LLM Fine-Tuning Training Guide for AI Interview Practice Platform

Overview

This document provides detailed guidelines for fine-tuning a Large Language Model (LLM) to power the Al-driven interview practice platform. The goal is to train the LLM to analyze user facial expressions, voice characteristics, and interview responses to generate precise feedback and coaching suggestions.

1. Training Objectives

- Detect and interpret facial expressions such as stress, confidence, hesitation, and distractions (e.g., looking away, fidgeting).
- Analyze voice data for breath patterns, speech fluency, pauses, and confidence levels.
- Evaluate answers for relevance, completeness, and communication skills.
- Generate detailed, context-aware feedback reports highlighting strengths and improvement areas.
- Support interactive chatbot conversations to guide users through their reports and practice plans.

2. Data Requirements

- **Visual Data:** Annotated video recordings showing facial expressions, eye movements, and hand gestures during interviews.
- **Audio Data:** High-quality speech recordings with annotations for pauses, breath, tone, and confidence markers.
- **Textual Data:** Transcripts of interview sessions including questions, answers, and Al-generated feedback.
- **Behavioral Labels:** Stress levels, confidence ratings, distraction flags, and timing metrics.
- **User Profiles:** Resume data and interview question mappings.

3. Features to Track and Model

- **Facial Expression Detection:** Capture micro-expressions, smiles, frowns, eye contact, blinking frequency.

- **Gesture Recognition:** Identify hand movements like fidgeting, pointing, and nervous gestures.
- **Voice Analysis:** Detect speech rate, pauses, breath control, and pitch variation.
- **Answer Evaluation:** Semantic relevance, completeness, hesitation detection, filler words.
- **Timing Metrics:** Time spent per question, delays before answering.

4. Output Expectations

- **Per Question Analysis:** Stress/confidence score, fluency score, answer quality rating.
- **Overall Report:** Summary of strengths, weaknesses, time management, and suggestions.
- **Improvement Suggestions:** Personalized coaching tips based on detected patterns.
- **Interactive Dialogue:** Allow chatbot to explain feedback and recommend practice exercises.

5. Chatbot Integration

- Design LLM to support two-way conversations with users based on their interview reports.
- The chatbot should be able to answer user queries, clarify feedback, and guide practice routines.
- Maintain user context and learning history to personalize advice.

6. Training Strategies

- **Data Augmentation:** Use techniques to diversify facial and voice data (e.g., varied lighting, noise).
- **Multi-Modal Training:** Combine video, audio, and text data for holistic model training.
- **Validation:** Regularly evaluate model accuracy on unseen data and real user sessions.
- **Continuous Learning:** Update model iteratively with new user data and feedback.

7. Training Scenarios

Scenario 1: Basic Facial and Voice Recognition

- Focus on training the model to recognize fundamental expressions and voice features.

- Use labeled datasets with clear expression and speech annotations.

Scenario 2: Advanced Behavioral Analysis

- Train on complex patterns like micro-expressions, subtle stress cues, and speech hesitations.
- Incorporate context awareness to relate expressions with answer content.

Scenario 3: Real-Time Feedback and Coaching

- Develop model components for real-time signal processing and immediate feedback.
- Integrate with chatbot for dynamic user interaction during practice sessions.

8. Technical Details

- Use state-of-the-art deep learning frameworks such as PyTorch or TensorFlow.
- Employ pretrained models for facial expression recognition (e.g., OpenFace, Affectiva).
- Use OpenAI GPT-4.5 or similar LLM for natural language understanding and generation.
- Utilize Gemini API or equivalent for emotion and gesture detection integration.
- Implement voice analysis using specialized audio processing libraries (e.g., librosa, pyAudioAnalysis).

9. Summary

This guide ensures that the LLM is trained comprehensively across multiple modalities to provide accurate, contextual, and actionable interview feedback. Combining vision, audio, and NLP components will result in a powerful AI coach that helps users improve their interview performance effectively.

End of LLM Fine-Tuning Training Guide