$\mathbf 1$ 아래에 주어진 벡터장 $\mathbf F$ 의 발산(divergence)과 컬(curl)을 구하시오.

(a)
$$\mathbf{F}(x, y, z) = \langle xy + z, yz + x, xz + y \rangle$$

(b)
$$\mathbf{F}(x, y, z) = \langle 3x^2y^2z, 2x^3yz, x^3y^2 \rangle$$

(c)
$$\mathbf{F}(x, y, z) = (x^2 + \sin y)\mathbf{i} + (y^2 + \cos z)\mathbf{j} + (z^2 - \sin x)\mathbf{k}$$

(d)
$$\mathbf{F}(x, y, z) = x \cos(yz) \mathbf{i} + x^2 y \mathbf{j} + (2xyz + 3z) \mathbf{k}$$

 $\mathbf{2}$ 아래에 주어진 실함수에 대해 $\Delta f := \nabla \cdot \nabla f$ 의 식을 구하시오.

(a)
$$f(x,y) = \ln(x^2 + y^2)$$
, $(x,y) \in \mathbb{R}^2 - \{(0,0)\}$

(b)
$$f(x, y, z) = xz + x^3 + yz^2 + xyz^3 + xy^5$$
, $(x, y, z) \in \mathbb{R}^3$

(c)
$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}, \quad (x, y, z) \in \mathbb{R}^3 - \{(0, 0, 0)\}$$