

Modelos de Markov ocultos 1

Albert Sanchis Alfons Juan Jorge Civera

¹Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior

Objetivos formativos

- Interpretar un *HMM (modelo de Markov oculto)*
- Calcular la probabilidad de una cadena de forma directa

Índice

1	Definición de HMM	3
2	Probabilidad de una cadena	5

1. Definición de HMM

Un *modelo de Markov oculto* o *HMM (Hidden Markov Model)* es un modelo probabilístico para *procesos (sistemas) Markovianos:* el estado del sistema en t+1 sólo depende de su estado en t i sólo se observa x (la secuencia de estados visitados permanece *oculta*).

Ejemplo:

Definición formal

Un HMM es un modelo $M=(Q,\Sigma,\pi,A,B)$, donde:

- $\blacksquare Q$ es un conjunto finito de *estados* (que incluye uno *final*, F)
- ullet es un conjunto finito de *símbolos* o *alfabeto*
- $\blacksquare \pi \in [0,1]^Q$ es un vector de *probabilidades iniciales*
- $\blacksquare A \in [0,1]^{Q \times Q}$ es una matriz de *probabilidades de transición*
- $\blacksquare B \in [0,1]^{Q \times \Sigma}$ es una matriz de *probabilidades de emisión*

Ejemplo:

2. Probabilidad de una cadena

La probabilidad que M asigna a (genere) $x = x_1x_2 \cdots x_T$ es:

$$P_M(x) = \sum_{\boldsymbol{q} = q_1 q_2 \cdots q_T} P_M(x, \boldsymbol{q})$$

donde

$$P_M(x, \mathbf{q}) = \left[\pi_{q_1} B_{q_1, x_1} \right] \cdot \left[A_{q_1, q_2} B_{q_2, x_2} \right] \cdot \ldots \cdot \left[A_{q_{T-1}, q_T} B_{q_T, x_T} \right] \cdot A_{q_T, F}$$

Ejemplo: x = ab

Conclusiones

- Hemos visto en qué consiste un HMM
- También hemos visto cómo calcular de forma directa la probabilidad que un HMM asigna a una cadena

