Mathematical and UML Diagrams

Stephen Adu, Jens Domela Nieuwenhuis and Andrej Cholodov

Group 2

Contents

1.	Use case	2
	1.1 Use case description	
	1.2 Use case diagram	
2.	UML Diagrams	. 3
	2.1 Domain Diagram	. 3
	2.2 Sequence Diagram	4
3.	Mathematical Models	4
	3.1 Competitive Lotka-Volterra Equation	. 4
	3.2 Competition Coefficient	5

1. Use case

1.1 Use case description

Primary actor: user/client

Stakeholder and Interests:

• User: interested in prediction

• **Group 1:** wants to know the workout for the grass

Precondition:

Post-condition:

Main Success:

- 1. User opens the application.
- 2. System asks for parameters.
- 3. User enters variables.
- 4. System validates variables.
- 5. System processes variables in the formula.
- 6. System shows results.
- 7. System sends results to the other application.
- 8. User closes the program.

1.2 Use case diagram

2. UML Diagrams

2.1 Domain Diagram

2.2 Sequence Diagram

3. Mathematical Models

3.1 Competitive Lotka-Volterra Equation

$$\frac{dx_i}{dt} = r_i x_i (1 - \frac{\sum_{j=1}^{N} a_{ij} x_j}{K_i})$$

Calculation of the effect of competing species on the growth of species i. (Schoener, 1974)

- $\frac{dx_i}{dt}$ refers to the population growth rate of species *i*.
- r_i refers to the intrinsic rate of increase of species i.
- x_i refers to the population of species i.
- *N* refers to the total amount of competing species.
- K_i refers to the carrying capacity of species i.
- a_{ij} refers to the competition coefficient of species j upon i.
 - Note that a_{ii} is equal to 1.

3.2 Competition Coefficient

$$a_{ij} = \frac{\sum_{h} p_{ih} p_{jh}}{\sum_{h} p_{ih}^2}$$

Calculation of the competition of species j on species i. (Gotelli,2008)

- a_{ij} is the competition coefficient
- p_{ih} refers to the relative utilization of resource h by species i, computed as a fraction of the total utilization of all resources for species i.

References:

Schoener, T. (1974). Some Methods for Calculating Competition Coefficients from Resource-Utilization Spectra. *The American Naturalist, 108*(961), 332-340. Retrieved from http://www.jstor.org/stable/2459895

Gotelli, Nicholas J. (2008). A Primer of Ecology. Sunderland, MA: Sinauer.