École Supérieure de la Statistique et de l'Analyse de l'Information	Classe : 2ème Année
Année Universitaire : 2022-2023	Date: 18.05.2023
Examen de Techniques de prévision	Durée : 1h 30

Questions de cours (3 points)

- 1. Donner deux approches permettant de modéliser une série contenant une compsante tendancielle. Pour chaque méthode vous précisez le cadre d'application.
- 2. Quels sont les paramètres à prendre en considération dans la phase du choix de l'historique à utiliser pour la modélisation d'une série temporelle?

Exercice 1 (7 points)

Dans cet exercice on considère que la prévision optimale (au sens des moindres carrées) d'une série X_t à la date T+h est donnée par :

$$_{T}X_{T+h}^{*} = \mathbb{E}(X_{T+h} \mid \Omega_{T}), \text{ avec } \Omega_{T} = \{X_{T}, X_{T-1}, \dots, X_{1}\}$$

Soit un processus stationnaire (X_t) , sous la forme générale suivante :

$$X_t = \phi_1 X_{t-1} + \mu + \varepsilon_t.$$

- 1. Identifer ce processus.
- 2. Donner l'expression de TX_{T+1}^* (prévision de X_t à horizon 1, faite à la date T).
- 3. En déduire que $_TX_{T+2}^*$ est donnée par :

$$_T X_{T+2}^* = \phi_1^2 X_T + [\phi_1 + 1] \mu$$

- 4. Donner alors l'expression de ${}_TX^*_{T+h}$ en fonction de $X_T,\,\mu,\,\phi_1$ et h.
- 5. Déterminer ${}_TX^\star_{T+h},$ quand $h\to\infty.$ Interpréter le résultat obtenu.
- 6. Dans la suite, on suppose que $\mu=2, \, \phi_1=0.2$ et $X_T=15.25$. Compléter le tableau suivant :

horizon (h)	0	1	2	3	4	5	6	7
$_TX_{T+h}^*$,							

Exercice 2 (4 points)

On dispose d'un jeu de données composé de 2 séries temporelles dont certaines propriétés ont été représentées dans les graphiques suivantes :

Question : pour chacune des séries précédentes proposer une démarche de modélisation.

Exercice 3 (6 points)

On dispose d'une série sur le nombre mensuelle d'accidents de la route dans une délégation tunisienne pendant 2021 et 2022.

	Janv.	Fev.	Mars	Avr.	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Dec.
2021	15	18	17	17	14	15	19	18	16	17	14	13
2022	16	19	17	16	15	16	21	19	17	18	15	14

- 1. Représenter graphiquement cette série chronologique. Commenter.
- 2. On souhaite prédire cette série à un horizon d'une année. Proposer deux approches permettant de prédire cette série. Pour chaque approche vous expliquez les étapes permettant de réaliser cet objectif.
- 3. Donner la formule permettant d'estimer par MCO les coefficients.
- 4. Donner les commandes R relmatives aux deux approches.

- 5. Calculer la série lissée en utilisant un lissage exponentiel simple avec $\lambda = 0.2$ et [pour le point initial vous prenez y_1^{LES} la moyenne sur les 3 premières observations de la série].
- 6. Donner la formulation du problème à résoudre permettant de donner la valeur optimale de λ (λ^*) pour fournir des prévisions à un pas (h=1).
- 7. En déduire alors des prévsions (avec $\lambda = 0.2$) de la série pour l'année 2023.
- Proposer une approche permettant d'améliorer la qualité de la prévision obtenue par le lissage exponentiel.
- 9. Donner la commande pour une bonne utilisation du lissage exponentiel dans ce contexte. Vous préciser les paramètres de cette commande.
- 10. La méthode TBATS peut-elle être utilisée dans ce contexte ? Si oui préciser les paramètres de cette méthode.