Решения на задачите по комбинаторика

Този материал е изготвен със съдействието на школа Sicademy

C1. Ребрата на пълния граф с 11 върха са оцветени в червено и синьо. Да се докаже, че съществуват два независими (без общи върхове) едноцветни триъгълника, които са с един и същи цвят (и двата червени или и двата сини).

Решение. Съществуват два независими едноцветни триъгълника $T_1 = X_1 X_2 X_3$ и $T_2 = Y_1 Y_2 Y_3$ (защо?). Нека $X_1 X_2 X_3$ е червен, а $Y_1 Y_2 Y_3$ – син. Ребрата между останалите пет върха не образуват едноцветен триъгълник (ако има такъв задачата би била решена) и следователно подграфът, индуциран от тези върхове се разбива на два едноцветни цикъла: $Z_1 Z_2 Z_3 Z_4 Z_5 Z_1$ – червен и $Z_1 Z_3 Z_5 Z_2 Z_4 Z_1$ – син.

В подграфа, породен от $Y_i, Z_1, \ldots, Z_5, i = 1, 2, 3$, съществува едноцветен триъгълник. Ако той е червен, задачата е решена, затова ще приемем, че това е син триъгълник. Аналогично от всеки връх $X_i, i = 1, 2, 3$, образува с два от върховете Z_1, \ldots, Z_5 червен триъгълник.

Ако съществува монохроматичен триъгълник от вида $X_iY_jY_k$ или $X_iX_jY_k$, то задачата е решена, тъй като ще го комбинираме с един от построените по-горе триъгълници. Следователно от всеки връх Y_j излиза не повече от едно червено ребро, а от всеки връх X_i излиза не повече от едно синьо ребро. Това е противоречие, тъй като имаме девет ребра от вида X_iY_j .