2.	5 4.	0 2.	5 4.	,	0 1.	0 8.	0 10	_	1	,
45		Composit	i C	1. 5 1.	11.0 2.	1. 5 1.	" L	11.0 2.	1. 5 1.	11.0 2.	, ,	6.0 2.	. 0 9.	" O.	9.8	,	,
		క	S	10.	-	10.		11	10.	11		9	11.		5		
50	80 87	No. of	ria material	43	44	45	46	47	8.7	49	20	\$1	52	153	54	55	98
50	Table 38			•	qme	19 :	AII	4 S F C	1	91	qmex	3 3	4 i) 8	1 & Q1	10g	[saoi]	istao) quers

Teble 39

· 40

		leating condition	1	drooping					leating condition		drooping		
	No. of lin material	for brazing (×5min,)	Bare fin material		Inesile strength MPs	Electro- conductivity XIACS	1	No. of lin naterial	for brazing (×5min.)	Bare fin material	Brazing sheet fin material	Taesile strength MPs	Electro- conductivit XIACS
	1	580 ℃	\$	1	140	52		21	\$15 °C	5	8	150	51
	2	\$15 ℃	6	10	~	53		22	"	~	~	*	"
	3	~	*	"	"	52	1	23	510 °C	7	11	"	"
	4	510 °C	1	12	"	\$1		24	~	-		"	~
	. 5	575 ℃	5	8	158	52		25	~	~ .	~	,	~
	6	~		-	~	*		26	~	~	~	*	~
	7		-	~	"	*		27	~	~	~	-	
	8	~	"	"	"	53		28	~	~	~	"	<i>i</i>
errapie	9	~	~	"	"	52	1118ple	29	515 ℃	5 .	. 9	~	~
	10	580 ℃	6	10	~	\$1		30	~	•	~	-	50
areatire	11	\$75 ℃	5	8	14#		larealire	31	"	~	*	~	
=	12			~	"	*	la .	32	580 °C	7	19	140	52
i	13	"	~	"	"	*		31	*	19	13	*	51
	14	~	"	"	150	52		34	~	8	12	150	~
	15	~	"			″		35	575 ℃	5	В	140	~
	16	~		~	″	51		36	1	"		-	50
	17	580 ℃	7	11	"	~		31	*	*	*	150	"
	18	~	"	~	"	"		38	580 ℃	7	l1	*	~
	19			~	~	~		39		1	12	"	51
	20	~	~	. "	~	~		40	~	"	~	,	"

Table 40

		Heating condition	Amount of	drooping mm		
	No. of fin material	for brazing (×5min.)	Bare fin material	Brazing sheet fin material	Tnesile strength MPa	Electro- conductivity %IACS
	41	575 °C	6	10	150	50
	42	580 ℃	9	12	"	51
ا <u>ت</u> و	43	"	"	"	160	50
Inventive example	44	"	6	10	"	49
ntire	45	"	"	9	"	"
la e	46	"	"	"	"	48
	47	"	. "	"	"	"
	48	"	"	"	"	"
	49	575 ℃	Unmeasura	ble due to	melting	
example	50	"	· 7	10	150	34
	51	610 ℃	Unmeasura	ble due to	melling	
alive	52	Brazing she	et fin unp	roducible		
Comparative	53	600 ℃	Unmeasura	ble due to	melling	
	5 4	"	Unmeasura	ble due to	melling	
Conrentional example	55	610 ℃	25	35	110	36
Conren	56	"	30	40	80	52

As evident from Tables 39 and 40, while there are no fin materials excellent in the tensile strength and the drooping property in the conventional and comparative examples, all the inventive fin materials show excellent values.

Example 8

Brazing sheet fin materials cladded both sides of core materials with alloy compositions shown in tables 41 through 43 with brazing materials shown in the same tables were fabricated. The plate thickness of these brazing sheet fins is 0.11 mm and they are H14 refinings cladded both sides of core material with each 10 % brazing material. Samples were cut out from the fin materials thus obtained, which were heated for brazing in N_2 gas under the conditions shown in Tables 44 and 45 to conduct the drooping test. For the drooping test, the protrusion length was made to be 50 mm. Moreover, the electroconductivity of samples after heating was measured under the conditions in the same tables. Besides, the measurement of electroconductivity was conducted similarly to Example 7 aforementioned.

EP 0 637 481 A1

These results are shown in Tables 44 and 45.

			_			_								_								_			
5			A 1	Bal.	. *	*	*	*	"	*	*	*	"	*	*	*	"	"	"	"	"	"	"	*	"
			Тi	0.01	ı	1	_	0.01	0.02	0, 20	1	0.01	"	*	"	*	1	0.03	i	0.02	"	_	0.01	"	"
			Z r	0.10	ı	1	1	ı	1	ı	0.15	0. 10	"	"	0.08	0.15	-	0. 10	0.12	0.08	0.10	ı	1	1	-
10		¥1. %	Cr	i	ı	1	1	1	1	ı	ŀ	ı	_	ı	1	1	0.15	1	1	1	0.08	1	1	ı	1
		1107	N i.	0. 6	1	0.3	9 '0	0. 4	1.1	1	ı	0.6	0.7	0.6	0.7	"	1	0.6	1	0.3	0.8	-	0.5	0.6	"
15		Composition of core material alloy	М'n	1	ı	1		ı	ı		1	-	1	1	ı	1	ı	1	0.1	0.08	0.1	-	1	ı	1
		e mate	Mg	1	1	1	ı	1	1	1	1	-	1	-	-	1	1	0.08	1	ı	0.08	-	1	1	-
20		100 10	Вп	1	1	-	-	1	1	ı	1	3. 03	ı		0.01	1	1.	-	1	1	-	1	1	l I	1
		tion (u I	0.05	0.02	"	0.01	0.03	1	0.01	,,	1	0.05	. 02) "	,	. 02	"	"	"	"	0.5	,,	0.4	1
25		omposi	2 n	0.8	1.0 0	"	0.9 0	0 "	2. 5	1.0 0	*	1	- 0	1. 2 0.	0.8	3.0	1.0 0.	"	"	,	"	1. 2 0.	-	1. 0 0.	3. 0
		ວ	C u 2	0. 2	0. 4	0.3	,	,	"	0.4	,	,	,	0.5	0.4	0.5	0. 4	"	"	"	"	. 2	1. 0	0.9	9.8
			9	0. 1	1. 2	1. 0	0.8	0.9	1, 1	0.8	0.7	1. 0	l. 1	1. 0	1. 2	"	1.0	1. 2	1. 0	"	"	,	1.1) "	0.7
30			·	0.5	0. 4	0.5	"	"	"	"	,,	"	*	"	0.4	"	"	,	0.6	0.5	0.6	2	0.4	9	0.5
		≫ ₹	1 S	8al.	"	"	,,	"	"	"	"	"	"	,,) "	"	"	,,) "	0 "	0 "	" 0.	0 //	" 0.	0 "
35		alloj Wł.	e A	2	"	*	<i>"</i>	"	-1	2	,,	"	, ,	4	2	, "	, "	,	, "			3	1		2
		material	n F	0					0.	0				. 0.	0					"	"	0.	0.	6	-
40			S L	_	_	-	1	1	02 -	_	!	1	1	1	. 1	1	1	•	1	1	1	-	- 2	1	_
		of brazing	-	- 0	-	-	1	-	0 0.0	- 0	.1	1	1	1			1	1	1		ı	5	0 0.02	5	-
			Z n	₹.	"	"		*	2.	4.0	"	"	*	"	*	*	*	*	*	"	"	2.	2.	2.	7
45		Composition	υ	2. 5	"	"	″	*	1.0	2. 5	*	"	*	"	"	"	*	*	*	"	*	1. \$	1.0	l. 5	2. 5
		Сошр	S i	11.0	"	"	"	*	10.5	11.0	*	*	*	"	*	*	*	*	*	*	*	10. 5	*	*	11. 0
50	==	No. of	material	1	2	3	4	2	9	7	8	6	10	11	112	13	11	15	16	11	18	19	20	21	22
	Table 41											,	l q as	I 9) v [)	n s v	1 [
												_		_											

			A 1	Bal.	"	*	"	,,	"	"	*	*	"	*	"	,,	"	"	"	*	*	*	*	,	*
5			Тi	0.01	0.03	0.01	"	"	"	"	"	"	"	"	"	1		ı	0.01	0.03	0. 20	i	0.01	"	"
			2 r	0.08	0.10	"	·0. 12	0.10	"	"	"	"	"	"	"	-	ı	1	ı		1	0.15	0.10	"	"
10		#t. %	Cr	-	1	F	ı	ı	i	1	-	1	ı	1	1	1	1	-	-	_	-	1	1	i	1
		alloy	i N	0.6	"	0.7	0.6	"	"	"	"	"	"	<i>"</i>	"	1	0.3	0.9	0.4	1.1	_	ı	0.6	0.7	0.6
15		Composition of core material alloy	Mn	1	1	ı	ı	ı	١	1	1	ı	_	-	1	1	1	1	-	_	1		1	-	-
		re mat	Mg	1	1	1	ı	ı	1	1	ł	ş	ı	1	1	1	1	+	-	-	_		1	L	1
		o jo	Sn	1	1	1.	1	1	1	1	1	ı	1	1	1	ı	1	1	1	-	-	_	0.03	-	1
20		sition	u I	0.07	0.05	-	0.03	"	"	"	"	"	"	"	0.02	0.05	*	0, 01	0.03	ı	0.01	"	-	0.05	0.05
		Compo	u 2	1	1.0	3, 5	1.0	1. 2	"	*	"	"	"	"	0.8	1. 0	"	0.9	"	2. 5	1.0	"	ı	1,	1. 2
25			n O	1. 2	1.0	"	"	0.5	"	"	"	"	"	*	0.2	0.4	0.3	"	"	<i>"</i>	0.4	"	"	"	0.5
	i		гч ө	1.0	"	1.1	1.2	1.0	"	"	"	"	"	"	0.1	1.2	1.0	0.8	6 '0	1 1	8 '0	0.7	l. 0	1.1	1.0
30			S i	0.5	"	"	1.0	0. 5	"	"	"	*	"	"	"	0.4	0.5	"	"	"	<i>"</i>	"	"	"	"
		of wt.%	A 1	881.	"	"	"	"	"	*	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
35		1 8 1 8	FT O	0.1	0.3	0.2	0.1	0.2	0.3	0.1	"	"	"	0.2	0.7	"	"	"	"	"	"	"	"	"	"
		Composition of brazing material alloy W	Sn	1	1	ı		ı	1	1	1	0.03	ŀ	1	1	-	-	-	_	-	_	_	1	1	1
40	•	aring	l n	0.05	1	1	0.05	-	1	ı	1	1	0.05	0.01	1	ı	1	1	. 1	ſ	1	1	-	1	
40		0 l br	u 2	2.0	2. 5	4.0	2.0	1. 5	4. 5	1. 5	4.0	l. 0	2.0	4.0	-	1	1	1	ľ	ı	1	1	1	ı	1
		04 i t i o c	n O	1.0	1. 5	2. 5	1.0	,,	6.0	3.0	3. 5	2. 5	1.0	3.0	1	1	1	ı	1	ı	1	•	1	ı	1
45		Comp	S.	10. 5	*	11.0	10.5	11.0	10. 5	9.0	9.5	11.0	10.5	"	9.8	"	"	*	"	"	"	*	"	*	*
50	able 42	No. of	material	23	2.4	52	26	2.7	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
	** •			l		a	(dws	19	1 1 4 6	n s v s	1 [i			9	qms	1	FIA	6 1 6 q	шoэ			

EP 0 637 481 A1

5	

	A 1	Bå l.	X :	*	"	*	*	*	*	*	*	*	*	"	*	*	*	*	*.	*	"
	Тi	0.01	*	1	0.02	1	0.02	"	1	0.01	*	"	"	0.02	0.01	*	"	"	,	*	"
Ī	Z r	0.08	0. 15	1	0.10	0. 12	0.08	0. 10	1	1	ı	ı	0.08	0.10	"	0. 12	0. 10	*	*	ı	0.15
× 1 ×	ر د	1	1	0, 15	1	1	ı	0.08	ı	1	1	1	1	_	-	1	1	1	1	ı	ı
41107	i N	0.7	*	1	0.6	ı	0.3	0.8	ı	0.5	0.6	"	"	"	0.7	0.6	*	*	*.	1	-
material	Mn	1	1	ı	1	0.1	0.08	0.1	_	1	_	1	1	ı	1	1	1	١	1	1:	t
core mat	Mg	1	ı	1	0.08	1	1	0.08	1	-	-	1	1	1	-	1	1	1	1	ı	-
9	Sn	0.01	1	_	1	١	-	-	-	_	-	-	-	ı	1	1	-		t	ŀ	1
Composition	Ιn	0.02	_	0.05	"	"	*	*	0.05	"	0.04	١	0.07	0.03	٦	0, 02	"	"	. "	-	ı
Compo	2 n	0.8	3.0	1.0	*	"	*	*	1. 2	1	1.0	3.0	1	-:	3. 5	1.0	1.2		"	1.1	*
·	ر ت	0.4	0.5	0.4	*	*	*	.; -	1. 2	1.9	0.9	0.8	1. 2	0 :	*	"	0. 5	<i>ii</i>	"	0.04	1
	Er es	1. 2	"	0 :	1. 2		*	*	*	1	"	0.7	1.0	*	1.1	1. 2	1.0	*	"	0.5	
	S i	0.4	*	*	*	0.6	0.5	9.6	0.5	0.4	0.6	0.5	*	*	*	1.0	0. 5	*	*	0. 2	0. 15
07 wt. %	A l	B11.	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
18 1807	E.	0.7	*	*	*	*	*	*	*	*	*	*	*	*	*	*	0.3	*	*	9	*
material	Sn	ľ	1	1	1	1		1		1	١	ı	1	1	1			1	1	- 1	ı
of brazing	L I	1	1		1	1	Ľ	1	1	1	1	1	1	Ľ	ľ	1	1	1	1	1	1
	Zn	<u> </u>		1	ı	1				1	1	1	1	1		1	0 8	1.5	0.03	1	1
aposition	o O	<u> </u>	!	1	<u> </u>	Ŀ	1		ŀ	ı	1	١	1	1	ľ	-	9 9	-:	0.05	ſ	1
Compo	S i	∞ σi	*	*	*	*	*	*	*	*	*	*	*	*	*	*	11.0	6.0	11.0	න ණ	*
No. of	rin material	45	46	47	88	49	50	51	52	53	54	55	: 56	5.7	5.8	59	0.9	61	. 29	63	64
<u> </u>			-		-		*	3	(q m s	19	AII	8180	imoj		•					170021	Iqmers

Table 44

5		No. of fin material	Heating condition for brazing (×5min.)	Amount of drooping mm	Electro- conductivity %1ACS		No. of fin material	Heating condition for brazing (×5min.)	Amount of drooping mm	Electro- conductivity %IACS
		1	580 ℃	8	53		25	575 ℃	8	53
10		2	575 ℃	10	"		26	"	"	54
		3	"	"	54	•	21	580 ℃	11	"
		4	580 ℃	12	"	example	28	"	"	53
15		5	575 ℃	8	"		29	"	"	54
:		6	. "	"	"	Inventive	30	"	"	"
		7	. "	<i>"</i> .	"	Ξ	31	"	"	53
20		8	"	"	53		32	"	"	54
		9	"	"	"		33	575 ℃	9	"
		10	580 ℃	10	55		34	600 ℃	30	51
25	example	11	575 ℃	8	"		35	"	"	50
		1 2	"	"	54		36	"	40	51
	Inventire	13	"	"	53		37	"	30	"
30	Inv	14	"	"	54		38	"	35	"
		15	"	"	\$5.	<u>=</u>	39	"	45	"
1	İ	16	"	"	53	example	40	"	30	52
35 .		17	580 ℃	11	54		41	"	"	51
		18	"	"	55	Comparative	42	"	40	"
		19	"	"	54	S	43	".	30	"
40		20	575 ℃	8	"		44	"	35	"
		21	"	"	53		45	" .	"	"
1		22	580 ℃	11	54		46	"	45	"
-45		23	' "	"	"			"	30	"
		24	"	"	53	L	48	"	-35	"

50

Table 45

	No, of fin material	Heating condition for brazing (×5min.)	Amount of drooping	Electro- conductivity %IACS		No. of fin material	Heating condition for brazing (×5min.)	Amount of drooping	Electro- conductivity %IACS
	49	600 ℃	30	51		57	600 ℃	45	51
	50	"	"	50	Bp le	58	"	50	50
xample	5 1 ·	"	35	51	Ve exau	59	"	45	. 51
=	52	"	45	"	arati	60	Brazing she	et fin anp	roducible
Comparal	53	"	40	52	Comp	61	610 ℃	50	50
ి	54	"	45	50		62	600 ℃	35	52
	55	"	50	51		63	610 ℃	45	36
	56	"	40	"	Conrene example	64	"	50	50

As evident from tables 44 and 45, the articles in the inventive examples (No. 1 - 33) showed both excellent drooping property and excellent electroconductivity. This is because of that the melting point of the brazing material of brazing sheet fin is low, hence the testing temperature was set at lower temperature. Whereas, in the cases of articles in the comparative examples (34 - 59, 61, 62) and articles in the conventional examples (No. 63, 64), both the drooping property and the electroconductivity were poor. This is because of that the melting point of the brazing material of brazing sheet fin is high, and the testing temperature was set higher at 600 °C or 610 °C being a melting point of brazing material. In the case of article in the comparative example (No. 60), wherein Cu and Zn in the brazing material are added more than those within the range of the invention, rolling cracking occurred, making it impossible to process to the brazing sheet.

Example 9

Fin materials A - C and tube materials a - c with compositions shown in Table 46 were combined to assemble the condensers shown in Fig. 2. The fin materials are 0.12 mm thick brazing sheet fin materials cladded both sides of core materials with compositions shown in Table 46 with brazing material in a thickness of 10 %, and the tube materials are 16.0 mm wide perforated pipes produced by extruding bare materials comprising alloy compositions shown in Table 46. Onto the condensers, a 10 % concentration flux liquor with 3 % cesium type flux mixed with potassium fluoride type flux was coated, which was heated in nitrogen gas for brazing. Of the condensers thus obtained, the collapse state of fin and the brazability were observed by external appearance. Moreover, the tensile strength of tubes was measured. Further, with the condensers brazed exactly, the thermal efficiency was measured according to JIS D1618 (Test method of air conditioner for automobiles). The thermal efficiency is shown in comparison with conventional heat-exchanger. The results are shown in table 47 together with the materials and heating conditions.

Table 46

15

20

	No. 01		mposit terial			ng t. %		Co	mposit	ion of	core	maleri	al all	oj wi	. X
	, allog	Si	Cu	Ζn	Fе	Λl	Si	Гe	Cu	Zn	Мп	Νi	Z r	Тi	A I
Fin	Λ	11.0	2. 5	4. 0	0. 2	Bal.	0. 5	1. 0	0. 5	1. 2	. 1	0. 6	0. 10	0. 01	Bal
material	В	9. 8	_		0. 6	"	0. 2	0. 5	0. 04	1. 1	1. 1	-	_	"	"
	С	"		_	"	"	0. 5	1. 0	0. 5	1. 2	-	0. 6	0. 10	"	"
Tube	a	_	-	_	_	_	1. 8	0. 5	_	-	1. 1	0. 20	-	0. 18	"
material	b	_	-	_		_	1. 4	. "	0. 8	_	"	0. 15	-	0, 11	"
Ì	С	_	_		-	_	0. 3	"	0. 15	-	"	_		0. 01	"

Table 47

25	·	No.	Allay no, of fin	Alloy no. of tube	Brazing lemperature °C ×5min.	Location of collapse	Brazability	Termal efficiency	The sile strength of lube
зo	Inventive example	0	Α	а	580	None	Good	2. 5% More increase than ⑤	170MPa
		0	- A	. ь	• "	. "	"	"	220MPa
	Comparative example	3	С	С	600	".	"	"	[30MPa
		4	С	b	"	Tube	"	Unmeasurable	
35	Conventional example	(5)	В	С	"	None	"	Standard	130MPa

* With a tube (4), measurement of thermal efficiency and tensile test could not be carried out because of melting by heating for brazing.

As evident from Table 47, articles No. ① and ② in the inventive examples showed no collapse of fin, good brazability and excellent thermal efficiency. Even if aluminum alloys added with 1.2 wt. % or more of Si may be used for tubes, high strength was maintained without melting.

Whereas, in the cases of articles No. ③ and No. ④ in the comparative examples, conventional brazing material was used for brazing material and the brazing temperature was made to be 600 °C. The comparative example ③ showed low strength, and, in the case of article No. ④ in the comparative example, since an aluminum alloy added with 1.2 wt. % or more of Si was used for tube and the brazing temperature was as high as 600 °C, the tube ended up to melt.

As described above, in accordance with the invention, since the melting point of brazing material constituting the brazing sheet to be used on fabricating the aluminum alloy heat-exchangers is low, the brazing can be performed at lower temperature, hence the buckling and the decrease in the thermal conductivity of brazing sheet fin material are low, making it possible to thin the wall of fin material. In addition, when using such brazing sheet as a tube material or plate material, these components become high in the strength and excellent in the corrosion resistance and it becomes possible to make the wall of tube material or plate material thin and the strength thereof high, thus exerting remarkable effects on the miniaturization and the lightening in weight of heat-exchangers.

Claims

5

10

45

50

- 1. An aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.
- 2. An aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.8 wt. % and not more than 3.0 wt. % of Cu, over 0.05 wt. % and not more than 0.4 wt. % of Fe, over 1.0 wt. % and not more than 5.0 wt. % of Zn, or further one or two kinds of over 0.002 wt. % and not more than 0.05 wt. % of In and over 0.002 wt. % and not more than 0.05 wt. % of Sn, and the balance of Al and inevitable impurities.
- An aluminum alloy brazing sheet for heat-exchangers in the aluminum alloy brazing sheet for heat-15 exchangers having a three-layer structure cladded one side of core material consisting of aluminum alloy with brazing material consisting of aluminum alloy and cladded other side with sacrificial material consisting of aluminum alloy, comprising a brazing material of aluminum alloy comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 20 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities, a core material of aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, and the balance of Al and inevitable impurities, and a sacrificial material of aluminum alloy comprising at least 25 one kind selected from a group consisting of over 0.5 wt. % and not more than 6.0 wt. % of Zn. over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.
- An aluminum alloy brazing sheet for heat-exchangers in the aluminum alloy brazing sheet for heat-30 exchangers having a three-layer structure cladded one side of core material consisting of aluminum alloy with brazing material consisting of aluminum alloy and cladded other side with sacrificial material consisting of aluminum alloy, comprising a brazing material of aluminum alloy comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. 35 % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities, a core material of aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, and the 40 balance of Al and inevitable impurities, and a sacrificial material of aluminum alloy comprising at least one kind selected from a group consisting of over 0.5 wt. % and not more than 6.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, further one or two kinds of over 0.05 wt. % and not more than 2.5 wt. % of Mg and over 0.05 wt. % and not more than 1.6 wt. % of Mn, and the balance of Al and inevitable impurities.
 - 5. An aluminum alloy brazing sheet for heat-exchangers in the aluminum alloy brazing sheet for heat-exchangers having a three-layer structure cladded one side of core material consisting of aluminum alloy with brazing material consisting of aluminum alloy and cladded other side with sacrificial material consisting of aluminum alloy, comprising a brazing material of aluminum alloy comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities, a core material of aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, further at least one kind selected a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Zr, over 0.03 wt. % and not more than 1.5 wt. % of Zr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt. % and not more than 1.5 wt. % of Xr, over 0.03 wt.

5

10

15

. 20

25

30

35

40

45

Ni, and the balance of Al and inevitable impurities, and a sacrificial material of aluminum alloy comprising at least one kind selected from a group consisting of over 0.5 wt. % and not more than 6.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

- An aluminum alloy brazing sheet for heat-exchangers in the aluminum alloy brazing sheet for heatexchangers having a three-layer structure cladded one side of core material consisting of aluminum alloy with brazing material consisting of aluminum alloy and cladded other side with sacrificial material consisting of aluminum alloy, comprising a brazing material of aluminum alloy comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities, a core material of aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, further at least one kind selected a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Zr, over 0.03 wt. % and not more than 0.3 wt. % of Ti and over 0.03 wt. % and not more than 1.5 wt. % of Ni, and the balance of Al and inevitable impurities, and a sacrificial material of aluminum allow comprising at least one kind selected from a group consisting of over 0.5 wt. % and not more than 6.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, further one or two kinds of over 0.05 wt. % and not more than 2.5 wt. % of Mg and over 0.05 wt. % and not more than 1.6 wt. % of Mn, and the balance of Al and inevitable impurities.
- 7. An aluminum alloy brazing sheet for heat-exchangers comprising a core material used an aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.
- 8. Al aluminum alloy brazing sheet for heat-exchangers comprising a core material used an aluminum alloy comprising over 0.6 wt. % and not more than 2.5 wt. % of Si, over 0.5 wt. % and not more than 2.5 wt. % of Cu, over 0.05 wt. % and not more than 2.0 wt. % of Mn, further at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.03 wt % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Ni, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.
- 9. An aluminum alloy brazing sheet for heat-exchangers comprising a core material used an aluminum alloy comprising over 0.03 wt. % and not more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Fe, over 0.05 wt. % and not more than 2.0 wt. % of Mn, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not

more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.

- 10. An aluminum alloy brazing sheet for heat-exchangers comprising a core material used an aluminum alloy comprising over 0.03 wt. % and not more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Fe, over 0.05 wt. % and not more than 2.0 wt. % of Cu, over 0.6 wt. % and not more than 2.0 wt. % of Mn, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, furthermore at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, over 0.05 wt. % and not more than 2.0 wt. % of Ni, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. 5 of Zr and over 0.03 wt. % and not more than 0.3 wt. % of Ti, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.
- 11. An aluminum alloy brazing sheet for heat-exchangers comprising a core material used an aluminum alloy comprising over 0.03 wt. % and not more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Fe, over 0.05 wt. % and not more than 2.0 wt. % of Cu, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities, cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.
- 12. An aluminum alloy brazing sheet for heat-exchangers comprising a core material used an aluminum alloy comprising over 0.03 wt. % and not more than 2.5 wt. % of Si, over 0.05 wt. % and not more than 2.0 wt. % of Fe, over 0.05 wt. % and not more than 2.0 wt. % of Cu, further at least one kind selected from a group consisting of over 0.05 wt. % and not more than 5.0 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, furthermore at least one kind selected from a group consisting of over 0.03 wt. % and not more than 0.5 wt. % of Mg, 35 over 0.03 wt. % and not more than 0.6 wt. % of Mn, over 0.05 wt. % and not more than 2.0 wt. % of Ni, over 0.03 wt. % and not more than 0.3 wt. % of Cr, over 0.03 wt. % and not more than 0.3 wt. % of Zr and over 0.03 wt. % and not more than 0.3 wt. % of Ti, and the balance of Al and inevitable impurities. cladded both sides thereof with an aluminum alloy brazing material comprising over 7.0 wt. % and not more than 12.0 wt. % of Si, over 0.1 wt. % and not more than 8.0 wt. % of Cu, over 0.05 wt. % and not 40 more than 0.5 wt. % of Fe, further at least one kind selected from a group consisting of over 0.5 wt. % and not more than 5.5 wt. % of Zn, over 0.002 wt. % and not more than 0.3 wt. % of In and over 0.002 wt. % and not more than 0.3 wt. % of Sn, and the balance of Al and inevitable impurities.
- 45 13. A method for fabricating aluminum alloy heat-exchangers in the method for fabricating heat-exchangers by joining the aluminum alloy components by brazing technique, comprising the step of brazing heating at a temperature of 570 to 585 °C by using brazing materials or brazing sheets described in Claims 1 through 12.

50

5

10

15

20

Fig. I

Fig.2

Fig.3

EUROPEAN SEARCH REPORT

Application Number EP 94 10 1389

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
X	CHEMICAL ABSTRACTS, vol. 106, no. 18, 4 May 1987, Columbus, Ohio, US; abstract no. 142409, WAKATSUKI, AKIHIRO ET AL 'Heat-exchanger fins from brazing aluminum alloy wth anodically sacrificial effect' * abstract * & JP-A-61 202 772 (NIPPON LIGHT METAL CO. LTD., JAPAN)	1	B23K35/28 B32B15/01
x	US-A-3 963 453 (O.R. SINGLETON JR) * column 3; claims; table *	1	
X	US-A-3 788 824 (O.R. SINGLETON JR ET AL) * claims; examples *	1	
A	US-A-4 788 037 (M. KAIFU ETAL)		
A	US-A-4 211 827 (M.J. PRYOR ET AL)		
A	US-A-4 196 262 (M.J. PRYOR ET AL)		TECHNICAL FIELDS SEARCHED (Int.Cl.6)
A,D	US-A-3 994 695 (W.C. SETZER ET AL)		B23K
A	US-A-3 168 381 (W.D. FINNEGAN ET AL)		B32B
	The present search report has been drawn up for all claims		
	Place of search Date of completion of the search		Examiner
	THE HAGUE 16 November 199	4 Mo1	let, G
X : part Y : oart	CATEGORY OF CITED DOCUMENTS T: theory or princ E: earlier patent icularly relevant if taken alone icularly relevant if combined with another D: document cite ument of the same category L: document cite	locument, but publ	ished on, or

EPO PORM 1503 03.82 (POCCO)