Can I Borrow Some Money?

Mike Rhinehart
June 5, 2018

Introduction

The is a dataset from a expired Kaggle competition where it requires participants to improve on the state of the art in credit scoring, by predicting the probability that somebody will experience financial distress in the next two years.

Banks play a crucial role in market economies. They decide who can get finance and on what terms and can make or break investment decisions. For markets and society to function, individuals and companies need access to credit. Credit scoring algorithms, which make a guess at the probability of default, are the method banks use to determine whether or not a loan should be granted. The goal of this competition is to build a model that borrowers can use to help make the best financial decisions.

Data Preparation

First, we begin reading in the dataset. Then we need to look at the structure our data to view the data types before performing exploratory analysis. The five number summary gives us an idea of the value range of the predictor variables and identifying the target variable or dependent variable.

```
credit = read.csv("cs-train.csv", header = TRUE) # reading in the dataset
str(credit) # View the structure of the data to see the data types
```

```
##
   'data.frame':
                    150000 obs. of 12 variables:
##
   $ X
                                                 1 2 3 4 5 6 7 8 9 10 ...
##
                                                 1 0 0 0 0 0 0 0 0 0 ...
   $ SeriousDlqin2yrs
                                            int
##
   $ RevolvingUtilizationOfUnsecuredLines: num
                                                 0.766 0.957 0.658 0.234 0.907 ...
                                                 45 40 38 30 49 74 57 39 27 57 ...
##
                                            int
    $ NumberOfTime30.59DaysPastDueNotWorse: int
##
                                                 2 0 1 0 1 0 0 0 0 0 ...
   $ DebtRatio
                                                 0.803 0.1219 0.0851 0.036 0.0249 ...
##
                                            num
##
   $ MonthlyIncome
                                                 9120 2600 3042 3300 63588 3500 NA 3500 NA 23684 ...
                                          : int
   $ NumberOfOpenCreditLinesAndLoans
                                                 13 4 2 5 7 3 8 8 2 9 ...
##
                                          : int
   $ NumberOfTimes90DaysLate
                                            int
                                                 0 0 1 0 0 0 0 0 0 0 ...
##
   $ NumberRealEstateLoansOrLines
                                            int
                                                 6000113004 ...
##
   $ NumberOfTime60.89DaysPastDueNotWorse: int
                                                 0000000000...
   $ NumberOfDependents
                                          : int
                                                 2 1 0 0 0 1 0 0 NA 2 ...
summary(credit) # five number summary
```

```
## X SeriousDlqin2yrs RevolvingUtilizationOfUnsecuredLines ## Min. : 1 Min. :0.00000 Min. : 0.00
```

```
##
    1st Qu.: 37501
                      1st Qu.:0.00000
                                          1st Qu.:
                                                       0.03
##
    Median : 75001
                      Median :0.00000
                                          Median:
                                                       0.15
##
    Mean
            : 75001
                      Mean
                              :0.06684
                                          Mean
                                                       6.05
                      3rd Qu.:0.00000
##
    3rd Qu.:112500
                                                       0.56
                                          3rd Qu.:
##
            :150000
                      Max.
                              :1.00000
                                          Max.
                                                  :50708.00
```

##

age NumberOfTime30.59DaysPastDueNotWorse DebtRatio

Min. : 0.0 Min. : 0.000 Min. : 0.0 Min. : 0.0 ## 1st Qu.: 41.0 1st Qu.: 0.2

```
Median: 52.0
                    Median : 0.000
                                                            Median :
                                                                          0.4
##
           : 52.3
                            : 0.421
                                                                        353.0
    Mean
                    Mean
                                                            Mean
##
    3rd Qu.: 63.0
                     3rd Qu.: 0.000
                                                            3rd Qu.:
                                                                          0.9
           :109.0
                            :98.000
##
    Max.
                     Max.
                                                            Max.
                                                                   :329664.0
##
##
                       NumberOfOpenCreditLinesAndLoans NumberOfTimes90DaysLate
   MonthlyIncome
##
                   0
                              : 0.000
                                                                : 0.000
    Min.
           :
                                                         Min.
                       1st Qu.: 5.000
                                                         1st Qu.: 0.000
##
    1st Qu.:
               3400
                       Median : 8.000
##
    Median:
               5400
                                                         Median : 0.000
                                                               : 0.266
##
    Mean
               6670
                       Mean
                             : 8.453
                                                         Mean
    3rd Qu.:
               8249
                       3rd Qu.:11.000
                                                         3rd Qu.: 0.000
           :3008750
                              :58.000
##
                                                         Max.
                                                                :98.000
    Max.
                       Max.
##
    NA's
           :29731
##
    NumberRealEstateLoansOrLines NumberOfTime60.89DaysPastDueNotWorse
##
           : 0.000
                                  Min.
                                          : 0.0000
    Min.
##
    1st Qu.: 0.000
                                   1st Qu.: 0.0000
##
    Median : 1.000
                                  Median : 0.0000
##
    Mean
           : 1.018
                                  Mean
                                          : 0.2404
    3rd Qu.: 2.000
##
                                  3rd Qu.: 0.0000
##
    Max.
           :54.000
                                  Max.
                                          :98.0000
##
##
   NumberOfDependents
##
    Min.
           : 0.000
    1st Qu.: 0.000
##
##
   Median : 0.000
    Mean
           : 0.757
##
    3rd Qu.: 1.000
           :20.000
##
    Max.
    NA's
##
           :3924
```

Here we look at the correlation matrix to measure the correlations between the predictors and the outcome variable. Noticed, there are cases of multi-collinearity between the NumberOfTime30.59DaysPastDueNotWorse, NumberOfTime60.89DaysPastDueNotWorse, and NumberOfTime60.89DaysPastDueNotWorse. This means we would have to drop two predictors and leave only one. Moreover, multicollinearity makes it tedious to assess the relative importance of the independent variables in explaining the variation caused by the dependent variable. Since they are closer to 1 on a scale to -1 to 1, we would keep the NumberOfTime30.59DaysPastDueNotWorse to avoid increases the standard errors of the coefficients.

```
library(corrplot)
```

```
## corrplot 0.84 loaded
```

```
credit_miss <- na.omit(credit) # temporarily remove NA's before correlation plot
corrplot(cor(credit_miss), method = "number", tl.cex = 0.5) # correlation matrix</pre>
```



```
credit_miss$SeriousDlqin2yrs[credit_miss$SeriousDlqin2yrs == 0] <- "No"
credit_miss$SeriousDlqin2yrs[credit_miss$SeriousDlqin2yrs == 1] <- "Yes"
credit_miss$SeriousDlqin2yrs <- as.factor(credit_miss$SeriousDlqin2yrs) #change the outcome variable to</pre>
```

We observed there are many missing values in the data and will deal those later. Next, we combined the three defaulted fields and removed two out of the three multi-collinearity predictor variables.

```
sum(is.na(credit_miss)) # count the number of NA's in the data
```

```
## [1] 0
```

```
##
  'data.frame':
                    120269 obs. of 10 variables:
##
   $ X
                                          : int 1 2 3 4 5 6 8 10 11 12 ...
##
   $ SeriousDlqin2yrs
                                          : Factor w/ 2 levels "No", "Yes": 2 1 1 1 1 1 1 1 1 1 ...
  $ RevolvingUtilizationOfUnsecuredLines: num
                                                 0.766 0.957 0.658 0.234 0.907 ...
##
                                                 45 40 38 30 49 74 39 57 30 51 ...
##
                                          : int
   $ NumberOfTime30.59DaysPastDueNotWorse: int
                                                 2 0 1 0 1 0 0 0 0 0 ...
##
                                                 0.803 0.1219 0.0851 0.036 0.0249 ...
##
   $ DebtRatio
                                          : num
##
   $ MonthlyIncome
                                          : int
                                                 9120 2600 3042 3300 63588 3500 3500 23684 2500 6501 ...
  $ NumberOfOpenCreditLinesAndLoans
                                                 13 4 2 5 7 3 8 9 5 7 ...
##
                                          : int
   $ NumberRealEstateLoansOrLines
                                                 6 0 0 0 1 1 0 4 0 2 ...
                                          : int
   $ NumberOfDependents
                                                 2 1 0 0 0 1 0 2 0 2 ...
                                          : int
```

Data Cleaning/Exploratory Data Analysis

First, we noticed Revolving Utilization Of Unsecured Lines field had some individuals with higher credit utilization greater than 100 percent. These are cases we will need to remove because no one can go over their max usuage of credit. So we will replace those values greater than 100 percent with NA's.

In the boxplot for Age, there are several outliers in the upper whisker and one in the lower whisker that needs to be removed. So we will replace those outliers with NA's as well.

In the histogram, the skewness of Age, looks normally distributed.

```
library(ggplot2)
credit_sub$RevolvingUtilizationOfUnsecuredLines[credit_sub$RevolvingUtilizationOfUnsecuredLines > 1] <-
boxplot(credit_sub$age, main = "Age Boxplot")</pre>
```



```
ggplot(credit_sub, aes(age)) + geom_histogram(binwidth = 4) + labs(title="Age Histogram")
```

Age Histogram


```
credit_sub$age[credit_sub$age < 21] <- NA
credit_sub$age[credit_sub$age > 90] <- NA</pre>
```

In the boxplot of NumberOfTime30.59DaysPastDueNotWorse, it's really difficult to find if there are cases of outliers, other than the two in the upper extreme, since there are no quartile boxes or whiskers to interpret. So, we will plot a histogram to see if we can get a better look at possible outliers. Noticed, the observations on the histogram displays values only less than approximately to 10.We can assume these values are outliers and replace them with NA.

The DebtRatio field had some individuals with credit usage greater than 100 percent. These are cases we will need to remove since no one can borrow money than their max credit given to them. So we will replace those values greater than 100 percent with NA's.

boxplot(credit_sub\$NumberOfTime30.59DaysPastDueNotWorse, main = "Number Of Times 30 - 59 Days Past Due 1

Number Of Times 30 – 59 Days Past Due Not Worse Boxplot

ggplot(credit_sub, aes(NumberOfTime30.59DaysPastDueNotWorse)) + geom_histogram(binwidth = 2) + labs(tit

Number Of Time 30 – 59 Days Past Due Not Worse

 $\label{lem:credit_sub} $$\operatorname{NumberOfTime30.59DaysPastDueNotWorse[credit_sub$NumberOfTime30.59DaysPastDueNotWorse > 10] $$\operatorname{credit_sub$DebtRatio[credit_sub$DebtRatio] > 1] <- NA}$$

In the boxplot of MonthlyIncome, it's really difficult to find if there are cases of outliers, other than the one in the upper extreme, since there are no quartile boxes or whiskers to interpret. So, we will plot a histogram to see if we can get a better look of possible outliers. Noticed, the spread of the data is very skewed to the right and does not take shape of a normal distribution. Moroever, we are going to replace the Monthly Income greater 14000 to NA, so we can reduce inaccurate classifications errorsbefore using several machine learning techniques later.

We plotted the Monthly Boxplot again to detect cases of outliers and they are no longer in our data.

boxplot(credit_sub\$MonthlyIncome, main = "Monthly Income Boxplot")

Monthly Income Boxplot


```
ggplot(credit_sub, aes(MonthlyIncome)) + geom_histogram() + labs(title="Monthly Income")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Monthly Income 125000 - 100000 - 75000 - 25000 - 25000 - 2000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 10000000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100

ggplot(credit_sub, aes(MonthlyIncome)) + geom_histogram(bins = 75) + labs(title="Monthly Income")+ xlim

Warning: Removed 301 rows containing non-finite values (stat_bin).

Monthly Income

credit_sub\$MonthlyIncome[as.integer(credit_sub\$MonthlyIncome) > 14000] <- NA
boxplot(credit_sub\$MonthlyIncome, main = "Monthly Income Boxplot")</pre>

Monthly Income Boxplot

In the Number of Open Credit Lines And Loans boxplot, there are serveral outliers in the upper whisker and the data looks slightly skewed to the right. Let's take a look at the histogram to be sure they are outliers and data is slightly skewed to the right. The outliers in the boxplot could have caused it to not take the shape of a normal distribution, so lets remove them.

boxplot(credit_sub\$NumberOfOpenCreditLinesAndLoans, main = "Number Of Open Credit Lines And Loans Boxpl

Number Of Open Credit Lines And Loans Boxplot

ggplot(credit_sub, aes(NumberOfOpenCreditLinesAndLoans)) + geom_histogram(bins = 30) + labs(title="Numb

Number Of Open Credit Lines And Loans

credit_sub\$NumberOfOpenCreditLinesAndLoans[credit_sub\$NumberOfOpenCreditLinesAndLoans > 20] <- NA</pre>

In the Number Real Estate Loans Or Lines boxplot, there are serveral outliers in the upper whisker and only one at the very top. Let's take a look at the histogram to be sure they are outliers. Noticed, the data is slighltly skewed to the right and does not have a bell-shaped curve. Moreover, the outliers in the boxplot could have caused it to not take the shape of a normal distribution, so lets replace those values greater than 7 them with NA.

boxplot(credit_sub\$NumberRealEstateLoansOrLines, main = "Number Real Estate Loan Or Lines Boxplot")

Number Real Estate Loan Or Lines Boxplot

ggplot(credit_sub, aes(NumberRealEstateLoansOrLines)) + geom_histogram(bins = 30) + labs(title="Number : "Number : "Numbe

Number Real Estate Loans Or Lines

credit_sub\$NumberRealEstateLoansOrLines[credit_sub\$NumberRealEstateLoansOrLines > 7] <- NA</pre>

In the Number of Dependents boxplot, there are serveral outliers in the upper whisker. Let's take a look at the histogram to be sure they are outliers. Since it doesn't display the values greater than 5, lets assume these are outliers and replace them with NA.

boxplot(credit_sub\$NumberOfDependents, main = "Number of Dependents")

Number of Dependents

ggplot(credit_sub, aes(NumberOfDependents)) + geom_histogram(binwidth = 1) + labs(title= "Number Of Dep

Number Of Dependents

credit_sub\$NumberOfDependents[credit_sub\$NumberOfDependents > 5] <- NA</pre>

From the cleaning above, let's see how many NA's our data contain. There are quite a bit of NA's in our data, so lets remove them before performing EDA.

```
sum(is.na(credit_sub))

## [1] 21070

credit_clean <- na.omit(credit_sub)
attach(credit_clean)</pre>
```

From the barplot, there were an equivalent number of individuals who were seriously delinquent according to Revolving Utilization Of Unsecured Lines.

```
ggplot(data=credit_clean, aes(SeriousDlqin2yrs,RevolvingUtilizationOfUnsecuredLines)) +
    geom_bar(stat="identity", position=position_dodge()) + labs(title = " Revolving Utilization Of Unse
```

Revolving Utilization Of Unsecured Lines by Serious Deliquency

 $\verb|t.test| (\texttt{RevolvingUtilizationOfUnsecuredLines} \verb|-SeriousDlqin2yrs|, var.equal=FALSE|) \textit{\# testing the means of to the testing the means of to the testing the means of the testing the testing the testing the means of the testing the testi$

From the barplot, there were an equivalent number of individuals who were seriously delinquent according to Age.

```
ggplot(credit_clean, aes(SeriousDlqin2yrs,age)) +
    geom_bar(stat="identity", position=position_dodge()) + labs(title = "Age by Serious Deliquency")
```

Age by Serious Deliquency

t.test(age~SeriousDlqin2yrs, var.equal=FALSE)

```
##
## Welch Two Sample t-test
##
## data: age by SeriousDlqin2yrs
## t = 33.805, df = 7173.7, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 5.444296 6.114582
## sample estimates:
## mean in group No mean in group Yes
## 51.48477 45.70533</pre>
```

From the barplot, there were more number of individuals were Seriously Deliquent than were not delinquent according to NumberOfTimes 30 -59 Days Past Due Not Worse.

```
ggplot(credit_clean, aes(SeriousDlqin2yrs,NumberOfTime30.59DaysPastDueNotWorse)) +
    geom_bar(stat="identity", position=position_dodge()) + labs(title = "NumberOfTimes 30 -59 Days Past
```

NumberOfTimes 30 –59 Days Past Due Not Worse by Serious Deliquency

t.test(NumberOfTime30.59DaysPastDueNotWorse~SeriousDlqin2yrs, var.equal=FALSE)

From the barplot, there were an equivalent number of individuals who were seriously delinquent according to Debt Ratio.

```
ggplot(credit_clean, aes(SeriousDlqin2yrs,DebtRatio)) +
    geom_bar(stat="identity", position=position_dodge()) + labs(title = "Debt Ratio by Serious Deliquen")
```

Debt Ratio by Serious Deliquency

t.test(DebtRatio~SeriousDlqin2yrs, var.equal=FALSE)

From the barplot, there were an equivalent number of individuals who were seriously delinquent according to Monthly Income.

```
ggplot(credit_clean, aes(SeriousDlqin2yrs,MonthlyIncome)) +
    geom_bar(stat="identity", position=position_dodge()) + labs(title = "Monthly Income by Serious Delication")
```

Monthly Income by Serious Deliquency

t.test(MonthlyIncome~SeriousDlqin2yrs, var.equal=FALSE)

```
##
## Welch Two Sample t-test
##
## data: MonthlyIncome by SeriousDlqin2yrs
## t = 20.66, df = 7083.6, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 684.1058 827.5337
## sample estimates:
## mean in group No mean in group Yes
## 5886.675 5130.856</pre>
```

From the barplot, there were an equivalent number of individuals who were seriously delinquent according to Number Of Open Credit Lines And Loans.

```
ggplot(credit_clean, aes(SeriousDlqin2yrs,NumberOfOpenCreditLinesAndLoans)) +
    geom_bar(stat="identity", position=position_dodge()) + labs(title = "Number Of Open Credit Lines Andloans))
```

Number Of Open Credit Lines And Loans by Serious Deliquency

t.test(NumberOfOpenCreditLinesAndLoans~SeriousDlqin2yrs, var.equal=FALSE)

```
##
## Welch Two Sample t-test
##
## data: NumberOfOpenCreditLinesAndLoans by SeriousDlqin2yrs
## t = 10.261, df = 6772.9, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.5156021 0.7591244
## sample estimates:
## mean in group No mean in group Yes
## 8.187920 7.550556</pre>
```

From the barplot, there were an equivalent number of individuals who were seriously delinquent in according to Number of Dependents.

```
ggplot(credit_clean, aes(SeriousDlqin2yrs,NumberOfDependents)) +
    geom_bar(stat="identity", position=position_dodge()) + labs(title = "Number Of Dependents by Seriou")
```

Number Of Dependents by Serious Deliquency

t.test(NumberOfDependents~SeriousDlqin2yrs, var.equal=FALSE)

```
##
## Welch Two Sample t-test
##
## data: NumberOfDependents by SeriousDlqin2yrs
## t = -13.737, df = 6790.6, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2470072 -0.1853146
## sample estimates:
## mean in group No mean in group Yes
## 0.8049451 1.0211060</pre>
```

Here, we checked the number of proportionate values for SeriousDlqin2yrs for unbalancing.

```
table(credit_clean$SeriousDlqin2yrs) # view the balance of the out
```

```
## No Yes
## 94599 6112
```

Modeling

Now we are going to begin introducing our cleaned and prepared data to different classification techniques to predict if an individual will experience financial distress in the next two years.

First, we are going to split our data between 70/30 training and testing set.

```
library(caret)
attach(credit_clean)
sample_data <- createDataPartition(SeriousDlqin2yrs, p = 0.7, list = FALSE) # splitting 70/30 train and
train <- credit_clean[sample_data,] # training set</pre>
test <- credit_clean[-sample_data,] # testing set</pre>
table(train$SeriousDlqin2yrs) # viewing the train set proportionality of the outcome variable
##
##
      No
           Yes
## 66220
          4279
table(test$SeriousDlqin2yrs) # viewing the test set proportionality of the outcome variable
##
##
      No
           Yes
          1833
## 28379
After splitting the data, its good to make sure there are a equivalent amount of columns for the training and
testing set.
dim(train)
## [1] 70499
                 10
dim(test)
## [1] 30212
                 10
```

Logistic Regression

library(ROCR)

First, we begin our modeling techniques with logistic regression. Since our outcome variable (SeriousDlqin2yrs) is dichotomous, we are going to use the non-linear approach because the its not a linear outcome. Also, note that we must specify family = "binomial" for a binary classification context.

```
library(ROSE)
logit_model <- glm(SeriousDlqin2yrs ~.-X, data = train, family = "binomial") # binomial for binary clas</pre>
summary(logit_model) # summary of the model
##
  glm(formula = SeriousDlqin2yrs ~ . - X, family = "binomial",
##
##
       data = train)
##
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   30
                                           Max
                                        3.1080
## -2.7812 -0.3400 -0.2278 -0.1792
##
## Coefficients:
##
                                          Estimate Std. Error z value
## (Intercept)
                                        -3.220e+00 8.293e-02 -38.825
## RevolvingUtilizationOfUnsecuredLines 2.110e+00 5.176e-02 40.765
                                         -1.289e-02 1.355e-03 -9.518
## NumberOfTime30.59DaysPastDueNotWorse 6.158e-01 1.607e-02 38.310
## DebtRatio
                                         1.648e-01 9.983e-02
                                                                1.650
```

```
## MonthlyIncome
                                        -7.263e-05 7.772e-06 -9.345
## NumberOfOpenCreditLinesAndLoans
                                         8.950e-03 4.999e-03
                                                                 1.790
## NumberRealEstateLoansOrLines
                                         4.398e-02 2.562e-02
                                                                 1.717
## NumberOfDependents
                                         1.047e-01 1.460e-02
                                                                7.173
                                        Pr(>|z|)
## (Intercept)
                                         < 2e-16 ***
## RevolvingUtilizationOfUnsecuredLines
                                        < 2e-16 ***
                                         < 2e-16 ***
## NumberOfTime30.59DaysPastDueNotWorse < 2e-16 ***</pre>
## DebtRatio
                                          0.0989 .
## MonthlyIncome
                                         < 2e-16 ***
## NumberOfOpenCreditLinesAndLoans
                                          0.0734 .
## NumberRealEstateLoansOrLines
                                          0.0860 .
                                        7.34e-13 ***
## NumberOfDependents
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 32271 on 70498 degrees of freedom
## Residual deviance: 26951 on 70490 degrees of freedom
## AIC: 26969
##
## Number of Fisher Scoring iterations: 6
logit_pred <- predict(logit_model,newdata = test, type = "response") # predicting the class on unseen d</pre>
logit_preds <- ifelse(logit_pred > 0.5, "Yes", "No") # threshold probabilities greater than 0.5
confusionMatrix(table(logit_preds,test$SeriousDlqin2yrs)) # confusion matrix and Kappa Statistic
## Confusion Matrix and Statistics
##
##
## logit_preds
                  No
                       Yes
##
           No 28269
                      1751
##
           Yes
                 110
                        82
##
                  Accuracy : 0.9384
##
                    95% CI: (0.9356, 0.9411)
##
##
       No Information Rate: 0.9393
       P-Value [Acc > NIR] : 0.7545
##
##
##
                     Kappa: 0.0703
   Mcnemar's Test P-Value : <2e-16
##
##
               Sensitivity: 0.99612
##
##
               Specificity: 0.04474
##
            Pos Pred Value: 0.94167
##
            Neg Pred Value: 0.42708
                Prevalence: 0.93933
##
##
            Detection Rate: 0.93569
##
      Detection Prevalence: 0.99364
##
         Balanced Accuracy: 0.52043
##
```

##

##

'Positive' Class : No

Area under the curve (AUC): 0.803

Noticed, in the summary table, there are a couple of variables that were not significant to our model, DebitRatio, NumberOfOpenCreditLinesAndLoans and NumberRealEstateLoansOrLines. They had p-values greater than 0.05, so we are going to remove both them to see if they will make difference in improving the accuracy of our next model.

How do we know that 0.5 value is the "optimal" value for accuracy. In reality, other cutoff values may be better (although 0.5 will tend to be the best value if all model assumptions are true and the sample size is reasonably large since we are dealing with a binary outcome).

From our current model, it classification accuracy of 94% is very good but it seems like the learning algorithm has some issues with overfitting. If you look at the Kappa statistic, it has a value of 0.08 or 8% on a 100% scale. This means our model has a agreement equivalent to chance which means guessing in other words. Before, implementing our second model, we are going to balance the data, to improve the Kappa statistic and possibly the overall accuracy of our model.

For the ROC plot, we would like the curve to "hug" the right and upper borders of the plot (indicating high sensitivity and specificity). Although it's not as closer to the upper right boarders as I expected, we will evaluate it on our next model to see if has improved.

Oversampling unbalanced data

As stated above in our previous model, there were some problems with overfitting and unproportioned outcome variable imbalances. So we performed an oversampling method that works with minority class. It

replicates the observations from minority class to balance the data. Since our training and testing data are severly unbalanced, we are going to perform this technique on both samples.

```
data_oversample_train <- ovun.sample(SeriousDlqin2yrs ~.,data = train, method = "over")$data
table(data_oversample_train$SeriousDlqin2yrs)

##
## No Yes
## 66220 66226

data_oversample_test <- ovun.sample(SeriousDlqin2yrs ~.,data = test, method = "over")$data
table(data_oversample_test$SeriousDlqin2yrs)

##
## No Yes
## 28379 28331</pre>
```

As you can see from the results above, they are now both balanced now.

Below, we have our second logistic regression model. We removed a few of the predictor variables that were not significant to our first model. Noticed, we also incorporated the oversampled samples for our training and testing data.

```
logit_model2 <- glm(SeriousDlqin2yrs ~ RevolvingUtilizationOfUnsecuredLines + age + NumberOfTime30.59Day
summary(logit_model2)</pre>
```

```
##
## Call:
  glm(formula = SeriousDlqin2yrs ~ RevolvingUtilizationOfUnsecuredLines +
       age + NumberOfTime30.59DaysPastDueNotWorse + MonthlyIncome +
##
       NumberOfDependents, family = "binomial", data = data_oversample_train)
##
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                   3Q
                                           Max
                              0.8624
## -4.0543 -0.8135 0.0369
                                        2.1223
##
## Coefficients:
##
                                          Estimate Std. Error z value
                                        -4.416e-01 2.933e-02 -15.06
## (Intercept)
## RevolvingUtilizationOfUnsecuredLines 2.134e+00 1.829e-02 116.71
                                        -1.370e-02 4.922e-04 -27.84
## NumberOfTime30.59DaysPastDueNotWorse 8.262e-01 9.356e-03
                                                                88.31
## MonthlyIncome
                                        -6.160e-05 2.349e-06 -26.22
## NumberOfDependents
                                         1.022e-01 5.796e-03
                                                                17.63
##
                                        Pr(>|z|)
## (Intercept)
                                          <2e-16 ***
## RevolvingUtilizationOfUnsecuredLines
                                          <2e-16 ***
                                          <2e-16 ***
## NumberOfTime30.59DaysPastDueNotWorse
                                          <2e-16 ***
## MonthlyIncome
                                          <2e-16 ***
## NumberOfDependents
                                          <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 183609 on 132445 degrees of freedom
```

```
## Residual deviance: 142809 on 132440 degrees of freedom
## AIC: 142821
##
## Number of Fisher Scoring iterations: 5
os_pred <- predict(logit_model2, newdata = data_oversample_test, type = "response") # predicting the cl
os_preds <- ifelse(os_pred > 0.5, "Yes", "No") # threshold of probabilities greater than 0.5
confusionMatrix(table(data_oversample_test$SeriousDlqin2yrs,os_preds)) # confusion matrix
## Confusion Matrix and Statistics
##
##
        os_preds
##
            No
                Yes
    No 21650 6729
##
     Yes 8269 20062
##
##
##
                  Accuracy : 0.7355
                    95% CI : (0.7319, 0.7392)
##
##
       No Information Rate: 0.5276
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.471
##
   Mcnemar's Test P-Value : < 2.2e-16
##
               Sensitivity: 0.7236
##
               Specificity: 0.7488
##
            Pos Pred Value: 0.7629
##
##
            Neg Pred Value: 0.7081
##
                Prevalence: 0.5276
##
            Detection Rate: 0.3818
##
      Detection Prevalence: 0.5004
##
         Balanced Accuracy: 0.7362
##
##
          'Positive' Class : No
##
```

roc.curve(data_oversample_test\$SeriousDlqin2yrs, os_preds)

ROC curve

Area under the curve (AUC): 0.736

From the results of our second model, it didn't performed as expected with a classification accuracy of 74%. Check out the Kappa statistic of a value of 49% has moderate agreement as oppose to no aggreement in our first model.

The ROC value was very similair to our overall classification our model, which means our model is no longer overfitting.

ROSE Sampling

The ROSE sampling method generates data synthetically and provides a better estimate of original data. We wanted to try another balancing technique for our outcome variable to measure if we can improve or receive a better accuracy than using the oversampling method above.

Noticed, the training and testing sample data is clearly proportionate to both levels.

```
data_rose_train <- ROSE(SeriousDlqin2yrs ~., data = train)$data # synthetic training data generated enl data_rose_test <- ROSE(SeriousDlqin2yrs ~., data = test)$data # synthetic testing data generated enlarg table(data_rose_train$SeriousDlqin2yrs)
```

```
##
## No Yes
## 35381 35118
table(data_rose_test$SeriousDlqin2yrs)
```

##

```
## No Yes
## 15064 15148
```

From incorporating ROSE training and testing sample data, the model performed less than the oversampling method above. It had an accuracy of 73%. The Kappa statistic of a value of 45% has moderate agreement as oppose to no aggreement.

```
logit_model3 <- glm(SeriousDlqin2yrs~.-X, data = data_rose_train, family = "binomial") # added the new
summary(logit_model3) # summary of the model
```

```
##
## Call:
## glm(formula = SeriousDlqin2yrs ~ . - X, family = "binomial",
       data = data_rose_train)
##
## Deviance Residuals:
      Min
                 1Q
                     Median
                                   30
                                           Max
## -3.6231 -0.8729 -0.4280
                               0.9058
                                        2.5942
##
## Coefficients:
##
                                          Estimate Std. Error z value
                                        -4.561e-01 3.785e-02 -12.051
## (Intercept)
## RevolvingUtilizationOfUnsecuredLines 1.956e+00
                                                   2.382e-02 82.107
                                        -1.363e-02 6.035e-04 -22.578
## NumberOfTime30.59DaysPastDueNotWorse 6.202e-01
                                                   1.011e-02 61.365
## DebtRatio
                                         3.028e-01
                                                   4.130e-02
                                                                7.333
## MonthlyIncome
                                        -5.778e-05 3.172e-06 -18.217
## NumberOfOpenCreditLinesAndLoans
                                         5.324e-03 2.078e-03
                                                                2.562
## NumberRealEstateLoansOrLines
                                         1.317e-02 1.017e-02
                                                                1.295
## NumberOfDependents
                                         9.647e-02 7.055e-03 13.674
##
                                        Pr(>|z|)
## (Intercept)
                                         < 2e-16 ***
## RevolvingUtilizationOfUnsecuredLines
                                       < 2e-16 ***
                                         < 2e-16 ***
## NumberOfTime30.59DaysPastDueNotWorse < 2e-16 ***
## DebtRatio
                                        2.26e-13 ***
## MonthlyIncome
                                         < 2e-16 ***
## NumberOfOpenCreditLinesAndLoans
                                          0.0104 *
## NumberRealEstateLoansOrLines
                                          0.1952
## NumberOfDependents
                                         < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 97731 on 70498 degrees of freedom
## Residual deviance: 78423 on 70490 degrees of freedom
## AIC: 78441
##
## Number of Fisher Scoring iterations: 4
os_pred3 <- predict(logit_model3, newdata = data_rose_test, type = "response") # predicting the class u
os preds3 <- ifelse(os pred3 > 0.5, "Yes", "No") # threshold of probabilities greater than 0.5
confusionMatrix(table(data_rose_test$SeriousDlqin2yrs,os_preds3)) # confusion matrix
```

```
##
##
       os_preds3
##
           No
                Yes
    No 11251 3813
##
     Yes 4646 10502
##
##
##
                 Accuracy: 0.72
                    95% CI : (0.7149, 0.7251)
##
##
       No Information Rate: 0.5262
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.4401
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
              Sensitivity: 0.7077
              Specificity: 0.7336
##
##
            Pos Pred Value: 0.7469
##
            Neg Pred Value: 0.6933
##
               Prevalence: 0.5262
            Detection Rate: 0.3724
##
##
     Detection Prevalence: 0.4986
##
         Balanced Accuracy: 0.7207
##
          'Positive' Class : No
##
##
```

ROC curve

Area under the curve (AUC): 0.720

As we can see there was little to no difference in the overall accuracy of model in comparision to oversampling technique above.

Decision Tree

No pre-processing

Now we are going to fit a Tree to our data to predict if an individual is going to be seriously delinquent in two years. We are incorporating a cross-validation technique within the decision tree model to find the best optimal value for the complexity parameter for reducing the mean prediction error of our model.

Our Decision Tree tells us Revolving Utilization of Unsecured Lines and Number of Times 30 - 59 Days Past Due were the two most important variables in the model.

```
library(rpart)
rf_model <- train(SeriousDlqin2yrs ~.-X, data = data_oversample_train, method = "rpart", trControl = tr
print(rf_model) # Plot the trees

## CART
##
## 132446 samples
## 9 predictor
## 2 classes: 'No', 'Yes'</pre>
```

Summary of sample sizes: 119202, 119201, 119201, 119201, 119201, 119202, ...

Resampling: Cross-Validated (10 fold, repeated 1 times)

```
## Resampling results across tuning parameters:
##
##
                 Accuracy
                            Kappa
##
     0.00576865 0.7322757 0.4645510
##
     0.04195107 0.7154006 0.4307979
##
     0.41643008 0.6020220 0.2040062
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.00576865.
par(xpd = NA) # Avoid clipping the text in some device
plot(rf_model$finalModel)# Plot the final tree model
text(rf_model$finalModel, digits = 3) # adding the names of the relevant variable names to the trees
```



```
dt_y_hat <- predict(rf_model, data_oversample_test)</pre>
confusionMatrix(table(dt_y_hat,data_oversample_test$SeriousDlqin2yrs))
## Confusion Matrix and Statistics
##
##
## dt_y_hat
                    Yes
               No
##
        No 17979 4943
        Yes 10400 23388
##
##
##
                  Accuracy : 0.7294
##
                    95% CI: (0.7258, 0.7331)
##
       No Information Rate: 0.5004
```

```
P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.459
    Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.6335
##
##
               Specificity: 0.8255
            Pos Pred Value: 0.7844
##
##
            Neg Pred Value: 0.6922
                Prevalence: 0.5004
##
##
            Detection Rate: 0.3170
      Detection Prevalence: 0.4042
##
         Balanced Accuracy: 0.7295
##
##
##
          'Positive' Class : No
##
```

roc.curve(data_oversample_test\$SeriousDlqin2yrs, dt_y_hat)

Area under the curve (AUC): 0.730

By adding using the optimal value for the complexity paramter from our previous model for another model, there will be no improvement or changes in the overall classification accuracy nor the confusion matrix itself. The reason its going to be no change is due to the cp value being very small.

K-Nearest Neighbor

Now we are going to implement a K-Nearest Neighboor technique identifying the k most similar training observations to our new observation. Also, we incorporae cross-validation along with the K-NN algorithm to find the optimal k value to reduce the mean prediction error.

```
knn_model <- train(SeriousDlqin2yrs ~.-X, data = data_oversample_train, method = "knn",trControl = train
print(knn model) # summary of our model
## k-Nearest Neighbors
## 132446 samples
##
        9 predictor
        2 classes: 'No', 'Yes'
##
##
## Pre-processing: centered (8), scaled (8)
## Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 119201, 119202, 119201, 119201, 119201, 119202, ...
## Resampling results across tuning parameters:
##
##
    k
        Accuracy
                    Kappa
##
     5 0.8944400 0.7888780
##
     7 0.8678178 0.7356325
##
     9 0.8459674 0.6919306
##
     11 0.8281639 0.6563226
##
     13 0.8153587 0.6307114
##
     15 0.8055434 0.6110803
     17 0.7990728 0.5981390
##
##
     19 0.7942104 0.5884145
     21 0.7908732 0.5817404
##
##
     23 0.7877852 0.5755648
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 5.
knn model$bestTune # optimal value for k
##
    k
## 1 5
knn_y_hat <- predict(knn_model, data_oversample_test) # predicting the class on unseen data
confusionMatrix(table(knn_y_hat,data_oversample_test$SeriousDlqin2yrs)) # confusion matrix
## Confusion Matrix and Statistics
##
##
## knn_y_hat
                No
                     Yes
##
         No 22833 14879
##
         Yes 5546 13452
##
##
                  Accuracy : 0.6398
##
                    95% CI: (0.6359, 0.6438)
##
       No Information Rate: 0.5004
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.2795
```

```
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.8046
               Specificity: 0.4748
##
##
            Pos Pred Value: 0.6055
            Neg Pred Value: 0.7081
##
                Prevalence: 0.5004
##
            Detection Rate: 0.4026
##
##
      Detection Prevalence: 0.6650
##
         Balanced Accuracy: 0.6397
##
          'Positive' Class : No
##
##
```

roc.curve(data_oversample_test\$SeriousDlqin2yrs, knn_y_hat)

ROC curve

Area under the curve (AUC): 0.640

From the results from our K-NN model above, the optimal value for the best accuracy of our model is 5. We are going to use the optimal k value for our tuneLength to measure if our model accuracy will improve or not.

From the results of our model above, it had a classification accuracy of65-%. Check out the Kappa statistic of a value of 30% has slight agreement as oppose to no aggreement.

As you can see, we used 5 for our tuneLength for our second model.

```
ctrl <- trainControl(method="repeatedcv",repeats = 3,classProbs=TRUE,summaryFunction = twoClassSummary)
knn_model2 <- train(SeriousDlqin2yrs ~.-X, data = data_oversample_train, method = "knn",trControl = ctr</pre>
```

```
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was
## not in the result set. ROC will be used instead.
knn model2
## k-Nearest Neighbors
## 132446 samples
##
        9 predictor
##
        2 classes: 'No', 'Yes'
##
## Pre-processing: centered (8), scaled (8)
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 119201, 119201, 119201, 119201, 119202, 119202, ...
## Resampling results across tuning parameters:
##
##
         ROC
    k
                    Sens
                               Spec
##
     5 0.9710719 0.7885030
                               0.9999547
     7 0.9699722 0.7361019
##
                               0.9997131
##
     9 0.9662008 0.6929276
                               0.9991594
##
     11 0.9576316 0.6591966 0.9977400
     13 0.9440488 0.6358502 0.9940557
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 5.
knn_y_hat2 <- predict(knn_model2, data_oversample_test) # predicting the class on unseen data
confusionMatrix(knn_y_hat2,data_oversample_test$SeriousDlqin2yrs) # confusion matrix
## Confusion Matrix and Statistics
##
##
             Reference
                No
## Prediction
         No 22832 14879
##
         Yes 5547 13452
##
##
                  Accuracy : 0.6398
##
                    95% CI: (0.6358, 0.6438)
##
       No Information Rate: 0.5004
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.2794
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.8045
##
               Specificity: 0.4748
##
            Pos Pred Value: 0.6054
##
            Neg Pred Value: 0.7080
##
                Prevalence: 0.5004
##
            Detection Rate: 0.4026
      Detection Prevalence: 0.6650
##
##
         Balanced Accuracy: 0.6397
##
##
          'Positive' Class : No
```

##

Area under the curve (AUC): 0.640

From the results from our K-NN model above, the optimal value for the best accuracy of our model is 65%. The model did not improve at all.

Ensemble Learning

Given a list of caret models, the caretStack() function can be used to specify a higher-order model to learn how to best combine the predictions of sub-models together.

Let's first look at creating 5 sub-models for to finish our analysis specifically:

```
Gradient Boosting (GBM)
Classification and Regression Trees (CART)
Logistic Regression (via Generalized Linear Model or GLM)
k-Nearest Neighbors (kNN)
Naive Bayes (NB)
```

Below is an example that creates these 5 sub-models. Note the new helpful caretList() function provided by the caretEnsemble package for creating a list of standard caret models.

```
library(caretEnsemble)
control <- trainControl(method="repeatedcv", number=10, repeats=3, savePredictions='final', classProbs=
algorithmList <- c('gbm', 'rpart', 'glm', 'knn', 'nb') # stacking 5 modeling techniques
ensemble_learning <- caretList(SeriousDlqin2yrs~.-X, data=data_oversample_train, trControl=control, method</pre>
```

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3534	nan	0.1000	0.0165
##	2	1.3263	nan	0.1000	0.0133
##	3	1.3038	nan	0.1000	0.0112
##	4	1.2824	nan	0.1000	0.0107
##	5	1.2649	nan	0.1000	0.0088
##	6	1.2484	nan	0.1000	0.0082
##	7	1.2344	nan	0.1000	0.0072
##	8	1.2214	nan	0.1000	0.0066
##	9	1.2099	nan	0.1000	0.0057
##	10	1.1996	nan	0.1000	0.0052
##	20	1.1356	nan	0.1000	0.0020
##	40	1.0935	nan	0.1000	0.0005
##	60	1.0780	nan	0.1000	0.0003
##	80	1.0703	nan	0.1000	0.0001
##	100	1.0649	nan	0.1000	0.0001
##	120	1.0606	nan	0.1000	0.0001
##	140	1.0575	nan	0.1000	0.0000
##	150	1.0562	nan	0.1000	0.0001
##	100	1.0002	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3446	nan	0.1000	0.0210
##	2	1.3083	nan	0.1000	0.0180
##	3	1.2803	nan	0.1000	0.0140
##	4	1.2558	nan	0.1000	0.0113
##	5	1.2342	nan	0.1000	0.0128
##	6	1.2146	nan	0.1000	0.0100
##	7	1.1989	nan	0.1000	0.0078
##	8	1.1846	nan	0.1000	0.0070
##	9	1.1718	nan	0.1000	0.0064
##	10	1.1613	nan	0.1000	0.0052
##	20	1.1041	nan	0.1000	0.0002
##	40	1.0700	nan	0.1000	0.0013
##	60	1.0576	nan	0.1000	0.0003
##	80	1.0497	nan	0.1000	0.0002
##	100	1.0445	nan	0.1000	0.0002
##	120	1.0405	nan	0.1000	0.0001
##	140	1.0371	nan	0.1000	0.0001
##	150	1.0356	nan	0.1000	0.0001
##	100	1.0000	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3391	nan	0.1000	0.0236
##	2	1.2998	nan	0.1000	0.0195
##	3	1.2681	nan	0.1000	0.0158
##	4	1.2413	nan	0.1000	0.0133
##	5	1.2196	nan	0.1000	0.0109
##	6	1.2011	nan	0.1000	0.0093
##	7	1.1854	nan	0.1000	0.0078
##	8	1.1715	nan	0.1000	0.0070
##	9	1.1598	nan	0.1000	0.0058
##	10	1.1494	nan	0.1000	0.0051
##	20	1.0919	nan	0.1000	0.0001
##	40	1.0592	nan	0.1000	0.0003
##	60	1.0461	nan	0.1000	0.0003
11	00	1.0401	11411	3.1000	0.0002

##	80	1.0379	nan	0.1000	0.0003
##	100	1.0318	nan	0.1000	0.0001
##	120	1.0274	nan	0.1000	0.0001
##	140	1.0235	nan	0.1000	0.0000
##	150	1.0217	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3534	nan	0.1000	0.0165
##	2	1.3266	nan	0.1000	0.0135
##	3	1.3044	nan	0.1000	0.0111
##	4	1.2834	nan	0.1000	0.0106
##	5	1.2658	nan	0.1000	0.0088
##	6	1.2493	nan	0.1000	0.0083
##	7	1.2350		0.1000	0.0003
##	8	1.2221	nan	0.1000	0.0071
##	9	1.2106	nan	0.1000	0.0057
	10		nan	0.1000	
##	20	1.2005 1.1368	nan	0.1000	0.0050
##	40	1.1366	nan	0.1000	0.0020
##			nan		
##	60	1.0798	nan	0.1000	0.0002
##	80	1.0716	nan	0.1000	0.0002
##	100	1.0665	nan	0.1000	0.0001
##	120	1.0624	nan	0.1000	0.0001
##	140	1.0591	nan	0.1000	0.0001
##	150	1.0578	nan	0.1000	0.0001
##	т.	ш . ъ .	17 7 1 10 1	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3444	nan	0.1000	0.0210
##	2	1.3095	nan	0.1000	0.0174
##	3	1.2800	nan	0.1000	0.0148
##	4	1.2558	nan	0.1000	0.0119
##	5	1.2342	nan	0.1000	0.0108
##	6	1.2143	nan	0.1000	0.0100
##	7	1.1997	nan	0.1000	0.0073
##	8	1.1855	nan	0.1000	0.0070
##	9	1.1734	nan	0.1000	0.0060
##	10	1.1618	nan	0.1000	0.0057
##	20	1.1050	nan	0.1000	0.0017
##	40	1.0714	nan	0.1000	0.0004
##	60	1.0579	nan	0.1000	0.0002
##	80	1.0509	nan	0.1000	0.0001
##	100	1.0455	nan	0.1000	0.0001
##	120	1.0410	nan	0.1000	0.0001
##	140	1.0377	nan	0.1000	0.0000
##	150	1.0363	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3391	nan	0.1000	0.0235
##	2	1.3002	nan	0.1000	0.0194
##	3	1.2688	nan	0.1000	0.0158
##	4	1.2423	nan	0.1000	0.0132
##	5	1.2204	nan	0.1000	0.0109
##	6	1.2021	nan	0.1000	0.0092
##	7	1.1865	nan	0.1000	0.0078

## ## ##	0				
	8	1.1725	nan	0.1000	0.0069
##	9	1.1604	nan	0.1000	0.0061
	10	1.1506	nan	0.1000	0.0049
##	20	1.0939	nan	0.1000	0.0013
##	40	1.0604	nan	0.1000	0.0004
##	60	1.0473	nan	0.1000	0.0002
##	80	1.0397	nan	0.1000	0.0001
##	100	1.0342	nan	0.1000	0.0001
##	120	1.0294	nan	0.1000	0.0001
##	140	1.0252	nan	0.1000	0.0001
##	150	1.0226	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	${\tt Improve}$
##	1	1.3534	nan	0.1000	0.0165
##	2	1.3265	nan	0.1000	0.0135
##	3	1.3042	nan	0.1000	0.0111
##	4	1.2824	nan	0.1000	0.0107
##	5	1.2648	nan	0.1000	0.0087
##	6	1.2480	nan	0.1000	0.0083
##	7	1.2338	nan	0.1000	0.0071
##	8	1.2206	nan	0.1000	0.0066
##	9	1.2090	nan	0.1000	0.0057
##	10	1.1987	nan	0.1000	0.0052
##	20	1.1353	nan	0.1000	0.0021
##	40	1.0938	nan	0.1000	0.0005
##	60	1.0780	nan	0.1000	0.0002
	80	1 0000		0 4000	0 0001
##	80	1.0699	nan	0.1000	0.0001
## ##	100	1.0699	nan nan	0.1000	0.0001
##	100	1.0647	nan	0.1000	0.0001
## ##	100 120	1.0647 1.0606	nan nan	0.1000 0.1000	0.0001 0.0001
## ## ##	100 120 140	1.0647 1.0606 1.0575	nan nan nan	0.1000 0.1000 0.1000	0.0001 0.0001 0.0001
## ## ## ##	100 120 140	1.0647 1.0606 1.0575	nan nan nan	0.1000 0.1000 0.1000	0.0001 0.0001 0.0001
## ## ## ##	100 120 140 150	1.0647 1.0606 1.0575 1.0562	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001
## ## ## ## ##	100 120 140 150	1.0647 1.0606 1.0575 1.0562 TrainDeviance	nan nan nan nan ValidDeviance	0.1000 0.1000 0.1000 0.1000 StepSize	0.0001 0.0001 0.0001 0.0001 Improve
## ## ## ## ## ##	100 120 140 150 Iter 1	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437	nan nan nan nan ValidDeviance nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210
## ## ## ## ## ##	100 120 140 150 Iter 1 2	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077	nan nan nan validDeviance nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179
## ## ## ## ## ##	100 120 140 150 Iter 1 2 3	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343	nan nan nan validDeviance nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140
## ## ## ## ## ## ##	100 120 140 150 Iter 1 2 3 4	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550	nan nan nan ValidDeviance nan nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124
## ## ## ## ## ## ##	100 120 140 150 Iter 1 2 3 4 5	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343	nan nan nan ValidDeviance nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104
## ## ## ## ## ## ## ##	100 120 140 150 Iter 1 2 3 4 5 6	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151	nan nan nan ValidDeviance nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096
## ###################################	100 120 140 150 Iter 1 2 3 4 5 6 7	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086
## ## ## ## ## ## ## ## ##	100 120 140 150 Iter 1 2 3 4 5 6 7	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848	nan nan nan validDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066
## ## ## ## ## ## ## ##	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0086
## ## ## ## ## ## ## ## ##	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066 0.0059 0.0055 0.0015
######################################	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066 0.0059 0.0055 0.0015 0.0005
######################################	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042 1.0705 1.0577	nan nan nan validDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066 0.0059 0.0055 0.0015 0.0002 0.0001
## ### ### ### ### ### ### ###	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042 1.0705 1.0577	nan nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066 0.0059 0.0055 0.0015 0.0005
######################################	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042 1.0705 1.0577 1.0500 1.0449 1.0406	nan nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0059 0.0055 0.0015 0.0005 0.0001
######################################	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042 1.0705 1.0577 1.0500 1.0449 1.0406 1.0369	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066 0.0059 0.0055 0.0015 0.0005 0.0002 0.0001 0.0000
######################################	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042 1.0705 1.0577 1.0500 1.0449 1.0406	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0059 0.0055 0.0015 0.0005 0.0001
######################################	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042 1.0705 1.0577 1.0500 1.0449 1.0406 1.0369 1.0353	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066 0.0055 0.0015 0.0005 0.0002 0.0001 0.0000 0.0001 0.0001
######################################	100 120 140 150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0647 1.0606 1.0575 1.0562 TrainDeviance 1.3437 1.3077 1.2793 1.2550 1.2343 1.2151 1.1979 1.1848 1.1730 1.1618 1.1042 1.0705 1.0577 1.0500 1.0449 1.0406 1.0369	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0001 0.0001 0.0001 0.0001 Improve 0.0210 0.0179 0.0140 0.0124 0.0104 0.0096 0.0086 0.0066 0.0059 0.0055 0.0015 0.0005 0.0002 0.0001 0.0000

##	2	1.3001	nan	0.1000	0.0194
##	3	1.2687	nan	0.1000	0.0159
##	4	1.2420	nan	0.1000	0.0133
##	5	1.2199	nan	0.1000	0.0110
##	6	1.2012	nan	0.1000	0.0093
##	7	1.1842	nan	0.1000	0.0083
##	8	1.1708	nan	0.1000	0.0066
##	9	1.1582	nan	0.1000	0.0062
##	10	1.1474	nan	0.1000	0.0053
##	20	1.0920	nan	0.1000	0.0017
##	40	1.0590	nan	0.1000	0.0004
##	60	1.0457	nan	0.1000	0.0003
##	80	1.0383	nan	0.1000	0.0001
##	100	1.0327	nan	0.1000	0.0001
##	120	1.0277	nan	0.1000	0.0002
##	140	1.0236	nan	0.1000	0.0001
##	150	1.0217	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3536	nan	0.1000	0.0165
##	2	1.3268	nan	0.1000	0.0135
##	3	1.3043	nan	0.1000	0.0112
##	4	1.2829	nan	0.1000	0.0108
##	5	1.2650	nan	0.1000	0.0089
##	6	1.2484	nan	0.1000	0.0084
##	7	1.2340	nan	0.1000	0.0070
##	8	1.2207	nan	0.1000	0.0065
##	9	1.2092	nan	0.1000	0.0057
##	10	1.1989	nan	0.1000	0.0052
##	20	1.1354	nan	0.1000	0.0020
##	40	1.0933	nan	0.1000	0.0005
##	60	1.0778	nan	0.1000	0.0003
##	80	1.0700	nan	0.1000	0.0001
##	100	1.0646	nan	0.1000	0.0001
##	120	1.0604	nan	0.1000	0.0001
##	140	1.0571	nan	0.1000	0.0001
##	150	1.0558	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3443	nan	0.1000	0.0210
##	2	1.3097	nan	0.1000	0.0171
##	3	1.2797	nan	0.1000	0.0150
##	4	1.2550	nan	0.1000	0.0123
##	5	1.2318	nan	0.1000	0.0116
##	6	1.2137	nan	0.1000	0.0091
##	7	1.1987	nan	0.1000	0.0076
##	8	1.1854	nan	0.1000	0.0066
##	9	1.1735	nan	0.1000	0.0058
##	10	1.1623	nan	0.1000	0.0056
##	20	1.1033	nan	0.1000	0.0000
##	40	1.0699	nan	0.1000	0.0010
##	60	1.0571	nan	0.1000	0.0004
##	80	1.0495	nan	0.1000	0.0002
##	100	1.0440	nan	0.1000	0.0001
пπ	100	1.0440	nan	0.1000	0.0001

##	120	1.0395	non	0.1000	0.0000
##	140	1.0395	nan	0.1000	0.0000
##	150	1.0346	nan	0.1000	0.0000
##	150	1.0340	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Tmnnorro
##	1	1.3389		StepSize 0.1000	Improve 0.0237
##	2	1.2996	nan	0.1000	0.0237
##	3	1.2680	nan	0.1000	0.0193
##	4	1.2417	nan	0.1000	0.0139
##	5	1.2417	nan	0.1000	0.0131
##	6	1.1998	nan	0.1000	0.0110
##	7	1.1998	nan	0.1000	0.0100
##	8	1.1623	nan	0.1000	0.0064
##	9	1.1578	nan	0.1000	0.0057
	10	1.1469	nan		
##	20		nan	0.1000	0.0054
##	40	1.0914 1.0584	nan	0.1000	0.0013
##	60		nan	0.1000	0.0004
##	80	1.0456	nan	0.1000	0.0002
##		1.0373	nan	0.1000	0.0002
##	100 120	1.0321	nan	0.1000	0.0001
##	140	1.0268	nan	0.1000 0.1000	
##		1.0228	nan		0.0001
##	150	1.0210	nan	0.1000	0.0000
##	Ttom	TrainDarriance	ValidDavianaa	C+onCiao	Tmnmarra
##	Iter 1	TrainDeviance	ValidDeviance	StepSize 0.1000	Improve 0.0165
## ##	2	1.3535 1.3264	nan	0.1000	0.0183
##	3	1.3042	nan	0.1000	0.0133
##	4	1.2826	nan	0.1000	0.0110
			nan		
##	5 6	1.2650	nan	0.1000	0.0087
## ##	7	1.2481 1.2339	nan	0.1000 0.1000	0.0084 0.0071
##	8	1.2208	nan	0.1000	0.0071
##	9	1.2093	nan	0.1000	0.0057
##	10	1.1992	nan	0.1000	0.0051
##	20	1.1354	nan	0.1000	0.0031
##	40	1.1334	nan	0.1000	0.0019
##	60	1.0782	nan	0.1000	0.0003
##	80	1.0702	nan	0.1000	0.0002
##	100	1.0646	nan	0.1000	0.0001
##	120	1.0607	nan	0.1000	0.0001
##	140	1.0574	nan	0.1000	0.0001
##	150	1.0560	nan	0.1000	0.0001
##	130	1.0500	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3441	nan	0.1000	0.0210
##	2	1.3081	nan	0.1000	0.0210
##	3	1.2798	nan	0.1000	0.0140
##	4	1.2547	nan	0.1000	0.0140
##	5	1.2339	nan	0.1000	0.0123
##	6	1.2135	nan	0.1000	0.0102
##	7	1.1986	nan	0.1000	0.0101
##	8	1.1845	nan	0.1000	0.0074
##	9	1.1726	nan	0.1000	0.0070
π#	9	1.1120	IIall	0.1000	0.0009

##	10	1.1624	nan	0.1000	0.0051
##	20	1.1032	nan	0.1000	0.0016
##	40	1.0695	nan	0.1000	0.0005
##	60	1.0570	nan	0.1000	0.0002
##	80	1.0491	nan	0.1000	0.0002
##	100	1.0433	nan	0.1000	0.0001
##	120	1.0390	nan	0.1000	0.0001
##	140	1.0359	nan	0.1000	0.0001
##	150	1.0344	nan	0.1000	0.0001
##	100	1.0011	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3391	nan	0.1000	0.0237
##	2	1.3009	nan	0.1000	0.0193
##	3	1.2684	nan	0.1000	0.0161
##	4	1.2424		0.1000	0.0101
##	5	1.2197	nan	0.1000	0.0131
	6		nan	0.1000	
##		1.2011 1.1844	nan		0.0092
##	7		nan	0.1000	0.0083
##	8	1.1701	nan	0.1000	0.0071
##	9	1.1585	nan	0.1000	0.0058
##	10	1.1476	nan	0.1000	0.0055
##	20	1.0916	nan	0.1000	0.0015
##	40	1.0586	nan	0.1000	0.0005
##	60	1.0460	nan	0.1000	0.0002
##	80	1.0384	nan	0.1000	0.0001
##	100	1.0326	nan	0.1000	0.0001
##	120	1.0275	nan	0.1000	0.0001
##	140	1.0228	nan	0.1000	0.0001
##	150	1.0210	nan	0.1000	0.0001
##					
## ##	Iter	TrainDeviance	nan ValidDeviance	StepSize	Improve
## ## ##	Iter 1	TrainDeviance 1.3528		StepSize 0.1000	Improve 0.0165
## ##	Iter	TrainDeviance 1.3528 1.3259	ValidDeviance	StepSize 0.1000 0.1000	Improve 0.0165 0.0134
## ## ##	Iter	TrainDeviance 1.3528 1.3259 1.3034	ValidDeviance nan	StepSize 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112
## ## ## ##	Iter	TrainDeviance 1.3528 1.3259 1.3034 1.2824	ValidDeviance nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106
## ## ## ##	Iter 1 2 3 4 5	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087
## ## ## ## ##	Iter	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083
## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070
## ## ## ## ## ##	Iter	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070
## ## ## ## ## ## ##	Iter	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105 1.2003	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105 1.2003 1.1359	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105 1.2003 1.1359 1.0943	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005 0.0002
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105 1.2003 1.1359 1.0943 1.0792 1.0715	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005 0.0002
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005 0.0002 0.0001
## ## ## ## ## ## ## ## ## ## ## ## ##	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105 1.2003 1.1359 1.0943 1.0792 1.0715 1.0661 1.0622	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005 0.0002 0.0001 0.0001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105 1.2003 1.1359 1.0943 1.0792 1.0715 1.0661 1.0622 1.0591	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0050 0.0050 0.0022 0.0005 0.0002 0.0001 0.0001 0.0001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3528 1.3259 1.3034 1.2824 1.2650 1.2487 1.2347 1.2217 1.2105 1.2003 1.1359 1.0943 1.0792 1.0715 1.0661 1.0622 1.0591	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0050 0.0050 0.0022 0.0005 0.0002 0.0001 0.0001 0.0001
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005 0.0002 0.0001 0.0001 0.0001 0.0000
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005 0.0002 0.0001 0.0001 0.0001 0.0001 Improve
########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0165 0.0134 0.0112 0.0106 0.0087 0.0083 0.0070 0.0066 0.0056 0.0050 0.0022 0.0005 0.0002 0.0001 0.0001 0.0001 Improve 0.0210

##	4	1.2556	nan	0.1000	0.0122
##	5	1.2327	nan	0.1000	0.0115
##	6	1.2145	nan	0.1000	0.0091
##	7	1.1992	nan	0.1000	0.0076
##	8	1.1852	nan	0.1000	0.0070
##	9	1.1729	nan	0.1000	0.0062
##	10	1.1617	nan	0.1000	0.0057
##	20	1.1040	nan	0.1000	0.0017
##	40	1.0703	nan	0.1000	0.0004
##	60	1.0577	nan	0.1000	0.0001
##	80	1.0505	nan	0.1000	0.0002
##	100	1.0456	nan	0.1000	0.0001
##	120	1.0417	nan	0.1000	0.0001
##	140	1.0382	nan	0.1000	0.0001
##	150	1.0368	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3386	nan	0.1000	0.0236
##	2	1.3000	nan	0.1000	0.0193
##	3	1.2684	nan	0.1000	0.0158
##	4	1.2421	nan	0.1000	0.0132
##	5	1.2200	nan	0.1000	0.0109
##	6	1.2015	nan	0.1000	0.0093
##	7	1.1840	nan	0.1000	0.0087
##	8	1.1705	nan	0.1000	0.0067
##	9	1.1581	nan	0.1000	0.0062
##	10	1.1482	nan	0.1000	0.0048
##	20	1.0929	nan	0.1000	0.0014
##	40	1.0596	nan	0.1000	0.0004
##	60	1.0473	nan	0.1000	0.0003
##	80	1.0395	nan	0.1000	0.0001
##	100	1.0336	nan	0.1000	0.0001
##	120	1.0290	nan	0.1000	0.0001
##	140	1.0250	nan	0.1000	0.0001
##	150	1.0234	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3541	nan	0.1000	0.0164
##	2	1.3274	nan	0.1000	0.0134
##	3	1.3051	nan	0.1000	0.0112
##	4	1.2838	nan	0.1000	0.0106
##	5	1.2661	nan	0.1000	0.0087
##	6	1.2495	nan	0.1000	0.0083
##	7	1.2354	nan	0.1000	0.0070
##	8	1.2221	nan	0.1000	0.0066
##	9	1.2106	nan	0.1000	0.0057
##	10	1.2003	nan	0.1000	0.0052
##	20	1.1369	nan	0.1000	0.0022
##	40	1.0957	nan	0.1000	0.0005
##	60	1.0805	nan	0.1000	0.0002
##	80	1.0724	nan	0.1000	0.0001
##	100	1.0671	nan	0.1000	0.0001
##	120	1.0631	nan	0.1000	0.0001
##	140	1.0599	nan	0.1000	0.0000

## ##	150	1.0586	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3443	nan	0.1000	0.0209
##	2	1.3088	nan	0.1000	0.0178
##	3	1.2809	nan	0.1000	0.0139
##	4	1.2570	nan	0.1000	0.0119
##	5	1.2348	nan	0.1000	0.0111
##	6	1.2147	nan	0.1000	0.0100
##	7	1.2002	nan	0.1000	0.0073
##	8	1.1869	nan	0.1000	0.0066
##	9	1.1742	nan	0.1000	0.0063
##	10	1.1627	nan	0.1000	0.0058
##	20	1.1060	nan	0.1000	0.0018
##	40	1.0723	nan	0.1000	0.0004
##	60	1.0594	nan	0.1000	0.0002
##	80	1.0519	nan	0.1000	0.0001
##	100	1.0464	nan	0.1000	0.0001
##	120	1.0423	nan	0.1000	0.0001
##	140	1.0390	nan	0.1000	0.0001
##	150	1.0376	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3390	nan	0.1000	0.0235
##	2	1.3004	nan	0.1000	0.0193
##	3	1.2689	nan	0.1000	0.0157
##	4	1.2427	nan	0.1000	0.0130
##	5	1.2209	nan	0.1000	0.0108
##	6	1.2022	nan	0.1000	0.0093
##	7	1.1860	nan	0.1000	0.0082
##	8	1.1726	nan	0.1000	0.0067
##	9	1.1602	nan	0.1000	0.0062
##	10	1.1497	nan	0.1000	0.0053
##	20	1.0943	nan	0.1000	0.0014
##	40	1.0619	nan	0.1000	0.0003
##	60	1.0491	nan	0.1000	0.0002
##	80	1.0413	nan	0.1000	0.0001
##	100	1.0353	nan	0.1000	0.0001
##	120	1.0306	nan	0.1000	0.0001
##	140	1.0264	nan	0.1000	0.0000
##	150	1.0243	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3531	nan	0.1000	0.0165
##	2	1.3260	nan	0.1000	0.0135
##	3	1.3034	nan	0.1000	0.0112
##	4	1.2822	nan	0.1000	0.0107
##	5	1.2645	nan	0.1000	0.0087
##	6	1.2480	nan	0.1000	0.0083
##	7	1.2337	nan	0.1000	0.0071
##	8	1.2207	nan	0.1000	0.0066
##	9	1.2093	nan	0.1000	0.0057
##	10	1.1992	nan	0.1000	0.0050
##	20	1.1356	nan	0.1000	0.0020

##	40	1.0942	nan	0.1000	0.0005
##	60	1.0791	nan	0.1000	0.0002
##	80	1.0708	nan	0.1000	0.0001
##	100	1.0654	nan	0.1000	0.0001
##	120	1.0614	nan	0.1000	0.0001
##	140	1.0583	nan	0.1000	0.0001
	150	1.0570		0.1000	
##	150	1.0570	nan	0.1000	0.0000
##				a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3446	nan	0.1000	0.0211
##	2	1.3104	nan	0.1000	0.0172
##	3	1.2805	nan	0.1000	0.0151
##	4	1.2567	nan	0.1000	0.0119
##	5	1.2352	nan	0.1000	0.0108
##	6	1.2158	nan	0.1000	0.0097
##	7	1.1984	nan	0.1000	0.0085
##	8	1.1843	nan	0.1000	0.0071
##	9	1.1714	nan	0.1000	0.0064
##	10	1.1608	nan	0.1000	0.0053
##	20	1.1042	nan	0.1000	0.0017
##	40	1.0708	nan	0.1000	0.0005
##	60	1.0583		0.1000	0.0003
			nan		
##	80	1.0508	nan	0.1000	0.0001
##	100	1.0452	nan	0.1000	0.0001
##	120	1.0410	nan	0.1000	0.0000
##	140	1.0375	nan	0.1000	0.0001
##	150	1.0362	nan	0.1000	0.0000
		1.0002	nan	0.1000	0.0000
##		20002			0.0000
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1				
##		TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	TrainDeviance 1.3390	ValidDeviance nan	StepSize 0.1000	Improve 0.0237
## ## ##	1 2	TrainDeviance 1.3390 1.3000	ValidDeviance nan nan	StepSize 0.1000 0.1000	Improve 0.0237 0.0195
## ## ## ##	1 2 3	TrainDeviance 1.3390 1.3000 1.2679 1.2415	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.0237 0.0195 0.0159 0.0133
## ## ## ##	1 2 3 4	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109
## ## ## ## ##	1 2 3 4 5	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093
## ## ## ## ## ##	1 2 3 4 5 6 7	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084
## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0004
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601 1.0476	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0004 0.0002
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601 1.0476 1.0395	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0004 0.0002 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601 1.0476 1.0395 1.0342	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0002 0.0001 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601 1.0476 1.0395 1.0342 1.0289	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0002 0.0001 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601 1.0476 1.0395 1.0342 1.0289 1.0249	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0002 0.0001 0.0001 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601 1.0476 1.0395 1.0342 1.0289	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0002 0.0001 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance 1.3390 1.3000 1.2679 1.2415 1.2197 1.2011 1.1839 1.1691 1.1571 1.1473 1.0924 1.0601 1.0476 1.0395 1.0342 1.0289 1.0249 1.0232	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0002 0.0001 0.0001 0.0001 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0001 0.0001 0.0001 0.0001 Improve
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0002 0.0001 0.0001 0.0001 0.0001 Improve 0.0165
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0001 0.0001 0.0001 0.0001 Improve
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0002 0.0001 0.0001 0.0001 0.0001 Improve 0.0165
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0001 0.0001 0.0001 0.0001 Improve 0.0165 0.0134
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.0237 0.0195 0.0159 0.0133 0.0109 0.0093 0.0084 0.0074 0.0060 0.0049 0.0018 0.0001 0.0001 0.0001 0.0001 Improve 0.0165 0.0134 0.0112

##	6	1.2483	nan	0.1000	0.0084
##	7	1.2340	nan	0.1000	0.0071
##	8	1.2206	nan	0.1000	0.0067
##	9	1.2090	nan	0.1000	0.0057
##	10	1.1986	nan	0.1000	0.0052
##	20	1.1350	nan	0.1000	0.0020
##	40	1.0929	nan	0.1000	0.0005
##	60	1.0775	nan	0.1000	0.0002
##	80	1.0695	nan	0.1000	0.0002
##	100	1.0641	nan	0.1000	0.0001
##	120	1.0600	nan	0.1000	0.0001
##	140	1.0568	nan	0.1000	0.0000
##	150	1.0555	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3440	nan	0.1000	0.0211
##	2	1.3097	nan	0.1000	0.0171
##	3	1.2798	nan	0.1000	0.0150
##	4	1.2554	nan	0.1000	0.0123
##	5	1.2345	nan	0.1000	0.0105
##	6	1.2141	nan	0.1000	0.0103
##	7	1.1984	nan	0.1000	0.0079
##	8	1.1835	nan	0.1000	0.0073
##	9	1.1713	nan	0.1000	0.0060
##	10	1.1611	nan	0.1000	0.0051
##	20	1.1029	nan	0.1000	0.0019
##	40	1.0690	nan	0.1000	0.0013
##	60	1.0569	nan	0.1000	0.0002
##	80	1.0494	nan	0.1000	0.0001
##	100	1.0441	nan	0.1000	0.0001
##	120	1.0398	nan	0.1000	0.0001
##	140	1.0366	nan	0.1000	0.0001
##	150	1.0350	nan	0.1000	0.0001
##	100	1.0000	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3387	nan	0.1000	0.0237
##	2	1.2997	nan	0.1000	0.0194
##	3	1.2676		0.1000	0.0134
##	4	1.2411	nan	0.1000	0.0100
##	5	1.2190	nan	0.1000	0.0131
##	6	1.2006	nan	0.1000	0.00110
##	7	1.1847	nan	0.1000	0.0093
##	8	1.1696	nan	0.1000	0.0080
##	9	1.1579	nan		
			nan	0.1000	0.0058
##	10	1.1478 1.0921	nan	0.1000	0.0050
##	20		nan	0.1000	0.0013
##	40	1.0585	nan	0.1000	0.0004
##	60	1.0456	nan	0.1000	0.0002
##	80	1.0384	nan	0.1000	0.0002
##	100	1.0327	nan	0.1000	0.0001
##	120	1.0281	nan	0.1000	0.0001
##	140	1.0235	nan	0.1000	0.0001
##	150	1.0217	nan	0.1000	0.0001
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3538	nan	0.1000	0.0164
##	2	1.3272	nan	0.1000	0.0135
##	3	1.3048	nan	0.1000	0.0111
##	4	1.2832	nan	0.1000	0.0108
##	5	1.2657	nan	0.1000	0.0087
##	6	1.2489	nan	0.1000	0.0084
##	7	1.2346	nan	0.1000	0.0071
##	8	1.2215	nan	0.1000	0.0066
##	9	1.2102	nan	0.1000	0.0057
##	10	1.1996	nan	0.1000	0.0053
##	20	1.1358	nan	0.1000	0.0020
##	40	1.0937	nan	0.1000	0.0005
##	60	1.0781	nan	0.1000	0.0003
##	80	1.0701	nan	0.1000	0.0001
##	100	1.0648	nan	0.1000	0.0001
##	120	1.0609	nan	0.1000	0.0001
##	140	1.0578	nan	0.1000	0.0001
##	150	1.0564	nan	0.1000	0.0000
##	100	1.0001	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3447	nan	0.1000	0.0211
##	2	1.3102	nan	0.1000	0.0171
##	3	1.2804	nan	0.1000	0.0171
##	4	1.2559	nan	0.1000	0.0123
##	5	1.2326	nan	0.1000	0.0116
##	6	1.2144	nan	0.1000	0.0091
##	7	1.1992	nan	0.1000	0.0074
##	8	1.1840	nan	0.1000	0.0074
##	9	1.1722	nan	0.1000	0.0058
##	10	1.1606	nan	0.1000	0.0057
##	20	1.1037	nan	0.1000	0.0016
##	40	1.0704	nan	0.1000	0.0010
##	60	1.0574	nan	0.1000	0.0004
##	80	1.0496	nan	0.1000	0.0002
##	100	1.0445	nan	0.1000	0.0002
##	120	1.0403	nan	0.1000	0.0001
##	140	1.0370	nan	0.1000	0.0001
##	150	1.0355	nan	0.1000	0.0001
##	100	1.0000	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3391	nan	0.1000	0.0236
##	2	1.2997	nan	0.1000	0.0195
##	3	1.2678	nan	0.1000	0.0159
##	4	1.2413	nan	0.1000	0.0132
##	5	1.2192	nan	0.1000	0.0109
##	6	1.2008	nan	0.1000	0.0093
##	7	1.1850	nan	0.1000	0.0079
##	8	1.1700	nan	0.1000	0.0075
##	9	1.1583	nan	0.1000	0.0058
##	10	1.1475	nan	0.1000	0.0054
##	20	1.0924	nan	0.1000	0.0014
##	40	1.0596	nan	0.1000	0.0004
##	60	1.0465	nan	0.1000	0.0004
11	00	1.0400	nan	3.1000	0.0002

##	80	1.0394	nan	0.1000	0.0001
##	100	1.0340	nan	0.1000	0.0001
##	120	1.0292	nan	0.1000	0.0001
##	140	1.0248	nan	0.1000	0.0001
##	150	1.0228	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3532	nan	0.1000	0.0166
##	2	1.3259	nan	0.1000	0.0135
##	3	1.3037	nan	0.1000	0.0112
##	4	1.2825	nan	0.1000	0.0106
##	5	1.2649	nan	0.1000	0.0087
##	6	1.2483	nan	0.1000	0.0083
##	7	1.2340	nan	0.1000	0.0071
##	8	1.2210	nan	0.1000	0.0065
##	9	1.2094	nan	0.1000	0.0058
##	10	1.1990	nan	0.1000	0.0052
##	20	1.1352	nan	0.1000	0.0022
##	40	1.0935	nan	0.1000	0.0006
##	60	1.0783	nan	0.1000	0.0002
##	80	1.0704	nan	0.1000	0.0001
##	100	1.0650	nan	0.1000	0.0001
##	120	1.0610	nan	0.1000	0.0001
##	140	1.0577	nan	0.1000	0.0001
##	150	1.0563	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3441	nan	0.1000	0.0211
##	2	1.3103	nan	0.1000	0.0171
##	3	1.2802	nan	0.1000	0.0150
##	4	1.2555	nan	0.1000	0.0123
##	5	1.2351	nan	0.1000	0.0101
##	6	1.2146	nan	0.1000	0.0103
##	7	1.1989	nan	0.1000	0.0079
##	8	1.1842	nan	0.1000	0.0073
##	9	1.1727	nan	0.1000	0.0058
##	10	1.1614	nan	0.1000	0.0055
##	20	1.1041	nan	0.1000	0.0018
##	40	1.0700	nan	0.1000	0.0005
##	60	1.0577	nan	0.1000	0.0002
##	80	1.0502	nan	0.1000	0.0001
##	100	1.0448	nan	0.1000	0.0001
##	120	1.0406	nan	0.1000	0.0001
##	140	1.0373	nan	0.1000	0.0001
##	150	1.0356	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3390	nan	0.1000	0.0237
##	2	1.3002	nan	0.1000	0.0195
##	3	1.2683	nan	0.1000	0.0160
##	4	1.2416	nan	0.1000	0.0133
##	5	1.2200	nan	0.1000	0.0109
##	6	1.2014	nan	0.1000	0.0093
##	7	1.1842	nan	0.1000	0.0085

##	8	1.1702	nan	0.1000	0.0068
##	9	1.1582	nan	0.1000	0.0060
##	10	1.1474	nan	0.1000	0.0053
##	20	1.0918	nan	0.1000	0.0012
##	40	1.0592	nan	0.1000	0.0004
##	60	1.0462	nan	0.1000	0.0001
##	80	1.0390	nan	0.1000	0.0001
##	100	1.0338	nan	0.1000	0.0001
##	120	1.0291	nan	0.1000	0.0001
##	140	1.0246	nan	0.1000	0.0001
##	150	1.0227	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3531	nan	0.1000	0.0164
##	2	1.3262	nan	0.1000	0.0135
##	3	1.3039	nan	0.1000	0.0112
##	4	1.2827	nan	0.1000	0.0106
##	5	1.2651	nan	0.1000	0.0086
##	6	1.2483	nan	0.1000	0.0083
##	7	1.2338	nan	0.1000	0.0071
##	8	1.2208	nan	0.1000	0.0065
##	9	1.2096	nan	0.1000	0.0057
##	10	1.1994	nan	0.1000	0.0051
##	20	1.1367	nan	0.1000	0.0019
##	40	1.0943	nan	0.1000	0.0005
##	60	1.0789	nan	0.1000	0.0002
##	80	1.0709	nan	0.1000	0.0001
##	100	1.0656	nan	0.1000	0.0001
##	120	1.0616	nan	0.1000	0.0001
##	140	1.0584	nan	0.1000	0.0000
##	150	1.0571	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3443	nan	0.1000	0.0210
##	2	1.3083	nan	0.1000	0.0179
##	3	1.2791	nan	0.1000	0.0146
##	4	1.2556	nan	0.1000	0.0117
##	5	1.2357	nan	0.1000	0.0100
##	6	1.2148	nan	0.1000	0.0104
##	7	1.1990	nan	0.1000	0.0079
##	8	1.1854	nan	0.1000	0.0067
##	9	1.1724	nan	0.1000	0.0064
##	10	1.1625	nan	0.1000	0.0050
##	20	1.1050	nan	0.1000	0.0019
##	40	1.0713	nan	0.1000	0.0004
##	60	1.0587	nan	0.1000	0.0003
##	80	1.0511	nan	0.1000	0.0001
##	100	1.0459	nan	0.1000	0.0002
##	120	1.0421	nan	0.1000	0.0000
##	140	1.0382	nan	0.1000	0.0000
##	150	1.0367	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3388	nan	0.1000	0.0235

##	2	1.2999	nan	0.1000	0.0195
##	3	1.2687	nan	0.1000	0.0159
##	4	1.2423	nan	0.1000	0.0132
##	5	1.2205	nan	0.1000	0.0109
##	6	1.2006	nan	0.1000	0.0099
##	7	1.1849	nan	0.1000	0.0077
##	8	1.1701	nan	0.1000	0.0073
##	9	1.1571	nan	0.1000	0.0063
##	10	1.1468	nan	0.1000	0.0050
##	20	1.0923	nan	0.1000	0.0016
##	40	1.0601	nan	0.1000	0.0005
##	60	1.0470	nan	0.1000	0.0003
##	80	1.0396	nan	0.1000	0.0001
##	100	1.0336	nan	0.1000	0.0001
##	120	1.0289	nan	0.1000	0.0001
##	140	1.0247	nan	0.1000	0.0001
##	150	1.0229	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3535	nan	0.1000	0.0165
##	2	1.3268	nan	0.1000	0.0134
##	3	1.3042	nan	0.1000	0.0111
##	4	1.2828	nan	0.1000	0.0107
##	5	1.2654	nan	0.1000	0.0087
##	6	1.2484	nan	0.1000	0.0084
##	7	1.2343	nan	0.1000	0.0071
##	8	1.2214	nan	0.1000	0.0066
##	9	1.2100	nan	0.1000	0.0057
##	10	1.1997	nan	0.1000	0.0051
##	20	1.1357	nan	0.1000	0.0023
##	40	1.0939	nan	0.1000	0.0005
##	60	1.0783	nan	0.1000	0.0003
##	80	1.0706	nan	0.1000	0.0001
##	100	1.0652	nan	0.1000	0.0001
##	120	1.0612	nan	0.1000	0.0001
##	140	1.0578	nan	0.1000	0.0000
##	150	1.0564	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3442	nan	0.1000	0.0210
##	2	1.3096	nan	0.1000	0.0174
##	3	1.2800	nan	0.1000	0.0149
##	4	1.2564	nan	0.1000	0.0117
##	5	1.2337	nan	0.1000	0.0113
##	6	1.2160	nan	0.1000	0.0087
##	7	1.1984	nan	0.1000	0.0088
##	8	1.1849	nan	0.1000	0.0067
##	9	1.1724	nan	0.1000	0.0062
##	10	1.1627	nan	0.1000	0.0048
##	20	1.1039	nan	0.1000	0.0016
##	40	1.0702	nan	0.1000	0.0004
##	60	1.0576	nan	0.1000	0.0002
##	80	1.0500	nan	0.1000	0.0001
##	100	1.0448	nan	0.1000	0.0001

##	120	1.0406	nan	0.1000	0.0001
##	140	1.0375	nan	0.1000	0.0001
##	150	1.0358	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3389	nan	0.1000	0.0235
##	2	1.3001	nan	0.1000	0.0194
##	3	1.2682	nan	0.1000	0.0160
##	4	1.2413	nan	0.1000	0.0133
##	5	1.2195	nan	0.1000	0.0109
##	6	1.2008	nan	0.1000	0.0093
##	7	1.1838	nan	0.1000	0.0085
##	8	1.1702	nan	0.1000	0.0068
##	9	1.1579	nan	0.1000	0.0061
##	10	1.1470	nan	0.1000	0.0053
##	20	1.0924	nan	0.1000	0.0016
##	40	1.0595	nan	0.1000	0.0003
##	60	1.0458	nan	0.1000	0.0002
##	80	1.0381	nan	0.1000	0.0001
##	100	1.0326	nan	0.1000	0.0001
##	120	1.0276	nan	0.1000	0.0002
##	140	1.0241	nan	0.1000	0.0000
##	150	1.0219	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3535	nan	0.1000	0.0165
##	2	1.3267	nan	0.1000	0.0134
##	3	1.3043	nan	0.1000	0.0112
##	4	1.2834	nan	0.1000	0.0106
##	5	1.2656	nan	0.1000	0.0087
##	6	1.2488	nan	0.1000	0.0084
##	7	1.2346	nan	0.1000	0.0071
##	8	1.2215	nan	0.1000	0.0066
##	9	1.2098	nan	0.1000	0.0057
##	10	1.1993	nan	0.1000	0.0052
##	20	1.1360	nan	0.1000	0.0020
##	40	1.0935	nan	0.1000	0.0005
##	60	1.0779	nan	0.1000	0.0003
##	80	1.0702	nan	0.1000	0.0001
##	100	1.0648	nan	0.1000	0.0001
##	120	1.0607	nan	0.1000	0.0000
##	140	1.0575	nan	0.1000	0.0000
##	150	1.0561	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3444	nan	0.1000	0.0210
##	2	1.3104	nan	0.1000	0.0169
##	3	1.2802	nan	0.1000	0.0150
##	4	1.2555	nan	0.1000	0.0124
##	5	1.2351	nan	0.1000	0.0121
##	6	1.2169	nan	0.1000	0.0100
##	7	1.1992	nan	0.1000	0.0031
##	8	1.1851	nan	0.1000	0.0069
##	9	1.1726	nan	0.1000	0.0062
σ π	3	1.1120	nan	3.1000	0.0002

##	10	1.1613	nan	0.1000	0.0056
##	20	1.1042	nan	0.1000	0.0019
##	40	1.0702	nan	0.1000	0.0005
##	60	1.0577	nan	0.1000	0.0002
##	80	1.0498	nan	0.1000	0.0001
##	100	1.0447	nan	0.1000	0.0001
##	120	1.0407	nan	0.1000	0.0001
##	140	1.0374	nan	0.1000	0.0000
##	150	1.0357	nan	0.1000	0.0001
##	100	1.0557	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Tmnrozzo
##				StepSize 0.1000	Improve 0.0237
	1	1.3387	nan		
##	2	1.2996	nan	0.1000	0.0195
##	3	1.2679	nan	0.1000	0.0158
##	4	1.2418	nan	0.1000	0.0132
##	5	1.2199	nan	0.1000	0.0109
##	6	1.2014	nan	0.1000	0.0092
##	7	1.1842	nan	0.1000	0.0085
##	8	1.1703	nan	0.1000	0.0070
##	9	1.1584	nan	0.1000	0.0058
##	10	1.1478	nan	0.1000	0.0052
##	20	1.0922	nan	0.1000	0.0015
##	40	1.0591	nan	0.1000	0.0004
##	60	1.0465	nan	0.1000	0.0003
##	80	1.0389	nan	0.1000	0.0001
##	100	1.0334	nan	0.1000	0.0001
##	120	1.0288	nan	0.1000	0.0001
##	140	1.0249	nan	0.1000	0.0000
##	140 150	1.0249	nan nan	0.1000	0.0000
##	140 150	1.0249 1.0229	nan nan	0.1000 0.1000	0.0000
## ##	150	1.0229	nan	0.1000	0.0000
## ## ##	150 Iter	1.0229 TrainDeviance	nan ValidDeviance	0.1000 StepSize	0.0000 Improve
## ## ## ##	150 Iter 1	1.0229 TrainDeviance 1.3536	nan ValidDeviance nan	0.1000 StepSize 0.1000	0.0000 Improve 0.0165
## ## ## ##	150 Iter 1 2	1.0229 TrainDeviance 1.3536 1.3268	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	0.0000 Improve 0.0165 0.0135
## ## ## ## ##	150 Iter 1 2 3	1.0229 TrainDeviance 1.3536 1.3268 1.3043	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113
## ## ## ## ##	150 Iter 1 2 3 4	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106
## ## ## ## ## ##	150 Iter 1 2 3 4 5	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088
## ## ## ## ## ##	150 Iter	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052 0.0022
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0052 0.0052 0.0022 0.0006
## ## # # # # # # # # # # # # # # # #	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052 0.0052 0.0006 0.0003
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781 1.0703	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052 0.0002 0.0006 0.0003 0.0001
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781 1.0703 1.0648	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0084 0.0070 0.0066 0.0058 0.0052 0.0002 0.0006 0.0003 0.0001 0.0001
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937 1.0703 1.0648 1.0609	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0084 0.0070 0.0066 0.0058 0.0052 0.0052 0.0022 0.0006 0.0003 0.0001 0.0001
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781 1.0703 1.0648 1.0609 1.0577	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0052 0.0052 0.0022 0.0006 0.0003 0.0001 0.0001 0.0000
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781 1.0703 1.0648 1.0609 1.0577	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0052 0.0052 0.0022 0.0006 0.0003 0.0001 0.0001 0.0000
########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2346 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781 1.0703 1.0648 1.0609 1.0577 1.0564	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052 0.0052 0.0006 0.0003 0.0001 0.0001 0.0000 0.0001
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781 1.0703 1.0648 1.0609 1.0577 1.0564 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052 0.0002 0.0006 0.0003 0.0001 0.0001 0.0000 Improve
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	1.0229 TrainDeviance 1.3536 1.3268 1.3043 1.2833 1.2652 1.2486 1.2215 1.2100 1.1995 1.1357 1.0937 1.0781 1.0703 1.0648 1.0609 1.0577 1.0564 TrainDeviance 1.3441	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0113 0.0106 0.0088 0.0084 0.0070 0.0066 0.0058 0.0052 0.0052 0.0002 0.0001 0.0001 0.0000 0.0001 0.0000 Improve 0.0210

##	4	1.2550	nan	0.1000	0.0126
##	5	1.2347	nan	0.1000	0.0102
##	6	1.2171	nan	0.1000	0.0087
##	7	1.2000	nan	0.1000	0.0086
##	8	1.1846	nan	0.1000	0.0076
##	9	1.1727	nan	0.1000	0.0059
##	10	1.1611	nan	0.1000	0.0057
##	20	1.1029	nan	0.1000	0.0019
##	40	1.0699	nan	0.1000	0.0004
##	60	1.0572	nan	0.1000	0.0002
##	80	1.0496	nan	0.1000	0.0001
##	100	1.0444	nan	0.1000	0.0001
##	120	1.0404	nan	0.1000	0.0000
##	140	1.0368	nan	0.1000	0.0000
##	150	1.0353	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3388	nan	0.1000	0.0237
##	2	1.3001	nan	0.1000	0.0194
##	3	1.2680	nan	0.1000	0.0159
##	4	1.2420	nan	0.1000	0.0130
##	5	1.2204	nan	0.1000	0.0108
##	6	1.2018	nan	0.1000	0.0093
##	7	1.1861	nan	0.1000	0.0079
##	8	1.1711	nan	0.1000	0.0074
##	9	1.1584	nan	0.1000	0.0062
##	10	1.1478	nan	0.1000	0.0052
##	20	1.0926	nan	0.1000	0.0014
##	40	1.0596	nan	0.1000	0.0005
##	60	1.0466	nan	0.1000	0.0002
##	80	1.0394	nan	0.1000	0.0001
##	100	1.0336	nan	0.1000	0.0001
##	120	1.0282	nan	0.1000	0.0001
##	140	1.0244	nan	0.1000	0.0001
##	150	1.0225	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3531	nan	0.1000	0.0166
##	2	1.3259	nan	0.1000	0.0136
##	3	1.3034	nan	0.1000	0.0111
##	4	1.2818	nan	0.1000	0.0107
##	5	1.2639	nan	0.1000	0.0088
##	6	1.2471	nan	0.1000	0.0083
##	7	1.2329	nan	0.1000	0.0071
##	8	1.2198	nan	0.1000	0.0065
##	9	1.2082	nan	0.1000	0.0057
##	10	1.1980	nan	0.1000	0.0052
##	20	1.1345	nan	0.1000	0.0020
##	40	1.0926	nan	0.1000	0.0006
##	60	1.0773	nan	0.1000	0.0003
##	80	1.0694	nan	0.1000	0.0002
##	100	1.0640	nan	0.1000	0.0001
##	120	1.0599	nan	0.1000	0.0001
##	140	1.0566	nan	0.1000	0.0001
	110	1.0000	11011	3.1000	0.0001

## ##	150	1.0553	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3441	nan	0.1000	0.0211
##	2	1.3098	nan	0.1000	0.0170
##	3	1.2793	nan	0.1000	0.0151
##	4	1.2545	nan	0.1000	0.0123
##	5	1.2312	nan	0.1000	0.0116
##	6	1.2132	nan	0.1000	0.0091
##	7	1.1971	nan	0.1000	0.0080
##	8	1.1833	nan	0.1000	0.0069
##	9	1.1718	nan	0.1000	0.0058
##	10	1.1606	nan	0.1000	0.0056
##	20	1.1021	nan	0.1000	0.0018
##	40	1.0692	nan	0.1000	0.0004
##	60	1.0563	nan	0.1000	0.0002
##	80	1.0487	nan	0.1000	0.0001
##	100	1.0433	nan	0.1000	0.0001
##	120	1.0392	nan	0.1000	0.0001
##	140	1.0356	nan	0.1000	0.0001
##	150	1.0339	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3390	nan	0.1000	0.0238
##	2	1.3006	nan	0.1000	0.0194
##	3	1.2677	nan	0.1000	0.0162
##	4	1.2416	nan	0.1000	0.0132
##	5	1.2198	nan	0.1000	0.0110
##	6	1.2006	nan	0.1000	0.0095
##	7	1.1846	nan	0.1000	0.0080
##	8	1.1708	nan	0.1000	0.0068
##	9	1.1576	nan	0.1000	0.0066
##	10	1.1467	nan	0.1000	0.0054
##	20	1.0910	nan	0.1000	0.0016
##	40	1.0580	nan	0.1000	0.0004
##	60	1.0451	nan	0.1000	0.0002
##	80	1.0379	nan	0.1000	0.0001
##	100	1.0324	nan	0.1000	0.0001
##	120	1.0272	nan	0.1000	0.0000
##	140	1.0230	nan	0.1000	0.0001
##	150	1.0211	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3534	nan	0.1000	0.0164
##	2	1.3266	nan	0.1000	0.0133
##	3	1.3045	nan	0.1000	0.0110
##	4	1.2832	nan	0.1000	0.0107
##	5	1.2657	nan	0.1000	0.0087
##	6	1.2490	nan	0.1000	0.0083
##	7	1.2346	nan	0.1000	0.0070
##	8	1.2212	nan	0.1000	0.0065
##	9	1.2099	nan	0.1000	0.0056
##	10	1.1995	nan	0.1000	0.0051
##	20	1.1370	nan	0.1000	0.0022

##	40	1.0952	nan	0.1000	0.0005
##	60	1.0798	nan	0.1000	0.0003
##	80	1.0722	nan	0.1000	0.0001
##	100	1.0669	nan	0.1000	0.0001
##	120	1.0629	nan	0.1000	0.0001
		1.0598			
##	140		nan	0.1000	0.0000
##	150	1.0584	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3442	nan	0.1000	0.0209
##	2	1.3084	nan	0.1000	0.0179
##	3	1.2802	nan	0.1000	0.0142
##	4	1.2565	nan	0.1000	0.0118
##	5	1.2352	nan	0.1000	0.0106
##	6	1.2150		0.1000	0.0100
			nan		
##	7	1.2004	nan	0.1000	0.0072
##	8	1.1866	nan	0.1000	0.0068
##	9	1.1739	nan	0.1000	0.0064
##	10	1.1628	nan	0.1000	0.0054
##	20	1.1053	nan	0.1000	0.0016
##	40	1.0718	nan	0.1000	0.0004
##	60	1.0592	nan	0.1000	0.0004
##	80	1.0519	nan	0.1000	0.0001
##	100	1.0465	nan	0.1000	0.0001
##	120	1.0425		0.1000	0.0001
			nan		
##	140	1.0392	nan	0.1000	0.0000
##	150	1.0377	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 1.3392	ValidDeviance nan	StepSize 0.1000	Improve 0.0235
##				_	_
## ##	1	1.3392	nan	0.1000	0.0235
## ## ##	1 2	1.3392 1.3009 1.2689	nan nan nan	0.1000 0.1000 0.1000	0.0235 0.0191 0.0161
## ## ## ##	1 2 3 4	1.3392 1.3009 1.2689 1.2424	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132
## ## ## ## ##	1 2 3 4 5	1.3392 1.3009 1.2689 1.2424 1.2207	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109
## ## ## ## ##	1 2 3 4 5 6	1.3392 1.3009 1.2689 1.2424 1.2207	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095
## ## ## ## ## ##	1 2 3 4 5 6 7	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0079 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265 1.0245	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265 1.0245	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0073 0.0061 0.0050 0.0016 0.0003 0.0002 0.0001 0.0001 0.0001
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265 1.0245	nan	0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0073 0.0061 0.0050 0.0016 0.0003 0.0002 0.0001 0.0001 0.0001
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265 1.0245 TrainDeviance 1.3534 1.3267	nan	0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 Improve 0.0164 0.0134
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265 1.0245 TrainDeviance 1.3534 1.3267 1.3044	nan	0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 Timprove 0.0164 0.0134 0.0111
#########################	1 2 3 4 5 6 6 7 8 9 10 20 40 60 80 120 140 150 Iter 1 2 3 4	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265 1.0245 TrainDeviance 1.3534 1.3267 1.3044 1.2830	nan	0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0001 0.0001 0.0001 0.0001 Improve 0.0164 0.0134 0.0111 0.0107
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.3392 1.3009 1.2689 1.2424 1.2207 1.2017 1.1858 1.1713 1.1589 1.1488 1.0939 1.0610 1.0483 1.0407 1.0351 1.0305 1.0265 1.0245 TrainDeviance 1.3534 1.3267 1.3044	nan	0.1000 0.1000	0.0235 0.0191 0.0161 0.0132 0.0109 0.0095 0.0079 0.0073 0.0061 0.0050 0.0016 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 Tmprove 0.0164 0.0134 0.0111

##	6	1.2489	nan	0.1000	0.0082
##	7	1.2345	nan	0.1000	0.0071
##	8	1.2215	nan	0.1000	0.0065
##	9	1.2100	nan	0.1000	0.0056
##	10	1.1997	nan	0.1000	0.0051
##	20	1.1365	nan	0.1000	0.0021
##	40	1.0950	nan	0.1000	0.0006
##	60	1.0798	nan	0.1000	0.0003
##	80	1.0719	nan	0.1000	0.0001
##	100	1.0665	nan	0.1000	0.0001
##	120	1.0624	nan	0.1000	0.0001
##	140	1.0591	nan	0.1000	0.0001
##	150	1.0577	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3445	nan	0.1000	0.0210
##	2	1.3086	nan	0.1000	0.0179
##	3	1.2808	nan	0.1000	0.0140
##	4	1.2575	nan	0.1000	0.0116
##	5	1.2354	nan	0.1000	0.0109
##	6	1.2149	nan	0.1000	0.0101
##	7	1.1998	nan	0.1000	0.0075
##	8	1.1866	nan	0.1000	0.0066
##	9	1.1740	nan	0.1000	0.0064
##	10	1.1632	nan	0.1000	0.0054
##	20	1.1047	nan	0.1000	0.0015
##	40	1.0716	nan	0.1000	0.0005
##	60	1.0594	nan	0.1000	0.0002
##	80	1.0519	nan	0.1000	0.0002
##	100	1.0463	nan	0.1000	0.0001
##	120	1.0419	nan	0.1000	0.0001
##	140	1.0386	nan	0.1000	0.0000
##	150	1.0371	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3390	nan	0.1000	0.0235
##	2	1.3006	nan	0.1000	0.0192
##	3	1.2684	nan	0.1000	0.0161
##	4	1.2422	nan	0.1000	0.0130
##	5	1.2205	nan	0.1000	0.0108
##	6	1.2017	nan	0.1000	0.0094
##	7	1.1843	nan	0.1000	0.0086
##	8	1.1708	nan	0.1000	0.0066
##	9	1.1593	nan	0.1000	0.0058
##	10	1.1486	nan	0.1000	0.0054
##	20	1.0943	nan	0.1000	0.0013
##	40	1.0616	nan	0.1000	0.0003
##	60	1.0487	nan	0.1000	0.0002
##	80	1.0411	nan	0.1000	0.0001
##	100	1.0353	nan	0.1000	0.0001
##	120	1.0304	nan	0.1000	0.0001
##	140	1.0266	nan	0.1000	0.0001
##	150	1.0247	nan	0.1000	0.0001
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3533	nan	0.1000	0.0165
##	2	1.3264	nan	0.1000	0.0135
##	3	1.3039	nan	0.1000	0.0112
##	4	1.2824	nan	0.1000	0.0108
##	5	1.2650	nan	0.1000	0.0087
##	6	1.2482	nan	0.1000	0.0084
##	7	1.2338	nan	0.1000	0.0071
##	8	1.2205	nan	0.1000	0.0066
##	9	1.2093	nan	0.1000	0.0057
##	10	1.1989	nan	0.1000	0.0052
##	20	1.1353	nan	0.1000	0.0019
##	40	1.0933	nan	0.1000	0.0007
##	60	1.0781	nan	0.1000	0.0002
##	80	1.0700	nan	0.1000	0.0002
##	100	1.0646	nan	0.1000	0.0001
##	120	1.0607	nan	0.1000	0.0001
##	140	1.0575	nan	0.1000	0.0001
##	150	1.0561	nan	0.1000	0.0000
##	100	1.0001	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3438	nan	0.1000	0.0211
##	2	1.3077	nan	0.1000	0.0180
##	3	1.2794	nan	0.1000	0.0141
##	4	1.2550	nan	0.1000	0.0111
##	5	1.2348	nan	0.1000	0.0122
##	6	1.2150	nan	0.1000	0.0100
##	7	1.1997	nan	0.1000	0.0076
##	8	1.1844	nan	0.1000	0.0075
##	9	1.1725	nan	0.1000	0.0059
##	10	1.1618	nan	0.1000	0.0053
##	20	1.1036	nan	0.1000	0.0016
##	40	1.0697	nan	0.1000	0.0015
##	60	1.0568	nan	0.1000	0.0000
##	80	1.0495	nan	0.1000	0.0002
##	100	1.0440	nan	0.1000	0.0001
##	120	1.0404	nan	0.1000	0.0000
##	140	1.0369	nan	0.1000	0.0000
##	150	1.0351	nan	0.1000	0.0001
##	100	1.0001	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3389	nan	0.1000	0.0237
##	2	1.3002	nan	0.1000	0.0193
##	3	1.2680	nan	0.1000	0.0162
##	4	1.2412	nan	0.1000	0.0133
##	5	1.2193	nan	0.1000	0.0109
##	6	1.2008	nan	0.1000	0.0093
##	7	1.1837	nan	0.1000	0.0085
##	8	1.1690	nan	0.1000	0.0072
##	9	1.1573	nan	0.1000	0.0057
##	10	1.1469	nan	0.1000	0.0057
##	20	1.0922	nan	0.1000	0.0002
##	40	1.0586	nan	0.1000	0.0004
##	60	1.0461	nan	0.1000	0.0004
11	00	1.0401	nan	3.1000	0.0002

##	80	1.0381	nan	0.1000	0.0002
##	100	1.0322	nan	0.1000	0.0001
##	120	1.0270	nan	0.1000	0.0001
##	140	1.0230	nan	0.1000	0.0002
##	150	1.0212	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3530	nan	0.1000	0.0164
##	2	1.3263	nan	0.1000	0.0134
##	3	1.3039	nan	0.1000	0.0134
##	4	1.2829	nan	0.1000	0.0112
##	5	1.2654	nan	0.1000	0.0103
	6			0.1000	
##		1.2488	nan		0.0083
##	7	1.2350	nan	0.1000	0.0071
##	8	1.2218	nan	0.1000	0.0066
##	9	1.2102	nan	0.1000	0.0058
##	10	1.1999	nan	0.1000	0.0050
##	20	1.1358	nan	0.1000	0.0022
##	40	1.0942	nan	0.1000	0.0005
##	60	1.0788	nan	0.1000	0.0002
##	80	1.0707	nan	0.1000	0.0001
##	100	1.0651	nan	0.1000	0.0001
##	120	1.0610	nan	0.1000	0.0001
##	140	1.0577	nan	0.1000	0.0001
##	150	1.0564	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	${\tt Improve}$
##	1	1.3442	nan	0.1000	0.0210
##	2	1.3084	nan	0.1000	0.0180
##	3	1.2790	nan	0.1000	0.0146
##	4	1.2556	nan	0.1000	0.0117
##	5	1.2351	nan	0.1000	0.0103
##	6	1.2155	nan	0.1000	0.0097
##	7	1.1985	nan	0.1000	0.0086
##	8	1.1849	nan	0.1000	0.0069
##	9	1.1726	nan	0.1000	0.0062
##	10	1.1612	nan	0.1000	0.0057
##	20	1.1047	nan	0.1000	0.0017
##	40	1.0705	nan	0.1000	0.0004
##	60	1.0574	nan	0.1000	0.0003
##	80	1.0499	nan	0.1000	0.0001
##	100	1.0448	nan	0.1000	0.0001
##	120	1.0410	nan	0.1000	0.0000
##	140	1.0374	nan	0.1000	0.0001
##	150	1.0358	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3397	nan	0.1000	0.0236
##	2	1.3006	nan	0.1000	0.0195
##	3	1.2686	nan	0.1000	0.0159
##	4	1.2426	nan	0.1000	0.0131
##	5	1.2200	nan	0.1000	0.0111
##	6	1.2001	nan	0.1000	0.0099
##	7	1.1847	nan	0.1000	0.0077

##	8	1.1699	nan	0.1000	0.0073
##	9	1.1575	nan	0.1000	0.0061
##	10	1.1471	nan	0.1000	0.0052
##	20	1.0919	nan	0.1000	0.0014
##	40	1.0588	nan	0.1000	0.0004
##	60	1.0457	nan	0.1000	0.0002
##	80	1.0383	nan	0.1000	0.0002
##	100	1.0325	nan	0.1000	0.0002
##	120	1.0275	nan	0.1000	0.0001
##	140	1.0237	nan	0.1000	0.0001
##	150	1.0219	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3536	nan	0.1000	0.0164
##	2	1.3267	nan	0.1000	0.0135
##	3	1.3044	nan	0.1000	0.0112
##	4	1.2832	nan	0.1000	0.0105
##	5	1.2657	nan	0.1000	0.0087
##	6	1.2488	nan	0.1000	0.0085
##	7	1.2346	nan	0.1000	0.0070
##	8	1.2215	nan	0.1000	0.0066
##	9	1.2099	nan	0.1000	0.0058
##	10	1.1994	nan	0.1000	0.0052
##	20	1.1362	nan	0.1000	0.0022
##	40	1.0941	nan	0.1000	0.0005
##	60	1.0785	nan	0.1000	0.0003
##	80	1.0704	nan	0.1000	0.0002
##	100	1.0652	nan	0.1000	0.0001
##	120	1.0611	nan	0.1000	0.0001
##	140	1.0579	nan	0.1000	0.0001
##	150	1.0566	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3442	nan	0.1000	0.0210
##	2	1.3083	nan	0.1000	0.0179
##	3	1.2802	nan	0.1000	0.0141
##	4	1.2558	nan	0.1000	0.0122
##	5	1.2357	nan	0.1000	0.0100
##	6	1.2165	nan	0.1000	0.0096
##	7	1.1992	nan	0.1000	0.0086
##	8	1.1852	nan	0.1000	0.0070
##	9	1.1727	nan	0.1000	0.0062
##	10	1.1621	nan	0.1000	0.0053
##	20	1.1043	nan	0.1000	0.0016
##	40	1.0705	nan	0.1000	0.0005
##	60	1.0576	nan	0.1000	0.0002
##	80	1.0500	nan	0.1000	0.0001
##	100	1.0443	nan	0.1000	0.0001
##	120	1.0402	nan	0.1000	0.0001
##	140	1.0368	nan	0.1000	0.0000
##	150	1.0353	nan	0.1000	0.0000
##	100	1.0000	nan	3.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3388	nan	0.1000	0.0236
α π	1	1.0000	nan	3.1000	0.0200

##	2	1.3007	nan	0.1000	0.0191
##	3	1.2683	nan	0.1000	0.0161
##	4	1.2418	nan	0.1000	0.0133
##	5	1.2197	nan	0.1000	0.0109
##	6	1.2010	nan	0.1000	0.0093
##	7	1.1856	nan	0.1000	0.0076
##	8	1.1707	nan	0.1000	0.0074
##	9	1.1580	nan	0.1000	0.0063
##	10	1.1472	nan	0.1000	0.0052
##	20	1.0920	nan	0.1000	0.0015
##	40	1.0599	nan	0.1000	0.0004
##	60	1.0465	nan	0.1000	0.0003
##	80	1.0392	nan	0.1000	0.0001
##	100	1.0332	nan	0.1000	0.0001
##	120	1.0284	nan	0.1000	0.0001
##	140	1.0242	nan	0.1000	0.0001
##	150	1.0222	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3533	nan	0.1000	0.0165
##	2	1.3264	nan	0.1000	0.0135
##	3	1.3040	nan	0.1000	0.0112
##	4	1.2829	nan	0.1000	0.0106
##	5	1.2652	nan	0.1000	0.0087
##	6	1.2482	nan	0.1000	0.0084
##	7	1.2340	nan	0.1000	0.0071
##	8	1.2208	nan	0.1000	0.0065
##	9	1.2094	nan	0.1000	0.0056
##	10	1.1989	nan	0.1000	0.0052
##	20	1.1351	nan	0.1000	0.0022
##	40	1.0932	nan	0.1000	0.0005
##	60	1.0777	nan	0.1000	0.0002
##	80	1.0697	nan	0.1000	0.0001
##	100	1.0642	nan	0.1000	0.0001
##	120	1.0601	nan	0.1000	0.0001
##	140	1.0568	nan	0.1000	0.0001
##	150	1.0555	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3439	nan	0.1000	0.0211
##	2	1.3080	nan	0.1000	0.0180
##	3	1.2802	nan	0.1000	0.0138
##	4	1.2555	nan	0.1000	0.0122
##	5	1.2329	nan	0.1000	0.0114
##	6	1.2145	nan	0.1000	0.0091
##	7	1.1971	nan	0.1000	0.0085
##	8	1.1836	nan	0.1000	0.0068
##	9	1.1709	nan	0.1000	0.0063
##	10	1.1603	nan	0.1000	0.0053
##	20	1.1040	nan	0.1000	0.0016
##	40	1.0701	nan	0.1000	0.0004
##	60	1.0573	nan	0.1000	0.0002
##	80	1.0497	nan	0.1000	0.0001
##	100	1.0445	nan	0.1000	0.0001

##	120	1.0403	nan	0.1000	0.0000
##	140	1.0367	nan	0.1000	0.0001
##	150	1.0353	nan	0.1000	0.0000
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3392	nan	0.1000	0.0237
##	2	1.3003	nan	0.1000	0.0195
##	3	1.2685	nan	0.1000	0.0159
##	4	1.2423	nan	0.1000	0.0132
##	5	1.2204	nan	0.1000	0.0111
##	6	1.2006	nan	0.1000	0.0099
##	7	1.1837	nan	0.1000	0.0085
##	8	1.1701	nan	0.1000	0.0067
##	9	1.1575	nan	0.1000	0.0063
##	10	1.1473	nan	0.1000	0.0051
##	20	1.0919	nan	0.1000	0.0014
##	40	1.0587	nan	0.1000	0.0004
##	60	1.0457	nan	0.1000	0.0002
##	80	1.0384	nan	0.1000	0.0001
##	100	1.0329	nan	0.1000	0.0001
##	120	1.0282	nan	0.1000	0.0001
##	140	1.0242	nan	0.1000	0.0001
##	150	1.0224	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3533	nan	0.1000	0.0165
##	2	1.3265	nan	0.1000	0.0134
##	3	1.3040	nan	0.1000	0.0113
##	4	1.2827	nan	0.1000	0.0106
##	5	1.2653	nan	0.1000	0.0087
##	6	1.2487	nan	0.1000	0.0083
##	7	1.2345	nan	0.1000	0.0071
##	8	1.2212	nan	0.1000	0.0066
##	9	1.2099	nan	0.1000	0.0058
##	10	1.1995	nan	0.1000	0.0052
##	20	1.1358	nan	0.1000	0.0021
##	40	1.0937	nan	0.1000	0.0005
##	60	1.0783	nan	0.1000	0.0003
##	80	1.0705	nan	0.1000	0.0001
##	100	1.0652	nan	0.1000	0.0001
##	120	1.0613	nan	0.1000	0.0001
##	140	1.0580	nan	0.1000	0.0001
##	150	1.0567	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3438	nan	0.1000	0.0211
##	2	1.3081	nan	0.1000	0.0179
##	3	1.2798	nan	0.1000	0.0141
##	4	1.2552	nan	0.1000	0.0122
##	5	1.2345	nan	0.1000	0.0104
##	6	1.2148	nan	0.1000	0.0098
##	7	1.1977	nan	0.1000	0.0086
##	8	1.1840	nan	0.1000	0.0069
##	9	1.1723	nan	0.1000	0.0058

##	10	1.1608	nan	0.1000	0.0057
##	20	1.1041	nan	0.1000	0.0013
##	40	1.0702	nan	0.1000	0.0004
##	60	1.0578	nan	0.1000	0.0002
##	80	1.0503	nan	0.1000	0.0001
##	100	1.0449	nan	0.1000	0.0001
##	120	1.0409	nan	0.1000	0.0000
##	140	1.0371	nan	0.1000	0.0001
##	150	1.0355	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3392	nan	0.1000	0.0237
##	2	1.3007	nan	0.1000	0.0194
##	3	1.2681	nan	0.1000	0.0161
##	4	1.2417	nan	0.1000	0.0133
##	5	1.2199	nan	0.1000	0.0109
##	6	1.2012	nan	0.1000	0.0093
##	7	1.1855	nan	0.1000	0.0077
##	8	1.1706	nan	0.1000	0.0074
##	9	1.1579	nan	0.1000	0.0063
##	10	1.1473	nan	0.1000	0.0053
##	20	1.0916	nan	0.1000	0.0016
##	40	1.0600	nan	0.1000	0.0005
##	60	1.0474	nan	0.1000	0.0002
##	80	1.0397	nan	0.1000	0.0002
##	100	1.0339	nan	0.1000	0.0001
##	120	1.0291	nan	0.1000	0.0001
шш	140	1 0040		0.1000	0.0000
##	140	1.0249	nan	0.1000	0.0000
##	150	1.0249	nan nan	0.1000	0.0000
##					
## ##	150	1.0231	nan	0.1000	0.0000
## ## ##	150 Iter	1.0231 TrainDeviance	nan ValidDeviance	0.1000 StepSize	0.0000 Improve
## ## ## ##	150 Iter 1	1.0231 TrainDeviance 1.3530	nan ValidDeviance nan	0.1000 StepSize 0.1000	0.0000 Improve 0.0165
## ## ## ##	150 Iter 1 2	1.0231 TrainDeviance 1.3530 1.3262	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	0.0000 Improve 0.0165 0.0135
## ## ## ## ##	150 Iter 1 2 3	1.0231 TrainDeviance 1.3530 1.3262 1.3040	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111
## ## ## ## ## ##	150 Iter 1 2 3 4	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107
## ## ## ## ## ##	150 Iter 1 2 3 4 5	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057
## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704 1.0649	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001 0.0001
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704 1.0649 1.0608	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001 0.0001
# # # # # # # # # # # # # # # # # # #	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704 1.0649 1.0608 1.0576	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001 0.0001 0.0001
########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704 1.0649 1.0608 1.0576 1.0561 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001 0.0001 0.0001
#####################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704 1.0649 1.0608 1.0576 1.0561	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001 0.0001 0.0001 0.0001 Improve 0.0210
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704 1.0649 1.0608 1.0576 1.0561 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001 0.0001 0.0001 0.0001
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	1.0231 TrainDeviance 1.3530 1.3262 1.3040 1.2828 1.2651 1.2481 1.2339 1.2208 1.2095 1.1990 1.1355 1.0938 1.0782 1.0704 1.0649 1.0608 1.0576 1.0561 TrainDeviance 1.3439	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0000 Improve 0.0165 0.0135 0.0111 0.0107 0.0088 0.0083 0.0070 0.0066 0.0057 0.0052 0.0020 0.0005 0.0002 0.0001 0.0001 0.0001 0.0001 Improve 0.0210

##	4	1.2551	nan	0.1000	0.0122
##	5	1.2343	nan	0.1000	0.0104
##	6	1.2142	nan	0.1000	0.0102
##	7	1.1994	nan	0.1000	0.0074
##	8	1.1847	nan	0.1000	0.0074
##	9	1.1728	nan	0.1000	0.0059
##	10	1.1617	nan	0.1000	0.0055
##	20	1.1037	nan	0.1000	0.0014
##	40	1.0696	nan	0.1000	0.0004
##	60	1.0570	nan	0.1000	0.0002
##	80	1.0494	nan	0.1000	0.0001
##	100	1.0440	nan	0.1000	0.0001
##	120	1.0397	nan	0.1000	0.0001
##	140	1.0360	nan	0.1000	0.0001
##	150	1.0343	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3390	nan	0.1000	0.0237
##	2	1.3003	nan	0.1000	0.0194
##	3	1.2685	nan	0.1000	0.0159
##	4	1.2418	nan	0.1000	0.0133
##	5	1.2200	nan	0.1000	0.0109
##	6	1.2012	nan	0.1000	0.0093
##	7	1.1857	nan	0.1000	0.0077
##	8	1.1712	nan	0.1000	0.0072
##	9	1.1591	nan	0.1000	0.0060
##	10	1.1481	nan	0.1000	0.0055
##	20	1.0924	nan	0.1000	0.0014
##	40	1.0591	nan	0.1000	0.0006
##	60	1.0461	nan	0.1000	0.0003
##	80	1.0382	nan	0.1000	0.0001
##	100	1.0325	nan	0.1000	0.0001
##	120	1.0277	nan	0.1000	0.0001
##	140	1.0242	nan	0.1000	0.0001
##	150	1.0222	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3535	nan	0.1000	0.0165
##	2	1.3266	nan	0.1000	0.0135
##	3	1.3042	nan	0.1000	0.0111
##	4	1.2827	nan	0.1000	0.0108
##	5	1.2650	nan	0.1000	0.0087
##	6	1.2483	nan	0.1000	0.0083
##	7	1.2341	nan	0.1000	0.0072
##	8	1.2208	nan	0.1000	0.0066
##	9	1.2094	nan	0.1000	0.0056
##	10	1.1990	nan	0.1000	0.0052
##	20	1.1356	nan	0.1000	0.0022
##	40	1.0938	nan	0.1000	0.0005
##	60	1.0783	nan	0.1000	0.0002
##	80	1.0704	nan	0.1000	0.0001
##	100	1.0649	nan	0.1000	0.0001
##	120	1.0608	nan	0.1000	0.0001
##	140	1.0576	nan	0.1000	0.0000

## ##	150	1.0562	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3440	nan	0.1000	0.0210
##	2	1.3099	nan	0.1000	0.0170
##	3	1.2797	nan	0.1000	0.0150
##	4	1.2559	nan	0.1000	0.0120
##	5	1.2352	nan	0.1000	0.0103
##	6	1.2144	nan	0.1000	0.0104
##	7	1.1974	nan	0.1000	0.0085
##	8	1.1844	nan	0.1000	0.0066
##	9	1.1717	nan	0.1000	0.0063
##	10	1.1608	nan	0.1000	0.0054
##	20	1.1043	nan	0.1000	0.0015
##	40	1.0701	nan	0.1000	0.0005
##	60	1.0572	nan	0.1000	0.0002
##	80	1.0494	nan	0.1000	0.0002
##	100	1.0441	nan	0.1000	0.0001
##	120	1.0402	nan	0.1000	0.0000
##	140	1.0365	nan	0.1000	0.0001
##	150	1.0350	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3390	nan	0.1000	0.0236
##	2	1.3000	nan	0.1000	0.0195
##	3	1.2683	nan	0.1000	0.0160
##	4	1.2415	nan	0.1000	0.0133
##	5	1.2199	nan	0.1000	0.0108
##	6	1.2011	nan	0.1000	0.0093
##	7	1.1852	nan	0.1000	0.0079
##	8	1.1705	nan	0.1000	0.0075
##	9	1.1582	nan	0.1000	0.0062
##	10	1.1480	nan	0.1000	0.0051
##	20	1.0923	nan	0.1000	0.0016
##	40	1.0593	nan	0.1000	0.0004
##	60	1.0460	nan	0.1000	0.0003
##	80	1.0380	nan	0.1000	0.0002
##	100	1.0325	nan	0.1000	0.0000
##	120	1.0280	nan	0.1000	0.0001
##	140	1.0240	nan	0.1000	0.0001
##	150	1.0223	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3537	nan	0.1000	0.0165
##	2	1.3264	nan	0.1000	0.0135
##	3	1.3039	nan	0.1000	0.0111
##	4	1.2827	nan	0.1000	0.0106
##	5	1.2647	nan	0.1000	0.0088
##	6	1.2481	nan	0.1000	0.0082
##	7	1.2336	nan	0.1000	0.0071
##	8	1.2207	nan	0.1000	0.0065
##	9	1.2092	nan	0.1000	0.0057
##	10	1.1991	nan	0.1000	0.0050
##	20	1.1359	nan	0.1000	0.0021

##	40	1.0938	nan	0.1000	0.0005
##	60	1.0784	nan	0.1000	0.0003
##	80	1.0703	nan	0.1000	0.0002
##	100	1.0648	nan	0.1000	0.0001
##	120	1.0610	nan	0.1000	0.0001
##	140	1.0578	nan	0.1000	0.0001
##	150	1.0565	nan	0.1000	0.0000
##	_				_
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3447	nan	0.1000	0.0209
##	2	1.3105	nan	0.1000	0.0171
##	3	1.2807	nan	0.1000	0.0150
##	4	1.2558	nan	0.1000	0.0125
##	5	1.2350	nan	0.1000	0.0104
##	6	1.2173	nan	0.1000	0.0088
##	7	1.2000	nan	0.1000	0.0087
##	8	1.1854	nan	0.1000	0.0072
##	9	1.1730	nan	0.1000	0.0061
##	10	1.1627	nan	0.1000	0.0051
##	20	1.1041	nan	0.1000	0.0016
##	40	1.0707		0.1000	0.0010
	60		nan		
##		1.0579	nan	0.1000	0.0002
##	80	1.0505	nan	0.1000	0.0001
##	100	1.0449	nan	0.1000	0.0001
##	120	1.0410	nan	0.1000	0.0001
##	140	1.0376	nan	0.1000	0.0000
##	150	1.0359	nan	0.1000	0.0000
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 1.3390	ValidDeviance nan	StepSize 0.1000	Improve 0.0235
##				=	_
## ##	1	1.3390	nan	0.1000	0.0235
## ## ##	1 2	1.3390 1.3004	nan nan	0.1000 0.1000	0.0235 0.0195
## ## ## ##	1 2 3	1.3390 1.3004 1.2687	nan nan nan	0.1000 0.1000 0.1000	0.0235 0.0195 0.0159
## ## ## ##	1 2 3 4	1.3390 1.3004 1.2687 1.2425	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111
## ## ## ## ##	1 2 3 4 5	1.3390 1.3004 1.2687 1.2425 1.2204	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097
## ## ## ## ##	1 2 3 4 5 6	1.3390 1.3004 1.2687 1.2425 1.2204	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059 0.0055 0.0016
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059 0.0055 0.0016 0.0004
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059 0.0055 0.0016 0.0004 0.0002
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059 0.0055 0.0016 0.0004 0.0002 0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059 0.0055 0.0016 0.0004 0.0002 0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0004 0.0002 0.0002 0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0004 0.0002 0.0002 0.0002 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0004 0.0002 0.0002 0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246 1.0226	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0055 0.0016 0.0004 0.0002 0.0002 0.0002 0.0001 0.0001
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246 1.0226	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0002 0.0002 0.0002 0.0001 0.0001
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246 1.0226	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0002 0.0002 0.0002 0.0001 0.0001 Improve 0.0165
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246 1.0226 TrainDeviance 1.3534 1.3266	nan	0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0002 0.0002 0.0002 0.0001 0.0001 Improve 0.0165 0.0133
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246 1.0226 TrainDeviance 1.3534 1.3266 1.3042	nan	0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0002 0.0002 0.0002 0.0001 0.0001 Unprove 0.0165 0.0133 0.0112
#########################	1 2 3 4 5 6 6 7 8 9 10 20 40 60 80 120 140 150 Iter 1 2 3 4	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246 1.0226 TrainDeviance 1.3534 1.3266 1.3042 1.2827	nan	0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0077 0.0069 0.0059 0.0055 0.0016 0.0002 0.0002 0.0002 0.0001 0.0001 Improve 0.0165 0.0133 0.0112 0.0107
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.3390 1.3004 1.2687 1.2425 1.2204 1.2012 1.1855 1.1717 1.1599 1.1488 1.0928 1.0609 1.0478 1.0395 1.0336 1.0286 1.0246 1.0226 TrainDeviance 1.3534 1.3266 1.3042	nan	0.1000 0.1000	0.0235 0.0195 0.0159 0.0131 0.0111 0.0097 0.0069 0.0059 0.0055 0.0016 0.0002 0.0002 0.0002 0.0001 0.0001 Unprove 0.0165 0.0133 0.0112

##	6	1.2485	nan	0.1000	0.0084
##	7	1.2345	nan	0.1000	0.0071
##	8	1.2216	nan	0.1000	0.0065
##	9	1.2100	nan	0.1000	0.0057
##	10	1.2001	nan	0.1000	0.0050
##	20	1.1359	nan	0.1000	0.0021
##	40	1.0941	nan	0.1000	0.0006
##	60	1.0788	nan	0.1000	0.0003
##	80	1.0710	nan	0.1000	0.0001
##	100	1.0658	nan	0.1000	0.0001
##	120	1.0617	nan	0.1000	0.0001
##	140	1.0586	nan	0.1000	0.0001
##	150	1.0574	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3442	nan	0.1000	0.0210
##	2	1.3093	nan	0.1000	0.0172
##	3	1.2797	nan	0.1000	0.0148
##	4	1.2564	nan	0.1000	0.0116
##	5	1.2340	nan	0.1000	0.0112
##	6	1.2167	nan	0.1000	0.0086
##	7	1.1989	nan	0.1000	0.0089
##	8	1.1856	nan	0.1000	0.0067
##	9	1.1729	nan	0.1000	0.0063
##	10	1.1613	nan	0.1000	0.0058
##	20	1.1052	nan	0.1000	0.0014
##	40	1.0706	nan	0.1000	0.0004
##	60	1.0585	nan	0.1000	0.0002
##	80	1.0509	nan	0.1000	0.0002
##	100	1.0457	nan	0.1000	0.0001
##	120	1.0413	nan	0.1000	0.0001
##	140	1.0381	nan	0.1000	0.0001
##	150	1.0366	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	${\tt Improve}$
##	1	1.3389	nan	0.1000	0.0235
##	2	1.3004	nan	0.1000	0.0192
##	3	1.2683	nan	0.1000	0.0160
##	4	1.2424	nan	0.1000	0.0130
##	5	1.2201	nan	0.1000	0.0111
##	6	1.1995	nan	0.1000	0.0101
##	7	1.1828	nan	0.1000	0.0083
##	8	1.1695	nan	0.1000	0.0066
##	9	1.1575	nan	0.1000	0.0061
##	10	1.1477	nan	0.1000	0.0049
##	20	1.0930	nan	0.1000	0.0016
##	40	1.0606	nan	0.1000	0.0004
##	60	1.0475	nan	0.1000	0.0002
##	80	1.0397	nan	0.1000	0.0002
##	100	1.0342	nan	0.1000	0.0001
##	120	1.0294	nan	0.1000	0.0001
##	140	1.0252	nan	0.1000	0.0001
##	150	1.0233	nan	0.1000	0.0001
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3532	nan	0.1000	0.0165
##	2	1.3263	nan	0.1000	0.0134
##	3	1.3038	nan	0.1000	0.0112
##	4	1.2826	nan	0.1000	0.0106
##	5	1.2651	nan	0.1000	0.0088
##	6	1.2484	nan	0.1000	0.0083
##	7	1.2345	nan	0.1000	0.0070
##	8	1.2215	nan	0.1000	0.0066
##	9	1.2096	nan	0.1000	0.0057
##	10	1.1993	nan	0.1000	0.0051
##	20	1.1361	nan	0.1000	0.0021
##	40	1.0942	nan	0.1000	0.0005
##	60	1.0788	nan	0.1000	0.0003
##	80	1.0709	nan	0.1000	0.0003
##	100	1.0656	nan	0.1000	0.0001
##	120	1.0615	nan	0.1000	0.0001
##	140	1.0583		0.1000	0.0001
##	150	1.0569	nan nan	0.1000	0.0001
##	100	1.0003	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Tmprovo
##	1	1.3445		0.1000	Improve 0.0210
##	2	1.3088	nan	0.1000	0.0210
##	3	1.2807	nan	0.1000	0.0179
##	4	1.2558	nan	0.1000	0.0140
##	5	1.2348	nan		0.0124
##	6	1.2151	nan	0.1000 0.1000	0.0104
##	7	1.2000	nan	0.1000	0.0098
	8		nan		
##	9	1.1849	nan	0.1000	0.0075
##	10	1.1733	nan	0.1000	0.0057 0.0056
##		1.1620	nan	0.1000	
##	20	1.1053	nan	0.1000	0.0014
##	40	1.0712	nan	0.1000	0.0004
##	60	1.0582	nan	0.1000	0.0003
##	80	1.0502	nan	0.1000	0.0001
##	100	1.0453	nan	0.1000	0.0001
##	120	1.0415	nan	0.1000	0.0001
##	140	1.0383	nan	0.1000	0.0001
## ##	150	1.0365	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	C+onCino	Tmnmarra
##	1	1.3390		StepSize 0.1000	Improve 0.0235
##	2	1.3002	nan	0.1000	0.0233
##	3	1.2687	nan	0.1000	0.0193
##	4	1.2426	nan	0.1000	0.0139
##	5	1.2203	nan	0.1000	0.0130
##	6		nan	0.1000	
##	7	1.2017	nan	0.1000	0.0092
##		1.1843	nan		0.0087
	8	1.1690	nan	0.1000	0.0074
##	9	1.1569	nan	0.1000	0.0059
##	10	1.1466	nan	0.1000	0.0052
##	20 40	1.0924	nan	0.1000	0.0018
##		1.0605	nan	0.1000	0.0005
##	60	1.0473	nan	0.1000	0.0002

##	80	1.0396	nan	0.1000	0.0001
##	100	1.0340	nan	0.1000	0.0001
##	120	1.0288	nan	0.1000	0.0001
##	140	1.0248	nan	0.1000	0.0000
##	150	1.0230	nan	0.1000	0.0001
##	100	1.0200	nan	0.1000	0.0001
##	T+0m	TwoinDowinnes	ValidDarriance	CtonCino	Tmmmarra
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3535	nan	0.1000	0.0165
##	2	1.3267	nan	0.1000	0.0135
##	3	1.3044	nan	0.1000	0.0112
##	4	1.2830	nan	0.1000	0.0106
##	5	1.2655	nan	0.1000	0.0087
##	6	1.2490	nan	0.1000	0.0083
##	7	1.2346	nan	0.1000	0.0071
##	8	1.2215	nan	0.1000	0.0066
##	9	1.2101	nan	0.1000	0.0056
##	10	1.1997	nan	0.1000	0.0052
##	20	1.1363	nan	0.1000	0.0021
##	40	1.0949	nan	0.1000	0.0005
##	60	1.0797	nan	0.1000	0.0002
##	80	1.0719	nan	0.1000	0.0001
##	100	1.0666	nan	0.1000	0.0001
##	120	1.0626		0.1000	0.0001
			nan		
##	140	1.0593	nan	0.1000	0.0000
##	150	1.0580	nan	0.1000	0.0001
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3439	nan	0.1000	0.0210
##	2	1.3078	nan	0.1000	0.0179
##	3	1.2794	nan	0.1000	0.0141
##	4	1.2543	nan	0.1000	0.0124
##	5	1.2338	nan	0.1000	0.0103
##	6	1.2170	nan	0.1000	0.0084
##	7	1.1992	nan	0.1000	0.0090
##	8	1.1856	nan	0.1000	0.0066
##	9	1.1733	nan	0.1000	0.0064
##	10	1.1626	nan	0.1000	0.0053
##	20	1.1055	nan	0.1000	0.0014
##	40	1.0708	nan	0.1000	0.0004
##	60	1.0584	nan	0.1000	0.0002
##	80	1.0507	nan	0.1000	0.0001
##	100	1.0456		0.1000	0.0001
			nan		
##	120	1.0419	nan	0.1000	0.0001
##	140	1.0385	nan	0.1000	0.0000
##	150	1.0366	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3392	nan	0.1000	0.0237
##	2	1.3003	nan	0.1000	0.0195
##	3	1.2684	nan	0.1000	0.0159
##	4	1.2422	nan	0.1000	0.0131
##	5	1.2202	nan	0.1000	0.0110
##	6	1.2000	nan	0.1000	0.0101
##	7	1.1834	nan	0.1000	0.0081

##	8	1.1699	nan	0.1000	0.0067
##	9	1.1586	nan	0.1000	0.0057
##	10	1.1488	nan	0.1000	0.0048
##	20	1.0945	nan	0.1000	0.0014
##	40	1.0599	nan	0.1000	0.0004
##	60	1.0474	nan	0.1000	0.0002
##	80	1.0395	nan	0.1000	0.0002
##	100	1.0340	nan	0.1000	0.0002
##	120	1.0291	nan	0.1000	0.0001
##	140	1.0251	nan	0.1000	0.0000
##	150	1.0234	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3532	nan	0.1000	0.0164
##	2	1.3263	nan	0.1000	0.0134
##	3	1.3040	nan	0.1000	0.0112
##	4	1.2828	nan	0.1000	0.0105
##	5	1.2653	nan	0.1000	0.0087
##	6	1.2487	nan	0.1000	0.0083
##	7	1.2345	nan	0.1000	0.0071
##	8	1.2215	nan	0.1000	0.0066
##	9	1.2100	nan	0.1000	0.0057
##	10	1.1996	nan	0.1000	0.0052
##	20	1.1362	nan	0.1000	0.0020
##	40	1.0944	nan	0.1000	0.0005
##	60	1.0791	nan	0.1000	0.0003
##	80	1.0711	nan	0.1000	0.0001
##	100	1.0658	nan	0.1000	0.0001
##	120	1.0617	nan	0.1000	0.0001
##	140	1.0586	nan	0.1000	0.0001
##	150	1.0571	nan	0.1000	0.0000
##	100	1.0071	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.3446	nan	0.1000	0.0210
##	2	1.3083		0.1000	0.0210
##	3	1.2797	nan	0.1000	0.0179
##	4	1.2558	nan	0.1000	0.0142
##	5	1.2362	nan nan	0.1000	0.0119
##	6	1.2162		0.1000	0.0100
##	7	1.1984	nan	0.1000	0.0100
##	8	1.1843	nan	0.1000	0.0039
##	9	1.1728	nan	0.1000	0.0070
##	10	1.1621	nan	0.1000	0.0058
##	20		nan		0.0032
##	40	1.1047 1.0705	nan	0.1000	0.0014
##	60	1.0584	nan	0.1000 0.1000	0.0004
			nan		
##	80	1.0507	nan	0.1000	0.0001
##	100	1.0455	nan	0.1000	0.0001
##	120	1.0415	nan	0.1000	0.0001
##	140	1.0378	nan	0.1000	0.0000
##	150	1.0364	nan	0.1000	0.0000
##	T#	Too in Dani	V-1:4D:	Q+ Q -	T
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3394	nan	0.1000	0.0236

```
##
        2
                   1.3008
                                                0.1000
                                                           0.0195
                                       nan
##
        3
                  1.2687
                                                0.1000
                                                           0.0160
                                       nan
##
        4
                   1.2425
                                       nan
                                                0.1000
                                                           0.0131
        5
##
                  1.2205
                                                0.1000
                                                           0.0111
                                       nan
##
        6
                  1.2004
                                       nan
                                                0.1000
                                                           0.0100
##
        7
                  1.1849
                                                0.1000
                                                           0.0079
                                       nan
##
        8
                                                           0.0073
                  1.1704
                                       nan
                                                0.1000
        9
##
                  1.1580
                                       nan
                                                0.1000
                                                           0.0061
##
       10
                  1.1474
                                                0.1000
                                                           0.0054
                                       nan
##
       20
                  1.0931
                                       nan
                                                0.1000
                                                           0.0014
##
       40
                  1.0597
                                                0.1000
                                                           0.0004
                                       nan
##
       60
                  1.0469
                                       nan
                                                0.1000
                                                           0.0001
##
       80
                  1.0391
                                                0.1000
                                                           0.0001
                                       nan
##
      100
                  1.0333
                                       nan
                                                0.1000
                                                           0.0001
##
      120
                                                0.1000
                                                           0.0001
                  1.0285
                                       nan
##
      140
                   1.0249
                                                0.1000
                                                           0.0000
                                       nan
##
      150
                                                0.1000
                                                           0.0001
                  1.0229
                                       nan
##
##
           TrainDeviance
                            ValidDeviance
                                              StepSize
                                                          Improve
   Iter
##
        1
                   1.3389
                                                0.1000
                                                           0.0237
##
        2
                  1.3007
                                       nan
                                                0.1000
                                                           0.0192
##
        3
                                                0.1000
                                                           0.0161
                  1.2686
                                       nan
##
        4
                                                           0.0133
                  1.2419
                                                0.1000
                                       nan
##
        5
                                                           0.0109
                  1.2201
                                       nan
                                                0.1000
##
        6
                  1.2014
                                       nan
                                                0.1000
                                                           0.0093
##
        7
                  1.1855
                                       nan
                                                0.1000
                                                           0.0079
##
        8
                  1.1715
                                                0.1000
                                                           0.0069
                                       nan
##
        9
                  1.1588
                                                0.1000
                                                           0.0064
                                       nan
##
       10
                                                           0.0049
                  1.1489
                                       nan
                                                0.1000
##
       20
                  1.0932
                                                0.1000
                                                           0.0014
                                       nan
##
       40
                  1.0605
                                       nan
                                                0.1000
                                                           0.0005
##
       60
                  1.0474
                                                0.1000
                                                           0.0002
                                       nan
##
       80
                   1.0396
                                                0.1000
                                                           0.0001
                                       nan
##
      100
                   1.0341
                                                0.1000
                                                           0.0001
                                       nan
##
      120
                   1.0298
                                                0.1000
                                                           0.0000
                                       nan
##
      140
                  1.0257
                                                           0.0001
                                       nan
                                                0.1000
##
      150
                  1.0235
                                       nan
                                                0.1000
                                                           0.0001
results <- resamples(ensemble_learning)
summary(results) # summary of all the combined models
##
## Call:
## summary.resamples(object = results)
##
## Models: gbm, rpart, glm, knn, nb
  Number of resamples: 30
##
##
   Accuracy
##
                       1st Qu.
                                                        3rd Qu.
               Min.
                                   Median
                                                Mean
                                                                      Max. NA's
          0.7468479 0.7497310 0.7522461 0.7527319 0.7556248 0.7629870
   rpart 0.7217818 0.7287038 0.7320498 0.7319008 0.7342004 0.7444881
                                                                               0
          0.7333333 0.7359947 0.7374283 0.7379033 0.7389343 0.7452431
                                                                               0
```

0.8752737 0.8782371 0.8803700 0.8801826 0.8820098 0.8857682

0.7310683 0.7328942 0.7342948 0.7355224 0.7379200 0.7426004

0

0

glm

knn

nb

```
##
## Kappa
##
              Min.
                     1st Qu.
                                 Median
                                             Mean
                                                     3rd Qu.
         0.4936953 \ 0.4994613 \ 0.5044913 \ 0.5054633 \ 0.5112486 \ 0.5259740
## gbm
## rpart 0.4435547 0.4574015 0.4640913 0.4637990 0.4684008 0.4889761
         0.4666684 0.4719907 0.4748565 0.4758074 0.4778697 0.4904863
                                                                           0
         0.7505427 0.7564697 0.7607356 0.7603627 0.7640166 0.7715325
         0.4621422 0.4657925 0.4685895 0.4710480 0.4758451 0.4852008
## nb
dotplot(results) # plot to check Kappa and Accuracy differences
```


We can see that the KNN creates the most accurate model with an accuracy of 89%.

```
stackControl <- trainControl(method="repeatedcv", number=10, repeats=3, savePredictions='final', classPredictions='final', classPredictions='fi
```

```
## A glm ensemble of 2 base models: gbm, rpart, glm, knn, nb
##
## Ensemble results:
## Generalized Linear Model
##
## 397338 samples
## 5 predictor
## 2 classes: 'No', 'Yes'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
```

```
## Summary of sample sizes: 357604, 357605, 357604, 357604, 357604, 357605, ...
## Resampling results:
##
## Accuracy Kappa
## 0.9706371 0.941274
```

From the model above, we combine the predictions of different models using stacking, it is desirable that the predictions made by the sub-models have low correlation. This would suggest that the models are skillful but in different ways, allowing a new classifier to figure out how to get the best from each model for an improved score.

Let's check these predictions from our training model on our testing set.

```
stacked_pred <- predict(stack.glm, data_oversample_test)
confusionMatrix(stacked_pred,data_oversample_test$SeriousDlqin2yrs)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
##
  Prediction
                 No
                      Yes
##
              26907 25249
          No
##
          Yes 1472
                     3082
##
##
                  Accuracy: 0.5288
##
                    95% CI: (0.5247, 0.5329)
##
       No Information Rate: 0.5004
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.057
    Mcnemar's Test P-Value : < 2.2e-16
##
##
               Sensitivity: 0.9481
##
##
               Specificity: 0.1088
            Pos Pred Value: 0.5159
##
##
            Neg Pred Value: 0.6768
##
                Prevalence: 0.5004
            Detection Rate: 0.4745
##
##
      Detection Prevalence: 0.9197
##
         Balanced Accuracy: 0.5285
##
##
          'Positive' Class: No
##
```

The model didn't perform like I expected. From the combine predictions from the 5 classification models, the accuracy of 52% was lower than all the previous individuals models shown above. We are going to use second model of logistic regression as our final model to submit to the kaggle competition.

Lastly, we write our results to a csv file for kaggle submission.

```
submission <- data.frame(ID = data_oversample_test$X, Serious_Deliquency = os_pred)
head(submission)</pre>
```

```
## ID Serious_Deliquency
## 1 3 0.7467114
## 2 4 0.3642371
## 3 21 0.2042830
## 4 23 0.7318677
```

```
## 5 30 0.7142131
## 6 34 0.2218167
```

write.csv(submission, file = "MySubmission.csv", row.names = F)