ING

SEQUENCE LISTING

<110> Hayward, Nicholas K.
Weber, Gunther
Grimmond, Sean
Nordenskjold, Magnus
Larsson, Catharina

<120> A NOVEL GROWTH FACTOR AND A GENETIC SEQUENCE ENCODING SAME

<130> DAVIES

<140> 08/765,588

<141> 1996-02-22

<160> 23

<170> PatentIn Ver. 2.0

<210> 1

<211> 649

<212> DNA

<213> Nucleotide Sequence of VEGF165

<220>

<221> CDS

<222> (17)..(589)

<400> 1

tcgggcctcc gaaacc atg aac ttt ctg ctg tct tgg gtg cat tgg agc ctt 52

Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu

1 5 10

gcc ttg ctg ctc tac ctc cac cat gcc aag tgg tcc cag gct gca ccc 100
Ala Leu Leu Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro
15 20 25

atg gca gaa gga ggg cag aat cat cac gaa gtg gtg aag ttc atg 148 Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys Phe Met 30 35 40

gat gtc tat cag cgc agc tac tgc cat cca atc gag acc ctg gtg gac 196
Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp
45 50 55 60

atc ttc cag gag tac cct gat gag atc gag tac atc ttc aag cca tcc 244

Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser

			ctg Leu 80						-	_		_			_	292
			ccc Pro								_	_		_		340
			cac His													388
			tgt Cys	_	_	_		_		-	_	_	_		_	436
		-	ggg Gly		-		-		_	_	_	_		_		484
-	_	-	acg Thr 160	_		-		_				_		_		532
-			cag Gln													580
	agg Arg 190		tgaç	iccăč	igc a	ıggaç	gaag	ıg aç	rccto	ccto	e ago	cgttt	cgg			629
gaac	caga	itc t	ctca	ccaç	ıg											649

<210> 2 <211> 191 <212> PRT <213> Nucleotide Sequence of VEGF165

<400> 2 Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu

Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly

Gly	Gly	Gln 35	Asn	His	His	Glu	Val 40	Val	Lys	Phe	Met	Asp 45	Val	Tyr	Gln	
Arg	Ser 50	Tyr	Cys	His	Pro	Ile 55	Glu	Thr	Leu	Val	Asp 60	Ile	Phe	Gln	Glu	
Tyr 65	Pro	Asp	Glu	Ile	Glu 70	Tyr	Ile	Phe	Lys	Pro 75	Ser	Cys	Val	Pro	Leu 80	
Met	Arg	Cys	Gly	Gly 85	Cys	Cys	Asn	Asp	Glu 90	Gly	Leu	Glu	Cys	Va1 95	Pro	
Thr	Glu	Glu	Ser 100	Asn	Ile	Thr	Met	Gln 105	Ile	Met	Arg	Ile	Lys 110	Pro	His	
Gln	Gly	Gln 115	His	Ile	Gly	Glu	Met 120	Ser	Phe	Leu	Gln	His 125	Asn	Lys	Cys	
Glu	Cys 130	Arg	Pro	Lys	Lys	Asp 135	Arg	Ala	Arg	Gln	Glu 140	Asn	Pro	Cys	Gly	
Pro 145	Cys	Ser	Glu	Arg	Arg 150	Lys	His	Leu	Phe	Val 155	Gln	Asp	Pro	Gln	Thr 160	
Cys	Lys	Cys	Ser	Cys 165	Lys	Asn	Thr	Asp	Ser 170	Arg	Cys	Lys	Ala	Arg 175	Gln	
Leu	Glu	Leu	Asn 180	Glu	Arg	Thr	Сув	Arg 185	Cys	Asp	Lys	Pro	Arg 190	Àrg		
<210																
<211 <212																
			otide	e Sec	quenc	ce of	102	1175								
<220)>															
<221	> CI	s														
<222	> (3	3)((623)													
<400	> 3															
					ctc c											47
M	let S	ser E	ro I	.eu I	Leu A 5	arg <i>P</i>	arg I	∍eu I	∍eu I	лец <i>А</i> 10	ala A	ıra L	ieu I	ieu (15	
- L						سسيسـ		.		a.c.L		~~~	aa-	~~~	a n a	95
_	_		_		gcc Ala											33

20 25 30

					tca Ser			-				-	-		_	143
	5	-2	35					40		-3-		9	45		9,10	
					gtg Val											191
GIII	FIO	50	Giu	vai	vai	vai	55	пец	1111	vai	GIU	60	Mec	GIY	1111	
-	-		-	_	gtg		-	-				-	-	-		239
Val	A1a 65	Lys	Gin	Leu	Val	Pro 70	Ser	Cys	Val	Thr	75	GIn	Arg	Cys	GIÀ	
	-	•		-	gat		_		-					_		287
80 GTA	Cys	Cys	Pro	Asp	Asp 85	GIY	Leu	GIu	Cys	90	Pro	Thr	GIĀ	Gin	н1s 95	
	_		_	-	atc		_				_	-	-	-	_	335
GIN	val	Arg	Met	100	Ile	ьeu	Met	IIe	105	TYT	Pro	ser	ser	110	ьeu	
		-		•	gaa	-		-	-	-	-	_	-			383
GIY	GIU	мес	115	пеп	Glu	Giu	uis	120	GIII	Cys	Giu	СУБ	125		пуъ	
	_	_	_	-	gtg Val	_										431
гуѕ	гàг	130	ser	Ald	vai	гур	135	Asp	AIG	AIA	Ald	140	PIO	птр	nis	
-		-		_	tct	_	_									479
Arg	145	GIN	Pro	Arg	Ser	150	PIO	GIÀ	TIP	Asp	155	Ald	PIO	GIY	Ala	
					atc											527
Pro 160	Ser	Pro	Ala	Asp	Ile 165	Tnr	HIS	Pro	Thr	170	Ala	PIO	GIÀ	Pro	175	
•		_	-		agc			_	_							575
АТА	п1S	Ala	Ala	180	Ser	ınr	THE	ser	185	ьeu	THE	PIO	ΩТĂ	190	ATG	
_	_	-	-	-	gcc	_	_									623
AIG	AIG	Ата	195	Asp	Ala	Ата	AIG	200	ser	vdl	Alg	пÀ2	205	чтλ	AIG	•

tagageteaa eecagacace tgeaggtgee ggaagetgeg aaggtgacae atggetttte 683

agactcagca gggtgacttg cctcagaggc tatatcccag tgggggaaca aaggggagcc 743
tggtaaaaaa cagccaagcc cccaagacct cagcccaggc agaagctgct ctaggacctg 803
ggcctctcag agggctcttc tgccatccct tgtctccctg aggccatcat caaacaggac 863
agagttggaa gaggagactg ggaggcagca agaggggtca cataccagct caggggagaa 923
tggagtactg tctcagtttc taaccactct gtgcaagtaa gcatcttaca actggctctt 983
cctcccctca ctaagaagac ccaaacctct gcataatggg atttgggctt tggtacaaga 1043
actgtgaccc ccaaccctga taaaagagat ggaaggaaaa aaaaaaaaa a 1094

<210> 4

<211> 207

<212> PRT

<213> Nucleotide Sequence of SOM175

<400> 4

Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu 1 5 10 15

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln 20 25 30

Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln 35 40 45

Pro Arg Glu Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
50 55 60

Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 70 75 80

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
85 90 95

Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
100 105 110

Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
115 120 125

Lys Asp Ser Ala Val Lys Pro Asp Arg Ala Ala Thr Pro His His Arg 130 135 140

at.

Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Ala Pro Gly Ala Pro 145 150 155 160 Ser Pro Ala Asp Ile Thr His Pro Thr Pro Ala Pro Gly Pro Ser Ala 165 170 175 His Ala Ala Pro Ser Thr Thr Ser Ala Leu Thr Pro Gly Pro Ala Ala 180 185 190 Ala Ala Ala Asp Ala Ala Ser Ser Val Ala Lys Gly Gly Ala 200 205 <210> 5 <211> 993 <212> DNA <213> Nuc. Seq. of SOM175 Absent Exon 6 <220> <221> CDS <222> (3)..(566) <400> 5 cc atg agc cct ctg ctc cgc cgc ctg ctc gcc gca ctc ctg cag 47 Met Ser Pro Leu Leu Arg Arg Leu Leu Ala Ala Leu Leu Gln 10 ctg gcc ccc gcc cag gcc cct gtc tcc cag cct gat gcc cct ggc cac Leu Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His .30 20 25 cag agg aaa gtg gtg tca tgg ata gat gtg tat act cgc gct acc tgc 143 Gln Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys 40 35 cag ccc cgg gag gtg gtg ccc ttg act gtg gag ctc atg ggc acc 191 Gln Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr 50 55 60 gtg gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt 239 Val Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly 75 65 70 ggc tgc tgc cct gac gat ggc ctg gag tgt gtg ccc act ggg cag cac 287 Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His 85 90 80

caa gtc cgg atg cag atc ctc atg atc cgg tac ccg agc agt cag ctg

Gln Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu 100 105 110 ggg gag atg tcc ctg gaa gaa cac agc cag tgt gaa tgc aga cct aaa 383 Gly Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys 115 120 aaa aag gac agt gct gtg aag cca gat agc ccc agg ccc ctc tgc cca 431 Lys Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro 130 135 140 cgc tgc acc cag cac cac cag cgc cct gac ccc cgg acc tgc cgc tgc 479 Arg Cys Thr Gln His His Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys 145 150 155 cgc tgc cga cgc cgc agc ttc ctc cgt tgc caa ggg cgg ggc tta gag 527 Arg Cys Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu 160 170 165 576 ctc aac cca gac acc tgc agg tgc cgg aag ctg cga agg tgacacatgg Leu Asn Pro Asp Thr Cys Arg Cys Arg Lys Leu Arg Arg 180 185 cttttcagac tcagcagggt gacttgcctc agaggctata tcccagtggg ggaacaaagg 636 qqaqcctqqt aaaaaacaqc caagccccca agacctcagc ccaggcagaa gctgctctag 696 gacctgggcc tctcagaggg ctcttctgcc atcccttgtc tccctgaggc catcatcaaa 756 caggacagag ttggaagagg agactgggag gcagcaagag gggtcacata ccagctcagg 816 ggagaatgga gtactgtctc agtttctaac cactctgtgc aagtaagcat cttacaactg 876 gctcttcctc ccctcactaa gaagacccaa acctctgcat aatgggattt gggctttggt 936 993 acaaqaactg tgacccccaa ccctgataaa agagatggaa ggaaaaaaaa aaaaaaa

Cont.

<210> 6

<211> 188

<212> PRT

<213> Nuc. Seq. of SOM175 Absent Exon 6

<400> 6

Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu 1 5 10 15

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln

Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln

Pro Arg Glu Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val

Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln

Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly

Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys

Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro Arg

Cys Thr Gln His His Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg

Cys Arg Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu Leu

Asn Pro Asp Thr Cys Arg Cys Arg Lys Leu Arg Arg

<210> 7

<211> 858

<212> DNA

<213> Nuc. Seq. of SOM175 Absent Exons 6&7

<220>

<221> CDS

<222> (3)..(431)

<400> 7

Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln

ctg gcc ccc gcc cag gcc cct gtc tcc cag cct gat gcc cct ggc cac

Leu Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His 20 25 30 cag agg aaa gtg gtg tca tgg ata gat gtg tat act cgc gct acc tgc 143 Gln Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys 40 cag ccc cgg gag gtg gtg ccc ttg act gtg gag ctc atg ggc acc 191 Gln Pro Arg Glu Val Val Pro Leu Thr Val Glu Leu Met Gly Thr 50 55 60 gtg gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt 239 Val Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly 65 70 75 ggc tgc tgc cct gac gat ggc ctg gag tgt gtg ccc act ggg cag cac 287 Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His 80 85 caa gtc cgg atg cag atc ctc atg atc cgg tac ccg agc agt cag ctg 335 Gln Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu 100 105 110 ggg gag atg tcc ctg gaa gaa cac agc cag tgt gaa tgc aga cct aaa 383 Gly Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys 115 120 aaa aag gac agt gct gtg aag cca gat agg tgc cgg aag ctg cga agg 431 Lys Lys Asp Ser Ala Val Lys Pro Asp Arg Cys Arg Lys Leu Arg Arg 130 135 140 tgacacatgg cttttcagac tcagcagggt gacttgcctc agaggctata tcccagtggg 491 ggaacaaagg ggagcctggt aaaaaacagc caagccccca agacctcagc ccaggcagaa 551 gctgctctag gacctgggcc tctcagaggg ctcttctgcc atcccttgtc tccctgaggc 611 catcatcaaa caggacagag ttggaagagg agactgggag gcagcaagag gggtcacata 671 ccagctcagg ggagaatgga gtactgtctc agtttctaac cactctgtgc aagtaagcat 731 cttacaactg gctcttcctc ccctcactaa gaagacccaa acctctgcat aatgggattt 791 gggctttggt acaagaactg tgacccccaa ccctgataaa agagatggaa ggaaaaaaaa 851 858

aaaaaaa

```
<210> 8
<211> 143
<212> PRT
<213> Nuc. Seq. of SOM175 Absent Exons 6&7
<400> 8
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu
                 5
                                   10
Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln
            20
                               25
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
         35
                            40
                                               45
Pro Arg Glu Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
     50
                        55
                                           60
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
                    70
                                       75
Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
                85
                                   90
Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
           100
                              105
Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
       115
                           120
                                              125
Lys Asp Ser Ala Val Lys Pro Asp Arg Cys Arg Lys Leu Arg Arg
   130
                       135
                                          140
<210> 9
<211> 910
<212> DNA
<213> Nuc. Seq. of SOM175 Absent Exon 4
<220>
<221> CDS
<222> (3)..(305)
<400> 9
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln
    1
                                                         15
```

ctg gcc ccc gcc cag gcc cct gtc tcc cag cct gat gcc cct ggc cac Leu Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His 20 25 30	95
cag agg aaa gtg gtg tca tgg ata gat gtg tat act cgc gct acc tgc Gln Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys 35 40 45	143
cag ccc cgg gag gtg gtg gtg ccc ttg act gtg gag ctc atg ggc acc Gln Pro Arg Glu Val Val Pro Leu Thr Val Glu Leu Met Gly Thr 50 55 60	191
gtg gcc aaa cag ctg gtg ccc agc tgc gtg act gtg cag cgc tgt ggt Val Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly 65 70 75	239
ggc tgc tgc cct gac gat ggc ctg gag tgt gtg ccc act ggg cag cac Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His 80 85 90 95	287
caa gtc cgg atg cag acc taaaaaaaag gacagtgctg tgaagccaga Gln Val Arg Met Gln Thr 100	335
cagggetgee actececace accgtececa geocegttet gtteeggget gggaetetge	395
ccccggagca ccctccccag ctgacatcac ccatcccact ccagccccag gcccctctgc	155
ccacgctgca cccagcacca ccagcgccct gacccccgga cctgccgctg ccgctgccga	515
cgccgcagct tcctccgttg ccaagggcgg ggcttagagc tcaacccaga cacctgcagg 5	575
tgccggaagc tgcgaaggtg acacatggct tttcagactc agcagggtga cttgcctcag (535
aggctatatc ccagtgggga acaaagagga gcctggtaaa aaacagccaa gcccccaaga (595
cctcagccca ggcagaagct gctctaggac ctgggcctct cagagggctc ttctgccatc 7	755
ccttgtctcc ctgaggccat catcaaacag gacagagttg gaagaggaga ctgggaggca 8	315
gcaagagggg tcacatacca gctcagggga gaatggagta ctgtctcagt ttctaaccac 8	375

art.

<210> 10

<211> 101

<212> PRT

910

tctgtgcaag taagcatctt acaactggct cttcc

<213> Nuc. Seq. of SOM175 Absent Exon 4									
<400> 10									
Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu 1 5 10 15									
Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln 20 25 30									
Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln 35 40 45									
Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val 50 55 60									
Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 70 75 80									
Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln 85 90 95									
Val Arg Met Gln Thr 100									
<210> 11 <211> 42 <212> DNA <213> Oligonucleotide									
<pre><400> 11 accaccacct ccctgggctg gcatgtggca cgtgcataaa cg 42</pre>	2								
<210> 12 <211> 42									
<212> DNA <213> Oligonucleotide									
<400> 12	_								
agttgtttga ccacattgcc catgagttcc atgctcagag gc 42	2								
<210> 13									
<211> 38									
<212> DNA									

<213> Oligonucleotide

<400> 13 gatcctgggg ctgg	agtggg atggatgatç	r tcagctgg			38
<210> 14 <211> 40 <212> DNA <213> Oligonucl	eotide				
<400> 14 gcgggcagag gatc	ctgggg ctgtctggcc	tcacagcact			40
<210> 15 <211> 236 <212> DNA <213> Human SOM	175	·			
<400> 15					
atgaggggcc aggt	acgtga ggtctcccac	aggcccctgg	aaagaatact	tacatctgct	60
cccatggtgt atgc	aggtcc gagatgctga	atacagatcc	tcatgcaggt	gtcaggcaac	120
ttttcaagac ctaa	agacag gtgagtcttt	ctcctccgta	ggctgcctcc	agccccaggc	180
ccccactcc agcc	ccagac ccagacacct	gtagccctgc	tcaggtgccg	aggtga	236
<210> 16 <211> 1242 <212> DNA <213> mVRF					
<220>				•	
<221> CDS <222> (166)(8	31)				
(222/ (100)(0	J1)				
<400> 16					C 0
gcacgagete agge	cgtcgc tgcggcgctg	cgttgcgctg	cctgcgccca	gggctcggga	60
gggggccgcg gagg	agccgc cccctgcgcc	ccgccccggg	tccccgggtc	cgcgccatgg	120
ggcggctctg gctg	accccc ccccacaccg	ccgggctagg		agc ccc ctg Ser Pro Leu	177
ctg cgt cgc ctg	ctg ctt gtt gca	ctg ctg cag	ctg gct cgc	c acc cag	225

Leu Arg Arg Leu Leu Leu Val Ala Leu Leu Gln Leu Ala Arg Thr Gln

gcc cct gtg tcc cag ttt gat ggc ccc agt cac cag aag aaa gtg gtg Ala Pro Val Ser Gln Phe Asp Gly Pro Ser His Gln Lys Lys Val Val cca tgg ata gac gtt tat gca cgt gcc aca tgc cag ccc agg gag gtg Pro Trp Ile Asp Val Tyr Ala Arg Ala Thr Cys Gln Pro Arg Glu Val gtg gtg cct ctg agc atg gaa ctc atg ggc aat gtg gtc aaa caa cta Val Val Pro Leu Ser Met Glu Leu Met Gly Asn Val Val Lys Gln Leu gtg ccc agc tgt gtg act gtg cag cgc tgt ggt ggc tgc tgc cct gac Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly Cys Cys Pro Asp gat ggc ctg gaa tgt gtg ccc act ggg caa cac caa gtc cga atg cag Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln Val Arg Met Gln atc ctc atg atc cag tac ccg agc agt cag ctg ggg gag atg tcc ctg Ile Leu Met Ile Gln Tyr Pro Ser Ser Gln Leu Gly Glu Met Ser Leu gga gaa cac agc caa tgt gaa tgc aga cct aaa aaa aag gag agt gct Gly Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys Glu Ser Ala gtg agg cca gac agg gtt gcc ata ccc cac cgt ccc cag ccc cgc Val Arg Pro Asp Arg Val Ala Ile Pro His His Arg Pro Gln Pro Arg tet gtt eeg gge tgg gae tet ace eeg gga gea eee tee eea get gae Ser Val Pro Gly Trp Asp Ser Thr Pro Gly Ala Pro Ser Pro Ala Asp atc atc cat ccc act cca gcc cca gga tcc tct gcc cgc ctt gca ccc Ile Ile His Pro Thr Pro Ala Pro Gly Ser Ser Ala Arg Leu Ala Pro age gee gee aac gee etg ace eec gga eet gee gtt gee get gta gae Ser Ala Ala Asn Ala Leu Thr Pro Gly Pro Ala Val Ala Ala Val Asp gcc gcc gct tcc tcc att gcc aag ggc ggg gct tag agc tca acc cag

Ala Ala Ser Ser Ile Ala Lys Gly Gly Ala Ser Ser Thr Gln

200 205 210

aca cct gta ggt gcc gga agc cgc gaa agt gacaagctgc tttccagact 851
Thr Pro Val Gly Ala Gly Ser Arg Glu Ser
215 220

<210> 17

<211> 207

<212> PRT

<213> mVRF

<400> 17

Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Val Ala Leu Leu Gln Leu 1 5 10 15

Ala Arg Thr Gln Ala Pro Val Ser Gln Phe Asp Gly Pro Ser His Gln 20 25 30

Lys Lys Val Val Pro Trp Ile Asp Val Tyr Ala Arg Ala Thr Cys Gln
35 40 45

Pro Arg Glu Val Val Pro Leu Ser Met Glu Leu Met Gly Asn Val
50 55 60

Val Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 70 75 80

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
85 90 95

Val Arg Met Gln Ile Leu Met Ile Gln Tyr Pro Ser Ser Gln Leu Gly
100 105 110

Glu Met Ser Leu Gly Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys 115 120 125

Lys Glu Ser Ala Val Arg Pro Asp Arg Val Ala Ile Pro His His Arg 130 135 140

Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Thr Pro Gly Ala Pro 145 150 155 160

Ser Pro Ala Asp Ile Ile His Pro Thr Pro Ala Pro Gly Ser Ser Ala 165 170 175

Arg Leu Ala Pro Ser Ala Ala Asn Ala Leu Thr Pro Gly Pro Ala Val 180 185 190

Ala Ala Val Asp Ala Ala Ala Ser Ser Ile Ala Lys Gly Gly Ala 195 200 205

<210> 18

<211> 14

<212> PRT

<213> mVRF

<400> 18

Ser Ser Thr Gln Thr Pro Val Gly Ala Gly Ser Arg Glu Ser

1 5 10

<210> 19

<211> 188

<212> PRT

<213> mVRF167

<400> 19

Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Val Ala Leu Leu Gln Leu 1 5 10 15

Ala Arg Thr Gln Ala Pro Val Ser Gln Phe Asp Gly Pro Ser His Gln 20 25 30

Lys Lys Val Val Pro Trp Ile Asp Val Tyr Ala Arg Ala Thr Cys Gln 35 40 45

Pro Arg Glu Val Val Val Pro Leu Ser Met Glu Leu Met Gly Asn Val 50 55 60

Val Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln 85 90 95

Val Arg Met Gln Ile Leu Met Ile Gln Tyr Pro Ser Ser Gln Leu Gly
100 105 110

Glu Met Ser Leu Gly Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys 115 120 125

Lys Glu Ser Ala Val Arg Pro Asp Ser Pro Arg Ile Leu Cys Pro Pro 130 135 140

Cys Thr Gln Arg Arg Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg 145 150 155 160

Cys Arg Arg Arg Phe Leu His Cys Gln Gly Arg Gly Leu Glu Leu 165 170 175

Asn Pro Asp Thr Cys Arg Cys Arg Lys Pro Arg Lys
180 185

<210> 20

<211> 188

<212> PRT

<213> hVRF167

<400> 20

Met Ser Pro Leu Leu Arg Arg Leu Leu Leu Ala Ala Leu Leu Gln Leu 1 5 10 15

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln 20 25 30

Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
35 40 45

Pro Arg Glu Val Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val 50 55 60

Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly 65 70 75 80

Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
100 105 110

Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys 115 120 125

Lys Asp Ser Ala Val Lys Pro Asp Ser Pro Arg Pro Leu Cys Pro Arg 130 135 140

Cys Thr Gln His His Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg 145 150 155 160

Cys Arg Arg Ser Phe Leu Arg Cys Gln Gly Arg Gly Leu Glu Leu 165 170 175

Asn Pro Asp Thr Cys Arg Cys Arg Lys Leu Arg Arg 180 185

<210> 21

<211> 71

<212> PRT

<213> mVRF186

<400> 21

Arg Val Ala Ile Pro His His Arg Pro Gln Pro Arg Ser Val Pro Gly
1 5 10 15

Trp Asp Ser Thr Pro Gly Ala Pro Ser Pro Ala Asp Ile Ile His Pro 20 25 30

Thr Pro Ala Pro Gly Ser Ser Ala Arg Leu Ala Pro Ser Ala Ala Asn 35 40 45

Ala Leu Thr Pro Gly Pro Ala Val Ala Ala Val Asp Ala Ala Ala Ser 50 55 60

Ser Ile Ala Lys Gly Gly Ala 65 70

<210> 22

<211> 71

<212> PRT

<213> hVRF186

<400> 22

Arg Ala Ala Thr Pro His His Arg Pro Gln Pro Arg Ser Val Pro Gly

5

1

Trp Asp Ser Ala Pro Gly Ala Pro Ser Pro Ala Asp Ile Thr His Pro 20 25 30

Thr Pro Ala Pro Gly Pro Ser Ala His Ala Ala Pro Ser Thr Thr Ser
35 40 45

Ala Leu Thr Pro Gly Pro Ala Ala Ala Ala Ala Asp Ala Ala Aser 50 55 60

Ser Val Ala Lys Gly Gly Ala 65 70

<210> 23

<211> 214

<212> PRT

<213> mVEGF188

<400> 23

Met Asn Phe Leu Leu Ser Trp Val His Trp Thr Leu Ala Leu Leu Leu 1 5 10 15

Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Thr Thr Glu Gly
20 25 30

Glu Gln Lys Ser His Glu Val Ile Lys Phe Met Asp Val Tyr Gln Arg 35 40 45

Ser Tyr Cys Arg Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu Tyr 50 55 60

Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu Met 65 70 75 80

Arg Cys Ala Gly Cys Cys Asn Asp Glu Ala Leu Glu Cys Val Pro Thr 85 90 95

Ser Glu Ser Asn Ile Thr Met Gln Ile Met Arg Ile Lys Pro His Gln
100 105 110

Ser Gln His Ile Gly Glu Met Ser Phe Leu Gln His Ser Arg Cys Glu 115 120 125

Cys Arg Pro Lys Lys Asp Arg Thr Lys Pro Glu Lys Lys Ser Val Arg 130 135 140

 a^3

Gly Lys Gly Lys Gly Gln Lys Arg Lys Arg Lys Lys Ser Arg Phe Lys 145 150 155 160

Ser Trp Ser Val His Cys Glu Pro Cys Ser Glu Arg Arg Lys His Leu 165 170 175

Phe Val Gln Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn Thr Asp 180 185 190

Ser Arg Cys Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr Cys Arg 195 200 205

Cys Asp Lys Pro Arg Arg 210