

Instytut Elektroniki Zespół Mikroelektroniki i Nanotechnologii

Fotodetektory, ogniwa słoneczne

Weronika Izydorczyk 3

Fotodetektory - fotoogniwa

Model złącza p-n, na które zadziałano kwantem światła

Podczas oświetlania złącza można zaobserwować następujące zjawiska:

- wytworzenie dodatkowej pary elektron dziura;
- przepływ prądu fotowoltaicznego;
- powstanie napięcia polaryzującego na końcówkach złącza, wskutek czego złącze spolaryzowane jest w kierunku

przewodzenia

$$\lambda[\mu m] = \frac{1,24}{\mathbf{W}_{g}}[eV]$$

- Gęstość prądu zwarcia I_{sc}
- Napięcie rozwarcia U_{oc}
- Maksymalna moc P_{mp}
- Współczynnik wypełnienia FF (fill factor):
- Sprawność ogniwa η (%)
- Wydajność kwantowa Q (λ).
- Współczynniki temperaturowe

I_{mp}, U_{mp} - współrzędne punktu mocy maksymalnej

Napięcie rozwarcia:

$$U_{\rm OC} = \frac{kT}{q} \ln \left(\frac{I_F}{I_0} + 1 \right)$$

Gęstość prądu zwarcia:

$$I_{sc} = I_{ph} - I_{s} \left[exp \left(\frac{R_{s}I_{sc}}{AkT} \right) - 1 \right] - \frac{R_{s}I_{sc}}{R_{sh}} \qquad I_{sc} \approx I_{ph} = const \cdot E$$

E - natężenie promieniowania.

Współczynnik wypełnienia FF (fill factor):

$$FF = \frac{I_{mp}U_{mp}}{I_{SC}U_{OC}}$$

Sprawność ogniwa:

$$\eta[\%] = \frac{U_{mp}I_{mp}A_{f}}{P_{IN}A_{t}} \cdot 100[\%] = FF \frac{U_{OC}I_{SC}A_{f}}{P_{IN}A_{t}} \cdot 100[\%]$$

Stosunek mocy oddawanej do obciążenia przez ogniwo do mocy promieniowania padającego na powierzchnię ogniwa P_{IN}

A_f - powierzchnia czynna ogniwa; A_f - całkowita powierzchnia ogniwa.

Wydajność kwantowa Q (λ) zewnętrzna:

$$Q_{e}(\lambda) = \frac{I_{e}(\lambda) + I_{h}(\lambda) + I'(\lambda)}{qN_{ph}(\lambda)}$$

Stosunek gęstości fotoprądu dla danej długości fali do iloczynu ładunku elementarnego i gęstości strumienia fotonów o długości fali λ padających na czynną powierzchnię ogniwa.

 λ - długość fali; $I_h(\lambda)$ - gęstość prądu dyfuzyjnego (dziurowego); $I_e(\lambda)$ - gęstość prądu dyfuzyjnego (elektronowego) N_{ph} - koncentracja par elektron-dziura

Wydajność kwantowa Q_i (λ) wewnętrzna:

$$Q_{i}(\lambda) = \frac{I_{e}(\lambda) + I_{h}(\lambda) + I'(\lambda)}{qN_{ph}(\lambda) \left[1 - R(\lambda)\right]}$$

Stosunek gęstości fotoprądu dla danej długości fali do iloczynu ładunku elementarnego i gęstości strumienia fotonów o długości fali λ pochłoniętych przez półprzewodnik, gdzie R(λ) określa stosunek fotonów odbitych do padających na powierzchnię

λ - długość fali;

 $I_h(\lambda)$ - gęstość prądu dyfuzyjnego (dziurowego);

 $I_e(\lambda)$ - gęstość prądu dyfuzyjnego (elektronowego)

N_{ph} - koncentracja par elektron-dziura

Maksymalna moc

$$P_{mp} = I_{mp} \cdot U_{mp}$$

I_{mp}, U_{mp} - współrzędne punktu mocy maksymalnej

Punkt pracy ustala się drogą doboru rezystancji obciążenia $R_{L1} < R_{L2} < R_{L2}$; $P_1 < P_2 = P_{mp}$; $P_3 < P_2 = P_{mp}$.

Zależność parametrów ogniw słonecznych od temperatury

Typowe współczynniki temperaturowe wynoszą:

temperaturowy współczynnik zmian I_{sc} (prądu zwarcia):

 $\frac{dI_{SC}}{dT} = +0.01 \frac{mA}{cm^2 \circ C}$

temperaturowy współczynnik zmian U_{oc} (napięcia obwodu otwartego):

$$\frac{dU_{OC}}{dT} = -2.2 \frac{mV}{^{\circ}C}$$

temperaturowy współczynnik zmian P_{IN} (mocy promieniowania padającego na powierzchnię ogniwa):

$$\frac{dP_{IN}}{dT} = -0.5 \frac{\%}{^{\circ}C}$$

Struktura krzemowego ogniwa słonecznego

Teksturyzacja

Struktura krzemowego ogniwa słonecznego

Elektroda zbierająca

Elektroda tylna

Warstwa odblaskowa *Si₃N₄* – całkowite wewnętrzne odbicie

$$n_2 = 1.00$$
 $n_1 = 1.50$ $\arcsin\left(\frac{1.00}{1.50}\right) = 41.8^{\circ}$

Warstwa Si₃N₄ – całkowite wewnętrzne odbicie

n₂ – współczynnik załamania powietrza

n₁ – współczynnik załamania warstwy

agr

Fotoogniwa

Ogniwa fotowoltaiczne, ogniwa słoneczne lub fotoogniwa – urządzenia, które zamieniają energię promieniowania słonecznego bezpośrednio w energię elektryczną.

- Krzemowe:
- monokrystaliczne
- polikrystaliczne
- cienkowarstwowe (krzem bezpostaciowy)
- Cienkowarstwowe na bazie CdTe oraz CIGS (selenek indowo (galowo) – miedziowy)
- Barwnikowe (III generacja, w trakcie badań)
- Polimerowe i organiczne (III generacja, w trakcie badań)

Fotoogniwa - zasada działania

- > Krzemowe:
- monokrystaliczne
- polikrystaliczne

- Cienkowarstwowe na bazie CdTe oraz CIGS (selenek indowo (galowo) – miedziowy)
- Barwnikowe (III generacja, w trakcie badań)
- Polimerowe i organiczne (III generacja, w trakcie badań)

Ogniwa krzemowe I generacji

monokrystaliczne (sc – Si)
- wykonane z jednego
monolitycznego kryształu
krzemu. Sprawność do
22%

http://www.eere.energy.gov/solar/pv _systems.html Department of Energy

Ogniwa krzemowe I generacji

polikrystaliczne (mc – Si) wykonane z wykrystalizowanego krzemu. Sprawność do 18%

http://mlsystem.pl/pl/00098,ogniwa_i_generacji

Ogniwa krzemowe II generacji

Ogniwa cienkowarstwowe - wykonane z amorficznego, bezpostaciowego i mikrokrystalicznego krzemu. Sprawność do 12%

http://mlsystem.pl/pl/00098,ogniwa_i_generacji

Ogniwa cienkowarstwowe ze związków półprzewodnikowych:

- Ogniwa CdTe (tellurek kadmu)
 wykonane z wykorzystaniem
 półprzewodnikowego tellurku
 kadmu. Sprawność do 11%.
- Ogniwa CI(G)S (selenek indowo (galu) miedziowy) wykonane z mieszaniny pierwiastków takich jak miedź, ind, gal, selen tzw. CIGS. Sprawność do 12%.

Ogniwa III generacji – ogniwa barwnikowe

http://de.wikipedia.org/wiki/Bild: DSC_Modules.jpg

Charakterystyka DSSC:

- Wysoka transparentność oraz możliwość doboru barw
- Działanie w obniżonych warunkach promieniowania, w świetle rozproszonym i świetle odbitym
- Działanie dwustronne

Możliwości zastosowań:

- fasady ściany osłonowe budynków
- szklane powierzchnie budynków
- przedsionki, wiatrołapy
- świetliki dachowe
- ścianki, przegrody wewnętrzne
- mała architektura
- elektronika użytkowa

http://mlsystem.pl/pl/00101,ogniwa_iii_ge neracji_

Ogniwa III generacji – ogniwa barwnikowe

Możliwości zastosowań:

- fasady ściany osłonowe budynków
- szklane powierzchnie budynków
- przedsionki, wiatrołapy
- świetliki dachowe
- ścianki, przegrody wewnętrzne
- mała architektura
- elektronika użytkowa

http://de.wikipedia.org/wiki/Bild: DSC_Modules.jpg

http://mlsystem.pl/pl/00101,ogniwa_iii_g eneracji_

Ogniwa III generacji – ogniwa barwnikowe

Cienkowarstwowe ogniwa fotowoltaiczne wykonane przy użyciu technologii DSC (ogniwo barwnikowe - ang. dyesensitized solar cel) sprawność < 14% działanie oparte na zasadzie sztucznej fotosyntezy

http://mlsystem.pl/pl/00101,ogniwa_iii_generacji_

Ogniwa Back Contact

- Ogniwa typu Back Contact i **Metal Wrap Through - ogniwa** krzemowe wykonane w technologii "tylnej elektrody". Sprawność ponad 22%. Poprzez wyprowadzenie elektrody na tył ogniwa oszczędzają powierzchnię aktywną warstwy wierzchniej co dodatkowo podnosi jego wydajność.
- Są to obecnie najwydajniejsze ogniwa fotowoltaiczne w produkcji komercyjnej na świecie.

Ogniwa organiczne – firma Konarka

Fotoogniwa Power Plastic produkowane są ze specjalnego polimerowego atramentu metodą nadruku. Ich wydajność energetyczna nie przekracza 6%, trwałość - do 5 lat (krzemowe do 30 lat). Zalety możliwość wykonania dowolnej struktury ogniwa i umieszczenia go na każdej powierzchni o nietypowym kształcie.

Ogniwa III generacji – ogniwa barwnikowe zbudowane na bazie kropek kwantowych

Ogniwa III generacji – na bazie kropek kwantowych z CdSe/CdS

Kropki kwantowe absorbują promieniowanie i transportują je przez matrycę z tworzywa sztucznego PMMA (polimetakrylan metylu) do ogniw PV na krawędziach

Porównanie efektywności ogniw słonecznych wytwarzanych w różnych technologiach

