Model call record

Sasha D. Hafner

September 2020

Calculates emission factors

Check package version.

packageVersion('ALFAM2')

[1] '1.2'

Parameter values.

ALFAM2pars02

##	int.f0	app.mthd.os.f0	app.rate.ni.f0	man.dm.f0
##	-0.60568338	-1.74351499	-0.01114900	0.39967070
##	man.source.pig.f0	app.mthd.cs.f0	int.r1	app.mthd.bc.r1
##	-0.59202858	-7.63373787	-0.93921516	0.79352480
##	man.dm.r1	air.temp.r1	wind.2m.r1	app.mthd.ts.r1
##	-0.13988189	0.07354268	0.15026720	-0.45907135
##	ts.cereal.hght.r1	$\mathtt{man.ph.r1}$	int.r2	rain.rate.r2
##	-0.24471238	0.66500000	-1.79918546	0.39402156
##	int.r3	app.mthd.bc.r3	app.mthd.cs.r3	man.ph.r3
##	-3.22841225	0.56153956	-0.66647417	0.23800000
##	<pre>incorp.shallow.f4</pre>	incorp.shallow.r3	incorp.deep.f4	incorp.deep.r3
##	-0.96496655	-0.58052689	-3.69494954	-1.26569562
dat				
шш	+			+h-1
##	11 0	app.timing air.temp		${ t app.mthd}$
##	1 Marts	March 4.900	4.02500 0.09	Trailing hose
##	2 April	April 8.500	3.91000 0.09	Trailing hose
##	3 Maj	May 12.400	3.56500 0.09	Trailing hose

##	4	Sommer	Summer	16.867	3.18167	0.09	Trailing hose
##	5	Efterår	Autumn	14.600	3.45000	0.09	Trailing hose
##	6	Marts	March	4.900	4.02500	0.09	Trailing hose
##	7	April	April	8.500	3.91000	0.09	Trailing hose
##	8	Maj	May	12.400	3.56500	0.09	Trailing hose
##	9	Sommer	Summer	16.867	3.18167	0.09	Trailing hose
##	10	Efterår	Autumn	14.600	3.45000	0.09	Trailing hose
##	11	Marts	March	4.900	4.02500	0.09	Trailing hose
##	12	April	April	8.500	3.91000	0.09	Trailing hose
##	13	Maj	May	12.400	3.56500	0.09	Trailing hose
##	14	Sommer	Summer	16.867	3.18167	0.09	Trailing hose
##	15	Efterår	Autumn	14.600	3.45000	0.09	Trailing hose
##	16	Marts	March	4.900	4.02500	0.09	Open slot injection
##	17	April	April	8.500	3.91000	0.09	Open slot injection
##	18	Maj	May	12.400	3.56500	0.09	Open slot injection
##	19	Sommer	Summer	16.867	3.18167	0.09	Open slot injection
##	20	Efterår	Autumn	14.600	3.45000	0.09	Open slot injection
##	21	Marts	March	4.900	4.02500	0.09	Closed slot injection
##	22	April	April	8.500	3.91000	0.09	Closed slot injection
##	23	Maj	May	12.400	3.56500	0.09	Closed slot injection
##	24	Sommer	Summer	16.867	3.18167	0.09	Closed slot injection
##	25	Efterår	Autumn	14.600	3.45000	0.09	Closed slot injection
##	26	Marts	March	4.900	4.02500	0.09	Trailing hose
##	27	April	April	8.500	3.91000	0.09	Trailing hose
##	28	Maj	May	12.400	3.56500	0.09	Trailing hose
##	29	Sommer	Summer	16.867	3.18167	0.09	Trailing hose
##	30	Efterår	Autumn	14.600	3.45000	0.09	Trailing hose
##	31	Marts	March	4.900	4.02500	0.09	Trailing hose
##	32	April	April	8.500	3.91000	0.09	Trailing hose
##	33	Maj	May		3.56500	0.09	Trailing hose
##	34	Sommer	Summer	16.867	3.18167	0.09	Trailing hose
##	35	Efterår	Autumn	14.600	3.45000	0.09	Trailing hose
##	36	Marts	March	4.900	4.02500	0.09	Trailing hose
##	37	April	April	8.500	3.91000	0.09	Trailing hose
##	38	Maj	May	12.400	3.56500	0.09	Trailing hose
##	39	Sommer	Summer	16.867	3.18167	0.09	Trailing hose
##	40	Efterår	Autumn	14.600	3.45000	0.09	Trailing hose
##	41	Marts	March		4.02500	0.09	Open slot injection
##	42	April	April	8.500	3.91000	0.09	Open slot injection

##	43	Maj	May	12.400	3.56500	0.09	Open	slot injection		
##	44	Sommer	Summer	16.867	3.18167	0.09	-	slot injection		
##	45	Efterår	Autumn	14.600	3.45000	0.09		slot injection		
##	46	Marts	March	4.900	4.02500	0.09	Closed	slot injection		
##	47	April	April	8.500	3.91000	0.09	Closed	slot injection		
##	48	Maj	May	12.400	3.56500	0.09	Closed	slot injection		
##	49	Sommer	Summer	16.867	3.18167	0.09	${\tt Closed}$	slot injection		
##	50	Efterår	Autumn	14.600	3.45000	0.09	${\tt Closed}$	slot injection		
##	51	Marts	March	4.900	4.02500	0.09		Trailing hose		
##	52	April	April	8.500	3.91000	0.09		Trailing hose		
##	53	Maj	May	12.400	3.56500	0.09		Trailing hose		
##	54	Sommer	Summer	16.867	3.18167	0.09		Trailing hose		
##	55	Efterår	Autumn	14.600	3.45000	0.09		Trailing hose		
##	56	Marts	March	4.900	4.02500	0.09		Trailing hose		
##	57	April	April		3.91000	0.09		Trailing hose		
##	58	Maj	May		3.56500	0.09		Trailing hose		
##	59	Sommer	Summer	16.867	3.18167	0.09		Trailing hose		
##	60	Efterår	Autumn		3.45000	0.09		Trailing hose		
##		Marts	March		4.02500	0.09		Trailing hose		
##		April	April		3.91000	0.09		Trailing hose		
##		Maj	May		3.56500	0.09		Trailing hose		
##	64	Sommer	Summer		3.18167	0.09		Trailing hose		
	65	Efterår	Autumn		3.45000	0.09		Trailing hose		
##		Marts	March		4.02500	0.09	_	slot injection		
##	•	April	April		3.91000	0.09	-	slot injection		
##	68	Maj	May		3.56500	0.09	-	slot injection		
##	69	Sommer	Summer		3.18167	0.09	_	slot injection		
	70	Efterår	Autumn		3.45000	0.09	-	slot injection		
##	. –	Marts	March		4.02500			slot injection		
##	. –	April	April		3.91000			slot injection		
##		Maj	May		3.56500			slot injection		
##		Sommer	Summer		3.18167			slot injection		
	75	Efterår	Autumn		3.45000		Closed	slot injection		
	76	Marts	March		4.02500	0.09		Trailing hose		
	77	April	April		3.91000	0.09		Trailing hose		
##		Maj	May		3.56500	0.09		Trailing hose		
	79	Sommer	Summer		3.18167	0.09		Trailing hose		
	80	Efterår	Autumn		3.45000	0.09		Trailing hose		
##	81	Marts	March	4.900	4.02500	0.09		Trailing hose		

##	82		April	April	8.500	3.91000	0.09	Trai	ling hose
##	83		Maj	May	12.400	3.56500	0.09	Trai	ling hose
##	84	5	Sommer	Summer	16.867	3.18167	0.09	Trai	ling hose
##	85	Ef	fterår	Autumn	14.600	3.45000	0.09	Trai	ling hose
##	86		Marts	March	4.900	4.02500	0.09	Trai	ling hose
##	87		April	April	8.500	3.91000	0.09	Trai	ling hose
##	88		Maj	May		3.56500	0.09		ling hose
##	89	Ş	Sommer	Summer	16.867	3.18167	0.09	Trai	ling hose
##	90	Ef	fterår	Autumn	14.600	3.45000	0.09	Trai	ling hose
##		incorp		app.rate	.ni	man.name	${\tt man.source}$		$\mathtt{man.dm}$
##	_	None	NA		30	Svinegylle	_	FALSE	3.9
##	2	None	NA		30	Svinegylle	_	FALSE	3.9
##	3	None	NA		30	Svinegylle	_	FALSE	3.9
	4	None	NA		30	Svinegylle	_	FALSE	3.9
	5	None	NA		30	Svinegylle	_	FALSE	3.9
	6	Shallow	4		30	Svinegylle	_	FALSE	3.9
	7	Shallow	4		30	Svinegylle		FALSE	3.9
	8	Shallow	4		30	Svinegylle		FALSE	3.9
##	9	Shallow	4		30	Svinegylle	J	FALSE	3.9
		Shallow	4		30	Svinegylle	_	FALSE	3.9
##		Deep	4		30	Svinegylle	•	FALSE	3.9
	12	Deep	4		30	Svinegylle		FALSE	3.9
	13	Deep	4		30	Svinegylle	_	FALSE	3.9
	14	Deep	4		30	Svinegylle	_	FALSE	3.9
##		Deep	4		30	Svinegylle	_	FALSE	3.9
	16	None	NA		0	Svinegylle		FALSE	3.9
	17	None	NA		0	Svinegylle	_	FALSE	3.9
	18	None	NA		0	Svinegylle	•	FALSE	3.9
	19	None	NA		0	Svinegylle	_	FALSE	3.9
##	20 21	None	NA		0	Svinegylle	_	FALSE	3.9
##	22	None	NA NA		0	Svinegylle	_	FALSE	3.9
##	23	None	NA NA		0	Svinegylle		FALSE	3.9
	23 24	None			0	Svinegylle		FALSE	3.9
##		None	NA NA		0	Svinegylle		FALSE	3.9
##	25 26	None	NA NA		0	Svinegylle	•	FALSE	3.9 6.5
##		None	NA NA		30 30	Kvæggylle	Cattle Cattle		
	28	None None	NA NA		30	Kvæggylle Kvæggylle	Cattle		6.5 6.5
##		None	NA NA		30		Cattle		6.5
##	29	иопе	IN A		30	Kvæggylle	Cattle	I. HPDE	0.0

##	30	None	NA	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	31	Shallow	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	32	Shallow	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	33	Shallow	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	34	Shallow	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	35	Shallow	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	36	Deep	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	37	Deep	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
	38	Deep	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
	39	Deep	4	30	Kvæg	ggylle	Cattle	FALSE	6.5
##	40	Deep	4	30	Kvæg	ggylle	Cattle		6.5
##	41	None	NA	0	Kvæg	ggylle	Cattle	FALSE	6.5
	42	None	NA	0	Kvæg	ggylle	Cattle		6.5
##	43	None	NA	0	_	ggylle	Cattle		6.5
##	44	None	NA	0	_	ggylle	Cattle	FALSE	6.5
	45	None	NA	0	_	ggylle	Cattle		6.5
	46	None	NA	0	_	ggylle	Cattle		6.5
	47	None	NA	0	-	ggylle	Cattle		6.5
	48	None	NA	0	_	ggylle	Cattle		6.5
	49	None	NA	0	-	ggylle	Cattle		6.5
	50	None	NA	0	_	ggylle	Cattle		6.5
	51	None	NA		Afgasset bio		Digestate		5.1
	52	None	NA		Afgasset bio		Digestate		5.1
	53	None	NA		Afgasset bio		Digestate		5.1
	54	None	NA		Afgasset bio		Digestate		5.1
	55	None	NA		Afgasset bio		Digestate		5.1
##		Shallow	4		Afgasset bio		Digestate		5.1
##		Shallow	4		Afgasset bio		Digestate		5.1
		Shallow	4		Afgasset bio		Digestate		5.1
		Shallow	4		Afgasset bio		Digestate		5.1
		Shallow	4		Afgasset bio		Digestate		5.1
	61	Deep	4		Afgasset bio		Digestate		5.1
	62	Deep	4		Afgasset bio		Digestate		5.1
	63	Deep	4		Afgasset bio		Digestate		5.1
	64	Deep	4		Afgasset bio		Digestate		5.1
	65	Deep	4		Afgasset bio		Digestate		5.1
	66	None	NA	_	Afgasset bio		Digestate		5.1
	67	None	NA	0	Afgasset bio		Digestate		5.1
##	68	None	NA	0	Afgasset bio	omasse	Digestate	FALSE	5.1

##	69	None	9	NA		0	Afgasset	biomasse	Digestate	FALSE	5.1
##	70	None	Э	NA		0	Afgasset	biomasse	Digestate	FALSE	5.1
##	71	None	Э	NA		0	Afgasset	biomasse	Digestate	FALSE	5.1
##	72	None	Э	NA		0	Afgasset	biomasse	Digestate	FALSE	5.1
##	73	None	Э	NA		0	Afgasset	biomasse	Digestate	FALSE	5.1
##	74	None	Э	NA		0	Afgasset	biomasse	Digestate	FALSE	5.1
##	75	None	9	NA		0	Afgasset	${\tt biomasse}$	Digestate	FALSE	5.1
##	76	None	9	NA		30	S ⁻	vinegylle	Pig	TRUE	3.9
##	77	None	9	NA		30	S ⁻	vinegylle	Pig	TRUE	3.9
##	78	None	9	NA		30	S ⁻	vinegylle	Pig	TRUE	3.9
##	79	None	9	NA		30	S ⁻	vinegylle	Pig	TRUE	3.9
##	80	None	9	NA		30	S ⁻	vinegylle	Pig	TRUE	3.9
##	81	None	9	NA		30		Kvæggylle	Cattle	TRUE	6.5
##	82	None	9	NA		30		Kvæggylle	Cattle	TRUE	6.5
##	83	None	9	NA		30		Kvæggylle	Cattle	TRUE	6.5
##	84	None	9	NA		30		Kvæggylle	Cattle	TRUE	6.5
##	85	None	9	NA		30]	Kvæggylle	Cattle	TRUE	6.5
##	86	None	9	NA		30	Afgasset	biomasse	Digestate	TRUE	5.1
##	87	None	Э	NA		30	Afgasset	biomasse	Digestate	TRUE	5.1
##	88	None	Э	NA		30	Afgasset	biomasse	Digestate	TRUE	5.1
##	89	None	Э	NA		30	Afgasset	biomasse	Digestate	TRUE	5.1
##	90	None	Э	NA		30	Afgasset	biomasse	Digestate	TRUE	5.1
##		${\tt man.ph}$	ct	tan.app	id						
##	1	7.20	168	100	1						
##	2	7.20	168	100	2						
##	3	7.20	168	100	3						
##	4	7.20		100	4						
##	5	7.20	168	100	5						
##	6	7.20		100	6						
##	7	7.20	168	100	7						
##	8	7.20	168	100	8						
##	9	7.20	168	100	9						
##	10	7.20	168	100	10						
##	11	7.20	168	100							
##	12	7.20	168	100	12						
##	13	7.20		100							
##	14	7.20	168	100	14						
##	15	7.20	168	100	15						
##	16	7.20	168	100	16						

##	17	7.20 168	100 17
##	18	7.20 168	100 18
##	19	7.20 168	100 19
##	20	7.20 168	100 20
##	21	7.20 168	100 21
##	22	7.20 168	100 22
##	23	7.20 168	100 23
##	24	7.20 168	100 24
##	25	7.20 168	100 25
##	26	7.00 168	100 26
##	27	7.00 168	100 27
##	28	7.00 168	100 28
##	29	7.00 168	100 29
##	30	7.00 168	100 30
##	31	7.00 168	100 31
##	32	7.00 168	100 32
##	33	7.00 168	100 33
##	34	7.00 168	100 34
##	35	7.00 168	100 35
##	36	7.00 168	100 36
##	37	7.00 168	100 37
##	38	7.00 168	100 38
##	39	7.00 168	100 39
##	40	7.00 168	100 40
##	41	7.00 168	100 41
##		7.00 168	100 42
##	43	7.00 168	100 43
##	44	7.00 168	100 44
##	45	7.00 168	100 45
##	46	7.00 168	100 46
##	47	7.00 168	100 47
##		7.00 168	100 48
##	49	7.00 168	100 49
##	50	7.00 168	100 50
##	51	7.90 168	100 51
##	52	7.90 168	100 52
##	53	7.90 168	100 53
##	54	7.90 168	100 54
##	55	7.90 168	100 55

```
## 56
        7.90 168
                      100 56
        7.90 168
                     100 57
## 57
## 58
        7.90 168
                      100 58
        7.90 168
                      100 59
## 59
## 60
        7.90 168
                      100 60
## 61
        7.90 168
                      100 61
## 62
        7.90 168
                      100 62
## 63
        7.90 168
                     100 63
## 64
        7.90 168
                      100 64
## 65
                     100 65
        7.90 168
                      100 66
## 66
        7.90 168
## 67
        7.90 168
                      100 67
## 68
        7.90 168
                      100 68
## 69
        7.90 168
                      100 69
## 70
        7.90 168
                     100 70
## 71
        7.90 168
                      100 71
## 72
        7.90 168
                     100 72
## 73
        7.90 168
                      100 73
## 74
        7.90 168
                      100 74
## 75
        7.90 168
                      100 75
## 76
        6.47 168
                      100 76
## 77
        6.47 168
                      100 77
## 78
        6.47 168
                      100 78
                     100 79
## 79
        6.47 168
                     100 80
## 80
        6.47 168
                     100 81
## 81
        6.47 168
## 82
        6.47 168
                      100 82
## 83
        6.47 168
                     100 83
## 84
        6.47 168
                      100 84
## 85
        6.47 168
                     100 85
## 86
        6.52 168
                      100 86
        6.52 168
                     100 87
## 87
## 88
        6.52 168
                      100 88
## 89
        6.52 168
                      100 89
## 90
       6.52 168
                      100 90
```

Run model

With set 2 parameters

```
preds <- ALFAM2mod(dat, pars = ALFAM2pars02, app.name = 'tan.app', time.name = 'ct', time.incorp = 't.incorp', group = 'id', warn = TRUE,
## User-supplied parameters are being used.
## Incorporation applied (for group 10).
## Incorporation applied (for group 11).
## Incorporation applied (for group 12).
## Incorporation applied (for group 13).
## Incorporation applied (for group 14).
## Incorporation applied (for group 15).
## Incorporation applied (for group 31).
## Incorporation applied (for group 32).
## Incorporation applied (for group 33).
## Incorporation applied (for group 34).
## Incorporation applied (for group 35).
## Incorporation applied (for group 36).
## Incorporation applied (for group 37).
## Incorporation applied (for group 38).
## Incorporation applied (for group 39).
## Incorporation applied (for group 40).
## Incorporation applied (for group 56).
## Incorporation applied (for group 57).
## Incorporation applied (for group 58).
## Incorporation applied (for group 59).
## Incorporation applied (for group 6).
## Incorporation applied (for group 60).
## Incorporation applied (for group 61).
## Incorporation applied (for group 62).
```

```
## Incorporation applied (for group 63).
## Incorporation applied (for group 64).
## Incorporation applied (for group 65).
## Incorporation applied (for group 7).
## Incorporation applied (for group 8).
## Incorporation applied (for group 9).
## Warning in ALFAM2mod(dat, pars = ALFAM2pars02, app.name = "tan.app", time.name = "ct", : Running with 20 parameters. Dropped 4 with no
## These secondary parameters have been dropped:
     app.mthd.bc.r1
    app.mthd.ts.r1
    ts.cereal.hght.r1
     app.mthd.bc.r3
##
## These secondary parameters are being used:
##
     int.f0
     app.mthd.os.f0
##
    app.rate.ni.f0
##
##
    man.dm.f0
     man.source.pig.f0
##
     app.mthd.cs.f0
##
    int.r1
##
    man.dm.r1
    air.temp.r1
    wind.2m.r1
    man.ph.r1
    int.r2
    rain.rate.r2
    int.r3
##
    app.mthd.cs.r3
##
    man.ph.r3
    incorp.shallow.f4
    incorp.shallow.r3
    incorp.deep.f4
##
     incorp.deep.r3
Check reference condition.
```

```
ALFAM2mod(ref, pars = ALFAM2pars01, app.name = 'tan.app', time.name = 'ct', time.incorp = 't.incorp', warn = TRUE)
## User-supplied parameters are being used.
## Warning in ALFAM2mod(ref, pars = ALFAM2pars01, app.name = "tan.app", time.name
## = "ct", : No matching column for incorporation parameter(s): incorp.deep,
## incorp.shallow. Skipping incorporation.
## Warning in ALFAM2mod(ref, pars = ALFAM2pars01, app.name = "tan.app", time.name = "ct", : Running with 15 parameters. Dropped 5 with no
## These secondary parameters have been dropped:
     app.rate.f0
    incorp.deep.f4
   incorp.shallow.f4
    incorp.deep.r3
    rain.cum.r3
##
## These secondary parameters are being used:
    int.f0
    int.r1
    int.r2
    int.r3
    app.mthd.os.f0
    man.dm.f0
    app.mthd.bc.r1
    man.dm.r1
    air.temp.r1
    wind.2m.r1
##
    man.ph.r1
    air.temp.r3
    app.mthd.os.r3
##
##
    man.ph.r3
    rain.rate.r2
                                                    r3 f4
##
      ct dt
                   f0
                                         r2
                                                                    f
                              r1
## 1 168 168 0.3237724 0.06628499 0.1110777 0.001255181 1 3.7119e-12 71.30525
                      е
                           e.int
## 1 0.1708021 28.69475 28.69475 0.2869475
ALFAM2mod(ref, pars = ALFAM2pars02, app.name = 'tan.app', time.name = 'ct', time.incorp = 't.incorp', warn = TRUE)
```

User-supplied parameters are being used.

```
## Warning in ALFAM2mod(ref, pars = ALFAM2pars02, app.name = "tan.app", time.name
## = "ct", : No matching column for incorporation parameter(s): incorp.shallow,
## incorp.deep. Skipping incorporation.
## Warning in ALFAM2mod(ref, pars = ALFAM2pars02, app.name = "tan.app", time.name = "ct", : Running with 20 parameters. Dropped 4 with no
## These secondary parameters have been dropped:
    incorp.shallow.f4
    incorp.shallow.r3
    incorp.deep.f4
##
    incorp.deep.r3
## These secondary parameters are being used:
     int.f0
    app.mthd.os.f0
    app.rate.ni.f0
    man.dm.f0
    man.source.pig.f0
    app.mthd.cs.f0
    int.r1
    app.mthd.bc.r1
    man.dm.r1
    air.temp.r1
    wind.2m.r1
    app.mthd.ts.r1
    ts.cereal.hght.r1
    man.ph.r1
    int.r2
    rain.rate.r2
    int.r3
    app.mthd.bc.r3
    app.mthd.cs.r3
    man.ph.r3
                                                     r3 f4
      ct dt
                   f0
                            r1
                                       r2
                                                                      f
## 1 168 168 0.2589096 0.115023 0.01587869 0.0005910004 1 7.283926e-09 69.96107
                      е
                           e.int
## 1 0.1788032 30.03893 30.03893 0.3003893
```

```
dat$EF <- signif(preds$er, 2)
dat$EFp <- 100 * signif(preds$er, 2)</pre>
```