

AMENDMENTS TO THE CLAIMS

1. (previously presented) A process for producing a polymer of ethylene containing from 0.1 to 99 % by mol of at least one derived unit of alpha-olefins of formula $\text{CH}_2=\text{CHZ}$, wherein Z is a $\text{C}_2\text{-}\text{C}_{20}$ alkyl radical, and optionally from 0 to 5% by mol polyene, comprising contacting, under polymerization conditions, ethylene, at least one alph-olefin and optionally said polyene, in the presence of a catalyst system obtained by contacting:
 - a) a metallocene compound of formula (I):

(I)

wherein

M is zirconium, hafnium or titanium;

X, equal to or different from each other, is a hydrogen atom, a halogen atom, an R, OR, OR'O, OSO₂CF₃, OCOR, SR, NR₂ or PR₂ group, wherein R is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, or C₇-C₂₀-arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; and the R' substituent is a divalent group selected from C₁-C₄₀-alkylidene, C₆-C₄₀-arylidene, C₇-C₄₀-alkylarylidene or C₇-C₄₀-arylalkylidene radicals; two X can join to form a C₄-C₄₀ dienyl ligand;

R¹ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, or C₇-C₂₀-arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

R^2 , R^3 , R^4 and R^5 , equal to or different from each other, are hydrogen atoms, halogen atoms or linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

R^6 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, or a silylidene radical containing up to 5 silicon atoms;

T is a divalent radical of formula (II) or (III):

wherein

the atom marked with the symbol * is linked to the atom marked with the same symbol in the compound of formula (I);

R^8 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

R^9 , equal to or different from each other, is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; and

- b) an alumoxane or a compound that forms an alkyl metallocene cation.
2. (original) The process according to claim 1 wherein the catalyst system further comprises an organo aluminum compound.
 3. (previously presented) The process according to claim 1 wherein in the compound of formula (I),
 X is a halogen atom, an R, OR'O or OR group; R¹ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; R² is a hydrogen atom; R³ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical optionally containing at least one halogen atom; R⁴ is a hydrogen atom or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; R⁶ is a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; L is Si(CH₃)₂, SiPh₂, SiPhMe, SiMe(SiMe₃), CH₂, (CH₂)₂, (CH₂)₃, C(CH₃)₂, C(Ph)₂ or C(CH₃)(Ph); R⁸ is hydrogen or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical; and R⁹ is hydrogen or a linear or branched, saturated or unsaturated C₁-C₂₀-alkyl radical.
 4. (previously presented) The process according to claim 1 wherein the metallocene compound has formula (IV) or (V):

wherein

R^3 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical, optionally containing at least one halogen atom; R^4 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical.

5. (original) The process according to claim 4 wherein, in the compounds of formula (IV) and (V), R^3 is a hydrogen atom or a group $-C(R^7)_3$, wherein R^7 , equal to or different from each other, is a linear or branched, saturated or unsaturated C_1 - C_8 -alkyl radical; and R^4 is hydrogen or a group $-C(R^7)_3$.
6. (previously presented) The process according to claim 1 wherein, in the compounds of formula (I), R^3 and R^4 are hydrogen atoms.
7. (previously presented) The process according to claim 1 wherein, in the compounds of formula (I), when R^3 is an hydrogen atom, R^4 is a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical, optionally containing at least one halogen atom; or when R^3 is a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical optionally containing at least one halogen atom, R^4 is an hydrogen atom.
8. (previously presented) The process according to claim 1 wherein the catalyst system is supported on an inert carrier.
9. (previously presented) The process according to claim 8 wherein the inert carrier is a polyolefin.
10. (previously presented) The process according to claim 1 wherein the process is carried out in gas phase.
11. (previously presented) The process according to claim 1 wherein the alpha-olefin is 1-pentene, 1-hexene or 1-octene.
12. (previously presented) The process according to claim 4 wherein, in the compounds of formulas (IV) and (V), R^3 and R^4 are hydrogen atoms.
13. (previously presented) The process according to claim 4 wherein, in the compounds of formulas (IV) and (V), when R^3 is an hydrogen atom, R^4 is a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical, optionally containing at least one halogen atom; or when R^3 is a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical optionally containing at least one halogen atom, R^4 is an hydrogen atom.