TIVA-TP6

11 juin 2017

Visualisation des Ondelettes 2D

Question 1

Familles d'ondelettes : Haar, Daubechies, Beylkin, Coiflet, Symmlet, Vaidyanathan, Battle.

Figure 1 – Daubechies 4

Figure 2 – Daubechies 20

Figure 3 - Haar

Question2

Question 3

Il y aura dans W des coefficients associés à $\phi_{j,(n_1,n_2)}$ pour $j \in \{0,...,4\}$, et des coefficients associés à $\psi^k_{j,(n_1,n_2)}$ pour $j \in \{1,...,4\}$. Pour k et j fixés, n_1 et n_2 varient dans $[0,\ 256/(2^{j+1})]$. Le coefficient associé à $\psi^k_{j,(n_1,n_2)}$ se situe à :

$$(m_1, m_2) = \begin{cases} (n_1, 2^{(L-j)} + n_2), & \text{si } k = 1\\ (2^{(L-j)} + n_1, n_2), & \text{si } k = 2\\ (2^{(L-j)} + n_1, 2^{(L-j)} + n_2), & \text{si } k = 3 \end{cases}$$

Question 4

On crée une matrice \tilde{W} où tous les coefficients sont nuls sauf celui en (m_1, m_2) , coordonnées explicitées juste au dessus, qui vaut 1, puis on fait la transformée inverse de cette matrice.

Question 5

Si seul le coefficient de coordonnées (m_1,m_2) est non nul et égal à un, alors : — Si $m_1 \leq 2^{(8-L)}$ et $m_2 \leq 2^{(8-L)}$, alors la transformée inverse de W sera simplement la visualisation de l'ondelette père $\phi_{L,(m_1,m_2)}$; — S Sinon, la transformée inverse de W est la visualisation de l'ondelette mère $\psi_{j,(n_1,n_2)}^k$ avec la relation entre (k,j,n_1,n_2) et (m_1,m_2) précédamment établie.

En fait si l'on souhaite obtenir $phi_{j,(n_1,n_2)}$ avec j < L, il nous suffit de constater que comme :

$$\phi_{j,(n_1,n_2)} = \phi_{j,n_1}\phi_{j,n_2}
\psi^1_{j,(n_1,n_2)} = \phi_{j,n_1}\psi_{j,n_2}
\psi^2_{j,(n_1,n_2)} = \psi_{j,n_1}\phi_{j,n_2}
\psi^2_{j,(n_1,n_2)} = \psi_{j,n_1}\psi_{j,n_2}$$

Alors on obtient:

$$\phi_{j,(n_1,n_2)} = \frac{\psi_{j,(n_1,n_2)}^1 \psi_{j,(n_1,n_2)}^2}{\psi_{j,(n_1,n_2)}^3}$$