Biology 30 IB Cells, Chromosomes, & DNA

Jad Chehimi

November 17, 2020

Unfinished!

Contents

1	Terr	ns		3		
2	Cell	Divisio	ion	3		
	2.1	Purpos	ose	. 3		
	2.2	Chrom	mosomes	. 3		
	2.3	Chrom	matid	. 3		
3	Cell	Cycle		4		
	3.1	Interph	phase	. 4		
		3.1.1	$Gap\ 1\ (G_1)\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$. 4		
		3.1.2	S Phase (S)	. 4		
		3.1.3	Gap 2 (G_2)	. 4		
	3.2	Mitotio	ic Phase	. 5		
		3.2.1	Prophase	. 5		
		3.2.2	Metaphase	. 5		
		3.2.3	Anaphase	. 6		
		3.2.4	Telophase	. 6		
		3.2.5	Cytokinesis	. 6		
4	Cell Properties					
	4.1	Biologi	gical Clock	. 7		
	4 2	Death	n & Aging	7		

5	Nat	ural Cloning	7				
	5.1	Twins	8				
	5.2	Identical Twins	8				
	5.3	Fraternal Twins	8				
6	Unnatural Cloning						
	6.1	Plant Cloning	9				
	6.2	Animal Cloning	9				
		6.2.1 Mammal Cloning	10				
7	Cancer						
	7.1	Metastasis	11				
	7.2	Tumors	11				
	7.3	Causes	11				
	7.4	Methods of Identification	11				
8	Telomeres						
	8 1	Telomerase	12				

1 Terms

- Stomatic cells are all cells in the body except sex cells sperm and egg cells
- Cell division is done by Eukaryotic cells have a nucleus
- Binary fission is done by Prokaryotic cells have no nucleus, such as bacteria

2 Cell Division

2.1 Purpose

- Unicellular organisms (i.e. zygote) → Multicellular organisms
- Growth and maintenance of body cells replacement of worn out cells

2.2 Chromosomes

- Comprised of...
 - nucleic acids (DNA)
 - proteins
- Either...
 - **Uncondensed** aka. **Chromatin** = long, thin strands. invisible to microscope
 - **Condensed** = thick & shortened. visible to microscope

2.3 Chromatid

- The strand that makes up a normal chromosome
- In mitosis...
 - A chromosome duplicates into two identical chromatids, joined together by a centromere, to form a duplicated chromosome
 - These chromatids are referred as sister chromatids in this state
 - Each chromatid of a duplicated chromosome goes to each of the two new cells

3 Cell Cycle

A continuous cycle that involves all steps of a cell's life, especially cell division.

3.1 Interphase

- 90% of cell cycle
- All cell activity when not dividing

3.1.1 Gap 1 (G_1)

- Cell growth and general function
- After cell division, cells may be smaller than their parent. Cell growth is needed

3.1.2 S Phase (S)

- DNA is doubled
- $\bullet \ \, \mathsf{Single}(\mathsf{-chromatid}) \ \, \mathsf{chromosome} \ \, \xrightarrow{\mathrm{duplication}} \ \, \mathsf{double}(\mathsf{-chromatid}) \ \, \mathsf{chromosome} \\$

3.1.3 Gap 2 (G_2)

• Organelles are doubled, and proteins for the new cell are produced

3.2 Mitotic Phase

Occurs in stomatic cells.

Distribution of nucleus and its contents.

3.2.1 Prophase

- Chromatin condense shorten & thicken into chromosomes, becoming visible
- Nuclear membrane fades
- Animal cells only...
 - Centrioles move to opposite poles of cell. (N/S, E/W)
 - Two centrioles are at each pole, total four, for each cell
 - Centrioles deploy spindle fibers
- Without centrioles such as plant cells spindle fibers are still present and the cycle works the same

3.2.2 Metaphase

- Equatorial plate = center of cell
- Sister chromatids move towards equatorial plate
- Chromosomes attach to spindle fibers

3.2.3 Anaphase

- Centromeres divide
- (Now) chromatids move towards spindle fibers i.e. opposite poles of cell

3.2.4 Telophase

- Spindle fibers dissolve
- Nuclear membrane forms around each mass of chromatin

3.2.5 Cytokinesis

Technically occurs at the end of telophase.

- Division of cytoplasm and distribution of organelles to "daughter" cells
- Involves cleavage, pinching off in the center as the cytoplasm moves to opposite poles
- In plant cells only, a **cell plate** is distributed, which develops into a new cell wall

4 Cell Properties

4.1 Biological Clock

Immature cells always have 50 division, regardless of...

- duration frozen
- stage/phase that cell division was suspended

4.2 Death & Aging

Cells may stop dividing due to...

- **Senescence** = aging, irreversible changes that eventually lead to death
- **Specialization** = the more specialized/differentiated a cell is, the less likely it will undergo mitosis

Cells that avoid aging are...

- **Spermatogonia** = sperm-producing cells, immature & unspecialized
- Cancer cells of a tumor, which do not become specialized

5 Natural Cloning

- Asexual/nonsexual reproduction
- Identical offspring from a single cell

5.1 Twins

5.2 Identical Twins

- Originate from single egg cell
- During mitosis, one of the cells breaks free; this cell forms a 2nd embryo
- If cell clusters remain separate, two babies with identical gene structures will develop
- Same gender, blood type, similar facial structure (nature vs. nurture)

5.3 Fraternal Twins

- Two different eggs fertilized by different sperm cells
- Not to be confused with identical twins do not have identical genes

6 Unnatural Cloning

A **totipotent** nucleus is a nucleus that is able to bring a cell from egg to adult.

6.1 Plant Cloning

- useful, since cloned plants have predictable characteristics
- requires delaying cell specialization

6.2 Animal Cloning

- With a micropipette, the nucleus is extracted from an unfertilized egg cell The cell is now **enucleated** (no nucleus)
- Remove nucleus from a cell of another frog
- Insert egg cell nucleus into said cell
- If cell is in **blastula** stage hollow ball of cells of an embryo, early embryo then the cells divide into an adult frog, a clone of the frog that donated the egg cell nucleus
- If cell is past blastula such as the later **gastrula** stage the cells have already specialized, so they do not divide, and the embryo dies

6.2.1 Mammal Cloning

- More difficult
- Cells tend to be more specialized
- Nucleus transfer must be done before 8 cell stage of development
- Ensures nuclei are totipotent

7 Cancer

- Rapid, uncontrollable growth of cells
- Some are very slow, some pause and return after many years
- Reproduce without directions from adjacent cells
- Cannot specialize making them inefficient

7.1 Metastasis

- Cancer cells can dislodge from a tumor and move to another area
- Difficult to isolate source of cancer

7.2 Tumors

A mass of cancerous cells within otherwise normal tissue.

• Benign Tumor

- If cancerous cells remain at site
- Do not cause serious problems
- Can be removed by surgery

• Malignant Tumor

- If cancerous cells metastasize dislodge & travel and cause impairment of other organs
- Unusual number of chromosomes

7.3 Causes

- x-rays
- chemical poisons
- asbestos
- fungi
- oncoviruses
- environmental factors (nature, e.g. diet)
- age
- inherited mutations

7.4 Methods of Identification

- x-rays
- cell biopsies
- infrared technology

8 Telomeres

- Caps at the end of chromosomes
- Reduce in length every cell cycle/division
- Clones like Dolly inherit their parents telomere length, shortening their life span compared to non-clones

8.1 Telomerase

- An enzyme that maintains telomere length, slowing cell death
- Not present in most normal cells
- Reactivated in cancer cells, explaining their immortality