NUAA

第1页 (共6页)

Matrix Theory, Final						est Date: 2017年1月5日	
矩阵论班号及班内序号:				学号		姓名	
必做题(70 分)						地位居 (20 八)	77 17
题号	1	2	3	4	5	选做题(30分)	总分
得分							

Part I (必做题, 共 5 题, 70 分)

第1题(10分) 得分

Let $C_{[0,1]}$ be the vector space consisting of all continuous functions on the closed interval [0, 1]. The inner product on $C_{[0,1]}$ is defined by $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Let $S = \text{span}\{1, x\}$.

- (1) Find an orthonormal basis for the subspace S.
- (2) Let $h \in \mathbb{C}_{[0,1]}$ be defined by $h(x) = e^x$. Find the orthogonal projection of h onto the subspace **S**. **Solution:**

第2题(10分) 得分

Let **S** be the subspace of C[a,b] spanned by e^x , xe^x and x^2e^x . Let σ be the linear transformation on **S** defined by $\sigma(f) = f + f'$, where f' represents the <u>derivative</u> (导函数) of the function f.

- (1) Find the matrix A representing σ with respect to the ordered basis $[e^x, xe^x, x^2e^x]$.
- (2) Is the matrix *A* diagonalizable? Why?

Solution:

第3题(20分) 得分

Let
$$A = \begin{pmatrix} 3 & 1 & -2 \\ -1 & -1 & 4 \\ 0 & -1 & 3 \end{pmatrix}$$
.

- (1) Find all elementary divisors of A.
- (2) Find a Jordan canonical form J of A, and find a nonsingular matrix P such that $P^{-1}AP = J$.
- (3) Compute e^{Jt} . (Give the details of your computations.)

Solution:

第4题(15分) 得分

Suppose that $A \in \mathbb{R}^{3\times 3}$ and $A^2 - 3A + 2I = O$.

- (1) What are the possible minimal polynomials of A? Explain.
- (2) In each case of part (1), what are the possible characteristic polynomials of A? Explain.
- (3) In each case of part (1), what are the possible Jordan canonical forms of A? Explain.

Solution:

第5题(15分) 得分

Let
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbf{R}^{3 \times 2}$$
.

- (1) Find the Moore-Penrose inverse A^+ of matrix A.
- (2) Find all least-squares solutions of the system $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (1, 0, 0)^T$.
- (3) Find the orthogonal projection matrix P from \mathbb{R}^3 to the column space of A. **Solution:**

Part II (选做题, 每题 10 分)

请在以下题目中(第6至第9题)选择三题解答.如果你做了四题,请在题号上画圈标明需要批改的三题.否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.

第6题 Let $A \in \mathbb{R}^{n \times n}$. Show that the column space of A is the same as the column space of AA^T .

第7题 Let A be an $n \times n$ Hermitian matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Show that

(1) there exists an orthonormal set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ such that

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^H + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^H + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^H$$

(2) if $\mathbf{x} \in \mathbb{C}^n$ and $\|\mathbf{x}\| = 1$, then $\min\{\lambda_1, \lambda_2, \dots, \lambda_n\} \le \mathbf{x}^H A \mathbf{x} \le \max\{\lambda_1, \lambda_2, \dots, \lambda_n\}$.

第8题 Let A, B be Hermitian matrices of order n. If A is positive definite and B is positive semi-definite, show that the eigenvalues of AB are nonnegative.

第9题 Let $A \in \mathbf{R}^{n \times n}$. Show that $\det(\mathbf{e}^A) = \mathbf{e}^{tr(A)}$.

选做题得分 若正面不够书写,请写在反面.

选做题解答: