# DevilBotz 2876 Swerve Bring-Up Checklist

DevilBotz 2876 2024-02-03

#### Resources

- YAGSL Wiki https://yagsl.gitbook.io/yagsl/
- REV Robotics Hardware Client https://docs.revrobotics.com/rev-hardware-client/
  - o for configuring Spark Max Motor Controllers and other Rev devices
- Phoenix Tuner X https://v6.docs.ctr-electronics.com/en/stable/docs/tuner/index.html
  - o for configuring CanCoders and other CTR devices

# **Swerve Orientation Diagram**

Note: When viewed from the top, make sure the sides of the wheel with the bevel gear are pointing to the left





## Step 1: Module Types

|                  | Model, Version, Etc |
|------------------|---------------------|
| Motor            |                     |
| Controller       |                     |
| Absolute Encoder |                     |
| IMU              |                     |

# Step 2: Build Specific Details

1. Measure the module center relative to the robot center

|                  |   | Location | (Inches | ) |
|------------------|---|----------|---------|---|
| Module           |   | X        |         | Υ |
| Front Left (FL)  | + |          | +       |   |
| Front Right (FR) | + |          | -       |   |
| Back Left (BL)   | - |          | +       |   |
| Back Right (BR)  | - |          | -       |   |

- 2. Measure the wheel diameter in meters
- 3. Determine the *reported* internal encoder resolution
  - a. Note: Most encoders now normalize the reported values to -1 to 1, so the Encoder Resolution when computing the conversion factors should generally be "1". One known exception is the TalonSRX.
- 4. Find the drive/angle gear ratio from the swerve module manufacturer specs
- 5. Calculate the drive/angle conversion factors
  - a. Drive Motor Conversion Factor (meters/rotation) = (PI \* WHEEL DIAMETER IN METERS) / (GEAR RATIO \* ENCODER RESOLUTION)
  - b. Angle Motor Conversion Factor (degrees/rotation) = 360 / (GEAR RATIO \* ENCODER RESOLUTION)

**Note:** For Absolute Encoders attached **directly** to the dataport on the SparkMAX, the Conversion Factor is **360** 

| Motor | Wheel Diameter<br>(meters) | Encoder Resolution (CPR) | Gear Ratio | Conversion Factor |
|-------|----------------------------|--------------------------|------------|-------------------|
| Drive |                            | 1                        |            |                   |
| Angle |                            | 1                        |            |                   |

### Step 3: Electrical Characteristics

6. Set/Verify the CAN IDs for each module

Note: Update the FW for each module and reset any stored settings to factory defaults

|                  | Motor/Encoder CAN IDs |       |                     |
|------------------|-----------------------|-------|---------------------|
| Module           | Drive                 | Angle | Absolute<br>Encoder |
| Front Left (FL)  |                       |       |                     |
| Front Right (FR) |                       |       |                     |
| Back Left (BL)   |                       |       |                     |
| Back Right (BR)  |                       |       |                     |

| _  | $\circ$ |             |
|----|---------|-------------|
| /  | (:heck  | Inversion   |
| ٠. | CHICON  | 11110101011 |

| a. Rotate the <i>drive</i> wheel <b>CCW</b> (moving "forwar | а | Rotate | the a | drive | wheel | CCW | (moving | "forward | ł" |
|-------------------------------------------------------------|---|--------|-------|-------|-------|-----|---------|----------|----|
|-------------------------------------------------------------|---|--------|-------|-------|-------|-----|---------|----------|----|

- ☐ The built-in encoder value should **increase**. If not, invert the drive motor.
- b. Rotate the *angle* wheel **CCW** (when viewed from the top)
  - ☐ The built-in encoder value should **increase**. If not, invert the angle motor.
  - ☐ The absolute encoder value should **increase**. If not, invert the absolute encoder.
- c. Rotate the entire robot **CCW**.
  - ☐ The gyro angle (yaw) should **increase**. If not, invert the IMU

**Note:** If you are using the hardware utilities for accessing the motors controllers and/or absolute encoders, the RoboRio must **not** be active on the CAN bus. The most reliable way to disable the RoboRio, **without affecting the CAN BUS termination**, is to temporarily disconnect it from power by pulling the 10A fuse on the Power Distribution Panel (PDP) and **then** power cycle the robot.

|                  |       | Inve  | rted?               |     |
|------------------|-------|-------|---------------------|-----|
| Module           | Drive | Angle | Absolute<br>Encoder | IMU |
| Front Left (FL)  |       |       |                     |     |
| Front Right (FR) |       |       |                     |     |
| Back Left (BL)   |       |       |                     |     |
| Back Right (BR)  |       |       |                     |     |

## Step 4: Absolute Encoder Offsets

- 8. Turn Robot On (Disabled so the wheels can be turned manually)
- 9. Manually Turn All 4 wheels so that they are all pointing forward and forward rotation results in increasing drive encoder values (see the black arrows in <u>Orientation Diagram</u>).

#### 10. Measure the absolute encoder value for each module

| Module           | Angle Absolute Offset (degrees) |
|------------------|---------------------------------|
| Front Left (FL)  |                                 |
| Front Right (FR) |                                 |
| Back Left (BL)   |                                 |
| Back Right (BR)  |                                 |

# Step 5: Input Data into the YAGSL Configuration Web Page

Open the following webpage and import your data into the config files: <a href="https://broncbotz3481.github.io/YAGSL-Example/">https://broncbotz3481.github.io/YAGSL-Example/</a>