

Optimization of Logistics Systems / Logistics Systems Planning I 2. Exercise

Exercise 2.1 (Topological sorting)

Given the digraph D = (V, A). Sort the nodes of the digraph topologically.

Solution topological sorting

- Prerequisite: graph is acyclic
- Procedure:
 - 1. Set V' = V, List $X = (\cdot)$
 - 2. Stop if $V' = \emptyset$
 - 3. Calculate indegrees $d^-(i) \ \forall i \in V'$
 - 4. Select arbitrary node $v \in V'$ with $d^-(v) = 0$ (if there is no v such that $d^-(v) = 0$, the graph is cyclic)
 - 5. Remove v from V' (and all arcs that are incident with v), add v to the end of X, goto step 2.

V'	Indegrees in $D(V')$						X		
	S	1	2	3	4	5	6	7	
$\{S, 1, 2, \dots, 7\}$	0	1	6	1	4	2	1	2	(S)
$\{1, 2, 3, 4, 5, 6, 7\}$	_	1	<u>5</u>	0	<u>3</u>	2	1	<u>1</u>	(S,3)
$\{1, 2, 4, 5, 6, 7\}$	-	0	$\underline{4}$	-	<u>2</u>	2	0	0	(S, 3, 6)
$\{1, 2, 4, 5, 7\}$	-	0	<u>3</u>	-	<u>1</u>	<u>1</u>	-	0	(S, 3, 6, 1)
$\{2,4,5,7\}$	-	-	3	-	0	1	-	0	(S, 3, 6, 1, 4)
$\{2, 5, 7\}$	_	-	<u>2</u>	-	-	0	-	0	(S, 3, 6, 1, 4, 5)
$\{2, 7\}$	-	-	1	-	-	-	-	0	(S, 3, 6, 1, 4, 5, 7)
{2}	-	-	<u>0</u>	-	-	-	-	-	(S, 3, 6, 1, 4, 5, 7, 2)

 \Rightarrow a top. sorting is given by (S, 3, 6, 1, 4, 5, 7, 2).

Exercise 2.2 (Pulling algorithm)

Use the pulling algorithm to determine the length of the shortest paths from node s to all other nodes in the digraph of Exercise 2.1.

Solution:

Pulling algorithm: ("From which nodes can node i be reached?")

- \bullet Prerequisites: digraph is acyclic, arbitrary arc weights, nodes are given in topological sorting X
- Procedure:
 - 1. Select s according to sorting X; d(s) = 0, pred(s) = 0, $V' = V \setminus \{s\}$
 - 2. Stop if $V' = \emptyset$.
 - 3. Select next node $j \in V'$ according to sorting $X, V' = V' \setminus \{j\}$
 - 4. Calculate $d(i) + c_{ij}$ for all predecessors of j (arcs in backward star $\delta^{-}(j)$) and select the i with smallest $d(i) + c_{ij}$
 - 5. Set $d(j) = d(i) + c_{ij}$, pred(j) = i, goto Step 2.
 - $(\rightarrow$ Label of a node is set when the labels of all potential predecessors have been set.)

Topological sorting X = (S, 3, 6, 1, 4, 5, 7, 2)

Node j	Backward star $\delta^-(j)$	$d(i) + c_{ij}$	min	L	abels
Initialization				d(s) = 0	pred(s) = 0
3	(s,3)	1	1	d(3) = 1	pred(3) = s
6	(3, 6)	3	3	d(6) = 3	pred(6) = 3
1	(3,1)	6	6	d(1) = 6	pred(1) = 3
4	(s,4), (1,4), (3,4), (6,4)	5, 9, 7, 7	5	d(4) = 5	pred(4) = s
5	(4,5), (6,5)	6, 6	6	d(5) = 6	pred(5) = 4
7	(s,7),(3,7)	4, 3	3	d(7) = 3	pred(7) = 3
2	(s, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)	10, 4, 12, 8, 9, 8	4	d(2) = 4	pred(2) = 3

\Rightarrow Shortest-path-tree:

Exercise 2.3 (Reaching algorithm)

Use the reaching algorithm to determine the length of the shortest paths from node s to

all other nodes in the digraph of Exercise 2.1.

Solution:

Reaching algorithm: ("Which nodes can be reached from node i?")

- \bullet Prerequisites: digraph is acyclic, arbitrary arc weights, nodes are given in topological sorting X
- Solution method:
 - 1. Select s according to sorting X; $d(s)=0, pred(s)=0, d(i)=\infty \ \forall i\in V\backslash\{s\}, V'=V\backslash\{s\}$
 - 2. Stop if $V' = \emptyset$.
 - 3. Select next node $i \in V'$ according to sorting $X, \, V' = V' \backslash \{i\}$
 - 4. Check for all successors j from i (arcs in forward star $\delta^+(i)$) whether $d(j) > d(i) + c_{ij}$, if yes, set $d(j) = d(i) + c_{ij}$ and pred(j) = i, goto Step 2. (Note: New paths are investigated from ultimately marked nodes.)

Topological sorting X = (S, 3, 6, 1, 4, 5, 7, 2)

Node i	Forward star $\delta^+(i)$	$d(i) + c_{ij}$	Labels of improved nodes
Initialization			$d(s) = 0 \ pred(s) = 0$
s	(s,2), (s,3), (s,4), (s,7)	10, 1, 5, 4	$d(2) = 10 \ pred(2) = s, \ d(3) = 1 \ pred(3) = s,$
			$d(4) = 5 \ pred(4) = s, \ d(7) = 4 \ pred(7) = s$
3	(3,1)(3,2)(3,4)(3,6)(3,7)	6, 4, 7, 3, 3	$d(1) = 6 \ pred(1) = 3, \ d(2) = 4 \ pred(2) = 3,$
			$d(6) = 3 \ pred(6) = 3, \ d(7) = 3 \ pred(7) = 3$
6	(6,2), (6,4), (6,5)	9, 7, 6	$d(5) = 6 \ pred(5) = 6$
1	(1,4)	9	-
4	(4,2),(4,5)	12, 6	-
5	(5, 2)	8	-
7	(7, 2)	8	-
2	-	-	-

 \Rightarrow Shortest path tree: (Note: Different optimal solution, see node 5!)

