

TENSILE ELASTIC MODULUS OF POLYMER AS FUNCTION OF TEMPERATURE

Fig. 2

DETERMINATION OF ZERO-SHEAR VISCOSITY FROM VISCOSITY-FREQUENCY PLOT

Fig. 3

STRESS, $\sigma(mNm)$

DETERMINATION OF CRITICAL STRESS VALUE FROM VISCOSITY-STRESS CURVES.

Fig. 4

EFFECT OF FILLER, CONCENTRATION ON VISCOSITY AND CRITICAL STRESS VALUE

Fig. 5

EFFECT ON CRITICAL STRESS VALUE BY ADDING SOLID WITH PREFERRED SIZE RANGE AND CONCENTRATION TO NEAT POLYMER

Fig. 6

PROCESSING WINDOW FOR UNFILLED POLYMERS

Fig. 7

STRESS, σ \longrightarrow PROCESSING WINDOW OF FILLED POLYMERS

Fig. 8

COMPLEX VISCOSITY OF AMORPHONS SOLID A1-800 AND NEAT PP

Fig. 9

EFFECT OF INCREASING TEMPERATURE ON ENHANCED PROCESSING WINDOW

Fig. 10

Fig. 12

STRESS, Pa
COMPLEX VISCOSITY OF 800-MESH AMORPHOUS SOLID
A2 WITH DIFFERENT PARTICLE SHAPES

Fig. 13

EFFECT OF GLASS CONTENT ON COMPLEX VISICOSITY

Fig. 14

STRESS, σ ——— VARIATION IN $\Delta\sigma_N^*$ σ_S^* AS A FUNCTION OF INCREASING MFIFOR A GIVEN POLYMER TYPE

Fig. 15

COLOR CHANGE (dE*) IN POLYPROPYLENE AFTER UV LIGHT EXPOSURE

Fig. 16

Fig. 17

VISCOSITY OF 800-MESH AMORPHOUS SOLID A1 AS COMPARED TO AMORPHOUS SOLID A1 CLASSIFIED TO 9-15 MICRONS

Fig. 18

COMPLEX VISCOSITY OF 5-9 MICRON FRACTION OF SOLID A1.

Fig. 19

STRESS, Pa COMPLEX VISCOSITY OF AMORPHOUS MATERIAL, A1-800 MESH, CRYSTALLINE MATERIAL C4-800 MESH AND NEAT PP

Fig. 20

Fig. 21 EFFECT OF PARTICLE CHARACTERISTICS ON DYNAMIC TENSILE ELASTIC MODULUS.