ниту «мисис»

Институт ИТКН

Кафедра инженерной кибернетики

Направление подготовки: 01.03.04 прикладная математика

Квалификация (степень): бакалавр

Группа: БПМ-21-3 Курс обучения: **3**

ОТЧЕТ

ПО КУРСОВОЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

на тему:

«Приложение для обучающих курсов с применением адаптивного обучения»

6-й семестр, 2023-2024 уч. год

Учащийся:	-duody	/ Хлобустова С.М
	подпись	Фамилия И.О.

Оценка: Отлично

Дата защиты: 06,06,2029

Руководитель КНИР_

Москва 2024

Оглавление

1. Список сокращений	2
2. Введение	
3. Основная часть	6
3.1 Математическая постановка	6
3.2 Основные этапы реализации	9
3.3 Описание реализации	11
3.4 Используемые библиотеки	16
3.5 Результаты	18
3.6 Пользовательский интерфейс приложения	20
3.7 Постановка задачи на следующий семестр	21
3. Выводы	22
4. Ссылки на источники	25
5. Лополнительные разделы отчета	27

1. Список сокращений

CAT (Computer-Adaptive Testing, компьютерно-адаптивное тестирование) - это метод проведения тестов, который динамически адаптируется к уровню успеваемости испытуемого, изменяя сложность представленных заданий в соответствии с предыдущими ответами испытуемого.

RL (Reinforcement learning) - обучение с подкреплением, где происходит изучение того, как агенты должны принимать последовательные решения в среде для максимизации некоторой кумулятивной награды. В отличие от обучения с учителем, где модель обучается на фиксированном наборе данных, обучение с подкреплением предполагает взаимодействие агента с динамической средой и получение обратной связи в виде наград.

MDP (Markov Decision Process, марковский процесс принятия решений) - это случайный процесс, который описывает эволюцию системы с течением времени, когда система переходит из одного состояния в другое вероятностным образом, основываясь на действиях, предпринимаемых лицом, принимающим решения.

PPO (Proximal Policy Optimization, алгоритм ближайшей оптимизации политики) - алгоритм обучения с подкреплением, который сосредотачивается на обучении стратегии (policy) с учетом границ для обновлений.

IRT (Item Response Theory, современная теория тестирования) - набор методов, позволяющий оценить вероятность правильного ответа испытуемых на задания различной трудности.

A2C (Advantage Actor-Critic) — это алгоритм обучения с подкреплением, который относится к классу методов актер-критик. Этот метод сочетает в себе элементы полисного градиента и временного различия для улучшения стабильности и эффективности обучения агентов.

TD (Temporal Difference) - это метод обучения в машинном обучении, который используется для оценки функции ценности (value function) в задачах с подкреплением (Reinforcement Learning, RL). Метод TD сочетает в себе идеи

динамического программирования и Монте-Карло методов, предоставляя эффективный способ обновления оценок ценности состояний или действий на основе временных различий между последовательными оценками.

SARSA (State-Action-Reward-State-Action) - метод, который оценивает ценности действий (Q-функции) и обновляет их на основе наблюдаемой последовательности состояния, действия, награды, следующего состояния и следующего действия.

2. Введение

Проект представляет собой приложение для обучающих курсов, использующее адаптивное обучение. Адаптивное обучение — это персонализированный подход к обучению, который подстраивается под индивидуальные потребности каждого учащегося. В рамках проекта была разработана система автоматической оценки, которая оценивает текущий уровень знаний учащегося и предлагает тестовые задания, направленные на улучшение его знаний.

В современном образовательном процессе часто наблюдается отсутствие индивидуального подхода к обучению. Традиционные методы обучения не всегда учитывают уровень подготовки и уникальные потребности каждого учащегося, что приводит к неэффективному усвоению материала. Адаптивное обучение решает эту проблему, позволяя создавать индивидуальные траектории обучения. Система автоматической оценки знаний, которая является центральным элементом КНИР, предоставляет возможность эффективно и точно определять пробелы в знаниях и предлагать задачи, способствующие их устранению. Это повышает качество образования и способствует более глубокому усвоению материала.

Цель проекта - разработка системы автоматической оценки, которая оценивает уровень знаний учащегося и подбирает соответствующие тестовые задания для улучшения его знаний.

В рамках КНИР будут решаться следующие задачи:

- Оценка текущих знаний учащегося на основе его ответов на ранее предложенные вопросы;
- Оценка вероятности правильного ответа учащегося на конкретное задание, используя текущий уровень знаний и характеристики задания;
- Создание и поддержание набора тестовых заданий, из которых система будет выбирать наиболее подходящие вопросы для каждого учащегося;

- Разработка алгоритма, который будет выбирать следующий наиболее информативный элемент на основе данных модели ответов.
- Для достижения основной цели и решения задач КНИР были использованы следующие научно-технические подходы:
 - IRT используется для изучения характеристик всех тестовых заданий и базовых качеств знаний учащихся. Модель позволяет точно оценить, какие задания являются наиболее подходящими для определения уровня знаний учащегося.
 - MDP применяется для нахождения оптимальной политики, представляющей собой функцию, сопоставляющую состояния с действиями. Эта политика максимизирует ожидаемое совокупное вознаграждение (в данном контексте улучшение знаний учащегося) с течением времени. Методы динамического программирования, такие как итерация значений и итерация политики, используются для итеративного обновления оценок значений каждого состояния.

3. Основная часть

3.1. Математическая постановка

Основные компоненты компьютерного адаптивного тестирования (САТ):

1. Средство оценки уровня знаний:

Функция Е оценивает текущие знания учащегося на основе его ответов на ранее предложенные вопросы. Пусть K_i обозначает уровень знаний учащегося і. Тогда $K_i = E(Q_i, A_i)$, где Q_i - множество вопросов, предложенных учащемуся і, и A_i - множество ответов учащегося і.

2. Модель ответа:

Функция Р оценивает вероятность правильного ответа учащегося на конкретное задание, используя текущий уровень знаний и характеристики задания. Пусть G_i обозначает вероятность правильного ответа учащегося і на задание j. Тогда $G_i = P(K_i, X_j)$, где X_j - характеристики задания j.

3. Пул доступных заданий:

Множество Т представляет собой набор тестовых заданий, из которых адаптивная система выбирает вопросы. Пусть $T = \{X_1, X_2, ..., X_n\}$.

4. Алгоритм выбора элемента:

Алгоритм S выбирает следующий наиболее информативный элемент на основе выходных данных модели ответов. Пусть Q_{next} обозначает следующее задание, которое будет предложено учащемуся. Тогда $Q_{next} = S(\{P(K_i, X_i)\})$.

Применение IRT и MDP:

• Модель IRT (Item Response Theory):

Используется для изучения характеристик всех тестовых заданий и базовых качеств знаний учащихся. Пусть β_i обозначает параметр сложности задания j, а α_i - дискриминационный параметр. Модель IRT оценивает, насколько задание j подходит для оценки знаний учащегося i.

• MDP (Markov Decision Process):

Процесс Маркова используется для нахождения оптимальной политики π_i , которая представляет собой функцию, сопоставляющую состояния s с действиями a, максимизируя ожидаемое совокупное вознаграждение с течением времени. Пусть $V^{\pi}(s)$ обозначает значение состояния s при следовании политике π_i . Цель - максимизация $V^{\pi}(s)$.

Формальные определения:

1. Функция оценки уровня знаний:

$$K_i = E(Q_i, A_i)$$

2. Модель ответа:

$$G_i = P(K_i, X_j)$$

3. Алгоритм выбора элемента:

$$Q_{next} = S(\{P(K_i, X_i)\})$$

4. Модель IRT:

$$P(X_j | K_i) = \frac{1}{1 + \exp(-\alpha_j(K_i - \beta_j))}$$

5. Процесс Маркова:

$$V^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, \pi]$$

где γ - коэффициент дисконтирования, $r(s_t, a_t)$ - вознаграждение за действие a_t в состоянии s_t .

3.2. Основные этапы реализации

- 1. Подготовка данных и окружения:
- 1.1 Чтение данных о студентах и тестовых заданиях с помощью функции read_dataset.
- 1.2 Создание нового окружения SelectionEnv, которое будет использоваться для обучения и тестирования модели.
- 1.3 Проверка корректности созданного окружения с помощью специальной функции проверки.
 - 2. Парсинг аргументов командной строки:
- 2.1 Определение необходимых аргументов, таких как количество тестовых студентов, количество тестов, максимальное количество эпизодов, флаг для вывода дополнительной информации, настройки гиперпараметров и директория для сохранения результатов.
- 2.2 Чтение и обработка аргументов командной строки для дальнейшего использования в программе.
 - 3. Гиперпараметрическая оптимизация:
- 3.1 Определение диапазонов значений для гиперпараметров, таких как имя политики, коэффициент дисконтирования, коэффициент энтропии, скорость обучения и количество проходов.
- 3.2 Перебор всех возможных комбинаций заданных гиперпараметров и выполнение обучения модели для каждой комбинации.
- 3.3 Пропуск комбинации гиперпараметров, если результаты для этой комбинации уже существуют, если флаг force repeat не установлен.

- 4. Обучение и тестирование модели:
- 4.1 Обучение модели РРО с использованием заданного окружения и гиперпараметров. Обучение проводится для определенного количества эпизодов.
- 4.2 После обучения модель тестируется на новых данных (тестовых студентах). В процессе тестирования вычисляется дисконтированный доход для каждого студента.
 - 5. Сохранение результатов:
- 5.1 Сохранение дисконтированного дохода и других результатов тестирования в JSON-файл в указанной директории.
- 5.2 Если установлен флаг intermediate, результаты обучения сохраняются после каждого прохода для последующего анализа.
 - 6. Дополнительные функции:
- 6.1 Тестирование различных методов окружения SelectionEnv для проверки их корректной работы.
- 6.2 Создание нового экземпляра окружения с заданными параметрами, такими как идентификаторы студентов, количество тестовых студентов, выходные данные, количество тестов и максимальное количество эпизодов.
 - 7. Основной поток выполнения:
- 7.1 Основная функция main запускается при выполнении скрипта, обеспечивая выполнение всех этапов проекта в правильном порядке.

3.3. Описание реализации

Файл рро.ру состоит из следующих функций:

- 1. Функция implement_PPO_algorithm (она реализует алгоритм PPO для обучения агента в среде обучения):
 - Инициализация среды: если переменная intermediate равна None, вызывается метод set_force_reset у среды env для начальной настройки и затем окружение оборачивается в DummyVecEnv для использования в stable_baselines3.
 - Задание гиперпараметров: из hyperparameters извлекаются значения гиперпараметров: имя политики, коэффициент дисконтирования (gamma), коэффициент энтропии (ent_coef), скорость обучения (learning_rate) и количество проходов (num_forward_passes).
 - Обучение модели: создается и обучается модель PPO с заданными гиперпараметрами. Модель обучается на основе действий и вознаграждений для определенного количества эпизодов.
 - Тестирование модели: после обучения модель тестируется на новых данных (тестовых студентах). В процессе тестирования вычисляется дисконтированный доход для каждого студента, который сохраняется в pred_student_information.
- 2. Функция save_intermediate_results (она сохраняет промежуточные результаты после каждого прохода обучения):
 - Обновление гиперпараметров: количество проходов (num_forward_passes) устанавливается в 1 для начального прохода.
 - Цикл обучения: для каждого промежуточного прохода (от 1 до num_forward_passes) вызывается implement_PPO_algorithm с соответствующими параметрами, и результаты сохраняются в указанную директорию.

- 3. Функция test_individual_env_methods (она предназначена для тестирования различных методов окружения SelectionEnv):
 - Тестирование получения наблюдений: Вызывается метод get_observation у окружения для проверки его работы.
 - Тестирование обновления способностей: Вызывается метод get_updated_ability.
 - Тестирование шага: В цикле вызывается метод step для выполнения шагов в окружении и проверки его работы.
- 4. Функция create_new_env (она создает новое окружение SelectionEnv с заданными параметрами):
 - student_ids идентификаторы студентов.
 - num_test_students количество тестовых студентов.
 - Outputs выходные данные.
 - CONSIDER_TEST_CASES количество тестовых заданий, которые нужно учитывать.
 - MAX_EPISODES максимальное количество эпизодов.
 - Verbose флаг для вывода дополнительной информации.
- 5. Функция parse_arguments (она парсит аргументы командной строки с использованием argparse и возвращает их в виде объекта args)
- 6. Основная функция main (здесь реализуется основной логический поток программы):
 - Парсинг аргументов: сначала вызывается parse_arguments для получения аргументов командной строки.
 - Создание выходной директории: если директория для сохранения результатов не существует, она создается.
 - Чтение данных: с помощью read_dataset читаются данные для студентов и тестовых заданий.

- Создание окружения: вызывается create_new_env для создания нового окружения с заданными параметрами.
- Проверка окружения: проверяется корректность окружения с использованием check env.
- Гиперпараметрическая оптимизация: если флаг intermediate не установлен, выполняется настройка гиперпараметров, при этом создаются различные комбинации гиперпараметров и для каждой комбинации выполняется обучение модели с использованием implement PPO algorithm.
- Сохранение промежуточных результатов: если флаг intermediate установлен, вызывается save_intermediate_results для сохранения промежуточных результатов обучения.

Файл Selection_env.py состоит из следующих методов класса SelectionEnv:

1. Конструктор класса __init__:

- Инициализация параметров происходит посредством конструктора, который принимает параметры, такие как идентификаторы студентов, количество тестовых студентов, выходные данные, количество рассматриваемых тестов и максимальное количество эпизодов. Эти параметры сохраняются как атрибуты класса.
- Загрузка параметров IRT, таких как способность студентов и сложность тестов.
- Загрузка таких данных, как данные о кодах студентов из CSV-файла, словарь кодов для каждого студента, формулировка задания, тестовые случаи.
- Инициализация модели CodeGPT, происходит настройка устройства для вычислений (CPU или GPU), и инициализируются токенизатор и модель CodeGPT для работы с кодом.

- Инициализация переменных отслеживания, происходит установка переменных для отслеживания текущего студента, текущего эпизода, количества эпизодов, тестов для каждого студента и способностей каждого студента.
- Определяются пространства действий и наблюдений для окружения.

2. Метод construct str state

• Формируется строковое представление текущего состояния, включающее формулировку задания, код студента и выбранные тесты. Также создается строковое представление для правильного кода.

3. Метод get_observation

• Принимает строковое представление состояния и правильного кода, токенизирует их и пропускает через модель CodeGPT для получения эмбеддингов. Затем эмбеддинги агрегируются, и состояние представляется как разница между эмбеддингами.

4. Метод set_force_reset

• Устанавливает значение отслеживателя студентов и режима работы (обучение или тестирование).

5. Метод reset

• Выполняет сброс окружения, устанавливает начальное состояние, увеличивает значение отслеживателя студентов, если это необходимо, и возвращает начальное наблюдение и информацию.

6. Метод get updated ability

• Обновляет способности студента: Метод обновляет способность студента с использованием модели IRT, оценивая выполнение студентом выбранных тестов.

7. Метод step

• Выполняет один шаг в окружении, обновляет список выбранных тестов и способность студента, вычисляет награду и формирует новое состояние. Возвращает следующее состояние, награду, флаг завершения эпизода, флаг обрыва и информацию.

8. Метод render

• Выводит текущую информацию об эпизоде, студенте, выбранных тестах и способности студента на консоль.

9. Метод close

• Закрывает окружение и освобождает ресурсы.

10. Метод seed

• Устанавливает сиды для обеспечения воспроизводимости результатов.

3.4. Используемые библиотеки

- 1. os работа с файловой системой, создание директорий, проверка существования файлов и директорий.
- 2. json чтение и запись JSON-файлов для сохранения и загрузки параметров, результатов и конфигураций.
- 3. math выполнение математических операций, таких как вычисление абсолютных значений.
- 4. argparse парсинг аргументов командной строки для настройки параметров запуска скрипта.
- 5. tqdm отображение прогресса выполнения циклов, особенно при длительных вычислениях или обработке данных.
- 6. itertools генерация различных комбинаций и перестановок для перебора гиперпараметров и других итеративных задач.
- 7. collections.defaultdict создание словарей с автоматическим созданием значений по умолчанию, что упрощает работу с вложенными структурами данных.
- 8. stable_baselines3 реализация алгоритмов обучения с подкреплением. Используются компоненты для проверки среды (check_env), векторизации среды (DummyVecEnv), а также алгоритмы обучения, такие как PPO, DQN, A2C, DDPG, TD3 и SAC.
- 9. numpy обработка массивов и выполнение числовых операций.
- 10. pandas работа с табличными данными, чтение CSV-файлов и выполнение операций над датафреймами.

- 11. torch работа с тензорами и выполнение операций машинного обучения с использованием библиотек PyTorch, включая модели глубокого обучения.
- 12. gymnasium (gym) создание среды для обучения с подкреплением. Определение пространства действий и наблюдений.
- 13. transformers работа с моделями трансформеров, такими как GPT-2, для обработки естественного языка и кода. Используется токенизатор и модель GPT-2.
- 14. utils вспомогательные функции, такие как получение словаря кодов, формулировка задания, загрузка тестовых случаев и получение идентификатора pivot-кода.
- 15. IRT.implement_irt чтение набора данных, работа с IRT моделями, получение загрузчиков данных, установка сидов, получение информации о модели и обучение IRT модели.
- 16. IRT.load_params загрузка параметров IRT модели, таких как способности студентов и сложность тестов.

3.5. Результаты

На вход подаются файлы:

- CodeStates.csv --хранит коды, написанные студентами;
- correct_outputs.json хранит в формате json правильные ответы на каждый из тестов;
- test_cases.json хранит тесты на определенную задачу;
- problem.txt записана поставленная задача;
- all_code_outputs.json формирует ответы на тесты, выводимые кодом студента, состоит из 0 и 1 для каждого теста по каждому студенту. На выходе выводятся файлы:

0.900000_0.010000_0.000100_10.json (например) — где через _ написаны параметры: гамма, входной коэффициент, скорость обучения, количество прямых проходов. В этом и подобных файлах содержатся данные о промежуточной оценке навыков студента и тесты, которые могли бы улучшить его код, если он их проанализирует.

Этот и другие файлы с разными параметрами генерируются по пути results/PPO/MlpPolicy.

В коде программы был протестирован следующий пример:

Текст задачи - При наличии массива int возвращает сумму чисел в массиве, за исключением случаев, когда игнорируются разделы чисел, начинающиеся с 6 и продолжающиеся до следующих 7 (за каждым числом 6 будет как минимум одно число 7). Возвращает 0, если чисел нет.

Данные входных и выходных данных можно просмотреть в приложении А.

Всего в тестировании приняло участие 10 студентов. Были сформированы файлы json с кодом каждого студента, который решал поставленную задачу

(CodeStates.csv). Также были переданы файлы correct_outputs.json, test_cases.json, all_code_outputs.json.

По итогам обучения программа выводит файлы с оценками и предлагаемыми тестами и зачастую корректно отрабатывает — ставит положительные оценки тем студентам, у которых код правильно решал поставленную задачу и отрицательные тем, у кого неправильно. Но также можно заметить, что с изменением параметров данные выходных файлов могут меняться. В целом же программа решает поставленную ей задачу.

3.6. Пользовательский интерфейс приложения

В Android Studio был сделан шаблон мобильного приложения для просмотра и размещения обучающих курсов.

Всего было разработано три Activity:

- Регистрация;
- Авторизация;
- Просмотр курсов.

Была использована база данных SQLite для добавления пользователя, создания и обновления таблицы пользователей, получения данных из таблицы. Также была реализована проверка на то, зарегистрирован ли уже пользователь и переход между Activity.

Просмотреть интерфейс мобильного приложения можно в приложении В.

3.7. Постановка задачи на следующий семестр

Задачи на улучшение модели обучения с подкреплением:

- Протестировать модель на большем количестве данных, порядка 100 студентов и больше;
- Использовать другие алгоритмы обучения с подкреплением, например, А2С;
- Добавить в модель возможность анализа односложных ответов студента.

Задачи на улучшение мобильного приложения:

- Добавить возможность выбора роли (преподаватель или студент) на странице регистрации и авторизации;
- В зависимости от роли прописать функционал для преподавателя возможность создать курс, описать задачу, тестовые данные или вопросы, правильные ответы, ранжирование оценки; и для студента просмотр и регистрация на курсе, прохождение тестов курса, получение оценки и улучшение навыков в зависимости от оценки;
- Улучшить хранение информации в базе данных.

Общие задачи:

Объединить работу модели и приложения — чтобы из базы данных выгружались json-файлы с нужными данными и после отработки модели данные загружались обратно в базу данных;

Написать сервер, чтобы можно было в режиме реального времени тестировать приложение.

4. Выводы

В рамках проекта была создана система автоматической оценки знаний для адаптивного обучения, направленная на персонализацию образовательного процесса и повышение его эффективности.

Ключевые характеристики проведенных исследований и решенных задач:

- Разработана методика оценки текущего уровня знаний на основе ответов на предложенные вопросы.
- Оценка вероятности правильного ответа учащегося на каждое задание с учетом его текущих знаний и характеристик задания.
- Разработан и поддерживается набор тестовых заданий, из которых система выбирает наиболее подходящие для каждого учащегося.
- Реализован алгоритм выбора наиболее информативных заданий для каждого учащегося, что способствует целенаправленному улучшению знаний.

Ключевые особенности математического обеспечения:

- Модель Тестовых Ответов (IRT) использована для анализа характеристик тестовых заданий и базовых качеств знаний учащихся. Она позволяет точно оценить, какие задания являются наиболее подходящими для определения уровня знаний учащегося.
- Марковские Процессы Принятия Решений (MDP) применены для нахождения оптимальной политики выбора заданий, которая максимизирует ожидаемое совокупное вознаграждение (улучшение знаний учащегося) с течением времени.
- Методы динамического программирования, такие как итерация значений и итерация политики, использованы для итеративного обновления оценок значений каждого состояния.

Библиотеки машинного обучения и глубокого обучения:

- Использованы библиотеки, такие как torch и transformers, для создания моделей и обработки данных.
- Применены алгоритмы обучения с подкреплением (например, РРО) для оптимизации процесса обучения.

Средства разработки и тестирования:

- Интеграция с Gymnasium для создания и тестирования окружения обучения с подкреплением.
- Применение средств автоматизации и анализа данных, таких как pandas и numpy, для работы с данными и моделями.

Основные цели проекта были достигнуты в полной мере:

- Разработана система автоматической оценки знаний.
- Создана база тестовых заданий и алгоритм их адаптивного выбора.
- Реализованы и протестированы модели на небольшом количестве данных.

Применяемые методы и средства информационных технологий:

- Продолжение использования методов машинного обучения и алгоритмов обучения с подкреплением.
- Использование средств разработки мобильных приложений и серверной части для интеграции модели и базы данных.

За время выполнения проекта были приобретены следующие компетенции:

- Знания и навыки в области адаптивного обучения и автоматической оценки знаний.
- Опыт работы с моделями IRT и MDP.
- Навыки разработки и тестирования моделей машинного обучения.

• Опыт интеграции моделей с мобильными приложениями и базами данных.

Проект был выполнен успешно, основные цели достигнуты. В следующем семестре планируется расширение и улучшение модели обучения с подкреплением, а также разработка и интеграция функционала для мобильного приложения, что позволит улучшить адаптивность и персонализацию образовательного процесса.

5. Список используемых источников

- 1. Computerized Adaptive Testing (CAT) // Assessment Systems URL: https://assess.com/computerized-adaptive-testing/.
- 2. Markov Decision Processes // 21 Lycee Wiki URL: https://21lycee.fandom.com/wiki/Markov_Decision_Processes.
- 3. Proximal Policy Optimization // OpenAI URL: https://openai.com/index/openai-baselines-ppo/.
- 4. Stable-Baselines3 Docs // Stable-Baselines3 URL: https://stable-baselines3.readthedocs.io/en/master/.
- 5. Morten Aa. Petersen, Hugo Vachon, Johannes M. Giesinger, Mogens Groenvold Development of standard computerised adaptive test (CAT) settings for the EORTC CAT Core // Quality of Life Research . Brussels: the European Organisation for Research, Treatment of Cancer (EORTC) , 2023. C. 952-955. URL: https://link.springer.com/article/10.1007/s11136-023-03576-x#citeas.
- 6. Caroline B. Terwee Common measures or common metrics? the value of IRT-based common metrics // Quality of Life Research . Amsterdam: Springer Link , 2023. C. 1-4. URL: https://link.springer.com/article/10.1186/s41687-023-00657-w.
- 7. Царев Р.Ю. Тынченко С.В. Гриценко С.Н. АДАПТИВНОЕ ОБУЧЕНИЕ С ИСПОЛЬЗОВАНИЕМ РЕСУРСОВ ИНФОРМАЦИОННО-ОБРАЗОВАТЕЛЬНОЙ СРЕДЫ // Современные проблемы науки и образования. Красноярск: Сетевое издание, 2016. С. 1-3. URL: https://science-education.ru/ru/article/view?id=25227.
- 8. Адаптивное обучение в высшем образовании: за и против / К. А. Вилкова, Д. В. Лебедев; Национальный исследовательский университет «Высшая школа экономики», Институт образования. М.: НИУ ВШЭ, 2020 36 с. 200 экз. (Современная аналитика образования. № 7 (37)).
- 9. Arnd Hartmanns, Sebastian Junges, Tim Quatmann & Maximilian Weininger A Practitioner's Guide to MDP Model Checking Algorithms // Lecture Notes

- in Computer Science. Berlin: Springer Link, 2023. C. 469–488. URL: https://link.springer.com/chapter/10.1007/978-3-031-30823-9_24.
- 10. Rajmeet Singh Bhourji, Saeed Mozaffari & Shahpour Alirezaee Reinforcement Learning DDPG–PPO Agent-Based Control System for Rotary Inverted Pendulum // Arabian Journal for Science and Engineering. London: Springer Link, 2023. C. 1683–1696. URL: https://link.springer.com/article/10.1007/s13369-023-07934-2.

6. Дополнительные разделы отчета

Приложения А

A.1 – пример кода студента 1 в файле CodeStates.csv

A. 2 – пример кода студента 3 в файле CodeStates.csv

```
"O": "new int[]{6, 1, 2, 7, 3, 4, 5}",
    "1": "new int[]{1, 6, 2, 3, 4, 7}",
    "2": "new int[]{1, 2, 6, 6, 7, 3}",
    "3": "new int[]{6, 7, 1, 2, 3, 4, 5, 6, 7, 6}",
    "4": "new int[]{6, 6}",
    "5": "new int[]{1, 6, 2, 7}",
    "6": "new int[]{1, 2, 3, 4, 6, 7}",
    "8": "new int[]{1, 2, 3, 4, 6, 7}",
    "9": "new int[]{1, 2, 3, 4, 5, 6, 7, 6, 7, 6}",
    "10": "new int[]{6, 1, 2, 3, 7, 4}",
    "11": "new int[]{6, 1, 2, 3, 7, 4}",
    "13": "new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}",
    "15": "new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}",
    "16": "new int[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}",
    "17": "new int[]{1, 2, 3, 4, 7, 7,
    "18": "new int[]{1, 2, 3, 4, 7, 7,
    "20": "new int[]{1, 2, 3, 4, 7, 7, 5, 6, 7, 6}",
    "21": "new int[]{1, 2, 3, 4, 6, 7, 5, 6, 7, 6}",
    "22": "new int[]{1, 2, 3, 4, 6, 7, 5, 6, 7, 6}",
    "22": "new int[]{1, 2, 3, 4, 6, 7, 5, 6, 7, 6}",
    "22": "new int[]{1, 2, 3, 4, 6, 7, 5, 6, 7, 6}",
    "22": "new int[]{1, 2, 3, 4, 6, 7, 5, 6, 7, 6}",
    "22": "new int[]{1, 2, 3, 4, 6, 7, 5, 6, 7, 6}",
    "22": "new int[]{1, 2, 3, 4, 6, 7, 5, 6, 7, 6}",
    "22": "new int[]{1, 2, 3, 4, 6, 5, 7}",
    "25": "new int[]{1, 2, 3, 4, 6, 5, 7}",
    "26": "new int[]{1, 2, 3, 4, 6, 7, 4, 5}",
    "27": "new int[]{6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6}",
    "27": "new int[]{6, 7, 6, 7, 1, 2, 3, 4, 5, 6}",
    "28": "new int[]{1, 2, 3, 6, 4, 7, 5}",
    "30": "new int[]{1, 2, 3, 6, 4, 7, 5}",
    "33": "new int[]{1, 2, 3, 4, 5, 7, 4}",
    "33": "new int[]{1, 2, 3, 4, 5, 7, 4}",
    "33": "new int[]{1, 2, 3, 4, 5, 7, 3}",
    "33": "new int[]{1, 2, 3, 4, 5, 7, 3}",
    "33": "new int[]{1, 2, 3, 4, 5, 7, 3}",
    "33": "new int[]{1, 2, 3, 4, 5, 7, 3}",
    "33": "new int[]{1, 2, 6, 3, 7, 4}",
    "
```

A.3 – Тесты из файла test_cases.json

```
"0": "12\n",
"1": "1\n",
"2": "6\n",
"3": "15\n",
"4": "0\n",
"5": "1\n",
"6": "15\n",
"7": "10\n",
"11": "0\n",
"11": "0\n",
"12": "5\n",
"14": "42\n",
"15": "6\n",
"19": "0\n",
"20": "15\n",
"21": "6\n",
"22": "4\n",
"23": "12\n",
"24": "10\n",
"24": "10\n",
"25": "42\n",
"26": "15\n",
"27": "4\n",
"31": "6\n",
"33": "3\n",
"34": "27\n",
"35": "3\n",
```

А.4 – Правильные ответы из файла correct_outputs.json

Приложения В

В.1 – страница регистрации

В.2 – страница авторизации

В.1 – страница просмотра курсов