FCDS

Sheet 2

1. Find method of moments estimators (MME's) of Θ based on a random sample $X_1, ..., X_n$ from each of the following pdf's:

a- f(x;
$$\theta$$
) = $\theta x^{\theta-1}$; 0 < x < 1, zero otherwise; θ > 0.

b- f(x;
$$\theta$$
) = $(\theta + 1)x^{-\theta-2}$; 1 < x, zero otherwise; θ > 0.

- 2. Find maximum likelihood estimators (MLE's) for θ based on a random sample of size n for each of the pdfs in problem [1].
- 3. Let $X_1, X_2, ..., X_n$ be random sample from a geometric distribution $f(x; \theta) = \theta (1 \theta)^{x-1}$ for x = 1, 2, 3, ...

Find a formula for estimating heta by using,

- a- the method of moments b- the method of maximum likelihood.
- 4. Let $X_1, X_2, ..., X_n$ be a random sample from a geometric distribution, $X \sim GEO(p)$. Find the MLE's of the following quantities:

a-
$$E(X) = 1/p$$
. b- $Var(X) = (1-p)/p^2$.

b-
$$P[X > k] = (1 - p)^k$$
 for arbitrary $k = 1, 2, ...$

(Hint: Use the invariance property of MLE's)

5. If $X_1, X_2, ..., X_n$ constitute a random sample from a population given by the p.d.f.

$$f(x;\theta) = \begin{cases} \frac{1}{\theta^2} x e^{-x/\theta} & x > 0; \ \theta > 0 \\ 0 & otherwise \end{cases}$$

- a Find the maximum likelihood estimator $\widehat{ heta}$ for the parameter heta.
- b Show that the method of moments gives the same estimator $\hat{\theta}$ for θ .
- c Prove that $\widehat{ heta}$ is unbiased and consistent estimator for heta.

(Hint:
$$\int_0^\infty x^m e^{-x/\theta} dx = m! \theta^{m+1}$$
 for any +ve integer m)

FCDS

6. If $X_1, X_2, ..., X_n$ is a random sample from the Poisson distribution

$$f(x;\theta) = \frac{e^{-\theta}\theta^x}{x!}$$
, x = 0, 1, 2, ...

- a- Find the maximum likelihood estimator for the parameter θ .
- b- Prove that $\hat{\theta}$ is an unbiased consistent estimator for θ
- 7. Let $X_1, X_2, ..., X_n$ be a random sample from $\text{EXP}(\theta)$ and define $\hat{\theta}_1 = \bar{X}$ and $\hat{\theta}_2 = n\bar{X}/(n+1)$
 - a) Find the bias $(\hat{\theta}_1)$ and bias $(\hat{\theta}_2)$
 - b) Find the variances of $\hat{\theta}_1$ and $\hat{\theta}_2$
 - c) Find the MSE's of $\widehat{ heta}_1$ and $\widehat{ heta}_2$
 - d) Compare the variances of $\hat{\theta}_1$ and $\hat{\theta}_2$ for n = 2
 - e) Compare the MSE's of $\hat{\theta}_1$ and $\hat{\theta}_2$ for n = 2
- 8. Let X_1 , X_2 and X_3 be a random sample from a population having mean μ and variance σ^2 . Consider the following estimators:

$$\hat{\mu}_1 = \frac{2X_1 + X_2 - X_3}{2}$$
 & $\hat{\mu}_2 = \frac{3X_1 + 2X_2 - X_3}{4}$

compare these two estimators. Which do you prefer? Why?

- 9. Suppose that $\hat{\theta}_1$ and $\hat{\theta}_2$ are estimators of the parameter θ . We know that $E(\hat{\theta}_1) = \theta$, $Var(\hat{\theta}_1) = 10$, and $E(\hat{\theta}_2) = \theta/2$, $Var(\hat{\theta}_2) = 4$. Which estimator is "best"? In what sense it is best?
- 10. Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two estimators of θ . The estimator $\hat{\theta}_2$ is said to be more efficient than $\hat{\theta}_1$ if

$$a - var(\hat{\theta}_1) > var(\hat{\theta}_2)$$

b- MSE(
$$\hat{\theta}_1$$
)> MSE($\hat{\theta}_2$)

c -
$$E(\hat{\theta}_1) > E(\hat{\theta}_2)$$

d- None of the above.

FCDS

11. Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ . The estimator $\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ if

a -
$$E(\hat{\theta}_1^2) > E(\hat{\theta}_2^2)$$

b-
$$\mathrm{E}(\widehat{\theta}_1^2)\!\!<\!\mathrm{E}(\widehat{\theta}_2^2)$$

$$c - E(\hat{\theta}_1) > E(\hat{\theta}_2)$$

$$d-E(\hat{\theta}_1) < E(\hat{\theta}_2)$$

12. Suppose that $\hat{\theta}_1$, $\hat{\theta}_2$ and $\hat{\theta}_3$ are three estimators of the parameter θ . We know that $E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta$, $E(\hat{\theta}_3) \neq \theta$, $Var(\hat{\theta}_1) = 12$, $Var(\hat{\theta}_2) = 10$ and $E(\hat{\theta}_3 - \theta)^2 = 6$. Then the most efficient estimator between them is:

- a $\widehat{ heta}_1$
- b- $\widehat{ heta}_2$
- c- $\hat{ heta}_3$
- d- None of the above

13.Let X be a random variable with mean μ and variance σ^2 . Given two independent random samples of size 30 and 50 with sample means \bar{X}_1 and \bar{X}_2 , respectively. Show that

$$\bar{X} = \alpha \bar{X}_1 + (1 - \alpha) \bar{X}_2$$

is an unbiased estimator of μ . Find the value of α that minimizes $\text{var}(\bar{X})$. Let $\mu = \frac{\bar{X}_1 + \bar{X}_2}{2}$ be another estimator for μ , compare these two estimators. Which do you prefer? Why?