Identifying Wildfires: Geospatial Data and Machine Learning

THE CONTEXT

Pollutants from the bush fires in Australia will circle the

Australian fires have incinerated the habitats of

ge for irreversible forest losses in Australia

Fires exceeded human and computer predictions

Why These Australia Fires Are Like Nothing We've Seen Before

More than 16 million acres have gone up in flames. And it has happened in populated areas, unlike most of the world's other blazes of this scale.

st decade on record in Australia.

THE CHALLENGE

Visualization of Fire Spread in Shoalhaven Area

Guardian Graphic | Source: Nasa Firms VIIRS / Google Earth

Footage of Fires in Victoria

Guardian, Jan 2, 2020

THE OVERARCHING GOAL

Can we use machine learning to predict where a fire will spread?

Data input

Weather data (NASA, JAXA)
Free, publicly-available
Outputs every 3 hours
Global scale

Model

Next-day Predictions of Areas Likely to Catch Fire

THE OVERARCHING GOAL

THIS PROJECT SCOPE

For one point (day) in time:

can a model distinguish between areas of active fire, burned areas, land (other) and water

based on weather data?

THE DATA COLLECTION

THE DATA SOURCES

MCD64A1.006 MODIS Burned Area Monthly Global 500m

MOD14A1.006: Terra Thermal Anomalies & Fire Daily Global 1km

Source: Land Processes Distributed Active Archive Center (LP-DAAC) within NASA's Earth Observing System Data and Information System

GSMaP Operational: Global Satellite Mapping of Precipitation

Source: Earth Observation Research Center, Japan Aerospace Exploration Agency

Global Land Data Assimilation System (GLDAS 2.1)

Source: NASA's Goddard Earth Sciences Data and Information Services Center

THE DATA INPUT

Soil moisture Soil temperature Baseflow-groundwater runoff Root zone soil moisture Average surface skin temperature Latent heat net flux Potential evaporation rate Snapshot of hourly precipitation rate adjusted to rain gauge Total precipitation rate Pressure

Air temperature

Wind speed
Plant canopy surface water
Albedo
Specific humidity
Downward long-wave radiation flux
Evapotranspiration
Net long-wave radiation flux
Net short wave radiation flux
Snapshot of hourly precipitation rate
Direct evaporation from bare soil

THE DATASET

THE LABELED DATASET

THE MODEL

Predicted Categories

Active Fire

Burned Area

Land (Other)

Water

THE RESULTS: TRAINING DATA

Top Most Important Features

Specific humidity
Wind speed
Latent heat net flux
Air temperature
Albedo
Soil moisture
Potential evapotranspiration rate
Evapotranspiration
Hourly precipitation rate

THE RESULTS: TEST DATA

THE RESULTS

Land (other)
Water

Active fire

Burned area

Actual December 22, 2019

Predicted December 22, 2019

THE RESULTS

NEXT STEPS

- Improve the model.
 - Try different classification algorithms and hypertuning
- Test the model on a different day.
- Explore different data inputs.
 - Add data on terrain, slope, elevation, geolocation
- Predict over time.
 - Add time dimension and time series data
- Explore over different geographies.
 - Downscale to smaller geographic area, with higher resolution
 - Explore model application to different regions
- Automate the model.
 - Clean code and integration with Google Earth Engine Scripts

APPENDIX

Binary Decision Tree Classifier: Should I play outside?

Random Forest Model


```
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=10, max_features=5, max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=1000, min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=-1, oob_score=False, random_state=None, verbose=0, warm_start=False)
```


SATELLITE DATA

Source: https://www.nasa.gov/directorates/heo/scan/spectrum/overview/index.html

CONSTRUCTING THE DATASET

Temporal aggregation

Taking several "images" over a time span and taking the median value per pixel range

Most recent data available as of December 22, 2019

CONSTRUCTING THE DATASET

THE RESULTS

Actual December 22, 2019

Predicted December 22, 2019