Calcolo Numerico - Corso B: Laboratorio Lezione 9

Luca Gemignani < luca.gemignani@unipi.it>

Simulazione di Prova

Esercizio1. Siano $M=(m_{i,j}), N=(n_{i,j})\in \mathbb{R}^{n\times n},\, n\geq 2,$ definite da

$$m_{i,j} = \begin{cases} 1 \text{ se } i \ge j; \\ 0 \text{ altrimenti;} \end{cases}$$

$$n_{i,j} = \begin{cases} x \text{ se } i \ge j; \\ 1 \text{ se } 1 \le i \le n-1, j = n; \\ 0 \text{ altrimenti.} \end{cases}$$

- 1. Si determini A = M N.
- 2. Si determini per quali valori del parametro $x \in \mathbb{R}$ la matrice A è predominante diagonale.
- 3. Si determini per quali valori del parametro $x \in \mathbb{R}$ il metodo iterativo $Mx^{(k+1)} = Nx^{(k)} + b$ è convergente.
- 4. Si mostri che per tali valori A è invertibile.
- 5. Si determini il costo computazionale di un'iterazione del metodo.

Esercizio 2. Si consideri l'equazione

$$f(x) = (x-1)e^{x+1} - a = 0, \quad a > 0.$$

- 1. Si mostri che l'equazione ammette una ed una sola soluzione reale $\xi = \xi(a)$.
- 2. Si mostri che il metodo delle tangenti genera successioni convergenti per ogni $x_0 > 0$.
- 3. Si scriva un programma MatLab che dato in input il valore di a e una tolleranza tol restituisce in uscita un'approssimazione di $\xi = \xi(a)$ generata dal metodo di Newton arrestato quando $|x_{k+1} x_k| \leq tol$.

4. Utilizzando il comando p
lot si tracci un grafico della funzione $a \to \xi(a)$ per
 $1 \le a \le 3.$