电子系统设计

复旦大学信息科学与工程学院

的知識器是即

第七章

虚拟仪器技术

电子系统设计

虚拟仪器技术

- 虚拟仪器概述
- 信号分析
- 虚拟仪器的硬件与调用
- 仪器控制

他到認思是即

虚拟仪器概述

- 虚拟仪器与传统仪器
- 虚拟仪器产品

他到您忍怪的

虚拟仪器概述 -- 虚拟仪器与传统仪器

仪器技术经历了模拟仪器、数字化仪器

、智能仪器以及单台仪器、叠架式仪器系统的几个阶段。

他到愈混毛即

虚拟仪器概述 -- 虚拟仪器与传统仪器

对于一台传统仪器来说,它是一个独立的 装置,有机箱、操作面板和内部电路,在操 作面板上有信号输入输出端、开关、旋钮, 还有输出结果的显示, 如指针式表头、数字 显示器、图形显示器等, 甚至还有打印机等 输出设备。

他到認認是即

虚拟仪器概述 -- 虚拟仪器与传统仪器

仪器由三大功能块组成:信号的采集与控

制、信号的分析与处理、结果的表达与输出

。在传统仪器中,这些功能块全部都是以硬

件固化的形式存在。这种结构决定了传统仪

器只能由仪器厂家来定义功能和制造,而用

户只能根据需要来选择不同功能的仪器。

他到認思是即

虚拟仪器概述 -- 虚拟仪器与传统仪器

计算机技术的发展给传统仪器技术注入 了强大的活力。首先是微电子技术、大规模 集成电路技术的发展,促进了数字化仪器、 智能仪器的快速发展,使仪器的精度越来越 高,功能越来越强,性能越来越好。

他到愈混毛的

虚拟仪器概述 -- 虚拟仪器与传统仪器

但是,传统仪器基本上没有摆脱独立使用的模式。对于较为复杂的应用、测试参数较多的场合,使用起来就很不方便,其局限性非常明显。

他到您忍怪的

虚拟仪器概述 -- 虚拟仪器与传统仪器

我们把仪器的三大功能块全部放在计算 机上来实现。在计算机上插数据采集卡,然 后用软件在屏幕上生成仪器面板,用软件来 进行信号的分析处理,实现传统仪器功能。 这种新的构思、新的仪器结构框架就是虚拟 仪器的初衷。

他到認思是即

虚拟仪器概述 -- 虚拟仪器与传统仪器

虚拟仪器就是在通用计算机上加上一组软件、硬件,使用者可按自己的需要设计其功能,通过操作计算机,操作他自己设计的专用电子仪器。

他到您愿任即

虚拟仪器概述 -- 虚拟仪器与传统仪器

在虚拟仪器系统中,硬件仅仅是为了解决信号的输入输出,软件才是整个仪器功能的关键。任何一个使用者都可以通过修改软件,很方便地改变、增减仪器系统的功能与规模,所以有"软件就是仪器"之说。

虚拟仪器概述 -- 虚拟仪器与传统仪器

虚拟仪器为用户提供了一个以计算机为 中心的软件和硬件开发平台,硬件设计采用 了系列化的硬件产品,编程语言采用了图形 化的编程软件,通过这些软件可以调用A/D转 换、D/A转换等硬件,还可对信号进行处理。 用户就可以按照测量任务需要组成一部测量 系统。

他到愈混毛即

虚拟仪器概述 -- 虚拟仪器与传统仪器

例如利用众多测量点的温度传感元件、振 动测量元件的信号送到计算机上,组成分布 测量系统。利用快速富利叶变换、计算功率 谱或数字滤波等处理方法可对采集的数据进 行分析。各种仪器插卡和相应的驱动软件为 用户建立自己的测量系统提供了丰富的资源

他到您忍怪的

虚拟仪器概述 -- 虚拟仪器与传统仪器

用户可以利用这个平台实现个性化设计。 按照测量的要求,自行建立测量系统的硬件 ,同时利用虚拟仪器的编程软件自行编制系 统的控制软件。由此可见,一个性能良好的 虚拟仪器, 必须具有功能齐全的功能卡和易 为用户接受的软件。

他到認思是即

虚拟仪器概述--虚拟仪器与传统仪器

虚拟仪器(VI)

- 基于计算机
- 软硬件结合
- 用户定义

他到您忍怪的

虚拟仪器概述--虚拟仪器产品

美国National Instruments公司的

LabVIEW (Laboratory Virtual Instrument

Engineering Workbench)软件是一种用于虚拟

仪器的软件开发工具。

他到愈混毛即

虚拟仪器概述--虚拟仪器产品

它采用图形编程语言 (Graphical

Language, 简写为G),将运算、放大、滤波

、数据采集等各种处理方法以简洁、直观的

图标和连线产生程序。

他到認思是即

虚拟仪器概述 -- 虚拟仪器产品

NI公司还提供A/D转换、D/A转换、数字 I/O、计时器等多种接口卡,由于硬件、软件的完整结合,即LabVIEW软件加上相应硬件可形成具有实际意义的虚拟仪器。

电子系统设计

虚拟仪器技术

- 虚拟仪器概述
- 信号分析
- 虚拟仪器的硬件与调用
- 仪器控制

他到您愿任即

信号分析

在仪器的设计中,如何对信号进行分析 、处理是重要的内容,通过数据采集获得的 原始信号,必须采用合适的方法进行处理, 才能获得好的效果。在虚拟仪器LabVIEW中 提供了信号处理和数学分析的算法已成为标 准程序供用户调用程序节点。

他到認識是他

信号分析

他到您忍得的

信号分析

信号发生模块

正弦波、方波、三角波及锯齿波的产生

他到您忍怪的

信号分析

波形测量模块

信号的直流、周期、脉冲、频谱、幅度、频率

、相位的测量等。

信号分析

波形的调理模块

包括对信号用FIR、IIR数字滤波器的滤波,滤

波器分低通、高通、带通、带阻等形式,还

可对信号进行汉宁、海明等窗函数的处理。

信号分析

波形的监视模块

包括极值测试等。波形发生包括了正弦波、方

波、三角波及锯齿波等波形的产生。

信号分析

信号处理模块

包括了卷积、相关、估计等时间域的处理,功率谱、付里叶变换、希尔伯特变换等频域的处理,数字滤波包括巴特沃思、切比雪夫、反切比雪夫、椭圆、贝塞尔各种滤波器,以及IIR、FIR滤波器的设计。

他到您混译的

信号分析

数学分析模块

包含了用公式、扩展的公式、MATLAB语言、解析计算、计算器等公式计算,1维、2维的估计,积分、求导、极限等数学运算,概率与统计,曲线拟合,线性代数运算等节点程序。

他到您愿受的

虚拟仪器技术

- 虚拟仪器概述
- 信号分析
- 虚拟仪器的硬件与调用
- 仪器控制

他到認思是即

虚拟仪器的硬件与调用

- 数据采集硬件
- 数据采集的调用

的到認認是即

虚拟仪器的硬件与调用 -- 硬件

硬件系统

他到您忍怪的

虚拟仪器的硬件与调用 -- 硬件

数据采集系统的基本构成

- 模拟输入
- 模拟输出
- 数字I/0
- 计数器

他到您忍怪的

虚拟仪器的硬件与调用 -- 硬件

模拟输入系统的构成

他到認思是即

虚拟仪器的硬件与调用 -- 硬件

模拟输出系统的构成

他到您愿任即

虚拟仪器的硬件与调用 -- 硬件

定时/计数系统的构成

他到您愿受的

虚拟仪器的硬件与调用 -- 硬件

系统选择指南

- 确认信号类型
- 选择信号调理方法
- · 选择数据采集IO板卡
- 相应电缆和配件
- 软件编程方案

他到認思是他

虚拟仪器的硬件与调用 -- 硬件

- 数据采集系统
 - 即插式板卡
 - 外置式板卡
- DAQ 板卡
 - 模拟输入/输出
 - 数字输入/输出
 - 计数器/定时器

虚拟仪器的硬件与调用 -- 硬件

- DAQ 板卡
 - 模拟输入采样频率,精度,通道数
 - 模拟输出 建立速度,精度,通道数
 - 数字输入/输出位数
 - 计数器/定时器通道数

他到您愿证的

虚拟仪器的硬件与调用 --调用

DAQ VI

- 模拟输入
- 模拟输出
- 数字 I/O
- 计数器
- 信号调理

电子系统设计

虚拟仪器技术

- 虚拟仪器概述
- 信号分析
- 虚拟仪器的硬件与调用
- 仪器控制

他到認思是即

仪器控制

- 概述
- VISA通信程序
- · 基于GPIB的仪器控制

电子系统设计

仪器控制 - 概述

由于测试要求的提高,多台仪器单独调 试的测量方法已无法满足需要,如利用信号 源和示波器测试电路的频率响应, 需要不断 地调整信号源的信号输出频率,然后用示波 器测量,用人工的方法不仅测试速度慢,还 降低了测试精度。

他到您愿证的

仪器控制 - 概述

由于数字化仪器的发展,用计算机控制 仪器构成测量系统已成为测量系统设计的首 选方案。计算机与仪器的通信接口包括了串 行接口、GPIB接口、以太网接口等不同的通 信方式。

他到您混译即

仪器控制 - 概述

目前大部分数字化仪器都具有RS232串行接口,这种接口的结构相对简单,成本低,但只能实现1台计算机与1台仪器的连接,因此只能用在简单的系统中。

电子系统设计

仪器控制 - 概述

GPIB接口的结构相对复杂,在大部分仪 器中作为选件,其成本较高,但GPIB采用了 总线方式,可实现1台计算机与多台仪器的连 接,即可以将计算机和具有GPIB接口的仪器 连接成一个较大的仪器组,以实现更复杂或 功能更强的系统。

他到您愿任即

仪器控制 - 概述

类似于GPIB接口,以太网接口也可实现 1台计算机与多台具有以太网接口仪器的连接 ,但目前具有以太网接口的仪器不多,加上 通信协议的实时性和安全性问题,因此仍以

GPIB的通信方式为主。

他到您混译即

仪器控制 - VISA通信程序

VISA是虚拟仪器软件结构体系访问设

备的函数,用于控制各种接口的设备。

仪器控制 - VISA通信程序

VISA的基本操作包括打开指定设备、向设

备写命令或数据、读取设备的返回信息或数

据和关闭设备。

他到您忍怪的

仪器控制-基于GPIB的仪器控制

传统的仪器经历了从模拟仪器发展到数 字化仪器的过程。数字化仪器使计算机控制 仪器成为可能, 在数字化仪器中, 配上通信 接口和相应的通信协议,就可与计算机进行 通信。GPIB接口由于采用了总线的结构,在 仪器通信中得到了广泛的应用。

他到愈混毛即

仪器控制-基于GPIB的仪器控制

IEEE 488从1975年起就成为仪器控制编 程的标准,其后又制定了IEEE 488.2、HS488 标准。它采用了8位数据的并行协议,通过标 准电缆进行传输, 在一个系统中可由一台计 算机控制多达14台的仪器。目前,大部分的 数字化仪器,如示波器、信号源、电源、多 用表都具有支持其标准的接口。

他到您忍怪的

仪器控制 - 基于GPIB的仪器控制

GPIB由一个控者 (PC机) 控制总线,

在总线上传送仪器命令和数据,控者寻址一

个讲者,一个或多个听者,数据串在总线上

从讲者向听者传送。

心子系统设计

仪器控制-基于GPIB的仪器控制

DIO5
DIO6
DIO7
DIO8
REN
GND (TW PAIR W/DAV)
GND (TW PAIR W/NRFD)
GND (TW PAIR W/NDAC)
GND (TW PAIR W/IFC)
GND (TW PAIR W/SRQ)
GND (TW PAIR W/ATN)
SIGNAL GROUND

总线信号除了数

据信号线,GPIB还

包括了握手信号线

和接口管理信号线

他到您混译的

仪器控制-基于GPIB的仪器控制

构成一个GPIB系统的硬件包括在计算机 上配置GPIB接口卡,选购具有GPIB接口的仪 器,通过GPIB电缆将上述设备相互连接等工 作。GPIB电缆为24芯,具有插头、插座连接 器。在系统中,最多连接14台仪器,连接的 最大电缆长度为20米,仪器间最大电缆长度 为4米(一般取2米)。

仪器控制-基于GPIB的仪器控制

系统的连接可采用星形或线形的连接方法,

仪器控制-基于GPIB的仪器控制

系统中每个设备(包括接口卡)须有一个0到30之间的GPIB地址,计算机的GPIB接口卡设置为地址0,仪器的GPIB地址通过仪器的菜单设置,范围从1到30。