Explorations

These exploratory exercises can be done using a computer with a program that draws and measures geometric figures.

1. Draw any triangle ABC. Choose a point D on \overline{AB} .

Draw a line through D parallel to \overline{BC} and intersecting \overline{AC} at point E.

What do you know about $\triangle ABC$ and $\triangle ADE$?

What do you know about $\frac{AE}{AC}$ and $\frac{AD}{AB}$?

Calculate $\frac{EC}{AC}$ and $\frac{DB}{AB}$. What do you notice?

Repeat on other triangles. What do you notice?

2. Draw any triangle ABC. Draw the bisector of $\angle A$ intersecting \overline{CB} at point D.

Measure and record the four lengths: AB, AC, BD, DC.

Calculate $\frac{BD}{DC}$ and $\frac{AB}{AC}$. What do you notice?

Repeat on other triangles. What do you notice?

Mixed Review Exercises

Complete.

1. Given: $\overline{AF} \parallel \overline{BE} \parallel \overline{CD}$; $\overline{AB} \cong \overline{BC}$

a.
$$\overline{GF} \cong \underline{?}$$
 and $\overline{ED} \cong \underline{?}$

- **b.** If AB = 9, then AC = ?
- **c.** If FG = 3x + 2 and GC = 7x 10, then $x = \frac{?}{}$.
- **d.** $m \angle FEG = \frac{?}{}$

- 2. Given: $\frac{W}{SW} = \frac{U}{VT}$ are the midpoints of \overline{RV} and \overline{VT} ;
 - **a.** S is the $\frac{?}{}$ of \overline{RT} and $\overline{SU} \parallel \frac{?}{}$.
 - **b.** If TV = 12x + 4 and SW = 3x + 8, then $x = \frac{?}{}$.
 - c. If RW = 4y + 1 and SU = 9y 19, then $y = \frac{?}{}$.

