Mathematical Skills for Data Scientists Lab Exercises 4 – 6 Marks (Due: 07/11/22)

Gibin Powathil

g.g.powathil@swansea.ac.uk

Note: Please add these two lines of code at the end of your matlab script

```
filename = which(mfilename('fullpath'))
fileInfo = dir(filename)
```

Exercise 1 (Newton's Method in Excel/Matlab- Example (no marks)). Do Newton's Method for $x \mapsto x^3 - 5$ ($f(x) = x^3 - 5$). Find a formula for the derivative by hand and use Excel for the iteration. You will find f(1.709975947) = 0.

Exercise 2 (Newton's Method in Excel). Do Newton's Method for $x \mapsto x^3 - 2$ ($f(x) = x^3 - 2$). Find a formula for the derivative by hand and use Excel for the iteration. (1 mark)

Exercise 3 (Newton's Method in MatLab). Try Newton's Method for $x \mapsto x^2$, $x \mapsto \sin(\cos x)$, $x \mapsto x^7 - 5$ and $x \mapsto \sqrt(x)$, all starting with $x_0 = 1$. Report (2 marks).

Exercise 4 (Gradient Descent in Excel/Matlab- Example (no marks)). Try to find the minimum of $x^2 + (y-2)^2$ using gradient descent. You will find f(0.0225, 1.9774) = 0.00101.

Exercise 5 (Gradient descent in Excel). Try to find the minimum of $(1-x)^2 + 100(y-x^2)^2$ using gradient descent. Is it working?(1 mark)

Exercise 6 (Gradient descent in Matlab). Implement a gradient descent routine in Matlab. Try it out on

- 1. $x^2 \cos y$
- 2. x + y
- 3. $x^2 + 2xy + y^2$

Vary the step size, and compare. You may start with [1,1](2 mark)

Exercise 7. Read https://en.wikipedia.org/wiki/Gradient_descent