Basic Electronics (ECE113) Tutorial 1

- 1. For the circuit of Fig. 1: -
 - (a) Count the number of circuit elements.
 - (b) If we move from B to C to D, have we formed a path? Have we formed a loop?
 - (c) If we move from E to D to C to B, have we formed a path? Have we formed a loop?

Fig. 1

- 2. Refer to the circuit of Fig. 2, and answer the following:
 - (a) How many distinct nodes are contained in the circuit?
 - (b) How many elements are contained in the circuit?
 - (c) How many branches does the circuit have?
 - (d) Determine if each of the following represents a path, a loop, both, or neither:
 - (i) A to B
 - (ii) B to D to C to E
 - (iii) C to E to D to B to A to C
 - (iv) C to D to B to A to C to E

Fig. 2

3. In the circuit shown, the resistor values are unknown, but the 2 V source is known to be supplying a current of 7 A to the rest of the circuit. Calculate the current labelled i_2 .

4. In the circuit depicted below, i_x is determined to be 1.5 A, and the 9 V source supplies a current of 7.6 A (that is, a current of 7.6 A leaves the positive reference terminal of the 9 V source). Determine the value of resistor R_A .

5. Use KVL to obtain a numerical value for the current labelled i in each circuit depicted

- 6. (a) Determine a numerical value for each current and voltage $(i_1, v_1,$ etc.) in the below circuit.
 - (b) Calculate the power absorbed by each element and verify that they sum to zero.

- 7. Compute the power absorbed by each element in the below circuit if the mysterious element Xis
 - (a) a 13 Ω resistor;
 - (b) a dependent voltage source labelled $4v_1$, "+" reference on top; (c) a dependent voltage source labelled $4i_x$, "+" reference on top.

8. Referring to the circuit depicted below, determine the value of the voltage v.

- 9. (a) For the below circuit, determine the value for the voltage labelled *v*, after first simplifying the circuit to a single current source in parallel with two resistors.
 - (b) Verify that the power supplied by your equivalent source is equal to the sum of the supplied powers of the individual sources in the original circuit.

- 10. (a) Determine the values for I_X and V_Y in the circuit shown below.
 - (b) Are those values necessarily unique for that circuit? Explain.
 - (c) Simplify the circuit as much as possible and still maintain the values for v and i. (Your circuit must contain the 1 Ω resistor.)

11. Making appropriate use of resistor combination techniques, calculate i_3 in the circuit below and the power provided to the circuit by the single current source.

- 12. A network is constructed from a series connection of five resistors having values 1 Ω , 3 Ω , 5 Ω , 7 Ω , and 9 Ω . If 9 V is connected across the terminals of the network, employ voltage division to calculate the voltage across the 3 Ω resistor, and the voltage across the 7 Ω resistor.
- 13. Employing resistance combination and current division as appropriate, determine values for i_2 , i_2 , and v_3 in the circuit below.

14. The circuit depicted below is routinely employed to model the midfrequency operation of a bipolar junction transistor—based amplifier. Calculate the amplifier output v_{out} if the transconductance g_m is equal to 322 mS.

