PREDICTION OF HOUSE PRICES WITH EXTREME GRADIENT BOOSTING.

PREDICTION OF HOUSE PRICES WITH EXTREME GRADIENT BOOSTING.

NAME: DINESH A/L MANIVANNAN (211021094)
SUPERVISED BY ASSOC. PROF. DR. ZAHEREEL ISHWAR

ABDUL KHALIB

FYP: FYP2

NAME: DINESH A/L
MANIVANNAN (211021094)
SUPERVISED BY ASSOC. PROF.

DR. ZAHEREEL ISHWAR ABDUL

KHALIB

FYP: FYP2

Problem Statement

- Overvaluing and undervaluing can cause financial difficulties for buyers and market imbalances for developers.
- Important factors are often overlooked, leading to inaccurate predictions.
- Overpricing forces low- and middle-income families to take unsustainable loans, increasing household debt and non-performing loans.

SOLUTION??

A near-accurate ML-based prediction model incorporating overlooked features can improve pricing accuracy and decision-making.

Scope

- The project aims for high accuracy and clarity by using algorithm such as Gradient Boosting.
- Assess performance using metrics such as R-squared,
 Mean Squared Error (MSE), and Mean Absolute Error (MAE).
- Attempts to understand the significance of characteristics such as neighborhood quality and access to conveniences that determine property values.

SOTA - PART A

Previous paper	Model	Attributes/Factors	Limitations / Gaps
Kalidass, J., et(2024). HOUSE PRICE PREDICTION USING MACHINE LEARNING.	Random Forest, Gradient Boosting	Property size, neighbourhood quality, proximity to schools and work centres	Dataset preprocessing and feature engineering not emphasized.
Li, Y. (2023). Analysis of Real Estate Predictions Based on Different Models.	Decision Tree, Extreme Gradient Boosting, Random Forest	Square footage, proximity to amenities, market trends, year of construction	The absence of temporal data integration leads to inaccurate forecasting when longterm trends shift.
Mao, M. (2024). A Comparative Study of Random Forest Regression for Predicting House Prices Using.	Random Forest Regression	Property type, neighbourhood characteristics, transport access, historical prices	The model uses static factors and lacks integration of dynamic factors like policy changes or new infrastructure projects.
Quang, T., Minh, N., Hy, D., & Bo, M. (2020). Housing Price Prediction via Improved Machine Learning Techniques.	Random Forest, Extreme Gradient Boosting	Proximity to business hubs, crime rates, public infrastructure, social factors	Improved techniques but lack cross-region adaptability; no detailed explainability analysis.
YAVUZ ÖZALP, A., & AKINCI, H. (2023). Comparison of tree-based machine learning algorithms in price prediction of residential real estate.	Decision Tree, Random Forest, Extra Trees, Gradient Boosting	Proximity to public transport, land area, crime rates, infrastructure	Overlapping features (e.g., public transport and infrastructure) may introduce multicollinearity, affecting prediction reliability.

SOTA - PART B

	Previous paper	Model	Attributes/Factors	Limitations / Gaps
H	Kumar, Bv., & Professor, A. (2020). House Price Prediction using Garadient Boost Regression Model	Gradient Boosting	Neighbourhood, lot size, historical pricing data, economic indicators	Performance limited to Gradient Boost regression; no comparative study with other tree based models.
F G	Adetunji, A. B., Akande, O. N., Ajala, F. A., Oyewo, O., Akande, Y. F., & Oluwadara, G. (2022). House Price Prediction using Random Forest Machine Learning Technique	Random Forest Regression	Distance to city centre, property type, land size, social factors	Limited cross-validation techniques; no use of advanced ensemble methods for comparison.
(Akash Dagar and Shreya Kapoor. 2020). A Comparative Study on House Price Prediction.	Multivariable Linear Regression, Decision Tree Regression, Random Forest Regression	Area, location, age of property, number of rooms	Lack of scalability for larger datasets; limited focus on hyperparameter optimization for tree-based models.
ķ	Chuhan, N. (2024). House price prediction based on different models of machine learning.	Linear Regression, Support Vector Machine (SVM), Random Forest regression, Extreme Gradient Boosting	Size, number of bedrooms and bathrooms, proximity to public transport	No detailed discussion on feature importance or interpretability of results.
k (Mohd, T., Masrom, S., & Johari, N. 2019). Machine learning housing orice prediction in petaling jaya, Selangor, Malaysia.	Linear Regression, Decision Tree, Random Forest, Ridge and Lasso algorithms	Property type, land area, age, location	Study focused only on a specific geographical area (Petaling Jaya, Selangor), limiting wider applicability.

FLOWCHART System Testing Phase 3 Monitoring, Evaluation and Recommentation End

MACHINE LEARNING PIPELINE

DATA PRE-PROCESSING

Import Dataset

kaggle

Kaggle allows users to find datasets they want to use in building AI models, publish datasets.

Data Cleaning (minimal)

- Checked for nulls, removed irrelevant or redundant features
- Previewed structure and column types

Handling missing values

- By calculating the mean.
- Replace the missing data with mean value of specific column.

Encoding Categorical Data

- Hot-one encoding
- Creating separate binary columns for each category.

Split Dataset

80%

20%

FEATURE EXTRACTION & ENGINEERING

Constructed new features

- TotalSF (Total square footage) = TotalBsmtSF + 1stFlrSF + 2ndFlrSF
- TotalBath = FullBath + 0.5 × HalfBath + BsmtFullBath + 0.5 × BsmtHalfBath

Combined related features

- YearRemodAdd and YearBuilt were used to derive property age
- GarageArea and GarageCars considered jointly to reflect garage utility

Removed irrelevant or redundant columns

 Dropped ID columns and features with near-zero variance or too many missing values

Converted categorical features

 Transformed into numerical form using one-hot encoding before selection

MODEL DEVELOPMENT

- Gradient boosting decision tree that build models sequentially to correct predecessor errors.
- Offers high prediction accuracy, resistance to overfitting, and efficient training.
- Handles missing data automatically.
- Supports regularization (L1 & L2) to avoid overfitting.
- Highly optimized for speed and memory.
- Robust to outliers and irrelevant features.

- Google Colab (Python)
- Libraries used: xgboost, scikit-learn, pandas, matplotlib, seaborn

- n_estimators
- learning_rate
- max_depth
- subsample
- random_state

MODEL VERIFICATION

K-Fold Cross Validation

- Split training data into k folds.
- Train model on k-1 folds and validate on the remaining one.
- Ensures the model generalizes across different subsets

MODEL DEPLOYMENT

Backend

Development

- Flask-based backend
- Handle user input, interact with the ML model, and provide predictions.

Frontend Development

- Use simple HTML +
 JavaScript for the
 frontend to collect
 user input and
 display results.
- Outputs prediction results clearly and concisely on the page.

Testing

- End-to-end testing conducted locally using a browser interface.
- Verified prediction consistency with validation data samples.

MODEL FUNE-TUNING

Hyperparameter Tuning

Grid Search

- n_estimators
- max_depth
- learning_rate
- Subsample
- colsample_bytr

FLOWCHART OF WEB-PAGE SYSTEM

USE CASE DIAGRAM

MODEL EVALUATION & PERFORMANCE

Evaluation Metrics Used: MAE, MSE, RMSE, R² Score

Dataset Split: 80% Training / 20% Testing

Test Set Results:

- MAE: 16945.41

- MSE: 6.77 × 10⁸

- RMSE: 26030.62

- R² Score: 0.9117

Hyperparameter Values:

- n_estimators = [100,200]
- learning_rate = [3,5,7]
- $max_depth = [0.05, 0.1]$
- Subsample = [0.8,1]
- Indicates strong predictive power and goodndom_state = [0.8,1] generalization to unseen data.

Actual vs. Predicted Prices

- A red diagonal reference line indicates perfect prediction accuracy.
- Majority of data points cluster tightly along the diagonal, reflecting strong predictive performance.
- Despite a few outliers, the model effectively captures the underlying patterns in

Distribution of Residuals

- This indicates that the model errors are random and unbiased, which is ideal for regression.
- The majority of residuals lie within a narrow range, suggesting high prediction accuracy.

Feature Importance Analysis

- Feature importance confirms that feature engineering was effective.
- The model demonstrates interpretable behaviour without needing domain knowledge.
- Less important features may still contribute to niche cases, and could support

nerformance

Performance Comparison Across All Stages

- Each step contributes incremental improvements.
- Final model is more stable, accurate, and generalizable.
- Feature selection helped simplify the model without degrading

WEB-PAGE INTERFACE

SYSTEM OUTPUT

Predict

Predicted House Price: \$248,711.41 (RM 1,168,943.50)

House Price Prediction

0	verall Quality (1–10)
Lív	ving Area (sqft)
Ga	rage Capacity
То	tal Basement Area
1s	t Floor Area
Ye	ar Built
Fu	ll Bathrooms
То	tal Rooms Above Ground
Fir	eplaces
Fir	nished Basement Area

Predict

Predicted House Price: \$248,711.41 (RM 1,168,943.50)

#