TraCS: Trajectory Collection in <u>Continuous Space</u> under Local Differential Privacy

Authors: Ye Zheng, Yidan Hu

Rochester Institute of Technology (RIT)

Trajectory Collection

Private trajectories

Trajectory Collection

Collecting private trajectories

Third-party trajectory/location service provider

Trajectory Collection

Collecting private trajectories Mac Donald Third-party trajectory/location service provider Hospital Untrusted Even an adversary Starbucks care about privacy Park w/labels w/o labels

LDP-fy a Trajectory

- LDP-fy: perturb a trajectory with LDP guarantee (provable privacy)
 - cannot distinguish location τ_1 from τ_2 with confidence level e^{ε}

$$\forall \tau_1, \tau_2, \tau_* \in \mathcal{S}: \qquad \frac{\Pr[\mathcal{M}(\tau_1) = \tau_*]}{\Pr[\mathcal{M}(\tau_2) = \tau_*]} \leq e^{\varepsilon} \qquad \text{distinguish level}$$
 location space
$$\qquad \qquad \text{probability difference of outputting } \tau_*$$

LDP-fy a Trajectory

- LDP-fy: perturb a trajectory with LDP guarantee (provable privacy)
 - cannot distinguish location τ_1 from τ_2 with confidence level e^{ε}

- We want: \mathcal{M} for continuous location space
 - existing methods are all for discrete location space → not always available
 - continuous space ⊃ discrete space → can apply to discrete space

■ Location space S is a set of cells or points

• Location space S is a set of cells or points

Location space S is a set of cells or points

• Perturb each location τ using the Exponential Mechanism

$$\Pr[\mathcal{M}_{\exp}(\tau) = \tau^*] = \frac{\exp(kd(\tau, \tau^*))}{\sum_{\tau' \in S} \exp(kd(\tau, \tau'))} \leftarrow \text{distance}$$

Location space S is a set of cells or points

• Perturb each location τ using the Exponential Mechanism

$$\Pr[\mathcal{M}_{\exp}(\tau) = \tau^*] = \frac{\exp(kd(\tau, \tau^*))}{\sum_{\tau' \in S} \exp(kd(\tau, \tau'))} \leftarrow \text{distance}$$

- NGram [2021]: reachability constraint from public knowledge
 - e.g. distance reachability
 - the next location cannot be too far
 - $\mathcal{M}_{\mathrm{exp}}(au)$ on reduced \mathcal{S}

- NGram [2021]: reachability constraint from public knowledge
 - e.g. distance reachability
 - the next location cannot be too far
 - $\mathcal{M}_{\mathrm{exp}}(au)$ on reduced \mathcal{S}
- ATP [2023]: direction perturbation

- NGram [2021]: reachability constraint from public knowledge
 - e.g. distance reachability
 - the next location cannot be too far
 - $\mathcal{M}_{\mathrm{exp}}(au)$ on reduced \mathcal{S}
- ATP [2023]: direction perturbation
 - i. divide direction sectors, e.g. k = 4

- NGram [2021]: reachability constraint from public knowledge
 - e.g. distance reachability
 - the next location cannot be too far
 - $\mathcal{M}_{\mathrm{exp}}(\tau)$ on reduced \mathcal{S}
- ATP [2023]: direction perturbation
 - i. divide direction sectors, e.g. k = 4
 - ii. perturb sector
 - iii. $\mathcal{M}_{\mathrm{exp}}(\tau)$ on reduced \mathcal{S}

Existing Methods: Weaknesses

- NGram [20]
 - e.g. distar
 - the next
 - $\mathcal{M}_{\rm exp}(au)$
- ATP [2023
 - i. divide d
 - ii. pertur
 - iii. $\mathcal{M}_{\mathrm{exp}}$ (

- Privacy: only for discrete space
 - indistinguishability for finite # locations/cells/sectors (weak privacy)
- Utility: relies on the Exponential Mechanism
 - efficacy depends on # locations/cells/sectors
 - high time complexity (in computing and sampling)
 - discrete locations not always available

reduced \mathcal{S}

This Paper: Continuous Space

- TraCS-D: direction-distance perturbation
- TraCS-C: coordinates perturbation
- **Key idea:** decomposes S into two subspaces

This Paper: Continuous Space

TraCS-D: direction-distance perturbation

TraCS-C: coordinates perturbation

■ **Key idea:** decomposes S into two subspaces \rightarrow design M for each subspace

Decomposition of Continuous Space

- Each location $\tau_{i+1} \in S$ has a unique representation $(\varphi, r(\varphi))$
- Perturb φ and $r(\varphi)$ using 1D mechanisms

TraCS-D: $\mathcal{D}_{\varphi} \otimes \mathcal{D}_{r(\varphi)}$

Decomposition of Continuous Space

- Each location $\tau_{i+1} \in S$ has a unique representation $(\varphi, r(\varphi))$
- Perturb φ and $r(\varphi)$ using 1D mechanisms
- $S = \mathcal{D}_a \times \mathcal{D}_b$
- Each location $\tau_{i+1} \in S$ has a unique representation (a, b)
- Perturb a and b using 1D mechanisms

TraCS-C: $\mathcal{D}_a \times \mathcal{D}_b$

\mathcal{M} for Continuous Space

■ **Q**: How to design LDP mechanisms for:

```
- circular space [0,2\pi) \rightarrow [0,2\pi)? linear space [a_{sta}, a_{end}) \rightarrow [a_{sta}, a_{end})?
```

\mathcal{M} for Continuous Space

Q: How to design LDP mechanisms for:

- circular space
$$[0,2\pi) \rightarrow [0,2\pi)$$
? linear space $[a_{sta}, a_{end}) \rightarrow [a_{sta}, a_{end})$?

- **S:** Piecewise-based mechanism
 - originally designed for mean * /distribution estimation**

$$pdf[\mathcal{M}(x) = y] = \begin{cases} p_{\varepsilon} & \text{if } y \in [l_{x,\varepsilon}, r_{x,\varepsilon}), \\ p_{\varepsilon}/\exp(\varepsilon) & \text{otherwise,} \end{cases}$$

- ensure LDP for $[0,1) \rightarrow [-C,C)$

^{*} Collecting and Analyzing Multidimensional Data with Local Differential Privacy, ICDE 2019

^{**} Estimating Numerical Distributions under Local Differential Privacy, SIGMOD 2020

\mathcal{M}_{\circ} and \mathcal{M}_{-}

■ Design piecewise-based mechanisms \mathcal{M}_{\circ} and \mathcal{M}_{-}

■ Examples of \mathcal{M}_{\circ} and \mathcal{M}_{-}

• $S = [a_{sta}, a_{end}] \times [b_{sta}, b_{end}] \rightarrow \text{apply TraCS to } S$

longitude l

latitude

• $S = [a_{sta}, a_{end}] \times [b_{sta}, b_{end}] \rightarrow \text{apply TraCS to } S \rightarrow \text{round to discrete locations}$

longitude |

latitude

• $S = [a_{sta}, a_{end}] \times [b_{sta}, b_{end}] \rightarrow \text{apply TraCS to } S \rightarrow \text{round to discrete locations}$

longitude latitude

Advantages:

- not affected by # locations/cells
- efficient sampling $(\Theta(1))$ time complexity; EM: $\Theta(m)$
- stronger privacy (for continuous space)

TraCS: Trajectory Collection in <u>Continuous Space</u> under Local Differential Privacy

