

Course Introduction

Prof. Venki Muthukumar, Ph.D.

Course Outcome

 The main goal of this course is to provide students with the broad knowledge needed to understand the current technology in Unmanned Aerial Vehicles (UAVs) and hands-on skills needed to develop an array of applications based on UAVs for various technology markets like Smart City, construction, image and video mapping, medical, search and rescue, parcel delivery, hidden area exploration, oil rigs and power line monitoring, precision farming, etc.

Topics

- 1. Introduction to the program and instructor
- 2. Introduction to UAVs
 - Classification of UAV, Airspaces, etc.
- 3. Components of UAVs (Mechanical and Electronics)
 - Working of the components
- 4. Mathematical Modeling of Quads/Fixed-Wings
- 5. Introduction to Python
 - Setup of Python and Jupyter
 - Maintaining out worksheet and submissions
- 6. Python Programming Basics, data structures, algorithms, and visualization
- 7. Basics and modeling of Quads using Python
- 8. Simulation of Quads using Python
- 9. Introduction to Tello
 - Understanding, driver install, and connection of Tello
- 10.Programming of Tello
 - Basics of operations and maneuvers
- 11 Introduction to OpenCV
 - OpenCV with Python
 - Image and video manipulation of OpenCV
- 12.Tello and OpenCV
- 13. Projects and demonstrations using Tello/OpenCV for navigation

Grading

- Classworks + Homeworks 50%
 - Tasks completed in class, document the process, update Github Wiki's with instructions, photos, and videos.
- Final Project/Competition 50%
 - Project based on the Homeworks/Classworks
- Total 100%

Tools & Instructions

- Programming Language
 - Scratch/Blocky
 - Python 3 & Dji Tello Libraries
 - OpenCV library
 - Arduino for ESP32

Github

- Materials for this course
- Documentation for this course
- Submission for this course

Other Tools

- Anaconda Ipython, Spyder
- Google Colab (optional for demo only if time permits)
- Binder.org (optional for demo only if time permits)

Our Drone/UAV/Quadrotor

Improvement to our previous ver

	Tello Edu	Robomaster Tello Talent
Camera	5 MP	5 MP HD
Wifi	2.4GHz only	2.4/5.8 GHz
Swarm		Multiple devices connect to the same router
Offline Programming	No	Yes
External sensor support	No	Yes
Competitions	Programming Race	Al Competition, Air-Ground Operation, Maze Race
LED Light Show	No. Can purchase Robomaster TT expansion kit	RGB 256 All Color LED light to create a light show
Microcontroller	No. Can purchase Robomaster TT expansion kit	ESP32

To pass this course

Attendance (100%) & Need to get 50% of the grading scheme to pass this course.

No exceptions!!!

•53FKNSXDQ9

https://github.com/venki666/UAV_Workshop