Set Convex hull:			Comments allest convex set that contains C .
• conv $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, 0 \leq 0 \leq 1, 1^{T} 0 = 1 \right\}$ Affine hull: • aff $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C \text{ for } i = 1, \dots, k, 1^{T} 0 = 1 \right\}$		 conv C will be a finite set as long as C is also finite. A will be the smallest affine set that contains C. Different from the convex set, θ_i is not restricted between 0 and 1 	
• aff $C = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C \text{ for } i = 1, \dots, k, 1^{T} \mathbf{\theta} = 1 \right\}$ Conic hull: • $A = \left\{ \sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in C, \theta_{i} > 0 \text{ for } i = 1, \dots, k \right\}$		• aff C will always be an • A will be the smallest	in infinite set. If aff C contains the origin, it is also a subspace. convex conic that contains C .
$\bullet \ A = \left\{ \sum_{i=1}^{\kappa} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$ Ray: $\bullet \ \mathcal{R} = \left\{ \mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0 \right\}$		 Different from the convex and affine sets, θ_i does not need to sum up 1. The ray is an infinite set that begins in x₀ and extends infinitely in direction of v. In other words, it has a beginning, but it has no end. 	
Hyperplane: • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} = b \}$ • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^{T} (\mathbf{x} - \mathbf{x}_0) = 0 \}$		 It is an infinite set ℝⁿ⁻¹ ⊂ ℝⁿ that divides the space into two halfspaces. a[⊥] = {v a^Tv = 0} is the set of vectors perpendicular to a. It passes through the origin. a[⊥] is offset from the origin by x₀, which is any vector in H. 	
• $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ Halfspaces: • $\mathcal{H}_{-} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b\}$		$ullet$ They are infinite sets of the parts divided by ${\cal H}.$	
• $\mathcal{H}_{+} = \{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \ge b\}$ Euclidean ball: • $B(\mathbf{x}_{c}, r) = \{\mathbf{x} \mid \mathbf{x} - \mathbf{x}_{c} _{2} \le r\}$		 B(x_c,r) is a finite set as long as r < ∞. x_c is the center of the ball. 	
$B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r\}$ $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r\}$ $B(\mathbf{x}_c, r) = \{\mathbf{x}_c + r \ \mathbf{u}\ \mid \ \mathbf{u}\ \le 1\}$ Ellipsoid:		ullet r is its radius.	
Ellipsoid: • $\mathcal{E} = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \right\}$ • $\mathcal{E} = \left\{ \mathbf{x}_c + \mathbf{A} \mathbf{u} \mid \mathbf{u} \le 1 \right\}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.		 	
Norm cone: • $C = \{[x_1, x_2, \cdots, x_n, t]^{T} \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t\} \subseteq \mathbb{R}^{n+1}$		 Although it is named "Norm cone", it is a set, not a scalar. The cone norm increases the dimension of x in 1. For p = 2, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone. 	
 Proper cone: K ⊂ Rⁿ is a proper cone when it has the following properties • K is a convex cone, i.e., αK ≡ K, α > 0. • K is closed. • K is solid. • K is pointed, i.e., -K ∩ K = {0}. 		 The proper cone K is used to define the generalized inequality (or partial ordering) in some set S. For the generalized inequality, one must define both the proper cone K and the set S. x ≤ y ⇔ y - x ∈ K for x, y ∈ S (generalized inequality) x ≺ y ⇔ y - x ∈ int K for x, y ∈ S (strict generalized inequality). There are two cases where K and S are understood from context and the subscript K is dropped out: When S = ℝⁿ and K = ℝⁿ₊ (the nonnegative orthant). In this case, x ≤ y means that x_i ≤ y_i. 	
		 When S = Sⁿ and K = Sⁿ₊ or K = Sⁿ₊₊, where Sⁿ denotes the set of symmetric n × n matrices, Sⁿ₊ is the space of the positive semidefinite matrices, and Sⁿ₊₊ is the space of the positive definite matrices. Sⁿ₊ is a proper cone in Sⁿ (??). In this case, the generalized inequality Y ≥ X means that Y - X is a positive semidefinite matrix belonging to the positive semidefinite cone Sⁿ₊ in the subspace of symmetric matrices Sⁿ. It is usual to denote X > 0 and X ≥ 0 to mean than X is a positive definite and semidefinite matrix, respectively, where 0 ∈ ℝ^{n×n} is a zero matrix. Another common usage is when S = ℝⁿ and K = {c∈ ℝⁿ c₁ + c₂t + ··· + c_ntⁿ⁻¹ ≥ 0, for 0 ≤ t ≤ 1}. In this case, x ≤_K y means that x₁ + x₂t + ··· + x_ntⁿ⁻¹ ≤ y₁ + y₂t + ··· + y_ntⁿ⁻¹. The generalized inequality has the following properties: If x ≤_K y and u ≤_K v, then x + u ≤_K y + v (preserve under addition). If x ≤_K y, then αx ≤_K y for α ≥ 0 (preserve under nonnegative scaling). x ≤_K x (reflexivity). 	
		 x ∈ S is the minimum have a minimum, but The mathematical not comparable to x and g x ∈ S is the minimal element we can have many different that is (x - K) ∩ S = { 	element of S if $\mathbf{x} \leq_K \mathbf{y}$ for every $\mathbf{y} \in S$. The set does not necessarily the minimum is unique if it does. The same is true for <i>maximum</i> . tation for that is $S \subseteq \mathbf{x} + K$, where $\mathbf{x} + K$ denotes all points that are greater than or equal to \mathbf{x} (for the maximum, we have $S \subseteq \mathbf{x} - K$). element of S if $\mathbf{y} \leq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$. The same is true for <i>maximal</i> . Efferent minimal (maximal) elements. The mathematical notation for \mathbf{x} , where $\mathbf{x} - K$ denotes all points that are comparable to \mathbf{x} and less of the maximal, we have $(\mathbf{x} + K) \cap S = \{\mathbf{x}\}$).
Dual cone:		• When $K = \mathbb{R}_+$ and $S =$ the maximal is equal t	= \mathbb{R} (ordinary inequality), the minimal is equal to the minimum and
$\bullet \ K^* = \left\{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \right\}$		▶ If the closure of <i>K</i>	convex.
Polyhedra: $\bullet \ \mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \dots, p \right\}$		The polyhedron may of Polyhedron is the result.	or may not be an infinite set. alt of the intersection of m halfspaces and p hyperplanes.
• $\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^T \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$ Simplex: • $\mathcal{S} = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \leq 0 \leq 1, 1^T 0 = 1\}$ • $\mathcal{S} = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V} 0\}, \text{ where } \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$		 The nonnegative orthocial polyhedron. Simplexes are a subfar Also called k-dimension 	
• $S = \{ \mathbf{x} \mid \underbrace{\mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0}_{\text{Linear equalities in } x}, \underbrace{\mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0}_{\text{Linear equalities in } x} \}$ (Polyhedra form), where $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix}$ and $\mathbf{A}\mathbf{V} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$ (Polyhedra form), where $\mathbf{A} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$ independent. The matrix \mathbf{A} is its left pseudoinverse.			
Function Union: $C = A \cup B$ Intersection: $C = A \cap B$ Convex function: $f : \mathbb{R}^n \to \mathbb{R}$	Not in most of the cases. Yes, if A and B are convex series. Yes.		Comments • Graphically, the line segment between $(\mathbf{x}, f(\mathbf{x}))$ and $(\mathbf{y}, f(\mathbf{y}))$ lies always above the graph f .
 f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y), where 0 ≤ θ ≤ 1. dom f ⊆ ℝⁿ shall be a convex set to f be a convex function. 			• In terms of sets, a function is convex iff a line segment within dom f , which is a convex set, gives an image set that is also convex.
			 dom f is convex iff all points for any line segment within dom f belong to it. First-order condition: f is convex iff dom f is convex and f(y) ≥ f(x) + ∇f(x)^T(y - x), ∀ x, y ∈ dom f, x ≠ y, being ∇f(x) the gradient vector. This inequation says that the first-order Taylor approximation is a underestimator for convex functions. The first-order condition requires that f is differentiable. If ∇f(x) = 0, then f(y) ≥ f(x), ∀ y ∈ dom f and x is a global minimum.
Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^n$ is a $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^m$ is a			• Second-order condition: f is convex iff dom f is convex and $\mathbf{H} \geq 0$, that is, the Hessian matrix \mathbf{H} is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at \mathbf{x} . It is important to note that, if $\mathbf{H} > 0$, $\forall \mathbf{x} \in \text{dom } f$, then f is strictly convex. But is f is strictly convex, not necessarily that $\mathbf{H} > 0$, $\forall \mathbf{x} \in \text{dom } f$. Therefore, strict convexity can only be partially characterized.
		,	 The affine function, f(x) = Ax + b, is a broader category that encompasses the linear function, f(x) = Ax. The linear function has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b. Similarly, the inverse image of C, f⁻¹(C) = {x f(x) ∈ C}, is also
Exponential function $f: \mathbb{R} \to \mathbb{R}$			convex. • The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \leq \mathbf{B}$, is a special case of affine function. In other words, $f(S) = \{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$ is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved optimally.
• $f(x) = e^{ax} \in \mathbb{R}$, where $a \in \mathbb{R}$ Quadratic function $f : \mathbb{R}^n \to \mathbb{R}$	It depends on the matrix P :		
• $f(\mathbf{x}) = a\mathbf{x}^{T}\mathbf{P}\mathbf{x} + \mathbf{p}^{T}\mathbf{x} + r \in \mathbb{R}$, where $\mathbf{x}, \mathbf{p} \in \mathbb{R}^n, \mathbf{P} \in \mathbb{R}^{n \times n}$, and $a, b \in \mathbb{R}$	 f is convex iff P ≥ 0. f is strictly convex iff P > 0. f is concave iff P ≤ 0. f is strictly concave iff P < 0. 		
Power function $f: \mathbb{R}_{++} \to \mathbb{R}$ • $f(x) = x^a$	It depends on a • f is convex iff $a \ge 1$ or $a \le 0$. • f is concave iff $0 \le a \le 1$.		
Power of absolute value: $f : \mathbb{R} \to \mathbb{R}$ • $f(x) = x ^p$, where $p \le 1$. Logarithm function: $f : \mathbb{R}_{++} \to \mathbb{R}$	Yes. Yes.		
• $f(x) = \log x$ Negative entropy function: $f: \mathbb{R}_+ \to \mathbb{R}$	Yes		• When if is defined $f(x)$
• $f(x) = x \log x$ Minkwoski distance, p -norm function, or l_p norm function: $f: \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \ \mathbf{x}\ _p$, where $p \in \mathbb{N}_{++}$.			 When if is defined f(x) _{x=0} It can be proved by triangular inequality.
Maximum element: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$.	Yes.		
Maximum function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \dots, f_n(\mathbf{x})\}.$ Minimum function: $f : \mathbb{R}^n \to \mathbb{R}$	Yes, if f_1, \ldots, f_n are convex function. Not in most of the cases.		
• $f(\mathbf{x}) = \min \{ f_1(\mathbf{x}), \dots, f_n(\mathbf{x}) \}.$ Log-sum-exp function: $f : \mathbb{R}^n \to \mathbb{R}$ • $f(\mathbf{x}) = \log (e^{x_1} + \dots + e^{x_n})$	Yes.		• This function is interpreted as the approximation of the maximum element function, since $\max\{x_1,\ldots,x_n\} \leq f(\mathbf{x}) \leq \max\{x_1,\ldots,x_n\} + \log n$
Geometric mean function $f: \mathbb{R}^n \to \mathbb{R}$ $\bullet \ f(\mathbf{x}) = \left(\prod_{i=1}^n x_i\right)^{1/n}$	Yes		
Log-determinant function $f: \mathcal{S}_{++}^n \to \mathbb{R}$ • $f(\mathbf{X}) = \log \mathbf{X} $ Perspective function $f: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$	Yes, if $S \subseteq \text{dom } f$ is a convex $\{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^n$, is also con		 X ∈ Sⁿ₊₊, that is, X is positive semidefinite (X > 0). The perspective function decreases the dimension of the function domain since dim(dom f) = n + 1.
• $f(\mathbf{x},t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}$.	 Its ef The f f⁻¹(A spefunct 		 domain since dim(dom f) = n + 1. Its effect is similar to the camera zoom. The inverse image is also convex, that is, if C ⊆ ℝⁿ is convex, then f⁻¹(C) = {(x,t) ∈ ℝⁿ⁺¹ x/t ∈ C, t > 0} is also convex. A special case is when n = 1, which is called quadratic-over-linear function.
Projective (or linear-fractional) function, $f: \mathbb{R}^n \to \mathbb{R}^m$ • $f = p \circ g$, i.e., $f(\mathbf{x}) = (p \circ g)(\mathbf{x}) = p(g(\mathbf{x}))$, where • $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is an affine function given by $g(\mathbf{x}) = \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^T \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}$, being $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$, and	$\{f(\mathbf{x}) \mathbf{x}\in S\}\subseteq \mathbb{R}^n$, is also con		 The linear and affine functions are special cases of the linear-fractional function. dom f = {x ∈ Rⁿ c^Tx + d > 0} P(x) ⊂ Rⁿ⁺¹ is a ray set that begins at the origin and its last
$d \in \mathbb{R}$. $p: \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the perspective function. • $f(\mathbf{x}) = \mathcal{P}^{-1}(\mathbf{Q}\mathcal{P}(\mathbf{x}))$			 component takes only positive values. For each x ∈ dom f, it is associated a ray set in Rⁿ⁺¹ in this form. This (projective) correspondence between all points in dom f and their respective sets P is a biunivocal mapping. The linear transformation Q acts on these rays, forming another
$P(\mathbf{x}) = \{(t\mathbf{x}, t) \mid t \ge 0\} \subset \mathbb{R}^{n+1}$ $\mathbf{Q} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{c}^{T} & d \end{bmatrix} \in \mathbb{R}^{(m+1)\times(n+1)}$			set of rays. • Finally we take the inverse projective transformation to recover $f(\mathbf{x})$.