Math 217 Fall 2025 Quiz 17 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces. A linear transformation $T: V \to W$ is ...

Solution: A function T satisfying

$$T(u+v) = T(u) + T(v)$$
 and $T(\alpha v) = \alpha T(v)$

for all $u, v \in V$ and all scalars α (equivalently, $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$ for all scalars α, β and $u, v \in V$).

(b) A subspace of a vector space V is . . .

Solution: A subset $U \subseteq V$ that is itself a vector space under the operations inherited from V; equivalently,

 $0_V \in U$ and $\alpha u + \beta v \in U$ for all $u, v \in U$ and scalars α, β .

(c) Suppose X and Y are sets. A function $f: X \to Y$ is surjective provided that ...

Solution: For every $y \in Y$ there exists $x \in X$ with f(x) = y; i.e. im(f) = Y.

2. Suppose V and W are vector spaces and $T: V \to W$ is linear. Let $\{v_1, \ldots, v_m\} \subset V$ be such that $\{T(v_1), \ldots, T(v_m)\}$ is a basis of $\operatorname{im} T$, and let $\{u_1, \ldots, u_n\}$ be a basis of $\operatorname{ker} T$. Prove that $\{v_1, \ldots, v_m, u_1, \ldots, u_n\}$ is a linearly independent set in V.

Solution: Assume

$$a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_nu_n = 0_V.$$

Apply T:

$$a_1T(v_1) + \dots + a_mT(v_m) + b_1T(u_1) + \dots + b_nT(u_n) = 0_W.$$

Since $u_j \in \ker T$, $T(u_j) = 0$ for all j. Hence

$$a_1T(v_1) + \dots + a_mT(v_m) = 0_W.$$

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

But $\{T(v_1), \ldots, T(v_m)\}$ is a basis of im T, in particular a linearly independent set, so $a_1 = \cdots = a_m = 0$. The original relation then reduces to

$$b_1u_1 + \dots + b_nu_n = 0_V,$$

and since $\{u_1, \ldots, u_n\}$ is a basis of ker T, it is linearly independent; thus $b_1 = \cdots = b_n = 0$. Therefore all coefficients are zero, proving linear independence.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) If A is the standard matrix of a surjective linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$, then

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Solution: FALSE. Surjectivity implies rank(A) = 3, so rref(A) has three pivot columns and one free column. The non-pivot (free) column need not be the zero column. For example,

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

has rank 3 (so the associated T is surjective), and A is already in RREF; its fourth column is $\begin{bmatrix} 1\\0\\0 \end{bmatrix} \neq \begin{bmatrix} 0\\0\\0 \end{bmatrix}$.

(b) There is a linear transformation $T: \mathbb{R}^7 \to \mathcal{P}_{71}$ such that

$$\dim(\operatorname{im}T) - \dim(\ker T) = 6.$$

Solution: FALSE. By Rank–Nullity, for any linear map with domain \mathbb{R}^7 ,

$$\dim(\operatorname{im}T) + \dim(\ker T) = 7.$$

Hence

$$\dim(\operatorname{im}T) - \dim(\ker T) = \left(\dim(\operatorname{im}T)\right) - \left(7 - \dim(\operatorname{im}T)\right) = 2\dim(\operatorname{im}T) - 7.$$

The right-hand side is an odd integer (since $2 \dim(\text{im}T)$ is even, subtracting 7 yields an odd number). It cannot equal 6, which is even. Equivalently, solving 2r - 7 = 6 gives r = 6.5, impossible for an integer rank.

2