UNCLASSIFIED AD 404 897

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

404897

Some Problems in the Theory of Diffraction and Refraction in Stratified Media

by Gottfried Edkart and Hubert Martin

SA AD NO. THE

QUALIFIED REQUESTERS MAY OBTAIN CONTROL OF THIS REPORT FROM ASTIA.

404 897

Gesamtherstellung: DIE REPROGRAFIE · Karl Mayer KG. Stuttgart N Friedrichstraße 45

Some Problems in the Theory of Diffraction and Refraction in Stratified Media

by Gottfried Edart and Hubert Martin

Contractor: Prof. Dr. Gottfried Edkart

University of Saarbrücken

Scient. Coll. and Programming Engineer:

Dipl.-Phys. Hubert Martin

Gothird Echary

Type No. 40

ASTIA AVAILABILITY NOTICE QUALIFIED REQUESTORS MAY OBTAIN GOPIES OF THIS REPORT FROM ASTIA.

The research reported in this document has been made possible through the support and sponsorship of the U.S. Departement of Army through its European Research Office under Contract No. DA-91-591-EUC-2087

Abstract

The purpose of the present paper consists of treating some problems arising in the theory of wave propagation in stratified media. The stratification is supposed as being continuous im some partial questions or discontinuous in another ones.

The problems in question are diffraction problems in a strong relation to refraction; generally such problems are very difficult: therefore some authors have given approximative solutions based on physical reflections for conditions of great generality; such a solution has often an asymptotic caracter: it becomes rigorous by an infinite approximation to some limite in the given conditions. i.e. for instance the dielectric constant $\boldsymbol{\mathcal{E}}$ as a function of the coordinates. The errors of an approximative theory are not known in general. Therefore we have an interest on a comparision of the approximative solution with a rigorous one in a case where such a rigorous solution is known and of sufficient generality. The most important approximative theory for the propagation of waves is due to Seckler and Keller [23]. It is based on the supposition that in a stratified medium the power within a tube of rays is constant, it calculates rays thereafter the crosssection of tubes of rays as tubes of constant power, from what follows the field intensity. This calculus neglects the continuously distributed inner reflection of waves. On the other hand one of us (E) has given a rigorous solution [18] [19] of the problem of waves in medium of plane stratification in the form of an Epstein-layer .. (Fig. 1). The difference of & values below and above a layer of given thickness can be varied and the thickness of the layer also. This solution furnishes a sufficient

generality. The authors are indebted to Professor Felsen (Microwave Research Dpt. Polytechnic Institute Brooklyn) for kindly having given the nint that some research workers in U.S.A. using Seckler's and Keller's approximations are interested on a numerical knowledge of the errors of this theory and so the authors furnish in the present report numerical evaluations of it in comparision with his rigorous solution for the Epstein-layer. This is the first part of this paper. It turns out directly that the above mentioned reflection is the main error of Seckler's and Keller's theory and we have given many examples where this reflection is week and another ones where it is strong. The exact numerical knowledge of this continuous reflection is given in a broad domain of variation of the gradient of £.

In the case, where rays are returning in a zone of total reflection, behind this zone real rays does not more exist in the original sens of their definition. In the original case rays and lines of Poynting vectors and normales to the surfaces of constant phase ("wave normals") are identical. Behind the zone of total reflection arise transversally attenuated waves: the surfaces of constant phase and constant amplitude are perpendicular one to another: there exists a real and an imaginary component of Poyntings vector. Wave normals are identical with the direction of it's real part; thus the imaginary part is perpendicular to phase normals, is the direction of exponential attenuation. Now the question arises:

Is it allowed to consider the lines of real part of Poyntings vector = phase normals as "rays" in the theory of diffraction.

Let an transversally attenuated wave be incident on a smooth obstacle in its field. The limit of the shady zone

is still furnished by the rays of our definition. This demonstration is given by an integral equation method due to Samans in 2.1.

This first step is to be continued. E. treats in some generality the diffraction problem of transversally attenuated waves by infinitely conducting cylinders and spheres.

In the scope of the present report this problem is studied by the following steps:

- 1) In the shady zone the "creeping" waves [4] or Watson waves [9] [19] [11] furnish the solution. We have to extend the theory of these waves to the case of incidence of transversally attenuated waves, to see their distortion in our case.
- 2) On particular in the case of the sphere it turns out that the classic series following Legendre functions does not more converge on the whole surface of the sphere. The present report shows that Watsons transformation gives automaticly an analytic continuation, the distortion of Watson waves is treated.
- 3) Franz [4] has shown that in the illuminated side of the sphere or the cylinder besides the incident wave the solution consists of two parts: the sum of the creeping waves coming from the shadow side of the obstacle and a part becoming the geometrical optics of the rays on the surface for $\omega \to \infty$. Therefore the geometrical optics of transversally attenuated waves is treated in the following form in greater genereality:

Let an transversally attenuated wave be incident on a plane surface of another dielectric or infinitely conducting medium: reflection-transmission coefficients are calculated. An analytic continuation of Shell's law to complex angles of incidence was to be effected. The direction of incidence is given by wave normals. It turns out, that the real angle of incidence is directly to be added to the complex one in the case where this angle is zero. The complex angle is the angle defined by classical

reflection theory.

Thus we see:

Taking wave normales as rays in the case of transversally attenuated waves we find a shadow-formation given by these rays and we are able to apply Watsons transformation also if the classical series are not convergent.

A short supplement treats the reaction of a third layer, behind a zone of total reflection to the total reflection. We know: If in the third zone a homogenous wave arises, total reflection is destroyed. However the author has never found in the litterature a treatise making evident the mechanism of this effect. It is often unpleasant for the reader to consult textbooks and papers. For this reason the author has given in seven appendices every material necessary for understanding the present report for a physicist of general formation not especially aquainted with propagation and diffraction theory.

Contents.

- 1. Eumerical Evaluations of the Theory of Diffraction
 Due to Jeckler and Keller in Comparision with the
 Rigorous Solution in an Epstein-Layer by G. Eckart
 and H. Martin
- 2. Some Diffraction Problems in Stratified Media,
 Especially in the Field of Transversally attenuated
 Waves. By G. Eckart
- 2.1 The Formation of Shadow in the Field of a Transversally Attenuated Wave: (Infinitely Conducting Cylinder of Arbitrary Smooth Cross-Section.
- 2.2 Watsons Transformation Creeping Waves on the Surface of Cylinders and Spheres for Incident Trans-versally Attenuated Waves.
- 2.2.1 Debyes Potentials on the Sphere for the Incidence of Transversally Attenuated Waves.
- 2.2.2 Fullfilling Boundary Conditions for Ter and Tmag.
 on the Surface of the Infinitely Conducting Sphere
 for Transversally Attenuated Incident Waves
- 2.2.2.1 Remarks on the Convergence of the Series Following Spherical Harmonics
- 2.2.2.2 Watsons Transformations furnishes an Analytic Continuation of Debyes Series
- 2.2.3 The Distortion of the Watson (Creeping) Wave by Transversal Attenuation of the Incident Wave
- 2.2.3.1 The Distortion of the Creeping Wave if the Diffrating Obstacle is an Infinitely Conducting Circular Cylinder.
- 2.2.3.2 The Distortion of the Creeping Wave in the Spherical Case

- 2.3. The General Geometrical Optics of Transversally
 Attenuated Waves: Reflection and Transmission on
 Plane Surfaces of Any Dielectric Eedia with
 Arbitrary Angles of Incidence
- 2.3.1 Kotivating of this theory as a Limit in Diffraction Theory
- 2.3.2. Reflection of Transversally Attenuated Electromagnetic Wave by a Plane Surface of Another Medium Situated Parallel to the Wave Normals
- 2.3.2.1 Reflection of Transversally Attenuated Wave by a
 Plane Surface Parallel to the Rays (= Wave Normals)
 if the Transmitted Wave is also Transversally
 Attenuated (= "Inhomogeneous")
- 2.3.2.2 Reflection of the Inhomgeneous Incident Wave if the Transmitted Wave is Homogeneous
- 2.3.2.3 The Field of Poynting Vectors in the Media 2 and 3
- 2.3.3 The Reflection of Transversally Attenuated Waves if the Angle of Incidence is Anyone
- 2.3.3.1 The Generalised Law of Refraction
- 2.3.3.2 The Calculus of the Coefficients of Reflection and transmission
- Supplement: The Reaction of a Third Layer upon the Total Reflection between two Media.
- Appendix I: Proof that Surfaces of Constant Phase and Constant Amplitude in a Non Dissipative Medium are Perpendicular one to Another.
- Appendix II: The Generation of Transversally Attenuated
 Waves by Means of Total Reflection in a Stratified Medium.

Appendix III: Riemann-Lebesgues's Lemma in Saman's Representation.

Appendix IV: Situation of the Saddle Points in Saman's Calculus.

Appendix V: Admissibility of Replacing (174) in the Integral (174) by Its Asymptotic Representation in the Neighbourhood of r=0.

Appendix VI: Survey of the Rigorous Solution in Epstein-Layer.

Appendix VII: Survey of Seckler's and Keller's Approximative Diffraction Theory.

Table I List of values of x, x, y used for numerical evaluation

Table II Numerical values

Figures

References

1) Kumerical Evaluations of the Approximative Diffraction Theory of Seckler and Keller in Comparison with the Rigorous Solution in the Case of an Epstein Layer.

By G. Eckart and H. Martin

Seckler and Keller [23] have developed a theory of diffraction of electromagnetic waves in an inhomogenous medium, the basic idea of which is represented in Appendix VII.

One of us (E) has given a rigorous solution of the same problem in [18] [19] [20] in the case of an Epstein-layer. An outline is given in Appendix VI.

Prof. Felsen (Polytechnic Institute of Brooklyn) has kindly made the remark that it seems to be useful to know exact numerical values of S. and K's solution in comparison with rigorous ones in the above mentionded case. For this purpose Mr. Martin has executed numerical evaluations of both theories.

The main interest is concentrated on the knowledge of conditions, furnishing exact values of S. and K's theory on the one hand and on the other hand conditions where S. and K's theory becomes erroneous and the order of magnitude of these errors.

The computer of the Computer-Center of the University of Saarbrücken is of the type Zuse Z 22, not usual in U.S.A. Therefore the entire programm is not reproduced here.

It is evident (App.VII) that the main error of s. a. K. consists of the fact, that these authors neglect the multiple continuous reflection due to the continuous stratification of the dielectric constant of the medium.

The theory of the Epstein-Layer is surveyed in App. VI. At the first glance it seems to be probable that this reflection is direct proportional to the variation of on a wave length, but a deeper study shows, that this effect is more intricated. However the function

of the Epstein-layer (App. VI)(Fig.1) shows a linearly variating & in a certain layer of the thickness 4/40 (App. VI); the transition to constant values of & outside of this layer is effected with continuous derivatives of any order. The exponential caracter of &

$$\mathcal{E}(2) = 1 + \frac{0}{1 + e^{\frac{\pi}{4}}} \qquad \text{(See fig. 1 and App. VI)}$$

produces a smooth transition to the limiting values of & outside of the layer above mentioned.

In [18] one of us has given an exact solution of the differential equation of the rays. But for the use of the computer a direct numerical solution is prefered. The term "vectorlength" on the top of the numerical tables denotas the length of the steps used for the integration of the differential equation of the rays. The evaluations are effected for three frequencies:

$$W = 3 \cdot 10^7$$
, $W = 3 \cdot 10^8$ and $W = 3 \cdot 10^9$
The values of $V =$ angle of incidence with ... vertical axis in the chosen minimum of height (App+VII) $V =$ Difference of the limiting values of

$$\mathcal{K} = \frac{4}{d}$$
, d = layer thickness (Fig.)

chosen for the evaluation are given in Table I.

It was chosen a minimal height below z = 0, the symmetry-level of the layer sufficiently great, so that the medium there is alsready homogenuous in good approximation. On a page of these evaluations we find on the top

W, K, S and vectorlength

for this condition and the value $\sqrt{2}$, the angle of incidence = angle of direction of the ray in the minimum of height the reflection coefficient is given: first number its absolut value, second number its phase in radiance (3,1415=2). The transmission-coefficient is denoted as "Transitfactor" also in two numbers: value and phase.

The third line gives $\mathcal{A}, \mathcal{B}, \mathcal{F}$ for the chosen layer. For the incident wave $\mathcal{A}, \mathcal{B}, \mathcal{F}$ is given by eq.7 appendix VI., valuable for $\mathcal{V}_{\mathcal{F}}$, eq. (8) App. VI. Since the real part of these parameters is 1 the numbers in the top of the tables denotes only the imaginary part. For the distortion functions $\mathcal{D}_{\mathcal{F}}, \mathcal{D}_{\mathcal{F}}, \mathcal{D}_{\mathcal{F}}$ Alpha, Beta, Gamma denote only the first, second, third parameter in the hypergeometric function. (15)(16) show, that only signs are commuted by forming the combinations of \mathcal{A}, \mathcal{F} used for v_1, v_2, v_3 . Gamma enters by its imaginary part (eq. (15)(16) App. VI) with different sign. In the top of the numerical tables we give only the abs. value of the im. part of $\mathcal{A}, \mathcal{B}, \mathcal{F}$. The third parameter in $\mathcal{D}_{\mathcal{F}}$ (eq.(17 App. VI) is not indicated on the top. It does not contain \mathcal{F} . The colonnes of numbers below the top denote

- 1) Height in the ray
- 2) V as a function of height
- 3) S. a. K's value
- 4) , the Epstein parameters =- 22
- 5) The number of terms used for calculating hyperg. functions with sufficient precision
- 6) Distortion function real part for the upgoing wave
- 7) " im. part " " upgoing wave
- 8) " " real part " " downgoing wave
- 9) " im. part " " downgoing wave

Above height = 0, we have only the upgoing transmitted wave, the latter two are not more existent.

Concerning 6)7): The distortion function for the upgoing wave is multiplied by unity, this one for reflected wave by R, and this one for the transmitted wave by T.

About "height \sim 0" we have following App. VI. a continuous transition between the transmitted wave on the one hand ($\mathbf{z} > 0$) and the sum of the incident and reflected wave ($\mathbf{z} < 0$). However there exists often a strong variation of the field.

For the heighest frequency $\omega = 3.10^9$ the parameters of the hyperg. functions take great values; forming higher

terms in the hypergeometric series we arrive at the limit of the range of our little computer. Some last terms on a colonne then are not more exact.

The reader is now able to compar S. a. K's solution with rigorous values, to find conditions concerning the gradient of ξ , the frequency, the layer thickness of an inhomogenous medium, where the approximation used by S and K furnishes an error small enough.

The case of total reflection, returning rays was not taken into account in the numerical calculus. However the remaining chapters deal with the conditions beyond the level of total reflection in the domain of transversally attenuated waves. It is important to remark that for negative values of the height we have two colonnes in the distortion function: incident and reflected wave, for positive heights we have the transmitted wave only.

Kellers solution is always good where the reflected wave is weak and the value of the distortion function \sim 1.

This is evident that the second part of the error of K's theory besides the reflected wave in the zones outside of the transition layer consists of the deviation of the distortion function from the value 1 deviation also due to multiple inner reflections.

The Epstein-Medium is almost homogenous outside of the transition layer. Reflection- and transmission coefficient (App. VI) are the coefficients of the entire layer concerning the corresponding waves in the almost homogenous medium (eq. 11-14 App. VI), they foundly valuable also invide of the layer, Suppl. remark: The absolute value of the exponential function is everywhere = 1, so that the value of the distortion function multiplied by 1, R, T for the incident, reflected transmitted wave resp. is the value of the rigorous solution.

- 2. Some Diffraction Problems in Stratified Hedia Especially in the Field of Transversally Attenuated Waves by G. Eckart
- 2.1 The Formation of Shadow in the Field of a Transversally Attenuated Wave (Infinitely Conducting Cylinder of Arbitrary Smooth Cross Section)

In this chapter we shall restrict ourselves to scalar waves. The attenuation is directed along the surfaces of a constant phase, perpendicular to the wave normal. The wave normal would be identical with the real part of Poyntings vector for electromagnetic vector waves. At first we make some remarks about the diffraction problem of a plane wave, incident on an infinite cylinder, with the boundary condition

$(1) \quad \mathcal{U} = 0$

on the surface

This is mathematically equivalent to the problem of a plane electromagnetic wave, the E vector of which is parallel to the axis of the cylinder, supposed to be infinitely conducting and its surface being without edges.

This treatise is related to Kellers theory of diffraction. It shows that wave normales can be used as analytic continuation of rays; we shall see that such a cylinder generates a shadow zone limited by "rays" realised by the wave normal.

We shall somewhat generalise a theory elaborated by Mr. Samans for homogenous waves.

The author is very indebted to Prof. Claus Müller, Aachen, for kindly leaving the paper of his pupil Mr. Samans, not yet being published.

We treat the formation of shadow by an asymptotic solution of Kaues integral equation of first kind for $\omega \to \infty$ [2] [3]. As already mentioned we choose the case of an incident elastic wave with E parallel to the axis of the cylinder. This is exactly the problem of a scalar wave 2

with the boundary condition (1) on the surface. The unknown function in Kaues integral equation of first kind is

In geometrical optics shadow formation is infinitely sharp in the limit $\omega \to \infty$. Thus we wish to give an asymptotic solution of Maues integral equation with regard to $\omega_{\partial \lambda}$; in the case of a transversally attenuated wave we have to take into account the following remarks:

The mathematical expression of the wave is

in an xy system of coordinates. The transition to the limit $\omega \to \infty$ would give a wave completely distorted:

For an |y| as small as on likes $(3) \quad y > 0 : \quad \mathcal{U}_{ine} = \mathcal{O}(e^{-k|y|} \sinh v) \rightarrow 0$

(4)
$$y \ge 0$$
 $u_{ine} = O(e^{+k(y), sinh v}) \rightarrow \infty$

This transition to a limit seems to be not reasonable. For $k \to \infty$ we wish to variate v so that the attenuation on the length 1 in the y direction remains constant, i.e. we require

- (5) k Junh v = p = court and we get:
- (6) Uinc = exp[jkxcosh v-py] consequently

and the incident wave is:

For making more comprehensive the following study for readers who have not kaues paper at their immediate disposal the author reports shortly some essential features [2].

Let a smooth obstacle be placed in the field of an incident wave, at the surface of this body (P= point of observation, Q= point of source) we put the value for u

(9)
$$u(P) \stackrel{\text{def}}{=} f(P)$$

The normale derivative may be

(10)
$$\frac{\partial uP}{\partial n} \stackrel{\text{def}}{=} g(P)$$

Maue treats problems in three dimensions of space, his Greens functions is taken as.

(11)
$$G(P,Q) = e^{\int RR}$$

By this normalisation of Greens function the factor $\mathcal{X}_{\mathcal{X}}$ is not more existent before the sign of integration in Greens formula. In the boundary value problem $\mathcal{U}(\mathcal{X}) = \mathcal{Y} = 0$

body can be found by solution of one of the following two integral equations:

(12)
$$u_{ine}(P) = \iint \mathcal{G}(P, Q) g(Q) d\varphi_{Q}$$
 or

(13)
$$\frac{\partial u_{ine}(P)}{\partial n} = \frac{1}{2}g(P) + \iint \frac{\partial G(P,Q)}{\partial n_2}g(Q)dQ$$
 $dQ = \text{Surface elsm. of the body in } Q$

- (12) represents an integral equation of first kind
- (13) an equation of second kind [3] [4]. In the cyl. Case

M=0 corresponds to the boundary condition for the magnetic potential corresponding to the vector E supposed as parallel to the axis of the infinite cylinder. We follows Saman's two dimensional calculus; the incident wave in Saman's paper is supposed as a homogenous plane wave. This paper makes immedialtely evident the shadow zone. Our problem supposes an incident wave of the type given by equation (8).

Samans solves Laues integral equation of first kind in an asymptotic manner. His integral equation uses a normalisation so that

In the plane of the cross section of the infinite smooth cylinder Samans uses as Greens function

is the position-vector of Q (source point)
(5) is the position-vector of P (point of observation)
t is the parameter of the curve length at the border of
the cross section of the cylinder whose axis is supposed
perpendicular to the plane of design, S is the t-value
for the point of observation.

We are generalising Samans caluculus upon an inhomogenous incident wave.

In what follows let denote

- A the unity vector in the direction of the phase (wave-) normal = real part of Foyntings vector
- A the unity vector in the direction of attenuation, perpendicular to A (Fig.6)
- = unity vector on the contour of the diffracting cylinder, supposed being smooth without edges

C₁ is the illuminated part of the contour

 C_2 is the shady side (Fig. 6).

The incident wave is:

where

(17)
$$(\overrightarrow{A}, \overrightarrow{e})$$
 is the scalar product of the two vectors \overrightarrow{A} with \overrightarrow{e} .

In the following text we shall often write.

(18)
$$T = /\vec{v}(t) - \vec{v}(s)/$$

Then it arises the integral equation corresponding (12)

(19)
$$F(\vec{v}(s)) = \int_{\mathcal{L}} \int_{\mathcal{L}} g(t) dt (k|\vec{v}(t) - \vec{v}(s)) dt$$
to be resolved with respect to $g(t)$

The shadow problem related with consists of showing that for $A \to \infty$ the geometrical optics of the phase normal (real part of Poyntings vector) furnishes the solution, that is to say that for $A \to \infty$ fit) in C_2 disappears whereas in C_4 is the solution. We shall demonstrate that for $A \to \infty$ the asymptotic solution is given by

g(t) =
$$\frac{\partial \mathcal{F}}{\partial \mathbf{n}}$$
 upon C_1 = illuminated side (20)

 $g = 0$ upon C_2 = shady side

The solution is performed by means of saddle points method and Riemann-Lebesgues lemma [5] S. 172. For 2000 the saddle point method becomes rigorous and we have to verify that (20) is the solution, g=0 in the shady side is then the prouve for our affirmation, that "rays" are pepresented by wave normals.

We shall follow the calculus of Samans and we shall show that the case of the inhomogenous wave differs from

Samans result only by the attenuating factor, arising as a "slowly variable" function in the saddle point-integrands; this is a very simple result, but also of some interest. Some necessary explanations are composed in the appendices III and IV.

At first we state
$$\frac{\partial F}{\partial n}$$
 from (16)
$$\frac{\partial F}{\partial n} = \exp\left[jk(\vec{A}\cdot\vec{e}(t))\sqrt{1+p_{k_2}^2} - p\cdot(\vec{A}\cdot\vec{e})\right]$$
(21)
$$\times \left(jk\sqrt{1+p_{k_2}^2}(\vec{A}\cdot\vec{n}) + p\cdot(\vec{A}\cdot\vec{n})\right)$$

An asymptotic representation of this is with

(22)
$$\sqrt{1+p_{22}^{2}} = 1+\frac{1}{2}\frac{p_{22}^{2}}{62} + O(p_{44}^{4})$$
 and
$$\frac{\partial F}{\partial n} = \exp[jk(A\cdot\vec{p})]\exp[k_{2}\vec{p}\cdot\vec{p}\cdot\vec{p}\cdot\vec{p}+\rho(A\cdot\vec{p})]$$
(23) $\times (jk(A\cdot\vec{n}))(1+p_{22}^{2}+O(p_{42}^{4}))-j(A\cdot\vec{n})(1+O(p_{42}^{4}))$

Now:

(24)
$$\exp[jk\frac{p^2}{2k^2}(\vec{A}\cdot\vec{e}m)] = 1 + j\frac{p^2}{2k}(\vec{A}\cdot\vec{e}) + O(j\frac{p^2}{2k})$$

Consequently:

Eore generally than Samans we have now the factor $\exp\left[-h(A\cdot U^4)\right]$ under the sign of integration, but not influencing the position of the saddle point and the calculus of the integral, because for $e^{-h(A\cdot U^4)}$ this factor represents a slowly variable function.

Samans's calculus runs by two methods of calculating integrals

- a) some integrals disappear owing to Riemann-Lebesgue's lemma [5] 3. 172
- b) some integrals are evaluated by means of saddle points method (steepest descent, stationary phase).

In both cases exp[-p(A',C(t))] is the famous "slowly variable function". With this supposition we follow the calculus of Samans by inserting (20) (21) into equation (19) and verifying directly in an asymptotic manner.

Let us consider at first the case:

The point of observation (\$\sigma(\sigma)\$) placed on the illuminated side (\$\sigma\$, of the cylinder: (Fig. 2,3)

In order to verify the integral equation we have to show that in an asymptotic manner for $\lambda \to \infty$

(26)
$$\mathcal{F} = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} (\mathbf{k} \mathbf{r}(t)) dt$$
 (800 (18))

where \mathcal{T} denotes the distance between point of observation (5) and point of integration (\mathcal{T}). If \mathcal{S} is situated on \mathcal{C} , the value $\mathcal{T}(t)=0$ arises. For avoiding difficulties we transform the integral by means of Greens theorem so that $\mathcal{T}=0$ is also contained in some intervals of integration indeed, but the integrals are easily evaluated.

As (g = 0 in the shady side) the integration is to be extended over the illuminated part C_7 of the circumference of the cylinder; we close this part by a stright line D, write. Greens theorem for a position vector outside of S (Fig.3), represent C by the incident wave on C and D and in S and we have

(27)
$$\iint \mathcal{F} \Delta \mathcal{H}''(kr) - \mathcal{H}''(kr) \Delta \mathcal{F} d\mathcal{G} = 0$$

This integral is equal to:

(28)
$$0 = \int (F \frac{\partial \mathcal{L}(kn)}{\partial n} - \mathcal{L}(kn) \frac{\partial F}{\partial n}) dt$$

If $\mathcal{L}(S)$ is displaced upon the border G , G is to be replaced by G' (Fig.4) where $\mathcal{L}(S)$ is surrounded by a

small half circle. Then we have

$$\int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n}) dt = \int \mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} dt - \int \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt + \int \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt + \int \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt + \int \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt + \int \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt + \int \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt + \int \mathcal{K}^{n} \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{F}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{K}^{n}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{K}^{n}}{\partial n} dt$$

$$= \int (\mathcal{F} \frac{\partial \mathcal{K}^{n}}{\partial n} - \mathcal{K}^{n}) \frac{\partial \mathcal{K}^{n}}{\partial n} dt$$

link-0 denotes that the half circle & is contracted to a radius - 0. By means of the well known development of 26747/27

in kr = 0 we find (\vec{x} = normal directed in the exterior of \vec{y})

furthermore

(31)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dt \rightarrow 0$$
; consequently (29) reduces itself to:

$$(32) \int_{C_{1}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dt = \frac{2}{3} \mathcal{F} + \int_{0}^{\infty} \mathcal{F} \frac{\partial \mathcal{F}}{\partial \lambda} dt + \int_{0}^{\infty} \left(\mathcal{F} \frac{\partial \mathcal{F}}{\partial \lambda} - \mathcal{F} \frac{\partial \mathcal{F}}{\partial \lambda}\right) dt$$

and we have to demonstrate that the two integrales on the right hand side of (32) taken over 6 and 1 disappear for 2 > 0 . Some subsidiary calculus is effectuated in the appendices III, IV, V.

At first we have
$$\int_{-\infty}^{\infty} \frac{\partial \vec{k}}{\partial n} dt = \int_{-\infty}^{\infty} e^{i\vec{k}} \frac{\vec{k}}{i} \frac{\vec{k$$

It is easy to calculate: (See Samans)

with the notation

we have Hankel's well known asymptotic representation of \mathcal{K}^{n} :

(36) $\mathcal{K}^{n}(kr) \sim -i \left(\frac{2}{2kr}\right)^{n} \left(1 + O(kr)\right)$

Inserting this representation into the integral (we refer to the appendices III, IV, V) we find for (33)

Corresponding Appendix IV it is easy to see, that on C_{i} no stationary point is possible. In order to estimate the integral by means of Riemann-Lebesgue's lemma we have to study the influence of f_{i} for f_{i} . It is evident that there f_{i} is of the order of f_{i} (f_{i} radius of curvature f_{i}) f_{i} (f_{i} length of the curve). The integrand is every where finite and by App. III we have

The two parts of the integral over \mathcal{J} are found in the following way:

F was the function of the incident wave on D.

Then there exists a stationary point of the second king
evident from fig. 41.

(39)
$$\vec{\mathcal{A}} = \vec{\mathcal{A}} - \frac{\vec{\mathcal{C}}(H) - \vec{\mathcal{C}}(S)}{|\vec{\mathcal{C}}(H) - \vec{\mathcal{C}}(S)|}$$

Appendix III, theorem 2 shows the calculus of the saddle-point integral:

With the notations of App. III, IV, we have

Than from Ap. . IV we see:

(41)
$$h'(t) = (\overrightarrow{A} \cdot \overrightarrow{t}) + (\frac{(\vec{e}(t) - \vec{e}(s))}{|\vec{e}(t) - \vec{e}(s)|} \cdot \overrightarrow{t})$$

By means of well known theorems on curves (f.i. 27) p. 321 ff, text books on differential geometry) we find:

$$h''(t) = (\vec{A} \cdot \vec{n}) \theta t + \frac{1}{|\vec{V}(t) - \vec{V}(s)|} - \frac{[(\vec{V}(t) - \vec{V}(s)) \cdot \vec{t}]^2}{|\vec{V}(t) - \vec{V}(s)|^3} + \mathcal{X}[\vec{n} \cdot \frac{(\vec{V}(t) - \vec{V}(s))}{|\vec{V}(t) - \vec{V}(s)|}]$$

where \mathcal{H} represents the curvature of the border in the saddlepoint $t = \mathcal{X}$; now \mathcal{D} , is a stright line, $\mathcal{H} = \mathcal{D}$, in the saddlepoint $(\mathcal{E}(t) - \mathcal{E}(s))$ has the direction of the normal, consequently $(\mathcal{E}(t) - \mathcal{E}(s))$ $\mathcal{H} = \mathcal{D}$ and

(43)
$$h''(t) = \frac{1}{|\vec{\ell}(t) - \vec{\ell}(s)|} > 0$$
, $t = \tau$ in the saddle point

consequently:

(44)
$$\int F \frac{\partial \mathcal{L}}{\partial n} dn = \text{Je} \left(|\vec{e}(t) - \vec{e}(s)| + (\vec{A} \cdot \vec{e}(t)) + |\vec{A} \cdot \vec{e}(t)| + O(1/\sqrt{\epsilon}) \right)$$

Taking into account the well known asymptotic representation of **the known**

(45) **K**(Ar) ~ \(\frac{2}{\tark} \) \(\tark \) we get analogously to (44)

$$\int_{(46)} \mathcal{J}_{n}^{(46)} \frac{\partial \mathcal{F}}{\partial n} dt = 2j e^{i \frac{\pi}{2} \left(|\vec{v}_{n} - \vec{v}_{n}| + |\vec{\sigma}_{n}| \cdot \vec{v}_{n}| + |\vec{\sigma}_{n}|^{2} \right)} + O(\sqrt{\pi})$$

Here we have $(\vec{A}, \vec{n})=1$ \vec{R} parallel to \vec{A} Collecting (26) (28) (30) (31) (32) (45) (46) then (26) is verified.

In the case (%) on the illuminated zone of cylinder the integral equation (12) (19) is now resolved in an asymptotic manner for (20) by (20) and we turn ourselves to the analogous solution, if (5), i.e. P is situated in the shadow zone. Also in this case, Samans's calculus is only modified by the slowly variable function exp[-p(A) (C)].

On C, there exists a stationary point of first kind (App. II, IV, V, see Fig. 12)

$$(47 \vec{A} = -\frac{(\vec{k}(t) - \vec{k}(s))}{|\vec{k}(t) - \vec{k}(s)|} \qquad \text{for } t = \tau$$

only this part of the exponent determines the saddle point, that contains to explore again slowly variable. We have

(25)
$$\partial F = jk(\vec{x},\vec{w})\exp[jk(\vec{x},\vec{v})\vec{w} + \vec{p}_{\vec{x}} - p(\vec{x}'\vec{v})] + O(\vec{x})$$

Then the function (see App. III, IV) is

From equation (42) (being valuable for \mathcal{U} and \mathcal{U} in the integrand) we see:

$$(49) \left(\overrightarrow{A} \cdot \overrightarrow{w} \right) = -1 , \quad \overrightarrow{w} \cdot \frac{\left(\overrightarrow{V}(\overrightarrow{x}) - \overrightarrow{V}(\overrightarrow{s}) \right)}{\left(\overrightarrow{\varphi}(\overrightarrow{x}) - \overrightarrow{V}(\overrightarrow{s}) \right)} = +1$$

and
$$\frac{\left((\vec{e}x)-\vec{e}(s)\cdot\vec{n}\right)^2}{|\vec{e}(z)-\vec{e}(s)|} > 0$$

Consequently:

(51)
$$\int g t d d d = j k \int \frac{(\vec{A} \cdot \vec{n})}{\sqrt{rat}} \sqrt{\frac{2}{6\pi}} e^{j k r (t)} + j k (\vec{A} \cdot \vec{e})$$

$$C_{A} \qquad \chi = \frac{(\vec{A} \cdot \vec{n})}{\sqrt{rat}} \sqrt{\frac{2}{6\pi}} e^{j k r (t)} + O(\frac{1}{6\pi}) dL$$

This integral furnishes by saddle points method $\int k (\vec{A} \cdot \vec{w}) \left[\frac{2\pi}{kh(x)} \right]^{2} \left[\frac{2\pi}{k\pi r\alpha} + O(\frac{1}{12}) + O(\frac{1}{12}) \right]$ (52) $\int k (\vec{A} \cdot \vec{v}(s) + \int \rho(\vec{A} \cdot \vec{v}(s)) + O(\frac{1}{12}) + O(\frac{1}$

Here we take into account that (Fig. 8)

furthermore [eq. (1) in App. IV)

and therefore:

Thus the integral equation is verified by (56) also in the case: (5), point of observation situated in the shady zone.

For $n \to \infty$ in an asymptotic manner we have shown:

Let a transversally attenuated wave, the direction of incidence of which is defined by the phase normal = real part of Poyntings vector, be diffracted by a smooth zylinder; the boundary condition is $\mathbf{u} = \mathbf{0}_1$ then there exists exactly as in the case of a homogenous wave an illuminated an a shady zone; the limit between illuminated and shadow zone is defined by geometrical optics if wave normals are defined as rays.

That is to say that these wave normals are to be considered as analytic continuation of rays for Kellers theory. This could serve as a supplement to this theory.

Only in the point: limit between shadow and illuminated zone the integral equation is not fullfilled. This point is a set of Lebesgues measure zero, not influencing the value of an integral.

2.2 Watsons Transformation - Creeping Waves on the Surface of Cylinders and Spheres for Incident transversally Attenuated Waves

In the following chapter we wish to treat a series of problems concerning the diffraction of transversally attenuated waves:

- 1) For an incident transversally attenuated electromagnetic wave we shall establish the solution of the problem of diffraction by an infinitely conducting sphere. The classic seriesdevelopments of Debyes potentials are extended to this "inhomogenous" case. It turns out, that the usual series following Legendres functions do not more converge on the whole surface of the sphere and we shall see that in this case Watsons Transformation gives an analytic continuation of the development in the shady zone.
- 2) Watson waves are often noted as "creeping waves" [4] and we intend to study their distortion by transversal attenutation in the shady zones of cylinders and spheres.

2.2.1 Debye's Potentials on the Sphere for the Incidence of Transversally Attenuated Waves

In a famous paper [8] Debye has given 1909 the first complete solution of the diffraction of a plane homogenous electromagnetic wave by a sphere consisting of any material, containing also the infinitely conducting sphere. The theory of diffraction has made tremendous progresses since this time: The fist one consisted of the introduction of Watsons transformation 1918 [9] [10] [11]. In these papers are involved the "Watson-waves" denoted later on by Franz [4] "creeping waves". We intend to study the distortion of these waves by transversal attentuation of the incident plane wave; from 2.1) we take the certainty, that the shadow is limited by "limiting rays", defined as wave normals. Readers of Debyes paper may take into account that this author uses [1] [1] as a time function, whereas we prefer [1] [1] . We shall consider the primary

wave as incident under an angle-jA, then we have to continue Debyes expressions into the domain of complex angles after changing +jAt with -jAt.

For reasons of rigour we cannot avoid to follow general lines of Debye in our case of an inhomogenous incident wave. It will turn out a direct analytic continuations of Debyes results for our case.

Debye supposes a homogenous plane wave incident in the-z-direction, v=z or in the direction opposite to v=0. Now we (Fig.9) turn the system of coordinates so that the new pole is situated in v=0, v=v. With reference to the invariance of Maxwells equations and the wave equation against rotations we write down the incident inhomogenous wave:

Z = Wave-impedance

E is supposed as perpendicular to the direction of attenuation. The "dual" case, H perpendicular to this direction is not treated in this paper.

As "plane of incidence" we define the plane of the wave normal and the direction of attenuation. If we turn the zenith of the sphere from $\mathcal{D} = \mathcal{O}$ into $\mathcal{D} = \mathcal{O}$

x) Debye supposes E_X , this produces the exchange of ω_Y for ω_Y and v, v, later on.

in the meridian $\varphi = 0$ (Fig. 14) then we have from spherical trigonometry: (see Fig.9)

In a x,y,z-System this would be a transition to a new system by conserving the y-axis.

The wave, chosen by Debye, coming from 3-0. has the form (in our EKS units)

(6)
$$E_y = e^{-jkz}$$
, $H_x = \frac{1}{2}e^{-jkz}$

The rotation of the x,z-plane into the x',z' plane furnishes (see Fig.15)

Then the wave coming from
$$2^{k}$$
 is given by:

(9) $E_{y'} = e^{-jkz'}$

Or

(10)
$$E_y$$
 = exp[-jk(zcord+yrind)], $H_{xi} = \frac{1}{2}E_y$.

With (1) $Z = Rand$, $x = Rsindany$, $y = Rsindsiny$

we have

$$(12) = E_{3} = \exp[-jkR(\cos \theta \cos \theta + \sin \theta \sin \theta \cos \theta)]$$

$$= \exp[-jkR(\cos \theta)] \quad (1011. (4))$$

Now we put

and we shall see that (1) will arise from (12),

(15) Ey = exp[-jkzlosha - kx sinha] = Ey

from Ey, Hx, Hz we have now to look for
ER, Ev, Ey, Ha, HS, Hy:

(16) Ez = exp[-jkRcoy] sin & sin y = exp[-jkRcoy] sin y

Referring to Debye [8] and [11] we are now able to establish the development of the incident wave after Debye, where 2 is replaced by 1, 2 by 2

The domains of convergence will be discussed after treating the reaction of the infinitely conducting sphere.

We wish to chose another definition of some functions as Debye and we give the definitions of our functions:

(23)
$$P_n(\omega) - P_n(\omega) - nth$$
 polynom of Legendre

Furthermore we wright:

(25)
$$\int_{m}^{(4)} (kR) = \int_{\overline{Z}}^{\overline{Z}} R \mathcal{H}_{n+1/2}^{(4)} (kR)$$

For understanding we note Debyes notations:

Debye derives the components of field vectors from a magnetic potential T_{obs} and an electric potential T_{e}

(30)
$$E_{R} = \frac{\partial^{2} R T_{e}}{\partial R^{2}} + E^{2} R T_{e}$$
 (33) $H_{R} = 0$
(31) $E_{R} = \frac{1}{R} \frac{\partial^{2} R T_{e}}{\partial R \partial R}$ (34) $H_{R} = \frac{i\omega E_{e}}{R \sin R} \frac{\partial R T_{e}}{\partial p}$

The magnetic potential Im gives:

(36)
$$E_{R} = 0$$
 (39) $H_{a} = \frac{\partial RI_{m}}{\partial R^{2}} + b RI_{m}$ (37) $E_{N} = \frac{\partial u_{m}}{\partial sinh} \frac{\partial RII_{m}}{\partial \gamma}$ (40) $H_{N} = \frac{\partial^{2}RI_{m}}{\partial R\partial \lambda}$ (38) $E_{p} = \frac{-i\omega\mu_{a}}{R} \frac{\partial RI_{m}}{\partial \lambda}$ (41) $H_{p} = \frac{1}{Rsinh} \frac{\partial^{2}RI_{m}}{\partial R\partial \gamma}$

Both potentials are solutions of the wave equation:

It is well known that ($\int_{-\infty}^{\infty}$ p. 545) we can write: ($\int_{-\infty}^{\infty}$ is supposed being scalar, $\int_{-\infty}^{\infty}$ unity vector in the direction of increasing R)

where
$$Z = \sqrt{\frac{\mu_0}{E_0}} = 120\pi R$$
 wave impedance of the vacuum.

Then by analytic continuation to the angle of incidence - Ja and transition to $exp[-j\omega t]$ the potentials of the

incident wave are:

(45) Tei =
$$\sum_{m=1}^{\infty} \frac{(-j)^{m-1}}{k} \frac{(3m+1)}{m(m+1)} \psi_m(kR) P_m(my) sin \psi$$

 $\frac{1}{2}$ comes from our use of Gfrgi's MKS Units. Debye has E_x as an incident wave, we have E_y and so G_y , H_y are changed, Y is defined by (5).

In their domains of convergence these series are to be summed and they furnish following Debye and continued to complex angles:

The series have to represent an entire solution of the wave equation. These terms, due to solutions of Legendres equation not contained in the system of spherical harmonics produce regularity of the and the interior and the system.

2.2.2) Pullfilling Boundary Conditions for Te and Tm.
on the Surface of the Infinitely Conducting Sphere
for Transversally Attenuated Incident Waves.

To these series we have to add another ones representing waves outgoing from the surface of the sphere. The boundary conditions are:

(49)
$$\frac{\partial RT_e}{\partial R} = 0$$
 in $R = R$

Using (25) we shall now establish the expressions of waves, outgoing from the sphere: with coefficients A_n and A_n we have:

 A_n^4 and A_n^2 are easily found by means of (45) (46) (49) (50). Finally we have for the complete potentials N_e and N_m : (R_o = radius of the diffracting sphere)

It is evident that (53) (54) give the analytic continuation of Debyes series by replacing of 9, 6 by 6. However we needed the calculus above for proofing the addmissibility of our procedure from a physical point of view.

2.2.2.1 Remarks on the Convergence of the Series Following Spherical Harmonis

Such a series, written in Goff, represents series following powers of Goff; it converges inside of the unit circle, since Goff=II are the irregularities next to the origin. If the angle of incidence is real convergence is extended over the surface of the sphere. But if Goff for a value of a, sufficiently great is not more inside the unity circle the series is not more convergent and we have to look for an analytic continuation. This continuation is obtained by means of Watsons transformation. In what follows we shall see how this continuation is effected. We shall see, that the integral representing (53)cm(54) reduces itself to the sum of residues of Watson waves, converging well only in the shady zone indeed. But this convergence in the shady zone is valid for any Goff.

2.2.2.2 Watsons Transformation Furnishes an Analytic Continuation of Debyes Series

In the following text we restrict ourselves to the series for **Tom* (54). For a value of **p**, where (54) converges, we execute Watsons transformation into an integral long an infinite halfcircle and a sum of residues. The integral over the half-circle will disappear, and the sum of the residues representing creeping waves will arise. Now we see, that this integral disappears also, if the series (54) is not more convergent and the series of Watson residues remains convergent. This affirmation is to be proofed.

Studying \mathcal{T}_m we consider that \mathcal{T}_m is zero on the surface of the sphere. We are interest in \mathcal{T}_m for R>Q.

The sum in question is

By introducing a continous parameter V we transform in a well known manner this sum into an integral over the path of Fig. 11. The integral runs as follows

There arises the possibility to write in an usual manner

But we shall not use this form for the present. Putting

(57) V = S - 1/2 we show that the integrand is an odd function of S (V=0:S-1/2)

(58)
$$P_{\nu}^{1}(\omega_{\nu}) = P_{-\nu-1}^{1}(\omega_{\nu}), P_{s-1/2}^{1}(\omega_{\nu}) = P_{-s+1/2}^{1}(\omega_{\nu})$$

$$= P_{-s+1/2}^{1}(\omega_{\nu})$$

is an even function of S

(59) 2 m = 25 is an odd function of S

(60) V(M)=5-4 is an even function of 5

(61) any = 4057 is an even function of S

function of S by virtue of well known theorems on Besselfunctions.

Likewise

is an even function of \$ so that

because of (59) the integrand is an odd function of §. Consequently the path of integration of Fig. 11 can be replaced by the path of Fig. 12. The integral along the imaginary axis disappears because the integrand is odd, it is to be shown that the integral along the half-circle goes → 0 for ②→ ∞ and it remains only the sum of residues on the first quadrant. Then is to be proved that the sum of residues converges also for an imaginary angle of incidence. (any value of corp). By this consideration we see again that the sum of creeping atson waves resolves the problem in the shady zone. Refering to Franz ② p. 35/6 (see Fig.13) we give the situation of the mentioned chain of poles.

The line on which the poles are situated begins on the real s-axis in $J = kR_0$ under an angle of K_3 and becomes parallel to the imaginary axis for $K_0 \to \infty$ Following Franz l.o. we put

In order to estimate the integral for $\mathcal{R} \to \infty$ between the imaginary axis and the line of poles, following Franz we have to treat it between $\mathcal{L} = \mathcal{L}$ and $\mathcal{L} = \mathcal{L}'$ with

(65)
$$3 = \frac{12}{2} e^{\frac{\pi}{2}} \cdot \exp[j(\frac{\pi}{2} - \kappa')]$$
 thus

(66)
$$s = \frac{kR}{2}e^{\frac{T}{2}kx'}$$
, $\frac{T}{2x'} = \frac{kR}{kR}$, $x' = \frac{T}{2kkR}$

The asymptotic representation of the spherical harmonics [12] [13] [14] [15] runs as follows:

Defining

we have

- for s in the upper half plane.

+ for s in the lower

Using Watsons method we have to estimate the integral at first on the far half circle; at first in $O \leftarrow C \leftarrow C'$ We put

We had in the integral P_{s-2} (asy), therefore we need (see 68) $e^{\pm s}$ $0 \le s \le s'$.

With increasing \$ -- c, Cdecreases -> 0. In the mentioned C-intervall we write:

(69)
$$3-\frac{1}{2} = 9e^{i(\frac{\pi}{2}-d)} = i9e^{-id} \approx i9(1-jd) = i9+9d$$

and
$$(70) e^{\pm 3\frac{1}{3}} = e^{\pm (jq+qu)(j\theta-\theta')}$$

$$= \exp\left[\pm(-q\chi(\theta+u\theta')+j(\theta-u\theta))\right]$$

The asymptotic values of the factors in the integrand are

wherein $\mathcal{R} \geqslant \mathcal{R}$ (the point of observation lies outside of the sphere). (Frans $\sqrt{47}$)

and

We shall see that it is sufficient to study the integral on the far half circle in $0 \le \alpha \le \alpha'$, as in $\alpha' < \alpha < T$ it converges a fortiori for ? -> 00.

Writing down the integral in $0 < \alpha < \alpha'$, we have four products due to the 2 terms in the right hand side of (71) and the two terms in the asymptotic representation of Z -1/2 (73). From these products we select the most unfavorable one what concerns

If Θ and Θ change their signs, the term with $\exp\left[-\xi(\cdots)\right]$ is to be considered, the formal expression is conserved. Thus we have T_{ni} , the finite integral $\frac{\partial}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{\partial x_i}{\partial x_i} + \frac{\partial^2}{\partial x_i}$

This becomes by use of (71) (72) (73) with a constant factor K:

(76)
$$T_{a}^{\times} \sim K \int \frac{\exp[3\mu s T_{a}]}{s} e^{s t_{a}} \frac{2s}{e^{\frac{1}{2}} R_{a}} \left(\frac{2s}{e^{\frac{1}{2}} R_{a}} \right)^{s} e^{\frac{s^{2}}{2}} ds$$
with $s = \frac{1}{2} \theta - \theta'$

we are able to writes:

$$\left(\frac{2s}{eR_0}\right)^S = e^{Shn} \frac{2s}{eR_0}$$

$$= e^{S(x-\ln 2s} - \frac{\pi}{2} + x) + j \cdot s \cdot \left(\ln \frac{2s}{eR_0} + \frac{\pi}{2}x\right)$$

$$= e^{S(x-\ln 2s} - \frac{\pi}{2} + x) + j \cdot s \cdot \left(\ln \frac{2s}{eR_0} + \frac{\pi}{2}x\right)$$

The integral (75) is to be estimated by means of (76) (77). It takes the form:

where

(79)
$$K_{1} = \ln \frac{R}{A} + \ln \frac{2g}{4R} + 1 + \Theta', K_{2} = 2x + \Theta$$

(79) $K_{3} = \ln \frac{R}{A} + \ln \frac{2R}{4R} - \Theta'$

(80) $\lim_{t \to \infty} e^{-2xx} + e^{\Theta} = \exp[\sec(K_{1} + iK_{2}) - 1]$

(80) $\lim_{t \to \infty} e^{-2xx} + e^{\Theta} = \exp[\sec(K_{1} + iK_{2}) - 1]$

This value disappears for $? \rightarrow \infty$ if: at first

(81)
$$\frac{-1e^{-2\pi g+g\theta}}{g(K_i+jK_i)} \rightarrow 0 : \theta \leq 2\pi$$

The other condition would be:

$$(82) - 277 + 9\theta + 9\left(\frac{\pi}{2\ln 2} \ln \frac{R}{R} + \frac{\pi}{2} + \frac{\pi(H\theta)}{2\ln 2}\right) \angle 0$$
for $9 \to \infty$

(Imaginary parts in the exponent do not influence the absolute value); it follows:

(83)
$$\Theta < \frac{3\Gamma}{2}$$
 Θ' any fixed value

If these condition is fullfilled, the integral taken over the other parts disappears a fortiori.

Thus for $\gamma = \theta + j\theta'$ in a stripe $0 < \theta < 37/2$ the solution of the diffraction problem in the shady zone by Watsons transformation is justified, if we can show, that this series of residues converges for any /cox/ It is essential that in the limit the sequence of poles is situated on a vertical straight line (Franz [4]). A simple calculus by means of (73) shows, that the imaginary part of does not influence the convergence of the series of residues. The real part of pris not greater than in the case of an incident homogenous wave. Thus we see, that the series of residues converges also if $|\omega_{\ell}| > 1$. It is sufficient to restrict ℓ on the stripe: 0 L greatet, - 00 L Jimpt + 00 , because of the periodicity of the cosin-function. Watson series furnishes the analytic continuation of the development of

2.2.3. The Distortion of the Watson (creeping) Wave by Transversal Attenuation of the Incident Wave

the solution in the shady zone.

2.2.3.1 The Distortion of the Creeping Wave if the Diffracting Obstable is an Infinitely Conducting Circular Cylinder

In [4] Franz has treated the cylindric diffraction problem by means of watsons transformation. It is easy to extend his results to the case of an inhomogenous incident wave. The two cases of polarisation of an incident electromagnetic wave are equivalent to the two boundary value problems of scalar waves x = 0 and x = 0. If the incident wave is transversally attenuated, the situation of the poles defining creeping waves is not influenced. We generalise the studies of Franz in [4] and these ones of Hönl-Maue-Westpfahl [3].

Let V_S be the value of the index of cylinder-functions giving rise to the residue (creeping wave) in (Fig.13,14). V_S is situated on the line, starting from \mathcal{L}_{o}

V_{real} is somewhat greater than kT_0 , V_{inc} small.

(V_{inc}) . Denotes f the angle of the azimuth (Fig.15) the shadow is situated on the cylinder in $T_2 < f < 3T_2$. The creeping wave is to be studied in the shadow zone alone. The incident wave may run in the -x-direction and be attenuated in the -y direction.

u=e-jwt e-jkxcosha + ky sinha

u=e-jwt e-jkrcosha + jsinp sinha)

=e-jwt e-jkrcos(q-ja)

=e-jwt e-jkrcos(q-ja)

Then [3] [4] the creeping wave is ([3] [4]) given by: $\frac{\cos V_s(\tau-\varphi)}{\sin V_s \pi} e^{-\frac{i}{\hbar}V_s \pi I_2}$

if the incident wave is homogenous and

if the incident wave is inhomogenous.

We reflect on the difference between (86) and (85). Refering to Fig. 19 we wright: ($\sqrt{17}$ p. 118)

where only take the first $\frac{1}{3}$ (88) $\frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} \cos \frac{1}{2}$

If a = 0 (incident wave homogenous): (90) cooks (7-4) = + (3/5/2 - j eis (2/7-4) + (3/5/4-4/2)

With (87) we have after some calcu jν₂(3±-4) - ν₁(3π-4) + e^{jν₂(4-4/₂)} - ν₁(4-4/₂)

1 - e⁻²jν₂τ e²ν₁τ

The first term in the numerator represents a wave going around the cylinder coming from / in the sens of negative φ , the second term gives a wave coming from $\varphi = \pi/2$, going in the sens of positive φ around the cylinder. These waves are exponentially attenuated with - 1/9.

If $a \neq 0$ we wish to see the distortion of (91): From (88) we see, that

$$_{(92)} \quad V_{1} > kr_{0}$$

The wave going in the sense of negative φ is in comparision with (92)

- a) displaced in phase by e-ka
 b) multiplied in amplitude by e

Va is somewhat greater than ka.

is small. (kr, is supposed to be a great quantity).

The creeping wave enters the shady zone with an amplitude which the incident wave nearly has on the limit of shadow.

An analogous affirmation is Valid for the second wave surrounding the cylinder in the sens of increasing

2.2.3.2 The Distortion of the Creeping Wave in the Spherical Case

In the chapter about the diffraction of the inhomogenous wave by the sphere we had treated the vector-problem. In what follows we intend to treat the scalar problem with the boundary condition u = 0 on the surface of the sphere. In the vector-problem the function $P_n^*(\omega_f)$ arised. The scalar problem involves $P_n^*(\omega_f)$. The irregularities are given by

$$(95) \qquad \text{Cos}_f = \pm 1.$$

and we have to find their situation on the sphere for the defined by

That $\omega_{\mathcal{F}}$ takes the value \pm 1, the imaginary part has to disappear:

(97)
$$\cos \varphi = 0$$
, $\varphi = \pm \frac{\pi}{2}$, ar $\varphi = \frac{3\pi}{2}$
(.sinh $\alpha \neq 0$, $\sin \vartheta \neq 0$ because $\sin \vartheta = 0$ involves $\cos \varphi = \cos \vartheta \cosh \alpha > 1$)

(98)
$$\cos \vartheta = \frac{1}{\cosh \alpha}$$

On the meridians

$$\varphi = \frac{\pi}{2}, \quad \varphi = \frac{3\pi}{2}, \quad \text{in and} = \frac{1}{\text{asha}}$$

we have an irregulary point of the function 25

In the illuminated zone there exists on the meridians $Q = \frac{3\pi}{3}$, $Q = \frac{3\pi}{2}$ the irregularity in $N = \frac{3\pi}{2}$ in the shady zone in $N = \frac{3\pi}{2} = \frac{3\pi}{2}$ where $N = \frac{3\pi}{2} = \frac{3\pi}{2}$ we are not interested in the constant coefficient $(-1)^5$.

From Watson [11] we take the asymptotic expression of

$$\frac{P_{\nu}(ash)}{(99)} P_{\nu}(ash) \sim \frac{e^{-\frac{1}{2}/2}}{(\nu \bar{x})^{\frac{1}{2}}(1-\bar{e}^{-\frac{3}{2}})^{\frac{1}{2}}} \left\{ e^{(\nu + \frac{1}{2})} + e^{-\frac{1}{2}(\nu + \frac{1}{2})} \right\}$$

Evidently:

we write

(101)
$$\zeta = \xi + i \gamma = \mp i \xi$$
 and

(102)
$$V_s = V + 1/3$$

We define x, y by:

and we have to look for the relation between ξ , and ψ , on the surface of the sphere. We have

and with (103)

(106) is to be resolved with respect to con and sach sexpressed by x,y. Then we can evaluate s, h as functions of the solution of this systems runs in a similar way as the solution of (42) (43) in 2.3.3.1. We find

(108)
$$\cosh^2 \xi = \frac{1}{2} \left(1 + x^2 + y^2 + \sqrt{1 + x^2 + y^2} - 4x^2 \right)$$

= $1 + \sinh^2 \xi$

It is easy to find x,y as functions of 2, 6, a, then any and and a are easily found by numerical calculus.

We are looking for curves gramm, recomfor a given a in the \$, a plane.

In the following numerical example we have chosen $\alpha = 1$. The mapping of $\beta = -c$ urves on the $\beta = 1$ plane runs as follows:

The mapping by means of Co, Cost functions is well known. We restrict ourselves to the domain in B and forming the shadow zone:

Then:

(110)
$$\cos \vartheta \leq 0$$
, $\sin \vartheta \geq 0$ and $-T \leq \varphi \leq -\frac{T}{2}$ $y \geq 0$
(111)
$$\begin{cases}
-T \leq \varphi \leq -\frac{T}{2} & \varphi \leq 0 \\
-\frac{T}{2} \leq \varphi \leq T & \varphi \geq 0
\end{cases}$$

Tables for any sing are published [15].

(112) x = and asha, y = simh, sinh a cosp

For a fixed value of a, a meridian - dycle q = count is mapped in the x,y plane on an ellipse with the half-axis

(115)
$$\cosh a$$
, $\sinh a \cdot \ker \beta$, for $\varphi = \frac{0}{\pi}$, $|\cos \gamma| = 1$;

the ellipses are enclosed in the ellipse

(116)
$$\frac{x^2}{a s h^2 a} + \frac{y^2}{k i u h^2 a} = 1.$$

In the x,y plane $X = \frac{1}{1}$, Y = 0 are branche points (Fig. 16). The strightlines Y = 0, M > 1 are cuts.

The X = 1 plane is given in Fig. 17. Corresponding lines in Fig. 16 and Fig. 17 are drawn in the same manner (xxx $\frac{1}{1}$ --- and so on). In the X = 1 plane we are interested in the domaines corresponding X = 1 for X = 1 in a pole of the sphere where all lines Y = 1 for X = 1 in a pole of the sphere where all lines Y = 1 for X = 1 in the X = 1 plane this point appears as a stright line, X = 1 plane this point appears as a stright line, X = 1 plane of the ellipse in Fig. 16 corresponds to X = 1 is the transition line between the two quadrants; the upper one corresponds to X = 1. The domains X = 1 for X = 1 and X = 1 and X = 1.

are situated in the lower sheets of the Rimannian surface. They are connected along the cut $\mathcal{N} \leftarrow -1$. Some curves corresponding to the ellipses $\varphi = \mathsf{const}$ are evaluated numerically and we have drawn in the ξ , η plane some curves $\mathcal{N} \leftarrow \mathsf{const}$, $\varphi = \mathsf{const}$. The equations in the analytic form come from (105) (106). Curves $\mathcal{N} = \mathsf{const}$ are:

curves
$$\varphi = conl$$
 are

(118) $\frac{\cosh^2 \xi \cos \eta}{\cosh^2 a} + \frac{\sinh^2 \xi \sin^2 \eta}{\sinh^2 a \cos^2 \varphi} = 1$

In Fig. 22 we have drawn evaluated curves (Q=1). The branch point is Q=-2, $\xi=0$.

Now we wish to see the residue representing the creeping wave in the case of an incident inhomogenous wave. According to Sommerfeld $\sqrt{177}$ p. 969 the residue for $2 \rightarrow 0$ is:

(119)
$$u_{res} = \frac{P_{v_3-l_2}(\cos(\tau-v_3))}{\cos \tau v_3}$$
 where

V₅ - V₂₀₆ (given in (87) (88) (89)

By means of (99) we find:

from what follows:

 $(-i\eta$ is chosen that the field decreases with increasing θ , π - γ)

(122) e-kit 4 e+kit (k & very great)

and (121) is to be written in such a manner that for $4 \rightarrow 0$ the values known from 17 become evident. Then we have

Now for
$$\varphi = 0$$
 (see Fig. 20)
$$(124) \quad e^{\pm V_{s_1}} \xi \rightarrow e^{\pm V_{s_n}} R_0$$

There exist beginning with $N_{-}N_{2}$ attenuated waves entering the schady zone in a similar way as in the cylindrical case; on $N_{-}N_{2}$ the amplitude is somewhat greater than the value of the incident field because $N_{2} > N_{2}$. The field about the singularity and on the cuts may not be treated here.

- 2.3. The General Geometrical Optics of Transversally
 Attenuated Waves: Reflection and Transmissions of
 Such a Wave on Plane Surfaces of Any Dielectric
 Hedia with Arbitrary Angles of Incidence
- 2:3.1 Motivating of This Theory as a Limit in Diffraction Theory (Fig. 18)

As Franz [4] has shown in the Limit the diffraction problem on a smooth curved surface on the illuminated side is resolved by the \$60 m of creeping waves, coming from the shady zone surrounding the body several time with exponential attenuation and the geometrical optics. i.e. the reflection of the incident wave on the tangential plane of the body in every point. The incident wave in our theory is a transversally attenuated one. The "ray" in our definition is a tangent on the limit between the illuminated and the shady zone. In the domain of the illuminated part the raysmake: every angle between and the with a tangent of the body.

The solution of 2.1, 20%, is directly the solution of geometrical optics for an infinitely conducting body. However it seems to be of some interest to know the reflection and transmission-conditions on plane surfaces, representing a continuation of Fresnels theorie to complex angles. In appendix II we have explaned the generation of our type of wave by medium stratification, i.e. in the case of total reflection.

2.3.2 Reflection of a Transversally Attenuated Electric Wave by a Flane Surface of Another Medium, Situated Parallel to the wave Normales

The wave whose generation in the plane f=0 (Fig. 19.20) is described in appendix II is now supposed as existing in $-\infty < f < f$, in a medium of f=0, i.e. the wave is continued into the space f=0. i.e. we consider only med. 2 and 3, med. 1 is now supposed as not more existent, transition between 2 and 3 in f=0. Let this wave be reflected by another medium whose surface is a plane f=0. This would represent the case of grazing incidence following our new definition of the direction of incidence. Formally it represents grazing incidence for f=0, i.e. in the limiting case where our wave is still homogenous. For f=0 we study this reflection for two conditions

- a) in # > y the wave is inhomogenous
- b) in y > y, the wave is homogenous.

2.3.2.1 Reflection of a Transversally Attenuated i.e.

Inhomogenous Wave by a Plane Surface Parallel to
the Wave Normal when the Wave Transmitted also
Inhomogenous

For both polarisations we write down the incident wave ($y \leftarrow y$,).

$$E_{xi} = \exp\left[-jk_{z}\cosh v_{z} - k_{y}\sinh v_{z}\right] H_{xi} = \exp\left[-jk_{z}\cosh v_{z} - k_{y}\sinh v_{z}\right]$$

$$H_{yi} = -\frac{1}{2}\alpha_{y} \cosh v_{z} E_{xi}$$

$$E_{yi} = 2^{\alpha_{y}} \cosh v_{z} H_{xi}$$

$$E_{yi} = 2^{\alpha_{y}} \sinh v_{z} H_{xi}$$

$$E_{zi} = j2^{\alpha_{y}} \sinh v_{z} H_{xi}$$

$$E_{zi} = j2^{\alpha_{y}} \sinh v_{z} H_{xi}$$

It is evident that the y-component of Poyntings vector is imaginary. (20) wave Impedance of Med. 2)

By inverting the signe of y in the exponent and joining the reflection coefficients n_e , n_h we get the reflection to the reflection coefficients n_e , n_h we get the reflection to the reflection to the reflection coefficients n_e , n_h we get the reflection to the reflec

$$E_{xe} = n_e c_b p \left[\frac{1}{3} k_1 + k_2 + k_3 + k_4 + k_4$$

Now we write down the transmitted wave entering the third medium:

Transmitted wave:

$$E_{xt}=t_{e}\exp[-jk_{s}z\cosh\nu_{s} -k_{s}y\sinh\nu_{s}]$$

$$-k_{s}y\sinh\nu_{s}]$$

$$-k_{s}y\sinh\nu_{s}]$$

$$E_{yt}=t_{h}e^{2}\cos^{2}(\cos^{$$

We wish to calculate the coefficients of transmission and reflection te, th, he, hh between the two media 2 and 3. The transition conditions identically valuable in z are:

$$E_{xt} = E_{xi} + E_{xx}$$

$$H_{xt} = H_{xi} + H_{xx}$$

$$H_{zt} = H_{xi} + H_{zx}$$

$$E_{zt} = E_{zi} + E_{zx}$$

$$H_{zt} = H_{zi} + H_{zx}$$

The law of refraction due toe the identical valuability of (4) in z will be studied in some detail later on. In our present case it runs as follows: (see also App. II, eq. (11)(12) \div (20)

(5)
$$k_2 \cosh v_2 = k_3 \cosh v_3$$
, $\cosh v_3 = \frac{k_2}{k_2} \cosh v_2$

If

(6) Cosh
$$v_3 > 1$$
 $k_3 \leq k_2 \cosh v_2$

i.e. the transmitted wave is also inhomogenous, transversally attenuated, then:

The transition conditions in $y = y_0$ are (the common factor $\exp \left[-jk_1 + \cosh v_1\right] = \exp \left[-jk_3 + \cosh v_3\right]$ is omitted:

(8)
$$t_{e} = \frac{2 \sinh v_{z} / z^{(2)}}{\exp[y_{o}(k_{z} \sinh v_{z} - k_{z} \sinh v_{z})] (\sinh v_{z} + \sinh v_{z})}}{\exp[y_{o}(k_{z} \sinh v_{z} - k_{z} \sinh v_{z} - \frac{k \sinh v_{z}}{2^{(2)}})}$$

(9) $t_{e} = \frac{\exp[-2k_{z}y_{o} k \sinh v_{z}] (\frac{k \sinh v_{z}}{2^{(2)}} - \frac{k \sinh v_{z}}{2^{(3)}})}{(\frac{k \sinh v_{z}}{2^{(2)}} + \frac{k \sinh v_{z}}{2^{(3)}})}$

(10) $t_{h} = \frac{2 z^{(2)} \sinh v_{z}}{\exp[y_{o}(k_{z} \sinh v_{z} - k_{z} \sinh v_{z})] (z^{2} \sinh v_{z} + z^{2} \sinh v_{z})}{(z^{2} \sinh v_{z} - z^{2} \sinh v_{z})}$

(11) $t_{h} = \frac{\exp[-2k_{z}y_{o} \sinh v_{z}] (z^{2} \sinh v_{z} - z^{2} \sinh v_{z})}{(z^{2} \sinh v_{z} + z^{2} \sinh v_{z})}$

From these expressions we find:

 $\mathcal{U}_{2}=0$ the transversal attenuation is \mathcal{O} , then our incident wave is a homogenous one, going in the -z-direction, a plane wave with grazing incidence: Then

$$(12) \quad \mathcal{R}_{e} = \mathcal{R}_{h} = -1$$

in accordance with the well known theory of homogenous waves.

A zero in R_{c} and R_{h} is given if and only if (12a) $E_{2} = E_{3}$

This result turns out from a discussion of (8) (11) by expressing $Z^{(i)}$, R_i , $Cohv_i$, $Cinhv_i$ by means of their defining equations.

2.3.2.2 The Reflection of The Incident Inhomogenous Wave if The Transmitted Wave is Homogenous

Let arise a homogenous wave for y > y. (see also App.II eq. (11) (20) and the discussion of the generalized law of refraction later on) consequently

(13)
$$k_3 > k_2 \cosh v_2 \sim k_3 \cosh v_3 = k_2 \cosh v_2$$

The mathematical expressions for the incident and the reflected waves are again (1) (2), the transmitted wave is now:

$$E_{xt} = t_{e} \exp \left[-j k_{3} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \exp \left[-j k_{3} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \exp \left[-j k_{3} z \cos^{3} \frac{1}{3} \right]$$

$$E_{yt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{yt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

$$E_{xt} = t_{e} \sum_{j=1}^{2} a_{j} x_{j}^{2} \exp \left[-j k_{j} z \cos^{3} \frac{1}{3} \right]$$

The boundary conditions are also given by (4). Then we find by a trivial calculus:

(15)
$$t_e = \frac{2j \sin h v_2 / z^{(2)}}{\exp[j k_3 y_0 \cos y_3 + b_2 y_0 \sin h v_2] (j \frac{\sin h v_2}{z^{(2)}} + \frac{\sin v_3}{z^{(3)}})}$$

(16)
$$R_{e} = \frac{\exp[-2k_{1}y_{1} Rink v_{1}](j Rink v_{1/2N} - Rin v_{3}/2^{\alpha_{1}})}{(j \frac{Rink v_{1}}{Z^{\alpha_{1}}} + Rin v_{3})}$$

(17) $t_{h} = \frac{2j Z^{(2)} Rink v_{2}}{\exp[jk_{1}y_{2} sinv_{3} + k_{1}y_{2} Rink v_{2}](j Z^{\alpha_{1}}) sink v_{2} + Z^{\alpha_{1}} rinv_{3}}}{\exp[-2k_{1}y_{2} Rink v_{1}][j Z^{\alpha_{1}}) sink v_{2} - Z^{\alpha_{1}} rinv_{3}]}$

(18) $R_{h} = \frac{\exp[-2k_{1}y_{2} Rink v_{1}][j Z^{\alpha_{1}}) sink v_{2} + Z^{\alpha_{1}} rinv_{3}]}{[j Z^{\alpha_{1}}) sink v_{2} + Z^{\alpha_{1}}) sink v_{3}}$

2.3.2.3 The Field of Poynting Vectors in The Ledia 2 and 3

We wish to know the field of Foynting vectors in the neighbourhood of the plane separating the media 2 and 3 in the following cases

- 1) there is no reflection, 3rd medium identical with the second one and
- 2) reflection in such a manner, that in the third medium a homogenous wave is transmitted.
- 1) We have seen in (1) (2) for both polarisations, that the components of \vec{E} and \vec{H} lying in the P-plane are out of phase by an angle \vec{H}_2 ; the y-component of loynting vector is imaginary and in the y-direction no energy is transmitted in the mean.
- 2) If in the third medium the wave becomes homogenous, the phase-shifting is distorted. We restrict ourselves to the case $E_{X_1}H_2$, H_2 . Let arrive in $y_0=0$ an inhomogenous wave being reflected in $y_0=0$, let be transmitted a homogenous wave and we are looking for the y-component of Poyntings vector. (Now transition in $y_0=0$, being incident the innomogenous wave continued to $y_0=0$). With (1) (2) (14)

(15) (16) we get:

$$E_{X} = \exp \left[-j k_{z} z \cosh v_{z} - k_{z} y \sinh v_{z} \right]$$
(19)
$$+ \frac{j z^{2} \sinh u_{z} - z^{2} \sinh v_{z}}{j z^{2} \sinh v_{z} + z^{2} \sinh v_{z}} \exp \left[-j k_{z} \cosh v_{z} + k_{z} y \sinh v_{z} \right]$$

$$H_{z} = -j \frac{\sinh v_{z}}{2^{(2)}} \exp \left[-j k_{z} \cosh v_{z} + k_{y} \sinh v_{y}\right]$$

$$(20) + j \frac{\sinh v_{z}}{2^{(2)}} \frac{j 2^{(3)} \sinh v_{z} - z^{(3)} \sinh v_{z}}{j 2^{(3)} \sinh v_{z} + z^{(3)} \sinh v_{z}} \times \exp \left[-j k_{z} \cosh v_{z} + k_{z} y \sinh v_{z}\right]$$

for 4 4 0 in the med. Ez

Here we put:

(21)
$$\frac{Z^{2}\sin v_{3}-jZ^{3}\sin v_{2}}{Z^{2}\sin v_{3}+jZ^{3}\sin v_{2}} = e^{-2j\varphi_{1}} \text{ with}$$
(22)
$$\varphi_{1}-tg^{-1}\frac{Z^{3}\sin v_{2}}{Z^{2}\sin v_{3}} \qquad (\text{quotient of two conj.compl. numbers})$$

and we take into account, that $4 = \frac{\pi}{4}$ is only possible if 0 = 0 or sink $0 \to \infty$, $0 \to 0$ is only possible for v_2 , - 0

With exception of these cases following (19) (20)
$$\frac{E_{x}}{H_{z}} = \frac{j \stackrel{?}{Z}^{(2)}}{\text{Rink } v_{z}} \frac{e^{-2k_{z}y} \sinh v_{z}}{e^{-2k_{z}y} \sinh v_{z}} \frac{e^{-2k_{z}y}}{e^{-2k_{z}y} \sinh v_{z}} \frac{e^{-2k_{z}y}}{e^{-2k_{z}y}} \frac{420}{e^{-2k_{z}y}} \frac{420}{e^{-2k_{z}y}}$$

is certainly not imaginary, so that a real component of Poyntings vector arises. In Fig. 24the vectors 2 and 5 are not in phase. The wave transmitted into y>y gets its energy in this manner.

2.3.3 Reflection of Transversally Attenuated Waves if the Angle of Incidence is Anyone

We remember that the direction of incidence in our treatise is given by the direction of the wave normales or of the real part of Pyntings vector. The plane, on which the reflection arises was parallel to this vector, normal to χ , parallel to the plane x, z. Now we rotate the normale of the separating plane and this plane itself by an angle β . The χ -axis is taken as the axis of this rotation and is conserved. (Fig. 22) The transformation of coordinates is effectuated in the

The transformation of coordinates is effectuated in the y-z-plane from y,z coordinates to ξ η coordinates:

$$y = \eta \cos \beta + \int \sin \beta$$

 $z = -\eta \sin \beta + \int \cos \beta$

$$y = y \cos \beta - 2 \sin \beta$$

$$y = y \sin \beta + 2 \cos \beta$$

Because x is not influenced by this transformation E_X and H_X of the incident wave are to be retained and the transformations concerns only H_Y , H_Z or E_Y , E_Z resp.

Now Maxwells equations are invariant against rotations of the system of coordinates.

Then we have: Incident wave $E_{X} = \exp\left[-jk_{z}Z\cosh v_{z} - k_{z}y \sinh v_{z}\right]$ $= \exp\left[-jk_{z}S\cosh(\beta+jv_{z}) + jk_{z}\eta \sinh(\beta+jv_{z})\right]$

after a simple calculus by means of (24) (25). We see, that as in the real case β is directly added to the existing angle of incidence βv_2 being complex.

From Maxwells equations in X, 2, it follows immediately for the both cases of polarisation:

Hr=
$$\frac{1}{j\omega_{\mu\nu}}\frac{\partial E_{x}}{\partial S}$$
 $E_{\gamma} = -\frac{1}{j\omega_{\xi\xi}}\frac{\partial H_{x}}{\partial S}$
 $E_{\xi} = \frac{1}{j\omega_{\xi\xi}}\frac{\partial H_{x}}{\partial \gamma}$
 $E_{\xi} = \frac{1}{j\omega_{\xi\xi}}\frac{\partial H_{x}}{\partial \gamma}$

This furnishes with (1) (2) (26)

This furnishes with (1) (2) (26)

$$H_{2} = -\frac{1}{2}a_{1} \cos(\beta + j v_{1}) \times \\
\times \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_{1} \cos(\beta + j v_{1}) \times \\
+ jk_{2} \approx \exp[-jk_$$

Writing down the reflected wave we are anticipating the law that angle of incidence = angle of reflection, verified automatically by analytic continuation from the Fresnels real case.

$$H_{2n}^{29} = \frac{r_{e}}{2^{(2)}} \cos(\beta + ju_{e}) \exp[\frac{1}{2} E_{n}^{2} u_{e}^{2} \cos(\beta + ju_{e}) \exp[\frac{1}{2} u_{e}^{2} \cos(\beta + ju_{e})$$

The transmitted wave is

$$E_{xt} = t_e \exp\left[-jk_3\right] \cos(\gamma + j u_3)$$

$$+ jk_3 \eta \sin(\gamma + j u_3)$$

$$+ jk$$

(= angle corrup in the med. 3)

The boundary conditions to be fullfilled are (identically in ()

(31)

$$a) E_{xi} + E_{xn} = E_{xt} | c) H_{xi} + H_{xn} = H_{xt}$$

 (31)
 $E_{xi} + H_{xn} = H_{xt} | c) H_{xi} + H_{xn} = E_{xt}$

These equations are the following ones, if they are

written explicitely:

a) exp[-jk] $as(\beta+ju_1) + r_e exp[-jk]$ $au(\beta+ju_2) - t_e exp[-jk]$ $au(\beta+ju_1) + r_e exp[-jk]$ $au(\beta+ju_2) exp[-jk]$ $au(\beta+ju_2) + r_e exp[-jk]$ $au(\beta+ju_2) exp[-jk]$ $au(\beta+ju_2) - t_e \frac{eiu(\beta+ju_2)}{2^{(3)}} exp[-jk]$ $au(\beta+ju_2)$

(32)

C) $\exp [-\frac{i}{\hbar} \frac{1}{\hbar} \exp[-\frac{i}{\hbar} \exp[-\frac{i}{\hbar} \frac{1}{\hbar} \exp[-\frac{i}{\hbar} \exp[-\frac{i}{\hbar} \frac{1}{\hbar} \exp[-\frac{i}{\hbar} \exp[-\frac{i}$

2.3.3.1 The Generalized Law of Refration.

For fullfilling (31) (32) identically in the exponential factors must be the sames on the left and the right hand of eq. (32) (33). This leads us automatically to an analytic continuation of Snell's law of refraction in the domain of complex angles of direction and it seems to be worth while to study this law. Thus we have

(33)
$$k_2 cos(\beta + jv_2) = k_3 cos(\gamma + jv_3)$$

We write (33) in the form:

(35)
$$k_2 \cos \beta \cosh v_2 = k_3 \cos \beta \cosh v_3$$

These equations are to be resolved with resp. to $\mathcal{V}_1 \mathcal{V}_3$ if \mathcal{A}_2 and \mathcal{V}_2 are given. We wish to do it in a manner being clear from a physical point of view. The equations contain the well known law of onellins if \mathcal{V}_2 and \mathcal{V}_3 are zero: then

$$(37) \quad k_2 \cos \beta = k_3 \cos \beta$$

the normal case, valuable as long as this equation is fullfilled by real values of β and β . But if β , β so that β a solution with real values of β is not more possible and we have to take the general form (35) (36).

If a homogenous wave is incident (β real, 2 = 0) we find in this case:

$$k_{1} \cos \beta = k_{3} \cos \mu \cosh \nu_{3}$$
(39)
 $C = k_{3} \sin \mu \sinh \nu_{3}$

As v_3 cannot disappear ($v_2 cos \beta = v_3 cos \mu$ is not possible with real μ) we have:

(40)
$$\text{Ain } y = 0$$
 and
(41) $\text{Ash } y = \frac{k_1}{k_3} \text{Ash } > 1$

This is the normal case of total reflection. Now we turn ourselves to the question what will happen, if V2 + 0 For a given 3 we have to find & and 3: instead of (35) (36) we write:

(42)
$$Coop cooh v_3 = \frac{k_2}{R_3} coop cooh v_2$$
(43) $Ring Rinh v_3 = \frac{k_2}{R_3} Rinh p Rinh v_2$

(44) $\frac{k_2}{R_3}$ cosposh $v_2 = A > 0$, $\frac{k_2}{R_3}$ sin β pinh $v_2 = B > 0$

(45) Corpach 23 + sing sinh 23 = A2+B2

(45)
$$\cos y \cosh v_3 - \sin^2 y \sinh v_3 = A^2 - B^2$$
(46) $\cos y \cosh v_3 - \sin^2 y \sinh v_3 = A^2 - B^2$

From the well known relations

and (45) (46) we see:

and (45) (46) we see:

$$(48) \cos^2 y + a \sin^2 y = 1 + A^2 + B^2$$

We write these equations in such a manner that the numbers and Goh 13 21 arise as unknown quantities. This will simplify the discussion later on.

Choosing the symbols
$$(50) \quad \text{cos} \quad y = \xi, \quad \text{cosh} \quad y = \gamma$$

we have to notice that the solutions of (48) (49) are always positive; we have then:

(51)
$$\xi + \eta = A^2 + B^2 + 1$$

(52)
$$2\xi\eta - (\xi + \eta) = A^2 - B^2 - 1$$

Putting
(53)
$$A^2 + B^2 + 1 = \alpha$$
, $A^2 - B^2 - 1 = \beta$,
we have

$$\xi + \gamma = \alpha$$

consequently

(56)
$$(\xi + \eta)^2 = \alpha^2$$

(58)
$$\xi - \gamma = - |\sqrt{d^2 - 2\delta^2}|$$

i.e. the neg. root because $\gamma > \xi$ Then we have:

(59)
$$\xi = \frac{1}{2}(\alpha - |\sqrt{(\alpha^2 - 2\delta)}|) > 0$$

(60)
$$\eta = \frac{1}{2} \left(\alpha + \left[\sqrt{(\alpha^2 - 2\delta)^2} \right] > 0$$

It is easy to see, that & 228>0, the solutions of (42) (43) are now:

(61)
$$\cos^2 y = \frac{1}{2} \left(A^2 + B^2 + 1 - \sqrt{(A^2 + B^2 + 1)^2 - 4A^2} \right)$$

(62) $\cosh^2 v_3 = \frac{1}{2} \left(A^2 + B^2 + 1 + \sqrt{(A^2 + B^2 + 1)^2 - 4A^2} \right)$

Explitely written, these solutions are:

$$(63) - \sqrt{\frac{k_2}{k_3}^2 \cos^2 3 \cosh v_2 + \frac{k_2}{k_3}^2 \sinh^2 3 \sinh v_3 + 1}$$

$$+ \sqrt{\frac{k_2}{k_3}^2 \cos^2 3 \cosh v_2 + \frac{k_2}{k_3}^2 \sinh^2 2 + 1 + \sqrt{\frac{k_2}{k_3}^2 \sinh^2 3 \sinh^2 2}}$$

$$+ \sqrt{-2(\frac{k_2}{k_3})^2 \cos^2 3 \cosh v_2 + 2(\frac{k_2}{k_3})^2 \cos^2 3 \cosh^2 v_3 \sinh^2 v_2}$$

Where - corresponds to ash V.

Thus we have derived the general relation between $\beta_1 v_2$ and $\beta_1 v_3$. For controlling we put $v_2 = 0$. Then it is evident that:

(64)
$$\cos^2 y = 1$$
, $\cosh^2 v_3 = \left(\frac{k_1}{k_3}\right)^2 \cos^2 \beta$

That is to say that we have treated the case:

$$(65)$$
 $\left(\frac{k_{1}}{k_{3}}\right)^{2} > \frac{1}{\omega^{2}\beta}$, See eq. (38, ÷41)

The result is:

If in the medium 2 the incident wave is inhomogenous, if for $\beta = 0$ in the medium 3 the wave is inhomogenous, the wave in medium 3 cannot become homogenous by variation of β , i.e. by variation of the direction of incidence.

This is the result of an analytic continuation of bnell's law into the domain of complex angles.

2.3.3.2 The Calculus of the Coefficients of Reflection and Transmission

By fullfilling the law of refraction in equation (31) (32) the exponential factors cancel out and a simple calculus furnishes:

(68)
$$Re = \frac{Z^{(3)} \text{pin}(\beta+j\nu_2) - Z^{(2)} \text{pin}(p+j\nu_3)}{Z^{(3)} \text{pin}(\beta+j\nu_2) + Z^{(2)} \text{pin}(p+j\nu_3)}$$

(70)
$$r_{h} = \frac{Z^{(2)} \sin(\beta + j v_{2}) - Z^{(3)} \sin(\beta + j v_{3})}{Z^{(2)} \sin(\beta + j v_{1}) + Z^{(3)} \sin(\beta + j v_{3})}$$

(71)
$$t_h = \frac{2 Z^{(2)} \sin(\beta + j v_1)}{Z^{(2)} \sin(\beta + j v_2) + 2^{(3)} \sin(\beta + j v_3)}$$

This represents directly the analytic continuation of

Fresnel's laws into the domain of complex angles; if the plane of reflection is rotated by some angle \mathcal{B} , \mathcal{B} and \mathcal{F} arise as to be added to the imaginary angles v_{2} and v_{3} .

Reflection by an infintely conducting plane furnishes:

$$(72)$$
 $n = -1$ $te = 0$.

$$\frac{(72)}{(73)} R_h = +1 \qquad t_h = 0.$$

supplement

The Reaction of a Third Layer upon the Total Reflection between Two Redia (Fig. 23)

We shall treat the following problem:

Let exist three layers of dielectric material: The lowest one with $\mathcal{E} = \mathcal{E}_1$, the second one with $\mathcal{E} = \mathcal{E}_2 < \mathcal{E}_1$ the upper one with $\mathcal{E} = \mathcal{E}_3 = \mathcal{E}_1$. The separating plane between \mathcal{E}_1 , and \mathcal{E}_2 may be placed in z=0, the plane between \mathcal{E}_2 and \mathcal{E}_3 in z=h.

Let exist in the medium 1 an incident electromagnetic wave with $E = E_{x}$ perpendicular the plane zy, the plane of incidence (E_{x}, H_{y}, H_{z}) . Let be chosen exp[-jet] as a time function. The angle of incidence may have a value such, that in absence of medium 3 total reflection arises. Now we wish to calculate the resultant reflection in the plane z=0 and we shall see that the total reflection is destroyed by the third medium.

The effect, that in this case in the third layer a homogenous wave is entering, is well known indeed, but until now, the author has never found a thorough treatment in the litterature and it seems to be worth-while to give it in the scope of this report as a supplement.

For writing the formulas we shall use the following symbols:

with \mathcal{E}_{i} (i = 1,2,3) we have the wave numbers

(1) $\mathcal{E}_{i} = \mathcal{W} \bigvee \mathcal{E}_{i} \mathcal{E}_{i} \mathcal{M}_{i} \mathcal{M}_{i}$ $\mathcal{M}_{i} = 1$

= angle of incidence in the medium i.

(3)
$$Z^{(i)} = \sqrt{\frac{k_0 k_i}{\xi_i \xi_i}} - \sqrt{\frac{k_0}{\xi_i \xi_i}}$$

wave impedance of medium i

Then in the medium 1 we have an incident and a reflected wave, in the medium 2 a transmitted and a reflected wave, in the medium 3 a transmitted wave only.

are the coefficients of reflection and transmission in the medium 1,2,3 respectively. Let be 1 the amplitude of the incident E in the medium 1. Now we have in the first medium this incident wave:

(4)
$$E_{xi}^{a} = \exp[jc_{2}^{(a)}z + jc_{1}^{(a)}y]$$

(5)
$$H_{gi}^{(n)} = \frac{\cos t_i}{2^{(n)}} \exp[j \zeta_i^{(n)} z + j \zeta_i^{(n)} y]$$

The wave reflected into the first medium is:

(8)
$$H_{yx}^{(i)} = -\frac{1}{2} \frac{(i)}{2} \exp[-j \zeta_{2}^{(i)} z + j \zeta_{1}^{(i)} y]$$

Here we have already used the well known law, that the angle of incidence is equal to the reflection angle.

In the second medium we have/transmitted wave

(11)
$$H_{yt} = \frac{t^n \cos t}{2^{(n)}} \exp[j\hat{q}^n + j\hat{q}^n y]$$

and the reflected wave:

and the reflected wave:
$$(13) E_{xx}^{(2)} = E^{(2)} \exp\left[-jc_{x}^{(2)}z + jc_{x}^{(2)}y\right]$$

(14)
$$H_{yx}^{(2)} = -\frac{\int_{0}^{2} c_{x} f_{x} \exp[-jc_{x}^{(2)} + jG'y]}{2^{(2)}}$$

(15)
$$H_{\partial 1}^{(2)} = -\frac{r^2 \rho_{in} f_1}{2^{(2)}} \exp[-jc_1^{(2)}z + jc_2^{(2)}y]$$

In the third medium we have only a transmitted wave:

(17)
$$H_{yt}^{(3)} = \frac{t^{(3)} cop_3}{2^{(3)}} exp[jc_2^{(3)} + jc_3^{(3)}]$$

(18)
$$H_{8t}^{(3)} = -\frac{f^3|\sin f_3|\exp\left[jc_2^{(3)}z + jc_3^{(3)}\right]}{2^{(3)}}$$

The transition-conditions are z=0: transition between

medium 1 and 2

(19)
$$E_{xi}^{(n)} + E_{xx} - E_{xt}^{(n)} + E_{xx}^{(n)}$$

(20) $H_{yt}^{(n)} + H_{yt}^{(n)} = H_{yt} + H_{yx}^{(n)}$
 $\begin{cases}
2 = 0 \\
4 = 0
\end{cases}$

z = h; transition between medium 2 and 3

z =
$$\mathbf{A}$$
: transition between medium 2 and 3
(21) $\mathbf{E}_{xt}^{(2)} + \mathbf{E}_{xt}^{(2)} = \mathbf{E}_{xt}^{(3)}$
(22) $\mathbf{H}_{yt}^{(2)} + \mathbf{H}_{yx}^{(2)} = \mathbf{H}_{yt}^{(3)}$ $\mathbf{E}_{xt}^{(3)} = \mathbf{H}_{yt}^{(3)}$

These conditions are valid identically in the variables x and y. from what follows the refraction law:

$$(23)$$
 $C_4^{(3)} = C_1^{(2)} = C_1^{(3)}$ fince:

in the case of total reflection we have:

(25)
$$\text{Aui}_{2} > 1$$
 that is to say f_{2} is complex

We had also supposed

(26)
$$E_3 = E_1$$
, $k_3 = k_4$

We leave the case $\mathcal{L}_3 > \mathcal{L}_i$ to the reader. Than we have:

Thus we find

(28)
$$C_2^{(4)} - k_1 c_0 f_1 = C_2^{(3)} - k_3 c_0 f_3$$
, $cos f_3 = cos f_4$

The equations (19) (20) (21) (22) are to be written in the form:

$$\frac{(29) 1 + x^{(4)}}{(30) \frac{\cos x}{2^{(4)}} - x^{(4)} \frac{\cos x}{2^{(4)}} = t^{(2)} + x^{(2)}}{2^{(4)}} = t^{(2)} \frac{\cos x}{2^{(4)}} = t^{(2)} \frac{\cos x}{2^{(4)}} = t^{(4)} \frac{\cos x}{2^{(4$$

In z = h we have:

$$(31) t^{\omega} \exp[j\zeta^{0}h] + \lambda^{\omega} \exp[-j\zeta^{0}h] = t^{3} \exp[j\zeta^{0}h]$$

(32)
$$t^{(3)} \frac{\partial cop_{k}}{\partial c_{k}} \exp[jc_{k}^{(3)}h] - k^{(3)} \frac{\partial c_{k}}{\partial c_{k}} \exp[jc_{k}^{(3)}h] = \frac{k^{(3)}}{2^{(3)}} \exp[jc_{k}^{(3)}h]$$

$$\frac{t^{(3)}}{(33)} = \frac{4 \cos x \cos x \cdot (1/2^{(1)}z^{(2)})}{(\exp[i(c_{x}^{(3)}-c_{x}^{(2)})h](\exp[i+\frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})} \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(2)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(2)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(2)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(2)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(2)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(2)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(2)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)})h](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})(\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)}](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)}](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}}) \\
+ \exp[i(c_{x}^{(3)}+c_{x}^{(3)}](\frac{\cos x}{2^{(3)}} - \frac{\cos x}{2^{(3)}})]$$

$$\frac{z^{(2)}}{z^{(2)}} = \frac{z^{(2)}}{z^{(2)}} \left(\frac{\cos f_{z} + \cos f_{3}}{z^{(2)}} \right) \exp \left[i \left(c_{z}^{(3)} - c_{z}^{(3)} \right) h \right] \\
= \left\{ \exp \left[i \left(c_{z}^{(3)} - c_{z}^{(3)} \right) h \right] \left(\frac{\cos f_{z}}{z^{(3)}} + \frac{\cos f_{z}}{z^{(3)}} \right) \left(\frac{\cos f_{z}}{z^{(3)}} + \frac{\cos f_{3}}{z^{(3)}} \right) \right\} \\
+ \exp \left[i \left(c_{z}^{(3)} + c_{z}^{(3)} \right) h \right] \left(\frac{\cos f_{z}}{z^{(2)}} - \frac{\cos f_{3}}{z^{(3)}} \right) \left(\frac{\cos f_{3}}{z^{(3)}} - \frac{\cos f_{3}}{z^{(3)}} \right) \right\}$$

$$\int_{(35)}^{(3)} = \frac{2 \exp \left[i \left(c_{3}^{(3)} + c_{3}^{(3)}\right)h\right] \frac{c_{4}k_{1}}{2^{k_{1}}} \left(\frac{c_{4}k_{2}}{2^{k_{1}}} - \frac{c_{4}k_{3}}{2^{k_{3}}}\right)}{\exp \left[i \left(c_{3}^{(3)} - c_{3}^{(1)}\right)h\right] \left(\frac{c_{4}k_{1}}{2^{k_{1}}} + \frac{c_{4}k_{1}}{2^{k_{1}}}\right) \left(\frac{c_{4}k_{2}}{2^{k_{1}}} + \frac{c_{4}k_{1}}{2^{k_{3}}}\right)} + \exp \left[i \left(c_{3}^{(3)} + c_{3}^{(1)}\right)h\right] \left(\frac{c_{4}k_{1}}{2^{k_{1}}} - \frac{c_{4}k_{1}}{2^{k_{1}}}\right) \left(\frac{c_{4}k_{2}}{2^{k_{1}}} - \frac{c_{4}k_{1}}{2^{k_{1}}}\right)\right)$$

$$\chi^{(1)} = \frac{\mathcal{A}_1 - \mathcal{B}_1}{\mathcal{A}_2 + \mathcal{B}_2}$$

where

(38)
$$B_1 = \exp[i(C_1^2 + C_1^2)] \left(\frac{2}{2} + \frac{4}{2} + \frac$$

$$(40) B_{2} = \text{op}[(G^{2}+G^{2})h](\frac{a_{0}k_{2}}{2^{2}} + \frac{a_{0}k_{1}}{2^{2}})(\frac{a_{0}k_{2}}{2^{2}} - \frac{a_{0}k_{2}}{2^{2}})$$

By another arrangement of terms, $\lambda^{(a)}$ can be written in the form (a-3)/(a+3) usual for reflection coefficients. In these equations we have following (27) (28)

(41)
$$C_1^{m} = C_1^{(2)} = C_1^{(3)} = E_1 \sin f_1 = E_2 \sin f_2 = E_3 \sin f_3$$

(42) $E_3 = E_4$; sinfi = $\sin f_3$, $E_4^{(3)} = E_2^{(3)}$

We are interested in the case of the total reflection in z = 0, if the third medium would be identical with the second one. Then we have

(43)
$$\text{Suif}_2 = \frac{R_1}{R_2} \text{Suif}_1 \neq 1$$

(44) $f_2 = \alpha_2 + \int \beta_2$ we foun

(46)
$$(46)$$
 (46) $(4$

Now we have:

and therefore:

(50)
$$\exp[j\zeta^{n}h] = \exp[jk_{n}\omega_{n}h] = \exp[\pm k_{n}h_{n}\omega_{n}h]$$

is to be attenuated expoentially with increasing ?; for ? must become equal to the well known coefficients of reflection and transmission between two media; thus we have

that is to say in equation (49) 2 is to be chosen as negative. For controlling our calculus we study this limiting case:

and we get:

- (52) (in an infinite heightthere does not more exist any field)
- (53) 1 from the infinity no reflected wave does returne.

$$(54) f^{2} \rightarrow \frac{2 \cos f_{1}/2^{4}}{\cos f_{1} + \cos f_{1}}$$

$$(55) R^{(4)} \rightarrow \frac{\cos f_{1} - \cot f_{2}}{2^{4}} = 42 \text{ Fresnels refl.coeff.}$$

$$\text{between medium 1,2}$$

We have found in this limit the well known values of the between two media. Energy-radiation in the mean in the z-direction is due to the components E_x and H_y . As Logical is imaginary, it follows from the equations (10) (11) (48): The phase between them is H_z , so that no energy is transmitted in the z-direction in the mean.

Here we know the mechanism of the transmission of energy to the third layer: if a reflected wave returns from it these phaserelation is disturbed, an energy is transmitted in the z-direction.

We join still some supplementary remarks: At first it seems to be of a certain interest how the resulting reflection coefficient is composed of the reflection coefficients of the media 1,2, and 2,3 alone, if the separating plain between hese media would be placed in z = 0. In (55) we have already indicated the reflection coefficient 2/2. Analogously the reflection coefficient for the media 2,3 is

(56)
$$R_{2,3} = \frac{\frac{(40)_{12}}{2^{(12)}} - \frac{(40)_{13}}{2^{(12)}}}{\frac{(40)_{13}}{2^{(12)}} + \frac{(40)_{13}}{2^{(13)}}}$$

for transition in Z = 0. Since this transition takes place in $Z = \lambda$ we have to join the coefficient $C_{ij} = C_{ij} = C_{ij$

$$\exp\left[-j\zeta_{2}h\right]\left(\frac{cop_{1}}{2^{lij}}+\frac{cop_{2}}{2^{lij}}\right)\left(\frac{cop_{2}}{2^{lij}}+\frac{aop_{3}}{2^{lij}}\right)$$

and we find:

$$(57) R^{4} = \frac{R_{12} + \exp[2jC_{2}^{2j}h]R_{23}}{1 + R_{12}R_{13} \exp[2jC_{2}^{2j}h]}$$

As $\mathcal{U}_{\mathcal{L}}[\mathcal{L}_{\mathcal{L}}]$ contains the exponential attenuation, we see, that with $\mathcal{L} \to \infty$ the reaction of the third medium disappears exponentially.

From equation (57) we wish to see that apart from the case of grazing incidence (x_1, x_2, x_2, x_3) $x^3 < 1$ on particular if $x_1 > 1$, the case of total reflection. 1,2 was given by equation (55). (49a) gave us wolf:

(49a)
$$Coop_2 = +jRinh/\beta_2/$$
 consequently

(58) $T_{12} = \frac{Cop_1 - jRinh/\beta_2}{Cop_2}$, a quotient of $\frac{Cop_1 + jRinh/\beta_2}{2op_2}$

2 conjugate complex numbers: consequently

(59)
$$N_{12} = e^{-2i\varphi}$$
 where
$$\frac{suik/B_1}{z_0} \frac{z_0}{z_0}$$

 $\mathcal{E}_3 = \mathcal{E}_1$, $\mathcal{L}_{2,1}$ is found by changing the signs 1 and 2 1+ (con and and and and 200) (61)

where ast = - junh / Bul

following (59) we put

$$\frac{\frac{\cos f_i}{2^m} - j \frac{\sin k |f_a|}{z^{\alpha_i}}}{\frac{\cos f_i}{z^m} + j \frac{\sinh |f_a|}{z^{\alpha_i}}} = e^{-\frac{2j}{p}}$$

and we find

(63)
$$\chi^{(1)} = e^{-2j\varphi} \frac{(1-\delta)}{(1+\delta)}$$

with
$$O = \exp[-2k_2h \sinh |\beta_1]$$
.

We study the absolute value of $\mathcal{N}^{(7)}$

Appendix I

Frouve that Surfaces of Constant Phase and Constant
Amplitude in a Non Dissipative Medium are Perpendicular
One to Another [1]

The wave equation

$$(1) \qquad \triangle u + R^2 n = 0$$

is resolved by separation of variables in cartesian coordinates in the form

where we put

and where we have

(4)
$$k_x^2 + k_y^2 + k_z^2 = k^2$$

consequently

and

A plane of constant phase is given by

and a plane of constant amplitude by

Following (6) these planes are perpendicular one to another.

Appendix II

The Generation of Transversally Attenuated Waves by Keans of Total Reflection in a Stratified Medium

Although some facts to be related here are known, we shall bring them because we need them for understanding of the theory to be developed.

With reference to Fig. 19 Fig. 20 we suppose two media:

In the half-space $y \le 0$ $\mathcal{E} = \mathcal{E}_1$ in the half-space y > 0 $\mathcal{E} = \mathcal{E}_2 \le \mathcal{E}_1$

Both types of plane waves to be studied are independent from x. The both types are given in the usual manner by their polarisation:

- a) E perpendicular to the plane of incidence
- b) H perpendicular to the plane of incidence

The angle of incidence is supposed to be small, so that total reflection arises. There in y>0 waves of the desired type arise, the reflection and the refraction of which by dielectric half spaces is to be studied.

At first we suppose the new separating plane parallel to the xz plane, later on we treat the case where these planes form any angle.

With exp[-j wt] as a time function we have the two types of waves defindet by

From Maxwell's equations we find immediately:

a) in the case Ex, My, Hz

In the first medium:

(4) Ex = exp[-j&2aov, +j&y xii v]

(5)
$$H_y = \frac{1}{i\omega_{\mu\nu}\mu} \frac{\partial E_x}{\partial z} = -\frac{\cos \theta}{2^n} \exp[-jk_i z \cos \theta_i + jk_i y \sin \theta_i]$$

(6) $H_z = \frac{-1}{i\omega_{\mu\nu}\mu} \frac{\partial E_x}{\partial y} = -\frac{\sin \theta}{2^n} \exp[-jk_i z \cos \theta_i + jk_i y \sin \theta_i]$

These equations were valid in $y \leq 0$, Eed. 1. is the wave impedance of the first medium.

In the case of the another polarisation we have

and

(8)
$$H_{x} = \exp[-jk_{1}z\cos v_{1} + jk_{2}y\sin v_{1}]$$

(9)
$$E_y = -\frac{1}{j\omega\xi\xi} \frac{\partial H_x}{\partial \xi} = \frac{2^{(4)}}{\partial \xi} \exp\left[-jk_{\xi}\omega x_{\eta}^{2} + jk_{\xi}\omega x_{\eta}^{2}\right]$$

(10)
$$E_z = \frac{1}{j\omega\xi\xi} \frac{\partial k_x}{\partial y} = -\frac{2^m}{2^m} \sin \theta_y \exp[-jk_z\cos\theta_y + jk_y\sin\theta_y]$$

Since we need in what follows the transmitted wave only, As wish to find the wave penetrating into the second medium only. We do not calculate the transmission coefficient but we are only interested in the type of this wave arising from the law of refraction. Also we normalise the wave by the amplitude coefficient 1. The wave, penetrating in the second medium can be written formally by replacing the index 1 (in $k_1, 2^m$, k_1, k_2 , k_1, k_2).

The case in which we are interested consists of complex values of \mathcal{V}_{λ} . From the law of refraction we have

(11)
$$\sqrt{\varepsilon_i} \cos v_i^2 = \sqrt{\varepsilon_2} \cos v_2^2$$
, $\cos v_2^2 = \sqrt{\varepsilon_1} \cos v_i^2$

Since ξ_2 ξ for y \neq 0 the desired type of wave arises if

The limiting angle of total reflection is defined by

$$(13)$$
 $(20)^{3} = 1$

In this case in y > 0, medium 2, we should have the wave

But, if $\langle n \rangle_{2}^{2} > 1$, $\langle n \rangle_{2}^{2}$ is complex and we write:

These values are to be inserted in equations (4) (5) (6) (8) (9) (10) in the places of cost sut, , also 2^h is to be replaced by 2². If Cost >1, real, we

from what follows

For both polarisations it turns out the exponential factor

From (12) (19) (20) it follows that:

(23)
$$1 \leq ash v = \sqrt{\frac{C_1}{E_2}}$$

The attenuation in the y direction becomes

A diminuation until a factor /e takes place along a distance given by %:

(28) **30 -** \[\frac{1}{\xi} \arg \arg \frac{1}{\xi} \frac

The wave normal (= phase normal) of this wave lies in the-z-direction.

The phase normal (= real part of Poyntings vector)

is now to be defined as the direction of incidence of the wave.

In the case of a continous stratification [6] we see also transversally attenuated waves arising by total reflection.

Appendix III

kiemann-Lebesgue's Lemma in Samans's Representation.

Theorem 1: Let h(t) be two time continuously differentiable $h'(t) \neq 0$ in $x \in t \in B$ $\varphi(t)$ of bounded variation in $x \notin t \in B$ Then: $f = \int_{C} \varphi(t) \exp[jkh(t)] dt = O(1/k)$ Prouve: Let F be interpreted as a stielt jes-Integral: $f(t) = \int_{C} \varphi(t) dt = \int_{C}$

the solution of the equation h(t)=u with respect to t is possible in the form t=f(u) and it follows:

 $\mathcal{J} = \int_{c}^{t-\beta} \varphi(f(u)) \frac{1}{k(f(u))} d\left(\frac{e^{jku}}{jk}\right)$

By means, of partial integration we find: $t=\beta$ $\mathcal{J} = \int_{\mathcal{K}}^{t=1} \frac{dt}{dt} = \begin{bmatrix} \varphi(t) & f(t) \\ f(t) & f(t) \end{bmatrix}^{t=1} \frac{dt}{dt} = \begin{bmatrix} \varphi(f(t)) & f(f(t)) \\ f(f(t)) & f(t) \end{bmatrix}^{t=1}$ $= O(\frac{1}{K}) + R$ $= O(\frac{1}{K}) + R$ $= O(\frac{1}{K}) + R$ $= O(\frac{1}{K}) + R$

|R|= | for a (a1x(n)) | sup | fill | War 4(t)] and to and

Since 9(7) is supposed being of bounded variation, 9(7) continuously differentiable $\neq 0$, we have

7

and therefore: R = O(1/k)

(The product of two functions of bounded variation is of bounded variation)

Theorem 2: h(t) two time continuously differentiable Let exist T: $\alpha \leq T \leq \beta$ so that h'(t) = 0, h'(t) > 0 (4) continuously differentiable. It is to

be represented in an asymptotic manner by

$$\mathcal{J} \sim \left[\frac{2\tau}{k h'(\tau)} \right]^{1/2} \varphi(\tau) \exp\left[j \left(h(\tau) + \frac{\tau}{4} \right) \right] + O\left(\frac{1}{k} \right)$$

This representation runs by means of saddle points method (stationary phase or steepest descent) (of. [6] and many text books on saddle points method).

Appendix IV

Situation of The Saddle-Points in Samans's Calculus

Our calculus differs from Samans's one by the slowly variable factor exp[-p(A, e)] mode influencing the situation of the saddle point.

Apart from this factor the exponent in the integral

L is the parameter of curve length of the boundary of the diffracting cylinder. s is the value of t correspon-

ding to the point of observation. Then:

$$\mathcal{R}'(t) = (\vec{\mathcal{A}} \cdot \vec{t}) + \left(\frac{(\vec{\mathcal{C}}(t) - \vec{\mathcal{C}}(s))}{|\vec{\mathcal{C}}(t) - \vec{\mathcal{C}}(s)|} \cdot \vec{\mathcal{L}}\right)$$

where t is the tangential unit vector in t . hit disappears in two cases:

1) $\overrightarrow{A} = -\frac{\cancel{v(t)} - \cancel{v(s)}}{|\cancel{v(t)} - \cancel{v(s)}|}$ (saddle point of 1st kind)

i.e. A and 7, the vector from the point of integration A to the point of observations are antiparallel. But for disappearing of fit) this is not necessary. It is sufficient (Fig. 5) that A and (VII) - V(5))/(H-V5) have opposite component of equal absolute value, i.e.:

value, i.e.: $2) (\overrightarrow{\mathcal{F}}, \overrightarrow{n}) = + \left(\frac{(\overrightarrow{\mathcal{C}}(t) - \overrightarrow{\mathcal{C}}(s))}{|\overrightarrow{\mathcal{C}}(t) - \overrightarrow{\mathcal{C}}(s)} \cdot \overrightarrow{\mathcal{N}} \right) \text{ (saddle point of second kind)}$

It is easy to see that on C no saddle point is existing.

Appendix V

Admissibility of Replacing 2 (kr) in the Integral (3AF) 20 by Its asymptotic Representation in the Neighbourhood of T. O

In the integral (37); Kilkr) is replaced by its asymptotic representation. Apart from a little intervall in Υ about $\Upsilon = 0$ for $\nearrow \to \infty$ this proceeding is certainly admissible. However Samans does not give a sufficient account of this step in his calculus. The integral (34) converges in r=0 but the admissibility of this replacing is to be prouved explicitely. This will be done here.

in the integral arises only, if s, the point of observation is placed on the illuminated side, on C, In this case for $R \rightarrow \infty$ the integral

 $\int_{C_{4}} \mathcal{F} \frac{\partial \mathcal{K}'(kr)}{\partial n} dL = -\int_{C_{4}} \mathcal{F} \mathcal{K}''(k|\vec{k}'' + \vec{v}'' s) k(\vec{v}'', \vec{r}') dL$ $(\vec{r} = \vec{v}(t) - \vec{v}(s), |\vec{r}| = |\vec{v}(t) - \vec{v}'' s)|)$ $gow \to 0.$

We have show that the replacing of $\mathcal{L}(kr)$ by its asymptotic representation is allowed $\mathcal{L}(kr)$ is O(/kr) for $r \to 0$, $(x, \overline{r})/r = as(x, \overline{r})$ And where α is the angle of contigency.

It is well known that $Aind = \frac{\pi}{3}$ (g = radius of curvature $\neq 0$) in the neighbourhood of t = 0, the integrand remains finite.

But we have to show that the replacing of Like?)

by its asymptotic representation is allowed in estimating the integral for 200. For C, outside an intervall

-a<t-a<ttalanta

the calculus of Samans is correct and we wish to calculate an integral of the form:

$$\mathcal{J} = \int \mathcal{F}(t) \mathcal{K}_{\lambda}(k|t|)/t/dL$$
a any value as little as we like.

We have written to the curve length, in the neighbourhood of T=0 equal T) so that t=0 in T=0

Now we have
$$t \neq 0$$
 $|t| = -t$ $t \neq 0$ $|t| = t$

The integral is decomposed in two parts:

$$J = \int_{-a}^{b} + \int_{1}^{c} iw - a + t + 10 \qquad \text{we have:}$$

$$|t| \mathcal{K}_{1}^{(l)}(k|t|) = -t \mathcal{K}_{1}^{(l)}(-kt)$$

J= JF(kt)di(-kt)(-t)dl+ F(kt)di(kt)tdl

in the first of these integrals we use the well known relation:

 $J_{i}(kt) = -J_{i}(kt) - 2J_{i}(kt); then$ $J_{z}(ft)J_{i}(kt)toll + J_{i}(kt)toll$ $-2J_{i}(kt)J_{i}(kt)toll$ $-2J_{i}(kt)J_{i}(kt)toll$ $J_{z}(ft) = -2J_{i}(kt)J_{i}(kt)toll$ $J_{z}(ft) = -2J_{i}(kt)J_{i}(kt)J_{i}(kt)$ $J_{z}(ft) = -2J_{i}(kt)J_{i}(kt)J_{i}(kt)$ $J_{z}(ft) = -2J_{i}(kt)J_{i}(kt)$ $J_{z}(ft) = -2J_{i}(kt)J_{i}(kt)$

At first we turn ourselves to the second integral on the right hand side:

In the well known textbook of Watson about Bessel-Functions we find on page 595 an analogon to Riemann-Lebesgues Lemma by replacing of cos/sin functions by Bessel-functions from what follows immediately:

 $\int_{-a}^{o} \mathcal{F}(\delta t) \int_{-a}^{b} (\delta t)$

Than we observe the first integral on the right hand side:

Fixing the endpoints ± A we transform the contour in

the complex t-plane into a half circle about t = 0 with

radius A in the upper half plane, supposing that no

irregularity of A takes place in this domain. Then on

this path, every where in the fixe distance A from t = 0

we replace A (A) by its asymptotic representation,

being a regulary function apart from the origin. The

path of this integral, containing a regulary function

can be transfered back to the old path, surrounding t = 0

by a little half-circle of a radius as small as on likes.

A branchout is to be situated in the lower half plane

in order to not influence our proceeding.

The integral over the half circle queted disappears for by Riemann-Lebesgue's lemma.

Appendix VI

Survey of The Rigorous Solution in an Epstein Layer

The author has treated in two papers the propagation of waves in stratified medium, the simple structure of which allows a rigorous solution of the wave equation. The same medium is also treated by Seckler's and Keller's method. For sparing to consult these papers of the author we give an abbreviated survey of their contents in so far as we need it for understanding the present treatise. The function representing the dielectric constant as a function of z is

(1)
$$\mathcal{E} = 1 + \frac{\sigma}{1 + e} \pi z$$
 $\pi > 0$

This function is represented in Fig. 1. For

in the domain $\frac{2}{x} > 2 > -\frac{2}{x}$

 \mathcal{E} increases approximatively in a linear manner $(\mathcal{E}(0) = 1 + \frac{\sigma}{2})$ to $\mathcal{E} = 1 + \sigma$ for $2 \rightarrow -\sigma$.

Fig. 1. shows that it is reasonable to denote the interval 2 k > 2 > -2 k by the layer of inhomogeneity and 4 k by "the layer-thickness".

Let a wave E_{x} , H_{y} , H_{z} be incident, $E_{x} = u$ full-fills the wave equation:

(3)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \omega^2 \xi \mu_0 \mu \, \mathcal{E}(t) \mathcal{U} = 0$$

By separation of the variables we find:

(5)
$$E_X = u(z,y) = e^{z/3} Z(z)$$

The wave equation for Z(e) is transformed in a way due to Epstein and used by Rawer in a very successfull manner [21] [22]: by means of

$$(6) \qquad \bigg\} = -e^{\chi_{\xi}}$$

we obtain solutions of the form:

where of denotes the hypergeometric function and of 3; (; are defined by

(7)
$$\beta = 1 + j \frac{k_0}{\pi} \left(\sqrt{(HO)} - E(Z_0) \sin^2 \theta_0 + \sqrt{1 - E(Z_0)} \sin^2 \theta_0 \right);$$

$$y = 1 + 2j \frac{k_0}{\pi} \sqrt{(HO)} - E(Z_0) \sin^2 \theta_0 .$$

 \mathcal{L}_{0} is the sinus of the angle of incidence chosen for a value \mathcal{L}_{0} , where $\mathcal{E} = \mathcal{E}(\mathcal{L}_{0})$.

Hypergeometric functions offer very interesting relations, furnishing important physical consequences here: It is easy to see, that:

corresponds to a wave incident from below i.e. from $z \to -\infty$, going in the direction of positive z (up(-jut)). It is well known that the series representing z = (4/3)/(5) converges only inside the circle z = 1. By analytic

continuation we see that:

corresponds to a wave going in the +z direction in 2 >+converges in |1/4| <1;

is a wave going in the -z direction for $\geq \rightarrow -\infty$ convergent in $|\zeta| < 1$.

Between these three functions there exists the following relation:

(11)
$$v_2 = \frac{T_{(1-\beta)}T_{(4+1-\beta)}}{T_{(1-\beta)}T_{(4+1-\beta)}}v_1 - \frac{T_{(p)}T_{(1-p)}T_{(p-\beta)}T_{(q+1-\beta)}}{T_{(2-p)}T_{(p-\beta)}T_{(q)}}v_3$$

 v_2 is essentially an exponential function for $x \to +\infty$ v_1 and v_2 are also exp. functions for $x \to -\infty$ Deviding the latter equation by the coefficient of v_7 we get:

(12)
$$\frac{I(+\beta)\Gamma(d+1-\gamma)}{\Gamma(l-\gamma)\Gamma(\omega+1-\beta)}v_2 = v_1 - \frac{I(\gamma)\Gamma(l+\beta)I(l+\alpha-\gamma)}{I(\gamma 2-\gamma)\Gamma(\gamma-\beta)I(\omega)}v_3$$

This signifyes the following effect: An incident wave v_1 (2<0,0>5>-1) rise to a wave transmitted to $z \rightarrow +\infty$ gives

$$\frac{I(I-B)I(\alpha+1-\beta)}{I(I-B)I(\alpha+1-\beta)}v_2 \qquad \begin{pmatrix} 0 < 2 < \infty \\ -\infty < \frac{1}{2} < -1 \end{pmatrix}$$

and to a reflected wave

$$-\frac{T(r)T(1-13)T(1+d+1)}{T(2-r)T(r-13)T'(d)}e^{\int x'(r-1)} V_3\left(\frac{2<0}{0>5>-1}\right)$$

We shall denote by R:

$$(13)R = \frac{I(y)I(I-B)I(I+d-y)}{I(2-y)I(y-B)I(x)}$$
 the coefficient of reflection, explicately of cancels out)

$$(14)T = \frac{T(1-3)T(1+\alpha-1)}{T(1-y)T(1+\alpha-3)}$$
 the coefficient of transmission

represents exponential wave functions in the homogenous media; now we describe the distortion of the wave beyond the arising of reflections by "distortion functions" [20]: the distortion function of the incident wave is evidently

(15)
$$D_{i}(2) = (1+e^{i(2)}) \underbrace{f}_{21} \left\{ 1+j \underbrace{k_{2}(\sqrt{1+\delta-\epsilon(2_{0})\sin^{2}V_{0}} - \sqrt{1-\epsilon(2_{0})\sin^{2}V_{0}})}_{1+j \underbrace{k_{2}(\sqrt{1+\delta-\epsilon(2_{0})\sin^{2}V_{0}} + \sqrt{1-\epsilon(2_{0})\sin^{2}V_$$

for the reflected wave:

(16)
$$D_{k}(z) = (1+2) \int_{0}^{\infty} \left\{ \int_{0}^{1} \frac{1}{2} \left(\sqrt{(1+\delta)} - \epsilon(z_{0}) \sin^{2} \delta} + \sqrt{1-\epsilon(z_{0})} \sin^{2} \delta \right) \right\}$$

$$\left\{ \int_{0}^{1} \frac{1}{2} \left(\sqrt{(1+\delta)} - \epsilon(z_{0}) \sin^{2} \delta} - \sqrt{1-\epsilon(z_{0})} \sin^{2} \delta} \right) \right\}$$

$$\left\{ \int_{0}^{1} \frac{1}{2} \left(\sqrt{(1+\delta)} - \epsilon(z_{0}) \sin^{2} \delta} \right) + \sqrt{1-\epsilon(z_{0})} \sin^{2} \delta} \right\}$$

for the transmitted waves

(17)
$$\int_{\xi} \{e\} = (1+\tilde{e})^{2} \int_{\xi}^{1+\tilde{e}} \frac{1+\tilde{e}}{\tilde{e}} (\sqrt{(\mu \delta)-\epsilon(2)\sin \tilde{v}_{s}^{2}} - \sqrt{1-\epsilon(2)\sin \tilde{v}_{s}^{2}}), -\tilde{e}^{-\chi_{c}}$$

$$(17) \int_{\xi} \{e\} = (1+\tilde{e})^{2} \int_{\xi}^{1+\tilde{e}} \frac{1+\tilde{e}}{\tilde{v}_{s}} (\sqrt{(\mu \delta)-\epsilon(2)\sin \tilde{v}_{s}^{2}} + \sqrt{1-\epsilon(2)\sin \tilde{v}_{s}^{2}}), -\tilde{e}^{-\chi_{c}}$$

$$(17) \int_{\xi}^{1+\tilde{e}} \{e\} = (1+\tilde{e})^{2} \int_{\xi}^{1+\tilde{e}} \frac{1+\tilde{e}}{\tilde{v}_{s}} (\sqrt{(\mu \delta)-\epsilon(2)\sin \tilde{v}_{s}^{2}} + \sqrt{1-\epsilon(2)\sin \tilde{v}_{s}^{2}}), -\tilde{e}^{-\chi_{c}}$$

$$(17) \int_{\xi}^{1+\tilde{e}} \frac{1+\tilde{e}}{\tilde{v}_{s}} (\sqrt{(\mu \delta)-\epsilon(2)\sin \tilde{v}_{s}^{2}} + \sqrt{1-\epsilon(2)\sin \tilde{v}_{s}^{2}}), -\tilde{e}^{-\chi_{c}}$$

$$(17) \int_{\xi}^{1+\tilde{e}} \frac{1+\tilde{e}}{\tilde{v}_{s}} (\sqrt{(\mu \delta)-\epsilon(2)\sin \tilde{v}_{s}^{2}} + \sqrt{1-\epsilon(2)\sin \tilde{v}_{s}^{2}}), -\tilde{e}^{-\chi_{c}}$$

The rigorous solution is now established Clearely by exponential functions, distortion functions, reflection and transmission coefficients.

Appendix VII

Survey of Seckler's and Keller's Approximated Diffraction-Theory

The basic idea of Seckler and Keller consists of tracing a tube of rays. The power transmitted in this tube is everywhere the same one, from what follows, that in our case 4- E. is proportional to follows, that in denotes the cross section of the tube depending the coordinate & . For an eventual reflection by a discontinuity of & , Fresnels laws are used. In our case of medium S. and K's theory neglects the continuously distributed reflection by the continuous variation of & .

It is of great interest to know exactly and numerically this error.

References:

1)	L.M. Brekhovskik	Waves in Layered Media Ac Press, New York and London 1960
2)	AW. Maue	Zur Formulierung eines allgemeinen Beugungsproblems durch eine Inte- gralgleichung (Zt.f. Physik Vol. 126 (1942) p. 601-618)
3)	Hönl-Maue-Westpfahl	Theorie der Beugung Encyclopedia of Physics Vol. XXV/1 Springer 1961
4)	Franz	Theorie der Beugung elektromagne- tischer Wellen Ergebnisse der Angewandten Mathematik Springer 1957
5)	Whittacker-Watson	A Course of Modern Analysis Cambridge University Press 1950
6)	A. Erdélyi	Asymptotic Expansions Dover Publications 1956
7)	W.J. Smirnow	Lehrgang der höheren Mathematik (German edition) VLB Verlag der Wissenschaften Berlin 1960
8)	P. Debye	Uber den Lichtdruck auf Kugeln von beliebigem Material Annalen d. Physik IV, vol. 30 (1909) p. 57-136
9)	G.N. Watson	The Diffraction of Electric Waves by the Earth Proc.Roy.Soc. London XCV (1918) p. 83-99
10)	G.N. Watson	The Transmission of Electric Waves Round the Earth Proc.Roy.Soc.London XCV (1919) p- 546-563

11) G.N. Watson Asymptotic Expansions of Hypergeometric Functions Cambr.Phil.Trans. XXM (1918) p. 277-308 12) J. Lense Kugelfunktionen AVG Leipzig 1950 13) L. Robin Fonctions Sphériques de Legendre et fonctions sphéroidales 3 volumes Gauthier-Villars Paris 1957/8/9 14) E.W. Hobson The theory of spherical and Ellipsoidal Harmonics Cambridge University Press 1931 15) F. Tölke Praktische Funktionenlehre I.Band Springer 1943 16) A. Sommerfeld Partielle Differentialgleichungen der Physik Ak. Verl. Ges. Leipzig 1958 17) Ph.Frank-R.v.Mises Die Differential- und Integralgleichungen der Mechanik und Physik II. Band Vieweg u. Sohn 1935 18) G. Eckart Theoretical Investigation of the Wave Optical Treatment of a Magnetic Dipole in a Medium of Plane Stratification by the Method of Epstein. Report Contr.No. DA 91-508-EUC-182 1959 19) G. Eckart Wellenoptische Behandlung der Strahlung eines magnetischen Dipols in einem eben geschichteten Medium mittels der Methode von Epstein Abhandl.der Math.-Naturw.Klasse der Bayer. Akademie der Wissenschaften Neue Folge Heft 102, 1960 (German edition of 18)

20) G. Eckart

The Electromagnetic Field Resulting from the Radiation of a Magnetic Dipole in a Medium Possessing a Gradient of Dielectric Constant of a Mature Approximating the Distribution of a Dielectric Constant in a Duct above an Infinitely Conducting Plane Earth

Report Contr. No. DA 91-591-EUC-1480

01-4630-60

21) P.S.Epstein

Reflection of Waves in an Inhomgenous Absorbing Medium Proc.Nat.Ac.Sc. Vol. 16 No. 10,

Oct.15, 1930, p. 627-637

22) K. Rawer

Ann.d.Physik V, Vol.35, 1939, p.

385-416

23)B.D.Seckler-J.B.Keller

Diffraction of Inhomogenous Media Research Report No. M.M.E7 New York University and J.Ac.Soc.Am. Vol.31, 1959, p. 192-205, 206-216

List of values of w, of x, v, used for numerical evaluation.

w	x	8		2		· · · · · · · · · · · · · · · · · · ·	
3.10		10-5	0.	100	70°	850	87,50
3.10		10-4			Xo.	150	87,50
3.10		10-3			700	850	87,50
3.10	+ 0,01			·	700	82,5	
3.10		10-1			700		
3.1		10-5	00.	10°	70°	850	87,50
3.10		10-4			70°	820	87,50
3.10		10-3			70°	850	87,50
3.10		10-2			70°	8250	
3.1		10-1			70°		
3.10		10-5	0°	10°	70°		
3.10		10-4			70°		
3.10	,,,	10-3			700		
3.16		10-2			70°	8250	
3.10	10	10-1			70°		
3./0	0,01				700		
3.10		10-3			70°		
3.10	0,01	10-3			700		
3.10	0,0001	10-3			700		,
3.1	0,001	10-3			700		
3.10		10-3			700		
3.10		10-3			70°		
3.10	4 1	10-3			700		

ALPHA .	-0.00005 Bi	ETA -20.00	005 GAMMA	-20	. 000Ì0			
HE I GTH	TilETA	E KELLER	ZETA		DISTORTION F	UNCTION .		
-1000,000	0	1.00000000	-0,00005	2'	1,00000000	0	0	c
-897 . 500	o	1.00000000	-0, 00013	3'	1.00000000	0	0	C
-7 95 . o oo	ο.	1.00000000	-0, 10035	3'	1,00000000	0, 00000001	0	0
-692, 500	0	1.00000000	-0.00098	3°	1,00000000	0, 00000005	0	c
-590,000	O	1,00000000	-0.00274	4'	1.00000001	0,00000013	0	. 0
-467.500	0	1.00000001	-0.00764	4'	1.00000002	a. 0000003/}	0	Ġ
-385. 000	D	1.00000005	-o , o2128	5'	1.00000006	0,000001.05	0	C
-2 82 . 500	0	1,00000014	-0, 05931	7'	1.00000014	o . 000002 88	o ;	ď
-180, 000	0	1,00000035	-a, 16530	11'	1,00000036	o. o oooo763	0	C
-77.500	0	1.00000079	-a. 46a7a	24'	1,00000079	o. 00001891 .	0	•
25 . o on	0	1.00000140	-o. 7788o	73'	1.00000150	o . noon2095		
127.500	0	1.00000195	-0. 27943	15'	1.00000206	0,00001249		
230, 100	0	1.00000227	-0.10026	8,	1.00000237	ი. იიიიი4 96		
332,500	0	1.00000241	-o. o3597	6°	1.00000251	ი. იიიიი196		
435.000	o	1.00000246	-o. o1 291	5°	1.00000257	0,00000084		
537 . 500	0	1.00000248	-n . on463	4'	1.00000259	o, nonono43		
640, 000	0	1, 90000250	-0, 00166	3'	1,00000260	0, 00000028		
7 42.500	0	1.00000250	-ი, იიინი	3'	1,00000260	0,00000023		
845. 000	0	1, 10001250	-0, 00021	3'	1.00000260	0,00000021		
947.500	0	1.00000250	-0, 00008	2'	1,00000260	0, 00000020		

1,00000250 -0,00003

1050.000 0

2' 1,00000260 0,00000020

OMEGA	30000000 KAP				VECTORLEI.G	Til o. 20		
	ONFACTOR o	3, 1419	544 TRANS	ITFACTOR	1.0000025	0		
ALPHA	-o. 00005 BE	TA -19,69	620 GAMMA	-19.	69625			
HETGT	I THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-1000,000	0.1745329	1,00000000	-0.00005	2'	1,00000000	n	0	0
-901.519	o.1745329	1,00000000	-0,00012	2'	1,00000000	0	o	0
-∩ o3. n3′	` o. 1745329	1.00000000	-0,00033	3'	1,00000000	0.00000001	0	0
-704.55	o.1745329	1,00000000	-0.000 ⁰ 7	3'	1.00000000	0.00000004	o	n
-605.077	7 0.1745329	1,00000000	-0,00233	3*	1,00000000	0,00000012	0	0
-507.599	o. 1745329	1,00000001	-0,00525	. 4	1.00000001	0.00000031	0	0
-409.119	o. 1745329	1,00000004	-0.01672	5 '	1.00000004	0. 000000 0 ⁰ 4	0	0
-31o.63	o.174533o	1.00000011	-o. o4476	6°	1.00000011	0,00000222	0	0
-212, 15/	o. 174533o	1.0000002 ^p	-0.11985	92	1,00000028	0.00000574	0	0
-113, 67	o. 1745331	1.00000064	-o. 32o≏7	16*	1.00000053	0,00001411	0	o
-17.19	2 0.17 45333	1,00000122	-0.85905	1191	1.00000115	c. 00003145	0	0
83, 289	o.1745335	1.00000185	-o. 43479	22'	1.00000173	o. 000o1f31		
181.769	o.1745337	1.00000228	-o. 1624o	10'	1.00000215	0.00000763		
280. 250	o.1745338	1,00000250	-0. ინ ი ნნ	7"	1,00000235	0. 00000290		
378.731	o. 174533?	1,00000260	-0.02265	5•	1,00000244	0,00000113		
477.21		1.00000263	-0.000/16	4,	1,00000248	0,00000042		
575.692	e. 1745338	1.00000264	-0.00316	4.	1,000002-19	0.00000016		
674.17	o. 1745338	1,00000265	-0.00118	3*	1,00000250	0, 00000006		
772.65	0.1745338	1,00000256	-0,00044	3,	1,00000250	0,00000002		
671.13	o. 1745338	1.00000266	-0,00016	3,	1,00000250	0,00000001		
969.61	0.1745338	1.00000266	-o. oooo6	2'	1.00000250	0		
1068.096	o. 1745336	1.00000256	-0,00002	2'	1,00000250	0		

OMEGA 30000000 KAPPA 0.0100 DELTA 0.000010 VECTORLENGTH 0.40

REFLECTIO		3. 1423			1.0000214	0		
VLPHA	-0.00015 B	ETA -6.84	029 GAHHA	-6.	.84 044			
HEIGTH	THETA.	E KELLER	ZETA		DISTORTION F	UNCTION		
-1000,000	1.2217305	1.00000000	-0,00005	2'	1.00000000	0	0	0
-9 31.596	1,2217305	1,00000000	-0,00000	2'	1,00000000	0,00000001	(O	0
-863, 192	1,2217305	1,00000000	-a, ono18	3'	1,00000000	0,00000002	0	0
-794.708	1,2217305	1,00000001	-0,00035	3'	1.00000001	0,00000005	0	0
-726.394	1,2217305	1,00000003	-0, 00070	3'	1.00000001	0.00000010	0	0
-657 . 90o	1.2217305	1.0000001	-0.00139	3'	1,00000003	0.00000020	0	0
-509.576	1, 2217305	1,00000010	-0.00275	4.	1.00000006	0.00000039	0	0
-521.172	1.2217305	1,00000020	-0.00547	4*	1,00000011	0.00000077	0	0
-452. 768	1.2217306	1.00000042	-0.01081	4'	1.00000023	0, 00000154	0	0
-384.364	1.221736	1.00000084	-o. o2142	5 '	1.00000044	0,00000303	0	0
-315. 960	1.2217310	1.00000163	-0.04244	5'	1.000000 85	o . იიიიი595	0	0
-247. 556	1.2217315	1.00000312	-ი. o ^{გ4} 12	8,	1.00000163	0.00001159	0	0
-179.152	1.2217324	1.00000573	-0.16671	11'	1.00000301	0.00002216	0	0
-11o.742	1.2217339	1.00000998	-0. 33 0 39	17°	1.00000526	0.00004115	0	0
12.345	1,2217359	1.00001592	-0. 65478	43'	1.00000843	o. oooo7288	0	0
26.05 8	1.2217382	1.00002272	-0.77060	7o'	1.00001211	o. 0000 ⁰ 275		
94.461	1.2217403	1.00002895	-0. 32283	20'	1.c.::n1546	0.00004739		
162,363	1.2217419	1.00003364	-0.19520	12'	1.00001793	o. oooo2576		
231.265	1,2217430	1.00003660	-o . იეეიი	8,	1.00001950	o. oooo1355		
299.666	1.2217435	1.00003831	-0.0 1995	7°	1.00002040	ი. იიიიი699		
36 ℃, o6℃	1.2217439	1.00003924	-o. o2521	5'	1.00002089	o, oooon357		
436, 469	1.2217440	1.00003972	-o. o1272	5 '	1.00002113	0.00000181		
5ol.871	1.2217441	1.00003997	-o. on642	4'	1.00002126	0.00000092		
573, 272	1.2217442	1.00004010	-0.00324	4,	1.00002133	0.00000046		
641.674	1.2217442	1.00004017	-0.00163	3*	1.00002136	0.00000023		
710.075	1.2217442	1.0000/1020	-o, 000 ⁸ 2	3'	1.00002138	0.00000012		
7 78.477			-n. oon42	3'	1.00002139	o , იიიიიიი		
845.878			-0.00021	3,	1.00002139	0,00000003		
915 . 2 ℃o			-0,00011	2'	1.00002140	0,00000001		
9 83 . 631			-0.00005	2"	1,00002139	0.00000001		
1052,083	1.2217442	1.00004024	-0,000n3	2'	1,00002139	0		

 CMEGA
 30000000
 KAPPA
 0.0100
 DELTA
 0.000010
 VECTORLENGTH 0.40

 ALPHA
 -0.0007
 BETA
 -1.74255
 GAMMA
 -1.74312

 REFLECTIONFACTOR
 0.0000151
 3.1429255
 TRANSITFACTOR
 1.0003294
 0.0000002

HEIGTH	THETA	E KELLER	ZETA		DISTORTION FL	UNCTION		
-1000-000	1.4835298	1.00000000	-0.00005	2'	1.00000001	0.00000002	0.00001512	3, 14292552
-965.138	1,4835298	1.00000000	-0.00006	2'	1.00000001	0.00000003	0.00001512	3,14292553
-930.275	1.4835298	1.00000000	-0.00009	2'	1.00000002	0.00000004	0.00001512	3.14292555
-895.413	1.4835298	1.00000000	-0.00013	3'	1.00000003	0.00000005	0-00001512	3, 1/1292556
-860.551	1.4835298	1.00000000	-0.00018	.3*	1.00000004	0.0000000 ⁸	0.00001512	3,14292578
-825, 688	1.4835298	1.00000000	-0.00026	3'	1.00000006	0.00000011	0.00001512	3, 14292562
-790.826	1.4835298	1.00000021	-0.00037	3'	1.00000009	0.00000016	0.00001512	3,14292566
-755-964	1.4835298	1.00000021	-0.00052	3,	1.00000013	0.00000022	0.00001512	3,14292573
-721.101	1.4835298	1.00000047	-0.00074	3'	1.00000018	0.00000032	0.00001512	3, 14292582
-686, 239	1.4835298	1.00000047	-0.001o5	3,	1.00000026	0.00000045	0.00001512	3,14292596
-651.377	1.4835299	1.00000098	-0.00148	3,	1.00000037	0.00000064	0.00001512	3, 14292614
-616.515	1.4835299	1.00000145	-0.00210	3*	1.00000052	0.00000091	0.00001512	3,14292641
-581.652	1.4835300	1.00000218	-c.oo298	4,	1.0000074	0.00000128	0.00001512	3.14292679
-546.79o	1.4835361	1.00000290	-0.00422	4,	1.00000104	0.00000182	0.00001512	3,14292733
-511.928	1.4835302	1.00000270	-0.00728	4,	1.00000148	0.00000258	0.00001512	3,14292808
-511.920 -477.066	1.4835303	1.00000563	-0.00947	4,	1.600007309	0.00000365	0.00001512	3,14292915
-442, 201	1.4835305	1.000000000	-0.012 ₀ 1	5,	1.00000295	0.00000516	0.00001512	3.1429367
407.311	1.4835368	1.00001128	-0.01702	5,	1.00000417	0.00000731	0.00001512	3.14293282
-372,48 ₀	1.4835311	1.00001120	-0.01/02 -0.02412	5,	1.0000589	0.00001034	0.00001512	3,14293584
-372,406 -337,618	1.4835317	1.00001723	-0.03418	6,	1.00000830	0.00001461	0.00001512	3. 14294011
-302,756	1.4835325	1.00002175	-0-04843	6,	1.00001167	0.00001201	0.00001512	3,14294612
	1.4835335	1.00003030	-0.06864	7'	1.00001107	0.00002906	0.00001512	3, 14205457
-267 . 895 -233 . o31	1,4835349	1.00005834	-0.09726	ģ,	1.00002281	0.00004085	0.00001712	3,14296636
-198.174	1,4835367	1.00007034	-0.09/20 -0.13783	10'	1.00002301	0.00005726	0.00001512	3.14298277
			-0.19531	12'	1.00004350	0.00007991	0.00001512	3,14300542
-163, 314	1,4835391 1,4835422	1.00010716	-0. 19531 -0. 27677	15'	1,00007915	0.00011038	0.00001512	3.14303639
-128.456	1.4835459	1.00014222	-0.21077 -0.39220	20'	1.00007930	0.00015270	0.00001512	3, 14307821
-93.598				31'	1.0001935	0.00017270	0.00001512	3. 1431 3374
-58.742 -23.888	1.4835502 1.4835550	1.00023450 1.00028898	-0.55576 -0.78751	76'	1.00010439	0.00028046	0.00001512	3.14320597
	1.4835599	1.00034591	-0.70751 -0.89616	165°	1,00013423	0.00031237	0.00001/12	G 11 G 20 7 7 7
10-964	1.4835648	1.00032791	-0.63246	40'	1.00010209	0.00023319		
45.814	1.4835693	1.00045392	-0.44636	23'	1.00021430	0.00017179		
8 ₀ , 663	1,4835733	1.00049910	-0.31503	16'	1.00026324	0.00012522		
115-509	1.4835766	1.00053693	-0.22234	12'	1.00020027	0.00009053		
150.354 185.198	1.4835792	1,00056739	-0.15693	10'	1.00029371	0.00007030		
	1.4835813		-0.11076	9,	1.0002/3/1	0.00004674		
220.041	1.4835828	1-00059097	-0.110/U -0.07817	8.	1.00030375	0.00003319		
254.883	1.4835840	1.00060864	-0.07518	7'	1.00031615	0.00003319		
289.724			-0.03934	6,	1.00031017	0.00001681		
324.564	1,4835848	1.00063175	-0.030ys -0.02749	6,	1.00032270	0.00001001		
359.405	1,4835854	1.00063886	-0.01940	51		0.000001199		
394.245	1.4835859	1.00061378		• .	1.00032465 1.00032604	0.00000000		
429.085	1,4835862	1.00064771	-0.01369 -0.00966	5' 4'		0.00000431		
463.925	1,4835864	1.00065015	-0.00900 -0.00682	4,	1.00032702	0.0000031		
498.765	1.4835866	1.00065212		_	1.00032772			
533.664	1.4835867	1.00065336	-0.00481	4'	1.00032822	0.00000225		
568.444	1.4835868	1.00065435	-0.003lo	4'	1.00032856			
603.284	1.4835869	1.00065508	-0-002lo	3'	1.00032881	0.00000121		
638.123	1,4835869	1.00065533	-0-00169	3'	1.00032998	0.00000091		
672.963	1.4835869	1.00069584	-ooo110	3'	1.00032911	0.00000069		
707.802	1,4835869	1.00065606	-0-00084	3,	1.00032920	0.00000054		
742.642	1.4835869	1.00065606	-0.00060	3'	1.00032926	0.00000043		
777.481	1.4835870	1.00065632	-0-00042	3'	1.00032930	0.000000036		
812,321	1.4835870	1.00065657	-0.00035	3,	1.00032933	0-00000031		
847.160	1.4835870	1.00065657	-0.00021	3'	1.00032935	0-00000027		
882.000	1.4835870	1.00065657	-0.00015	3'	1.00032937	0-00000024		
916.839	1.4835870	1.00065657	-0.00010	2'	1.00032938	0-00000022		
951.679	1.4835870	1.00065657	-0.00007	2'	1,00032939	0.00000021		

 CYEGA
 30000000
 KAPPA
 0.0100
 DELTA
 0.000010
 VECTORLENGTH
 0.50

 ALPHA
 -0.00115
 DETA
 -0.87125
 GAHHA
 -0.87239

 REFLECTIONFACTOR
 0.0004690
 3.1428947
 TRANSITFACTOR
 1.0013182
 0.000011

	711.074	e vei 150	7574		DISTORTION FUN	CTION		•
HEIGTH	THETA	E KELLER	ZETA	2'	1.00000003	0-0000002	0.00016898	3 14289468
-1000-000	1.5271629 1.5271529	1.00000000	-0.00005 -0.00005	2,	1.00000003	0.00000003	0-00046098	3,14209468
-973-190 -956-380	1.5271629	1.00000000	-0.00007	2'	1.00000004	0.00000004	0-00016898	3, 14289469
-934.571	1.5271629	1.00000000	-0.00007	2'	1.00000005	0.00000004	0.00046898	3, 14289469
-912,761	1.5271629	1.00000000	-0.00011	2'		0.00000005	0.00046898	3.14289471
-890.951	1.5271629	1.00000000	-0.00014	3'	1.00000008	0.0000007	0-00016898	3,14289472
-869.141	1.5271629	1.00000000	-0.00017	3'	1.00000009	o-0000000 ⁹	0.00046898	3.14239474
-847.332	1.5271629	1.00000000	-0.00021	3'	1.00000012	0.00000010	0.00046398	3.14289176
-825.522	1.5271629	1.00000000	-0.0002 6	3,	1.00000015	0.00000013	0.000/16898	3.14289478
-lio3.712	1.5271630	1.00000094	-0.00032	3'	1.00000019	0-00000016	0.000/16898	3, 14289481 3, 14289485
-7 ⁸ 1.902	1.5271630	1.000000091	-0.00040	3,	1.00000023	0.00000020	0-00046998	3, 14239496
-760-093	1.5271630	1.00000094	-0.00050	3,	1.00000029	0.00000025	0.0004 <i>6</i> 898 .0.0004 <i>6</i> 898	3, 14289496
-738,283	1.5271630	1.00000094	-0.00062	3'	1.00000035	0.00000031	0-00046898	3. 14209504
-71/.473	1.5271636	1.00000188	-0.000?7	3 ' 3'	1.00000044 1.00000055	0.00000038	0.00046898	3,14289513
-694.663	1.5271636	1.00000188	-0.00096 -0.00120	3,	1.0000000	0.00000000	0.00016898	3.14279524
-672,854	1.5271631 1.5271631	1.00000290	-0.00149	3'	1.00000085	0.00000074	0.00046898	3 14289539
-651.044 -629,234	1.5271631	1.00000487	-0.00117	3*	1,00000105	0.00000092	0.00046398	3, 14289557
-607.424	1.5271632	1.00000580	-0.00230	3'	1.00000130	0.00000114	0.00046798	3.1428958o
-585.615	1.5271632	1.0000000000	-0.00286	4,	1.00000162	0.00000142	0.00046398	3,14289607
-563.8 ₀ 5	1.5271634	1.00000973	-0.00356	4'	1.00000202	0-00000177	o.ooo46398	3 . 1428 9641
-541.996	1.5271634	1.00001170	-0.00443	4,	1.00000251	0.00000219	0.00046898	3.14289685
-52 ₀ .186	1.5271636	1.00001460	-0.00551	4'	1.00000312	0-00000273	0.00046898	3.14289737
-49% 377	1.5271637	1.00001953	-0.00 ⁶⁸ 5	4'	1.00000388	0.00000339	0.00046898	3, 14289804
-176.567	1.5271639	1.00002245	-0∙00^{9,}52	4,	1.00000482	0-00000421	0-00046998	3. 14269887
-451.753	1.5271642	1.00002835	-0. 01059	4'	1.00000599	0.00000524	0.00046398	3.14289989
432,919	1.5271645	1.00003519	-0.01317	5'	1-00000744	0-00000651	0.00046398	3, 1429 ₀ 116 3, 1429 ₀ 275
-411.14o	1.5271643	1.0000/1304	-0.01638	5'	1.00000925	0-00000809	0.00046899 0.00046899	3. 14290471
-399.331	1.5271652	1.00005287	-0.02038	5'	1.00001148	0.00001006	0.00010099	3. 14 2907 15
-367.522	1.5271658	1.00006457	-0.02531	5 ' 6'	1.00001425 1.00001769	0.0000127	0.00045899	3. 14291018
-345.714	1.5271664	1.0000°019 1.0000°892	-0.03152 -0.03)20	6'	1.00001709	0.00001)29	0-00046899	3,14291393
-323,9o5 -3o2-o93	1.5271672 1.5271632	1.00012137	-0.04875	6*	1.00002720	0-00002394	0.00046897	3, 14291859
-28 ₀ , 291	1,5271695	1.00014137	-0.06063	7'	1.00003368	0.00002971	0.00046900	3, 14292436
-25%.495	1.527171o	1.00018407	-0.075/1	7,	1.00004167	0.00003694	0.000/16900	3, 14293150
-236,679	1.5271728	1.00022517	-0.09378	8•	1.00005149	0.00004567	0.00046901	3, 14294033
-214,874	1.5271749	1.00027422	-0.11663	9°	1.00006352	0.00005657	0.00046901	3, 14295123
-193.070	1.5271775	1.00033301	-0.14505	10'	1.00007823	0.00007001	0-00046902	3, 14296466
-171.268	1.5271804	1.00040156	-0.1003B	11'	1.00009614	0-00008653	0.00046903	3,14298119
-149.467	1.5271839	1.00048097	-0.22132	13'	1.00011784	0.00010681	0.00046904	3.14300147
-127.667	1.5271879	1.00057313	-0.27 896	15'	1.00014399	0.00013163	0.00046905	3,143,2628
-105.870	1.5271925	1.00067711	-0.31691	13'	1.00017530	0.00016199	0.00046906	3, 143,5655
-84.075	1.5271975	1.00079291	-0.43139	22'	1.00021250	0-00019865	0.00046908	3,143 ₀ 933 ₀ 3,14313775
-62, 283	1.5272629	1.00091756	-0.53643	29'	1.00025633	0.00024309	0.00046910	3. 14319119
40.493	1.5272098	1.00105302	-0.66702	45' 97'	1,00030746 1,00036647	0.00029094	0.00046915	3, 14325508
-18.706	1.5272149	1.00119255 1.00133502	-0.82939 -0.96969	× 316		0.0003.043	0.00010717	G 21 GL//
3.078	1.5272211	1.00133702	-0.77990	73'	1.00096797	0.00034238		
24.859 46.636	1.5272273 1.5272334	1.00161717	-0.62728	39'	1.00102487	0.00028159		
68,411	1.5272391	1.00174999	-0.50454	27'	1.00107402	0.00023083		
90-182	1.5272444	1.00187205	-0.40583	20'	1.00111604	0.00018871		
111.952	1.5272493	1.00198436	-0.32644	17*	1.00115160	0.00015392		
133.718	1.5272538	1.00208674	-0.26258	14'	1.00118146	0.00012531		
155.483	1.5272576	1.00217449	-0.21123	12'	1.00120635	0.00010187		
177.245	1.5272609	1.00225135	-0.16992	117	1.00122698	0.00008274		
199.006	1.5272638	1.00231733	-0.13669	10'	1.00124398	0-00006714		
220.765	1.5272662	1.00237353	-0. 10996	9,	1.00125794	0.00005448		

242,523	1.5272683	1.00242090	-0.08846	8,	1.00126936	0.00004420
264.281	1.5272700	1.00246029	-0.07116	7°	1.00127866	0.00003588
286.037	1.5272714	1.00249290	-0.05725	7'	1.00128623	0.00002915
307.792	1.5272726	1.00251951	-0.04605	6'	1.00129237	0.00002371
329.547	1.5272735	1.00251123	-0.03705	6°	1.00129736	0.00001932
351.302	1.5272743	1.00255900	-0.02981	6'	1.00130139	0.00001577
373.o 56	1.5272749	1.00257377	-0-02398	5°	1.00130464	0.00001292
394.81o	1.5272754	1.00258561	-0.01929	51	1.00130727	0.00001062
416.564	1.5272759	1.00259548	-o.o1552	5'	1.00130939	0-00000876
438.317	1.5272762	1.00260338	-o.o1249	5'	1.00131110	0.00000726
460.070	1.5272765	1.00260931	-0.01004	4'	1.00131248	0.00000606
481.823	1.5272767	1.00261420	-0.00808	4'	1.00131360	0.00000509
503.576	1.5272769	1.00261918	-0.00650	4'	1.00131449	0.00000431
525.329	1.527277o	1.00262210	-0.00523	4'	1.00131521	0.00000368
547.082	1 . 527 2 771	1.0026251o	-0.00421	4,	1.00131579	0.00000317
568.835	1.5272772	1.00262707	-0.00339	4,	1.00131626	0-00000277
59o . 587	1.5272773	1.00262905	-0.00272	4'	1.00131663	0.00000244
612, 340	1.5272774	1.00263000	-0.00219	3*	1.00131694	0-00000219
6 34. 093	1.5272774	1.00263103	-0.00176	3'	1.00131718	0.00000197
655.845	1.5272774	1.00263197	-0.00142	3*	1.00131738	0.00000180
677.598	1.5272775	1.00263300	-0.00114	3'	1.00131754	0.00000166
699.350	1.5272775	1.00263394	-0.00092	3*	1.00131766	0.00000155
721.103	1.5272775	1.00263394	-0.00074	3'	1.00131777	0.00000146
742.855	1.5272775	1.00263394	-0.00059	3,	1.00131785	0.00000139
764.668	1.527 277 6	1.00263197	-0.00048	3*	1.00131791	0.00000133
786.360	1.5272776	1.00263197	-o.ooo38	3'	1.00131797	0.00000129
808.113	1,5272776	1.00263592	-0.00031	3'	1.00131801	0.00000125
829.865	1.5272776	1.00 <i>2</i> 63 5 92	-0.000 25	3,	1.00131804	0.00000122
851.618	1.5272776	1.00263592	-0.00020	3'	1.00131807	0.00000119
873.370	1.5272776	1.00263592	-0.00016	3'	1.00131809	0.00000118
895.123	1 . 5272776	1.00263592	-0.00013	3,	1.00131811	0-00000116
916.875	1.5272776	1.00263592	-0.00010	2'	1.00131812	0.00000115
938.628	1.5272776	1.00263592	-0.00008	2'	1.00131813	0.00000114
960.380	1.5272776	1.00263592	-0.00007	2'	1.00131815	0.00000113
982.133	1.5272776	1.00263592	-0.00005	2*	1.00131815	0.00000113
1003,885	1 . 5272776	1.00263592	-0.00004	2'	1.00131816	0.00000112

102 109 19 14:23

 OMEGA
 30000000
 KAPPA
 0.0100
 DELTA
 0.000100
 VECTORLENGTH
 0.40

 REFLECTIONFACTOR 0
 3.1489087
 TRANSITFACTOR 1.0002139
 0.0000003

 ALPHA
 -0.00146
 BETA
 -6.83928
 GAMMA
 -6.84075

		'						
HEIGTH	THETA	E KELLER	ZETA		DISTORTION FU	NCTION		
-1000.000	1.2217305	1.00000000	-0-00005	2'	1.00000001	0-00000007	0	0
-931.596	1.2217305	1.00000002	-0.00009	2'	1.00000002	0.00000013	0	0
-863, 192	1,2217305	1.00000005	-0.00018	3'	1.00000004	0-00000025	•	•
-794.788	1.2217305	1.00000011	-0.00035	3'	1.00000007	0-00000051	0	0
-726, 384	1,2217306	1.00000025	-0-00070	3'	1.00000015	0.00000100	0	0
-657.980	1.2217307	1.00000054	-0.00139	3'	1.00000029	0-00000198	0	0
-589.576	1.2217308	1.00000107	-0.002 75	4'	1.00000058	0-00000393	0	0
-521.172	1.2217312	1.00000215	-0.00545	4'	1.00000114	0.00000779	0	0
4 52,768	1.2217319	1.00000428	-0.010 ⁸ 1	4'	1.00000224	0.00001539	0	0
-364.364	1,2217333	1.00000840	-0.02142	5"	1.00000439	0.00003035	0	9
-31:5,961	1.2217361	1.00001636	-0.04244	6'	1.00000854	0.00005956	0	•
-247.558	1.2217411	1.00003119	-0.08411	8'	1.00001631	0.00011586	•	•
-179.156	1,2217501	1.00005747	-o. 1667o	11'	1.00003013	0.00022159	0	•
-11o-755	1.2217646	1.00009990	-0.33037	17'	1.00005263	0-000/11/45	0	•
-42.358	1.2217848	1.00015922	-o.6 54 7o	43'	1.00008432	0-00072870	0	•
26.036	1.2218 ₀ 8 ₀	1.00022730	-0.77077	7o'	1.00012098	0.00082819		
94.425	1,2218294	1.00028981	-0.389 97	20'	1.00015442	0.00047449		
162.811	1.2218453	1.00033652	-0.19630	12°	1.00017923	0.00025817		
231.193	1.2218555	1.00036631	-0.09907	8,	1.00019492	0.00013594		
299.574	1.2218613	1.00038344	-0.05000	7°	1.00020390	0-00007u28		
367.953	1.2218645	1.00039270	-0.02523	5*	1.00020874	0.00003604		
436,332	1,2218661	1.00039756	-0.01274	5'	1.00021126	0.00001846		
504.711	1.221867o	1.00040006	-0.00643	4'	1.00021256	0.00000951		
573.089	1.2218674	1.00040133	-0.00324	4'	1.00021322	0.00000497		
641.467	1.2218676	1.00040196	-0.00164	3'	1.00021356	0.00000267		
709.846	1.2218677	1.00040231	-0.0 0083	3'	1.00021372	0.00000151		
778.224		1.000/02/17	-0.00012	3*	1.00021381	0.00000092		
846.602		1.00040254	-0.00021	3'	1.00021385	0.00000063		
914.980	1.2218678	1.00040257	-0.00011	2*	1.00021387	0.00000048		
983,359		1.00040261	-0.000 05	2°	1.00021368	0.00000040		
1051.737		1.00040264	-0.00003	2'	1.00021399	0-00000037		

 ONEGA
 30000000
 KAPPA
 0.0100
 DELTA
 0.000100
 VECTORLENGTH
 0.40

 A.PHA
 -0.00576
 B ETA
 -1.73745
 GARRA
 -1.74320
 -1.74320

 REFLECTIONFACTOR 0.0001541
 3.1549447
 TRABSITFACTOR 1.0033181
 0.0000179

HEISTH	THETA	E KELLER	ZETA		DISTORTION F	INCTION		
-1000-000	1,4835298	1.00000000	-0.00005	2,	1.00000011	0.22020019	0.00015/09	3,15494184
-965-138	1.4835298	1.0000000	-0.cooo5	2'	1.00000016	0.00000028	0.00015409	3, 15494493
-93 ₀ . 275	1.4835298	1.00000021	-0.00009	2'	1.00000023	0.00000039	0.00015409	3,15494504
895.413	1.4835298	1.00000047	-o.nno13	3'	1.00000032	0.00000056	0.00015409	3,15/9/520
-860.551	1.4835299	1.00000072	-0.0001 ⁰	3'	1.00000045	0.00000079	0.00015409	3.15191514
-825.688	1.4835299	1.00000145	-0-00026	3*	1.00000064	0.00000112	0.0015/09	3.15491577
-790.826	1.4835300	1.00000218	-0.00037	3'	1.00000091	0.00000159	0.00015409	3.15494624
-755.961	1,4835301	1.00uoo316	-0.00 052	3*	1.00000129	0.00000225	0-00015409	3.15494639
-721.1o2	1.4935362	1.00000465	-0.00074	3'	1.00000183	0.00000319	0.00015209	3,154)/1783
-636 . 240	1.4835364	1.00000684	-0-00105	3,	1.00000259	0.00000452	0.00015409	3. 15494 917
-651.377	1.4835306	1.00000953	-0-00149	3,	1.00000367	0.00000640	0.00015409	3.15 ¹ 951 ₀ 4
-616 , 5 15	1.4835310	1.00001346	-0+00210	3'	1.00000530	o- <i>0</i> 0000?07	0-00015409	3,15/195371
-581.654	1.4835315	1.00001910	-0.00298	4'	1.00000736	0.00001384	o.coo151o9	3, 15/257/19
-516.792	1.4835322	1.00002719	-0.00!22	4'	1.00001012	0.00001319	0.00015409	3,15496294
-511.931	1.4835332	1.00003972	-0-00 598	4'	1.00001475	0.00002576	0-00015/09	3.15497641
-477.070	1.4835316	1.00005192	-0.00947	4'	1.00002098	0.00003649	0.00015409	3,15493114
-442, 269	1.4835366	1.00007749	-0.01201	5'	1.00002953	0.00005165	0.00015409	3,15499631
-4o7 - 35o	1.4835394	1.00010950	-0.01702	5'	1.0000/173	0-00007310	0-00015409	3,15501774
-372.491	1.4835432	1.00015434	-0.02!12	5 ° 6°	1.00005090 1.00008229	0.00010337	0.00015410	3.155o43o2 3.155o9o71
-337.634	1.4835487	1.00021632	-0.03417	6'		0.00014607 0.00020615	0-00015410	
-3o2.779 -267.927	1.4835562 1.4835665	1.00030270	-0.0 ⁴⁸⁴²	7'	1.00011567 1.00016349	0.00029015	0.00015/11 0.00015/11	3,15515679 3,15523511
-207.927 -233.080	1.4835809	1.00058138	-0.09722	έ,	1.00022807	0.00040832	0.00017412	3,15535296
-233.000 -198, 238	1.4835990	1.000 × 130	-0.13774	10'	1.00031622	0.00057219	0.00015114	3,15551633
-180.920	1.4836103	1.00092174	-0.16395	10'	1.00037125	0.000 97 630	0.00015414	3.15562091
-163.405	1.4836231	1.00107203	-0.10514	12'	1.00043481	0.00079834	0.00015415	3,15574299
-145.993	1.4836376	1.00123787	-0.23225	13'	1.00050785	0.00094105	0.00015417	3,15588570
-128.583	1.4836536	1.00142280	-0.27612	15'	1.00059129	0.00110743	0.00015418	3,15605208
-111.176	1.4836714	1.00162674	-0.32998	17'	1.00068597	0-00130073	0.00015419	3, 15624538
-9 3. 773	1.4836907	1.00184957	-0.39151	2c'	1.00079256	0.00152445	0.00015421	3,15646909
-76.374	1.4837116	1.00209030	-0.46592	24'	1.00091153	0.00178222	0.00015423	3. 1567 2637
-58.979	1.4837339	1.00231678	-0.55:44	31,	1.00104299	0.00207781	0.00015425	3.15702246
41.589	1.4837573	1.00261654	-0.65975	44'	1.00118668	0.00241491	0.00015427	3, 157 359 56
-24.203	1.4837815	1.00289590	-0.7850 3	75'	1.00134175	0-00279705	0.00015429	3, 15774170
-6,822	1.483Bo62	1.00318148	-0.93105	265°	1.00150680	0.00322744	0-00015432	3 . 15317 2 69
10.554	1.4838311	1.00346879	-0.89984	171	1.00183218	0.00316217		
27.925	1.4838558	1.00375404	-0. 75635	. 65'	1.00199632	0-00274061		
45.291	1.4839798	1.00403239	-0.63577	40'	1.00215012	0-00236705		
62.653	1.4839030	1.00430030	-0.53144	29'	1.00227224	0.00203811		
80.010	1.4839250	1.00455172	-0.44929	23'	1.002/12205	0.00175012		
97.362	1.4839456	1.00479343	-0-37771	19'	1.00253929	0.00149930		
114-710	1.4839616	1.00501364	-0. 31756	16'	1.00264419	0-00128186		
132-055	1.4839820	1.00521531	-0.26699	14'	1.00273723	0.00109416		
149.396 166.734	1.4839977 1.4940119	1.00539794	-0. 22 <u>448</u> -0. 18875	13' 11'	1.00281916 1.00282082	0.00093269 0.00079424		
184.069	1.484o244	1.00570708	-0.15871	10'	1.00295316	0.000(9422		
201.402	1.4840354	1.00583532	-0.13345	9,	1.00299310	0.00057490		
218.732	1.4846451	1.00594785	-0.11222	9,	1.00305361	0.00048896		
236.061	1.4840536	1.00604574	-0.09136	ģ,	1.00309354	0.00041594		
253, 367	1.4840609	1.00613062	-0.07;35	8.	1.00312771	0.00035400		
270.713	1.4840672	1.00620379	-0.06673	7'	1.00315689	0.00030152		
288.037	1.4840726	1.00626676	-0.05611	7,	1.00318173	0.00025711		
305, 360	1.4840772	1.00632073	-0.04719	6'	1.00320286	0.00021957		
322,682	1.4840812	1.00636670	-0.03968	6'	1.00322079	0.00018785		
340.003	1,4840846	1.00640596	-0.03337	6'	1.00323598	0.00016107		
357.324	1.4840874	1.00643944	-0.02B06	6'	1.00324883	0.00013849		
374.644	1.4840899	1.00616770	-0.02360	5'	1.0032 5 970	0.00011944		

391.963	1.4840920	1.00649195	-0.01985	5'	1.00326889	0-00010336
409.283	1.4840937	1.00651217	-0.01669	5'	1.00327665	o. cocc 8986
426.601	1.4840952	1.00652919	-0.01/104	5'	1.00326320	0-00007846
443.92o	1.4840964	1.00654396	-0.01181	5'	1.00328371	0-00006287
461.238	1.4840975	1.00655621	-0.00993	4,	1.00329336	0-00006079
478.556	1.4840984	1.00656669	-0.00 835	4'	1.00329728	0.00005355
495.874	1.4840991	1.006577/4	-o.oo7o2	4'	1.00370058	0.00004826
513,192	1.4840998	1.00658271	-0.00591	Ą°	1.00330336	0.000043!4
530-509	1.4841003	1.00658869	-0.00497	4.	1.00330570	0.00003939
547.8 27	1.4841007	1.00659398	-0.00418	4.	1.00330768	0-00003598
565.144	1.4841011	1.00697848	-0.00351	¥.	1.00330934	0.00003311
582.462	1.4841015	1.006/20220	-0.00295	4'	1.00331073	0.00003070
702,902 709,779	1.4841017	1.00660545	-0.00218	4'	1.00331191	0-00002866
617.096	1.4841019	1.00660796	-0.00209	3'	1.00331289	0-00002676
634.413	1.4841021	1.00661021	-0.00176	3*	1.00331373	0.00002552
651.73o	1.4841023	1.00661195	-0.00148	3°	1.00331443	0-0000M31
649.048	1.4841034	1.00661372	-0-00134	3'	1.00331502	0.00002330
686.365	1.4841026	1.00661498	-0.00105	3*	1.00331551	o.oooo2244
703.682	1.4341026	1.00661597	-0.00088	3,	1.00331593	0-00002172
720.999	1.48/1027	1.00661697	-0.00074	3*	1.00331628	0.00002111
738.316	1.4841028	1-00661771	-0.00062	3*	1.00331657	0.00002061
755.633	1.4841029	1.00661349	-0.00052	3*	1.00331682	0.00002018
772-750	1.4341029	1.00661876	-0.00044	3'	1.00331703	0.00001982
790.267	1.4841029	1.00661949	-0-20037	3'	1.00331721	0.00001951
807.584	1.4841030	1.00661996	-o.ooo31	3,	1.00331735	0.00001926
824.901	1.4841030	1.00562022	-0.00×26	3,	1.00331748	0.00001904
842.218	1.4841030	1.00663048	-0-00022	3°	1.00331753	0.00001896
859.534	1-4841030	1.20663069		3'	1.00331767	0-00001972
876.851	1.4841031	1.00662095	-0.00016	3*	1.00331774	0.00001859
894.168	1,4841031	1.00662095		3,	1.00331780	0.00001848
911.485	1.4841031	1.00662121	-0.00011	2°	1.00331786	0.00001839
928.802	1.4841031	1.00662147	-0.00009	2'	1.00331790	0.00001831
946.119	1.4841031	1.00662147		2'	1.00331794	0.00001825
963.436	1.4841031	1.00662147		2*	1.00331796	0.20001820
980.753	1.4841031	1.00662173	-0.00006	2,	1.00331799	0.00001815
998.070	1,4841031	1.20662173	-0.00005	2'	1.00331801	0.00001811
1015.387	1.4841931	1.00662173		2'	1.00331803	0.00001908
200,0000						

 OREGA
 30000000
 KAPPA
 0.0100
 DELTA
 0.000100
 VECTORLENGTH
 0.50

 ALPHA
 -0.01162
 BETA
 -0.86082
 GAMMA
 -0.87244

 REFLECTIONFACTOR
 0.0049072
 3.1546691
 TRANSITFACTOR
 1.0135752
 0.0001134

u C I CTU	THETA	E KELLER	ZETA		DISTORTION FU	MCTION		
HEIGTH	THETA 1.5271629		-0.00005	2'	1.00000026	0.00000022	0.00190720	3,15466827
-1000-000		1.00000000	-0.00005	2,	1.00000032	0.00000028	0.00490720	3, 15466832
-978 19o	1.5271629	1.00000000	-0.00007	2,	1.00000040	0.000000035	0.00490720	3,15466839
-956.38o	1.5271629	1.00000000		2,		0.00000043	0.00490720	3. 15466848
-934.571	1.5271630	1.00000094	-0.00009	2,	1.00000050 1.00000062	0.00000054	0.00490720	3, 15466858
<i>-</i> 912.761	1.5271630	1.00000094	-0.00011	2 3'		0.00000007	0-00490720	3,15466871
-890.951	1.5271630	1.00000187	-0.00014	3,	1.00000077	0.000000000	0.00490720	3,15466838
-869.141	1.5271631	1.00000290	-0.00017	3'	1.00000095	0.00000000	0.00490720	3, 15466908
-847-332	1.5271631	1.00000384 1.00000487	-0.00021 -0.00026	3,	1.00000118 1.00000148	0.00000109	0.00190720	3.15466933
-825.522	1.5271631			3,	1.00000130	0.0000012)	0.00190720	3.15466964
-803.712	1.5271632	1.00000683	-0.00032	3*	1.00000228	0.00000100	0.00490721	3.15467004
-781.963	1.5271634	1.00000973 1.00001272	-0.00040	. 3°	1.00000284	0.00000199	0.00490721	3, 15467052
-760.093 -738.284 \	1.5271635 1.5271636		-0-00050 -0-00062	3 ,	1.00000353	0.00000227	0.00490721	3.15467113
	1.5271638	1.00001563		3,	1.00000439	0.00000383	0.00490722	3.15467188
-716.474 -694, 665	1.527164o	1.00001977	-0.00077 -0.00096	3 '	1.00000546	0.00000476	0.00490722	3, 15467281
-67 2. 856	1.5271643	1.00003126	-0.00090	3,	1.00000510	0.00000270	0.00490722	3.15467397
			-0.00149	3,	1.000000019	0.00000737	0.00490724	3. 15467542
-651.o47	1,5271616	1.00003715	-0.00149 -0.00185	3 '	1.00001050	0.00000737	0.00490725	3. 15467720
-629,238	1.5271650	1.00004697		3 '			0.00490726	3.15467944
-607.429	1.5271655	1.00005867 1.00007336	-0.00230 -0.00286	4'	1.00001306 1.00001623	0.00001139	0.00490728	3. 15468222
-535-62o	1.5271661			4,		0.00001417		3. 15468 567
-563.812	1.5271669	1.00009198	-0.00356	4,	1.00002019		0.00190729	3, 15468996
-542 on4	1.5271679	1.00011454	-0.00443	4,	1.00002510	0.00002191		3, 15469529
-520.197	1,5271691	1.00014196	-0-00551	4,	1.00003125	0.00002(2)	0.00490735	3, 15470192
-498.39 ₀ -476.585	1.5271707	1.00017716 1.00022030	-0.00685 -0.00852	4'	1.00003978 1.00004921	0.00004212	0.00190739	3.15471017
-470.707 -454.780	1.5271725	1.00022030		4,		0.00005212	0.00490749	3. 1547 2040
	1.5271749	1.0002/422	-0.01059	5°	1.00005990	0.00007230 0.00006509		3. 1547 3313
432,976	1.5271778 1.5271813	1.00042215	-0.01317 -0.01638	5'	1.00007442 1.00009245	0.000000009	0.00490756	3.15474894
-411.173 -389.373	1.5271857	1.00052311	-0.01030	5*	1.00011481	0.00010052	0.00490776	3,15476856
-367.57 4	1.5271912	1.00064863	-0.02533	5°	1.00014251	0.00010072	0.00490790	3.15479293
-307 • 574 -345 • 779	1.5271912	1.00080070	-0.023350	6 '	1.00014231	0.00012109	0.00490806	3, 15492318
-323.986	1.5272060	1.00098918	-0.03170 -0.03917	6,	1.00021928	0.00019263	0.00490827	3.15486068
-323.900 -302.198	1.5272161	1.00122003	-0.03917 -0.04870	6 '	1.00021920	0.00019203	0.0019021	3.15!9c715
-362-190 -280-415	1.5272283	1.00122003	-0. 06056	7,	1.00033644	0.00020910	0.00490335	3.15496470
-258.638	1.5272431	1.00184153	-0.07529	7,	1.00033014	0.0003/734	0.00190924	3, 1550 3589
-236,868	1.527261o	1.00225332	-0.01325 -0.09360	8,	1.00051406	0.000376580	0.00470772	3.15512384
-215.107	1.5272824	1.00274643	-0.11636	9,	1.000/1400	0.00056430	0.004/0//2	3, 15523235
-21 7. 107 -193. 357	1.5273078	1.00333225	-0.14463	10'	1.00078054	0.00069791	0.00491103	3, 15536596
-171-62 ₀	1.5273377	1.00303225	-0.1 7975	11,	1.00075874	0.00086208	0.00491190	3,15553012
-149.897	1.5273725	1.00482673	-0. 22335	13'	1.00117447	0.00106324	0.00491296	3, 1557 3129
-128.192	1.5274123	1.00574963	-0.27750	15'	1.00117417	0.00130322	0.00191290	3.15597705
-106-507	1.5274574	1.00679706	-0.34470	17*	1.00174474	0.00150813	0.00491576	3. 15627618
-84.844	1.5275075	1.00796198	-0.42fo8	22,	1.00211336	0.00197009	0.00191757	3.15663873
-63-207	1.5275621	1.00923553	-0. 53149	29'	1.00254712	0.00240796	0.00491970	3.15707600
-41.596	1.5276204	1.01059882	-0. 65970	44.	1.00305262	0.00293244	0.00492218	3.15760049
-20.015	1.5276814	1.01202956	-0.81861	90'	1.00363531	0.00355765	0.00492504	3.1582257o
1.536	1.5277437	1.01349391	-0.98476	× 316'	1.01711072	0.00422364	0.001/2/01	G(1)/L()(0
23.055	1,5278059	1.01496058	-0.79409	79'	1.00990001	0.00357960		
44.544	1.5278666	1.01639549	-0.64054	41'	1.01048869	0.00296909		
66.002	1.5279245	1.01776847	-0.51684	28'	1.01099792	0.002/0909		
87.432	1.5279785	1.01905371	-0.41715	21'	1.01143395	0.00203491		
108.834	1.528 ₀ 281	1.02023472	-0.33678	17'	1.01180401	0.00168403		
130.212	1.528o727	1.02129980	-0. 27196	14'	1.01211565	0.00139482		
151.567	1.5281121	1.02224278	-0.21966	12'	1.01237632	0.00115722		
172.903	1.5281465	1.02306885	-0.17746	11'	1.01259311	0.00096257		
194.221	1.5281762	1.02378142	-0.14339	1o'	1.01277253	0.00090297		
215.525	1.5282015	1.02439010	-0.11587	9,	1.01292042	0.00067368		
/- /-/	//-/		-34 22 701	,		2200001 000		

236,816	1.5282228	1.02190298	-0.09365	8,	1.01304191	0.00056797
258.096	1.5282108	1.02533538	-0.07570	7'	1.01314142	0.00048199
279.367	1.5282556	1.02569428	-0.06120	7'	1.01322274	0.00041212
300.631	1.528268o	1.02599338	-0.04947	6'	1.01328907	0.00035541
321.889	1.5282783	1.02623985	-0.04000	6'	1.01334308	0 -00 030940
343.142	1.5282866	1.02644200	-0.03234	6°	1.01338702	0.00027210
364.390	1.5282935	1.02660821	-0.02615	5 '	1.01342271	0.00024187
385.635	1.5282991	1.02674378	-0.02115	5'	1.01345168	0.00021738
406.877	1.5283037	1.02685399	-o.o171o	5 '	1.01347517	0-00019754
428.117	1.5283074	1.02694414	-0.01 3 83	5'	1.01349423	0.00018150
449.355	1.5283104	1.02701728	-0.01118	5'	1.01350966	0.00016849
470.592	1.5283129	1.02707665	-0.00004	4'	1.01352217	0.00015798
491.827	1.5283149	1.02712548	-0.00731	4'	1.01353230	0.00014947
513.061	1.5283165	1.02716467	-0.00591	4'	1.01354050	0.00014259
534.295	1.5283178	1.02719657	-0.00178	4'	1.01354713	0.00013702
555.528	1.5283189	1.02722306	-0.00387	4'	1.01355250	0.00013251
576.760	1.5283198	1.02724325	-0.00313	4'	1.01355685	0.00012887
597.992	1.5283205	1.02726019	-0.00253	4'	1.01356036	0.00012591
619. 224	1.528321o	1.02727398	-0. ∞205	3'	1.o135632o	0.00012353
640.455	1.5283215	1.o27 <i>2</i> 857o	-0.00165	3'	1.o135655o	0.00012160
661.686	1.5283219	1.02729417	-0.00134	3*	1.01356737	0.00012004
682.917	1.5283222	1.02730156	-0.00108	3,	1.01356887	0.00011878
704.147	1.5283224	1.o273o796	-0•00087	3*	1.01357009	0-00011776
725.378	1.5283226	1.02731219	-0.00071	3'	1.01357108	0.00011693
746,608	1.5283228	1.02731643	-0.00057	3*	1.01357187	0.00011627
767.839	1.5283229	1.02731967	-0.00046	3'	1.01357252	0.00011572
789 .0 69	1.528323o	1.02732175	-0.00037	3'	1.01357304	0.00011529
810 . 2 99	1.5283231	1.02732391	-0.00030	3'	1.01357316	0.00011493
831.530	1.5283231	1.02732490	-0.00024	3'	1.0135738o	0.00011465
852 .76 0	1.5283232	1.02732707	-0.00020	3,	1.01357 40 7	0.00011442
873.990	1.5283233	1.02732815	-0.00016	3'	1.01357429	0.00011423
895 . 22 0	1.5283233	1.02732923	-0.00013	3'	1.01357448	0.00011408
916-450	1.5283233	1.02732923	-0.00010	2'	1.01357463	0.00011396
937.680	1.52832 34	1.02733022	-0.00008	2'	1.01357475	0.00011386
958.91o	1.5283234	1.02733022	-0.00007	2'	1.01357483	0.00011378
980.141	1.5283234	1.02733130	-0.00006	2'	1.01357491	0.00011372
1001.371	1.5283234	1.02733130	-0.00004	2'	1.01357497	0.00011367

	30000000 KAPI			. 001000		TH 0.40		
REFLECTIO	NFACTOR o	3, 2149			1.0021465	0.0009313		
ALPHA	-0.01464 BE	ta -6.82	918 GAMMA	-6.	84382	1:32 NO	7 19	10
							- •	15:13
HEIGTH		E KELLER	ZETA		DISTORTION F			
4000.000		1.00000000	-0.00005	2'	1.00000010	0.00000065	0	0
-931.596		1.00000018	-0-00009	2'	1.00000019	0.00000129	0	0
-863.192		1.00000051	-0.00018	3,	1.00000037	ი.იიიიი255	9	0
-794.788		1.00000121	-o.ooo35	3'	1.00000074	0.00000505	0	•
-726.384		1.00000262	-0.00070	3'	1.00000146	0.00001001	0	0
-657.980		1.00000539	-0.00139	3,	1.00000290	0-00001985	0	0
-589. 576		1.000010 ⁸ 3	-0.00275	4'	1.00000573	0.00003931	0	0
-521.173		1.00002160	-0.00545	4'	1.00001134	a.ooon778a	0	0
-452.77o		1.00004277	-0.01081	4'	1.00002236	0.00015381	0	0
-384,369		1.00008409	-0.02141	5'	1.00004389	o. ooo 3o 332	0	0
-315.971		1.00016351	-0.04344	6°	1.00008532	o. 000 <i>5</i> 9533	0	0
-247.577		1.00031182	-0.0 ⁸⁴ 10	8,	1.00015294	0.00115791	0	0
-179.193		1.00057457	-0.16664	11'	1.00030115	. 0.00221438	•	0
-110.826		1.00099924	-0.33013	17'	1.00052617	0.00411107	0	•
-42,486		1.00159335	-0.65386	43'	1.00084344	0-00727908	0	•
25,816	1.2225058	1.00227636	-0.77247	7o <u>.</u> *	1.00120970	0-00834821		
94.074	1,2227194	1.00290502	-0.39034	20'	1.00154575	0.00480185		
162, 293	1.2228791	1.00337591	-0.19732	12'	1.00179549	0-00263031		
230.481	1.2229813	1.00367713	-0•09978	8,	1.00195394	0.00140113		
298.650	1,223 ₀ 4 ₀ 1	1.00385085	-0.05046	7'	1.00204476	0-00073955		
366.807	1.2236721	1.00391510	-0.02553	5'	1.00209385	0.00039369		
434.959	1.2230888	1.00379455	-0.01291	5'	1.00211955	0.00021572		
503.108	1.2236974	1.00402004	-0.00653	4'	1.00213279	0.00012489		
571.255	1.2231019	1.00403305	-0.00330	4'	1.00213955	0-00007875		
639.401	1.2231041	1.00403967	-0.00167	3'	1.00214297	0.00005534		
707.547	1.2231052	1.00404303	-0.00085	3,	1.00214472	0.00004349		
775.693	1,2231o58	1.0040!472	-0.000 1 3	3'	1.00214560	0-00003749		
843,838	1.2231061	1.00404559	-0.00022	3'	1.00214604	0.00003146		
911.984	1.2231062	1.00404603	-0.00011	2'	1.00214627	0.00003292		
980.129	1.2231063	1.00104624	-0.00006	2'	1.00214639	0.00003214		
1048.274	1.2231064	1.00404635	-0.00003	2'	1.00214644	0.00003175		

 CMEGA
 30000000
 KAPPA
 0.0100
 DELTA
 0.001000
 VECTORL ENGTH 0.40

 A.PHA
 -0.07936
 BETA
 -1.69463
 GAMMA
 -1.74399

 REFLECTIONFACTOR
 0.0019568
 3.2774495
 TRANSITFACTOR
 1.0358776
 0.0019568

HE16TH	THETA	E KELLER	ZETA		DISTORTION F			
-1000-000	1,4835298	1.00000000	-0.0000 5	2'	1.00000113	0.00000196	0.00188681	3,27745143
-982-569	1.4835298	1.00000047	-0.00005	2'	1.00000134	0.00000233	0.00188681	3, 27745180
965.138	1.4835299	1.00000145	-0.00000	2'	1.00000159	0.00000278	0.00188681	3, 27745225
-947 - 707	1.4835300	1.00000218	-0-00008	2'	1.00000190	0.00000331	0.00188681	3.27745277
-930.275	1.4935361	1.00000316	-0.00009	2'	1.00000226	0-00000393	0.00188682	3. 277453to
-912.844	1.4835302	1.00000439	-0.00011	2'	1.00000268	0.00000469	0.00188682	3, 277 45415
-895-413	1.4835303	1.00000564	-0.00013	3'	1.00000320	0-00000557	0.00188682	3. 27745505
-877.982	1.4835304	1.00000735	-0.00015	3,	1.00000381	0.00000664	0.00188682	3, 27745610
-8 60- 551	1.4835306	1.00000931	-0-00018	3'	1.00000453	0+00000790	0.00188682	3. 277457 <i>3</i> 7
-843.120	1.4835368	1.00001149	-0.00022	3'	1.00000539	0 • 00000940	0.00188682	3,27745888
-825.639	1.4835310	1.00001397	-0.00 026	3'	1.00000642	0.00001120	0.00188682	3,27746066
-808.258	1.4835313	1.00001713	-0.00031	31.	1.00000764	0.00001333	0-00133683	3, 27746280
-790 - 827	1.4835316	1.00002107	-0.000 37	3'	1-00000910	0-00001586	0.00138683	3. 27746534
-773.397	1.4835320	1.00002573	-0.00014	3'	1.00001083	0-00001389	0.00188683	3. 27746835
-75 5 - 966	1.4835325	1.00003111	-0.00 052	3'	1.00001289	0.00002248	0.00188684	3. 27747 195
-73 8 - 535	1.4835331	1.00003773	-o.oon62	3,	1.00001534	0.00002676	0.00188684	3,27747623
-721.105	1.4835338	1.00004560	-0.00074	3,	1.00001326	0-00003186	0 .0 0183 6 85	3, 27748132
-703.674	1.4835346	1.00005466	-o.noo88	3,	1.00002174	0.00003792	0.00138635	3, 27748739
-686 . 24 4	1.4835355	1.00006569	-0.00105	3'	1.00002588	0.00001514	0.00133636	3. 27749461
-668.814	1.4835366	1.00007843	-0-00125	3,	1.00003080	0.00005373	0.00188637	3. 27750320
-651.384	1.493538o	1.00009416	-0-00148	3,	1.00003666	0.00006396	0.00183638	3, 27751342
-633. 955	1 .4 83 53 96	1.00011281	-0.00177	3'	1.00004363	0-00007613	0.00133689	3, 27752560
-616.526	1.4835415	1.00013139	-0.00?10	3'	1.00005193	0.00009061	0.00183691	3, 27754008
-599-097	1.4835/138	1.00015037	-0.00 ²⁵ 0	4,	1.00006180	0.00010785	0.00188693	3, 27755732
-581.668	1.4835465	1.00019156	-0.00298	4,	1.00007355	0.00012837	0.00188695	3. 277 57784
-564.211	1.4835497	1.00022859	-0.00 354	4,	1.00008753	0.00015279	0-00183698	3, 27760226
-546,813	1.4835535	1.00027226	-0.00 ⁴ 22	4'	1.00010416	0-00018184	0.00188701	3, 27763131
-529.387	1.4935581	1.00032477	-0.00502	4,	1.00012393	0.00021641	0.00183704	3, 277 66508
-511.961	1.4835635	1.00038667	-0.00598	4'	1.00014744	0.00025753	0.00188709	3, 27770700
-494.537	1.4835699	1.00046029	-0.00712	4'	1.00017540	0.00030645	0.00188714	3, 27775592
-477.114	1.4335775	1.0005/1775	-0.00347	4"	1.00020863	0.00036463	0.00138720	3, 27781411
459.692	1.4835866	1.00065165	-0.01008	4,	1.00024812	0.00043382	0.00183723	3, 27733333
142,272	1.4835973	1.00077501	-0.01200	5'	1.00027503	0-00051609	0.00188737	3, 27796556
-424.855	1.4836100	1.00092101	-0.01429	5,	1.00035073	0.00061368	0.00188747	3, 27906335
407.139	1.4836250	1.00109392	-0.01700	5*	1.000/1685	0.00073010	0.00183760	3, 27817956
-390.027	1.4836429	1.00129893	-0.02024	5'	1.00049527	0.00096915	0.00138775	3, 27831762
-372.619	1.4836639	1.00154150	-0.02 <u>4</u> c8	51	1.00058323	0.00103210	0.00188792	3, 27948157
-355.214	1.4336838	1.00182739	-0.02866	6'	1.00069834	0.00122669	0.00188813	3, 27867517
-337.815	1.4837181	1.00216507	-0.03411	6'	1.00032866	0.00145756	0.00183837	3.27890703
-320,421	1.4837526	1.00256240	-0.04059	6'	1.00098269	0.00173126	0.00198867	3,27918074
-303.034	1.4937930	1.00302901	-0.0133b	6*	1.00116453	0-00205553	0.00198901	3, 27950500
-285,656	1.4338404	1.00357604	-0.05747	7'	1.00137889	0.00243934	0.00188941	3, 27968882
-268, 286	1.4838957	1.00421559	-0.06837	7.	1.00163111	0.00289318	0.00138989	3, 28, 31265
-250,928	1.4839600	1.00496089	-0.08133	8,	1.00192726	0.00342916	0-00189045	3, 28, 87863
-233,583	1.4840316	1.00582559	-0-09673	8'	1.00227414	0.00106125	0.00189110	3, 28151073
-215, 252	1.4941206	1.00682485	-0.11503	91	1.00267927	0.00480548	0.00189187	3, 28225496
-198,939	1.4342193	1.00797399	-0.13678	10	1.00315088	0.00568005	0.00189276	3, 28312953
-181,645	1.4343318	1.00928730	-0.16260	10*	1.00369776	0.00670554	0.00189379	3. 284 15502
-164.373	1.4844593	1.01077946	-0.19326	11'	1.00/132910	0-00790195	0.00189498	3. 28535142
-147.127	1.4846025	1.01246088	-0.22963	13'	1.00505427	0.00930370	0.00189635	3, 28675319
-129,91o	1.4847620	1.01434074	-0.27279	14"	1.00598240	0.01092961	0.00189791	3. 288 37909
-112,721	1.4849380	1.01642262	-0.32392	16'	1.00682190	0.01281256	0.00189968	3, 29o 262o4
-95,574	1.4851302	1.01970520	-0.38453	19'	1.00787990	0.01498418	0.00190168	3, 29213367
-78,461	1.4853375	1.02117989	-0.45630	23'	1.00/06153	0.01747724	0.00190391	3, 29492673
-61.391	1.4855585	1.02383100	-0.54123	30'	1.01036913	o-o 2o 3248 6	0.00190638	3, 20777435
-41.364	1.4857911	1.02663489	-0.64170	41'	1.01180143	0.02355957	0.00190908	3. 30100907
-27.383	1.4860324	1.02956118	-0.76016	66'	1.01335297	0.02721215	0.00191201	3. 30466165
, 4000	-1		-001 0010				UI UU 17 1 40 1	

-10.451	1.4862793	1.03257324	-o-9oo77	172'	1.01501323	0.03131037	0.00191514	3, 3,67 5988
6.433	1.4865285	1.03563037	-0. 93770	282'	1.01867606	0.03579333		
23, 266	1.4867764	1.03868897	-0.79242	78°	1.02047939	0.03138641		
40.051	1.4870195	1.04170652	-0.66998	46"	1.02217890	0.02747531		
56.78 6	1.4872547	1.04461289	-0.56673	32'	1.02375932	0.02402399		
73.475	1.4874793	1.04746217	-0.47962	25'	1.02521169	0.02099387		
90.119	1.4876911	1.05013540	-0.40608	21'	1.02653252	0.01834545.		
106.721	1.4878886	1.05263980	-0.34397	17'	1.02772269	0.01603980		
123, 264	1.4830708	1.05496039	-0.29146	15'	1.02878657	0.01403941		
139.810	1.4882372	1.05708871	-0.24707	13'	1.02973089	0.01230905 0.01081612		
156.303	1.4883878	1.05902314	-0.20950	12'	1.03056399	0.00953088		
172.766	1.4885230	1.06076574	-0.17770	11' 10'	1.03129509 1.03193373	0.00933000		
189.202	1.4886436	1.06232410	-0.15077 -0.12795	3,	1.03243942	0.00747914		
205.614	1.4887504	1.06370904 1.06493158	-0.12/95 -0.10860	9,	1.03297129	0.00666753		
222.005	1.4888445	1.06600592	-0.09220	8,	1.03338793	0.00597306		
238, 377 254, 733	1.438927o 1.488999o	1.06694538	-0.07829	8,	1.03374727	0.00537942		
271.074	1.4890616	1.06776380	-0.06649	7'	1.03405652	0.0048724o		
287.403	1.4891159	1.06847403	-0.05647	7,	1.03432217	0.00443967		
303.721	1.4891628	1.06908894	-0.04797	6,	1.03455003	0.00/107057		
320.029	1.4892033	1.06961942	-0.04075	6'	1.03474520	0.00375592		
336.330	1.4892381	1.07007679	-0.03462	6,	1.03491218	0.00348780		
352. 623	1.489268o	1.07046922	-0.02942	6,	1.03505491	0.00325941		
368.911	1.4892936	1.07080642	-0.02499	5'	1.035176Bo	0.00306493		
385.194	1.4893156	1.07109540	-0.02124	5'	1.03528083	0.00289937		
401.472	1.4893344	1.07134308	-0.01805	5*	1.03536956	o-oo275347		
417.746	1.4893504	1.07155437	-0.01534	5'	1.03544520	0.00263856		
434.017	1.4893641	1.07173506	-0.01303	5 '	1.03550965	0.00253654		
450.286	1.4893758	1.07188926	-0.0110 ⁸	5'	1.03556455	0.00244977		
466.552	1.4893858	1.07202090	-0.00941	4,	1.03561129	0.00237595		
482.816	1.4893944	1.07213322	-0.00800	4'	1.03565109	0.00231317		
499.078	1.4894016	1.07222872	-0.006%	4'	1.03568496	0.00225979		
515.339	1.4894078	1.07231028	-0-00578	4'	1.03571378	0.00221439		
531.599	1.4894130	1.07237982	-0.00491	4'	1.03573830	0.00217579		
547.858	1.4894175	1.07243874	-0.00418	4,	1.03575915	0.00214297		
564.116	1.4894213	1.07248922	-0.00355	4'	1.03577690	0.00211507		
580.373	1,4894246	1.07253188	-0.00302	4' 4'	1.03579200 1.03580483	0.00209135 0.00207118		
596.629	1.4894273	1.07256845	-0.00256 -0.00218	3,	1.03581573	0.00207110		
612,885	1.4894297	1.07259899 1.07262563	-0.00210 -0.00185	3,	1.03532502	0.00207207		
629.140	1.4894317 1.4894334	1.07264800	-0.00107	3'	1.03583290	0.00202706		
645.395	1.4894348		-0.00134	3'	1.03583961	0.00201654		
661.650 677.904	1.4894361	1.07268341	-0.00134	3'	1.03584531	0.00200758		
694.158	1.4894371	1.07269697	-0.00097	3'	1.03585016	0.00199997		
710.412	1.489438o	1.07270877	-0.00082	3'	1.03585428	0.00199350		
726.666	1.4894387	1.07271876	-0.00070	3'	1.03585779	0.00198800		
742.919	1,4894394	1.07272727	-0.00059	3,	1.03586077	0.00198333		
759.173	1,4894399	1.07.273449	-0.00050	3,	1.03586330	0.00197935		
775.426	1.4894404	1.07274054	-0.00043	3,	1.03586546	0.00197598		
791.680	1.4894408	1.07274571	-0.00036	3'	1.03586727	0.00197311		
807.933	1.4894411	1.07275023	-0.00031	3'	1.03586883	0.00197066		
824.186	1,4894414	1.07275387	-0.000 26	3'	1.03587016	0.00196859		
840.439	1.4894416	1.07275721	-0.00022	3,	1.03587128	0.00196683		
856.692	1.4894419	1.07275992	-0.00019	3'	1.03587223	0.00196533		
872.945	1.4894420	1.07276233	-0.00016	3'	1.63587365	0.00196405		
889.198	1,4894422	1.07276415	-0.00014	3*	1.03587374	0.00196297		
905.451	1.4894423	1.07276597	-0.00012	2'	1.03587432 1.03587482	0.00196205 0.00196127		
921.703	1.48944.24	1.07276720	-0.00010	2'		0.0019612/		
937.956	1.4894425	1.07276838	-0.00008	2 ' 2'	1.03587525 1.03587561	0.00190001		
954.209	1.4894426	1.07276960	-0.00007	2'	1.03587591			
970.462	1.4894427 1.4894427	1.07277054 1.07277113	-0.00006 -0.00005	2'	1.03587617	0.00197915		
986.715	1,4094427	1.07277172		2,	1.03587639	0.00195880		
1002.967	. 1+40 /14 2/	100(4(11(4	-U-UU001	.*	1000701009	U-UU-7,700		

 OMEGA
 30000000
 KAPPA
 0.0100
 DELTA
 0.001000
 VECTORL ENGTH 0.50

 ALPHA
 -0.13565
 BETA
 -0.73719
 GAMMA
 -0.87284

 REFLECTIONFACTOR 0.0875228
 3.2780971
 TRANSITFACTOR 1.1999593
 0.0159014

HEIGTH	THEY	E KELLER	ZETA		DISTORTION FU	MCTION		
	THET A 1:5271629			2'			0.08752299	3, 27809931
-1000-000 -978-190	1.5271631	1.00000000	-0.00005	2,	1.00000258	0.00000225	0.00172277	3, 27809986
-976.196 -956.381	1.5271632		-0.00006	2,	1.00000320	0.00000279	0.08752312	3, 27810054
		1.00000580	-0.00007	_	1.00000399	0.00000348		
-934.571	1.5271634	1.00001170	-0.00009	2'	1.00000496	0.00000433	0.08752320	3, 27810139
-912.761	1.5271637	1.00001759	-0.00011	2'	1.00000617	0.00000538	0-08752331	3.27810245
-890.952	1.527164o	1.00002442	-0.00014	3'	1.00000767	0-00000669	0.08752344	3.27810376
-869.143	1.5271644	1.00003321	-0.00017	3,	1.00000954	0.00000832	0.08752360	3, 27810539
-847.334	1.5271649	1.00004398	-0.00021	3,	1.00001186	0.00001035	0.08752381	3,27810742
-825.525	1.5271654	1.00005671	-0.00026	3'	1.00001475	0-00001287	0.08752406	3.27810994
-803,716	1.5271661	1.00007336	-0.00032	3,	1.00001835	0.00001601	0.08752437	3, 27811307
-781.908	1.5271670	1.00009301	-0.00040	3'	1.00002281	0.00001992	0-08752477	3.27811698
-760.100	1.5271681	1.00011940	-0.00050	3,	1.00002837	0.00002477	0.08752525	3, 27812183
-738.293	1.5271695	1.00015075	-0.00062	3,	1.00003528	0.00003080	0.08752586	3, 27812786
-716.487	1.5271713	1.00019091	-0-00077	3,	1.00004388	0-00003830	0-08752661	3, 27813537
-694.681	1.5271734	1-00023986	-0.00096	3,	1.00005457	0.00004763	0.08752754	3. 27814470
-67 2.877	1.5271761	1.00030164	-0.00120	3,	1.00006785	0-00005924	0.08752871	3, 27815636
-651 .o 73	1.5271794	1.00037805	-0.00149	3'	1.00008438	0.00007366	0.08753015	3. 27817073
-629,272	1.5271835	1.00047216	-0.0 0185	3,	1.00010492	0.00009160	0.08753195	3, 27818867
-607.472	1.5271887	1.00059082	-0.00230	3,	1.00013046	0.00011390	0.08753419	3,27821097
-585-675	1,5271951	1.00073697	-0.00286	4'	1.00016220	0.00014163	0-08753697	3, 27823869
-563,882	1.5272030	1.00091851	-0.003 56	4.	1.00020165	0-00017609	0.08754042	3, 27827316
-542° o92	1.5272128	1.00114538	-0.00442	4'	1.00025067	0.00021892	0.08754471	3,27831598
-520 - 307	1.5272251	1.00142640	-0.00550	4'	1.00031158	0.00027215	0.08755004	3, 27836921
-4 98 . 528	1.52724o2	1.00177468	-0-00684	4'	1.00038722	0.00033827	0.08755666	3, 27843533
-476 . 757	1.5272589	1.00220597	-0-00850	4'	1.00048113	0.00042040	0.08756488	3. 27851746
-454.995	1.5272322	1.00274247	-0.01057	4'	1.000 <i>5976</i> 9	0.00052238	0-08757508	3, 27861945
-4 33 . 245	1.5273110	1.00340646	-0.01314	5'	1.00074228	o.ooo64895	0.08758774	3, 27874602
-4 11 . 509	1.5273466	1.00422735	-0.01632	5 '	1-00092152	o•000 ⁸ 0 <i>5</i> 97	0.08760342	3, 2789o3o4
-389.791	1.5273904	1.00524313	-0. 02033	5 '	1.00114355	0.00100064	0.08762 2 86	3.27909771
-368°095	1.5274446	1.00649840	-0.0 2520	5'	1.00141832	0-00124183	0-08761690	3, 27933890
-346.426	1.527511o	1.00804415	-o.o313o	6'	1.00175795	0.00154036	0-08767663	3.27963742
-324.790	1.5275925	1.00994472	-0.03 636	6'	1.00217718	0-00190943	0-08771332	3. 28000651
-303.195	1.5276919	1.01227628	-0.0 4822	6'	1.00269373	0.00236513	0.08775853	3 , 2 8046220
-281.649	1.5278136	1.01512847	-0.05982	7'	1.00332883	0.00292682	0.08781412	3 , 28 1 ₀ 2389
-260.164	1.5279595	1.01860027	-0.07415	7'	1.00410767	0.00361774	o-o8788228	3, 28171481
-238.753	1.5281358	1.02281211	-0.09186	8,	1.00505981	0.00446556	0.08796562	3, 26256263
-217.429	1.5283464	1.02788791	-0.11369	91	1.00621947	0.00550284	0-08806711	3,28359992
-196, 21o	1.5285960	1.03396828	-0.14056	lo'	1.00762565	0-00676753	0.08819019	3, 28486460
-175.116	1.5288887	1.04119373	-0.17357	11'	1.00932189	0.00830317	o.o8833865	3,28640024
-154.169	1.5292284	1.0497o31o	-0.21402	12'	1.01135574	0.01015891	0.08851665	3, 28825599
-133.391	1.5296173	1.05961960	-0.26315	14 *	1.01377760	0.01238926	0.08872862	3, 29,48634
-112,807	1.5300562	1.07103852	-0. 32366	16'	1.01663907	0.01505329	0-03897907	3, 29315037
-92.442	1.5305438	1.08401592	-0.39676	20*	1.01999085	0.01821345	0.08927242	3, 29631054
-72.322	1.5310761	1.09854817	-0.48519	25'	1.02388012	0.02193400	0.08961282	3, 3000 3110
-52.467	1.5316470	1.11457253	-0.59175	35'	1.02834783	0.02627908	0.09000385	3, 30437618
-32.897	1.5322477	1.13194445	-0.71966	55'	1.03342613	0.03131060	0.09044832	3.30940771
-13,627	1.5328681	1.15046418	-0.87260	132'	1.03913638	0.03703629	0-09094809	3, 31518341
5.332	1.5334968	1.16986220	-0.94308	× 316'	1.13567216	0.05401918		-
23,978	1.5311226	1. 1898 2657	-0.78680	76'	1. 14455507	0.04798471		
42, 310	1.5347348	1.21003115	-0.65501	43'	1.15231234	0.04293356		
60.337	1.5353243	1. 23014417	-0.5/696	31'	1.15904722	0.03870593		
73.069	1.5358837	1.24985871	-0.45809	24'	1.16486774	0.03516627		
95.522	1.5364076	1,26890352	-0.38473	19'	1.16988058	0.03220004		
112,713	1.5368925	1.28705825	-0.32396	17'	1.17418685	0.02971119		
129.662	1.5373371	1.30416148	-0.27345	14"	1.17787961	0.02761968		
146.388	1.5377406	1.32008596	-o. 231 34	13'	1.18104256	0.02585909		
162.913	1.5391643	1.33477258	-0.1961o	12'	1.18374993	0.02437437		
102.713	Te 30-17030	100011100	-0.0 47 010	14	T0 T0 01 4333	0.0223(23)		

470 05/	4 5704500	4 2402-104	-0-16653	11'	1 184-4450	99199
179.256	1.5381299	1.36820196 1.36038130			1.18606659 1.18804884	0.02312002
195.437	1.5387196		-0.14165	10'	1. 18974520	0.02205743
211.472	1.5389762	1.37135202	-0.12057	8,	1. 19119726	0.02115842
227.3%	1.5392026	1.38118613	-0.10292 -0.03733	8,		
243.174	1.5394014	1.38993667		8,	1.19244065 1.19350574	0.01974428 0.01919084
258.869	1.5395756	1.39768583	-0.07512	7'	1.19441343	0.01919004
274.477	1.5397279	1.40453805	-0.06126	-		0.01831619
290.00	1.5398606	1.41056564	-0.05502	7 ' 6'	1, 19520096 1, 19587202	0.01797204
305,474	1.5399762	1.41585447	-0.04714	6'		0.01767775
320.881	1.5400765	1.42047379	-0.04040	-	1.19644773	
336,239	1.5401636	1.42451772	-0.03465	6'	1.19694181 1.19736594	0.01742587
351.553	1.5402390	1.42803534	-0.02973	_	,,,, .	
366,829	1.5403043	1.43109104	-0.02552	5*	1.19773016	0.01702529
382,073	1.5403608	1.43375136	-0.02191	5 '	1.19864299 1.19831173	0.01000000
397.208	1.5404096	1.43605539	-0.01882 -0.01617	5'	1. 1985/1265	0.01661116
412.479	1.51.4518	1.43805035		5'		0.01651400
427.619	1.54.4882	1.43977894	-0.01389	5'	1.19874110	
142.801	1.5405196	1.41127079	-0.01194	5'	1.19891167	0.01612799
457.937	1.5405467	1.44256138	-0.01026	4,	1.19905830	0.01635411
473.060	1.5405701	1.44367996	-0.00882	4'	1.19918437	0.01629064
488.17e	1.5/105902	1.44463967	-0.00758	4'	1, 19929276	0.01623610
503.271	1.5406076	1.44547231	-0.00652	4'	1,19938597	0.01618923
513.363	1.5406225	1.44613501	-0.00561	4'	1.19946613	0.01614393
533,448	1.5406354	1.44680403	-0.00432	4,	1.19953507	0.01611429
518.526	1.5406465	1.44733774	-0.00115	4'	1.19959436	0.01608451
563, 599	1.5406560	1.44779468	-0.00357	4'	1.19964536	0.01605871
578.667	1.5406642	1.44819978	-0.00307	4'	1.17968722	0.01603688
593°730	1.5406713	1.44852866	-0.00264	4'	1,19972695	0.01601794
608.791	1.5406774	1.44882325	-0.00227	3'	1.19975941	0.01600166
623 .848	1.5406826	1.44907618	-0.00195	3,	1.19978733	0.01598764
638.902	1.5406872	1.44929369	-0.00168	3'	1.19981135	o-o1597559
653,955	1.5406911	1.44918136	-0.00145	3'	1.19983201	0.01596523
669.005	1.5406944	1.44961224	-0.00124	3'	1.19934978	0.01595631
684.054	1.5406972	1.44977934	-0.00107	3'	1.19986507	0.01594864
699.101	1.5406997	1.44989869	-0.00092	3'	1.19987823	0.01594204
714.147	1.5407019	1.45000315	-0.00079	3'	1.19988955	0.01593637
729.192	1.5/107037	1.45008969	-0.00068	3'	1.19939929	0-01593149
744.236	1.54o7o53	1.45016725	-0.00 059	3'	1.19990767	0.01392728
759:279	1.5407067	1.45023279	-0.00070	3'	1.19991487	0.01592367
774.322	1.5407078	1.45028955	-0.00043	3,	1.19992107	0.01592056
789.364	1.5407088	1.45033732	-0.00037	٠ 3،	1.19992641	0.01591788
804.405	1.5407097	1.45037917	-0.00032	3,	1.19993100	0.01591559
819.446	1.5407104	1.45041491	-o. ooo 28	3,	1.19993495	0.01591361
834,487	1.5407111	1.45044473	-0.00024	3,	1.19993835	0.01591190
849.527	1.5407116	1.45047167	-0-00030	3°	1.19994127	0.01591044
864.567	1.5407121	1.45049556	-0.00018	3'	1.19994378	0.01590917
879.607	1.5407125	1.45051353	-0.00015	3'	1.19994595	0.01590809
894.647	1.5407128	1.45053132	-0.00013	3'	1.19994781	0.01590715
909.686	1.5407132	1.45054622	-0.00011	2'	1.19994941	0.01590636
924.726	1.5407134	1.45055826	-0.000lo	2'	1.19995079	0.01590566
939.765	1.5407137	1.45057012	-0.00008	2'	1.19995197	0.01590507
954.804	1.5407138	1-45057910	-0.00007	21 .	1.19995299	0.01590456
969.843	1.5407140	1-45058808	-0.00006	2'	1.19995387	0.01590411
984.882	1.5407141	1.45059401	-0.00005	2,	1,19995463	0.01590374
999.921	1.5407143	1.45060012	-0.00005	2'	1.19995528	0.01590341
1014.959	1.5407144	1.45060605	-0.00004	2'	1.19995584	0.01590313
-4//	/ 0; - 42		0.0001	-		3-0-//0-20

OHEGA 30000000 KAPPA 0.0100 DELTA 0.010000 VECTORLENGTH 0.40
REFLECTIONFACTOR 0.0000000 3.8811854 TRANSITFACTOR 1.0223556 - 0.0032747
ALPHA -0.14868 BETA -6.72585 GAMMA -6.87453

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
4000.000	1.2217305	1.00000000	-0.00005	2'	1.00000094	0.00000647	0.00000000	3,88119188
-931 . 5 96	1.2217311	1.00000177	-0.00009	2'	1.00000187	0.00001261	0.00000000	3,88119823
-863.192	1.2217323	1.00000529	-0.00018	3'	1.00000370	0-00002540	0.00000000	3.88121081
-794.788	1, 2217347	1.00001226	-0.00035	3,	1.00000732	0.00005034	0.00000000	3,88123575
-726. 385	1. 2217394	1.00002607	-0.00070	3'	1.00001450	0.00009974	0.00000000	3,88128515
-657.983	1.2217487	1.00005342	-0.00139	3'	1.00002873	0.00019760	0.00000000	3,88138362
-589, 582	1,2217672	1.00010751	-0.00275	4'	1.00005686	0.00039137	0.0000000	3,88157678
-521.185	1.2218036	1.00021430	-0.00545	4'	1.00011242	0.00077463	Q. 00000000	3,88196003
452,795	1.2218753	1.00042431	-0.01080	4'	1.00022171	0.00153123	0.00000000	3,88271664
-384.418	1,2220150	1.00083!26	-0.02140	5'	1.00043519	0.00301921	0.00000000	3.8842 0463
-316.067	1,2222836	1.00162305	-0.04240	6'	1.00084644	0.00592407	0.00000000	3.88710947
-247.767	1.2227852	1.00309919	-0.08394	8,	1.00161778	0.01151530	0.00000000	3.89 27 0071
-179, 562	1.2236737	1.00572416	-0.16603	10'	1.00299453	0.02199858	0.00000000	3,90318402
-111, 523	1.2251099	1.00999530	-0.32784	16'	1.00524652	o-o4o77o78	0.00000000	3.92195627
43,754	1.2271216	1.01603755	-0.64562	41'	1.00844923	0-07201268	0.00000000	3,95319817
23, 635	1.2294440	1.02310044	-0.78950	77°	1.01219850	0-0 901315 0		
90.588	1.2316017	1.02974793	-0.40419	21 '	1.01570775	0-05400711		
157.133	1.2332435	1.03486225	-0.20777	12'	1.01837890	0.03142899		
223, 369	1.2343160	1.03822992	-0.10713	9'	1.02011876	0.01843058		
289.403	1.2319497	1.04022950	-0.05535	7'	1.02114346	0-01129016		
355.316	1.2353023	1.04134545	-0.02863	6'	1.02171240	0-00747269		
421.163	1.2354920	1.04194694	-o.o1482	5°	1.02201816	0.00546190		
486.975	1.2355923	1.04226513	-0.00768	4'	1.02217964	0.0041113		
552.767	1.2356448	1.04243175	-0.00398	4'	1.02226413	0.00386433		
618.550	1.2356722	1.04251856	-0.002n6	3°	1.02230813	0.00358039		
684.327	1,2356864	1.04256365	-o.colo7	3°	1.02233099	0.00313312		
750.101	1.2356937	1.04256706	-0.00055	3'	1.02231284	0.00335678		
815.875	1.2356975	1.01259919	-0.00029	3,	1.02231899	0.00331723		
881.647	1.2356995	1.01260546	-0.00015	3,	1.02235217	0.00329673		
947.419	1.2357005	1.04260872	-0.0000 ⁸	2'	1.02235382	0.00328611		
1013.191	1.2357011	1.04261041	-0.00004	2'	1.02235468	o. oo 328o61		

 OMEGA
 30000000
 KAPPA
 .o. 0100
 DELTA
 o. 010000
 VECTORLENGTH o. 60

 ALPHA
 -o. 46280
 BETA
 -2. 16078
 GAMMA
 -2. 62358

 REFLECTIONFACTOR o. 0045596
 4. 4238388
 TRANSITFACTOR 1. 2430116
 0. 0959680

					-•			
HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-1000,000	1.4398966	1,00000000	-0.00005	21	1,00000576	0,001 01511	0.00455959	4.42385389
-960,842	1.4398974	1.00000622	-0,00007	2'	1,00000852	0,00002235	0,00455960	4.42386113
-921, 684	1.4398986	1,00001552	-0,00010	2,	1.00001261	0.00003307	0.00455962	4.42387185
-882, 527	1,4399004	1,00002920	-0,00015	3,	1.00001864	0.00004891	0.00455965	4.42338768
-343, 37o	1.4399030	1,00004952	-0,00022	3'	1.00002757	0.00007235	0.00455969	4.42391112
-804,215	1.4399070	1.00007949	-0,00022	3,	1.00002/9/	0.00010703	0.00455975	4.42394580
-							0.00455984	4.42399709
-765 , 0 60	1.4399127	1.00012388	-0,00048	3'	1.00006034	0.00015831		
-725.907	1,4399213	1.00018952	-0,00070	3'	1,00008924	0.00023416	0.00455997	4.42407294
-686.756	1.4399340	1.00028669	-0,00104	3'	1.00013199	0.00034633	0.00456016	4.42418510
-647.609	1.4399527	1.000/3005	-0,00154	3,	1.00019517	0.00051218	0.00456045	4.42435096
-608.468	1.4399803	1.00064217	-0,00228	3'	1.00028857	0.00075736	0.00456088	4.42459613
-569.335	1.4400212	1,00095539	-0,00337	4,	1.00042654	0.00111967	0.00456151	4.42495844
-530, 214	1.4400814	1.00141786	-0.00498	Ž,	1.00063023	0.00165479	0.00456244	4.42549357
-491.112	1 .44 01701	1.00209961	-o. oo736	4'	1.00093067	o . 002444 57	o. oo45638o	4.42628334
- 4 52 , o 35	1.4403004	1.00310373	-0.01089	4'	1.00137317	o, oo36o89o	0.00456582	4.42744768
-412.997	1.4404915	1.00457867	-0,01608	5 ' .	1.00202356	0,00532266	0.00456879	4,42916143
-374.016	1.4407703	1.00673871	-0.02375	5 ' `	1.00297663	0.00783909	0.00157313	4.43167788
-335, 118	1.4411745	1.00988720	-0.03504	6'	1.00436710	0.01152146	0.00457947	4.43536024
-296.341	1.4417552	1.014/1480	-0.05164	6,	1,00638282	0.01688317	0.00458866	4,44072196
-257.736	1.4425787	1.02097863	-0.07597	7°	1.00927846	0.02463478	0.00460187	4,44847356
-219.376	1.4437254	1.03021735	-0,11150	8,	1.01338517	0.03573003	0.00462059	4,45956883
-181, 357	1.4452827	1.04303478	-o. 163o7	10'	1.01910737	0.05139436	0.00464668	4.47523315
-143,802	1.4473292	1,06036882	-0.23740	13'	1.02689378	0.07310715	0.00468219	4,49694596
-106,855	1.4499082	1.08304781	-0.34350	17'	1.03716938	0.10250341	0.00472904	4.52634224
-70.677	1.4529984	1.11152834	-0.49323	25'	1,05022649	0.14117423	0.00478857	4,56501308
-35.420	1.4564957	1.14561736	-0.70174	50'	1.06500012		0.00486094	4,61423022
-1,204	1.4502227	1.18431532	-0.98803	316'	1.09323050	o. 24o97236	0.00498465	4, 66481116
31.900	1.4639666	1.22590341	-0.72687	61'	1.10700932	0.36276470	0,001,10)	1,001/1110
63.888	1.4675295	1.26827908	-0.52788	30'	1,13046556	0. 2990F91o		
94.814	1.4707653	1.30939188	-0.38746	20'	1.15182173	0.25015485		
124.772	1.4735978	1.34759798	-0.28716	15'	1.17021055	0, 21305987		
153,886	1.4760019	1.38182917	-o. 21463	13'	1.18546996	o. 18504197		
182, 282	1.4779975	1.41158843	-0.16157	11'	1.10783121	0.16389485		
210.082	1.4796258	1.43683629	-o.12236	9,	1.20769044	o. 1479o259		
237.395	1.4809377	1.45784183	-0.12236	8,	1.21547612	o. 14790239 o. 13577218		
264.316	1.4819846	1.47504975	-0.09311 -0.07114	8,	1.22156521			
290,925	1,4828141	1,48897595				0. 12654065		
290.925 317.285	1,4834680		-0.05452	7' 6'	1.22635914	0.11949295		
	1,4839814	1.50013965	-o. o4188		1.23007982	0.11409722		
343,451		1.50902196	-0.03224	5'	1.23297462	0.10995620		
369.462	1,4843832	1.51604795	-o. o2486	6'	1.23522428	0.10677170		
395.354	1.4846971	1.52158682	-0.01919	5'	1.23697125	0.10431872		
421.152	1,4849417	1.52592216	-0.01482	5'	1.23832715	o. 1o242668		
445.877	1.4851322	1.52931964	-0.01146	5'	1.23937914	0.10096577		
472.544	1.4852864	1.53197262	-0.00887	4'	1.24019515	0.09983678		
498.168	1.4853955	1.53404089	-0.00686	4'	1.24082800	0.09896372		
523.757	1.4854850	1.53565128	-0,00531	4'	1.24131873	0.09828822		
549.319	1.4855544	1.53690371	-0,00411	4'	1.24169923	0.09776537		
574.861	1,4856083	1.53787734	-0.00319	4'	1,24199423	0.09736053		
600.387	1.4856501	1,53863285	-0.00247	4'	1.24222294	0.09704599		
625, 900	1.4856826	1.53922006	-0.00191	3'	1.24240025	o. o968o412		
651.403	1.4857077	1.53967570	-0,00148	3,	1.2425377o	o. o9661596		
676.899	1.4857272	1.54002963	-0,00115	3'	1.24264426			
7 02, 38 9	1.4857423	1.54o3o342	-0.00089	3,	1,24272686	0.09635718		
727.874	1.4857541	1.54051614	-0,00069	3,	1,24279088	0.09626963		
753. 356	1.4857632	1.54068129	-0,00053	3*	1,24284052	0.09620178		
7 78.8 35	1.4857702	1.54080936	-0,00041	3,	1,24287899	0.09614918		
804.312	1.4857757	1.54090849	-0,00032	3'	1,24290882	0. 09610843		
					·-····	• .,		

829, 788	1,4857799	1,54098532	-0,00025	3'	1,24293194	o. o96o7683
P55, 252	1.4857832	1.5/10/501	-0,00019	3*	1.24294985	o. o96o5235
880. 735	1.4857857	1,54107079	-o, ono15	. 3'	1.24296375	0, 09603336
906. 208	1.4857077	1,54112703	-0.00012	3,	1.24297452	o, o96o1866
931, 60o	1.4857093	1.54115489	-0, 00009	2'	1.24298286	0, 09600725
957.151	1.4857904	1.54117599	-0, 00007	2'	1.24298934	0.09599841
962, 622	1.4857914	1,54119276	-0,00005	2'	1.24299435	o. n9599156
1003 003	1 4857021	1 54126588	-0.0004	21	1.24209823	o. a9598625

 OMEGA
 3nonogoo
 KAPPA
 0.0100
 DELTA
 0.100000
 VECTORLENGTH 0.40

 REFLECTIONFACTOR 0.0000239
 3.6662693
 TRANSITFACTOR 1.4554062
 0.6897470

 ALPHA
 -1.89369
 BETA
 -5.28070
 GAMMA
 -7.17439

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	MCTION		
-1000,000	1, 2217305	1.0000000	-0,00005	2'	1.00000865	0, 10006207	0, 00002390	3, 56633137
-931, 596	1. 2217360	1.00001629	-0,00009	2,	1.00001715	0.00012302	0,00002390	3, 66639232
-863, 193	1,2217471	1.00004860	-0,00018	2'	1,00003398	9, 00024380	0.00002390	3, 66651309
-794, 792	1.2217689	1.00011263	-0,00035	3'	1,00006733	0.00024330	0,00002390	3,66675242
-726, 395	1.2218122	1.00023952	-0,00070	3,	1.00013342	0,00095729	0,00002390	3,66722659
-658 .00 7	1.2218979	1.00019078	-0.00139	3,	1,00026429	0.00189643	0,00002390	3.66816572
-509, 634	1.2220674	1.00098810	-0.00139	4,	1,00052327	0.00375527	0,00002391	3. 67002457
•521 , 2 93	1, 2224021	1.00197116	-0,00545	4,	1,00103501	0.00742988	0.00002392	3, 67369919
-453, o16	1, 2230600	1.00390942	-0,01078	4,	1.00204324	0.01467586	0,00002395	3, 68094517
-384,861	1.2243436	1.00771197	-o, o2131	· 5,	1,00401833	0.02889454	0.00002400	3, 69515385
-315,049	1,2268108	1.01509959	-0, 04203	6,	1.00784476	0, 05653257	0.00002409	3.7228o186
-249, 500	1.2314211	1.02918829	-0, 08250	8,	1.01510325	0, 10929712	o. 00002405	3,77555630
-182,921	1, 2396050	1.05515201	-0, 16054	10'	1,02835044	0. 20677450	0.00002458	3,87304373
-117, 887	1.2529264	1.10024006	-0. 30763	15'	1.05097789	0.37703229	0.00002577	4, 04330157
-55.378	1.2719592	1.17155771	-0.57477		1.off587319	0.65000453	0.00002595	4, 31527385
3,504	1,2949883	1.27088419	-0.96557	316'	1.13222784	2,35629576	0.0002777	4501-2700)
57.969	1,3184428	1.39052815	-0.56007	41'	1. 18736376	1,82278247		
107.905	1.3301415	1.51610502	-0.33992	21'	1.24234397	1.45375370		
153,823	1.3557091	1,63393930	-0, 33992 -0, 21476	15'	1.29218717	1.20575013		
196,510	1.3682330	1.73574659	-0.14014	11'	1, 33372601	1.04087576		
236,746	1.3774165	1.81874615	-0.09372	10'	1,36628758	0.93089151		
275, 181	1.3840484	1.88374288	-0.06381	Ŗ,	1,39083515	0.85679705		
312.314	1.3888024	1,93323963	-0.04402	7'	1.40891875	o. 80630508		
348,512	1,3921982	1.97020526	-0, 03065	* 6,	1,42206427	0.77153358		
384.042	1.3946202	1.99743748	-o. o2148	6'	1. 43154696	0.74737936		
419.096	1.3963464	2.01730724	-0.02140	5'	1.43835661	o. 73o48657		
453,809	1.3975765	2.01/30/24	-0.01913	5 '	1.44323348	o. 71861150		
488, 28o	1.3984529	2,03170047	-0.00758	5'	1.44672034	o. 71023192		
522, 578	1.3990774	2. 04209121 2. 04955506	-0.00738	4,	1,44921071	0.70430245		
556.753	1.3995223	2, 05490670	-0.00382	4,	1.45098818	0. 70009821		
590.841	1,3998394	2.05873696	-0.00302	4,	1.45225624	o. 69711289		
624,866	1,4000654	2,06147515	-0.00193	4,	1,45316061	o. 69499087		
658,847	1,4002264	2,06343097	-0.00193	2'	1.45380545	o. 69348133		
692,795	1.4002204	2.06482697	-0.00038	2,	1.45426519	o. 69240697		
726.722	1,4004229	2,06582303	-0,00070	2'	1.45459293	o. 69164199		
760.632	1,4004312	2.06653342	-0,00050	²,	1.45482654	0. 69109719		
794,53o	1,4005227	· 2.06704004	-0.00035	ź,	1.45499306	0.69070908		
828, 421	1.4005227	2,06740109	-0,00035	2,	1.45511175	0.69043258		
862, 305	1.4005734	2.06765876	-0,00027	2'	1.45519634	0. 69023557		
896, 186	1,4005/34	2.06784227	_	2'	1,45525663	o, 69009519		
930.063	1.4005000	2.06797317	-0,00013	2'	1,45529960	o. 68994515		
9 30.0 63 9 63.93 8	1.40059992	2,06/9/31/ 2,06806638	-0,00009	2' 2'		o. 58992385		
963.936 997.812	1.4006000	2,06813285	-0,00007	2'	1.45533023	o. 60992305 o. 60987305		
			-0.00005		1,45535205			
1031.685	1.4006161	2.06818017	-0,00003	2'	1.45536761	o, 68983684		

115

OMEGA 30000000 KAPPA 0.1000 DELTA 0.000010 VECTORLENGTH 0.21
REFLECTIONFACTOR 0.000001 3.1416056 TRANSITFACTOR 1.0000025 0
ALPHA -0.00000 BETA -2.00000 GAMPA -2.00001

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-100,000	0	1.00000000	-0,00005	2'	1.00000000	o ⁱ	0,00000006	3, 14160559
-89.750	0	1,00000000	-0, 00013	3'	1.00000000	0	0, 00000006	3, 14160559
-79.500	0	1.00000000	-0,00035	3'	1,00000000	0	0, 00000006	3, 14160559
-69.250	0	1.00000000	-o , oo o98	3'	1,00000000	0	0, 00000006	3, 14160559
~59 . oo o	0	1,00000000	-0,00274	4'	1,00000000	0,00000001	0, 00000006	3, 14160559
-43.750	0	1.00000001	-o. on764	4'	1,00000001	0.00000003	0,00000006	3, 14160562
-38,500	0	1.00000005	-o . o212 8	5'	1,00000004	0, 0000000ß	o, 00000006	3, 14160567
-2 [©] , 250	0	1,00000014	-o. o5931	7'	1,00000012	0.00000023	0, 00000006	3, 14160582
-18,000	0	1,00000035	-0.16530	11'	1.0000003n	0, 00000063	0, 00000006	3, 14160621
-7.750	0	1,00000079	-0.46070	24'	1,00000072	0.00000162	0, 00000006	3, 14160720
2,500	0	1,00000140	-o. 7788o	73'	1,00000145	0.00000253		
12, 75o	0	1,00000195	-o. 27943	15?	1,00000203	0,00000103		
23,000	0	1.00000227	-0.10026	8,	1,00000231	0, 00000039		
33, 25o	o	1,00000241	-o. o3597	6,	1.00000243	0.00000014		
43,500	0	1.00000246	-0, 01291	5'	1.00000247	0,0000005		
53 , 750	0	1,00000248	-0, 00463	4'	1.00000249	0.0000001		
64 , ೧೦೧	o	1.00000250	-a. oo166	3'	1,00000250	0		
7 4.2 50	. 0	1.00000250	-n . 0 0060	3°	1,00000250	0		
84 . 500	0	1.00000250	-0, 00021	3*	1.00000250	0		
94.750	o	1.00000250	-0, 00008	2'	1,00000250	0		
105,000	o	1,00000250	-0, 00003	2*	1.00000250	O		

116

OMEGA 30000000 KAPPA 0.1000 DELTA 0.000010 VECTORLENGTH 0.20
REFLECTIONFACTOR 0.0000001 3.1416056 TRANSITFACTOR 1.0000025 0
ALPHA -0.00001 RETA -1.96962 GAMMA -1.96963

HETOTH	THETA	E KELLER	ZETA		DISTORTION FI	INCTION		
-100,000	o. 1745329	1.00000000	-0,00005	2'	1,00000000	o	0.00000007	3. 14160559
-90, 152	o. 1745329	1,00000000	-0,00012	2'	1,00000000	0	0,0000007	3.14160559
-80,301	o. 1745329	1.00000000	-0.00033	3'	1,00000000	0	n, 00000007	3.14160559
-70,456	o. 1715329	1.00000000	-a. ana87	3'	1,00000000	o	0,00000007	3, 14160559
-6n, 6aB	o. 1745329	1.00000000	-0,00233	3,	1,00000000	0, 00000001	0, 00000007	3, 14160559
-50.760	o. 1745329	1.00000001	-ი. იინ25	4,	1,00000001	0, 00000002	0,00000007	3, 14150561
-40,912	o. 1745329	1.000000004	-o. o1672	5°	1.00000003	0,00000007	0,0000007	3, 14160565
-31.063	o. 174533o	1.00000011	-o. od476	6'	1.00000009	0, 0000001 ⁰	0.00000007	3, 14160576
-21,215	o. 174533o	1.00000028	-0.11985	Q*	1,00000023	0.00000047	0,0000007	3, 14160605
-11.367	o. 1745331	1.00000064	-o. 320 ⁹ 7	16'	1.00000055	0.00000118	0.0000007	3, 14150676
-1.519	o. 17-i5333	1.00000122	-a. 859a5	119'	1.00000112	0.00000278	0.00000007	3,14160836
8,329	o. 1745335	1.00000185	-o. 13479	22'	1,00000191	0.00000156		
18,177	o. 1745337	1.00000228	-o. 1624o	10'	1,00000230	ი, იიიიიი63		
28, 025	o. 1745338	1.00000250	- ი. ინ ინნ	7*	1.00000248	0,00000024		
37.873	o. 174533 ^p	1,00000250	-o. o2265	5 '	1,00000256	0, 0000000 ⁰		
47.721	0.1745338	1.00000263	-o. no846	4'	1.00000259	o. ooonnon4		
57.559	o. 174533R	1.00000264	-0.00315	4'	1.00000260	0,00000001		
67.417	o. 1745338	1.00000265	-0.00118	3'	1,00000260	0		
77.265	o. 1745338	1.00000266	-0. 00044	3'	1,00000260	O		
87, 113	o. 1745338	1,00000266	-0.00016	3'	1.00000260	0		
96.962	o. 1745338	1.00000266	-o. 000ob	2'	1. იიითენი	n		
106.810	o. 1745338	1.00000266	-0.00002	2'	1,00000260	0		

114

OHE JA 30000000 KAPPA 0,1000 DELTA 0,000010 VECTORLENGTH 0,40 REFLECTIONFACTOR 0,0000109 3,1415015 TRANSITFACTOR 1,0000214 0 ALPHA -0,00001 BETA -0,68403 JAMNA -0,68404

HE1 GTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-100,000	1.2217305	1.00000000	-0,00005	2'	1,00000000	0	o. coortall6	3, 14160451
-93, 160	1,2217305	1,0000000	-0,00007	2'	1,00000000	0	o. occo1e86	3.14160451
-86.319	1,2217305	1,00000000	-0,00018	3'	1.00000000	0	0. 000010 ⁰⁵	3, 14160451
-79.479	1.2217305	1,00000001	-0.00035	3'	1,00000000	9	o, nonotoff6	3, 14160451
-72.638	1,2217305	1.00000003	-o. ono?n	3'	1,00000000	n	a, annatalis	3, 14156451
-65.798	1.2217305	1.0000004	-0.00139	3'	1,00000001	0	0, 00001086	3,14160451
-58,958	1.2217305	1.00000010	-n. oo275	4'	1,00000002	0.00000001	o, occoleff	3, 14160451
-52, 117	1,2217305	1.0000020	-0.00545	4'	1,00000004	o, nonocon2	a. ~noto86	3, 14160453
-45. 277	1,2717306	1,00000042	-a, a1a81	4'	1.00000007	0,0000005	o. onoolo ^R 6	3, 14160455
-38, 436	1,2217308	1.00000084	-o, o214?	5 '	1,00000015	0,00000010	o, nono1o85	3, 14160460
-31.596	1.2217310	1.00000163	-0. 04244	6*	1,00000029	0.00000019	o, occoto86	3.1416o47o
-24. 756	1.2217315	1.00000312	-o. o8412	8°.	1.000000056	0,00000039	o, onoo1o86	3. 1416ai89
-17.915	1.2217324	1.00000573	-0.16671	11'	1,00000108	a, nonana76	a, acceta86	3, 14160526
-11.075	1,2217339	1,00000998	-n . 33n39	17'	1,00000203	0,00000146	a, onon1o86	3, 14160597
-4.234	1,2217359	1.00001592	-n. 65478	43"	1.000 0 0371	0.00000278	a, accato ^a 6	3.14160728
2. 606	1,2217382	1.00002272	-o. ?7oho	70'	1,00001715	0,00000322		
9.446	1,2217403	1.00002895	-o . 38883	20'	1.00001904	0.00000171		
16.286	1,2217419	1.00003364	-o. 1952o	12'	1,00002014	n , aannaa89		
23. 126	1,2217430	1.00003560	-0, 0 ⁰ 000	8*	1.00002075	0,00000045		
29. 967	1.2217435	1.00nn3831	-a. a (995	7°	1.00002107	0, 00000023		
36. Bo7	1.2217439	1.00003924	-n. o2521	ς,	1,00002123	0,00000012		
43, 647	1,221744o	1.00003972	-0.01272	5'	1,00002131	ი, იიიიიიინ		
50. 487	1.2217441	1.00003997	-0.00642	4,	1.00002135	0,00000003		
57.327	1.2217442	1.00004010	-n . 0032 4	4,	1.00002138	0.0000001		
64.167	1.2217442	1. nonnin17	-0.00163	3'	1,00002139	0,0000001		
71.008	1.2217442	1.00004020	-o, oon?2	3'	1,00002139	0		
77.848	1.2217442	1.00004023	-0,00012	3'	1,00002140	0		
84.682	1,2217442	1.0000/1024	-0,00021	3,	1.00002140	0		
91.528	1,2217142	1.00004024	-0.00011	2'	1,00002140	0		
98,368	1.2217442	1.0000-024	-0,00005	2'	1.00002140	n		
107.208	1,2217442	1,00004024	-0,00003	2'	1,00002140	o		

 CMEGA
 30000000
 KAPPA
 0.1000
 DELTA
 0.000010
 VECTORLENGTH
 0.40

 ALPHA
 -0.00006
 BETA
 -0.17426
 GAMMA
 -0.17431

 REFLECTIONFACTOR
 0.0003134
 3.1415967
 TRANSITFACTOR
 1.0003293
 0

UEICTU	THETA	E 40110	2574		BIOTORY ION OF			
HEIGTH	THETA 1,4835298	F. KELLER	ZETA		DISTORTION F			
-100-000 -96-514	1.4835298	1.00000000	-0-00005 -0-00006	2' 2'	1.00000000	0	0.00031344	3.14159673
-93.o28	1,4835398	1.00000000	-0.00009	2'	1.00000000	0	0.00031314	3.14159673
-89.541	1,4835298	1.00000000	-0.00013	3'	1.00000000	9	0.00031344	3. 14159673 3. 14159673
-86.055	1.4835298	1.00000000	-0.00018	3*	1.00000000	0	0.00031344	3,14159673
-82,569	1,4835298	1.00000000	-0.00026	3,	1.00000000	0	0.00031344	3.14159673
-79.083	1.4835298	1.00000021	-0.00037	3,	1.00000000	0	0.00031344	3.14159673
-75.596	1.4835298	1.00000021	=0-00052	3,	1.00000000	0	0.00031344	3.14159673
-72-11o	1,4835298	1.00000047	-0.00074	3*	1.00000001	0	0.00031314	3.14159673
-68, 624	1.4835298	1.00000047	-0.00105	3*	1.00000001	0	0.00031314	3. 14 159673
-65.138	1.4835299	1.00000098	-0.00148	3'	1.00000001	0	0.00031344	3.14159672
-61.651	1,4835299	1.00000145	-0.0021o	3'	1.00000002	0	0-00031344	3.1415967;
-58.165	1.4835300	1.00000218	-0.00298	4'	1.00000003	0	0.00031344	3.1415967:
-54.679	1.4835301	1.00000290	-0-00422	4'	1.00000004	0	0.00031344	3.14159674
-51.193	1,4835302	1.00000414	-0.00598	4'	1.00000006	0.00000001	0.00031344	3.14159674
-47.767	1,4835303	1.00000563	-0.00847	4'	1.00000008	0.00000001	0.00031344	3. 14159675
-44.22 ₀	1.4835305	1.00000808	-0.01201	5'	1.00000012	0-00000002	0.00031344	· 3. 14159675
40.734	1.4835368	1.00001128	-0-01702	5°	1.00000016	0+00000003	0.00031344	3, 14159676
-37.248	1.4835311	1.00001543	-0.02412	5'	1.00000023	0.00000004	0-00031344	3. 14 159677
-33.762	1.4835317	1.00002154	-0.03418	6°	1.00000033	0-00000006	0.00031344	3.14159679
-30,276	1.4835325	1.00003038	-0.04843	6'	1.00000047	0+00000008	0.00031344	3.14159682
-26,789 -23,3o3	1.4835335	1.00004214	-0.06864	7'	1.00000066	0.00000011	0.00031344	3. 14159685
-23, 363 -19, 817	1.4835349 1.4835367	1.00005834	-0.09726	8'	1.00000092	0.00000016	0.00031344	3-14159690
-16.331	1.4835391	1.00007942 1.00010716	-0.13783 -0.19531	10 ' 12'	1.00000130	0.000000023	0.00031344	3. 14159696
-12,846	1,4835422	1.00014222	-0. 27677	15'	1.00000181 1.00000251	0.00000032	0.00031344	3.141597o5 3.14159719
-9.36o	1.4835459	1.00018493	-0.39220	20'	1.00000291	0.00000045	0.00031314	3. 14 1597 37
-5.874	1.4835502	1.00023450	-0. 55576	31,	1.00000477	0.000000088	0.00031344	3. 14 1597 61
-2,389	1.4835550	1.00028398	-0.78751	76'	1.00000648	0.00000122	0.00031344	3.14159796
1.096	1.4835599	1.00034591	-0.89616	155'	1.00032206	0.00000138	0400001021	4121//190
4.581	1.4835648	1.00040185	-0.63246	40'	1.00032396	0.00000100		
8.066	1.4835693	1.00045392	-0.44636	23'	1.00032540	0-00000072	•	
11.551	1.4835733	1.00049910	-0-31503	16'	1.00032648	0-00000051		
15.035	1.4835766	1.00053693	-0.22234	12'	1.00032727	0-00000037		
18.520	1.4835792	1.00056739	-0. 15693	lo'	1.000 32784	0.00000026		
22.004	1,4835813	1.00059097	-0.11076	9°	1.00032827	0.00000019		
25.488	1,4835828	1.00060864	-0-07817	8,	1.00032856	0.00000013		
28.972	1.4835940	1.00062217	-0.05518	7'	1.00032879	0-00000009		
32,456	1.4835848	1.00063175	-0-03894	6,	1.00032894	0+00000007		
35.94o	1.4835854	1.00063886	-0.02749	6'	1.00032905	0.00000004		
39.425	1.4835859	1.00064378	-0.01940	5'	1.00032913	0-00000003		
42,908	1.4835862	1.00064771	-0.01369	5'	1.000,32919	0-00000002		
46.392 49.8 76	1.4835864 1.4835866	1.00065015	-0.00966	4'	1.00032922	0.00000001		
53.36p	1,4835867	1.00065212 1.00065036	-0.00682 -0.00481	4'	1,00032925	0.00000001		
56.844	1,4835868	1.00065435	-0.003f0	4,	1.00032926 1.00032928	0.00000001		
60.328	1.4835869	1.00065508	-0.00020	3,	1,000,32929	• .		
63,812	1.4835869		-0.00169	3,	1.00032929	0		
67.296	1.4835869	1.00065584	-0.00119	3'	1.00032930	0		
70.780	1.4835869	1.00065606		3,	1.00032930	0		
74.264	1.4835869	1.00065606	-0.00060	3'	1.00032930	0		
77.748	1.4835870	1.00065632		3,	1.00032931	0		
81.232	1.4835870	1.00065657		3,	1.00032931	0		
84.716	1.4835870	1.00065657	-0.00021	3'	1.00032931	0		
88,200	1.4835870	1.00065657	-0.00015	3'	1.00032931	0		
91.684	1.4835870	1.00065657	-0.000lo	2'	1.00032931	0		
95.168	1.483587o	1.00065657	-0.00007	2'	1.00032931	0		

98,652 1.4835870 1.00065657 -0.00005 2' 1.00032931 0 102.136 1.4835870 1.00065657 -0.00004 2' 1.00032931 0

OMEGA 30000000 KAPPA 0.1000 DELTA 0.000010 YECTORLENGTH 0.50
ALPHA -0.00011 BETA -0.00712 GAMMA -0.08724
REFLECTIONFACTOR 0.0013011 3.1415947 TRANSITFACTOR 1.0013174 0

1.00198436 -0.32544

1.00208674 -0.26258

1.00217449 -0.21123

1.00225135 -0.16992

1.00231733 -0.13669

22.077 1.5272662 1.00237353 -0.10996

11.195 1.5272493

13.372 1.5272538

15.549 1.5272576

17.725 1.527269 19.901 1.5272638

REFLECTIONS	ACTOR 0.0013	611 3,1415	947 TRANSI	TFACTOR	1.0013174	0		
			757.		OLCTODIAN (FILL OF LON		
HEIGTH	THETA	E KELLER	ZETA		DISTORTION			2.14450472
-100.000	1.5271629	1.00000000	-0.00005	2' 2'	1.00000000	0	0.00130109	3,141 594 73 3,141 594 73
-97.819	1.5271629	1.00000000	-0.00006	2,	1.00000000	0	0.00130109	3,14159473
-95.638	1.5271629	1.00000000	-0.00007	2,	1.00000000	0	0.00130109	3.14159473
-93.457	1.5271629	1.00000000	-0-00009	2'	1.00000000	0	0.00130109	3,14159473
-91.276	1.5271629	1.00000000	-0.00011	3*	1.00000000	0	0.00130109	3.14159473
-89.095	1.5271629	1.00000000	-0.00014	3,	1.00000000	0	0.00130109	3,14159473
-86.914	1.5271629	1.00000000	-0.00017	3*	1.00000000	0	0.00130109	3,14159473
-84.733	1.5271629	1.00000000	-0.00021	3,	1.00000000	0	0.00130109	3,14159473
-82,552	1.5271629	1.00000000	-0.00026	3°	1.00000000	0	0.00130109	3,14159473
-80.371	1.5271636	1.00000094	-0.00032	3*	1.00000000	0	0.00130109	3,14159473
-78.190	1.5271636	1.00000094	-0.00010	3'	1,00000000	0	0.00130109	3,14159473
-76-009	1.5271636	1.00000094	-0.00050	3'	1.00000001	0	0.00130109	3,14159473
-73.828	1.5271636	1.00000094	-0.00062	3,	1.00000001	0	0.00130109	3,14159473
-71.647	1.5271636	1.00000188	-0.00077	3'	1.00000001	0		3,14159473
-67.466	1.5271630	1.00000188	-0.00096		1.00000001	0	0.00130109	3,14159473
-67-285	1.5271631	1.00000290	-0.00120	3 ' .	1.00000001	0	0.00130109	3,14159473
-65.104	1.5271631	1.00000321	-0.00149	3,	1.00000001	0	0.00130109	
-62,923	1.5271631	1.00000/187	-0.00185	3,	1.00000002		0.00130109	3.14159473
-60.742	1.5271632	1.00000580	-0. 00230	3'	1.00000002		0-00130109	3,14159473
-53.561	1.5271632	1.00000683	-0.002E6	4'	1.00000003		0.00130109	3.14159473
-56.381	1.5271634	1.00000973	-0.00356	4'	1.00000003		0.00130109	3, 14159473
-54.200	1.5271634	1.00001170	-0.004/13	4'	1.00000004	0	0.00130109	3.14159473
-52.019	1.5271636	1.00001460	-0.00551	4'	1.00000005		0.00130109	3,14159473
-49.836	1.5271637	1-00001853	-0.00685	4,	1.00000007	0	0.00130109	3.14159474
-47.657	1.5271639	1.00002215	-0.00852	4'	1.00000009	0	0.00130109	3,14159474
-45.476	1.5271642	1.0000 2 235	-0.01059	4'	1.00000010		0.00130109	3.14159474
-43.2 95	1.5271645	1.00003519	-0.01317	5'	1.00000013		0.00130109	3.14159474
-41.114	1.52716!8	1.0000/130/	-0.01638	5*	1.00000016		0.00130109	3.14159475
-36.933	1.5271652	1.00005287	-0.02038	5*	1.00000020		0.00130109	3.14159475
-36.752	1.5271658	1.00006/257	-0.02534	5'	1.00000025		0.00130109	3.14159475
-34.571	1.5271664	1.00008019	-0.03152	6°	1.00000031		0.00130109	3,14159475
-32, 391	1.5271672	1.00009882	-0.03920	6'	1.00000038		0.00130109	3,14159476
-3o. 21o	1.5271682	1.00012137	-0.01875	6°	1.000000/28		0.00130109	3.14159477
-28.029	1.5271695	1.00014973	-0. 06063	7'	1.00000059	0.00000005	0.00130109	3.14159478
-25.8 48	1.527171o	1.00019407	-0.07511	7'	1.00000073	o.ooooooo7	0.00130109	3,14159479
-23,663	1.5271728	1.00022517	-0. 09378	8,	1.000000091	80000000	0.00130109	3,14159480
-21.43?	1.5271749	1.00027422	-0.11663	9°	1.00000112	0.00000010	0.00130109	3, 14159483
-19.307	1.5271775	1.00033301	-0.1/505	10'	1.00000139	0.00000013	0.00130109	3,14159485
-17-127	1.5271854	1.000/10156	-o.18o38	, 11 '	1.00000172	0.00000015	0.00130109	3,14159488
-14.917	1.5271839	1.00049097	-0.2 2/132	13'	1.00000211	0-00000019	0.00130109	3,11159192
-12.767	1.5271879	1.00057313	-0. 27396	15'	1.00000260	0.00000023	0.00130109	3,14159496
-10.5 ⁸ 7	1.5271925	1.00067711	-0.31601	18*	1.00000319	0-00000029	0.00130110	3,14159501
-8 . 403	1.5271975	1.00079291	-0. 43139	22'	1.00000389	0.00000036	0.00130110	3, 141 59508
-6, 228	1.5272629	1.00091756	-0.53613	29°	1.00000473	0.0000004	0.00130110	3, 141 5 9516
4.49	1.5272588	1.00105302	-0. 667o2	45'	1.00000575	0-0000054	0.00130110	3,141 5 9527
-1.871	1.5272149	1.00119255	-0.82939	97°	1.00000694		0.00130110	3, 141 595 39
o. 3o8	1.5272211	1.00133502	-0.96969	316*	1.00136741	0.00000076		
2,486	1.5272273	1.00147856	-0.77990	73*	1.00131031	0.00000062		
4.664	1.5272331	1.00161717	-0.62728	39*	1.00131197	0.00000051		
6.841	1.5272391	1.00174929	-0.50154	27'	1.00131293	0.00000041		
9.018	1.5272144	1.00187205	-0.10583	20'	1.00131375			
		• • •						

1.00131442 0.00000027

10' 1-00131612 0-00000012

9, 1.00131637 0.00000010

0.00000022

0.00000018

0.00000014

17'

12'

14' 1.00131499

11' 1.00131532

1.001315/14

24.252	1.5272683	1.00242090	-0.0884 6	8,	1.00131658	0.0000007
26.428	1.5272700	1.00246029	-0-07116	7'	1.00131673	0.00000006
28.604	1.5272714	1.00249290	-0-05725	7°	1.00131697	0.00000005
30.779	1.5272726	1.00251951	-0.04605	6'	1.00131699	0.00000001
32.955	1.5272735	1.0025/123	-0.03705	6'	1.00131707	0.00000003
35.130	1.5272743	1.00255900	-0.02981	6'	1.00131714	0.00000002
37.306	1.5272749	1.00257377	-0.02309	5'	1.00131720	0.00000002
39.481	1.5272754	1.00258561	-0-01929	5 '	1.00131724	0.00000001
41.656	1.5272759	1.0259548	-0.01552	5°	1.00131728	0.00000001
43.832	1.5272762	1.00260338	-0.c1349	5'	1.00131731	0.00000001
46.007	1.5272765	1.00260931	-0.01oc4	4'	1.00131734	0.00000001
48.182	1.5272767	1.00261420	-0.00803	4'	1.00131736	0
50.358	1.5272769	1.00261918	-0.00650	4'	1.00131737	0
52,533	1.5272770	1.00262210	-0.00523	Ą,	1.00131738	2
54.708	1.5272771	1.00262510	-0.00/21	4,	1.0013173)	0
56.983	1.5272772	1.00262707	-0.00339	4,	1.00131740	0
59.o52	1.5272773	1.00262905	-0.002 72	4.	1.00131740	9
61.234	1.5272774	1.00263000	-0.00219	3*	1.00131741	0
63.409	1.5272774	1.00263103	-0.00176	3*	1.00131742	0
65.585	1.5272774	1.00263197	-0. 00142	3*	1.00131742	0
67.760	1.5272775	1.00263300	-0.00114	3,	1.00131713	0
69.935	1.5272775	1.00263394	-0.00092	3*	1.00131742	0
72.110	1.5272775	1.00263394	-0∙000 7₫	3,	1.00131743	•
74.286	1.5272775	1.00263394	-0-0005 9	3*	1.00131743	0
76.461	1.5272776	1.00263497	-0.00048	3*	1.00131743	0
78.636	1.5272776	1.00263427	-0. 20038	3*	1.00131743	0
80.311	1.5272776	1.50263592	-0.00031	3*	1.00131743	0
82,987	1.5272776	1.00253592	-0.00025	3°	1.00131743	0
35,162	1.5272776	1.00263592	-0.00020	3*	1.00131743	0
87.337	1.5272776	1.00263592	-0.00016	3*	1.00131743	0
89.512	1.5272776	1.00263592	-0.00013	3*	1.00131743	0
91.683	1.5272776	1.00263592	-0.00010	2*	1.00131743	0
93.863	1.5272776	1.00263592		2*	1.00131743	0
96.038	1.5272776	1.00263592		2°	1.00131743	0
98.213	1.5272776	1.00263592	-0.000 05	2*	1.00131743	0
100.389	1.5272776	1.00263592	-0.00004	2'	1.00131743	0
_0000						

OMEGA 30000000 KAPPA 0.1000 DELTA 0.000100 VECTORLENGTH 0.40
REFLECTIONFACTOR 0.0001086 3.1417113 TRANSITFACTOR 1.0002138 0.0000000
ALPHA -0.00015 BETA -0.68393 GAMMA -0.68407

HE I GTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-100,000	1.2217305	1,00000000	-0,00005	2'	1.00000000	0	0.00010864	3. 14171135
-93, 16n	1.2217305	1,00000002	-0,00000	2'	1,00000001	0	0.00010864	3, 14171135
-86.319	1.2217305	1.00000005	-0.00018	3*	1,00000001	0, 00000001	0.00010864	3. 14171135
-79.479	1.2217305	1.00000011	-0,00035	3*	1,00000002	0,00000001	0.00010864	3.14171136
-72 . 638	1.2217306	1,00000025	-0.00070	3,	1,00000005	0, 00000003	0.00010864	3, 14171138
-65 . 7 98	1.2217307	1.00000054	-0,00139	3'	1.00000009	0, 00000007	0,00010864	3.14171141
-58.958	1.2217308	1.00000107	-0.00275	4'	1,00000019	0, 00000013	0.00010864	3.14171147
-52, 117	1.2217312	1.00000215	-0.00545	4'	1,00000037	0, 00000025	0.00010864	3. 1417116o
-45.277	1.2217319	1.00000428	-0.01081	4'	1.00000073	0, 00000050	0,00010864	3, 14171185
-38,4 36	1.2217333	1.00000840	-0.02142	5'	1,00000145	0.00000099	0,00010864	3.14171234
-31,596	1,2217361	1.00001636	-0.04244	· 6'	1.00000285	0,00000197	0.00010864	3, 14171331
-24,756	1.2217411	1.00003119	-o. o8411	8,	1,00000558	0, 00000387	0.00010864	3.14171521
-17.916	1.2217501	1.00005747	-o.1667o	11'	1.00001078	0.00000757	o, non1a864	3. 14171891
-11, 076	1.2217646	1.00009990	-0.33037	17°	1,00002038	0.00001463	0.00010864	3, 14172598
-4, 236	1.2217848	1,00015922	-0.65470	43'	1,00003717	0, 00002776	0.00010864	3.14173911
2, 604	1,2218o8o	1,00022730	-0.77077	70'	1.00017119	0,00003222		
9.443	1,2218294	1,00028981	-o. 3P897	20'	1.00019017	0.00001710		
16, 281	1.2218453	1.00033652	-0.19630	12'	1,00020121	o. 00000888		
23, 119	1.2218555	1,00036631	-0.09907	8,	1.00020726	0.00000455		
29.957	1.2218613	1,00038344	-0.05000	7'.	1.00021045	0,00000232		
36.795	1.2218645	1,00039270	-0. 02523	5 ' `	1,00021209	0,00000118		
43, 633	1,2218661	1,00039756	-0.01274	5'	1.00021293	ი, იიიიიინი		
50.471	1. 221867o	1,00040006	-0.00643	4'	1.00021336	0, 00000031		
57 . 3o 9	1.2218674	1,00040133	-0.00324	4'	1.00021358	0.00000016		
64. 147	1.2218676	1,00040196	-0.00164	3'	1,00021368	0, 00000009		
70.985	1.2218677	1,000/10231	-6,000R3	3'	1.00021374	0, 00000004		
77.822	1.2218678	1.000/10247	-0,00012	3'	1.00021376	0, 00000003		
84 . 660	1.2218678	1.00040254	-0,00021	3,	1.00021378	0.00000002		
91.498	1.2218678	1.00040257	-0,00011	2'	1.00021379	0,00000001		
98.336	1.2218678	1, ooo/lo261	-0, 00005	2'	1.00021379	0, 00000001		
105.174	1.2218679	1,00040264	-0,00003	2'	1.00021379	0,00000001		

 ONESA
 30000000
 KAPPA
 0.1000
 DELTA
 0.000100
 VECTORLENGTH 0.40

 ALPHA
 -0.00058
 B ETA
 -0.17374
 GAMHA
 -0.17432

 REFLECTIONFACTOR
 0.00031537
 3.1416335
 TRANSITFACTOR
 1.0033132
 0.0000001

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UN CT I ON		
-100-000	1.4835298	1.00000000	-0.00005	2'	1.00000000	0	0-00315371	3,14163350
-96.514	1.4835298	1.0000000	-0.00006	2'	1.0000000	0	0.00315371	3, 14 163350
-93.028	1.4835298	1.00000021	-0.00009	2'	1.00000001	0	0.00315371	3.14163350
-89.541	1.4835298	1.00000047	-0.00013	3'	1.00000001	0	0.00315371	3.1416335o
-86.055	1.4835299	1.00000072	-0.00018	3'	1.00000002	0	0.00315371	3,14163350
-82.569	1.4835299	1.00000145	-0.00026	3'	1.00000003	0	0.00315371	3,14163350
-79 .0 83	1.4835300	1.00000218	-0.00037	3'	1.00000004	0	0.00315371	3,14163351
-75-596	1.4835301	1.00000316	-o.oon52	3'	1.00000005	0.00000001	0.00315371	3.14163351
-72.11o	1.4835302	1.00000465	-0.00074	3'	1.00000007	0+00000001	0.00315371	3, 14163351
-68.624	1.4835364	1.00000684	-0.00105	3*	1.00000010	0.00000001	0.00315371	3,14163352
≟65.13 β	1.4835306	1.00000953	-0.00148,	3'	1.00000014	0.00000002	0.00315371	3,14163353
-61.652	1.4835310	1.00001346	-0.00210	3*	1.00000020	0-00000004	0.00315371	3,14163354
-58.165	1.4835315	1.00001910	-0.00298	4'	1.00000029	0+00000005	0.00315371	3,14163355
-54.679	1.4835322	1.00002719	-0.00422	4,	1.00000041	0.0000007	0.00315371	3.14163357
-51.193	1.4935332	1.00003372	-0.0 0598	4,	1.00000057	0.00000010	0.00315371	3,14163360
-47 -7 07	1.4835346	1.00005492	-0-00847	4'	1.00000082	0.00000014	0.00315371	3,14163364
-44.2 21	1.4835366	1.00007749	-0.01201	5 °	1.00000116	0.00000020	0.00315371	3.1416337o
-4o.735	1.4835394	1.00010960	-0.017 02	5'	1.00000164	0.00000029	0.00315371	3, 14 163379
-37.249	1.4835432	1.00015424	-0.02412	5'	1.00000233	0.0000041	0.00315372	3.14163391
-33.763	1.4835487	1.00021632	-0.03417	6'	1.00000329	0-00000057	0.00315372	3,141634 ₀ 8
-30.278	1.4835562	1.00030270	-0.04842	6'	1.00000464	0.00000081	0-00315372	3,14163432
-26-793	1.4835665	1.000/2102	-0.06361	7'	1.00000655	0.00000115	0.00315373	3.14163465
-23 . 30 8	1.4835804	1.00058138	-0.09722	8,	1.00000921	0.00000162	0.00315374	3.14163513
-19.824	1.4835990	1.00079411	-0.13774	lo'	1.00001293	0.00000229	0.00315375	3. 14 16 35 79
-16.34o	1.4836231	1.00107203	-0.19514	12'	1.00001807	0.00000323	0.00315377	3.14163672
-12,358	1.4836536	1.0014228o	-0.276 <u>M</u>	15'	1.00002514	0.00000452	0-00315379	3,14163803
-9.37 6	1.4836907	1.00184982	-0.39155	20'	1.00003474	0.0000 0633	0.00315382	3. 14 16 3 98 3
-5.897	1.4837339	1.00231704	-0.55451	31,	1-00004764	0.00000881	0.00315386	3, 14164231
-2.419	1.4837815	1.00289616	-0.78517	75'	1.00006466	0.00001219	0.00315391	3.14164568
1.058	1.4838311	1.00316925	-0.89964	171'	1.00324022	0.00001386		
4.532	1.4838799	1.00103291	-o. 6356o	40'	1.00325920	0-00001008		
8.004	1.483925o	1.00/155524	-0.44914	23'	1.00327364	0.00000729		
11.475	1.4839616	1.00501417	-0.31744	16'	1.00328447	0.00000527		
14.944	1.4839978	1.00539820	-0. 22439	13'	1.00329246	0.00000380		
18.411	1.4840244	1.00570760	-0.15864	10'	1.00329831	0.00000275		
21.878	1.484.452	1.00594811	-0.11217	9'	1.00330255	0.00000199		
25.343	1.4840609	1.00613062	-0.07931	8'	1.00330560	0.00000145		
28.308	1.4840726	1.00626676	-0.05609	7.	1.00330779	0.00000107		
32,273	1.4840812	1.00636696	-0.03966	6'	1.00336935	0800000080		
35.737	1.4840875	1.00643769	-o-o28o5	6'	1.00331046	0.00000060		
39.201	1.4840920	1.00649195	-0.01984	5'	1.00331125	0.00000046		
42.665	1.4840952	1.00652945	-0.01403	5'	1.00331181	0=00000037		
46.129	1.4840975	1.00655621	-0.00992	4'	1.00331221	0.00000030		
49.592	1.4840991	1.00657544	-0.00702	4'	1.00331249	0,00000025		
53.056	1.4841003	1.00658869	-0-00196	4'	1.00331270	0+00000022		
56.519	1.4841011	1.00659848	-o. oo 351	4'	1.00331283	0.00000019		
59,983	1.4841017	1.00660545	-0.00248	4'	1.00331293	0-00000017		
63.446	1.4841021	1.00661021	-0-00176	3,	1.00331300	0.00000016		
66.910	1.4841 ₀ 24 1.4841 ₀ 26	1.00661372 1.00661597	-0.00124	3 '	1.00331305 1.00331309	0.00000015		
70•373 73 - 837	1.4841028	1.00001797	-0.00088	3,		0.00000014		
	1.4841020		-0.00062	3*	1.00331312	0.00000014		
77 • 300 8 • 762		1.00661896	-0.00044	3'	1.00331313	0.00000013		
80.763 84.227	1.4841o3o 1.4841o3o	1.00661996 1.00662048	-0.00031	3,	1.00331315	0.00000013		
87.690	1.4841030	1.00002040	-0.00022 -0.00016	3'	1.00331316 1.00331316	0.00000013		
91.154	1.4841031	1.00662121	-0.00010 -0.00011	2'	1,00331317			
94.617	1.4841031	1.00662121	-0.00008	2'	1.00331317	0.00000013		
7±011	1.4041031	1.0000214/	-0 • 00000	4	1.0033131	0-00000013		

98.080 1.4841031 1.00662173 -0.00006 2' 1.00331317 0.00000013 101.544 1.4841031 1.00662173 -0.00004 2' 1.00331317 0.00000013

 CMEGA
 30000000
 KAPPA
 0.1000
 DELTA
 0.000100
 VECTORLENGTH
 0.50

 A.PHA
 -0.00116
 BETA
 -0.08608
 GAMMA
 -0.08724
 0.0000003

 REFLECTIONFACTOR
 0.0133321
 3.1416135
 TRANSITFACTOR
 1.0134974
 0.0000003

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNICTION		
-100-000	1.5271629	1.00000000	-0-00005	2'	1.00000000	0	0.01333206	3, 14 161348
-97.819	1.5271629	1.00000000	-0.00006	2'	1-00000000	0 '	0.01333206	3, 14161348
-95.638	1.52716 29	1.00000000	-0.00007	2*	1.00000001	•	0.01333206	3, 14161348
-93.457	1.5271630	1.00000091	-0.00009	2,	1.00000001	0	0-01333206	3, 14161348
-91.276	1.5271630	1.00000094	-0.00011	2'	1.00000001	0	0.01333206	3. 14 161348
-89.095	1.527163 ₀	1.00000187	-0.00014	3*	1.00000001	0	0.01333206	3.14161348
-86.914	1.5271631	1.00000290	-o.ooo17	3,	1-00000001	0	0.01333206	3,14161348
-84.733	1.5271631	1.00000384	-0.00021	3'	1.00000002	0	0.01333206	3.14161348
-82.552	1.5271631	1.00000487	-0.0002 6	3'	1.00000003	ο,	0.01333206	3,14161348
-80.371	1.5271632	1.00000683	-0.00032	3,	1,00000003	0	0-01333206	3, 141613 18
-78.190	1.5271634	1.00000973	-o-ooo4o	3'	1-00000004	0	0.01333206	3, 14161348
-76.009	1.5271635	1.00001272	-0.00050	3'	1-00000005	0	0-01333206	3.14161348
-73,828	1.5271636	1.00001563	-0-00062	3'	1.00000006	0	0-01333206	3,14161348
-71. <i>6</i> 47	1-5271638	1.00001955	-0.00077	31	1.00000008	ò	0-01333206	3, 14161319
-69.466	1.527164o	1.00002442	-0.00096	3'	1.00000009	0.00000001	0.01333206	3, 14 161 349
-67.286	1.5271643	1.00003126	-0.00120	3*	1.00000012	0.00000001	0.01333206	3,14161349
-65 . 105	1.5271616	1.00003715	-0.00149	3'	1.00000015	0.00000001	0.01333206	3, 14161319
-62,924	1.5271650	1.00004697	-0.00185	3*	1.00000019	0.00000001	0.01333206	3,14161350
-60.743	1.5271655	1.00005867	-0.00230	3°	1.00000023	0.00000002	0.01333206	3.14161350
-58. 56 2	1.5271661	1.00007336	-0.0028 6	4'	1.00000028	0.00000002	0.01333206	3, 14161351
-56.381	1.5271669	1.00009198	-0.00356	4'	1.00000035	0-00000003	0-01333206	3,14161351
-54.200	1.5271679	1.00011454	-0.00443	4'	1.00000043	0.00000004	0-01333206	3.14161352
-52.020	1.5271691	1.00014196	-0-00551	4'	1.00000054	0.00000004	0.01333206	3,14161353
-49.839	1.5271707	1.00017716	-0.00685	4'	1.00000068	0.00000006	0.01333207	3, 14161354
-4 7.658	1.5271725	1.00022030	-0.00852	4'	1.00000085	0.00000007.	0.01333207	3,14161356
-45.4 78	1.5271749	1.00027422	-o.o1o59	4'	1.00000105	0.00000009	0.01333207	3.14161357
-43,298	1.5271778	1.00033985	-0.01317	5'	1.00000130	0.00000011	0.01333207	3, 14161360
41.117	1.5271813	1.00042215	-o. o1638	5'	1,00000162	0.00000014	0.01333208	3, 14 161362
-38.937	1.5271857	1.00052311	-0.02037	5'	1.00000201	0.00000018	0.01333208	3,14161365
-36.757	1.5271912	1.00064863	-0.02533	5'	1.00000250	0.00000022	0.01333209	3.1416137o
-34.578	1.5271978	1.00080070	-o.o315o	6•	1.00000310	0.00000027	0.01333210	3, 14161375
-32,399	1-5272060	1.00098918	-0. 03917	6°	1-00000385	0.00000034	0.01333211	3,14161382
-30.220	1.5272161	1.00122003	-0.04870	6°	1.00000478	0-00000042	0.01333212	3. 14161390
-28.041	1.5272283	1.00150117	-0-06056	·7 '	1.00000592	0-00000052	0.01333214	3,14161400
-25.864	1.5272431	1.00184153	-0-07529	7°	1.00000734	0.00000065	0.01333215	3, 14161412
-23,687	1.5272610	1.00225332	-0.09360	8,	1.00000908	0 - 00000080	0.01333218	3, 14 16 14 28
-21,511	1.5272824	1.00274643	-0.11636	9°	1.00001123	0.00000099	0.01333221	3. 14161447
-19.336	1.5273678	1.00333225	-0.1446 3	lo'	1.00001386	0.00000123	o. o13332 24	3. 14 161471
-17-162	1.5273377	1.00lo2215	-0. 17975	11"	1-00001709	0-00000152	0.01333228	3, 14161500
-14.990	1.5273725	1.00482673	-0. 22336	13'	1.00002103	0-00000188	o-0133323 !	3,14161536
-12,819	1.5274123	1.00574963	-0-27750	15°	1.00002583	0.00000232	0.01333240	3, 14 161 581
-10.651	1.5274574	1.00679706	-0.314 70	17	1.00003162	0-0000 -2 87	0.01333248	3, 1416163 4
-8,484	1.5275075	1.00796198	-0.42808	22'	1.00003862	0.00000353	0-01333257	3.14161701
-6, 321	1.5275621	1.00923553	-0-53149	29°	1.00004699	0-00000434	0.01333268	3, 14161781
-4,160	1.5276264	1.01059882	-0.65970	44'	1.00005697	0.00000531	0.01333282	3,1416188 ₀
-2.002	1.5276814	1.01202956	-0.81861	91°	1.00006872	0.00000649	0.01333297	3. 14161997
0.154	1.5277437	1.01349391	-0.98476	316'	1.02120881	0-00000763		
2,306	1.5278059	1.01496058	-0-79409	79*	1.01312946	0-00000642		
4,454	1.5278666	1.01639549	-0.61051	41'	1.01344110	0.00000530		
6.600	1.5279245	1.01776847	-0.51684	28'	1.01345092	0.00000439		
8,743	1.5279785	1.01905371	-0.41715	21'	1.01345914	o.ooooo363		
10.883	1.5280281	1.02023472	-0.33678	17'	1.01346600	0.00000300		
13.021	1.5280727	1.02129980	-0. 27196	14'	1.01347169	0.00000250		
15.157	1.5281121	1.02224278	-o. 21966	12*	1.01317639	0-00000208		
17.290	1.5281465	1.02306885	-0.17746	11'	1.01348026	0.00000174		
19.422	1.5281762	1,02378142	-0.14339	10'	1.01348344	0.00000146		
21.552	1-5282015	1.02439010	-0.11587	9'	1-01348604	0.00000124		

23,682	1.5282228	1.02490298	-0:09365	8,	1.01348817	0.00000106
25.81o	1.5282408	1.02533538	-0.07570	7'	1.013/8090	0.0000000000000000000000000000000000000
27.937	1.5282556	1.02569428	-0.06120	7'	1.01349131	0.00000079
30.063	1.5282680	1.02599338	-0.01947	6'	1.01349246	0 •000 000069
32, 180	1.5282783	1.02623985	-0.04000	6*	1.01349340	0.00000061
34.314	1.5282866	1.02644200	-0.03234	6'	1.01349415	0.00000054
36,439	1.5282935	1.02660821	-o. o2615	5°	1.01349476	0-00000049
38.564	1.5282991	1.02674378	-0.02115	5'	1.01349526	0.00000045
40.688	1.5283037	1.02635399	-0.01710	5 '	1.01319567	0.00000042
42.812	1.5283074	1.02694414	-0. 01363	5 °	1.01349599	0+00000039
44.936	1.5283104	1.o27o1728	-o.o1118	5 °	1.01349625	o•ooooon37
47.059	1.5283129	1.02707665	-0.00904	4'	1.013/19647	0.00000035
49,183	1.5283149	1.02712548	-0.00731	4'	1.01349664	0.00000034
51.306	1.5283165	1.02716467	-0.00591	4"	1.01349678	0.00000033
52.368	1.5283172	1.02718170	-0.0 053 2	4'	1.01349685	0.00000032
53,429	1.5283178	1.02719657	-0.00178	4'	1.01349689	0.00000031
54,491	1.5283184	1.o2721o36	-0.00430	4'	1.01349695	0.00000031
55.553	1.5283189	1.02722306	-0.00367	4'	1.01349699	0.00000031
57.676	1.5283198	1.02724325	-0.00313	4'	1.01 34 9706	0.00000031
59.799	1.5283205	1.02726019	-0.00253	4'	1.013/9713	0•00000030
61.922	1.528321o	1.02727398	-0. 00205	3,	1.01349717	0-00000029
64.045	1.5283215	1.o272£57o	-0.00165	3*	1.01349721	0-00000029
66.169	1.5233219	1.02729417	-0.00131	3'	1.01349724	0.00000029
68.292	1.5283222	1.o273 o 156	-0. 00108	3,	1.01349727	0.00000028
70.415	1.5283224	1.02730796	-0.00087	3'	1.01349729	0.00000028
72.538	1.5283226	1.02731219	-0.00071	3,	1.01349731	0.00000028
74.661	1.5283228	1.02731643	-0 •20057	3'	1.01319732	0.00000028
76.784	1.5283229	1.02731967	-0.000/16	3*	1.01349733	0.00000023
78.907	1.5283230	1.02732175	~0.000 37	3 °	1.01349734	0.00000023
81.030	1.5283231	1.02732391	-0.00030	3'	1.01349735	0.00000028
83.153	1.5293231	1.02732490	-0.00024	3*	1.01349735	0.00000028
85.276	1.5283232	1.02732707	-0.00020	3'	1.01349736	0.00000028
87.399	1.5283233	1.02732815	-0.00016	3*	1.01349736	0.00000029
89.522	1.5283233	1.02732923	-0.00013	3'	1.01319736	0.00000028
91.645	1.5283233	1.02732923	-0.00010	2'	1.01349736	0•0000002 ³
93.768	1,5283234	1.02733022	-0-90008	2*	1.01349736	0.000000028
95.891	1.5283234	1.02733022	-0.00007	2'	1.01349737	0.10000028
98.014	1.5283231	1.02733130	-0.0000 6	2'	1.013/9737	0.000000028
100.137	1.5283234	1.02733130	-0.00004	2'	1.01349737	0.00000028

 DMEGA
 30000000
 KAPPA
 0,1000
 DELTA
 0,001000
 VECTORLENGTH 0,40

 REFLECTIONFACTOR 0,0010915
 3,1427806
 TRANSITFACTOR 1,0021459
 0,0000019

 ALPHA
 -0,00146
 BETA
 -0,68292
 GAMPA
 -0,68438

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-100,000	1.2217305	1,00000000	-0,00005	2'	1,00000003	0, 00000002	0.00109155	3.14278066
-93 . 160	1.2217305	1.00000018	-0,0000 ⁽⁾	2'	1.00000006	0.0000004	0.00109155	3, 14278068
-86, 319	1,2217305	1.00000051	-0,00018	3'	1,00000012	0, 00000008	0.00109155	3.14278073
-79.479	1,2217309	1.00000121	-0, 00035	3'	1,00000024	0.00000016	0.00109155	3, 14278081
-72,63 8	1.2217314	1.00000262	-0,00070	3'	1. ooqooo48	0, 00000033	0.00109155	3.14278097
-65.798	1,2217323	1,00000539	-0,00139	3'	1,00000095	0.00000065	0.00109155	3.14278129
- 58 . 958	1,2217342	1.00001083	-0.00275	4'	1.00000187	0,00000128	0.00109155	3, 14278193
-52, 117	1,2217378	1.00002160	-0.00515	4'	1,00000371	0, 00000254	0.00109155	3, 14278318
-45.277	1, 2217451	1.00004277	-0.01081	4'	1.00000734	0.00000503	0.00109156	3.14278567
-38,437	1.2217592	1.00008409	-o, o2141	5'	1.00001448	0.0000995	0.00109157	3, 14279059
-31.597	1,2217863	1.00016351	-o. o4244	6,	1,00002851	0.00001964	0.00109158	3.14280029
-24.758	1.2218369	1.00031182	-o. oM1o	8,	1,00005575	o. oono3867	0.00109161	3, 14281931
-17.919	1.2219265	1.00057457	-o. 16664	11'	1.00010772	0.00007564	0.00109167	3, 142856 2 8
-11.o83	1,2220712	1.00099924	-o. 33o13	17°	1.00020366	0.00014627	0.00109177	3, 14292691
-4.249	1.2222735	1.00159335	-0.65386	43'	1.00037134	0.00027727	0.00109196	3. 14305791
2.582	1,2225058	1.00227636	-0.77247	70'	1.00171709	0.00032427		
9,407	1.2227194	1.00290502	-0.39034	20'	1.00190784	0.00017314		
16, 229	1,2228791	1.00337591	-0. 19732	12'	1.00201887	o , 00009090		
23. o48	1,2229813	1.00367713	-ი. ი9978	8,	1.00207975	0.00001756		
29.865	1.2230401	1,00385085	-0.05016	7'	1.00211192	0,00002516		
36.681	1,2230721	1.00394510	-n. o2553	5'	1.00212857	-0, 00001370		
43.496	1,2230888	1.00399455	-0.01291	5'	1.00213710	0. 00000?87		
50.311	1.2230974	1.00402004	-0.00653	4'	1.00214144	0. 00000191		
57. 126	1.2231019	1.00/103305	-0,00330	4'	1.00214364	o. ooo oo 34o		
63 . 94n	1.2231041	1.00103967	-o. oo167	3'	1.00214475	o, naocc264		
70.755	1.2231052	1.00404303	-0. 00085	3'	1,00214532	o. nonoo226		
77.569	1,2231058	1.004o/472	-o . 000 43	3'	1.00214560	o. nonnn2o? ,		
84.384	1.2231061	1.00/10/1559	-0, 00022	3'	1.00214575	0.00000197		
91.198	1,2231052	1.00/10/1603	-0,00011	2'	1.00214582	0.00000192		
98.013	1.2231063	1.00404624	-n. nnonh	2'	1.00214586	n , 00000189		
104.827	1.2231064	1.00101635	-0, 00003	2'	1.00214587	o. 000001 ⁸⁸		

 OMEGA
 30000000
 KAPPA
 0.1000
 DELTA
 0.001000
 VECTORLENGTH 0.40

 APHA
 -0.00594
 BETA
 -0.16846
 GAMHA
 -0.17440

 REFLECTIONFACTOR 0.0336455
 3.1420016
 TRANSITFACTOR 1.0352931
 0.0000136

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-100-000	1,4835298	1.00000000	-0.00005	2'	1.00000004	0.00000001	0.03364550	3, 14 200 157
-96.514	1.4835299	1.00000145	-0.00006	2'	1.00000006	0-00000001	0.03364550	3, 14200157
-93.028	1.4835301	1.00000316	-0.00009	2'	1,00000009	0.00000001	0.03364551	3, 14200158
-89.541	1.4835303	1.00000564	-0.00013	3,	1.00000012	0.00000002	0.03364551	3,14200158
-86.055	1,4835306	1.00000931	-0.00018	3,	1.0000018	0.00000003	0.03364551	3, 14200159
-82.569	1.4835310	1.00001397	-0.00026	3'	1.00000025	0.00000004	0.03364551	3,14200161
-79.083	1.4835316	1.00002107	-0.00037	3,	1.00000036	0.00000006	0.03364551	3, 14200162
-75-597	1,4835325	1.00003111	-0.00052	3,	1.00000050	0.00000009	0.03364552	3.14200165
-72-110	1.4835338	1.00004560	-0.00074	3,	1.0000072	0.00000013	0.03364553	3,14200168
-68.624	1.4835355	1.00006569	-0.00105	3'	1.00000101	0.00000018	0.03364554	3, 14200173
-65.138	1.483538o	1.00009416	-0.00148	3'	1.00000144	0.00000025	0.03364555	3,14200181
-61.652	1,4835415	1.00013439	-0.00210	3,	1.00000203	0.00000036	0.03364557	3,14200191
-58-167	1.4835465	1.00019156	-0.00298	4,	1.00000289	0.00000051	0.03364560	3.14200206
-54.681	1,4835535	1.00027226	-0.00422	4'	1.00000409	0.00000072	0.03364564	3,14200227
-51.196	1,4835635	1.00038667	-0.00598	4'	1,00000579	0.00000101	0.03364570	3, 14 200 257
-47.711	1.4835775	1.00054775	-0.00847	4'	1.00000820	0.00000143	0.03364578	3,14200299
-44,227	1.4835973	1.00077501	-0.01200	5'	1.00001161	0.00000203	0.03364589	3.14200359
40.743	1.4836251	1.00109417	-0.01700	5'	1.00001643	0.00000287	0.03364606	3.14200443
-37.261	1,4836639	1.00154150	-0.02409	5,	1.00002323	0.00000406	0.03364628	3,14200562
-33.780	1.4837181	1.00216533	-0.03412	6'	1.00003282	0.00000575	0.03364661	3,14200731
-30-301	1,4837931	1.00302975	-0.04831	6'	1.00004632	0.00000813	0.03364706	3. 14200968
-26,825	1,4838958	1.00421710	-0.06839	7"	1.00006524	0.00001147	0.03364770	3.14201304
-23, 354	1.4840348	1.00582809	-0.09678	8,	1.00009169	0.00001618	o.o3364859	3.14201774
-19.888	1.4842197	1.00797825	-0.13687	1o'	1.00013844	0.00002278	0.03364982	3, 142, 2433
-16.429	1.4844599	1.01078705	-0.19312	11'	1.00017916	0.00003197	o.o3365153	3, 142, 3352
-12.980	1.4847631	1.0143538o	-0.27309	14'	1.00024850	0.00004472	o•o3365386	3 . 142₀462 8
-9.543	1.4851319	1.01872592	-o. 3851o	19'	1.00034218	0.00006227	o. o 33657 o 2	3.14206383
-6.120	1.485561o	1.02386098	-0.54226	30'	1.00046699	o. 0000 ⁸ 623	0.03366121	3.14208779
-2.715	1.4860358	1.02960236	-0.76225	67°	1.00063042	o-coc11858	0.03366671	3.14212014
o⊶672	1.4865327	1.03568157	-0.93505	269'	1.03451239	0.00014765		
4038	1.4870242	1.04176528	-0. 66777	45'	1.03470919	0.00011177		
7.385	1.4874842	1.04752412	-0.47783	25'	1.03485996	0.00008521		
10.714	1.4878934	1.05270012	-0.3425 4	17°	1.03497390	o.oooo6568		
14.026	1.4882415	1.05714402		13'	1.03505907	0.00005140		
17.324	1.4885267	1.06081343	-0. 17685	11'	1.03512218	0.00004100		
20.612	1.4887534	1.06374859	-0.12731	9,	1.03516863	0.00003344		
23.890	1.4889294	1.06603739	-0.09173	8,	1.03530266	0.00002795		
27.161	1.4890635	1.06778825	-0.06614	7,	1.03522748	0.00002398		
30-426	1.4891642	1.06910750	-0.04771	6'	1.03521554	0.20002110		
33 . 6 88	1.4892391	1.07009059	-0.03443	6'	1.03525866	0-00001902		
36,947	1.4892944	1.07081725	-0.02 1 86	5'	1.03526818	0.00001752		
40.203	1.4893350	1.07135058	-0.01795	5'	1.03527507	0-00001643		
43.458	1.4893646	1-07174080	-0.01296	5'	1.03528006	0-00001565		
46.712	1.4893862	1.07202512	-0,00936	4'	1.03528367	0.000015.7		
49.964	1.4894018	1.07223172	-0.00676	4'	1.03528628	0.00001466		
53.217	1.4894132	1.07238193	-0.00488	4'	1.03528817	0.00001436		
56.468	1.4894215	1.07249074	-0.00353	4'	1.03528953	0.00001415		
59.720	1.4894274	1.07256934	-0.0025 5	4'	1.03529052	0.00001400		
62.971	1.4894317	1.07262652	-0.00184	3'	1.03529124	0.00001389		
66,222	1.4894349	1.07266767	-0.00133	3'	1.03529175	0.00001381		
69.473	1.4894371	1.07269732	-0.00096	3,	1.03529213	0.00001375		
72.723	1.4894388	1.07271910	-0.00069	3,	1.03529239	0.00001370		
75-974	1,4894399	1.07273149	-0.00050	3'	1.03529258	0.00001367		
79.225	1.4894408	1.07274600	-0.00036	3,	1.03529273	0.00001365		
82.476	1.4894414	1.07275416	-0.00026	3'	1.03529283	0.00001363		
85.726	1.4894419	1.07275992	-0.00019	3'	1.03529290	0.00001363		
88. 977 .	1.4894422	1.07276415	-0.00014	3,	1.03529295	0.00001361		

95.478	1,4894424 1,4894426	1.07276720 1.07276960	-0.00007	2'	1.03529299 1.03529302 1.03529304	0.00001360	
98.728	1.4894427	1.07277113					
101.979	1.4894428	1.97277231	-0.00004	2'	1.03529305	0.00001300	

 ONEGA
 30000000
 KAPPA
 0.1000
 DELTA
 0.001000
 VECTORLENGTH 0.50

 A.PHA
 -0.01357
 BETA
 -0.07372
 GAMHA
 -0.08728

 REFLECTIONFACTOR 0.1824327
 3.1418013
 TRANSITFACTOR 1.1843669
 0.0000323

HETGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-100-000	1.5271629	1.00000000	-0.00005	2'	1.00000004	0	o. 18243274	3, 14 1801 28
-97.819	1.5271631	1.00000290	-0.0000	2'	1.0000000	0	0.18243275	3.14130129
-95.638	1.5271632	1.00000580	-0.00007	2'	1.00000007	0	o. 18243275	3. 14180129
-93 .4 57	1.5271634	1.0000170	-0.00009	2'	1.00000009	0.00000001	0.102F3275	3.14180129
-91.276	1.5271637	1.00001759	-0.00007	2'	1.00000011	0.00000001	o. 18243275	3. 14 18 01 29
-89.095	1.5271640	1.00002442	-0.00014	3'	1.00000013	0.00000001	o. 18243276	3, 14180129
-86.914	1.5271644	1.00003321	-0.00017	3,	1.00000017	0.00000001	0.18243277	3. 14180130
-84.733	1.5271649	1.00004398	-0.00021	3,	1.00000021	0.00000001	o. 18243277	3.14180130
-82.552	1.5271654	1.00005671	-0.00021	3,	1.00000021	0.00000002	0.18243278	3. 14180131
-80.372	1.5271661	1.00007336	-0.00032	, 3'	1.00000020	0.00000002	0.18243279	3. 14180131
-78.191	1.5271670	1.00007301	-0.00032	3,	1.000000010	0.000000004	o. 18243281	3. 14180131
-76-01o	1.5271681	1.00011940	-0.00050	3,	1.00000050	0.00000004	0.10243201	3. 14180133
-73, 829	1.5271695	1.00015075	-0.00062	. 3,	1.00000050	0.00000005	0. 18243285	3.14180133
-71.619	1.5271713	1.00019091	-0.00077	3'	1.00000077	0.00000007	o. 18243288	3.14180135
-69.468	1.5271734	1.00023986	-0.00077	3'	1.00000077	0.00000003	0.19243291	3,14180136
-67.288	1.5271761	1.00030164	-0.00120	3 '	1.00000119	0.00000000	o. 18243295	3. 14180130
-65.107	1.5271794	1.00037805	-0.00149	3 '	1.00000119	0.00000013	0.10243299	3.14180141
-62.927	1.5271835	1.00047216	-0.00135	3 "	1.00000184	0.00000015	0.18243307	3. 14180144
-60.747	1.5271887	1.00059082	-0.00230	3,	1.00000104	0.00000020	o. 18243315	3, 14180148
-58.568	1.5271951	1.00073697	-0.00236	4,	1.00000220	0.00000025	0.18243325	3, 1418, 153
-56°388	1.5272030	1.000/309/	-0.00256	4,	1.00000353	0.0000002)	0.18243338	3. 14180159
-54.209	1.5272128	1.00114538	-0.00330 -0.00442	4,	1.00000333	0.00000038	0.18243354	3.14180166
-52.o31	1,5272251	1.00142640	-0.00550	4,	1.00000545	0.00000048	0.18243373	3. 14180176
-49.853	1.5272402	1.00177468	-0.00584	4,	1.000000545		0.18243397	3. 14180170
-4 7.676	1.5272589	1.00220597	-0.00303	4,	1.000000000	0.00000059	0.18243427	3, 14180201
-45.500	1.5272822	1.00274247	-0.00050 -0.01057	4,	1.00001046		o. 18243464	3.14180219
-43, 325	1.5273110	1.002/4.54/	-0.0103/ -0.01314	5'	1.00001040	0.00000092	0.18243511	3.14180219
-41.151	1.5273466	1.00422735	-0.01632	5 '	1.00001299	0.00000141	0.19243568	3.14180242
-38,979	1.52739-4	1.00524313	-0.02028	5'	1.00001014	0.00000175	0.18243639	3.14180303
-36.810	1.5274446	1.00649840	-0.0252b	ر 5'	1.00003003	0.00000218	0.18243039	3. 14130346
-34.643	1.527511o	1.00804415	-0.02)20 -0.03130	6'	1.00002407	0.00000270	0.102±3/2/ 0.18243836	3.14180398
-32.479	1.5275925	1.00994472	-0.03886	6'	1.00003002	0.00000270	o. 1824397o	3.14186463
-30.319	1.5276919	1.01227628	-0.04822	6'	1.00004729	0.00000415	0.18244136	3.14180543
-28.165	1.5278130	1.01512847	-0.05982	7'	1.0000 5849	0.00000215	o. 18244341	3,14180642
-26-016	1.5279595	1.01860027	-0.07415	7,	1.00007226	0.000000012	0.18244592	3, 14180765
-23.875	1.5281358	1.02281211	-0.09186	έ,	1.00007 220	0.00000787	0.18244900	3, 14180915
-21.743	1.5283464	1.02788791	-0.11369	9,	1.00010976	0.00000971	0.18245276	3. 14181099
-19.621	1.5285960	1.03396828	-0.14 056	10'	1.00013497	0.00001197	o. 18245734	3. 14181325
-17.512	1.5283887	1.04119373	-0.1 7357	11,	1.0001.517	0.00001197	o. 18246 2 89	3, 14181601
-15.417	1.5292284	1.04970310	-0.214 ₀ 2	12'	1.0001033	0.00001307	o. 18246958	3. 14181935
-13, 339	1.5296173	1.05961960	-0.26345	14'	1.00024592	0.00002211	0.18247760	3. 1418234o
-11.281	1.5300562	1.07103852	-0.32366	16'	1.0002792	0.00002211	0.18248715	3, 14182827
-9.244	1.5305438	1.08401592	-0. 39676	20'	1.000 360 21	0.00003282	o. 18249845	3, 14183410
-7. 2 32	1.5310761	1.09854817	-0.48519	25'	1.00043784	0.00003272 0.00003776	0. 18251 170	3. 14184105
-5.247	1.5316470	1.11457253	-0. 59175	35,	1.00051737	0.00004797	0.18252712	3. 14184925
-3, 290	1.5322477	1.13194445	-0.71966	55 '	1.00061487	0.00005761	0.18254491	3. 14185889
-1.363	1.5328681	1.15046118	-0.8726o	133'	1.00072640	0.0000761	o. 18256525	3. 14187014
0.533	1.5331968	1.16986220	-0.94808	316	1.18343979	0.00008378	0.102/0/2/	20 14101014
2.398	1.5341226	1.18982657	-0.7868o	76'	1.18357666	0.00007565		
4.231	1.5347348	1.21003115	-0.65501	43'	1.18369365	0.00006884		
6.034	1.5353243	1.23014417	-o.54696	30'	1.18379342	0.00000004		
7.807	1.5358837	1. 24985871	-0.458o9	24'	1.18387934	0.00005837		
9.552	1.5364076	1.26890352	-0.38473	19*	1.18395052	0.00005437		
11.271	1.5368925	1.28705825	-0.32396	16'	1.18401189	0.00005100		
12.966	1.5373371	1.30416148	-0.32390 -0.27345	14,	1.18406101	0.00007100		
14.639	1.5377406	1.32008586	-0. 23134	13'	1.18410831	0.00004579		
16, 291	1.5381643	1.33477258	-0.1961o	12'	1.18414599	0.00004379		
/-	/ +0 20	** 00111 50	-0.17010		40 41/T AT ノブブ	0.0000x4/		

17.926	1.5384299	1,34820196	-0.16653	11'	1.18417804	0.00004309
19.544	1.5387196	1,36038130	-0.14165	10'	1.18420534	0.00004065
21.147	1.5389762	1.37135202	-0.12067	9,	1.18422861	0.00003943
22,738	1.5392026	1.38118013	-0.10292	8.	1.18424845	0.00003839
24.317	1.5394014	1.38993067	-0.08788	8,	1.1842654o	0.00003751
25,887	1.5395756	1,39768583	-0.07512	7°	1.18427987	0.00003676
27.443	1.5397279	1.40453805	-0.06126	7*	1.18429226	0.00003612
29.001	1.5398606	1.41056564	-0.05502	7°	1.18430286	0.00003558
30.547	1.5399762	1.41585447	-0.04714	6,	1.18431193	0.00003511
32.088	1.5400765	1.42047879	-0.04040	6'	1.18431970	0.00003471

ONE GA 30000000 KAPPA 0.1000 DELTA 0.010000 VECTORLENGTH 0.40 REFLECTION FACTOR 0.0114637 3.1535584 TRANSITFACTOR 1.0222884 0.0001924 ALPHA -0.01487 BETA -0.67259 GAMMA -0.68745

HELSTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-100,000	1,2217305	1.00000000	-0,00005	2'	1,00000031	0.00000021	o. o1146366	3, 1535506n
-93.160	1.2217311	1.00000177	-0.00009	2'	1,00000061	0.00000042	o. o1146367	3.15355881
-86, 319	1,2217323	1.00000529	-0,00018	3'	1.00000121	0. 000000183	o. o1146367	3, 15355922
-7 9.479	1,22173:17	1.00001226	-0.00035	3'	1,00000240	0.00000185	0.01146369	3.15356004
-72.639	1.2217394	1.00002607	-0.00070	3'	1.00000476	0.00000327	0. 01146371	3.15356166
-65.798	1.2217487	1.00005342	-0.00139	3'	1.00000942	o. 00000648	o. o1146377	3.15356487
-58,958	1.2217672	1.00010751	-0.00275	4'	1.00001866	0.00001284	o. o1146 3 87	3, 15357123
-52, 119	1.2218o36	1.00021430	-0.005/15	4'	1.00003695	0,00002543	o. 011464of	3, 15358382
-45.279	1,2218753	1.00042431	-0.01080	4"	1.00007310	0.00005034	o. o1146/5o	3, 1536o?73
-30.442	1.2220150	1.000 3426	-o. o214o	5 '	1.00014434	0.0009 956	0.01146531	3.153 65796
-31,607	1,2222836	1.00162305	-o. o/2/1o	6*	1.00026400	0.00019553	o. o1146592	3, 15375493
-24.777	1.2227852	1.00309919	- ი. ი 8394	8,	1.00055500	o. 00038646	0, 01147002	3.15394486
-17. 956	1.2236737	1.00572416	-0.16603	11'	1.00107079	o. 10075450	o. o1147594	3, 15431289
-11.152	1,2251099	1.00999530	-o. 32784	17*	1.00201944	0. 0 0145 3 86	o. o1148681	3, 15501226
-4.375	1.2271216	1.01603755	-o. 64562	42'	1.00366849	0.00273994	0.01150571	3, 15629832
2.364	1, 229444o	1.02310044	-0.78950	77"	1.01773082	0.003/14866		
9.059	1.2316017	1.02974793	-0. 40419	20'	1.01972575	0.00194228		
15.713	1.2332435	1. o3486225	-o. 2o777	12'	1.02089756	0.00111685		
22, 337	1.234316o	1.03822992	-0.1 0713	91	1.02154938	0.00067622		
2 8.94o	1, 2349497	1.04022950	-0. 05535	7'	1.02190036	o. ooo44437		
35.532	1,2353023	1.04134545	-o. o2863	6'	1,2208596	0, 00032330		
42.116	1.2354920	1. o4194694	-o. o1482	5 '	1.02218314	o. 00026o32		
48.697	1.2355923	1.04226513	-0.00768	4'	1.02223377	o. oon22762		
55 - 2 77	1,2356448	1.04243175	-o . o o398	4'	1. o2226007	0.00021067	•	
61.855	1.2356722	1.o4251856	-ი, იი2ინ	3'	1.02227372	0.00020188		
68.433	1.2356864	1.o4256365	-0,00107	3'	1,02228079	0.00019733		
75. o1o	1.2356937	1.04259706	-0,00055	3,	1. o2228446	0.00019497		
81.587	1.2356975	1.04259919	-0.00029	3,	1. o2228636	0.00019374		
88.165	1.2356995	1. o426o516	-0.00015	3'	1.02228734	0.00019311		
94.742	1,2357005	1. o/26o372	-o• oooog	2'	1.02228785	0.00019278		
101,319	1,2357011	1.01261011	-0.00004	2'	1.02228811	0.00019261		

 OHEGA
 30000000
 KAPPA
 0.1000
 DELTA
 0.010000
 VECTORLENGTH
 0.60

 ALPHA
 -0.01628
 BETA
 -0.21608
 GAMMA
 -0.26236

 REFLECTIONFACTOR
 0.1992735
 3.1475971
 TRAKSTIFACTOR
 1.2180942
 0.0010271

			•					
HEIGTH	THETA	E KELLER	ZETA		DISTORTION FO	UNCTION		
-100,000	1,4398966	1,00000000	-0.00005	2'	1,00000042	0,00000011	o. 19927363	3.14759720
-96. a84	1.4398974	1,00000622	-0,00007	2'	1,00000063	0,00000015	o.19927367	3.14759725
-92, 16 8	1,4398986	1,00001552	-0,00010	2'	1,00000093	0.00000025	o. 19927373	3. 14759734
-88, 253	1,4399004	1,00002920	-0,00015	3,	1.00000137	0.00000036	o. 19927382	3.14759745
-84.337	1,4399030	1,00004952	-0,00022	3'	1,00000203	0,00000054	o. 19927395	3.14759763
-8o, 421	1.4399070	1,00007949	-0.00022 -0.00032	3'	1,00000203	0,00000079	0.19927415	3.14759788
-76.506	1,4399127	1,00012388	-0.00048	31	1,00000445	0.00000017	o. 19927443	3. 14759826
				3,			o. 19927445 o. 19927486	3. 14759882
-72.591	1,4399213	1,00018952	-0.00070		1,00000658	0,00000173		
-68,676	1.4399340	1.00028669	-0.00104	3'	1,00000974	0.00000256	0.19927549	3, 14759964
-64.761	1.4399527	1,00043005	-0.00154	3'	1.00001440	0.00000378	0.19927642	3, 14760087
-60,847	1.4399863	1.00064217	-0.00228	. 3'	1,00002129	0.00000559	0.19927779	3, 14760268
-56.934	1.4400212	1,00095539	-0.00337	4'	1.00003149	0.00000826	o. 199279R2	3, 14760535
-53, o21	1,4400814	1.00141786	-0.00498	4'	1.00004654	0,00001222	o. 19928282	3, 14760931
-49.111	1,4401701	1,00209961	-0.00736	4'	1.00006877	0,00001806	o. 19928725	3, 14761515
-45.204	1.4403004	1.00310373	-0.01089	4'	1,00010156	0.00002668	o. 19929378	3, 14762377
-41,300	1.44 04 915	1.00457867	-o. o16o3	5'	1.00014985	o, onno3939	0.19930341	3.14763648
-37.402	1.4407703	1.00673871	-0.02375	5 '	1.00022085	0,00005811	o. 19931756	3.1476552o
-33,512	1.4411745	1.00988720	-0. 03504	6,	1.00032492	0,00008561	o. 1993383o	3, 1476827o
-29,634	1.4417552	1.01444480	-0.05164	7'	1.00047683	0.00012588	o. 19936857	3.14772297
-25.774	1.4425787	1.02097863	-0.07597	7'	1.00069724	0,00018459	0.19941249	3.14778168
-21,938	1.4437254	1.03021735	-0.11150	9,	1.00101435	0.00026964	0.19947568	3, 14786673
-18, 136	1.4452827	1,04303478	-0.16307	10'	1.00146534	0,00039174	o. 19956555	3.14798683
-14,38o	1.4473292	1.06036882	-0.23740	13'	1,00209688	0,00056500	0.19969140	3,14816210
-10.686	1.4499002	1.08304781	-o. 3435o	17'	1.00296392	0,000/0709	0.19986418	3,14840418
-7.068	1.4529984	1.11152834	-0.49323	26'	1.00270372	0.00113901	0, 20009572	3, 1487361o
-3.542	1.4564957	1.14561736	-0.70174	51'	1.00554035	0.00158418	0.20039752	3, 14918127
		1.18431532	-0.988o3	316'	1.02921059	0.001/0410	0.20509445	3.14965544
-0.120	1.4602227		-o. 72687		1.21072535	0,00243039	0,20,0,111	3, 1470)/44
3, 190	1.4639666	1.22590341		57'				
6,389	1.4675295	1.26027908	-0.52788	29'	1.21253935	0.00184955		
9.481	1.4707663	1.30939188	-0.38746	20'	1.21389978	0.00163940		
12.477	1.4735978	1.34759798	-0.28716	15"	1.21491828	0.00148572		
15, 339	1.4760019	1,38182917	-o. 21463	12'	1.21568173	0.00137261		
18, 228	1.4779975	1.41158843	-o. 16157	10'	1.21625571	0.00128875		
21,008	1.4796258	1.43683629	-0. 12236	91	1,21668891	0.00122613		
23,739	1.48 0 9377	1.45784183	-0.09311	6,	1.21701720	0.00117908		
26.432	1.4819846	1.47504975	-0.07114	7'	1.21726694	0.00114351		
29, 092	1.4828141	1.48097595	-0. 05452	7'	1,21745759	0.00111648		
31.729	1.483468o	1.50013965	-o. o4188	6,	1.21760356	0.00109588		
34.345	1.4039814	1.50902196	-o. o3224	6'	1.21771558	0.00108010		
36.946	1.4843832	1.51604795	-o. o2485	. 5'	1.21780175	0.00106800		
39.535	1.4846971	1.52158082	-o. o1919	5'	1.21786813	0.00105869		
42.115	1.4849417	1,52592216	-0.01482	5'	1.21791934	0.00105152		
44.688	1,4851322	1.52931964	-0.01146	5'	1.21795688	0.00101599		
47.254	1.4852864	1,53197262	-o. oo887	á٠	1, 21798944	0.00104172		
49.817	1.4853955	1.53401089	-0.00686	4,	1,21801308	0.00103842		
52, 376	1.4854850	1.53565128	-0.00531	4,	1.21803136	0,00103586		
54.932	1.4855544	1.53690371	-0.00/01	4,	1.21804552	0,00103389		
57 . 4 86	1,4856083	1.53787734	-0.00319	4,	1.21305647	0,00103236		
			_	4,	1.218056497	0,00103230		
60.039	1.4856501	1.53863285	-0.00247					
62.59o	1.4856826	1.53922006	-0.00191	3*	1.21807155	0,00103026		
65.140	1.4857077	1.53967570	-0.00148	3'	1.21807664	0,00102954		
67.690	1.4857272	1,54002963	40.00115	3'	1.21808059	0.00102899		
70.239	1.4857423	1.54030342	-0.00089	3'	1.21808365	0.00102857		
72.787	1.4857541	1.54051614	-0,00059	3'	1.21808602	o, oo1 o2R24		
75, 336	1.4857632	1.51o68129	-0.00053	3'	1.21808785	0.00102798		
77.834	1.48577o2	1.54080936	-0,00041	3'	1.21808927	0.00102779		
Bo. 431	1.4857757	1.54090845	-0.00032	3,	1.21809038	0.00102763		
			•					

82, 979	1.4857799	1.54o98532	-0.00025	3°	1.21860123	0.00102751
85. 526	1.4857832	1.5/10/1501	-0.00019	3,	1.21809189	0.00102742
88. o74	1.4857857	1,5/1109079	-0.00015	3°	1.21809241	0.00102735
90.621	1.4857877	1.54112763	-0.00012	2"	1.21809281	0.00102729
93.168	1.4857893	1.54115489	-0.00009	2'	1.21009312	0.00102725
95.715	1.4857904	1.54117599	-0,00007	2'	1.21809336	0.00102721
98.262	1.4857914	1.54119276	-0,00005	2'	1,21809354	0.00102719
100.809	1.4857921	1.54120588	-0,00004	2'	1.21809369	0.00102717

 OME 3A
 30000000
 KAPPA
 0.1000
 DELTA
 0.10000
 VECTORLENGTH
 0.40

 REFLECTIONFACTOR
 0.2490866
 3.2699134
 TRANSTIFACTOR
 1.4095337
 0.0296970

 ALPHA
 -0.18937
 BETA
 -0.52807
 GAMMA
 -0.71744

HE13TH	THETA	E KELLER	ZETA		DISTORTION FI	PNCTION		
-100,000	1.2217305	1.00000000	-0. 00005	2'	1,00000300	0.00000215	0, 24908735	3, 26991554
-93, 15o	1,2217360	1.00000000	-0.0000)	2,	1,00000594	0.00000426	0. 24900737	3. 26991766
-86, 319	1.2217471	1.00001829	-0.00018	ر 3'	1.00000571	0.00000420	0. 24908959	3, 26992184
-79.479	1.2217639	1.00011263	-0.00035	3,	1,00002333	0.00001673	o. 249o9241	3, 26993013
-72.64o	1, 2218122	1.00023952	-0,00070	3,	1.00004623	0.00001073	0. 24909811	3, 26994656
-65.8o1	1, 2218979	1.00049078	-0.00139	3'	1.00009158	0.00006571	o. 2491 o 941	3, 26997911
-58 . 963	1.2220674	1.00098810	-0.00275	4,	1.00019137	0.00013015	0. 24913178	3, 27004355
-52,129	1. 2224021	1.00197116	-0.00545	4,	1.00035693	0.00025765	0. 24917600	3, 27017105
-45.302	1,2230600	1.00390942	-0.01078	4'	1,00070932	0,00050944	o. 24926328	3, 27042284
-38.486	1.2243436	1.00771197	-o. o2131	5,	1.00139784	0,00100502	o. 24943478	3.27091841
-31.695	1,2268108	1.01509959	-0. 04203	é,	1,00273991	0.00197396	0. 24976907	3. 27188736
-24,950	1,2314211	1.02918829	-0. 0°250	8,	1,00531560	0.00384454	0.25041064	3.27375793
-18,292	1.2395050	1.05515201	-0.16054	10'	1.01012021	0.00737192	0.25160741	3.27728532
-11.789	1.2529264	1.10024006	-0.30763	16'	1.01865401	o. 01375667	0. 25373306	3.28367008
-5,538	1.2719592	1.17155771	-0.57477	33'	1.03270330	0.02458925	o. 25723255	3.2945o263
0.350	1.2949883	1.27088415	-0.96557	316'	1.31245367	0.05718356		
5.797	1.3184428	1.39052815	-0.56007	32'	1.34324196	0.04603644		
10.791	1.3391415	1.51610502	-0.33992	17'	1.37034681	o. o39762o1		
15.382	1.3557091	1.63393930	-o. 21475	12'	1.39396788	0.03611392		
19.651	1,3582330	1.73574659	-o. 14o14	1o*	1,39251122	o. o339o°o4		
23.675	1.3774165	1.81974615	-0.09372	8,	1.300on167	o. o3252327		
27.518	1.384 o 484	1.88374288	-o. o6381	7°	1.40161439	o. o3162594		
31,231	1.3888o24	1.93323953	-0.04402	6*	1.40403945	o. o31o2974		
34.851	1.3921982	1.97020526	-ი . ი3 ი 6ე	ΰ '	1.40569310	0.03062599		
38.404	1.3946202	1.99743748	-o. o2148	5'	1.40683432	o. o3o34°68		
41.910	1.3963464	2.01730724	-0.01513	5'	1.40762892	0.03015623		
45.381	1, 3975765	2. o317 o 647	-0, 01069	4'	1.40818579	0.03002167		
48.828	1.3984529	2.01200121	-0,00758	4'	1.40857792	0.02992707		
52, 258	1.3990771	2. 04955506	-0,00538	4'	1.40885498	0.02986031		
55.675	1,3995223	2,05490670	-0,00382	4'.	1.40905124	0, 02981306		
59.084	1,3998394	2, 05873696	-0, 00272	4'	1.40919048	0.02977955		
62.487	1.4000654	2.06147515	-0,00193	3'	1.40928941	0.02975576		
65.885	1,4002264	2,06343097	-o, no138	3'	1.40935976	0.02973884		
69. 28o	1.4003411	2.06482697	-0.00098	3,	1.40940982	o. o297268o o. o2971824		
72,672	1.4004229 1.4004812	2, 06582303 2, 06653342	-0,00070	3 '	1.40944545 1.40947082	0.029/1024		
76. o63 79. 453	1,4004012	2,00053342 2,06704004	-0,00050	3'	1,40948891	0.029/1214		
79.453 82,842	1, 4005227	2,05740109	-0,00035	3'	1,40940091	0.02970470		
86, 231	1.4005734	2,06765876	-0.00025 -0.00018	3,	1.40951095	0, 02970370		
89.619	1,4005/34	2,06784227	-0,00010	3'	1,40951749	0.02970093		
93.006	1,4005005	2,06797317	-0,00009	2'	1.40952215	0. 02970093 0. 02050981		
96,394	1. 400 7992 1. 400 6068	2. 06/9/31/ 2. 06806638	-0.00007	2'	1.40952547	o. 02 ⁰ 60001		
99.781	1,4005123	2,06813285	-n, 00007 -n, 10005	2'	1,40952783	0. 02969844		
163, 168	1,4006123	2,06818017	-0,00003	2,	1.40052951	0.02969804		
11704 100	14 2000101	we coulting!		-	40 *** 747)1	0.02/0/001		

 OME GA
 300000000
 KAPPA
 10,0000
 DELTA
 0,000010
 VECTORLENGTH 0,21

 REFLECTION FACTOR 0,0000025
 3,1415926
 TRANSITFACTOR 1,0000025
 0

 ALPHA
 -0,00000
 BETA
 -0,02000
 GAMMA
 -0,02000

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-1,000	0	1,00000000	-0.00005	2'	1.00000000	0	0,00000250	3.14159264
-0. 898	0	1,00000000	-0.00013	3'	1,00000000	•	0.00000250	3.14159264
-0,795	0	1,00000000	-0.00035	3'	1,00000000	0	0.00000250	3.14159264
-0, 692	0	1,00000000	-0.00098	3'	1,00000000	0	0,00000250	3.14159264
-0.590	0	1,00000000	-0.00274	4'	1,00000000	6, 28318530	c. 00000250	3.14159264
-o. 487	0	1,00000001	-0.00764	4'	1,0000000	6,2831853o	0.00000250	3, 14159264
-0.385	0	1,00000005	-0.02128	5'	1,00000000	6.2831853o	0,00000250	3, 14159264
-o. 282	0	1,00000014	-o. o5931	7°	1,00000000	6,2831853o	0,00000250	3.14159264
-o. 18o	0	1,00000035	-o. 1653o	11'	1,00000000	6,2831853o	0,00000250	3.14159264
-0.077	0	1,00000079	-0.46070	24'	1,00000000	6.2831853o	0.00000250	3.14159264
0.025	0	1,00000140	-o. 7788o	73'	1.00000250	6,28318530		
o. 128	0	1.00000195	-0.27943	15'	1.00000250	6, 28318530		
0, 230	0	1,00000227	-0.10026	8,	1.00000250	6.28318530		
o, 333	0	1,00000241	-0.03597	6,	1.00000250	o .		
o. 435	0	1.00000246	-0.01291	5'	1,00000250	0		
o. 538	0	1,00000248	-0.00463	4'	1,00000250	0		
o. 64o	0	1,00000250	-0.00166	3'	1,00000250	0		
0.743	0	1,00000250	-0,00060	3'	1,00000250	0		
o. 845	0	1,00000250	-0.00021	3'	1.00000250	0		
o. 948	'n	1.00000250	-0.00008	2'	1.00000250	0		
1.050	0	1,00000250	-0,00003	2'	1.00000250	0		

 OMEGA
 30000000
 KAPPA
 10.0000
 DELTA
 0.000010
 VECTORLENGTH 0.20

 REFLECTIONFACTOR 0.000026
 3.1415927
 TRANSITFACTOR 1.0000026
 0

 ALPHA
 -0.00000
 BETA
 -0.01970
 GAMMA
 -0.01970

-1,000 0,1745329 1,00000000 -0,00012 2' 1,00000000 6,28318530 0,00000258 3,14159265 -0,803 0,1745329 1,00000000 -0,00033 3' 1,00000000 6,28318530 0,00000258 3,14159265 -0,705 0,1745329 1,00000000 -0,00033 3' 1,00000000 6,28318530 0,00000258 3,14159265 -0,506 0,1745329 1,00000000 -0,00233 3' 1,00000000 6,28318530 0,00000258 3,14159265 -0,508 0,1745329 1,00000001 -0,00625 4' 1,00000000 6,28318530 0,00000258 3,14159265 -0,409 0,1745330 1,0000001 -0,01672 5' 1,00000000 6,28318530 0,00000258 3,14159265 -0,311 0,1745330 1,0000001 -0,01672 5' 1,00000000 6,28318530 0,00000258 3,14159265 -0,212 0,1745330 1,0000001 -0,01672 6' 1,00000000 6,28318530 0,00000258 3,14159265 -0,212 0,1745330 1,0000001 -0,01672 6' 1,00000000 6,28318530 0,00000258 3,14159265 -0,114 0,1745331 1,00000012 -0,85905 119' 0,9999999 6,28318530 0,00000258 3,14159265 -0,015 0,1745337 1,0000012 -0,85905 119' 0,9999999 6,28318530 0,00000258 3,14159265 0,083 0,1745337 1,0000012 -0,85905 119' 0,9999999 6,28318530 0,00000258 3,14159265 0,083 0,1745338 1,00000260 -0,00666 7' 1,00000260 0 0,1745338 1,00000260 -0,00666 7' 1,00000260 0 0,1745338 1,00000260 -0,00666 7' 1,00000260 0 0,1745338 1,00000260 -0,0018 3' 1,00000260 0 0,0000260 0,0000260 0,0000260 0,0000260 -0,0000260 -0,0000260 0,00000260 0,00000260 0,00000260 -0,0000260 -0,0000260 0,00000260 0,00000260 0,00000260 -0,0000260 -0,00000260 0,00000260 0,0000000000000000	HE1 STH	THETA	E KELLER	ZETA		DISTORTION FI	INCTION		
-0.803	-1,000	o. 1745329	1,00000000	-0,00005	2'	1,00000000	6, 2831853o	0,00000258	3, 141 59265
-0.705	-0.902	o. 1745329	1.00000000	-o, ono12	2'	1,00000000	6, 2831853o	n, 00000 2 58	3.14159265
-0, 606	-o.8o3	0.1745329	1,00000000	-0,00033	3,	1,00000000	6, 2831853o	0.00000258	3,14159265
-0.508	-0.705	o. 1745329	1,00000000	-0.00087	31	1,00000000	6, 28318530	0, 00000258	3, 141 59 265
-0.409	-0, 606	o. 1745329	1,00000000	-0.00233	3'	1.00000000	6, 2831853o	0,00000258	3.14159265
-0,311 0,1745330 1,0000011 -0,04476 6' 1,00000000 6,28318530 0,00000258 3,14159265 -0,212 0,1745330 1,00000028 -0,11985 9' 1,00000000 6,28318530 0,00000258 3,14159265 -0,114 0,1745331 1,0000012 -0,85905 119' 0,9990999 6,28318530 0,00000258 3,14159265 0,083 0,1745337 1,0000012 -0,85905 119' 0,9990999 6,28318530 0,00000258 3,14159265 0,083 0,1745337 1,00000258 -0,16240 10' 1,00000260 0 0,280 0,1745338 1,00000259 -0,06066 7' 1,00000260 0 0,1745338 1,00000250 -0,06066 7' 1,00000260 0 0,477 0,1745338 1,00000260 -0,0266 5' 1,00000260 0 0,576 0,1745338 1,00000265 -0,0016 4' 1,00000260 0 0,576 0,1745338 1,00000265 -0,0016 4' 1,00000260 0 0,576 0,1745338 1,00000265 -0,0018 3' 1,00000260 0 0,1745338 1,00000265 -0,0018 3' 1,00000260 0 0,1745338 1,00000265 -0,0018 3' 1,00000260 0 0,1745338 1,00000266 -0,00016 3' 1,00000260 0 0,0000260 0 0,0000260 0 0,00000260 0 0,00000260 0 0,00000260 0 0,0000000000	-0.508	o. 1745329	1,00000001	-o. on625	4'	1,00000000	6, 2831853o	0.00000258	3, 14159265
-0, 212 0, 1745330 1, 0000028 -0, 11985 9' 1, 00000000 6, 28318530 0, 00000258 3, 14159265 -0, 114 0, 1745331 1, 00000122 -0, 85905 119' 0, 99999990 6, 28318530 0, 00000258 3, 14159265 0, 083 0, 1745335 1, 00000122 -0, 85905 119' 0, 99999990 6, 28318530 0, 00000258 3, 14159265 0, 083 0, 1745337 1, 00000125 -0, 43470 22' 1, 00000260 0 0, 1745338 1, 00000250 -0, 06066 7' 1, 00000260 0 0, 1745338 1, 00000260 -0, 0266 5' 1, 00000260 0 0, 1745338 1, 00000260 -0, 0266 5' 1, 00000260 0 0, 1745338 1, 00000265 -0, 00846 4' 1, 00000260 0 0, 1745338 1, 00000265 -0, 00316 4' 1, 00000260 0 0, 01745338 1, 00000265 -0, 00316 4' 1, 00000260 0 0, 00000260 0, 0, 00000265 -0, 00316 4' 1, 00000260 0 0, 0, 00000260 0, 0, 000000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0, 00000260 0, 0,	-0.409	o. 1745329	1,00000004	-o. o1 672	5'	1, 00000000	6, 2831853o	0,00000258	3, 14159265
-0.114 0.1745331 1.0000064 -0.32017 161 1.00000000 6.28318530 0.0000258 3.14159265 -0.015 0.1745333 1.00000122 -0.85905 1192 0.99999999 6.28318530 0.0000258 3.14159265 0.083 0.1745335 1.00000185 -0.43479 222 1.00000261 0 0.182 0.1745337 1.00000228 -0.16240 102 1.00000260 0 0.280 0.1745338 1.00000250 -0.06066 72 1.00000260 0 0.379 0.1745338 1.00000260 -0.0266 52 1.00000260 0 0.477 0.1745338 1.00000263 -0.0846 42 1.00000260 0 0.576 0.1745338 1.00000265 -0.0018 32 1.00000260 0 0.574 0.1745338 1.00000265 -0.0018 32 1.00000260 0 0.773 0.1745338 1.00000265 -0.0018 32 1.00000260 0 0.773 0.1745338 1.00000266 -0.0018 32 1.00000260 0 0.773 0.1745338 1.00000266 -0.0018 32 1.00000260 0 0.773 0.1745338 1.00000266 -0.00016 33 1.00000260 0 0.970 0.1745338 1.00000266 -0.00016 32 1.00000260 0	-o. 311	o. 174533o	1,00000011	-0.01476	6°	1,00000000	6, 2831853o	· o. 00000258	3.14159265
-0.015	-o. 212	o. 174533o	1,00000028	-0.11985	9,	1,00000000	6, 28318530	o. 0000025R	3, 14159265
0.083 0.1745335 1.00000185 -0.43479 22' 1.00000261 0 0.182 0.1745337 1.00000228 -0.16240 10' 1.00000260 0 0.280 0.1745338 1.00000250 -0.0666 7' 1.00000260 0 0.379 0.1745338 1.00000260 -0.0266 5' 1.00000260 0 0.477 0.1745338 1.00000263 -0.00846 4' 1.00000260 0 0.576 0.1745338 1.00000264 -0.00118 3' 1.00000260 0 0.674 0.1745338 1.00000265 -0.0018 3' 1.00000260 0 0.773 0.1745338 1.00000266 -0.00016 3' 1.00000260 0 0.871 0.1745338 1.00000266 -0.00016 3' 1.00000260 0 0.970 0.1745338 1.00000266 -0.0006 2' 1.0000260 0	-0.114	o. 1745331	1,00000064	-o. 32o?7	16'	1.00000000	6, 283185 3 o	0.00000258	3.14159265
0. 182 0. 1745337 1. 00000228 -0. 16240 10' 1. 00000260 0 0. 280 0. 1745338 1. 00000260 -0. 06066 7' 1. 00000260 0 0. 379 0. 1745338 1. 00000260 -0. 02266 5' 1. 00000260 0 0. 477 0. 1745338 1. 00000263 -0. 00846 4' 1. 00000260 0 0. 576 0. 1745338 1. 00000264 -0. 00316 4' 1. 00000260 0 0. 674 0. 1745338 1. 00000265 -0. 00118 3' 1. 00000260 0 0. 773 0. 1745338 1. 00000266 -0. 00016 3' 1. 00000260 0 0. 970 0. 1745338 1. 00000266 -0. 00066 2' 1. 00000260 0	-0.015	o. 1745333	1,00000122	-a.859a5	119	0.9999999	6, 2831853o	0, 00000258	3.14159265
0,280 0,1745338 1,00000250 -0,06066 7' 1,00000260 0 0,379 0,1745338 1,00000260 -0,0266 5' 1,00000260 0 0,477 0,1745338 1,00000263 -0,00846 4' 1,00000260 0 0,576 0,1745338 1,00000264 -0,00316 4' 1,0000260 0 0,674 0,1745338 1,00000265 -0,0018 3' 1,0000260 0 0,773 0,1745338 1,00000266 -0,00016 3' 1,0000260 0 0,871 0,1745338 1,00000266 -0,0006 2' 1,0000260 0 0,970 0,1745338 1,00000266 -0,0006 2' 1,0000260 0	o , o 83	o. 1745335	1,00000185	-0.43479	22'	1.00000261	0		
0.379 0.1745338 1.00000260 -0.0266 5' 1.00000260 0 0.477 0.1745338 1.00000263 -0.00846 4' 1.00000260 0 0.576 0.1745338 1.00000264 -0.00316 4' 1.00000260 0 0.674 0.1745338 1.00000265 -0.0018 3' 1.00000260 0 0.773 0.1745338 1.00000266 -0.00016 3' 1.00000260 0 0.871 0.1745338 1.00000266 -0.00016 3' 1.00000260 0 0.970 0.1745338 1.00000266 -0.0006 2' 1.00000260 0	o. 182	0.1745337	1,00000228	-0,16240	10'	1.00000260	0		
0.477 0.1745338 1.00000263 -0.00846 4' 1.00000260 0 0.576 0.1745338 1.00000264 -0.00316 4' 1.00000260 0 0.674 0.1745338 1.00000265 -0.00118 3' 1.00000260 0 0.773 0.1745338 1.00000266 -0.00044 3' 1.00000260 0 0.871 0.1745338 1.00000266 -0.00016 3' 1.00000260 0 0.970 0.1745338 1.00000266 -0.0006 2' 1.00000260 0	o . 2 8o	o. 174533?	1, 00000250	-0.06066	7'	1.00000260	0		
0.576	0.379	0.1745338	1,00000260	-0.02266	5'	1.00000260	0		
0.674 0.1745338 1.00000265 -0.00118 3' 1.00000260 0 0.773 0.1745338 1.00000266 -0.0004 3' 1.00000260 0 0.871 0.1745338 1.00000266 -0.00016 3' 1.00000260 0 0.970 0.1745338 1.00000266 -0.0006 2' 1.00000260 0	0.477	o. 1745338	1,00000263	-0.00846	4'	1,00000260	0		
0.773	o. 576	o. 1745338	1,00000264	-0.0031 6	4'	1.00000260	0		
0.871 0.1745338 1.00000266 -0.00016 3' 1.00000260 0 0.970 0.1745338 1.00000266 -0.00006 2' 1.00000260 0	o. 674	o. 1745338	1.00000265	-0.00118	3'	1.00000260	0		
0.970 0.1745338 1.00000266 -0.00006 2' 1.00000260 0	o.773	o. 1745338	1,00000266	-0.00014	3'	1.00000260	0.		
***	o. 871	o. 174533 ⁸	1,00000266	-0,00016	3'	1.00000260	0		
1.068 0.1745338 1.00000266 -0.00002 2' 1.00000260 0	0.970	o. 174533B	1.00000266	-0,00006	2'	1,00000260	0		
	1.068	o. 1745338	1,00000266	-0,00002	2'	1.00000260	0		

OREGA 30000000 KAPPA 10.0000 DELTA 0.000010 VECTORLENGTH 0.40
REFLECTIONFACTOR 0.0000214 3.1415027 TRANSITFACTOR 1.0000214 0
ALPHA -0.00000 BETA -0.006P4 GAMMA -0.006P4

#E1GTH	THETA	E KELLER	ZETA		DISTORTION	FUNCTION		
-1,000	1,2217305	1.0000000	-0, 00005	2'	1,00000000	o	0.00002137	3. 14159265
-0.932	1,2217305	1.00000000	-0, 0000 ⁰	2'	1,00000000	n	0.00002137	3, 14159255
-n.863	1,2217305	1,00000000	-0,00018	3'	1,00000000	0	0.00002137	3, 14159265
-0.795	1.2217305	1,00000001	-0, 00035	3'	1,00000000	0	0.00002137	3, 14159265
-0.726	1,2217305	1.00000003	-0.00070	3'	1.00000000	n	o. occon2137	3. 14159265
-a. 658	1,2217305	1,00000001	-0.0013 ⁰	3'	1,00000000	0	0.00002137	3, 14159265
-0.790	1.2217305	1.00000010	-c. oo275	41	1,00000000	6.20318536	0.00002137	3, 14150265
-0.521	1.2217305	1,00000020	-0, 00545	4.	1,00000000	6, 2831853o	0.00002137	3, 14159265
-n.453	1,2217305	1.00000042	-0. 010 ⁰ 1	4.	1,00000000	6, 2031853o	n. oonn2137	3.14150265
-0.384	1,2217300	1,00000084	-0, o2142	5*	1,00000000	6, 2831853o	n. noon2137	3, 14159265
-n. 316	1,2217310	1.00000163	-0. 04244	6*	1,00000000	6 , 20 31 853o	c. 00002137	3, 14159265
-0.248	1,2217315	1,00000312	-n. o6412	S.	1,00000000	5, 2°31853o	0, 00002137	3.14159265
-0.179	1.221732	1.00000573	-0.15671	11'	1,00000000	6.2831853o	0,00002137	3, 14159265
-0, 111	1,2217339	1,00000998	-0.33039	17'	0.019000000	6, 2°31853o	o. oono2137	3.14159265
-o. o.12	1,2217359	1,00001592	-0.65478	43°	0.9999999		o. noon2137	3. 14159265
o. o26	1,22173 ⁹ 2	1.00002272	-n. 77n6a	70°	1.00002141	6.2831853o		
0.094	1,2217403	1.00002895	-o . 3 P883	20'	1,00002140	6 . 2 831853o		
o. 163	1.2217419	1.00003354	-0.19520	12'	1,00002140	6, 28318530		
o. 231	1.2217430	1.00003660	-o. იემიი	81	1.00002140			
0.300	1,2217435	1,00003/31	-n. n4195	7°	1,00002140			
o. 368	1.2217439	1.00003924	-0, 02521	5 '	1.00002140	6.28318530		
o. 436	1.2217440	1.00003972	-o. o1272	5'	1,00002140	6, 2831853a		
0.505	1.2217141	1,00003997	-0. oc 642	4'	1,00002139			
o. 573	1.2217442	1.0000/.010	-n. oo324	4'	1.00002140	6, 2831853o		
o. 642	1.2217442	1.00001017	-0, 00163	3'	1.00002140	0		
0.710	1.2217442	1. 00004020	-n. non82	3'	1.00002140	0		
o. 77B	1,2217442	1. 0000/1023	-o. onn42	3*	1,00002140	0		
o. 847	1.2217442	1.0000/024	-0.00021	3'	1.00002140	0		
0.915	1.2217442	1.00004024	-0,00011	2'	1,00002140			
0.984	1.2217442	1.00004024	-0, 00005	2'	1,00002140			
1.052	1.2217442	1.0000/102/1	-0, 00003	2'	1,00002140	• •		

 OHE 3A
 30000000
 KAPPA
 10.0000
 DELTA
 0.000100
 VECTORLENGTH 0.40

 REFLECTION FACTOR 0.000213B
 3.1415026
 TRANSITFACTOR 1.000213B
 0

 ALPHA
 -0.00000
 BETA
 -0.00584
 GAMMA
 -0.00684

BET STH	THETA	E KELLER	ZETA		DISTORTION FU	INCTION
-1,000	1.2217305	1,00000000	-0,00005	2'	1,00000000	0
-0.932	1.2217305	1,00000002	-0, nnon ^q	2'	1,00000000	0
-n.∂63	1,2217305	1,00000005	-0.00018	3'	1,00000000	0
-0.795	1.2217305	1.00000011	-0.00035	3,	1,00000000	0
-0.726	1.2217306	1,00000025	-0.00070	3,	1,00000000	0
-0. 658	1,2217307	1.00000054	-0,00139	. 3'	1,00000000	0
-0, 50a	1.2217368	1,00000107	-0.00275	4,	1,00000000	0
-o. <u>5</u> 21	1,2217312	1, 00000215	-0.005/15	4'	1,00000000	0
-0.453	1,2217319	1, nonon-l28	-0.01081	4'	1,00000000	0
-0.384	1,2217333	1,00000%o	-0.02142	5'	1.00000000	0
-0, 316	1,2217061	1.00001636	-0.04244	6°	1,00000000	0
-o . 2 48	1.2217411	1.00003119	-o.o8411	81	1,00000000	0
-0.179	1,2217501	1.00005747	-n. 1667oʻ	11'	1.00000001	0
-0.111	1.2217646	1.00009990	-0,33037	17'	1.00000000	0
-o. o12	1,2217848	1.00015922	-0.65470	43'	1,00000000	0
o . o 26	1, 2218o8o	1, 00022730	-0.77077	70'	1.00021381	0
0.09	1.2218294	1.00028981	-0.38897	20'	1.00021360	n
o. 163	1,2218153	1.00033552	-0.19630	12'	1.00021379	0
o. 231	1.2218555	1,00036631	-0.07907	8'	1,00021380	0
0, 300	1,2218613	1.00038344	-0,05000	7'	1,00021379	0
o. 358	1.2218645	1.00039270	-o. o2523	5 '	1,00021379	0
o. 436	1,2218651	1. 00 039756	-0.01274	5'	1.00021379	0
0.505	1.2218670	1,00040006	-0.00643	4'	1,00021379	0
o. 573	1.2218674	1.00040133	-0.00324	4'	1.00021379	0
o. 641	1.2218676	1,000/10196	-o. no16/l	3,	1.00021379	0
0.710	1.2218677	1.000/10231	-0,000 ⁰ 3	3'	1.00021379	0
o. 778	1.2218678	1.00040247	-0.00042	3'	1.00021379	0
0.847	1.2218578	1.00040254	-0.00021	3,	1.00021379	0
0.915	1.2218678	1.00040257	-0,00011	2'	1.00021379	0
o. 983	1,2218678	1.00040251	-0,00005	2'	1.00021379	n
1.052	1.2218679	1.000-10264	-o. onno3	2'	1.00021379	0

3,14159264 0.00021377 3.14159264 0.00021377 3, 14159264 0.00021377 0.00021377 3, 14159264 0.00021377 3,14159264 0.00021377 3,14159264 0.00021377 3.14159264 3, 14159264 0.00021377 3.14159264 0.00021377 0.00021377 3,14159264 0.00021377 3,14159264 3, 14159264 0.00021377 0.00021377 3.14159264 0.00021377 3.14159264 0.00021377 3, 14159264

OMEGA 30000000 KAPPA 10,0000 DELTA 0,001000 VECTORLENGTH 0,40
REFLECTIONFACTOR 0,0021440 3,1415926 TRANSITFACTOR 1,0021442 0
ALPHA -0,00001 BETA -0,00683 GAMMA -0,00684

		<u>~</u>						
HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-1,000	1.2217305	1.00000000	-0,00005	2'	1.00000000	0	0,00214402	3.14159264
-0, 932	1,2217305	1.00000018	-0,00009	2'	1,00000000	0	0, 00214402	3, 14159264
-0.863	1.2217306	1.00000051	-0.00018	3,	1.00000000	0	o. on21 44 02	3, 14159264
-0.795	1.2217309	1.00000121	-0,00035	3'	1.00000000	0	o, oo214 4 o2	3, 14159264
-0.725	1.2217314	1.00000262	-0, ೧೦ ೦70	3'	1.00000000	0	o. do21 44o2	3, 14159264
-0, 658	1,2217323	1.00000539	-0, 00139	, 3'	1.00000000	0	0.00214402	3, 14159264
-0.590	1.2217342	1.00001083	-0,00275	4'	1.00000000	0	o. 0021 4402	3, 14159264
-0.521	1.2217378	1.00002160	-0,00545	4'	1.00000000	0	o. oo2144o2	3, 14159264
-0.453	1.2217451	1.00004277	-0, 01081	4'	1.00000000	0	o. 0021 4402	3.14159264
-0.384	1.2217592	1.00008409	-0, 02141	5 '	1,00000000	0	0.00214402	3, 14159264
-0.316	1.2217863	1.00016351	-o, o4244	6,	1,00000000	0	o. oo214 4 02	3, 14159264
-0.2 48	1.2218369	1.00031182	-o. o ⁸⁴ 10	. 8,	1.0000001	0	o. oo21 44 o2	3.14159264
-0.179	1.2219265	1.00057457	-o. 1666 4	11'	1,00000001	0	0.00214402	3. 14159264
-0.111	1.2220712	1.00099924	-0,33013	17°	1.00000003	0	o. oo21 44 o2	3. 14159264
-0.04 2	1.2222735	1.00159335	-0.65386	43'	1.00000005	0	o. oo2144o2	3, 1415926
0.026	1,2225058	1.00227636	-0.77247	70'	1.00214415	0		•
0.094	1,2227194	1.00290502	-0.39034	20'	1.00214417	0		
0.162	1,2228791	1.00337591	-0. 19732	12'	1.00214418	0		
0, 230	1,2229813	1.00367713	-a. n9978	8,	1.00214419	0		
0, 299	1,223o/o1	1.00385085	-a. o5o46	7*	1.00214419	0		
0.367	1,2230721	1.00394510	-o. o2553	5'	1.00214420	0		
o. 435	1,2230888	1.00399455	-0. 01291	5 '	1.00214420	0		
0,503	1.2230974	1.00402004	-0, 00653	4'	1.00214419	0		
0.571	1,2231019	1.00403305	-0.00330	4.	1.00214420	0		
o. 639	1,2231041	1.00403967	-0.00167	3,	1.00214419	0		
o. 7o8	1.2231052	1.00404303	-0, 00085	3,	1.00214420	0		
0.776	1,2231058	1.00404472	-0,00043	. 3'	1.00214420	0		
o. 844	1.2231061	1.00404559	-0.00022	3'	1.00214420	0		
0.912	1,2231062	1.00404603	-0.00011	2'	1.00214420	0		
a. 98o	1,2231063	1.00404624	-0. 0 0006	2'	1.00214420	0		
1.048	1,2231064	1.00404635	-o. òooo3	2'	1.00214420	0		

OMEGA 30000000 KAPPA 10.0000 DELTA 0.010000 VECTORLENGTH 0.47
REFLECTIONFACTOR 0.0221041 3.1415927 TRANSITFACTOR 1.0221058 0
ALPHA -0.00015 BETA -0.00673 GAMMA -0.00697

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
-1,000	1,2217305	1,00000000	-0,00005	2'	1,00000000	, 0	0.02210/11	3, 14159267
-0.932	1.2217311	1,00000177	-0,00009	2'	1,00000000	´0	0, 02210411	3, 14159267
-0.863	1.2217323	1,00000529	-0,00018	3'	1,00000000	0	0,02210411	3, 14159267
-0.7 95	1.2217347	1,00001226	-0,00035	3'	1,00000000	0	0.02210411	3.14159267
-0.726	1.2217394	1,00002607	-0,00070	3'	1,00000000	0	0.02210411	3, 14159267
-0.658	1,2217487	1.00005342	-0.00139	3'	1,00000000	0	0.02210411	3, 14159267
-o. 59o	1,2217672	1.00010751	-o. on275	4'	1,00000000	0	o. o221o411	3, 14159267
-2.521	1,2218036	1.00021430	-0.00545	4'	1,00000001	0	0.02210411	3, 14159267
-0.4 53	1,2218753	1.00042431	-o, o1o8o	4°	1,00000001	0	0.02210411	3, 14159267
-0.384	1,2220150	1,00083426	-0. 02140	5°	1,00000002	0	0.02210411	3.14159267
-o.3 16	1.2222836	1.00162305	-0.04240	6*	1.00000001	0	0.02210411	3.14159267
-0.2 48	1,2227852	1.00309919	-a. o8394	8,	1,00000008	0	0.02210412	3.14159267
-o . 18o	1,2236737	1.00572416	-0.16603	11'	1,00000016	0	0.02210412	3.14159267
-0.112	1,2251099	1.00999530	-0. 32784	17°	1.00000031	0	0.02210412	3.14159267
-0.044	1.2271216	1.01603755	-o, 6/1562	42'	1.00000056	0	0.02210413	3.14159267
0.024	1.229444o	1.02310044	-0.78950	77°	1.02210510	0		
0.001	1.2315017	1.02974793	-0.40419	20'	1.02210543	0		
o. 157	1 . 23324 35	1.03486225	-0, 20777	12*	1.02210559	0		
o. 223	1.2343160	1.03822992	-o. 1o713	9'	1. o221o569	0		
o. 289	1.23 494 97	1.04022950	-0.05535 .	7°	1.02210574	0		
0.355	1,2353023	1.04134545	-o. o2863	6°	1.02210577	0		
o. 4 21	1, 2354920	1.04194694	-o. o1482	5'	1.02210578	0		
o . 4 87	1,2355923	1.04226513	-0.00768	4,	1.02210579	0		
0, 553	1,2356448	1. 04243175	-0,00398	4,	1.02210579	0		
0.619	1.2356722	1.04251856	-0. 00206	3'	1.02210579	0		
o. 684	1.2356864	1.04256365	-o. ool o7	3'	1.02210579	0		
0.750	1.2356937	1.04258706	-0.00055	3,	1.02210579	0		
0,816	1.2356975	1. o4259919	-0,00029	3'	1.02210579	0		
o, 882	1.2356995	1.04260546	-0,00015	3'	1.02210579	0		
o. 947	1, 2357005	1.04260872	-0,00008	2°	1.02210579	0		
1.013	1.2357011	1,04261041	-0,00004	2'	1.0210579	0		

 OMEGA
 30000000
 KAPPA
 10.0000
 DELTA
 0.010000
 VECTORLENGTH 0.60

 ALPHA
 -0.00016
 BETA
 -0.00216
 GAMHA
 -0.00252

 REFLECTIONFACTOR 0.2141776
 3.1415927
 TRANSITFACTOR 1.2141797
 0

KEPLEGITUNI	ACIUN 0.214	1776 3.1419	927 TRANS	ITACIU	: 1.2141797	0		
HEISTH	THETA	E KELLER	ZETA		DISTORTION	ture flor		
	1, 4390956			•			- 04 '47767	0.41450007
-1, 000 -0, 961	1.4398974	1,00000000 1,00000622	-0.00005	2'	1,00000000	0	0.21417765	3.14150267
-0.901 -0.922	1,4398986	1,00000022	-0.00007	2' 2'	1.0000000	0	o, 21417755 o, 21417755	3.14159267 3.14159267
-0.863	1.4399004	1,00002920	-0.00010	3,	1, 00000000	0	o. 21417765	
-o.843	1,4399030	1,00002920	-0,00015 -0,00022	3*	1,00000000	0	o, 21417765	3.14159267 3.14159267
-0.045 -0.60-l	1,4399070	1,00007949	-0.00022	3 '	1.00000000	0	o. 21-17765	3.14159267
-0.765	1,4399127	1,00007989	-0.00032 -0.00048	3 '		0	o. 21417765	3. 14159267
-0.726	1.4399213	1,00012300	-0.00070	3,	1,00000000	0	o. 21417765	3. 14159267
-o. 687	1.4399340	1,00010932	-0.00076	3,	1,00000000	0	0.21417765	3. 14159267
-0.648	1,4399527	1,00043005	-0.00154	3'	1,00000000	0	o. 21417765	3. 14159267
-0.608	1.4399803	1,000(300)	-0.00194	3 '	1,00000000	0	o. 21417765	3.14159267
-0.569	1,4400212	1,00005217	-0.00337	4,	1,00000000	0	o. 21417765	3. 14159267
-o. 53n	1.4400814	1.00141786	-o. on498	4,	1,00000000	0	o. 21417765	3.14159267
-0.491	1.4401701	1,00209961	-o. on736	4,	1,00000001	0	o. 21417765	3.14159267
-0.452	1. 4/03001	1,0020//01	-0.01/30	4,	1,00000001	0	0.21417765	3.14159267
-o. 413	1.4404915	1.00457867	-0.01600	5'	1.00000001	0	0.21417765	3. 14159267
-o. 374	1.4407703	1,0017707	-0.02375	5'	1,00000003	. 0	o. 21417765	3. 141 79267
-o. 335	1.4411745	1,00988720	-0.03504	6,	1.0000000	0	o. 21417766	3.14159267
-0.296	1.4417552	1.0144440	-0.05164	7'	1,00000005	0	0.21417766	3, 14159267
-0. 258	1.4425787	1.02097863	-0.07597	7,	1,0000007	0	o. 21417766	3.14159267
-o. 219	1.4437254	1.03021735	-0.11150	٠, 6,	1.00000011	n	0.21417767	3. 14159267
-0.181	1.4452827	1.04303478	-0.16307	10'	1,00000015	0	0.21/1776	3.14159267
-0.141	1.4473292	1.06036882	-0. 23740	13'	1,00000022	ò	0.21417760	3. 14159267
-o. 1o?	1,4499082	1.08304781	-0.3/350	17'	1,00000031	o	o. 21417771	3. 14159267
-0.071	1. 1529984	1,11152834	-o. 49323	26'	1,00000046	o	o. 21417774	3.14150267
-0.035	1.4564957	1.14561736	-0.70174	51'	1.00000060	ō	0.21417778	3.14159267
-0,001	1.4602227	1,18431532	-0,98803	316'	1,02199932	0	0.21888941	3. 14159267
0.032	1.4639666	1,22590341	-0.72687	57'	1.21417891	0		
0.054	1.4675295	1,26827968	-0.52788	29'	1.21417908	n		
0.095	1.4707663	1,30939188	-0. 38746	20'	1.21417923	0		
o. 125	1.4735978	1.34759798	-0.28716	15'	1.21417934	0		
0.154	1.4760019	1.38182917	-0.21463	12'	1.21417941	ō		
o. 182	1.4779975	1.41158843	-o. 16157	10'	1.21417917	0		
0, 210	1.4796258	1,43683629	-0.12235	9,	1.21417952	0		
o. 237	1.4800377	1,45784183	-0.09311	ġ,	1, 21417935	0		
0.264	1,4819846	1.47504075	-0.07114	7*	1.21417057	o		
0, 291	1.4828141	1.48897595	-0.05152	7*	1.21417960	0		
o. 317	1,483/680	1,50013065	-0.04188	6,	1,21417961	o		
o. 313	1.4839314	1,50902196	-0.03224	6*	1,21/17062	0		
0,369	1.4843832	1.51601795	-0.02486	5'	1, 21417952	0		
0.395	1.4846971	1.52158032	-0.01919	ź,	1,21417964	0		
0.421	1,4849417	1,52592216	-o. o1482	5'	1,21417964	0		
0.447	1.4851322	1,52931964	-o. o1146	5٠	1,21417965	0		
0.473	1,4852304	1.53197262	-0.00887	4,	1,21417965	0		
0.498	1.4853955	1,53404089	-0,00686	4,	1, 21417965	0		
o. 524	1.4854850	1,53565128	-0.00531	4'	1, 21 117965	0		
0.549	1.4855544	1.53590371	-0.00/11	4,	1,21417965	0		
0.575	1.4856083	1.53787734	-0.00319	4,	1,21417965	0		
0. 600	1.4856501	1,53863285	-0.00247	4,	1,21417966	0		
o. 626	1.4856026	1,53922006	-0,00191	3'	1,21417966	0		
0.651	1.4857077	1,53967570	-0.00148	3'	1,21417965	o		
0.677	1.4857272	1.54002963	-0.00115	3'	1,21417966	o		
0.702	1.4857423	1,54030342	-0.0012)	3'	1,21417966	o		
0.728	1.4857541	1,54051614	-0.00069	3'	1.21417966	0		
0.753	1.4857632	1.54068129	-0.00053	3'	1,21417966	n		
0.779	1.4857702	1,54000036	-0,00041	3'	1,21-117966	0		
0.804	1.4857757	1,54090845	-0.00032	3'	1.21/17/155	n		
-0 · · · · · · · · · · ·	··.///	** ///	· m· · m· m· M· G		************	.,		

n.83n	1,487,7799	1,54o00532	-0, 00025	3'	1.21417965	0
0.855	1, 1/57/32	1.5-104501	-0, 00019	3*	1.21417966	0
0.801	1,4807.57	1.54109070	-0,00015	3*	1.21417966	0
0.905	1.4857377	1.54112703	-0,00012	2'	1,21417966	0
0.932	1.40570e3	1.54115489	-0,00000	2"	1,21417966	0
0.777	1.4077901	1.54117509	-0,0000?	2*	1,21417966	0
0.983	1.4837914	1.5(119276	-0.00005	2'	1.21417966	0
1.008	1.4857921	1.5/120508	-o. onnol	2,	1,21417966	0

 OME GA
 30000000
 KAPPA
 10,0000
 DELTA
 0,100000
 VECTORLENGTH
 0.40

 REFLECTION FACTOR
 0,3585915
 3,1415928
 TRANSITFACTOR
 1,3596138
 0,000000

 ALPHA
 -0,00189
 BETA
 -0,00528
 GAMMA
 -0,00717

HEIGIH	THETA	E KELLER	ZETA		DISTORTION F	IINCT I ON		
-1.000	1.2217305	1,00000000	+0.00005	2'			0, 35859154	. 14100000
-0.932	1.2217360	1,00000000		2'	1,0000000	.0		J. 14159282
-0.932 -0.863	1.2217300	1.00004860	-0,00009 -0,00018	3'	1,00000000	0	0.35850154	3.14159282
-0.705	1.2217689	1.00001000		3'	1,00000000	0	0.35859154	3, 14159282
	1.2217009		-0.00035	3,	1,00000000	0	0.35859154	3.14159282
-o. 726 -o. 658	1. 2218979	1.00023952 1.00049078	-0,00070	3,	1,00000001	0	0.35859154	3. 14159282
-	, ,		-0.00139	3' 4'	1,00000001	, o	0.35859154	3, 14159282
-0.590	1.2220674	1.00098810	-0.00275		1,00000003	0	0.35859155	3.14159282
-o.521	1.2224021	1.00197116	-0.00545	4' 4'	1,00000005	0	0.35859155	3, 14159282
-o.453	1.2230600	1.00390942	-0.01078	-	1.00000011	0	o. 35859158	3, 14159282
-n. 385	1.2243436	1.00771197	-0. 02131	5'	1,00000021	0	0.35859161	3, 14159282
-0.317	1.2268168	1.01509959	-0. 04203	6,	1.00000042	0	0.35859169	3, 14159282
-0.250	1.2314211	1.02918829	-0.08250	8,	1,00000081	0	0.35859183	3.14159202
-0.183	1.2396050	1.05515201	-0.16054	10'	1.00000154	0.00000001	0.35859209	3. 14159262
-o.118	1.2529264	1.10024006	-0.30763	16'	1,00000287	0,00000002	o. 35859256	3, 14159284
-0.055	1.2719592	1.17155771	-0.57477	33'	1,00000507	0.0000004	o.35859335	3.14159285
0,004	1.2949383	1.27088415	-0.96557	316'	1,35862323	0,00000007		
0.058	1.3184428	1.39052815	-0.56007	32'	1.35860706	o. 00000006		
0.108	1.3391415	1.51610502	-0.33992	17'	1.35860953	0.00000005		
o. 154	1.3557091	1,63393930	-0.21476	12'	1.35861102	0.00000001		
o. 197	1,3682330	1.73574659	-0.14014	10'	1.35861196	0.00000004		
o. 237	1.3774165	1.81874615	-0. 09372	8•	. 1.35061255	0,00000004		
o. 275	1.3840484	1.88374288	-0. 06381	7°	1,35861294	0.00000004		
o. 312	1.3888o24	1.93323963	-o. o44o2	6,	1.35861321	0.00000004		
0.349	1.3921982	1.97020526	-0. 03065	6'	1.35861338	0.00000004		
o. 384	1.3946202	1.99743748	-o, o2148	5'	1,35861351	0.00000004		
o. 419	1.3963464	2.01730724	-0,01513	5'	1,35861360	0,00000004		
o. 454	1.3975765	2. 03170647	-0, 01069	4,	1,35861366	0.00000004		
o, 488	1.3984529	2.04207121	-0,00758	4,	1.35861370	0,00000004		
o. 523	1.3990774	2. o 19555 o 6	-o. oo538	4,	1.35861373	0.00000004		
0.557	1.3995223	2.05190670	-0, 00382	4'	1.35861374	0.00000004		
o. 591	1.3998394	2. 05873696	-0.00272	. 4"	1.35861376	o, cococco4		
o. 625	1.4000554	2.05147515		3,	1.35861377	0,00000004		
0.659	1.4002264	2.06343097	-0,00138	3*	1.35861379	0,00000004		
o. 693	1.4003411	2.06482697	-0,00098	3*	1.35861379	0.00000004		
0.727	1.4004229	2.06582303	-0, 00070	3,	1.35061379	0.00000004		
0.761	1.4004812	2.06653342	-0, 00050	3,	1,3586138o	0,00000004		
0.795	1.4005227	2.0670/1004	-o . o on35	3,	1.3586138o	0,00000004		
o. 828	1.4005523	2.06740109	-o. ooo25	3,	1.3586138o	0.00000004		
0.862	1.4005734	2.06765876	-0.00018	3,	1.3586138o	0.00000004		
o.896	1.4005885	2. 06784227	-0.00013	3'	1.3586138o	0,00000004		
0.930	1,4005992	2.06797317	-0.00009	2'	1.35861380	0.00000004		
0.964	1.4006068	2. o68o6638	-0,00007	2'	1.3586138o	0.00000004		
0,998	1,4006123	2. n6813 2 85	-0,00005	2'	1,35861380	o. 000000004		
1,032	1,4006161	2.06818017	-0,00003	2'	1.3586138o	0.000000004		

MEGA	3.0000	+07	KAPPA	0.001	DELTA	0-0	10000		
THET	TA.	ALPHA_	BETA	GAMMA		REFLECT	IONF ACTOR	TRANSITI	
0		0,00050		30.00los	-		3.147466938		6. 283181489
0.1745 0.3190	. 1	0.00051		196,96254			3,147542953	1.00000191	•
0.5235		0.00053 0.00058		187.93946 173.26995	-		3,147783279 3,1482162 48	1.00000351 1.00000351	0
0.6981		4.00065		153, 2,965	-		3, 148916245	1,0000036	o 6, 28 318 1489
0.8726		0-00078		128.55817	-		3, 150048256	1.00000572	0-000001907
1.0471		0.00100		100.00050	-		3. 151959419	1.00000974	0-000001707
1.1344		0.00118		84.524.7	_		3,153151781	1.00001431	6. 283181489
1.2217	305	0.00146		68.40437			3,155637741	1.00002146	
1.3089		0.00193		51.76lo7			3.159073353	1.00003672	0
1.3962		0.00288	,-	34.72981			3,1653(853)	1.00008321	•
1.4835		0-00574	17.42550	17.43126	•		3,181o24432	1.00032931	0-000001907
	LREFLECT			44	, .				
1.5676	383	o. 31623	o. 31 623	0.63246	1.00	0000000	3,263 ,6 21 99	2, 288 39909	0-060731928
OMEGA	3.0000	,+o7	KAPPA	e.oo1	DELTA	9 -0	neo1a		
THET	'A	ALPHA	BETA	GAMMA		REFLECTI	ONFACTOR	TRANSITE	ACTOR
0		0. 00500	200-00500	200.01000	0		3. 200 317900	1.00002480	•
0.1745	329	0.00508	196.96632	196,97140	•		3. 201089859	1.00002289	6.283177674
0.3490		0.00532	187.94260	187.91792	•		3.263454971	1.00002670	6.283181489
0.5235	•	0-00577	173. 26797	173, 21374	-		3.267773269	1.00003242	6. 28 31 8148 9
0.6981	•	0.00653	153, 21002	153, 21655			3, 214813232	1.00004101	6. 28 31814 8 9
0.8726		0-00778	128.55617	128.56395	-		3, 2261 26671	1.00006008	•
1.0471		0.01000	99-99500	100-00500	•		3. 24 524 5934	1.00010109	•
1.1344		0.01183	84.51665	84.52788	-		3, 26, 247231	1.00014020	6, 283183396
1.2217 1.3689		0.01462	68,39283	68.46745	-		3, 28 20 358 28	1.000 21365	0.000004768
1.3962		•••01932 •••02882	51.747o7 34.7o256	51.7664o 34.73138			3,316430092	1.00037343	0-000007629
1.4835		9.02002 9.05756	17.37447	17.43263	-		3, 37928o567 3, 536749959	1.00083075 1.00331808	o.ooo023365 o.ooo19o258
	LREFLECT		Titalasi	I (. TOMOS	0		2. 2301 £23.23	1.00/227000	0-000190270
1.56079		1.00000	1.00000	2.00000	1.00	0000000	4.607446149	3.55153247	o.732926756
OMEGA	3.0000	+o 7	KAPPA	0.001	DELTA	0.0	0100	,	
THET	A	AL PHA	BETA	6 AMMA		REFLECTI	ONFACTOR	TRANSITE	ACTOR
•		0-04999	200.04999	200-09997	•		3.728923798	1.00024989	0-000011444
0.1745		o-o5o76	197.00925	197.06001	•		3.736140659	1.00025561	0.00011444
0.3190	1.	0-05320	187.97927	188.03247	•		3.760017395	1.00026232	0-000011444
0.52359		0.05773	173, 23394	173, 29166	-		3.803211212	1.000-33575	0-000019073
0.69813		0.06527	153, 22 ₅ 21	153, 28548	0		3,873559952	1.0001247	0-0000267e3
0.87260 1.04719		0-07779 0-10005	125.54.399	125.62179			3.986659050	1.00060577	
1.1344		o. 10007 o. 11842	99.94994 84.4475	100-04999 84,56 5 91			4.17779e642 4.327771187	1.00100070	0-400097 <i>2</i> 75 0-00016 5 939
1. 22173	-	a. 14643	68, 29180	68.43823			4.32//110/		0.000107737
1.30899		19361	51.59589	51.78970			4,880942242		0.000727654
1.3962		0. 29022	31,45680	34.74762			5-5149e33e7		0.002443790
1.48352		•• 59360	16,84631	17.43992			0.774566591		0-020907998
	LREFLECT			,	_				
1.53918	548	3, 16228	3, 16228	6, 32156	1.00	0000060	4.1347e31ee	6.35385 7	3.638147891
OMEGA	3.0000 _h	+o 7	KAPPA	9-001 [DELTA	••0	loco		
THET	A	ALPHA	BETA	AMMA		REFLECTI	ONFACTOR	TRANSITE	ACTOR

 ONESA
 JODGOGGO KAPPA
 e-clos DELTA
 e-calco VECTORLENGTH e-4

 ALPHA
 -0-13565 BETA
 -0.73719 SAMMA
 -0.87284

 REFLECTIONFACTOR
 -0.875228
 3.278e971 TRANSITFACTOR
 1.1999593
 -0.0139014

MEIGTM	THETA	E KELLER	ZETA		DISTORTION F	UNCTION		
4000.000	1.5271629	1.00000000	-0-00005	2'	1.00000278	0-00000225	0.08752299	3, 278,9931
-991.276	1.527163p	1-00000094	-0-00005	2'	1.00000281	0-00000215	0.08752301	3. 27809952
-982,552	1.527163a	1.00000187	-0-00005	2'	1.00000307	0-00000267	0.08752304	3.278-9975
-973,825	1.5271631	1.00000290	-0-00006	2'	1.00000335	0-00000292	e-e87523p6	3, 27809999
-965, 104	1,5271631	1.00000487	-0-00006	2'	1.00000365	0.00000319	0-98752309	3. 278 loo 25
-956, 381	1.5271632	1.00000580	-0.00007	21	1.00000399	9-90999318	8752312	1 27810054
-947.657	1,5271633	1.00000777	-0.0000	2'	1.00000435	0-000003Bo	0-08752315	3, 27810086
-938,933	1,5271634	1-00001076	-0.00008	2'	1.00000475	0-00000414	e-g8752318	3, 27810121
-930.209	1.5271635	1.00001272	-0.00009	2'	1-00000518	0-00000452	e-o8752322	3. 27810129
-921,485	1.5271636	1.00001460	-0.000le	2'	1.00000565	e-eccce193	e.e8752326	3, 2781e2ee
-912,761	1.5271637	1.00001759	-0.00011	2'	1.00000617	0-00000538	0.08752331	1.27810245
-904.038	1,5271638	1-00001955	-0-00012	2'	1.00000673	0.00000557	0.08752336	3, 27810293
-895, 314	1.5271639	1.00002216	-o-ose13	3'	1.00000734	0-00000641	0.08752361	3, 27810347
_886,59e	1.5271640	1.00002544	-0-00014	3,	1.00000801	0-0000699	e-e8752347	3. 2781a4a6
-877.867	1.5271642	1.00002929	-0-00015	3•	1-00000874	e-ecce763	0.08752353	3, 27810469
-869.143	1.5271644	1.00003321	-0.00017	3,	1.00000953	9-00000B32	0.08752360	3.27816539
-860-419	1.5271646	1.00003714	-00018	3,	1-eccelo41	0-0000908	0.08752368	3, 27816615
-851,696	1.5271647	1.00004107	-0.00020	3,	1.00001135	0.0000991	9.98752376	3. 27810698
-842,972	1.5271649	1.00004794	-0-00022	3,	1.00001239	e-boso lo81	0-08752385	3.27816788
-834, 249	1.5271652	1.00005090	-0-00024	3,	1.00001352	0.00001180	0-08752395	3. 2781.067
-825,525	1.5271694	1.00005671	-0.00026	3,	1.00001475	e-cose1257	9-a5752la6	3. 2781-994
-816.802	1.5271657	1.00006362	-0.00s2f	3,	1-00001616	e-sees14e4	0.08752418	3. 27811112
-8-8-078	1.527166n	1.00007045	ooo31	3'	1-90001756	0.00001533	9-98752431	3. 2781124 ₀
-799.355	1.5271663	1.00007635	-0.00034	3'	1.00001916	0.00001673	0.08752145	3.27811379
-790.632	1.5271666	1.00008412	-0-00037	3,	1.00002091	0.0001825	0.08753460	3, 27811532
-781,909	1.5271670	1.00009301	-0-000le	3'	1.00002351	0-00001992	0.08752477	3, 27811698
-773,186	1.5271674	1.ecolo 275	-0.000H	31	1.00002689	0-00002173	0.08752495	3, 27811880
-764,463	1.5271679	1.00011351	-0.00048	3,	1.00002716	0.00002371	0.00752515	3.27812-77
-755.74e	1.5271684	1.00012530	-0.00052	3,	1.00002963	0-00002587	e-e8752536	3, 27812294
-747.017	1,5271609	1.00013700	-0.00057	3,	1.00003/36	B-0000 2 523	0.08752560	3. 27812529
-738,294	1.5271695	1.00015075	-0.00062	3,	1.00003528	0-00003080	0.00752586	3, 27812786
-729,572	1.5271702	1.00016639	-0.00068	3,	1.00003550	0-00003360	9-08752614	3. 27813-67
-72 ₀ .849	1.5271709	1.00018211	-0-00074	3,	1.00004201	0.00003667	0.08752645	3, 27813374
-712,127	1.5271716	1.00019971	-0-00081	3'	1.00004583	0.00004001	0.08752678	3.27813707
-703.405	1.5271725	1.00021927	-0.00088	3,	1.00005001	0.00004365	0.08752715	3. 27814672
-694,683	1.5271734	1.00023986	-0-00096	3,	1.00005456	0.00004763	0-08752754	3. 27814470
-677.239	1,5271755	1.00028891	-0.00114	3,	1.00006496	0.00005671	0.08752845	3, 27815378
-679.796	1.5271780	1.00034574	-0.0e136	3'	1.00007733	0-00006751	0.08752954	3,27816458
-642,354	1.5271809	1.00041232	-0.00162	3,	1.00009206	0.00008037	0.08753083	3. 27817744
-624.914	1,5271845	1-00049370	-0-00193	3,	1.00010979	0.00009568	0.00753236	3.27819274
-607.475	1,5271007	1.00079082	-0.00230	3,	1.00013045	a-cool 139a	0.08753419	3. 27821697
-590.037	1.5271937	1.00070779	-0-00274	4.	1.00017528	0.00013539	6753636	3. 27823266
-572,601	1.5271996	1.00084193	-0.00326	4,	1-00018483	0-00016139	0.08753995	3, 27825847
-555.168	1.5272066	1.eeloo296	-0.00358	4.	1-coe21999	0-00019211	0-08734202	3.27828918
-537.738	1.5272151	1.00119640	-0-00162	4.	1.00026181	0.00022865	0-08754568	3, 27832772
-52a, 311	1.5272251	1. co14264o	-0.70770	į.	1.00e31156	0-00027213	9-97755004	3, 27836920
-502.886	1.5272369	1.00169789	-0.00655	40	1.00037073	0.00032385	0.08775522	3,27842693
-485.470	1.5272510	1.00202278	-0-00779	4'	1.00014109	0.000353	0.08756137	3. 27848244
-46857	1.5272677	1-00240708	-0.00927	4.	1.00052173	e-coel 5854	0.08756869	3, 27855560
-450,651	1.5272675	1.00286391	-0.01lof	į,	1.00062414	0.00074772	e-e8757739	1,27861278
433,253	1.5273110	1.00310616	-0.01313	5,	1,00074222	0-00064889	0.0778773	1.27874796
415,864	1.5273398	1.00lol789	-0.01563	5,	1.00088245	0.00077173	0.03750000	3,27886880
-398,487	1.5273718	1.00481078	-0.01879	5 ,	1.esle489e	0.00091764		3. 27901470
-381,123	1.5274107	1.00571283	-0.02212	5 ,	1.00121635	e-colo9085	0.08763185	3. 27918791
-363,774	1.5274567	1.00678001	-0.02631	5 ,	1.00148041	0-00129637	0.08765234	3, 27939314
-316,443	1.5275109	1,00804216	-0-03129	í	1.00175766	0-00154007	• • • • • • • • • • • • • • • • • • • •	2,27963716
-329,135	1.5275747	1.00953051	-0.03720	6	1.00208576	0.00182889	0.08770532	3. 27992995
				-		J		~~,,-,,,

-311.351	1.5276497	Lo1128459	-0.01122	6.	1.00247358	e-co217e79	0-08773926	3, 28o26786
-294.598	1.5277374	1.01334621	-0.05255	7°	1.00293143	0-00257517	0-0877793L	3,26067224
-277.360	1.5278399	1.01776392		7'	1.00347111	o.oo305 2 57	•••\$782657	3,28114994
-260.202	1.5279592	1.01859407	-0.07412	7'	1.eol 10615	o. on 361 639	o.o8786215	3,28171346
-243.073	1.528e976	1.02189582		8,	1.00485184	o-col Book	0-08794742	3,28237715
-225.999	1.5282572	1.02573238	-0.1043 5	8,	1.00572544	0-005 06032	0-08802388	3,28315739
-2₀8,9 88	1.5284406	1.03017486	1237o	•	1.00674610	o-o-59756o	0-08811321	3, 38407267
-192-051	1.5286500	1.03529532	-0.14653	lo'.	1.00793491	e-co7c4669	0-08821725	3.25514377
-175-197	1.5268676	1.04116493	-0.17363	11'	1.00931474	0.00829666	o.o88339o2	3, 28639374
-158,439	1.5291550	1.04785342	-0.20507	12'	1.01091001	0-00975086	0.08847764	3, 28784794
-141.787	1.5294537	1.05542532	-0. 24223	13'	1.01274630	o-o1143678	0-08863836	3, 26953367
-125.255	1.5297843	1.06393617	-0.28578	15'	1.01484987	e-o133839o	008882247	3, 29148 097
-108.854	1.5361467	1.07342413		17'	1.01726693	0-01562322	0-08903227	3, 29 37 20 30
-92-799	1.5365398	1.08390875	-0.39614	2 0'	1.01996293	0- 01818 <i>6</i> 94	o. 09926998	3, 29628403
-76,301	1.5369616	1.09538907	-0.46533	24'	1.02302168	0-02110784	0.08953769	3. 2992₀4 93
-60.571	1.5314089	1.10783232	-0.54569	36'	1.0264444	0.02441861	o-o8983726	3. 30251571
-44.826	1.5318777	1.12117929	-0.63878	40'	1.03024909	0-02815126	0-09017025	3, 3,621836
-29.257	1.5323636	1.13534165	-0.74635	62'	1.03144943	0.03233640	0.09053788	3, 31043351
-13-887	1.5328596	1.15020643	-a-87a3l	129'	1.03905455	0.03700266	0.09094093	3. 31509977
1.284	1.5333616	1.1656368	-0.9872 4	316'	1.1569-453			
16.254	1.5338631	1.18146676	-0.84998	112'	1.14099982	0.05036689		
31.024	1.5343588	1.19754193	-0.73327	59'	1.14764880	0.04594641		
45.596	1.5348434	1. 21368886	-0.63384 -1905	40'	1.15360425	0.04211143		
59.974	1.5353126	1.22973817	-0.5 48 95	31,	1,15891996	0-03878449		
74.165 88.175	1.5357626 1.5361966	1.24553822 1.26094734	47633	25'	1,16365126	•••3589748		
1o2.o15	1.5365946	1.27584386	-0.414o6 -0.36o54	21'	1.16785 2 80	0-03339o89		
115.693	1.5369732	1.29.12787	-0.30074 -0.31445	18' 16'	1.17157726	o-o3121299 o-o2931896		
129,220	1.5373258	1.35372318			1.17487413	0-02/31090		
142,605	1.5376524	1.31657231	-0. 27467 -0. 24o26	15' 13'	1,17778972			
155.860	1.5379533	1.32863692	-0. 21o43	12'	1.18036621	0-02623320 0-02697949		
168.995	1.5362294	1.339903092	-0. 210+3	11'	1.18264200			
182.020	1.5384816	1.35036054	-0. 16199	10'	1.18465161 1.18642596	0.02388440 0.02292677		
194.943	1.5387112	1, 3600 2664	-0.16199 -0.14235	10°	1.18799259	0.02292011		
207.775	1.5389197	1,36892073	-0.12521	9,	1.18937594	0.02200010		
220.524	1.5391083	1.37707075	-0.12521 -0.11022	9,	1.19059764	0.021373909		
233, 197	1,5392787	1.38451559	-0.11022 -0.09710	8,	1.19167677	0.02014307		
245.802	1.5394322	1.39129376	-0.08560	8,	1.19263 ₀ 18	0-04015-307 0-01964558		
258.345	1.5395702	1,39744267	-0-07551	8,	1.19347271	0.01920796		
270.834	1,5396941	1.40301146	-0.06665	7'	1.19421744	0.01920790		
283,273	1,5398052	1.40804325	-0.05885	7,	1.19487590	0.01848331		
295,667	1,5399047	1.41257760	-0-05199	7'	1, 19545819	0-01818413		
308-022	1,5399937	1,41666042	-0. o4 595	6,	1.19597327	0.01792023		
320,341	1.5400732	1,42032738	-o. o4o62	6'	1.19642895	0-01768733		
332,628	1,5401442	1.42361628	-0.03993	6,	1, 1968 3221	0.01748168		
344,887	1.5402075	1.42656431	-0.03178	6'	1.19718911	0-01730003		
357,121	1.5402639	1,42919924	-0.02812	6'	1,19750506	o-o1713951		
369,332	1.5403142	1.43155602	-0.02489	5'	1.19778479	0.01699760		
381.523	1.5403589	1,43366203	-0.02203	5'	1,19803249	0-01687211		
393,696	1.5403987	1.43553983	-o. o1951	5*	1.19825186	0.01676110		
405.853	1.5404342	1.43721583	-0-01727	. 5*	1.19844617	0-01666289		
417.996	1.5404657	1.4367o838	-0.01530	5"	1.19861828	0-01657597		
430.126	1.5404937	1.44003900	-o. o1355	5°	1.19877076	0.01649904		
442,246	1.5405185	1.44122095	-0-01200	5'	1.19890586	0.01643091		
454,355	1.5405406	1.44227359	-0.01o64	4'	1.19902557	0.01637060		
466.455	1.5405603	1.44321109	-0.00942	4'	1.19913164	0.01631719		
478.548	1.5405777	1.44404405	-0.00835	4'	1.19922564	0.01626988		
490.634	1.5405932	1.44478420	-0-00740	4"	1.19935894	0.01622797		
502.713	1.5406070	1.44544270	-0-00 656	4'	1.19938277	0-01619083		
514.787	1.5406191	1.44602521	-0.0 0581	4"	1. 19944821	0.01615794		
526.856	1.5406299	1,44654332	-0-00515	4'	1.19950622	0-01612679		
538,921	1.5lo6396	1.44700853	-0.00457	4'	1.19955762	0.01610296		
550.982	1.5406481	1.44741483	-0-001 05	4,	1.1996.319	e. o16o8oo7	•	

						•
563.039	1.5406557	1.44777983	-0-co-377	4"	1.19964399	0.01607779
575-093	1,54,6624	1.44810061	-o.co318	4.	1.199679lo	0.0164181
987.145	1.54.6683	1.4483667	-0.00 3 52	4°	1, 19971116	0.01602587
799, 195	1.5406736	1,44864171	-sico250	4"	1. 1997393	0.01601174
611.242	1.5406783	1,44886787	-0.00 ²²²	3'	1. 19976124	0.01779923
623.287	1,5406825	1.449-6739	-e.ee196	3'	1.19978636	0.01796613
635331	1.5606861	1.44924294	-o.oò174	3'	1.19980597	0.01797829
647.373	1.5406094	1.44910094	-0.00154	3,	1, 19982336	0.017997
679.414	1.5406923	1.44954087	-0-00137	3'	1, 19983876	01796184
671.454	1.54-6949	1.44966611	-0.00121	3°	1, 19985244	0-01795499
683,493	1.566972	1.44977646	-0.00108	3,	1. 19986455	0.01794891
695, 531	1.566992	1.44987176	-0-00095	3,	1, 19987529	0-01594352
707.568	1.54e7ole	1.44995828	-a.coc85	3'	1, 19968481	0.01793574
719-6-4	1.5407026	1,45003583	-0.000 75	3,	1, 19989325	0.01593451
731.6la	1.5407040	1,45010459	-0.000 6 6	3'	1. 19990074	0-01593076
743,675	1.5407052	1.45016420	-0-00059	3,	1.19990735	0.01792743
755-709	1.5407063	1.4502 789	·0-00052	3'	1. 19991 326	0-01792448
767.744	1.5407073	1.45026566	-0.00016	3,	1.19991848	0-01592186
779.777	1.5407082	1.45030750	-o.ecc41	3,	1, 1999231e	0-01591954
791.811	1.5407089	1.45031321	-0.00036	3,	1.19992720	0.01791749
803.844	1.5407096	1.45037611	-0.00032	3,	1.19993584	0-01591566
815.877	1.54e71e2	1.45010593	-0.00029	3*	1.19993666	0-01591405
827.949	1.5407108	1.45043267	-0-00025	3'	1.19993692	0.01591261
839.942	1.5407113	1.45045676	-e-ccc22	3'	1, 19993946	•••1791134
851.974	1.5407117	1.45-47455	-0.000 3 0	3,	1,19994171	0-01791022
864.006	1.5607121	1.45 019 556		3,	1.19994370	0-01590922
876.038	1.5407124	1.45051047	-0.00016	3'	1, 19994546	0-01590833
888.070	1.54o7127	1.45052538		3,	1.19994763	0-01590755
900-101	1.5lo7130	1.45053742	-0.00012	3'	1,19994842	0.01590685
912,133	1.567132	1.45054928	-0.00011	2'	1, 19994965	0.01790624
924.164	1.5lo713l	1.45055826	-0.000lo	2'	1.19995074	0.01590569
936, 196	1.5lo7136	1.45056724		2'	1.19995171	0-01590520
948.227	1.54o7138	1.45057622		2'	1.19995257	0-01590477
960.258	, 1.5607139	1,45058215		2'	1.19995333	0.01590439
972,289	1.5lo7140	1,4505000		2'	1.19995400	0-01590605
984.320	1.5407141	1.45059401		2'	1.19995460	e-o159e375
996,351	1.567142	1.45059706		2'	1. 19995513	0.01590349
1008.382	1.5lo7143	1.45060300	-0-0000t	2°	1.1999556	0.01590325

ONEGA 300000000 KAPPA c.oloo DELTA c.oloo VECTORLENGTH c.40
A.PHA -1.37651 BETA -7.37183 GAMMA -8.72836
REFLECTIONFACTOR 0.00000000 2.9578171 TRANSITFACTOR 1.2645816 c.2502677

NEISTN	THETA	E KELLER	ZETA		DISTORTION F	MCTION .		
-1000-000	1.5271629	1.00000000	-0.00005	2'	1-00000788	0.00005136	e-eccess1	2.95786844
-982,552	1. 5271630	1.00000187	-0.00005	2.	120000700	0.00006112	0.00000001	2,95787822
-965, 1ol	1.5271631	1-00000487	-0.00006	2,	1-00000833	0.00007278	0.00000001	2,95700900
-947.657	1,5271633	1.00000777	-0,00008	2,	1.00000993	0.00008665	0.00000001	2.95790375
-930. 209	1.5271635	1.00001272	-0-00009	2'	1.00001182	0.000le317		2,95792027
-912-761	1.5271637	1-00001759	-0.00011	2'	1-00001407	0.00012283	0.00000001	2.95793993
-895, 314	1.5271639	1.00002246	-0.00013	2'	1.00001676	0.00014625	0-00000001	2,95796335
-877.866	1.5271642	1.00002929	-0.00015	2'	1.00001995	0.00017412	0-00000001	2,95799122
-860-419	1.5271646	1.00003714	-0.00018	2'	1.00002375	0.00020730	0-00000001	2,95802141
-842.972	1.5271649	1.00004794	-0.00022	2'	1.00002626	0.00021652	0.00000001	2,99806392
-825, 525	1.5271654	1.00005671	-0.00026	2'	1200003367	0-00029367	0-00000001	2.95811097
-8 ₀ 8.078	1.5271660	1.00007045	-0.00031	2,	1-00004008	0-00031987	0.00000001	2,95616697
-790.632	1.5271666	1.00008412	-0-00037	3°	1-00004772	0.00041677	0.00000001	2,95823365
-773_185	1.5271674	1.00010275	-0.00044	3,	1.00005681	0.00019993	0-00000001	2,95831363
-755.739	1.5271684	1.00012530	-0.00052	3,	1-00006764	0.000 770l4	0.00000001	2,95840754
-738,294	1.5271695	1.00015075	-0.00062	3,	1.00008052	0.00070295	0-00000001	2,95852005
-72 0.84 8	1.5271709	1.00018211	-0.00074	3,	1.00009586	0.00083688	0.00000001	2,95865398
-7e3.4e4	1.5271725	1.00021927	-0.0008B	3'	1.00011412	e-ccc99632	0-00000001	2,95881312
-685.960	1.5271744	1.00026336	-0.00105	3'	1.00013586	e.eo118611	0-0000001	2.959co321
-668, 516	1.5271767	1.00031532	-0.00125	3'	1.00016173	0.00141203	e-eccesse1	2,95922913
-651.074	1.5271794	1.0003/805	-0.00149	3'	1.00019252	0.00168093	0-00000001	2.9 59198 01
-633, 633	1.5271826	1.00045156	-0.00177	3'	1.00022915	0.0020099	0.00000001	2.959818 0 9
-616, 193	1.5271865	1.00054081	-0.00211	3'	1.000 27 27 6	0.0023619o	0.0000001	2.96019901
-598.755	1.5271911	1.00064573	-0.00251	3,	1.00032464	0.00253520	e-coccco1	2.96065231
-581,318	1.5271965	1.00077034	-0.00 299	3°	1.00038636	0-00337460	0-00000001	2.96 119171
-563,884	1.5272030	1.00091851	-0.00356	4'	1-0004 5978	0.00la163B	0-00000001	2,96183318
-516.452	1.5272107	1.00109522	-0-00423	4.	1-0005471o	0-00477986	0-00000001	2,962 5 9697
-529 . •23	1.5272199	1Joe13065e	-0.0050£	4.	1.00065092	0.0050000	0.00000001	2,96350511
-511.598	1.5272308	1.00155719	-0-00600	4'	1.00077434	0.00@@00	e-boomoo1	2.9615851e
-494.177	1.5272436	1.00185336	-0.00714	4'	1.00092101	0.00005208	0.9999999	2,96586919
-476-762	1.5272509	1.00220597	-0.00 ⁸ 50	4.	1.00109525	0.00957843	100000000	2.96739554
459.352	1.5272771	1.00262510	-0-01012	4.	1.001 30218	0.01139218	0.0000001	2.96926936
-441.950	1.5272987	1.00312269	-0.01204	4'	1.00154776	0-01374667	e-eccesco1	2,97136379
-424.556	1.5273263	1.00371318	-0.01433	5'	1.00183908	0-01610478	0-90000001	2.97392190
407.173	1.5273546	1.0041376	-0-01705	5'	1.00218440	0.01914056	0-00000001	2.97695769
-389.802	1.52739-4	1.00524313	-0.02628	5'	1.0025936	0.02274101	0-00000001	2.96-77814
-372.445	1.5274327	1.00622104	-o.o2413	5,	1.00307735	0-02700807	0.0000001	2,96482521
-355.105	1.5274827	1.00738494	-0.02869	6'	1.00364932	0.03206p88	0.00000001	2,98987802
-337.785	1.5275415	1.00875584	-0.03612	6'	1.00l 32Ho	9-03fe3513	0-000000001	2.99505527
-326.488	1.5276107	1.01037156	-o.o1o56	6'	1.00511992	o-o1520063	e-000000e1	3.00291779
-303, 220	1.5276918	1.01227418	-0.04821	6'	1.00605562	0-05313395	0-0000001	3.01125112
-285,983	1.5277867	1.01450743	0.05728	7.	1.00715379	0-06325095	0-00000001	3.02106512
-268,785	1.52/1973	1.0171266	-0.06003	7°	1.00843936	0-07479412	e-eccesse1	3.03261130
-251.636	1.526 ₀ 258 1.5281746	1.02015164	-0.08076	3,	1.00993986	0.0833753	0-0000001	3.04619471 3.06200511
-231.527 -217.484	1.5263456	1-02374268	-0.09582 -0.11363	•,	1-0116522 1-01370740	o. 10118791 o. 12268492	0.00000001	3.002030313
	1,5257124	1.03261637	-0.11365	7	1.015/0/40	0.1419945	0.00000001	1, 10201660
-200-509	1.5267651	1.03613117	-0.1 594	9°	1.0100371	e. 16913e61	0-00000001	3.12694772
-183,612 -166,8 04	1.5290174	1.03013117 1.04440163	-0.17754 -0.18862	11'	1.0217683	0-197899992	e-cocccc1	3,19571701
-100.005 -150.098	1.5293004	1-05152616	-0. 22291	12'	1.02522884	0-19/09992 0-23:91317	0-00000001	3,19876-21
-133.5e4	1.5296150	1-07172010	-0. 26315	14"	1.02912184	e. 26869936	0.00000001	3.2265166
-117.036	1.5299616	1.06577661	-0. 31o25	16'	1.03316769	e. 31199756	e-eccess1	3, 26941462
-117.030 -100.707	1.53,3396	1.07854287	-0.36529	19 '	1.03527304	e. 35ect 125	e-00000001	1,31707638
-100-707 -84,529	1,53,7473	1.08952764	-0.42943	21'	1.4351516	0.41439202	e-possess1	7212713
-68.513	1.5311823	1. le149257	-0.70fe2	35'	1.01926133	o. 4749533)	0-00000001	3.43277-53
-52,672	1.5316409	1.11439772	-4-790%	33,	1.07540576	e. 56195631	0.00000001	1.49977337
-37.014	1.5321186	112616613	-a. 69-64	47'	1.0619273	o. 61554752	0.00000001	\$5733663
-01+014	TO NOT 100	***************************************		-1	700072 ml 3	90 VL J7T1 J4		- 7 mms

-21.546 1.5326103 1.14269542 -0.80617 83' 1.06377953 e.69578347 **e-eccess**1 3_6536ao57 0.7826276 1.5331163 3 283' 1.07509310 e-enecool 3.74e44468 -6,276 1.15785995 ---93917 1.5336128 -0.9156n 8,795 1,17351150 3 247' 1.08319957 1.25714162 -0.70927 1.09060830 1.5341121 1,18948748 23,665 92' 1.155-3161 -. Ø157 1-09804998 \$.336 1.5366028 1.20561670 57' 1.06163998 --- 7973 41' 52.81a 1.5350602 1.22173143 1.105H146 0.97656351 0.89938839 1.535562 1,23766039 -51123 32, 67.093 1.11276832 -o.llles 26' 1.11978368 0.82961917 \$1,193 1.5399795 1,2533oo85 1,26846991 -3629 22' 1.12661ao4 a.76674a83 95.117 1.5363957 -. 33664 1,263-6883 19' 1.13314-36 0.71022682 108.874 1,5367872 --- 29363 17* 122,475 1.297-1831 1,13933849 a. 6999523L 1.5371529 -, 25684 .. 6142-545 1.5374924 16' 135.93 1.31021465 1.14517896 --. 22181 149.249 1,5378061 1.3227-483 14" 1.15064628 o. 57 369514 1.5380914 1,15573378 162.443 1.33437e17 -0.19702 13' 0.53755723 1.5383584 175.521 1,34523113 12' 1.160H260 0.50535811 -0.1727 -0.15184 0.47669663 188,494 1.5309991 11* 1.16477933 1,35529076 1.538618a -... 133f9 a-4512-463 201.371 1.36456881 lo' 1.16875663 214,160 1,5390164 1,37308650 -0.11747 le' 1.17239009 0.42854650 1.36088115 0.40841783 1.17569803 226,870 1,5391957 -o. 10345 9' 9, 1,36796774 e. 39o54309 239.508 1,5393575 -0.09117 1.17870046 o. 37467748 252.082 1,5395030 1.39444293 -0.0639 1,18141823 8. 264.797 1,5396338 -0.07094 1.18387247 1.40029795 0.36059690 8. 0.31810364 277.060 1,5397512 1.40559395 -0.06262 1.18608401 **-0.**05531 7' o. 337e2119 1.18807315 209.476 1,5398564 1.41037080 -0.04887 1,41467562 7' 1, 1898 99 28 301.850 1.5399505 o. 327 19o99 -o.el32 1,5100315 1.41854205 o. 3184726n 314.186 1. 19146079 e. 31o74e88 326,489 1-5401097 1.42201827 -032 60 1. 19289490 336,762 1,12512909 6° 1.56o1767 -0.03379 1.19417764 o. 3o35846o 6" 0.29780489 1.5402365 -0.02989 351.008 1.42791852 1, 19532363 -0.02616 363, 230 1.96a2097 1,43040924 60 1.19634711 0.29241400 -0.02312 1,43263944 6' 0. 287 636o1 375.43a 1,5603372 1, 197 29991 1.19807362 0.28339577 37.612 1,5403794 1,43462896 -0-02073 5* 5° 1.5404169 o. 27963793 399.777 1.436loo12 -0.01836 1. 19879852 5' 1.5tol5ol 1,43798343 -0.01626 411.927 1,19944398 o. 2763o6o6 1.5lolla1 -0.01460 424-064 5, o. 27335192 1,43939372 1.20001840 436, 188 1,5405065 1.44064710 5' 1.20052941 o. 27e73268 -0.01275 o. 2684 lo 38 448.302 1.5lo5299 1.44176314 5' 1.20096382 -0.0113b 160.407 1.5405507 1.44275525 o. 26635136 -e.oloo1 5, 1.20136777 1.44364070 o. 26452579 472.503 1.54-5693 -0.00887 1.20174676 1.5405957 -0.00786 o. 2629e717 484,592 1.4444.24.27 4, 1. 20206570 -0.00697 0. 26147 207 496,675 1.5406003 1,44512363 1. 20231900 4, 508.751 1.566132 1.44574121 -0.00617 1.20260079 o. 26019966 -0.00547 520.823 1.54-6247 1,44629163 1.20282398 0.27907150 -0.00485 1, 203,223 a. 258o7124 532.890 1.566369 1.4467833 4, 1.54o6Ha 544.952 1,44721898 4, 1.20319833 -0.00430 0. 257 184 37 557.o11 1.5406520 1.4476-178 -c.co361 4, 1.20335456 a. 256398o4 1.5406591 4, 1.44794324 1.20349320 -0.00335 569.067 0. 25570086 1.5406655 1,44824923 →.00299 4, 781.12b 1. 26361623 0.25508271 1.54o671e 1.44851684 -0.00265 0. 25453464 593,171 4, 1. 2037 2538 65.219 1.5406760 1.44875783 -0.00235 3* 1. 2036 2222 a. 254a 187a 1.44896915 617.266 1.560Bel -0.00209 3' 1.20390813 0.25361784 1.566844 -o.oe185 3' 1. 2.398434 0.25323582 629.310 1.44915956 1.5406378 641.353 1.44932633 -0.00164 3' o. 25289711 1. 20105194 o. 2525968o 1.5406909 1.44947233 653, 395 -0.00145 3' 1.2411189 665.435 1.5606937 1.44960653 3' -0.00129 1.20416507 0.25233053 1.5406961 3' 1.44972280 0.25209444 677.474 -0.00114 1. 20121221 1.5406982 1,4496242 0. 25188512 689.512 3' 1.20425407 -0.00le1 1.44991663 3, 701.550 1.5407001 -0.00090 1.20429117 o. 251 69951 -0.000Ba · 25153495 713.587 1.967018 1.44999705 3' 1.20432406 725.623 1.5407033 -0.06671 0.25138905 1.45007174 3' 1.2435325 737.65 1.5407046 1.45013440 3' 1.20437912 -0.00063 · 2512596B 3' 749.693 ·· 25114498 1.5407058 1.45019114 -0.00055 1. 20140206 3' o. 251o4328 761.727 1.5407068 1.45024177 -0.00049 1.20442240

			44	3'	1-2-444-44	o. 25e95311
773,761	1.5407078	1.45028650	-0.00044	-		
785.795	1.5 6 070 8 6	1.45032525	-0.00039	3,	1.2415611	o. 250B7316
797.828	1.5407093	1.45036120	-0.000X	3°	1.20447063	o. 2508o227
809.861	1.5407099	1.45039102	-0.0003n	3, .	1, 2,448321	0.25073942
821.894	1,5407106	1.45042083	-0.00027	3'	1,2,449436	o. 25off 369
833.926	1.5407111	1,45044473	-0.00024	3°	1.20150125	o. 25o6312B
845,979	1.5407115	1.45046574	-0-00021	3,	1.20151302	o. 250 59 o 47
857.991	1.5407119	1.45-48699	-0.00019	2'	1,20452080	o. 25055163
870.023	1.56o7122	1.45050149	-0-00017	2*	1, 20152769	o. 25o51718
882-055	1.54e7125	1.45051640	-0.00015	2'	1, 2,45336	o. 25e48665
894.086	1.5607128	1.45053132	-0.10013	2'	1.2453922	o. 25o4 5957
906.118	1.54o7131	1.45054335	-0.coe12	2'	1. 2015Ho3	e. 25e43556
918,149	1.5407133	1.45075233	-0.000lo	2"	1, 2,4 548 29	0.25041428
930, 181	1.54o7135	1.45056418	-0.00007	2°	1.2455207	0.25039541
942,212	1.54o7137	1.45057012	-0-0000 ⁸	2'	1.20455541	0.25037868
954.243	1.5407138	1.45057910	-0-00007	2'	1.2-455639	e. 25o 363B3
966_274	1.5407140	1.45058521	-0.00006	2'	1.2-456102	a. 25e3he68
		1.45059114	-0.00006	2'	1, 20456336	a. 25o339o2
978.306	1.5407141			_		
990, 337	1.56o7142	1.45059706	-0-00005	2'	1, 2,456542	o. 25o32867
1002.368	1.5407143	1.45060012	-0.0004	2'	1.20456726	o. 25o 3195o

 ONEGA
 3, correcte, +09
 KAPPA
 a, cates
 DELTA
 a, cates
 VECTORLEMENT 1.60

 ALPMA
 -13, 76511
 BETA
 -73, 71853
 GAMMA
 -87, 28364

 REFLECTIONFACTOR
 1, 3999427
 TRANSITFACTOR
 1, 245800
 2, 51e3445

			•			-	
MEISTN	THETA	E KELLER	ZETA		DISTORTION FI	MCT108	
-2000,000	1. 5271629	1.0000000	-0,00005	3'	1, 00000/96	0,00052007	•
-965, tol	1,5271631	1.00000687	-0,00006	3'	1,00000845	0, 00073723	•
-930, 309	1, 5271635	1,00001272	-0,0000)	3,	1, eccol 197	0.00104507	•
-895, 314	1, 9271639	1. eece2216	~e, eco13	3.	1.00001697	0.00148145	•
-86a, 419	1. 3271646	1.00003714	-0,00018	3,	1, 00002606	0.00210002	•
-\$25,534	1.9271654	1.0000/5671	-4,00026	3"	1.00003610	0,00297683	•
-790, 631	1. 5271666	1.00008412	-0,00037	4.	1, 00001834	0,00421963	•
-795.738	1. 3271684	1, esol 253e	-0,00052	ŀ	1.00006852	0,00798112	•
-720.847	1. 32/1709	1.00018211	-0.00074	4.	1,0009711	0,00847798	•
-605.998	1. 3271744	1,00025335	-0,00105	4	1, 00013762	0,01201534	•
-651.071	1. 9271794	1,00037805	-0,00149	į.	1.00019502	0.01702500	•
-616, 189	1.5271865	1.00054081	-a, os211	5.	1. 00027630	0,02612900	•
-51t, 107 -51, 312	1.5271965	1,00077034	-0,00277	5 *	1.00039138	0.03418548	•
			-a. col23	5.	1,00057130	a. of842175	•
-516.413	1. 5272107	1.00109625		8.	1,000/8441	a, o6856345	•
-511,5 8 6 -476,744	1,5272305	1.00177/17	-a, eoboe -a, eobje	٤٠	1,000/0451	0.09703714	•
	1, 5272590		-a, o12o4	6.	1,00176792	0,13724349	•
-41,925	1,5272900	1,00312372 1,00441575		6.	1, eo221286	o, 19392572	
-407.138	1,5273547		-0.01705	8,			•
-372,396	1,5274329	1. 00622706 1. 00876088	-0.00114	9 ,	1. ee311748 1. ee436e86	a, 27365529 a, 38545153	•
-337.716	1.5275418	1,01236434	-a, 03614 -a, 06826	9,	1,00613476	e, 54153e34	
-3e3, 123	1,5276923 1,5276983	1,01714667		12'	1,00054975	e, 75813260	
-268, 651		1.02378454	-	13'	1, 011 83603	1,05630068	•
-234, 343 -200, 257	1,5261763		-a, e96ee -a, 13 69 9	17'	1, 01103003	1,46233784	
	1,5255450	1,49272177	-a, 18926		1, e22e5e17	2.00753181	
-166, 466	1,529e229 1,529624e	1.04453775	-a, 26433	23'	1, 02949231	2.72662643	•
-133,057			-0.36761	30'	1, 62919231	1,65464868	
-100, 125	1,53e3535 1,5312e28	1,07091512		47'	1, e4984e11	4,82220562	•
-67.7 83 -36,116	1, 5321466	1, 1e2e647e 1, 12898351	-0,50772 -0,69687	75°	1,06279914	6, 25e23168	
-5, 204	1,5331498	1,15095235	-0.94929	348'	1,67546113	1, 66332709	•
7.	1, 5361539	1, 19084338		224'	1, 10526517	5, 28931288	•
31,9 09 51,216		1, 2233efee	-a, 9149	95'	1, 10527517	3, 479e6e61	
82.747	1,5351261 1,536e269	1,27500738	-a. 43716	%'	1, 12-37670	2.01365896	
	1,5368336	1.28482317		42'		e, 82329281	
110. 757			-e, 331e2		1, 13361513	6, 149-1631	
137.722	1,5375360	1.31196065	-4.27235	34. 30,	1, 14553176 1, 15597611	5, 38447697	
164,325	1,5381338 1,5386337	1,33997744	-0,19335		1, 16493199		
190,450		1.35674731 1.37436510	-0.14090	18°	1, 10293199 1, 172476e4	4,777e1522 4,296e63e7	
216, 176	1,5390(5)		-11512				
261. 572 266. 699	1,5393523	1,38905529	-a, ab)3a	16'	1,17874043	3.91617342	
	1.5396545	1,40122794	-0.06966	13'	1, 18388298 1, 1886663e	3,61650548	
291. 609 316, 363	1,5398733 1,54ee484	1,41114953 1,41917942	-0.05l15 -0.0l238	11.	1, 1914462	3,38057219 3,19477168	
36,538	1.54o1878	1,42564761	-		1, 19415763	3. ol856755	
35.43	1. 54e2987	1,43,63,039	-a, e33e6 -a, e2588	9"	1, 19632661	2.9335558	
309,815	1. 54e3865	1, 43496135	-, clos	9 ,	1, 19805418	2,93377700 2,84310016	
414, 139	1, 54o1560	1, 43825114	-0,01790	•	1, 19942645	2,77196687	
438, 467	1.5405110	1,44086368	-0.01267	6.	1, 20051406		
462,632	1.56-5543	1,44292571		6.	1,200)100	2,71603370	
#6,822	1,54e5005	1,442929/1 1,4456003	-0.00779 -0.00769	6.	1, 2×137459 1, 2×2×5452	2,67307538	
51a, 985	1,5406154	1.44784776	-a, estat	6,	1, 20279115	2, 637478e6 2, 61e293e8	
575, 126	1. 54o6367	1.44686636	-2.00/74	6.	1,20301434	2, 11027-00 2, 18072-13	
773.25e	1.966534	1,44756995	-0.0073	6.	1, 20031705	2,57211769	
Mi No	1,540665	1,44829974	-L 00273	5,	1,20361056	2,55090708	
607.461	1,966769	1,44879941	-0.00230	5"	1.26381737		
631, 552	1,5406931	1,44919237	-4. est\$1	7	1, 2039fol6	2,5652276 2,56539841	
175.638	1.9406914	1.44949934	-4,00142	2,	1, 20d1d25	2,53393995	
673.728	1, 9606965	1,44974362	-0.00112	5°	1, 20130908		
~, /~ ; ~~	-+ //			7		2,52 50 9lol	

703,794	1.54s/co5	1,41993140	-a, coeff	4.	1,20(28830	2,53(92720
727.867	1,5407036	1,45008358	-0, cool()	4.	1,20(35064	2. 5218e866
751.938	1.5407060	1,45019993	-0.000%	4.	1,20(39968	2,519957e3
776.007	1.5407alo	1,45-29547	-0, ocol3	4.	1_20143823	2,51742967
Bos, 074	1,5407094	1.45036713	-0.00034	4'	1, 20146895	2,51991449
834,16	1,5407106	1,45042389	-0.00026	4	1,20149236	2.51472333
848, 24	1,5407115	1,45046862	-0.00021	3'	1,20451113	2, 51378691
872,269	1.5407123	1,45050455	-0,00016	3'	1, 20152587	2, 51305074
896,332	1,5407129	1.45053436	-4, 00013	3°	1.20453745	2,51247201
920.395	1.5407133	1,45055521	-0, coole	3°	1.20154656	2.512e17e4
944,458	1.5407137	1,45057318	-a, acced	3°	1, 20155372	2, 51169937
968, 521	1,5407140	1,45058521	-0,00006	3*	1, 20455935	2, 51137618
992,983	1.5407142	1.45059706	-0,00005	3'	1, 20456377	2.51115714
1016, 645	1.5407144	1,45060605	-a, eccol	3'	1.2456725	2, 51098336

•

 CHEGA
 Joccoom
 KAPPA
 c.coom
 DELTA
 c.colooc
 VECTORLENGTH
 1.6c

 ALPHA
 -13.56511
 BETA
 -73.71853
 GAMMA
 -87.28364
 87.28364

 REFLECTIONFACTOR c
 1.59594c3
 TRANSITFACTOR
 1.20453c6
 2.51c3464

HEIGTH THETA E KELLER ZETA	DISTORTION FUNCTION
-1.00000000 _k +05 1.5271629 1.00000000 -0.00005	3' 1.00000596 0.00052007 0
-9.30208726,+04 1.5271635 1.00001272 -0.00009	3' 1.00001197 0.00104508 0
-8.60418336 +04 1.5271646 1.00003714 -0.00018	3' 1.00002406 0.00210004 0
-7.90629654 +04 1.5271666 1.00008412 -0.00037	4' 1.00004834 0.00421963 0
7.20841242,+04 1.5271709 1.00018211 -0.00074	4' 1.00007711 0.00847781 0
-6.51065664, +04 · 1.5271794 1.00037805 -0.00149	5' 1.00019503 0.01702692 0
-5.81300737 +04 1.5271965 1.00077034 -0.00299	5' 1.00039142 0.03418927 0
-5.11563132,+o4 1.5272308 1.00155719 -0.00600	6' 1.00078458 0.06857382 c
4.41880264 +of 1.5273988 1.00312467 -0.01205	6' 1.00156362 0.13730499 0
-3.72306178 +o4 1.5274331 1.00623304 -0.02416	8' 1.00312023 0.27389827 0
-3-02946811 _a +o4 1-5276932 1-01230674 -0-04834	9° 1.00614525 0.51246648 0
-2.34003203.+o4 1.5281795 1.02386117 -0.09632	13' 1.01187585 1.05975173 o
-1.65836925 ₆ • o4 1.5296329 1.04478995 -0.19045	20' 1.02217399 2.01928101 0
-9703.492 1.5303801 1.07962646 -0.37145 31'	1.03908914 3.68972840 0 0
-3439.664 1.5322009 1.13057140 -0.70902 80°	1.06334066 0.05383354 0 0
2/35.073 1.5342357 1.19350992 -0.76071 205*	1.08390594 5.10332960
8583.469 1.53612o4 1.25839277 -0.42386 55'	1.12138911 1.87625063
1.41305063 ₆ +04 1.5376217 1.31535254 -0.24340	30' 1.14701387 6.03661096
1.94374713 ₀ +64 1.5387615 1.35961566 -0.11317	21' 1.16616438 4.69664434
2.45717554, od 1.5394312 1.39124991 -0.08568	16' 1.17965360 3.86192968
2-95893578 +o4 1-5099664 1-41265751 -o. o.5187	12' 1.18870400 3.34521205
3.45309558 ₆ +04 1.5402095 1.42665815 -0.03165	9' 1.19458169 3.02599340
3.94240817n+04 1.5404004 1.43561796 -0.01940	9' 1.19832834 2.32896976
6:4236628662847 12540810797E1.44127664 -0.01193	4
4.91302027 + of 1.5405940 1.44482252 -0.00735	6' 1.20216438 2.63173583
5.39618403, tol 1.5406401 1.44703212 -0.00453	6' 1.20308318 2.58548011
359796143392693591.54456677636.44840380 -0.00280	
6.36057999n+04 1.5406864 1.44925495 -0.00173	5' 1.20400708 2.53903950
6.84226669.+04 1.5406073 1.44978238 -0.00107	5' 1.20422593 2.52907877
7.32377825,+04 1.5407041 1.45010746 -0.00066	4' 1.20436132 2.52136519
7.80518191,+04 1.5407083 1.45031038 +0.00041	4' 1.20444506 2.51711911
8.29651824,+04 1.5407108 1.45043297 -0.00025	4' 1.20449682 2.51453208
8.76781395,+04 1.5407124 1.45051047 -0.00016	3' 1.2 ₀ 452883 2.51293325
9.24703392,+04 1.5407134 1.45055826 -0.00010	3' 1.2454861 2.51194515
9.73033804 +01 1.5407140 1.45058808 -0.00006	3' 1.2 ₀ 456 ₀ 84 2.5113344)
1.02115822,+05 1.5/07144 1.45060605 -0.00004	3' 1.2 ₀ 456839 2.51 ₀ 957 ₀ 8

 OMEGA
 300000000
 KAPP4
 0.0010
 DELTA
 0.001000
 VECTORL ENGTH
 1.60

 ALPHA
 -13.56511
 DETA
 -73.71853
 GAMMA
 -87.28364
 -87.28364

 REFLECTIONFACTUR 0
 1.5959427
 TRANSITFACTOR 1.2045800
 2.5103445

HEIGTH	THETA	E KELLER	ZETA		DISTORTION FO				
-7.99999999	h+03 1.527	71629 1.000	00000 -0.0	2000	3* 1.0000		52007	0	0
-93o2.o ⁶ 7	1.5271635	1.00001272	-0.00009	3'	1.00001197	0-001 04 503	0		0
\$661.193	1.5271646	1.00003714	-0.0001 ⁹	3,	1.00002406	0.00210004	0		0
-7966-297	1.5271666	1.00009412	-0.00037	4'	1.00004834	0.00421968	0		0
7207.142	1.5271709	1.00019211	-0.00074	4,	1.00009711	0.00947781	0		0
-6510.657	1.5271794	1.00037 ^P 05	-0.00149	5*	1.00019503	0.01702893	0		0
-5°13.007	1.5271965	1.00077034	-0.00299	5°	1.00039142	0.03418727	0		0
-5115.631	1.5272368	1.00155719	-0.00600	6'	1.00078458	000 <i>6</i> 57882	0		0
4418.803	1.5272988	1.00312467	~0. 01205	6,	1.00156362	0.13730199	0		0
-3723.062	1.5274331	1.00623304	-0.02416	8,	1.00312023	o. 27 389827	0		0
3029.468	1.5276932	1.01230674	-0.01834	9*	1.00614525	0.51246618	0		0
-2340-032	1.5291795	1.o23 ⁹ 6117	-0.09632	13°	1.01187584	1.05975172	0		0
1653, 369	1.5290329	1.04478995	-0.19045	. 2o'	1.022173 98	2.01920097	0		0
-290.319	1.5303001	1.07962646	-0. 37145	31 '	1.03908909	3, 6897 2835	0		0
-313,866	1.532200?	1.13057140	-0.70902	8o'	1.06333954	0. 25383a11	0		0
273,507	1.5342357	1.19350992	-0.76571	205'	1.08572172	5, 11311366			
859.347	1.536120	1.25839277	-0.42386	55 '	1.12187760	1.87025034			
1413.051	1.5376217	1.01535254	-0. 24 340	3₀'	1. 147 o 1326	6. o 36 6 o 9 2 5			
1943,747	1.5397.15	1.35961566	-o. 14317	21 '	1.16616393	4.69661252			
2457.175	1.5394312	1.39124891	-ი. იმ568	16'	1.179653 ₀ 4	3.86192783			
2958,936	1.5397664	1.41265751	-0.051/7	12°	1.18870344	3, 34 521619			
3453.096	1.5102095	1.42665815	-0.03165	9'	1.19458112	3. o 2 599152			
3942 .4 68	1.5/10/4004	1.43561796	-0.01720	9,	1.19832777	2.82836783			
4429.668	1.5405197	1.44127664	-o.o1193	6*	1.200 <i>6</i> 3790	2,70713007			
4913.020	1.54o594o	1.44482252	-0.00735	6'	1. 20216380	2,63193393			
5396.184	1.5106401	1.44703212	-n.no153	6'	1.2 ₀ 3 ₀ 8261	2.58547820			
5º78.610	1.5406697	1.448403%	-0.002 ¹⁰ 0	6'	1.20365301	2 . 55 6 77445			
636a.58a	1.5406864	1.44925475	-0.00173	5'	1. 20400651	2 ,53903759			
6942.257	1.5406973	1.44978238	-0.00107	5'	1 . 2 04 22535	2 .52%o7 686			
7323.77	1.5107041	1.45010746	~0.00 066	4,	1.20436075	2,52136328			
7805.182	1.5407083	1.45031033	-0.00011	4'	1 . 2 0444443	2.51711720			
8286.518	1.54n71o8	1.45643287	-0.00025	4,	1.20449625	2,51453017			
8767.814	1.5407124	1.45051047	-0.00016	3,	1.20452826	2,51293135			
9249.004	1.5407131	1.45055826	-0.00010	3'	1.20454803	2,51194324			
9730.338	1.5107140	1.45058808	-0.00006	3'	1.20456026	2, 51133258			
1.0211582	2.+01 1.54		60605 -0.	00004	3' (1.204	56782 2.51o	95517		
	-								

0

0

 OHEGA
 3.000000000,+09
 KAPPA
 0.0100
 DBLTA
 0.001000
 VECTORL DIGTH
 1.60

 A.PHA
 -13.56011
 BETA
 -73.71853
 GARMA
 -87.28364
 -87.28364

 REFLECTIONFACTOR 0
 1.5959427
 TRANSITFACTOR 1.2045800
 2.5103445

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	INCTION	
-1000.000	1.5271629	1.00000000	-0.00005	3*	1.00000596	0.00052007	0
-930.209	1.5271635	1.00001272	-0.00009	3'	1.00001197	0.00104508	0
-860-418	1.5271646	1.00003714	-0.00018	3'	1.00002406	0.00210004	0
-790.630	1.5271666	1.00008412	-0.00037	4,	1.00004834	0.00421968	0
-720.8 4 4	1.5271?09	1.00018211	-0.00074	4'	1.00009711	0.00847781	0
-651.066	1.5271794	1.00037905	-0.00149	5'	1.00019503	0.01702893	0
-581.361	1.5271965	1.00077034	-0.00299	5'	1.00039142	0.03413928	0
-511.563	1.5272308	1.00155719	-0.00600	6'	1.00078458	0.06857882	0
-441.33_{0}	1.5272988	1.00312467	-0.01205	6,	1.00156862	0.13730499	0
-372,306	1.5274331	1.00623304	-o.o2416	8,	1.00312023	o. 27 3A9827	0
-302.947	1.5276932	1.01230674	-0.04 834	9'	1.00614525	0.54246648	0
-234.003	1.5281795	1.02386117	-0.09632	13'	1.o118758 5	1 .0597 5173	0
-165.837	1.5290329	1.04478995	-0.19045	2o'	1.02217397	2.019280 99	0
-99-035	1.5303801	1.07962646	-0.37145	31 '	1.03908910	3,68972839	0
-34.387	1.5322009	1.13057140	-0.70902	80°	1.06333781	0-05383300	0
27.351	1.5312357	1.19350992	-0.76071	205'	1.09709971	5. 1o574557	
85.835	1.5361204	1.2583)277	-0. 42386	55 '	1.121888 ₀ 5	1.97o25o 83	
141.305	1.5376217	1.31535254	-0.24350	30'	1.147o1322	6.03660917	
194.375	1.5387015	1.35961566	-0.14317	21'	1.16616382	4.69661247	
345.718	1.5394312	1.39124891	-₀.₀8 563	16'	1.17965864	3.86192781	
295.894	1.5399061	1.41265751	-0.05187	12'	1.1837 ₀ 344	3. 34 521o16	
345.310	1.5102095	1.42665815	-0.03165	9,	1.1945 ⁸ 112	3.02599151	
394.241	1.5404001	1.43561796	-0.019 4 0	9'	1.19832777	2 . 82886787	
442.867	1.5405197	1.44127664	-o.o1193	6'	1.200 68789	2,70713007	
491.302.	1.5403940	1.44492252	-0.00735	6'	1. 202163 ⁹ 0	2.63193393	
539.618	1.5406401	1.44703212	-0.00 153	6'	1.20308261	2,58547820	
587.861	1.5406687	1.4484 o38o	-0.002Co	6,	1.20365301	2.55677445	
636 .6 58	1.5466364	1.44925195	-0.00173	5 °	1.20400651	2.539o37 59	
694.227	1.5406973	1.44978238	-0.00107	5'	1.20422535	2 .528₀7<i>6</i>8 6	
732.378	1.5407041	1.45010746	-0 .000 66	4'	1.20435075	2 .52 13 ₀ 328	
780.518	1.5407083	1.45031033	-0.00041	4,	1.20414448	2.5171172o	
828,652	1.5407108	1.45043287	-0.00025	4'	1.20449625	2.51453617	
876.781	1.5467124	1.45051047	-0.00016	3'	1 . 2 04 5 2 5 26	2,51293135	
924.968	1.5407134	1.45055826	-0. 00 010	3'	1.20454803	2.51194324	
973.034	1.5407140	1.45058808	-0 .00 006	3'	1.20156026	2.51133258	
1021.158	1.5407144	1.45060605	-0.00004	3'	1.20456782	2.51o95517	

 CMECA
 3.000000000+10
 KAPPA
 0.1000
 DELTA
 0.001000
 VECTORLENGTH
 1.60

 ALPHA
 -13,56511
 BETA
 -73,71953
 GAMMA
 -87,28364

 REFLECTIONFACTOR 0
 1.5959427
 TRANSITFACTOR 1.2045800
 2.5103445

HEIGTH	THETA	E KELLER	ZETA		DISTORTION F	UN CT I ON
-100.000	1.5271629	1.00000000	-0.00005	3'	1.00000596	0.00052007
-93.021	1.5271635	1.00001272	-0.0000)	3'	1.00001197	0.00104508
-86. 642	1.5271/46	1.00003714	-0.00018	3'	1.00002406	0.00210004
-79.063	1.5271666	1.00008412	-0.00037	4'	1.00001834	0.00421968
-72.084	1.5271709	1.00018211	-0.00074	4'	1.00009711	0.00847781
-65. 107	1.5271794	1.00037305	-0.00149	5'	1.00019503	0.017o2893
-58 . 13o	1.5271965	1.00077034	-0.00299	5'	1.0003)142	0.03418928
-51.156	1.5272308	1.00155719	-0.00600	6'	1.00078458	0.06857882
-44.189	1.5272983	1.00312467	-0. 01205	6°	1.00156861	0.13730500
-37.231	1.5274331	1.00623304	-0.02416	8,	1.00312023	o. 27 389828
-30.295	1.5276932	1.01230674	-0.04834	9,	1.00614525	o. 54 24 665o
-23 .40 0	1.5281795	1.02386117	-0.09632	13'	1.01187584	1.05975176
-16. 584	1.52%329	1.04473995	-o.19 04 5	2o '	1.02217398	2.01928107
-9.90 3	1.53o38o1	1.07962646	-0.37145	31 *	1.03908905	3, 6897 2850
-3.439	1.5322009	1.13o5714o	-0.70702	8o°	1.06331058	0.05383086
2.735	1.5342357	1.19350992	-0.760?1	205'	1.09903726	5.11731622
8.583	1.5361264	1.25839277	-0.42386	55'	1.12188805	1.87o25o4o
14.131	1.5376217	1.31535254	-o. 2434o	30 '	1.14701327	6,03660308
19.437	1.5397015	1.35961566	-o. 14317	21 '	1.16616382	4.69661241
24.572	1.5394312	1.39124891	-0.08568	16"	1.17965804	3,86192776
29.589	1.5399064	1.41265751	-0.05187	12'	1.18870344	3.34521013
34.531	1.5402095	1 .426 65815	-0.03165	9'	1.19458112	3.o25?9149
39.424	1.5404004	1.43561796	-0.01740	9'	1.19832776	2.82686786
	6 8796 051 97 7c		-o.o1193			
7 49.130	1.5405940	1.44482252	-0.00735			
-88- 1.20		53193392				
53,962	1.54o64o1	1.447o3212	-0.00453	6?	1.20308261	2,58547820
5°.786	1.5406637	1.44°40360	-ი.იი28o	6'	1.20365301	2.55677445
63,606	1.5406364	1.44925495	-0.00173	5'	1.20400651	2,539o3759
<i>6</i> 8,423	1.5406973	1.44978238	-o.oolo7	5 '	1. 20422535	2,528o7686
73,238	1.5407041	1 .4 5010746	-0.00066	4'	1.20436075	2,5213 ₀ 328
78.052	1.5407083	1.45031038	-0.00041	4'	1.2044448	2.51711720
82.865	1.5407103	1.45043287	-0.00025	4'	1.20449625	2,51453617
87.678	1.5407124	1.45051047	~0.0001 6	3'	1 . 20452 826	2,51293135
92.491	1.5407134	1.45055826	-0.00010	3'	1.20454803	2,51194324
97.303	1.5407140	1.450588 ₀ 8	-0-0000 6	3'	1.20456026	2,51133258
102,116	1.5407144	1.45060605	-0.00004	3'	1.20456782	2,51095517

 OMEGA
 3.00000000%+11
 KAPPA
 1.0000
 DELTA
 0.001000
 VECTORLENGTH
 1.60

 ALPHA
 -13.56511
 BETA
 -73.71953
 GANKA
 -87.28364
 -87.28364

 REFLECTIONFACTOR 0
 1.5959437
 TRANSITFACTOR 1.2045806
 2.5103464

HEISTH	THETA	E MELLED	ZETA		DISTORTION *	UMETION	
		E KELLER		23	DISTORTION F		
-10-000	1.5271629	1.00000000	-0.00005	3,	1.00000596	0.00052007	0
-9.302	1.5271635	1.000012/2	-0.00009	3,	1.00001197	0.00104508	0
-8.664	1.5271616	1.00003714	-0.00018	3'	1.00002406	0.00210004	0
-7-906	1.5271666	1.00008412	-0.00037	4'	1.00004834	0.00421963	0
-7.208	1.5271769	1.00018211	-0.00074	4'	1.00009711	0.00847781	0
-6.511	1.5271794	1.00037305	-0.00149	5'	1.00019303	0.01702993	0
-5.813	1.5271965	1.0007703	-0.00299	5'	1.00039142	0.03418927	0
-5.116	1.5272362	1.00155719	-0.00600	6'	1.00078458	0.06857882	0
4.419	1.5272988	1.00312167	-0.01205	6'	1.00156861	0.13730499	0
-3.723	1.5274331	1.0062330	-0.02116	8,	1. on 312o 23	0.27389827	0
-3 ₋₀ 20	1.5276932	1.01235674	-0.01934	9'	1.00614525	0.54216650	0
-2.340	1.5281795	1.02386117	-0.0?632	13'	1.01187584	1.05975176	0
-1.650	1.5296329	1.044789995	-0.19045	20'	1.022173)8	2.01923107	0
-0.970	1.5303801	1.07762646	-0.37145	31'	1.03%03903	3,08972849	0
-0.314	1.5322009	1.13057140	-0.70902	, 8 ₀ ,	1.06334047	0.05382548	0
0.274	1.5342357	1.19350992	-0.76071	2051	1.09868756	5.12556168	
0.858	1.5361204	1.25839277	-0.42336	55'	1.12188769	1.87624993	
1.413	1.5376217	1.31535254	-o. 2431 ₀	30'	1.14701370	6.03661101	
1.914	1.5387015	1.35961566	-0.14317	21'	1.16616438	4.69664431	
2.457	1.5394312	1.39124891	-o. o8568	16'	1.17965360	3,86192966	
2.759	1.5397064	1.41265751	-0.05187	12'	1.18870401	3, 34521263	
3,453	1.5102095	1.42665815	-0.03165	9'	1.19458179	3.02599310	
3.942	1.5404001	1.43561796	-0.01910	9,	1,19832834	2,826 8 <i>6</i> 976	
4.427	1.5405197	1.44127664	-0.01193	6'	1.20068847	2.707 13196	
4.913	1.5405940	1.4448.2252	-o.oo735	6°	1.26216439	2. 6317 3583	
5.396	1.5406401	1.14703212	-0 .001 53	+ 61	1.20308318	2,58548611	
5.879	1.5406687	1.4484o38o	-o. oo 2%	6'	1,20365359	2,55677636	
6.361	1.5106364	1.44925495	-0.00173	5'	1.20400708	2. 539o395o	
6,912	1.5466973	1.41979238	-0.00107	5'	1.2422593	2,52807876	
7.324	1.5107041	1.45010746	-0.00066	4'	1.20436132	2,52136519	
7.805	1.54o7o ⁸ 3	1.45031038	-0.00011	4'	1.20444506	2,51711911	
8.27	1.5407108	1.45043297	-o• oo o 25	4'	1.20449682	2,51453268	
8.768	1.5407121	1.45051047	-0.00016	3'	1.20452993	2,51293325	
9.249	1.5407131	1.45055826	-0.00010	3'	1.20454861	2,51194515	
9.730	1.5107140	1.45058908	-0.00006	3'	1.20456084	2,51133449	
10.212	1.5407144	1.45060605	-0.00004	3'	1.20156839	2,51095708	

•	0.498 76	200.49876	200-99751	•	2,634565267	1.00249027	0-001239777
o. 1745329	o. 50619	197.43742	197.94391	•	2,706068695	1.00256868	e.col2936
o. 3 19 0658	0.53094	188.34494	188,87588	•	2.930000961	1.00282301	0.001491547
0-5237988	0.57639	173,49257	174.0696	•	3, 337729156	1.00332621	0-001911163
0.6981317	0.65223	153, 32,83	153,973-5	•	3.994522750	1.00126214	2-002773285
0-8726646	0.77869	128.42006	129.19875	•	5.029771507	1.00608284	0-001718781
1.0471976	1-00509	99 .49 374	loo. 49882	•	0.434661269	1.01015143	e-olo154724
1.13 1161 0	1.19401	83,75130	84.94531	•	1.703584075	1.01436052	0.017021179
1.2217305	1.48680	67.25851	68.74531	•	3.459949374	1.02235525	0.032867432
1.3089969	1.99908	50-02307	52,o2215	•	6.030943172	1.04079435	0-079906464
1.3962634	3.14922	31.75368	34.90310	•	3.930568039	1.10462183	o-31270944o
TOTALREFL	ECT10N						
1.4711299	10-00000	10.00000	20.00000	1.000000000	4.188952923	11.20997906	o. 52368o21o

ONEGA	3.0000	h +07	KAPPA	0.001	DELTA	o . 10000		
THET	A	ALPHA	BETA	GAMMA		REFLECTIONFACTOR	TRANSITI	ACTOR
ø		4.88088	2 ₀ 4.88 ₀ 88	209.76177	•	3,980589686	1.02411467	o. 116294861
0-1745	329	4.95995	201.61508	206.57503	3 0	4.41995727	1.02490999	o. 122p 3598o
o-349o	658	5.21103	191.90061	197.1116		5.766875086	1.02753286	0.141525269
o. 5235	988	5.68257	175.97657	181,65915		1.997357466	1.03263026	o. 183521271
0.6981	317	6.48500	154.20208	160.68707	•	5.669017315	1.04297684	o. 27 28o8o75
0.8726	646	7.87675	126,95591	134.83266		5.06930178	1.06409354	0.488992691
1.0471	976	10.60736	94. 27418	104,88153		1.184393466	1.11962436	1,196004868
1.1344	640	13, 26529	75.38471	88.65000	•	1.019963503	1.19460710	2, 316395493
1.2217	305	18,93689	52.80698	71.74387	•	2.712900579	1.45540428	0.666828292
TOTA	LREFLEC	TION						
1.2645	255	31,62278	31.62278	63, 24555	1.0	2000000 1.291o61997	19.93450010	5. 357919335

OMEGA 3.0000m+07 KAPPA e-olo DELTA e-ocol

ONEGA	3,0000,0	•7	KAPPA	•,•1 DE	LTA e,eo	001		
THET	TA A	LPHA	BETA	GAMMA	REFLECTION	ONFACTOR	TRANSITE	ACTOR
•	•	.00005	20,00005	20,00010	•	3,141954369	1,00000262	6,000000236
0,1745		.00005	19,69620	19,69625	•	3,141954422	1,00000250	•
0,349		.00005	18,79389	18,79395	•	3,141966343	1,00000286	6,283185-65
0.523		.00006	17,32054		•	3,141966873	1,00000334	6,283185065
a, 5981	-	.00007	15,32090	15,32+97	•	3,142023981	1,0000017	6, 283185065
0,8726	. •	deses,	12,85574	12,85582	•	3,142-79949	1,00000796	0.000000119
1,0471		.00010	9,99995	10,00005	0,00000000	3,142168820	1,00001007	•
1,134	išla a	.00012	8,45229	8,45241	0,000000000	3,142234862	1,00001401	0.00000119
1,2217	305 0	.00015	6,84e29	6,84o44	0,000000000	3,142324150	1,00002140	6,263185273
1,300	7969	,00019	5, 17621	5, 17641	0,00000000	3,142452165	1,00003731	•
1,3962	263 4 'a	,00029	3,47269	3,47298	0,000000033	3,142646119	1,00008291	0,000000015
1,4839 TOT/	5299 a NLREFLECTI	, eeo 57 011	1,74255	1,74312	0,000015118	3,142925516	1,00032935	0,00000171
1,5670	i3 i 3 a	,03162	0,03162	0,06325	1,00000000	3,141744293	2,00326501	0,000075825
				•				
OMEGA	3,0000,	•07	KAPPA	e,ol Di	LTA e,co	010		
THE	TA A	U,PHA	BETA	GAMMA	REFLECTI	ONFACTOR	TRANSITE	ACTOR
•	•	,00050	20,00050	20,00100	•	3,145166159	1,00002503	0,000000236
•,174	5329 6	,00051	19,69663	19,69714	•	3,145205021	1,00002551	6,283185065
0,349	o658 e	,00053	18,79426	18,79479	•	3,145326760	1,00002825	6,283185065
0,523		,00056	17,32080	17,32137	•	3,145552635	1,00003326	•
0,698	1317	,00065	15,32100	15,32165	•	3,145909727	1,00004256	0,000000236
0,872	6646 a	,00076	12,85562	12,856 l o	•	3,146464467	1,00006056	•,000000119
1,047	1976	,00100	9,99950	10,00050	0,00000000	3,147354394	1,00009996	0,000000119
1,134	lblo e	,00118	8,45160	8,45279	•, •00000000	3,148012221	1,00013996	e, escocoo 60
1,221		, œ146	6,83928	6,84075	0,00000000	3,148948675	1,00021368	e,000000326
1,300		,00193		5,17664	0,000000001	3,150189623	1,00037352	0,000000715
1,396		,00266	• •	3,47314	0,000000333	3,152132697	1,00083072	•,000002369
1,483		,00576	1,73745	1,74320	0,000154088	3,1 51944 651	1,00331811	0,000017911
	ALREFLECTI		. 1	a 2	1	2 1/6220282	9 -2242141	0,002343550
1,560	(Amo	, 10000	0, 10000	0, 20000	1,00000000	3,1402(3(32	2,03312141	0,002313770
OMEGA	3,0000	• • 7	KAPPA	e,e1 D	ELTA 0,00	100		•
tur	74		8574		ACC (61)	04510700	TAIMELT	-10708
THE	•	NLPHA	BETA 20 auton	6AMA 20. 61 6 00		ONFACTOR	TRANSITE 1.00024989	
- 174),00500 		_ ,	-	3,177318811	1,00021707	0,000001192
e, 174 e, 349	- <u>-</u>	o, 00508 o, 00532		19,7 050 0 18,80325		3,177714825 3,178951263	1,00025/64	o, coecce/54 o, coecce1431
0,523		9.00577	•	17,32917		3, 181189299	1,00033336	0,000002146
e, 598		9,000)// 9,00653	17,32339 15,32202	17,32917	•	3, 184760213	1,00042602	0,000002742
-		هند						- 4666
0,572 1, 04 7		0,00776 0,01001		12,06218	0,00000000	3,196318266 3,199233472	1,00060529	e,eecco4505 e,eecc9635
1,134	-1. 1	o, o1 184		8,45659	0,00000000	3,20583564o	1,00140324	0,000016510
1,221		o, e1464	• • • • • •	6,84382		3,214842856	1,00214646	e, cooe31352
1,300		o, e1936		5,17897	e, ccccccc11	3,227759555	1,00376347	0,000072300
1,396		o, o29o2		3,47470		3,247535355	1,00845872	0,000241064
1,483		,07936		1,74399	0,001886814	3,277449504	1,03587764	0,001956820
	ALREFLECT					-,-,,,,	-,,-,,	
		,31623	0,31623	0,63246	1,00000000	3,263662499	2,26839909	0,060734928

OMEGA	3,0000	·•7	КАРРА	e,o1 DE	LTA e,e1	•••		
THET	١	ALPHA	BETA	GAMMA REFLECTI		ONFACTOR	TRANSITE	ACTOR
•		0,04988	20,04988	20,09975	•	3,498292565	1,00249076	0,000123978
0,1745	329	0,05065	19,74374	19,79439	•	3,502266049	1,00256843	0,000129700
0,3490	5 58	0,05309	18,83449	18,88779	•	3,514676213	1,00282292	0,000149727
0,5237	968	0,05764	17,34926	17,40690	•	3,53715694e	1,00332789	0,000191450
0,6981	317	0,06522	15,33208	15,39731	•	3,57309854o	1,00126316	0,000277281
0,8726	545	0,07787	12,84261	12,91988	0,00000000	3,629217863	1,00608212	e, ecel71711
1,0471	976	0,10051	9,94937	10,04988	0,00000000	3,719633612	1,41015365	o, colo13637
1,1344	6 4 0	0,11960	8,37513	8,49453	0,010000000	3,767572056	1,01439967	0,001698196
1,2217	305	0,14868	6,72585	6,87453	e, coccccool	3,881185442	1,42235561	0,003274739
1,3089	989	0,19991	5,00231	5, 20221	0,000000201	4,018932208	1,01079460	0,007937357
1,3962	634	0,31492	3,17539	3,49031	0,000107863	4,244092375	1,10462245	0,030751150
TOTAL	LREFLEC	TION	•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•
1,4711	299	1,00000	1,00000	2,00000	1,00000000	4,667446223	3,55153244	o,7329268o1
OMEGA	3,0000	5+0 7	KAPPA	e, o1 D	ELTA 0,10	B000		
THET	A	ALPHA	BETÁ	GAMMA	REFLECT	ONFACTOR	TRANSITI	ACTOR
•		0,48809	20,48809	20,97618	•	e, 2982ee3e9	1,42611362	0,011626096
0,1745	329	49999		20,65750	•	o, 335891426	1,42491121	0,012198448
0,3490	-	0,52110	•	19,71116	•	o, 453375636	1,02753384	0,014145851
0,5235	-	o. 56826		18, 16991	•	0,665235579	1.03283026	0.018342733
0.6981		o. 6485a		16,06871	•	1,001053670	1.04297808	0.027251019
0,8726	-	0.78768		13,48327	6, 100000000	1,517004669	1,06409315	0,048851371
1,0471		1.06074		10,48815	0,00000000	2,323969364	1,11962550	0,119377944
1,1344		1.32653		8,86500	0,000000003	2,902978778	1,19450867	0,233937711
1,2217		1.89369		7.17439	0.000023924	3,666269273	1,45540623	0,689747125
	LRÉFLEC		2,010	,,=,=,	,		•	
1,2645		3,16226	3,16228	6,32656	1,000000000	4,1347e3ole	6,36383876	3,636147861

OMEGA	3,0000 <u>6</u> +07	KAPPA	•,1• DE	LTA e,ec	001		
THET	A ALPHA	BETA	EARMA	REFLECTI	DNFACTOR	TRANSITE	ACTOR
•	0,0000	2,00000	2,00001	0,000000079	3,141607993	1,00000252	•,••••••37
9,1745	329 0,0000	1 1,96962	1,96963	0,00000066	3,141605586		6,283185259
a, 349a	658 e, ecco	1 1,87939	1,87939	0,000000091	3,141605765	3,00000282	0,00000015
0,5235	966 0,0000	1 1,73205	1,73306	0,000000157	3,141609996	1,00000325	•
a, 6981	317 0,0000	1 1,53369	1,53210	0,000000333	3,141606261	1,00000128	5,263185286
0,8726	645 0,0000	1 1,28557	1,26558	0,000000861	3,141606390	1,00000606	•
1,0471	976 0,0000	1 1,00000	1,00000	0,000002720	3,141606010	1,00001004	6, 283185273
1,134	640 e, 0000	1 0,84523	0,84534	0,000005250	3,141605534	1,00001399	6,283185288
1,2217	305 0,0000	1 0,68403	e, iStot	0,000010877	3,1416 0 4513	1,00002144	•
1,3009	969 0,0000	2 0,51762	0,51764	0,000021836	3,141642614	1,00003731	•
1,3962	634 0,0000	3 0,34727	0,34730	e, ecce65c1	3,1416ee221	1,0000\$294	•
1,4835		6 0,17426	0,17431	0,000313437	3,141796735	1,00032931	•
	LREFLECTION						
1,5676	i 3l 3	6 0,00316	0,00632	1,00000000	3,141992868	2,00003296	0,00000076

OMEGA	3,00000+07	KAPPA	o, 10 DEI	LTA e, es	o10		
THET			GANNA	REFLECTI		TRANSITE	ACTOR
•	•,•		2,00010	0,000000587	3,141721845	1,00002500	•
0,1745			1,96971	0,000000655	3,141722366	1,00002576	0,00000022
0,3490	-		1,87948	0,000000912	3, 141723612	1,00002530	0
0,5237		• • •	1,73214	0,000001572	3,141726039	1,00003330	6,283185288
e, 6981: e, 8726			1,53217	e, 000003331	3,141728587	1,00001262	•
1,0171			1,26564	0,000000514	3,141730068	1,00010003	6,263185273
1,1344	•		1,00005 e,84528	0,000027209	3, 141726948 3, 141721569	1,00014003	0,203103213
1,2217	•		e, 684o7	0,0000002514	3,141711354	1,00021361	0.000000015
1,3009	•		0,51766	0,000248555	3,14169427e	1,00037348	0,000000030
1,3962			0,34731	0,000686149	3,141668379	1,00083050	0,000000000
1,4835			0,17432	0,003153711	3, 141633496	1.00331317	0,000000136
TOTA	LREFLECTION						
1,5607	968 e , o1	1000 0,01000	0,02000	1,000000000	3,141997457	2,00032896	0,000002403
OMEGA	3,0000,+07	KAPPA	e, 10 DE	LTA •,oo	lao		
THET	A ALPI	IA BETA	GARNA	REFLECTI	OMFACTOR	TRANSITE	ACTOR
9	0,00	005e 2,00e5o	2,00100	0,000005856	3,142684478	1,00024986	0,000000104
0,1745	329 •,•	1,97009	1,97060	0,000006543	3,142689574	1,00025766	0,000000119
0,3690	658 e, oc	oo53 1,87979	1,88032	0,000009106	3,142904356	1,00026303	0,000000112
•,5235	•		1,73292	0,000015703	3,142926991	1,00033325	0,000000183
0,6981			1,53285	0,000033296	3,142952293	1,00012601	0,000000264
•,8726			1,28622	0,000086187	3,142966986	1,00060538	0,000000132
1,0471	· ·	0100 0,99950	1,00050	0,000272596	3,142937005	1,00100145	0,000000760
1,1344	•	· · · · · · · · · · · · · · · · ·	0,84566	0,000526711	3,142682630	1,00140312	0,000001192
1,2217	-		o, 68436	0,001091549	3,14278-654	1,00214586	0,000001870
1,3009	•	0194 0,51596	0,51790	0,002505666	3,1426e9678` 3,14235e696	1,00376027	0,000003137
1,3962 1,4835		o29o o,344 57 o 594 o ,16846	•,34747 •,1744o	e,006977909 e,033645523	3, 142001569	1,00843389	0,000005759 0,000013605
	LREFLECTION	1797 1 0,10020	0,1/140	0,000047723	3, 142001709	1,03729310	0,00001300)
1,5391	I.I	3162 0,03162	e. o6325	1,000000000	3.141744203	2.00326501	0,000075825
1,7071		0,00102	•,••••	1,0000000		2,00020701	0,000,000
OMEGA	3,0000 ₉ +07	KAPPA	o, 10 DE	LTA 0,01	900		
THET	ALP	NA BETA	EAMMA	REFLECTI	ONFACTOR	TRANSITE	ACTOR
•	0,0	0499 2,00499	2,00998	0,000057614	3,154514082	1,00249070	0,000011854
0,1745		0506 1,97437	1,97944	0,000064414	3,154565960	1,00256862	0,000012435
0,3490	658 e,a	o531 1,883 4 5	1,88876	e,eese89849	3,154716820	1,00282293	0,000014208
0,5235		o576 1,73 49 3	1,74069	0,000155539	3,1549483 61	1,00332761	0,000017967
0,6981		o652 1,53321	1,53973	0,000331715	3,155210607	1,00126302	0,000025552
0,872		0779 1 ,2842 0	1,29199	0,000566151	3,155372880	1,00608176	0,000041589
1,0471			1,00199	0,002770794	3,155096903	1,01014967	0,00000399
1,134		1194 0,83751	0,01915	0,005430006	3,154566273	1,01434474	0,000125774
1,2217 1,3009		1487 e,672 5 9 1999 e,50023	w, 00/47	a,01146366)	3,1535584e3 3,151853621	1,02250042	0,000192429
1,3962		3149 0,3175 4	0,749/2 a 240-2	a aliana.	3,151053621 3,149253510	1,01010096	0,000327/10
	LREFLECTION		- ,,-	~, ~~~) 77 6 6 6 6	₩,1 ₹7£7£710	4,10000270	·, ·····
1,4711			9,2000	1.00000000	3,146279752	2.43242141	0.002343550
-4-1-		•,••••	-,		~\$()()6	<i></i>	-,//
DMEGA	3, 0000 _b +67	KAPPA	•,1• DE	ELTA 0,10	1000		
THE	TA ALP	HA BETA	GAMMA	REFLECT	ONFACTOR	TRANSITE	ACTOR

e,10 DELTA

0,10000

OHEBA 3,0000,+07 KAPPA

				•			
THET	A ALP	MA BE	TA GAMKA	REFLECTI	ONFACTOR	TRANS ! TF	ACTAR
•			481 2,09762			1,-0411357	
4,1745	•		1615 2,06975		3,271562189	1.02491109	0,001167070
0,3490	. "			0,000792132	3,273339473	1,02753347	0.001-65779
0,5235				•		• • •	
• • • • • •				•	3,276173264	1,43373925	0,001727633
0,6981			1302 1,60687			1,01397253	0,002512932
0,8726			6956 i,34833		3,262618295	1,064o4798	0,001209925
1,0471			4274 1,04862		3,283427669	1,11093132	0,009160966
1,134			5385 o,8865o		3,278794948	1,1967973	0,015172208
1,2217			28 -7 •,71744	0,249086397	3,269913 128	1,40953369	o, 029 69 7053
	LREFLECTION						
1,2645	255 0, 3	11£23 a,3	1 623 6,63246	1,00000000	3,263062499	2,268399 09	e,o6e73492B
OMEGA	3,0000,+07	KAPPA	1,00 D	ELTA 0,00	ee1		
THET	IA ALI	WA SE	TA GAMMA	REFLECTI	ONFACTOR	TRANSITE	ACTOR
•			0000 0,2000		3,141792696		•
0,1749	•	•	9696 0,19696	-	3,141992689	1,00000260	-
0,3490		•	8794 • , 18794		3,141792689	1,00000285	
0,5235		•		•		1,0000331	
•	•	•	7321 0,17321	•	3,141592681		_
0,6981		•	5321 •,15321	•	3,141792681		•
0,872	•	•	2856 e,12856		3,141992689	1,00000fol	-
1,0471			0000 0,10000		3,141992667	1,00000979	•
1,134			8452 •,• 8452		3,141992667	1,00001398	•
1,2217	•		6840 0,058 4a		3,141592667	1,00002141	•
1,3-8	•		5176 •,•5176		3,141772679	1,00003733	•
1,3962	•	10000 0,0	3 173 0,031 73	0,000082757	3,141592659	1,0000B295	•
1,483	299 a,c	10001 0,0	17 4 3 •,•1 743	0,000329165	3,141792644	1,00032937	•
TOTA	LREFLECTION	l		•			
1,5676	3 1 3 0, 0	0,0	0032 0,00063	1,00000000	3,141792652	2,00000030	•
OMEGA	3,0000,10	Y KAPPA	1,00	ELTA e, a	1010		
THET		-	TA GANNA		ONFACTOR	TRANSITA	ACTOR
• • • • • • • • • • • • • • • • • • • •	7		lease e,2seal				•
0,174			9697 0,19697	-	3,141793166	1,00002576	•
0,349		•	8794 e, 18797	•	3,141793091	-,	•
•,523	•	•	7321 0,17321		3,141993061	1,00003330	
0,6981			5321 e ,1532		3,141593009	1,ecec 263	•
0,872			2856 o,12856		3,141592950	1,00006052	•
1,047			0000 0,100d		3,141792590	1,00010002	•
1,134				0,000138365	3,141792853	1,00016000	
1,2217		00001 0,0	16 839 0,068 41	0,000212150	3,141592816	1,00021379	•
1,300	996 9 e,		5175 0,05177		3,141592771	1,00037342	
1,396	2634 0,0	00003 0,0	347e o,e3473	a,coa828738	3,141992734	1,00083035	
1,483	5299		1737 0,0174	0,003311015		1,00331267	
TOT	LREFLECTIO						
1,560	7968	00100 0,0	oleo e.ee2o	1,00000000	3,141792679	2,00000326	¢
J				-,			-
	•						

ONEGA	3,0000	,• 4 7	KAPPA	1,00 08	LTA e,co	l eo		
THE	ra.	AL PNA	BETA	GANNA	REFLECTI	OMFACTOR	TRANSITE	LCTOR
•	•••	0,00005	0,20005	e,20ele	0,000234152	3,141597301	1,00024986	•
•.1745	1320	0,00005	0,19701	0, 19706	0,000261905	3,141997234	1,00025764	•
0,349		0,00005	0,18798	o, 186e3	0,000267192	3,141797elo	1,00076301	•
e, 5235	-	0,00006	0,17323	0,17329	0.000317324	3,141596712	1,00033326	•
0,696		0,00007	0,15322	0,15329	e,ceclo9945	3,141996265	1,00012798	•
0,872		0,00008	0,12854	0,12062	0,000589056	3,141595706	1,00060518	•
1.047		0,00010	0,09995	0,10005	0,000984739	3,141797028	1,00100102	•
1,136		0.00012		0, 08457	e.ee1365939	3,141994671	1,00140231	•
1,221		0,00015	0,06829	0,06844	0,002127826	3,141794291		•
1.308		0,00019		0.05179	0,003739984	3,141593688	1,00375644	•
1,396	2634	0,00029	0,03116	0,03175	0,008406248	3,141993486	1,00842280	•
1,483		0,000	· · · · · ·	0,01744	0,035219869	3,141993076	1,03523694	0,000000015
TOT	ALREFLEC	TION	•	•	-			
1,539	1848	0,00316	0,00316	0,00632	1,000000000	3,141992608	2,00003296	e,ecccese76
ONEGA	3,0000	•• 7	KAPPA	1,00 DE	LTA •,•1	•••		
THE	TĄ	ALPHA	BETA	GARRA	REFLECTI	ONFACTOR	TRANSITE	ACTOR
•		0,00050	0,20050	0,20100	0,002330393	3,141639352	1,00368794	0,000000112
0,174	5329	0,00051	0,19744	0,19794	e,cc2le7921	3,141636696	1,00256572	0,000000112
0,359	•676	0,00053	0,18834	0,18006	0,002660968	3,141636714	1,00261941	0,00000127
4,523	9988	0,00058	0,17349	0,17407	0,003163332	3,1(1(33(2)	1,00332263	0,000000123
0,698	1317	0,00065		0,15397	e, eele93699	3,141628936	1,00125470	0,00000160
0,872	6646	0,00078	0,12842	0,12920	0,005902234	3,141623273	1,00606459	0,00000186
1,047	1976	e,colei	•, •9949	0,10050	0,009939406	3,141616605	1,01010371	0,000000236
1,134	Aide	0,00119	a,a6375	0,08495	0,014093490	3,141612940	1,01425897	0,000000267
1,221	7305	0,00149	0,06726	0,05275	0,021942198	3,141609110	1,02210942	0,000000354
1,308		0,00200	0,05002	0,05202	0,039799356	3,141605131	1,03996992	o, escecol86
1,396		0,00315	0,03175	0,03190	0,099013298	3,141601034	1,09919392	0,000000756
	ALREFLEC							
1,471	1299	o, el ses	0,01000	0,42000	1,00000000	3,141997457	2,00032896	o, eecca2lo3
ONEGA	3,0000	~+ 07	KAPPA	1, 00 Di	ELTA •,10)000		
THE	.74	ALPHA	BETA	GAMMA	792 (330	IONFACTOR	TRANSITI	10700
		0,00400		e, 20975	0,022255149	3_142e78966		•,occe1c934
•	Issaa	0,00496		•	0,0222577147			0,000010934
0,176		0,00521		•, 26658 •, 19711	0,023578228	3,142072111 3,142051792	1,02719761	e, eccol11776
0,349				•,19/11 •,18166	e, e2)) /0225 e, e3e7e5175		1,63234334	
0,523		e, co56		•	e,ese(e)1/)		1,01232324	
0,696	. •			e, 16069 e, 13483	e, of old 1453		1,06214829	
e,872 1.067		0,00750 0,01061	•	e,10 68	e,000131433 e,110908332		1,11271839	
1,13	• •	0,0132	• • •	0,0005	0,174384173		1,17630464	
1,13		0,0132		e, e7174	0,1/43051/3			0.000015285
101	TALREFLEC	CTION	• •	• •-•	• • • • • •			
1,26	7777	0,0316	2 0,03162	0,06325	1,00000000	3,141744293	Z, 00320501	0,000075825

ASSMO	3,0000	>+47	KAPPA	10,00	ELTA e, or	rest		
THE	TA .	ALPHA	BETA	BANKA	REFLECT	ONFACTOR	TRANSITE	
•		0,00000	0.0200	0,0200	0,000003498	3,141992644	1,00000368	
0.174	1220	0,00000	0.01970	•			1,00000256	•
0,349		0.00000	0.01879	0,0187	0,000003831	3,141792652	1,00000282	•
0,523		0,00000		•	0,000003332	3,141392644	1,00000334	•
0,696		0,00000			2 0,000001278	3,141792652	1,00000136	•
0,872		0.00000		• •	0,000005019		1,00000605	•
1.047		0,00000	•		0,000009997	3,141792652	1,00000998	•
1.134		0,00000		0,0084	0,000013995	3,141792679	1,00001401	•
1,221		0,00000		0,0068	L e,ecce21372	3,141992652	1,00002138	•
1,300		0,00000	·		0,000037321	3,141592652	1,00003731	•
1,396		0,00000			7 0,000082920	3,141792679	1,00008292	•
1,483		e, cecc e 7190	0,00174	-,	0,000329327	•	1,00032932	
1,567	6343	0,00003	0,00003	0,4000	6 1,000000000	3,141792672	2,00000000	•

OMEGA

106								
OMEGA	3,0000,	+67	KAPPA	10,00 DE	LTA e.a	2001		
		•		-	•			
THET	A	ALPHA	BETA	GANNA	REFLECT	ONFACTOR .	TRANSITE	ACTOR
•		0,00000	0,02000	0,02000	4,000002198	3,141992644	1,00000348	•
0,1745	329	0,00000	o, ei97e	0,01970	0,000002577	3,141992653	1,00000256	•
0,3190	698	4,00000	0,01879	0,01879	0,000002831	3,141592652	1,00000282	•
0,5239		0,00000	•	0,01732	0,000003332	3, 141 592644	1,00000334	•
0,6981	-			0.01532	e, eccool298	3,141792652	1,00000426	•
0,8726		0,61000		0,01266	0,00006649	3,141992644	1,0000605	•
1,0471		0,00000	-	0,01000	0,000009997	3,141992652	1,00000998	•
1,1344		9,00000		0,00845	0.000013995	3,141592659	1,00001401	0
1,2217		0,00000		0,00684	0,000021372	3, 141992652	1,00002136	•
1,3009	-	0,00000	0,00518	0,00518	0,000037321	3,141992652	1.00003731	•
1,3962		0,00000		0,00347	0,000082920	3,141992699	1,00008292	•
1,4835		0,00000		0,00174	0.000329327	3,141992644	1,00032932	•
• -	LREFLEC	•	• •-	••			•	
1,5676		0,00003	0,00003	0,00006	1.000000000	3,141792652	2,00000000	• •
-,,,,,,		-,	-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	-,,-	-,	•
OMEGA	3,0000	•	KAPPA	10,00 DE	•	so10		
THET	A	ALPHA	BETA	6anna	REFLECT	IONFACTOR	TRANSITA	FACTOR
•		0,00000	•, 62000	•, 02000	o,00002\$983	3,141992644	1,00002197	•
•,1745	329	0,00000	•,0197•		0,000025760	3,141592644	1,00002575	•
0,3490	1658	0,00000	•,01879	0,01879	0,000028293	3,141592644	1,00002829	•
0,5235	1988	0,00000	0,01732	0,01732	0,000033315		1,00003338	0
0,6981	317	0,00000	•, e1532	0,01532	e, cocc42585	3,141592644	1,00004259	•
0,872	646	0,00000	0,01286	0,01286	0,000060492	3,141592659	1,00006048	٥
1,0471	1976	0,00000	•,01000	0,01000	0,000099995	3,111592637	1,00010001	•
1,134	l6 lo	0,00000			0,000139981	3,141592652	1,00013999	•
1,2217	7305	0,00000	•,eo6M	e,00684	0,000213771	3,141592644	1,00021378	•
1,3009	1969	0,00000	0,00517	0,00518	0,000373432		1,00037346	•
1,3962	2634	0,00000	•,00347	0,00347	o,coo83o364		1,00083038	•
1,483		0,00001	0,00174	0,00174	0,003312642	3,141592644	1,00331264	•
TOTA	MREFLEC	TION						
1,5607	7968	0,0001	•,00010	•, 00020	1,000000000	3,141592652	2,00000000	•
OMEGA The:	3,0000	1 3+07 ALPNA	KAPPA BETA	10,00 Di		oloo IONFACTOR	TRANS I T	FACTOR
		0,00000					1,00024985	
•,174	5329	0,0000			0,00025748	3,141592652	1,00025765	
•,349		0,00001			0,000282836		1,00028303	
0,523		0,0000					1,00033320	
0,698		0,0000				3,141992644	1,00012592	
0,872		0,0000		0,01286			1,0060523	
1,047		0,0000		0,01000		3,141792652	1,00100099	
1,134		0,0000		0,00846	0,001402009	3,141792679	1,00140224	
1,221		0,0000		0,00684	0,00214402		1,00214419	
1,300	9969	0,0000	2 0,0051	0,00518			1,00375636	
1,3%		0,0000			0,008422511		1,00842270	
1.463		0,0000					1,03523628	•
	ALREFLEC						.,	-
1,539		0,0003	2 0,00033	2 •,•0063	1,00000000	3,141592652	2,0000036	•

OMEGA	3,0000	>+ 07	KAPPA	10,00 PE	LTA e,e1	000		
THE	TA	ALPHA	BETA	GAMMA	REFLECTI	OMFACTOR	TRANS I TF	ACTOR
•	•••	0,00005	0,02005	0.02010	0.002489933	3,141992704	1,00368760	•
0.174	A329	0,00005		•	0,002563673	3,141792689	1,00256531	•
0,349		0,0000)	• ===		0.002817336	3,141792704	1.00261902	•
0,523		0,00006		•	0.003320650	3,141592689	1,00332227	•
0, 698		0,00007			0,004252358	3,141792689	1,00425397	•
•,872		0,0000			0.006062007	3,141792674	1,00606365	•
1,047		0,00010		•	0.010100361	3,141992674	1,01010207	•
1.134		0,00012			0.014254988	3,141992674	1,01425668	•
1,221		0,00015			0.022104114	3,141792667	1,02210578	•
1,300		0,00020			0,039961472	3,141992679	1,03996323	•
1.396		0,00031			0,099174321	3,141592667	1.09917621	•
	ALREFLE	CTION	-,	-,,		.,		
1,471		0,00100	0,00100	0,00200	1,00000000	3,141592659	2,00000328	•
ONCGA	•		KAPPA	40.00	ELTA o.10			
THE	3,000	ALPHA	BETA	10,00 BI		DOGG DOMFACTOR	TRANSITI	ACTOD
	LIA		• • • • • • • • • • • • • • • • • • • •		e.e238e66e3	3.141593151		0,000000015
0	lenen.	0,00019		•	0,021581633		1.02460149	•••••••••••••••••••••••••••••••••••••••
0,174		0,00050	•	•	0,027,01033		1,02715530	
0,34		0,00052			0,027138415	3,141593121	1,03229221	•
0,52		0,00057			0,032275227	3,141993084	1,03229221	
0,69		0,0006		•	0,012038770	3,141593046		0,00000019
	26646	0,00079			e, o620268o8	3,141592972	1,06201432	0,00000019
	71976	0,0010	• -		0,112699625		1,11251815	
1,13		0,0013			•,179951992	3,141792868	1,17797130	0,00000030
	17305	0,0018	0,0052	• ,∞ 717	0,358591537	3,141592816	1,35861383	0,000000041
	TALREFLE		_					
1.26	15255	0.00316	a.co311	6 e.an632	1.000000000	3.141792505	2,00003296	0,000000078

CHESA	3,0000	, ed	KAPPA	0,10 I	ELTA 0,0	0001		
THET	TA.	ALPKA	RETA	CAMMA	REFLECT	10RFACTOR	TRANSITI	ACTOR
•		0,00005	20,00005	20,.00010	•	3,141950369	1,00000252	0,001000238
0,1745		0,00005	19,69620	19,69525	•	3,141954422	1,00000250	•
0,3694	478	0,00005	18,79369	18,75/95	•	3,141966343	1,00000286	6,203185065
0,5235		e, coací	17,33054	17,32,79	•	3,141968673	1,00000334	6,283185665
0,6981		0,00007	15,32090	15,32.097	•	3,143023981	1,00000l17	6,283185065
0,8726	646	e,essel	12,85574	12,87582	•	3,142+79949	1,00000796	0,000000119
1,0171	976	e,coole	9,99995	10,00005	0,000000000	3,142168820	1,00001007	•
1,134	6lo	0,00012	8,45229	8,45241	0,00000000	3,142234862	1,00001401	0,000000119
1,2217	305	0,00015	6,84a 3 9	6,84044	0,00000000	3,142334150	1,00002160	6,263185273
1,300)		0,00019	5,17621	5,17641	0,00000000	3,142452165	1,00003731	•
1,3962	634	0,00029	3,47269	3,47298	0,000000033	3,142646119	1,00008291	0,000000015
1,4835		0,00057	1,74255	1,74312	0,000015118	3,142925516	1,00032935	0,000000171
TOTA	LREFLECT	I ON						
1,5676	313	0,43162	0,03162	0,06325	1,00000000	3,141744293	2,0032650l	0,000075825
OMEGA	3,0000	+aB	KAPPA	e,1e B	ELTA e,e	001 0		
THET	Ά.	ALPHA	BETA	GAMMA	REFLECT	LONFACTOR	TRANSITE	ACTOR
•		0,00050	20,00050	20,00100	•	3,145166159	1,00002503	0,000000238
0,1745		0,00051	19,69663	19,69714	•	3,145205021	1,00002551	6,283185065
0,3690	6 58	0,00053	18,79426	18,79479	•	3,145328760	1,00002825	6,283185065
0,5235		0,000 7 8	17,3208o	17,32137	•	3,145552635	1,00003326	0
0,6981		0,0006 5	15,32100	15,32165		3,14 7949 727	1,00001256	e, <i>eccess</i> 236
•,8726	646	e, ese 78	12,85562	12,856 l o	•	3,146464467	1,00001056	0,000000119
1,0171	976	0,00100	9,99950	10,00050	0,00000000	3,147354394	1,00009996	0,000000119
1,1344		o, co 118	8,45160	8,45279	3,00000000	3,148012221	1,00013996	0,000000060
1,2217	-	0,00146	6,80928	6,84075		3,148908675	1,00021368	0,000000326
1,300)		0,00193	5,17471	5,17664		3,150189623	1,00037352	0,000000715
1,3962		0,00088	3,47026	3,47314	0,000000333	3,152132697	1,00083072	0,000002369
1,4839	299	0,00576	1,73745	1,74320	0,000154088	3,15 1911 651	1,00331811	0,000017911

Fig 2,

A

