Радикальная ось и степень точки

Задача 1. Дан неравнобедренный треугольник ABC, в котором $\angle B=135^\circ$. Пусть M — середина отрезка AC. Точка O — центр окружности Ω , описанной около треугольника ABC. Луч BM вторично пересекает окружность Ω в точке D Докажите, что центр окружности γ , описанной около треугольника BOD, лежит на прямой AC. (Регион 2017, 11 класс, задача 3)

Решение. $\angle AOC = 2 * (180^{\circ} - \angle ABC) = 90^{\circ}$, поэтому OM = AM = MC. $OM \perp AC$, потому что медиана — высота в равнобедренном $\triangle AOC$. Точка X симметрична O относительно AC. AM * MC = BM * MD = MO * MX, значит, четырехугольник DOBX вписан в окружность с центром, лежащем на серединном перпендикуляре к OX, то есть центр описанной окружности $\triangle BOD$ лежит на AC.

Задача 2. Вписанная окружность касается сторон AB, BC и CA неравнобедренного треугольника ABC в точках C_1 , A_1 и B_1 соответственно. Пусть m — средняя линия треугольника $A_1B_1C_1$, параллельная стороне B_1C_1 . Биссектриса угла $B_1A_1C_1$ пересекает m в точке K. Доказать, что описанная окружность треугольника BCK касается m (Peruon 2021, 10 класс, задача 4)

Решение. M, N — середины A_1B_1 и A_1C_1 соответственно. I — центр вписанной окружности ΔABC . BI, CI — биссектрисы в ΔABC , а также BI, CI — серединные перпендикуляры к A_1C_1, A_1B_1 соответственно, потому что $BA_1 = BC_1, CA_1 = CB_1$ как отрезки касательных. $\angle IA_1B = \angle IC_1B = 90^\circ$ по свойству касательной, значит, IC_1BA_1 вписан, значит, $\angle IA_1C_1 = \angle IBC_1 = \angle IBA_1$. $\angle IMA_1 + \angle INA_1 = 90^\circ + 90^\circ = 180^\circ, IMA_1N$ вписан, $\angle IA_1N = \angle IMN$. Получается, что $\angle IMN = \angle CBI$, то есть четырехугольник CMNB вписан. Проведем MN и CB до пересечения в точке X. XA_1 — касательная к окружности, описанной около $MINA_1$, потому что центр этой окружности — середина A_1I , а $\angle IA_1X = 90^\circ$. Докажем,

что $XK = XA_1$. $\angle NA_1B = \angle NIA_1$, так как A_1N — высота в прямоугольном треугольнике IBA_1 . $\angle NIA_1 = \angle NMA_1$ из вписанности $MINA_1$. $\angle A_1KX = \angle A_1MX + \angle MA_1K = \angle NA_1X + \angle KA_1N = \angle KA_1X$. Действительно, $XK = XA_1$. Записав степень точки X относительно окружностей, описанных около CMNB и $MINA_1$, имеем $XA1^2 = XN * XM = XB * XC = XK^2$, отсюда, XK — касательная к окружности, описанной около ΔBCK .

Задача 3. Четырехугольник ABCD описан около окружности ω . Докажите, что диаметр окружности ω не превосходит длины отрезка, соединяющего середины сторон BC и AD. (*Регион 2020, 9 класс, задача 5*)

Решение. E и F — середины BC и AD соответственно. ω касается BC и AD в точках K и L соответственно. Построим две окружности, отличные от ω . Окружность ω_1 касается AB, CD и BC в точке M, окружность ω_2 касается AB, CD и AD в точке N. Центры трех окружностей лежат на одной прямой l, так как все окружности касаются AB и CD. AL = ND, BM = KC, поэтому F и E — середины LN и MK. LN и MK — общие касательные, значит, через E проходит радикальная ось ω и ω_1 , через E — радикальная ось ω и ω_2 . При этом радикальные оси должны быть перпендикулярны l, то есть сами они параллельны. EE больше или равно расстоянию между радикальными осями, а диаметр ω не первосходит этого расстояния, следовательно, диаметр ω меньше или равен EF.

Задача 4. В прямоугольном треугольнике ABC проведена высота CH и отмечена точка D, симметричная C относительно H. Пусть M — произвольная точка отрезка AC, а P — основание перпендикуляра из точки C на прямую BM. Точка H — середина отрезка CD. На отрезке CH (внутри угла HPB) нашлась такая точка N, что $\angle DPH = \angle NPB$. Докажите, что точки M, P, N, D лежат на одной окружности.

 $Pewenue.\ \angle DPH = \angle NPB,\$ отсюда, $\angle NPD = \angle BPH.\$ Четырехугольник CPHB вписанный, так как $\angle CPB = \angle CHB = 90^\circ,\$ поэтому $\angle HPB = \angle HCB = \angle NDC$ из симметрии. $\angle NDB = \angle NPD,\$ значит, BD — касательная к окружности, описанной около треугольника $NPD.\ CP$ — высота в прямоугольном треугольнике $CMB,\$ отсюда, $BP\ *BM = BC^2 = BD^2,\$ получается, что BD — касательная к описанной окружности треугольника $MPD.\$ Из того, что BD — касательная к окружностям, описанным около треугольников MPD и $PND,\$ можно сделать вывод, что их центры находятся на прямой $AD,\ AD \perp BD.\$ Также центры окружностей лежат на серпере к $PD,\$ поэтому окружности совпадают, то есть $M,\ P,\ N,\ D$ лежат на одной окружности.

Задача 5. В остроугольном треугольнике ABC продолжение высоты AA_1 за точку A_1 пересекает описанную окружность ω в точке X. Точки D и E - основания перпендикуляров из A_1 на стороны AB и AC соответственно. Прямая DE пересекает описанную окружность треугольника ABC в точках Y и Z соответственно. Докажите, что A_1 - центр вписанной окружности треугольника XYZ.

Pешение. O — центр описанной окружности, ED пересекает AO в точке P. ADA_1E - вписанный четырехугольник, так как $\angle AEA_1 + \angle A_1DA = 180^\circ$, отсюда, $\angle AED = \angle AA_1D$. $\angle OAE = \angle DAA_1$. Из суммы углов треугольника получаем, что $\angle APE = \angle ADA_1 = 90^\circ$. $AO \perp ZY$ и AO — диаметр, поэтому A — середина дуги ZY, значит, XA — биссектриса $\angle ZXY$, а также $AE * AC = AZ^2$. С другой стороны, A_1E — высота в прямоугольном треугольнике AA_1C , поэтому $AE * AC = AA_1^2$, следовательно, $AZ = AA_1 = AY$, то есть A_1 — центр вписанной окружности треугольника XYZ по лемме о трезубце.

Задача 6. В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω_1 треугольников AED и BFC, вторично пересекают окружность ω в точках E_1 и F_1 . Докажите, что прямые EF и E_1F_1 параллельны.

Первое решение. I — центр ω . K, L — точки касания ω со сторонами AB, CD соответственно. EF пересекается с касательными к ω в точках K и L в точке S, значит, четырехугольник KELF гармонический, поэтому BE, AD и KL пересекаются в точке T. A', D' — середины KF, FL соответственно. Покажем, что A' лежит на радикальной оси описанной окружности ΔAID и ω . Действительно, -AA' * A'I = -KA' * A'F из формулы высоты в прямоугольном треугольнике. Аналогично D' лежит на радоси описанной окружности ΔAID и ω , поэтому A'D' совпадает с радосью. Радикальный центр X описанной окружности ΔAID , ΔAED и ω — точка пересечения A'D' и AD, то есть середина FT, назовем эту точку X. EX пересекает ω в точке E_1 . Пусть Y — середина ET. Аналогично E_1 — точка пересечения EY и ω . В силу симметрии относительно серпера к EF получаем, что $EF \parallel E_1M_1$.

Второе решение. Покажем другим способом, что EE_1 проходит через X — середину FT. A и A', D и D' инверсны относительно ω . Точки A, E, E_1 , D лежат на одной окружности, значит, Точки A', E, E_1 , D' лежат на одной окружности Ω' . ω гомотетична окружности, описанной около $\Delta A'FD'$, с коэффициентом 2, поэтому AD — их общая касательная. Радикальным центром ω , Ω' и окружности, описанной около $\Delta A'FD'$, является точка пересечения A'D' и AD, точка X. EE_1 проходит через X.

Задача 7. Вневписанная окружность ω треугольника ABC касается стороны BC в точке D, луча AC в точке E, луча AB в точке F. Окружность AEF пересекает прямую BC в точках P и Q. Точка M — середина AD. Докажите, что окружность PQM касается ω .

Решение. O — центр вневписанной окружности. O лежит на окружности ω, описанной около ΔAEF , так как $\angle OEA = \angle OFA = 90^\circ$. Серпер к ED пересечет ω в точках O и K, серпер к DF пересечет ω в точках O и L. KO — биссектриса $\angle EKD$, поэтому KD пройдет через F, аналогично LD пройдет через E. $\angle AEL = \angle KOE$, поэтому дуги KE и AL равны, $KA \parallel LE$. Так же можно получить, что $ND \parallel AM$, отсюда следует, что NAMD — параллелограмм, а M — середина KL. D

— ортоцентр в ΔKOL , значит, $OD \perp KL$, и $OD \perp PQ$ по свойству касательной, поэтому $KL \parallel PQ$, KLQP — равнобокая трапеция, тогда KL — касательная к окружности Ω , описанной около ΔPMQ , в силу симметрии. Пусть MD пересекает описанную окружность ΔPMQ в точке X, вневписанную γ — в точке Y. Четырехугольник EDFY — гармонический, поскольку YD пересекается в точке A с касательными к окружности γ в точках E и F, значит, EF, BC и касательная к γ в точке Y пересекутся в одной точке S — радикальном центре окружностей ω , γ и Ω . Проведем касательную к Ω в точке X, она пересечет PQ в точке S'. $\angle MXS' = \angle MPX$ по свойству касательной. $\angle MPQ = \angle MQP = \angle PXM$, поэтому $\angle S'DX = \angle QPX + \angle MXP = \angle MXS'$, следовательно, S'X = S'D, $\deg(\omega)S' = \deg(\Omega)S' = S'X^2 = S'D^2 = \deg(\gamma)$, поэтому S' = S. SY = SD = SX, причем S, SY = SD = SX, причем SY = SU общая касательная к окружностям SY = SU окружности касаются.

Гомотетия

- **Задача 0.** (Лемма Архимеда) Дана окружность Ω , BC хорда в ней. Окружность ω касается BC в точке D и Ω в точке A. AD пересекает Ω в точке E. Докажите, что E середина дуги BC.
- **Задача 1.** Точка O центр описанной окружности остроугольного треугольника ABC, AH его высота. Точка P основание перпендикуляра, опущенного из точки A на прямую CO. Докажите, что прямая HP проходит через середину отрезка AB. ($MMO\ 2018,\ 10\ \kappa nacc,\ 3adaчa\ 3$)
- Задача 2. Высоты остроугольного треугольника ABC пересекаются в точке H. На отрезках BH и CH отмечены точки B_1 и C_1 соответственно так, что $B_1C_1 \mid\mid BC$. оказалось, что центр окружности ω , описанной около треугольника B_1HC_1 , лежит на прямой BC. Докажите, что окружности Ω , описанная окола треугольника ABC, касается окружности ω . (Региональный этап 2019, 9 класс, задача 4)
- **Задача 3.** В выпуклом четырехугольнике ABCD углы A и C равны. На сторонах AB и BC нашлись соответственно точки M и N такие, что $MN \mid\mid AD$ и MN = 2AD. Пусть K середина отрезка MN, а H точка пересечения высот треугольника ABC. Докажите, что прямые KH и CD перпендикулярны.
- Задача 4. Остроугольный равнобедренный треугольник ABC (AB=AC) вписан в окружность с центром в точке O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается окружности, описанной около треугольника B'OC.
- Задача 5. Четырёхугольник ABCD описан около окружности ω . Продолжения сторон AB и CD пересекаются в точке O. Окружность ω_1 касается стороны BC в точке K и продолжений сторон AB и CD; окружность ω_2 касается стороны AD в точке L и продолжений сторон AB и CD. Известно, что точки O, K и L лежат на одной прямой. Докажите, что середины сторон BC, AD и центр окружности ω лежат на одной прямой.
- Задача 6. Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A_1 . Аналогично определяются точки B_1 и C_1 . Докажите, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке.
- Задача 7. Окружность ω касается сторон AB и AC треугольника ABC. Окружность Ω касается стороны AC и продолжения стороны AB за точку B, а также касается ω в точке L, лежащей на стороне BC. Прямая AL вторично пересекает ω и Ω в точках K и M соответственно. Оказалось, что $KB \parallel CM$. Докажите, что треугольник LCM равнобедренный.
- **Задача 8.** На сторонах AB и AC треугольника ABC выбраны точки P и Q соответственно так, что $PQ \mid\mid BC$. Отрезки BQ и CP пересекаются в точке O. Точка O симметрична точке O относительно прямой O отрезок пересекает окружность O описанную около треугольника O в точке O окружность, описанная около треугольника O в точке O окружность, описанная около треугольника O касается O около треугольника O окол

Поворотная гомотетия

Задача 0. Даны две окружности, пересекающиеся в точках A и B. Через точку проводятся всевозможные прямые, пересекающие каждую окружность повторно в точках X и Y соответсвенно. Докажите, что ГМТ середин XY — окружность.

Задача 1. Дан остроугольный треугольник ABC, в котором AC < BC. Окружность проходит через точки A и B и пересекает отрезки CA и CB повторно в точках A_1 и B_1 соответственно. Описанные окружности треугольников ABC и A_1B_1C пересекаются повторно в точке P. Отрезки AB_1 и BA_1 пересекаются в точке S. Точки Q и R симметричны S относительно прямых CA и CB. Докажите, что точки P, Q, R и C лежат на одной окружности. (Заключительный этап 2019, 10 класс, $3a\partial a$ ua 4)

Задача 2. Точка O — центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает отрезок BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности. ($MMO\ 2016,\ 9\ \kappa$ ласс, $3a\partial a$ ча 4)

Задача 3. Трапеция ABCD с основаниями AD и BC вписана в окружность ω . Окружности, вписанные в треугольники ABC и ABD, касаются оснований трапеции BC и AD в точках P и Q соответственно. Точки X и Y — середины дуг BC и AD окружности ω , не содержащих точек A и B соответственно. Докажите, что прямые XP и YQ пересекаются на окружности ω .

Задача 4. BB_1 и CC_1 — высоты треугольника ABC. Касательные к описанной окружности треугольника AB_1C_1 в точках B_1 и C_1 пересекают прямые AB и AC в точках M и N соответственно. Докажите, что вторая точка пересечения описанных окружностей треугольников AMN и AB_1C_1 лежит на прямой Эйлера треугольника ABC.

Антипараллельность

Задача 1. Дан остроугольный треугольник ABC, в котором AB < AC. Пусть M и N — середины сторон AB и AC соответственно, а D — основание высоты, проведенной из A. На отрезке MN нашлась точка K такая, что BK = CK. Луч KD пересекает окружность Ω , описанную около треугольника ABC, в точке Q. Докажите, что точки C, N, K и Q лежат на одной окружности.

Решение. Проведем прямую, параллельную BC, через точку A, она пересечет Ω в точке Q'. CQ'AB — равнобокая трапеция, серединный перпендикуляр к BC является серединным перпендикуляром к Q'A и проходит через точку K, MN — средняя линия в ΔABC , поэтому NM — серединный перпендикуляр к AD, значит, K — центр описанной окружности прямоугольного треугольника Q'AD, то есть середина Q'D. CA пересекается с Q'Q в точке X. Рассмотрим антипараллельность относительно прямых AC и QQ'. NK || Q'A, CQ антипараллельно Q'A, значит, CQ антипараллельно NK, то есть точки C, N, K, Q лежат на одной окружности.

Задача 2. Пусть γ окружность, описанная около остроугольного треугольника ABC. Точки D и E лежат на отрезках AB и AC соответственно, причем AD = AE. Серединные перпендикуляры к отрезкам BD и CE пересекают меньшие дуги AB и AC окружности γ в точках E и E соответственно. Докажите, что прямые E и E параллельны или совпадают.

Решение. FD пересекает γ в точке K, GE пересекает γ в точке L. $\angle ADK = \angle FDB = \angle FBD = \angle AKD$, значит, AD = AK, AE = AL по аналогии. Четырехугольник LDEK вписан в окружность с центром A. Рассмотрим антипараллельность относительно прямых FD и EG. Прямые FG и LK антипараллельны, LK и DE антипараллельны, значит, $DE \mid\mid FG$.

Задача 3. На стороне AC равнобедренного треугольника ABC с основанием BC взята точка D. На меньшей дуге CD окружности, описанной около треугольника BCD, выбрана точка K. Луч CK пересекает прямую, параллельную BC и проходящую через A, в точке T. Пусть M — середина отрезка DT. Докажите, что $\angle AKT = \angle CAM$.

Решение. Окружность, описанная около ΔBCD , пересечет AB в точке E, такой что $ED \mid\mid BC$ в силу симметрии. Рассмотрим антипараллельность относительно прямых AB и CT. BC антипараллельно EK, BC параллельно AT, значит, EK антипараллельно AT, то есть K лежит на описанной окружности ΔEAT . При центральной симметрии относительно точки M точка A перейдет в A'. $A'D \mid\mid AT \mid\mid ED$, следовательно, A, D и A' лежат на одной прямой. AE = AD = TA', поэтому EATA' — равнобокая трапеция и точка A' лежит на описанной окружности ΔEAT . $\angle AKT = \angle AA'T = \angle CAM$.

Задача 4. Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A и C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B и D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.

Решение. Достаточно доказать, что симедианы треугольников AIC и BID совпадают. K, L, M, N — точки касания вписанной окружности и сторон AB, BC, CD, DA соответственно. A', B', C', D' — середины KN, KL, LM, MN соответственно. Заметим, что A и A', B и B', C и C', D и D' инверсны относительно вписанной окружности. Как следствие, A'C' антипараллельно AC относительно $\angle AIC$, значит, симедиана ΔAIC совпадает с медианой треугольника A'IC', аналогично симедиана ΔBID совпадает с медианой $\Delta B'ID'$, а медианы этих треугольников совпадают, потому что середины A'C' и B'D'совпадают, так как A'B'C'D' — параллелограмм Вариньона.

Симедиана

Задача 0. Биссектриса треугольника является биссектрисой медианы и высоты в нем тогда и только тогда, когда треугольник прямоугольный.

Задача 1. Пусть OP — диаметр окружности Ω , ω — окружность с центром в точке P и радиусом меньше, чем у Ω . Окружности Ω и ω пересекаются в точках C и D. Хорда OB окружности Ω пересекает вторую окружность в точке A. Найдите длину отрезка AB, если произведение длин отрезков BD и BC равно 5. ($OMMO\ 2016,\ 11\ \kappa$ ласс, sadaча 7)

Решение. Продлим хорду OB до пересечения с ω в точке E. Углы OCP и ODP равны 90° , так как опираются на диаметр, а значит, O — точка пересечения касательных, проведеныых к ω в точках C и D, поэтому AO — симедиана в треугольнике ECD. PB — высота в треугольнике AEP, а также медиана в силу того, что треугольник AEP равнобедренный. Треугольники ABC и DBA подобны по свойству симедианы, отсюда, $AB = \sqrt{CB*BD}$. Ответ: $\sqrt{5}$

Задача 2. В треугольнике ABC с углом A, равным 45° , проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB_1 , а прямая с симметрична прямой AM относительно высоты CC_1 . Прямые b и c пересеклись в точке X. Докажите, что AX = BC. ($MMO\ 2017,\ 9\ \kappa nacc,\ sadaчa\ 6$)

Pешение. B_1 и C_1 — середины AB_2 и AC_2 . B_2X и C_2X — это b и c. BB_1 — серединный перпендикуляр к AB_2 , CC_1 — серединный перпендикуляр к AC_2 , значит, ортоцентр O в треугольнике ABC будет центром описанной окружности в

Задача 3. Вписанная окружность треугольника ABC касается его сторон BC, CA и AB в точках A_1 , B_1 и C_1 соответственно. Прямая AA_1 вторично пересекает эту окружность в точке E. Точка N — середина отрезка A_1B_1 . Точка M симметрична точке N относительно прямой AA_1 . Докажите, что $\angle \text{EMC} = 90^\circ$. (Санкт-Петербургская олимпиада школьников 2009/10 года, 7 задача)

Peuehue. Опустим высоту B_1H в треугольнике EB_1A_1 . NM содержит среднюю линию, так как $B_1H \mid NM, N$ — середина B_1A_1 , отсюда, точка H симметрична A_1 относительно NM. $\angle EB_1A = \angle B_1A_1E$ по свойству касательной, $\angle B_1A_1E = \angle HA_1M = \angle A_1HM$ из симметрии. $\angle CB_1E = 180^\circ$ - $\angle EB_1A = 180^\circ$ - $\angle A_1HM = \angle EHM$. $\angle B_1EC = \angle NEA_1$ по основному свойству симедианы в треугольнике A_1B_1E . $\angle NEA_1 = \angle MEH$ в силу симметрии. Получается, что ΔMEH ΔCEB_1 по двум углам, один можно перевести в другой с помощью поворотной гомотетии из точки E, значит, поворотной гомотетией можно перевести ΔECM в ΔEB_1H . При подобии углы сохраняются, $\angle EMC = \angle EHB_1 = 90^\circ$.

Задача 4. В треугольнике ABC проведена биссектриса BD (точка D лежит на отрезке AC). Прямая BD пересекает окружность Ω , описанную около треугольника ABC, в точках B и E. Окружность ω , построенная на отрезке DE как на диаметре, пересекает окружность Ω в точках E и F. Докажите, что прямая, симметричная прямой BF относительно прямой BD, содержит медиану треугольника ABC.

Решение. Треубется доказать, что BF — симедиана в ΔABC . Проведем DF до пересечения с Ω в точке W. $\angle DFE$ опирается на диаметр в ω , поэтому равен 90°, а значит, WE — диаметр. E — середина дуги AC, так как BE - биссектриса $\angle ABC$, тогда W — середина дуги ABC. Отсюда, FW — биссектриса $\angle CFA$. Во вписанном четырехуголнике ABC биссектрисы противоположных углов, BD и FD, пересекаются на диагонали, поэтому ABCD — гармонический, то есть BF — симедиана в ΔABC .

Задача 5. Точка M — середина стороны AB параллелограмма ABCD. Касательные в точках A и B к описанным окружностям треугольников ADM и BCM соответственно пересекаются в точке P. Докажите, что $MP \mid\mid AD$.

Решение. Возьмем на стороне DC такую точку E, что ADEM — равнобокая трапеция. EM = AD = BC по свойству параллелограмма, таким образом, BCEM — тоже равнобедренная трапеция, а это значит, что окружности, описанные около треугольников ADM и BCM пересекаются в точке E. $\angle AEM = \angle MAP$, $\angle MEB = \angle MBP$ по свойству касательной. $\angle APB + \angle AEB = 180^\circ$ - $\angle PAM$ - $\angle PBM$ + $\angle AEB = 180^\circ$ + ($\angle AEM$ - $\angle PAM$) + ($\angle BEM$ - $\angle PBM$) = 180° , AEBP вписан, следовательно, $\angle AEP = \angle PBA = \angle PEA$, то есть EP — симедиана в ΔAEB , а четырехугольник AEBP гармонический, тогда $\angle PMA = \angle EMA = \angle DAM$, свойство гармонического четырехугольника и равнобокой трапеции. Из равенства углов $\angle PMA = \angle DAM$ можно сделать вывод, что PM || AD.

Задача 6. Дан неравнобедренный остроугольный треугольник ABC, BB_1 — его симедиана, луч BB_1 вторично пересекает описанную окружность Ω в точке L. Пусть H_A , H_B , H_C — основания высот треугольника ABC, а луч BH_B вторично пересекает Ω в точке T. Докажите, что точки H_A , H_C , T, L лежат на одной окружности.