流水线 CPU 设计文档(P5)

贾博驿

初稿: 2023年11月12日

编辑: 2024年8月27日

设计实现指令

共 42 条 实际指令 39 条

R型指令:

6	5	5	5	5	6
opcode	rs	rt	rd	shamt	funct

I型指令:

6	5	5	16
opcode	rs (base)	rt	imm16 (immediate, offset)

J型指令:

6	26
opcode	instr_index

注:以下的 RTL 除分支与跳转类指令均省略 PC←PC+4。

算数与逻辑类

1. 算数类

a. R型

名称	funct	RTL
add	100000	$GPR[rd] \leftarrow GPR[rs] + GPR[rt]$
addu	100001	$GPR[rd] \leftarrow GPR[rs] + GPR[rt]$
sub	100010	$GPR[rd] \leftarrow GPR[rs] - GPR[rt]$
subu	100011	$GPR[rd] \leftarrow GPR[rs] - GPR[rt]$

注:实现的 add 实际上为 addu、sub 实际上为 subu。二者均按照无符号指令处理。

b. I型

名称	opcode	RTL
addi	001000	$GPR[rt] \leftarrow GPR[rs] + sign_extend(immediate)$
addiu	001001	$GPR[rt] \leftarrow GPR[rs] + sign_extend(immediate)$

注: 实现的 addi 实际上为 addiu。按照无符号指令处理。

2. 逻辑类

a. R型

名称	funct	RTL
and	100100	$GPR[rd] \leftarrow GPR[rs] AND(bitwise) GPR[rt]$
or	100101	$GPR[rd] \leftarrow GPR[rs] OR(bitwise) GPR[rt]$
xor	100110	$GPR[rd] \leftarrow GPR[rs] XOR(bitwise) GPR[rt]$
nor	100111	$GPR[rd] \leftarrow GPR[rs] NOR(bitwise) GPR[rt]$
sll	000000	$GPR[rd] \leftarrow GPR[rt]$ (31-shamt)0 0shamt
srl	000010	$GPR[rd] \leftarrow 0$ shamt $GPR[rt]$ 31shamt
sra	000011	$GPR[rd] \leftarrow (GPR[rt]31)_{shamt} \parallel GPR[rt]31shamt$
sllv	000100	$s \leftarrow GPR[rs]40 GPR[rd] \leftarrow GPR[rt](31-s)0 \parallel 0s$
srlv	000110	$s \leftarrow GPR[rs]40 GPR[rd] \leftarrow 0s \parallel GPR[rt]31s$
srav	000111	$s \leftarrow GPR[rs]4.0 GPR[rd] \leftarrow (GPR[rt]31)s \parallel GPR[rt]31s$

注:根据寄存器值移位指令只依照寄存器值的低五位移位,不受高位值影响。

b. I型

名称	opcode	RTL
andi	001100	$GPR[rt] \leftarrow GPR[rs] AND(bitwise) zero_extend(immediate)$
ori	001101	$GPR[rt] \leftarrow GPR[rs] OR(bitwise) \frac{\text{zero_extend}(immediate)}{}$
xori	001110	$GPR[rt] \leftarrow GPR[rs] XOR(bitwise) \frac{\text{zero_extend}(immediate)}{\text{zero_extend}(immediate)}$

寄存器操作类

a. R型

名称	funct	RTL
slt	101010	$GPR[rd] \leftarrow 0 GPRLEN-1 \parallel GPR[rs] \leq GPR[rt]$
sltu	101011	$GPR[rd] \leftarrow 0GPRLEN-1 \parallel (0 \parallel GPR[rs]) < (0 \parallel GPR[rt])$

注: slt 类指令成立时置 1, 不成立时置 0。

b. I型

名称	opcode	RTL
slti	001010	$GPR[rt] \leftarrow 0GPRLEN-1 \parallel GPR[rs] < sign_extend(immediate)$
sltiu	001011	$GPR[rt] \leftarrow 0GPRLEN-1 \parallel (0 \parallel GPR[rs]) < (0 \parallel sign_extend(immediate))$
lui	001111	$GPR[rt] \leftarrow immediate \parallel 016$

注: sltiu 对立即数的处理是先有符号扩展再进行无符号比较。

分支与跳转类

1. 分支类 (I型)

名称	opcode	rt	RTL
			I+1: if condition then
(all)			$PC \leftarrow PC + sign_extend(offset 02)$
			endif
bltz	000001	00000	I: condition \leftarrow GPR[rs] $<$ 032
bgez	000001	00001	I: condition \leftarrow GPR[rs] \geq 032
beq	000100	rt	I: condition \leftarrow (GPR[rs] = GPR[rt])
bne	000101	rt	I: condition \leftarrow (GPR[rs] \neq GPR[rt])
blez	000110	00000	I: condition \leftarrow GPR[rs] \leq 032
bgtz	000111	00000	I: condition \leftarrow GPR[rs] > 032

注:流水线 CPU 分支指令不需要 PC+4 后再加上 offset,直接在延迟槽的地址上加。

2. 跳转类

a. R型

名称	funct	RTL		
	jr 001000	I:		
Jr		$I+1: PC \leftarrow GPR[rs]$		
iale	alr 001001	I: $GPR[rd] \leftarrow PC + 8$		
Jan		$I+1: PC \leftarrow GPR[rs]$		

b. J型

名称	opcode	RTL
	i 000010	I:
J	000010	I+1: PC ← PC3128 instr_index 02

jal	000011	I: GPR[31] ← PC + 8
Jai	000011	I+1: $PC \leftarrow PC_{3128} \parallel instr_index \parallel 0_2$

注:流水线 CPU 跳转指令由于延迟槽存在应该加上 PC+8,而非单周期的 PC+4。

内存操作类(I型)

名称	opcode	RTL
(all)		$addr \leftarrow sign_extend(offset) + GPR[base]$
lb	100000	byte ← addr10 GPR[rt] ← sign_extend(memory[addr]7+8*byte8*byte)
lh	100001	half ← addr1 GPR[rt] ← sign_extend(memory[addr]15+8*half8*half)
lw	100011	$GPR[rt] \leftarrow memory[addr]$
lbu	100100	byte ← addr10 GPR[rt] ← zero_extend(memory[addr]7+8*byte8*byte)
lhu	100101	half ← addr1 GPR[rt] ← zero_extend(memory[addr]15+8*half8*half)
sb	101000	memory[addr]70 \leftarrow GPR[rt]70
sh	101001	$memory[addr]150 \leftarrow GPR[rt]150$
SW	101011	$memory[addr]310 \leftarrow GPR[rt]$

注:

- 1.针对半字操作需要 addr 为 2 的非负整数倍,针对字节操作需要 addr 为 4 的非负整数倍, 本次实现时实际只涉及针对字节操作,且保证地址是合法的。
- 2.针对字节和半字操作时只修改对应字节和半字的值,同一字的其他部分不变。

转发与暂停设计

指令分类

类型名	信号名	数量	指令
算数逻辑寄存器	ALREG	16	_arith (算数): add, addu, sub, subu
			_logic (逻辑): and, or, xor, nor
			_shift(移位): sll, srl, sra, sllv, srlv, srav
			_comp(比较): slt, sltu
算数逻辑立即数	ALIMM	7	_sign(有符号拓展): addi, addiu, slti, sltiu
			_zero (无符号拓展): andi, ori, xori
高位加载	EXTLUI	1	lui
两数比较分支	BRANCHE	2	beq, bne
与零比较分支	BRANCHZ	4	bltz, bgez, blez, bgtz
仅读取跳转	JUMPR	1	jr
仅写入跳转	JUMPW	1	jal
读取写入跳转	JUMPRW	1	jalr
读取内存	LOAD	5	lb, lh, lw, lbu, lhu
写入内存	STORE	3	sb, sh, sw

注: 不包括 j 指令, 因为 j 指令不读取通用寄存器也不写入通用寄存器。

Tuse 与 Tnew

信号名	Tuse_rs	Tuse_rt
ALREG	1	1
ALIMM	1	(3)
EXTLUI	(3)	(3)
BRANCHE	0	0
BRANCHZ	0	(3)
JUMPR	0	(3)
JUMPW	(3)	(3)
JUMPRW	0	(3)
LOAD	1	(3)
STORE	1	2

Tube V Then			
GRF_WD_W_Sel	Tnew_E	Tnew_M	Tnew_W
00	1	0	0
00	1	0	0
10	0	0	0
(00)	(0)	(0)	(0)
(00)	(0)	(0)	(0)
(00)	(0)	(0)	(0)
11	0	0	0
11	0	0	0
01	2	1	0
(00)	(0)	(0)	(0)

注:

1.(3)表示该类指令不会读取 rs 或 rt 域翻译为寄存器编号后对应的寄存器,除 GRF 内部转发外不产生任何转发和暂停。

2.(00)和(0)表示表示该类指令 GRFWE 为 0, 虽然使用 ALU 数据但无意义。

转发与暂停

SPL_rs != 5'd0 && GRFWE_X && SPL_rs == GRF_A3_X									
流水段(X)		I	Ξ		M	ſ (~ rs_E	_premis	e)	W
GRF_WD_W_Sel_X(Tnew_X)	00(1)	01(2)	10(0)	11(0)	00(0)	01(1)	10(0)	11(0)	All
$Tuse_rs == 0$	S1	S2	E42	E44	E21	S3	E22	E24	F1
Tuse_rs == 1	F51	S4	F43	F44	F21	F32	F23	F24	гі

SPL_rt != 5'd0 && GRFWE_X && SPL_rt == GRF_A3_X									
流水段(X)		I	Ξ		M	ſ (~ rs_E	_premis	e)	W
GRF_WD_W_Sel_X(Tnew_X)	00(1)	01(2)	10(0)	11(0)	00(0)	01(1)	10(0)	11(0)	All
Tuse_rt == 0	S1	S2				S3			
Tuse_rt == 1	E51	S4	F43	F44	F21	F32	F23	F24	F1
Tuse_rt == 2	F51	F62				F32			

注:

1.优先级 S > F4、F5、F6 > F2、F3。

2.F2 和 F3 之间、F4、F5 和 F6 之间不会发生冲突,因为转发的是同一流水级的不同数据。

转发信号表

_	代交信マポ					
S	<pre>SPL_rs != 5'd0 && GRFWE_X && SPL_rs == GRF_A3_X</pre>					
类型	描述	FMUX_V1_D_Sel	FMUX_V1_E_Sel			
S	暂停					
F51	V1_E 转发 OP_M		11			
F43	V1_D 转发 ext32_E	110				
F44	V1_D 转发 pc8_E	111				
F32	V1_E 转发 DM_Q_W		10			
F21	V1_D 转发 OP_M	011				
F23	V1_D 转发 ext32_M	100				
F24	V1_D 转发 pc8_M	101				
F1	GRF 内部转发					
F0	不转发	000	00			

	SDI rt != 5'd0 &	& GRFWE X && S	SPI $rt == GRF \Lambda 3$	Y
사 표대	_	<u>–</u>		1
类型	描述	FMUX_V2_D_Sel	FMUX_V2_E_Sel	FMUX_OP_M_Sel
S	暂停			
F62	DM_D_M 转发 DM_Q_W			1
F51	V2_E 转发 OP_M		11	
F43	V2_D 转发 ext32_E	110		
F44	V2_D 转发 pc8_E	111		
F32	V2_E 转发 DM_Q_W		10	
F21	V2_D 转发 OP_M	011		
F23	V2_D 转发 ext32_M	100		
F24	V2_D 转发 pc8_M	101		
F1	GRF 内部转发			
0	不转发	000	00	0

注:未标注的信号取值与不转发相同。

暂停变化表

I	I+1	I+2
S1	F21	
S2	S3	F1

I	I+1	I+2
S3	F1	
S4	F32	

模块设计

IFU

1. 描述

取指令模块。内有 PC 子模块、NPC 子模块和 ROM。接收分支和跳转指令的控制信号和数据并实现跳转。输出指令及其地址。

2. 接口

端口名	方向	描述
RESET	I	同步复位信号
clk	I	时钟信号
STALL_EN_N	I	暂停使能信号
NPCSel[1:0]	I	NPC 子模块控制信号
BranchComp	I	NPC 子模块分支指令控制信号
offset[15:0]	I	分支指令跳转偏移
instr_index[25:0]	I	j、jal 指令跳转地址
instr_register[31:0]	I	jr、jalr 指令跳转寄存器值
Instr[31:0]	О	即将进入流水线的指令
InstrAddr[31:0]	О	即将进入流水线的指令地址

3. 控制信号

BranchComp: 接 COMP 的 BranchComp。

NPCSel:

指令(信号)名	取值	描述
其他	00	PC←PC+4
BRANCHE, BRANCHZ	01	使用 offset,结合 BranchComp 判断
j, jal	10	使用 instr_index
jr, jalr	11	使用 instr_register

IFU_PC

1. 描述

程序计数器子模块。在复位信号有效时复位为32h00003000。

2. 接口

端口名	方向	描述
RESET	I	同步复位信号
clk	I	时钟信号
STALL_EN_N	I	暂停使能信号
D[31:0]	О	下一指令地址
Q[31:0]	О	即将进入流水线的指令地址

IFU_NPC

1. 描述

下一条指令地址计算子模块。输入 IFU 接收的分支跳转指令控制信号和数据, 计算出下一条指令的地址。

2. 接口

端口名	方向	描述
PC[31:0]	1	即将进入流水线的指令地址
NPCSel[1:0]	I	同 IFU
BranchComp	I	同 IFU
offset[15:0]	I	同 IFU
instr_index[25:0]	I	同 IFU
instr_register[31:0]	I	同 IFU
NPC[31:0]	О	下一指令地址

SPL

1. 描述

指令分线器模块。按照三种指令的格式将一条指令分为不同的部分, 供其他模块使用。

2. 接口

端口名	方向	描述
Instr[31:0]	1	当前指令
opcode[5:0]	О	指令的操作数
rs[4:0]	0	R、I 型指令的 rs
rt[4:0]	О	R、I 型指令的 rt
rd[4:0]	О	R 型指令的 rd
shamt[4:0]	О	R 型指令的 shamt
funct[5:0]	О	R 型指令的 funct
imm16[15:0]	О	I型指令的立即数
instr_index[25:0]	О	J型指令的跳转地址

GRF (GRF_R, GRF_W)

1. 描述

寄存器堆模块,共有 31 个寄存器 (0 号寄存器直接接地)。通过 A1、A2 输入地址,可以取出指定寄存器的完成内部转发的数据。当 WE 使能时,通过 A3 输入地址,D 输入数据,可以修改指定寄存器存储的数据并进行内部转发。在流水线设计时分为两个部分体现。

2. 接口

-		
端口名	方向	描述
RESET	I	同步复位信号
clk	I	时钟信号
WE	I	写入使能信号
A1[4:0]	I	读取的第一个寄存器的编号
A2[4:0]	I	读取的第二个寄存器的编号
A3[4:0]	I	写入的寄存器的编号
D[31:0]	I	写入寄存器的数据
V1[31:0]	О	读取的第一个寄存器的完成内部转发的值
V2[31:0]	О	读取的第二个寄存器的完成内部转发的值

3. 控制信号

GRFWE:

指令信号名	取值	描述
其他	0	不涉及寄存器写入的指令
ALREG	1	
ALIMM, EXTLUI	1	
LOAD	1	
JUMPW、JUMPRW	1	

4. 关联 MUX

MUX_GRF_A3_D, 控制信号 CTRL_D_GRF_A3_D_Sel。

指令信号名	取值	描述
其他	00	接入 SPL_rd
ALIMM, EXTLUI	10	接入 SPL_rt
LOAD	10	接入 SPL_rt
JUMPW	11	固定 32'd31

MUX_GRF_WD_W, 控制信号 GRF_WD_W_Sel_W。

指令信号名	取值	描述
其他	00	接入 OP_W
LOAD	01	接入 DM_Q_W
EXTLUI	10	接入 ext32_W
JUMPW、JUMPRW	11	接入 pc8_W

COMP

1. 描述

比较模块,完成两数相等、不等,一数有符号小于、小于等于、大于、大于等于零的比较运算。比较结果用于判断分支指令是否执行。

2. 接口

端口名	方向	描述
CompSel[2:0]	I	比较方式控制信号
A[31:0]	I	第一个操作数
B[31:0]	I	第二个操作数
BranchComp	О	比较结果

3. 控制信号

CompSel:

指令名	取值	描述
bltz(00000)	000	有符号小于 0
bgez(00001)	001	有符号大于等于0
beq(000100)	100	两数相等
bne(000101)	101	两数不等
blez(000110)	110	有符号小于等于 0
bgtz(000111)	111	有符号大于 0

EXT

1. 描述

位扩展模块,将16位立即数无符号扩展、有符号扩展、右补16位0为32位。

2. 接口

端口名	方向	描述
EXTSel[1:0]	I	扩展方式控制信号
imm16[15:0]	I	16 位立即数
ext32[31:0]	О	32 位扩展结果

3. 控制信号

EXTSel:

指令名	取值	描述
其他	00	有符号拓展
andi, ori, xori	01	无符号拓展
lui	10	右补 16 位 0

ALU

1. 描述

算数逻辑模块,完成算数运算(加、减)、逻辑运算(与、或、异或、或非)、移位运算(左移、逻辑右移、算数右移)、比较运算(两数有符号小于,无符号小于)。计算结果用于保存到寄存器。

2. 接口

端口名	方向	描述
OPSel[1:0]	I	OP 输出控制信号
FuncSel[1:0]	I	计算方式控制信号
A[31:0]	I	第一个操作数
B[31:0]	I	第二个操作数
shamt[4:0]	I	移位立即数
OP[31:0]	О	计算结果

3. 控制信号

OPSel:

指令(信号)名	取值	描述
add, addu, sub, subu, addi, addiu	00	算数运算
LOAD, STORE	00	算数运算
and, or, xor, nor, andi, ori, xori	01	逻辑运算
sll、srl、sra、sllv、srlv、srav	10	移位运算
slt, sltu, slti, sltiu	11	比较运算

FuncSel: 根据 OPSel 选择。

OPSel == 00 时。

指令名	取值	描述
add, addu, addi, addiu	00	不考虑算数溢出加法
LOAD, STORE	00	不考虑算数溢出加法
sub, subu	01	不考虑算数溢出减法
Suo', Suou	01	177次升频皿口94公

OPSel == 01 时,根据指令是否为 I 型选择。R 型接 funct[1:0]、I 型接 opcode[1:0]。

		-	 _		 _
指令名	取值	描述			
and(100100), andi(001100)	00	与			
or(100101), ori(001101)	01	或			

xor(100110), xori(001110)	10	异或
nor(100111)	11	或非

OPSel == 10 时,接 funct[1:0]。

指令名	取值	描述
sll(000000), sllv(000100)	00	逻辑左移
srl(000010), srlv(000110)	10	逻辑右移
sra(000011), srav(000111)	11	算数右移

OPSel == 11 时。

指令名	取值	描述
slt, slti	00	有符号两数小于
sltu, sltiu	01	无符号两数小于

4. 关联 MUX

MUX_ALU_B_E, 控制信号 ALU_B_E_Sel_E。

	_	
指令信号名	取值	描述
其他	0	接入 FMUX_V2_E
ALIMM, LOAD, STORE	1	接入 ext32 E

DM

1. 描述

内存模块。包括 RAM 和位处理两个部分。位处理部分用于处理针对半字和字节的读取和写入。

2. 接口

端口名	方向	描述
RESET	I	同步复位信号
clk	I	时钟信号
WE	I	写入使能信号
DMSel[2:0]	I	读取写入模式控制信号
A[31:0]	I	读取或写入的地址
D[31:0]	I	写入的数据
Q[31:0]	О	读取的数据

3. 控制信号

DMWE:

指令信号名	取值	描述
其他	0	
STORE	1	

DMSel: 接 opcode[2:0]。

指令名	取值	描述
lb(100000), sb(101000)	000	针对 byte 操作,读取时有符号拓展
lh(100001), sh(101001)	001	针对 halfword 操作,读取时有符号拓展
lw(100011), sw(101011)	011	针对 word 操作
lbu(100100)	100	针对 byte 操作,读取时无符号拓展
lhu(100101)	101	针对 halfword 操作, 读取时无符号拓展

FR_D, FR_E, FR_M, FR_W

1. 描述

D、E、M、W 段流水线寄存器。

2. 接口

通用:

端口名	方向	描述
RESET	I	同步复位信号
clk	I	时钟信号

以下端口均有 I 和 O 两个方向,I 方向信号名以 D_{-} 开头,O 方向信号名以 Q_{-} 开头。 $FR_{-}D$:

端口名	接入
STALL_EN_N	CTRL_S_FR_D_EN
Instr[31:0]	IFU_Instr
InstrAddr[31:0]	IFU_InstrAddr

FR_E:

端口名	接入
STALL_RESET	CTRL_S_FR_E_RESET
DMWE	CTRL_D_DMWE
GRFWE	CTRL_D_GRFWE
DMSel[2:0]	CTRL_D_DMSel
FuncSel[1:0]	CTRL_D_FuncSel
OPSel[1:0]	CTRL_D_OPSel
GRF_WD_W_Sel[1:0]	CTRL_D_GRF_WD_W_Sel
ALU_B_E_Sel	CTRL_D_ALU_B_E_Sel
V1[31:0]	FMUX_V1_D
V2[31:0]	FMUX_V2_D
shamt[4:0] SPL_shamt	
GRF_A3[4:0]	MUX_GRF_A3_D
ext32[31:0]	EXT_ext32
pc8[31:0]	pc8_D
FMUX_V1_E_Sel[1:0]	CTRL_F_FMUX_V1_E_Sel
FMUX_V2_E_Sel[1:0]	CTRL_F_FMUX_V2_E_Sel
FMUX_DM_D_M_Sel	CTRL_F_FMUX_DM_D_M_Sel

FR_M:

端口名	接入
DMWE	DMWE E
GRFWE	GRFWE_E
DMSel[2:0]	DMSel_E
GRF_WD_W_Sel[1:0]	GRF_WD_W_Sel_E
V2[31:0]	FMUX_V2_E
OP[31:0]	ALU_OP
GRF_A3[4:0]	GRF_A3_E
ext32[31:0]	ext32_E

pc8[31:0]	pc8_E
FMUX_DM_D_M_Sel	FMUX_DM_D_M_Sel_E

FR_W:

端口名	接入
GRFWE	GRFWE_M
GRF_WD_W_Sel[1:0]	GRF_WD_W_Sel_M
OP[31:0]	OP_M
DM_Q[31:0]	DM_Q
GRF_A3[4:0]	GRF_A3_ M
ext32[31:0]	ext32_ M
pc8[31:0]	pc8_M

CTRL_Decoder

1. 描述

译码器模块。通过 opcode、funct 和 rt 判断指令的类型,输出各个模块的控制信号。

2. 接口

端口名	方向	端口名	方向
opcode[5:0]	I	DMSel[2:0]	O
funct[5:0]	I	DMWE	O
rt[4:0]	I	GRFWE	O
CompSel[2:0]	О	GRF_A3_D_Sel[1:0]	O
EXTSel[1:0]	О	GRF_WD_W_Sel[1:0]	О
NPCSel[1:0]	О	ALU_B_E_Sel	О
OPSel[1:0]	О	Tuse_rs[1:0]	О
FuncSel[1:0]	О	Tuse_rt[1:0]	О

CTRL_Stall

暂停控制器模块。判断是否需要暂停, 若需要暂停则产生暂停信号。

2. 接口

端口名	方向	端口名	方向
Tuse_rs[1:0]	I	GRF_WD_W_Sel_E[1:0]	I
Tuse_rt[1:0]	I	GRF_WD_W_Sel_M[1:0]	I
SPL_rs[4:0]	I	GRF_A3_E[4:0]	I
SPL_rt[4:0]	I	GRF_A3_M[4:0]	I
GRFWE_E	I	IFU_EN_N	О
GRFWE_M	I	FR_D_EN_N	О
		FR_E_RESET	О

CTRL Forward

1. 描述

转发控制器模块。判断是否需要转发,若需要转发转发什么数据。

2. 接口

端口名	方向	端口名	方向
Tuse_rs[1:0]	I	GRF_A3_E[4:0]	I
Tuse_rt[1:0]	I	GRF_A3_M[4:0]	I
SPL_rs[4:0]	I	FMUX_V1_D_Sel[2:0]	О
SPL_rt[4:0]	I	FMUX_V2_D_Sel[2:0]	О
GRFWE_E	I	FMUX_V1_E_Sel[1:0]	О
GRFWE_M	I	FMUX_V2_E_Sel[1:0]	О
GRF_WD_W_Sel_E[1:0]	I	FMUX_DM_D_M_Sel	О
GRF_WD_W_Sel_M[1:0]	I		