

BIOL3110 Conservation & Ecological Genetics

LECTURE 3: GENETIC VARIATION

Assignment 1: Commentary

WORTH 5 % **DUE FRIDAY WEEK 3 (7/3/22) MONDAY 5PM**

Criterion	Marks
Get it between 500-600 words	1
Relevance of paper selection	1
Presentation, spelling, grammar	1
Genuine effort to interpret the paper	2

TIPS:

- Don't include quotations
- Cite the focal paper (at the end)
- Can include an image plus SHORT caption
- Hone in on the relevance of VG for conservation
- Choose a paper that you find most interesting
- Consider your seminar!

Globally, > one million species are threatened □

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2019)

BIOL3110 3

AKA GENETIC VARIATION OR VARIANCE

IMPORTANCE (ACCORDING TO IUCN):

- Key constituent of biodiversity;
- 2. Required for adaptation
- Necessary for reducing inbreeding

TODAY:

- Review what it is and where it comes from
- Its role in guiding conservation
- Methods for measuring $V_G >>$
- Some examples of cons relevance

WHAT IS IT?

SIMPLY: DIFFERENCES IN DNA SEQUENCES

170 180 190
ATCTCTTGGCTCCAGCATCGATGAAGAACGCA
TCATTTAGAGGAAGTAAAAGTCGTAACAAGGT
GAACTGTCAAAACTTTTAACAACGGATCTCTT
TGTTGCTTCGGCGGGGCCCGCAAGGGTGCCCG
GGCCTGCCGTGGCAGATCCCCAACGCCGGGCC
TCTCTTGGCTCCAGCATCGATGAAGAACGCAG
CAGCATCGATGAAGAACGCATCGATGAAGAAC
CGGATCTCTTGGCTCCAGCATCGATGAAGAAC
ACAACGGATCTCTTGGCTCCAGCATCGATGAA
CGGATCTCTTGGCTCCAGCATCGATGAACAC
GATGAAGAACGCAGCGAAACGCATCGATGAA

This week (Lectures 3 & 4)

Whole Organism (Phenotype) V_G individual traits

Next week (Lectures 5 & 6)

Are genetic processes appropriately considered

> 300 threatened species recovery plans assessed for consideration of evolutionary factors (genetics)

Pierson et al (2016). Frontiers in Ecology and the Environment 14: 433-440

MEASUREMENT INDICES

For individual loci:

- Polymorphism (P)
 - = proportion of polymorphic loci;

- Average heterozygosity (H)
 - = proportion of heterozygous loci per individual;
- Allelic diversity (A)
 - = average number of different alleles per locus.

AKA GENETIC VARIATION OR VARIANCE

POLYMORPHISM (P)

Simple ratio of the number of polymorphic loci Eg:

Locus	Allele frequencies			
A	0.56	0.33	0.11	
В	0.70	0.20	0.10	
C	0.80	0.20		
D	1.0			
E	1.0			

$$\frac{\sum N_P}{N_T}$$

Where: N_P = number of polymorphic loci N_T = total number of loci

$$P = 3/5 = 0.6$$

HETEROZYGOSITY (H)

For a single locus (H for monomorphic locus =0) Eg:

Locus	Alleles & frequencies			
	A1 A2		A3	
ADA	0.56	0.33	0.11	

$$H = 1-(0.56^2 + 0.33^2 + 0.11^2)$$

= 1-(0.434)
= 0.564

$$H = 1 - \sum_{i} P_i^2$$

Where P_i = frequency of allele i

AKA GENETIC VARIATION OR VARIANCE

AVERAGE HETEROZYGOSITY (H)

For multiple loci Simple average across them Eg:

$$\frac{\sum H_i}{N_T}$$

Where: $H_i = H$ at locus i $N_T = \text{total number of loci}$

Locus	Alleles & frequencies			Н
	A1			
ADA	0.56	0.33	0.11	0.564
BDA	1.00	0	0	0.000

Average H =
$$(0.564 + 0.000)/2$$
 = 0.282

MACQUARIE University

AKA GENETIC VARIATION OR VARIANCE

ALLELIC DIVERSITY (A)

Simple average number of alleles per locus. Eg:

Locus	Allele frequencies			
A	0.60	0.25	0.13	0.12
В	0.70	0.10	0.10	0.10
C	0.50	0.30	0.20	
D	0.55	0.45		
E	0.85	0.15		
F	0.90	0.10		

$$A = \frac{\sum (N_A)}{N_T}$$

Where:

 N_A = number of different alleles across all loci N_T = total number of loci examined

$$A = 17/6 = 2.83$$

AKA GENETIC VARIATION OR VARIANCE

(Example Chap 3 in textbook)

Calculate:

Polymorphism (P)

Average Heterozygosity (H)

Allelic diversity (A)

Locus	Allele frequencies			Н
ADA	0.56	0.33	0.11	0.564
DIAB	0.61	0.39		0.476
ESI	0.88	0.12		0.211
GPI	0.85	0.15		0.255
GPT	0.89	0.11		0.196
MPI	0.92	0.08		0.147
20 others	1.00			0.00

AKA GENETIC VARIATION OR VARIANCE

6 of 26 loci polymorphic:

$$P = \frac{6}{26} = 0.23$$

H for the **average individual**:

$$\frac{\sum H}{26} = \frac{(0.564 + 0.476 + 0.211...)}{26} = 0.071$$

Allelic diversity (A):

$$\frac{[(1 \times 3) + (5 \times 2) + (20 \times 1)]}{26} = \frac{33}{26} = 1.27$$

Hence, an average of 1.27 alleles per locus

Locus	Allele frequencies			Н
ADA	0.56	0.33	0.11	0.564
DIAB	0.61	0.39		0.476
ESI	0.88	0.12		0.211
GPI	0.85	0.15		0.255
GPT	0.89	0.11		0.196
MPI	0.92	0.08		0.147
20 others	1.00			0.00

Individual H

- is it close to HWE expectations?
- What does this imply?

Panthera leo

Distribution:

Historic

Current

Panthera leo persica Asiatic lion

15

Panthera leo persica

1974: 180 individuals **2010:** 411 individuals

- 97 adult males

162 adult females

- 75 sub-adults

77 cubs

भारत INDIA

16

300

पैन्थेरा लिओ पर्सिका Panthera leo persica

Panthera leo persica

Genetic diversity

50 allozyme (protein) loci DNA fingerprints

	Alloz	DNA fingerprints	
	P	H	Н
Asiatic lion	0.00	0.000	0.038
African lion (outbred)	0.04-0.11	0.015-0.300	0.450

- Indicative of extreme bottleneck in recent past (N~20 in early 1900's)
- Problematic for inbreeding depression, lack of population resilience and reduced adaptive potential

BIOL3110

AKA GENETIC VARIATION OR VARIANCE

ASSESSMENT AT SINGLE LOCUS LEVEL

- **Proteins** (allozyme electrophoresis)
- Nuclear DNA amplification via PCR
 - Microsatellites (sequence repeats)
 - SNPs (single nucleotide polymorphism)
 - AFLP (amplified fragment length polymorphism)
 - RAPD (Randomly amplified polymorphic DNA)
 - Sequencing
 - Plus other techniques... (see Box 3.3 Frankham *et al.*)
- Mitochondrial DNA

AKA GENETIC VARIATION OR VARIANCE

MICROSATELLITES

- Repeats of 1-5bp sequences
 - 1. Simple Sequence Repeats (STRs)
 - 2. Short Tandem Repeats (STRs)

6 Repeats of 2bp segment e.g: XCACACACACAY
XGTGTGTGTGTY

- Highly variable
- Mostly **neutral DNA** (non-coding regions)
- Potential for non-invasive sampling

AKA GENETIC VARIATION OR VARIANCE

MITOCHONDRIAL DNA

- Haploid maternally-inherited DNA
- No recombination
- Useful in cons gen to:
 - 1. Resolve taxonomic uncertainties
 - 2. Define management units (haplotypes)
 - 3. Understand species biology

DNA in plant chloroplasts is equivalent

MAJOR HISTOCOMPATABILITY COMPLEX

Code for proteins for surface antigens in 2 classes:

Class I

Recognize intracellular pathogens and 'tag' the cell for immune system components (T-cells, phages etc).

- Class II
- Highly polymorphic loci with very high allelic diversity
- Sexual selection implicated in maximising population heterozygosity: mate choice for MHC diversity (via olfactory cues in humans)

AKA GENETIC VARIATION OR VARIANCE

MHC DIVERSITY & DEVIL FACIAL TUMORS (DFTD)

Historically low VG in MHC:

Recovery implications:

Most DFT cells express MHC classes 1 & 2 20% of devils only have class 1 or 2 genes MHC1 devils may detect DFT cells

expressing MHC1&2

Counterintuitive example

Extent of spread

Modern genomic workflow

More time to develop bioinformatic skills

- 1) Biodiversity patterns- diversity, distribution,distinctiveness
- 2) Estimating dispersal, genetic connectivity
- 3) Identifying processes

Next lecture:

Characterising V_G for single loci More detail & examples

