802.11 PHY调制与速率 The DSSS system uses baseband modulations of differential binary phase shift keying (DBPSK) and differential quadrature phase shift keying (DQPSK) to provide the 1 Mb/s and 2 Mb/s data

DSSS使用DBPSK 和 DQPSK,速率支持1M 2M

3/4

2/3

3/4

16-QAM

64-QAM

64-QAM

Extended Rate PHY (ERP)

High-throughput (HT) PHY

Modulation

Modulation

BPSK

QPSK

QPSK

16-QAM

16-QAM

64-QAM

64-QAM

64-QAM

BPSK

QPSK

MCS

MCS Index

HR/DSSS PHY CCK编码 5.5M, 11M速率

Orthogonal frequency division multiplexing (OFDM) PHY

HR/DSSS PHY provide 5.5 Mb/s and 11 Mb/s, provide the higher rates, 8-chip complementary code keying (CCK) modulation scheme

The OFDM system provides a WLAN with data payload communication capabilities of 6, 9, 12, 18, 24, 36,48, and 54 Mb/s

The support of transmitting and receiving at data rates of 6, 12, and 24 Mb/s is mandatory. The system uses 52 subcarriers that are modulated using binary or quadrature phase shift keying (BPSK or QPSK) or using 16- or 64-quadrature amplitude modulation (16-QAM or 64-QAM).

Table 17-4—Modulation-dependent parameters Data rate Coded **Data bits** Data rate Data rate **Coded bits** Coding bits per (Mb/s)(Mb/s)per (Mb/s) per Modulation **OFDM** (20 MHz (10 MHz (5 MHz **OFDM** rate subcarrier channel symbol (R)symbol channel channel (N_{BPSC}) (N_{CBPS}) (N_{DBPS}) spacing) spacing) spacing) **BPSK** 1/2 48 24 6 1.5 3 3/4 48 4.5 BPSK 2.25 2 QPSK 1/2 12 96 QPSK 3/4 4.5 96 1/2 192 24 12 16-QAM

144

192

216

36

54

192

288

288

 $R \mid N_{BPSCS}(i_{SS}) \mid N_{SD} \mid N_{SP} \mid N_{CBPS} \mid N_{DBPS}$

 N_{SD} N_{SP}

6

6

6

108

108

108

108

108

108

108

108

— A control modulation using MCS 0 (the DMG control mode; see 20.4)

— An OFDM modulation using MCS 13 to MCS 24 (the DMG OFDM mode; see 20.5)

Table 21-24—Allowed relative constellation error versus constellation size and coding rate

 $N_{CBPS} \mid N_{DBPS}$

54

108

162

216

324

432

486

-5

-10

52

104

104

208

208

312

312

312

416

 N_{CBP}

234

468

936

936

1404

1404

1404

1872

1872

CBW80

2

N/A

Not valid

Table 21-46—VHT-MCSs for mandatory 80 MHz, N_{SS} = 1

 N_{SP}

8

78

104

156

208

234

260

312

 N_{DBPS}

117

234

351

468

702

936

1053

1170

1404

1560

 N_{ES}

1

108

216

216

432

432

648

648

Forward error correction coding (convolutional coding) is used with a coding rate of 1/2, 2/3, or 3/4.

是前面三个的融合

The ERP builds on the payload data rates of 1 and 2 Mb/s, use DSSS modulation and builds on the payload data rates of 1, 2, 5.5, and 11 Mb/s. provide additional payload data

18

24

27

rates of 6, 9, 12, 18, 24,36, 48, and 54 Mb/s. Of these rates, transmission and reception capability for 1, 2, 5.5, 6, 11, 12, and 24 Mb/s data rates is mandatory.

Data rate (Mb/s)

Data rate (Mb/s)

800 ns GI

13.5

27.0

40.5

54.0

81.0

108.0

121.5

135.0

400 ns GI

15.0

30.0

45.0

60.0

90.0

120.0

135.0

150.0

9

12

13.5

high-throughput (HT) orthogonal frequency division multiplexing (OFDM) system The HT PHY data subcarriers are modulated using binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM), or 64-QAM. Forward error correction (FEC) coding (convolutional coding) is used with a coding rate of 1/2, 2/3, 3/4, or 5/6. LDPC codes are added as an optional feature. Other optional features at both transmit and receive sides are 400 ns (short) guard interval (GI), transmit beamforming, HT-greenfield format, and STBC.

 $R \mid N_{BPSCS}(i_{SS})$

2

6

1/2

1/2

1/2

1/2

3/4

1/2

3/4

2/3

3/4

5/6

Table 20-19—DMG SC mode modulation and coding schemes

前向纠错编码,LDPC编码,400ns Short GI,波束成形发射,HT-GreenField,STBC等新特性 强制支持的速率参考Table 19-27 MCSO-MCS7 Table 19-28—MCS parameters for optional 20 MHz, N_{SS} = 2, N_{ES} = 1, EQM Table 19-27—MCS parameters for mandatory 20 MHz, N_{SS} = 1, N_{ES} = 1

MCS

Index

MCS

Index

Modulation

BPSK

QPSK

QPSK

16-QAM

16-QAM

64-QAM

64-QAM

64-QAM

Modulation

								800 ns GI	(see NOTE)									800 ns GI	400 ns GI
0	BPSK	1/2	1	52	4	52	26	6.5	7.2	8	BPSK	1/2	1	52	4	104	52	13.0	14.4
1	QPSK	1/2	2	52	4	104	52	13.0	14.4	9	QPSK	1/2	2	52	4	208	104	26.0	28.9
2	QPSK	3/4	2	52	4	104	78	19.5	21.7	10	QPSK	3/4	2	52	4	208	156	39.0	43.3
3	16-QAM	1/2	4	52	4	208	104	26.0	28.9	11	16-QAM	1/2	4	52	4	416	208	52.0	57.8
4	16-QAM	3/4	4	52	4	208	156	39.0	43.3	12	16-QAM	3/4	4	52	4	416	312	78.0	86.7
5	64-QAM	2/3	6	52	4	312	208	52.0	57.8	13	64-QAM	2/3	6	52	4	624	416	104.0	115.6
6	64-QAM	3/4	6	52	4	312	234	58.5	65.0	14	64-QAM	3/4	6	52	4	624	468	117.0	130.0
7	64-QAM	5/6	6	52	4	312	260	65.0	72.2	15	64-QAM	5/6	6	52	4	624	520	130.0	144.4
7 NOTE—S	64-QAM upport of 400 ns				4 receive.	312	260	65.0	72.2	15	64-QAM	5/6	6	52	4	62	24	24 520	24 520 130.0
T	able 19-3	31—M	CS paramet	ers fo	r optic	onal 40 N	MHz, N _S	_S = 1, N _{ES} :	= 1		Table 19-32	-MCS	parameters	for op	otiona	1 40 MHz	z, N _{SS} = 2	2, N _{ES} = 1, I	EQM
										, <u> </u>									

Directional multi-gigabit (DMG) PHY

The DMG PHY supports three modulation methods:

very high throughput (VHT) orthogonal frequency division multiplexing (OFDM) system The VHT PHY data subcarriers are modulated using binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM), 64-QAM, and 256-QAM. Forward error correction (FEC) coding (convolutional or LDPC coding) is used with coding rates of 1/2, 2/3, 3/4, and 5/6. 多了256-QAM

— A single carrier (SC) modulation using MCS 1 to MCS 12, MCS 9.1, 12.1, 12.2, 12.3, 12.4, 12.5 and 12.6 (the DMG SC mode; see 20.6) and MCS 25 to MCS 31

Relative constellation error Modulation Coding rate (dB)

Data rate (Mb/s)

800 ns GI

6.5

13.0

19.5

26.0

39.0

52.0

58.5

65.0

78.0

800 ns GI

29.3

58.5

87.8

117.0

175.5

234.0

263.3

292.5

351.0

390.0

400 ns GI

(See

NOTE)

7.2

14.4

21.7

28.9

43.3

57.8

65.0

72.2

86.7

400 ns GI

(See NOTE)

32.5

65.0

97.5

130.0

195.0

260.0

292.5

325.0

390.0

433.3

Data rate (Mb/s)

VHT-

MCS

Index

Modulation

BPSK

QPSK

 N_{BPSCS}

1/2

1/2

2/3

3/4

5/6

3/4

5/6

64-QAM

64-QAM

64-QAM

256-QAM

256-QAM

7

9

0

0

N/A

 N_{SD}

108

108

VHT- MCS Index	Modulation	R	N _{BPSCS}	N _{SD}	N _{SP}	N _{CBPS}	N_{DBPS}	N _{ES}	800
	Ta	able 21	I-30—VH	T-MCS	s for n	nandator	y 20 MH	z, N _{SS} :	= 1
L	256-QAM		5/6			-32			
	256-QAM		3/4			-30			
	64-QAM		5/6			-27			
	64-QAM		3/4			-25			
	64-QAM		2/3			-22			
	16-QAM		3/4			-19			
	16-QAM		1/2			-16			
	QPSK		3/4			-13			

52

52

52

52

52

52

52

52

52

 N_{SD}

234

234

234

234

234

234

234

234

234

234

1/2

1/2

3/4

1/2

3/4

2/3

3/4

5/6

3/4

1/2

1/2

3/4

1/2

3/4

2/3

3/4

5/6

3/4

5/6

CBW20

N/A

N/A

N/A

20 MHz HE PPDU

User Info field字段中的 RU Allocation字段表示RU类型

Table 9-25h—The encoding of B19-B13 of the RU Allocation subfield

NOTE—Support of 400 ns GI is optional on transmit and receive.

NOTE—Support of 400 ns GI is optional on transmit and receive.

6

 N_{BPSCS}

6

6

6

high efficiency (HE) orthogonal frequency division multiplexing (OFDM) system

(convolutional or LDPC coding) is used with coding rates of 1/2, 2/3, 3/4 and 5/6.

Table 28-5—Maximum number of RUs for each channel width

CBW40

2

N/A

N/A

An HE MU PPDU using OFDMA transmission can carry a mixture of 26-, 52-, 106-, 242-, 484-, and 996-

BPSK

QPSK

QPSK

16-QAM

16-QAM

64-QAM

64-QAM

64-QAM

256-QAM

Modulation

BPSK

QPSK

QPSK

16-QAM

16-QAM

64-QAM

64-QAM

64-QAM

256-QAM

256-QAM

RU type

242-tone RU

484-tone RU

996-tone RU

2×996 tone RU

VHT-

MCS

Index

5

2	QPSK	3/4	2	108	6	216	162	1	40.5	45.0
3	16-QAM	1/2	4	108	6	432	216	1	54.0	60.0
4	16-QAM	3/4	4	108	6	432	324	1	81.0	90.0
5	64-QAM	2/3	6	108	6	648	432	1	108.0	120.0
6	64-QAM	3/4	6	108	6	648	486	1	121.5	135.0
7	64-QAM	5/6	6	108	6	648	540	1	135.0	150.0
8	256-QAM	3/4	8	108	6	864	648	1	162.0	180.0
9	256-QAM	5/6	8	108	6	864	720	1	180.0	200.0
	—Support of 40		-	on transmit a			and 80+8	30 MH	z, N _{SS} = 1	
NOTE VHT-	Table 2	1-54—	VHT-MC	Ss for opt	ional 1	60 MHz			1	te (Mb/s)
NOTE			-				and 80+8	N _{ES}	1	
NOTE VHT- MCS	Table 2	1-54—	VHT-MC	Ss for opt	ional 1	60 MHz			Data ra	
NOTE VHT- MCS Index	Table 2 Modulation	1-54— R	VHT-MC:	Ss for opt $N_{SD}\cdot N_{Seg}$	ional 1	60 MHz	N _{DBPS}	N _{ES}	Data ra	400 ns G
VHT- MCS Index	Table 2 Modulation BPSK	1-54 <i>R</i> 1/2	VHT-MC:	Ss for opt $N_{SD} \cdot N_{Seg}$ 468	N _{SP}	N CBPS 468	N _{DBPS} 234	N _{ES}	Data ra 800 ns GI 58.5	400 ns G
VHT-MCS Index	Table 2 Modulation BPSK QPSK	1-54— R 1/2 1/2	N _{BPSCS}	Ss for opt $N_{SD} \cdot N_{Seg}$ 468 468	N _{SP} 16	60 MHz N _{CBPS} 468 936	N _{DBPS} 234 468	1 1	Data ra 800 ns GI 58.5 117.0	400 ns G 65.0 130.0

16

16

16

16

16

Table 28-52—HE-MCSs for 26-tone RU, $N_{SS} = 1$

12

24

12

24

24

1/2

1/2

1/2

1/2

3/4

1/2

3/4

1/2

3/4

3/4

5/6

5/6

10

QPSK

16-QAM

64-QAM

256-QAM

1024-QAM

N/A

N/A

7

10

11

RU 1

[-121: -96]

RU6 [17: 42]

For a 20 MHz PPDU, the mapping of B19-B13 to RU allocation follows the RU index in Table 28-6 (Data and pilot subcarrier indices for RUs in a 20 MHz HE PPDU) in increasing order

BPSK

QPSK

468

468

468

468

468

2808

2808

2808

3744

3744

1872

2106

2340

2808

3120

N_{DBPS}

12

12

24

36

12

24

24

48

0.8 μ**s**

0.4

0.9

0.9

1.8

2.6

3.5

5.3

3.5

7.1

5.3

10.6

14.1

15.9

17.6

21.2

23.5

26.5

29.4

96

72

144

192

216

240

288

320

360

400

RU 5

[-16: -4, 4: 16]

3.3

5.0

3.3

6.7

5.0

10.0

13.3

15.0

16.7

20.0

22.2

25.0

27.8

6.0

9.0

12.0

13.5

15.0

18.0

20.0

25.0

2

2

2

Table 21-38—VHT-MCSs for mandatory 40 MHz, $N_{SS} = 1$

 N_{CBPS}

108

216

N_{DBPS}

54

108

 N_{ES}

Data rate (Mb/s)

800 ns GI

13.5

27.0

400 ns GI

NOTE)

15.0

30.0

520.0

585.0

650.0

780.0

866.7

468.0

526.5

585.0

702.0

780.0

Data rate (Mb/s)

1.6 μs

0.4

0.8

0.8

1.7

2.5

3.2 μ**s**

Gİ

0.8

0.8

1.5

2.3

Data rate (Mb/s)

Data rate (Mb/s)

400 ns GI

30.0

60.0

90.0

120.0

180.0

240.0

270.0

300.0

800 ns GI

27.0

54.0

81.0

108.0

162.0

216.0

243.0

270.0

 $R \mid N_{BPSCS}(i_{SS}) \mid N_{SD} \mid N_{SP} \mid N_{CBPS} \mid N_{DBPS}$

 $N_{SD} \mid N_{SP} \mid$

108 6

108

108

108

108

108

108

108

6

6

 $N_{CBPS} \mid N_{DBPS}$

108

216

324

432

648

972

216

432

432

864

1296

1296

1296

 $N_{BPSCS}(i_{SS})$

1/2

1/2

3/4

1/2

3/4

2/3

3/4

5/6

(OFDMA) as well as for UL MU-MIMO. Both DL and UL MU-MIMO transmissions are supported on portions of the PPDU bandwidth (on resource units greater than or equal to 106 tones). In an MU-MIMO resource unit, there is support for up to eight users with up to four space-time streams per user with the total number of space-time streams not exceeding eight. 支持OFDMA,支持MIMO多入多出(空分复用)	
The HE PHY provides support for 0.8 µs, 1.6 µs and 3.2 µs guard interval durations 支持的GI	

CBW80+80 and

CBW160

4

40 MHz HE PPDU

The HE PHY data subcarriers are modulated using BPSK, BPSK DCM, QPSK, QPSK DCM, 16-QAM, 16-QAM, 64-QAM, 256-QAM and 1024-QAM 还有DCM. Forward error correction (FEC) coding

The HE PHY extends the maximum number of users supported for DL MU-MIMO transmissions to eight per RU and provides support for DL and UL orthogonal frequency division multiple access

HE-MCS Modula-9 18 37 74 26-tone RU **DCM** N_{BPSCS} N_{SD} N_{CBPS} Index tion 4 16 32 52-tone RU 4 106-tone RU

11 Guard

RUs located in one 20 MHz channel (need 20 MHz pre-HE modulated fields) RUs located in two 20 MHz channels (need 40 MHz duplicated pre-HE modulated fields) RUs located in four 20 MHz channels (need 80 MHz duplicated pre-HE modulated fields)

	b Guard	/ DC	5 Guard	26-tone RU	26/26 26/26 26 26	26 26 26	26 26 26 26	26 26 26 2	26
26-tone	RU 26 26 26	26/3 3/26/26	26/26	52-tone RU 1	52 2 52 1 1/5	2 2 52 1	V 52 2 52	1 1/52 2/	52 1
52-tone	RU 52 52	52	52	106-tone RU	106	106	106	106	
106-tone	RU 106	10	6	242-tone RU	242			242	
242-tone	RU	242 + 3 DC		484-tone RU		/////A94/+	800//////	/////////	777
				90 MI	Hz HE PPDU				
12 G	uard			OU IVIT	7.DC				- 1
26-tone RU	2626 2626	28 28 28 28	26 28 26 26 1	26 26 26 26 2	2 2 26/26 26/26	20 26 26	20 20 20 20	26 26 26 26	26 Z6V
52-tone RU	1 52 2 52 1	1 52 2 5	2 2 52 1	1/ 52 / 52	1 52 2 52	1 1 52 2	(52)2 52 2	52 1 1/5	52 \2 52
106-tone RU	106	106	V///366///	106	106	V///36	6/// 10	6	106
242-tone RU		242	V/////////////////////////////////////	242////////	2 11111111	1242/////	(///)	242	
484-tone RU	V/////////////////////////////////////		/494/////////				///A94///	///////////////////////////////////////	
996-tone RU					996 + 5 DC				

12 Guard

TB PPDU

3	1		1/2		12	48	24	1.8	1.7	1.5
3	0	16-QAM	1/2	4	24	96	48	3.5	3.3	3.0
4	1	10-QAM	3/4	_	12	48	36	2.6	2.5	2.3
+	0		3/4		24	96	72	5.3	5.0	4.5
5			2/3				96	7.1	6.7	6.0
6		64-QAM	3/4	6		144	108	7.9	7.5	6.8
7			5/6				120	8.8	8.3	7.5
8	N/A	256-QAM	3/4	8	24	192	144	10.6	10.0	9.0
9		250-QAW	5/6	8		192	160	11.8	11.1	10.0
10		1024-QAM	3/4	10		240	180	13.2	12.5	11.3
11		1024-QAM	5/6	10		240	200	14.7	13.9	12.5
		Table	28-60	D—HE-M	CSs for	52-tone	RU, <i>N</i> _{SS} =		40.004 (2.0	
HE-MCS	DCM	Modula-	R	N	N	N	N	Dat	ta rate (MI	b/s)
Index	БСМ	tion	K	N _{BPSCS}	N _{SD}	N _{CBPS}	N _{DBPS}	0.8 μs GI	1.6 μs Gl	3.2 μs GI
0	1	BPSK	1/2	. 1	24	24	12	0.9	0.8	0.8
0	0	DISK	1/2	1	48	48	24	1.8	1.7	1.5
	1		1/2		24	48	24	1.8	1.7	1.5

48

48

24

48

192

192

384

480

					ation follows the g of B19-B13 to RU			
B0 B11	B12 B19	B20	B21 B24	B25	B26 B31	B32 B38	B39	
AID12	RU Allocation	ULFEC Coding Type	UL MCS	UL DCM	SS Allocation / RA-RU Infor- mation	UL Target RSSI	Reserved	Trigger Dependent User Info
12	8	1	4	1	6	7	1	variable
			Figure 9-	.52g—U	ser Info field			

RU index and subcarrier range

RU 3

[-68: -43]

RU 8

[70: 95]

RU 4

[-42: -17]

RU9

[96: 121]

B19 - B13	Description	RU ty
0–36	Possible 26-tone RU cases in 80 MHz	
37–52	Possible 52-tone RU cases in 80 MHz	26-tone RU
53-60	Possible 106-tone RU cases in 80 MHz	

61–64 Possible 242-tone RU cases in 80 MHz 65–66 Possible 484-tone RU cases in 80 MHz 67 996-tone RU cases in 80 MHz 68 2×996-tone RU case 69–127 Reserved
67 996-tone RU cases in 80 MHz 68 2×996-tone RU case
68 2×996-tone RU case
69–127 Reserved
TE—These values are in binary form in PHY (for example, see e 28-24 (RU Allocation subfield))

2-tone RU	RU 1 [-121: -70]	RU 2 [-68: -17]	RU 3 [17: 68]	RU 4 [70: 121]	
06-tone RU	RU [-122			U 2 122]	
12-tone RU		RU [-122: -			

Table 28-6—Data and pilot subcarrier indices for RUs in a 20 MHz HE PPDU

RU 2

[-95: -70]

RU 7

[43: 68]