Geocoding Truck Stops Documentation

William Co

2025-08-12

This report documents the geocoding of U.S. truck stop data, addressing challenges from inconsistent address formats. Using phone number matching and structured data from Truck Stops and Services, Yelp, Yellow Pages, and iExit, we achieved a 99.19% match rate. A custom interface was developed to support manual verification and ensure data accuracy.

Table of contents

1	Setu	ир	2
2	Cha	illenges	2
	2.1	Inconsistent Addresses	2
	2.2	Age	2
3	Dat	a Scraping	3
	3.1	Truck Stops and Services Website	3
	3.2	Yelp	4
	3.3	Yellow Pages	5
	3.4	Entry Matching	7
		3.4.1 Phone Number Matching (Truck Stops and Services):	7
		3.4.2 Place Name to ZIP Code Matching	8
	3.5	Post Matching	8
		3.5.1 False Positives	8
		3.5.2 Coordinate Matching	8
4	App	pendix	9
	4.1	Truck Stops and Services/ RV and Travelers Data Dictionary	9
			9
		4.1.2 Location Details	10
		4.1.3 Contact Information	
		4.1.4 Amenities & Services	
		4.1.5 Fuel Types & Links	
	4.2	Yelp Data Dictionary	
		4.2.1 General Business Information	
		4.2.2 Location Details	

	4.2.3	Contact & Business Attributes	11
4.3	Yellow	Pages Data Dictionary	12
	4.3.1	General Business Information	12
	4.3.2	Location Details	12
	4.3.3	Contact & Business Attributes	12
	4.3.4	Metadata	13
4.4	iExit I	Oata Dictionary	13

1 Setup

We are working with a truck stop directory dataset that includes truck stop details. However, the dataset lacks geographic coordinates (latitude and longitude). The objective of this project is to extract and assign accurate coordinates to each entry.

The main challenge arises from the inconsistent formatting of addresses. Some entries contain full addresses, while others include only road names, highway exits, or mile markers. The lack of standardization complicates automated geocoding.

The dataset also required extensive data cleaning to be useful.

2 Challenges

2.1 Inconsistent Addresses

Addresses in the dataset fall into the following categories:

- Standard addresses: These include a street number and road name, allowing for straightforward geocoding.
- Exit-based addresses: These reference a highway and exit number, but may lack a full street address.
- Non-standard addresses: These do not conform to either of the above formats, such as entries that only specify the intersection of two streets or other ambiguous location descriptions.

This variability in address formats presents a significant challenge for automated geocoding.

2.2 Age

Some locations in the dataset are quite old, making it difficult to find current information using modern mapping services. In these cases, it is often necessary to consult dated websites to locate and verify these places. Human judgment is required to determine whether such locations still exist or have been repurposed for other uses.

3 Data Scraping

We use the following websites to scrape geographic coordinates. Each time we scrape these websites, we extract the latitude and longitude of the truck stops.

3.1 Truck Stops and Services Website

The first step leverages a website aimed at truckers and RV travelers called Truck Stops and Services and the RV and Travelers Directory. Data from these websites is scraped due to their consistent formatting and the extensive truck stop information they provide.

This would be an example of the webpage:

Figure 1: Example of the Truck Stops and Services website interface

Figure 2: Example of the RV and Travelers website interface

Another example of the Truck Stops and Services website interface.

The complete data available from this scraping is available in Appendix: Truck Stops and Services/RV and Travelers Data Dictionary.

3.2 Yelp

Next, we leverage the Yelp API, which is unique in allowing phone number-based search queries. This feature makes it particularly well-suited to our dataset, which contains standardized phone numbers. An example of the Yelp website interface is shown below:

Figure 3: Example of the Yelp website interface

Figure 4: Another example of the Yelp website interface

The full list of data fields extracted from Yelp is available in the Appendix: Yelp Data Dictionary.

3.3 Yellow Pages

We then scrape YellowPages, which also allows direct phone number queries through web scraping. Examples of the website interface are shown below:

Figure 5: Example of the YellowPages website interface

Figure 6: Another example of the Yellow Pages website interface

The full list of data fields extracted from Yellow Pages is available in the Appendix: Yellow Pages Data Dictionary.

3.4 Entry Matching

After scraping from these three websites, we now have three reference datasets to match against our original truck stops directory.

We developed two main methodologies for matching.

3.4.1 Phone Number Matching (Truck Stops and Services):

Directly matching entries based on phone numbers. We match the phone numbers from Yelp, Yellow Pages, and Truck Stops and Services to the original truck stop directory.

3.4.2 Place Name to ZIP Code Matching

This strategy involves a hierarchical matching process. First, the state or ZIP code must match. Next, the city or highway exit must match. After that, the road name must match. Finally, the business or place name must match.

Using these matching processes, each entry in the original truck stop directory can be matched in four ways: three by phone number matching (from Yelp, Yellow Pages, and Truck Stops and Services) and one by place name to ZIP code matching.

3.5 Post Matching

3.5.1 False Positives

We encountered numerous false positive matches after the initial matching process. Yelp and Yellow Pages are known to have inconsistent phone numbers, and all the scraped data sources have documented examples of incorrect latitude and longitude coordinates. This leads to multiple possible latitude and longitude values for a single truck stop directory entry.

To address this, we developed the following coordinate matching methodology.

3.5.2 Coordinate Matching

Suppose we have a Yelp source, where the phone number matches to one unique latitude and longitude. Next, the Truck Stops and Services (Phone) source matches to two different latitude and longitude pairs, while Truck Stops and Services (Place Match) matches to one distinct coordinate. There is no match for Yellow Pages. Finally, we have the original entry $_n$ from the truck stop directory. In this scenario, we observe several possible coordinates for a single truck stop, but there is no reliable method to determine which coordinate is correct.

Suppose we also entry $_{n+1}$ where we have multiple coordinates from the Truck Stops and Services (Place Match) source but no matches from other sources.

Let C_i represent coordinate pairs (latitude, longitude) where $C_i = (lat_i, lon_i)$.

Data		Truck Stops and Services	Truck Stops and Services (Place	Yellow
Source	Yelp	(Phone)	Match)	Pages
$\overline{\text{entry}_n}$	C_1	C_2, C_3	C_4	Ø
$\operatorname{entry}_{n+1}^n$	Ø	\emptyset	C_5, C_6, C_7	Ø

For entry_n, we have the set of possible coordinates $\mathcal{C}_n = \{C_1, C_2, C_3, C_4\}$, where each coordinate represents a potential location for the same truck stop entry.

In order to discern the correct coordinate, we make the assumption that a true coordinate C^* exists where if two different sources agree on the same coordinate, it must be correct.

Distance-Based Validation Approach:

Using this approach, we calculate the Euclidean distance between all coordinate pairs. For any two coordinates C_i and C_i , the distance is defined as:

$$D_{i,j} = \sqrt{(\mathrm{lat}_i - \mathrm{lat}_j)^2 + (\mathrm{lon}_i - \mathrm{lon}_j)^2}$$

For entry_n, we compute all pairwise distances:

- $D_{1,2}$: distance between Yelp and first Truck Stops coordinate
- $D_{1,3}$: distance between Yelp and second Truck Stops coordinate
- D_{1,4}: distance between Yelp and Place Match coordinate
- D_{2,4}: distance between first Truck Stops and Place Match coordinates
- $D_{3,4}$: distance between second Truck Stops and Place Match coordinates

The general distance matrix for n coordinates is:

$$\mathbf{D} = \{D_{i,j} : i, j \in \{1, 2, \dots, n\}, i \neq j\}$$

We then identify the minimum distance $\min\{D_{i,j}\}$ in **D** and record this value in a dedicated column called $\min_{\mathbf{d}}$ is enables systematic manual correction and error analysis.

Afterward, we flag entries where \min_{distance} exceeds 200 meters for manual review and correction. If two coordinates C_i and C_j from different sources are within a small distance (i.e., $\min\{D_{i,j}\}$ is less than 200 meters), we treat their midpoint location as the final coordinate for that entry. If manual correction is required, the updated coordinates C_i^* and C_j^* are recorded as the corrected location.

4 Appendix

4.1 Truck Stops and Services/ RV and Travelers Data Dictionary

The following table summarizes the data fields used in the truck stop dataset:

4.1.1 General Information

Column Name	Description
state_id	State identifier
state	Name of the U.S. state
name	Truck stop name
href	Relative URL path
full_url	Full website URL
stop_type	Type of stop (e.g., fuel, full)
Chain	Company or chain name

4.1.2 Location Details

Column Name	Description
Latitude	Latitude coordinate
Longitude	Longitude coordinate
Highway	Associated highway
Exit	Exit number
Mile Marker	Highway mile marker
Street Address	Street address
City	City name
State	State abbreviation
Postal Code	ZIP/postal code

4.1.3 Contact Information

Column Name	Description
Phone	Main contact number
Phone 2-5	Additional phone numbers
Fax	Fax number
Mailing Address	Mailing address

4.1.4 Amenities & Services

Column Name	Description	
Hours of Operation	Operating hours	
# of Parking Spots	Total parking spaces	
# of Reserved Parking Spots	Number of reserved spaces	
# of Paid Parking Spots	Paid-only spots	
# of Fuel Lanes	Fuel pump lanes for trucks	
# of Showers	Total shower stalls	
# of Men's Showers	Men's shower stalls	
# of Truck Service Bays	Truck repair/service bays	

4.1.5 Fuel Types & Links

Column Name	Description
Unleaded	Unleaded gasoline available (Y/N)
Diesel	Diesel fuel available (Y/N)
Bulk Def	Diesel exhaust fluid (DEF) availability
Propane	Propane fuel available (Y/N)
https	HTTPS version of site URL

Column Name	Description
http / htp	Alternate/incomplete protocols

4.2 Yelp Data Dictionary

4.2.1 General Business Information

Column Name	Description
Original_Phone	The phone number used as input for the Yelp phone search
Name	The official name of the business
Rating	Yelp rating (e.g., 4.5 stars)
Review_Count	Total number of Yelp reviews
Is_Closed	Boolean indicating if the business is
	permanently closed
URL	Full Yelp business listing URL

4.2.2 Location Details

Column Name	Description
Address	Street address of the business
City	City where the business is located
State	State (abbreviation)
Zip_Code	Postal or ZIP code
Latitude	Latitude coordinate
Longitude	Longitude coordinate

4.2.3 Contact & Business Attributes

Column Name	Description
Phone	Official business phone number returned by Yelp
Categories	List of categories (e.g., "Coffee & Tea", "Gas Station")
Price	Price level indicator (\$, \$\$, etc., if available)

4.3 Yellow Pages Data Dictionary

4.3.1 General Business Information

Column Name	Description
ADDRESS	Full address of the business as listed on Yellow
	Pages
AKA	Alternate names or aliases for the business
BUSINESS_NAME	The primary name of the business
BUSINESS_URL	URL to the Yellow Pages business listing
CATEGORIES	Business categories (e.g., "Restaurants", "Auto
	Repair")
STATUS	Business status (e.g., "Open", "Closed")
WEBSITE	Official website of the business, if available

4.3.2 Location Details

Column Name	Description
JSONLD_CITY_1	City extracted from the embedded structured JSON-LD data
JSONLD_STATE_1	State extracted from the embedded structured JSON-LD data
JSONLD_STREET_1	Street address from JSON-LD
JSONLD_ZIP_1	ZIP code from JSON-LD
JSONLD_LAT_1	Latitude coordinate from JSON-LD
JSONLD_LNG_1	Longitude coordinate from JSON-LD

4.3.3 Contact & Business Attributes

Column Name	Description
ORIGINAL_PHONE	Phone number used to initiate the Yellow
	Pages lookup
FORMATTED_PHONE	Formatted business phone number as displayed
JSONLD_PHONE_1	Phone number from the structured JSON-LD
	data
EXTRA_PHONES	Any additional phone numbers found
PHONE	Phone number listed in the primary Yellow
	Pages HTML content
JSONLD_NAME_1	Business name from structured JSON-LD data

4.3.4 Metadata

Column Name	Description
SCRAPED_AT SEARCH_URL	Timestamp of when the data was scraped URL used to perform the Yellow Pages phone-based search

4.4 iExit Data Dictionary

Column Name	Description
state	U.S. state abbreviation (e.g., TX, CA) where the highway exit is located
highway	Name or number of the highway (e.g., I-10, US-101)
exit_id	Unique identifier for the highway exit as used in iExit
title	Display title or name of the exit
exit_name	Name of the exit (may include road or location name)
exit_description	Additional descriptive text about the exit or nearby services
exit_location	Textual representation of the exit's location
<pre>iexit_detail_link</pre>	URL link to the iExit detailed page for the exit
latitude	Latitude coordinate of the exit
longitude	Longitude coordinate of the exit
<pre>google_maps_link</pre>	Direct link to the exit location on Google Maps
direction	Direction of travel (e.g., Northbound,
	Eastbound)