PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO DEPARTAMENTO DE ECONOMIA

MONOGRAFIA DE FINAL DE CURSO

MÉTODOS DE PREVISÃO DAS EXPORTAÇÕES BRASILEIRAS

Rony Najman No. de matrícula 9814655

Orientador: Marco Antônio F. H. Cavalcanti

Junho de 2002

Declaro que o presente trabalho é de minha autoria e que não recorri para realizá-lo, a nenhuma forma de ajuda externa, exceto quando autorizado pelo professor tutor.

As opiniões expressas neste trabalho são de responsabilidade única e exclusiva do autor.

ÍNDICE

I.	INTRODUÇÃO	4
II.	ESTIMAÇÃO DO MODELO ARIMA	6
III.	ESTIMAÇÃO DOS MODELOS ADL	16
IV.	PREVISÕES DOS MODELOS	25
V.	CONCLUSÃO	29
	BIBLIOGRAFIA	30

I. INTRODUÇÃO

As exportações brasileiras têm apresentado grande variação ao longo do tempo. Tanto no que diz respeito ao valor agregado dos produtos exportados quanto aos próprios produtos destinados à exportação. Após um grande período de economia bastante fechada ao mercado externo, pôde-se observar um sensível crescimento nos níveis das exportações brasileiras a partir da década de 90.

O objetivo deste trabalho é fazer uma análise sobre o valor das exportações brasileiras, em dólar, ao longo do tempo e definir, entre três modelos, qual o modo mais adequado de se prever as exportações futuras. O período escolhido para análise é do primeiro trimestre de 1980 ao último trimestre de 2000. Estes três modelos serão testados, com dados empíricos, em uma previsão que irá abranger o período entre o primeiro e o último trimestre de 2001. Após obtidos, os resultados das previsões serão comparados para ser definido qual o modelo que melhor se enquadrou à realidade.

As séries utilizadas nas regressões econométricas serão as exportações brasileiras em dólares, a taxa de câmbio real, a utilização da capacidade industrial instalada e as importações mundiais. A primeira série é apresentada com o valor deflacionado do dólar, utilizando-se o IPA americano com índice igual a 100 para a média de 1995. Portanto os valores expressos representam os valores em dólares de 1995. A segunda série, apresentada em índice, também possui a média de 1995 igual a 100. A terceira série retrata o percentual da utilização da capacidade industrial instalada brasileira. A quarta série mostra o volume das importações mundiais, também deflacionada em dólar pelo IPA americano no período.

Definidas as séries, o primeiro modelo estimado utilizará apenas as defasagens das exportações para tentar explicar o comportamento das mesmas (modelo ARIMA). O segundo modelo utilizará também as defasagens das exportações mas incluirá o câmbio real e suas defasagens, a utilização da capacidade instalada e suas defasagens e as

importações mundiais (modelo ADL). O terceiro e último modelo será uma variação do ADL utilizado para suprimir possíveis falhas ocorridas devido a não estacionariedade das séries. Depois de definida a regressão a ser utilizada (dentre inúmeras possibilidades) em cada caso, os resultados serão comparados para se ter uma idéia de qual modelo melhor se adaptou aos acontecimentos ocorridos no ano de 2001 no que diz respeito às exportações.

O trabalho é dividido em quatro capítulos, sendo o primeiro deles esta introdução. O segundo capítulo refere-se à utilização do modelo ARIMA para as exportações. O terceiro capítulo trata da utilização do modelo ADL e do modelo ADL em primeira defasagem, e o último capítulo é a conclusão do trabalho.

II. ESTIMAÇÃO DO MODELO ARIMA

O primeiro modelo utilizado, a ser apresentado a seguir, utilizará apenas a série de exportações. Para isso será analisada a estacionariedade da série, e caso necessário, o processo regressivo se dará através das diferenças.

O gráfico acima representa a evolução das exportações trimestrais do brasil, em dólar, no período de 1980 ao primeiro trimestre de 2000. A série das exportações FOB (free-on-board), comumente utilizada para medir exportações, foi deflacionada em dólar pelo IPA americano, com preço base igual a 100 na média do ano de 1995. Dessa forma obtive, a preços de 1995, o valor em dólares das exportações trimestrais brasileiras.

Através do gráfico, pode-se perceber que a série histórica não possui características de estacionariedade. Não se percebe uma oscilação ao redor de alguma média, no entanto também não se pode afirmar a presença de algum padrão de comportamento dessa série. Não há nenhum sinal claro de presença de tendência positiva ou negativa.

Observando-se a Função de Autocorrelação (FAC) nota-se a presença de um fator sazonal que ocorre a cada quatro trimestres. Realizado o teste ADF para detectar presença de raiz unitária (resultado apresentado abaixo) conclui-se que a série é realmente não estacionária.

ADF Test Statistic	-1.123320	1% Critical Value*	-3.5142
		5% Critical Value	-2.8981
		10% Critical Value	-2.5860

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Partindo, então, para a análise da Função Autocorrelação Parcial (FACP) em primeira diferença, nota-se a presença de quatro defasagens significantemente diferentes de zero, sendo estas as defasagens de número dois ao número cinco. Já a FAC em primeira diferença sugere uma correlação a cada dois períodos trimestrais, sendo esta relação negativa. Ou seja, a cada dois trimestres há uma correlação negativa em relação à primeira diferença e a cada quatro trimestres uma correlação positiva. Essa conclusão faz sentido levando-se em conta prováveis características sazonais das exportações, indicando que a cada dois períodos há uma tendência de mudança no sinal das diferenças entre os trimestres analisados, isto é, se a diferença em dois trimestres for positiva, espera-se que nos próximos dois trimestres esta diferença seja negativa.

ADF Test Statistic	-5.013999	1% Critical Value*	-3.5164
		5% Critical Value	-2.8991
		10% Critical Value	-2.5865

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

O teste ADF acima comprovou a estacionariedade do processo em primeira diferença mostrando, portanto, que a série é integrada em ordem 1.

A partir desse resultado, foram feitas diversas regressões do tipo ARIMA para se identificar qual a que melhor representa as exportações trimestrais brasileiras em um

modelo autoregressivo. As regressões realizadas estão representadas abaixo, começando com o maior número de defasagens igual a oito e depois diminuindo progressivamente até chegar a uma defasagem apenas. Sendo a série definida como Export, D(Export) representa a série em primeira diferença. O valor entre parêntesis é o número de defasagens sendo observada.

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1982:2 2000:4

Included observations: 75 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.125282	0.122167	-1.025501	0.3088
D(EXPORT(-2))	-0.383794	0.124019	-3.094644	0.0029
D(EXPORT(-3))	-0.263102	0.132038	-1.992631	0.0504
D(EXPORT(-4))	0.271834	0.129926	2.092228	0.0402
D(EXPORT(-5))	-0.294846	0.132817	-2.219933	0.0298
D(EXPORT(-6))	-0.127771	0.134404	-0.950649	0.3452
D(EXPORT(-7))	-0.078624	0.127505	-0.616634	0.5396
D(EXPORT(-8))	0.080690	0.126142	0.639674	0.5246
R-squared	0.592599	Mean deper	ndent var	86.96670
Adjusted R-squared	0.550034	S.D. depend	dent var	1378.816
S.E. of regression	924.9025	Akaike info criterion		16.59779
Sum squared resid	57314793	Schwarz criterion		16.84499
Log likelihood	-614.4172	F-statistic		13.92243
Durbin-Watson stat	1.993051	Prob(F-stati	stic)	0.000000

Method: Least Squares

Sample(adjusted): 1982:1 2000:4

Included observations: 76 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.134797	0.120896	-1.114983	0.2687
D(EXPORT(-2))	-0.405320	0.122073	-3.320323	0.0014
D(EXPORT(-3))	-0.290176	0.124472	-2.331249	0.0227
D(EXPORT(-4))	0.294645	0.123947	2.377188	0.0202
D(EXPORT(-5))	-0.331931	0.127004	-2.613545	0.0110
D(EXPORT(-6))	-0.156049	0.123165	-1.266987	0.2094
D(EXPORT(-7))	-0.107062	0.124697	-0.858576	0.3935
R-squared	0.594873	Mean deper	ndent var	61.26020
Adjusted R-squared	0.559644	S.D. depend	dent var	1387.807
S.E. of regression	920.9388	Akaike info criterion		16.57625
Sum squared resid	58520856	Schwarz criterion		16.79092
Log likelihood	-622.8974	F-statistic		16.88614
Durbin-Watson stat	1.947792	Prob(F-stati	stic)	0.000000

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1981:4 2000:4

Included observations: 77 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.121932	0.118581	-1.028252	0.3073
D(EXPORT(-2))	-0.373107	0.115083	-3.242068	0.0018
D(EXPORT(-3))	-0.325030	0.116617	-2.787156	0.0068
D(EXPORT(-4))	0.330165	0.115690	2.853872	0.0057
D(EXPORT(-5))	-0.291820	0.116641	-2.501875	0.0147
D(EXPORT(-6))	-0.143375	0.120081	-1.193978	0.2365
R-squared	0.590494	Mean deper	ndent var	63.00165
Adjusted R-squared	0.561655	S.D. dependent var		1378.731
S.E. of regression	912.8246	Akaike info	criterion	16.54568
Sum squared resid	59160667	Schwarz criterion		16.72832
Log likelihood	-631.0088	F-statistic		20.47591
Durbin-Watson stat	2.013570	Prob(F-stati	stic)	0.000000

Method: Least Squares

Sample(adjusted): 1981:3 2000:4

Included observations: 78 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.084143	0.114011	-0.738022	0.4629
D(EXPORT(-2))	-0.433974	0.104279	-4.161656	0.0001
D(EXPORT(-3))	-0.276000	0.110994	-2.486615	0.0152
D(EXPORT(-4))	0.387302	0.105279	3.678818	0.0004
D(EXPORT(-5))	-0.269250	0.115277	-2.335672	0.0223
R-squared	0.579597	Mean dependent var		69.13955
Adjusted R-squared	0.556562	S.D. dependent var		1370.821
S.E. of regression	912.8458	Akaike info	criterion	16.53297
Sum squared resid	60829978	Schwarz criterion		16.68404
Log likelihood	-639.7857	F-statistic		25.16076
Durbin-Watson stat	2.039676	Prob(F-statistic)		0.000000

Os resultados obtidos mostram que os regressores a partir da quinta defasagem são, em todos os casos, insignificantemente diferentes de zero. Além disso nota-se um aumento, mesmo que pequeno, no valor do R² ajustado à medida que vão sendo retiradas as defasagens mais distantes. Percebe-se, também, que a primeira defasagem é sempre estatisticamente igual a zero. A seguir serão retiradas as defasagens que, através da FACP foram consideradas como sendo significativamente diferentes de zero. Apesar de não estarem representadas aqui, regressões incluindo uma constante foram realizadas e em todos os casos a constante teve valor insignificantemente diferente de zero, portanto optei por retira-la das regressões apresentadas.

Method: Least Squares

Sample(adjusted): 1981:2 2000:4

Included observations: 79 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.205293	0.103701	-1.979658	0.0514
D(EXPORT(-2))	-0.381647	0.103458	-3.688915	0.0004
D(EXPORT(-3))	-0.181020	0.105634	-1.713660	0.0907
D(EXPORT(-4))	0.442585	0.103788	4.264322	0.0001
R-squared	0.548634	Mean dependent var		74.21649
Adjusted R-squared	0.530579	S.D. dependent var		1362.753
S.E. of regression	933.6800	Akaike info criterion		16.56545
Sum squared resid	65381879	Schwarz criterion		16.68542
Log likelihood	-650.3353	F-statistic		30.38744
Durbin-Watson stat	1.753456	Prob(F-stati	stic)	0.000000

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1981:1 2000:4

Included observations: 80 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.365406	0.105944	-3.449062	0.0009
D(EXPORT(-2))	-0.662023	0.088086	-7.515686	0.0000
D(EXPORT(-3))	-0.350438	0.106916	-3.277682	0.0016
R-squared	0.442257	Mean dependent var		61.64596
Adjusted R-squared	0.427770	S.D. dependent var		1358.760
S.E. of regression	1027.846	Akaike info criterion		16.74510
Sum squared resid	81347976	Schwarz criterion		16.83442
Log likelihood	-666.8039	F-statistic		30.52820
Durbin-Watson stat	1.677419	Prob(F-stati	stic)	0.000000

Method: Least Squares

Sample(adjusted): 1980:4 2000:4

Included observations: 81 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.162523	0.091546	-1.775316	0.0797
D(EXPORT(-2))	-0.593843	0.091309	-6.503680	0.0000
R-squared	0.354210	Mean dependent var		67.56595
Adjusted R-squared	0.346035	S.D. dependent var		1351.292
S.E. of regression	1092.764	Akaike info criterion		16.85519
Sum squared resid	94336535	Schwarz criterion		16.91431
Log likelihood	-680.6352	F-statistic		43.33070
Durbin-Watson stat	2.389655	Prob(F-stati	stic)	0.000000

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1980:3 2000:4

Included observations: 82 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-1))	-0.104920	0.110918	-0.945925	0.3470
R-squared	0.008502	Mean dependent var		66.08128
Adjusted R-squared	0.008502	S.D. dependent var		1342.992
S.E. of regression	1337.271	Akaike info criterion		17.24677
Sum squared resid	1.45E+08	Schwarz criterion		17.27612
Log likelihood	-706.1175 	Durbin-Watson stat		2.108243

Após a retirada da quinta defasagem houve uma pequena queda no R², mas pode-se notar que extraindo-se a quarta e a segunda defasagens a diminuição no valor do R² foi muito mais intensa. Isso demonstra que estas defasagens têm muito mais relevância na variável dependente que a quinta defasagem. Já a terceira defasagem, quando retirada, também alterou de forma sensível o R², no entanto, restaram-me dúvidas quanto à significância desta variável já que em alguns casos não foi possível considera-la estatisticamente diferente de zero devido aos valores da estatística "t" obtidos. A primeira

defasagem mostrou-se insignificantemente diferente de zero em todos os casos, inclusive como única variável explicativa.

Para testar a significância das variáveis explicativas individualmente, foi feita uma regressão para cada uma delas, demonstradas abaixo (a primeira defasagem acima).

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1980:4 2000:4

Included observations: 81 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-2))	-0.578340	0.092104	-6.279182	0.0000
R-squared	0.328445	Mean dependent var		67.56595
Adjusted R-squared	0.328445	S.D. dependent var		1351.292
S.E. of regression	1107.363	Akaike info criterion		16.86962
Sum squared resid	98100140	Schwarz criterion		16.89918
Log likelihood	-682.2196 = =	Durbin-Watson stat		2.672176

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1981:1 2000:4

Included observations: 80 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-3))	-0.070139	0.114053	-0.614972	0.5403
R-squared	0.002690	Mean dependent var		61.64596
Adjusted R-squared	0.002690	S.D. dependent var		1358.760
S.E. of regression	1356.931	Akaike info criterion		17.27626
Sum squared resid	1.45E+08	Schwarz criterion		17.30604
Log likelihood	-690.0504 	Durbin-Watson stat		2.162094

Method: Least Squares

Sample(adjusted): 1981:2 2000:4

Included observations: 79 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-4))	0.693990	0.084204	8.241744	0.0000
R-squared	0.463878	Mean dependent var		74.21649
Adjusted R-squared	0.463878	S.D. dependent var		1362.753
S.E. of regression	997.8122	Akaike info criterion		16.66158
Sum squared resid	77659078	Schwarz criterion		16.69158
Log likelihood	-657.1326 = =	Durbin-Watson stat		1.871882

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1981:3 2000:4

Included observations: 78 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-5))	-0.169598	0.114241	-1.484568	0.1417
R-squared	0.025321	Mean dependent var		69.13955
Adjusted R-squared	0.025321	S.D. dependent var		1370.821
S.E. of regression	1353.354	Akaike info criterion		17.27130
Sum squared resid	1.41E+08	Schwarz criterion		17.30151
Log likelihood	-672.5806 = =	Durbin-Watson stat		2.128041

Os resultados encontrados individualmente para os regressores confirmou o que era esperado levando-se em conta os resultados da FAC e FACP do processo. As maiores influências são sofridas a cada dois trimestres, sendo a segunda e quarta defasagens significantes para o processo. Após essas observações pude chegar a conclusão que o modelo autoregressivo mais adequado para a série das exportações brasileiras é o que possui como regressores a segunda e quarta defasagens, representado abaixo.

Method: Least Squares

Sample(adjusted): 1981:2 2000:4

Included observations: 79 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-2))	-0.296349	0.095873	-3.091065	0.0028
D(EXPORT(-4))	0.525526	0.096746	5.431992	0.0000
R-squared	0.523060	Mean dependent var		74.21649
Adjusted R-squared	0.516866	S.D. dependent var		1362.753
S.E. of regression	947.2199	Akaike info criterion		16.56993
Sum squared resid	69086374	Schwarz criterion		16.62992
Log likelihood	-652.5122	F-statistic		84.44589
Durbin-Watson stat	2.084675	Prob(F-statistic)		0.000000

Além desta, realizei regressões incluindo a terceira e a quinta defasagens com várias combinações diferentes. Apesar de em alguns casos essas defasagens não serem consideradas diferentes de zero, resolvi optar pelo modelo acima, com apenas duas variáveis explicativas, pelo fato de não ocorrerem diferenças sensíveis no valor do R² ajustado e devido aos resultados obtidos nas regressões representadas acima. Podemos observar que as estatísticas de Akaike e Schwartz também estão entre as mais baixas de todos os modelos testados. Por outro lado, se uma regressão com dois regressores explica um modelo quase tão bem (ou mesmo tão bem) quanto uma regressão com três ou mais variáveis explicativas, não há porque se optar pelo modelo mais complicado, com maior número de variáveis. Se dois modelos possuem a mesma capacidade explicativa, opta-se pelo mais simples.

III. ESTIMAÇÃO DOS MODELOS ADL

Os modelos utilizados a seguir serão dois tipos de ADL. O primeiro não levará em conta a estacionariedade dos processos utilizados nas regressões, e o segundo será regredido em primeira diferença(testes feitos confirmam que as séries não são cointegradas). Primeiramente será feita uma análise idividual de cada série para confirmar a presença de raiz unitária (não estacionariedade).

O gráfico acima representa a taxa de câmbio real trimestral para o período de 1980 a 2000, tendo como índice igual a 100 a média de 1995. Essa série não apresenta características de estacionariedade, sendo seu gráfico bastante imprevisível. O teste ADF a seguir comprova a não estacionariedade deste processo.

ADF Test Statistic	-1.499954	1% Critical Value*	-3.5111
		5% Critical Value	-2.8967
		10% Critical Value	-2.5853

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Realizado o teste em primeira diferença podemos perceber que a série é integrada em primeira ordem, é I(1).

ADF Test Statistic	-5.237660	1% Critical Value*	-3.5121
		5% Critical Value	-2.8972
		10% Critical Value	-2.5855

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

O gráfico acima representa a evolução da utilização da capacidade industrial instalada no período de 1980 a 2000, com média trimestral em valores percentuais. Apesar de não ser visualmente estacionário, é perceptível uma certa tendência de oscilação em volta de 80%. No entanto o teste ADF comprovou a não estacionariedade da série.

ADF Test Statistic	-2.534515	1% Critical Value*	-3.5121
		5% Critical Value	-2.8972
		10% Critical Value	-2.5855

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Já o teste em primeira diferença mostrou que a série é integrada de ordem 1, I(1).

ADF Test Statistic	-8.047215	1% Critical Value*	-3.5132
		5% Critical Value	-2.8976
		10% Critical Value	-2.5858

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

O gráfico acima representa a evolução das importações mundiais, em dólar, do período de 1980 a 2000. Esta série é claramente não estacionária. O teste ADF abaixo comprova.

ADF Test Statistic	0.473746	1% Critical Value*	-3.5121
		5% Critical Value	-2.8972
		10% Critical Value	-2.5855

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Em primeira diferença percebemos a estacionariedade. Portanto esta séire e integrada em primeira ordem.

ADF Test Statistic	-7.051347	1% Critical Value*	-3.5132
		5% Critical Value	-2.8976
		10% Critical Value	-2.5858

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

A seguir serão feitas as regressões do tipo ADL incluindo todas as variáveis vistas até aqui. Primeiramente com quatro defasagens de cada série e em seguida foi-se retirando defasagens das variáveis explicativas a fim de melhorar e simplificar o modelo. As novas variáveis foram definidas como se segue. Import, as importações mundiais. Câmbio, a taxa de câmbio real. Capacidade, a utilização da capacidade instalada.

Dependent Variable: EXPORT

Method: Least Squares

Sample(adjusted): 1981:1 2000:4

Included observations: 80 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-656.2309	2940.391	-0.223178	0.8242
EXPORT(-1)	0.618029	0.127918	4.831453	0.0000
EXPORT(-2)	-0.435747	0.151581	-2.874680	0.0056
EXPORT(-3)	0.212393	0.162486	1.307148	0.1962
EXPORT(-4)	-0.038368	0.140212	-0.273642	0.7853
IMPORT	-9.610343	6.985111	-1.375833	0.1741
IMPORT(-1)	-1.547909	8.378258	-0.184753	0.8541
IMPORT(-2)	26.40993	7.210654	3.662626	0.0005
IMPORT(-3)	-12.16344	7.866170	-1.546297	0.1274
IMPORT(-4)	-8.270329	6.163510	-1.341821	0.1848
CAMBIO	-16.49155	36.38199	-0.453289	0.6520
CAMBIO(-1)	21.89219	57.29777	0.382077	0.7038
CAMBIO(-2)	46.11729	55.73212	0.827481	0.4113
CAMBIO(-3)	11.12842	55.83999	0.199291	0.8427
CAMBIO(-4)	-73.58504	37.10611	-1.983098	0.0520
CAPACIDADE	-10.78783	37.10228	-0.290759	0.7723
CAPACIDADE(-1)	36.62208	39.10642	0.936472	0.3528
CAPACIDADE(-2)	32.60952	39.23372	0.831161	0.4092
CAPACIDADE(-3)	-23.89152	37.29261	-0.640650	0.5242
CAPACIDADE(-4)	63.92099	37.50078	1.704524	0.0935
@TREND	86.97568	32.79857	2.651813	0.0103
R-squared	0.895999	Mean deper	ndent var	9616.942
Adjusted R-squared	0.860744	S.D. dependent var		2378.803
S.E. of regression	887.6991	Akaike info criterion		16.63565
Sum squared resid	46492577	Schwarz criterion		17.26094
Log likelihood	-644.4261	F-statistic		25.41499
Durbin-Watson stat	2.085171	Prob(F-stati	stic)	0.000000

Dependent Variable: EXPORT Method: Least Squares

Sample(adjusted): 1981:1 2000:4 Included observations: 80 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	44.92438	2778.496	0.016169	0.9871
EXPORT(-1)	0.656573	0.117625	5.581939	0.0000
EXPORT(-2)	-0.547270	0.127116	-4.305288	0.0001
EXPORT(-3)	0.358689	0.140200	2.558417	0.0129
EXPORT(-4)	0.047829	0.132446	0.361118	0.7192
IMPORT(-1)	-2.115008	5.569329	-0.379760	0.7054
IMPORT(-2)	12.25172	4.837653	2.532575	0.0137
IMPORT(-3)	-13.10944	4.286827	-3.058075	0.0032
CAMBIO	14.35855	30.16150	0.476056	0.6356
CAMBIO(-1)	23.53861	51.50215	0.457041	0.6492
CAMBIO(-2)	-40.49534	35.19342	-1.150651	0.2541
CAPACIDADE(-1)	5.873648	35.87291	0.163735	0.8704
CAPACIDADE(-2)	-3.885751	34.55923	-0.112437	0.9108
CAPACIDADE(-4)	50.60051	32.93305	1.536466	0.1293
@TREND	62.27720	30.54923	2.038585	0.0456
R-squared	0.878649	Mean deper	ndent var	9616.942
Adjusted R-squared	0.852511	S.D. depend	dent var	2378.803
S.E. of regression	913.5614	Akaike info criterion		16.63994
Sum squared resid	54248644	Schwarz criterion		17.08657
Log likelihood	-650.5976	F-statistic		33.61676
Durbin-Watson stat	2.017065	Prob(F-stati	stic)	0.000000

Dependent Variable: EXPORT
Method: Least Squares
Sample(adjusted): 1980:4 2000:4
Included observations: 81 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1029.378	2730.013	0.377060	0.7073
EXPORT(-1)	0.660322	0.104912	6.294049	0.0000
EXPORT(-2)	-0.628657	0.129835	-4.841984	0.0000
EXPORT(-3)	0.534759	0.125626	4.256767	0.0001
IMPORT	13.42290	4.390623	3.057173	0.0031
IMPORT(-1)	-9.164945	4.627419	-1.980574	0.0515
CAMBIO	37.91804	31.34995	1.209509	0.2305
CAMBIO(-1)	-36.18651	31.57055	-1.146211	0.2556
CAPACIDADE(-1)	-33.94854	33.86348	-1.002512	0.3195
CAPACIDADE(-2)	35.20946	33.26205	1.058547	0.2934
R-squared	0.840962	Mean deper	ndent var	9592.866
Adjusted R-squared	0.820802	S.D. depend	dent var	2373.800
S.E. of regression	1004.872	Akaike info	criterion	16.77825
Sum squared resid	71693440	Schwarz cri	terion	17.07386
Log likelihood	-669.5192	F-statistic		41.71486
Durbin-Watson stat	_ 2.047960_	Prob(F-stati	stic)	0.000000

Method: Least Squares

Sample(adjusted): 1980:4 2000:4

Included observations: 81 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1095.219	2493.083	-0.439303	0.6617
EXPORT(-1)	0.619134	0.103238	5.997128	0.0000
EXPORT(-2)	-0.553202	0.119236	-4.639542	0.0000
EXPORT(-3)	0.396486	0.101681	3.899328	0.0002
IMPORT	5.541362	1.707168	3.245938	0.0018
CAMBIO	6.253138	8.903068	0.702358	0.4847
CAPACIDADE(-2)	23.70676	27.70081	0.855815	0.3949
R-squared	0.829165	Mean deper	ndent var	9592.866
Adjusted R-squared	0.815313	S.D. depend	dent var	2373.800
S.E. of regression	1020.144	Akaike info	criterion	16.77573
Sum squared resid	77011391	Schwarz crit	terion	16.98266
Log likelihood	-672.4171	F-statistic		59.86108
Durbin-Watson stat	2.095052	Prob(F-stati	stic)	0.000000

Dependent Variable: EXPORT

Method: Least Squares

Sample(adjusted): 1980:4 2000:4

Included observations: 81 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EXPORT(-1)	0.659598	0.104268	6.326000	0.0000
EXPORT(-2)	-0.630400	0.128977	-4.887687	0.0000
EXPORT(-3)	0.526221	0.122830	4.284150	0.0001
IMPORT	13.31805	4.355628	3.057664	0.0031
IMPORT(-1)	-8.896959	4.545192	-1.957444	0.0542
CAMBIO	38.30311	31.14610	1.229789	0.2228
CAMBIO(-1)	-34.70451	31.13777	-1.114547	0.2688
CAPACIDADE(-1)	-28.98452	31.01320	-0.934587	0.3531
CAPACIDADE(-2)	40.38671	30.11478	1.341093	0.1841
R-squared	0.840643	Mean deper	ndent var	9592.866
Adjusted R-squared	0.822937	S.D. depend	dent var	2373.800
S.E. of regression	998.8674	Akaike info criterion		16.75556
Sum squared resid	71837003	Schwarz criterion		17.02161
Log likelihood	-669.6002	F-statistic		47.47710
Durbin-Watson stat	2.044459	Prob(F-stati	stic)	0.000000

Após exaustivas tentativas de se encontrar o melhor modelo que se encaixasse nas necessidades, o modelo escolhido foi o apresentado acima. Dentre todos os modelos observados, este foi o que apresentou melhores resultados conjuntos no que diz respeito ao R² ajustado, à soma do quadrado dos resíduos, às estatísticas de Akaike e Schwartz e ao valor mais próximo de 2 na estatística de Durbin-Watson. Apesar de boa parte das variáveis apresentarem inconsistência quanto a significância no teste t (em todas as simulações ocorreu o mesmo), o ponto decisivo para a escolha deste formato de modelo foi

a consistência teórica dos sinais apresentados pelas variáveis, onde cada somatório das variáveis apresentadas, e suas defasagens, têm sempre o sinal positivo. No mais, procurei encontrar o conjunto de variáveis que tivesse o melhor valor na estatística t possível.

Partindo para os testes em primeira diferença, novamente iniciei com a maior quantidade de defasagens, igual a quatro, e retirando progressivamente a quantidade de variáveis explicativas.

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1981:2 2000:4

Included observations: 79 after adjusting endpoints

moladed ebecivations. To after adjusting enapoints			
Coefficient	Std. Error	t-Statistic	Prob.
22.84978	136.4686	0.167436	0.8676
-0.070403	0.125645	-0.560330	0.5774
-0.375517	0.129879	-2.891272	0.0054
-0.088980	0.135203	-0.658123	0.5130
0.328222	0.142959	2.295919	0.0253
0.517336	7.084567	0.073023	0.9420
-3.894307	6.773044	-0.574971	0.5675
13.36820	6.963229	1.919828	0.0597
4.223283	6.286948	0.671754	0.5044
-5.749494	6.245644	-0.920561	0.3610
-43.79928	36.90336	-1.186864	0.2400
3.263435	39.35870	0.082915	0.9342
21.67861	40.43178	0.536178	0.5939
42.91672	37.37025	1.148419	0.2554
-58.43995	35.09839	-1.665032	0.1012
-64.90820	35.15481	-1.846353	0.0699
-28.12312	37.51669	-0.749616	0.4565
-9.507070	37.27009	-0.255086	0.7995
-44.49134	35.01561	-1.270615	0.2089
-9.323975	34.24833	-0.272246	0.7864
0.650809	Mean deper	ndent var	74.21649
0.538358	S.D. depend	dent var	1362.753
925.9121	Akaike info criterion		16.71385
50581483	Schwarz criterion		17.31371
-640.1972	F-statistic		5.787475
1.802235_	Prob(F-stati	stic)	0.000000
	Coefficient 22.84978 -0.070403 -0.375517 -0.088980 0.328222 0.517336 -3.894307 13.36820 4.223283 -5.749494 -43.79928 3.263435 21.67861 42.91672 -58.43995 -64.90820 -28.12312 -9.507070 -44.49134 -9.323975 0.650809 0.538358 925.9121 50581483 -640.1972	Coefficient Std. Error 22.84978 136.4686 -0.070403 0.125645 -0.375517 0.129879 -0.088980 0.135203 0.328222 0.142959 0.517336 7.084567 -3.894307 6.773044 13.36820 6.963229 4.223283 6.286948 -5.749494 6.245644 -43.79928 36.90336 3.263435 39.35870 21.67861 40.43178 42.91672 37.37025 -58.43995 35.09839 -64.90820 35.15481 -28.12312 37.51669 -9.507070 37.27009 -44.49134 35.01561 -9.323975 34.24833 0.650809 Mean deper 0.538358 S.D. depend 925.9121 Akaike info 50581483 Schwarz crit -640.1972 F-statistic	Coefficient Std. Error t-Statistic 22.84978 136.4686 0.167436 -0.070403 0.125645 -0.560330 -0.375517 0.129879 -2.891272 -0.088980 0.135203 -0.658123 0.328222 0.142959 2.295919 0.517336 7.084567 0.073023 -3.894307 6.773044 -0.574971 13.36820 6.963229 1.919828 4.223283 6.286948 0.671754 -5.749494 6.245644 -0.920561 -43.79928 36.90336 -1.186864 3.263435 39.35870 0.082915 21.67861 40.43178 0.536178 42.91672 37.37025 1.148419 -58.43995 35.09839 -1.665032 -64.90820 35.15481 -1.846353 -28.12312 37.51669 -0.749616 -9.507070 37.27009 -0.255086 -44.49134 35.01561 -1.270615 -9.323975 34.24833

Method: Least Squares

Sample(adjusted): 1981:2 2000:4

Included observations: 79 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-2))	-0.389150	0.116237	-3.347899	0.0013
D(EXPORT(-4))	0.413561	0.129557	3.192102	0.0022
D(IMPORT)	0.501386	5.789026	0.086610	0.9312
D(IMPORT(-1))	-1.616072	4.415984	-0.365960	0.7156
D(IMPORT(-2))	8.626035	5.693187	1.515151	0.1345
D(CAMBIO)	-49.33544	32.92669	-1.498342	0.1388
D(CAMBIO(-1))	12.87862	32.63447	0.394632	0.6944
D(CAMBIO(-2))	2.218343	36.09210	0.061463	0.9512
D(CAMBIO(-3))	17.96025	26.54848	0.676508	0.5011
D(CAPACIDADE)	-63.30019	32.83109	-1.928056	0.0582
D(CAPACIDADE(-1))	-27.90117	34.55666	-0.807403	0.4223
D(CAPACIDADE(-2))	-22.05879	32.58018	-0.677062	0.5007
D(CAPACIDADE(-3))	-42.04921	31.45259	-1.336908	0.1858
R-squared	0.629100	Mean deper	ndent var	74.21649
Adjusted R-squared	0.561664	S.D. depend	dent var	1362.753
S.E. of regression	902.2369	Akaike info criterion		16.59695
Sum squared resid	53726072	Schwarz crit	terion	16.98686
Log likelihood	-642.5796	F-statistic		9.328809
Durbin-Watson stat	1.905872	Prob(F-stati	stic)	0.000000

Dependent Variable: D(EXPORT)

Method: Least Squares

Sample(adjusted): 1981:2 2000:4

Included observations: 79 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXPORT(-2))	-0.404053	0.098035	-4.121530	0.0001
D(EXPORT(-4))	0.353731	0.118434	2.986733	0.0039
D(IMPORT(-2))	9.484679	3.568373	2.657984	0.0097
D(CAMBIO)	-45.57082	25.37961	-1.795568	0.0768
D(CAMBIO(-1))	17.87673	24.97032	0.715919	0.4764
D(CAMBIO(-3))	30.46949	23.60836	1.290623	0.2010
D(CAPACIDADE(-2))	9.727978	26.89312	0.361727	0.7186
R-squared	0.600352	Mean deper	ndent var	74.21649
Adjusted R-squared	0.567048	S.D. depend	lent var	1362.753
S.E. of regression	896.6787	Akaike info	criterion	16.51971
Sum squared resid	57890357	Schwarz criterion		16.72966
Log likelihood	-645.5284	F-statistic		18.02643
Durbin-Watson stat	1.938929	Prob(F-statis	stic)	0.000000

Depois de vários testes efetuados, o modelo escolhido para representar o ADL em primeira diferença é o apresentado acima. Novamente foi levado em conta os valores de todas as estatísticas apresentadas. Apesar de, mais uma vez, as variáveis apresentarem valores que podem ser considerados insignificantemente diferentes de zero, os sinais das

variáveis explicativas estão de acordo com a intuição econômica. Aparentemente este modelo, em primeira diferença, não possui vantagens em relação ao modelo ADL visto anteriormente. No próximo capítulo, onde serão apresentados os resultados das previsões, vamos comparar os três modelos.

IV. PREVISÕES DOS MODELOS

As previsões dos modelos apresentados foram feitas com base nas regressões acima apontadas como as escolhidas para cada tipo de regressão, isto é, uma para a regressão do tipo ARIMA, uma para o modelo ADL e uma para o ADL em primeira diferença. O período observado para a previsão é o do ano 2000, dividido trimestralmente, como todas as séries vistas até aqui. Note que, apesar de ser apresentada como primeira diferença em duas ocasiões, os dados aqui obtidos são relativos ao valor das exportações em todos os casos. Sendo definido como Export o valor real das exportações, Exportf o valor previsto, Exportf1 o limite inferior do intervalo de confiança e Exportf2 o limite superior.

O método de comparação entre as previsões obtidas será apresentado nos quadros abaixo, onde os menores valores para os erros denotam uma maior precisão. O valor apresentado como "Theil Inequality Coefficient" é tal que varia entre zero e um, sendo que zero seria uma previsão perfeita. O coeficiente de Theil, por sua vez, é dividido em três partes que somam um. A primeira parte representa a proporção de viés, ou seja, a distância entre a média encontrada na previsão e a média real. A segunda parte mede a diferença entre a variância da previsão e a variância real. A terceira parte, a covariância, mostra o quanto do erro foi causado por motivos não demonstráveis, ou seja, por distúrbio. Dessa forma, quanto mais baixo forem as duas primeiras partes do Coeficiente de Theil, melhor a previsão.

A tabela e o gráfico abaixo são representativos do modelo ARIMA. Podemos observar que a previsão ficou dentro do intervalo de confiança. Foi obtido, também, um valor para próximo a zero para o Coeficiente de Theil. No entanto, mais que 99% da diferença entre a previsão e a realidade foi atribuída a um viés.

Forecast: EXPORTF Actual: EXPORT

Sample: 2001:1 2001:4 Include observations: 4

Root Mean Squared Error	681.8656
Mean Absolute Error	678.5867
Mean Absolute Percentage Error	5.045753
Theil Inequality Coefficient	0.025788
Bias Proportion	0.990406
Variance Proportion	0.005580
Covariance Proportion	0.004014

Abaixo, os resultados obtidos para o modelo ADL. A previsão está dentro do intervalo de confiança. O Coeficiente de Theil apresenta um valor bastante baixo. Sua divisão ocorreu de tal forma que o viés representou cerca de 50% da explicação da diferença do previsto para a realidade e praticamente o restante explicado através dos resíduos.

A última previsão, com resultados abaixo, é do modelo ADL em primeira diferença. Assim como os modelos anteriores, os resultados foram satisfatórios. A previsão está dentro do intervalo de confiança, e o valor do Coeficiente de Theil é bastante próximo a zero. A proporção da diferença entre o previsto e a realidade ficou cerca de metade relacionada ao viés, 13% à variância e o restante ao resíduo.

Forecast: EXPORTF Actual: EXPORT Sample: 2001:1 2001:4 Include observations: 4

Root Mean Squared Error	460.1587
Mean Absolute Error	413.9453
Mean Absolute Percentage Error	3.104520
Theil Inequality Coefficient	0.017179
Bias Proportion	0.547789
Variance Proportion	0.132895
Covariance Proportion	0.319316

V CONCLUSÃO

Para se definir qual dos três modelos apresentados é o ideal para se fazer previsões devemos considerar os modelos separadamente, afinal todos apresentaram boas previsões da realidade.

O primeiro modelo, o ARIMA, previu de forma apurada as exportações brasileiras no período observado. No entanto, como foi visto, quase que a totalidade do erro cometido na previsão ocorreu devido ao viés que a série sofreu. Esse resultado pode ser interpretado como sendo consequência do modelo ser representado apenas por uma variável e suas defasagens. Dessa forma, o modelo pode ser adequado para previsões de curto prazo e no entanto sempre vai ter um viés ligado às defasagens da única variável do modelo.

O objetivo de se testar o modelo ADL com e sem a primeira diferença era saber se ocorre diferença no caso de previsões. Ocorreu que os modelos acabaram por terem diferenças significativas em suas variáveis de modo a se adaptarem melhor. Ambos previram com boa precisão e tiveram pouca diferença quanto ao tipo de erro ocorrido. Nos dois casos o que prevaleceu foi o viés em torno de 50%. Os valores medidos da soma dos erros, no entanto, foram menores no modelo em primeira diferença.

Comparado com o modelo ARIMA, ainda há vantagens nos resultados obtidos com a previsão. Tanto na soma dos erros, quanto no Coeficiente de Theil e na distribuição de suas proporções entre viés, variância e covariância. Sendo assim, o modelo ADL em primeira diferença, entre os três testados, seria o mais indicado para se fazer previsões sobre as exportações brasileiras.

BIBLIOGRAFIA

Castro, A. S., Cavalcanti, M. A. F. H. Estimação de Equações de Exportação e Importação para o Brasil – 1955/95. IPEA, mar. 1997 (Texto para Discussão, No. 469).

Cavalcanti, M. A. F. H. Forecasting Brazilian imports: What is the best approach? IPEA, 2001.

Todos os dados foram obtidos no site do IPEA.