Modeling at the Edge: Navigating Trade-offs in Energy System Analysis The RESILIENT experience

Antonio Frangioni¹

Davide Fioriti²

...& many others

¹Dipartimento di Informatica, Università di Pisa ²Dipartimento di Ingegneria dell'Energia, dei Sistemi, del Territorio e delle Costruzioni, Università di Pisa

> Energy Innovation Summit – EIS2025 Berlin, June 25, 2025

Outline

- 1 A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

Energy Optimization bottom-up: Unit Commitment

- I don't need to convince you that energy optimization is important, but which of the many energy optimization problems??
- Operational level = Unit Commitment¹: schedule generating units over time horizon (hours / 15m in day / week) to satisfy (forecasted) demand
- Different types of production units, different constraints:
 - Thermal (comprised nuclear): min / max production, min up / down time, ramp rates on production increase / decrease, start-up cost depending on previous downtime, others (modulation, ...)
 - Hydro (valleys): min / max production, min / max reservoir volume, time delay to get to the downstream reservoir, others (pumping, ...)
 - Non programmable (ROR hydro) intermittent units (solar / wind, ...)
 - Fancy things (small-scale storage, demand response, smart grids, ...)
- Plus the interconnection network (AC / DC, transmission / distribution, OTS, ...) and reliability (primary / secondary reserve, n-1 units, ...)

¹van Ackooij, Danti Lopez, F., Lacalandra, Tahanan "Large-scale Unit Commitment Under Uncertainty [...]" AOR 2018

Many Different Structures Already

• Many different structures: thermal units², hydro units³, Energy Communities⁴, stochastic⁵, AC-OPF⁶, OTS⁷, ...

 $^{^2}$ Bacci, F., Gentile, Tavlaridis-Gyparakis "New MINLP Formulations for the Unit Commitment Problem [...]" OR 2024 ³ van Ackooij et. al. "Shortest path problem variants for the hydro unit commitment problem" *Elec. Notes Disc. Math.* 2018

⁴Fioriti, F., Poli "Optimal Sizing of Energy Communities with Fair Revenue Sharing [...]" Applied Energy 2021

⁵Scuzziato, Finardi, F. "Comparing Spatial and Scenario Decomposition for Stochastic [...]" *IEEE Trans. Sust. En.* 2018

Bienstock, Escobar, Gentile, Liberti "[...] formulations for the alternating current optimal power flow" Ann. O.R., 2022 ⁷Numan et. al. "The role of optimal transmission switching in enhancing grid flexibility: A review" *IEEE Access*, 2023

A. Frangioni (DI - UniPi, ARERA)

The tactical level: Seasonal Storage Valuation

• Mid-term (1y) cost-optimal management of water levels in reservoirs considering uncertainties (inflows, temperatures, demands, ...)

- Very large size, nested structure (one UC per stage)
- Perfect structure for Stochastic Dual Dynamic Programming^{8,9}
- SDDP needs dual variables, but Lagrangian dual convexifies 10,11

⁸Pereira, Pinto "Multi-stage stochastic optimization applied to energy planning" *Math. Prog.*, 1991

⁹ van-Ackooij, Warin "On conditional cuts for Stochastic Dual Dynamic Programming" EURO J. on Comp. Opt., 2020

 $^{^{10}}$ Lemaréchal, Renaud "A geometric study of duality gaps, with applications" *Math. Prog.* 2001

¹¹F. "About Lagrangian Methods in Integer Optimization" Annals of O.R., 2005

Energy System Investment

- Investment on generating units / transmission lines
- Using stochastic independent representative years to evaluate system cost

- Very few investment variables, can be taken continuous, identical copies
- Would be perfect for Benders'-like^{12,13}, if given dual information

Geoffrion "Generalized Benders Decomposition" JOTA, 1972

 $^{^{13}}$ van Ackooij, F., de Oliveira "Inexact Stabilized Benders' Decomposition Approaches $[\dots]$ " COAP, 2016

Strategic Energy System Investment

 Long-term (30y) optimal (cost, pollution, CO₂ emissions, ...) planning of production/transmission investments considering multi-level uncertainties scenarios (technology, economy, politics, ...)

Many scenarios, huge size, multiple nested structure =>
multiple nested Benders' or Lagrangian decomposition and/or SDDP??

Outline

- A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

A HUGE LOT OF

ELBOW GREASE,

BLODSHED AND TEARS

Quite a lot of elbow grease and

https://gitlab.com/smspp/smspp-project

"For algorithm developers, from algorithm developers"

- Open source (LGPL3)
- 1 "core" repo, 1 "umbrella" repo, 12+ problem and/or algorithmic-specific repos (public, more in development), tests & tools
- Extensive Doxygen documentation https://smspp.gitlab.io

What SMS++ is

- A core set of C++-20 classes implementing a modelling system that:
 - explicitly supports the notion of Block ≡ nested structure
 - separately provides "semantic" information from "syntactic" details (list of constraints/variables
 = one specific formulation among many)
 - allows exploiting specialised Solver on Block with specific structure
 - manages any dynamic change in the Block beyond "just" generation of constraints/variables
 - supports reformulation/restriction/relaxation of Block
 - has built-in parallel processing capabilities
 - should be able to deal with almost anything (bilevel, PDE, ...)
- An hopefully growing set of specialized Block and Solver
- In perspective an ecosystem fostering collaboration and code sharing: a community-building effort as much as a (suite of) software product(s)

Outline

- A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

It starts deceivingly simple

```
ThermalUnitBlock : Block
 \min \sum_{i \in P} c^i(\mathbf{p}^i, \mathbf{u}^i) = \sum_{i \in P} \left( c^i(\mathbf{u}^i) + \sum_{t \in \mathcal{T}} c^i_t(p^i_t) \right)
  \bar{p}_{\min}^{i} u_{t}^{i} \leq p_{t}^{i} \leq \bar{p}_{\max}^{i} u_{t}^{i} \quad t \in \mathcal{F}
   p_{t}^{i} \leq p_{t-1}^{i} + u_{t-1}^{i} \Delta_{+}^{i} + (1 - u_{t-1}^{i}) \bar{l}^{i} t \in \mathcal{F}
   p_{t-1}^i \leqslant p_t^i + u_t^i \Delta_-^i + (1 - u_t^i) \bar{u}^i \quad t \in \mathscr{F}
   u_t^i \geqslant u_r^i - u_{r-1}^i t \in \mathcal{F}, r \in [t - \tau_+^i, t - 1]
   u_t^i \geqslant 1 - u_{r-1}^i - u_r^i t \in \mathcal{F}, r \in [t - \tau_-^i, t - 1]
   u^i \in \{0,1\} t \in \mathcal{T}
          a[] b[] c[] Dp[]
   p min[] p max[] Dm[]
```

• For a man with a hammer everything is a nail

It starts deceivingly simple

```
ThermalUnitBlock : Block
\min \sum_{i \in P} c^i(\mathbf{p}^i, \mathbf{u}^i) = \sum_{i \in P} \left( c^i(\mathbf{u}^i) + \sum_{t \in \mathcal{T}} c^i_t(p^i_t) \right)
  \bar{p}_{\min}^{i} u_{t}^{i} \leqslant p_{t}^{i} \leqslant \bar{p}_{\max}^{i} u_{t}^{i} \quad t \in \mathcal{F}
   p_{t}^{i} \leq p_{t-1}^{i} + u_{t-1}^{i} \Delta_{+}^{i} + (1 - u_{t-1}^{i}) \overline{l}^{i} t \in \mathcal{F}
   p_{t-1}^i \leq p_t^i + u_t^i \Delta_-^i + (1 - u_t^i) \bar{u}^i t \in \mathcal{T}
   u_{i}^{i} \geqslant u_{i}^{i} - u_{i}^{i}, \quad t \in \mathcal{T}, \quad r \in [t - \tau_{i}^{i}, t - 1]
   u_t^i \geqslant 1 - u_{r-1}^i - u_r^i t \in \mathcal{F}, r \in [t - \tau_-^i, t - 1]
   u^i \in \{0,1\} t \in \mathcal{F}
          a[] b[] c[] Dp[]
   p min[] p max[] Dm[]
```

- For a man with a solver everything is a Block (call me blockhead <a>
- Block = abstract class representing the general concept of "(fragment of) mathematical model with a well-understood semantic"
- Each :Block a model with specific structure: ThermalUnitBlock : Block = a single-(thermal)-unit commitment problem

A Block \exists (pprox) because a (specialised) Solver \exists

- Any number of Solver can be attached to a Block
- Any specific :Block (e.g., ThermalUnitBlock) can have specialised ⇒
 fast :Solver (e.g., DPThermalUnitSolver¹⁴)
- Can be wrapper classes to efficient existing (C++) libraries

¹⁴F., Gentile "Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints" Op. Res., 2006

A Block is (almost) always just a (small) part

- A Block can have any # of sub-Block, recursively (Block *); e.g.,
 UCBlock : Block has k :UnitBlock and T :NetworkBlock recursively
- Problem data split between them (energy constraints only in UCBlock)

Another necessary step: Function

- ullet Real-valued Function of a set of [Col] Variable (a single $\mathbb{R} \ / \ \mathbb{Z})$
- Must be compute()-d w.r.t. the current value of the [Col] Variable, possibly a costly operation (:ThinComputeInterface)
- C05Function / C15Function have (not necessarily continuous)
 1st / 2nd order information (vertical / diagonal linearizations)
- Local / global pools of linearizations
- "Easy" Function (linear, quadratic, polyhedral, ...) with no overhead

LagBFunction & BendersBFunction

- LagBFunction \equiv dual function $\varphi(\lambda) = \min\{f(x) + (\lambda LT)x : x \in X\}$ for (almost) any Block (B) $\min\{f(x) : x \in X\}$
- BendersBFunction \equiv value function

$$v(y) = \min\{ f(x) : g(x) \le LMy : x \in X \}$$
 for (almost) any Block (B) $\min\{ f(x) : g(x) \le 0, x \in X \}$

- ullet Both are :Block and :CO5Function, with (B) being the only sub-Block
- Use generic [CDA] Solver to compute() (≈ just call its compute())
- Store pools of primal / dual Solution corresponding to linearizations
- Any change in (B) is mapped in changes of F-values / the pools

All this \mapsto Lagrangian Dual Solver

- Forms (hidden) LagrangianDualBlock, attaches parallel 15 Solver
- \bullet Provides primal (convexified \equiv "better" $^{10,11})$ and dual solutions
- ullet Good foundations for heuristic approaches 16,17 & the next steps

¹⁵Cappanera, F. "[...] Parallelization of [...] Algorithm for Multi-Commodity Flow Problems" *INFORMS JoC*, 2003

¹⁶ Borghetti, F., Lacalandra, Nucci "Lagrangian [...] for Hydrothermal Unit Commitment", *IEEE Trans. Power Sys.* 2003

¹⁷ Scuzziato, Finardi, F. "Solving Stochastic [...] Unit Commitment with [...] Lagrangian Solutions" *IJEPES*, 2021

SDDPBlock, StochasticBlock and their Solver

• SDDPSolver: wrapper for StOpt¹⁸ + SDDPGreedySolver (simulator)

¹⁸https://gitlab.com/stochastic-control/StOpt

InvestmentBlock

Scaling a :Block a general concept, may be upcasted to base Block

Strategic Investment Problem in SMS++-speak

- Not all here yet, TwoStageStochasticBlock still under active development, BendersDecompositionSolver yet to come
- Clearly extremely challenging problem, need all the help we can get

SMS++ support to (coarse-grained) parallel computations

- Block can be (write) lock()-ed to ensure atomic changes
- lock()-ing a Block automatically lock()s all inner Block (recursively)
- Analogously for read_lock(), any # of concurrent reads
- lock() (but not read_lock()) sets an owner and records its std::thread::id; other lock() from the same thread fail (std::mutex would not work there)
- Write starvation not handled yet
- Solver's compute() must be thread-safe (std::recursive_mutex)
- Solver/ThinComputeInterface can be "lent ID" (solving a sub-Block)
- Solver's list<Modification> under an "active guard" (std::atomic)
- General State of Solver for checkpointing (and reoptimization)
- New Change concept: Modification + data, automatic undo_Change, can be de/serialize-d on netCDF file as everything => message-passing distributed Solver available one day (soon-ish?)

Outline

- A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

QUITE SOME **ELBOW GREASE AND**

netCDF FILES MANGLING

Some elbow grease and

What the project wants to do

Modelling prowess of PyPSA + solution prowess of SMS++

A bit more in details

- Requires careful mapping of PyPSA network → SMS++:Block
- Especially important for freshly developed PyPSA stochastic extension

A glimpse of the mapping

Equation	Symbol	Generator	Link	Line	Storage unit	Store	Condition	Example
Size bound	SB	X	Х	X	X	X		$\underline{G}_{i,r} \leq G_{i,r} \leq \overline{G}_{i,r}$
Modularity	MD	X	X	X	X	X		$G_{i,r} = \underline{G}_{i,r}^{mod} n_{i,r}$
Power bound	PB	X	X	X	X	X		$\underline{g}_{i,r,t}G_{i,r} \leq g_{i,r,t} \leq \overline{g}_{i,r,t}G_{i,r}$
Power unit commitment	PB_{UC}	X	Х				committable	$\delta_{i,r,t}g_{i,r,t}G_{i,r} \le g_{i,r,t} \le \delta_{i,r,t}\overline{g}_{i,r,t}G_{i,r}$
Minimum time	MT	Х	Х					$\sum_{t'=t}^{t+T_{\text{scienge}}} \delta_{k,t'} \ge T_{\text{minup}} \left(\delta_{k,t} - \delta_{k,t-1}\right)$
Total energy produced	PSUM	X	X					$E_{min}^{min} \le \sum_{t \in T} w_t^G g_{i,r,t} \le E_{max}^{min}$
Start up/shut down cost	SC	X	X					$suc_{k,t} \ge suc_k (\delta_{k,t} - \delta_{k,t-1})$
Rump up/down	RUD	X	X					$(g_{i,r,t} - g_{i,r,t-1}) \le r u_{i,r} G_{i,r}$
Kirchhof's law	KL			X				$\sum_{l} C_{l,c} x_{l} p_{l,t} = 0$
Line losses	LL			X				$P_l^{loss} = \alpha_l + \beta_l p_{l,i}$
Energy storage level	ESL				X	X		$e_{i,s,t} = e_{i,s,t-1} + w_t^S h_{i,s,t}$
Energy storage bound	ESB				X	X		$0 \le e_{i,s,t} \le E_{i,s}e_{i,s}^{max}$
Initial energy level	IEL_S				X	X		$e_{i,s,0} = e_{i,s,init}$
Cyclic energy level	IEL_{CS}				X	Х	cyclic_state_of_charge	$e_{i+0} = e_{i+ T }$

	A	ВС		D	E				IV.		EV hone	
1	Technology name	- Category	- Physical compone -	Option	- Carrier	Legend Limited Land		oc 4	AC (optional)	Dotwy	Bettery bettery	
2	co2 atmosphere	co2	N		co2	annual ference	CMM —			صلح	a	
3	Co2 storage	co2	Υ		co2 stored	Negative generator (percentor) (behaves as a load)			+	1	4	
4	Sequestration link	co2	N		co2 sequestred		OWNED -			disch +		
5	Sequestration store (e.g. underground)	co2	Y/N		co2 sequestred	Run strage (stree)	(444)		1 -	_	rwylt-+++ beter	9
6	CO2 vent co2 from storages	co2	?	co2_vent	co2 vent	Storage with reform plannings, units	(inot set)—	+	1 -		dad) e	
7	CO2 pipelines	co2	Υ	co2_network	CO2 pipeline		Passaryon bydro	-	-		7	
8	Allam (gas) cycle	electricity	Υ	allam	allam	Unidentical somethy field						_
9	Direct Air Capture	co2	Υ	dac	co2		Pumped Sylva etai:					_
10	Conventional generators	electricity	Υ	conventional_generation	electricity	Undectonal multi-connector (Int.) multiple-input and/or multiple-output	(outpo eom)					
11	Haber-Bosch process	ammonia	Υ	ammonia	Haber-Bosch	§ Statestons convent link			* AC	- eovas	DEST	
12	Ammonia cracker	ammonia	Υ	ammonia	ammonia cracker	Schoolson multi-converter (ma)			elec	Var	tanaport	
13	Ammonia storage	ammonia	Υ	ammonia	ammonia store	nutpe-rput andor nutrpe-output			egraviture elec			
14	Electricity distribution	electricity	Υ	electricity_distribution_grid	low voltage	y Demand load			agreemer coaction			
15	rooftop solar	electricity	Υ	electricity_distribution_grid	solar rooftop	Pagative demand bowlj (behaves as a generator)			Mee	-		-

• ... but no-one needs bother besides us (or new features developers)

Outline

- A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

What we want to hear from you

- From model users:
 - Would you really like to solve such huge problems to solve?
 - Do you believe that all that level of detail is necessary?
 - Do you believe in stochastic information / have it?
 - Would you be ready to dabble with complex solution algorithms?
- From system / algorithm developers:
 - What do you use to solve your largest and most complex problems?
 - Have you ever been set back by the lack of proper development tools?
 - Do you believe in deeper integration of models and algorithms?
- Let the fun begin!