DSGA-3001.007 Introduction to Machine Learning (Fall 2019)

PRACTICE MIDTERM (October 23)

The exam has 6 pages. Answer the questions in the spaces provided. If you run out of room for an answer, use page 6 at the end of the test.

Name:			
NYU NetID:			

Question	Points	Score	
1	3		
2	1		
3	4		
4	4		
5	4		
Total:	16		

- 1. Let $\mathcal{X} = \{1, 2, 3\}$, let $\mathcal{Y} = \{1, 2, 3, 4, 5\}$, and let $\mathcal{A} = \mathcal{Y}$. Suppose the data generating distribution, P, has marginal $X \sim \text{Unif}\{1, 2, 3\}$ and conditional distribution $Y|X = x \sim \text{Unif}\{x, x + 1, x + 2\}$. Assume we are using the square loss $\ell(a, x) = (a x)^2$. [Note: Unif denote the uniform distribution on the given set.]
 - (a) (1 point) What is the target function?

Solution:
$$f^*(x) = x + 1$$
.

(b) (2 points) What is the risk of the target function?

$$E[(Y - f^*(X))^2] = E[E[(Y - (X+1))^2|X]] = E[2/3] = \frac{2}{3}.$$

- 2. (1 point) Which **one** of the following statements is **least plausible** (i.e., probably FALSE) about minibatches for gradient descent.
 - ☐ Improved implementation or improved hardware can allow us to increase the minibatch size and simultaneously reduce convergence time (in seconds).
 - □ In general, enlarging the minibatch size (chosen randomly, with replacement) lets us get a better estimate of the full training set gradient.
 - In general, if we increase the size of our training set by a factor of 1000, then the best minibatch size (with respect to convergence time, in seconds) should also increase by a factor of 1000.
- 3. Let $\mathcal{X} = \mathbb{R}^d$ and let $\mathcal{Y} = \mathcal{A} = \mathbb{R}$. Define the infinite collection of hypothesis spaces $\{\mathcal{F}_r \mid r \geq 0\}$ where

$$\mathcal{F}_r = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R}, ||w||_2 \le r \}.$$

Define the additional hypothesis space

$$\mathcal{F}_{\infty} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$$

Fix a training set $(x_1, y_1), \ldots, (x_n, y_n)$ where $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$. Throughout, assume we are using some arbitrary fixed loss function ℓ .

- (a) (1 point) \mathcal{F}_{∞} Among all hypothesis spaces \mathcal{F}_r for $r \geq 0$, and \mathcal{F}_{∞} , give a hypothesis space that has empirical risk minimizer with the smallest empirical risk.
- (b) (1 point) \mathcal{F}_{∞} Among all hypothesis spaces \mathcal{F}_r for $r \geq 0$, and \mathcal{F}_{∞} , give a hypothesis space that has the lowest approximation error.
- (c) (1 point) **F** True or False: Let f_{∞} denote the empirical risk minimizer over \mathcal{F}_{∞} , and let f_c denote the empirical risk minimizer over \mathcal{F}_c , where c was chosen by minimizing the loss on a validation set. Then we always have $R(f_c) \leq R(f_{\infty})$.
- (d) (1 point) <u>T</u> True or False: Let f_{∞} and f_c be as defined previously. Suppose, mistakenly, we reused the training set as the validation set when choosing c. Then we always have $\hat{R}(f_c) = \hat{R}(f_{\infty})$ (where \hat{R} still refers to the empirical risk on the training set).

4. Let $\mathcal{X} = [0,1]$ and $\mathcal{Y} = \mathcal{A} = \mathbb{R}$. Suppose you receive the (x,y) data points (0,0), (1,0), (1,1), (2,2), (3,5). Throughout assume we are using the 0-1 loss function $\ell(a,y) = \mathbf{1}(a \neq y)$.

(a) (1 point) Suppose we restrict to the hypothesis space \mathcal{F}_1 of constant functions. What is the empirical risk minimizer $\hat{f}(x)$?

Solution: $\hat{f}(x) = 0$

(b) (1 point) Suppose we restrict to the hypothesis space \mathcal{F}_1 of constant functions. What is $\hat{R}(\hat{f})$, the empirical risk of \hat{f} , where \hat{f} is the empirical risk minimizer?

Solution: $\frac{3}{5}$

(c)	(2 points)	Suppose	we restrict	to the	hypothesis	space.	\mathcal{F}_2 (of increasing	functions.	What	is the
	empirical r	risk of the	e associated	empiri	cal risk min	imizer?					

Solution:	$\frac{1}{5}$	

5. Consider the following version of the elastic-net objective:

$$J(w) = \frac{1}{n} ||Xw - y||_2^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2.$$

Here we have a training set $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}, X \in \mathbb{R}^{n \times d}$ has x_i^T as its *i*th row, and $y \in \mathbb{R}^n$ has y_i as its ith coordinate. We fit our data 3 times with the following configurations:

- 1. Configuration A) $(\lambda_1, \lambda_2) = (0, 0)$
- 2. Configuration B) $(\lambda_1, \lambda_2) = (5, 0)$
- 3. Configuration C) $(\lambda_1, \lambda_2) = (0, 5)$

Answer the following questions based on the above information.

- (a) For each of the following, state one of the configurations that is most likely being described. Below w^* represents a minimizer of J.
 - i. (1 point) $\underline{\mathbf{B}}$ w^* has several entries that are 0.
 - ii. (1 point) $\underline{\mathbf{A}}$ The decision function corresponding to w^* has the lowest training error out of all of the configurations.
- (b) (2 points) Suppose each data point x has 2 features (x_1, x_2) , and that we are using Configuration C. We applied feature normalization which resulted in new scaled features

$$\tilde{x}^T = (\tilde{x}_1, \tilde{x}_2) = (2x_1, x_2/3).$$

This gives the new objective

$$J_s(\tilde{w}) = \frac{1}{n} ||\tilde{X}\tilde{w} - y||_2^2 + 5||\tilde{w}||_2^2$$

which when minimized gives decision function

$$f_{\tilde{w}}(\tilde{x}) = \tilde{w}^T \tilde{x} = 2\tilde{w}_1 x_1 + \tilde{w}_2 x_2 / 3.$$

Which one of the following unscaled objectives, when minimized, will yield the same decision function? Below we use the unscaled decision function

$$f_w(x) = w_1 x_1 + w_2 x_2$$

and want $f_w(x) = f_{\tilde{w}}(\tilde{x})$.

$$J(w) = \frac{1}{n} ||Xw - y||_2^2 + 5w_1^2/4 + 45w_2^2$$

$$\Box J(w) = \frac{1}{n} ||Xw - y||_2^2 + 5w_1^2 + 5w_2^2$$

$$\Box J(w) = \frac{1}{n} ||Xw - y||_2^2 + 5w_1^2/4 + 45w_2^2$$

$$\Box J(w) = \frac{1}{n} ||Xw - y||_2^2 + 20w_1^2 + 5w_2^2/9$$

Page 6 of 6