## Задачи на параллельных машинах

## Задача $P \mid pmtn \mid C_{\text{max}}$

Имеется *т* одинаковых машин и *п* работ. Любая работа может выполняться на любой машине. Прерывания работ разрешены. Требуется найти расписание с минимальным временем завершения всех работ.

#### Нижняя оценка

$$LB = \max \left\{ \max_{i=1,...,n} p_i; \frac{1}{m} \sum_{i=1}^{n} p_i \right\}.$$

Если найдем расписание с  $C_{\text{max}} = LB$ , то получим оптимальное решение.

**Алгоритм:** возьмем произвольный список работ и будем «загружать» машины последовательно: сначала первую машину в интервале времени [0, LB], «отрезая» часть последней работы, если она не вошла целиком и, перенося эту часть на следующую машину в интервале [0, LB] и т.д. Получим некоторое расписание.

### Пример:



Так как  $LB \ge \max_{i=1,...,n} p_i$ , то в каждый момент времени работа выполняется не

более чем на одной машине. Значит, полученное расписание является допустимым, и  $C_{\max} = LB$ , то есть получили оптимальное расписание.

# $oxed{3}$ адача $oldsymbol{P} \mid pmtn, r_i \mid L_{ ext{max}}$

Имеется m одинаковых машин и n работ. Для каждой работы заданы время поступления на обслуживание  $r_i \ge 0$  и директивный срок окончания  $d_i \ge r_i$ .

Требуется найти расписание с минимальной задержкой  $L_{\max} = \max_{i=1,...,n} (c_i - d_i)$ , где  $c_i$  — время окончания работы i.

Для решения этой задачи сначала научимся отвечать на вопрос:  $\exists$  **ли расписание с**  $L_{\text{max}} \leq L$ ? А затем методом дихотомии найдем минимальное значение L, для которого такое расписание существует.

Пусть L задано. Если расписание существует, то работа i выполняется в интервале  $[r_i, c_i]$  и  $c_i - d_i \le L$ , то есть  $c_i \le L + d_i = d_i^L$  и можно считать, что работа i выполняется в интервале  $[r_i, d_i^L]$ . Для того, чтобы ответить на вопрос « $\exists$  ли расписание с прерываниями, где каждая работа выполняется в своем временном окне», нам потребуется задача о потоке в сети, которая может быть решена симплекс—методом.

## Задача о потоке в сети

Задана сеть G = (V, E, s, t) с одним источником s и одним стоком t.

Сеть G есть ориентированный ациклический граф. Каждой дуге  $(ij) \in E$  приписан вес  $c_{ij} \ge 0$  — пропускная способность дуги.

**Определение.** *Потоком* в сети G называется функция  $F: E \to R$  на дугах, которая удовлетворяет условиям на пропускные способности

$$0 \le f_{ij} \le c_{ij}, \quad (ij) \in E$$

и сохраняет поток в каждой внутренней вершине  $v \in V \setminus \{s, t\}$ :

$$\sum_{i \in V} f_{ij} = \sum_{i \in V} f_{ji}, \quad \forall j \in V \setminus \{s, t\}.$$

$$(ij) \in E \qquad (ji) \in E$$

$$s \bullet \bullet \bullet \bullet \bullet$$

Легко проверить, что 
$$\sum_{\substack{i \in V \\ (si) \in E}} f_{si} = \sum_{\substack{i \in V \\ (it) \in E}} f_{it} \,.$$

Определение. Величина 
$$M(f) = \sum_{\substack{i \in V \\ (si) \in E}} f_{si}$$
 называется мощностью потока.

Задача состоит в том, чтобы найти поток максимальной мощности.

Заметим, что это задача линейного программирования. Множество допустимых решений задачи не пусто, т.к. решение  $f_{ij} = 0$ ,  $\forall (ij) \in E$ , является допустимым решением задачи. Целевая функция ограничена сверху, следовательно, оптимальное решение существует.

Покажем, как с помощью задачи о потоке в сети найти расписание, удовлетворяющее временным окнам.

Сольем два массива  $r_i$ ,  $d_i^L$  и упорядочим их значения

$$t_1 < t_2 < \ldots < t_k, \quad k \le 2n.$$

Рассматриваем только различные значения r и d.

Построим интервалы  $I_k = [t_k, t_{k+1}]$ , длины  $T_k = t_{k+1} - t_k$  и рассмотрим сеть G = (V, E, s, t):



Дуга (i, k) принадлежит E, если работа  $J_i$  может выполняться в интервале  $I_k$ , т.е.  $I_k \subseteq [r_i, d_i^L]$ . Каждой дуге приписан вес, как показано на рисунке.

Решим задачу о максимальном потоке в этой сети. Получим  $\max M(F)$ . Сравним эту величину с  $\sum_{i=1}^{n} p_i$ . Если они равны, то искомое расписание существует,

если нет, то есть  $\sum p_i > M(F)$ , то такого расписания не существует.

Пусть имеет место равенство. Тогда сохранение потока в каждой вершине  $J_i$  дает:

$$\sum_{k} f_{ik} = p_i, \quad \forall i = 1, ..., n$$

и величины  $f_{ik}$  определяют расписание работы  $J_i$ .

Сохранение потока в вершине  $I_k$ :  $\sum_i f_{ik} \le mT_k$ ,  $\forall k = 1,...,K$ , гарантирует, что m

машин справятся со всеми работами в интервале  $T_k$ .

# Задача $Q \mid pmtn \mid C_{max}$

**Имеется** m машин со скоростями  $s_1 \ge s_2 \ge ... \ge s_m$  и n работ с трудоемкостью  $p_1 \ge p_2 \ge ... \ge p_n$ . Время выполнения  $p_{ij} = p_i / s_j$ . Разрешаются прерывания.

Найти расписание с минимальным временем выполнения всех работ.

Сначала найдем нижнюю оценку на  $C_{\max}$ , затем построим расписание с  $C_{\max} = LB$ , то есть оптимальное!

Положим  $P_i = p_1 + p_2 + \ldots + p_i$ ,  $S_j = s_1 + s_2 + \ldots + s_j$ .

Предполагаем, что  $n \ge m$ , иначе выбрасываем (m-n) самых медленных машин.

Если хотим выполнить все работы в интервале [0, T], то  $P_n \leq S_m T$ .

Аналогично,  $P_j \le S_j T$ ,  $\forall j = 1,..., m-1$ , так как  $P_j / S_j$  есть нижняя граница для выполнения работ j' = 1,...,j. Таким образом,

$$LB = \max \{ \max_{j=1,...,m-1} P_j / S_j ; P_n / S_m \}$$

есть нижняя граница для  $C_{\max}$ .

Предположим, что  $C_{\max} = T$  и до момента T ни одна машина не простаивала. Тогда  $T = P_n / S_m$ . Если бы можно было выполнить работу сразу на всех машинах, то расписание легко построить:

| /     |           |           |  |   |             |
|-------|-----------|-----------|--|---|-------------|
| $M_1$ | 1         | 2         |  | n |             |
| $M_2$ | 1         | 2         |  | n |             |
|       | 1         | 2         |  | n |             |
|       | 1         | 2         |  | n |             |
| $M_m$ | 1         | 2         |  | n |             |
|       | $P_1/S_m$ | $P_2/S_m$ |  | T | <del></del> |

Но это расписание легко переделать так, чтобы работа не была одновременно на нескольких машинах.

Так как  $n \ge m$ , то сдвинем работы по времени следующим образом:



Совместное выполнение работ

Это оптимальное расписание, если  $p_i = p_j \ \forall \ i \ j = 1,..., n$ . Если  $p_i = p$ , то мы умеем строить оптимальное расписание и оно обладает тем свойством, что ни одна машина не простаивает до завершения всех работ.

Теперь рассмотрим общий случай разных  $p_i$ . В нем работы с большими длительностями ставятся на самые быстрые машины до тех пор, пока их длительность не сократится настолько, что совпадет с длительностью других работ, образуя группу одинаковых работ, а группу мы умеем расписывать оптимально.

Обозначим через  $p_i(t)$  часть работы i, которая еще не выполнена к моменту t. Наш алгоритм будет двигаться по t и в некоторых моментах времени s останавливаться для переназначения работ по машинам.

### **Алгоритм Level**

- 1. t := 0
- 2. While  $\exists$  работа с p(t) > 0 do
  - 2.1. Assign (*t*)
  - 2.2.  $t_1 := \min\{s > t \mid \exists \text{ работа завершающаяся в момент } s\}$
  - 2.3.  $t_2 := \min\{s > t \mid \exists ij, p_i(t) > p_j(t) \text{ и } p_i(s) = p_j(s)\}$
  - 2.4.  $t = \min \{ t_1, t_2 \}$
- 3. Восстановить расписание работ.

Процедура Assign (t) производит назначение работ по машинам.

### Процедура Assign

- 1.  $J := \{j \mid p_i(t) > 0\}$ .
- 2.  $M := \{M_1, ..., M_m\}$ .
- 3. Всем  $j \in J$  и  $M_i \in M$  присвоить статус «свободен».
- 4. While ∃ (свободные работы) и (свободные машины) do
  - 4.1. Найти множество  $I \subseteq J$  всех работ с  $p_i(t) = \max_{k \in J} p_k(t)$ .
  - 4.2.  $k := \min \{ |M|, |I| \}$ .
  - 4.3. Назначить работы из I на k самых быстрых машин из M для совместной обработки.
  - 4.4.  $J := J \setminus I$ .
  - 4.5. Исключить k самых быстрых машин из M.

### Пример Имеется 5 работ и 4 машины



В момент 0 начали выполняться 4 работы.

В момент  $t_1$   $p_5 = p_4(t_1)$  и далее они выполняются вместе на машине 4.

В момент  $t_2$   $p_1(t_2) = p_2(t_2)$  и далее они выполняются вместе на двух самых быстрых машинах.

Заметим, что кривая  $p_1(t)$  всегда остается выше всех других,  $p_2(t)$  не ниже  $p_i(t)$ , i > 2 и т.д., т.е.

$$p_1(t) \ge p_2(t) \ge \dots \ge p_n(t), \forall t \ge 0,$$

и процедура Assign (t) назначает работы на машины именно в этом порядке **Теорема.** Алгоритм Level строит оптимальное расписание.

Доказательство. Достаточно убедится в том, что алгоритм закончит работу в момент

$$t = LB = \max \begin{Bmatrix} m-1 \\ \max_{j=1} P_j / S_j; P_n / S_m \end{Bmatrix}.$$

1. Если к моменту завершения всех работ ни одна машина не простаивала, то  $t = P_n/S_m$  и решение оптимально.

2. Пусть машины завершили свою работу в разное время. Тогда  $f_1 \ge f_2 \ge ... \ge f_m$ ,  $f_i$  — время остановки машины i, и хотя бы одно неравенство строгое, т.е.

$$T = f_1 = f_2 = \dots = f_j > f_{j+1}$$
 w  $j < m$ 

Но работы, заканчивающиеся в момент T, должны были начаться в t=0, и тогда  $T=P_{j}\left/S_{j}\right.$ 

Убедимся в том, что все работы, заканчивающиеся в момент T, начали выполняться в t = 0. Предположим, что это не так, т.е.  $\exists$  работа i, которая началась в момент  $t_i > 0$ . Тогда в t = 0 начались другие работы: 1, 2, ..., m и

$$p_1(0) \ge p_2(0) \ge \dots \ge p_m(0) > p_i(0)$$
.

Все машины работали до  $t \le t_i$ , а в момент  $t_i$  мы получим  $p_1(t_i) = p_2(t_i) = \dots = p_m(t_i) = p_i(0)$  и далее они выполнялись вместе, т.е. машины не простаивали. Это противоречит предположению.

# 3адача $F \parallel C_{\max}$

**Имеется** n работ, каждая из которых должна пройти обработку последовательно на всех машинах  $M_1, M_2, ..., M_m$ , т.е. каждая работа состоит из m операций и для всех работ порядок выполнения операций один и тот же.

Требуется найти расписание выполнения работ за наименьшее время.



**Теорема.** Существует оптимальное расписание для задачи  $F \parallel C_{\max}$ , обладающее следующими свойствами:

- 1. Последовательности выполнения работ на первой и второй машинах одинаковы.
- 2. Последовательности выполнения работ на последней и предпоследней машинах одинаковы.

**Доказательство.** 1. Пусть утверждение не верно и среди всех оптимальных расписаний выберем такое, что последовательности на  $M_1$  и  $M_2$  совпадают для первых k работ, k < n и k — максимально.



Обозначим эту k-ю работу через  $J_i$ . На первой машине за ней идет  $J_l$ . На второй машине —  $J_j$ . Если на первой машине поставим  $J_j$  между  $J_i$  и  $J_l$ , то длина расписания не изменится, но k увеличится. Получили противоречие. Второе утверждение доказывается аналогично.

**Следствие.** При  $m \le 3$  существует оптимальное решение задачи  $F \parallel C_{\max}$  с одинаковым порядком выполнения работ на всех машинах.

**Контрпример** для m = 4.

n=2 и длительности операций для  $J_1$  и  $J_2$  задаются векторами: (1, 100, 100, 1) и (100, 1, 1, 100). Если порядки выполнения работ на всех машинах одинаковы, то их всего два:  $(J_1, J_2)$  или  $(J_2, J_1)$ . Тогда в обоих случаях  $C_{\text{max}} = 302$ .



Оптимальное решение  $C_{\rm max} = 204$ 



Порядок выполнения работ на  $M_2$  и  $M_3$  разный. Если при m>3 искать решение в виде одной перестановки, то отношение перестановочного оптимума и глобального оптимума может достигать величины  $0,5\sqrt{m}$ .

# Задача Джонсона $F2 \parallel C_{\max}$

Пусть заданы перестановка  $\Pi$ , определяющая порядок выполнения работ на двух машинах. Соответствующее расписание представим в виде сетевого

графика:  $M_1 \xrightarrow{\Pi_1} \longrightarrow \xrightarrow{\Pi_2} \longrightarrow \xrightarrow{\Pi_3} \longrightarrow \cdots \longrightarrow \xrightarrow{\Pi_n}$ 

Каждой вершине приписан вес равный длительности выполнения соответствующей операции. Заметим, что при заданной перестановке  $\Pi$  время окончания всех работ ( $C_{\max}$ ) равно длине максимального пути из источника в сток. Этот путь на некоторой работе s переходит от  $M_1$  к  $M_2$ .

Пусть  $a_j$  — время выполнения работы j на  $M_1$ ,

 $b_j$  — время выполнения работы j на  $M_2$ .

Тогда 
$$C_{\max}(\Pi) = \max_{1 \le s \le n} \left( \sum_{k=1}^s a_{\Pi_k} + \sum_{k=s}^n b_{\Pi_k} \right).$$

сток

**Теорема.** Перестановка  $\Pi^0 = (1, 2, ..., n)$  оптимальна, если существует номер q такой, что

1. 
$$a_j \le b_j$$
,  $j = 1,..., q$   $u \ a_1 \le a_2 \le ... \le a_q$ ;

2. 
$$a_j \ge b_j$$
,  $j = q+1,..., n$  и  $b_{q+1} \ge b_{q+2} \ge ... \ge b_n$ ;

или более наглядно

**Доказательство.** Пусть  $\Pi$ — произвольная перестановка и

$$C_{\max}(\Pi,s) = \sum_{k=1}^s a_{\Pi_k} + \sum_{k=s}^n b_{\Pi_k}$$
. Поскольку  $C_{\max}(\Pi) = \max_s C_{\max}(\Pi,s)$ , то

достаточно показать, что для всякого s найдется номер r такой, что

$$C_{\max}(\Pi^0, s) \le C_{\max}(\Pi, r).$$

В случае  $s \le q$  выберем r так чтобы  $\Pi_r \in \{s, ..., q\} \subset \{\Pi_r, \Pi_{r+1}, ..., \Pi_n\}$ .

Для этого достаточно в перестановке  $\Pi$  найти работу из  $\{s, ..., q\}$  с наименьшей позицией. Эту работа обозначили через  $\Pi_r$ . Тогда

$$C_{\max}(\Pi^0, s) = \sum_{k=1}^{s-1} a_k + a_s + \sum_{k=s}^q b_k + \sum_{k=q+1}^n b_k = a_s + \sum_{k \in \overline{s}, q} b_k + \sum_{k \notin \overline{s}, q} \min(a_k, b_k),$$

где 
$$s, q = \{s, ..., q\}$$
.

Для перестановки  $\Pi$  величина  $C_{\max}\left(\Pi,r\right)$  представима в виде

$$C_{\max}(\Pi, r) = a_{\Pi_r} + \sum_{k \in \overline{s}, q} b_k + \sum_{k \notin \overline{s}, q} c_k,$$

где  $c_k \ge \min(a_k, b_k)$ . Второе слагаемое содержит только величины  $b_k$ , так как  $\{s, ..., q\} \subset \{\Pi_r, \Pi_{r+1}, ..., \Pi_n\}$ . Из условия  $\Pi_r \in \{s, ..., q\}$  получаем  $a_{\Pi_r} \ge a_s$  откуда и следует нужное неравенство.

В случае s > q выбираем r так, чтобы  $\Pi_r \in \{q+1, ..., s\} \subset \{\Pi_1, ..., \Pi_r\}$ .

Остальная часть доказательства проводится аналогично.