

Ders İçeriği

- Ters Matris Yöntemi
- LU (Ayrıştırma, Cholesky) Yöntemi
- Jacobi yineleme (iterasyon) Yöntemi
- GAUSS-SEIDEL yöntemi
- Aitken İterasyon yöntemi
- Örnekler

BSM

5. Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ters Matris Alarak,

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n} x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n} x_n = b_2$
.

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn} x_n = b_m$

olsun, denklem takımını matris formunda yeniden düzenleyecek olursak ;

$$\sum_{i=1}^{n} a_{ij} x_j = c_{i, i} = (i = 1, 2, ..., m) \quad \text{veya kısaca} \quad \mathbf{A} \mathbf{X} = \mathbf{B} \quad \text{formundadır}.$$

A matrisi katsayılar matrisidir.

$$A^{-1} \mathbf{A} \mathbf{X} = A^{-1} \mathbf{B}$$
I $X = A^{-1} B$
 $X = A^{-1} B$ elde edilir.

Burada A⁻¹ in A⁻¹ = $\frac{AdjA}{\|A\|}$ ile bulunabileceğini hatırlamak gerekir.

BSM

5. Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Örnek 1:

$$2x_1 - 3x_2 + 2x_3 = -11$$

 $x_1 + x_2 - 2x_3 = 8$

 $3x_1 - 2x_2 - x_3 = -1$ denklem sistemini katsayı matrisinin tersini alarak bulalım.

Katsayı matrisi
$$A = \begin{bmatrix} 2 - 3 & 2 \\ 1 & 1 - 2 \\ 3 - 2 - 1 \end{bmatrix}$$
 Buradan bu matrisin determinantı ve ek matrisi alarak ters matrisi bulduğumuzda;

BSM

$$|A| = -5$$
, $Adj A = \begin{bmatrix} -5 & -7 & 4 \\ -5 & -8 & 6 \\ -5 & -5 & 5 \end{bmatrix}$, $A^{-1} = \frac{Adj A}{|A|} = \begin{bmatrix} 1 & 1.4 & -0.8 \\ 1 & 1.6 & -1.2 \\ 1 & 1 & -1 \end{bmatrix}$

5. Hafta

$$X=A^{-1}.B \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 1.4 & -0.8 \\ 1 & 1.6 & -1.2 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} -11 \\ 8 \\ -1 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$

4. Sayfa

bulunur.

Sayfa

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

```
>> A=[2-32;11-2;3-2-1]
                A =
                      -3 2
                      -2 -1
           >>B=[-11 8 -1]'
                                                        Matlab'ta Ters
                -11
                                                      Matris yardımıyla
                 8
                                                      Lin.Denk.Çözümü
           >> AT=inv(A)
                AT =
                  1.0000
                          1.4000 -0.8000
                  1.0000
                          1.6000 -1.2000
                  1.0000
                           1.0000 -1.0000
           >>I=AT*A
BSM
                          0.0000
                  1.0000
                                   0.0000
                  0.0000
                          1.0000
                                   0.0000
 5.
                  0.0000
                          0.0000
                                   1.0000
Hafta
           >>X=AT*B
                X =
 5.
                   3
-2
```

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

LU (Ayrıştırma, Cholesky) Yöntemi: A=L.U

Ayrıştırma Yöntemi

AX=B ve A=L.U => LUX=B şeklinde bir düzenleme ile...

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} x \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix}$$

$$u_{11} = a_{11} \ , \ u_{12} = a_{12} \ , \ u_{13} = a_{13} \quad l_{21} \ = \frac{a_{21}}{u_{11}} \ , \qquad l_{31} \ = \frac{a_{31}}{u_{11}}$$

$$u_{22} = a_{22} - l_{21} . u_{12}$$
 , $u_{23} = a_{23} - l_{21} . u_{13}$

$$l_{32} = [a_{32} - l_{31} . u_{12}]/u_{22}$$
 , $u_{33} = a_{33} - l_{31} . u_{13} - l_{32} . u_{23}$

L ve **U** matrisleri elde edilmiş olur.

BSM

5. Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

LU (Ayrıştırma, Cholesky) Yöntemi: A=L.U

A.X=B sisteminde A' nın ayrıştırılması ile

L.U.X=B şeklini gelir. İfadeye

U.X = Z dönüşümü yapılarak

L.Z=B şeklinde yeni bir denklem sistemi elde edilmiş olur.

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \text{ buradan } z_1 = b_1 \text{ , } z_2 = b_2 - l_{21} \cdot z_1 \text{ , } z_3 = b_3 - l_{31} \cdot z_1 - l_{32} \cdot z_2$$

sonuçları elde edilir, bu değerleri ;

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \text{ denkleminde yerine yazılarak , }$$

BSM

$$x_1 = \frac{z_1 - u_{12} \cdot x_2 - u_{13} \cdot x_3}{u_{11}} = \frac{b_1 - u_{21} \cdot x_2 - u_{13} \cdot x_3}{u_{11}}$$

$$x_2 = \frac{z_2 - u_{32} \cdot x_3}{u_{22}} = \frac{b_2 - l_{21} \cdot z_1 - u_{23} \cdot x_2}{u_{22}} \qquad \qquad x_3 = \frac{z_3}{u_{33}} = \frac{b_3 - l_{31} \cdot z_1 - l_{32} \cdot z_2}{u_{33}}$$

Lineer Denklem Sistemlerinin Cözüm Yöntemleri

Ayrıştırma Yöntemi

$$\begin{array}{ll}
\ddot{O}RNEK & 2x_1 + x_2 - 3x_3 = 4 \\
-x_1 + 2x_2 + 2x_3 = 6 \\
3x_1 + x_2 - 3x_3 = 6
\end{array}$$

 $2x_1 + x_2 - 3x_3 = 4$ şeklinde verilen denklem sistemini LU yöntemi kullanarak çözünüz.

Cözüm: Bu denklem sistemini çözmede öncelikle A katsayılar matrisi, X bilinmeyenler matrisi ve Y değerler matrisini olustururuz.

$$A = \begin{bmatrix} 2 & 1 & -3 \\ -1 & 2 & 2 \\ 3 & 1 & -3 \end{bmatrix}; \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; \quad Y = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \times \begin{bmatrix} 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & l_{21}u_{13} + u_{23} \\ l_{31}u_{11} & l_{31}u_{12} + l_{32}u_{22} & l_{31}u_{13} + l_{32}u_{23} + u_{33} \end{bmatrix}$$

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} x \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$

Burada A katsayılar matrisini A=L.U şeklinde ifade edecek olursak

BSM

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 1.5 & -0.2 & 1 \end{bmatrix} ; U = \begin{bmatrix} 2 & 1 & -3 \\ 0 & 2.5 & 0.5 \\ 0 & 0 & 1.6 \end{bmatrix}$$

$$; \quad U = \begin{bmatrix} 2 & 1 & -3 \\ 0 & 2,5 & 0,5 \\ 0 & 0 & 1,6 \end{bmatrix}$$

Bir önceki örnekle katsayılar aynı alındığından L ve U'nun yandaki değerleri aldığını hesaplamıştık.

5. Hafta

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{2,1} & 1 & 0 \\ l_{3,1} & l_{3,2} & 1 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

L ve U yukarıdaki gibi hesaplandıktan sonra

8. Sayfa

esitliğinden

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

$$z_1 = y_1 = 4$$
;
 $z_2 = y_2 - z_1 \cdot l_{2,1} = 6-4 \cdot (-0,5) = 8$ ve
 $z_3 = y_3 - z_1 \cdot l_{3,1} - z_2 \cdot l_{3,2} = 6-4 \cdot (1,5) - 8 \cdot (-0,2) = 1,6$

olmak üzere Z matrisi oluşturulur.

$$\begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} \\ 0 & u_{2,2} & u_{2,3} \\ 0 & 0 & u_{3,3} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

eşitliğindende

 $x_1 = 2$; $x_2 = 3$; $x_3 = 1$

BSM

5. Hafta

9. Sayfa

$$x_{3} = \frac{z_{3}}{u_{3,3}} = \frac{y_{3} - z_{1} \cdot l_{3,1} - z_{2} \cdot l_{3,2}}{u_{3,3}} = \frac{6 - 4 \cdot 1,5 - 8}{1,6} = 1$$

$$x_{2} = \frac{z_{2} - u_{2,3} \cdot x_{3}}{u_{2,2}} = \frac{y_{2} - z_{1} \cdot l_{2,1} - u_{2,3} \cdot x_{3}}{u_{2,2}} = \frac{6 - 4 \cdot (-0,5) - 0,5 \cdot 1}{2,5} = 3$$

$$x_{1} = \frac{z_{1} - u_{1,2} \cdot x_{2} - u_{1,3} \cdot x_{3}}{u_{1,1}} = \frac{y_{1} - u_{1,2} \cdot x_{2} - u_{1,3} \cdot x_{3}}{u_{1,1}} = \frac{4 - 1 \cdot 3 - (-3) \cdot 1}{2} = 2$$

şeklinde denklem sistemi çözülmüş olunur.

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

Uygulama:

$$x_1 - x_2 + x_3 = 3$$

 $x_1 + x_2 - x_3 = 5$
 $-x_1 + x_2 + x_3 = 1$

Çözümünü Ayrıştırma yöntemi ile bulunuz ?

• • •

BSM

5. Hafta

10. Sayfa Ayrıştırma Yöntemi

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

Uygulama:

$$x_1 - x_2 + x_3 = 3$$

 $x_1 + x_2 - x_3 = 5$
 $-x_1 + x_2 + x_3 = 1$

Çözümünü Ayrıştırma yöntemi ile bulunuz ?

. . .

BSM

5. Hafta

11. Sayfa

```
>> A=[1,-1,1;1,1,-1;-1,1,1]
>> B=[3,5,1]'
>> [1,u]=lu(A)
>> z=inv(1) *B
>> x=inv(u)*z
```

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi **BSM** 5.

Uygulama:

$$4x_1 + x_2 + x_3 = 9$$

 $2x_1 - x_2 + x_3 = 3$
 $2x_1 + x_2 + x_3 = 7$

Çözümünü Ayrıştırma yöntemi ile bulunuz?

• •

12. Sayfa

Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

Matlab Çözümü

BSM

5. Hafta

13. Sayfa

```
4
>> A=[4,1,1;2,-1,1;2,1,1]
>> B=[9,3,7]'
>> [1,u]=lu(A)
     1.0000
 1 = 0.5000
             1.0000
     0.5000
              -0.3333
                          1.0000
     4.0000
               1.0000
                          1.0000
                          0.5000
              -1.5000
                          0.6667
>> z=inv(1) *B
     9.0000
 = -1.5000
     2.0000
>> x=inv(u)*z
     1.0000
x = 2.0000
     3.0000
```

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

Uygulama:

$$6x_1 + 2x_2 + x_3 = -5$$

- $x_1 - 3x_2 + 2x_3 = 1$
- $2x_1 + x_2 - 3x_3 = -5$

Çözümünü ayrıştırma yöntemi ile bulunuz ?

• • •

BSM

5. Hafta

14. Sayfa Ayrıştırma Yöntemi

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi Uygulama:

Ayrıştırma Yöntemi

$$x_1 + x_2 - x_3 + x_4 = 2$$

 $2x_2 + x_3 - x_4 = 5$
 $x_1 - x_3 + x_4 = 0$
 $-x_1 - x_2 + x_3 = -4$

Çözümünü Choleski yöntemi ile bulunuz ?

• • •

BSM

5. Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

Uygulama :
$$x_1 + x_2 - x_3 + x_4 = 2$$

 $2x_2 + x_3 - x_4 = 5$
 $x_1 - x_3 + x_4 = 0$
 $-x_1 - x_2 + x_3 = -4$ Çözümünü Choleski yöntemi ile bulunuz ?

-2

BSM

5. Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Ayrıştırma Yöntemi

Uygulama:

$$4x_1 + 2x_2 - x_3 = 0$$

$$x_1 - 2x_2 + 3x_3 + x_4 = -5$$

$$2x_1 - 3x_2 + 5x_3 + x_4 = -5$$

$$-x_1 + 2x_2 - x_3 + 6x_4 = 3$$

$$x_1 + 2x_2 + x_3 + 3 x_4 = -6$$

 $-2x_1 + 2x_2 - x_3 - 2 x_4 = -10$
 $2x_1 + 2x_2 - 5x_3 - 3 x_4 = 5$
 $-x_1 - 4x_2 - 2x_3 + 3 x_4 = -1$

BSM

5. Hafta

17. Sayfa (x1, x2, x3, x4) = (?,?,?,?)

Çözümünü Choleski yöntemi ile bulunuz ?

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Jacobi basit iterasyon yöntemi:

$$X_1 = Ax_0 + C$$

İşlemiyle bulunur ve işleme

$$X_2 = Ax_1 + C$$

$$\mathbf{X_k} = \mathbf{A} \mathbf{x_{k-1}} + \mathbf{C}$$

BSM

olarak devam ettirilir. X_k bilinmeyen vektör elemanları

$$x_i^{(k)} = \sum_{j=1}^n a_{ij} x_j^{(k-1)} + c_i, \quad i = 1:n$$

5. Hafta

$$\max_{i \leq i \geq n} \frac{\left| x_i^k - x_i^{k-1} \right|}{x_i^k} \quad \text{Yakınsaklık kriteri ile belirlenir.}$$

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Jacobi basit iterasyon yöntemi:

Örnek:

$$x + y = 3$$

$$2x - y = 3$$

Denklem sistemini İterasyon Yöntemi ile çözünüz.

Sistemini iterasyon yapılabilecek forma getirelim.

$$\mathbf{x} = (3+y)/2, \mathbf{y} = 3 - x$$

Başlangıç değerleri **x=0 veya y=0** vererek hesaplayalım.

İterasyonları gerçekleştirirsek;

$$x(1) = (3+0)/2 = 1.5$$
, $y(1) = 3 - 1.5 = 1.5$

$$x(2) = (3+1.5)/2 = 2.25, y(2) = 3 - 2.25 = 0.75$$

...

Devam eden iterasyon değerleri tabloda verilmiştir.

, 3

Dolayısı ile kökler x = 2, y = 1 değerlerine yakınsamaktadır.

19. Sayfa

BSM

5.

Hafta

Bu yöntem üzerinde çözüm yapılırken yakınsama gözleniyorsa çözüme ulaşılmış demektir.

Her zaman yakınsaklık söz konusu olmaz.

Jacobi İterasyon Yöntemi

×	X.
1,5	1,5
2,25	0,75
1,875	1,125
2,0625	0,9375
1,96875	1,03125
2,015625	0,984375
1,992188	1,007813
2,003906	0,996094
1,998047	1,001953
2,000977	0,999023

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Jacobi basit iterasyon yöntemi: Büyük katsayılar matrisi içeren lineer denklem sistemlerinin eliminasyon yöntemleriyle çözümü çoğu zaman ekonomik olmaz. Bu gibi durumlarda iteratif yöntemler seçilir. Bunlardan en kolay olanlardan biriside Jacobi yöntemidir.

$$A \cdot X = B$$
 lineer denklem takımı, A katsayılar matrisi $A = L + D + U$

$$L = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & a_{N3} & \cdots & 0 \end{bmatrix}; D = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{NN} \end{bmatrix}; U = \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1N} \\ 0 & 0 & a_{23} & \cdots & a_{2N} \\ 0 & 0 & 0 & \cdots & a_{3N} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

BSM

şeklinde üç matrisin toplamı olmak üzere

$$L \cdot X + D \cdot X + U \cdot X = B$$
 \rightarrow $X = D^{-1} \cdot [B - L \cdot X - U \cdot X]$ şekline getirilebilir.

5. Hafta

Bu durumda x_i bilinmeyenleri için uygun seçilecek başlangıç değerleri bulunan eşitliklerde kullanılarak yeni x_i değerleri hesaplanabileceği ve bu işlemlerin iteratif olarak devam ettirilebileceği görülmektedir. Jacobi basit iterasyon yöntemi olarak bilinen bu yöntemin herhangi bir iterasyon adımı için kapalı formda

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Jacobi basit iterasyon yöntemi:

$$X^{(k+l)} = D^{-l} \cdot \left[B - L \cdot X^{(k)} - U \cdot X^{(k)} \right]$$
 veya açık biçimde

$$\begin{cases} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_3^{(k+1)} \\ \vdots \\ x_N^{(k+1)} \end{cases} = D^{-1} \cdot \left\{ \begin{cases} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_N \end{cases} - \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 0 & \cdots & 0 \\ \vdots \\ a_{N1} & a_{N2} & a_{N3} & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \\ \vdots \\ x_N^{(k)} \end{bmatrix} - \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1N} \\ 0 & 0 & a_{23} & \cdots & a_{2N} \\ 0 & 0 & 0 & \cdots & a_{3N} \\ \vdots \\ 0 & 0 & 0 & \cdots & a_{3N} \\ \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \\ \vdots \\ x_N^{(k)} \end{bmatrix} \right\}$$

Hafta

yazılabilir. D diyagonal matrisinin tersinin

$$D = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a_{NN} \end{bmatrix} \rightarrow D^{-1} = \begin{bmatrix} 1/a_{11} & 0 & 0 & \cdots & 0 \\ 0 & 1/a_{22} & 0 & \cdots & 0 \\ 0 & 0 & 1/a_{33} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1/a_{NN} \end{bmatrix}$$

Şeklinde olacağı gösterilebilir. Bu durumda eşitliğin herhangi bir i 'inci satırı için

$$x_i^{(k+l)} = \frac{b_i - \sum\limits_{j=l}^{i-l} a_{ij} \cdot x_j^{(k)} - \sum\limits_{j=i+l}^{N} a_{ij} \cdot x_j^{(k)}}{a_{ii}} \quad ; \quad i = 1,2,....N$$
 yazılarak iterasyon algoritması açık biçimde elde edilebilir.

açık biçimde elde edilebilir.

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Jacobi basit iterasyon yöntemi:

Denklem sisteminin direkt yöntemlerle çözümü x=[0.1667 0.4167 -0.0833 0.1667] dir. Çözümde ondalık sayıdan sonra 4 hane verilmiştir. Aynı denklem sistemini JACOBI iterasyonu ile çözelim. Denklem sistemini

$$x_1 = \frac{1}{4}(1 - x_2 - x_3)$$
, $x_2 = \frac{1}{4}(2 - x_1 - x_4)$, $x_3 = \frac{1}{4}(-x_1 - x_4)$, $x_4 = \frac{1}{4}(1 - x_2 - x_3)$

BSM

şeklinde yazalım. i. bilinmeyenin k. Ve k-1. adımda hesaplanan iki değerinin farkı $x_i^k - x_i^{k-1}$ olmak üzere, $Max \mid x_i^k - x_i^{k-1} \mid \le \epsilon$ koşulu **sağlanınca iterasyonu durduralım**. $\epsilon = 0.0001$ seçelim. Çözümde 4 ondalık hane kullanalım. Başlangıç için $x = x^{(0)} = [0\ 0\ 0\ 0]^T$ alalım.

5. Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Başlangıç değerleri

Jacobi
basit
iterasyon
yöntemi:

k	X ₁	X ₂	X ₃	X 4			
0	0	0	0	0	_		
1	0.2500	0.5000	0	0.2500	Į		
2	0.1250	0.3750	-0.1250	0.1250			
3	0.1875	0.4375	-0.0625	0.1875			
4	0.1563	0.4063	-0.0938	0.1563			
5	0.1719	0.4219	-0.0782	0.1719			
6	0.1641	0.4141	-0.0860	0.1641			
7	0.1680	0.4180	-0.0821	0.1680	J		
8	0.1660	0.4160	-0.0840	0.1660	ſ		
9	0.1670	0.4170	-0.0830	0.1670			
10	0.1665	0.4165	-0.0835	0.1665	1		
11	0.1668	0.4168	-0.0833	0.1667			
12	0.1666	0.4166	-0.0834	0.1666			
1,3 <	0.1667	0.4167	-0.0833	0.1667	-		

13. iterasyon sonunda bulunan çözüm

 $Max \mid x_i^k - x_i^{k-1} \mid = \mid x_4^2 - x_4^1 \mid = \mid 0.1250 - 0.2500 \mid = 0.1250 > \varepsilon = 0.0001$ olduğundan **iterasyona devam!**

 $\mid 0.1875 - 0.1250 \mid = 0.0625 > \varepsilon = 0.0001$, iterasyona devam!

 $|0.1660 - 0.1680| = 0.0020 > \varepsilon = 0.0001$, iterasyona devam!

 $|0.1668 - 0.1665| = 0.0003 > \varepsilon = 0.0001$, iterasyona devam!

 $|0.1667 - 0.1666| = 0.0001 = \varepsilon = 0.0001$, iterasyon durduruldu

BSM

5. Hafta

> 23. Sayfa

Gözüm: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0.1667 \\ 0.4167 \\ -0.0833 \\ 0.1667 \end{bmatrix}$

İterasyon no

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Gauss-Seidel Yöntemi İterasyona başlamadan önce,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

$$A = b$$

denklem sistemi diyagonal elemanları a_{ii} =0 olacak şekilde düzenlenir. Bunun için gerekirse satırların yerleri değiştirilir. Bu sistemden $x_1, x_2, ..., x_n$ çekilerek

BSM

5

5. Hafta

> 24. Sayfa

$$x_1 = \frac{1}{a_{11}} (b_1 - a_{12} x_2 - a_{13} x_3 - \dots - a_{1n} x_n)$$

$$x_2 = \frac{1}{a_{22}} (b_2 - a_{21} x_1 - a_{23} x_3 - \dots - a_{2n} x_n)$$

$$x_n = \frac{1}{a_{nn}}(b_n \hbox{-} a_{n1}x_1 - a_{n2}x_2 - a_{n3}x_3 \hbox{-} \ldots)$$

Şeklinde yazılır

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Gauss-Seidel
Yöntemi

İterasyona $x_1, x_2, x_3, ..., x_n$ bilinmeyenleri için, fiziksel anlamına göre, bir başlangıç değeri tahmin edilerek başlanır. Herhangi bir tahmin yapılamıyorsa $x_1 = x_2 = ... = x_n = 0$ veya

alınabilir.

 x_i değerleri çekilen denklemlerde 1. denkleminin sağ tarafında yerine konur, x_1 in yeni değeri bulunur.

BSM

 x_1 in yeni değeri ve $x_3, x_4, ..., x_n$ nin önceki değerleri 2. denklemin sağ tarafında yerine konur, x_2 nin yeni değeri bulunur.

 x_1 ve x_2 nin yeni değeri ile x_4 , ..., x_n nin önceki değerleri 3. denklemin sağ tarafında yerine konur, x_3 ün yeni değeri bulunur. ... x_1 , x_2 , ..., x_{n-1} in yeni değerleri n. denklemin sağ tarafında yerine konur,

x_n nin yeni değeri bulunur.

 $x_1 = \frac{b_1}{a_{11}}, x_2 = \frac{b_2}{a_{22}}, ..., x_n = \frac{b_n}{a_{nn}}$

5. Hafta

İterasyonu sonlandırma koşulu kontrol edilir, sağlanıyorsa iterasyon sonlandırılır. Sağlanmıyorsa son x_i değerleri ile işlem tekrarlanır.

25. Sayfa GAUSS-SEIDEL metodu ile JACOBI metodu temelde aynıdır. Sadece GAUSS-SEIDEL metodunda x_i nin her yeni değeri hemen kullanılır.

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

	Ornek:	4	1	1	0	$\begin{bmatrix} x_1 \end{bmatrix}$		1			
	$Ax = b \rightarrow$	1	4	0	1	x_2	_	2		x =	9
Sauss-Seidel	$Ax = 0 \rightarrow$	1	0	4	1	x_3	_	0	,	х –	٤
'öntemi		0	1	1	4	x_4		1			

Denklem sisteminin direkt yöntemlerle çözümü x=[0.1667 0.4167 -0.0833 0.1667] dir. Çözümde ondalık sayıdan sonra 4 hane verilmiştir. Aynı denklem sistemini GAUSS-SEIDELiterasyonu ile çözelim. Denklem sistemini

$$x_1 = \frac{1}{4}(1 - x_2 - x_3)$$
, $x_2 = \frac{1}{4}(2 - x_1 - x_4)$, $x_3 = \frac{1}{4}(-x_1 - x_4)$, $x_4 = \frac{1}{4}(1 - x_2 - x_3)$

şeklinde yazalım. i. bilinmeyenin k. Ve k-1. adımda hesaplanan iki değerinin farkı $x_i^k - x_i^{k-1}$ olmak üzere, $Max \mid x_i^k - x_i^{k-1} \mid \le \epsilon$ koşulu **sağlanınca iterasyonu durduralım**. $\epsilon = 0.0001$ seçelim. Çözümde 4 ondalık hane kullanalım. Başlangıç için $x = x^{(0)} = [0\ 0\ 0\ 0]^T$ alalım.

BSM

5. Hafta

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Örnek: X_1 X_2 X_3 k X_4 Başlangıç değerleri Gauss-Seidel 0 0 Yöntemi 0.1563 0.2500 0.4375 -0.0625 $Max \mid x_i^k - x_i^{k-1} \mid = \mid x_1^2 - x_1^2 \mid = \mid 0.1563 - 0.2500 \mid = 0.0937 > \varepsilon = 0.0001$ 0.1563 0.4219 -0.07820.1641 olduğundan iterasyona devam! 0.1641 0.4180 -0.08210.1660 0.1660 0.4170 -0.08300.1665 $|0.1641 - 0.1563| = 0.0078 > \varepsilon = 0.0001$, iterasyona devam! 0.1665 0.4168 -0.08330.1666 0.1666 0.4167 -0.08330.1667 $|0.1667 - 0.1666| = 0.0001 = \varepsilon = 0.0001$, iterasyonu durdur! 0.1667 0.1667 0.4167 -0.0834 7. iterasyon sonunda bulunan çözüm İterasyon **BSM** adımları 0.1667 x_1 0.4167 x_2 Çözüm: 5. x_3 -0.0834Hafta 0.1667 x_4 27. Sayfa

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Aitken İterasyon yöntemi Yukarıdaki örneklerden görüldüğü gibi, iterasyon gerçek çözüme oldukça yavaş yakınsamaktadır. JACOBI ve GAUSS-SEIDEL iterasyonları doğrusal yaklaşım sergilerler. Doğrusal yaklaşımlı iterasyon metotlarında AITKEN yöntemi kullanılarak iterasyon hızlandırılabilir. Herhangi bir xi bilinmeyenin birbirini izleyen üç İterasyon adımı sonunda bulunan

$$x_i^{k-2}, x_i^{k-1}, x_i^k$$

değerleri kullanılarak x_i^k nın değeri iyileştirilebilir. AITKEN'e göre x_i^k nın iyileştirilmiş değeri

$$x_i^k = x_i^k - \frac{(x_i^k - x_i^{k-1})^2}{x_i^k - 2x_i^{k-1} + x_i^{k-2}}$$

BSM

Formülü kullanarak aşağıdaki örneği JACOBI metodu ile çözümleyelim

$$Ax = b \rightarrow \begin{vmatrix} 4 & 1 & 1 & 0 & x_1 \\ 1 & 4 & 0 & 1 & x_2 \\ 1 & 0 & 4 & 1 & x_3 \\ 0 & 1 & 1 & 4 & x_4 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 0 \\ 1 \end{vmatrix}, \quad x = ?$$

$$x_1 = \frac{1}{4}(1 - x_2 - x_3)$$
, $x_2 = \frac{1}{4}(2 - x_1 - x_4)$, $x_3 = \frac{1}{4}(-x_1 - x_4)$, $x_4 = \frac{1}{4}(1 - x_2 - x_3)$

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Aitken İterasyon yöntemi

					Başlangıç değerleri			
k	X ₁	X ₂	X ₃	X ₄				
0	0	0	0	0	$Max \mid x_i^k - x_i^{k-1} \mid = \mid 0.1250 - 0.2500 \mid = 0.1250 > \varepsilon = 0.0001$			
1	0.2500	0.5000	0	0.2500	olduğundan iterasyona devam! Aitken			
2	0.1250	0.3750	-0.1250	0.1250				
3	0.1875	0.4375	-0.0625	0.1875	$0.1875 - \frac{(0.1875 - 0.1250)^2}{-0.1667}$			
	(0.1667)	(0.4167)	(-0.0833)	(0.1667)	$0.1875 - \frac{(0.1875 - 2.0.1250 + 0.2500)}{0.1875 - 2.0.1250 + 0.2500} = 0.1667$			
4	0.1563	0.4063	-0.0938	0.1563	0.1873 - 2.0.1230 + 0.2300			
	(0.1667)	(0.4167)	(-0.0834)	(0.1667)				
	$\int -0.0834 - (-0.0833 = 0.0001 = \varepsilon = 0.0001$							
İterasyon 4. iterasyon sonunda bulunan çözüm				iterasyonu durdur!				
adın	nları							

BSM

Parantez içinde koyu yazılmış değerler AITKEN formülü ile iyileştirilmiş değerlerdir.

5. Hafta Görüldüğü gibi yakınsama hızlanmış, 13 iterasyon yerine sadece 4 iterasyon yeterli olmuştur.

AITKEN yöntemi, formülün yapısı gereği, en erken 3. adım sonunda uygulanabilir. Ancak, ilk adımlarda değerler çok kaba olduğundan, büyük denklem sistemlerinde 5.-10. adımdan sonra uygulanması daha uygun olur.

(İterasyonun son adımlarında da yarar sağlamaz, çünkü sadece son hanelerde çok küçük değişiklikler olmaktadır.

$$Max \mid x_i^k - x_i^{k-1} \mid \le 10 \cdot \varepsilon$$

olduğunda AITKEN yönteminin kullanılmaması uygun olur.)

3x - y - z = 2x + 4y + z = -1

$$x - y + 3z = 8$$

denklem sistemi versilsin. Sistemin çözümü için

$$\mathbf{x}^{(1)} = [x_1, y_1, z_1] = [1 \ 1 \ 1]^T$$

alarak Gauss-Jacobi yöntemiyle $x^{(2)}, x^{(3)}$ yaklaşımlarını belirleyiniz.

Çözüm.

$$\mathbf{x}^{(1)} = [x_1, y_1, z_1] = [1 \ 1 \ 1]^T$$

Yukarıda belirtilen prosedürü takip ederek,

$$x = \frac{1}{3}(2+y+z)$$

$$y = \frac{1}{4}(-1-x-z)$$

$$z = \frac{1}{3}(8-x+y)$$

elde ederiz. O halde Gauss-Jacobi iterasyonlarını

$$x_{k+1} = \frac{1}{3}(2 + y_k + z_k)$$

$$y_{k+1} = \frac{1}{4}(-1 - x_k - z_k)$$

$$z_{k+1} = \frac{1}{3}(8 - x_k + y_k)$$

olarak tanımlarız. Başlangıç tahminini kullanmak suretiyle

$$x_{2} = \frac{1}{3}(2 + y_{1} + z_{1}) = \frac{4}{3}$$

$$y_{2} = \frac{1}{4}(-1 - x_{1} - z_{1}) = -\frac{3}{4}$$

$$z_{2} = \frac{1}{3}(8 - x_{1} + y_{1}) = \frac{8}{3}$$

elde ederiz. O halde $\mathbf{x}^{(2)} = [4/3 - 3/48/3]^T$ olarak elde edilir. Virgülden sonra dört basamağa kadar yuvarlatılarak sunulan yaklaşımlar aşağıdaki gibidir. Sonuçlandırma kriteri olarak

$$||\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}||_2 < 10^{-4}$$
 kriterini kullanıyoruz.

Solidjandi ma kriteri olarak
$$||\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}||_2 < 10^{-4} \qquad \text{kriterini kullanıyoruz.}$$

$$\begin{bmatrix} \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \mathbf{x}^{(3)} & \mathbf{x}^{(4)} & \mathbf{x}^{(17)} \\ 1 & 1 & -0.7500 \\ 2.6667 \end{bmatrix}, \begin{bmatrix} \mathbf{x}^{(3)} & \mathbf{x}^{(4)} & \mathbf{x}^{(17)} \\ -1.2500 & 1.9722 \end{bmatrix}, \begin{bmatrix} 0.9074 \\ -1.0694 \\ 1.8148 \end{bmatrix}, \cdots, \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

Yukarıda elde edilen yaklaşımların $[1-1\ 2]^T$ gerçek çözümüne yakınsadığına dikkat edelim.

Kavnak

Karadeniz Teknik Matematik, erhan@ktu.edu.tr

