Problem: Air Cargo Problem 1

Optimal Plan:

Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK

Algo Used	Plan Length	Expansions	Goal Tests	New Nodes	Optimal	Time(seconds)
non-heuristic search						
breadth_first_search	6	43	56	180	Υ	0.033105939
depth_first_graph_search	20	21	22	84	N	0.017987239989452064
uniform_cost_search	6	55	57	224	Υ	0.04212672
heuristic search						
astar_search with						
h_ignore_preconditions	6	41	43	170	Υ	0.045769307
astar_search with h_pg_levelsum	6	11	13	50	Υ	0.48696264

In non-heuristic search, breadth first search and uniform cost search come up with the optimal plan. depth_first_graph_search is the fastest and takes the least memory but does not provides an optimal solution.

In heuristic search, both astar_search with h_ignore_preconditions and astar_search with h_pg_levelsum come up with the optimal plan. astar_search with h_ignore_preconditions is the faster but astar_search with h_pg_levelsum takes less memory.

Overall,in terms of optimal solutions, breadth_first_search is the fastest but astar_search with h_ignore_preconditions takes the least memory.

Problem: Air Cargo Problem 2

Optimal Plan:

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Load(C3, P3, ATL)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Algo Used	Plan Length	Expansions	Goal Tests	New Nodes	Optimal	Time(seconds)
non-heuristic search						
breadth_first_search	9	3343	4609	30509	Υ	14.363841059006518
depth_first_graph_search	619	624	625	5602	N	3.7531195210031
uniform_cost_search	9	4852	4854	44030	Υ	12.832434479001677
heuristic search						
astar_search with h_ignore_preconditions	9	1450	1452	13303	Y	4.49539596500108
astar_search with h_pg_levelsum	9	86	88	841	Υ	37.86639750000904

In non-heuristic search, breadth first search and uniform cost search come up with the the optimal plan. depth_first_graph_search is the fastest and takes the least memory but does not provides an optimal solution.

In heuristic search, both astar_search with h_ignore_preconditions and astar_search with h_pg_levelsum come up with the optimal plan. astar_search with h_ignore_preconditions is the faster but astar_search with h_pg_levelsum takes less memory.

Overall,in terms of optimal solutions, astar_search with h_ignore_preconditions is the fastest but lowest memory is taken by astar_search with h_pg_levelsum. So heuristic search solutions provide better optimal plans in this case than non-heuristic search ones.

Problem : Air Cargo Problem 3

Optimal Plan:

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C1, P1, JFK)

Unload(C3, P1, JFK)

Fly(P2, ORD, SFO)

Unload(C2, P2, SFO)

Unload(C4, P2, SFO)

Algo Used	Plan Length	Expansions	Goal Tests	New Nodes	Optimal	Time(seconds)
non-heuristic search						
breadth_first_search	12	14663	18098	129631	Υ	120.6063692579919
depth_first_graph_search	392	408	409	3364	N	1.8938232449872885
uniform_cost_search	12	18235	18237	159716	Υ	59.53526903499733
heuristic search						
astar_search with h_ignore_preconditions	12	5040	5042	44944	Y	17.715687224001158
astar_search with h_pg_levelsum	12	318	320	2934	Υ	196.24829012600821

In non-heuristic search, breadth first search and uniform cost search come up with the the optimal plan. depth_first_graph_search is the fastest and takes the least memory but does not provides an optimal solution.

In heuristic search, both astar_search with h_ignore_preconditions and astar_search with h_pg_levelsum come up with the optimal plan. astar_search with h_ignore_preconditions is the faster but astar_search with h_pg_levelsum takes less memory.

Overall,in terms of optimal solutions, astar_search with h_ignore_preconditions is the fastest but lowest memory is taken by astar_search with h_pg_levelsum. So heuristic search solutions provide better optimal plans in this case than non-heuristic search ones.

Conclusion

In **non-heuristic searches**, breadth first search and uniform cost search provide optimal solutions as breadth first search expand shortest nodes first and uniform cost search expand cheapest node first.

Depth first search on the other hand, since it explores all the nodes till the final depth, does not gives optimal solution but performs better on space requirements.

Reference: Search Lesson (Search Comparison Videos (20-22) from AIND)

In **heuristic search**, A* will find the lowest cost path if the heuristic function for a state is less than the true cost of the path to the goal through that state.

And since the heuristic functions here are admissible (optimistic), they never overestimate the distance to the goal which gives an optimal solution.

Reference: Search Lesson (A* Search (24-29) and Optimistic Heuristic(30) Videos from AIND)

It seems overall, as problems become more complex, heuristic searches provide better solutions. For simpler problems, non-heuristic search seem to provide good solutions.