

Stability analysis for PDts
The analysis we be similar to the ODE Case. The only difference
is that Jacobian will be Changed to a modified Jacobian.
Consider the following system.
$\frac{\partial x}{\partial t} = \mathcal{F}(x, y) + \left(\sum_{i=1}^{3} \frac{\partial^{3} x}{\partial x^{2}} \right)$
$\frac{\partial Y}{\partial t} = \frac{\partial (X, Y)}{\partial x^2} + \frac{\partial^2 Y}{\partial x^2}$
We can make it more compact:
$\Phi = \begin{pmatrix} X \\ Y \end{pmatrix}; F(\Phi) = \begin{pmatrix} F(x, y) \\ g(x, y) \end{pmatrix}; D = \begin{pmatrix} D_x & 0 \\ 0 & D_y \end{pmatrix}$
$= \left(\stackrel{\circ}{\underline{\Phi}} = F(\underline{\Phi}) + \mathcal{D} \stackrel{\#}{\underline{\Phi}} \right) (\underline{T})$
Now suppose that there is a homogeneous steady state
in which $ \dot{D} = F(D_{ss}) = 0 $ (well-mixed) model
So when we are very close to the steady state we can
write: $D = D_{ss} + D$
By inserting III in I we will have
$\widetilde{\overline{D}} = F(\widehat{\mathcal{D}}_{ss}) + J\widetilde{\mathcal{D}} + D\widetilde{\overline{\mathcal{D}}}''$
and by dropping www. signs we will have.
(立= J豆+ D豆 ")(エレ)

