Monday, February 14, 2011 5

Plane curves 5.1

monomials m_1, \ldots, m_N , coefficients z_1, \ldots, z_N

Z = the space of all homogeneous polynomials of degree d in x, y, and z= affine space with coordinates z_{ν}

(We have $f(x, y, z) = z_1 x^d + z_2 x^{d-1} + \cdots$)

U = open subset in Z corresponding to smooth plane curves

 $\mathcal{C} \subset \mathbb{P}^2 \times Z$

Proposition. Smooth plane curves are orientable and connected surfaces, and compact.

Proof. Oreintability was done last time.

To check connectedness, we just need to check one smooth curve of degree d is connected. $C: \{x^d + y^d - z^d = 0\}.$

Look at the line y=z. On U_2 , taking z=1 we have $x^d+y^d=1$. Since y=z, y=1, and then $x^d = 0$. Since this is a root of order d, C meets this line in only one point. This means that it's connected. (WHY?)

Given a connected, orientable, compact surface, it's topologically characterized by q = the genus = the # of holes.

Definition 1. The Euler characteristic of C is 2-2g.

The Euler characteristic can be computed used an arbitrary triangulation, and then E =# vertices - # edges + # faces.

A sphere is, topologically, a tetrahedron, we have that the Euler characteristic is 4-6+4=2. We can do a similar thing for a torus.

What is the Euler characteristic and genus of a smooth plane curve of degree d? Let's represent a smooth plane curve as a branched cover of \mathbb{P}^1 .

Method I Start with the Fermat curve, and do an explicit calculation. $C: \{x^d + y^d - z^d = 0\}$ Taking $z=1,\ U_2\simeq \mathbb{A}^2\simeq \mathbb{C}^2$. Then we have $x^d+y^d=1$. Drop y by projection. Fix a value x_0 for x. Then the line $y = x_0$ intersects the curve in $\leq d$ points. Typically, we get d values for y.

Case I $x_0^d \neq 1$. Solve $y^d = 1 - x_0^d$. There are d solution s (if y is a solution, then so is $yr^{2\pi ij/d}$ for $0 \leq j \leq d$)

Case II $x_0^d = 1$. Solve $y^d = 0$. The only solution is y = 0. Now we look at x_0 . Triangulate \mathbb{P}^1 , which is a sphere, as follows. There are d values for x_0 , $x_i^d = 1, x_i = e^{2\pi i j/d}.$

These points distribute themselves along the equator of \mathbb{P}^1 . Adding points at the poles, there are 2+d vertices, d+d+d=3d edges, and 2d faces, which gives us 2. This is what happens "downstairs" (in the projected curve onto $X=\mathbb{P}^1$).

Upstairs, there is an induced triangulation:

• vertices: d + d + d = 3d

edges: 3d²
faces: 2d²

Then the Euler characteristic is $E = 3d - 3d^2 + 2d^2 = 3d - d^2 = d(3 - d)$. Then $q = \frac{1}{2}(d-1)(d-2)$.

Method II Let C be a smooth curve of degree d. Assume the coefficient of z^d is not zero. Divide by that coefficient, giving $f(x,y,z) = z^d - a_1(x,y)z^{d-1} + \cdots \pm a_d(x,y)$. Homogenous polynomial $\implies a_i(x,y)$ is degree i in x and y. Then drop z by projection onto $\mathbb{P}^1(x,y)$.

Fix (x_0, y_0) . View $z^d - a_1(x_0, y_0)z^{d-1} + \cdots \pm a_d(x_0, y_0) = 0$ as a polynomial of degree d in z. Typically this has d roots, but for some values of (x, y), there are d - 1 roots.

There is a polynomial Δ , discriminant, degree d(d-1) in x and y. $\Delta = 0$ iff there are less than d roots. (The discriminant for a quadratic is $b^2 - 4ac$. It tells you whether or not the polynomial has double roots.) (Note, if the discriminant has only simple roots, then the claim above (that there are only d or d-1 roots at any point) is intuitively/geometrically true.)

Triangulate $X = \mathbb{P}^1$ by putting vertices at these d(d-1) points. For \mathbb{P}^1 , the Euler characteristic is 2. Pulling the triangulation up, the Euler characteristic is approximately 2d (everything gets multiplied by d). However, we placed the vertices at the d(d-2) points where there are d-1 roots. Then the Euler characteristic is $2d-d(d-1)=3d-d^2$.