# Planning (Chapter 2 from Lavalle book)



## Abstraction of a planning problem

- 1. State space  $\mathbf{s} \in \mathcal{S}$ . For example, 2D coordinate of a grid  $\mathbf{s} = (x,y)$ .
- 2. Action space per state  $\mathbf{u} \in \mathcal{U}(\mathbf{s})$ . For example, up, down, left right movement can be encoded as  $\mathcal{U}(\mathbf{s}_t) = \{(0,-1),(0,1),(1,0),(-1,0)\}$ .
- 3. State transition function  $\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{u}_t)$ . For example, the up-down-left-right action can be combined as addition to get the next state  $\mathbf{s}_{t+1} = \mathbf{s}_t + \mathbf{u}_t$ .
- 4. Initial State  $\mathbf{s}_I \in \mathcal{S}$
- 5. Goal states  $\mathbf{s}_G \subseteq \mathcal{S}$

#### X

### A Graph

A graph  $\mathcal{G}=\{\mathcal{V},\mathcal{E}\}$  is defined by a set of vertices  $\mathcal{V}$  and a set of edges  $\mathcal{E}$  such that each edge  $e\in\mathcal{E}$  is formed by a pair of start and end vertices  $e=(v_s,v_e),v_s\in\mathcal{V},v_e\in\mathcal{V}$ . The first vertex is called the start of the edge  $v_s=\operatorname{start}(e)$  and second vertex is called the end  $v_e=\operatorname{end}(e)$ .

A discrete planning problem can be converted into a graph by definiting

- 1. Vertices as the state space  $\mathcal{V}=\mathcal{S}$ .
- 2. The action space at each state as the edges connected to that vertex/state,  $\mathcal{U}(\mathbf{s}_t) = \{(\mathbf{s}_t, \mathbf{s}_i) \mid (\mathbf{s}_t, \mathbf{s}_i) \in \mathcal{E}\}.$
- 3. State transition function is the other end of th edge,  $\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{u}_t) = \operatorname{end}(\mathbf{u}_t)$ , where  $\mathbf{s}_t = \operatorname{start}(\mathbf{u}_t)$ .

### Representations of Graphs

(Chapter 23 of Introduction to Algorithms by Carmen et al)

Undirected graph



Figure 23.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

```
# Programmatically you can represent a adjacency list as python lists
# Python lists are not linked lists, they are arrays under the hood.
G_adjacency_list = {
    1 : [2, 5],
    2 : [1, 5, 3, 4],
    3 : [2, 4],
    4 : [2, 5, 3],
    5 : [4, 1, 2]
```

2 of 36

```
}
# Prefer to represent a matrix in python either as a list of lists or a numpy array
import numpy as np
G_adjacency_matrix = np.array([
    [0, 1, 0, 0, 1],
    [1, 0, 1, 1, 1],
    [0, 1, 0, 1, 0],
    [0, 1, 1, 0, 1],
    [1, 1, 0, 1, 0]
])
# Edge list is another possible representation
G edge list = [
    (1, 2), (1, 5),
    (2, 1), (2, 5), (2, 3), (2, 4),
    (3, 2), (3, 4),
    (4, 2), (4, 5), (4, 3),
    (5, 4), (5, 1), (5, 2)
]
```

#### Directed graph representation



Figure 23.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

```
# Programmatically you can represent a adjacency list as python lists
# Python lists are not linked lists, they are arrays under the hood.
G_adjacency_list = {
    1 : [2, 4],
    2 : [5],
    3 : [6, 5],
    4 : [2],
    5 : [4],
    5 : [6]
}
```

```
# Prefer to represent a matrix in python either as a list of lists or a numpy array
import numpy as np
G adjacency matrix = np.array([
    [0, 1, 0, 1, 0, 0],
    [0, 0, 0, 0, 1, 0],
    [0, 0, 0, 0, 1, 1],
    [0, 1, 0, 0, 0, 0],
    [0, 0, 0, 1, 0, 0],
    [0, 0, 0, 0, 0, 1]
])
# Edge list is another possible representation
G = G = I = I
    (1, 2), (1, 4),
    (2, 5),
    (3, 6), (3, 5),
    (4, 2),
    (5, 6)
]
# Exercise 1
# Write a function that converts a graph in adjacency list format to adjacency matr
def adjacency list to matrix(G adj list):
    G adj mat = None # TODO: Write code to convert to adj mat
    return G adj mat
def adjacency matrix to list(G adj mat):
    G adj list = None # TODO: Write code to convert to adj mat
    return G adj list
# Use the above graphs to test
print(adjacency list to matrix(G adjacency list))
print(adjacency matrix to list(G adjacency matrix))
    None
    None
```

### **Graph Search algorithms**



1 Breadth First Search

Discrete Planning.ipynb - Colaboratory

.. בוכעענוו ו ווכר ככעוכוו

## 2. Depth First Search



# Breadth first search (BFS)





Figure 23.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. Within each vertex u is shown d[u]. The queue Q is shown at the beginning of each iteration of the while loop of lines 9-18. Vertex distances are shown next to vertices in the queue.

from queue import Queue, LifoQueue, PriorityQueue graph = { 's' : ['w', 'r'], 'r' : ['v'], 'w' : ['t', 'x'], 'x' : ['y' ], 't' : ['u'], 'u' : ['v'] } def bfs(graph, start, debug=False): seen = set() # Set for seen nodes (contains both frontier and dead states) # Frontier is the boundary between seen and unseen (Also called the alive state frontier = Queue() # Frontier of unvisited nodes as FIFO node2dist = {start : 0} # Keep track of distances search order = [] seen.add(start) frontier.put(start) i = 0 # step numberwhile not frontier.empty(): # Creating loop to visit each node if debug: print("%d) Q = " % i, list(frontier.queue), end='; ') if debug: print("dists = " , [node2dist[n] for n in frontier.queue]) m = frontier.get() # Get the oldest addition to frontier search order.append(m) for neighbor in graph.get(m, []): if neighbor not in seen: seen.add(neighbor) frontier.put(neighbor) node2dist[neighbor] = node2dist[m] + 1

```
else:
                  assert node2dist[neighbor] <= node2dist[m] + 1, 'this should not ha
                  node2dist[neighbor] = min(node2dist[neighbor], node2dist[m] + 1)
         i += 1
    if debug: print("%d) Q = " % i, list(frontier.queue))
    return search order, node2dist
print("Following is the Breadth-First Search order")
print(bfs(graph, 's', debug=True))
                                         # function calling
     Following is the Breadth-First Search order
     0) Q = ['s']; dists = [0]
     1) Q = ['w', 'r']; dists = [1, 1]
2) Q = ['r', 't', 'x']; dists = [1, 2, 2]
3) Q = ['t', 'x', 'v']; dists = [2, 2, 2]
     4) Q = ['x', 'v', 'u']; dists = [2, 2, 3]
5) Q = ['v', 'u', 'y']; dists = [2, 3, 3]
     6) Q = ['u', 'y']; dists = [3, 3]
     7) Q = ['y']; dists = [3]
     8) Q = []
     (['s', 'w', 'r', 't', 'x', 'v', 'u', 'y'], {'s': 0, 'w': 1, 'r': 1, 't': 2, ')
```

#### Depth first search



 $graph = {$ 



Figure 23.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. Within each vertex u is shown d[u]. The queue Q is shown at the beginning of each iteration of the while loop of lines 9-18. Vertex distances are shown next to vertices in the queue.

```
's' : ['w', 'r'],
'r' : ['v'],
'w' : ['t', 'x'],
'x' : ['y'],
't' : ['u'],
'u' : ['y']
}

def dfs(graph, start, debug=False):
    seen = set([start]) # List for seen nodes (contains both frontier and dead stat
    # Frontier is the boundary between seen and unseen (Also called the alive state
    frontier = LifoQueue() # Frontier of unvisited nodes as FIFO
    node2dist = {start : 0} # Keep track of distances
```

```
search_order = [] # Keep track of search order
    frontier.put(start)
    i = 0 \# step number
    while not frontier.empty(): # Creating loop to visit each node
        if debug: print("%d) Q = " % i, list(frontier.queue), end='; ')
        if debug: print("dists = " , [node2dist[n] for n in frontier.queue])
        m = frontier.get() # Get the oldest addition to frontier
        search order.append(m)
        for neighbor in graph.get(m, []):
            if neighbor not in seen:
                seen.add(neighbor)
                 frontier.put(neighbor)
                node2dist[neighbor] = node2dist[m] + 1
            else:
                 node2dist[neighbor] = min(node2dist[neighbor], node2dist[m] + 1)
        i += 1
    if debug: print("%d) Q = " % i, list(frontier.queue))
    return search order, node2dist
# Driver Code
print("Following is the Depth-First Search path")
print(dfs(graph, 's', debug=True))  # function calling
    Following is the Depth-First Search path
     0) Q = ['s']; dists = [0]
    1) Q = ['w', 'r']; dists = [1, 1]
2) Q = ['w', 'v']; dists = [1, 2]
     3) Q = ['w']; dists = [1]
    4) Q = ['t', 'x']; dists = [2, 2]
5) Q = ['t', 'y']; dists = [2, 3]
     6) Q = ['t']; dists = [2]
     7) Q = ['u']; dists = [3]
     8) Q = []
     (['s', 'r', 'v', 'w', 'x', 'y', 't', 'u'], {'s': 0, 'w': 1, 'r': 1, 'v': 2, '1
```

## Converting a maze search to a graph search

```
# Skip these utilities for the class

def batched(iterable, n):
    "Batch data into tuples of length n. The last batch may be shorter."
    # batched('ABCDEFG', 3) --> ABC DEF G
    if n < 1:
        raise ValueError('n must be at least one')
    it = iter(iterable)</pre>
```

```
while batch := tuple(islice(it, n)):
        yield batch
def draw path(self, path, visited='*'):
    new maze lines = [list(l) for l in self.maze lines]
    for (r, c) in path:
        new maze lines[r][c] = visited
        print('\n'.join([''.join(l) for l in new maze lines]))
        print('\n\n\n')
def init plots(self, reinit=False):
    if self.fig is None or reinit:
        self.fig, self.ax = plt.subplots()
def plot maze(self):
    self.init plots()
    replace = { ' ' : 1, '+': 0}
    maze mat = np.array([[replace[c] for c in line]
                          for line in self.maze lines])
    return [self.ax.imshow(maze mat, cmap='gray')]
def plot_step(self, i_node):
    i, (r, c) = i \text{ node}
    return [self.ax.text(c, r, '%d' % (i+1))]
def plot_path(self, path):
    self.plot maze()
    return [self.plot step((i, (r,c)))
            for i, (r, c) in enumerate(path)]
def animate search_path(maze, search_path, node2dist):
    maze.init plots()
    return animation.FuncAnimation(maze.fig, maze.plot step, frames=[(node2dist[n],
                                                                       for n in sear
                                  init func=maze.plot maze, blit=True, repeat=False
import matplotlib.pyplot as plt
import numpy as np
maze_str = \
11 11 11
+++++++
  + +
+ + + +++
+++++
+++++
+ + +++ +
+ ++
+ +++ + +
+ +
+++++++
```

```
class Maze:
    def init (self, maze str, freepath=' '):
        self.maze lines = [l for l in maze str.split("\n")
                           if len(l)]
        self.FREEPATH = freepath
        self.fig = None
    def get(self, node, default):
        (r, c) = node
        m row = self.maze lines[r]
        nbrs = []
        if c-1 >= 0 and m_row[c-1] == self.FREEPATH:
            nbrs.append((r, c-1))
        if c+1 < len(m_row) and m_row[c+1] == self.FREEPATH:</pre>
            nbrs.append((r, c+1))
        if r-1 >= 0 and self.maze_lines[r-1][c] == self.FREEPATH:
            nbrs.append((r-1, c))
        if r+1 < len(self.maze_lines) and self.maze_lines[r+1][c] == self.FREEPATH:</pre>
            nbrs.append((r+1, c))
        return nbrs if len(nbrs) else default
    init plots = init plots
    plot maze = plot maze
    plot_step = plot_step
    plot path = plot path
    animate search path = animate search path
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib as mpl
%matplotlib inline
mpl.rc('animation', html='jshtml')
maze = Maze(maze str)
search path, node2dist = bfs(maze, (1, 0)) # prints the order of search all the sea
maze.plot maze()
maze.animate search path(search path, node2dist)
```





def bfs\_path(graph, start, goal):
 """

Returns success and node2parent

success: True if goal is found otherwise False
node2parent: A dictionary that contains the nearest parent for node

```
seen = [start] # List for seen nodes.
    # Frontier is the boundary between seen and unseen
    frontier = Queue() # Frontier of unvisited nodes as FIFO
    node2parent = dict() # Keep track of nearest parent for each node (requires noc
    frontier.put(start)
   while not frontier.empty():
                                         # Creating loop to visit each node
        m = frontier.get() # Get the oldest addition to frontier
        if m == qoal:
            return True, node2parent
        for neighbor in graph.get(m, []):
            if neighbor not in seen:
                seen.append(neighbor)
                frontier.put(neighbor)
                node2parent[neighbor] = m
    return False, []
def backtrace path(node2parent, start, goal):
    c = goal
    r path = [c]
    parent = node2parent.get(c, None)
    while parent != start:
        r path.append(parent)
        c = parent
        parent = node2parent.get(c, None) # Keep getting the parent until you reach
        #print(parent)
    r path.append(start)
    return reversed(r path) # Reverses the path
maze = Maze(maze str)
start = (1, 0)
goal = (8, 8)
success, node2parent = bfs path(maze, (1, 0), (8, 8))
path = backtrace path(node2parent, (1, 0), (8, 8))
#print(list(path))
maze.plot path(path) # Draws all the searched nodes
plt.show()
#node2parent
```





### Dijkstra algorithm



Figure 25.5 The execution of Dijkstra's algorithm. The source is the leftmost vertex. The shortest-path estimates are shown within the vertices, and shaded edges indicate predecessor values: if edge (u, v) is shaded, then  $\pi[v] = u$ . Black vertices are in the set S, and white vertices are in the priority queue Q = V - S. (a) The situation just before the first iteration of the while loop of lines 4-8. The shaded vertex has the minimum d value and is chosen as vertex u in line 5. (b)-(f) The situation after each successive iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration. The d and  $\pi$  values shown in part (f) are the final values.

### PriorityQueue

PriorityQueue returns the smallest (or the largest) item in the queue faster than other data structures

```
#from queue import PriorityQueue
from hw2 solution import PriorityQueueUpdatable
from dataclasses import dataclass, field
from typing import Any
# https://docs.python.org/3/library/queue.html#queue.PriorityQueue
@dataclass(order=True)
class PItem:
    dist: int
    node: Any=field(compare=False)
   # Make the PItem hashable
   # https://docs.python.org/3/glossary.html#term-hashable
    def hash (self):
        return hash(self.node)
graph = {
    's' : [('x', 5), ('u', 10)],
    'u' : [('v', 1), ('x', 2)],
    'x' : [('u', 3), ('v', 9), ('y', 2)],
    'y' : [('v', 6), ('s', 7)],
    'v' : [('y', 4)]
}
def dijkstra(graph, start, goal, debug=False):
    edgecost: cost of traversing each edge
    Returns success and node2parent
    success: True if goal is found otherwise False
    node2parent: A dictionary that contains the nearest parent for node
    .....
    seen = set([start]) # Set for seen nodes.
    # Frontier is the boundary between seen and unseen
    frontier = PriorityQueueUpdatable() # Frontier of unvisited nodes as a Priority
    node2parent = {start : None} # Keep track of nearest parent for each node (requ
    node2dist = {start: 0} # Keep track of cost to arrive at each node
    search order = []
    frontier.put(PItem(0, start))
    i = 0
   while not frontier.empty():
                                         # Creating loop to visit each node
        dist_m = frontier.get() # Get the smallest addition to the frontier
        if debug: print("%d) Q = " % i, list(frontier.queue), end='; ')
        if debug: print("dists = " , [node2dist[n.node] for n in frontier.queue])
        m = dist m.node
        m dict - nodo?dict[m]
```

```
m_utst - nonezutst[m]
        search order.append(m)
        if goal is not None and m == goal:
            return True, search order, node2parent, node2dist
        for neighbor, edge cost in graph.get(m, []):
            old dist = node2dist.get(neighbor, float("inf"))
            new dist = edge cost + m dist
            if neighbor not in seen:
                seen.add(neighbor)
                frontier.put(PItem(new dist, neighbor))
                node2parent[neighbor] = m
                node2dist[neighbor] = new dist
            elif new dist < old dist:
                node2parent[neighbor] = m
                node2dist[neighbor] = new dist
                # ideally you would update the dist of this item in the priority qu
                # as well. But python priority queue does not support fast updates
                old item = PItem(old dist, neighbor)
                if old item in frontier:
                    frontier.replace(old item, PItem(new_dist, neighbor))
        i += 1
    if goal is not None:
        return False, [], {}, node2dist
    else:
        return True, search order, node2parent, node2dist
success, search path, node2parent, node2dist = dijkstra(graph, 's', None, debug=Tru
print(success, node2parent, node2dist)
    0) Q = []; dists = []
    1) Q = [PItem(dist=10, node='u')]; dists = [10]
    2) Q = [PItem(dist=8, node='u'), PItem(dist=14, node='v')]; dists = [8, 14]
    3) Q = [PItem(dist=13, node='v')]; dists = [13]
    4) Q = []; dists = []
    True {'s': None, 'x': 's', 'u': 'x', 'v': 'u', 'y': 'x'} {'s': 0, 'x': 5, 'u'
import itertools
class MazeD(Maze):
    def get(self, node, default):
        nbrs = Maze.get(self, node, default)
        return zip(nbrs, itertools.repeat(1))
maze = MazeD(maze str)
success, search_path, node2parent, node2dist = dijkstra(maze, (1, 0), (8, 8))
print(success, node2parent)
if success:
    path = backtrace path(node2parent, (1, 0), (8, 8))
    maze.plot path(path) # Draws all the searched nodes
```

True  $\{(1, 0): None, (1, 1): (1, 0), (2, 1): (1, 1), (3, 1): (2, 1), (4, 1): (1, 1)\}$ 



17 of 36

```
+
start pos, goal pos = (35, 9), (5, 50)
import math
from itertools import islice
class Maze8(MazeD):
   def get(self, node, default):
       (r, c) = node
       rmax = len(self.maze lines)
       cmax = len(self.maze_lines[0])
       m_row = self.maze_lines[r]
       possible nbrs = [
           ((r, c-1), 1),
           ((r, c+1), 1),
           ((r-1, c), 1),
           ((r+1, c), 1),
            ((r-1, c-1), math.sqrt(2)),
           ((r-1, c+1), math.sqrt(2)),
           ((r+1, c-1), math.sqrt(2)),
            ((r+1, c+1), math.sqrt(2))
       ]
       free nbrs = []
       for (ri, ci), dist in possible_nbrs:
           if (ri >= 0 \text{ and } ci >= 0 \text{ and } ri < rmax \text{ and } ci < cmax
                  and self.maze lines[ri][ci] == self.FREEPATH):
               free_nbrs.append(((ri, ci), dist))
       return free_nbrs if len(free_nbrs) else default
   def _plot_path(self, path, char='+', color='c'):
```

```
return [self.ax.text(c-0.5, r+0.5, char, color=color)
               for (r, c) in path]
    def plot path(self, path, **kw):
        self.plot maze()
        return self. plot path(path, **kw)
    def animate(self, path, batch size=200):
        self.init_plots()
        anim = animation.FuncAnimation(self.fig, self. plot path,
                                       frames=batched(search path, batch size),
                                      init func=self.plot maze, blit=True, repeat=f
        return anim
maze = Maze8(maze str)
success, search path, node2parent, node2dist = dijkstra(maze, start pos, goal pos)
#print(success, search path)
assert success
anim = maze.animate(search path)
path = backtrace path(node2parent, start pos, goal pos)
#maze.init plots(reinit=True)
path plot = maze.plot path(path, color='k') # Draws the traced shortest path
anim
```

/tmp/ipykernel\_240277/955263672.py:37: UserWarning: frames=<generator object I
anim = animation.FuncAnimation(self.fig, self. plot path,</pre>





path = backtrace\_path(node2parent, (35, 9), (5, 50))
maze.init\_plots(reinit=True)
maze.plot\_path(path, color='r') # Draws the traced shortest path
plt.show()





# Search order in BFS vs DFS vs Dijkstra

## Breadth first search vs Depth first search





## Breadth first search vs Dijkstra







## Computational complexity of BFS

```
# Write down the computational complexity of each line in big-0 notation 0()
# Assume the graph has |V| nodes and |E| edges
def bfs_barebones(graph, start):
    seen = {start} # Set for seen nodes (contains both frontier and dead states) #
    # Frontier is the boundary between seen and unseen (Also called the alive state frontier = Queue() # Frontier of unvisited nodes as FIFO # 0(1)
    frontier.put(start) # 0(1)

while not frontier.empty(): # Creating loop to visit each node # 0(|V|)
    m = frontier.get() # Get the oldest addition to frontier # 0(|V| * 1)

for neighbor in graph.get(m, []): # 0(|V| * |E|/|V|) = 0(|E|)
    if neighbor not in seen: # 0(|E| * 1)
        seen.add(neighbor) # 0(|E| * 1)

# The computational complexity of BFS is 0(|E|). Some books write it as 0(|V| + |E|
# where 0(|V|) is the cost of initializing states of different nodes
```

### Computational complexity of Dijkstra

```
# Write down the computational complexity of each line in big-O notation O()
# Assume the graph has |V| nodes and |E| edges
def dijkstra barebones(graph, start):
    seen = {start} # Set for seen nodes (contains both frontier and dead states) #
    # Frontier is the boundary between seen and unseen (Also called the alive stat€
    frontier = PriorityQueue() # Frontier of unvisited nodes as PriorityQueue # 0(1
    frontier.put(PItem(0, start)) # 0(1)
    node2dist = {start: 0} # Keep track of cost to arrive at each node # 0(1)
   while not frontier.empty(): # Creating loop to visit each node
        dist and node = frontier.get() # Get the smallest dist node # O(|V| * log(|V|))
        m dist = dist and node.dist
        m = dist and node.node
        for neighbor, edge dist in graph.get(m, []): \# O(|V| * |E|/|V|) = O(|E|)
            if neighbor not in seen: \# O(|E| * 1)
                seen.add(neighbor) # 0(|E| * 1)
                frontier.put(neighbor) # # 0(|E| * log(1)) # for fibonacci heap
                node2dist[neighbor] = m dist + edge dist # 0(1)
            elif node2dist[neighbor] > m dist + edge dist: # 0(1)
                node2dist[neighbor] = m dist + edge dist # 0(1)
```

# The computational complexity of Dijkstra is  $O(|V|\log(|V|) + |E|)$  when implemented # using a Fibonacci heap based PriorityQueue

## PriorityQueue (Heaps Chapter 7 of Carmen's intro to algorithms)



Figure 7.1 A heap viewed as (a) a binary tree and (b) an array. The number within the circle at each node in the tree is the value stored at that node. The number next to a node is the corresponding index in the array.

#### Heap property

- 1.  $H[\operatorname{Parent}(i)] \geq H[i]$
- 2. Parent(i) = ceil(i/2)
- 3. LeftChild(i) = 2i
- 4. RightRight(i) = 2i+1

### Heapify



Figure 7.2 The action of HEAPIFY(A, 2), where heap-size[A] = 10. (a) The initial configuration of the heap, with A[2] at node i = 2 violating the heap property since it is not larger than both children. The heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the heap property for node 4. The recursive call HEAPIFY(A, 4) now sets i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call HEAPIFY(A, 9) yields no further change to the data structure.

#### Heapify pseudocode

. , .

```
Heapify(A, i)
      l \leftarrow \text{Left}(i)
      r \leftarrow \text{Right}(i)
 3
      if l \le heap\text{-}size[A] and A[l] > A[i]
 4
          then largest \leftarrow l
  5
          else largest \leftarrow i
 6
      if r \le heap\text{-}size[A] and A[r] > A[largest]
  7
          then largest \leftarrow r
 8
      if largest \neq i
  9
          then exchange A[i] \leftrightarrow A[largest]
10
                 Heapify(A, largest)
```

#### **Heap Insert**



Figure 7.5 The operation of HEAP-INSERT. (a) The heap of Figure 7.4(a) before we insert a node with key 15. (b) A new leaf is added to the tree. (c) Values on the path from the new leaf to the root are copied down until a place for the key 15 is found. (d) The key 15 is inserted.

### Heap runtimes

| Operation                        | find-min | delete-min        | insert              | decrease-key        | meld             |
|----------------------------------|----------|-------------------|---------------------|---------------------|------------------|
| Binary <sup>[9]</sup>            | Θ(1)     | $\Theta(\log n)$  | O(log n)            | O(log n)            | Θ(n)             |
| Leftist                          | Θ(1)     | $\Theta(\log n)$  | $\Theta(\log n)$    | O(log n)            | $\Theta(\log n)$ |
| Binomial <sup>[9][10]</sup>      | Θ(1)     | $\Theta(\log n)$  | Θ(1) <sup>[a]</sup> | $\Theta(\log n)$    | O(log n)         |
| Skew binomial <sup>[11]</sup>    | Θ(1)     | Θ(log n)          | Θ(1)                | $\Theta(\log n)$    | O(log n)[b]      |
| Pairing <sup>[12]</sup>          | Θ(1)     | $O(\log n)^{[a]}$ | Θ(1)                | o(log n)[a][c]      | Θ(1)             |
| Rank-pairing <sup>[15]</sup>     | Θ(1)     | O(log n)[a]       | Θ(1)                | Θ(1) <sup>[a]</sup> | Θ(1)             |
| Fibonacci <sup>[9][2]</sup>      | Θ(1)     | O(log n)[a]       | Θ(1)                | Θ(1) <sup>[a]</sup> | Θ(1)             |
| Strict Fibonacci <sup>[16]</sup> | Θ(1)     | O(log n)          | Θ(1)                | Θ(1)                | Θ(1)             |
| Brodal <sup>[17][d]</sup>        | Θ(1)     | O(log n)          | Θ(1)                | Θ(1)                | Θ(1)             |
| <b>2-3 heap</b> <sup>[19]</sup>  | O(log n) | $O(\log n)^{[a]}$ | $O(\log n)^{[a]}$   | Θ(1)                | ?                |



(Required reading: 3.5.2 of Russel and Norving: Artificial Intelligence)

(optimistic best case) (distance to goal) Heuristic Priority Que en PΜ 420 D priontize the Que

h(n)from hw2 solution import PriorityQueueUpdatable

import sys

26 of 36

```
def astar(graph, heuristic dist fn, start, goal, debug=False, debugf=sys.stdout):
    edgecost: cost of traversing each edge
   Returns success and node2parent
    success: True if goal is found otherwise False
    node2parent: A dictionary that contains the nearest parent for node
    seen = set([start]) # Set for seen nodes.
    # Frontier is the boundary between seen and unseen
    frontier = PriorityQueueUpdatable() # Frontier of unvisited nodes as a Priority
    node2parent = {start : None} # Keep track of nearest parent for each node (req.
    hfn = heuristic dist fn # make the name shorter
    node2dist = {start: 0 } \# Keep track of cost to arrive at each node
    search order = []
    frontier.put(PItem(0 + hfn(start, goal), start)) # <----- Different 1
    if debug: debugf.write("goal = " + str(goal) + '\n')
    i = 0
   while not frontier.empty():
                                        # Creating loop to visit each node
        dist m = frontier.get() # Get the smallest addition to the frontier
        if debug: debugf.write("%d) Q = " % i + str(list(frontier.queue)) + '\n')
        if debug: debugf.write("%d) node = " % i + str(dist m) + '\n')
        #if debug: print("dists = " , [node2dist[n.node] for n in frontier.queue])
        m = dist m.node
        m dist = node2dist[m]
        search order.append(m)
        if goal is not None and m == goal:
            return True, search order, node2parent, node2dist
        for neighbor, edge cost in graph.get(m, []):
            old dist = node2dist.get(neighbor, float("inf"))
            new dist = edge cost + m dist
            if neighbor not in seen:
                seen.add(neighbor)
                frontier.put(PItem(new dist + hfn(neighbor, goal), neighbor)) # <-</pre>
                node2parent[neighbor] = m
                node2dist[neighbor] = new dist
            elif new dist < old dist:
                node2parent[neighbor] = m
                node2dist[neighbor] = new dist
                # ideally you would update the dist of this item in the priority qu
                # as well. But python priority queue does not support fast updates
                # ----- Different from dijkstra ------
                old item = PItem(old dist + hfn(neighbor, goal), neighbor)
                if old item in frontier:
                    frontier.replace(
                        old item,
                        PItem(new dist + hfn(neighbor, goal), neighbor))
        i += 1
```

27 of 36

```
if goal is not None:
       return False, [], {}, node2dist
   else:
       return True, search order, node2parent, node2dist
import math
from functools import partial
def euclidean heurist dist(node, goal, scale=1):
   x_n, y_n = node
   x g, y g = goal
   return scale*math.sqrt((x n-x g)**2 + (y n - y g)**2)
maze = Maze8(maze str)
debugf=open('log.txt', 'w')
success, search path, node2parent, node2dist = astar(
   maze, partial(euclidean heurist dist, scale=1),
   start pos, goal pos, debug=True, debugf=debugf)
debugf.close()
#print(success, search path)
assert success
anim = maze.animate(search path)
path = backtrace path(node2parent, start pos, goal pos)
#maze.init plots(reinit=True)
path plot = maze.plot path(path, color='k') # Draws the traced shortest path
anim
maze str = \
+
```

```
+
                                    +
start pos, goal pos = (35, 9), (5, 50)
maze = Maze8(maze str)
success, search path, node2parent, node2dist = astar(
   maze, partial(euclidean heurist dist, scale=1),
   start_pos, goal_pos)
#print(success, search path)
assert success
anim = maze.animate(search path, batch size=20)
path = backtrace path(node2parent, start pos, goal pos)
#maze.init plots(reinit=True)
path plot = maze.plot path(path, color='k') # Draws the traced shortest path
anim
    /tmp/ipykernel 240277/955263672.py:37: UserWarning: frames=<generator object I</pre>
      anim = animation.FuncAnimation(self.fig, self._plot_path,
```

```
0 -
5 -
10 -
```



```
maze = Maze8(maze_str)
success, search_path, node2parent, node2dist = astar(
    maze, partial(euclidean_heurist_dist, scale=0),
    start_pos, goal_pos)
#print(success, search_path)
```

```
assert success
anim = maze.animate(search_path)
path = backtrace_path(node2parent, start_pos, goal_pos)
#maze.init_plots(reinit=True)
path_plot = maze.plot_path(path, color='k') # Draws the traced shortest path
anim
```

/tmp/ipykernel\_240277/955263672.py:37: UserWarning: frames=<generator object I
anim = animation.FuncAnimation(self.fig, self.\_plot\_path,</pre>







| <pre>maze_str = \ """</pre>             |                  |          |
|-----------------------------------------|------------------|----------|
| +++++++++++++++++++++++++++++++++++++++ | ++++++++++++++++ | -+++++++ |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       | +++++++++++      | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | +                | +        |
| +                                       | ·                | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |
| +                                       |                  | +        |

32 of 36

/tmp/ipykernel\_240277/955263672.py:37: UserWarning: frames=<generator object I
anim = animation.FuncAnimation(self.fig, self.\_plot\_path,</pre>





Tree search

Admisibility and Consistency of heuristic function h(n) < C(n, G)1. An admissible heuristic is one that never overestimates the cost to reach the goal.

2. A heuristic h(n) is consistent if it satisfies the triangle inequality:

$$h(\mathbf{s}_t) \leq c(\mathbf{s}_t, \mathbf{s}_{t+1}) + h(\mathbf{s}_{t+1}).$$

consistency > Admissible Chalph

Other ways of converting a maze into a graph



34 of 36





Figure 3.31 A scene with polygonal obstacles. S and G are the start and goal states.



# Rapidly exploring random trees,



Colab paid products - Cancel contracts here