Université François Rabelais de Tours Département de Mathématiques

Td 1: Dualité

Algèbre Semestre 4, 2022

Exercice 1. Pour toute matrice $A = (a_{ij})$ de $M_2(\mathbb{K})$, on appelle trace de A le scalaire $tr(A) = a_{11} + a_{22}$.

- 1. Prouver que l'application $\operatorname{tr}: M_2(\mathbb{K}) \to \mathbb{K}$ est une forme linéaire non nulle sur $M_2(\mathbb{K})$.
- 2. En déduire que $H = \{A \in M_2(\mathbb{K}), \operatorname{tr}(A) = 0\}$ est un hyperplan de $M_2(\mathbb{K})$ et en donner une base.
- 3. Prouver que, pour toutes matrices $A, B \in M_2(\mathbb{K})$, $\operatorname{tr}(^tA) = \operatorname{tr}(A)$, et $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 4. Prouver que $\forall A, B \in M_2(\mathbb{K}), \forall p \in \mathbb{N}^*, \operatorname{tr}((AB)^p) = \operatorname{tr}((BA)^p)$.
- 5. A-t-on $\operatorname{tr}(AB) = \operatorname{tr}(A)\operatorname{tr}(B)$ pour tout couple de matrices $A, B \in M_2(\mathbb{K})$?
- 6. Prouver que pour toute matrice $A \in M_2(\mathbb{R})$, on a $\operatorname{tr}({}^t A.A) \geq 0$ avec égalité si et seulement si $A = O_2$.

Exercice 2. Dans $E = \mathbb{R}^5$ muni de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3, e_4, e_5)$, on considère F = Vect(u, v, w, t) où

$$u = (1, 0, 2, 0, 3), \quad v = (2, 0, 1, 0, -1), \quad w = (-1, 0, 1, 0, 2), \quad t = (-1, 0, 4, 0, 9).$$

Par la méthode d'échelonnement, déterminer le rang de la famille (u, v, w, t), une base de F, sa dimension, l'un de ses supplémentaires dans E et des formes linéaires $\phi_1, \phi_2 \in (\mathbb{R}^5)^*$ telle que $F = \ker(\phi_1) \cap \ker(\phi_2)$.

Exercice 3. Dans $E = \mathbb{R}^4$, muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$, on considère $F = \{(x, y, z, t) \in \mathbb{R}^4, 3z + t = 5x + 4y\}$. Justifier que F est un hyperplan de E, en déduire sa dimension, puis en donner une base, toutes ses équations et tous ses supplémentaires dans E.

Exercice 4. Dans E un \mathbb{K} -espace vectoriel de dimension finie n, on considère deux vecteurs distincts u, v. Construire une forme linéaire ϕ sur E telle que $\phi(u) \neq \phi(v)$. (On pourra compléter $e_1 = u - v$ en une base de E).

Exercice 5. Dans $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B}_0 = (e_1, e_2, e_3)$, on considère

$$u_1 = e_2 + e_3$$
, $u_2 = e_2 - e_3$, $u_3 = e_1 + e_2 - 2e_3$.

- 1. Justifier que $\mathcal{B}_1 = (u_1, u_2, u_3)$ est une base de E et déterminer sa base duale. En déduire la matrice de passage Q de \mathcal{B}_1 à \mathcal{B}_0 .
- 2. On pose $F = \text{Vect}(u_1, u_2)$. Justifier que F est un hyperplan de E et déterminer l'une de ses équations.
- 3. Déterminer un système d'équations de $G = \text{Vect}(u_3)$.

Exercice 6. Sur $E = \mathbb{R}_3[X]$, on considère les cinq formes linéaires suivantes :

$$\phi_1(P) = P(0), \quad \phi_2(P) = P'(0), \quad \phi_3(P) = P(1), \quad \phi_4(P) = P'(1), \quad \psi(P) = \int_0^1 P(t)dt.$$

- 1. Prouver que $(\phi_1, \phi_2, \phi_3, \phi_4)$ est une base de E^* et déterminer sa base préduale (H_1, H_2, H_3, H_4) .
- 2. Déterminer les réels a, b, c, d tels que $\psi = a\phi_1 + b\phi_2 + c\phi_3 + d\phi_4$.