

Homework 1.

Question 1.

1. Show that β_0 is unbiased

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + \epsilon_{i}$$

$$E(\beta_{0}) = E(y_{i} - \beta_{1}x_{i} - \epsilon_{i})$$

$$E(\beta_{0}) = E(y_{i}) - \beta_{1} E(x_{i}) - E(\epsilon_{i})$$

$$E(\beta_{0}) = \overline{y} - \beta_{1}\overline{x} - 0$$

$$E(\beta_{0}) = \overline{y} - \beta_{1}\overline{x}$$

$$E(\beta_{0}) = \beta_{0}$$

$$\beta_{0} = \overline{y} - \beta_{1}\overline{x}$$

$$E(\hat{\beta}_{0}) = E(\overline{y} - \hat{\beta}_{1}\overline{x})$$

$$E(\hat{\beta}_{0}) = E(\overline{y}) - E(\hat{\beta}_{1}\overline{x})$$

$$E(\hat{\beta}_{0}) = \overline{y} - \overline{x} E(\hat{\beta}_{1})$$

$$E(\hat{\beta}_{1}) = \beta_{1} \qquad \text{(we showed this in class)}$$

$$E(\hat{\beta}_{0}) = \overline{y} - \beta_{1}\overline{x}$$

$$E(\hat{\beta}_{0}) = \beta_{0}$$

2. Determine the variance of β_0

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} \qquad \text{(from class)}$$

$$\operatorname{Var}(\hat{\beta}_0) = \operatorname{Var}(\overline{y} - \hat{\beta}_1 \overline{x})$$

$$\operatorname{Var}(\hat{\beta}_0) = \operatorname{Var}(\overline{y}) + \operatorname{Var}(\hat{\beta}_1 \overline{x}) + 2\operatorname{Cov}(\overline{y}, -\hat{\beta}_1 \overline{x})$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$$

$$\operatorname{Var}(\overline{y}) = \operatorname{Var}(\frac{1}{n} \sum_{i=1}^n y_i)$$

$$\operatorname{Var}(\overline{y}) = (\frac{1}{n})^2 \sum_{i=1}^n \operatorname{Var}(y_i)$$

$$\operatorname{Var}(\overline{y}) = (\frac{1}{n})^2 \sum_{i=1}^n \operatorname{Var}(\beta_0 + \beta_1 x_i + \epsilon_i)$$

$$\operatorname{Var}(\overline{y}) = (\frac{1}{n})^2 \sum_{i=1}^n \operatorname{Var}(\beta_0) + \operatorname{Var}(\beta_1 x_i) + \operatorname{Var}(\epsilon_i)$$

$$\operatorname{Var}(\overline{y}) = (\frac{1}{n})^2 \sum_{i=1}^n 0 + 0 + \sigma^2$$

$$\operatorname{Var}(\overline{y}) = (\frac{1}{n})^2 \cdot (n\sigma^2)$$

$$\operatorname{Var}(\overline{y}) = \frac{\sigma^2}{n}$$

$$\operatorname{Var}(-\beta_1 \overline{x}) = (-\overline{x})^2 \operatorname{Var}(\hat{\beta}_1)$$

$$\operatorname{Var}(-\beta_1 \overline{x}) = (-\overline{x})^2 \operatorname{Var}(\hat{\beta}_1)$$

$$\operatorname{Var}(-\beta_1 \overline{x}) = (-\overline{x})^2 \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})} \qquad \text{(we showed this in class)}$$

$$\operatorname{Var}(\hat{\beta}_0) = \operatorname{Var}(\overline{y}) + \operatorname{Var}(\hat{\beta}_1 \overline{x})$$

$$\operatorname{Var}(\hat{\beta}_0) = \operatorname{Var}(\overline{y}) + \operatorname{Var}(\hat{\beta}_1 \overline{x})$$