These give just one option for solving each problem. Many have numerous methods that will work.

- 1) (A) Slope = $\frac{4-2}{-1-6} = -\frac{2}{7}$, so the equation is $y-2 = -\frac{2}{7}(x-6)$ which simplifies to (A).
- 2) (C) There are 640/16=40 equal spaces, so 40 + 1 = 41 posts are needed.
- 3) (A) Turning the inside square, as in the picture, we see that the 4 corner triangles make up 2 squares that are ½ th the area of the larger square. So, subtracting ½ A from A, we have ½ A left.

- 4) **(D)** The storekeeper lost the \$45 change he gave for the radio and the \$8 change he gave the man for speaker wire. The storekeeper lost what he/she paid for the two items as well, and the wholesale cost of each was \$33 and \$7, respectively. This is a total of \$93.
- 5) (A) Refer to the picture given. $m\angle FED = 90^\circ$ and $m\angle AED = 108^\circ$ (central angle of the pentagon is 72°), so $m\angle FEA = 360 90 108 = 162^\circ$. Since ΔFEA is isosceles, the base angles are $1/2(180-162) = 9^\circ$.

- 6) (E) Simplifying each side, $6r + 3 + 1 = 27 5r + 10 \Rightarrow 6r + 4 = -5r + 37 \Rightarrow 11r = 33 \Rightarrow r = 3$.
- 7) **(A)** Multiplying by the reciprocal, $\frac{y^2z}{2y^3} \cdot \frac{8y^4}{9z^5} = \frac{8y^6z}{18y^3z^5} = \frac{4y^3}{9z^5}$.
- 8) (B) The missing number is 47, so the sum of the digits is 11. The pattern is to add to each entry, the entry plus 1.
- 9) **(B)** $f(x+2) = (x+2)^2 + 3 = x^2 + 4x + 4 + 3 = x^2 + 4x + 7$.
- 10) (B) Comparing slopes between pairs of points from a,c,d,e, the slope is always 2. With the point (5,5) the slope is not 2.
- 11) **(D)** The adjacent angle to the 100° angle is 80° , since they form a straight line. The alternate interior angle to the given 40° angle is also 40° , so the remaining angle in the bottom triangle is $180-80-40=60^{\circ}$. This angle is adjacent to x and they form a straight line, so $x=120^{\circ}$.
- 12) (**D**) Since no angle is larger than 85° , the largest angles possible would be 85° . So the smallest possible would be $180-85-85=10^{\circ}$.
- 13) (B) The range of the function $\sqrt{x-4}$ is $[0,\infty)$, so the range of $g(x)=3+\sqrt{x-4}$ is $[3,\infty)$.
- 14) (A) The probability of drawing a white first and black second is $\frac{6}{10} \cdot \frac{4}{9} = \frac{4}{15}$. The probability of drawing a black first and black second is $\frac{4}{10} \cdot \frac{3}{9} = \frac{2}{15}$. So, the probability of either happening is $\frac{4}{15} + \frac{2}{15} = \frac{2}{5}$.

- 15) **(D)** (i) 40=40 is true. (ii) $3/4 \cdot 72 = 3 \cdot 18 = 54$ is true. (iii) Since 91 < 93, $\frac{2}{91} > \frac{2}{93}$ is true. (iv) $3.2 \div 1.6 = 2$, so $3.106 \div 1.6 < 2$. So this one is not true.
- 16) (B) In the 30-60-90 triangle, we have $h = 5\sqrt{3}$, so the area is $12 \cdot 5\sqrt{3} = 60\sqrt{3}$.

- 17) (A) Both numbers are odd, so their sum is even. Therefore, 2 is a factor.
- 18) (**D**) Using the Pythagorean Theorem, the height is $\sqrt{(13/2)^2 6^2} = \sqrt{(13/2 6)(13/2 + 6)}$ = $\sqrt{25/4} = 2\frac{1}{2}$

- 19) **(B)** Let d be the distance from the school. Then the walking time (in hours) is $\frac{d}{4}$ and the running time (in hours) is $\frac{d}{6}$. Now, the difference in these times, in hours, is $3\frac{3}{4}\min \frac{1}{60}hr/\min = \frac{1}{16}hr$. Solving $\frac{d}{4} \frac{d}{6} = \frac{1}{16}$, we get 12d 8d = 3, or $d = \frac{3}{4}km$.
- 20) (C) At 4:00, Sam has gone 30-4=26 cm and at 5:00, 30-5=25cm more, and at 6:00 has gone 30-6=24 cm more. So, at 6:00 Sam has gone a total of 26+25+24=75cm. Since Sam's speed is 30 cm/hr, it will take him 25/30 hr, or 50 min, to go the remaining 25 cm.
- 21) (C) The figure shown is the minimal number of squares that can be shaded.
- 22) (A) The average of the four nearest neighbors of A and B give the system of equations $A = \frac{64 + 20 + 31 + B}{4}, B = \frac{18 + 38 + 54 + A}{4}.$ Solving, 4A B = 115, 4B A = 110, by elimination, 15B = 555, or B = 37.
- 23) (D) From the quadratic formula, we would need the discriminant, $b^2 4ac = a^2 64 < 0$. Solving this gives (D).
- 24) (A) Setting up the ratio, with x the gallons necessary to go t miles, $\frac{r}{s} = \frac{t}{x}$. Solving gives $x = \frac{st}{r}$.
- 25) (C) $64 = 2^6$, and each man had 64 pennies, so 64 men had a total of $2^6 \cdot 2^6 = 2^{12}$ pennies. Similarly for the women. Therefore, there is a total of $2^{12} + 2^{12} = 2 \cdot 2^{12} = 2^{13}$ pennies.