ZMPT101B(ZMPT107) voltage transformer operating guide

1. Wiring diagram

Figure I Figure II

2. Determination of maximum output rms voltage Umax:

Umax is decided by the AD peak voltage in the sampling loop in principle.

As for Bipolar AD, Umax=
$$\frac{Peakvoltag\ e}{\sqrt{2}}$$
As for unipolar AD, Umax= $\frac{2\sqrt{2}}{2\sqrt{2}}$

for example:

As for \pm 5V AD, the maximum rms voltage of the transformer: Umax = $5V/\sqrt{2}$ =3.53V

As for 0~3.3V AD, the maximum rms voltage of

the transformer: $V_{\text{max}} = 3.3V/2\sqrt{2} = 1.16V$

3. Determination of input current-limiting resistor \mathbf{R}'

Current-limiting resistor $R' = \frac{V}{T}$

V: Rated input voltage

I : Rated operating current (when Coil resistance is compared with current-limiting resistor \mathbf{R}' , it can be ignored.)

ZMPT101B/ZMPT107 usually working at rated current:1~2mA. When Rated input voltage≤100V, Usually choosing the operating current I=2mA; When Rated input voltage≥220V, To reducing the resistor power, Usually choosing the operating current 1 mA ≤I≤2 mA.

for example: V=100V, I=2 mA,

$$R' = \frac{V}{T} = 50 \text{K}\Omega$$

for example: V=220V, I=1.1mA,

$$\mathbf{R'} = \frac{\mathbf{V}}{\mathbf{T}} = \mathbf{200} \, k\Omega$$

To improve reliability, the current-limiting resistor selected usually is greater than its 4times the rated power, and generally use a high

temperature coefficient metal film resistor.

4. Determination of the sampling resistor R

$$R = \frac{V_{outputmax}}{I} = \frac{V_{outputmax}}{V_{inputmax}} \bullet R$$

for example: $V_{output max}$ =3.53V, $V_{input max}$ =120V, R =50 $k\Omega$

$$R = \frac{3.53}{120} \times 50 k\Omega = 1.471 k\Omega$$

Directions:

- (1) Above formula is also suitable for the two ways of active and passive output.
 - (2)when selecting the sampling resistor, Resistor should not exceed : $V_{output max} \bullet R' / V_{input max}$
- 5. The advantages and disadvantages of the two wiring
- (1) Active output

Advantage: high precise, small phase error, high output voltage, strong load capacity.

As for unipolar AD, the positive input terminal of the op amp can plus a fixed benchmark reference voltage to solve.

Meanwhile, in order to simplify the line, Generally do not access the c and r $\,$ which are for the phase compensation. If you need to compensate, Usually

use the software way.

Disadvantage: Line is a little more complicated.

(2) Passive output

Advantage: Simple circuit, High precision.

Disadvantage: The output voltage has certain limitations. The greater the load resistance, the greater the phase difference

Typical testing data are as follows: