Deux aspects dans la formalisation du raisonnement

- L'aspect sémantique
 - => théorie des modèles (de la vérité)
 - On définit à l'aide d'interprétations les conditions de validité d'un raisonnement
- L'aspect preuve
 - => théorie de la démonstration
 - On définit des règles de déduction élémentaire permettant de démontrer un raisonnement

Qu'est-ce qu'une démonstration

- Une démonstration doit être un moyen d'établir qu'un énoncé (mathématiques) est vrai
- Un énoncé (syntaxiquement correct) est soit vrai (valide), soit faux (non valide)
 - « Tout nombre réel est le carré d'un nombre réel » : faux
 - « Tout nombre complexe est le carré d'un nombre complexe » : vrai
- Une démonstration doit « correspondre » à son énoncé
 - On montre ce qu'affirme l'énoncé sous ses éventuelles hypothèses
- Une démonstration est soit correcte (enchainement de déductions) ou incorrecte vis-à-vis d'un énoncé donné
 - « (F∧G) insatisfiable donc il existe une interprétation I telle que val(F∧G,I)=0. Par la sémantique du ∧, val(F,I)=0 ou val(G,I)=0, donc G ou F insatisfiable » est incorrecte car le donc final n'est pas une bonne déduction (noter que le premier donc est une bonne déduction bien que trompeuse)!

Qu'est-ce qu'une démonstration

- Pour pouvoir dire qu'une démonstration est correcte il est donc nécessaire de fixer ce que sont de « bonnes déductions » c'est-à-dire se doter de règles de productions d'énoncés à partir d'énoncés : un système de démonstration
 - Si j'ai l'énoncé P et que j'ai également l'énoncé si P alors Q alors produire l'énoncé Q est une bonne déduction
- La démonstration « classique » sur papier fait l'hypothèse que tout le monde connait implicitement ces règles de production et les utilise correctement lors de la rédaction d'une démonstration
- La théorie de la démonstration les formalise et permet ainsi de vérifier formellement la correction d'une démonstration

Démonstration et vérité

 Une démonstration correcte est un moyen d'établir qu'un énoncé (mathématiques) est vrai => on souhaite donc qu'un système de démonstration permette d'établir les propriétés suivantes entre démonstration et vérité :

Propriété d'adéquation (ou correction) :

Si une démonstration d'un énoncé est « correcte » alors l'énoncé qu'elle prouve est vrai

Propriété de complétude :

Si un énoncé est vrai, une démonstration « correcte » permettra de le prouver

=> Attention à ce que vos démonstrations soient correctes !

- Un énoncé peut être vrai, mais sa démonstration incorrecte
- Une démonstration incorrecte peut laisser croire qu'un énoncé est vrai

- Les énoncés se notent généralement dans une syntaxe mathématiques précise :
 - expressions arithmétiques, (in)équations, expressions ensemblistes, formules logiques mais utilisent aussi des formes écrites des connecteurs logiques : non, si...alors, et, ou, équivalent
- Les démonstrations se rédigent en langage usuel et sont faites pour convaincre le lecteur
 - le français pour nous avec ses coordinations : or, donc, ainsi, par conséquent, par ailleurs... et en justifiant les enchainements et sans usage de la syntaxe des énoncés !
- Conseil 1 : respecter la syntaxe des énoncés
- Conseil 2 : rédiger vos démonstrations en français (sans abréviation ni symbole mathématiques) en justifiant chaque étape

Conseil 3 : Schéma général de rédaction

- 1. Je rappelle l'énoncé à prouver et le type de démonstration (directe, par cas, absurde, induction...) que je m'apprête à réaliser
- 2. Je réalise ma démonstration
- 3. Je conclus

Exemple:

Démontrons que « Soient x et y deux entiers, si x<y alors 2x≤2y+1 » par démonstration directe.

On a x<y.

En multipliant par 2 chaque partie de l'inégalité on déduit que 2x<2y.

Un entier étant strictement inférieur à son successeur on a 2y<2y+1.

Par transitivité de <, on déduit que 2x<2y+1

Par la sémantique du ou, on déduit que 2x≤2y+1

Ce qu'il fallait démontrer.

Remarque : le niveau de détail dépend du contexte ! lci on aurait pu se contenter de dire « on a x<y donc 2x≤2y+1 »

Conseil 4 : Démonstration d'énoncés de la forme P et Q

- 1. Démontrer P
- 2. Démontrer Q

Conseil 5 : Démonstration d'énoncés de la forme P ou Q

1. Démontrer l'un des deux sous-énoncés, au choix P ou Q (mais nécessite parfois une preuve par cas)

Cosneil 6 : Preuve par cas d'un énoncé P

- 1. Ecrire « Soit on a C₁, » et Démontrer : si C₁ alors P
- 2. Ecrire « Soit on a C₂, » et Démontrer : si C₂ alors P
- 3. ...
- 4. Démontrer que C₁ ou C₂ ou... C_n couvrent tous les cas possibles

Souvent on se ramène à des cas binaires : « Soit on a C, ... Soit on a non C, ... » ce qui rend évident la dernière étape !

Enoncés de la forme : si P alors Q

- Conseil 7 : Preuve directe
 - 1. Supposer P et l'écrire (« Supposons que P »)
 - 2. Démontrer Q
- Conseil 8 : Preuve par contraposition
 - 1. Supposer non Q et l'écrire (« Supposons qu'on n'a pas Q »)
 - 2. Démontrer qu'on n'a pas P
- Conseil 9 : Preuve par l'absurde
 - 1. Supposer P et l'écrire (« Supposons que P »)
 - 2. Supposer non Q et l'écrire (« Supposons qu'on n'a pas Q »)
 - 3. Avoir une idée pour un énoncé A contradictoire
 - 4. Démontrer A
 - 5. Démontrer qu'on n'a pas A
 - 6. Conclure en affirmant la contradiction

Peut aussi s'appliquer à un énoncé simple de la forme : P

Supposer qu'on n'a pas P puis démontrer qu'on a A et non A

Conseil 10 : Démonstration d'énoncés de la forme : P si et seulement si Q

- 1. Ecrire « (sens direct) » et Démontrer : si P alors Q
- 2. Ecrire « (sens retour) » et Démontrer : si Q alors P

Conseil 11 : Démonstration d'énoncés de la forme :

Pour tout x de E, P est vrai pour x

- 1. Ecrire: « Soit un x quelconque de E, montrons P pour ce x »
- 2. Démontrer que P est vrai pour ce x (sans hypothèse sur ce x)

Conseil 12 : Démonstration d'énoncés de la forme : Il existe x de E, P est vrai pour x

- Avoir une idée pour un élément e de E particulier!
- 2. Définir un tel e de E : Ecrire : « Soit e de E tel que ... »

 Attention à ce que votre élément existe forcement (peut-être faudra t-il le démontrer) ! Par contre, plusieurs éléments de E peuvent répondre à votre définition.
- 3. Démontrer que P est vrai pour ce e