

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Теория автоматического управления **Отчет по лабораторной работе №8.**<u>Вариант 6</u>

> Студенты: Кулижников Е.Б. Евстигнеев Д.М. Группа: R34423 Преподаватель: Парамонов А.В.

• Цель работы

Освоение метода расширенной ошибки в задачах адаптивного управления по выходу

• Ход работы

Данные	ДЛЯ	6	ва	рианта:

Bap.	Коэффициенты модели объекта		Параметры полинома $K_{M}(s)$		Параметр полинома $K(s)$	Сигнал задания $g(t)$	
	a_0	a_1	b_0	k_{M1}	k_{M0}	k_0	
6	-3	-4	2	12	36	6	$sign(\sin 0,5t)$

• Дано

Рассмотрим минимально-фазовую линейную модель объекта, представленную в форме "вход-выход":

$$y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + ... + a_0y = b_mu^m + b_{m-1}u^{m-1} + ... + b_0u$$
, (7.1)

где $a_i, i = \overline{0, n-1}, b_j = \overline{0, m}$ — неизвестные параметры объекта.

Предполагается, что знак величины b_m известен. Пусть в решаемой задаче $b_m \ge b_{\min} > 0$, b_{\min} — известная величина.

Вместе с моделью рассмотрим динамические фильтры

$$\dot{v}_1 = \Lambda v_1 + e_{n-1}u,\tag{7.2}$$

$$\dot{v}_2 = \Lambda v_2 + e_{n-1} y,\tag{7.3}$$

где $v_1 \in R^{n-1}, v_2 \in R^{n-1}$ — векторы состояния фильтров, $e_{n-1} = col(0, ..., 0, 1)$, $e_{n-1} \in R^{n-1}$,

$$\Lambda = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -k_0 & -k_1 & -k_2 & \cdots & -k_{n-2} \end{bmatrix}.$$

Матрица Л имеет сопровождающий полином

$$K(s) = s^{n-1} + k_{n-2}s^{n-2} + k_{n-3}s^{n-3} + \dots + k_0.$$

$$y(t) = \frac{1}{K_M(s)} \left[\psi^T \omega(t) + b_m u(t) \right] + \delta(t), \qquad (7.4)$$

где $\omega^T = \begin{bmatrix} v_1^T, v_2^T, y \end{bmatrix}$, $\delta(t)$ — экспоненциально затухающая функция, определяемая ненулевыми начальными условиями.

• Постановка задачи

Рассмотрим задачу слежения выходной переменной у за эталонным сигналом $y_{\scriptscriptstyle M}$, формируемым эталонной моделью вида

$$y_M(t) = \frac{k_0}{K_M(s)}[g(t)],$$

$$\lim_{t\to\infty} (y_M(t) - y(t)) = 0$$

Закон управления формируется в виде:

$$u = \frac{1}{b_m} (\widehat{\psi^t} \omega_p + k_0 g)$$

Введем в рассмотрение сигнал расширенной ошибки:

$$\hat{\varepsilon} = \varepsilon - \widehat{\psi}^{t} \overline{\omega_{p}} + \frac{1}{\kappa_{M}(s)} [\widehat{\psi}^{t} \omega_{p}],$$

$$\omega_p = -\omega, \overline{\omega_p} = \frac{1}{K_M(s)} [\omega_p]$$

Статическая модель ошибки: $\hat{\varepsilon} = \widetilde{\psi}^t \overline{\omega_p}$

Тогда алгоритм адаптации приобретает вид: $\dot{\hat{\psi}} = \gamma \frac{\overline{\omega_p}}{1 + \overline{\omega_p \omega_p}^{\mathrm{T}}} \hat{\varepsilon}$

Рисунок 1. Модель симуляции

```
function [psi_d,psiomega,u]=fcn(psi_,omega_p,omega_p_,g,e,psiomega_, b0, k0)
psiomega=psi_'*omega_p;
e_=e-psi_'*omega_p_+psiomega_;
g1=0.5;
psi_d=g1*omega_p_*e_/(1+omega_p_'*omega_p_);
u=(psi_'*omega_p+k0*g)/b0;

function [omega_p,n1_d,n2_d]=fcn(u,y,n1,n2, k0)
n1_d=-k0*n1+u;
n2_d=-k0*n2+y;
omega=[n1',n2',y]';
omega_p=-omega;
```

1. Стабилизирующий адаптивный регулятор

$$v_1 = 0$$
; $v_2 = 1$; $\hat{\psi} = [1 \ 2 \ 3]^T$

Различные значений у

- $\gamma = 100$
- y = 10
- $\gamma = 0.1$

Рисунок 2 График изменения y(t)

Рисунок 3 График изменения ψ (t)

Рисунок 4 График изменения u(t)

Рисунок 6 График изменения ψ (t)

Рисунок 8 График изменения y(t)

Рисунок 9 График изменения ψ (t)

Рисунок 10 График изменения u(t)

2. Следящий адаптивный регулятор

$$\nu_1 = 0; \nu_2 = 0; \ \hat{\psi} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$$

$$\bullet \ \gamma = 100$$

Рисунок 11 График изменения y(t) и $y_m(t)$

Рисунок 12 График изменения ψ (t)

Рисунок 13 График изменения u(t)

• $\gamma = 10$

Рисунок 14 График изменения y(t) и $y_m(t)$

Рисунок 15 График изменения ψ $\hat{}$ (t)

Рисунок 16 График изменения u(t)

Рисунок 17 График изменения y(t) и $y_m(t)$

Рисунок 18 График изменения ψ $\hat{}$ (t)

Рисунок 19 График изменения u(t)

Вывод: в ходе выполнения работы была построена система адаптивного управления по выходу с расширенной ошибкой. При редактировании коэффициента адаптации γ меняется динамика ее колебательности, скорость сходимости ошибки к нулю.