Travaux dirigés Mécanique du solide

Exercice 1

Une barre homogène de longueur OM = L, de centre G est en mouvement dans un repère orthonormé fixe $R_0(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$. On défini deux repères R_1 et R_2 tel que :

 $R_1\left(O,\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z_1}\right)$ repère mobile tel que : $\overrightarrow{z_0}\equiv\overrightarrow{z_1}$ et $\theta=(\overrightarrow{x_0},\overrightarrow{x_1})=(\overrightarrow{y_0},\overrightarrow{y_1});$ $R_2\left(O,\overrightarrow{x_2},\overrightarrow{y_2},\overrightarrow{z_2}\right)$ repère mobile tel que : $\overrightarrow{y_1}\equiv\overrightarrow{y_2}$ et $\theta=(\overrightarrow{x_1},\overrightarrow{x_2})=(\overrightarrow{z_1},\overrightarrow{z_2});$ On prendra R_1 comme repère de projection et comme repère relatif.

Déterminer :

- 1. La vitesse de rotation instantanée $\overrightarrow{\Omega_2^0}$ du repère R_2 par rapport à R_0 ;
- 2. La vitesse $\overrightarrow{V^0(M)}$ et l'accélération $\overrightarrow{\gamma^0(M)}$ par dérivation ;
- 3. La vitesse $\overrightarrow{V^0\left(G\right)}$ et l'accélération $\overrightarrow{\gamma^0\left(G\right)}$ par composition de mouvement ;
- 4. Le moment cinétique $\overrightarrow{\mu^0(O)}$ au point O exprimé dans R_1 ;
- 5. Le moment dynamique $\overrightarrow{\delta^0(O)}$ au point O exprimé dans R_1 ;
- 6. L'énergie cinétique de la barre.

Figure 1: Figure d'étude 1