```
from google.colab import files
uploaded = files.upload()
```

```
□ 选择文件 2 个文件
```

- arr_big_data.csv(application/vnd.ms-excel) 141518235 bytes, last modified: 2020/4/30 100% done
- **dep_big_data.csv**(application/vnd.ms-excel) 139548527 bytes, last modified: 2020/4/30 100% done Saving arr_big_data.csv to arr_big_data.csv

Saving dep_big_data.csv to dep_big_data.csv

```
import pandas as pd
data = pd.read_csv('arr_big_data.csv')
pd.DataFrame.from_records(data)
# del data['Unnamed: 0']
# data
```

₽	presidents_day		easter	memorial_day	independence_day	labor_day	thanksgiving	win
	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	
	2	0	0	0	0	0	0	
	3	0	0	0	0	0	0	
	4	0	0	0	0	0	0	
	•••			•••		•••	•••	
	177521	0	0	0	0	0	0	
	177522	0	0	0	0	0	0	
	177523	0	0	0	0	0	0	
	177524	0	0	0	0	0	0	
	177525	0	1	0	0	0	0	

177526 rows × 383 columns

Predictions for Arrival Delay

```
import pandas as pd
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import numpy as np

# data.dropna(axis=0, subset=['total_arr_delay'], inplace=True)

y = data.total_arr_delay
X = data.drop(['total_arr_delay'], axis=1).select_dtypes(exclude=['object'])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=888)
```

Mean Absolute Error results

Using k-fold Cross Validation for model tuning

cv_results_g1.head()

C→

>		train-rmse-mean	train-rmse-std	test-rmse-mean	test-rmse-std
	0	29.512923	0.038624	29.551592	0.161476
	1	23.782266	2.543996	23.860410	2.448174
	2	22.744114	3.272639	22.890786	3.134779
	3	21.819126	3.650699	22.018433	3.552576
	4	21.699805	3.681405	21.923173	3.580048

▼ Better RMSE

```
print((cv_results_g1["test-rmse-mean"]).tail(1))

D 199    13.856875
    Name: test-rmse-mean, dtype: float64

xg_reg = xgb.train(params=params, dtrain=data_dmatrix, num_boost_round=10)
```

Visualize Boosting Trees and Feature Importance

```
from numpy import loadtxt
from xgboost import XGBClassifier
from xgboost import plot_tree
import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = 20,20
plot_tree(xg_reg, num_trees=0, rankdir='LR')
# xgb.plot_tree(xg_reg, num_trees=0)
# xgb.plot_tree(xg_reg, num_trees=0, rankdir='LR')
# plt.show()

$\textstyle{\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\textstyle\text
```

 $\verb|\langle matplotlib.axes._subplots.AxesSubplot| at 0x7f1bb7c230b8 >$

▼ Top Features

```
xgb.plot_importance(xg_reg)
plt.rcParams["figure.figsize"] = 20,20
plt.show()
```

₽


```
plt.figure(figsize=[10,8])
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np

label = ['Speed', 'Total_departure_delay', 'Visibility', 'Wind_speed', 'Dew_point_temperature', 'Temperature', 'Stax = sorted([144,127,81,65,63,63,39,39,25,25])

idx = np.arange(len(x))
color = cm.jet(np.array(x)/max(x))
plt.barh(idx, x, color=color)
plt.yticks(idx+0.4, label, fontsize=15)
plt.grid(axis='x')
plt.xlabel('F Score', fontsize=20)
plt.ylabel('Feature Importance')

plt.show()
```


Predictions for Departure Delay

```
import pandas as pd
data = pd.read_csv('dep_big_data.csv')
pd.DataFrame.from_records(data)
```

С→

	distance	presidents_day	easter	memorial_day	independence_day	labor_day	thanksg
0	479	0	0	0	0	0	
1	1222	0	0	0	0	0	
2	2381	0	0	0	0	0	
3	594	0	0	0	0	0	
4	1080	0	0	0	0	0	
•••							
177521	594	0	0	0	0	0	
177522	695	0	0	0	0	0	
177523	1182	0	0	0	0	0	
177524	1846	0	0	0	0	0	
177525	546	0	1	0	0	0	

177526 rows × 382 columns

```
import pandas as pd
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import mean_squared_error
import numpy as np

# data.dropna(axis=0, subset=['total_dep_delay'], inplace=True)

y = data.total_dep_delay
X = data.drop(['total_dep_delay'], axis=1).select_dtypes(exclude=['object'])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
```

→ Mean Absolute Error results

Using k-fold Cross Validation for model tuning

cv_results_g1.head()

₽	train-rmse-mean		train-rmse-std	test-rmse-mean	test-rmse-std	
	0	33.669781	0.044570	33.679391	0.188015	
	1	32.377024	0.045918	32.402808	0.187011	
	2	31.299827	0.045561	31.335240	0.183580	
	3	30.384858	0.045082	30.436723	0.186172	
	4	29.630687	0.047559	29.693999	0.186524	

▼ Better RMSE

Visualize Boosting Trees and Feature Importance

```
from numpy import loadtxt

from xgboost import XGBClassifier

from xgboost import plot_tree

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = 20,20

plot_tree(xg_reg, num_trees=0, rankdir='LR')

# xgb.plot_tree(xg_reg, num_trees=0)

# xgb.plot_tree(xg_reg, num_trees=0, rankdir='LR')

# plt.show()
```

 $\verb|\langle matplotlib.axes._subplots.AxesSubplot| at 0x7f1bb5dec588 | |$

▼ Top Features

```
xgb.plot_importance(xg_reg)
plt.rcParams['figure.figsize'] = [5, 5]
plt.show()
```

₽

