EECS240 - Spring 2010

Lecture 23: MOS Sample and Hold

Elad Alon Dept. of EECS

Acquisition Bandwidth

- Finite switch R → finite bandwidth
- Assuming constant V_{in} and C starts at 0V:

- · Leads to min. switch size for given bandwidth, resolution
 - · Linear settling calc. remember may only get T/2
- (Will C always start at 0V?)

 $v_{out}(t) = v_{in} \left(1 - e^{-t/\tau} \right)$

Switch R_{on} Non-Linearity

MOS Sample & Hold

Ideal Sampling

Practical Sampling

- Grab exact value of \mathbf{V}_{in} when switch opens
- kT/C noise
- · Limited bandwidth
- R_{sw} = f(V_{in}) → distortion
 Switch charge injection
- · Clock jitter

EECS240

Lecture 23

EECS240 Lecture 23

Switch Resistance

EECS240 Lecture 23

Sampling Distortion

Constant V_{GS} Sampling

- · Switch overdrive voltage is independent of signal
- Error from finite R_{ON} is linear (to first order)

EECS240 Lecture 23

Charge Injection

- "Extra" charge dumped onto holding capacitor
 - · Channel charge has to go somewhere
 - (Also get injection through Cov)
- Problems:
 - Offset
 - Distortion (error charge is function of $V_{\rm IN}$)

EECS240 Lecture 23

Constant V_{GS} Sampling Circuit

EECS240 Lecture 23

Worst-Case Error Example

channel charge: $Q_{CH} = WLC_{ox} \big(V_{DD} - V_{in} - V_{TH} \big)$

 $\max \text{ pedestal error}: \ V_{in} = V_{SS}$

 $\Delta V = \frac{10 \times 0.35 \times 5}{1000} (3 - 0.6) = \underline{42mV}$

Lecture 23 EECS240

Complete Circuit Clock Multiplier M7 & M13 for

Ref: A. Abo et al, "A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter," JSSC May 1999, pp. 599.

EECS240 Lecture 23

Dummy Switch

R=6K Cs=Cd-3pF W/L-18um/9um Vcl=15V: foll, risettime-20nS

- Depends on equal split between source and drain

Dummy switch is half width

• Is split equal?

Vin	UNCOMPENSATED SWITCH	COMPENSATED WITH DUMMY	8A LANCED SWITCH
Øv	-16ØmV	-45mV	6 m V
5 v	-105mV	-30mV	1 m V
10v	-40mV	-1.1 m V	0.5mV

Ref: Bienstman et al, JSSC 12/1980, pp. 1051.

Eichenberger et al, JSSC 8/1989, pp. 1143.

EECS240 Lecture 23

Charge Injection Analysis

- · Can perform more detailed, distributed analysis
 - See e.g. Wegmann et al, "Charge Injection in Analog MOS Switches," IEEE J. Solid-state Circuits, Dec. 1987.
 - · Results depend on how fast switch is turned off
- Note that SPICE doesn't do this (lumped model) uses "XPART" parameter instead:
 - XPART = 0: Source 60%, Drain 40%
 - XPART = 0.5: equal split
 - XPART = 1: 100% Drain

EECS240

Using Bottom-Plate Sampling

EECS240 Lecture 23

Rejecting Injection Error

EECS240

Lecture 23

Using Bottom-Plate Sampling

Ref: W. Yang, D. Kelly, I. Mehr, M. T. Sayuk, and L. Singer, "A 3-V 340mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input," IEEE Journal of Solid-State Circuits, vol. 36, pp. 1931 - 1936, December 2004 December 2001.

EECS240 Lecture 23

Bottom-Plate Sampling

EECS240

- Turn off Φ_{1a} first
 - · Injected charge is constant
 - Removed in differential output
- Switch Φ_{1b} opens later

 - C₂ disconnected → "zero" charge injected
- Is this useful?

• V2 = 0V...

Lecture 23