Algoritmi e Strutture Dati

Alberi

Alberto Montresor

Università di Trento

2018/10/19

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Sommario

- Introduzione
 - Esempi
 - Definizioni
- 2 Alberi binari
 - Introduzione
 - Implementazione
 - Visite
- 3 Alberi generici
 - Visite
 - Implementazione

Esempio 1

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Introduzione

Esempi

Esempio 2

Esempio 3

```
<html>
   <head>
       <meta http-equiv="Content-Type" content="text/html"/>
       <title>simple</title>
   </head>
   <body>
       <h1>A simple web page</h1>
       ul>
           List item one
           List item two
       <h2>
           <a href="http://www.google.com">Google</a>
       </h2>
   </body>
</html>
```

Alberto Montresor (UniTN)

 ASD - Strutture dati

2018/10/19

Introduzione

Esempi

Esempio 3

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Albero radicato – Definizione 1

Albero radicato (Rooted tree)

Un albero consiste di un insieme di nodi e un insieme di archi orientati che connettono coppie di nodi, con le seguenti proprietà:

- Un nodo dell'albero è designato come nodo radice;
- ullet Ogni nodo n, a parte la radice, ha esattamente un arco entrante;
- Esiste un cammino unico dalla radice ad ogni nodo;
- L'albero è connesso.

Albero radicato – Definizione 2 (Ricorsiva)

Albero radicato (Rooted tree)

Un albero è dato da:

- un insieme vuoto, oppure
- un nodo radice e zero o più sottoalberi, ognuno dei quali è un albero; la radice è connessa alla radice di ogni sottoalbero con un arco orientato.

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Introduzione

Definizioni

Terminologia

- \bullet A è la radice
- B, C sono radici dei sottoalberi
- \bullet D, E sono fratelli
- D, E sono figli di B
- B è il padre di D, E
- I nodi viola sono foglie
- Gli altri nodi sono nodi interni

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Terminology (English)

- A is the tree root
- B, C are roots of their subtrees
- D, E are siblings
- D, E are children of B
- B is the parent of D, E
- Purple nodes are leaves
- The other nodes are internal nodes

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Terminologia

Profondità nodi (Depth)

La lunghezza del cammino semplice dalla radice al nodo (misurato in numero di archi)

Livello (Level)

L'insieme di nodi alla stessa profondità

Altezza albero (Height)

La profondità massima della sue foglie

Altezza di questo albero = 3

Sommario

- Introduzione
 - Esempi
 - Definizioni
- 2 Alberi binari
 - Introduzione
 - Implementazione
 - Visite
- 3 Alberi generici
 - Visite
 - Implementazione

Albero binario

Albero binario

Un albero binario è un albero radicato in cui ogni nodo ha al massimo due figli, identificati come figlio sinistro e figlio destro.

Nota: Due alberi T e U che hanno gli stessi nodi, gli stessi figli per ogni nodo e la stessa radice, sono distinti qualora un nodo u sia designato come figlio sinistro di v in T e come figlio destro di v in U.

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Introduzione

Specifica (Albero binario)

TREE

% Costruisce un nuovo nodo, contenente v, senza figli o genitori Tree(ITEM v)

% Legge il valore memorizzato nel nodo ITEM read()

% Modifica il valore memorizzato nel nodo write(ITEM v)

% Restituisce il padre, oppure **nil** se questo nodo è radice Tree parent()

Introduzione

Specifica (Albero binario)

```
TREE
% Restituisce il figlio sinistro (destro) di questo nodo; restituisce nil se assente
TREE left()
TREE right()
% Inserisce il sottoalbero radicato in t come figlio sinistro (destro) di questo nodo
insertLeft(TREE t)
insertRight(TREE t)
% Distrugge (ricorsivamente) il figlio sinistro (destro) di questo nodo
deleteLeft()
deleteRight()
```

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Implementazione

Memorizzare un albero binario

Campi memorizzati nei nodi

- parent: reference al nodo padre
- *left*: reference al figlio sinistro
- right: reference al figlio destro

Implementazione

```
Tree
```

```
Tree(ITEM v)
                                                 deleteLeft()
                                                    if left \neq nil then
   Tree t = \text{new} Tree
  t.parent = nil
                                                        left.deleteLeft()
                                                        left.deleteRight()
  t.left = t.right = nil
                                                        left = \mathbf{nil}
   t.value = v
   return t
                                                 deleteRight()
insertLeft(TREE T)
                                                    if right \neq nil then
  if left == nil then
                                                        right.deleteLeft()
       T.parent = this
                                                        right.deleteRight()
       left = T
                                                        right = \mathbf{nil}
insertRight(TREE \ T)
  if right == nil then
       T.parent = this
       right = T
```

Visite di alberi

Visita di un albero / ricerca

Una strategia per analizzare (visitare) tutti i nodi di un albero.

Visità in profondità Depth-First Search (DFS)

- Per visitare un albero, si visita ricorsivamente ognuno dei suoi sottoalberi
- Tre varianti: pre/in/post visita (pre/in/post order)
- Richiede uno stack

Visita in ampiezza Breadth First Search (BFS)

- Ogni livello dell'albero viene visitato, uno dopo l'altro
- Si parte dalla radice
- Richiede una queue

Visite

Depth-First Search

dfs(TREE t)

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Visite

Depth-First Search - Pre-Order

```
\frac{\mathsf{dfs}(\mathsf{TREE}\ t)}{\mathsf{if}\ t \neq \mathsf{nil}\ \mathsf{then}} \\
        | \% \ \mathsf{pre-order}\ \mathsf{visit}\ \mathsf{of}\ t \\
        | \mathsf{print}\ t \\
        | \mathsf{dfs}(t.\mathsf{left}())
```

% in-order visit of t **print** t

 $\mathsf{dfs}(t.\mathsf{right}())$

 $\frac{\% \text{ post-order visit of } t}{\text{print } t}$

Sequence: A

Stack: A

Visite

Depth-First Search - Pre-Order

```
dfs(TREE t)if t \neq nil then% pre-order visit of tprint tdfs(t.left())% in-order visit of tprint tdfs(t.right())
```

% post-order visit of t

Sequence: A B

Stack: A B

 $\frac{\mathbf{print}}{t}$

Visite

Depth-First Search - Pre-Order

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C

Stack: A B C

Visite

Depth-First Search - Pre-Order

```
\frac{\mathsf{dfs}(\mathsf{TREE}\ t)}{\mathsf{if}\ t \neq \mathsf{nil}\ \mathsf{tk}}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C

Stack: A B

Visite

Depth-First Search - Pre-Order

```
\frac{\mathsf{dfs}(\mathrm{Tree}\ t)}{}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D

Stack: A B D

Visite

Depth-First Search - Pre-Order

```
\frac{\mathsf{dfs}(\mathrm{TREE}\ t)}{}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D

Stack: A B

Visite

Depth-First Search - Pre-Order

```
\overline{\mathsf{dfs}(\mathrm{TREE}\ t)}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D

Stack: A

Visite

Depth-First Search - Pre-Order

```
\overline{\mathsf{dfs}(\mathrm{TREE}\ t)}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D E

Stack: A E

Visite

Depth-First Search - Pre-Order

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D E F

Stack: A E F

Visite

Depth-First Search - Pre-Order

```
\overline{\mathsf{dfs}(\mathrm{TREE}\ t)}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D E F

Stack: A E

Visite

Depth-First Search - Pre-Order

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D E F G

Stack: A E G

Visite

Depth-First Search - Pre-Order

```
dfs(TREE t)
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D E F G

Stack: A E

Visite

Depth-First Search - Pre-Order

```
\overline{\mathsf{dfs}(\mathrm{TREE}\ t)}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D E F G

Stack: A

Visite

Depth-First Search - Pre-Order

```
\overline{\mathsf{dfs}(\mathrm{TREE}\ t)}
```

```
if t \neq \text{nil then}
```

```
% pre-order visit of t
print t

dfs(t.left())
% in-order visit of t
print t

dfs(t.right())
% post-order visit of t
print t
```


Sequence: A B C D E F G

Stack:

Visite

Depth-First Search - In-Order

Sequence: Stack: A

Visite

Depth-First Search - In-Order

Sequence: Stack: A B

Visite

Depth-First Search - In-Order

Sequence: C Stack: A B C

Visite

Depth-First Search - In-Order

```
\begin{array}{c|c} \hline \mathsf{dfs}(\mathsf{TREE}\ t) \\ \hline \mathbf{if}\ t \neq \mathbf{nil}\ \mathbf{then} \\ \hline & \%\ \mathsf{pre-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline & \mathsf{dfs}(t.\mathsf{left}()) \\ \%\ \mathsf{in-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline & \mathsf{dfs}(t.\mathsf{right}()) \\ \hline & \%\ \mathsf{post-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline \end{array}
```


Sequence: C B

Stack: A B

Visite

Depth-First Search - In-Order

Sequence: C B D

Stack: A B D

Visite

Depth-First Search - In-Order

```
\begin{array}{c|c} \hline \mathsf{dfs}(\mathsf{TREE}\ t) \\ \hline \mathbf{if}\ t \neq \mathbf{nil}\ \mathbf{then} \\ \hline & \%\ \mathsf{pre-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline & \mathsf{dfs}(t.\mathsf{left}()) \\ \%\ \mathsf{in-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline & \mathsf{dfs}(t.\mathsf{right}()) \\ \hline & \%\ \mathsf{post-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline \end{array}
```


Sequence: C B D

Stack: A B

Visite

Depth-First Search - In-Order

Sequence: C B D A

Stack: A

Visite

Depth-First Search - In-Order

Sequence: C B D A

Stack: A E

Visite

Depth-First Search - In-Order

```
\begin{array}{c|c} \hline \mathsf{dfs}(\mathsf{TREE}\ t) \\ \hline \mathbf{if}\ t \neq \mathbf{nil}\ \mathbf{then} \\ \hline & \%\ \mathsf{pre-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline & \mathsf{dfs}(t.\mathsf{left}()) \\ \%\ \mathsf{in-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline & \mathsf{dfs}(t.\mathsf{right}()) \\ \hline & \%\ \mathsf{post-order}\ \mathsf{visit}\ \mathsf{of}\ t \\ \hline & \mathbf{print}\ t \\ \hline \end{array}
```


Sequence: C B D A F

Stack: A E F

Visite

Depth-First Search - In-Order

Sequence: C B D A F E

Stack: A E

Visite

Depth-First Search - In-Order

Sequence: C B D A F E G

Stack: A E G

Visite

Depth-First Search - In-Order

Sequence: C B D A F E G

Stack: A E

Visite

Depth-First Search - In-Order

Sequence: C B D A F E G

Stack: A

Visite

Depth-First Search - In-Order

Sequence: C B D A F E G

Stack:

Visite

Depth-First Search - Post-Order

Sequence: Stack: A

Visite

Depth-First Search - Post-Order

Sequence: Stack: A B

Visite

Depth-First Search - Post-Order

Sequence: C Stack: A B C

Visite

Depth-First Search - Post-Order

Sequence: C Stack: A B

Visite

Depth-First Search - Post-Order

```
dfs(TREE t)
if t \neq \text{nil then}
     \% pre-order visit of t
     \frac{\mathbf{print}}{t}
```

 $\mathsf{dfs}(t.\mathsf{left}())$

% in-order visit of t

print t

 $\mathsf{dfs}(t.\mathsf{right}())$

% post-order visit of t

 $\mathbf{print} t$

Sequence: C D

Stack: A B D

Visite

Depth-First Search - Post-Order

Sequence: C D B

Stack: A B

Visite

Depth-First Search - Post-Order

Sequence: C D B

Stack: A

Visite

Depth-First Search - Post-Order

Sequence: C D B

Stack: A E

Visite

Depth-First Search - Post-Order

Sequence: C D B F

Stack: A E F

Visite

Depth-First Search - Post-Order

Sequence: C D B F

Stack: A E

Visite

Depth-First Search - Post-Order

Sequence: C D B F G

Stack: A E G

Visite

Depth-First Search - Post-Order

```
\frac{\mathsf{dfs}(\mathsf{TREE}\ t)}{\mathbf{if}\ t \neq \mathbf{nil}\ \mathbf{then}}
\frac{\%\ \mathsf{pre-order}\ \mathsf{visit}\ \mathsf{of}\ t}{\mathbf{print}\ t}
\mathsf{dfs}(t.\mathsf{left}())
\frac{\%\ \mathsf{in-order}\ \mathsf{visit}\ \mathsf{of}\ t}{\mathbf{print}\ t}
\mathsf{dfs}(t.\mathsf{right}())
```

% post-order visit of t

Sequence: C D B F G E

Stack: A E

Visite

Depth-First Search - Post-Order

% post-order visit of t

Sequence: C D B F G E A

Stack: A

dfs(t.right())

Visite

Depth-First Search - Post-Order

Sequence: C D B F G E A

Stack:

Visite

Esempi di applicazione

Contare nodi – Post-visita

Visite

Esempi di applicazione

 $Stampare\ espressioni-In-visita$

Visite

Costo computazionale

Il costo di una visita di un albero contenente n nodi è $\Theta(n)$, in quanto ogni nodo viene visitato al massimo una volta..

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Sommario

- 1 Introduzione
 - Esempi
 - Definizioni
- 2 Alberi binari
 - Introduzione
 - Implementazione
 - Visite
- 3 Alberi generici
 - Visite
 - Implementazione

Specifica (Albero generico)

TREE

% Costruisce un nuovo nodo, contenente v,senza figli o genitori $\mathsf{Tree}(\texttt{ITEM}\ v)$

% Legge il valore memorizzato nel nodo ITEM read()

% Modifica il valore memorizzato nel nodo write(ITEM v)

%Restituisce il padre, oppure **nil** se questo nodo è radice Tree parent()

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

Specifica (Albero generico)

TREE

- % Restituisce il primo figlio, oppure **nil** se questo nodo è una foglia Tree leftmostChild()
- % Restituisce il prossimo fratello, oppure **nil** se assente TREE rightSibling()
- % Inserisce il sottoalbero t come primo nodo di questo nodo insertChild(TREE t)
- % Inserisce il sottoalbero t come prossimo fratello di questo nodo insertSibling(TREE t)
- % Distruggi l'albero radicato identificato dal primo figlio deleteChild()
- % Distruggi l'albero radicato identificato dal prossimo fratello deleteSibling()

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

24 / 34

Esempio: Class Node (Java 8)

```
package org.w3c.dom;
public interface Node {
  /** The parent of this node. */
 public Node
                getParentNode();
  /** The first child of this node. */
                getFirstChild()
 public Node
  /** The node immediately following this node. */
 public Node
                getNextSibling()
  /** Inserts the node newChild before the existing child node refChild. */
 public Node
                insertBefore(Node newChild, Node refChild)
  /** Adds the node newChild to the end of the list of children of this node. */
 public Node
                appendChild(Node newChild)
  /** Removes the child node indicated by oldChild from the list of children. */
 public Node
                removeChild(Node oldChild)
  [\ldots]
}
```

Visite

Depth-First Search

$\overline{\mathsf{dfs}(\mathrm{TREE}\ t)}$

if $t \neq \text{nil then}$

% pre-order visit of node t **print** t

Tree u = t.leftmostChild()

while $u \neq$ nil do

dfs(u) u = u.rightSibling()

% post-order visit of node t **print** t

Visite

Breadth-First Search

$\begin{aligned} & \text{bfs}(\text{TREE }t) \\ & \text{QUEUE }Q = \text{Queue}() \\ & Q.\text{enqueue}(t) \\ & \text{while not }Q.\text{isEmpty}() \text{ do} \\ & \text{TREE }u = Q.\text{dequeue}() \\ & \% \text{ visita per livelli dal nodo }u \\ & \text{print }u \\ & u = u.\text{leftmostChild}() \\ & \text{while }u \neq \text{nil do} \\ & Q.\text{enqueue}(u) \\ & u = u.\text{rightSibling}() \end{aligned}$

Sequence: Queue: A

Visite

Breadth-First Search

```
\begin{aligned} & \text{bfs}(\text{TREE }t) \\ & \text{QUEUE }Q = \text{Queue}() \\ & Q.\text{enqueue}(t) \\ & \text{while not }Q.\text{isEmpty}() \text{ do} \\ & \text{TREE }u = Q.\text{dequeue}() \\ & \% \text{ visita per livelli dal nodo }u \\ & \text{print }u \\ & u = u.\text{leftmostChild}() \\ & \text{while }u \neq \text{nil do} \\ & Q.\text{enqueue}(u) \\ & u = u.\text{rightSibling}() \end{aligned}
```


Sequence: A Queue: B E

Visite

Breadth-First Search

```
\begin{aligned} & \text{bfs}(\text{TREE }t) \\ & \text{QUEUE }Q = \text{Queue}() \\ & Q.\text{enqueue}(t) \\ & \text{while not }Q.\text{isEmpty}() \text{ do} \\ & \text{TREE }u = Q.\text{dequeue}() \\ & \text{\% visita per livelli dal nodo }u \\ & \text{print }u \\ & u = u.\text{leftmostChild}() \\ & \text{while }u \neq \text{nil do} \\ & & Q.\text{enqueue}(u) \\ & & u = u.\text{rightSibling}() \end{aligned}
```


Sequence: A B Queue: E C D

Visite

Breadth-First Search

Sequence: A B E Queue: C D F G

Visite

Breadth-First Search

```
\begin{array}{c} \overline{\text{bfs}(\text{TREE }t)} \\ \\ Q\text{UEUE }Q = \text{Queue}() \\ Q.\text{enqueue}(t) \\ \\ \textbf{while not }Q.\text{isEmpty}() \textbf{ do} \\ \\ \text{TREE }u = Q.\text{dequeue}() \\ \\ \text{\% visita per livelli dal nodo }u \\ \\ \textbf{print }u \\ \\ u = u.\text{leftmostChild}() \\ \\ \textbf{while }u \neq \textbf{nil do} \\ \\ Q.\text{enqueue}(u) \\ \\ u = u.\text{rightSibling}() \end{array}
```


Sequence: A B E C

Queue: D F G

Visite

Breadth-First Search

```
\begin{aligned} & \text{bfs}(\text{TREE } t) \\ & \text{QUEUE } Q = \text{Queue}() \\ & Q.\text{enqueue}(t) \\ & \text{while not } Q.\text{isEmpty}() \text{ do} \\ & \text{TREE } u = Q.\text{dequeue}() \\ & \text{\% visita per livelli dal nodo } u \\ & \text{print } u \\ & u = u.\text{leftmostChild}() \\ & \text{while } u \neq \text{nil do} \\ & Q.\text{enqueue}(u) \\ & u = u.\text{rightSibling}() \end{aligned}
```


Sequence: A B E C D

Queue: F G

Visite

Breadth-First Search

Sequence: A B E C D F

Queue: G

Visite

Breadth-First Search

```
\begin{aligned} & \text{bfs}(\text{TREE } t) \\ & \text{QUEUE } Q = \text{Queue}() \\ & Q.\text{enqueue}(t) \\ & \text{while not } Q.\text{isEmpty}() \text{ do} \\ & | & \text{TREE } u = Q.\text{dequeue}() \\ & \text{\% visita per livelli dal nodo } u \\ & \text{print } u \\ & u = u.\text{leftmostChild}() \\ & \text{while } u \neq \text{nil do} \\ & | & Q.\text{enqueue}(u) \\ & | & u = u.\text{rightSibling}() \end{aligned}
```


Sequence: A B E C D F G Queue:

Implementazione

Memorizzazione

Esistono diversi modi per memorizzare un albero, più o meno indicati a seconda del numero massimo e medio di figli presenti.

- Realizzazione con vettore dei figli
- Realizzazione primo figlio, prossimo fratello
- Realizzazione con vettore dei padri

Implementazione

Realizzazione con vettore dei figli

Campi memorizzati nei nodi

- parent: reference al nodo padre
- Vettore dei figli: a seconda del numero di figli, può comportare una discreta quantità di spazio sprecato

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

29 / 34

Implementazione

Realizzazione basata su Primo figlio, prossimo fratello

Implementato come una lista di fratelli

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

30 / 34

Implementazione

Implementazione

```
Tree
Tree parent
                                                                            % Reference al padre
Tree child
                                                                      % Reference al primo figlio
Tree sibling
                                                                 % Reference al prossimo fratello
Item value
                                                                 % Valore memorizzato nel nodo
Tree(ITEM v)
                                                                           % Crea un nuovo nodo
   Tree t = \text{new} Tree
   t.value = v
   t.parent = t.child = t.sibling = nil
   return t
insertChild(TREE \ t)
   t.parent = \mathbf{self}
                                                     \% Inserisce t prima dell'attuale primo figlio
   t.sibling = child
   child = t
insertSibling(TREE t)
   t.parent = parent
   t.sibling = sibling
                                                \% Inserisce t prima dell'attuale prossimo fratello
   sibling = t
```

Alberto Montresor (UniTN)

ASD - Strutture dati

2018/10/19

31 / 34

Implementazione

Implementazione

Realizzazione con vettore dei padri

L'albero è rappresentato da un vettore i cui elementi contengono il valore associato al nodo e l'indice della posizione del padre nel vettore.

1	A	0
2	В	1
3	E	1
4	С	2
5	D	2
6	F	3
7	G	3

DFS (https://xkcd.com/)

I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.