Cache Efficient Parallel Partition Algorithms An In-Place Exclusive Read/Write Memory Algorithm

OUR RESEARCH QUESTION

Can we create an algorithm with theoretical guarantees that is fast in practice?

RESULT

We created the *Smoothed Striding Algorithm*.

Key Features:

- ► linear work and polylogarithmic span (like the Standard Algorithm)
- ► fast in practice (like the Strided Algorithm)
- ► theoretically optimal cache behavior (unlike any past algorithm)

SMOOTHED STRIDING ALGORITHM'S PERFORMANCE

STRIDED VERSUS SMOOTHED-STRIDING ALGORITHM

Strided Algorithm

[Francis and Pannan, 92; Frias and Petit, 08]

- ► Good cache behavior in practice
- ▶ Worst case span is $T_{\infty} \approx n$
- ► On random inputs span is $T_{\infty} = \tilde{O}(n^{2/3})$

Smoothed-Striding Algorithm

- ► Provably optimal cache behavior
- ► Span is $T_{\infty} = O(\log n \log \log n)$ with high probability in *n*
- ► Uses randomization *inside* the algorithm

SMOOTHED STRIDING ALGORITHM

Logically partition the array into chunks of adjacent elements.

Form groups U_i that contain a random element from each chunk.

This randomization step was one of our key in-

sights; it guarantees that the U_i 's have similar compositions regardless of the input.

Perform serial partitions on each U_i in parallel over the U_i 's.

This step is highly parallel.

Define v_i = index of first element greater than the pivot in U_i .

Identify leftmost and rightmost v_i . Note that $A[k] \leq \text{pivot for all } k < v_{\min}$, and

Recursively partition the subarray.

This step was previously impossible; adding randomization enables this step,

A KEY CHALLENGE

How do we store the U_i 's if they are all random?

Storing which elements make up each U_i takes too much space!

Strided Algorithm P_i .

HOW TO STORE THE GROUPS

Key Insight: While each U_i does need to contain a random element from each chunk, the U_i 's don't need to be *independent*.

We store U_1 , and all other groups are determined by a "circular shift" of U_1 (wraparound within each chunk).

