Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 10

Clase 10

Máquinas con oráculo Teorema de Baker, Gill, Solovay La jerarquía polinomial y **NP** con oráculos

Máquinas con oráculo

Clase 10

Máquinas con oráculo

Teorema de Baker, Gill, Solovay La jerarquía polinomial y **NP** con oráculos

Máquinas con oráculo

Son como las máquinas de Turing que vimos, pero con estas diferencias:

- su comportamiento depende de un lenguaje $\mathcal{X} \subseteq \{0,1\}^*$
- tiene una cinta adicional de *consulta*:
- tiene 3 estados distinguidos más:
 - $q_{\text{consulta}}, q_{\text{resp:si}}, q_{\text{resp:no}}$
- una nueva

INSTRUCCIÓN

```
si estado == q_{\text{consulta}} entonces supongamos que en la cinta de consulta está escrito "\triangleright x \square", con x \in \{0,1\}^* si x \in \mathcal{X}, pasar a q_{\text{resp:so}} si no, pasar a q_{\text{resp:no}}
```

Máquinas con oráculo

- Mismas definiciones de cómputo, aceptación, rechazo, tiempo de cómputo, uso de espacio, etc.
- El comportamiento de M depende de la información del oráculo.
- Si M es una máquina (determinística o no-determinística) con oráculo, notamos $M^{\mathcal{X}}(x)$ a la salida de M con oráculo \mathcal{X} y entrada x (si es que terminó).
- Si M(x) termina, solo puede hacer una cantidad finita de consultas al oráculo. Si cambiamos el oráculo en elementos que nunca son consultados, el cómputo no cambia.
 - Ejemplo: $M^{\mathcal{X}}(x)$ termina y a lo largo del cómputo consulta y_1, \ldots, y_m al oráculo. Para cualquier \mathcal{Y} tal que $y_j \in \mathcal{X}$ sii $y_j \in \mathcal{Y}$ para $j = 1, \ldots, m$, tenemos $M^{\mathcal{X}}(x) = M^{\mathcal{Y}}(x)$.
 - Ejemplo: $M^{\mathcal{X}}(x)$ al paso t solo puede hacer finitas consultas al oráculo, independientemente de la respuesta que reciba. Al paso t no puede hacer más que t consultas.
- Las máquinas con oráculo se pueden listar, de la misma forma que hicimos con las máquinas determinísticas o las máquinas no-determinísticas.

Clases de complejidad relativizadas a oráculos

Clase de complejidad: $\mathbf{P}^{\mathcal{X}}, \mathbf{NP}^{\mathcal{X}}$

- $\mathbf{P}^{\mathcal{X}}$ es la clase de lenguajes decidibles por una máquina determinística que corre en tiempo polinomial y tiene acceso al oráculo \mathcal{X} .
- $\mathbf{NP}^{\mathcal{X}}$ es la clase de lenguajes decidibles por una máquina no-determinística que corre en tiempo polinomial y tiene acceso al oráculo \mathcal{X} .

Ejemplo: $\overline{\mathsf{SAT}} \in \mathbf{P}^{\mathsf{SAT}}$

Considerar la siguiente máquina determinística M con acceso a SAT y entrada x:

preguntar al oráculo si $x \in \mathsf{SAT}$ (escribir x en la cinta de consulta) si responde 'sí' (entra a $q_{\mathsf{resp:si}}$), devolver 0 si no (entra a $q_{\mathsf{resp:no}}$), devolver 1

M corre en tiempo lineal independientemente del oráculo al que tenga acceso y $\mathcal{L}(M^{\mathsf{SAT}}) = \overline{\mathsf{SAT}}.$

Si $\mathcal{X} \in \mathbf{P}$, entonces $\mathbf{P} = \mathbf{P}^{\mathcal{X}}$.

Demostración.

Probemos $\mathbf{P}^{\mathcal{X}} \subseteq \mathbf{P}$ (la otra inclusión es trivial).

Sea M una máquina determinística que corre en tiempo polinomial y decide \mathcal{X} .

Si $\mathcal{X} \in \mathbf{P}$, entonces $\mathbf{P} = \mathbf{P}^{\mathcal{X}}$.

Demostración.

Probemos $\mathbf{P}^{\mathcal{X}} \subseteq \mathbf{P}$ (la otra inclusión es trivial).

Sea M una máquina determinística que corre en tiempo polinomial y decide \mathcal{X} .

Sea $\mathcal{L} \in \mathbf{P}^{\bar{\mathcal{X}}}$ y supongamos que M' es una máquina determinística que corre en tiempo polinomial y decide \mathcal{L} con acceso al oráculo \mathcal{X} .

Si $\mathcal{X} \in \mathbf{P}$, entonces $\mathbf{P} = \mathbf{P}^{\mathcal{X}}$.

Demostración.

Probemos $\mathbf{P}^{\mathcal{X}} \subseteq \mathbf{P}$ (la otra inclusión es trivial).

Sea M una máquina determinística que corre en tiempo polinomial y decide \mathcal{X} .

Sea $\mathcal{L} \in \mathbf{P}^{\mathcal{X}}$ y supongamos que M' es una máquina determinística que corre en tiempo polinomial y decide \mathcal{L} con acceso al oráculo \mathcal{X} .

La máquina M'' hace lo mismo que M' pero reemplaza cada pregunta x al oráculo $\mathcal X$ por la llamada a M(x).

M'' corre en tiempo polinomial y decide \mathcal{L} .

Entonces $\mathcal{L} \in \mathbf{P}$.

 $\mathsf{EXPCOM} = \{ \langle M, x, 1^n \rangle \colon \text{ la máquina determinística } M \text{ con entrada } x \text{ devuelve } 1 \text{ en } < 2^n \text{ pasos} \}$

Proposición

 $\mathbf{ExpTime} \subseteq \mathbf{P}^{\mathsf{EXPCOM}}.$

$$\mathsf{EXPCOM} = \{ \langle M, x, 1^n \rangle \colon \begin{array}{l} \text{la máquina determinística } M \text{ con entra-} \\ \text{da } x \text{ devuelve } 1 \text{ en } \leq 2^n \text{ pasos} \end{array} \}$$

Proposición

 $\mathbf{ExpTime} \subseteq \mathbf{P}^{\mathsf{EXPCOM}}$.

Demostración

Sea $\mathcal{L} \in \mathbf{DTime}(2^{n^c})$. Supongamos que $\mathcal{L} = \mathcal{L}(M)$ para una máquina determinística M que corre en tiempo $O(2^{n^c})$. Sea k tal que para todo $x \in \{0,1\}^*$ con |x| > k tenemos que M con entrada x termina en $\leq 2^{|x|^{c+1}}$ pasos.

$$\mathsf{EXPCOM} = \{ \langle M, x, 1^n \rangle \colon \begin{array}{l} \text{la máquina determinística } M \text{ con entrada } x \text{ devuelve } 1 \text{ en } \leq 2^n \text{ pasos} \end{array} \}$$

Proposición

 $\mathbf{ExpTime} \subseteq \mathbf{P}^{\mathsf{EXPCOM}}$.

Demostración

Sea $\mathcal{L} \in \mathbf{DTime}(2^{n^c})$. Supongamos que $\mathcal{L} = \mathcal{L}(M)$ para una máquina determinística M que corre en tiempo $O(2^{n^c})$. Sea k tal que para todo $x \in \{0,1\}^*$ con |x| > k tenemos que M con entrada x termina en $\leq 2^{|x|^{c+1}}$ pasos.

Considerar la siguiente máquina determinística M_1 con entrada x y acceso al oráculo EXPCOM:

si $|x| \le k$, devolver 1 si $x \in \mathcal{L}$ y 0 en caso contrario si no, preguntar al oráculo si $\langle M, x, 1^{|x|^{c+1}} \rangle$ y devolver su respuesta

$$\mathsf{EXPCOM} = \{ \langle M, x, 1^n \rangle \colon \begin{array}{l} \text{la máquina determinística } M \text{ con entra-} \\ \text{da } x \text{ devuelve } 1 \text{ en } \leq 2^n \text{ pasos} \end{array} \}$$

Proposición

 $\mathbf{ExpTime} \subseteq \mathbf{P}^{\mathsf{EXPCOM}}$.

Demostración

Sea $\mathcal{L} \in \mathbf{DTime}(2^{n^c})$. Supongamos que $\mathcal{L} = \mathcal{L}(M)$ para una máquina determinística M que corre en tiempo $O(2^{n^c})$. Sea k tal que para todo $x \in \{0,1\}^*$ con |x| > k tenemos que M con entrada x termina en $\leq 2^{|x|^{c+1}}$ pasos.

Considerar la siguiente máquina determinística M_1 con entrada x y acceso al oráculo EXPCOM:

si $|x| \le k$, devolver 1 si $x \in \mathcal{L}$ y 0 en caso contrario si no, preguntar al oráculo si $\langle M, x, 1^{|x|^{c+1}} \rangle$ y devolver su respuesta

 M_1 corre en tiempo polinomial, entonces $\mathcal{L}(M_1^{\mathsf{EXPCOM}}) \in \mathbf{P}^{\mathsf{EXPCOM}}$ y

$$x \in \mathcal{L}(M_1^{\mathsf{EXPCOM}})$$
 sii $x \in \mathcal{L} = \mathcal{L}(M)$

 $\begin{aligned} & \operatorname{Proposici\'on} \\ & \mathbf{NP}^{\mathsf{EXPCOM}} \subseteq \mathbf{ExpTime}. \end{aligned}$

 $\mathbf{NP}^{\mathsf{EXPCOM}} \subseteq \mathbf{ExpTime}.$

Demostración.

Sea $\mathcal{L} \in \mathbf{NP}^{\mathsf{EXPCOM}}$ y sea N una máquina no-determinística que corre en tiempo polinomial y decide \mathcal{L} con acceso al oráculo EXPCOM.

 $\mathbf{NP}^{\mathsf{EXPCOM}} \subseteq \mathbf{ExpTime}.$

Demostración.

Sea $\mathcal{L} \in \mathbf{NP}^{\mathsf{EXPCOM}}$ y sea N una máquina no-determinística que corre en tiempo polinomial y decide \mathcal{L} con acceso al oráculo EXPCOM.

En tiempo exponencial en |x| podemos simular determinísticamente a N con entrada x y también cada consulta que hace N al oráculo <code>EXPCOM</code>.

Luego $\mathcal{L} \in \mathbf{ExpTime}$.

 $\mathbf{NP}^{\mathsf{EXPCOM}} \subseteq \mathbf{ExpTime}.$

Demostración.

Sea $\mathcal{L} \in \mathbf{NP}^{\mathsf{EXPCOM}}$ y sea N una máquina no-determinística que corre en tiempo polinomial y decide \mathcal{L} con acceso al oráculo EXPCOM.

En tiempo exponencial en |x| podemos simular determinísticamente a N con entrada x y también cada consulta que hace N al oráculo <code>EXPCOM</code>.

Luego $\mathcal{L} \in \mathbf{ExpTime}$.

Corolario

 $\mathbf{P}^{\mathsf{EXPCOM}} = \mathbf{NP}^{\mathsf{EXPCOM}}$

Demostración.

 $\mathbf{ExpTime} \subseteq \mathbf{P}^{\mathsf{EXPCOM}} \subseteq \mathbf{NP}^{\mathsf{EXPCOM}} \subseteq \mathbf{ExpTime}$

Teorema de Baker, Gill, Solovay

Clase 10

Máquinas con oráculo

Teorema de Baker, Gill, Solovay

La jerarquía polinomial y \mathbf{NP} con oráculos

Teorema de Baker, Gill, Solovay

Teorema (Baker, Gill, Solovay)

Existen oráculos \mathcal{A} y \mathcal{B} tal que $\mathbf{P}^{\mathcal{A}} = \mathbf{N}\mathbf{P}^{\mathcal{A}}$ y $\mathbf{P}^{\mathcal{B}} \neq \mathbf{N}\mathbf{P}^{\mathcal{B}}$.

Teorema de Baker, Gill, Solovay

Teorema (Baker, Gill, Solovay)

Existen oráculos \mathcal{A} y \mathcal{B} tal que $\mathbf{P}^{\mathcal{A}} = \mathbf{NP}^{\mathcal{A}}$ y $\mathbf{P}^{\mathcal{B}} \neq \mathbf{NP}^{\mathcal{B}}$.

$$\mathbf{P}^{\mathcal{A}} = \mathbf{N}\mathbf{P}^{\mathcal{A}}$$

Tomar A = EXPCOM.

Para cualquier $\mathcal{B}\subseteq\{0,1\}^*$ definimos

$$\mathcal{U}_{\mathcal{B}} = \{1^n \colon \exists x \in \mathcal{B}, |x| = n\}.$$

Para cualquier $\mathcal{B} \subseteq \{0,1\}^*$ definimos

$$\mathcal{U}_{\mathcal{B}} = \{1^n \colon \exists x \in \mathcal{B}, |x| = n\}.$$

Veamos que para cualquier $\mathcal{B}, \mathcal{U}_{\mathcal{B}} \in \mathbf{NP}^{\mathcal{B}}$. Definimos la máquina no-determinística N que con oráculo \mathcal{B} y entrada y hace esto:

```
si y no es de la forma 1^n para algún n, rechazar si no (supongamos que y=1^n), inventar x tal que |x|=n consultar si x \in \mathcal{B} y devolver la respuesta
```

Para cualquier $\mathcal{B} \subseteq \{0,1\}^*$ definimos

$$\mathcal{U}_{\mathcal{B}} = \{1^n \colon \exists x \in \mathcal{B}, |x| = n\}.$$

Veamos que para cualquier $\mathcal{B}, \mathcal{U}_{\mathcal{B}} \in \mathbf{NP}^{\mathcal{B}}$. Definimos la máquina no-determinística N que con oráculo \mathcal{B} y entrada y hace esto:

```
si y no es de la forma 1^n para algún n, rechazar si no (supongamos que y=1^n), inventar x tal que |x|=n consultar si x \in \mathcal{B} y devolver la respuesta
```

Para todo n tenemos

$$1^n \in \mathcal{L}(N^{\mathcal{B}})$$
 sii $\exists x \in \mathcal{B}, |x| = n$ sii $1^n \in \mathcal{U}_{\mathcal{B}}.$

(y para y no de la forma 1^n tenemos $y \notin \mathcal{L}(N^{\mathcal{B}}), y \notin \mathcal{U}_{\mathcal{B}}$)

Para cualquier $\mathcal{B} \subseteq \{0,1\}^*$ definimos

$$\mathcal{U}_{\mathcal{B}} = \{1^n \colon \exists x \in \mathcal{B}, |x| = n\}.$$

Veamos que para cualquier \mathcal{B} , $\mathcal{U}_{\mathcal{B}} \in \mathbf{NP}^{\mathcal{B}}$. Definimos la máquina no-determinística N que con oráculo \mathcal{B} y entrada y hace esto:

```
si y no es de la forma 1^n para algún n, rechazar si no (supongamos que y=1^n), inventar x tal que |x|=n consultar si x \in \mathcal{B} y devolver la respuesta
```

Para todo n tenemos

$$1^n \in \mathcal{L}(N^{\mathcal{B}})$$
 sii $\exists x \in \mathcal{B}, |x| = n$ sii $1^n \in \mathcal{U}_{\mathcal{B}}.$

(y para y no de la forma 1ⁿ tenemos $y \notin \mathcal{L}(N^{\mathcal{B}}), y \notin \mathcal{U}_{\mathcal{B}})$

A continuación definimos un \mathcal{B} para el cual $\mathcal{U}_{\mathcal{B}} \notin \mathbf{P}^{\mathcal{B}}$.

$\mathbf{P}^{\mathcal{B}} \neq \mathbf{NP}^{\mathcal{B}}$: propiedades de \mathcal{B}

Sea M_i la máquina determinística con oráculo representada por la expansión binaria de $i \in \mathbb{N}$ tal que para toda máquina M con oráculo existen infinitos i tal que $M = M_i$.

$\mathbf{P}^{\mathcal{B}} \neq \mathbf{NP}^{\mathcal{B}}$: propiedades de \mathcal{B}

Sea M_i la máquina determinística con oráculo representada por la expansión binaria de $i \in \mathbb{N}$ tal que para toda máquina M con oráculo existen infinitos i tal que $M = M_i$.

Definimos $\mathcal{B} = \bigcup_i \mathcal{B}_i$ en etapas y definimos $(n_i)_{i \in \mathbb{N}}$ con estas propiedades:

- $\mathcal{B}_0 = \emptyset \text{ y } n_0 = 1$
- $\mathcal{B}_i \subseteq \mathcal{B}_{i+1} \text{ y } n_i < n_{i+1}$
- $x \in \mathcal{B}_i \Rightarrow |x| \le n_i$ (en particular, cada \mathcal{B}_i es finito)

$\mathbf{P}^{\mathcal{B}} \neq \mathbf{NP}^{\mathcal{B}}$: idea de la prueba

Idea: diagonalizar.

si M_i con oráculo \mathcal{B} corre en tiempo polinomial, entonces toma la decisión equivocada cuando la entrada es 1^{n_i} :

- si M_i acepta 1^{n_i} entonces nos aseguramos de que ninguna cadena de longitud n_i esté en \mathcal{B} (y por lo tanto $1^{n_i} \notin \mathcal{U}_{\mathcal{B}}$)
- si M_i rechaza 1^{n_i} , entonces metemos en \mathcal{B} alguna cadena de longitud n_i (y por lo tanto $1^{n_i} \in \mathcal{U}_{\mathcal{B}}$)

Así, ninguna máquina que corra en tiempo polinomial decide $\mathcal{U}_{\mathcal{B}}$, de modo que $\mathcal{U}_{\mathcal{B}} \notin \mathbf{P}^{\mathcal{B}}$.

• definimos $n_i > n_{i-1}$ y $n_i >$ máximo de las longitudes consultadas por $M_k^{\mathcal{B}_{i-1}}(1^{n_k})$ al tiempo 2^{n_k-1} para todo k < i

- definimos $n_i > n_{i-1}$ y $n_i >$ máximo de las longitudes consultadas por $M_k^{\mathcal{B}_{i-1}}(1^{n_k})$ al tiempo 2^{n_k-1} para todo k < i
- simular M_i con entrada 1^{n_i} por 2^{n_i-1} pasos
 - si M_i consulta al oráculo por un x con $|x| < n_i$, le respondemos lo mismo que $ix \in \mathcal{B}_{i-1}$?
 - si M_i consulta al oráculo por un x con $|x| \ge n_i$, le respondemos 'no'

- definimos $n_i > n_{i-1}$ y $n_i >$ máximo de las longitudes consultadas por $M_k^{\mathcal{B}_{i-1}}(1^{n_k})$ al tiempo 2^{n_k-1} para todo k < i
- simular M_i con entrada 1^{n_i} por 2^{n_i-1} pasos
 - si M_i consulta al oráculo por un x con $|x| < n_i$, le respondemos lo mismo que $ix \in \mathcal{B}_{i-1}$?
 - si M_i consulta al oráculo por un x con $|x| \ge n_i$, le respondemos 'no'
- si M_i acepta 1^{n_i} en $\leq 2^{n_i-1}$ pasos, definimos $\mathcal{B}_i = \mathcal{B}_{i-1}$
 - \mathcal{B}_i no contiene cadenas de tamaño n_i (\mathcal{B} tampoco)

- definimos $n_i > n_{i-1}$ y $n_i >$ máximo de las longitudes consultadas por $M_k^{\mathcal{B}_{i-1}}(1^{n_k})$ al tiempo 2^{n_k-1} para todo k < i
- simular M_i con entrada 1^{n_i} por 2^{n_i-1} pasos
 - si M_i consulta al oráculo por un x con $|x| < n_i$, le respondemos lo mismo que $i, x \in \mathcal{B}_{i-1}$?
 - si M_i consulta al oráculo por un x con $|x| \ge n_i$, le respondemos 'no'
- si M_i acepta 1^{n_i} en $\leq 2^{n_i-1}$ pasos, definimos $\mathcal{B}_i = \mathcal{B}_{i-1}$ • \mathcal{B}_i no contiene cadenas de tamaño n_i (\mathcal{B} tampoco)
- si M_i rechaza 1^{n_i} o no llegó a una decisión todavía en 2^{n_i-1} pasos, elegimos un x, $|x| = n_i$ que no haya sido consultado y definimos $\mathcal{B}_i = \mathcal{B}_{i-1} \cup \{x\}$.
 - tal x existe porque simulamos M_i por 2^{n_i-1} pasos y por lo tanto hay $\leq 2^{n_i-1}$ consultas, pero hay 2^{n_i} cadenas de tamaño n_i
 - agregar x no 'rompe' ninguna de las simulaciones de M_k a tiempo 2^{n_k-1} , para k < i. A la simulación de M_k por 2^{n_k-1} pasos le daba lo mismo el oráculo \mathcal{B}_k o \mathcal{B}_i (o \mathcal{B})

$\mathbf{P}^{\mathcal{B}} \neq \mathbf{NP}^{\mathcal{B}}$: verificación de que $\mathcal{U}_{\mathcal{B}} \notin \mathbf{P}^{\mathcal{B}}$

Supongamos que Mes una máquina determinística y pes un polinomio tal que

- $M^{\mathcal{B}}$ corre en tiempo p(n)
- $M^{\mathcal{B}}$ acepta $\mathcal{U}_{\mathcal{B}}$

$\mathbf{P}^{\mathcal{B}} \neq \mathbf{NP}^{\mathcal{B}}$: verificación de que $\mathcal{U}_{\mathcal{B}} \notin \mathbf{P}^{\mathcal{B}}$

Supongamos que M es una máquina determinística y p es un polinomio tal que

- $M^{\mathcal{B}}$ corre en tiempo p(n)
- $M^{\mathcal{B}}$ acepta $\mathcal{U}_{\mathcal{B}}$

Sea i suficientemente grande tal que $M_i = M$ y $2^{n_i-1} > p(n_i)$. Simular $M_i = M$ por 2^{n_i-1} pasos es suficiente para saber si M_i acepta o rechaza 1^{n_i} .

$\mathbf{P}^{\mathcal{B}} \neq \mathbf{NP}^{\mathcal{B}}$: verificación de que $\mathcal{U}_{\mathcal{B}} \notin \mathbf{P}^{\mathcal{B}}$

Supongamos que M es una máquina determinística y p es un polinomio tal que

- $M^{\mathcal{B}}$ corre en tiempo p(n)
- $M^{\mathcal{B}}$ acepta $\mathcal{U}_{\mathcal{B}}$

Sea i suficientemente grande tal que $M_i = M$ y $2^{n_i-1} > p(n_i)$. Simular $M_i = M$ por 2^{n_i-1} pasos es suficiente para saber si M_i acepta o rechaza 1^{n_i} .

- si $M_i^{\mathcal{B}}$ acepta 1^{n_i} , ninguna cadena de longitud n_i está en \mathcal{B} . Entonces $1^{n_i} \notin \mathcal{U}_{\mathcal{B}}$.
- si $M_i^{\mathcal{B}}$ rechaza 1^{n_i} , \mathcal{B}_i contiene una cadena de tamaño n_i . Entonces $1^{n_i} \in \mathcal{U}_{\mathcal{B}}$.

Luego $M^{\mathcal{B}} = M_i^{\mathcal{B}}$ no puede decidir $\mathcal{U}_{\mathcal{B}}$ porque falla para la entrada 1^{n_i} .

Clases de complejidad relativizadas a clases de complejidad

Clase de complejidad: $\mathbf{P}^{\mathbf{C}}$, $\mathbf{NP}^{\mathbf{C}}$

$$\mathbf{P^C} = \bigcup_{\mathcal{X} \in \mathbf{C}} \mathbf{P^X}$$

$$\mathbf{NP^C} = \bigcup_{\mathcal{X} \in \mathbf{C}} \mathbf{NP^X}$$

Observación

Si $\mathcal{X} \in \mathbf{C}$ -completo, entonces $\mathbf{P}^{\mathbf{C}} = \mathbf{P}^{\mathcal{X}}$ y $\mathbf{N}\mathbf{P}^{\mathbf{C}} = \mathbf{N}\mathbf{P}^{\mathcal{X}}$.

Ejemplo

$$\mathbf{P}^{\mathbf{NP}} = \mathbf{P}^{\mathbf{SAT}} = \mathbf{P}^{\overline{\mathbf{SAT}}} = \mathbf{P}^{\mathbf{coNP}}$$

La jerarquía polinomial y NP con oráculos

Clase 10

Máquinas con oráculo Teorema de Baker, Gill, Solovay La jerarquía polinomial y **NP** con oráculos

$$oldsymbol{\Sigma_{i+1}^{\mathrm{p}}} = \mathbf{N}\mathbf{P}^{\Sigma_i\mathsf{SAT}}$$

Teorema

Para $i \geq 1$, $\Sigma_{i+1}^{\mathbf{p}} = \mathbf{N} \mathbf{P}^{\Sigma_i \mathsf{SAT}}$.

Ejemplo

- $\Sigma_1^{\mathbf{p}} = \mathbf{NP}$ (ya lo vimos; no cae dentro del teorema, salvo que definamos $\Sigma_0 \mathsf{SAT} = \emptyset$)
- $\Sigma_2^{\mathbf{p}} = \mathbf{N}\mathbf{P}^{\Sigma_1\mathsf{SAT}} = \mathbf{N}\mathbf{P}^{\mathsf{SAT}} = \mathbf{N}\mathbf{P}^{\mathbf{NP}}$ (recordar que $\Sigma_1\mathsf{SAT} = \mathsf{SAT}$)
- $oldsymbol{\Sigma}_3^{
 m p} = {
 m NP}^{\Sigma_2 {\sf SAT}} = {
 m NP}^{{
 m NP}^{
 m NP}}$

$\Sigma_{i+1}^{\mathrm{p}} \subseteq \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$

Sea $\mathcal{L} \in \Sigma_{i+1}^{\mathbf{p}}$ y una máquina determinística M que corre en tiempo polinomial tal que

$$x \in \mathcal{L}$$
 sii $\exists u_1 \forall u_2 \dots Q u_{i+1} \ M(\langle x, u_1, \dots, u_i \rangle) = 1$

donde $|u_i| = q(|x|)$ para algún polinomio fijo q.

$\Sigma_{i+1}^{\mathrm{p}} \subseteq \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$

Sea $\mathcal{L} \in \Sigma_{i+1}^{\mathbf{p}}$ y una máquina determinística M que corre en tiempo polinomial tal que

$$x \in \mathcal{L}$$
 sii $\exists u_1 \forall u_2 \dots Q u_{i+1} \ M(\langle x, u_1, \dots, u_i \rangle) = 1$

donde $|u_i| = q(|x|)$ para algún polinomio fijo q. Definamos

$$\mathcal{L}' = \{ \langle x, u_1 \rangle \colon \forall u_2 \dots Q_{i+1} u_{i+1} \ M(\langle x, u_1, \dots, u_i \rangle) = 1 \} \in \mathbf{\Pi}_i^{\mathbf{p}}$$

$$\leq_{\mathbf{p}} \overline{\Sigma_i \mathsf{SAT}}$$

$\Sigma_{i+1}^{\mathrm{p}} \subseteq \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$

Sea $\mathcal{L} \in \Sigma_{i+1}^{\mathbf{p}}$ y una máquina determinística M que corre en tiempo polinomial tal que

$$x \in \mathcal{L}$$
 sii $\exists u_1 \forall u_2 \dots Q u_{i+1} \ M(\langle x, u_1, \dots, u_i \rangle) = 1$

donde $|u_i| = q(|x|)$ para algún polinomio fijo q. Definamos

$$\mathcal{L}' = \{ \langle x, u_1 \rangle \colon \forall u_2 \dots Q_{i+1} u_{i+1} \ M(\langle x, u_1, \dots, u_i \rangle) = 1 \} \in \mathbf{\Pi_i^p}$$

$$\leq_{\mathbf{p}} \overline{\Sigma_i \mathsf{SAT}}$$

Definimos una máquina no-determinística N que con oráculo \mathcal{L}' y entrada x hace esto:

inventar u_1 consultar si $\langle x, u_1 \rangle \in \mathcal{L}'$ y devolver su respuesta

$$\Sigma_{i+1}^{\mathbf{p}} \subseteq \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$$

Sea $\mathcal{L} \in \Sigma_{i+1}^{\mathbf{p}}$ y una máquina determinística M que corre en tiempo polinomial tal que

$$x \in \mathcal{L}$$
 sii $\exists u_1 \forall u_2 \dots Q u_{i+1} \ M(\langle x, u_1, \dots, u_i \rangle) = 1$

donde $|u_i| = q(|x|)$ para algún polinomio fijo q. Definamos

$$\mathcal{L}' = \{ \langle x, u_1 \rangle \colon \forall u_2 \dots Q_{i+1} u_{i+1} \ M(\langle x, u_1, \dots, u_i \rangle) = 1 \} \in \mathbf{\Pi}_{i}^{\mathbf{p}}$$

$$\leq_{\mathbf{p}} \overline{\Sigma_{i} \mathsf{SAT}}$$

Definimos una máquina no-determinística N que con oráculo \mathcal{L}' y entrada x hace esto:

inventar u_1 consultar si $\langle x, u_1 \rangle \in \mathcal{L}'$ y devolver su respuesta

N corre en tiempo lineal.

Tenemos $\mathcal{L}(N^{\mathcal{L}'}) = \mathcal{L} \ \mathrm{y} \ \mathcal{L}' \leq_{\mathrm{p}} \overline{\Sigma_i \mathsf{SAT}}.$

Entonces
$$\mathcal{L} \in \mathbf{NP}^{\overline{\Sigma_i \mathsf{SAT}}} = \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$$
.

$\mathbf{NP}^{\Sigma_i\mathsf{SAT}}\subseteq \mathbf{\Sigma}^\mathrm{p}_{i+1}$

Sea $\mathcal{L} \in \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$ y sea N una máquina no-determinística que corre en tiempo polinomial t(n) tal que con oráculo $\Sigma_i \mathsf{SAT}$ decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo $u \in \{0,1\}^{t(|x|)}$ de $N^{\sum_i \mathsf{SAT}}$ con entrada x que llega a q_{sf}

$$\mathbf{NP}^{\Sigma_i\mathsf{SAT}}\subseteq \mathbf{\Sigma}^{\mathrm{p}}_{i+1}$$

Sea $\mathcal{L} \in \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$ y sea N una máquina no-determinística que corre en tiempo polinomial t(n) tal que con oráculo $\Sigma_i \mathsf{SAT}$ decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo $u \in \{0,1\}^{t(|x|)}$ de $N^{\sum_i \mathsf{SAT}}$ con entrada x que llega a q_{sf}

A lo largo de este cómputo u, N hace consultas $\varphi_1, \ldots, \varphi_k$ $(k \le t(|x|))$, del tipo

$$\varphi_j = \underbrace{\exists \bar{u}_1^j \forall \bar{u}_2^j \dots Q \bar{u}_i^j}_{i-1 \text{ alternancias}} \psi_j(\bar{u}_1, \dots, \bar{u}_i)$$

para $j=1,\ldots,k$ y recibe respuesta $r_j\in\{0,1\}$ ('sí' = $q_{\text{resp:si}}=1$ o no = $q_{\text{resp:no}}=0$)

$$\mathbf{NP}^{\Sigma_i\mathsf{SAT}}\subseteq \mathbf{\Sigma}^{\mathrm{p}}_{i+1}$$

Sea $\mathcal{L} \in \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$ y sea N una máquina no-determinística que corre en tiempo polinomial t(n) tal que con oráculo $\Sigma_i \mathsf{SAT}$ decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo $u \in \{0,1\}^{t(|x|)}$ de $N^{\Sigma_i \mathsf{SAT}}$ con entrada x que llega a q_{sf}

A lo largo de este cómputo u, N hace consultas $\varphi_1, \ldots, \varphi_k$ $(k \leq t(|x|))$, del tipo

$$\varphi_j = \underbrace{\exists \bar{u}_1^j \forall \bar{u}_2^j \dots Q \bar{u}_i^j}_{i-1 \text{ alternancias}} \psi_j(\bar{u}_1, \dots, \bar{u}_i)$$

para $j=1,\dots,k$ y recibe respuesta $r_j\in\{0,1\}$ ('sí' = $q_{\text{resp:si}}=1$ o no = $q_{\text{resp:no}}=0$)

• si $r_j = 1$ entonces existe \bar{v}_1^j tal que $\bar{v}_1^j \models \forall \bar{v}_2^j \dots Q \bar{v}_i^j \ \psi_j(\bar{v}_1^j, \bar{v}_2^j, \dots, \bar{v}_i^j)$ (i-2 alternancias)

$\mathbf{NP}^{\Sigma_i\mathsf{SAT}}\subseteq \mathbf{\Sigma}^{\mathrm{p}}_{i+1}$

Sea $\mathcal{L} \in \mathbf{NP}^{\Sigma_i \mathsf{SAT}}$ y sea N una máquina no-determinística que corre en tiempo polinomial t(n) tal que con oráculo $\Sigma_i \mathsf{SAT}$ decide \mathcal{L} .

$$x \in \mathcal{L}$$
 sii existe un cómputo $u \in \{0,1\}^{t(|x|)}$ de $N^{\Sigma_i \mathsf{SAT}}$ con entrada x que llega a q_{sf}

A lo largo de este cómputo u, N hace consultas $\varphi_1, \ldots, \varphi_k$ $(k \le t(|x|))$, del tipo

$$\varphi_j = \underbrace{\exists \bar{u}_1^j \forall \bar{u}_2^j \dots Q \bar{u}_i^j}_{i-1 \text{ alternancias}} \psi_j(\bar{u}_1, \dots, \bar{u}_i)$$

para $j=1,\ldots,k$ y recibe respuesta $r_j\in\{0,1\}$ ('sí' = $q_{\text{resp:si}}=1$ o no = $q_{\text{resp:no}}=0$)

• si
$$r_j = 1$$
 entonces existe \bar{v}_j^j tal que $\bar{v}_1^j \models \forall \bar{v}_2^j \dots Q \bar{v}_i^j \ \psi_j(\bar{v}_1^j, \bar{v}_2^j, \dots, \bar{v}_i^j)$ $(i-2 \text{ alternancias})$

• si
$$r_j = 0$$
 entonces para todo \bar{w}_1^j tenemos $\bar{w}_1^j \not\models \forall \bar{w}_2^j \dots Q \bar{w}_i^j \ \psi_j(\bar{w}_1^j, \bar{w}_2^j, \dots, \bar{w}_i^j)$, o sea $\bar{w}_1^j \models \exists \bar{w}_2^j \dots \bar{Q} \bar{w}_i^j \ \neg \psi_j(\bar{w}_1^j, \bar{w}_2^j, \dots, \bar{w}_i^j)$ $(i-2 \text{ alternancias})$

$$x \in \mathcal{L}$$
 sii

$$\exists u \ \exists (r_j)_j \ \exists (\bar{v}_1^j)_j \ \forall (\bar{w}_1^j)_j$$

N acepta x siguiendo el cómputo u, recibe como respuestas r_1, \ldots, r_k (en orden) y para $j = 1, \ldots, k$ $r_j = 1$ y $\bar{v}_1^j \models \forall \bar{v}_2^j \exists \bar{v}_3^j \ldots Q \bar{v}_i^j \ \psi_j(\bar{v}_1^j, \bar{v}_2^j, \ldots, \bar{v}_i^j)$ o bien $r_i = 0$ y $\bar{w}_1^j \models \exists \bar{w}_2^j \forall \bar{w}_3^j \ldots \overline{Q} \bar{w}_i^j \neg \psi_j(\bar{w}_1^j, \bar{w}_2^j, \ldots, \bar{w}_i^j)$

$$x \in \mathcal{L}$$
 sii

$$\exists u \ \exists (r_j)_j \ \exists (\bar{v}_1^j)_j \ \forall (\bar{w}_1^j)_j$$

N acepta x siguiendo el cómputo u, recibe como respuestas r_1, \ldots, r_k (en orden) y para $j = 1, \ldots, k$ $r_j = 1$ y $\bar{v}_1^j \models \forall \bar{v}_2^j \exists \bar{v}_3^j \ldots Q \bar{v}_i^j \ \psi_j(\bar{v}_1^j, \bar{v}_2^j, \ldots, \bar{v}_i^j)$ o bien $r_j = 0$ y $\bar{w}_1^j \models \exists \bar{w}_2^j \forall \bar{w}_3^j \ldots \bar{Q} \bar{w}_i^j \neg \psi_j(\bar{w}_1^j, \bar{w}_2^j, \ldots, \bar{w}_i^j)$

sii

i alternancias

$$\exists u, (r_j)_j, (\bar{v}_1^j)_j \forall (\bar{w}_1^j)_j \forall (\bar{v}_2^j)_j \exists (\bar{w}_2^j)_j \exists (\bar{v}_3^j)_j \forall (\bar{w}_3^j)_j \dots Q(\bar{v}_i^j)_j \overline{Q}(\bar{w}_i^j)_j \\ N \text{ acepta } x \text{ siguiendo el cómputo } u, \text{ recibe como} \\ \text{respuestas } r_1, \dots, r_k \text{ (en orden) y para } j = 1, \dots, k \text{:} \\ r_j = 1 \text{ y } \models \psi_j(\bar{v}_1^j, \bar{v}_2^j, \dots \bar{v}_i^j) \text{ o bien} \\ r_j = 0 \text{ y } \models \neg \psi_j(\bar{w}_1^j, \bar{w}_2^j, \dots \bar{w}_i^j)$$
 computable en tiempo polinomial

Entonces $\mathcal{L} \in \Sigma_{i+1}^{\mathbf{p}}$.

Ejemplo (esquema): Supongamos que N acepta x y a lo largo del computo u, N hace 1 sola consulta r al oráculo $\Sigma_4\mathsf{SAT}$:

$$\varphi = \exists x_1 \forall x_2 \exists x_3 \forall x_4 \psi$$

$$\exists u \ \exists r \ \exists v_1 \ \forall w_1 \forall v_2 \ \exists w_2 \exists v_3 \ \forall w_3 \forall v_4 \ \exists w_4$$
 [Polinomial]
$$4 \text{ alternancias} \Rightarrow \Sigma_5^{\mathbf{p}}$$

sii $x \in \mathcal{L}$

P relativizado a oráculos

Clase de complejidad: Δ_i^{p}

$$egin{aligned} oldsymbol{\Delta}_{1}^{ ext{p}} &= ext{P} \ oldsymbol{\Delta}_{i+1}^{ ext{p}} &= ext{P}^{oldsymbol{\Sigma}_{i}^{ ext{p}}} \end{aligned}$$

Ejemplo

- $\bullet \ \Delta_2^p = P^{\Sigma_1^p} = P^{NP}$
- $\bullet \ \Delta_3^p = P^{\Sigma_2^p} = P^{NP^{NP}}$

P relativizado a oráculos

Clase de complejidad: $\Delta_i^{\rm p}$

$$egin{aligned} oldsymbol{\Delta}_{1}^{\mathrm{p}} &= \mathrm{P} \ oldsymbol{\Delta}_{i+1}^{\mathrm{p}} &= \mathrm{P}^{\Sigma_{i}^{\mathrm{p}}} \end{aligned}$$

Ejemplo

- $\bullet \ \Delta_2^p = P^{\Sigma_1^p} = P^{NP}$
- $\bullet \ \Delta_3^p = P^{\Sigma_2^p} = P^{NP^{NP}}$

Problema: LEXSAT (Mínima valuación en orden lex)

 $\mathsf{LEXSAT} = \{ \langle v, \varphi \rangle \colon \begin{array}{l} v \text{ es la valuación más chica en orden} \\ \mathrm{lexicográfico\ tal\ que}\ v \models \varphi \end{array} \}$

Teorema

LEXSAT es Δ_2^{p} -completo.

