Modelling desert dust exposure events for epidemiological short-term health effects studies

Massimo Stafoggia and Aurelio Tobías

31st Annual Conference of the International Society of Environmental Epidemiology Utrecht, The Netherlands, 24th August 2019

Objective

- How to answer properly the (apparently simple) research question "does desert dust impact human health?"
- · Workshop materials available at,

http://www.aureliotobias.com/isee2019dust/

Outline

- 1. Introduction
- 2. Dust as binary metric
 - · Methods to identify dust events
 - · Dust as exposure, confounder and effect modifier
- 3. Dust as continuous exposure
 - · Methods to quantify dust events
 - Two-sources and three-sources model
- 4. Discussion

Introduction

 Desert dust play a significant role in different aspects of weather, climate and atmospheric chemistry and represent a serious hazard for environment and health

Introduction

 Dust storms last 1-24h at source points, and depending on meteorological conditions can be transported at surface level or lofted to high altitudes (up to 10 km)

Introduction

- The air quality influence of dust is a complex issue
- Dust is typically **made up of crustal components**, clay minerals and salts, and it can:
- 1) Increase particulate matter ambient concentrations

	Eastern Asia n mean (sd)			Europe n mean (sd)		
PM10						
Non-dust days	38	59.2	(25.4)	21	37.1	(6.9)
Dust days	38	142	(79.6)	21	55.2	(30.9)
PM2.5						
Non-dust days	3	35.6	(8.0)	16	22.0	(5.7)
Dust days	3	54.7	(8.9)	16	25.5	(4.9)

(Tobías et al., under review)

- 2) Carry Anthropogenic pollutants, previously deposited in the source areas or trapped by the high dust air mass during its atmospheric transport (Mori 2003, Rodríguez el al. 2011)
- 3) Carry microorganisms and toxic biogenic allergens (*Griffin et al.* 2001, Ho et al. 2008)

Introduction

- Evidence on **health effects** of desert dust **remains unclear** (Hashizume et al. 2010, Karanasiou et al. 2012, Longeville et al. 2013, Zhang et al. 2014)
- Main differences on,
 - Study design and statistical analysis
 - Methods to identify dust events
 - Metric of dust exposure (binary or continuous)

Introduction

- Percentage increase of risk for cardiovascular mortality on dust days versus non-dust days
- Percentage increase of risk for cardiovascular mortality for a rise of 10 mg/m³ of PM₁₀ on dust and non-dust days

(Tobías et al., under review)

Research framework

- To quantify the short-term health effects of desert dust
- · Use an ecological time-series design
- Analysis with overdispersed Poisson regression
- Data collection at daily level,
 - Health outcome as mortality/morbidity counts
 - Temperature
 - Dust exposure ...

Identification of dust events

 Combination of tools: aerosol maps (BSC-DREAM, SKIRON, NAAPS-NRL) satellite images (MODIS) and air masses back-trajectories (HYSPLIT) (Pey et al. 2013)

Identification of dust events

Identification of dust events

• Threshold exceedance of PM concentrations (Thalib et al. 2012, Krasnov et al. 2013, Al-Taiar et al. 2014)

PM₁₀ concentrations in Ahvaz, Iran, during MED and non-MED days (2015-2017)

(Shahsavani et al., under review)

Identification of dust events

- Combination of tools: aerosol maps (BSC-DREAM, SKIRON, NAAPS-NRL) satellite images (MODIS) and air masses back-trajectories (HYSPLIT) (Pey et al. 2013)
- Threshold exceedance of PM concentrations (Thalib et al. 2012, Krasnov et al. 2013, Al-Taiar et al. 2014)
- Visual inspection reducing horizontal visibility to <10 km: China (Ma et al. 2016), Japan (Kashima et al. 2016), Korea (Lee at al. 2013) and Caribbean (Akpinar-Elci et al. 2015)
- Registries for dust storms, U.S. National Weather Service storm database (Crooks et al. 2016)

Case study

Data description

Rome, 2005-2010 daily data

· Simulated natural mortality counts

· Real data on dust events, PM10, and air temperature

date: current date (from 1/1/2005 to 31/12/2010)

trend: progressive number from 1 to 2191

yy: year
mm: month

dd: day of the month dow: day of the week

allnat: daily mortality counts for non-accidental causes (simulated data)

temp: daily mean air temperature

dust: binary (0/1) variable for dust advection days

pm10: daily PM10 concentrations

pm10natural: daily PM10 concentrations from natural sources pm10local: daily PM10 concentrations from non-natural sources

Case study

- Core model adjusted for:
 - Time-trend using natural cubic splines
 - Weekdays using dummy variables
 - Air temperature using the MED-PARTICLES approach, with natural cubic splines for cold and warm temperatures (Stafoggia et al. 2013, Stafoggia et al. 2016)

$$y_t = \beta_0 + s(t) + \Sigma \beta_i dow_{it} + s(temp_t)$$

Case study

Time-trend adjustment

Case study

· Air temperature adjustment

Dust as binary metric

Risk factor

1st RESEARCH QUESTION

- Is mortality higher on DUST days compared to NO-DUST days? (after accounting for time trends and meteorology)?
- Mortality increases by 3.5% (95%CI: 1.3, 5.7)

$$y_t = \beta_0 + s(t) + \sum \beta_i dow_{it} + s(temp_t) + \beta dust_t$$

Risk factor

Dust event Health

Dust as binary metric

Risk factor

2nd RESEARCH QUESTION

- Is mortality higher on DUST days compared to NO-DUST days, independently from PM10 increase?
- Mortality increases by 3.1% (95%CI: 0.9, 5.5)

$$y_t = \beta_0 + s(t) + \sum \beta_i dow_{it} + s(temp_t) + \beta_1 dust_t + \beta_2 PM_t$$

Confounder

Step 1. Check if PM10 is associated with mortality

Mortality increases by 0.5% (95%Cl: -0.1% 1.1) per each 10 μg/m³ increase in PM10

$$y_t = \beta_0 + s(t) + \Sigma \beta_i dow_{it} + s(temp_t) + \beta_1 dust_t + \beta_2 PM_t$$

Dust as binary metric

Confounder

Step 2. Check if PM10 is associated with mortality, independently on DUST events

Mortality increases by 0.4% (95%CI: -0.2, 1.0) per each 10 μg/m³ increase in PM10, independently on DUST events

$$y_t = \beta_0 + s(t) + \sum \beta_i dow_{it} + s(temp_t) + \beta_1 dust_t + \beta_2 PM_t$$

Dust as binary metric

Effect modifier

RESEARCH QUESTION

- Is the association between PM10 and mortality **different on DUST versus** NO-DUST days?
- Mortality increases by 0.3% (95%CI: -0.3, 1.0) per each 10 μg/m³ increase in PM10 during NON-dust days
- Mortality increases by 0.8% (95%CI: -0.3, 1.0) per each 10 $\mu g/m^3$ increase in PM10 during DUST days

$$y_t = \beta_0 + s(t) + \Sigma \beta_i dow_{it} + s(temp_t) + \beta_1 dust_t + \beta_2 PM_t + \beta_3 dust_t PM_t$$

Main exposure

- All dust events are treated in the same way since do not quantify the dust, not providing information on the doseresponse relationship
- Studies in Eastern Asia show increase of cardiovascular mortality and respiratory/child asthma morbidity during days with dust events

Effect modifier

- PM is a mixture of natural and local sources, even within the dust days. It is not possible to attribute the health effects to a given source
- Studies in Europe show larger effect of PM₁₀ and PM_{10-2.5} on cardiovascular mortality and respiratory morbidity during days with dust events but similar effects for PM_{2.5}

Quantification of dust events

EU reference method (Directive 2008/50/EC)

EUROPEAN COMMISSION

Brussels, 15.02.2011 SEC(2011) 207 final

COMMISSION STAFF WORKING PAPER

establishing guidelines for determination of contributions from the re-suspension of particulates following winter sanding or salting of roads under the Directive 2008/50/EC on ambient air quality and cleaner air for Europe

http://data.europa.eu/eli/dir/2008/50/oj

Quantification of dust events

- LIDAR (Light Detection and Ranging) measurement
- Optical remote sensing technology that measures properties of scattered light
- It differentiates the shape of particles not differentiate their size
- Key issues to consider
 - Which height?
 - Which cut-off?
 - Conversion from extinction coefficient (/km) to concentration (μg/m³)?

(Ueda et al. 2014)

Quantification of dust events

- EU reference method (Directive 2008/50/EC)
- LIDAR (Light Detection and Ranging) measurement
- Dust concentrations at surface from ensemble multimodel products
 - SDS-WAS: Prepares regional forecast of a numerical weather prediction model incorporating parameter of all de major phases of the atmospheric dust cycle
 - MERRA-2: Global reanalysis to assimilate space-based observations of aerosols and their interactions with other physical processes in the climate system
 - JRAero: Global aerosol reanalysis assimilating maps of aerosol optical depth from MODIS onboard the Terra and Aqua satellites

Dust as continuous exposure

Two sources

- Natural (dust)
- Local (anthropogenic)

RESEARCH QUESTION

- Are natural and local sources of PM10 independently associated with mortality?
- Mortality increases by 1.3% (95%CI: 0.0, 1.7) per each 10 ug/m3 increase in natural (dust) PM10
- Mortality increases by 0.4% (95%CI: -0.2, 1.1) per each 10 ug/m3 increase in local (anthropogenic) PM10

$$y_t = \beta_0 + s(t) + \sum \beta_i dow_{it} + s(temp_t) + \beta_1 PM_{natural} + \beta_2 PM_{local}$$

Dust as continuous exposure

Dust as continuous exposure

Three sources

- Dust
- Anthropogenic on dust days
- Anthropogenic on non-dust days

RESEARCH QUESTION

- 1. Is the association between local (non-desert) PM10 with mortality different on DUST versus NO-DUST days?
- 2. Are these associations independent from natural (desert) PM10?
- 1. Mortality increases by **0.3%** (-**0.3**, **1.0**) per each 10 ug/m3 increase in local PM10 on NO-DUST days, and by **1.6%** (-**0.2**, **3.6**) on DUST days.

 These estimates are NOT statistically different.
- 2. Natural PM10 is no longer associated with mortality (-0.1%; (-1.9,1.8))

$$y_t = \beta_0 + s(t) + \sum \beta_i dow_{it} + s(temp_t) + \beta_1 PM_{natural} + \beta_2 PM_{local} + \beta_3 dust + \beta_4 dust*PM_{local}$$

Dust as continuous exposure

- Suitable to estimate concentration-response functions between PM sources and health outcomes, applicable in health impact assessment studies
- In regions with large dust events and high concentrations of local pollutants, would probably make no sense to investigate independent effects of desert and anthropogenic sources
- Few studies showed
 - Larger effect of Asian dust than SPM on mortality outcomes in Japan (Kashima et al. 2012, 2016),
 - Similar effects of Saharan dust and PM₁₀ on mortality and morbidity outcomes in Southern Europe (Stafoggia et al. 2016)
 - Larger effect of anthropogenic PM₁₀ during dust days on cardiovascular mortality in Barcelona (Pérez et al. 2012)

Discussion

- A proper understanding of dust exposures in epidemiological studies would help to develop appropriate measures to reduce local pollution during dust events
- Need to standardize epidemiological studies with same methodological characteristics to make health effects comparable in and near to hot spots

		Rome (2005-2010)		Athens (2007-2009)	
Dust events	Exposure	%IR	(95% CI)	%IR	(95% CI)
Binary as risk factor	Dust vs. non-dust	2.8	(1.0, 4.7)	1.4	(-0.4, 3.2)
	Dust vs. non-dust adj.	2.3	(0.6, 4.4)	0.7	(-1.2, 2.5)
Binary as confounder	PM ₁₀	0.6	(0.1, 1.1)	0.5	(0.2, 0.9)
	PM _{10 adj.}	0.5	(0.0, 1.0)	0.5	(0.1, 1.0)
Binary as effect	PM ₁₀				
modifier	on non-dust days	0.3	(-0.2, 0.9)	1.0	(0.2, 1.8)
	on dust days	1.1	(-0.1, 2.3)	0.3	(-0.2, 0.8)
Continuous with	Local PM ₁₀	0.5	(0.0, 1.0)	0.7	(0.0, 1.5)
2 sources	Dust PM ₁₀	1.2	(0.0, 2.3)	0.5	(0.0, 1.0)
Continuous with	Local PM ₁₀				
3 sources	on non-dust days	0.3	(-0.2, 2.9)	1.0	(0.2, 1.7)
	on dust days	2.2	(0.6, 3.8)	-1.1	(-3.0, 0.9)
	Dust PM ₁₀	0.1	(-1.4, 1.7)	0.5	(-0.0, 1.0)

Discussion

Transportation

- Dust events over the western basin are more frequent with a moderate intensity and dust travels at very high altitudes
- While eastern induced by cyclones transporting dust at surface levels with shorter and intense events (Karanasiou et al. 2012, Pey et al. 2013)

Discussion

Sources

- The western Mediterranean basin is affected by air masses from South Algeria and west Sahara, while eastern is from Libya and Egypt (Pey et al. 2013)
- Dust clouds can absorb industrial pollutants through journey over industrialised areas (Rodríguez et al. 2001) also microorganisms and toxic biogenic allergens (Griffin 2001)

Toxicity

- Local particles can be more toxic on dust days due to reactions with gases or condensation of organic compounds on the particles (Pérez et al. 2012)
- Dust episodes associated with a lowering of the MLH enhancing local pollution (Pandolfi et al. 2014)

Acknowledgements

- To Xavier Querol, Masahiro Hashizume and Chris Ng for their comments and suggestions
- To the International Network to Encourage the Use of Monitoring and Forecasting Dust Products (Cost action, CA16202)
- To the Japanese Society for the Promotion of Science (S18149) BRIDGE fellowship for research in Japan