Faculté des Sciences Département de Physique Kénitra

Année Universitaire 2014/2015

Exercice 3:

On considère le circuit électrique suivant :

Figure 2

On notera $R_E=R_{E1}+R_{E2}$ et $R_B=R_1//R_2$. Le transistor a les paramètres suivants : $h_{11}=1$ K Ω , $h_{21}=100$ et $h_{12}=h_{22}=0$. Les résistances ont les valeurs suivantes : $R_E=1$ K Ω , $R_1=180$ K Ω , $R_2=15$ K Ω et $R_C=R_L=4.7$ K Ω On donne : $V_{cc}=20$ V , $C_E=220\mu F$ et $C_1=C_2=100$ μF . 1. Représenter le schéma équivalent du transistor seul. 2. la fréquence d'étude étant $f_0=1$ KHz, calculer les modules des impédances des

- condensateurs C1, C2 et CE à cette fréquence.
- 3. Etablir le schéma équivalent petits signaux basses fréquences de l'étage complet.
- 4. Calculer l'amplification en tension A_v, l'amplification en courant A_i ainsi que l'impédance d'entrée Ze et de sortie Zs.
- 5. Le condensateur C_E est à présent branché au point E₁.
 - a. Donner le nouveau schéma équivalent de l'étage complet.
 - b. Comment peut-on choisir RE1 et RE2 pour obtenir une amplification en tension égale à -10.

Faculté des Sciences Département de Physique Kénitra

Filière SMP – Semestre S4 Travaux Dirigés d'Electronique de base Série 5

Exercice 1:

Etant donné le circuit du schéma de la figure 1.

- Montrer que ce circuit, où le transistor est polarisé avec une seule source, est équivalent au circuit utilisant une polarisation avec deux sources.
- Donner l'équation de la droite d'attaque statique et de charge statique et en déduire le point de blocage et de saturation.
- Sachant qu'au point de fonctionnement le courant de base et la tension collecteur-émetteur sont I_B = 100 μA et V_{CE} = 6 V, déterminer la valeur des autres paramètres (d'entrée et de sortie). La jonction base-collecteur est-elle polarisée en inverse ? si oui justifier. Calculer la valeur de α et β.

On donne $V_{CC}\!\!=\!12$ V ; $R_{B1}\!\!=\!16$ K Ω ; $R_{B2}\!\!=\!1$ K Ω et $R_{C}\!\!=\!240$ Ω

Exercice 2:

On considère le montage de la figure 2 où la polarisation est réalisée par la résistance entre collecteur et base. Le transistor est caractérisé par le réseau de courbes de la figure 3. En régime continu on a $\beta=65$. On donne :

 $U_0 = 10 \text{ V}, R_B = 17 \text{ K} \Omega, R_C = 1 \text{ K} \Omega, R_E = 100 \Omega$

- Donner l'équation de la droite de charge statique (en sortie).
- > Donner l'équation de la droite d'attaque statique (en entrée). En déduire le point de repos du montage.
- > Tracer la droite de charge statique (en sortie) sur le réseau de courbes de la figure 8.
- \succ Calculer la valeur à donner à R_B pour que V_{CE} = 5 V en conservant la valeur des autres données.

