CÁLCULO

► Definiciones básicas.

- ▶ Definiciones básicas.
- Extremos relativos para funciones diferenciables.

- ► Definiciones básicas.
- Extremos relativos para funciones diferenciables.
- ▶ Dominios con frontera: Extremos condicionados.

- ▶ Definiciones básicas.
- Extremos relativos para funciones diferenciables.
- ▶ Dominios con frontera: Extremos condicionados.
 - Método de los multiplicadores de Lagrange.

Definiciones básicas

Definiciones básicas

Definición

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función y $(x_0, y_0) \in D$. Entonces:

- ▶ f tiene un **mínimo local (o relativo)** en (x_0, y_0) si existe $\delta > 0$ tal que $f(x_0, y_0) \leq f(x, y)$ para cualquier $(x, y) \in D \cap B((x_0, y_0), \delta)$.
- ▶ f tiene un **mínimo global (o absoluto)** en (x_0, y_0) si se verifica que $f(x_0, y_0) \le f(x, y)$ para cualquier $(x, y) \in D$.
- ▶ f tiene un **máximo local (o relativo)** en (x_0, y_0) si existe $\delta > 0$ tal que $f(x_0, y_0) \ge f(x, y)$ para cualquier $(x, y) \in D \cap B((x_0, y_0), \delta)$.
- ▶ f tiene un **máximo global (o absoluto)** en (x_0, y_0) si se verifica que $f(x_0, y_0) \ge f(x, y)$ para cualquier $(x, y) \in D$.

Teorema

Sea $f:D\subset\mathbb{R}^2\to\mathbb{R}$ una función continua definida sobre un **dominio compacto** (dominio **cerrado**(que contiene a su propia frontera) y **acotado** (que está totalmente contenido en una bola de radio suficientemente grande)). Entonces f alcanza en D su máximo y mínimo global.

Definición

Sea $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ una función. Un punto $(x_0, y_0) \in D$ es un punto crítico si una de las siguientes condiciones se satisface.

- (i) $\nabla f(x_0, y_0) = (0, 0)$.
- (ii) $\frac{\partial f}{\partial x}(x_0, y_0)$ o $\frac{\partial f}{\partial y}(x_0, y_0)$ no existe.
- (iii) (x_0, y_0) está sobre la frontera de D.

Definición

Sea $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ una función. Un punto $(x_0, y_0) \in D$ es un punto crítico si una de las siguientes condiciones se satisface.

- (i) $\nabla f(x_0, y_0) = (0, 0)$.
- (ii) $\frac{\partial f}{\partial x}(x_0, y_0)$ o $\frac{\partial f}{\partial y}(x_0, y_0)$ no existe.
- (iii) (x_0, y_0) está sobre la frontera de D.

Definición

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Un punto crítico $(x_0, y_0) \in D$ se dice *punto de silla* si para cada bola $B((x_0, y_0), \delta)$ existen puntos (x_1, y_1) y (x_2, y_2) tales que $f(x_1, y_1) < f(x, y)$ y $f(x_2, y_2) > f(x, y)$.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Si f es diferenciable y tiene un extremo relativo en (x_0, y_0) , entonces $\nabla f(x_0, y_0) = (0, 0)$, y por lo tanto, (x_0, y_0) es un punto crítico.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Si f es diferenciable y tiene un extremo relativo en (x_0, y_0) , entonces $\nabla f(x_0, y_0) = (0, 0)$, y por lo tanto, (x_0, y_0) es un punto crítico.

Ejemplo: Demuestra que (-2,3) es un punto crítico de $f(x,y) = 2x^2 + y^2 + 8x - 6y + 20$.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Si f es diferenciable y tiene un extremo relativo en (x_0, y_0) , entonces $\nabla f(x_0, y_0) = (0, 0)$, y por lo tanto, (x_0, y_0) es un punto crítico.

Ejemplo: Demuestra que (-2,3) es un punto crítico de $f(x,y) = 2x^2 + y^2 + 8x - 6y + 20$.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Si f es diferenciable y tiene un extremo relativo en (x_0, y_0) , entonces $\nabla f(x_0, y_0) = (0, 0)$, y por lo tanto, (x_0, y_0) es un punto crítico.

Ejemplo: Demuestra que (-2,3) es un punto crítico de $f(x,y) = 2x^2 + y^2 + 8x - 6y + 20$.

$$\frac{\partial f}{\partial x}(x,y) = 4x + 8,$$

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Si f es diferenciable y tiene un extremo relativo en (x_0, y_0) , entonces $\nabla f(x_0, y_0) = (0, 0)$, y por lo tanto, (x_0, y_0) es un punto crítico.

Ejemplo: Demuestra que (-2,3) es un punto crítico de $f(x,y) = 2x^2 + y^2 + 8x - 6y + 20$.

$$\frac{\partial f}{\partial x}(x,y) = 4x + 8,$$
 $\frac{\partial f}{\partial y}(x,y) = 2y - 6.$

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Si f es diferenciable y tiene un extremo relativo en (x_0, y_0) , entonces $\nabla f(x_0, y_0) = (0, 0)$, y por lo tanto, (x_0, y_0) es un punto crítico.

Ejemplo: Demuestra que (-2,3) es un punto crítico de $f(x,y) = 2x^2 + y^2 + 8x - 6y + 20$.

$$\frac{\partial f}{\partial x}(x,y) = 4x + 8,$$
 $\frac{\partial f}{\partial y}(x,y) = 2y - 6.$

Entonces,
$$\nabla f(x, y) = (4x + 8, 2y - 6)$$

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función. Si f es diferenciable y tiene un extremo relativo en (x_0, y_0) , entonces $\nabla f(x_0, y_0) = (0, 0)$, y por lo tanto, (x_0, y_0) es un punto crítico.

Ejemplo: Demuestra que (-2,3) es un punto crítico de $f(x,y) = 2x^2 + y^2 + 8x - 6y + 20$.

Solución:

$$\frac{\partial f}{\partial x}(x,y) = 4x + 8,$$
 $\frac{\partial f}{\partial y}(x,y) = 2y - 6.$

Entonces,
$$\nabla f(x,y) = (4x + 8, 2y - 6) \rightarrow \nabla f(-2,3) = (0,0).$$

Por tanto, (-2,3) es un punto crítico de f.

$$Hess f = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$
 (Matriz Hessiana de f)

$$Hess f = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$
 (Matriz Hessiana de f)

Teorema (Criterio del Hessiano)

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función con todas sus derivadas parciales de segundo orden continuas, y $(x_0, y_0) \in D$ un punto crítico de $f(\nabla f(x_0, y_0) = (0, 0))$. Sea $Hf(x_0, y_0)$ el determinante de la matriz Hessiana. Entonces

- (i) Si $Hf(x_0, y_0) > 0$ y $\frac{\partial^2 f}{\partial x^2} f(x_0, y_0) > 0$, entonces f tiene un mínimo local en (x_0, y_0) .
- (ii) Si Si $Hf(x_0, y_0) > 0$ y $\frac{\partial^2 f}{\partial x^2} f(x_0, y_0) < 0$, entonces f tiene un máximo local en (x_0, y_0) .
- (iii) Si $Hf(x_0, y_0) < 0$, entonces f tiene un punto de silla en (x_0, y_0) .

Resumen

La búsqueda de extremos relativos en funciones diferenciables puede hacerse siguiendo los siguientes pasos.

- A1 Buscar los puntos críticos desechando aquellos que no pertenezcan al dominio, ya que éstos son los candidatos a ser extremos relativos.
- A2 Clasificar los candidatos usando el criterio del Hessiano (u otro si $Hf(x_0, y_0) = 0$).
- A3 Conclusiones sobre los extremos locales.

Solución: $\nabla f(x, y) = (-3x^2 + 4y, 4x - 4y)$

Solución: $\nabla f(x,y) = (-3x^2 + 4y, 4x - 4y) = (0,0).$

Solución:
$$\nabla f(x, y) = (-3x^2 + 4y, 4x - 4y) = (0, 0).$$

Resolviendo el sistema de ecuaciones, se obtienen como candidatos a extremos los puntos (0,0) y $(\frac{4}{3},\frac{4}{3})$.

Solución:
$$\nabla f(x,y) = (-3x^2 + 4y, 4x - 4y) = (0,0).$$

Resolviendo el sistema de ecuaciones, se obtienen como candidatos a extremos los puntos (0,0) y $(\frac{4}{3},\frac{4}{3})$.

La matriz Hessiana de
$$f$$
 es: $Hess f = \begin{pmatrix} -6x & 4 \\ 4 & -4 \end{pmatrix}$.

Solución:
$$\nabla f(x,y) = (-3x^2 + 4y, 4x - 4y) = (0,0).$$

Resolviendo el sistema de ecuaciones, se obtienen como candidatos a extremos los puntos (0,0) y $(\frac{4}{3},\frac{4}{3})$.

La matriz Hessiana de f es: $Hess f = \begin{pmatrix} -6x & 4 \\ 4 & -4 \end{pmatrix}$.

- ► $Hf(0,0) = \begin{vmatrix} 0 & 4 \\ 4 & -4 \end{vmatrix} = -16 < 0 \rightarrow (0,0)$ es un punto de silla.
- ► $Hf(\frac{4}{3}, \frac{4}{3}) = \begin{vmatrix} -8 & 4 \\ 4 & -4 \end{vmatrix} = 16 > 0 \text{ y } \frac{\partial^2 f}{\partial x^2} < 0 \rightarrow (\frac{4}{3}, \frac{4}{3}) \text{ es un }$ máximo relativo.

Solución:
$$\nabla f(x,y) = (-3x^2 + 4y, 4x - 4y) = (0,0).$$

Resolviendo el sistema de ecuaciones, se obtienen como candidatos a extremos los puntos (0,0) y $(\frac{4}{3},\frac{4}{3})$.

La matriz Hessiana de f es: $Hess f = \begin{pmatrix} -6x & 4 \\ 4 & -4 \end{pmatrix}$.

►
$$Hf(0,0) = \begin{vmatrix} 0 & 4 \\ 4 & -4 \end{vmatrix} = -16 < 0 \rightarrow (0,0)$$
 es un punto de silla.

►
$$Hf(\frac{4}{3}, \frac{4}{3}) = \begin{vmatrix} -8 & 4 \\ 4 & -4 \end{vmatrix} = 16 > 0 \text{ y } \frac{\partial^2 f}{\partial x^2} < 0 \rightarrow (\frac{4}{3}, \frac{4}{3}) \text{ es un }$$
 máximo relativo.

La función f tiene un punto de silla en (0,0) y un máximo relativo en $(\frac{4}{3},\frac{4}{3})$, donde la función toma el valor $f(\frac{4}{3},\frac{4}{3}) = \frac{59}{27}$.

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1))$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Observa que $\frac{\partial f}{\partial x}(x,y) = 0$ si y sólo si x = 0 ó $y \in \{2,-2\}$.

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Observa que $\frac{\partial f}{\partial x}(x,y) = 0$ si y sólo si x = 0 ó $y \in \{2,-2\}$.

Si
$$x = 0 \rightarrow \frac{\partial f}{\partial y}(0, y) = 2y = 0$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Observa que $\frac{\partial f}{\partial x}(x,y) = 0$ si y sólo si x = 0 ó $y \in \{2,-2\}$.

Si
$$x = 0 \rightarrow \frac{\partial f}{\partial y}(0, y) = 2y = 0 \rightarrow y = 0.$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Si
$$x = 0 \rightarrow \frac{\partial f}{\partial y}(0, y) = 2y = 0 \rightarrow y = 0.$$

Si
$$y = 2 \to \frac{\partial f}{\partial y}(x,2) = -4(x^2 - 1) = 0$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Si
$$x = 0 \rightarrow \frac{\partial f}{\partial y}(0, y) = 2y = 0 \rightarrow y = 0.$$

Si
$$y = 2 \to \frac{\partial f}{\partial y}(x, 2) = -4(x^2 - 1) = 0 \to x \in \{1, -1\}.$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Si
$$x = 0 \rightarrow \frac{\partial f}{\partial y}(0, y) = 2y = 0 \rightarrow y = 0.$$

Si
$$y = 2 \to \frac{\partial f}{\partial y}(x, 2) = -4(x^2 - 1) = 0 \to x \in \{1, -1\}.$$

Si
$$y = -2 \to \frac{\partial f}{\partial y}(x, -2) = 4(x^2 - 1) = 0$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Si
$$x = 0 \rightarrow \frac{\partial f}{\partial y}(0, y) = 2y = 0 \rightarrow y = 0.$$

Si
$$y = 2 \to \frac{\partial f}{\partial y}(x, 2) = -4(x^2 - 1) = 0 \to x \in \{1, -1\}.$$

Si
$$y = -2 \to \frac{\partial f}{\partial y}(x, -2) = 4(x^2 - 1) = 0 \to x \in \{1, -1\}.$$

$$D = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}.$$

Solución:

$$\nabla f(x,y) = (2x(4-y^2), -2y(x^2-1)) = (0,0).$$

Si
$$x = 0 \rightarrow \frac{\partial f}{\partial y}(0, y) = 2y = 0 \rightarrow y = 0.$$

Si
$$y = 2 \to \frac{\partial f}{\partial y}(x, 2) = -4(x^2 - 1) = 0 \to x \in \{1, -1\}.$$

Si
$$y = -2 \to \frac{\partial f}{\partial y}(x, -2) = 4(x^2 - 1) = 0 \to x \in \{1, -1\}.$$

$$(0,0),(1,2),(-1,2),(1,-2)$$
 y $(-1,-2)$

Observa que todos estos puntos pertenecen al dominio D.

La matriz Hessiana de
$$f$$
 es: $Hess f = \begin{pmatrix} 2(4-y^2) & -4xy \\ -4xy & -2(x^2-1) \end{pmatrix}$.

$$(0,0),(1,2),(-1,2),(1,-2)$$
 y $(-1,-2)$

Observa que todos estos puntos pertenecen al dominio D.

La matriz Hessiana de
$$f$$
 es: $Hess f = \begin{pmatrix} 2(4-y^2) & -4xy \\ -4xy & -2(x^2-1) \end{pmatrix}$.

►
$$Hf(0,0) = \begin{vmatrix} 8 & 0 \\ 0 & 2 \end{vmatrix} = 16 > 0 \text{ y } \frac{\partial^2 f}{\partial x^2}(0,0) > 0$$

$$(0,0),(1,2),(-1,2),(1,-2)$$
 y $(-1,-2)$

Observa que todos estos puntos pertenecen al dominio D.

La matriz Hessiana de f es: $Hess f = \begin{pmatrix} 2(4-y^2) & -4xy \\ -4xy & -2(x^2-1) \end{pmatrix}$.

- ► $Hf(0,0) = \begin{vmatrix} 8 & 0 \\ 0 & 2 \end{vmatrix} = 16 > 0$ y $\frac{\partial^2 f}{\partial x^2}(0,0) > 0 \rightarrow (0,0)$ es un punto de mínimo relativo.
- ▶ Hf(x,y) < 0 para el resto de los puntos (x,y) obtenidos. Por tanto, todos ellos son puntos de silla.

$$(0,0),(1,2),(-1,2),(1,-2)$$
 y $(-1,-2)$

Observa que todos estos puntos pertenecen al dominio D.

La matriz Hessiana de f es: $Hess f = \begin{pmatrix} 2(4-y^2) & -4xy \\ -4xy & -2(x^2-1) \end{pmatrix}$.

- ► $Hf(0,0) = \begin{vmatrix} 8 & 0 \\ 0 & 2 \end{vmatrix} = 16 > 0$ y $\frac{\partial^2 f}{\partial x^2}(0,0) > 0 \rightarrow (0,0)$ es un punto de mínimo relativo.
- ▶ Hf(x, y) < 0 para el resto de los puntos (x, y) obtenidos. Por tanto, todos ellos son puntos de silla.

La función f tiene un punto de mínimo relativo en (0,0), donde la función toma el valor f(0,0)=-4. Los puntos (1,2), (-1,2), (1,-2) y (-1,-2) son puntos de silla.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ (donde D incluye su frontera).

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ (donde D incluye su frontera). El análisis de los puntos extremos de f se realiza en dos fases:

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ (donde D incluye su frontera). El análisis de los puntos extremos de f se realiza en dos fases:

► Estudiar la función restringida al interior del dominio (el conjunto al quitarle la frontera).

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ (donde D incluye su frontera). El análisis de los puntos extremos de f se realiza en dos fases:

- ► Estudiar la función restringida al interior del dominio (el conjunto al quitarle la frontera).
- ► Analizar los posibles extremos en la propia frontera.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ (donde D incluye su frontera). El análisis de los puntos extremos de f se realiza en dos fases:

- ► Estudiar la función restringida al interior del dominio (el conjunto al quitarle la frontera).
- ► Analizar los posibles extremos en la propia frontera.

El método de los multiplicadores de Lagrange nos permite resolver un problema como el siguiente, que denominaremos un *problema de* extremos condicionados.

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ (donde D incluye su frontera). El análisis de los puntos extremos de f se realiza en dos fases:

- ► Estudiar la función restringida al interior del dominio (el conjunto al quitarle la frontera).
- ► Analizar los posibles extremos en la propia frontera.

El método de los multiplicadores de Lagrange nos permite resolver un problema como el siguiente, que denominaremos un *problema de extremos condicionados*.

Calcular los extremos de f(x, y) (función objetivo) sujeto a la condición g(x, y) = 0 (restricción)

Teorema

Sean f y g funciones con derivadas parciales de primer orden continuas tales que f tiene un extremo condicionado en (x_0, y_0) (es decir, (x_0, y_0) es un extremo en $S = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\}$). Si $\nabla g(x_0, y_0) \neq (0, 0)$, entonces existe un $\lambda_0 \in \mathbb{R}$ tal que

$$\nabla f(x_0, y_0) = \lambda_0 \nabla g(x_0, y_0).$$

Al valor λ_0 se le llama **multiplicador de Lagrange** asociado al punto (x_0, y_0) .

El método de los multiplicadores de Lagrange consiste en el siguiente proceso:

El método de los multiplicadores de Lagrange consiste en el siguiente proceso:

(1) Se define la función $\mathcal{L}(x,y,\lambda) = f(x,y) - \lambda g(x,y)$, y se calculan los puntos críticos de esta función. Es decir, los puntos (x_0,y_0,λ_0) que cumplen que $\nabla \mathcal{L}(x_0,y_0,\lambda_0) = (0,0,0)$, i.e.,

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= \lambda \frac{\partial g}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) &= \lambda \frac{\partial g}{\partial y}(x,y) \\ g(x,y) &= 0 \end{cases}$$

(2) Una vez obtenidos los candidatos a extremos en la frontera, evaluamos la función en cada uno de ellos. El mayor (resp. menor) de los valores será el máximo (resp. mínimo) de f(x, y) sujeto a la restricción g(x, y) = 0.

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} \le 1\}.$$

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} \le 1\}.$$

Solución:

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} \le 1\}.$$

Solución: Observa que:

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\} \cup \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} = 1\}.$$

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} \le 1\}.$$

Solución: Observa que:

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\} \cup \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} = 1\}.$$

El estudio del interior del dominio ($\{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}$) derivó en 4 puntos de silla y un mínimo relativo en (0,0) con f(0,0) = -4.

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} \le 1\}.$$

Solución: Observa que:

$$\overline{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\} \cup \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} = 1\}.$$

El estudio del interior del dominio ($\{(x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{16} < 1\}$) derivó en 4 puntos de silla y un mínimo relativo en (0,0) con f(0,0) = -4.

Para obtener los extremos en la frontera, usaremos el método de los multiplicadores de Lagrange, considerando f(x,y) como función objetivo y $g(x,y) = 4x^2 + y^2 - 16 = 0$ como restricción.

$$\mathcal{L}(x, y, \lambda) = (x^2 - 1)(4 - y^2) - \lambda(4x^2 + y^2 - 16)$$

$$\mathcal{L}(x, y, \lambda) = (x^2 - 1)(4 - y^2) - \lambda(4x^2 + y^2 - 16)$$

$$2x(4-y^2) = 8x\lambda \tag{1}$$

$$-2y(x^2-1) = 2y\lambda \tag{2}$$

$$4x^2 + y^2 = 16 (3)$$

$$\mathcal{L}(x, y, \lambda) = (x^2 - 1)(4 - y^2) - \lambda(4x^2 + y^2 - 16)$$

$$2x(4-y^2) = 8x\lambda \tag{1}$$

$$-2y(x^2 - 1) = 2y\lambda \tag{2}$$

$$4x^2 + y^2 = 16 (3)$$

► Si x = 0, de (3) y (2) se obtiene: $y = \pm 4$ y $\lambda = 1$.

$$\mathcal{L}(x, y, \lambda) = (x^2 - 1)(4 - y^2) - \lambda(4x^2 + y^2 - 16)$$

$$2x(4-y^2) = 8x\lambda \tag{1}$$

$$-2y(x^2 - 1) = 2y\lambda \tag{2}$$

$$4x^2 + y^2 = 16 (3)$$

- ► Si x = 0, de (3) y (2) se obtiene: $y = \pm 4$ y $\lambda = 1$.
- ▶ Si $x \neq 0$ y y = 0, de (3) y (1) se obtiene: $x = \pm 2$ y $\lambda = 1$.

$$\mathcal{L}(x, y, \lambda) = (x^2 - 1)(4 - y^2) - \lambda(4x^2 + y^2 - 16)$$

$$2x(4-y^2) = 8x\lambda \tag{1}$$

$$-2y(x^2-1) = 2y\lambda \tag{2}$$

$$4x^2 + y^2 = 16 (3)$$

- Si x = 0, de (3) y (2) se obtiene: $y = \pm 4$ y $\lambda = 1$.
- ▶ Si $x \neq 0$ y y = 0, de (3) y (1) se obtiene: $x = \pm 2$ y $\lambda = 1$.
- ► Si $x \neq 0$ y $y \neq 0$, se obtiene: $x = \pm \sqrt{2}$, $y = \pm 2\sqrt{2}$ y $\lambda = -1$.

Los candidatos obtenidos son:

$$(0,\pm 4), (\pm 2,0) \text{ y } (\pm \sqrt{2},\pm 2\sqrt{2})$$

Los candidatos obtenidos son:

$$(0,\pm 4),\ (\pm 2,0)\ y\ (\pm \sqrt{2},\pm 2\sqrt{2})$$

Al evaluar la función objetivo en estos valores se obtiene:

$$f(0, \pm 4) = 12$$
, $f(\pm 2, 0) = 12$ y $f(\pm \sqrt{2}, \pm 2\sqrt{2}) = -4$

Los candidatos obtenidos son:

$$(0,\pm 4),\ (\pm 2,0)\ y\ (\pm \sqrt{2},\pm 2\sqrt{2})$$

Al evaluar la función objetivo en estos valores se obtiene:

$$f(0, \pm 4) = 12$$
, $f(\pm 2, 0) = 12$ y $f(\pm \sqrt{2}, \pm 2\sqrt{2}) = -4$

Por tanto:

- Mínimo absoluto: (0,0), $(\pm\sqrt{2},\pm2\sqrt{2})$.
- Máximo absoluto: $(0, \pm 4)$, $(\pm 2, 0)$.