2.- Diseño del comportamiento: Diagrama de actividades

M^a Antonia Zapata

Introducción

Los diagramas de actividades sirven para

representar el comportamiento dinámico de un sistema

haciendo hincapié

en la secuencia de actividades que se llevan a cabo y las condiciones que guardan o disparan esas actividades

Elementos básicos

Estado inicial:	
Marca el punto de inicio del flujo de ejecución	
Estado final:	
Marca el punto final del flujo de ejecución	
Actividad/Acción:	
Representan la realización de un paso del flujo de ejecución	
Flujo de control:	
Determina qué actividad va a continuación de otra	\
(se le puede asociar un nombre)	

En los libros aparecen ejemplos con la notación de la versión 1.5

© 2006

Ejemplo: cajero automático (versión 1)

Restricciones

- Un estado inicial no puede ser destino de una transición
- Toda actividad tiene al menos un flujo de entrada y otro de salida
- Puede haber cero o más estados finales (por ejemplo, un proceso continuo no tendrá estado final)

Recomendaciones

 Conviene colocar (no es obligado) el estado inicial en la parte superior izquierda del diagrama

Lo normal es que puedan aparecer distintos flujos dependiendo de que se den una serie de circunstancias u otras.

Por ejemplo:

¿qué pasa si la tarjeta no es válida?

¿qué pasa si el código introducido no es el de la tarjeta?

¿qué pasa si la cantidad solicitada supera la cantidad disponible en la tarjeta?

¿qué pasa si con los tipos de billetes que tiene el cajero en ese momento no puede entregar la cantidad solicitada?

Decisiones

Decisión:	
Marca la existencia de flujos alternativos	
Condición/guarda:	
Se escribe encima de un flujo de control e indica la condición que se debe cumplir para que el flujo continúe a través de él	[cond.]
Fusión (Merge): Sirve para juntar dos o más flujos alternativos de ejecución que se han producido por una decisión	

Otras posible representaciones

Sin representar la fusión (la más usual)

Sin representar la decisión ni la fusión

Ejemplos: cajero automático (versión 2)

Restricciones

- Una decisión tiene un flujo de entrada y dos o más de salida
- Todo flujo de salida de una decisión debe estar etiquetado con una condición
- Las condiciones de todos los flujos de salida de una decisión deben ser disjuntas y completas
- Se puede utilizar la condición else para representar el flujo que se sigue en caso de que ninguna de las otras condiciones sea cierta
- Una fusión tiene dos o más flujos de entrada y un flujo de salida

Flujos concurrentes

Un diagrama de actividades también nos permite representar flujos que ocurren de forma concurrente (en paralelo).

También permite indicar actividades que se pueden hacer en cualquier orden (si lo hicieran elementos distintos lo podrían hacer a la vez)

Por ejemplo:

A la vez que se expulsa una tarjeta no válida se le muestra un mensaje al usuario

Supongamos que el código y la cantidad se pueden introducir en cualquier orden.

Flujos concurrentes

División:	
Marca el inicio de flujos de actividades en paralelo	
Unión:	
Marca el fin de flujos de actividades en paralelo	

Ejemplos: cajero automático (versión 3)

Reglas

- Una división tiene un flujo de entrada y dos o más flujos de salida
- Una unión tiene dos o más flujos de entrada y un flujo de salida
- El flujo de salida de una unión se dispara cuando se han finalizado todos los flujos de entrada en la unión (todos ellos discurren en paralelo)

Actividades complejas

Para que los diagramas no queden excesivamente complejos se pueden modularizar haciendo uso de subactividades.

Por ejemplo:

Los procesos de:

- validación del código
- introducción de una cantidad
- tarjeta no válida

se puede representar aparte facilitando la comprensión del diagrama

(\<u>\</u>

Subactividades

Subactividad:

La actividad se describe más en detalle en un diagrama de actividades aparte

Nota: en la versión 1.5 en los diagramas de actividades se utilizaba otro símbolo

Acción/Actividad

Una acción representa un paso del flujo de ejecución que se considera atómico, mientras que una actividad representa un comportamiento compuesto de elementos individuales que son acciones.

_*****O

Diagrama de actividades describiendo la Actividad 2

Ejemplos: cajero automático (versión 4)

Ejemplos: cajero automático (versión 4)

Reglas

 Un diagrama de actividades demasiado grande nos debe hacer pensar que igual conviene incluir alguna subactividad para simplificarlo

Estado Final de flujo o de actividad

Ya conocemos:

Estado final:

Marca el punto final de todos los flujos de ejecución

UML 2.0 incorpora la noción de:

Final de flujo:

Marca el punto final de un flujo, dejando en ejecución el resto de flujos

 Si la Actividad 2 es la primera que acaba entonces la Actividad 3 se ve interrumpida

 Si la Actividad 3 es la primera que acaba entonces la Actividad 2 continúa ejecutándose hasta que se acaba

Particiones

Se pueden hacer particiones en un diagrama de actividades para identificar las acciones que tienen alguna característica en común. Por ejemplo que se llevan a cabo por un mismo actor.

Por ejemplo:

Indicar que es el usuario el que introduce el código y la cantidad

Indicar que es el sistema el que expulsa la tarjeta y muestra el mensaje de error.

Particiones

Particiones:

El diagrama se divide en partes, agrupando las actividades que tienen algo en común

Representación gráfica

Ejemplos: cajero automático (versión 5)

Reglas

- Cada actividad debe estar en una partición
- No aconsejan representar diagramas con más de cinco particiones por simplicidad

Flujo de objetos

Objetos:	
Objetos que se ven involucrados en las actividades	
Flujo de objetos:	
Conectan los objetos con las actividades que los producen o los consumen. Un flujo de objetos de una actividad a otra implica un flujo de control.	

Representación gráfica (alternativa)

Ejemplo

Reglas

- Un flujo de objetos no puede iniciarse en un estado inicial
- Los objetos (por no tratarse de actividades) pueden aparecer encima de las líneas que sirven para dividir las calles de una partición

Señales

Enviar (SendEventAction): Representa la acción de enviar una señal	
Aceptar (AcceptEventAction): Representa la acción de aceptar una señal.	
Aceptar evento temporal: Tipo particular de acción 'aceptar' en la que la señal es una señal de tiempo.	
Excepción: Representa la ocurrencia de una excepción.	
Región que se puede interrumpir: Representa un grupo de actividades que se pueden interrumpir.	

Representación gráfica

Ejemplos

 Cuando un nodo 'aceptar' no tiene ningún flujo de entrada su comportamiento es especial. No acaba cuando acepta un evento sino que se queda a la espera de nuevos eventos mientras la actividad que lo contiene permanece activa.

Regiones

Nodo de expansión:

Flujo de una colección a través de la frontera de una región de expansión

Región de expansión:

Permite representar la ejecución de un bloque de actividades para cada elemento de una colección de entrada

Reglas

- Todos los vectores (de entrada y salida) deben tener el mismo tamaño
- Existe al menos un nodo de expansión de entrada y cero o más nodos de expansión de salida
- Si un nodo de expansión tiene nombre entonces corresponde al nombre de un elemento individual
- La ejecución para cada uno de los elementos puede ser:
 - en paralelo: las ejecuciones son independientes
 - iterativa: secuencial, una detrás de otra
 - como corriente: una vez empezada la ejecución sigue recibiendo elementos de entrada