MySQL与IO @淘宝丁奇

讲师介绍

讲师简介:

丁奇:

08年至10年在百度贴吧,作服务端开发,开始接触MySQL。 之后由于业务需要开始看MySQL代码,囫囵吞枣不求甚解。10 年得机会进入淘宝核心系统数据库组,主要是MySQL优化和提 升可维护性。参与IC、TC读库调优;写了一些插件,打了几个 patch到官方;实现MySQL主从同步工具、设计MySQL异构数 据同步方案、MySQL中间层。一直游离在了解需求、设计方案、 推广方案的三点一线上。

课程目标与目标学员页

- · 目标学员:对存储引擎、系统优化有兴趣的同学。
- · 课程目的:介绍MySQL和InnoDB的主要IO操作, 介绍涉及IO操作的命令流程。
- · 学员能够获得的收获: 了解MySQL的IO工作流程、 IO压力的应用下的瓶颈分析、一些追查问题的方 法。

- 1. MySQL的文件及简介
- 2. 数据访问流程
- 3. 文件访问模式
- 4. 影响io行为的一些参数和选择策略

MySQL的文件及简介

类型名称	文件名
数据文件(datafile)	*.frm *.ibd
数据字典	Ibdata1、ibdata2
事务日志(redolog)	Ib_logfile0、ib_logfile1
回滚日志(undolog)	Ibdata
归档日志(binlog)	mysql-bin.000001~mysql-bin.xxxx
中继日志(relaylog)	mysqld-relay-bin.xxxxxx
其他日志	slowlolg, errorlog, querylog

数据访问流程

一个简单的查询 select * from t where k1=100 limit 10,2;

```
表结构
CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `k1` int(11) DEFAULT NULL,
  `data` char(100) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY`k1` (`k1`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk;
```


数据访问流程

数据访问流程

一个简单的更新 insert into t values(1, 100, 'abcd');

文件访问模式

1) *.frm

表定义文件。访问特点:极少改动、整体访问--什么模式最适合?

2) *ibd

表数据文件。访问特点:大量随机读写--什么模式最适合?内部什么样?

在传统SAS盘时代,怎么最大化利用磁盘性能? 换了SSD/FUSIONIO 以后呢?

对应的策略带来的数据安全问题----

文件访问模式

3) ib_logfile*
Redolog。访问方式:顺序读写。
512字节对齐写可以联想到什么?

4)MySQL-bin

Binlog。访问方式:顺序读写。 为什么策略与redolog不同?

5)ibdata

数据字典和回滚日志。访问方式:随机读写。策略与数据文件类似。

以下参数的描述流程:

- 1、什么意思
- 2、影响哪些流程
- 3、对IO的影响和选择策略

innodb_file_per_table innodb_flush_log_at_trx_commit sync_binlog innodb flush method binlog_cache_size innodb_buffer_pool_size innodb_max_dirty_pages_pct

innodb_read_io_threads/innodb_write_io_threads

innodb_file_per_table

- 1、控制是否每个表数据一个文件
- 2、推荐配置1的原因?

innodb_flush_log_at_trx_commit

- 1、控制redo log的写盘、刷盘策略
- 2、安全递增是0 → 2 → 1
- 3、不同配置的风险和代价

sync_binlog

- 1、控制binlog刷盘策略
- 2、安全递增是0 →N → 1
- 3、不同配置的风险和代价
- 4、与上个配置的差别,为什么没有控制写盘策略?
- 5、 Binlog_cache_use 和 Binlog_cache_disk_use

innodb_flush_method

- 1、控制data或log的刷盘策略
- 2、可选值

FSYNC O_DSYNC O_DIRECT LITTLESYNC NOSYNC

3、一般设置O_DIRECT,也不够理想 ALL_O_DIRECT

binlog_cache_size

- 1、还没有提交的事务放cache
- 2、大事务?
- 3. Binlog_cache_use /Binlog_cache_disk_use

innodb_buffer_pool_size

- 1、InnoDB中最重要的那块内存
- 2、越大越好,可用内存的80%
- 3、Insert Buffer最多占一半

innodb_max_dirty_pages_pct

- 1、最大脏页比例
- 2、什么是脏页
- 3、脏页更新策略及对性能的影响

innodb_read_io_threads/innodb_write_io_threads

- 1、异步IO线程数
- 2、不用太大 4/4就够
- 3、第一次性能测试,请在DBA指导下使用InnoDB_plugin 并作标准配置

如果还有时间。。。

作压测时你会碰到的问题和解决思路

>查询也写盘,原因和方法

➤压测insert的时候那瞬间的抖动,原因和方法

Com_insert	3849	
Com_insert	1879	
Com_insert	2231	
Com_insert	2313	
Com_insert	2275	
Com_insert	1330	
Com_insert	2994	
Com_insert	934	poline,
Com_insert	2112	
Com_insert	2554	

课程回顾、总结页

- MySQL/InnoDB的各种文件格式
- · 不同类型文件的更新模式
- 随机写和顺序写对性能的影响?
- MySQL/InnoDB用什么方法做性能优化
- · 影响io性能的参数
- "异常"更新模式和改进

制制

