Solutions to Bain and Engelhardt's Introduction to Probability and Mathematical Statistics

06.01

Given: the pdf of x
$$f_x(x) = \begin{cases} 4x^3 & , & 0 < x < 1 \\ 0 & , & o/w \end{cases}$$

Find: PDF of a) $Y = X^4$

Setup: Use the CDF technique to get the CDF of Y in terms of a CDF of X $F_Y(y) = P[Y \le y] = P[X^4 \le Y] = P[-y^{\frac{1}{4}} \le X \le y^{\frac{1}{4}}] = F_X(y^{\frac{1}{4}}) - F_X(-y^{\frac{1}{4}})$

Steps: i) Differentiate with respect to y to find an equation given in terms of the pdf of x: $f_y(y) = \frac{d}{dy} F_X(y^{\frac{1}{4}}) - \frac{d}{dy} F_X(-y^{\frac{1}{4}}) = f_x(y^{\frac{1}{4}}) \frac{d}{dy} y^{\frac{1}{4}} - f_x(-y^{\frac{1}{4}}) \frac{d}{dy} - y^{\frac{1}{4}} = f_x(y^{\frac{1}{4}}) \frac{y^{-\frac{3}{4}}}{4} - f_x(-y^{\frac{1}{4}}) \frac{-y^{-\frac{3}{4}}}{4}$

ii) Plug in the original limits and function for the pdf of x, and compute the cdf for y

Result:
$$f_y(y) = \begin{cases} 4y^{\frac{3}{4}} \frac{1}{4y^{\frac{3}{4}}} &, & 0 < x < 1 \\ 0 &, & o/w \end{cases} = \begin{cases} 1 &, & 0 < x < 1 \\ 0 &, & o/w \end{cases}$$

Find: PDF of b) $W = e^X$

Setup: Use the CDF technique to get the CDF of W in terms of a CDF of X $F_W(w) = P[W \le w] = P[e^X \le W] = P[X \le lnW] = F_X(lnW)$

Steps: i) Differentiate with respect to w to find an equation given in terms of the pdf of x: $f_w(w) = \frac{d}{dw} F_X(lnW) \frac{d}{dw}(lnw) = f_x(lnw) \frac{1}{w}$

ii) Plug in the original limits and function for the pdf of x, and compute the cdf for y

Result:
$$f_W(w) = \begin{cases} \frac{4(\ln w)^3}{w} & , & 1 < w < e \\ 0 & , & o/w \end{cases}$$

Find: PDF of c) $Z = \ln x$

Setup: Use the CDF technique to get the CDF of Z in terms of a CDF of X $F_Z(z) = P[Z \le z] = P[\ln x \le z] = P[X \le e^z] = F_X(e^z)$

Steps: i) Differentiate with respect to z to find an equation given in terms of the pdf of x: $f_z(z) = \frac{d}{dz} F_X(e^z) = f_x(e^z) \frac{de^z}{dz}$

ii) Plug in the original limits and function for the pdf of x, and compute the cdf for y

Result:
$$f_Z(z) = \begin{cases} 4e^{4z} & , & -\infty \le z < 0 \\ 0 & , & o/w \end{cases}$$

Find: **PDF** of d)
$$U = (X - 0.5)^2$$

Setup: Use the CDF technique to get the CDF of U in terms of a CDF of X $F_U(u) = P[U \le u] = P[(X - 0.5)^2 \le u] = P[|X - 0.5| \le u^{0.5}] = F_X(u^{1/2} + 1/2) - F_X(-u^{1/2} + 1/2)$

Steps: i) Differentiate with respect to u to find an equation given in terms of the pdf of x: $f_U(u) = \frac{d}{du} F_X(u^{1/2} + 1/2) = f_x(u^{1/2} + 1/2) \frac{d}{du}(u^{1/2} + 1/2) - f_x(-u^{1/2} + 1/2) \frac{d}{du}(-u^{1/2} + 1/2) f_x(u^{1/2} + 1/2) 1/2u^{-1/2}) - f_x(-u^{1/2} + 1/2) 1/2u^{-1/2}$

ii) INCOMPLETE

Result:
$$f_Z(z) = \begin{cases} 4e^{4z} & , & -\infty \le z < 0 \\ 0 & , & o/w \end{cases}$$
06.02

Given: $X \sim Unif(0,1)$

Find: a) PDF of $Y = X^{1/4}$

Setup:
$$F_Y(y) = P[Y \le y] = P[X^{1/4} \le y] = P[X \le y^4] = F_X(y^4)$$

Steps: i) find the pdf of x. Because X is a Uniform distribution with parameters 1 and 0, the pdf, which for Unif(a,b) is 1/b-a where a < x < b. Here, Unif(0,1) gives 1/1-0 =1

ii) Differentiate with respect to y to find an equation given in terms of the pdf of x: $f_Y(y) = \frac{d}{dy} F_X(y^4) = 4y^3$

Result:
$$f_Y(y) = \begin{cases} 4y^3 & , & 0 < y < 1 \\ 0 & , & o/w \end{cases}$$

Find: b) PDF of $W = e^{-X}$

Setup:
$$F_W(z) = P[W \le w] = P[e^{-X} \le W] = P[-X \le lnw] = P[X \ge -lnw] = 1 - F_x(-lnw)$$

Steps: i) find the pdf of x. See part a) for an explanation of why it is 1 when a < x < b

ii) Differentiate with respect to w to find an equation given in terms of the pdf of x: $f_W(w) = -\frac{d}{dw} F_X \frac{d}{dw} (-lnw) = -f_X (-lnw) \frac{-1}{w}$ for $e^{-1} < w < 1 = -\frac{1}{w}$

Result:
$$f_W(w) = \begin{cases} \frac{1}{w} &, e^{-1} < w < 1 \\ 0 &, o/w \end{cases}$$

Find: c) PDF of $Z = 1 - e^{-X}$

Setup:
$$F_Z(z) = P[Z \le z] = P[1 - e^{-X} \le z] = P[-e^{-X} \le z - 1] = P[e^{-X} \ge 1 - z] = P[-X \ge ln(1-z)] = P[X \le -ln(1-z)] = F_x(-ln(1-z))$$

Steps: i) find the pdf of x. See part a) for an explanation of why it is 1 when a < x < b

ii) Differentiate with respect to w to find an equation given in terms of the pdf of x: $f_Z(z) = -ln(1-z) = -\frac{-1}{1-z} = \frac{1}{1-z}$ for $0 < z < e^{-1}$

Result:
$$f_W(w) = \begin{cases} \frac{1}{1-z} &, & 0 < z < e^{-1} \\ 0 &, & o/w \end{cases}$$

Find: d) **PDF** of U = X(1 - X)

Setup:
$$F_U(u) = P[U \le u] = P[X(1-x) \le u] = P[-X^2 + X \le u] = P[-(X-1/2)^2 \le u - 1/4] = P[(X-1/2)^2 \ge 1/4 - u] = P[|(X-1/2)| \ge (1/4 - u)^{1/2}] =$$

Steps: i) find the pdf of x. See part a) for an explanation of why it is 1 when a < x < b

ii) INCOMPLETE: $f_Z(z) = -ln(1-z) = -\frac{-1}{1-z} = \frac{1}{1-z}$ for $0 < z < e^{-1}$

Result:
$$f_W(w) = \begin{cases} \frac{1}{1-z} &, & 0 < z < e^{-1} \\ 0 &, & o/w \end{cases}$$
06.03

Given: PDF $f_R(r) = \begin{cases} 6r(1-r) & , & 0 < r < 1 \\ 0 & , & o/w \end{cases}$

Find: Distribution of the circumference

Setup: The circumference is $c=2\pi r$ - we have the pdf in terms of x, so this is the transformation

$$F_C(c) = P[C \le c] = P[2\pi r \le c] = P[r \le c/2\pi] = F_x(c/2\pi)$$

Steps: i) Differentiate with respect to c to find an equation given in terms of the pdf of x. $f_C(c) = \frac{d}{dc} F_R(c/2\pi) = f_R(c/2\pi) \frac{d}{dc} (c/2\pi) = f_R(c/2\pi) (1/2\pi)$

Plug the original pdf back into this new form:

$$f_C(c) = \frac{6c}{2\pi} (1 - (c/2\pi))(1/2\pi) = \frac{6c(2\pi - c)}{2\pi^3}$$
 if $0 < c < 2\pi$

Result:
$$f_C(c) = \begin{cases} \frac{6c(2\pi - c)}{2\pi^3} & , & 0 < c < 2\pi \\ 0 & , & o/w \end{cases}$$

Find: Distribution of the area

Setup: The area is
$$a = \pi r^2$$
 so the cdf $F_A(a) = P[A \le a] = P[\pi r^2 \le a] = P[r^2 \le a/\pi]$ $= P[|r| \le (a/\pi)^{1/2}] = P[-(a/\pi)^{1/2} \le c \le (a/\pi)^{1/2}] = F_r(a/\pi)^{1/2} - F_r - (a/\pi)^{1/2}$

Steps: i) Differentiate with respect to a to find an equation in terms of the pdf of x. $f_A(a) = \frac{d}{da} F_R(a/\pi)^{1/2} - \frac{d}{da} F_R - (a/\pi)^{1/2} = f_R[(a/\pi)^{1/2}] \frac{d}{da} (a/\pi)^{1/2} f_R[-(a/\pi)^{1/2}] \frac{d}{da} - (a/\pi)^{1/2}$

Result:
$$f_A(a) = \begin{cases} \frac{3(\sqrt{\pi} - \sqrt{a})}{\pi^{3/2}}, & 0 < a < \pi \\ 0, & o/w \end{cases}$$

06.10 Suppose X has pdf $f_X(x) = \frac{1}{2}e^{-|x|}$ for all real x.

(a) Find the pdf of Y = |X|.

CDF Method

$$F_Y(y) = P[Y \le y] = P[|x| \le y] = P[-y \le X \le y] = F_X(y) - F_X(-y)$$

$$f_Y(y) = \frac{dF_X(y)}{dy} - \frac{dF_X(-y)}{dy}$$

$$f_Y(y) = f_X(y)\frac{dy}{dx} - f_X(-y)(\frac{-dy}{dy})$$

$$f_y = \frac{1}{2}e^{-y} + \frac{1}{2}e^{-y} = e^{-y} \ y > 0$$

(b) Let W = 0 if X < 0 and W = 1 if X > 0. Find the CDF of W

$$F_W(w) = P[W = 0] = \frac{1}{2}$$

 $F_W(w) = P[W = 1] = \frac{1}{2}$

$$F_W(w) = P[W = 1] = \frac{1}{2}$$

$$F_W(w) =$$

$$\begin{cases} 0 & w \le 0 \\ \frac{1}{2} & 0 \le w \le 1 \\ 1 & w > 1 \end{cases}$$

06.13 X has pdf

$$f(x) = \begin{cases} \frac{x^2}{24} & -2 < x < 4\\ 0 & \text{otherwise} \end{cases}$$

We want pdf of the CDF $Y = X^2$ with regions: $(-2,0) \cup [0,4)$

$$[F_x(\sqrt{y}) - F_x(-\sqrt{y})] = \left[f_x(\sqrt{y})(\frac{1}{2}\sqrt{y}) - f_x(-\sqrt{y})(-\frac{1}{2}\sqrt{y}) \right]$$

$$f_y(y) = \begin{cases} \frac{y}{48\sqrt{y}} + \frac{y}{48\sqrt{y}} & 0 < y < 4\\ \frac{y}{48\sqrt{y}} & 4 \le y \le 16\\ 0 & \text{otherwise} \end{cases}$$

$$f_y(y) = \begin{cases} \frac{\sqrt{y}}{24} & 0 < y < 4\\ \frac{\sqrt{y}}{48} & 4 \le y \le 16\\ 0 & \text{otherwise} \end{cases}$$

06.14

Given: Joint PDF
$$f(x,y) = \begin{cases} 4e^{-2(x+y)}, & 0 < x < \infty, 0 < y < \infty \\ 0, & o/w \end{cases}$$
 Find: a) CDF of W=X+Y

Find: a) ODF of W = X + I

Setup:
$$F_w(w) = P[W \le w] = P[X + Y \le w]$$

Steps:

- i) Express as a sum of probabilities, replace probabilities with binomials
- ii) Simplify and Use Combinatorial Identity

Result: $\binom{n+m}{k}$

06.15 This is a simplified version of example 6.4.5.

 $X_1, X_2 \sim POI(\lambda)$ so the MGF of both is $e^{\lambda(e^t-1)}$. Thus by theorem 6.4.4

$$M_Y(t) = e^{\lambda(e^t - 1)} e^{\lambda(e^t - 1)} = e^{2\lambda(e^t - 1)} \sim POI(2\lambda)$$

The pdf then of Y is

$$f_Y(y) = \begin{cases} \frac{e^{-2\lambda}(2\lambda)^y}{y!} & y = 0, 1, 2, \dots \\ 0 & otherwise. \end{cases}$$

06.16 Note: the pdf of $f_{x_1,x_2} = \frac{1}{x_1^2} \frac{1}{x_2^2}$

a) We need to find $f_{u,v} = f_{x_1,x_2}(x_1(u,v), x_2(u,v))|J|$ where J is our jacobian. First we let $u = x_1x_2$ and $v = x_1$ thus $x_1 = v$ and $x_2 = \frac{u}{v}$, now we can find J.

$$J = \left| \begin{array}{cc} 0 & 1 \\ \frac{1}{v} & 0 \end{array} \right| = \frac{1}{v}$$

Finally, our pdf is:

$$f_{U,V}(u,v) = f_{x_1,x_2}(v,\frac{u}{v}) \left| \frac{1}{v} \right|$$

$$= \frac{1}{v^2} \frac{1}{(\frac{u}{v})^2} \left| \frac{1}{v} \right|$$

$$= \frac{1}{u^2 v}, 1 < v < u < \infty$$

6.18 It is given that X and Y have a joint pdf given by

$$f(x,y) = e^{-y} \quad if \quad 0 < x < y < \infty. \tag{1}$$

(a): Find the joint pdf of S = X + Y and T = X.

This can be done using the joint transformation method. By rearranging the above formulas we get X = T and Y = S - T. Then it is easy to get the jacobian

$$J = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \tag{2}$$

whose determinant is clearly one. Note that the order in which you take partial derivatives is unimportant provided you are consistent - you will get the same determinant either way. Then we substitute in X = T and Y = S - T into the pdf and multiply by the determinant of the jacobian:

$$f_{S,T}(s,t) = f_{X,Y}(x(s,t), y(s,t)) \times 1 = \begin{cases} e^{t-s} & if \quad 0 < t < s/2 \\ 0 & otherwise \end{cases}$$
 (3)

The bounds of the function can be found in a few different ways. One way is to consider the bounds of the original function, $0 < x < y < \infty$. We can substitute in the new formulas for X and Y to get

$$0 < t < s - t < \infty. \tag{4}$$

Then it is apparent that

$$0 < 2t < s < \infty, \tag{5}$$

which then yields

$$0 < t < s/2, \tag{6}$$

the bounds of our new function.

(b): Find the marginal pdf of T.

The easiest way to do this is to "integrate out" S from the joint pdf we derived:

$$f_{T}(t) = \int_{-\infty}^{\infty} f_{S,T}(s,t)ds = \int_{2t}^{\infty} e^{t-s}ds$$

$$= e^{t} \int_{2t}^{\infty} e^{-s}ds = e^{t}(-e^{-s}|_{2t}^{\infty})$$

$$= e^{-t} \quad if \quad t > 0.$$
(7)

(c): Find the marginal pdf of S.

This is just like part (b), except this time "integrate out" T:

$$f_S(s) = \int_{-\infty}^{\infty} f_{S,T}(s,t)dt = \int_0^{s/2} e^{t-s}ds$$

$$= e^{-s} \int_0^{s/2} e^t dt = e^{-s} (e^t|_0^{s/2})$$

$$= e^{-s} (e^{s/2} - 1) \quad if \quad s > 0.$$
(8)

6.21 Let X and Y be continuous random variables with a joint density function given by

$$f_{X,Y}(x,y) = 2(x+y)$$
 if $0 < x < y < 1$ and 0 otherwise. (9)

(a) Find the joint density function of S = X and T = XY.

We can solve for X and Y in terms of the new variables, to get X = S and Y = T/S. Then the jacobian is given by

$$J = \begin{pmatrix} 1 & 0 \\ -T/S^2 & 1/S \end{pmatrix}. \tag{10}$$

Then the new pdf is given by

$$f_{T,S}(s,t) = f_{X,Y}(x(s,t),y(s,t)) \times |1/s| = \begin{cases} 2(s+t/s)|1/s|, & 0 < s^2 < t < s < 1\\ 0 & otherwise. \end{cases}$$
(11)

The bounds of this equation can be interpreted in the following way: the old triangular region in the xy plane got transformed to the region in the st plane between the lines T=S and $T=S^2$.

(b) Find the marginal pdf of T.

To find the marginal of T, s needs to be "integrated out."

$$f_{T}(t) = \int_{-\infty}^{\infty} f_{S,T}(s,t)ds$$

$$= \int_{t}^{\sqrt{t}} 2(s+t/s) |1/s| ds = \int_{t}^{\sqrt{t}} 2(1+t/s^{2})ds$$

$$= 2 \int_{t}^{\sqrt{t}} ds + 2t \int_{t}^{\sqrt{t}} 1/s^{2}ds = 2(\sqrt{t}-t) + 2t(-1/s)|_{t}^{\sqrt{t}}$$

$$= 2\sqrt{t} - 2t + 2 - 2\sqrt{t} = \begin{cases} 2 - 2t & t \in (0,1) \\ 0 & otherwise. \end{cases}$$
(12)

06.23 We will use the property that independant identically distributed random variables has the form of 6.4.4, $M_Y(t) = [M_X(t)]^n$ where $Y = X_1 + X_2 + ... + X_n$. then since $X_i \sim GEO(p)$

$$\begin{array}{lcl} Mgf(Y) & = & M_{X_1}(t)M_{X_2}(t)...M_{X_k}(t) \\ & = & (M_X(t))^k \\ & = & (\frac{pe^t}{1-qe^t})^k \sim NegativeBinomial(k,p) \end{array}$$

06.25 First note, X_1, X_2, X_3, X_4 are all independent, but they are not IID as only $X_2, X_3, X_4 \sim POI(5)$ with X_1 not being listed. So formula 6.4.5 does not hold. 6.4.4 does though.

A)

$$Mgf(Y) = M_{X_1}(t)M_{X_2+X_3+X_4}(t)$$

= $M_{X_1}(t)(M_{X_i}(t))^3$

Since X_2, X_3, X_4 are iid 6.4.5 holds for moving to this mgf

$$= M_{X_1}(t)(e^{\mu(e^t-1)})^3$$

$$= M_{X_1}(t)e^{3\mu(e^t-1)}$$

$$= M_{X_1}(t)e^{15(e^t-1)}$$

$$e^{25(e^t-1)} = M_{X_1}(t)e^{15(e^t-1)}$$

$$\frac{e^{25(e^t-1)}}{e^{15(e^t-1)}} = M_{X_1}(t)$$

$$e^{10(e^t-1)} = M_{X_1}(t) \sim POI(10)$$

B) For $W = X_1 + X_2$ we have $X_1 \sim POI(10)$ and $X_2 \sim POI(5)$. So POI(10 + 5) = POI(15) **06.29**

Given: PDF
$$f(x) = \begin{cases} \frac{1}{x^2} &, & 1 \le x < \infty, 0 < y < \infty \\ 0 &, & o/w \end{cases}$$

Find: a) Joint PDF of the order statistics

Setup:
$$F_w(w) = P[W \le w] = P[X + Y \le w]$$

Steps: i) Differentiate with respect to a to find an equation in terms of the pdf of x. $f_A(a) = \frac{d}{da} F_R(a/\pi)^{1/2} - \frac{d}{da} F_R - (a/\pi)^{1/2} = f_R[(a/\pi)^{1/2}] \frac{d}{da} (a/\pi)^{1/2} f_R[-(a/\pi)^{1/2}] \frac{d}{da} - (a/\pi)^{1/2}$

ii) Simplify and Use Combinatorial Identity

Result:
$$\binom{n+m}{k}$$

Find: b) PDF of the smallest order statistic Y_1

Setup:

Steps: i)

Result:

Find: c) PDF of the largest order statistic Y_n

Setup:

Steps: i)

Result:

Find: d) PDF of the sample range $R = Y_n - Y_1$, forn = 2

Setup: The area is $a = \pi r^2$ so the cdf $F_A(a) = P[A \le a] = P[\pi r^2 \le a] = P[r^2 \le a/\pi]$ = $P[|r| \le (a/\pi)^{1/2}] = P[-(a/\pi)^{1/2} \le c \le (a/\pi)^{1/2}] = F_r(a/\pi)^{1/2} - F_r - (a/\pi)^{1/2}$

Steps: i)

Result:

Find: e) PDF of the sample median $R = Y_r - Y_1$, fornoddsothatr = (n+1)/2

Setup:

Steps: i)

Result: 06.35 Suppose X_1, X_2 are independent exponentially distributed random variables $X_i \sim \text{EXP}(\theta)$, and let $Y = X_1 - X_2$.

(a) Find the MGF of Y.

We can think of $Y = X_1 - X_2$ as $Y = X_1 + (-1)X_2$. Then using Theorem 6.4.1,

$$M_{Y}(t) = (M_{X_{1}}(t))(M_{-X_{2}}(t))$$

$$M_{Y}(t) = (M_{X_{1}}(t))(M_{X_{2}}(-t))$$

$$M_{Y}(t) = \left(\frac{1}{1-\theta t}\right)\left(\frac{1}{1-\theta(-t)}\right)$$

$$M_{Y}(t) = \left(\frac{1}{1-\theta t}\right)\left(\frac{1}{1+\theta t}\right)$$

$$M_{Y}(t) = \frac{1}{1-\theta t+\theta t-\theta^{2}t^{2}}$$

$$M_{Y}(t) = \frac{1}{1-\theta^{2}t^{2}}$$

(b) What is the distribution of Y? Since $\frac{1}{1-\theta^2t^2}$ is the MGF of a double exponential, $Y \sim \text{DE}(\theta,0)$.

07.01 Consider a random sample of size n from a distribution with $CDFF(x) = 1 - \frac{1}{x}if1 \le x \le \infty$

(a) Derive the CDF of the smallest order statistic, $X_{1:n}$

Solution:
$$G_1(y_1) = 1 - [1 - F_X(y_1)]^n = 1 - [1 - [1 - \frac{1}{y_1}]]^n = 1 - [\frac{1}{y_1}]^n$$

$$G_1(y_1) = \begin{cases} 1 - \frac{1}{[y_1]^n} & \text{if } 1 \le y_1 \\ 0 & \text{if } 0 > y_1. \end{cases}$$

(b) Find the limiting distribution of $X_{1:n}$ Solution:

$$\lim_{n \to \infty} 1 - \frac{1}{y_1^n} = \begin{cases} 1 & \text{if } y_1 > 1\\ 0 & \text{if } y_1 \le 1 \end{cases}$$

The limiting distribution of $X_{1:n}$ is degenerate at y=1

(c) Find the limiting distribution of $X^{n}_{1:n}$

Solution:

$$F_{X_{1:n}}(y) = P(X_{1:n} \le y) = P(X_{1:n} \le y^{\frac{1}{n}}) = F_{X_{1:n}}(y^{\frac{1}{n}}) = 1 - \frac{1}{y^{\frac{1}{n}}} = 1 - \frac{1}{y^{\frac{1}{n}}}$$

then, the limiting distribution of
$$X^{n}_{1:n} = \begin{cases} 1 - \frac{1}{y_{n}} & \text{if } y > 1 \\ 0 & \text{if } otherwise \end{cases}$$

07.02

$$F(x) = \left\{ -\frac{1}{x^2}, \text{all real x} \right.$$

2a. $F_{X_{n:n}}(y) = (\frac{1}{1+e^{-y}})^n$; $\lim_{n\to\infty} (\frac{1}{1+e^{-y}})^n$ has no limiting distribution.

2b.
$$F_{X_{n:n}-\ln(n)}(y) = P[X_{n:n} - \ln(n) \le y] = P[X_{n:n} \le y + \ln(n)]$$

$$=F_{X_{n:n}}(y+\ln(n))^n=(\tfrac{1}{1+e^{-(y+\ln(n))}})^n=(\tfrac{1}{1+\frac{e^{-y}}{n}})^n;$$

$$\lim_{n\to\infty} \left(\frac{1}{1+\frac{e^{-y}}{n}}\right)^n = e^{-e^{-y}}$$

07.03 3a.
$$F(x) = \begin{cases} 1 - \frac{1}{x^2}, x > 1 \\ 0, x \le 0 \end{cases}$$

$$F_{X_{1:n}}(y) = P[X_{1:n} \le y] = 1 - P[X_{1:n} \ge y] = 1 - \frac{1}{y^{2n}}, y > 1$$

$$\lim_{n \to \infty} \left(1 - \frac{1}{y^{2n}}\right) = 1 - 0 = \begin{cases} 1, y > 1 \\ 0, y < 0 \end{cases}$$

3b.

$$F_{X_{n:n}}(y) = P[X_{n:n} \le y] = 1 - P[X_{n:n} \ge y] = 1 - (1 - \frac{1}{y^2})^n = \frac{1}{y^{2n}}; \lim_{n \to \infty} \frac{1}{y^{2n}} = 0,$$

Therefore $F_{X_{n:n}}(y)$ has no limiting distribution.

3c.

$$F_{n^{-\frac{1}{2}}X_{n:n}}(y) = P[\frac{1}{\sqrt{n}}X_{n:n} \leq y] = P[X_{n:n} \leq \sqrt{n}y] = F_{X_{n:n}}(\sqrt{n}y) = (1 - (\sqrt{n}y)^{-2})^n, fory > \frac{1}{\sqrt{n}} = (1 - (\sqrt{n}y)^{-2})^n = (1 - (\sqrt{n}y)^{-2})^n$$

$$\lim_{n \to \infty} (1 - (\sqrt{ny})^{-2})^n = (1 - \frac{1}{ny^2})^n = \begin{cases} e^{-y^{-2}}, y > 0\\ 0, y \le 0 \end{cases}$$

07.07 The WEI (1, 2) distribution has pdf $f(x) = 2xe^{-x^2}$ for x > 0, mean $\mu = \Gamma(\frac{3}{2}) = \frac{1}{2}\Gamma(\frac{1}{2}) = \frac{1}{2}\sqrt{\pi}$ and variance $\sigma^2 = \Gamma(2) - \Gamma(\frac{3}{2})^2 = 1 - \frac{\pi}{4}$

(a) According to the central limit theorem, this holds with $a = \mu - \frac{1.96\sigma}{\sqrt{n}}$ and $b = \mu + \frac{1.96\sigma}{\sqrt{n}}$, so if n = 35 we have a = 0.7328 and b = 1.0397

(b) For odd n, $X_{\frac{n+1}{2}:n}$ is approximately $N(x_{\frac{1}{2}}, \frac{c^2}{n})$, where $c^2 = \frac{1}{4f(x_{\frac{1}{2}})^2}$. Now $F(x_{\frac{1}{2}}) = \frac{1}{2}$, because

 $F(x) = 1 - e^{-x^2}$, it implies that $x_{\frac{1}{2}} = \sqrt{\ln 2}$. Also because $c^2 = \frac{1}{4\ln 2}$, we have $a = x_{\frac{1}{2}} - \frac{1.96c}{\sqrt{n}}$ and $b = x_{\frac{1}{2}} + \frac{1.96c}{\sqrt{n}}$, so when n = 35 we have a = 0.6336 and b = 1.0315

07.11 a) First we need to know the μ and the σ . For a Uniform variable with a=0,b=1 we have $\mu=1/2$ and $\sigma=1/\sqrt{12}$ (Note: it is not σ^2). We also need to know that n=20 from there we can use the CLT:

$$\Pr\left(\sum^{20} X_i < 12\right) = \Pr\left(\frac{\sum X_i - 10}{\sqrt{20} \frac{1}{\sqrt{12}}} < \frac{12 - 10}{\sqrt{20} \frac{1}{\sqrt{12}}}\right)$$
$$= \Phi\left(\frac{12 - 10}{\sqrt{20} \frac{1}{\sqrt{12}}}\right)$$
$$\approx .9394$$

b) We let $Y = \sum^{20} X_i$, let Y' be our 90th percentile that we want to find. So we setup our probability as $\Pr(Y \leq Y') = .9$, .9 as we are interested in the 90th percentile. Using μ , σ , and n from part (a) we solve with CLT:

$$\begin{split} \Pr\left(Y \leq Y'\right) &= \Pr\left(\frac{Y - \mu n}{\sigma \sqrt{n}} \leq \frac{Y' - \mu n}{\sigma \sqrt{n}}\right) \\ &= \Pr\left(Z \leq \frac{Y' - 10}{\sqrt{20}\frac{1}{\sqrt{12}}}\right) \text{Note: Z is standard normal due to CLT} \\ .9 &= \Phi\left(\frac{Y' - 10}{\sqrt{20}\frac{1}{\sqrt{12}}}\right) \end{split}$$

We now solve for Y'. We know (from a chart or list) that .9 from Φ is $z \approx 1.285$. So we set our final equation for finding out Y' with that in mind.

$$\frac{Y' - 10}{1.291} = 1.285$$
$$Y' \approx 11.658$$

07.12 a) First, an understanding that the wording here implies that X is actually "failures" of weapons. So the given p would normally be q in other contexts. So using the binomial theorem we would have p = .05 and q = .95. Knowing that we can use the Binomial theorem

easily:

$$\Pr(X \ge 1) = 1 - \Pr(X < 1)$$
$$= 1 - \binom{n}{0} (.05)^0 (.95)^n$$

We now solve for n from the above equation knowing that the desired probability is .99

$$.99 = 1 - (.95)^{n}$$

$$\ln .95^{n} = \ln .01$$

$$n = \frac{\ln .01}{\ln .95}$$

So n, since it must be an integer, is rounded to 90.

07.13 From the hint we know that $Y_n = \sum^n X_i$ where $X_i \sim Geo(p)$. So for $\sum^n X_i$ the $\mu = \frac{n}{p}$ and $\sigma^2 = \frac{nq}{n^2}$. Then by the CLT:

$$\Pr(Y_n \le y) = \Pr\left(\frac{\sum_{i=1}^n X_i \le y}{\sum_{i=1}^n \sqrt{n_i} \frac{n_i}{p^2}}\right)$$
$$= \Pr\left(\frac{\sum_{i=1}^n X_i - \frac{n_i}{p}n}{\sqrt{n_i} \sqrt{\frac{n_i}{p^2}}}\right)$$
$$= \Phi\left(\frac{y - \frac{n_i}{p}n}{\sqrt{n_i} \sqrt{\frac{n_i}{p^2}}}\right)$$

07.16 a) We need two things for this proof. First, we need to know μ and σ^2 of \overline{X} . We know this is $\mu = \mu$ and $\sigma^2 = \frac{\mu^2}{n}$ from facts of the sample mean distribution of $POI(\mu)$. Next the theorems from section 7.6, namely 7.6.2 and from 7.7, 7.7.2. These will let us prove the following:

$$\Pr\left[|\overline{X_n} - \mu| < \epsilon\right] \ge 1 - \frac{\mu^2}{\epsilon^2 n}$$

$$\lim_{n \to \infty} \Pr\left[|\overline{X_n} - \mu| < \epsilon\right] = 1$$

From this we now know that $\overline{X} \stackrel{P}{\to} \mu$ from 7.6.3. For our goal, $e^{\overline{X_n}}$ we simply need to know 7.7.2. Since $\overline{X} \stackrel{P}{\to} \mu$ then $e^{\overline{X}} \stackrel{P}{\to} e^{\mu}$

- b) It has been shown elsewhere in the text that any $\overline{X_n}$ will converge to N(0,1) if standardized. The theorem we need to use then, is 7.7.6 which states that a function of an already convergent series also converges to an asymptotic normal distribution. (For an almost direct example see Example 7.7.3)
- Our g(y) here is $e^{-\overline{X_n}}$ where $g(y)=e^y$. So then $g'(y)=-e^{-y}$ and using 7.7.6 we can find our distribution if $\frac{d}{d\mu}e^{-\mu}=-e^{-\mu}$ then $N(e^{\mu},\frac{-e^{-2\mu}\mu^2}{n})$
- c) From parts (a) we know that $\overline{X_n} \stackrel{P}{\to} \mu$ and $e^{\overline{-X}} \stackrel{P}{\to} e^{-\mu}$. So we can use theorem 7.7.3 via section (2), which states that $X_n Y_n \stackrel{P}{\to} cd$. In our case we have the prior two found distributions. So then by the theorem $\overline{X_n} e^{\overline{X_n}} \stackrel{P}{\to} \mu e^{-\mu}$