ECON2125/4021/8013

Lecture 12

John Stachurski

Semester 1, 2015

Background Reading on Prob Theory

Most relevant

- The lecture slides
- The course notes PDF file

Least useful

- Simon and Blume
- Most other intermediate math econ books

If you really want something else

- Google for related PDFs
- Takashi Amemiya, Introduction to Statistics and Econometrics, first 6 chapters

Random Variables

What is a random variable (RV)?

- Bad definition: A value X that "changes randomly"
- Good definition: a function X from Ω into ℝ.

Interpretation: RVs convert sample space outcomes into numerical outcomes

General idea:

- "nature" picks out ω in Ω
- random variable gives numerical summary $X(\omega)$

Note: Some technical details omitted — see course notes

Figure : A random variable $X \colon \Omega \to \mathbb{R}$

Example. NZ in final of WC and IND, AUS in semi

Sample space for winner is

$$\Omega = \{\mathsf{AUS}, \mathsf{IND}, \mathsf{NZ}\}$$

My payoffs

$$X(\omega) = \begin{cases} 39.95 & \text{if } \omega = \text{AUS} \\ -39.95 & \text{if } \omega = \text{NZ} \\ -39.95 & \text{if } \omega = \text{IND} \end{cases}$$

Example

Suppose Ω is set of infinite binary sequences

$$\Omega := \{(b_1, b_2, \ldots) : b_n \in \{0, 1\} \text{ for each } n\}$$

We can create different random variables mapping $\Omega \to \mathbb{R}$:

Number of "flips" till first "heads":

$$X(\omega) = X(b_1, b_2, \ldots) = \min\{n : b_n = 1\}$$

• Number of "heads" in first 10 "flips":

$$Y(\omega) = Y(b_1, b_2, \ldots) = \sum_{n=1}^{10} b_n$$

Notational Conventions for RVs

First, note that

$$\{X \text{ has some property}\} := \{\omega \in \Omega : X(\omega) \text{ has some property}\}$$

Example

$$\{X \le 2\} := \{\omega \in \Omega : X(\omega) \le 2\}$$

This helps us understand how to evaluate $\mathbb{P}\{X \leq 2\}$

 \mathbb{P} assigns probability to events, so

$$\mathbb{P}\{X \le 2\} = \mathbb{P}\{\omega \in \Omega : X(\omega) \le 2\}$$

Example. Recall the prob space associated with rolling a dice twice:

$$\Omega:=\{(i,j):i,j\in\{1,\ldots,6\}\}\quad\text{and}\quad \mathbb{P}(E):=\#E/36$$

If
$$X(\omega) = X((i, j)) = i + j$$
, what is $\mathbb{P}\{X \le 3\}$?

We have

$$\{X \le 3\} := \{\omega \in \Omega : X(\omega) \le 3\}$$
$$= \{(i,j) : i,j \in \{1,\dots,6\}, i+j \le 3\}$$
$$= \{(1,1), (1,2), (2,1)\}$$

$$\therefore \mathbb{P}\{X \le 3\} = \frac{\#\{X \le 3\}}{36} = \frac{3}{36} = \frac{1}{12}$$

Example

Let ${\mathbb P}$ be any probability on some sample space Ω

Given random variable X and scalars $a \leq b$, we claim that

$$\mathbb{P}\{X \le a\} \le \mathbb{P}\{X \le b\}$$

This holds because

$$\{X \le a\} := \{\omega \in \Omega : X(\omega) \le a\}$$

$$\subset \{\omega \in \Omega : X(\omega) \le b\} := \{X \le b\}$$

Now apply monotonicity: $A \subset B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$

Example

As before, let $\mathbb P$ be any probability and X any RV

Given scalars $a \leq b$, we claim that

$$\mathbb{P}\{a < X < b\} = \mathbb{P}\{a < X \le b\} - \mathbb{P}\{X = b\}$$

Ex. Show that

- $\{X = b\} \subset \{a < X \le b\}$
- ${a < X < b} = {a < X \le b} \setminus {X = b}$

(Translate into statments about ω as in previous slide)

Now apply $A \subset B \implies \mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$

Pointwise Interpretation

In probability theory we often see statements like

- "Since $X \leq Y$, we know that...", or
- "Letting $Z := \alpha X + \beta Y$, we have..."

Such statements about RVs should be interpreted <u>pointwise</u> Thus,

$$\begin{split} X \leq Y &\iff X(\omega) \leq Y(\omega), \quad \forall \, \omega \in \Omega \\ Z := \alpha X + \beta Y &\iff Z(\omega) = \alpha X(\omega) + \beta Y(\omega), \quad \forall \, \omega \in \Omega \\ X = Y &\iff X(\omega) = Y(\omega), \quad \forall \, \omega \in \Omega \\ &\text{etc.} \end{split}$$

Types of Random Variables

There is a hierarchy of random variables, from simple to complex

- 1. binary random variables take only two values
- 2. finite random variables take only finitely many values
- 3. general random variables range can be infinite

RVs of types 1 and 2

- are useful in practice
- are great for building intuition

Type 3 RVs are often technically demanding

But results for cases 1-2 usually carry over to case 3

A binary random variable is an RV taking values in $\{0,1\}$

Example. Let Ω be the sample space for rolling a dice twice

$$\Omega := \{(i,j) : i,j \in \{1,\ldots,6\}\}$$

and let

$$X(\omega) = X((i,j)) = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are even} \\ 0 & \text{otherwise} \end{cases}$$

Example. Let Ω be set of infinite binary sequences and let X be existence of heads in first 5 flips

$$X(\omega) = X(b_1, b_2, \ldots) = \begin{cases} 1 & \text{if } \exists i \leq 5 \text{ s.t. } b_i = 1 \\ 0 & \text{otherwise} \end{cases}$$

Indicator Functions

A useful piece of notation for binary RVs is indicator functions

Type 1: Let Q be a statement, such as "X is greater than 3"

Then the **indicator function** for Q is

$$\mathbb{1}\{Q\} := \begin{cases} 1 & \text{if } Q \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

Example. Bet payoffs from WC example

$$X(\omega) = 39.95 \, \mathbb{1}\{\omega = AUS\} - 39.95 \, \mathbb{1}\{\omega = IND \text{ or NZ}\}\$$

Type 2: Given $C \in \mathcal{F}$, the **indicator function** for C is the function

$$\mathbb{1}_C\colon \Omega \to \{0,1\}, \qquad \mathbb{1}_C(\omega) = \begin{cases} 1 & \text{if } \omega \in C \\ 0 & \text{otherwise} \end{cases}$$

Figure : Visualization when $\Omega = \mathbb{R}$

Fact. Every binary RV is of the form $\mathbb{1}_C$ for some $C \in \mathcal{F}$

Proof: Fixing $C \in \mathcal{F}$, note that $\mathbb{1}_C$ is a binary random variable because

- 1. $\mathbb{1}_C$ is a map from Ω to \mathbb{R} and hence an RV
- 2. $\mathbb{1}_C$ takes values in $\{0,1\}$ and hence binary

To see that every binary RV has this form, let X be any binary random variable

Define

$$C := \{ \omega \in \Omega : X(\omega) = 1 \}$$

Then $X(\omega) = \mathbb{1}_{\mathcal{C}}(\omega)$ for all $\omega \in \Omega$ (check it)

That is, $X = \mathbb{1}_C$

Finite Random Variables

A **finite random variable** is an RV that takes only finitely many values

• That is, X is finite \iff rng(X) is finite

Example. Let

- ullet Ω be set of infinite binary sequences
- X be number of heads in first N flips

That is

$$X(\omega) = X(b_1, b_2, \ldots) = \sum_{i=1}^{N} b_i$$

Finite RVs can be formed by taking "linear combinations" of binary RVs

Example. From WC example,

$$X(\omega) = 39.95\,\mathbb{1}\{\omega = \mathsf{AUS}\} - 39.95\,\mathbb{1}\{\omega = \mathsf{IND} \;\mathsf{or}\;\mathsf{NZ}\}$$

Example. $X(\omega) = s \, \mathbb{1}_A(\omega) + t \, \mathbb{1}_B(\omega)$ with A and B disjoint means

$$X(\omega) = \begin{cases} s & \text{if } \omega \in A \\ t & \text{if } \omega \in B \\ 0 & \text{if } \omega \in (A \cup B)^c \end{cases}$$

$$X(\omega) = s\mathbb{1}_A(\omega) + t\mathbb{1}_B(\omega)$$
 when $\Omega = \mathbb{R}$

Fact. Every finite RV can be expressed as a linear combination of binary RVs

To see this let X be finite with $rng(X) = \{s_1, \ldots, s_I\}$

Letting $A_j := \{ \omega \in \Omega : X(\omega) = s_j \}$, X can be expressed as

$$X(\omega) = \sum_{j=1}^{J} s_j \mathbb{1}_{A_j}(\omega)$$

With the pointwise notational convention, also written as

$$X = \sum_{j=1}^{J} s_j \mathbb{1}_{A_j}$$

Thus, a general expression for a finite RV is

$$X = \sum_{j=1}^{J} s_j \mathbb{1}_{A_j}$$

With this expression we always assume that

- the s_j 's are distinct
- ullet the A_j 's are a partition of Ω

Ex. Using these assumptions, show that

- 1. $X(\omega) = s_j$ if and only if $\omega \in A_j$
- 2. $\{X = s_j\} = A_j$
- 3. $\mathbb{P}\{X=s_i\}=\mathbb{P}(A_i)$

Example. Recall $X = s\mathbb{1}_A + t\mathbb{1}_B$

We actually want the sets to form a partition of Ω

To do this, rewrite as

$$X = s \mathbb{1}_A + t \mathbb{1}_B + 0 \mathbb{1}_{(A \cup B)^c}$$

Expectations

Roughly speaking, for a random variable X, the expectation is

$$\mathbb{E}[X] :=$$
 the "sum" of all possible values of X , weighted by their probabilities

scare quotes because range might be uncountable

Example. Recall WC example

$$X(\omega) = 39.95\,\mathbb{1}\{\omega = \mathsf{AUS}\} - 39.95\,\mathbb{1}\{\omega = \mathsf{IND} \;\mathsf{or}\;\mathsf{NZ}\}$$

From previous lectures numbers I get $\mathbb{P}\{\omega = \mathsf{AUS}\} = 0.39$ so

$$\mathbb{E}[X] = 39.95 \times 0.39 - 39.95 \times (1 - 0.39) = -8.79$$

Formally, for a finite RV X with range s_1, \ldots, s_J we define its **expectation** $\mathbb{E}[X]$ to be

$$\mathbb{E}[X] = \sum_{j=1}^{J} s_j \mathbb{P}\{X = s_j\}$$

Fact.

$$X = \sum_{j=1}^{J} s_j \mathbb{1}_{A_j} \implies \mathbb{E}[X] = \sum_{j=1}^{J} s_j \mathbb{P}(A_j)$$

Proof: True because $A_j = \{X = s_j\}$

Example. Let
$$X = s\mathbb{1}_A + t\mathbb{1}_B + 0\mathbb{1}_{(A \cup B)^c}$$

Applying the definition gives

$$\mathbb{E}[X] = s\mathbb{P}(A) + t\mathbb{P}(B) + 0 \times \mathbb{P}\{(A \cup B)^c\}$$
$$= s\mathbb{P}(A) + t\mathbb{P}(B)$$

Expectations of Binary Random Variables

Fact. If $A \in \mathcal{F}$ then

$$\mathbb{E}\left[\mathbb{1}_A\right] = \mathbb{P}(A)$$

Proof: We can write

$$\mathbb{1}_A = 1 \times \mathbb{1}_A + 0 \times \mathbb{1}_{A^c}$$

Applying the definition gives

$$\mathbb{E}\left[\mathbb{1}_{A}\right] = 1 \times \mathbb{P}(A) + 0 \times \mathbb{P}(A^{c}) = \mathbb{P}(A)$$

Fact. The expectation of a constant α is α

True meaning:

- α is the constant random variable $\alpha \mathbb{1}_{\Omega}$
- $\mathbb{E}\left[\alpha\right]$ is short for $\mathbb{E}\left[\alpha\mathbb{1}_{\Omega}\right]$

Proof: From the definition we have

$$\begin{split} \mathbb{E}\left[\alpha\right] &= \mathbb{E}\left[\alpha\mathbb{1}_{\Omega}\right] & \quad \text{(true meaning)} \\ &= \alpha \mathbb{P}(\Omega) & \quad \text{(by def of } \mathbb{E}\,\text{)} \\ &= \alpha \end{split}$$

Expectations of General RVs

How about the expectation of an RV with infinite range?

The idea: any RV X can be approximated by a sequence of finite-valued random variables X_n .

The expectation of X is then defined as

$$\mathbb{E}\left[X\right] := \lim_{n \to \infty} \mathbb{E}\left[X_n\right]$$

Loosely speaking, we are replacing sums with integrals

The full definition involves measure theory, so we skip it

Later we'll learn how to calculate $\mathbb{E}[X]$ in specific situations

Figure : Approximation of general X with finite X_n

Monotonicity of Expectations

Fact. If X and Y are RVs with $X \leq Y$, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$

• Recall that $X \leq Y$ should be interpreted pointwise

Proof for the case $X = \mathbb{1}_A$ and $Y = \mathbb{1}_B$:

Observe that $\mathbb{1}_A \leq \mathbb{1}_B \implies A \subset B$

- To see this pick any $\omega \in A$
- Since $\mathbb{1}_A(\omega) \leq \mathbb{1}_B(\omega)$ we must have $\omega \in B$ (why?)

Now we apply monotonicity of ${\mathbb P}$ to obtain

$$\mathbb{E}\left[\mathbb{1}_{A}\right] = \mathbb{P}(A) \leq \mathbb{P}(B) = \mathbb{E}\left[\mathbb{1}_{B}\right]$$

Linearity of Expectations

Fact. If X and Y are RVs and α and β are constants, then

$$\mathbb{E}\left[\alpha X + \beta Y\right] = \alpha \mathbb{E}\left[X\right] + \beta \mathbb{E}\left[Y\right]$$

Proof for the case $\beta = 0$ and X finite

We aim to show that $\mathbb{E}\left[\alpha X\right] = \alpha \mathbb{E}\left[X\right]$ for $X := \sum_{j=1}^J s_j \mathbb{1}_{A_j}$

Let $Y := \alpha X$ we have

$$Y = \alpha X = \alpha \left[\sum_{j=1}^{J} s_j \mathbb{1}_{A_j} \right] = \sum_{j=1}^{J} \alpha s_j \mathbb{1}_{A_j}$$

$$\therefore \quad \mathbb{E}\left[\alpha X\right] = \mathbb{E}\left[Y\right] = \sum_{j=1}^{J} \alpha s_{j} \mathbb{P}(A_{j}) = \alpha \left[\sum_{j=1}^{J} s_{j} \mathbb{P}(A_{j})\right] = \alpha \mathbb{E}\left[X\right]$$

Variance and Covariance

The k-th moment of X is defined as $\mathbb{E}\left[X^k\right]$ for $k \in \mathbb{N}$

The variance of X is defined as

$$var[X] := \mathbb{E}\left[(X - \mathbb{E}\left[X\right])^2 \right]$$

The **standard deviation** of X is $\sqrt{\operatorname{var}[X]}$

Measure the dispersion of X

The **covariance** of random variables X and Y is defined as

$$cov[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

All of these might or might not exist (be finite)

Fact. If α and β are constants and X and Y are random variables, then

- 1. $var[X] \ge 0$
- 2. $var[\alpha] = 0$
- 3. $\operatorname{var}[\alpha + \beta X] = \beta^2 \operatorname{var}[X]$
- 4. $\operatorname{var}[\alpha X + \beta Y] = \alpha^2 \operatorname{var}[X] + \beta^2 \operatorname{var}[Y] + 2\alpha\beta \operatorname{cov}[X, Y]$

Ex. Check all these facts using the properties of $\mathbb E$

Correlation

Let X and Y be RVs with variances σ_X^2 and σ_Y^2

The **correlation** of X and Y is defined as

$$corr[X, Y] := \frac{cov[X, Y]}{\sigma_X \, \sigma_Y}$$

If corr[X, Y] = 0, we say that X and Y are **uncorrelated**

Fact. Given RVs X and Y, constants $\alpha, \beta > 0$, we have

- 1. $-1 \le \operatorname{corr}[X, Y] \le 1$
- 2. $\operatorname{corr}[\alpha X, \beta Y] = \operatorname{corr}[X, Y]$

CDFs

A cumulative distribution function (cdf) on $\mathbb R$ is a function $F\colon \mathbb R \to [0,1]$ that is

- right-continuous
- monotone increasing
- satisfies $F(x) \to 0$ as $x \to -\infty$ and $F(x) \to 1$ as $x \to \infty$

Here

- right continuity means $x_n \downarrow x$ implies $F(x_n) \downarrow F(x)$
- monotonicity $x \le x'$ implies $F(x) \le F(x')$

Example. The function $F(x) = \arctan(x)/\pi + 1/2$ is a cdf called the **Cauchy cdf**

Example. Given a < b, the function

$$F(x) = \frac{x - a}{b - a} \mathbb{1}\{a \le x < b\} + \mathbb{1}\{b \le x\}$$

is a cdf called the **uniform cdf** on [a, b]

Example. The function $F(x) = \tanh((x - \mu)/2s)/2 + 1/2$ is a cdf for each $\mu \in \mathbb{R}$ and $s \in (0, \infty)$, called the **logistic cdf**

Distributions

Let

- ullet Ω be any sample space
- X be any random variable on Ω
- ullet P be any probability on Ω

Consider the function $F \colon \mathbb{R} \to [0,1]$ defined by

$$F(x) = \mathbb{P}\{X \le x\}$$

This function is called the **distribution function** generated by X

We write $X \sim F$

Summarizes lots of useful information about X

Fact. The distribution function of any random variable is a cdf

Partial proof: Fix X and let F be its distribution

Let's just show that F is increasing

To see this, pick any $x \le x'$

Note that $\{X \leq x\} \subset \{X \leq x'\}$

As a result we have

$$F(x) := \mathbb{P}\{X \le x\} \le \mathbb{P}\{X \le x'\} =: F(x')$$

(Further details omitted—see course notes for related exercises)

Here's an example of how F summarizes useful info about X

Fact. If $X \sim F$ and $a \leq b$, then $\mathbb{P}\{a < X \leq b\} = F(b) - F(a)$

Proof: Recall that

$$A \subset B \implies \mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$$

Also, if $a \leq b$, then

- $\{X \le a\} \subset \{X \le b\}$
- $\bullet \ \{a < X \le b\} = \{X \le b\} \setminus \{X \le a\}$
- $\therefore \mathbb{P}\{a < X \le b\} = \mathbb{P}\{X \le b\} \mathbb{P}\{X \le a\} = F(b) F(a)$

Densities and Probability Mass Functions

There are two special cases where cdfs can be reduced to simpler objects

The two cases are

- 1. The cdf increases only with jumps the **discrete** case
- 2. The cdf is smooth with no jumps the **density** case

Not every cdf fits into one of these categories

But when it does things are simpler

Remark: The density case is sometimes called the "continuous" case, but this is a misnomer

The Density Case

A density function on \mathbb{R} is a function $p \colon \mathbb{R} \to [0, \infty)$ such that

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

Fact. If p is a density and F is defined by

$$F(x) = \int_{-\infty}^{x} p(s)ds$$

then F is a cdf — called the cdf **generated by** p

If $X \sim F$ and F is generated by density p, then we say that

p is the density of X, or X has density p

Example. The function $p(x)=1/(\pi+\pi x^2)$ is a density called the **Cauchy density**

Example. $p(x)=(2\pi\sigma^2)^{-1/2}\exp(-(x-\mu)^2/(2\sigma^2))$ is a density called the **normal density** and written $N(\mu,\sigma^2)$

Fact. If F is a cdf generated by density p, then F is differentiable and F'(x) = p(x)

Ex. Verify using the Fundamental Theorem of Calculus

Example. Recall the Cauchy cdf

$$F(x) = \arctan(x)/\pi + 1/2$$

Since

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$$

we have

$$F'(x) = \frac{1}{\pi(1+x^2)} =$$
Cauchy density $p(x)$

Fact. If $X \sim F$ where F is generated by a density, then

$$\mathbb{P}\{X=x\}=0 \quad \text{for every} \quad x \in \mathbb{R}$$

Proof: Suppose instead that $\exists\, \bar x\in\mathbb R$ with $\mathbb P\{X=\bar x\}=\delta>0$ Then, for any $\epsilon>0$,

$$\mathbb{P}\{\bar{x} - \epsilon < X \le \bar{x}\} \ge \mathbb{P}\{X = \bar{x}\} = \delta$$

Hence

$$\frac{F(\bar{x}) - F(\bar{x} - \epsilon)}{\epsilon} \ge \frac{\delta}{\epsilon}$$

Hence F is not differentiable at \bar{x}

Hence F is not generated by a density — contradiction

Visualization:

Figure : If $\mathbb{P}\{X=\bar{x}\}=\delta$, then F jumps by δ at \bar{x}

Fact. If X is a random variable with density p and $a \le b$, then all of the following are true

$$\mathbb{P}\{a < X \le b\} = \int_a^b p(s)ds$$

$$\mathbb{P}\{a \le X < b\} = \int_a^b p(s)ds$$

$$\mathbb{P}\{a \le X \le b\} = \int_a^b p(s)ds$$

$$\mathbb{P}\{a < X < b\} = \int_a^b p(s)ds$$

Let's check that if X is a random variable with density p, then

$$\mathbb{P}\{a < X < b\} = \int_a^b p(s)ds$$

Proof: Letting F be the cdf generated by p,

$$\mathbb{P}\{a < X < b\} = \mathbb{P}\{a < X \le b\} - \mathbb{P}\{X = b\}$$

$$= \mathbb{P}\{a < X \le b\}$$

$$= F(b) - F(a)$$

$$= \int_{-\infty}^{b} p - \int_{-\infty}^{a} p$$

$$= \int_{a}^{a} p + \int_{a}^{b} p - \int_{a}^{a} p = \int_{a}^{b} p$$

The Discrete Case

A probability mass function (pmf) is a pair $\mathbf{p}:=(p_1,\ldots,p_J)$ and $\mathbf{s}:=(s_1,\ldots,s_J)\in\mathbb{R}^J$ with

$$0 \le p_j \le 1$$
 for each j and $\sum_{j=1}^{J} p_j = 1$

Fact. If (\mathbf{p}, \mathbf{s}) is a pmf, and F is defined by

$$F(x) = \sum_{j=1}^{J} \mathbb{1}\{s_j \le x\} p_j$$

then F is a cdf — called the cdf **generated by** (\mathbf{p}, \mathbf{s})

ullet Visually, F is a step function with jump p_i at s_i

Example.
$$F(x) = \mathbb{1}\{s_1 \le x\}p_1 + \mathbb{1}\{s_2 \le x\}p_2$$

If $X \sim F$ and F is generated by pmf (\mathbf{p}, \mathbf{s}) , then we say that

• (p,s) is the pmf of X, or X has pmf (p,s)

Intuitively, such an X takes value s_j with probability p_j

In particular, if

$$X = \sum_{j=1}^{J} s_j \mathbb{1}_{A_j}$$

is an RV with pmf (\mathbf{p}, \mathbf{s}) then

$$p_j = \mathbb{P}(A_j)$$
 for each j

You can check these details from the definitions if you like

Neither Density nor PMF

Some cdfs fit neither the density nor the discrete case

mixes jumps and smooth increases

There exist many results on

- decomposing such cdfs into pure jump and pure density components
- working with "measures" objects that generalize cdfs, pmfs, densities, etc.

This is part of a field called "measure theory"

Would be a natural next step after finishing this course...

Expectations from Distributions

Let $h \colon \mathbb{R} \to \mathbb{R}$

How to calculate expectation of Y = h(X)?

We can use our definition of expectations but often it's not helpful

On the other hand, if $X \sim F$ and we know something about F, this can help us compute the expectation

This is true particularly when F is generated by a density or pmf

The details follow

Fact. If X is a finite RV with pmf (\mathbf{p}, \mathbf{s}) , then

$$\mathbb{E}\left[h(X)\right] = \sum_{j=1}^{J} h(s_j) p_j$$

Proof: Let $X = \sum_{j=1}^{J} s_j \mathbb{1}_{A_j}$ with $\mathbb{P}(A_j) = p_j$

Fixing $h \colon \mathbb{R} \to \mathbb{R}$ we have

$$h(X(\omega)) = \sum_{j=1}^{J} h(s_j) \mathbb{1}_{A_j}(\omega)$$

Ex. Check it

By definition, the expectation of this discrete RV is

$$\sum_{j=1}^{J} h(s_j) \mathbb{P}(A_j) = \sum_{j=1}^{J} h(s_j) p_j$$

Fact. If X has density p, then

$$\mathbb{E}\left[h(X)\right] = \int_{-\infty}^{\infty} h(x)p(x)dx$$

Example. If we write $X \sim N(\mu, \sigma^2)$ we mean that X has density

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

In this case it's well known that

$$\mathbb{E}\left[(X-\mu)^2\right] = \int_{-\infty}^{\infty} (x-\mu)^2 \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) dx$$
$$= \sigma^2$$

Convenient notation to unify:

If
$$X \sim F$$
, we write $\mathbb{E}\left[h(X)\right] = \int h(x)F(dx)$

Meaning:

• In the density case,

$$\int h(x)F(dx) := \int_{-\infty}^{\infty} h(x)p(x)dx$$

• In the discrete case,

$$\int h(x)F(dx) := \sum_{j=1}^{J} h(s_j)p_j$$

Note: $\int h(x)F(dx)$ is actually the L-S integral—see course notes