Лабораторная работа №2

Тема: «Определение модуля продольной упругости и коэффициента поперечной деформации стали»

<u>**Цель работы**</u>: экспериментальное определение упругих характеристик (модуля продольной упругости E и коэффициента поперечной деформации μ) стали при растяжении.

Теоретическая часть:

Линейная зависимость между напряжениями и относительными линейными деформациями в начальный период осевого нагружения образца (стержня), обнаруживаемая у многих материалов, известна под названием закона Гука:

$$\sigma = E\varepsilon. \tag{1}$$

Здесь E - коэффициент пропорциональности, носящий название модуля продольной упругости или модуля Юнга, - характеризует жесткость материала: чем больше E, тем жестче материал, т.е. меньше линейные продольные деформации при одних и тех же напряжениях.

$$\varepsilon = \frac{\sigma}{E} \tag{2}$$

Модуль продольной упругости имеет размерность напряжения, т.е. $(F \cdot L^{-2})$. Если учесть, что ε - безразмерная величина, носящая название относительной линейной деформации:

$$\varepsilon = \frac{\Delta l}{l},\tag{3}$$

где Δl - абсолютное удлинение стержня или приращение длины на длине l .

Когда продольная сила вдоль всего стержня постоянна, что имеет место при осевом растяжении (сжатии) стержня внешними силами F, приложенными к его концам, N=F и нормальные напряжения изображаются

					Лабораторная работа №2			
Изм.	Лист	№ докум.	Подпись	Дата				
Разр	αδ.	Сидоров С.Ф.				Лит.	Лист	Листов
Провер.		Чаус В.П.			Определение модуля продольной		1	5
Реценз.					упругости и коэффициента	ГГТУ им. П.О. Сухого, гр. С-2		
Н. Контр.					поперечной деформации стали			ого, гр. С-21
Утве	рд.							

формулой:
$$\sigma = \frac{N}{A} = \frac{F}{A}$$
.

Подставляя это выражения для σ , а также формулу (3) в (2) находим

$$E = \frac{F \cdot l}{A \cdot \Delta l}.$$
 (4)

При осевом растяжении стержня происходит уменьшение его поперечных размеров. Величина $\Delta b = b_1 - b$, на которую уменьшается первоначальный поперечный размер b стержня, называется абсолютной линейной поперечной деформацией. Отношение абсолютной линейной поперечной деформации к первоначальному поперечному размеру стержня называется относительной линейной поперечной деформацией и обозначается ε '.

$$\varepsilon' = \frac{\Delta b}{b} \,. \tag{5}$$

Опыт показывает, что отношение поперечной и продольной относительных деформаций в пределах соблюдения закона Гука представляет собой для каждого из материалов свою собственную постоянную величину, модуль которой носит название коэффициента поперечной деформации или иначе коэффициента Пуассона

$$\mu = \left| \frac{\varepsilon'}{\varepsilon} \right|. \tag{6}$$

Коэффициент Пуассона для различных изотропных материалов колеблется в пределах от 0 до 0,5. Для пробки $\mu \approx 0$, для резины $\mu \approx 0,5$, большинства металлов величина μ близка к 0,3.

Оборудование

Растяжение образца осуществляется на испытательной машине снабженной силоизмерительным: устройством и позволяющей осуществлять ступенчатое нагружение в пределах до 10 кH (1 тс).

Так как при растяжении стали в пределах упругости абсолютные деформации весьма малы, то определить их величины с надлежащей точностью является основной задачей данной работы. Это становится возможным при помощи тензометрирования. В настоящей работе используются механиче-

Изм.	Лист	№ докум.	Подпись	Дата

Лабораторная работа №2

Лист

ские шарнирно-рычажные тензометры Гуггенбергера с базой 20 мм и увеличением 1000.

Устройство тензометра показано на рисунке 1. Планку 1 притягивают струбцинкой к поверхности образца, деформация которого подлежит измерению. Опорами планки 1 являются неподвижный нож (слева) и призма ромбовидного сечения (справа), к которой жестко прикреплен стержень 2. При изменении расстояния между точками опоры, вследствие деформации образца призма наклоняется и с нею наклоняется стержень 2. Поворот призмы и стержня 2 при этом происходит вокруг ребра B призмы, в котором планка 1 опирается на призму. Верхний конец C стержня 2 шарнирно соединен при помощи серьги CE со стрелкой 3, имеющей шарнирную опору в точке D.

Рисунок 1. Схема рычажно-шарнирного тензометра.

Перемещение точки C при повороте стержня 2 вызывает такое же перемещение точки E стрелки 3. При этом стрелка поворачивается вокруг своей опоры D и нижний ее конец F перемещается вдоль миллиметровой шкалы, нанесенной на планке 1. Опорная точка D стрелки находится на ползуне и может перемещаться при помощи винта 4; это позволяет установить стрелку до испытания на желаемом отсчете, а также продолжить опыт без перестановки тензометра при исчерпании шкалы.

·			·	
Изм.	Лист	№ докум.	Подпись	Дата

Лабораторная работа №2

Лист

На образце устанавливают два тензометра: первый - для измерения продольных деформаций (тензометр 1 на рисунке 2) и второй - для измерения поперечных деформаций (тензометр 2).

Рисунок 2. Расположение тензометров на образце при определении коэффициента Пуассона.

Практическая часть:

Для эксперимента используется образец прямоугольного сечения. Материал - сталь Ст.3.

Ширина b = 35 мм, толщина h = 7 мм.

Площадь поперечного сечения $A = 245 \text{ мм}^2$.

Характеристики рычажных тензометров

Прибор	№ 1	№ 2
База тензометра $l_{\scriptscriptstyle T}$, мм	20	20
Цена деления K , мм	0,001	0,001

Результаты испытания образца

No	. I <i>Н</i> кн I	ΔF , кН	$T_{_1}$			T_2		
п/п			$T_{\scriptscriptstyle 1}$	$\Delta T_{_1}$	$\Delta T_{\scriptscriptstyle 1CP}$	T_{2}	$\Delta T_{_2}$	$\Delta T_{\scriptscriptstyle 2CP}$
1	10	5	2	2		1	1	
2	15	5	4	2		1,5	0,5	
3	20	5	6	2	1,8	2	0,5	0,56
4	25	5	7,5	1,5		2,2	0,2	
5	30	5	9	1,5		2,8	0,6	

						Лист
					Лабораторная работа №2	,
Изм.	Лист	№ докум.	Подпись	Дата		4

Обработка данных опыта

1. Продольные деформации для ΔF_{CP} :

абсолютная $\Delta l = \Delta T_{CP} K = 1,8 \cdot 0,001 = 0,0018$ мм;

относительная
$$\varepsilon = \frac{\Delta l}{l_{\scriptscriptstyle T}} = \frac{0,0018}{20} = 0,00009$$

2. Поперечные деформации для ΔF_{CP} :

абсолютная
$$\Delta b = \Delta T'_{CP} K = 0.56 \cdot 0.001 = 0.00056$$
 мм;

относительная
$$\varepsilon' = \frac{\Delta b}{l_{\scriptscriptstyle T}} = \frac{0,00056}{20} = 0,000028$$

3. Среднее напряжение
$$\sigma = \frac{\Delta F_{CP}}{A} = \frac{5 \cdot 10^3}{245} = 20,408$$
 МПа.

4. Модуль продольной упругости
$$E = \frac{\sigma}{\epsilon} = \frac{20,408}{0,00009} = 2,27 \cdot 10^5$$
 МПа.

5. Коэффициент Пуассона
$$\mu = \left| \frac{\epsilon'}{\epsilon} \right| = \frac{0,000028}{0,00009} = 0,31$$

6. Построим график зависимости $F-\Delta l$ по вычисленным значениям Δl для каждого этапа нагружения.

№ π/π	F , к \mathbf{H}	$\Delta l = \frac{T_1 + T_2}{2} \cdot K \text{ , MM}$
1	10	0,0015
2	15	0,00275
3	20	0,004
4	25	0,00485
5	30	0,0059

Вывод: В результате проделанной работы были определены упругие характеристики стали Ст.3 при растяжении, которые соответствуют табличным данным: модуль продольной упругости $E = 2,27 \cdot 10^5$ МПа, коэффициент поперечной деформации $\mu = 0,31$.

	·			
Изм.	Лист	№ докум.	Подпись	Дата