Unit III

Introduction to Propositional Logic

Proposition:

Our discussion begins with an introduction to the basic building blocks of logic :—propositions.

- **Def**: A **proposition** is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.
- Eg: 1. Washington, D.C., is the capital of the United States of America.
 - 2. Toronto is the capital of Canada.

$$3.1 + 1 = 2.$$

$$4.2 + 2 = 3$$

- Non Eg: 1. What time is it?
 - 2. Read this carefully.

$$3. x + 1 = 2.$$

4.
$$x + y = z$$
.

Note:

- We represent the Propositions with small letters p, q, r, s,
- The truth values for any proposition are either T or F.
- The area of logic that deals with propositions is called the **propositional** calculus or propositional logic. It was first developed systematically by the Greek philosopher Aristotle more than 2300 years ago.
- <u>Compound Propositions</u>: Many mathematical statements are constructed by combining one or more propositions forming New propositions, called **compound propositions**, are formed from existing propositions using logical operators. We Discuss: Negation,

Conjunction

Disjunction and

Implication.

Negation:

- **<u>Def</u>**: Let p be a proposition. The *negation of* p, denoted by $\neg p$ is the statement "It is not the case that p."
- The proposition $\neg p$ is read "not p." The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.
- Eg: Find the negation of the proposition "Michael's PC runs Linux".

Ans: "It is not the case that Michael's PC runs Linux." This negation can be more simply expressed as "Michael's PC does not run Linux."

Truth Table:

p	$\neg p$
T	F
F	T

• The negation operator constructs a new proposition from a single existing proposition. We will now introduce the logical operators that are used to form new propositions from two or more existing propositions. These logical operators are also called **connectives**.

Conjunction and Disjunction:

• **<u>Def</u>**:Let p and q be propositions. The *conjunction* of p and q, denoted by $p \land q$, is the proposition "p and q." The conjunction $p \land q$ is true when both p and q are true and is false otherwise.

• Truth Table for Conjunction:

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Disjuction:Let p and q be propositions. The *disjunction* of p and q, denoted by $p \lor q$, is the proposition "p or q." The disjunction $p \lor q$ is false when both p and q are false and is true otherwise. Truth table is

p	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

Conditional Statements:

- <u>Def</u>: Let p and q be propositions. The conditional statement $p \rightarrow q$ is the proposition "if p, then q." The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q$, p is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).
- $P \rightarrow q$ can also be expressed as follows:

```
"if p, then q"

"if p, q"

"p implies q"

"p only if q"

"p only if q"

"a sufficient condition for q is p"

"q if p"

"q when p"

"a necessary condition for p is q"

"q unless \neg p"
```

Truth Table for Implication:

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

CONVERSE, CONTRAPOSITIVE, AND INVERSE

- We can form some new conditional statements starting with a conditional statement $p \rightarrow q$.
- The proposition $q \to p$ is called the **converse** of $p \to q$.
- The **contrapositive** of $p \to q$ is the proposition $\neg q \to \neg p$.
- The proposition $\neg p \rightarrow \neg q$ is called the **inverse** of $p \rightarrow q$.

Everyone Draw the truth tables for all the mentioned above and Notice the conditions that are having same truth values (i.e Identify the Logical Equivalence)

Def of Logical Equivalence: When two compound propositions always have the same truth value we call them equivalent(will discuss after few lectures)

- Eg: What are the contrapositive, the converse, and the inverse of the conditional statement "The home team wins whenever it is raining"
- Ans : Because "q whenever p" is one of the ways to express the conditional statement $p \to q$, the original statement can be rewritten as "If it is raining, then the home team wins."

Consequently, the **contrapositive** of this conditional statement is "If the home team does not win, then it is not raining."

The **convers**e is "If the home team wins, then it is raining."

The **inverse** is

"If it is not raining, then the home team does not win."

Biconditional statement:

- **Def**: Let p and q be propositions. The *biconditional statement* $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values and is false otherwise. Biconditional statements are also called *bi-implications*.
- There are some other common ways to express $p \leftrightarrow q$:

"p is necessary and sufficient for q"

"if p then q, and conversely"

"*p* iff *q*"

• The last way of expressing the biconditional statement $p \leftrightarrow q$ uses the abbreviation "iff" for "if and only if." Note that $p \leftrightarrow q$ has exactly the same truth value as $(p \rightarrow q) \land (q \rightarrow p)$

Truth Table For Bi Conditional:

p	\boldsymbol{q}	$p \leftrightarrow q$
T	T	T
T	F	F
\mathbf{F}	T	F
F	F	T

Work out Problems: (has to be done in the class)

- Let *p* and *q* be the propositions "The election is decided" and "The votes have been counted," respectively. Express each of these compound propositions as an English sentence :
 - **a**) ¬*p*

b) *p* \vee *q*

c) $\neg p \land q$

d) $q \rightarrow p$

 $e) \neg q \rightarrow \neg p$

 \mathbf{f}) $\neg p \rightarrow \neg q$

 $\mathbf{g}) p \leftrightarrow q$

- **h**) $\neg q \lor (\neg p \land q)$
- Construct a truth table for each of these compound propositions:
 - a) $p \land \neg p$

b) $p \vee \neg p$

c) $(p \lor \neg q) \rightarrow q$

d) $(p \lor q) \rightarrow (p \land q)$

e) $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$

 \mathbf{f}) $(p \rightarrow q) \rightarrow (q \rightarrow p)$

Tautology, Contradiction and Contingency:

• A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a *tautology*.

Eg: $p \lor \neg p$ and $(p \land q) \rightarrow (p \lor q)$ (verify with truth tables)

• A compound proposition that is always false is called a contradiction.

Eg : $p \land \neg p$ (verify with truth tables)

• A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

Give an Example on your own......

Logical Equivalence Illustrations:

• The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology.

The notation $p \equiv q$ denotes that p and q are logically equivalent.

Eg: 1)Identify Logical Equivalent compound Statements for P=>q and for its converse, inverse and contrapositive.

Eg 2:

p	q	r	$q \wedge r$	$p\vee (q\wedge r)$	$p \lor q$	$p \vee r$	$(p \vee q) \wedge (p \vee r)$
T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

De Morgan Laws in Propositional Logic:

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

•
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Proof:

p	q	$p \vee q$	$\neg (p \lor q)$	$\neg p$	¬q	$\neg p \land \neg q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Prove the other De Morgan Law......

Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

Equivalence Laws:

Equivalence	Name
Equivalence	Ivame
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee T \equiv T$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg(p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \wedge (p \vee q) \equiv p$	
$p \lor \neg p \equiv \mathbf{T}$	Negation laws
$p \land \neg p \equiv \mathbf{F}$	

Logical Equivalences Involving Conditional & Bi-Conditional Statements:

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Verify All Above-Mentioned Laws By using the Truth Tables.....

Argument and Valid ness:

• An *argument* in propositional logic is a *sequence of propositions*. All but the preceding propositions in the argument are called *premises* and the final proposition is called the *conclusion*.

```
i.e,. Premises \vdash Conclusion ("\vdash" is symbol for argument)
Eg 1: p \rightarrow q, q \rightarrow r \vdash p \rightarrow r
```

• Eg 2: Consider the following argument involving propositions $p \rightarrow q$: "If you have a current password, then you can log onto the network."

```
q: You have a current password."
```

Therefore,

r: "You can log onto the network."

In the above example Premises: $p \rightarrow q, r$

Conclusion: r

Hence it is an argument.

Validness of an argument:

 An Argument is valid if the truth of all its premises implies that the conclusion is true.

i.e, the argument form with premises $p1, p2, \ldots, p_n$ and conclusion q is valid, when $(p1 \land p2 \land \cdots \land p_n) \rightarrow q$ is a tautology.

Means, To check the given argument is valid or not we need to follow:

- a) Take conjunction to the Premises and write implication to conclusion.
- b) If the last implication is tautology, then we can say that the given Argument is valid.

Note: An argument is not valid then we can call it as "Fallacy"

Checking Validness of the argument: $p \rightarrow q, q \rightarrow r \vdash p \rightarrow r$

p	q	r	<mark>p→q</mark>	<mark>q→r</mark>		(p→q) ∧(q→r)	(m) m m m m m m m m m
P	M	•	p /q	4 /1	<mark>p→r</mark>	(p /q) //(q /1)	$(p\rightarrow q) \wedge (q\rightarrow r) \rightarrow p\rightarrow r$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	Т
F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

In the Above ex, the last column we got Tatology. Hence this argument is valid.

In the similar manner, Check the validness of the following Arguments:

• HOME -WORK:

- $(p \lor q)$, $(\neg p \lor r) \vdash (q \lor r)$
- $p \lor q$, $\neg p \vdash q$
- $\neg q$, $(p \rightarrow q)$ $\vdash \neg p$
- $p \vee q$, $\neg p \vee r \vdash q \vee r$
- $(p \lor q)$, $(p \rightarrow r)$, $(q \rightarrow r) \vdash r$

Proof Systems:

- Methods of Proving Theorems :
 - 1)Direct Proofs
 - 2)Proof by Contraposition
 - 3)Proofs by Contradiction

We are going to discuss these three techniques in proving the theorems in mathematics.

Some Terminology:

- **Theorem**: **Theorem** is a statement that can be shown to be true. In mathematical writing, the term theorem is usually reserved for a statement that is considered at least somewhat important. Theorem may be the universal quantification of a conditional statement with one or more premises and a conclusion. However, it may be some other type of logical statement.
- **Proof of a theorem**: A **proof** is a valid argument that establishes the truth of a mathematical statement. A proof can use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven theorems.
- Less important theorems sometimes are called propositions.
- A less important theorem that is helpful in the proof of other results is called a **lemma**.
- Corollary is a theorem that can be established directly from a theorem that has been proved.

Direct Proof Method:

- A **direct proof** of a conditional statement $p \rightarrow q$ is constructed when the first step is the assumption that p is true; subsequent steps are constructed using rules of inference, with the final step showing that q must also be true.
- Eg:If n is an odd integer, then n² is odd.

Proof: Let us assume that *n* is odd.

By the definition of an odd integer, it follows that n = 2k + 1, where k is some integer.

We want to show that n^2 is also odd.

We can square both sides of the equation n = 2k + 1 to obtain a new equation that expresses n^2 .

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

=2m+1; where m=2 k^2 + 2 k for all integer k .

Theorem: If *m* and *n* are both perfect squares, then *nm* is also a perfect square.

• **Proof**: We assume that *m* and *n* are both perfect squares.

By the definition of a perfect square, it follows that there are integers s and t such that $m = s^2$ and $n = t^2$.

The goal of the proof is to show that *mn* must also be a perfect square.

Now consider $mn = s^2 t^2 = (ss)(t t) = (st)(st) = (st)^2 = (ts)^2 = nm$ (using commutativity and associativity of multiplication)

By the definition of perfect square, it follows that *mn* is also a perfect square.

Home-Work:

Theorem: Prove that the sum of two rational numbers is rational.

Proof by Contraposition:

- An extremely useful type of indirect proof is known as proof by contraposition.
- Proofs by contraposition make use of the fact that the conditional statement $p \rightarrow q$ is equivalent to its contrapositive, $\neg q \rightarrow \neg p$.
- This means that the conditional statement $p \rightarrow q$ can be proved by showing that its contrapositive, $\neg q \rightarrow \neg p$, is true.
- In a proof by contraposition of $p \rightarrow q$, we take $\neg q$ as a premise, and using axioms, definitions, and previously proven theorems, together with rules of inference, we show that $\neg p$ must follow.

Theorem: Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Proof:

- We first attempt a direct proof.
- To construct a direct proof, we first assume that 3n + 2 is an odd integer. This means that 3n + 2 = 2k + 1 for some integer k.
- We see that 3n + 1 = 2k, but there does not seem to be any direct way to conclude that n is odd.
- Because our attempt at a direct proof failed, we next try a proof by contraposition.
- By contraposition is to assume that the conclusion of the conditional statement "If 3n + 2 is odd, then n is odd" is false; namely, assume that n is even.
- Then, by the definition of an even integer, n = 2k for some integer k. Substituting 2k for n, we find that

$$3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)$$
. This tells us that $3n + 2$ is even

 Because the negation of the conclusion of the conditional statement implies that the hypothesis is false, the original conditional statement is true. Our proof by contraposition succeeded; we have proved the theorem "If 3n + 2 is odd, then n is odd."

Theorem: Prove that if n is an integer and n^2 is odd, then n is odd.

Proof:

- Direct Method won't work here (Why!!)
- Now by contraposition method, consider n is not odd.
 implies.. N is even i.e n = 2k for some integer k.
 keep n= 2k in n² => n² = (2k)² = 4k² = 2(2k²)
 = 2m where m = 2k² for k is an intiger.

Hence,

We have proved that if n is an integer and n2 is odd, then n is odd. Our attempt to find a proof by contraposition succeeded.

Proofs by Contradiction:

• A proof by contradiction does not prove a result directly, it is another type of indirect proof in which **we assume** the negation of the given statement is true. So that we finally arrive at a contradiction (error) because of our wrong assumption.

 Hence, we conclude that our assumption is wrong and the given one is true....

Theorem: Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction.

• **Proof**: To prove by contradiction, Let us assume that the negation of the given statement is true.

i. e., if possible, suppose that $\sqrt{2}$ is Rational.

$$=> \sqrt{2} = a/b$$
; $b \ne 0$ and a,b have no common factors.

$$\Rightarrow$$
 2 = a^2/b^2 => $a^2 = 2b^2$ ----- \Rightarrow (1)

=> a is even (n^2 is even => n is even)

=> a = 2k (by def of even)for some integer k

put in (1) =>
$$(2k)^2 = 2b^2$$

$$=> 4k^2 = 2b^2$$

$$=> b^2 = 2k^2$$

=> b is even ,which is a

contradiction to our supposition as we already have a is even.

Hence our supposition is wrong => **V2** is irrational

Give a proof by contradiction of the theorem "If 3n + 2 is odd, then n is odd."

• **Proof:** Since it is p=>q, let us assume that the negation of the statement is true. i.e $\neg(p=>q) \equiv p \land \neg q$ is true.

```
p \land ¬q means 3n+2 is odd and n is not odd----→(supposition) n is not odd => n is even => n = 2k for every integer k then 3n+2=3(2k)+2 = 2(3k+1) = 2m where m = 3k+1 for intiger k
```

i.e, 3n+2 is even which is contradiction to our supposition. Hence our supposition is wrong.

so, If 3n + 2 is odd, then n is odd.

End of the Chapter