Přehled matematických vět a definic.

June 8, 2019

BI-LIN, Lineární algebra

1.1 Background

- 1.2 12 Soustavy lineárních rovnic: Frobeniova věta a související pojmy, vlastnosti a popis množiny řešení, Gaussova eliminační metoda.
- 1.3 13 Matice: součin matic, regulární matice, inverzní matice a její výpočet, vlastní čísla matice a jejich výpočet, diagonalizace matice.

BI-MLO, Matematická logika

- 2.1 Background
- 2.2 14 Výroková logika: syntax a sémantika výrokových formulí, pravdivostní ohodnocení, logický důsledek, ekvivalence a jejich zjišťování. Universální systém logických spojek, disjunktivní a konjunktivní normální tvary, úplné a minimální tvary.
- 2.3 15 Predikátová logika: jazyk, interpretace, pravdivost formulí, logický důsledek a ekvivalence. Formalizace matematických tvrzení a jejich negace. Teorie a jejich modely (např. uspořádání).

BI-PST, Pravděpodobnost a statistika

- 3.1 Background
- 3.2 25 Pravidla pro výpočty pravděpodobností, Bayesův vzorec. Náhodné veličiny, příklady rozdělení, distribuční funkce, hustota, momenty. Nezávislost náhodných jevů a veličin. Centrální limitní věta, zákony velkých čísel.
- 3.3 26 Základy statistické indukce, náhodný výběr, bodové odhady pro střední hodnotu a rozptyl, intervalové odhady pro střední hodnotu, testování statistických hypotéz o střední hodnotě.

BI-ZDM, Základy diskrétní matematiky

- 4.1 Background
- 4.2 32 Metody řešení rekurentních rovnic, sestavování a řešení rekurentních rovnic při analýze časové složitosti algoritmů.
- 4.3 33 Modulární aritmetika, základy teorie čísel, Malá Fermatova věta, diofantické rovnice, lineární kongruence, Čínská věta o zbytcích.

BI-ZMA, Základy matematické analýzy

5.1 Background

Věta 5.1.0.1 (Může se hodit): Pro $a, b \in \mathbb{R}$ platí

$$a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^{n-k} b^{k}.$$

Definice 5.1.0.1 (Posloupnost): Zobrazení množiny \mathbb{N} do množiny \mathbb{R} nazýváme **reálná posloupnost**. Zapisujeme $(a_n)_{n=1}^{\infty}$.

Definice 5.1.0.2 (Limita posloupnosti): Reálná posloupnost $(a_n)_{n=1}^{\infty}$ má **limitu** $\alpha \in \overline{\mathbb{R}}$, právě když pro každé okolí H_{α} bodu α lze nalézt $n_0 \in \mathbb{N}$ takové, že pro všechna $n \in \mathbb{N}$ větší než n_0 platí $a_n \in H_{\alpha}$. V symbolech

$$(\forall H_{\alpha})(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n > n_0 \Rightarrow a_n \in H_{\alpha}).$$

Značí se $\lim_{n\to\infty} a_n = \alpha$ a bez pojmu okolí můžeme přepsat na

$$(\forall \varepsilon \in \mathbb{R}, \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n > n_0 \Rightarrow |a_n - \alpha| < \varepsilon).$$

Definice 5.1.0.3 (Konvergence posloupnosti): Buď $(a_n)_{n=1}^{\infty}$ posloupnost. Pokud pro její limitu platí $\lim_{n\to\infty}a_n\in\mathbb{R}$, pak se nazývá **konvergentní**. V ostatních případech ji nazýváme **divergentní**.

5.2 34 – Limita a derivace funkce (definice a vlastnosti, geometrický význam), využití při vyšetřování průběhu funkce.

Definice 5.2.0.1 (Limita funkce): Buďte f reálná funkce reálné proměnné a $a \in \overline{\mathbb{R}}$. Nechť f je definovaná na okolí bodu a, s možnou výjimkou bodu a samotného. Řekneme, že $c \in \overline{\mathbb{R}}$ je **limitou funkce** f **v** bodě a, právě když pro každé okolí H_c bodu c existuje okolí H_a bodu a takové, že z podmínky

$$x \in H_a \setminus \{a\}$$

plyne

$$f(x) \in H_c$$
.

V symboloch

$$(\forall H_c)(\exists H_a)(\forall x \in D_f)(x \in H_a \setminus \{a\} \Rightarrow f(x) \in H_c).$$

Tuto skutečnost zapisujeme

$$\lim_{x \to a} f(x) = c, \quad \lim_{a} f = c.$$

Definice 5.2.0.2 (Limita funkce zleva/zprava): Buďte f reálná funkce reálné proměnné a $a \in \mathbb{R}$. Nechť f je definovaná na levém, resp. pravém, okolí bodu a. Řekneme, že $c \in \overline{\mathbb{R}}$ je **limitou funkce** f **v** bodě a zleva, resp. zprava, právě když

$$\lim_{x \to a} f(x) = c \Leftrightarrow (\forall H_c)(\exists H_a^-)(\forall x \in D_f)(x \in H_a^- \setminus \{a\} \Rightarrow f(x) \in H_c),$$

respektíve

$$\lim_{x \to a_+} f(x) = c \Leftrightarrow (\forall H_c)(\exists H_a^+)(\forall x \in D_f)(x \in H_a^+ \setminus \{a\} \Rightarrow f(x) \in H_c).$$

5.2.1 Vlastnosti limit funkcí

Věta 5.2.1.1: Nechť $a \in \mathbb{R}$. Limita $\lim_{x \to a} f(x)$ existuje a je rovna $c \in \overline{\mathbb{R}}$, právě když existují obě jednostranné limity $\lim_{x \to a_+} f(x)$ a $\lim_{x \to a_-} f(x)$ a obě jsou rovny c. \Rightarrow Ak obě jednostranné limity funkce f v bodě a neexistuje, potom limita funkce f v bodě a neexistuje.

Věta 5.2.1.2 (Heine): $\lim_{x\to a} f(x) = c$, právě když je f definována na okolí bodu a (s možnou výjimkou bodu a) a pro každou posloupnost $(x_n)_{n=1}^{\infty}$ s limitou a a splňující

$$\{x_n|n\in\mathbb{N}\}\subset D_f\setminus\{a\}$$

platí $\lim_{n\to\infty} f(x_n) = c$. \Rightarrow Nechť f je funkce definovaná na okolí bodu $a \in \overline{\mathbb{R}}$ a $(x_n)_{n=1}^{\infty}, (z_n)_{n=1}^{\infty}$ jsou dvě reálné posloupnosti patřící do D_f , konvergující k a a splňující podmínky $x_n \neq a$ a $z_n \neq a$ pro všechna $n \in \mathbb{N}$. Pokud limity

$$\lim_{n \to \infty} f(x_n) \quad \text{a} \quad \lim_{n \to \infty} f(z_n)$$

existují a jsou různé, nebo alespoň jedna z nich neexistuje, potom limita $\lim_{x\to a} f(x)$ neexistuje.

Věta 5.2.1.3: Nechť f a g jsou funcke a $a \in \overline{\mathbb{R}}$. Potom

$$\lim_{a} (f+g) = \lim_{a} f + \lim_{a} g,$$

$$\lim_{a} f \cdot g = \lim_{a} f \cdot \lim_{a} g,$$

$$\lim_{a} \frac{f}{g} = \frac{\lim_{a} f}{\lim_{a} g},$$

platí v případě, že výrazy na pravé strané jsou definovány a v posledním případě za předpokladu, že $\frac{f}{g}$ je definována na okolí bodu a s možnou výjimkou bodu a samotného.

Věta 5.2.1.4 (O limitě složené funkce): Nechť f a g jsou funkce, $a,b,c\in\mathbb{R}$ a platí tři podmínky

- $1. \lim_{x \to a} g(x) = b,$
- $2. \lim_{x \to b} f(x) = c,$
- 3. buď $(\exists H_a)(\forall x \in D_g \cap H_a \setminus \{a\})(g(x) \neq b)$ nebo $(b \in D_f a f(b) = c)$.

Potom platí $\lim_{x\to a} f(g(x)) = c$.

Věta 5.2.1.5 (Věta o limitě sevvřené funkce): Nechť pro funkce f, g, h a body platí:

- 1. $(\exists H_a)(\forall x \in H_a \setminus \{a\})(f(x) \leq g(x) \leq h(x))$
- 2. existují $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = c$.

Potom existuje i $\lim_{x\to a} g(x)$ a je rovna c.

Věta 5.2.1.6 (l'Hospitalovo pravidlo): Nechť pro funkce f a g a bod $a \in \overline{\mathbb{R}}$ platí

- 1. $\lim_a f = \lim_a g = 0$ nebo $\lim_a |g| = +\infty$,
- 2. existuje okolí H_a bodu a splňující $H_a \setminus \{a\} \subset D_{f/g} \cap D_{f'/g'}$,
- 3. existuje $\lim_{a} \frac{f'}{g'}$.

Potom existuje $\lim_a \frac{f}{g}$ a platí $\lim_a \frac{f}{g} = \lim_a \frac{f'}{g'}.$

5.2.2 Spojitost funkce

Věta 5.2.2.1 (Spojitost funkce): Nechť f je reálná funkce reálné proměnné a nechť bod $a \in D_f$. Řekneme, že funkce f je **spojitá v bodě** a jestliže nastáva alespoň jedna z nasledujících možností

- $\lim_{x \to a} f(x) = f(a)$,
- $(\exists H_a)(H_a \cap D_f = H_a^+)$ a $\lim_{x \to a+} f(x) = f(a)$,
- $(\exists H_a)(H_a \cap D_f = H_a^-)$ a $\lim_{x \to a^-} f(x) = f(a)$.

Funkce f je **spojitá v bodě** a **zprava**, pokud $\lim_{x\to a+} f(x) = f(a)$. Funkce f je **spojitá v bodě** a **zleva**, pokud $\lim_{x\to a-} f(x) = f(a)$.

Věta 5.2.2.2: Funkce f definovaná na okolí bodu $a \in D_f$ je spojitá v bodě a, právě když je spojitá v bodě a zleva i zprava.

Keď to dáva zmysel, súčet, súčin, podiel a zlúčenie dvoch spojitých funkcií je opäť spojitá funkcia.

5.2.3 Derivace funkce

Definice 5.2.3.1 (Derivace funkcie): Nechť f je funkce definovaná na okolí bodu $a \in \mathbb{R}$. Pokud existuje limita

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}, \quad \text{ekvivalentne} \quad \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},$$

nazveme její hodnotu **derivací funkce** f **bodě** a a označíme f'(a). Pokud je tato limita konečná (tj. $f'(a) \in \mathbb{R}$) řekneme, že funkce f je **diferencovatelná** v bodě a.

Definice 5.2.3.2: Buď f funkce s definičním oborem D_f . Nechť M označuje množinu všech $a \in D_f$ takových, že existuje konečná derivace f'(a). **Derivací funkce** f nazýváme funkci s definičním oborem M, která každému $x \in M$ přiřadí f'(x). Tuto funkci značíme symbolem f'.

Definice 5.2.3.3: Nechť existuje f'(a). Tečnou funkce f v bodě a nazýváme

- přímku s rovnicí x = a je-li funkce f spojitá v bodě a a $f'(a) = +\infty$ nebo $f'(a) = -\infty$.
- přímku s rovnicí y = f(a) + f'(a)(x a) je-li $f'(a) \in \mathbb{R}$ (tj. je-li f je diferencovatelná v bodě a).

7

5.2.4 Vlastnosti derivace

Věta 5.2.4.1: Je li funkce f diferencovatelná v bodě a, pak je spojitá v bodě a.

$$f'(a) \in \mathbb{R} \quad \Rightarrow \quad \lim_{x \to a} f(x) = f(a)$$

Věta 5.2.4.2 (Derivace součtu, součinu a podílu): Nechť funkce f a g jsou diferencovatelné v bodě a. Potom platí

- (f+g)'(a) = f'(a) + g'(a)
- $\bullet (f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$
- $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g(a)^2}$, pokud $g(a) \neq 0$.

Věta 5.2.4.3 (Derivace složené funkce): Nechť g je funkce diferencovatelná v bodě a, f je diferencovatelná v bodě g(a). Potom funkce $f \circ g$ je diferencovatelná v bodě a a platí

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a).$$

Videli ste niekedy deriváciu inverznej funkcie?

5.2.5 Extrémy funkce

Definice 5.2.5.1: Řekneme, že funkce f má v bodě $a \in D_f$

- lokální minimum \Leftrightarrow $(\exists H_a \subset D_f)(\forall x \in H_a)(f(x) \leq f(a))$
- lokální maximum \Leftrightarrow $(\exists H_a \subset D_f)(\forall x \in H_a)(f(x) \geq f(a))$
- ostré lokální maximum \Leftrightarrow $(\exists H_a \subset D_f)(\forall x \in H_a \setminus \{a\})(f(x) < f(a))$
- ostré lokální minimum \Leftrightarrow $(\exists H_a \subset D_f)(\forall x \in H_a \setminus \{a\})(f(x) > f(a))$

Věta 5.2.5.1 (Nutná podmínka existence lokálního extrému): Nechť funkce f má v bodě a lokální extrém. Potom f'(a) = 0, nebo derivace v bodě a neexistuje.

Věta 5.2.5.2 (Extrém spojité funkce na uzavřeném intervalu): Funkce f spojitá a definovaná právě na uzavřeném intervalu $\langle a, b \rangle$ nabývá maxima a minima (tzv. **globální extrém**). Extrém může být pouze v krajních bodech a, b a v bodech kde je derivace rovna 0 nebo neexistuje.

5.2.6 Vyšetřování průběhu funkce

Věta 5.2.6.1 (Rolleova): Nechť funkce f splňuje podmínky

- f je spojitá na intervalu $\langle a, b \rangle$,
- f má derivaci v každém bodě intervalu (a, b),
- f(a) = f(b).

Potom existuje $c \in (a, b)$ tak, že f'(c) = 0.

Věta 5.2.6.2 (Lagrangeova): Nechť funkce f splňuje podmínky

- f je spojitá na intervalu $\langle a, b \rangle$,
- f má derivaci v každém bodě intervalu (a, b).

Potom existuje $c \in (a, b)$ tak, že $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Věta 5.2.6.3: Buď f funkce spojitá na intervalu J, která má druhou derivaci v každém bodě intervalu J° (buď J interval s krajnými body a a b, potom $J^{\circ} = (a, b)$).

- Funkce f je konvexní na intervalu J, právě když $f''(x) \ge 0$ pro každé $x \in J^{\circ}$.
- Je-li f''(x) > 0 v každém bodě $x \in J^{\circ}$, pak je f ryze konvexní na J.
- Funkce f je konkávní na intervalu J, právě když $f''(x) \leq 0$ pro každé $x \in J^{\circ}$.
- Je-li f''(x) < 0 v každém bodě $x \in J^{\circ}$, pak je f ryze konkávní na J.

5.3 35 – Základy integrálního počtu (primitivní funkce, neurčitý integrál, Riemannův integrál (definice, vlastnosti a geometrický význam)).

Definice 5.3.0.1: Nechť f je funkce definovaná na intervalu (a,b), kde $a,b\in\overline{\mathbb{R}}$. Funkci F splňující podmínku

$$F'(x) = f(x)\operatorname{prokad} x \in (a, b)$$

nazýváme **primitivní funkcí** k funkci f na intervalu (a, b).

Věta 5.3.0.1: Nechť F je primitivní funkcí k funkci f na intervalu (a,b). Pak G je primitivní funkcí k funkci f na intervalu (a,b) právě tehdy, když existuje konstanta $c \in \mathbb{R}$ taková, že

$$G(x) = F(x) + c$$
, prokad $x \in (a, b)$.

Definice 5.3.0.2: Nechť k funkci f existuje primitivní funkce na intervalu (a, b). Množinu všech primitivních funkcí k funkci f na (a, b) nazýváme **neurčitým integrálem** a značíme jej $\int f(x) dx$.

Věta 5.3.0.2 (Postačující podmínka pro existenci primitivní funkce): Nechť funkce f je spojitá na intervalu (a, b). Pak funkce f má na tomto intervalu primitivní funkci.

Věta 5.3.0.3: Nechť F, resp. G, je primitivní funkce k funkci f, resp. g, na intervalu (a,b) a nechť $\alpha \in \mathbb{R}$. Pak

- F + G je primitivní funkcí k funkci f + g na intervalu (a, b),
- αF je primitivní funkcí k funkci αf na intervalu (a, b).

Věta 5.3.0.4 (Per partes): Nechť funkce f je diferencovatelná na intervalu (a, b) a G je primitivní funkce k funkci g na intervalu (a, b) a konečně nechť existuje primitivní funkce k funkci f'G. Potom existuje primitivní funkce k funkci fg a platí

$$\int fg = fG - \int f'G.$$

Věta 5.3.0.5 (Substituce I): Nechť pro funkce f a φ platí

1. f má primitivní funkci F na intervalu (a, b),

2. φ je na intervalu (α, β) diferencovatelná,

3.
$$\varphi((\alpha,\beta)) \subset (a,b)$$
.

Pak funkce $f(\varphi(x)) \cdot \varphi'(x)$ má primitivní funkci na intervalu (α, β) a platí

$$\int f(\varphi(x)) \cdot \varphi'(x) dx = F(\varphi(x)).$$

Věta 5.3.0.6 (Substituce II): Nechť f je definována na intervalu (a,b) a nechť φ je bijekce intervalu (α,β) na (a,b) s nenulovou konečnou derivací. Pak platí

$$\int f(\varphi(t))\varphi'(t)dt = G(t) + C \quad \Rightarrow \quad \int f(x)dx = G(\varphi^{-1}(x)) + C$$

5.3.1 Riemannův integrál

Definica je dlhá, viď skripta. Vlastnosti sú také, ako očákavaš.

Věta 5.3.1.1 (Newtonova formule): Nechť f je funkce spojitá na intervalu $\langle a, b \rangle$ s primitivní funkcí F. Pak platí rovnost

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: [F(x)]_{a}^{b}$$

5.4 36 – Číselné řady (konvergence číselné řady, kritéria konvergence, odhadování rychlosti růstu řad pomocí určitého integrálu).

Definice 5.4.0.1 (Číselná řada): Formální výraz tvaru

$$\sum_{k=0}^{\infty} a_k = a_0 + a_1 + \dots,$$

kde $(a_k)_{k=0}^{\infty}$ je zadaná číselná posloupnost, nazýváme číselnou řadou. Pokud je posloupnost částečných součtů

$$s_n := \sum_{k=0}^n a_k, \quad n \in \mathbb{N}_0,$$

konvergentní, nazýváme příslušnou řadu také konvergentní. V opačném případě mluvíme o divergentní číselné řadě. Součtem konvergentní řady $\sum_{k=0}^{n} a_k$ nazýváme hodnotu limity $\lim_{n\to\infty} s_n$.

5.4.1 Kritéria konvergence

Věta 5.4.1.1 (Nutná podmínka konvergence): Pokud řada $\sum_{k=0}^{\infty} a_k$ konverguje, potom pro limitu jejích sčítanců platí $\lim_{k\to\infty} a_k = 0.$ \Rightarrow Pokud limita posloupnosti $(a_k)_{k=0}$ je nenulová nebo neexistuje, potom řada $\sum_{k=0}^{\infty} a_k$ není konvergentní.

Věta 5.4.1.2 (Bolzano-Cauchy): Řada $\sum_{k=0}^{\infty} a_k$ konverguje právě tehdy, když pro každé $\varepsilon > 0$ existuje $n_0 \in \mathbb{R}$ tak, že pro každé $n \geq n_0$ a $p \in \mathbb{N}$ platí

$$|a_n + a_{n+1} + \ldots + a_{n+p}| < \varepsilon.$$

Definice 5.4.1.1 (Absolutní konvergentnost): Číselnou řadu $\sum_{k=0}^{\infty} a_k$ nazýváme **absolutně konvergentní**, pokud číselná řada $\sum_{k=0}^{\infty} |a_k|$ konverguje.

Věta 5.4.1.3: Pokud řada absolutně konverguje, potom tato řada konverguje.

Věta 5.4.1.4 (Leibnizovo kritérium): Buď $(a_k)_{k=0}^{\infty}$ klesající posloupnost s nezápornými členy konvergujíci k nule. Potom je řada

$$\sum_{k=0}^{\infty} (-1)^k a_k$$

konvergentní. Toto kritérium platí i pokud je $(a_k)_{k=0}^{\infty}$ rostoucí posloupnost záporných čísel konvergující k nule.

Věta 5.4.1.5 (Srovnávací kritérium): Buďte $\sum_{k=0}^{\infty} a_k$ a $\sum_{k=0}^{\infty} b_k$ číselné řady. Potom platí následující dvě tvrzení.

- 1. Nechť pro každé $k \in \mathbb{N}$ platí nerovnosti $0 \le |a_k| \le b_k$ a nechť řada $\sum_{k=0}^{\infty} b_k$ konverguje. Potom řada $\sum_{k=0}^{\infty} a_k$ absolutně konverguje.
- 2. Nechť pro každé $k \in \mathbb{N}$ platí nerovnosti $0 \le a_k \le b_k$ a $\sum_{k=0}^{\infty} a_k$ diverguje. Potom i řada $\sum_{k=0}^{\infty} b_k$ diverguje.

Věta 5.4.1.6 (d'Alembertovo kritérium): Nechť $a_k>0$ pro každé $k\in\mathbb{N}_0$. Pokud

$$\lim_{k \to \infty} \frac{a_k + 1}{a_k} > 1,$$

potom řada $\sum_{k=0}^{\infty} a_k$ diverguje. Pokud ovšem

$$\lim_{k \to \infty} \frac{a_k + 1}{a_k} < 1,$$

potom řada $\sum_{k=0}^{\infty} a_k$ konverguje.