# MATLAB sample code for OTFS variants

Orthogonal time frequency space is a novel modulation scheme where the information symbols are multiplexed in the delay-Doppler domain resulting in all the information symbols experiencing roughly the same channel. This code package implements the OTFS system with maximal ratio combining method proposed for ZP-OTFS in [R1,R2,R3] and extends it to other OTFS variants in the literature [R1]. See Chapter 6, [R1] for full details of the MRC algorithm.

#### MATLAB functions

| MATLAB functions                               | Description                                              |
|------------------------------------------------|----------------------------------------------------------|
| OTFSvariants_uncoded_system.m                  | main file to run all OTFS variants                       |
| RZP_OTFS_uncoded_system.m                      | main file for RZP-OTFS systems                           |
| RCP_OTFS_uncoded_system.m                      | main file for RCP-OTFS systems                           |
| CP_OTFS_uncoded_system.m                       | main file for CP-OTFS systems                            |
| ZP_OTFS_uncoded_system.m                       | main file for ZP-OTFS systems                            |
| Generate_2D_data_grid.m                        | Generate MxN 2-D information symbols                     |
| Generate_delay_Doppler_channel_parameters.m    | Generate the gain, delay and Doppler-shift               |
|                                                | of the P propagation path according to EPA,              |
|                                                | EVA or ETU channel models                                |
| Gen_time_domain_channel_OTFSvariants.m         | Generate <b>G</b> matrix (time domain channel            |
|                                                | matrix) and the DT channel response                      |
|                                                | $g^{s}[l,q]$ in [R1] (gs[l,q] in MATLAB code).           |
| Gen_delay_time_channel_vectors_OTFSvariants.m  | Generate the delay-time channel vectors                  |
|                                                | $\widetilde{v}_{m,l}$ in [R1] (nu_ml_tilda in the MATLAB |
|                                                | code) from $g^{s}[l,q]$ .                                |
| Generate_time_frequency_channel_OTFSvariants.m | Generate single tap time-frequency channel               |
|                                                | for low-complexity initial estimate                      |
| MRC_delay_time_detector_RZP.m                  | MRC detection for RZP-OTFS                               |
| MRC_delay_time_detector_RCP.m                  | MRC detection for RCP-OTFS                               |
| MRC_delay_time_detector_CP.m                   | MRC detection for CP-OTFS                                |
| MRC_delay_time_detector_ZP.m                   | MRC detection for ZP-OTFS                                |

#### Remarks

Run OTFSvariants\_uncoded\_system.m for all OTFS variants by simply changing the 'variant' variable (see below in Figure 1) to the appropriate OTFS variant.

Figure 1: Piece of code in the main MATLAB file where the OTFS variant is selected.

Alternatively, the sample code for each variant (RZP, RCP, CP and ZP) - OTFS can be run
individually using from RZP\_OTFS\_uncoded\_system.m, RCP\_OTFS\_uncoded\_system.m ,
CP\_OTFS\_uncoded\_system.m and ZP\_OTFS\_uncoded\_system.m, respectively.

#### Additional information

• The damping factor variable 'omega' can be adjusted to improve the performance. It is recommended to use smaller values for higher order modulation schemes like 64-QAM and 256-QAM to improve convergence. The users may also consider optimizing 'omega' in each iteration to improve convergence or error performance.

Figure 2: Piece of code in the main MATLAB file where the decision and init\_estimate flag is set.

A single tap TF equalizer is used to provide a low-complexity initial estimate for the MRC detection. For higher order modulation schemes like 64-QAM and 256-QAM, the initial estimate may not be reliable and the MRC detection works better without the initial estimate. Therefore, it is recommended to set the 'init\_estimate' flag (shown in the code snippet in Figure 2) to 0.

## > Sample simulation plots

Below we provide sample BER/FER plots for coded OTFS with turbo MRC detection using the following parameters. *init\_estimate* (shown in Figure 2) is set to zero in the sample plots.

| OTFS variant     | RZP-OTFS                     |
|------------------|------------------------------|
| Frame size       | N=M=64                       |
| Channel model    | Extended Vehicular – A (EVA) |
| Maximum UE speed | 500 km/hr                    |
| QAM size         | 4-QAM                        |



| OTFS variant     | ZP-OTFS                      |
|------------------|------------------------------|
| Frame size       | N=M=64                       |
| Channel model    | Extended Vehicular – A (EVA) |
| Maximum UE speed | 500 km/hr                    |
| QAM size         | 64-QAM                       |



| OTFS variant     | RCP-OTFS                     |
|------------------|------------------------------|
| Frame size       | N=M=64                       |
| Channel model    | Extended Vehicular – A (EVA) |
| Maximum UE speed | 500 km/hr                    |
| QAM size         | 64-QAM                       |



| OTFS variant     | CP-OTFS                      |
|------------------|------------------------------|
| Frame size       | N=M=64                       |
| Channel model    | Extended Vehicular – A (EVA) |
| Maximum UE speed | 500 km/hr                    |
| QAM size         | 64-QAM                       |



### > References

[R1]. Y. Hong, T. Thaj, E. Viterbo, ``Delay-Doppler Communications: Principles and Applications'', Academic Press, 2022, ISBN:9780323850285

[R2]. T. Thaj and E. Viterbo, `Low Complexity Iterative Rake Decision Feedback Equalizer for Zero-Padded OTFS Systems", in IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15606-15622, Dec. 2020, doi: 10.1109/TVT.2020.3044276.

[R3]. T. Thaj and E. Viterbo, `Low Complexity Iterative Rake Detector for Orthogonal Time Frequency Space Modulation' 2020 IEEE Wireless Communications and Networking Conference (WCNC), 2020, pp. 1-6, doi: 10.1109/WCNC45663.2020.9120526.