Befehle der AM₀

Befehl	Auswirkung
arithmetische Befehle	Nimmt die zwei obersten Elemente
ADD, MUL, SUB, DIV, MOD	vom Datenkeller, schreibt das Ergeb-
logische Befehle	nis der Operation zurück und inkre- mentiert den Befehlszähler. Dabei
EQ, NE, LT, GT, LE, GE	entspricht das oberste Element dem
	zweiten Argument.
LOAD n	Lädt den Inhalt des Hauptspeicher- platzes n auf den Datenkeller und inkrementiert den Befehlszähler.
STORE n	Nimmt das oberste Element vom
	Datenkeller, speichert dieses in den Hauptspeicherplatz n und inkremen-
	tiert den Befehlszähler.
LIT z	Legt die Zahl z auf den Datenkeller und inkrementiert den Befehlszähler.
	I

Befehle der AM₀

Befehl	Auswirkung			
WRITE n	Schreibt den Inhalt des Hauptspeicher- platzes n auf das Ausgabeband und inkrementiert den Befehlszähler.			
READ n	Liest das oberste Element vom Eingabeband, speichert es in Haupt- speicherplatz n und inkrementiert den Befehlszähler.			
JMP e	Springt zu Zeile e.			
JMC e	Nimmt das oberste Element vom Datenkeller und springt zu Zeile e, wenn dieses null ist. Ansonsten wird der Befehlszähler inkrementiert.			

$\ddot{\text{U}}\text{bung 2}$

BZ	DK	HS	Inp	Out	BZ	DK	HS	Inp	Out
(5, (6, (7,	$\varepsilon,$ $2,$ $1:2,$ $1,$ $\varepsilon,$ $2,$	[], [1/2], [1/2], [1/2], [1/2], [1/2], [1/2],	$egin{array}{lll} 2, & & & & & & & & & & & & & & & & & & $	ε) ε) ε) ε) ε) ε)	(9, (10, (11, (2, (3, (4, (5, (12,	$\varepsilon,$ $\varepsilon,$ $\varepsilon,$ $1,$ $1:1,$ $0,$. ,	ε ,	arepsilon) $arepsilon)$ $arepsilon)$ $arepsilon)$ $arepsilon)$ $arepsilon)$ $arepsilon)$ $arepsilon)$ $arepsilon)$ $arepsilon)$

Übung 3 (a)

```
READ 1; LOAD 1; READ 2; STORE 3; LOAD 1; JMP 1.3.3; LOAD 2; 1.3.1: LOAD 2; GT; STORE 3; JMC 1.3.1; 1.3.3: WRITE 3;
```

Übung 3 (b)

```
READ 1;
                              LOAD 1;
1:
                          7:
2: READ 2;
                              STORE 3;
                          8:
3: LOAD 1;
                          9:
                              JMP 12;
4: LOAD 2;
                         10:
                             LOAD 2;
5: GT;
                         11:
                              STORE 3;
6: JMC 10;
                         12:
                              WRITE 3;
```

Übung 3 (b)

BZ	DK	HS	Inp	Out
(1,	$\varepsilon,$	[],	5:7,	$\varepsilon)$
(2,	$\varepsilon,$	[1/5],	7,	$\varepsilon)$
(3,	$\varepsilon,$	[1/5, 2/7],	$\varepsilon,$	$\varepsilon)$
(4,	5,	[1/5, 2/7],	$\varepsilon,$	$\varepsilon)$
(5,	7:5,	[1/5, 2/7],	$\varepsilon,$	$\varepsilon)$
(6,	0,	[1/5, 2/7],	$\varepsilon,$	$\varepsilon)$
(10,	$\varepsilon,$	[1/5, 2/7],	$\varepsilon,$	$\varepsilon)$
(11,	7,	[1/5, 2/7],	$\varepsilon,$	$\varepsilon)$
(12,	$\varepsilon,$	[1/5, 2/7, 3/7],	$\varepsilon,$	$\varepsilon)$
(13,	$\varepsilon,$	[1/5, 2/7, 3/7],	$\varepsilon,$	7)

Zusatzaufgabe 1 (a)

```
11: LOAD 2;
1:
    READ 1;
                         12: LOAD 1;
2: READ 2;
3: LOAD 1;
                         13: GT;
4: LIT 0;
                         14: JMC 19;
5: GT;
                         15:
                              LOAD 2;
6: JMC 20;
                         16:
                              LIT 2;
7: LOAD 2;
                         17:
                              DIV;
8: LOAD 1;
                              STORE 2;
                         18:
9: SUB;
                         19:
                              JMP 3;
10: STORE 1;
                         20:
                              WRITE 1;
```

Zusatzaufgabe 1 (b)

BZ	DK	HS	Inp	Out
/ -		[4 /0 0 /4]		,
(7,	arepsilon,	[1/3, 2/1],	$\varepsilon,$	$\varepsilon)$
(8,	3,	[1/3, 2/1],	$\varepsilon,$	$\varepsilon)$
(9,	1:3,	[1/3, 2/1],	$\varepsilon,$	$\varepsilon)$
(10,	2:1:3,	[1/3, 2/1],	$\varepsilon,$	$\varepsilon)$
(11,	2:3,	[1/3, 2/1],	$\varepsilon,$	$\varepsilon)$
(12,	5,	[1/3, 2/1],	$\varepsilon,$	$\varepsilon)$
(13,	arepsilon,	[1/3, 2/5],	$\varepsilon,$	$\varepsilon)$
(3,	$\varepsilon,$	[1/3, 2/5],	$\varepsilon,$	$\varepsilon)$
(4,	5,	[1/3, 2/5],	$\varepsilon,$	$\varepsilon)$
(5,	5 : 5,	[1/3, 2/5],	$\varepsilon,$	$\varepsilon)$
(6,	0,	[1/3, 2/5],	$\varepsilon,$	$\varepsilon)$
(14,	arepsilon,	[1/3, 2/5],	$\varepsilon,$	$\varepsilon)$
(15,	$\varepsilon,$	[1/3, 2/5],	$\varepsilon,$	3)

Zusatzaufgabe 2 (a)

$$\begin{array}{c} (\lambda x \underbrace{yz.yzx}_{GV=\{y,z\}})\underbrace{(\lambda x.xy)}_{FV=\{y\}}(\lambda x.x) \\ \Rightarrow_{\alpha} (\lambda x \underbrace{y_1z.y_1zx}_{GV=\{y_1,z\}})\underbrace{(\lambda x.xy)}_{FV=\{y\}}(\lambda x.x) \\ \Rightarrow_{\beta} (\lambda y_1 \underbrace{z.y_1z(\lambda x.xy)}_{GV=\{x,z\}})\underbrace{(\lambda x.x)}_{FV=\emptyset} \\ \Rightarrow_{\beta} (\lambda z.(\lambda x.\underbrace{x}_{GV=\emptyset})\underbrace{z}_{FV=\{z\}}(\lambda x.xy)) \\ \Rightarrow_{\beta} (\lambda z.z(\lambda x.xy)) \end{array}$$

Zusatzaufgabe 2 (b)

$$\langle G \rangle = \Bigg(\lambda g \, n \, x \, y. \langle \mathsf{ite} \rangle \bigg(\langle \mathsf{iszero} \rangle \, n \bigg)$$

$$\langle 0 \rangle$$

$$\bigg(\langle \mathsf{add} \rangle \bigg(g \, (\langle \mathsf{pred} \rangle \, n) \, x \, y \bigg)$$

$$\bigg(\langle \mathsf{ite} \rangle \big(\langle \mathsf{iszero} \rangle (\langle \mathsf{mod} \rangle \, n \, \langle 2 \rangle)) \, x \, y \bigg) \bigg) \bigg)$$

Zusatzaufgabe 2 (c)

$$\begin{split} \langle Y \rangle \langle F \rangle &= (\lambda z.((\lambda u.z(uu))(\lambda u.z(uu)))) \langle F \rangle \\ \Rightarrow_{\beta} & ((\lambda u.\langle F \rangle(uu))(\lambda u.\langle F \rangle(uu))) = \langle Y_F \rangle \\ \Rightarrow_{\beta} & \langle F \rangle ((\lambda u.\langle F \rangle(uu))(\lambda u.\langle F \rangle(uu))) = \langle F \rangle \langle Y_F \rangle \end{split}$$

Zusatzaufgabe 2 (c)

$$\begin{array}{c|c} \langle Y \rangle \langle F \rangle \langle 2 \rangle \langle 3 \rangle \langle 5 \rangle \\ \Rightarrow^* & \langle F \rangle \langle Y_F \rangle \langle 2 \rangle \langle 3 \rangle \langle 5 \rangle \\ \Rightarrow^* & \langle \text{ite} \rangle \left(\langle \text{iszero} \rangle \underbrace{\left(\langle \text{pred} \rangle \langle 2 \rangle \right)}_{\Rightarrow^* \langle 1 \rangle} \right) (\dots) \\ & \xrightarrow{\Rightarrow^* \langle 1 \rangle}_{\Rightarrow^* \langle 1 \rangle} \\ & & \Rightarrow^* \langle Y_F \rangle \underbrace{\left(\langle \text{pred} \rangle \langle 2 \rangle \right)}_{\Rightarrow^* \langle 1 \rangle} \underbrace{\left(\langle \text{mult} \rangle \langle 3 \rangle \langle 2 \rangle \right)}_{\Rightarrow^* \langle 6 \rangle} \underbrace{\left(\langle \text{add} \rangle \langle 5 \rangle \langle 2 \rangle \right)}_{\Rightarrow^* \langle 7 \rangle} \\ \Rightarrow^* & \langle Y_F \rangle \langle 1 \rangle \langle 6 \rangle \langle 7 \rangle \\ \Rightarrow^* & \langle F \rangle \langle Y_F \rangle \langle 1 \rangle \langle 6 \rangle \langle 7 \rangle \\ \Rightarrow^* & \langle \text{ite} \rangle \underbrace{\left(\langle \text{iszero} \rangle \underbrace{\left(\langle \text{pred} \rangle \langle 1 \rangle \right)}_{\Rightarrow^* \langle 1 \rangle} \underbrace{\left(\langle \text{add} \rangle \langle 6 \rangle \langle 7 \rangle \right)}_{\Rightarrow^* \langle 1 3 \rangle} \left(\dots \right) \\ \Rightarrow^* & \langle 13 \rangle \end{array}$$