

TD Statistique inférentielle ¹ Interro 2

Exercice 1 : Valeurs extrêmes (exercice élémentaire 1.5 pt)

Avec les mêmes notations que l'exercice 4 du TD 1, explicitez les fonctions de répartition et les densités de $X_{(1)}$ et $X_{(n)}$ lorsque $X_1 \subseteq \mathscr{E}(\lambda)$. Reconnaissez vous la loi de $X_{(1)}$?

Exercice 2: Optimisation de l'intervalle de fluctuation (1 pt)

Soit a>0 et soit X une variable aléatoire de la loi "triangulaire" dont la densité est donnée par :

$$f(x) = \begin{cases} h + \frac{h}{a}x & \text{si } x \in [-a, 0], \\ h - \frac{h}{a}x & \text{si } x \in [0, a], \\ 0 & \text{sinon,} \end{cases}$$

où h sera précisé par la suite.

- 1. Tracer la fonction f, préciser h (en fonction de a).
- 2. Sans faire de calcul, montrez que parmis les intervalles de fluctuation bilatérals de niveau de risque $\alpha \in]0, \frac{1}{2}[$, l'intervalle symétrique minimise la longueur de l'intervalle. (indication : on peut s'inspirer de la deuxième partie de la question 4 de l'exercice 3 du TD 1).

Exercice 3: Statistiques d'ordre (Bonus 0.5 pt)

Avec les mêmes notations que l'exercice 4 du TD 1, pour n=3 et $X_1 \subseteq \mathscr{U}(0,1)$, explicitez la fonction de répartition et la densité de $X_{(2)}$.

Indication: vous pouvez montrer d'abord que

$$\mathbf{P}(X_{(2)} \le x) = \mathbf{P}(X_{(3)} \le x) + P(X_{(2)} \le x \text{ et } X_{(3)} > x).$$

^{1.} Mohamed-slim.kammoun@univ-lille.fr