Diseño de Bases de Datos

Normalización

Contenidos

- Problemas del mal diseño
- Dependencia Funcionales
- Descomposición / Propiedades Deseables
- Conservación de la Información
- Dependencias Funcionales / Conservación
- Formas Normales:1FN,2FN,3FN,FNBC
- Dependencias Multivaluadas
- 4 Forma Normal

Proveedores (cod-proveedor, nom-proveedor, cod-insumo, precio) se divide en:

DatosProveedor (cod-proveedor, nom-proveedor)

Suministros (cod-proveedor, cod-insumo, precio)

Para la consulta: "nombre del proveedor que vende el insumo de código 103"

 Hacer el join natural entre DatosProveedor y Suministros

Una división mal hecha puede traer problemas:

IP (cod-insumo, precio)NDP (cod-proveedor, nom-proveedor, precio)

Pierde información

0	odprov	nomprov	codinsumo	precio
	P1	Silva	100	200
	P1	Silva	103	70
	P2	Morales	201	200
	P3	Gallardo	305	100
	P3	Gallardo	390	70
_				

PI			NDP			
codinsumo	precio	codprov	nomprov	precio		
100	200	P1	Silva	200		
103	70	P1	Silva	70		
201	200	P2	Morales	200		
305	100	Р3	Gallardo	100		
390	70	Р3	Gallardo	70		

Ejemplo (2)

El join natural

entre IP y NDP

"nombre de los proveedok que vende el insumo de código 103"

codprov	nomprov	codinsumo	precio
P1	Silva	100	200
P1	Silva	201	200
P1	Silva	103	70
P1	Silva	390	70
P2	Morales	100	200
P2	Morales	201	200
P3	Gallardo	305	100
P3	Gallardo	103	70
P3	Gallardo	390	70

Ρ1 Silva 103 70 P3 Gallardo 103

Hay más información que en la tabla original

Otro ejemplo: Proyección

 $\Pi_{\text{placa, marca}}(Auto)$

 $\prod_{\text{marca,modelo,color}} (Auto)$

Producto Natural

Auto

R	<u>patent</u> e	marca
	MBO34L	Ford
	LDA75K	Toyota
	ADA89A	Fiat
	LBF78G	Toyota
	XSA67D	Ford

Q	marca	modelo	color
	Ford	Ka	verde
	Toyota	corollaXL	blanco
	Fiat	siena	gris
	Ford	Ka	rojo

<u>patent</u> e	marca	modelo	color
MBO34L	Ford	Ka	verde
MBO34L	Ford	Ka	rojo
LDA75K	Toyota	corollaXL	blanco
ADA89A	Fiat	siena	gris
LBF78G	Toyota	corollaXL	blanco
XSA67D	Ford	Ka	verde
XSA67D	Ford	Ka	rojo

Descomposición

- Es el reemplazo de una relación R(A₁, A₂, ..., A_n), por una colección de relaciones R₁, R₂, ..., R_n
 obtenidas de las *proyecciones* de R y tal que la relación resultado de los productos naturales de R₁
 * R₂ * ... * R_n tiene el mismo esquema que R.
- Ej: Si tenemos:

$$R_1 = \prod_{\text{placa, color, modelo}} (\text{Auto})$$

$$R_2 = \prod_{\text{modelo, marca}} (\text{Auto})$$

...resulta que:

$$R_1 * R_2 = Auto ?$$

R * Q ≠ Auto

¿¿¿ Auto = R * Q ???

Auto

Auto	<u>patent</u> e	marca	modelo	color
	MBO34L	Ford	Ka	verde
	MBO34L	Ford	Ka	rojo
	LDA75K	Toyota	corollaXL	blanco
	ADA89A	Fiat	siena	gris
	LBF78G	Toyota	corollaXL	blanco
	XSA67D	Ford	Ka	verde
	XSA67D	Ford	Ka	rojo

La relación original

¿Qué sucedió aquí?

modelo patente color marca MBO34L Ford Ka verde corollaXL LDA75K Toyota blanco Fiat ADA89A siena gris LBF78G Toyota corollaXL blanco XSA67D Ford Ka rojo

R * Q ≠ Auto

¿¿¿ Auto = R * Q ???

Auto	<u>patent</u> e	marca	modelo	color
	MBO34L	Ford	Ka	verde
	MBO34L	Ford	Ka	rojo
	LDA75K	Toyota	corollaXL	blanco
	ADA89A	Fiat	siena	gris
	LBF78G	Toyota	corollaXL	blanco
	XSA67D	Ford	Ka	verde
	XSA67D	Ford	Ka	rojo

La relación original

...En el fondo, se perdió información...

modelo Auto patente color marca MBO34L Ford Ka verde LDA75K Toyota corollaXL blanco Fiat ADA89A siena gris LBF78G Toyota corollaXL blanco XSA67D Ford Ka rojo

Descomposición sin Pérdida

- Es la descomposición de una relación R en R_1 , R_2 , ..., R_n tal que *para toda extensión de R* se tiene que $R = R_1 * R_2 * ... * R_n$.
- El problema de la concepción de bases de datos relacionales se reduce a la descomposición sin pérdida de las relaciones universales con todos sus atributos, en subrelaciones que no tengan anomalías

Descomposición sin Pérdida

¿A dónde nos puede llevar una mala descomposición?

¿Y una descomposición insuficiente?

Anomalías de Actualización

Prof	Depto	Cédula	Nombre_Prof	Fecha_Nac	Código_Depto	Nombre_Depto
		9.980.623	Pedro Pérez	01/06/73	01	Computación
		10.334.890	Luis García	01/06/76	02	Control
		12.334.222	Mario Lobo	01/06/77	01	Computación
		13.434.122	José Rivero	01/06/78	03	Investigación
		13.566.002	Frank Chacón	01/12/78	NULL	NULL
		17.544.672	Miguel Bravo	01/06/84	02	Control
		18.244.670	Andrés León	01/06/85	01	Computación

¿Qué problemas o anomalías se pueden producir en esta relación?

¿Qué "cosas malas" pueden ocurrir?

Anomalías de Actualización

Prof_	Depto	Cédula	Nombre_Prof	Fecha_Nac	Código_Depto	Nombre_Depto
		9.980.623	Pedro Pérez	01/06/73	01	Computación
		10.334.890	Luis García	01/06/76	02	Control
		12.334.222	Mario Lobo	01/06/77	01	Computación
		13.434.122	José Rivero	01/06/78	03	Investigación
		13.566.002	Frank Chacón	01/12/78	NULL	NULL
		17.544.672	Miguel Bravo	01/06/84	02	Control
		18.244.670	Andrés León	01/06/85	01	Computación

Anomalías de Inserción: Cada vez que se inserta un profesor es necesario repetir los datos del departamento

Anomalías de Modificación: Cada vez se actualiza un departamento es necesario hacer los cambios en cada una de las tuplas correspondientes a ese departamento

Anomalías de Eliminación: Si se elimina a "José Rivero" asociado a un departamento se pierde la información del departamento

Normalización

¿Qué es normalizar una base de datos?

Es encontrar una descomposición adecuada de la "relación universal" de la base de datos que nos permite cumplir con los criterios de eficacia, ausencia de redundancia, evolución, comprensión, flexibilidad enunciados anteriormente

Normalización

NUEVAMENTE:

¿Qué es normalizar una base de datos?

Es llevar el esquema de la base de datos a alguna de las formas normales . . .

. . . y para eso, necesitamos conocer y comprender el concepto de "*dependencia funcional*"

- Son restricciones de integridad que permiten conocer que relaciones existen entre dos o más atributos del mundo real.
- Son propiedades inherentes al contenido semántico de los datos, que se han de cumplir para cualquier extensión del esquema de relación.
- Informalmente, Y depende funcionalmente de X si cada valor de X tiene asociado siempre el mismo valor de Y en una relación R que contiene a X e Y como atributos.

El resultado de una consulta cualquiera

(por ejemplo, de un producto entre la tabla profesor y departamento):

Cédula	Fecha_Nac	Sexo	Código_Depto	Nombre_Depto
9.980.623	06/01/73	M	01	Computación
10.334.890	06/01/76	F	01	Computación
17.544.672	06/01/84	M	03	Investigación
12.334.222	06/01/77	M	02	Control
13.566.002	12/01/78	F	02	Control
10.334.890	06/01/76	F	02	Control
12.334.222	06/01/77	M	01	Computación
13.434.122	06/01/78	F	03	Investigación
13.566.002	12/01/78	F	03	Investigación
17.544.672	06/01/84	M	02	Control
18.244.670	06/01/85	M	01	Computación

Cédula	Fecha_Nac	Sexo	Código_Depto	Nombre_Depto
9.980.623	06/01/73	M	01	Computación
10.334.890	06/01/76	F	01	Computación
17.544.672	06/01/84	M	03	Investigación
12.334.222	06/01/77	M	02	Control
13.566.002	12/01/78	F	02	Control
10.334.890	06/01/76	F	02	Control
12.334.222	06/01/77	M	01	Computación
13.434.122	06/01/78	F	03	Investigación
13.566.002	12/01/78	F	03	Investigación
17.544.672	06/01/84	M	02	Control

•¿Qué características destacan en la información de los profesores?

Μ

01

•¿Se repite la información de los profesores?

06/01/85

- •¿Que sucede con los atributos Fecha_Nac y Sexo con respecto a la cédula?
- •¿Qué relaciones existen?

18.244.670

Computación

Cédula	Fecha_Nac	Sexo	Código_Depto	Nombre_Depto
9.980.623	06/01/73	М	01	Computación
10.334.890	06/01/76	F	01	Computación
17.544.672	06/01/84	М	03	Investigación
12.334.222	06/01/77	М	02	Control
13.566.002	12/01/78	F	02	Control
10.334.890	06/01/76	F	02	Control
12.334.222	06/01/77	М	01	Computación
13.434.122	06/01/78	F	03	Investigación
13.566.002	12/01/78	F	03	Investigación
17.544.672	06/01/84	М	02	Control
18.244.670	06/01/85	М	01	Computación

¿Y con respecto a la información de los departamentos?

¿Se repite?

¿Qué ocurre con los atributos de las distintas filas?

Cédula	Fecha_Nac	Sexo	Código_Depto	Nombre_Depto
9.980.623	06/01/73	M	01	Computación
10.334.890	06/01/76	F	01	Computación
17.544.672	06/01/84	M	03	Investigación
12.334.222	06/01/77	M	02	Control
13.566.002	12/01/78	F	02	Control
10.334.890	06/01/76	F	02	Control
12.334.222	06/01/77	M	01	Computación
13.434.122	06/01/78	F	03	Investigación
13.566.002	12/01/78	F	03	Investigación
17.544.672	06/01/84	M	02	Control
18.244.670	06/01/85	M	01	Computación

Son restricciones de integridad que permiten conocer que interrelaciones existen entre los atributos del mundo real

Caso de Auto

Se viola la dependencia funcional *placa→color*

Carro	placa	marca	modelo	color
	MBO34L	Ford	Ka	verde
	MBO34L	Ford	Ka	rojo
	LDA75K	Toyota	corollaXL	blanco
	ADA89A	Fiat	siena	gris
	LBF78G	Toyota	corollaXL	blanco
	XSA67D	Ford	Ka	verde
	XSA67D	Ford	Ka	rojo

Carro	placa	marca	modelo	color
	MBO34L	Ford	Ka	verde
	LDA75K	Toyota	corollaXL	blanco
	ADA89A	Fiat	siena	gris
	LBF78G	Toyota	corollaXL	blanco
	XSA67D	Ford	Ka	rojo

Se cumplen todas las dependencias funcionales

Se viola la dependencia funcional modelo→marca

				_
Carro	placa	marca	modelo	color
	MBO34L	Ford	Ka	verde
	XXR34L	Chrysler	Ka	rojo
	LDA75K	Toyota	corollaXL	blanco
	ADA89A	Fiat	siena	gris
	LBF78G	Toyota	corollaXL	blanco

Sea R una relación con atributos $(a_1, a_2, ... a_n)$, y sean X e Y dos subconjuntos de los atributos a_i . Se dice que Y depende funcionalmente de X y se anota

$$X \rightarrow Y$$

Si para todo par de tuplas t_1 y t_2 se cumple

$$t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

Dependencia Funcional - Ejemplo

Proveedores (cod-proveedor, nom-proveedor, cod-insumo, precio)

```
cod-proveedor → nom-proveedor (cod-proveedor, cod-insumo) → precio
```

Otra interpretación

```
cod-proveedor → nom-proveedor cod-insumo → precio
```

Las dependencias funcionales

- sirven para capturar propiedades del mundo real
- dan semántica a las tablas
- definen restricciones

Clave

Un subconjuto K de los atributos $(a_1, a_2, ..., a_n)$, de una relación K es clave si:

- $K \rightarrow (a_1, a_2, ..., a_n), y$
- no existe $Y \subset K$ tal que $Y \rightarrow (a_1, a_2, ..., a_n)$

Nota: si existe
$$K$$
 $C X y X \rightarrow (a_1, a_{2, ...} a_n) y$
 $K \rightarrow (a_1, a_{2, ...} a_n),$

entonces X es superclave o clave candidata

Clausura de un conjunto de DPs

 Deducción de nuevas dfs a partir de un conjunto de dfs

$$R(A,B,C,G,H,I)$$
 $dfs:$
 $A \rightarrow B \quad (1)$
 $A \rightarrow C$
 $CG \rightarrow H$
 $CG \rightarrow I$
 $B \rightarrow H \quad (2)$

si
$$A \rightarrow B \Rightarrow t_1[A] = t_2[A]$$

entonces $t_1[B] = t_2[B]$ (1)
 $y \quad t_1[H] = t_2[H]$ (2)

entonces
$$A \rightarrow H$$

Reglas de Inferencia de DF

Reflexibilidad:

Si $Y\subseteq X\subseteq R$ entonces $X\longrightarrow Y$ independientemente de F . Por ejemplo, $A\longrightarrow A$ y $AB\longrightarrow A$

Aumentación:

Si $X \longrightarrow Y$ pertenece a F, y $Z \subseteq R$, entonces $X Z \longrightarrow Y Z$.

Transitividad:

Si $X \longrightarrow Y$ pertenece a F, y también $Y \longrightarrow Z$ pertenece a F, entonces $X \longrightarrow Z$.

Reglas de Inferencia de DF (2)

A partir de los axiomas básicos se deducen:

- Unión: Si $X \longrightarrow Y$ y $X \longrightarrow Z$, entonces $X \longrightarrow Y$ Z.
- Descomposición: Si $X \longrightarrow Y Z$, entonces $X \longrightarrow Y y X \longrightarrow Z$.

- Seudo-Transitividad: Si $X \longrightarrow Y$ y $WY \longrightarrow Z$, entonces $XW \longrightarrow Z$.
- También, todo atributo se determina así mismo $A \longrightarrow A$

Clausura de un Conjunto de Atributos

Si X es un conjunto de atributos de una relación R, se llama clausura de X, denotado como X^+ , a los atributos determinados funcionalmente por X bajo un conjunto de dfs F.

```
resultado:=x
mientras (hay cambios en resultado)
para cada df y \rightarrow z en F
si y \subseteq resultado \Rightarrow resultado:=resultado <math>\cup z
```

AG⁺

$$R(A,B,C,G,H,I)$$

 $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$

AG⁺

$$R(A,B,C,G,H,I)$$

 $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$

- 1. resultado = A,G
- 2. resultado = A,G,B
- 3. resultado=A,G,B,C
- 4. resultado=A,G;B;C;H
- 5. resultado = A,G,B,C,H,I

AG es superclave

Propiedades Deseables de la Descomposición

No pérdida de información

- Conservar las dependencias funcionales
 - Perder dfs significa perder restricciones.

No pérdida de información

$$R_1 \cap R_2 \rightarrow R_1$$

$$R_1 \cap R_2 \rightarrow R_2$$

Proveedores (cod-proveedor, nom-proveedor, cod-insumo, precio)

cod-proveedor → nom-proveedor
(cod-proveedor, cod-insumo) → precio

$$R_1$$
=(cod-proveedor, nom-proveedor)
 R_2 =(cod-proveedor, cod-insumo, precio)

$$R_1 \cap R_2 = (cod - proveedor) \rightarrow cod - proveedor, nom - proveedor$$

Conservación de las DFs: ejemplo

 Cuando se dividen las tablas puede ocurrir que se pierdan df.

[ciudad,calle,codigoPostal]

codigoPostal → ciudad | ciudad,calle | → codigoPostal

codigoPostal → ciudad

Si las dependencias se preservan en la división no hay problema.

$$R_1 = |codigoPostal,ciudad|$$

 $R_2 = |codigoPostal|$

Sea F un conjunto de dfs en el esquema $R\,$ y $R_1,\;R_2,\dots R_n$ una descomposición de R .

La restricción de F a $R_{\rm i}$ es el conjunto de $F_{\rm i}$ de todas las dfs en F^+ que incluye solo atributos de $R_{\rm i}$.

Sea F_1 , F_2 ,... F_n el conjunto de dfs que se prueban sobre R_1 , R_2 , ... R_n respectivamente.

Sea
$$F'=F_1 \cup F_2 \cup ... \cup F_n$$
,

si **F'+= F +** entonces **la descomposición conserva las dfs.**

Nota: F' puede ser distinto a F

Conservación de las DFs: Algoritmo


```
x \rightarrow y???

resultado:=x
mientras\ (hay\ cambios\ en\ resultado\ )
para\ i=1\quad hasta\quad n
resultado:=resultado \cup \left(\left(resultado\ \cap R_i\right)^+ \cap R_i\right)
```

para determinar si F' cubre a F, el algoritmo toma cada $X \to y$ en F y determina si X^+ calculado sobre F' contiene a Y,

Ejemplo

$$R(A,B,C,D)$$

 $F = \{A \rightarrow B,B \rightarrow C,C \rightarrow D,D \rightarrow A\}$

$$R_1 = (A,B)$$
 $A \rightarrow B, B \rightarrow A,$
 $R_2 = (B,C)$ $B \rightarrow C, C \rightarrow B$
 $R_3 = (C,D)$ $C \rightarrow D, D \rightarrow C$

qué pasa con $D \rightarrow A$?

Formas Normales Basadas en Clave Primaria

- Superclave, clave, clave candidata, atributo primo
- Formas normales
 - 1Nf
 - 2NF
 - 3NF
 - BCNF
- Descomposición a 3NF

Superclave, clave, clave candidata, clave primaria

$$R = \{A_1, A_2, \ldots, A_n\}$$

 $S \subset R$ es superclave si $\forall t_1, t_2$ en ningun posible estado permitido de r de R, $t_1[S] = t_2[S]$

Una clave *K* es superclave *y* además si se le quita un atributo cualquiera no deja de ser clave

- Clave primaria es un clave elegida arbitrariamente entre las claves candidatas
- Atributo primo, es un atributo que pertenece a alguna clave candidata

• Una relación ${\sf R}$ está en 1NF si los dominios utilizados sólo contienen valores atómicos o escalares

rut_cliente	deuda
1111-1	(10.000,30/4/93),(10.000,30/5/93),(10.000,30/6/93)
9999-9	(20.000,30/4/93),(10.000,30/5/93)

rut_cliente	monto	fecha_vencimiento
1111-1 1111-1 1111-1 9999-9 9999-9	10.000 10.000 10.000 20.000 20.000	30/4/93 30/5/93 30/6/93 30/4/93 30/5/93

Una relación R está en 2FN si está en 1FN si no hay atributos no primos que dependan parcialmente de la clave primaria de R .

dependencias total y parcial

 $X \to Y$ es una *dependencia total* si la eliminación de cualquier atributo A de X hace que la dependencia deje de ser válida.

 $X \rightarrow Y$ es una dependencia parcial si la eliminación de cualquier atributo A de X hace que la dependencia siga siendo válida.

Otro ejemplo

PROVEEDORES(codprov, nomprov, codinsumo, precio)

codprov → nomprov ← parcial

 $(codprov, codinsumo) \longrightarrow precio$

Llevar a 2NF

Emp—Proy dni,# proyecto,horasTrabajadas,nomApellido,nombreProy,lugarProy

dni ,# proyecto → horasTrabajadas
dni → nomApellido
proyecto → nombreProy,lugarProy

Emp−Proy(dni,# proyecto,horasTrabajadas)
dni,# proyecto → horasTrabajadas

Empleado <u>dni.</u>nomApellido dni → nomApellido

Proyecto <u>proyecto,no</u>mbreProy,lugarProy proyecto → nombreProy,lugarProy

Hacer que los atributos no primos estén asociados sólo a la parte de la clave primaria de la que dependen totalmente

La 3NF se basa en el concepto de dependencia transitiva

 $\begin{array}{c} X \to Y \\ \text{ es una } \textit{dependencia transitiva} \text{ si existe un conjunto} \\ \text{de atributos } Z \\ \text{que no sea subconjunto de la clave primaria} \\ \text{de } R \\ \text{y se cumplen que } X \to Z \\ \text{y} \\ Z \to Y \\ \text{.} \end{array}$

Emp – Depto nomApellido, dni, fechaNac, direccion, # depto, nombreDepto, dni GerenteDpto

```
dni → nomApellido,fechaNac,direccion ,# depto
depto → nombreDepto,dniGerenteDpto
dni → dniGerenteDpto ← ______es transitiva
```


• Una relación R está en 3FN si está en 2FN y ningún atributo no primo de R depende transitivamente de la clave primaria.

Una relación o tabla R está en 3FN si está en 2FN, y todas las dependencias funcionales $X \longrightarrow A$, con $X \subseteq R$ y $A \in R$ que se cumplen, son de alguno de los siguientes tipos:

- $X \longrightarrow A$ es trivial (e.g., la tabla es toda llave).
- X es o contiene una llave (superllave).
- A está contenido en una llave para R.

Ejemplo

Emp – Depto nomApellido,dni,fechaNac,direccion,#depto,nombreDepto,dniGerenteDpto

dni → nomApellido,fechaNac,direccion ,# depto depto → nombreDepto,dniGerenteDpto dni → dniGerenteDpto ← es transitiva

- La diferencia entre 2NF y 3NF es que en 3NF no se admiten dependencias entre dos lados que no estén en la clave
 - Todos los atributos no primos dependen de toda la clave (2NF) y sólo de la clave (3NF)

Otro ejemplo

ciudad,calle,codigoPostal

codigoPostal → ciudad |ciudad,calle| → codigoPostal

Ejemplos (1)

R=(dni, #cta, saldo, nyap)
 dni → nyap
 #cta → saldo, dni

2. R=(<u>dni</u>, <u>#cta</u>, saldo, nyap)dni → nyap#cta → saldo

Ejemplos (2)

1. R=(dni, #cta, saldo, nyap)dni → nyap#cta → saldo, dni

R1=(dni, #cta, saldo)
 R2=(dni, nyap)

Ejercicios ...


```
Lotes id Propieda d, n Municipio, #lote, área, precio, tasa Fiscal id Propieda d → n Municipio, #lote, área, precio, tasa Fiscal nombre Municipio, #lote → id Propieda d, área, precio, tasa Fiscal n Municipio → tasa Fiscal
```

área → precio

nMunicipio → tasaFiscal

```
idPropiedad → precio ?????

área → precio

R_1 = (\underline{area,precio})

idPropiedad → precio ?????

nMunicipio,#lote → precio ?????
```

 $R_2 = \underbrace{idPropiedad}_{,n}Municipio,\#lote,\acute{a}rea,tasaFiscal)$ $idPropiedad \rightarrow nMunicipio,\#lote,\acute{a}rea,tasaFiscal$ $nombreMunicipio,\#lote \rightarrow idPropiedad,\acute{a}rea,tasaFiscal$

 $R_2 = |idPropiedad,nMunicipio,\#lote,área,tasaFiscal|$ $idPropiedad \rightarrow nMunicipio,\#lote,área,tasaFiscal$ $nombreMunicipio,\#lote \rightarrow idPropiedad,área,tasaFiscal$ $nMunicipio \rightarrow tasaFiscal$

 $nMunicipio \rightarrow tasaFiscal$ $R_3 = \left \lfloor \frac{nMunicipio, tasaFiscal}{2} \right \rfloor$ $R_4 = \left \lfloor \frac{idPropiedad}{2}, nMunicipio, \#lote, \'area \right \rfloor$ $idPropiedad \rightarrow nMunicipio, \#lote, \'area$ $nombre Municipio, \#lote \rightarrow idPropiedad, \'area$

Sea R un esquema de relación formado por los atributos A,B,C. La dependencia multivaluada

$$A \rightarrow B$$

existe si y sólo si el conjunto de valores de B que se obtiene para un par de valores (A,C) depende sólo del valor de A y es independiente de los valores para C.

ejemplo

curso	profesor	texto	
C1	P1	T1	
C1	P1	T2	
C1	P2	T1	
C1	P2	T2	

 $\mathtt{curso} \longrightarrow \mathtt{profesor} | \mathtt{texto} |$

Cuarta Forma Normal (4NF)

Sea R un esquema de relación, R está en 4NF si y sólo si todas las dep. multivaluadas de la forma:

$$X \to Y$$

con $X \subseteq R$ e $Y \subseteq R$ se cumple que:

- \bullet X \rightarrow Y es trivial (ej. R=(X,Y))
- X es superclave de R
- Si R esta en 4NF, también esta en BCNF

Llevando a 4NF


```
(codprod, depto, codinsumo, codprov)
codprod \rightarrow depto
                             esta en
                              4NF
  R_1 = (codprod, depto)
                                         no esta en
  R_2 = (codprod, codinsumo, codprov)
                                           4NF
R_3 = (codprod, codinsumo)
  R_4 = (codinsumo, codprov)
```


No pérdida de información

$$(R_1 \cap R_2) \longrightarrow (R_1 - R_2)$$

$$(R_1 \cap R_2) \longrightarrow (R_2 - R_1)$$

$$R_1 \cap R_2 = \{ \texttt{codprod} \}$$

$$R_1 - R_2 = \{ \text{depto } \}$$

Sea R_1 , R_2 ,... R_n una descomposición de R, las dep. multivaluadas que están en R que también están en R_i son de la forma:

$$X \longrightarrow Y \cap R_i$$

donde $X \subseteq R_i$ y $X \longrightarrow Y$ se cumple en R

ejemplo

$$A \longrightarrow B \ y \ B \longrightarrow C$$
.

$$R_1(A,B)$$

$$R_2(B,C)$$

$$R_1(A,B)$$
 y $R_2(A,C)$

$$A \longrightarrow B \vee B \longrightarrow C$$