

Química Inorgânica I

Mestrado Integrado em Engenharia Química e Bioquímica Licenciatura em Química Aplicada

Séries de Problemas 2020-2021 (IV)

1.-Preencha a seguinte tabela relativa a compostos de coordenação tendo em conta a Teoría de Pearson:

Composto	Ligandos	Átomos doadores dos ligandos	Contra- ião	Número de coordenação do metal	Geometria de coordenação do metal – Configuração electrônica Metal	Natureza do Átomo central E Ligandos	Isómeros
K ₂ [CdI ₄]							
[Ir(NH ₃) ₅ (SO ₂)]Cl ₃							
[Pd(en) ₂]SO ₄							
[Nil ₂ (PPh ₃) ₂]							
K[Ag(SCN) ₂]							
[La(NH ₃) ₄ (OH ₂) ₂]F ₂							

[Hg(SH2(CH2)2NH2)3]F2				
[PtCl ₂ (TeO) ₂]				
[Fe(bpy) ₃](ClO ₄) ₃				
[Co(NH ₃) ₂ l ₂]Br ₃				

PEt₃ = Trietilfosfina SePr₃ = Tripropilselina

2.- Nomee seguindo as regras de nomenclatura inorgânica todas as espécies do exercicio 1.

3.- A teoría de Pearson agrupa os metais e os ligandos em ácidos e bases de Lewis duros e macios. Escreba todos os complexos possiveis que dará lugar as reacções seguintes tendo em conta a teoria de Pearson. Identifique a natureza dura ou macia do ião metálico e dos potenciais ligandos.

- a) Au(I), SH_2 , H_2O , NO_3^- , CN
- b) Ru(II) CN, SH₂(CH₂)₂NH₂)₃, H₂O, BF₄⁻
- c) Cu(II), acac, NO₂, Cl⁻
- d) Ba(II), H₂O, EDTA⁻, ClO₄⁻
- e) Fe(III), CO₂ phen, en, F⁻