Zero Trust Architecture

A Comprehensive Guide to understand Zero Trust Architecture.

Authored by: Khushi Malhotra

Introduction to Zero Trust

- Zero Trust is a cybersecurity framework that assumes no user or device should be trusted by default, even if inside the network perimeter.
- It challenges the outdated concept of trusting users within a corporate network.
- Adopted to counter modern threats like insider attacks and lateral movement within networks.

EVOLVING CYBER THREATS

- Modern attackers exploit trusted systems.
- Example:
 SolarWinds attack infiltrated through legitimate software updates.

REGULATORY COMPLIANCE

- Meets security standards like GDPR and HIPAA.
- Example:
 Healthcare
 organizations
 protecting patient
 records across
 locations.

MINIMIZING BREACH IMPACT

- Segmented access limits attackers' movement.
- Example:

Ransomware contained to one system instead of spreading networkwide.

Core Principles of Zero Trust

- Limit access to only what's necessary for a specific task or role.
- Example: An intern only accesses files relevant to their project, not the entire database.
- Encrypt and classify data to restrict unauthorized access and sharing.
- Example: Sensitive files requiring encryption keys to view or edit.
- Always authenticate and authorize based on available data points.
- Example: MFA required even for internal systems.
- Operate under the assumption that a breach has already occurred.
- Example: Continuous monitoring to detect anomalies, like unusual login times.

Zero Trust vs.

Traditional

Security

Zero Trust

Continuous verification of users/devices

Least privilege access for all users.

No network perimeter; security enforced everywhere.

Uses multi-factor authentication (MFA).

Traditional Security

Trusts devices/users once inside the network.

Grants broad access after initial authentication.

Focused on perimeter defense (firewalls, VPNs).

Relies mainly on firewalls and VPNs.

Components of Zero Trust

How Zero Trust Works

User or Device Requests
Access

A user or device attempts to access a resource or network.

2

<u>Authentication via Multi-</u> <u>Factor Authentication (MFA)</u>

A robust authentication process is triggered, quirinultiple factors (e.g., pas)

3

Access is Granted Based on Roles and Permissions

Users are granted access only to the specific resources they need.

4

Dynamic Access Control

Access permissions are continuously re-evaluated based on realtime information.

Benefits of Zero Trust

Better Visibility

Continuous monitoring of users and devices.

Compliance-Friendly

Aligns with GDPR, HIPAA, and other regulations.

Resilience

Limits damage even if a breach occurs.

Requires a complete overhaul of legacy systems.

Cultural Resistance

Employees may resist additional authentication steps.

Integration

Ensuring compatibility with existing systems.

Real-Life Case Study

Overview: Google adopted Zero Trust with BeyondCorp to secure access to internal resources for remote employees, eliminating reliance on traditional network perimeter security.

Challenge

Securing access to internal resources for remote employees without relying on traditional security perimeters.

Solution

Google
implemented
BeyondCorp, a
Zero Trust model
that focuses on
continuous
verification of
users and
devices.

How it Works

- MFA and device health checks authenticate users.
- Least-privilege access is enforced for better control.

Outcome

- Improved security for remote work.
- Simplified access without relying on VPNs.

Future Trends in Zero Trust

Zero Trust in Everyday Life

ID Verification (Authentication)

Just like you need an ID to enter a building, Zero Trust requires users and devices to verify their identity.

Restricted Floors (Least Privilege)

Access is given only to necessary resources, just like restricted building floors.

<u>Security Guards Monitoring</u> (<u>Continuous Monitoring</u>)

It ensures security, like guards watching for unauthorized.

Eliminates Implicit Trust

Shifts from trust-based to verification-based security.

1 03

Enhances Resilience

Minimizes damage even in case of a breach.

Future-Ready

Adapts to evolving technologies and security needs.

02

04

Strengthens Security

Protects against modern threats like insider attacks.

Never Trust, Always Verify: Redefining Security in the Digital Age

Authored by: Khushi Malhotra