AMENDMENTS TO THE CLAIMS:

Please amend Claims 2, 7, 26 and 39.

Following entry of the amendments in this Amendment, the pending claims in the present application read as follows:

- 1 1. (Original) A progressive flex headplate assembly for use in the
- 2 construction of a saddle tree capable of fitting horses of different widths, said
- 3 progressive flex headplate comprising:
- 4 an elongated spring element having a first end portion, a second end
- 5 portion, and a center portion located therebetween, said elongated spring
- 6 element having a larger thickness dimension at said center portion than at said
- 7 first and second end portions; and
- 8 a curved segment constructed of a rigid material, said curved segment
- 9 secured to said center portion of said elongated spring element;
- wherein said first and said second end portions of said elongated spring
- element exhibit both progressive flexibility and resilience in response to
- 12 flexure of said first and second end portions permitting the headplate assembly
- 13 to flex to fit more than one size horse.
- 1 2. (Currently Amended) A progressive flex headplate assembly according
- 2 to Claim 1, wherein said elongated spring element comprises:
- a top segment, a middle segment, and a bottom segment constructed of
- 4 a flexible, resilient material, wherein said top segment has a first length
- 5 dimension, said middle segment has a intermediate length dimension longer
- 6 than said first length dimension of said top segment, and said bottom segment

- 7 has a length dimension greater than said intermediate length dimension of said
- 8 middle segment;
- 9 wherein said segments are consecutively arranged to overlay overlie each
- 10 other from said top segment to said bottom segment.
 - 1 3. (Original) A progressive flex headplate assembly according to Claim
- 2 2, wherein each of said top, middle, and bottom segments are constructed of a
- 3 nylon material.
- 1 4. (Original) A progressive flex headplate assembly according to Claim
- 2 2, wherein each of said top segment, said middle segment, and said bottom
- 3 segment has a front edge and a back edge, and wherein one of said top
- 4 segment, said middle segment, and said bottom segment includes two rail
- 5 segments extending outwardly from said back edge thereof.
- 1 5. (Original) A progressive flex headplate assembly according to Claim
- 2 1, wherein said curved segment is constructed of metal, thermoplastic, wood,
- 3 or a combination thereof.
- 1 6. (Original) A saddle tree for use in the construction of a progressive
- 2 flex riding saddle for a horse, said saddle tree comprising:
- 3 the progressive flex headplate of Claim 1, which will be located at a
- 4 position near the front of the horse when the saddle is installed thereupon;
- 5 a cantle portion which will be located at a position near the rear of the
- 6 horse when the saddle is installed thereupon; and
- 7 a flexible connecting portion connecting the progressive flex headplate
- 8 assembly to said cantle portion.

- 1 7. (Currently Amended) A headplate assembly for use in the construction
- 2 of a progressive flex saddle tree, said headplate assembly comprising:
- a plurality of flexible, resilient segments positioned overlapping each other,
- 4 said flexible segments forming a stack having a top side and a bottom side,
- 5 said stack also having first and second legs and a central portion therebetween,
- 6 said central portion arranged and configured to rest upon a horse when the
- 7 <u>headplate assembly is installed on a horse;</u> and
- 8 a rigid, curved segment aligned with and secured to one of said top side
- 9 and said bottom side of said stack at said central portion thereof;
- wherein said first leg will be positioned on one side of a horse's withers and
- said second leg will be positioned on the other side of the horse's withers when
- the headplate assembly is installed thereupon, and wherein each of said legs
- 13 exhibit exhibits both progressive flexibility and resilience in response to
- 14 flexure of said legs, thereby permitting said legs to accommodate horses
- 15 having different sized withers.
- 1 8. (Original) A headplate assembly according to Claim 7, wherein said
- 2 plurality of flexible, resilient segments includes from about two to about five
- 3 flexible, resilient segments.
- 1 9. (Original) A headplate assembly according to Claim 7, wherein each
- 2 of said plurality of flexible, resilient segments is constructed from nylon,
- 3 vinyl, polyethylene, polystyrene, polypropylene, polyvinyl chloride, or a
- 4 combination thereof.

- 1 10. (Original) A headplate assembly according to Claim 7, wherein each
- of said plurality of flexible, resilient segments is constructed from of a metal
- 3 or an alloy material.
- 1 11. (Original) A headplate assembly according to Claim 7, wherein each
- of said flexible, resilient segments includes a front edge and a back edge and
- wherein each of said flexible, resilient segments has a small, curved
- 4 indentation formed in said front edge thereof.
- 1 12. (Original) A headplate assembly according to Claim 11, wherein one
- of said flexible, resilient segments includes two connecting rails extending
- 3 outwardly from said back edge thereof.
- 1 13. (Original) A headplate assembly according to Claim 7, wherein said
- 2 rigid, curved segment is secured to said stack using a securing mechanism.
- 1 14. (Original) A headplate assembly according to Claim 13, wherein said
- 2 securing mechanism comprises a plurality of rivets and washers.
- 1 15. (Original) A headplate assembly according to Claim 13, wherein said
- 2 securing mechanism is selected from the group consisting of tacks, nails,
- 3 screws, bolts, pins, and a combination thereof.
- 1 16. (Original) A progressive flex saddle tree comprising:
- 2 the headplate assembly of Claim 7;
- a cantle portion located at a position which is spaced away from said
- 4 headplate assembly; and

5	a flexible connecting portion connecting said progressive flex headplat
6	to said cantle portion.
1	17. (Original) A headplate assembly providing a progressive flex to a
2	saddle tree, said headplate assembly comprising:
3	a top segment, a middle segment, and a bottom segment each
4	constructed of a resilient, flexible material, each of said top segment, said
5	middle segment, and said bottom segment having a length dimension and a
6	midpoint portion located at substantially the midpoint of said length
7	dimension, said length dimension of said bottom segment being longer than
8	said length dimension of said middle segment and said length dimension of
9	said middle segment being longer than said length dimension of said top
10	segment;
l 1	wherein said top segment, said middle segment, and said bottom
12	segment are consecutively arranged overlapping each other from said top
13	segment to said bottom segment with said midpoint portions of each of said
14	top segment, said middle segment, and said bottom segment being aligned;
15	and
16	a rigid, curved segment overlaying and secured to one of said top
17	segment or said bottom segment at said midpoint portion thereof to thereby
18	form a substantially V-shaped assembly;
19	wherein said substantially V-shaped assembly has a fixed apex portion, a first
20	leg intended to lie on one side of a horse's withers, and a second leg intended
21	to lie on the other side of a horse's withers, each of said legs being
22	progressively flexible and exhibiting progressive resistance in response to

flexure of each of said legs.

23

- 1 18. (Original) A headplate assembly according to Claim 17, wherein said
- 2 segments are each constructed from nylon, vinyl, polyethylene, polystyrene,
- 3 polypropylene, polyvinyl chloride, or a combination thereof.
- 1 19. (Original) A headplate assembly according to Claim 17, wherein each
- 2 of said top segment, said middle segment and said bottom segment has a front
- 3 edge and a back edge, and wherein one of said top segment, said middle
- 4 segment and said bottom segment further comprises at least one connecting
- 5 rail extending from said back edge thereof.
- 1 20. (Original) A headplate assembly according to Claim 17, wherein said
- 2 rigid, curved segment is constructed of a rigid plastic, wood, or metal material.
- 1 21. (Original) A headplate assembly according to Claim 17 further
- 2 comprising:
- a securing mechanism for securing said rigid, curved segment to said
- 4 top segment, said middle segment, and said bottom segment to form said
- 5 substantially V-shaped assembly.
- 1 22. (Original) A headplate assembly according to Claim 21, wherein said
- 2 securing mechanism comprises a plurality of rivets and washers.
- 1 23. (Original) A headplate assembly according to Claim 21, wherein said
- 2 securing mechanism is selected from the group consisting of tacks, nails,
- 3 screws, bolts, pins, and a combination thereof.
- 1 24. (Original) A progressive flex saddle tree for use in a riding saddle for a
- 2 horse, said progressive flex saddle tree comprising:

3	the headplate assembly of Claim 17, which will be located at a position
4	near a front portion of the horse;
5	a cantle portion which will be located at a position near the rear of the
6	horse; and
7	a flexible connecting portion connecting said progressive flex headplate
8	and said cantle portion.
1	25. (Original) A progressive flex saddle used to accommodate horses of
2	differing sizes, said progressive flex saddle comprising:
3	the progressive flex saddle tree of Claim 24.
1	26. (Currently Amended) A progressive flex saddle tree for use in a riding
2	saddle for a horse, said progressive flex saddle tree comprising:
3	a progressive flex headplate assembly including:
4	a plurality of flexible, resilient segments positioned overlapping
5	each other, said flexible segments forming a stack having a top side, a
6	bottom side, first and second legs and a midpoint portion located
7	between said first and second legs; and
8	a rigid, curved segment aligned with and secured to one of said
9	top side and said bottom side of said stack at said midpoint portion
10	thereof;
11	a cantle portion having an inverted U-shape; and
12	a flexible connecting portion joining said progressive flex headplate
13	assembly and said cantle portion;
14	wherein said first leg will be positioned on one side of a horse's withers and
15	said second leg will be positioned on the other side of the horse's withers when
16	the riding saddle including the saddle tree is installed thereupon, wherein each

- of said first and second legs exhibit exhibits both progressive flexibility and
- progressive resilience in response to flexure thereof, permitting said saddle
- tree to accommodate horses having different sized withers.
- 1 27. (Original) A progressive flex saddle tree according to Claim 26,
- wherein said plurality of flexible, resilient segments are constructed from
- 3 nylon, vinyl, polyethylene, polystyrene, polypropylene, polyvinyl chloride, or
- 4 a combination thereof.
- 1 28. (Original) A progressive flex saddle tree according to Claim 26,
- wherein said headplate comprises from two to five flexible, resilient segments.
- 1 29. (Original) A progressive flex saddle tree according to Claim 26,
- wherein said rigid, curved segment is constructed of a metal, a wood, or a
- 3 thermoplastic material.
- 1 30. (Original) A progressive flex saddle tree according to Claim 26,
- 2 further comprising:
- at least one connecting rail formed integrally with one of said flexible,
- 4 resilient segments and extending outwardly from said one of said flexible,
- 5 resilient segments and engaging said cantle portion.
- 1 31. (Original) A progressive flex riding saddle comprising:
- the progressive flex saddle tree of Claim 26, said progressive flex
- 3 saddle tree having a top portion and a bottom portion;
- a seat cover for covering said top portion of said saddle tree; and

5	a lower saddle assembly for supporting said saddle tree, said lower
6	portion comprising first and second elongated members that will lie on either
7	side of a horse's spine, and at least two saddle panels affixed to said elongated
8	members;
9	wherein said progressive flex saddle tree is secured at said bottom portion to
10	said lower saddle assembly.
1	
1	32. (Original) A saddle tree for use in a riding saddle capable of fitting
2	more than one size horse, said saddle tree comprising:
3	a top segment, a middle segment, and a bottom segment each
4	constructed of a resilient, flexible material, each of said top segment, said
5	middle segment, and said bottom segment having a length dimension and a
6	midpoint portion located at substantially the midpoint of said length
7	dimension, said length dimension of said bottom segment being longer than
8	said length dimension of said middle segment and said length dimension of
9	said middle segment being longer than said length dimension of said top
10	segment;
11	wherein said top, middle and bottom segments are consecutively arranged
12	overlapping each other from said top segment to said bottom segment with
13	each of said midpoint portions being aligned; and
14	a rigid, curved segment overlaying and affixed to one of said top
15	segment and said bottom segment at said midpoint portion thereof;
16	wherein said segments and said rigid curved segment form a substantially
17	V-shaped headplate assembly having a fixed apex portion and a first leg
18	intended to lie on one side of a horse's withers, and a second leg intended to

lie on another side of the horse's withers, each of said first and second legs

19

Application No. 10/712,745 November 12, 2004 Reply to Office Action of August 11, 2004

- being progressively flexible and also exhibiting resilience in response to flexure of said first and second legs;
- a cantle portion having an inverted U-shape, said cantle portion having a top side projecting upwardly to form a seat back for a saddle, said cantle having a substantially flat bottom side; and
- a connecting portion joining said substantially V-shaped headplate assembly and said cantle portion.
- 1 33. (Original) A progressive flex saddle tree according to Claim 34,
- 2 wherein said top segment, said middle segment, and said bottom segment are
- ach constructed from nylon, vinyl, polyethylene, polystyrene, polypropylene,
- 4 polyvinyl chloride, or a combination thereof.
- 1 34. (Original) A progressive flex saddle tree according to Claim 34,
- wherein said rigid curved segment is constructed of a rigid material selected
- 3 from metal, plastic, wood, or combinations thereof.
- 1 35. (Original) A progressive flex saddle tree according to Claim 34,
- wherein said connecting portion is substantially flat and is constructed of a
- 3 flexible material selected from leather, nylon, woven fabric, or nonwoven
- 4 fabric.
- 1 36. (Original) A saddle tree according to Claim 34, further comprising:
- at least one connecting rail extending outwardly from one of said top
- 3 segment, said middle segment, and said bottom segment at a position adjacent
- 4 said midpoint portion thereof;

5	wherein said connecting rail joins said headplate assembly to said cantle
6	portion.
1	37. (Original) A riding saddle capable of fitting more than one horse, said
2	riding saddle comprising a progressive flex saddle tree, said saddle tree
3	comprising:
4	a headplate assembly which will be located at the front of the
5	horse when the riding saddle is installed thereupon, said headplate assembly
6	including an elongated spring element having a first end portion, a second end
7	portion, and a center portion located therebetween, said elongated spring
8	element having a larger thickness dimension at said center portion than at said
9	first and second end portions, and a curved segment constructed of a rigid
10	material, said curved segment secured to said center portion of said elongated
11	spring element;
12	wherein said first and said second end portions of said elongated spring
13	element exhibit both progressive flexibility and progressive resilience in
14	response to flexure of said first and second end portions, thereby permitting
15	the headplate assembly to flex to fit more than one size horse;
16	a cantle portion having an inverted U-shape located at the rear of
17	the horse when the saddle is installed thereupon; and
18	a flexible connecting portion joining said headplate assembly to
19	said cantle portion.
1	38. (Original) A method for constructing a progressive flex headplate
2	assembly, said method comprising:
3	providing a plurality of flexible, resilient segments, each of said
4	segments having a differing length dimension and a midpoint portion;

5	arranging said segments to overlap each other in consecutive order
6	from said segment having the shortest length dimension to said segment
7	having the longest length wherein each of said segments are aligned at their
8	respective midpoint portions thereof;
9	providing a rigid, curved segment; and
10	securing said rigid curved segment to said plurality of flexible, resilient
11	segments to thereby form a spring element having progressively flexible
12	opposing legs and a fixed apex portion.
1	39. (Currently Amended) A method for constructing a progressive flex
2	headplate assembly, said method comprising:
3	providing a plurality of segments each constructed of a resilient,
4	flexible material, each of said segments having differing length dimensions
5	and a midpoint portion;
6	arranging said segments in a sequence to overly overlie each other in
7	order from the one of said segments having the shortest length dimension to
8	the one of said segment segments having said longest length with each of said
9	midpoint portion portions aligned;
10	providing a rigid, curved segment overlaying overlying either the first
11	or the last segment in said sequence at said midpoint portion thereof; and
12	securing said rigid, curved segment to said segments to form an
13	inverted V-shaped assembly;
14	wherein said inverted V-shaped assembly has a fixed apex portion, a
15	first leg intended to lie on one side of a horse's withers, and a second leg
16	intended to lie on the other side of a horse's withers, each of said legs being
17	progressively flexible to accommodate the size of the horse's withers with

Application No. 10/712,745 November 12, 2004 Reply to Office Action of August 11, 2004

- said inverted V-shaped assembly also providing said legs with progressive
- resistance in response to flexure of said legs.