libximc 2.12.1

Generated by Doxygen 1.8.1.2

Thu Mar 19 2020 16:22:52

Contents

1	libxi	libximc library										
	1.1	What the controller does.	1									
	1.2	What can do libximc library	1									
	1.3	Assistance.	1									
2	Intro	oduction	2									
	2.1	About library	2									
	2.2	System requirements	2									
		2.2.1 For rebuilding library	2									
		2.2.2 For using library	3									
3	How	v to rebuild library	4									
	3.1	Building on generic UNIX	4									
	3.2	Building on debian-based linux systems	4									
	3.3	Building on redhat-based linux systems	4									
	3.4	Buliding on Mac OS X	5									
	3.5	Buliding on Windows	5									
	3.6	Source code access	5									
4	How	v to use with										
	4.1	Usage with C	6									
		4.1.1 Visual C++	6									
		4.1.2 CodeBlocks	6									
		4.1.3 MinGW	6									
		4.1.4 C++ Builder	7									
		4.1.5 XCode	7									
		4.1.6 GCC	7									
	4.2	.NET	8									
	4.3	Delphi	8									
	4.4	Java	8									
	4.5	Python	9									
	4.6											

	4.7	Generi	c logging f	acility	9
	4.8	Require	ed permiss	sions	10
	4.9	C-profi	les		10
5	Work	kina wit	h custom	unite	11
•	5.1			he conversion units calibration t	11
	5.2			ons for working with custom units and data structures for them	11
	5.3			ction table for more accurate positioning	11
	5.5	Oddian	nate correc	client table for more accurate positioning	
6	Data		ire Docun		13
	6.1	access		ngs_t Struct Reference	13
		6.1.1		Description	13
		6.1.2	Field Doo	cumentation	14
			6.1.2.1	LimitSwitchesSettings	14
			6.1.2.2	MagneticBrakeInfo	14
			6.1.2.3	MBRatedCurrent	14
			6.1.2.4	MBRatedVoltage	14
			6.1.2.5	MBSettings	14
			6.1.2.6	MBTorque	14
			6.1.2.7	TemperatureSensorInfo	14
			6.1.2.8	TSGrad	14
			6.1.2.9	TSMax	14
			6.1.2.10	TSMin	14
			6.1.2.11	TSSettings	14
	6.2	analog	_data_t Str	uct Reference	15
		6.2.1	Detailed	Description	16
		6.2.2	Field Doo	cumentation	16
			6.2.2.1	A1Voltage	16
			6.2.2.2	A1Voltage_ADC	16
			6.2.2.3	A2Voltage	16
			6.2.2.4	A2Voltage_ADC	16
			6.2.2.5	ACurrent	16
			6.2.2.6	ACurrent_ADC	16
			6.2.2.7	B1Voltage	17
			6.2.2.8	B1Voltage_ADC	17
			6.2.2.9	B2Voltage	17
			6.2.2.10	B2Voltage_ADC	17
			6.2.2.11	BCurrent	17
			6.2.2.12	BCurrent_ADC	17
			6.2.2.13	FullCurrent	17
			6.2.2.14	FullCurrent_ADC	17

		6.2.2.15	H5	17
		6.2.2.16	Joy	17
		6.2.2.17	Joy_ADC	17
		6.2.2.18	$\textbf{L}\dots$	17
		6.2.2.19	L5	18
		6.2.2.20	L5_ADC	18
		6.2.2.21	Pot	18
		6.2.2.22	R	18
		6.2.2.23	SupVoltage	18
		6.2.2.24	SupVoltage_ADC	18
		6.2.2.25	Temp	18
		6.2.2.26	Temp_ADC	18
6.3	brake_	settings_t \$	Struct Reference	18
	6.3.1	Detailed	Description	19
	6.3.2	Field Doo	cumentation	19
		6.3.2.1	BrakeFlags	19
		6.3.2.2	t1	19
		6.3.2.3	t2	19
		6.3.2.4	t3	19
		6.3.2.5	t4	19
6.4	calibra	tion_setting	gs_t Struct Reference	19
	6.4.1	Detailed	Description	20
	6.4.2	Field Doo	cumentation	20
		6.4.2.1	CSS1_A	20
		6.4.2.2	CSS1_B	20
		6.4.2.3	CSS2_A	20
		6.4.2.4	CSS2_B	20
		6.4.2.5	FullCurrent_A	20
		6.4.2.6	FullCurrent_B	20
6.5	calibra	tion_t Struc	ct Reference	20
	6.5.1	Detailed	Description	21
6.6	chart_c	data_t Stru	ct Reference	21
	6.6.1	Detailed	Description	21
	6.6.2	Field Do	cumentation	21
		6.6.2.1	DutyCycle	21
		6.6.2.2	Joy	22
		6.6.2.3	Pot	22
		6.6.2.4	WindingCurrentA	22
		6.6.2.5	WindingCurrentB	22
		6.6.2.6	WindingCurrentC	22

		6.6.2.7	WindingVoltageA	 . 22
		6.6.2.8	WindingVoltageB	 . 22
		6.6.2.9	WindingVoltageC	 . 22
6.7	comma	ınd_add_sy	ync_in_action_calb_t Struct Reference	 . 22
	6.7.1	Detailed I	Description	 . 23
	6.7.2	Field Doo	cumentation	 . 23
		6.7.2.1	Position	 . 23
		6.7.2.2	Time	 . 23
6.8	comma	ınd₋add_sy	ync_in_action_t Struct Reference	 . 23
	6.8.1	Detailed I	Description	 . 23
	6.8.2	Field Doo	cumentation	 . 23
		6.8.2.1	Time	 . 23
		6.8.2.2	uPosition	 . 23
6.9	comma	ınd_change	e_motor_t Struct Reference	 . 24
	6.9.1	Detailed I	Description	 . 24
6.10	control	_settings_c	calb_t Struct Reference	 . 24
	6.10.1	Detailed I	Description	 . 24
	6.10.2	Field Doo	cumentation	 . 25
		6.10.2.1	Flags	 . 25
		6.10.2.2	MaxClickTime	 . 25
		6.10.2.3	MaxSpeed	 . 25
		6.10.2.4	Timeout	 . 25
6.11	control	_settings_t	Struct Reference	 . 25
	6.11.1	Detailed I	Description	 . 25
	6.11.2	Field Doo	cumentation	 . 26
		6.11.2.1	Flags	 . 26
		6.11.2.2	MaxClickTime	 . 26
		6.11.2.3	MaxSpeed	 . 26
		6.11.2.4	Timeout	 . 26
		6.11.2.5	uDeltaPosition	 . 26
		6.11.2.6	uMaxSpeed	 . 26
6.12	control	ler_name_t	t Struct Reference	 . 26
	6.12.1	Detailed I	Description	 . 27
	6.12.2	Field Doo	cumentation	 . 27
		6.12.2.1	ControllerName	 . 27
		6.12.2.2	CtrlFlags	 . 27
6.13	ctp_set	tings₋t Stru	uct Reference	 . 27
	6.13.1	Detailed I	Description	 . 27
	6.13.2	Field Doo	cumentation	 . 28
		6.13.2.1	CTPFlags	 . 28

		6.13.2.2	CTPMinError	 28
6.14	debug_	read₋t Stru	ruct Reference	 28
	6.14.1	Detailed	Description	 28
	6.14.2	Field Doo	cumentation	 28
		6.14.2.1	DebugData	 28
6.15	debug_	write_t Str	ruct Reference	 28
	6.15.1	Detailed	Description	 29
	6.15.2	Field Doo	cumentation	 29
		6.15.2.1	DebugData	 29
6.16	device	informatio	on_t Struct Reference	 29
	6.16.1	Detailed	Description	 29
	6.16.2	Field Doo	cumentation	 29
		6.16.2.1	Major	 29
		6.16.2.2	Minor	 30
		6.16.2.3	Release	 30
6.17	device	_network_ir	information₋t Struct Reference	 30
	6.17.1	Detailed	Description	 30
6.18	edges	settings_ca	calb_t Struct Reference	 30
	6.18.1	Detailed	Description	 31
	6.18.2	Field Doo	cumentation	 31
		6.18.2.1	BorderFlags	 31
		6.18.2.2	EnderFlags	 31
		6.18.2.3	LeftBorder	 31
		6.18.2.4	RightBorder	 31
6.19	edges_	settings_t	Struct Reference	 31
	6.19.1	Detailed	Description	 32
	6.19.2	Field Doo	cumentation	 32
		6.19.2.1	BorderFlags	 32
		6.19.2.2	EnderFlags	 32
		6.19.2.3	LeftBorder	 32
		6.19.2.4	RightBorder	 32
		6.19.2.5	uLeftBorder	 32
		6.19.2.6	uRightBorder	 32
6.20	emf_se	ttings_t Str	truct Reference	 32
	6.20.1	Detailed	Description	 33
	6.20.2	Field Doo	cumentation	 33
		6.20.2.1		
			Km	
		6.20.2.3	L	
		6.20.2.4	R	 33

CONTENTS vi

6.21	encode	r_informat	ion_t Struct Reference	33
	6.21.1	Detailed I	Description	34
	6.21.2	Field Doo	cumentation	34
		6.21.2.1	Manufacturer	34
		6.21.2.2	PartNumber	34
6.22	encode	er_settings_	t Struct Reference	34
	6.22.1	Detailed I	Description	35
	6.22.2	Field Doo	cumentation	35
		6.22.2.1	EncoderSettings	35
		6.22.2.2	MaxCurrentConsumption	35
		6.22.2.3	MaxOperatingFrequency	35
		6.22.2.4	SupplyVoltageMax	35
		6.22.2.5	SupplyVoltageMin	35
6.23	engine.	advansed	Lsetup_t Struct Reference	35
	6.23.1	Detailed I	Description	36
	6.23.2	Field Doo	cumentation	36
		6.23.2.1	stepcloseloop_Kp_high	36
		6.23.2.2	stepcloseloop_Kp_low	36
		6.23.2.3	stepcloseloop_Kw	36
6.24	engine.	_settings_c	ealb_t Struct Reference	36
	6.24.1	Detailed I	Description	37
	6.24.2	Field Doo	cumentation	37
		6.24.2.1	Antiplay	37
		6.24.2.2	EngineFlags	37
		6.24.2.3	MicrostepMode	37
		6.24.2.4	NomCurrent	37
		6.24.2.5	NomSpeed	37
		6.24.2.6	NomVoltage	37
		6.24.2.7	StepsPerRev	37
6.25	engine.	_settings_t	Struct Reference	38
	6.25.1	Detailed I	Description	38
	6.25.2	Field Doo	cumentation	38
		6.25.2.1	Antiplay	38
		6.25.2.2	EngineFlags	38
		6.25.2.3	MicrostepMode	38
		6.25.2.4	NomCurrent	39
		6.25.2.5	NomSpeed	39
		6.25.2.6	NomVoltage	39
		6.25.2.7	StepsPerRev	39
		6.25.2.8	uNomSpeed	39

CONTENTS vii

6.26	entype.	_settings_t	Struct Reference	 39
	6.26.1	Detailed I	Description	 39
	6.26.2	Field Doc	cumentation	 40
		6.26.2.1	DriverType	 40
		6.26.2.2	EngineType	 40
6.27	extende	ed_settings	s_t Struct Reference	 40
	6.27.1	Detailed I	Description	 40
6.28	extio_se	ettings₋t St	truct Reference	 40
	6.28.1	Detailed I	Description	 40
	6.28.2	Field Doc	cumentation	 41
		6.28.2.1	EXTIOModeFlags	 41
		6.28.2.2	EXTIOSetupFlags	 41
6.29	feedba	ck_settings	s_t Struct Reference	 41
	6.29.1	Detailed I	Description	 41
	6.29.2	Field Doc	cumentation	 41
		6.29.2.1	CountsPerTurn	 41
		6.29.2.2	FeedbackFlags	 41
		6.29.2.3	FeedbackType	 42
		6.29.2.4	IPS	 42
6.30	gear_in	formation_	t Struct Reference	 42
	6.30.1	Detailed I	Description	 42
	6.30.2	Field Doc	cumentation	 42
		6.30.2.1	Manufacturer	 42
		6.30.2.2	PartNumber	 42
6.31	gear_se	ettings₋t St	truct Reference	 42
	6.31.1	Detailed I	Description	 43
	6.31.2	Field Doc	cumentation	 43
		6.31.2.1	Efficiency	 43
		6.31.2.2	InputInertia	 43
		6.31.2.3	MaxOutputBacklash	 43
		6.31.2.4	RatedInputSpeed	 43
		6.31.2.5	RatedInputTorque	 44
		6.31.2.6	ReductionIn	 44
		6.31.2.7	ReductionOut	 44
6.32	get_pos	sition_calb_	_t Struct Reference	 44
	6.32.1	Detailed I	Description	 44
	6.32.2	Field Doc	cumentation	 44
		6.32.2.1	EncPosition	 44
		6.32.2.2	Position	 44
6.33	get_pos	sition_t Stru	uct Reference	 45

CONTENTS viii

	6.33.1	Detailed D	Description	. 45
	6.33.2	Field Doc	umentation	. 45
		6.33.2.1	EncPosition	. 45
		6.33.2.2	uPosition	. 45
6.34	globally	/_unique_id	lentifier_t Struct Reference	. 45
	6.34.1	Detailed D	Description	. 46
	6.34.2	Field Doc	umentation	. 46
		6.34.2.1	UniqueID0	. 46
		6.34.2.2	UniqueID1	. 46
		6.34.2.3	UniqueID2	. 46
		6.34.2.4	UniqueID3	. 46
6.35	hallsen	sor_informa	ation_t Struct Reference	. 46
	6.35.1	Detailed D	Description	. 46
	6.35.2	Field Doc	umentation	. 47
		6.35.2.1	Manufacturer	. 47
		6.35.2.2	PartNumber	. 47
6.36	hallsen	sor_setting:	s_t Struct Reference	. 47
	6.36.1	Detailed D	Description	. 47
	6.36.2	Field Doc	umentation	. 47
		6.36.2.1	MaxCurrentConsumption	. 47
		6.36.2.2	MaxOperatingFrequency	. 47
		6.36.2.3	SupplyVoltageMax	. 48
		6.36.2.4	SupplyVoltageMin	. 48
6.37	home_s	settings_cal	lb_t Struct Reference	. 48
	6.37.1	Detailed D	Description	. 48
	6.37.2	Field Doc	umentation	. 48
		6.37.2.1	FastHome	. 48
		6.37.2.2	HomeDelta	. 48
		6.37.2.3	HomeFlags	. 48
		6.37.2.4	SlowHome	. 49
6.38	home_s	settings ₋ t S	struct Reference	. 49
	6.38.1	Detailed D	Description	. 49
	6.38.2	Field Doc	umentation	. 49
		6.38.2.1	FastHome	. 49
		6.38.2.2	HomeDelta	. 49
		6.38.2.3	HomeFlags	. 49
		6.38.2.4	SlowHome	. 50
		6.38.2.5	uFastHome	. 50
		6.38.2.6	uHomeDelta	. 50
		6.38.2.7	uSlowHome	. 50

6.39	init_ran	dom₋t Stru	ıct Reference	. 50
	6.39.1	Detailed I	Description	. 50
	6.39.2	Field Doo	cumentation	. 50
		6.39.2.1	key	. 50
6.40	joystick	c_settings_t	Struct Reference	. 51
	6.40.1	Detailed I	Description	. 51
	6.40.2	Field Doo	cumentation	. 51
		6.40.2.1	DeadZone	. 51
		6.40.2.2	ExpFactor	. 51
		6.40.2.3	JoyCenter	. 51
		6.40.2.4	JoyFlags	. 52
		6.40.2.5	JoyHighEnd	. 52
		6.40.2.6	JoyLowEnd	. 52
6.41	measu	rements_t \$	Struct Reference	. 52
	6.41.1	Detailed I	Description	. 52
	6.41.2	Field Doo	cumentation	. 52
		6.41.2.1	Error	. 52
		6.41.2.2	Length	. 52
		6.41.2.3	Speed	. 53
6.42	motor_i	nformation	n_t Struct Reference	. 53
	6.42.1	Detailed I	Description	. 53
	6.42.2	Field Doo	cumentation	. 53
		6.42.2.1	Manufacturer	. 53
		6.42.2.2	PartNumber	. 53
6.43	motor_s	settings_t S	Struct Reference	. 53
	6.43.1	Detailed I	Description	. 54
	6.43.2	Field Doo	cumentation	. 55
		6.43.2.1	DetentTorque	. 55
		6.43.2.2	MaxCurrent	. 55
		6.43.2.3	MaxCurrentTime	. 55
		6.43.2.4	MaxSpeed	. 55
		6.43.2.5	MechanicalTimeConstant	. 55
		6.43.2.6	MotorType	. 55
		6.43.2.7	NoLoadCurrent	. 55
		6.43.2.8	NoLoadSpeed	. 55
		6.43.2.9	NominalCurrent	. 55
		6.43.2.10	NominalPower	. 56
		6.43.2.11	NominalSpeed	. 56
		6.43.2.12	NominalTorque	. 56
		6.43.2.13	NominalVoltage	. 56

CONTENTS x

	6.43.2.14 Phases	56
	6.43.2.15 Poles	56
	6.43.2.16 RotorInertia	56
	6.43.2.17 SpeedConstant	56
	6.43.2.18 SpeedTorqueGradient	56
	6.43.2.19 StallTorque	56
	6.43.2.20 TorqueConstant	57
	6.43.2.21 WindingInductance	57
	6.43.2.22 WindingResistance	57
6.44 mov	e_settings_calb_t Struct Reference	57
6.44	.1 Detailed Description	57
6.44	.2 Field Documentation	57
	6.44.2.1 Accel	57
	6.44.2.2 AntiplaySpeed	58
	6.44.2.3 Decel	58
	6.44.2.4 Speed	58
6.45 mov	e_settings_t Struct Reference	58
6.45	.1 Detailed Description	58
6.45	.2 Field Documentation	58
	6.45.2.1 Accel	58
	6.45.2.2 AntiplaySpeed	59
	6.45.2.3 Decel	59
	6.45.2.4 Speed	59
	6.45.2.5 uAntiplaySpeed	59
	6.45.2.6 uSpeed	59
6.46 non	rolatile_memory_t Struct Reference	59
6.46	.1 Detailed Description	59
6.46	.2 Field Documentation	59
	6.46.2.1 UserData	59
6.47 pid_	settings_t Struct Reference	60
6.47	.1 Detailed Description	60
6.48 pow	er_settings_t Struct Reference	60
6.48	.1 Detailed Description	61
6.48	.2 Field Documentation	61
	6.48.2.1 CurrentSetTime	61
	6.48.2.2 CurrReductDelay	61
	6.48.2.3 HoldCurrent	61
	6.48.2.4 PowerFlags	61
	6.48.2.5 PowerOffDelay	61
6.49 secu	re_settings_t Struct Reference	61

CONTENTS xi

	6.49.1	Detailed Description	62
	6.49.2	Field Documentation	62
		6.49.2.1 Criticallpwr	62
		6.49.2.2 Criticallusb	62
		6.49.2.3 CriticalT	62
		6.49.2.4 CriticalUpwr	62
		6.49.2.5 CriticalUusb	62
		6.49.2.6 Flags	62
		6.49.2.7 LowUpwrOff	62
		6.49.2.8 MinimumUusb	63
6.50	serial_n	umber_t Struct Reference	63
	6.50.1	Detailed Description	63
	6.50.2	Field Documentation	63
		6.50.2.1 Key	63
		6.50.2.2 Major	63
		6.50.2.3 Minor	63
		6.50.2.4 Release	63
		6.50.2.5 SN	64
6.51	set_pos	ition_calb_t Struct Reference	64
	6.51.1	Detailed Description	64
	6.51.2	Field Documentation	64
		6.51.2.1 EncPosition	64
		6.51.2.2 PosFlags	64
		6.51.2.3 Position	64
6.52	set_pos	ition_t Struct Reference	64
	6.52.1	Detailed Description	65
	6.52.2	Field Documentation	65
		6.52.2.1 EncPosition	65
		6.52.2.2 PosFlags	65
		6.52.2.3 uPosition	65
6.53	stage_ii	formation_t Struct Reference	65
	6.53.1	Detailed Description	65
	6.53.2	Field Documentation	66
		6.53.2.1 Manufacturer	66
		6.53.2.2 PartNumber	66
6.54	stage_r	ame_t Struct Reference	66
	6.54.1	Detailed Description	66
	6.54.2	Field Documentation	66
		6.54.2.1 PositionerName	66
6.55	stage_s	ettings_t Struct Reference	66

CONTENTS xii

	6.55.1	Detailed Description		
	6.55.2	Field Documentation	37	
		6.55.2.1 HorizontalLoadCapacity	37	
		6.55.2.2 LeadScrewPitch	37	
		6.55.2.3 MaxCurrentConsumption	37	
		6.55.2.4 MaxSpeed	86	
		6.55.2.5 SupplyVoltageMax	38	
		6.55.2.6 SupplyVoltageMin	38	
		6.55.2.7 TravelRange	38	
		6.55.2.8 Units	86	
		6.55.2.9 VerticalLoadCapacity	86	
6.56	status_	calb_t Struct Reference	86	
	6.56.1	Detailed Description	39	
	6.56.2	Field Documentation	39	
		6.56.2.1 CmdBufFreeSpace	39	
		6.56.2.2 CurPosition	69	
		6.56.2.3 CurSpeed	69	
		6.56.2.4 CurT	39	
		6.56.2.5 EncPosition	70	
		6.56.2.6 EncSts	70	
		6.56.2.7 Flags	70	
		6.56.2.8 GPIOFlags	70	
		6.56.2.9 lpwr	70	
		6.56.2.10 lusb	70	
		6.56.2.11 MoveSts	70	
		6.56.2.12 MvCmdSts	70	
		6.56.2.13 PWRSts	70	
		6.56.2.14 Upwr	70	
		6.56.2.15 Uusb	70	
		6.56.2.16 WindSts	70	
6.57	status_	Struct Reference	71	
	6.57.1	Detailed Description	71	
	6.57.2	Field Documentation	72	
		6.57.2.1 CmdBufFreeSpace	72	
		6.57.2.2 CurPosition	72	
		6.57.2.3 CurSpeed	72	
		6.57.2.4 CurT	72	
		6.57.2.5 EncPosition	72	
		6.57.2.6 EncSts	72	
		6.57.2.7 Flags	72	

CONTENTS xiii

		6.57.2.8	GPIOFlags	72
		6.57.2.9	lpwr	72
		6.57.2.10	lusb	72
		6.57.2.11	MoveSts	72
		6.57.2.12	2 MvCmdSts	72
		6.57.2.13	PWRSts	73
		6.57.2.14	UCurPosition	73
		6.57.2.15	i uCurSpeed	73
		6.57.2.16	Upwr	73
		6.57.2.17	' Uusb	73
		6.57.2.18	WindSts	73
6.58	sync_in	_settings_c	calb_t Struct Reference	73
	6.58.1	Detailed	Description	73
	6.58.2	Field Doo	cumentation	74
		6.58.2.1	ClutterTime	74
		6.58.2.2	Position	74
		6.58.2.3	Speed	74
		6.58.2.4	SyncInFlags	74
6.59	sync_in	_settings_t	Struct Reference	74
	6.59.1	Detailed	Description	74
	6.59.2	Field Doo	cumentation	75
		6.59.2.1	ClutterTime	75
		6.59.2.2	Speed	75
		6.59.2.3	SyncInFlags	75
		6.59.2.4	uPosition	75
		6.59.2.5	uSpeed	75
6.60	sync_o	ut_settings	_calb_t Struct Reference	75
	6.60.1	Detailed	Description	76
	6.60.2	Field Doo	cumentation	76
		6.60.2.1	Accuracy	76
		6.60.2.2	SyncOutFlags	76
		6.60.2.3	SyncOutPeriod	76
		6.60.2.4	SyncOutPulseSteps	76
6.61	sync_o	ut_settings	t Struct Reference	76
	6.61.1	1 Detailed Description		
	6.61.2	Field Doo	cumentation	77
		6.61.2.1	Accuracy	77
		6.61.2.2	SyncOutFlags	77
		6.61.2.3	SyncOutPeriod	77
		6.61.2.4	SyncOutPulseSteps	77

CONTENTS xiv

			6.61.2.5	uAccuracy	77
	6.62	uart₋se	ttings₋t Stı	ruct Reference	77
		6.62.1	Detailed	Description	78
		6.62.2	Field Doo	cumentation	78
			6.62.2.1	UARTSetupFlags	78
7	Eile I	Dagum	entation		79
′				ence	79 79
	7.1			Description	
		7.1.1 7.1.2		efinition Documentation	
		7.1.2			
			7.1.2.1	ALARM_ON_DRIVER_OVERHEATING	
			7.1.2.2	BACK_EMF_INDUCTANCE_AUTO	
			7.1.2.3		
			7.1.2.4	BACK_EMF_RESISTANCE_AUTO	
			7.1.2.5	BORDER_IS_ENCODER	
			7.1.2.6	BORDER_STOP_LEFT	
			7.1.2.7	BORDER_STOP_RIGHT	
			7.1.2.8	BORDERS_SWAP_MISSET_DETECTION	
			7.1.2.9	BRAKE_ENABLED	
			7.1.2.10	BRAKE_ENG_PWROFF	
			7.1.2.11	CONTROL_BTN_LEFT_PUSHED_OPEN	
			7.1.2.12	CONTROL_BTN_RIGHT_PUSHED_OPEN	
			7.1.2.13	CONTROL_MODE_BITS	
			7.1.2.14	CONTROL_MODE_JOY	
			7.1.2.15	CONTROL_MODE_LR	
			7.1.2.16	CONTROL_MODE_OFF	
				CTP_ALARM_ON_ERROR	
				CTP_BASE	
			_	CTP_ENABLED	
				CTP_ERROR_CORRECTION	
				DRIVER_TYPE_DISCRETE_FET	
				DRIVER_TYPE_EXTERNAL	
			7.1.2.23	DRIVER_TYPE_INTEGRATE	104
			7.1.2.24	EEPROM_PRECEDENCE	104
			7.1.2.25	ENC_STATE_ABSENT	104
			7.1.2.26	ENC_STATE_MALFUNC	104
			7.1.2.27	ENC_STATE_OK	104
			7.1.2.28	ENC_STATE_REVERS	104
			7.1.2.29	ENC_STATE_UNKNOWN	104
			7.1.2.30	ENDER_SW1_ACTIVE_LOW	104

CONTENTS xv

7.1.2.31	ENDER_SW2_ACTIVE_LOW	04
7.1.2.32	ENDER_SWAP	05
7.1.2.33	ENGINE_ACCEL_ON	05
7.1.2.34	ENGINE_ANTIPLAY	05
7.1.2.35	ENGINE_CURRENT_AS_RMS	05
7.1.2.36	ENGINE_LIMIT_CURR	05
7.1.2.37	ENGINE_LIMIT_RPM	05
7.1.2.38	ENGINE_LIMIT_VOLT	05
7.1.2.39	ENGINE_MAX_SPEED	05
7.1.2.40	ENGINE_REVERSE	05
7.1.2.41	ENGINE_TYPE_2DC	05
7.1.2.42	ENGINE_TYPE_BRUSHLESS	06
7.1.2.43	ENGINE_TYPE_DC	06
7.1.2.44	ENGINE_TYPE_NONE	06
7.1.2.45	ENGINE_TYPE_STEP	06
7.1.2.46	ENGINE_TYPE_TEST	06
7.1.2.47	ENUMERATE_PROBE	06
7.1.2.48	EXTIO_SETUP_INVERT	06
7.1.2.49	EXTIO_SETUP_MODE_IN_ALARM	06
7.1.2.50	EXTIO_SETUP_MODE_IN_BITS	06
7.1.2.51	EXTIO_SETUP_MODE_IN_HOME	06
7.1.2.52	EXTIO_SETUP_MODE_IN_MOVR	06
7.1.2.53	EXTIO_SETUP_MODE_IN_NOP	07
7.1.2.54		07
7.1.2.55	EXTIO_SETUP_MODE_IN_STOP	07
7.1.2.56	EXTIO_SETUP_MODE_OUT_ALARM	07
7.1.2.57	EXTIO_SETUP_MODE_OUT_BITS	07
7.1.2.58	EXTIO_SETUP_MODE_OUT_MOTOR_FOUND	07
7.1.2.59	EXTIO_SETUP_MODE_OUT_MOTOR_ON	07
7.1.2.60	EXTIO_SETUP_MODE_OUT_MOVING	07
7.1.2.61	EXTIO_SETUP_MODE_OUT_OFF	07
7.1.2.62	EXTIO_SETUP_MODE_OUT_ON	07
7.1.2.63	EXTIO_SETUP_OUTPUT 1	07
7.1.2.64	FEEDBACK_EMF	07
7.1.2.65	FEEDBACK_ENC_REVERSE	80
7.1.2.66		80
7.1.2.67		80
7.1.2.68	FEEDBACK_ENC_TYPE_DIFFERENTIAL	80
7.1.2.69	FEEDBACK_ENC_TYPE_SINGLE_ENDED	80
7.1.2.70	FEEDBACK_ENCODER	80

CONTENTS xvi

7.1.2.71	FEEDBACK_ENCODER_MEDIATED	108
7.1.2.72	FEEDBACK_NONE	108
7.1.2.73	H_BRIDGE_ALERT	108
7.1.2.74	HOME_DIR_FIRST	108
7.1.2.75	HOME_DIR_SECOND	108
7.1.2.76	HOME_HALF_MV	108
7.1.2.77	HOME_MV_SEC_EN	109
7.1.2.78	HOME_STOP_FIRST_BITS	109
7.1.2.79	HOME_STOP_FIRST_LIM	109
7.1.2.80	HOME_STOP_FIRST_REV	109
7.1.2.81	HOME_STOP_FIRST_SYN	109
7.1.2.82	HOME_STOP_SECOND_BITS	109
7.1.2.83	HOME_STOP_SECOND_LIM	109
7.1.2.84	HOME_STOP_SECOND_REV	109
7.1.2.85	HOME_STOP_SECOND_SYN	109
7.1.2.86	HOME_USE_FAST	109
7.1.2.87	JOY_REVERSE	109
7.1.2.88	LOW_UPWR_PROTECTION	109
7.1.2.89	MICROSTEP_MODE_FRAC_128	110
7.1.2.90	MICROSTEP_MODE_FRAC_16	110
7.1.2.91	MICROSTEP_MODE_FRAC_2	110
7.1.2.92	MICROSTEP_MODE_FRAC_256	110
7.1.2.93	MICROSTEP_MODE_FRAC_32	110
7.1.2.94	MICROSTEP_MODE_FRAC_4	110
7.1.2.95	MICROSTEP_MODE_FRAC_64	110
7.1.2.96	MICROSTEP_MODE_FRAC_8	110
7.1.2.97	MICROSTEP_MODE_FULL	110
7.1.2.98	MOVE_STATE_ANTIPLAY	110
7.1.2.99	MOVE_STATE_MOVING	110
7.1.2.100	MOVE_STATE_TARGET_SPEED	110
7.1.2.101	MVCMD_ERROR	111
7.1.2.102	MVCMD_HOME	111
7.1.2.103	MVCMD_LEFT	111
7.1.2.104	MVCMD_LOFT	111
7.1.2.105	MVCMD_MOVE	111
7.1.2.106	MVCMD_MOVR	111
7.1.2.107	MVCMD_NAME_BITS	111
7.1.2.108	MVCMD_RIGHT	111
7.1.2.109	MVCMD_RUNNING	111
7.1.2.110	MVCMD_SSTP	111

CONTENTS xvii

CONTENTS xviii

	7.1.2.151	STATE_OVERLOAD_POWER_VOLTAGE	115
	7.1.2.152	STATE_OVERLOAD_USB_CURRENT	115
	7.1.2.153	STATE_OVERLOAD_USB_VOLTAGE	115
	7.1.2.154	STATE_POWER_OVERHEAT	115
	7.1.2.155	STATE_REV_SENSOR 1	115
	7.1.2.156	STATE_RIGHT_EDGE	115
	7.1.2.157	STATE_SECUR	115
	7.1.2.158	STATE_SYNC_INPUT 1	115
	7.1.2.159	STATE_SYNC_OUTPUT	115
	7.1.2.160	SYNCIN_ENABLED	115
	7.1.2.161	SYNCIN_GOTOPOSITION	116
	7.1.2.162	SYNCIN_INVERT	116
	7.1.2.163	SYNCOUT_ENABLED	116
	7.1.2.164	SYNCOUT_IN_STEPS	116
	7.1.2.165	SYNCOUT_INVERT	116
	7.1.2.166	SYNCOUT_ONPERIOD	116
	7.1.2.167	SYNCOUT_ONSTART	116
	7.1.2.168	SYNCOUT_ONSTOP	116
	7.1.2.169	SYNCOUT_STATE	116
	7.1.2.170	UART_PARITY_BITS	116
	7.1.2.171	WIND_A_STATE_ABSENT	116
	7.1.2.172	WIND_A_STATE_MALFUNC	116
	7.1.2.173	WIND_A_STATE_OK	117
	7.1.2.174	WIND_A_STATE_UNKNOWN	117
	7.1.2.175	WIND_B_STATE_ABSENT	117
	7.1.2.176	WIND_B_STATE_MALFUNC	117
	7.1.2.177	WIND_B_STATE_OK	117
	7.1.2.178	WIND_B_STATE_UNKNOWN	117
	7.1.2.179	XIMC_API	117
7.1.3	Typedef E	Documentation	117
	7.1.3.1	logging_callback_t	117
7.1.4	Function	Documentation	117
	7.1.4.1	close_device	117
	7.1.4.2	command_add_sync_in_action	118
	7.1.4.3	command_add_sync_in_action_calb	118
	7.1.4.4	command_change_motor	118
	7.1.4.5	command_clear_fram	118
	7.1.4.6	<u> </u>	118
	7.1.4.7	3	119
	7.1.4.8	command_home	119

CONTENTS xix

7.1.4.9	command_homezero	119
7.1.4.10	command_left	119
7.1.4.11	command_loft	120
7.1.4.12	command_move	120
7.1.4.13	command_move_calb	120
7.1.4.14	command_movr	120
7.1.4.15	command_movr_calb	121
7.1.4.16	command_power_off	121
7.1.4.17	command_read_robust_settings	121
7.1.4.18	command_read_settings	122
7.1.4.19	command_reset	122
7.1.4.20	command_right	122
7.1.4.21	command_save_robust_settings	122
7.1.4.22	command_save_settings	122
7.1.4.23	command_sstp	122
7.1.4.24	command_start_measurements	123
7.1.4.25	command_stop	123
7.1.4.26	command_update_firmware	123
7.1.4.27	command_wait_for_stop	123
7.1.4.28	command_zero	123
7.1.4.29	enumerate_devices	124
7.1.4.30	free_enumerate_devices	124
7.1.4.31	get_accessories_settings	124
7.1.4.32	get_analog_data	124
7.1.4.33	get_bootloader_version	125
7.1.4.34	get_brake_settings	125
7.1.4.35	get_calibration_settings	125
7.1.4.36	get_chart_data	125
7.1.4.37	get_control_settings	126
7.1.4.38	get_control_settings_calb	126
7.1.4.39	get_controller_name	126
7.1.4.40	get_ctp_settings	126
7.1.4.41	get_debug_read	127
7.1.4.42	get_device_count	127
7.1.4.43	get_device_information	127
7.1.4.44	get_device_name	127
7.1.4.45	get_edges_settings	128
7.1.4.46	get_edges_settings_calb	128
7.1.4.47	get_emf_settings	128
7.1.4.48	get_encoder_information	128

CONTENTS xx

7.1.4.49	get_encoder_settings	129
7.1.4.50	get_engine_advansed_setup	129
7.1.4.51	get_engine_settings	129
7.1.4.52	get_engine_settings_calb	129
7.1.4.53	get_entype_settings	130
7.1.4.54	get_enumerate_device_controller_name	130
7.1.4.55	get_enumerate_device_information	130
7.1.4.56	get_enumerate_device_network_information	130
7.1.4.57	get_enumerate_device_serial	131
7.1.4.58	get_enumerate_device_stage_name	131
7.1.4.59	get_extended_settings	131
7.1.4.60	get_extio_settings	132
7.1.4.61	get_feedback_settings	132
7.1.4.62	get_firmware_version	132
7.1.4.63	get_gear_information	132
7.1.4.64	get_gear_settings	133
7.1.4.65	get_globally_unique_identifier	133
7.1.4.66	get_hallsensor_information	133
7.1.4.67	get_hallsensor_settings	133
7.1.4.68	get_home_settings	133
7.1.4.69	get_home_settings_calb	134
7.1.4.70	get_init_random	134
7.1.4.71	get_joystick_settings	134
7.1.4.72	get_measurements	134
7.1.4.73	get_motor_information	135
7.1.4.74	get_motor_settings	135
7.1.4.75	get_move_settings	135
7.1.4.76	get_move_settings_calb	135
7.1.4.77	get_nonvolatile_memory	136
7.1.4.78	get_pid_settings	136
7.1.4.79	get_position	136
7.1.4.80	get_position_calb	136
7.1.4.81	get_power_settings	137
7.1.4.82	get_secure_settings	137
7.1.4.83	get_serial_number	137
7.1.4.84	get_stage_information	137
7.1.4.85	get_stage_name	137
7.1.4.86	get_stage_settings	138
7.1.4.87	get_status	138
7.1.4.88	get_status_calb	138

CONTENTS xxi

CONTENTS xxii

7.1.4.129 set_home_settings_calb	9
7.1.4.130 set_joystick_settings	9
7.1.4.131 set_logging_callback	9
7.1.4.132 set_motor_information	9
7.1.4.133 set_motor_settings	0
7.1.4.134 set_move_settings	0
7.1.4.135 set_move_settings_calb	0
7.1.4.136 set_nonvolatile_memory	0
7.1.4.137 set_pid_settings	0
7.1.4.138 set_position	1
7.1.4.139 set_position_calb	1
7.1.4.140 set_power_settings	1
7.1.4.141 set_secure_settings	1
7.1.4.142 set_serial_number	2
7.1.4.143 set_stage_information	2
7.1.4.144 set_stage_name	2
7.1.4.145 set_stage_settings	2
7.1.4.146 set_sync_in_settings	3
7.1.4.147 set_sync_in_settings_calb	3
7.1.4.148 set_sync_out_settings	3
7.1.4.149 set_sync_out_settings_calb	4
7.1.4.150 set_uart_settings	4
7.1.4.151 write_key	4
7.1.4.152 ximc_fix_usbser_sys	4
7.1.4.153 ximc_version	5

Chapter 1

libximc library

Documentation for libximc library.

Libximc is cross-platform library for working with 8SMC4-USB and 8SMC5-USB controllers.

Full documentation about controllers is there

Full documentation about libximc API is available on the page ximc.h.

1.1 What the controller does.

- Supports input and output synchronization signals to ensure the joint operation of multiple devices within a complex system;.
- Works with all compact stepper motors with a winding current of up to 3 A, without feedback, as well as with stepper motors equipped with an encoder in the feedback circuit, including a linear encoder on the positioner.
- Manages hardware using ready-made software or using libraries for programming languages: C / C ++, C #, JAVA, Visual Basic, Python 2/3, .NET, Delphi, integration with MS Visual Studio programming environments, qcc, Xcode.
- · Works with scientific development environments by integrating LabVIEW and MATLAB;

1.2 What can do libximc library

- Libximc manages hardware using interfaces: USB 2.0., RS232 and Ethernet, also uses a common and proven
 virtual serial port interface, so you can work with motor control modules through this library under almost all
 operating systems, including Windows, Linux and Mac OS X
- Libximc library supports plug/unplug on the fly. Each device can be controlled only by one program at once.
 Multiple processes (programs) that control one device simultaneously are not allowed.

Please read the Introduction to start work with library.

To use libximc in your project please consult with How to use with...

1.3 Assistance.

Many thanks to everyone who sends suggestions, errors and ideas. We appreciate your suggestions and try to make our product better. Please post your questions here. Your ideas and comments send a e-mail: 8smc4@standa.lt

Chapter 2

Introduction

2.1 About library

This document contains all information about libximc library. It utilizes well known virtual COM-port interface, so you can use it on Windows 7, Windows, Vista, Windows XP, Windows Server 2003, Windows 2000, Linux, Mac OS X. Multi-platform programing library supports plug/unplug on the fly. Each device can be controlled only by one program at once. Multiple processes (programs) that control one device simultaneously are not allowed.

2.2 System requirements

2.2.1 For rebuilding library

On Windows:

- Windows 2000 or later, 64-bit system (if compiling both arhitectures) or 32-bit system.
- Microsoft Visual C++ 2013 or later
- · cygwin with tar, bison, flex, curl installed
- 7z

On Linux:

- 64-bit or/and 32-bit system system
- · gcc 4 or later
- common autotools: autoconf, autoheader, aclocal, automake, autoreconf, libtool
- gmake
- · doxygen for building docs
- LaTeX distribution (teTeX or texlive) for building docs
- flex 2.5.30+
- bison
- mercurial (for building developer version from hg)

On Mac OS X:

- · XCode 4
- doxygen
- mactex
- · autotools
- mercurial (for building developer version from hg)

If mercurial is used, please enable 'purge' extension by adding to \sim /.hgrc following lines:

```
[extensions]
hgext.purge=
```

2.2.2 For using library

Supported operating systems (32 or 64 bit) and environment requirements:

- Mac OS X 10.6
- · Windows 2000 or later
- Autotools-compatible unix. Package is installed from sources.
- Linux debian-based 32 and 64 bit. DEB package is built against Debian Squeeze 7
- · Linux debian-based ARM. DEB package is built on Ubuntu 14.04
- Linux rpm-based. RPM is built against OpenSUSE 12
- · Java 7 64-bit or 32-bit
- .NET 2.0 (32-bit only)
- · Delphi (32-bit only)

Build requirements:

- Windows: Microsoft Visual C++ 2013 or mingw (currently not supported)
- · UNIX: gcc 4, gmake
- · Mac OS X: XCode 4
- JDK 7

Chapter 3

How to rebuild library

3.1 Building on generic UNIX

Generic version could be built with standard autotools.

./build.sh lib

Built files (library, headers, documentation) are installed to ./dist/local directory. It is a generic developer build. Sometimes you need to specify additional parameters to command line for your machine. Please look to following OS sections.

3.2 Building on debian-based linux systems

Requirement: 64-bit and 32-bit debian system, ubuntu Typical set of packages: gcc, autotools, autoconf, libtool, dpkg-dev, flex, bison, doxygen, texlive, mercurial Full set of packages: apt-get install ruby1.9.1 debhelper vim sudo g++ mercurial git curl make cmake autotools-dev automake autoconf libtool default-jre-headless default-jdk openjdk-6-jdk dpkg-dev lintian texlive texlive-latex-extra texlive-lang-cyrillic dh-autoreconf hardening-wrapper bison flex doxygen lsb-release pkg-config check For ARM cross-compiling install gcc-arm-linux-gnueabihf from your ARM toolchain.

It's required to match library and host architecture: 64-bit library can be built only at 64-bit host, 32-bit library - only at 32-bit host. ARM library is built with armhf cross-compiler gcc-arm-linux-gnueabihf.

To build library and package invoke a script:

\$./build.sh libdeb

For ARM library replace 'libdeb' with 'libdebarm'.

Grab packages from ./ximc/deb and locally installed binaries from ./dist/local.

3.3 Building on redhat-based linux systems

Requirement: 64-bit redhat-based system (Fedora, Red Hat, SUSE) Typical set of packages: gcc, autotools, autoconf, libtool, flex, bison, doxygen, texlive, mercurial Full set of packages: autoconf automake bison doxygen flex gcc gcc-32bit gcc-c++ gcc-c++-32bit java-1_7_0-openjdk java-1_7_0-openjdk-devel libtool lsb-release make mercurial rpm-build rpm-devel rpmlint texlive texlive-fonts-extra texlive-latex

It's possible to build both 32- and 64-bit libraries on 64-bit host system. 64-bit library can't be built on 32-bit system.

To build library and package invoke a script:

\$./build.sh librpm

Grab packages from ./ximc/rpm and locally installed binaries from ./dist/local.

3.4 Buliding on Mac OS X

To build and package a script invoke a script:

\$./build.sh libosx

Built library (classical and framework), examples (classical and .app), documentation are located at ./ximc/macosx, locally installed binaries from ./dist/local.

3.5 Buliding on Windows

Requirements: 64-bit windows (build script builds both architectures), cygwin (must be installed to a default path), mercurial.

Invoke a script:

\$./build.bat

Grab packages from ./deb/win32 and ./deb/win64

To build debug version of the library set environment variable "DEBUG" to "true" before running the build script.

3.6 Source code access

XIMC source codes are given under special request.

Chapter 4

How to use with...

Library usage can be examinated from test application testapp. Non-C languages are supported because library supports stdcall calling convention and so can be used with a variety of languages.

C test project is located at 'examples/testapp' directory, C# test project - at 'examples/testcs', VB.NET - 'examples/testvbnet', Delphi 6 - 'examples/testdelphi', sample bindings for MATLAB - 'examples/testmatlab', for Java - 'examples/testjava', for Python - 'examples/testpython'. Development kit also contains precompiled examples: testapp and testappeasy as 32 and 64-bit applications for Windows and 64-bit application for osx, testcs, testvbnet, testdelphi - 32-bit only, testjava is architecture-independent, testmatlab and testpython are runtime-interpreted.

NOTE: SDK requires Microsoft Visual C++ Redistributable Package (provided with SDK - vcredist_x86 or vcredist_x64)

NOTE: On Linux both the libximc7_x.x.x and libximc7-dev_x.x need to be installed. For install packages, you can use the .deb command: dpkg -i filename.deb, where filename.deb is the name of the package (packages in Debian have the extension .deb). You must run dpkg with superuser privileges (root).

4.1 Usage with C

4.1.1 Visual C++

Testapp can be built using testapp.sln. Library must be compiled with MS Visual C++ too, mingw-library isn't supported. Make sure that Microsoft Visual C++ Redistributable Package is installed.

Open solution examples/testapp/testapp.sln, build and run from the IDE.

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testapp.c file before build (see enumerate_hints variable).

4.1.2 CodeBlocks

Testapp can be built using testcodeblocks.cbp. Library must be compiled with MS Visual C++ too, mingw-library isn't supported. Make sure that Microsoft Visual C++ Redistributable Package is installed. *

Open solution examples/testcodeblocks/testcodeblocks.cbp, build and run from the IDE.

4.1.3 MinGW

MinGW is a port of GCC to win32 platform. It's required to install MinGW package. Currently not supported MinGW-compiled testapp can be built with MS Visual C++ or mingw library.

4.1 Usage with C

Then copy library libximc.dll to current directory and launch testapp.exe.

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testapp.c file before build (see enumerate_hints variable).

4.1.4 C++ Builder

First of all you should create C++ Builder-style import library. Visual C++ library is not compatible with BCB. Invoke:

```
$ implib libximc.lib libximc.def
```

Then compile test application:

```
$ bcc32 -I..\..\ximc\win32 -L..\..\ximc\win32 -DWIN32 -DNDEBUG -D_WINDOWS
testapp.c libximc.lib
```

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testapp.c file before build (see enumerate_hints variable).

4.1.5 XCode

Test app should be built with XCode project testapp.xcodeproj. Library is a Mac OS X framework, and at example application it's bundled inside testapp.app

Then launch application testapp.app and check activity output in Console.app.

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testapp.c file before build (see enumerate_hints variable).

4.1.6 GCC

Make sure that libximc (rpm, deb, freebsd package or tarball) is installed at your system. Installation of package should be performed with a package manager of operating system. On OS X a framework is provided.

Note that user should belong to system group which allows access to a serial port (dip or serial, for example).

Copy file /usr/share/libximc/keyfile.sqlite project directory:

```
$ cp /usr/share/libximc/keyfile.sqlite .
```

Test application can be built with the installed library with the following script:

```
$ make
```

In case of cross-compilation (target architecture differs from the current system architecture) feed -m64 or -m32 flag to compiler. On OS X it's needed to use -arch flag instead to build an universal binary. Please consult a compiler documentation.

Then launch the application as:

```
$ make run
```

Note: make run on OS X copies a library to the current directory. If you want to use library from the custom directory please be sure to specify LD_LIBRARY_PATH or DYLD_LIBRARY_PATH to the directory with the library.

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testapp.c file before build (see enumerate_hints variable).

4.2 .NET 8

4.2 .NET

Wrapper assembly for libximc.dll is wrappers/csharp/ximcnet.dll. It is provided with two different architectures and depends on .NET 2.0.

Test .NET applications for Visual Studio 2013 is located at testcs (for C#) and testvbnet (for VB.NET) respectively. Open solutions and build.

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testapp.cs or testapp.vb file (depending on programming language) before build (see enumerate_hints variable for C# or enum_hints variable for VB).

4.3 Delphi

Wrapper for libximc.dll is a unit wrappers/delphi/ximc.pas

Console test application for is located at testdelphi. Tested with Delphi 6 and only 32-bit version.

Just compile, place DLL near the executable and run program.

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testdelphi.dpr file before build (see enum_hints variable).

4.4 Java

How to run example on Linux. Navigate to ximc-2.x.x./examples/testjava/compiled/ and run:

```
$ cp /usr/share/libximc/keyfile.sqlite .
$ java -cp /usr/share/java/libjximc.jar:testjava.jar ru.ximc.TestJava
```

How to run example on Windows or Mac. Navigate to ximc-2.x.x./examples/testjava/compiled/. Copy contents of ximc-2.x.x/ximc/win64 or ximc-2.x.x/ximc/macosx accordingly to the current directory. Then run:

```
$ java -classpath libjximc.jar -classpath testjava.jar ru.ximc.TestJava
```

How to modify and recompile an example. Navigate to examples/testjava/compiled. Sources are embedded in a testjava.jar. Extract them:

```
$ jar xvf testjava.jar ru META-INF
```

Then rebuild sources:

```
\ javac -classpath /usr/share/java/libjximc.jar -Xlint ru/ximc/TestJava.java
```

or for windows or mac

```
$ javac -classpath libjximc.jar -Xlint ru/ximc/TestJava.java
```

Then build a jar:

```
$ jar cmf META-INF/MANIFEST.MF testjava.jar ru
```

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in TestJava.java file before build (see ENUM_HINTS variable).

4.5 Python 9

4.5 Python

Change current directory to the examples/testpython. For correct usage of the library libximc, the example uses the file wrapper, crossplatform\wrappers\python\pyximc.py with a description of the structures of the library.

Before launch:

On OS X: copy library ximc/macosx/libximc.framework to the current directory.

On Linux: you may need to set LD_LIBRARY_PATH so Python can locate libraries with RPATH. For example, you may need:

```
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: 'pwd'
```

On Windows before the start nothing needs to be done. All necessary communication and dependencies are registered in the example code. Libraries used: bindy.dll libximc.dll xiwrapper.dll. Located in the folder for the respective versions of Windows.

Launch Python 2 or Python 3:

```
python testpython.py
```

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testpython.py file before launch (see enum_hints variable).

4.6 MATLAB

Sample MATLAB program testximc.m is provided at the directory examples/testmatlab. On windows copy ximc.h, libximc.dll, bindy.dll, xiwrapper.dll and contents of ximc/(win32,win64)/wrappers/matlab/ directory to the current directory.

Before launch:

On OS X: copy ximc/macosx/libximc.framework, ximc/macosx/wrappers/ximcm.h, ximc/ximc.h \ast to the directory examples/matlab. Install XCode compatible with Matlab.

On Linux: install libximc*deb and libximc-dev*dev of target architecture. Then copy ximc/macosx/wrappers/ximcm.h to the directory examples/matlab. Install gcc compatible with Matlab.

to the directory examples/matiab. Install gcc compatible with Matiab.

For XCode and gcc version compability check document https://www.mathworks.com/content/dam/mathworks/mat

On Windows before the start nothing needs to be done

Change current directory in the MATLAB to the examples/matlab. Then launch in MATLAB prompt:

SystemRequirements-Release2014a_SupportedCompilers.pdf or similar.

testximc

In case of the 8SMC4-USB-Eth1 Ethernet adapter usage it is necessary to set correct IP address of the Ethernet adapter in testximc.m file before launch (see enum_hints variable).

4.7 Generic logging facility

If you want to turn on file logging, you should run the program that uses libximc library with the "XILOG" environment variable set to desired file name. This file will be opened for writing on the first log event and will be closed when the program which uses libximc terminates. Data which is sent to/received from the controller is logged along with port open and close events.

4.8 Required permissions

libximc generally does not require special permissions to work, it only needs read/write access to USB-serial ports on the system. An exception to this rule is a Windows-only "fix_usbser_sys()" function - it needs elevation and will produce null result if run as a regular user.

4.9 C-profiles

C-profiles are header files distributed with the libximc library. They enable one to set all controller settings for any of the supported stages with a single function call in a C/C++ program. You may see how to use C-profiles in "testcprofile" example directory.

Chapter 5

Working with custom units

In addition to working in basic units(steps, encoder value), the library allows you to work with custom units. For this purpose are used:

- The structure of the conversion units calibration_t
- · The functions of which have doubles for working with custom units, data structures for these functions
- · Coordinate correction table for more accurate positioning

5.1 The structure of the conversion units calibration t

To specify conversion of the basic units in the user and back, calibration_t structure is used. With the help of coefficients A and MicrostepMode, specified in this structure, steps and microsteps which are integers are converted into the user value of the real type and back.

Conversion formulas:

· The conversion to user units.

```
user_value = A*(step + mstep/pow(2,MicrostepMode-1))
```

· Conversion from custom units.

```
step = (int) (user_value/A)
mstep = (user_value/A - step) *pow(2,MicrostepMode-1)
```

5.2 Alternative functions for working with custom units and data structures for them

Structures and functions for working with custom units have the _calb postfix. The user using these functions can perform all actions in their own units without worrying about the computations of the controller. The data format of _calb structures is described in detail. For _calb functions particular descriptions are not used. They perform the same actions as the basic functions do. The difference between them and the basic functions is in the position, velocity, and acceleration of the data types defined as user-defined. If clarification for _calb functions is necessary, they are provided as notes in the description of the basic functions.

5.3 Coordinate correction table for more accurate positioning

Some functions for working with custom units support coordinate transformation using a correction table. To load a table from a file, the load_correction_table() function is used. Its description contains the functions and their data supporting correction.

Note

For data fields which are corrected in case of loading of the table in the description of the field is written - corrected by the table.

File format:

- two columns separated by tabs;
- · column headers are string;
- real type data, point is a separator;
- the first column is the coordinate, the second is the deviation caused by a mechanical error;
- the deviation between coordinates is calculated linearly;
- constant is equal to the deviation at the boundary beyond the range;
- maximum length of the table is 100 lines.

Sample file:

```
X dX
0 0
5.0 0.005
10.0 -0.01
```

Chapter 6

Data Structure Documentation

6.1 accessories_settings_t Struct Reference

Additional accessories information.

Data Fields

· char MagneticBrakeInfo [25]

The manufacturer and the part number of magnetic brake, the maximum string length is 24 characters.

float MBRatedVoltage

Rated voltage for controlling the magnetic brake (B).

float MBRatedCurrent

Rated current for controlling the magnetic brake (A).

float MBTorque

Retention moment (mN m).

unsigned int MBSettings

Magnetic brake settings flags.

• char TemperatureSensorInfo [25]

The manufacturer and the part number of the temperature sensor, the maximum string length: 24 characters.

· float TSMin

The minimum measured temperature (degrees Celsius) Data type: float.

float TSMax

The maximum measured temperature (degrees Celsius) Data type: float.

float TSGrad

The temperature gradient (V/degrees Celsius).

unsigned int TSSettings

Temperature sensor settings flags.

· unsigned int LimitSwitchesSettings

Temperature sensor settings flags.

6.1.1 Detailed Description

Additional accessories information.

See Also

```
set_accessories_settings
get_accessories_settings
get_accessories_settings, set_accessories_settings
```

6.1.2 Field Documentation

6.1.2.1 unsigned int LimitSwitchesSettings

Temperature sensor settings flags.

6.1.2.2 char MagneticBrakeInfo[25]

The manufacturer and the part number of magnetic brake, the maximum string length is 24 characters.

6.1.2.3 float MBRatedCurrent

Rated current for controlling the magnetic brake (A).

Data type: float.

6.1.2.4 float MBRatedVoltage

Rated voltage for controlling the magnetic brake (B).

Data type: float.

6.1.2.5 unsigned int MBSettings

Magnetic brake settings flags.

6.1.2.6 float MBTorque

Retention moment (mN m).

Data type: float.

6.1.2.7 char TemperatureSensorInfo[25]

The manufacturer and the part number of the temperature sensor, the maximum string length: 24 characters.

6.1.2.8 float TSGrad

The temperature gradient (V/degrees Celsius).

Data type: float.

6.1.2.9 float TSMax

The maximum measured temperature (degrees Celsius) Data type: float.

6.1.2.10 float TSMin

The minimum measured temperature (degrees Celsius) Data type: float.

6.1.2.11 unsigned int TSSettings

Temperature sensor settings flags.

6.2 analog_data_t Struct Reference

Analog data.

Data Fields

unsigned int A1Voltage_ADC

"Voltage on pin 1 winding A" raw data from ADC.

unsigned int A2Voltage_ADC

"Voltage on pin 2 winding A" raw data from ADC.

• unsigned int B1Voltage_ADC

"Voltage on pin 1 winding B" raw data from ADC.

unsigned int B2Voltage_ADC

"Voltage on pin 2 winding B" raw data from ADC.

unsigned int SupVoltage_ADC

"Voltage on the top of MOSFET full bridge" raw data from ADC.

unsigned int ACurrent_ADC

"Winding A current" raw data from ADC.

unsigned int BCurrent_ADC

"Winding B current" raw data from ADC.

• unsigned int FullCurrent_ADC

"Full current" raw data from ADC.

unsigned int Temp_ADC

Voltage from temperature sensor, raw data from ADC.

unsigned int Joy_ADC

Joystick raw data from ADC.

unsigned int Pot_ADC

Voltage on analog input, raw data from ADC.

unsigned int L5_ADC

USB supply voltage after the current sense resistor, from ADC.

unsigned int H5_ADC

Power supply USB from ADC.

• int A1Voltage

"Voltage on pin 1 winding A" calibrated data (in tens of mV).

• int A2Voltage

"Voltage on pin 2 winding A" calibrated data (in tens of mV).

· int B1Voltage

"Voltage on pin 1 winding B" calibrated data (in tens of mV).

• int B2Voltage

"Voltage on pin 2 winding B" calibrated data (in tens of mV).

· int SupVoltage

"Voltage on the top of MOSFET full bridge" calibrated data (in tens of mV).

• int ACurrent

"Winding A current" calibrated data (in mA).

· int BCurrent

"Winding B current" calibrated data (in mA).

· int FullCurrent

"Full current" calibrated data (in mA).

• int Temp

Temperature, calibrated data (in tenths of degrees Celcius).

int Joy

Joystick, calibrated data.

int Pot

Analog input, calibrated data.

int L5

USB supply voltage after the current sense resistor (in tens of mV).

• int H5

Power supply USB (in tens of mV).

- · unsigned int deprecated
- int R

Motor winding resistance in mOhms(is only used with stepper motor).

int L

Motor winding pseudo inductance in uHn(is only used with stepper motor).

6.2.1 Detailed Description

Analog data.

This structure contains raw analog data from ADC embedded on board. These data used for device testing and deep recalibration by manufacturer only.

See Also

```
get_analog_data
get_analog_data
```

6.2.2 Field Documentation

6.2.2.1 int A1Voltage

"Voltage on pin 1 winding A" calibrated data (in tens of mV).

6.2.2.2 unsigned int A1Voltage_ADC

"Voltage on pin 1 winding A" raw data from ADC.

6.2.2.3 int A2Voltage

"Voltage on pin 2 winding A" calibrated data (in tens of mV).

6.2.2.4 unsigned int A2Voltage_ADC

"Voltage on pin 2 winding A" raw data from ADC.

6.2.2.5 int ACurrent

"Winding A current" calibrated data (in mA).

6.2.2.6 unsigned int ACurrent_ADC

"Winding A current" raw data from ADC.

6.2.2.7 int B1Voltage

"Voltage on pin 1 winding B" calibrated data (in tens of mV).

6.2.2.8 unsigned int B1Voltage_ADC

"Voltage on pin 1 winding B" raw data from ADC.

6.2.2.9 int B2Voltage

"Voltage on pin 2 winding B" calibrated data (in tens of mV).

6.2.2.10 unsigned int B2Voltage_ADC

"Voltage on pin 2 winding B" raw data from ADC.

6.2.2.11 int BCurrent

"Winding B current" calibrated data (in mA).

6.2.2.12 unsigned int BCurrent_ADC

"Winding B current" raw data from ADC.

6.2.2.13 int FullCurrent

"Full current" calibrated data (in mA).

6.2.2.14 unsigned int FullCurrent_ADC

"Full current" raw data from ADC.

6.2.2.15 int H5

Power supply USB (in tens of mV).

6.2.2.16 int Joy

Joystick, calibrated data.

Range: 0..10000

6.2.2.17 unsigned int Joy_ADC

Joystick raw data from ADC.

6.2.2.18 int L

Motor winding pseudo inductance in uHn(is only used with stepper motor).

6.2.2.19 int L5

USB supply voltage after the current sense resistor (in tens of mV).

6.2.2.20 unsigned int L5_ADC

USB supply voltage after the current sense resistor, from ADC.

6.2.2.21 int Pot

Analog input, calibrated data.

Range: 0..10000

6.2.2.22 int R

Motor winding resistance in mOhms(is only used with stepper motor).

6.2.2.23 int SupVoltage

"Voltage on the top of MOSFET full bridge" calibrated data (in tens of mV).

6.2.2.24 unsigned int SupVoltage_ADC

"Voltage on the top of MOSFET full bridge" raw data from ADC.

6.2.2.25 int Temp

Temperature, calibrated data (in tenths of degrees Celcius).

6.2.2.26 unsigned int Temp_ADC

Voltage from temperature sensor, raw data from ADC.

6.3 brake_settings_t Struct Reference

Brake settings.

Data Fields

· unsigned int t1

Time in ms between turn on motor power and turn off brake.

· unsigned int t2

Time in ms between turn off brake and moving readiness.

• unsigned int t3

Time in ms between motor stop and turn on brake.

• unsigned int t4

Time in ms between turn on brake and turn off motor power.

unsigned int BrakeFlags

Brake settings flags.

6.3.1 Detailed Description

Brake settings.

This structure contains parameters of brake control.

See Also

```
set_brake_settings
get_brake_settings, set_brake_settings
```

6.3.2 Field Documentation

6.3.2.1 unsigned int BrakeFlags

Brake settings flags.

6.3.2.2 unsigned int t1

Time in ms between turn on motor power and turn off brake.

6.3.2.3 unsigned int t2

Time in ms between turn off brake and moving readiness.

All moving commands will execute after this interval.

6.3.2.4 unsigned int t3

Time in ms between motor stop and turn on brake.

6.3.2.5 unsigned int t4

Time in ms between turn on brake and turn off motor power.

6.4 calibration_settings_t Struct Reference

Calibration settings.

Data Fields

• float CSS1_A

Scaling factor for the analogue measurements of the winding A current.

float CSS1_B

Shift factor for the analogue measurements of the winding A current.

· float CSS2_A

Scaling factor for the analogue measurements of the winding B current.

float CSS2_B

Shift factor for the analogue measurements of the winding B current.

float FullCurrent_A

Scaling factor for the analogue measurements of the full current.

float FullCurrent_B

Shift factor for the analogue measurements of the full current.

6.4.1 Detailed Description

Calibration settings.

This structure contains calibration settings.

See Also

```
get_calibration_settings
set_calibration_settings
get_calibration_settings, set_calibration_settings
```

6.4.2 Field Documentation

6.4.2.1 float CSS1_A

Scaling factor for the analogue measurements of the winding A current.

```
6.4.2.2 float CSS1_B
```

Shift factor for the analogue measurements of the winding A current.

```
6.4.2.3 float CSS2_A
```

Scaling factor for the analogue measurements of the winding B current.

```
6.4.2.4 float CSS2_B
```

Shift factor for the analogue measurements of the winding B current.

```
6.4.2.5 float FullCurrent_A
```

Scaling factor for the analogue measurements of the full current.

```
6.4.2.6 float FullCurrent_B
```

Shift factor for the analogue measurements of the full current.

6.5 calibration_t Struct Reference

Calibration companion structure.

Data Fields

double A

Mulitiplier.

• unsigned int MicrostepMode

Microstep mode.

6.5.1 Detailed Description

Calibration companion structure.

6.6 chart_data_t Struct Reference

Additional device state.

Data Fields

· int WindingVoltageA

In the case step motor, the voltage across the winding A (in tens of mV); in the case of a brushless, the voltage on the first coil, in the case of the only DC.

• int WindingVoltageB

In the case step motor, the voltage across the winding B (in tens of mV); in case of a brushless, the voltage on the second winding, and in the case of DC is not used.

· int WindingVoltageC

In the case of a brushless, the voltage on the third winding (in tens of mV), in the case step motor and DC is not used.

· int WindingCurrentA

In the case step motor, the current in the coil A (in mA); brushless if the current in the first coil, and in the case of a single DC.

• int WindingCurrentB

In the case step motor, the current in the coil B (in mA); brushless if the current in the second coil, and in the case of DC is not used.

int WindingCurrentC

In the case of a brushless, the current in the third winding (in mA), in the case step motor and DC is not used.

unsigned int Pot

Analog input value in ten-thousandths.

· unsigned int Joy

The joystick position in the ten-thousandths.

int DutyCycle

Duty cycle of PWM.

6.6.1 Detailed Description

Additional device state.

This structure contains additional values such as winding's voltages, currents and temperature.

See Also

get_chart_data get_chart_data

6.6.2 Field Documentation

6.6.2.1 int DutyCycle

Duty cycle of PWM.

6.6.2.2 unsigned int Joy

The joystick position in the ten-thousandths.

Range: 0..10000

6.6.2.3 unsigned int Pot

Analog input value in ten-thousandths.

Range: 0..10000

6.6.2.4 int WindingCurrentA

In the case step motor, the current in the coil A (in mA); brushless if the current in the first coil, and in the case of a single DC.

6.6.2.5 int WindingCurrentB

In the case step motor, the current in the coil B (in mA); brushless if the current in the second coil, and in the case of DC is not used.

6.6.2.6 int WindingCurrentC

In the case of a brushless, the current in the third winding (in mA), in the case step motor and DC is not used.

6.6.2.7 int WindingVoltageA

In the case step motor, the voltage across the winding A (in tens of mV); in the case of a brushless, the voltage on the first coil, in the case of the only DC.

6.6.2.8 int WindingVoltageB

In the case step motor, the voltage across the winding B (in tens of mV); in case of a brushless, the voltage on the second winding, and in the case of DC is not used.

6.6.2.9 int WindingVoltageC

In the case of a brushless, the voltage on the third winding (in tens of mV), in the case step motor and DC is not used.

6.7 command_add_sync_in_action_calb_t Struct Reference

This command adds one element of the FIFO commands which use user units.

Data Fields

· float Position

Desired position or shift.

unsigned int Time

Time for which you want to achieve the desired position in microseconds.

6.7.1 Detailed Description

This command adds one element of the FIFO commands which use user units.

See Also

command_add_sync_in_action

6.7.2 Field Documentation

6.7.2.1 float Position

Desired position or shift.

6.7.2.2 unsigned int Time

Time for which you want to achieve the desired position in microseconds.

6.8 command_add_sync_in_action_t Struct Reference

This command adds one element of the FIFO commands.

Data Fields

· int Position

Desired position or shift (full steps)

· int uPosition

The fractional part of a position or shift in microsteps.

· unsigned int Time

Time for which you want to achieve the desired position in microseconds.

6.8.1 Detailed Description

This command adds one element of the FIFO commands.

See Also

 $command_add_sync_in_action$

6.8.2 Field Documentation

6.8.2.1 unsigned int Time

Time for which you want to achieve the desired position in microseconds.

6.8.2.2 int uPosition

The fractional part of a position or shift in microsteps.

Is only used with stepper motor. Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.9 command_change_motor_t Struct Reference

Change motor - command for switching output relay.

Data Fields

· unsigned int Motor

Motor number which it should be switch relay on [0..1].

6.9.1 Detailed Description

Change motor - command for switching output relay.

See Also

command_change_motor

6.10 control_settings_calb_t Struct Reference

Control settings which use user units.

Data Fields

• float MaxSpeed [10]

Array of speeds using with joystick and button control.

• unsigned int Timeout [9]

timeout[i] is time in ms, after that max_speed[i+1] is applying.

• unsigned int MaxClickTime

Maximum click time (in ms).

unsigned int Flags

Control flags.

· float DeltaPosition

Shift (delta) of position.

6.10.1 Detailed Description

Control settings which use user units.

This structure contains control parameters. When choosing CTL_MODE=1 switches motor control with the joystick. In this mode, the joystick to the maximum engine tends Move at MaxSpeed [i], where i=0 if the previous use This mode is not selected another i. Buttons switch the room rate i. When CTL_MODE=2 is switched on motor control using the Left / right. When you click on the button motor starts to move in the appropriate direction at a speed MaxSpeed [0], at the end of time Timeout[i] motor move at a speed MaxSpeed [i+1]. at Transition from MaxSpeed [i] on MaxSpeed [i+1] to acceleration, as usual. The figure above shows the sensitivity of the joystick feature on its position.

See Also

```
set_control_settings_calb
get_control_settings_calb
get_control_settings, set_control_settings
```

6.10.2 Field Documentation

6.10.2.1 unsigned int Flags

Control flags.

6.10.2.2 unsigned int MaxClickTime

Maximum click time (in ms).

Prior to the expiration of this time the first speed isn't enabled.

6.10.2.3 float MaxSpeed[10]

Array of speeds using with joystick and button control.

6.10.2.4 unsigned int Timeout[9]

timeout[i] is time in ms, after that max_speed[i+1] is applying.

It is using with buttons control only.

6.11 control_settings_t Struct Reference

Control settings.

Data Fields

unsigned int MaxSpeed [10]

Array of speeds (full step) using with joystick and button control.

• unsigned int uMaxSpeed [10]

Array of speeds (in microsteps) using with joystick and button control.

• unsigned int Timeout [9]

timeout[i] is time in ms, after that max_speed[i+1] is applying.

• unsigned int MaxClickTime

Maximum click time (in ms).

unsigned int Flags

Control flags.

• int DeltaPosition

Shift (delta) of position (full step)

· int uDeltaPosition

Fractional part of the shift in micro steps.

6.11.1 Detailed Description

Control settings.

This structure contains control parameters. When choosing CTL_MODE=1 switches motor control with the joystick. In this mode, the joystick to the maximum engine tends Move at MaxSpeed [i], where i=0 if the previous use This mode is not selected another i. Buttons switch the room rate i. When CTL_MODE=2 is switched on motor control using the Left / right. When you click on the button motor starts to move in the appropriate direction at a speed MaxSpeed [0], at the end of time Timeout[i] motor move at a speed MaxSpeed [i+1]. at Transition from MaxSpeed

[i] on MaxSpeed [i+1] to acceleration, as usual. The figure above shows the sensitivity of the joystick feature on its position.

See Also

set_control_settings get_control_settings get_control_settings, set_control_settings

6.11.2 Field Documentation

6.11.2.1 unsigned int Flags

Control flags.

6.11.2.2 unsigned int MaxClickTime

Maximum click time (in ms).

Prior to the expiration of this time the first speed isn't enabled.

6.11.2.3 unsigned int MaxSpeed[10]

Array of speeds (full step) using with joystick and button control.

Range: 0..100000.

6.11.2.4 unsigned int Timeout[9]

timeout[i] is time in ms, after that max_speed[i+1] is applying.

It is using with buttons control only.

6.11.2.5 int uDeltaPosition

Fractional part of the shift in micro steps.

Is only used with stepper motor. Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.11.2.6 unsigned int uMaxSpeed[10]

Array of speeds (in microsteps) using with joystick and button control.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.12 controller_name_t Struct Reference

Controller user name and flags of setting.

Data Fields

• char ControllerName [17]

User conroller name.

unsigned int CtrlFlags

Flags of internal controller settings.

6.12.1 Detailed Description

Controller user name and flags of setting.

See Also

get_controller_name, set_controller_name

6.12.2 Field Documentation

6.12.2.1 char ControllerName[17]

User conroller name.

Can be set by user for his/her convinience. Max string length: 16 chars.

6.12.2.2 unsigned int CtrlFlags

Flags of internal controller settings.

6.13 ctp_settings_t Struct Reference

Control position settings(is only used with stepper motor).

Data Fields

unsigned int CTPMinError

Minimum contrast steps from step motor encoder position, wich set STATE_CTP_ERROR flag.

· unsigned int CTPFlags

Position control flags.

6.13.1 Detailed Description

Control position settings(is only used with stepper motor).

When controlling the step motor with encoder (CTP_BASE 0) it is possible to detect the loss of steps. The controller knows the number of steps per revolution (GENG :: StepsPerRev) and the encoder resolution (GFBS :: IPT). When the control (flag CTP_ENABLED), the controller stores the current position in the footsteps of SM and the current position of the encoder. Further, at each step of the position encoder is converted into steps and if the difference is greater CTPMinError, a flag STATE_CTP_ERROR and set ALARM state. When controlling the step motor with speed sensor (CTP_BASE 1), the position is controlled by him. The active edge of input clock controller stores the current value of steps. Further, at each turn checks how many steps shifted. When a mismatch CTPMinError a flag STATE_CTP_ERROR and set ALARM state.

See Also

```
set_ctp_settings
get_ctp_settings, set_ctp_settings
```

6.13.2 Field Documentation

6.13.2.1 unsigned int CTPFlags

Position control flags.

6.13.2.2 unsigned int CTPMinError

 $\label{thm:minimum} \mbox{Minimum contrast steps from step motor encoder position, wich set STATE_CTP_ERROR flag. \\$

Measured in steps step motor.

6.14 debug_read_t Struct Reference

Debug data.

Data Fields

uint8_t DebugData [128]
 Arbitrary debug data.

6.14.1 Detailed Description

Debug data.

These data are used for device debugging by manufacturer only.

See Also

get_debug_read

6.14.2 Field Documentation

6.14.2.1 uint8_t DebugData[128]

Arbitrary debug data.

6.15 debug_write_t Struct Reference

Debug data.

Data Fields

uint8_t DebugData [128]
 Arbitrary debug data.

6.15.1 Detailed Description

Debug data.

These data are used for device debugging by manufacturer only.

See Also

set_debug_write

6.15.2 Field Documentation

6.15.2.1 uint8_t DebugData[128]

Arbitrary debug data.

6.16 device_information_t Struct Reference

Read command controller information.

Data Fields

• char Manufacturer [5]

Manufacturer.

• char ManufacturerId [3]

Manufacturer id.

char ProductDescription [9]

Product description.

· unsigned int Major

The major number of the hardware version.

· unsigned int Minor

Minor number of the hardware version.

· unsigned int Release

Number of edits this release of hardware.

6.16.1 Detailed Description

Read command controller information.

The controller responds to this command in any state. Manufacturer field for all XI** devices should contain the string "XIMC" (validation is performed on it) The remaining fields contain information about the device.

See Also

get_device_information
get_device_information_impl

6.16.2 Field Documentation

6.16.2.1 unsigned int Major

The major number of the hardware version.

6.16.2.2 unsigned int Minor

Minor number of the hardware version.

6.16.2.3 unsigned int Release

Number of edits this release of hardware.

6.17 device_network_information_t Struct Reference

Device network information structure.

Data Fields

• uint32_t ipv4

IPv4 address, passed in network byte order (big-endian byte order)

• char nodename [16]

Name of the Bindy node which hosts the device.

uint32_t axis_state

Flags representing device state.

char locker_username [16]

Name of the user who locked the device (if any)

char locker_nodename [16]

Bindy node name, which was used to lock the device (if any)

• time_t locked_time

Time the lock was acquired at (UTC, microseconds since the epoch)

6.17.1 Detailed Description

Device network information structure.

6.18 edges_settings_calb_t Struct Reference

Edges settings which use user units.

Data Fields

• unsigned int BorderFlags

Border flags.

unsigned int EnderFlags

Limit switches flags.

· float LeftBorder

Left border position, used if BORDER_IS_ENCODER flag is set.

float RightBorder

Right border position, used if BORDER_IS_ENCODER flag is set.

6.18.1 Detailed Description

Edges settings which use user units.

This structure contains border and limit switches settings. Please load new engine settings when you change positioner etc. Please note that wrong engine settings lead to device malfunction, can lead to irreversible damage of board.

See Also

```
set_edges_settings_calb
get_edges_settings_calb
get_edges_settings, set_edges_settings
```

6.18.2 Field Documentation

6.18.2.1 unsigned int BorderFlags

Border flags.

6.18.2.2 unsigned int EnderFlags

Limit switches flags.

6.18.2.3 float LeftBorder

Left border position, used if BORDER_IS_ENCODER flag is set.

Corrected by the table.

6.18.2.4 float RightBorder

Right border position, used if BORDER_IS_ENCODER flag is set.

Corrected by the table.

6.19 edges_settings_t Struct Reference

Edges settings.

Data Fields

· unsigned int BorderFlags

Border flags.

unsigned int EnderFlags

Limit switches flags.

· int LeftBorder

Left border position, used if BORDER_IS_ENCODER flag is set.

· int uLeftBorder

Left border position in microsteps(used with stepper motor only).

· int RightBorder

Right border position, used if BORDER_IS_ENCODER flag is set.

· int uRightBorder

Right border position in microsteps.

6.19.1 Detailed Description

Edges settings.

This structure contains border and limit switches settings. Please load new engine settings when you change positioner etc. Please note that wrong engine settings lead to device malfunction, can lead to irreversible damage of board.

See Also

set_edges_settings
get_edges_settings, set_edges_settings

6.19.2 Field Documentation

6.19.2.1 unsigned int BorderFlags

Border flags.

6.19.2.2 unsigned int EnderFlags

Limit switches flags.

6.19.2.3 int LeftBorder

Left border position, used if BORDER_IS_ENCODER flag is set.

6.19.2.4 int RightBorder

Right border position, used if BORDER_IS_ENCODER flag is set.

6.19.2.5 int uLeftBorder

Left border position in microsteps(used with stepper motor only).

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.19.2.6 int uRightBorder

Right border position in microsteps.

Used with stepper motor only. Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.20 emf_settings_t Struct Reference

EMF settings.

Data Fields

float L

The inductance of the windings of the motor.

float R

The resistance of the windings of the motor.

· float Km

Electromechanical ratio of the motor.

· unsigned int BackEMFFlags

Flags of auto-detection of characteristics of windings of the engine.

6.20.1 Detailed Description

EMF settings.

This structure contains the data for Electromechanical characteristics(EMF) of the motor. They determine the inductance, resistance and Electromechanical coefficient of the motor. This data is stored in the flash memory of the controller. Please download the new settings when you change the motor. Remember that improper settings of the EMF may damage the equipment.

See Also

```
set_emf_settings
get_emf_settings, set_emf_settings
```

6.20.2 Field Documentation

6.20.2.1 unsigned int BackEMFFlags

Flags of auto-detection of characteristics of windings of the engine.

6.20.2.2 float Km

Electromechanical ratio of the motor.

6.20.2.3 float L

The inductance of the windings of the motor.

6.20.2.4 float R

The resistance of the windings of the motor.

6.21 encoder information t Struct Reference

Encoder information.

Data Fields

• char Manufacturer [17]

Manufacturer.

char PartNumber [25]

Series and PartNumber.

6.21.1 Detailed Description

Encoder information.

See Also

set_encoder_information
get_encoder_information, set_encoder_information

6.21.2 Field Documentation

6.21.2.1 char Manufacturer[17]

Manufacturer.

Max string length: 16 chars.

6.21.2.2 char PartNumber[25]

Series and PartNumber.

Max string length: 24 chars.

6.22 encoder_settings_t Struct Reference

Encoder settings.

Data Fields

float MaxOperatingFrequency

Max operation frequency (kHz).

• float SupplyVoltageMin

Minimum supply voltage (V).

float SupplyVoltageMax

Maximum supply voltage (V).

• float MaxCurrentConsumption

Max current consumption (mA).

unsigned int PPR

The number of counts per revolution.

• unsigned int EncoderSettings

Encoder settings flags.

6.22.1 Detailed Description

Encoder settings.

See Also

set_encoder_settings
get_encoder_settings, set_encoder_settings

6.22.2 Field Documentation

6.22.2.1 unsigned int EncoderSettings

Encoder settings flags.

6.22.2.2 float MaxCurrentConsumption

Max current consumption (mA).

Data type: float.

6.22.2.3 float MaxOperatingFrequency

Max operation frequency (kHz).

Data type: float.

6.22.2.4 float SupplyVoltageMax

Maximum supply voltage (V).

Data type: float.

6.22.2.5 float SupplyVoltageMin

Minimum supply voltage (V).

Data type: float.

6.23 engine_advansed_setup_t Struct Reference

EAS settings.

Data Fields

unsigned int stepcloseloop_Kw

Mixing ratio of the actual and set speed, range [0, 100], default value 50.

• unsigned int stepcloseloop_Kp_low

Position feedback in the low-speed zone, range [0, 65535], default value 1000.

unsigned int stepcloseloop_Kp_high

Position feedback in the high-speed zone, range [0, 65535], default value 33.

6.23.1 Detailed Description

EAS settings.

This structure is intended for setting parameters of algorithms that cannot be attributed to standard Kp, Ki, Kd, and L, R, Km.

See Also

```
set_engine_advansed_setup
get_engine_advansed_setup
get_engine_advansed_setup, set_engine_advansed_setup
```

6.23.2 Field Documentation

6.23.2.1 unsigned int stepcloseloop_Kp_high

Position feedback in the high-speed zone, range [0, 65535], default value 33.

6.23.2.2 unsigned int stepcloseloop_Kp_low

Position feedback in the low-speed zone, range [0, 65535], default value 1000.

6.23.2.3 unsigned int stepcloseloop_Kw

Mixing ratio of the actual and set speed, range [0, 100], default value 50.

6.24 engine_settings_calb_t Struct Reference

Movement limitations and settings, related to the motor, which use user units.

Data Fields

unsigned int NomVoltage

Rated voltage in tens of mV.

• unsigned int NomCurrent

Rated current (in mA).

float NomSpeed

Nominal speed.

unsigned int EngineFlags

Flags of engine settings.

· float Antiplay

Number of pulses or steps for backlash (play) compensation procedure.

• unsigned int MicrostepMode

Flags of microstep mode.

· unsigned int StepsPerRev

Number of full steps per revolution(Used with stepper motor only).

6.24.1 Detailed Description

Movement limitations and settings, related to the motor, which use user units.

This structure contains useful motor settings. These settings specify motor shaft movement algorithm, list of limitations and rated characteristics. All boards are supplied with standard set of engine setting on controller's flash memory. Please load new engine settings when you change motor, encoder, positioner etc. Please note that wrong engine settings lead to device malfunction, can lead to irreversible damage of board.

See Also

set_engine_settings_calb get_engine_settings_calb get_engine_settings, set_engine_settings

6.24.2 Field Documentation

6.24.2.1 float Antiplay

Number of pulses or steps for backlash (play) compensation procedure.

Used if ENGINE_ANTIPLAY flag is set.

6.24.2.2 unsigned int EngineFlags

Flags of engine settings.

6.24.2.3 unsigned int MicrostepMode

Flags of microstep mode.

6.24.2.4 unsigned int NomCurrent

Rated current (in mA).

Controller will keep current consumed by motor below this value if ENGINE_LIMIT_CURR flag is set. Range: 15..8000

6.24.2.5 float NomSpeed

Nominal speed.

Controller will keep motor speed below this value if ENGINE_LIMIT_RPM flag is set.

6.24.2.6 unsigned int NomVoltage

Rated voltage in tens of mV.

Controller will keep the voltage drop on motor below this value if ENGINE_LIMIT_VOLT flag is set (used with DC only).

6.24.2.7 unsigned int StepsPerRev

Number of full steps per revolution(Used with stepper motor only).

Range: 1..65535.

6.25 engine_settings_t Struct Reference

Movement limitations and settings, related to the motor.

Data Fields

· unsigned int NomVoltage

Rated voltage in tens of mV.

• unsigned int NomCurrent

Rated current (in mA).

· unsigned int NomSpeed

Nominal (maximum) speed (in whole steps/s or rpm for DC and stepper motor as a master encoder).

· unsigned int uNomSpeed

The fractional part of a nominal speed in microsteps (is only used with stepper motor).

• unsigned int EngineFlags

Flags of engine settings.

· int Antiplay

Number of pulses or steps for backlash (play) compensation procedure.

unsigned int MicrostepMode

Flags of microstep mode.

· unsigned int StepsPerRev

Number of full steps per revolution(Used with stepper motor only).

6.25.1 Detailed Description

Movement limitations and settings, related to the motor.

This structure contains useful motor settings. These settings specify motor shaft movement algorithm, list of limitations and rated characteristics. All boards are supplied with standard set of engine setting on controller's flash memory. Please load new engine settings when you change motor, encoder, positioner etc. Please note that wrong engine settings lead to device malfunction, can lead to irreversible damage of board.

See Also

```
set_engine_settings
get_engine_settings
get_engine_settings, set_engine_settings
```

6.25.2 Field Documentation

6.25.2.1 int Antiplay

Number of pulses or steps for backlash (play) compensation procedure.

Used if ENGINE_ANTIPLAY flag is set.

6.25.2.2 unsigned int EngineFlags

Flags of engine settings.

6.25.2.3 unsigned int MicrostepMode

Flags of microstep mode.

6.25.2.4 unsigned int NomCurrent

Rated current (in mA).

Controller will keep current consumed by motor below this value if ENGINE_LIMIT_CURR flag is set. Range: 15..8000

6.25.2.5 unsigned int NomSpeed

Nominal (maximum) speed (in whole steps/s or rpm for DC and stepper motor as a master encoder).

Controller will keep motor shaft RPM below this value if ENGINE_LIMIT_RPM flag is set. Range: 1..100000.

6.25.2.6 unsigned int NomVoltage

Rated voltage in tens of mV.

Controller will keep the voltage drop on motor below this value if ENGINE_LIMIT_VOLT flag is set (used with DC only).

6.25.2.7 unsigned int StepsPerRev

Number of full steps per revolution(Used with stepper motor only).

Range: 1..65535.

6.25.2.8 unsigned int uNomSpeed

The fractional part of a nominal speed in microsteps (is only used with stepper motor).

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.26 entype_settings_t Struct Reference

Engine type and driver type settings.

Data Fields

• unsigned int EngineType

Flags of engine type.

• unsigned int DriverType

Flags of driver type.

6.26.1 Detailed Description

Engine type and driver type settings.

Parameters

id	an identifier of device
EngineType	engine type
DriverType	driver type

See Also

get_entype_settings, set_entype_settings

6.26.2 Field Documentation

6.26.2.1 unsigned int DriverType

Flags of driver type.

6.26.2.2 unsigned int EngineType

Flags of engine type.

6.27 extended_settings_t Struct Reference

EST settings.

Data Fields

· unsigned int Param1

6.27.1 Detailed Description

EST settings.

This structure EST.

See Also

set_extended_settings
get_extended_settings, set_extended_settings

6.28 extio_settings_t Struct Reference

EXTIO settings.

Data Fields

• unsigned int EXTIOSetupFlags

External IO setup flags.

unsigned int EXTIOModeFlags

External IO mode flags.

6.28.1 Detailed Description

EXTIO settings.

This structure contains all EXTIO settings. By default input event are signalled through rising front and output states are signalled by high logic state.

See Also

get_extio_settings
set_extio_settings
get_extio_settings, set_extio_settings

6.28.2 Field Documentation

6.28.2.1 unsigned int EXTIOModeFlags

External IO mode flags.

6.28.2.2 unsigned int EXTIOSetupFlags

External IO setup flags.

6.29 feedback_settings_t Struct Reference

Feedback settings.

Data Fields

· unsigned int IPS

The number of encoder counts per shaft revolution.

• unsigned int FeedbackType

Feedback type.

· unsigned int FeedbackFlags

Describes feedback flags.

• unsigned int CountsPerTurn

The number of encoder counts per shaft revolution.

6.29.1 Detailed Description

Feedback settings.

This structure contains feedback settings.

See Also

get_feedback_settings, set_feedback_settings

6.29.2 Field Documentation

6.29.2.1 unsigned int CountsPerTurn

The number of encoder counts per shaft revolution.

Range: 1..4294967295. To use the CountsPerTurn field, write 0 in the IPS field, otherwise the value from the IPS field will be used.

6.29.2.2 unsigned int FeedbackFlags

Describes feedback flags.

6.29.2.3 unsigned int FeedbackType

Feedback type.

6.29.2.4 unsigned int IPS

The number of encoder counts per shaft revolution.

Range: 1..655535. The field is obsolete, it is recommended to write 0 to IPS and use the extended CountsPerTurn field. You may need to update the controller firmware to the latest version.

6.30 gear_information_t Struct Reference

Gear information.

Data Fields

• char Manufacturer [17]

Manufacturer.

• char PartNumber [25]

Series and PartNumber.

6.30.1 Detailed Description

Gear information.

See Also

```
set_gear_information
get_gear_information, set_gear_information
```

6.30.2 Field Documentation

6.30.2.1 char Manufacturer[17]

Manufacturer.

Max string length: 16 chars.

6.30.2.2 char PartNumber[25]

Series and PartNumber.

Max string length: 24 chars.

6.31 gear_settings_t Struct Reference

Gear setings.

Data Fields

float ReductionIn

Input reduction coefficient.

float ReductionOut

Output reduction coefficient.

• float RatedInputTorque

Max continuous torque (N m).

· float RatedInputSpeed

Max speed on the input shaft (rpm).

• float MaxOutputBacklash

Output backlash of the reduction gear(degree).

· float InputInertia

Equivalent input gear inertia (g cm2).

· float Efficiency

Reduction gear efficiency (%).

6.31.1 Detailed Description

Gear setings.

```
See Also
```

```
set_gear_settings
get_gear_settings, set_gear_settings
```

6.31.2 Field Documentation

6.31.2.1 float Efficiency

Reduction gear efficiency (%).

Data type: float.

6.31.2.2 float InputInertia

Equivalent input gear inertia (g cm2).

Data type: float.

6.31.2.3 float MaxOutputBacklash

Output backlash of the reduction gear(degree).

Data type: float.

6.31.2.4 float RatedInputSpeed

Max speed on the input shaft (rpm).

Data type: float.

6.31.2.5 float RatedInputTorque

Max continuous torque (N m).

Data type: float.

6.31.2.6 float ReductionIn

Input reduction coefficient.

(Output = (ReductionOut / ReductionIn) * Input) Data type: float.

6.31.2.7 float ReductionOut

Output reduction coefficient.

(Output = (ReductionOut / ReductionIn) * Input) Data type: float.

6.32 get_position_calb_t Struct Reference

Position information.

Data Fields

float Position

The position in the engine.

• long_t EncPosition

Encoder position.

6.32.1 Detailed Description

Position information.

Useful structure that contains position value in user units for stepper motor and encoder steps of all engines.

See Also

get_position

6.32.2 Field Documentation

6.32.2.1 long_t EncPosition

Encoder position.

6.32.2.2 float Position

The position in the engine.

Corrected by the table.

6.33 get_position_t Struct Reference

Position information.

Data Fields

· int Position

The position of the whole steps in the engine.

· int uPosition

Microstep position is only used with stepper motors.

• long_t EncPosition

Encoder position.

6.33.1 Detailed Description

Position information.

Useful structure that contains position value in steps and micro for stepper motor and encoder steps of all engines.

See Also

get_position

6.33.2 Field Documentation

6.33.2.1 long_t EncPosition

Encoder position.

6.33.2.2 int uPosition

Microstep position is only used with stepper motors.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.34 globally_unique_identifier_t Struct Reference

Globally unique identifier.

Data Fields

• unsigned int UniqueID0

Unique ID 0.

unsigned int UniqueID1

Unique ID 1.

• unsigned int UniqueID2

Unique ID 2.

• unsigned int UniqueID3

Unique ID 3.

6.34.1 Detailed Description

Globally unique identifier.

See Also

get_globally_unique_identifier

6.34.2 Field Documentation

6.34.2.1 unsigned int UniqueID0

Unique ID 0.

6.34.2.2 unsigned int UniqueID1

Unique ID 1.

6.34.2.3 unsigned int UniqueID2

Unique ID 2.

6.34.2.4 unsigned int UniqueID3

Unique ID 3.

6.35 hallsensor_information_t Struct Reference

Hall sensor information.

Data Fields

• char Manufacturer [17]

Manufacturer.

• char PartNumber [25]

Series and PartNumber.

6.35.1 Detailed Description

Hall sensor information.

See Also

set_hallsensor_information get_hallsensor_information get_hallsensor_information, set_hallsensor_information

6.35.2 Field Documentation

6.35.2.1 char Manufacturer[17]

Manufacturer.

Max string length: 16 chars.

6.35.2.2 char PartNumber[25]

Series and PartNumber.

Max string length: 24 chars.

6.36 hallsensor_settings_t Struct Reference

Hall sensor settings.

Data Fields

float MaxOperatingFrequency

Max operation frequency (kHz).

• float SupplyVoltageMin

Minimum supply voltage (V).

• float SupplyVoltageMax

Maximum supply voltage (V).

• float MaxCurrentConsumption

Max current consumption (mA).

unsigned int PPR

The number of counts per revolution.

6.36.1 Detailed Description

Hall sensor settings.

See Also

```
set_hallsensor_settings
get_hallsensor_settings
get_hallsensor_settings, set_hallsensor_settings
```

6.36.2 Field Documentation

6.36.2.1 float MaxCurrentConsumption

Max current consumption (mA).

Data type: float.

6.36.2.2 float MaxOperatingFrequency

Max operation frequency (kHz).

Data type: float.

6.36.2.3 float SupplyVoltageMax

Maximum supply voltage (V).

Data type: float.

6.36.2.4 float SupplyVoltageMin

Minimum supply voltage (V).

Data type: float.

6.37 home_settings_calb_t Struct Reference

Position calibration settings which use user units.

Data Fields

· float FastHome

Speed used for first motion.

float SlowHome

Speed used for second motion.

· float HomeDelta

Distance from break point.

· unsigned int HomeFlags

Home settings flags.

6.37.1 Detailed Description

Position calibration settings which use user units.

This structure contains settings used in position calibrating. It specify behaviour of calibrating position.

See Also

get_home_settings_calb
set_home_settings_calb
command_home
get_home_settings, set_home_settings

6.37.2 Field Documentation

6.37.2.1 float FastHome

Speed used for first motion.

6.37.2.2 float HomeDelta

Distance from break point.

6.37.2.3 unsigned int HomeFlags

Home settings flags.

6.37.2.4 float SlowHome

Speed used for second motion.

6.38 home_settings_t Struct Reference

Position calibration settings.

Data Fields

· unsigned int FastHome

Speed used for first motion (full steps).

· unsigned int uFastHome

Part of the speed for first motion, microsteps.

· unsigned int SlowHome

Speed used for second motion (full steps).

• unsigned int uSlowHome

Part of the speed for second motion, microsteps.

· int HomeDelta

Distance from break point (full steps).

· int uHomeDelta

Part of the delta distance, microsteps.

unsigned int HomeFlags

Home settings flags.

6.38.1 Detailed Description

Position calibration settings.

This structure contains settings used in position calibrating. It specify behaviour of calibrating position.

See Also

```
get_home_settings
set_home_settings
command_home
get_home_settings, set_home_settings
```

6.38.2 Field Documentation

6.38.2.1 unsigned int FastHome

Speed used for first motion (full steps).

Range: 0..100000.

6.38.2.2 int HomeDelta

Distance from break point (full steps).

6.38.2.3 unsigned int HomeFlags

Home settings flags.

6.38.2.4 unsigned int SlowHome

Speed used for second motion (full steps).

Range: 0..100000.

6.38.2.5 unsigned int uFastHome

Part of the speed for first motion, microsteps.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.38.2.6 int uHomeDelta

Part of the delta distance, microsteps.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.38.2.7 unsigned int uSlowHome

Part of the speed for second motion, microsteps.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.39 init_random_t Struct Reference

Random key.

Data Fields

uint8_t key [16]
 Random key.

6.39.1 Detailed Description

Random key.

Structure that contains random key used in encryption of WKEY and SSER command contents.

See Also

get_init_random

6.39.2 Field Documentation

6.39.2.1 uint8_t key[16]

Random key.

6.40 joystick_settings_t Struct Reference

Joystick settings.

Data Fields

unsigned int JoyLowEnd
 Joystick lower end position.

· unsigned int JoyCenter

Joystick center position.

· unsigned int JoyHighEnd

Joystick higher end position.

· unsigned int ExpFactor

Exponential nonlinearity factor.

· unsigned int DeadZone

Joystick dead zone.

· unsigned int JoyFlags

Joystick flags.

6.40.1 Detailed Description

Joystick settings.

This structure contains joystick parameters. If joystick position is outside DeadZone limits from the central position a movement with speed, defined by the joystick DeadZone edge to 100% deviation, begins. Joystick positions inside DeadZone limits correspond to zero speed (soft stop of motion) and positions beyond Low and High limits correspond MaxSpeed [i] or -MaxSpeed [i] (see command SCTL), where i = 0 by default and can be changed with left/right buttons (see command SCTL). If next speed in list is zero (both integer and microstep parts), the button press is ignored. First speed in list shouldn't be zero. The relationship between the deviation and the rate is exponential, allowing no switching speed combine high mobility and accuracy.

See Also

set_joystick_settings
get_joystick_settings
get_joystick_settings, set_joystick_settings

6.40.2 Field Documentation

6.40.2.1 unsigned int DeadZone

Joystick dead zone.

6.40.2.2 unsigned int ExpFactor

Exponential nonlinearity factor.

6.40.2.3 unsigned int JoyCenter

Joystick center position.

Range: 0..10000.

6.40.2.4 unsigned int JoyFlags

Joystick flags.

6.40.2.5 unsigned int JoyHighEnd

Joystick higher end position.

Range: 0..10000.

6.40.2.6 unsigned int JoyLowEnd

Joystick lower end position.

Range: 0..10000.

6.41 measurements t Struct Reference

The buffer holds no more than 25 points.

Data Fields

int Speed [25]

Current speed in microsteps per second (whole steps are recalculated taking into account the current step division mode) or encoder counts per second.

int Error [25]

Current error in microsteps per second (whole steps are recalculated taking into account the current step division mode) or encoder counts per second.

· unsigned int Length

Length of actual data in buffer.

6.41.1 Detailed Description

The buffer holds no more than 25 points.

The exact length of the received buffer is reflected in the Length field.

See Also

measurements get_measurements

6.41.2 Field Documentation

6.41.2.1 int Error[25]

Current error in microsteps per second (whole steps are recalculated taking into account the current step division mode) or encoder counts per second.

6.41.2.2 unsigned int Length

Length of actual data in buffer.

6.41.2.3 int Speed[25]

Current speed in microsteps per second (whole steps are recalculated taking into account the current step division mode) or encoder counts per second.

6.42 motor_information_t Struct Reference

motor information.

Data Fields

• char Manufacturer [17]

Manufacturer.

• char PartNumber [25]

Series and PartNumber.

6.42.1 Detailed Description

motor information.

See Also

set_motor_information
get_motor_information
get_motor_information, set_motor_information

6.42.2 Field Documentation

6.42.2.1 char Manufacturer[17]

Manufacturer.

Max string length: 16 chars.

6.42.2.2 char PartNumber[25]

Series and PartNumber.

Max string length: 24 chars.

6.43 motor_settings_t Struct Reference

Physical characteristics and limitations of the motor.

Data Fields

• unsigned int MotorType

Motor Type flags.

· unsigned int ReservedField

Reserved.

• unsigned int Poles

Number of pole pairs for DC or BLDC motors or number of steps per rotation for stepper motor.

· unsigned int Phases

Number of phases for BLDC motors.

float NominalVoltage

Nominal voltage on winding (B).

float NominalCurrent

Maximum direct current in winding for DC and BLDC engines, nominal current in windings for stepper motor (A).

float NominalSpeed

Not used.

float NominalTorque

Nominal torque(mN m).

float NominalPower

Nominal power(W).

· float WindingResistance

Resistance of windings for DC engine, each of two windings for stepper motor or each of there windings for BLDC engine(Ohm).

· float WindingInductance

Inductance of windings for DC engine, each of two windings for stepper motor or each of there windings for BLDC engine(mH).

· float RotorInertia

Rotor inertia(g cm2).

float StallTorque

Torque hold position for a stepper motor or torque at a motionless rotor for other types of engines (mN m).

float DetentTorque

Holding torque position with un-powered coils (mN m).

· float TorqueConstant

Torque constant, which determines the aspect ratio of maximum moment of force from the rotor current flowing in the $coil\ (mN\ m\ /\ A)$.

float SpeedConstant

Velocity constant, which determines the value or amplitude of the induced voltage on the motion of DC or BLDC motor (rpm / V) or stepper motor (steps/s / V).

float SpeedTorqueGradient

Speed torque gradient (rpm / mN m).

· float MechanicalTimeConstant

Mechanical time constant (ms).

float MaxSpeed

The maximum speed for stepper motors (steps/s) or DC and BLDC motors (rmp).

float MaxCurrent

The maximum current in the winding (A).

float MaxCurrentTime

Safe duration of overcurrent in the winding (ms).

float NoLoadCurrent

The current consumption in idle mode (A).

float NoLoadSpeed

Idle speed (rpm).

6.43.1 Detailed Description

Physical characteristics and limitations of the motor.

See Also

```
set_motor_settings
get_motor_settings, set_motor_settings
```

6.43.2 Field Documentation

6.43.2.1 float DetentTorque

Holding torque position with un-powered coils (mN m).

Data type: float.

6.43.2.2 float MaxCurrent

The maximum current in the winding (A).

Data type: float.

6.43.2.3 float MaxCurrentTime

Safe duration of overcurrent in the winding (ms).

Data type: float.

6.43.2.4 float MaxSpeed

The maximum speed for stepper motors (steps/s) or DC and BLDC motors (rmp).

Data type: float.

6.43.2.5 float MechanicalTimeConstant

Mechanical time constant (ms).

Data type: float.

6.43.2.6 unsigned int MotorType

Motor Type flags.

6.43.2.7 float NoLoadCurrent

The current consumption in idle mode (A).

Used for DC and BLDC motors. Data type: float.

6.43.2.8 float NoLoadSpeed

Idle speed (rpm).

Used for DC and BLDC motors. Data type: float.

6.43.2.9 float NominalCurrent

Maximum direct current in winding for DC and BLDC engines, nominal current in windings for stepper motor (A).

Data type: float.

6.43.2.10 float NominalPower

Nominal power(W).

Used for DC and BLDC engine. Data type: float.

6.43.2.11 float NominalSpeed

Not used.

Nominal speed(rpm). Used for DC and BLDC engine. Data type: float.

6.43.2.12 float NominalTorque

Nominal torque(mN m).

Used for DC and BLDC engine. Data type: float.

6.43.2.13 float NominalVoltage

Nominal voltage on winding (B).

Data type: float

6.43.2.14 unsigned int Phases

Number of phases for BLDC motors.

6.43.2.15 unsigned int Poles

Number of pole pairs for DC or BLDC motors or number of steps per rotation for stepper motor.

6.43.2.16 float RotorInertia

Rotor inertia(g cm2).

Data type: float.

6.43.2.17 float SpeedConstant

Velocity constant, which determines the value or amplitude of the induced voltage on the motion of DC or BLDC motor (rpm / V) or stepper motor (steps/s / V).

Data type: float.

6.43.2.18 float SpeedTorqueGradient

Speed torque gradient (rpm / mN m).

Data type: float.

6.43.2.19 float StallTorque

Torque hold position for a stepper motor or torque at a motionless rotor for other types of engines (mN m).

Data type: float.

6.43.2.20 float TorqueConstant

Torque constant, which determines the aspect ratio of maximum moment of force from the rotor current flowing in the coil $(mN\ m\ /\ A)$.

Used mainly for DC motors. Data type: float.

6.43.2.21 float WindingInductance

Inductance of windings for DC engine, each of two windings for stepper motor or each of there windings for BLDC engine(mH).

Data type: float.

6.43.2.22 float WindingResistance

Resistance of windings for DC engine, each of two windings for stepper motor or each of there windings for BLDC engine(Ohm).

Data type: float.

6.44 move_settings_calb_t Struct Reference

Move settings which use user units.

Data Fields

float Speed

Target speed.

float Accel

Motor shaft acceleration, steps/ s^{\land} 2(stepper motor) or RPM/s(DC).

float Decel

Motor shaft deceleration, steps/s^{\(\sigma\)} 2(stepper motor) or RPM/s(DC).

float AntiplaySpeed

Speed in antiplay mode.

6.44.1 Detailed Description

Move settings which use user units.

See Also

```
set_move_settings_calb
get_move_settings, set_move_settings
```

6.44.2 Field Documentation

6.44.2.1 float Accel

Motor shaft acceleration, steps/s²(stepper motor) or RPM/s(DC).

6.44.2.2 float AntiplaySpeed

Speed in antiplay mode.

6.44.2.3 float Decel

Motor shaft deceleration, steps/s²(stepper motor) or RPM/s(DC).

6.44.2.4 float Speed

Target speed.

6.45 move_settings_t Struct Reference

Move settings.

Data Fields

· unsigned int Speed

Target speed (for stepper motor: steps/s, for DC: rpm).

· unsigned int uSpeed

Target speed in microstep fractions/s.

· unsigned int Accel

Motor shaft acceleration, steps/ s^2 2(stepper motor) or RPM/s(DC).

· unsigned int Decel

Motor shaft deceleration, steps/ $s^{\land}2$ (stepper motor) or RPM/s(DC).

· unsigned int AntiplaySpeed

Speed in antiplay mode, full steps/s(stepper motor) or RPM(DC).

• unsigned int uAntiplaySpeed

Speed in antiplay mode, microsteps/s.

6.45.1 Detailed Description

Move settings.

See Also

```
set_move_settings
get_move_settings, set_move_settings
```

6.45.2 Field Documentation

6.45.2.1 unsigned int Accel

Motor shaft acceleration, steps/s $^{\land}$ 2(stepper motor) or RPM/s(DC).

Range: 1..65535.

6.45.2.2 unsigned int AntiplaySpeed

Speed in antiplay mode, full steps/s(stepper motor) or RPM(DC).

Range: 0..100000.

6.45.2.3 unsigned int Decel

Motor shaft deceleration, steps/s²(stepper motor) or RPM/s(DC).

Range: 1..65535.

6.45.2.4 unsigned int Speed

Target speed (for stepper motor: steps/s, for DC: rpm).

Range: 0..100000.

6.45.2.5 unsigned int uAntiplaySpeed

Speed in antiplay mode, microsteps/s.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings). Used with stepper motor only.

6.45.2.6 unsigned int uSpeed

Target speed in microstep fractions/s.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings). Using with stepper motor only.

6.46 nonvolatile_memory_t Struct Reference

Userdata for save into FRAM.

Data Fields

unsigned int UserData [7]
 User data.

6.46.1 Detailed Description

Userdata for save into FRAM.

See Also

get_nonvolatile_memory, set_nonvolatile_memory

6.46.2 Field Documentation

6.46.2.1 unsigned int UserData[7]

User data.

Can be set by user for his/her convinience. Each element of the array stores only 32 bits of user data. This is important on systems where an int type contains more than 4 bytes. For example that all amd64 systems.

6.47 pid_settings_t Struct Reference

PID settings.

Data Fields

unsigned int KpU

Proportional gain for voltage PID routine.

unsigned int KiU

Integral gain for voltage PID routine.

· unsigned int KdU

Differential gain for voltage PID routine.

· float Kpf

Proportional gain for BLDC position PID routine.

float Kif

Integral gain for BLDC position PID routine.

· float Kdf

Differential gain for BLDC position PID routine.

6.47.1 Detailed Description

PID settings.

This structure contains factors for PID routine. It specify behaviour of PID routine for voltage. These factors are slightly different for different positioners. All boards are supplied with standard set of PID setting on controller's flash memory. Please load new PID settings when you change positioner. Please note that wrong PID settings lead to device malfunction.

See Also

```
set_pid_settings
get_pid_settings
get_pid_settings, set_pid_settings
```

6.48 power_settings_t Struct Reference

Step motor power settings.

Data Fields

· unsigned int HoldCurrent

Current in holding regime, percent of nominal.

unsigned int CurrReductDelay

Time in ms from going to STOP state to reducting current.

· unsigned int PowerOffDelay

Time in s from going to STOP state to turning power off.

• unsigned int CurrentSetTime

Time in ms to reach nominal current.

unsigned int PowerFlags

Flags of power settings of stepper motor.

6.48.1 Detailed Description

Step motor power settings.

See Also

```
set_move_settings
get_move_settings
get_power_settings, set_power_settings
```

6.48.2 Field Documentation

6.48.2.1 unsigned int CurrentSetTime

Time in ms to reach nominal current.

6.48.2.2 unsigned int CurrReductDelay

Time in ms from going to STOP state to reducting current.

6.48.2.3 unsigned int HoldCurrent

Current in holding regime, percent of nominal.

Range: 0..100.

6.48.2.4 unsigned int PowerFlags

Flags of power settings of stepper motor.

6.48.2.5 unsigned int PowerOffDelay

Time in s from going to STOP state to turning power off.

6.49 secure_settings_t Struct Reference

This structure contains raw analog data from ADC embedded on board.

Data Fields

• unsigned int LowUpwrOff

Lower voltage limit to turn off the motor, tens of mV.

· unsigned int Criticallpwr

Maximum motor current which triggers ALARM state, in mA.

· unsigned int CriticalUpwr

Maximum motor voltage which triggers ALARM state, tens of mV.

unsigned int CriticalT

Maximum temperature, which triggers ALARM state, in tenths of degrees Celcius.

· unsigned int Criticallusb

Maximum USB current which triggers ALARM state, in mA.

unsigned int CriticalUusb

Maximum USB voltage which triggers ALARM state, tens of mV.

unsigned int MinimumUusb

Minimum USB voltage which triggers ALARM state, tens of mV.

· unsigned int Flags

Flags of secure settings.

6.49.1 Detailed Description

This structure contains raw analog data from ADC embedded on board.

These data used for device testing and deep recalibraton by manufacturer only.

See Also

```
get_secure_settings
set_secure_settings
get_secure_settings, set_secure_settings
```

6.49.2 Field Documentation

6.49.2.1 unsigned int Criticallpwr

Maximum motor current which triggers ALARM state, in mA.

6.49.2.2 unsigned int Criticallusb

Maximum USB current which triggers ALARM state, in mA.

6.49.2.3 unsigned int CriticalT

Maximum temperature, which triggers ALARM state, in tenths of degrees Celcius.

6.49.2.4 unsigned int CriticalUpwr

Maximum motor voltage which triggers ALARM state, tens of mV.

6.49.2.5 unsigned int CriticalUusb

Maximum USB voltage which triggers ALARM state, tens of mV.

6.49.2.6 unsigned int Flags

Flags of secure settings.

6.49.2.7 unsigned int LowUpwrOff

Lower voltage limit to turn off the motor, tens of mV.

6.49.2.8 unsigned int MinimumUusb

Minimum USB voltage which triggers ALARM state, tens of mV.

6.50 serial_number_t Struct Reference

Serial number structure and hardware version.

Data Fields

· unsigned int SN

New board serial number.

• uint8_t Key [32]

Protection key (256 bit).

· unsigned int Major

The major number of the hardware version.

· unsigned int Minor

Minor number of the hardware version.

· unsigned int Release

Number of edits this release of hardware.

6.50.1 Detailed Description

Serial number structure and hardware version.

The structure keep new serial number, hardware version and valid key. The SN and hardware version are changed and saved when transmitted key matches stored key. Can be used by manufacturer only.

See Also

set_serial_number

6.50.2 Field Documentation

6.50.2.1 uint8_t Key[32]

Protection key (256 bit).

6.50.2.2 unsigned int Major

The major number of the hardware version.

6.50.2.3 unsigned int Minor

Minor number of the hardware version.

6.50.2.4 unsigned int Release

Number of edits this release of hardware.

6.50.2.5 unsigned int SN

New board serial number.

6.51 set_position_calb_t Struct Reference

Position information which use user units.

Data Fields

float Position

The position in the engine.

• long_t EncPosition

Encoder position.

• unsigned int PosFlags

Position setting flags.

6.51.1 Detailed Description

Position information which use user units.

Useful structure that contains position value in steps and micro for stepper motor and encoder steps of all engines.

See Also

set_position

6.51.2 Field Documentation

6.51.2.1 long_t EncPosition

Encoder position.

6.51.2.2 unsigned int PosFlags

Position setting flags.

6.51.2.3 float Position

The position in the engine.

6.52 set_position_t Struct Reference

Position information.

Data Fields

• int Position

The position of the whole steps in the engine.

· int uPosition

Microstep position is only used with stepper motors.

• long_t EncPosition

Encoder position.

• unsigned int PosFlags

Position setting flags.

6.52.1 Detailed Description

Position information.

Useful structure that contains position value in steps and micro for stepper motor and encoder steps of all engines.

See Also

set_position

6.52.2 Field Documentation

6.52.2.1 long_t EncPosition

Encoder position.

6.52.2.2 unsigned int PosFlags

Position setting flags.

6.52.2.3 int uPosition

Microstep position is only used with stepper motors.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.53 stage_information_t Struct Reference

Stage information.

Data Fields

• char Manufacturer [17]

Manufacturer.

• char PartNumber [25]

Series and PartNumber.

6.53.1 Detailed Description

Stage information.

See Also

set_stage_information
get_stage_information, set_stage_information

6.53.2 Field Documentation

6.53.2.1 char Manufacturer[17]

Manufacturer.

Max string length: 16 chars.

6.53.2.2 char PartNumber[25]

Series and PartNumber.

Max string length: 24 chars.

6.54 stage_name_t Struct Reference

Stage user name.

Data Fields

• char PositionerName [17]

User positioner name.

6.54.1 Detailed Description

Stage user name.

See Also

get_stage_name, set_stage_name

6.54.2 Field Documentation

6.54.2.1 char PositionerName[17]

User positioner name.

Can be set by user for his/her convinience. Max string length: 16 chars.

6.55 stage_settings_t Struct Reference

Stage settings.

Data Fields

· float LeadScrewPitch

Lead screw pitch (mm).

· char Units [9]

Units for MaxSpeed and TravelRange fields of the structure (steps, degrees, mm, ...).

float MaxSpeed

Max speed (Units/c).

float TravelRange

Travel range (Units).

• float SupplyVoltageMin

Supply voltage minimum (V).

• float SupplyVoltageMax

Supply voltage maximum (V).

• float MaxCurrentConsumption

Max current consumption (A).

· float HorizontalLoadCapacity

Horizontal load capacity (kg).

· float VerticalLoadCapacity

Vertical load capacity (kg).

6.55.1 Detailed Description

Stage settings.

See Also

```
set_stage_settings
get_stage_settings, set_stage_settings
```

6.55.2 Field Documentation

6.55.2.1 float HorizontalLoadCapacity

Horizontal load capacity (kg).

Data type: float.

6.55.2.2 float LeadScrewPitch

Lead screw pitch (mm).

Data type: float.

6.55.2.3 float MaxCurrentConsumption

Max current consumption (A).

Data type: float.

6.55.2.4 float MaxSpeed

Max speed (Units/c).

Data type: float.

6.55.2.5 float SupplyVoltageMax

Supply voltage maximum (V).

Data type: float.

6.55.2.6 float SupplyVoltageMin

Supply voltage minimum (V).

Data type: float.

6.55.2.7 float TravelRange

Travel range (Units).

Data type: float.

6.55.2.8 char Units[9]

Units for MaxSpeed and TravelRange fields of the structure (steps, degrees, mm, ...).

Max string length: 8 chars.

6.55.2.9 float VerticalLoadCapacity

Vertical load capacity (kg).

Data type: float.

6.56 status_calb_t Struct Reference

Device state which use user units.

Data Fields

• unsigned int MoveSts

Flags of move state.

• unsigned int MvCmdSts

Move command state.

• unsigned int PWRSts

Flags of power state of stepper motor.

unsigned int EncSts

Encoder state.

• unsigned int WindSts

Winding state.

• float CurPosition

Current position.

long_t EncPosition

Current encoder position.

float CurSpeed

Motor shaft speed.

• int Ipwr

Engine current, mA.

• int Upwr

Power supply voltage, tens of mV.

• int lusb

USB current, mA.

• int Uusb

USB voltage, tens of mV.

• int CurT

Temperature in tenths of degrees C.

unsigned int Flags

Status flags.

unsigned int GPIOFlags

Status flags of the GPIO outputs.

· unsigned int CmdBufFreeSpace

This field shows the amount of free cells buffer synchronization chain.

6.56.1 Detailed Description

Device state which use user units.

Useful structure that contains current controller state, including speed, position and boolean flags.

See Also

get_status_impl

6.56.2 Field Documentation

6.56.2.1 unsigned int CmdBufFreeSpace

This field shows the amount of free cells buffer synchronization chain.

6.56.2.2 float CurPosition

Current position.

Corrected by the table.

6.56.2.3 float CurSpeed

Motor shaft speed.

6.56.2.4 int CurT

Temperature in tenths of degrees C.

6.56.2.5 long_t EncPosition

Current encoder position.

6.56.2.6 unsigned int EncSts

Encoder state.

6.56.2.7 unsigned int Flags

Status flags.

6.56.2.8 unsigned int GPIOFlags

Status flags of the GPIO outputs.

6.56.2.9 int lpwr

Engine current, mA.

6.56.2.10 int lusb

USB current, mA.

6.56.2.11 unsigned int MoveSts

Flags of move state.

6.56.2.12 unsigned int MvCmdSts

Move command state.

6.56.2.13 unsigned int PWRSts

Flags of power state of stepper motor.

6.56.2.14 int Upwr

Power supply voltage, tens of mV.

6.56.2.15 int Uusb

USB voltage, tens of mV.

6.56.2.16 unsigned int WindSts

Winding state.

6.57 status_t Struct Reference

Device state.

Data Fields

• unsigned int MoveSts

Flags of move state.

• unsigned int MvCmdSts

Move command state.

· unsigned int PWRSts

Flags of power state of stepper motor.

· unsigned int EncSts

Encoder state.

unsigned int WindSts

Winding state.

• int CurPosition

Current position.

• int uCurPosition

Step motor shaft position in microsteps.

long_t EncPosition

Current encoder position.

int CurSpeed

Motor shaft speed in steps/s or rpm.

int uCurSpeed

Part of motor shaft speed in microsteps.

int Ipwr

Engine current, mA.

• int Upwr

Power supply voltage, tens of mV.

· int lusb

USB current, mA.

int Uusb

 ${\it USB\ voltage,\ tens\ of\ mV.}$

int CurT

Temperature in tenths of degrees C.

· unsigned int Flags

Status flags.

unsigned int GPIOFlags

Status flags of the GPIO outputs.

· unsigned int CmdBufFreeSpace

This field shows the amount of free cells buffer synchronization chain.

6.57.1 Detailed Description

Device state.

Useful structure that contains current controller state, including speed, position and boolean flags.

See Also

get_status_impl

6.57.2 Field Documentation

6.57.2.1 unsigned int CmdBufFreeSpace

This field shows the amount of free cells buffer synchronization chain.

6.57.2.2 int CurPosition

Current position.

6.57.2.3 int CurSpeed

Motor shaft speed in steps/s or rpm.

6.57.2.4 int CurT

Temperature in tenths of degrees C.

6.57.2.5 long_t EncPosition

Current encoder position.

6.57.2.6 unsigned int EncSts

Encoder state.

6.57.2.7 unsigned int Flags

Status flags.

6.57.2.8 unsigned int GPIOFlags

Status flags of the GPIO outputs.

6.57.2.9 int lpwr

Engine current, mA.

6.57.2.10 int lusb

USB current, mA.

6.57.2.11 unsigned int MoveSts

Flags of move state.

6.57.2.12 unsigned int MvCmdSts

Move command state.

6.57.2.13 unsigned int PWRSts

Flags of power state of stepper motor.

6.57.2.14 int uCurPosition

Step motor shaft position in microsteps.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings). Used only with stepper motor.

6.57.2.15 int uCurSpeed

Part of motor shaft speed in microsteps.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings). Used only with stepper motor.

6.57.2.16 int Upwr

Power supply voltage, tens of mV.

6.57.2.17 int Uusb

USB voltage, tens of mV.

6.57.2.18 unsigned int WindSts

Winding state.

6.58 sync_in_settings_calb_t Struct Reference

Synchronization settings which use user units.

Data Fields

· unsigned int SyncInFlags

Flags for synchronization input setup.

unsigned int ClutterTime

Input synchronization pulse dead time (mks).

· float Position

Desired position or shift.

float Speed

Target speed.

6.58.1 Detailed Description

Synchronization settings which use user units.

This structure contains all synchronization settings, modes, periods and flags. It specifes behaviour of input synchronization. All boards are supplied with standard set of these settings.

See Also

get_sync_in_settings_calb
set_sync_in_settings_calb
get_sync_in_settings, set_sync_in_settings

6.58.2 Field Documentation

6.58.2.1 unsigned int ClutterTime

Input synchronization pulse dead time (mks).

6.58.2.2 float Position

Desired position or shift.

6.58.2.3 float Speed

Target speed.

6.58.2.4 unsigned int SyncInFlags

Flags for synchronization input setup.

6.59 sync_in_settings_t Struct Reference

Synchronization settings.

Data Fields

· unsigned int SyncInFlags

Flags for synchronization input setup.

unsigned int ClutterTime

Input synchronization pulse dead time (mks).

· int Position

Desired position or shift (full steps)

· int uPosition

The fractional part of a position or shift in microsteps.

· unsigned int Speed

Target speed (for stepper motor: steps/s, for DC: rpm).

· unsigned int uSpeed

Target speed in microsteps/s.

6.59.1 Detailed Description

Synchronization settings.

This structure contains all synchronization settings, modes, periods and flags. It specifes behaviour of input synchronization. All boards are supplied with standard set of these settings.

See Also

get_sync_in_settings
set_sync_in_settings, set_sync_in_settings

6.59.2 Field Documentation

6.59.2.1 unsigned int ClutterTime

Input synchronization pulse dead time (mks).

6.59.2.2 unsigned int Speed

Target speed (for stepper motor: steps/s, for DC: rpm).

Range: 0..100000.

6.59.2.3 unsigned int SyncInFlags

Flags for synchronization input setup.

6.59.2.4 int uPosition

The fractional part of a position or shift in microsteps.

Is used with stepper motor. Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.59.2.5 unsigned int uSpeed

Target speed in microsteps/s.

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings). Using with stepper motor only.

6.60 sync_out_settings_calb_t Struct Reference

Synchronization settings which use user units.

Data Fields

unsigned int SyncOutFlags

Flags of synchronization output.

· unsigned int SyncOutPulseSteps

This value specifies duration of output pulse.

unsigned int SyncOutPeriod

This value specifies number of encoder pulses or steps between two output synchronization pulses when SYNCOU- T_{-} ONPERIOD is set.

float Accuracy

This is the neighborhood around the target coordinates (in encoder pulses or motor steps), which is getting hit in the target position and the momentum generated by the stop.

6.60.1 Detailed Description

Synchronization settings which use user units.

This structure contains all synchronization settings, modes, periods and flags. It specifes behaviour of output synchronization. All boards are supplied with standard set of these settings.

See Also

```
get_sync_out_settings_calb
set_sync_out_settings, set_sync_out_settings
```

6.60.2 Field Documentation

6.60.2.1 float Accuracy

This is the neighborhood around the target coordinates (in encoder pulses or motor steps), which is getting hit in the target position and the momentum generated by the stop.

6.60.2.2 unsigned int SyncOutFlags

Flags of synchronization output.

6.60.2.3 unsigned int SyncOutPeriod

This value specifies number of encoder pulses or steps between two output synchronization pulses when SYNCO-UT_ONPERIOD is set.

6.60.2.4 unsigned int SyncOutPulseSteps

This value specifies duration of output pulse.

It is measured microseconds when SYNCOUT_IN_STEPS flag is cleared or in encoder pulses or motor steps when SYNCOUT_IN_STEPS is set.

6.61 sync_out_settings_t Struct Reference

Synchronization settings.

Data Fields

· unsigned int SyncOutFlags

Flags of synchronization output.

unsigned int SyncOutPulseSteps

This value specifies duration of output pulse.

· unsigned int SyncOutPeriod

This value specifies number of encoder pulses or steps between two output synchronization pulses when SYNCOU-T_ONPERIOD is set.

· unsigned int Accuracy

This is the neighborhood around the target coordinates, which is getting hit in the target position and the momentum generated by the stop.

unsigned int uAccuracy

This is the neighborhood around the target coordinates in microsteps (only used with stepper motor).

6.61.1 Detailed Description

Synchronization settings.

This structure contains all synchronization settings, modes, periods and flags. It specifes behaviour of output synchronization. All boards are supplied with standard set of these settings.

See Also

```
get_sync_out_settings
set_sync_out_settings, set_sync_out_settings
```

6.61.2 Field Documentation

6.61.2.1 unsigned int Accuracy

This is the neighborhood around the target coordinates, which is getting hit in the target position and the momentum generated by the stop.

6.61.2.2 unsigned int SyncOutFlags

Flags of synchronization output.

6.61.2.3 unsigned int SyncOutPeriod

This value specifies number of encoder pulses or steps between two output synchronization pulses when SYNCO-UT_ONPERIOD is set.

6.61.2.4 unsigned int SyncOutPulseSteps

This value specifies duration of output pulse.

It is measured microseconds when SYNCOUT_IN_STEPS flag is cleared or in encoder pulses or motor steps when SYNCOUT_IN_STEPS is set.

6.61.2.5 unsigned int uAccuracy

This is the neighborhood around the target coordinates in microsteps (only used with stepper motor).

Microstep size and the range of valid values for this field depend on selected step division mode (see MicrostepMode field in engine_settings).

6.62 uart_settings_t Struct Reference

UART settings.

Data Fields

unsigned int Speed
 UART speed (in bauds)

unsigned int UARTSetupFlags

UART parity flags.

6.62.1 Detailed Description

UART settings.

This structure contains UART settings.

See Also

get_uart_settings
set_uart_settings
get_uart_settings, set_uart_settings

6.62.2 Field Documentation

6.62.2.1 unsigned int UARTSetupFlags

UART parity flags.

Chapter 7

File Documentation

7.1 ximc.h File Reference

Header file for libximc library.

Data Structures

• struct calibration_t

Calibration companion structure.

struct device_network_information_t

Device network information structure.

struct feedback_settings_t

Feedback settings.

struct home_settings_t

Position calibration settings.

struct home_settings_calb_t

Position calibration settings which use user units.

struct move_settings_t

Move settings.

• struct move_settings_calb_t

Move settings which use user units.

struct engine_settings_t

Movement limitations and settings, related to the motor.

• struct engine_settings_calb_t

Movement limitations and settings, related to the motor, which use user units.

 $\bullet \ \, \text{struct entype_settings_t}$

Engine type and driver type settings.

• struct power_settings_t

Step motor power settings.

• struct secure_settings_t

This structure contains raw analog data from ADC embedded on board.

• struct edges_settings_t

Edges settings.

struct edges_settings_calb_t

Edges settings which use user units.

• struct pid_settings_t

PID settings.

struct sync_in_settings_t

Synchronization settings.

struct sync_in_settings_calb_t

Synchronization settings which use user units.

struct sync_out_settings_t

Synchronization settings.

struct sync_out_settings_calb_t

Synchronization settings which use user units.

struct extio_settings_t

EXTIO settings.

struct brake_settings_t

Brake settings.

struct control_settings_t

Control settings.

struct control_settings_calb_t

Control settings which use user units.

struct joystick_settings_t

Joystick settings.

· struct ctp_settings_t

Control position settings(is only used with stepper motor).

· struct uart_settings_t

UART settings.

struct calibration_settings_t

Calibration settings.

struct controller_name_t

Controller user name and flags of setting.

struct nonvolatile_memory_t

Userdata for save into FRAM.

struct emf_settings_t

EMF settings.

struct engine_advansed_setup_t

EAS settings.

• struct extended_settings_t

EST settings.

• struct command_add_sync_in_action_t

This command adds one element of the FIFO commands.

struct command_add_sync_in_action_calb_t

This command adds one element of the FIFO commands which use user units.

struct get_position_t

Position information.

struct get_position_calb_t

Position information.

· struct set_position_t

Position information.

struct set_position_calb_t

Position information which use user units.

• struct status_t

Device state.

struct status_calb_t

Device state which use user units.

struct measurements_t

The buffer holds no more than 25 points.

struct chart_data_t

Additional device state.

struct device_information_t

Read command controller information.

struct serial_number_t

Serial number structure and hardware version.

struct analog_data_t

Analog data.

struct debug_read_t

Debug data.

struct debug_write_t

Debug data.

• struct stage_name_t

Stage user name.

struct stage_information_t

Stage information.

• struct stage_settings_t

Stage settings.

struct motor_information_t

motor information.

• struct motor_settings_t

Physical characteristics and limitations of the motor.

• struct encoder_information_t

Encoder information.

struct encoder_settings_t

Encoder settings.

• struct hallsensor_information_t

Hall sensor information.

• struct hallsensor_settings_t

Hall sensor settings.

• struct gear_information_t

Gear information.

 $\bullet \ \, struct \, gear_settings_t$

Gear setings.

• struct accessories_settings_t

Additional accessories information.

struct init_random_t

Random key.

• struct globally_unique_identifier_t

Globally unique identifier.

struct command_change_motor_t

Change motor - command for switching output relay.

Macros

• #define XIMC_API

Library import macro Macros allows to automatically import function from shared library.

• #define XIMC_CALLCONV

Library calling convention macros.

• #define XIMC_RETTYPE void*

Thread return type.

• #define device_undefined -1

Handle specified undefined device.

Result statuses

• #define result_ok 0

success

• #define result_error -1

generic error

#define result_not_implemented -2

function is not implemented

• #define result_value_error -3

value error

• #define result_nodevice -4

device is lost

Logging level

#define LOGLEVEL_ERROR 0x01

Logging level - error.

#define LOGLEVEL_WARNING 0x02

Logging level - warning.

• #define LOGLEVEL_INFO 0x03

Logging level - info.

#define LOGLEVEL_DEBUG 0x04

Logging level - debug.

Enumerate devices flags

• #define ENUMERATE_PROBE 0x01

Check if a device with OS name name is XIMC device.

#define ENUMERATE_ALL_COM 0x02

Check all COM devices.

#define ENUMERATE_NETWORK 0x04

Check network devices.

Flags of move state

Specify move states.

See Also

get_status

status_t::move_state

status_t::MoveSts, get_status_impl

#define MOVE_STATE_MOVING 0x01

This flag indicates that controller is trying to move the motor.

#define MOVE_STATE_TARGET_SPEED 0x02

Target speed is reached, if flag set.

#define MOVE_STATE_ANTIPLAY 0x04

Motor is playing compensation, if flag set.

Flags of internal controller settings

See Also

set_controller_name get_controller_name controller_name_t::CtrlFlags, get_controller_name, set_controller_name

• #define EEPROM_PRECEDENCE 0x01

If the flag is set settings from external EEPROM override controller settings.

Flags of power state of stepper motor

Specify power states.

See Also

status_t::power_state
get_status
status_t::PWRSts, get_status_impl

#define PWR_STATE_UNKNOWN 0x00

Unknown state, should never happen.

#define PWR_STATE_OFF 0x01

Motor windings are disconnected from the driver.

• #define PWR_STATE_NORM 0x03

Motor windings are powered by nominal current.

#define PWR_STATE_REDUCT 0x04

Motor windings are powered by reduced current to lower power consumption.

#define PWR_STATE_MAX 0x05

Motor windings are powered by maximum current driver can provide at this voltage.

Status flags

Controller flags returned by device query. Contains boolean part of controller state. May be combined with bitwise OR.

See Also

status_t::flags get_status status_t::Flags, get_status_impl

#define STATE_CONTR 0x000003F

Flags of controller states.

#define STATE_ERRC 0x0000001

Command error encountered.

#define STATE_ERRD 0x0000002

Data integrity error encountered.

#define STATE_ERRV 0x0000004

Value error encountered.

#define STATE_EEPROM_CONNECTED 0x0000010

EEPROM with settings is connected.

• #define STATE_IS_HOMED 0x0000020

Calibration performed.

• #define STATE_SECUR 0x1B3FFC0

Flags of security.

• #define STATE_ALARM 0x0000040

Controller is in alarm state indicating that something dangerous had happened.

#define STATE_CTP_ERROR 0x0000080

Control position error(is only used with stepper motor).

• #define STATE_POWER_OVERHEAT 0x0000100

Power driver overheat.

#define STATE_CONTROLLER_OVERHEAT 0x0000200

Controller overheat.

#define STATE_OVERLOAD_POWER_VOLTAGE 0x0000400

Power voltage exceeds safe limit.

#define STATE_OVERLOAD_POWER_CURRENT 0x0000800

Power current exceeds safe limit.

#define STATE_OVERLOAD_USB_VOLTAGE 0x0001000

USB voltage exceeds safe limit.

#define STATE_LOW_USB_VOLTAGE 0x0002000

USB voltage is insufficient for normal operation.

#define STATE_OVERLOAD_USB_CURRENT 0x0004000

USB current exceeds safe limit.

#define STATE_BORDERS_SWAP_MISSET 0x0008000

Engine stuck at the wrong edge.

#define STATE_LOW_POWER_VOLTAGE 0x0010000

Power voltage is lower than Low Voltage Protection limit.

#define STATE_H_BRIDGE_FAULT 0x0020000

Signal from the driver that fault happened.

#define STATE_CURRENT_MOTOR_BITS 0x00C0000

Bits indicating the current operating motor on boards with multiple outputs for engine mounting.

#define STATE_CURRENT_MOTOR0 0x0000000

Motor 0.

#define STATE_CURRENT_MOTOR1 0x0040000

Motor 1

#define STATE_CURRENT_MOTOR2 0x0080000

Motor 2.

#define STATE_CURRENT_MOTOR3 0x00C0000

Motor 3.

#define STATE_WINDING_RES_MISMATCH 0x0100000

The difference between winding resistances is too large.

#define STATE_ENCODER_FAULT 0x0200000

Signal from the encoder that fault happened.

• #define STATE_ENGINE_RESPONSE_ERROR 0x0800000

Error response of the engine control action.

• #define STATE_EXTIO_ALARM 0x1000000

The error is caused by the input signal.

Status flags of the GPIO outputs

GPIO state flags returned by device query. Contains boolean part of controller state. May be combined with bitwise OR.

See Also

status_t::gpioflags

get_status

status_t::GPIOFlags, get_status_impl

#define STATE_DIG_SIGNAL 0xFFFF

Flags of digital signals.

#define STATE_RIGHT_EDGE 0x0001

Engine stuck at the right edge.

#define STATE_LEFT_EDGE 0x0002

Engine stuck at the left edge.

#define STATE_BUTTON_RIGHT 0x0004

Button "right" state (1 if pressed).

#define STATE_BUTTON_LEFT 0x0008

Button "left" state (1 if pressed).

#define STATE_GPIO_PINOUT 0x0010

External GPIO works as Out, if flag set; otherwise works as In.

#define STATE_GPIO_LEVEL 0x0020

State of external GPIO pin.

#define STATE_BRAKE 0x0200

State of Brake pin.

#define STATE_REV_SENSOR 0x0400

State of Revolution sensor pin.

#define STATE_SYNC_INPUT 0x0800

State of Sync input pin.

#define STATE_SYNC_OUTPUT 0x1000

State of Sync output pin.

• #define STATE_ENC_A 0x2000

State of encoder A pin.

#define STATE_ENC_B 0x4000

State of encoder B pin.

Encoder state

Encoder state returned by device query.

See Also

status_t::encsts get_status status_t::EncSts, get_status_impl

#define ENC_STATE_ABSENT 0x00

Encoder is absent.

#define ENC_STATE_UNKNOWN 0x01

Encoder state is unknown.

#define ENC_STATE_MALFUNC 0x02

Encoder is connected and malfunctioning.

• #define ENC_STATE_REVERS 0x03

Encoder is connected and operational but counts in other direction.

• #define ENC_STATE_OK 0x04

Encoder is connected and working properly.

Winding state

Motor winding state returned by device query.

See Also

status_t::windsts
get_status
status_t::WindSts, get_status_impl

• #define WIND_A_STATE_ABSENT 0x00

Winding A is disconnected.

#define WIND_A_STATE_UNKNOWN 0x01

Winding A state is unknown.

#define WIND_A_STATE_MALFUNC 0x02

Winding A is short-circuited.

• #define WIND_A_STATE_OK 0x03

Winding A is connected and working properly.

#define WIND_B_STATE_ABSENT 0x00

Winding B is disconnected.

#define WIND_B_STATE_UNKNOWN 0x10

Winding B state is unknown.

#define WIND_B_STATE_MALFUNC 0x20

Winding B is short-circuited.

#define WIND_B_STATE_OK 0x30

Winding B is connected and working properly.

Move command state

Move command_fright, command_stop, command_movr, command_left, command_right, command_stop, command_home, command_loft, command_sstp) and its state (run, finished, error).

See Also

status_t::mvcmdsts get_status status_t::MvCmdSts, get_status_impl

#define MVCMD_NAME_BITS 0x3F

Move command bit mask.

#define MVCMD_UKNWN 0x00

Unknown command.

#define MVCMD_MOVE 0x01

Command move.

#define MVCMD_MOVR 0x02

Command movr.

#define MVCMD_LEFT 0x03

Command left.

#define MVCMD_RIGHT 0x04

Command rigt.

#define MVCMD_STOP 0x05

Command stop.

#define MVCMD_HOME 0x06

Command home.

• #define MVCMD_LOFT 0x07

Command loft.

#define MVCMD_SSTP 0x08

Command soft stop.

#define MVCMD_ERROR 0x40

Finish state (1 - move command have finished with an error, 0 - move command have finished correctly).

#define MVCMD_RUNNING 0x80

Move command state (0 - move command have finished, 1 - move command is being executed).

Flags of engine settings

Specify motor shaft movement algorithm and list of limitations. Flags returned by query of engine settings. May be combined with bitwise OR.

See Also

engine_settings_t::flags
set_engine_settings
get_engine_settings
engine_settings_t::EngineFlags, get_engine_settings, set_engine_settings

• #define ENGINE_REVERSE 0x01

Reverse flag.

#define ENGINE_CURRENT_AS_RMS 0x02

Engine current meaning flag.

#define ENGINE_MAX_SPEED 0x04

Max speed flag.

• #define ENGINE_ANTIPLAY 0x08

Play compensation flag.

• #define ENGINE_ACCEL_ON 0x10

Acceleration enable flag.

#define ENGINE_LIMIT_VOLT 0x20

Maximum motor voltage limit enable flag(is only used with DC motor).

#define ENGINE_LIMIT_CURR 0x40

Maximum motor current limit enable flag(is only used with DC motor).

#define ENGINE_LIMIT_RPM 0x80

Maximum motor speed limit enable flag.

Flags of microstep mode

Specify settings of microstep mode. Using with step motors. Flags returned by query of engine settings. May be combined with bitwise OR

See Also

engine_settings_t::flags
set_engine_settings
get_engine_settings
engine_settings_t::MicrostepMode, get_engine_settings, set_engine_settings

#define MICROSTEP_MODE_FULL 0x01

Full step mode.

#define MICROSTEP_MODE_FRAC_2 0x02

1/2 step mode.

#define MICROSTEP_MODE_FRAC_4 0x03

1/4 step mode.

#define MICROSTEP_MODE_FRAC_8 0x04

1/8 step mode.

#define MICROSTEP_MODE_FRAC_16 0x05

1/16 step mode.

• #define MICROSTEP_MODE_FRAC_32 0x06

1/32 step mode.

#define MICROSTEP_MODE_FRAC_64 0x07

1/64 step mode.

#define MICROSTEP_MODE_FRAC_128 0x08

1/128 step mode.

• #define MICROSTEP_MODE_FRAC_256 0x09

1/256 step mode.

Flags of engine type

Specify motor type. Flags returned by query of engine settings.

See Also

engine_settings_t::flags
set_entype_settings
get_entype_settings
entype_settings_t::EngineType, get_entype_settings, set_entype_settings

#define ENGINE_TYPE_NONE 0x00

A value that shouldn't be used.

#define ENGINE_TYPE_DC 0x01

DC motor.

#define ENGINE_TYPE_2DC 0x02

2 DC motors.

• #define ENGINE_TYPE_STEP 0x03

Step motor.

#define ENGINE_TYPE_TEST 0x04

Duty cycle are fixed.

• #define ENGINE_TYPE_BRUSHLESS 0x05

Brushless motor.

Flags of driver type

Specify driver type. Flags returned by query of engine settings.

See Also

engine_settings_t::flags
set_entype_settings
get_entype_settings
entype_settings_t::DriverType, get_entype_settings, set_entype_settings

#define DRIVER_TYPE_DISCRETE_FET 0x01

Driver with discrete FET keys.

• #define DRIVER_TYPE_INTEGRATE 0x02

Driver with integrated IC.

#define DRIVER_TYPE_EXTERNAL 0x03

External driver.

Flags of power settings of stepper motor

Specify power settings. Flags returned by query of power settings.

See Also

power_settings
get_power_settings
set_power_settings
power_settings.t::PowerFlags, get_power_settings, set_power_settings

#define POWER_REDUCT_ENABLED 0x01

Current reduction enabled after CurrReductDelay, if this flag is set.

#define POWER_OFF_ENABLED 0x02

Power off enabled after PowerOffDelay, if this flag is set.

#define POWER_SMOOTH_CURRENT 0x04

Current ramp-up/down is performed smoothly during current_set_time, if this flag is set.

Flags of secure settings

Specify secure settings. Flags returned by query of secure settings.

See Also

secure_settings_t::flags get_secure_settings set_secure_settings secure_settings_t::Flags, get_secure_settings, set_secure_settings

#define ALARM_ON_DRIVER_OVERHEATING 0x01

If this flag is set enter Alarm state on driver overheat signal.

#define LOW_UPWR_PROTECTION 0x02

If this flag is set turn off motor when voltage is lower than LowUpwrOff.

#define H_BRIDGE_ALERT 0x04

If this flag is set then turn off the power unit with a signal problem in one of the transistor bridge.

#define ALARM_ON_BORDERS_SWAP_MISSET 0x08

If this flag is set enter Alarm state on borders swap misset.

#define ALARM_FLAGS_STICKING 0x10

If this flag is set only a STOP command can turn all alarms to 0.

#define USB_BREAK_RECONNECT 0x20

If this flag is set USB brake reconnect module will be enable.

#define ALARM_WINDING_MISMATCH 0x40

If this flag is set enter Alarm state when windings mismatch.

#define ALARM_ENGINE_RESPONSE 0x80

If this flag is set enter Alarm state on response of the engine control action.

Position setting flags

Flags used in setting of position.

See Also

get_position
set_position
set_position_t::PosFlags, set_position

#define SETPOS_IGNORE_POSITION 0x01

Will not reload position in steps/microsteps if this flag is set.

#define SETPOS_IGNORE_ENCODER 0x02

Will not reload encoder state if this flag is set.

Feedback type.

See Also

set_feedback_settings
get_feedback_settings
feedback_settings_t::FeedbackType, get_feedback_settings, set_feedback_settings

#define FEEDBACK_ENCODER 0x01

Feedback by encoder.

#define FEEDBACK_EMF 0x04

Feedback by EMF.

#define FEEDBACK_NONE 0x05

Feedback is absent.

#define FEEDBACK_ENCODER_MEDIATED 0x06

Feedback by encoder mediated by mechanical transmission (for example leadscrew).

Describes feedback flags.

See Also

set_feedback_settings
get_feedback_settings
feedback_settings_t::FeedbackFlags, get_feedback_settings, set_feedback_settings

#define FEEDBACK_ENC_REVERSE 0x01

Reverse count of encoder.

#define FEEDBACK_ENC_TYPE_BITS 0xC0

Bits of the encoder type.

#define FEEDBACK_ENC_TYPE_AUTO 0x00

Auto detect encoder type.

• #define FEEDBACK_ENC_TYPE_SINGLE_ENDED 0x40

Single ended encoder.

#define FEEDBACK_ENC_TYPE_DIFFERENTIAL 0x80

Differential encoder.

Flags for synchronization input setup

See Also

sync_settings_t::syncin_flags
get_sync_settings
set_sync_settings
sync_in_settings_t::SyncInFlags, get_sync_in_settings, set_sync_in_settings

• #define SYNCIN_ENABLED 0x01

Synchronization in mode is enabled, if this flag is set.

#define SYNCIN_INVERT 0x02

Trigger on falling edge if flag is set, on rising edge otherwise.

#define SYNCIN_GOTOPOSITION 0x04

The engine is go to position specified in Position and uPosition, if this flag is set.

Flags of synchronization output

See Also

sync_settings_t::syncout_flags
get_sync_settings
set_sync_settings
sync_out_settings_t::SyncOutFlags, get_sync_out_settings, set_sync_out_settings

#define SYNCOUT_ENABLED 0x01

Synchronization out pin follows the synchronization logic, if set.

#define SYNCOUT_STATE 0x02

When output state is fixed by negative SYNCOUT_ENABLED flag, the pin state is in accordance with this flag state.

#define SYNCOUT_INVERT 0x04

Low level is active, if set, and high level is active otherwise.

#define SYNCOUT_IN_STEPS 0x08

Use motor steps/encoder pulses instead of milliseconds for output pulse generation if the flag is set.

#define SYNCOUT_ONSTART 0x10

Generate synchronization pulse when movement starts.

#define SYNCOUT_ONSTOP 0x20

Generate synchronization pulse when movement stops.

#define SYNCOUT_ONPERIOD 0x40

Generate synchronization pulse every SyncOutPeriod encoder pulses.

External IO setup flags

See Also

extio_settings_t::setup_flags get_extio_settings set_extio_settings extio_settings_t::EXTIOSetupFlags, get_extio_settings, set_extio_settings

#define EXTIO_SETUP_OUTPUT 0x01

EXTIO works as output if flag is set, works as input otherwise.

#define EXTIO_SETUP_INVERT 0x02

Interpret EXTIO states and fronts inverted if flag is set.

External IO mode flags

See Also

extio_settings_t::extio_mode_flags
get_extio_settings
set_extio_settings
extio_settings_t::EXTIOModeFlags, get_extio_settings, set_extio_settings

#define EXTIO_SETUP_MODE_IN_BITS 0x0F

Bits of the behaviour selector when the signal on input goes to the active state.

#define EXTIO_SETUP_MODE_IN_NOP 0x00

Do nothing.

#define EXTIO_SETUP_MODE_IN_STOP 0x01

Issue STOP command, ceasing the engine movement.

#define EXTIO_SETUP_MODE_IN_PWOF 0x02

Issue PWOF command, powering off all engine windings.

#define EXTIO_SETUP_MODE_IN_MOVR 0x03

Issue MOVR command with last used settings.

#define EXTIO_SETUP_MODE_IN_HOME 0x04

Issue HOME command.

#define EXTIO_SETUP_MODE_IN_ALARM 0x05

Set Alarm when the signal goes to the active state.

#define EXTIO_SETUP_MODE_OUT_BITS 0xF0

Bits of the output behaviour selection.

#define EXTIO_SETUP_MODE_OUT_OFF 0x00

EXTIO pin always set in inactive state.

#define EXTIO_SETUP_MODE_OUT_ON 0x10

EXTIO pin always set in active state.

#define EXTIO_SETUP_MODE_OUT_MOVING 0x20

EXTIO pin stays active during moving state.

#define EXTIO_SETUP_MODE_OUT_ALARM 0x30

EXTIO pin stays active during Alarm state.

#define EXTIO_SETUP_MODE_OUT_MOTOR_ON 0x40

EXTIO pin stays active when windings are powered.

#define EXTIO_SETUP_MODE_OUT_MOTOR_FOUND 0x50

EXTIO pin stays active when motor is connected (first winding).

Border flags

Specify types of borders and motor behaviour on borders. May be combined with bitwise OR.

See Also

```
get_edges_settings
set_edges_settings
edges_settings.t::BorderFlags, get_edges_settings, set_edges_settings
```

#define BORDER_IS_ENCODER 0x01

Borders are fixed by predetermined encoder values, if set; borders position on limit switches, if not set.

#define BORDER_STOP_LEFT 0x02

Motor should stop on left border.

#define BORDER_STOP_RIGHT 0x04

Motor should stop on right border.

#define BORDERS_SWAP_MISSET_DETECTION 0x08

Motor should stop on both borders.

Limit switches flags

Specify electrical behaviour of limit switches like order and pulled positions. May be combined with bitwise OR.

See Also

```
get_edges_settings
set_edges_settings
edges_settings_t::EnderFlags, get_edges_settings, set_edges_settings
```

• #define ENDER_SWAP 0x01

First limit switch on the right side, if set; otherwise on the left side.

- #define ENDER_SW1_ACTIVE_LOW 0x02
 - 1 Limit switch connnected to pin SW1 is triggered by a low level on pin.
- #define ENDER_SW2_ACTIVE_LOW 0x04
 - 1 Limit switch connnected to pin SW2 is triggered by a low level on pin.

Brake settings flags

Specify behaviour of brake. May be combined with bitwise OR.

See Also

```
get_brake_settings
set_brake_settings
brake_settings_t::BrakeFlags, get_brake_settings, set_brake_settings
```

#define BRAKE_ENABLED 0x01

Brake control is enabled, if this flag is set.

#define BRAKE_ENG_PWROFF 0x02

Brake turns off power of step motor, if this flag is set.

Control flags

Specify motor control settings by joystick or buttons. May be combined with bitwise OR.

See Also

```
get_control_settings
set_control_settings
control_settings_t::Flags, get_control_settings, set_control_settings
```

#define CONTROL_MODE_BITS 0x03

Bits to control engine by joystick or buttons.

#define CONTROL_MODE_OFF 0x00

Control is disabled.

#define CONTROL_MODE_JOY 0x01

Control by joystick.

• #define CONTROL_MODE_LR 0x02

Control by left/right buttons.

• #define CONTROL_BTN_LEFT_PUSHED_OPEN 0x04

Pushed left button corresponds to open contact, if this flag is set.

#define CONTROL_BTN_RIGHT_PUSHED_OPEN 0x08

Pushed right button corresponds to open contact, if this flag is set.

Joystick flags

Control joystick states.

See Also

```
set_joystick_settings
get_joystick_settings
joystick_settings_t::JoyFlags, get_joystick_settings, set_joystick_settings
```

#define JOY_REVERSE 0x01

Joystick action is reversed.

Position control flags

Specify settings of position control. May be combined with bitwise OR.

See Also

```
get_ctp_settings
set_ctp_settings
ctp_settings.t::CTPFlags, get_ctp_settings, set_ctp_settings
```

#define CTP_ENABLED 0x01

Position control is enabled, if flag set.

#define CTP_BASE 0x02

Position control is based on revolution sensor, if this flag is set; otherwise it is based on encoder.

#define CTP_ALARM_ON_ERROR 0x04

Set ALARM on mismatch, if flag set.

#define REV_SENS_INV 0x08

Sensor is active when it 0 and invert makes active level 1.

• #define CTP_ERROR_CORRECTION 0x10

Correct errors which appear when slippage if the flag is set.

Home settings flags

Specify behaviour for home command. May be combined with bitwise OR.

See Also

get_home_setting s
set_home_settings
command_home

home_settings_t::HomeFlags, get_home_settings, set_home_settings

#define HOME_DIR_FIRST 0x001

Flag defines direction of 1st motion after execution of home command.

#define HOME_DIR_SECOND 0x002

Flag defines direction of 2nd motion.

#define HOME_MV_SEC_EN 0x004

Use the second phase of calibration to the home position, if set; otherwise the second phase is skipped.

• #define HOME_HALF_MV 0x008

If the flag is set, the stop signals are ignored in start of second movement the first half-turn.

#define HOME_STOP_FIRST_BITS 0x030

Bits of the first stop selector.

#define HOME_STOP_FIRST_REV 0x010

First motion stops by revolution sensor.

#define HOME_STOP_FIRST_SYN 0x020

First motion stops by synchronization input.

• #define HOME_STOP_FIRST_LIM 0x030

First motion stops by limit switch.

#define HOME_STOP_SECOND_BITS 0x0C0

Bits of the second stop selector.

• #define HOME_STOP_SECOND_REV 0x040

Second motion stops by revolution sensor.

#define HOME_STOP_SECOND_SYN 0x080

Second motion stops by synchronization input.

#define HOME_STOP_SECOND_LIM 0x0C0

Second motion stops by limit switch.

#define HOME_USE_FAST 0x100

Use the fast algorithm of calibration to the home position, if set; otherwise the traditional algorithm.

UART parity flags

See Also

uart_settings_t::UARTSetupFlags, get_uart_settings, set_uart_settings

• #define UART_PARITY_BITS 0x03

Bits of the parity.

#define UART_PARITY_BIT_EVEN 0x00

Parity bit 1, if even.

• #define UART_PARITY_BIT_ODD 0x01

Parity bit 1, if odd.

• #define UART_PARITY_BIT_SPACE 0x02

Parity bit always 0.

• #define UART_PARITY_BIT_MARK 0x03

Parity bit always 1.

#define UART_PARITY_BIT_USE 0x04

None parity.

#define UART_STOP_BIT 0x08

If set - one stop bit, else two stop bit.

Motor Type flags

See Also

motor_settings_t::MotorType, get_motor_settings, set_motor_settings

#define MOTOR_TYPE_UNKNOWN 0x00

Unknown type of engine.

#define MOTOR_TYPE_STEP 0x01

Step engine.

#define MOTOR_TYPE_DC 0x02

DC engine.

#define MOTOR_TYPE_BLDC 0x03

BLDC engine.

Encoder settings flags

See Also

encoder_settings_t::EncoderSettings, get_encoder_settings, set_encoder_settings

• #define ENCSET_DIFFERENTIAL_OUTPUT 0x001

If flag is set the encoder has differential output, else single ended output.

#define ENCSET_PUSHPULL_OUTPUT 0x004

If flag is set the encoder has push-pull output, else open drain output.

#define ENCSET_INDEXCHANNEL_PRESENT 0x010

If flag is set the encoder has index channel, else encoder hasn't it.

• #define ENCSET_REVOLUTIONSENSOR_PRESENT 0x040

If flag is set the encoder has revolution sensor, else encoder hasn't it.

#define ENCSET_REVOLUTIONSENSOR_ACTIVE_HIGH 0x100

If flag is set the revolution sensor active state is high logic state, else active state is low logic state.

Magnetic brake settings flags

See Also

accessories_settings_t::MBSettings, get_accessories_settings, set_accessories_settings

• #define MB_AVAILABLE 0x01

If flag is set the magnetic brake is available.

#define MB_POWERED_HOLD 0x02

If this flag is set the magnetic brake is on when powered.

Temperature sensor settings flags

See Also

 $accessories_settings_t::LimitSwitchesSettings, \ get_accessories_settings, \ set_accessories_settings$

• #define TS_TYPE_BITS 0x07

Bits of the temperature sensor type.

• #define TS_TYPE_UNKNOWN 0x00

Unknow type of sensor.

#define TS_TYPE_THERMOCOUPLE 0x01

Thermocouple.

#define TS_TYPE_SEMICONDUCTOR 0x02

The semiconductor temperature sensor.

#define TS_AVAILABLE 0x08

If flag is set the temperature sensor is available.

#define LS_ON_SW1_AVAILABLE 0x01

If flag is set the limit switch connnected to pin SW1 is available.

• #define LS_ON_SW2_AVAILABLE 0x02

If flag is set the limit switch connnected to pin SW2 is available.

#define LS_SW1_ACTIVE_LOW 0x04

If flag is set the limit switch connnected to pin SW1 is triggered by a low level on pin.

#define LS_SW2_ACTIVE_LOW 0x08

If flag is set the limit switch connnected to pin SW2 is triggered by a low level on pin.

• #define LS_SHORTED 0x10

If flag is set the Limit switches is shorted.

Flags of auto-detection of characteristics of windings of the engine.

See Also

set_emf_settings
get_emf_settings
emf_settings_t::BackEMFFlags, get_emf_settings, set_emf_settings

#define BACK_EMF_INDUCTANCE_AUTO 0x01

Flag of auto-detection of inductance of windings of the engine.

#define BACK_EMF_RESISTANCE_AUTO 0x02

Flag of auto-detection of resistance of windings of the engine.

#define BACK_EMF_KM_AUTO 0x04

Flag of auto-detection of electromechanical coefficient of the engine.

Typedefs

- typedef unsigned long long ulong_t
- typedef long long long_t
- · typedef int device_t

Type describes device identifier.

• typedef int result_t

Type specifies result of any operation.

typedef uint32_t device_enumeration_t

Type describes device enumeration structure.

typedef struct calibration_t calibration_t

Calibration companion structure.

· typedef struct

device_network_information_t device_network_information_t

Device network information structure.

Functions

Controller settings setup

Functions for adjusting engine read/write almost all controller settings.

- result_t XIMC_API set_feedback_settings (device_t id, const feedback_settings_t *feedback_settings)
 Feedback settings.
- result_t XIMC_API get_feedback_settings (device_t id, feedback_settings_t *feedback_settings)
 Feedback settings.
- result_t XIMC_API set_home_settings (device_t id, const home_settings_t *home_settings)
 Set home settings.
- result_t XIMC_API set_home_settings_calb (device_t id, const home_settings_calb_t *home_settings_calb, const calibration_t *calibration)

Set home settings which use user units.

result_t XIMC_API get_home_settings (device_t id, home_settings_t *home_settings)

Read home settings.

• result_t XIMC_API get_home_settings_calb (device_t id, home_settings_calb_t *home_settings_calb, const calibration_t *calibration)

Read home settings which use user units.

result_t XIMC_API set_move_settings (device_t id, const move_settings_t *move_settings)

Set command setup movement (speed, acceleration, threshold and etc).

 result_t XIMC_API set_move_settings_calb (device_t id, const move_settings_calb_t *move_settings_calb, const calibration_t *calibration)

Set command setup movement which use user units (speed, acceleration, threshold and etc).

result_t XIMC_API get_move_settings (device_t id, move_settings_t *move_settings)

Read command setup movement (speed, acceleration, threshold and etc).

 result_t XIMC_API get_move_settings_calb (device_t id, move_settings_calb_t *move_settings_calb, const calibration_t *calibration)

Read command setup movement which use user units (speed, acceleration, threshold and etc).

result_t XIMC_API set_engine_settings (device_t id, const engine_settings_t *engine_settings)

Set engine settings.

 result_t XIMC_API set_engine_settings_calb (device_t id, const engine_settings_calb_t *engine_settings_calb, const calibration_t *calibration)

Set engine settings which use user units.

result_t XIMC_API get_engine_settings (device_t id, engine_settings_t *engine_settings)

Read engine settinas.

 result_t XIMC_API get_engine_settings_calb (device_t id, engine_settings_calb_t *engine_settings_calb, const calibration_t *calibration)

Read engine settings which use user units.

result_t XIMC_API set_entype_settings (device_t id, const entype_settings_t *entype_settings)

Set engine type and driver type.

result_t XIMC_API get_entype_settings (device_t id, entype_settings_t *entype_settings)

Return engine type and driver type.

result_t XIMC_API set_power_settings (device_t id, const power_settings_t *power_settings)

Set settings of step motor power control.

result_t XIMC_API get_power_settings (device_t id, power_settings_t *power_settings)

Read settings of step motor power control.

result_t XIMC_API set_secure_settings (device_t id, const secure_settings_t *secure_settings)

Set protection settings.

result_t XIMC_API get_secure_settings (device_t id, secure_settings_t *secure_settings)

Read protection settings.

result_t XIMC_API set_edges_settings (device_t id, const edges_settings_t *edges_settings)

Set border and limit switches settings.

 result_t XIMC_API set_edges_settings_calb (device_t id, const edges_settings_calb_t *edges_settings_calb, const calibration_t *calibration)

Set border and limit switches settings which use user units.

result_t XIMC_API get_edges_settings (device_t id, edges_settings_t *edges_settings)

Read border and limit switches settings.

 result_t XIMC_API get_edges_settings_calb (device_t id, edges_settings_calb_t *edges_settings_calb, const calibration_t *calibration)

Read border and limit switches settings which use user units.

result_t XIMC_API set_pid_settings (device_t id, const pid_settings_t *pid_settings)

Set PID settings.

Read PID settings.

result_t XIMC_API get_pid_settings (device_t id, pid_settings_t *pid_settings)

result_t XIMC_API set_sync_in_settings (device_t id, const sync_in_settings_t *sync_in_settings)

Set input synchronization settings.

 result_t XIMC_API set_sync_in_settings_calb (device_t id, const sync_in_settings_calb_t *sync_in_settings_calb, const calibration_t *calibration)

Set input synchronization settings which use user units.

result_t XIMC_API get_sync_in_settings (device_t id, sync_in_settings_t *sync_in_settings)

Read input synchronization settings.

• result_t XIMC_API get_sync_in_settings_calb (device_t id, sync_in_settings_calb_t *sync_in_settings_calb, const calibration_t *calibration)

Read input synchronization settings which use user units.

• result_t XIMC_API set_sync_out_settings (device_t id, const sync_out_settings_t *sync_out_settings)

Set output synchronization settings.

result_t XIMC_API set_sync_out_settings_calb (device_t id, const sync_out_settings_calb_t *sync_out_settings_calb_t const calibration_t *calibration)

Set output synchronization settings which use user units.

result_t XIMC_API get_sync_out_settings (device_t id, sync_out_settings_t *sync_out_settings)

Read output synchronization settings.

result_t XIMC_API get_sync_out_settings_calb (device_t id, sync_out_settings_calb_t *sync_out_settings_calb, const calibration_t *calibration)

Read output synchronization settings which use user units.

result_t XIMC_API set_extio_settings (device_t id, const extio_settings_t *extio_settings)

Set EXTIO settings.

result_t XIMC_API get_extio_settings (device_t id, extio_settings_t *extio_settings)

Read EXTIO settings.

result_t XIMC_API set_brake_settings (device_t id, const brake_settings_t *brake_settings)

Set settings of brake control.

result_t XIMC_API get_brake_settings (device_t id, brake_settings_t *brake_settings)

Read settings of brake control.

result_t XIMC_API set_control_settings (device_t id, const control_settings_t *control_settings)

Set settings of motor control.

result_t XIMC_API set_control_settings_calb (device_t id, const control_settings_calb_t *control_settings_calb, const calibration_t *calibration)

Set settings of motor control which use user units.

result_t XIMC_API get_control_settings (device_t id, control_settings_t *control_settings)

Read settings of motor control.

 result_t XIMC_API get_control_settings_calb (device_t id, control_settings_calb_t *control_settings_calb, const calibration_t *calibration)

Read settings of motor control which use user units.

result_t XIMC_API set_joystick_settings (device_t id, const joystick_settings_t *joystick_settings)

Set settings of joystick.

result_t XIMC_API get_joystick_settings (device_t id, joystick_settings_t *joystick_settings)

Read settings of joystick.

• result_t XIMC_API set_ctp_settings (device_t id, const ctp_settings_t *ctp_settings)

Set settings of control position(is only used with stepper motor).

result_t XIMC_API get_ctp_settings (device_t id, ctp_settings_t *ctp_settings)

Read settings of control position(is only used with stepper motor).

result_t XIMC_API set_uart_settings (device_t id, const uart_settings_t *uart_settings)

Set UART settings.

result_t XIMC_API get_uart_settings (device_t id, uart_settings_t *uart_settings)

Read UART settings.

result_t XIMC_API set_calibration_settings (device_t id, const calibration_settings_t *calibration_settings)

Set calibration settings.

result_t XIMC_API get_calibration_settings (device_t id, calibration_settings_t *calibration_settings)

Read calibration settings.

result_t XIMC_API set_controller_name (device_t id, const controller_name_t *controller_name)

Write user controller name and flags of setting from FRAM.

result_t XIMC_API get_controller_name (device_t id, controller_name_t *controller_name)

Read user controller name and flags of setting from FRAM.

result_t XIMC_API set_nonvolatile_memory (device_t id, const nonvolatile_memory_t *nonvolatile_memory)

Write userdata into FRAM.

result_t XIMC_API get_nonvolatile_memory (device_t id, nonvolatile_memory_t *nonvolatile_memory)

Read userdata from FRAM.

result_t XIMC_API set_emf_settings (device_t id, const emf_settings_t *emf_settings)

Set electromechanical coefficients.

result_t XIMC_API get_emf_settings (device_t id, emf_settings_t *emf_settings)

Read electromechanical settings.

 result_t XIMC_API set_engine_advansed_setup (device_t id, const engine_advansed_setup_t *engine_advansed_setup)

Set engine advansed settings.

result_t XIMC_API get_engine_advansed_setup (device_t id, engine_advansed_setup_t *engine_advansed_setup)

Read engine advansed settings.

result_t XIMC_API set_extended_settings (device_t id, const extended_settings_t *extended_settings)
 Set extended settings.

result_t XIMC_API get_extended_settings (device_t id, extended_settings_t *extended_settings)

Read extended settings.

Group of commands movement control

result_t XIMC_API command_stop (device_t id)

Immediately stop the engine, the transition to the STOP, mode key BREAK (winding short-circuited), the regime "retention" is deactivated for DC motors, keeping current in the windings for stepper motors (with Power management settings).

result_t XIMC_API command_add_sync_in_action (device_t id, const command_add_sync_in_action_t *the_command_add_sync_in_action)

This command adds one element of the FIFO commands that are executed when input clock pulse.

result_t XIMC_API command_add_sync_in_action_calb (device_t id, const command_add_sync_in_action_-calb_t *the_command_add_sync_in_action_calb, const calibration_t *calibration)

This command adds one element of the FIFO commands that are executed when input clock pulsewhich use user

result_t XIMC_API command_power_off (device_t id)

Immediately power off motor regardless its state.

result_t XIMC_API command_move (device_t id, int Position, int uPosition)

Upon receiving the command "move" the engine starts to move with pre-set parameters (speed, acceleration, retention), to the point specified to the Position, uPosition.

result_t XIMC_API command_move_calb (device_t id, float Position, const calibration_t *calibration)

Move to position which use user units.

result_t XIMC_API command_movr (device_t id, int DeltaPosition, int uDeltaPosition)

Move to offset.

result_t XIMC_API command_movr_calb (device_t id, float DeltaPosition, const calibration_t *calibration)

Move to offset using user units.

result_t XIMC_API command_home (device_t id)

The positive direction is to the right.

result_t XIMC_API command_left (device_t id)

Start continous moving to the left.

result_t XIMC_API command_right (device_t id)

Start continous moving to the right.

result_t XIMC_API command_loft (device_t id)

Upon receiving the command "loft" the engine is shifted from the current point to a distance GENG :: Antiplay, then move to the same point.

result_t XIMC_API command_sstp (device_t id)

Soft stop engine.

result_t XIMC_API get_position (device_t id, get_position_t *the_get_position)

Reads the value position in steps and micro for stepper motor and encoder steps all engines.

 result_t XIMC_API get_position_calb (device_t id, get_position_calb_t *the_get_position_calb, const calibration_t *calibration)

Reads position value in user units for stepper motor and encoder steps all engines.

result_t XIMC_API set_position (device_t id, const set_position_t *the_set_position)

Sets any position value in steps and micro for stepper motor and encoder steps of all engines.

result_t XIMC_API set_position_calb (device_t id, const set_position_calb_t *the_set_position_calb, const calibration_t *calibration)

Sets any position value and encoder value of all engines which use user units.

result_t XIMC_API command_zero (device_t id)

Sets the current position and the position in which the traffic moves by the move command and movr zero for all cases, except for movement to the target position.

Group of commands to save and load settings

result_t XIMC_API command_save_settings (device_t id)

Save all settings from controller's RAM to controller's flash memory, replacing previous data in controller's flash memory.

result_t XIMC_API command_read_settings (device_t id)

Read all settings from controller's flash memory to controller's RAM, replacing previous data in controller's RAM.

result_t XIMC_API command_save_robust_settings (device_t id)

Save important settings (calibration coefficients and etc.) from controller's RAM to controller's flash memory, replacing previous data in controller's flash memory.

result_t XIMC_API command_read_robust_settings (device_t id)

Read important settings (calibration coefficients and etc.) from controller's flash memory to controller's RAM, replacing previous data in controller's RAM.

result_t XIMC_API command_eesave_settings (device_t id)

Save settings from controller's RAM to stage's EEPROM memory, which spontaneity connected to stage and it isn't change without it mechanical reconstruction.

result_t XIMC_API command_eeread_settings (device_t id)

Read settings from controller's RAM to stage's EEPROM memory, which spontaneity connected to stage and it isn't change without it mechanical reconstruction.

result_t XIMC_API command_start_measurements (device_t id)

Start measurements and buffering of speed, following error.

result_t XIMC_API get_measurements (device_t id, measurements_t *measurements)

A command to read the data buffer to build a speed graph and a sequence error.

result_t XIMC_API get_chart_data (device_t id, chart_data_t *chart_data)

Return device electrical parameters, useful for charts.

result_t XIMC_API get_serial_number (device_t id, unsigned int *SerialNumber)

Read device serial number.

result_t XIMC_API get_firmware_version (device_t id, unsigned int *Major, unsigned int *Minor, unsigned int *Release)

Read controller's firmware version.

result_t XIMC_API service_command_updf (device_t id)

Command puts the controller to update the firmware.

Service commands

• result_t XIMC_API set_serial_number (device_t id, const serial_number_t *serial_number)

Write device serial number and hardware version to controller's flash memory.

result_t XIMC_API get_analog_data (device_t id, analog_data_t *analog_data)

Read analog data structure that contains raw analog data from ADC embedded on board.

result_t XIMC_API get_debug_read (device_t id, debug_read_t *debug_read)

Read data from firmware for debug purpose.

result_t XIMC_API set_debug_write (device_t id, const debug_write_t *debug_write)

Write data to firmware for debug purpose.

Group of commands to work with EEPROM

result_t XIMC_API set_stage_name (device_t id, const stage_name_t *stage_name)

Write user stage name from EEPROM.

result_t XIMC_API get_stage_name (device_t id, stage_name_t *stage_name)

Read user stage name from EEPROM.

• result_t XIMC_API set_stage_information (device_t id, const stage_information_t *stage_information) Set stage information to EEPROM.

result_t XIMC_API get_stage_information (device_t id, stage_information_t *stage_information)

Read stage information from EEPROM.

result_t XIMC_API set_stage_settings (device_t id, const stage_settings_t *stage_settings)

Set stage settings to EEPROM.

result_t XIMC_API get_stage_settings (device_t id, stage_settings_t *stage_settings)

Read stage settings from EEPROM.

result_t XIMC_API set_motor_information (device_t id, const motor_information_t *motor_information)

Set motor information to EEPROM.

result_t XIMC_API get_motor_information (device_t id, motor_information_t *motor_information)

Read motor information from EEPROM.

• result_t XIMC_API set_motor_settings (device_t id, const motor_settings_t *motor_settings)

Set motor settings to EEPROM.

result_t XIMC_API get_motor_settings (device_t id, motor_settings_t *motor_settings)

Read motor settings from EEPROM.

result_t XIMC_API set_encoder_information (device_t id, const encoder_information_t *encoder_information)

Set encoder information to EEPROM.

• result_t XIMC_API get_encoder_information (device_t id, encoder_information_t *encoder_information)

Read encoder information from EEPROM.

result_t XIMC_API set_encoder_settings (device_t id, const encoder_settings_t *encoder_settings)

Set encoder settings to EEPROM.

• result_t XIMC_API get_encoder_settings (device_t id, encoder_settings_t *encoder_settings)

Read encoder settings from EEPROM.

result_t XIMC_API set_hallsensor_information (device_t id, const hallsensor_information_t *hallsensor_information)

Set hall sensor information to EEPROM.

result_t XIMC_API get_hallsensor_information (device_t id, hallsensor_information_t *hallsensor_information)

Read hall sensor information from EEPROM.

result_t XIMC_API set_hallsensor_settings (device_t id, const hallsensor_settings_t *hallsensor_settings)
 Set hall sensor settings to EEPROM.

result_t XIMC_API get_hallsensor_settings (device_t id, hallsensor_settings_t *hallsensor_settings)

Read hall sensor settings from EEPROM.

result_t XIMC_API set_gear_information (device_t id, const gear_information_t *gear_information)

Set gear information to EEPROM.

• result_t XIMC_API get_gear_information (device_t id, gear_information_t *gear_information)

Read gear information from EEPROM.

result_t XIMC_API set_gear_settings (device_t id, const gear_settings_t *gear_settings)

Set gear settings to EEPROM.

result_t XIMC_API get_gear_settings (device_t id, gear_settings_t *gear_settings)

Read gear settings from EEPROM.

result_t XIMC_API set_accessories_settings (device_t id, const accessories_settings_t *accessories_settings)

Set additional accessories information to EEPROM.

• result_t XIMC_API get_accessories_settings (device_t id, accessories_settings_t *accessories_settings)

Read additional accessories information from EEPROM.

result_t XIMC_API get_bootloader_version (device_t id, unsigned int *Major, unsigned int *Minor, unsigned int *Release)

Read controller's firmware version.

result_t XIMC_API get_init_random (device_t id, init_random_t *init_random)

Read random number from controller.

result_t XIMC_API get_globally_unique_identifier (device_t id, globally_unique_identifier_t *globally_unique_identifier)

This value is unique to each individual die but is not a random value.

result_t XIMC_API command_change_motor (device_t id, const command_change_motor_t *the_command_change_motor)

Change motor - command for switching output relay.

result_t XIMC_API goto_firmware (device_t id, uint8_t *ret)

Reboot to firmware.

result_t XIMC_API has_firmware (const char *uri, uint8_t *ret)

Check for firmware on device.

result_t XIMC_API command_update_firmware (const char *uri, const uint8_t *data, uint32_t data_size)
 Update firmware.

result_t XIMC_API write_key (const char *uri, uint8_t *key)

Write controller key.

result_t XIMC_API command_reset (device_t id)

Reset controller.

result_t XIMC_API command_clear_fram (device_t id)

Clear controller FRAM.

Boards and drivers control

Functions for searching and opening/closing devices

typedef char * pchar

Nevermind.

typedef void(XIMC_CALLCONV * logging_callback_t)(int loglevel, const wchar_t *message, void *user_data)

Logging callback prototype.

device_t XIMC_API open_device (const char *uri)

Open a device with OS uri uri and return identifier of the device which can be used in calls.

result_t XIMC_API close_device (device_t *id)

Close specified device.

result_t XIMC_API load_correction_table (device_t *id, const char *namefile)

Command of loading a correction table from a text file.

result_t XIMC_API probe_device (const char *uri)

Check if a device with OS uri uri is XIMC device.

result_t XIMC_API set_bindy_key (const char *keyfilepath)

Set network encryption layer (bindy) key.

device_enumeration_t XIMC_API enumerate_devices (int enumerate_flags, const char *hints)

Enumerate all devices that looks like valid.

result_t XIMC_API free_enumerate_devices (device_enumeration_t device_enumeration)

Free memory returned by enumerate_devices.

• int XIMC_API get_device_count (device_enumeration_t device_enumeration)

Get device count.

pchar XIMC_API get_device_name (device_enumeration_t device_enumeration, int device_index)

Get device name from the device enumeration.

result_t XIMC_API get_enumerate_device_serial (device_enumeration_t device_enumeration, int device_index, uint32_t *serial)

Get device serial number from the device enumeration.

result_t XIMC_API get_enumerate_device_information (device_enumeration_t device_enumeration, int device_index, device_information_t *device_information)

Get device information from the device enumeration.

• result_t XIMC_API get_enumerate_device_controller_name (device_enumeration_t device_enumeration, int device_index, controller_name_t *controller_name)

Get controller name from the device enumeration.

result_t XIMC_API get_enumerate_device_stage_name (device_enumeration_t device_enumeration, int device_index, stage_name_t *stage_name)

Get stage name from the device enumeration.

• result_t XIMC_API get_enumerate_device_network_information (device_enumeration_t device_enumeration, int device_index, device_network_information_t *device_network_information)

Get device network information from the device enumeration.

result_t XIMC_API reset_locks ()

Reset library locks in a case of deadlock.

• result_t XIMC_API ximc_fix_usbser_sys (const char *device_uri)

Fix for errors in Windows USB driver stack.

void XIMC_API msec_sleep (unsigned int msec)

Sleeps for a specified amount of time.

void XIMC_API ximc_version (char *version)

Returns a library version.

void XIMC_API logging_callback_stderr_wide (int loglevel, const wchar_t *message, void *user_data)

Simple callback for logging to stderr in wide chars.

void XIMC_API logging_callback_stderr_narrow (int loglevel, const wchar_t *message, void *user_data)
 Simple callback for logging to stderr in narrow (single byte) chars.

void XIMC_API set_logging_callback (logging_callback_t logging_callback, void *user_data)

Sets a logging callback.

result_t XIMC_API get_status (device_t id, status_t *status)

Return device state.

result_t XIMC_API get_status_calb (device_t id, status_calb_t *status, const calibration_t *calibration)
 Return device state.

• result_t XIMC_API get_device_information (device_t id, device_information_t *device_information)

Return device information.

result_t XIMC_API command_wait_for_stop (device_t id, uint32_t refresh_interval_ms)
 Wait for stop.

result_t XIMC_API command_homezero (device_t id)

Make home command, wait until it is finished and make zero command.

7.1.1 Detailed Description

Header file for libximc library.

7.1.2 Macro Definition Documentation

7.1.2.1 #define ALARM_ON_DRIVER_OVERHEATING 0x01

If this flag is set enter Alarm state on driver overheat signal.

7.1.2.2 #define BACK_EMF_INDUCTANCE_AUTO 0x01

Flag of auto-detection of inductance of windings of the engine.

7.1.2.3 #define BACK_EMF_KM_AUTO 0x04

Flag of auto-detection of electromechanical coefficient of the engine.

7.1.2.4 #define BACK_EMF_RESISTANCE_AUTO 0x02

Flag of auto-detection of resistance of windings of the engine.

7.1.2.5 #define BORDER_IS_ENCODER 0x01

Borders are fixed by predetermined encoder values, if set; borders position on limit switches, if not set.

7.1.2.6 #define BORDER_STOP_LEFT 0x02

Motor should stop on left border.

7.1.2.7 #define BORDER_STOP_RIGHT 0x04

Motor should stop on right border.

7.1.2.8 #define BORDERS_SWAP_MISSET_DETECTION 0x08

Motor should stop on both borders.

Need to save motor then wrong border settings is set

7.1.2.9 #define BRAKE_ENABLED 0x01

Brake control is enabled, if this flag is set.

7.1.2.10 #define BRAKE_ENG_PWROFF 0x02

Brake turns off power of step motor, if this flag is set.

7.1.2.11 #define CONTROL_BTN_LEFT_PUSHED_OPEN 0x04

Pushed left button corresponds to open contact, if this flag is set.

7.1.2.12 #define CONTROL_BTN_RIGHT_PUSHED_OPEN 0x08

Pushed right button corresponds to open contact, if this flag is set.

7.1.2.13 #define CONTROL_MODE_BITS 0x03

Bits to control engine by joystick or buttons.

7.1.2.14 #define CONTROL_MODE_JOY 0x01

Control by joystick.

7.1.2.15 #define CONTROL_MODE_LR 0x02

Control by left/right buttons.

7.1.2.16 #define CONTROL_MODE_OFF 0x00

Control is disabled.

7.1.2.17 #define CTP_ALARM_ON_ERROR 0x04

Set ALARM on mismatch, if flag set.

7.1.2.18 #define CTP_BASE 0x02

Position control is based on revolution sensor, if this flag is set; otherwise it is based on encoder.

7.1.2.19 #define CTP_ENABLED 0x01

Position control is enabled, if flag set.

7.1.2.20 #define CTP_ERROR_CORRECTION 0x10

Correct errors which appear when slippage if the flag is set.

It works only with the encoder. Incompatible with flag CTP_ALARM_ON_ERROR.

7.1.2.21 #define DRIVER_TYPE_DISCRETE_FET 0x01

Driver with discrete FET keys.

Default option.

7.1.2.22 #define DRIVER_TYPE_EXTERNAL 0x03

External driver.

7.1.2.23 #define DRIVER_TYPE_INTEGRATE 0x02

Driver with integrated IC.

7.1.2.24 #define EEPROM_PRECEDENCE 0x01

If the flag is set settings from external EEPROM override controller settings.

7.1.2.25 #define ENC_STATE_ABSENT 0x00

Encoder is absent.

7.1.2.26 #define ENC_STATE_MALFUNC 0x02

Encoder is connected and malfunctioning.

7.1.2.27 #define ENC_STATE_OK 0x04

Encoder is connected and working properly.

7.1.2.28 #define ENC_STATE_REVERS 0x03

Encoder is connected and operational but counts in other direction.

7.1.2.29 #define ENC_STATE_UNKNOWN 0x01

Encoder state is unknown.

7.1.2.30 #define ENDER_SW1_ACTIVE_LOW 0x02

1 - Limit switch connnected to pin SW1 is triggered by a low level on pin.

7.1.2.31 #define ENDER_SW2_ACTIVE_LOW 0x04

1 - Limit switch connnected to pin SW2 is triggered by a low level on pin.

7.1.2.32 #define ENDER_SWAP 0x01

First limit switch on the right side, if set; otherwise on the left side.

7.1.2.33 #define ENGINE_ACCEL_ON 0x10

Acceleration enable flag.

If it set, motion begins with acceleration and ends with deceleration.

7.1.2.34 #define ENGINE_ANTIPLAY 0x08

Play compensation flag.

If it set, engine makes backlash (play) compensation procedure and reach the predetermined position accurately on low speed.

7.1.2.35 #define ENGINE_CURRENT_AS_RMS 0x02

Engine current meaning flag.

If the flag is unset, then engine current value is interpreted as maximum amplitude value. If the flag is set, then engine current value is interpreted as root mean square current value (for stepper) or as the current value calculated from the maximum heat dissipation (bldc).

7.1.2.36 #define ENGINE_LIMIT_CURR 0x40

Maximum motor current limit enable flag(is only used with DC motor).

7.1.2.37 #define ENGINE_LIMIT_RPM 0x80

Maximum motor speed limit enable flag.

7.1.2.38 #define ENGINE_LIMIT_VOLT 0x20

Maximum motor voltage limit enable flag(is only used with DC motor).

7.1.2.39 #define ENGINE_MAX_SPEED 0x04

Max speed flag.

If it is set, engine uses maximum speed achievable with the present engine settings as nominal speed.

7.1.2.40 #define ENGINE_REVERSE 0x01

Reverse flag.

It determines motor shaft rotation direction that corresponds to feedback counts increasing. If not set (default), motor shaft rotation direction under positive voltage corresponds to feedback counts increasing and vice versa. Change it if you see that positive directions on motor and feedback are opposite.

7.1.2.41 #define ENGINE_TYPE_2DC 0x02

2 DC motors.

7.1.2.42 #define ENGINE_TYPE_BRUSHLESS 0x05

Brushless motor.

7.1.2.43 #define ENGINE_TYPE_DC 0x01

DC motor.

7.1.2.44 #define ENGINE_TYPE_NONE 0x00

A value that shouldn't be used.

7.1.2.45 #define ENGINE_TYPE_STEP 0x03

Step motor.

7.1.2.46 #define ENGINE_TYPE_TEST 0x04

Duty cycle are fixed.

Used only manufacturer.

7.1.2.47 #define ENUMERATE_PROBE 0x01

Check if a device with OS name name is XIMC device.

Be carefuly with this flag because it sends some data to the device.

7.1.2.48 #define EXTIO_SETUP_INVERT 0x02

Interpret EXTIO states and fronts inverted if flag is set.

Falling front as input event and low logic level as active state.

7.1.2.49 #define EXTIO_SETUP_MODE_IN_ALARM 0x05

Set Alarm when the signal goes to the active state.

7.1.2.50 #define EXTIO_SETUP_MODE_IN_BITS 0x0F

Bits of the behaviour selector when the signal on input goes to the active state.

7.1.2.51 #define EXTIO_SETUP_MODE_IN_HOME 0x04

Issue HOME command.

7.1.2.52 #define EXTIO_SETUP_MODE_IN_MOVR 0x03

Issue MOVR command with last used settings.

7.1.2.53 #define EXTIO_SETUP_MODE_IN_NOP 0x00

Do nothing.

7.1.2.54 #define EXTIO_SETUP_MODE_IN_PWOF 0x02

Issue PWOF command, powering off all engine windings.

7.1.2.55 #define EXTIO_SETUP_MODE_IN_STOP 0x01

Issue STOP command, ceasing the engine movement.

7.1.2.56 #define EXTIO_SETUP_MODE_OUT_ALARM 0x30

EXTIO pin stays active during Alarm state.

7.1.2.57 #define EXTIO_SETUP_MODE_OUT_BITS 0xF0

Bits of the output behaviour selection.

7.1.2.58 #define EXTIO_SETUP_MODE_OUT_MOTOR_FOUND 0x50

EXTIO pin stays active when motor is connected (first winding).

7.1.2.59 #define EXTIO_SETUP_MODE_OUT_MOTOR_ON 0x40

EXTIO pin stays active when windings are powered.

7.1.2.60 #define EXTIO_SETUP_MODE_OUT_MOVING 0x20

EXTIO pin stays active during moving state.

7.1.2.61 #define EXTIO_SETUP_MODE_OUT_OFF 0x00

EXTIO pin always set in inactive state.

7.1.2.62 #define EXTIO_SETUP_MODE_OUT_ON 0x10

EXTIO pin always set in active state.

7.1.2.63 #define EXTIO_SETUP_OUTPUT 0x01

EXTIO works as output if flag is set, works as input otherwise.

7.1.2.64 #define FEEDBACK_EMF 0x04

Feedback by EMF.

7.1.2.65 #define FEEDBACK_ENC_REVERSE 0x01

Reverse count of encoder.

7.1.2.66 #define FEEDBACK_ENC_TYPE_AUTO 0x00

Auto detect encoder type.

7.1.2.67 #define FEEDBACK_ENC_TYPE_BITS 0xC0

Bits of the encoder type.

7.1.2.68 #define FEEDBACK_ENC_TYPE_DIFFERENTIAL 0x80

Differential encoder.

7.1.2.69 #define FEEDBACK_ENC_TYPE_SINGLE_ENDED 0x40

Single ended encoder.

7.1.2.70 #define FEEDBACK_ENCODER 0x01

Feedback by encoder.

7.1.2.71 #define FEEDBACK_ENCODER_MEDIATED 0x06

Feedback by encoder mediated by mechanical transmission (for example leadscrew).

7.1.2.72 #define FEEDBACK_NONE 0x05

Feedback is absent.

7.1.2.73 #define H_BRIDGE_ALERT 0x04

If this flag is set then turn off the power unit with a signal problem in one of the transistor bridge.

7.1.2.74 #define HOME_DIR_FIRST 0x001

Flag defines direction of 1st motion after execution of home command.

Direction is right, if set; otherwise left.

7.1.2.75 #define HOME_DIR_SECOND 0x002

Flag defines direction of 2nd motion.

Direction is right, if set; otherwise left.

7.1.2.76 #define HOME_HALF_MV 0x008

If the flag is set, the stop signals are ignored in start of second movement the first half-turn.

7.1.2.77 #define HOME_MV_SEC_EN 0x004

Use the second phase of calibration to the home position, if set; otherwise the second phase is skipped.

7.1.2.78 #define HOME_STOP_FIRST_BITS 0x030

Bits of the first stop selector.

7.1.2.79 #define HOME_STOP_FIRST_LIM 0x030

First motion stops by limit switch.

7.1.2.80 #define HOME_STOP_FIRST_REV 0x010

First motion stops by revolution sensor.

7.1.2.81 #define HOME_STOP_FIRST_SYN 0x020

First motion stops by synchronization input.

7.1.2.82 #define HOME_STOP_SECOND_BITS 0x0C0

Bits of the second stop selector.

7.1.2.83 #define HOME_STOP_SECOND_LIM 0x0C0

Second motion stops by limit switch.

7.1.2.84 #define HOME_STOP_SECOND_REV 0x040

Second motion stops by revolution sensor.

7.1.2.85 #define HOME_STOP_SECOND_SYN 0x080

Second motion stops by synchronization input.

7.1.2.86 #define HOME_USE_FAST 0x100

Use the fast algorithm of calibration to the home position, if set; otherwise the traditional algorithm.

7.1.2.87 #define JOY_REVERSE 0x01

Joystick action is reversed.

Joystick deviation to the upper values correspond to negative speeds and vice versa.

7.1.2.88 #define LOW_UPWR_PROTECTION 0x02

If this flag is set turn off motor when voltage is lower than LowUpwrOff.

7.1.2.89 #define MICROSTEP_MODE_FRAC_128 0x08

1/128 step mode.

7.1.2.90 #define MICROSTEP_MODE_FRAC_16 0x05

1/16 step mode.

7.1.2.91 #define MICROSTEP_MODE_FRAC_2 0x02

1/2 step mode.

7.1.2.92 #define MICROSTEP_MODE_FRAC_256 0x09

1/256 step mode.

7.1.2.93 #define MICROSTEP_MODE_FRAC_32 0x06

1/32 step mode.

7.1.2.94 #define MICROSTEP_MODE_FRAC_4 0x03

1/4 step mode.

7.1.2.95 #define MICROSTEP_MODE_FRAC_64 0x07

1/64 step mode.

7.1.2.96 #define MICROSTEP_MODE_FRAC_8 0x04

1/8 step mode.

7.1.2.97 #define MICROSTEP_MODE_FULL 0x01

Full step mode.

7.1.2.98 #define MOVE_STATE_ANTIPLAY 0x04

Motor is playing compensation, if flag set.

7.1.2.99 #define MOVE_STATE_MOVING 0x01

This flag indicates that controller is trying to move the motor.

Don't use this flag for waiting of completion of the movement command. Use MVCMD_RUNNING flag from the MvCmdSts field instead.

7.1.2.100 #define MOVE_STATE_TARGET_SPEED 0x02

Target speed is reached, if flag set.

7.1.2.101 #define MVCMD_ERROR 0x40

Finish state (1 - move command have finished with an error, 0 - move command have finished correctly).

This flags is actual when MVCMD_RUNNING signals movement finish.

7.1.2.102 #define MVCMD_HOME 0x06

Command home.

7.1.2.103 #define MVCMD_LEFT 0x03

Command left.

7.1.2.104 #define MVCMD_LOFT 0x07

Command loft.

7.1.2.105 #define MVCMD_MOVE 0x01

Command move.

7.1.2.106 #define MVCMD_MOVR 0x02

Command movr.

7.1.2.107 #define MVCMD_NAME_BITS 0x3F

Move command bit mask.

7.1.2.108 #define MVCMD_RIGHT 0x04

Command rigt.

7.1.2.109 #define MVCMD_RUNNING 0x80

Move command state (0 - move command have finished, 1 - move command is being executed).

7.1.2.110 #define MVCMD_SSTP 0x08

Command soft stop.

7.1.2.111 #define MVCMD_STOP 0x05

Command stop.

7.1.2.112 #define MVCMD_UKNWN 0x00

Unknown command.

7.1.2.113 #define POWER_OFF_ENABLED 0x02

Power off enabled after PowerOffDelay, if this flag is set.

7.1.2.114 #define POWER_REDUCT_ENABLED 0x01

Current reduction enabled after CurrReductDelay, if this flag is set.

7.1.2.115 #define POWER_SMOOTH_CURRENT 0x04

Current ramp-up/down is performed smoothly during current_set_time, if this flag is set.

7.1.2.116 #define PWR_STATE_MAX 0x05

Motor windings are powered by maximum current driver can provide at this voltage.

7.1.2.117 #define PWR_STATE_NORM 0x03

Motor windings are powered by nominal current.

7.1.2.118 #define PWR_STATE_OFF 0x01

Motor windings are disconnected from the driver.

7.1.2.119 #define PWR_STATE_REDUCT 0x04

Motor windings are powered by reduced current to lower power consumption.

7.1.2.120 #define PWR_STATE_UNKNOWN 0x00

Unknown state, should never happen.

7.1.2.121 #define REV_SENS_INV 0x08

Sensor is active when it 0 and invert makes active level 1.

That is, if you do not invert, it is normal logic - 0 is the activation.

7.1.2.122 #define SETPOS_IGNORE_ENCODER 0x02

Will not reload encoder state if this flag is set.

7.1.2.123 #define SETPOS_IGNORE_POSITION 0x01

Will not reload position in steps/microsteps if this flag is set.

7.1.2.124 #define STATE_ALARM 0x0000040

Controller is in alarm state indicating that something dangerous had happened.

Most commands are ignored in this state. To reset the flag a STOP command must be issued.

7.1.2.125 #define STATE_BORDERS_SWAP_MISSET 0x0008000

Engine stuck at the wrong edge.

7.1.2.126 #define STATE_BRAKE 0x0200

State of Brake pin.

7.1.2.127 #define STATE_BUTTON_LEFT 0x0008

Button "left" state (1 if pressed).

7.1.2.128 #define STATE_BUTTON_RIGHT 0x0004

Button "right" state (1 if pressed).

7.1.2.129 #define STATE_CONTR 0x000003F

Flags of controller states.

7.1.2.130 #define STATE_CONTROLLER_OVERHEAT 0x0000200

Controller overheat.

7.1.2.131 #define STATE_CTP_ERROR 0x0000080

Control position error(is only used with stepper motor).

7.1.2.132 #define STATE_CURRENT_MOTOR0 0x0000000

Motor 0.

7.1.2.133 #define STATE_CURRENT_MOTOR1 0x0040000

Motor 1.

7.1.2.134 #define STATE_CURRENT_MOTOR2 0x0080000

Motor 2.

7.1.2.135 #define STATE_CURRENT_MOTOR3 0x00C0000

Motor 3.

7.1.2.136 #define STATE_CURRENT_MOTOR_BITS 0x00C0000

Bits indicating the current operating motor on boards with multiple outputs for engine mounting.

7.1.2.137 #define STATE_DIG_SIGNAL 0xFFFF

Flags of digital signals.

7.1.2.138 #define STATE_EEPROM_CONNECTED 0x0000010

EEPROM with settings is connected.

7.1.2.139 #define STATE_ENC_A 0x2000

State of encoder A pin.

7.1.2.140 #define STATE_ENC_B 0x4000

State of encoder B pin.

7.1.2.141 #define STATE_ENGINE_RESPONSE_ERROR 0x0800000

Error response of the engine control action.

7.1.2.142 #define STATE_ERRC 0x0000001

Command error encountered.

7.1.2.143 #define STATE_ERRD 0x0000002

Data integrity error encountered.

7.1.2.144 #define STATE_ERRV 0x0000004

Value error encountered.

7.1.2.145 #define STATE_EXTIO_ALARM 0x1000000

The error is caused by the input signal.

7.1.2.146 #define STATE_GPIO_LEVEL 0x0020

State of external GPIO pin.

7.1.2.147 #define STATE_GPIO_PINOUT 0x0010

External GPIO works as Out, if flag set; otherwise works as In.

7.1.2.148 #define STATE_LEFT_EDGE 0x0002

Engine stuck at the left edge.

7.1.2.149 #define STATE_LOW_USB_VOLTAGE 0x0002000

USB voltage is insufficient for normal operation.

7.1.2.150 #define STATE_OVERLOAD_POWER_CURRENT 0x0000800

Power current exceeds safe limit.

7.1.2.151 #define STATE_OVERLOAD_POWER_VOLTAGE 0x0000400

Power voltage exceeds safe limit.

7.1.2.152 #define STATE_OVERLOAD_USB_CURRENT 0x0004000

USB current exceeds safe limit.

7.1.2.153 #define STATE_OVERLOAD_USB_VOLTAGE 0x0001000

USB voltage exceeds safe limit.

7.1.2.154 #define STATE_POWER_OVERHEAT 0x0000100

Power driver overheat.

7.1.2.155 #define STATE_REV_SENSOR 0x0400

State of Revolution sensor pin.

7.1.2.156 #define STATE_RIGHT_EDGE 0x0001

Engine stuck at the right edge.

7.1.2.157 #define STATE_SECUR 0x1B3FFC0

Flags of security.

7.1.2.158 #define STATE_SYNC_INPUT 0x0800

State of Sync input pin.

7.1.2.159 #define STATE_SYNC_OUTPUT 0x1000

State of Sync output pin.

7.1.2.160 #define SYNCIN_ENABLED 0x01

Synchronization in mode is enabled, if this flag is set.

7.1.2.161 #define SYNCIN_GOTOPOSITION 0x04

The engine is go to position specified in Position and uPosition, if this flag is set.

And it is shift on the Position and uPosition, if this flag is unset

7.1.2.162 #define SYNCIN_INVERT 0x02

Trigger on falling edge if flag is set, on rising edge otherwise.

7.1.2.163 #define SYNCOUT_ENABLED 0x01

Synchronization out pin follows the synchronization logic, if set.

It governed by SYNCOUT_STATE flag otherwise.

7.1.2.164 #define SYNCOUT_IN_STEPS 0x08

Use motor steps/encoder pulses instead of milliseconds for output pulse generation if the flag is set.

7.1.2.165 #define SYNCOUT_INVERT 0x04

Low level is active, if set, and high level is active otherwise.

7.1.2.166 #define SYNCOUT_ONPERIOD 0x40

Generate synchronization pulse every SyncOutPeriod encoder pulses.

7.1.2.167 #define SYNCOUT_ONSTART 0x10

Generate synchronization pulse when movement starts.

7.1.2.168 #define SYNCOUT_ONSTOP 0x20

Generate synchronization pulse when movement stops.

7.1.2.169 #define SYNCOUT_STATE 0x02

When output state is fixed by negative SYNCOUT_ENABLED flag, the pin state is in accordance with this flag state.

7.1.2.170 #define UART_PARITY_BITS 0x03

Bits of the parity.

7.1.2.171 #define WIND_A_STATE_ABSENT 0x00

Winding A is disconnected.

7.1.2.172 #define WIND_A_STATE_MALFUNC 0x02

Winding A is short-circuited.

7.1.2.173 #define WIND_A_STATE_OK 0x03

Winding A is connected and working properly.

7.1.2.174 #define WIND_A_STATE_UNKNOWN 0x01

Winding A state is unknown.

7.1.2.175 #define WIND_B_STATE_ABSENT 0x00

Winding B is disconnected.

7.1.2.176 #define WIND_B_STATE_MALFUNC 0x20

Winding B is short-circuited.

7.1.2.177 #define WIND_B_STATE_OK 0x30

Winding B is connected and working properly.

7.1.2.178 #define WIND_B_STATE_UNKNOWN 0x10

Winding B state is unknown.

7.1.2.179 #define XIMC_API

Library import macro Macros allows to automatically import function from shared library.

It automatically expands to dllimport on msvc when including header file

7.1.3 Typedef Documentation

7.1.3.1 typedef void(XIMC_CALLCONV * logging_callback_t)(int loglevel, const wchar_t *message, void *user_data)

Logging callback prototype.

Parameters

loglevel	a loglevel
message	a message

7.1.4 Function Documentation

7.1.4.1 result_t XIMC_API close_device (device_t * id)

Close specified device.

Parameters

id	an identifier of device

7.1.4.2 **result_t XIMC_API** command_add_sync_in_action (**device_t** id, const **command_add_sync_in_action_t** * the_command_add_sync_in_action)

This command adds one element of the FIFO commands that are executed when input clock pulse.

Each pulse synchronization or perform that action, which is described in SSNI, if the buffer is empty, or the oldest loaded into the buffer action to temporarily replace the speed and coordinate in SSNI. In the latter case this action is erased from the buffer. The number of remaining empty buffer elements can be found in the structure of GETS.

Parameters

id	an identifier of device
----	-------------------------

7.1.4.3 result_t XIMC_API command_add_sync_in_action_calb (device_t id, const command_add_sync_in_action_calb_t * the_command_add_sync_in_action_calb, const calibration_t * calibration)

This command adds one element of the FIFO commands that are executed when input clock pulsewhich use user units.

Each pulse synchronization or perform that action, which is described in SSNI, if the buffer is empty, or the oldest loaded into the buffer action to temporarily replace the speed and coordinate in SSNI. In the latter case this action is erased from the buffer. The number of remaining empty buffer elements can be found in the structure of GETS.

Parameters

id	id an identifier of device	
calibration	user unit settings	

7.1.4.4 **result_t XIMC_API** command_change_motor (**device_t** id, const **command_change_motor_t** * the_command_change_motor)

Change motor - command for switching output relay.

Parameters

id	an identifier of device

7.1.4.5 result_t XIMC_API command_clear_fram (device_t id)

Clear controller FRAM.

Can be used by manufacturer only

Parameters

id an identifier of device

7.1.4.6 result_t XIMC_API command_eeread_settings (device_t id)

Read settings from controller's RAM to stage's EEPROM memory, which spontaneity connected to stage and it isn't change without it mechanical reconstruction.

Parameters

id	an identifier of device

7.1.4.7 **result_t XIMC_API** command_eesave_settings (**device_t** id)

Save settings from controller's RAM to stage's EEPROM memory, which spontaneity connected to stage and it isn't change without it mechanical reconstruction.

Can be used by manufacturer only.

Parameters

id	an identifier of device

7.1.4.8 result_t XIMC_API command_home (device_t id)

The positive direction is to the right.

A value of zero reverses the direction of the direction of the flag, the set speed. Restriction imposed by the trailer, act the same, except that the limit switch contact does not stop. Limit the maximum speed, acceleration and deceleration function. 1) moves the motor according to the speed FastHome, uFastHome and flag HOME_DIR_FAST until limit switch, if the flag is set HOME_STOP_ENDS, until the signal from the input synchronization if the flag HOME_STOP_SYNC (as accurately as possible is important to catch the moment of operation limit switch) or until the signal is received from the speed sensor, if the flag HOME_STOP_REV_SN 2) then moves according to the speed SlowHome, uSlowHome and flag HOME_DIR_SLOW until signal from the clock input, if the flag HOME_MV_SEC. If the flag HOME_MV_SEC reset skip this paragraph. 3) then move the motor according to the speed FastHome, uFastHome and flag HOME_DIR_SLOW a distance HomeDelta, uHomeDelta. description of flags and variable see in description for commands GHOM/SHOM

Parameters

id	an identifier of device

See Also

home_settings_t get_home_settings set_home_settings

7.1.4.9 result_t XIMC_API command_homezero (device_t id)

Make home command, wait until it is finished and make zero command.

This is a convinient way to calibrate zero position.

Parameters

	id	an identifier of device
out	ret	RESULT_OK if controller has finished home & zero correctly or result of first
		controller query that returned anything other than RESULT_OK.

7.1.4.10 result_t XIMC_API command_left (device_t id)

Start continous moving to the left.

Parameters

id	an identifier of device

7.1.4.11 result_t XIMC_API command_loft (device_t id)

Upon receiving the command "loft" the engine is shifted from the current point to a distance GENG :: Antiplay, then move to the same point.

Parameters

id	an identifier of device

7.1.4.12 result_t XIMC_API command_move (device_t id, int Position, int uPosition)

Upon receiving the command "move" the engine starts to move with pre-set parameters (speed, acceleration, retention), to the point specified to the Position, uPosition.

For stepper motor uPosition sets the microstep, for DC motor this field is not used.

Parameters

id	an identifier of device
Position	position to move.
uPosition	part of the position to move, microsteps. Microstep size and the range of valid values for this
	field depend on selected step division mode (see MicrostepMode field in engine_settings).

7.1.4.13 **result_t XIMC_API** command_move_calb (**device_t** id, float Position, const **calibration_t** * calibration)

Move to position which use user units.

Upon receiving the command "move" the engine starts to move with pre-set parameters (speed, acceleration, retention), to the point specified to the Position.

Parameters

id	an identifier of device
Position	position to move.
calibration	user unit settings

Note

The parameter Position is adjusted by the correction table.

7.1.4.14 **result_t XIMC_API** command_movr (**device_t** id, int DeltaPosition, int uDeltaPosition)

Move to offset.

Upon receiving the command "movr" engine starts to move with pre-set parameters (speed, acceleration, hold), left or right (depending on the sign of DeltaPosition) by the number of pulses specified in the fields DeltaPosition, uDeltaPosition. For stepper motor uDeltaPosition sets the microstep, for DC motor this field is not used.

Parameters

DeltaPosition	shift from initial position.
uDeltaPosition	part of the offset shift, microsteps. Microstep size and the range of valid values for this field
	depend on selected step division mode (see MicrostepMode field in engine_settings).
id	an identifier of device

7.1.4.15 **result_t XIMC_API** command_movr_calb (**device_t** id, float DeltaPosition, const **calibration_t** * calibration)

Move to offset using user units.

Upon receiving the command "movr" engine starts to move with pre-set parameters (speed, acceleration, hold), left or right (depending on the sign of DeltaPosition) the distance specified in the field DeltaPosition.

Parameters

DeltaPosition	shift from initial position.
id	an identifier of device
calibration	user unit settings

Note

The end coordinate is calculated using DeltaPosition, is adjusted by the correction table. To calculate coordinates correctly, when using a correction table, you do not need to execute movr commands in batches.

7.1.4.16 result_t XIMC_API command_power_off (device_t id)

Immediately power off motor regardless its state.

Shouldn't be used during motion as the motor could be power on again automatically to continue movement. The command is designed for manual motor power off. When automatic power off after stop is required, use power management system.

Parameters

id	an identifier of device

See Also

get_power_settings
set_power_settings

7.1.4.17 **result_t XIMC_API** command_read_robust_settings (**device_t** id)

Read important settings (calibration coefficients and etc.) from controller's flash memory to controller's RAM, replacing previous data in controller's RAM.

Parameters

id	an identifier of device

7.1.4.18 result_t XIMC_API command_read_settings (device_t id)

Read all settings from controller's flash memory to controller's RAM, replacing previous data in controller's RAM.

Parameters

id an identifier of device

7.1.4.19 result_t XIMC_API command_reset (device_t id)

Reset controller.

Can be used by manufacturer only

Parameters

id an identifier of device

7.1.4.20 result_t XIMC_API command_right (device_t id)

Start continous moving to the right.

Parameters

id an identifier of device

7.1.4.21 **result_t XIMC_API** command_save_robust_settings (**device_t** id)

Save important settings (calibration coefficients and etc.) from controller's RAM to controller's flash memory, replacing previous data in controller's flash memory.

Parameters

id an identifier of device

7.1.4.22 **result_t XIMC_API** command_save_settings (**device_t** id)

Save all settings from controller's RAM to controller's flash memory, replacing previous data in controller's flash memory.

Parameters

id an identifier of device

7.1.4.23 result_t XIMC_API command_sstp (device_t id)

Soft stop engine.

The motor stops with deceleration speed.

Parameters

id an identifier of device

7.1.4.24 result_t XIMC_API command_start_measurements (device_t id)

Start measurements and buffering of speed, following error.

Parameters

id	an identifier of device

7.1.4.25 result_t XIMC_API command_stop (device_t id)

Immediately stop the engine, the transition to the STOP, mode key BREAK (winding short-circuited), the regime "retention" is deactivated for DC motors, keeping current in the windings for stepper motors (with Power management settings).

Parameters

id an identifier of device

7.1.4.26 **result_t XIMC_API** command_update_firmware (const char * uri, const uint8_t * data, uint32_t data_size)

Update firmware.

Service command

Parameters

uri	a uri of device	
data	firmware byte stream	
data_size size of byte stream		

7.1.4.27 **result_t XIMC_API** command_wait_for_stop (**device_t** id, uint32_t refresh_interval_ms)

Wait for stop.

Parameters

	id	an identifier of device
	refresh_interval	Status refresh interval. The function waits this number of milliseconds between
	ms	get_status requests to the controller. Recommended value of this parameter
		is 10 ms. Use values of less than 3 ms only when necessary - small refresh
		interval values do not significantly increase response time of the function, but
		they create substantially more traffic in controller-computer data channel.
out	ret	RESULT_OK if controller has stopped and result of the first get_status command
		which returned anything other than RESULT_OK otherwise.

7.1.4.28 result_t XIMC_API command_zero (device_t id)

Sets the current position and the position in which the traffic moves by the move command and movr zero for all cases, except for movement to the target position.

In the latter case, set the zero current position and the target position counted so that the absolute position of the destination is the same. That is, if we were at 400 and moved to 500, then the command Zero makes the current position of 0, and the position of the destination - 100. Does not change the mode of movement that is if the motion is carried, it continues, and if the engine is in the "hold", the type of retention remains.

Parameters

id	an identifier of device

7.1.4.29 **device_enumeration_t XIMC_API** enumerate_devices (int enumerate_flags, const char * hints)

Enumerate all devices that looks like valid.

Parameters

in	enumerate₋flags	enumerate devices flags
in	hints	extended information hints is a string of form "key=value\nkey2=value2". Un-
		recognized key-value pairs are ignored. Key list: addr - used together with
		ENUMERATE_NETWORK flag. Non-null value is a remote host name or a
		comma-separated list of host names which contain the devices to be found, ab-
		sent value means broadcast discovery. adapter_addr - used together with EN-
		UMERATE_NETWORK flag. Non-null value is a IP address of network adapter.
		Remote ximc device must be on the same local network as the adapter. To
		enumerate network devices you must call set_bindy_key first.

7.1.4.30 **result_t XIMC_API** free_enumerate_devices (**device_enumeration_t** device_enumeration)

Free memory returned by *enumerate_devices*.

Parameters

in	device	opaque pointer to an enumeration device data
	enumeration	

7.1.4.31 **result_t XIMC_API** get_accessories_settings (**device_t** id, **accessories_settings_t** * accessories_settings)

Read additional accessories information from EEPROM.

Parameters

	id	an identifier of device
out	accessories	structure contains information about additional accessories
	settings	

7.1.4.32 result_t XIMC_API get_analog_data (device_t id, analog_data_t * analog_data)

Read analog data structure that contains raw analog data from ADC embedded on board.

This function used for device testing and deep recalibraton by manufacturer only.

	id	an identifier of device
out	analog₋data	analog data coefficients

7.1.4.33 **result_t XIMC_API** get_bootloader_version (**device_t** id, unsigned int * Major, unsigned int * Minor, unsigned int * Release)

Read controller's firmware version.

Parameters

	id	an identifier of device
out	Major	major version
out	Minor	minor version
out	Release	release version

7.1.4.34 result_t XIMC_API get_brake_settings (device_t id, brake_settings_t * brake_settings_)

Read settings of brake control.

Parameters

	id	an identifier of device
out	brake₋settings	structure contains settings of brake control

7.1.4.35 **result_t XIMC_API** get_calibration_settings (**device_t** id, **calibration_settings_t** * calibration_settings)

Read calibration settings.

This function fill structure with calibration settings.

See Also

calibration_settings_t

Parameters

	id	an identifier of device
out	calibration	calibration settings
	settings	

7.1.4.36 result_t XIMC_API get_chart_data (device_t id, chart_data_t * chart_data_)

Return device electrical parameters, useful for charts.

Useful function that fill structure with snapshot of controller voltages and currents.

See Also

chart_data_t

	id	an identifier of device
out	chart_data	structure with snapshot of controller parameters.

7.1.4.37 **result_t XIMC_API** get_control_settings (**device_t** id, **control_settings_t** * control_settings)

Read settings of motor control.

When choosing CTL_MODE = 1 switches motor control with the joystick. In this mode, the joystick to the maximum engine tends Move at MaxSpeed [i], where i = 0 if the previous use This mode is not selected another i. Buttons switch the room rate i. When CTL_MODE = 2 is switched on motor control using the Left / right. When you click on the button motor starts to move in the appropriate direction at a speed MaxSpeed [0], at the end of time Timeout [i] motor move at a speed MaxSpeed [i+1]. at Transition from MaxSpeed [i] on MaxSpeed [i +1] to acceleration, as usual.

Parameters

	id	an identifier of device
out	control_settings	structure contains settings motor control by joystick or buttons left/right.

7.1.4.38 **result_t XIMC_API** get_control_settings_calb (**device_t** id, **control_settings_calb_t** * control_settings_calb, const **calibration_t** * calibration)

Read settings of motor control which use user units.

When choosing CTL_MODE = 1 switches motor control with the joystick. In this mode, the joystick to the maximum engine tends Move at MaxSpeed [i], where i = 0 if the previous use This mode is not selected another i. Buttons switch the room rate i. When CTL_MODE = 2 is switched on motor control using the Left / right. When you click on the button motor starts to move in the appropriate direction at a speed MaxSpeed [0], at the end of time Timeout [i] motor move at a speed MaxSpeed [i+1]. at Transition from MaxSpeed [i] on MaxSpeed [i+1] to acceleration, as usual.

Parameters

	id	an identifier of device
out	control_settings	structure contains settings motor control by joystick or buttons left/right.
	calb	
	calibration	user unit settings

7.1.4.39 **result_t XIMC_API** get_controller_name (**device_t** id, **controller_name_t** * controller_name)

Read user controller name and flags of setting from FRAM.

Parameters

		id	an identifier of device
Ī	out	controller₋name	structure contains previously set user controller name

7.1.4.40 result_t XIMC_API get_ctp_settings (device_t id, ctp_settings_t * ctp_settings)

Read settings of control position(is only used with stepper motor).

When controlling the step motor with encoder (CTP_BASE 0) it is possible to detect the loss of steps. The controller knows the number of steps per revolution (GENG :: StepsPerRev) and the encoder resolution (GFBS :: IPT). When the control (flag CTP_ENABLED), the controller stores the current position in the footsteps of SM and the current position of the encoder. Further, at each step of the position encoder is converted into steps and if the difference is greater CTPMinError, a flag STATE_CTP_ERROR. When controlling the step motor with speed sensor (CTP_BASE 1), the position is controlled by him. The active edge of input clock controller stores the current value of steps. Further, at each turn checks how many steps shifted. When a mismatch CTPMinError a flag STATE_CTP_ERROR.

Parameters

	id	an identifier of device
out	ctp_settings	structure contains settings of control position

7.1.4.41 result_t XIMC_API get_debug_read (device_t id, debug_read_t * debug_read)

Read data from firmware for debug purpose.

Its use depends on context, firmware version and previous history.

Parameters

	id	an identifier of device
out	debug_read	Debug data.

7.1.4.42 int XIMC_API get_device_count (device_enumeration_t device_enumeration)

Get device count.

Parameters

in	device	opaque pointer to an enumeration device data
	enumeration	

7.1.4.43 **result_t XIMC_API** get_device_information (**device_t** id, **device_information_t** * device_information)

Return device information.

All fields must point to allocated string buffers with at least 10 bytes. Works with both raw or initialized device.

Parameters

	id	an identifier of device
out	device	device information Device information.
	information	

See Also

$get_device_information$

7.1.4.44 **pchar XIMC_API** get_device_name (**device_enumeration_t** device_enumeration, int device_index)

Get device name from the device enumeration.

Returns device_index device name.

in	device	opaque pointer to an enumeration device data
	enumeration	
in	device₋index	device index

7.1.4.45 result_t XIMC_API get_edges_settings (device_t id, edges_settings_t * edges_settings)

Read border and limit switches settings.

See Also

set_edges_settings

Parameters

ſ		id	an identifier of device
	out	edges₋settings	edges settings, specify types of borders, motor behaviour and electrical behaviour of limit switches

7.1.4.46 **result_t XIMC_API** get_edges_settings_calb (**device_t** id, **edges_settings_calb_t** * edges_settings_calb, const **calibration_t** * calibration)

Read border and limit switches settings which use user units.

See Also

set_edges_settings_calb

Parameters

	id	an identifier of device
out	edges_settings	edges settings, specify types of borders, motor behaviour and electrical be-
	calb	haviour of limit switches
	calibration	user unit settings

Note

Attention! Some parameters of the edges_settings_calb structure are corrected by the coordinate correction table.

7.1.4.47 **result_t XIMC_API** get_emf_settings (**device_t** id, **emf_settings_t** * emf_settings)

Read electromechanical settings.

The settings are different for different stepper motors.

See Also

set_emf_settings

Parameters

	id	an identifier of device
out	emf₋settings	EMF settings

7.1.4.48 **result_t XIMC_API** get_encoder_information (**device_t** id, **encoder_information_t** * encoder_information)

Read encoder information from EEPROM.

Parameters

	id	an identifier of device
out	encoder	structure contains information about encoder
	information	

7.1.4.49 **result_t XIMC_API** get_encoder_settings (**device_t** id, **encoder_settings_t** * encoder_settings)

Read encoder settings from EEPROM.

Parameters

	id	an identifier of device
out	encoder_settings	structure contains encoder settings

7.1.4.50 **result_t XIMC_API** get_engine_advansed_setup (**device_t** id, **engine_advansed_setup_t** * engine_advansed_setup)

Read engine advansed settings.

See Also

set_engine_advansed_setup

Parameters

	id	an identifier of device
out	engine	EAS settings
	advansed_setup	

7.1.4.51 **result_t XIMC_API** get_engine_settings (**device_t** id, **engine_settings_t** * engine_settings)

Read engine settings.

This function fill structure with set of useful motor settings stored in controller's memory. These settings specify motor shaft movement algorithm, list of limitations and rated characteristics.

See Also

set_engine_settings

Parameters

	id	an identifier of device
out	engine₋settings	engine settings

7.1.4.52 **result_t XIMC_API** get_engine_settings_calb (**device_t** id, **engine_settings_calb_t** * engine_settings_calb, const **calibration_t** * calibration)

Read engine settings which use user units.

This function fill structure with set of useful motor settings stored in controller's memory. These settings specify motor shaft movement algorithm, list of limitations and rated characteristics.

See Also

set_engine_settings

Parameters

	id	an identifier of device
out	engine_settings	engine settings
	calb	
	calibration	user unit settings

7.1.4.53 **result_t XIMC_API** get_entype_settings (**device_t** id, **entype_settings_t** * entype_settings)

Return engine type and driver type.

Parameters

	id	an identifier of device
out	entype_settings	structure contains settings motor type and power driver type

7.1.4.54 **result_t XIMC_API** get_enumerate_device_controller_name (**device_enumeration_t** device_enumeration, int device_index, **controller_name_t** * controller_name)

Get controller name from the device enumeration.

Returns device_index device controller name.

Parameters

in	device	opaque pointer to an enumeration device data
	enumeration	
in	device_index	device index
out	controller_name	controller name

7.1.4.55 **result_t XIMC_API** get_enumerate_device_information (**device_enumeration_t** device_enumeration, int device_index, **device_information_t** * device_information)

Get device information from the device enumeration.

Returns *device_index* device information.

Parameters

in	device₋-	opaque pointer to an enumeration device data
	enumeration	
in	device₋index	device index
out	device	device information data
	information	

7.1.4.56 **result_t XIMC_API** get_enumerate_device_network_information (**device_enumeration_t** device_enumeration, int device_index, **device_network_information_t** * device_network_information)

Get device network information from the device enumeration.

Returns *device_index* device network information.

Parameters

in	device	opaque pointer to an enumeration device data
	enumeration	
in	device_index	device index
out	device_network	device network information data
	information	

7.1.4.57 **result_t XIMC_API** get_enumerate_device_serial (**device_enumeration_t** device_enumeration, int device_index, uint32_t * serial)

Get device serial number from the device enumeration.

Returns device_index device serial number.

Parameters

in	device₋-	opaque pointer to an enumeration device data
	enumeration	
in	device₋index	device index
out	serial	device serial number

7.1.4.58 **result_t XIMC_API** get_enumerate_device_stage_name (**device_enumeration_t** device_enumeration, int device_index, **stage_name_t** * stage_name)

Get stage name from the device enumeration.

Returns *device_index* device stage name.

Parameters

in	device	opaque pointer to an enumeration device data
	enumeration	
in	device₋index	device index
out	stage_name	stage name

7.1.4.59 **result_t XIMC_API** get_extended_settings (**device_t** id, **extended_settings_t** * extended_settings)

Read extended settings.

See Also

set_extended_settings

	id	an identifier of device
out	extended	EST settings
	settings	

7.1.4.60 **result_t XIMC_API** get_extio_settings ($device_t id$, $extio_settings_t * extio_settings$)

Read EXTIO settings.

This function reads a structure with a set of EXTIO settings from controller's memory.

See Also

set_extio_settings

Parameters

	id	an identifier of device
out	extio₋settings	EXTIO settings

7.1.4.61 **result_t XIMC_API** get_feedback_settings (**device_t** id, **feedback_settings_t** * feedback_settings)

Feedback settings.

Parameters

	id	an identifier of device
out	IPS	number of encoder counts per shaft revolution. Range: 165535. The field is
		obsolete, it is recommended to write 0 to IPS and use the extended CountsPer-
		Turn field. You may need to update the controller firmware to the latest version.
out	FeedbackType	type of feedback
out	FeedbackFlags	flags of feedback
out	CountsPerTurn	number of encoder counts per shaft revolution. Range: 14294967295. To use
		the CountsPerTurn field, write 0 in the IPS field, otherwise the value from the
		IPS field will be used.

7.1.4.62 **result_t XIMC_API** get_firmware_version (**device_t** id, unsigned int * Major, unsigned int * Minor, unsigned int * Release)

Read controller's firmware version.

Parameters

	id	an identifier of device
out	Major	major version
out	Minor	minor version
out	Release	release version

7.1.4.63 **result_t XIMC_API** get_gear_information (**device_t** id, **gear_information_t** * gear_information)

Read gear information from EEPROM.

	id	an identifier of device
out	gear_information	structure contains information about step gearhead

7.1.4.64 result.t XIMC_API get_gear_settings (device_t id, gear_settings_t * gear_settings)

Read gear settings from EEPROM.

Parameters

	id	an identifier of device
out	gear₋settings	structure contains step gearhead settings

7.1.4.65 **result_t XIMC_API** get_globally_unique_identifier (**device_t** id, **globally_unique_identifier_t** * globally_unique_identifier)

This value is unique to each individual die but is not a random value.

This unique device identifier can be used to initiate secure boot processes or as a serial number for USB or other end applications.

Parameters

	id	an identifier of device
out	globally_unique	the result of fields 0-3 concatenated defines the unique 128-bit device identifier.
	identifier	

7.1.4.66 **result_t XIMC_API** get_hallsensor_information (**device_t** id, **hallsensor_information_t** * hallsensor_information)

Read hall sensor information from EEPROM.

Parameters

	id	an identifier of device
out	hallsensor	structure contains information about hall sensor
	information	

7.1.4.67 **result_t XIMC_API** get_hallsensor_settings (**device_t** id, **hallsensor_settings_t** * hallsensor_settings)

Read hall sensor settings from EEPROM.

Parameters

	id	an identifier of device
out	hallsensor	structure contains hall sensor settings
	settings	

7.1.4.68 **result_t XIMC_API** get_home_settings (**device_t** id, **home_settings_t** * home_settings)

Read home settings.

This function fill structure with settings of calibrating position.

See Also

home_settings_t

Parameters

	id	an identifier of device
out	home₋settings	calibrating position settings

7.1.4.69 **result_t XIMC_API** get_home_settings_calb (**device_t** id, **home_settings_calb_t** * home_settings_calb, const **calibration_t** * calibration)

Read home settings which use user units.

This function fill structure with settings of calibrating position.

See Also

home_settings_calb_t

Parameters

	id	an identifier of device
out	home_settings	calibrating position settings
	calb	
	calibration	user unit settings

7.1.4.70 result_t XIMC_API get_init_random (device_t id, init_random_t * init_random)

Read random number from controller.

Parameters

	id	an identifier of device
out	init_random	random sequence generated by the controller

7.1.4.71 **result_t XIMC_API** get_joystick_settings (**device_t** id, **joystick_settings_t** * joystick_settings)

Read settings of joystick.

If joystick position is outside DeadZone limits from the central position a movement with speed, defined by the joystick DeadZone edge to 100% deviation, begins. Joystick positions inside DeadZone limits correspond to zero speed (soft stop of motion) and positions beyond Low and High limits correspond MaxSpeed [i] or -MaxSpeed [i] (see command SCTL), where i = 0 by default and can be changed with left/right buttons (see command SCTL). If next speed in list is zero (both integer and microstep parts), the button press is ignored. First speed in list shouldn't be zero. The DeadZone ranges are illustrated on the following picture. !/attachments/download/5563/range25p.png! The relationship between the deviation and the rate is exponential, allowing no switching speed combine high mobility and accuracy. The following picture illustrates this: !/attachments/download/3092/ExpJoystick.png! The nonlinearity parameter is adjustable. Setting it to zero makes deviation/speed relation linear.

Parameters

	id	an identifier of device
out	joystick_settings	structure contains joystick settings

7.1.4.72 **result_t XIMC_API** get_measurements (**device_t** id, **measurements_t** * measurements)

A command to read the data buffer to build a speed graph and a sequence error.

Filling the buffer starts with the command "start_measurements". The buffer holds 25 points, the points are taken with a period of 1 ms. To create a robust system, read data every 20 ms, if the buffer is completely full, then it is recommended to repeat the readings every 5 ms until the buffer again becomes filled with 20 points.

See Also

measurements_t

Parameters

	id	an identifier of device
out	measurements	structure with buffer and its length.

7.1.4.73 **result_t XIMC_API** get_motor_information (**device_t** id, **motor_information_t** * motor_information)

Read motor information from EEPROM.

Parameters

	id	an identifier of device
out	motor	structure contains motor information
	information	

7.1.4.74 result_t XIMC_API get_motor_settings (device_t id, motor_settings_t * motor_settings)

Read motor settings from EEPROM.

Parameters

	id	an identifier of device
out	motor₋settings	structure contains motor settings

7.1.4.75 **result_t XIMC_API** get_move_settings (**device_t** id, **move_settings_t** * move_settings)

Read command setup movement (speed, acceleration, threshold and etc).

Parameters

	id	an identifier of device
out	move_settings	structure contains move settings: speed, acceleration, deceleration etc.

7.1.4.76 **result_t XIMC_API** get_move_settings_calb (**device_t** id, **move_settings_calb_t** * move_settings_calb, const **calibration_t** * calibration)

Read command setup movement which use user units (speed, acceleration, threshold and etc).

	id	an identifier of device
out	move_settings	structure contains move settings: speed, acceleration, deceleration etc.
	calb	
	calibration	user unit settings

7.1.4.77 **result_t XIMC_API** get_nonvolatile_memory (**device_t** id, **nonvolatile_memory_t** * nonvolatile_memory)

Read userdata from FRAM.

Parameters

	id	an identifier of device
out	nonvolatile	structure contains previously set userdata
	memory	

7.1.4.78 result_t XIMC_API get_pid_settings (device_t id, pid_settings_t * pid_settings_)

Read PID settings.

This function fill structure with set of motor PID settings stored in controller's memory. These settings specify behaviour of PID routine for positioner. These factors are slightly different for different positioners. All boards are supplied with standard set of PID setting on controller's flash memory.

See Also

set_pid_settings

Parameters

	id	an identifier of device
out	pid₋settings	pid settings

7.1.4.79 result_t XIMC_API get_position (device_t id, get_position_t * the_get_position)

Reads the value position in steps and micro for stepper motor and encoder steps all engines.

Parameters

	id	an identifier of device
out	the_get_position	structure contains move settings: speed, acceleration, deceleration etc.

7.1.4.80 **result_t XIMC_API** get_position_calb (**device_t** id, **get_position_calb_t** * the_get_position_calb, const **calibration_t** * calibration)

Reads position value in user units for stepper motor and encoder steps all engines.

Parameters

	id	an identifier of device
out	the_get_position-	structure contains move settings: speed, acceleration, deceleration etc.
	₋calb	
	calibration	user unit settings

Note

Attention! Some parameters of the the_get_position_calb structure are corrected by the coordinate correction table.

7.1.4.81 **result_t XIMC_API** get_power_settings (**device_t** id, **power_settings_t** * power_settings)

Read settings of step motor power control.

Used with stepper motor only.

Parameters

	id	an identifier of device
out	power_settings	structure contains settings of step motor power control

7.1.4.82 **result_t XIMC_API** get_secure_settings (**device_t** id, **secure_settings_t** * secure_settings)

Read protection settings.

Parameters

	id	an identifier of device
out	secure_settings	critical parameter settings to protect the hardware

See Also

status_t::flags

7.1.4.83 **result_t XIMC_API** get_serial_number (**device_t** id, unsigned int * SerialNumber)

Read device serial number.

Parameters

	id	an identifier of device
out	SerialNumber	serial number

7.1.4.84 **result_t XIMC_API** get_stage_information (**device_t** id, **stage_information_t** * stage_information)

Read stage information from EEPROM.

Parameters

	id	an identifier of device
out	stage₋-	structure contains stage information
	information	

7.1.4.85 **result_t XIMC_API** get_stage_name (**device_t** id, **stage_name_t** * stage_name)

Read user stage name from EEPROM.

	id	an identifier of device
out	stage₋name	structure contains previously set user stage name

7.1.4.86 result_t XIMC_API get_stage_settings (device_t id, stage_settings_t * stage_settings)

Read stage settings from EEPROM.

Parameters

	id	an identifier of device
out	stage_settings	structure contains stage settings

7.1.4.87 result_t XIMC_API get_status (device_t id, status_t * status)

Return device state.

Parameters

	id	an identifier of device
out	status	structure with snapshot of controller status Device state. Useful structure that
		contains current controller status, including speed, position and boolean flags.

See Also

get_status

7.1.4.88 **result_t XIMC_API** get_status_calb (**device_t** id, **status_calb_t** * status, const **calibration_t** * calibration)

Return device state.

Parameters

	id	an identifier of device
out	status	structure with snapshot of controller status
	calibration	user unit settings Calibrated device state. Useful structure that contains current
		controller status, including speed, position and boolean flags.

See Also

get_status

7.1.4.89 **result_t XIMC_API** get_sync_in_settings (**device_t** id, **sync_in_settings_t** * sync_in_settings)

Read input synchronization settings.

This function fill structure with set of input synchronization settings, modes, periods and flags, that specify behaviour of input synchronization. All boards are supplied with standard set of these settings.

See Also

set_sync_in_settings

	id	an identifier of device
out	sync_in_settings	synchronization settings

7.1.4.90 **result_t XIMC_API** get_sync_in_settings_calb (**device_t** id, **sync_in_settings_calb_t** * sync_in_settings_calb, const **calibration_t** * calibration)

Read input synchronization settings which use user units.

This function fill structure with set of input synchronization settings, modes, periods and flags, that specify behaviour of input synchronization. All boards are supplied with standard set of these settings.

See Also

set_sync_in_settings_calb

Parameters

	id	an identifier of device
out	sync_in_settings-	synchronization settings
	_calb	
	calibration	user unit settings

7.1.4.91 **result_t XIMC_API** get_sync_out_settings (**device_t** id, **sync_out_settings_t** * sync_out_settings)

Read output synchronization settings.

This function fill structure with set of output synchronization settings, modes, periods and flags, that specify behaviour of output synchronization. All boards are supplied with standard set of these settings.

See Also

set_sync_out_settings

Parameters

	id	an identifier of device
out	sync_out	synchronization settings
	settings	

7.1.4.92 **result_t XIMC_API** get_sync_out_settings_calb (**device_t** id, **sync_out_settings_calb_t** * sync_out_settings_calb, const **calibration_t** * calibration)

Read output synchronization settings which use user units.

This function fill structure with set of output synchronization settings, modes, periods and flags, that specify behaviour of output synchronization. All boards are supplied with standard set of these settings.

See Also

set_sync_in_settings_calb

	id	an identifier of device
out	sync_out	synchronization settings
	settings_calb	
	calibration	user unit settings

7.1.4.93 **result_t XIMC_API** get_uart_settings (**device_t** id, **uart_settings_t** * uart_settings)

Read UART settings.

This function fill structure with UART settings.

See Also

uart_settings_t

Parameters

	Speed	UART speed
out	uart₋settings	UART settings

7.1.4.94 **result_t XIMC_API** goto_firmware (**device_t** id, uint8_t * ret)

Reboot to firmware.

Parameters

	id	an identifier of device
out	ret	RESULT_OK, if reboot to firmware is possible. Reboot is done after reply to this
		command. RESULT_NO_FIRMWARE, if firmware is not found. RESULT_ALR-
		EADY_IN_FIRMWARE, if this command was sent when controller is already in
		firmware.

7.1.4.95 **result_t XIMC_API** has_firmware (const char * uri, uint8_t * ret)

Check for firmware on device.

Parameters

	uri	a uri of device
out	ret	non-zero if firmware existed

7.1.4.96 **result_t XIMC_API** load_correction_table (**device_t** * id, const char * namefile)

Command of loading a correction table from a text file.

The correction table is used for position correction in case of mechanical inaccuracies. It works for some parameters in _calb commands.

	id	an identifier the device
in	namefile	- the file name must be fully qualified. If the short name is used, the file must
		be located in the application directory. If the file name is set to NULL, the cor-
		rection table will be cleared. File format: two tab-separated columns. Column
		headers are string. Data is real, the point is a determiter. The first column is
		a coordinate. The second one is the deviation caused by a mechanical error.
		The maximum length of a table is 100 rows.

See Also

command_move
get_position_calb
get_position_calb_t
get_status_calb
status_calb_t
get_edges_settings_calb
set_edges_settings_calb
edges_settings_calb_t

7.1.4.97 void **XIMC_API** logging_callback_stderr_narrow (int loglevel, const wchar_t * message, void * user_data)

Simple callback for logging to stderr in narrow (single byte) chars.

Parameters

loglevel	a loglevel
message	a message

7.1.4.98 void **XIMC_API** logging_callback_stderr_wide (int loglevel, const wchar_t * message, void * user_data)

Simple callback for logging to stderr in wide chars.

Parameters

loglevel	a loglevel
message	a message

7.1.4.99 void **XIMC_API** msec_sleep (unsigned int msec)

Sleeps for a specified amount of time.

Parameters

msec	time in milliseconds

7.1.4.100 **device_t XIMC_API** open_device (const char * uri)

Open a device with OS uri uri and return identifier of the device which can be used in calls.

in	uri	a device uri Device uri has form "xi-com:port" or "xi-net://host/serial" or "xi-emu-:///file". In case of USB-COM port the "port" is the OS device uri. For example
		"xi-com:\\.\COM3" in Windows or "xi-com:/dev/tty.s123" in Linux/Mac. In case
		of network device the "host" is an IPv4 address or fully qualified domain uri (F-
		QDN), "serial" is the device serial number in hexadecimal system. For example
		"xi-net://192.168.0.1/00001234" or "xi-net://hostname.com/89ABCDEF". Note-
		: to open network device you must call set_bindy_key first. In case of virtual
		device the "file" is the full filename with device memory state, if it doesn't exist
		then it is initialized with default values. For example "xi-emu:///C:/dir/file.bin" in
		Windows or "xi-emu:///home/user/file.bin" in Linux/Mac.

7.1.4.101 **result_t XIMC_API** probe_device (const char * uri)

Check if a device with OS uri uri is XIMC device.

Be carefuly with this call because it sends some data to the device.

Parameters

in	uri	- a device uri

7.1.4.102 result_t XIMC_API service_command_updf (device_t id)

Command puts the controller to update the firmware.

After receiving this command, the firmware board sets a flag (for loader), sends echo reply and restarts the controller.

7.1.4.103 **result_t XIMC_API** set_accessories_settings (**device_t** id, const **accessories_settings_t** * accessories_settings)

Set additional accessories information to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	accessories	structure contains information about additional accessories
	settings	

7.1.4.104 **result_t XIMC_API** set_bindy_key (const char * keyfilepath)

Set network encryption layer (bindy) key.

Parameters

in	keyfilepath	full path to the bindy keyfile When using network-attached devices this function
		must be called before enumerate_devices and open_device functions.

7.1.4.105 result_t XIMC_API set_brake_settings (device_t id, const brake_settings_t * brake_settings_)

Set settings of brake control.

Parameters

	id	an identifier of device
in	brake_settings	structure contains settings of brake control

7.1.4.106 **result_t XIMC_API** set_calibration_settings (**device_t** id, const **calibration_settings_t** * calibration_settings)

Set calibration settings.

This function send structure with calibration settings to controller's memory.

See Also

calibration_settings_t

Parameters

	id	an identifier of device
in	calibration₋-	calibration settings
	settings	

7.1.4.107 **result_t XIMC_API** set_control_settings (**device_t** id, const **control_settings_t** * control_settings)

Set settings of motor control.

When choosing CTL_MODE = 1 switches motor control with the joystick. In this mode, the joystick to the maximum engine tends Move at MaxSpeed [i], where i = 0 if the previous use This mode is not selected another i. Buttons switch the room rate i. When CTL_MODE = 2 is switched on motor control using the Left / right. When you click on the button motor starts to move in the appropriate direction at a speed MaxSpeed [0], at the end of time Timeout [i] motor move at a speed MaxSpeed [i+1]. at Transition from MaxSpeed [i] on MaxSpeed [i+1] to acceleration, as usual.

Parameters

	id	an identifier of device
in	control_settings	structure contains settings motor control by joystick or buttons left/right.

7.1.4.108 **result_t XIMC_API** set_control_settings_calb (**device_t** id, const **control_settings_calb_t** * control_settings_calb, const **calibration_t** * calibration)

Set settings of motor control which use user units.

When choosing CTL_MODE = 1 switches motor control with the joystick. In this mode, the joystick to the maximum engine tends Move at MaxSpeed [i], where i = 0 if the previous use This mode is not selected another i. Buttons switch the room rate i. When CTL_MODE = 2 is switched on motor control using the Left / right. When you click on the button motor starts to move in the appropriate direction at a speed MaxSpeed [0], at the end of time Timeout [i] motor move at a speed MaxSpeed [i+1]. at Transition from MaxSpeed [i] on MaxSpeed [i +1] to acceleration, as usual.

Parameters

	id	an identifier of device
in	control_settings	structure contains settings motor control by joystick or buttons left/right.
	calb	
	calibration	user unit settings

7.1.4.109 **result_t XIMC_API** set_controller_name (**device_t** id, const **controller_name_t** * controller_name)

Write user controller name and flags of setting from FRAM.

	id	an identifier of device
in	controller₋name	structure contains previously set user controller name

7.1.4.110 result_t XIMC_API set_ctp_settings (device_t id, const ctp_settings_t * ctp_settings_)

Set settings of control position(is only used with stepper motor).

When controlling the step motor with encoder (CTP_BASE 0) it is possible to detect the loss of steps. The controller knows the number of steps per revolution (GENG :: StepsPerRev) and the encoder resolution (GFBS :: IPT). When the control (flag CTP_ENABLED), the controller stores the current position in the footsteps of SM and the current position of the encoder. Further, at each step of the position encoder is converted into steps and if the difference is greater CTPMinError, a flag STATE_CTP_ERROR. When controlling the step motor with speed sensor (CTP_BASE 1), the position is controlled by him. The active edge of input clock controller stores the current value of steps. Further, at each turn checks how many steps shifted. When a mismatch CTPMinError a flag STATE_CTP_ERROR.

Parameters

	id	an identifier of device
in	ctp₋settings	structure contains settings of control position

7.1.4.111 result_t XIMC_API set_debug_write (device_t id, const debug_write_t * debug_write)

Write data to firmware for debug purpose.

Parameters

	id	an identifier of device
in	debug₋write	Debug data.

7.1.4.112 result_t XIMC_API set_edges_settings (device_t id, const edges_settings_t * edges_settings_)

Set border and limit switches settings.

See Also

get_edges_settings

Parameters

	id	an identifier of device
in	edges_settings	edges settings, specify types of borders, motor behaviour and electrical behaviour of limit switches

7.1.4.113 **result_t XIMC_API** set_edges_settings_calb (**device_t** id, const **edges_settings_calb_t** * edges_settings_calb, const **calibration_t** * calibration)

Set border and limit switches settings which use user units.

See Also

get_edges_settings_calb

	id	an identifier of device
in	edges_settings	edges settings, specify types of borders, motor behaviour and electrical be-
	calb	haviour of limit switches
	calibration	user unit settings

Note

Attention! Some parameters of the edges_settings_calb structure are corrected by the coordinate correction table.

7.1.4.114 result_t XIMC_API set_emf_settings (device_t id, const emf_settings_t * emf_settings)

Set electromechanical coefficients.

The settings are different for different stepper motors. Please download the new settings when you change the motor.

See Also

get_emf_settings

Parameters

	id	an identifier of device
in	emf₋settings	EMF settings

7.1.4.115 **result_t XIMC_API** set_encoder_information (**device_t** id, const **encoder_information_t** * encoder_information)

Set encoder information to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	encoder	structure contains information about encoder
	information	

7.1.4.116 **result_t XIMC_API** set_encoder_settings (**device_t** id, const **encoder_settings_t** * encoder_settings)

Set encoder settings to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	encoder₋settings	structure contains encoder settings

7.1.4.117 **result_t XIMC_API** set_engine_advansed_setup (**device_t** id, const **engine_advansed_setup_t** * engine_advansed_setup)

Set engine advansed settings.

See Also

get_engine_advansed_setup

Parameters

	id	an identifier of device
in	engine	EAS settings
	advansed_setup	

7.1.4.118 result_t XIMC_API set_engine_settings (device_t id, const engine_settings_t * engine_settings)

Set engine settings.

This function send structure with set of engine settings to controller's memory. These settings specify motor shaft movement algorithm, list of limitations and rated characteristics. Use it when you change motor, encoder, positioner etc. Please note that wrong engine settings lead to device malfunction, can lead to irreversible damage of board.

See Also

get_engine_settings

Parameters

	id	an identifier of device
in	engine₋settings	engine settings

7.1.4.119 **result_t XIMC_API** set_engine_settings_calb (**device_t** id, const **engine_settings_calb_t** * engine_settings_calb, const **calibration_t** * calibration)

Set engine settings which use user units.

This function send structure with set of engine settings to controller's memory. These settings specify motor shaft movement algorithm, list of limitations and rated characteristics. Use it when you change motor, encoder, positioner etc. Please note that wrong engine settings lead to device malfunction, can lead to irreversible damage of board.

See Also

get_engine_settings

Parameters

	id	an identifier of device
in	engine_settings	engine settings
	calb	
	calibration	user unit settings

7.1.4.120 **result_t XIMC_API** set_entype_settings (**device_t** id, const **entype_settings_t** * entype_settings)

Set engine type and driver type.

	id	an identifier of device
in	entype_settings	structure contains settings motor type and power driver type

7.1.4.121 **result_t XIMC_API** set_extended_settings (**device_t** id, const **extended_settings_t** * extended_settings)

Set extended settings.

See Also

 $get_extended_settings$

Parameters

	id	an identifier of device
in	extended₋-	EST settings
	settings	

7.1.4.122 **result_t XIMC_API** set_extio_settings (**device_t** id, const **extio_settings_t** * extio_settings)

Set EXTIO settings.

This function writes a structure with a set of EXTIO settings to controller's memory. By default input event are signalled through rising front and output states are signalled by high logic state.

See Also

get_extio_settings

Parameters

	id	an identifier of device
in	extio_settings	EXTIO settings

7.1.4.123 **result_t XIMC_API** set_feedback_settings (**device_t** id, const **feedback_settings_t** * feedback_settings)

Feedback settings.

Parameters

	id	an identifier of device
in	IPS	number of encoder counts per shaft revolution. Range: 165535. The field is
		obsolete, it is recommended to write 0 to IPS and use the extended CountsPer-
		Turn field. You may need to update the controller firmware to the latest version.
in	FeedbackType	type of feedback
in	FeedbackFlags	flags of feedback
in	CountsPerTurn	number of encoder counts per shaft revolution. Range: 14294967295. To use
		the CountsPerTurn field, write 0 in the IPS field, otherwise the value from the
		IPS field will be used.

7.1.4.124 **result_t XIMC_API** set_gear_information (**device_t** id, const **gear_information_t** * gear_information)

Set gear information to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	gear_information	structure contains information about step gearhead

7.1.4.125 **result_t XIMC_API** set_gear_settings (**device_t** id, const **gear_settings_t** * gear_settings)

Set gear settings to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	gear₋settings	structure contains step gearhead settings

7.1.4.126 **result_t XIMC_API** set_hallsensor_information (**device_t** id, const **hallsensor_information_t** * hallsensor_information)

Set hall sensor information to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	hallsensor	structure contains information about hall sensor
	information	

7.1.4.127 **result_t XIMC_API** set_hallsensor_settings (**device_t** id, const **hallsensor_settings_t** * hallsensor_settings)

Set hall sensor settings to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	hallsensor	structure contains hall sensor settings
	settings	

7.1.4.128 result_t XIMC_API set_home_settings (device_t id, const home_settings_t * home_settings)

Set home settings.

This function send structure with calibrating position settings to controller's memory.

See Also

home_settings_t

	id	an identifier of device
in	home₋settings	calibrating position settings

```
7.1.4.129 result_t XIMC_API set_home_settings_calb ( device_t id, const home_settings_calb_t * home_settings_calb, const calibration_t * calibration )
```

Set home settings which use user units.

This function send structure with calibrating position settings to controller's memory.

See Also

home_settings_calb_t

Parameters

	id	an identifier of device
in	home_settings	calibrating position settings
	calb	
	calibration	user unit settings

7.1.4.130 **result_t XIMC_API** set_joystick_settings (**device_t** id, const **joystick_settings_t** * joystick_settings)

Set settings of joystick.

If joystick position is outside DeadZone limits from the central position a movement with speed, defined by the joystick DeadZone edge to 100% deviation, begins. Joystick positions inside DeadZone limits correspond to zero speed (soft stop of motion) and positions beyond Low and High limits correspond MaxSpeed [i] or -MaxSpeed [i] (see command SCTL), where i = 0 by default and can be changed with left/right buttons (see command SCTL). If next speed in list is zero (both integer and microstep parts), the button press is ignored. First speed in list shouldn't be zero. The DeadZone ranges are illustrated on the following picture. !/attachments/download/5563/range25p.png! The relationship between the deviation and the rate is exponential, allowing no switching speed combine high mobility and accuracy. The following picture illustrates this: !/attachments/download/3092/ExpJoystick.png! The nonlinearity parameter is adjustable. Setting it to zero makes deviation/speed relation linear.

Parameters

	id	an identifier of device
in	joystick_settings	structure contains joystick settings

7.1.4.131 void XIMC_API set_logging_callback (logging_callback_t logging_callback, void * user_data)

Sets a logging callback.

Call resets a callback to default (stderr, syslog) if NULL passed.

Parameters

```
logging_callback a callback for log messages
```

7.1.4.132 **result_t XIMC_API** set_motor_information (**device_t** id, const **motor_information_t** * motor_information)

Set motor information to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	motor	structure contains motor information
	information	

7.1.4.133 **result_t XIMC_API** set_motor_settings (**device_t** id, const **motor_settings_t** * motor_settings)

Set motor settings to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	motor_settings	structure contains motor information

7.1.4.134 **result_t XIMC_API** set_move_settings (**device_t** id, const **move_settings_t** * move_settings)

Set command setup movement (speed, acceleration, threshold and etc).

Parameters

	id	an identifier of device
in	move_settings	structure contains move settings: speed, acceleration, deceleration etc.

7.1.4.135 **result_t XIMC_API** set_move_settings_calb (**device_t** id, const **move_settings_calb_t** * move_settings_calb, const **calibration_t** * calibration)

Set command setup movement which use user units (speed, acceleration, threshold and etc).

Parameters

	id	an identifier of device
in	move_settings	structure contains move settings: speed, acceleration, deceleration etc.
	calb	
	calibration	user unit settings

7.1.4.136 **result_t XIMC_API** set_nonvolatile_memory (**device_t** id, const **nonvolatile_memory_t** * nonvolatile_memory)

Write userdata into FRAM.

Parameters

	id	an identifier of device
in	nonvolatile	structure contains previously set userdata
	memory	

7.1.4.137 result_t XIMC_API set_pid_settings (device_t id, const pid_settings_t * pid_settings)

Set PID settings.

This function send structure with set of PID factors to controller's memory. These settings specify behaviour of

PID routine for positioner. These factors are slightly different for different positioners. All boards are supplied with standard set of PID setting on controller's flash memory. Please use it for loading new PID settings when you change positioner. Please note that wrong PID settings lead to device malfunction.

See Also

get_pid_settings

Parameters

	id	an identifier of device
in	pid₋settings	pid settings

7.1.4.138 result_t XIMC_API set_position (device_t id, const set_position_t * the_set_position)

Sets any position value in steps and micro for stepper motor and encoder steps of all engines.

It means, that changing main indicator of position.

Parameters

	id	an identifier of device
out	the_set_position	structure contains move settings: speed, acceleration, deceleration etc.

7.1.4.139 **result_t XIMC_API** set_position_calb (**device_t** id, const **set_position_calb_t** * the_set_position_calb, const **calibration_t** * calibration)

Sets any position value and encoder value of all engines which use user units.

It means, that changing main indicator of position.

Parameters

	id	an identifier of device
out	the_set_position	structure contains move settings: speed, acceleration, deceleration etc.
	calb	
	calibration	user unit settings

7.1.4.140 **result_t XIMC_API** set_power_settings (**device_t** id, const **power_settings_t** * power_settings)

Set settings of step motor power control.

Used with stepper motor only.

Parameters

	id	an identifier of device
in	power₋settings	structure contains settings of step motor power control

7.1.4.141 result_t XIMC_API set_secure_settings (device_t id, const secure_settings_t * secure_settings)

Set protection settings.

Parameters

id an identifier of device	
secure_settings	structure with secure data

See Also

status_t::flags

7.1.4.142 **result_t XIMC_API** set_serial_number (**device_t** id, const **serial_number_t** * serial_number)

Write device serial number and hardware version to controller's flash memory.

Along with the new serial number and hardware version a "Key" is transmitted. The SN and hardware version are changed and saved when keys match. Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	serial₋number	structure contains new serial number and secret key.

7.1.4.143 **result_t XIMC_API** set_stage_information (**device_t** id, const **stage_information_t** * stage_information)

Set stage information to EEPROM.

Can be used by manufacturer only.

Parameters

	id	an identifier of device
in	stage	structure contains stage information
	information	

7.1.4.144 result_t XIMC_API set_stage_name (device_t id, const stage_name_t * stage_name)

Write user stage name from EEPROM.

Parameters

	id	an identifier of device
in	stage_name	structure contains previously set user stage name

7.1.4.145 result_t XIMC_API set_stage_settings (device_t id, const stage_settings_t * stage_settings_)

Set stage settings to EEPROM.

Can be used by manufacturer only

	id	an identifier of device
in	stage₋settings	structure contains stage settings

```
7.1.4.146 result_t XIMC_API set_sync_in_settings ( device_t id, const sync_in_settings_t * sync_in_settings )
```

Set input synchronization settings.

This function send structure with set of input synchronization settings, that specify behaviour of input synchronization, to controller's memory. All boards are supplied with standard set of these settings.

See Also

get_sync_in_settings

Parameters

	id	an identifier of device
in	sync₋in₋settings	synchronization settings

7.1.4.147 **result_t XIMC_API** set_sync_in_settings_calb (**device_t** id, const **sync_in_settings_calb_t** * sync_in_settings_calb, const **calibration_t** * calibration)

Set input synchronization settings which use user units.

This function send structure with set of input synchronization settings, that specify behaviour of input synchronization, to controller's memory. All boards are supplied with standard set of these settings.

See Also

get_sync_in_settings_calb

Parameters

	id	an identifier of device
in	sync_in_settings-	synchronization settings
	₋calb	
	calibration	user unit settings

```
7.1.4.148 result_t XIMC_API set_sync_out_settings ( device_t id, const sync_out_settings_t * sync_out_settings )
```

Set output synchronization settings.

This function send structure with set of output synchronization settings, that specify behaviour of output synchronization, to controller's memory. All boards are supplied with standard set of these settings.

See Also

get_sync_out_settings

	id	an identifier of device
in	sync_out	synchronization settings
	settings	

7.1.4.149 **result_t XIMC_API** set_sync_out_settings_calb (**device_t** id, const **sync_out_settings_calb_t** * sync_out_settings_calb, const **calibration_t** * calibration)

Set output synchronization settings which use user units.

This function send structure with set of output synchronization settings, that specify behaviour of output synchronization, to controller's memory. All boards are supplied with standard set of these settings.

See Also

get_sync_in_settings_calb

Parameters

	id	an identifier of device
in	sync_out	synchronization settings
	settings_calb	
	calibration	user unit settings

7.1.4.150 **result_t XIMC_API** set_uart_settings (**device_t** id, const **uart_settings_t** * uart_settings)

Set UART settings.

This function send structure with UART settings to controller's memory.

See Also

uart_settings_t

Parameters

	Speed	UART speed
in	uart₋settings	UART settings

7.1.4.151 **result_t XIMC_API** write_key (const char * uri, uint8_t * key)

Write controller key.

Can be used by manufacturer only

Parameters

	uri	a uri of device
in	key	protection key. Range: 04294967295

7.1.4.152 **result_t XIMC_API** ximc_fix_usbser_sys (const char * device_uri)

Fix for errors in Windows USB driver stack.

USB subsystem on Windows does not always work correctly. The following bugs are possible: the device cannot be opened at all, or the device can be opened and written to, but it will not respond with data. These errors can be fixed by device reconnection or removal-rescan in device manager. ximc_fix_usbser_sys() is a shortcut function to do the remove-rescan process. You should call this function if libximc library cannot open the device which was not physically removed from the system or if the device does not respond.

7.1.4.153 void **XIMC_API** ximc_version (char * version)

Returns a library version.

version	a buffer to hold a version string, 32 bytes is enough
VEISIOII	a buller to floid a version string, 32 bytes is enough

Index

A1Voltage	L5, 17
analog_data_t, 16	L5_ADC, 18
A1Voltage_ADC	Pot, 18
analog_data_t, 16	R, 18
A2Voltage	SupVoltage, 18
analog_data_t, 16	SupVoltage_ADC, 18
A2Voltage_ADC	Temp, 18
analog_data_t, 16	Temp_ADC, 18
ACurrent	Antiplay
analog_data_t, 16	engine_settings_calb_t, 37
ACurrent_ADC	engine_settings_t, 38
analog_data_t, 16	AntiplaySpeed
Accel	move_settings_calb_t, 57
move_settings_calb_t, 57	move_settings_t, 58
move_settings_t, 58	3 3 3
accessories_settings_t, 13	B1 Voltage
LimitSwitchesSettings, 14	analog_data_t, 16
MBRatedCurrent, 14	B1Voltage_ADC
MBRatedVoltage, 14	analog_data_t, 17
MBSettings, 14	B2Voltage
MBTorque, 14	analog_data_t, 17
MagneticBrakeInfo, 14	B2Voltage_ADC
TSGrad, 14	analog_data_t, 17
TSMax, 14	BACK_EMF_KM_AUTO
TSMin, 14	ximc.h, 102
TSSettings, 14	BCurrent
TemperatureSensorInfo, 14	analog_data_t, 17
Accuracy	BCurrent_ADC
sync_out_settings_calb_t, 76	analog_data_t, 17
sync_out_settings_t, 77	BORDER_IS_ENCODER
analog_data_t, 15	ximc.h, 102
A1Voltage, 16	BORDER_STOP_LEFT
A1Voltage_ADC, 16	ximc.h, 102
A2Voltage, 16	BORDER_STOP_RIGHT
A2Voltage_ADC, 16	ximc.h, 102
ACurrent, 16	BRAKE_ENABLED
ACurrent_ADC, 16	ximc.h, 103
B1Voltage, 16	BRAKE_ENG_PWROFF
B1Voltage_ADC, 17	ximc.h, 103
B2Voltage, 17	BackEMFFlags
B2Voltage_ADC, 17	emf_settings_t, 33
BCurrent, 17	BorderFlags
BCurrent_ADC, 17	edges_settings_calb_t, 31
FullCurrent, 17	edges_settings_t, 32
FullCurrent_ADC, 17	brake_settings_t, 18
	BrakeFlags, 19
H5, 17	t1, 19
Joy, 17	t2, 19
Joy_ADC, 17	t3, 19
L, 17	t4, 19
	• · , · -

INDEX 157

BrakeFlags	command_add_sync_in_action_calb
brake_settings_t, 19	ximc.h, 118
CONTROL_MODE_BITS	command_add_sync_in_action_calb_t, 22
ximc.h, 103	Position, 23
CONTROL_MODE_JOY	Time, 23
ximc.h, 103	command_add_sync_in_action_t, 23
CONTROL_MODE_LR	Time, 23
ximc.h, 103	uPosition, 23
CONTROL_MODE_OFF	command_change_motor
	ximc.h, 118
ximc.h, 103	command_change_motor_t, 24
CSS1_A	command_clear_fram
calibration_settings_t, 20	ximc.h, 118
CSS1_B	command_eeread_settings
calibration_settings_t, 20	ximc.h, 118
CSS2_A	command_eesave_settings
calibration_settings_t, 20	ximc.h, 119
CSS2_B	command_home
calibration_settings_t, 20	ximc.h, 119
CTP_ALARM_ON_ERROR	command_homezero
ximc.h, 103	ximc.h, 119
CTP_BASE	command_left
ximc.h, 103	ximc.h, 119
CTP_ENABLED	command_loft
ximc.h, 103	ximc.h, 120
CTP_ERROR_CORRECTION	command_move
ximc.h, 103	ximc.h, 120
CTPFlags	command_move_calb
ctp_settings_t, 28	ximc.h, 120
CTPMinError	command_movr
ctp_settings_t, 28	ximc.h, 120
calibration_settings_t, 19	command_movr_calb
CSS1_A, 20	
CSS1_B, 20	ximc.h, 121
CSS2_A, 20	command_power_off
CSS2_B, 20	ximc.h, 121
FullCurrent_A, 20	command_read_robust_settings
FullCurrent_B, 20	ximc.h, 121
calibration_t, 20	command_read_settings
	ximc.h, 121
chart_data_t, 21	command_reset
DutyCycle, 21	ximc.h, 122
Joy, 21	command_right
Pot, 22	ximc.h, 122
WindingCurrentA, 22	command_save_robust_settings
WindingCurrentB, 22	ximc.h, 122
WindingCurrentC, 22	command_save_settings
WindingVoltageA, 22	ximc.h, 122
WindingVoltageB, 22	command_sstp
WindingVoltageC, 22	ximc.h, 122
close_device	command_start_measurements
ximc.h, 117	ximc.h, 122
ClutterTime	command_stop
sync_in_settings_calb_t, 74	ximc.h, 123
sync_in_settings_t, 75	command_update_firmware
CmdBufFreeSpace	ximc.h, 123
status_calb_t, 69	command_wait_for_stop
status₋t, 72	ximc.h, 123
command_add_sync_in_action	command_zero
ximc.h, 117	55Tidila_2015

ximc.h, 123	debug_write_t, 29
control_settings_calb_t, 24	Decel
Flags, 25	move_settings_calb_t, 58
MaxClickTime, 25	move_settings_t, 59
MaxSpeed, 25	DetentTorque
Timeout, 25	motor_settings_t, 55
control_settings_t, 25	device_information_t, 29
Flags, 26	Major, 29
MaxClickTime, 26	Minor, 29
MaxSpeed, 26	Release, 30
Timeout, 26	device_network_information_t, 30
uDeltaPosition, 26	DriverType
uMaxSpeed, 26	entype_settings_t, 40
controller_name_t, 26	DutyCycle
ControllerName, 27	chart_data_t, 21
CtrlFlags, 27	
ControllerName	EEPROM_PRECEDENCE
controller_name_t, 27	ximc.h, 104
CountsPerTurn	ENC_STATE_ABSENT
feedback_settings_t, 41	ximc.h, 104
Criticallpwr	ENC_STATE_MALFUNC
secure_settings_t, 62	ximc.h, 104
Criticallusb	ENC_STATE_OK
secure_settings_t, 62	ximc.h, 104
CriticalT	ENC_STATE_REVERS
secure_settings_t, 62	ximc.h, 104
CriticalUpwr	ENC_STATE_UNKNOWN
secure_settings_t, 62	ximc.h, 104
CriticalUusb	ENDER_SW1_ACTIVE_LOW
secure_settings_t, 62	ximc.h, 104
ctp_settings_t, 27	ENDER_SW2_ACTIVE_LOW
CTPFlags, 28	ximc.h, 104
CTPMinError, 28	ENDER_SWAP
CtrlFlags	ximc.h, 104
controller_name_t, 27	ENGINE_ACCEL_ON
CurPosition	ximc.h, 105
status_calb_t, 69	ENGINE_ANTIPLAY
status_t, 72	ximc.h, 105
CurSpeed	ENGINE_LIMIT_CURR
status_calb_t, 69	ximc.h, 105
status_t, 72	ENGINE_LIMIT_RPM
CurT	ximc.h, 105
status_calb_t, 69	ENGINE_LIMIT_VOLT
status_t, 72	ximc.h, 105
CurrReductDelay	ENGINE_MAX_SPEED
power_settings_t, 61	ximc.h, 105
CurrentSetTime	ENGINE_REVERSE
power_settings_t, 61	ximc.h, 105
powor-solungo-t, or	ENGINE_TYPE_2DC
DRIVER_TYPE_EXTERNAL	ximc.h, 105
ximc.h, 104	ENGINE_TYPE_DC
DeadZone	ximc.h, 106
joystick_settings_t, 51	ENGINE_TYPE_NONE
debug_read_t, 28	ximc.h, 106
DebugData, 28	ENGINE_TYPE_STEP
debug_write_t, 28	ximc.h, 106
DebugData, 29	ENGINE_TYPE_TEST
DebugData	ximc.h, 106
debug_read_t, 28	ENUMERATE_PROBE

ximc.h, 106	EngineFlags, 37
EXTIO_SETUP_INVERT	MicrostepMode, 37
ximc.h, 106	NomCurrent, 37
EXTIO_SETUP_OUTPUT	NomSpeed, 37
ximc.h, 107	NomVoltage, 37
EXTIOModeFlags	StepsPerRev, 37
extio_settings_t, 41	engine_settings_t, 38
EXTIOSetupFlags	Antiplay, 38
extio_settings_t, 41	EngineFlags, 38
edges_settings_calb_t, 30	MicrostepMode, 38
BorderFlags, 31	NomCurrent, 38
EnderFlags, 31	NomSpeed, 39
LeftBorder, 31	NomVoltage, 39
RightBorder, 31 edges_settings_t, 31	StepsPerRev, 39 uNomSpeed, 39
BorderFlags, 32	EngineFlags
EnderFlags, 32	engine_settings_calb_t, 37
LeftBorder, 32	engine_settings_t, 38
RightBorder, 32	EngineType
uLeftBorder, 32	entype_settings_t, 40
uRightBorder, 32	entype_settings_t, 39
Efficiency	DriverType, 40
gear_settings_t, 43	EngineType, 40
emf_settings_t, 32	enumerate_devices
BackEMFFlags, 33	ximc.h, 124
Km, 33	Error
L, 33	measurements_t, 52
R, 33	ExpFactor
EncPosition	joystick_settings_t, 51
get_position_calb_t, 44	extended_settings_t, 40
get_position_t, 45	extio_settings_t, 40
set_position_calb_t, 64	EXTIOModeFlags, 41
set_position_t, 65	EXTIOSetupFlags, 41
status_calb_t, 69	
status₋t, 72	FEEDBACK_EMF
EncSts	ximc.h, 107
status_calb_t, 70	FEEDBACK_ENC_REVERSE
status_t, 72	ximc.h, 107
encoder_information_t, 33	FEEDBACK_ENCODER
Manufacturer, 34	ximc.h, 108
PartNumber, 34	FEEDBACK_NONE
encoder_settings_t, 34	ximc.h, 108 FastHome
EncoderSettings, 35	
MaxCurrentConsumption, 35	home_settings_calb_t, 48 home_settings_t, 49
MaxOperatingFrequency, 35	feedback_settings_t, 41
SupplyVoltageMax, 35	CountsPerTurn, 41
SupplyVoltageMin, 35	FeedbackFlags, 41
EncoderSettings	FeedbackType, 41
encoder_settings_t, 35	IPS, 42
EnderFlags	FeedbackFlags
edges_settings_calb_t, 31	feedback_settings_t, 41
edges_settings_t, 32	FeedbackType
engine_advansed_setup_t, 35 stepcloseloop_Kp_high, 36	feedback_settings_t, 41
stepcloseloop_kp_nign, 36 stepcloseloop_kp_low, 36	Flags
stepcloseloop_kp_low, 36	control_settings_calb_t, 25
engine_settings_calb_t, 36	control_settings_t, 26
Antiplay, 37	secure_settings_t, 62
, unipay, or	status_calb_t, 70

status_t, 72	ximc.h, 128
free_enumerate_devices	get_encoder_information
ximc.h, 124	ximc.h, 128
FullCurrent	get_encoder_settings
analog_data_t, 17	ximc.h, 129
FullCurrent_A	get_engine_advansed_setup
calibration_settings_t, 20	ximc.h, 129
FullCurrent_ADC	get_engine_settings
analog_data_t, 17	ximc.h, 129
FullCurrent_B	get_engine_settings_calb
calibration_settings_t, 20	ximc.h, 129
3 ,	get_entype_settings
GPIOFlags	ximc.h, 130
status_calb_t, 70	get_enumerate_device_controller_name
status₋t, 72	ximc.h, 130
gear_information_t, 42	get_enumerate_device_information
Manufacturer, 42	ximc.h, 130
PartNumber, 42	get_enumerate_device_network_information
gear_settings_t, 42	ximc.h, 130
Efficiency, 43	get_enumerate_device_serial
InputInertia, 43	ximc.h, 131
MaxOutputBacklash, 43	get_enumerate_device_stage_name
RatedInputSpeed, 43	ximc.h, 131
RatedInputTorque, 43	get_extended_settings
ReductionIn, 44	ximc.h, 131
ReductionOut, 44	get_extio_settings
get_accessories_settings	ximc.h, 131
ximc.h, 124	
get_analog_data	get_feedback_settings
ximc.h, 124	ximc.h, 132
get_bootloader_version	get_firmware_version
ximc.h, 124	ximc.h, 132
get_brake_settings	get_gear_information
ximc.h, 125	ximc.h, 132
get_calibration_settings	get_gear_settings
ximc.h, 125	ximc.h, 132
get_chart_data	get_globally_unique_identifier
ximc.h, 125	ximc.h, 133
get_control_settings	get_hallsensor_information
ximc.h, 125	ximc.h, 133
get_control_settings_calb	get_hallsensor_settings
ximc.h, 126	ximc.h, 133
get_controller_name	get_home_settings
ximc.h, 126	ximc.h, 133
get_ctp_settings	get_home_settings_calb
ximc.h, 126	ximc.h, 134
	get_init_random
get_debug_read	ximc.h, 134
ximc.h, 127	get_joystick_settings
get_device_count	ximc.h, 134
ximc.h, 127	get_measurements
get_device_information	ximc.h, 134
ximc.h, 127	get_motor_information
get_device_name	ximc.h, 135
ximc.h, 127	get_motor_settings
get_edges_settings	ximc.h, 135
ximc.h, 127	get_move_settings
get_edges_settings_calb	ximc.h, 135
ximc.h, 128	get_move_settings_calb
get_emf_settings	-

ximc.h, 135	HOME_MV_SEC_EN
get_nonvolatile_memory	ximc.h, 108
ximc.h, 135	HOME_STOP_FIRST_LIM
get_pid_settings	ximc.h, 109
ximc.h, 136	HOME_STOP_FIRST_REV
get_position	ximc.h, 109
ximc.h, 136	HOME_STOP_FIRST_SYN
get_position_calb	ximc.h, 109
ximc.h, 136	HOME_USE_FAST
get_position_calb_t, 44	ximc.h, 109
EncPosition, 44 Position, 44	hallsensor_information_t, 46 Manufacturer, 47
get_position_t, 45	PartNumber, 47
EncPosition, 45	hallsensor_settings_t, 47
uPosition, 45	MaxCurrentConsumption, 47
get_power_settings	MaxOperatingFrequency, 47
ximc.h, 136	SupplyVoltageMax, 47
get_secure_settings	SupplyVoltageMin, 48
ximc.h, 137	has_firmware
get_serial_number	ximc.h, 140
ximc.h, 137	HoldCurrent
get_stage_information	power_settings_t, 61
ximc.h, 137	home_settings_calb_t, 48
get_stage_name	FastHome, 48
ximc.h, 137	HomeDelta, 48
get_stage_settings	HomeFlags, 48
ximc.h, 137	SlowHome, 48
get₋status	home_settings_t, 49
ximc.h, 138	FastHome, 49
get_status_calb	HomeDelta, 49
ximc.h, 138	HomeFlags, 49
get_sync_in_settings	SlowHome, 49
ximc.h, 138	uFastHome, 50
get_sync_in_settings_calb	uHomeDelta, 50
ximc.h, 138	uSlowHome, 50
get_sync_out_settings	HomeDelta
ximc.h, 139	home_settings_calb_t, 48
get_sync_out_settings_calb	home_settings_t, 49
ximc.h, 139	HomeFlags
get_uart_settings	home_settings_calb_t, 48
ximc.h, 139	home_settings_t, 49
globally_unique_identifier_t, 45	HorizontalLoadCapacity
UniqueID0, 46	stage_settings_t, 67
UniqueID1, 46	100
UniqueID2, 46	IPS
UniqueID3, 46	feedback_settings_t, 42
goto_firmware	init_random_t, 50
ximc.h, 140	key, 50
H5	InputInertia
	gear_settings_t, 43
analog_data_t, 17 H_BRIDGE_ALERT	lpwr
	status_calb_t, 70
ximc.h, 108 HOME_DIR_FIRST	status_t, 72
ximc.h, 108	lusb
HOME_DIR_SECOND	status_calb_t, 70
ximc.h, 108	status_t, 72
HOME_HALF_MV	JOY_REVERSE
ximc.h, 108	ximc.h, 109
Annon, 100	, , , , , , , , , , , , , , , , , , ,

Joy	MBRatedVoltage
analog_data_t, 17	accessories_settings_t, 14
chart_data_t, 21	MBSettings
Joy_ADC	accessories_settings_t, 14
analog_data_t, 17	MBTorque
JoyCenter	accessories_settings_t, 14
joystick_settings_t, 51	MICROSTEP_MODE_FULL
JoyFlags	ximc.h, 110
joystick_settings_t, 51	MOVE_STATE_ANTIPLAY
JoyHighEnd	ximc.h, 110
joystick_settings_t, 52	MOVE_STATE_MOVING
JoyLowEnd	ximc.h, 110
joystick_settings_t, 52	MVCMD_ERROR
joystick_settings_t, 51	ximc.h, 110
DeadZone, 51	MVCMD_HOME
ExpFactor, 51	ximc.h, 111
JoyCenter, 51	MVCMD_LEFT
JoyFlags, 51	ximc.h, 111
JoyHighEnd, 52	MVCMD_LOFT
JoyLowEnd, 52	ximc.h, 111
Joylow Life, 32	MVCMD_MOVE
Key	
serial_number_t, 63	ximc.h, 111
	MVCMD_MOVR
key	ximc.h, 111
init_random_t, 50	MVCMD_NAME_BITS
Km	ximc.h, 111
emf_settings_t, 33	MVCMD_RIGHT
I	ximc.h, 111
L	MVCMD_RUNNING
analog_data_t, 17	ximc.h, 111
emf_settings_t, 33	MVCMD_SSTP
L5	ximc.h, 111
analog_data_t, 17	MVCMD_STOP
L5_ADC	ximc.h, 111
analog_data_t, 18	MVCMD_UKNWN
LOW_UPWR_PROTECTION	ximc.h, 111
ximc.h, 109	MagneticBrakeInfo
LeadScrewPitch	accessories_settings_t, 14
stage_settings_t, 67	Major
LeftBorder	device_information_t, 29
edges_settings_calb_t, 31	serial_number_t, 63
edges_settings_t, 32	Manufacturer
Length	
measurements_t, 52	encoder_information_t, 34
LimitSwitchesSettings	gear_information_t, 42
accessories_settings_t, 14	hallsensor_information_t, 47
load_correction_table	motor_information_t, 53
ximc.h, 140	stage_information_t, 66
	MaxClickTime
logging_callback_stderr_narrow	control_settings_calb_t, 25
ximc.h, 141	control_settings_t, 26
logging_callback_stderr_wide	MaxCurrent
ximc.h, 141	motor_settings_t, 55
logging_callback_t	MaxCurrentConsumption
ximc.h, 117	encoder_settings_t, 35
LowUpwrOff	hallsensor_settings_t, 47
secure_settings_t, 62	stage_settings_t, 67
	MaxCurrentTime
MBRatedCurrent	motor_settings_t, 55
accessories_settings_t, 14	1110t01_56tti1195_t, 55

MaxOperatingFrequency	Accel, 58
encoder_settings_t, 35	AntiplaySpeed, 58
hallsensor_settings_t, 47	Decel, 59
MaxOutputBacklash	Speed, 59
gear_settings_t, 43	uAntiplaySpeed, 59
MaxSpeed	uSpeed, 59
control_settings_calb_t, 25	MoveSts
control_settings_t, 26	status_calb_t, 70
motor_settings_t, 55	status₋t, <mark>72</mark>
stage_settings_t, 67	msec_sleep
measurements_t, 52	ximc.h, 141
Error, 52	MvCmdSts
Length, 52	status_calb_t, 70
Speed, 52	status₋t, 72
MechanicalTimeConstant	Nal and Command
motor_settings_t, 55	NoLoadCurrent
MicrostepMode	motor_settings_t, 55
engine_settings_calb_t, 37	NoLoadSpeed
engine_settings_t, 38	motor_settings_t, 55
MinimumUusb	NomCurrent
secure_settings_t, 62	engine_settings_calb_t, 37
Minor	engine_settings_t, 38
device_information_t, 29	NomSpeed
serial_number_t, 63	engine_settings_calb_t, 37
motor_information_t, 53	engine_settings_t, 39
Manufacturer, 53	NomVoltage
PartNumber, 53	engine_settings_calb_t, 37
motor_settings_t, 53	engine_settings_t, 39
DetentTorque, 55	NominalCurrent
MaxCurrent, 55	motor_settings_t, 55
MaxCurrentTime, 55	NominalPower
MaxSpeed, 55	motor_settings_t, 55
MechanicalTimeConstant, 55	NominalSpeed
MotorType, 55	motor_settings_t, 56
NoLoadCurrent, 55	NominalTorque
NoLoadSpeed, 55	motor_settings_t, 56 NominalVoltage
NominalCurrent, 55	motor_settings_t, 56
NominalPower, 55	nonvolatile_memory_t, 59
NominalSpeed, 56	UserData, 59
NominalTorque, 56	Oser Data, 39
NominalVoltage, 56	open_device
Phases, 56	ximc.h, 141
Poles, 56	- ,
RotorInertia, 56	POWER_OFF_ENABLED
SpeedConstant, 56	ximc.h, 111
SpeedTorqueGradient, 56	POWER_REDUCT_ENABLED
StallTorque, 56	ximc.h, 112
TorqueConstant, 56	POWER_SMOOTH_CURRENT
Winding Registered 57	ximc.h, 112
WindingResistance, 57	PWR_STATE_MAX
MotorType	ximc.h, 112
motor_settings_t, 55	PWR_STATE_NORM
move_settings_calb_t, 57	ximc.h, 112
Accel, 57	PWR_STATE_OFF
AntiplaySpeed, 57	ximc.h, 112
Decel, 58	PWR_STATE_REDUCT
Speed, 58 move_settings_t, 58	ximc.h, 112
movo_settings_t, so	PWR_STATE_UNKNOWN

ximc.h, 112	edges_settings_t, 32
PWRSts	RotorInertia
status_calb_t, 70	motor_settings_t, 56
status_t, 72	SN
PartNumber	serial_number_t, 63
encoder_information_t, 34	STATE_ALARM
gear_information_t, 42	ximc.h, 112
hallsensor_information_t, 47	STATE_BRAKE
motor_information_t, 53	
stage_information_t, 66	ximc.h, 113
Phases	STATE_BUTTON_LEFT
motor_settings_t, 56	ximc.h, 113
pid_settings_t, 60	STATE_BUTTON_RIGHT
Poles	ximc.h, 113
motor_settings_t, 56	STATE_CONTR
PosFlags	ximc.h, 113
set_position_calb_t, 64	STATE_CTP_ERROR
set_position_t, 65	ximc.h, 113
Position	STATE_CURRENT_MOTOR0
command_add_sync_in_action_calb_t, 23	ximc.h, 113
get_position_calb_t, 44	STATE_CURRENT_MOTOR1
set_position_calb_t, 64	ximc.h, 113
sync_in_settings_calb_t, 74	STATE_CURRENT_MOTOR2
PositionerName	ximc.h, 113
	STATE_CURRENT_MOTOR3
stage_name_t, 66	ximc.h, 113
Pot	STATE_DIG_SIGNAL
analog_data_t, 18	ximc.h, 113
chart_data_t, 22	STATE_ENC_A
power_settings_t, 60	
CurrReductDelay, 61	ximc.h, 114
CurrentSetTime, 61	STATE_ENC_B
HoldCurrent, 61	ximc.h, 114
PowerFlags, 61	STATE_ERRC
PowerOffDelay, 61	ximc.h, 114
PowerFlags	STATE_ERRD
power_settings_t, 61	ximc.h, 114
PowerOffDelay	STATE_ERRV
power_settings_t, 61	ximc.h, 114
probe_device	STATE_EXTIO_ALARM
ximc.h, 142	ximc.h, 114
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	STATE_GPIO_LEVEL
R	ximc.h, 114
analog_data_t, 18	STATE_GPIO_PINOUT
emf_settings_t, 33	ximc.h, 114
REV_SENS_INV	STATE_LEFT_EDGE
ximc.h, 112	ximc.h, 114
RatedInputSpeed	STATE_POWER_OVERHEAT
gear_settings_t, 43	ximc.h, 115
RatedInputTorque	STATE_REV_SENSOR
gear_settings_t, 43	ximc.h, 115
ReductionIn	STATE_RIGHT_EDGE
gear_settings_t, 44	ximc.h, 115
ReductionOut	STATE_SECUR
gear_settings_t, 44	ximc.h, 115
Release	STATE_SYNC_INPUT
device_information_t, 30	ximc.h, 115
serial_number_t, 63	STATE_SYNC_OUTPUT
RightBorder	ximc.h, 115
edges_settings_calb_t, 31	SYNCIN_ENABLED

ximc.h, 115	set_emf_settings
SYNCIN_GOTOPOSITION	ximc.h, 145 set encoder information
ximc.h, 115	
SYNCIN_INVERT	ximc.h, 145
ximc.h, 116	set_encoder_settings
SYNCOUT_ENABLED	ximc.h, 145
ximc.h, 116	set_engine_advansed_setup
SYNCOUT_IN_STEPS	ximc.h, 145
ximc.h, 116	set_engine_settings
SYNCOUT_INVERT	ximc.h, 146
ximc.h, 116 SYNCOUT_ONPERIOD	set_engine_settings_calb ximc.h, 146
ximc.h, 116	set_entype_settings
SYNCOUT_ONSTART	ximc.h, 146
ximc.h, 116	set_extended_settings
SYNCOUT_ONSTOP	ximc.h, 146
ximc.h, 116	set_extio_settings
SYNCOUT_STATE	ximc.h, 147
ximc.h, 116	set_feedback_settings
secure_settings_t, 61	ximc.h, 147
Criticallpwr, 62	set_gear_information
Criticallusb, 62	ximc.h, 147
CriticalT, 62	set_gear_settings
CriticalUpwr, 62	ximc.h, 148
CriticalUusb, 62	set_hallsensor_information
Flags, 62	ximc.h, 148
LowUpwrOff, 62	set_hallsensor_settings
MinimumUusb, 62	ximc.h, 148
serial_number_t, 63	set_home_settings
Key, 63	ximc.h, 148
Major, 63	set_home_settings_calb
Minor, 63	ximc.h, 149
Release, 63	set_joystick_settings
SN, 63	ximc.h, 149
service_command_updf	set_logging_callback
ximc.h, 142	ximc.h, 149
set_accessories_settings	set_motor_information
ximc.h, 142	ximc.h, 149
set_bindy_key	set_motor_settings
ximc.h, 142	ximc.h, 150
set_brake_settings	set_move_settings
ximc.h, 142	ximc.h, 150
set_calibration_settings	set_move_settings_calb
ximc.h, 142	ximc.h, 150
set_control_settings	set_nonvolatile_memory
ximc.h, 143	ximc.h, 150
set_control_settings_calb	set_pid_settings
ximc.h, 143	ximc.h, 150
set_controller_name	set_position
ximc.h, 143	ximc.h, 151
set_ctp_settings	set_position_calb
ximc.h, 143	ximc.h, 151
set_debug_write	set_position_calb_t, 64
ximc.h, 144	EncPosition, 64
set_edges_settings	PosFlags, 64
ximc.h, 144	Position, 64
set_edges_settings_calb	set_position_t, 64
ximc.h, 144	EncPosition, 65
•	,

PosFlags, 65	CurT, 69
uPosition, 65	EncPosition, 69
set_power_settings	EncSts, 70
ximc.h, 151	Flags, 70
set_secure_settings	GPIOFlags, 70
ximc.h, 151	lpwr, 70
set_serial_number	lusb, 70
ximc.h, 152	MoveSts, 70
set_stage_information	MvCmdSts, 70
ximc.h, 152	PWRSts, 70
set_stage_name	Upwr, 70
ximc.h, 152	Uusb, 70
set_stage_settings	WindSts, 70
ximc.h, 152	status_t, 71
set_sync_in_settings	CmdBufFreeSpace, 72
ximc.h, 152	CurPosition, 72
set_sync_in_settings_calb	CurSpeed, 72
ximc.h, 153	CurT, 72
set_sync_out_settings	EncPosition, 72
ximc.h, 153	EncSts, 72
set_sync_out_settings_calb	Flags, 72
ximc.h, 153	GPIOFlags, 72
set_uart_settings	lpwr, 72
ximc.h, 154	lusb, 72
SlowHome	MoveSts, 72
home_settings_calb_t, 48	MvCmdSts, 72
home_settings_t, 49	PWRSts, 72
Speed	uCurPosition, 73
measurements_t, 52	uCurSpeed, 73
move_settings_calb_t, 58	Upwr, 73
move_settings_t, 59	Uusb, 73
sync_in_settings_calb_t, 74	WindSts, 73
sync_in_settings_t, 75	stepcloseloop_Kp_high
SpeedConstant	engine_advansed_setup_t, 36
motor_settings_t, 56	stepcloseloop_Kp_low
SpeedTorqueGradient	engine_advansed_setup_t, 36
motor_settings_t, 56	stepcloseloop_Kw
stage_information_t, 65	engine_advansed_setup_t, 36
Manufacturer, 66	StepsPerRev
PartNumber, 66	engine_settings_calb_t, 37
stage_name_t, 66	engine_settings_t, 39
PositionerName, 66	SupVoltage
stage_settings_t, 66	analog_data_t, 18
HorizontalLoadCapacity, 67	SupVoltage_ADC
LeadScrewPitch, 67	analog_data_t, 18
MaxCurrentConsumption, 67	SupplyVoltageMax
MaxSpeed, 67	encoder_settings_t, 35
SupplyVoltageMax, 68	hallsensor_settings_t, 47
SupplyVoltageMin, 68	stage_settings_t, 68
TravelRange, 68	SupplyVoltageMin
Units, 68	encoder_settings_t, 35
VerticalLoadCapacity, 68	hallsensor_settings_t, 48
StallTorque	stage_settings_t, 68
motor_settings_t, 56	sync_in_settings_calb_t, 73
status_calb_t, 68	ClutterTime, 74
CmdBufFreeSpace, 69	Position, 74
CurPosition, 69	Speed, 74
CurSpeed, 69	SyncInFlags, 74

sync_in_settings_t, 74	motor_settings_t, 56
ClutterTime, 75	TravelRange
Speed, 75	stage_settings_t, 68
SyncInFlags, 75	LIADT DARITY DITO
uPosition, 75	UART_PARITY_BITS
uSpeed, 75	ximc.h, 116
sync_out_settings_calb_t, 75	UARTSetupFlags
Accuracy, 76	uart_settings_t, 78
SyncOutFlags, 76	uAccuracy
SyncOutPeriod, 76	sync_out_settings_t, 77
SyncOutPulseSteps, 76	uAntiplaySpeed
sync_out_settings_t, 76	move_settings_t, 59
Accuracy, 77	uCurPosition
SyncOutFlags, 77	status₋t, 73
SyncOutPeriod, 77	uCurSpeed
SyncOutPulseSteps, 77	status_t, 73
uAccuracy, 77	uDeltaPosition
SyncInFlags	control_settings_t, 26
sync_in_settings_calb_t, 74	uFastHome
sync_in_settings_t, 75	home_settings_t, 50
SyncOutFlags	uHomeDelta
sync_out_settings_calb_t, 76	home_settings_t, 50
sync_out_settings_t, 77	uLeftBorder
SyncOutPeriod	edges_settings_t, 32
sync_out_settings_calb_t, 76	uMaxSpeed
sync_out_settings_t, 77	control_settings_t, 26
SyncOutPulseSteps	uNomSpeed
sync_out_settings_calb_t, 76	engine_settings_t, 39
sync_out_settings_t, 77	uPosition
5)110=501.=501go=1, 11	command_add_sync_in_action_t, 23
t1	get_position_t, 45
brake_settings_t, 19	set_position_t, 65
t2	sync_in_settings_t, 75
brake_settings_t, 19	uRightBorder
t3	edges_settings_t, 32
brake_settings_t, 19	uSlowHome
t4	home_settings_t, 50
brake_settings_t, 19	uSpeed
TSGrad	move_settings_t, 59
accessories_settings_t, 14	sync_in_settings_t, 75
TSMax	uart_settings_t, 77
accessories_settings_t, 14	UARTSetupFlags, 78
TSMin	UniqueID0
accessories_settings_t, 14	globally_unique_identifier_t, 46
TSSettings	UniqueID1
accessories_settings_t, 14	globally_unique_identifier_t, 46
Temp	UniqueID2
analog_data_t, 18	globally_unique_identifier_t, 46
Temp_ADC	UniqueID3
analog_data_t, 18	globally_unique_identifier_t, 46
TemperatureSensorInfo	Units
accessories_settings_t, 14	stage_settings_t, 68
Time	Upwr
command_add_sync_in_action_calb_t, 23	status_calb_t, 70
command_add_sync_in_action_t, 23	status_t, 73
Timeout	UserData
control_settings_calb_t, 25	nonvolatile_memory_t, 59
control_settings_calb_t, 25	Uusb
TorqueConstant	status_calb_t, 70
ioiqueoulistant	Status_CaiD_t, 10

status_t, 73	command_homezero, 119 command_left, 119
VerticalLoadCapacity	command_loft, 120
stage_settings_t, 68	command_move, 120
3 <i>,</i>	command_move_calb, 120
WIND_A_STATE_ABSENT	command_movr, 120
ximc.h, 116	command_movr_calb, 121
WIND_A_STATE_OK	command_power_off, 121
ximc.h, 116	command_read_robust_settings, 121
WIND_B_STATE_ABSENT	command_read_settings, 121
ximc.h, 117	command_reset, 122
WIND_B_STATE_OK	command_right, 122
ximc.h, 117	•
WindSts	command_save_robust_settings, 122
status_calb_t, 70	command_save_settings, 122
status_t, 73	command_sstp, 122
WindingCurrentA	command_start_measurements, 122
chart_data_t, 22	command_stop, 123
WindingCurrentB	command_update_firmware, 123
chart_data_t, 22	command_wait_for_stop, 123
WindingCurrentC	command_zero, 123
chart_data_t, 22	EEPROM_PRECEDENCE, 104
WindingInductance	ENC_STATE_ABSENT, 104
motor_settings_t, 57	ENC_STATE_MALFUNC, 104
WindingResistance	ENC_STATE_OK, 104
motor_settings_t, 57	ENC_STATE_REVERS, 104
	ENC_STATE_UNKNOWN, 104
WindingVoltageA	ENDER_SWAP, 104
chart_data_t, 22	ENGINE_ACCEL_ON, 105
WindingVoltageB	ENGINE_ANTIPLAY, 105
chart_data_t, 22	ENGINE_LIMIT_CURR, 105
WindingVoltageC	ENGINE_LIMIT_RPM, 105
chart_data_t, 22	ENGINE_LIMIT_VOLT, 105
write_key	ENGINE_MAX_SPEED, 105
ximc.h, 154	ENGINE_REVERSE, 105
VINAC ADI	ENGINE_TYPE_2DC, 105
XIMC_API	ENGINE_TYPE_DC, 106
ximc.h, 117	ENGINE_TYPE_NONE, 106
ximc.h, 79	ENGINE_TYPE_STEP, 106
BACK_EMF_KM_AUTO, 102	ENGINE_TYPE_TEST, 106
BORDER_IS_ENCODER, 102	ENUMERATE_PROBE, 106
BORDER_STOP_LEFT, 102	EXTIO_SETUP_INVERT, 106
BORDER_STOP_RIGHT, 102	EXTIO_SETUP_OUTPUT, 107
BRAKE_ENABLED, 103	enumerate_devices, 124
BRAKE_ENG_PWROFF, 103	FEEDBACK_EMF, 107
CONTROL_MODE_BITS, 103	FEEDBACK_ENCODER, 108
CONTROL_MODE_JOY, 103	FEEDBACK_NONE, 108
CONTROL_MODE_LR, 103	free_enumerate_devices, 124
CONTROL_MODE_OFF, 103	get_accessories_settings, 124
CTP_ALARM_ON_ERROR, 103	get_accessories_settings, 124 get_analog_data, 124
CTP_BASE, 103	get_bootloader_version, 124
CTP_ENABLED, 103	get_bookloader_version, 124
close_device, 117	
command_add_sync_in_action, 117	get_calibration_settings, 125
command_add_sync_in_action_calb, 118	get_chart_data, 125
command_change_motor, 118	get_control_settings, 125
command_clear_fram, 118	get_control_settings_calb, 126
command_eeread_settings, 118	get_controller_name, 126
command_eesave_settings, 119	get_ctp_settings, 126
command_home, 119	get_debug_read, 127
· · · · · · · · · · · · · · · · · · ·	

get device count 197	HOME LISE EAST 100
get_device_count, 127	HOME_USE_FAST, 109
get_device_information, 127	has_firmware, 140
get_device_name, 127	JOY_REVERSE, 109
get_edges_settings, 127	LOW_UPWR_PROTECTION, 109
get_edges_settings_calb, 128	load_correction_table, 140
get_emf_settings, 128	logging_callback_stderr_narrow, 141
get_encoder_information, 128	logging_callback_stderr_wide, 141
get_encoder_settings, 129	logging_callback_t, 117
get_engine_advansed_setup, 129	MICROSTEP_MODE_FULL, 110
get_engine_settings, 129	MOVE_STATE_ANTIPLAY, 110
get_engine_settings_calb, 129	MOVE_STATE_MOVING, 110
get_entype_settings, 130	MVCMD_ERROR, 110
get_enumerate_device_controller_name, 130	MVCMD_HOME, 111
get_enumerate_device_information, 130	MVCMD_LEFT, 111
get_enumerate_device_network_information, 130	MVCMD_LOFT, 111
get_enumerate_device_serial, 131	MVCMD_MOVE, 111
get_enumerate_device_stage_name, 131	MVCMD_MOVR, 111
get_extended_settings, 131	MVCMD_NAME_BITS, 111
get_extio_settings, 131	MVCMD_RIGHT, 111
get_feedback_settings, 132	MVCMD_RUNNING, 111
get_firmware_version, 132	MVCMD_SSTP, 111
get_gear_information, 132	MVCMD_STOP, 111
get_gear_settings, 132	MVCMD_UKNWN, 111
get_globally_unique_identifier, 133	msec_sleep, 141
get_hallsensor_information, 133	open_device, 141
get_hallsensor_settings, 133	POWER_OFF_ENABLED, 111
get_home_settings, 133	PWR_STATE_MAX, 112
get_home_settings_calb, 134	PWR_STATE_NORM, 112
get_init_random, 134	PWR_STATE_OFF, 112
get_joystick_settings, 134	PWR_STATE_REDUCT, 112
get_measurements, 134	PWR_STATE_UNKNOWN, 112
get_motor_information, 135	probe_device, 142
get_motor_settings, 135	REV_SENS_INV, 112
get_move_settings, 135	STATE_ALARM, 112
get_move_settings_calb, 135	STATE_BRAKE, 113
get_nonvolatile_memory, 135	STATE_BUTTON_LEFT, 113
get_pid_settings, 136	STATE_BUTTON_RIGHT, 113
get_position, 136	STATE_CONTR, 113
get_position_calb, 136	STATE_CTP_ERROR, 113
get_power_settings, 136	STATE_CURRENT_MOTOR0, 113
get_secure_settings, 137	STATE_CURRENT_MOTOR1, 113
get_serial_number, 137	STATE_CURRENT_MOTOR2, 113
get_stage_information, 137	STATE_CURRENT_MOTOR3, 113
get_stage_name, 137	STATE_DIG_SIGNAL, 113
get_stage_settings, 137	STATE_ENC_A, 114
get₋status, 138	STATE_ENC_B, 114
get_status_calb, 138	STATE_ERRC, 114
get_sync_in_settings, 138	STATE_ERRD, 114
get_sync_in_settings_calb, 138	STATE_ERRV, 114
get_sync_out_settings, 139	STATE_EXTIO_ALARM, 114
get_sync_out_settings_calb, 139	STATE_GPIO_LEVEL, 114
get_uart_settings, 139	STATE_GPIO_PINOUT, 114
goto_firmware, 140	STATE_LEFT_EDGE, 114
H_BRIDGE_ALERT, 108	STATE_REV_SENSOR, 115
HOME_DIR_FIRST, 108	STATE_RIGHT_EDGE, 115
HOME_DIR_SECOND, 108	STATE_SECUR, 115
HOME_HALF_MV, 108	STATE_SYNC_INPUT, 115
HOME_MV_SEC_EN, 108	STATE_SYNC_OUTPUT, 115
	22.2

SYNCIN_ENABLED, 115	set_uart_settings, 154
SYNCIN_GOTOPOSITION, 115	UART_PARITY_BITS, 116
SYNCIN_INVERT, 116	WIND_A_STATE_OK, 116
SYNCOUT_ENABLED, 116	WIND_B_STATE_OK, 117
SYNCOUT_IN_STEPS, 116	write_key, 154
SYNCOUT_INVERT, 116	XIMC_API, 117
SYNCOUT_ONPERIOD, 116	ximc_fix_usbser_sys, 154
SYNCOUT_ONSTART, 116	ximc_version, 154
SYNCOUT_ONSTOP, 116	ximc_fix_usbser_sys
SYNCOUT_STATE, 116	ximc.h, 154
service_command_updf, 142	ximc_version
set_accessories_settings, 142	ximc_version ximc.h, 154
set_bindy_key, 142	Alliic.ii, 134
set_brake_settings, 142	
set_calibration_settings, 142	
set_control_settings, 143	
set_control_settings_calb, 143	
set_control_settings_calb, 143	
set_ctp_settings, 143 set_debug_write, 144	
<u> </u>	
set_edges_settings, 144	
set_edges_settings_calb, 144 set_emf_settings, 145	
set_encoder_information, 145	
,	
set_encoder_settings, 145	
set_engine_advansed_setup, 145	
set_engine_settings, 146	
set_engine_settings_calb, 146	
set_entype_settings, 146	
set_extended_settings, 146	
set_extio_settings, 147	
set_feedback_settings, 147	
set_gear_information, 147	
set_gear_settings, 148	
set_hallsensor_information, 148	
set_hallsensor_settings, 148	
set_home_settings, 148	
set_home_settings_calb, 149	
set_joystick_settings, 149	
set_logging_callback, 149	
set_motor_information, 149	
set_motor_settings, 150	
set_move_settings, 150	
set_move_settings_calb, 150	
set_nonvolatile_memory, 150	
set_pid_settings, 150	
set_position, 151	
set_position_calb, 151	
set_power_settings, 151	
set_secure_settings, 151	
set_serial_number, 152	
set_stage_information, 152	
set_stage_name, 152	
set_stage_settings, 152	
set_sync_in_settings, 152	
set_sync_in_settings_calb, 153	
set_sync_out_settings, 153	
set_sync_out_settings_calb, 153	