

Time Varying Covariates in a Cox Model

Steve Simon

Abstract

Time varying covariates allow you to account for non-proportional hazards and can model settings where patients switch from one therapy to another. You will code data for time-varying covariates, fit time-varying models, and interpret the results.

Testing the Proportional Hazards Assumption

Several approaches

- 1. Patterns in Kaplan-Meier curves
- 2. Complementary log-log plot
- Schoenfeld Residuals
- 4. Stratified analysis
- 5. Fit time varying covariates


```
StatSci.org / Home
```

OzDASL

Methadone Treatment of Heroin Addicts

Keywords: censored data, Cox regression.

Description

The data are the times, in days, that heroin addicts spend in a clinic. There are two clinics and the covariates are believed to affect the times spent in the clinic by addicts.

```
Variable Description
Clinic 1 or 2
Status 0 = still in clinic at end of study (censored) or 1 = departed from clinic
Time days spent in clinic
Prison 1 = prison record or 0 = no record
Dose methadone dosage (mg/day)
```

Example: Heroin Data Set

Example: Heroin Data Set

Example: Heroin Data Set

If the proportional hazards assumption holds then the survival curves for two different groups should be related by

$$S_2(t) = S_1(t)^{hr}$$

Take the logarithm of both sides to get

$$log(S_2(t)) = log(S_1(t))hr$$

We'd like to take a second log here, but since S_2 and S_1 are always between 0 and 1, their logarithms would be negative. You have to flip this to a positive value and then take a second logarithm.

$$log(-log(S_2(t))) = log(-log(S_1(t))) + log(hr)$$

If this transformation, the complementary log-log transformation, produces two curves that are separated by a constant for all values of t, then you have evidence to support the proportional hazards assumption.

Review of Likelihood

The partial likelihood is

$$l_p = \prod_i \frac{e^{X_{(i)}^{\beta}}}{\sum_{j \in R_{(i)}} e^{X_{j}^{\beta}}}$$

The log partial likelihood is

$$L_p = \sum_i (X_{(i)}\beta - log(\sum_{j \in R_{(i)}} e^{X_j\beta}))$$

Review of Likelihood

The derivative of the log partial likelihood is

$$\frac{\partial L_p}{\partial \beta} = \sum_{i=1}^m \left(X_{(i)} - \bar{X}_i(\beta) \right)$$

where $\bar{X}_i(\beta)$ is a weighted average of all the X's remaining in the risk set and with weights equal to

$$w_{ij} = \frac{e^{X_j \beta}}{\sum_{l \in R_i} e^{X_l \beta}}.$$

A positive derivative implies that we could maximize the log partial likelihood by increasing from the current value of β and a negative derivative implies the opposite.

The slope of the likelihood function is zero at its maximum, which implies that

$$\sum_{i=1}^{m} (X_{(i)} - \bar{X}_i(\hat{\beta})) = 0.$$

The individual terms in this sum,

$$X_{(i)} - \hat{X}_{w(i)},$$

are called the Schoenfeld residuals.

Interpretation

Normally, the Schoenfeld residuals are standardized.

A time trend is evidence of a violation of the proportional hazards assumption.

Consider this as evidence of an interaction between time and your independent variable.

Interpretation

Regions of time where residuals are negative

• the hazard ratio is a bit too large.

Regions of time where residuals are positive

the hazard ratio is a bit too small.

Stratified Models

The easiest solution for time-varying covariates

Stratification creates a separate baseline hazard for each level of your strata.

Only helpful when the time-varying covariate is a nuisance parameter.

Stratified Models


```
coef exp(coef) se(coef) z p
i_prison 0.38960 1.47640 0.16893 2.31 0.021
methadone_dose -0.03511 0.96549 0.00646 -5.43 5.6e-08

Likelihood ratio test=33.9 on 2 df, p=4.32e-08
n= 238, number of events= 150
```

Clinic 1 Survivals: Solid Line is prison_record=no

Clinic 2 Survivals: Solid Line is prison_record=no

Time-Varying Covariates

Interaction with time

You can address problems with non-proportional hazards by creating an interaction involving time.

Also consider interactions involving log(time).

Interaction with time, heroin dataset

```
    coef
    exp(coef)
    se(coef)
    z
    p

    clinic
    0.01940
    1.01958
    0.34717
    0.06
    0.9554

    tt(clinic)
    -1.10331
    0.33177
    0.34528
    -3.20
    0.0014

    i_prison
    0.38997
    1.47693
    0.16889
    2.31
    0.0209

    methadone dose
    -0.03519
    0.96543
    0.00644
    -5.46
    4.7e-08
```

```
Likelihood ratio test=76.1 on 4 df, p=1.11e-15 n= 238, number of events= 150
```

Time-Varying Covariates

Interaction with time, heroin dataset

beta_clinic beta_interaction		t log_hr		hr	
1	0.019	-1.103	0.0	0.019	1.020
2	0.019	-1.103	0.5	-0.532	0.587
3	0.019	-1.103	1.0	-1.084	0.338
4	0.019	-1.103	1.5	-1.636	0.195
5	0.019	-1.103	2.0	-2.187	0.112
6	0.019	-1.103	2.5	-2.739	0.065

Time-Varying Covariates

Stanford Transplant Data

Data pp 45-50 | Cite as

Stanford Heart Transplant Data

Authors Authors and affiliations

D. F. Andrews, A. M. Herzberg

Chapter

Part of the Springer Series in Statistics book series (SSS)

Abstract

The Stanford Heart Transplantation Program began in October 1967. Patients are admitted to the program after review by a committee, and then they wait for donor hearts to become available. While waiting, some may die or be transferred out of the program, but most receive a transplant. The cut-off date for the data presented in Table 7.1 was in February 1980, and by that time 184 patients had received a transplant.

Stanford Transplant Data

jasa: original data

birth.dt: birth date

accept.dt: acceptance into program

tx.date: transplant date

fu.date: end of followup

fustat: dead or alive

surgery: prior bypass surgery

age: age (in years)

futime: followup time

wait.time: time before transplant

transplant: transplant indicator

mismatch: mismatch score

hla.a2: particular type of mismatch

mscore: another mismatch score

reject: rejection occurred

Stanford Transplant Data, Patients 21-30


```
coef exp(coef) se(coef) z p
transplant -1.7171 0.1796 0.2785 -6.16 7.1e-10
age 0.0589 1.0607 0.0150 3.91 9.1e-05
surgery -0.4190 0.6577 0.3712 -1.13 0.26
```

```
Likelihood ratio test=45.9 on 3 df, p=6.11e-10 n= 103, number of events= 75
```


Stanford Transplant Data

Stanford Transplant Data

Stanford Transplant Data

Stanford Transplant Data

Stanford Transplant Data


```
coef exp(coef) se(coef) z p
transplant 0.0141 1.0142 0.3082 0.05 0.964
age 0.0306 1.0310 0.0139 2.20 0.028
surgery -0.7733 0.4615 0.3597 -2.15 0.032
```

```
Likelihood ratio test=10.7 on 3 df, p=0.0134 n= 170, number of events= 75
```

Conclusion

What have you learned today?

- 1. There are several ways to check for/control for time varying covariates: patterns in Kaplan-Meier curves, the complementary log-log plot, Schoenfeld Residuals, stratified analysis, and fitting time varying covariates.
- 2. You can fit time-varying covariates using start/stop coding or a time transfer function.