VOLATILITÉ IMPLICITE

POURQUOI EST-IL IMPORTANT DE PRENDRE EN COMPTE LE MARCHÉ DES PRODUITS DÉRIVÉS, MÊME LORSQUE L'ON NE TRAITE QUE SUR LE MARCHÉ AU COMPTANT (SPOT)?

NOA DUCAROIX--LASSEUR LÉO RENAULT ARTHUR DURAND

Sommaire

- 1. **Modèle de Black-Scholes** appliqué au prix du Call (respectivement du Put)
- 2. Volatilité Implicite
 - Différence avec Volatilité Historique Calcul de celle-ci grâce à Black-Scholes
- 3. Exemple d'implémentation
- 4. **Analyse** (Smile & Skew)

HYPOTHÈSE: LA DISTRIBUTION DES PRIX SUIT UNE LOI LOG-NORMALE

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

- S_t est le prix de l'actif sous-jacent à l'instant t,
- ullet est le taux de rendement attendu de l'actif,
- σ est la volatilité de l'actif (la déviation standard des rendements),
- W_t est un mouvement brownien standard (ou un processus de Wiener),
- dt est un petit intervalle de temps.

SOLUTION:
$$S_t = S_0 \exp\left(\left(\mu - rac{\sigma^2}{2}
ight)t + \sigma W_t
ight)$$

CALCUL STOCHASTIQUE LEMME D'ITO

ÉQUATION DIFFÉRENTIELLE VÉRIFIER PAR LE PRIX DE L'OPTION

$$rac{\partial C}{\partial t} + rac{1}{2}\sigma^2 S^2 rac{\partial^2 C}{\partial S^2} + r S rac{\partial C}{\partial S} - r C = 0$$

Cette équation décrit l'évolution du prix de l'option C en fonction du temps t, du prix de l'actif sous-jacent S, et des paramètres r (taux d'intérêt sans risque) et σ (volatilité).

SOLUTION DE L'ÉQUATION

Le modèle de Black-Scholes pour une option d'achat (call) est donné par la formule :

$$C=S_0\Phi(d_1)-Xe^{-rT}\Phi(d_2)$$

où:

- C : prix de l'option d'achat
- S_0 : prix actuel du sous-jacent
- X : prix d'exercice de l'option
- r : taux d'intérêt sans risque
- T: temps jusqu'à l'échéance (en années)
- $\Phi(d_1)$ et $\Phi(d_2)$: les fonctions de distribution cumulative de la loi normale
- d_1 et d_2 sont des termes calculés à partir des variables ci-dessus, où :

$$d_1 = rac{\ln(S_0/X) + (r + rac{\sigma^2}{2})T}{\sigma\sqrt{T}} \ d_2 = d_1 - \sigma\sqrt{T}$$

LES LIMITES

Pas de coûts de transaction

Marché sans friction

Volatilité

HISTORIQUE

IMPLICITE

Calcul de la volatilité implicite

RÉSOUDRE:

 $CBS(\sigma)$ -Cmarket = 0

ANALYTIQUEMENT VOLATILITÉ IMPOSSIBLE À ISOLER

NUMÉRIQUEMENT

(MÉTHODE DE NEWTON-RAPHSON, MÉTHODE DE LA RECHERCHE PAR BISECTION, INTERPOLATION)

Exemple / Implémentation

ACTION TOTALENERGIES

Prix actuel de l'action S0 = 57,09€ (au 22 novembre 2024)

Prix de l'exercice de l'option K = 60,00€

Temps jusqu'à l'échéance T = 28 jours

Taux sans risque r = 5%

Prix observé de l'option call sur le marché Cmarket = 0,40€

Exemple / Implémentation

ACTION TOTALENERGIES

```
S0 = 57.09  # Prix actuel de l'actif sous-jacent
K = 60  # Prix d'exercice
T_days = 28  # Temps jusqu'à l'échéance (en jours)
r = 0.05  # Taux sans risque
C_market = 0.40  # Prix observé de l'option call sur le marché
```

Volatilité implicite: 0.2065 (ou 20.65%)

Smile & Skew

- **SMILE DE LA VOLATILITÉ :** CONCEPT QUI ÉMERGE APRÈS LE KRACH DE 1987
- SURFACE DE VOLATILITÉ : VOLATILITÉ IMPLICITE EN FONCTION DU PRIX D'EXERCICE

Smile & Skew

SKEW:

FACTEURS:

- OFFRE ET DEMANDE
- SENTIMENTS DU MARCHÉ
- TYPES DE MARCHÉ