

True Multi-Touch Capacitive Touch Panel Controller

INTRODUCTION

The FT5x06 Series ICs are single-chip capacitive touch panel controller ICs with a built-in 8 bit Micro-controller unit (MCU). They adopt the mutual capacitance approach, which supports true multi-touch capability. In conjunction with a mutual capacitive touch panel, the FT5x06 have user-friendly input functions, which can be applied on many portable devices, such as cellular phones, MIDs, netbook and notebook personal computers.

The FT5x06 series ICs include FT5206/FT5306/FT5406, the difference of their specifications will be listed individually in this datasheet.

FEATURES

- Mutual Capacitive Sensing Techniques
- True Multi-touch with up to 10 Points of Absolution X and Y Coordinates
- Immune to RF Interferences
- Auto-calibration: Insensitive to Capacitance and Environmental Variations
- Supports up to 28 Transmit Lines and 16 Receive Lines
- Supports up to 8.9" Touch Screen
- Full Programmable Scan Sequences with Individual Adjustable Receive Lines and Transmit Lines to Support Various Applications
- High Report Rate: More than 100Hz
- Touch Resolution of 100 Dots per Inch (dpi) or above -depending on the Panel Size
- Optional Interfaces :I2C/SPI
- 2.8V to 3.6V Operating Voltage
- Supports 1.8V/AVDD IOVCC

- Capable of Driving Single Channel (transmit/receive) Resistance: Up to 15 K Ω
- Capable of Supporting Single Channel (transmit/receive)
 Capacitance: 60 pF
- Optimal Sensing Mutual Capacitor: 1pF~4pF
- 12-Bit ADC Accuracy
- Built-in MCU with 28KB Program Memory, 6KB Data Memory and 256B Internal Data Space
- 11 Internal Interrupt Sources and 2 External Interrupt Sources
- 3 Operating Modes
 - Active
 - Monitor
 - Hibernate
- Operating Temperature Range: -40°C to +85°C

TABLE OF CONTENTS

INTR(ODUCTION	I
FEAT	URES	I
1 0\	VERVIEW	1
1.1	TYPICAL APPLICATIONS	1
2 FL	UNCTIONAL DESCRIPTION	1
2.1	Architectural Overview	1
2.2	MCU	2
2.3	OPERATION MODES	2
2.4	HOST INTERFACE	3
2.5	Serial Interface	3
2.	2.5.1 I2C	3
2.	2.5.2 SPI	4
3 EL	LECTRICAL SPECIFICATIONS	8
3.1	ABSOLUTE MAXIMUM RATINGS	8
3.2	DC CHARACTERISTICS	9
3.3	AC CHARACTERISTICS	9
3.4	I/O Ports Circuits	10
3.5	POWER ON/ RESET/WAKE SEQUENCE	
4 PI	IN CONFIGURATIONS	12
5 PA	ACKAGE INFORMATION	15
5.1	Package Information of QFN-5x5-40L Package	
5.2	PACKAGE INFORMATION OF QFN-6x6-48L PACKAGE	16
5.3	PACKAGE INFORMATION OF QFN-8x8-68L PACKAGE	17
- A	Opport lumprostrati	10

1 OVERVIEW

1.1 Typical Applications

FT5x06 accommodate a wide range of applications with a set of buttons up to a 2D touch sensing device, their typical applications are listed below.

- Mobile phones, smart phones
- MIDs
- Netbook
- Navigation systems, GPS
- Game consoles
- Car applications
- POS (Point of Sales) devices
- Portable MP3 and MP4 media players
- Digital cameras

FT5x06 Series ICs support 2.8"~8.9" Touch Panel, users may find out their target IC from the specs. listed in the following table,

Model Name	Pai	nel		Packag	Touch Panel Size	
Woder Name	TX	RX	Туре	Pin	Size	Touch Faller Size
FT5206GE1	15	10	QFN5*5	40	0.75-P0.4	2.8"~3.8"
FT5306DE4	20	12	QFN6*6	48	0.75-P0.4	4.3"~7"
FT5406EE8	28	16	QFN8*8	68	0.75-P0.4	7"~8.9"

2 FUNCTIONAL DESCRIPTION

2.1 Architectural Overview

Figure 2-1 shows the overall architecture for the FT5x06.

Figure 2-1 FT5x06 System Architecture Diagram

The FT5x06 is comprised of five main functional parts listed below,

Touch Panel Interface Circuits

The main function for the AFE and AFE controller is to interface with the touch panel. It scans the panel by sending AC signals to the panel and processes the received signals from the panel. So, it supports both Transmit (TX) and Receive (RX) functions. Key parameters to configure this circuit can be sent via serial interfaces, which will be explained in detail in a later section.

• 8051-based MCU

This MCU is 8051 compatible with some enhancements. For instant, larger program and data memories are supported. In addition, a Multiplication-Division unit (MDU) is implemented to speed up the touch detection algorithms. Furthermore, a Flash ROM is implemented to store programs and some key parameters.

Complex signal processing algorithms are implemented with firmware running on this MCU to process further the received signals in order to detect the touches reliably. Communication protocol software is also implemented on this MCU to exchange data and control information with the host processor.

- External Interface
 - > I2C/SPI: an interface for data exchange with host
 - > INT: an interrupt signal to inform the host processor that touch data is ready for read
 - ➤ WAKE: an interrupt signal for the host to change F5x06 from Hibernate to Active mode
 - > /RST: an external low signal reset the chip.
- A watch dog timer is implemented to ensure the robustness of the chip.
- A voltage regulator to generate 1.8V for digital circuits from the input VDD3 supply

2.2 MCU

This section describes some critical features and operations supported by the 8051 compatible MCU.

Figure 2-2 shows the overall structure of the MCU block. In addition to the 8051 compatible MCU core, we have added the following circuits.

- MDU: A 16x8 Multiplier and A 32/32 Divider
- Program Memory: 28KB Flash
- Data Memory: 6KB SRAM
- Real Time Clock (RTC): A 32KHz RC Oscillator
- Timer: A number of timers are available to generate different clocks
- Master Clock: 24/48MHz from a 48MHz RC Oscillator
- Clock Manager: To control various clocks under different operation conditions of the system

Figure 2-2 MCU Block Diagram

2.3 Operation Modes

FT5x06 operates in the following three modes:

Active Mode

When in this mode, FT5x06 actively scans the panel. The default scan rate is 60 frames per second. The host processor can configure FT5x06 to speed up or to slow down.

Monitor Mode

When in this mode, FT5x06 scans the panel at a reduced speed. The default scan rate is 25 frames per second and the host processor can increase or decrease this rate. When in this mode, most algorithms are stopped. A simpler algorithm is being executed to determine if there is a touch or not. When a touch is detected, FT5x06 shall enter the Active mode immediately to acquire the touch information quickly. During this mode, the serial port is closed and no data shall be transferred with the host processor.

Hibernate Mode

In this mode, the chip is set in a power down mode. It shall only respond to the "WAKE" or "RESET" signal from the host processor. The chip therefore consumes very little current, which help prolong the standby time for the portable devices.

2.4 Host Interface

Figure 2-3 shows the interface between a host processor and FT5x06. This interface consists of the following three sets of signals:

- Serial Interface
- Interrupt from FT5x06 to the Host
- Wake-up Signal from the Host to FT5x06

Figure 2-3 Host Interface Diagram

The serial interfaces of FT5x06 is I2C or SPI. The details of this interface are described in detail in Section 2.5. The interrupt signal (/INT) is used for FT5x06 to inform the host that data are ready for the host to receive. The /WAKE signal is used for the host to wake up FT5x06 from the Hibernate mode. After exiting the Hibernate mode, FT5x06 shall enter the Active mode.

2.5 Serial Interface

FT5x06 supports the I2C or SPI interfaces, which can be used by a host processor or other devices.

2.5.1 I2C

The I2C is always configured in the Slave mode. The data transfer format is shown in Figure 2-4.

Figure 2-4 I2C Serial Data Transfer Format

Figure 2-5 I2C master write, slave read

Figure 2-6 I2C master read, slave write

Table 2-1 lists the meanings of the mnemonics used in the above figures.

Mnemonics

S I2C Start or I2C Restart

Slave address
A[6:0] A[6:4]: 3'b011
A[3:0]: data bits are identical to those of I2CCON[7:4] register.

W 1'b0: Write

R 1'b1: Read

A(N) ACK(NACK)

P STOP: the indication of the end of a packet (if this bit is missing, S will indicate the end

Table 2-1 Mnemonics Description

I2C Interface Timing Characteristics is shown in Table 2-2.

Parameter Unit Min Max 0 SCL frequency KHz 400 Bus free time between a STOP and START condition us 4.7 Hold time (repeated) START condition 4.0 Data setup time ns 250 Setup time for a repeated START condition 4.7 118 Setup Time for STOP condition 4.0

Table 2-2 I2C Timing Characteristics

of the current packet and the beginning of the next packet)

2.5.2 SPI

SPI is a 4 wire serial interface. The following is a list of the 4 wires:

- SCK: serial data clock
- MOSI: data line from master to slave
- MISO: data line from slave to master
- SLVESEL: active low select signal

SPI transfers data at 8bit packets. The phase relationship between the data and the clock can be defined by the two registers: phase and polck. Some data transfer examples can be found in Figure <u>2-7</u> to Figure <u>2-10</u>.

Figure 2-10 SPI Data Transfer Format (Phase=1, POLCK=1)

SPI can be configured into either Master or Slave mode via the MAS bit of the SPIOCON register. When in the Master mode, the SPI needs to supply the data clock, whose frequency relationship with the Master clock can be set by CLKDVD bits of the SPIOCON register. When it is configured in the Slave mode, the clock, SCK, is supplied by the external Master. The maximum data clock

frequency must not be higher than $\frac{F_{mclk}}{8}$.

SPI Interface Timing Characteristics is shown in the following Figure 2-11, Figure 2-12, Figure 2-13, Figure 2-14 and Table 2-3.

PHASE=0

Figure 2-11 SPI master Timing PHASE =0

Figure 2-12 SPI master Timing PHASE =1

PHASE=0

Figure 2-13 SPI slave Timing PHASE = 0

Figure 2-14 SPI slave Timing PHASE = 1

Table 2-3 SPI Timing Parameters

Parameter	Description	Min	Max	Units						
Master Mode tin	Master Mode timing (see figure 2-11,2-12)									
Tmckh	sck high time	4×Tsysclk		ns						
Tmckl	sck low time	4×Tsysclk		ns						
Tmo	sck shift edge to mosi data change	0		ns						
Tmh	mosi data valid to sck shift edge	3×Tsysclk		ns						
Tsd	slvsel falling edge to mosi data valid	4×Tsysclk		ns						
Tmsfc	slvsel falling edge to first sck edge	(Tmckh+Tmckl)/2		ns						

Tmsrc	last sck edge to slvsel rising edge	(Tmckh+Tmckl)/2		ns						
Slave mode timi	Slave mode timing(See figure 2-13,2-14)									
Tsckh	sck high Time	4×Tsysclk		ns						
Tsckl	sck low Time	4×Tsysclk		ns						
Tsd	slvsel falling edge to Miso valid data time	0	4xTsysclk	ns						
Ts	Mosi Data valid to sck sample edge	0		ns						
Th	sck sample edge to Mosi data change	4×Tsysclk		ns						
То	sck shift edge to Miso data change	0	4xTsysclk	ns						
Tsfc	Tsfc slvsel falling edge to first sck edge			ns						
Tsrc	last sck edge to slvsel rising edge	4×Tsysclk		ns						
*Tsysclk is equa	l to one period of the device system clock									

3 ELECTRICAL SPECIFICATIONS

3.1 Absolute Maximum Ratings

Table 3-1 Absolute Maximum Ratings

Item	Symbol		Value	Note
Power Supply Voltage 1	VDDA - VSSA	V	-0.3 ~ +3.6	1, 2
Power Supply Voltage 2	VDD3 – VSS	V	-0.3 ~ +3.6	1, 3
I/O Power Supply Voltage	Vt	V	-0.3 ~ IOVCC + 0.3	1,4
Operating Temperature	Topr	°C	-40 ~ +85	1
Storage Temperature	Tstg	°C	-55 ~ +125	1

Notes

^{1.}If used beyond the absolute maximum ratings, FT5x06 may be permanently damaged. It is strongly recommended that the device be used within the electrical characteristics in normal operations. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.

^{2.}Make sure VDDA(high)≥VSSA (low)

^{3.}Make sure VDD (high)≥VSS (low)

^{4.}IOVCC is set to VDD3 or VDDD by software configuration.

3.2 DC Characteristics

Table 3-2 DC Characteristics (VDDA=VDD3=2.8~3.6V, Ta=-40~85°C)

Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
Input high-level voltage	VIH	V		0.7 x IOVCC		IOVCC	
Input low -level voltage	VIL	V		-0.3		0.3 x IOVCC	
Output high -level voltage	VOH	V	IOH=-0.1mA	0.7 x IOVCC			
Output low -level voltage	VOL	V	IOH=0.1mA			0.3 x IOVCC	
I/O leakage current	ILI	μ A	Vin=0~VDDA	-1		1	
Current consumption (Normal operation mode)	Iopr	mA	VDDA=VDD3 = 2.8V Ta=25 °C MCLK=24MHz		6		
Current consumption (Monitor mode)	Imon	mA	VDDA=VDD3 = 2.8V Ta=25 °C MCLK=24MHz		4		
Current consumption (Sleep mode)	Islp	mA	VDDA=VDD3 = 2.8V Ta=25°C MCLK=24MHz		0.03		
Step-up output voltage	VDD5	v	VDDA=VDD3= 2.8V	5	5.25	5.6	
Power Supply voltage	VDDA VDD3	V		2.7	2.8~3.6	3.7	

3.3 AC Characteristics

Table 3-3 AC Characteristics of Oscillators

Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
OSC clock 1	fosc1	MHz	VDD3 = 2.8V Ta=25°C	43	48	52	
OSC clock 2	fosc2	KHz	VDD3 = 2.8V Ta=25°C	29	32	36	

Table 3-4 AC Characteristics of TX & RX

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Note
TX acceptable clock	ftx	KHz		100	150	270	
TX output rise time	Ttxr	nS			20		
TX output fall time	Ttxf	nS			20		
RX input voltage	Trxi	V		1.2		1.6	

3.4 I/OPortsCircuits

Figure 3-1 Digital Input & Output Port Circuits

 \boxtimes

Input circuit

IOVC

Input circuit

Figure 3-3 Reset Input Port Circuits

Figure 3-5 INT output Port Circuits

Figure 3-4 Wake Input Port Circuits

Figure 3-6 SCL/SDA Port Circuits

3.5 POWER ON/Reset/Wake Sequence

The GPIO such as Wake, INT and I2C should be pulled down to be low before powering on. The signal of waking up should be set to be high after powering on. INT signal will be sent to the host after initializing all parameters and then start to report points to the host.

Figure 3-7 Power on time

Figure 3-8 Power on Sequence

Reset time must be enough to guarantee reliable reset, The time of starting to report point after resetting approach to the time of starting to report point after powering on.

Figure 3-8 Reset Sequence

Wake time must be enough to wake up the system, The time of starting to report point after waking approach to the time of starting to report point after powering on

Figure 3-8 Wake Sequence

Table 3-5 Power on/Reset/Wake Sequence Parameters

Parameter	Description	Min	Max	Units
Tris	Rise time from 0.1VDD to 0.9VDD		10	ms
Tpon	Time of starting to report point after powering on	300		ms
Trsi	Time of starting to report point after resetting	300		ms
Trst	Reset time	5		ms
Twai	Time of starting to report point after waking	300		ms
Twak	Wake up time	5		ms

4 PIN CONFIGURATIONS

Pin List of FT5x06

Table 4-1 Pin Definition of FT5x06

Name		Pin No.		Туре	Description
Name	FT5206GE1	FT5306DE4	FT5406EE8	Type	Description
VSSA	40	1	1	PWR	Analog ground
NC	1	2	2		Not connected
NC		48	3		Not connected
TX28			4	О	Transmit output pin
TX27			5	О	Transmit output pin
TX26			6	О	Transmit output pin
TX25			7	О	Transmit output pin
TX24			8	О	Transmit output pin
TX23			9	О	Transmit output pin
TX22			10	О	Transmit output pin
TX21			11	О	Transmit output pin
TX20		3	12	О	Transmit output pin
TX19		4	13	О	Transmit output pin
TX18		5	14	О	Transmit output pin
TX17		6	15	О	Transmit output pin
TX16	·	7	16	О	Transmit output pin
TX15	2	8	17	О	Transmit output pin
TX14	3	9	18	О	Transmit output pin

					·
TX13	4	10	19	О	Transmit output pin
TX12	5	11	20	О	Transmit output pin
TX11	6	12	21	О	Transmit output pin
TX10	7	13	22	О	Transmit output pin
TX9	8	14	23	О	Transmit output pin
TX8	9	15	24	О	Transmit output pin
TX7	10	16	25	О	Transmit output pin
TX6	11	17	26	О	Transmit output pin
TX5	12	18	27	О	Transmit output pin
TX4	13	19	28	О	Transmit output pin
TX3	14	20	29	О	Transmit output pin
TX2	15	21	30	О	Transmit output pin
TX1	16	22	31	О	Transmit output pin
VDD5	17	23	32	PWR	internal generated 5V power supply , A 1 μ F ceramic capacitor to ground is required.
VDD3	18	24	33	PWR	Analog power supply
VSS	19	25	34	PWR	Analog ground
VDDD	20	26	35	PWR	Digital power supply (1.8V), generated internal. A 1 μ F ceramic capacitor to ground is required.
TEST_EN	21	27	36	I	Test mode enabled at high and float in normal mode
GPIO0			37	I/O	General Purpose Input/Output port
GPIO1			38	I/O	General Purpose Input/Output port
GPIO2			39	I/O	General Purpose Input/Output port
GPIO3			40	I/O	General Purpose Input/Output port
SSEL/SCL	22	28	41	I/O	SPI Slave mode, chip select, active low / I2C clock input
SCK	23	29	42	I	SPI Slave mode, clock input
MOSI/SDA	24	30	43	I/O	SPI Slave mode, data input / I2C data input and output
MISO	25	31	44	О	SPI Slave mode, data output
/RST	26	32	45	I	External Reset, Low is active
WAKE	27	33	46	I	External interrupt from the host
INT	28	34	47	О	External interrupt to the host
NC			48		Not connected
NC			49		Not connected
NC			50		Not connected
NC			51		Not connected
VDDA	30	35	52	PWR	Analog power supply
RX1	29	36	53	I	Receiver input pins
RX2	31	37	54	I	Receiver input pins
RX3	32	38	55	I	Receiver input pins
RX4	33	39	56	I	Receiver input pins
RX5	34	40	57	I	Receiver input pins
RX6	35	41	58	I	Receiver input pins
RX7	36	42	59	I	Receiver input pins
RX8	37	43	60	I	Receiver input pins
RX9	38	44	61	I	Receiver input pins
RX10	39	45	62	I	Receiver input pins

RX11	46	63	I	Receiver input pins
RX12	47	64	I	Receiver input pins
RX13		65	I	Receiver input pins
RX14		66	I	Receiver input pins
RX15		67	I	Receiver input pins
RX16		68	I	Receiver input pins

FT5206GE1 Package Diagram

FT5306DE4 Package Diagram

FT5406EE8 Package Diagram

5 PACKAGE INFORMATION

5.1 Package Information of QFN-5x5-40L Package

Item	Symbol	Millimeter			
item	Syllibol	Min	Тур	Max	
Total Thickness	A	0.7	0.75	0.8	
Stand Off	A1	0	0.035	0.05	
Mold Thickness	A2		0.55	0.57	
L/F Thickness	A3		0.203 RE	F	
Lead Width	b	0.15	0.20	0.25	
Body Size	D	5 BSC			
Body Size	Е	5 BSC			
Lead Pitch	e		0.4 BSC		
EP Size	J	3.5	3.6	3.7	
LI Size	K	3.5	3.6	3.7	
Lead Length	L	0.35	0.4	0.45	
Package Edge Tolerance	aaa		0.1		
Mold Flatness	bbb	0.1			
Co Planarity	ссс	0.08			
Lead Offset	ddd		0.1		
Exposed Pad Offset	eee	0.1			

5.2 Package Information of QFN-6x6-48L Package

ltom	Cumbal		Millimeter			
Item	Symbol	Min	Тур	Max		
Total Thickness	A	0.7	0.75	0.8		
Stand Off	A1	0	0.035	0.05		
Mold Thickness	A2		0.55	0.57		
L/F Thickness	A3		0.203 RE	F		
Lead Width	b	0.15 0.20 (0.25		
Pody Siza	D	6 BSC				
Body Size	Е	6 BSC				
Lead Pitch	e		0.4 BSC			
EP Size	J	4.1	4.2	4.3		
EP Size	K	4.1	4.2	4.3		
Lead Length	L	0.35	0.4	0.45		
Package Edge Tolerance	aaa	0.1				
Mold Flatness	bbb	0.1				
Co Planarity	ccc	0.08				
Lead Offset	ddd	0.1				
Exposed Pad Offset	eee	·	0.1	·		

5.3 Package Information of QFN-8x8-68L Package

Itam Nama	Cymhal		Millimeter			
Item Name	Symbol	Min	Тур	Max		
Total Thickness	A	0.7	0.75	0.8		
Stand Off	A1	0	0.035	0.05		
Mold Thickness	A2		0.55	0.57		
L/F Thickness	A3		0.203 REF			
Lead Width	b	0.15	0.20	0.25		
D 1 6:	D		8 BSC			
Body Size	Е	8 BSC				
Lead Pitch	e	0.4 BSC				
ED C:	J	6.1	6.2	6.3		
EP Size	K	6.1	6.2	6.3		
Lead Length	L	0.35	0.4	0.45		
Package Edge Tolerance	aaa		0.1			
Mold Flatness	bbb		0.1			
Coplanarity	ccc	0.08				
Lead Offset	ddd	0.1				
Exposed Pad Offset	eee		0.1			

5.4 Order Information

Package Type	QFN	
	40Pin(5 * 5)/48Pin(6 * 6)/68Pin (8 * 8)	
	0.75 - P0.4	
Product Name	FT5206GE1/ FT5306DE4/FT5406EE8	

Note:

1). The last two letters in the product name indicate the package type and lead pitch and thickness.

2). The second last letter indicates the package type.

D: QFN-6*6, **E**: QFN-8*8, **G**: QFN-5*5

3). The last letter indicates the lead pitch and thickness.

E: 0.75 - P0.4

T: Track Code

F: "F" for Lead Free process.

Y: Year Code WW: Week Code F T 5x06xxx T F Y W W S V

Product Name	Package Type	# TX Pins	# RX Pins
FT5206GE1	QFN-40L	15	10
FT5306DE4	QFN-48L	20	12
FT5406EE8	QFN-68L	28	16

REVISION HISTORY

DDCN#	Version	Revisions	Date
DC-1006004	0.1	First draft	2010-06-11
DC-1006006	0.2	Change FT5206GE1 Package Diagram	2010-06-21
DC-1012001	0.3	Modify block figure, timing and I/O figure	2010-12-20

END OF DATASHEET

Confidential	

Application Note for CTPM

Application Note for CTPM				
Project name	Touch panel			
Document ref	[Document ref]			
Version	0.8			
Release date	18 Aug 2010			
Owner	Xiaoxu Du			
Classification	Confidential			
Distribution List	[Distribution list]			
Approval				

This document contains information proprietary to FocalTech Systems, Ltd., and may not be reproduced, disclosed or used in whole or part without the express written permission of FocalTech Systems, Ltd.

Copyright © 2010, FocalTech Systems, Ltd All rights reserved

R3-B4-A, South Area, Shenzhen Hi-Tech Industrial Park, Shenzhen, Gungdong, P.R. China

ZIP:518057

T +86 755 26588222

 $F+86\ 755\ 26712499$

E support@focaltech-systems.com

Revision History

Date	Version	List of changes	Author + Signature
18 Jan, 2010	0.1	Initial draft	Xiaoxu Du
17 Mar,2010	0.2	Add raw data protocol	Xiaoxu Du
22 Mar,2010	0.3	Add system information protocol	Xiaoxu Du
26 Mar,2010	0.4	Add calibration related parameters	Xiaoxu Du
08 May,2010	0.5	Add information to operating mode	Xinming Wang
07 Jul, 2010	0.6	Change Protocol and add information	Yunfeng Yuan
18 Aug, 2010	0.7	Modified to release version	Xiaoxu Du
22 Dec, 2010	0.8	Modify explanation for register 0xA4	Xiaoxu Du

Table of C	ontents	
$1 I^2CI$	interface	2
1.1 CTP	M interface to Host	2
$1.2 I^2CI$	Read/Write Interface description	2
1.3 Inter	rupt signal from CTPM to Host	3
1.4 Wak	eup signal from Host to CTPM	4
2 CTP	Register Mapping	4
2.1 Oper	rating Mode	4
2.1.1	DEVICE_MODE	7
2.1.2	GEST_ID	7
2.1.3	TD_STATUS	8
2.1.4	TOUCHn_XH (n:1-5)	8
2.1.5	TOUCHn_XL (n:1-5)	8
2.1.6	TOUCHn_YH (n:1-5)	9
2.1.7	TOUCHn_YL (n:1-5)	9
2.1.8	ID_G_THGROUP	9
2.1.9	ID_G_THPEAK	9
2.1.10	ID_G_ THCAL	9
2.1.11	ID_G_THWATER	9
2.1.12	ID_G_THTEMP	9
2.1.13	ID_G_THDIFF	10
2.1.14	ID_G_ CTRL	10
2.1.15	ID_G_ TIMEENTERMONITOR	10
2.1.16	ID_G_ PERIODACTIVE	10
2.1.17	ID_G_PERIODMONITOR	
2.1.18	ID_G_AUTO_CLB_MODE	
2.1.19	ID_G_LIB_VERSION_H	
2.1.20	ID_G_LIB_VERSION_L	
2.1.21	ID G CIPHER	
2.1.22	ID G MODE	
2.1.23	ID_G_PMODE	
2.1.24	ID_G_FIRMWARE_ID	
2.1.25	ID_G_STATE	
2.1.26	ID_G_FT5201ID	
2.1.27	ID_G_ ERR	
2.1.28	ID_G_ CLB	
	Mode	
2.2.1	DEVICE_MODE	
2.2.2	ROW_ADDR	
2.2.3	ROWDATAN H	
2.2.4	ROWDATAN_L	
	em information Mode	
2.3.1	DEVICE_MODE	
2.3.2	BIST_COMM	
		,

2.3.3	BIST_STAT	17
2.3.4	BL_VERH	17
2.3.5	BL_VERL	18
2.3.6	FTS_IC_VERH	18
2.3.7	FTS_IC_VERL	18
2.3.8	APP_IDH	18
2.3.9	APP_IDL	18
2.3.10	APP_VERH	19
2.3.11	APP_VERL	19
2.3.12	CID_n(n:0-4)	19
3 CTP	M Application Introduction	20
3.1 Stan	dard Application information of FT5X06	20
3.1.1	Standard application circuit of FT5206GE1	20
3.1.2	Standard application circuit of FT5306DE4	21
3.1.3	Standard application circuit of FT5206EE8	
4 Con	nmunication between host and CTPM	22
4.1 Com	nmunication Contents	22
4.2 I2C	Example Code	23

Terminology

CTP – Capacitive touch panel

CTPM – Capacitive touch panel module

1 I²C Interface

1.1 CTPM interface to Host

Figure 1-1 shows how CTPM communicates with the Host, there are three kind of communication between CTPM and Host, we will introduce each communication in this section.

Transfer the data via I²C

Send interrupt when there is a valid touch

Host send Wakeup signal to CTPM

Figure 1-1 CTPM and Host connection

The Power Supply voltage of CTPM is $2.8V \sim 3.3V$, interface supply voltage is $2.8V \sim 3.3V$. There are Control Interface and Data Interface. As

Figure 1-1 demonstrates, Serial interface is the data interface, /INT and /WAKE are the control interface. For the detail, please refer to Table 1-1.

Tabl	le 1-1 l	Descr	ption	for T	P modu	ile and	Host	interface	

Port Name	Voltage	Polar	Description
Serial interface	2.8~3.3V		Serial interface is for data transfer between Host and CTPM. CTPM support both I2C and SPI interface
/INT	2.8~3.3V	LOW	The interrupt from the CTPM to the Host
/WAKE*	2.8~3.3V	LOW	Wakeup signal from host to the CTPM

1.2 I²C Read/Write Interface description

Write N bytes to I2C slave

		5	Sla	ve .	Ad	dr]	Dat	ta A	Ado	lres	ss[2	K]]	Dat	a [X]						I	Dat	a [2	X+.	N-1	1]			
5	6 A	A 5	A 4	A 3	A 2	A 1	A 0	R W	A	R 7	R 6	R 5	R 4	R 3	R 2	R 1	R 0	A	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	A	•••	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	Α	P
STANT	CT A DT							WRITE	ACK									ACK									ACK										ACK	STOP

Set Data Address

					ve A							Dat	a A	Add	lres	ss[2	K]			
	c ·	A	Α	A	A	Α	Α	A	R	۸	R							R	Λ	D
Ľ		6	5	4	3	2	1	0	W	А	7	6	5	4	3	2	1	0	А	1
ı	Š								4											7.0
	STA								\geq	AC									A	T
	찍								Ħ	$\overline{}$									×	P

Read X bytes from I²C Slave

		5	Sla	ve 1	Ado	dr						I	Dat	a [N]						1	Dat	a []	X+.	N-1]			
S	A	A	A	A	A	A	A	R	A	D	D	D	D	D 3		D	D	Α	•••	D	D	D			D 2		D	Α	P
START	0		_4_	3		1	U	* Read	ACK	/	0	3	4	3		1	<u>U</u>	ACK		_ /	6	3	4	3		1	<u>U</u>	ACK	STOP

1.3 Interrupt signal from CTPM to Host

As for standard CTPM, host need to use both interrupt control signal and serial data interface to get the touch data. There are two kind of method to use interrupt: interrupt trigger and interrupt query.

Figure 1-2 Interrupt query mode

Figure 1-3 Interrupt trigger mode

Host use general I2C protocol to read the touch data or the information from CTPM . CTPM will send host a interrupt signal when there is a valid touch. Then host can use the serial data interface to get the touch data. If there is no valid touch detected, the /INT will not be pulled up, the host do not need to read the touch data.

NOTE: "valid touch" may have different definition in various systems. For example, in some systems, the valid touch is defined as there is one more valid touch point. But in some other systems, the valid touch is defined as one more valid touch with valid gestures. In usual, /INT will be pulled up when there is a valid touch point, and to be low when a touch finishes.

As for interrupt trigger mode, /INT signal will be low if there is a touch detected. But for per update of valid touch data, CTPM will produce a valid pulse for /INT signal, host can read the touch data periodically according to the frequency of this pulse. In this mode, the pulse frequency is the touch data update frequency.

.

1.4 Wakeup signal from Host to CTPM

Host can use the Wakeup Signal to wakeup the I²C slave device.

This pin should be connected to GND when flash programming while in normal running mode it should not be connected to GND.

2 CTP Register Mapping

This chapter describes the standard FTS Capacitive Touch Panel products communication registers in address order for each device mode. The most detailed descriptions of the Standard Products communication registers are in the Register Definitions section of each chapter. The device modes are listed in the table below, along with each mode's register prefix.

Device Mode	Prefix	Val	Description
Operating	Op	000b	Read touch point and gesture
Test	Те	100b	Read raw data
System Information	Sy	001b	Read system information related Reserved

2.1 Operating Mode

In this mode the CTP is fully functional as a touch screen controller. Read and write access address is just logical address which is not enforced by hardware or firmware. Here is the operating mode register map.

Operating Mode Register Map

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Host Access
Op,00h	DEVIDE_MODE		Devic	e Mode	e[2:0]					RW
Op,01h	GEST_ID	Gestu	re ID[7	:0]						R
Op,02h	TD_STATUS					Numb touch	er of points[[3:0]		R
Op,03h	TOUCH1_XH	1 st Eve Flag	ent			1 st To	uch sition[1	1:8]		R
Op,04h	TOUCH1_XL	1 st To	uch X I	Position	1[7:0]					R
Op,05h	TOUCH1_YH	1 st To	uch ID	[3:0]		1 st To	uch sition[1	1:8]		R
Op,06h	TOUCH1_YL	1 st To	uch Y I	Position	1[7:0]					R
Op,07h										
Op,08h										
Op,09h	TOUCH2_XH	2 nd Ev	ent			2 nd To	uch			R

		Flag	X Position[11:8]	
Op,0Ah	TOUCH2_XL	2 nd touch X Position	[7:0]	R
Op,0Bh	TOUCH2_YH	2 nd Touch ID[3:0]	2 nd Touch Y Position[11:8]	R
Op,0Ch	TOUCH2_YL	2 nd Touch Y Position	n[7:0]	R
Op,0Dh				R
Op,0Eh				R
Op,0Fh	TOUCH3_XH	3 rd Event Flag	3 rd Touch X Position[11:8]	R
Op,10h	TOUCH3_XL	3 rd Touch X Position	n[7:0]	R
Op,11h	TOUCH3_YH	3 rd Touch ID[3:0]	3 rd Touch Y Position[11:8]	R
Op,12h	TOUCH3_YL	3 rd Touch Y Position	n[7:0]	R
Op,13h				R
Op,14h				R
Op,15h	TOUCH4_XH	4 th Event Flag	4 th Touch X Position[11:8]	R
Op,16h	TOUCH4_XL	4 th Touch X Position	n[7:0]	R
Op,17h	TOUCH4_YH	4 th Touch ID[3:0]	4 th Touch Y Position[11:8]	R
Op,18h	TOUCH4_YL	4 th Touch Y Position	n[7:0]	R
Op,19h				R
Op,1Ah				R
Op,1Bh	TOUCH5_XH	5 th Event Flag	5 th Touch X Position[11:8]	R
Op,1Ch	TOUCH5_XL	5 th Touch X Position	[7:0]	R
Op,1Dh	TOUCH5_YH	5 th Touch ID[3:0]	5 th Touch Y Position[11:8]	R
Op,1Eh	TOUCH5_YL	5 th Touch Y Position	n[7:0]	R
Op,1Fh				R
Op,20h				R
Op,21h	Reserved			
Op,7Fh	Reserved			
Op,80h	ID_G_THGROUP	valid touching detec	t threshold.	R/W
Op,81h	ID_G_THPEAK	valid touching peak	detect threshold.	R/W

Op,82h	ID_G_THCAL	the threshold when calcular	ting the focus of	of touching.	R/W
Op,83h	ID_G_THWATER	the threshold when there is	surface water.		R/W
Op,84h	ID_G_THTEMP	the threshold of temperatur	re compensatio	n.	R/W
Op,85h					R/W
Op,86h	ID_G_CTRL			Power control mode[1:0]	R/W
Op,87h	ID_G_TIME_ENTER _MONITOR	The timer of entering moni	tor status		R/W
Op,88h	ID_G_PERIODACTIVE		Period Activ	e[3:0]	R/W
Op,89h	ID_G_PERIOD MONITOR	The timer of entering idle	while in mon	tor status	R/W
Op,8Ah					R/W
Op,8Bh					R/W
Op,8Ch					R/W
Op,8Dh					R/W
Op,8Eh					R/W
Op,8Fh					R/W
Op,90h					R/W
Op,91h					R/W
Op,92h					R/W
Op,93h					R/W
Op,94h					R/W
Op,95h					R/W
Op,96h					R/W
Op,97h					R/W
Op,98h					R/W
Op,99h					R/W
Op,9Ah					R/W
Op,9Bh					R/W
Op,9Ch					R/W
Op,9Dh					R/W
Op,9Eh					R/W
Op,9Fh					R/W
Op,A0h	ID_G_AUTO_CLB _MODE	auto calibration mode			R/W

Op,A1h	ID_G_LIB_ VERSION_H	Firmware Library Version H byte	R
Op,A2h	ID_G_LIB _VERSION_L	Firmware Library Version L byte	R
Op,A3h	ID_G_CIPHER	Chip vendor ID	R
Op,A4h	ID_G_MODE	the interrupt status to host	R
Op,A5h	ID_G_PMODE	Power Consume Mode	
Op,A6h	ID_G_FIRMID	Firmware ID	R
Op,A7h	ID_G_STATE	Running State	
Op,A8h	ID_G_FT5201ID	CTPM Vendor ID	R
Op,A9h	ID_G_ERR	Error Code	R
Op,AAh	ID_G_CLB	Configure TP module during calibration in Test Mode	R/W
Op,ABh			R/W
Op,ACh			R/W
Op,ADh			R/W
Op,AEh	ID_G_B_AREA_TH	The threshold of big area	R/W
Op,AFh			R/W
Op,FDh	Reserved		
Op,FEh	LOG_MSG_CNT	The log MSG count	R
Op,FFh	LOG_CUR_CHA	Current character of log message, will point to the next character when one character is read.	R

2.1.1 DEVICE_MODE

This register is the device mode register, configure it to determine the current mode of the chip.

Address	Bit Address	Register Name	Description
Op,00h	6:4	Device Mode [2:0]	000bNormal operating Mode001bSystem Information Mode (Reserved)100bTest Mode – read raw data (Reserved)

2.1.2 GEST_ID

This register describes the gesture of a valid touch.

U	C		
Address	Bit Address	Register Name	Description
Op,01h	7:0	Gesture ID	Gesture ID
		[7:0]	0x10 Move UP

0x14 Move Left
0x18 Move Down
0x1C Move Right
0x48 Zoom In
0x49 Zoom Out
0x00 No Gesture

2.1.3 TD_STATUS

This register is the Touch Data status register.

Address	Bit Address	Register Name	Description
Op,02h	3:0	Number of touch points[3:0]	How many points detected. 1-5 is valid.
	7:4		

2.1.4 TOUCHn_XH (n:1-5)

This register describes MSB of the X coordinate of the nth touch point and the corresponding event flag.

Address	Bit Address	Register Name	Description
Op,03h	7:6	Event Flag	00b: Put Down
~			01b: Put Up
Op,39h			10b: Contact
			11b: Reserved
	5:4		Reserved
	3:0	Touch X Position [11:8]	MSB of Touch X Position in pixels

2.1.5 TOUCHn_XL (n:1-5)

This register describes LSB of the X coordinate of the nth touch point.

Address	Bit Address	Register Name	Description
Op,04h	7:0	Touch X Position	LSB of the Touch X Position in pixels
~		[7:0]	
Op,3Ah			

2.1.6 **TOUCHn_YH** (n:1-5)

This register describes MSB of the Y coordinate of the nth touch point and corresponding touch ID.

Address	Bit Address	Register Name	Description
Op,05h	7:4	Touch ID[3:0]	Touch ID of Touch Point
~ Op,3Bh	3:0	Touch X Position [11:8]	MSB of Touch Y Position in pixels

2.1.7 **TOUCHn_YL** (n:1-5)

This register describes LSB of the Y coordinate of the nth touch point.

Address	Bit Address	Register Name	Description
Op,06h	7:0	Touch X Position	LSB of The Touch Y Position in pixels
~		[7:0]	
Op,3Ch			

2.1.8 ID_G_THGROUP

This register describes valid touching detect threshold.

Address	Bit Address	Register Name	Description
Op,80h	7:0	ID_G_THGROUP	The actual value will be 4 times of the register's value. Default:280/4

2.1.9 ID_G_THPEAK

This register describes valid touching peak detect threshold.

Address	Bit Address	Register Name	Description
Op,81h	7:0	ID_G_ THPEAK	Default:60

2.1.10 ID_G_ THCAL

This register describes threshold when calculating the focus of touching.

Address	Bit Address	Register Name	Description
Op,82h	7:0	ID_G_ THCAL	Default:16

2.1.11 ID_G_ THWATER

This register describes threshold when there is surface water.

Address	Bit Address	Register Name	Description
Op,83h	7:0	ID_G_ THWATER	Default:60

2.1.12 ID_G_ THTEMP

This register describes threshold of temperature compensation.

9

FocalTech Systems, Ltd.

Address	Bit Address	Register Name	Description
Op,84h	7:0	ID_G_ THTEMP	Default:10

2.1.13 ID_G_ THDIFF

This register describes threshold whether the coordinate is different from the original.

Address	Bit Address	Register Name	Description
Op,85h	7:0	ID_G_ THDIFF	The actual value must be 32timers of
			the register's value. Default :20

2.1.14 ID_G_ CTRL

This register describes the run mode of microcontroller controlled by host

Address	Bit Address	Register Name	Description
Op,86h	0	ID_G_ CTRL	0: not auto jump 1:auto jump

2.1.15 ID_G_ TIMEENTERMONITOR

This register describes the time delay value when entering monitor status.

Address	Bit Address	Register Name	Description
Op,87h	7:0	ID_G_TIME	Default :2
		ENTERMONITOR	

2.1.16 ID_G_ PERIODACTIVE

This register describes the period of active status, it should not less than 12

Address	Bit Address	Register Name	Description
Op,88h	4:0	ID_G_ PERIOD ACTIVE	Range form 3 to 14,default 12
	7:4		

2.1.17 ID_G_PERIODMONITOR

This register describes period of monitor status, it should not less than 30.

Address	Bit Address	Register Name	Description
Op,89h	7:0	ID_G_ PERIOD MONITOR	Default:40

2.1.18 ID_G_AUTO_CLB_MODE

This register describes auto calibration mode.

Address	Bit Address	Register Name	Description
Op, A0h	7:0	ID_G_ AUTO_	8'h 00: enable auto calibration

			CLB_MODE	8'h ff: disable auto calibration	
--	--	--	----------	----------------------------------	--

2.1.19 ID_G_ LIB_VERSION_H

This register describes library version high byte.

Address	Bit Address	Register Name	Description
Op, A1h	7:0	ID_G_LIB_VERSION_H	R: xx

2.1.20 ID_G_ LIB_VERSION_L

This register describes library version low byte.

Address	Bit Address	Register Name	Description
Op, A2h	7:0	ID_G_LIB_VERSION_L	R: xx

2.1.21 ID_G_ CIPHER

This register describes vendor's chip id.

Address	Bit Address	Register Name	Description
OP, A3h	7:0	ID_G_ CIPHER	R: xx

2.1.22 ID_G_ MODE

This register describes the interrupt status to host.

Address	Bit Address	Register Name	Description
Op,A4h	7:0	ID_G_ MODE	0: Polling mode
			1: Trigger mode

2.1.23 ID_G_ PMODE

This register describes the power consumption mode of the TPM when in running status.

Address	Bit Address	Register Name	Description
Op,A5h	7:0	ID_G_ PMODE	0: active
			1: monitor
			3: hibernate(deep sleep)

2.1.24 ID_G_ FIRMWARE_ID

This register describes the firmware id of the application.

Address	Bit Address	Register Name	Description
Op,A6h	7:0	ID_G_ FIRMWARE_ID	R: xx

2.1.25 ID_G_ STATE

This register is used to configure the run mode of TPM.

Address	Bit Address	Register Name	Description
---------	-------------	---------------	-------------

Op,A7h	7:0	ID_G_ STATE	0: configure
			1: work
			2: calibration
			3: factory
			4: auto calibration

2.1.26 ID_G_ FT5201ID

This register describes vendor's chip id

Address	Bit Address	Register Name	Description
Op,A8h	7:0	ID_G_ FT5201ID	R: xx

2.1.27 ID_G_ ERR

This register describes the error code when the TPM is running.

Address	Bit Address	Register Name	Description
Op,A9h	7:0	ID_G_ ERR	ERR Code 8'h00:OK 8'h03:chip register writing inconsistent with reading 8'h05:chip start fail 8'h1A:no match among the basic input(such as TX_ORDER) while calibration

2.1.28 ID_G_ CLB

This register is used to configure the TPM when Calibration

Address	Bit Address	Register Name	Description
Op,AAh	7:0	ID_G_ CLB	Mapping the Array of G_Bank1, total length is NUM_TX+NUM_RX+1. the array address increases 1 after every write.

2.2 Test Mode

In this mode, CTP will provide some panel related information. Host can get the following information in this mode

Raw data of touch panel

Panel configure related information

Test Mode Register Map

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Host Access
Te,00h	DEVIDE_MODE	Data Read Toggle	Device	Mode[2:	0]					RW

CTPM Application Note

Te,01h	ROW_ADDR	The address of the row to be read	RW
Te,02h	START_SCAN	Start the scan command, the value stands for the scan frequency, will be set to zero when scan finishes	RW
Te,03h	ROW_NUM	Panel row number	RW
Te,04h	COL_NUM	Panel column number	RW
Te,05h	DRIVER_VOL	Driver voltage of chip	RW
Te,06h	START_RX	Setting the RX start number	RW
Te,07h	GAIN	Control the difference value for touching	RW
Te,08h	ORIGIN_XH	High byte of origin X coordinate	RW
Te,09h	ORIGIN_XL	Low byte of origin X coordinate	RW
Te,0Ah	ORIGIN_YH	High byte of origin Y coordinate	RW
Te,0Bh	ORIGIN_YL	Low byte of origin Y coordinate	RW
Te,0Ch	RES_WH	High byte of width of resolution	RW
Te,0Dh	RES_WL	Low byte of width of resolution	RW
Te,0Eh	RES_HH	High byte of height of resolution	RW
Te,0Fh	RES_HL	Low byte of height of resolution	RW
Te,10h	RAWDATA0_H	High byte of raw data 0	R
Te,11h	RAWDATA0_L	Low byte of raw data 0	R
Te,12h	RAWDATA1_H	High byte of raw data 1	R
Te,13h	RAWDATA1_L	Low byte of raw data 1	R
Te,4Ah	RAWDATA29_H	High byte of raw data 29	R
Te,4Bh	RAWDATA29_L	Low byte of raw data 29	R
Te,4Ch	TH_POINT_NUM	Touch point number support	RW
Te,4Dh	Reserved		
Te,4Eh	Reserved		
Te,4Fh	Reserved		
Te,50h	TX_ORDER_0	TX Order, start from zero	RW
Te,51h	TX_ORDER_1		RW
			RW
Te,77h	TX_ORDER_39		RW
Te,78h	ROW0_CAC	Charge Amplifier feedback Capacitance of ROW0	RW
Te,79h	ROW1_CAC	Charge Amplifier feedback Capacitance of ROW1	RW
Te,9Fh	ROW39_CAC	Charge Amplifier feedback Capacitance of ROW39	RW

Te,A0h	COL0_CAC	Charge Amplifier feedback Capac	Charge Amplifier feedback Capacitance of COL0		
Te,BEh	COL29_CAC	Charge Amplifier feedback Capac	itance of COL29	RW	
Te,BFh	ROW0_1_OFFSET	Offset of ROW1	Offset of ROW0	RW	
Te,D2h	ROW38_39_OFFSET	Offset of ROW39 Offset of ROW38		RW	
Te,D3h	COL0_1_OFFSET	Offset of COL1 Offset of COL0		RW	
Te,E1h	COL28_29_OFFSET	Offset of COL29	Offset of COL28	RW	
Te,FEh	LOG_MSG_CNT	The log MSG count	R		
Te,FFh	LOG_CUR_CHA	Current character of log message when one character is read.	R		

2.2.1 DEVICE_MODE

This register is the device mode register, configure it to determine the current mode of the chip.

Address	Bit Address	Register Name	Description		
Te,00h	7 Data Read Toggle		This bit is toggled by the Host only when a data transfer between the Host and TrueTouch device requires register based handshaking.		
	6:4	Device Mode[2:0]	000bNormal operating Mode001bSystem Information Mode (Reserved)100bTest Mode – read raw data (Reserved)		

2.2.2 ROW_ADDR

This register is the Touch Data status register.

Address	Bit Address	Register Name	Description
Te,01h	7:0	Row address	The address of the row to be read Please delay for more than 100us, then read the raw data

2.2.3 ROWDATAN_H

This register is the Touch Data status register.

Address	Bit Address	Register Name	Description
Te,(10+2n)h	7:0	High byte of raw data N	High byte of raw data N

CTPM Application Note

			exceeds	the	column	number	will	return
		0xff						

2.2.4 ROWDATAN_L

This register is the Touch Data status register.

Address	Bit Address	Register Name	Description
Te,(10+2n+1)h	7:0	Low byte of raw data N	Low byte of raw data N If N exceeds the column number will return 0xff

2.3 System information Mode

This mode provides access to all of the one-time system information. The system information is either written by the host to permanently configure the device (for example, power timers), or is written to the device at compile time for the host to read (for example, application version). To enter BIST (built in self test) mode write the BIST command required into the BIST_COMM register.

Read and write access is theoretical and is not enforce by hardware or firmware. Words have their MSB at lower address.

System Information Mode Register Map

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Host Access
Sy,00h	DEVIDE_MODE	Data Read Toggle	Device	Mode[2:	0]					RW
Sy,01h	BIST_COMM	BIST Co	mmand[7:0]						W
Sy,02h	BIST_STAT	BIST St	atus[7:0]							R
Sy,03h	Unused									
Sy,04h	Unused									
Sy,05h	Unused									
Sy,06h	Unused									
Sy,07h	UID_0	Unique S	Unique Silicon ID #0[7:0]				R			
Sy,08h	UID_1	Unique S	Unique Silicon ID #1[7:0]				R			
Sy,09h	UID_2	Unique S	Unique Silicon ID #2[7:0]				R			
Sy,0Ah	UID_3	Unique S	Unique Silicon ID #3[7:0]				R			
Sy,0Bh	UID_4	Unique S	Unique Silicon ID #4[7:0]				R			
Sy,0Ch	UID_5	Unique S	Unique Silicon ID #5[7:0]				R			
Sy,0Dh	UID_6	Unique S	Unique Silicon ID #6[7:0]				R			
Sy,0Eh	UID_7	Unique S	Unique Silicon ID #7[7:0]				R			
Sy,0Fh	BL_VERH	Bootload	Bootloader version[15:8]				R			
Sy,10h	BL_VERL	Bootload	Bootloader version[7:0]				R			
Sy,11h	FTS_IC_VERH	Focal Te	Focal Tech IC Version[15:8]				R			
Sy,12h	FTS_IC_VERL	Focal Te	Focal Tech IC Version[7:0]				R			
Sy,13h	APP_IDH	Applicat	Application ID[15:8]				R			
Sy,14h	APP_IDL	Applicat	Application ID[7:0]			R				
Sy,15h	APP_VERH	Application Version[15:8]			R					
Sy,16h	APP_VERL	Applicat	Application Version[7:0]				R			
Sy,17h	Unused									
Sy,18h	Unused									

Sy,19h	Unused		
Sy,1Ah	Unused		
Sy,1Bh	CID_0	Custom ID #0[0:7]	R
Sy,1Ch	CID_1	Custom ID #1[0:7]	R
Sy,1Dh	CID_2	Custom ID #2[0:7]	R
Sy,1Eh	CID_3	Custom ID #3[0:7]	R
Sy,1Fh	CID_4	Custom ID #4[0:7]	R
•••			
Sy,FEh	LOG_MSG_CNT	The log MSG count	R
Sy,FFh	LOG_CUR_CHA	Current character of log message, will point to the next character when one character is read.	R

2.3.1 DEVICE_MODE

This register is the device mode register, configure it to determine the current mode of the chip.

Address	Bit Address	Register Name	Descri	ption
Sy,00h	6:4	Device Mode[2:0]	000b 001b	Normal operating Mode System Information Mode (Reserved)
			100b	Test Mode – read raw data (Reserved)

2.3.2 BIST_COMM

This register is the BIST command register. The BIST (built in self test) function to perform is set here.

Address	Bit Address	Register Name	Description
Sy,01h	7:0	BIST Command[7:0]	BIST command to perform.

2.3.3 BIST_STAT

This register reports the status of BIST (built in self test) functions either in progress or the last function completed.

Address	Bit Address	Register Name	Description
Sy,02h	7:0	BIST Command[7:0]	Status of the last BIST function started.

2.3.4 BL_VERH

This register contains the MSB of the bootloader version specified by the application.

Address	Bit Address	Register Name	Description
Sy,0Fh	7:0	Bootloader version[15:8]	R:xx

2.3.5 BL_VERL

This register contains the LSB of the bootloader version specified by the application.

Address	Bit Address	Register Name	Description
Sy,10h	7:0	Bootloader version[7:0]	R:xx.

2.3.6 FTS_IC_VERH

This is the FTS IC version register. This register contains the MSB of the FTS IC version. The value is BCD value, for example

FT5201 - FTS_IC_VERH(0x52), FTS_IC_VERL(0x01)

FT5202 - FTS_IC_VERH(0x52), FTS_IC_VERL(0x02)

FT5206 - FTS_IC_VERH(0x52), FTS_IC_VERL(0x06)

FT5306 – FTS_IC_VERH(0x53), FTS_IC_VERL(0x06)

FT5406 - FTS_IC_VERH(0x54), FTS_IC_VERL(0x06)

Address	Bit Address	Register Name	Description
Sy,11h	7:0	Focal Tech IC version [15:8]	Focal Tech IC Version MSB

2.3.7 FTS_IC_VERL

This is the FTS IC version register. This register contains the MSB of the FTS IC version. The value is BCD value, for example

FT5201 - FTS_IC_VERH(0x52), FTS_IC_VERL(0x01)

FT5202 - FTS_IC_VERH(0x52), FTS_IC_VERL(0x02)

FT5206 - FTS_IC_VERH(0x52), FTS_IC_VERL(0x06)

FT5306 - FTS_IC_VERH(0x53), FTS_IC_VERL(0x06)

FT5406 - FTS_IC_VERH(0x54), FTS_IC_VERL(0x06)

Address	Bit Address	Register Name	Description
Sy,12h	7:0	Focal Tech IC version [7:0]	Focal Tech IC Version LSB

2.3.8 APP IDH

This is the application ID register. This register contains the MSB of the application ID. This value is set to designate the individual project.

Address	Bit Address	Register Name	Description
Sy,13h	7:0	Application Version [15:8]	R:xx

2.3.9 **APP_IDL**

This is the application ID register. This register contains the MSB of the application ID. This value is set to designate the individual project.

Address	Bit Address	Register Name	Description
Sy,14h	7:0	Application Version [15:8]	R:xx

2.3.10 APP_VERH

This is the application version register. This register contains the MSB of the application version. This value should be incremented on each internal or external release of the project.

Address	Bit Address	Register Name	Description
Sy,15h	7:0	Application Version [15:8]	R:xx

2.3.11 APP_VERL

This is the application version register. This register contains the LSB of the application version. This value should be incremented on each internal or external release of the project.

Address	Bit Addr.	Reg. Name	Description
Sy,16h	7:0	Application Version [7:0]	R:xx

2.3.12 CID_n(n:0-4)

These are Custom ID registers. These registers contain user defined Custom ID identifiers for the FT TPM.

Address	Bit Addr.	Reg. Name	Description
Sy,1Bh~1Fh	7:0	Application Version [7:0]	R:xx

3 CTPM Application Introduction

3.1 Standard Application information of FT5X06

Figure 3-1, Figure 3-2, Figure 3-3 demonstrate the typical FT5x06 application schematic. It consists of FT's Capacitive Touch Panel (CTP), FT5X06 chip, and some peripheral components. According to the size of CTPM, you can choose the numbers of TX and RX needed.

3.1.1 Standard application circuit of FT5206GE1

Figure 3-1 FT5206GE1 typical application schematic

3.1.2 Standard application circuit of FT5306DE4

Figure 3-2 FT5306DE4 typical application schematic

3.1.3 Standard application circuit of FT5206EE8

Figure 3-3 FT5406EE8 typical application schematic

FB[0402] D1

ESD5Z3,3T1

4 Communication between host and CTPM

4.1 Communication Contents

The data Host received from the CTPM through serial interface are different depend on the configuration in Device Mode Register of the CTPM. Please refer to Section 2---CTP Register Mapping.

4.2 I2C Example Code

```
// I2C write bytes to device.
// Arguments: ucSlaveAdr - slave address
//
            ucSubAdr - sub address
//
            pBuf - pointer of buffer
//
            ucBufLen - length of buffer
void i2cBurstWriteBytes(BYTE ucSlaveAdr, BYTE ucSubAdr, BYTE *pBuf, BYTE ucBufLen)
    BYTE ucDummy; // loop dummy
    ucDummy = I2C_ACCESS_DUMMY_TIME;
    while(ucDummy--)
       if (i2c_AccessStart(ucSlaveAdr, I2C_WRITE) == FALSE)
           continue:
       if (i2c_SendByte(ucSubAdr) == I2C_NON_ACKNOWLEDGE) // check non-acknowledge
           continue;
       while(ucBufLen--) // loop of writting data
           i2c_SendByte(*pBuf); // send byte
           pBuf++; // next byte pointer
       } // while
       break;
    } // while
    i2c_Stop();
}
// I2C read bytes from device.
//
// Arguments: ucSlaveAdr - slave address
//
            ucSubAdr - sub address
//
            pBuf - pointer of buffer
//
            ucBufLen - length of buffer
void i2cBurstReadBytes(BYTE ucSlaveAdr, BYTE ucSubAdr, BYTE *pBuf, BYTE ucBufLen)
    BYTE ucDummy; // loop dummy
    ucDummy = I2C_ACCESS_DUMMY_TIME;
    while(ucDummy--)
```

```
{
        if (i2c_AccessStart(ucSlaveAdr, I2C_WRITE) == FALSE)
             continue;
        if (i2c_SendByte(ucSubAdr) == I2C_NON_ACKNOWLEDGE) // check non-acknowledge
             continue;
        if (i2c_AccessStart(ucSlaveAdr, I2C_READ) == FALSE)
             continue:
        while(ucBufLen--) // loop to burst read
             *pBuf = i2c_ReceiveByte(ucBufLen); // receive byte
             pBuf++; // next byte pointer
        } // while
        break;
    } // while
    i2c_Stop();
}
// I2C read current bytes from device.
//
// Arguments: ucSlaveAdr - slave address
           pBuf - pointer of buffer
            ucBufLen - length of buffer
void i2cBurstCurrentBytes(BYTE ucSlaveAdr, BYTE *pBuf, BYTE ucBufLen)
    BYTE ucDummy; // loop dummy
    ucDummy = I2C_ACCESS_DUMMY_TIME;
    while(ucDummy--)
    {
        if (i2c_AccessStart(ucSlaveAdr, I2C_READ) == FALSE)
             continue;
        while(ucBufLen--) // loop to burst read
             *pBuf = i2c_ReceiveByte(ucBufLen); // receive byte
             pBuf++; // next byte pointer
        } // while
        break;
    } // while
    i2c_Stop();
}
With collaboration of https://www.displayfuture.com
                                    24
```