STATS 260 Class 2

Gavin Jaeger-Freeborn

1. population (µ)

Example

- All I-beams being made by a particular manufacturer.
- All Canadians who will be eligible to vote in an upcoming election.
- All people who will at some point take a particular blood pressure medication.

2. Parameter

Measurement of a population

3. Sample (x)

A subset of the population

4. Statistic

Measurement of a sample

4.1. Descriptive Statistics

organize, summarize, display, and describe features of the data.

Example

Some sorts of questions descriptive statistics answers:

- What is the greatest tensile strength recorded? What is the range of recorded tensile strengths?
- What proportion of the sample of voters is older than 65?
- What is the average weight of the sample of people taking blood

pressure medication? How spread out are the measurements for resting heart rate?

4.2. Inferential Statistics

draw conclusions about the population based on the measurements from the sample.

Example

Some sorts of questions inferential statistics answers:

• What is a likely range of values of tensile strengths for all I-beams made by the manufacturer?

NOTE: all I-beams \rightarrow population

- Based on our survey, which party is likely to win the election?
- Can we conclude that there a relationship between weight and blood pressure?

5. Examples

Determine whether the underlined words refer to a:

- We wish to study poplar trees, so we make a selection of 15 poplar trees in a forest.
 - \rightarrow Sample
- From our selection of 15 poplar trees, we find the largest tree to have a height of 1.9 m.
 - \rightarrow Statistic
- A newspaper wants to determine the feelings of Victoria residents regarding a bridge to the mainland.
 - → Population
- The newspaper phones 500 Victoria residents.
 - \rightarrow Sample
- It is found that 95% of these people are in favor of a bridge.
 - \rightarrow Statistic

6. Mean, Median, and Mode

6.1. Mean (\bar{x})

Sample Mean	\bar{x}	average of a sample (an estimation of $\bar{\mu}$
Population Mean	μ	mean of a population

$$\bar{x} = \frac{x_1 + \ldots + x_n}{n}$$

Example

Suppose the following is data taken from some sample. Calculate the sample mean.

10, 6, 12, 7, 3, 6

$$44/6 = 7.333$$
, $\therefore x = 7.333$

6.2. Median (\tilde{x})

Middle of a sorted list

Example

Suppose we have the sample data: 6, 9, 3, 18, 11. Find the sample median of these data.

3, 6, 9, 18, 11

Median is then 18

NOTE: median is unaffected by outliers

6.3. Mode

The value that appears the most often

Example

Median of 3, 5, 9, 9, 9, 5 is 9

Example

The data set 1, 2, 3, 3, 3, 4, 4, 4, 5, 5 has two modes (3 and 4).

The data set 1, 2, 3, 4, 5 has **no modes** (since there is no observation that occurs more frequently than any other observation).

7. Standard Divination

sample variance	s^2	Sample Standard Deviation
population variance	σ^2	Population Standard Deviation

ith Deviation = diffrenence between x_i and \bar{x}

Example

Find the variance and standard deviation of the following sample:

7, 7, 9, 15, 16, 17, 19, 21, 22, 40

$$\bar{x} = 17.3$$
 $\tilde{x} = 16.5$
 $s = 9.5730$
 $s^2 = 93.5667$

$$\sum x_1^2 = 3835\bar{x} = 17.3$$

$$s^2 = \frac{\sum x_i^2 - n(\bar{x})^2}{n - 1}$$

8. coefficient of variation (cv)

used to compare 2 sets is a dimensionless quantity (i.e. no units of measurement) which can be used to assess the variability of a set of observations. The cv is calculated by

 $\frac{s}{\bar{x}}$

Example

One set of observations has a mean of 35 with a standard deviation of 7. A second set of observations has a mean of 55 with a standard deviation of 9. Which data set has more variability?

More spread out

$$cv_1 = 7/35 = 0.2$$

$$cv_2 = 9/55 = 0.1636$$