

Verkettung von Datenbankeinträgen

k-Anonymität und darüber hinaus

Thomas Maier, Kai Sonnenwald, Tom Petersen

Universität Hamburg Fachbereich Informatik

UHI <u></u>

Agenda

- 1. Motivation
- 2. k-Anonymität
 - Generalisierung
 - Suppression
 - Schwächen der k-Anonymität
- I-Diversität
 - Verbesserung zu k-Anonymität
 - Schwächen der I-Diversität
- 4. t-Closeness
 - Earth Movers Distanz (EMD)
 - EMD Formeln
 - EMD Beispiel
- 5. Fazit
- 6. Literaturverzeichnis

Anonym?

Medical Data Voter List

Massachusetts Group Insurance Commission (GIC) medical data and voter registration data. Entnommen aus [Swe02].

Anonym? II

Sweeney [Swe00](1990) und Golle [Gol06](2000) überprüften die Eindeutigkeit von demographischen Faktoren in der Bevölkerung der USA.

	T. M. J.	M. J.	J.	2 J.
PLZ	87.1 %	3.7 %	0.04 %	0.01 %
Ort	58.4 %	3.6 %	0.04 %	0.01 %
County	18.1 %	0.04 %	0.00004 %	0.00000 %

Eindeutig identifizierbarer Individuenanteil an der U.S.-Bevölkerung 1990. Entnommen aus [Swe00].

Ergebnis: Durch {Geburtsdatum, Geschlecht, PLZ} könnten ~87% der Bevölkerung eindeutig identifiziert werden.

Abgrenzung

Vermeintlich anonyme Daten stellen sich als nicht anonym heraus. **Daher**: Wie können wir Aussagen über die "Güte" der

Anonymisierung machen?

Abgrenzung

Vermeintlich anonyme Daten stellen sich als nicht anonym heraus. **Daher**: Wie können wir Aussagen über die "Güte" der

Anonymisierung machen?

Worum es nicht gehen soll:

- Begrenzung des Zugriffs (Authentifikation, Multi-Level-Datenbanken)
- Statistische Datenbanken (Aggregation, Begrenzung von Selektionsarten, Logging und Abwägen von Anfragen, Hinzufügen von Zufall)

Darum geht es:

 Veröffentlichung von Daten als Individualdatensätze ohne Integritätsverlust unter Wahrung der Anonymität.

Beispiel: Private Tabelle

Identifikator	Nicht-sensibel		sibel	Sensibel
Name	Geschl.	PLZ	Geb.dat.	Erkrankung
Sofia Müller	W	22981	22.12.1944	Hepatitis
Emma Weber	W	22362	27.3.1945	Gicht
Sofia Koch	W	22669	3.9.1949	Arthrose
Emilia Wagner	W	22862	1.3.1985	Diabetes
Emma Meyer	W	22875	16.2.1992	Demenz
Noah Meyer	m	22997	19.3.1936	Arthrose
Elias Schäfer	m	22121	26.11.1949	Diabetes
Finn Fischer	m	22350	28.11.1963	Demenz
Leon Schmidt	m	22188	26.4.1964	Demenz
Elias Koch	m	22997	7.10.1975	Hepatitis

Begriffe

Expliziter Identifikator Attribut, das ein Individuum (nahezu) eindeutig identifiziert. Beispiele: Name, Adresse, Steuernummer, ...

Sensibles Attribut Attribut, dessen Wert für ein Individuum in einer Datenmenge nicht öffentlich gemacht werden soll.

Quasi-Identifikator Eine Menge nicht-sensibler Attribute $\{A_i, \dots, A_j\}$ einer Tabelle, deren Attribute mit einer externen Datenquelle verknüpft werden können, um mindestens ein Individuum der Gesamtmenge eindeutig zu identifizieren.

k-Anonymität

Eine Tabelle erfüllt k-Anonymität, wenn jede Zeile ununterscheidbar von mindestens k-1 anderen Zeilen im Bezug auf einen Quasi-Identifikator ist.

k-Anonymität

Sei $T(A_1, ..., A_n)$ eine Tabelle und $Q_T = \{A_i, ..., A_j\}$ der zugehörige Quasi-Identifikator.

T erfüllt k-Anonymität genau dann, wenn jede Belegung von Werten in $T[Q_T]$ mindestens k mal auftritt, wobei $T[Q_T]$ die duplikatenerhaltende Projektion von T auf die Attribute des Quasi-Identifikators beschreibt.

Die so entstandenen Äquivalenzklassen werden auch als q^* -Blöcke bezeichnet.

Identifikator	Nicht-sensibel		sibel	Sensibel
Name	Geschl.	PLZ	Geb.dat.	Erkrankung
Sofia Müller	W	22981	22.12.1944	Hepatitis
Emma Weber	W	22362	27.3.1945	Gicht
Sofia Koch	W	22669	3.9.1949	Arthrose
Emilia Wagner	W	22862	1.3.1985	Diabetes
Emma Meyer	W	22875	16.2.1992	Demenz
Noah Meyer	m	22997	19.3.1936	Arthrose
Elias Schäfer	m	22121	26.11.1949	Diabetes
Finn Fischer	m	22350	28.11.1963	Demenz
Leon Schmidt	m	22188	26.4.1964	Demenz
Elias Koch	m	22997	7.10.1975	Hepatitis

Identifikator	N	Nicht-sensibel		
Name	Geschl.	PLZ	Geb.dat.	Erkrankung
-	W	22981	22.12.1944	Hepatitis
-	W	22362	27.3.1945	Gicht
-	W	22669	3.9.1949	Arthrose
-	W	22862	1.3.1985	Diabetes
-	W	22875	16.2.1992	Demenz
-	m	22997	19.3.1936	Arthrose
-	m	22121	26.11.1949	Diabetes
-	m	22350	28.11.1963	Demenz
-	m	22188	26.4.1964	Demenz
-	m	22997	7.10.1975	Hepatitis

Identifikator	1	Nicht-sensibel		
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22981	1944	Hepatitis
-	W	22362	1945	Gicht
-	W	22669	1949	Arthrose
-	W	22862	1985	Diabetes
-	W	22875	1992	Demenz
-	m	22997	1936	Arthrose
-	m	22121	1949	Diabetes
-	m	22350	1963	Demenz
-	m	22188	1964	Demenz
-	m	22997	1975	Hepatitis

Identifikator	Nicht-sensibel			Sensibel
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	W	22669	1949	Arthrose
-	W	22862	1985	Diabetes
-	W	22875	1992	Demenz
-	m	22997	1936	Arthrose
-	m	22121	1949	Diabetes
-	m	22350	1963	Demenz
-	m	22188	1964	Demenz
-	m	22997	1975	Hepatitis

Identifikator	Nicht-sensibel			Sensibel
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	*	22***	1949	Arthrose
-	W	22862	1985	Diabetes
-	W	22875	1992	Demenz
-	m	22997	1936	Arthrose
-	*	22***	1949	Diabetes
-	m	22350	1963	Demenz
-	m	22188	1964	Demenz
-	m	22997	1975	Hepatitis

Identifikator	Nicht-sensibel			Sensibel
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	*	22***	1949	Arthrose
-	W	228**	1985-92	Diabetes
-	W	228**	1985-92	Demenz
-	m	22997	1936	Arthrose
-	*	22***	1949	Diabetes
-	m	22350	1963	Demenz
-	m	22188	1964	Demenz
-	m	22997	1975	Hepatitis

Identifikator	1	Nicht-sensibel		
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	*	22***	1949	Arthrose
-	W	228**	1985-92	Diabetes
-	W	228**	1985-92	Demenz
-	m	22997	1936	Arthrose
-	*	22***	1949	Diabetes
-	m	22***	1963-64	Demenz
-	m	22***	1964-64	Demenz
-	m	22997	1975	Hepatitis

Identifikator	Nicht-sensibel			Sensibel
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	*	22***	1949	Arthrose
-	W	228**	1985-92	Diabetes
-	W	228**	1985-92	Demenz
-	m	22997	1936-75	Arthrose
-	*	22***	1949	Diabetes
-	m	22***	1963-64	Demenz
-	m	22***	1963-64	Demenz
-	m	22997	1936-75	Hepatitis

Identifikator	1	Nicht-sensibel		
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	*	22***	1949	Arthrose
-	W	228**	1985-92	Diabetes
-	W	228**	1985-92	Demenz
-	m	22997	1936-75	Arthrose
-	*	22***	1949	Diabetes
-	m	22***	1963-64	Demenz
-	m	22***	1963-64	Demenz
-	m	22997	1936-75	Hepatitis

Ergebnis: k-anonyme Tabelle mit k = 2

Generalisierung

Vergröberung der Werte, die ein Attribut annehmen kann (Generalisierung auf Attributebene).

Beispiele für Generalisierungshierarchien:

1. PLZ:

$$P_0 = \{22765, 22769, 22529, 20246\}$$
 Grundwertebereich $\rightarrow P_1 = \{2276^*, 2252^*, 2024^*\}$ $\rightarrow P_2 = \{2^{****}\}$

2. Geschlecht:

$$G_0 = \{ \text{männlich, weiblich} \}$$
 Grundwertebereich $\rightarrow G_1 = \{ \text{nicht_veröffentlicht} \}$

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

```
\begin{split} \text{PLZ:} & P_0 = \{22765, 22769, 22529, 20246\} \\ & \rightarrow P_1 = \{2276^*, 2252^*, 2024^*\} \\ & \rightarrow P_2 = \{2^{****}\} \\ \text{Geschlecht:} & G_0 = \{\text{männlich, weiblich}\} \\ & \rightarrow G_1 = \{\text{nicht\_ver\"offentlicht}\} \end{split}
```


Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

$T_{G_0P_0}$

Geschlecht	PLZ
m	22765
m	22765
m	22769
m	22529
m	20246
W	22765
W	22765
W	22769
W	22529
W	22529
W	22529
W	20246

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

$T_{G_1P_0}$

Geschlecht	PLZ
*	22765
*	22765
*	22769
*	22529
*	20246
*	22765
*	22765
*	22769
*	22529
*	22529
*	22529
*	20246

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

$T_{G_0P_1}$

Geschlecht	PLZ
m	2276*
m	2276*
m	2276*
m	2252*
m	2024*
W	2276*
W	2276*
W	2276*
W	2252*
W	2252*
W	2252*
W	2024*

Generalisierungshierarchie für Attributmenge

Jeder Pfad von G_0P_0 zu G_1P_2 stellt einen möglichen Weg der Generalisierung dar.

 $T_{G_1P_2}$

Geschlecht	PLZ
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****
*	2****

Aber: Nicht jede Generalisierung ist gleichermaßen sinnvoll!

Aber: Nicht jede Generalisierung ist gleichermaßen sinnvoll!

k-minimale Generalisierung.

 T_i ist die k-minimale Generalisierung einer Tabelle T gdw.

- T_i k-Anonymität erfüllt und
- keine Tabelle T_j existiert, die ebenfalls k-Anonymität erfüllt und für die T_j eine Generalisierung darstellt.

Unterdrückung

Unterdrückung

Entfernen von Daten aus der Tabelle - hier auf Tupelebene, d.h. Tupel können nur komplett entfernt werden.

Unterdrückung ist jedoch auch auf Attributebene möglich (entspricht dann maximaler Generalisierung).

G.	PLZ
m	22765
W	22765
m	22769
W	22769
m	80043

Daten

G.	PLZ
m	*
W	*
m	*
W	*
m	*

Generalisierung

G.	PLZ
m	2276*
W	2276*
m	2276*
W	2276*

Unterdrückung & Generalisierung

Implementierungen

Die Berechnung von optimalen k-anonymen Tabellen ist NP-schwer, ...

Implementierungen

Die Berechnung von optimalen k-anonymen Tabellen ist NP-schwer, ...

... es wurden jedoch $\mathcal{O}(k)$ -Approximationsalgorithmen gefunden [AFK $^+$ 05, MW04].

Implementationen

- μ-Argus
- Datafly
- Incognito
- Mondrian
- ...

Schwächen der k-Anonymität

- Complementary release attack: Veröffentlichung mehrerer k-anonymer Tabellen unterschiedlicher Generalisierung kann bei Kombination dieser Tabellen die k-Anonymität verletzen [Swe02].
- Temporal attack: Dynamische Tabellen können k—Anonymität verletzen [Swe02].
- Unsorted matching attack [Swe02]
- Homogeneity attack [MKGV07]
- Background knowledge attack [MKGV07]

Unsorted matching attack

Veröffentlichung mehrerer *k*-anonymer Tabellen mit derselben Sortierung ausgehend von einer nicht-öffentlichen Tabelle identifiziert Individuen.

G.jahr	PLZ
1970-80	21985
1970-80	21986
1970-80	21724
1970-80	21725
1970-80	21985
1970-80	21986
1970-80	21724
1970-80	21725
1970-80	21985
1970-80	21986
1970-80	21724
1970-80	21725

G.jahr	PLZ	Erkrankung
1970	2198*	Hepatitis X
1970	2198*	Hepatitis Y
1970	2172*	Hepatitis Z
1970	2172*	Hepatitis X
1975	2198*	Hepatitis Y
1975	2198*	Hepatitis Z
1975	2172*	Hepatitis X
1975	2172*	Hepatitis Y
1980	2198*	Hepatitis Z
1980	2198*	Hepatitis X
1980	2172*	Hepatitis Y
1980	2172*	Hepatitis Z

k = 3

k = 2

Homogeneity attack

Gleichheit des sensiblen Attributs einer Äquivalenzklasse verrät das sensible Attribut eines Individuums.

G.jahr	PLZ	Erkrankung
1970	21***	Hepatitis X
1970	21***	Hepatitis Y
1970	21***	Hepatitis Z
1970	21***	Hepatitis Y
1975	21***	Hepatitis X

$$k = 4$$

Background knowledge attack

Nutzen von Hintergrundwissen, um auf den Wert des sensiblen Attributs eines Individuums in einer Gruppe zu schließen.

G.jahr	PLZ	Erkrankung
1970	21***	Hepatitis X
1970	21***	Hepatitis Y
1970	21***	Hepatitis Z
1970	21***	Hepatitis Y
1975	21***	Hepatitis X
1975	21***	Hepatitis X
1975	21***	Hepatitis Y
1975	21***	Hepatitis Y

$$k = 4$$

Hintergrundwissen: Hepatitis X tritt nur bzw. mit hoher Wahrscheinlichkeit lediglich bei Männern auf.

I-Diversität - Prinzip

Prinzip Eine Tabelle erfüllt *I*-Diversität, wenn in jedem *k*-anonymen Block mindestens *I* verschiedene Werte für das sensible Attribut vorkommen.

Bsp.-Tabelle

G.jahr	PLZ	Erkrankung
1970	21***	Hepatitis X
1970	21***	Hepatitis Y
1970	21***	Hepatitis Z
1975	21***	Hepatitis X
1975	21***	Hepatitis X
1975	21***	Hepatitis X

$$k = 3, l = 1$$

I-Diversität - Definitionen

Entropie basierte I-Diversität [MKGV07]

Eine Tabelle ist *I*-divers, wenn für jeden q*-Block die folgende Ungleichung erfüllt wird:

$$-\sum_{s \in S} p_{(q^*,s)} \log(p_{(q^*,s)}) \geq log(\mathit{I})$$

Dabei stellt $p_{(q^*,s)}$ den Anteil des Werts s in dem q^* -Block dar.

rekursive (c,l)-Diversität [MKGV07]

Innerhalb eines q^* -Blocks sei r_i die Anzahl des i-häufigsten sensiblen Attributs. Mit einer gegebenen Konstante c erfüllt dieser q^* -Block **rekursive** (c, l)-**Diversität**, wenn $r_1 < c(r_l + r_{l+1} + ... + r_m)$ gilt. Eine Tabelle T^* erfüllt (c, l)-Diversität, wenn jeder q^* -Block (c, l)-Diversität erfüllt. 1-Diversität ist immer erfüllt.

Beispiel: 2-diverse Tabelle

Identifier	Nicht-sensibel			Sensibel
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	*	22***	1949	Arthrose
-	W	228**	1985-92	Diabetes
-	W	228**	1985-92	Demenz
-	m	22997	1936-75	Arthrose
-	*	22***	1949	Diabetes
-	m	22***	1963-64	Demenz
-	m	22***	1963-64	Demenz
-	m	22997	1936-75	Hepatitis

k-anonyme Tabelle mit k = 2, aber nur l-divers mit l = 1

Beispiel: 2-diverse Tabelle

Identifier	Nicht-sensibel		Sensibel	
Name	Geschl.	PLZ	Geburtsjahr	Erkrankung
-	W	22***	1944-45	Hepatitis
-	W	22***	1944-45	Gicht
-	*	22***	1949	Arthrose
-	W	228**	1985-92	Diabetes
-	W	228**	1985-92	Demenz
-	m	22***	1936-75	Arthrose
-	*	22***	1949	Diabetes
-	m	22***	1936-75	Demenz
-	m	22***	1936-75	Demenz
-	m	22***	1936-75	Hepatitis

Ergebnis: k-anonyme Tabelle mit k = 2 und l-divers mit l = 2

Verbesserung zu k-Anonymität

- /-Diversität sichert verschiedene Ausprägungen der sensiblen Attribute in den q*-Blöcken zu.
 - Die Homogenity Attack ist nicht mehr möglich.
 - Background Knowledge Attacks werden erschwert.

Verbesserung zu k-Anonymität

- /-Diversität sichert verschiedene Ausprägungen der sensiblen Attribute in den q*-Blöcken zu.
 - Die Homogenity Attack ist nicht mehr möglich.
 - Background Knowledge Attacks werden erschwert.

 Ein Vorteil von I-Diversity ist, dass vorhandene Algorithmen für k-Anonymität leicht angepasst werden können.

Schwächen der I-Diversität

Skewness attack [Li07]

- Tabelle mit einem sensiblen Attribut, 2 Ausprägungen.
- Wahrscheinlichkeit für Ausprägung 1 ist sehr hoch.
- Wahrscheinlichkeit für Ausprägung 2 entsprechend niedrig.
- Es liegt 2-diverse Tabelle mit Block q* vor.
- q* beinhaltet zu 50% Ausprägung 1 und zu 50% Ausprägung 2.
- Die Wahrscheinlichkeit, dass ein Tupel aus q* Ausprägung 2 besitzt, liegt nun bei 50%.

Beispiel: Angenommen das sensible Attribut hat die Werte: krank / gesund. In der Bevölkerung sind 1% krank und 99% gesund. Die Wahrscheinlichkeit, dass eine Person aus dem Block q^* krank ist liegt nun bei 50% und nicht mehr bei 1%.

I-Diversität - Schwächen

Similarity attack [Li07]

I-Diversität garantiert, dass in jedem Block unterschiedliche sensible Werte stehen. Es kann jedoch vorkommen, dass sich diese Werte ähneln.

G.jahr	PLZ	Erkrankung
1970	21***	Diabetes
1970	21***	Syphilis
1970	21***	Gicht
1975	21***	Tripper
1975	21***	Syphilis
1975	21***	Chlamydien

$$k = 3, l = 3$$

Kann man eine Person dem zweiten Block zuordnen, so weiß man auch, dass diese eine Geschlechtskrankheit hat.

t-Closeness

t-closeness stellt ein Maß für minimalen Wissensgewinn, der durch Betrachtung eines q*-Blocks im Vergleich zur gesamten Distribution entsteht, dar [Hau07].

Definition t-closeness

Eine Äquivalenzklasse (q^* -Block) hat die Eigenschaft **t-closeness**, wenn die (semantische) Distanz zwischen der Verteilung der Werte eines sensiblen Attributes innerhalb der Äquivalenzklasse und der Verteilung der Werte des sensiblen Attributes innerhalb der Tabelle nicht größer als t ist.

Eine **Tabelle** hat die Eigenschaft **t-closeness**, wenn diese Eigenschaft für alle Äquivalenzklassen erfüllt ist.

Problem: Wie bestimmt man die (semantische) Distanz?

Earth Movers Distanz (EMD)

Die Earth Movers Distanz (EMD) basiert auf der minimalen Arbeit, die zu verrichten ist, um eine Verteilung in eine andere zu überführen.

Definition von EMD [Li07]

Gegeben sei $P=(p_1,...,p_m)$, $Q=(q_1,...,q_m)$, d_{ij} ist die Grunddistanz zwischen p_i und q_j . f_{ij} ist die minimale Masse, die transportiert werden muss, um p_i in q_j zu verwandeln. EMD ist dann die gesamte Arbeit, die verrichtet werden muss

$$D[P,Q] = \sum_{i=1}^{m} \sum_{j=1}^{m} d_{ij}f_{ij}$$
 unter den folgenden Bedingungen

i)
$$f_{ij} \geq 0 \mid 1 \leq i \leq m, 1 \leq j \leq m$$

ii)
$$p_i - \sum_{i=1}^m f_{ij} + \sum_{i=1}^m f_{ji} = q_i \mid 1 \le i \le m$$

iii)
$$\sum_{i=1}^{m} \sum_{i=1}^{m} f_{ij} = \sum_{i=1}^{m} p_{i} = \sum_{i=1}^{m} q_{i}$$

Earth Movers Distanz (EMD)

Aus den drei Bedingungen folgen die zwei Fakten [Li07]:

Fakt 1: If $\forall i, j | 0 \le d_{ij} \le 1$ then $0 \le D[P, Q] \le 1$. Das bedeutet, dass wenn die Grunddistanz normalisiert ist, auch die EMD normalisiert ist. **Somit kann ein einheitliches Maß für t bestimmt werden.**

Fakt 2: Gegeben sind zwei Äquivalenzklassen E_1 und E_2 . P_1 ist die Verteilung eines sensiblen Attributes aus E_1 . P_2 ist die Verteilung eines sensiblen Attributes aus E_2 . P ist die Verteilung eines sensiblen Attributes aus $E_1 \cup E_2$. Dann gilt die folgende Ungleichung: $D[P,Q] \leq \frac{|E_1|}{|E_1|+|E_2|}D[P_1,Q] + \frac{|E_2|}{|E_1|+|E_2|}D[P_2,Q]$ $\Rightarrow D[P,Q] \leq max(D[P_1,Q],D[P_2,Q])$

Earth Movers Distanz (EMD)

Fakt 2: $D[P,Q] \leq max(D[P_1,Q],D[P_2,Q])$ Dies bedeutet, dass die maximale Distanz zwischen einer Äquivalenzklasse und der Tabelle beim Zusammenführen zweier Äquivalenzklassen nicht steigt. Somit bleibt die t-closeness-Eigenschaft beim Zusammenführen erhalten.

Generalisation Property: Sei T eine Tabelle, A und B sind Generalisierungen von T, wobei A mehr generalisiert ist als B. Wenn B die Eigenschaft t-closeness hat, dann hat auch A die Eigenschaft t-closeness.

Beweis: Die Äquivalenzklassen aus A bestehen aus der Vereinigung mehrerer Äquivalenzklassen aus B. Nach Fakt 2 kann somit die maximale Distanz nicht größer werden. Somit hat auch A die Eigenschaft t-closeness.

PLZ	Alter	Einkommen
4767*	≤ 40	3K
4767*	≤ 40	4K
4767*	≤ 40	5K
4790*	≥ 40	6K
4790*	≥ 40	8K
4790*	≥ 40	11K
4760*	≤ 40	7K
4760*	≤ 40	9K
4760*	≤ 40	10K

Tabelle: Einkommenstabelle

$$Q = \{3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k\}$$

$$P_{1} = \{3k, 4k, 5k\}$$

$$P_{2} = (\{6k, 8k, 11k\})$$

Beispiel aus [Li07]

 $P3 = (\{7k, 9k, 10k\})$

EMD Formeln

Nummerische Attribute:

Domäne:
$$\{v_i, ..., v_m\}$$
, wobei gilt $i < j \Rightarrow v_i \le v_j$

geordnete-Distanz
$$(v_i, v_j) = \frac{|i-j|}{m-1}$$

EMD Formeln

Hierrarchische Attribute:

$$\underline{\text{hierrarch-Distanz}}(v_i, v_j) = \frac{level(v_i, v_j)}{H}$$

hierr.-Dist(Impotenz, Hodenkrebs) = 1/2
hierr.-Dist.(Impotenz, Diabetes) = 2/2

$$Q = \{3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k\}$$

$$P_1 = \{3k, 4k, 5k\}$$
Wahrscheinlichkeit $\frac{1}{9}$ für folgende Transition:
$$(5k \rightarrow 11k), (5k \rightarrow 10k), (5k \rightarrow 9k), (4k \rightarrow 8k), (4k \rightarrow 7k), (4k \rightarrow 6k), (3k \rightarrow 5k), (3k \rightarrow 4k), (3k \rightarrow 3k).$$

$$\Rightarrow D[P_1, Q] = \frac{1}{9} \cdot \frac{6+5+4+4+3+2+2+1+0}{9-1} = 27/72 = 3/8 = 0.375$$

PLZ	Alter	Einkommen
4767*	≤ 40	3K
4767*	≤ 40	4K
4767*	≤ 40	5K
4790*	≥ 40	6K
4790*	≥ 40	8K
4790*	≥ 40	11K
4760*	≤ 40	7K
4760*	≤ 40	9K
4760*	≤ 40	10K

Tabelle: Einkommenstabelle

$$D[P_1, Q] = \frac{27}{72} = 0,375$$

$$D[P_2, Q] = \frac{12}{72} = 0,167$$

$$D[P_3, Q] = \frac{17}{72} = 0,236,$$

$$\Rightarrow t = 0,375$$

Die Einkommenstabelle hat die Eigenschaft 0,375-closeness

PLZ	Alter	Einkommen
4767*	≤ 40	3K
4767*	≤ 40	5K
4767*	≤ 40	9K
4790*	≥ 40	6K
4790*	≥ 40	8K
4790*	≥ 40	11K
4760*	≤ 40	4K
4760*	≤ 40	7K
4760*	≤ 40	10K

Tabelle: Einkommenstabelle

$$D[P_1', Q] = \frac{12}{72} = 0,167$$

$$D[P_2, Q] = \frac{12}{72} = 0,167$$

$$D[P_3^{\prime},Q]=\frac{6}{72}=0,083,$$

$$\Rightarrow t = 0,167$$

Die Einkommenstabelle hat die Eigenschaft 0,167-closeness

Fazit

- k-Anonymität
 - mindestens k Tupel mit identischem Quasi-Identifikator
- I-Diversität
 - mindestens / verschiedene sensible Werte in jeder Äquivalenzklasse
- t-Closeness
 - Distanz zwischen Verteilung der sensiblen Attribute einer Äquivalenzklasse und der Gesamtverteilung unterscheidet sich maximal um einen Schwellwert t

Fazit

- k-Anonymität
 - mindestens k Tupel mit identischem Quasi-Identifikator
- I-Diversität
 - mindestens / verschiedene sensible Werte in jeder Äquivalenzklasse
- t-Closeness
 - Distanz zwischen Verteilung der sensiblen Attribute einer Äquivalenzklasse und der Gesamtverteilung unterscheidet sich maximal um einen Schwellwert t
- Ausblick
 - gewichtete Attribute
 - Schwellwerte für maximale Anzahl an unterdrückten Tupeln
 - mehrere sensible Attribute
 - _ ...

Literaturverzeichnis I

Gagan Aggarwal, Tomas Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina Panigrahy, Dilys Thomas, and An Zhu.

Approximation algorithms for k-anonymity.

Journal of Privacy Technology (JOPT), 2005.

Valentina Ciriani, S De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati.

k-Anonymity.

In Secure data management in decentralized systems, pages 323–353. Springer, 2007.

Literaturverzeichnis II

Philippe Golle.

Revisiting the uniqueness of simple demographics in the US population.

In Proceedings of the 5th ACM workshop on Privacy in electronic society, pages 77–80. ACM, 2006.

Dietmar Hauf.

Allgemeine Konzepte K-Anonymity, I-Diversity and T-Closeness.

https:

//dbis.ipd.kit.edu/img/content/SS07Hauf_kAnonym.pdf,
2007.

Zugriff am 16.5.2016.

Literaturverzeichnis III

Venkatasubramanian Li, Li.

t-Closeness: Privacy Beyond k-Anonymity and I-Diversity. 2007 IEEE 23rd International Conference on Data Engineering, pages 106–115, 2007.

Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubramaniam.

I-diversity: Privacy beyond k-anonymity.

ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):3, 2007.

Literaturverzeichnis IV

Adam Meyerson and Ryan Williams.

On the complexity of optimal k-anonymity.

In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 223–228. ACM, 2004.

Pierangela Samarati and Latanya Sweeney.

Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression.

Technical report, Technical report, SRI International, 1998.

Latanya Sweeney.

Simple demographics often identify people uniquely.

Health (San Francisco), 671:1-34, 2000.

Literaturverzeichnis V

Latanya Sweeney.

k-anonymity: A model for protecting privacy.

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.