MyGamePass

Recommender System for Video Games

Ben Polzin

Data Scientist | B.S. Petroleum

Engineering CSM '16

Passionate, Data Driven, and

Future Focused

The Problem*: Too Many Games!

*so much variety, it is a good problem to have

- ~1.2 Million video games across all platforms
 - o PC, Console, Mobile
 - Action, Adventure, Puzzle,
 Platformer, etc.
- ~2.7 Billion individual games worldwide

Utilize modern machine learning techniques and natural language processing to develop a recommender system focused solely on the gamers and their games

How It Works Content Based Filtering

Preprocessing

Clean and prepare game data for similarity matrix and process description with NLTK

ITEM-ITEM SIMILARITY MATRIX

	I ₁	l ₂		l _j	I _{m-1}	I _m
l ₁	1	Sim ₁₂	•••	Sim _{1j}		
l ₂		1	•••			
l _i		Simi2	•••	Sim _{ij}		
		•				
I _{m-1}			•••		 1	
I _m						1

Recommend Similar Content

Cosine similarity matrix is used to easily determine the most-similar items based on game content

Content Recommender Example

	appid	game	similarity	vote_count	percent_positive_ratings
488	24980	Mass Effect 2	0.215164	11217	0.951680
143	6000	STAR WARS™ Republic Commando™	0.237015	6771	0.944026
382	17460	Mass Effect	1.000000	10773	0.938179
415	20540	Company of Heroes: Tales of Valor	0.165758	1438	0.929764
945	91200	Anomaly: Warzone Earth	0.180340	3781	0.872785

How It Works Collaborative Based Filtering

Preprocessing

Clean and prepare user data for FunkSVD and Surprise package evaluations

Recommend Similar Content

Similar user profiles are used to predict ratings for every game in the dataset to provide recommendations

	I ₁	l ₂		l _j		I _{m-1}	I _m
U ₁			•••				
U ₂			•••		•••		
Ui			•••	A _{ij}			
U _{n-1}							
Un							

Collaborative Recommender Example

<pre># Check user id `128470551` top predictions newdf = df_prediction[df_prediction['user_id'] == 128470551].sort_values(by=['predicted_rating'], ascending=False).head() # Merge the dataframes merge_df = newdf.merge(games_df, how='left',</pre>								
3.379807	{'was_impossible': False}	Torchlight II	300	31296	0.943859			
2.432523	{'was_impossible': False}	Risk of Rain	300	24289	0.93457\$			
2.347971	{'was_impossible': False}	Hammerwatch	288	5658	0.89996			
1.994546	{'was_impossible': False}	Magic Duels	300	23511	0.706010			

Milestones

Project Inception

Gather data and define sprint plan

Initial Modeling

Built initial content based filtering and collaborative based filtering

Next Steps!

Develop a new user strategy for initial recommendations and simple web app for deployment

Week 1 Week 2 Week 3 Week 4

Data Wrangling

Data cleaning, exploration and preprocessing for initial modeling

Model Optimization

Utilized FunkSVD matrix factorization as well as RMSE and FCP evaluations

Thank You!

- Huge thank you to the Education
 Team at BrainStation
- The awesome cohort for pushing me to constantly improve
- My Family

polzinben@gmail.com

linkedin.com/in/bpolzin

github.com/polzinben

Ben Polzin

Data Scientist | B.S. Petroleum

Engineering CSM '16

Passionate, Data Driven, and

Future Focused