WELCOME!

- Before we get started:
 - Login to <u>r.umhb.edu</u>
 - Use your UMHB email address and password
 - File > New File > R Script
 - Make yours look like this

Introduction to R

Basics of Data Manipulation, Visualization, and Analysis

Aaron R. Baggett, Ph.D.

University of Mary Hardin-Baylor PSYC 2316: Statistics for the Social Sciences September 12, 2018

A Gentle Introduction to R

Basics of Data Manipulation, Visualization, and Analysis

Aaron R. Baggett, Ph.D.

University of Mary Hardin-Baylor PSYC 2316: Statistics for the Social Sciences September 12, 2018

WHAT IS R?

WHAT IS R?

- R is:
 - A powerful, flexible statistics and data software program
 - Free and open source
 - Surging in adoption worldwide
 - 1 of 3 statistics and data programming languages in the top 20^[1]
 - Able to read any data file

[1] TIOBE Programming Index, http://bit.ly/2x4TQGh

WHO USES R?

WHO ELSE USES R?

You do!

RYOU READY?

LET'S GET STARTED

- R is like a big calculator with a huge memory
- One advantage:
 - We can store input inside names or objects
- Let's try it

LET'S GET STARTED

In your R Script type the following:

```
a <- 2 * 5
b <- 0:10
c <- a + b
```

- Send all three lines to the R Console to run a, b, and c
 - Hint: Highlight and click → Run

NYC FLIGHT DATA, 2013

- Most of the time, we want to work with real data sets using powerful tools
- In your script, add this code and run it to the console:

```
# Load tidyverse package
library(tidyverse)

# Read in nycflights data
nycflights <- url("http://bit.ly/nyc_flights")
load(nycflights)

# View nycflights data in viewer
View(nycflights)</pre>
```

nycflights Glimpse

	month	dep_time	dep_delay	arr_time	arr_delay	carrier	dest
1	6	940	15	1216	-4	VX	LAX
2	5	1657	-3	2104	10	DL	SJU
3	12	859	-1	1238	11	DL	LAX
4	5	1841	-4	2122	-34	DL	TPA
5	7	1102	-3	1230	-8	9E	ORF
6	1	1817	-3	2008	3	AA	ORD
32730	1	706	36	909	22	EV	IND
32731	10	752	-8	921	-28	9E	PIT
32732	7	812	-3	1043	8	DL	LAS
32733	9	1057	-1	1319	-19	UA	IAH
32734	10	844	56	1045	60	B6	CHS
32735	3	1813	-3	1942	-23	UA	CLE

- Flight delays are always a hassle
- Let's examine all departure delays (dep_delay)
- First, a little tutorial:

```
# General framework for summarizing
data %>%
summarize(
   object_name = mean(outcome),
   object_name = sd(outcome))
```

- Flight delays are always a hassle
- Let's examine all departure delays (dep_delay)
- Ready?

```
# Calculate mean and SD departure delays
nycflights %>%
summarize(
   mean_dd = mean(dep_delay),
   sd_dd = sd(dep_delay))
```

• On average, flights departing NYC airports in 2013 were delayed by about 13 minutes (SD = 40 minutes).

```
# Calculate mean and SD departure delays
nycflights %>%
summarize(
    mean_dd = mean(dep_delay),
    sd_dd = sd(dep_delay))

## mean_dd sd_dd
## 1 12.70515 40.40743
```

EXPLAINING DEPARTURE DELAYS

 What factors might explain variability in departure delays?

- What factors might explain variability in departure delays?
 - Weather
 - Time of year
 - Etc.

- Let's reexamine departure delays
- This time, we will account for the time of year (month)
- What do you think we will find?

Let's add two more lines to our previous section

```
# General framework for summarizing with grouping
data %>%
  group_by(grouping_var) %>%
  summarize(
   object_name = mean(outcome),
   object_name = sd(outcome)) %>%
  arrange(desc(sorted_var))
```

Let's add two more lines to our previous section

```
# General framework for summarizing with grouping
data %>%
    group_by(grouping_var) %>%
    summarize(
    object_name = mean(outcome),
    object_name = sd(outcome)) %>%
    arrange(desc(sorted_var))
```

- To what extent to departure delays vary by month of travel?
- Ready?

```
# Departure delays by month
month_dd <- nycflights %>%
  group_by(month) %>%
  summarize(
   mean_dd = mean(dep_delay),
   sd_dd = sd(dep_delay)) %>%
  arrange(desc(mean_dd))
```

 Longer travel delays appear to occur during the midsummer and Christmas season.

```
## # A tibble: 12 x 3
    month mean_dd sd_dd
         <dbl> <dbl>
    <int>
       7 20.8 47.8
       6 20.4 53.5
##
##
  3 12 17.4 43.0
  4 4 14.6 43.4
##
  5 3 13.5 40.3
##
  6 5 13.3 38.3
##
       8 12.6 39.2
##
       2 10.7 33.1
##
       1 10.2 42.4
##
       9 6.87 35.3
## 11
       11 6.10 27.6
## 12
            5.88 29.4
```

VISUALIZING DEPARTURE DELAYS

VISUALIZING DELAY PATTERNS

- Let's visualize these the pattern of the departure delays
- First, a little tutorial:

```
ggplot(data = data,
  aes(x = factor, y = outcome, group = 1)) +
  geom_point() +
  geom_line()
```

VISUALIZING DELAY PATTERNS

- Let's visualize these the pattern of the departure delays
- Ready?

```
ggplot(data = month_dd,
  aes(x = month, y = mean_dd, group = 1)) +
  geom_point() +
  geom_line()
```

VISUALIZING DELAY PATTERNS

RECAP

RECAP

- Steep learning curve at first
- Flexibility in and power in variety of tools
- Makes analysis reproducible
- Adoption surging

QUESTIONS?

GET IN TOUCH

Aaron R. Baggett, Ph.D.

Department of Psychology

abaggett@umhb.edu

Ext. 4553