# MACHINE LEARNING CSC 8850

# FINAL PROJECT REPORT

By
Sai Harika Punyamurthula
Mothi Balaji Srinivasan

## **Problem 1(Classification):**

Techniques: RandomForest, Kernel SVM - RBF

#### **Procedure Outline:**

- 1. Data pre-processing Eliminated Zero Variance and Near Zero Variance features
- 2. Feature Selection was done with Boruta (JMLR Paper).
- 3. 100 repeats of K-Fold Cross Validation
- 4. Computed model using Best Parameters.
- 5. Made Predictions for Test Data.

#### **Parameter tuning for Random Forest:**

A grid of Mtry and ntree parameters was constructed using different values and repeat cross-validation was done. Parameters for which the cross validated area under ROC was maximum were selected as the best parameters. The table 1.0 illustrates the best parameters and the cross validated area under ROC. The figure 1.0 illustrates parameter tuning and shows best parameters for dataset 1. Similarly, grid of gamma and Cost parameters were tuned for SVM.

#### Results:

| Algorithm     | Data Set   | Parameter |       | Cross Validation AUC |
|---------------|------------|-----------|-------|----------------------|
|               |            | mtry      | ntree |                      |
| Random Forest | Data Set 1 | 15        | 1000  | 0.881                |
|               | Data Set 2 | 9         | 1050  | 0.787                |
|               | Data Set 3 | 16        | 1025  | 0.89                 |

Table 1.0 Random Forest best parameters

| Algorithm  | Data Set   | Parametei | ٢    | Cross Validation AUC |
|------------|------------|-----------|------|----------------------|
|            |            | Gamma     | cost |                      |
| Kernel SVM | Data Set 1 | 0.31      | 2    | 0.73                 |
|            | Data Set 2 | 1         | 2    | 0.667                |
|            | Data Set 3 | 1.5       | 3    | 0.60                 |

Table 1.1 SVM best parameters



Figure 1.0 Random Forest: Mtry vs Cross-validated Area under ROC

Better performance was achieved for Random Forest. Therefore, Random Forest training model was selected for all three datasets to predict the test labels.

# **Problem 2(Missing Value Estimation):**

#### <u>Techniques assessed:</u> softImpute – R Package, impute.knn method from Impute package

Soft-Impute is an algorithm developed by Trevor Hastie and Robert Tibshirani that uses convex relaxation techniques to provide a sequence of regularized low-rank solutions for large-scale matrix completion problems. SOFT-IMPUTE iteratively replaces the missing elements with those obtained from a soft-thresholded SVD ( <u>Soft-Impute JMLR paper</u> ).

We benchmarked our technique on external micro array data as well: lung\_data\_label.mat, prostate\_data\_label.mat, srbct\_data\_label. Table 2.0 shows the results of testing done on different datasets.

| Algorithm   | Data Set                | % of missing and RMSE Error |            |           |  |
|-------------|-------------------------|-----------------------------|------------|-----------|--|
|             |                         | 4%                          | 10%        | 83%       |  |
| Soft Impute | srbct_data_label.mat    | 0.1451714                   | 0.2231146  | 0.8455188 |  |
| Knn Impute  | srbct_data_label.mat    | 0.1459565                   | 0.217029   | 0.8958327 |  |
| Soft Impute | prostate_data_label.mat | 0.0386309                   | 0.06055933 | 0.1956854 |  |
| Knn Impute  | prostate_data_label.mat | 0.05552823                  | 0.05543156 | 0.3325293 |  |
| Soft Impute | lung_data_label.mat     | 0.05245209                  | 0.08378761 | 0.2541248 |  |
| Knn Impute  | lung_data_label.mat     | 0.04666785                  | 0.07329735 | 0.3559154 |  |

Table 2.0 Imputation testing on other micro-array datasets

#### RMSE calculation:

On the given datasets, some percentage of data was made missing, imputation was done with both knn and softImpute. The RMSE error was calculated for these values. For knn, we calculated error for different k values from 2 to 10. For different datasets, best k was different. But, the rmse error was lesser for softImpute.

Results: SoftImpute was chosen for imputation for all 3 datasets.

### **Problem 3 (Multi label Classification):**

#### Algorithms Used: RPart, Random Forest.

Problem transformation method we used in our method transforms the multilabel classification into binary classification problem. Algorithm adaptation methods adapt multiclass algorithms so they can be applied directly to the problem.

The following is the step by step process followed for our problem.

1) Creating a task

The first thing we did is to get the data in the right format, then we create a Multilabel Task. Instead of one target name we specified a vector of targets which correspond to the names of logical variables in the data frame.

#### 2) Constructing a learner

We are doing Multi label classification in mlr using Problem transformation method by applying simple binary classification algorithm, this is done by creating a binary (or multiclass) classification learner with makeLearner.

After that we used a function like makeMultilabelBinaryRelevanceWrapper to convert a learner that uses the respective problem transformation method.

3) Train

We train a model as usual with a multilabel learner and a multilabel task as input.

4) Cross Validation

K-fold Cross Validation is done, k=5

5) Predictions for Test data were done with the model with best parameters that were selected through cross validation.

#### 6) Performance

The performance of your prediction can be assessed via function performance. You can specify via the measures argument which measure(s) to calculate. The default measure for multilabel classification is the Hamming loss. Fig. 3.1 shows a graph for cpGrid vs cross-validated Hamming loss. For rPart, Hamming loss of 0.22 was observed and classification accuracy was 94.4%. For Random Forest, Hamming loss of 0.207 was observed but classification accuracy was 86.6%.

**Results:** Since classification accuracy was better for rPart and Hamming loss was only about 0.02 greater, we chose rPart for predictions.

| Algorithm | Best Parameters |        |          | Classification |
|-----------|-----------------|--------|----------|----------------|
|           | maxDepth        | cpGrid | minSplit | Accuracy       |
| RPart     | 1               | 0.09   | 10       | 94.4%          |

Table 3.1 rPart best parameters and classification Accuracy



Fig 3.1 cpGrid vs cross-validated Hamming Loss for rPart

| Algorithm     | Best Parameters |       | Classification Accuracy |
|---------------|-----------------|-------|-------------------------|
|               | mtry            | ntree |                         |
| Random Forest | 8               | 2000  | 86.6%                   |

Table 3.2 Best parameters and accuracy Random forest

| Algorithm     | Best Parameters |       | Classification Accuracy |
|---------------|-----------------|-------|-------------------------|
|               | mtry            | ntree |                         |
| Random Forest | 8               | 2000  | 86.6%                   |

Table 3.3 Best parameters and accuracy for Random Forest



Fig 3.2 ntree vs cross-validated Hamming loss for Random Forest

#### **References:**

https://web.stanford.edu/~hastie/Papers/mazumder10a.pdf

https://www.r-bloggers.com/feature-selection-all-relevant-selection-with-the-boruta-package/ https://mlr-org.github.io/mlr-tutorial/release/html/