			 	T T
SRN				

PES University, Bangalore (Established under Karnataka Act 16 of 2013)

UE16EC253

END SEMESTER ASSESSMENT (ESA) B.TECH. IV SEMESTER- MAY. 2018 UE16EC253 - DIGITAL SIGNAL PROCESSING

Γim	e: 3 H	Hrs Answer All Questions Max Marks: 100	
		Compute DFT of the following length-N sequence	4
		$x(n) = \begin{cases} 1 & \text{for n even, } 0 \le n \le N-1 \\ 0 & \text{for n odd, } 0 \le n \le N-1 \end{cases}$	
	b)	Find the 10-point inverse DFT of	4
		$X(k) = 1 + 2\delta(k) = \begin{cases} 3 & k = 0 \\ 0 & 1 \le k \le N - 1 \end{cases}$	
	c)	Let $X(k) = \{1, j, -1, -j\}$ be the DFT of a 4-point sequence $x(n)$, using properties of the DFT determine the following:	6
		a) DFT $\{x((n-1))_4\}$ b) DFT $\{j^n x(n)\}$	(4
	d)	Given two 8-point sequences, $x_1(n) = (1, 1, 1, 1, 1, 1, 1, 1)$ and $x_2(n) = \cos(0.25\pi n)$ for $n = 07$, using properties of DFT compute $Y(k) = DFT\{y(n)\}$ where $y(n) = x_1(n) \cdot x_2(n)$.	6
2.	a)	Determine 8-point DFT of a sequence $x(n) = cos(0.5\pi n)$, using radix-2 DIT-FFT algorithm. Provide all intermediate results.	6
	b)	Compute a 4-point sequence $x(n)$, using radix-2 inverse DIT-FFT algorithm, of a four point DFT $X(k) = \{X(0), X(1), X(2), X(3)\}$. Draw the butterfly diagram.	5
	c)	The linear convolution of an 1100-point sequence with a 55-point sequence is to be computed using 64-point radix-2 FFTs and IFFTs. Determine the smallest number of FFTs and IFFTs needed to compute this linear convolution using the overlap add method.	3
	d)	Find the output $y(n) = x(n) \otimes h(n)$, where $x(n) = (1, 0, -1, 1)$ and $h(n) = (1, -1)$, using 4-point radix-2 DIF and IDIF FFTs.	6
		[Note: © denotes circular convolution]	1
3.	a)	Compute the poles of an analog lowpass Butterworth filter transfer function that satisfies the following constraints and find the system function H(s):	8
		$0.707 \le H(j\Omega) \le 1$ $0 \le \Omega \le 2 \text{ rad/sec}$ $ H(j\Omega) \le 0.1$ $\Omega \ge 4 \text{ rad/sec}$	
	b) ⁻	Determine the poles of an analog lowpass Chebyshev Type-I filter to meet the following specifications:	8
		(i) $1 \ dB$ ripple in passband $0 \le \Omega \le 1.5 \ rad/sec$	

		SRN							
		(ii) At least 40 dB attenuation in the stopband $\Omega \ge 2.5 \text{ rad/sec}$ Also, sketch the poles of the system on an ellipse finding the lengths of major and minor axes.							
	c)	Derive a recursive relation to obtain higher order Chebyshev polynomial. Using the relation determine the Chebyshev polynomial for $N=3$.							
4.	a)	Use the impulse invariant method to find the digital transfer function of $H(s) = \frac{4(3s+7)}{(s+2)(s^2+4s+5)}$ Assume $T=1$ sec.							
w	b)	Using bilinear transformation design a digital Chebyshev type-I bandpass filter that meets the following specifications: (i) Desired order: $N=2$, assume $T=1$ sec (ii) Cutoff frequencies: $\omega_l=0.55\pi$ rad and $\omega_u=0.65\pi$ rad (iii) Passband ripple: $3\ dB$	6						
	c)	Consider the causal LTI system with system function $H(z)$ given below: $H(z) = \frac{z^{-1}(1 - 6z^{-1} + 8z^{-2})}{(1 - 0.5z^{-1})}$ Draw a direct form II structure for the system.	4						
	d)	Obtain parallel form realization structure for the following transfer function $H(z)$ $H(z) = \frac{0.7 - 0.25 z^{-2}}{(1 + 0.1 z^{-1} - 0.72 z^{-2})}$	5						
5.	a)	Design a linear phase FIR filter to satisfy the following constraints: Passband edge frequency: 4 kHz Stopband edge frequency: 2 kHz Passband ripple: 2 dB Stopband attenuation: 40 dB Sampling Frequency: 20 kHz	8						
	b)	Using frequency sampling method, design a bandpass filter with the following specifications: Sampling frequency: 8 kHz Cutoff frequencies $Fc_1 = 1 \text{ kHz}$ and $Fc_2 = 3 \text{ kHz}$ Determine the filter coefficients for $M=7$.	6						
(Determine the lattice coefficients corresponding to the FIR filter with system function $H(z) = A_3(z) = 1 + 0.18 z^{-1} + 0.236 z^{-2} + 0.3 z^{-3}$ Draw the lattice structure using the reflection coefficients	6						