

Parameterwahl für sichere zeitgemäße Verschlüsselung

Prof. Dr. Mark Manulis

Kryptographische Protokolle Fachbereich Informatik

TU Darmstadt / CASED

Mornewegstrasse 30

64293 Darmstadt

Room 4.1.15 (4th floor)

manulis (-at) informatik.tu-darmstadt.de

tel +49 (0)6151 16 50761

fax +49 (0)6151 16 72051

Datenschutz und Kryptographie

Datenschutz "bezeichnet den Schutz personenbezogener Daten vor Missbrauch … dass jeder Mensch grundsätzlich selbst entscheiden kann, wem wann welche seiner persönlichen Daten zugänglich sein sollen". (Quelle: Wikipedia)

Vorratsdatenspeicherung "bezeichnet Verpflichtung der Anbieter von Telekommunikationsdiensten zur Registrierung von elektronischen Kommunikationsvorgängen ohne dass ein Anfangsverdacht oder konkrete Hinweise auf Gefahren bestehen". Quelle: Wikipedia)

Kryptographie ist die Wissenschaft der Verschlüsselung von Informationen

Klassische Ziele der Kryptographie

Vertraulichkeit Daten vor unerlaubtem Zugriff schützen

Integrität Daten vor unerlaubter Änderung schützen

Authentizität Nachweis der Urheberschaft von Daten (eventuell mit Verbindlichkeit)

Kryptographie ist ein Werkzeug zum Datenschutz

Themen

Grundlagen und Taxonomie der Verschlüsselung

Perfekte Geheimhaltung vs. Praktische Sicherheit

Symmetrische Verschlüsselung (DES, 3-DES, AES)

Asymmetrische Verschlüsselung (RSA + Faktorisierung, ElGamal + DLog, ECC)

Zeitgemäße Verschlüsselung (Parameterwahl, praktisches How-To)

Ausblick und Trends

Grundlagen eines Verschlüsselungssystems

Algorithmen eines Verschlüsselungssystems

KeyGen zur Schlüsselerzeugung (randomisiert)

Encrypt zum Verschlüsseln (mglw. randomisiert)

Decrypt zum Entschlüsseln

Prinzipien eines Verschlüsselungssystems

- 1. öffentliche Spezifikation von PARAM, KeyGen, Encrypt, Decrypt
- 2. nur KEY bleibt geheim
- 3. Beweis der Sicherheit des Systems (basierend auf annerkannten Annahmen; nicht immer möglich)

Sicherheit eines Verschlüsselungssystems

chosen-plaintext attacks (CPA) Angreifer kriegt Zugang zu Encrypt (kann selbst verschlüsseln) chosen-ciphertext attacks (CCA) Angreifer kriegt Zugang zu Decrypt (kann selbst entschlüsseln)

Angreifer's Ziel

Inhaltsinformationen über DATA aus CIPHER zu ermitteln

Taxonomie Moderner Verschlüsselung

Symmetrische (Private-Key) Verschlüsselung

Asymmetrische (Public-Key) Verschlüsselung

KEY = K Encrypt(K, DATA) = CIPHER Decrypt(K, CIPHER) = DATA

Bedeutung

KEY = (SK, PK) Encrypt(PK, DATA) = CIPHER Decrypt(SK, CIPHER) = DATA

K ist geheim

SK ist geheim, PK ist öffentlich

Feistel-Netzwerk
Substitution-Permutation-Netzwerk

Design

Einweg-Funktionen/Permutationen zahlentheoretische Annahmen

Bruteforce lineare/differentielle Kryptoanalyse algebraische Angriffe Seitenkanalangriffe

Bruteforce
effizientere Lösungsalgorithmen für
zahlentheoretische Probleme
Seitenkanalangriffe

Parameterwahl für sichere zeitgemäße Verschlüsselung

Perfekte Geheimhaltung

Vorkommende Mengen in einem Verschlüsselungsverfahren

KEYS Menge aller möglichen Schlüssel

DATA Menge aller möglichen Daten

CIPHERS Menge aller möglichen Chriffrate

Annahmen über Wahrscheinlichkeitsverteilungen

- Wahrscheinlichkeitsverteilungen über KEYS und DATA sind unabhängig
- Wahrscheinlichkeitsverteilung über **DATA** ist möglicherweise bekannt (einige Inhalte sind wahrscheinlicher als andere)

Definition der perfekten Geheimhaltung

Wahrscheinlichkeitsverteilungen über DATA und CIPHERS sind unabhängig

 \Leftrightarrow

Chiffrate sollen keine Informationen über die verschlüsselten Daten liefern

die Verschlüsselung von DATA soll sich von der Verschlüsselung von DATA' nicht unterscheiden

One-Time Pad (Vernam, Mauborgne 1918)

Parameter

KEYS, DATA, CIPHERS sind {0,1}ⁿ Mengen (alle Bitstrings der Länge n)

Algorithmen

KeyGen wähle K zufällig aus {0,1}ⁿ

Encrypt C = K XOR DATA (bitweise Addition)

Decrypt DATA = C XOR K

DATA = 0101 K = 1100 C = 1001 K = 1100 DATA = 0101

Perfekte Geheimhaltung (Shannon 1949)

C verschlüsselt jeden Wert aus **DATA** mit gleicher Wahrscheinlichkeit:

alle Schlüssel sind gleichwahrscheinlich und

für jeden Wert DATA existiert der passende Schlüssel K = C XOR DATA

Praktische Nachteile

- die Länge von K muss *mindestens* die Länge von DATA haben
- jeder K darf nur einmal benutzt werden (sonst C XOR C' = DATA XOR DATA')
 - → key management ist schwierig

Praktische Sicherheit

Ausgangslage

Schlüssellänge kleiner als Länge von DATA ⇒ keine perfekte Geheimhaltung

⇒ theoretisch unsicher

Praktische Sicherheit

(t, ε)-Sicherheit von Verschlüsselungsverfahren

- t maximal Zeit für den Angriff (gegeben durch moderne Rechenleistung, z.B. in CPU cycles)
- ε Wahrscheinlichkeit eines erfolgreichen Angriffs

Wahl der Sicherheitsparameter

t ist vorgegeben aber die Schlüssellänge n nicht

wähle n so dass ε möglichst klein ist

 $\varepsilon < t/2^n$ ist eine gute Approximation

Beispiel

für moderne Rechner ist die Abschätzung t < 280 ausreichend

bei n = 128 Bits wäre ε < 1/2⁴⁸ \approx 3,55 x 10⁻¹⁵

(die Zeit eines Bruteforce-Angriffs wäre 2128)

Symmetrische Verschlüsselung

Blockchiffren

Blöcke werden je nach Modus vorbereitet CBC, OFB, CTR sind CPA-sichere Modi

Beispiele: DES, 3-DES, AES, ...

Stromchiffren

IV wird zufällig gewählt

synchronised mode IV neu per DATA unsynchronisiert mode IV neu per D_i

Beispiele: RC4, A5/1, ..., siehe auch eSTREAM project (http://www.ecrypt.eu.org/stream/)

Data Encryption Standard (DES)

Allgemeines

entwickelt von IBM, FIPS-Standard 1977 - 1999

Parameter

Schlüssellänge 64 Bits (nur 56 Bits sind zufällig)
Blocklänge 64 Bits
Feistel-Netzwerk mit 16 Runden

Sicherheit

theoretische Angriffe durch lineare- und differentielle Kryptoanalyse relativ kleine Schlüssellänge \rightarrow Bruteforce 2⁵⁶ (DES Challenge III benötigte etwa 22 Stunden) relativ kleine Blocklänge \rightarrow je nach Modus kann ebenfalls zum Problem werden

DES sollte *nicht* mehr verwendet werden

Triple-DES (3-DES)

Allgemeines

FIPS-Standard seit 1999 als Ersatz für DES

Parameter

2 oder 3 unabhängige DES-Schlüssel3 sequentielle Ausführungen von DESzweite Ausführung ist Entschlüsselung

Sicherheit

effektive Schlüssellängen:

112 Bits bei 2 Schlüsseln

168 Bits bei 3 Schlüsseln

CPA-Angriff auf Variante mit 2 Schlüsseln mit Laufzeit 2^{56} bei 2^{56} bekannten (D_i , C_i)-Paaren meet-in-the-middle Angriff auf Variante mit 3 Schlüsseln mit Laufzeit 2^{112}

3-DES mit 3 Schlüsseln wird immernoch als praktisch sicher angesehen (aber nicht sehr effizient)

Advanced Encryption Standard (AES)

Allgemeines

NIST-Standard seit 2000 gedacht als Ersatz für DES/3-DES

Parameter

Schlüssellängen 128, 192 oder 256 Bits

Blocklänge 128 Bits (als 4x4-Bytes Matrix)

Substitution-Permutation-Netzwerk mit 10, 12 oder 14 Runden je nach Schlüssellänge

Sicherheit

bekannte Angriffe nur auf *reduzierte* Rundenanzahl Laufzeit 2⁷² auf 6 Runden AES-128, 2¹⁸⁸ auf AES-192, 2²⁰⁴ auf AES-256 kein nennenswertes Risiko für Praxis

AES ist somit sicher

Asymmetrische Verschlüsselung

Zahlentheoretische Probleme

komplexitätstheoretische Sicherheit, Beschränkung der Rechenleistung des Angreifers Angreifer = Algorithmus mit polynomieller Laufzeit (in der Länge des Inputs)

Verfahren mit praktischer Relevanz

13

RSA Verschlüsselung

Algorithmen ("Textbook RSA")

KeyGen lange Primzahlen (P, Q); Modulus N = PQ; Exponenten e und d mit ed = 1 mod (P-1)(Q-1)

PK = (N, e), SK = (N, d)

Encrypt DATA \in [1, N-1], CIPHER = (DATA)^e mod N

Decrypt CIPHER \in [1, N-1], DATA = (CIPHER)^d mod N

RSA in der Praxis

Textbook RSA ist nicht sicher

Probleme bei kurzen Exponenten e und bei gemeinsamen Moduli N

Textbook RSA ist deterministisch (gleiches DATA führt zum gleichen CIPHER)

In Praxis wird "RSA mit Padding" verwendet, Teil von PKCS#1-Standard (aktuell in Version 2.1)

RSAES-PKCS1-v1_5 bietet nur CPA-Sicherheit (R||DATA)e

RSAES-OAEP bietet auch CCA-Sicherheit $((G(R) \oplus DATA | | 0..0) | | R \oplus H())^e$

Algorithmen zur Faktorisierung

Bruteforce Angriff

probiere alle Zahlen im Interval [2, ..., \sqrt{N}]

n (= log N) Länge von N = PQ finde die Primzahlen P und Q

Laufzeit $O(N^{1/2} \cdot (log N)^c) \approx O(2^{n/2} n^c)$, somit exponentiell im Sicherheitsparameter n

→ P und Q sollen ungefähr gleiche Länge haben, also |P| = |Q| = n/2

Pollard's P-1 Methode

effizient falls P-1 nur kleine Primfaktoren hat

Laufzeit O(B n/(log B)) mit B größer als der größter Faktor von P-1

- → P-1 und Q-1 sollen keine kleinen Primfaktoren enthalten, also sog. strong primes sein
- → P = 2P'+1 und Q = 2Q'+1 mit großen Primzahlen P' und Q', also $|P'| = |Q'| \approx n/2 1$ Laufzeit wäre dann immernoch exponentiell, ungefähr O(2^{n/2})

Pollard's rho Methode

Laufzeit $O(N^{1/4} \cdot (log N)^c) = O(2^{n/4} n^c)$, etwas besser als Bruteforce

Quadratic Sieve

Laufzeit ungefähr 2^{O((n· (log n))1/2)}, somit sub-exponentiell im Sicherheitsparameter n

General Number Field Sieve

etwas besser als Quadratic Sieve, immernoch mit sub-exponentieller Laufzeit

Faktorisierung von N in polynomieller Zeit O(n^c) ist nicht bekannt

ElGamal Verschlüsselung

Algorithmen

KeyGen Primzahlen P und Q mit Q teilt P-1

zyklische Gruppe $G = \langle g \rangle$ der Ordnung Q als Untergruppe von $\mathbb{Z}_p^* = [1,...,P-1]$

 $PK = (y), SK = (y, x) mit y = g^{x} mod P$

Encrypt DATA $\in \mathbb{G}$, wähle r zufällig aus [1, Q-1], CIPHER = (C₁, C₂) = (g^r mod P, y^r·DATA mod P)

Decrypt CIPHER = (C_1, C_2) , DATA = $C_2 / C_1^x \mod P$

ElGamal in der Praxis

ElGamal bietet nur CPA-Sicherheit

In Praxis wird oft DHIES verwendet, Teil von IEEE P1363-2000 Standard

CIPHER = (C_1, C_2, C_3)

Algorithmen zur Berechnung von DLog

Bruteforce Angriff

probiere alle Zahlen im Interval [1, ..., Q-1] $Laufzeit \ O(Q) \ \approx O(2^n), \ somit \ exponentiell \ im \ Sicherheitsparameter \ n$

→ Q soll hinreichend lang sein

Baby-Step/Giant-Step

Laufzeit $O(Q^{1/2} \cdot (\log Q)^c) \approx O(2^{n/2} n^c)$, etwas besser als Bruteforce

Pohlig-Hellman

anwendbar wenn die Ordnung der Gruppe, also Q, bekannte Faktoren hat Laufzeit $O(Q_{max}^{1/2} \cdot (log \ Q)^c)$ wo Q_{max} ist der größte Faktor von Q

→ es empfiehlt sich daher Q als Primzahl zu wählen

Index Calculus

anwendbar nur in der zyklischen Gruppe \mathbf{Z}^*_{p} = [1,...,P-1] Laufzeit ungefähr $2^{O((n\cdot (\log n))1/2)}$, somit sub-exponentiell im Sicherheitsparameter n

 \rightarrow es empfiehlt sich daher die Untergruppe G von Z^*_p zu verwenden

General Number Field Sieve

etwas besser als Index Calculus, immernoch mit sub-exponentieller Laufzeit

n (= log Q) Länge von Q gegeben y = g^x mod P finde x

Berechnung von DLog in polynomieller Zeit O(n^c) ist nicht bekannt

Elliptic Curve Cryptography (ECC)

Grundlagen von ECC

gerechnet wird auf elliptischen Kurven über endliche Körper F der Ordnung P

P ist prim

 $E(x,y): y^2 = x^3 + ax + b$

mit $4a^3 + 27b \neq 0$

P ist zweier Potenz (2^k)

 $E(x,y): y^2 + xy = x^3 + ax^2 + b$ mit $b \ne 0$

die Menge aller Punkte auf E(x,y) zusammen mit abstraktem Punkt O bildet eine kommutative Gruppe E(F)

DLog in ECC

 $E(F_D)$ hat zyklische Untergruppen $G = \langle G \rangle := \{0, G, ..., (Q-1) \cdot G\}$ primer Ordnung Q erzeugender Element G ist ein Punkt auf E(x,y)

DLog-Problem

gegeben Y = X·G mit X aus [1, ..., Q-1] finde X

ECC-Verschlüsselung

Varianten von ElGamal und DHIES basierend auf elliptischen Kurven

die schnellsten Algorithmen für DLog in ECC benötigen Laufzeit von ca. $O(Q^{1/2}) = O(2^{n/2})$

Q in ECC kann kleiner im Vergleich zu Q in \mathbb{Z}_0 gewählt werden (|Q| = 160 Bits, Laufzeit des Angriffs O(2^{80}))

die Wahl von Kurven ist ebenfalls wichtig (IEEE P1363, SEC von Certicom, FIPS 186-2 von NIST)

wegen Sicherheit und Effizienz

Sicherheitsparameter-Zusammenfassung

Sicherheitsparameter für symmetrische Verfahren

Schlüssellänge

soll hinreichend lang sein um Bruteforce-Angriffen praktisch zu begegnen

Sicherheitsparameter für asymmetrische Verfahren

RSA-basierte Verfahren

Länge des Modulus N = PQ

bestimmt durch die Längen der Primzahlen P und Q

DLog-basierte Verfahren

Ordnung P der Gruppe Z_P

bestimmt durch die Länge der Primzahl P

Ordnung Q der Untergruppe $G \subset Z_p$

bestimmt durch die Länge der Primzahl Q, impliziert die Schlüssellänge

ECC-basierte Verfahren

Ordnung P des Körpers F_P

bestimmt durch die Länge von P (P ist entweder eine Primzahl oder eine zweier Potenz)

Ordnung Q der Untergruppe $E(\mathbb{F}_p)$

bestimmt durch die Länge der Primzahl Q

Parameter für die elliptische Kurve E(x,y) (sind meistens vorgegeben)

Zeitgemäße Verschlüsselung

Ziel: Kontinuierliche Anpassung der Sicherheitsparameter in Abhängigkeit der modernen Technologie (Zeit)

Wie berechnet man aktuelle Parameter?

A. K. Lenstra, E. R. Verheul: "Selecting Cryptographic Key Sizes" (Public Key Cryptography 2000, http://www.win.tue.nl/~klenstra/key.pdf)

aktualisiert in

A. K. Lenstra: "Key Lengths" (Kapitel im Handbook of Information Security, http://www.keylength.com/biblio/Handbook_of_Information_Security_-_Keylength.pdf)

Gleichungen zur Berechnung der Längen in Abhängigkeit der geschätzten MIPS (Rechenleistung) im Jahr X basierend auf kryptoanalytischen Erfahrungen mit bekannten Verschlüsselungsverfahren

vorausgesetzt, dass ein signifikanter kryptoanalytischer Durchbruch ausbleibt (auch in der Technologieentwicklung)

20

Wahl der Parameter – Praktisches How-To

Zahlreiche Empfehlungen

vom NIST

in 2007: Recommendation for Key Management, Special Publication 800-57 Part 1 http://csrc.nist.gov/groups/ST/toolkit/key management.html

in 2009: Cryptographic Key Management Project (noch als draft version) http://csrc.nist.gov/groups/ST/toolkit/key management.html

vom ECRYPT

in 2009: *ECRYPT Yearly Report on Algorithms and Keysizes (2008-2009)*, Rev. 1.0 (momentan aktuellste) http://www.ecrypt.eu.org/documents.html

von BNetzA

in 2009: Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz und der Signaturverordnung http://www.bundesnetzagentur.de/media/archive/15549.pdf (bezieht sich auf Signaturen)

Übersichtsprojekte im Internet

www.keylength.com (in Englisch)

keylength.com

Blue Krypt | Cryptographic Key Length Recommendation

-2

In most cryptographic functions, the key length is an important security parameter. Both academic and private organizations provide recommendations and mathematical formulas to approximate the minimum key size requirement for security. Despite the availability of these publications, choosing an appropriate key size to protect your system from attacks remains a headache as you need to read and understand all these papers. This web site implements mathematical formulas and headache are reports from well-known organizations allowing you to quickly evaluate the minimum security requirements for your system. You can also easily compare all these techniques and find the appropriate key length for your desired level of protection.

The lengths provided here are designed to resist mathematic attacks; they do not take algorithmic attacks, hardware flaws, etc. into account.

Choose a method

Lenstra and Verheul Equations (2000)

Lenstra Updated Equations (2004)

ECRYPT II Recommendations (2009)

NIST Recommendations (2007)

DCSSI Recommendations (2007)

Fact Sheet NSA Suite B Cryptography (2009)

Network Working Group RFC3766 (2004)

BSI Recommendations (2009)

© 2009 BlueKrypt - v 21.4 - August 23, 2009
Authors: Damien Giry, Philippe Bulens
Approved by Prof. Jean-Jacques Quisquater
Contact: keylength@bluekrypt.com

I would like to thank Prof. Arjen K. Lenstra for his kind authorization and comments.

Surveys of laws and regulations on cryptology: Crypto Law Survey / Digital Signature Law Survey.

Privacy Policy (P3P) | Disclaimer / Copyright | Release Notes

Lenstra Updated Equations (2004)

Computation for year 2030

Options
Date until when user trusts DES: 1982 (default)
Double Moore factorizing law (default)

Year	Symmetric	Asymmetric		Discrete Logarithm		Elliptic Curve	Hash
		Optimistic	Conservative	Key	Group		
2028	87	1633	1958	174	1633	174	174
2029	88	1665	2010	175	1665	175	175
2030	88	1698	2063	176	1698	176	176
2031	89	1732	2118	178	1732	178	178
2032	90	1765	2173	179	1765	179	179

ECRYPT II Recommendations (2009)

All key sizes are provided in bits. These are the minimal sizes for security.

Level	Protection	Symmetric	Asymmetric	Loga	crete arithm Group	Elliptic Curve	Has
1	Attacks in "real-time" by individuals Only acceptable for authentication tag size	32	-	-	-	-	-
2	Very short-term protection against small organizations Should not be used for confidentiality in new systems	64	816	128	816	128	128
3	Short-term protection against medium organizations, medium-term protection against small organizations	72	1008	144	1008	144	14
4	Very short-term protection against agencies, long- term protection against small organizations Smallest general-purpose level, Use of 2-key 3DES restricted to 2 ⁴⁰ plaintext/ciphertexts, protection from 2009 to 2012	80	1248	160	1248	160	16
5	Legacy standard level Use of 2-key 3DES restricted to 10 ^s plaintext/ciphertexts, protection from 2009 to 2020	96	1776	192	1776	192	19
6	Medium-term protection Use of 3-key 3DES, protection from 2009 to 2030	112	2432	224	2432	224	22
7	Long-term protection Generic application-independent recommendation, protection from 2009 to 2040	128	3248	256	3248	256	25
8	"Foreseeable future" Good protection against quantum computers	256	15424	512	15424	512	51:

Ausblick

Trend I: Quanten-Rechner

großes Risiko für moderne Kryptoverfahren; bedingt durch die Algorithmen von

P. W. Shor: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum

Computer. In SIAM J. on Computing, 26/1997 (http://de.wikipedia.org/wiki/Shor-Algorithmus)

zur Faktorisierung und Berechnung von Diskreten Logarithmen mit polynomieller Laufzeit

noch keine praktische Relevanz

(Quelle: Wikipedia)

Trend II: Post-Quantum Kryptographie

gegen Shor's Algorithmus resistente Verschlüsselungsverfahren z.B. NTRU, McEliece, ...

benötigen keine Quanten-Rechner!

aktuelles Forschungsthema (auch in Darmstadt)
Workshop PQCrypto 2010 (http://pqc2010.cased.de/)

