Trabajo Práctico 5 Deep Learning

- Britos, Nicolás Ignacio 59.529
- Griggio, Juan Gabriel 59.092
- Roca, Agustín 59.160

Objetivos

- Implementación de un Autoencoder Básico.
- Implementación de un Denoising Autoencoder (DAE).
- Selección de un nuevo conjunto de datos y generación de nuevas muestras.

Desarrollo del trabajo

Tecnología utilizada

Autoencoder - Fonts

Arquitectura

Ejercicio 1.a.1

Parámetros fijados

 $\eta = 0.005$

Épocas = 1000

Momentum de $\alpha = 0.9$

Optimización

Ejercicio 1.a.2

Parámetros

Ι.		
	a.	Capa intermedia de 25
	b.	Activación sigmoidal
	C.	Minimización de Powell
2.		
	a.	Capa intermedia de 25
	b.	Activación tangente hiperbólica

Minimización de Powell

```
a. Capas intermedias de 25 y 10
b. Activación sigmoidal
c. Minimización de Powell
4.
a. Capa intermedia de 25
b. Activación sigmoidal
c. Sin minimización
```

Parámetros

- 1.
- a. Capa intermedia de 25
- b. Activación sigmoide
- c. Minimización de Powell
- 2
- a. Capa intermedia de 25
- b. Activación tangente hiperbólica
- c. Minimización de Powell

Parámetros

- 3.
- a. Capas intermedias de 25 y 10
- b. Activación exponencial
- c. Minimización de Powell
- 4.
- a. Capa intermedia de 25
- b. Activación exponencial
- c. Sin minimización

Espacio latente

Ejercicio 1.a.3

Generación

Ejercicio 1.a.4

Ejemplo 1 - 0Q

Ejemplo 2 - GH

Ejemplo 3 - DW

Denoising Autoencoder

Arquitectura

Ejercicio 1.b.1

Resultados

Ejercicio 1.b.2

Generación

Dataset: MNIST

Conjunto de entrenamiento: 60.000

Conjunto de testeo: 10.000

Tamaño: 28x28

Escala de grises

Clases: 10 (0 al 9)

Arquitectura

Ejercicio 2

Resultados

Conclusiones

Conclusiones

- Hay que seleccionar los parámetros de la red cuidadosamente para lograr el mejor resultado
- Se pueden generar datos similares a los del conjunto original
- Aumentar el ruido no alteró significativamente los resultados
- Los elementos de la misma clase quedan cercanos dentro del espacio latente
- Recorrer el espacio latente en cierta dirección puede generar alteraciones interpretables

Muchas gracias!