HW 1

1 To see that (L, ϕ^*) is compatible with the directed system, suppose $i \prec j$. Let $x \in C_i$. We have $\phi^j \circ \phi_i^i(x) = q(\phi_i^i(x)) = q(x) = \phi^i(x)$.

To see that L is the colimit, suppose (D, f^*) is compatible with the directed system. Let $\widetilde{f}: \bigoplus_{i\in I} C_i \to D$ be the unique map such that $f^i = \widetilde{f} \circ \iota_i$ for all i, where $\iota_i: C_i \to \bigoplus_{i\in I} C_i$ is the inclusion. To see that \widetilde{f} descends to L, let $x\in C_i$ for some i, and suppose $i\prec j$. Then $\widetilde{f}(\phi^i_j(x)-x)=f_j\circ\phi^i_j(x)-f^i(x)=0$. Hence \widetilde{f} is 0 on H_ϕ , so \widetilde{f} descends to a function $f:L\to D$. The uniqueness of f follows from the uniqueness of \widetilde{f} (if an f' replaced f, then $f'\circ q$ would coincide with \widetilde{f}).

For the second part of the problem, pick any $\tilde{l} \in q^{-1}(l)$. Pick $j \in I$ dominating the finite support of \tilde{l} . Let $x = \sum_{i \in I} \phi_j^i(\tilde{l})$ where ϕ_j^i is extended to be 0 outside of C_i . Then $x - \tilde{l} \in H_{\phi}$, so $\phi^j(x) = l$.

2 Let (L, ψ^*) be the colimit as defined in Problem 1. Define $\alpha: \oplus_i C_i \to \mathbb{Q}$ by $\alpha \circ \iota_i(a) = a/i$. This map is a surjective homomorphism, so it suffices to show that its kernel is H_{ϕ} . To see that $H_{\phi} \subset \ker \alpha$, suppose $x \in C_i$ and $i \prec j$. Then $\alpha(\iota_i x - \iota_j \phi^i_j(x)) = x/i - (j/i)(x/j) = 0$. For the reverse inclusion, suppose $\alpha(l) = 0$. Let k dominate the the support of l (i.e. k is a multiple of all indices of nonzero coordinates of l). We have $0 = \alpha(l) = \sum_{i \in I} l_i/i = \sum_{i \in I} (k/i) l_i/k$. Hence $0 = \sum_{i \in I} (k/i) l_i = \sum_{i \in I} \phi^i_k(l_i)$. Hence $l \in H_{\phi}$.

- i. In the inclusion order, property (b) implies that the partial order is directed. In the reverse inclusion order, property (a) implies that the empty set is in Φ , which dominates every other set.
- ii. A closed subset of a compact Hausdorff set is compact. A finite union of compact sets is compact.
- iii. If $F \subset G$, we have a map of pairs $(X, X G) \to (X, X F)$ given by id_X . Let ϕ_G^F be the image of this map under the contravariant functor H^n .

4

i. Let $\phi^i: C_i \to \operatorname{colim}_{i \in I} C_i$ and $\psi^k: C_k \to \operatorname{colim}_{k \in K} C_k$ be the compatible families of morphisms satisfying the respective universal properties. Let $g: \operatorname{colim}_{k \in K} C_k \to \operatorname{colim}_{i \in I} C_i$ be the unique map such that $\phi^k = g\psi^k$ for all $k \in K$.

For each $i \in I$, pick any $k \in K$ with $i \prec k$, and define $f^i = \psi^k \phi_k^i$. To see that the particular choice of k does not matter, let $k' \in K$ with $i \prec k'$. Pick any $j \in K$ with $k, k' \prec j$. We have $\psi^k \phi_k^i = \psi^j \phi_j^k \phi_k^i = \psi^j \phi_j^i$, and the same for k' in place of k. Hence f^i is independent of the choice of k.

I claim $(f^i)_{i \in I}$ is compatible with the directed system $(C_i)_{i \in I}$. Indeed if $i \prec j \in I$, pick $k \in K$ such that $i, j \prec k$. Then $f^j \phi^i_j = \psi^k \phi^j_k \phi^i_j = \psi^k \phi^i_k = f^i$.

Thus there exists a unique map $f: \operatorname{colim}_{i \in I} C_i \to \operatorname{colim}_{k \in K} C_k$ such that $f^i = f \phi^i$ for all $i \in I$.

I claim that f is a left and right inverse for g. For all $k \in K$, we have $fg\psi^k = f\phi^k = f^k = \psi^k$. Hence $fg = \mathrm{id}$, by the uniqueness of the map in the colimit universal property.

Similarly, for all $i \in I$, we have $gf\phi^i = gf^i = g\psi^k\phi^i_k = \phi^k\phi^i_k = \phi^i$, where $k \in K$ is any index such that $i \prec k$. This implies $gf = \mathrm{id}$.

Hence f and g are isomorphisms.

- ii. Any compact subset of \mathbb{R}^n is bounded.
- iii. From (ii), we have $H^r_c(\mathbb{R}^n;R)=\operatorname{colim}_{i\in\mathbb{N}}H^r(\mathbb{R}^n,\mathbb{R}^n-B_i(0);R)$, where the ϕ^i_j are induced by inclusions. From the long exact sequence of a pair, we get $\widetilde{H}^{r-1}(\mathbb{R}^n-B_i(0);R)\cong \widetilde{H}^r(\mathbb{R}^n,\mathbb{R}^n-B_i(0);R)$ for all r. Thus $H^r(\mathbb{R}^n,\mathbb{R}^n-B_i(0);R)=\widetilde{H}^r(\mathbb{R}^n,\mathbb{R}^n-B_i(0);R)=R$ if r=n, and 0 otherwise.

Since the inclusion $\mathbb{R}^n - B_j \to \mathbb{R}^n - B_i$ is a homotopy equivalence for any i < j, the maps ϕ_j^i are isomorphisms. It follows that $H_c^r(\mathbb{R}^n; R) = \operatorname{colim}_{i \in \mathbb{N}} H^r(\mathbb{R}^n, \mathbb{R}^n - B_i(0); R) = H^r(\mathbb{R}^n, \mathbb{R}^n - B_1(0); R) = R$ if r = n, and 0 otherwise.

5 Let Φ be the cofinal system of \mathcal{K}_U defined by taking the complement of each neighborhood in the cofinal system mentioned in the problem.

We have $H_c^r(U;R) = \operatorname{colim}_{F \in \Phi} H^r(U,U-F;R) = \operatorname{colim}_{F \in \Phi} H^r(X,X-F;R)$, where the last equality is by excision since $Y = \overline{Y} \subset (X-F)^\circ = X-F \subset X$. Since X-F strong deformation retracts to Y for all F, any inclusion $X-F \to X-F'$ for $F,F' \in \Phi$ maps to id_Y under the homotopy equivalences induced by the deformation retractions. Thus, $H_c^r(U;R) = \operatorname{colim}_{F \in \Phi} H^r(X,Y;R)$, where the morphisms of the directed system are all isomorphisms. Thus, $H_c^r(U;R) = \operatorname{colim}_{F \in \Phi} H^r(X,Y;R)$.

6 3.2.2. Since A and B are contractible, we have an isomorphism $f^*: \widetilde{H}^k(X;R) \to H^k(X,A;R)$ induced from a map $f:(X,a)\to (X,A)$ for some $a\in A$. Similarly, we have an isomorphism $g^*: \widetilde{H}^l(X;R)\to H^l(X,A;R)$. Also, the cup product $H^k(X,A;R)\times H^l(X,B;R)\to H^{k+l}(X,A\cup B;R)=H^{k+l}(X,X;R)=0$ must be 0. Hence, by relative cohomology version of Proposition 3.10, if $\alpha\in H^k(X;R)$ and $\beta\in H^l(X;R)$ for k,l>0, we have $\alpha\cup\beta=0$. The same proof works for the general case.

7 3.2.3.

(a) Suppose such a map $f: \mathbb{R}P^n \to \mathbb{R}P^m$ exists. We have $H^*(\mathbb{R}P^n; \mathbb{Z}_2) \cong \mathbb{Z}_2[\alpha]/\alpha^{n+1}$ with $|\alpha| = 1$. Hence $f^*: \mathbb{Z}_2[\alpha]/\alpha^{m+1} \to \mathbb{Z}_2[\beta]/\beta^{n+1}$ is a ring homomorphism mapping α to β . This implies $\beta^{m+1} = 0$, a contradiction.

In the complex case, $|\alpha| = 2$, so the corresponding result would replace H^1 with H^2 .

(b) To see that g is nonzero, use the same proof as the proof of Prop. 2B.6 on p. 175 with g replacing f, using cohomology instead of homology.

8 3.2.7. The \mathbb{Z}_2 -cohomology ring of $\mathbb{R}P^3$ is $Z_2[\alpha]/\alpha^4$ where $|\alpha|=1$. The reduced \mathbb{Z}_2 -cohomology ring of $\mathbb{R}P^2\vee S^3$ is $\widetilde{H}^*(\mathbb{R}P^2)\oplus \widetilde{H}^*(S^3)$. In particular, the cube of any element of $H^1(\mathbb{R}P^2\vee S^3)$ is 0, which does not hold for $H^1(\mathbb{R}P^3)$.

9 3.2.8. We have $H^*(\mathbb{C}P^2;\mathbb{Z}) = \mathbb{Z}[\alpha]/\alpha^3$ where $|\alpha| = 2$. The attachment of the 3-cell removes the H^2 cohomology and makes $H^3(X) = \mathbb{Z}^p$.

On the other hand, $\widetilde{H}^*(M(\mathbb{Z}_p,2) \vee S^4;\mathbb{Z}) = \widetilde{H}^*(M(\mathbb{Z}_p,2)) \oplus \widetilde{H}^*(S^4)$. By the universal coefficient theorem, $\widetilde{H}^r(M(\mathbb{Z}_p,2)) = \mathbb{Z}_p$ if r=3 and 0 otherwise.

Both reduced cohomology rings only have cohomology in dimensions 3 and 4, so the cup product is zero. Hence, mapping 1 to 1 for H^0 and a generator to a generator for H^3 and H^4 defines an isomorphism of the two unreduced cohomology rings.

Using the universal coefficient theorem in the \mathbb{Z}_p -coefficients case, we get $H^r(X) = \mathbb{Z}_p$ if r = 0, 2, 4, and the same for $H^r((M(\mathbb{Z}_p, 2) \vee S^4))$. In the latter case, multiplying any two elements of H^2 gives 0. In fact, the square of any element of the reduced cohomology ring is 0.

On the other hand, the square of a generator of $H^2(X; \mathbb{Z}_p)$ is a non-zero element of $H^4(X; \mathbb{Z}_p)$, so the rings cannot be isomorphic.

10 3.2.9 Let I be a basis for $H_n(X; \mathbb{Z})$. Using the universal coefficient theorem for the first and last equalities, we have

$$H^{n}(X; \mathbb{Z}_{p}) = \operatorname{Hom}(H_{n}(X; \mathbb{Z}), \mathbb{Z}_{p})$$

$$= \operatorname{Hom}(\bigoplus_{i \in I} \mathbb{Z}, \mathbb{Z}_{p})$$

$$= \prod_{i \in I} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}_{p})$$

$$= \prod_{i \in I} \mathbb{Z}_{p}$$

$$= \prod_{i \in I} (\mathbb{Z} \otimes \mathbb{Z}_{p})$$

$$= \left(\prod_{i \in I} \mathbb{Z}\right) \otimes \mathbb{Z}_{p}$$

$$= \operatorname{Hom}(H_{n}(X; \mathbb{Z}), \mathbb{Z}) \otimes \mathbb{Z}_{p}$$

$$= H^{n}(X; \mathbb{Z}) \otimes \mathbb{Z}_{p}.$$