## Experiments with Plotly

import plotly.express as px
import pandas as pd

salary\_df = pd.read\_csv('\_/content/employee\_salaries.csv')
salary\_df

| -        |                     |              |
|----------|---------------------|--------------|
| <u> </u> | Years_of_Experience | Salary       |
| 0        | 1.000000            | 40000.00000  |
| 1        | 2.257942            | 65979.42119  |
| 2        | 2.450875            | 67253.57549  |
| 3        | 2.498713            | 67342.43510  |
| 4        | 2.613729            | 70532.20448  |
|          |                     |              |
| 1995     | 19.178575           | 421534.69100 |
| 1996     | 19.254499           | 430478.02650 |
| 1997     | 19.353369           | 438090.84540 |
| 1998     | 19.842520           | 482242.16080 |
| 1999     | 20.000000           | 500000.00000 |
|          |                     |              |

#Plot years of experience vs Salary
fig = px.scatter(salary\_df, x='Years\_of\_Experience', y='Salary')
fig.show()





 $\label{eq:csv} admission\_df = \texttt{pd.read\_csv('/content/university\_admission.csv')} \\ admission\_df$ 

**₹** 

|                                             |     | Serial No. G | No. GRE Score | TOEFL Score | University | Rating | SOP | LOR | CGPA | Research | Chance of Admit |
|---------------------------------------------|-----|--------------|---------------|-------------|------------|--------|-----|-----|------|----------|-----------------|
| <b>1</b> 2 324 107 4 4.0 4.5 8.87 1 0.7     | 0   | 1            | 1 337         | 118         |            | 4      | 4.5 | 4.5 | 9.65 | 1        | 0.92            |
|                                             | 1   | 2            | 2 324         | 107         |            | 4      | 4.0 | 4.5 | 8.87 | 1        | 0.76            |
| <b>2</b> 3 316 104 3 3.0 3.5 8.00 1 0.7     | 2   | 3            | 3 316         | 104         |            | 3      | 3.0 | 3.5 | 8.00 | 1        | 0.72            |
| <b>3</b> 4 322 110 3 3.5 2.5 8.67 1 0.8     | 3   | 4            | 4 322         | 110         |            | 3      | 3.5 | 2.5 | 8.67 | 1        | 0.80            |
| <b>4</b> 5 314 103 2 2.0 3.0 8.21 0 0.6     | 4   | 5            | 5 314         | 103         |            | 2      | 2.0 | 3.0 | 8.21 | 0        | 0.65            |
| <b></b>                                     |     |              |               |             |            |        |     |     |      |          |                 |
| <b>495</b> 496 332 108 5 4.5 4.0 9.02 1 0.8 | 495 | 496          | 496 332       | 108         |            | 5      | 4.5 | 4.0 | 9.02 | 1        | 0.87            |
| <b>496</b> 497 337 117 5 5.0 5.0 9.87 1 0.9 | 496 | 497          | 497 337       | 117         |            | 5      | 5.0 | 5.0 | 9.87 | 1        | 0.96            |
| <b>497</b> 498 330 120 5 4.5 5.0 9.56 1 0.9 | 497 | 498          | 498 330       | 120         |            | 5      | 4.5 | 5.0 | 9.56 | 1        | 0.93            |
| <b>498</b> 499 312 103 4 4.0 5.0 8.43 0 0.7 | 498 | 499          | 499 312       | 103         |            | 4      | 4.0 | 5.0 | 8.43 | 0        | 0.73            |
| <b>499</b> 500 327 113 4 4.5 4.5 9.04 0 0.8 | 499 | 500          | 500 327       | 113         |            | 4      | 4.5 | 4.5 | 9.04 | 0        | 0.84            |

500 rows × 9 columns

 $\label{eq:fig_px_scatter} fig=px.scatter(admission\_df, \ x='GRE \ Score', \ y='Chance \ of \ Admit', \ color = 'University \ Rating') \\ fig.show()$ 





## Interactive Bubble Chart

#lets plot the bubble plot with size varying wit the SOP
fig = px.scatter(admission\_df, x='GRE Score', y='Chance of Admit', color='University Rating', size='SOP')
fig.show()





#Adding additional hover data "LOR"
fig = px.scatter(admission\_df, x='GRE Score', y='Chance of Admit', color='University Rating', size='SOP', hover\_data='LOR')
fig.show()





#crypto prices
crypto\_df = pd.read\_csv('/content/crypto\_prices.csv')
crypto\_df

| - | 4 |
|---|---|
|   | _ |
|   | ÷ |

|      | Date      | BTC-USD Price | ETH-USD Price | LTC-USD Price |
|------|-----------|---------------|---------------|---------------|
| 0    | 9/17/2014 | 457.334015    | NaN           | 5.058550      |
| 1    | 9/18/2014 | 424.440002    | NaN           | 4.685230      |
| 2    | 9/19/2014 | 394.795990    | NaN           | 4.327770      |
| 3    | 9/20/2014 | 408.903992    | NaN           | 4.286440      |
| 4    | 9/21/2014 | 398.821014    | NaN           | 4.245920      |
|      |           |               |               |               |
| 2380 | 3/28/2021 | 55950.746090  | 1691.355957   | 185.028488    |
| 2381 | 3/29/2021 | 57750.199220  | 1819.684937   | 194.474777    |
| 2382 | 3/30/2021 | 58917.691410  | 1846.033691   | 196.682098    |
| 2383 | 3/31/2021 | 58918.832030  | 1918.362061   | 197.499100    |
| 2384 | 4/1/2021  | 59095.808590  | 1977.276855   | 204.112518    |

2385 rows × 4 columns

#show all the columns in crypto\_df
crypto\_df.columns

→ Index(['Date', 'BTC-USD Price', 'ETH-USD Price', 'LTC-USD Price'], dtype='object')

#Line plot
fig = px.line(crypto\_df, x='Date', y='BTC-USD Price')
fig.show()





crypto\_df[crypto\_df['BTC-USD Price'] == crypto\_df['BTC-USD Price'].max()]

crypto\_df[crypto\_df['Date'] == '3/13/2021']

```
Date BTC-USD Price ETH-USD Price LTC-USD Price
2365 3/13/2021 61243.08594 1924.685425 226.578293
```

```
fig = px.line()
for i in crypto_df.columns[1:]:
   fig.add_scatter(x=crypto_df['Date'], y=crypto_df[i], name=i)
fig.show()
```

 $\overline{\mathbf{x}}$ 



```
my_dict = {'allocation %': [10, 10, 10, 60, 10]}
# explode = (0, 0, 0, 0.2, 0)

crypto_df_allocate = pd.DataFrame(data = my_dict, index = ['BTC', 'ETH', 'LTC', 'XRP', 'ADA'])

# Use Plotly Express to plot a pie chart
fig = px.pie(crypto_df_allocate, values = 'allocation %', names = ['BTC', 'ETH', 'LTC', 'XRP', 'ADA'], title = 'Crypto Portfolic fig.show()
```

 $\overline{\mathbf{T}}$ 

## Crypto Portfolio Allocation



data = pd.read\_csv('/content/gapminder.csv')
data

| 3  | Unnam | ed: 0 | country     | continent | year | lifeExp | рор      | gdpPercap  | iso_alpha | iso_num |
|----|-------|-------|-------------|-----------|------|---------|----------|------------|-----------|---------|
| (  | 0     | 0     | Afghanistan | Asia      | 1952 | 28.801  | 8425333  | 779.445314 | AFG       | 4       |
|    | 1     | 1     | Afghanistan | Asia      | 1957 | 30.332  | 9240934  | 820.853030 | AFG       | 4       |
| 2  | 2     | 2     | Afghanistan | Asia      | 1962 | 31.997  | 10267083 | 853.100710 | AFG       | 4       |
| ;  | 3     | 3     | Afghanistan | Asia      | 1967 | 34.020  | 11537966 | 836.197138 | AFG       | 4       |
| 4  | 4     | 4     | Afghanistan | Asia      | 1972 | 36.088  | 13079460 | 739.981106 | AFG       | 4       |
|    |       |       |             |           |      |         |          |            |           |         |
| 16 | 599   | 1699  | Zimbabwe    | Africa    | 1987 | 62.351  | 9216418  | 706.157306 | ZWE       | 716     |
| 17 | 700   | 1700  | Zimbabwe    | Africa    | 1992 | 60.377  | 10704340 | 693.420786 | ZWE       | 716     |
| 17 | 701   | 1701  | Zimbabwe    | Africa    | 1997 | 46.809  | 11404948 | 792.449960 | ZWE       | 716     |
| 17 | 702   | 1702  | Zimbabwe    | Africa    | 2002 | 39.989  | 11926563 | 672.038623 | ZWE       | 716     |
| 17 | 703   | 1703  | Zimbabwe    | Africa    | 2007 | 43.487  | 12311143 | 469.709298 | ZWE       | 716     |
|    |       |       |             |           |      |         |          |            |           |         |

 $\label{eq:canada_df} \begin{array}{lll} {\sf canada\_df=data[data['country'] == 'Canada']} \\ {\sf canada\_df} \end{array}$ 

| _ |     |            |          |           |      |          |          |             |           |         |
|---|-----|------------|----------|-----------|------|----------|----------|-------------|-----------|---------|
| ₹ |     | Unnamed: 0 | country  | continent | year | lifeExp  | pop      | gdpPercap   | iso_alpha | iso_num |
|   | 240 | 240        | Canada   | Americas  | 1952 | 68.750   | 14785584 | 11367.16112 | CAN       | 124     |
|   | 241 | 241        | Canada   | Americas  | 1957 | 69.960   | 17010154 | 12489.95006 | CAN       | 124     |
|   | 242 | 242        | Canada   | Americas  | 1962 | 71.300   | 18985849 | 13462.48555 | CAN       | 124     |
|   | 243 | 243        | Canada   | Americas  | 1967 | 72.130   | 20819767 | 16076.58803 | CAN       | 124     |
|   | 244 | 244        | Canada   | Americas  | 1972 | 72.880   | 22284500 | 18970.57086 | CAN       | 124     |
|   | 245 | 245        | Canada   | Americas  | 1977 | 74.210   | 23796400 | 22090.88306 | CAN       | 124     |
|   | 246 | 246        | Canada   | Americas  | 1982 | 75.760   | 25201900 | 22898.79214 | CAN       | 124     |
|   | 247 | 247        | Canada   | Americas  | 1987 | 76.860   | 26549700 | 26626.51503 | CAN       | 124     |
|   | 248 | 248        | Canada   | Americas  | 1992 | 77.950   | 28523502 | 26342.88426 | CAN       | 124     |
|   | 249 | 249        | Canada   | Americas  | 1997 | 78.610   | 30305843 | 28954.92589 | CAN       | 124     |
|   | 250 | 250        | Canada   | Americas  | 2002 | 79.770   | 31902268 | 33328.96507 | CAN       | 124     |
|   |     | ^          | <u> </u> |           | ^^~  | ~~ ~ - ~ |          |             | ~         |         |
|   |     |            |          |           |      |          |          |             |           |         |

#Bar chart to show population growth in Canada
fig = px.bar(canada\_df, x='year', y='pop', labels={'pop':'Population of Canada'}, height=500)
fig.show()





#Adding color and hover data
fig = px.bar(canada\_df, x='year', y='pop', labels={'pop':'Population of Canada'}, height=500, color='lifeExp', hover\_data=['gdpF
fig.show()





#Interactive Gantt Chart
job\_1={'Task':'Develop Content', 'Start':'2020-10-10','Finish':'2021-01-01'}
job\_2={'Task':'FIlm Videos', 'Start':'2021-01-01','Finish':'2021-03-03'}
job\_3={'Task':'Edit Videos', 'Start':'2021-03-06','Finish':'2021-04-04'}
project\_df = pd.DataFrame([job\_1, job\_2, job\_3])
project\_df

| ₹ |   | Task            | Start      | Finish     |
|---|---|-----------------|------------|------------|
|   | 0 | Develop Content | 2020-10-10 | 2021-01-01 |
|   | 1 | FIlm Videos     | 2021-01-01 | 2021-03-03 |
|   | 2 | Edit Videos     | 2021-03-06 | 2021-04-04 |

fig = px.timeline(project\_df, x\_start = "Start", x\_end = "Finish", y = "Task")
fig.update\_yaxes(autorange = "reversed") # otherwise tasks are listed from the bottom up
fig.show()





```
# Define Job #4
job_4 = {'Task':"Send the course for approval", 'Start':'2021-04-04', 'Finish':'2021-04-05'}
job_4
project_df = pd.DataFrame([job_1, job_2, job_3, job_4])
project_df

fig = px.timeline(project_df, x_start = "Start", x_end = "Finish", y = "Task")
fig.update_yaxes(autorange = "reversed") # otherwise tasks are listed from the bottom up
fig.show()
```





#Interactive Sunburst
restaurant\_df = pd.read\_csv('/content/restaurant\_mini.csv'

| ₹ |   | Customer ID | Day      | Dining or Takeout | Age | Invoic : |
|---|---|-------------|----------|-------------------|-----|----------|
|   | U | 1           | Saturday | טווווווע          | ۷۵  | 43       |
|   | 1 | 2           | Saturday | Dining            | 22  | 70       |
|   | 2 | 3           | Sunday   | Takeout           | 26  | 80       |
|   | 3 | 4           | Sunday   | Takeout           | 30  | 100      |





 $restaurant\_df = pd.read\_csv('/content/restaurant.csv') \\ restaurant\_df$ 

244 rows x 8 columns

| <b>→</b> |     | Unnamed: 0 | total_bill | tip  | sex    | smoker | day  | time   | size |
|----------|-----|------------|------------|------|--------|--------|------|--------|------|
|          | 0   | 0          | 16.99      | 1.01 | Female | No     | Sun  | Dinner | 2    |
|          | 1   | 1          | 10.34      | 1.66 | Male   | No     | Sun  | Dinner | 3    |
|          | 2   | 2          | 21.01      | 3.50 | Male   | No     | Sun  | Dinner | 3    |
|          | 3   | 3          | 23.68      | 3.31 | Male   | No     | Sun  | Dinner | 2    |
|          | 4   | 4          | 24.59      | 3.61 | Female | No     | Sun  | Dinner | 4    |
|          |     |            |            |      |        |        |      |        |      |
|          | 239 | 239        | 29.03      | 5.92 | Male   | No     | Sat  | Dinner | 3    |
|          | 240 | 240        | 27.18      | 2.00 | Female | Yes    | Sat  | Dinner | 2    |
|          | 241 | 241        | 22.67      | 2.00 | Male   | Yes    | Sat  | Dinner | 2    |
|          | 242 | 242        | 17.82      | 1.75 | Male   | No     | Sat  | Dinner | 2    |
|          | 243 | 243        | 18.78      | 3.00 | Female | No     | Thur | Dinner | 2    |