<5 과목 정보시스템 구축 관리>

1. 꼭 알아야 할 키워드 = ___(밑줄)

2.# = 두음 암기 or 한 칸 띄어 쓴 건 산출물

3. 시나공 + 수제비 정리 (페이지 참고)

4. "Ctrl+F" 탐색 → 제목 활용하기

1 소프트웨어 개발 방법론 ★★

p.696, 5-4

#구정 객컴 에제

1) 구조적 방법론

- 정형화된 분석 절차에 따라 사용자 요구사항을 파악하여 문서화<mark>하</mark>는 처리중심의 방법론
- ▶ 타당성 검토 \rightarrow 계획 \rightarrow 요구사항 분석 \rightarrow 설계 \rightarrow 구현 \rightarrow 테스트 \rightarrow 유지보수 단계

#분설구테유

2) 정보공학 방법론

- <u>정보 시스템의 개발</u>을 위해 계획, 분석, 설계, 구축에 정형화된 기법들을 상호 연관성 있게 통합 및 적용하는 자료(Data) 중심의 방법론 → 대규모 정보 시스템 구축 적합

3) 객체지향 방법론★1. 함께 공부해요 All rights reserved.

- 현실 세계의 개체(Entity)를 기계의 부품처럼 하나의 객체(Object)로 만들어, 소프트웨어를 개발할 때 기계의 부품을 조립하듯이 객체들을 조립해서 필요한 소프트웨어를 구현하는 방법론
- ▶ 구성 요소: 객체(Object), 클래스(Class), 메시지(Message), 메서드(Method) 등
- ▶ 기본 원칙: **캡**슐화, **상**속성, **다**형성, **추**상화, **정**보 은닉 → #**캡상다추정**

4) 컴포넌트 기반(CBD; Component Based Design) 방법론

- 기존의 시스템이나 소프트웨어를 구성하는 <u>컴포넌트를 조합</u>하여 하나의 새로운 애플리케이션을 만드는 방법론
- 컴포넌트 및 소프트웨어의 재사용이 가능하여 시간과 노력을 절감할 수 있음
- 새로운 기능 추가가 쉬운 확장성
- 개발 기간 단축으로 인한 생산성 향상

5) 애자일(Agile) 방법론 ★

- 애자일은 '민첩한', '기민한'이라는 의미로, 고객의 요구사항 변화에 <u>유연하게 대응</u>할 수 있도록 일정한 주기를 반복하면서 개발 과정을 진행하는 방법론
- # **X**P(eXtreme Programming), **스**크럼(Scrum), **칸**반(Kanban), **크**리스탈(Crystal) 등

#엑스칸크

6) 제품 계열 방법론

- 특정 제품에 적용하고 싶은 공통된 기능을 정의하여 개발하는 방법론
- 임베디드 소프트웨어를 만드는데 적합
- ▶ 영역공학: 영역 분석, 영역 설계, 핵심 자산을 구현하는 영역

2 비용 산정 기법 ★

p.700

1) 소프트웨어 비용 산정의 개요

- 소프트웨어의 개발 규모를 소요되는 인원, 자원, 기간 등으로 확인하여 실행 가능한 계획을 수립하기 위해 필요한 비용을 산정하는 것
- # 하향식 비용 산정 기법, 상향식 비용 산정 기법

2) 소프트웨어 비용 결정 요소

▶ 프로젝트 요소

제품 복잡도	소프트웨어의 종류에 따라 발생할 수 있는 문제점들의 난이도를
	의미함
시스템 크기	소프트웨어의 규모에 따라 개 <mark>발해야</mark> 할 <u>시스템의 크기를 의미</u> 함
요구되는 신뢰도	일정 기간 내 주어진 조건 <mark>하에서</mark> 프로그램이 <u>필요한 기능을</u>
	수행하는 정도를 의미함

▶ 자원 요소

인적 자원	소프트웨어 개발 관련자들이 갖춘 능력 혹은 자질을 의미함
하드웨어 자원	소프트웨어 개발 시 필요한 장비와 워드프로세서, 프린터 등의
	보조 장비를 의미함
소프트웨어 자원	소프트웨어 개발 시 필요한 언어 분석기, 문서화 도구 등의
	<u>개발 지원 도구를 의미</u> 함

▶ 생산성c요좦021. 함께 공부해요 All rights reserved.

개발자 능력	개발자들이 갖춘 전문지식, 경험, 이해도, 책임감, 창의력 등을 의미함
개발 기간	소프트웨어를 개발하는 기간을 의미함

③ 하향식 비용 산정 기법 ★

p.702

- 1) 하향식 비용 산정 기법의 개요
 - 과거의 유사한 경험을 바탕으로 전문 지식이 많은 개발자들이 참여한 회의를 통해 비용을 산정하는 비과학적인 방법
 - # 전문가 감정 기법, 델파이 기법

2) 전문가 감정 기법

- 조직 내에 있는 경험이 많은 두 명 이상의 전문가에게 비용 산정을 의뢰하는 기법
- 새로운 프로젝트에는 과거의 프로젝트와 다른 요소들이 있다는 것을 간과할 수 있음
- 새로운 프로젝트와 유사한 프로젝트에 대한 경험이 없을 수 있음
- 개인적이고 주관적일 수 있음

3) 델파이 기법 ★

- <u>전문가 감정 기법의 주관적인 편견을 보완</u>하기 위해 **한 명의 조정자**와 여러 전문가의 의견을 종합하여 산정하는 기법

© 2021. 함께 공부해요 All rights reserved.

4 상향식 비용 산정 기법 ★★★

p.704, 5-7

- 1) 상향식 비용 산정 기법의 개요
 - 프로젝트의 세부적인 작업 단위별로 비용을 산정한 후 집계하여 전체 비용을 산정하는 방법
 - # LOC(원시 코드 라인 수) 기법, 개발 단계별 인월수(Effort Per Task), 수학적 산정 기법(COCOMO 모형, Putnam 모형, 기능점수 모형)

2) LOC(원시 코드 라인 수, source Line Of Code) 기법 ★ 20 년 1, 2 회 기출문제

- 소프트웨어 각 기능의 원시 코드 라인 수의 <u>비관치, 낙관치, 기대치를 측정</u>하여 예측치를 구하고 이를 이용하여 비용을 산정하는 기법
- 94. LOC 기법에 의하여 예측된 총 라인 수가 50,000 라인, 프로그래머의 월 평균생산성이 200 라인, 개발에 참여할 프로그래머가 10 인 일 때, 개발 소요 기간은? (2020 년 제 1, 2 회차 필기시험, B 형)
- → (50,000 / 200) / 10 = **25** 개월

3) 개발 단계별 인월수(Effort Per Task) 기법

- LOC 기법을 보완하기 위한 기법으로, 각 기능을 구현시키는 데 필요한 노력을 생명 주기의 각 단계별로 산정함, LOC 기법보다 더 정확함

4) COCOMO(Constructive Cost Model) 모형 ★★

- 보헴(Boehm)이 제안한 것으로, 원시 프로그램의 규모인 LOC 에 의한 비용 산정 기법

Il rights reser

- 비용 견적의 강도 분석 및 비용 견적의 유연성이 높아 <u>소프트웨어 개발비 견적에</u> 널리 통용되고 있음
- 같은 규모의 프로그램이라도 그 성격에 따라 비용이 다르게 산정됨
- 비용 산정 결과는 프로젝트를 완성하는 데 필요한 노력(Man-Month)로 나타남

▶ COCOMO 의 소프트웨어 개발 유형 ★ _ 20 년 1, 2, 3 회 기출문제

유형	내용
조직형	기관 내부에서 개발된 중, 소규모의 소프트웨어로 일괄 자료 처리나
Organic	과학 기술 계산용, 비즈니스 자료 처리용으로 5 만(50KDSI) 라인
	이하의 소프트웨어를 개발하는 유형
반분리형	트랜잭션 처리 시스템이나 운영체제, 데이터베이스 관리 시스템
Semi-Detached	등의 30 만(300KDSI) 라인 이하의 소프트웨어를 개발하는 유형
내장형	<u>최대형 규모</u> 의 트랜잭션 처리 시스템이나, 운영체제 등의
Embedded	30 만(300KDSI) 라인 이상의 소프트웨어를 개발하는 유형

▶ COCOMO 모형의 종류 ★

종류	내용	
기본형 COCOMO	소프트웨어의 크기(생산 코드 라인 수)와 개발 유형만을 이용하여	
Basic	비용을 산정하는 모형	
중간형 COCOMO	기본형 COCOMO의 공식을 <mark>토대로 사</mark> 용하나,	
Intermediate	제품, 컴퓨터, 개발요원, 프로젝 <mark>트 특성의 15 가지 요인</mark> 에 의해	
	비용을 산정하는 모형	
발전형 COCOMO	중간형 COCOMO 를 보완하여 만들어진 방법으로, 개발 공정별로	
Detailed	보다 자세하고 정확하게 노력을 산출하여 비용을 산정하는 모형	
07	→ <u>소프트웨어 환경과 구성 요소가 사전에 정의</u> 되어 있어야 하며,	
	<u>개발 과정의 후반부</u> 에 주로 적용함	

5) Putnam 모형 _ 20 년 1, 2, 3 회 기출문제

- 소프트웨어 생명 주기의 전 과정 동안에 사용될 <u>노력의 분포</u>를 가정해주는 모형
- 푸트남(Putnam)이 제안한 것으로 생명 주기 예측 모형이라고도 함 eserved.
- 시간에 따른 함수로 표현되는 Rayleigh-Norden 곡선의 노력 분포도를 기초로 함
- 대형 프로젝트의 노력 분포 산정에 이용되는 기법
- 개발 기간이 늘어날수록 프로젝트 적용 인원의 노력이 감소함
- → SLIM: Rayleigh-Norden 곡선과 Putnam 예측 모형을 기초로 개발된 자동화 추정 도구

6) 기능점수(FP; Function Point) 모형

- 알브레히트(Albrecht)가 제안한 것으로, 소프트웨어의 기능을 증대시키는 요인별로 가중치를 부여하고, 요인별 가중치를 합산하여 총 기능점수를 산출하며 총 기능점수와 영향도를 이용하여 기능점수(FP)를 구한 후 이를 이용해서 비용을 산정하는 기법
- → ESTIMACS: 다양한 프로젝트와 개인별 요소를 수용하도록 FP 모형을 기초로 개발된 자동화 추정 도구

7) 기능점수 모형에서 비용산정에 이용되는 요소 _ p.709, 20 년 3 회 기출문제

- 자료 **입**력(입력 양식)
- 정보 출력(출력 보고서)
- 명령어(사용자 질의수)
- **데**이터 파일
- 필요한 외부 루틴과의 인터페이스

#입출명데인

8) 프로젝트 관리 _ p.711

- 주<mark>어진</mark> 기간 내에 최소의 비용으로 사용자를 만족시키는 시스템을 개발하기 위한 전반적인 활동

관리 유형	주요 내용
일 정 관리	작업 순서, 작업 기간 산정, 일정 개발, 일정 통제
비용 관리 스	비용 산정, 비용 예찬 편성, 비용 통제 rights reserved.
인 력 관리	프로젝트 팀 편성, 자원 산정, 프로젝트 조직 정의, 프로젝트 팀 개발,
	자원 통제, 프로젝트 팀 관리
위 험 관리	위험 식별, 위험 평가, 위험 대처, 위험 통제
품질 관리	품질 계획, 품질 보증 수행, 품질 통제 수행

#일비인위품

5 소프트웨어 개발 표준 ★★

p.713, 5-13

1) ISO/IEC 12207

- ISO(International Organization for Standardization, 국제표준화기구)에서 만든 $\underline{\text{HE}}$ $\underline{\text{LE}}$ $\underline{\text{LE}$ $\underline{\text{LE}}$ $\underline{\text{LE}}$ $\underline{\text{LE}}$ $\underline{\text{LE}}$ $\underline{\text{LE}}$ $\underline{\text{LE}$
- # 기본 생명 주기 프로세스, 조직 생명 주기 프로세스, 지원 생명 주기 프로세스

기조지 ★

2) CMMI(Capability Maturity Model Integration, 능력 성숙도 통합 모델) ★

- 소프트웨어 개발 조직의 업무 능력 및 조직의 <mark>성숙도</mark>를 평가하는 모델

▶ 프로세스 성숙도 5 단계 _ 20 년 1, 2 회 기출문제

단계	프로세스	특징
초기(Initial)	정의된 프로세스 없음	작업자 능력에 따라 성공 여부
\$4		결정
관리(Managed)	규칙화된 프로세스	특정한 프로젝트 내의
		프로세스 정의 및 수행
정 의(Defined)	표준화된 프로세스	조직의 표준 프로세스를
		활용하여 업무 수행
정 량 적 관리	예측 가능한 프로세스	프로젝트를 정량적으로 관리
(Quantitatively Managed)		및 통제
최 적화(Optimizing)	지속적 개선 프로세스	프로세스 역량 향상을 위해
		지속적인 프로세스 개선

#초관정량최

3) SPICE(Software Process Improvement and Capability dEtermination) _ 3 회 기출

- 소프트웨어 개발 표준 중 소프트웨어의 품질 및 생산성 향상을 위해 <u>소프트웨어</u> 프로세스를 평가 및 개선하는 국제 표준으로, 공식 명칭은 ISO/IEC 15504 임

▶ SPICE 의 목적

- -프로세스 개선을 위해 개발 기관이 스스로 평가
- -기관에서 지정한 요구조건의 만족여부를 개발 조직이 스스로 평가
- -계약 체결을 위해 수탁 기관의 프로세스를 평가

▶ SPICE의 5개 프로세스 범주

-고객-공급자(Customer-Supplier) 프로세스, **공**학(Engineering) 프로세스, **지**원(Support) 프로세스, **관**리(Management) 프로세스, **조**직(Organization) 프로세스

#고공지관조

▶ SPICE 의 프로세스 수행 능력 단계 ★

12 10 0	
단계	특징
불완전	프로세스가 구현되지 않았거나 목적을 달성하지 못한 단계
(Incomplete)	
수행	프로세스가 수행되고 목적이 달성된 단계
(Performed)	
관리	정의된 자원의 한도 내에서 그 프로세스가 작업 산출물을 인도하는
(Managed)	단계
확립 20	소프트웨어 공학 원칙에 기반하여 정의된 프로세스가 수행되는
(Established)	단계
예측	프로세스가 목적 달성을 위해 통제되고, 양적인 측정을 통해서
(Predictable)	일관되게 수행되는 단계
최 적화	프로세스 수행을 최적화하고, 지속적인 개선을 통해 업무 목적을
(Optimizing)	만족시키는 단계

#불수관 확예최

[6] 테일러링, 프레임워크 ★

p.716~718, 5-14

- 1) 소프트웨어 개발 방법론 테일러링의 개요
 - 프로젝트 상황 및 특성에 맞도록 정의된 소프트웨어 개발 방법론의 절차, 사용기법 등을 수정 및 보완하는 작업
 - ▶ 수행절차: 프로젝트 특징 정의 → 표준 프로세스 선정 및 검증 → **상**위 수준의 커스터마이징 → **세**부 커스터마이징 → 테일러링 **문**서화

#정표상세문

- 2) 소프트웨어 개발 방법론 테일러링 고려사항 __ 20년 1,2회 기출문제
 - 내부적 요건: 목표 환경, 요구사항, 프로젝트 규모, 보유 기술
 - **외부적 요건: 법**적 제약사항, 국제표준 품질기준 #법표 ★
- 3) 스프링 프레임워크(Spring Framework) ★
 - JAVA 플랫폼을 위한 오픈 소스 경량형 애플리케이션 프레임워크
 - 동적인 웹 사이트 개발을 위해 다양한 서비스 제공
 - 전자정부 표준 프레임워크의 기반 기술로 사용됨

4) 전자정부 프레임워크

- <u>대한민국의 공공부문 정보화 사업 시</u> 효율적인 정보 시스템의 구축을 지원하기 위해 필요한 기능 및 아키텍처를 제공하는 프레임워크
- 응용 소프트웨어의 표준화, 품질 및 재사용성의 향상을 목표로 함 reserved.

5) 닷넷 프레임워크(.NET Framework) ★

- <u>Microsoft</u>에서 개발한 <u>Windows</u> 프로그램 개발 및 실행 환경을 제공하는 프레임워크로, <u>공통 언어 런타임(CLR; Common Language Runtime)</u>이라는 가상머신 상에서 작동함

7 네트워크 구축 ★★

p.731, 5-23

#버트링성망

1) 버스형(Bus) _ 20 년 3 회 기출문제

- 한 개의 통신 회선에 여러 대의 단말장치가 연결되어 있는 형태 → LAN 에서 사용
- 물리적 구조가 간단하고, 단말장치의 추가와 제거가 용이
- 단말장치가 고장나더라도 통신망 전체에 영향을 주지 않기 때문에 신뢰성 향상
- 기밀 보장이 어렵고, 통신 회선의 길이에 제한이 있음

2) 계층형(Tree, 트리형, 분산형)

- 중앙 컴퓨터와 일정 지역의 단말장치까지는 하나의 통신 회선으로 연결시키고, 이웃하는 단말장치는 일정 지역 내에 설치된 중간 단말장치로부터 다시 연결시키는 형태 → 분산 처리 시스템

3) 링형(Ring, 환형, 루프형)

- 컴퓨터와 단말장치들을 <u>서로 이웃하는 것끼리 포인트 투 포인트(Point-to-Point)</u> 방식으로 연결시킨 형태 → **LAN** 에서 사용
- 분산 및 집중 제어 모두 가능하고 중계기 수가 많아짐 reserved.
- 단말장치의 추가/제거 및 기밀 보호가 어려움
- 각 단말장치에서 전송 지연이 발생할 수 있음
- 데이터는 단방향 또는 양방향으로 전송할 수 있고, **단방향 링**의 경우 컴퓨터, 단말장치, 통신 회선 중 어느 하나라도 고장나면 전체 통신망에 영향을 미침

4) 성형(Star, 중앙 집중형)

- <u>중앙에 중앙 컴퓨터</u>가 있고, 이를 중심으로 단말장치들이 연결되는 <u>중앙 집중식의</u> 네트워크 구성 형태
- 포인트 투 포인트(Point-to-Point) 방식으로 회선을 연결
- <u>단말장치의 추가와 제거가 쉽지만</u>, <u>중앙 컴퓨터가 고장나면 전체 통신망의 기능이 정지</u>됨
- 중앙 집중식이므로 교환 노드의 수가 가장 적음

5) 망형(Mesh, 네트워크형)

- 모든 지점의 컴퓨터와 단말장치를 서로 연결한 형태로, 노드의 연결성이 높음
- 많은 단말장치로부터 많은 양의 통신을 필요로 하는 경우 유리
- **공중 데이터 통신망**에서 사용되며, 통신 회선의 <mark>총 경</mark>로가 가장 긺
- 통신 회선 장애 시 다른 경로를 통하여 데이터 전송 가능

6) 네트워크 분류

분류	설명
근거리 통신망	- 비교적 <u>가까운 거리</u> 에 있는 컴퓨터, 프린터, 테이프 등과 같은
(LAN; Local	자원을 연결하여 구성하며 주로 <u>자원 공유의 목적</u> 으로 사용
Area Network)	- 사이트 간의 거리가 짧아 데이터의 전송 속도가 빠르고, 에러
	발생율이 낮음
	# 주로 버스형, 링형 구조 사용
원거리 통신망	- 대륙과 대륙 같이 멀리 떨어진 사이트들을 연결하여 구성
(WAN ; Wide	- 사이트 간의 거리가 멀기 때문에 통신 속도가 느리고, 에러
Area Network)	발생율이 높음

8 스위치 ★★

p.735, 5-26

1) 스위치(Switch) 분류

스위치	특징
L2 스위치	- OSI 2 계층(Da)에 속하는 장비
	- 일반적으로 부르는 스위치는 L2 스위치를 의미
	- <u>MAC 주소를 기반으로 프레임(Frame)</u> 을 전송
	- 동일 네트워크 간의 연결만 가능
L3 스위치	- OSI 3 계층(Ne)에 속하는 장비
	- L2 스위치에 <u>라우터 기능이 추가</u> 된 것
	- <u>IP 주소를 기반으로 패킷(Packet)</u> 을 전송
	- 서로 다른 네트워크 간의 연결이 가능
L4 스위치	- OSI 4 계층(T)에 속하는 장비
	- <u>로드밸런서(Load Balancer)가 달린 L3 스</u> 위치
	- IP 주소 및 TCP/UDP 를 기반으 <mark>로 사용자들</mark> 의 요구를 서버의 부하가
	적은 곳에 배분하는 로드밸런싱 기능을 제공
L7 스위치	- OSI 7 계층(A)에 속하는 장비
	- IP 주소 및 TCP/UDP 포트 정보에 패킷 내용까지 참조 하여 세밀하게
-2	로드밸런싱함

2) 스위칭 방식

- ▶ Store and Forwarding: 데이터를 모두 받은 후 스위칭하는 방식
- ▶ Cut-through: 데이터의 목적지 주소만을 확인한 후 바로 스위칭하는 방식
- ▶ Fragment Free: 위의 두 가지 방식의 장점을 결합한 방식

3) 백본 스위치(Backbone Switch) 공부해요 All rights reserved.

- 여러 네트워크들을 연결할 때 중추적 역할을 하는 네트워크를 백본(Backbone)이라 하고, 백본에서 스위칭 역할을 하는 장비를 백본 스위치라고 함
- 백본 스위치는 모든 패킷이 지나가는 네트워크의 중심에 배치함
- 주로 L3 스위치가 백본 스위치의 역할을 함

4) Hierarchical 3 Layer 모델 ★★ (모델 사진 출처: net-study.club)

계층	특징
코어 계층	▶ 디스트리뷰션 계층에서 오는 통신을 집약해 인터넷에
(Core Layer)	연결하는 계층으로, 백본 계층 이라고도 함
MA	- 전자우편, 인터넷 접속, 화상 회의 등의 기능을 수행
-	- 백본 스위치 사용
디스트리뷰션 계층	▶ 액세스 계층의 장치들이 연결되는 지점으로, 액세스
(Distribution Layer)	계층으로 오는 통신을 집약해서 코어 계층으로 전송
© 202	- LAN 간에 라우팅(경로 설정) 기능 을 수행 - 라우터, L3 스위치 사용 → IP, 패킷(Packet)
액세스 계층	▶ 사용자가 네트워크에 접속할 때 최초로 연결되는 지점 으로,
(Access Layer)	사용자들로부터 오는 통신을 집약해서 디스트리뷰션 계층으로 전송
	- 액세스 계층에 배치되는 장비는 성능은 낮아도 되지만
	포트수는 사용자 수만큼 있어야 함
	- L2 스위치 사용 → MAC, 프레임(Frame)

9 경로 제어, 트래픽 제어 ★★

p.737

1) 경로 제어 프로토콜(Routing Protocol) _ 20 년 1, 2, 3 회 기출문제

프로토콜	설명
RIP	▶ IGP(Interior Gateway Protocol)로 Bellman-Ford 알고리즘 을
(Routing Information	이용하여 최적의 경로를 설정하는 소규모 프로토콜
Protocol) ★	- 최대 홉(Hop) 수를 15 홉 이하로 제한
	- 거리 벡터 라우팅 프로토콜 이라고도 함
OSPF	▶ IGP(Interior Gateway Protocol)로 <u>RIP 의 단점 개선</u> 을 위해
(Open Shortest Path	daijkstra 알고리즘 및 Link Static 기반으로 최단경로를 찾는
First) ★	대규모 프로토콜
BGP	▶ 자치 시스템 간의 라우팅 프로토콜로, EGP(Exterior Gateway
(Border Gateway	Protocol)의 단점을 보완하기 위해 만들어짐
Protocol)	- 초기에 BGP 라우터들이 연결될 때는 전체 경로를 나타내는
	라우팅 테이블을 교환 하고, <mark>이후에</mark> 는 변화된 정보만 교환

2) 트래픽 제어(Traffic Control)

- 네트워크의 보호, 성능 유지, 네트워크 자원의 효율적인 이용을 위해 전송되는 <u>패킷의 흐름 또는 그 양을 조절하는 기능</u>으로 **흐름 제어**, 폭주(혼합) 제어, 교착상태 방지 기법이 있음

3) 흐름 제어(Flow Control)

- 네트워크 내의 원활한 흐름을 위해 <u>송, 수신 측 사이</u>에 전송되는 <u>패킷의 양이나</u> 속도를 규제하는 기능

종류	특징
정지-대기	▶ 수신 측의 확인 신호(ACK)를 받은 후에 다음 패킷을 전송하는 방식 → 한번에 하나의 패킷 전송
(Stop-and-Wait)	방식 → 한번에 하나의 패킷 전송
슬라이딩 윈도우	▶ 수시 측의 확인 신호(ACK)를 받지 않더라도 미리 정해진 패킷의
(Sliding Window)	수만큼 연속적으로 전송하는 방식 → 한번에 여러 개 패킷 전송
*	- 수신 측으로부터 송신한 패킷에 대한 <u>긍정 수신 응답(ACK)이</u>
	전달된 경우 윈도우 크기는 증가하고, 수신 측으로부터 부정 수신
	응답(NAK)이 전달된 경우 윈도우 크기는 감소함

4) 폭주(혼잡) 제어(Congestion Control)

- <u>흐름 제어(Flow Control)가 송, 수신 측 사이의 패킷 수를 제어하는 기능</u>이라면, <u>혼잡</u> 제어는 네트워크 내의 패킷 수를 조절하여 네트워크의 오버플로(Overflow)를 방지하는 기능을 함

종류	특징
느린 시작	▶ 윈도우의 크기를 1, 2, 4, 8, 같이 2 배씩 지수적으로 증가시켜
(Slow Start)	초기에는 느리지만 갈수록 빨라짐
	- 전송 데이터의 크기가 임계 값에 도달하면 혼잡 회피 단계로 넘어감
혼잡 회피	▶ 느린 시작의 지수적 증가가 임계 값에 도달하면 혼잡으로
(Congestion	간주하고 회피를 위해 윈도우의 크기를 1 씩 선형적으로 증가시켜
Avoidance)	혼잡을 예방하는 방식

5) 교착 상태(Dead Lock) 방지

- 교환기 내에 패킷들을 축적하는 기억 공간이 꽉 차 있을 때 다음 패킷들이 기억 공간에 들어가기 위해 무한정 기다리는 형상

6) 교착 상태 발생의 필요 충분 조건 _ 개정 전 기출문제

- **상**호 배제(Mutual Exclusion), **점**유와 대기(Hold and Wait), **환**형 대기(Circular Wait), **비**선점(Non-Preemption)

#상점환비

© 2021. 함께 공부해요 All rights reserved.

10 소프트웨어 개발 보안 ★

p.747, 5-38

1) 소프트웨어 개발 보안 관련 기관

활동 주체	역할	
감 리법인	- 감리 계획을 수립하고 협의	
	- 소프트웨어 보안 약점의 제거 여부 및 조치 결과 확인	
사 업자	- 소프트웨어 개발 보안 관련 기술 수준 및 적용 계획 명시	
	- 소프트웨어 개발 보안 관력 인력을 대상으로 교육 실시	
h	- 소프트웨어 개발 보안 가이드를 참조해 개발 → 개발기관	
한 국인터넷진흥원	- 소프트웨어 개발 보안 정책 및 가이드 개발	
(KISA)	- 소프트웨어 개발 보안에 대한 기 <mark>술을</mark> 지원하고, 교육과정 및	
	자격제도를 운영함 → 전문기관	
발 주기관	- 소프트웨어 개발 보안 계획 수립	
	- 소프트웨어 개발 보안 사업 <mark>자 및</mark> <mark>감</mark> 리법인 선정	
	- 소프트웨어 개발 보안 준수 여부 점검	
행 정안전부	- 소프트웨어 개발 보안 <mark>정책 총괄</mark> → 정책기관	
	- 소프트웨어 개발 보안 관련 법규, 지침, 제도 정비	

#감사한 발행

2) 소프트웨어 개발 직무별 보안 활동

- ▶ 프로젝트 관리자(Project Manager): 응용 프로그램에 대한 보안 전략 전달
- ▶ 요구사항 분석가(Requirement Specifier): 요구사항 설명 및 정의
- ▶ 아키텍트(Architect): 보안 기술 문제 이해 요 All rights reserved.
- ▶ 설계자(Designer): 발생할 수 있는 보안 위험에 대해 이해 및 대응
- ▶ 구현 개발자(Implementer): <u>시큐어 코딩 표준 준수 개발 및 문서화</u> ★
- ▶ **테스트 분석가**(Test Analyst): 요구사항과 구현 결과 반복적 확인
- ▶ 보안 감시자(Security Auditor): 전체 단계에서 활동 및 보안 보장

11 Secure OS ★★

p.758

1) Secure OS의 개요

- 기존의 운영체제(OS)에 내재된 보안 취약점을 해소하기 위해 <u>보안 기능</u>을 갖춘 커널을 이식하여 외부의 침입으로부터 시스템 자원을 보호하는 운영체제

보호 방법	특징
암 호적 분리	내부 정보를 암호화하는 방법
(Cryptographic Separation)	
논 리적 분리	프로세스의 논리적 구역을 지정하여 구역을 벗어나는
(Logical Separation)	행위를 제한하는 방법
시간적 분리	동일 시간에 하나 <mark>의 프로세스만</mark> 수행되도록 하여 동시
(Temporal Separation)	실행으로 발생하는 보안 취약점을 제거하는 방법
물리적 분리	사용자별로 특정 <mark>장비만</mark> 사 <mark>용</mark> 하도록 제한하는 방법
(Physical Separation)	ORE 14-SIX

#**암논시물** → 구현하기 복잡한 순서: 암 > 논 > 시 > 물

2) 참조 모니터(Reference Monitor)

- 보호<mark>대상의 객체에 대한 <u>접근통제를 수행</u>하는 추상머신이며, 이를 실제로 구현한 것이 보안 커널임</mark>

▶ 3 가지 특징 #격검완

-격리성(Isolation): 부정 조작 불가능

-검증 가능성(Verifiability): 적절히 구현됐다는 것 확인 가능

-완전성(Completeness): 우회가 불가능

© 2021. 함께 공부해요 All rights reserved.

3) Secure OS 의 보안 기능

- 식별 및 인증, 임의적 접근통제(DAC), 강제적 접근통제(MAC), 객체 재사용 보호, 완전한 조정, 신뢰 경로, 감사 및 감사기록 축소

12 회복 및 병행제어, 데이터 표준화 ★★

p.762~764, 5-60

1) 회복(Recovery)

- 트랜잭션들을 수행하는 도중 장애가 발생하여 데이터베이스가 손상되었을 때 손상되기 이전의 정상 상태로 복구하는 작업

▶ 장애의 유형

- -**트랜잭션 장애**: 트랜잭션 내부의 비정상적인 상황으로 인해 프로그램 실행이 중지되는 현상
- -**시스템 장애**: 데이터베이스에 손상을 입히지는 않으나 하드웨어 오동작, 소프트웨어의 손상, 교착상태 등에 의해 모든 트랜잭션의 연속적인 수행에 장애를 주는 현상
- -**미디어 장애**: 저장장치인 디스크 블록의 손상이나 디스크 헤드의 충돌 등에 의해 데이터베이스의 일부 또는 전부가 물리적으로 손상된 상태
- ▶ 회복 관리기(Recovery Management): DMBS 의 구성 요소, 트랜잭션 실행이 성공적으로 완료되지 못하면 트랜잭션이 데이터 베이스에 생성했던 모든 변화를 취소(Undo)시키고, 트랜잭션 수행 이전의 원래 상태로 복구하는 역할 담당
- -메모리 덤프, 로그(Log)를 이용하여 회복 수행

2) 병행제어(Concurrency Control)

- 다중 프로그램의 이점을 활용하여 동시에 여러 개의 트랜잭션을 병행수행할 때, 동시에 실행되는 트랜잭션들이 데이터베이스의 일관성을 파괴하지 않도록 <u>트랜잭션 간의 상호</u> 작용을 제어하는 것

▶ 병행제어의 목적

- -데이터베이스의 공유 최대화계 공부해요 All rights reserved.
- -데이터베이스의 일관성 유지
- -시스템 활용도 최대화
- -사용자에 대한 응답 시간 최소화

3) 병행수행의 문제점 ★ _ 5-61

문제점	의미		
갱 신 분실	두 개 이상의 트랜잭션이 같은 자료를 공유하여 갱신할 때 <u>갱신</u>		
(Lost Update)	결과의 일부가 없어지는 현상 (덮어쓸 때)		
비완료 의존성	하나의 트랜잭션 수행이 실패한 후 회복되기 전에 다른 트랜잭션이		
(Uncommitted	실패한 갱신 결과를 참조하는 현상, 임시 갱신이라고도 함		
Dependency)	→ 현 황파악 오류(Dirty Read)		
모 순성	두 개의 트랜잭션이 병행수행될 때 <u>원치 않는 자료를 이용</u> 함으로써		
(Inconsistency)	발생하는 문제, 불일치 분석이라고도 함 (일관성 결여)		
연 쇄 복귀	병행수행되던 트랜잭션들 중 어느 하나에 문제가 생겨		
(Cascading	Rollback 하는 경우 <u>다른 트랜잭션도 함께 Rollback 되는 현상</u>		
Rollback)	(부분취소 불가능 현상)		

#갱현모연

4) 데이터 표준화의 정의 _ 5-64

- 시스템을 구성하는 데이터 요소의 명칭, 정의, 형식, 규칙에 대한 <u>원칙을 수립하고</u> 적용하는 것을 의미

▶ 데이터 표준의 종류

-표준 **단**어: 업무에서 사용하고 일정한 의미를 갖고 있는 <u>최소 단</u>위의 단어

-표준 **도메**인: 문자, 숫자, 날짜, 시간형과 같이 컬럼을 성질에 따라 그룹핑 한 개념

-표준 **코**드: 선택할 수 있는 값을 정형화하기 위해 기<mark>준에</mark> 맞게 이미 정의된 코드값

-표준 **용**어: 단어, 도메인, 코드 표준이 정의되면 이를 바탕으로 표준 용어 구성

#단도코용

© 2021. 함께 공부해요 All rights reserved.

5) 데이터 관리 조직

- 데이터 표준 원칙이나 데이터 표준의 준수 여부 등을 관리하는 사람들
- # 데이터 관리자(DA), 데이터베이스 관리자(DBA)

13 네트워크 관련 신기술 ★★★

p.724, 5-18, 20 년 1, 2 회 기출문제

IoT	▶ 사람과 사물, 사물과 사물 간에 지능 통신을 할 수
	있는 M2M(Machine to Machine)의 개념을 인터넷으로
(Internet of Things,	확장하여 사물은 물론, 현실과 가상 세계의 모든
사물 인터넷) ★	전보와 상호 작용하는 개념
M2M	▶ 무선 통신을 이용한 기계와 기계 사이의 통신
(Machine to Machine)	V 1
Mobile Computing	▶ 휴대형 기기로 이동하면서 자유로이 네트워크에
(모바일 컴퓨팅)	접속하여 업무를 처리할 수 있는 환경
Cloud Computing	▶ 각종 컴퓨팅 자원을 <u>중앙 컴퓨터에 두고</u> 인터넷
	기능을 갖는 단말기로 언제 어디서나 인터넷을 통해
(클라우드 컴퓨팅)	기용을 갖는 분들기로 단체 하다시다 단다것을 용해 컴퓨터 작업을 수행할 수 있는 환경
#사공하 ★ _ 5-44	# 사 설 클라우드, <mark>공용</mark> 클 <mark>라우드, 하</mark> 이브리드 클라우드
Grid Computing	▶ 수 많은 컴퓨 <mark>터를</mark> 하나의 컴퓨터처럼 묶어 분산
(그리드 컴퓨팅) ★	<u>처리</u> 하는 방식
Mobile Cloud Computing	▶ 클라우드 서비스를 이용하여 소비자와 소비자의
(MCC;	파트너가 모바일 기기로 클라우드 컴퓨팅 인프라를
모바일 클라우드 컴퓨팅)	구성하여 여러 가지 정보와 자원을 공유하는
1-12 2-1	ICT(Information and Communications Technologies)
	기술
Inter-Cloud Computing	▶ 여러 클라우드 서비스 제공자들이 제공하는
(인터클라우드 컴퓨팅)	<u>클라우드 서비스나 자원을 연결</u> 하는 기술
Mesh Network	▶ <u>대규모 디바이스의 네트워크 생성에 최적화</u> 되어
(메시 네트워크) ★	차세대 이동통신, 홈 네트워킹, 공공 안전 등의 <u>특수</u>
	목적을 위한 새로운 방식의 네트워크 기술
WI-SUN	▶ 스마트 그리도와 같은 장거리 무선 통신을 필요로
(와이선) ★	하는 사물 인터넷 서비스를 위한 <u>저전력</u>
	장거리(LPWA; Low-Power Wide Area) 통신 기술
NDN	▶ 콘텐츠 자체의 정보와 라우터 기능만으로 데이터
(Named Data Networking)	전송을 수행하는 기술, 콘텐츠 중심 네트워킹(CNN;
	Content Centric Networking)과 같은 개념으로 기존의
	IP 망을 대체할 새로운 인터넷 아키텍처

지능형 초연결망	▶ 국가망에 소프트웨어 정의 기술을 적용하는 방법
NGN	▶ <u>ITU-T 에서 개발</u> 하고 있는 유선망 기반의 차세대
(Next Generation Network,	통신망으로, 하나의 망이 인터넷처럼 <u>모든 정보와</u>
차세대 통신망)	<u>서비스를 패킷으로 압축</u> 하여 전송
SDN	▶ 네트워크를 <u>컴퓨터처럼 모델링</u> 하여 여러 사용자가
(Software Defined Networking,	각각의 소프트웨어들로 네트워킹을 가상화하여
소프트웨어 정의 네트워킹) ★	<u>제어하고 관리</u> 하는 네트워크
NFC	▶ 고주파(HF; High Frequency)를 이용한 근거리 무선
(Near Field Communication,	통신 기술
근거리 무선 통신) ★	- 아주 가까운 거리에서 양방향 통신을 지원하는
	RFID(Radio Frequency Identification) 기술의 일종
UWB	▶ 짧은 거리에서 <u>많은 양의</u> 디지털 데이터를 낮은
(Ultra WideBand, 초광대역)	전력으로 전송하기 위한 무선 기술
PICONET	▶ 여러 개의 독립된 통신장치가 <u>UWB 통신 기술</u>
(피코넷) ★★	<u>또는 블루투스 <mark>기술을</mark> 사용</u> 하여 통신망을 형성하는
	무선 네트워크 기술
WBAN	▶ Wearable 또는 몸에 심는 형태의 <u>센서나 기기를</u>
(Wireless Body Area Network)	무선으로 연결하는 개인 영역 네트워킹 기술
GIS (Geographic Information	▶ 지리적인 자료를 위성을 이용해 <u>모든 사물의 위치</u>
System, 지리 정보 시스템)	<u>정보를 제공</u> 해주는 시스템
USN	▶ 필요한 모든 곳에 <u>RFID 태그를 부착</u> 하고 사물의
(Ubiquitous Sensor Network,	인식 정보는 물론 <u>주변의 환경정보까지 탐지</u> 하여 이를
유비쿼터스 센서 네트워크) ★	네트워크에 연결해 정보를 관리하는 것
SON (Self Organizing Network,	▶ <u>주변 상황에 맞추어</u> <u>스스로 망을 구성</u> 하는
자동 구성 네트워크)	네트워크
Ad-hoc Network	▶ <u>재난 현장</u> 과 같이 별도의 고정된 유선망을 구축할
(애드 혹 네트워크) ★	중 없는 장소에서 구성한 네트워크 reserved.
Network Slicing	▶ <u>5G</u> 네트워크를 구현하는 중요한 핵심 기술로,
(네트워크 슬라이싱) ★	하나의 물리적인 코어 네트워크 인프라를 독립된
	<u>다수의 가상 네트워크로 분리</u> 하는 네트워크 기술
저전력 블루투스 기술	▶ 일반 블루투스와 동일한 2.4GHz 주파수 대역을
(BLE; Bluetooth Low Energy)	사용하지만 연결되지 않은 대기 상태에서는
	절전모드를 유지하는 기술

14 소프트웨어 관련 신기술 ★★★

p.740, 5-36, 20 년 3 회 기출문제

인공지능	▶ 인간의 두뇌와 같이 컴퓨터 스스로 추론, 학습,
(AI; Artificial Intelligence)	판단 등 인간지능적인 작업을 수행하는 시스템
	→ 인공지능 개발언어: 리스프(LISP) , 프롤로그(PROLOG)
Neuralink	▶ 사람이 인공지능에 대항할 수 있는 더 높은
(뉴럴링크)	수준의 기능에 도달하도록 <u>컴퓨터와 뇌를</u>
	<u>연결</u> 한다는 개념
Deep Learning	▶ 인간의 두뇌를 모델로 만들어진 인공
(딥 러닝)	신경망(ANN; Artificial Neural Network)을 기반으로
	하는 기계 학습 기술
Expert System	▶ 의료 진단 등과 같은 특정 분야의 전문가가
(전문가 시스템)	수행하는 고도의 업무를 지원하기 위한 컴퓨터
	응용 프로그램
Blockchain	▶ P2P(Peer-to-Peer) 네트워크를 이용하여 온라인
(블록체인)	금융 거래 <mark>정보를 온라인</mark> 네트워크 참여자(Peer)의
	디지털 장비에 분산 저장하는 기술
	→ 비트 코인(Bitcoin)
분산 원장 기술	▶ 중앙 관리자나 중앙 데이터 저장소가 존재하지
(DLT;	않고 P2P 망 내의 참여자들에게 모든 거래 목록이
Distributed Ledger Technology)	분산 저장되어 <u>거래가 발생할 때마다 지속적으로</u>
	갱신되는 디지털 원장
Hash	▶ <u>임의의 길이</u> 의 <mark>입력</mark> 데이터나 메시 <mark>지를 <u>고정된</u></mark>
(해시)	<u>길이의 값이나 키로 변환</u> 하는 것
양자 암호키 분배	▶ 양자 통신을 위해 비밀키를 분배하여 관리하는
(QKD;	<u>기술</u> 로, 두 시스템이 암호 알고리즘 동작을 위한
Quantum Key Distribution) ★	비밀키를 안전하게 공유하기 위해 양자 암호키
	분배 시스템을 설치하여 운용하는 방식으로 활용
프라이버시 강화 기술	▶ <u>개인정보 위험 관리 기술</u> 로, 다양한 사용자
(PET;	프라이버시 보호 기술을 통칭함
Privacy Enhancing Technology)	

디지털 저작권 관리	▶ 인터넷이나 기타 디지털 매체를 통해 유통되는
(DRM;	데이터의 저작권을 보호하기 위해 데이터의 <u>안전한</u>
Digital Rights Management) ★	<u>배포를 활성화하거나 불법 배포를 방지</u> 하기 위한
	시스템
공통 평가 기준	▶ 정보화 순기능 역할을 보장하기 위해 <u>정보화</u>
(CC; Common Criteria)	<u>제품의 정보보호 기능</u> 과 이에 대한 사용 환경
	등급을 정한 기준
개인정보 영향평가 제도	▶ 개인 정보를 활용하는 새로운 정보시스템의
(PIA;	도입 및 기존 정보시스템의 중요한 변경 시
Privacy Impact Assessment)	시스템의 구축, 운영이 기업의 고객은 물론 <u>국민의</u>
	사생활에 미칠 영향에 대해 미리 조사, 분석 <u>,</u>
	평가하는 제도
Grayware	▶ 소프트웨어를 제공하는 입장에서는 악의적이지
(그레이웨어) ★★	않은 유용한 소프트웨어라고 주장할 수 있지만
	사용자 입장에서는 유용할 수도 있고 악의적일
	수도 있는 애드웨어(광고), 트랙웨어(스파이웨어),
	악성 공유웨어를 말함
	- 정상적인 소프트웨어의 이미지인 <u>백색</u> 과 악성
	소프트웨어의 이미지인 <u>흑색의</u> 중간(회색)에 해당
Mashup	▶ 웹에서 제공하는 <u>정보 및 서비스를 이용</u> 하여
(매시업) ★★	<u>새로운</u> 소프트웨어나 서비스, 데이터베이스 등을
	<u>만드는 기술</u>
	→ <u>콘텐츠를 조합</u> 하여 하나의 서비스로 제공하는
리치 인터넷 애플리케이션	웹 사이트 또는 애플리케이션 ▶ 플래시 애니메이션 기술과 웹 서버
	● 클데시 에디메이션 기울피 웹 시비 애플리케이션 기술을 통합하여 기존 HTML 보다
(RIA; Rich Internet Application)	에들디게이는 기술을 응답하여 기는 HTMC 모디 역동적인 웹페이지를 제공하는 신개념의 플래시
	웹페이저/제작 기술 rights reserved.
Semantic Web	▶ 컴퓨터가 사람을 대신하여 정보를 읽고
(시맨틱 웹) ★	이해하고 가공하여 새로운 정보를 만들어 낼 수
(TET B) X	있도록 이해하기 쉬운 의미를 가진 차세대 지능형
	웹

Vaporware (증발품)	▶ 판매 계획 또는 배포 계획은 발표되었으나 실제로 고객에게 판매되거나 배포되지 않고 있는 소프트웨어
오픈 그리드 서비스 아키텍처	▶ 애플리케이션 공유를 위한 <u>웹 서비스를 그리드</u>
(OGSA;	<u>상에서 제공</u> 하기 위해 만든 개방형 표준
Open Grid Service Architecture)	
서비스 지향 아키텍처	▶ 기업의 소프트웨어 인프라인 정보시스템을
(SOA; ★	공유와 재사용이 가능한 서비스 단위나 컴포넌트
Service Oriented Architecture)	중심으로 구축하는 정보기술 아키텍처
	- <u>정보를 누구나 이용 가능한 서비스로 간주</u> 하고 연동과 통합을 전제로 아키텍처를 구축
서비스형 소프트웨어 ★	▶ 소프트웨어의 여러 기능 중에서 <u>사용자가</u>
(SaaS; Software as a Service)	필요로 하는 서비스만 이용할 수 있도록 한
	소프트웨어
	cf) 서비스형 인 프라(la <mark>a</mark> S), 서비스형 플랫폼(PaaS)
	# <u>인플소</u> _ 5-45
Software Escrow	▶ 소프트웨어 개발자의 지식재산권을 보호하고
(소프트웨어 에스크로, 임치) ★	사용자는 저렴한 비용으로 소프트웨어를 안정적으로 사용 및 유지보수 받을 수 있도록 소스 프로그램과
	기술 정보 등을 제 3의 기관에 보관하는 것
복잡 이벤트 처리	▶ 실시간으로 발생하는 많은 사건들 중 <u>의미가</u>
(CEP;	<u>있는 것만을 추출</u> 할 수 있도록 사건 발생 조건을
Complex Event Processing)	정의하는 데이터 처리 방법
Digital Twin	▶ 현실속의 사물을 소프트웨어로 가상화 한
(디지털 트윈) ★★	모델로, <u>현실속의 사물을 대신해 컴퓨터 등</u>
	가상세계에서 다양한 상황을 모의 실험하기 위한
	용도로 사용하는 기술
증강 현실	▶ 실제 촬영한 화면에 가상의 정보를 부가하여
(AR; Augmented Reality) ★	보여주는 기술, 혼합현실(MR; Mixed Reality)이라고도 부름
가상 현실	▶ 컴퓨터 등을 사용한 인공적인 기술로 만들어낸
(VR; Virtual Reality) ★	실제와 유사하지만 실제가 아닌 어떤 특정한 환경이나 상황 혹은 그 기술 자체를 의미함

15 하드웨어 관련 신기술 ★★★

p.753, 20 년 3 회 기출문제

고가용성	▶ 긴 시간동안 안정적인 서비스 운영을 위해 <u>장애</u>
(HA; High Availability)	발생 시 즉시 다른 시스템으로 대체 가능한 환경을
	<u>구축</u> 하는 메커니즘
# <u>핫뮤콘</u> ★ _ 5-53	# Hot Standby(상시 대기 방식), Mu tual Take-Over(상호
	인수), Con current Access(동시적 접근)
3D Printing	▶ 대상을 평면에 출력하는 것이 아니라 손으로 만질
	수 있는 실제 물체로 만들어 내는 것
4D Printing	▶ 특정 시간이나 환경 조건이 갖추어지면 <u>스스로</u>
	형태를 변화시키거나 제조되는 자가 조립(Self-
	Assembly) 기술이 적용된 제품을 3D Printing 하는 기술 의미
RAID	▶ 여러 개의 하드 <mark>디스크로</mark> 디스크 배열을 구성하여
(Redundant Array of	파일을 구성하고 있는 데이터 블록들을 <u>서로 다른</u>
Independant Disk) ★	<u>디스크들에 분산 저장해 디스크의 속도를 향상</u> 시키는 것
4011 —	
4K 해상도	▶ 차세대 고화질 모니터의 해상도를 지칭하는 용어
N-Screen	▶ N 개의 <u>서로 다른 단말기에서 동일한 콘텐츠를</u>
(앤 스크린) ★	자유롭게 이용할 수 있는 서비스
	→ PC, TV, 스마트폰에서 동일한 콘텐츠 이용
Companion Screen	▶ N Screen 의 한 종류로, TV 방송 시청 시 <u>방송</u>
(컴패니언 스크린)	내용을 SNS 를 통해 <mark>공유</mark> 하며 추가적인 기능을 수행할
	수 있는 스마트폰, 태블릿 PC 등을 의미
	→ <u>세컨드 스크린(Second Screen)</u> 이라고도 불림
Thin Client PC	▶ 하드디스크나 주변 장치 없이 <u>기본적인 메모리만</u>
(신 클라이언트 PC) ★	갖추고 서버와 네트워크로 운용되는 개인용 컴퓨터
	- 기억장치를 따로 두지 않기 때문에 PC 를
	분실하더라도 정보가 유출될 우려가 없음
Phablet	▶ <u>폰(Phone)과 태블릿(Tablet)의 합성어</u> 로, 태블릿
(패블릿)	┃기능을 포함한 5인치 이상의 대화면 스마트폰

C 형 USB	▶ 기존 A 형 USB 에 비하여 크기가 작고, 24 핀으로
(Universal Serial Bus Type-C)	위아래의 구분이 없어 어느 방향으로든 연결 가능
MEMS	▶ 초정밀 반도체 제조 기술을 바탕으로 센서,
(멤스; Micro-Electro	액추에이터(Actuator) 등 기계 구조를 다양한 기술로
Mechanical Systems) ★★	미세 가공하여 전기계적 동작을 할 수 있도록 한 초미세
	<u>장치</u>
Trust-Zone Technology	▶ 하나의 프로세서 내에 일반 애플리케이션을 처리하는
(트러스트존 기술)	<u>일반 구역</u> 과 보안이 필요한 애플리케이션을 처리하는
	보안 구역으로 분할하여 관리하는 하드웨어 기반의 보안
	기술
M-DISC	▶ <u>한 번의 기록만으로 자료를 영구 보관</u> 할 수 있는
(엠디스크;	광 저장 장치
Millennial DISC) ★★	
Memristor	▶ 메모리(Memory)와 레지스터(Register)의 합성어로,
(멤리스터) ★★	전류의 방향과 양 <mark>등 기존의 경험을 모두 기억</mark> 하는
	특별한 소자
	- 전원 공급이 끊어졌을 때도 직전에 통과한 전류의
	방향과 양을 기억하기 때문에 다시 전원이 공급되면
	기존의 상태가 그대로 복원됨

16 데이터베이스 관련 신기술 ★★★

p.760, 5-56, 20 년 1, 2 회 기출문제

Big Data	▶ 기존의 관리 방법이나 분석 체계로는 처리하기 어려운 막대한 양의
(빅데이터) ★	정형 또는 비정형 데이터 집합
	# 데이터의 양 , 데이터의 다양성 , 데이터의 속도
Broad Data	▶ 다양한 채널에서 소비자와 상호 작용을 통해 생성된, 이전에
(브로드 데이터)	사용하지 않거나 알지 못했던 새로운 데이터나, 기존 데이터에 새로운
(프로프 네이디)	가치가 더해진 데이터
Meta Data	▶ 일련의 데이터를 정의하고 설명해 주는 데이터
(메타 데이터) ★	- 데이터를 빠르게 검색하거나 내용을 간략하고 체계적으로 하기 위해
	사용
Smart Data	▶ 실제로 가치를 창출할 수 있는 <u>검증된 고품질의 데이터</u>
(스마트 데이터)	
Digital Archiving	▶ 디지털 정보 자원을 <u>장기적으로 보</u> 존 <mark>하기 위한 작업</mark>
(디지털 아카이빙)	- 아날로그 콘텐츠는 디지털로 변환한 후 압축해서 저장하고, 디지털
	콘텐츠도 체계적으로 분류하고 메타 데이터를 만들어 DB 화하는 작업
Hadoop	▶ 오픈 소스를 기반으로 한 분산 컴퓨팅 플랫폼
(하둡) ★	- 일반 PC 급 컴퓨터들로 가상화된 대형 스토리지를 형성
	- 다양한 소스를 통해 생성된 빅데이터를 효율적으로 저장하고 처리
Тајо	▶ 오픈 소스 기반 분산 컴퓨터 플랫폼인 <u>아파치 하둡(Apache</u>
(타조)	Hadoop) 기반의 분산 데이터 웨어하우스 프로젝트
	- 대규모 데이터 처리와 실시간 상호 분석에 모두 사용 가능
Data Diet	▶ 데이터를 삭제하는 것이 아니라 <u>압축</u> 하고, 중복된 정보는 <u>중복을</u>
(데이터 다이어트)	<u>배제</u> 하고, 새로운 기준에 따라 <mark>나누어 저장하는 작업</mark>
Data Warehouse	▶ 정보(Data)와 창고(Warehouse)의 합성어
(데이터 웨어하우스)	- 여러 시스템에 분산되어 있는 데이터를 <u>주제별로 통합, 축적해 놓은</u>
	데이티베이스공부해요 All rights reserved.
Map Reduce	▶ 흩어져 있는 데이터를 연관성 있는 <u>데이터 분류로 묶는</u>
(맵리듀스)	Mapping(매핑, 연결)작업을 수행한 후 중복 데이터를 제거하고 원하는
	데이터를 추출하는 Reduce 작업을 수행하는 것
Data Mining	▶ 빅데이터 분석 기술 중 <u>대량의 데이터를 분석</u> 하여 데이터 속에
(데이터 마이닝) ★	내재되어 있는 <u>변수 사이의 상호관례를 규명</u> 하여 <u>일정한 패턴을</u>
	<u>찾아내는 기법</u>

17 Secure SDLC ★

p.772, 5-2, 5-70

1) Secure SDLC 의 개요

- 보안상 안전한 소프트웨어를 개발하기 위해 SDLC 에 보안 강화를 위한 프로세스를 포함한 것
- ▶ 요구사항 분석: 보안 항목에 해당하는 요구사항을 식별하는 작업 수행
- ▶ **설**계: 요구사항들을 설계서에 반영하고 보안 설계서 작성
- ▶ 구현: 표준 코딩 정의서 및 시큐어 코딩(Secure Coding)을 준수하며, 설계서에 따라 보안 요구사항 구현 및 지속적인 단위 테스트를 통해 소스 코드의 안정성 확보
- ▶ **테**스트: 동적 분석 도구 또는 모의 침투테스트<mark>를 통</mark>해 검증
- ▶ 유지보수: 발생할 수 있는 보안사고 식별 및 보<mark>안 패치 식</mark>실시

#분설구테유

2) 보안 요소 ★★ _ 5-62, 20 년 1, 2, 3 회 기출문제

요소	특징
기밀성	▶ 시스템 내의 정보와 자원은 <u>인가된 사용자에게만 접근</u> 허용
	- 정보가 전송 중에 노출되더라도 데이터를 읽을 수 없음
무결성	▶ 시스템 내의 정보는 오직 <u>인가된 사용자만 수정</u> 할 수 있음
가 용성	▶ 인가받은 사용자는 언제라도 사 <mark>용 가</mark> 능
인 증	▶ 시스템 내의 정보와 자원을 사용하려는 사용자가 합법적인
	사용자인지를 확인하는 모든 행위
	# 패스워드, 인증용 카드, 지문 검사 등
부 인 방지	▶ 데이터를 송, 수신한 자가 송, 수신 사실을 부인할 수 없도록 송,
	수신 증거 제공

#기무가 인부

18 소프트웨어 개발 보안 구축 ★★★

점검 항목	설명
세션 통제	세션의 연결과 연결로 인해 발생하는 정보를 관리하는 것
	* 세션: 서버와 클라이언트의 연결
	※ 보안 약점: 불충분한 세션 관리, <u>잘못된 세션에 의한 정보 노출</u>
입 력 데이터	<u>입력 데이터</u> 에 대한 유효성 검증체계를 갖추고, 검증 실패 시 이를 처리할 수 있도록 코딩하는 것 ★
검증 및	xx도속 고등어는 것 ★ ※ 보안 약점 : SQL 삽입, 경로 조작 및 자원 삽입, 크로스사이트 스크립팅(XSS;
표현	Cross-Site Scripting) 운영체제 명령어 삽입 위험한 형식 파일 업로드
	신뢰되지 않는 URL 주소로 자동접속 연결
보 안 기능	<u>인증, 접근제어, 기밀성, 암호화</u> 등의 기능 ★
	※ 보안 약점: 적절한 인증 없는 중요기능 허용, 부적절한 인가, 중요한 자원에
	대한 잘못된 권한 설정, <u>취약한 암호화 알고리즘 사용</u> , 중요정보 평문 저장 및
	전송, 하드코드 된 암호화 키 사용 ★
시 간	동시 수행을 지원하는 <u>병렬 처리 시스템이나</u> 다수의 프로세스가 동작하는
및 상태	환경에서 <u>시간과 실행 상태를 관리</u> 하여 시스템이 원활히 동작되도록 코딩하는 것 ★
	※ 보안 약점: TOCTOU(Time of Check Time of Use) 경쟁 조건,
	종료되지 않는 반복문 또는 재귀함수
에 러처리	소프트웨어 실행 중 발생할 수 있는 <u>오류들을 사전에 정의</u> 하여 에러로 인해
A L	발생할 수 있는 <u>문제들을 예방</u> 하는 것
	※ 보안 약점: 오류 메시지를 통한 정보 노출, 오류 상황 대응 부재, 부적절한
1	예외처리
코 드 오류	개발자들이 코딩 중 실수하기 쉬운 타입 변환, <u>자원의 반환</u> 등을 고려하며
	코딩하는 것 ★ ※ HOLO OF TAIL TO US (No.1) Desirators) 연차조 보저저희 자의 헤게 헤게되 되었
	※ 보안 약점: 널 포인터(Null Pointer) 역참조, 부적절한 자원 해제, 해제된 자원 사용, 초기화되지 않은 변수 사용
캡슐화	데이터(속성)와 데이터를 처리하는 함수를 하나의 객체로 묶어 코딩하는 것
ㅂㄹ긔	※ 보안 약점: 잘못된 세션에 의한 데이터 정보 노출, 제거되지 않고 남은
	<u>디버그 코드</u> , 시스템 데이터 정보 노출 등
A PI 오용	API 를 잘못 사용하거나 보안에 취약한 API 를 사용하지 않도록 고려하여
7	코딩하는 것
	※ 보안 약점: <u>취약한 API 사용</u> , DNS lookup 에 의존한 보안 결정

#세입보시 에코캡아

p.775~790, 5-70, 20 년 3 회 기출문제

1) 세션 설계시 고려 사항 ★

- 모든 페이지에서 로그아웃이 가능하도록 UI(User Interface) 구성
- 로그아웃 요청 시 할당된 세션이 완전히 제거되도록 함
- 세션 타임아웃은 중요도가 높으면 2~5분, 낮으면 15~30분으로 설정
- 이전 세션이 종료되지 않으면 새 세션이 생성되지 못하도록 설계
- 패스워드 변경 시 활성화된 세션을 삭제한 후 재할당

2) 세션 ID의 관리 방법 ★

- 안전한 서버에서 최소 128 비트의 길이로 생성
- 예측이 불가능하도록 안전한 난수 알고리즘 적용
- 노출되지 않도록 URL Rewrite 기능을 사용하지 않는 방향으로 설계
- 로그인 시 로그인 전의 세션 ID를 삭제하고 재할당
- 장기간 접속하고 있는 세션 ID는 주기적으로 재할당되도록 설계

3) 크로스 사이트 스크립팅(XSS; Cross-Site Scripting) ★

- 웹페이지에 <u>악의적인 스크립트를 삽입</u>하여 방문자들의 정보를 탈취하거나, 비정상적인 기능 수행을 유발하는 보안 약점
- → HTML 태그의 사용을 제한하거나 <u>스크립트에 삽입되지 않도록 '<', '>', '&' 등의</u> 문자를 다른 문자로 치환함으로써 방지

4) 부적절한 자원 해제★ 함께 공부해요 All rights reserved.

- 자원을 반환하는 코드를 누락하거나 프로그램 오류로 <u>할당된 자원을 반환하지</u> 못했을 때 발생하는 보안 약점
- → 오류로 인해 함수가 중간에 종료되었을 때, <u>예외처리에 관계없이 자원이</u> 반환되도록 코딩함으로써 방지

19 암호 알고리즘 ★★★

p.792, 5-76

1) 암호 알고리즘의 개요

2) 암호화(Encryption)

▶ 암호화(Encryption) 과정

-암호화되지 않은 평문을 정보 보호를 위해 암호문으로 바꾸는 과정 # 개인키 암호 방식(대칭키), 공개키 암호 방식(비대칭키)

▶ 복호화(Decryption) 과정

-암호문을 원래의 평문으로 바꾸는 과정

3) 암호화 방식 ★★ _ 20 년 1, 2, 3 회 기출문제

방식	특징	방식	종류
개인키 암호 방식	▶ <u>동일한 키</u> 로 데이터를	블록 암호화	DES, AES,
(Private Key Encryption,	암호화하고 복호화 함	rights res	SEED, ARIA
비밀키 암호 방식,	- 비밀키는 DB 사용 권한이	스트림 암호화	RC4, LFSR
대칭키)	있는 사용자만 나눠 가짐		
공개키 암호방식	▶ 데이터를 <u>암호화할 때 사용</u>	<u> 용하는</u>	RSA,
(Public Key Encryption,	<u>키(공개키)</u> 는 DB 사용자에게 등	공개하고,	Diffie-
비대칭키)	복호화 할 때의 키(비밀키)는	관리자가	Hellman
	관리하는 방법		

4) 암호화 방식 장, 단점 ★

기법	장점	단점
대칭키	- 암호화/복호화 속도가 빠름	- 관리해야 할 키의 수가 많음
	- 알고리즘이 단순함	
	- 파일의 크기가 작음	
비대칭키	- 키의 분배가 용이	- 암호화/복호화 속도가 느림
	- 관리해야 할 키의 수가 적음	- 알고리즘이 복잡함
		- 파일의 크기가 큼

5) 양방향 알고리즘 종류 ★★ _ 20년 3회 기출문제

종류	특징
DES	▶ 1975 년 미국 NBS 에서 발표한 개인키 암호화 알고리즘
	- 블록 크기는 <u>64 비트</u> 이며, 키 길이는 <u>56 비트</u> ★
AES	▶ 2001 년 DES 의 한계를 느낀 NIST 에서 발표한 개인키 암호화 알고리즘
	- 블록 크기는 <u>128 비트</u> 이며, 키 길이에 따라 <u>1</u> 28, 192, 256 으로 분류
SEED	▶ 1999 년 한국인터넷진흥원(KISA)에서 개발 <mark>한 블록 암호화 알고리즘</mark>
	- 블록 크기는 <u>128 비트</u> 이며, 키 길이에 따라 <u>128, 256</u> 으로 분류
ARIA	▶ 2004 년 국가정보원과 산학연협회가 개발한 블록 암호화 알고리즘
	- 학계(A cademy), 연구기관(R esearch Institute), 정부(A gency)
\mathcal{A}	- 블록 크기는 <u>128 비트</u> 이며, 키 길이에 따라 <u>128, 192, 256</u> 으로 분류
RSA	▶ 1978 년 MIT 의 라이베스트(Rivest), 샤미르(Shamir), 애들먼(Adelman)에
	의해 <mark>제안된 <mark>공개키 암호화 알고리즘</mark></mark>
	- 소인수 분해 문제를 이용함

6) 해시(Hash)

- 임의의 길이의 입력 데이터나 메시지를 고정된 길이의 값이나 키로 변환하는 것
- <u>해시 알고리즘을 해시 함수</u>라고 부르며, <u>해시 함수로 변환된 값이나 키를 해시값</u> 또는 해시키라 부름
- 데이터의 암호화, 무결성 검증을 위해 사용될 뿐만 아니라 정보보호의 다양한 분야에서 활용됨 ★
- # SHA 시리즈, MD5, N-NASH, SNEFRU ★

20 서비스 공격 유형 ★★★

p.802, 5-81, 20 년 1, 2, 3 회 기출문제

서비스 거부 공격	▶ 표적이 되는 <u>서버의 자원을 고갈시킬 목적</u> 으로 다수의 공격자
(DOS;	또는 시스템에서 대량의 데이터를 한 곳의 서버에 집중적으로
Denial of Service)	전송함으로써 표적이 되는 <u>서버의 정상적인 기능을 방해</u> 하는 것
Ping of Death	▶ <u>Ping 명령을 전송</u> 할 때 <u>패킷의 크기를 인터넷 프로토콜 허용</u>
(죽음의 핑) ★	<u>범위 이상으로 전송</u> 하여 공격 대상의 네트워크를 마비시키는
	공격 방법
SMURFING	▶ IP 또는 ICMP 의 특성을 악용하여 <u>엄청난 양의 데이터를 한</u>
(스머핑) ★	<u>사이트에 집중적으로 보냄</u> 으로써 네트워크를 불능 상태로 만드는
	공격 방법
	- 공격자는 송신 주소를 공격 대상지의 IP 주소로 위장하고 해당
	네트워크 라우터의 브로드캐스트 주소 를 수신지로 하여 패킷을
	전송하면, 라우터의 브로드캐 <mark>스트 주</mark> 소로 수신된 패킷은 해당
	네트워크 내의 모든 컴퓨터로 전송됨
SYN Flooding	▶ 공격자가 가상의 클라이언트로 위장하여 3-way-handshake
	과정을 의도적으로 중단시킴으로써 공격 대상지인 서버가 대기
	상태에 놓여 정상적인 서비스를 수행하지 못하게 하는 공격 방법
	* 3-way-handshake: TCP 에서 신뢰성 있는 연결을 위해 쓰는 기법
TearDrop ★	▶ 데이터의 송, 수신 과정에서 패킷의 크기가 여러 개로
	분할되어 전송될 때 분할 순서를 알 수 있도록 Fragment
	Offset 값을 함께 전송하는데, 이것을 변경시켜 수신측에서 패킷을
	재조립할 때 오류로 인한 과부하를 발생시킴으로써 시스템이
	다운되도록 하는 공격 방법
LAND Attack ★	▶ 패킷을 전송할 때 송신 IP 주소와 수신 IP 주소 를 모두 공격
	대상의 IP 주소로 하여 <u>공격 대상 자신에게 전송하는 것</u> 으로, 자신에 대해 무한히 응답하게 하는 공격 방법
분산 서비스 거부	▶ 여러 곳에 <u>분산된</u> 공격 지점에서 한 곳의 서버에 대해 <u>분산</u>
(DDoS;	<u>서비스 공격을 수행</u> 하는 공격 방법
Distributed	# Attacker → Master → Agent = 공격대상 서버
Denial of Service)	- H andler - D aemon (프로그램)
zemar er service)	* 공격 종류: Trinoo, Tribe Flood Network, Stacheldraht ★

1) 네트워크 침해 공격 관련 용어

Smishing	▶ 문자 메시지(SMS)에 링크를 거는 등 <u>문자 메시지를</u>
(스미싱)	<u>이용</u> 해 사용자의 개인 신용 정보를 빼내는 수법
Spear Phishing	▶ <u>사회 공학의 한 기법</u> 으로, 인간 상호 작용의 깊은 신뢰를
(스피어 피싱) ★	바탕으로 특정 대상을 선정한 후 메일의 링크나 파일을
	클릭하도록 유도한 뒤 개인 정보를 탈취하는 수법
지능형 지속 위협	▶ 조직적으로 특정 기업이나 조직 네트워크에 침투해 활동
(APT; Advanced	거점을 마련한 뒤 때를 기다리면서 보안을 무력화시키고
Persistent Threats) ★	정보를 수집한 다음 외부로 빼돌리는 형태의 공격
	# 이메일, 이동식 디스크(USB), P2P 사이트
무차별 대입 공격	▶ 암호화된 문서의 암호키를 찾아내기 위해 <u>적용 가능한</u>
(Brute Force Attack)	모든 값을 대입하여 공격하는 방식
Qshing(큐싱) ★	▶ QR 코드와 개인정보 및 금융정보를 낚는다(Fishing)의
	합성 신조어
SQL 삽입 공격	▶ 전문 스캐너 프 <mark>로그램</mark> 혹은 봇넷 등을 이용해
(SQL Injection) ★	웹사이트를 무차별적으 <mark>로 공격</mark> 하는 과정에서 취약한
	사이트가 발견되면 데이터베이스 등의 <u>데이터를 조작</u> 하는
	일련의 공격 방식
크로스 사이트 스크립팅	▶사용자가 <u>특정 게시물</u> 이나 이메일의 링크를 클릭하면
(XSS;	<u>악성 스크립트가 실행</u> 되어 페이지가 깨지거나, 사용자의
Cross-Site Scripting) ★	컴퓨터에 있는 로그인 정보나 개인정보, 내부 자료 등이
,	해커에게 전달되는 해킹 기법

© 2021. 함께 공부해요 All rights reserved.

2) 정보 보안 침해 공격 관련 용어 __ 20 년 1, 2 회 기출문제

Zombie(좀비) PC	▶ 악성코드에 감염되어 다른 프로그램이나 컴퓨터를 조종하도록 만들어진 컴퓨터
	- C&C(Command & Control) 서버의 제어를 받아 주로 DDoS 공격 등에 이용됨
C&C 서버	▶ 해커가 원격지에서 감염된 <u>좀비 PC 에 명령을 내리고</u> 악성코드를 제어하기 위한 용도로 사용하는 서버
Botnet(봇넷) ★	▶ 악성 프로그램에 감염되어 악의적인 의도로 사용될 수 있는 다수의 컴퓨터들이 네트워크로 연결된 형태
Worm(웜)	▶ 네트워크를 통해 연속적으로 자신을 복제하여 시스템의 부하를 높임으로써 결국 시스템을 다운시키는 바이러스의 일종
Zero Day Attack (제로 데이 공격) ★	▶ 보안 취약점이 발견되었을 때 발견된 취약점의 존재 자체가 널리 공표되기도 전에 해당 취약점을 통하여 이루어지는 보안 공격
Key Logger Attack (키로거 공격) ★	▶ 컴퓨터 사용자의 <u>키보드 움직임을 탐지</u> 해 ID, 패스워드 등 개인의 중요한 정보를 몰래 빼가는 해킹 공격
Ransomware (랜섬웨어) ★★	▶ 인터넷 사용자의 컴퓨터에 침입해 내부 문서 파일 등을 암호화해 사용자가 열지 못하게 하는 공격으로, 암호 해독용 프로그램의 전달을 조건으로 <u>사용자에게 돈을 요구</u> 하기도 함
Back Door (백도어, Trap Door)	▶ 시스템 설계자가 서비스 기술자나 프로그래머의 액세스 편의를 위해 시스템 보안을 제거하여 만들어 놓은 비밀 통로로, 컴퓨터 범죄에 약용되기도 함
Trojan Horse (트로이 목마)	► 정상적인 기능을 하는 프로그램으로 위장하여 프로그램 내에 숨어 있다가 해당 프로그램이 동작할 때 활성화되어 부작용을 일으키는 것으로, 자기 복제 능력은 없음

© 2021. 함께 공무해요 All rights reserved.

21 보안 솔루션 ★★★

p.816, 5-96, 20 년 3 회 기출문제

방화벽(Firewall) ★	▶ 내부 네트워크에서 외부로 나가는 패킷은 그대로 통과시키고, <u>외부에서 내부 네트워크로 들어오는 패킷은</u> <u>내용을 엄밀히 체크</u> 하여 인증된 패킷만 통과시키는 구조
침임 탐지 시스템	▶ 컴퓨터 시스템의 <u>비정상적인 사용, 오용, 남용 등을</u>
(IDS; Intrusion	<u>실시간으로</u> 탐지 하는 시스템
Detection System)	
침입 방지 시스템	▶ <u>방화벽과 침임 탐지 시스템을 결합</u> 한 것으로,
(IPS; Intrusion	<u>비정상적인 트래픽을 능동적으로 차단하고 격리</u> 하는
Prevention System) ★	등의 방어 조치를 취하는 보 <mark>안 솔</mark> 루션
데이터 유출 방지	▶ <u>내부 정보의 외부 유출을 방지</u> 하는 보안 솔루션으로,
(DLP;	사내 직원이 사용하는 PC 와 네트워크상의 모든 정보를
Data Loss Prevention)	검색하고 사용자 행위 <mark>를 탐</mark> 지, 통제해 사전 유출 방지
웹 방화벽	▶ 일반 방화벽이 <mark>탐지하</mark> 지 못하는 <u>SQL 삽입 공격,</u>
(Web Firewall) ★	XSS(Cross-Site Scripting) 등의 웹 기반 공격을 방어할
	<u>목적</u> 으로 만들어진 웹 서버에 특화된 방화벽
VPN	▶ <u>가상 사설 네트워크</u> 로서 인터넷 등 통신 사업자의
(Virtual Private Network,	공중 네트워크와 암호화 기술을 이용하여 <u>사용자가 마치</u>
가상 사설 통신망) ★	자신의 전용 회선을 사용하는 것처럼 하는 보안 솔루션
NAC	▶ <u>네트워크에 접속하는 내부 PC의 MAC 주소</u> 를 IP 관리
(Network Access Control)	시스템에 등록한 후 일관된 보안 관리 기능을 제공하는
	보안 솔루션
	- 내부 PC의 소프트웨어 사용 현황을 관리하여 불법적인
	소프트웨어 설치를 방지
ESM	▶ 방화벽, IDS, IPS, 웹 방화벽, VPN 등에서 발생한 로그
(Enterprise Security	및 보안 이벤트를 통합하여 관리하는 보안 솔루션
Management) ★	- 보안 솔루션 간의 상호 연동을 통해 <u>종합적인 보완</u>
	관리 체계를 수립할 수 있음
SDP	▶ ' <u>블랙 클라우드'</u> 라고도 불리며, 2007 년경 GIG 의
(Software Defined	네트워크 우선권에 따라 DISA 에서 수행한 작업에서
Perimeter)	발전한 <u>컴퓨터 보안 접근 방식</u>

22 서버 인증 ★

p.807, 5-85

- 1) 인증(Authentication)의 개념 ★
 - 다중 사용자 컴퓨터 시스템이나 네트워크 시스템에서 로그인을 요청한 사용자의 정보를 확인하고 접근 권한을 검증하는 보안 절차
 - ▶ 인증의 주요 유형: 지식 기반 인증, 소유 기반 인증, 생체 기반 인증, 특정 기반 인증 #지소생특
- 2) 지식 기반 인증(Something You know)
 - 사용자가 기억하고 있는 정보를 기반으로 인증을 수행하는 것
 - # 고정된 패스워드(Password), 패스 프레이즈(Pass phrase, 문장), 아이핀(i-PIN)
- 3) 소유 기반 인증(Something You Have)
 - 사용자가 소유하고 있는 것을 기반으로 인증을 수행하는 것
 - # 신분증, 메모리 카드(토큰), 스마트 카드, OTP(One Time Password)
- 4) 생체 기반 인증(Something You Are)
 - <mark>사용자의</mark> 고유한 생체 정보를 기반으로 인증을 수행하는 것
 - # 지문, 홍채/망막, 얼굴, 음성, 정맥 등
- 5) 특징 기반 인증) 21. 함께 공부해요 All rights reserved.
 - ▶ 행위 기반 인증(Something You Do): <u>사용자의 행동 정보를 이용</u>해 인증 수행
 - # 서명, 동작
 - ▶ 위치 기반 인증(Somewhere You Are): 인증을 시도하는 위치의 적절성 확인
 - # 콜백, GPS 나 IP 주소를 이용한 위치 기반 인증

23 로그 분석 ★

p.813, 5-94

1) 로그(Log)의 개념

- <u>시스템 사용에 대한 모든 내역을 기록해 놓은 것으로</u>, 이러한 로그 정보를 이용하면 시스템 침해 사고 발생 시 해킹 흔적이나 공격 기법을 파악할 수 있음

2) 리눅스(LINUX)의 주요 로그 파일 ★

로그	파일명	데몬	내용
커널 로그	/dev/console	kernel	커널에 관련된 내용을 관리자에게
			알리기 위해 파일로 저장하지 않고
	5		지정된 장치에 표시 ★
부팅 로그	/var/log/boot.log	boot	부팅 시 나타나는 메시지들을 기록
크론 로그	/var/log/cron	crond	작업 스케줄러의 작업 내역 기록
시스템 로그	/var/log/messages	syslogd	커널에서 실시간으로 보내오는
			메시지들 기록 ★
보안 로그	/var/log/secure	xinetd	시스템의 접속에 대한 로그 기록
FTP 로그	/var/log/xferlog	ftpd	FTP 로 접속하는 사용자에 대한 로그
9/			기록
메일 로그	/var/log/maillog	sendmail	송, 수신 메일에 대한 로그 기록
		popper	

3) Windows 로그

- Windows 시스템에서는 이벤트 로그 형식으로 시스템의 로그를 관리함
- Windows 의 이벤트 뷰어를 이용하여 이벤트 로그를 확인함 TS reserved.

4) Windows 이벤트 뷰어의 로그

- 응용 프로그램 로그, **보**안 로그, **시**스템 로그, **S**etup 로그, **F**orwarded Events 로그

#응보시 SF

24 추가 정리, 수제비 및 기출문제 ★★★

1) 오픈플로우(Openflow) ★ _ 5-20

- 네트워크 장치의 <u>컨트롤 플레인(Control Plane)과 데이터 플레인(Data Plane)</u> 간의 연계 및 제어를 담당하는 개방형 표준 인터페이스

구성요소	설명
오 픈플로우 컨 트롤러	▶ <u>중앙 집중형 네트워크 제어 역할</u> 을 하며, 흐름 테이블 내
(Openflow Controller)	흐름 엔트리의 삽입, 추가, 삭제 가능함
오픈플로우 프로토콜	▶ <u>스위치</u> 와 스위치를 관리하는 <u>컨트롤러가 통신</u> 하기 위한
(Openflow Protocol)	개방형 표준 인터페이스
오픈플로우 스위치	▶ L2 스위치에 오픈플로우 프로토콜을 펌웨어로 추가해
(Openflow Switch)	스위치를 구성하거나 SW 방식 <mark>의 Logical</mark> 스위치 구성
흐 름 테이블	▶ 패킷 전달 경로와 방식에 대한 <mark>정보 저장 테이블</mark>
(Flow Table)	
파 이프라이닝	▶ 흐름 테이블에는 패 <mark>킷에 대한</mark> 액션을 처리하거나 다른
(Pipelining)	액션을 추가할 수 있는 기능
	- 다른 흐름 테이블에 있는 엔트리와 비교하여 <u>패킷 처리가</u>
	계속되도록 제어
그룹 테이블	▶ 브로드 캐스트나 멀티캐스트를 구현하는 데 사용하는
(Group Table)	테이블
보안 채널	▶ 스위치의 보안 채널
(Secure Channel)	

#오컨프스 흐파그보

2) 기계학습(Machine Learning) _ 5-33

분류	설명	사례
지도(교사)학습	입력 X 에 대한 출력 목푯값을	인 공 신경망, 회 귀분석
	<u>제시</u> 하여 학습	
비 지도(비교사)학습	입력 X 에 대해 <u>목푯값을 스스로</u>	K -Means 알고리즘,
	<u>추론</u> 하여 학습	주성분 분석(P CA)
강 화학습	입력 X 에 대해 <u>행위의 포상을</u>	Q -Learning,
	<u>기억하고 학습</u>	몬 테카를로 트리 탐색

#지비강 #인회 KP Q 몬

3) 네트워크 기능 가상화(NFV) _ 5-21

- 서버, 스토리지, 스위치 등 범용 하드웨어에 가상화 기술을 적용하여 <u>네트워크</u> 기능을 가상 기능으로 모듈화하여 스위치나 라우터 등 필요한 곳에 제공하는 기술

구성요소	설명
VNFs	<u>네트워크 기능 실현</u> 을 위한 소프트웨어 패키지
(Virtual Network Fun ction)	
NFVI	범용 하드웨어와 가속 기능 및 하드웨어 가상화에
(Network Functions	필요한 소프트웨어 계층으로 구성
Virtualization In frastructure)	
MANO	NFVI 의 물리 및 가상 자원 관리와 VNF 의 조율 및
(Ma nagement & Orchestration)	라이프 사이클 관리 를 담당

#Fun In Ma

4) 오버레이 네트워크(Overlay Network) _ 5-22

- 기존 네트워크 위에 <u>별도의</u> 노드들과 논리적 링크들을 구성하여 이루어진 <u>가상 네트워크</u>

구성요소	설명
DHT	- 분산 컴퓨팅의 안전한 Lookup 메커니즘을 제공하는 저장기술
(Distributed Hash	- 각 노드의 식별자(Identifier) 분산 저장
Table)	
오버레이 노드	- DHT 이용 위치 정보 제공
(O verlay Node)	4
맵핑	- 동적 연결 및 동적 재구성 기능 제공
(M apping)	
베이스 노드	기노들 개의 중부역함요 All rights reserved.
(B ase Node)	I. B"II O T "III AII II BIIIS I ESEI VEU.
식 별자(Identifier)	- 해시 함수를 이용하여 위치 키와 아이템 키 생성

#DOMB 식

5) 광전송 장비 _ 5-26

- 네트워크의 스위칭 노드를 묶어 주는 시스템으로 <u>광케이블을 이용</u>하여 비교적 긴 거리의 데이터 전송에 이용

기술 구분	설명
SONET	▶ 광신호와 인터페이스 표준 제공
(Synchronous Optical	- 광전송용 동기식 다중화 방식에 의한 디지털신호계위
NETwork)	북미 표준
S DH	▶ 북미 표준인 SONET 을 기초로 동기식 디지털 다중화
(Synchronous Digital	신호계위에 관한 ITU 국제 표준 규격
Hierarchy)	- 자체 복구 기능과 SDH 프레임 내에 충분한 오버헤드
	확보가 가능한 기술
D WDM	▶ 대용량 데이터 전송을 <mark>위하여</mark> <u>파장 대역 채널을</u>
(Dense Wavelength	<u>조밀하게 나누어 규격화<mark>한 광전</mark>송 기술</u>
Division Multiplexing)	
CET	▶ 광역통신망에서 고속 <mark>으로 데</mark> 이터를 전달하고 교환하는
(Carrier Ethernet	차세대 패킷 전송(PTN; P <mark>acket T</mark> ransport Network) 기술
Transport)	

#SO SDC

6) 딥러닝(Deep Learning) _ 5-34

아그리즈	서미
알고리즘	설명
심층 신경망	▶ 입력 계층과 출력 계층 사이의 다단계의 은닉 계층 을
(D NN; Deep	통해서 비선형 관계에 대한 모델링이 가능한 인공신경망
Neutron Network)	
합성곱 신경망	▶ 필터에 의한 컨볼루션 과 서브샘플링 과정을 반복하는
(C NN; Convolution	비지도 학습으로 입력 데이터의 특징을 극대화하면서 차원을
Neural Network)	축소하는 딥러닝 알고리즘
순환 신경망	▶ 연속된 데이터 상에서 이전 순서의 은닉 노드의 값을
(RNN; Recurrent	저장한 이후, 다음 순서의 입력 데이터로 학습할 때 이전의
Neural Network)	값을 이용, <u>연속적인 정보의 흐름을 학습</u> 에 이용하는 딥러닝
	알고리즘

#DCR

7) 엣지 컴퓨팅(Edge Computing) _ 5-46

- 엣지(Edge)에 위치한 디바이스에 연산능력을 부여하여 데이터 처리 및 연산을 분산시키는 컴퓨팅 구조

8) SDDC(Software-Defined Data Center) __ 5-47

- 모든 하드웨어가 가상화되어 가상 자원의 풀(Pool)을 구성하고, 데이터 센터 전체를 운영하는 소프트웨어가 필요한 기능 및 규모에 따라 동적으로 자원을 할당, 관리하는 역할을 수행하는 데이터 센터

9) NoSQL의 유형 _ 5-58

유형	설명
Key -Value Store	▶ Unique 한 Key에 <mark>하나의 Value</mark> 를 가지고 있는 형태
	# Redis, DynamoDB
Col umn Family Data Store	▶ Key 안에 <u>(Column, Value) 조합</u> 으로 된 여러 개의
	필드를 갖는 DB
	# HBase, Cassandra
Do cument Store	▶ Value 의 데이터 타입이 <u>Document 라는 타입</u> 을
9/	사용하는 DB
	# MongoDB, Couchbase
G raph Store	▶ <u>시맨틱 웹과 온톨로지 분야에서 활용</u> 되는 그래프로
	데이터를 표현하는 DB
	# Neo4j, AllegroGraph

#Key Col Do G

10) 보안 아키텍처 영역._호용에 공부해요 All rights reserved.

- ▶ **관**리적 보안: 최상위 레벨에서 보안 목표, 보안 조직, 관계 법령 등 원칙 정의
- ▶ 물리적 보안: 조직의 자산에 대해 물리적 위협 수단으로부터 보호하기 위한 수단
- ▶ 기술적 보안: 보안 기술 요소를 식별 후 보안 목표를 정의하고 해당 기술 도입

#관물기

11) 데이터베이스 동시성(병행) 제어 기법 _ 5-62

기법	설명
로 킹(Locking)기법	▶ 잠금(Lock)을 설정한 트랜잭션이 해제(Unlock)할 때까지
	독점적으로 사용할 수 있게 상호배제 기능을 제공하는 기법
	- 로킹의 대상이 되는 객체의 크기를 로킹 단위라함
	▶ 로킹이 작을수록 : 병행수준은 뛰어나지만 관리가 어려움
	→ 오버헤드 多
	▶ 로킹이 클수록 : 병행수준은 낮아지지만 관리는 쉬움
	→ 오버헤드 小
2 단계 로킹	▶ 모든 트랜잭션들이 잠금(Lock)과 해제(Unlock) 연산을
(2PL; 2Phase Locking)	<u>확장 단계와 수축 단계</u> 로 구분하여 수행하는 기법
낙 관적 검증	▶ 트랜잭션이 <u>어떠한 검증도 수행하지 않고, 일단</u>
(최적 병행 수행기법)	<u>트랜잭션을 수행</u> 하고, 트 <mark>랜잭션 종료</mark> 시 검증을 수행하여
	데이터베이스에 반영하는 기법
타 임스탬프 오더링	▶ 시스템에서 생성하 <mark>는 고유</mark> 번호인 시간스탬프를
(Timestamp Ordering)	트랜잭션에 부여하는 것 <mark>으로</mark> <u>트랜잭션 간의 순서를 미리</u>
	선택하고 동시성 제어의 기준으로 사용하는 기법
다중버전 동시성 제어	▶ 트랜잭션의 타임스탬프와 접근하려는 데이터의
(MVCC; Multi Version	타임스탬프를 비교하여 직 <mark>렬가능성이</mark> 보장되는 <u>적절한</u>
Concurrency Control)	<u>버전을 선택하여 접근</u> 하도록 하는 기법

#로투낙타다

12) 스택가드(Stack Guard) _ 20 년 1, 2 회 기출문제

- 82. 메모리상에서 프로그램의 복귀 주소와 변수사이에 특정 값을 저장해 두었다가 그 값이 변경되었을 경우 <u>오버플로우 상태로 가정하여 프로그램 실행을 중단</u>하는 기술은? (2020 년 제 1, 2 회차 필기시험, B 형)
- → 스택가드(Stack Guard함께 공부해요 All rights reserved.

13) tripwire _ 20 년 1, 2 회 기출문제

87. <u>크래커가 침입하여 백도어</u>를 만들어 놓거나, <u>설정 파일을 변경했을 때 분석하는</u> 도구는? (2020 년 제 1, 2 회차 필기시험, B 형)

→ tripwire

14) 백도어 탐지 방법 _ 20년 1,2회 기출문제

- 83. 백도어 탐지 방법으로 틀린 것은? (2020 년 제 1, 2 회차 필기시험, B 형)
- ① 무결성 검사 ② **닫힌 포트 확인** → **열린 포트 확인**
- ③ 로그 분석 ④ SetUID 파일 검사

▶현재 동작중인 프로세스 및 열린 포트 확인

-해커가 접근을 위해 실행시켜둔 프로세스가 있는지, 열어둔 포트가 있는지 확인함

▶SetUID 파일 검사

-SetUID 권한의 파일을 많이 사용하므로, SetUID 권한이 있는 파일들을 검사해봄

▶무결성 검사

-침입자에 의해 변경된 파일이 있는지 검사해봄

▶로그 분석

-침입자의 기록을 분석해 보면 누가, 어떠한 공격을 했는지 알 수 있음

▶바이러스 및 백도어 탐지 툴 사용

-백신 등의 바이러스 탐지 툴을 사용해 찾음

15) 소프트웨어 재사용 방법 _ 20년 3회 기출문제

방법	설명
합성 중심 _ 1 (Composition-Based)	전자 칩과 같은 소프트웨어 부품, 즉 <u>블록(모듈)을 만들어서</u> <u>끼워 맞추는 방법</u> 으로 소프트웨어를 완성시키는 재사용
	방법 (블록 구성 방법)
생성 중심	추상화 형태로 쓰여진 명세를 구체화하여 프로그램을
(Generation-Based)	만드는 방법 (패턴 구성 방법)

16) 실무적으로 검증된 개발보안 방법론 _ 20년 3회 기출문제

개발보안 방법론	설명
MS-SDL	Microsoft 에서 보안수준이 높은 안전한 소프트웨어를
(M icro s oft- S ecure	개발하기 위해 <u>자체수립한 SDL</u> 이며, 방법론이 적용되기
Development Lifecycle)	전 버전보다 50% 이상 취약점이 감소함
Seven Touchpoints	SW 보안의 <u>모범 사례를 SDLC(Software Development</u>
	Life Cycle)에 통합한 소프트웨어 개발 보안 생명주기
	방법론
CLASP	'개념 관점 , 역할기반 관점 , 활동평가 관점 , 활동구현
(Comprehensive, Lightweight	관점 , 취약성 관점 ′등의 <u>활동중심, 역할 기반의</u>
Application Security Process)	프로세스로 구성된 집합체로서 이미 운영중인 시스템에
	<u>적용하기 적당</u> 한 소프트웨어 개발 보안 방법론
CWE	소프트웨어 취약점 및 취약점에 대한 범주 시스템으로,
(Common Weakness	소프트웨어의 결함을 이해하고 이러한 <u>결함을 식별,</u>
Enumeration)	수정 및 방지하는데 사용할 수 있는 자동화된 도구를
	<u>작성</u> 함

17) CPM 네트워크 임계경로 _ 17 년 3 회 기출문제, 20 년 3 회 기출문제

79. CPM 네트워크가 다음과 같을 때 임계경로의 소요기일은?

① 10일

- ② 12일
- ③ 14일ⓒ 2021. 함께 t를부해요 All rights reserved.
- 임계 경로 = 최장경로 의미
- → 경로 1: 2 일 + 2 일 + 3 일 + 3 일 = 10 일
- → **경로 2**: 2 일 + 3 일 + 5 일 + 4 일 = **14 일**
- → 경로 3:3일 + 5일 + 4일 = 12일

18) 보안 기능, 보안 약점 - 하드코드 된 암호화 키 사용 _ 20년 3회 기출문제

```
## Proof Pr
```

- '하드코드 된 암호화 키'항목의 **위험**한 예 (행정안<mark>전부 /</mark> 한국인터넷진흥원)

- '하드코드 된 암호화 키'항목의 안전한 예 (행정안전부 / 한국인터넷진흥원)

19) 요구사항 분석 자동화 도구 _ 20년 4회 기출문제

종류	설명
SREM	TRW 사가 우주 국방 시스템 그룹에 의해 실시간 처리 소프트웨어 시스템에서
	요구사항을 명확히 기술하도록 할 목적으로 개발한 것으로, RSL 과 REVS 를
	사용하는 자동화 도구
PSL/PSA	미시간 대학에서 개발한 것으로 PSL과 PSA를 사용하는 자동화 도구
HIPO	시스템의 분석 및 설계나 문서화할 때 사용되는 기법으로 시스템 실행 과정의
	입력, 처리, 출력의 기능을 나타내고, 종류로는 가시적 도표, 총체적 도표,
	세부적 도표가 있음
SADT	SoftTech 사에서 개발된 것으로 구조적 요구분석을 하기 위해 블록
	다이어그램을 채택한 자동화 도구
TAGS	시스템 공학 방법 응용에 대한 자동 접근 방법으로, 개발 주기의 전 과정에
	이용할 수 있는 통합 자동화 도구

20) NS chart 의 특징 _ 20 년 4회 기출문제

NS(Nassi-Schneiderman) chart

- 논리의 기술에 중점을 둔 도형식 표현 방법
- 전문성이 있어야 그리기 쉬움 (그리기 어려움)
- 연속, 선택 및 다중 선택, 반복 등의 제어논리 구조로 표현함
- 임의의 제어 이동이 어려움 → goto 구조가 어려움
- 그래픽 설계 도구임, 상자 도표라고도 함
- 프로그램으로 구현이 쉬움
- 조건이 복합되어 있는 곳의 처리를 시각적으로 명확히 식별하는데 적합함

21) 용어 20 년 4회 기출문제

종류	설명
Secure OS	기존의 운영체제(OS)에 내재된 보안 취약점을 해소하기 위해 <u>보안 기능</u> 을
	갖춘 커널을 이식하여 외부의 침입으로부터 시스템 자원을 보호하는 운영체제
Cent OS	레드햇 엔터프라이즈 리눅스와 완전하게 호환되는 무료 <u>기업용 리눅스</u> <u>운영체제</u>
GPIB	<u>컴퓨터와 주변기기를 연결</u> 하기 위한 외부 버스의 일종으로, 비동기 병렬 전송방식을 갖고있음
XSS	사용자가 <u>특정 게시물이나</u> 이메일의 링크를 클릭하면 <u>악성 스크립트가</u> 실행되어 페이지가 깨지거나, 사용자의 컴퓨터에 있는 로그인 정보나 개인정보, 내부 자료 등이 해커에게 전달되는 해킹 기법