CT Image Hemorrhage Classification and Segmentation by ML Methods

Broderick Kelly, Mitch Whelan, Minoo Mohebbifar

Project Background and Goal

- Zeta Surgical
 - XN partner
 - ► Improve access to image guidance for emergency and bedside procedures
- Dataset
 - Brain CT scans with different types of hemorrhages (intraparenchymal, intraventricular, subarachnoid, epidural, multi and normal control)
 - ► Masking data for some images, highlighting hemorrhaged regions
- Goal apply techniques in ML to perform classification and segmentation of these CT images

Logistic Regression for Classification

- ▶ Used the hemorrhage-labels excel sheet that labeled images from the classes any, epidural, intraparenchymal, intraventricular, subarachnoid, subdural
- Used a random subset of 50,000 images that I loaded in from all windows and classes
- ► I decided to create an individual binary classification model for each class and combine them

 Accuracy Per Class
- ► Total combined model accuracy: ~15%
- ► Individual model accuracy was good though

Logistic Regression Results

Actual: [1 0 1 0 0 0] Actual: [1 0 0 0 1 0] Actual: [1 0 0 0 1 0] Actual: [1 0 0 0 0 1] Actual: [1 0 0 1 0 0] Predicted: [1 0 0 0 1 0] Predicted: [1 0 0 0 0 0] Predicted: [1 0 0 0 0 1 1] Predicted: [1 0 1 0 0 0]

Actual: [1 0 0 0 0 1] Actual: [1 0 0 0 0 1] Actual: [1 0 0 0 0 1] Actual: [1 0 0 0 1 0] Actual: [1 0 1 0 1 0] Predicted: [1 0 0 0 0 1] Predicted: [1 0 0 0 0 0] Predicted: [1 0 0 0 0 0] Predicted: [1 0 0 0 0 0]

Actual: [1 0 1 0 0 1] Actual: [1 0 0 0 1 1] Actual: [1 0 1 1 1 1] Actual: [1 0 1 1 0 0] Actual: [1 0 1 0 0 0] Predicted: [1 0 0 0 0] Predicted: [1 0 1 1 1 0] Predicted: [1 0 1 1 0 0] Predicted: [1 0 0 0 0 1]

Logistic Regression Results

KNN for Classification

- ▶ Used the hemorrhage-labels excel sheet that labeled images from the classes any, epidural, intraparenchymal, intraventricular, subarachnoid, subdural
- Used a random subset of 50,000 images that I loaded in from all windows and classes

► I decided to create an individual binary classification model for each class and combine them

Accuracy Per Class

► Total combined model accuracy: ~25%

► Individual model accuracy was still very good

KNN Results

Actual: [1 0 0 0 0 1] Actual: [1 0 0 0 0 1] Actual: [1 0 0 0 0 1] Actual: [1 0 1 0 0 0 0] Actual: [1 0 0 0 0 1] Predicted: [1 0 0 0 0 0] Predicted: [1 0 0 0 0 0]

Actual: [1 0 0 0 1 0] Actual: [1 0 0 0 0 1] Actual: [1 0 1 0 0 1] Actual: [1 0 0 0 1 1] Actual: [1 0 0 0 0 0] Predicted: [1 0 0 0 0 0] Predicted: [1 0 0 0 0 0] Predicted: [1 0 0 0 0 0]

Actual: [1 0 0 0 1 0] Actual: [1 0 0 0 1 0] Actual: [1 0 0 0 0 1] Actual: [1 0 1 0 0 0] Actual: [1 0 0 1 1 0] Predicted: [1 0 1 0 0 0] Predicted: [1 0 0 0 0 1] Predicted: [1 0 1 0 0 0] Predicted: [1 0 0 0 1 1]

KNN Results

Tree Methods - Decision Tree

Accuracy (overall): 0.1977

Detailed classification report:

		precision	recall	f1-score	support
	0	0.94	0.94	0.94	9259
	1	0.05	0.06	0.05	254
	2	0.36	0.36	0.36	3028
	3	0.36	0.36	0.36	2311
	4	0.35	0.37	0.36	3087
	5	0.46	0.47	0.47	4013
micro macro weighted samples	avg avg	0.61 0.42 0.62 0.58	0.62 0.43 0.62 0.59	0.62 0.42 0.62 0.57	21952 21952 21952 21952

Tree Methods - Random Forest

Accuracy (overall): 0.1194

Detailed classification report:

		precision	recall	f1-score	support
	0	0.93	1.00	0.97	9259
	1	0.00	0.00	0.00	254
	2	0.73	0.05	0.10	3028
	3	0.75	0.10	0.18	2311
	4	0.77	0.03	0.06	3087
	5	0.63	0.30	0.41	4013
micro	avg	0.88	0.50	0.64	21952
macro	avg	0.64	0.25	0.28	21952
weighted	avg	0.80	0.50	0.52	21952
samples	avg	0.89	0.48	0.61	21952

QDA Classification

- ► From 116211 images in dataset 8278 are non-hemorrhoid and the rest have hemorrhoid
- First, we tried to classify images into 7 classes, but QDA didn't converge
- ▶ We simplified the problem to detecting hemorrhoid and non-hemorrhoid cases and to balance the number of cases for the two classes we choose randomly 8278 hemorrhoid and 8278 non-hemorrhoid cases.
- We chose only subdural-window to train QDA
- ► The result accuracy after these simplifications was still very low: %50

SVM Classification with (Radius Basis Function) RBF Kernel

We start with previous setup we used for QDA where we just classify subduralwindow images to hemorrhoid and non-hemorrhoid cases:

Class	Precision	F1-score
Non-Hemorrhoid (0)	%81	0.71
Hemorrhoid (1)	%70	0.77

Neural Net Techniques for Classification

- Bone, Brain and Subdural Windows (no max contrast) combined as RGB images (approx. 2000 of each type)
- 7-classes: epidural, intraparenchymal, intraventricular, multi, normal, subarachnoid, subdural
- Down-sampled to 256x256 images (original 512x512)
- Basic CNN Test accuracy: 0.1502 (almost random)
- CNN with ResNet-50 Test accuracy: 0.3029 (2x random)
 - "Dead-neuron" effect for intraparenchymal
- Drop multi Test accuracy: 0.3140 (~2x random)
 - Class prediction disparities persist
- 2-class Test accuracy: 0.7054
- CNN with xception base (7 class) Test accuracy: 0.6586

7-Class Confusion Matrix

6-Class Confusion Matrix

2-Class
Confusion Matrix

7-Class
Confusion Matrix
(xception)

Neural Net Techniques for Segmentation

- Mask Generation: Binary and Quaternary
- ▶ Bone, Brain and Subdural Windows combined as RGB images (max contrast omitted)
- General Difficulties:
 - ► CPU & GPU constraints and batch processing
 - Quaternary / non-binary masks and blank images
- Simple U-NET approach struggled and predicted empty images or overly large regions
- Pretrained Base Model (ResNet-50)
 - ► Test Accuracy: 0.9894, Precision: 0.7732, Recall: 0.7165

