Homework 2 2020-03-05

Homework 2

2018011365 张鹤潇

Q1

- (a). $2 \times 2 + 5 \times 1 = 9 \, ns$;
- (b). 不使用流水线, 1000 对浮点数加法需要 $1000 \times 9 = 9000 \, ns$;
- (c). 使用流水线,运算流程如下:

Time	Fetch	Compare	Shift	Add	Normalize	Round	Store
0	1						
1	1						
2	2	1					
3	2		1				
4	3	2		1			
5	3		2		1		
6	4	3		2		1	
7	4		3		2		1

总计 2*1999+9=2007 ns;

(d).

- 一级缓存缺失,二级缓存命中时,5ns 后下一次取操作才能开始,但7ns 后上一次加法才结束。 在任意时刻,流水线上还是有不少于1次加法在同时执行;取操作的时间多了3ns.
- •二级缓存也缺失时,50 ns 后下一次取操作才能开始,流水线在43 ns 时间内一直在等待读入;取操作的时间多了48 ns.

Q2

缓存变大时,程序性能提高;矩阵规模变大时,程序性能降低。

• 第一段程序缓存缺失的次数为 $\left\lceil \frac{number\ of\ matrix\ elements}{size\ of\ cache\ line} \right\rceil$;

张鹤潇 2018011365 1

Homework 2 2020-03-05

• 若矩阵列数小于缓存行大小,则第二段程序缓存缺少的次数会下降,最多下降至与版本一相当; 而当矩阵列数不小于缓存行大小时,会发生矩阵元素个数次缓存缺失。

对于MAX = 8,第一段程序发生16次缺失,第二段程序发生64次。

Q3

可以有 220 页。

Q4

(a). 需要
$$\frac{10^{12}}{10^6 \times 10^3} + 10^{-9} \times 10^9 \times (1000 - 1) = 1999 \, s$$
.

(b). 需要 $\frac{10^{12}}{10^6 \times 10^3} + 10^{-3} \times 10^9 \times (1000 - 1) = 9.99 \times 10^8 \, s$.

Q5

记处理器数量为 p, 只计算交换器间的链路数。

Category	#link
ring	p
2D-toroidal mesh (square, p is even)	2p
Fully connected network	$(p^2-p)/2$
Hypercubes	$\frac{p\log_2 p}{2}$
Crossbar	2p(p-1)
Omega network	$p(\log_2 p - 1)$

Q6

将处理器自上而下等分成两组。

- 在8×8交叉开关矩阵中,移除任一组处理器的出入链路共8条,就使得两组不再连接。若移除链路少于8条,就不能使两组完全断开连接。
- 在p=8的 Omega 网络中,移除如图所示的四条链路。若移除链路少于 4条,就不能使两组完

张鹤潇 2018011365 2

Homework 2 2020-03-05

全断开连接。

Q7

(a). y 被赋为 5。

当1号核需要 X 时,由于 X 不在它的缓存中,它会沿着 bus 广播; 0 号核接收到信号后会将 X 写回内存,最终,1号核会从内存中读出更新后的 X。

(b). 结果和理由同 (a)。

Q8

$$\begin{split} E &= \frac{n}{(\frac{n}{p} + \log_2 p)p} = \frac{n}{n + p \log_2 p} \\ & \diamondsuit \frac{n'}{n' + kp \log_2 kp} = \frac{n}{n + p \log_2 p}, \ \, \textit{$\ \ | \ } \forall \, n' = \frac{k \log_2 kp}{\log_2 p} n \\ & \text{$\ \ \, } \exists \, p \, \text{$\ \ \, } \text{$\ \$$

张鹤潇 2018011365 3