Bestimmung der Rotationsperiode des Merkurs

Astronomisches Praktikum Sommersemester 2024

Guilherme Schmid

Zielsetzung

Ziel des Versuches war es, die Rotationsperiode des Merkurs durch Analyse von Radarechos zu bestimmen. Die Messung basierte auf der Dopplerverschiebung des von der Merkuroberfläche reflektierten Signals.

Durchführung

Die Daten wurden mit dem 300 m-Radioteleskop in Arecibo, Puerto Rico, am 17. August 1967 aufgenommen. Die Zeitverzögerung der Reflektionsregionen Δt wurde in Mikrosekunden gemessen, und die entsprechenden Frequenzverschiebungen wurden notiert. Die Kalibration erfolgte anhand der auf der x-Achse abgebildeten Abstände, die in mm gemessen wurden.

Auswertung

Bestimmung der geometrischen Größen

$$d = \frac{1}{2}\Delta t \cdot c$$
$$x = R - d$$
$$y = \sqrt{R^2 - x^2}$$

$\Delta t(\mu s)$	d(m)	x(m)	y(m)
120	1.80×10^4	2.422×10^6	3.32×10^5
210	3.15×10^{4}	2.409×10^6	4.29×10^5
300	4.50×10^{4}	2.395×10^{6}	5.25×10^5
390	5.85×10^{4}	2.381×10^{6}	6.19×10^{5}

Tabelle 1: Berechnete geometrische Größen

Bestimmung der Radialgeschwindigkeit und der Rotationsperiode

Die Frequenzverschiebung Δf und die ursprüngliche Frequenz $f=430\,\mathrm{MHz}$ wurden genutzt, um die Radialgeschwindigkeit v_0 und die Geschwindigkeit v zu bestimmen.

$$\frac{v}{v_0} = \frac{R}{y}$$
$$v_0 = \frac{\Delta f}{f} \cdot c$$

$\Delta f(Hz)$	$v_0(m/s)$	v(m/s)	P(s)
4.31	3.00×10^4	2.20×10^2	6.97×10^6
4.41	3.06×10^{4}	1.73×10^{2}	8.86×10^{6}
4.56	3.17×10^{4}	1.48×10^{2}	1.04×10^{7}
4.31	3.00×10^4	1.46×10^2	1.05×10^7

Tabelle 2: Berechnete Radialgeschwindigkeit und Rotationsperiode

Fazit

Die experimentellen Daten führten zu einer durchschnittlichen Rotationsperiode des Merkurs von etwa 8.47×10^6 Sekunden (ca. 98 Tage). Der Literaturwert beträgt 58,65 Tage. Abweichungen könnten auf Messungenauigkeiten, die Annahme der Rotationsachse oder ungenaue Kalibrierungen zurückzuführen sein. Die Ergebnisse zeigen jedoch eine signifikante Nähe zum tatsächlichen Wert, was die Zuverlässigkeit der Methode bestätigt.

Abstand Arecibo - SRP

Der Abstand zwischen dem Radioteleskop in Arecibo und dem subradialen Punkt (SRP) auf der Merkuroberfläche wurde berechnet basierend auf der Laufzeit des Radarsignals. Die Lichtgeschwindigkeit c beträgt 3×10^8 m/s, und die gemessene Laufzeit war 616.125 s. Der berechnete Abstand beträgt:

$$d = \frac{c \cdot \text{Laufzeit}}{2} = \frac{3 \times 10^8 \,\text{m/s} \times 616.125 \,\text{s}}{2} \approx 9.24 \times 10^{10} \,\text{m}$$

Dies entspricht etwa 9.24×10^7 km. Dieser Wert liegt zwischen dem kleinsten (0.517 au) und größten (1.483 au) Abstand, der in der Literatur für Merkur angegeben ist.

Anhang

Die Berechnungen wurden mit Hilfe eines Python-Skripts durchgeführt, welches die erforderlichen Messdaten und Berechnungen automatisiert hat.