

Purvaash P U

(Purvaash Panduranghan Udhayashankar) MSc Physics Weizmann Institute of Science ●ORCID iD

■ purvaashtri@gmail.com

● Personal Website

○ GitHub Profile

■ LinkedIn Profile

2021-2024

2018-2021

2015-2018

EDUCATION

•Weizmann Institute of Science, Rehovot, Israel

MSc Physics Percentage: 93.5

•Indian Institute of Technology Bombay, Mumbai, India

MSc Energy Science and Engineering CPI: 9.42

•Loyola College, Chennai, India

BSc Physics CGPA: 9.09

RESEARCH EXPERIENCE

•Weizmann Institute of Science (WIS)

October 2022 - April 2024

Masters Project under the supervision of Prof. Yosef Nir

- Studied the implications of Higgs-related measurements at the LHC on various BSM frameworks

•Indian Institute of Technology Bombay (IITB)

June 2019 - December 2020

Masters Project under the supervision of Prof. Karthik Sasihithlu and Prof. M. P. Gururajan

- Conducted literature survey of near-field heat transfer and studied its mechanism
- Performed molecular dynamics simulation of near-field heat transfer across two nanospheres using LAMMPS

TECHNICAL SKILLS AND INTERESTS

Languages (Proficient): English, Tamil

Languages (Less proficient): German, Telugu

Software: Python, Julia, LAMMPS, Mathematica, LaTeX, Git

Areas of Interest: Theoretical physics (Field theory), Tensor networks, Quantum computing, Deep learning

PUBLICATIONS

1. Y. Nir and P. P. Udhayashankar, Lessons from ATLAS and CMS measurements of Higgs boson decays to second generation fermions, JHEP **06** (2024) 049 [arXiv:2404.16545 [hep-ph]]

ADVANCED COURSES TAKEN

•Theoretical Condensed Matter Physics

 $at\ IITB$

Instructor: Prof. Hridis Kumar Pal

- Second quantization, Interacting electron gas, Superconductivity, Magnetism

•Statistical physics 1

 $at\ WIS$

Instructor: Prof. Oren Raz

- Equilibrium statistical physics: Phase transitions and critical phenomena, Ising type models; Analytical and numerical methods, renormalization group approach; correlation functions
- Spin Glass physics: mean-field models, the replica trick, replica symmetry breaking

•Quantum field theory 1

 $at\ WIS$

Instructor: Prof. Ofer Aharony

- Perturbation theory and Feynman diagrams from Path Integrals (scalars and fermions), perturbative regularization and renormalization, optical theorem and the LSZ reduction formula, Renormalization group
- QED, gauge fixing and the Faddeev-Popov procedure, Ward Identities, non-Abelian gauge theories
- Non-perturbative field theory: QCD (qualitative). 3d QED, instantons and confinement
- Symmetries in QFT, Goldstone's theorem, renormalization and symmetry, the Higgs mechanism (classical and quantum)

•Elementary particles 1

at WIS

 $Instructor:\ Prof.\ Yosef\ Nir$

- The course followed the book "The Standard Model: From Fundamental Symmetries to Experimental Tests authored by Yuval Grossman and Yossi Nir"

•General relativity at WIS

Instructor: Prof. Ulf Leonhardt

- Mathematics required for GR, Einstein equations, Gravitational waves, Black holes, elementary cosmology

•Practical Deep Learning for Science

Instructor: Prof. Eilam Gross

- Convolutional Neural Nets, Graph Neural Nets, Transformer, Diffusion

•Supersymmetry at WIS

Instructor: Prof. Micha Berkooz

- Supersymmetric QM, SUSY algebra and representations, SUSY in 4d, SUSY Gauge theories

•Quantum field theory 2

at WIS

Instructor: Prof. Adam Schwimmer

- The continuum limit
- Lattice Gauge Theories
- Renormalization of Non-Abelian Gauge Theories, Slavnov-Taylor identities
- Regularization and analyticity
- Polchinski ERG and Callan Symanzik equation

KEY COURSE PROJECTS

Accent modulation using cVAE architecture

at WIS

Course: Practical Deep Learning for Science

1 month

- Learnt various audio processing features like STFT, Mel spectrogram, MFCCs etc.
- Build a cVAE using pytorch modules in python
- Used one hot encoding to switch between accents using audio features like MFCC and time-domain data
- Dataset used: AccentDB Core & Extended

•Deep Learning with particle collider collision event

at WIS

Course: Experimental Projects

3 weeks

- Understood blocks of code developed by the group of Prof. Eilam Gross
- Modified it to suit the goal of our project, i.e. to determine the fraction of charged and uncharged particles in a collider event

Workshop & Schools

•Tri-Institute Summer School on Elementary Particles

2023

Exposure to various aspects of particle physics. Topics in the summer school ranged from theoretical to experimental/observational aspects of particle physics: Underground experiments, cosmology and gravitational waves, to list a few.

REFERENCES

•Prof. Yosef Nir

J+972 8 934 3887

Department of Particle Physics & Astrophysics,

✓ yosef.nir@weizmann.ac.il

Weizmann Institute of Science

 Office: 303, Edna and K.B. Weissman Building of Physical Sciences, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 7610001, Israel

•Prof. Karthik Sasihithlu

J+91 22 25769347

Department of Energy Science and Engineering,

➤ ksasihithlu@ese.iitb.ac.in

Indian Institute of Technology Bombay

 Office: 7th floor, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

•Prof. M. P. Gururajan

J+91 22 25767631

Department of Metallurgical Engineering and Materials Science,

✓ guru.mp@iitb.ac.in

Indian Institute of Technology Bombay

 Office: Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

at WIS