PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06-242342

(43) Date of publication of application: 02.09.1994

(51) Int CL

G02B 6/28

(21)Application number: 05-025825

(71)Applicant: FUJIKURA LTD

(22)Date of filing:

15.02.1993

(72)Inventor: YAMALICHI RYOZO

AZEBIRU TOMIO

TANAKA TAIICHIRO KAWAKAMI NOBORU

SHISHIKURA SHINICHIRO

(54) OPTICAL FIBER COUPLER

(57)Abstract

PURPOSE. To provide are optical fiber coupler having good strength and workability and having stable optical characteristics by housing a coupler body into a reinforcing device consisting of a metallic material specified in coefft, of thermal expansion.

CONSTITUTION: This optical fiber coupler 1 consists of the coupler body 2 and the reinforcing device 3 housing the coupler body 2. The soupler body 2 and the reinforcing device 3 are adhered to each other by an adhesive 7. The metallic material having ≤1 × 10−6/° € coefft. of thermal expansion is used as the material for forming the reinforcing device 3. The more specific metallic material is exemplified by a nondeforming steel, super nondeforming steel or stainless nondeforming steel. The coupler body 2 is housed into the reinforcing device 3 consisting of the metallic material having \$1 × 10-6/* O coefft. of thermal expansion and, therefore, a difference in the coefft of thermal expansion between the reinforcing device 3 and optical fiber glass is suppressed to a lower level and the optical stability against a temp. change of use environment is improved.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

Dand of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許介(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出額公開番号

特開平6-242342

(43)公開日 平成6年(1994)9月2日

(51) ht (1.1' G 0 2 B 5/23 受別記号 庁内整理番号 W 8707-2K T 8707-2K

技術表示因所

寄ո数 未開水 間水項の数2 01 (全 4 頁)

(51)田原孝寺	\$ \$₹5-232	(71)出版人 000005186
		株式会社フジクラ
(22)出版日	平成5年(1993)2月15日	東京都江東区木場 1 丁目 5 巻 1 号
		(72) 発明者 山内 良三
		或京都红现区木場一丁目 5 告 1 号 传式会
		社プジクラ内
		(72)発明者 時幕 官夫
		東京都江東区木場一丁目 5 書 1 号 株式会
		社フジクラ内
		(72)発明者 田中 大一郎
		夏京都江東区木場一丁目5番1号 战式会
		社プジクラ内
	•	(74)代理人 护理士 志賀 正武
		超斜質に超く

(54)【発明の名称】 光ファイバカプラ

(57)【契約】

【報成】 熱思議路数が1×10°/′C以下の金額材料からなる構設器3内にカブラ本体2を収容したことを特徴とする。 前記金厚材料が、不変網、超不変網あるいは不成不変組のいずれか一種である。

【効果】 強度および知工性が良好で、かつ安定な光学 的特性を有する光ファイバカブラを提供することができ る。

特職平6-242342

:+81 3 5330 6044

【特許請求の範囲】

【節求項1】 熱影張係数が1×10*/で以下の全層 材料からなる物法器内にカプラ本体を収容してなること を特徴とする光ファイバカブラ。

【劉水昭2】 金属材料が、不変銅、超不変銅めるいは 不財不変解のいずれか一様であることを特徴とする請求 項しの記載の光ファイバカブラ。

【条明の単格な影明】

[0001]

パカプラに関し、特に光学的特性の安定な光ファイパカ

[0002]

【従来の技術】従来、融石延伸型の光ファイバカプラ は、複数本の光ファイバを熔接、融着、延伸して、融岩 部分を影成したもので、いずれかの光ファイパに入射し た光を分岐したり、複数の光ファイバ流末に入射した光 を合体させて、他のファイバ塩末から取り出す役割を果 たすもので、また、異なった波長の光を合波したり、分 彼したりするのに用いられる光部品であり、光ファイバ 20 を伝送媒体とする光速値や、光計測に利用されている。

【0003】現在用いられている光通信用光ファイバ は、公知のように、ほとんどがガラス製で、特に石美ガ ラスを主成分とする光ファイバが大部分を占めている。 【0004】ところで、標準的な光ファイバのガラス径 (クラッド径) は、125µmとかなり細いが、それで も1%の伸び変を与えるのに1kc近い張力をかける必 要がある。前途したように、光ファイバを融着延伸する 段、その酸石域伸部は、外径が数10μ減とさらに超く なり、その版画機は、標準的なファイバの10分の1以 30 下となる。そのため、とのカプラ本体は、位かな力を加 えるだけで非常に大きな歪が生じることがある。

【0005】そのため実際、光ファイバカプラは、融岩 延伸部を迫当な博強器内に収納して使用することが確常 行われている。解放器の計算としては、カブラ本体、す なわち光ファイバガラスと同一であれば、熱腔器の点か **ら非常に安定なカプラを作説することができる。従来―** 吸的に使用されている補法器の材質は、石英ガラス、も しくは石英系ガラスである。またその他に、全国材料が 用いられることもある。

[0006]

【発明が解決しようとする課題】ところが、前記ガラス 系の材料からなる捕強器を使用した場合、ガラスが脆性 材料であるために破断強度が不十分である、自由な形状 に加工することができない。 などの問題があった。

【0007】一方、金屑系材料からなる捕破器を使用し た場合には、先ファイバガラスと比べて熱的性質が大き く異立るために、使用環境の温度変化に対するカプラの 光学的安全性が悪いなどの問題があった。

【0008】本発明は、これらの亨倫に抵みてなされた 50 君剤、あるいはレーザ棺接等によってなされる。

ものであって、存成および加工性が良好で、かつ安定な 光学的特性を有する光ファイバカブラを提供することを 目的としている。

[0009]

【課題を解決するための手段】かかる目的を達成するた めに、本発明の光ファイバカプラは、熱影条係数が1× 10 **/℃以下の金盾材料からなる協強置内にカプラ本 体を収容したととを特徴としている。 特に請求項2の光 ファイバカブラは、町記金属材料が、不変銅、超不変銅 【産業上の利用分野】本発明は、融管猛体型の先ファイ 10 あるいは不然不実別のいずれか一位であることを特徴と している。

[0010]

【作用】本発明の光ファイバカブラにあっては、然影張 係数が1×10-*/で以下の金属材料からなる糖養器を 使用したので、補助器と光ファイバガラスとの熱膨張係 飲の差を1×10⁻¹/℃以下に抑さえ、両者の熱的特性 を比較的近いものとすることができる。このため、使用 環境の迅度変化に対する光学的安定性の良好な光ファイ バカプラを提供することができる。

[0011]

【実権例】以下、図面を参照しつつ、本発明を詳しく競 明する。図1および図2は、光ファイバカブラの一次能 例を示す平断面図および説断面図である。本実施例の光 ファイバカプラ 1は、叙略、カプラ本体2と、このカブ ラ本体2を収容する補強器3とから構成される。

【0012】カプラ本体2は、光ファイバ4、4を複数 本互いに接触状態で並列させ、加熱装置(図示略)で加 **私し島部的に称着させるととによって製造したもので、** 光学的に互いに連続する歌着延伸部Aと非政者延伸部B とを有している。

[00]3] 先ファイバ4は、例えば酸化ゲルマニウム 等のドーパントを添加した石英からなる吉屈折率のコア 部と、その周囲の石英からなる低屈折率のクラッド部と を備えたもので、単一モードファイバあるいは多モード ファイバが用いられる。非融石延伸部Bの光ファイバイ の外周には、監外投硬化型樹脂等からなる被雇雇 5 が設 けられている。

【0014】「福祉器3は、図2に示すように、上面に関 口して財配カプラ本体2を収容する凹所6を備えた断面 昭半円形の下部パーツ3a4、との下部パーツ3aの上 面に独合されて前記回所8を室ぐ断面略半円形の上部パ ーツ3hとからなり、これら上下のパーツ3a.3hを 接合して略円間形状の補法器3が形成される機成であ る。これち上下のパーツ3 a、3 bは、前記回所6内に カプラ本体2を収容した時に放力プラ本体2の中心観が・ 16会員3の中心執に一致するように、それぞれの形状が 定められている。これは、博士書3に外力が加えられた 取に、カプラ本体2に生じる歪を最小に抑さえることが できるためである。上下パーン3a.3hの揺合は、拼

特別平8-242342

【0015】凹所6の形状は、図2に示したような断面 四角形の地に、四分に示すような影響半円形とされても よい。また、捕殻四3の外形は、図2に示したような助 箇円形の態に、 図4あるいは図5に示すような街面四角 むとされてもよい。

【0016】また、この凹所8は、図】に示すように、 カプラ本体2の融着送料部Aを収容する中央部分におい て大きく、また非政者延伸部Bを収容する両端部分にお いて小さく形成されている。

【0017】カプラ本体2と補弦器3とは、剪記凹所6 10 内の役割に接着制7を充填するととで、相互に接着され ている。

【0018】施茶器3を形成する材質としては、熱些張 係数が1×10**/で以下の全属材料が用いられる。 熱 些技体散がこの値を越えると、カブラ本体2を形成して いる光ファイバガラスとの効能硬係数の差が大きくなる ため、環境温度の変化に対するカプラ本体2の安定性が 悪くなるためである。

【0019】具体的な金属材料としては、不変類、超不 変異あるいは不執不変解が挙げられる。不変解は、終8 20 3.5%. ニッケル3 8.5%の組成を有し、組不契仰 は、鉄63%、ニッケル32%、コパルト5%の組成を 有し、不然不交解は、鉄38,5%、コバルト54%。 クロム9.5%の組成を育するものである。

【0020】このように、本実性例の光ファイバカブラ にあっては、熱比張係数が1×10**/**(以下の金属材 料からなる補偿額3内にカプラ本体2を収容したので、 補強器3と光ファイバガラスとの禁恥恐係数の差を小さ く抑ぎえて、使用環境の限度変化に対する光学的安定性 の改善を図るととができる。

【0021】また、ガラス系材料からなる抽致器を用い た場合に比べ、確認強度の向上および成形加工性の改善 を図ることができる。

【0022】以下、具体的実施例を示し、本発明の効果 を限らかにする。

《突旋例》図2次示した新面構造を存する補強器を、経 不変類により作製した。補法器の外径は1ヵヵ々とし た。カプラ本体を収容する四折の形状は、低回四角形と し、その大きさは、カブラ本体の融着延伸部を収容する 中央部分で1500μm×1500μm、非融着延伸部 40 2 カプラ本体 を収容する両指部分で700μm×700μμとした。 一方、コア経9 μm、外径125 μm、鉄液(染外鉄)

(比型組制) 経250μm, カットオフ放兵1.2μm. モードフィールド9.5μ四の単一モードファイバを用 い。これを抱弦本接触状態で並列させて随着延伸し、彼 長1.3μm、分位比1:1のカプラ本体を作裂した。 とのカプラ本体を、前記博芸器の四所内に収容し、カブ ラ本体と四所内の隙間に技管剤を充填して両者を互いに 扭言し、光ファイバカブラを製造した。

【0023】(比較例) 石炭ガラスからなる特殊器を用 いた以外は、前記実施例と関係にして、光ファイバカブ **つを貸造した。**

【0024】実施剤および比較例の先ファイバカプラモ 用いて、--45℃~+80℃の温度酶回における損失特 性を調べたととろ、実施例ではほとんど特性の変化が認 められなかった。これに対し、比較例では、低温におけ る技芸的の収益応力により、カプラ本体の一部に破断が 生じ、本来1:1の分岐比、すなわちカプラのポート1 一4の送過損失3dB爾浸が大きく変化した。また、い くつかの試験サンブル間で、±ldB程度の弦頭が認め られた

[0025]

【発明の効果】以上試明したように、本発明の光ファイ バカプラにあっては、熱彫張係数が1×10°°/′C以下 の金属材料からなる構造器内にカプラ本体を収容したの で、捕殻器と光ファイバガラスとの熱助振係数の臣を小 さく抑さえ、使用環境の風度変化に対する光学的安定性 の良好な光ファイバカブラを提供するととができる。ま た。ガラス系計算の循環器を使用した場合に比べ、破断 強度の向上および成影加工性の改良を図ることができ

【図画の簡単な説明】 30

【図1】本発射の光ファイバカブラの一実能例を示す平 断面関である。

【図2】 同光ファイバカブラを示す機断回図である。

【図3】 光ファイバカブラにおける博弥器の他の形状例 を示す機能面団である。

【図4】輸強器の他の形状例を示す機断面図である。 【図5】補強器の他の形状例を示す機断面図である。 【符号の説明】

- 1 光ファイバカブラ
- 3 編建5

フロントページの結合

(72)発明者 川上 登 千葉県富律市幹富収-1 株式会社ブジク ラ富律工場内

(72)発明者 宍倉 伊一郎 千栗県富徳市町富収ー 1 株式会社フジク ラ高牧工場内