$$\frac{1}{\sqrt{2\pi}} \left(\frac{1}{\sqrt{2\pi}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) \left(\frac{1}{\sqrt{2\pi}} \right) \left(\frac{1}{\sqrt{2\pi}} \right)^{2}$$

$$\frac{1}{\sqrt{2\pi}} \left(\frac{2\pi}{\sqrt{2\pi}} \right)^{2} \left(\frac{1}{\sqrt{2\pi}} \right)^{2}$$

$$\frac{1}{\sqrt{2\pi}} \left(\frac{2\pi}{\sqrt{2\pi}} \right)^{2} \left(\frac{1}{\sqrt{2\pi}} \right)^{2}$$

$$\frac{1}{\sqrt{2\pi}} \left(\frac{2\pi}{\sqrt{2\pi}} \right)^{2}$$

(2) Y. Yn id N(u, or2) i.e IID'ed random sampled

 $y_i = y_i$, $y_i = y_i$. data (sampled)where each point (data) will have part of $(y_i) = \frac{(y_i - u)^2}{2\pi(\sigma)}$ [where, i = 1, ..., n]

variability not explained by the Sampled Randomly & Independently f(y, y2, ... yn) = f(y1) f(y2) x - f(yn)

= f(y1) f(y2) x - f(yn)

13) Joint dist =
$$f(y_1)$$
 $f(y_n)$

$$= \frac{1}{\sqrt{2\pi i}} e^{-\frac{(y_1 - u)^2}{2\sigma^2}} \times \dots \frac{1}{\sqrt{2\sigma^2}} e^{-\frac{(y_n - u)^2}{2\sigma^2}}$$

Likelihood function (a function of parameter u x o² hure).

(4) for log likelihood. () will stieren at 18! $(\lambda(u, \sigma^2) = \log \left[L(u, \sigma^2) y_1, \dots, y_n \right]$ $= \log \left[\frac{(y_1 - u)^2}{2\sigma^2} \frac{1}{x} - \frac{(y_n - u)^2}{2\sigma^2} \right]$ $= \log \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^{2} \left(e^{-\left(\frac{1}{2}\sigma^{2}\right)} \sum_{i=1}^{n} (y_{i} - \mu)^{2} \right) - \boxed{1}$ $= n \log \frac{1}{2\pi \sigma^2} + \sum_{i=1}^{n} (y_i - u)^2$ = log (21102) 1/2 e - 1/202 = (yi - 11)2 $= \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right)^{2}$ or from (1). = $n \log \frac{1}{2\pi} - \frac{1}{100} \stackrel{\circ}{=} \frac{1}{2\pi^2} \frac{1}{100} \frac{1}{2\pi^2} = \frac{1}{2\pi^2} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100} \frac{1}{100} \frac{1}{100} = \frac{1}{100$ $-l(u,\sigma) = -\left(n \log_{1/2} \frac{1}{2\pi} \frac{2}{u^2\sigma^2} \frac{1}{i=1} \frac{2}{u^2\sigma^2} \frac{1}{i=1} \frac{1}{u^2\sigma^2}\right).$ 0= (1-1(n-1) 3 5 (û, ê) = optimum parameters = argmax L(u, o) = argmax l(u, o). by is a monotonic function, maximizing (log) is same as minimizing (-log). & maximizing (L) log likelihood. into ted of likelihood. bec product Cal culations gets converted to 2 ... we maximize log likelihood instead. (To solve avoid under flow of float value)

(5) how is max & = min -l.

explanation.

max $l \Rightarrow dl \Rightarrow \hat{u} = \sum_{i=1}^{n} \hat{u}_{i}$

min -l. $\Rightarrow d\left(\frac{1}{2\sigma^2}\sum_{i=1}^{2}(y_i-u)^2-n\log\frac{1}{2\sigma^2}\right)$.

= $\frac{2}{2\sigma^2}\sum_{i=1}^{n}(y_i-u)(t)-0=0$

1 & (y:-M) =0

 $\sum_{\mathcal{A}} \sum_{i=1}^{n} \sum_{i=1}$

:. $(\hat{u}, \hat{\sigma}) = \arg\max(u, \sigma) = \arg\min(-l(u, \sigma))$.

= $\arg\max(u, \sigma)$.

S520_HW5_Q1

Rushank Ghanshyam Sheta

2022-11-11

7(a). Read data

```
data = read.csv('/Users/rushank/Downloads/q1_carprice.csv')
y = data$Price
```

hist(y, breaks=length(y))

Histogram of y

7(b). estimates using OPTIM method

```
log_lik_norm = function(theta,y) {
    mu = theta[1]
    sd = exp(theta[2])
    vec_log_densities = dnorm(x=y,mean=mu,sd=sd,log = TRUE)
    log_lik = sum(vec_log_densities)
    return(log_lik)
}

estimates = optim(par=c(0,1),fn=log_lik_norm,y=y,control = list(fnscale=-1))$par
    estimates[2] = exp(estimates[2])
    sprintf('mu(optim): %f',estimates[1])
```

```
## [1] "mu(optim): 88.681715"
```

```
sprintf('sigma(optim): %f',estimates[2])
```

```
## [1] "sigma(optim): 29.722016"
```

```
plot(density(y))
x = seq(1,200,by=1)
lines(x,dnorm(x,mean=estimates[1],sd=estimates[2]),col="red")
```

density.default(x = y)

8. estimates using MLE method

```
mu_mle = mean(y)
sprintf('mu(mle): %f',mu_mle)

## [1] "mu(mle): 88.636364"

sigma_mle = sqrt(sum((y-mu_mle)^2)/length(y))
sprintf('sigma(mle): %f',sigma_mle)

## [1] "sigma(mle): 29.708501"

plot(density(y))
x = seq(1,200,by=1)
lines(x,dnorm(x,mean=mu_mle,sd=sigma_mle),col="blue")
```

density.default(x = y)

9. Subplots for estimates using both methods

MLE optim

0.015

0.010

0.005

Density

```
log_lik_norm = function(theta,y) {
    mu = theta[1]
    sd = exp(theta[2])
    vec_log_densities = dnorm(x=y,mean=mu,sd=sd,log = TRUE)
    log_lik = sum(vec_log_densities)
    return(log_lik)
}

par(mfrow=c(1,2))
    x = seq(1,200,by=1)
    plot(density(y),main="MLE optim")
    lines(x,dnorm(x,mean=estimates[1],sd=estimates[2]),col="red")
    plot(density(y),main="MLE formula")
    lines(x,dnorm(x,mean=mu_mle,sd=sigma_mle),col="blue")
```

MLE formula

Density 0.005 0.0015

```
par(mfrow=c(1,2))
x = seq(1,200,by=1)
plot(density(y),main="MLE optim")
lines(x,dnorm(x,mean=estimates[1],sd=estimates[2]),col="red")
plot(density(y),main="MLE formula")
lines(x,dnorm(x,mean=mu_mle,sd=sigma_mle),col="blue")
```

50

100

N = 11 Bandwidth = 11.02

150

200

50

100

N = 11 Bandwidth = 11.02

150

200

N = 11 Bandwidth = 11.02

MLE formula

N = 11 Bandwidth = 11.02

```
par(mfrow=c(1,1))
x = seq(1,200,by=1)
plot(density(y),main="Estimates using both methods")
lines(x,dnorm(x,mean=estimates[1],sd=estimates[2]),col="red", lty='longdash')
lines(x,dnorm(x,mean=mu_mle,sd=sigma_mle),col="blue", lty='dashed')
legend(x = "topright",
       legend = c("optim", "formula"),
       lty = c('longdash', 'dashed'),
       col = c('red', 'blue'))
```

Estimates using both methods

10. Comment on how well the chosen model (Normal) fits the data.

The estimates from both of the methods gives approximately the same results however these estimates(Normal) does not fit the given sampled data very well.