

MATH7003-00: Assignment #8

Sangman Jung

e-mail: sangmanjung@khu.ac.kr

Kyung Hee University - May 27, 2020

Problem.

1. Consider the example on slide 10 and implement the Gauss-Jacobi method to obtain the Table 8.3. Discuss about the results. [1].

Table 8.3 Numerical results for the Gauss-Jacobi method

m	$x_1^{(m)}$	$x_2^{(m)}$	$x_3^{(m)}$	$ e^{(m)} _{\infty}$	Ratio
0	0 .	0	0	1.0	
1	1.4	.5	1.4	.5	.5
2	1.11	1.20	1.11	.2	.4
3.	.929	1.055	.929	.071	.36
4	.9906	.9645	.9906	.0355	.50
5	1.01159	.9953	1.01159	.01159	.33
6	1.000251	1.005795	1.000251	.005795	.50

2. Consider the example on slide 15 and implement the Gauss-Seidel method to obtain the Table 8.4. Discuss about the results. [1].

Table 8.4 Numerical results for the Gauss-Seidel method

m	$x_1^{(m)}$	$x_2^{(m)}$	$x_3^{(m)}$	$ e^{(m)} _{\infty}$	Ratio
0	0	0	0	1	-
1	1.4	.78	1.026	.4	.4
2	1.063400	1.020480	.987516	6.34E - 2	.16
3	.995104	.995276	1.001907	4.90E - 3	.077
4	1.001227	1.000817	.999632	1.23E - 3	.25
5	.999792	.999848	1.000066	2.08E - 4	.17
6	1.000039	1.000028	.999988	3.90E - 5	.19

3. Show the following inequalities (use the norm definition on slide 6);

3-(1)
$$\|Av\|_1 \le \|A\|_1 \|v\|_1$$

3-(2)
$$\parallel Av \parallel_{\infty} \leq \parallel A \parallel_{\infty} \parallel v \parallel_{\infty}$$

Solution. (problem #1 and #2)

For the problem Ax = b with $A = \begin{bmatrix} 10 & 3 & 1 \\ 2 & -10 & 3 \\ 1 & 3 & 10 \end{bmatrix}$, $b = \begin{bmatrix} 14 \\ -5 \\ 14 \end{bmatrix}$, and initial guess $x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, the result of the Gauss-Jacobi method and Gauss-Seidel method is as follows.

ole 8.3	Numerical result:	s for the Gauss-Jacol	o: metnoa 		
m	$\{x_{1}\}^{(m)}$	{x_{2}}^{(m)}	{x_{3}}^{(m)}	e^{(m)} _{inf}	Ratio
0	0.000000	0.000000	0.000000	1.000000	
1	1.400000	0.500000	1.400000	0.500000	0.5
2	1.110000	1.200000	1.110000	0.200000	0.4
3	0.929000	1.055000	0.929000	0.071000	0.35
4	0.990600	0.964500	0.990600	0.035500	0.5
5	1.011590	0.995300	1.011590	0.011590	0.33
6	1.000251	0.995300 1.005795 s s for the Gauss-Seid	1.000251	0.011590 0.005795	0.33 0.5
6	1.000251 Numerical result:	1.005795	1.000251	0.005795	
6 	1.000251 Numerical result:	1.005795	1.000251 el method	0.005795	0.5
6 ole 8.4 	1.000251 Numerical result: {x_{1}}^{(m)}	1.005795 s for the Gauss-Seid {x_{2}}^{(m)}	1.000251 el method {x_{3}}^{(m)}	0.005795 	0.5
6 ole 8.4	1.000251 Numerical result: {x_{1}}^{(m)} 0.000000	1.005795 s for the Gauss-Seid {x_{2}}^{(m)}	1.000251 el method $\{x_{-}\{3\}\}^{n}\{(m)\}$ 0.000000	0.005795 e^{(m)} _{inf} 1.000000	0.5
6 ole 8.4 m	1.000251 Numerical result: {x_{1}}^{(m)} 0.000000 1.400000	1.005795 s for the Gauss-Seid {x_{2}}^{(m)} 0.000000 0.780000	1.000251 el method {x_{3}}^{(m)} 0.000000 1.026000	0.005795 	0.5
6 ole 8.4 m	1.000251 Numerical result: {x_{1}}^{(m)} 0.000000 1.400000 1.063400	1.005795 s for the Gauss-Seid {x_{2}}^{(m)} 0.000000 0.780000 1.020480	1.000251 el method {x_{3}}^{(m)} 0.000000 1.026000 0.987516	0.005795 e^{(m)} _{inf} 1.000000 4.00e-01 6.34e-02	0.5 Ratio 0.4 0.16
6 m 0 1 2 3	1.000251 Numerical result: {x_{1}}^{(m)} 0.000000 1.400000 1.063400 0.995104	1.005795 s for the Gauss-Seid {x_{2}}^{(m)} 0.000000 0.780000 1.020480 0.995276	1.000251 el method {x_{3}}^{(m)} 0.000000 1.026000 0.987516 1.001907	0.005795 e^{(m)} _{inf} 1.000000 4.00e-01 6.34e-02 4.90e-03	0.5 Ratio 0.4 0.16 0.077

Figure 1. The results of the problem 1 and 2 using MATLAB. Note that Ratio = $\|e^{(m)}\|_{\infty}/\|e^{(m-1)}\|_{\infty}$.

Discussion. (problem #1 and #2)

For the case of the problem 1 in our textbook, we already obtained the inequality for the error that

$$\|e^{(m+1)}\|_{\infty} \le \mu \|e^{(m)}\|_{\infty} = 0.5 \|e^{(m)}\|_{\infty},$$

And also we have the inequality for the error in the case of the problem 2 that

$$\parallel e^{(m+1)} \parallel_{\infty} \leq \eta \parallel e^{(m)} \parallel_{\infty} \quad \text{with} \quad \eta = \max_{1 \leq i \leq n} \frac{\beta_i}{1 - \alpha_i}, \ \alpha_i = \sum_{i=1}^{i-1} \left \lfloor \frac{a_{ij}}{a_{ii}} \right \rfloor, \ \beta_i = \sum_{i=i+1}^n \left \lfloor \frac{a_{ij}}{a_{ii}} \right \rfloor \ \text{for} \ i = 1, \dots, n.$$

Then, by the calculation of above, we have $\eta=0.4<\mu=0.5<1$. This shows the convergence of $e^{(m)}\to 0$ as $m\to\infty$, and also the speed of convergence for Gauss-Seidel method is significantly better than for the case of the Gauss-Jacobi method. The values of Ratio appear to converge to about 0.18.

Solution. (problem #3)

3-(1) proof:

Note that $\parallel A \parallel_1 = \mathop{\rm Max} \sum_i \left| a_{ij} \right|$ and $\parallel v \parallel_1 = \sum_i \left| v_i \right|$ by definition in Table 7.1. Then,

$$\begin{split} \parallel Av \parallel_{1} &= \sum_{i} \left| \left(Av \right)_{i} \right| \; \leq \; \sum_{i} \sum_{j} \left| \left. a_{ij} \right| \left| \left| v_{j} \right| = \sum_{j} \left(\sum_{i} \left| \left. a_{ij} \right| \right) \right| v_{j} \right| \\ &\leq \; \sum_{j} \left(\max_{k} \sum_{i} \left| \left. a_{ik} \right| \right) \left| \left| \left| v_{j} \right| = \; \parallel A \parallel_{1} \parallel v \parallel_{1} \right. \end{split}$$

 $\text{Thus, } \parallel Av \parallel_1 \leq \ \parallel A \parallel_1 \parallel v \parallel_1.$

3-(2) proof:

Note that $\parallel A \parallel_{\infty} = \mathop{\rm Max} \sum_{i} |a_{ij}|$ and $\parallel v \parallel_{\infty} = \mathop{\rm Max} |v_{i}|$ by definition in Table 7.1. Then,

$$\begin{split} \parallel Av \parallel_{\infty} &= \operatorname{Max} \sum_{i} \left| \left(Av \right)_{i} \right| \ \leq \operatorname{Max} \sum_{j} \left| \left. a_{ij} \right| \left| \left. v_{j} \right| \right. \\ &\leq \operatorname{Max} \left(\sum_{j} \left| \left. a_{ij} \right| \right) \operatorname{Max} \left| \left. v_{j} \right| = \parallel A \parallel_{\infty} \parallel v \parallel_{\infty} \end{split}$$

Thus, $\parallel Av \parallel_{\infty} \leq \parallel A \parallel_{\infty} \parallel v \parallel_{\infty}$.

Table_8_3_and_Table_8_4_HW8.m

```
%% MATH7003-00: Assignment #8, 2019310290 Sangman Jung.
clear.clc
% the problem for a linear equation Ax=b
m_iter = 7; % set the iteration numbers
 A = [10 3 1; 2 -10 3; 1 3 10]; % matrix A
b = [14 -5 14]'; % vector b
true x = [1 \ 1 \ 1]'; % solution of Ax=b
x(:,1) = [0\ 0\ 0]'; % initial guess for Gauss-Jacobi (GB)
 x_{sei}(:,1) = x(:,1); % initial guess for Gauss-Seidal (GS)
e(:,1) = true x - x(:,1); % error for (GB)
e sei(:,1) = true x - x sei(:,1); % error for (GS)
norm_e(:,1) = norm(e(:,1),inf); % infinite norm of error 'e' (GB)
norm_e_sei(:,1) = norm(e_sei(:,1),inf); % infinite norm of error 'e' (GS)
 \mbox{Ratio} = \mbox{zeros} \, (\mbox{m\_iter-1,1}) \, ; \, \, \% \, \, \mbox{ratio} = \mbox{||e^{(m)}||_{inf}} \, \, / \, \, ||e^{(m-1)}||_{inf} \, ) \, ||e^{(m-1)}||_{inf} \, ||e^{(m-1)}
Ratio sei = Ratio;
fprintf('Table 8.3 Numerical results for the Gauss-Jacobi method\n');
 \texttt{fprintf('} \texttt{tm} \texttt{t} \texttt{x}_{1}}^{(m)} \texttt{tx}_{2}}^{(m)} \texttt{tx}_{3}}^{(m)} \texttt{tt} \texttt{x}_{4}})^{(m)} \texttt{tt} \texttt{x}_{2}}^{(m)} \texttt{tx}_{3}}^{(m)} \texttt{tt} \texttt{x}_{4}} 
 fprintf('\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^
for m = 1:m iter-1 % m iteration
                % search (i, j) -entry for the matrix A
                 for i = 1:size(A,1) % position i
                                % allocations
                               sum ax = 0;
                                seisum1 = 0:
                                seisum2 = 0;
                                 for j = 1:size(A,1) % position j
                                             if i ~= j
                                                                sum\_ax = sum\_ax + A(i,j) *x(j,m); % inner product for the rows of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the vector x in the context of the row of A and the row o
                                x(i,m+1) = (b(i)-sum ax)/A(i,i); % compute 'x' using Gauss-Jacobi method
                                if i-1 == 0
                                             seisum1 = 0; % consideration for the end is zero
                                               for j = 1:i-1
                                                               seisum1 = seisum1 + A(i,j)*x_sei(j,m+1); % the first summation in GS
                                 end
                                 for j = i+1:size(A,1)
                                              seisum2 = seisum2 + A(i,j)*x_sei(j,m); % the second summation in GS
                                x_{sei}(i,m+1) = (b(i)-seisum1-seisum2)/A(i,i); % compute 'x' using Gauss-Seidel method
                 end
                 % error update
                 e(:,m+1) = true_x - x(:,m+1);
                 e_sei(:,m+1) = true_x - x_sei(:,m+1);
                 % infinite norm of error update
                norm e(:,m+1) = norm(e(:,m+1),inf);
                 norm_e_sei(:,m+1) = norm(e_sei(:,m+1),inf);
                 % ratio update
                Ratio(m) = norm e(:,m+1)/norm e(:,m);
                {\tt Ratio\_sei}\,({\tt m}) \; = \; {\tt norm\_e\_sei}\,(:,{\tt m+1})\,/{\tt norm\_e\_sei}\,(:,{\tt m})\;;
                 fprintf('\t^{1.6}f\t^{1.6}f\t^{1.6}f\t^{1.6}f\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\t^{1.2}g\
                                \texttt{m,x(1,m+1),x(2,m+1),x(3,m+1),norm\_e(:,m+1),Ratio(m));} \ \ \texttt{\$ print the values}
fprintf('--
fprintf('\n\nTable 8.4 Numerical results for the Gauss-Seidel method\n');
  \texttt{fprintf('\tm}\t\t\{x_{1}\}^{(m)}\t\t\{x_{2}\}^{(m)}\t\t\{x_{3}\}^{(m)}\t\t\|\e^{(m)}\|_{1}^{\infty}, \\
fprintf('\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^{1.6}\t^
for m = 1:m iter-1
               fprintf('----
```

References.

- [1] Atkinson, K. E. (2008). An introduction to numerical analysis. John wiley & sons.
- [2] Atkinson, K., Han, W., & Stewart, D. E. (2011). Numerical solution of ordinary differential equations (Vol. 108). John Wiley & Sons.
- [3] Atkinson, K. E., & Han, W. (1985). Elementary numerical analysis (p. 17). New York et al.: Wiley.