Лекция 7

Тема: Непрерывные коды и составные коды

- 1. Свёрточный код (R=0,5)
- 2. Принцип каскадного кодирования;
- з. Перемежение информации;
- 4. принципы построения турбо-кодов (ТК)

Непрерывные коды

Определение

Непрерывными* (НК) называются коды, в которых операции кодирования и декодирования производятся непрерывно над последовательностью посылок без деления их на блоки. Т.е. проверочные символы образуются по мере поступления информационных символов в кодирующее устройство, начиная с того момента, когда число информационных символов превысит единицу (n≥2).

Непрерывные коды

- В НК выделить информационные и проверочные символы можно только в процессе декодирования.
- НК способны обнаруживать и исправлять случайные (одиночные) ошибки и пачки ошибок.
 Их корректирующая способность зависит от длины выборки.

- Наиболее распространенными являются сверточные коды (СК) с избыточностью R=0,5 (на один информационный символ приходится один проверочный).
- СК позволяют при вероятности ошибки p=0,1 получить вероятность ошибочного приема p_{on}=10⁻⁹.
 Т.е. достоверность повышается в 10⁸ раз.

- Принцип обнаружения и исправления ошибок аналогичен методу максимального правдоподобия, который применяют для отыскания оптимального пути на графе по критерию минимального веса исследуемых кодовых комбинаций.
- Выбирается тот путь, который имеет минимальные веса, т.е. максимальное сходство с исходной комбинацией.

- Для этого кодирующие и декодирующие устройства должны запоминать несколько предыдущих состояний.
- Для кодирования применяют автоматы Мили или Мура.
- Для декодирования обычно используют алгоритм Витерби.

Свертка дискретных сигналов (пояснение)

- Сверткой называется математическая операция вычисления отклика линейной системы (ЛС) на произвольный входной сигнал
- Для вычисления свертки необходимо знать входной сигнал и отклик ЛС на единичный импульс (импульсную характеристику или ядро свертки)
- Математически свертку можно представить как произведение полиномов (сигнала и импульсной характеристики)

Импульсная характеристика ЛС

 \Box Единичный импульс $\delta[n]$

 Дискретный произвольный сигнал можно разложить на взвешенную сумму единичных импульсов

Импульсная характеристика

Отклик системы на единичный импульс

 h[n] - импульсная характеристика системы (импульсный отклик системы)

Пример вычисление отклика линейной системы на произвольный входной сигнал (свертки)

$$y[n] = h[n] * x[n]$$

$$y[n] = \sum_{k=-\infty}^{+\infty} x[n-k]h[k]$$

h[n] – ядро свертки

□ Схема автомата Мура, применяемая для кодирования содержит два сумматора по $\frac{mod2}{S_1}$ и $\frac{S_2}{S_2}$ и два регистра $\frac{R_1}{S_2}$ и $\frac{R_2}{S_2}$.

Пример

- □ Пусть на вход КУ поступает информационная последовательность 10011101.
- В начальный момент времени оба регистра сдвига обнулены.

X	R_1	R_2	5 ₁	S ₂	Y_1	Y ₂
1	0	0	$1\oplus 0\oplus 0$	1	1	1
0 - ,	1	0	0 + 1 + 0	0 ⊕ 0	1	0
0	0	1	$0 \oplus 0 \oplus 1$	0 🕀 1	1	1
1	0	0	$1\oplus 0\oplus 0$	1	1	1
1	1	0	$1 \oplus 1 \oplus 0$	1 0	0	1
1	11/	, 1	$\boxed{1\oplus 1\oplus 1}$	1 \oplus 1	1	0
0 - ,	1	1	$0 \oplus 1 \oplus 1$	0 🕀 1	0	1
1	0	1	$1\oplus 0\oplus 1$	1 + 1	0	0

 Из таблицы видно, что после кодирования исходной последовательности получили кодовую комбинацию

```
11 10 11 11 01 10 01 00,

1 0 0 1 1 1 0 1
```

в которой пары символов, расположенные слева направо, представляют собой последовательные значения выходных сигналов кодера y_1 и y_2 .

Проверим полученный результат

В рассмотренном примере

$$h_1[x] = x^2 + x + 1$$

$$h_2[x] = x^2 + 1$$

$$x \rightarrow 10011101$$
 соответствует $x^7 + x^4 + x^3 + x^2 + 1$ т.е. $y_1 = x * h_1[x] \rightarrow 1111010011$ $y_2 = x * h_2[x] \rightarrow 1011101001$

$$x^{7} + x^{4} + x^{3} + x^{2} + 1$$

$$x^{2} + x + 1$$

$$x^{7} + x^{4} + x^{3} + x^{2} + 1$$

$$x^{8} + x^{5} + x^{4} + x^{3} + x$$

$$x^{9} + x^{6} + x^{5} + x^{4} + x^{2}$$

$$y_{1} = x^{9} + x^{8} + x^{7} + x^{6} + x^{4} + x^{4} + x + 1$$

$$x^{7} + x^{4} + x^{3} + x^{2} + 1$$

$$x^{7} + x^{4} + x^{3} + x^{2} + 1$$

$$x^{9} + x^{6} + x^{5} + x^{4} + x^{2}$$

$$y_{2} = x^{9} + x^{7} + x^{6} + x^{5} + x^{3} + 1$$

$$15$$

Орграф автомата Мура

- □ Для декодирования переданного сообщения необходимо строить дерево или сеть состояний.
- Т.к. кодер запоминает только два предыдущих состояния, то сеть или дерево представляют в виде графа, в вершинах которого отмечают два предыдущих состояния.

- На дугах отмечают текущие значения входного (информационного) сигнала х на данном шаге.
- □ Рядом отмечаются соответствующие значения выходных сигналов у1 и у2.
- □ Для того, чтобы различать входные и выходные сигналы, будем обводить значение входного сигнала рамкой.

- □ Из графа видно, что если на вход × поступает 0, то осуществляется переход вверх по дереву, а если 1 - то вниз по дереву.
- При этом состояния автомата определяются значениями входного сигнала за два предыдущих такта.
- Например, если текущее состояние автомата обозначено 00, то это означает, что значение входной переменной х было равно нулю как за один, так и за два такта до рассматриваемого события.

Обозначение состояния автомата на графе

 $R_1 R_2$

О О ст мл

 $0 \rightarrow x$ =0 за один такт до события, т.е. R_1 =0 ст

 $0 \rightarrow x=0$ за два такта до события, т.е. $R_2=0$ мл

Сеть Витерби*

Алгоритм декодирования Витерби

- Декодирование осуществляется по тому же дереву, фрагмент которого изображен на слайде 14, но в вершинах дерева записываются не состояния автомата, а веса.
- Эти веса получают суммированием по mod2 пришедших из КС пар символов с парами выходных символов, которые должны получаться на данном переходе при кодировании.

Алгоритм декодирования Витерби

- По мере продвижения по дереву подсчитывается текущий вес, а сверху над вершинами проставляется суммарный вес с учетом предыдущих переходов.
- Правильным или «выжившим» считается путь, дающий минимальный суммарный вес (минимальное расхождение с правильной кодовой комбинацией).
- Пройдя «выживший» путь, записывают правильную кодовую комбинацию.

 В рассмотренном примере была закодирована комбинация

10011101.

 После кодирования была получена кодовая комбинация

□ Рассмотрим процесс декодирования начального фрагмента этой комбинации, полагая, что с ошибкой был принят третий символ, т.е. на вход декодера поступает комбинация 110011... вместо 111011...

Выводы

- 1. Если в процессе декодирования получится не один, а несколько «выживших» путей, то это означает, что данная выборка мала для того числа ошибок, которые произошли в КС. Выборку следует увеличить.
- 2. На основе алгоритма Витерби строятся пороговые или многопороговые кодеры и декодеры*.
- 3. Отбрасывание «невыживших» путей дает экономию времени по сравнению с методом полного перебора.

2. Принцип каскадного кодирования

Процедура кодирования

3.Перемежение информации

Периодическое перемежение

□ Формируется матрица символов S_{i,i}:

Передача в КС осуществляется построчно:

$$S_{0,1} \dots S_{0,b}, S_{1,1} \dots S_{1,b}, \dots, S_{n-1,1} \dots S_{n-1,b}$$

4.Турбо-код (ТК)*

Определение

- ТК параллельный каскадный блоковый систематический код, способный исправлять ошибки, возникающие при передаче цифровой информации по КСШ;
- Используемые компонентные коды сверточные, Хемминга, РС, БЧХ Различают
- rusjiviquro i
- сверточные ТК (Turbo Convolutional Codes (ТСС))
- □ блоковые <mark>коды-произведения</mark> (Turbo Product Codes (TPC))

Преимущества ТК

- Приближаются к границе Шеннона теоретическому пределу максимальной пропускной способности КСШ;
- позволяют увеличить скорость передачи информации без увеличения мощности передатчика;
- независимость сложности декодирования от длины информационного блока

О границе Шеннона

Всякий КСШ характеризуется своей предельной скоростью передачи информации, называемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки. Зато снизу к этому пределу можно подойти угодно близко, обеспечивая соответствующим кодированием информации сколь угодно малую вероятность ошибки при любой зашумленности канала.

Недостатки ТК

- сложность декодирования и большая задержка;
- недостаток открытого программного обеспечения

Применение ТК

- □ В системах спутниковой и мобильной связи;
- в системах беспроводного широкополосного доступа;
- в системах цифрового ТВ

Структурная схема М-блочного ТК

PAD (Packet Assembler/Disassembler) — формирователь пакетов

Кодовая скорость ТК

$$R = \frac{k}{n(M+1)}$$

(1)

$$R = \frac{k}{n(N+1)}$$

$$R = \frac{1}{N+1}$$

Декодирование

- Анализируются априорная и апостериорная вероятности;
- На основе алгоритма максимума апостериорной вероятности (Maximum of A-posteriori Probability (MAP)) выносится «мягкое» решение
- □ Применение МАР позволяет организовать несколько итераций (т.е. изменяя число итераций декодирования, можно адаптировать декодер к текущему состоянию канала передачи и достичь требуемой вероятности ошибки на бит)