

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 30 Limit Sets Friday 15 November 2013

Announcements

Assignment 4:

■ Was due today, 15 Nov 2013, 1:30pm.

Test 1:

- Solutions were posted on Wednesday.
- Compare with your solutions and make sure you understand the differences.

Assignment 5:

- Due NEXT Friday 22 Nov 2013, 1:30pm.
- To be posted by the end of today.

■ Test 2:

- Wednesday 27 November 2013, 11:30–1:20.
- Basic Notions Seminar: "A gentle intro to graph theory"
 - Thurs 28 Nov 2013 @ 5:30pm in HH-312
 - Lauren DeDieu will talk about its history a little bit, discuss the 4-colour problem, the 3-colour problem, and then talk a little bit about list colouring, and harmonious colouring.

Equilibria

• Single points that are fixed for all time.

Periodic Orbits

■ A set $\mathcal{P} \subset \mathbb{R}^n$ is a *periodic* orbit if $\exists \tau > 0$ such that $\forall X \in \mathcal{P}$

$$\phi_{t+\tau}(X) = \phi_t(X), \quad \forall t \in \mathbb{R}.$$

- Period = mininum τ for which this is true.
- $(\tau > 0$, else it is an equilibrium)

Homoclinic Orbits

- Begin and end at an equilibrium X_* .
- A solution that tends to a given equilibrium X_{*} in both forward and backward time.
- $\lim_{t\to\infty} X(t) = \lim_{t\to-\infty} X(t) = X_*.$

Heteroclinic Orbits

- A solution that tends to one equilibrium X_{*}¹ in backward time and a different equilbrium X_{*}² in forward time.
- $\blacksquare \lim_{t\to -\infty} X(t) = X^1_*.$
- $\blacksquare \lim_{t\to\infty} X(t) = X_*^2.$
- Several heteroclinic orbits can link together to form a chain, which may or may not be closed.

Other complex invariant sets

- Arbitrarily complicated invariant sets made up of homoclinic and heteroclinic orbits can occur.
- Other "strange" sets that we'll discuss later.

All such invariant sets can occur as *limit sets* of a nonlinear system.

ω -limit point

Definition (ω -limit point)

Suppose $\phi_t(X)$ is a the time-t map associated with the flow of a differential equation X' = F(X). If \exists a sequence of times $\{t_0, t_1, t_2, \ldots\}$ such that $t_n \to \infty$ as $n \to \infty$ and

$$\lim_{n\to\infty}\phi_{t_n}(X)=Y$$

then Y is said to be an ω -limit point of the solution through X.

Note: We need a discrete set of times $\{t_n\}$ since $\lim_{t\to\infty} \phi_t(X)$ may not exist.

ω -limit set

Definition (ω -limit set)

Given a differential equation X' = F(X), the ω -limit set of a point $X \in \mathbb{R}^n$ is

 $\omega(X) = \{Y \in \mathbb{R}^n : Y \text{ is an } \omega\text{-limit point of the solution through } X\}.$

Note: We similarly define α -limit points for backwards time limits $(t_n \to -\infty)$. The α -limit set of X, $\alpha(X)$, is the set of all α -limit points of X.

Limit set example

Example

$$r' = r(1 - r^2)$$
$$\theta' = 1$$

- Unit circle $C = \{(r, \theta) : r = 1\}$ is a periodic orbit.
- Origin E = (0,0) is an equilibrium.
- $\forall X \neq E, \ \omega(X) = C.$
- $\forall X \in \{(r, \theta) : 0 < r < 1\}, \ \alpha(X) = E.$
- $\forall X \in \{(r,\theta) : r > 1\}, \ \alpha(X) = \emptyset.$

Limit set example:

$$r'=r(1-r^2), \quad \theta'=1$$

Limit set example:

$$r' = r(1 - r^2), \quad \theta' = 2$$

Limit set example:

$$r'=r(1-r^2), \quad \theta'=3$$

Stable and Unstable Manifolds

Next few slides would have been more natural in Lecture 26

The Stable Curve Theorem

Is there an analogue of "eigendirections" in the vicinity of a nonlinear saddle?

- In general, for a nonlinear saddle:
 - ∄ stable invariant line
 - ∄ unstable invariant line
- However:
 - ∃ stable invariant *curve*
 - ∃ unstable invariant *curve*
 - These invariant curves meet at the equilibrium point.

Stable and Unstable Manifolds

Theorem (Stable Curve Theorem)

Consider a smooth planar system X' = F(X), with a hyperbolic saddle equilibrium X_* . There is an open ball B containing X_* and a smooth curve $\gamma_s \subset B$ such that

- (i) $X_* \in \gamma_s$;
- (ii) All solutions with initial conditions that lie on γ_s remain on γ_s for all $t \geq 0$ and tend to X_* as $t \to \infty$;
- (iii) The curve γ_s passes through X_* tangent to the stable eigendirection of the linearized system $(X X_*)' = DF_{X_*}(X X_*);$
- (iv) All other solutions with initial conditions that lie in B leave B in finite time.

Proof.

See HSD §8.3.

Stable and Unstable Manifolds

- There is similarly an *Unstable Curve Theorem*.
- The theorems refer to *local* stable and unstable curves, but they connect to *complete* stable and unstable curves.
- The complete stable curve $W_s(X_*)$ is found by following any point on γ_s backward in time $(t \to -\infty)$.
- The complete unstable curve $W_{\rm u}(X_*)$ is found by following any point on $\gamma_{\rm u}$ forward in time $(t \to \infty)$.
- These notions (and theorems) generalize to nonlinear saddles in \mathbb{R}^n . $W_s(X_*)$ and $W_u(X_*)$ becomes surfaces or hypersurfaces, known as the stable and unstable *manifolds*.