CS401 - Computational finance Properties of options

Jaideep Mulherkar

January 10, 2019

Factors determining European option price

 S_0 : Current stock price

K : Strike price

T: time to maturity

 σ : Volatility

Variable	European call	European put
Current stock price S_0	+	=
Strike price <i>K</i>	=	+
Time to expiry $ {\cal T} $	+	+
Volatility	+	+

Table: Factors affecting option prices

Zero coupon bond

- A zero coupon bond pays K amount of cash at some future time T. (No intermediate payments are made.)
- The worth of a zero coupon bond at time t = 0 is Ke^{-rT} , where r is the risk free interest rate. (This is assuming that the interest rate r remains constant.)
- Examples are Govt. treasury bills.

Upper bounds on price of a European call option (non-dividend paying)

• c price of call option p price of put option

Upper bounds on price of a European call option (non-dividend paying)

- c price of call option
 p price of put option
- $c \leq S_0$

Upper bounds on price of a European call option (non-dividend paying)

- c price of call option p price of put option
- $c \leq S_0$
- if $c > S_0$ t = 0: Sell call option for c and buy stock at S_0 and put $c - S_0$ in bank t = T: if $S_T > K$. Profit $= K + (c - S_0)e^{rT}$ (option ex) t = T: if $S_T < K$. Profit $= (c - S_0)e^{rT}$ (option not ex)

Upper bounds on price of a European put option (non-dividend paying)

c price of call option
 p price of put option

Upper bounds on price of a European put option (non-dividend paying)

- c price of call option
 p price of put option
- $p \le Ke^{-rT}$

Upper bounds on price of a European put option (non-dividend paying)

- c price of call option p price of put option
- $p \leq Ke^{-rT}$
- if $p > Ke^{-rT}$ t = 0: Sell put option for p and put in bank t = T: if $S_T > K$. Profit $= pe^{rT}$ (option not ex.)
 - t = T: if $S_T \le K$. Profit $= S_T K + pe^{rT}$ (option ex.)

Lower bounds on price of a European call option (Non dividend paying)

•
$$c \ge S_0 - Ke^{-rT}$$

Lower bounds on price of a European call option (Non dividend paying)

- $c \ge S_0 Ke^{-rT}$
- Consider the following portfolio
 - (a): One European call option plus a zero coupon bond with payoff K at time T
 - (b): one share of stock

Lower bounds on price of a European call option (Non dividend paying)

- $c \ge S_0 Ke^{-rT}$
- Consider the following portfolio
 - (a): One European call option plus a zero coupon bond with payoff \boldsymbol{K} at time \boldsymbol{T}
 - (b): one share of stock
- Worth at time T:

Portfolio (a) $\max(S_T, K)$ Portfolio (b) S_T . $((a) \ge (b))$

Worth at time 0:

Portfolio (a) $c + Ke^{-rT}$ Portfolio (b) S_0

Hence no-arbitrage implies $c + Ke^{-rT} \ge S_0$. $c \ge \max(S_0 - Ke^{-rT}, 0)$.

Lower bounds on price of a European put option

•
$$p \ge Ke^{-rT} - S_0$$

Lower bounds on price of a European put option

- $p \ge Ke^{-rT} S_0$
- Consider the following portfolio
 - (c): One European put option plus a share
 - (d): one zero coupon bond paying K at time T.

Lower bounds on price of a European put option

- $p \ge Ke^{-rT} S_0$
- Consider the following portfolio
 (c): One European put option plus a share
 - (d): one zero coupon bond paying K at time T.
- Worth at time TPortfolio (c) $\max(S_T, K)$ Portfolio (b) K. $((c) \ge (d))$ Worth at time 0 Portfolio (a) $p + S_0$ Portfolio (b) Ke^{-rT}

Hence no-arbitrage implies $p + S_0 \ge Ke^{-rT}$ $p \ge \max(Ke^{-rT} - S_0, 0)$.

Put call parity for a European option

- Portfolio A: One European call option plus a zero coupon bond with payoff K at time T
 Portfolio B: One European put option plus a share
- Put-Call parity states that these two portfolios have the same value

$$c + Ke^{-rT} = p + S_0$$

 The value of a European call option with certain exercise price and date can be deduced from the put option with the same exercise price and date (and vice versa).

Put call parity for a European option

		$S_T > K$	$S_T < K$
Portfolio (A)	Call option	$S_T - K$	0
	ZC bond	K	K
Portfolio (B)	Put option	0	$K - S_T$
	Share	S_T	S_T

Table: Value of portfolio (A) and (B) at time T.

Therefore the present value of portfolio (A) and (B) must be the same

$$c + Ke^{-rT} = p + S_0$$

Further reading

Chap 11. Properties of stock options, J.C. Hull 9th edition.