

DISPLAY DEVICE

BACKGROUND OF THE INVENTION

1. Field of the Invention:

5 The present invention relates to an active matrix type display device, and more particularly to a display device which includes pixels constituted of light emitting elements such as EL (electroluminescence) elements which emit light by flowing an electric current to light emitting layers such as organic semiconductor films, LED (light emitting diode) elements or the like and pixel circuits which control an light emitting
10 operation of these pixels.

2. Description of the Related Art:

Recently, along with an advent of the sophisticated information society, demand for personal computers, car navigation system, PDA, information communication equipment and composite products thereof is increasing. As display means for these
15 products, display device which is thin and light-weighted and exhibits small power consumption is suitable and a liquid crystal display device or a self-luminous display device which uses electro-optical elements such as EL elements or LEDs is used as such a display device.

The display device which uses the latter self-luminous electro-optical elements
20 has favorable characteristics such as the favorable visibility, the wide viewing angle characteristic and the rapid response suitable for display of moving images whereby it is considered that such a display device is particularly suitable for image display.

Particularly, with respect to the display device which uses organic EL elements
25 (also referred to as organic LED element: hereinafter also abbreviated as OLED in some cases) which utilizes an organic material such as organic semiconductors as light emitting layers, along with the rapid enhancement of the light emitting efficiency and the advancement of the network technology which enables the video communication, the

expectation for the display device which uses the OLED light emitting elements is high. The OLED light emitting element has the diode structure which sandwiches an organic light emitting layer with two sheets of electrodes.

To enhance the power efficiency of the OLED display device which is
5 constituted of these OLED light emitting elements, as will be explained later, active matrix driving which uses thin film transistors (hereinafter also referred to as TFT) as switching elements of pixels is effective.

Techniques which drive the OLED display device using the active matrix structure are described in, for example, Japanese Unexamined Patent Publication
10 1992-328791, Japanese Unexamined Patent Publication 1996-241048, US Patent Specification 5550066 and the like. Further, drive voltages used in the techniques are referred to in International Patent Publication WO98/36407.

The display device which uses the OLED light emitting elements is configured such that to a first substrate which forms a matrix of pixel circuits each consisting of a
15 switching element and an OLED light emitting element on a main surface thereof, a second substrate which protects the OLED light emitting elements which are formed on the main surface of the first substrate is laminated, and a seal material is applied to peripheries of both substrates and cured so as to isolate and seal the inside of the laminated structure from the outside. Here, for mainly suppressing the deterioration of
20 the OLED light emitting elements caused by moisture, a moisture absorbent is usually mounted on an inner surface of the second substrate (surface which faces the main surface of the first substrate in an opposed manner). This moisture absorbent is mounted such that a recessed portion is formed in the inner surface of the second substrate and the moisture absorbent is adhered to the recessed portion using an adhesive agent or the moisture absorbent is applied to a bottom surface of the recessed portion by
25 coating.

The aforementioned patent gazettes and the other documents the inventors of the present patent application referred are listed as follows.

Patent Document 1: Japanese Unexamined Patent Publication 1992-328791

Patent Document 2: Japanese Unexamined Patent Publication 1996-241048

5 Patent Document 3: US Patent Specification 5550066

Patent Document 4: International Patent Publication WO98/36407

Patent Document 5: Japanese Unexamined Patent Publication 2000-36381

Patent Document 6: Japanese Unexamined Patent Publication 1997-148066

10

SUMMARY OF THE INVENTION

The first substrate includes a display area formed of a pixel circuit in which a large number of pixels are arranged in a matrix array, the first substrate includes a first seal area at a periphery outside the display area, and the second substrate includes a second seal area which covers the main surface constituting an inner surface of the first 15 substrate at an area which faces the first seal area of the first substrate. Then, the first seal area and the second seal area are laminated to each other by way of the seal material and ultraviolet rays are irradiated from the second substrate side to cure the seal material thus completing sealing.

In the recent OLED display device, there has been proposed a method in which 20 a drive circuit area which constitutes drive circuits for driving the pixel circuits is provided outside the display area which is formed on the main surface of the first substrate and inside the first seal area, and the drive circuits are arranged in the inside sealed by the first substrate and the second substrate. In such a method, the drive circuits can be simultaneously formed with the pixel circuits and the drive circuits are 25 incorporated and hence, it is possible to obtain an advantage that an operation to exteriorly mount the drive circuits can be omitted and the constitution of the whole display device can be simplified.

However, in curing the seal material which laminates the first substrate and the second substrate together by irradiating ultraviolet rays to the seal material, there exists the possibility that the ultraviolet rays to be irradiated wrap around the drive circuit area and the display area and deteriorate the characteristics of the drive circuits and the semiconductor films which constitute the pixel circuits in the display area. Accordingly, in performing curing of the seal material by the irradiation of ultraviolet rays, it is necessary to prevent wrapping-around of the ultraviolet rays around the drive circuit area and the display area.

As a countermeasure to cope with this task, the use of the light shielding mask which is used in the manufacture of semiconductor elements has been considered conventionally. The light shielding mask performs, as will be explained later as a comparison example in the embodiment, the curing treatment of the seal material by using a quartz mask which constitutes a light shielding film on portions which are to be blocked from the irradiation of ultraviolet rays and the quartz mask is tightly adhered to the second substrate. However, in such a method, since there exists a distance between the drive circuits, the pixel circuits and the quartz mask and hence, the wrapping-around of the ultraviolet rays into the inside of the light shielding film formed on the quartz mask is increased. Accordingly, it is necessary to form the drive circuits such that the drive circuits are arranged close to the display area side. However, this brings about narrowing of the area of the display area.

As another prior arts, in Japanese Unexamined Patent Publication 2000-36381 and Japanese Unexamined Patent Publication 1997-148066, cathode films which constitute OLED elements in a display area are formed of a light shielding metal. This structure, however, has no intention of performing light shielding of drive circuits in a display device which includes the structure which providing the drive circuits inside a seal area.

It is an object of the present invention to provide a display device which has the structure in which a drive circuit area is provided inside seal area which laminates a first substrate and a second substrate together and can obviate in a simple structure the deterioration of characteristics of a display area (a plurality of pixels each having an active element being arranged) and the drive circuit area which may be caused by the irradiation of ultraviolet rays without using a special device for light shielding.

To achieve the above-mentioned object, the present invention is characterized in that to arrange light shielding means close to the display area where pixel circuits to be blocked from light are formed and the drive circuit area where the drive circuit is formed, respective types of constitutional layers provided to the display device also function as the light shielding means. The present invention particularly adopts the structure in which cathode films which constitute OLED elements of the display area on the first substrate also shield the drive circuit area. Further, layers or films made of a moisture absorbent which are provided to the second substrate are used as light shielding means or a light shielding film which covers the display area or the drive circuit area is formed over an inner surface or an outer surface of the second substrate.

Due to such structures, a projected image of the light shielding film or the light shielding layer as viewed from the ultraviolet ray irradiation side covers the drive circuit area beyond the display area and hence, the ultraviolet rays are irradiated only to a seal material in the seal area without using a special light shielding device in manufacturing steps whereby it is possible to prevent the deterioration of characteristics of organic light emitting layers and semiconductor films which constitute the pixel circuits and the semiconductor films which constitute the drive circuit thus providing the display device of high quality.

A display device according to a first example of the present invention comprises:

- (a) a first substrate having a display area in which a plurality of pixels are arranged

in a matrix manner on a main surface of the first substrate and a first seal area formed at a periphery of the display area on the main surface of the first substrate, each of the plurality of pixels has a light emitting element and a pixel circuit including an active element; and

- 5 (b) a second substrate disposed to cover the main surface of the first substrate with a main surface of the second substrate, and having a second seal area at a part of the main surface of the second substrate opposite to the first seal area of the first substrate, the first substrate and the second substrate are stuck to each other by a seal material interposed between the first seal area and the second area, wherein
 - 10 (1) the first substrate has a cathode film which is commonly utilized for the respective light emitting elements of the plurality of pixels and covers the second substrate side of the display area,
 - (2) at least one driving circuit driving the plurality of pixels is arranged outside of the display area on the main surface of the first substrate,
- 15 (3) the second substrate has a recessed portion formed at a part of the main surface of the second substrate within the second seal area and a moisture absorbent layer adhering to the recessed portion, and
 - (4) the cathode film has a light shielding property and is formed beyond the display area to cover the at least one driving circuit also.

20 In the display device according to the first example, the cathode film may be formed as a single layer of a conductive film, or may have a laminated structure formed by stacking a plurality of the conductive films. The conductive film is formed of e.g. a material selected from a group consisting of aluminum, chromium, titanium, molybdenum, tungsten, hafnium, yttrium, copper, silver, and an alloy which contains at least two elements selected from a group consisting of aluminum, chromium, titanium, molybdenum, tungsten, hafnium, yttrium, copper, and silver. Moreover, the cathode film should be thick enough to cut off ultraviolet with which the seal material is

irradiated to be cured thereby.

On the other hand, the light emitting element may be formed of an organic semiconductor material, or may have a light emitting layer formed of an organic electroluminescent material.

5 Furthermore, in the aforementioned display device according to the first example, an area where the at least one driving circuit is provided does not extend outside the first seal region on the main surface of the first substrate, for instance. The first seal region may be formed to surround the display region in the main surface of the first substrate. The second seal region may be formed to surround the recessed portion
10 formed at the main surface of the second substrate in the main surface thereof.

A display device according to a second example of the present invention comprises:

- (a') a first substrate having a display area in which a plurality of pixels are arranged in a matrix manner on a main surface of the first substrate and a first seal area formed at
15 a periphery of the display area on the main surface of the first substrate, each of the plurality of pixels includes a light emitting element and an active element; and
- (b) a second substrate disposed to cover the main surface of the first substrate with a main surface of the second substrate, and having a second seal area at a part of the main surface of the second substrate opposite to the first seal area of the first substrate,
20 the first substrate and the second substrate are stuck to each other by a seal material interposed between the first seal area and the second area, wherein
 - (2) at least one driving circuit driving the plurality of pixels is arranged outside of the display area on the main surface of the first substrate,
 - (3') the second substrate has a recessed portion formed at a part of the main surface
25 of the second substrate within the second seal area and an moisture absorbent layer having a light shielding property adheres to the recessed portion, and
 - (5') the moisture absorbent layer is arranged to cover the display area and the at

least one driving circuit.

In the display device according to the second example, the moisture absorbent layer may be formed of a moisture absorbent containing pigments dispersed therein. The pigments cut off ultraviolet with which the seal material is irradiated to be cured thereby, and are formed e.g. of a material selected from a group consisting of carbon black and titanium black.

On the other hand, the moisture absorbent layer may be formed of a moisture absorbent containing dye mixed therein, also. The dye cuts off ultraviolet with which the seal material is irradiated to be cured thereby.

In the display device according to the second example, the moisture absorbent layer may be adhered to the recessed portion of the main surface of the second substrate with an adhesive. The adhesive may contain pigments blocking ultraviolet with which the seal material is irradiated to be cured thereby. The pigments are formed of a material selected from a group consisting of carbon black and titanium black, for instance. The adhesive may also contain dye mixed therein. The dye blocks ultraviolet with which the seal material is irradiated to be cured thereby.

A display device according to a third example of the present invention comprises:

- (a') a first substrate having a display area in which a plurality of pixels are arranged in a matrix manner on a main surface of the first substrate and a first seal area formed at a periphery of the display area on the main surface of the first substrate, each of the plurality of pixels includes a light emitting element and an active element; and
- (b) a second substrate disposed to cover the main surface of the first substrate with a main surface of the second substrate, and having a second seal area at a part of the main surface of the second substrate opposite to the first seal area of the first substrate, the first substrate and the second substrate are stuck to each other by a seal material interposed between the first seal area and the second area, wherein

- (2) at least one driving circuit driving the plurality of pixels is arranged outside of the display area on the main surface of the first substrate,
- (3") the second substrate has a recessed portion formed at a part of the main surface of the second substrate within the second seal area and a coating film of an moisture absorbent layer having a light shielding property is put in the recessed portion, and

5

- (5) the moisture absorbent layer is arranged to cover the display area and the at least one driving circuit.

A display device according to a fourth example of the present invention comprises:

- 10 (a') a first substrate having a display area in which a plurality of pixels are arranged in a matrix manner on a main surface of the first substrate and a first seal area formed at a periphery of the display area on the main surface of the first substrate, each of the plurality of pixels includes a light emitting element and an active element; and
- (b) a second substrate disposed to cover the main surface of the first substrate with
- 15 a main surface of the second substrate, and having a second seal area at a part of the main surface of the second substrate opposite to the first seal area of the first substrate, the first substrate and the second substrate are stuck to each other by a seal material interposed between the first seal area and the second area, wherein
- (2) at least one driving circuit driving the plurality of pixels is arranged outside of
- 20 the display area on the main surface of the first substrate,
- (6) the second substrate has a recessed portion formed at a part of the main surface of the second substrate within the second seal area and a light shielding film covering the display area and the at least one driving circuit is put in the recessed portion, and
- (7) a moisture absorbent layer adheres on the light shielding film.

25 A display device according to a fifth example of the present invention comprises:

- (a') a first substrate having a display area in which a plurality of pixels are arranged

in a matrix manner on a main surface of the first substrate and a first seal area formed at a periphery of the display area on the main surface of the first substrate, each of the plurality of pixels includes a light emitting element and an active element; and

(b) a second substrate disposed to cover the main surface of the first substrate with

5 a main surface of the second substrate, and having a second seal area at a part of the main surface of the second substrate opposite to the first seal area of the first substrate, the first substrate and the second substrate are stuck to each other by a seal material interposed between the first seal area and the second area, wherein

(2) at least one driving circuit driving the plurality of pixels is arranged outside of

10 the display area on the main surface of the first substrate,

(8) the second substrate has a recessed portion formed at a part of the main surface of the second substrate which is opposite to the main surface of the first substrate and located within the second seal area, a moisture absorbent layer adhering to the recessed portion, and a light shielding film being arranged on another main surface thereof at

15 opposite side thereof to the main surface of the first substrate and covering the display area and the at least one driving circuit.

A display device according to a sixth example of the present invention

comprises:

(a') a first substrate having a display area in which a plurality of pixels are arranged

20 in a matrix manner on a main surface of the first substrate and a first seal area formed at a periphery of the display area on the main surface of the first substrate, each of the plurality of pixels includes a light emitting element and an active element; and

(b) a second substrate disposed to cover the main surface of the first substrate with

a main surface of the second substrate, and having a second seal area at a part of the

25 main surface of the second substrate opposite to the first seal area of the first substrate, the first substrate and the second substrate are stuck to each other by a seal material interposed between the first seal area and the second area, wherein

- (1) the first substrate has a cathode film which is commonly utilized for the respective light emitting elements of the plurality of pixels and covers the second substrate side of the display area,
- (2') at least one driving circuit driving the plurality of pixels is arranged in a portion 5 of the main surface of the first substrate being outside of the display area and extending from a part of the first seal area to an inside of the first seal area,
- (3) the second substrate has a recessed portion formed at a part of the main surface of the second substrate within the second seal area and a moisture absorbent layer adhering to the recessed portion, and

10 (4) the cathode film has a light shielding property and is formed beyond the display area to cover the at least one driving circuit also.

In each of the aforementioned display devices according to the second through sixth examples, the light emitting element may be formed of an organic semiconductor material, or may have a light emitting layer formed of an organic electroluminescent material.

Here, it is needless to say that the present invention is not limited to the above-mentioned constitutions and the constitutions of embodiments described later and various modifications are conceivable without departing from the technical concept of the present invention. Other objects and constitutions of the present invention will 20 become apparent from the description of the embodiments described later.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a cross-sectional view for schematically explaining the constitution of a first embodiment of a display device according to the present invention;

25 Fig. 2 is a cross-sectional view for schematically explaining the constitution of a second embodiment of a display device according to the present invention;

Fig. 3 is a cross-sectional view for schematically explaining the constitution of a third embodiment of a display device according to the present invention;

Fig. 4 is a cross-sectional view for schematically explaining the constitution of a fourth embodiment of a display device according to the present invention;

5 Fig. 5 is a cross-sectional view for schematically explaining the constitution of a fifth embodiment of a display device according to the present invention;

Fig. 6 is a cross-sectional view for schematically explaining the constitution of a sixth embodiment of a display device according to the present invention;

10 Fig. 7 is a schematic cross-sectional view of a conventional ultraviolet-ray exposure device served for explaining an advantageous effect of the present invention;

Fig. 8 is an explanatory view of an example of manufacturing process of a display device according to the present invention;

Fig. 9 is a process flow chart for explaining one example of the manufacturing process shown in Fig. 8;

15 Fig. 10 is a plan view for schematically explaining an example of arrangement of respective functional parts on a first substrate of a display device according to the present invention;

Fig. 11 is an explanatory view of an example of circuit constitution of one pixel shown in Fig. 10; and

20 Fig. 12 is a cross-sectional view for schematically explaining an example of layer structure in the vicinity of one pixel of a display device using organic light emitting elements to which the present invention is applied.

DETAILED DESCRIPTION

25 Preferred embodiments of the present invention are explained in detail in conjunction with drawings which show the embodiments. In the explanation made hereinafter, organic light emitting layers provided to light emitting elements which

constitute respective pixel circuits are classified into organic light emitting layers which perform a monochromic or color display by emitting light with luminance which is substantially proportional to a current value and with color (including white) depending on an organic material thereof, organic light emitting layers which perform a color display by combining color filters of red, green, blue and the like to organic layers which emit white light and the like. Here, since the detail of the mechanism of light emission, coloration and the like is not directly relevant to the explanation of the present invention, the explanation is omitted.

Fig. 1 is a cross-sectional view for schematically explaining the constitution of a first embodiment of a display device according to the present invention. In the drawing, reference symbol SUB1 indicates a first substrate, reference symbol SUB2 indicates a second substrate, and reference symbol SL indicates a seal material. On an inner surface which constitutes a main surface of the first substrate SUB1, organic light emitting elements formed of organic light emitting layers OLE are formed. In Fig. 1, only the organic light emitting layer OLE and a cathode film CD which is formed as a layer above the organic light emitting layer OLE are shown. The organic light emitting element includes pixel circuits constituted of a plurality of thin film transistors and holding capacitances as active elements for selecting and driving pixel on the organic light emitting layer OLE for each pixel. A display area AR is formed of a large number of these pixels. Then, outside the display area AR and inside the seal area SL (an area where a seal area SL1 at the first substrate SUB1 side and a seal area SL2 at the second substrate SUB2 side face each other in an opposed manner), a drive circuit area DR where drive circuits are formed is positioned. Here, the active elements are not limited to the thin film transistors.

The display device includes the display area AR which arranges the pixel circuits in a matrix array on the main surface of the first substrate SUB1 and the drive circuit area DR where the drive circuits are formed. The cathode films CD which

constitute the pixel circuits are provided to the display area AR and these cathode films CD are formed such that the cathode films CD also cover the drive circuit area DR beyond the display area AR. The second substrate SUB2 is a so-called seal can, wherein a recessed portion ALC is formed in an inner surface of the second substrate 5 SUB2, that is, a surface of the second substrate SUB2 which faces the main surface of the first substrate SUB1. A moisture absorbent (desiccant agent) DCT is mounted in the recessed portion by way of an adhesive layer FX.

The seal areas SL1, SL2 are formed on respective peripheries of the first substrate SUB1 and the second substrate SUB2 and the seal material (adhesive agent 10 made of ultraviolet ray cuing resin) SL is applied between these seal areas SL1, SL2. The first substrate SUB1 and the second substrate SUB2 are laminated to each other such that the respective main surfaces thereof face each other in an opposed manner and a distance between both substrates is adjusted to a given value (so-called gap forming step). At this point of time, the seal material SL is sandwiched between the seal area 15 SL1 of the first substrate SUB1 and the seal area SL2 of the second substrate SUB2 in a state that the seal material SL is not cured. Subsequently, ultraviolet rays UV are made to be incident on the second substrate SUB2 (main surface of the second substrate SUB2 opposite to the first substrate SUB1). The seal material SL is cured upon receiving the irradiation of ultraviolet rays UV which pass through the second substrate SUB2 20 (peripheral portion which surrounds the recessed portion ALC). Accordingly, the first substrate SUB1 and the second substrate SUB2 are integrally fixed to each other by the cured seal material SL. In the display device (display panel) assembled in this manner, the main surfaces (main surfaces having the seal areas SL1, SL2) of the first substrate SUB1 and the second substrate SUB2 which face each other in an opposed manner are 25 also referred to as inner surfaces, while the main surface of the first substrate SUB1 opposite to the second substrate SUB2 and the main surface of the second substrate SUB2 opposite to the first substrate SUB1 are also referred to as outer surfaces.

Here, the irradiated ultraviolet rays UV are blocked by the cathode films CD which are formed on the inner surface of the first substrate SUB1 and does not reach the display area AR and the drive circuit area DR. A using wavelength of the ultraviolet rays UV is usually 300nm to 450nm and the intensity of light is 10 to 200mW/cm².

5 Further, to ensure the light shielding effect of the cathode films CD, it is preferable to set a thickness of the cathode films CD such that the cathode films CD can sufficiently block light of the above-mentioned wavelength band. For example, when the cathode films CD are formed of aluminum, it is preferable to set the thickness of the cathode film CD to a value equal to or more than 50nm, and it is more preferable to set the thickness 10 of the cathode films CD to a value equal to or more than 200nm. With respect to an aluminum film, the light shielding effect is almost saturated when the film thickness of the cathode film CD is equal to or more than 200nm.

When the cathode films are made of aluminum, by setting the film thickness to a value equal to or more than 200nm, no damage is imparted to the semiconductor films 15 of the organic light emitting layers OLE which constitute the display area AR or the thin film transistors and the semiconductor films of the thin film transistors which constitute the drive circuit area DR. According to this embodiment, without adding the particular light shielding means, it is possible to shield the display area AR and the drive circuit area DR of the display device from the ultraviolet rays and hence, it is possible to 20 maintain given performances (voltage/current characteristics) for a long period and, at the same time, it is possible to obtain the display device of high quality at a low cost. That is, without adding any new functions to the existing manufacturing facility and, at the same time, without adding a new forming process, it is possible to manufacture the display device of the present invention. The cathode films CD may be formed of a 25 metal film made of a material selected from a group consisting of aluminum, chromium, titanium, molybdenum, tungsten, hafnium, yttrium, copper and silver or an alloy film made of a material containing the above-mentioned two or more materials.

Fig. 2 is a cross-sectional view for schematically explaining the constitution of a second embodiment of the display device according to the present invention. In the drawing, reference symbols equal to those in Fig. 1 indicate identical functional parts. While the embodiment explained in conjunction with Fig. 1 performs the light shielding at the first substrate SUB1 side, in this embodiment, the display area AR and the drive circuit area DR provided to the first substrate SUB1 are shielded from light by a moisture absorbent layer DCTS provided to the second substrate SUB2. To obviate the contact between the display area AR and the drive circuit area DR provided to the inner surface of the first substrate SUB1, a thickness of the moisture absorbent layer DCTS is usually set to 0.1 to 1.0mm. The moisture absorbent layer DCTS is a sheet-like molded product and is fixed to a bottom portion of the recessed portion ALC of the second substrate SUB2 by means of an adhesive agent FX.

Provided that the moisture absorbent layer DCTS is a material which can block ultraviolet rays having a wavelength of 300nm to 450nm, known materials can be used. A material which is produced by blending 1% to 30% by weight of black powder such as carbon black, titanium black to a material known as a desiccant (for example, composition which contains barium oxide, calcium oxide, zeolite and the like as main components) can be used. Here, in this embodiment, although the cathode films CD provided to the first substrate SUB1 side are formed such that the cathode films CD cover only the display area AR, it is possible to enhance the light shielding effect by forming the cathode films CD such that the cathode films CD also cover the drive circuit area DR in the same manner as the above-mentioned first embodiment. For example, it is possible to prevent leaking through shielding attributed to pin hole defects when the cathode films CD are made of aluminum and, at the same time, it is possible to set the thickness of the aluminum cathode films CD to equal to or less than 200nm. According to this embodiment, without adding the particular light shielding means, it is possible to shield the display area AR and the drive circuit area DR of the display device from the

ultraviolet rays and hence, it is possible to maintain given performances (voltage/current characteristics) and, at the same time, it is possible to obtain the display device of high quality at a low cost.

Fig. 3 is a cross-sectional view for schematically explaining the constitution of the third embodiment of the display device according to the present invention. The repeated explanation of the constitutions similar to those constitutions shown in Fig. 1 and Fig. 2 is omitted. In this embodiment, as a moisture absorbent which is loaded in the recessed portion ALC formed in the inner surface of the second substrate SUB2, a moisture absorbent in a liquid form is applied to the whole surface of the bottom portion of the recessed portion ALC of the second substrate SUB2 and is fixed to the bottom portion by heat treatment thus forming a moisture absorbent film DCTM. Accordingly, in this embodiment, an adhesive agent for fixing the moisture absorbent film DCTM is unnecessary. As the material of the moisture absorbent film DCTM, it is possible to use a material similar to the material used in the second embodiment explained in conjunction with Fig. 2. Further, by forming the cathode films CD such that the cathode films CD also covers the drive circuit area DR in the same manner as the first embodiment, it is possible to further enhance the light shielding effect. According to this embodiment, without adding the particular light shielding means, it is possible to shield the display area AR and the drive circuit area DR of the display device from the ultraviolet rays and hence, it is possible to maintain given performances (voltage/current characteristics) and, at the same time, it is possible to obtain the display device of high quality at a low cost.

Fig. 4 is a cross-sectional view for schematically explaining the constitution of the fourth embodiment of the display device according to the present invention. The repeated explanation of the constitutions similar to those constitutions shown in Fig. 1 to Fig. 3 is omitted. In this embodiment, a light shielding film SHL1 is formed in the recessed portion ALC formed in the inner surface of the second substrate SUB2 and a

moisture absorbent layer DCT is fixed to the light shielding film SHL1 as an upper layer using the adhesive agent FX. The light shielding film SHL1 may be obtained by applying or printing a light-shielding composition in a liquid form (resin which is produced by dispersing black powder made of carbon black, titanium black or the like into a solvent) to the recessed portion ALC and drying the composition or may be obtained by forming a film having a given thickness by vacuum evaporating or sputtering a metal material. Further, an inorganic or organic light shielding composition in a film form may be laminated to the recessed portion ALC. Further, by forming the cathode film CD such that the cathode film CD also covers the drive circuit area DR in the same manner as the first embodiment, it is possible to further enhance the light shielding effect. According to this embodiment, without adding the particular light shielding means, it is possible to shield the display area AR and the drive circuit area DR of the display device from the ultraviolet rays and hence, it is possible to maintain given performances (voltage/current characteristics) and, at the same time, it is possible to obtain the display device of high quality at a low cost.

Fig. 5 is a cross-sectional view for schematically explaining the constitution of the fifth embodiment of the display device according to the present invention. The repeated explanation of the constitutions similar to those constitutions shown in Fig. 1 to Fig. 4 is omitted. In this embodiment, a light shielding film SL2 similar to the light shielding film SL1 explained in conjunction with Fig. 4 is formed on the outer surface of the second substrate SUB2. The light shielding film SL2 may be obtained by applying or printing a light-shielding composition in a liquid form (resin which is produced by dispersing black powder made of carbon black, titanium black or the like into a solvent) to the outer surface of the second substrate SUB2 and drying the composition or may be obtained by forming a film having a given thickness by vacuum evaporating or sputtering a metal material. Further, an inorganic or organic light shielding composition in a film form may be laminated to the outer surface of the second substrate

SUB2. Further, by forming the cathode films CD such that the cathode films CD also covers the drive circuit area DR in the same manner as the first embodiment, it is possible to further enhance the light shielding effect. According to this embodiment, without adding the particular light shielding means, it is possible to shield the display area AR and the drive circuit area DR of the display device from the ultraviolet rays and hence, it is possible to maintain given performances (voltage/current characteristics) and, at the same time, it is possible to obtain the display device of high quality at a low cost.

Fig. 6 is a cross-sectional view for schematically explaining the constitution of the sixth embodiment of the display device according to the present invention. The repeated explanation of the constitutions similar to those constitutions shown in Fig. 1 to Fig. 4 is omitted. In this embodiment, the drive circuit area DR which is provided to the main surface of the first substrate SUB1 is formed such that the drive circuit area DR is overlapped to portions of a seal area (a seal area where the seal area SL1 of the first substrate SUB1 side and the seal area SL2 of the second substrate SUB2 side face each other). Although the overall constitution of this embodiment is substantially equal to the overall constitution of the first embodiment of the present invention explained in conjunction with Fig. 1, this embodiment differs from the first embodiment with respect to a point that the drive circuit area DR is formed at a position where the drive circuit area DR enters the seal area. Since other constitutions are equal to the constitutions shown in Fig. 1, the repeated explanation is omitted.

According to this embodiment, by forming the drive circuit area DR at the position where the drive circuit area DR enters the seal area, it is also possible to increase the display area AR and hence, the display device having a large screen can be realized using the substrate having the same size. Here, although the constitution of the first substrate SUB1 side is formed in the same manner as the constitution shown in Fig. 1, it may be formed in the same manner as the constitutions explained in conjunction with Fig. 2 to Fig. 5. Further, the constitution of the second substrate SUB2 side may

be formed in the same manner as the constitution explained in conjunction with Fig. 2 to Fig. 5. According to this embodiment, without adding the particular light shielding means, it is possible to shield the display area AR and the drive circuit area DR of the display device from the ultraviolet rays and hence, it is possible to maintain given performances (voltage/current characteristics) and, at the same time, it is possible to obtain the display device of high quality at a low cost.

Here, a comparison example is explained with respect to the present invention. Fig. 7 is a schematic cross-sectional view of a conventional ultraviolet-ray exposure device for explaining the advantageous effects of the present invention. Conventionally, a light shielding mask MSK which forms a light shielding film SHP on a quartz glass QG is tightly adhered to an outer surface of a second substrate SUB2, and ultraviolet rays UV are irradiated to a seal material SL from the second substrate SUB2 side. To prevent leaking of the ultraviolet rays UV incident on one of main surfaces (lower surface shown in Fig. 7) of the second substrate SUB2 to a display area AR (active elements of respective pixels arranged inside thereof) and a drive circuit area DR (drive circuits including active elements) of the first substrate SUB1, the light shielding mask MSK is tightly adhered to one of main surfaces (lower surface shown in Fig. 7 on which the ultraviolet rays UV are incident) of the second substrate SUB2 in accordance with steps described hereinafter.

First of all, the light shielding mask MSK is placed on a transparent lower suction stage VST2 and the second substrate SUB2 is placed on the light shielding mask MSK. A seal material SL, for example, a dispenser is applied to a periphery (seal area SL2) of the main surface of the second substrate SUB2. On the other hand, the first substrate SUB1 is conveyed by an upper suction stage VST1 provided with a vacuum chuck to a position above the second substrate SUB2 in a state that the main surface of the first substrate SUB1 on which the display area AR and the drive circuit area DR are formed faces downwardly. Subsequently, the positions of the upper suction stage VST1

and a lower suction stage VST2 are adjusted. A periphery (seal area SL1) of the main surface of the first substrate SUB1 is brought into contact with the seal material SL applied to the periphery of the main surface of the second substrate SUB2. Further, the main surface of the first substrate SUB1 and the main surface of the second substrate 5 SUB2 are laminated to each other with a given distance therebetween. In this state, ultraviolet rays UV incident on the periphery of the second substrate SUB2 from the lower suction stage VST2 side are irradiated to the seal material SL so as to cure the seal material SL.

However, as described previously, since the large distance exists between the 10 area to be blocked from the light and the light shielding mask, it is difficult to obviate the irradiation of ultraviolet rays to the area to be blocked from the light which is caused by wrapping-around of the ultraviolet rays. Particularly, it is difficult to obviate damages which may be caused by wrapping-around of the ultraviolet rays to the drive circuit area adjacent to the seal material SL.

15 Further, such a ultraviolet-ray exposure device uses the expensive quartz mask and hence, the device is not suitable for the manufacture of the display device having a large screen size. Further, since the light shielding mask MSK and the second substrate SUB2 must be held using the same lower suction stage VST2, a holding mechanism becomes complicated. Further, the alignment of three components consisting of the 20 first substrate SUB1, the second substrate SUB2 and the light shielding mask MSK becomes necessary and hence, there is no way but a mechanism for alignment becomes complicated. Further, the light shielding film SHP which is usually formed of a chromium film is brought into contact with the second substrate SUB2 and hence, flaws or the like occur on the light shielding film SHP whereby there exists a limit with respect to the repeated use of the light shielding film SHP. In view of the above, when the 25 ultraviolet-ray exposure device shown in Fig. 7 is used, this pushes up the cost of the display device. Accordingly, by adopting the above-mentioned respective

embodiments of the present invention, it is possible to shield the display area AR and the drive circuit area DR from the ultraviolet rays without adding any special light shielding means.

Fig. 8 is an explanatory view of an example of a manufacturing process of the display device according to the present invention. Fig. 9 is a process flow chart for explaining an example of the manufacturing process shown in Fig. 8. In Fig. 8, glass (first substrate glass) which constitutes a base material of the first substrate and glass (second substrate glass) which constitutes a base material of the second substrate are subjected to cleaning, degassing, cooling and the like respectively by a pretreatment facility PPS. Here, a recessed portion in which a moisture absorbent (desiccant) is mounted is formed in the second substrate glass. Then, the first substrate glass is conveyed to a first vacuum evaporation apparatus V1S and hole injection layers and an organic light emitting layers are formed on output electrodes (or anodes connected to the output electrodes) of the thin film transistors. When the color display is performed with light emitting colors of the organic light emitting layers per se, the formation of organic light emitting layers of three colors consisting of red (R), green (G) and blue (B) is performed sequentially.

The first substrate glass to which the treatment in the first vacuum evaporation apparatus V1S is applied is conveyed to a second vacuum evaporation apparatus V2S where the vacuum evaporation or the like of the cathodes is applied. The first substrate glass to which the cathodes are deposited are conveyed to a sealing apparatus SS. On the other hand, the pretreated second substrate glass is conveyed to the sealing apparatus SS and, thereafter, are transferred to a desiccant dispenser chamber (moisture absorbent loading chamber) DDS and a moisture absorbent is loaded in the recessed portion. The second substrate glass on which the moisture absorbent is loaded is again returned to the sealing apparatus SS and is laminated to the first substrate glass. This lamination is performed such that a seal material made of ultraviolet rays curing resin is applied

between respective seal areas of the first substrate glass and the second substrate glass and the substrate glasses are laminated to each other. Ultraviolet rays are radiated to the seal material from the second substrate glass side to cure the seal material. Here, it may be possible to perform the heat treatment after irradiation of the ultraviolet rays so
5 as to completely cure the seal material.

The laminated product which is formed by integrally laminating the first and the second substrate glasses using the seal material and by curing the seal material is taken out from the sealing apparatus SS and is cut into individual display devices. A flexible printed circuit board for signal connection is mounted on the display device, aging
10 treatment is applied to the display device and, thereafter, the display device is incorporated into a necessary housing thus completing the display device.

The above-mentioned manufacturing process is further explained in conjunction with Fig. 9. First of all, on the base-material glass substrate which constitutes the first substrate glass (first substrate glass), the thin film transistor and the semiconductor
15 circuit which functions as the driver circuit for the thin film transistor which constitute the pixel circuit for the organic light emitting element are formed for every display device. The light emitting layer of the organic light emitting element OLE is formed on the first substrate glass. In forming the OLE light emitting layer, the pretreatments such as cleaning, degassing, cooling and the like are applied to the substrate which includes
20 the thin film transistor circuit formed in the preceding step and, thereafter, the hole injection layer and the organic light emitting layer are applied to each pixel portion of the display area. Finally, the cathode film is formed to obtain the first substrate.

On the other hand, the recessed portion which houses the moisture absorbent therein is formed in the second substrate glass which constitutes the sealing substrate.
25 The moisture absorbent is loaded on the second substrate glass after forming the recessed portion and, thereafter, the second substrate glass is laminated to the first substrate glass by applying the seal material. After curing the seal material by the irradiation of

ultraviolet rays, the heat treatment is applied as the post-curing treatment. Thereafter, the laminated product is cut into individual-sized display devices. The flexible printed circuit board for connection with the external circuit is connected to the display device and, thereafter, the display device is incorporated into the housing whereby the display
5 device is completed as a module.

Fig. 10 is a plan view for schematically explaining an example of arrangement of respective functional portions on the first substrate of the display device according to the present invention. The display device shown in Fig. 10 corresponds to the above-mentioned first embodiment of the present invention. On the most portion of the
10 center of the first substrate SUB1, the display area AR is formed. In this drawing, at both sides, that is, at the left and the right sides of the display area AR, drive circuits (scanning drive circuit) GDR-A and GDR-B are arranged. Gate lines GL-A, GL-B which extend from the respective scanning drive circuits GDR-A and GDR-B are alternately formed. Further, another drive circuit (data drive circuit) DDR is arranged
15 at the lower side of the display area AR and drain lines DL which constitute data lines are formed such that the drain lines DL intersect the gate lines GL-A, GL-B.

Further, a current supply base line CSLB is arranged at the upper side of the display area AR and current supply lines CSL extending from the current supply base line CSLB are formed. In this constitution, one pixel PX is formed in a portion
20 surrounded by the gate lines GL-A, GL-B, the drain line DL and the current supply line CSL. Then, inside the seal material SL, the cathode films CD are formed such that the cathode films CD covers the display area AR, the respective scanning drive circuits GDR-A, GDR-B and the data drive circuit DDR. Here, reference symbol CTH indicates a contact area which is served for connecting the cathode films to cathode film
25 lines which are formed as a layer below the first substrate.

Fig. 11 is an explanatory view of an example of the circuit constitution of one pixel shown in Fig. 10. This example of the circuit constitution is constituted of a thin

film transistor TFT1 for switching, a thin film transistor TFT2 for driving organic light emitting element OLED and a capacitance CPR for holding data. The thin film transistor TFT1 has a gate electrode thereof connected to the gate line GL-A, a drain electrode thereof connected to the drain line DL and a source electrode thereof connected to one pole of the capacitance CPR. On the other hand, the thin film transistor TFT2 has a gate electrode thereof connected to the source electrode (one pole of the capacitance CPR) of the thin film transistor TFT1, a drain electrode thereof connected to the current supply line CSL and a source electrode thereof connected to an anode AD of the organic light emitting element OLED. A cathode CD of the organic light emitting element OLED constitutes the cathode film explained in conjunction with the above-mentioned embodiment.

Fig. 12 is a cross-sectional view for schematically explaining an example of layer structure in the vicinity of one pixel of the display device which uses the organic light emitting element to which the present invention is applied. On the main surface of the first substrate SUB1, the thin film transistors each of which is constituted of a poly-silicon semiconductor film PSI, a gate electrode GT (gate line GL), a source or a drain electrode SD (source electrode in the drawing) are formed. Reference symbols IS (IS1, IS2, IS3) indicate interlayer insulation layers and PSV indicates a passivation layer.

The thin film transistor shown in Fig. 12 corresponds to the thin film transistor TFT2 for driving shown in Fig. 11. The anode AD which constitutes the organic light emitting element is connected to the source electrode SD and the light emitting layer OLE is formed on the anode AD. Further, cathode film CD is formed on the light emitting layer OLE as an upper layer. On the other hand, on the inner surface of the second substrate SUB2, the moisture absorbent DCT is mounted using an adhesive agent FX for mainly preventing the deterioration of the light emitting layer OLE caused by moisture. The present invention displays images with the pixels which are constituted in the above-mentioned manner.

As has been explained heretofore, according to the present invention, by providing the light shielding means close to the display area on which the pixel circuits to be blocked from the ultraviolet rays are formed and the drive circuit area where the drive circuits are formed, it is possible to make the ultraviolet rays irradiated to only the seal material in the seal area without using the special light shielding device in the manufacturing process and hence, it is possible to prevent the deterioration of characteristics of the organic light emitting layer and the semiconductor films which constitute the pixel circuits and the semiconductor films which constitute the drive circuits whereby the display device of high quality can be obtained.