IV.U1 To na tabuli neuvidíte!

K následujícím obrázkům přiřaď te jev, nebo objekt, který zachycuje.

Jevy/objekty

interakce radioaktivního záření s fotografickou deskou, simulace brownova pohybu částice, Sgr A*, mapa teplotního rozložení raného vesmíru, čerenkovovo záření, elektron letící zpátky v čase mlžnou komorou

Michal dostal za úkol připravit si experiment na hodinu fyziky.

mapa teplotního rozložení raného vesmíru

interakce radioaktivního záření s fotografickou deskou

simulace Brownova pohybu částice

elektron letící zpátky v čase mlžnou komorou

Sgr A*

Čerenkovovo záření

Bonus: Jak jinak byste mohli pojmenovat 4. obrázek?

Řešení bonusu: Pozitron letící mlžnou komorou. Dle tzv. Feynmanovy–Stückelbergovy intepretace a Wheelerovy hypotézy jednoho elektronu jsou antičástice pouze jejich příslušné částice cestující zpátky v čase. Matematicky je toto druhý přístup, jak si vysvětlit ono prazvláštní řešení Diracovy rovnice se zápornou energií. Poslední dobou je tato představa brána jako přijatelnější než původní Diracův model děr v Diracově moři.

¹Autor: NASA/WMAP Science Team

²Autor: Henri Becquerel

 $^{^3 \}mathrm{Autor} \colon \mathrm{Di} \ \mathrm{Gama}$

⁴Autor: Carl D. Anderson ⁵Autor: EHT Collaboration

⁶Autor: Argonne National Laboratory