CSC165H1 Problem Set 2

Wei CUI

February 5, 2018

1 AND vs. IMPLIES

(a) WTP: $\forall n \in \mathbb{N}, n > 15 \Rightarrow n^3 - 10n^2 + 3 \ge 165$

Proof: Let $n \in \mathbb{N}$, and assume n > 15, WTP: $n^3 - 10n^2 + 3 > 165 \lor n^3 - 10n^2 + 3 = 165$

$$n > 15$$
 (by assumption)
$$n^3 > 15n^2$$
 (since $n > 15$, then $n^2 > 0$)
$$n^3 - 10n^2 > 5n^2$$

$$n^3 - 10n^2 + 3 > 5n^2 + 3$$
 (since $n > 15$, then $5n^2 + 3 > 1128$)
$$n^3 - 10n^2 + 3 > 5n^2 + 3 > 1128 > 165$$

Therefore, $n^3 - 10n^2 + 3 > 165$ Therefore, $n^3 - 10n^2 + 3 > 165 \lor n^3 - 10n^2 + 3 = 165$ holds Thus, $\forall n \in \mathbb{N}, n > 15 \Rightarrow n^3 - 10n^2 + 3 > 165$

(b) We want to disprove: $\forall n \in \mathbb{N}, n > 15 \land n^3 - 10n^2 + 3 \ge 165$, which is equivalent to prove its negation: $\exists n \in \mathbb{N}, n \le 15 \lor n^3 - 10n^2 + 3 < 165$

Proof: Take n=1 Then $n=1 \le 15$ Therefore $\exists n \in \mathbb{N}, n \le 15 \lor n^3 - 10n^2 + 3 < 165$ Therefore $\forall n \in \mathbb{N}, n > 15 \land n^3 - 10n^2 + 3 \ge 165$ is False.

2 Ceiling function

(a) Translate into predicate logic: $\forall n, m \in \mathbb{N}, n < m \Rightarrow \left\lceil \frac{m-1}{m} \cdot n \right\rceil = n$

Proof: Let $n, m \in \mathbb{N}$, and assume n < m, WTS: $\left\lceil \frac{m-1}{m} \cdot n \right\rceil = n$

$$\left\lceil \frac{m-1}{m} \cdot n \right\rceil = \left\lceil (1 - \frac{1}{m}) \cdot n \right\rceil$$

$$\left\lceil (1 - \frac{1}{m}) \cdot n \right\rceil = \left\lceil -\frac{n}{m} + n \right\rceil$$

$$\left\lceil -\frac{n}{m} + n \right\rceil = \left\lceil -\frac{n}{m} \right\rceil + n \quad \text{(since } n, m \in \mathbb{N}, \text{ then } n \in \mathbb{Z} \text{ and } -\frac{n}{m} \in \mathbb{R} \text{ and by Fact 2)}$$

$$\left\lceil -\frac{n}{m} \right\rceil + n = n \quad \text{(since } n < m \text{ and by the definition of ceiling function)}$$

Therefore $\left\lceil \frac{m-1}{m} \cdot n \right\rceil = n$ Therefore $\forall n, m \in \mathbb{N}, n < m \Rightarrow \left\lceil \frac{m-1}{m} \cdot n \right\rceil = n$

(b) Define a predicate IsMultipleOf50(n): $\exists q \in \mathbb{Z}, n = 50q$, where $n \in \mathbb{N}$

Translate into predicate logic: $\forall n \in \mathbb{N}, nextFifty(n) \geq n \wedge IsMultipleOf50(nextFifty(n)) \wedge (\forall x \in \mathbb{N}, x \geq n \wedge IsMultipleOf50(x) \Rightarrow x \geq nextFifty(n))$

Proof: Let $n \in \mathbb{N}$, WTS: $nextFifty(n) \ge n \land IsMultipleOf50(nextFifty(n)) \land (\forall x \in \mathbb{N}, x \ge n \land IsMultipleOf50(x) \Rightarrow x \ge nextFifty(n))$

At first, we want to show: $nextFifty(n) \ge n$

$$\left\lceil \frac{n}{50} \right\rceil \geq \frac{n}{50} \qquad \text{(by the definition of ceiling function)}$$

$$50 \cdot \left\lceil \frac{n}{50} \right\rceil \geq 50 \cdot \frac{n}{50} = n$$

$$nextFifty(n) \geq n$$

Therefore $nextFifty(n) \ge n$ is true

Next, we want to show that: IsMultipleOf50(nextFifty(n)), which is: $\exists q \in \mathbb{Z}, nextFifty(n) = 50q$

Take $q = \left\lceil \frac{n}{50} \right\rceil$ (since by the definition of ceiling function, then $q = \left\lceil \frac{n}{50} \right\rceil \in \mathbb{Z}$)

$$nextFifty(n) = 50 \cdot \left\lceil \frac{n}{50} \right\rceil = 50q$$

Therefore IsMultipleOf50(nextFifty(n)) is true

Finally, we want to prove: $\forall x \in \mathbb{N}, x \geq n \land IsMultipleOf50(x) \Rightarrow x \geq nextFifty(n)$ Let $x \in \mathbb{N}$

Assume $x \geq n$

Assume IsMultipleOf50(x), which is: $\exists q \in \mathbb{Z}, x = 50q$ Let q be such value, WTS: $x \ge nextFifty(n)$, which is: $x = 50q \ge 50 \cdot \left\lceil \frac{n}{50} \right\rceil$

$$x = 50q \ge n$$
 (by our assumption)
$$q \ge \frac{n}{50} \ge \left\lceil \frac{n}{50} \right\rceil$$
 (since $q \in Z$)
$$50q \ge 50 \cdot \left\lceil \frac{n}{50} \right\rceil$$

$$x = 50q \ge 50 \cdot \left\lceil \frac{n}{50} \right\rceil = nextFifty(n)$$

Therefore $x \geq nextFifty(n)$

Therefore $\forall x \in \mathbb{N}, x \geq n \land IsMultipleOf50(x) \Rightarrow x \geq nextFifty(n)$

Thus $\forall n \in \mathbb{N}, nextFifty(n) \geq n \wedge IsMultipleOf50(nextFifty(n)) \wedge (\forall x \in \mathbb{N}, x \geq n \wedge IsMultipleOf50(x) \Rightarrow x \geq nextFifty(n)).$

3 Divisibility

(a) WTP:
$$\forall n \in \mathbb{N}, n \leq 2300 \Rightarrow (49|n \Leftrightarrow 50 \cdot (nextFifty(n) - n) = nextFifty(n))$$

Proof: Let $n \in \mathbb{N}$, and assume $n \leq 2300$, WTS: $49|n \Leftrightarrow 50 \cdot (nextFifty(n) - n) = nextFifty(n)$

At first, we prove " \Rightarrow " direction,

Assume 49|n, which is: $\exists q \in Z, n = 49q$, WTS: $50 \cdot (nextFifty(n) - n) = nextFifty(n)$

$$\left\lceil \frac{50-1}{50} \cdot q \right\rceil = q \qquad \text{(since } n = 49q \le 2300, \text{ then } q < 50 \text{ and by Q2(a))}$$

$$49 \left\lceil \frac{49d}{50} \right\rceil = 49d$$

$$50 \left\lceil \frac{49d}{50} \right\rceil - 49d = \left\lceil \frac{49d}{50} \right\rceil$$

$$nextFifty(n) - n = \frac{nextFifty(n)}{50} \qquad \text{(since } n = 49d)$$

 $50 \cdot (nextFifty(n) - n) = nextFifty(n)$

Therefore $49|n \Rightarrow 50 \cdot (nextFifty(n) - n) = nextFifty(n)$

Next, we prove " \Leftarrow " direction,

Assume $50 \cdot (nextFifty(n) - n) = nextFifty(n)$, WTP: 49|n, which is: $\exists q \in \mathbb{Z}, n = 49d$ Take $q = \left\lceil \frac{n}{50} \right\rceil$ (since by the definition of ceiling function, then $q \in \mathbb{Z}$)

$$50 \cdot (nextFifty(n) - n) = nextFifty(n)$$
 (by our assumption)
 $50 \cdot nextFifty(n) - 50n = nextFifty(n)$
 $49 \cdot nextFifty(n) = 50n$
 $49 \left\lceil \frac{n}{50} \right\rceil = n$
 $n = 49a$

Therefore, $49|n \Leftrightarrow 50 \cdot (nextFifty(n) - n) = nextFifty(n)$ Therefore, $\forall n \in \mathbb{N}, n \leq 2300 \Rightarrow (49|n \Leftrightarrow 50 \cdot (nextFifty(n) - n) = nextFifty(n))$

(b) Disprove: $\forall n \in \mathbb{N}, 49 | n \Leftrightarrow 50 \cdot (nextFifty(n) - n) = nextFifty(n)$ It is equivalent to prove its negation: $\exists n \in \mathbb{N}, (49 | n \land 50 \cdot (nextFifty(n) - n) \neq nextFifty(n)) \lor (50 \cdot (nextFifty(n) - n) = nextFifty(n) \land 49 \nmid n)$

Proof: Take $n=2450\in\mathbb{N}$, since $n=49\times 50$, then 49|n is true Next, $nextFifty(n)=50\cdot\left\lceil\frac{n}{50}\right\rceil=50\left\lceil\frac{2450}{50}\right\rceil=50\times 49=2450$, then $50\cdot(nextFifty(n)-n)=50\cdot(2450-2450)=0\neq 2450\neq nextFifty(n)$ Therefore, $50\cdot(nextFifty(n)-n)\neq nextFifty(n)$)
Therefore, $49|n\wedge 50\cdot(nextFifty(n)-n)\neq nextFifty(n)$)
Therefore, $(49|n\wedge 50\cdot(nextFifty(n)-n)\neq nextFifty(n))$ $(50\cdot(nextFifty(n)-n)=nextFifty(n)\wedge 49\nmid n)$ holds

Thus, we have proven its negation.

4 Functions.

- (a) "f is bounded" in predicate logic: $\exists k \in \mathbb{R}, \forall x \in \mathbb{N}, f(x) \leq k$
- (b) Define a predicate $Bounded(f): \exists k \in \mathbb{R}, \forall x \in \mathbb{N}, f(x) \leq k$, where $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$. Translate into predicate logic: $\forall f_1, f_2: \mathbb{N} \to \mathbb{R}^{\geq 0}, Bounded(f_1) \land Bounded(f_2) \Rightarrow Bounded(f_1 + f_2)$

Proof: Let $f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$, and assume $Bounded(f_1) \wedge Bounded(f_2)$, which is:

 $\exists k_1 \in \mathbb{R}, \forall x \in \mathbb{N}, f_1(x) \le k_1$

 $\exists k_2 \in \mathbb{R}, \forall x \in \mathbb{N}, f_2(x) \le k_2$

Let k_1, k_2 be such values, WTP: $Bounded(f_1 + f_2)$, which is: $\exists k_3 \in \mathbb{R}, \forall x \in \mathbb{N}, f_1(x) + f_2(x) \leq k_3$

Let $x \in \mathbb{N}$. Take $k_3 = k_1 + k_2$ (since $k_1, k_2 \in \mathbb{R}$, then $k_3 \in \mathbb{R}$)

$$f_1(x) \le k_1$$
 (by our assumption)
 $f_2(x) \le k_2$ (by our assumption)
 $f_1(x) + f_2(x) \le k_1 + k_2$
 $f_1(x) + f_2(x) \le k_3$

Therefore, $\exists k_3 \in \mathbb{R}, \forall x \in \mathbb{N}, f_1(x) + f_2(x) \leq k_3$

Therefore, if f_1 and f_2 is bounded, then $f_1 + f_2$ is bounded.

(c) Prove: $\forall f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $Bounded(f_1 + f_2) \Rightarrow Bounded(f_1) \land Bounded(f_2)$

Proof: Let $f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$, and assume $Bounded(f_1 + f_2)$, which is: $\exists k_3 \in \mathbb{R}, \forall x \in \mathbb{N}, f_1(x) + f_2(x) \leq k_3$, let k_3 be such value, WTP: $Bounded(f_1) \land Bounded(f_2)$, which is: $\exists k_1 \in \mathbb{R}, \forall x \in \mathbb{N}, f_1(x) \leq k_1$

 $\exists k_2 \in \mathbb{R}, \forall x \in \mathbb{N}, f_2(x) \le k_2$

Let $x \in \mathbb{N}$, and take $k_1 = k_2 = k_3$ (since $k_3 \in \mathbb{R}$, then $k_1, k_2 \in \mathbb{R}$)

$$f_1(x) + f_2(x) \le k_3$$
 (by our assumption)
 $f_1(x) \le k_3 - f_2(x)$
 $f_1(x) \le k_3$ (since $f_2 : \mathbb{N} \to \mathbb{R}^{\ge 0}$, then $\forall x \in \mathbb{N}, f_2(x) \ge 0$)
 $f_1(x) \le k_1$ (since $k_3 = k_1$)

Therefore, $\exists k_1 \in \mathbb{R}, \forall x \in \mathbb{N}, f_1(x) \leq k_1$ Similarly,

$$f_1(x) + f_2(x) \le k_3$$
 (by our assumption)
 $f_2(x) \le k_3 - f_1(x)$
 $f_2(x) \le k_3$ (since $f_1 : \mathbb{N} \to \mathbb{R}^{\ge 0}$, then $\forall x \in \mathbb{N}, f_1(x) \ge 0$)
 $f_2(x) \le k_2$ (since $k_3 = k_2$)

Therefore, $\exists k_2 \in \mathbb{R}, \forall x \in \mathbb{N}, f_2(x) \leq k_2$ Therefore, $Bounded(f_1) \wedge Bounded(f_2)$ holds

Thus, $\forall f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $Bounded(f_1 + f_2) \Rightarrow Bounded(f_1) \wedge Bounded(f_2)$