https://powwerder.com

Add WeChatspowcoder

Assignment Project Exam Help

https://poweeder.com

Outline

Assignment Project Exam Help

- Residual Analysis and The Autocorrelation Function (ACF)
- https://powcoder.com
- Autoregressive Models

Add WeChat powcoder

Bigger Picture

Assignment Projecti Enxampar Help

Procedure:

https://pipe.ser/es

- Diagnose it's goodness

In a typical regression course, we stop here

- In this course, we try to model those residuals

Comments

Assignment Project Exam Help

 $Y_t = \mu_t + \epsilon_t$

► https://hp@vecsodetilogoma comprehensive class of Time Series models.

Residual Analysis

Assi Previously exeballed residual scatterplot and said "looks of "elp

- Two alternatives
 - Runs test

 tisingle and intranspore tipe etandardisens siduals for a number of time lags
- Independence is particularly important to us now
 - A later leading remain in the tesident we with model that correlation with a time series model
 - ▶ Plot of estimated autocorrelation particularly useful, because it will help determine which model to fit

Sample Autocorrelation Function (ACF)

Assignment Project Exam Help

- Estimating and plotting the ACF is essential
- ▶ When we detrend the data, we are hoping to get a stationary https://powcoder.com
 It's hard to see if remaining correlations exist, but if they do,
- we want to model them
- The ACF will help determine how we model them Add WeChat powcoder

Sample Autocorrelation

Assignment Project Exam Help

- residuals are approximately N(0,1/n)
- stimate and plot the sample ACF using the standardized residues.//powcoder.com
 - ▶ If certain lags are above 1/n, we suspect remaining correlation in the residuals
- Madawse entrate powcoder

Autocorrelation Plot Example - gtemp2 Data

Autocorrelation Plot Example - gold Data

Autocorrelation Plot Example - beersales Data

Moving Average and Autoregressive Processes

Assignment Project Exam Help

- Today we cover the two basic models for stationary time series nturns average OWCOCET.COM
 - Autoregressive

Add WeChat powcoder

Moving Average Processes

Assisprente Projectro Eswame Help

https://powcoder.com

- is called a moving average process of order q, and is
 detection depoted average process of order q, and is
 detection depoted average of the previous q error
- Todays value is a weighted average of the previous q error terms

Comment on coefficient signs. . .

Assignment Project Exam Help

https://powcoder.com

- R uses positive signs, so we'll stick with that.

 Mathematical times on the distribution of the contraction of the contraction

MA(1) Process

Assignment Project Exam Help

The 1st order moving average process, denoted MA(1) is $\frac{\text{https://powcoder.com}}{\text{powcoder.com}}$

Add WeChat powcoder

- 1. Mean: $E(Y_t) = 0$
- 2. Variance:

Assignment Project Exam Help

$$\begin{array}{ll} \textit{var}(Y_t) &=& \textit{var}(e_t + \theta_1 e_{t-1}) \\ \textbf{https} &= //\text{polytoper} \\ \textbf{e} + \theta_1^2 \sigma_e^2 = \sigma_e^2 (1 + \theta_1^2) \end{array}$$

3. And dati Wie Chat powcoder

$$\rho_k = \begin{cases} 1 & k = 0 \\ \frac{\theta_1}{1 + \theta_1^2} & k = 1 \\ 0 & k > 1 \end{cases}$$

Assignment Project Exam Help This process has no correlation beyond lag 1!

- Observations 1 time unit apart are correlated, but observations
- Important of keep in Oil When the Chaider nodes for real data using empirical evidence

i.e. when we look at ACF plots and see high correlation at lag 1

Assignmental Project to Examodalelp

▶ When $\theta_1 = 0$, the MA(1) process reduces to white noise

► hardicted Wae absolute value by the coder invertibility)

As θ_1 ranges from -1 to 1, the lag 1 autocorrelation ρ_1 ranges from -0.5 to 0.5

Assignment Project Exam Help

https://powcoder.com

► For 1:

Add WeChat powcoder
$$\rho_1 = \frac{1}{1+1^2} = 0.5$$

 Observing lag 1 autocorrelation well outside of this range is inconsistent with the MA(1) model

Simulated MA(1) Processes

ACF for Simulated MA(1) Processes

Assignment Project Exam Help

- ▶ Vary the ma parameter between -1 and 1 and look at the
- resulting time series.

 Rundard through though the art Councile and Counciles. What do you notice?
- ▶ We'll model these at the end today, but what would you expect yArdinateWeffenthatinpowcoder

MA(2) Process

Assignment Project Exam Help

Add WeChat powcoder

• Mean: $E(Y_t) = 0$

Assignment Project Exam Help

$$var(Y_t) = \sigma_e^2 (1 + \theta_1^2 + \theta_2^2)$$

https://powcoder.com

Add We that powcoder $\rho_k = \begin{cases} \frac{\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2} & k = 1 \\ \frac{\theta_2}{1 + \theta_1^2 + \theta_2^2} & k = 2 \\ 0 & k > 2. \end{cases}$

Assignment Project Exam Help

- a possible MA(2) model.

Add WeChat powcoder

Simulated MA(2) Processes

ACF for Simulated MA(2) Processes

General MA(q) Process

Assignment Project Exam Help

Add WeChat powcoder

▶ Mean: $E(Y_t) = 0$

Assignment Project Exam Help

$$var(Y_t) = var(Y_t) = \sigma_e^2(1 + \theta_1^2 + \ldots + \theta_q^2)$$

https://powcoder.com

$$Add \bigvee_{\rho_k = \begin{cases} \frac{\theta_1 + \theta_1 \theta_2 + \dots + \theta_{q-k} \theta_q}{1 + \theta_1^2 + \dots + \theta_q^2} & \text{ $k = 1, \dots, q-1$} \\ \frac{\theta_q}{1 + \theta_1^2 + \dots + \theta_q^2} & k = q \\ 0 & k > q. \end{cases}$$

Assignment Project Exam Help

Key feature of MA(q) models:
 https://www.autopolitims.com
 Autocorrelations = 0 for all lags > q

Add WeChat powcoder

Comment

Assignment Project Exam Help

q is always used to denote the order of an MA process

httlingsoffware owcoder.com

We'll use functions that require us to specify p, d, q, P, D, Q and Sto it's important to keep track powcoder

Autoregressive (AR) Process

Assignment Project roles warmer Help

https://poweoder.eom

is called an autoregressive process of order p, denoted by $\mathsf{AR}(p)$.

Talage due Wher fine opte provide des plus some error.

AR(1) Process

Assignment Project Exam Help

https://powcoder.com

- Note that if $\phi_1 = 1$, then the process reduces to a random walk.
- Malk. In this walk. In the contract power of the contract power of

Assignment Project Exam Help

$$ttps://powcoder.com$$
Recause var(Y,) > 0. This implies that -1 < \phi_t < 1

Because $var(Y_t) > 0$, this implies that $-1 < \phi_1 < 1$

The correlation between observations k time periods apart is Add Ween above the power of the periods apart is

$$\rho_k = \phi_1^k$$

ssignment Project Exams Help

- If ϕ_1 is close to ± 1 , ACF decays slowly
 In the second of the ACFs will be positive
- ▶ If ϕ_1 < 0, the ACF alternates between positive and negative
- Remember these theoretical patterns so that when we see sample of Fs vilon cal call we are not some serious. about potential model selection

Simulated AR(1) Processes

ACF for Simulated AR(1) Processes

Assignment Project Exam Help

- plus some error
- AAF gets quite involved, to we leave it out here.

 But AcF continues to trail of similar to the ARACET

Simulated AR(2) Processes

ACF for Simulated AR(2) Processes

AR(p) Process

Assignment Project Exam Help

https://powcoder.com

Note that *p* is *always* used to denote the order of an AR process, just as *q* is *always* used to denote the order of an MA part with the process of the

ACF for AR Processes

Assignment Project Exam Help

process...

http: both trapio w Coder in the plots com

▶ Need something else to help determine order *p*

A Partial Autocorrelation Function Dowcoder

A partial Autocorrelation Function Dowcoder

Lass Nat powcoder

Fitting MA(q) or AR(p) Models in R

- Assignment May even Exam Help
 - ar(x) Determines order p via AIC, can set order.max
 arma(x, order=c(p,q)) No offick function for foreca
 - htarma(x, order=c(p,q)) No quick function for forecasts,
 - ▶ arima(x, order=c(p,d,q)) Use predict(.., n.ahead=) for quick forecasts
 - Astrina (xxp, d cy, P, D, Q, S) Must specify at least PQ the there defan at DOWCOGET
 - Sarima.for(x, n.ahead=..., p, d, q, P, D, Q, S) -Gives forecasts, outputs several useful plots
 - sarima appears to be the latest and greatest...

Combining today with the last class

Example 2

