2 بع رياضية فرض مراقب رقم 17 ذ: الرشيد

 $\arctan \theta \quad \sqrt{b^2 - 4ac} \quad \sum_{i=1}^n X_i \quad \overrightarrow{AB} \quad \cos^{-1} \theta \quad e^{i\theta} \quad C_n^p \quad \sqrt{a^2 + b^2} \quad \int_b^a f(x) dx \quad \sqrt{x}$

www.sites.google.com/site/errachidmaths

$$E^*=E\setminus \Set{0}$$
 و $E=\Set{0;1;2;....;p-1}$ و کیدا صحیحا طبیعیا نضع

$$(\forall a \in E^*)(\exists b \in E^*)$$
 $ab \equiv 1[p]: 1$ -1

$$(\forall (a;b) \in E^2)$$
 $(ab \equiv 0 [p] \Rightarrow a = 0 \text{ ou } b = 0)$: بين أن -2

$$x^2 \equiv a \ [p]$$
: ليكن a من E^* بين أنه يوجد على الأكثر عنصرين من E^* من عنصرين أنه يوجد على الأكثر

$$x^2 \equiv 1 [p]$$
: حدد x من E^* بحيث -4

$$p = 13$$
 نأخذ -5

$$E$$
 في a تقبل حلا في a بحيث المعادلة a قبل حلا في المعادلة a

$$x^2 + 2x + 3 \equiv 0$$
 [13] : المعادلة Z المجموعة

$$x^2 + 5x - 6 = 0$$
[13]: ج- حدد x من Z بحیث

نذكر أن $(M_2(IR);+;\cdot)$ فضاء متجهي حقيقي و أن $(M_2(IR);+;\cdot)$ حلقة واحدية .

$$J=egin{pmatrix} 0 & -2 \ rac{1}{2} & 0 \end{pmatrix}$$
 و $I=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$ بحيث: $M_2(IR)$ بحيث $M_2(IR)$ بحيث العنصرين من

$$E = \left\{ egin{aligned} M_{(a;b)} = \left(egin{array}{cc} a & -2b \ b & a \end{array}
ight) / \left(a;b
ight) \in IR^2 \end{aligned}
ight\}$$
 نعتبر المجموعة

. فضاء متجهي حقيقي
$$(E;+;.)$$
 أن أن $(E;+;.)$

. مين أن الأسرة
$$(I;J)$$
 أساس للفضاء بين أن E ثم استنتج بعده E

$$IN^*$$
 من n من أن $J^2=-I$ ثم أحسب J^n حسب قيم من أن $J^2=-I$

$$ig(M_2(\mathit{IR})\,; imesig)$$
 ب- بین أن E جزء مستقر من

$$a+ib$$
 يعتبر التطبيق $M_{(a:b)}$ بالعدد العقدي C^* و الذي يربط كل مصفوفة E^* بالعدد العقدي -4

$$C^*$$
 اـ بين أن f تقابل من E^* نحو

$$\left(\begin{array}{c} C^{*}; \times \end{array} \right)$$
 ج- بین أن f تشاكل من $\left(\begin{array}{c} E^{*}; \times \end{array} \right)$ نحو

$$A = I - J$$
 بنعتبر المصفوفة

$$\left(A^{-1}
ight)^{2014} = -\left(rac{1}{2}
ight)^{1007} J :$$
حدد A^{-1} حدد

$$X^3 = I - \sqrt{3}J$$
: د- حل في المجموعة E المعادلة

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
 : نعتبر المصفوفة

$$A^3$$
 و A^2 او

. استنتج أن
$$A^3 - A = 4I_3$$
 ثم بين أن A يقبل مقلوبا المطلوب تحديده -2