Fast Similarity on Attributed Networks

Gaspare Ferraro

Relatori Prof. Roberto Grossi Prof. Andrea Marino

Università di Pisa Dipartimento di Informatica

Pisa, 3 Dicembre 2021

Parte I

Approcci di risoluzione

Approccio Brute-force:

- Enumerare tutti i q-path esistenti
- ullet Contare le frequenze esatte di $f_A[w]$ e $f_B[w]$
- Calcolare la similarità usando la definizione

Approccio Brute-force:

- Enumerare tutti i q-path esistenti
- ullet Contare le frequenze esatte di $f_A[w]$ e $f_B[w]$
- Calcolare la similarità usando la definizione

Complessità:

- Tempo: $O(|V|^q)$
- Spazio: $O(|\Sigma|^q q)$

Approccio Brute-force:

- Enumerare tutti i q-path esistenti
- ullet Contare le frequenze esatte di $f_A[w]$ e $f_B[w]$
- Calcolare la similarità usando la definizione

Complessità:

- Tempo: $O(|V|^q)$
- Spazio: $O(|\Sigma|^q q)$

Problema!

Limitare la ricerca approssimando il valore di similarità

Approccio Brute-force:

- Enumerare tutti i q-path esistenti
- ullet Contare le frequenze esatte di $f_A[w]$ e $f_B[w]$
- Calcolare la similarità usando la definizione

Complessità:

- Tempo: $O(|V|^q)$
- Spazio: $O(|\Sigma|^q q)$

Problema!

Limitare la ricerca approssimando il valore di similarità

- ullet Tempo: $O(|V|^q) o {\sf Color} \; {\sf Coding} o O(2^q \; |V|)$
- Spazio: $O(|\Sigma|^q \; q) o \mathsf{Sampling} o O(rq)$ per un certo $r \ll |\Sigma|^q$

Coloriamo casualmente il grafo con q colori e ci limitiamo ai path colorful (percorsi con colori non ripetuti)

II numero dei path è esponenzialmente ridotto di un fattore $q!/q^q \simeq e^{-q}$ Per q=3 solo il $\sim 22.22\%$ Per q=6 solo il $\sim 1.5\%$

Coloriamo casualmente il grafo con q colori e ci limitiamo ai path colorful (percorsi con colori non ripetuti)

II numero dei path è esponenzialmente ridotto di un fattore $q!/q^q \simeq e^{-q}$ Per q=3 solo il $\sim 22.22\%$ Per q=6 solo il $\sim 1.5\%$

q! colorazioni accettabili q^q possibili colorazioni

Esempi di possibili path

In questo modo:

$$f_X'[w] \simeq e^{-q} f_X[\widetilde{w}]$$

Tabella frequenze dei q-grammi:

W	$f_X[w]$
aaa	721
abc	243
zzy	13
ZZZ	368

Potenzialmente:

$$|w| = |\Sigma|^q$$
 (tutti i q -grammi)

$$\Sigma_w f_X[w] = O(|V|^q)$$
 (tutti i q -path)

5/15

Tabella frequenze dei q-grammi:

W	$f_X[w]$		
aaa	721		
abc	243		
zzy	13		
ZZZ	368		

Potenzialmente:

$$|w| = |\Sigma|^q$$
 (tutti i q -grammi)

$$\Sigma_w f_X[w] = O(|V|^q)$$
 (tutti i q -path)

Riduciamo le dimensioni della tabella campionando alcuni q-grammi w con probabilità proporzionale a $f_X[w]$.

Tabella frequenze dei q-grammi:

W	$f_X[w]$
aaa	721
abc	243
zzy	13
ZZZ	368

Potenzialmente:

$$|w| = |\Sigma|^q$$
 (tutti i q -grammi)

$$\Sigma_w f_X[w] = O(|V|^q)$$
 (tutti i q -path)

Riduciamo le dimensioni della tabella campionando alcuni q-grammi w con probabilità proporzionale a $f_X[w]$.

Questo campionamento viene effettuato campionando uniformemente r colorful q-path distinti.

Definiamo quindi:

- R l'insieme dei r q-path campionati ($r \ll |V|^q$)
- \mathcal{W} l'insieme dei q-grammi dei q-path in R ($|W| \leq r$)

Pisa. 3 Dicembre 2021

Tabella frequenze dei q-grammi:

W	$f_X[w]$
aaa	721
abc	243
zzy	13
ZZZ	368

Potenzialmente:

$$|w|=|\Sigma|^q$$
 (tutti i q -grammi)

$$\Sigma_w f_X[w] = O(|V|^q)$$
 (tutti i q -path)

Riduciamo le dimensioni della tabella campionando alcuni q-grammi w con probabilità proporzionale a $f_X[w]$.

Questo campionamento viene effettuato campionando uniformemente r colorful q-path distinti.

Definiamo quindi:

- R l'insieme dei r q-path campionati ($r \ll |V|^q$)
- \mathcal{W} l'insieme dei q-grammi dei q-path in R ($|W| \leq r$)

 $\label{eq:card} \mbox{\bf Jaccard: campionamento con } X = A \cup B \\ \mbox{\bf Bray-Curtis: campionamento con } X = A \uplus B \\$

Esempio di sampling

Campioniamo 5 diversi 3-path da $X=A\cup B=\{0,1,12\}$

Campione dei 3-path

$$R = \{ \text{ 4-2-1 }, \text{ 8-7-0 }, \text{ 10-9-1, 16-13-12, 17-14-12 } \}$$
 Insieme corrispondente dei 3-grammi
$$\mathcal{W} = \{ \text{ acb, bba, bca } \}$$

Approssimazione degli indici

Dato un campione $\mathcal W$ di q-grammi approssimiamo i due indici limitandoci al campione

Pisa. 3 Dicembre 2021

Approssimazione degli indici

Dato un campione ${\mathcal W}$ di q-grammi approssimiamo i due indici limitandoci al campione

$$J(A, B) = \frac{\sum_{w \in \Sigma^{q}} \min(f_{A}[w], f_{B}[w])}{\sum_{w \in \Sigma^{q}} f_{A \cup B}[w]}$$

$$\downarrow$$

$$J_{W}(A, B) = \frac{\sum_{w \in \mathcal{W}} \min(f_{A}[w], f_{B}[w])}{\sum_{w \in \mathcal{W}} f_{A \cup B}[w]}$$

Approssimazione degli indici

Dato un campione ${\mathcal W}$ di q-grammi approssimiamo i due indici limitandoci al campione

$$J(A, B) = \frac{\sum_{w \in \Sigma^{\mathbf{q}}} \min(f_A[w], f_B[w])}{\sum_{w \in \Sigma^{\mathbf{q}}} f_{A \cup B}[w]}$$

$$\downarrow$$

$$J_{\mathcal{W}}(A, B) = \frac{\sum_{w \in \mathcal{W}} \min(f_A[w], f_B[w])}{\sum_{w \in \mathcal{W}} f_{A \cup B}[w]}$$

$$BC(A, B) = \frac{2 \times \sum_{w \in \Sigma^q} \min(f_A[w], f_B[w])}{\sum_{w \in \Sigma^q} (f_A[w] + f_B[w])}$$

$$BC_{\mathcal{W}}(A,B) = \frac{2 \times \sum_{w \in \mathcal{W}} \min(f_A[w], f_B[w])}{\sum_{w \in \mathcal{W}} (f_A[w] + f_B[w])}$$

query: F-Count e F-Samp

Come calcoliamo $f_A[w]$ e $f_B[w]$ per $w \in \mathcal{W}$?

Pisa, 3 Dicembre 2021

query: F-Count e F-Samp

Come calcoliamo $f_A[w]$ e $f_B[w]$ per $w \in \mathcal{W}$?

F-Count

Calcoliamo in modo esatto i valori di $f_A[w]$ e $f_B[w]$ con una ricerca esaustiva limitata ai q-grammi in $\mathcal W$

Pro:

 Più preciso in quanto usiamo le frequenze esatte

Contro:

 Potenzialmente lento in quanto potrebbe analizzare una grande porzione di grafo

query: F-Count e F-Samp

Come calcoliamo $f_A[w]$ e $f_B[w]$ per $w \in \mathcal{W}$?

F-Count

Calcoliamo in modo esatto i valori di $f_A[w]$ e $f_B[w]$ con una ricerca esaustiva limitata ai q-grammi in $\mathcal W$

Pro:

 Più preciso in quanto usiamo le freguenze esatte

Contro:

 Potenzialmente lento in quanto potrebbe analizzare una grande porzione di grafo

F-Samp

Stimiamo i valori di $f_A[w]$ e $f_B[w]$ usando il campione dei q-path R

Pro:

• Più veloce poichè analizziamo solo gli $r\ q$ -path campionati

Contro:

 Stima meno precisa dato che usiamo valori approssimati delle frequenze

Parte II

Risultati pratici

Tempi di esecuzione e memoria occupata

Tempi di esecuzione e memoria occupata

Dataset	q	Tempo	Memoria		
NetInf	13	0.39s	11.20MiB		
NetInf	14	0.81s	22.63MiB		
NETINF	15	1.66s	45.21MiB		
NetInf	16	3.47s	90.93MiB		
IMDB	3	48.22s	17.94MiB		
IMDB	4	105.94s	34.91MiB		
IMDB	5	241.22s	69.01MiB		
IMDв	6	557.48s	137.26MiB		

Tempi di esecuzione e memoria occupata

DATASET	q	Tempo	Memoria		
NETINF	13	0.39s	11.20MiB		
NetInf	14	0.81s	22.63MiB		
NetInf	15	1.66s	45.21MiB		
NETINF	16	3.47s	90.93MiB		
IMDB	3	48.22s	17.94MiB		
IMDB	4	105.94s	34.91MiB		
IMDB	5	241.22s	69.01MiB		
IMDB	6	557.48s	137.26MiB		

Scalabilità al variare dei cores usati

query: F-Count / F-Samp / Base

					Tempi (in ms)			
Dataset	q	A	B	r	F-Count	F-Samp	Base	
NETINF	3	100	100	1 000	20	4	2	
NETINF	3	100	100	5 000	60	30	15	
NETINF	5	100	100	1 000	2682	426	3	
NETINF	5	100	100	5 000	4767	784	20	
NETINF	7	100	100	100	5455	4	2	
NETINF	7	100	100	200	16 634	197	2	
IMDB	3	10	10	100	5035	66	1	
IMDB	4	10	10	100	/	443	8	
IMDB	5	10	10	100	/	781	12	
IMDB	6	10	10	100	/	1379	14 M	

Tempi per il calcolo dell'indice di Bray-Curtis $r = {\sf Dimensione} \ {\sf del} \ {\sf campione}$

ϵ -approssimazione

Confronto a parità di livello di approssimazione ϵ

		F-COUNT			F-SAMP			BASE		
q	ϵ	r	T	VAR	r	Т	VAR	r	Т	VAR
3	0.20	2	1	0.0725	400	1	0.1194	420	1	0.1150
3	0.10	3	1	0.0692	1 000	1	0.0601	900	1	0.1338
3	0.05	4	1	0.0535	3200	1	0.0273	1500	1	0.1025
4	0.20	3	2	0.0677	1 300	1	0.1194	1 300	1	0.2424
4	0.10	5	4	0.0532	3200	2	0.0992	2500	2	0.1806
4	0.05	10	8	0.0518	8 000	4	0.0612	7900	3	0.1081
5	0.20	5	6	0.0511	5000	4	0.1678	6 000	3	0.2234
5	0.10	10	18	0.0370	20 000	12	0.0745	30 000	8	0.1234
5	0.05	20	58	0.0204	80 000	30	0.0376	/	/	/

Dati riferiti all'indice di Bray-Curtis su NETINF

Dimensione sottografi $\left|A\right|=\left|B\right|=100$

r =Dimensione del campione

T = Tempo medio elaborazione (in millisecondi)

VAR = Varianza indici

F-Count

Pro:

- Accurato anche con campioni di piccole dimensioni
- Varianza ridotta

Contro:

- Lento su grafi di elevate dimensioni
- Preprocessing grafo (una volta sola)

F-Count

Pro:

- Accurato anche con campioni di piccole dimensioni
- Varianza ridotta

Contro:

- Lento su grafi di elevate dimensioni
- Preprocessing grafo (una volta sola)

F-Samp

Pro:

- Efficiente anche in grafi di elevate dimensioni
- Varianza ridotta

Contro:

- Necessita di campioni di grandi dimensioni
- Preprocessing grafo (una volta sola)

F-Count

Pro:

- Accurato anche con campioni di piccole dimensioni
- Varianza ridotta

Contro:

- Lento su grafi di elevate dimensioni
- Preprocessing grafo (una volta sola)

F-Samp

Pro:

- Efficiente anche in grafi di elevate dimensioni
- Varianza ridotta

Contro:

- Necessita di campioni di grandi dimensioni
- Preprocessing grafo (una volta sola)

Base

Pro:

 Efficiente anche in grafi di elevate dimensioni

Contro:

- Varianza elevata
- Necessita di campioni di grandi dimensioni
- Può non convergere al valore esatto

Fine

Grazie per l'attenzione

Sei gradi di separazione

"Ho letto che ognuno di noi su questo pianeta è separato dagli altri solo da sei persone. Sei gradi di separazione tra noi e tutti gli altri su questo pianeta [...] una tortura cinese essere così vicini ma dover trovare sei persone giuste per il collegamento."

Ouisa Kittredge, Six Degrees of Separation

Sei gradi di separazione

"Ho letto che ognuno di noi su questo pianeta è separato dagli altri solo da sei persone. Sei gradi di separazione tra noi e tutti gli altri su questo pianeta [...] una tortura cinese essere così vicini ma dover trovare sei persone giuste per il collegamento."

Ouisa Kittredge, Six Degrees of Separation

In facebook la separazione media tra gli 1.6 miliardi di utenti registrati è $3.57.\,$

Fonte: Facebook Research, Feb 2016

Sei gradi di separazione

"Ho letto che ognuno di noi su questo pianeta è separato dagli altri solo da sei persone. Sei gradi di separazione tra noi e tutti gli altri su questo pianeta [...] una tortura cinese essere così vicini ma dover trovare sei persone giuste per il collegamento."

In facebook la separazione media tra gli 1.6 miliardi di utenti registrati è 3.57. Fonte: Facebook Research, Feb 2016

La distanza media di un attore, in termini di collaborazioni, da Kevin Bacon è 3, il 98% degli attori è a distanza ≤ 6 . Fonte: IMDb, Ott 2017