

Sistemas de numeração

- É um sistema em que um conjunto de números são representados por numerais de uma forma consistente.
- Que número é esse 11?
- Alfabeto
 - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Tamanho = 10

Sistemas de numeração

- Sistema não posicional
 - O valor de um símbolo não se altera com a posição do mesmo na palavra numérica.
 - Ex: Sistema de numeração romano
 - Alfabeto = {I, V, X, L, C, D, M}
 - XXXI

Sistemas de numeração

- Sistema posicional
 - O valor de um símbolo se altera com a posição do mesmo na palavra numérica.
 - Símbolos mais à esquerda possuem maior valor
 - Ex.: Sistema de numeração decimal
 - 4
 - 45
 - 431

Bases numéricas

Conversão para decimal

$$d = \sum_{i=0}^{n-1} (x_i \times B^i)$$

$$d = x_{n-1} \times B^{n-1} + x_{n-2} \times B^{n-2} + \dots + x_1 \times B^1 + x_0 \times B^0$$

- d: é o decimal equivalente
- B: base de origem
- n: quantidade de dígitos
- x_i: dígito na posição i

Bases numéricas

- Exemplo: 432₁₀
 - 4 centenas
 - 3 dezenas
 - 2 unidades

$$432 = 4 \times 10^{2} + 3 \times 10^{1} + 2 \times 10^{0}$$

$$= 4 \times 100 + 3 \times 10 + 2 \times 1$$

$$= 400 + 30 + 2$$

$$= 432$$

Base 2 - binários

- Base utilizada em sistemas digitais.
- Circuitos e dispositivos de um computador precisam de um modelo padrão de comunicação.
- Hardware: dois estados
 - Ausência ou presença de corrente;
 - V ou F;
 - Sim ou Não.
- Todas as informações de um computador são formados exclusivamente por 0 ou 1 (bits).

Base 2 - binários

Quantidade de valores representados: 2ⁿ

р0	Valor
0	0
1	1

p1	p0	Valor
0	0	00
0	1	01
1	0	10
1	1	11

😱 n é a quantidade de l	bits da palavra binária.
-------------------------	--------------------------

p2	p1	p0	Valor
0	0	0	000
0	0	1	001
0	1	0	010
0	1	1	011
1	0	0	100
1	0	1	101
1	1	0	110
1	1	1	111

8/23

Base 8 - octais

- Derivou do sistema binário;
- Foi utilizado para compactar números binários em linguagem de máquina;
- Alfabeto: {0, 1, 2, 3, 4, 5, 6, 7};
- 1 octal □ □ 3 bits.

Base 16 - hexadecimais

- Derivou do sistema binário;
- Utilizado para compactar binários.
- Fácil visualização;
- Alfabeto: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F};
- 1 hexadecimal □ □ 4 bits.

- - 49152₁₀
 - 1100 0000 0000 0000₂
 - 140000₈
 - C000₁₆

- De decimal para qualquer outra base: (divisões sucessivas)
 - 1. Dividir o **DECIMAL** pela base desejada;
 - 2. Registrar quociente e resto;
 - 3. Dividir o quociente pela base;
 - 4. Ir ao passo 2, até obter quociente igual a 0 (zero);
 - 5. Formar o número na base desejada usando os restos na ordem inversa em que foram obtidos.

De decimal para binário:

Dividendo /2	Quociente	Resto
56	28	0
28	14	0
14	7	0
7	3	1
3	1	1
1	0	1

Dividendo /2	Quociente	Resto
197	98	1 ,
98	49	0
49	24	1
24	12	0
12	6	0
6	3	0
3	1	1
1	0	1

- De decimal para binário:
 - Método da decomposição em somatório de potências de 2
 - Indicado para pequenos valores e próximos de potências de 2.
 - Exemplo:523

$$523 = 512 + 11 = 512 + 8 + 3 = 512 + 8 + 2 + 1 = 2^9 + 2^3 + 2^1 + 2^0$$

1	0	0	0	0	0	1	0	1	1
9	8	7	6	5	4	3	2	1	0

De binário para decimal:

• Forma geral:
$$d = \sum_{i=0}^{n-1} (x_i \times B^i)$$

$$\Sigma = 155$$

TECNOLOGIA em Gestão de Dados

• Forma prática: substituir **1**s apenas OS por potências de 2.

De decimal para octal:

Dividendo /8	Quociente	Resto
217	27	1
27	3	3
3	0	3

• De octal para decimal:
$$d = \sum_{i=0}^{n-1} (x_i \times B^i)$$

$$3 \times 8^{0} = 3$$
 $6 \times 8^{1} = 48$
 $2 \times 8^{2} = 128$
 $1 \times 8^{3} = 512$
 $7 \times 2^{4} = 28672$

$$\sum = 29363_{10}$$

- De binário para octal:
 - Octal \square base $8 \square 8 = 2^3$
 - Cada grupo de 3 bits formam um octal.
 - 11001₂ \(\text{011} \) 001 \(\text{031}_8 \)

- De octal para binário:
 - Cada octal forma grupo de 3 bits.
 - $136_8 \square 001 \ 011 \ 110 \square 1011110_2$

De decimal para hexadeci-mal:

Dividendo /16	Quociente	Resto
2736	171	0
171	10	11 = B
10	0	10 = A

•
$$2736_{10} = AB0_{16}$$

• De hexadecimal para decimal: $d = \sum_{i=0}^{n-1} (x_i \times B^i)$ • C01F₁₆

$$15 \times 16^{0} = 15$$

$$1 \times 16^{1} = 16$$

$$0 \times 16^{2} = 0$$

$$12 \times 16^{3} = 49152$$

$$\sum = 49183$$

- De binário para hexadeci-mal:
 - Hexadecimal \square base 16 \square 16 = 2⁴
 - Cada grupo de 4 bits formam um hexadecimal.
 - 10111001111100111₂
 1 0111 0011 1110 0111
 1 7 3 E 7
 101110011111100111₂=173E7₁₆

- De hexadecimal para binário:
 - Cada hexadecimal gera 4 bits.
 - A56B₁₆ 1010 0101 0110 1011 A56B₁₆ = 1010 0101 0110 1011₂

- Entre octal e hexadecimal:
 - Não existe conversão direta.
 - Deve-se utilizar uma base intermediária.
 - Modo fácil: usar base 2
 - Modo difícil: usar base 10 (ou outra base)

- Exemplos:
 - COF₁₆ □ B₈
 - $COF_{16} \square B_2 \square B_8$
 - $COF_{16} \square 1100 0000 1111_{2}$
 - 1100 0000 1111₂ □ B₈
 - 110 000 001 111 $_2$ \square 6017 $_8$
 - 741₈ □ B₁₆
 - 741₈ □B₂ □B₁₆
 - 741₈ \square 111 100 001₂
 - 111 100 001 $_2 \square B_{16}$
 - 1 1110 0001 $_2$ \square 1E1 $_{16}$

Resumo:

Exercícios:

Converter:

- 53₈ \square B₂
- 2B₁₆ □ B₂
- 1100101₂ □ B₁₀
- $CAD_{16} \square B_8$
- 1030₁₀ □ B₅
- 103₄ □ B₆

Vídeo

TECNOLOGIA em Gestão de Dados

