MAT301 Lab Directions

1. Click link in table of contents Wait for page to load

- 2. Run each cell that says RUN
 Type your answer to each EXERCISE
- 3. Open print preview

4. Print to PDF and save on your computer

5. Upload your PDF to blackboard

Table of Contents

A. Python as a Calculator.

https://mybinder.org/v2/gh/anniebmcc/pycalclab/master?filepath=mat301a.ipynb

B. Graphing

https://mybinder.org/v2/gh/anniebmcc/pycalclab/master?filepath=mat301b.ipynb

C. Limits

https://mybinder.org/v2/gh/anniebmcc/pycalclab/master?filepath=mat301c.ipynb

D. Derivatives

https://mybinder.org/v2/gh/anniebmcc/pycalclab/master?filepath=mat301d.ipynb

Lab A: Using Python as a Calculator

mybinder.org/v2/gh/anniebmcc/pycalclab/master 2020 Summer — Calculus 1 Dr Matthew H Sunderland

Jupyter Notebooks

A1. **RUN** the following "code cell" (gray rectangle with In[] next to it), by CLICKING the code cell and pressing SHIFT+RETURN. Notice that only the last result will display.

```
In [ ]: 1 + 2 + 3
50 - 3
100*5
```

A2. **RUN** the following. As always, only the last result displays, but the last result has 2 parts because of the comma.

```
In [ ]: 1 + 2 + 3
50 - 3, 1000*1000
100*5, 7*7
```

A3. The "+" on the toolbar adds a code cell. The "scissors" deletes a cell.

Python arithmetic + - * / **

A4. **RUN** the following.

```
In [ ]: 3 + 10*5, 5**2, 27/10
```

A5. EXERCISE.

- a) What does each of the 5 arithmetic operations do?
- b) Do spaces around the 5 operations matter, or is it just style?

```
In [ ]: # TYPE YOUR ANSWERS BELOW
#
    # a) + is
# - is
# * is
# / is
# ** is
# # b)
```

Python # and =

A6. RUN the following. You will notice python ignores everything after #

```
In [ ]: # This is a comment
1 + 1 # This is also a comment
```

A7. **RUN** the following. Notice we assign variables using = Assignment itself does NOT produce output.

```
In [ ]: a = 10
a

In [ ]: b = 20

In [ ]: a = 18
b = 21
c = a - b
c
```

A8. **RUN** the following. Notice you can assign multiple variables at once with a comma.

```
In [ ]: x, y = 100, 500
x
In [ ]: a,b,c = 3,4,5
a + b/c
```

A9. **RUN** the following. See that we can compute $\frac{(2-3)*-3}{-1+2}$ all at once (1st cell below), or we can assign variables to help us (2nd cell below).

```
In []: (2-3)*-3/(-1+2)

In []: top = (2-3)*-3
bottom = -1+2
top/bottom
```

A10. **EXERCISE.** Assign variables to help you compute $3 - \frac{3^2 - 2 \cdot 3}{2 \cdot 3 - 2}$

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

Order of Operations

A11. **RUN** the following. Notice a - b * c = a - (b * c), but they do not equal (a - b) * c.

```
In []: a,b,c = 3,4,5

a - b*c, a - (b*c), (a - b)*c
```

A12. **EXERCISE.** In each row, identify NON-equivalent choice. For example, the answer to (1) is (a - b) * c because a - b * c = a - (b * c)

```
a-b*c a-(b*c) (a-b)*c
(1)
     a*(b-c) (a*b)-c a*b-c

a/b+c a/(b+c) (a/b)+c
(2)
(3) 	 a/b+c
                              a + b/c
                 a + (b/c)(a ** b) * c
(4) 	 (a+b)/c
(5)
     a ** (b * c)
                                a ** b * c
     a * (b ** c)
                  a*b**c
                                (a * b) ** c
(6)
                   (a/b) ** c
                                a/(b ** c)
(7)
     a/b ** c
     a ** b/c
                 (a ** b)/c \qquad a ** (b/c)
(8)
     (3-3)-3
                   3 - 3 - 3
                                3 - (3 - 3)
(9)
(10) \qquad (2**3)**2 \qquad 2**(3**2) \qquad 2**3**2
(11)
     6/3/2
                   6/(3/2)
                                (6/3)/2
```

A13. **RUN** the following example, where we add 2 sets of parentheses which show the order of the 2 operations.

```
In [ ]: 1 + 3/5
In [ ]: (1 + (3/5))
```

A14. **EXERCISE.** Add 4 sets of parentheses, which show the order of the 4 operations.

```
In [ ]: 7 - 3 ** 2/9 + 4
In [ ]: # Type your answer below and press SHIFT+ENTER
```

A15. **EXERCISE.** Assign a,b,c = 4,5,8 and then evaluate $\frac{a^b-c/b}{c-a}$, $\frac{a^{c-b}}{c-b}$, $\frac{a^{3/2}}{b}$, $\frac{a-b(c-a)}{c-a}$

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

Making python functions

A16. **RUN** the following.

```
In [ ]: def g(x):
    return x**2
g(7)
In [ ]: def h(n): return n + 100
h(7)
```

A17. **EXERCISE.** Make the function $P(x) = x^2 - 2x + 1$ and find P(P(7)).

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

Built-in %pylab functions

Meaning	Math notation	Python
absolute value	x	abs(x)
square root	\sqrt{x}	sqrt(x)
exponential function	e^{x}	exp(x)
natural logarithm	ln x	log(x)
sine	$\sin x$	sin(x)
inverse sine	$\sin^{-1} x$	arcsin(x)
converts degrees to radians		radians(x)

A18. **RUN** the code cells below. The command <code>%pylab</code> only needs to be run once per lab; it loads "built-in functions" (from python packages numpy and matplotlib).

A19. EXERCISE. Evaluate

```
1. \sin 40^{\circ}

2. \sin^2 65^{\circ}

3. e^{(10-8.5)/3}

4. \arcsin(\sin(3\pi/4))
```

Note. Python uses radians for all angle measurements, so you need to convert any degrees to radians.

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

Making an array with $r_{[}$

A20. **RUN** the following. (If you get an error, go back and run A17.) The function $r_{[]}$ can make an array of numbers of your choice. We will need arrays for graphing (Lab B).

```
In []: x = r_{2,3,4,5,10}
x**3
```

A21. **EXERCISE.** Use r = 1 to store the numbers 2,3,5,7,11 in an array named $x \cdot Find x \cdot x \cdot x$.

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

Making an array with r_[a:b:stride]

A22. **RUN** the following. In general, $r_{a:b}$ will list integers from a up to but not including b. A missing a is the same as 0.

```
In [ ]: r_[5:10]
In [ ]: r_[:5]
```

A23. **EXERCISE.** Use $r_{a:b}$ to make the array 1,2,3,4,5,6,7,8,9

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

A24. **RUN** the following. In general, $r_{a:b:stride}$ spaces out your numbers by the amount stride.

```
In [ ]: r_[0:100:2]
```

A25. **EXERCISE.** Use $r_{a:b:stride}$ to make the array 1, 3, 5, ..., 99

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

Making an array with linspace(a,b,n)

A26. **RUN** the following. Observe that linspace(a,b,n) lists n numbers from a to b inclusive. This is useful for generating a lot of evenly-spaced numbers, such as when graphing (Lab B). Observe that linspace(a,b) lists 50 numbers from a to b inclusive.

```
In [ ]: linspace(0,10,6)
In [ ]: linspace(0,10)
```

A27. **EXERCISE.** Use linspace(a,b,n) to make the array 1, 1.5, 2, 2.5, 3, 3.5, 4

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

A28. EXERCISE.

Convert average body temperature $98.6^{\circ} F$ to Celsius using C = 5/9(F - 32).

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

A29. RUN the following.

Notice that \mathbf{x} and \mathbf{y} are arrays,

c [x,y] puts them into a table.

A30. EXERCISE.

Use r_ to make an array of Fahrenheit values $x = -100, -80, -60, \dots, 100$.

Make the corresponding array of Celsius values y

Use c to put x and y into a table.

```
In [ ]: # Type your answer below and press SHIFT+ENTER
```

Lab B: Plotting Graphs in Python 2020 Summer — Calculus 1 Dr Matthew H Sunderland

B1. If you are reading this as a PDF,

open the live notebook remotely on Binder here (https://mybinder.org/v2/gh/mattsunderland/pycalclab/master).

Plotting with plot

B2 Example. To graph $f(x) = x^2$ over [-2, 2] by hand, make an xy table: choose some x values,

and then use f to compute the corresponding y values.

Graphing in python is similar. Run the following (SHIFT+ENTER), then run it again.

```
In [ ]: %pylab inline

x = r_[-2, -1, 0, 1, 2]
y = r_[4, 1, 0, 1, 4]
plot(x,y)
```

B3. Run the code cell below. Notes:

- We make the x with linspace(a,b,n), which gives n numbers evenly spaced a to b inclusive (see A30)
- We make the y by doing arithmetic on x
- plot(x,y) makes the plot
- title() adds a title
- grid() add a grid
- r_[[x,y]] displays an xy table

```
In [ ]: x = linspace(-2,2,9)
y = x**2

plot(x,y)
title('$f(x) = x^2$ plotted with 9 points')
grid()

r_[[x,y]]
```

B4 Example. Run the following cells, which graph $f(x) = e^x$ over the interval [0, 7].

- $r_{a:b:stride}$ gives you the numbers from a up to but not including b spaced stride apart (see A28)
- $\exp(x)$ is how you write e^x in python (see A21)

B5. Run the following.

When we change the x we must recompute the y; there are two ways to do it (compare B4 to B3).

B6 Exercise. We want to graph $y = \cos 4x$ over $[0, \pi]$ with a step size of pi/10.

- i. Which command gives the desired values for x? (a) x = 0:pi/10:pi (b) x = 0:pi:pi/10 (c) x = linspace(0,pi)
- ii. Which gives the correct answer for y? (a) y = cos(4x) (b) y = cos(4x)
- iii. Plot the graph.
- iv. Redo your plot from iii. using x = linspace(0, pi)
- v. Which plot looks more like the plot of a cosine curve?
- (a) The first one, (b) the second one, (c) both of them.

```
In [ ]: # i. Type your answer in this comment:
# ii. Type your answer in this comment:
# iii. Type and run your code here.
```

```
In [ ]: # iv. Type and run your code here.
# ii. Type your answer in this comment:
```

B7 Exercise.

```
i. Plot the function f(x) = e^{\cos x} over the interval [0, 2\pi].
```

ii. What command generates a sufficient number of values for x?

```
(a) linspace(0,2*pi) (b) linspace(0,100,2*pi)
```

```
(c) r_{0:2*pi} (d) r_{0:0.01:2*pi}
```

iii. Which command will generate the corresponding yvalues?

```
(a) \exp^{\cos(x)} (b) e^{\cos(x)} (c) \exp(\cos(x)) (d) \exp(x)\cos(x)
```

```
In [ ]: # i. Type and run your code here.
# ii. Type your answer in this comment:
# iii. Type your answer in this comment:
```

Doing arthmetic on arrays

B8. Run the following.

We make numpy arrays with r_{-} or linspace

Numpy arrays "know" how to do "elementwise" arithmetic.

Warning: x^2 is written x**2.

```
In [ ]: x = r_{1:5}
x, 10 - x, x + 10, 10*x, x**2, 12/x, x**x, 10**x
```

B9. Run the following.

```
In [ ]: # We can add arrays of the same shape (same length)
x = r_[10, 20, 50, 100]
y = r_[3, 0, 7, -1]
x + y
```

```
In [ ]: # We can add an array (x) and a scalar (y)

x = r_[10, 20, 50, 100]
y = 100
x + y
```

```
In [ ]: # We CANNOT add arrays of DIFFERENT shape

x = r_[10, 20, 50, 100]
y = r_[3, 0, 7]
x + y
```

B10 Examples. Run the cells below, which plot the following.

```
• y = \sin x + \cos 3x over the domain [0, 2\pi]
```

- $y = e^{-x/2} \cos 6x$ over the domain $[0, 10\pi]$
- $y = 1/(x^2 1)$ over the domain [2, 5]

B11 Exercise. Define a, b, and c by

```
a = r_[1:21:2]
b = r_[1:11]
c = r [1:12:2]
```

Which of the following is/are defined?

```
(a) b+c (b) a + b (c) a \cdot / b (d) a * b (e) a ^ 2
```

```
In [ ]: # Type your answer in this comment:
```

B12 Example. Let x be the array 1,2,3. Write Python commands to compute x^3 .

The output you get should be array([1, 8, 27]).

```
In [ ]: x = r_[1,2,3]
# Write out and run your code here.
x**3
```

```
B13 Exercise. Let x be the array 1,2,3.
```

(a) 2 (b) 3 (c) 4 (d) 5 (e) none of the above

iv. Estimate from your graph B21 the value of f(10) to 1 decimal point.

```
i. Write Python commands to compute \cos x \sin x.
You should get array([ 0.45464871, -0.37840125, -0.13970775])
ii. Write Python commands to compute \sin^2 x.
You should get array([0.70807342, 0.82682181, 0.01991486])
iii. Write Python commands to compute \sin x^2.
You should get array([ 0.84147098, -0.7568025 , 0.41211849])
iv. Write Python commands to compute 7x^2 \sin \frac{1}{7x^2}.
You should get array([0.99660211, 0.99978743, 0.99995801])
v. Write Python commands to compute x - \frac{\cos x - \sin x}{\sin x + \cos x}
You should get array([1.2179581 , 4.68770694, 1.66751188])
vi. Write Python commands to compute \frac{1}{10}(x-\frac{x^{3/2}}{10})^2
You should get array([0.081
                                    , 0.29486292, 0.61523085])
   In []: # i. Write out and run your code here.
   In [ ]: # ii. Write out and run your code here.
   In [ ]: # iii. Write out and run your code here.
   In [ ]: # iv. Write out and run your code here.
   In [ ]: # v. Write out and run your code here.
   In [ ]: # vi. Write out and run your code here.
B14 Exercise.
i. Graph the function f(x) = \sin(\frac{\pi}{2}x) + \sin(\frac{2}{5}\pi x) over the interval [0, 40].
ii. How many peaks (relative maxima) does your graph B21 have?
(a) 2 (b) 3 (c) 4 (d) 5 (e) none of the above
iii. The function in B21 is periodic; how many periods are graphed in [0, 40]?
```

```
In [ ]: # i. Make your graph here.
# ii. Type your answer in this comment:
# iii. Type your answer in this comment:
# iv. Type your answer in this comment:
```

B15 Exercise.

- i. Graph the function $f(x) = \cos^2 x \sin^2 x$ over the interval $[-2\pi, 2\pi]$. Use 50 points in the domain.
- ii. Does the graph B24 resemble any graph that you are familiar with?
- (a) $\cos 2x$ (b) $\cos x/2$ (c) $\cos x$

```
In [ ]: # i. Make your graph here.
# ii. Type your answer in this comment:
```

B16 Exercise.

- i. Plot the polynomial function $f(x) = x^3 20x^2 + 10x 1$ over the interval [-10, 10].
- ii. What is the approximate range for the *y*-axis?
- (a) [-10, 10] (b) (-10, 10) (c) [-3100, 0] (d) $[0, 2\pi]$

```
In [ ]: # i. Make your graph here.
# ii. Type your answer in this comment:
```

B17 Exercise. We wish to investigate when (if) the is positive.

We can't readily tell from our graph B27 so we will replot over a smaller domain.

- i. Which of these domains seems appropriate for this task?
- (a) [0,500] (b) [0,10] (c) [-1,1] (d) $[0,2\pi]$
- ii. Replot the graph over the selected domain. Turn on the grid using grid()
- iii. From your graph, which of these x values have f(x) > 0? Indicate all that apply:
- (a) 0 (b) 0.25 (c) 0.50 (d) 0.75

```
In [ ]: # i. Type your answer in this comment:
    # ii. Make your graph here.
# iii. Type your answer in this comment:
```