LES SUITES E04

EXERCICE N°1 Algorithme

En 2017, des scientifiques ont estimé la masse totale de déchets plastiques dans les océans à 300 millions de tonnes et ont prévu une augmentation de 5,4% par an au cours des prochaines années.

On modélise l'évolution de la masse totale de ces déchets plastiques, si rien n'est fait pour la réduire, par une suite géométrique (u_n) de raison 1,054 et de 1^{er} terme $u_0=300$.

L'arrondi au centième du terme u_n représente la masse totale de ces déchets, exprimée en million de tonnes, pour l'année (2017+n).

- 1) Calculer u_1 et u_2 .
- 2) Exprimer u_n en fonction de n.
- 3) On souhaite déterminer en quelle année la masse totale de ces déchets plastiques aura pour la première fois augmenté de 50 % par rapport à sa valeur de 2017.
- **3.a)** Recopier et compléter l'algorithme ci-contre pour que la variable N contienne la réponse au problème posé.
- 3.b) Que contiennent les variables

 U et N après exécution de cet algorithme? Interpréter les résultats dans le contexte de l'exercice.

 k=1

 for i in range (5):

 k=0.97*k

 print (k)

```
N \leftarrow 2017

U \leftarrow 300

Tant que U < ...

N \leftarrow ...

U \leftarrow ...

Fin tant que
```

EXERCICE N°2 Python

On administre à un patient un médicament par voie intraveineuse. La concentration du produit actif est quasi immédiatement maximale après l'injection, puis elle diminue de 3 % par minute. On notera C_0 la concentration à l'instant t=0 minute et C_n la concentration en $mg.L^{-1}$ au bout de n minutes. On pose $C_0=1$.

- 1) Justifier que la suite (C_n) est géométrique. Préciser sa raison q.
- 2) Exprimer C_n en fonction de n.
- 3) Calculer C_{22} et C_{23} . En déduire à partir de quelle valeur de n la concentration du produit actif aura diminué de moitié.
- 4) On considère le 1^{er} algorithme suivant en langage Python
- **4.a)** Quelle est la valeur k affichée à l'issue de l'exécution de cet algorithme? On arrondira à 0,0001.
- **4.b)** Quelle interprétation peut-on donner de cette valeur de k en termes de concentration du médicament ?
- 5) On considère maintenant l'algorithme ci-contre.
- **5.a)** Expliquer pourquoi cet algorithme exécutera plus de 5 itérations de la boucle « Tant que ».
- **5.b)** Le programmer. Quel résultat l'exécution de cet algorithme permet-elle de retrouver?

```
k=1
|for i in range(5):
| k=0.97*k
| print(k)
```

```
k=1
i=0
while k>0.5:
i=i+1
k=0.97*k
print(i)
```

LES SUITES E04

EXERCICE N°1 Algorithme

En 2017, des scientifiques ont estimé la masse totale de déchets plastiques dans les océans à 300 millions de tonnes et ont prévu une augmentation de 5,4% par an au cours des prochaines années.

On modélise l'évolution de la masse totale de ces déchets plastiques, si rien n'est fait pour la réduire, par une suite géométrique (u_n) de raison 1,054 et de 1^{er} terme $u_0=300$.

L'arrondi au centième du terme u_n représente la masse totale de ces déchets, exprimée en million de tonnes, pour l'année (2017+n).

- 1) Calculer u_1 et u_2 .
- 2) Exprimer u_n en fonction de n.
- 3) On souhaite déterminer en quelle année la masse totale de ces déchets plastiques aura pour la première fois augmenté de 50 % par rapport à sa valeur de 2017.
- **3.a)** Recopier et compléter l'algorithme ci-contre pour que la variable contienne la réponse au problème posé.
- **3.b)** Que contiennent les variables après exécution de cet algorithme? Interpréter les résultats dans le contexte de l'exercice.

```
N \leftarrow 2017

U \leftarrow 300

Tant que U < ...

N \leftarrow ...

U \leftarrow ...

Fin tant que
```

EXERCICE N°2 Python

On administre à un patient un médicament par voie intraveineuse. La concentration du produit actif est quasi immédiatement maximale après l'injection, puis elle diminue de 3 % par minute. On notera C_0 la concentration à l'instant t=0 minute et C_n la concentration en $mg \cdot L^{-1}$ au bout de n minutes. On pose $C_0=1$.

- 1) Justifier que la suite (C_n) est géométrique. Préciser sa raison q.
- 2) Exprimer C_n en fonction de n.
- 3) Calculer C_{22} et C_{23} . En déduire à partir de quelle valeur de n la concentration du produit actif aura diminué de moitié.
- 4) On considère le 1^{er} algorithme suivant en langage Python
- **4.a)** Quelle est la valeur k affichée à l'issue de l'exécution de cet algorithme? On arrondira à 0.0001.
- **4.b)** Quelle interprétation peut-on donner de cette valeur de k en termes de concentration du médicament ?

```
k=1
for i in range(5):
    k=0.97*k
print(k)
```

- 5) On considère maintenant l'algorithme ci-contre.
- **5.a)** Expliquer pourquoi cet algorithme exécutera plus de 5 itérations de la boucle « Tant que ».
- **5.b)** Le programmer. Quel résultat l'exécution de cet algorithme permet-elle de retrouver?

```
k=1
i=0
while k>0.5:
i=i+1
k=0.97*k
print(i)
```