		November 17,2016						
Peview >	Way to see	PMF	PDF	CDF	EEXT	[Var[x]	Quantile(np)	
10000	Discrete v.v.	p(x) & [0,1] [p(x) = 1 xesupp(x)	No	Yes	Ixp(x) xe supp(x)	HIM	min {x:F(x)≥p}	
	10.	Xe supp[X]	Morso = Wh		8 y = 10 -		escalaries sur automorphismosoma and announce con-	
	Continuous v. v.	100	f(x) > 0	Yes	SXF(X)	dx = IRI>	lin/x s.t.	
1.	0-1= (2 9	rail - 101-9)	Suppress = 1	* *	Supple	, /4=	F(xi) = p	
			1 f(x)= &(F	(x))	= (1,010)			
	"V, Y notecuap" " surve " " voies not n billione"							
	this tomor bring out to mean that I suit .							
	it appears (1777)							
		ed form						
		22 X / X = 1/		岩 之				
\$ 00 }	$f(x) = \sqrt{\frac{1}{2\pi}} e$	- 2			x /			
La Land	15 this a	PDF?	9-) 1101 =					
7	(a) f(x) > 0?							
	Yes ble e 2 never goes to 0.							
	(b) S f(x) supplied, Yes,	dx = 1?	dx = 1.					
>	Proof: $\frac{x^2}{\sqrt{2\pi}} \int e^{-\frac{x^2}{2}} dx = 1 \Rightarrow \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$							
	Tar Je 2 di	$\int e^{-\frac{1}{2}} dx = 1 \Rightarrow \int e^{-\frac{1}{2}} dx = \sqrt{a\pi}$						
Alveg pa no	Dipsini jol							
	Let $u = \sqrt{2}x$ $du = \sqrt{2}dx$ $dx = \sqrt{2}$ $dx = \sqrt{2}$ $dx = \sqrt{2}$ $dx = \sqrt{2}$							
	$u^2 = \frac{\alpha^2}{2}, dx = \sqrt{a} du 1 = \sqrt{x} \sqrt{x} dx$							
	→ Sre-u2 di	Wa = VaTT	→ S _{IR} e ⁻	$u^2 du = \sqrt{\pi}$	→ (_{IR}	$e^{-u^2}du)^2 =$	$(\sqrt{\pi})^2$	
	→ (fe-u²du)2 = 7 > [e-u2 du Se	$u^2 du = N$	$\Rightarrow \int_{\mathbb{R}} e^{-\chi^2} d$	a Set'dy	= 7	

by integration by parts.

> Vav[z] =
$$E[z^2] - \mu^2 = \int_{\mathbb{R}} \chi^2 \sqrt{2\pi} e^{-\frac{\chi^2}{2}} d\chi = 1$$

Vav[z] = 1
SE[z] = 1
So $\sigma^2 = \sigma = 1$

> Review:
$$\chi \sim \text{Geom}(p) = \exp[\chi] = \frac{1}{p} = \frac{1}{np}$$

 $\chi \sim \exp(\lambda) := \lambda e^{-\lambda \chi}$
 $F(\chi) = 1 - e^{-\lambda \chi}$
 $E[\chi] = \frac{1}{\lambda}$

$$\chi \sim \text{Unif}(a,b) := f(x) = \frac{1}{b-a}$$

$$F(x) = \frac{x-a}{b-a}$$

>
$$\chi \sim Exp(\lambda)$$

 $\gamma = 2\chi \sim ?$

$$Y = 2x \times ?$$

$$F_{Y}(x) = P(Y \le x) = P(2x \le x) = P(x \le \frac{x}{2}) = F_{x}(\frac{x}{2})$$

=
$$1 - e^{-\lambda^{\frac{\lambda}{2}}}$$
 \Rightarrow Let $\lambda' = \frac{\lambda}{2} \Rightarrow 1 - e^{-\lambda' x}$

$$= \sqrt{\operatorname{Exp}(\lambda')} = \sqrt{\operatorname{Exp}(\frac{2}{2})}$$

>
$$\chi \sim \text{Unif}(a,b)$$

 $\gamma = d + c \chi \sim ?$

$$F_{Y}(\chi) = P(Y \leq \chi) = P(d + c\chi \leq \chi) = P(\chi \leq \frac{\chi - d}{c}) = F_{\chi}(\frac{\chi - d}{c})$$

$$= \frac{x-d-a}{c-a} \times \frac{c}{c} = \frac{x-d-ac}{c(b-a)} - \frac{x-(d+ac)}{bc-ac} - \frac{x-(d+ac)}{(d+bc)-(d+ac)}$$

$$\Rightarrow \text{Let } \alpha' = d + ac \Rightarrow \frac{x - a'}{b' - a'} \Rightarrow \frac{y \cdot \text{Unif}(\alpha', b')}{b' - a'} \Rightarrow \frac{y \cdot \text{Unif}(\alpha', b')}{\Rightarrow y \cdot \text{Unif}(d + ac, d + b)}$$

$$F_{\chi}(\chi) = P(\chi \leq \chi) = P(\mu + \sigma Z \leq \chi) = P(Z \leq \frac{\chi - M}{\sigma}) = F_{Z}(\frac{\chi - K}{\sigma})$$
 STOP

But
$$F_z$$
 is antidifferentiable... so we find the PDF.
 $f(x) = \frac{1}{4x} F(x)$ $\Rightarrow \frac{1}{4x} [F_z(x-M)]$
Let $u = \frac{x-M}{6} \frac{dy}{dx} = \frac{1}{6}$
 $\frac{1}{6x} \frac{1}{6x} \frac{1}{6x}$

=
$$\frac{1}{5}\left(\frac{1}{\sqrt{2\pi}} - \frac{(x-\mu)^2}{5^2}\right) = \frac{1}{\sqrt{2\pi}5^2}e^{\frac{(x-\mu)^2}{5^2}}$$

 $\Rightarrow f(x) = \sqrt{2\pi}5^2 e^{\frac{1}{25^2}(x-\mu)^2}$
 $\Rightarrow f(x) = \sqrt{2\pi}5^2 e^{\frac{1}{25^2}(x-\mu)^2}$
 $\Rightarrow \text{Normal } (\mu, \sigma^2) = e^{\frac{1}{25^2}(x-\mu)^2}$
"General Normal Distribution"

$$E[X] = E[\mu + \delta^2] = \mu$$

 $SE[X] = SE[\mu + \delta^2] = |\delta|$ skinnler bencurve
foram Space: $\mu \in \mathbb{R}$ $\delta^2 \in (0, \infty)$ forter bencurve
 $Supp[X] = I\mathbb{R}$