18. Mediation: Natural Direct and Indirect Effects

lan Lundberg Cornell Info 6751: Causal Inference in Observational Settings Fall 2022

25 Oct 2022

Learning goals for today

At the end of class, you will be able to:

- 1. Define natural direct and indirect effects
- 2. Decompose total effects into these components
- Understand how intermediate confounding complicates natural direct effects
- 4. Estimate natural direct and indirect effects

Recall from before: Controlled direct effects

Recall from before: Controlled direct effects

Direct effect: Close the library

$$\mathsf{E}\left(Y^{10}-Y^{00}\right)$$

Recall from before: Controlled direct effects

Direct effect: Close the library

$$E(Y^{10} - Y^{00})$$

Direct effect: Make everyone visit the library

$$E(Y^{11}-Y^{01})$$

Let M^a be the potential mediator value under treatment A = a

Let M^a be the potential mediator value under treatment A = a

Direct effect (0): Effect of the librarian visiting in a world where kids visit the library as if the librarian didn't visit the class

$$\mathsf{E}\left(Y^{1M^0}-Y^{0M^0}\right)$$

Let M^a be the potential mediator value under treatment A = a

Direct effect (0): Effect of the librarian visiting in a world where kids visit the library as if the librarian didn't visit the class

$$\mathsf{E}\left(Y^{1M^0}-Y^{0M^0}\right)$$

Direct effect (1): Effect of the librarian visiting in a world where kids visit the library as if the librarian visited the class

$$\mathsf{E}\left(Y^{1M^1}-Y^{0M^1}\right)$$

$$\mathsf{E}\!\left(Y^1-Y^0\right)$$
 Total effect

$$\mathsf{E}\Big(Y^1-Y^0\Big)$$
 Total effect $\mathsf{E}\Big(Y^{1M^1}-Y^{0M^0}\Big)$ since $Y^a=Y^{aM^a}$

$$E\left(Y^{1}-Y^{0}\right)$$

$$=E\left(Y^{1M^{1}}-Y^{0M^{0}}\right)$$

$$=E\left(Y^{1M^{1}}\underbrace{-Y^{1M^{0}}+Y^{1M^{0}}}_{\text{Add }0}-Y^{0M^{0}}\right)$$
Total effect

$$E\left(Y^{1}-Y^{0}\right) \qquad \text{Total effect}$$

$$=E\left(Y^{1M^{1}}-Y^{0M^{0}}\right) \qquad \text{since } Y^{a}=Y^{aM^{a}}$$

$$=E\left(Y^{1M^{1}}\underbrace{-Y^{1M^{0}}+Y^{1M^{0}}-Y^{0M^{0}}}\right)$$

$$=\underbrace{E\left(Y^{1M^{1}}-Y^{1M^{0}}\right)}_{\text{Add 0}} +\underbrace{E\left(Y^{1M^{0}}-Y^{0M^{0}}\right)}_{\text{Direct Effect}}$$

$$\underbrace{\left(Y^{1M^{1}}-Y^{1M^{0}}\right)}_{\text{Effect through }M)} +\underbrace{E\left(Y^{1M^{0}}-Y^{0M^{0}}\right)}_{\text{Effect not through }M)}$$

Librarian Visits Class
$$A \xrightarrow{\text{Indirect}} M \xrightarrow{\text{Effect}} Y \xrightarrow{\text{Kids Read}} \text{Books}$$

Kids Visit the Library Direct Effect

$$\tau(1) = \mathsf{E}(Y^{1M^1} - Y^{1M^0})$$

$$\tau(0) = \mathsf{E}(Y^{0M^1} - Y^{0M^0})$$

Indirect effect (1): Effect of visiting the library as much as you would if the librarian did vs did not visit, in a world where the librarian visits

$$\tau(1) = \mathsf{E}(Y^{1M^1} - Y^{1M^0})$$

$$\tau(0) = \mathsf{E}(Y^{0M^1} - Y^{0M^0})$$

Indirect effect (1): Effect of visiting the library as much as you would if the librarian did vs did not visit, in a world where the librarian visits

$$\tau(1) = \mathsf{E}(Y^{1M^1} - Y^{1M^0})$$

Indirect effect (0): Effect of visiting the library as much as you would if the librarian did vs did not visit, in a world where the librarian does not visit

$$\tau(0) = \mathsf{E}(Y^{0M^1} - Y^{0M^0})$$

Controlled direct effect

$$\frac{1}{n}\sum_{i=1}^n\left(Y_i^{11}-Y_i^{01}\right)$$

$$\frac{1}{n}\sum_{i=1}^n \left(Y_i^{1M_i^1} - Y_i^{0M_i^1}\right)$$

Controlled direct effect

$$\frac{1}{n}\sum_{i=1}^n\left(Y_i^{11}-Y_i^{01}\right)$$

 Y_i^{11} can be observed in an experiment — Assign A = 1 and M =

— Assign
$$A = 1$$
 and $M = 1$

Natural direct effect

$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_{i}^{1M_{i}^{1}} - Y_{i}^{0M_{i}^{1}} \right)$$

Controlled direct effect

$$\frac{1}{n}\sum_{i=1}^n \left(Y_i^{11} - Y_i^{01}\right)$$

 Y_i^{11} can be observed in an experiment

— Assign A = 1 and M = 1

 Y_i^{01} can be observed in an experiment

— Assign A=0 and M=1

Natural direct effect

$$\frac{1}{n}\sum_{i=1}^n \left(Y_i^{1M_i^1} - Y_i^{0M_i^1}\right)$$

Controlled direct effect

$$\frac{1}{n}\sum_{i=1}^n\left(Y_i^{11}-Y_i^{01}\right)$$

 Y_i^{11} can be observed in an experiment

— Assign
$$A = 1$$
 and $M = 1$

 Y_i^{01} can be observed in an experiment

— Assign
$$A = 0$$
 and $M = 1$

Natural direct effect

$$\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}^{1M_{i}^{1}}-Y_{i}^{0M_{i}^{1}}\right)$$

 $Y_i^{1M_i^1}$ can be observed in an experiment — Assign A = 1

Controlled direct effect

$$\frac{1}{n}\sum_{i=1}^n \left(Y_i^{11} - Y_i^{01}\right)$$

 Y_i^{11} can be observed in an experiment

— Assign
$$A = 1$$
 and $M = 1$

 Y_i^{01} can be observed in an experiment

— Assign
$$A = 0$$
 and $M = 1$

Natural direct effect

$$\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}^{1M_{i}^{1}}-Y_{i}^{0M_{i}^{1}}\right)$$

$$Y_i^{1M_i^1}$$
 can be observed in an experiment — Assign $A = 1$

$$Y_i^{0M_i^1}$$
 cannot be observed in an experiment

— Because M_i^1 is unknown!

¹Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(1), 5-51.

Crossover design¹

¹Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(1), 5-51.

Crossover design¹

▶ In period 1, assign A = a. See outcome $M = M^a$

¹Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(1), 5-51.

Crossover design¹

- ▶ In period 1, assign A = a. See outcome $M = M^a$
- ▶ In period 2, assign A = a'. Assign $M = M^a$. See $Y^{a'M^a}$

¹Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(1), 5-51.

Crossover design¹

- ▶ In period 1, assign A = a. See outcome $M = M^a$
- ▶ In period 2, assign A = a'. Assign $M = M^a$. See $Y^{a'M^a}$

Works an assumption of no carry-over: current treatment is all that affects current outcome

¹Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(1), 5-51.

If Z is measured,

- ► The controlled direct effect E(Y^{1a} Y^{0a}) is nonparametrically identified
- ▶ but the natural direct effect $E(Y^{1M^a} Y^{0M^a})$ is not

Why?

Why? For CDE:

$$E(Y^{10}) = E_{Z|A=1} (E(Y | A=1, M=0, Z))$$

Why? For NDE:

$$\mathsf{E}(Y^{1M^0}) = \mathsf{E}_{Z|A=1} \left(\mathsf{E} \left(Y \mid A=1, M=M^0, Z \right) \right)$$

but we never have $M=M^0$ with A=1, so that doesn't work

For NDE, this setting is nonparametrically identified

For NDE, this setting is nonparametrically identified

$$E(Y^{1M^0}) = E(Y \mid A = 1, M = M^0)$$

Librarian Visits Class
$$A \xrightarrow{\text{Indirect}} M \xrightarrow{\text{Effect}} Y \xrightarrow{\text{Kids Read}} Books$$

Note that $A \xrightarrow{\text{Note of the Library}} A \xrightarrow{\text{Note of the Library}} Y \xrightarrow{\text{Note of the Li$

$$E(Y^{1M^0}) = E(Y \mid A = 1, M = M^0)$$

= $P(M^0 = 1)E(Y \mid A = 1, M = 1)$

Librarian Visits Class
$$A \xrightarrow{\text{Indirect}} M \xrightarrow{\text{Effect}} Y \xrightarrow{\text{Kids Read}} Books$$

Rids Visit the Library

Direct Effect

$$E(Y^{1M^0}) = E(Y \mid A = 1, M = M^0)$$

$$= P(M^0 = 1)E(Y \mid A = 1, M = 1)$$

$$+ P(M^0 = 0)E(Y \mid A = 1, M = 0)$$

$$= P(M = 1 \mid A = 0)E(Y \mid A = 1, M = 1)$$

Librarian Visits Class
$$A \xrightarrow{\text{Indirect}} M \xrightarrow{\text{Effect}} Y \xrightarrow{\text{Kids Read}} Y \xrightarrow{\text{Books}} Y \xrightarrow{\text{Books$$

$$= P(M^{0} = 1)E(Y \mid A = 1, M = 1)$$

$$+ P(M^{0} = 0)E(Y \mid A = 1, M = 0)$$

$$= P(M = 1 \mid A = 0)E(Y \mid A = 1, M = 1)$$

$$+ P(M = 0 \mid A = 0)E(Y \mid A = 1, M = 0)$$

For NDE, this setting is nonparametrically identified

Librarian Visits Class
$$A \xrightarrow{\text{Indirect}} M \xrightarrow{\text{Effect}} Y \xrightarrow{\text{Kids Read}} Books$$

Kids Visit the Library

Direct Effect

$$E(Y^{1M^0}) = E(Y \mid A = 1, M = M^0)$$

$$E(Y^{1M^0}) = E(Y \mid A = 1, M = M^0)$$

$$= P(M^0 = 1)E(Y \mid A = 1, M = 1)$$

$$+ P(M^0 = 0)E(Y \mid A = 1, M = 0)$$

$$= P(M = 1 \mid A = 0)E(Y \mid A = 1, M = 1)$$

$$+ P(M = 0 \mid A = 0)E(Y \mid A = 1, M = 0)$$

Identified because no potential outcomes remain!

²Method implemented in the R package mediation and described on p. 773: Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789.

1. Model $E(M \mid X, A)$

²Method implemented in the R package mediation and described on p. 773: Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789.

- 1. Model $E(M \mid X, A)$
 - ► Predict M^a for all a

²Method implemented in the R package mediation and described on p. 773: Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789.

- 1. Model $E(M \mid X, A)$
 - ► Predict M^a for all a
- 2. Model $E(Y \mid X, A, M)$

²Method implemented in the R package mediation and described on p. 773: Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789.

- 1. Model $E(M \mid X, A)$
 - ightharpoonup Predict M^a for all a
- 2. Model $E(Y \mid X, A, M)$
 - ▶ Predict Y^{a',M^a} for any pair a', a

²Method implemented in the R package mediation and described on p. 773: Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789.

- 1. Model $E(M \mid X, A)$
 - ightharpoonup Predict M^a for all a
- 2. Model $E(Y \mid X, A, M)$
 - ▶ Predict Y^{a',M^a} for any pair a', a
- 3. Average over the sample.

²Method implemented in the R package mediation and described on p. 773: Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789.

- 1. Model $E(M \mid X, A)$
 - ► Predict M^a for all a
- 2. Model $E(Y \mid X, A, M)$
 - ▶ Predict Y^{a',M^a} for any pair a', a
- 3. Average over the sample.

Bootstrap for confidence intervals

²Method implemented in the R package mediation and described on p. 773: Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105(4), 765-789.

Summary: Mediation decomposes causal effects

Controlled direct effects Example: $E(Y^{10} - Y^{00})$

- ▶ Idea: Intervene to hold the mediator at a fixed value
- ► ✓ Identified in a sequentially randomized experiment
- ▶ ✓ Identifiable with observed intermediate confounding
- ► X Direct and indirect effects are not additively decomposable

Natural direct and indirect effects Example: $E(Y^{1M^0} - Y^{0M^0})$

- ► Idea: Intervene to hold the mediator at the value in the absence of treatment
- ightharpoonup X Not identified³ in an experiment— Y^{1M^0} is unobservable
 - ► Crossover experiments can help with an extra assumption
- X Not identifiable with any intermediate confounding
- ▶ ✓ Direct and indirect effects are additively decomposable

³Each use of "identified" refers to nonparametric identification. Parametric identification is sometimes possible when nonparametric identification is not.

Learning goals for today

At the end of class, you will be able to:

- 1. Define natural direct and indirect effects
- 2. Decompose total effects into these components
- Understand how intermediate confounding complicates natural direct effects
- 4. Estimate natural direct and indirect effects

Let me know what you are thinking

tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!

Natural direct and indirect effects in SWIGs

Direct effect under mediator $M = M^1$

$$A \mid 1 \xrightarrow{M} M \mid M^1 \xrightarrow{Y} Y \qquad - \qquad A \mid 0 \xrightarrow{M} M \mid M^1 \xrightarrow{Y} Y$$

Direct effect under mediator $M = M^0$

$$A \mid 1 \longrightarrow M \mid M^0 \longrightarrow Y \qquad \qquad A \mid 0 \longrightarrow M \mid M^0 \longrightarrow Y$$

Indirect effect under treatment A = 1

$$A \mid 1 \xrightarrow{M} \mid M^1 \xrightarrow{Y} \qquad A \mid 1 \xrightarrow{M} \mid M^0 \xrightarrow{Y} Y$$

Indirect effect under treatment A = 0

$$A \mid 0 \xrightarrow{M} \mid M^1 \xrightarrow{Y} Y \qquad - \qquad A \mid 0 \xrightarrow{M} \mid M^0 \xrightarrow{Y} Y$$