Approximations for the Distribution of Three-dimensional Discrete Scan Statistics

Alexandru Amărioarei Cristian Preda

Laboratoire de Mathématiques Paul Painlevé Département de Probabilités et Statistique Université de Lille 1, INRIA Modal Team

International Workshop on Applied Probability 11-14 June, 2012, Jerusalem, Israel

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- 📵 Error Bound
 - The Approximation Error
 - The Simulation Error
- Simulation and Numerical Results
 - Simulation
 - Numerical Results
- 🚺 Further Remarks
- References

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- 4 Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- 6 References

Introducing the Model

Let T_1, T_2, T_3 be positive integers

- Rectangular region $\mathcal{R} = [0, T_1] \times [0, T_2] \times [0, T_3]$
- $(X_{ijk})_{\substack{1 \leq i \leq T_1 \\ 1 \leq j \leq T_2 \\ 1 \leq k < T_3}}$ i.i.d. integer r.v.'s
 - Bernoulli($\mathcal{B}(1,p)$)
 - Binomial($\mathcal{B}(n,p)$)
 - Poisson($\mathcal{P}(\lambda)$)
- X_{ijk} number of observed events in the elementary subregion $r_{ijk} = [i-1,i] \times [j-1,j] \times [k-1,k]$

Defining the Scan Statistic

Let m_1, m_2, m_3 be positive integers

• Define for $1 \le i_j \le T_j - m_j + 1$,

$$Y_{i_1 i_2 i_3} = \sum_{i=i_1}^{i_1+m_1-1} \sum_{j=i_2}^{i_2+m_2-1} \sum_{k=i_3}^{i_3+m_3-1} X_{ijk}$$

The three dimensional scan statistic,

$$S_{m_1,m_2,m_3} = \max_{\substack{1 \leq i_1 \leq T_1 - m_1 + 1 \\ 1 \leq i_2 \leq T_2 - m_2 + 1 \\ 1 \leq i_3 \leq T_3 - m_3 + 1}} Y_{i_1 i_2 i_3}.$$

 Used for testing the null hypotheses of randomness against the alternative hypothesis of clustering

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- 4 Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- 6 References

Introducing the Problem

Problem

Approximate the distribution of three dimensional discrete scan statistic

$$\mathbb{P}\left(S_{m_1,m_2,m_3}\leq n\right).$$

- No exact formulas
- A Poisson approximation for the special case ($n = m_1 m_2 m_3$, Bernoulli model): Darling and Waterman (1986)
- For Bernoulli case: Glaz et al. (2010)
 - Product type approximation
 - Three Poisson approximations

An Animated Illustration of the Scan

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- 6 References

A Different Approach

Main Observation

The scan statistic r.v. can be viewed as a maximum of a sequence of 1-dependent stationary r.v..

- The idea:
 - discrete and continuous one dimensional scan statistic: Haiman (2000,2007)
 - discrete and continuous two dimensional scan statistic: Haiman and Preda (2002,2006)

Writing the Scan as an Extreme of 1-Dependent R.V.'s

Let
$$L_j = rac{T_j}{m_j}, j \in \{1,2,3\}$$
 positive integers

• Define for $k \in \{1, 2, ..., L_3 - 1\}$

$$Z_k = \max_{\substack{1 \le i_1 \le (L_1 - 1)m_1 + 1\\ 1 \le i_2 \le (L_2 - 1)m_2 + 1\\ (k - 1)m_3 + 1 \le i_3 \le km_3 + 1}} Y_{i_1 i_2 i_3}$$

- $(Z_k)_k$ is 1-dependent and stationary
- Observe

$$S_{m_1,m_2,m_3} = \max_{1 \le k \le L_3 - 1} Z_k$$

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- References

Two Main Theorems

Let $(Z_k)_{k\geq 1}$ be a strictly stationary 1-dependent sequence of r.v.'s and let $q_m=q_m(x)=\mathbb{P}(\max(Z_1,\ldots,Z_m)\leq x)$, with $x<\sup\{u|\mathbb{P}(Z_1\leq u)<1\}$.

Theorem (Haiman 1999)

For any x such that $\mathbb{P}(Z_1>x)=1-q_1\leq 0.025$ and any integer m>3,

$$\begin{vmatrix} q_m - \frac{6(q_1 - q_2)^2 + 4q_3 - 3q_4}{(1 + q_1 - q_2 + q_3 - q_4 + 2q_1^2 + 3q_2^2 - 5q_1q_2)^m} \end{vmatrix} \le \overline{\Delta}_1 (1 - q_1)^3,$$

$$\begin{vmatrix} q_m - \frac{2q_1 - q_2}{[1 + q_1 - q_2 + 2(q_1 - q_2)^2]^m} \end{vmatrix} \le \overline{\Delta}_2 (1 - q_1)^2,$$

- $\overline{\Delta}_1 = 561 + 88m[1 + 124m(1 q_1)^3]$
- $\overline{\Delta}_2 = 9 + 561(1 q_1) + 3.3m[1 + 4.7m(1 q_1)^2].$

Improved Results

Main Theorem

For x such that $\mathbb{P}(Z_1>x)=1-q_1\leq lpha<rac{4}{27}$ and m>3 we have

$$\begin{vmatrix} q_m - \frac{6(q_1 - q_2)^2 + 4q_3 - 3q_4}{(1 + q_1 - q_2 + q_3 - q_4 + 2q_1^2 + 3q_2^2 - 5q_1q_2)^m} \end{vmatrix} \le \Delta_1 (1 - q_1)^3,$$

$$\begin{vmatrix} q_m - \frac{2q_1 - q_2}{[1 + q_1 - q_2 + 2(q_1 - q_2)^2]^m} \end{vmatrix} \le \Delta_2 (1 - q_1)^2,$$

- $\Delta_1 = \Delta_1(\alpha, q_1, m) = \Gamma(\alpha) + mK(\alpha) \left[1 + 3(1 q_1)^2\right]$
- $\Delta_2 = mF(\alpha, q_1, m) = m \left[1 + \frac{3}{m} + K(\alpha)(1 q_1) + \frac{\Gamma(\alpha)(1 q_1)}{m}\right]$.

Advantages

- Increased range of applicability
- ullet Sharp bounds values (ex. lpha= 0.025: 561 ightarrow 162 and 88 ightarrow 22)

← 로 → ← 로 → ← 로 → ← 로 → ←

IWAP 2012

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- 6 References

First Step Approximation

• Define $q_2 = \mathbb{P}(Z_1 \leq n)$ $q_3 = \mathbb{P}(Z_1 < n, Z_2 < n)$

• If
$$1 - q_2 \le \alpha_1 < \frac{4}{27}$$
 the (first) approximation

$$\mathbb{P}(S \leq n) \approx f(q_2, q_3, L_3 - 1)$$

where
$$S = S_{m_1,m_2,m_3}$$
 and $f(x,y,m) = \frac{2x-y}{[1+x-y+2(x-y)^2]^m}$

Approximation error

$$(L_3-1)F(\alpha_1,L_3-1)(1-q_2)^2$$

with
$$F(\alpha, \alpha, m) = F(\alpha, m)$$
.

□ > <
 □ >
 □ >
 □ >
 □ >
 □ >
 □ =
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

Approximation for q_2 and q_3

q_2 :

• For
$$l \in \{1, 2, \dots, L_2 - 1\}$$

$$Z_{l}^{(2)} = \max_{\substack{1 \leq i_{1} \leq (L_{1}-1)m_{1}+1\\ (l-1)m_{2}+1 \leq i_{2} \leq lm_{2}+1\\ 1 \leq i_{3} \leq m_{3}+1}} Y_{i_{1}i_{2}i_{3}}$$

•
$$q_2 = \mathbb{P}\left(\max_{1 \leq l \leq L_2 - 1} Z_l^{(2)} \leq n\right)$$

- Define $q_{22} = \mathbb{P}(Z_1^{(2)} \le n)$ $q_{32} = \mathbb{P}(Z_1^{(2)} \le n, Z_2^{(2)} \le n)$
- Approximation $(1 q_{22} \le \alpha_2)$ $q_2 \approx f(q_{22}, q_{32}, L_2 - 1)$

q3:

• For $l \in \{1, 2, \dots, L_2 - 1\}$

$$Z_{l}^{(3)} = \max_{\substack{1 \leq i_{1} \leq (L_{1}-1)m_{1}+1\\ (l-1)m_{2}+1 \leq i_{2} \leq lm_{2}+1\\ 1 \leq i_{3} \leq 2m_{3}+1}} Y_{i_{1}i_{2}i_{3}}$$

•
$$q_3 = \mathbb{P}\left(\max_{1 \leq l \leq L_2 - 1} Z_l^{(3)} \leq n\right)$$

• Define
$$q_{23} = \mathbb{P}(Z_1^{(3)} \leq n)$$

$$q_{33} = \mathbb{P}(Z_1^{(3)} \le n, Z_2^{(3)} \le n)$$
• Approximation $(1 - q_{23} \le \alpha_2)$

$$q_3 \approx f(q_{23}, q_{33}, L_2 - 1)$$

Illustration of q_{ts} Construction

Last Step (Approximating q_{ts})

Applying again the second part of the Main Theorem...

• For $s, t \in \{2,3\}$ and $j \in \{1,2,\ldots,L_1-1\}$ define

$$Z_{j}^{(ts)} = \max_{\substack{(j-1)m_1+1 \le i_1 \le jm_1+1 \\ 1 \le i_2 \le (t-1)m_2+1 \\ 1 \le i_3 \le (s-1)m_3+1}} Y_{i_1 i_2 i_3}$$

Observe

$$q_{ts} = \mathbb{P}\left(\max_{1 \leq j \leq L_1 - 1} Z_j^{(ts)} \leq n\right)$$

• Define for $r, s, t \in \{2, 3\}$,

$$q_{rts} = \mathbb{P}\left(\bigcap_{j=1}^{r-1} \{Z_j^{(ts)} \leq n\}\right)$$

• If $1-q_{2ts} \leq \alpha_3$ then the approximation and the error

$$q_{ts} \approx f(q_{2ts}, q_{3ts}, L_1 - 1)$$

$$q_{ts} \approx f(q_{2ts}, q_{3ts}, L_1 - 1)$$
 $(L_1 - 1)F(\alpha_3, L_1 - 1)(1 - q_{2ts})^2$ versité

19 / 35

An Illustration of the Approximation Chain (q_2)

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- 6 References

Approximation Error

Define for $t, s \in \{2, 3\}$

$$\begin{cases} \alpha_3 &= 1 - q_3, \ \alpha_{23} = 1 - q_{23}, \ \alpha_{233} = 1 - q_{233}, \\ \gamma_{ts} &= f(q_{2ts}, q_{3ts}, L_1 - 1), \ \gamma_s = f(\gamma_{2s}, \gamma_{3s}, L_2 - 1) \\ F_1 &= F(\alpha_3, L_3 - 1), \ F_2 = F(\alpha_{23}, L_2 - 1), \ F_3 = F(\alpha_{233}, L_1 - 1) \end{cases}$$

The approximation error

$$E_{app} = (L_3 - 1)F_1\delta_2^2 + (L_3 - 2)(L_2 - 1)F_2\left(\delta_{22}^2 + \delta_{23}^2\right) + \\ + (L_3 - 2)(L_2 - 2)(L_1 - 1)F_3\left[\sum_{t,s \in \{2,3\}} (1 - q_{2ts})^2\right]$$

where $\delta_{22},\ \delta_{23},\ \delta_2$ are given by

$$\begin{cases} \delta_2 &= 1 - \gamma_2 + (L_2 - 1)F_2\delta_{22} + (L_2 - 2)(L_1 - 1)F_3 \left[(1 - q_{222})^2 + (1 - q_{232})^2 \right] \\ \delta_{2s} &= 1 - \gamma_{2s} + (L_1 - 1)F_3(1 - q_{22s})^2 \end{cases}$$

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- 4 Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- 6 References

Simulation Error for Approximation Formula

If ITER is the number of simulations, we can say, at 95% confidence level,

$$|q_{\mathit{rts}} - \hat{q}_{\mathit{rts}}| \leq 1.96 \sqrt{\frac{\hat{q}_{\mathit{rts}}(1 - \hat{q}_{\mathit{rts}})}{\mathit{ITER}}} = \beta_{\mathit{rts}}, \ r, t, s \in \{2, 3\}$$

where \hat{q}_{rts} is the simulated value.

Define for $t, s \in \{2, 3\}$,

$$\begin{cases} \hat{q}_{ts} = f(\hat{q}_{2ts}, \hat{q}_{3ts}, L_1 - 1) \\ \hat{q}_s = f(\hat{q}_{2s}, \hat{q}_{3s}, L_2 - 1) \end{cases}$$

The simulation error corresponding to the approximation formula

$$E_{sf} = (L_1 - 2)(L_2 - 2)(L_3 - 2) \left(\sum_{r,t,s \in \{2,3\}} \beta_{rts} \right)$$

Simulation Error for Approximation Error

In the approximation error formula we consider the transformations

$$\begin{cases} 1 - q_{rts} \rightarrow 1 - \hat{q}_{rts} + \beta_{rts} = u_{rts} \\ 1 - \gamma_{ts} \rightarrow 1 - \hat{q}_{ts} + (L_1 - 2)(\beta_{2ts} + \beta_{3ts}) = u_{ts} \\ 1 - \gamma_s \rightarrow 1 - \hat{q}_s + (L_1 - 2)(L_2 - 2)(\beta_{22s} + \beta_{32s} + \beta_{23s} + \beta_{33s}) = u_s \end{cases}$$

the simulation error corresponding to the approximation error become

$$\begin{array}{lll} \textit{E}_{\textit{sapp}} & = & (\textit{L}_{3}-1)\textit{F}_{1}\overline{\delta}_{2}^{2} + (\textit{L}_{3}-2)(\textit{L}_{2}-1)\textit{F}_{2}\left(\overline{\delta}_{22}^{2} + \overline{\delta}_{23}^{2}\right) + \\ & & (\textit{L}_{3}-2)(\textit{L}_{2}-2)(\textit{L}_{1}-1)\textit{F}_{3}\left(\textit{u}_{222}^{2} + \textit{u}_{223}^{2} + \textit{u}_{232}^{2} + \textit{u}_{232}^{2} + \textit{u}_{233}^{2}\right). \end{array}$$

where $\bar{\delta_{22}},\ \bar{\delta_{23}},\ \bar{\delta_{2}}$ are given by

$$\begin{cases} \bar{\delta}_{2s} = u_{2s} + (L_1 - 1)F_3u_{22s}^2 \\ \bar{\delta}_2 = u_2 + (L_2 - 1)F_2\bar{\delta}_{22} + (L_2 - 2)(L_1 - 1)F_3(u_{222}^2 + u_{232}^2) \end{cases}$$

The total simulation error

 $E_{sim} = E_{sf} + E_{sapp}$

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- 6 References

Simulation of q_{rts}

To simulate q_{rts} we make use of known information using the recurrence

$$q_{rts} = \max\{q_{(r-1)ts}, q_{r(t-1)s}, q_{r(s-1)}, g_{sum}(r-2, t-2, s-2)\}$$

$$g_{sum}(c_x, c_y, c_z) = \mathbb{P} \left(\max_{\substack{c_x \, m_1 + 1 \leq i_1 \leq (c_x + 1) \, m_1 + 1 \\ c_y \, m_2 + 1 \leq i_2 \leq (c_y + 1) \, m_2 + 1 \\ c_z \, m_3 + 1 \leq i_3 \leq (c_z + 1) \, m_3 + 1} Y_{i_1 \, i_2 \, i_3} \leq n \right)$$

- Introduction
 - Framework and Model
 - Problem and Previous Work
- Description of the Method
 - The Key Idea
 - The Main Tools
 - The Approximation
- Error Bound
 - The Approximation Error
 - The Simulation Error
- Simulation and Numerical Results
 - Simulation
 - Numerical Results
- Further Remarks
- References

Comparing with existing results:

Table 1: $n = 1, p = 0.00005, m_1 = m_2 = m_3 = 5, L_1 = L_2 = L_3 = 10, ITER = 10^7$

k	$\hat{\mathbb{P}}(S \leq k)$	Glaz et al. Product type	Our Approximation	Approximation Error	Simulation Error	Total Error
1 2	0.906980	0.906970	0.909820	0.00918789	0.017163	0.026351
	0.999540	0.999519	0.999439	0.00000012	0.000483	0.000483

Table 2:
$$n = 1, p = 0.0001, m_1 = m_2 = m_3 = 5, L_1 = L_2 = L_3 = 10, ITER = 10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Glaz et al. Product type	Our Approximation	Approximation Error	Simulation Error	Total Error
1	0.685780	0.680843	0.694769	0.23100630	0.250852	0.481859
2	0.996020	0.996203	0.996129	0.00000892	0.001325	0.001334
3	0.999990	0.999980	0.999942	0.00000000	0.000091	0.000091

Comparing with existing results:

Table 1: $n = 1, p = 0.00005, m_1 = m_2 = m_3 = 5, L_1 = L_2 = L_3 = 10, ITER = 10^7$

k	$\hat{\mathbb{P}}(S \leq k)$	Glaz et al. Product type	Our Approximation	Approximation Error	Simulation Error	Total Error
1	0.906980	0.906970	0.909820	0.00918789	0.017163	0.026351
2	0.999540	0.999519	0.999439	0.00000012	0.000483	0.000483

Table 2:
$$n = 1, p = 0.0001, m_1 = m_2 = m_3 = 5, L_1 = L_2 = L_3 = 10, ITER = 10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Glaz et al. Product type	Our Approximation	Approximation Error	Simulation Error	Total Error
1	0.685780	0.680843	0.694769	0.23100630	0.250852	0.481859
2	0.996020	0.996203	0.996129	0.00000892	0.001325	0.001334
3	0.999990	0.999980	0.999942	0.00000000	0.000091	0.000091

Scanning the same region $\mathcal R$ with windows of the same volume but different sizes:

Table 3:

$$n=1, p=0.0025, m_1=4, m_2=4, m_3=4, L_1=10, L_2=10, L_3=10, \textit{ITER}=10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
4	0.986164	0.98614780	0.00009884	0.00267389	0.00277274
5	0.999568	0.99966216	0.0000008	0.00040217	0.00040226
6	0.999993	0.99998720	0.00000000	0.00002838	0.00002838

Table 4:
$$n = 1, p = 0.0025, m_1 = 8, m_2 = 4, m_3 = 2, L_1 = 5, L_2 = 10, L_3 = 20, ITER = 10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
4	0.989160	0.98920297	0.00004532	0.00201212	0.00205744
5	0.999710	0.99953831	0.0000006	0.00035482	0.00035488
6	0.999990	0.99999975	0.00000000	0.00010710	0.00010710

IWAP 2012

Scanning the same region ${\mathcal R}$ with windows of the same volume but different sizes:

Table 3:

$$n = 1, p = 0.0025, m_1 = 4, m_2 = 4, m_3 = 4, L_1 = 10, L_2 = 10, L_3 = 10, ITER = 10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
4	0.986164	0.98614780	0.00009884	0.00267389	0.00277274
5	0.999568	0.99966216	0.00000008	0.00040217	0.00040226
6	0.999993	0.99998720	0.00000000	0.00002838	0.00002838

Table 4:
$$n = 1, p = 0.0025, m_1 = 8, m_2 = 4, m_3 = 2, L_1 = 5, L_2 = 10, L_3 = 20, ITER = 10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
4	0.989160	0.98920297	0.00004532	0.00201212	0.00205744
5	0.999710	0.99953831	0.0000006	0.00035482	0.00035488
6	0.999990	0.99999975	0.00000000	0.00010710	0.00010710

IWAP 2012

Binomial $\mathcal{B}(n,p)$ v.s. Poisson $\mathcal{P}(\lambda)$

Table 5: $n = 10, p = 0.0025, m_1 = m_2 = m_3 = 4, L_1 = L_2 = L_3 = 20, ITER = 10^7$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
11	0.961280	0.96299099	0.00017863	0.00133474	0.00151337
12	0.994650	0.99346695	0.00000220	0.00043587	0.00043807
13	0.999380	0.99976914	0.0000001	0.00012910	0.00012912
14	0.999940	0.99993160	0.00000000	0.00006483	0.00006484

Table 6:
$$\lambda = 0.025, m_1 = m_2 = m_3 = 4, L_1 = L_2 = L_3 = 20, ITER = 10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
11	0.959000	0.95595046	0.00024518	0.01633211	0.01657730
12	0.994625	0.99452042	0.00000362	0.00553831	0.00554193
13	0.999550	0.99923331	0.00000024	0.00265313	0.00265337
14	0.999975	1			

Binomial $\mathcal{B}(n,p)$ v.s. Poisson $\mathcal{P}(\lambda)$

Table 5: $n = 10, p = 0.0025, m_1 = m_2 = m_3 = 4, L_1 = L_2 = L_3 = 20, ITER = 10^7$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
11	0.961280	0.96299099	0.00017863	0.00133474	0.00151337
12	0.994650	0.99346695	0.00000220	0.00043587	0.00043807
13	0.999380	0.99976914	0.0000001	0.00012910	0.00012912
14	0.999940	0.99993160	0.00000000	0.00006483	0.00006484

Table 6:
$$\lambda = 0.025, m_1 = m_2 = m_3 = 4, L_1 = L_2 = L_3 = 20, ITER = 10^7$$

k	$\hat{\mathbb{P}}(S \leq k)$	Our Approximation	Approximation Error	Simulation Error	Total Error
11	0.959000	0.95595046	0.00024518	0.01633211	0.01657730
12	0.994625	0.99452042	0.00000362	0.00553831	0.00554193
13	0.999550	0.99923331	0.00000024	0.00265313	0.00265337
14	0.999975	1			

Remarks

We need to reduce the simulation error:

- increasing the iterations number
- develop faster algorithms
- use variance reduction techniques

- Scan statistic. Springer (2001).
 - Darling, R., Waterman, M.: Approximations for three dimensional scan statistic. *SIAM J. Appl Math* **46** (1986), 118–132.
 - Glaz, J., Guerriero, M., Sen, R.: Approximations for three dimensional scan statistic. *Methodol Comput Appl Probab* **12** (2010), 731–747.
 - Haiman, G.: First passage time for some stationary sequence. Stoch Proc Appl 80 (1999), 231–248.
 - Haiman, G.: Estimating the distribution of scan statistics with high precision. *Extremes* **3** (2000), 349–361.
 - Haiman, G., Preda, C.: A new method for estimating the distribution of scan statistics for a two-dimensional Poisson process. *Methodol Comput Appl Probab* 4 (2002), 393–407.
 - Haiman, G., Preda, C.: Estimation for the distribution of two-dimensional scan statistics. *Methodol Comput Appl Probab* 8 (2006), 373–381.

Selected Values for $K(\alpha)$ and $\Gamma(\alpha)$

α	$K(\alpha)$	$\Gamma(\alpha)$
0.1	79.6678	1471.62
0.075	43.229	454.412
0.05	29.0284	245.873
0.025	21.5672	161.737
0.01	18.5949	132.618
0.005	17.765	124.924
0.0025	17.3749	121.373

Table 7 : Selected values for $K(\alpha)$ and $\Gamma(\alpha)$

How to compute $K(\alpha)$ and $\Gamma(\alpha)$?

For $\epsilon=0.0001$ and $\alpha<\frac{4}{27}-\epsilon$, lets denote with $t_2(\alpha)$ the second largest solution of the equation $\alpha t^3-t+1=0$ and define $l=t_2(\alpha)^3+\epsilon$:

$$\mathcal{K}(\alpha) = \frac{\frac{11+2\alpha-5\alpha^2}{(1-\alpha)^2} + 2l(1+4\alpha)(1+l\alpha)\left\{\frac{4}{[1-\alpha(1+l\alpha)^2]^3} - 1\right\}}{1-\alpha(1+l\alpha)^2\left\{\frac{2}{[1-\alpha(1+l\alpha)^2]^2} + \frac{1}{1-\alpha(1+l\alpha)^2}\right\}}$$

For the formula expressing $\Gamma(\alpha)$, define first

$$L(\alpha) = 6(7+3\alpha) + (1+2\alpha+\alpha^2)P(\alpha)$$

$$P(\alpha) = 19 + 36\alpha + 27\alpha^2 + 27\alpha^3 + 3(1+\alpha+3\alpha^2)^2K(\alpha) + 3\alpha^3(1+\alpha+3\alpha^2)K^2(\alpha) + \alpha^6K^3(\alpha).$$

and if we denote by $\eta=1+Ilpha$ and

$$E(\alpha) = \frac{\eta^5 [1 + \alpha(\eta - 1)][1 + \eta + \eta^2 + \alpha \eta^2 (\eta - 3)][1 + \eta + \alpha \eta (\eta - 2)]^4}{(1 - \alpha \eta^2)^4 \{(1 - \alpha \eta^2)^2 - \alpha \eta^2 [1 + \eta + \alpha \eta (\eta - 2)]^2\}}.$$

$$\Gamma(\alpha) = L(\alpha) + E(\alpha)$$

