

Green Light Meeting Joey Doll 10/27/2011

Hair Cells as Mechanical Transducers

Current Experimental Methods

Project image onto photodiode

Mechanics: 1 kHz, 1 mN/m

Kinetics: 5-10 kHz, >10 mN/m

Problem

Macroscale force probes are too slow for mammalian hair cells

Design Targets

	Design #	l_c $(\mu \mathbf{m})$	$l_{pr} \ (\mu \mathbf{m})$	k (mN/m)	f_d (kHz)	t_r ($\mu \mathbf{sec}$)	R_{pr} $(\mathbf{k}\Omega)$	MDD (nm)	MDF (pN)
<u>Mechanics</u>	1	142	12.6	0.3	3.3	286	4.1	11	3.3
	2	96	9.5	1.0	9.7	60	3.2	6.3	6.2
	3	75	7.7	2.1	19	23	2.7	4.6	9.6
	4	61	6.6	3.9	32	11	2.4	3.6	14
SI	5	46	5.2	9.0	64	4.6	2.0	2.7	24
<u>Kınetıcs</u>	6	35	4.1	20.4	124	2.0	1.6	.6 2.1	42
킬	7	29	3.6	35.8	190	1.2	1.5	1.7	61

<u>Mechanics</u>

Device Design

Probe Fabrication (PRPE)

Finished Devices

Finished Devices

Piezoresistor Electrical Properties

Actuator Step Response

Actuator Frequency Response

Capacitive Crosstalk

Resonant Frequency Data

Resonant Frequency Data

Stiffness Data

Stiffness Data

Remaining Work

- Device characterization
 - Methods are fully developed. Currently testing more devices (at least 10-15 more)
 - Want to measure temperature via Raman (waiting on SNL training)
- Soft cantilever stiction upon exiting water
 - Plan on testing surface treatments
 - Discussions with Ginel Hill (who made < 0.1 mN/m probes) suggest O2 plasma might work
- Hair cell experimental issues
 - Parylene coating is good as long as nothing touches it
 - Working on actuator-patch clamp crosstalk (alternative biasing and epoxy)
- Writing
 - Papers (device, methods)
 - Book (substantial overlap with the thesis)
 - Thesis (book work + experimental sections)