Algoritma Analizi

Ders 13

Doç. Dr. Mehmet Dinçer Erbaş Bolu Abant İzzet Baysal Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

- Grafların gösterimi
 - G = (V,E) şeklinde tanımlanan bir graf gösterimi için kullanılan iki yöntem vardır.
 - Komşuluk listeleri (İng: adjaceny list)
 - Komşuluk matrisi (İng: adjacency matris)
 - Komşuluk listesi yöntemi seyrek graflar için daha uygundur.
 - |E|, |V|²'den çok küçük olduğunda seyrek graf diyoruz.
 - Komşuluk matrisi yöntemi yoğun graflar için daha uygundur.
 - |E|, |V|²'ye yakın olduğunda yoğun graf diyoruz.
 - Graflar yönlü veya yönsüz olabilir.

Grafların gösterimi

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	1 0 0 0 1	0	1

- Grafların gösterimi
 - Eğer G bir yönlü graf ise, komşuluk listelerinin uzunluğu toplamı |E|'dir.
 - Eğer G bir yönsüz graf ise, komşuluk listelerinin uzunluğu toplamı 2|E|'dir.
 - Komşuluk listelerini kullanarak ağırlıklı graf oluşturabiliriz.
 - Her (u,v) kenarı için bir ağırlık değeri belirlenebilir.
 - $w : E \rightarrow R$
 - Komşuluk listelerini kullanıldığında hızlı bir şekilde bir kenarın var olup olmadığı söylenemez.
 - Komşuluk matrisi ise bu bilgiyi hızlı bir şekilde verebilir.
 - Ancak komşuluk matrisleri daha fazla hafıza gerektirir.
 - Komşuluk matrislerinin hafıza ihtiyaçlarını azaltmak için bazı yöntemler bulunmaktadır.
 - Komşuluk matrislerinde 1 yerine ağırlık değerini saklayarak ağırlıklı graf oluşturabiliriz.
 - Her iki yöntem için de kenar ve köşeler ile alakalı özellik (İng: attribute) saklanabilir.

- Graf üzerinde hareket
 - Birçok problemde graf üzerindeki kenarları kullanarak düğümler arasında hareket etmek gerekir.
 - Örneğin, grafteki düğümler gidilebilecek şehirleri temsil edebilir.
 - Bu durumda bir şehirden diğerine giden yolu bulmak için düğümler arasında geçiş yapmak gerekir.
 - Bu durumda çoklukla kullanılan düğümler üzerinde hareket yöntemleri mevcuttur.
 - Bunlardan en bilinen iki tanesi
 - Derinlik öncelikli arama (İng: Depth First Search)
 - Enine arama (Breadth First Search)

- Derinlik öncelikli arama
 - Bu yöntem graf üzerinde dolaşmamızı sağlar.
 - Bu amaçla başlangıç düğümünün bir kenarından başlanır.
 - Git gide derinleşen (başlangıç noktasından uzaklaşan) şekilde sonraki düğümleri seçer.
 - Graf yapısını bir ağaca benzetirsek, en derine kadar düğümleri açar.
 - Bu arama yöntemi şu adımlardan oluşur.
 - 1. Bir başlangıç düğümü seçilir ve ziyaret edilir.
 - 2. Seçilen düğümün bir komşusu seçilir ve ziyaret edilir.
 - 3. Ziyaret edilecek komşu kalmayıncaya kadar 2. adım tekrar edilir.
 - 4. Komşu kalmadığı durumda geri dönülür ve önceki ziyaret edilmiş düğümler seçilerek 2. ve 3. adımlar tekrar edilir.

Derinlik öncelikli arama

^{*}Şekil https://en.wikipedia.org/wiki/Depth-first_search adresinden alınmıştır

- Derinlik öncelikli arama
 - Derinlik öncelikli arama yığın yapısı kullanılarak gerçekleştirilebilir.
 - Önce başlangıç düğümünü yığına ekle
 - Başlangıç düğümünü ziyaret edilmiş olarak işaretle
 - Döngü: Yığın boşalana kadar devam et
 - Yığından eleman al
 - Alınan elemanın komşularını, daha önce ziyaret edilmemişse, yığına ekle ve ziyaret edilmiş olarak işaretle.

- Enine arama
 - Bu yöntem graf üzerinde dolaşmamızı sağlar.
 - Bu yaklaşıma göre düğümler seviye seviye ziyaret edilir.
 - Başlangıç düğümünden başlanır.
 - Daha sonra başlangıç düğümüne 1 uzaklıktaki bütün komşu düğümler ziyaret edilir.
 - Daha sonra başlangıç düğümüne 2 uzaklıktaki bütün komşu düğümler ziyaret edilir.
 - •

Enine arama

^{*}Şekil https://en.wikipedia.org/wiki/Breadth-first_search adresinden alınmıştır

- Enine arama
 - Enine arama bir kuyruk yapısı kullanılarak gerçekleştirilebilir.
 - Önce başlangıç düğümünü kuyruğa ekle
 - Başlangıç düğümünü ziyaret edildi olarak işaretle
 - Döngü: Kuyruk boşalana kadar
 - Kuyruktan eleman al
 - Alınan elemanın komşularını, daha önce ziyaret edilmemişse, kuyruğa ekle ve ziyaret edilmiş olarak işaretle.
 - Enine arama ağırlıksız graflarda iki düğüm arasında en kısa yolu bulur.
 - Ağırlıklı graflarda ise iki düğüm arasındaki en kısa yolu bulmak için enine aramanın farklı versiyonları kullanılabilir.

- En-küçük kapsar ağaç (İng: Minimum spanning tree)
 - Elektronik devre oluştururken, sıklıkla birden fazla devre elemanının pinlerini birbirine bağlamanız gerekebilir.
 - n devre elemanını n 1 kablo ile birbirine bağlayabiliriz.
 - En kısa kablo kullanan devre en tercih edilen olacaktır.
 - Bu problemi köşeleri birbirine bağlı, yönsüz bir G = (V, E) grafı ile modelleyebiliriz.
 - V, devre elemanlarının pinlerini, E ise kabloları temsil eder.
 - Her kenar, (u,v) ∈ E, bir uzunluğa, yani maliyete, sahip olacaktır.
 - Öyleyse, döngü içermeyen T ⊆ E, bütün köşeleri birleştiren ve en az maliyete sahip, kümesini bulmak istiyoruz.

$$- w(T) = \sum_{(u,v) \in T} w(u,v)$$

- Bu problem en-küçük kapsar ağaç problemi olarak adlandırılır.

• En-küçük kapsar ağaç problemi

- En-küçük kapsar ağaç oluşturma
 - G = (V,E) şeklinde köşe ve kenarlara sahip bir birleşik ve yönsüz grafımız olsun.
 - Ağırlık fonksiyonumuz w : E → R şeklinde tanımlanmış olsun.
 - Bu grafta bir en-küçük kapsar ağaç oluşturmak istiyoruz.
 - Bu bölümde göreceğimiz iki algoritma açgözlü (İng: greedy) yaklaşım ile çalışır.
 - Yani her adımda en iyi görünen adımı seçer.
 - Bu algoritmalar adım ağacı büyüterek en-küçük kapsar ağacı oluşturur.
 - Her adımda yeni bir kenar eklenir.
 - Yeni kenarlar, büyümekte olan A ağacına eklenirken aşağıda belirtilen döngü sabiti sağlanır:
 - Her döngü çalışması öncesinde, A bir en-küçük kapsar ağacın altkümesidir.
 - Algoritmanın yaklaşımına göre her adımda, yukarıda belirtilen döngü sabitini bozmayan yeni kenarlar, (u,v), A ağacına eklenir.

- En küçük kapsar ağaç oluşturma
 - Döngü sabitini bozmayan bu kenarlara güvenli kenar ismini veriyoruz.

```
GENERIC-MST(G,w)

1 A = Ø

2 while A en-küçük kapsar ağaç değil ise

3 A için güvenli olan bir (u,v) kenarı seç

4 A = A U {(u,v)}

5 return A
```

- Birkaç tanım:
 - Bir kesik, bir G = (V,E) grafını S ve (V S) olmak üzere ikiye ayırır.
 - Bir (u,v) kenarı, bir köşesi S, diğer köşesi (V S)'de ise kesiği çaprazlar.
 - Köşeler altkümesi A içerisindeki hiçbir kenar bir kesiği çaprazlamıyor ise, bu kesik A kümesine uyar.
 - Bir kesiği çaprazlayan kenarlardan en düşük maliyete sahip olana hafif kenar denir.

15 / 41

En küçük kapsar ağaç oluşturma

- En küçük kapsar ağaç oluşturma
 - Teorem: G = (V,E) birleşik, yönsüz ve her kenarının w fonksiyonu ile tanımlı bir maliyeti olan E üzerinde tanımlı bir graf olsun. A, E'nin bir altkümesi ve bir en-küçük kapsar ağacın parçası olsun. (S, V – S) G'nin A'ya uyan bir kesiği olsun. (u,v), (S, V – S) kesiğini çaprazlayan bir hafif kenar olsun. Bu durumda (u,v) A için güvenlidir.
 - Bu bölümde göreceğimiz Kruskal ve Prim algoritmaları yukarıda belirtilen teoremi kullanır.

- Kruskal algoritması
 - Kruskal algoritması adım adım en-küçük kapsar ağacı oluşturur.
 - Bunu yaparken
 - İki farklı ağacı birleştiren en az maliyetli kenarı belirler.
 - Bu kenarı ağaca ekler.

```
MST-KRUSKAL(G,w)

1 A = ∅

2 for her v ∈ G.V kenarı için

3 MAKE-SET(v)

4 G.E içerisindeki kenarları maliyetlerine göre azalmayan şekilde sırala

5 for maliyetlerine göre azalmayan sıralanmış her (u,v) ∈ G.E için

6 if FIND-SET(u) ≠ FIND-SET(v)

7 A = A U {(u,v)}

8 UNION(u,v)

9 return A
```


- Kruskal algoritması
 - Algoritmanın çalışma süresi birbirinden bağımsız-küme veri yapısını ne şekilde oluşturduğumuza bağlıdır.
 - 4. satırdaki sıralama O(E lgE)
 - 5-8'deki FIND-SET ve UNION ile 3'deki MAKE-SET
 - O((V + E) α (V))
 - $\alpha(V)$ çok yavaş büyüyen bir fonksiyon olarak tanımlanmıştır.
 - G birleşik, yani |E| ≥ |V| 1
 - $O(E\alpha(V))$
 - $-\alpha(|V|) = O(\lg V) = O(\lg E)$
 - Sonuç olarak toplam çalışma süresi O(E lg E)
 - $|E| < |V|^2$ olduğuna göre |E| = O(|g|V), öyleyse toplam çalışma süresini şu şekilde yazabiliriz.
 - O(E lg V)

- Prim algoritması
 - Prim algoritması ile tek bir ağaç oluşturulur ve her adımda bu ağaca yeni kenarlar eklenir.
 - Tüm kenarlar ekleninceye kadar kenar eklemeye devam eder.
 - Her adımda A ağacına, henüz ağaca eklenmemiş kenarlardan biri, bir hafif kenar, eklenir.

```
MST-PRIM(G,w, r)
1 for her u \in GV
    u.key = ∞
   u.п = NII
  г.key = 0
  Q = G.V
6 while Q ≠ Ø
     u = EXTRACT-MIN(Q)
    for her v \in G.adj[u]
8
      if v \in Q and w(u,v) < v.key
9
10
        V.\Pi = U
11
        v.key = w(u,v)
```


- Prim algoritması
 - Algoritmanın çalışma süresi min-öncelik sırasını oluşturma şeklimize göre farklılık gösterir.
 - BUILD-MIN-HEAP kullanırsak 1-5 satırları O(V)
 - While döngüsü |V| kez çalışıyor, EXTRACT-MIN O(lg V) süre alır
 - Öyleyse EXTRACT-MIN için toplam çağrı süres O(V lg V) olur.
 - 8-11 satırları arasındaki döngü O(E) süre alır.
 - 11. satırdaki işlem min-heap'de DECREASE-KEY operasyonudur, bu operasyon O(lg V) süre alır.
 - Öyleyse toplam süre $O(V \lg V) + O(E \lg V) = O(E \lg V)$
 - Kruskal algoritması ile asimtotik olarak aynıdır.

- En-kısa yol problemi
 - G = (V,E) şeklinde w : E → R şeklinde bir maliyet fonksiyonu ile tanımlanmış maliyet değerleri içeren bir grafımız olsun.
 - $p = \{v_0, v_1, v_2, v_3, ..., v_k\}$ yolunun maliyeti, w(p), bu yol üzerindeki kenarların maliyetlerinin toplamıdır:
 - $w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$
 - u köşesinden v köşesine en kısa yol maliyeti, $\delta(u,v)$ şu şekilde tanımlanır:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} \\ \infty \end{cases}$$
 u ile v arasında yol varsa aksi takdirde

- $w(p) = \delta(u,v)$ olan herhangi bir yol en-kısa yoldur.

- En-kısa yol türleri
 - Tek-hedef en-kısa yol problemi
 - Her bir v köşesinden hedef t köşesine en kısa yol bulunur.
 - Tek-ikili en-kısa yol problemi
 - Verilen iki köşe u ve v için, u'dan v'ye en kısa yol bulunur.
 - Her-ikili en-kısa yol problemi
 - Her u ve v köşeleri için u'dan v'ye en kısa yol bulunur.
- En-kısa yol özelliği
 - G = (V,E) şeklinde, maliyetleri w : E → R fonksiyonuyla hesaplanmış bir yönlü grafımız olsun. P = $\{v_0, v_1, ..., v_k\}$ v_0 köşesinden v_k köşesine en kısa yol olsun. Herhangi bir i, j ikilisi için, şöyle ki $0 \le i \le j \le k$, $p_{ij} = \{v_i, v_{i+1}, ..., v_j\}$ v_i 'den v_j 'ye olan alt yol olsun. Bu durumda p_{ii} , v_i 'den v_i 'ye en kısa yoldur.

- Negatif-değerli kenarlar
 - Graf negatif değerli bir kenar içerebilir.
 - Ancak graf üzerinde kaynaktan ulaşılabilen maliyeti negatif olan bir zincir olmamalıdır.
 - Aksi takdirde durmadan bu zincir üzerinde hareket edilerek maliyet azaltılır.
 - u köşesinden v'ye giden yol üzerinde negatif maliyete sahip bir zincir var ise
 - $-\delta(u,v) = -\infty$
 - Bir en-kısa yol, pozitif bir zincir içeremez.
 - Bu zinciri izlemediğimizde daha kısa bir yola erişebiliriz.

- Genişletme (İng: relaxation)
 - Bu bölümde inceleyeceğimiz algoritmalar genişletme isimli bir teknik kullanmaktadırlar.
 - Bu amaçla her v köşesi için aşağı belirtilen bilgiler saklanır:
 - v.d → en-kısa uzaklık tahmini
 - v.π → en-kısa yol üzerinde bir önceki köşe
 - Algoritma çalışmaya başlarken ilk olarak bu değerler atanır.

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $\nu \in G.V$ 2 $\nu.d = \infty$ 3 $\nu.\pi = \text{NIL}$
- $4 \quad s.d = 0$

- Genişletme
 - Genişletme işlemi ile bir v köşesine için yaptığımız en-kısa yol tahminini geliştirmeye çalışırız.

RELAX
$$(u, v, w)$$

1 **if** $v.d > u.d + w(u, v)$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

- Bellman-Ford algoritması
 - Tek-kaynak en-kısa yol problemini her tür maliyet içeren graflarda çözer
 - Graf negatif maliyetler içerebilir.
 - Verilen G = (V,E) grafı, s kaynağı ve w : E → R maliyet fonksiyonu ile Bellman-Ford algoritması grafta negatif değerli bir zincir olup olmadığını döner.
 - Eğer negatif değerli bir zincir var ise algoritma çözüm yoktur sonucunu verir.
 - Bu özellikte bir zincir yoksa en-kısa yollar ve bu yolların maliyetini döner.

Bellman-Ford algoritması

```
Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 Relax(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return False

8 return True
```


Örnekte kenarlar şu sıralya genişletiliyor: (t,x), (t,y), (t,z), (x,t), (y,x), (z,x), (z,s), (s,t), (s,y).

- Bellman-Ford algoritması
 - Birinci satırdaki başlangıç O(V) zaman alır.
 - 2-4 satırlarındaki her bir geçiş Θ(E) zaman alır, toplam |V| 1 kez çalışır.
 - 5-7 satırlarındaki döngü O(E) süre alır.
 - Toplam çalışma süresi O(V E).

- Dijkstra algoritması
 - Her kenarı negatif-olmayan maliyet içeren yönlü graf G = (V,E) için tek-kaynak en-kısa yol hesabı yapar.
 - Doğru bir şekilde oluşturulduğunda Bellman-Ford algoritmasında daha verimli çalışır.
 - Son en-kısa yol uzunluğu bulunmuş köşeler kümesi, S, hesaplanır.
 - Algoritma tekrar ederek V S içerisinde en-kısa yol tahminine sahip köşeyi seçer, bu köşeyi S kümesine ekler ve geri kalan, yeni eklenen köşeye komşu olan köşelerin her birini genişletir.

Dijkstra algoritması

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```


Verimli bir Fibonacci heap yapısı ile Dijkstra'nın algoritması O(V lg V + E) sürede çalışabilir.