

ECE 462 – Data and Computer Communications

Lecture 3: Data Transmission

Bijan Jabbari, PhD

Dept. of Electrical and Computer Eng. George Mason University bjabbari@gmu.edu

Outline

- Transmission Terminology
- Analog and Digital Data Transmission
- Transmission Impairments
- Bandwidth
- Channel Capacity
- Nyquist Bandwidth

Note: Some material adapted from various textbook. In particular, the sequences of slides have been sorted to match closely that of the textbook <u>Data and Computer Communications</u> by W. Stallings, 8th Edition, Prentice Hall, 2007

Terminology

- Transmitter/Receiver and Medium (guided/unguided)
- Types
 - Point-to-point (direct)
 - Multi-point (>2 devices share the medium)
- Mode
 - Simplex, Half duplex, Full duplex

Frequency, Spectrum and Bandwidth

- Time domain concepts
 - Analog signal
 - Various in a smooth way over time
 - Digital signal
 - Maintains a constant level then changes to another constant level
 - Periodic signal
 - Pattern repeated over time
 - s(t+T)=s(t) $-\infty < t < \infty$
 - Aperiodic signal
 - Pattern not repeated over time

Analog and Digital Signals

Periodic Signals

Sine Wave

- Peak Amplitude (A)
 - maximum strength of signal measured in volts
- Frequency (f)
 - Rate of change of signal
 - Hertz (Hz) or cycles per second
 - Period = duration for one repetition =T= 1/f
- Phase (\$\phi\$)
 - Relative position in time

Varying Sine Waves $s(t) = A \sin(2\pi ft + \Phi)$

8

Addition of Frequency Components (T=1/f)

Wavelength

- Wavelegth, λ, is the distance occupied by one cycle
 - Or distance between two points of corresponding phase in two consecutive cycles

Assuming signal velocity ν

- $\lambda = \nu T$
- $\lambda f = V$
- Note for free space: $\nu = c = 3 \times 10^8 \, \text{ms}^{-1}$ (c=speed of light in free space)

Frequency Domain Concepts

- Signal usually made up of many frequencies
- Can be shown (Fourier analysis) that any signal is made up of sine waves components
- Can plot frequency domain functions

Frequency Domain Representations

Spectrum and Bandwidth

- Spectrum
 - range of frequencies contained in signal
- Absolute bandwidth
 - width of spectrum
- Effective bandwidth
 - Often just bandwidth
 - Narrow band of frequencies containing most of the energy
- DC Component
 - Component of zero frequency

Signal with DC Component

Data Rate and Bandwidth

- Any transmission system has a limited of frequency bandwidth
- This limits the data rate that can be carried

Analog and Digital Data Transmission

- Data
 - Entities that convey meaning
- Signals
 - Electric or electromagnetic representations of data
- Transmission
 - Communication of data by propagation and processing of signals

Analog and Digital Data

- Analog
 - Continuous values within some interval
 - e.g. sound, video
- Digital
 - Discrete values
 - e.g. text, integers

Acoustic Spectrum (Analog)

Analog and Digital Signals

- Means by which data are propagated
- Analog
 - Continuously variable
 - Various media
 - wire, fiber optic, space
 - Speech bandwidth 100Hz to 7kHz
 - Telephone bandwidth 300Hz to 3400Hz
 - Video bandwidth 4MHz
- Digital
 - For example, use two levels

Advantages and Disadvantages of Digital

- Cheaper
- Less susceptible to noise
- Greater attenuation
 - Pulses become rounded and smaller
 - Leads to loss of information

Attenuation of Digital Signals

Components of Speech

- Frequency range (of hearing) 20Hz-20kHz
 - Speech 100Hz-7kHz
- Easily converted into electromagnetic signal for transmission
- Sound frequencies with varying volume converted into electromagnetic frequencies with varying voltage
- Limit frequency range for voice channel
 - **300-3400Hz**

Video Components

- USA 483 lines scanned per frame at 30 frames per second
 - 525 lines but 42 lost during vertical retrace
- So 525 lines x 30 scans = 15750 lines per second
 - 63.5μs per line
 - 11μs for retrace, so 52.5 μs per video line
- Max frequency if line alternates black and white
- Horizontal resolution is about 450 lines giving 225 cycles of wave in 52.5 μs
- Max frequency of 4.2MHz

Binary Digital Data

- From computer terminals etc.
- Two dc components
- Bandwidth depends on data rate

Data and Signals

- Usually use digital signals for digital data and analog signals for analog data
- Can use analog signal to carry digital data
 - Modem
- Can use digital signal to carry analog data
 - Compact Disc audio

Analog Signals Carrying Analog and Digital CNL Data

26

Digital Signals Carrying Analog and Digital CNL Data

Analog Transmission

- Analog signal transmitted without regard to content
- May be analog or digital data
- Attenuated over distance
- Use amplifiers to boost signal
- Also amplifies noise

Digital Transmission

- Concerned with content
- Integrity endangered by noise, attenuation etc.
- Repeaters used
- Repeater receives signal
- Extracts bit pattern
- Retransmits
- Attenuation is overcome
- Noise is not amplified

29

Advantages of Digital Transmission

- Digital technology
 - Low cost LSI/VLSI technology
- Data integrity
 - Longer distances over lower quality lines
- Capacity utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- Security & Privacy
 - Encryption
- Integration
 - Can treat analog and digital data similarly

30

Transmission Impairments

- Signal received may differ from signal transmitted
- Analog degradation of signal quality
- Digital bit errors
- Caused by
 - Attenuation and attenuation distortion
 - Delay distortion
 - Noise

Attenuation

- Signal strength falls off with distance
- Depends on medium
- Received signal strength:
 - must be enough to be detected
 - must be sufficiently higher than noise to be received without error
- Attenuation is an increasing function of frequency

Delay Distortion

- Only in guided media
- Propagation velocity varies with frequency

Noise

- Additional signals inserted between transmitter and receiver
- Thermal
 - Due to thermal agitation of electrons
 - Uniformly distributed
 - White noise
- Intermodulation
 - Signals that are the sum and difference of original frequencies sharing a medium

Noise (cont'd)

- Crosstalk
 - A signal from one line is picked up by another
- Impulse
 - Irregular pulses or spikes
 - e.g. External electromagnetic interference
 - Short duration
 - High amplitude

Channel Capacity

- Data rate
 - In bits per second
 - Rate at which data can be communicated
- Bandwidth
 - In cycles per second of Hertz
 - Constrained by transmitter and medium

Nyquist Bandwidth

- If rate of signal transmission is 2B then signal with frequencies no greater than B is sufficient to carry signal rate
- Given bandwidth B, highest signal rate is 2B
- Given binary signal, data rate supported by B Hz is 2B bps
- Can be increased by using M signal levels
- \blacksquare C= 2B log₂M

Example: voice channel B=3.1 KHz, M=8

 $C = 2x3.1x10^3x log_2 8 = 18.6 Kbps$

Shannon Capacity Formula

- Consider data rate, noise and error rate
- Faster data rate shortens each bit so burst of noise affects more bits
 - At given noise level, high data rate means higher error rate
- Signal to noise ratio (in decibels)
 SNR_{db}=10 log₁₀ (signal/noise)
- Capacity $C=B \log_2(1+S/N)$