Two Bit Comparator Circuit

Design a circuit that takes as input two 2-bit numbers N_1 and N_2 to be compared and generates three outputs:- one output for N_1 = N_2 , one for N_1 < N_2 and one for N_1 > N_2 .

The outputs are logic 1 if the corresponding condition is true and logic 0 otherwise.

A block diagram of the circuit is given below:-

The simplest way to describe the behaviour of the functions is with a truth table:-

A	В	С	D	$\mathbf{F}_{\mathbf{eq}}$	Flt	Fgt	
0	0	0	0	1	0	0	
0	0	0	1	0	1	0	
0	0	1	0	0	1	0	
0	0	1	1	0	1	0	
0	1	0	0	0	0	1	
0	1	0	1	1	0	0	
0	1	1	0	0	1	0	
0	1	1	1	0	1	0	
1	0	0	0	0	0	1	
1	0	0	1	0	0	1	
1	0	1	0	1	0	0	
1	0	1	1	0	1	0	
1	1	0	0	0	0	1	
1	1	0	1	0	0	1	
1	1	1	0	0	0	1	
1	1	1	1	1	0	0	

The next step is to prepare K-maps for each of the function outputs:-

AB				AB						AB					
CD \	00	01	11	10	CD \	00	01	11	10	CD \	00	01	11	10	
00	1	0	0	0	00	0	0	0	0	00	0	1	1	1	
01	0	1	0	0	01	1	0	0	0	01	0	0	1	1	
11	0	0	1	0	11	1	1	0	1	11	0	0	0	0	
10	0	0	0	1	10	1	1	0	0	10	0	0	1	0	
F_{eq}						F_{lt}				$F_{ m gt}$					

Switching Equations

Derive the minimal sum of products expressions for each function from the respective K-Maps above.

In the case of the Feq function, simplify the sum of products expression so that the function can be expressed in two levels using two 2-input XNOR gates and one 2-input AND gate instead. Show your workings.

(Note that A'B+AB' = A EXOR B and A'B' + AB = A XNOR B)

Logic Schematics

Create the comparator circuit from the switching equations you derived from the k-maps.

In the case of the equality function (N1=N2), implement both the sum-of-products form and the form which uses XNOR gates.

Verify that both implementations of the equality function produce the same outputs for all combinations of inputs. (Hint: Use the same input switches for both implementations to simplify testing.)