Hypothesis testing and using t-tests

Practical Fundamentals of Probability and Statistics (NPFL 081)

by Martin Holub Charles University in Prague, 2017–18

Terms

Statistical hypothesis

A statement about the parameters describing a population (not a sample).

Significance level of a test (α)

The test's probability of incorrectly rejecting the null hypothesis.

Statistic

A value calculated from a sample, often to summarize the sample for comparison purposes (e.g. the *t-statistic* or *t-value*). The **critical region** of a hypothesis test is the set of all statistic outcomes which cause the *null hypothesis* to be rejected in favor of the *alternative hypothesis*.

Critical value

Corresponds to a given significance level. Determines the boundary between those samples resulting in a test statistic that leads to *rejecting the null hypothesis* and those that lead to *a decision not to reject the null hypothesis*. If the calculated value from the statistical test is greater than the critical value, then the null hypothesis is rejected in favour of the alternative hypothesis, and vice versa.

Definition of $t_k(\alpha)$:

$$P(|T| \ge t_k(\alpha)) = \alpha$$

p-value

The probability, assuming the null hypothesis is true, of observing a result at least as extreme as the test statistic.

The null hypothesis rejection using the p-value

If the p-value is less than the required significance level, then we say the null hypothesis is rejected at the given level of significance.

What is the t-test useful for?

1) One Sample t-test

To test if the mean of a (normally distributed) population is equal to a given value.

2) Paired t-test

To test if the difference of the means of two populations is equal to a given value, assuming that the given sample contains paired individuals.

Remarks on t-test and p-value

Meaning of p-value

- p-value is the least significance level (alpha) for which we would reject the null hypothesis.
- Or, p-value is the probability of observing a sample that is

"at least as extreme as the observed one" *if the null hypothesis were true*.

Explanation: The principle of t-test is based on the fact that when you randomly choose samples of size n from a normally distributed population, then

$$T = \frac{\bar{X} - \mu}{S} \sqrt{n} \sim t_{n-1}$$

where \bar{X} is the sample mean, S is the sample standard deviation, and μ is the population mean.

Exercise 1

The sample generated from a normal population is 8, 8, 9, 10, 12, 16.

The null hypothesis is H_0 : $\mu = 9$.

Calculate the t-statistic and the p-value.

What do the values imply? Will the null hypothesis be rejected?

Exercise 2 The results of 6-fold cross-validation experiment – accuracy of two different classifiers:

sample	1	2	3	4	5	6
classifier A	81.80%	81.00%	82.20%	80.90%	81.50%	81.60%
classifier B	81.50%	81.10%	82.00%	81.10%	81.40%	81.40%

Which of the two classifiers is better?

Exercise 3 – t-test

In city A, men's height was measured on a sample of 15 people: 171.2 163.5 172.9 208.4 178.4 164.3 180.5 173.6 185.7 183.4 177.8 158.1 182.0 181.1 182.8

In city B, men's height was measured on a sample of 7 people: 180.6 189.0 166.9 174.1 167.2 170.3 181.8

Is the expected value of men's height in the two cities different?

Test it for confidence levels 90%, 95%, and 99%.

Compute t-values, critical values. p-values, and confidence intervals. Do it by definition.

Then evaluate the tests and make conclusions.

Exercise 4 – paired t-test

When doing 10-fold cross validation, the following accuracies were found (the same data were used for both classifiers A and B):

- * classifier A: 0.853 0.859 0.863 0.871 0.832 0.848 0.863 0.860 0.850 0.849
- * classifier B: 0.851 0.848 0.862 0.871 0.835 0.836 0.860 0.859 0.841 0.843
- a) Compare confidence intervals of classifiers accuracy for confidence levels 90%, 95%, and 99%.
- b) Then do paired t-test, and test if the expected accuracies are equal for confidence levels 90%, 95%, and 99%.

Demo code – heights of men, with mean 180.3 cm and variance 100

```
experiments = 10^5
   M = 180.3
   population = rnorm(10^6, M, sqrt(100))
   count = 0
   for(i in 1:experiments) {
     s = population[sample(1:10^6, 10)]
     test = t.test(s, conf.level=0.99)
     if( test$conf.int[1] < M & M < test$conf.int[2] ) {count=count+1}</pre>
   return( count/experiments )
# another way to do the same
   experiments = 10^5
   M = 180.3
   count = 0
   for(i in 1:experiments) {
     s = rnorm(10, 180.3, sqrt(100))
     test = t.test(s, conf.level=0.99)
     if( test$conf.int[1] < M & M < test<math>$conf.int[2] ) $count=count+1$
   }
   return( count/experiments )
```

EXAMPLE 1

One Sample t-test

The result and its interpretation:

- p-value > alpha (= 0.05)
- therefore we cannot reject the null hypothesis (that mu = 9), because the risk of doing wrong would be more than 5%
- the reason is that the data **does** *not* show that the mean is different from 9 (at the given significance level)

EXAMPLE 2

One Sample t-test – the same data at a smaller confidence level

```
> t.test(x, mu = 9, conf.level = 0.70 )
        One Sample t-test

data: x
t = 1.1921, df = 5, p-value = 0.2867
alternative hypothesis: true mean is not equal to 9
70 percent confidence interval:
        9.045691 11.954309
sample estimates:
mean of x
        10.5
```

The result and its interpretation:

- p-value < alpha (= 0.30)
- therefore we reject the null hypothesis (that μ = 9), and we do not do wrong with confidence level (only) 70%
- the reason is that the data **does** show that the mean is different from 9 (at the given significance level)

Exercise 1 – Solution

To compute the p-value given the data from the example we can calculate:

```
> x <- c(8, 8, 9, 10, 12, 16)
> T <- (mean(x) - 9)*sqrt(length(x))/sd(x)
> pvalue <- pt( -abs(T), df=length(x)-1 ) * 2</pre>
```

Exercise 2 – Solution

sample mean = 0.0833, variance = 0.0377 $T=1.0518 < t_5(0.05)=2.571$ The null hypothesis H_0 : $\mu=0$ cannot be rejected.