Homework 7

Fletcher Gornick March 12, 2021

Problem 1 (30 points)

```
type 'a tree = Leaf | Branch of 'a tree * 'a * 'a tree

let rec flip_tree =
  fun t ->
  match t with
  | Leaf -> Leaf
  | Branch (left, root, right) ->
     Branch (flip_tree right, root, flip_tree left)
```

Theorem 1. For any type a and any value t of type a tree, we have

```
flip_tree (flip_tree t) = t
```

Domain All values of type a tree.

Property P(t): flip_tree (flip_tree t) = t.

Inductive order R(t1,t2): t1 is a proper subtree of t2.

1. t = Leaf.

Left-hand side: flip_tree (flip_tree Leaf) = flip_tree Leaf = Leaf. Right-hand side: Leaf.

Both sides agree.

2. t = Branch (left, root, right).

Left-hand side:

flip_tree (flip_tree (Branch (left, root, right)))

- = flip_tree (Branch ((flip_tree right), root, (flip_tree left)))
- = Branch (flip_tree (flip_tree left), root, flip_tree (flip_tree right))

Right-hand side:

```
Branch (left, root, right)
```

It is thus sufficient to show that

```
flip_tree (flip_tree left) = left
flip_tree (flip_tree right) = right
```

Which is exactly P(left) and P(right). P(left) and P(right) are implied by the inductive hypothesis because both left and right are proper subtrees of t. That is, R(left,t) and R(right,t).

Problem 2 (30 points)

```
let rec sum_tree =
  fun t ->
  match t with
  | Leaf -> 0
  | Branch (left, root, right) ->
    sum_tree left + root + sum_tree right
```

Theorem 2. For any value t of type int tree, we have

```
sum_tree (flip_tree t) = sum_tree t
```

Domain All values of type a tree.

```
Property P(t): sum_tree (flip_tree t) = sum_tree t.
```

Inductive order R(t1,t2): t1 is a proper subtree of t2.

1. t = Leaf.

```
Left-hand side: sum_tree (flip_tree Leaf) = sum_tree Leaf = 0.
Right-hand side: sum_tree Leaf = 0.
Both sides agree.
```

2. t = Branch (left, root, right).

Left-hand side:

```
sum_tree (flip_tree (Branch (left, root, right)))
= sum_tree (Branch ((flip_tree right), root, (flip_tree left)))
= sum_tree (flip_tree right) + root + sum_tree (flip_tree left)
= sum_tree (flip_tree left) + root + sum_tree (flip_tree right)
```

Right-hand side:

```
sum_tree (Branch (left, root, right))
= sum_tree left + root + sum_tree right
```

It is thus sufficient to show that

```
sum_tree (flip_tree left) = sum_tree left
sum_tree (flip_tree right) = sum_tree right
```

Which is exactly P(left) and P(right). P(left) and P(right) are implied by the inductive hypothesis because both left and right are proper subtrees of t. That is, R(left,t) and R(right,t).

Bonus Problem (10 points)

```
let rec length 1 =
  match 1 with
  | [] -> 0
  | h :: t -> 1 + length t
let rec size_tree =
  fun t ->
  match t with
  | Leaf -> 0
  | Branch (left, _, right) ->
    size_tree left + 1 + size_tree right
let rec list_of_tree_helper =
  fun t 1 \rightarrow
  match t with
  | Leaf -> 1
  | Branch (left, root, right) ->
    list_of_tree_helper left (root :: list_of_tree_helper right 1)
let list_of_tree t = list_of_tree_helper t []
Lemma 3. For any type a, any value t of type a tree, and any value 1 of type a list, we have
```

```
length (list_of_tree_helper t 1) = size_tree t + length 1
```

Domain All values of type a tree and a list.

Property P(t): length (list_of_tree_helper t 1) = size_tree t + length 1.

Inductive order R(t1,t2): t1 is a proper subtree of t2.

1. t = Leaf.

```
Left-hand side: length (list_of_tree_helper Leaf 1) = length 1. Right-hand side: size_tree Leaf + length 1 = 0 + length 1 = length 1. Both sides agree.
```

2. t = Branch (left, root, right).

Left-hand side:

```
length (list_of_tree_helper (Branch (left, root, right)) 1)
= length (list_of_tree_helper left (root :: list_of_tree_helper right 1))
= size_tree left + length (root :: (list_of_tree_helper right 1))
= size_tree left + 1 + length (list_of_tree_helper right 1)
= size_tree left + 1 + size_tree right + length 1
```

Since the trees left and right are proper subtrees of t, that is, R(left,t) and R(right,t), P(left) and P(right) are implied by the inductive hypothesis. This means

```
length (list_of_tree_helper left) = size_tree left + length 1
length (list_of_tree_helper right) = size_tree right + length 1
```

Which is why these equalies are made above in *Left-hand side*.

Right-hand side:

```
size_tree t + length l
= size_tree left + 1 + size_tree right + length l
```

Again, both sides agree.

Therefore, by the principle of mathematical induction, the claim length (list_of_tree_helper t 1) = size_tree t + length 1 must hold for all values t and 1 of type a tree and a list respectively.

Theorem 4. For any type a and any value t of type a tree, we have

```
length (list_of_tree t) = size_tree t
```

The function length (list_of_tree t) can be rewritten as length (list_of_tree_helper t []). As proven in Lemma 3, length (list_of_tree_helper t 1) = size_tree t + length 1, so we can apply this to our new case, giving us length (list_of_tree_helper t []) = size_tree t + length []. Finally, since length [] = 0, we have length (list_of_tree_helper t []) = size_tree t + 0 = size_tree t.

Again, since length (list_of_tree_helper t []) can be rewritten as length (list_of_tree t), we can conclude that length (list_of_tree t) = size_tree t.