IO 扩展板硬件手册

-,	概述	2
	1.1 BW-IO01 参数列表	
_,	接口定义	
	2.1 电源输入接口 P2	
	2.2 串口通信接口 P1	
	2.3 模拟输入端口 P3	
	2.4 数字输入端口 10	
	2.5 数字输入端口 I1	
	2.6 数字输入端口 12	
	2.7 数字输出端口 OU0	6
	2.8 数字输出端口 OU1	
	2.9 数字输出端口 OU2	
\equiv	串口通信协议	
_,	3.1 可接收指令	
	3.2 扩展板上传数据包	
	3.4 リ /区 (以上)マ 奴)/泊 [凸	=

一、概述

BW-IO01 是一款输入输出扩展板。支持 10 路数字隔离输出,11 路数字隔离输入,4 路模拟电压输入。配合 ROS 驱动包,可以迅速扩展 ROS 机器人控制系统的输入输出能力,特别适合 AGV 和叉车设备。

1.1 BW-I001 参数列表

控制芯片输入电压	DC5V	
11 路数字隔离输入有效电压	DC9V-30V	
10 路数字隔离输出有效电压	DC5V-30V	
4路模拟电压输入范围	DC0V-6.6V, 最大值可定制	
工作电流	最大 100mA	
通信接口	TTI 或者 RS232 串口指令	
工作环境	场合: 无易燃、易爆气体, 无粉尘	
	温度: -10-50 摄氏度	
	防护等级:不防水	
散热方式	自然风冷	
尺寸	95mm*80mm*35mm	
重量	100 克	

二、接口定义

2.1 电源输入接口 P2

1.5V	直流 5V 输入
2.GND	电源地

2.2 串口通信接口 P1

1.GND	地
2.RXD	扩展版数据接收口, 默认 ttl 电平, 可选 rs232
3.TXD	扩展版数据输出口, 默认 ttl 电平, 可选 rs232

2.3 模拟输入端口 P3

1.模拟输入通道 1	默认 0 到 6.6V
2 模拟输入通道 2	默认 0 到 6.6V
3 模拟输入通道 3	默认 0 到 6.6V
4 模拟输入通道 4	默认 0 到 6.6V
5.GND	4 路共地,和系统非隔离。

2.4 数字输入端口 I0

1.输入通道 1	DC9V 到 30V 对应逻辑输入 1, 小于 DC6V 对应逻辑输入 0。
2 输入通道 2	DC9V 到 30V 对应逻辑输入 1,小于 DC6V 对应逻辑输入 0。
3 输入通道 3	DC9V 到 30V 对应逻辑输入 1,小于 DC6V 对应逻辑输入 0。
4输入通道4	DC9V 到 30V 对应逻辑输入 1,小于 DC6V 对应逻辑输入 0。
5.COM-	4路输入共阴极,和系统隔离。

2.5 数字输入端口 I1

1.输入通道 5	DC9V 到 30V 对应逻辑输入 1, 小于 DC6V 对应逻辑输入 0。
2 输入通道 6	DC9V 到 30V 对应逻辑输入 1, 小于 DC6V 对应逻辑输入 0。
3 输入通道 7	DC9V 到 30V 对应逻辑输入 1, 小于 DC6V 对应逻辑输入 0。
4输入通道8	DC9V 到 30V 对应逻辑输入 1,小于 DC6V 对应逻辑输入 0。
5.COM-	4路输入共阴极,和系统隔离。

2.6 数字输入端口 I2

1.输入通道 9	DC9V 到 30V 对应逻辑输入 1, 小于 DC6V 对应逻辑输入 0。
2 输入通道 10	DC9V 到 30V 对应逻辑输入 1,小于 DC6V 对应逻辑输入 0。
3 输入通道 11	DC9V 到 30V 对应逻辑输入 1,小于 DC6V 对应逻辑输入 0。
4.COM-	3路输入共阴极,和系统隔离。

2.7 数字输出端口 OU0

1.输出 5v	如果不需要隔离输出,可以用这个端口给2号引脚供电作为上拉。
2 输出共阳极	当输入 DC5V 到 30V , 对应上拉输出,不输入则对应开漏输出。
3 输出通道 1	默认上拉输出高电平或开漏输出高,置0对应低电平。
4.输出通道 2	默认上拉输出高电平或开漏输出高,置0对应低电平。
5.输出通道 3	默认上拉输出高电平或开漏输出高,置0对应低电平。
6.输出通道 4	默认上拉输出高电平或开漏输出高,置0对应低电平。
7. COM-	4 路输出共阴极,与系统隔离。

2.8 数字输出端口 OU1

1.输出 5v	如果不需要隔离输出,可以用这个端口给2号引脚供电作为上拉。
2 输出共阳极	当输入 DC5V 到 30V , 对应上拉输出,不输入则对应开漏输出。
3 输出通道 5	默认上拉输出高电平或开漏输出高,置0对应低电平。
4.输出通道 6	默认上拉输出高电平或开漏输出高,置0对应低电平。
5.输出通道 7	默认上拉输出高电平或开漏输出高,置0对应低电平。
6.输出通道 8	默认上拉输出高电平或开漏输出高,置0对应低电平。
7. COM-	4 路输出共阴极,与系统隔离。

2.9 数字输出端口 OU2

1.输出 5v	如果不需要隔离输出,可以用这个端口给2号引脚供电作为上拉。
2 输出共阳极	当输入 DC5V 到 30V , 对应上拉输出,不输入则对应开漏输出。
3 输出通道 9	默认上拉输出高电平或开漏输出高,置0对应低电平。
4.输出通道 10	默认上拉输出高电平或开漏输出高,置0对应低电平。
7. COM-	2 路输出共阴极,与系统隔离。

三、串口通信协议

串口波特率为115200,8个数据位,1个停止位,无奇偶校验。

3.1 可接收指令

有两种指令,第一种不带校验,第二种带校验。

不带校验命令由 包头 + 数据长度 + 数据内容 构成。

带校验命令由 包头 + 数据长度 + 数据内容 + 数据校验和 构成。数据校验和等于数据

内容所有字节求和后取低8位值得到。

a. 重启指令,不带校验

0xcd	0xeb	0xd7	0x01	0x31
包头	包头	包头	命令长度	重启指令

b. 进入串口烧录模式,不带校验

0xcd	0xeb	0xd7	0x01	0x29
包头	包头	包头	命令长度	烧录指令

c. 读取端口状态,不带校验

0xcd 0xeb		0xd7	0x01	0x43		
包头	包头	包头	命令长度	读取指令		

d. 设置端口状态,带校验

0xcd	0xeb	0xd7	0x06	0x49	4 个字节	1个字节
包头	包头	包头	命令长度	数据内容 1	数据内容 2	校验和

4 个字节的"数据内容 2"构成一个无符号的 32 位小端存储整数,高 16 位对应要设置的端口通道,低 16 位对应通道设置值。

例如:

cd eb d7 06 49 03 00 03 00 06 表示将 1 号输出端口和 2 号输出端口设置成高电平输出。因为 0x03 对应的二进制是 1 位和 2 位, 置 1 了。

cd eb d7 06 49 00 00 03 00 03 表示将 1 号输出端口和 2 号输出端口设置成低电平输出。

3.2 扩展板上传数据包

下发读取端口状态后,扩展板串口会自动返回当前所有端口状态值。这些状态保存在下述数据帧里面。

上传的数据包格式:包头+长度+内容

包头: 为 3 个 u8 字符: 205 235 215

长度: 1个 u8 字符,长度不包括包头和长度本身字符,当前数据包长度为 25。 内容:由 5个4字节小端模式二进制表示的数字组成,数字之间用校验和分开。

校验和 x 等于数字 x 的 4 个字节内容的和值取低 8 位。

包头	长度	数字1	校验和1	数字 2	校验和 2	数字3	校验和3	数字4	校验和 4	数字5	校验和 5
0xcd 0xeb 0xd7	0x19	4 个字节	1个字节	4 个字节	1个字节	4个字节	1个字节	4个字节	1个字节	4个字节	1 个字节

完整数据包内容构成一个 c 语言结构体, 结构体具体构成如下所示:

typedef struct {

unsigned int pin_status; //前 16 位对应 16 个输入通道,后 16 位对应 16 个输出通道,每一位对应一个通道。

float power1; //模拟输入通道 1 测量值。 float power2; //模拟输入通道 2 测量值。 float power3; //模拟输入通道 3 测量值。 float power4; //模拟输入通道 4 测量值。

}IO_Status;

数据包的使用请参考 https://github.com/BlueWhaleRobot/bw io.git ROS 驱动包对应部分代码。