The All-Pairs Shortest Paths Problem (APSP)

APSP

 Directed graph G = (V, E) in which each arc has a nonnegative label

Problem:

- Find the cost of the shortest path from any given SOURCE vertex to any DESTINATION vertex
- Cost of the path may represent something different like time.

APSP

- The APSP problem is to find for each ordered pair of vertices (v,w) the smallest length of any path from v to w.
- This problem could be solve by using **Dijkstra's** algorithm with each vertex in turn as source. V = { 0, 1, 2, 3, 4}

APSP

- A more direct way of solving the problem is to use the following algorithm due to R. W. Floyd.
- This algorithm will compute the shortest path from any given vertex to any other vertex given the arc cost matrix C. The result is stored in an nxn matrix A.

Floyd's Algorithm

```
function Floyd (int A[][], int C[][])
{
   int i, j, k;
   for (i=0; i < n; i++)
        A[i][j] = C[i][j];
   for (i=0; i < n; i++)
        A[i][i] = 0;
   for( k = 0; k < n; k++)
        for (i=0; i < n; i++)
        for (j = 0; j < n; j++)
        if (A[i][k] + A[k][j] < A[i][j])
        A[i][j] = A[i][k] + A[k][j];
} /* Floyd */</pre>
```

19

Simulation: Floyd's Algorithm

