POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

KIERUNEK: INFORMATYKA

SPECJALNOŚĆ: SYSTEMY INFORMATYKI W MEDYCYNIE

PRACA DYPLOMOWA INŻYNIERSKA

System inspekcji obszarów z wykorzystaniem autonomicznych dronów

Autonomous drone-based scouting system

AUTOR:

Mateusz Bączek

PROWADZĄCY PRACĘ:

Dr inż. Michał Kucharzak, Katedra Systemów i Sieci Komputerowych

OCENA PRACY:

WROCŁAW, 2020

Spis treści

Spis rysunków					
Spis listingów					
Spis tabel					
1.	Wstęp	3			
	1.1. Geneza pracy	3			
	1.2. Cel pracy	3			
	1.3. Zakres pracy)			
2.	Wymagania funkcjonalne systemu)			
	2.1. Oprogramowanie na dronie)			
	2.2. Protokoły wymiany danych)			
	2.3. Oprogramowanie serwerowe)			
	2.4. Oprogramowanie klienckie)			
3.	Wybór technologii i architektura systemu	1			
	3.1. Struktura repozytoriów	l			
	3.2. Oprogramowanie na dronie	l			
	3.3. Protokoły wymiany danych	l			
	3.4. Oprogramowanie serwerowe	l			
	3.5. Oprogramowanie klienckie	l			
	3.6. Wspólne punkty stykowe - git submodules	Ĺ			
4.	Wdrażanie systemu	2			
	4.1. Konteneryzacja	2			
	4.2. Automatyczne budowanie projektów	2			
	4.3. Automatyczne aktualizacje kontenerów	2			
5.	Testy systemu	3			
	5.1. Testy jednostkowe	3			
	5.2. Testy integracyjne	3			

	5.3.	Systemy ciągłej integracji
	5.4.	Testy w terenie
6.	Pod	sumowanie
	6.1.	Wyniki testów
	6.2.	Osiągnięta sprawność
	6.3.	Pola do poprawy
	6.4.	Wnioski
Li	teratı	ıra
In	deks i	7eczowy

Spis rysunków

Spis listingów

Spis tabel

Skróty

GCS (ang. Ground control station)

JSON (ang. JavaScript Object Notation)

Rozdział 1

Wstęp

1.1. Geneza pracy

Lotnictwo autonomiczne to prężnie rozwijający się sektor branży lotniczej. Technologie pozwalające na wykorzystanie autonomicznych dronów i samolotów w nowych projektach biznesowych są dostępne na wyciągnięcie ręki - istnieją zarówno systemy zamknięte, w pełni komercyjne, jak i projekty zupełnie otwarte, pozwalające na zapoznanie się z kodem źródłowym oprogramowania sterującego statkami powietrznymi i interakcję z aktywną społecznością pasjonatów, wspólnie rozwijającą projekt.

W świecie biznesu powstają coraz to nowe rozwiązania, wykorzystujące autonomiczne maszyny do świadczenia różnorakich usług - od razu nasuwającym się rozwiązaniem jest autonomiczne dostarczanie paczek [1], ale istnieją też znacznie bardziej ambitne projekty[2]. Warto wspomnieć, że branża jest otwarta na innowatorów - firmy takie jak Boeing i Lockheed Martin sponsorują międzynarodowe konkursy przeznaczone dla młodych konstruktorów [3].

Zainteresowani autonomicznym lotnictwem inwestorzy nie ograniczają się do prywatnych firm. Rząd australijskiego stanu Queensland współorganizuje *UAV Challenge* - zawody skupione wokół rozwijania systemów wspierających służby medyczne [4].

Wykorzystanie otwartych technologii skupionych wokół awiacji autonomicznej i połączenie ich z nowoczesnymi praktykami wdrażania oprogramowania to temat atrakcyjny zarówno z perspektywy inżynierii oprogramowania jak i z perspektywy biznesowej.

Szczególnie interesujące są zagadnienia integracji komponentów systemu, oraz testowanie - które w przypadku systemu angażującego rzeczywiste maszyny nie może ograniczyć się jedynie do standardowych testów jednostkowych.

1.2. Cel pracy

Celem pracy jest stworzenie prototypu systemu monitorującego, wykorzystującego autonomiczne drony. System ma integrować się z już istniejącym oprogramowaniem sterującym autonomicznymi maszynami oraz wykorzystywać napisaną na potrzeby pracy infrastrukturę służącą do planowania tras lotów, przechwytywania i wyświetlania telemetrii oraz rozpoznawania obiektów na zdjęciach wykonanych w czasie lotu za pomocą sztucznej inteligencji.

Architektura systemu musi pozwalać na zautomatyzowanie procesu wdrażania systemu, oraz zautomatyzowanie wdrażania nowych funkcjonalności - każde z wdrożeń musi być poprzedzone testami integracyjnymi na poziomie całego systemu.

Prototyp ma być w pełni testowalny, zarówno na poziomie pojedynczych elementów systemu jak i na poziomie integracji całego projektu - testy muszą angażować wszystkie komponenty systemu, uruchomione wewnątrz w pełni zautomatyzowanego środowiska testowego.

1.3. Zakres pracy

Zakres pracy obejmuje elementy projektu związane z inżynierią i architekturą oprogramowania - proces projektowania struktury systemu, wybór technologii, zaprojektowanie punktów stykowych w systemie, automatyzacja procesu wdrażania systemu i nowych funkcjonalności.

Praca opisuje też sposób testowania systemu - od weryfikacji poprawności działania poszczególnych komponentów, po pełne automatyczne testy integracyjne, wykorzystujące wszystkie komponenty systemu oraz zintegrowany symulator drona.

Mateusz Bączek: System inspekcji obszarów ...

Rozdział 2

Wymagania funkcjonalne systemu

- 2.1. Oprogramowanie na dronie
- 2.2. Protokoły wymiany danych
- 2.3. Oprogramowanie serwerowe
- 2.4. Oprogramowanie klienckie

Rozdział 3

Wybór technologii i architektura systemu

- 3.1. Struktura repozytoriów
- 3.2. Oprogramowanie na dronie
- 3.3. Protokoły wymiany danych
- 3.4. Oprogramowanie serwerowe
- 3.5. Oprogramowanie klienckie
- 3.6. Wspólne punkty stykowe git submodules

Rozdział 4

Wdrażanie systemu

- 4.1. Konteneryzacja
- 4.2. Automatyczne budowanie projektów
- 4.3. Automatyczne aktualizacje kontenerów

Rozdział 5

Testy systemu

- **5.1.** Testy jednostkowe
- **5.2.** Testy integracyjne
- 5.2.1. Symulacja i symulatory
- 5.3. Systemy ciągłej integracji
- **5.4.** Testy w terenie

Rozdział 6

Podsumowanie

- 6.1. Wyniki testów
- 6.2. Osiągnięta sprawność
- 6.3. Pola do poprawy
- 6.4. Wnioski

Literatura

- [1] Amazon Inc, "Amazon prime air," 2013. https://www.amazon.com/ Amazon-Prime-Air/b?ie=UTF8&node=8037720011.
- [2] A. Claesson, A. Bäckman, M. Ringh, L. Svensson, P. Nordberg, T. Djärv, and J. Hollenberg, "Time to Delivery of an Automated External Defibrillator Using a Drone for Simulated Outof-Hospital Cardiac Arrests vs Emergency Medical Services," *JAMA*, vol. 317, pp. 2332– 2334, 06 2017.
- [3] R. Pogrzebny and K. Florencka, "Sukces polskich studentów na zawodach sae aero design w usa," 2018. https://naukawpolsce.pap.pl/aktualnosci/news%2C29012% 2Csukces-polskich-studentow-na-zawodach-sae-aero-design-w-usa.html.
- [4] UAV Challenge , "Sponsors and supporters 2019 & 2020," 2019. https://uavchallenge.org/about/sponsors-and-supporters/.