Devoir Surveillé n°4 - Sujet groupe A

- 1. (Question de cours) Définition d'une relation d'ordre, d'une relation d'équivalence. Le candidat écrira la signification des conditions avec des quantificateurs.
- 2. (Question de cours) Donner la définition d'un groupe et d'un groupe abélien.
- 3. Donner le terme général de la suite (u_n) définie par $u_0 = 2$ et : $\forall n \in \mathbb{N}, u_{n+1} = 4u_n 2$.
- 4. Même question avec la suite (u_n) définie par $u_0 = -3$, $u_1 = -7$ et : $\forall n \in \mathbb{N}$, $u_{n+2} = 7u_{n+1} 12u_n$.
- 5. Donner la limite des suites de terme général :

•
$$u_n = \frac{8^n}{e^{3n}}$$
.
• $v_n = \frac{e^n - n^2 \times 2^n + 3^n}{e^n + n^2 \times 2^n - 3^n}$.

- 6. (a) Justifier que, pour tout $k \ge 1$, $1/k! \le 1/2^{k-1}$.
 - (b) Montrer que la suite de terme général

$$S_n = \sum_{k=0}^n \frac{1}{k!}$$

converge.

- 7. Calculer la limite de la suite de terme général $u_n = \lfloor 10^n \times \pi \rfloor / 10^n$.
- 8. Donner le domaine de définition de $f: x \mapsto 1/\ln(x)$. En quel(s) point(s) f est-elle prolongeable par continuité?
- 9. Soient $f, g : [0;1] \to \mathbb{R}$ continues telles que f(0) = g(1) = 0 et f(1) = g(0) = 1. Montrer qu'il existe $x_0 \in [0;1]$ tel que $f(x_0) = 2024g(x_0)$.
- 10. Soient f et g deux fonctions continues telles que, pour tout $x \in \mathbb{Q}$, f(x) < g(x). Montrer que $f \leq g$.
- 11. Soit f définie sur \mathbb{R} par $f(x) = (x^{2024} + 1) e^{-x^2}$.
 - (a) Donner les limites de f en $\pm \infty$.
 - (b) Justifier l'existence d'un réel A>0 tel que, pour tout $x\geq A, |f(x)|\leq 1$.
 - (c) Montrer que f est bornée sur \mathbb{R} .
- 12. Donner la dérivée de :

$$f \colon \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \operatorname{Arctan} \left(\ln \left(3 + \cos \left(e^{\sin(2x)} \right) \right) \right) \end{cases}$$

Il n'est pas demandé de justifier que f est effectivement définie et dérivable sur \mathbb{R} .

13. Justifier que

$$f \colon \begin{cases} \mathbb{R}^* \longrightarrow \mathbb{R} \\ x \longmapsto x^2 \sin(1/x) \end{cases}$$

est prolongeable en une fonction dérivable sur \mathbb{R} .

- 14. Soit f:[0;1] dérivable telle que f(0)=f(1)=1. Montrer qu'il existe $x\in]0;1[$ tel que $f'(x)=2\pi\sin(2\pi x)$.
- 15. Soit $f : \mathbb{R} \to \mathbb{R}$ dérivable, soit a > 0. Montrer qu'il existe c > 0 tel que f(a) f(-a) = a(f'(c) + f'(-c)). On pourra introduire la fonction

$$\varphi \colon \begin{cases} [\,0\,;a\,] \longrightarrow \mathbb{R} \\ x \longmapsto f(x) - f(-x) \end{cases}$$

16. Soit

$$f \colon \begin{cases} \mathbb{R}_+ \longrightarrow \mathbb{R} \\ x \longmapsto e^{-x/2} \end{cases}$$

Page 1/2 2023/2024

MP2I Lycée Faidherbe

- (a) Montrer que f admet un unique point fixe (sur \mathbb{R}_+) que l'on notera α .
- (b) Soit (u_n) la suite définie par $u_0=2024$ et : $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$. Montrer que, pour tout n :

$$|u_{n+1} - \alpha| \le \frac{1}{2} \times |u_n - \alpha|$$

- (c) Montrer que $u_n \xrightarrow[n \to +\infty]{} \alpha$.
- 17. Soit $n \geq 2$. Donner la dérivée n-ième de $f: x \mapsto (7x^2 + 5x) \times e^{2x}$.
- 18. (Question de cours) Donner la définition d'une fonction convexe.
- 19. Sur quels intervalles la fonction $f: x \mapsto x^2 \ln(x)$ est-elle concave? Convexe? Préciser ses points d'inflexion éventuels.
- 20. Montrer que:

$$\sum_{k=1}^{n} \sqrt{k} \le n \times \sqrt{\frac{n+1}{2}}$$

Page 2/2 2023/2024