

By: Nikhil, Arjun, Mana, Hope, and Ethan

Problem Overview

Introduction

- Skin cancer is the most common type of cancer in the world.
 - 9,500 cases are reported daily in the United States
 - 2-3 million cases are reported every year globally.
- Many cases go undetected, due to not having quality healthcare and equipment, or due to human error.

- Skin cancer is usually diagnosed visually, with screenings.
- Using machine learning would help use more accurately identify skin cancer, which would save millions of lives

(66)

What are some features you notice in each skin cancer classes that could help identify them?

Processing Data

Exploring the Data

- 10,015 images
- 7 Classes

Does anybody see any problems with this dataset?

Preprocessing Data

- Reducing data
 - Makes training data more equal across classes (142)
 - But also reduces amount of data
- Augmentations
 - technique used to increase the size of our data by using techniques like blurring, resizing, flipping, rotating, and color changing.
 - Prevents overfitting
 - o Increases amount of DIVERSE data

Resize

Blur

Zoom

Flip

Greyscale

Model Design-KNN, CNN, Transfer Learning

K-Nearest-Neighbors:

knn = KNeighborsClassifier(n_neighbors = 3, "weight", "algorithm")

KNN Performance

Optimizing Our Model:

<u>Receiver Operator Curve</u>: relationship between true positive and false positive.

<u>Area Under Curve</u>: Metric demonstrates how close ROC is to random guessing. Higher AUC → better model

- Used for loop and AUC score to optimize parameters
- Final Accuracy: 34%

Convoluted Neural Networks (CNN)/Transfer Learning

- Convolutions a
 mathematical operation that
 lets us find a pattern in a
 portion of an image.
- Apply kernel to image to achieve feature extraction
 - Kernel pattern we're looking more represented by numbers
- Transfer Learning CNN w/ a pre-trained network

CNN Performance

 Dropout, layer size, # neurons, epochs optimized

Transfer Learning CNN Performance

Transfer Learning- Pre Trained CNN

Optimizing Parameters

- Transfer Learning
- Hyper Parameters:
 - Image Size
 - Color
 - Data Augmentation
- ROC Score Increase

Image Size Trial CM

IMG Size = 50, 50 AUC Score: 0.87982

Key Takeaways

CNN + Larger Image Size

Balanced Data

Applicable Model

Final Model CM: IMG Size = 224, 224, AUC Score: 0.87982

Thank You For Listening!