Practice Problems: Proof by induction

- 1. Prove: 1+2+3+4+5+...+n = (1+n)n/2
- 2. Show that for all integers greater than zero: $2^n >= n+1$
- 3. Prove by induction that $1 + 3 + 5 + 7 + ... + (2n-1) = n^2$
- 4. Prove by induction that $1^2 + 2^2 + 3^2 + ... + n^2 = (1/6) n(n+1)(2n+1)$
- 5. Prove that for any positive integer number n, $n^3 + 2n$ is divisible by 3

Practice Problems: Proof by Counter Example

Prove that the following statements are false by Counter Example:

- 1. "If n is an integer and n² is divisible by 4, then n is divisible by 4."
- 2. "If n is prime, then $2^{n}-1$ is prime."
- 3. " x^2 -x+5 is prime for every x, where x is an integer."