APL 745 Backpropagation

Dr. Rajdip Nayek

Block V, Room 418D

Department of Applied Mechanics
Indian Institute of Technology Delhi

E-mail: rajdipn@am.iitd.ac.in

Overview

• We've seen that multilayer neural networks are powerful. But how to actually learn (or optimize) the weights and biases?

Update
$$w \leftarrow w - \eta \frac{\partial \mathcal{L}}{\partial w}$$

- Backpropagation is the central algorithm that is used for computing gradients
 - Backpropagation is an efficient use of the Chain Rule for derivatives
 - It's an instance of reverse mode automatic differentiation

N.B. Lecture slides mostly follow the material of CSC421 by Roger Grosse and Jimmy Ba

Recap: Gradient descent

Recall that gradient descent moves opposite to the direction of gradient

- We want to compute the gradient of the loss function $\partial \mathcal{L}/\partial w$, which is the vector of partial derivatives and is calculated by averaging over all training examples
- In this lecture, we will focus on computing the gradients of loss function for a single training example

- We already know of the univariate chain rule
- Recall if f(x) and x(t) are univariate functions, then

$$\frac{d}{dt}f(x(t)) = \frac{df}{dx} \frac{dx}{dt}$$
 Chain rule

Let's compute the loss derivatives

• Let's compute the loss derivatives w.r.t. \boldsymbol{w} and \boldsymbol{b} using calculus

$$\ell = \frac{1}{2} (t - \sigma(wx + b))^{2}$$

$$\frac{\partial \ell}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2} (t - \sigma(wx + b))^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} (t - \sigma(wx + b))^{2}$$

$$= (t - \sigma(wx + b)) \frac{\partial}{\partial w} (t - \sigma(wx + b))$$

$$= (t - \sigma(wx + b)) \frac{\partial}{\partial w} (t - \sigma(wx + b))$$

$$= -(t - \sigma(wx + b)) \sigma'(wx + b) \frac{\partial}{\partial w} (wx + b)$$

$$= -(t - \sigma(wx + b)) \sigma'(wx + b) \frac{\partial}{\partial w} (wx + b)$$

$$= -(t - \sigma(wx + b)) \sigma'(wx + b) \frac{\partial}{\partial w} (wx + b)$$

$$= -(t - \sigma(wx + b)) \sigma'(wx + b) \sigma'(wx + b)$$

$$= -(t - \sigma(wx + b)) \sigma'(wx + b) \sigma'(wx + b)$$

$$= -(t - \sigma(wx + b)) \sigma'(wx + b) \sigma'(wx + b)$$

What are the disadvantages of this approach?

- The calculations are <u>very cumbersome</u>. In this derivation, we had to copy lots of terms from one line to the next
- The final expressions have lots of repeated terms

A more structured way of doing it

1) Compute the loss:

$$z = wx + b$$

$$y = \sigma(z)$$

$$\ell = \frac{1}{2} (t - y)^{2}$$

This form of computation is clean!

No repeated expressions

2) Compute the derivatives:

- We can plot these computations using a computation graph
- The nodes represent all the inputs and computed quantities

• The edges represent which nodes are computed directly as a function of other

nodes

1) Compute loss

$$z = wx + b$$

$$y = \sigma(z)$$

$$\longrightarrow \ell = \frac{1}{2}(t-y)^2$$

- We can plot these computations using a computation graph
- The **nodes** represent all the inputs and computed quantities
- The **edges** represent which nodes are computed directly as a function of other nodes

1) Compute loss

$$z = wx + b$$
$$y = \sigma(z)$$
$$\ell = \frac{1}{2} (t - y)^{2}$$

1) Compute loss

A weird but slightly convenient notation

- Usual notation: $\nabla_v \ell = \frac{\partial \ell}{\partial v}$
- Instead, use $\bar{v} = \nabla_v \ \ell = \frac{\partial \ell}{\partial v}$

2) Compute the derivatives:

1) Compute the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\ell = \frac{1}{2} (t - y)^{2}$$

$$\frac{\partial \ell}{\partial y} = -(t - y)$$

$$\frac{\partial \ell}{\partial z} = \frac{\partial \ell}{\partial y} \frac{dy}{dz} = \frac{\partial \ell}{\partial y} \sigma'(z)$$

$$\frac{\partial \ell}{\partial w} = \frac{\partial \ell}{\partial z} \frac{\partial z}{\partial w} = \frac{\partial \ell}{\partial z} x$$

$$\frac{\partial \ell}{\partial b} = \frac{\partial \ell}{\partial z} \frac{\partial z}{\partial b} = \frac{\partial \ell}{\partial z}$$

$$\overline{w} = \overline{z} x$$

$$\overline{b} = \overline{z}$$

Note: \overline{w} used here should not be confused with augmented \overline{w} used in linear regression/classification

Multivariate Chain Rule

• Suppose we have a function f(x(t), y(t)). Then

$$\frac{d}{dt}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

In the context of backpropagation (backward pass)

$$\frac{d}{dt} f(x(t), y(t)) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$
Values computed first

Multivariate Chain Rule

• Suppose we have a function f(x(t), y(t)). Then

$$\frac{d}{dt}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Mathematical expressions to be evaluated

$$\frac{d}{dt} f(x(t), y(t)) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Values already computed

• In our notation:

Full backpropagation algorithm:

Let v_1, \dots, v_N be a topological ordering of the computation graph (i.e. where parents come before children)

 v_N denotes the variable we are trying to compute derivatives of (e.g. loss function)

Backward passCompute derivatives

Example: Logistic least-squares regression

Forward pass

Compute values

$$z = wx + b$$

$$y = \sigma(z)$$

$$\ell = \frac{1}{2}(t - y)^{2}$$

$$r = \frac{1}{2}w^{2}$$

Backward pass

Compute derivatives

$$\overline{r} = \overline{\ell}_{reg} \frac{\partial \ell_{reg}}{\partial r}$$

$$= \overline{\ell}_{reg} \lambda$$

$$\frac{\partial \ell_{reg}}{\partial \ell} = \overline{\ell}_{reg} \frac{\partial \ell_{reg}}{\partial \ell}$$

$$= \overline{\ell}_{reg}$$

$$\frac{\partial \ell_{reg}}{\partial \gamma} = \overline{\ell} \frac{\partial \ell}{\partial \gamma}$$

$$= -\overline{\ell} (t - \gamma)$$

 $\overline{\ell}_{reg} = 1$

$$\overline{z} = \overline{y} \frac{dy}{dz}$$

$$= \overline{y} \sigma'(z)$$

$$\overline{b} = \overline{z} \frac{\partial z}{\partial b} = \overline{z}$$

$$\overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{r} \frac{\partial r}{\partial w}$$

$$= \overline{z}x + \overline{r}w$$

Example: Logistic least-squares regression

$$y = \sigma(z)$$

$$\ell = \frac{1}{2}(t - y)^{2}$$

$$r = \frac{1}{2}w^{2}$$

= wx + b

$$\frac{\partial l_{rq}}{\partial w} = \overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{r} \frac{\partial r}{\partial w}$$
$$= \overline{z}x + \overline{r}w$$

Example: Logistic least-squares regression

Derivatives via backprop

$$\overline{\ell}_{reg} = 1 \qquad \overline{z} = \overline{y} \frac{dy}{dz}
\overline{r} = \overline{\ell}_{reg} \frac{\partial \ell_{reg}}{\partial r} \qquad = \overline{y} \sigma'(z)
= \overline{\ell}_{reg} \lambda \qquad \overline{b} = \overline{z} \frac{\partial z}{\partial b} = \overline{z}
\overline{\ell} = \overline{\ell}_{reg} \frac{\partial \ell_{reg}}{\partial \ell} \qquad \overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{r} \frac{\partial r}{\partial w}
= \overline{\ell}_{reg} \qquad = \overline{z}x + \overline{r}w$$

$$\overline{y} = \overline{\ell} \frac{\partial \ell}{\partial y}$$

- The derivation, and the final result, are much cleaner and efficient. There are no redundant computations here.
- The procedure is **modular**: it is broken down into small chunks that can be reused for other computations. For instance, if we want to change the loss function, we'd only have to modify the formula for \bar{y}

Backpropagation for MLP

Multilayer Perceptron (multiple outputs)

One hidden layer

Want to compute gradients of loss function wrt all weights and biases

Forward pass

$$z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}$$

$$h_{i} = \sigma(z_{i})$$

$$y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(1)}$$

$$\ell = \frac{1}{2} \sum_{k} (t_{k} - y_{k})^{2}$$

Backpropagation for MLP

Multilayer Perceptron (multiple outputs):

Forward pass

$$z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}$$

$$h_{i} = \sigma(z_{i})$$

$$y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(1)}$$

$$\ell = \frac{1}{2} \sum_{k} (t_{k} - y_{k})^{2}$$

Backward pass

$$\overline{\ell} = 1$$

$$\overline{y}_{k} = \overline{\ell} \frac{\partial \ell}{\partial y_{k}} = -\overline{\ell} \underbrace{\left(t_{k} - y_{k}\right)}$$

$$\overline{w}_{ki}^{(2)} = \overline{y}_{k} \frac{\partial y_{k}}{\partial w_{ki}^{(2)}} = \overline{y}_{k} h_{i}$$

$$\overrightarrow{b}_{k}^{(2)} = \overline{y}_{k} \frac{\partial y_{k}}{\partial b_{k}^{(2)}} = \overline{y}_{k}$$

$$\overrightarrow{h}_{i} = \sum_{k} \overline{y}_{k} \frac{\partial y_{k}}{\partial h_{i}} = \sum_{k} \overline{y}_{k} w_{ki}^{(2)}$$

$$\overline{z}_{i} = \overline{h}_{i} \frac{\partial h_{i}}{\partial z_{i}} = \overline{h}_{i} \sigma'(z_{i})$$

$$\overline{w}_{ij}^{(1)} = \overline{z}_{i} \frac{dz_{i}}{dw_{ij}^{(1)}} = \overline{z}_{i} x_{j}$$

$$\overline{b}_{i}^{(1)} = \overline{z}_{i} \frac{dz_{i}}{db_{i}^{(1)}} = \overline{z}_{i}$$

$$17$$

Backpropagation for MLP

Multilayer Perceptron (multiple outputs):

Forward pass

$$z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}$$

$$h_{i} = \sigma(z_{i})$$

$$y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(1)}$$

$$\ell = \frac{1}{2} \sum_{i} (t_{k} - y_{k})^{2}$$

Full break
$$\overline{h}_{1} = \overline{y}_{1} \frac{\partial y_{1}}{\partial h_{1}} + \overline{y}_{2} \frac{\partial y_{2}}{\partial h_{1}} = \overline{y}_{1} w_{11}^{(2)} + \overline{y}_{2} w_{21}^{(2)}$$

$$\frac{\partial Q}{\partial h_{1}} \qquad \frac{\partial Q}{\partial y_{2}} \qquad \frac{\partial Q}{\partial h_{2}} \qquad \frac$$

- Computation graphs showing individual units are cumbersome
- We can draw graphs over the vectorized variables

We pass the gradients back in the same way as for the scalar-valued nodes

Consider this partial computation graph:

Full backpropagation algorithm (vector form):

Let v_1, \dots, v_N be a topological ordering of the computation graph (i.e. parents come before children)

 v_N denotes the variable we are trying to compute derivatives of (e.g. loss function)

Compute values

Forward pass For $i=1,\ldots,N$ Compute values Compute \mathbf{v}_i as a function of $\mathrm{Pa}(\mathbf{v}_i)$

Backward pass Compute derivatives
$$\overline{v}_N = 1$$
 For $i = N-1, \ldots, 1$
$$\overline{v}_i = \sum_{j \in \mathsf{Ch}(\overline{v}_i)} \left(\frac{\partial v_j}{\partial v_i}\right)^T \overline{v}_j$$

MLP example in vectorized form:

Forward pass

$$z = \mathbf{W}^{(1)}x + b^{(1)}$$

$$h = \sigma(z)$$

$$y = \mathbf{W}^{(2)}h + b^{(2)}$$

$$\ell = \frac{1}{2}(t - y)^{T}(t - y)$$

Backward
$$\overline{\ell}=1$$
pass $\overline{y}=-\overline{\ell}(t-y)$ $\frac{\partial \ell}{\partial y}$
 $\overline{W}^{(2)}=\overline{y}h^T$
 $\overline{b}^{(2)}=\overline{y}$
 $\overline{h}=W^{(2)T}\overline{y}$
Flementwise $\overline{z}=\overline{h}\circ\sigma'(z)$
 $\overline{W}^{(1)}=\overline{z}x^T$

Backpropagation in MLPs

MLP example in vectorized form:

Forward pass

$$z = \mathbf{W}^{(1)} x + b^{(1)}$$

$$h = \sigma(z)$$

$$y = \mathbf{W}^{(2)} h + b^{(2)}$$

$$\ell = \frac{1}{2} (t - y)^{T} (t - y)$$

Backward pass

$$\overline{\ell} = 1$$

$$\overline{y} = -\overline{\ell} (t - y)$$

$$\overline{W}^{(2)} = \overline{y} h^{T}$$

$$\overline{b}^{(2)} = \overline{y}$$

$$\overline{h} = W^{(2)T} \overline{y}$$

$$\overline{z} = \overline{h} \circ \sigma'(z)$$

$$\overline{W}^{(1)} = \overline{z} x^{T}$$

$$\overline{b}^{(1)} = \overline{z}$$

- Backpropagation in MLPs are commonly implemented as matrix-vector multiplications
- Here, these matrix-vector multiplications can be called <u>vector Jacobian products</u>
 (VJPs)

Closing remarks

- Backprop is used to train most of the neural nets you will find today
- Even optimization algorithms much fancier than gradient descent (e.g. secondorder methods) use backprop to compute the gradients
- Backprop is based on the <u>computation graph</u>, and it basically works backwards through the graph, applying the chain rule at each node
- Once the derivatives w.r.t. the weights and biases are computed using backprop, the updates are applied to the weights and biases using some optimization scheme

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \, \frac{\partial \mathcal{L}}{\partial \mathbf{W}}$$

$$m{b} \leftarrow m{b} - \eta \frac{\partial \mathcal{L}}{\partial m{b}}$$

 However, here we wrote out the computation graph and calculated the derivatives by hand ourselves; this hand calculation is avoided by automatic differentiation