

# **Solusi Tutorial 1**

## **Pengantar Sistem Digital**

2023-2024 Gasal

**RBN** 







## Petunjuk Pengerjaan

- Silahkan mengerjakan soal ini sebagai latihan!
- Usahakan coba kerjakan soal sendiri lebih dahulu, baru lihat solusi atau bertanya kalau benar-benar stuck.
- Semangat semuanya! 🤩 🤩 🤩

### **Soal Tutorial**

Rilis - 06/09/2023

1. Berapa banyak bit yang dibutuhkan untuk merepresentasikan bilangan desimal berikut ke dalam bilangan biner?

#### Jawaban:

a. 
$$\lceil 2 \log(58) \rceil = \lceil 5.86 \rceil = 6$$
 bit

b. 
$$\lceil 2 \log(127) \rceil = \lceil 6.98 \rceil = 7 \text{ bit}$$

c. 
$$\lceil 2 \log(514) \rceil = \lceil 9.006 \rceil = 10$$
 bit

2. Konversikan kode desimal berikut ini!

a. 
$$011001_{BCD} = \dots Excess-3$$

c. 
$$110010_{2,4,2,1} = \dots 8,4,-2,-1$$

#### Jawaban:

a. 
$$011001_{BCD} = 0001_{BCD}$$
  $1001_{BCD}$   $1_{10}$   $9_{10}$   $+3_{10}$   $+3_{10}$   $=12_{10}$   $0100_{Excess-3}$   $1100_{Excess-3}$ 

Didapat 011001<sub>BCD</sub> = 01001100<sub>Excess-3</sub> atau 1001100<sub>Excess-3</sub>

b. 
$$1101011_{\text{Excess-3}} = 0110_{\text{Excess-3}}$$
  $1011_{\text{Excess-3}}$   $6_{10}$   $11_{10}$   $-3_{10}$   $-3_{10}$   $= 8_{10}$   $0011_{2,4,2,1}$   $1110_{2,4,2,1}$ 

Didapat  $1101011_{\text{Excess-3}} = \frac{00111110_{2,4,2,1}}{2}$  atau  $\frac{111110_{2,4,2,1}}{2}$ 

c. 
$$110010_{2,4,2,1} = 0011_{2,4,2,1}$$
  $0010_{2,4,2,1}$   $3_{10}$   $2_{10}$   $0101_{8,4,-2,-1}$   $0110_{8,4,-2,-1}$  Didapat  $110010_{2,4,2,1} = 01010110_{8,4,-2,-1}$  atau  $1010110_{8,4,-2,-1}$ 

- 3. Konversikan bilangan-bilangan biner di bawah ini dari Binary Code ke Gray Code dan sebaliknya!
  - a.  $001110_2 = \dots Gray$
  - b. 101100<sub>Gray</sub> = .....<sub>2</sub>

#### Jawaban:

- a. Binary code -> Gray code
  - 1. Pertahankan MSB
  - 2. Dari kiri ke kanan, tambahkan setiap pasangan yang berdekatan dari bit Binary Code untuk mendapatkan bit Gray Code berikutnya, dengan membuang carry



Didapat  $001110_2 = 001001_{Gray}$ 

- b. Gray code -> Binary code
  - 1. Pertahankan MSB
  - 2. Dari kiri ke kanan, tambahkan setiap bit Binary Code yang dihasilkan ke bit Gray Code di posisi berikutnya, dengan membuang carry



Didapat  $101100_{Grav} = 110111_{2}$ 

- 4. Konversikan bilangan-bilangan berikut menjadi heksadesimal floating point IEEE-754 32-bit!
  - a. 3114.5625
  - b. -246.25

#### Jawaban:

- a. 3114.5625
  - 1. Ubah bilangan ke dalam bilangan biner  $3114.5625_{10} = 110000101010.1001_2$  (.1001 didapat dari  $2^{-1} + 2^{-4} = 0.5625$ )
  - 2. Ubah ke dalam bentuk scientific

#### 1.100001010101001 x 211

3. Memasukkan sign, exponent, dan fraction bit

Sign bit = 0 (karena positif)

Biased Exponent bits =  $127 + 11 = 138 = 10001010_2$ 

Fraction bits = 100 0010 1010 1001 0000 0000

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 0     | 1000 1010 | 100 0010 1010 1001 0000 0000 |
| Sign  | Exponent  | Fraction                     |

4. Konversikan menjadi heksadesimal

0100 0101 0100 0010 1010 1001 0000 0000 = 0x4542A900

- b. -246.25
  - 1. Ubah bilangan ke dalam bilangan biner

**246.25**<sub>10</sub> = **-11110110.01**<sub>2</sub> (.01 didapat dari 
$$2^{-2}$$
 = 0.25)

2. Ubah ke dalam bentuk scientific

#### 1.111011001 x 2<sup>7</sup>

3. Memasukkan sign, exponent, dan fraction bit

Sign bit = 1 (karena negatif)

Biased Exponent bits =  $127 + 7 = 138 = 10000110_2$ 

Fraction bits = **111 0110 0100 0000 0000 0000** 

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 1     | 1000 0110 | 111 0110 0100 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

4. Konversikan menjadi heksadesimal

- 5. Konversikan bilangan IEEE 754 32-bit heksadesimal berikut menjadi desimal!
  - a. 0x44F7C400
  - b. 0xC3935000

#### Jawaban:

- a. 0x44F7C400
  - 1. Ubah ke dalam bentuk biner

#### 0x44F7C400 = 0100 0100 1111 0111 1100 0100 0000 0000

2. Kelompokkan bit ke dalam sign, exponent, dan fraction bits

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 0     | 1000 1001 | 111 0111 1100 0100 0000 0000 |
| Sign  | Exponent  | Fraction                     |

3. Rincikan hasil dari pengelompokan

Sign bit = 0 -> Positif

Biased Exponent bits -> 1000 1001 = 137 -> 137 - 127 = 10

Fraction = 111 0111 1100 0100 0000 0000

4. Konstruksi bilangan desimal dari rincian yang didapat Bilangan biner yang didapat:

1.11101111100010000000000 x 2<sup>10</sup> = 11110111110.001<sub>2</sub>

Ubah ke bilangan desimal:

11110111110.001<sub>2</sub> = 1982.125<sub>10</sub>

- b. 0xC3935000
  - 1. Ubah ke dalam bentuk biner

#### 0xC3935000 = 1100 0011 1001 0011 0101 0000 0000 0000

2. Kelompokkan bit ke dalam sign, exponent, dan fraction bits

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 1     | 1000 0111 | 001 0011 0101 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

3. Rincikan hasil dari pengelompokan

Sign bit = 1 -> Negatif

Biased Exponent bits -> 1000 0111 = 135 -> 135 - 127 = 8

Fraction = **001 0011 0101 0000 0000 0000** 

4. Konstruksi bilangan desimal dari rincian yang didapat Bilangan biner yang didapat:

1.00100110.101000000000000 x 28 = 100100110.101<sub>2</sub>

Ubah ke bilangan desimal:

100100110.101<sub>2</sub> = -294.625<sub>10</sub>

- 6. Lakukan operasi aritmatika terhadap IEEE 754 32-bit heksadesimal berikut dan tuliskan hasilnya dalam IEEE 754 32-bit heksadesimal!
  - a. 0x42B88000 + 0xC23E0000
  - b. 0x4381A000 0x43E65000
  - c. 0x41880000 \* 0xC2580000
  - d. 0xC2F00000 / 0x41400000

#### Jawaban:

- a. 0x42B88000 + 0xC23E0000
  - Ubah ke biner dan kelompokkan bit ke dalam sign, exponent, dan fraction bits

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 0     | 1000 0101 | 011 1000 1000 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 1     | 1000 0100 | 011 1110 0000 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

2. Samakan exponent dengan shifting

3. Lakukan operasi aritmatika

Karena N2 negatif, dilakukan operasi N1-N2

- 4. Ubah ke dalam bentuk scientific 0.10110011 x 2<sup>6</sup> -> **1.0110011 x 2**<sup>5</sup>
- Memasukkan sign, exponent, dan fraction bit
   Sign bit = 0 (karena positif)
   Biased Exponent bits = 127 + 5 = 132 = 1000 0100
   Fraction bits = 011 0011 0000 0000 0000

6. Ubah ke dalam heksadesimal

## 0100 | 0010 | 0011 | 0011 | 0000 | 0000 | 0000 | 0000

- b. 0x4381A000 0x43E65000
  - Ubah ke biner dan kelompokkan bit ke dalam sign, exponent, dan fraction bits

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 0     | 1000 0111 | 000 0001 1010 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

N2 = 0x43E65000 = 0100 0011 1110 0110 0101 0000 0000 0000

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 0     | 1000 0111 | 110 0110 0101 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

2. Samakan exponent dengan shifting

N1 = 1000 0111 = 135 - 127 = 8 -> 1.0000001101 x 2<sup>8</sup>

N2 = 1000 0111 = 135 - 127 = 8 -> 1.11001100101 x 2<sup>8</sup>

Exponent sudah sama

3. Lakukan operasi aritmatika

Dilakukan operasi N1-N2

1.0000001101 x 28

1.11001100101 x 28

\_\_\_\_\_\_

-0.11001001011 x 28

- 4. Ubah ke dalam bentuk scientific  $0.11001001011 \times 2^8 \rightarrow 1.1001001011 \times 2^7$
- 5. Memasukkan sign, exponent, dan fraction bit

Sign bit = 1 (karena negatif)

Biased Exponent bits = 127 + 7 = 134 = **1000 0110** 

Fraction bits = **100 1001 0110 0000 0000 0000** 

6. Ubah ke dalam heksadesimal

#### 1100 | 0011 | 0100 | 1001 | 0110 | 0000 | 0000 | 0000 9 0

0xC3496000

- c. 0x41880000 \* 0xC2580000
  - 1. Ubah ke biner dan kelompokkan bit ke dalam sign, exponent, dan fraction bits

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 0     | 1000 0011 | 000 1000 0000 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 1     | 1000 0100 | 101 1000 0000 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

2. Ubah ke dalam bentuk Mantissa

3. Lakukan operasi aritmatika

Dilakukan operasi N1\*N2. Pada operasi perkalian, exponent dijumlahkan.

```
1.0001 x 2<sup>4</sup>
      1.1011 x 2<sup>5</sup>
      ____ *
      10001
    10001
  00000
 10001
10001
1.11001011 \times 2^{(4+5)}
```

4. Memasukkan sign, exponent, dan fraction bit

Sign bit = 1 (karena negatif, perkalian positif dengan negatif menghasilkan negatif)

Biased Exponent bits = 127 + 9 = 136 = **1000 1000** 

Fraction bits = **110 0101 1000 0000 0000 0000** 

5. Ubah ke dalam heksadesimal

#### 1100 | 0100 | 0110 | 0101 | 1000 | 0000 | 0000 | 0000

C 4 6 5 8 0 0 0 0xC4658000

- d. 0xC2F00000 / 0x41400000
  - 1. Ubah ke biner dan kelompokkan bit ke dalam sign, exponent, dan fraction bits

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 1     | 1000 0101 | 111 0000 0000 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

| 1 bit | 8 bits    | 23 bits                      |
|-------|-----------|------------------------------|
| 0     | 1000 0010 | 100 0000 0000 0000 0000 0000 |
| Sign  | Exponent  | Fraction                     |

2. Ubah ke dalam bentuk Mantissa

N1 = 1000 0101 = 133 - 127 = 6 -> 1.111 x 2<sup>6</sup>

 $N2 = 1000\ 0010 = 130 - 127 = 3 \rightarrow 1.1 \times 2^{3}$ 

3. Lakukan operasi aritmatika

Dilakukan operasi N1/N2

$$N1 = 1.111 \times 2^6 = 1111 \times 2^3$$

$$N2 = 1.1 \times 2^3 = 11 \times 2^2$$

101

-----

11 / 1111

11

----- -

0011

00

\_ \_ . .

0011

11

0

 $N1/N2 = 101 \times 2^{(3-2)} = 1.01 \times 2^3$ 

Memasukkan sign, exponent, dan fraction bit
 Sign bit = 1 (karena negatif, pembagian negatif dengan positif menghasilkan negatif)

Biased Exponent bits = 127 + 3 = 130 = **1000 0010** Fraction bits = **010 0000 0000 0000 0000** 

5. Ubah ke dalam heksadesimal

1100 | 0001 | 0010 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 00

7. Diterima Hamming code dengan even-parity bit 100011100101111, periksalah apakah terdapat error pada kode tersebut! Jika ya, tentukan pada bit ke berapa error tersebut berada kemudian tuliskan perbaikan kode tersebut dalam heksadesimal. Jika tidak, ubahlah data bit dari kode tersebut ke dalam bentuk heksadesimal. (Perhitungan urutan bit dimulai dari LSB).

#### Jawaban:

Diketahui bahwa pemeriksaan error menggunakan **even-parity bits**. Lalu, posisi bit pertama berada pada **Least Significant Bit/LSB**. Berikut pemeriksaan even parity bit-nya:

| Bit ke-               | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |                              |
|-----------------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|------------------------------|
|                       | 1  | 0  | 0  | 0  | 1  | 1  | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |                              |
| Parity bit position 1 | 5  |    |    |    | 4  |    | 3 |   |   |   |   |   | 2 |   | 1 | Jumlah bit '1' = 5<br>(odd)  |
| Parity bit position 2 | 6  |    |    |    | 5  | 4  |   |   |   | 3 |   |   | 2 | 1 |   | Jumlah bit '1' = 6<br>(even) |
| Parity bit position 4 | 3  |    |    |    |    |    |   |   |   | 2 |   | 1 |   |   |   | Jumlah bit '1' = 3<br>(odd)  |
| Parity bit position 8 | 4  |    |    |    | 3  | 2  | 1 |   |   |   |   |   |   |   |   | Jumlah bit '1' = 4<br>(even) |

Karena pada parity bits 1 dan 4 jumlah bit '1' nya ganjil, maka kita dapatkan error terjadi pada **bit ke-5** (1+4=5). Sehingga, kode yang benar adalah **100011100111111 = 0x473F**