Сначала заполняется вся первая строка и первые два столбца. Дальнейшее заполнение таблицы ведется по следующей схеме:

a_{n-2}	a_{n-1}	a_n
p_{n-2}	p_{n-1}	
q_{n-2}	q_{n-1}	

- 1) столбец $\begin{vmatrix} p_{n-1} \\ q_{n-1} \end{vmatrix}$ умножить на $a_n,$
- 2) к полученному столбцу прибавить предыдущий.

Эту же схему рекомендуется применять, если требуется вычислить значение всей цепной дроби: последний столбец $\begin{vmatrix} p_3 \\ q_3 \end{vmatrix}$ доставляет ответ.

Поупражняйтесь сами в заполнении таблицы для цепной дроби [0; 3, 14, 1, 2, 5]

0	3	14	1	2	5
0	1	14	15	44	235
1	3	43	46	135	721

4. Разность соседних подходящих дробей. Шаг от n-й подходящей дроби к следующей представляет приращение n-й дроби и обозначается Δ_n :

$$\Delta_n = \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} = \frac{p_{n+1}q_n - p_nq_{n+1}}{q_nq_{n+1}} = \frac{D_n}{q_nq_{n+1}}, \tag{*}$$

где D_n обозначает числитель

$$D_n = p_{n+1}q_n - p_nq_{n+1}.$$
 (**)

Понизим индексы у p_{n+1} и q_{n+1} согласно формулам (3.2):

$$D_n = (p_n a_{n+1} + p_{n-1})q_n - p_n(q_n a_{n+1} + q_{n-1}) = -(p_n q_{n-1} - p_{n-1} q_n)$$

Выражение в скобках того же типа, что и (**), но все индексы на единицу

меньше. Значит, оно представляет D_{n-1} :

$$D_n = -D_{n-1}$$

Это рекуррентное соотношение позволяет понизить индекс до нуля:

$$D_n = -D_{n-1} = -D_{n-2} = -D_{n-3} = \dots$$

... = $(-1)^2 D_0$.

Для полного успеха остается непосредственно вычислить D_0 :

$$D_0 = p_1 q_0 - p_0 q_1 =$$

$$= (a_1 a_0 + 1) \cdot 1 - a_0 a_1 = 1.$$

Следовательно,

$$D_n = p_{n+1}q_n - p_nq_{n+1} = (-1)^n, \quad (4.1)$$

и по формуле (*)

$$\Delta_n = \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n q_{n+1}}.$$
 (4.2)

 Сравнение подходящих дробей по величине.

С в о й с т в о 1. Каждая подходящая дробь с нечетным номером больше соседних дробей (предыдущей и последующей). Каждая подходящая дробь с четным номером меньше соседних дробей.

Применяя эту формулировку к нулевой и последней подходящим дро- бям, надо учесть, что у каждой из них только одна соседняя дробь.

Справедливость этого свойства сразу видна из формулы (4.2).

Свойство 1 означает, что последовательные подходящие дроби поочередно то больше, то меньше.

С в о й с т в о 2. Разности между соседними подходящими дробями по абсолютной величине убывают (имеется в виду: при возрастании номера).

Сравним:

$$|\Delta_n| = \frac{1}{q_n q_{n+1}},$$

 $|\Delta_{n+1}| = \frac{1}{q_{n+1} q_{n+2}}.$

Имеем $q_{n+2} > q_n$ Значит, у второй дроби знаменатель больше, а она сама меньше:

 $|\Delta_{n+1}| < |\Delta_n|$

6. Несократимость подходящих дробей. Все подходящие дроби несократимы.

Рис.2