

12/07/2016

Nota:		

Apellido y Nombre	Profesor	Tomé conocimiento de la nota: (Sólo aplazos)

	Pre	guntas te	Ejercicios			
1	2	3	4	5	1	2

A) Teoría: Explícitamente defina como VERDADERA o FALSA cada una de estas afirmaciones justificando brevemente.

- 1) Si el hardware de un sistema computacional no proporciona operaciones atómicas, el usuario puede construirlas mediante software
- 2) Si el estado de un sistema es un estado seguro, entonces no puede haber espera circular.
- 3) El bit de modificado de una tabla de páginas es útil únicamente para correr el algoritmo clock mejorado.
- 4) En un esquema de paginación por demanda, el tamaño de las páginas no influye en la cantidad de fallos de páginas que provoque cada proceso.
- 5) La estrategia de "Evasión de deadlocks" no siempre puede ser aplicada.

B) Práctica: Resuelva los ejercicios justificando las respuestas

1) Peter prueba un sistema que planifica procesos e hilos *CPU bound*, utilizando un algoritmo desconocido para él. Para ello, corre un proceso que utiliza los semáforos mutex M1 y M2 (correctamente inicializados) y tres hilos A, B y C que inician su ejecución en ese orden. La traza de ejecución, cuando estos finalizan, es la siguiente:

Α	W(I	M1)	CPU						CI	PU	S(I	M1)							
В				W(N	M1)											CF	วบ	S(I	M1)
С						W(N	/12)	CPU					CPU	S(I	M2)				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

- a) Indique al menos un algoritmo de planificación que pudo haber sido utilizado por el Sistema Operativo, sabiendo que los semáforos no utilizan espera activa y garantizan la mutua exclusión interna deshabilitando las interrupciones. **Justifique referenciando instantes**.
- b) Indique qué tipo de hilos se están utilizando y qué algoritmo de planificación podría estar utilizando la biblioteca de hilos.

Nota: W(semáforo) y S(semáforo) hacen referencia a las funciones Wait y Signal. Considere "CPU" como la ejecución de código sin ninguna particularidad.

2) El archivo documento.zip se encuentra alojado en un File System EXT2, cuya información es la siguiente:

Inodo 10	Inodo 42	Directorio:	
450	151	/home/peter/docs	
111		documento.zip link	10 42
896			42

- Los inodos tienen 12 punteros directos y una indirección de cada tipo.
- El disco rígido donde se aloja dicho File System tiene 100 pistas, que contienen 10 bloques cada una.
- El algoritmos de planificación del brazo es SCAN.
- El brazo acaba de leer el directorio /home/peter/docs, que se encuentra en la pista 10, y está subiendo.

Indique cuántas pistas serán recorridas, y en qué orden, si se leen los primeros tres bloques del archivo documento.zip:

- a) Accediendo directamente a él.
- b) Accediendo mediante link, un softlink que apunta a documento.zip.

El tiempo de duración del examen final será de 90' a contar desde el momento de comienzo del mismo. Si el alumno por algún motivo comenzará más tarde sólo podrá utilizar el tiempo remanente. Utilice hojas separadas para la teoría / ejercicios.

12/07/2016

<u>Nota</u> :	

Resolución

Teoría

- 1) Falso, la otra alternativa sería deshabilitar las interrupciones, algo que un usuario no puede hacer
- 2) Verdadero, si el sistema está en estado seguro, cualquier ciclo debe poder solucionarse. Nota: no confundir espera circular con un ciclo.
- 3) Falso, se usa para escribir en swap las páginas modificadas, antes de realizar un reemplazo.
- 4) Falso, usando páginas muy chicas se producen más fallos de páginas para traer la misma cantidad de información a memoria.
- **5)** Verdadero, no siempre es posible conocer de antemano los máximos pedidos de un proceso. Por otro lado, el algoritmo del banquero asume procesos independientes, que ejecutan en cualquier orden, y esto no es siempre real.

Práctica

1.a) En el instante 3 se ve que se interrumpe la ejecución, por lo que se descartan algoritmos sin desalojo. En el instante 8 sucede lo mismo, y coincide el tiempo ejecutado: 3 instantes. Se presume un RR con Q=3. En el instante 12 se ve que se ejecutaron 4 instantes, pero esto tiene que ver con la ejecución atómica de los semáforos.

Variantes como VRR o bien Feedback multinivel podrían ser aceptadas, siempre que involucren un Q=3.

- 1.b) Se trata de KLTs, dado que si fuesen ULTs, el bloqueo de "B" bloquearía todos los hilos. No hay planificación en la biblioteca.
- 2.a) Las pistas a leer son 45, 11 y 89. La inicial es la 10. Se recorre 10 11 45 89 (79 pistas en total)
- **2.b)** La pista a leer inicialmente es la 15. Sin eso, no se conocen las otras. Entonces recorre 10 15. Luego, las pistas son 45, 11 y 89. Se recorre 15 45 89 99 (tope) 11 (177 pistas en total)