

## planetmath.org

Math for the people, by the people.

## coherent analytic sheaf

Canonical name CoherentAnalyticSheaf Date of creation 2013-03-22 17:39:05 Last modified on 2013-03-22 17:39:05

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 4

Author jirka (4157) Entry type Definition Classification msc 32C35

Defines locally finitely generated sheaf

Defines sheaf of relations

Let M be a complex manifold and  $\mathcal{F}$  be an analytic sheaf. For  $z \in M$ , denote by  $\mathcal{F}_z$  the stalk of  $\mathcal{F}$  at z. By  $\mathcal{O}$  denote the sheaf of germs of analytic functions. For a section f and a point  $z \in M$  denote by  $f_z$  the germ of f at z.

 $\mathcal{F}$  is said to be *locally finitely generated* if for every  $z \in M$ , there is a neighbourhood U of z, a finite number of sections  $f_1, \ldots, f_k \in \Gamma(U, \mathcal{F})$  such that for each  $w \in U$ ,  $\mathcal{F}_w$  is a finitely generated module (as an  $\mathcal{O}_w$ -module).

Let U be a neighbourhood in M and Suppose that  $f_1, \ldots, f_k$  are sections in  $\Gamma(U, \mathcal{F})$ . Let  $\mathcal{R}(f_1, \ldots, f_k)$  be the subsheaf of  $\mathcal{O}^k$  over U consisting of the germs

$$\{(g_1,\ldots,g_k)\in\mathcal{O}_z^k\mid \sum_{j=1}^kg_j(f_j)_z=0\}.$$

 $\mathcal{R}(f_1,\ldots,f_k)$  is called the *sheaf of relations*.

**Definition.**  $\mathcal{F}$  is called a *coherent analytic sheaf* if  $\mathcal{F}$  is locally finitely generated and if for every open subset  $U \subset M$ , and  $f_1, \ldots, f_k \in \Gamma(U, \mathcal{F})$ , the sheaf  $\mathcal{R}(f_1, \ldots, f_k)$  is locally finitely generated.

## References

- [1] Lars Hörmander., North-Holland Publishing Company, New York, New York, 1973.
- [2] Steven G. Krantz. , AMS Chelsea Publishing, Providence, Rhode Island, 1992.