

AD-A112 321

FUGRO NATIONAL INC., LONG BEACH CA

F/G 8/5

MX SITING INVESTIGATION GRAVITY SURVEY - WHIRLWIND VALLEY, UTAH--ETC(U)

F04704-80-C-0006

UNCLASSIFIED

FN-TR-33-WW

NL

1 OF
ADA
1000

END
DATE FILMED
104-82
0810

Mitsubishi Electric Corporation
Mitsubishi Electric America, Inc.

PHOTOGRAPH THIS SHEET

A.D.-A112 321

DTIC ACCESSION NUMBER

LEVEL

INVENTORY

EN-TR-33-WW

DOCUMENT IDENTIFICATION

This document has been approved
for public release and sale. Its
distribution is unlimited.

DISTRIBUTION STATEMENT

ACCESSION FOR	
NTIS	GRA&I <input checked="" type="checkbox"/>
DTIC	TAB <input type="checkbox"/>
UNANNOUNCED <input type="checkbox"/>	
JUSTIFICATION	
BY	
DISTRIBUTION /	
AVAILABILITY CODES	
DIST	AVAIL AND/OR SPECIAL
A	

DISTRIBUTION STAMP

DATE ACCESSED

89

2

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

ADA112321

MX SITING INVESTIGATION

GRAVITY SURVEY - WHIRLWIND VALLEY

UTAH

Prepared for:

U.S. Department of the Air Force
Ballistic Missile Office (BMO)
Norton Air Force Base, California 92409

Prepared by:

Fugro National, Inc.
3777 Long Beach Boulevard
Long Beach, California 90807

30 January 1980

2K

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER <i>FN-TR-33-WW</i>	2. GOVT ACCESSION NO. <i>FAI 1133-1111</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) <i>MX Siting Investigation Gravity Survey-Whirlwind Valley, NV</i>		5. TYPE OF REPORT & PERIOD COVERED <i>Final</i>
7. AUTHOR(s) <i>Fugro National</i>		6. PERFORMING ORG. REPORT NUMBER <i>FN-TR-33-WW</i> 8. CONTRACT OR GRANT NUMBER(S) <i>FO4764-80-C-0006</i>
9. PERFORMING ORGANIZATION NAME AND ADDRESS <i>Ertec Western Inc. (formerly Fugro National) P.O. Box 7765 Linda Beach Ca 90507</i>		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS <i>64312 F</i>
11. CONTROLLING OFFICE NAME AND ADDRESS <i>U.S. Department of the Air Force Space and Missile Systems Organization AFSC AFIS RA 92409 (SAMSO)</i>		12. REPORT DATE <i>30 Jan 80</i>
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES <i>25</i>
15. SECURITY CLASS. (of this report) <i>-</i>		
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) <i>Distribution Unlimited</i>		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) <i>Distribution Unlimited</i>		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) <i>Sitology, Gravity Survey, Geology, Bouguer Anomaly, Depth to Rock, Valley Fill, Faults, Gravity Profile, Graben</i>		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <i>Gravity measurements were made in whirlwind valleys for the purpose of estimating the overall shape of the structural basin and the thickness of alluvial fill in the basin. The estimates will be useful in modeling the dynamic response of the basin to explosive or earthquake-generated ground motion and in evaluating groundwater resources.</i>		

FOREWORD

Methodology and Characterization Studies during fiscal years 1977 and 1978 included gravity surveys in ten valleys in Arizona (five), Nevada (two), New Mexico (two), and California (one). The gravity data were obtained for the purpose of estimating the gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Fugro National's Characterization Reports (FN-TR-26a through e).

During the FY 77 surveys, the measurements were made to form an approximate one-mile grid over the study areas, and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate the available funds on the basic Verification Program to verify and refine suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification Studies were also performed.

The Defense Mapping Agency (DMA), St. Louis, was also requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Reveille, and Railroad valleys, a sufficient density of library data is available to permit construction of interpreted contour maps instead of two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At this time, inner zone terrain corrections began on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake East, White River and Garden Coal valleys, Nevada were available from the field in early October, 1979.

A continuation of gravity interpretations has been incorporated into the FY 80 contract and the results are being summarized in a series of valley reports. The reports covering Nevada-Utah gravity studies will be numbered, "FN-TR-33-", followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada are being prepared. Verification Studies are continuing in FY 80 and gravity studies are included in the program. DMA will continue to obtain the field measurements and it is planned to return to the grid pattern. The interpretation of the grid data will allow the production of contour maps which will be valuable in the deep basin structural analysis needed for computer modeling in the Water Resources Program. The gravity interpretations will also be useful in the Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW Inc., Fugro National and the (DMA). Conduct of the gravity studies is a joint effort between DMA and Fugro National. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), headquartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, calculates outer zone terrain corrections.

Fugro National provides DMA with schedules showing the valleys with the highest priorities. Fugro National also recommended locations for the profiles in the FY 79 studies within the constraints that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Fugro National prior to making geologic interpretations.

TABLE OF CONTENTS

	<u>Page</u>
FOREWORD	i
1.0 <u>INTRODUCTION</u>	1
1.1 Objective	1
1.2 Location	1
1.3 Scope of Study	1
2.0 <u>GRAVITY DATA REDUCTION</u>	6
3.0 <u>GEOLOGIC SUMMARY</u>	7
4.0 <u>INTERPRETATION</u>	9
4.1 Regional - Residual Separation	9
4.2 Density Selection	10
4.3 Modeling	11
5.0 <u>CONCLUSIONS</u>	18
BIBLIOGRAPHY	19

LIST OF APPENDICES

APPENDIX

A1.0 General Principles of the Gravity Exploration Method
A2.0 Lists of Gravity Data

LIST OF FIGURES

Figure
Number

1 Location Map - Whirlwind Valley, Utah
2 Profile Location Map - Whirlwind Valley, Utah
3 Gravity Station Location Map - Whirlwind Valley, Utah
4 Interpreted Gravity Profile WW-1
5 Interpreted Gravity Profile WW-2
6 Interpreted Gravity Profile WW-3
7 Interpreted Gravity Profile WW-4
8 Interpreted Gravity Profile WW-5

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity measurements were made in Whirlwind Valley for the purpose of estimating the overall shape of the structural basin and the thickness of alluvial fill in the basin. The estimates will be useful in modeling the dynamic response of the basin to explosive or earthquake-generated ground motion and in evaluating ground-water resources.

1.2 LOCATION

Whirlwind Valley is located in western Millard and western Juab counties, Utah about 30 miles (48 km) west of the town of Delta (Figure 1). The valley is bounded on the east by the Little Drum Mountains and on the west by the House Range (Figure 2). It culminates northward in Swasey Bottom near the Juab County line, and is open southeastward toward Lake Sevier and the Sevier Desert. U.S. Highway 6/50 crosses the southern end of the valley.

1.3 SCOPE OF STUDY

The Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC) made gravity measurements along five cross-valley profiles as illustrated in Figure 2. The distance between the profiles ranged from 5 to 8 miles (8 to 13 km) between the profiles. The sampling interval was 1 mile (1.6 km) over the central valley and 1/4 mile (0.4 km) near the valley margins. The more dense sampling was used near the valley margins to define any gradients associated with boundary faults and to

31 JAN 80

identify short-wavelength anomalies which might occur if bedrock was shallow along the margins of the valley. The station locations are shown in Figure 3 and the station data are listed in Appendix A2.0. The tolerance for establishing station elevations was 5 feet (1.5 m). This tolerance for elevation control limited the gravity precision to 0.3 milligals.

EXPLANATION

WW0310 Gravity station number

○○○ Gravity station location

WW-1 Profile name

Area suitable for hybrid trench and vertical shelter basing modes. Depth to rock and water greater than 150 feet (46m).

Area suitable for hybrid trench and not suitable for vertical shelter. Depth to rock and water greater than 50 feet (15m) and less than 150 feet (46m).

Area unsuitable for both hybrid trench and vertical shelter basing modes as determined from application of depth to rock and water, topographic/terrain, and cultural exclusions. (See Section A2.0 in Appendix for details of exclusion criteria)

Indicates areas of exposed rock.

— Contact between rock and basin fill

— Whirlwind verification site boundary, FY 78

NUCLEAR NATIONAL LABORATORY	NUCLEAR SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - SNSO	GRAVITY STATION LOCATION MAP	
		PICTURE	3

SEVIER LAKE

TION

trench and vertical shelter
rock and water greater than

trench and not suitable for
rock and water greater
less than 150 feet (46m).

hybrid trench and vertical
determined from application
ter, topographic/terrain, and
(see Section A2.0 in Appendix
n criteria.)

nd rock.

basin fill.

te boundary, FY 78

SCALE 1:125,000

STATUTE MILES

KILOMETERS

16

2.0 GRAVITY DATA REDUCTION

DMAHTC obtained the basic observations for each station and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to three levels of terrain corrections were applied to convert the SBA to the Complete Bouguer Anomaly (CBA). First, the Defense Mapping Agency Aerospace Center (DMAAC) used its library of digitized terrain data to calculate corrections for terrain to 104 miles (167 km) from each station. The computation method used has limitations for correcting terrain effects near the stations. This made it necessary to apply a second level of correction for some stations. For these, a ring template was used to calculate the effect of terrain within approximately 3000 feet (914 m) of the station. A third level of terrain correction was applied to those stations where 10 feet or more of relief were observed within 130 feet (40 m) of the station. For these stations, the elevation differences at a distance of 130 feet along six directions from the station were measured in the field. These data were used to calculate the effect of the very near relief.

3.0 GEOLOGIC SUMMARY

Whirlwind Valley lies within the Basin and Range physiographic province. Rocks forming the Little Drum Mountains on the eastern side of the valley consist of early Tertiary volcanic flows (Hintze, 1963; Stokes, 1963). The House Range, which forms the western boundary, contains faulted eastward-dipping limestones and dolomites with interbedded shales of Cambrian age. Ordovician age limestones with interbedded conglomerates crop out south of the valley in the southern House Range west of Sevier Lake. Tertiary age volcanic rocks similar to those in the southern Little Drum Mountains are found along the valley axis in Red Knolls and Long Ridge. Tertiary age conglomerates overlie these volcanic rocks and are the principal units exposed in Long Ridge.

Hintze (1963) and Stokes (1963) suggest only one fault in Whirlwind Valley. They show it concealed by alluvium, trending southeastward into the north-central part of the valley. The House Range to the west is considered by Gehman (1958) to be the gently eastward dipping limb of a faulted anticline. If this is the case, the carbonate rocks exposed in the House Range extend beneath the alluvium in Whirlwind Valley, and presumably underlie the volcanic rocks in the Little Drum Mountains. The steep western face of the House Range, bounding the next valley, represents the eroded fault scarp along which uplift has taken place. Few faults are mapped within the Little Drum Mountains although relations are complex because of the variety of volcanic rock types present.

Surficial basin-fill deposits are described in the Verification Studies (FY 79, FN-TR-27-1A). They are predominantly alluvial fan and lacustrine deposits. The lacustrine deposits are associated with Pleistocene age Lake Bonneville and occur principally in the southern and central parts of the valley. The alluvial deposits consist primarily of silty sand with lesser amounts of gravelly sand, silt, and clay. Younger alluvial fans are generally uncemented; intermediate alluvial fans are weakly cemented; and older alluvial fans are moderately to strongly cemented.

Published values for densities of soil and alluvium generally range between 1.3 and 2.3 g/cm³, but sometimes attain greater values under compaction (Grant and West, 1965). Limestone densities generally range between 2.3 and 2.8 g/cm³ with the older formations having the greater densities.

4.0 INTERPRETATION

A valley filled with relatively low-density alluvium will create a negative gravity anomaly. Thus, a graph of gravity across a valley is often U-shaped, low in the middle of the valley where the fill is thickest, and high on the ends where the fill thins and disappears. The basis for interpretation is the CBA profile. The CBA for the five profiles across Whirlwind Valley are shown in the top portion of Figures 4 through 8.

4.1 REGIONAL - RESIDUAL SEPARATION

The CBA contains gravitational field components contributed by geologic conditions which are unrelated to basin fill. These are known as regional effects and must be removed from the CBA to obtain the gravity contributions made by the valley fill. A regional field was established by linear interpolation between the CBA values at bedrock stations on opposite ends of the profiles. Where only one end of a profile was on bedrock, the regional value was assumed to be constant across the valley. This method does not result in true residual values (that is, some regional effects remain) but the error is probably small compared to the large residual anomaly values produced by the valley fill.

The regional trend used for each profile is shown together with the CBA in the top portion of Figures 4 through 8. The difference between the regional and the CBA is the residual gravity anomaly which is attributed to the presence of the alluvial fill

in the valley. The residual for each profile is shown by the crosses (x) in the center portion of Figures 4 through 8.

4.2 DENSITY SELECTION

The construction of a geologic model to account for the residual anomaly requires selection of density values representative of the basin fill and of the underlying basement rock. Detailed density values are not available. Consequently, generalized values were chosen and used for modeling all five of the profiles.

The density value selected to represent basin floor was 2.8 g/cm^3 . This value was chosen because the Paleozoic carbonates in the Great Basin are generally reported to be relatively dense. It is assumed that the carbonate rocks forming the House Range extend across Whirlwind Valley beneath the alluvium.

Average in situ densities for basin fill from four borings sampled at 20-foot (6 m) intervals, between 100 and 160 feet (30 to 49 m), ranged from 2.0 to 2.3 g/cm^3 . The density value selected to represent the basin fill was 2.3 g/cm^3 . This value is near the high end of the densities measured for samples from 160-foot borings drilled during the Verification Studies of Whirlwind Valley (FY 79, FN-TR-27-II). The high end, instead of the average, of the measured values was used because all the basin fill samples came from relatively shallow depths and densities of alluvial materials usually increase with depth. If compaction at depth has caused the overall effective density to

be greater than 2.3 g/cm³. The thicknesses of alluvium given by the models in Figures 4 through 8 are less than the actual thicknesses.

4.3 MODELING

Modeling of the cross-sections of the basin beneath the gravity profiles was done using a two-dimensional computer-modeling program. The model chosen for this analysis appears in cross-section as a set of 1-km-wide blocks whose top is at surface elevation and whose bottom represents the alluvium-bedrock boundary. The elevations at the bottoms of the blocks were adjusted by iterative computation until the computed gravity anomaly for the model differed by less than 1/2 milligal from the observed residual gravity anomaly. The computed gravity anomaly from the final model is shown as a continuous line in the center portion of Figures 4 through 8. The resulting depth-to-bedrock models are shown in the lowest section of Figures 4 through 8.

The shapes of the basement surfaces derived from this modeling have a basin-like character with few complications. Profile 1, on the north (Figure 4), however does show some basement irregularities which may indicate fault blocks or intrusives. The concealed fault suggested by Stokes (1963) ends at about the location of Profile 1. Although presumably the downthrown side would be on the east, the gravity profile shows thinner fill on the east rather than thicker. The figures have a vertical exaggeration of 125/12 times (10.4); therefore, the gentle slopes appear steep.

Proceeding southward, Profile 2 (Figure 5) shows a smooth basin shape. Profile 3 (Figure 6) shows half a basin. Red Knolls, which lies at the eastern end of Profile 3, has little or no gravity expression. Consequently, it is interpreted to be a thin layer of volcanic flow material overlying the basin fill. Profile 4 (Figure 7), also shows the basin floor to be deepest under the western Red Knolls, becoming shallower toward the south end of the knolls. The gravity profile also appears to be unaffected by Long Ridge, two miles to the south. These two profiles indicate that neither the Red Knolls volcanics nor the Long Ridge conglomerates are significantly more dense than the other basin fill, and that they do not lay directly on bedrock. Profile 5 (Figure 8), which passes within a mile of Sevier Lake, shows a bedrock high between the lake and Long Ridge. The calculated bedrock depth is about 240 feet (73 m). This high point may be a structural divide between Whirlwind Valley and the Sevier Desert Basin.

Figures 4 through 8 show that the valley fill thickens by about 400 feet to 500 feet (122 to 152 m) per kilometer outward from bedrock. The greatest depth of fill, about 2000 feet (610 m), is beneath Profile 1. However a more typical depth is about 1000 feet (305 m). These calculated depths are very dependent upon the choice of densities; for example, a one percent increase of assumed fill density for the model makes a five percent decrease in the density contrast and, therefore, a five percent increase in the calculated thickness of fill.

INTERPRETED GRAVITY
WHIRLWIND VALLEY

MINING INVESTIGATION
DEPARTMENT OF THE AIR FORCE

FUGRO NATIC

DISTANCE (M)

EXPLANATION

TOP CBA (Y) & REGIONAL (—)
MIDDLE RESIDUAL GRAV: OBSERVED VALUES (INTERPOLATED) (X)
CALCULATED FROM MODEL (—)
BOTTOM ELEVATION: STATION ELEVATIONS (Y) & IDENTIFICATION (WW0112)
INTERPOLATED SURFACE ELEVATIONS (—)
MODEL OF BEDROCK SURFACE (—)
DENSITY VALUES ($\rho = 2.3$ g/cm³)

DISTANCE SCALE 1:125,000

INTERPRETED GRAVITY PROFILE WW-1
WHIRLWIND VALLEY, UTAH

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMD

FIGURE

4

FUGRO NATIONAL INC.

FN-TR-33-WW

EXPLANATION

TOP OBA (Y) & REGIONAL (—)
 MIDDLE RESIDUAL GRAV: OBSERVED VALUES (INTERPOLATED) (X)
 BOTTOM ELEVATION: STATION ELEVATIONS (Y) & IDENTIFICATION (WW0112)
 INTERPOLATED SURFACE ELEVATIONS (—)
 MODEL OF BEDROCK SURFACE (—)
 DENSITY VALUES ($\rho = 2.3$) g/cm³
 DISTANCE SCALE 1:125,000

INTERPRETED GRAVITY PROFILE WW-2
WHIRLWIND VALLEY, UTAH

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMD

FIGURE
5

FUGRO NATIONAL, INC.

FN-TR-33-WW

EXPLANATION

TOP	CBA (Y) & REGIONAL (—)
MIDDLE	RESIDUAL GRAV: OBSERVED VALUES (INTERPOLATED) (X)
	CALCULATED FROM MODEL (—)
BOTTOM	ELEVATION: STATION ELEVATIONS (Y) & IDENTIFICATION (WW0112)
	INTERPOLATED SURFACE ELEVATIONS (—)
	MODEL OF BEDROCK SURFACE (—)
	DENSITY VALUES ($\rho = 2.3$) g/cm^3
	DISTANCE SCALE 1:125,000

INTERPRETED GRAVITY PROFILE WW-3
WHIRLWIND VALLEY, UTAH

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIGURE
6

FUGRO NATIONAL, INC.

12

FN-TR-33-WW

**INTERPRETED GRAVITY PROFILE WM-5
WHIRLWIND VALLEY, UTAH**

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE BMO

FIGURE
8

FUGRO NATIONAL, INC.

5.0 CONCLUSIONS

Whirlwind Valley is interpreted to be a relatively shallow structural valley. It has the long, narrow shape typically created by range bounding faults in the Basin and Range Physiographic province.

However, if such faults do exist in Whirlwind Valley, they must be relatively small because, they are not visible at the surface and are not clearly defined by the gravity profiles.

The interpretations of the two profiles (3 and 4) near Red Knolls and Long Ridge suggest that these topographic features are not basin boundaries and they represent no obstacle to ground-water movement between Whirlwind Valley and Sevier Desert. However, the high at the end of Profile 4 and at 19 km on Profile 5 (Figure 8) may be evidence of a bedrock high just east of Long Ridge and Red Knolls. This suggested feature could restrict ground-water migration except for very shallow aquifers.

BIBLIOGRAPHY

Gehman, H.M., 1958, Notch Peak Intrusive: Utah Geology and Mineralogical Survey Bulletin 62, 50 pages.

Grant, F.S. and G.F. West, 1965, Interpretation Theory in Applied Geophysics: McGraw-Hill Book Co., New York.

Hintze, L.F. (compiler), 1963, Geologic map of southwestern Utah: Brigham Young University and Utah State Land Board, scale 1:250,000.

Stokes, W.L., 1963, Geologic map of northwestern Utah: Washington D.C., Williams and Heintz Map Co., scale 1:250,000.

West, R.E., 1971, An iterative computer program for calculating two-dimensional models for alluvial basins from gravity and geologic data (modified and extended by H.W. Powers, Jr., 1974): University of Arizona, Geoscience Department, Geophysics Laboratory.

FN-TR-33-WW

APPENDIX A1.0

**GENERAL PRINCIPLES OF THE
GRAVITY EXPLORATION METHOD**

A1.0 GENERAL PRINCIPLES OF THE GRAVITY
EXPLORATION METHOD

A1.1 GENERAL

A gravity survey involves measurement of differences in the gravitational field between various points on the earth's surface. The gravitational field values being measured are the same as those influencing all objects on the surface of the earth. They are generally associated with the force which causes a 1 gm mass to be accelerated at 980 cm/sec². This force is normally referred to as a 1 g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. In a gravity survey, the variations are measured in terms of milligals. A milligal is equal to 0.001 cm/second² or 0.00000102 g. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. To recognize changes due to

geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude.

Given this background, the basic concept of the gravitational exploration method, the anomaly, can be introduced. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place. A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation, latitude, and surrounding terrain, is referred to as an "anomaly."

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey.

A1.2 INSTRUMENTS

The sensing element of a LaCoste and Romberg gravimeter is a mass suspended by a zero-length spring. Deflections of the mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and the next. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

$$C = P + N \cos \phi (\cos \phi + \sin \phi) + S \cos \phi (\cos \phi - \sin \phi)$$

where C is the tidal correction factor, P, N, and S are time-related variables, and ϕ is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

The meter drift correction was based on readings taken at a designated base station at the start and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station. The observed gravity values represent the total gravitational pull of the entire earth at the measurement stations.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouguer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is adjusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically homogeneous earth is the Bouguer Anomaly.

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouguer Anomaly value.

a. Free-Air Effect: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus corrections must be applied for elevation. Observed gravity levels are corrected for elevation using the normal vertical gradient of:

$$FA = -0.09406 \text{ mg/ft} \quad (-0.3086 \text{ milligals/meter})$$

where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. Bouguer Effect: Like the free-air effect, the Bouguer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is 2.67 grams per cubic centimeter was followed in these studies. The Bouguer correction (B_C), which is opposite in sign to the free-air correction, was defined according to the following formula.

$$B_C = 0.01276 (2.67) h_f \text{ (milligals per foot)}$$

$$B_C = 0.04185 (2.67) h_m \text{ (milligals per meter)}$$

where h_f is the height above sea level in feet and h_m is the height in meters.

c. Latitude Effect: Points at different latitudes will have different "gravities" for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since points at higher latitudes are closer to the center of the earth than points near the equator, the gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration causes a slight decrease in gravity. At the higher latitudes where the earth's radii are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

$$g = 978.0381 (1 + 0.0053204 \sin^2 \phi - 0.0000058 \sin^2 2\phi)$$
 gals
where g is the theoretical acceleration of gravity and ϕ is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) have adjusted the observed gravity to the value it would have had at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is then subtracted from the adjusted observed gravity. The remainder is called the Simple Bouguer Anomaly (SBA). Most of this gravity represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) away from the station.

d. Terrain Effect: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects were 0.1 milligal or larger. Terrain corrected Bouguer values are called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

A1.5 INTERPRETATION

The first step in interpretation is to separate the portion of the CBA that might be caused by the lightweight, basin-fill material overlying the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. Since the valley-fill sediments are absent at the stations read in the mountains, the CBA values at these bedrock stations are used as the basis for constructing a regional field over the valley. A regional field is an estimation of the values the CBA would have had if the light weight sediments (the anomaly) had not been there.

The difference between the CBA and the regional field is called the "residual" field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly. The zero value of the residual anomaly is not exactly at the rock outcrop line but at some

distance on the "rock" side of the contact. The reason for this is found in the explanation of the terrain effect. There is a component of gravitational attraction from material which is not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluvial and bedrock material. If this contrast were known, an accurate calculation of the thickness could be made. In most cases, the densities are not well known and they also vary within the study area. In these cases, it is necessary to use typical densities for materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten percent error in density contrast produces a ten percent error in computed depth. An iterative computer program is used to calculate a subsurface model which will yield a gravitational field to match (approximately) the residual gravity anomaly.

FN-TR-33-WW

APPENDIX A2.0

LISTS OF GRAVITY DATA

PROFILE #1
WHIRLWIND VALLEY GRAVITY DATA

STATION IDENT.	LAT. DEG MIN	LONG. DEG MIN	FLEV. +CODE	TER-COR.	NORTH TN/OUT	EAST UTM	GRSV UTM	THEC GRAV	FAA GRAV	CRA +1000
WW0101	392811	1131828	6671S	1	681437508	81792154204212170	4818	82748		
WW0102	392830	1131819	6452S	8	412437544	81803155719212198	4246	82659		
WW0103	392847	1131788	6428S	14	371437577	81846155759212223	4034	82495		
WW0104	392870	1131761	6032S	3	287437621	81883158443212258	2959	82674		
WW0105	392882	1131735	5947S	1	266437645	81920159055212275	2746	82731		
WW0106	392893	1131714	5895Y	0	237437667	81949159370212291	2561	82691		
WW0107	392893	1131685	5841Y	0	221437668	81990159657212291	2339	82637		
WW0108	392898	1131653	5761Y	0	197437679	82036150972212299	1696	82442		
WW0109	392905	1131629	5701Y	0	187437694	82070160274212309	1615	82358		
WW0110	392909	1131599	5634Y	0	170437703	82112160002212316	1305	82260		
WW0111	392915	1131571	5572Y	0	157437710	82152160864212324	980	82132		
WW0112	392919	1131542	5510Y	0	149437725	82193161137212330	664	82019		
WW0113	392923	1131512	5455Y	0	138437734	82236161348212336	350	81882		
WW0114	392931	1131479	5404Y	0	122437751	82283161575212346	85	81775		
WW0115	392939	1131454	5364Y	0	119437767	82318161806212359	-78	81748		
WW0116	392948	1131428	5331Y	0	111437785	82355162022212373	-181	81748		
WW0117	392956	1131403	5300Y	0	106437802	82390162233212385	-275	81754		
WW0118	392965	1131374	5268Y	0	102437820	82431162470212398	-354	81781		
WW0119	392983	1131364	5246Y	0	98437854	82444162692212425	-360	81844		
WW0120	393052	1131260	5136S	0	79437984	82587163810212527	-383	82179		
WW0121	393052	1131147	5105S	0	74437995	82749164042212527	-443	82220		
WW0122	393053	1131040	5174Y	0	73438003	82903163511212528	-330	82048		
WW0123	393071	113 971	5226Y	0	77438041	83000163379212555	5	82258		
WW0124	393077	113 944	5249Y	0	74438053	83038163275212564	109	82285		
WW0125	393084	113 913	5274Y	0	80438063	83082163134212574	199	82290		
WW0126	393090	113 884	5295Y	0	84438081	83123163175212583	414	82445		
WW0127	393102	113 853	5325Y	0	85438105	83167163247212601	758	82681		
WW0128	393109	113 826	5342Y	0	89438120	83205163228212611	889	82758		
WW0129	393127	113 808	53-2Y	0	91438154	83229163178212634	1003	82805		
WW0130	393145	113 785	5392Y	0	95438185	83261162967212662	1046	82752		

END OF LIST

PROFTLF #2
WHIRLWIND VALLEY GRAVITY DATA

STATION IDENT.	LAT. DEG MIN	LONG. DEG MIN	ELEV. +CODE	TFR-CUR.	NORTH TN/OUT	EAST UTM	GRSV UTM	THEC GPAV	FAA	CBA +1000
WW0205	392450	1131656	6663S	1	522436850	82066153754211637			4829	82626
WW0206	392450	1131628	6434S	9	536436852	82106155104211637			4021	82622
WW0207	392454	1131599	6300S	1	502436861	82147155939211642			3584	82601
WW0208	392464	1131573	6193Y	0	426436881	82184156052211657			3279	82583
WW0209	392475	1131544	6074Y	0	361436903	82225157441211673			2937	82580
WW0210	392481	1131514	5974Y	0	317436916	82267158055211682			2610	82550
WW0211	392491	1131488	5882Y	0	285436936	82304158673211697			2329	82554
WW0212	392508	1131468	5793Y	0	253436964	82331159150211722			1947	82442
WW0213	392519	1131442	5714Y	0	227436991	82368159032211738			1668	82407
WW0214	392525	1131422	5676Y	0	215437003	82396159821211748			1486	82344
WW0216	392542	1131383	5588Y	0	185437037	82451160331211773			1147	82273
WW0217	392555	1131341	5552Y	0	174437059	82481160534211789			994	82232
WW0218	392566	1131345	5521Y	0	163437084	82503160725211806			875	82208
WW0219	392576	1131324	5478Y	0	155437103	82533160988211823			710	82188
WW0220	392584	1131302	5434Y	0	147437119	82564101225211834			534	82146
WW0221	392596	1131281	5392Y	0	138437143	82593161461211852			555	82102
WW0222	392607	1131257	5350Y	0	131437165	82626161683211869			167	82049
WW0223	392618	1131134	5193Y	0	107437193	82802162588211885			-424	81970
WW0223	392618	1131134	5193Y	0	107437193	82802162588211885			-424	81970
WW0224	392632	1131023	5085Y	0	89437225	82960163242211905			-813	81933
WW0225	392646	113 430	5033Y	0	79437257	83093163550211921			-1611	81902
WW0226	392669	113 824	5091Y	0	74037306	83243163231211960			-823	81688
WW0227	392684	113 744	5145Y	0	78437339	83356103010211983			-554	81976
WW0228	392693	113 717	5163Y	0	80437357	83394163000211990			-408	82063
WW0229	392698	113 690	5189Y	0	81437368	83433162851212003			-320	82063
WW0230	392705	113 662	5215Y	0	84437382	83472162819212013			-116	82180
WW0231	392710	113 636	5242Y	0	84437393	83509162736212021			51	82255
WW0232	392715	113 609	5267Y	0	90437406	83543162653212030			156	82314
WW0233	392723	113 581	5296Y	0	91437421	83587102489212040			241	82318
WW0234	392734	113 534	5350Y	0	102437444	83654162373212056			689	82523
WW0235	392734	113 534	5350Y	0	9437444	836541621 8212056			484	82636

END OF LIST

PROFILE #3
WHIRLKIND VALLEY GRAVITY DATA

STATION IDENT.	LAT. DEG MIN	LONG. DEG MIN	ELEV. +CODE	TER-CUR.	NORTH	EAST	CRSV	THEL	FAA	CBA
	DEG MIN	DEG MIN		IN/OUT	UTM	UTM	GRAV	GRAV		+1000
WW0301	391997	1131152	5512Y	1	159436042	82825160080210967	987	82347		
WW0302	391995	1131112	52251T	0	156436041	82882162400210964	208	82543		
WW0303	391986	1131087	5190S	0	133436020	82919162180210951	74	82504		
WW0304	391970	1131061	5176Y	0	120436009	82957162111210936	-115	82351		
WW0305	391975	1131034	5150Y	0	115436009	82996162224210934	-245	82303		
WW0306	391971	1131007	5128Y	0	104436003	83035162290210928	-384	82232		
WW0307	391967	113 988	5113Y	0	101435997	83063162363210923	-444	82219		
WW0308	391963	113 960	5093Y	0	93435991	83095162451210910	-535	82187		
WW0309	391958	113 938	5070Y	0	87435993	83135162538210904	-663	82133		
WW0310	391953	113 911	5052Y	0	84435970	83175162557210902	-798	82054		
WW0311	391948	113 884	5035Y	0	79435966	83214162677210895	-856	82071		
WW0312	391944	113 858	5017Y	0	77435962	83251162619210838	-656	82109		
WW0313	391934	113 826	5001Y	0	73435946	83298162846210873	-468	82049		
WW0314	391924	113 796	4988Y	0	70435929	83342162656210859	-1661	81990		
WW0315	391912	113 768	4982Y	0	67435969	83383162830210841	-1125	81949		
WW0316	391903	113 751	4991Y	0	66435893	83408162749210826	-1179	81934		
WW0317	391899	113 742	4994Y	0	65435880	83422162706210822	-1114	81916		
WW0318	391891	113 713	5012Y	0	63435873	83464162585210810	-1061	81906		
WW0319	391888	113 683	5028Y	0	63435869	83507162495210805	-995	81919		
WW0320	391882	113 654	5048Y	0	64435860	83550162369210797	-426	81926		
WW0321	391877	113 625	5081Y	0	70435853	83592162138210790	-635	81905		

END OF LIST

PROFILE #4
WHIRLWIND VALLEY GRAVITY DATA

STATION IDENT.	LAT. DEG MIN	LONG. DEG MIN	ELEV. +CODE	TER-COR. TM/UTM	NORTH UTM	EAST UTM	DSRV GRAV	THEC GRAV	FAA	CBA
WW0401	391313	1131923	6295Y	1 280434731	81768154118209955				3404	82210
WW0402	391320	1131897	6225Y	1 258434745	81805154615209966				3238	82264
WW0403	391331	1131873	6154Y	0 260434747	81839155098209983				3032	82303
WW0404	391335	1131846	6103Y	0 230434776	81877155439209989				2842	82305
WW0405	391341	1131818	6029Y	0 213434789	81917155920209994				2660	82311
WW0406	391353	1131787	5964Y	0 202434813	81961156299210016				2412	82273
WW0407	391373	1131763	5916Y	0 188434851	81994156622210045				2254	82264
WW0408	391380	1131731	5846Y	0 177434860	82040154995210055				1956	82195
WW0409	391388	1131708	5792Y	0 169434882	82072157179210067				1621	82030
WW0410	391402	1131682	5728Y	0 162434910	82108157546210088				1363	81989
WW0411	391422	1131658	5652Y	0 149434948	82141158110210117				1184	82050
WW0412	391437	1131640	5604Y	0 141434977	82166156474210140				1074	82102
WW0413	391452	1131616	5554Y	0 139435006	82200158819210162				931	82125
WW0414	391465	1131594	5495Y	0 137435031	82230159267210181				801	82195
WW0415	391475	1131572	5408Y	0 131435051	82261159177210195				727	82104
WW0416	391492	1131554	5488Y	0 130435084	82286159378210221				767	82199
WW0417	391504	1131442	5388Y	0 111435113	82446159938210238				404	82139
WW0418	391523	1131375	5299Y	0 101435154	82596160492210260				104	82128
WW0419	391543	1131232	52280T	0 94435197	827451604948210296				-148	82115
WW0420	391565	1131123	5154Y	0 86435245	82900161512210329				-317	82192
WW0421	391577	1131065	5117Y	0 80435270	82983161763210346				-430	82198
WW0422	391586	1131008	5090Y	0 77435291	83064161914210359				-549	82169
WW0423	391596	113 960	5064Y	0 73435312	83124162088210374				-631	82171
WW0424	391614	113 936	5041Y	0 73435347	83165162254210401				-705	82174
WW0425	391621	113 917	5030Y	0 71435361	83192162309210411				-765	82150
WW0426	391626	113 884	5001Y	0 69435372	83239162488210419				-868	82144
WW0427	391632	113 852	4988Y	0 67435385	83285162571210427				-920	82136
WW0428	391639	113 819	4966Y	0 66435395	83332162649210434				-1049	82078
WW0429	391642	113 790	4952Y	0 64435406	83357162726211442				-1114	82060
WW0430	391650	113 763	4937Y	0 63435424	83411162780210454				-1214	82010
WW0431	391659	113 735	4918Y	0 62435442	83451162863210467				-1326	81963
WW0432	391664	113 706	4901Y	0 62435453	83492162913210475				-1441	81905
WW0433	391668	113 681	4921Y	0 60435462	83528162743210480				-1475	81850
WW0434	391670	113 653	4923Y	0 59435468	83568162762210494				-1590	81677
WW0435	391670	113 625	4921Y	0 58435476	83608162765210484				-1413	81662
WW0436	391673	113 602	4910Y	0 57435477	83641162666210488				-1418	81893
WW0437	391675	113 577	4903Y	0 57435482	83677162932210491				-1416	81917
WW0438	391677	113 549	4887Y	0 56435487	83717163075210494				-1431	81457
WW0439	391679	113 521	4874Y	0 56435493	83757163199210497				-1450	82002
WW0440	391681	113 494	4863Y	0 55435498	83793163267210500				-1467	82001
WW0441	391687	113 466	4836Y	0 57435512	83907163507210507				-1488	82074
WW0442	391692	113 325	4817Y	0 52035529	84041163811210510				-1372	82077
WW0443	391698	113 270	4809Y	0 51435514	84116163897210525				-1372	820436
WW0444	391709	113 143	4765Y	0 51435549	84241164337210541				-1393	82436

FILE #5
WHIRLAPEK VALLEY GRAVITY DATA

STATION IDENT.	LAT. DEG MIN	LONG. DEG MIN	ELEV. +CODE	TER-CUR.	NORTH TN/DUT	EAST UTM	DSRV UTM	THEC GRAV	FAA GRAV	CHA +1.00
WW0501	39 851	113 1840	6024Y	1	272433881	81923155241209274			2060	82387
WW0502	39 855	113 1814	5972Y	4	266433890	81960155577209280			2500	82402
WW0503	39 857	113 1787	5852Y	0	273433895	81999156384209284			2173	82488
WW0504	39 859	113 1761	5841Y	1	253433900	82036156429209286			2180	82514
WW0505	39 860	113 1735	5776Y	0	243433904	82073156917209288			1985	82529
WW0506	39 864	113 1712	5718Y	0	236433912	82106157303209294			1918	82556
WW0507	39 870	113 1685	5648Y	0	233433925	82145157735209302			1587	82556
WW0508	39 870	113 1667	5616Y	0	206433926	82170157952209302			1405	82492
WW0509	39 868	113 1642	5548Y	0	184433924	82207156325209299			1234	82497
WW0510	39 865	113 1615	5490Y	0	173433920	82246158664209295			1037	82485
WW0511	39 861	113 1588	5425Y	0	158433914	82285159024209289			789	82444
WW0512	39 842	113 1562	5369Y	0	152433916	82322159306209291			544	82383
WW0513	39 862	113 1532	5308Y	0	141433919	82366159634209291			303	82339
WW0514	39 858	113 1505	5251Y	0	133433914	82405159946209285			78	82302
WW0515	39 857	113 1469	5179Y	0	122433914	82457160336209284			-204	82252
WW0516	39 854	113 1444	5137Y	0	116433910	82493160566209279			-371	82224
WW0517	39 837	113 1423	5114Y	0	119433880	82525160622209254			-500	82175
WW0518	39 828	113 1398	5057Y	0	111433864	82561160953209241			-700	82164
WW0519	39 825	113 1370	5013Y	0	121433861	82602151206209236			-650	82172
WW0520	39 821	113 1343	4966Y	0	107433855	82641101475209230			-1019	82150
WW0521	39 820	113 1315	4928Y	0	101433845	82682161693209229			-1161	82130
WW0522	39 814	113 1288	4892Y	0	101433845	82721161893209220			-1288	82127
WW0523	39 807	113 1172	5063Y	0	126433839	82889162787209209			1223	84082
WW0524	39 791	113 1061	4645Y	0	81433816	83050163206209186			-1002	82267
WW0525	39 786	113 955	4677Y	0	81433813	83203163332209179			-1635	82278
WW0526	39 767	113 844	4613Y	0	58433795	83364103768209151			-1973	82352
WW0527	39 765	113 734	4600Y	0	54433794	83523160035209145			-1621	82543
WW0528	39 743	113 622	4573Y	0	53433754	83086101252209115			-1631	82620
WW0529	39 744	113 505	4585Y	0	50433754	835551604319209116			-1651	82761
WW0530	39 746	113 398	4578Y	0	53433774	84009160263209120			-1775	82664
WW0531	39 747	113 285	4569Y	0	51433783	84172164234209121			-1690	82577
WW0532	39 748	113 173	4564Y	0	50433792	84333164260209125			-1913	82567
WW0533	39 769	113 63	4562Y	0	44433838	84490164221209153			-1499	82484
WW0534	39 779	113 10	4568Y	0	43433659	84566160198209160			-2076	82420

END OF LIST

