LUA Scripting dla FEMM 4.2

Dr Łukasz Pietrzak

Wstęp

- http://www.lua.org
- clearconsole()
- messagebox("wiadomość_bez_polskich_liter")
- Separator współrzędnych: ,
- Separator części dziesiętnych: .
- Problem magnetostatyczny przedrostek: "m"
- Problem elektrostatyczny przedrostek: "e"
- Problem cieplny- przedrostek: "h"
- Problem elektro-przepływowy przedrostek: "c"
- Pre processor przedrostek: "i"
- Post processor przedtostek: "o"

"mi_" oraz "mo_"

- Pre processor:
 - mi_addmaterial
 - mi_modifymaterial
 - mi_addpointprop
- Post processor
 - mo_getpointvalues
 - mo_lineintegral
 - mo_blockintegral

PRE PROCESSOR

Polecenia widoku

- mi_showgrid()
- mi_hidegrid()
- mi_grid_snap("on" lub "off")
- mi_setgrid(density,"type")

- mi_zoomnatural()
- mi_zoomout()
- mi_zoomin()

Rysowanie "add"

- mi_addnode(x,y)
- mi_addsegment(x1,y1,x2,y2)
- mi_addblocklabel(x,y) Add a new block label at (x,y)
- mi_addarc(x1,y1,x2,y2,angle,maxseg)

Usuwanie "deleteselected"

- mi_deleteselected
- mi_deleteselectednodes
- mi_deleteselectedlabels
- mi_deleteselectedsegments
- mi_deleteselectedarcsegments

Zaznaczanie "select"

- mi_clearselected()
- mi_selectsegment(x,y)
- mi_selectnode(x,y)
- mi_selectlabel(x,y)
- mi_selectarcsegment(x,y)
- mi_selectgroup(n)

Polecenia edycji

- mi_copyrotate(bx, by, angle, copies, (editaction))
- mi_copytranslate(dx, dy, copies, (editaction))
- mi_moverotate(bx,by,shiftangle (editaction))
- mi_movetranslate(dx,dy,(editaction))
- mi_scale(bx,by,scalefactor,(editaction))
- mi_mirror(x1,y1,x2,y2,(editaction))

Etykietowanie "set____prop"

- mi_setnodeprop("propname",groupno)
- mi_setblockprop("blockname", automesh, meshsize, "incircuit", magdirection, group, turns)
- mi_setsegmentprop("propname", elementsize, automesh, hide, group)
- mi_setarcsegmentprop(maxsegdeg, "propname", hide, group)
- mi_setgroup(n)

Edytowanie ustawień

- mi_seteditmode(____)
 - "nodes"
 - "segments"
 - "arcsegments"
 - "blocks"
 - "group"

Zapisywanie / meshowanie / generowanie obliczeń

- mi_analyze()
- mi_loadsolution()
- mi_saveas("nazwa_pliku")
- mi_createmesh()
- mi_showmesh()

Właściwości obiektu

mi_getmaterial("nazwa_materiału")

mi_addmaterial("nazwa_materiału", mu_x, mu_y, H_c, J,
 Cduct, Lam_d, Phi_hmax, lam_fill, LamType, Phi_hx, Phi_hy,

NStrands, WireD)

Block Property	X			
Name	nazwa_materialu			
B-H Curve	Linear B-H Relationship ▼			
_Linear Material F	Linear Material Properties			
Relative $oldsymbol{\mu}_{_{ imes}}$	1 Relative μ_{γ} 1			
∕ø hx , deg	0			
Nonlinear Mater	ial Properties B-H Curve			
Coercivity —	Electrical Conductivity			
H , A/m	σ , Ms/m 0			
Source Current	Density			
J, MA/m^2	0			
Special Attribute	es: Lamination & Wire Type			
Not laminated	or stranded 🔻			
Lam thickness, m	m 0 Lam fill factor 1			
Number of strand	ds 0 Strand dia, mm 0			
	OK Cancel			

Właściwości obiektu

```
Mi_addmaterial("nazwa", u_x, u_y, H,J, G, L, Pmax, L_f, L_t, P_x, P_y, N, W)
```

"nazwa" – nazwa deklarowana w " "
u_x, u_y, - wsp. Przenikalności el-mag w
zadanych osiach magnesowania
H – wartość wsp. koercji [A/m]
J – graniczna gęstość prądu [A/mm²]

Właściwości obiektu

Mi_addmaterial("nazwa", u_x, u_y, H,J, G, L, Pmax, L_f, L_t, P_x, P_y, N, W)

G – przewodność elektryczna materiału [MS/m]

L – grubość warstw laminatu Pmax – maksymalny kąt opóźnienia fazowego w °

L_f – ilość warstw laminatu

Mi_addmaterial("nazwa", u_x, u_y, H,J, G, L, Pmax, L_f, L_t, P_x, P_y, N, W)

L_t – typ materiału:

- □ 0 mat. nie laminat, jednolity
- □ 1 laminat sklejany w osi x
- □ 2 laminat sklejany w osi y
- □ 3 przewód magnetyczny
- □ 4 pojedynczy przewód
- □ 5 przewód Litz'a
- □ 6 przewód o przekroju kwadratowym

```
Mi_addmaterial("nazwa", u_x, u_y, H,J, G, L, Pmax, L_f, L_t, P_x, P_y, N, W)
```

P_x - wartość nachylenia krzywej magnesowania w osi x (w °)
P_y - wartość nachylenia krzywej magnesowania w osi y (w °)
N – ilość przewodów na obwód
W – średnica przewodu

mi_addmaterial("CU",1,1,0,0,58,2, 0,1,3, 0,0,1,2)

mi_addmaterial("Air", 1,1,0,0,0,0,0, 1, 0, 0, 0, 0, 0, 0, 0)

Modyfikowanie materiałów

 mi_modifymaterial("nazwa_materiału",propn um,value)

propnum	Symbol	Description
0	BlockName	Name of the material
1	μ_{χ}	x (or r) direction relative permeability
2	$\mu_{\mathcal{Y}}$	y (or z) direction relative permeability
3	H_c	Coercivity, Amps/Meter
4	J_r	Source current density, MA/m ²
5	σ	Electrical conductivity, MS/m
6	d_{lam}	Lamination thickness, mm
7	ϕ_{hmax}	Hysteresis lag angle for nonlinear problems, degrees
8	LamFill	Iron fill fraction
9	LamType	0 = None/In plane, 1 = parallel to x, 2 = parallel to y
10	Φ_{hx}	Hysteresis lag in x-direction for linear problems, degrees
11	ϕ_{hy}	Hysteresis lag in y-direction for linear problems, degrees

Warunki brzegowe

- mi_addboundprop("propname", A0, A1, A2, Phi, Mu, Sig, c0, c1, BdryFormat)
- mi_modifyboundprop("nazwa_warunku",propnum,value)

propnum	Symbol	Description
0	BdryName	Name of boundary property
1	A_0	Prescribed A parameter
2	A_1	Prescribed A parameter
3	A_2	Prescribed A parameter
4	ф	Prescribed A phase
5	μ	Small skin depth relative permeability
6	σ	Small skin depth conductivity, MS/m
7	c_0	Mixed BC parameter
8	c_1	Mixed BC parameter
9	BdryFormat	Type of boundary condition:
		0 = Prescribed A
		1 = Small skin depth
		2 = Mixed
		3 = Strategic Dual Image
		4 = Periodic
		5 = Antiperiodic

POST PROCESSOR

Zaznaczanie punktu, konturu, powierzchni

- > mo_seteditmode(***)
 - * point
 - * contour
 - * area

- mo_groupselectblock(nr_grupy)
- mo_clearblock()
- mo_clearcontour()

Wynik z całki powierzchniowej

mo_blockintegral (type)

Type	Definition
0	$A \cdot J$
1	A
2	Magnetic field energy
3	Hysteresis and/or lamination losses
4	Resistive losses
5	Block cross-section area
6	Total losses
7	Total current
8	Integral of B_X (or B_r) over block
9	Integral of B_{ν} (or B_z) over block
10	Block volume
11	x (or r) part of steady-state Lorentz force
12	y (or z) part of steady-state Lorentz force
13	x (or r) part of 2× Lorentz force
14	y (or z) part of 2× Lorentz force
15	Steady-state Lorentz torque
16	2× component of Lorentz torque
17	Magnetic field coenergy
18	x (or r) part of steady-state weighted stress tensor force
19	y (or z) part of steady-state weighted stress tensor force
20	x (or r) part of 2× weighted stress tensor force
21	y (or z) part of 2× weighted stress tensor force
22	Steady-state weighted stress tensor torque
23	2× component of weighted stress tensor torque
24	R ² (i.e. moment of inertia / density)

Wynik w punkcie

mo_getpointvalues(X,Y)

Symbol	Definition
A	vector potential A or flux φ
B1	flux density B_x if planar, B_r if axisymmetric
B2	flux density B_y if planar, B_z if axisymmetric
Sig	electrical conductivity σ
E	stored energy density
H1	field intensity H_x if planar, H_r if axisymmetric
H2	field intensity H_y if planar, H_z if axisymmetric
Je	eddy current density
Js	source current density
Mu1	relative permeability μ_x if planar, μ_r if axisymmetric
Mu2	relative permeability μ_y if planar, μ_z if axisymmetric
Pe	Power density dissipated through ohmic losses
Ph	Power density dissipated by hysteresis

Przedstawienie wyników

- mo_showmesh()
- mo_hidemesh()
- mo_showpoints()
- mo_hidepoints()
- mo showgrid()
- mo_hidegrid()
- mo_smooth("on" lub "off")

Rozkład indukcji

- mo_showdensityplot(legend,gscale,upper_B,l ower_B,type)
 - legend (0 lub 1)
 - gscale (0 lub 1)

type ("bmag", "breal", "bimag,, "hmag", "hreal", "himag,,

"jmag", "jreal", "jimag,,)

