# PhD Diary

Nathan Hughes

November 30, 2018

CONTENTS November 30, 2018

## Contents

| 1 | Diffusion of Chitin                                                 | 3   |
|---|---------------------------------------------------------------------|-----|
|   | 1.1 Simple Structure                                                |     |
|   | 1.2 <b>TODO</b> Reapply this with more accurate structure           | . 3 |
|   | 1.3 Stokes-Einstein Equation                                        | . 4 |
|   | 1.4 Applying Stokes-Einstein Equation to diffusion model            |     |
|   | 1.4.1 Estimating for 2D area                                        | . 5 |
|   | 1.5 Diffusion of Chitin in 60 seconds (minimum threshold of $> 1$ ) | . 6 |
|   | 1.6 Question                                                        | . 6 |
| 2 | Musings           2.1 On Cell Walls                                 | . 6 |
| 3 | Verification of equations                                           | 6   |

## 1 Diffusion of Chitin

- Useful link
- Chitin Structure Possibly

#### 1.1 Simple Structure

http://www.chemspider.com/Chemical-Structure.22563.html?rid=cdc5ab75-0c3b-4c17-890e-ceebf59b0942&page\_num=0



Figure 1: N-Acetyl-b-D-glucosamine

## 1.2 **TODO** Reapply this with more accurate structure

A decent structure can be found in (Li et al., 2013)



Figure 2: Chitin Molecule

#### 1.3 Stokes-Einstein Equation

For diffusion of spherical particles through a liquid with low Reynolds number

$$D = \frac{kT}{6\pi\mu r} \tag{1}$$

Where:

- $\bullet$  D is the diffusion constant
- $\mu$  is the *mobility*, or the ratio of the particles terminal drift velocity
- $\bullet$  k is Boltzmann's constant
- $\bullet$  T is the absolute temperature
- r is the radius of the spherical particle

Values for these could be:

- $\mu = 8.90 \times 10^{-4} Pa$  at 25°C - Water Viscosity Table
- $k = 1.38 \times 10^{-23}$
- $T = 25^{\circ}\text{C} = 298.15 \text{ K}$
- r = 5.4nm

Thus

$$D = \frac{1.38e^{-23} \times 298.15}{6\pi \times 8.9e^{-4} \times 5.4e^{-10}}$$
 (2)

$$D \approx 4.54181050564094e^{-10}m^2/s \tag{3}$$

- 1 from math import pi
- D = (1.38e-23 \* 298.15)/(6\*pi \* 8.9e-4 \* 5.4e-10)

#### 1.4 Applying Stokes-Einstein Equation to diffusion model

#### 1.4.1 Estimating for 2D area

```
import numpy as np
    from numpy import pi
    def diffuse 2D(nx, ny, dx, dy, nt, D, dt, prevState=None, prevIter=None):
       dx2 = dx^{**}2
5
       dy2 = dy^{**}2
6
       u = np.zeros((nx, ny))
       mid x = int(nx/2)
       mid y = int(ny/2)
10
       u = prevState.copy()
11
       start = prevIter
12
13
       for n in range(start, nt):
14
           un = u.copy() # Update previous values
15
           u[1:-1, 1:-1] = un[1:-1, 1:-1] + D * \setminus
16
              (((un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[:-2, 1:-1])/dx2) +
17
               ((un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, :-2])/dy2))
18
       return un
19
20
    # Number of x,y positions
21
    ny = 160
22
    nx = 270
23
24
    # Change in X & Y
25
    dx, dy = 1, 1
26
    # Number of timesteps to calculate until
27
    nt = 6
28
    # Max time state to reach
29
    \max t = 60*60 \# 1 \text{ hr}
30
    \# Diffusion constant in mm2/s
31
    diff = lambda x: ((1.38e-23 * 298.15)/(6*pi * 8.9e-4 * x) * 1000)
32
    D = diff(5.4e-10)
33
34
    # for visualisation we resize the mm to
35
    # pixel ratio and apply it to the diffusion constant
36
    \# 42 px to mm
37
    D = D/42
38
    dt = 1 \# change in time = 1 second
40
41
    nts = [str(nt) for nt in np.linspace(1, max t, nt, dtype=int)]
42
43
    # Calc initial state
44
    prevState = np.zeros((nx, ny))
45
    \# 1 \text{ mm2 zone}
46
    prevState[60:60+21, 70:70+21] = 1
    states = [prevState]
48
49
    for idx, n in enumerate(nts):
50
       if idx is 0:
51
           continue
52
       prevIter = int(nts[idx-1])
53
       prevState = diffuse 2D(nx, ny, dx, dy, int(n), D, dt, prevState=prevState, prevIter=prevIter)
54
       states.append(prevState)
55
```

## 1.5 Diffusion of Chitin in 60 seconds (minimum threshold of > 1)

Essentially, if there was no cell barriers how far could at least some chitin diffuse in a minute?



Figure 3: Applying Einstein-Stokes to Diffusion Models, a 0.5mm<sup>2</sup> zone is introduced at TS:1.

#### 1.6 Question

The question now becomes: "What quantity of Chitin molecules is required to be of interest?"

## 2 Musings

#### 2.1 On Cell Walls

Does it make sense to consider each cell as a container that fills a certain amount before "spilling-over"

## 3 Verification of equations



Figure 4: fx Solver applied to same values produces similar value for  ${\cal D}$ 

REFERENCES November 30, 2018

## References

Xiaosong Li, Min Min, Nan Du, Ying Gu, Tomas Hode, Mark Naylor, Dianjun Chen, Robert E. Nordquist, and Wei R. Chen. Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine. https://www.hindawi.com/journals/jir/2013/387023/, 2013.