Last Name First Name Print clearly

- 1) The p K_b of hypoiodite ion, IO, is 3.36.
- (a) Determine the K_b of the hypoiodite ion.

(b) Determine the pH of a 2.0 M solution of hypoiodic acid.

6) PH = -log(Ht) = 5.17 $0 - \frac{\chi^2}{2} = 2.29 \times 10^{-1}$ $K_{4} = K_{10} = H_{10} = H_$

2) 0.41 g of sulfurous acid, H₂SO₃, is added to enough water to make 30. mL. If the pK_a of the acid is 1.82, the pH of the resulting solution is? [at. Mass of H = 1.008, S = 32.07, O = 16.000]

.419 $H_{2}50_{3} \times \frac{1 \, mol}{82.0 \, Plog} = 0.1665 \, M \, H_{2}50_{3} \, R_{a} = 10^{-1.82}$ $\frac{\chi^{2}}{1665 - \chi} = .0151 \, need to use$

3) Calculate the pH of a 0.024 M aqueous solution of nitrous acid (HNO₂, $K_a = 4.5 \times 10^{-4}$).

see Key

-Ka + J (Ka)2 + 4 Ka C -, OIT(+ \ (.0151)2 + 4(.0151)(.1661)

V=104316= [H+]

 χ^{2} + .015/x - 2.514 × 10⁻³ = 0 2.2701×10^{-4} + .010056 = 5.01024401 -.0151 ± $\int (.0151)^{2} - 4(1)(-2.514 \times 10^{-3})$ > .101410108

+ .04316 -.05826 -extraneour root

 $\chi = .04316 = [Ht]$ pH = -109(.04316) = (1.36)

- 4) Identify the Bronsted Lowry acid base conjugate pairs in the reverse direction of the following reactions:
 - a) $NH_3(aq) + HBrO(aq) \rightarrow NH_4^+(aq) + BrO(aq)$
 - b) $Al(H_2O)_5(OH)^+(aq) + H_3O^+(aq) \rightarrow Al(H_2O)_6^{2+}(aq) + H_2O(aq)$
 - c) H_2S (aq) + F (aq) $\rightarrow HS$ (aq) + HF (aq)
- 5) 125 mL of 0.125 M sulfuric acid is added to 50 mL of 0.300 M calcium hydroxide solution. What is the final pH?

 $H_2 SOY + Ca COH)_2 \rightarrow Ca SOY + 2H_2O$ OIF 62F OIF + OIF -O0062F O

12TLx .12T mol = ,01562T mol H2504

, otol x 3 mol = , OIT mol Ca(OM)2

excess moles acid = $.000625 \text{ mol} = 3.57 \times 10^{-3} \text{ M} \text{ H}^{+}$