Knowledge-aware Attentive Neural Network for Ranking Question Answer Pairs

YingShen, YangDeng, MinYang, YaliangLi, NanDu, WeiFan, KaiLei

Xiaofan Yan

Outline

- Abstract
- Introduction
- Method
- Experiment
- Conclusion

Abstract

KABLSTM

- (Knowledge-aware Bidirectional Long Short Term Memory)
- Leverage knowledge graph to enrich the representational learning of QA sentence

Introduction

- QA(question answering)
 - Deep learning in natural language processing
 - Exploit attention mechanisms to learn interaction information
 - Challenge
 - Background knowledge from open-domain knowledge graphs, a higher score to negative answers since the negative answer is more similar to the questions
 - The issues of redundancy and noise prevalent 后面没有解释解决这个问题?

Method

- Bidirectional Long Short-Term Memory
 - Learn the initial representations
- Knowledge model
 - Knowledge-based sentence representation learning
 - Context-guided attentive CNN to learn the knowledge-based sentence representation
- Knowledge-aware attention
 - Context-based sentence representation learning
 - Learn final knowledge-aware attentive sentence representation

Method

Experiment

- Experiment setup
 - Dataset: TREC QA& WlkiQA
 - Metrics: MAP&MRR
- Implementation details
 - Word embedding: GloVE
 - Knowledge graph: FB5M

Experiment

Experiment result

Table 3: Result on TREC QA(original) (with ablation study)

Model	MAP	MRR
Wang & Nyberg (2015) [11]	0.7134	0.7913
Severyn & Moschitti (2015) [6]	0.7459	0.8078
Tay et al. (2017) [8]	0.7499	0.8153
Rao et al. (2016) [5]	0.7800	0.8340
Tay et al. (2018) [9]	0.7712	0.8384
KABLSTM	0.7921	0.8444
w/o attention	0.7805	0.8309
w/o KG	0.7596	0.8099

Table 4: Result on TREC QA(cleaned) and WikiQA (with ablation study)

Models	TREC QA(cleaned)		WikiQA	
	MAP	MRR	MAP	MRR
Yang et al. (2015) [14]	0.6951	0.7633	0.6520	0.6652
Santos et al. (2016) [4]	0.7530	0.8511	0.6886	0.6957
Rao et al. (2016) [5]	0.8010	0.8770	0.7010	0.7180
Chen et al. (2017) [2]	0.7814	0.8513	0.7212	0.7312
Wang et al. (2016) [10]	0.7369	0.8208	0.7341	0.7418
KABLSTM	0.8038	0.8846	0.7323	0.7494
w/o attention	0.7821	0.8654	0.7214	0.7363
w/o KG	0.7633	0.8320	0.7086	0.7255

Experiment

- Analyze
 - Completeness of Knowledge Graph -- incomplete knowledge graph
 - Case Study -- visualizing the attention weight with baseline model

who is the president or chief executive of amtrak?

"long-term success here has to do with doing it right,
getting it right and increasing market share, "said george
warrington, amtrak's president and chief executive.

"long-term success here has to do with doing it right,
getting it right and increasing market share, "said george
warrington, amtrak's president and chief executive.

Conclusion

 Propose a knowledge-aware attentive neural network for ranking QA pairs, which effectively incorporate external knowledge from KGs into sentence representational learning.