HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	1 of 39

Specification For HINK 2.13"EPD

Model NO.: HINK-E0213A200

Product VER:A0

Customer Approval

Customer	
Approval By	
Date Of Approval	

It will be agreed by the receiver, if not sign back the Specification within 15days.

Prepared By	Checked By	Approval By
Diasy Zhu	Yufeng Zhou	Ziping Hu

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	2 of 39

Version	Content	Date	Producer
A0	New release	2021/01/30	Daisy Zhu

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	3 of 39

CONTENTS

1.GENERAL DESCRIPTION	4
2.FEATURES	4
3.APPLICATION	4
4.MECHANICAL SPECIFICATIONS	4
5. MECHANICAL DRAWING OF EPD MODULE	5
6.INPUT/OUTPUT TERMINALS	6
7.MCU INTERFACE	7
7.1 MCU INTERFACE SELECTION	7
7.2 MCU SERIAL PERIPHERAL INTERFACE (4-WIRE SPI)	7
7.3MCU SERIAL PERIPHERAL INTERFACE (3-WIRE SPI)	8
8. TEMPERATURE SENSOR OPERATION	10
9.COMMAND TABLE	11
11. REFERENCE CIRCUIT	25
12. ABSOLUTE MAXIMUM RATING	27
13.DC CHARACTERISTICS	27
14. SERIAL PERIPHERAL INTERFACE TIMING	28
15. POWER CONSUMPTION	28
16.TYPICAL OPERATING SEQUENCE	29
17.OPTICAL CHARACTERISTICS	30
17.1 Specifications	30
17.2 DEFINITION OF CONTRAST RATIO	31
17.3 REFLECTION RATIO	31
18. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS	32
19. RELIABILITY TEST	34
19.1 RELIABILITY TEST ITEMS.	34
19.2 PRODUCT LIFE TIME	34
19.3 PRODUCT WARRANTY	34
20. BLOCK DIAGRAM	35
21. PARTA/PARTB SPECIFICATION	35
22. POINT AND LINE STANDARD	36
23.BARCODE	38
24. PACKING.	39

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	4 of 39

1.General Description

HINK-E0213A200 is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.13" active area contains 122×250 pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2. Features

- 122×250 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/built-in temperature sensor

3.Application

Electronic Shelf Label System

4. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	Dpi:130
Active Area	23.7(H)×48.55(V)	mm	
Pixel Pitch	0.194×0.194	mm	
Pixel Configuration	Rectangle		
Outline Dimension	29.2(H)×59.2 (V) ×0.9(D)	mm	Without masking film
Weight	3 ± 0.5	g	

HOLITECH Confidential Page 4 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	5 of 39

5. Mechanical Drawing of EPD module

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	6 of 39

6.Input/Output Terminals

Pin#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Data pin.	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES#	Reset signal input.	Note 6-3
11	D/C #	Data /Command control pin	Note 6-2
12	CS#	The chip select input connecting to the MCU.	Note 6-1
13	SCL	Serial clock pin for interface.	
14	SDA	Serial data pin for interface.	
15	VDDIO	Power input pin for the Interface.	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground (Digital)	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

Note 6-3: This pin (RES#) is reset signal input. The Reset is active low.

Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High ,the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform;
- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

HOLITECH Confidential Page 6 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	7 of 39

7.MCU Interface

7.1 MCU interface selection

The HINK-E0213A200 can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in table 7-1.

Table 7-1: Interface pin assignment for different MCU interfaces

	Pin name					
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	D/C#	SCL	SDI
3-wire serial peripheral interface (SPI) - 9 bits SPI	Н	RES#	CS#	L	SCL	SDI

Note:

(1) L is connected to VSS H is connected to VDDIO

7.2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure 4-wire SPI is shown in table 7-2.

Table 7-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	1	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ...D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 7-1 Write procedure in 4-wire SPI mode

HOLITECH Confidential Page 7 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	8 of 39

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 7-2 Read procedure in 4-wire SPI mode

7.3MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3. In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 7-3: Control pins status of 3-wire SPI

Function	SCL pin	SDI pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 7-3 Write procedure in 3-wire SPI mode

HOLITECH Confidential Page 8 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	9 of 39

In the read operation (command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 7-4 Read procedure in 3-wire SPI mode

HOLITECH Confidential Page 9 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	10 of 39

8. Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command 0x1A with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit D11 = 0, then

The temperature is positive and value (DegC) = + (Temperature value) / 16

2. If the Temperature value MSByte bit D11 = 1, then

The temperature is negative and value (DegC) = \sim (2's complement of Temperature value) /16

Table 8-1 : Example of 12-bit binary temperature settings for temperature ranges

12-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]
0111 1111 1111	7FF	128
0111 1111 1111	7FF	127.9
0110 0100 0000	640	100
0101 0000 0000	500	80
0100 1011 0000	4B0	75
0011 0010 0000	320	50
0001 1001 0000	190	25
0000 0000 0100	004	0.25
0000 0000 0000	000	0
1111 1111 1100	FFC	-0.25
1110 0111 0000	E70	-25
1100 1001 0000	C90	-55

HOLITECH Confidential Page 10 of 39 2021/01/30

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	11 of 39

9.COMMAND TABLE

Com	man	d Tal	ole												
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ing		
0	1		A ₇	A 6	A 5	A ₄	Аз	A ₂	A 1	Ao	·	A[8:0]= 12	27h [POR]		
0	1		0	0	0	0	0	0	0	A 8		MUX Gat	e lines set	ting as (A	[8:0] + 1).
0	1		0	0	0	0	0	B ₂	B ₁	B ₀		Gate scar B[2]: GD Selects th GD=0 [PC G0 is the output see GD=1, G1 is the	noo [POR]. nning sequence 1st outport OR], 1st gate of the gate of	uence and out Gate utput chai G0,G1, G utput chai	nnel, gate 2, G3, ··· nnel, gate
												Change s SM=0 [PC G0, G1, G interlaced SM=1, G0, G2, G B[0]: TB TB = 0 [P	32, G3···2	95 (left an I, G1, G3, from G0 t	d right gateG295
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage		driving vol	ltage	
0	1		0	0	0	A ₄	Аз	A ₂	A ₁	Ao	Control	A[4:0] = 0		0) / += 00) /	
												A[4:0]	ng from 1 VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												03h	13.5	17h	20
												0Bh	13.5	Other	NA
												0Ch	14.5	Outel	14/7
												UCII	14.5		
								<u> </u>			L				

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	12 of 39

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage
0	1		A ₇	A 6	A 5	A ₄	Аз	A_2	A ₁	A ₀		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C_6	C 5	C ₄	Сз	C_2	C ₁	Co		Remark: VSH1>=VSH2

A[7]/B[7] = 1,

VSH1/VSH2 voltage setting from 2.4V to 8.8V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
8Eh	2.4	AFh	5.7
8Fh	2.5	B0h	5.8
90h	2.6	B1h	5.9
91h	2.7	B2h	6
92h	2.8	B3h	6.1
93h	2.9	B4h	6.2
94h	3	B5h	6.3
95h	3.1	B6h	6.4
96h	3.2	B7h	6.5
97h	3.3	B8h	6.6
98h	3.4	B9h	6.7
99h	3.5	BAh	6.8
9Ah	3.6	BBh	6.9
9Bh	3.7	BCh	7
9Ch	3.8	BDh	7.1
9Dh	3.9	BEh	7.2
9Eh	4	BFh	7.3
9Fh	4.1	C0h	7.4
A0h	4.2	C1h	7.5
A1h	4.3	C2h	7.6
A2h	4.4	C3h	7.7
A3h	4.5	C4h	7.8
A4h	4.6	C5h	7.9
A5h	4.7	C6h	8
A6h	4.8	C7h	8.1
A7h	4.9	C8h	8.2
A8h	5	C9h	8.3
A9h	5.1	CAh	8.4
AAh	5.2	CBh	8.5
ABh	5.3	CCh	8.6
ACh	5.4	CDh	8.7
ADh	5.5	CEh	8.8
AEh	5.6	Other	NA

A[7]/B[7] = 0,

VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0] VSH1/VSH2 A/B[7:0] VSH1/VSH2

23h 9 3Ch 14 24h 9.2 3Dh 14.2 25h 9.4 3Eh 14.4 26h 9.6 3Fh 14.6 27h 9.8 40h 14.8 28h 10 41h 15 29h 10.2 42h 15.2 2Ah 10.4 43h 15.4 2Bh 10.6 44h 15.6 2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah	A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
25h 9.4 3Eh 14.4 26h 9.6 3Fh 14.6 27h 9.8 40h 14.8 28h 10 41h 15 29h 10.2 42h 15.2 2Ah 10.4 43h 15.4 2Bh 10.6 44h 15.6 2Ch 10.8 45h 16. 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	23h	9	3Ch	14
26h 9.6 3Fh 14.6 27h 9.8 40h 14.8 28h 10 41h 15 29h 10.2 42h 15.2 2Ah 10.4 43h 15.4 2Bh 10.6 44h 15.6 2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	24h	9.2	3Dh	14.2
27h 9.8 40h 14.8 28h 10 41h 15 29h 10.2 42h 15.2 2Ah 10.4 43h 15.4 2Bh 10.6 44h 15.6 2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	25h	9.4	3Eh	14.4
28h 10 41h 15 29h 10.2 42h 15.2 2Ah 10.4 43h 15.4 2Bh 10.6 44h 15.6 2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	26h	9.6	3Fh	14.6
29h 10.2 42h 15.2 2Ah 10.4 43h 15.4 2Bh 10.6 44h 15.6 2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	27h	9.8	40h	14.8
2Ah 10.4 43h 15.4 2Bh 10.6 44h 15.6 2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	28h	10	41h	15
2Bh 10.6 44h 15.6 2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	29h	10.2	42h	15.2
2Ch 10.8 45h 15.8 2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	2Ah	10.4	43h	15.4
2Dh 11 46h 16 2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	2Bh	10.6	44h	15.6
2Eh 11.2 47h 16.2 2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	2Ch	10.8	45h	15.8
2Fh 11.4 48h 16.4 30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	2Dh	11	46h	16
30h 11.6 49h 16.6 31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	2Eh	11.2	47h	16.2
31h 11.8 4Ah 16.8 32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	2Fh	11.4	48h	16.4
32h 12 4Bh 17 33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	30h	11.6	49h	16.6
33h 12.2 Other NA 34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	31h	11.8	4Ah	16.8
34h 12.4 35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	32h	12	4Bh	17
35h 12.6 36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	33h	12.2	Other	NA
36h 12.8 37h 13 38h 13.2 39h 13.4 3Ah 13.6	34h	12.4		
37h 13 38h 13.2 39h 13.4 3Ah 13.6	35h	12.6		
38h 13.2 39h 13.4 3Ah 13.6	36h	12.8		
39h 13.4 3Ah 13.6	37h	13		
3Ah 13.6	38h	13.2		
	39h	13.4		
3Bh 13.8	3Ah	13.6		
	3Bh	13.8		

C[7] = 0,

VSL setting from -5V to -17V

1	1
C[7:0]	VSL
0Ah	-5
0Ch	-5.5
0Eh	-6
10h	-6.5
12h	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	0	08	0	0	0	0	1	0	0			Program Initial Code Setting
											OTP Program	The command required ENABLE CLOCK SIGNAL. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1	Write Register for Initial	Write Register for Initial Code Setting
0	1		A ₇	A_6	A 5	A ₄	Аз	A_2	A ₁	A ₀	Code Setting	Selection
0	1		В	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C ₇	C ₆	C 5	C ₄	С3	C_2	C ₁	Co		Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	Дз	D ₂	D ₁	D ₀		
0	0	0A	0	0	0	0	1	0	1		Read Register for Initial Code Setting	Read Register for Initial Code Setting

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	13 of 39

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase 3
0	1		1	A 6	A 5	A ₄	Аз	A ₂	A 1	Ao	Control	for soft start current and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	Вı	Bo		A[7:0] -> Soft start setting for Phase1 = 8Bh [POR]
0	1		1	C ₆	C 5	C ₄	Сз	C ₂	C ₁	Co	1	= 8Bh [POR] B[7:0] -> Soft start setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	-	= 9Ch [POR]
U	'		U	U	Do	D4	D ₃	D ₂		٥		C[7:0] -> Soft start setting for Phase3 = 96h [POR]
												D[7:0] -> Duration setting
												= 0Fh [POR]
												Bit Description of each byte:
												Bit[6:4] Driving Strength Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR [Time unit]
												0000 ~ NA
												0011
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5 1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2
												D[1:0]: duration setting of phase 1 Duration of Phase
												[Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	14 of 39

<u> </u>	V (ersic	ווע						1	40		Page Number 14 01 39
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	10	0	0	0	0	0	0	0 A1	O Ao	Deep Sleep mode control	Deep Sleep mode Control: A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1	11	0	0	0	0	0	A ₂	A ₁	1 A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 - Y decrement, X decrement, 01 - Y decrement, X increment, 10 - Y increment, X decrement, 11 - Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	15 of 39

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A 6	A 5	A ₄	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	15	0	0	0	0	0	A ₂	A ₁	A ₀	VCI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0 A ₇	0 A ₆	0 A ₅	1 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 0x48[POR], external temperature
												sensor A[7:0] = 0x 80 Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A 9	A ₈	A ₇	A ₆	A 5		Control (Write to	A[7:0] = 0x 7F [POR]
0	1		Аз	A_2	A ₁	A_0	0	0	0	0	temperature register)	

Γ	File Name Specification For HINK 2.13" EPD N								Module Number	HINK-E0213A200			
		Vers				Op		outi	<u> </u>	A0	IIIII LI D	Page Number	16 of 39
R/W#	D/C#		D7	D6	D5	D4	D3	D2	D1		Command	Description	10 01 37
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temper	rature register.
1	1		A ₁₁	A ₁₀	A 9	A8	A ₇	A ₆	A 5	A ₄	Control (Read from		ature regions.
1	1		Аз	A ₂	A ₁	Ao	0	0	0	0	temperature register)		
	•				•							•	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to	o External temperature
0	1		A ₇	A 6	A 5	A ₄	Аз	A_2	A ₁	A ₀	Control (Write Command		\1
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo	to External temperature sensor)	A[7:0] = 00h [POF] B[7:0] = 00h [POF]	
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	Senson)	C[7:0] = 00h [POF]	
													•
												A[7:6]	f h. da ta ha aaut
												A[7:6] Select no o	f byte to be sent
													pointer + 1st parameter
												10 Address + 2nd pointer	pointer + 1st parameter +
												11 Address	
												A[5:0 - Pointer So B[7:0] - 1 ^{SI} parar C[7:0] - 2 ^{III} para	etting
												B[7:0] - 1 parar	meter
												The command rec	quired ENABLE CLOCK
												SIGNAL	quired E147 IDEE OLOOK
												Refer to Register	0x22 for detail.
												A 64	1
												After this comman	id initiated, vvrite rnal temperature sensor
													will output high during
												operation.	viii oatpat riigir aarii ig
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display U	pdate Sequence
												The Display Lindat	o Seguence Option is
												located at R22h.	e Sequence Option is
												BUSY pad will out	
													ould not interrupt this
												images.	corruption of panel
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option	n for Display Update
0	1		A ₇	A 6	A 5	A ₄	Аз	A ₂	A 1	A ₀	1	A[7:0] = 00h [POR]	
0	1		D.	0	^	0	0	0	0	0	-	B[7:0] = 00h [POR]	J
0			B ₇	0	0	0	0	0	0	0		A[7:4] RED RAM o	potion
												0000 Norr	
													ass RAM content as 0
													rse RAM content
												Λ[Ω,Ω] D)Λ/ D ΛΛΛ	4100
												A[3:0] BW RAM op 0000 Norr	
													nai ass RAM content as 0
													rse RAM content
												1115	
												B[7] Source Outpu	
													ource from S0 to S175
												1 Available So	ource from S8 to S167

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	17 of 39

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option	on:
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control 2	Enable the stage for Master Act A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal Enable Analog	C0
												Disable Analog Disable clock signal	03
												Enable clock signal Load LUT with DISPLAY Mode 1 Disable clock signal	91
												Enable clock signal Load LUT with DISPLAY Mode 2 Disable clock signal	99
												Enable clock signal Load temperature value Load LUT with DISPLAY Mode 1 Disable clock signal	B1
												Enable clock signal Load temperature value Load LUT with DISPLAY Mode 2 Disable clock signal	В9
												Enable clock signal Enable Analog Display with DISPLAY Mode 1 Disable Analog Disable OSC	C7
												Enable clock signal Enable Analog Display with DISPLAY Mode 2 Disable Analog Disable OSC	CF
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 1 Disable Analog Disable OSC	F7
												Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 2 Disable Analog Disable OSC	FF
ļ											T		
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries written into the BW RAM until as command is written. Address postadvance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0	

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	18 of 39

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1		Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
												For RED pixel: Content of Write RAM0x26 = 1 For non- RED pixel [Black or White]: Content of Write RAM0x26 = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1 st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in command 0x29 before reading VCOM value. The sensed VCOM voltage is stored in register The command required ENABLE CLOCK SIGNAL and ENABLE ANALOG. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
											•	•
0	0	29	0	0	0	0	1 A ₃	0 A ₂	0 A ₁	1 A ₀	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired.
												A[3:0] = 0x 9, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
		<u>۲</u> ۸	V	0	'	0	1	0	1	U	i Togram VOOM OTP	The command required ENABLE CLOCK SIGNAL. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	19 of 39

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM registe	er from M	ICU interface
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	3	A[7:0] =	00h [PÖR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	Read Register for Display Option:		
1	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁		Display Option		3 - 1 - 1	-1 -7	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	Biopiay Option		VCOM OTI		on
	1	+	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		(Comm	nand 0x37, Byte A) VCOM Register		
1	1		D ₇	D ₆	D ₅	D ₄			D ₁	D ₀		D[Z:0]:			
1							D ₃	D ₂					nand 0x2C)	jistei	
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	Εı	Εo		(00111111	iana oxeo,		
1	1		F ₇	F ₆	F ₅	F ₄	Fз	F ₂	F ₁	F₀			·G[7:0]: Dis		
1	1		G7	G_6	G₅	G4	G₃	G_2	G₁	G₀			and 0x37,	Byte B to	Byte F)
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	Hο		[5 bytes	s]		
1	1		I ₇	l 6	I 5	I 4	lз	l 2	I ₁	lo		H[7·0]-	K[7:0]: Wa	veform \/	arsion
1	1		J_7	J_6	J 5	J_4	J ₃	J_2	J₁	J ₀			and 0x37,		
1	1		K ₇			K ₄			K ₁	K ₀		[4 bytes		, • 10	<i>J)</i>
					5						1	1. 27.00			
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10) Byte User	ID store	d in OTP:
1	1		A ₇	A ₆	A ₅	A ₄	A 3	A ₂	A ₁	A ₀	-	A[7:0]]~	J[7:0]: Useı		Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo					
1	1		F ₇	F ₆	F ₅	F ₄	Fз	F ₂	F ₁	F₀					
1	1		G7	G_6	G ₅	G4	Gз	G_2	G₁	G₀					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	Η ₁	Но					
1	1		I ₇	l 6	I 5	I 4	lз	l ₂	I ₁	lo					
1	1		J_7	J_6	J 5	J_4	Jз	J_2	J₁	J ₀					
		I										1			

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	20 of 39

R/W#			D7	D6	D5	D4	D3	D2	D1	_	Command	Description
0 1	0	Hex 2F	0 0	0 0	1 A ₅	0 A ₄	1 0	0	1 A ₁	1 Ao	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15
												respectively.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1	0.	A ₇	0	0	0	0	0	0		Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo		0: Default [POR]
0	1		C ₇	C ₆	C 5	C ₄	Сз	C2	C ₁	C ₀		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	Dз	D_2	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	Εı	Εo		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	Fз	F ₂	F ₁	Fo		E[7:0] Display Mode for WS[31:24]
0	1		G7	G ₆	G ₅	G ₄	Gз	G_2	G₁	G₀		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H₅	H ₄	Нз	H ₂	H₁	H₀		0: Display Mode 1 1: Display Mode 2
0	1		I ₇	l 6	I 5	I 4	lз	l 2	I ₁	lo		
0	1		J ₇	J ₆	J 5	J ₄	Jз	J 2	J ₁	Jo		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1	30	0 A ₇	A ₆	A ₅	л А ₄	A ₃	A ₂	A ₁	A ₀	IVVIILE IVERIISIEI IOI OSEI ID	A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		Remarks: A[7:0]~J[7:0] can be stored in OTP by command 0x36
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		Sy communication of the state o
0	1		E ₇	E ₆	E 5	E ₄	E ₃	E ₂	E ₁	Εo		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
0	1		G ₇	G_6	G ₅	G ₄	G ₃	G ₂	G ₁	Go		

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	21 of 39

		ersic								40		rage Numbe	21 01 39
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	Н₀			
0	1		I ₇	l 6	I 5	I 4	lз	l 2	I ₁	I ₀			
0	1		J_7	J_6	J 5	J_4	Jз	J_2	J ₁	J_0			
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		
0	1		A ₇	A 6	A 5	A_4	0	A_2	A ₁	Ao			[POR], set VBD as HIZ.
												A [7:6] :Selec	
												A[7:6] 00	Select VBD as GS Transition,
												00	Defined in A[2] and
													A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												Δ [5:4] Fix I A	vel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												A [0] 00 Table	-10
												A[2] GS Tran	Sition control S Transition control
													ollow LUT
													output VCOM @ RED)
													ollow LUT
													ansition setting for VBD
												A[1:0] 00	VBD Transition LUT0
												01	LUT1
												10	LUT2
												11	LUT3
					<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	l		
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM O	ption
0	1		0	0	0	0	0	0	0	Ao	<u>'</u>	A[0] = 0 [POR]	ij
													A corresponding to RAM0x24
												1 : Read RAN	A corresponding to RAM0x26
0	Λ	44	Λ	1	0	0		1	_	Ι Λ	Set RAM X - address	Specify the of	tart/and positions of the
0	0	44	0	0	0 A ₅	0 A ₄	0 Аз	1 A ₂	0 A ₁		Start / End position		tart/end positions of the ess in the X direction by an
											Start / End position	address unit	
0	1		0	0	B ₅	B ₄	Вз	B ₂	Bı	Bo			IQ. IV IIV
													5:0], XStart, POR = 00h
												B[5:0]: XEA[5	5:0], XEnd, POR = 15h
					.	-	-		-		<u></u>	<u></u>	
0	0	45	0	1	0	0	0	1	0		Set Ram Y- address		tart/end positions of the
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	A ₀	Start / End position		ess in the Y direction by an
0	1		0	0	0	0	0	0	0	A 8		address unit	IOI KAIVI
0	1		В	B ₆	B 5	B ₄	Вз	B ₂	B₁	Bo		A[8:0]: YSA[8	8:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	B ₈			3:0], YEnd, POR = 127h
					-	•	-	•	•	-	•		-

HOLITECH JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	22 of 39

0 0	0	46	0 A7	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A1	_	Auto Write RAM0x26 for Regular Pattern	A[7:0] = 0 A[7]: The A[6:4]: Ste Step of alt to Gate A[6:4]	0h [POR] 1st step va ep Height, ter RAM in Height	alue, POR POR= 000 Y-direction	
						_						A[7:0] = 0 A[7]: The A[6:4]: Ste Step of alt to Gate A[6:4]	0h [POR] 1st step va ep Height, ter RAM in Height	alue, POR POR= 000 Y-direction	= 0 on according
												A[7]: The A[6:4]: Ste Step of alt to Gate A[6:4]	1st step va ep Height, ter RAM ir Height	POR= 000 Y-direction	on according
												A[6:4]			Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												to Source	ter RAM in	X-direction	on according
												A[2:0]	Width	A[2:0]	Width
												000	8 16	100 101	128 176
												010	32	110	NA
												010	64	111	NA
												011	0-1	111	1471
												BUSY pac operation.		ut high dur	ring
	0	47	^	4	0	_	_	4	4	T 4	Ato Write DAMOv24 for	A 4 a . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- DAMOGO	4 for Door	Jan Dattana
0	0	47	0	1	0	0	0	1	1	_	Auto Write RAM0x24 for			4 for Regu	ılar Pattern
0	1		A ₇	A 6	A 5	A ₄	U	A ₂	A ₁	Ao	Regular Pattern	to Gate	1st step va ep Height, ter RAM in	POR= 000 Y-direction	on according
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010 011	32 64	110 111	296 NA
												A[2:0]: Ste	ep Width, I ter RAM in Width 8 16 32 64	POR= 000 X-direction A[2:0] 100 101 110 111	Width 128 176 NA NA

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	23 of 39

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X
0	1		0	0	A 5	A ₄	Аз	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y
0	1		A ₇	A ₆	A 5	A ₄	Аз	A_2	A ₁	A_0	counter	address in the address counter (AC)
0	1		0	0	0	0	0	0	0	A 8		A[8:0]: 000h [POR].
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	24 of 39

10.Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	IDO
POR		0	0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

The pixel sequence is defined by the ID [0],

	ID [1:0]="00"	D [1:0]="01"
	X: decrement	X: increment
	Y: decrement	Y: decrement
AM="0" X-mode	00,00h 4.3.2.1 15,127h	00,00h 1, 2, 3, 4 15,127h

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	25 of 39

11. Reference Circuit

CON1 24Pin

Figure. 11-1

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	26 of 39

Figure. 11-2

Part Name	Value /requirement/Reference Part
C1—C9	1uF/0603;X5R;Voltage Rating: 25V
C10	1uF/0603;X7R;Voltage Rating: 25V
D1—D3	MBR0530
	1) Reverse DC voltage≥30V
	2) Forward current≥500mA
	3)Forward voltage≤430mV
R2	2.2 Ω/0603: 1% variation
Q1	NMOS:Si1304BDL/NX3008NBK
	1) Drain-Source breakdown voltage ≥30V
	2) $Vgs (th) = 0.9 (Typ) , 1.3V (Max)$
	3) Rds on $\leq 2.1 \Omega$ @ Vgs=2.5V
L1	47uH/NRH3010T470MN
	Maximum DC current~420mA
	Maximum DC resistance~650m Ω
CON24Pin	0.5mm ZIF Socket 24Pins,0.5mm pitch

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	27 of 39

12. ABSOLUTE MAXIMUM RATING

Table 12-1: Maximum Ratings

	Tuble 12 1. William Rueings								
Symbol	Parameter	Rating	Unit	Humidity	Unit	Note			
V_{CI}	Logic supply voltage	-0.5 to +6.0	V	-	ı				
T_{OPR}	Operation temperature range	0 to 40	°C	45 to 70	%	Note 12-1			
Tttg	Transportation temperature range	-25 to 60	°C	45 to 70	%	Note12-2			
Tstg	Storage condition	0 to 40	°C	45 to 70	%	Maximum storage time: 5 years			
_	After opening the package	0 to 40	°C	45 to 70	%				

Note 12-1: We guarantee the single pixel display quality for $0-35^{\circ}$ C, but we only guarantee the barcode readable for $35-40^{\circ}$ C. Normal use is recommended to refresh every 24 hours.

Note12-2: Tttg is the transportation condition, the transport time is within 10 days for $-25^{\circ}\text{C} \sim 0^{\circ}\text{C}$ or $40^{\circ}\text{C} \sim 60^{\circ}\text{C}$.

Note 12-3: When the three-color product is stored. The display screen should be kept white and face up. In addition, please be sure to refresh the e-paper every three months. We suggest that the full black and full white picture could be added to clear the screen after the module is refreshed for a long time, the display effect would be better.

13.DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3 V, T_{OPR}=25°C.

Table 13-1: DC Characteristics

	1 1 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit					
VCI	VCI operation voltage		VCI	2.5	3	3.7	V					
VIH	High level input voltage		SDA, SCL, CS#, D/C#, RES#,	0.8VDDIO			V					
VIL	Low level input voltage		BS1			0.2VDDI O	V					
VOH	High level output voltage	IOH = -100uA	BUSY	0.9VDDIO			V					
VOL	Low level output voltage	IOL = 100uA				0.1VDDI O	V					
Iupdate	Module operating current			-	3	-	mΑ					
Isleep	Deep sleep mode	VCI=3.3V		-	-	3	uA					

The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 13-1)

- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by XingTai.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 13-1

The Typical power consumption

HOLITECH Confidential Page 27 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	28 of 39

14. Serial Peripheral Interface Timing

The following specifications apply for: VSS=0V, VCI=2.5V to 3.7V, T_{OPR} =25°C , CL=20pF

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 14-1: SPI timing diagram

15. Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25℃	-	70	mAs	-
Deep sleep mode	-	25℃	-	3	uA	-

MAS=update average current ×update time

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	29 of 39

16.Typical Operating Sequence

16.1 Normal Operation Flow

2. Set Initial Configuration

- Define SPI interface to communicate with MCU
- HW Reset
- SW Reset by Command 0x12
- Wait 10ms

3. Send Initialization Code

- Set gate driver output by Command 0x01
- Set display RAM size by Command 0x11, 0x44, 0x45
- Set panel border by Command 0x3C

4. Load Waveform LUT

- Sense temperature by int/ext TS by Command 0x18
- Load waveform LUT from OTP by Command 0x22, 0x20 or by MCU
- Wait BUSY Low

5. Write Image and Drive Display Panel

- Write image data in RAM by Command 0x4E, 0x4F, 0x24, 0x26
- Set softstart setting by Command 0x0C
- Drive display panel by Command 0x22, 0x20
- Wait BUSY Low

6. Power Off Deep sleep by Command 0x10 Power OFF END

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	30 of 39

17. Optical characteristics

17.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

 $T=25\pm3$ °C, VCI=3.0V

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 17-1
Gn	2Grey Level	-	-	KS+(WS-KS)×n(m-1)	-	L*	-
CR	Contrast Ratio	-	10	15	-		-
VC	Black State L* value		-	13	14		Note 17-1
KS	Black State a* value		-	3	4		Note 17-1
WS	White State L* value		63	65	-		Note 17-1
D.C.	Red State L* value	Red	25	28	-		Note 17-1
RS	Red State a* value	Red	36	40	-		Note 17-1
Danal	Image Update	Storage and transportation		Update the white screen	-	-	-
Panel	Update Time	Operation	-	Suggest Updated once a day	-	-	-

WS: White state, KS: Black State, RS: Red State

Note 17-1 : Luminance meter : i - One Pro Spectrophotometer

HOLITECH Confidential Page 30 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	31 of 39

17.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)():

R1: white reflectance

Rd: dark reflectance

CR = R1/Rd

17.3 Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \ Factor_{white \ board} \qquad x \ (L_{center} \ / \ L_{white \ board})$

L center is the luminance measured at center in a white area (R=G=B=1). L white board is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	32 of 39

18. HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Data sheet status				
Product specification	The data sheet contains final product specifications.			

JIANGXI XINGTAI TECHNOLOGY CO..LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	33 of 39

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental	certification
------------------------------	---------------

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	34 of 39

19. Reliability test

19.1 Reliability test items

	TEST	CONDITION	REMARK
1	High-Temperature Operation	T=40°C, RH=35%RH, For 240Hr	
2	Low-Temperature Operation	T = 0°C for 240 hrs	
3	High-Temperature Storage	T=50°C RH=35%RH For 240Hr	Test in white pattern
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	Test in white pattern
5	High Temperature, High- Humidity Operation	T=40°C,RH=90%RH, For 168Hr	
6	High Temperature, High- Humidity Storage	T=50°C,RH=80%RH,For 240Hr	Test in white pattern
7	Temperature Cycle	-25°C(30min)~60°C(30min),50 Cycle	Test in white pattern
8	Package Vibration	1.04G,Frequency: 20~200Hz Direction: X,Y,Z Duration: 30 minutes in each direction	Full packed for shipment
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment
10	UV exposure Resistance	765 W/m² for 168hrs,40°C	
11	Electrostatic discharge	Machine model: +/-250V,0 Ω ,200pF	

Actual EMC level to be measured on customer application.

Note1: Stay white pattern for storage and non-operation test.

Note2: Operation is black/white/red pattern, hold time is 150S.

Note3: The function appearance should meet the requirements of the test before and after the test.

Note4: Keep testing after 2 hours placing at 20°C-25°C.

19.2 Product life time

The EPD Module is designed for a 5-year life-time with 25 $^{\circ}$ C/60%RH operation assumption. Reliability estimation testing with accelerated life-time theory would be demonstrated to provide confidence of EPD lifetime.

19.3 Product warranty

Warranty conditions have to be negotiated between Xingtai and individual customers.

Xingtai provides 12+1(one month delivery time) months warranty for all products which are purchased from Xingtai.

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	35 of 39

20. Block Diagram

21. PartA/PartB specification

HOLITECH Confidential Page 35 of 39 2021/01/30

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	36 of 39

22. Point and line standard

Shipment Inspection Standard						
Equipment: Electrical test fixture, Point gauge						
Outline dimension	29.2(H)×59.2(V)×0.9(D)	Unit: mm Part-A Active a		Active area	Part-B	Border area
Environment	Temperature	Humidity Illuminance		Distance	Time	Angle
Environment	19℃~25℃	55%±5%RH	800~1300Lux	300 mm	35Sec	
Defect type	Inspection method	Stan	dard	Part-A	A	Part-B
		D≤0	.25 mm	Ignor	e	Ignore
Spot	Electric Display	0.25 mm <	D≤0.4 mm	N≤4		Ignore
		D>0.4 mm		Not Allow		Ignore
Display unwork	Electric Display	Not Allow		Not Allow		Ignore
Display error	Electric Display	Not Allow		Not Allow		Ignore
		L≤2 mm,W≤0.2 mm		Ignore		Ignore
Scratch or line defect(include dirt)	Visual/Film card	2.0mm <l≤5.0mm,0.2<w≤ 0.3mm,</l≤5.0mm,0.2<w≤ 		N≤2		Ignore
		L>5 mm,W>0.3 mm		Not Allow		Ignore
		D≤0	.2mm	Ignor	e	Ignore
PS Bubble	Visual/Film card	0.2mm≤D≤0.35mm		N≤4		Ignore
		D>0.35 mm		Not Allow		Ignore
$X \le 6$ mm, $Y \le 0.4$ mm, Do not affect the electrode circuit (Edge $X \le 1$ mm, $Y \le 1$ mm, Do not affect the electrode circuit (Corne Ignore				11 0		
Side Fragment	Visual/Film card	x X				
Remark	1. Appearance defect should not cause electrical defects;					
Kemark	2. Appearance defects should not cause dimensional accuracy problems					
		L=long W=wide	e D=point size N	=Defects NO		

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	37 of 39

Line Defect Spot Defect

L=long W=wide D=point size

D=1L+W)/2

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

(10) (11)

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	38 of 39

23.Barcode

23.1 Babel appearance

A BBBBBBB CC DDD EEE F GGG H III JJ KK

23.2 QR scanned information (Total 28 code number+ 2 blank spaces)

	1	2	3	4	(5)	6
1	A——Th	ne fac	tory c	ode		
2	BBBBBB	3M	odule	name	of I	EPD
3	CC——F	Produc	tion 1	ine		
4	DDD	-Date	of pro	ducti	on	
(5)	EEE——	-Produ	ction	lot		
6	FSe	eparat	or			
7	GGG	-FPL L	ot			
8	Н——Р1	coduct	s stat	us		
9	III——	-TFT、	PS, EC	•		
10	JJ]	[C				
11	KKS	Serial	NO.			
	blank s	spaces				

JIANGXI XINGTAI TECHNOLOGY CO.,LTD.

File Name	Specification For HINK 2.13" EPD	Module Number	HINK-E0213A200
Version	A0	Page Number	39 of 39

24. Packing

Packing Spec Sheet No: E0213 package spec DATE 2019. 1. 25 1 - 1A0 VER Part No Page HOLITECH 一, Package Type: Box PRODUCT DRAWING 7.05 Holitech shipping box Box No 515*322*170 Box size **450PCS** Containment 二,Inside package type:Plastic Trayınit: mm Step 1: Plastic Tray 465*280*15 13 pcs Material: Tray, EPE Anti-static 1 pcs 700*530*0.1 Put the product in to the foil bags 30 pcs EPE (inside) 417. 6*230. 64*2 tray and keep the dispaly side up. Then put EPE (Up-Down) 2 pcs 485*145*10 EPE (Left-Right) anti-static EPE in to 285*480*10 2 pcs each holes. 2 pcs 310*145*10 EPE (Front-back) 500*306*5 2 pcs Chip board Quantity/tray 30 pcs Tray number/sheet 15+1 Sheets Step 2: Box 1) Must keep the angle 180 Step 3: degree placed between the 1) In each case, put 2 Anti-static EPE neighboring Plastic trays. bags of desiccant. then 2) There are 12 layers seal the trays with product, total 30*15=450pcs. adhesive tapes. 3) An empty Plastic tray 2) Put the trays into intersects put on the top foil bags. of the plastic trays. 3) heat seal the foil Chip Board bags. Step 5: Chip Board 1) Seal the box with adhensive tapes . 2) Paste the lable onto the exterior box, and the 1) First put a chip board on the lable can't cover the buttom of the box, then placed the safety, down EPE, the left - right and transfer and RoSH sign. front -back EPE. 2) Placed the sealed products RoHS into the box. 3) The last placed the up EPE on the top of the trays, and place a chip board on it. Confirm Design X. Z. P Approve X.X.M J. P. F

Date

2019. 1. 25

Date

2019. 1. 25

2019. 1. 25

Date