

Teoria de Linguagens e Compiladores Linguagens Regulares

Luiz Eduardo da Silva

Universidade Federal de Alfenas

Agenda

- 1 Autômatos Finitos
- 2 Não Determinismo
- 3 Expressões Regulares
- 4 Linguagens Não Regulares
- 5 Máquinas de Mealy e de Moore

Agenda

- 1 Autômatos Finitos
 - Definição Formal
 - Definição Formal de Computação
 - Projetando Autômatos Finitos
 - As Operações Regulares
- 2 Não Determinismo
- 3 Expressões Regulares
- 4 Linguagens Não Regulares
- 5 Máquinas de Mealy e de Moore

O que é um computador?

- Para construir uma Teoria Matemática, os computadores reais são complicados (arquitetura, sistema operacional, linguagens de programação, aplicativos).
- Em vez disso, usamos um modelo computacional.

Figura: Porta automática

O que é um computador?

- Para construir uma Teoria Matemática, os computadores reais são complicados (arquitetura, sistema operacional, linguagens de programação, aplicativos).
- Em vez disso, usamos um modelo computacional.

Figura: Porta automática

- A figura representa o diagrama de estados de um AF
- \blacksquare q_1, q_2 e q_3 são os estados
- $lue{}$ O estado q_1 ligado ao triângulo é o **estado inicial**
- O estado *q*₂ com círculo duplo é o **estado de aceitação**
- As setas representam as transições entre estados.

Funcionamento

- O AF começa no estado inicial e processa uma entrada, por exemplo 1101.
- Cada símbolo é processado e executada a transição, por exemplo, se a entrada é 1 e o estado atual é q₁, o AF vai para o estado q₂
- O AF aceita ou rejeita a entrada. Se o AF para num estado de aceitação após processar todos os símbolos da entrada, essa é aceita, caso contrário o AF rejeita a cadeia de entrada.

• Seja a cadeia de entrada w = 1101.

- Seja a cadeia de entrada w = 1101.
 - \blacksquare O AF começa no estado q_1

- Seja a cadeia de entrada w = 1101.
 - \blacksquare O AF começa no estado q_1
 - 2 Lê 1 e vai para o estado q_2

- Seja a cadeia de entrada w = 1101.
 - 1 O AF começa no estado q_1
 - **2** Lê 1 e vai para o estado q_2
 - 3 Lê 1 e continua no estado q_2

- Seja a cadeia de entrada w = 1101.
 - 1 O AF começa no estado q_1
 - **2** Lê 1 e vai para o estado q_2
 - 3 Lê 1 e continua no estado q_2
 - 4 Lê 0 e vai para o estado q_3

- Seja a cadeia de entrada w = 1101.
 - 1 O AF começa no estado q_1
 - **2** Lê 1 e vai para o estado q_2
 - 3 Lê 1 e continua no estado q_2
 - 4 Lê 0 e vai para o estado q_3
 - **5** Lê 1 e volta para o estado q_2

- Seja a cadeia de entrada w = 1101.
 - \blacksquare O AF começa no estado q_1
 - **2** Lê 1 e vai para o estado q_2
 - 3 Lê 1 e continua no estado q_2
 - 4 Lê 0 e vai para o estado q_3
 - **5** Lê 1 e volta para o estado q_2
 - 6 O AF aceita a cadeia w = 1101

Definição

Um **autômato finito** M é uma 5-upla, $M = (Q, \Sigma, \delta, q_0, F)$

Onde:

- 1 Q é o conjunto finito de **estados**
- Σ é o conjunto finito de símbolos, o **alfabeto**
- 3 $\delta: Q \times \Sigma \rightarrow Q$ é a função de transição
- 4 $q_0 \in Q$ é o estado inicial
- **5** $F \subseteq Q$ é o conjunto de **estados finais**.

Definição formal de um AF

Podemos definir formalmente esse AF como:

$$\Sigma = \{0,1\}$$

 δ é descrita como:

	0	1
q_1	q_1	q_2
q_2	q 3	q_2
q_3	q_2	q_2

4 $q_1 \in o$ estado inicial

5
$$F = \{q_2\}$$

funcionamento

- Seja A o conjunto de todas as cadeias que a máquina M aceita.
- A é chamada de **linguagem da máquina M**, L(M) = A.
- M reconhece/aceita A.
- Nesse exemplo, $A = \{w | w \text{ cont\'em pelo menos um s\'embolo } 1$ e um número par de 0s segue o último $1\}$

Definição Formal
Definição Formal de Computação
Projetando Autômatos Finitos
As Operações Regulares

Definição Formal
Definição Formal de Computação
Projetando Autômatos Finitos
As Operações Regulares

Definição Formal Definição Formal de Computação Projetando Autômatos Finitos

Computação do Autômato

Definição

Para representar a computação do autômato podemos usar duas definições (Vieira, 2006):

- A configuração instantânea, representada pelo par [e, w], onde <u>e</u> é o estado atual e <u>w</u> a palavra a ser computada num dado instante;
- A relação ⊢ que mostra a **transformação** da configuração instantânea durante a computação da palavra w.
 - $[q_0, aw] \vdash [q_1, w]$ se existe uma transição de q_0 para q_1 para o símbolo a no autômato.

Exemplo

• Considerando o autômato da Figura e a palavra w = 1101, tem-se:

$$[q_1, 1101] \vdash [q_2, 101] \vdash [q_2, 01] \vdash [q_3, 1] \vdash [q_2, \varepsilon]$$

■ De forma genérica, a linguagem *L* reconhecida por um autômato *M* pode ser formalmente definida como:

$$L(M) = \{ w \in \Sigma^* | [q_0, w] \vdash^* [f, \varepsilon], f \in F \}$$

Outra formalização

Definição (Vieira, 2006)

- Seja um AFD $M=(Q,\Sigma,\delta,q_0,F)$. A função de transição estendida para $M,\ \hat{\delta}:Q\times\Sigma^*\to Q$, definida recursivamente como:
 - $\hat{\delta}(q,\varepsilon)=q$
 - $\hat{\delta}(q,ay) = \hat{\delta}(\delta(q,a),y)$, para todo $a \in \Sigma$, $y \in \Sigma^*$ e $q \in Q$

Outra formalização

Definição (Vieira, 2006)

- Seja um AFD $M=(Q,\Sigma,\delta,q_0,F)$. A função de transição estendida para $M,\ \hat{\delta}:Q\times\Sigma^*\to Q$, definida recursivamente como:
 - $\hat{\delta}(q,\varepsilon)=q$
 - $ar{\delta}(q,ay) = \hat{\delta}(\delta(q,a),y)$, para todo $a \in \Sigma$, $y \in \Sigma^*$ e $q \in Q$

Para w = 001, temos:

$$\hat{\delta}(q_{1},001) = \hat{\delta}(\delta(q_{1},0),01)
= \hat{\delta}(q_{1},01)
= \hat{\delta}(\delta(q_{1},0),1)
= \hat{\delta}(\delta(q_{1},1)
= \hat{\delta}(\delta(q_{1},1),\varepsilon)
= \hat{\delta}(q_{2},\varepsilon)
= q_{2}$$

Implementação

- Essa computação pode ser implementada de forma simples. Seja T, a tabela de transição, onde as linhas representam estados e as colunas os símbolos do vocabulário.
- A implementação (em pseudocódigo) fica:

Outra definição de linguagem para máquina M, considerando a operação de transição estendida:

$$L(M) = \{ w \in \Sigma^* | \hat{\delta}(q_0, w) \in F \}$$

Definição Formal Definição Formal de Computação Projetando Autômatos Finitos As Operações Regulares

Projeto 1

Construir um autômato que reconheça cadeia de 0s e 1s com quantidade ímpar de 1s (em qualquer ordem)

Definição Formal Definição Formal de Computação Projetando Autômatos Finitos As Operações Regulares

Projeto 1

Construir um autômato que reconheça cadeia de 0s e 1s com quantidade ímpar de 1s (em qualquer ordem)

Definição Formal Definição Formal de Computação Projetando Autômatos Finitos As Operações Regulares

Projeto 2

Construir um autômato para reconhecer uma linguagem regular de todas as cadeias que contém a subcadeia **001**.

Projeto 2

Construir um autômato para reconhecer uma linguagem regular de todas as cadeias que contém a subcadeia **001**.

Na aritmética temos os operadores (soma, subtração, multiplicação, divisão) que são utilizados para expressar valores numéricos. Na teoria da computação, os objetos são **linguagens** e as operações utilizadas são as **operações regulares**: de concatenação (representada pelo símbolo ∘), união (representado pelo símbolo ∪) e fecho de Kleene (representado pelo símbolo ∗) para definir linguagens regulares.

Definição

Sejam A e B linguagens. As operações regulares de União, Concatenação e Fecho de Kleene (estrela) são definidas da seguinte forma:

- União: $A \cup B = \{x | x \in A \text{ ou } x \in B\}$.
- Concatenação: $A \circ B = \{xy | x \in A \text{ e } y \in B\}.$
- Fecho de Kleene: $A^* = \{x_1x_2...x_k | k \ge 0 \text{ e } x_i \in A\}.$

Seja
$$\Sigma = \{a, b, c, ..., z\}$$
 o alfabeto. Sejam $A = \{alan, beto\}$ e $B = \{alto, baixo\}$

- União: $A \cup B = \{alan, beto, alto, baixo\}$.
- **Concatenação**: $A \circ B = \{alanalto, alanbaixo, betoalto, betobaixo\}.$
- Fecho de Kleene: $A^* = \{\varepsilon, alan, beto, alanalan, alanbeto, betoalan, betobeto, alanalanalan, alanalanbeto, alanbetoalan, ... \}.$

Definições

Seja $\mathcal{N} = \{0, 1, 2, 3, ...\}$ o conjunto dos números naturais. Dizemos que \mathcal{N} é **fechada sob multiplicação**, pois dados quaisquer dois números naturais x e y, o produto $x \times y$ também está em \mathcal{N} .

Teorema

A classe de linguagens regulares é **fechada** sob a operação de união.

Ou seja, se A_1 e A_2 são linguagens regulares, então $A=A_1\cup A_2$ também é uma linguagem regular.

Prova (por construção)

- Sejam $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, autômatos que reconhecem A_1 e A_2 , respectivamente.
- Construa $M = (Q, \Sigma, \delta, q_0, F)$ para reconhecer $A_1 \cup A_2$ da seguinte forma:
 - **1** $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ e } r_2 \in Q_2\}.$ $Q \text{ \'e o produto cartesiano, } Q = Q_1 \times Q_2.$
 - **2** Σ é o mesmo para M_1 e M_2 . Mas poderiam ser diferentes.
 - 3 Para cada $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, faça:

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

- $q_0 = (q_1, q_2)$
- **5** $F = \{(r_1, r_2) | r_1 \in F_1 \text{ ou } r_2 \in F_2\}.$ Essa expressão é a mesma que $F = (F_1 \times Q_2) \cup (Q_1 \times F_2).$ **Não** é o mesmo que $F = F_1 \times F_2$ (isso é a **interseção** de duas Máquinas).

Agenda

- 1 Autômatos Finitos
- 2 Não Determinismo
 - Definição Formal
 - Equivalência AFN e AFDs
 - Fecho sobre as Operações Regulares
- 3 Expressões Regulares
- 4 Linguagens Não Regulares
- 5 Máquinas de Mealy e de Moore

Exemplo

- Quando o passo a ser realizado no autômato é um único, chamamos de computação determinística.
- Na **computação não determística**, várias escolhas podem acontecer no próximo passo. Inclusive transições ε ou λ que podem ser realizadas sem consumir nenhum símbolo da cadeia de entrada.

Exemplo de AFN:

Computação em paralelo

Exemplo 2

Exemplo 3

Figura: um afn para cadeias finalizadas por 100, 101, 110 ou 111

Figura: O afd equivalente

Definição

Um autômato finito não determinístico M é uma 5-upla, $M = (Q, \Sigma, \delta, q_0, F)$

Onde:

- 1 Q é o conjunto finito de **estados**
- Σ é o conjunto finito de símbolos, o **alfabeto**
- **3** $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ é a função de transição
- **4** $q_0 \in Q$ é o estado inicial
- **5** $F \subseteq Q$ é o conjunto de **estados finais**.

Exemplo

$$\Sigma = \{0, 1\}$$

$$q_1$$
 é o estado inicial

5
$$F = \{q_4\}$$

Autômatos Finitos **Não Determinismo** Expressões Regulares Linguagens Não Regulares Máquinas de Mealy e de Moore

Definição Formal Equivalência AFN e AFDs Fecho sobre as Operações Regulares

Equivalência

Para todo **Autômato Finito Não-Determinístico (AFN)** existe um **Autômato Finito Determinístico (AFD)** correspondente.

Equivalência

Para todo Autômato Finito Não-Determinístico (AFN) existe um Autômato Finito Determinístico (AFD) correspondente.

- A demonstração pode ser realizada através da simulação da execução em paralelo da computação do AFN.
- Basicamente, ao invés de mudar para um único estado a cada transição, no AFN poderemos nos deslocar para um conjunto de estados possíveis, dada o não-determinismo de algumas transições.
- Existem P(Q) subconjuntos de estados possíveis para um conjunto Q de estados. Assim se $Q = \{1,2,3\}$, $P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$. Ou seja, para um AFN com k estados, teremos uma AFD com até 2^k estados correspondentes.

Fecho-lâmbda

Para todo Autômato Finito Não-Determinístico (AFN) existe um Autômato Finito Determinístico (AFD) correspondente.

■ Seja $R \in P(Q)$, definimos a função **E** (denominada **fecho-lambda** em Vieira, 2006) da seguinte forma: $E(R) = \{q | q \text{ pode ser atingido a partir dos estados } r \in R$ através de zero ou mais transições $\varepsilon\}$. Formalmente, $E(R) = \{q | [r, \varepsilon] \stackrel{*}{=} [q, \varepsilon], r \in R\}$. Exemplo:

- $E(\{q_0\}) = \{q_0, q_1, q_2, q_3\}$
- $E(\{q_1, q_2\}) = \{q_1, q_2, q_3\}$
- $E(\{q_2\}) = \{q_2\}$

Fecho-lâmbda

Para todo Autômato Finito Não-Determinístico (AFN) existe um Autômato Finito Determinístico (AFD) correspondente.

- Através de P(Q) e E(R) podemos construir o AFD $M = \{Q', \Sigma, \delta', q'_0, F'\}$ equivalente ao AFN $N = \{Q, \Sigma, \delta, q_0, F\}$ da seguinte forma:
 - Q' = P(Q).
 - $\delta'(R,a) = \bigcup_{r \in R} E(\delta(r,a))$, para $R \in Q'$, $a \in \Sigma$.
 - $q_0' = E(\{q_o\}).$
 - $F' = \{R \in Q' | R \text{ contém um estado de aceitação do } AFN \}$

Exemplo - AFN original

Exemplo - AFD equivalente

$$q_0'=E(\{q_0\})=E(\{1\})=\{1,3\}$$

$$q_0' = E(\{q_0\}) = E(\{1\}) = \{1,3\}$$

 $\delta'(R,x) = \bigcup_{r \in R} E(\delta(r,x))$, para $R \in Q'$, $x \in \Sigma$.

$$\begin{array}{l} q_0' = E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) = \bigcup_{r \in R} E(\delta(r,x)), \text{ para } R \in Q', \ x \in \Sigma. \\ \delta'(\{1,3\},a) = \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \end{array}$$

$$\begin{aligned} q_0' &= E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) &= \bigcup_{r \in R} E(\delta(r,x)), \text{ para } R \in Q', x \in \Sigma. \\ \delta'(\{1,3\},a) &= \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \\ \delta'(\{1,3\},b) &= E(\delta(1,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \emptyset = \{2\} \end{aligned}$$

 $\delta'(R,x) = \bigcup_{r \in R} E(\delta(r,x))$, para $R \in Q'$, $x \in \Sigma$.

Cálculos

 $q'_0 = E({q_0}) = E({1}) = {1,3}$

$$\begin{split} q_0' &= E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) &= \bigcup_{r \in R} E(\delta(r,x)), \text{ para } R \in Q', x \in \Sigma. \\ \delta'(\{1,3\},a) &= \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \\ \delta'(\{1,3\},b) &= E(\delta(1,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \emptyset = \{2\} \\ \delta'(\{2\},a) &= E(\delta(2,a)) = \{2,3\} \\ \delta'(\{2\},b) &= E(\delta(2,b)) = \{3\} \end{split}$$

$$\begin{aligned} q_0' &= E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) &= \bigcup_{r \in R} E(\delta(r,x)), \text{ para } R \in Q', x \in \Sigma. \\ \delta'(\{1,3\},a) &= \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ &= E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \\ \delta'(\{1,3\},b) &= E(\delta(1,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \emptyset = \{2\} \\ \delta'(\{2\},a) &= E(\delta(2,a)) = \{2,3\} \\ \delta'(\{2\},b) &= E(\delta(2,b)) = \{3\} \\ \delta'(\{2,3\},a) &= E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \{2,3\} \cup \{1,3\} = \{1,2,3\} \end{aligned}$$

$$\begin{array}{ll} q_0' = E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) = \bigcup_{r \in R} E(\delta(r,x)), \ \text{para} \ R \in Q', \ x \in \Sigma. \\ \delta'(\{1,3\},a) = \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \\ \delta'(\{1,3\},b) = E(\delta(1,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \emptyset = \{2\} \\ \delta'(\{2\},a) = E(\delta(2,a)) = \{2,3\} \\ \delta'(\{2\},b) = E(\delta(2,b)) = \{3\} \\ \delta'(\{2,3\},a) = E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \{2,3\} \cup \{1,3\} = \{1,2,3\} \\ \delta'(\{2,3\},b) = E(\delta(2,b)) \cup E(\delta(3,b)) = \\ \{3\} \cup \emptyset = \{3\} \\ \delta'(\{3\},a) = E(\delta(3,a)) = \{1,3\} \\ \delta'(\{3\},b) = E(\delta(3,b)) = \emptyset \end{array}$$

$$\begin{array}{ll} q_0' = E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) = \bigcup_{r \in R} E(\delta(r,x)), \ \text{para} \ R \in Q', \ x \in \Sigma. \\ \delta'(\{1,3\},a) = & \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ & E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \\ \delta'(\{1,3\},b) = & E(\delta(1,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \emptyset = \{2\} \\ \delta'(\{2\},a) = & E(\delta(2,a)) = \{2,3\} \\ \delta'(\{2\},b) = & E(\delta(2,b)) = \{3\} \\ \delta'(\{2,3\},a) = & E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \{2,3\} \cup \{1,3\} = \{1,2,3\} \\ \delta'(\{2,3\},b) = & E(\delta(2,b)) \cup E(\delta(3,b)) = \\ \{3\} \cup \emptyset = \{3\} \\ \delta'(\{3\},a) = & E(\delta(3,a)) = \{1,3\} \\ \delta'(\{3\},b) = & E(\delta(3,b)) = \emptyset \\ \delta'(\{3\},a) = & E(\delta(1,a)) \cup E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{2,3\} \cup \{1,3\} = \{1,2,3\} \end{array}$$

$$\begin{split} q_0' &= E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) &= \bigcup_{r \in R} E(\delta(r,x)), \text{ para } R \in \mathcal{Q}', x \in \Sigma. \\ \delta'(\{1,3\},a) &= \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \\ \delta'(\{1,3\},b) &= E(\delta(1,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \emptyset = \{2\} \\ \delta'(\{2\},a) &= E(\delta(2,a)) = \{2,3\} \\ \delta'(\{2\},b) &= E(\delta(2,b)) = \{3\} \\ \delta'(\{2\},b) &= E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \{2,3\} \cup \{1,3\} = \{1,2,3\} \\ \delta'(\{3\},a) &= E(\delta(2,b)) \cup E(\delta(3,b)) = \\ \{3\} \cup \emptyset = \{3\} \\ \delta'(\{3\},a) &= E(\delta(3,a)) = \{1,3\} \\ \delta'(\{3\},b) &= E(\delta(3,a)) = \emptyset \\ \delta'(\{1,2,3\},a) &= E(\delta(1,a)) \cup E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{2,3\} \cup \{1,3\} = \{1,2,3\} \\ \delta'(\{1,2,3\},b) &= E(\delta(1,b)) \cup E(\delta(2,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \{3\} \cup \emptyset = \{2,3\} \end{split}$$

$$\begin{split} q_0' &= E(\{q_0\}) = E(\{1\}) = \{1,3\} \\ \delta'(R,x) &= \bigcup_{r \in R} E(\delta(r,x)), \text{ para } R \in Q', x \in \Sigma. \\ \delta'(\{1,3\},a) &= \bigcup_{q \in \{1,3\}} E(\delta(q,a)) = \\ E(\delta(1,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{1,3\} = \{1,3\} \\ \delta'(\{1,3\},b) &= E(\delta(1,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \emptyset = \{2\} \\ \delta'(\{2\},a) &= E(\delta(2,a)) = \{2,3\} \\ \delta'(\{2\},b) &= E(\delta(2,b)) = \{3\} \\ \delta'(\{2,3\},a) &= E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \{2,3\} \cup \{1,3\} = \{1,2,3\} \\ \delta'(\{2,3\},b) &= E(\delta(2,b)) \cup E(\delta(3,b)) = \\ \{3\} \cup \emptyset = \{3\} \\ \delta'(\{3\},a) &= E(\delta(3,a)) = \{1,3\} \\ \delta'(\{3\},b) &= E(\delta(3,a)) = \{1,3\} \\ \delta'(\{3\},b) &= E(\delta(3,b)) = \emptyset \\ \delta'(\{1,2,3\},a) &= E(\delta(1,a)) \cup E(\delta(2,a)) \cup E(\delta(3,a)) = \\ \emptyset \cup \{2,3\} \cup \{1,3\} = \{1,2,3\} \\ \delta'(\{1,2,3\},b) &= E(\delta(1,b)) \cup E(\delta(2,b)) \cup E(\delta(3,b)) = \\ \{2\} \cup \{3\} \cup \emptyset = \{2,3\} \\ F' &= \{\{1,3\},\{1,2,3\}\} \end{split}$$

Fecho sobre a União

A classe de linguagens regulares é fechada sob a operação de União.

Fecho sobre a Concatenação

A classe de linguagens regulares é fechada sob a operação de Concatenação.

Fecho sobre a Estrela(Kleene)

A classe de linguagens regulares é fechada sob a operação de Fecho de Kleene.

Fecho sobre a União (Sipser)

Fecho sobre a concatenação (Sipser)

Fecho sobre o Fecho de Kleene (Sipser)

Agenda

- 1 Autômatos Finitos
- 2 Não Determinismo
- 3 Expressões Regulares
 - Definição Formal
 - Equivalência com AFs
 - Minimização de AFDs
- 4 Linguagens Não Regulares
- 5 Máquinas de Mealy e de Moore

introdução

Na **aritmética** usamos + e \times para escrever as expressões aritméticas. Ex: $(5+3) \times 8$

Para as **expressões regulares** temos as operações de **união** \cup , **concatenação** \circ e a operação estrela (fecho Kleene) *. Ex: $(0 \cup 1)0^*$

- O resultado de uma expressão aritmética é um valor. O resultado de uma expressão regular é uma linguagem regular.
- 0 e 1 são abreviações dos conjuntos $\{0\}$ e $\{1\}$. Então $(0 \cup 1)$ é o mesmo que $(\{0\} \cup \{1\})$.
- 0^* é o mesmo que $\{0\}^*$.
- E a operação o está subentendida na expressão, concatenando (0 ∪ 1) com 0*.
- Sem as simplificações, escreveríamos: $(\{0\} \cup \{1\}) \circ \{0\}^*$

Definição

Definição indutiva

Sejam R_1 e R_2 expressões regulares. Dizemos que R é uma **expressão regular** se:

- **1** R = a para $a \in \Sigma$.
- 2 $R = \varepsilon$
- $R = \emptyset$
- 4 $R = (R_1 \cup R_2)$
- $R = (R_1 \circ R_2)$
- 6 $R = (R_1)^*$
- $a \in \varepsilon$, representam as linguagens $\{a\}$ e $\{\varepsilon\}$.
- Ø representa a linguagem vazia, que não reconhece nenhuma cadeia.
- Parênteses podem ser omitido. Precedência: *> > ∪.

Exemplos de ER's

- Seja $\Sigma = \{0,1\}$
 - 1 $0*10* = \{w | w \text{ contém um único } 1\}$
 - $\Sigma^*1\Sigma^* = \{w|w \text{ cont\'em pelo menos um s\'embolo } 1\}$
 - $\Sigma^*001\Sigma^* = \{w|w \text{ contém a cadeia } 001 \text{ como subcadeia}\}$
 - 4 $1^*(01^+)^* = \{w \mid \text{todo } 0 \text{ em } w \text{ \'e seguido por pelo menos um } 1\}$ • $R^+ \text{ \'e uma simplificac\~ao para } RR^*.$
 - **5** $(\Sigma\Sigma)^* = \{w|w \text{ é uma cadeia de comprimento par}\}$
 - **6** $01 \cup 10 = \{01, 10\}$
 - 7 $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w|w \text{ começa e termina no mesmo símbolo }\}$
 - 8 $(0 \cup \varepsilon)1^* = 01^* \cup 1^*$
 - $1^*\emptyset = \emptyset$
 - $\mathbf{11} \quad \emptyset^* = \{\varepsilon\}$

ER e Compiladores

- Expressões Regulares são úteis para construção de analisadores léxicos de linguagens de programação.
- Classes de símbolos como constantes núméricas, constantes literais, identificadores podem ser descritos usando expressões regulares.
- Seja $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, o conjunto dos dígitos decimais. Uma constante numérica pode ser reconhecida usando-se a seguinte expressão regular:

$$(+\cup-\cup\varepsilon)(D^+\cup D^+.D^*\cup D^*.D^+)$$

Conversão R \rightarrow AF

Teorema

Uma linguagem é regular sse alguma expressão regular a descreve

Se uma linguagem é descrita por uma **expressão regular**, então ela é regular.

Para converter R(expressão regular) num AFN(autômato):

$$R = a, L(R) = \{a\}$$

$$R=\varepsilon$$

$$R = \emptyset$$

4 $R = (R_1 \cup R_2)$, $R = (R_1 \circ R_2)$ e $R = (R_1)^*$ segue os esquemas apresentados para demonstração das operações fechadas sobre linguagens regulares para AFNs (Slides 37, 38, 39).

Conversão de $R = a(a \cup b)^*$ num AFN

Resultado da conversão AFN → AFD

Conversão AF \rightarrow R

Teorema

Uma linguagem é regular sse alguma expressão regular a descreve

Se uma linguagem é regular, então ela é descrita por uma **expressão regular**.

Para converte *AFN*(**autômato**) para *R*(**expressão regular**):

- Usamos um AFNG (autômato finito não determinístico generalizado)
- Convertemos AFDs para AFNGs.
- Convertemos *AFNGs* para *R* (expressões regulares)

Definição

Um autômato finito não determinístico generalizado M é uma 5-upla, $M=(Q,\Sigma,\delta,q_{\rm início},q_{\rm aceita})$

Onde:

- 1 Q é o conjunto finito de **estados**
- Σ é o conjunto finito de símbolos, o **alfabeto**
- 3 $\delta: (Q \{q_{\rm aceita}\}) \times (Q \{q_{\rm início}\}) \rightarrow R$ é a função de transição
- 4 q_{início} é o estado inicial
- **5** q_{aceita} é o **estado de aceitação**.

O símbolo R é a coleção de todas as expressões regulares sobre o alfabeto Σ .

Conversão

Rotina recursiva para converter o AFNG G na expressão R: CONVERTE (G)

- Seja k o número de estados de G
- 2 Se k=2, então G é $q_{\text{início}} \xrightarrow{R} q_{\text{aceita}}$, retorna R.
- 3 Se k > 2, criamos um G' eliminando um estado q_{rem} , substituindo pela expressão regular que o substitui, conforme esquema:

4 calcule CONVERT(G') e retorne o resultado

Exemplo

Minimização de AFDs

Um AFD M é dito ser um AFD **mínimo** para linguagem L(M) se não existe nenhum outro AFD para L(M) com um número menor de estados.

- Nenhum estado n\u00e3o alcan\u00e7\u00e1vel do estado inicial deve fazer parte de M.
- Deve-se determinar grupos de estados equivalentes e substituir cada grupo por um único estado.

Seja um AFD $M=(Q,\Sigma,\delta,q_0,F)$. Dois estados p e $q\in Q$ são ditos equivalentes, $p\approx q$, se e somente se:

para todo $w \in \Sigma^*, \hat{\delta}(p, w) \in F$ se e somente se, $\hat{\delta}(q, w) \in F$.

Minimização de AFDs

- Seja $[q] = \{q_1, q_2, ... q_n\}$ a classe de equivalência de q na partição induzida por \approx .
- Os estados $q_1, q_2, ... q_n$ podem ser substituidos por um único estado no AFD mínimo.

Definição

Seja um AFD $M=(Q,\Sigma,\delta,q_0,F)$. Um autômato reduzido correspondente a M é o AFD $M'=(Q',\Sigma,\delta',q_0',F')$, em que:

- $Q' = \{[q] | q \in Q\};$
- $\delta'([q], a) = [\delta(q, a)]$ para todo $q \in Q$ e $a \in \Sigma$;
- $q_0' = [q_0];$
- $F' = \{[q] | q \in F\}.$

Algoritmo de Minimização

■ Dividir o conjunto de estados em dois Grupos, o grupo G_1 do estados **finais** e o grupo G_2 dos estados **não-finais**:

•
$$G_1 = F = \{0, 2, 4\}$$

• $G_2 = Q - F = \{1, 3, 5\}$

Construir a tabela de transição onde, para cada estado é marcado o grupo do estado destino na transição, considerando cada símbolo do vocabulário:

■ Dividir o conjunto de estados em dois Grupos, o grupo G_1 do estados **finais** e o grupo G_2 dos estados **não-finais**:

•
$$G_1 = F = \{0, 2, 4\}$$

• $G_2 = Q - F = \{1, 3, 5\}$

Construir a tabela de transição onde, para cada estado é marcado o grupo do estado destino na transição, considerando cada símbolo do vocabulário:

	а	b
0	G_2	G_2
1	G_1	G_1
2	G_2	G_2
3	G_1	G_1
4	G_2	G_2
5	G_2	G_2

	а	b
0	G_2	G_2
1	G_1	G_1
2	G_2	G_2
3	G_1	G_1
4	G_2	G_2
5	G_2	G_2

■ Todos os estados do G_1 fazem as mesmas transições para estado de G_2 . No G_2 o estado 5 faz transições para grupos diferentes, logo pertence a outra classe de equivalência $G_3 = \{5\}$

	а	b
0	G_2	G_2
1	G_1	G_1
2	G_2	G_2
3	G_1	G_1
4	G_2	G_2
5	G_2	G_2

- Todos os estados do G_1 fazem as mesmas transições para estado de G_2 . No G_2 o estado 5 faz transições para grupos diferentes, logo pertence a outra classe de equivalência $G_3 = \{5\}$
- Construir a tabela de transição novamente considerando esses novos grupos:

$$G_1 = \{0, 2, 4\}, G_2 = \{1, 3\} \in G_3 = \{5\}$$

Grupos:

- $G_1 = \{0, 2, 4\}$
- $G_2 = \{1, 3\}$
- $G_3 = \{5\}$

- Grupos:
 - $G_1 = \{0, 2, 4\}$
 - $G_2 = \{1,3\}$
 - $G_3 = \{5\}$

	а	b
0	G_2	G ₃
1	G_1	G_1
2	G_2	G_2
3	G_1	G_1
4	G_2	G_2
5	G_3	G_3

■ Agora no grupo G₁, o estado 0 faz transições diferentes de 2 e
 4. Deve pertencer a outro grupo então.

■ Grupos:

•
$$G_1 = \{0\}$$

$$G_2 = \{2, 4\}$$

$$G_3 = \{1,3\}$$

$$G_4 = \{5\}$$

	а	b
0	G_3	G_4
1	G_2	G_2
2	G_3	G_3
3	G_2	G_2
4	G_3	G_3
5	G_4	G_4

■ Cada grupo G_n é uma classe de equivalência e vai definir um estado no autômato minimizado.

•
$$G_1 = \{0\}$$

$$G_2 = \{2,4\}$$

$$G_3 = \{1, 3\}$$

•
$$G_4 = \{5\}$$

	a	b
0	G ₃	G ₄
1	G_2	G_2
2	G ₃	G_3
3	G_2	G_2
4	G_3	G_3
5	G_4	G_4

•
$$G_1 = \{0\}$$

$$G_2 = \{2,4\}$$

$$G_3 = \{1, 3\}$$

$$G_4 = \{5\}$$

	а	b
0	G_3	G_4
1	G_2	G_2
2	G ₃	G_3
3	G_2	G_2
4	G_3	G_3
5	G_4	G_4

Resultado da Minimização

Agenda

- 1 Autômatos Finitos
- 2 Não Determinismo
- 3 Expressões Regulares
- 4 Linguagens Não Regulares
 - Teorema
 - O Lema do Bombeamento
 - Propriedades
- 5 Máquinas de Mealy e de Moore

Teorema

Teorema

Seja um AFD M de k estados, e $z \in L(M)$ tal que $|z| \ge k$. Então existem palavras u, v e w tais que:

- z = uvw;
- $v \neq \lambda$; e
- $uv^iw \in L(M)$ para todo $i \ge 0$

Teorema - resumindo

- Se L é regular é aceita por uma AFD M com k estados.
- Se M aceita um cadeia z maior que k símbolos, então alguns estados de M se repetem na verificação de z (imagem ao lado).
- Logo, z pode ser dividida em três partes z = uvw, onde $|uv| \le k$ e $|v| \ge 1$ é a parte que repete da cadeia z.
- Esse ciclo é "bombeado" na cadeia e para qualquer $i \ge 0$, $uv^i w$ é aceita pelo autômato.

Lema do Bombeamento

Lema

Seja L uma linguagem regular. Então existe uma constante k>0, tal que para qualquer palavra $z\in L$ existem u, v e w que satisfazem as seguintes condições:

- $\mathbf{1}$ z = uvw;
- $|uv| \leq k$;
- $v \neq \lambda$; e
- **4** $uv^iw \in L$ para todo $i \ge 0$

Uso do Lema do Bombeamento

Para provar que L, infinita, **NÃO** é regular usa-se:

- 1 supõe-se que *L* seja linguagem regular;
- 2 escolhe-se uma palavra z, com tamanho maior que k, a constante do LB.
- 3 mostra-se que, para toda decomposição de z em u, v e w, existe i tal que $uv^iw \notin L$.

Exemplo de prova

A linguagem $L = \{a^n b^n | n \in N\}$ não é regular.

- Suponha que L é regular. Seja k a constante da LB e seja $z = a^k b^k$.
- Como |z| > k, então existem u, v e w, tais que:
 - 1 z = uvw;
 - $|uv| \leq k$;
 - 3 $v \neq \lambda$; e
 - 4 $uv^i w \in L$ para todo $i \ge 0$
- Nesse caso v só tem **a**s, pois $z = uvw = a^k b^k$ e $|uv| \le k$, e v tem pelo menos um **a**, porque $v \ne \lambda$. Isso implica que $uv^2w = a^{k+|v|}b^k \notin L$,
- Logo a suposição original de que L é regular não pode ser confirmada.

Outro Exemplo de prova

A linguagem $L = \{xx | x \in \{0,1\}^*\}$ não é regular.

- Suponha que L é regular. Seja k a constante da LB e seja $z = 0^k 10^k 1$.
- Como |z| > k, então existem u, v e w, tais que:
 - 1 z = uvw;
 - $|uv| \leq k$;
 - 3 $v \neq \lambda$; e
 - 4 $uv^i w \in L$ para todo $i \ge 0$
- Sem a condição $|uv| \le k$, poderíamos "bombear" z se fizéssemos $u = w = \lambda$. Por essa condição v pode conter somente $\mathbf{0}$ s e $u = \lambda$; logo $uv^2w = 0^k0^k10^k1 \notin L$.
- Logo a suposição original de que L é regular não pode ser confirmada.

Agenda

- 1 Autômatos Finitos
- 2 Não Determinismo
- 3 Expressões Regulares
- 4 Linguagens Não Regulares
- 5 Máquinas de Mealy e de Moore
 - Máquinas de Mealy e Moore
 - Moore
 - Mealy

Moore e Mealy

- Máquinas de Mealy e de Moore são Autômatos com saída;
- Máquina de Moore associa uma saída a cada estado; e
- Máquina de Mealy associa uma saída a cada transição

Definição

Uma máquina de Moore é uma sextupla $(E, \Sigma, \Delta, \delta, \sigma, i)$ em que

- E (o conjunto de estados), Σ (o alfabeto de entrada), δ (a função de transição) e i (o estado inicial) são como em AFD's;
- ∆ é o alfabeto de saida; e
- ullet $\sigma: E
 ightarrow \Delta$ é a função de saída, uma função total.

Moore

Máquina de Moore que determina o número de 1's presentes nos dois últimos dígitos de uma palavra $\{0,1\}^*$.

Mealy

Definição

Uma máquina de Mealy é uma sextupla $(E, \Sigma, \Delta, \delta, \sigma, i)$ em que

- E (o conjunto de estados), Σ (o alfabeto de entrada), δ (a função de transição) e i (o estado inicial) são como em AFD's;
- Δ é o alfabeto de saida; e
- lacksquare $\sigma: E imes \Sigma o \Delta$ é a função de saída, uma função total.

Mealy

Máquina de Mealy que determina o número de 1's presentes nos dois últimos dígitos de uma palavra $\{0,1\}^*$.

