Листок 4

Листок можно сдать только целиком за один раз, при этом перед сдачей листка студент должен объявить номера задач, которые он умеет решать (каждый пункт считается отдельно, пункт со звездочкой — за два, с двумя - за три). Сдача листка состоит в рассказе решений некоторых задач из этого списка на выбор преподавателя — листок считается сданным, если все решения рассказаны верно. Повторная попытка сдачи листка возможна, но не ранее, чем на следующий день. Оценка за листок вычисляется по числу X объявленных задач по формуле X+6-2N+k. Здесь N — номер недели, когда происходит сдача листка, k - количество рассказанных у доски на семинаре задач,

Задача 1. Докажите счетность множества $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$. Придумайте формулу, задающую соответствующую биекцию с множеством натуральных чисел.

Задача 2. Какова мощность множества всех прямых на плоскости?

Задача 3. Докажите счетность

- а) множества всех конечных подмножеств №
- b) множества периодических с некоторого места последовательностей натуральных чисел

Задача 4. Покажите, что множество всех действительных алгебраических чисел (т.е., множество действительных корней многочленов с рациональными коэффициентами) счетно, а множество трансцендентных чисел имеет мощность континуум.

Задача 5. Покажите, что

- а) объединение счетного числа континуальных множеств
- b) множество всех бесконечных последовательностей действительных чисел
- c) множество отображений $\mathbb{N}^{\mathbb{N}}$
- d) множество всех счетных подмножеств \mathbb{R}

все имеют мощность континуум.

Задача 6. Имеют ли мощность континуума множества

- a) всех функций $\mathbb{R} \to \mathbb{R}$
- b) * биективных функций $\mathbb{R} \to \mathbb{R}$
- c) * непрерывных функций $\mathbb{R} \to \mathbb{R}$

Задача 7. * Если квадрат разбит на две части, то хотя бы одна из них имеет мощноссть континуум.

Задача 8. * Покажите, что множества $\mathbb{R}^{\mathbb{R}}$, $\mathbb{N}^{\mathbb{R}}$ и $2^{\mathbb{R}}$ равномощны.

Задача 9. Рассмотрим все множества, являющиеся подмножествами некоторого множества X. Покажите, что:

- а) отношение: равномощности (т.е. $M \sim N$, если существует биекция $f: M \to N$) является отношением эквивалентности на 2^X . Классы эквивалентности называются мощностями множеств;
- b) отношение $M \prec N$, если существует инъекция $f: M \to N$, не является отношением частичного порядка на 2^X ;
- с) отношение \prec согласовано с отношением \sim и определяет на множестве классов эквивалентности отношение $\bar{\prec}$, которое уже является отношением частичного порядка.

Задача 10. Сформулируйте и докажите теорему Кантора-Берншейна

Задача 11. Докажите теорему Кантора в общей формулировке: мощность множества 2^M всех подмножеств любого множества M больше (см. задачу 9) мощности множества M.

Задача 12. ** Пусть M - замкнутое множество на прямой без изолированных точек. Тогда оно имеет мощность континуум.