

MEDIUM-POWER

INTEGRATED CIRCUITS

INDEX

Medium-power MRTL logic circuits are specified over two different temperature ranges. Typical gate speed is 12 ns, with power dissipation averages of 19 mW (input high) and 5.0 mW (inputs low) per logic node.

INDEX Page No. 6-4 General Information 6-6 Summary of Devices Available in Metal Cans 6-8 Summary of Devices Available in Flat Packages **DEVICE SPECIFICATIONS GATES** 6-12 3-Input Gates MC903, MC803 6-15 4-Input Gates MC907, MC807 6-17 5-Input Gates MC929, MC829 6-19 **Dual 2-Input Gates** MC914, MC814 6-21 **Dual 3-Input Gates** MC915, MC815 6-23 **Dual 4-Input Gates** MC925, MC825 6-25**Triple 3-Input Gates** MC992, MC892 6-27 Quad 2 Input Gates MC924, MC824 6-29 Quad Exclusive OR Gates MC971, MC871 **BUFFERS** 6-31 Buffers MC900, MC800 6-34 **Dual Buffers** MC999, MC899 6-36 MC988, MC888 Dual 3-Input Buffers (Non-Inverting) FLIP-FLOPS 6-38 R-S Flip-Flops MC902, MC802 6-40 MC916, MC816 J-K Flip-Flops 6-44 J-K Flip-Flops MC926, MC826 6-47 MC974, MC874 J-K Flip-Flops 6-50 Dual J-K Flip-Flops MC990, MC890 6-54 Dual J-K Flip-Flops MC991, MC891 HALF-SHIFT REGISTERS 6-57 Half-Shift Registers MC905, MC805 6-60 MC906, MC806 Half-Shift Registers without Inverter 6-62 MC983, MC883 **Dual Half-Shift Registers** 6-64 **Dual Half-Shift Registers without Inverters** MC984, MC884 ADDERS and SUBTRACTORS 6-66 Half Adders MC904, MC804 6-68 **Dual Half-Adders** MC975, MC875 6-70 MC996, MC896 **Dual Full Adders Dual Full Subtractors** 6-73 MC997, MC897 **COUNTER ADAPTERS** 6-76 Counter Adapters MC901, MC801 **INVERTERS** 6-78 MC927, MC827 Quad Inverters 6-80 Hex Inverters MC989, MC889 **EXPANDERS** 6-82 MC986, MC886 **Dual 4-Input Expanders** 6-84 MC985, MC885 Quad 2-Input Expanders 6-86 Hex Expanders MC9919, MC9819

NUMERICAL INDEX

(Functions and Characteristics)

 V_{CC} = 3.0 V \pm 10%, T_A = 25°C

	Турс	e ①		Output Loading Factor	Propagation Delay	Total Power	
Function	-55 to +125 ^O C	0 to +100 ^o C	Case	each output	^t pd ns typ	Dissipation mW typ/pkg	Page No.
Buffer	MC900	MC800	72, 96	25	20	16/45 ②	6-31
Counter Adapter	MC901	MC801	96	5	22	55	6-76
R-S Flip-Flop	MC902	MC803	96	4	14	22	6-38
3-Input NOR Gate	MC903	MC803	72, 96	5	12	19/5.0 ②	6-12
Half Adder	MC904	MC804	72, 96	5	14	45	6-66
Half-Shift Register	MC905	MC805	72, 96	4	22	53	6-57
Half-Shift Register (w/o Inverter)	MC906	MC806	72, 96	4	22	/ 36	6-60
4-Input NOR Gate	MC907	MC807	72, 96	5	12	19/5.0 ②	6-15
Dual 2-Input NOR Gate	MC914	MC814	72, 96	5	12	38/10 ②	6-19
Dual 3-Input NOR Gate	MC915	MC815	72, 96A	5	12	38/10 ②	6-21
J-K Flip-Flop	MC916	MC816	72, 96	3	35	62/54 (3)	6-40
Quad 2-Input NOR Gate	MC924	MC824	83	5	12	76/20 ②	6-27
Dual 4-Input NOR Gate	MC925	MC825	83	5	12	38/10 ②	6-23
J-K Flip-Flop	MC926	MC826	72, 96A	5	35	130/65 (3)	6-44
Quad Inverter	MC927	MC827	72, 96A	5	12	76/20 ②	6-78
5-Input NOR Gate	MC929	MC829	72, 96	5	12	19/5.0 ②	6-17
Quad Exclusive OR Gate	MC971	MC871	83	5	12	72	6-29
J-K Flip-Flop	MC974	MC874	96	5	35	130/65 (3)	6-47
Dual Half Adder	MC975	MC875	83	5	20	90	6-68
Dual Half-Shift Register	MC983	MC883	83	4	22	110	6-62
Dual Half-Shift Register w/Inverter	MC984	MC884	83	4	22	75	6-64
Quad 2-Input Expander	MC985	MC885	83	_	12	17/- ②	6-84
Dual 4-Input Expander	MC986	MC886	83	_	12	17/- ②	6-82
Dual 3-Input Buffer, non inverting	MC988	MC888	83	25	24	128/42 (2)	6-36
Hex Inverter	MC989	MC889	83	5	12	76/20 ②	6-80
Dual J-K Flip-Flop	MC990	MC890	83	3	35	124/108 ③	6-50
Dual J-K Flip-Flop	MC991	MC891	83	5	40	155/130 ③	6-54
Triple 3-Input NOR Gate	MC992	MC892	83	5	12	57/15 ②	6-25
Dual Full Adder	MC996	MC896	83	4	60	70	6-70
Dual Full Subtractor	MC997	MC897	83	4	60	70	6-73
Dual Buffer	MC999	MC899	72, 96A	25	20	32/90 ②	6-34
Hex Expander	MC9919	MC9819	83	_	12	13/- (2)	6-86

① G Suffix denotes Metal Can, F suffix denotes Flat Package; i.e., MC900G = Metal Can, MC900F = Flat Package.
② Inputs High/Inputs Low
③ Only Clock Input High/Inputs Low

GENERAL INFORMATION

MRTL MC900/800 series

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Characteristic	Symbol	Rating	Unit
Input Voltage	_	±4	Vdc
Power Supply Voltage (Pulsed ≤ 1 s)		+12	Vde
Operating Temperature Range MC900 Series MC800 Series	T _A	-55 to +125 0 to +100	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

TEST CONDITION **TOLERANCES DEFINITIONS**

$V_{BOT}=\pm 10$	MV $V_{cc} = \pm 10 \text{ mV}$	$V_{\scriptscriptstyle in}=\pm 2~mV$	$V_{\text{on}}=\pm 2\;\text{mV}$	$V_{\text{off}}=\pm 2\ \text{mV}$
IA3, IA4, IA5 IAB	Minimum available output o Output voltage not to fall b Minimum available output	elow the value of V	in-	
IAB	the value of V			
ICEX	Collector current of a circu to the input pins.			
lin	Maximum input current dra inputs are returned to V _{BOT} .			
2 Iin, 3 Iin	Maximum input current dra tied together.			
V_{BOT}	A high-value voltage applied transistor.	d to an input of a de	vice to insure satura	ation of the driven
Vcc	Supply voltage.			
V _{CE(sat)}	Maximum saturation voltage			
Vin	Minimum high-level voltage	e applied to the inpu	it of a device.	
V_{off}	The maximum voltage whi the transistor on.			
Von	The minimum voltage which transistor on.			that will turn the
Vout	The maximum output volta			
V-	Value of external resistor of	connected to Vcc fo	r test purposes.	

Release Time

The time that the J or K input data must be held after the negative-going clock input transition in order to propagate correct data.

Set-up Time

The time that the J or K input data must be present prior to the negative going clock input transition in order to propagate correct data.

GENERAL RULES

- The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that out-put. The summation of the input loading factors should not exceed the stated drive capability
- A gate output connected in parallel with another output reduces the drive capability by 1/2 load. (Paralleling gate circuits requires a $V_{\rm cc}$ connection to only one of the gates.)
- \bullet Any number of gates may be paralleled if the input loading is increased by $^1\!/_{\!\!4}$ load, if only one gate is connected to V_{cc}
- If the counter adapter is paralleled with another circuit, the output drive capability must be reduced by 2 loads. The reason for this drive reduction is the 1280-ohm resistance that connects the output terminals on the counter adapter.
- All unused inputs should be returned to ground.
- \bullet When paralleling gates with V_{cc} connected, a maximum of 4 outputs may be paralleled where the input loading factor is increased by 2.33.

V_{RH} = highest node resistor value V_{RL} = lowest node resistor value

OUTLINE DIMENSIONS

Pin 4 connected to case.

TO-99

Pin 5 connected to case.

TO-100

lead. All leads electrically isolated from package.

Lead 1 identified by color dot or by shoulder on

TO-91

Lead 1 identified by color dot or by elbow on lead. All leads electrically isolated from package.

TO-86

LOADING DIAGRAMS

MRTL DEVICES AVAILABLE IN METAL CANS

The logic diagrams on these two pages describe the MC900/MC800 MRTL integrated circuits available in metal cans, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time (t_{pd}) , typical package power dissipation (P_D) , pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal).

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of $-55~{\rm to}~+125^{\rm o}{\rm C}$ for the MC900 Series, and 0 to $+100^{\rm o}{\rm C}$ for the MC800 Series, with V $_{\rm CC}$ = 3.0 V $\pm 10\%$. For the TO-99 metal can, V $_{\rm CC}$ is applied to pin 8, with ground connected to pin 4. For the TO-100 metal can, V $_{\rm CC}$ is applied to pin 10, with ground connected to pin 5.

 $7 = \overline{1 + 2}$

t_{pd} = 12 ns

MC914G • MC814G

Dual 2-Input Gate

PD = 38 mW (Input High)

10 mW (Inputs Low)

6 (5)

LOADING DIAGRAMS

MRTL DEVICES AVAILABLE IN FLAT PACKAGES

The logic diagrams on these four pages describe the MC900/ MC800 MRTL integrated circuits available in flat packages, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time $(t_{pd}), \, typical package power dissipation (P_D), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal).$

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of -55 to $\pm 125^{\circ}$ C for the MC900 Series, and 0 to $\pm 100^{\circ}$ C for the MC800 Series, with VCC = 3.0 V $\pm 10^{\circ}$ C. For the TO-91 flat package, VCC is applied to pin 10, with ground connected to pin 5. For the TO-86 flat package, VCC is applied to pin 14, with ground connected to pin 7.

3-INPUT GATES

MC903 · MC803

Available in TO-99 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

Provides the positive logic NOR function. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules)

	PI	N COM	INECT	IONS				
SCHEMATIC	a	b	С	d	_	f	_	h
G PACKAGE (TO-99)	1	2	3	4	_	6	_	8
F PACKAGE (TO-91)	2	3	4	. 5	7	8	9	10

(@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC903	່ +25°Cົ	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	0°C	0.909	0.909	1.50	0.574	3.00
MC803	+25℃	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

				M	C903		Test Lir	nits			M	C803		Test Lin		100 €		TES	T VOLT	AGE		
		Pin Under	-5			5°C	+12	25°C		0	°C	+2	5°C	+10)0°C				PINS LIS	TED BEL		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	۷ _{cc}	Gnd
Input Current	I _{in}	a b c	-	495	- - -	435 	- - -	470	μAde		504	-	450		450	μAdc	a b c	- - -	b, c a, c a, b	- - -	h 	d •
Output Current	I _{A5}	f	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	1	mAdc	-	f	-	a,b,c	h	d
Output Leakage Current	ICEX	f	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	μAdc	f	-	-	a,b,c	-	d
Output Voltage	V _{out}	f .	-	710	- - -	300	- - -	320	mVdc	-	574	-	400	- - -	370	mVdc		a b c	- - -	- - -	h ↓	d
Saturation Voltage	V _{CE(sat)}	ţ.	-	200		210	-	280	mVdc	-	290	-	260	- - -	340	mVdc	- - -	- - -	a b c	- - -	h ↓	d ↓
																	Pulse In	Pulse Out				
Switching Time	t	b+f- b-f+	-	-	-	20 28	-	-	ns ns	-	-	-	20 28	-	-	ns ns	b b	f f	-	-	h h	d d

Pins not listed are left open

Pins e and g omitted

TYPICAL CURVES

TEST CIRCUIT FOR NOISE THRESHOLD MEASUREMENTS

MC907 · MC807

Available in TO-99 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

Provides positive logic NOR function. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules).

	PI	N COI	NNECT	IONS				
SCHEMATIC	a	b	С	ď	е	f	-	h
G PACKAGE (TO-99)	1	2	3	4	5	6	7	8
F PACKAGE (TO-91)	2	3	4	5	7	8	9	10

	@Test	-	TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V_{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC907	+25°C	0.844	0.815	1.50	0.565	3.00
	+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC807	+25°C	0.844	0.844	1.50	0. 554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

					C907		Test Li	nite			NA.	C807		Test Lin			0.110		ST VOLT	1 0.370 AGE	0.00	
		Pin	-5			r°c				0	°C	+2			00°C		ΔΡΡ			AGE STED BEL	OW ·	i
		Under			+2.			25°C				-										0.1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	a b c e	-	495	- - -	435 	- - -	470 	μ A dc	-, 	504 	- - -	450	- - -	450	μ A dc	a b c e	- - - -	b, c, e a, c, e a, b, e a, b, c	- - -	h	d ↓
Output Current	I _{A5}	f	2. 47	-	2.54	-	2.35	-	mAdc	2. 52	-	2.38	-	2. 25	-	mAdc	-	f	-	a, b, c,e	h	d
Output Leakage Current	I _{CEX}	f	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	μAdc	f	-	-	a, b, c,e	-	d
Output Voltage	V _{out}	f	-	710		300	- - -	320	mVdc	- - -	574	- - -	400		370	mVdc		a b c e	- - -	- - -	h	d
Saturation Voltage	V _{CE(sat)}	f	-	200		210	- - -	280	mVdc	- - -	290	- - -	260	- - -	340	mVdc	-	-	a b c e		h 	d
																	Pulse In	Pulse Out				
Switching Time	t	b+f- b-f+	-	-	- -	20 28	-	- -	ns ns	-	-	-	20 28	- 	-	ns ns	b b	f f	-	-	h h	d d

Pins not listed are left open.

5-INPUT GATES

MC929 · MC829

Available in TO-99 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

Provides positive logic NOR function. Individual gates may be paralleled with other logic elements for increasing the number of inputs (subject to loading rules).

PIN CONNECTIONS SCHEMATIC b С d G PACKAGE (TO-99) 1 2 3 4 5 6 7 8 3 4 5 7 8 9 10 F PACKAGE (TO-91) 2

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Te	mperature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}
	(-55°C	1.014	1.014	1.50	0.710	3.00
MC929	{ +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0. 674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC829	} +25℃	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

	,									· · · ·						+100°C	0.710	0.710	1.50	0.370	3.00	
		Pin			C929		Test Li	mits			N	IC829		Test Li	nits			TE	ST VOLT	AGE		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C		APF	PLIED TO	PINS LI	STED BE	LOW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	a b c	-	495	-	435	-	470	μAdc	-	504	-	450	-	450	μAdc	a b	-	b, c, e,f a, c, e,f	-	h 	d
	-	e f	-		-		- - -			-		-		-		│	c e f	-	a, b, e,f a, b, c,f a, b, c,e	- - -		
Output Current	I _{A5}	g	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAdc	-	g	-	a,b,c,e,f	h	d
Output Leakage Current	ICEX	g	-	100	-	218	-	235	μ A dc	-	100	-	225	-	225	μAdc	g	-	-	a,b,c,e,f	-	d
Output Voltage	V _{out}	g		710		300	- - - -	320	mVdc	-	574	- - - -	400	- - - -	370	mVdc	-	a b c e f	-	- - - -	h	d
Saturation Voltage	V _{CE(sat)}	g 	- - - -	200	1 1 1 1	210	- - - -	280	mVdc	- - - -	290		260	- - - -	340	mVdc	- - - -	- - - -	a b c e f	- - - -	h	d
,																	Pulse In	Pulse Out				
Switching Time	t	a+g- a-g+	-	- -	- -	20 28	-	-	ns ns	- -	-	-	20 28	-	-	ns ns	a a	g	-	-	h h	, с, d, e, f b, c, d, e, f

Pins not listed are left open.

DUAL 2-INPUT GATES

MC914 · MC814

Available in TO-99 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

Two 2-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

	PI	N COM	INECT	IONS				
SCHEMATIC	а	b	С	d	е	f	g	h
G PACKAGE (TO-99)	1	2	3	4	5	6	7	8
F PACKAGE (TO-91)	2	3	4	5	7	8	9	10

Test procedures are shown for one gate only. Other gates are tested in the same manner.

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ter	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(-55°C	1.014	1.014	1.50	0.710	3.00
MC914	{ +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC814	} +25℃	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin		M	C914		Test Li	mits			N	C814		Test Lir	nits			TES	T VOLT	AGE		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C		APF	LIED TO	PINS LIS	STED BEI	: WO.	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	a b	-	495 495	-	435 435	-	470 470	μAdc μAdc	-	504 504	- -	450 450	-	450 450	µAdc µAdc	a b	-	b a	-	h h	d d
Output Current	I _{A5}	g	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2. 38	-	2. 25	-	mAdc	-	g	-	a,b	ķ	d
Output Leakage Current	ICEX	g	-	100	-	218	-	235	μAdc	-	100	-	225		225	μAdc	g	-	-	a, b		d
Output Voltage	V _{out}	g g	-	710 710	-	300 300	-	320 320	mVdc mVdc	-	574 574	-	400 400	-	370 370	mVdc mVdc		a b	-	-	h h	d d
Saturation Voltage	V _{CE(sat)}	g g	-	200 200	-	210 210	-	280 280	mVdc mVdc	-	290 290	-	260 260	-	340 340	mVdc mVdc	-	-	a b	-	h h	d d
																	Pulse In	Pulse Out				
Switching Time	t	a+g- a-g+	-	- -	-	20 28	-	-	ns ns	-	-	-	20 28	-	-	ns ns	a a	g g	-		h h	d

Ground inputs of gate not under test.

Other pins not listed are left open.

DUAL 3-INPUT GATES

MC915 · MC815

Available in TO-100 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

Two 3-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

"F" PACKAGE AND "G" PACKAGE PIN-OUTS ARE THE SAME

Test procedures are shown for one gate only. Other gates are tested in the same manner.

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ter	nperature	V _{in}	V _{on}	V_{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC915	} +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC815	} +25℃	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3,00

		Pin		М	C915		Test Li	nits			Μ	C815		Test Li		+100 C	0.110	0. 710 TE	ST VOLT	0. 370 AGE	3.00	
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C				PINS LIS	STED BEL		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I in	1 2 3	-	495	- - -	435 	 -	470	μAdc	- - -	504 	- - -	450 		450 ↓	μAdc	1 2 3	- - -	2,3 1,3 1,2	- - -	10	5
Output Current	I _{A5}	4	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAde	-	4	-	1, 2, 3	10	5
Output Leakage Current	ICEX	4	-	100	-	218	-	235	μAdc	-	100	-	225	., -	225	μAdc	4	-	-	1,2,3		5
Output Voltage	v _{out}	4	- - -	710	-	300	-	320 	mVdc	-	574	- - -	400	- - -	370	mVdc	- - -	1 2 3	- - -	- - -	10	5
Saturation Voltage	V _{CE(sat)}	4	-	200	-	210	-	280	mVdc	- - -	290	- - -	260		340	mVdc	- - -	- - -	1 2 3	- - -	10	5
											,						Pulse In	Pulse Out				
Switching Time	t	2+4- 2-4+	-	- -	-	20 28	-	- -	ns ns	-	-	- -	20 28	-	-	ns ns	2 2	4	-	-	10 10	5 5

Ground inputs of gate not under test. Other pins not listed are left open.

MC925 · MC825

Available in TO-86 Flat Package, Add "F" Suffix.

Two 4-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

Test procedures are shown for one gate only. Other gates are tested in the same manner.

ı	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ter	nperature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC925	} +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
1	0°C	0.909	0.909	1.50	0.574	3.00
MC825	+25°C	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

			T	M	C925		Test Li	mits		Γ	M	C825		Test Lir		+100°C	0.710	0. 710	1.50 ST VOLT	0.370	3.00	
		Pin Under	-5	5°C		5°C		25°C		0	°C		5°C	,	00°C		APP			STED BEL	OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	2 3 5 6	-	495	- - -	435	- - -	470	μAdc	- - -	504 	- - -	450	-	450 	µAde	2 3 5 6	 	3,5,6 2,5,6 2,3,6 2,3,5		14	7
Output Current	I _{A5}	1	2.47	-	2, 54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAdc	-	1	-	2,3,5,6	14	7
Output Leakage Current	ICEX	1	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	μAdc	1	-	-	2,3,5,6	-	7
Output Voltage	V _{out}	1	-	710	-	300	- - -	320	mVdc	- - -	574	- - -	400	- - - -	370	mVdc	-	2 3 5 6	- - -	- - -	14	3, 5, 6, 7 2, 5, 6, 7 2, 3, 6, 7 2, 3, 5, 7
Saturation Voltage	V _{CE(sat)}	1	- - -	200		210	- - -	280	mVdc	- - -	290	-	260	- - -	340	mVdc	- - -	- - - -	2 3 5 6	- - - -	14	3,5,6,7 2,5,6,7 2,3,6,7 2,3,5,7
																	Pulse In	Pulse Out				
Switching Time	t	3+1 - 3-1+	-	-	-	20 28	-	- -	ns ns	-	-	- -	20 28	-	-	ns ns	3 3	1 1	-	-	14 14	2, 5, 6, 7 2, 5, 6, 7

Ground inputs of gate not under test.

Other pins not listed are left open.

MC992 · MC892

Available in TO-86 Flat Package, Add "F" Suffix.

Three 3-input positive logic NOR gates in a single package may be used independently, paralleled for increased number of inputs (subject to loading rules), or cross coupled to form bistable elements.

Test procedures are shown for one gate only. Other gates are tested in the same manner.

,	@Test		TEST V	OLTAGE (Volts)	VALUES		
Ter	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	
	(−55°C	1.014	1.014	1.50	0.710	3.00	
MC992	{ +25℃	0.844	0.815	1.50	0.565	3.00	
	(+125°C	0.674	0.674	1.50	0.320	3.00	
	(0°C	0.909	0.909	1.50	0.574	3.00	
MC892	່ +25°Cໍ	0.844	0.844	1.50	0.554	3.00	
	(+100°C	0.710	0.710	1.50	0.370	3.00	

		Pin		М	C992		Test Lit	nits			N	1C892		Test Lir	nits			TES	T VOLT	AGE		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C				PINS LIS	TED BEL		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	3 4 5	-	495		435 ↓		470 	μAdc	-	504 V	- - -	450	- - -	450 	μAdc ↓	3 4 5	1 1 1	4,5 3,5 3,4	-	14	7
Output Current	I _{A5}	6	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAdc	-	6	-	3, 4, 5	14	7
Output Leakage Current	ICEX	6	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	uAdc	6	-	-	3,4,5	-	7
Output Voltage	V _{out}	6	-	710	- - -	300	- - -	320	mVdc	-	574	- - -	400	-	370	mVdc	-	3 4 5	- - -	-	14	4, 5, 7 3, 5, 7 3, 4, 7
Saturation Voltage	V _{CE(sat)}	6	- - -	200	- - -	210	-	280	mVdc	- - -	290	- - -	260	-	340	mVdc	-	-	3 4 5		14	4,5,7 3,5,7 3,4,7
																	Pulse In	Pulse Out				
Switching Time	t	4+6- 4-6+	-	-	-	20 28	-	-	ns ns	-	-	-	20 28	, - -	-	ns ns	4 4	6 6	-	-	14 14	3, 5, 7 3, 5, 7

Ground inputs of gates not under test.

Other pins not listed are left open.

QUAD 2-INPUT GATES

MC924 · MC824

Available in TO-86 Flat Package, Add "F" Suffix.

This gate element consists of four 2-input positive logic NOR gate circuits in a single package. The gate circuits may be used independently, or connected together to form flip-flops or non-inverting gates.

Test procedures are shown for one gate only. Other gates are tested in the same manner.

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC924	+25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	0°C	0.909	0.909	1.50	0.574	3.00
MC824	+25°C	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin		М	C924		Test Li	nits			N	C824		Test Lir	nits	F100 C			T VOLT			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C				PINS LIS			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1 2	-	495 495	-	435 435	-	470 470	µAdc µAdc	- -	504 504	- -	450 450	-	450 450	μAdc μAdc	1 2	- -	2 1	- -	14 14	7 7
Output Current	I _{A5}	3	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAdc	3	-	-	1,2	14	7
Output Leakage Current	ICEX	3	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	μAdc	-	3	-	1,2	-	7
Output Voltage	v _{out}	3 3	-	710 710	-	300 300	-	320 320	mVdc mVdc	-	574 574	-	400 400	-	370 370	mVdc mVdc		1 2		-	14 14	2,7 1,7
Saturation Voltage	V _{CE(sat)}	3 3	-	200 200	-	210 210	-	280 280	mVdc mVdc	-	290 290	-	260 260	-	340 340	mVdc mVdc	-	- -	1 2	-	14 14	2,7 1,7
																	Pulse In	Pulse Out	-			
Switching Time	t	1+3- 1-3+	-	-	-	20 28	-	-	ns ns	-	-	-	20 28	-	- -	ns ns	1 1	3	-	-	14 14	2,7 2,7

Ground inputs of gates not under test.

Other pins not listed are left open.

QUAD EXCLUSIVE OR GATES

MC971 · MC871

Available in TO-86 flat package, add "F" suffix

Four gate arrays designed to provide the Exclusive OR function. The output is high only if one input is high and all other inputs are low.

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one gate. The other gates are tested in the same manner.

			TEST V		VALUES	
	@Test			(Volts)		
Ter	nperature	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(-55°C	1.014	1.014	1.50	0.710	3.00
MC971	{ +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC871	+25℃	0.844	0.844	1.50	0.554	3.00
	1+100°C	0.710	0.710	1.50	0.370	3 00

		Pin		M	C971 1	est Lim	its				N	C871 T	est Lim	its					T VOLTA			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10)0°C				PINS LIS			1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	2 I _{in}	1 2	-	990 990	-	870 870	-	940 940	μAdc μAdc	-	1008 1008	-	900 900	-	900 900	μAdc μAdc	1 2	-	-	2 1	14 14	7 7
Output Current	I _{A5}	3 3	2.47 2.47	-	2.54 2.54	. :	2.35 2.35	=	mAdc mAdc	2.52 2.52	=	2.38 2.38	-	2.25 2.25	-	mAdc mAdc	-	1,3 2,3	-	2 1	14 14	7 7
Output Voltage	v _{out}	3 3	-	710 710	-	300 300	-	320 320	mVdc mVdc	-	574 574	-	400 400	-	370 370	mVdc mVdc	-	1,2	-	1,2	14 14	7
Switching Time																	Pulse In	l	Pulse Out			
	t	1+3- 1-3+ 2+3+ 2-3-	-	-	-	40	=	-	ns	-	-	-	40	=	-	ns	1 1 2 2	2 2 -	3	- 1 1	14	1

Ground inputs of gates not under test. Other pins not listed are left open.

MC900 · MC800

Available in TO-99 metal can, add "G" suffix. Available in TO-91 flat package, add "F" suffix.

The buffer is designed to drive a greater number of load circuits than the basic RTL circuit. Because this circuit has a very low output impedance the rise times of output waveforms are maintained when driving capacitive loads. A resistor which is internally connected to the input allows for capacitive coupling to the input, the differentiation of input waveforms, and various multivibrator applications.

PIN CONNECTIONS														
SCHEMATIC	а	-	C	d	е	_	g	h						
G PACKAGE (TO-99)	1	_	3	4	5	_	7	8						
F PACKAGE (TO-91)	.2	3	4	5	7	8	9	10						

			TES	TEST VOLTAGE VALUES												
	@Test		(Volts) (Ohms													
Te	mperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *									
	(-55°C	1.014	1.014	1.50	0.710	3.00	680									
MC900	{ +25℃	0.844	0.815	1.50	0.565	3.00	680									
	(+125°C	0.674	0.674	1.50	0. 320	3.00	680									
	(0°C	0.909	0.909	1.50	0.574	3.00	680									
MC800	} +25℃	0.844	0.844	1.50	0.554	3.00	680									
	(+100°C	0.710	0.710	1.50	0.370	3.00	680									

		Pin	MC900 Test Limits							l -	MC800 Test Limits								10.710 0.710 1.50 0.370 3.00 680					
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C			APPLIED	TO PIN			:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Únit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd	
Input Current	2 I	c	-	990	-	870	-	940	μAdc	-	1010		900	-	900	μAdc	с	-	-	-	h	-	d	
Output Current	IAB	е	12.4	-	12.7	-	11.8	-	mAdc	12.6	-	11.9	-	11.25	-	mAdc	-	e	-	c	h	-	d	
	I _{A5}	g	2.47	-	2.54	-	2.35	-	mAdc	2. 52	-	2.38	-	2. 25	-	mAdc	-	g	-	с	h	-	d	
Output Voltage	V _{out}	e g	-	710 710	-	300 300	-	320 320	mVdc mVdc	-	574 574	-	400 400	-	370 370	mVdc mVdc	-	c c	 -	-	h h	e -	d d	
Saturation Voltage	V _{CE(sat)}	e g g		200	1 1 1	210	- - -	280	mVdc	-	290	-	260	-	340	mVdc	- - -	- - -	c c	- - -	h h a, h	e - -	d 	
																	Pulse In	Pulse Out						
Switching Time	t	c+e- c-e+ c+g- c-g+	- - -	- - -	1 1 1	30 45 28 32	- - -	- - -	ns	- - -	-	- - -	30 45 28 32		- - -	ns	c	e e g	- - -	- - -	h	-	d 	

Pins not listed are left open.

^{*} Resistor Value to V_{CC}

MC900, MC800 (continued)

MC999 · MC899

Available in TO-100 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

The dual buffer is designed to drive a greater number of load circuits than the basic RTL circuit. Because this circuit has a very low output impedance the rise times of output waveforms are maintained when driving capacitive loads. A resistor which is internally connected to the input allows for capacitive coupling to the input, the differentiation of input waveforms and various multivibrator applications.

"F" PACKAGE AND "G" PACKAGE PIN-OUTS ARE THE SAME

Outputs 3 and 4 may not be used simultaneously Outputs 9 and 6 may not be used simultaneously

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

		TEST VOLTAGE VALUES													
	@Test		(Ohms)												
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *								
	(−55°C	1.014	1.014	1.50	0.710	3.00	680								
MC999	+25°C	0.844	0.815	1.50	0.565	3.00	680								
	+125°C	0.674	0.674	1.50	0. 320	3.00	680								
1	0°C	0.909	0.909	1.50	0.574	3.00	680								
MC899	+25°C	0.844	0.844	1.50	0.554	3.00	680								
	+100°C	0.710	0.710	1.50	0.370	3.00	680								

															ι.	+100°C	0.710	0.710	1.50	0.370	3.00	680	
		Pin	—55°C		+25°C		Test Limits +125°C		I	MC899 0°C +25°C		E°C	Test Limits +100°C			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:							
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	V _R *	Grd
Input Current	2 I _{in}	2	_	990	-	870	·-	940	μAdc	-	1010	-	900	-	900	μAde	2	-	-	-	10	-	5
Output Current	I _{A5}	3	2.47	-	2.54	-	2. 35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAdc	-	3	-	2	10	-	5
	IAB	4	12.4	-	12.7	-	11.8	-	mAdc	12.6	-	11.9	-	11. 25	-	mAde	-	4	-	2	10	-	5
Output Voltage	v _{out}	3 4	-	710 710	-	300 300	-	320 320	mVdc mVdc	-	574 574	-	400 400	-	370 370	mVdc mVdc	-	2 2	-	-	10 10	4	5 5
Saturation Voltage	V _{CE(sat)}	3 3 4	-	200	-	210	- - -	280	mVdc		290	- - -	260	- - -	340	mVde	- - -	-	2 - 2	-	10 1,10 10	- - 4	5
																	Pulse In	Pulse Out					
Switching Time	t	2+3- 2-3+ 2+4- 2-4+	-	-		28 32 30 45	-	-	ns	-	- - -	-	28 32 30 45	-	- - -	ns	2	3 3 4 4		-	10	- - -	5

Ground inputs of buffer not under test.

Other pins not listed are left open.

^{*} Resistor value to V_{CC}

DUAL 3-INPUT BUFFERS, NON-INVERTING

MC988 · MC888

Available in TO-86 Flat Package, Add "F" Suffix.

Two 3-input positive logic NOR gates, each followed by an inverting and a non-inverting high fan-out amplifier, are provided in a single package. For each section, the output from each stage is available. If more than one output is used, however, the full loading factors cannot be employed since each output provides the drive for the succeeding stage.

Outputs 1, 2, or 3 may not be used simultaneously. Outputs 11, 12, or 13 may not be used simultaneously.

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

			TES	T VOLTA	GE VAL	JES	
	@Test			(Vo	lts)		(Ohms)
Ter	nperature	V _{in}	Von	V_{BOT}	V _{off}	v _{cc}	V _R *
	(−55°C	1.014	1.014	1.50	0.710	3.00	680
MC988	₹ +25°C	0.844	0.815	1.50	0.565	3.00	680
	(+125℃	0.674	0.674	1.50	0.320	3.00	680
	(0°C	0.909	0.909	1.50	0.574	3.00	680
MC888	+25℃	0.844	0.844	1.50	0.554	3.00	680
	(+100°C	0.710	0.710	1.50	0.370	3.00	680

															<u> </u>	+100°C	0.710	0.710	1.50	0.370	3.00	680	
		Pin		M	C988		Test Lin	nits			M	C888		Test Lin	nits					OLTAGE/			
·		Under	-5	5°C	+2	5°C	+12	25°C		0	C 2	+2	5°C	+10	O°C					S LISTED			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd
Input Current	I in	4 5 6	-	495 ↓	-	435	-	470	μAdc	- - -	504 	- - -	450 	- -	450	μAde	4 5 6	- - -	5,6 4,6 4,5	- - -	14 ↓	-	7
Output Current	I _{AB} I _{A5} I _{A3}	1 2 3	12. 4 2. 47 1. 48	- - -	12.7 2.54 1.52	- - -	11.8 2.35 1.41	-	mAdc	12. 6 2. 52 1. 51	-	11.9 2.38 1.43	- - -	11. 25 2. 25 1. 35	- - -	mAdc	- - -	1 2 3	- - -	3 3 4,5,6	14	- - -	7, 11 7, 11 7
Output Voltage	v _{out}	1 2 3 3 3	-	710	-	300	- - - -	320	mVdc	- - - -	574	- - - -	400	-	370	mVdc	- - -	3 3 6 5 4	- - - -	- - - -	14	1	4, 5, 6, 7, 11 4, 5, 6, 7, 11 4, 5, 7 4, 6, 7 5, 6, 7
Saturation Voltage	V _{CE(sat)}	1 2 3 3 3	-	200		210	-	280	mVdc	- - - -	290	- - - -	260	-	340	mVdc	- - - -	- - - -	3 3 6 5 4	- - - -	14	1	4, 5, 6, 7, 11 4, 5, 6, 7, 11 4, 5, 7 4, 6, 7 5, 6, 7
Switching Time	t	4+1+ 4-1- 4+2+ 4-2- 4+3- 4-3+			-	65 58 42.5 42.5 20 28		-	ns		1 1 1 1 1		65 58 42.5 42.5 20 28			ns	Pulse In 4 4 4 4 4	Pulse Out 1 1 2 2 3 3			14	- - - -	5, 6, 7

Ground inputs of buffer not under test.

Other pins not listed are left open.

^{*} Resistor Value to V_{CC}

MC902 · MC802

Available in TO-99 Metal Can, Add "G" Suffix

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Tei	nperature	V _{in}	V _{on}	V_{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC902	} +25°C	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC802	} +25°C	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin		M	C902		Test Lir	mits			N	C802		Test Lir					T VOLT			
		Under	一5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	O°C				PINS LIS			1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{вот}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1 3	-	495 495	-	435 435	-	470 470	μ A dc μ A dc	-	504 504	-	450 450	-	450 450	μ A dc μ A dc	1 3	-	5 7	- -	8 8	4 4
Output Current	I _{A4}	5	1.98	-	2. 19	-	1.88	-	mAdc mAdc	2.02	-	2.05	-	1.80	-	mAde mAde	-	5	1 3	3	8	4
Output Voltage	IA4	5	1.50	710	2.10	300	1.00	320	mVdc	2.02	574	2.00	400	1.00	370	mVdc	_	3	1		8	4
Output voltage	. V _{out}	5 7 7	-		- - -		-		l l	-		-					- - -	7 1 5	3	- - -	ļ	Ī
Saturation Voltage	V _{CE(sat)}	5 5 7 7		200		210	- - -	280	mVdc	- - -	290	- - -	260		340	mVdc		- - -	1,3 - 1,3	- 1 - 3	8	4 4,5† 4 4,7†
											-						Pulse In	Pulse Out		,		
Switching Time	t	1+7- 1-7+	-	-	-	20 30	-	-	ns ns	-	-	-	20 30	-	-	ns ns	1 1	7 7	- -	-	8 8	4 4

Pins 2 and 6 omitted. Other pins not listed are left open. † Silicon Diode to Ground

J-K FLIP-FLOPS

MC916 · MC816

Available in TO-99 Metal Can, Add "G" Suffix Available in TO-91 Flat Package, Add "F" Suffix

J-K flip-flop with a direct clear input in addition to the clocked input.

CLOCKED INPUT OPERATION 1

t,	,@	t _n	,②
S	С	Q	Q
l	1	Q _n 3	Q,
1	0	1	0
0	1	0	1
0	0	Q,	Q _n 3

- ① Direct input (C_D) must be low.

PIN CONNECTIONS

SCHEMATIC	a	b	С	d	е	f	g	h
G PACKAGE (TO-99)	1	2	3	4	5	6	7	8
F PACKAGE (TO-91)	2	3	4	5	7	8	9	10

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ter	mperature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}
	(-55°C	1.014	1.014	1.50	0.710	3.00
MC916	{ +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC816	} +25°C	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin			C916		Test Lir					C816		Test Lin			ADD		ST VOLTA		OW.	
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5℃	+10	00°C				PINS LIS			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	a	_	495	-	435	-	470	μ Ad c	-	504	-	450	-	450	μAdc	a	-	e	-	h	d
•	2 I _{in}	b	-	990	-	870	-	940		-	1010	-	900	-	900		b	-	a,c,g	-		
	I _{in}	с	-	495	-	435		470		-	504	-	450	-	450		с	-	g	-		
	***	f	-	495	-	435	-	470	*.	-	504	-	450	-	450	,	f	-	e	-	, *	*
Output Current	I _{A3}	e e g	1.48	-	1.52	- - -	1.41	-	mAdc	1.51	-	1.43	-	1.35	-	mAdc	-	e e, f g	a, f a c	- - f	h ↓	d d d,e†
Output Voltage	v _{out}	g g‡# g‡ g‡§	-	710	- - - -	300	- - - -	320	mVde	- - -	574		400	-	370	mVdc	-	f a, c c		- a a,c	h	d, e d, f
Saturation Voltage	V _{CE(sat)}	e g g	-	200	-	210	-	280	mVdc	-	290	- - -	260	-	340	mVdc	- - -	-	- f	f - -	h	d, e † d, e d, g †
Turn-On Voltage	V _{on}	gt \$ gt gt#*	1014	- - -	815	- - -	674	-	mVdc	909	-	844	-	710	-	mVdc	- - -	a, c a -	- - -	c a,c	h ↓	d, f

[†] Silicon Diode to Ground

Pins not listed are left open.

^{1.51} mAdc (0°C) 1.35 mAdc (+100°C)

[‡] Pin b =

Clock pulse to pin b (see Figure 1).

[§] Pin e = LOW

Set by a momentary ground prior to the application of the negative-going Clock Pulse.

[#] Pin g = LOW

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_H, t, is not critical, however should be less than 1,0, µs,

 B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L. t_f must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

	MC816	
TA	V _L	V _H
25°C	0.554 V	0.894 V
0°C	0.574 V	0.959 V
100°C	0.370 V	0.760 V

	MC916	
TA	V _L	VH
25°C	0.565 V	0.865 V
55°C	0.710 V	1.064 V
125°C	0.320 V	0.724 V

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 3A — CLOCK-TO-OUTPUT PROPAGATION DELAY TIME

FIGURE 3B — SET-UP AND RELEASE TIME

FIGURE 3C - TEST CIRCUIT

SWITCHING TIMES

Test	Figure No.	Maximum Over Full Temperature Range (ns)
t _{r-Q-}	3A, 3C	60
t _{7-ō-}	3A, 3C	60
t _{T-O+}	3A, 3C	100
t _{T-Q+} t _{T-Q+}	3A, 3C	100
t _{S=T} -	3B, 3C	50
t _{C=T}	3B, 3C	50
t _{T-S}	3B, 3C	50
t _{T-C±}	3B, 3C	50
	4	50
t _{Cp+} o- t _{Cp+} ō+	4	90

1. Change of state occurs on trailing edge of clock pulse. 2. With a high level on Co., and with the proper SET and CLEAR inputs for a low level at Q. Q will be high except for a short period after the negative going edge of a clock pulse. Q will go low for up to 50 ns, and then return to a high level within 100 ns after a negative clock

FIGURE 4 — DIRECT CLEAR PROPAGATION DELAY TIME

TYPICAL CURVES

J-K FLIP-FLOPS

MC926 · MC826

Available in TO-100 Metal Can, Add "G" Suffix Available in TO-91 Flat Package, Add "F" Suffix

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

"F" PACKAGE AND "G" PACKAGE PIN-OUTS ARE THE SAME.

	@Test		TEST VOLTAGE VALUES (Volts)											
	Temperature	V _{in}	V _{on}	V_{BOT}	V _{off}	V _{cc}								
	(−55°C	1.014	1.014	1.50	0.710	3.00								
MC926	{ +25℃	0.844	0.815	1.50	0.565	3.00								
	(+125°C	0.674	0.674	1.50	0.320	3.00								
	(0°C	0.909	0.909	1.50	0.574	3.00								
MC826	} +25°C	0.844	0.844	1.50	0.554	3.00								
	(+100°C	0.710	0.710	1.50	0.370	3.00								

		Pin			C926		Test Lir			0		C826 +2		Test Lin			APP		ST VOLTA PINS LIS		.0W :	
ol	Cb.al	Under	−5: Min	5℃ Max	+2	Max	+12 Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Characteristic	Symbol	Test	14(11)	IMIGX	JAIIII	MIGX	741111	Max	Oilli	741111	Mux	771111	max									
Input Current	I _{in}	1	-	495	-	435	-	470	μAdc	-	504	_	450	-	450	μAdc	1	-	-	-	10	5
-	r	2	_	495	-	435	-	470		-	504	-	450	-	450		2	-	8	-		
	in 2 I	3	-	990	-	870	-	940		-	1010	-	900	-	900		3	-	2,4	-		
1	T .	4	-	495	-	435	-	470		-	504	-	450	-	450		4	-	1	-		1 1
	in I in	8	-	495	-	435	-	470	•	-	504	-	450	-	450	+	8	-	-	-	*	,
Output Current		7	2.47		2.54		2.35	<u> </u>	mAdc	2.52		2.38	-	2. 25	-	mAdc	-	7,8	1	-	10	5
Output Current	A5	9	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAdc	-	1,9	8	-	10	5
Saturation Voltage	V	7		200		210	-	280	mVdc	-	290	-	260	—	340	mVdc	-	1	-	8	10	5
Saturation voltage	VCE(sat)	7#i	_		-		-			-	1 1	-		-			-	2	-	4		
		7#‡	-		-		-			-		-		-			-	2,4	-	2,4	1 1	
		7§‡	-		-		-			-		-		-			-	8	1 -	1		
		9	-		-		-			-		_		1 -			_	4	-	2		
		9 § ‡ 9#†	-		-		1 -] -		-		-			-	2,4	-	-		
		9#I 98I	-		-	1	[+	+	_	♦	-		-	+		-	-	-	2,4	†	+

 $[\]frac{8}{8}$ Pin 1 = High | Set by momentary application of $V_{\overline{BOT}}$ prior to the application of the negative going clock pulse.

Pins not listed are left open.

[‡] Pin 3 =

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_H. $t_{\rm r}$ is not critical, however should be less than 1.0 $\,\mu \rm s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L . t_f must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

FIGURE 2 — TOGGLE MODE TEST CIRCUIT

MC826								
TA	V _L	V _H						
25°C	0.554 V	0.894 V						
0°C	0.574 V	0.959 V						
100°C	0.370 V	0.760 V						

MC926									
TA	V _L	V _H							
25°C	0.565 V	0.865 V							
-55°C	0.710 V	1.064 V							
125°C	0.320 V	0.724 V							

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

SWITCHING TIMES

		Minimum	Maximum
Test	Figure No.		r Full e Range (ns)
t _{r-Q-}	3A, 3C	25#	90
t _{T-}	3A, 3C	25#	90
t _{r-0+}	3A, 3C	25#	90
t _{r-Q+}	3A, 3C	25#	90
t _{s+r-}	3B, 3C		50
t _{s-r-}	3B, 3C	_	30
t _{C+7-}	3B, 3C	_	50
t _{C-T-}	3B, 3C	! –	30
t _{r-s+}	3B, 3C	-	0*
t _{r-s-}	3B, 3C	-	+5*
t _{r-C+}	3B, 3C	_	0*
t _{r-c-}	3B, 3C	l –	+5*
t _{Cp+} or t _{sp+} to output —	4	_	90
t _{Cp+} or t _{Sp+} to output +	4	_	70

Lightly * Negative switching time means the inputs can momentarily change before the clock pulse transition.

FIGURE 4 — DIRECT CLEAR PROPAGATION DELAY TIME

J-K FLIP-FLOPS

MC974 · MC874

Available in TO-99 metal can, add "G" suffix.

J-K flip-flop with a direct clear input in addition to the clocked inputs.

	@Test	TEST VOLTAGE VALUES (Volts)										
Ter	mperature	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}						
	(−55°C	1.014	1.014	1.50	0.710	3.00						
MC974	{ +25℃	0.844	0.815	1.50	0.565	3.00						
	(+125°C	0.674	0.674	1.50	0.320	3.00						
	(0°C	0.909	0.909	1.50	0.574	3.00						
MC874	₹ +25°C	0.844	0.844	1.50	0.554	3.00						
	(+100°C	0.710	0.710	1.50	0.370	3.00						

		Pin		٨	AC974		Test Li	mits			٨	1C874		Test Li	mits			TE	ST VOLT	AGE	L	
	į	Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+1	00°C		APP	LIED TO	PINS LI	STED BE	LOW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V_{in}	Von	V_{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1	-	495	-	435	-	470	μAdc	-	504	-	450	-	450	μAdc	1	-	6	-	8	4
	2 In*	2	-	990	-	870	-	940		-	1008	-	900	-	900		2	-	1,3	-		
	I _{in}	3 Δ	-	495	-	435	-	470		-	504	-	450	-	450		3	-	-	-		
_	I _{in}	6	-	495	-	435	-	470	*	-	504	-	450	-	450	+	6	-	-	-	†	+
Output Current	I _{A5}	5 7 _Д	2. 47 2. 47	-	2.54 2.54	-	2.35 2.35	-	mAdc mAdc	2.52 2.52	-	2.38 2.38	-	2. 25 2. 25	-	mAde mAde	-	5,6 7	-	-	8	4 4
Saturation Voltage	V _{CE(sat)}	5‡\$ 5±\$ 5△\$ 7△ 7±\$ 7△\$ 7△\$	-	200	-	210		280	mVdc	 - - - -	290		260	- - - - -	340	mVdc	-	1 - 1,3 6 1,3 3	- - - - -	3 1,3 - - 1 1,3	8	4

Pins not listed are left open.

- Δ Preset the flip-flop by the following procedure: (1) Momentarily apply $V_{\mbox{BOT}}$ to pin 6 to preclear flip-flop.
 - (2) After $V_{\mbox{\footnotesize{BOT}}}$ is removed from pin 6, ground pins 1 and 3.
- (3) Apply a negative-going clock pulse to pin 2 (see note §) while pins 1 and 3 are still grounded. This changes the state of the flip-flop to the SET condition.
- (4) Remove the grounds from pins 1 and 3, and proceed with the test.

- $\ensuremath{\ddagger}$ Momentarily apply $\ensuremath{V_{BOT}}$ to pin 6 prior to the arrival of the negative-going clock pulse to effect a change of state.
- § Clock Pulse to pin 2:

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_H, t, is not critical, however should be less than 1.0 $\,\mu s$.
- B. Biases of all other inputs are applied, V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L. t_f must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

FIGURE 2 — TOGGLE MODE TEST CIRCUIT

MC874							
T _A	V _L	V _H					
25°C	0.554 V	0.894 V					
0°C	0.574 V	0.959 V					
100°C	0.370 V	0.760 V					

MC974									
TA	V _L V _H								
25°C	0.565 V	0.865 V							
-55°C	0.710 V	1.064 V							
125°C	0.320 V	0.724 V							

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

SWITCHING TIMES

		Minimum	Maximum
Test	Figure No.	Over F Temperature	
1691			
t _{r-Q-}	3A, 3C	25#	90
tr-ō-	3A, 3C	25#	90
t _{T-O+}	3A, 3C	25#	90
t _{r-ō+}	3A, 3C	25#	90
t _{S+T} -	3B, 3C	_	50
t _{s-T-}	3B, 3C	-	30
t _{C+T-}	3B, 3C		50
t _{c-r-}	3B, 3C	=	30
t _{T-S+}	3B, 3C	-	0*
t _{T-S-}	3B, 3C	-	+5*
t _{T-S+} t _{T-S-} t _{T-C+}	3B, 3C	_	0*
t _{r-c-}	3B, 3C	- 1	+5*
t _{Cn+O} -	4	-	90
t _{r-c-} t _{c_D+o-} t _{c_D+ō+}	4		70

Lightly * Negative switching time means the inputs can momenloaded tarily change before the clock pulse transition.

FIGURE 4 - DIRECT CLEAR PROPAGATION DELAY TIME

DUAL J-K FLIP-FLOPS

MC990 • MC890

Available in TO-86 flat package, add "F" suffix.

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

	@Test		TEST VOLTAGE VALUES (Volts)										
	Temperature	V _{in}	V _{on}	V_{BOT}	V _{off}	٧ _{cc}							
	(−55°C	1.014	1.014	1.50	0.710	3.00							
MC990	{ +25℃	0.844	0.815	1.50	0.565	3.00							
	(+125°C	0.674	0.674	1.50	0.320	3.00							
	(0°C	0.909	0.909	1.50	0.574	3.00							
MC890	} +25°C	0.844	0.844	1.50	0.554	3.00							
	(+100°C	0.710	0.710	1.50	0.370	3.00							

		Pin		M	C990		Test Lir					C890		Test Lin			ADD		T VOLTA		nw.	
		Under	-5 .	5°C	+25	°C	+12	5°C		0	C.	+25	i°C	+10								Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gna
Input Current	т.	1	_	495	_	435	_	470	μAdc	_	504	-	450	-	450	μAdc	1	-	3	-	14	4, 5, 6,7
input Current	I _{in}	4 -	_	495	_	435	_	470	111	_	504	-	450	_	450		4	-	2	-	.	1,5,6,7
	I _{in}	5	_	990	_	870	_	940		_	1010	_	900	-	900		5	-	4,6	-		1,7
	2 I _{in} I _{in}	6	-	495	-	435	-	470	+	-	504	-	450	-	450	+	6	-	3	-	†	1, 4, 5,7
Output Current		2#	1.48	_	1.52		1. 41	-	mAdc	1.51	-	1.43	_	1.35	-	mAdc	-	2	4	1	14	5,6,7
Output Current	I _{A3}	3		_		-	1	-			-		-		-		-	3	1,6	-		4,5,7
		3	+	-	¥	-	+	-	+	+	-	+	-	١ ٠	-	*	-	1,3	6	-	*	4, 5, 7
Output Voltage	v _{out}	2	-	710	-	300	-	320	mVdc	-	574	-	400	-	370	mVdc	-	1	-	-	14	3,4,5,6,7
	out	2∆§	-		-		-			-	i	-		-			1	4,6	-	-		1,7
		2#§	-		-		-	'		-		-		-			-	4	-	6		1,7
		2#§	-		-		-	+		-	1	-		-	†		-	-	-	4,6		1,7
		2†	-	-	-		-	-		-	-	-		-	-		-	-	-	-		1,6,7
		2*	-	-	-		-	-	1.	-	-	-		-	-	11	-	-	-	-		1,6,7
		3#s	-	710	-		-	320		-	574	-		-	370		-	4,6	-	-		1,7
		3∆§	-		-		-			-		-		-			-	6	-	4		
		3∆§	-	+	-	+	-	+	+	-	+	-	*	-	'	'	-	-		4,6	, T	
Saturation Voltage	V _{CE(sat)}	2	-	200	-	210	-	280	mVdc	-	290	-	260	-	340	mVdc	-	-	1	-	14	3,4,5,6,7
	(E(Sat)	2△	-		-		-	-		-		-		-			-	-	-	-		1,4,5,6,7
		3#	-	+	-	+	-	+	*	-	*	-	*	-	1	1	-	-	-	1	'	4,5,6,7
Turn On Voltage	V _{on}	2‡	T	-	0.815	-	T -	-	Vdc	-	-	0.844	-	-	-	Vdc	-	-	-	-	14	1, 4, 7
1	011	2**	-		0.815	-	-	-	Vdc	-	-	0.844	-	-	-	Vdc	-	-	-	-	14	1,4,7

Ground inputs of flip-flop not under test.

Pins not listed are left open.

[#] Pin 3 = LOW) Set by a momentary ground prior to the application of

 $[\]Delta$ Pin 2 = LOW | the negative-going clock pulse.

[§] Clock Pulse to Pin 5 (See Figure 1)

[†] Clock Pulse on Pin 5, data pulse on Pin 4 (See Figure 2)

Clock Pulse on Pin 5, data pulse on Pin 6 (See Figure 2)

^{*} Clock Pulse on Pin 5, data pulse on Pin 4, momentary ground on Pin 2 (See Figure 3)

^{**} Clock Pulse on Pin 5, data pulse on Pin 6, momentary ground on Pin 3 (See Figure 3)

CLOCK PULSE DEFINITIONS

FIGURE 1

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_{H} . t_{r} is not critical, however should be less than 1.0 $\,\mu$ s. B. Biases of all other inputs are applied. V_{CC} is applied with-
- out interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L. t_f 'must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC890							
TA	V _L	V _H					
25°C 0°C 100°C	0.554 V 0.574 V 0.370 V	0.894 V 0.959 V 0.760 V					

All voltages ±10 mV

TIME

INTERVAL

GND

	MC990	
TA	V _L	V _H
25°C -55°C 125°C	0.565 V 0.710 V 0.320 V	0.865 V 1.064 V 0.674 V

FIGURE 2

NOTE: Measurements for output voltages should be taken at least 100 ns after pulses have occurred.

FIGURE 3

INPUT PULSE REQUIREMENTS:

 $\begin{array}{l} \textbf{V}_{\text{IL}} = 0.200 \ \textbf{V} \ \text{max} \\ \textbf{V}_{\text{IH}} = 0.894 \ \textbf{V} \ \text{min, } 1.500 \ \textbf{V} \ \text{max} \\ \textbf{t}_{r} \leqq 10 \ \text{ns} \end{array}$ $t_f \le 10 \text{ ns}$ f = 1.0 MHz typ

SEQUENCE OF EVENTS:

A. Apply all dc biases required.

- B. Apply momentary ground to pin indicated. This sets the flip-flop. Momentary ground must occur before the pulses shown above every time, or the flip-flop will toggle to the wrong condition every alternate pulse.
- C. After momentary ground has been released, apply pulses marked above.
- D. Measure voltage of designated output after the pulse. Measurements for output voltages should be taken at least 100 ns after pulses have occurred.

MC990, MC890 (continued)

SWITCHING TIMES

		Maximu	ım (ns)
Test	Figure No.	@ 25°C Only	Over Full Temperature Range
t _{r-Q-}	5	40	60
t _{r-Q+}	5	80	100
t _{T-} ō-	5	40	60
t _{T-Ō+} t _{CD+O-} t _{CD+Ō+}	5	80	100
t _{CD+Q-}	6	-	50
t _{CD} +Ģ+	6	-	90

FIGURE 4 - TOGGLE MODE TEST CIRCUIT

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 5

DUAL J-K FLIP-FLOPS

MC991 · MC891

Available in TO-86 flat package, add "F" suffix.

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC991	+25°C	0.844	0.815	1.50	0.565	3.00
	+125°C	0.674	0.674	1.50	0.320	3.00
1	0°C	0.909	0.909	1.50	0.574	3.00
MC891	+25°C	0.844	0.844	1.50	0.554	3.00
	+100°C	0.710	0.710	1.50	0.370	3.00

-		Pin		Μ	C991		Test Lir	nits	•		М	C891		Test Lir		,			ST VOLT			
		Under	—5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	O°C				PINS LIS	STED BE		1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Grd
Input Current	I _{in} 2I _{in} I _{in} I _{in}	4 § 5 6 1		495 990 495 495	-	435 870 435 435		470 940 470 470	μAdc		600 1200 600 600	1 1 1 1	600 1200 600 600	- - -	570 1140 570 570	μAdc	4 5 6 1	- - -	4, 6 1	- - - -	14	7
Output Current	I _{A5}	2 § 3	2.47 2.47	-	2.54 2.54	-	2.35 2.35	-	mAdc mAdc	3.0 3.0	-	3.0 3.0	-	2.85 2.85	-	m Adc m Adc	-	2 1, 3	-	-	14 14	7 7
Output Voltage	v _{out}	2†6 2‡46 2†6 2‡7 3†4 3‡6 3†7 3‡6		710		300	-	320	mVdc		500	-	400		400	mVdc	- - - - - -	4 - 4 - 6 - 6	-	- 6 - 6 4 - 4	14	1, 7
Saturation Voltage	V _{CE(sat)}	2\$ 2* # 2*\$ 2*\$ 3* # 3* #	-	200	-	210	- - - - -	280	m Vdc	-	400		300	-	350	m Vdc		1 4,6 4 - 6 - 4,6	-	- 6 4,6 4 4,6	14	7

Ground input pins of flip-flop not under test. Other pins not listed are left open.

- § Preset the flip-flop by the following procedure:
 (1) Momentarily apply V_{BOT} to pin 1 to preclear the flip-flop.
 (2) After V_{BOT} is removed from pin 1, ground pins 4 and 6.
 (3) Apply a negative-going clock pulse to pin 5 (see note *) while pins 4 and 6. are still grounded. This changes the state of the flip-flop to the SET condition.
 - (4) Remove the grounds from pins 4 and 6 and proceed with the test.

- * Clock pulse to pin 5, see Figure 1.
- # Pin 1 = HIGH, set by a momentary application of VBOT prior to the application of the negative-going clock.
- † Clock pulse to pin 5, data pulse to pin 6.
- ‡ Clock pulse to pin 5, data pulse to pin 4.

- (4) = See Figure 4. (5) = See Figure 5.
- 6 = See Figure 6. 7 = See Figure 7.

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $<1.0~\mu s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $\rm V_L,\,t_f$ must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

	MC991	
TA	٧ _L	V _H
+25°C	$+0.565~V~\pm~10~mV$	$+0.844 \text{ V} \pm 10 \text{ mV}$
−55°C	$+0.710~\text{V} \pm 10~\text{mV}$	$+1.014 \text{ V} \pm 10 \text{ mV}$
+125°C	$+0.320 \text{ V} \pm 10 \text{ mV}$	$+0.674 \text{ V} \pm 10 \text{ mV}$

	MC891	
TA	V _L	V _H
+25°C	$\begin{array}{l} +0.554~\text{V}\pm10~\text{mV} \\ +0.574~\text{V}\pm10~\text{mV} \end{array}$	$+1.430 \text{ V} \pm 10 \text{ mV}$
0°C	$+0.574 \text{ V} \pm 10 \text{ mV}$	$+1.310 \text{ V} \pm 10 \text{ mV}$
+100°C	$+0.370~{ m V}\pm10~{ m mV}$	$+1.190 \text{ V} \pm 10 \text{ mV}$

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

TEST WAVEFORMS FOR Vout TESTS

HALF-SHIFT REGISTERS

MC905 · MC805

Available in TO-99 metal can, add "G" suffix. Available in TO-91 flat package, add "F" suffix.

This half-shift register is a bistable storage element with a built-in inverter for the gating signal. Information coming in on pins a and c will be transferred to pins g and e when the gating signal, pin b, goes low. If all three inputs, a, b, and c, are low, the outputs, g and e, will both be low.

	PI	N CO	INECT	IONS				
SCHEMATIC	а	b	С	d	е	f	g	h
G PACKAGE (TO-99)	1	2	3	4	5	6	7	8
F PACKAGE (TO-91)	2	3	4	5	7	8	9	10

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Te	mperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(-55°C	1.014	1.014	1.50	0.710	3.00
MC905	} +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC805	} +25℃	0.844	0.844	1.50	0. 554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

										r						F100 C	0.710	0.710	1.50		3.00	
		Pin		N	C905		Test Li	mits			M	C805		Test Lir	nits				ST VOLTA			ĺ
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C				PINS LIS	TED BEI	.0W :	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V_{off}	V _{cc}	Gnd
Input Current	T	a	_	495	_	435	_	470	иAdc	_	504	_	450	_	450	μAdc	a	_	ь	_	h	d
input current	I in 3 I in	b	-	1480	_	1300	_	1410	. 1	_	1510	_	1350	_	1350		b	-	a,c	_		
	in T	c	_	495	_	435	_	470		_	504		450	_	450	' ∤ ¦	c	_	b	_	↓	+
	I _{in}	Ü		100		100		1														
Output Current	I _{A4}	e	1.98	-	2.19	-	1.88	-	mAdc	2.02	-	2.05 .	-	1.80	-	mAdc	-	b, e	-	-	h	d,g†
	I _{A4}	e	1.98	-	2.19	-	1.88	-		2.02	-	2.05	-	1.80	-		-	c,e	-	-		d
	I _{A5}	f	2.47	-	2.54	-	2.35	-		2.52	-	2.38	-	2.25	-		-	f	-	b		d
	I _{A4}	g	1.98	-	2.19	-	1.88	-		2.02	-	2.05	-	1.80	-		-	b, g	-	-		d,e†
	I _{A4}	g	1.98	-	2.19	-	1.88	-	*	2.02	-	2.05	-	1.80	-	*	-	a, g	-	-	*	d
Output Voltage	v _{out}	e f g	-	710	- - -	300	- - -	320	mVdc	-	574	-	400	-	370	mVdc	- - -	g b e	b, c - a, b	- - -	h	d
Saturation Voltage	V _{CE(sat)}	e e f g	-	200	, , , , , , , , , , , , , , , , , , ,	210	- - - -	280	mVdc		290	- - - -	260		340	mVdc	-	- - - -	a, b, c - b a, b, c	b, c - - a, b	h	d, e † d, g d d, g † d, e
																	Pulse In	Pulse Out				
Switching Time	t	a+g+ a-g- b+f- b-f+		-	- - -	40 40 28 24	- - -	- - -	ns	- - -		-	40 40 28 24	- - -	- - -	ns	a a b b	g g f f	- - -	- - -	h 	d, e d, e d d

[†] Silicon Diode to Ground

Pins not listed are left open.

TYPICAL CURVES

HALF-SHIFT REGISTERS (WITHOUT INVERTER)

MC906 · MC806

Available in TO-99 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

This half-shift register is a bistable storage element. Information coming in on pins a and c will be transferred to pins g and e when the gating signal, pin b, goes low. If all three inputs, a, b, and c, are low, the outputs, g and e, will both be low.

	P	N CO!	NECT	IONS				
SCHEMATIC	а	b	С	d	е	-	g	h
G PACKAGE (TO-99)	1	2	3	4	5	6	7	8
F PACKAGE (TO-91)	2	3	4	5	7	8	9	10

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ter	nperature	V _{in}	V _{on}	V_{BOT}	V_{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC906	+25°C	0.844	0.815	1.50	0.565	3.00
	(+125°C.	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC806	+25°C	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		D:		N	IC906		Test Lir	nits			M	C806		Test Lin	nits			TES	ST VOLT	AGE		
		Pin Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	O0°C			LIED TO	PINS LIS	TED BEI		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	a	_	495	-	435	-	470	μAdc	-	504	-	450	-	450	μAdc	a	-	b	-	h	d
	2 I _{in}	b	-	990	-	870	-	940			1010	-	900	-	900		b	-	a, c	-		
	I _{in}	c	-	495	-	435	-	470	*	-	504	-	450	-	450	*	c	-	b	-	. *	, *
Output Current	I _{A4}	e e	1.98	-	2.19	-	1.88	-	mAde	2.02	-	2.05	· -	1.80	-	mAdc	-	b, e c, e	-		h	d, g †
		g	•	-	•	-	+	-	. +	+	-	+	-	•	-	•	-	b, g a, g	-	-	+	d,e †
Output Voltage	V _{out}	e g	-	710 710	-	300 300	-	320 320	mVdc mVdc		574 574	- -	400 400	-	370 370	mVdc mVdc		g e	b, c a, b	-	h h	d d
Saturation Voltage	V _{CE(sat)}	е	-	200	-	210	-	280	mVdc	-	290	-	260	-	340	mVdc	-	-	a,b,c	-	h	d,e †
	, — (-III)	e g g	- - -		-		-		•	-		- - -	•	- - -			- - -	-	a, b, c	b, c - a, b	•	d, g d, g † d, e
																	Pulse In	Pulse Out				
Switching Time	t	a+g+ a-g-	-	-	- -	40 40	-	- -	ns ns	-	-	- -	40 40	- -	- -	ns ns	a a	g g	- -	- -	h h	d,e d,e

[†] Silicon Diode to Ground

Pins not listed are left open.

DUAL HALF-SHIFT REGISTERS

MC983 · MC883

Available in TO-86 flat package, add "F" suffix.

Two half-shift registers in a single package, each having a built-in inverter for the gating signal. For example, information coming in on pins 4 and 6 will be transferred to pins 3 and 1 when the gating signal, pin 5, goes low. If all three inputs, 4, 5, and 6, are low, the outputs, 1 and 3, will both be low.

SWITCHING TIMES TEST CIRCUITS AND WAVEFORMS

Test procedures are shown for one half-shift register only. The other half-shift register is tested in the same manner.

(@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	perature	Vin	V _{on}	V_{BOT}	V _{off}	V _{cc}
	_55°C	1.014	1.014	1.50	0.710	3.00
MC983	+25°C	0.844	0.815	1.50	0.565	3.00
(+125°C	0.674	0.674	1.50	0.320	3.00
4	0°C	0.909	0.909	1.50	0.574	3.00
MC883	+25°C	0.844	0.844	1.50	0.554	3.00
1	+100°C	0.710	0.710	1.50	0.370	3.00

																100 C	0. 110					
		Pin		М	C983		Test Lir	nits			M	C883		Test Lir					T VOLT		OW/	
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C				PINS LIS			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Grd
Input Current	I _{in}	4	-	495 1485	-	435 1305	-	470 1410	μAdc	-	504 1512	-	450 1350	-	450 1350	μ Adc	4 5	-	5 4,6		14	7
	3I _{in} I _{in}	6	-	495	-	435		470	+	-	504	-	450		450	. +	6	-	5	-	+	+
Output Current	IA4	1	1.98	-	2.19	-	1.88	-	m Adc	2.02 2.02	-	2.05	-	1.80	-	m Adc	-	1,5 1,6	-	-	14 	3*,7
	I _{A4} I _{A5}	$\frac{1}{2}$	1.98	-	2.19 2.54	-	1.88 2.35	-		2.52	-	2.38	_	2.25	-		-	2	· -	5		7 1*.7
	I _{A4} I _{A4}	3 3	1.98	-	2.19	-	1.88 1.88	-		2.02 2.02	-	2.05 2.05	-	1.80 1.80	-	↓	-	3, 5 3, 4	-	-	+	7
Output Voltage	v _{out}	1	-	710	-	300	-	320	m Vdc	-	574	-	400	-	370	m Vdc	-	3	5, 6	-	14	7
	Out	2 3	-		-		-			-	↓	-	+	-	+	+	-	1	4,5	-	+	+
Saturation Voltage	V _{CE(sat)}	1	7 -	200	-	210	-	280	m Vdc	-	290	-	260	-	340	m Vdc	-	-	4, 5, 6	- 5, 6	14	1*,7
	CH(Sat)	1 2	-		-		-			-		-		-			-	-	5	-		7
		3 3	-			↓	-			-		-		-			-	-	4, 5, 6	5, 6		3*, 7 1, 7
				,													Pulse In	Pulse Out				
Switching Time	t	4+3+ 4-3-	-	-	-	40 40	-	-	ns	-	-	-	40 40	-	-	ns	4 4	3 3	-	-	14	1, 7 1, 7
		5+2- 5-2+	-	-	-	28 24	=	-		-	-	-	28 24	-	-		5	2 2	-			7 7

Ground input pins of half-shift register not under test. Other pins not listed are left open. *Momentary ground.

DUAL HALF-SHIFT REGISTERS (WITHOUT INVERTER)

MC984 · MC884

Available in TO-86 flat package, add "F" suffix.

This bistable storage element consists of two halfshift registers in a single package. For example, information coming in on pins 4 and 6 will be transferred to pins 3 and 1 when the gating signal, pin 5, goes low. If all three inputs, 4, 5, and 6, are low, the outputs, 3 and 1, will both be low.

MRTL LOADING FACTOR.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures shown are for one half-shift register only. The other half-shift register is tested in the same manner.

(@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC984	+25°C	0.844	0.815	1.50	0.565	3.00
	+125°C	0.674	0.674	1.50	0.320	3.00
	0°C	0.909	0.909	1.50	0.574	3.00
MC884	+25°C	0.844	0.844	1.50	0.554	3.00
	+100°C	0.710	0.710	1.50	0.370	3.00

		Pin		M	C984		Test Li	mits			M	C884		Test Lir	nits			TE	ST VOLT	AGE		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C		APP	LIED TO	PINS LIS		OW :	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	V _{cc}	Grd
Input Current	I _{in} 2I _{in} I _{in}	4 5 6	-	495 990 495	-	435 870 435	-	470 940 470	μ Adc	- - -	504 1008 504	-	450 900 450	- - -	450 900 450	μ Adc	4 5 6	-	5 4,6 5	-	14	7
Output Current	I _{A4}	1 1 3 3	1.98	- - -	2.19	- - -	1.88	-	m Adc	2.02	-	2.05	- - -	1.80	- - -	m Adc	- - -	1, 5 1, 6 3, 5 3, 4	- - -		14	3*, 7 7 1*, 7
Output Voltage	v _{out}	1 3	-	710 710	-	300 300	-	320 320	m Vdc m Vdc	-	574 574	-	400 400	-	370 370	m Vdc m Vdc	-	3 1	5, 6 4, 5		14 14	7
Saturation Voltage	v _{CE}	1 1 3 3	-	200	-	210	- - -	280	m Vdc	- - -	290	- - -	260	- - -	340	mVdc	- - -	- - - -	4, 5, 6	5, 6 4, 5, 6 4, 5	14	1*, 7 3, 7 3*, 7 1, 7
							-										Pulse In	Pulse Out				
Switching Time	t	4+3+ 4-3-	-	-	-	40 40	-	-	ns ns	-	-	-	40 40	-	-	ns ns	4 4	3	-	-	14 14	1,7

Ground input pins of half-shift register not under test. Other pins not listed are left open. *Moment

*Momentary ground.

MC904 · MC804

Available in TO-99 metal can, add "G" suffix. Available in TO-91 flat package, add "F" suffix.

This half-adder device can be used to supply the SUM and CARRY operations on two input signals. If the inputs are applied to pins a and b, and their complements to pins c and e, the SUM of the inputs appears on pin g while the CARRY appears on pin f.

PIN CONNECTIONS

SCHEMATIC	а	b	С	d	е	f	g	h
G PACKAGE (TO-99)	1	2	3	4	5	6	7	8
F PACKAGE (TO-91)	2	3	4	5	7	8	9	10

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

	@Test		TEST V	OLTAGE (Volts)	VALUES	
1	emperature	V _{in}	V _{on}	V_{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC904	} +25°C	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC804	{ +25℃	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin	5.		C904 +25	5°C	Test Lin			0	°C	C804 +2	5°C	Test Lin	nits 00°C		APP		T VOLTA		.0W :	
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I in	a b c e	- - -	495	- - 	435 		470	μAde	- - -	504	- - -	450	-	450	μ A dc	a b c e	-	b a e c	-	h H	d
Output Current	I _{A4} I _{A5} I _{A5}	f g g	1.98 2.47 2.47	- - -	2. 19 2. 54 2. 54	- - -	1.88 2.35 2.35	-	mAdc	2. 02 2. 52 2. 52	-	2. 05 2. 38 2. 38	-	1.80 2.25 2.25	-	mAdc	1 1 1	f a, c, g b, e, g	- - -	c, e	h 	d
Output Voltage	Vout	f f g		710	- - -	300	- - -	320	mVdc	- - -	574	- - -	400	-	370	mVdc	-	c e f	- a, b	-	h ↓	d
Saturation Voltage	V _{CE(sat)}	f f g g	- - -	200	-	210	- - -	280	mVdc	- - -	290		260	-	340	mVdc	- - -		c e a,b c,e	- c, e a, b	h	d
Switching Time	t	a+g+ a-g- c+f- c-f+	-	-	-	36 36 20 30	-	-	ns			- - -	36 36 20 30		- - -	ns 	Pulse In a a c	Pulse Out		- - -	h	d

Pins not listed are left open.

DUAL HALF-ADDERS

MC975 · MC875

Available in TO-86 flat package, add "F" suffix.

A dual half-adder device contained in a single package. Each can be used to supply the SUM and CARRY operations on two input signals. For example, if the inputs are applied to pins 3 and 4, and their complements to pins 5 and 6, the SUM of the inputs appears on pin 2 while the CARRY appears on pin 1.

SWITCHING TIMES TEST CIRCUITS AND WAVEFORMS

Test procedures are shown for one half-adder only. The other half-adder is tested in the same manner.

(@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V_{in}	Von	V_{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC975	+25°C	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
1	0°C	0.909	0.909	1.50	0.574	3.00
MC875	+25°C	0.844	0.844	1.50	0,554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin			C975		Test Li		1			C875		Test Lin			ADD		T VOLTA		OW	
		Under	-5		+2			25°C			°C	+2			00°C				PINS LIS			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	۷ _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Grd
Input Current	I _{in}	3 4 5 6	-	495	- - -	435	- - -	470	μAdc		504		450		450	μAdc	3 4 5 6	- - -	4 3 6 5		14	7
Output Current	IA4 IA5 IA5	1 2 2	1.98 2.47 2.47	-	2.19 2.54 2.54		1.88 2.35 2.35	-	m Adc	2.02 2.52 2.52	-	2.05 2.38 2.38	- - -	1.80 2.25 2.25	- - -	mAdc		1 2, 3, 5 2, 4, 6	- - -	5, 6 - -	14	7
Output Voltage	V _{out}	1 1 2	-	710	-	300	- - -	320	mVdc	-	574		400	- - -	370	m Vdc ↓	-	5 6 1	- 3, 4	- - -	14	7
Saturation Voltage	V _{CE(sat)}	1 1 2 2	- - -	200	- - - -	210	- - -	280	mVdc	-	290	- - -	260	- - - -	340	m Vdc	- - -	- - -	5 6 3,4 5,6	5, 6 3, 4	14	7
				,													Pulse In	Pulse Out				
Switching Time	t	6+1- 6-1+ 4+2+ 4-2-		- - -	- - -	20 30 36 36	- - -	- - -	ns		-	- - -	20 30 36 36	-	- - -	ns	6 6 4 4	1 1 2 2		- - -	14	7 7 1,7 1,7

Ground input pins of half-adder not under test. Other pins not listed are left open.

DUAL FULL ADDERS

MC996 · MC896

Available in TO-86 flat package, add "F" suffix.

Provides the SUM and CARRY functions while requiring only AUGEND (A) and ADDEND (B) inputs with CARRY IN.

Test procedures are shown for only one adder. The other adder is tested in the same manner.

			TES		GE VAL	JES
	@Test			(Vc	lts)	
Ter	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC996	{ +25℃	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC896	} +25°C	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin			MC99	6 Test l	Limits						6 Test l						ST VOLT			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2.	5°C	+10	00°C				PINS LI			١
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	3I _{in}	2 3 5	- - -	1485		1305	- - -	1410	μAdc	-	1512	1 1 1	1350	-	1350	μAdc	2 3 5	-	- - -	- - -	14	⁷
Output Current	I _{A4}	6	1.98	-	2.19	-	1.88	-	mAdc	2.02	-	2.05	-	1.80	-	mAdc	-	1,2 1,3 1,5 1,2,3,5 2,3,6 2,5,6 3,5,6 2,3,5,6	-	3,5 2,5 2,3 - 5 3 2	14	7
Output Voltage	V _{out}	6		710	- - - - - - -	300	-	320	mVdc	-	574	-	400	-	370	mVdc	-	2,3 3,5 2,5 - 2 3 5	- - - - - - -	2,3,5 5 2 3 2,3,5 3,5 2,5 2,5 2,3	14	7
Switching Time	t	5+1+ 5-1- 5+6+ 5-6- 3+1+ 3-1- 3+6+ 3-6- 2+1- 2-1+ 2+6+ 2-6-	-	-	-	75 75 85 65 75 75 85 65 70 80	-	-	ns		-	-	75 75 85 65 75 75 85 65 70 80	-	-	ns	Pulse In 5 3 4 2	2,3 2,3 2 2 2 - - 2 2 3	Pulse Out 1 1 6 6 1 1 6 6 1 1 6 6	3 3 2,5 2,5 5	14	7

Ground input pins of adder not under test. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

DUAL FULL SUBTRACTORS

MC997 · MC897

Available in TO-86 flat package, add "F" suffix.

Provides the DIFFERENCE and BORROW functions while requiring only MINUEND (X) and SUBTRAHEND (Y) inputs with BORROW IN.

Test procedures are shown for only one subtractor. The other subtractor is tested in the same manner.

,	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ter	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC997	} +25℃	0.844	0.815	1.50	0.565	3.00
	(+125℃	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC897	¦ +25℃	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

																+100 C	0.710	0.710	1.50	0.370	3.00	
		Pin			MC99	77 Test	Limits					MC89	77 Test	Limits					ST VOLT			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C		APP	LIED TO	PINS LI	STED BEI	: WO.	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	3 I _{in}	2 3 5	- - -	1485		1305	-	1410	μAdc		1512	- - -	1350	-	1350	μAdc	2 3 5	- - -	-	- - -	14	7
Output Current	I _{A4}	6	1.98		2. 19		1.88		mAdc	2.02		2.05	-	1.80		mAdc	- - - - - - -	1,2 1,3 1,5 1,2,3,5 2,3,5,6 2,6 3,6 2,3,6	-	3,5 2,5 2,3 - - 3,5 2,5 5	14	7
Output Voltage	V _{out}	6		710		300		320	mVdc		574	-	400	-	370	mVdc	- - - - - -	2,3 3,5 2,5 2,5 2,5 3,5	-	2,3,5 5 2 3 3 2 2,3,5 2,3	7	14
Switching Time							•										Pulse In		Pulse Out			
	t	5+1+ 5-1- 5+6+ 5-6- 3+1+ 3-1- 3-6- 2-1+ 2-6+ 2-6-	-	-		60 60 65 60 4 65 60	-	-	ns			-	60 65 60 4 65 60	-	-	ns	3 2	2,3 - - 2 2 3 3,5 3,5 3,5	1 1 6 6 1 1 6 6 1 1 6	2,5 2,5 2,5 5	14	7

Ground input pins of subtractor not under test. Other pins not listed are left open.

MC997, MC897 (continued)

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

COUNTER ADAPTERS

MC901 · MC801

Available in TO-99 metal can, add "G" suffix.

This device provides the true output at pin 7 and the complement output at pin 5 for an input applied to pin 1. A positive gating signal may be applied to pin 2 to inhibit both outputs. A positive signal applied to pin 3 will hold output pin 5 at nearground potential. The output nodes are returned separately to the power supply so that the outputs might be paralleled with other circuits.

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

	@Test		TEST V	OLTAGE (Volts)	VALUES	
	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC901	} +25°C	0.844	0.815	1.50	0.565	3.00
	(+125°C	0.674	0.674	1.50	0. 320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC801	} +25℃	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

	<u> </u>		T		AC901		Test Lii	mite			M	C801		Test Lin		100 C	0.110		T VOLT	AGF	0.00	
		Pin	-5		+2		+12			0	°C	+2	5°C		00°C		APP		PINS LIS		.0W:	
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	ν _{cc}	Gnd
Input Current	2 I _{in} 2 I _{in} 2 I _{in} 1 Iin	1 2 2 3	-	990 495		870 V 435		940 	μAdc	-	1010		900	-	900	μAdc	1 2 2 3	- - -	2 1 - 1	- - -	6,8	4
Output Current	I _{A5}	5 5 7 7	2.47	- - -	2.54		2.35	- - -	mAdc	2.52	- - -	2.38		2.25	-	mAdc	- - -	5 2,5 1,7 2,7	- 1 -	1,3 3 -	6,8	4
Output Voltage	Vout	5	-	710	-	300	-	320	mVdc	-	574	-	400	-	370	mVdc	-	3	2		6,8	4
Saturation Voltage	V _{CE(sat)}	5 5 7		200	-	210	-	280	mVdc	-	290	- - -	260	-	340	mVdc		1 - -	2,3	2 - 1,2	6,8	4
Switching Time	t	1+5- 1-5+ 1+7+ 1-7-				42 42 38 36			ns	- - -		-	42 42 38 36			ns	Pulse In	Pulse Out 5 5 7 7	- - -		6,8	4

Pins not listed are left open.

MRTL MC900/800 series

QUAD INVERTERS

MC927 · MC827

Available in TO-100 Metal Can, Add "G" Suffix. Available in TO-91 Flat Package, Add "F" Suffix.

Four individual circuits each perform the simple inversion function.

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

Test procedures are shown for one inverter only. Other inverters are tested in the same manner.

(@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V_{BOT}	V _{off}	V _{cc}
	(−55°C	1.014	1.014	1.50	0.710	3.00
MC927	{ +25°C	0.844	0.815	1.50	0. 565	3.00
	(+125°C	0.674	0.674	1.50	0.320	3.00
	(0°C	0.909	0.909	1.50	0.574	3.00
MC827	+25°C	0.844	0.844	1.50	0.554	3.00
	(+100°C	0.710	0.710	1.50	0.370	3.00

		Pin		M	927		Test Li					827		Test Lir			A DD		ST VOLTA PINS LIS		ω.	
		Under	5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C				FIND LID			۱. ۱
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{вот}	V _{off}	V _{cc}	Grd
Input Current	I _{in}	1*	-	495	-	435	-	470	μAdc	-	504	-	450	-	450	μAdc	1	-	*	-	10	5
Output Current	I _{A5}	6	2.47	-	2.54	-	2.35	-	mAdc	2.52	-	2.38	-	2. 25	-	mAdc	- s	6	-	4	10	5
Output Leakage Current	ICEX	6	-	100	-	218		235	μAdc	-	100	-	225	-	225	μAdc	6	-	-	4	-	5
Output Voltage	v _{out}	6	-	710	-	300	-	320	mVdc	-	574	-	400	-	370	mVdc	-	4	1,2,3	-	10	5
Saturation Voltage	V _{CE(sat)}	6	-	200	-	210	-	280	mVdc	-	290	-	260	-	340	mVdc	-	-	1,2,3,4	-	10	5
																	Pulse In	Pulse Out				
Switching Time	t	1+9- 1-9+	-	-	-	20 28	-	-	ns ns	-	-	-	20 28	-	-	ns ns	1 1	9	-	- -	10 10	5 5

^{*} To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to VBOT.

Ground inputs of inverters not used in test. Other pins not listed are left open.

MC989 · MC889

Available in TO-86 flat package, add "F" suffix.

Six individual circuits are contained in a package. Each provides the simple inversion function.

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

Test procedures are shown for one inverter only. Other inverters are tested in the same manner.

(@Test		TEST V	OLTAGE (Volts)	VALUES		
Ten	nperature	V _{in}	Von	V _{BOT}	V_{off}	V _{cc}	
	(−55°C	1.014	1,014	1.50	0.710	3.00	
MC989	+25°C	0.844	0.815	1.50	0.565	3.00	
	(+125°C	0.674	0.674	1.50	0.320	3.00	
	(0°C	0.909	0.909	1.50	0.574	3.00	
MC889	\ +25°C	0.844	0.844	1.50	0.554	3.00	
	(+100°C	0.710	0.710	1.50	0.370	3.00	

		Pin		М	C989		Test Lir	nits				C889		Test Lin			400		T VOLT		OW/	
		Under	一5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C				PINS LIS			
Characteristic	Symbol	Test.	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1 *	-	495	-	435	-	470	μAdc	-	504	-	450	-	450	μAdc	1	-	-	-	14	7
Output Current	I _{A5}	6	2.47	-	2.54	-	2.35	-	mAdc	2,52	-	2,38	-	2, 25	-	mAdc	-	6	-	1	14	7
Output Leakage Current	ICEX	6	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	μAdc	6	p -		1	-	7
Output Voltage	Vout	6		710		300	-	320	mVdc	- 1	574	-	400	-	370	mVdc	-	1	-	-	14	7
Saturation Voltage	V _{CE(sat)}	6	-	200	-	210	-	280	mVdc	-	290	-	260	-	340	mVdc	-	-	1	-	14	7
																	Pulse In	Pulse Out				
Switching Time	t	1+6- 1-6+	- :		-	20 28	-	-	ns ns		-	-	20 28		-	ns ns	1	6	J.	-	14 14	7

Ground inputs of inverters not used in test.

Other pins not listed are left open.

^{*} To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to v_{BOT}

DUAL 4-INPUT EXPANDERS

MC986 · MC886

Available in TO-86 flat package, add "F" suffix.

Two 4-input gate expanders housed in a single package may be used independently or combined. Each of these expanders increases the input capability of a standard MRTL gate by four.

Test procedures are shown for one expander only. The other expander is tested in the same manner.

			TES	T VOLTA	GE VAL	JES	
	@Test			(Vo	lts)		(Ohms)
Te	mperature	V _{in}	Von	V _{BOT}	$V_{\rm off}$	V _{cc}	V _R *
	(−55°C	1.014	1.014	1.50	0.710	3.00	680
MC986	} +25°C	0.844	0.815	1.50	0.565	3.00	680
	(+125°C	0.674	0.674	1.50	0.320	3.00	680
	(0°C	0.909	0.909	1.50	0.574	3.00	680
MC886	} +25°C	0.844	0.844	1.50	0.554	3.00	680
	(+100°C	0.710	0.710	1.50	0.370	3.00	680

		Pin		М	C986		Test Lir					2886		Test Lin				ADDUTE		OLTAGE			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C			APPLIEL		S LISTED			┨.
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd
Input Current	I _{in}	2 3 5 6		495	- - -	435	- - -	470	μAdc	-	504	- - -	450	-	450	μAde	2 3 5 6	-	3, 5, 6 2, 5, 6 2, 3, 6 2, 3, 5	- - -	14	1	7
Output Leakage Current	ICEX	1	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	μAdc	1	-	-	2,3,5,6	14	-	7
Output Voltage	V _{out}	1	-	710		300	- - -	320	mVdc	-	574		400	-	370	mVdc	- - -	2 3 5 6	-		14	1	3, 5, 6, 7 2, 5, 6, 7 2, 3, 6, 7 2, 3, 5, 7
Saturation Voltage	V _{CE(sat)}	1		200		210	-	280	mVdc	-	290	- - -	260	-	340	mVdc	- - -	- - -	2 3 5 6	- - -	14	1	3, 5, 6, 7 2, 5, 6, 7 2, 3, 6, 7 2, 3, 5, 7

Ground inputs of expander not under test.

Other pins not listed are left open.

^{*} Resistor Value to V_{CC} .

QUAD 2-INPUT EXPANDERS

MC985 · MC885

Available in TO-86 flat package, add "F" suffix.

Four 2-input expanders housed in a single package increase the input capability of MRTL gates.

Test procedures are shown for one expander only. Other expanders are tested in the same manner.

	1.5		TES	T VOLTA	GE VAL	JES	
	@Test			(Vo	lts)		(Ohms)
Te	mperature	V _{in}	V _{on}	V _{BOT}	V _{off}	٧ _{cc}	V _R *
	(-55°C	1.014	1.014	1.50	0.710	3.00	680
MC985	} +25°C	0.844	0.815	1.50	0.565	3.00	680
	(+125°C	0.674	0.674	1.50	0.320	3.00	680
	(0°C	0.909	0.909	1.50	0.574	3.00	680
MC885	} +25℃	0.844	0.844	1.50	0.554	3.00	680
	(+100°C	0.710	0.710	1.50	0.370	3.00	680

		Pin			MC985	;	Test Lir	mits			М	C885		Test Lir	nits					OLTAGE			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+10	00°C			APPLIED	TO PIN	S LISTEL	BELOW	:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _Ŕ *	Gnd
Input Current	I in	1 2	-	495 495	-	435 435	- -	470 470	μAdc μAdc	- -	504 504	- -	450 450	-	450 450	μAdc μAdc	1 2	- -	2	-	14 14	3	7 7
Output Leakage Current	ICEX	3	-	100	-	218	-	235	μAdc	-	100	-	225	-	225	μAdc	3	-	-	1,2	14	-	7
Output Voltage	v _{out}	3 3	-	710 710	-	300 300		320 320	mVdc mVdc		574 574	-	400 400	-	370 370	mVdc mVdc	-	1 2	-	-	14 14	3 3	2,7 1,7
Saturation Voltage	V _{CE(sat)}	3		200 200	-	210 210	-	280 280	mVdc mVdc	-	290 290		260 260	-	340 340	mVdc mVdc	- 4	: - ·	1 2	-	14 14	3 3	2,7 1,7

Ground inputs of expanders not under test.

Other pins not listed are left open.

^{*} Resistor Value to VCC.

HEX EXPANDERS

MC9919 · MC9819

Available in TO-86 flat package, add "F" suffix.

Six individual expanders are contained in a single package providing increased input capability for MRTL gates.

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

			TEST VOLTAGE VALUES							
(@Test	(Volts) (Ohms)								
Ten	nperature	V _{in} V _{on} V _{BOT} V _{off} V _{CC}				V _R *				
	(−55°C	1.014	1.014	1.50	0.710	3.00	680			
MC9919	¦ +25℃	0.844	0.815	1.50	0.565	3.00	680			
1	(+125°C	0.674	0.674	1.50	0.320	3.00	680			
	0°C	0.909	0.909	1.50	0.574	3.00	680			
MC9819	+25°C	0.844	0.844	1.50	0.554	3.00	680			
	(+100°C	0.710	0.710	1.50	0.370	3.00	680			

		Pin				est Limi		25°C		0'		C9819 1 +2			00°C			APPLIED		OLTAGE	BELOW		
Characteristic	Symbol	Under Test	─5 Min	Max	+2. Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{вот}	V _{off}	V _{cc}		Gnd
Input Current	I _{in}	1	-	495	-	435	-	470	μAdc	-	504	-	450	-	450	μAdc	1	-	-	-	14	6	7
Output Leakage Current	ICEX	6	-	100	-	218	-	235	μAdc	•	100	-	225	-	225	μAdc	6	-	-	1	14	-	7
Output Voltage	v _{out}	6	-	710	-	300	-	320	mVdc	-	574		400	-	370	mVdc	-	1	-	-	14	6	7
Saturation Voltage	V _{CE(sat)}	6	-	200	-	210	-	280	mVdc	-	290	-	260	-	340	mVdc	-	-	1	-	14	6	7

Ground inputs of expanders not used in test. Other pins not listed are left open.

^{*} Resistor value to V_{CC}.

LOW POWER

mW MRTL

INTEGRATED CIRCUITS

Low-power mW MRTL circuits are designed for use where minimal system power consumption is desired. Typical gate speed is 27 ns, with typical power dissipation of 6.5 mW (input high), and 0.5 mW (inputs low) per logic node.

INDEX Page No. 6-92 General Information Summary of Devices Available in Metal Cans 6-94 6-96 Summary of Devices Available in Flat Packages **DEVICE SPECIFICATIONS GATES** MC911, MC811 4-Input Gates 6-100 MC928, MC828 5-Input Gates 6-102 **Dual 2-Input Gates** 6-104 MC910, MC810 MC918, MC818 **Dual 3-Input Gates** 6-107 MC919, MC819 **Dual 4-Input Gates** 6-109 MC993, MC893 **Triple 3-Input Gates** 6-111 MC917, MC817 Quad 2-Input Gates 6-113 **BUFFERS** MC909, MC809 Buffers 6-115 MC981, MC881 **Dual Buffers** 6-118 MC998, MC898 **Dual Buffers** 6-120 **FLIP-FLOPS** Type D Flip-Flops MC913, MC813 6-122 MC920, MC820 J-K Flip-Flops 6-126 MC922, MC822 J-K Flip-Flops 6-129 MC982, MC882 J-K Flip-Flops 6-132 MC978, MC878 Dual Type D Flip-Flops 6-135 MC976, MC876 Dual J-K Flip-Flops 6-138 **ADDERS** MC908, MC808 Half Adders 6-141 MC912, MC812 Half Adders 6-143 **EXPANDERS** MC921, MC821 Expanders 6-146

Quad 2-Input Expanders

6-148

MC9921, MC9821

NUMERICAL INDEX (Functions and Characteristics)

 v_{CC} = 3.0 V $\pm 10\%$ for MC908 Series, 3.6 V $\pm 10\%$ for MC808 Series; T_A = 25°C

	Тур	Type ① 0 to -55 to +125°C		Output Loading Factor	Propa- gation Delay	Tot Power Diss mW ty		
Function				Each Output	tpd ns typ	MC808 Series	MC908 Series	Page No.
Half Adder	MC808	MC908	72,96	4	60	19/12.5	14/8.5	6-141
2-Input Buffer	MC809	MC909	72,96	30	57	7.0/23	5.5/16	6-115
Dual 2-Input NOR Gate	MC810	MC910	72,96	4	27	10/2.5	8.0/1.0	6-10
Dual 4-Input OR/NOR Gate	MC811	MC911	72,96	4	60	8.0/5.5	6.0/3.5	6-10
Half Adder	MC812	MC912	72,96	4	66	15.5/10.5	11.5/5.5	6-14
Type D Flip-Flop	MC813	MC913	72,96	3	75	24/17.5 ③	17.5/13 ③	6-12
Quad 2-Input NOR Gate	MC817	MC917	83	4	27	20/5.0	16/2.5	6-11
Dual 3-Input NOR Gate	MC818	MC918	72,96A	4	27	12/2.5	9.5/1.0	6-10
Dual 4-Input NOR Gate	MC819	MC919	83	4	27	13/2.5	11/1.0	6-10
J-K Flip-Flop	MC820	MC920	72,96	2	50	20.5/14.5 ④	15.5/10 ④	6-12
Dual 2-Input Gate Expander	MC821	MC921	72,96	_	27	3.0/	3.0/ —	6-14
J-K Flip-Flop	MC822	MC922	72,96A	4	70	24/20 ④	17.5/13 ④	6-12
5-Input NOR Gate	MC828	MC928	72,96	4	27	7.5/1.0	6.5/0.5	6-10
Dual J-K Flip-Flop	MC876	MC976	83	2	50	41/29 ④	31/20 ④	6-13
Dual Type D Flip-Flop	MC878	MC978	83	3	60	48/35 ③	35/26 ③	6-13
Dual Buffer	MC881	MC981	96	30	57	14/46	11/32	6-11
J-K Flip-Flop	MC882	MC982	96	2	80	23/21 ④	15/13 ④	6-13
Triple 3-Input NOR Gate	MC893	MC993	83	4	27	18/3.5	14/2.0	6-11
Dual 2-Input Buffer	MC898	MC998	83	30	57	14/46	11/32	6-12
Quad 2-Input Expander	MC9821	MC9921	83	_	27	20/	20/ —	6-14

① G suffix denotes Metal Can, F suffix denotes Flat Package; i.e., MC818G = Metal Can, MC818F = Flat Package.

② Input High/Inputs Low unless otherwise noted.

③ Direct Set and Direct Clear Low, All Other Inputs High/All Inputs Low

Only Clock Input High/All Inputs Low

GENERAL INFORMATION

mW MRTL MC908/808 series

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	-	+4.0	· Vdc
Power Supply Voltage (Pulsed ≤ 1.0 s)	-	+12	Vdc
Operating Temperature Range MC908 Series MC808 Series	T _A	-55 to +125 0 to +75	°c
Storage Temperature Range	T _{sta}	65 to +150	°C

TEST CONDITION TOLERANCES

DEFINITIONS

-	V _{BOT} = ±	10 mV	V _{CC} =±10 mV	V _{in} = ±	2 mV	V _{on} = ±2 mV	. V _{off} = ±2 mV
	1 _{A2} , 1 _{A3} , 1 _{A4}		vailable output current from put loading of 2, 3, or 4.	m a device	V _{CE} (sat)	Maximum saturation volta into the input.	ge with V _{BOT} applied
	IAB		vailable output current from age not to fall below the val		V _{in}	Minimum high-level voltage a device.	applied to the input of
	IAM	The maxim of a Dual (um available current from s Sate.	the output	V _{LL}	A supply voltage low end leakage currents only.	ough to allow flow of
	ICEX		urrent of a circuit when V _{ir} out pin and V _{Off} is applied to		V _{off}	The maximum voltage whic input terminal without turn	• • • • • • • • • • • • • • • • • • • •
	0.8 I _{in}		t drawn from the V _{in} supplistor for a fan-in of 1.	y by an in-	Von	The minimum voltage who	
	I _{in}		nput current drawn by one /in applied. All other gate VBOT		V _{out}	The maximum output volta the input.	ge with V _{on} applied to
	1.8 I _{in}	Current dra	wn from the V _{in} supply by Flip-Flop.	the Toggle	VR	Value of external resistor test purposes. VRH = highest node	
	2 I _{in}		nput current drawn by one 2 bases internally tied toget			V _{RL} = lowest node i	
	IL		akage current.		Release Time	The time that the J or K i after the negative-going cl order to propagate correct	ock input transition in
	v_{BOT}		e voltage applied to an inp				
		!		transistor	0-411-	The since sheet the long	V innue data must be

Set-Up

Time

GENERAL RULES

 The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output.

Supply voltage.

 v_{CC}

vice to insure saturation of the driven transistor.

- A gate output connected in parallel with another output
- reduces the drive capability by % load. (Paralleling gate circuits requires a V_{CC} connection to only one of the gates.)

The time that the J or K input data must be

present prior to the negative-going clock input

transition in order to propagate correct data.

- Any number of gates may be paralleled if the input loading is increased by ¼ load.
- All unused inputs should be returned to ground.

OUTLINE DIMENSIONS

LOADING DIAGRAMS

mW MRTL DEVICES AVAILABLE IN METAL CANS

The logic diagrams on these two pages describe the MC908 /MC808 MRTL integrated circuits available in metal cans, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time (t_{pd}) , typical package power dissipation (P_D) , pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal).

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of -55 to $+125^{\circ}\mathrm{C}$ with $V_{CC}=3.0~V\pm10\%$ for the MC908 Series, and to $+75^{\circ}\mathrm{C}$ with $V_{CC}=3.6~V\pm10\%$ for the MC808 Series. For the TO-99 metal can, V_{CC} is applied to pin 8, with ground connected to pin 4. For the TO-100 metal can, V_{CC} is applied to pin 5.

mW MC908/808 series

LOADING DIAGRAMS

mW MRTL DEVICES AVAILABLE IN FLAT PACKAGES

The logic diagrams on these three pages describe the MC908/MC808 MRTL integrated circuits available in flat packages, and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time $(t_{\rm pd})$, typical package power dissipation (Pp), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability – fan-out — (when on the circuit output terminal).

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. Loading data are valid over the temperature range of -55 to $+125^{\circ}$ with $V_{\rm CC}=3.0$ V $\pm 10\%$ for the MC908 Series, and 0 to $+75^{\circ}$ C with $V_{\rm CC}=3.6$ V $\pm 10\%$ for the MC808 Series. For the TO-91 flat package, $V_{\rm CC}$ is applied to pin 10, with ground connected to pin 5. For the TO-86 flat package, $V_{\rm CC}$ is applied to pin 14, with ground connected to pin 7.

- GATES -MC917F • MC817F MC910F • MC810F MC911F • MC811F **Quad 2-Input Gate Dual 2-Input Gate** 4-Input Gate -3 (4) (1) 2 -(1) 1 --7(3) - 9 (4) (1) 4 -(1) 2 -6 (4) (1) 2 (1) 5 -(1) 4(1) 4(1) 9 -(1) 6 (1)68 (4) (1) 10 -(1) 12 - $7 = \overline{1 + 2 + 4 + 6}$ 9 = 1 + 2 + 4 + 6 (1) 13 -9 = 1 + 2 $t_{pd} = 27 \text{ ns typical}$ t_{pd} = 60 ns typical $3 = \overline{1 + 2}$ t_{pd} = 27 ns typical Total Power Dissipation mW typ Total Power Dissipation mW typ Total Power Dissipation mW typ MC910F | MC810F MC911F MC917F | MC817F Input High Input High 8.0 Input High 6.0 20 Inputs Low 5.0 Inputs Low Inputs Low MC919F • MC819F MC928F • MC828F MC918F • MC818F **Dual 3-Input Gate Dual 4-Input Gate** 5-Input Gate (1) 2 (1) 3 (1)1 -(1) (1) 2 7 (1) 6 (1) 4(1) 6 ـ 🗸 (1) 8 (1) 9 (1)7 -13 (4) (1) 10 (1) 12 9 = 1 + 2 + 4 + 6 + 7 $9 = \overline{1 + 2 + 3}$ 1 = 2 + 3 + 5 + 6t_{pd} = 27 ns typical t_{pd} = 27 ns typical t_{pd} = 27 ns typical Total Power Dissipation mW typ Total Power Dissipation mW typ Total Power Dissipation mW typ MC919F MC819F MC918F MC818F MC928F MC828F 6.5 Input High 9.5 Input High Input High

FLIP-FLOPS

MC913F • MC813F Type D Flip-Flop

 $t_{pd} = 75 \text{ ns typical}$

Total Power Dissipation mW typ						
	MC913F	MC813F				
Direct Set and Direct Clear Inputs Low, All other Inputs High	17.5	24				
Inputs Low	13	17.5				

DIRECT INPUT OPERATION ① CLOCKED INPUT OPERATION ③ Q ā s_{D} CD tn tn+1 0 0 2 2 s a ₫ 0 0 0 0 n n

- 0
- 1. Clock (T input) must be high.

 2. The output state will not change when the input state goes from S_D = C_D to S_D = C_D = 0. The output state cannot be predetermined in the case where the input goes from S_D = C_D = 1 to S_D = C_D = 0.

 3. Direct inputs (C_D and S_D) must be low.

0

- 3. Direct inputs (LD and SD) must be low.

 0 = low state.

 1 = high state
 the time period prior to negative transition of pulse
 th+1 = time period subsequent to negative transition of clock pulse

Total Power Dissipation mW typ					
	MC978F	MC878F			
Direct Set and Direct Clear Inputs Low, All other Inputs High	35	48			
Inputs Low	26	35			

MC978F • MC878F Dual Type D Flip-Flop

(1) 5 -

- cD g b **-4** (3) (1) 2 -
- (1) 9 -(1) 8 -0 S S_D Q O

 $t_{pd} = 60 \text{ ns typical}$ MC922F • MC822F

J-K Flip-Flop

- 9 (4)

-7(4)

(2) 3 -

(1)8 -

Inputs Low

MC920F • MC820F J-K Flip-Flop

 $t_{pd} = 50 \text{ ns typical}$

Total Pow	er Dissipatio	n mW typ		
MC920F MC820F				
Only Clock Input High	15.5	20.5		
Inputs Low	10	14.5		

J-K FLIP-FLOP TRUTH TABLES

DIRECT INPUT OPERATION ① CLOCKED INPUT OPERATION ③ MC920 and MC820 only all types С

- $s_D c_D \alpha \bar{\alpha}$ Q ā 0 0 2 2 ān 0 ο 0 0 0 0 0 ā, 0
- Clock (T) to remain unchanged.
 The output state will not change when the input state goes from S_D = C

 _D to S_D = C

 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D = C
 _D to S_D the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$. 3. Direct inputs $(C_D \text{ and } S_D)$ must be low.

- 0 = low state
 1 = high state
 t_n = time period prior to negative transition of
- t_n = time period prior to negative transition of pulse t_{n+1} = time period subsequent to negative transition of clock pulse Q_n = state of Q output in time period t_n

t _{pd}	= 70 ns typ	ical
Total Pov	ver Dissipation	n mW typ
	MC922F	MC822F
Only Clock Input High	17.5	24

-dc c_Dāþ

MC976F • MC876F Dual J-K Flip-Flop

t_{pd} = 50 ns typical

Total Power Dissipation mW typ						
MC976F MC876F						
Only Clock Input High	31	41				
Inputs Low	20	29				

EXPANDERS

MC921F • MC821F **Dual 2-Input Expander**

 t_{pd} = 27 ns typical

Total Power Dissipation mW typ					
MC921F MC821I					
Input High	3.0	3.0			
Inputs Low					

MC9921F • MC9821F Quad 2-Input Expander

3 = 1 + 2 $t_{pd} = 27 \text{ ns typical}$

Total Power Dissipation mW typ					
MC9921F MC9821F					
Input High	20	20			
Inputs Low – –					

4-INPUT GATES

MC911 · MC811

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

Provides the positive logic NOR function and its complement through an inverter. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules).

	PIN	COV	INECT	TIONS	;			
Schematic	а	b	С	d	е	f	g	h
G Package (TO-99)	1	2	3	4	5	6	7	8
F Package (TO-91)	1	2	4	5	6	7	9	10

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

			TES		GE VAL	UES	
(@Test			(Vo	lts)		
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	ν _{ιι}
	(−55°C	0.970	0.935	1.80	0.650	3.00	0.500
MC911 -	+25°C	0.805	0.750	1.80	0.450	3.00	0.400
	+125°C	0. 590	0.555	1.80	0.260	3.00	0.300
(O°C	0.880	0.850	1.80	0.500	3.60	0.450
MC811	+25℃	0.830	0.800	1.80	0.460	3.60	0,400
	+75℃	0.740	0.710	1.80	0.400	3.60	0.350

		Pin		MC9	11		Test Li	mits			MC81	1		Test Lir	nits				TEST \	OLTAGE			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	′5°C				TO PIN	IS LISTED	BELOW	<i>!</i> :	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	VLL	Gnd
Input Current	I _{in}	a b c e	- - -	125	-	130	- - -	110	μAdc	-	150	- - -	140	- - -	140	μAdc	a b c e	-	b, c, e a, c, e a, b, e a, b, c	-	h 	- - -	d
Output Current	I _{A3} I _{A4} I _{AM}	f g g	350 475 -	- - 730	364 494	- 815	308 418 -	- - 830	μAdc	420 570 -	- - -	430 570 -	-	395 535 -	-	μAdc μAdc -	f g g	-		a,b, c, e f f	h	-	d a,b,c,d, a,b,c,d,
Output Voltage	v _{out}	f f f g		620		300	- - - -	230	mVdc	- - - -	400	- - - ,	350	- - - -	300	mVdc	-	a b c e f		- - - -	h	-	b, c, d, c a, c, d, c a, b, d, c a, b, c, c a, b, c, d,
Saturation Voltage	V _{CE(sat)}	f f f f	- - - -	220		220	- - - -	220	mVdc		250	-	250	- - -	250	mVdc	a b c e f	- - - -	-	-	h	-	b, c, d, c a, c, d, c a, b, d, c a, b, c, c a, b, c, d,
Isolation Leakage Current	IL	h	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	-	h	a,b,c,d,
																	Pulse In	Pulse Out					
Switching Time	t	a+g+ a-g-	-	-	- -	90 70	-	-	ns '	- -	-	-	90 70	-	-	ns ns	a a	g g		-	h h	-	b, c, d, b, c, d,

Pins not listed are left open.

5-INPUT GATES

MC928 · MC828

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

Provides the positive logic NOR function. Individual gate elements may be paralleled or used with other logic elements for increasing the number of inputs (subject to loading rules).

	PIN	COV	INECT	TIONS	;			
Schematic	а	b	С	d	е	f	9	h
G Package (TO-99)	1	2	3	4	5	6	7	8
F Package (TO-91)	1	2	4	5	6	7	9	10

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ter	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(−55°C	0.970	0.935	1.80	0.650	3.00
MC928	+25℃	0.805	0.750	1.80	0.450	3.00
	(+125°C	0.590	0. 555	1.80	0.260	3.00
	(0°C	0.880	0.850	1.80	0.500	3.60
MC828	+25℃	0.830	0.800	1,80	0.460	3.60
	(+75°C	0.740	0.710	1.80	0.400	3.60

		Pin		MC92	8		Test Li	mits			MC82	3		Test Lir	nits			TE	ST VOLT	AGE		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	′5°C		APF		PINS LI		LOW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I in	a b c e f	1 1 1 1	125	-	130	-	110	μAdc	-	150	- - - -	140	- - -	140	μAdc	a b c e f	-	b, c, e, f a, c, e, f a, b, e, f a, b, c, f a, b, c, e	-	h	d
Output Current	I _{A4}	g	475	-	494	•	418	-	μAdc	570	-	570	-	535	-	μAdc	g	-	-	a,b,c,e,f	h	d
Output Voltage	v _{out}	ස ස ස ස	-	620	11111	300		230	mVdc	-	400		350		300	mVdc	- - - -	a b c e f	-	- - - -	h	b,c,d,e a,c,d,e a,b,d,e a,b,c,d
Saturation Voltage	V _{CE(sat)}	හ හ හ හ	- - - -	220		220	- ·	220	mVdc	-	250	-	250	- - - -	250	mVdc	a b c e f		- - - -		h	b,c,d,e a,c,d,e a,b,d,e a,b,c,d
Isolation Leakage Current	I _L	h	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	h	a,b,c,d
								-									Pulse In	Pulse Out				
Switching time	t	a+g- a-g+	-	<u>-</u> -	<u>-</u>	50 60	- -	-	ns ns	-		-	50 60	-	-	ns ns	a a	g g	-		h h	b,c,d,e

Pins not listed are left open.

MC910 · MC810

Available in TO-99 Metal Can, Add G Suffix.

Available in TO-91 Flat Package, Add F Suffix.

Two 2-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

	PIN	OV	INECT	LIONS	;			
Schematic	а	b	С	d	е	f	9	h
G Package (TO-99)	1	2	3	4	5	6	7	8
F Package (TO-91)	1	2	4	5	6	7	9	10

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

	@Test		TEST V	(Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	٧ _{cc}
	(−55°C	0.970	0.935	1.80	0.650	3.00
MC910	+25℃	0.805	0.750	1.80	0.450	3.00
	(+125°C	0.590	0.555	1.80	0.260	3.00
	(0°C	0.880	0.850	1.80	0. 500	3,60
MC810	+25℃	0.830	0.800	1.80	0.460	3.60
	+75°C	0.740	0.710	1.80	0.400	3.60

Test procedures are shown for one gate only. The other gates are tested in the same manner.

		Pin		MC910			Test Lir	nits			MC810			Test Lin	nits				ST VOLT			ľ
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C		APP		PINS LIS	TED BEI		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V_{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	a b	-	125 125	-	130 130	-	110 110	μAdc μAdc	-	150 150	-	140 140	-	140 140	μAdc μAdc	a b	-	b a	-	h h	d d
Output Current	I _{A4} I _{AM}	g g	475 -	- 730	494	815	418	- 830	μAdc μAdc	570 -	-	570 -	-	535 -	-	μAdc -	g g	-	c c	a, b a, b	h h	d
Output Voltage	v _{out}	g	-	620 620	-	300 300	-	230 230	mVdc mVdc	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	a b	-	-	h h	b, d a, d
Saturation Voltage	V _{CE(sat)}	g g		220 220	-	220 220	-	220 220	mVdc mVdc	-	250 250	-	250 250	-	250 250	mVdc mVdc	a b		1 1	-	h h	b, d a, d
Isolation Leakage Current	IL	h	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc		-	-	-	h	a, b, d
			-														Pulse In	Pulse Out				
Switching Time	t	a+g- a-g+	-	- -	- -	50 40	-	-	ns ns	-		-	50 40	-	-	ns ns	a a	g g	- -	-	h h	d

Ground input pins of gate not under test. Other pins not listed are left open.

SWITCHING CHARACTERISTICS

DUAL 3-INPUT GATES

MC918 · MC818

Available in TO-100 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

Two 3-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

	. 1	PIN C	ONN	IECT	ION	3			14.	
Schematic	а	b	С	d	е	f,	g	h.	i	j
G Package (TO-100)	1	2	3	4	5	6	7	. 8	9	10
F Package (TO-91)	1	. 2	3	9	5	4	6	7	8	10

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

(@Test		TEST V	OLTAGE (Volts)	VALUES		4, 1
Ten	nperature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	
	(−55°C	0.970	0.935	1.80	0.650	3.00	1
MC918	+25℃	0.805	0.750	1.80	0.450	3.00	
	(+125°C	0.590	0.555	1.80	0.260	3.00	
	0°C	0.880	0.850	1.80	0.500	3.60	
MC818	+25°C	0.830	0.800	1.80	0.460	3.60	
	+75°C	0.740	0.710	1,80	0.400	3,60	1

Test procedures shown are for one gate only. Other gates are tested in the same manner.

		Pin	- 1	MC9	18		Test Li	nits			MC8	18		Test Lir	nits			TE	ST VOLT	AGE		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C			LIED TO	PINS LI	STED BEL	.0W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	I _{in}	a b c	-	125	(- - - -	130	- - -	110	μAdc	-	150	- : - : - :	140	- - -	140 ↓	μAdc ↓	a b c	- - -	b, c a, c a, b	111	j ↓	e
Output Current	I _{A4} I _{AM}	d d	475	- 730	494	- 815	418	- 830	μAdc μAdc	570 -	-	570 -	-	535	-	μAdc -	d	-	g g	a, b, c a, b, c	j j	e e
Output Voltage	v _{out}	d d d	-	620	-	300	- - -	230	mVdc	-	400		350	-	300	mVdc	-	a b c	-	-	j Ļ	b, c, e a, c, e a, b, e
Saturation Voltage	V _{CE(sat)}	d d d	-	220	-	220	- - -	220	mVdc	-	250	-	250		250	mVdc	a b c	-	-	-	j ļ	b, c, e a, c, e a, b, e
Isolation Leakage Current	I _L	j	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	j	a, b, c,
																	Pulse In	Pulse Out				
Switching Time	t	b+d- b-d+	-	-	-	50 40	-	-	ns ns		-	-	50 40	-	-	ns ns	b b	d d	-	-	j j	a, c, e a, c, e

Ground input pins of gates not under test. Other pins not listed are left open.

MC919 · MC819

Available in TO-86 Flat Package, Add F Suffix.

Two 4-input positive logic NOR gates in a single package may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

	@Test		IF21 A	(Volts)	VALUES	
Ter	nperature	y _{in}	Von	V _{BOT}	V _{off}	V _{cc}
	(−55°C	0.970	0.935	1.80	0.650	3.00
MC919	+25℃	0.805	0.750	1.80	0.450	3.00
	(+125°C	0.590	0.555	1.80	0. 260	3.00
	O°C	0.880	0.850	1.80	0.500	3.60
MC819	¦ +25℃	0.830	0.880	1.80	0.460	3.60
	(+75°C	0.740	0.710	1.80	0.400	3.60

Test procedures shown are for one gate only. Other gates are tested in the same manner.

		Pin		MC9	19		Test Lir	nits			MC8	,	1 3	Test Lir					ST VOLT			
		Under	-5	5°C	+25	5°C	+12	25°C		0	°C	+2	5°C	+7	′5°C				PINS LI	STED BEI		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	Voff	Vcc	Gnd
Input Current	Iin	2	-	125	-	130	-	110	μAdc	-	150	-	140	-	140	μAdc	2	-	3, 5, 6	-	14	7
	- "	3	-		-		-			-		-		-			3	-	2, 5, 6			
		6	-	+	-	. ↓	-	+	+	-	+	-	+	-	+		6	-	2, 3, 6 2, 3, 5	-	. ↓	+
Output Current	I _{A4}	1	475	-	494	-	418	-	μAdc	570	-	570	-	535	-	μAdc	1	-	8	2, 3, 5, 6	14	7
	I _{AM}	1	-	730		815	-	830	μAdc	-	-		-	-	,	-	1	-	8	2, 3, 5, 6	14	7
Output Voltage	v _{out}	1	-	620	-	300		230	mVdc	-	400	-	350	-	300	mVdc	-	2	-	-	14	3, 5, 6,
		1	-				-					_	4.7	31 - 21				5	_			2, 5, 6, 2, 3, 6,
		1	-	+	-	+	-	+	+	-	♦	-	+	-	•	. ♦	-	6	-	-	. ↓	2, 3, 5,
Saturation Voltage	V _{CE(sat)}	1	-	220	-	220	-	220	mVdc	-	250	, '-	250	-	250	mVdc	2	-	-	-	14	3, 5, 6,
	OZ (Sat)	1	-		-		-			-		-					3 5	-	-	-		2, 5, 6, 2, 3, 6,
		1	-	+		+		., . ♦	•	-		-		-	•	+	6	-	-	-	•	2, 3, 6, 2, 3, 5,
Isolation Leakage Current	IL	14	-	100	- '	100		100	μAdc	-	100	-	100	-	100	μ Ad c	-	-	-	-	14	2,3,5,6,
											, .						Pulse In	Pulse Out				
Switching Time	t	2+1-	- 1	-	-	50	-	-	ns	-	-	- 1	50		-	ns	2	1	- '	-	14	5, 6, 7
		2-1+	-		_	40	_	_	ns		_	-	40		-	ns	2	1		-	14	5, 6, 5

Ground input pins of gates not under test. Other pins not listed are left open.

TRIPLE 3-INPUT GATES

MC993 · MC893

Available in TO-86 Flat Package, Add F Suffix.

Three 3-input positive logic NOR gates in a single package may be used independently, paralleled for increased number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

Test procedures shown are for one gate only. Other gates are tested in the same manner.

· .	@Test		TEST V	OLTAGE (Volts)	VALUES		
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	
	(−55°C	0.970	0.935	1.80	0.650	3.00	
MC993	} +25℃	0.805	0.750	1.80	0.450	3.00	~
	(+125°C	0.590	0. 555	1.80	0.260	3.00	
((0°C	0.880	0.850	1.80	0.500	3.60	
MC893	+25°C	0.830	0.800	1.80	0.460	3.60	
	(+75℃	0.740	0.710	1.80	0.400	3. 60	

		Pin		MC99			Test Li				MC8			Test Lir	nits				T VOLT			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C				PINS LI	STED BEI	.0W :	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	Voff	Vcc	Gnd
Input Current	I _{in}	1 2 13		125	- - -	130	- - -	110	μAdc	- - -	150	-	140	-	140	μAdc	1 2 13	- -	2, 13 1, 13 1, 2	- - -	14	7
Output Current	I _{A4} I _{AM}	12 12	475	730	494	- 815	418	830	μAdc μAdc	570 -	-	570 -	-	535	- A - A - A	μ A dc	12 12	-	3, 9 3, 9	1, 2, 13 1, 2, 13	14 14	7
Output Voltage	v _{out}	12 12 12	- -	620	-	300	- - -	230	mVdc	-	400	- - -	350	- - -	300	mVdc	- - -	13 1 2	-	-	14	1, 2, 7 2, 7, 13 1, 7, 13
Saturation Voltage	V _{CE(sat)}	12 12 12	-	220	-	220		220	mVdc	-	250	- - -	250	- ·	250	mVdc ↓	13 1 2			- -	14	1, 2, 7 2, 7, 13 1, 7, 13
Isolation Leakage Current	IL	14	-	100	-	100	-	100	μAdc	-	100	-	100	= 124	100	μAdc	-	-	- - 	-	14	1,2,7,1
								-						3	3		Pulse In	Pulse Out				
Switching Time	t	1+12- 1-12+	-	-	-	50 40	-	-	ns ns	-	-	-	50 40	- -	-	ns ns	1 1	12 12	-		14 14	2, 7, 13 2, 7, 13

Ground input pins of gates not under test. Other pins not listed are left open.

QUAD 2-INPUT GATES

MC917 · MC817

Available in TO-86 Flat Package, Add F Suffix.

This gate element consists of four 2-input positive logic NOR gate circuits in a single package. Each may be used independently or connected together to form non-inverting gates or flip-flops.

Test procedures shown are for one gate only. Other gates are tested in the same manner.

	@Test		TEST V	OLTAGE (Volts)	VALUES		
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	
	(−55°C	0.970	0.935	1.80	0.650	3.00	1
MC917	+25℃	0.805	0.750	1.80	0.450	3.00	1
	+125℃	0.590	0.555	1.80	0.260	3.00	
	(0°C	0.880	0.850	1.80	0.500	3.60	1
MC817	+25℃	0.830	0.800	1.80	0.460	3.60] .
* .	+75℃	0.740	0.710	1.80	0,400	3.60	

		Pin		MC91	7	4.1	Test Lir	nits	1 - 34		MC81	7		Test Lin	nits			TE	ST VOLT	AGE		-
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C				PINS LIS	TED BE	.OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	Voff	V _{cc}	Gnd
Input Current	I _{in}	1 2	1 1	125 125		130 130	1 1	110 110	μAdc μAdc	-	150 150	-	140 140	- , · · -	140 140	μAdc μAdc	1 2	-	2 1	-	14 14	7
Output Current	I _{A4} I _{AM}	3	475 -	- 730	494	- 815	418	830	μAdc μAdc	570	-	570 -	%** -	535 -	-	μAdc -	3		4, 9, 12 4, 9, 12	1, 2 1, 2	14 14	7
Output Voltage	v _{out}	3 3	-	620 620	-	300 300	-	230 230	mVdc mVdc		400 400	-	350 350	-	300 300	mVdc mVdc	-	1 2	-	-	14 14	2,7 1,7
Saturation Voltage	V _{CE(sat)}	3 3		220 220		220 220	-	220 220	mVdc mVdc	-	250 250	11	250 250	-	250 250	mVdc mVdc	1 2	-	· -	-	14 14	2, 7 1, 7
Isolation Leakage Current	IL	14	1	100	1	100	- 3	100	μAdc	-	100	-	100	-	1001	μAdc	-	-	-	-	14	1, 2, 7
						2			*								Pulse In	Pulse Out		,		
Switching Time	t	1+3- 1-3+	- -	-	-	50 40	, - -	- -	ns ns	-	-,	. <u>.</u> .	50 40	-	-,	ns ns	1	3	-	-	14 14	2, 7 2, 7

Ground input pins of gates not under test. Other pins not listed are left open.

MC909 · MC809

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

This buffer is designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit. Returning an input resistor to V_{CC} allows for capacitive coupling in multivibrator and differentiator applications.

	PIN	OV	INECT	TIONS	;									
Schematic a b c d e f g h														
G Package (TO-99)	1	2	3	4	-	6	-	8						
F Package (TO-91)	1	2	4	5	6	7	9	10						

			TES	T VOLTA	AGE VAL	UES	
.(@Test			(Vo	lts)		(kΩ)
Ten	nperature	V _{in}	V _{on}	VBOT	V _{off}	V _{cc}	(K32)
	(−55°C	0.970	0.935	1.80	0.650	3.00	4.27
MC909 -	+25°C	0.805	0.750	1.80	0.450	3.00	4.3
	+125℃	0.590	0. 555	1.80	0.260	3.00	5.0
(0°C	0.880	0.850	1.80	0.500	3.60	4.3
MC809	+25℃	0.830	0.800	1.80	0.460	3.60	4.3
	+75°C	0.740	0.710	1.80	0.400	3.60	4.7

															(_+75°C	0.740	0.710	1.80	0.400	3.60	4.7	
		Pin		MC	909		Test Li	mits			MC8	109		Test Lir	nits				TEST V	OLTAGE			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	′5°C			APPLIED	TO PIN	S LISTED	BELOW	:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	V _{RH} *	Gnd
Input Current	2I _{in}	b	-	250	-	260	-	220	μAdc	-	300	-	280	-	280	μAdc	b	-	С	-	h	-	d
		C .	-	250	-	260	-	220	μAdc	-	300	-	280	-	280	μAdc	с	-	b	-	h	-	d
Output Current	IAB	f	3.75	-	4.0	-	3.3	-	mAdc	4.5	-	4.5	-	4.5	-	mAdc	f	-	-	b, c	h	-	d
Output Voltage	V _{out}	f f	-	620 620	-	300 300	-	230 230	mVdc mVdc	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	b c	- '	-	h h	f f	c, d b, d
Saturation Voltage	V _{CE(sat)}	f f	- ''	220 220	-	220 220	-	220 220	mVdc mVdc	-	250 250	-	250 250	-	250 250	mVdc mVdc	b c	-	-	-	h h	f f	c, d b, d
Isolation Leakage Current	IL	h	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-		-	-	h	-	b, c, c
											-						Pulse In	Pulse Out					
Switching Time	t	c+f- c-f+	-	-	-	90 70	-	-	ns ns	- -	-	- '	90 70	- -	-	ns ns	c c	f f	- ·		h h	· - ·	b, d b, d

Pins not listed are left open. *Resistor value to V_{CC}

MC909, MC809 (continued)

PROPAGATION DELAY versus TEMPERATURE

DUAL 2-INPUT BUFFERS

MC981 · MC881

Available in TO-99 Metal Can, Add G Suffix.

These Buffers are designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit.

Test procedures shown are for one buffer only. The other buffer is tested in the same manner.

	[TES	T VOLTA	GE VAL	UES		
(@Test			(Vo	lts)		(k Ω)	-
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	(K22)	
	(−55°C	0.970	0.935	1.80	0.650	3.00	4.27	
MC981	+25℃	0.805	0.750	1.80	0.450	3.00	4.3	
	(+125°C	0. 590	0.555	1.80	0.260	3.00	5.0	
	(0°C	0.880	0.850	1.80	0.500	3.60	4.3	
MC881	+25°C	0.830	0.800	1.80	0.460	3.60	4.3	
	(+75℃	0.740	0.710	1.80	0, 400	3.60	4.7	

		Pin		MC9			Test Lir				MC8			Test Lin				APPI IFD	TEST V	OLTAGE S LISTED		:	
		Under	-5		+2		+12			0		+2		+7		I I mia	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	V _{RH} *	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	in	on		OTT			
Input Current	2I _{in}	1	-	250	-	260	-	220	μAdc	-	300	-	280	-	280	μAdc	1	-	2	-	8	-	4
•	111	2	-	250		260	-	220	μAdc	-	300	-	280	- '	280	μAdc	2	-	1	-	8	-	4
Output Current	I _{AB}	7	3.75	-	4.0	-	3.3	-	mAdc	4. 5	-	4.5	-	4. 5	-	mAdc	7	-	-	1, 2	8	-	4
Output Voltage	v _{out}	7 7	-	620 620	-	300 300	-	230 230	mVdc mVdc	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	1 2	-	-	8 8	7	2, 4 1, 4
Saturation Voltage	V _{CE(sat)}	7 7	-	220 220	=	220 220	-	220 220	mVdc mVdc	-	250 250	-	250 250	-	250 250	mVdc mVdc	1 2	-	-	-	8 8	7	2, 4 1, 4
Isolation Leakage Current	IL	8	-	100		100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	8	-	1,2,3,4,5
																	Pulse In	Pulse Out					1.
Switching Time	t	1+7- 1-7+	-	-	-	90 70	-	- 1	ns ns	-	-	-	90 70	-	-	ns ns	1 1	7	-	-	8 8	-	2, 4 2, 4

Ground input pins of buffer not under test. Other pins not listed are left open. *Resistor value to V_{CC}.

mW MRTL MC908/808 series

DUAL BUFFERS

MC998 · MC898

Available in TO-86 Flat Package, Add F Suffix.

These Buffers are designed to drive a greater number of loads than the basic Resistor Transistor Logic Circuit. Returning an input resistor to $V_{\rm CC}$ allows for capacitive coupling in multivibrator and differentiator applications.

TEST VOLTAGE VALUES (Volts) @Test $(k\Omega)$ V_{CC} VBOT Temperature 0.935 1.80 0.650 3.00 0.500 4.27 MC998 0.805 0.750 1.80 0.450 3.00 0.400 4.3 0.555 1.80 0.260 3.00 0.300 5.0 (+125°C 0.590 4.3 0.850 1.80 0.500 3.60 0.450 0.880 0.830 0.800 1.80 0.460 3.60 0.400 4.3 MC898 +75°C 0.740 0.710 1.80 0.400 0.350

ELECTRICAL CHARACTERISTICS

Test procedures shown are for one buffer only. The other buffer is tested in the same manner.

		Pin		MC9			Test Lir				MC8			Test Lin				ADDI IED		OLTAGE	BELOW			
		Under	-5		+2		+12 Min	25°C Max	Unit	Min	°C Max	+2: Min	Max	+7. Min	5°C Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _{LL}	V _{RH} *	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max.	MIN	MIGX	Unii	14/11/1	IVIGA	. 191111		747111			In .	ОП	BO1					 -
Input Current	2I _{in}	2	-	250	- 1	260	-	220	μAdc	-	300	-	280	-	280	μAdc	2	-	5	- '	14	-	-	7
	ın	5	-	250	-	260	-	220	μAdc	-	300	-	280	-	280	μAdc	5	-	2	-	14	-	-	7
Output Current	I _{AB}	6	3.75	-	4.0	-	3.3	-	mAdc	4.5	-	4. 5	-	4. 5	-	mAdc	6	-	-	2, 5	14	-	-	7
Output Voltage	V _{out}	6	-	620 620	-	300 300	-	230 230	mVdc mVdc	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	2 5	-	-	14 14	-	6 6	5,7 2,7
Saturation Voltage	V _{CE(sat)}	6 6	-	220 220	-	220 220	-	220 220	mVdc mVdc	-	250 250	-	250 250	-	250 250	mVdc mVdc	-	-	2 5	-	14 14	-	6 6	5, 7 2, 7
Isolation Leakage Current	I _L	14	-	100	-	100	-	100	μAdc	-	100		100	-	100	μAdc	-	-	-	-	-	14	-	2, 5, 7
																	Pulse In	Pulse Out						
Switching Time	t	5+6- 5-6+		-	-	90 70	-	-	ns ns	-	-	-	90 70	-	-	ns ns	5 5	6 6	-	-	14 14	-	-	2,7 2,7

Ground input pins of buffer not under test. Other pins not listed are left open. *Resistor value to VCC.

TYPE D FLIP-FLOP

MC913 · MC813

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

The MC913/MC813 RTL Type D Flip-Flop is a storage element that stores the state of pin b during negative transitions of pin a. The flip-flop is not affected by changes of pin b during either the low or high state of the clock. Using pins c and g as inputs produces a standard R-S flip-flop.

- 1. Clock (T input) must be high.
- 2. The output state will not change when the input state goes from SD = $\overline{C}D$ to SD = CD = 0. The output state cannot be predetermined in the case where the input goes from SD = CD = 1 to SD = CD = 0.
- 3. Direct inputs (SD and CD) must be low.
 - 0 = low state
 - 1 = high state
 - tn = time period prior to negative transition of clock pulse
- $t_n + 1 = time period subsequent to negative transition of clock pulse$

	-	TEST VOLTAGE VALUES (Volts)										
	@Test nperature	V _{in} V _{on} V _{BOT} V _{off} V _{CC} V _{LL}										
	(−55°C	0.970	0.935	1.80	0.650	3.00	0.500					
MC913	+25°C	0.805	0.750	1.80	0.450	3.00	0.400					
	+125℃	0.590	0.555	1.80	0.260	3.00	0.300					
	0°C	0.880	0.850	1.80	0.500	3.60	0.450					
MC813	+25°C	0.830	0.800	1.80	0.460	3.60	0.400					
	+75°C	0.740	0.710	1.80	0.400	.3.60	0.350					

																+/3 C	0.110					0.000	<u> </u>
		Pin			MC913	3	Test Lir	nits			MC	313		Test Lin	nits					OLTAGE/			
		Under	-5	5°C	+2.	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C				TO PIN	IS LISTED			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	٧	Gnd.
Input Current	1.8 I _{in}	a	-	225	-	234	-	198	μAdc	-	270	-	252	-	252	μAdc	a	-	-	-	h	-	b, c, d, g
-	1.8 I _{in}	a	-	225	-	234	-	198		-	270	-	252	-	252		a	-	b	-		-	c,d,g
	т 1	b*	-	125	-	130	-	110	, '	-	150	-	140	-	140		b	-	-	a		-	c,d,g
	in	c* g*	-	↓	-		-			-				-			c g	-	b -		+	-	d, g b, c, d
Output Current	I _{A3}	e	350	-	364	-	308	-	μAdc	420	-	430	-	395	-	μAdc	e	a	b, g	c a, c	h	-	d b, d
*		e* f f*		-		-		-			-		-		-		- f	g	a, c c	- a, g		-	b, d d
Output Voltage	v _{out}	e e f	-	620	-	300	-	230	mVdc	-	400	-	350	-	300	mVdc	-	c f g	a, g a a, c a	-	h	- - -	b, d b, c, d, g b, d b, c, d, g
Saturation Voltage	V _{CE (sat)}	e f	<u> </u>	220	-	220	-	220	mVdc	-	250	-	250	<u> </u>	250	mVdc	c	-	a, g	-	h	-	b, d
	CE (Sat)	e e*	-		-		-			-		-		-			f -	b	a g	a		-	b, c, d, g
		f f f*	-		-		-			-		-		-			g e -	-	a, c a c	- a, b		-	b, d b, c, d, g d, g
Isolation Leakage Current	IL	h	-	100	-	100	-	100	μAdc	-	100		100	-	100	μAdc	-		-	-	-	h	a,b,c,d,

Pins not listed are left open.

*The voltage applied to pin a must change from V_{RL} to V_{off} prior to making measurements. V_{RL} = Resistance value to V_{CC} ; V_{RL} = 2.8 k ohms @ -55°C, @ 0°C V_{RL} = 2.7 k ohms @ +25°C, V_{RL} = 3.0 k ohms @ +125°C @ +75°C

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 1

SET-UP AND RELEASE TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 2A

FIGURE 2B

SWITCHING TIMES

Test	Fig.	ns @	25 ⁰ C
1000	No.	min	max
^t ⊤ ā*	1	-	80
t _{T-} Ω+*	1	-	120
t _{T-Q} .*	1	-	80
t _{T-Q+} *	1	-	120
t _{S+T-}	2	60	-
t _{T-S} .	2	30	-
t _{S-T-}	2	60	
^t T-S+	2	30	-
t _{S-T-}		30	

*Tie pin b to pin e

MC913, MC813 (continued)

J-K FLIP-FLOPS

MC920 · MC820

0 0 $\overline{\Omega}_n$ Ω_n

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

 $\ensuremath{\text{J-K}}$ Flip-Flop with a direct clear input in addition to the clocked inputs.

1

1

3

4

5

5

6

6

7

9

8

10

G Package (TO-99)

F Package (TO-91)

			TEST VOLTAGE VALUES									
(@Test	(Volts) (Ohms										
Ten	nperature	V _{in}										
	(−55°C	0.970	0.935	1.80	0.650	3.00	0.500					
MC920	} +25°C	0.805	0.750	1.80	0.450	3.00	0.400					
	(+125°C	0.590	0.555	1.80	0.260	3.00	0.300					
	(0°C	0.880	0.850	1.80	0.500	3.60	0.450					
MC820	+25°C	0.830	0.800	1.80	0.460	3.60	0.400					
	(+75°C	0.740	0.710	1.80	0.400	3.60	0.350					

		Pin		MC920)		Test Lir	nits			MC820)		Test Lin	nits					OLTAGE			
		Under	-5	5°C	+25	5°C	+12	5°C		0°	C	+2	5°C	+7	5°C						BELOW		١.,
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{вот}	V _{off}	V _{cc}	٧	Gnd
Input Current	I _{in}	a	-	125	-	130	-	110	μ A dc	-	150	-	140	-	140	μAdc	a	-	е	-	h	-	d
-	2I _{in}	b	-	250	-	260	-	220		-	300	-	280	-	280		b	-	a, c	-		-	
	I _{in}	c	-	125	_	130	-	110		-	150	-	140	-	140		с	-	g	-		-	
	I _{in}	f	-	125	-	130	-	110	+	-	150	-	140	-	140	+	f	-	e	-	*	-	'
Output Current	I _{A2}	e	238	-	247	-	209	-	μAdc	270	-	290	-	255	-	μAdc	-	e	a, f	-	h	-	d
	AZ	e g#	↓	-	↓	-	↓	-	↓	↓	-	↓	-		-	+	-	e, f	a c	f	+	-	+
Output Voltage	v _{out}	e#	-	620	-	300	-	230	mVdc	-	400	-	350	-	300	mVdc	-	g	-	-	h	-	d
Output Voltage	out	e*#	-		-		-			-		-		1 -			1 :	a, c	-	- c		-	d, f
		e*§ e*§	-		_		-]		_		-			-	-	-	a, c		-	1 +
		g	-		_		-			-		-		-			-	f	-	-		-	d, e
		g§	-		-		-			-		-		-			1 :	a, c	-	_		_	d d, f
		g*§	-		-		-			[-		-			1 -	a, c	-	a		-	","
		g*# g*#	-		-	+	-	+	+	-	+	-	+	-	+	+	-	-	-	a, c	*		<u> </u>
Saturation Voltage	V _{CE(sat)}	e#	-	220	-	220	-	220	mVdc	-	250	-	250	-	250	mVdc	-	-	-	f	h	-	d d, e
	OD(But)	g g§	-		-		-			-		-	,	-			-	-	-	-	•	_	d
Isolation Leakage Current	I _L	h	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	-	h	d

Pins not listed are left open

[#] Pin e = LOW Set by a momentary ground prior to the application of the negative-going clock pulse.

^{* =} Clock Pulse to Pin b. (see Fig. 4)

MC920, MC820 (continued)

SWITCHING TIMES

Test	Fig.		r-All ure Range	Unit
1	NO.	min	max	
T-Q-	2	20	80	ns
T-Q+	2		120	. ns
CD+Q+	3		60	ns
CD+₫+	3	-	120	ns

Waveform at the output test point should be ½ the frequency of the waveform at the input test point.

FIGURE 1 - TOGGLE MODE TEST CIRCUIT

SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

FIGURE 2

FIGURE 3

FIGURE 4

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_H . t_r is not critical but should be \leq 1.0 μ s.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground, when applicable. D. Clock pulse is allowed to fall to V_L , $t_{\mbox{\scriptsize f}}$ remains within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC820

TA	v _L	v _H
	+460 ± 2.0 mVdc	
	+500 ± 2.0 mVdc	
+75 ⁰ C	+400 ± 2.0 mVdc	+760 ± 2.0 mVdc

FIGURE 5

INPUT PULSE REQUIREMENTS:

V_{IL} = 0.200 V max V_{IH} = 0.894 V min. 1.500 V max t≤10 ns t≤10 ns

f = 1.0 MHz typ

NOTE:

Measurements for output voltages should be taken at least 100 ns after pulses have occurred.

MC920

T _A	v _L	V _H
+25°C -55°C	+450 ± 2.0 mVdc +650 ± 2.0 mVdc	+800 ± 2.0 mVdc +985 ± 2.0 mVdc
+125°C	+260 ± 2.0 mVdc	+605 ± 2.0 mVdc

FIGURE 6

INPUT PULSE REQUIREMENTS:

V_{IL} = 0.200 V max V_{IH} = 0.894 V min, 1.500 V max t ≤10 ns

f = 1.0 MHz typ

SEQUENCE OF EVENTS:

- A. Apply all dc biases required.
 Apply momentary ground to pin indicated. This sets the flip-flop. Momentary ground must occur before the pulses shown above every time, or the flip-flop will toggle to the wrong condition every alternate pulse.
 C. After momentary ground has been released, apply pulses marked above.
 D. Measure voltage of designated output after the pulse measurements for output voltages should be taken at least 100 ns after pulses have occurred.
- have occurred.

J-K FLIP-FLOPS

MC922 · MC822

Available in TO-100 Metal Can, Add G Suffix Available in TO-91 Flat Package, Add F Suffix

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

- 1. Clock (T) to remain unchanged.
- 2. The output state will not change when the input state goes from $S_D = \overline{C}_D$ to $S_D = C_D = 0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$.
- 3. Direct inputs (CD and SD) must be low.
- The time period prior to the negative transition of the clock pulse is denoted t_n, and the time period subsequent to this transition is denoted t_{n+1}.
- 5. Q_n is the state of the Q output in the time period t_n .

* * 1	@Test	TEST VOLTAGE VALUES (Volts)									
Ter	nperature	V _{in}	Von	V _{BOT}	Voff	V _{cc}					
	(−55°C	0.970	0.935	1.80	0.650	3.00					
MC922	} +25℃	0.805	0.750	1.80	0.450	3.00					
	(+125°C	0.590	0.555	1.80	0.260	3.00					
	(0°C	0.880	0.850	1.80	0.500	3.60					
MC822	+25°C	0.830	0.800	1.80	0.460	3.60					
	(+75℃	0.740	0.710	1.80	0.400	3.60					

	·									,						+75°C	0.740	0.710	1.80	0.400	3.60	
		Pin		MC	922		Test Li	mits			MC	822		Test Lir	nits	-		TE	ST VOLT	AGE		
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	′5°C		APP	LIED TO	PINS LI	STED BE	.0W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	Grd
Input Current	I _{in}	1	-	125	-	130	-	110	μAdc	-	150	-	140	-	140	μAdc	1	_	_	_	10	5
	I _{in}	2	-	125	-	130		110		-	150	-	140	-	140		2	-	8	-	1	l i
	2 I _{in}	3	-	250	-	260	- 1	220		-	300	-	280	-	280		3	-	2, 4	-		
	I _{in}	4	-	125	-	130	-	110		-	150		140	-	140		4	-	1	-		
	I _{in}	8	-	125	-	130	-	110		-	150	-	140	-	140	+	8	-	-	-	*	♦
Output Current	I _{A4}	7	475	-	494	-	418	-	μAdc	570	-	570	-	535	-	μAdc	_	7, 1	8		10	5
		9	475		494	-	418	-	μAdc	570	-	570		535	-	μ A dc	-	8, 9	1	-	10	5
Saturation Voltage	V _{CE(sat)}	7	-	220	· -	222	-	220	mVdc	-	250	-	250	1	250	mVdc	-	1	_	8	10	5
		7*#	-		-		-			-		-		-	1	1	-	2	-	4	1	1
		7*#	-		-		-			-		-		-			-	-	-	2, 4		
		7§*	-		-		-			-		-					-	2, 4	-	-	-	
		9	-		-		-			-		-		-			-	8	-	1		
		9§*	-		-		-			-		-		-				4	-	2		
		9*#	-		-		-			-		-		-			-	2, 4	-	-		
		9§*	-	•	-		-	.*	♦	-	†	-		-		*	-	-	-	2, 4	+	♦

^{\$} Pin 1 = High) Set by momentary application of $\boldsymbol{v}_{\mbox{\footnotesize{BOT}}}$ prior to the negative going clock pulse.

Pins not listed are left open.

^{*} Pin 3 = Clock pulse to pin 3 (see Figure 1).

FIGURE 1 - CLOCK PULSE DEFINITION D В С 90% -10% GND

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_{H} . t_r is not critical but should be < 1.0 μ s.
- B. Biases of all other inputs are applied. VCC is applied without interruption throughout the testing.
- C. Apply momentary ground, when applicable.
- D. Clock pulse is allowed to fall to V_L. t_f remains within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC822

1	A	v _L	v _H
+2	5°C	+460 ± 2.0 mVdc	+850 ± 2.0 mVdc
1	o°c	+500 ± 2.0 mVdc	+900 ± 2.0 mVdc
+7	5°C	+400 ± 2.0 mVdc	+760 ± 2.0 mVdc

NOTE:

Waveform at the output test point should be ½ the frequency of the waveform at the input test point.

	MC922										
TA	V _L	V _H									
+25°C	+450 ± 2.0 mVdc	+800 ± 2.0 mVdc									
−55°C	+650 ± 2.0 mVdc	+985 ± 2.0 mVdc									
+125°C	+260 ± 2.0 mVdc	+605 ± 2.0 mVdc									

SWITCHING TIMES

Test	Figure No. 3	Maximum (ns)				
T - O - T - O - T - O - T - O - T - O - T - O - T - O - T - O - T - O - T - O - T - O - T - C - T - T - C - T	3B 3B 3B 3B 3C 3C 3C 3C 3C 3C 3C 3C 4 4	150 150 100 100 50 30 50 30 0 +5 140 70				
tSD+Q-	4	70				

SWITCHING TIMES TEST CIRCUITS AND WAVEFORMS

D1 = 1N3063 or Equivalent

FIGURE 3B - SWITCHING **TIME WAVEFORMS**

NOTE: Whichever input pin (S or C) is tied to MC909 Buffer on input pin B is at virtual ground when the input is tied to V_{BOT} .

FIGURE 3C - SET-UP AND RELEASE TIME

J-K FLIP-FLOP

MC982 · MC882

Available in TO-99 Metal Can, Add G Suffix.

J-K Flip-Flop with a direct clear input in addition to the clocked inputs.

CLOCKED INPUT OPERATION ®

tn	1 ②	t _{n-t}	-1 ^②
S	С	Q	₫
1	1	Q _n ③	$\overline{\mathbf{Q}}_{\mathbf{n}}$
1	0	1	0
0	1	0	1
0	0	$\bar{\mathbf{q}}_{n}$	Q _n ®

- 1. Direct input (CD) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Q_n is the state of the Q output in the time period t_n .

TEST VOLTAGE VALUES (Volts) @Test V_{off} Vcc Temperature V_{BOT} **−55°C** 0.970 0.935 1, 80 0.650 3.00 MC982 0.805 0.750 0.450 3.00 1.80 +125°C 0.590 0.555 1.80 0.260 3.00 0°C 0.880 0.850 1.80 0.500 3.60 MC882 +25°C 0.830 0.800 1.80 0.460 3.60 +75°C 0 740

ELECTRICAL CHARACTERISTICS

															ζ.	T/3 C	0.740	0.710	1, 80	0.400	3.60	
		Pin		MC	982		Test Li	mits			MC8	882		Test Lir	nits				TEST VOLTAGE			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C		APP	LIED TO	PINS LIS	TED BEL		1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Grd
Input Current	I _{in}	1#* 2 3* §	-	125	-	130		110	μAdc		150	-	140		140	μAdc	- 2 -	- - -	3 3 1	- v., - v.,	8	4, 6 1, 3, 4, 4, 6
	2 I	6	-	250	-	260	-	220	₩.	-	300	-	280	-	280	*	6	-	2, 3, 5	-	†	4
Output Current	I _{A2}	5*† 7*‡	238 238		247 247	-	209 209	-	μAdc μAdc	270 270	-	290 290	-	255 255	-	μAdc μAdc	-	-	3	-	8 8	1, 4, 6 3, 4, 6
Saturation Voltage	V _{CE(sat)}	5**Δ 5**Δ	-	220	-	220	-	220	mVdc	-	250	-	250	-	250	mVdc	-	1 -	1,2	3 1,3	8	4, 6 4, 6 3, 4, 5
		7**◆ 7**ΔΔ 7**ΔΔ	-		-		-			-		-		-			-	1,3 3	-	1 1,3	-	4 4,6 4,6

Pins not listed are left open.

- * = Pin 2 Clock Pulse a ** = Pin 2 Clock Pulse c
- # = Pin 1 Clock Pulse b
- § = Pin 3 Clock Pulse b
- † = Pin 5 Clock Pulse b
- t = Pin 7 Clock Pulse b(See Figure 4.)
- △ Pin 5 =
- Momentary ground prior to negative transition of Clock Pulse c.
- **∆**∆ Pin 7 =
- \Diamond Pin 6 = Momentary $V_{\begin{subarray}{c} BOT \end{subarray}}$ prior to negative transition of Clock Pulse c.

FIGURE 1 - CLOCK PULSE DEFINITION В С D -10%

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_{H} . t_r is not critical but should be <1.0 μ s.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground, when applicable. D. Clock pulse is allowed to fall to V_L. t_f re-
- mains within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC882										
TA	٧٢	V _H								
o°c	+500 ± 2.0 mVdc	+0.850 ±2.0mVdc +0.900 ±2.0mVdc +0.760 ±2.0mVdc								

MC982										
TA	V _L	V _H								
		+0.800 ±2.0 mVdc								
		+0.985 ±2.0 mVdc								
+125°C	+260 ± 2.0 mVdc	+0.605±2.0mVdc								

SWITCHING TIME TEST CIRCUITS AND WAVE FORMS

SWITCHING TIMES

		ns @	+25 ^o C
Test	Fig. No.	min	max
t _T -Q-	3A	40	140
tT-Q+	3A	70	195
tTQ	3A	40	140
tTΩ+	3A	70	195
t <u>Q</u> +Q+	3A	30	100
t <u>α</u> –α–	3A	5	40
tCD+Q-	3В	55	+-"
tc _D +α+	3B	5	

DUAL TYPE D FLIP-FLOPS

MC978 · MC878

Available in TO-86 Flat Package, Add F Suffix.

The type "D" Flip-Flop is a storage element that stores the state of the S input during negative transitions of the T input. The flip-flop state is not affected by changes in the S input during either the low or the high state of the T input. SD and CD inputs may be used for asynchronous operation.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

	-	IEST VOLTAGE VALUES										
	@Test		(Volts)									
Ter	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	VLL					
	(-55°C	0.970	0.935	1.80	0.650	3.00	0.500	١.				
MC978	} +25℃	0.805	0.750	1.80	0.450	3.00	0.400	,				
	(+125°C	0.590	0.555	1.80	0.260	3.00	0.300	1				
- 1 in	(0°C	0.880	0.850	1.80	0.500	3.60	0.450	1				
MC878	+25℃	0.830	0.800	1.80	0.460	3.60	0.400					
	(+75°C	0.740	0,710	1.80	0.400	3.60	0.350					

		Pin			978		Test Lir					878		Test Lin						OLTAGE			
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C				TO PIN				
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	VBOT	Voff	Vcc	V _{LL}	Grd
Input Current	1.8 I _{in}	1	-	225	-	234	-	198	μAdc	-	270	-	252	-	2 52	μAdc	1	-	6	-	14	-	2, 5, 7
	1.8 I _{in}	1	-	225	-	234		198		-	270	- '	252	-	252	3 10	1	-	-	-		-	2, 5, 6,
	I _{in}	2#	-	125	-	130	-	110		-	150	-	140		140		2	- "	-	-		-	5, 6, 7
		5#	-		-	1				-		-		_			5	-	6	-		-	2,7
		6#	-	₩	-	-	-		+	-	+		1	: =	1	- + ·	6		-	-	♦	-	2, 5, 7
Output Current	I _{A3}	3	350	-	364		308	-	μAdc	420	-	430	-	395	-	μAdc	3	1	5	2	14	_	6, 7
		3# 4		_		_					_		- 1		· .		3	6	5 2,6	5	-	-	7
		4#	•	-	+ -	-	+	-	. 🕈 .	· 🛊	-	+	-	+		+	4	-	2,6	5,6	↓	-	↓
Output Voltage	v _{out}	3	-	620	-	300	-	230	mVdc	-	400	-	350	-	300	mVdc	A	2	1,5	-	14	-	6,7
		3	_		-					- <u>-</u>		- 1		'			_	4 5	1,2	- '		-	2, 5, 6, 6, 7
		4	-		-	+	-		+	-	+	-		-	+		-	3	1,2	-	↓	-	2, 5, 6,
Saturation Voltage	V _{CE(sat)}	3	-	220	-	220	-	220	mVdc	-	450	-	400	-	350	mVdc	2	-	1, 5	-	14	T -	6,7
		3	-		-	1	-		.	-		-		-			4	-	1	-		-	2, 5, 6,
		3*	_		_		-			-		-		-	-		-	-	1	5		-	6, 7
		3§† 3#1	_		-		-					-					_	-	5	6			2,7
		4	-		-		-			-		-					5	-	1,2	_		-	2,7 6,7
		4	-		-		-		1 1.	-		-	1 1			-	3	-	ı i .	-		_	2, 5, 6,
		4†	-		-		-			-	1 1	-		-		1.	-	-	1	2		-	6,7
		4§* 4#**	-	↓	-		-			-		-					-	6	- 2	-		-	5, 7 5, 7
Current Leakage	I _L	14	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	- '-	14	1,2,5,6,

^{# =} Pin 1 Clock Pulse a § = Pin 1 Clock Pulse b * = Pin 2 Data Pulse a

^{** =} Pin 6 Data Pulse a

^{† =} Pin 5 Data Pulse a ‡ = Pin 6 Data Pulse b See Figure 4

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS:

- A. Voltage applied to Clock pin is raised to V_{H} . t_r is not critical but should be $< 1.0 \,\mu$ s.
- B. Biases of all other inputs are applied. VCC is applied without interruption throughout the
- C. Apply momentary ground, when applicable.
- D. Clock pulse is allowed to fall to V_L. tf remains within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

	MC878										
TA	٧_	v _H									
+25°C	+460 ± 2.0 mVdc	+0.850 ± 2.0 mVdc									
0°c	+500 ± 2.0 mVdc	+0.900 ± 2.0 mV dc									
+75°C	+400 ± 2.0 mVdc	+0.760 ±2.0 mVdc									
	MC978										
TA	V_	v _H									
+25°C		+0.800 ±2.0 mVdc									
_55°C		+0.985 ±2.0 mVdc									
+125°C	+260 ± 2.0 mVdc	+0.605 ±2.0 mVdc									

FIGURE 2 - SWITCHING TIMES TEST AND WAVEFORMS

C1 = 8.0 pF including jig and probe R1 = 220 ohms ± 1.0%

 $R2 = 1.5 \text{ k ohms} \pm 1.0\%$

D1 = 1N3063 or equivalent

SWITCHING TIMES										
TEST	MAXIMUM (ns@25 ⁰ C)									
tT-Q+	Α	120								
tT-Q-	Α	80								
tT−Q+	В	120								
tT−Q̄−	В	80								
tT−Q+	D	120								
tT-Q-	D	80								
tT-Q+	С	120								
tT-Q-	С	80								

FIGURE 3A - SET UP AND RELEASE TIMES TEST CIRCUIT

FIGURE 3B - INPUT PULSE WIDTHS FOR SET UP AND RELEASE TIMES

FIGURE 4 - CORRELATION OF CLOCK PULSE a & b AND DATA PULSE a & b

of Clock Pulse a must precede the transition of Data Pulse a and Data Pulse b. The negative and positive transitions of Clock Pulse b must follow the negative transition of Data Pulse a.

DUAL J-K FLIP-FLOPS

MC976 · MC876

Available in TO-86 Flat Package, Add F Suffix.

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

CLOCKED INPUT OPERATION®

tn	3	t _{n+1} ③				
S	C	a	Ø			
1	1	Q _n ®	₫n			
1	0	1	0			
0	1	0	1			
0	0	$\bar{\Omega}_{n}$	Q _n ®			

- 1. Direct input (CD) must be low.
- The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1}.
- 3. Q_n is the state of the Q output in the time period t_n .

TEST VOLTAGE VALUES (Volts)

0.500

0.400

0.300

0.450

0.400

@Test

V_{cc} Temperature V_{BOT} V_{off} -55°C 0.970 0.935 1.80 0.650 3.00 MC976 0.805 0.750 1.80 0.450 3.00 (+125°C **ELECTRICAL CHARACTERISTICS** 0.590 0.555 1.80 0.260 3.00 0°C 0.850 0.500 0.880 1.80 3.60 Test procedures shown are for one flip-flop only. MC876 0.830 0.800 1.80 0.460 3.60 The other flip-flop is tested in the same manner.

																+75°C	0.740	0.710	1.80	0.400	3.60	0.350	↓
		Pin		MC	976		Test Lir	mits			M	2876		Test Lir	nits		TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						
		Under	-5	5°C	+2.	5°C	+12	25°C		0	°C	+2	5°C	+7	5°C				TO PIN	S LISTED	BELOW		1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V_{BOT}	V _{off}	V _{cc}	V _{LL}	Gnd
Input Current	I _{in}	1	-	125	-	130	-	110	μAdc	-	150	-	140	-	140	μAde	1	-	3	-	14	-	7
	I _{in}	4	-	125	-	130	-	110		-	150	-	140	-	140		4	-	2	-		-	
	2 I	5	-	250	-	260	-	220		-	300	-	280	-	280		5	-	4,6	-		-	
	I _{in}	6	-	125	-	130	-	110	+	-	150	-	140	-	140	+	6	-	3	-	+	-	•
Output Current	I _{A2}	2*	270	-	280	-	240	-	μAdc	320	-	320	-	300	-	μAdc	-	2	4	1	14	-	7
	A2	3		-		-		-		↓	-	•	-	 	-	+	-	3 1,3	1,6 6	-		-	
Output Voltage	v _{out}	2	-	620	-	300	-	230	mVdc	-	400	-	350	-	300	mVdc	-	1	-	-	14	-	3,7
	out	2**	_		-		-			-		-		-			-	3	-	-		-	7
		2**#	-		-		-			-		-		-			-	4,6	-	-		=	1,7
		2*#	-		-		-			-		-		-			-	4	-	6 4,6		-	
		2*#			-		_			_		_		1 -			_	2	_	4,0		_	7
		3*#	-		-		-	1		-		-		-			-	4,6	-	-		-	1,7
		3**# 3**#	-		-		-			-		-		-	+		-	6	-	4 4,6	+	-	\ \
Saturation Voltage	V _{CE(sat)}	2	-	220	-	220	-	220	mVdc	-	250	-	250	-	250	mVdc	-	-	1	-	14	-	3,7
	02(500)	2** 3*	-		-		-			-		-		-			-	-	-	- 1		-	7 7
Current Leakage	I,	14		100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-,	-	-	14	1,4,5,6,

Ground inputs of flip-flop not under test. Other pins not listed are left open.

^{# =} Clock Pulse to Pin 5, see Figure 1. Ground inputs of flip-flop not under
* = Pin 3 Low | Set by a momentary ground prior to the application of the negative-going clock pulse.
** = Pin 2 Low |

FIGURE 1 - CLOCK PULSE DEFINITION

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

MC908 - MC808

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

The MC908/MC808 is an RTL half-adder. The binary half-adder function can be performed by connecting pin a to pin c and pin b to pin e. The "SUM" is available on pin g while the "CARRY" is available on pin f. The device is also used as a data selector by connecting pin a to pin c and using pins b and e as data inputs. A full adder can be devised by utilizing two MC908/MC808s and one MC911/MC811.

	PIN	CON	NECT	TIONS				
Schematic	а	b	С	d	е	f	g	h
G Package (TO-99)	1	2	3	4	5	6	7	8
F Package (TO-91)	1	2	4	5	6	7	9	10

	@Test		TEST VOLTAGE VALUES (Volts)												
Ter	nperature	Vin	Von	V _{BOT}	V _{off}	V _{cc}	VLL								
	(−55°C	0.970	0.935	1.80	0.650	3.00	0.500								
MC908	{ +25℃	0.805	0.750	1.80	0.450	3.00	0.400								
	(+125°C	0.590	0.555	1.80	0.260	3.00	0.300								
((0°C	0. 880	0.850	1.80	0. 500	3.60	0.450								
MC808 ≺	+25℃	0.830	0.800	1.80	0.460	3.60	0.400								
	(+75℃	0.740	0.710	1.80	0.400	3.60	0.350								

		Pin		MC90	90		Test Li	nits			MC80)8		Test Lin	nits		TEST VOLTAGE						
		Under	-5	5°C	+2	5°C	+12	25°C		0	°C	+2	5°C	+75°C			APPLIED TO PINS LISTED BELOW:						
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}	VLL	Gnd
Input Current	I _{in}	a	-	125	-	130	-	110	μAdc	-	150	-	140	-	140	μAdc	a	-	b	-	h		c, d, e
		b	-	125	-	130	-	110	1	-	150	-	140	- 1	140		b	_	a	5 <u>2</u>	1	_	c, d, e
	0.8 I _{in}	с	-	100	-	104	-	88		-	120	-	112	-	112		c	-	_			_	a, b,d,
		e	-	100	-	104	- '	88	•	-	120	-	112	-	112	+	e	-	-	-	+		a, b, c,
Output Current	I _{A3}	f	350	-	364	-	308	-	μAdc	420	-	430	-	395	_	μAdc	f	c, e	-		h	-	a, b, d
	I _{A4}	g	475	-	494	-	418	-	1 1	570	-	570	-	535	-		g	a	-	c, e	1	_	b, d
		g	475	-	494	-	418	-	*	570	-	570	- '	535	-	+	g	b	-	c,e	+	-	a, d
Output Voltage	v _{out}	g	-	620	-	300	-	230	mVdc	-	400	-	350	-	300	mVdc	-	f	a, b,c, e	-	h	-	d
Saturation Voltage	V _{CE(sat)}	f f g g		220		220	1111	220	mVdc	-	250	-	250	- - -	250	mVdc	- - - f	-	c e - a,b,c,e	e c a, b	h	-	a, b, d a, b, d c, d, e d
Isolation Leakage Current	I _L	h	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	-	h	a,b, c,d,
																	Pulse In	Pulse Out					
Switching Time	t	c-g+ c+g-	-	-	-	80 100	-	-	ns ns	-	-	-	80 100	-	-	ns ns	c c	g g	b, e b, e	-	h h	-	a, d

Input pins not listed are left open.

MC912 · MC812

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

The MC912/MC812 is an RTL Half-Adder. By applying the complement of pins a and b to pins c and e, the "SUM" and "NOT SUM" functions of a binary half-adder are produced on pin g and f respectively.

PIN CONNECTIONS													
Schematic	а	b	С	d	е	f	9	h					
G Package (TO-99)	1	2	3	4	5	6	7	8					
F Package (TO-91)	1	2	4	5	6	7	9	10					

			TES	T VOLT	AGE VAL	UES									
. (@Test		(Volts)												
Ten	nperature	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}	0. 400 0. 300 0. 450 0. 400								
	(−55°C	0,970	0.935	1.80	0.650	3.00	0.500								
MC912	່ +25°C	0.805	0.750	1.80	0.450	3.00	0.400								
1	(+125°C	0.590	0.555	1.80	0.260	3.00	0.300								
	0°C	0.880	0.850	1.80	0.500	3.60	0.450								
MC812	+25°C	0.830	0.800	1.80	0,460	3.60	0.400								
	+75℃	0.740	0.710	1.80	0.400	3.60	0.350								

			Ι	MC912	,		Test Lin	mite		T	MC812)		Test Lin	nien .	+75℃	TEST VOLTAGE						
		Pin Under	-5	5°C	+2		+125°C		I	0		+2	5°C	+75°C			APPLIED TO PINS LISTED BELOW:				<u>':</u>		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	Vcc	٧ _{LL}	Gnd
Input Current	I _{in}	a b c e		125		130	- - -	110	μAdc	-	150	- - -	140		140	μAdc	a b c e		b a e c	-	h	- - -	c, d, e c, d, e a, b, d a, b, d
Output Current	I _{A3} I _{A3} I _{A4}	g g f	350 350 475	-	364 364 494		308 308 418		μAdc	420 420 570	-	430 430 570	- -	395 395 535	1 1 1	μAdc	g g f	a, c b, e		- - -	h	- -	b, d, e a, c, d a,b,c,d,
Output Voltage	v _{out}	f	-	620	-	300	-	230	mVdc	-	400	-	350	-	300	mVdc		g	a,b, c, e	-	h	-	d
Saturation Voltage	V _{CE(sat)}	f g g	-	220	-	220	- - -	220	mVdc	- - -	250	- - -	250	-	250	mVdc	g -	-	a,b, c, e c, e a, b	a, b c, e	h ↓	-	d
Isolation Leakage Current	IL	h	-	100	-	100	-	100	μAdc	-	100	-	100	-	100	μAdc	-	-	-	-	-	h	a,b,c,d,e
	}																Pulse In	Pulse Out					
Switching Time	t	a+f- a-f+	-	-	-	100 80	-	-	ns ns	-	-	-	100 80	-	-	ns ns	a a	f f	e e	-	h h	- -	b, c, d b, c, d

Input pins not listed are left open.

PROPAGATION DELAY versus TEMPERATURE

GATE EXPANDER

MC921 · MC821

Available in TO-99 Metal Can, Add G Suffix. Available in TO-91 Flat Package, Add F Suffix.

This gate expander is designed to increase the fan-in capability of the gates in the mW MRTL line.

 $t_{pd} = 27 \text{ ns typ}$

P_D = 3.0 mW typ (Input High) Negligible (Inputs Low) NUMBER IN PARENTHESIS INDICATES mW MRTL LOADING FACTOR

NOTES ON USE OF THE MC921/MC821

- 1. The input loading factor of the expanded gate is 1.33.
- 2. Pin h of the expander must be connected to VCC.
- 3. The output loading factor of the expanded gate is decreased 0.5 load for every added node.

PIN CONNECTIONS								
Schematic	а	b	С	d	е	f	9	h
G Package (TO-99)	1	2	3	4	-5	6	7	8
F Package (TO-91)	1	2 .	4	5	6	7	9	10

Test procedures shown are for one expander only. Other expanders are tested in the same manner.

			T	est voi	TAGE V	ALUES			1		
(@Test		(Volts) (k ohms)								
	perature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _{RH} *	V _{RL} *			
	(−55°C	0.970	0.935	1.80	0.650	3.00	4.27	2.8			
MC921	+25°C	0.805	0.750	1.80	0.450	3.00	4.3	2.7			
	(+125°C	0.590	0. 555	1.80	0.260	3.00	5.0	3.0			
	O°C	0.880	0.850	1.80	0.500	3.60	4.3	2.7			
MC821	+25°C	0.830	0.800	1.80	0.460	3.60	4.3	2.7			
	(+75°C	0.740	0.710	1.80	0.400	3.60	4.7	2.8	1		

Other expanders	are teste	u III tile	Sairie	111011111	G1.											. , , , ,	0. 140	1 0. 110	2.00	01 100				+
		D.			MC921	Test Li	mits					MC821	Test Li	imits			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:							
		Pin	-5	5°C	+2	5°C	+12	5°C		0	°C	+2	5°C	+7	75°C			APPLIE	TO PIN	2 FIZIFF				
		Under					Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	VBOT	Voff	V _{cc}	V _{RH} *	V _{RL} *	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	MILL	IVIdX	UIII	771111		741111		74411							— .			
Input Current	I _{in}	a b	-	125 125	-	130 130	-	110 110	μAdc μAdc	-	150 150	-	140 140	-	140 140	μAdc μAdc	a b	-	a	-	h h	g	-	d
Output Leakage Current	ICEX	g	-	5.0	-	5.0	-	40	μAdc	-	20	-	20	-	20	μAdc	g	-	-	a, b	h	-	-	d
Output Voltage	V _{CE(sat)}	g g	-	620 620	-	300 300	-	230 230	mVdc mVdc		400 400	-	350 350	-	300 300	mVdc mVdc	-	a b	-	-	h h	-	g g	b, d a, d
Saturation Voltage	V _{CE(sat)}	g g	-	220 220	-	220 220	-	220 220	mVdc mVdc	-	250 250	-	250 250	-	250 250	mVdc mVdc	a b	-	-	-	h h		g	b, d a, d
Isolation Leakage Current	I_{L}	g h	-	100 100	-	100 100	-	100 100	μAdc μAdc	-	100 100		100 100	-	100 100	μAdc μAdc	-	-	-	=	g h	-		a, b, d a, b, d

Ground input pins of expander not under test.

Other pins not listed are left open.
*Resistor value to V_{CC}.

QUAD 2-INPUT EXPANDERS

MC9921 · MC9821

Available in TO-86 Flat Package, Add F Suffix.

This element consists of four 2-input expanders in a single package to increase the input capability of mW MRTL gates.

TEST VOLTAGE VALUES (Volts) $(\mathbf{k}\Omega)$ @Test V_{BOT} Temperature Voff Vcc -55°C 0.970 0.935 1.80 0.650 3.00 3.6 MC9921 +25°C 0.805 0.750 1.80 0.450 3.00 3.6 (+125°C 0.590 0.555 1.80 0.260 3.00 4.0 0°C 0.880 0.850 1.80 0.500 3.60 3.6 MC9821 +25°C 0.830 0.800 1.80 0.460 3.60 3.6

ELECTRICAL CHARACTERISTICS

Test procedures shown are for one expander only. Other expanders are tested in the same manner.

	Pin MC9921 Test Limits MC9821 Test Limits Under -55°C +25°C +125°C 0°C +25°C +75°C					TEST VOLTAGE APPLIED TO PINS LISTED BELOW:																	
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd
Input Current	I _{in}	1 2	~	125 125	-	130 130	-	110 110	μAdc μAdc	-	150 150	2	140 140	-	140 140	μAdc μAdc	1 2	-	2 1	- -	14 14	3	7 7
Output Leakage Current	ICEX	3	-	25	_	25	-	30	μAde	-	40	-	40	-	50	μAdc	3		-	1,2	14	-	7
Output Voltage	v _{out}	3 3	- ,	620 620	-	300 300	-	230 230	mVdc mVdc	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	1 2	-	-	14 14	3 3	2,7 1,7
Saturation Voltage	V _{CE(sat)}	3 3	- - -	220 220	-	220 220	-	220 220	mVdc mVdc	-	250 250	-	250 250	-	250 250	mVdc mVdc	1 2		-	-,	14 14	3	2,7 1,7

Ground input pins of expanders not under test.

Other pins not listed are left open.

^{*}Resistor value to V_{CC}

MILLIWATT AND MEDIUM-POWER

PLASTIC MRTL

INTEGRATED CIRCUITS

This series of MRTL logic circuits is packaged in the molded plastic package to provide exceptional economy. This group contains devices from both the medium-power and low-power groups; the medium-power devices have loading factors normalized for ease of mixing the two power levels in a system.

	INDEX		
			Page No.
General Information			6-158
Summary of Devices Available in	n mW MRTL (low power)		6-159
Summary of Devices Available in			6-162
DEVICE SPECIFICATIONS GATES		POWER	
MC718P, MC818P	Dual 3-Input Gates	mW MRTL	6-166
MC719P, MC819P	Dual 4-Input Gates	mW MRTL	6-168
MC793P, MC893P	Triple 3-Input Gates	mW MRTL	6-170
MC717P, MC817P	Quad 2-Input Gates	mW MRTL	6-172
MC715P, MC815P	Dual 3-Input Gates	MRTL	6-174
MC725P, MC825P	Dual 4-Input Gates	MRTL	6-176
MC792P, MC892P	Triple 3-Input Gates	MRTL	6-178
MC724P, MC824P	Quad 2-Input Gates	MRTL	6-180
MC771P, MC871P	Quad Exclusive OR Gates	MRTL	6-182
BUFFERS			
MC798P, MC898P	Dual Buffers	mW MRTL	6-184
MC799P, MC899P	Dual Buffers, Inverting	MRTL	6-186
MC788P, MC888P	Dual Buffers, Non-Inverting	MRTL	6-188
FLIP-FLOPS			
MC776P, MC876P	Dual J-K Flip-Flops	mW MRTL	6-190
MC778P, MC878P	Dual Type D Flip-Flops	mW MRTL	6-193
MC722P, MC822P	J-K Flip-Flops	mW MRTL	6-196
MC791P, MC891P	Dual J-K Flip-Flops	MRTL	6-199
MC723P, MC816P	J-K Flip-Flops	MRTL	6-202
MC726P, MC826P	J-K Flip-Flops	MRTL	6-205
MC790P, MC890P	Dual J-K Flip-Flops	MRTL	6-208
INVERTERS			
MC789P, MC889P	Hex Inverters	MRTL	6-211
EXPANDERS			
MC786P, MC886P	Dual 4-Input Expanders	MRTL	6-213
MC785P, MC885P	Quad 2-Input Expanders	MRTL	6-215
MC9721P, MC9821P	Quad 2-Input Expanders	mW MRTL	6-217
MC9719P, MC9819P	Hex Expanders	MRTL	6-219
MULTI-FUNCTION DEVICES			
MC779P, MC879P	1 J-K Flip-Flop, 1 Expander, 2 Buffers	MRTL	6-221
MC787P, MC887P	1 J-K Flip-Flop, 1 Inverter, 2 Buffers	MRTL	6-224
ADDERS and SUBTRACTORS			
MC775P, MC875P	Dual Half-Adders	MRTL	6-227
MC796P, MC896P	Dual Full Adders	MRTL	6-229
MC797P, MC897P	Dual Full Subtractors	MRTL	6-232
SHIFT REGISTERS			
MC784P, MC884P	Dual Half-Shift Registers	MRTL	6-235
MC783P, MC883P	Dual Half-Shift Registers With Inverter	MRTL	6-237

NUMERICAL INDEX

(Functions and Characteristics)

 $V_{CC} = 3.6 \text{ V} \pm 10\%, T_A = 25^{\circ}\text{C}, Case 93$

	Ту	De .	Loadin	tput g Factor output	Propagation Delay	Total Power	Page No.
Function	+15 to +55°C	0 to +75 ⁰ C	MC700 Series	MC800 Series	^t pd ns typ	Dissipation mW typ/pkg ①	
MRTL					 		
Dual 3-Input NOR Gate	MC715P	MC815P	16	5	12	55/15	6-174
J-K Flip-Flop		MC816P	-	3	35	91/79 (2)	6-202
J-K Flip-Flop	MC723P		10	_	35	91/79 (2)	6-20
Quad 2-Input NOR Gate	MC724P	MC824P	16	5	12	100/30	6-18
Dual 4-Input NOR Gate	MC725P	MC825P	16	5	12	60/15	6-176
J-K Flip-Flop	MC726P	MC826P	16	5	35	100/86 (2)	6-20
Quad Exclusive OR Gate	MC771P	MC871P	16	5	12	87	6-18
Dual Half Adder	MC775P	MC875P	16	5	20	120	6-22
1 J-K Flip-Flop, 1 Expander, 2 Buffers	MC779P	MC879P		-	_	166/169 (3)	6-22
Dual Half-Shift Register	MC783P	MC883P	13	4	22	140	6-23
Dual Half-Shift Register w/Inverter	MC784P	MC884P	13	4	22	100	6-23
Quad 2-Input Expander	MC785P	MC885P	-	T -	12	20/-	6-21
Dual 4-Input Expander	MC786P	MC886P	-	-	12	20/-	6-21:
1 J-K Flip-Flop, 1 Inverter, 2 Buffers	MC787P	MC887P	-		_	163/177 (3)	6-22
Dual 3-Input Buffer, non inverting	MC788P	MC888P	80	25	24	145/56	6-18
Hex Inverter	MC789P	MC889P	16	5	12	130/15	6-21
Dual J-K Flip-Flop	MC790P	MC890P	10	3	35	182/158 (2)	6-20
Dual J-K Flip-Flop	MC791P	MC891P	16	5	40	190/160 (2)	6-19
Triple 3-Input NOR Gate	MC792P	MC892P	16	5	12	82/24	6-17
Dual Full Adder	MC796P	MC896P	13	4	60	84	6-22
Dual Full Subtractor	MC797P	MC897P	13	4	60	84	6-23
Dual Buffer	MC799P	MC899P	80	- 25	20	50/100	6-18
Hex Expander	MC9719P	MC9819P	-	_	12	13/-	6-21
mW MRTL			All S	Series			
Quad 2-Input NOR Gate	MC717P	MC817P		4	27	20/5.0	6-17
Dual 3-Input NOR Gate	MC718P	MC818P	1	4	27	12/2.5	6-16
Dual 4-Input NOR Gate	MC719P	MC819P		4	27	13/2.5	6-16
J-K Flip-Flop	MC722P	MC822P		4	70	24/20 ②	6-19
Dual J-K Flip-Flop	MC776P	MC876P	+	2	50	41/29 (2)	6-19
Dual Type D Flip-Flop	MC778P	MC878P	1	3	60	48/35 (4)	6-19
Triple 3-Input NOR Gate	MC793P	MC893P		4	27	18/3.5	6-17
Dual 2-Input Buffer	MC798P	MC898P	1 :	30	57	14/46	6-18
Quad 2-Input Expander	MC9721P	MC9821P			27	20/-	6-21

Inputs High/Inputs Low unless otherwise noted.
 Only Clock Input High/Inputs Low
 Only Clock Input High on flip-flop, other element Inputs High/Inputs Low
 Direct Set and Direct Clear Low, All Other Inputs High/All Inputs Low

GENERAL INFORMATION

PLASTIC MRTL MC700P/800P series

*TRADEMARK OF MOTOROLA INC.

Rating	Symbol	Value	Unit
Input Voltage	-	±4.0	Vdc
Power Supply Voltage (Pulsed ≤ 1.0 s)	<u></u> -	+12	Vdc
Operating Temperature Range MC700P Series MC800P Series	T _A	+15 to +55 0 to +75	*C
Storage Temperature Range	Tstg	-55 to +125	°C

TEST CONDITION TOLERANCES

 $V_{\text{BOT}}=\pm 10$ mV $V_{\text{CC}}=\pm 10$ mV $V_{\text{in}}=\pm 2$ mV $V_{\text{R}}=\pm 1\%$ $V_{\text{on}}=\pm 2$ mV $V_{\text{off}}=\pm 2$ mV $V_{\text{LL}}=\pm 2$ mV

EF			

 I_{A_2} , I_{A_3} , Minimum available output current from a device with an output loading factor of 2, 3, 4, 5, 10, 13, and 16 respectively. Output voltage not to fall below the value of $V_{\rm in}$.

 I_{AB} Minimum available output current from a buffer. Output voltage not to fall below the value of $V_{\rm on}$.

I_{AM} The maximum available current from the output of a Dual Gate.

 I_{CEX} Collector current of a circuit when V_{in} is applied to the output pin and V_{off} is applied to the input pins.

In Maximum input current drawn by one input of a gate with V_{in} applied. All other gate inputs are returned to V_{eor}

 $\mbox{\bf 1.8 I}_{\mbox{\tiny in}} \quad \mbox{ Current drawn from the $V_{\mbox{\tiny in}}$ supply by the Toggle pin of the Flip-Flop. }$

2 I_{in} Maximum input current drawn by one input of a device with 2 bases internally tied together.

IL Isolation leakage current.

lo Output load current.

V_{iot} A high value voltage applied to an input of a device to insure saturation of the driven transistor.

Vcc Supply voltage.

 $V_{CE(set)}$ Maximum saturation voltage with V_{807} applied to the input.

Minimum high level voltage applied to the input of a device.

V_{IL} A supply voltage low enough to allow flow of leakage currents only.

V_{off} The maximum voltage which may be applied to an input terminal without turning the transistor on.

V_{on} The minimum voltage which may be applied to an input terminal that will turn the transistor on.

V₀ut The maximum output voltage with V₀n applied to the input.

Value of external resistor connected to V_{CC} for test purposes.

 $V_{\text{RH}} = \text{highest node resistor value} \ V_{\text{RL}} = \text{lowest node resistor value}$

- The MC785P/885P, MC786P/886P and MC9719P/9819P MRTL expanders can be used to expand medium-power MRTL output nodes only. The MC9721P/9821P expander can be used to expand mW MRTL output nodes only.
- mW MRTL and MC800 MRTL Series: When using the MC885P, MC886P, MC9819P or MC9721/9821 subtract 0.5 from the output loading factor of the expanded gate for each expander node that is connected; also increase the input loading factor of the expanded gate by a factor of 1.33.
- MC700 MRTL Series: When using the MC785P, MC786P or MC9719P subtract 2.0 from the
 output loading factor of the medium-power MRTL expanded gate for each expander node
 that is connected; also increase the input loading factor of the medium-power expanded
 gate by a factor of 3.75.
- The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output.
- When mixing MRTL and mWMRTL in the same system, the loading factors must be normalized in accordance with the input current of the units being driven.
- · All unused inputs should be returned to ground.

LOADING DIAGRAMS

PLASTIC mW MRTL MC700P/800P series

LOW POWER mW MRTL DEVICES

The logic diagrams shown describe the MC700P/MC800P Series of low-power resistor-transistor logic integrated circuits and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time $(t_{pd}),$ typical package power dissipation $(P_D),$ pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (if on the circuit input terminal) or load driving ability — fan-out — (if on the circuit output terminal).

Using the indicated loading factors, these low-power mW

MRTL circuits are compatible with the medium-power MRTL circuits shown on page 6–162. The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. The loading data is valid over the temperature range of +15 to +55°C for the MC700P Series, and 0 to +75°C for the MC800P Series, with $V_{\rm CC}=3.6~{\rm V}\pm10\%$.

All elements in the MC700P/MC800P Series operate with V_{CC} applied to pin 11 and ground connected to pin 4.

FLIP-FLOPS

MC722P • MC822P

f_{Tog} = 1 MHz

PD = 24 mW (Only Clock Input High) 20 mW (Inputs Low)

J-K Flip-Flop

DIRECT INPUT OPERATION (1) SD c_D Q ā 0 0 2 2 1 0 o 1 0 1 0 1 0

OPERATION (3)							
tn	4	t _{n+1} @					
S	С	Q	ā				
1.	1	o₀®	ā,				
1	0	1	0				
0	1	0	1				
0	0	\overline{a}_n	a _n ©				

CLOCKED INPUT

- Clock (T) to remain unchanged.
 The output state will not change when the input state goes from $S_D = \overline{C}_D$ to $S_D = C_D = 0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to S_D = C_D = 0.
- Direct inputs (CD and SD) must be low.
- The time period prior to the negative transition of the clock pulse is denoted $t_{\rm n}$ and the time period subsequent to this transition is denoted
- t_{n+1} . So Ω_n is the state of the Q output in the time period t_n . Clock pulse fall time must be < 100 ns.

MC776P • MC876P **Dual J-K Flip-Flop**

f_{Tog} = 3 MHz P_D = 41 mW (Only Clock Input High) 29 mW (Inputs Low)

CLOCKED INPUT

t	n	t _{n+1}						
S	С	Q	₫					
1	1	Q _n	ā _n					
. 1	0	1	0					
0	1	0	1					
0	+0	\overline{a}_n	α_{n}					

- Direct input (C_D) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1}.

 3. Q_n is the state of the Q output in the time
- period t_n.

 4. Clock pulse fall time must be < 100 ns.

MC778P • MC878P Dual Type D Flip-Flop

f_{Tog} = 1 MHz

P_D = 48 mW (Direct Set (S_D) and Direct Clear (CD) Low; all other Inputs High) 35 mW (All Inputs Low)

DIRECT INPUT

(1) 9-

OPERATION ①						
SD	c ^D o ₫					
0	0	2	② o			
1	0	1	0			
0	1	0	1			
1	1	0	0			

OPERATION 3							
t _n @ t _{n+1} @							
S	a	ā					
1 1 0							
0	0	1					

CLOCKED INPUT

- 1. Clock (T input) must be high.
- 2. The output state will not change when the input state goes from $S_D=\overline{C}_D$ to $S_D=C_D=0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$. 3. Direct inputs (C_D and S_D) must be low. 4. The time period prior to the negative transition
- of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted tn+1.

PLASTIC mW MRTL MC700P/800P series

LOADING DIAGRAMS

MEDIUM-POWER MRTL DEVICES

The logic diagrams shown describe the MC700P/MC800P Series of medium-power resistor-transistor logic integrated circuits and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time (tpd), typical package power dissipation (PD), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis or brackets indicates the input loading factor (if on the circuit input terminal) or load driving ability - fan-out - (if on the circuit output terminal). The bracketed number is the loading factor when working with other medium-power devices; e.g., [1] is the MRTL load factor defined as 1 times the MRTL basic gate input current (600 μAdc @ +25°C). The number in parenthesis is the loading factor when working with mW

MRTL devices; e.g., (3) is the MRTL load factor defined as 3 times the mW MRTL basic gate input current (140 μ Adc @ +25°C.

Using the parenthetic loading factors, these medium-power MRTL circuits are compatible with the low-power mW MRTL circuits shown on page 6-159. The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. The loading data is valid over the temperature range of +15 to +55°C for the MC700P Series, and 0 to +75°C for the MC800P Series, with $V_{\mbox{CC}}=3.6\mbox{ V} \pm 10\%.$

All elements in the MC700P/800P Series operate with V_{CC} applied to pin 11 and ground connected to pin 4.

PLASTIC mW MRTL MC700P/800P series

MC718P · MC818P

Two 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

			TEST V	DLTAGE V	ALUES	
	@ Test			(Volts)		
	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	Vcc
	(0°C	0.880	0.850	1.80	0.500	3.60
MC818P	} +25°C	0.830	0.800	1.80	0.460	3.60
	+75°C	0.740	0.710	1.80	0.400	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC718P	\ +25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

:				MC8	18P	Te	st Limit	s			MC7	18P	To	est Limi	s				ST VOLTA			
		Pin Under	0°	,C	+25	°C	+75	°C		+1	j°C	+25	i°C	+55	°C		APF	LIED TO	PINS LIS	TED BELO	W:	1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	2 12 13		150 		140	- - -	140	μAdc	- - -	150	- - -	150 	-	150	μAdc	2 12 13	- - -	12, 13 $2, 13$ $2, 12$	- - -	11 ↓	4
Output Current	I _{A4}	3	570	-	570	-	535	-	μAdc	570	-	570	-	570	-	μAdc	3	-	-	2,12,13	11	4
Output Voltage	v _{out}	3 3 3	-	400	-	350	-	300	mVdc	- - -	400	-	300	-	320	mVdc	-	12 13 2	-	- - -	11 ↓	2,4,13 2,4,13 4,12,13
Saturation Voltage	V _{CE(sat)}	3 3 3	-	250	- - -	250	-	250	mVdc	- - -	220	-	230	-	320	mVdc	- -	-	12 13 2		11 ↓	2,4,13 2,4,12 4,12,13
																	Pulse In	Pulse Out				
Switching Time	$t_{on} + t_{off}$	3, 13	-	-	-	90	-	-	ns	-	-	-	90	-	-	ns	13	3	-	-	11	2,4,12

Ground unused input pins. Other pins not listed are left open.

DUAL 4-INPUT GATES

PLASTIC mW MRTL MC700P/800P series

MC719P · MC819P

Two 4-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

			TEST V	OLTAGE \	VALUES	
	@ Test			(Volts)		
	Temperature	V _{in}	Von	¥ _{B0T}	V _{off}	Vcc
	(0°C	0.880	0.850	1.80	0.500	3.60
MC819P	₹ +25°C	0.830	0.800	1.80	0.460	3.60
	(+75°C	0.740	0.710	1.80	0.400	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC719P	} +25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

		B:		MC8	19P	Te	st Limit	:S			MC7	19P	To	est Limit	s				ST VOLTA			
		Pin Under	0°	C	+25	°C	. +75	°C		+15	5°C	+2	i°C	+55	°C		APF	LIED TO	PINS LIS	STED BELO	W:	↓
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	¥ _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	2 3 13 14		150		140	- - -	140	μAdc	-	150		150	1,111	150	μAdc	2 3 13 14		3,13,14 2,13,14 2,3,14 2,3,13	-	11	4
Output Current	I _{A4}	12	570		570	-	535	-	μ Adc	570	-	570	1	570	-	μAdc	-	12	-	2,3,13, 14	11	4
Output Voltage	V _{out}	12 12 12 12	-	400	1 1 1 1	350	-	300	mVdc	- - -	400		300	-	320	mVdc	-	13 14 2 3	- - -	-	11	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Saturation Voltage	V _{CE(sat)}	12 12 12 12		250	-	250	1 1 1 1	250	mVdc	- - - -	220	- - - -	230	-	320	mVdc	-	- - -	13 14 2 3		11	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
																	Pulse In	Pulse Out				-
Switching Time	t _{on} + t _{off}	2, 12	-	-	-	90	-	-	ns	-	-	-	90	-	-	ns	2	12	-	-	11	3,4,13,14

Ground inputs of gate not under test. Other pins not listed are left open.

TRIPLE 3-INPUT GATES

PLASTIC mW MRTL MC700P/800P series

MC793P · MC893P

Three 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESIS INDICATES MC793P, MC893P LOADING FACTOR

 $\begin{array}{ll} t_{pd} = & 27 \text{ ns} \\ Po = & 18 \text{ mW (Input High)} \\ & 3.5 \text{ mW (Inputs Low)} \end{array}$

Test procedures are shown for one gate only. The other gates are tested in the same manner.

			TEST V	OLTAGE \	ALUES	
	@ Test			(Volts)		
1	emperature	V _{in}	V _{on}	V _{BOT}	Voff	Vcc
(0°C	0.880	0.850	1.80	0.500	3.60
MC893P <	+25°C	0.830	0.800	1.80	0.460	3.60
(+75°C	0.740	0.710	1.80	0.400	3.60
(+15°C	0.865	0.865	1.80	0.475	3.60
MC793P	+25°C	0.850	0.850	1.80	0.460	3.60
(+55°C	0.800	0.800	1.80	0.430	3.60

		Di.		MC8	93P	Te	st Limit	s			MC7	93P	T	est Limi	ts				T VOLTA			
		Pin Under	0°	,C	+25	o C	+75	°C		+15	5°C	+2	5°C	+55	°C		APF	LIED TO	PINS LIS	TED BELO	W:	_
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Y _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1 2 14		150 ↓		140	111	140	μAdc	-	150	-	150	-	150	μAdc	1 2 14	1 1 1	2,14 1,14 1,2	- - -	11	4
Output Current	I _{A4}	3	570	-	570	- "	535	-	μ Adc	570	-	570	-	570	-	μ A dc	-	3	-	1,2,14	11	4
Output Voltage	v _{out}	3 3 3	- - -	400		350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	14 1 2		-	11 	1,2,4 2,4,14 1,4,14
Saturation Voltage	V _{CE(sat)}	3 3 3	- - -	250		250		250	mVdc	- - -	220	- - -	230	- -	320	mVdc	- - -		14 1 2	-	11	1,2,4 2,4,14 1,4,14
									i.								Pulse In	Pulse Out				
Switching Time	t _{on} + t _{off}	1,3	-	-	-	90	-	-	ns	-	-	-	90	-	-	ns	1	3	-	-	11	2,4,14

Ground input pins of gates not under test. Other pins not listed are left open.

PLASTIC mW MRTL MC700P/800P series

MC717P · MC817P

Four 2-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESIS
INDICATES MC717P, MC817P LOADING FACTOR

 $\begin{array}{ll} t_{pd} = & 27 \text{ ns} \\ P_D = & 20 \text{ mW (Input High)} \\ 5.0 \text{ mW (Inputs Low)} \end{array}$

Test procedures are shown for one gate only. The other gates are tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test V_{BOT} V_{off} V_{cc} Temperature 0.880 0.850 1.80 0.500 3.60 +25°C MC817P 0.830 0.800 1.80 0.460 3.60 +75°C 0.740 0.710 1.80 0.400 3.60 0.865 0.865 1.80 0.475 3.60 +15°C MC717P +25°C 0.850 0.850 1.80 0.460 3.60 +55°C 0.800 0.800 1.80 0.430 3.60

				MC8	17P	Te	st Limit	S			MC7	17P	Ţ	est Limi	ts				T VOLTA			ľ
		Pin Under	0,	,C	+25	°C	+75	°C		+1	5°C	+2	5°C	+55	°C		APF	LIED TO	PINS LIS	TED BELO)W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1 2	-	150 150	-	140 140	-	140 140	μAdc μAdc	-	150 150	-	150 150	-	150 150	μAdc μAdc	1 2	- ·	2 1	-	11 11	4 4
Output Current	I _{A4}	3	570	-	570	-	535	-	μ Adc	570	-	570	-	570	-	μAdc	-	3	-	1,2	11	4
Output Voltage	v _{out}	3	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1 2	-	- -	11 11	2, 4 1, 4
Saturation Voltage	V _{CE(sat)}	3	-	250 250	-	250 250	-	250 250	mVdc mVdc	-	220 220	-	230 230	-	320 320	mVdc mVdc	-	-	1 2	-	11 11	2,4 1,4
																	Pulse In	Pulse Out				
Switching Time	t _{on} + t _{off}	1,3	-	-	-	90	-		ns	-	-	-	90	-	-	ns	1	3	-	-	11	2,4

Ground input pins of gates not under test. Other pins not listed are left open.

DUAL 3-INPUT GATES

PLASTIC MRTL MC700P/800P series

MC715P · MC815P

Two 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

			TEST V	OLTAGE \	ALUES	
	@ Test			(Volts)		
•	Temperature	V _{in}	V _{on}	V _{BOT}	Voff	V _{CC}
	0°C	0.960	0.930	1.80	0.570	3.60
MC815P	+25°C	0.910	0.880	1.80	0.500	3.60
	+75°C	0.820	0.790	1.80	0.450	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC715P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

				MC8	15P	To	est Limit	ts			MC7	15P	T	est Limi	ts			TES	ST VOLTA	GE		
		Pin Under	0,	,C	+25	i°C	+75	°C		+15	°C	+2	5°C	+55	°C		API	LIED TO	PINS LIS	TED BELO	W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	Voff	V _{cc}	Gnd
Input Current	I _{in}	2 12 13	- - -	600	- - -	600	- - -	570	μAdc ↓	-	500	- - -	500	-	470	μ A dc	2 12 13	- - -	12, 13 2, 13 2, 12	-	11	4
Output Current	I _{A5} *	3	3.00	-	3.00	-	2.85	-	m Adc	2.65	-	2.65	-	2.50	-	mAdc	-	3	-	2,12,13	11	4
Output Voltage	V _{out}	3 3 3		500	- - -	400	- - -	400	mVdc	- - -	400	-	300	- - -	320	mVdc	-	12 13 2	- - -	-	11 ↓	2,4,13 2,4,12 4,12,13
Saturation Voltage	V _{CE(sat)}	3 3 3	- - -	400	- - -	300	- - -	350	mVdc	- - -	300	- - -	290	- - -	320	mVdc ↓	- - -	- - -	12 13 2	-	11	2,4,13 2,4,12 4,12,13
Switching Time	t _{on} + t _{off}	3, 13	_	_	-	48	_	_	ns	_	_	_	48	_	_	ns	Pulse In 13	Pulse Out 3	_	-	11	2,4,12

Ground input pins of gate not under test. Other pins not listed are left open. *Symbol is $I_{A\,16}$ for MC715P.

PLASTIC MRTL MC700P/800P series

MC725P · MC825P

Two 4-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test $\mathbf{V}_{\mathrm{off}}$ Temperature V_{BOT} V_{CC} 0.960 0.930 0.570 3.60 1.80 0.500 3.60 MC825P +25°C 0.910 0.880 1.80 +75°C 0.820 0.790 1.80 0.450 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 MC725P +25°C 0.850 1.80 0.460 3.60 0.850 +55°C 0.800 0.800 1.80 0.430 3.60

		D .		MC8	25P	Te	st Limit	s			MC7	25P	Ţ	est Limit	ts				ST VOLTA			
		Pin Under	0.	C	+25	°C	+75	°C		+1	5°C	+25	i°C	+55	°C		APF	LIED TO	PINS LIS	TED BELO	W:	1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	2 3 13 14	- - -	600	1 1 1 1	600	1.1.1.1	570	μAdc	-	500	-	500		470	μAdc	2 3 13 14		3,13,14 2,13,14 2,3,14 2,3,13	-	11	4
Output Current	I _{A5} *	12	3.00	-	3.00	-	2.85	-	m Adc	2.65	-	2.65	-	2.50	-	mAdc	-	12	- "	2,3,13,14	11	4
Output Voltage	V _{out}	12 12 12 12		500	- - -	400	- - -	400	mVdc	- - -	400	-	300	-	320	mVdc		13 14 2 3		- - -		2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Saturation Voltage	V _{CE(sat)}	12 12 12 12	-	400	- - -	300	-	350	mVdc	- ·	300		290	-	320	mVdc	- - -	- - -	13 14 2 3	- - -	11	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Switching Time	t _{on} + t _{off}	2, 12	-	_	-	48	-	-	ns	-	-	-	48	-	-	ns	Pulse In 2	Pulse Out 12	_	-	11	3,4,13,14

Ground input pins of gate not under test. Other pins not listed are left open. *Symbol is $I_{\mbox{A16}}$ for MC725P.

PLASTIC MRTL MC700P/800P series

MC792P · MC892P

Three 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESIS INDICATES MC792P LOADING FACTOR.

NUMBER IN BRACKETS INDICATES MC892P LOADING FACTOR.

$$\begin{array}{ll} t_{pd} = & 12 \text{ ns} \\ P_D = & 82 \text{ mW (Input High)} \\ & 24 \text{ mW (Inputs Low)} \end{array}$$

Test procedures are shown for one gate only. The other gates are tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Vcc V_{BOT} V_{off} Temperature V_{on} 1.80 0.570 3.60 0°C 0.960 0.930 1.80 0.500 3.60 MC892P +25°C 0.910 0.880 3.60 0.820 0.790 1.80 0.450 +75°C 1.80 0.475 0.865 3.60 +15°C 0.865 MC792P +25°C 0.850 0.850 1.80 0.460 3.60 0.800 0.800 1.80 0.430 3.60 +55°C

		MC892P Test Limits MC792P Test Limits TEST VOLTAGE Pin Occo 1750 1750 1750 1750 APPLIED TO PINS LISTED BELOW:																				
		Pin Under	0°	C	+25	°C	+75	°C		+15	5°C	+25	i°C	+55	°C		API	LIED TO	PINS LIS			ĺ
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1 2 14	1 1 1	600	-	600	-	570 	μAdc	- - -	500	-	500		470	μAdc ↓	1 2 14		2,14 $1,14$ $1,2$	- - -	11	4
Output Current	I _{A5} *	3	3.00	-	3.00	-	2.85	-	mAdc	2.65	-	2.65	-	2.50	-	m Adc	-	3	-	1, 2, 14	11	4
Output Voltage	v _{out}	3 3 3	-	500		400	-	400	mVdc	- - -	400	-	300		320	mVdc	-	14 1 2	-	-	11	1,2,4 2,4,14 1,4,14
Saturation Voltage	V _{CE(sat)}	3 3 3	- - -	400		300	-	350	mVdc	- - -	300	-	290	- - -	320	mVdc ↓	1 1 1		14 1 2	-	11	1,2,4 2,4,14 1,4,14
																	Pulse In	Pulse Out				
Switching Time	t _{on} + t _{off}	1,3	-	-	-	48	-	-	ns	-	-	-	48	-	-	ns	1	3	-	-	11	2,4,14

Ground input pins of gates not under test. Other pins not listed are left open. $*I_{A16}$ is symbol for MC792P.

PLASTIC MRTL MC700P/800P series

MC724P · MC824P

Four 2-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESIS INDICATES MC724P LOADING FACTOR NUMBER IN BRACKETS INDICATES MC824P LOADING FACTOR

$$\begin{array}{l} t_{pd} = & 12 \text{ ns} \\ P_D = & 100 \text{ mW (Input High)} \\ & 30 \text{ mW (Inputs Low)} \end{array}$$

Test procedures are shown for one gate only. The other gates are tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test V_{BOT} ¥_{off} V_{CC} Temperature 0.930 1.80 0.570 3.60 0.960 MC824P +25°C 0.880 1.80 0.500 3.60 0.910 +75°C 0.790 1.80 0.820 0.450 3.60 +15°C 0.865 1.80 0.475 3.60 0.865 +25°C MC724P 0.850 0.850 1.80 0.460 3.60 0.800 0.800 1.80 0.430 3.60

				MC8	24P	Te	st Limit	s			MC7	24P	Т	est Limi	ts				T VOLTA			
		Pin Under	0°	C	+25	i°C	+75	°C		+15	°C	+25	i°C	+55	°C		API	LIED TO	PINS LIS	TED BELO	W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1 2	-	600 600	-	600 600	- -	570 570	μ A dc μ A dc	1 1	500 500	-	500 500	-	470 4 7 0	μ A dc μ A dc	1 2	-	2 1	-	11 11	4
Output Current	I _{A5} *	3	3.0	-	3.0	- 1	2.85	-	m A dc	2.65	-	2.65	-	2.50	-	mAdc	-	3	-	1,2	11	4
Output Voltage	v _{out}	3	1 1	500 500	-	400 400	-	400 400	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1 2		-	11 11	2, 4 1, 4
Saturation Voltage	V _{CE(sat)}	3	1 1	400 400	-	300 300	-	350 350	mVdc mVdc	-	300 300	-	290 290	-	320 320	mVdc mVdc	- -	-	1 2	-	11 11	2, 4 1, 4
/																	Pulse In	Pulse Out				
Switching Time	t _{on} + t _{off}	1,3	-	-	-	48	-	-	ns	-	- '	-	48	-	-	ns	1	3	-	-	11	2,4

Ground input pins of gates not under test. Other pins not listed are left open. *IA16 is symbol for MC724P.

QUAD EXCLUSIVE OR GATES

PLASTIC MRTL MC700P/800P series

MC771P · MC871P

Four gate arrays designed to provide the Exclusive OR function. The output is high only if one input is high and all other inputs are low.

ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only. The other gates are tested in the same manner.

			TEST V	OLTAGE	VALUES	
	@ Test			(Volts)		
T	emperature	Vin	Von	V _{BOT}	Voff	Vcc
(0°C	0.960	0.930	1.80	0.570	3.60
MC871P {	+25°C	0.910	0.880	1.80	0.500	3.60
(+75°C	0.820	0.790	1.80	0.450	3.60
(+15°C	0.865	0.865	1.80	0.475	3.60
MC771P {	+25°C	0.850	0.850	1.80	0.460	3.60
- (+55°C	0.800	0.800	1.80	0.430	3.60

					MC87	1 P Test I	Limits					MC7	71P Test	t Limits				TE	ST VOLTA	IGE		
	l	Pin Under	0	°C	+25	5°C	+75	°C		+1	5°C	+2	5°C	+55	°C		AP	PLIED TO	PINS LIS	TED BEL	OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	2 I _{in}	1 2	-	1.2	-	1.2 1.2	-	1.1 1.1	mAdc mAdc	-	1.00 1.00	-	1.00 1.00	-	0.94 0.94	mAdc mAdc	1 2	:	-	2 1	11 11	4 4
Output Current	I _{A5} *	3 3	3.00 3.00	-	3.00 3.00	-	2.85 3.00	-	mAdc mAdc	2.65 2.65	-	2.65 2.65	-	2.50 2.50	-	mAdc mAdc	-	1,3 2,3	:	2	11 11	4 4
Output Voltage	v _{out}	3 3	-	500 500	-	400 400	-	400 400	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1,2	:	1,2	11 11	4 4
Switching Time																	Pulse In		Pulse Out			
	t	1+3- 1-3+ 2+3+ 2-3-		-	-	40	-		ns	-	-	-	40	-	-	ns	1 1 2 2	2 2 - -	3	- 1 1	11	1

Ground inputs of gates not under test. Other pins not listed are left open.

^{*} Symbol is IA16 for MC771P.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

PLASTIC mW MRTL MC700P/800P series

MC798P · MC898P

Dual 2-input buffers designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit. Returning an input resistor to V_{CC} allows for capacitive coupling in multivibrator and differentiator applications.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

TEST VOLTAGE VALUES (Volts) (k Ohms) @ Test Temperature V_{BOT} V_{off} Vcc 0°C 0.880 0.850 1.80 0.500 3.60 4.6 MC898P +25°C 0.830 0.800 1.80 0.460 3.60 +75°C 0.740 0.710 1.80 0.400 3.60 5.0 +15°C 4.6 0.865 0.865 1.80 0.4753.60 +25°C MC798P 0.850 0.850 1.80 0.460 3.60 4.8 0.800 0.800 1.80 0.430 3.60 5.0

				MC8	98P	Te	st Limit	ts			MC.	798P	T	est Limi	ts				TEST V				
		Pin Under	0,	,C	+25	i°C	+75	i°C		+15	°C	+2	o°C	+55	i°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	2 I _{in}	2	-	300	٠.	280	-	280	μAdc	-	300	-	300	-	300	μ Ad c	2	-	13	-	11		4
Output Current	I _{AB}	3	4.5	-	4.5	-	4.5	-	mAdc	5.0	-	5.0	-	5.0	-	mAdc	-	3	_	2,13	11	-	4
Output Voltage	v _{out}	3		400 400	-	350 350	-	300 300	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	13 2	-	-	11 11	3 3	2,4 4,13
Saturation Voltage	V _{CE(sat)}	3	-	250 250	-	250 250	-	250 250	mVdc mVdc	-	220 220	-	230 230	-	320 320	mVdc mVdc	1 1	1 1	13 2	-	11 11	3 3	2, 4 4, 13
																	Pulse In	Pulse Out					
Switching Time	t _{on} + t _{off}	2,3	-	-		160	-	-	ns	-	-	-	160	-	-	ns	2	3	-	-	11	-	4,13

Ground input pins of buffer not under test. Other pins not listed are left open. *Resistor value to $V_{\rm CC}$.

DUAL BUFFERS

PLASTIC MRTL MC700P/800P series

MC799P · MC899P

The dual buffer is designed to drive a greater number of load circuits than the basic RTL circuit. Because this circuit has a very low output impedance the rise times of output waveforms are maintained when driving capacitive loads. A resistor which is internally connected to the input allows for capacitive coupling to the input, the differentiation of input waveforms and various multivibrator applications.

NUMBER IN PARENTHESIS INDICATES MC799P LOADING FACTOR.
NUMBER IN BRACKETS INDICATES MC899P LOADING FACTOR

 $t_{pd} = 20 \text{ ns}$ $P_D = 50 \text{ mW (Input High)}$ 100 mW (Inputs Low)

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

			TE	ST VOLTA	GE VALU	F2	
	@ Test			(Vo	lts)		(Ohms)
	Temperature	Vin	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *
	0°C	0.960	0. 930	1.80	0.570	3.60	640
MC899P	+25°C	0.910	0.800	1.80	0.500	3.60	640
	(+75°C	0. 820	0.790	1.80	0,450	3.60	750
	(+15°C	0.865	0.865	1, 80	0.475	3.60	640
MC799P	} +25°C	0.850	0.850	1.80	0.460	3.60	640
	+55°C	0.800	0.800	1.80	0.430	3.60	640

																1 33 0	0.000	0.000	1.00	0. 100	0.00	0.10	+
					AC899P	To	est Limit	s				MC799P	T	est Limi	ts				TEST V	DLTAGE			
		Pin Under	0,	°C	+25	i°C	+75	°C		+15	i°C	+25	i°C	+55	i°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	2I _{in}	13	-	1.2	-	1.2	-	1, 1	mAdc	-	1.0	-	1.0	-	0.94	mAdc	13	-	-	-	11	-	4
Output Current	IA5 **	2	3.0	-	3.0	-	2.85	-	mAdc	2.65	-	2.65	-	2.50	-	mAdc	-	2	-	13	11	-	4
	I _{AB}	3	15.0	-	15.0	-	14. 25	-	mAdc	13. 75	-	13. 75	-	12.50	-	mAdc	-	3	-	13	11	_	4
Output Voltage	v _{out}	2 3	-	500 500	-	400 400	-	400 400	mVdc mVdc	-	400 400		300 300	-	320 320	mVdc mVdc	-	13 13	-	- -	11 11	- 3	4 4
Saturation Voltage	V _{CE(sat)}	2 2 3	- - -	400 ↓	- - -	300		350	mVdc		300	-	290	- - -	320	mVdc	7-	- - -	13 - 13	<u>-</u> -	11 11, 12 11	- - 3	4
																	Pulse In	Pulse Out					
Switching Time	t	13+3- 13-3+ 13+2- 13-2+	-		- - -	30 45 28 32	- - -		ns			-	30 45 28 32		- - -	ns	13 13 13 13	3 3 2 2	- - -		11	-	4

Ground all unused input pins. Other pins not listed are left open. * Resistor Value to $V_{\rm CC}$.

^{**} Symbol is I_{Al6} for MC799P.

DUAL 3-INPUT BUFFERS NON-INVERTING

PLASTIC mW MRTL MC700P/800P series

MC788P · MC888P

Two 3-input positive logic NOR gates, each followed by an inverting and non-inverting high fan-out amplifier, are provided in a single package. For each section, the output from each stage is available. If more than one output is used, the full loading factors cannot be employed since each output provides the drive for the succeeding stage.

NUMBER IN PARENTHESIS INDICATES MC788P LOADING FACTOR. NUMBER IN BRACKETS INDICATES MC888P LOADING FACTOR.

t_{pd} = 24 ns Po = 145 mW (Input Low) 56 mW (Inputs Low)

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

TEST VOLTAGE VALUES (Ohms) (Volts) @ Test Temperature V_{BOT} V_{off} Vcc 0°C 0. 960 0.570 3.60 640 0.930 1.80 MC888P +25°C 0.910 0.880 1.80 0.500 3.60 640 +75°C 0.820 0.790 1.80 0.450 3.60 750 +15°C 0.865 0.865 1.80 0.475 3.60 640 MC788P +25°C 0.850 0,850 1.80 0.460 3.60 640 +55°C 0.800 0.800 1.80 0.430 3.60

				1	AC888P	Te	est Limit	s			ı	AC788P	T	est Limit	ts	,		•	TEST V	OLTAGE			
		Pin Under	0	°C	+25	°C .	+75	°C		+15	°C	+25	i°C	+55	°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	I _{in}	1 2 3	-	600		600	1 1 1	570	μAdc		500	-	500	1 1	470	μ Ad c	1 2 3		2, 3 1, 3 1, 2	- - -	11 	- - -	4
Output Current	I _{AB} † I _{A5 #} I _{A3} ‡	12 13 14	15.0 3.0 1.8	- -	15.0 3.0 1.8		14. 25 2. 85 1. 71	- ',	mAdc	13.50 2.65 -	-	13.75 2.65	- - -	12.50 2.50 -		mAdc mAdc	- - -	12 13 14	- - -	14 14 1, 2, 3	11	-	4
Output Voltage	Vout	12 13 14 14 14	-	500		400		400	mVdc		400		300	- - -	320	mVdc	- - -	14 14 1 2 3	- - - -	- - - -	11	12 - - - -	1,2,3,4 1,2,3,4 2,3,4 1,3,4 1,2,4
Saturation Voltage	V _{CE(sat)}	12 13 14 14 14	-	400		300	-	350	mVde	- - - -	300	- - -	290	-	320	mVdc	- - - -	- - - -	14 14 1 2 3	-	11	12 - - - -	1,2,3,4 1,2,3,4 2,3,4 1,3,4 1,2,4
Switching Time	t	1+12+ 1-12- 1+13+ 1-13- 1+14- 1-14+	-		-	65 58 42.5 42.5 20 28		-					65 58 42.5 42.5 20 28		-	- - - -	Pulse In 1 1 1 1	Pulse Out 12 12 13 13 14 14			11		2,3,4

Ground input pins of buffer not under test. Other pins not listed are left open. *Resistor value to $V_{\rm CC}$

 $[\]dagger I_{A80} \text{ is symbol for MC788P.} \quad \#I_{A16} \text{ is symbol for MC788P.} \quad \sharp I_{A5} \text{ is symbol for MC788P.}$

MC776P · MC876P

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

TEST VALUES μ A (Volts) @ Test Temperature **V**BOT V_{off} V_{CC} l₀ 0°C 0.880 0.850 1.80 0.500 3.60 270 MC876P +25°C 0.830 0.800 1.80 0.460 3.60 290 +75°C 0.740 0.400 0.710 1.80 3.60 255 +15°C 0.865 0.865 1.80 0.475 3.60 270 MC776P +25°C 0.850 0.850 1.80 0.460 3.60 270 + 55°C | 0.800 1.80 270 0.800 0.430 3.60

				MC8	76P	Te	est Limit	s			MC	776P	T	est Limi	ts				TEST V	ALUES			
		Pin Under	0	°C	+25	5°C	+75	°C		+15	i°C	+25	o°C	+55	°C			APPLIED	TO PINS	LISTED	BELOW:		,
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	l ₀	Gnd
Input Current	I _{in}	1	-	150	-	140	-	140	μAdc	-	150	-	150	-	150	μAdc	1	-	13	-	11	-	4
	2 I _{in}	2	-	300	-	280	-	280		-	300	-	300	-	300		2	-	1, 3	-		-	
	I _{in}	3	-	150	-	140	-	140		-	150	-	150	-	150		3	-	14	-		-	
	I _{in}	12	-	150	-	140	-	140	+	-	150	-	150	-	150	†	12	-	14	-	†	-	†
Output Current	I _{A2}	13	320	-	320	-	300	-	μAdc	320	-	320	-	320	-	μAdc	-	13	1	12	11	-	4, 14 §
		14		-		-		-			-		-		-		-	14	3, 12	-		-	
		14	*	-	*	-	†	-	•	*	-		-	*	-	•	-	12, 14	3	-		-	_ •
Output Voltage	v _{out}	13	-	400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	12	-	-		-	4, 14
		13	-		-		-			-		-		-			-	14	-	-		-	4, 13 §
		13*†	- '		-		-			-		-		-			-	1, 3	-	-		14	4, 12
		13*#	-		-		-			-		-		-			-	1	-	3			
		13*#	-		-		-			-		-		-			-	-	-	1, 3			♦
		14	-	🕈	-	†	-	†	*	-	*	-	*			*	-	13	-	-	*	-	14 §
Saturation Voltage	V _{CE(sat)}	13	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	mVdc		-	12	-	11	-	4, 14
	,	13	-		-		-			-		-		-			-	-	-	-		-	4, 13 §
		14	,-	🔻	-	🕈	-	*	†	-	+	-	•	-	*	†	-	-	-	12	*	-	4,14 §
Turn On Voltage	v _{on}	13*#	850		800	-	710	-	mVdc	865	-	850	-	800	-	mVdc	-	1, 3		-	11	13	4, 12
	011	13*†		-		-		-			-		-		-		-	3	-	1			
		13*†	•	-	🕴	-	+	-	\ \	+	-	+	-	+	-	+	-	-	-	1, 3	*	+	†

^{*} Clock Pulse to pin 2

[†] Pin 13 = LOW | Set by a momentary ground prior to the # Pin 14 = LOW | application of the negative-going clock.

[§] ground thru diode (cathode to ground).

Ground inputs of flip-flop not under test.

Other pins not listed are left open.

MC776P, MC876P (continued)

TOGGLE MODE TEST CIRCUIT

CLOCK PULSE

PLASTIC mW MRTL MC700P/800P series

MC778P · MC878P

DUAL TYPE D FLIP-FLOPS

The type "D" Flip-Flop is a storage element that stores the state of the S input during negative transitions of the T input. The flip-flop state is not affected by changes in the S input during either the low or the high state of the T input. S₀ and C₀ inputs may be used for asynchronous operation.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

	4			TEST VO	LTAGE V	ALUES		
	@ Test			(Vo	lts)			KΩ±1%
	Temperature	V _{in}	Von	V _{BOT}	Voff	V _{CC}	VLL	V _R *
	0°C	0.880	0.850	1.80	0.500	3.60	0.45	4.3
MC878P	+25°C	0.830	0.800	1.80	0.460	3.60	0.40	4.3
	+75°C	0.740	0.710	1.80	0.400	3.60	0.35	4.7
	(+15°C	0.865	0.865	1.80	0.475	3.60	-	4.6
MC778P	+25°C	0.850	0.850	1.80	0.460	3.60	-	4.8
	(+55°C	0.800	0.800	1.80	0.430	3.60	-	5.0

				M	C878P	Te	st Limit	s			М	C778P	T	est Limi	ts			-	TEST V	OLTAGE	1		L	
		Pin Under	0,	°C	+25	5°C	+75	°C		+1	5°C	+2	5°C	+55	5°C			APPLIE	TO PIN	S LISTED	BELOW:			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}	VLL	V _R *	Gnd
Input Current	I _{in}	2	-	150	-	140	-	140	μAdc	-	150	-	150	-	150	μAdc	2	-	3	12	11	-	12	4, 13
	I _{in}	3	-	150	-	140	-	140		-	150	-	150	-	150		3	-	-	12		-	12	2, 4, 13
	1.8 I _{in}	12	-	270	-	250	-	250		-	270	-	270	-	270		12	-	-	-		-	-	2, 3, 4, 13
	1.8 I _{in}	12	-	270	-	250	-	250		-	270	-	270	-	270		12	-	3	-		-	-	2, 4, 13
	^I in	13	-	150	· -	140	-	140	*	-	150	-	150	-	150	,	13	-	-	12	*	-	12	2, 3, 4
Output Current	I _{A3}	1	420	-	430	-	395	-	μAdc	420	-	420	-	420	-	μAdc	1	12	3, 13	2	11	-	-	4
		1		-		-		-			-		-		-		1	-	13	2, 12		-	12	3, 4
		14		-		-		-			-		-		-		14	12	2	13		-	-	3, 4
		14	*	-	1	-	†	-	1	*	-	*	-	+	-		14	3	2	12, 13	+	-	12	4
Output Voltage	$\mathbf{v}_{\mathrm{out}}$	1	-	400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	2	12, 13	-	11	-	-	3, 4
		1	-		-		-			-		-		-			-	14	12	-		-	-	2, 3, 4, 13
		14	-		-		-			-		-		-			-	13	2, 12	-		-	-	3, 4
		14		1	-	*	-	*	*	-	1	-	•		*	+	-	1	12	-	•	-	-	2, 3, 4, 13
Saturation Voltage	V _{CE(sat)}	1	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	mVdc	-	3	13	12	11	-	12	2, 4
		14	-	250	-	250		250	mVdc	-	220	-	230	-	320	mVdc	-	-	2	3, 12	11	- 1	12	4, 13
Leakage Current	$^{\mathrm{I}}\mathrm{_{L}}$	11	-	100	-	100	-	100	μAdc	,		1	-	-	-	μAdc	-	-		-	-	11	-	2, 3, 4, 12, 13

^{*} Apply to V_{CC} thru resistor prior to applying V_{off} . Ground inputs of flip-flop not under test. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 1

FIGURE 2A — SET-UP AND RELEASE TIMES TEST CIRCUIT

FIGURE 2B — SET-UP TIME WAVEFORMS

FIGURE 2C — RELEASE TIME WAVEFORMS

J-K FLIP-FLOPS

PLASTIC mW MRTL MC700P/800P series

MC722P · MC822P

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

NUMBER IN PARENTHESIS INDICATES MC722P, MC822P LOADING FACTOR

 $f_{Tog} = 1.0 \text{ MHz}$ $P_D = 24 \text{ mW (Only Clock Input High)}$ 20 mW (Inputs Low)

DIRECT INPUT OPERATION ①

SD	C□	Q	ā
0	0	2	2
1	0	1	0
0	1	0	1
1	1	0	0

CLOCKED INPUT OPERATION ®

			,
t	n	tn⊣	.1
S	С	Q	Q
1	1	Q _n	Q _n
1	0	1	0
0	1	0	1
0	0	Q,	Qn

- 1. Clock (T) to remain unchanged.
- 2. The output state will not change when the input state goes from $S_D=\overline{C}_D$ to $S_D=C_D=0$. The output state cannot be predetermined in the case where the input goes from $S_D=C_D=1$ to $S_D=C_D=0$.
- 3. Direct inputs (Sp and Cp) must be low.

0 = low state

1 = high state

 $t_{\text{n}} = \text{time} \text{ period prior to negative transition of clock} \\ \text{pulse}$

 $t_{n+1} = \mbox{time period subsequent to negative transition of clock pulse}$

 $\mathbf{Q}_{n} = \text{ state of } \mathbf{Q} \text{ output in time period } \mathbf{t}_{n}$

TEST VOLTAGE VALUES (Volts) @ Test V_{BOT} V_{off} Vcc Temperature 0.850 1.80 0.500 3.60 MC822P +25°C 0.800 1.80 0.460 3.60 0.830 +75°C 0.740 0.710 1.80 0.400 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 MC722P +25°C 0.850 0.850 1.80 0.460 3.60 +55°C 0.800 | 0.800 | 1.80

ELECTRICAL CHARACTERISTICS

				MC8	22P	Te	est Limit	s			MC7	22P	T	est Limi	ts				ST VOLTA			
		Pin Under	0,	,C	+25	i°C	+75	°C		+1	5°C	+25	5°C	+55	i°C		APPLIED TO PINS LISTED BELOW:					
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	2I I in In	2 3 9 12 13	- - - -	300 150	-	280		280 140	μAdc	1 1 1 1	300 150	-	300 150	-	300 150	μAdc	2 3 9 12 13	- - - -	3, 13 12 - - 9		11	4
Output Current	I _{A4}	6 10	570 570	-	570 570	-	535 535	-	mAdc mAdc	570 570	-	570 570	-	570 570	-	μ Ad c μ Ad c	6 10	9 12	12 9	-	11 11	4 4
Saturation Voltage	V _{CE} (sat)	6 6*# 6*# 10*## 10*## 10*##		250		250		250	mVdc		220		230		320	mVdc		12 13 - 3, 13 9 3 3, 13	-	9 3 3,13 - 12 13 - 3,13	11	4

Pins not listed are left open.
* = Clock Pulse to pin 2, see Figure 1.

^{# =} Pin 9 HIGH $\}$ Set by a momentary application of VBOT prior to the ## = Pin 12 HIGH $\}$ application of the negative-going clock pulse.

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $<1.0~\mu s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L . t_f must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC822P

TA	V _L	V _H
+ 25°C	$+ 0.460 V \pm 2.0 mV$	$+$ 0.850 V \pm 2.0 mV
		$+$ 0.900 V \pm 2.0 mV
+ 75°C	$+$ 0.400 V \pm 2.0 mV	$+$ 0.760 V \pm 2.0 mV

MC722P

TA	٧ _L	V _H
+ 25°C	$+$ 0.460 V \pm 2.0 mV	$+0.900\mathrm{V}\pm2.0\mathrm{mV}$
+ 15°C	$+0.475 \text{V} \pm 2.0 \text{mV}$	$+0.915{ m V}\pm2.0{ m mV}$
$+55^{\circ}C$	$+ 0.430 \text{V} \pm 2.0 \text{mV}$	$+ 0.850 V \pm 2.0 \text{mV}$

FIGURE 2 — TOGGLE MODE TEST CIRCUIT

DUAL J-K FLIP-FLOPS

PLASTIC MRTL MC700P/800P series

MC791P · MC891P

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

			TEST V	OLTAGE '	ALUES							
	@ Test		(Volts)									
	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}						
	(0°C	0.960	0.930	1, 80	0.570	3.60						
MC891P	+25°C	0.910	0.880	1.80	0.500	3.60						
	+75°C	0.820	0.790	1.80	0. 450	3.60						
	(+15°C	0.865	0.865	1.80	0.475	3.60						
MC791P	+25°C	0.850	0.850	1.80	0.460	3.60						
-	+55°C	0.800	0.800	1.80	0.430	3.60						

				MC8	191P	To	est Limit	s		Γ	MC7	91P	T	est Limi	ts			TE	ST VOLTA	\GE	L	
		Pin Under	0,	°C	+25	i°C	+75	°C		+1	i°C -	+25		r	+55°C		AP	PLIED TO			OW:	į
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1†	-	600	-	600	-	570	μAdc	-	500	-	500	-	470	μAdc	1	-	-	-	11	4
	2I _{in}	2	- :	1200	-	1200	-	1140		-	1000		1000	-	940		2		1, 3	-		
	I _{in}	3	-	600	-	600	-	570		-	500	-	500	-	470		3	-	12	-		
	I _{in}	12	-	600	-	600	-	570	₩	-	500	-	500	-	470	+	12	-	-	-	+	. *
Output Current	I _{A5} ‡	13† 14	3.0 3.0	- ; -	3.0 3.0		2.85 2.85	-	mAdc mAdc	2,65 2,65	-	2.65 2.65	-	2.50 2.50	-	mAdc mAdc	-	13 12, 14	-	-	11 11	- 4
Output Voltage	v _{out}	13 § ⑤ 13§§④) -	500	-	400	-	400	m Vdc	-	400	-	300	-	320	mVdc	-	1	-	-	1,1	4, 12
	020	13§§(4) 13 § (6)) -) -		-		-			-		-		-			-	1	-	3		
		13§§⑦ 14 § ④) -		-		-			-		-		-			-	-	· - ·	3		
		1488(5)		-		-			-		-		-		-	- -	3	_	-		
		14 §'(7 14§§(6) -) -		-	. ↓	-	•		-	1	-	•	-	+	1	-	3		1 -	↓	, ,
Saturation Voltage	V _{CE(sat)}	13†	_	400	-	300	-	350	m Vdc	-	300	-	290	-	320	mVdc	-	12	-	-	11	4
	CH(Sat)	13*# 13†*	-		-		-			-		-		-			-	1, 3 1	-	3	-	
		13†* 14*#	-				-			-				-			-	- 3	-	1, 3		
		14*#	-		-		-			-				-			_	-	-	1,3		
		14†*	-	†	-	*	-	. ♦	†	-	†	-	1	-	1	•	-	1,3	-	-	•	

Ground inputs of flip-flop not under test. Other pins not listed are left open.

- † Preset the flip-flop by the following procedure:

 - (1) Momentarily apply VBOT to pin 12 to preclear flip-flop.
 (2) After VBOT is removed from pin 12, ground pins 1 and 3.
 (3) Apply a negative-going clock pulse to pin 2 (see note*) while pins 1 and 3 are still grounded. This changes the state of the flip-flop to the SET condition.
 - (4) Remove grounds from pins 1 and 3, and proceed with the test.
- ‡ Symbol is IA16 for MC791P.
- * Clock pulse to pin 2, see Figure 1.
- # Pin 12 = HIGH Set by momentary application of VBOT prior to the application of the negative-going clock pulse.

- § = Clock pulse to pin 2, data pulse to pin 3. §§ = Clock pulse to pin 2, data pulse to pin 1.

- 4 = See Figure 4. 5 = See Figure 5. 6 = See Figure 6. 7 = See Figure 7.

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $<1.0~\mu \rm s.$
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L . t_f must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

	MC891P	
V.		

	TA	٧ _L	V _H
1	+ 25°C	$+ 0.500 \text{ V} \pm 2.0 \text{ mV}$	$+0.930~{ m V}\pm 2.0~{ m mV}$
			$+0.980 \text{ V} \pm 2.0 \text{ mV}$
	+ 75°C	$+0.450 \text{ V} \pm 2.0 \text{ mV}$	$+0.790 \text{ V} \pm 2.0 \text{ mV}$

MC791P

ı	T _A	V _L	VH
I	+ 25°C	$+ 0.460 V \pm 2.0 mV$	$+0.900 \text{ V} \pm 2.0 \text{ mV}$
Ì	+ 15°C	$+0.475\mathrm{V}\pm2.0\mathrm{mV}$	$+0.915~\text{V}\pm2.0~\text{mV}$
Į	+ 55°C	$+$ 0.430 V \pm 2.0 mV	$+0.850 \text{ V} \pm 2.0 \text{ mV}$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

FIGURE 3 - TEST CIRCUIT

FIGURE 4 — TEST WAVEFORMS

FIGURE 5 — TEST WAVEFORMS

FIGURE 6 — TEST WAVEFORMS

FIGURE 7 — TEST WAVEFORMS

PLASTIC MRTL MC700P/800P series

MC723P · MC816P

J-K flip-flop with a direct clear input in addition to the clocked inputs.

 $f_{Tog} = 4 \text{ MHz}$

 $P_D = 91$ mW (Only Clock Input High) 79 mW (Inputs Low)

CLOCKED INPUT OPERATION ①

t n(3	t _{n+}	12
S	С	ď	Q
1	1	Qn3	Q,
1	0	1	0
0	1	0	1
0	0	Įď	Q _n ③

- 1. Direct input (CD) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Q_{n} is the state of the Q output in the time period $t_{n}. \label{eq:Qn}$
- 4. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC723P NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC816P

	-		TEST	VOLTAGE	VALUES							
	@ Test		(Volts)									
1	emperature	V _{in}	Von	V _{BOT}	V _{off}	Vcc						
(O°C	0.960	0.930	1.80	0.570	3.60						
MC816P	+25°C	0.910	0.880	1.80	0.500	3.60						
· .	+75°C	0.820	0.790	1.80	0.450	3.60						
(+15°C	0.865	0.865	1.80	0.475	3.60						
MC723P	+25°C	0.850	0.850	1.80	0.460	3,60						
	+55°C	0.800	0.800	1. 80	0.430	3.60						

	-	Pin		MC8			st Limit				MC7			est Limit					EST VOLT D pins l		nw.	
		Under	0,	°C	+25	°C	+75	°C		+15		+25		+55								Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	Voff	Acc	GIIU
Input Current	2I _{in} I _{in}	2 3 9 12	- - -	1200 600	1 1 1 1	1200 600	1 1 1 1	1140 570	μAdc	- - -	1000		1000	1 1 1	940	μAdc	2 3 9 12		3, 12 10 5 5	- - -	11	4
Output Current	I _{A3} †	5 5 10	1.80	-	1.80	1 1 1	1. 71	-	mAdc	1.65	-	1.65		1.56	-	mAdc	-	5 5, 9 10	9, 12 12 3	- - 9	11 ↓	4 4 4,5§
Output Voltage	Vout	10 10*## 10* 10*##	- - -	500		400	- - - -	400	mVdc	, - , - , - -	400	-	300	- - -	320	mVdc		9 3, 12 3 -	- - -	- 12 3, 12	11	4, 5 4, 9
Saturation Voltage	V _{CE(sat)}	5 10 10	- - -	400	- -	300	-	350	mVdc	- - -	300	-	290	- - -	320	mVdc ↓	1 1 1	- - -	9	9 - -	11 ↓	4,5 4,5 4,10§
Turn-On Voltage	v _{on}	10*##4 10* Δ 10*#Δ	1 1	-	880	-	790	-	mVdc	865		850	-	800	-	mVdc		3, 12 12 -	- - -	3 3, 12	11 	4,9

Pins not listed are left open.

 \dagger = I_{A10} is symbol for MC723P

§ = Silicon diode to ground.

* = Clock Pulse to pin 2, See Figure 1.

Set by a momentary ground prior to the application of the negative-going Clock pulse. # = Pin 10 LOW ## = Pin 5 LOW

 Δ = MC816P pin 10 loaded by: 1.56 mAdc (0°C and +75°C) 1.65 mAdc (+25°C) MC723P pin 10 loaded by: 1.56 mAdc (+15°C and +55°C) 1.65 mAdc (+25°C)

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $< 1.0~\mu s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $\rm V_L.\ t_f$ must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC816P

TA	V_{L}	V _H
+ 25°C	$+0.500~{ m V}\pm 2.0~{ m mV}$	$+0.930~{ m V}\pm 2.0~{ m mV}$
0°C	$+0.570~\text{V}\pm2.0~\text{mV}$	$+0.980\mathrm{V}\pm2.0\mathrm{mV}$
+ 75°C	$+0.450~{ m V}\pm 2.0~{ m mV}$	$+0.840\mathrm{V}\pm2.0\mathrm{mV}$

MC723P

TA	V _L	٧ _H
+ 25°C	$+$ 0.460 V \pm 2.0 mV	$+$ 0.900 V \pm 2.0 mV
+ 15°C	$+$ 0.475 V \pm 2.0 mV	$+0.915\mathrm{V}\pm2.0\mathrm{mV}$
+ 55°C	$+ 0.430 V \pm 2.0 mV$	$+0.850{ m V}\pm 2.0{ m mV}$

FIGURE 2 — TOGGLE MODE TEST CIRCUIT

J-K FLIP-FLOPS

PLASTIC MRTL MC700P/800P series

MC726P · MC826P

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

frog = 4 MHZ
PD = 100 mW (Only Clock Input High)
86 mW (Inputs Low)

CLOCKED INPUT OPERATION ① t_n(2) tn + 12 ā C Q Q, 1 1 Q_n(3) 1 0 0 1 0 0 1

Qn Qn®

0 0

PERAT	INPU	Ò
CD	Q	ā
0	(5)	(5)
0	1	0
1	0	1
1	0	0
	C _D	0 5 0 1 1 0

- 1. Direct inputs (Cp and Sp) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Q_n is the state of the Q output in the time period t_n .
- 4. Clock (T) to remain unchanged.
- 5. The output state will not change when the input state goes from $S_D=\overline{C}_D$ to $S_D=C_D=0$. The output state cannot be predetermined in the case where the input goes from $S_D=C_D=1$ to $S_D=C_D=0$.
- 6. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC726P NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC826P

		TEST VOLTAGE VALUES											
	@ Test		(Volts)										
	Temperature	V _{in}	Von	V _{BOT}	Voff	Vcc							
	(0°C	0.960	0.930	1.80	0.570	3.60							
MC826P	+25°C	0.910	0.880	1.80	0.500	3.60							
	(+75°C	0.820	0.790	1.80	0.450	3.60							
	(+15°C	0.865	0.865	1.80	0.475	3.60							
MC726P	{ +25°C	0.850	0.850	1.80	0.460	3.60							
	(+55°C	0.800	0.800	1.80	0.430	3.60							

				MC8	26P	Te	est Limi	ts			MC	26P		est Limi		+55°C	0.800	0.800 T	1.80 EST VOL	0. 430	3.60	
		Pin Under	0	0°C +25°C +75°C				+1	+15°C +25°C +55°C			Γ	APPLIED TO PINS LISTED BELOW:									
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	2I _{in} I _{in}	2 3 9 12 13	- - -	1200 600	- - - -	1200 600	- - -	1140 570	μAdc	- - - -	1000 500	- - - -	1000	- - - -	940 470	μAdc	2 3 9 12 13	- - -	3, 13 12 - - 9	- - - -	11	4
Output Current	I _{A5} §	6 10	3.0 3.0	-	3.0 3.0	-	2.85 2.85	-	mAdc mAdc		-	2.65 2.65	-	2.5 2.5	-	mAdc mAdc	- -	6, 12 10, 9	9 12	-	11 11	4 4
Saturation Voltage	V _{CE(sat)}	6 6*# 6*## 10 10*## 10*#	-	400		300	-	350	mVdc	1111111	300	1 1 1 1 1 1	290		320	mVdc	1 1 1 1 1 1	12 13 - 3, 13 9 3 3, 13	1111111	9 3 3,13 - 12 13 - 3,13	11	4

Pins not listed are left open.

[#] Pin 9 HIGH } ## Pin 12 HIGH } Set by momentary application of $V_{\mbox{BOT}}$ prior to the application of the negative-going clock pulse.

^{*} Clock Pulse to pin 2, see Figure 1. $\$ $I_{\mbox{\scriptsize A16}}$ is symbol for MC726P.

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. $t_{\rm r}$ is not critical but should be $<1.0~\mu s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L . t_f must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

		MICOZUF	
	TA	V_{L}	٧ _H
1	+ 25°C	$+0.500{ m V}\pm2.0{ m mV}$	$+0.930~{ m V}\pm 2.0~{ m mV}$
	0°C	$+0.570 \text{ V} \pm 2.0 \text{ mV}$	$+$ 0.980 V \pm 2.0 mV
	⊥ 75°C	10 450 V + 2 0 mV	1 + 0 840 V + 2 0 mV 1

MCOSCD

MC726P

-	TA	٧ _L	V _H
~	+ 25°C	$+$ 0.460 V \pm 2.0 mV	$+0.900~{ m V}\pm 2.0~{ m mV}$
	+ 15°C	$+$ 0.475 V \pm 2.0 mV	$+0.915~V \pm 2.0~mV$
	+ 55°C	$+$ 0.430 V \pm 2.0 mV	$+0.850 V \pm 2.0 mV$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

PLASTIC MRTL MC700P/800P series

MC790P · MC890P

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

 $f_{Tog} = 4$ MHz $P_D = 182$ mW (Only Clock Input High) 158 (Inputs Low)

CLOCKED INPUT OPERATION ①

tn	2	t _{n+}	12
S	С	Q	Ō
1	1	Q _n ③	Q _n
1	0	1	0
0	1	0	1
0	0	Qn.	Q _n ③

- 1. Direct input (CD) must be low.
- The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1}.
- 3. Q_n is the state of the Q output in the time period t_n .
- 4. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC790P NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC890P

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

			TEST VOLTAGE VALUES										
	@ Test		(Volts)										
•	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	Vcc							
	(0°C	0.960	0.930	1.80	0.570	3.60							
MC890P	/ +25°C	0.910	0.880	1.80	0.500	3.60							
	+75°C	0.820	0.790	1.80	0.450	3.60							
	(+15°C	0.865	0.865	1.80	0.475	3.60							
MC790P	+25°C	0.850	0.850	1.80	0.460	3.60							
	+55°C	0.800	0.800	1.80	0.430	3.60							

				MC8	90P	Te	st Limit	s			MC790P Test Limits						TEST VOLTAGE					
		Pin Under	0,	0°C +25°C +75°C -			+1	5°C	+25°C +55°C				APPLIED TO PINS LISTED BELOW:									
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in} 2I _{in} I _{in} I _{in}	1 2 3 12	-	600 1200 600 600		600 1200 600 600	1 1 1 1	570 1140 570 570	μ Adc	- - -	500 1000 500 500		500 1000 500 500		470 940 470 470	μAdc	1 2 3 12	- - -	13 1, 3 14 14	- - -	11	2, 3, 4, 12 4, 12 1, 2, 4, 12 1, 2, 3, 4
Output Current	I _{A3} §	13 14 14	1.80	- - -	1.80		1.71	- - -	mAdc	1.65	- - -	1.65	- - -	1.56	-	mAdc	- -	13 14 12,14	1 3, 12 3	12 - -	11 	2, 3, 4 1, 2, 4 1, 2, 4
Output Voltage	V _{out}	13 13*# 13*## 13*## 14*# 14*#		500		400	- - - -	400	mVdc	-	400		300	-	320	mVdc		12 1, 3 1 - 1, 3 3 -	-	3 1,3 - 1 1,3	11	1,2,3,4,14
Saturation Voltage	V _{CE(sat)}	13 13# 14##	-	400	-	300	-	350	mVdc	-	300		290	- - -	320	m Vdc	- - -	-	12 - 12	-	11	1,2,3,4,14 1,2,3,4,12 1,2,3,4

Ground unused input pins. Other pins not listed are left open.

^{*} Clock pulse to pin 2, see Figure 1,

[§] IA10 is symbol for MC790P.

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be < 1.0 μ s.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L. t_f must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC890P

	TA	V _L	V _H
	+ 25°C	$\pm 0.500 \text{V} \pm 2.0 \text{mV}$	$+0.930{ m V}\pm2.0{ m mV}$
i	0°C	$+0.570 \text{ V} \pm 2.0 \text{ mV}$	$\pm 0.980~{ m V} \pm 2.0~{ m mV}$
	+ 75°C	$+0.450\mathrm{V}\pm2.0\mathrm{mV}$	$+0.840~{ m V}\pm 2.0~{ m mV}$

MC790P

TA	V _L	V _H
+ 25°C	$+$ 0.460 V \pm 2.0 mV	$+0.900\mathrm{V}\pm2.0\mathrm{mV}$
+ 15°C	$+$ 0.475 V \pm 2.0 mV	$+0.915 V \pm 2.0 mV$
+ 55°C	$+$ 0.430 V \pm 2.0 mV	$+0.850\mathrm{V}\pm2.0\mathrm{mV}$

FIGURE 2 — TOGGLE MODE TEST CIRCUIT

PLASTIC MRTL MC700P/800P series

MC789P · MC889P

Six individual circuits are contained in a single package. Each provides the simple inversion function.

NUMBER IN PARENTHESIS INDICATES MC789P LOADING FACTOR.

NUMBER IN BRACKETS INDICATES MC889PLOADING FACTOR.

 $t_{pd} = 12 \text{ ns}$ $P_D = 130 \text{ mW (Input High)}$ 15 mW (Inputs Low)

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one inverter only. The other inverters are tested in the same manner.

		TEST VOLTAGE VALUES											
	@ Test		(Volts)										
	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	Vcc							
	0°C	0.960	0. 930	1.80	0.570	3.60							
MC889P	+25°C	0.910	0.880	1.80	0.500	3.60							
	+75°C	0.820	0. 790	1.80	0.450	3.60							
	(+15°C	0.865	0.865	1.80	0.475	3.60							
MC789P	} +25°C	0.850	0.850	1.80	0.460	3.60							
	+55°C	0.800	0.800	1.80	0.430	3.60							

-		Pin Under Test	MC889P Test Limits									MC789P	1	est Limi	its		 						
Characteristic			0°C		+25°C		+75°C			+15°C		+25°C		+55°C			AP	TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
	Symbol		Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	V _{cc}	Gnd	
Input Current	I _{in}	14*	-	600	-	600	-	570	μ A dc	-	500	-	500	-	470	μAdc	14	-	*	-	11	4	
Output Current	I _{A5}	1	3.0	-	3.0	-	2.85	-	mAdc	2,65	-	2.65	-	2.5	-	mAdc	1	-	-	14	11	4	
Output Voltage	v _{out}	1	_	500	-	400	-	400	m Vdc	-	400	-	300	-	320	mVdc	-	14	_	_	11	4	
Saturation Voltage	V _{CE(sat)}	1	-	400	-	300		350	mVdc	-	300	-	290	-	320	mVdc		-	14	-	11	4	
																	Pulse In	Pulse Out					
Switching Time	ton + toff	1, 14	-	-	-	48	-	-	ns	-	-	- '	48	-	-	ns	14	1	-	_	11	4	

Ground inputs of inverters not under test. Other pins not listed are left open

^{*} To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to ${\rm V}_{\hbox{BOT}}$

DUAL 4-INPUT EXPANDERS

MC786P · MC886P

Two 4-input gate expanders housed in a single package. Each may be used independently or combined. Each expander increases the input capability of a standard MRTL gate by four.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one expander only. The other expander is tested in the same manner.

		TEST VOLTAGE VALUES												
	@ Test		(Ohms)											
	Temperature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	V _R *							
	0°C	0.960	0.930	1.80	0.570	3.60	640							
MC886P	+25°C	0.910	0.880	1.80	0.500	3.60	640							
	+75°C	0.820	0.790	1.80	0, 450	3.60	750							
	+15°C	0.865	0.865	1.80	0.475	3.60	640							
MC786P	+25°C	0.850	0.850	1.80	0.460	3.60	640							
	+55°C	0.800	0.800	1.80	0.430	3.60	640							

r			1		00000							107000			<u>.</u>	TJJ 6	0.800	0.000	T. 00	0.430	3.00	040	 	
		Di-		MC886P Test Limits						MC786P Test Limits								TEST VOLTAGE APPLIED TO PINS LISTED BELOW:						
		Pin Under	0°C		+25°C		+75°C			+15°C		+25°C		+55°C				1						
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd	
Input Current	I _{in}	2 3 13 14		600	1 1 1 1	600		570	μAdc	1111	500	- - -	500	-	470	μ A dc	2 3 13 14		3,13,14 2,13,14 2,3,14 2,3,13	- - -	11 	12	4	
Output Leakage Current	ICEX	12	-	200	-	200	-	250	μ Ad c	-	225	-	225	-	250	μAdc	12	-	-	2, 3, 13, 14	11	-	4	
Output Voltage	v _{out}	12 12 12 12	1111	500		400	1111	400	mVdc		400	- - -	300		320	mVdc		13 14 2 3	-		11	12	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14	
Saturation Voltage	V _{CE(sat)}	12 12 12 12	- - -	400	- - -	300	- - -	350	mVdc	- - -	300	- - -	290	-	320	mVdc	- - -	-	13 14 2 3	. H	11	12	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14	

Ground unused input pins. Other pins not listed are left open.

MC785P · MC885P

Four 2-input expanders housed in a single package increase the input capability of MRTL gates.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

			TEST VOLTAGE VALUES													
	@ Test		(Volts)													
1	'emperature	. V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *									
(0°C	0.960	0. 930	1, 80	0.570	3.60	640									
MC885P	+25°C	0.910	0.880	1.80	0.500	3.60	640									
(+75°C	0.820	0.790	1, 80	0.450	3.60	750									
(+15°C	0.865	0.865	1.80	0.475	3.60	640									
MC785P <	+25°C	0.850	0,850	1, 80	0,460	3.60	640									
	+55°C	0.800	0.800	1.80	0.430	3.60	640									

																1 00 0	0.000	0.000	1.00	0. 100	0.00	010	┼	
			MC885P Test Limits									MC785P	T	est Limi	ts		TEST VOLTAGE							
	Pi		0°C		+25°C		+75°C			+15°C		+25°C		+55°C			APPLIED TO PINS LISTED BELOW:							
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd	
Input Current	I _{in}	1 2	- -	600 600	-	600 600	<i>-</i>	570 570	μAdc μAdc	-	500 500	-	500 500	-	470 470	μ Ad c μ Ad c	1 2	-	2 1	-	11 11	3 3	4 4	
Output Leakage Current	ICEX	3	-	200	-	200	-	250	μ Ad c	-	225	-	225	-	250	μAdc	3	-	-	1, 2	11	-	4	
Output Voltage	v _{out}	3	-	500 500	-	400 400	-		mVdc mVdc		400 400	-	300 300	-	320 320	mVdc mVdc	1 1	1 2		-	11 11	3 3	2, 4 1, 4	
Saturation Voltage	V _{CE(sat)}	3 3	- -	400 400	-	300 300	-	350 350	mVdc mVdc	-	300 300	-	290 290	- -	320 320	mVdc mVdc	-	-	1 2		11 11	3 3	2, 4 1, 4	

Ground unused input pins. Other pins not listed are left open. * Resistor value to $V_{\hbox{\footnotesize CC}}$

PLASTIC MRTL MC700P/800P series

MC9721P · MC9821P

Four 2-input expanders housed in a single package increase the input capability of mW MRTL gates.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

TEST VOLTAGE VALUES $(k\Omega)$ (Volts) @ Test Temperature V_{BOT} $\mathbf{V}_{\mathrm{off}}$ Vcc V_R* 0°C 0.880 0.850 1.80 0.500 3.60 3.6 MC9821P +25°C 0.830 0.800 1.80 0.460 3.60 3.6 0.400 +75°C 0.740 0.710 1.80 4.0 +15°C 0.865 0.865 1.80 0.475 3.60 3.6 MC9721P +25°C 0.850 0.850 1.80 0.460 3.60 3.6 +55°C | 0.800 | 0.800 | 1.80 | 0.430 | 3.60 | 3.6

		,														1000		L		L			
					MC98	21P Test	Limits					MC9	721P Te	st Limits	1				TEST V	OLTAGE			
		Pin Under	0,	,C	+25	i°C	+75	°C		+1	5°C	+2	5°C	+55	i°C			APPLIED	TO PINS	LISTED	BELOW:		· 1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	I _{in}	1 2	-	150 150	- -	140 140	-	140 140	μAdc μAdc	-	150 150	-	150 150	-	150 150	μ A dc μ A dc	1 2	1 1	2 1	-	11 11	3	4
Output Leakage Current	ICEX	3	-	25	-	25	-	30	μAdc	_	40	-	40	-	50	μAdc	3	-	-	1,2	11	-	4
Output Voltage	v _{out}	3	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1 2	-	-	11 11	3	2,4 1,4
Saturation Voltage	V _{CE(sat)}	3	1 1 .	250 250	-	250 250	-	250 250	mVdc mVdc	<u>-</u> -	220 220	-	230 230	-	320 320	mVdc mVdc	· -	-	1 2	-	11 11	3 3	2,4 1,4

Ground unused input pins. Other pins not listed are left open.

^{*} Resistor value to $V_{\rm CC}$.

HEX EXPANDERS

MC9719P · MC9819P

Six individual expanders are contained in a single package to increase the input capability of MRTL gates.

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

TEST VOLTAGE VALUES (Volts) (Ohms) @ Test **V**BOT Vcc Temperature 0°C 0.960 0.930 1.80 0.570 3.60 640 MC9819P +25°C 0.910 1.80 0.500 640 +75°C 0.820 0.790 1.80 0.450 3.60 750 +15°C 0.865 1.80 0.475 3.60 640 0.865 MC9719P +25°C 0.850 0.460 3.60 0.850 1.80 640

					MC98	19P Test	Limits					MC97	19P Tes	t Limits					TEST V	OLTAGE			
		Pin Under	0,	,C	+25	5°C	+75	i°C		+1	i°C	+2	5°C	+55	i°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	I _{in}	14	-	600	-	600	-	570	μ Ad c	-	500	-	500		470	μAdc	14	-	-	-	11	1	4
Output Leakage Current	I _{CEX}	1	-	100	-	218	-	235	μ Ad c	-	100	-	225	-	225	μAdc	1	-	-	14	11	-	4
Output Voltage	v _{out}	1	-	500	-	400	-	400	mVdc	-	400	_	300	-	320	mVdc	-	14	-	-	11	1	4
Saturation Voltage	V _{CE(sat)}	1	-	400	-	300	-	350	mVdc	-	300	-	290	-	320	mVdc	-	-	14	-	11	1	4

Ground inputs of expanders not under test. Other pins not listed are left open.

^{*} Resistor value to $\mathbf{v}_{\mathbf{CC}}$.

PLASTIC MRTL MC700P/800P series

MULTIFUNCTION DEVICES

(1 J-K Flip-Flop, 1 Expander, 2 Buffers)

MC779P · MC879P

A medium-power monolithic device consisting of one J-K flip-flop, one expander, and two buffer circuits in a single package. This J-K flip-flop can be operated in the toggling mode. Simultaneous logic ONE pulses applied to the SET and CLEAR terminals cause the output state to reverse. A direct clear input allows asynchronous entry for preclearing counters, inserting parallel data into registers, and other similar applications. The MRTL expander is designed to increase the fan-in capability of gates with expander inputs, and the buffers are high fan-out gates with single inputs.

CLOCKED INPUT OPERATION ①

tn	2	tn+	12
S	С	Q	<u>ā</u>
1	1	Q _n ③	Q̄ _n
1	0	1	0
0	1	0	1
0	0	Q _n	Q _n ③

 $12 = \overline{3}$

	f _{Tog}	tod	P _D (P _D (mW)				
	MHz	·pu	(Inputs High)	(Inputs Low)				
FLIP-FLOP	4	_	91‡	79				
EACH BUFFER	-	15	25	45				
EXPANDER	_	12	2.5	Negligible				

- 1. Direct input (CD) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Q_n is the state of the Q output in the time period t_n .

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC779P NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC879P

TEST VOLTAGE VALUES (Volts) (Ohms) @ Test Vcc V_R* Temperature V_{BOT} 0.960 0.930 1.80 0.570 3.60 640 MC879P +25°C 0.910 0.880 1,80 0.500 3.60 640 +75°C 0.820 0.790 1.80 0.450 750 +15°C 0.865 0.865 1.80 0.475 3.60 640 MC779P +25°C 0.850 0.850 1.80 0.460 3.60 640

ELECTRICAL CHARACTERISTICS

														· .		+55°C	0.800	0.800	1.80	0.430	3.60	640	
				MC8	79P	To	est Limi	ts			MC7	79P	Ţ	est Limit	ts				TEST V	DLTAGE			
		Pin Under	0,	,C	+25	°C	+75	°C		+15	°C	+25	°C	+55	°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd
Input Current	2I _{in} Iin Iin 2I _{in} I _{in} 2I _{in}	1 3 5 6 7 10 14	- - - - -	1200 600 600 1200 600 600 1200		1200 600 600 1200 600 600 1200	111111	1140 570 570 1140 570 570 1140	μAdc	-	1000 500 500 1000 500 500 1000		1000 500 500 1000 500 500 1000	11111	940 470 470 940 470 470 940	μAdc	1 3 5 6 7 10 14	-	- 8 5,7 9 8		11	2 12 - - - - 13	3,4,5,6,7,10,14 1,4,5,6,7,10,14 1,3,4,14 1,3,4,5,6,7,10
Output Current	I _{AB} † I _{A3} ‡ I _{A3} ‡ I _{A3} ‡ I _{A5} # I _{AB} †	2 8 8 9## 12 13	15.0 1.8 3.0 15.0	- - - -	15.0 1.8 3.0 15.0	-	14. 25 1. 71 2. 85 14. 25	- - - -	mAdc	13.50 1.65 2.65 13.50	-	13.75 1.65 2.65 13.75		12.50 1.56 2.50 12.50		mAdc		2 8 8, 10 9 12 13	5, 10 5 7 -	1 - - 10 3 14	11	- - - 12	3,4,5,6,7,10,14 1,3,4,14 ↓ 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Output Voltage	${ m v}_{ m out}$	2 8\Delta## 8\Delta** 9 9\Delta** 9\Delta## 9\Delta## 12 13		500		400	-	400	mVdc	-	400	-	300		320	mVdc		1 5,7 5 - 10 5,7 7 - 3 14		- 7 5, 7 - 5 5, 7	11	2 - - - - - - 12 13	$\begin{array}{c c} 3,4,5,6,7,10,14\\ 1,3,4,10,14\\ & \downarrow\\ 1,3,4,8,14\\ 1,3,4,10,14\\ & \downarrow\\ 1,4,5,6,7,10,14\\ 1,3,4,5,6,7,10\\ \end{array}$
Saturation Voltage	V _{CE(sat)}	2 8## 9 9** 12 13	- - - -	400	-	300	-	350	mVdc	- - - -	300	- - - - -	290	- - - - -	320	mVdc	- - - -	-	1 - 10 - 3 14	- 10 - - - -	11	2 - - 12 13	3,4,5,6,7,10,14 1,3,4,14 1,3,4,8,14 1,3,4,14 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Switching Time	t	1+2- 1-2+ 14+13 14-13				30 45 30 45	-		ns	- - -	- - -		30 45 30 45	- - -		ns	Pulse In 1 1 14 14	Pulse Out 2 2 13 13	- - -	- - -	11	- - - -	3,4,14 3,4,14 1,3,4 1,3,4

Pins not listed are left open.

 $[\]Delta$ = Clock Pulse to pin 6, see Figure 1.

^{* =} Resistor value to V_{CC}.

 $[\]dagger$ = I_{A80} is symbol for MC779P

 $[\]ddagger = I_{A10}$ is symbol for MC779P

 $^{# =} I_{A16}$ is symbol for MC779P

^{##} Pin 8 = LOW Set by a momentary ground prior to the application ** Pin 9 = LOW of the negative-going clock pulse.

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t, is not critical but should be $<1.0~\mu s.$
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $\rm V_L$. $\rm t_f$ must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC879P

 TA	V L	V _H
+ 25°C	$+ 0.500 V \pm 2.0 mV$	$+0.930 \text{ V} \pm 2.0 \text{ mV}$
0°C	$+$ 0.570 V \pm 2.0 mV	+0.980 V ± 2.0 mV
+ 75°C	$+$ 0.450 V \pm 2.0 mV	+0.790 V ± 2.0 mV

MC779P

	. T _A	V _L	V _H
	+ 25°C	$-0.460 \text{ V} \pm 2.0 \text{ mV}$	$-0.900 \text{ V} \pm 2.0 \text{ mV}$
ı	+ 15°C	$+0.475~V \pm 2.0~mV$	$+0.915~{ m V}\pm 2.0~{ m mV}$
	+ 55°C	$+0.430~{ m V}\pm 2.0~{ m mV}$	$+0.850~{ m V}\pm 2.0~{ m mV}$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

FIGURE 3 — SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

MULTIFUNCTION DEVICES

(1 J-K Flip-Flop, 1 Inverter, 2 Buffers)

MC787P · MC887P

A medium-power monolithic device consisting of one J-K flip-flop, one inverter, and two buffer circuits in a single package. This J-K flip-flop can be operated in the toggling mode. Simultaneous logic ONE pulses applied to the SET and CLEAR terminals cause the output state to reverse. A direct clear input allows asynchronous entry for pre-clearing counters, inserting parallel data into registers, and other similar applications. The inverter is a basic MRTL gate and the buffers are high fan-out gates with single inputs.

 $2 = \overline{1}$ $12 = \overline{3}$

CLOCKED INPUT OPERATION (1)

tn	2	tn+	12
S	С	Q	Ø
1	1	Qn3	١œ
1	0	1	0
0	1	0	1
0	0	Q,	Q _n ③

	frog	+	PD	(mW)
	MHZ	t _{pd} ns	(Input High)	(Inputs Low)
FLIP-FLOP	4	_	91‡	79
EACH BUFFER	_	15	25	45
INVERTER	_	12	22	8

- 1. Direct input (CD) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Qn is the state of the Q output in the time period tn.

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR FOR MC787P
NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MC887P

MC887P

(Volts) (Ohms) @ Test Temperature 0.960 0.930 1.80 0.570 3.60 640 +25°C 0.910 0.880 1.80 0.500 3.60 640 +75°C 0.450 3.60 0.820 0.790 1,80 750 +15°C 0.865 0.865 1.80 0.475 3.60 640 +25°C 0.850 0.850 1.80 0.460 3.60 640

1.80

0.430

3.60

640

0.800 0.800

TEST VOLTAGE VALUES

MC787P

+55°C

MC887P	Test Limits	

				MC8	887P	Te	st Limit	ts			MC7	87P	T	est Limi	ts				TEST V	OLTAGE			
		Pin Under	0	°C	+25	°C	+75	i°C		+1	5°C	+2	5°C	+55	i°C		<u></u>	APPLIED	TO PINS	LISTED	BELOW:]
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	2I _{in} Iin I _{in} 2I _{in} I _{in} I _{in} 2I _{in}	1 3 5 6 7 10 14		1200 600 600 1200 600 600 1200		1200 600 600 1200 600 600 1200		1140 570 570 1140 570 570 1140	μAdc	-	1000 500 500 1000 500 500 1000		1000 500 500 1000 500 500 1000		940 470 470 940 470 470 940	μAdc	1 3 5 6 7 10 14	-	- 8 5,7 9 8		11	2 - - - - 13	3,4,5,6,7,10,14 1,4,5,6,7,10,14 1,3,4,14 1,3,4,5,6,7,10
Output Current	I _{AB} † I _{A3} ‡ IA3‡ IA3‡ IA5# I _{AB} †	2 8 8 9## 12 13	15.0 1.8 3.0 15.0	-	15.0 1.8 3.0 15.0	-	14. 25 1. 71 2. 85 14. 25	- - -	mAdc	13.50 1.65 2.65 13.50		13.75 1.65 2.65 13.75	-	12.50 1.56 2.50 12.50		mAdc	- - - - -	2 8 8, 10 9 12 13	5, 10 5 7 -	1 - - 10 3 14	11	-	3,4,5,6,7,10,14 1,3,4,14 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Output Voltage	V _{out}	2 8\(\Delta\pi\)# 8\(\Delta**\) 9 9\(\Delta**\) 9\(\Delta\pi\)# 9\(\Delta\pi\)# 12 13	-	500		400	1 1 1 1 1 1 1	400	mVde	-	400	-	300	-	320	mVdc	-	1 5, 7 5 - 10 5, 7 7 - 3 14		- 7 5, 7 - - 5 5, 7	11	2 13	3,4,5,6,7,10,14 1,3,4,10,14 1,3,4,8,14 1,3,4,10,14 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Saturation Voltage	V _{CE} (sat)	2 8## 9 9** 12 13		400		300	11111	350	mVdc	-	300		290	- - - -	320	mVdc	- - - -	-	1 - 10 - 3 14	- 10 - - -	11	2 - - - - 13	3,4,5,6,7,10,14 1,3,4,14 1,3,4,8,14 1,3,4,14 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Switching Time	t	1+2- 1-2+ 14+13 14-13-		- - -	-	30 45 30 45		- - -	ns	-	- - -	- - -	30 45 30 45		- - -	ns	Pulse In 1 1 14 14	Pulse Out 2 2 13 13	- - -	- - -	11 	-	3,4,14 3,4,14 1,3,4 1,3,4

Pins not listed are left open.

ELECTRICAL CHARACTERISTICS

 $[\]Delta$ = Clock Pulse to pin 6, see Figure 1.

^{*} Resistor value to V_{CC}.

f = I_{A80} is symbol for MC787P

^{‡ =} I_{A10} is symbol for MC787P

^{# =} I_{A16} is symbol for MC787P

^{##} Pin 8 = LOW } Set by a momentary ground prior to the applica** Pin 9 = LOW } tion of the negative-going clock pulse.

FIGURE 1 -- CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t, is not critical but should be $<1.0~\mu s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L . t_f must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

	MC887P								
TA	V _L	V _H							
+ 25°C	$+ 0.500 V \pm 2.0 mV$	$+~0.930~{ m V}\pm 2.0~{ m mV}$							
0°C	$+ 0.570 \text{ V} \pm 2.0 \text{ mV}$	$+$ 0.980 V \pm 2.0 mV							
+ 75°C	$+$ 0.450 V \pm 2.0 mV	$+$ 0.790 V \pm 2.0 mV							
	MC787P								

	11107071		
TA	٧ _L	V _H	
+ 25°C	$-0.460 \text{ V} \pm 2.0 \text{ mV}$	$-0.900~{ m V}\pm 2.0~{ m mV}$	
+ 15°C	$+0.475\mathrm{V}\pm2.0\mathrm{mV}$	$+0.915~V \pm 2.0~mV$	
+ 55°C	$+0.430 \text{ V} \pm 2.0 \text{ mV}$	$+0.850~V \pm 2.0~mV~$	

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

FIGURE 3 — SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

PLASTIC MRTL MC700P/800P series

MC775P · MC875P

Two half-adder devices in a single package. Each device can be used to supply the SUM and CARRY operations on two input signals. E g.,if the inputs are applied to pins 1 and 14, and their complements to pins 2 and 3, the SUM of the inputs appears on pin 13 while the CARRY appears on pin 12.

NUMBER IN PARENTHESIS INDICATES MC775P LOADING FACTOR. NUMBER IN BRACKETS INDICATES MC875P LOADING FACTOR.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one half-adder only. The other half-adder is tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{on} V_{BOT} V_{off} Vcc 0.960 0.930 1.80 0.570 3.60 MC875P +25°C 0.910 0.880 1, 80 0.500 3.60 +75°C 0.820 0.790 1.80 0.450 3.60 +15°C 0.865 0.475 3.60 0.865 1.80 MC775P +25°C 0.850 0.850 0.460 3.60 1.80 +55°C 0.800 0.800 | 1.80 | 0.430 | 3.60

					MC875P	Tr	est Limit	s		l		MC775P	Т	est Limi	ts	T33 U		TES	ST VOLTA	GE	3.00	
	e.	Pin	0,	,C	+25		+75			+15		+2		+55			AP	PLIED TO			DW:	
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1 2 3 14	- - -	600	- - -	600	1111	570	μAdc	- - -	500	- - -	500	- - - -	470	μAdc	1 2 3 14	- - -	14 3 2 14	1 1 1 1	11	4
Output Current	I _{A4} * I _{A5} † I _{A5} †	12 13 13	2.4 3.0 3.0	- - -	2.4 3.0 3.0	-	2. 28 2. 85 2. 85	-	mAdc	- 2.65 2.65	- - -	- 2.65 2.65	- - -	- 2.5 2.5		mAdc mAdc	- - -	12 1, 2, 13 3,13,14	1 1	2, 3 - -	11	4
Output Voltage	V _{out}	12 12 13		500	- - -	400	- - -	400	mVdc	- - -	400	-	300	-	320	mVdc	- 1 	2 3 12	- 1, 13	- - -	11 ↓	4
Saturation Voltage	V CE(sat)	12 12 13 13		400	- - - -	300		350	mVdc	- - -	300	- - -	290	- - -	320	mVdc	- - -	- - - - ,	2 3 1, 14 2, 3	- 2,3 1,14	11	4
																	Pulse In	Pulse Out				-
Switching Time	t	2+12- 2-12+ 1+13+ 1-13-		- - -	- - -	20 30 36 36	- - -	- - -	ns	- - -	- - -	- - -	20 30 36 36	-	- - -	ns	2 2 1 1	12 12 13 13		-, - -		4 4 4, 12 4, 12

Ground inputs of half-adder not under test. Other pins not listed are left open. * IAB is symbol for MC775

 $^{^\}dagger I_{\mbox{Al6}}$ is symbol for MC775

DUAL FULL ADDERS

MC796P · MC896P

Provides the SUM and CARRY functions while requiring only the AUGEND (A) and ADDEND (B) inputs with CARRY IN.

Test procedures are shown for one full adder only. The other full adder is tested in the same manner.

	@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(0°C	0.960	0.930	1.80	0.570	3.60
MC896P <	+25°C	0.910	0.800	1.80	0.500	3.60
	+75℃	0.820	0.790	1.80	0.450	3.60
((+15℃	0.865	0.865	1.80	0.475	3.60
MC796P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

<u></u>		D:			MC89	6P Test	Limits					MC796	5P Test	Limits		133 €	0.800		T VOLT		3.00	
		Pin Under	0	°C	+25	5°C	+7	5°C		+1	5°C	+2	5°C	+5	5°C					TED BEL		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	3 I _{in}	2 13 14	-	1800	-	1800	-	1710	μAdc ↓	-	1500	- · -	1500	- - -	1410	μAdc ↓	2 13 14	- - -		- - -	11 ↓	4
Output Current	I _{A4} *	3	2.40	- - - -	2.40	-	2. 28	-	mAdc	2. 15		2. 15		2.03		mAdc	-	3,13,14 2,3,13 2,3,14 (2,3,) 13,14)	- - -	2 14 13 -	11	4
		12		- - -		-		- - -			- - -				- - -			12,13 12,14 2,12 (2,12,) (13,14)	-	2,14 2,13 13,14 -		
Output Voltage	V _{out}	3 12		500		400	- - - - -	400	mVdc		400	-	300	-	320	mVdc	-	13 14 2 - 13,14 2,14 2,14	-	2,13,14 2,14 2,13 13,14 2,13,14 2 13 13	11	4
Switching Time		<u> </u>		·	_												Pulse In		Pulse Out	1		
	t	2+12+ 2-12- 2+3+ 2-3- 14+12+ 14-12- 14+3+ 14-3- 13+12- 13-12+ 13+3+ 13-3-		-	-	75 75 85 65 75 75 85 65 70 80 70	-	-	ns	-		-	75 75 85 65 75 75 85 65 70 80 70	-	-	ns	14 13 	13,14 - 13 13 - - 13 13 14	12 12 3 3 12 12 3 3 12 12 12 3 3	14 14 2,13 2,13 2	11	4

^{*} Symbol is I_{A13} for MC796P.

Ground inputs of full adder not under test. Other pins not listed are left open.

MC796P, MC896P (continued)

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

MC797P · MC897P

Provides the DIFFERENCE and BORROW functions while requiring only MINUEND (X) and SUBTRAHEND (Y) inputs with BORROW IN.

Test procedures are given for only one subtractor. The other subtractor is tested in the same manner.

(@Test		TEST V	OLTAGE (Volts)	VALUES	
Ten	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(0°C	0.960	0.930	1.80	0.570	3.60
MC897P	+25℃	0.910	0.800	1.80	0.500	3.60
	(+75°C	0.820	0. 790	1.80	0.450	3.60
(+15°C	0.865	0.865	1.80	0.475	3.60
MC797P	+25℃	0.850	0.850	1.80	0.460	3.60
	+55°℃	0.800	0.800	1.80	0.430	3.60

		Pin				7P Test						MC79	7P Test	Limits		, 50 0	0.000	TE:	ST VOLT		L	•
		Under		°C	+2	·		5°C			5°C	+2	5°C	+5	5°C					STED BEI		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	Voff	V _{CC}	Gnd
Input Current	3 I _{in}	2 3 14	. <u>-</u> -	1800		1800	-	1710	μAdc ↓		1500	,	1500	-	1410	μAdc	2 13 14	-	- - -	-	11	4
Output Current	I _{A4} *	12	2.40	- - - - -	2.40	-	2. 28		mAdc	2. 15		2. 15	-	2.03	- - - - -	mAdc		2,3, 1 13,14 3,13 3,14 12,13 12,14 2,12 (2,12, 1 (13,14)	- - - - - -	2,14 2,13 2,14 2,13 13,14	11	4
Output Voltage	v _{out}	3 12		500	A L L A L L T Page	400		400	mVdc	1 1 1 1 1 1	400	- - - - - -	300		320	mVdc		2,13 2,14 - 13,14 2,14 2,13		14 13 2,13,14 2,13,14 2 13 14	11	4
Switching Time	t	2+12+ 2-12- 2+3+ 2-3- 14+12+ 14-12- 14+3- 14-3+ 13+12- 13-12+ 13+3+ 13-3-		-		60 60 65 60 \$65 60			ns				60 60 65 60 4 65 60			ns	Pulse In 2	13,14 - - 13 - 2,14 2,14	Pulse Out 12 12 12 12 3 3 12 12 12 3 3 12 12 3 3 3 12 3 3 12 12 3 3 3	2,13 2,13 2,13 2	11	4

^{*} Symbol for MC797P is IA13.

Ground input pins of subtractor not under test. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

PLASTIC MRTL MC700P/800P series

MC784P · MC884P

Two half-shift registers in a single package. Each is a bistable storage element. Eg., information coming in on pins 1 and 3 will be transferred to pins 14 and 12 when the gating signal, pin 2, goes low. If all three inputs, 1, 2, and 3, are low, the outputs, 14 and 12, will both be low.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one half-shift register only. The other half-shift register is tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{on} **V**BOT V_{off} Vcc 0.960 0.930 1.80 0.570 3.60 +25°C 0.910 MC884P 0.880 1.80 0.500 3.60 +75°C 0.820 0.790 1,80 0.450 3.60 +15°C 0.865 0.865 1.80 0.4753.60 MC784P +25°C 0.850 3.60 0.850 1.80 0.460 +55°C 0.800 0.800 1.80 0.430 3.60

				N	1C884P	Te	st Limit	s			l	MC784P	T	est Limi	ts				T VOLTA			
		Pin Under	0	,C	+25	°C	+75	°C		+15	5°C	+25	5°C	+55	°C		API	PLIED TO	PINS LIS	TED BELO)W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1	_	600	-	600	- "	570	μAdc	-	500	-	500	-	470	μAdc	1	-	2	-	11	4
_	2I _{in}	2	-	1200	-	1200	-	1140		-	1000	-	1000	-	940		2	-	1, 3	-		
	I _{in}	3	-	600	-	600	-	570	+	-	500	-	500	-	470	+	3	-	2	-	+	+
Output Current	I _{A4} *	12 12 14 14	2.4		2.4	1 1 1 1	2.28		mAdc	2.15	- - -	2.15		2.03		mAdc	- - -	2, 12 3, 12 2, 14 1, 14		-	11	4, 14† 4 4, 12† 4
Output Voltage	v _{out}	12 14	- -	500 500	-	400 400	-	400 400	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	14 12	2, 3 1, 2	-	11 11	4 4
Saturation Voltage	V _{CE(sat)}	12 12 14 14	-	400	-	300	-	350	mVdc		300	- - -	290		320	mVdc	- - -	- - -	1, 2, 3 1, 2, 3	2,3 - 1,2	11	4, 12† 4, 14 4, 14† 4
																	Pulse In	Pulse Out				
Switching Time	t	1+14+ 1-14-	-	-	-	40 40	- -	-	ns ns	-	-	-	40 40	-	- -	ns ns	1 1	14 14	- -	-	11 11	4, 12 4, 12

Ground input pins of half-register not under test. Other pins not listed are left open.

† Silicon diode to ground.

^{*} Symbol is I_{A13} for the MC784P.

DUAL HALF-SHIFT REGISTERS

PLASTIC MRTL MC700P/800P series

MC783P · MC883P

Dual half-shift registers each with built-in inverter, in a single package. Information coming in on pins 1 and 2 will be transferred to pins 14 and 12 when the gating signal, pin 2, goes low. If all three inputs, 1, 2, and 3, are low, the outputs, 12 and 14, will both be low.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one half-shift register only. The other half-shift register is tested in the same manner.

			TEST V	OLTAGE 1	/ALUES	
	@ Test			(Volts)		
	Temperature	Vin	V _{on}	V _{BOT}	Voff	Vcc
	0°C	0.960	0.930	1. 80	0.570	3.60
MC883P	{ +25°C	0.910	0.880	1.80	0.500	3.60
	(+75°C	0.820	0. 790	1. 80	0. 450	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC783P	/ +25°C	0.850	0.850	1.80	0.460	3.60
	(+55°C	0.800	0.800	1.80	0. 430	3.60

																		L	1.00	0. 100	0.00	+
		.		MC8	183P	Te	est Limit	ts			MC	183P	T	est Limi	ts			TES	ST VOLTA	GE		
		Pin Under	0,	,C	+25	i°C	+75	i°C		+1	5°C	+25	5°C	+55	°C		API	PLIED TO	PINS LIS	TED BELO)W:]
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	Voff	V _{CC}	Gnd
Input Current	I _{in} 3I _{in} I _{in}	1 2 3	- - -	600 1800 600	- - -	600 1800 600	- - -	570 1710 570	μAdc ↓	- - -	500 1500 500	- - -	500 1500 500	-	470 1410 470	μ A dc	1 2 3	- - -	2 1,3 2		11 ↓	4
Output Current	IA4* IA4* IA5** IA4* IA4*	12 12 13 14 14	2. 4 2. 4 3. 0 2. 4 2. 4	-	2. 4 2. 4 3. 0 2. 4 2. 4	1 1 1 1	2. 28 2. 28 2. 85 2. 28 2. 28	- - - -	mAdc	2. 15 2. 15 2. 65 2. 15 2. 15	- - - -	2. 15 2. 15 2. 65 2. 15 2. 15	- - - -	2.03 2.03 2.5 2.03 2.03	- - -	mAdc	-	2, 12 3, 12 13 2, 14 1, 14		- 2 -	11	4, 14† 4 4 4, 12† 4
Output Voltage	v _{out}	12 13 14	-	500		400 ↓	- - -	400	mVdc ↓		400	-	300	-	320	mVdc	- - -	14 2 12	2,3 - 1,2	1 1 1	11	4
Saturation Voltage	V _{CE(sat)}	12 12 13 14 14		400	- - - -	300		350	m Vdc		300		290	- - - -	320	mVdc	11111	- - - -	1, 2, 3 - 2 1, 2, 3	2,3 - 1,2	11	4, 12† 4, 14 4 4, 14† 4, 12
																	Pulse In	Pulse Out				
Switching Time		2+13- 2-13+ 1+14+ 1-14-	- - -	- - -	1 1 1, 1	40 40 28 24			ns		- - - -	- - -	40 40 28 24	- - -	- - -	ns	2 2 1 1	13 13 14 14	- - - -	- - -	11	4 4 4, 12 4, 12

Ground input pins of half-shift register not under test. Other pins not listed are left open. * Symbol is IA13 for MC783P. ** Symbol is IA16 for MC783P † Silicon diode to ground.

MILLIWATT AND MEDIUM-POWER

COMMERCIAL MRTL

INTEGRATED CIRCUITS

INDEX

In this series of MRTL logic circuits, medium and low-power devices are combined and specified for compatible application in commercial usages. Medium-power devices have loading factors normalized for compatibility with low-power for ease of mixing the two power levels in a system.

INDEX

	Page No.
General Information	6-246
Summary of Devices Available in Metal Cans (G Suffix)	6-248
Summary of Devices Available in Flat Packages (F Suffix)	6-251

	DEVICE	POWER	PACKAGE		DEVICE	POWER	PACKAGE
GATES				COUNTER	RADAPTERS		
MC703	3-Input Gates	MRTL	F, G	MC701	Counter Adapter	MRTL	G
MC707	4-Input Gates	MRTL	F, G				
MC711	4-Input Gates	mW MRTL	F, G				
MC728	5-Input Gates	mW MRTL	F, G	ADDERS			
MC729	5-Input Gates	MRTL	F, G	MC704	Half Adders	MRTL	F, G
MC710	Dual 2-Input Gates	mW MRTL	F, G	MC708	Half Adders	mW MRTL	F, G
MC714	Dual 2-Input Gates	MRTL	F, G	MC712	Half Adders	mW MRTL	F, G
MC715	Dual 3-Input Gates	MRTL	F, G	MC775	Dual Half Adder	MRTL	F [']
MC718	Dual 3-Input Gates	mW MRTL	F, G				
MC719	Dual 4-Input Gate	mW MRTL	F				
MC725	Dual 4-Input Gate	MRTL	F	HALF-SH	IFT REGISTERS		
MC792	Triple 3-Input Gate	MRTL	F	MC705	Half-Shift Registers		
MC793	Triple 3-Input Gate	mW MRTL	F		with Inverter	MRTL	F, G
MC717	Quad 2-Input Gate	mW MRTL	F	MC706	Half-Shift Registers		
MC724	Quad 2-Input Gate	MRTL	F		without Inverter	MRTL	F, G
				MC783	Dual Half-Shift Register		
BUFFERS					with Inverter	MRTL	F
	D. #*	MRTL .	г с	MC784	Dual Half-Shift Register		
MC700 MC709	Buffers Buffers	mW MRTL	F, G F, G		without Inverter	MRTL	F
MC781	Dual Buffer	mW MRTL	G G				
MC799	Dual Buffers	MRTL	F, G	FLIP-FLO	De.		
MC798	Dual 2-Input Buffer	mW MRTL	F, G			MOTI	^
MC788	Dual 3-Input Buffer	MRTL	F	MC702 MC720	R-S Flip-Flop	MRTL mW MRTL	G F, G
WIC788	Duai 3-input builei		•	MC720 MC722	J-K Flip-Flops	mW MRTL	•
				MC723	J-K Flip-Flops	MRTL	F, G F, G
INVERTE	RS			MC723	J-K Flip-Flops	MRTL	•
MC727	Quad Inverters	MRTL	F, G	MC726	J-K Flip-Flops J-K Flip-Flop	MRTL	F, G G
MC789	Hex Inverter	MRTL	F	MC782	J-K Flip-Flop	mW MRTL	G
				MC776	Dual J-K Flip-Flop	mW MRTL	F F
EXPANDE	RS	gr 186		MC790	Dual J-K Flip-Flop	MRTL	F
MC721	Dual 2-Input Expanders	mW MRTL	F, G	MC791	Dual J-K Flip-Flop	MRTL	F
MC721 MC786	Dual 4-Input Expanders Dual 4-Input Expander	MRTL	F, G F	MC713	Type D Flip-Flops	mW MRTL	F, G
MC785	Quad 2-Input Expander	MRTL	F	MC778	Dual Type D Flip-Flop	mW MRTL	F, G
IVIC/85	Quad 2-Input Expander	IVIDIL	г	WIC//6	Dual Type D Flip-Flop	IIIAA MILLII	•

NUMERICAL INDEX (Functions and Characteristics)

Function	Type	Case	Output Loading Factor Each Output	Propagation Delay ^t pd ns typ	Total Power Dissipation mW typ/pkg
RTL					
Buffer	MC700	72,96	80	20	25/50 ②
Counter Adapter	MC701	96	16	22	80
R.S. Flip-Flop	MC702	96	13	14	32
3-Input NOR Gate	MC703	72,96	16	12	28/7.5 ②
Half Adder	MC704	72,96	16	14	65
Half-Shift Register Half-Shift Register (w/o Inverter) 4-Input NOR Gate Dual 2-Input NOR Gate Dual 3-Input NOR Gate	MC705	72,96	13	22	75
	MC706	72,96	13	22	52
	MC707	72,96	16	12	30/7.5 ②
	MC714	72,96	16	12	50/15 ②
	MC715	72,96A	16	12	55/15 ②
J-K Flip-Flop	MC723	72,96	10	35	91/79
Quad 2-Input NOR Gate	MC724	83	16	12	
Dual 4-Input NOR Gate	MC725	83	16	12	
J-K Flip-Flop	MC726	72,96A	16	35	
Quad Inverter	MC727	72,96A	16	12	
5-Input NOR Gate	MC729	72,96	16	12	33/7.5 ②
Quad Exclusive OR Gate	MC771	83	16	12	87
J-K Flip-Flop	MC774	96	16	35	100/86 ④
Dual Half Adder	MC775	83	16	20	120
Dual Half Shift Register	MC783	83	13	22	140
Dual Half Shift Register w/Inverter Quad 2-Input Expander Dual 4-Input Expander Dual 3-Input Buffer, non-inverting Hex Inverter	MC784 MC785 MC786 MC788 MC789	83 83 83 83 83	13 - - 80 16	22 12 12 12 24 12	100 20/ — ② 20/ — ② 145/56 ② 130/15 ②
Dual J-K Flip-Flop	MC790	83	10	35	182/158
Dual J-K Flip-Flop	MC791	83	16	40	
Triple 3-Input NOR Gate	MC792	83	16	12	
Dual Full Adder	MC796	83	13	60	
Dual Full Subtractor	MC797	83	13	60	
Dual Buffer	MC799	72,96A	80	20	50/100 ②
Hex Expander	MC9719	83	-	12	13/ — ②
W MRTL					
Half Adder 2-Input Buffer Dual 2-Input NOR Gate Dual 4-Input OR/NOR Gate Half Adder	MC708 MC709 MC710 MC711 MC712	72,96 72,96 72,96 72,96 72,96 72,96	4 30 4 4 4	60 57 27 60 66	19/12.5 ② 7.0/23 ② 10/2.5 ② 8.0/5.5 ② 15.5/10.5 ②
Type D Flip-Flop Quad 2-Input NOR Gate Dual 3-Input NOR Gate Dual 4-Input NOR Gate J-K Flip-Flop	MC713 MC717 MC718 MC719 MC720	72,96 83 72,96A 83 72,96	3 4 4 4 2	75 27 27 27 27 50	24/17.5 ③ 20/5.0 ② 12/2.5 ② 13/2.5 ② 20.5/14.5 ④
Dual 2-Input Gate Expander	MC721	72,96	-	27	3.0/ — ②
J-K Flip-Flop	MC722	72,96A	4	70	24/20 ④
5-Input NOR Gate	MC728	72,96	4	27	7.5/1.0 ②
Dual J-K Flip-Flop	MC776	83	2	50	41/29 ④
Dual Type D Flip-Flop	MC778	83	3	60	48/35 ③
Dual Buffer	MC781	96	30	57	14/46 ②
J-K Flip-Flop	MC782	96	2	80	23/21 ④
Triple 3-Input NOR Gate	MC793	83	4	27	18/3.5 ②
Dual 2-Input Buffer	MC798	83	30	57	14/46 ②
Quad 2-Input Expander	MC9721	83	-	27	20/ — ②

① G suffix denotes Metal Can, F suffix denotes Flat Package; i.e., MC718G = Metal Can, MC718F = Flat Package.

② Inputs High/Inputs Low.

³ Direct Set and Direct Clear Low, All Other Inputs High/All Inputs Low

Only Clock Input High/Inputs Low

GENERAL INFORMATION

COMMERCIAL MRTL MC700 series

OUTLINE DIMENSIONS

TEST CONDITION TOLERANCES

 $V_{BOT} = \pm 10 \text{ mV}$

 $V_{CC} = \pm 10 \text{ mV}$

 $V_{in} = \pm 2 \, mV$

V_R = ±1%

V_{on} = ±2 mV

 $V_{off} = \pm 2 \text{ mV}$

- GENERAL RULES Testing tables shown in the MC900/800 MRTL and the MC908/808 mW MRTL sections of this volume may be utilized for testing MC700F and G commercial series devices. Pin number configurations are the same. MC700 series forcing functions and test limits are shown on page 6-247.
 - The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output.
 - For ease of mixing MRTL and mW MRTL in the same system, the loading factors are normalized in accordance with the input currents being driven.
 - Any number of gates may be paralleled; the input loading is increased by 1/4 load if only one gate is connected to V_{CC}.

- \bullet When paralleling gates with $V_{\mbox{\footnotesize{CC}}}$ connected, a maximum of 4 outputs may be paralleled, increasing the input loading factor by 2.33.
- If the counter adapter is paralleled with another circuit, the output drive capability must be reduced by two loads. The reason for this drive reduction is the 1280-ohm resistance that connects the output terminals on the counter adapter.
- All unused input pins should be returned to ground.
- EXPANDER RULES:
- The MC785F, MC786F and MC9719F MRTL expanders can be used to expand medium-power MRTL output nodes only.
- When using the MC785F, MC786F or MC9719F subtract 0.5 from the output loading factor of the medium-power MRTL expanded gate for each expander node that is connected; also increase the input loading factor of the medium-power expanded gate by a factor of 1.33.

GENERAL INFORMATION (continued)

MAXIMUM RATINGS (TA = 25°C)

Rating	Symbol	Value	Unit
Logic Input Voltage		±4.0	Vdc
Power Supply Voltage (Pulsed ≤ 1 second)		+12	Vdc
Operating Temperature Range MC700G/F Series	TA	+15 to +55	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS

	Milliwatt MRTL		MRTL			Unit	
Characteristic	+15°C	+25°C	+55°C	+15°C	+25°C	+55°C	Unit
I _A 3	0.420	0.420	0.420	-	-	-	mAdc min
¹ A4	0.570	0.570	0.570	-	_	-	mAdc min
¹ A10	-	_	_	1.65	1.65	1.65	mAdc min
' IA13	-	-	_	2.15	2.15	2.03	mAdc min
^I A16	-	_	-	2.65	2.65	2.5	mAdc min
IAB	5.0	5.0	5.0	13.5	13.75	12.5	mAdc min
CEX	50	50	100	225	225	250	μAdc max
lin	0.150	0.150	0.150	0.500	0.500	0.470	mAdc max
2 I _{in}	0.300	0.300	0.300	1.0	1.0	0.94	mAdc max
Vout	0.400	0.300	0.320	0.400	0.300	0.320	Vdc max
V _{CE}	0.220	0.230	0.320	0.300	0.290	0.320	Vdc max

TEST CONDITIONS

V _{BOT}	1.8	1.8	1,8	1.8	1.8	1.8	Vdc
vcc	3.6	3.6	3.6	3.6	3.6	3.6	Vdc
Vin	0.865	0.850	0.800	0.865	0.850	0.800	Vdc
V _{off}	0.475	0.460	0.430	0.475	0.460	0.430	Vdc
Von	0.865	0.850	0.800	0.865	0.850	0.800	Vdc
v _R *	4600	4800	5000	640	640	640	Ohms

^{*}Resistor value to Vcc

DEFINITIONS

- IA2, IA3, Minimum available output current from a device with 1_{A4}, 1_{A5}, an output loading factor of 2, 3, 4, 5, 10, 13, and 16 IA10, IA13, respectively. Output voltage not to fall below the value IA16 of Von-
 - IAB Minimum available output current from a buffer. Output voltage not to fall below the value of Von.
 - IAM The maximum available current from the output of a Dual Gate.
 - ICEX Collector current of a circuit when Vin is applied to the output pin and Voff is applied to the input pins.
 - In Maximum input current drawn by one input of a gate with Vin applied. All other gate inputs are returned to VBOT.
 - 1.8 I_{in} Current drawn from the V_{in} supply by the Toggle pin of the Flip-Flop.
 - 21in Maximum input current drawn by one input of a device with 2 bases internally tied together.
 - IL Isolation leakage current.
 - IO Output load current.

- VBOT A high value voltage applied to an input of a device to insure saturation of the driven transistor.
 - VCC Supply voltage.
- V_{CE(sat)} Maximum saturation voltage with V_{BOT} applied to the
 - Vin Minimum high level voltage applied to the input of a device.
 - V_{LL} A supply voltage low enough to allow flow of leakage currents only.
 - Voff The maximum voltage which may be applied to an input terminal without turning the transistor on.
 - Von The minimum voltage which may be applied to an input terminal that will turn the transistor on.
 - $V_{\mbox{out}}$ The maximum output voltage with $V_{\mbox{on}}$ applied to the input.
 - VR Value of external resistor connected to VCC for test pur-
 - V_{RH} = highest node resistor value V_{RL} = lowest node resistor value

LOADING DIAGRAMS

COMMERCIAL MRTL MC700 series

COMMERCIAL MRTL DEVICES AVAILABLE IN METAL CANS

The logic diagrams on these pages describe the MC700 Series Commercial MRTL integrated circuits available in metal cans, and permit quick selection of those circuits required for the implementation of a commercial system design. Pertinent information such as logic equations, truth tables, typical propagation delay time (t_{pd}), typical package power dissipation (P_{pl}), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability — fan-out — (when on the circuit output terminal). Medium-power devices have loading factors normal-

ized for compatability with the low-power devices for ease of mixing the two power levels in a system.

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The sumation of the input loading factors should not exceed the stated drive capability of the unit. Loading data are valid over the temperature range of +15 to +55°C, with VCC = 3.6 V $\pm 10\%$. For the TO-99 metal can, VCC is applied to pin 8, with ground connected to pin 4. For the TO-100 metal can, VCC is applied to pin 10, with ground connected to pin 5.

MC703G 3-Input Gate (medium-power)	MC711G 4-Input Gate (milliwatt)	MC707G 4-Input Gate (medium-power)	
(3) 1 (3) 2 (3) 3 (4) (6)	(1) 1 (1) 2 (1) 3 (1) 5	(3) 1 (3) 2 (3) 3 (3) 5	
6 = 1 + 2 + 3	$7 = \overline{1 + 2 + 3 + 5}$ $6 = 1 + 2 + 3 + 5$	6 = 1 + 2 + 3 + 5	
t _{pd} = 12 ns P _D = 28 mW (Input High) 7.5 mW (Inputs Low)	t_{pd} = 60 ns P _D = 8.0 mW (Input High) 5.5 mW (Inputs Low)	t _{pd} = 12 ns P _D = 30 mW (Input High) 7.5 mW (Inputs Low)	
MC728G 5-Input Gate (milliwatt)	MC729G 5-Input Gate (medium-power)	MC710G Dual 2-Input Gat (milliwatt)	
(1) 1 (1) 2 (1) 3 (1) 5 (1) 6	(3) 1 (3) 2 (3) 3 (3) 3 (3) 5 (3) 6	(1) 1 (1) 2 (1) 3 (1) 5 (1) 5	
7 = 1 + 2 + 3 + 5 + 6 tpd = 27 ns PD = 7.5 mW (Input High) 1.0 mW (Inputs Low)	$7 = \overline{1 + 2 + 3 + 5 + 6}$ $t_{pd} = 12 \text{ ns}$ $P_D = 33 \text{ mW (Input High)}$ 7.5 mW (Inputs Low)	$7 = \overline{1+2}$ $t_{pd} = 27 \text{ ns}$ $P_{D} = 10 \text{ mW (Input High)}$ $2.5 \text{ mW (Inputs Low)}$	
MC714G Dual 2-Input Gate (medium-power)	MC718G Dual 3-Input Gate (milliwatt)	MC715G Dual 3-Input Gate (medium-power)	
(3) 1 ———————————————————————————————————	{1) 1 11 2 11 3 11 6 11 8 11 8	(3) 1 (3) 2 (3) 3 (3) 3 (3) 6 (3) 7 (3) 8 (3) 8	
7 = 1 + 2 t _{pd} = 12 ns P _D = 50 mW (Input High) 15 mW (Inputs Low)	4 = 1 + 2 + 3 t _{pd} = 27 ns P _D = 12 mW (Input High) 2.5 mW (Inputs Low)	$4 = \overline{1 + 2 + 3}$ $t_{pd} = 12 \text{ ns}$ $P_D = 55 \text{ mW (Input High)}$ $15 \text{ mW (Inputs Low)}$	

LOADING DIAGRAMS

COMMERCIAL MRTL MC700 series

COMMERCIAL MRTL DEVICES AVAILABLE IN FLAT PACKAGES

The logic diagrams shown on these pages describe the MC700 Series Commercial MRTL integrated circuits available in flat packages, and permit quick selection of those circuits required for implementation of a commercial system design. Pertinent information such as logic equations, truth tables, typical propagation delay time (tpd), typical power dissipation (PD), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (when on the circuit input terminal) or load driving ability – fan-out – (when on the circuit output terminal). Medium-power devices have loading factors normalized

for compatability with the low-power devices for ease of mixing the two power levels in a system.

The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the unit. Loading data are valid over the temperature range of +15 to +55°C, with V_{CC} = 3.6 V $\pm 10\%$. For the TO-91 flat package, V_{CC} is applied to pin 10, with ground connected to pin 5. For the TO-86 flat package, V_{CC} is applied to pin 14, with ground connected to pin 7.

MC703F 3-Input Gate (medium-power)	MC707F 4-Input Gate (medium-power)	MC711F 4-Input Gate (milliwatt)
(3) 2 (3) 3 (3) 4 (16)	(3) 2 (3) 3 (3) 4 (3) 7	(1) 1 (1) 2 (1) 4 (1) 6
8 = 2 + 3 + 4 t _{pd} = 12 ns P _D = 28 mW (Input High) 7.5 mW (Inputs Low)	$8 = \overline{2 + 3 + 4 + 7}$ $t_{pd} = 12 \text{ ns}$ $P_{D} = 30 \text{ mW (Input High)}$ $7.5 \text{ mW (Inputs Low)}$	7 = 1 + 2 + 4 + 6 9 = 1 + 2 + 4 + 6 t _{pd} = 60 ns P _D = 8.0 mW (Input High) 5.5 mW (Inputs Low)
MC729F 5-Input Gate (medium-power)	MC728F 5-Input Gate (milliwatt)	MC714F Dual 2-Input Gate (medium-power)
(3) 2 (3) 3 (3) 4 (3) 7 (3) 8	(1) 1 (1) 2 (1) 4 (1) 6 (1) 7	(3) 2 — 9 (1 (3) 3 — 9 (1 (3) 4 — 8 (1
9 = 2 + 3 + 4 + 7 + 8 t _{pd} = 12 ns P _D = 33 mW (Input High) 7.5 mW (Inputs Low)	9 = 1 + 2 + 4 + 6 + 7 t _{pd} = 27 ns P _D = 7.5 mW (Input High) 1.0 mW (Inputs Low)	$9 = \overline{2+3}$ $t_{pd} = 12 \text{ ns}$ $P_{D} = 50 \text{ mW (Input High)}$ $15 \text{ mW (Inputs Low)}$
MC710F Dual 2-Input Gate (milliwatt)	MC715F Dual 3-Input Gate (medium-power)	MC718F Dual 3-Input Gat (milliwatt)
(1) 1 (1) 2 (1) 4 (1) 6 (1) 6	(3) 1 (3) 2 (3) 3 (3) 3 (3) 6 (3) 6 (3) 7 (3) 8	(1) 1 (1) 2 (1) 3 (1) 4 (1) 6 (1) 7 (1) 7
9 = 1 + 2 t _{pd} = 27 ns P _D = 10 mW (Input High) 2.5 mW (Inputs Low)	$4 = \overline{1 + 2 + 3}$ $t_{pd} = 12 \text{ ns}$ $P_D = 55 \text{ mW (Input High)}$ $15 \text{ mW (Inputs Low)}$	$9 = \overline{1 + 2 + 3}$ $t_{pd} = 27 \text{ ns}$ $P_{D} = 12 \text{ mW (Input High)}$ $2.5 \text{ mW (Inputs Low)}$

