

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Haiora Seuger! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Função quadrática

Olímpio Rudinin Vissoto Leite

Função quadrática é qualquer função $f: \mathbb{R} \to \mathbb{R}$ dada por uma lei da forma $f(x) = ax^2 + bx + c$, na qual a, b e c são números reais com $a \ne 0$.

Observe alguns exemplos de funções quadráticas:

- y= $3x^2 + 7x 2$ representa a lei de formação de uma função quadrática, em que a é igual a 3, b é igual a 7 e c é igual a -2.
- A função $y = -x^2 11x$, em que a é igual a -1, b é igual a -7 e c é igual a 0(zero), representa uma função quadrática.

Gráfico de uma função quadrática

O gráfico de $f(x) = ax^2 + bx + c$ ou $y = ax^2 + bx + c$, $a \ne 0$, é uma parábola com eixo de simetria paralelo ao eixo y. Para desenhar o gráfico da função quadrática basta determinar alguns pontos da parábola. Para isso, devemos atribuir alguns valores para a variável x e determinarmos os valores correspondentes para a variável y.

Exemplos:

1. Desenhar o gráfico da função $y = x^2 - 6x + 5$.

Solução:

Construímos uma tabela, atribuindo os seguintes valores para x: 0, 1, 2, 3, 4, 5 e 6.

X	у	(x, y)
0	5	(0, 5)
1	0	(1, 0)
2	-3	(2, -3)
3	-4	(3, -4)
4	-3	(4, -3)
5	0	(5, 0)
6	5	(6, 5)

2. Desenhar o gráfico da função $f(x) = -x^2 - 2x$.

Solução:

A função dada pode ser descrita por $y = -x^2 - 2x$.

Atribuímos para x os valores: -3, -2, -1, 0 e 1, e construímos uma tabela.

Х	у	(x, y)
-3	-3	(-3, -3)
-2	0	(-2, 0)
-1	1	(-1, 1)
0	0	(0, 0)
1	-3	(1, -3)

Pontos notáveis de uma parábola

Em uma parábola, alguns pontos são denominados **pontos notáveis**, pois são pontos que se destacam, facilitam a construção do gráfico e a análise da função.

Ponto de interseção com eixo y

As funções quadráticas reais são representadas graficamente por parábolas que interceptam o eixo y em um ponto notável.

Nesse gráfico, o ponto P representa a interseção da parábola com o eixo y.

Devemos lembrar que todo ponto do eixo y possui abscissa com valor zero, atribuindo o valor 0 (zero) à variável x na lei de formação de uma função quadrática, temos:

$$y = ax^2 + bx + c$$

$$x = 0$$

$$y = a(0)^2 + b(0) + c$$

$$y = c$$

Logo, o ponto P terá coordenadas x = 0 e y = c, ou seja, temos o ponto P (0, c).

Vértice

Um ponto importante para a construção do gráfico de uma função quadrática é o *vértice* da parábola. Conhecida a abscissa x_v do vértice, basta determinar dois ou três pontos com abscissas menores que x_v e dois ou três, com abscissas menores que x_v .

Observe a figura a seguir. Toda parábola de equação $y = ax^2 + bx + c$, $a \ne 0$, corta o eixo y num ponto de abscissa x = 0, isto é, no ponto A(0, c).

A parábola é uma curva que tem simetria em relação a uma reta vertical que passa pelo vértice – o eixo de simetria. Logo, existe outro ponto com ordenada igual à do ponto A(0, c).

Assim, fazendo y = c na equação $y = ax^2 + bx + c$, obtemos $ax^2 + bx + c = c$. Daí, $x \cdot (ax + b) = 0$. Assim, x = 0 ou $x = -\frac{b}{a}$. Mas, x_v é o valor médio de 0 e $-\frac{b}{a}$. Logo, $x_v = \frac{0 + \left(-\frac{b}{a}\right)}{2} = -\frac{b}{2a}$

A abscissa do vértice de qualquer parábola de equação $y = ax^2 + bx + c$, $(a \ne 0)$ é $x_v = -\frac{b}{2a}$.

Exemplo:

Construir uma tabela de pares ordenados de números reais que satisfaçam à equação $y = x^2 - 2x - 3$. Em seguida, desenhar, num referencial cartesiano, a parábola que é gráfico dessa função.

Solução:

Inicialmente, vamos descobrir o x do vértice através da fórmula $x_v = -\frac{b}{2a}$. Assim, temos $x_v = -\frac{-2}{21} = 1$

Atribuindo a x três valores maiores que x_v e três menores, calculamos os valores correspondentes para a variável y e confeccionamos a tabela com os respectivos pares ordenados. Em seguida, localizamos os pontos no plano cartesiano e, finalmente, desenhamos a parábola.

X	у	(x, y)
-2	5	(-2, 5)
-1	0	(-1, 0)
0	-3	(0, -3)
1	-4	(1, -4)
2	-3	(2, -3)
3	0	(3, 0)
4	5	(4, 5)

Observações:

- No gráfico anterior, o ponto (1, −4) representa o vértice da parábola;
- A equação da reta vertical que passa pelo vértice (eixo de simetria) é x = 1.

Pontos de interseção da parábola com o eixo x

Um ponto que pertence ao eixo x tem ordenada y igual a 0. Assim, para descobrir os pontos em que a parábola de equação $y = ax^2 + bx + c$, ($a \ne 0$) intercepta o eixo x, basta substituir y por 0, obtendo a equação quadrática $ax^2 + bx + c = 0$. Os valores que representarão as soluções dessa equação corresponderão às abscissas dos pontos em que a parábola intercepta o eixo x. As soluções reais dessa equação do 2.º grau recebem o nome de raízes da função.

Resolvendo a equação $ax^2 + bx + c = 0$ pela fórmula resolutiva $\left(x = \frac{-b \pm \sqrt{\Delta}}{2a} com \Delta = b^2 - 4ac\right)$ temos três possibilidades:

- Δ > 0. Nesse caso, há duas raízes reais distintas e a parábola intercepta o eixo x em dois pontos.
- Δ = 0. Nesse caso, há uma raiz real e a parábola intercepta o eixo x em apenas um ponto.
- Δ < 0. Nesse caso, não há raiz real e a parábola não intercepta o eixo x.

O gráfico da função $y = ax^2 + bx + c$, $(a \ne 0)$ tem concavidade para cima ou para baixo. Os exemplos resolvidos a seguir sugerem que:

Se a > 0, a concavidade é para cima:

Se a < 0, a concavidade é para baixo:

A parábola pode interceptar o eixo *x* de três maneiras diferentes. Para cada uma delas, existem duas possibilidades: a concavidade pode ser voltada para cima ou para baixo. Logo, as parábolas que representam os gráficos de funções quadráticas possuem seis configurações diferentes:

Se $\Delta > 0$, a parábola intercepta o eixo x em dois pontos diferentes, $x_1 e x_2$:

Se $\Delta = 0$, a parábola intercepta o eixo x em um único ponto, $x_1 = x_2$:

Se Δ < 0, a parábola não intercepta o eixo x, pois a função não possui raiz real:

Observação:

Com as informações sobre o Δ e sobre o coeficiente a, é possível fazer um esboço do gráfico da função quadrática sem descobrir pontos da parábola. Em muitas situações, o esboço é suficiente para analisar a função.

Exemplos:

- 1. Esboçar o gráfico das funções quadráticas:
 - a) $y = 2x^2 x 3$
 - b) $y = -x^2 + 2x 1$
 - c) $y = x^2 + x$
 - d) $y = -x^2 + x 2$

Solução:

a)
$$\begin{cases} a = 2(a > 0) \\ \Delta = (-1)^2 - 4 \cdot 2 \cdot (-3) = 25(\Delta > 0) \end{cases}$$

b)
$$\begin{cases} a = -1 (a < 0) \\ \Delta = 2^2 - 4 \cdot (-1) \cdot (-1) = 0 (\Delta = 0) \end{cases}$$

c)
$$\begin{cases} a = 1 (a > 0) \\ \Delta = 1^2 - 4 \cdot 1 \cdot 0 = 1 (\Delta > 0) \end{cases}$$

d)
$$\begin{cases} a = -1(a < 0) \\ \Delta = 1^2 - 4 \cdot (-1) \cdot (-2) = -7(\Delta < 0) \end{cases}$$

2. Durante uma guerra, um canhão lançou uma bala com uma trajetória oblíqua em relação ao solo, conforme mostra a figura. A bala descreveu uma parábola de equação $y = -0,0005x^2 + 0,2x$, com x e y em quilômetros. Descobrir a altura máxima que a bala atingiu e a distância horizontal do ponto de lançamento até o ponto em que a bala se chocou com o chão (alcance).

Solução:

Nessa situação a altura máxima a ser determinada corresponde à ordenada do vértice da parábola.

Temos:

$$\begin{cases} a = -0,0005 \\ \Delta = 0,04 \end{cases}$$

$$x_{v} = \frac{0,2}{2 \cdot (-0,0005)} = 200$$

$$y_{v} = -0,0005 \cdot 200^{2} + 0,2 \cdot 200 = 20$$

As raízes da função são obtidas através de $-0.0005x^2 + 0.2x = 0$, isto é, $x_1 = 0$ e $x_2 = 400$. Assim, temos a < 0 $\Delta > 0$

Logo, a bala atingiu a altura máxima de 20km e teve um alcance de 400km.

Exercícios

1. Em cada item, considere a função quadrática $y = ax^2 + bx + c$, $(a \ne 0)$. Faça um esboço da parábola que representa a função dada, analisando o sinal de \boldsymbol{a} , o valor de $\Delta(\Delta = b^2 - 4ac)$, obtendo o vértice e as raízes, se existirem.

a)
$$y = x^2 + 2x + 1$$

b)
$$y = 2x^2 - 8$$

c)
$$y = x^2 + 3$$

d)
$$y = -x^2 - 4x - 4$$

e)
$$y = -x^2 - x$$

f)
$$y = -x^2 + 4x - 5$$

2. Durante uma partida de futebol, o goleiro chuta a bola "para frente", conforme o esquema:

A altura da bola y, em metros, varia em função da distância que ela se afasta do goleiro x, em metros, e é dada por $y = -x^2 + 10x$. Nessas condições, determine:

- a) A distância do ponto C, onde a bola tocou no chão, ao ponto A, de onde o goleiro chutou a bola;
- b) A altura h máxima que a bola atingiu, lembrando que $x_v = -\frac{b}{2a}$.

■ Domínio e imagem da função quadrática

O domínio da função, isto é, os valores de x para os quais a expressão $y = ax^2 + bx + c$ tem sentido, é formado por todos os números reais. O conjunto imagem é determinado a partir das coordenadas do vértice.

Exemplo:

Esboçar o gráfico da função $y = x^2 - 4x - 5$, dar o domínio e o conjunto imagem.

Solução:

Para esboçar o gráfico, observamos o valor de a e o de Δ :

$$\begin{cases} a = 1 \\ \Delta = (-4)^2 - 4 \cdot 1 \cdot (-5) = 36 \end{cases}$$

Como a > 0 $e \triangle > 0$, a parábola intercepta o eixo x em dois pontos e a concavidade é voltada para cima.

Para descobrir o conjunto imagem, dependemos do vértice da parábola. Lembrando que $x_v = -\frac{b}{2a}$, temos:

$$\begin{cases} x_v = -\frac{-4}{2 \cdot 1} = 2 \\ y_v = 2^2 - 4 \cdot 2 - 5 = -9 \end{cases}$$

Portanto, o vértice é o ponto V(2, -9). Com esses elementos, fazemos o esboço do gráfico:

Determinamos, também, o *domínio* D = IR e o conjunto imagem Im = $[-9, +\infty[$.

Máximo ou mínimo de uma função quadrática

Toda função quadrática apresenta uma particularidade importante: possui sempre um valor máximo ou um valor mínimo (valores extremos da função). Geralmente, nas aplicações das funções quadráticas, a descoberta desse valor extremo é fundamental.

Examinando os gráficos a seguir, você pode perceber que:

 y_v é o valor mínimo da função. y_v é o valor máximo da função.

Exemplos:

Considerar a função quadrática $f(x) = 2x^2 - 8x$. Notar que y = f(x). Esboçar o gráfico e determinar o vértice da parábola que representa f(x). A seguir, descobrir o valor máximo ou valor mínimo dessa função.

Solução:

Temos:

$$\begin{cases} a = 2 \\ \Delta = (-8)^2 - 4 \cdot 2 \cdot 0 = 64 \\ x_v = \frac{-8}{2 \cdot 2} = 2 \\ y_v = 2 \cdot 2^2 - 8 \cdot 2 = -8 \end{cases}$$

Assim:

$$\begin{cases} a > 0 \\ \Delta > 0 \end{cases}$$

O vértice é representado pelo ponto V(2, -8). Nessa situação, a função tem um valor mínimo de -8, representado pelo y_v .

Exercícios

3. Considerando o gráfico que mostra a parábola de equação $y = x^2 - 5x + 6$, responda:

- a) Qual o valor de y para x = 2?
- b) Quanto vale a?
- c) Quanto vale b?
- d) Para que valores de x, o valor de y é positivo?

- e) Qual é o valor mínimo de y?
- f) Para que valores de x, os valores de y são maiores que 6?
- **4.** Considerando o gráfico que mostra a parábola de equação $y = -x^2 + 4$, responda:

- a) Quais os valores de x para que a expressão $-x^2 + 4$ seja igual a zero?
- b) Quais os valores de x para que a expressão $-x^2 + 4$ seja positiva?
- c) Quais os valores de x para que a expressão $-x^2 + 4$ seja negativa?
- d) Qual o valor máximo da expressão $-x^2 + 4$?

- 5. Considere cada uma das funções quadráticas dadas a seguir:
 - Descubra o x do vértice $\left(x_v = -\frac{b}{2a}\right)$.
 - Construa uma tabela com pares ordenados de números reais para localizar, num referencial cartesiano, pontos da parábola que representa a função dada. (Utilize x_v e, pelo menos, dois valores maiores que x_v e dois menores).
 - Determine o valor máximo ou mínimo da função, isto é, y,,
 - Dê o vértice da parábola.
 - Desenhe a parábola representativa da função.
 - Escreva o domínio e o conjunto imagem da função.
 - a) $y = x^2$

b)
$$y = x^2 - 6x + 5$$

c)
$$y = -x^2 - 4x$$

- 6. Considere cada uma das funções quadráticas dadas a seguir:
 - Descubra o x do vértice da parábola $\left(x_{v} = -\frac{b}{2a}\right)$.
 - Construa uma tabela com pares ordenados de números reais, para localizar, num referencial cartesiano, pontos da parábola que representa a função dada. (Utilize x_v e, pelo menos, dois valores maiores que x_v e dois menores).

- Determine o valor máximo ou mínimo da função, (y_v).
- Dê o vértice da parábola.
- Desenhe a parábola.
- Escreva o domínio e o conjunto imagem da função.
- a) $y = x^2 1$

b)
$$y = -3x^2 + 6x$$

c)
$$y = x^2 + 2x + 1$$

d)
$$y = 4 + x^2$$

- 7. Analise o \triangle , para saber em quantos pontos a parábola intercepta o eixo x, e observe o sinal do coeficiente de x^2 . A partir de suas observações, faça um esboço do gráfico da parábola associada a cada equação dada:
 - a) $y = x^2 4x + 3$

b)
$$y = x^2 + 4x + 4$$

c)
$$y = -x^2 - 8x - 15$$

d)
$$y = -x^2 + 2x - 1$$

Para cada item, responda as seguintes questões:

- Para que valores de x a parábola intercepta o eixo x?
- Quais as coordenadas do vértice da parábola?
- Para que valores de x a expressão, chamada de y, é positiva?
- Para que valores a expressão é negativa?
- Observando o vértice, qual o valor máximo ou mínimo da expressão?
- 8. Um objeto, lançado obliquamente a partir do solo, alcança uma altura h (em metros) que varia em função do tempo t (em segundos) de acordo com a fórmula $h(t) = -t^2 + 20t$.
 - a) Em que instante o objeto atinge a altura máxima? De quantos metros é essa altura?
 - b) Em que instante ele atinge o solo novamente?

Gabarito

Função quadrática

1.

a) $y = x^2 + 2x + 1$, a = 1, b = 2, c = 1 $a = 1 \Rightarrow a > 0$ (parábola com concavidade voltada para cima)

$$\Delta = b^2 - 4ac$$

$$\Delta = 2^2 - 4.1.1$$

$$\Delta = 0$$

Raízes:

$$y = x^2 + 2x + 1$$

$$0 = x^2 + 2x + 1$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-2 \pm \sqrt{0}}{2 \cdot 1} = -1$$

$$x_1 = x_2 = -1$$

Vértice:

V(–1, 0). Como as raízes são iguais o valor do x_v coincide com o da raiz, e o valor do y_v é zero.

b) $y = 2x^2 - 8$, a = 2, b = 0, c = -8 $a = 2 \Rightarrow a > 0$ (parábola com concavidade voltada para cima)

$$\Delta = b^2 - 4ac$$

$$\Delta = 0^2 - 4 \cdot 2 \cdot (-8)$$

$$\Delta = 64$$

Raízes:

$$y = 2x^2 - 8$$

$$0=2x^2-8$$

$$x^2 = 4$$

$$x = \pm \sqrt{4}$$

$$X_1 = 2, X_2 = -2$$

Vértice:

$$x_v = -\frac{b}{2a}$$

$$x_{v} = -\frac{0}{2}$$

$$x_v = 0 \implies y_v = f(x_v) = f(0) = 2 \cdot (0)^2$$

-8 = -8

$$y_{y} = -8$$

c)
$$y = x^2 + 3$$
, $a = 1$, $b = 0$, $c = 3$
 $a = 1 \Rightarrow a > 0$ (parábola com concavidade voltada para cima)

$$\Delta = b^2 - 4ac$$

$$\Delta = 0^2 - 4.1.3$$

 $\Delta = -12 \Longrightarrow$ não tem raízes reais

Vértice:

$$x_v = -\frac{b}{2a}$$

$$x_v = -\frac{0}{2.1}$$

$$x_v = 0 \implies y_v = f(x_v) = f(0) = (0)^2 + 3$$

= 3

$$y_{v} = 3$$

d)
$$y = -x^2 - 4x - 4$$
, $a = -1$, $b = -4$, $c = -4$

 $a = -1 \Rightarrow a < 0$ (parábola com concavidade voltada para baixo)

$$\Delta = b^2 - 4ac$$

$$\Delta = (-4)^2 - 4 \cdot (-1) \cdot (-4)$$

$$\Lambda = 0$$

Raízes:

$$y = -x^2 - 4x - 4$$

$$0 = -x^2 - 4x - 4$$

$$x = -b \pm \sqrt{\Delta}$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-(-4) \pm \sqrt{0}}{2 \cdot (-1)} = \frac{4}{-2} = -2$$

$$x_1 = x_2 = -2$$

Vértice:

V(-2,0). Como as raízes são iguais, o valor do x_{v} coincide com o da raiz, e o valor do y, é zero.

e)
$$y = -x^2 - x$$
, $a = -1$, $b = -1$, $c = 0$
 $a = -1 \Rightarrow a < 0$ (parábola com concavidade voltada para baixo)

$$\Delta = b^2 - 4ac$$

$$\Delta = (-1)^2 - 4 \cdot (-1) \cdot (0)$$

$$\Delta = 1$$

Raízes:

$$y = -x^2 - x$$

$$0 = -x^2 - x$$

$$-(-1) + \sqrt{1}$$

$$0 = -x^{2} - x$$

$$x = \frac{-(-1) \pm \sqrt{1}}{2 \cdot (-1)}$$

$$x = \frac{+1 \pm 1}{-2} \begin{cases} x_1 = -\frac{1}{2} \\ x_2 = \frac{1}{2} \end{cases}$$

Vértice:

$$x_v = -\frac{b}{2a}$$
 $x_v = -\frac{-1}{2 \cdot (-1)}$

$$x_v = -\frac{1}{2} = -0.5 \implies y_v = f(x_v) =$$

$$f(-\frac{1}{2}) = -(-\frac{1}{2})^2 - (-\frac{1}{2}) = \frac{1}{4} = 0.25$$

$$y_{y} = 0.25$$

f)
$$y = -x^2 + 4x - 5$$
, $a = -1$, $b = 4$, $c = -5$
 $a = -1 \Rightarrow a < 0$ (parábola com concavidade voltada para baixo)

$$\Delta = 4^2 - 4 \cdot (-1) \cdot (-5)$$

$$\Delta = 16 - 20$$

$$\Delta = -4 \Rightarrow$$
 não tem raízes reais

Vértice:

$$x_v = -\frac{b}{2a}$$

$$x_v = -\frac{4}{2 \cdot (-1)}$$

$$x_v = 2 \implies y_v = f(x_v) = f(2) =$$

= -(2)² + 4.(2) - 5 = -1

$$y_{v} = -1$$

$$V(2, -1)$$

2.

a)
$$y = -x^2 + 10x$$

 $x^2 - 10x = 0$
 $x \cdot (x - 10) = 0$
 $x = 0$ ou $x = 10$

Resposta: 10 metros (a distância AC corresponde à distância entre as raízes da função)

b)
$$y = -x^2 + 10x$$
; $a = -1$, $b = 10$, $c = 0$

$$x_v = -\frac{b}{2a}$$

$$x_v = -\frac{10}{2 \cdot (-1)}$$

$$x_v = 5 \Rightarrow y_v = f(x_v) = f(5) = -(2)^2 + 10 \cdot (5) = 25$$

$$y_v = h_{max} = 25$$

Resposta: 25m

3.

a)
$$y = 0$$

b)
$$a = 2$$

c)
$$b = 6$$

d)
$$x < 2 \text{ ou } x > 3$$

e)
$$y = x^2 - 5x + 6$$
, $a = 1$, $b = -5$, $c = 6$
 $x_v = -\frac{-5}{2 \cdot 1}$
 $x_v = 2.5 \Rightarrow y_v = f(x_v) = f(2.5) = (2.5)^2$
 $-5 \cdot (2.5) + 6 = -0.25$
 $y_v = h_{min} = -0.25$

4.

a)
$$x = -2$$
 ou $x = 2$

f) x < 0 ou x > 5

b)
$$-2 < x < 2$$

c)
$$x < -2$$
 ou $x > 2$

5.

a)
$$y = x^2$$
, $a = 1$, $b = 0$, $c = 0$
 $x_v = -\frac{0}{2 \cdot 1}$
 $x_v = 0$

х	у	(x, y)
-2	4	(-2, 4)
-1	1	(-1, 1)
0	0	(0, 0)
1	1	(1, 1)
2	4	(2, 4)

$$x_v = 0 \Rightarrow y_v = f(x_v) = f(0) = (0)^2 = 0$$

 $y_v = 0$ (valor mínimo)
V (0, 0)

$$D = IR e Im = IR_{+}$$

b)
$$y = x^2 - 6x + 5$$
, $a = 1$, $b = -6$, $c = 5$
 $x_v = -\frac{-6}{2 \cdot 1}$
 $x_v = 3$

X	у	(x, y)
1	0	(1, 0)
2	-3	(2, -3)
3	-4	(3, -4)
4	-3	(4, -3)
5	0	(5, 0)

$$x_v = 3 \Rightarrow y_v = f(x_v) = f(3) =$$

= $(2,5)^2 - 6 \cdot (2,5) + 5 = -4$
 $y_v = -4$ (valor mínimo)
V (3, -4)

$$D = IR e Im = [-4, +\infty[$$

c)
$$y = -x^2 + 4x$$
, $a = -1$, $b = 4$, $c = 0$
 $x_v = -\frac{4}{2 \cdot (-1)}$
 $x_v = 2$

х	у	(x, y)
0	0	(0, 0)
1	3	(1, 3)
2	4	(2, 4)
3	3	(3, 3)
4	0	(4, 0)

$$x_v = 2 \Rightarrow y_v = f(x_v) = f(2) =$$

= -(2)² + 4.(2) = 4

 $y_v = 4$ (valor máximo)

V (2, 4)

$$D = IR e Im =]-\infty, 4]$$

6.

a)
$$y = x^2 - 1$$
, $a = 1$, $b = 0$, $c = -1$
 $x_v = -\frac{0}{2 \cdot 1}$
 $x_v = 0$

х	у	(x, y)
-2	3	(-2, 3)
-1	0	(-1, 0)
0	-1	(0, -1)
1	0	(1, 0)
2	3	(2, 3)

$$x_v = 0 \Rightarrow y_v = f(x_v) = f(0) =$$

= $(0)^2 - 1 = -1$
 $y_v = -1$ (valor mínimo)
V (0, -1)

$$D = IR e Im = [-1, +\infty[$$

b)
$$y = -3x^2 + 6x$$
, $a = -3$, $b = 6$, $c = 0$
 $x_v = -\frac{6}{2 \cdot (-3)}$
 $x_v = 1$

х	у	(x, y)
-1	-9	(-1, -9)
0	0	(0, 0)
1	3	(1, 3)
2	0	(2, 0)
3	-9	(3, -9)

$$x_v = 1 \Rightarrow y_v = f(x_v) = f(1) =$$

= -3 . (1)² + 6 . (1) = 3
 $y_v = 3$ (valor máximo)
V (1, 3)

$$D = IR e Im =]-\infty, 3]$$

c)
$$y = x^2 + 2x + 1$$
, $a = 1$, $b = 2$, $c = 1$
 $x_v = -\frac{2}{2 \cdot 1}$
 $x_v = -1$

х	у	(x, y)
-3	4	(-3, 4)
-2	1	(-2, 1)
-1	0	(-1, 0)
0	1	(0, 1)
1	4	(1, 4)

$$x_v = -1 \Rightarrow y_v = f(x_v) = f(-1) =$$

= $(-1)^2 + 2$. $(-1) + 1 = 0$
 $y_v = 0$ (valor mínimo)
V (-1, 0)

$$D = IR e Im = IR_{\perp}$$

d)
$$y = 4 + x^2$$
, $a = 1$, $b = 0$, $c = 4$
 $x_v = -\frac{0}{2 \cdot 1}$
 $x_v = 0$

X	у	(x, y)
-2	8	(-2, 8)
-1	5	(-1, 5)
0	4	(0, 4)
1	5	(1, 5)
2	8	(2, 8)

$$x_v = 0 \Rightarrow y_v = f(x_v) = f(0) = 4 + (0)^2$$

= 4

 $y_v = 4$ (valor mínimo)

V (0, 4)

$$D = IR e Im = [4, +\infty[$$

7.

a) Raízes (interseção com o eixo x)

$$y = x^2 - 4x + 3$$
, $a = 1$, $b = -4$, $c = 3$

$$0 = x^2 - 4x + 3$$

$$\Delta = b^2 - 4ac$$

$$\Delta = (-4)^2 - 4 \cdot 1 \cdot 3$$

$$\Delta = 4$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-(-4) \pm \sqrt{4}}{2 \cdot 1} \begin{cases} x_1 = 1 \\ x_2 = 3 \end{cases}$$

Para x = 1 e x = 3 a parábola intercepta o eixo x

O valor mínimo é -1.

b) Raízes (interseção com o eixo x)

$$y = x^2 + 4x + 4$$
, $a = 1$, $b = 4$, $c = 4$

$$0 = x^2 + 4x + 4$$

$$\Delta = b^2 - 4ac$$

$$\Delta = 4^2 - 4.1.4$$

$$\Lambda = 0$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$-4 + \sqrt{0}$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-4 \pm \sqrt{0}}{2 \cdot 1} = -2$$

$$x_1 = x_2 = -2$$

A parábola intercepta o eixo x em

$$x = -2$$
.

O valor mínimo é 0.

c) Raízes (interseção com o eixo x)

$$y = -x^2 - 8x - 15$$
, $a = -1$, $b = -8$, $c = -15$

$$0 = -x^2 - 8x - 15$$

$$\Delta = b^2 - 4ac$$

$$\Delta = (-8)^2 - 4 \cdot (-1) \cdot (-15)$$

$$\Lambda = 4$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-(-8) \pm \sqrt{4}}{2 \cdot (-1)}$$

$$x = \frac{8 \pm 2}{-2} \begin{cases} x_1 = -5 \\ x_2 = -3 \end{cases}$$

Para x = -3 e x = -5 a parábola intercepta o eixo x

O valor máximo é 1.

d) Raízes (interseção com o eixo x)

$$y = -x^2 + 2x - 1$$
, $a = -1$, $b = 2$, $c =$

$$0 = -x^2 + 2x - 1$$

$$\Delta = b^2 - 4ac$$

$$\Delta = 2^2 - 4 \cdot (-1) \cdot (-1)$$

$$\Delta = 0$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{-2 \pm \sqrt{0}}{2 \cdot (-1)}$$

$$x = \frac{-2 \pm 0}{-2}$$

$$x_1 = x_2 = -1$$

A parábola intercepta o eixo x em

$$x = -1$$

b)	$h(t) = -t^2 + 20t$
	$0 = -t^2 + 20t$
	$t^2 - 20t = 0$
	t . (t – 20) =
	t = 0 ou $t = 20$

Resposta: O objeto atinge novamente o solo no instante t = 20s.

não existe valor real de x que torne a variável y positiva y < 0 para $x \ne 1$

O valor máximo é 0.

8.

a)
$$h(t) = -t^2 + 20t$$
, $a = -1$, $b = 20$, $c = 0$

O instante em que o objeto atinge a altura máxima corresponde ao x.

$$x_v = -\frac{b}{2a}$$

 $x_v = -\frac{20}{2 \cdot (-1)}$

$$x_{v} = 10$$

A altura máxima atingida em 10 segundos.

$$h(t) = -t^2 + 20t$$

$$h(10) = -10^2 + 20.10$$

$$h(10) = -100 + 200$$

$$h(10) = 100$$

A altura máxima atingida é de 100 metros.