

- ◆级联系统的单位脉冲响应
- ◆并联系统的单位脉冲响应
- ◆单位脉冲响应与系统因果性
- ◆单位脉冲响应与系统稳定性

系统不同则其单位脉冲响应h[k]也不同,利用h[k]表示离散系统的时域特性。

几个常见系统的单位脉冲响应

无失真传输系统 输入: $\delta[k] \longrightarrow h[k] = K \cdot \delta[k - k_d]$

K为正常数, k_d 是输入信号通过系统后的延迟时间。

求和器 输入: $\delta[k] \longrightarrow h[k] = u[k]$

差分器 输入: $\delta[k] \longrightarrow h[k] = \delta[k] - \delta[k-1]$

单位延迟器 输入: $\delta[k] \longrightarrow h[k] = \delta[k-1]$

1. 级联系统的单位脉冲响应

2. 并联系统的单位脉冲响应

[例] 求图示系统的单位脉冲响应,其中 $h_1[k] = 2^k u[k]$,

$$h_2[k] = \delta[k-1]$$
 , $h_3[k] = 3^k u[k]$, $h_4[k] = u[k]$.

解: 子系统 $h_2[k]$ 与 $h_3[k]$ 级联, $h_1[k]$ 支路、全通支路与 $h_2[k]$ $h_3[k]$ 级联支路并联,再与 $h_4[k]$ 级联。

全通支路满足y[k] = x[k]*h[k] = x[k]

全通离散系统的单位脉冲响应为 $\delta[k]$

$$h[k] = \{h_1[k] + \delta[k] + h_2[k] * h_3[k]\} * h_4[k]$$
$$= 2(2)^k u[k] + [1.5(3)^{k-1} - 0.5]u[k-1]$$

3. 单位脉冲响应与系统因果性

因果系统定义:

若系统6₀时刻的输出只和6₀时刻及以前的输入信号有关,则称该系统是因果系统。

离散时间LTI系统是因果系统的充分必要条件

$$h[k] = 0, \quad k < 0$$

3. 单位脉冲响应与系统因果性

[例] 判断下面的LTI系统是否为因果系统。

$$h[k] = \cos\left[\frac{\pi}{2}k\right]u[k]$$

解: 由于当k<0时,u[k]=0

故此时 $\cos\left[\frac{\pi}{2}k\right]u[k] = 0$

因此满足 h[k]=0, k<0。

该系统是因果系统。

4. 单位脉冲响应与系统稳定性

稳定系统定义:

若系统对任意的有界输入其输出也有界,则称该系统是稳定系统(BIBO稳定)。

离散时间LTI系统是BIBO稳定系统的充分必要条件是

$$\sum_{k=-\infty}^{\infty} |h[k]| = S < \infty$$

4. 单位脉冲响应与系统稳定性

[例] 判断下面的LTI系统是否为稳定系统。

$$h[k] = 2^k \{u[k] - u[k-3]\}$$

解: 根据判断稳定性的充要条件 $\sum_{k=-\infty}^{\infty} |h[k]| = S < \infty$

$$\sum_{k=-\infty}^{\infty} |h[k]| = \sum_{k=0}^{2} |2^{k}| = 1 + 2 + 4 = 7 < \infty$$

满足稳定性的充要条件,该系统是稳定系统。

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事、同行、朋友的交流,难以一一注明出处,特此说明并表示感谢!