Machine Learning - 1 Coded Project

SRINIVASAN T

Table of Content:

S.NO	TITLE	PAGE
		NO.
	Part1	8
1.1	Problem Definition	8
1.2	Check Shape	8
1.3	Data Types	9
1.4	Statistical Summary	10
1.5	Univariate Analysis	11
1.5.1	Univariate Analysis – Numerical	11
1.5.2	Univariate Analysis – Categorical	13
1.6	Bivariate Analysis	16
1.7	Missing Value Check and Treatment	17
1.8	Treat missing values in CPC, CTR and CPM using the formula given	17
1.9	Outlier Treatment	18
1.10	Scaling Using Zscore	20
1.11	Hierarchical Clustering – Dendrogram using Ward link and Euclidean	21
	distance	
1.12	Hierarchical Clustering – Number of clusters	22
1.13	K-means Clustering	22
1.14	Plot the Elbow curve	23
1.15	Check Silhouette Scores	24
1.16	Figure out the appropriate number of clusters	24
1.17	Cluster Profiling	24
1.18	Clustering: Actionable Insights & Recommendations	25
	Part2	28
2.1	Problem Definition	28
2.2	Loading the Dataset	29
2.3	Checking Shape	29
2.4	Datatypes	29
2.5	Selecting 5 Variables	31
2.6	Statistical Summary	31
2.7	Univariate Analysis	32
2.8	Bivariate Analysis	34
2.9	Multivariate Analysis	35
2.10	Which state has highest gender ratio and which has the lowest?	36
2.11	Which district has the highest & lowest gender ratio?	36
2.12	Data Pre-processing	37
2.13	Check for and treat duplicates	37
2.14	Check for and treat bad data	37
2.15	Check for and treat anomalies	37
2.16	Check for and treat missing values	37
2.17	Dropping of irrelevant variables/columns	37
2.18	Check for and treat outliers	38

2.19	Zscore Scaling	39
	PCA	39
2.20	Checking the statistical significance of correlations	39
2.21	Confirm the adequacy of sample size	40
2.22	Fit and Transform PCA Model	40
2.23	Covariance Matrix	40
2.24	Extracting Eigen Vectors & Eigen Values	41
2.25	Extracting the Variability of the PC's	42
2.26	Creating a Scree Plot	42
2.27	Building PCA model with the 5 PC's	43
2.28	Extracting factor loadings	44
2.29	Identifying the actual columns wirh most variance	44
2.30	Checking the presence of correlations among the PCs	45
2.31	Identifying the actual variables	45
2.32	EDA (Categorical Fields & Principal Components)	46
2.33	Inferences	47
2.34	Linear Equation	50

List of Tables:

S.NO	TITLE	PAGE NO.
	PART 1	
1.1	Loading the Dataset	8
1.2	Statistical Summary – Numerical	10
1.3	Statistical Summary – Categorical	10
1.4	Missing Values	17
1.5	Missing Replacement with NaN	17
1.6	Missing Replacement with formula given	18
1.7	Z score Scaling	20
1.8	Hierarchical Clusters and their means	22
1.9	Inertia for 10 clusters	23
1.10	Silhouette scores for 9 clusters	24
1.11	K_Means Clusters and their means	24
	PART 2	
2.1	Loading the Dataset	29
2.2	Statistical Summary	31
2.3	State Wise Gender Ratio	36
2.4	District Wise Gender Ratio	36
2.5	Missing Values	37
2.6	Zscore Scaling	39
2.7	Covariance Matrix	40
2.8	Eigen Vectors	41
2.9	Eigen Values	41
2.10	Variability of the PC's	42
2.11	Extracted Factor Loadings	44
2.12	Identifying the actual variables	45
2.13	Adding the Identified variables with the data	46
2.14	Adding PC's to the Categorical columns	46

List of Figures:

S.NO	TITLE	PAGE NO.
	Part1	
1	Data Types	9
2	Distribution of Ad Size	11
3	Distribution of Available Impressions	11
4	Distribution of Available Impressions	11
5	Distribution of Clicks	12
6	Distribution of Revenue	12
7	Count of Inventory Type	13
8	Count of Ad Type	13
9	Count of Platform	14
10	Count of Device Type	14
11	Count of Format	15
12	Bivariate Analysis – Numerical	16
13	Outlier Treatment Before – Ad Size	18
14	Outlier Treatment Before – Available Impressions	19
15	Outlier Treatment After – Ad Size	19
16	Outlier Treatment After – Available Impressions	20
17	Dendrogram for Hierarchical Clustering	21
18	Truncated Dendrogram for Hierarchical Clustering	21
19	Elbow curve for 10 clusters in K means	23
	Part2	
2.1	Distribution of F_06	32
2.2	Distribution of F_SC	32
2.3	Distribution of F_ST	33
2.4	Distribution of F_LIT	33
2.5	Distribution of F_ILL	33
2.6	Bivariate Analysis	34
2.7	Multivariate Analysis	35
2.8	Outlier Before Scaling	38
2.9	Outlier After Scaling	38
2.10	After Outlier Treatment	39
2.11	Scree Plot	42
2.12	Most Variance in PC's	44
2.13	Correlation among PC's	45
2.14	State Wise : pc_total_male_female	47
2.15	State Wise: pc_total_male-female_marginal_agricultural_labourers	47
2.16	State Wise: pc_main_agricultural_labourers_female_population	48
2.17	State Wise: pc_female_population_cultivator_agricultural_3-6	48
2.18	State Wise : pc_total_st_male_female	49

Rubric:

Criteria	Points
Part 1: Clustering: Define the problem and perform Exploratory Data Analysis - Problem definition - Check shape, Data types, statistical summary - Univariate analysis - Bivariate analysis - Key meaningful observations on individual variables and the relationship between variables	6.5
Part 1: Clustering: Data Preprocessing - Missing value check and treatment - Outlier Treatment - z-score scaling Note: Treat missing values in CPC, CTR and CPM using the formula given.	2.5
Part 1: Clustering: Hierarchical Clustering - Construct a dendrogram using Ward linkage and Euclidean distance - Identify the optimum number of Clusters	4
Part 1: Clustering: K-means Clustering - Apply K-means Clustering - Plot the Elbow curve - Check Silhouette Scores - Figure out the appropriate number of clusters - Cluster Profiling	13
Part 1: Clustering: Actionable Insights & Recommendations - Extract meaningful insights (atleast 3) from the clusters to identify the most effective types of ads, target audiences, or marketing strategies that can be inferred from each segment Based on the clustering analysis and key insights, provide actionable recommendations (atleast 3) to Ads24x7 on how to optimize their digital marketing efforts, allocate budgets efficiently, and tailor ad content to specific audience segments.	6
Part 2: PCA: Define the problem and perform Exploratory Data Analysis - Problem Definition - Check shape, Data types, statistical summary - Perform an EDA on the data to extract useful insights Note: 1. Pick 5 variables out of the given 24 variables below for EDA: No_HH, TOT_M, TOT_F, M_06, F_06, M_SC, F_SC, M_ST, F_ST, M_LIT, F_LIT, M_ILL, F_ILL, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F, MAIN_CL_M, MAIN_CL_F, MAIN_AL_M, MAIN_AL_F, MAIN_HH_M, MAIN_HH_F, MAIN_OT_M, MAIN_OT_F 2. Example questions to answer from EDA - (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio?	6.5
Part 2: PCA: Data Preprocessing	2.5

Criteria **Points** - Check for and treat (if needed) missing values - Check for and treat (if needed) data irregularities - Scale the Data using the z-score method -Visualize the data before and after scaling and comment on the impact on outliers Part 2; PCA: PCA - Create the covariance matrix - Get eigen values and eigen vectors -Identify the optimum number of PCs - Show Scree plot - Compare PCs with Actual Columns and identify which is explaining most variance -13 Write inferences about all the PCs in terms of actual variables - Write linear equation for first PC Note: For the scope of this project, take at least 90% explained variance. **Quality of Business Report** 6

Part1

1.1 Problem definition

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

Loading Dataset:

Loading the dataset and check whether it is properly loaded using the head function.

Table 1: Loading the Dataset

The dataset is loaded properly

1.2 Check shape

The dataset has 23,066 rows and 19 columns

1.3 Data types

The datatypes can be identified using the info function.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23066 entries, 0 to 23065
Data columns (total 19 columns):
    Column
                           Non-Null Count
                                           Dtype
0
                           23066 non-null
    Timestamp
                                           object
1
    InventoryType
                           23066 non-null
                                           obiect
2
    Ad - Length
                           23066 non-null
                                           int64
3
    Ad- Width
                           23066 non-null
                                           int64
4
    Ad Size
                           23066 non-null int64
5
    Ad Type
                           23066 non-null
                                           object
6
    Platform
                           23066 non-null
                                           object
7
    Device Type
                           23066 non-null
                                           object
    Format
                           23066 non-null
                                           object
8
9
    Available_Impressions 23066 non-null
                                           int64
10 Matched Queries
                           23066 non-null
                                           int64
11
    Impressions
                           23066 non-null
                                           int64
    Clicks
12
                           23066 non-null
                                           int64
13
    Spend
                           23066 non-null float64
14 Fee
                           23066 non-null float64
15
    Revenue
                           23066 non-null float64
16 CTR
                           18330 non-null float64
17
    CPM
                           18330 non-null float64
18 CPC
                           18330 non-null float64
dtypes: float64(6), int64(7), object(6)
memory usage: 3.3+ MB
```

Figure 1: Data Types

The dataset has 1 - Date time variable, 5 - Categorical variables, 13 – Numerical variable. Except CTR, CPM & CPC variables all the other variables does not have null values.

1.4 Statistical summary

	count	mean	std	min	25%	50%	75%	max
Ad - Length	23066.0	385.16	233.65	120.00	120.00	300.00	720.00	728.00
Ad- Width	23066.0	337.90	203.09	70.00	250.00	300.00	600.00	600.00
Ad Size	23066.0	96674.47	61538.33	33600.00	72000.00	72000.00	84000.00	216000.00
Available_Impressions	23066.0	2432043.67	4742887.76	1.00	33672.25	483771.00	2527711.75	27592861.00
Matched_Queries	23066.0	1295099.14	2512969.86	1.00	18282.50	258087.50	1180700.00	14702025.00
Impressions	23066.0	1241519.52	2429399.96	1.00	7990.50	225290.00	1112428.50	14194774.00
Clicks	23066.0	10678.52	17353.41	1.00	710.00	4425.00	12793.75	143049.00
Spend	23066.0	2706.63	4067.93	0.00	85.18	1425.12	3121.40	26931.87
Fee	23066.0	0.34	0.03	0.21	0.33	0.35	0.35	0.35
Revenue	23066.0	1924.25	3105.24	0.00	55.37	926.34	2091.34	21276.18
CTR	18330.0	0.07	0.08	0.00	0.00	0.08	0.13	1.00
СРМ	18330.0	7.67	6.48	0.00	1.71	7.66	12.51	81.56
CPC	18330.0	0.35	0.34	0.00	0.09	0.16	0.57	7.26

Table 2: Statistical Summary – Numerical

- Ad Size has 25% & 50% are same
- Available Impressions , Matched Queries, Impressions & Clicks have min value as 1
- Available Impressions , Matched Queries, Impressions has higher standard deviation values
- All the numerical variables are at the different scale of measures

	count	unique	top	freq
Timestamp	23066	2018	2020-11-13-22	13
InventoryType	23066	7	Format4	7165
Ad Type	23066	14	Inter224	1658
Platform	23066	3	Video	9873
Device Type	23066	2	Mobile	14806
Format	23066	2	Video	11552

Table 3: Statistical Summary – Categorical

- Ad Type has 14 types which the highest with Inter224 types as the highest no. of ad types
- There are only 3 platforms
- Mobile type is the highest usage among devices

1.5 Univariate Analysis

1.5.1 Univariate Analysis – Numerical

Figure 2: Distribution of Ad Size

Figure 3: Distribution of Available Impressions

Figure 4: Distribution of Available Impressions

Figure 5: Distribution of Clicks

Figure 6: Distribution of Revenue

- Ad Size: The distribution is right skewed. Does not have UL since the difference between the 75% and the max value is huge
- Available Impressions: Right Skewed as mean>median. Having too many outliers
- Clicks: The distribution is right skewed. The Std is high suggests that the clicks of the ads vary notably around the mean.
- Spend: 75% of the spend was around 3K but the max is high as 27K
- Revenue: There are Ads with 0 revenue. The distribution is left skewed as the mean<median

1.5.2 Univariate Analysis – Categorical

Figure 7: Count of Inventory Type

Figure 8: Count of Ad Type

Figure 9: Count of Platform

Figure 10: Count of Device Type

Figure 11: Count of Format

- Inventory Type: Format 4 is having the higher count while format 7 with the lowest count
- Ad Type: Almost all the types are same in count
- Platform: Video platform contributes to the highest count
- Device Type: Obviously mobile device has higher contribution

1.6 Bivariate analysis

Figure 12: Bivariate Analysis – Numerical

Available_Impression variable has positive correlation with Revenue, Spend, Matched Queries, Impressions variables CTR is having positive correlation with CPM Fee variable is having a negative correlation with Spend & Revenue variables

1.7 Missing Value Treatment

Timestamp	0
InventoryType	0
Ad - Length	0
Ad- Width	0
Ad Size	0
Ad Type	0
Platform	0
Device Type	0
Format	0
Available_Impressions	0
Matched_Queries	0
Impressions	0
Clicks	0
Spend	0
Fee	0
Revenue	0
CTR	4736
CPM	4736
CPC	4736
dtype: int64	

Table 4: Missing Values

CTR, CPM & CPC have missing values

1.8 Treat missing values in CPC, CTR and CPM using the formula given

Missing values are replaced with NaN

i - th	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС
20	300	216000	Inter220	Web	Mobile	Video	1	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
20	300	216000	Inter224	Web	Desktop	Video	3	2	2	1	0.04	0.35	0.0260	NaN	NaN	NaN
20	300	216000	Inter218	App	Mobile	Video	2	1	1	1	0.05	0.35	0.0325	NaN	NaN	NaN
20	600	72000	inter230	Video	Mobile	Video	7	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
20	300	216000	Inter221	Арр	Mobile	Video	2	2	2	1	0.09	0.35	0.0585	NaN	NaN	NaN

Table 5: Missing Replacement with NaN

Filling the CTR columns missing value using the formula CTR = (Clicks/Impressions)*100 Filling the CPM columns missing value using the formula CPM = (Spend/Impressions)*1000

Filling the CPC columns missing value using the formula CPC = Spend/Clicks

Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС
300	216000	Inter220	Web	Mobile	Video	1	1	1	1	0.07	0.35	0.0455	100.0	70.0	0.07
300	216000	Inter224	Web	Desktop	Video	3	2	2	1	0.04	0.35	0.0260	50.0	20.0	0.04
300	216000	Inter218	App	Mobile	Video	2	1	1	1	0.05	0.35	0.0325	100.0	50.0	0.05
600	72000	inter230	Video	Mobile	Video	7	1	1	1	0.07	0.35	0.0455	100.0	70.0	0.07
300	216000	Inter221	Арр	Mobile	Video	2	2	2	1	0.09	0.35	0.0585	50.0	45.0	0.09

Table 6: Missing Replacement with formula given

1.9 Outlier Treatment

Before:

Figure 13: Outlier Treatment Before – Ad Size

Figure 14: Outlier Treatment Before – Available Impressions

After:

Figure 15: Outlier Treatment After – Ad Size

Figure 16: Outlier Treatment After – Available Impressions

Note: Only relevant numerical variables are used for the outlier treatment and scaling

1.10 Scaling using Zscore

	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС
0	-0.102518	-0.755333	-0.778949	-0.768478	-0.867488	-0.89317	0.535724	-0.880093	-0.891201	-1.194562	-1.04114
1	-0.102518	-0.755345	-0.778988	-0.768516	-0.867488	-0.89317	0.535724	-0.880093	-0.888615	-1.194562	-1.04114
2	-0.102518	-0.754900	-0.778919	-0.768445	-0.867488	-0.89317	0.535724	-0.880093	-0.893142	-1.194562	-1.04114
3	-0.102518	-0.755040	-0.778781	-0.768302	-0.867488	-0.89317	0.535724	-0.880093	-0.898315	-1.194562	-1.04114
4	-0.102518	-0.755610	-0.779030	-0.768560	-0.867488	-0.89317	0.535724	-0.880093	-0.884734	-1.194562	-1.04114

Table 7: Z score Scaling

1.11 Hierarchical Clustering – Dendrogram using Ward link and Euclidean distance

Figure 17: Dendrogram for Hierarchical Clustering

Figure 18: Truncated Dendrogram for Hierarchical Clustering

1.12 Hierarchical Clustering – Number of clusters

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС	h_freq
h_clusters														
1	386.08	285.04	75153.05	7947289.75	4336783.80	4182648.26	24635.15	8196.52	0.29	6009.55	0.54	4.67	0.61	5530
2	430.18	146.78	54068.02	1818648.70	860143.97	820524.22	3337.57	1492.46	0.35	970.70	0.06	1.85	0.56	5850
3	362.19	458.58	128187.49	129206.91	73463.99	60480.72	7748.89	716.53	0.35	468.37	4.87	13.43	0.10	11686

Table 8: Hierarchical Clusters and their means

1.13 K-means Clustering

Fixing the no. of clusters as 2 and finding the label & inertia

<u>Label:</u>

array([0, 0, 0, ..., 0, 0, 0], dtype=int32)

<u>Inertia:</u>

142414.4718775063

1.14 Plot the Elbow curve

Finding the inertia for a range for 10 clusters

```
[253726.000000000067,
142414.39715260785,
104382.57711174723,
74718.29260909933,
59611.25245495574,
52041.85047517175,
44828.35714042672,
39347.87984288174,
36409.57337157424,
32970.992896818825]
```

Table 9: Inertia for 10 clusters

Figure 19: Elbow curve for 10 clusters in K means

1.15 Check Silhouette Scores

[0.45980810375877795, 0.36921439403525447, 0.42467380036745245, 0.4163712389167128, 0.4008366057512478, 0.3997741934343787, 0.41005578380881896, 0.4269225273453385, 0.411894803403356]

Table 10: Silhouette scores for 9 clusters

1.16 Figure out the appropriate number of clusters

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС	k_freq
k_clusters														
0	425.14	149.82	54588.81	1872875.16	894682.56	855411.68	3371.33	1553.04	0.35	1012.08	0.06	1.84	0.56	6103
1	364.74	457.79	128929.32	117382.32	65125.17	53392.02	6731.76	609.04	0.35	395.94	4.96	13.40	0.10	11290
2	466.27	199.01	75182.01	10416675.83	5641383.47	5462313.17	11274.42	8668.88	0.29	6391.03	0.03	1.57	0.76	4037
3	176.88	554.83	84117.36	788505.69	551944.35	465866.51	63703.59	6772.91	0.29	4851.70	2.33	15.20	0.11	1636

Table 11: K_Means Clusters and their means

1.18 Clustering: Actionable Insights & Recommendations

Format	Device Ty	/pe h_c	lusters	
Display	/ Desktop	3		2076
		2		1020
		1		1018
	Mobile	3		3748
		2		1871
		1		1781
Video	Desktop	3		2118
		2		1044
		1		984
	Mobile	3		3744
		2		1915
		1		1747
Name: h	_clusters,	dtype:	int64	

Device Type	Platform	h_clusters	
Desktop	Video	3	2501
		2	1255
		1	1191
	Web	3	1693
		1	811
		2	809
Mobile	App	3	2494
		2	1265
		1	1183
	Video	3	2487
		2	1242
		1	1197
	Web	3	2511
		2	1279
		1	1148
Name: h_clus	ters, dtyp	e: int64	

Hierarchical Clustering:

Cluster/Avg.	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC
Cluster 1	High	High	High	Low	High	Medium	Medium	High
Cluster 2	Medium	Low	Medium	High	Medium	Low	Low	Medium
Cluster 3	Low	Medium	Low	High	Low	High	High	Low

Cluster 1: 'High Impressions & High Revenue' **Cluster 2:** 'Moderate Impressions & Low CPM '

Cluster 3: 'Low Impressions & High CTR'

Insights:

Cluster 1:

- Having high average impressions, clicks and revenue
- Mobile impressions of the static post is higher than desktop
- The cost per click is higher

Cluster 2:

- Having moderate Impressions & Low Clicks
- The CPM is low which will increase the ROI of the ads
- The mobile device contribution is higher

Cluster 3:

- Having Low spend & High CTR
- Higher mobile device usage across different formats od posts

• CPC is low with low spend

Recommendations

Cluster 1:

- ROI is 73% Higher among other clusters
- For higher sales(shop/order actions) it can be effective choice
- Focusing more on the mobile device type

Cluster 2:

- For reaching higher no. of audiences with lower customer reach cost
- For best ROI's these ads can be used
- These ads can be used to increase the reach with lower cost

Cluster 3:

- Increasing the spend can increase the CTR
- Objective of profile visits can be done using this types of ads
- CPC is low with low spend

K-Means Clustering:

k_clusters	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС
Cluster 1	2	4	3	1	3	3	3	2
Cluster 2	4	3	4	1	4	1	2	4
Cluster 3	1	2	1	2	1	4	4	1
Cluster 4	3	1	2	2	2	2	1	3

1,2,3,4 – Rank wise values

Cluster 1: 'Moderate CPM & Average Spend'

Cluster 2: 'High CTR & High CPC'

Cluster 3: 'High Impressions & High Revenue'

Cluster 4: 'High Clicks & Low CPM'

Insights:

Cluster 1:

- Having average impressions with moderate revenue
- Since clicks are low with average impression will increase the CTR
- Moderate spend with average impressions will make the CPM high

Cluster 2:

- Having low Impressions & Low spend
- But the click through rate is higher
- With low spend and moderate clicks have high CPC

Cluster 3:

- High impressions and high revenue
- Average clicks with low CTR
- Higher spend with low CPM

Cluster 4:

- Higher clicks with moderate impressions
- Average revenue with moderate spend
- CPM is higher due to moderate impressions

Part2

2.1 Problem Definition

PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/Uts – District Level), Scheduled tribes – 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population, Scheduled Castes, Scheduled Tribes Population, Population in the age group 0-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also Non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and rural-urban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 sub-districts, 7,935 Towns and 6,40,867 Villages. The data collected has so many variables thus making it difficult to find useful details without using Data Science Techniques. You are tasked to perform detailed EDA and identify Optimum Principal Components that explains the most variance in data. Use Sklearn only.

2.2 Data loading

Loading the dataset and check whether it is properly loaded using the head function.

Table 2.1: Loading the Dataset

2.3 Checking Shape

The dataset has 640 rows and 61 columns

2.4 Data Types

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 640 entries, 0 to 639
Data columns (total 61 columns):

#	Column	Non-Null Count	Dtype
0	State Code	640 non-null	 int64
1	Dist.Code	640 non-null	int64
2	State	640 non-null	object
3	Area Name	640 non-null	object
4	No HH	640 non-null	int64
5	TOT M	640 non-null	int64
6	TOT F	640 non-null	int64
7	M_0 6	640 non-null	int64
8	F_06	640 non-null	int64
9	M_SC	640 non-null	int64
10	F_SC	640 non-null	int64
11	M_ST	640 non-null	int64
12	F_ST	640 non-null	int64
13	M LIT	640 non-null	int64

```
14 F LIT
                    640 non-null
                                    int64
 15 M_ILL
                     640 non-null
                                     int64
                                    int64
 16 F_ILL
                    640 non-null
 17 TOT WORK M
                   640 non-null
                                    int64
                  640 non-null
640 non-null
640 non-null
640 non-null
640 non-null
 18 TOT WORK F
                                    int64
 19 MAINWORK M
                                    int64
20 MAINWORK_F
21 MAIN_CL_M
22 MAIN_CL_F
23 MAIN_AL_M
24 MAIN_AL_F
                                    int64
                                    int64
                                    int64
                   640 non-null
                                    int64
                                    int64
                   640 non-null
 25 MAIN HH M
                   640 non-null int64
                                    int64
 26 MAIN HH F
                   640 non-null
 27 MAIN OT M
                   640 non-null
                                    int64
 28 MAIN OT F
                   640 non-null
 29 MARGWORK M
                   640 non-null
                                    int64
                   640 non-null
 30 MARGWORK F
                                    int64
 31 MARG CL M
                   640 non-null
                                    int64
                                    int64
 32 MARG_CL_F
                   640 non-null
 33 MARG AL M
                   640 non-null int64
 34 MARG AL F
                   640 non-null int64
 35 MARG HH M
                   640 non-null int64
36 MARG_HH_F
                   640 non-null int64
 37 MARG OT_M
                                    int64
                   640 non-null
38 MARG_OT_F 640 non-null
                                    int64
39 MARGWORK_3_6_M 640 non-null
40 MARGWORK_3_6_F 640 non-null
                                  int64
                                    int64
 41 MARG CL 3 6 M
                     640 non-null
                                    int64
 42 MARG CL 3 6 F
                     640 non-null
                                    int64
 43 MARG AL 3 6 M
                     640 non-null
                                    int64
 44 MARG AL 3 6 F 640 non-null
                                    int64
 45 MARG HH 3 6 M
                     640 non-null
                                    int64
 46 MARG HH 3 6 F 640 non-null
                                    int64
47 MARG_OT_3_6_M 640 non-null
48 MARG_OT_3_6_F 640 non-null
49 MARGWORK_0_3_M 640 non-null
                                    int64
                                    int64
                                    int64
 50 MARGWORK 0 3 F 640 non-null int64
 51 MARG_CL_0_3_M 640 non-null int64
 52 MARG_CL_0_3_F
                     640 non-null
                                    int64
 53 MARG AL 0 3 M
                     640 non-null
                                    int64
                                    int64
 54 MARG AL 0 3 F 640 non-null
 55 MARG HH 0 3 M 640 non-null
                                    int64
 56 MARG HH 0 3 F 640 non-null
                                    int64
57 MARG_OT_0_3_M 640 non-null
                                    int64
                                    int64
 58 MARG OT 0 3 F 640 non-null
59 NON_WORK_M 640 non-null 60 NON_WORK_F 640 non-null
                                    int64
                                    int64
dtypes: int64(59), object(2)
memory usage: 305.1+ KB
```

All the variables are float datatype and does not have null values

2.5 Selecting only 5 variables

- 1. F_06 Population in the age group 0-6 Female
- 2. F_SC Scheduled Castes population Female
- 3. F_ST Scheduled Tribes population Female
- 4. F_LIT Literates population Female
- 5. F_ILL Illiterate Female

2.6 Statistical Summary

	count	mean	std	min	25%	50%	75%	max
F_06	640.0	11942.300000	11326.294567	56.0	4672.25	8663.0	15902.25	95129.0
F_SC	640.0	20778.392188	21727.887713	0.0	5603.25	13709.0	29180.00	156429.0
F_ST	640.0	10155.640625	15875.701488	0.0	429.50	3834.5	12480.25	130119.0
F_LIT	640.0	66359.565625	75037.860207	371.0	20932.00	43796.5	84799.75	571140.0
F_ILL	640.0	56012.518750	47116.693769	327.0	22367.00	42386.0	78471.00	254160.0

Table 2.2: Statistical Summary

- Each district have at least 56 female child of age 0-6
- Few states/districts does not have scheduled caste and scheduled tribe female population
- On an average 59K female population are literate in each district/state
- Each district/state have at least 327 female population who are illiterate

2.7 Univariate Analysis

Figure 2.1: Distribution of F_06

Figure 2.2: Distribution of F_SC

Figure 2.3: Distribution of F_ST

Figure 2.4: Distribution of F_LIT

Figure 2.5: Distribution of F_ILL

- F_06 is right skewed and has outliers
- F_SC is right skewed and has outliers. The distance between 75% and max value is higher
- F_ST is right skewed and has outliers. The min value is 0 and the max value goes till 1.3 L
- F_LIT is right skewed and has outliers.
- F_ILL is right skewed and has outliers.

2.8 Bivariate Analysis

Figure 2.6: Bivariate Analysis

- F_06 with other variables except F_ST has positive correlation
- F_SC has positive correlation with F_ILL, F_LIT & F_06.
- F_ST has less F_LIT rate among the female population
- F_LIT has positive correlation with F_ILL

2.9 Multivariate Analysis

Figure 2.7: Multivariate Analysis

- F_06 has a strong correlation with F_ILL, F_LIT & F_SC
- F_SC has a strong correlation with F_ILL, F_LIT & F_06
- F_ST does not have strong correlation with other 4 variables

2.10 Which state has highest gender ratio and which has the lowest?

State	
Lakshadweep	0.868061
Haryana	0.779129
NCT of Delhi	0.775077
Uttar Pradesh	0.752167
Meghalaya	0.752160
Bihar	0.744596
Punjab	0.744502
Jammu & Kashmir	0.735154
Daman & Diu	0.703143
Chandigarh	0.700037
Rajasthan	0.695286
Assam	0.686561
Jharkhand	0.681804
Gujarat	0.674844
Andaman & Nicobar Island	0.652679
West Bengal	0.650345
Dadara & Nagar Havelli	0.644631
Himachal Pradesh	0.642741
Sikkim	0.642227
Manipur	0.641179
Madhya Pradesh	0.639695
Karnataka	0.637802
Uttarakhand	0.630865
Tripura	0.625881
Mizoram	0.623634
Goa	0.621648
Kerala	0.601238
Puducherry	0.591111
Maharashtra	0.587812
Nagaland	0.583682
0disha	0.575500
Arunachal Pradesh	0.574365
Chhattisgarh	0.549200
Tamil Nadu	0.547921
Andhra Pradesh	0.537024
dtype: float64	

Table 2.3: State Wise Gender Ratio

Highest Gender Ratio – State: Lakshadweep Lowest Gender Ratio – State: Andhra Pradesh

2.11 Which district has the highest & lowest gender ratio?

Area Name		
Lakshadweep	0.	868061
Badgam	0.	847762
Mahamaya Nagar	0.	847313
Dhaulpur	0.	846911
Baghpat	0.	844003
- 1		
Baudh	0.	451455
West Godavari	0.	450076
Virudhunagar	0.	449352
Koraput	0.	440769
Krishna	0.	437972
Length: 635, dtype	:	float64

Table 2.4: District Wise Gender Ratio

Highest Gender Ratio – District: Lakshadweep

Lowest Gender Ratio – District: Krishna

2.12 Data Pre-processing

Checking the Statistical Summary and Datatypes for the entire dataset

2.13 Checking for and treat duplicates

The no. of duplicated rows are ${\tt 0}$

2.14 Checking for and treat bad data

No bad data found

2.15 Checking for and treat anomalies

No anomalies found

2.16 Checking for and treat missing values

State Code	0
Dist.Code	0
State	0
Area Name	0
No_HH	0
MARG_HH_0_3_F	0
MARG_0T_0_3_M	0
MARG_0T_0_3_F	0
NON_WORK_M	0
NON_WORK_F	0
Length: 61, dt	ype: int64

Table 2.5: Missing Values

2.17 Dropping of irrelevant variables/columns

Dropping the variables

State Code, Dist.Code, State, Area Name

2.18 Check for and treat outliers

Before Scaling

Figure 2.8: Outlier Before Scaling

Figure 2.9: Outlier After Scaling

There are very few outliers after scaling the data comparatively before scaling

Figure 2.10: After Outlier Treatment

Outliers are capped to their Lower & Upper Limit

2.19 Zscore Scaling

	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT		MARG_CL_0_3_M	MARG_CL_0_3_F	MARG
0	-1.038986	-0.874837	-0.937027	-0.624685	-0.561282	-1.080201	-1.079963	-0.510440	-0.574198	-0.939617		-0.093587	-0.860882	
1	-1.076896	-0.938023	-1.009723	-0.773932	-0.835657	-1.079873	-1.079635	-0.771833	-0.782092	-1.005083		-0.719169	-0.877096	
2	-1.121858	-1.154665	-1.141539	-1.141642	-1.138104	-1.080201	-1.079635	0.122588	0.137599	-1.141561		-1.130551	-1.128423	
3	-1.201599	-1.217171	-1.214930	-1.197772	-1.176091	-1.080447	-1.079963	-0.399531	-0.437333	-1.203009		-1.050477	-1.100286	
4	-0.938495	-0.921309	-0.935018	-0.700931	-0.740523	-1.078807	-1.078160	0.432534	0.249489	-0.942767		-0.369844	-0.298617	
5 n	5 rows × 57 columns													

Table 2.6: Zscore Scaling

PCA

2.20 Checking the statistical significance of correlations

H0: Correlations are not significant H1: There are significant correlations

Reject H0 if p-value < 0.05

The p value is 0.0

Since the p value is less than we reject the H0 and conclude there are significant corelations between the independent variables. So we can proceed with PCA

2.21 Confirm the adequacy of sample size

Condition: Above 0.7 is acceptable, below 0.5 is not acceptable

The KMO value is 0.9361896166652944

2.22 Fit and Transform PCA Model

Fit and transform the scaled data using the PCA from SKlearn library

2.23 Covariance Matrix

	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	 MARG_CL_0_3_M	MARG_CL
No_HH	1.001565	0.912699	0.973013	0.812856	0.809883	0.806713	0.858562	0.116300	0.122722	0.931350	 0.604943	0.
TOT_M	0.912699	1.001565	0.980122	0.965044	0.960153	0.877158	0.861703	0.023439	0.013301	0.989312	 0.739665	0.
TOT_F	0.973013	0.980122	1.001565	0.914418	0.911167	0.857664	0.876435	0.076189	0.074248	0.983281	 0.697119	0.
M_06	0.812856	0.965044	0.914418	1.001565	0.999032	0.833344	0.796794	-0.006081	-0.021166	0.924761	 0.799076	0.
F_06	0.809883	0.960153	0.911167	0.999032	1.001565	0.823888	0.790043	0.006803	-0.007896	0.915929	 0.805050	0.
M_SC	0.806713	0.877158	0.857664	0.833344	0.823888	1.001565	0.984688	-0.096913	-0.099226	0.868007	 0.647698	0.
F_SC	0.858562	0.861703	0.876435	0.796794	0.790043	0.984688	1.001565	-0.052859	-0.048597	0.862923	 0.620049	0.
M_ST	0.116300	0.023439	0.076189	-0.006081	0.006803	-0.096913	-0.052859	1.001565	0.994481	0.026290	 0.094899	0.
F_ST	0.122722	0.013301	0.074248	-0.021166	-0.007896	-0.099226	-0.048597	0.994481	1.001565	0.017617	 0.083930	0.
M_LIT	0.931350	0.989312	0.983281	0.924761	0.915929	0.868007	0.862923	0.026290	0.017617	1.001565	 0.694535	0.
F_LIT	0.940747	0.937579	0.963424	0.844453	0.835104	0.805082	0.823245	0.047388	0.043933	0.974173	 0.615830	0.
M_ILL	0.782405	0.933452	0.880243	0.967971	0.972547	0.822290	0.784357	0.023378	0.010249	0.869070	 0.781156	0.
F_ILL	0.896107	0.917169	0.928913	0.896778	0.900544	0.842658	0.858401	0.112222	0.112487	0.877996	 0.728973	0.
TOT_WORK_M	0.938328	0.977458	0.974326	0.898655	0.893232	0.868242	0.866029	0.057298	0.049061	0.982191	 0.655936	0.
TOT_WORK_F	0.948620	0.825119	0.904224	0.732839	0.734787	0.733823	0.803562	0.250209	0.257052	0.842559	 0.566210	0.
MAINWORK_M	0.926588	0.936031	0.943223	0.833607	0.825308	0.838925	0.842746	0.047749	0.040740	0.954067	 0.531633	0.
MAINWORK_F	0.921397	0.772433	0.858357	0.650808	0.651110	0.690579	0.764551	0.217172	0.224043	0.805023	 0.397956	0.
MAIN_CL_M	0.522335	0.629559	0.586212	0.649146	0.650964	0.645914	0.616419	0.073674	0.055829	0.585503	 0.511180	0.
MAIN_CL_F	0.457357	0.413760	0.452244	0.430757	0.437133	0.398906	0.435648	0.245013	0.242003	0.396327	 0.373515	0.
MAIN_AL_M	0.742109	0.684407	0.718934	0.646443	0.655998	0.666125	0.707189	0.138552	0.145525	0.651223	 0.437050	0.
MAIN_AL_F	0.680048	0.489614	0.588526	0.415484	0.424655	0.484640	0.578741	0.261592	0.277316	0.495143	 0.215343	0.
MAIN_HH_M	0.772796	0.881542	0.844553	0.833838	0.826709	0.842285	0.812071	-0.067456	-0.075597	0.873604	 0.619146	0.
MAIN_HH_F	0.811980	0.776562	0.807333	0.689734	0.691654	0.727225	0.755018	0.041680	0.043034	0.782405	 0.506555	0.
MAIN_OT_M	0.850983	0.844854	0.857130	0.720698	0.704311	0.737664	0.740948	0.016286	0.008891	0.890509	 0.433279	0.

Table 2.7:Covariance Matrix

2.24 Extracting Eigen Vectors & Eigen Values

Eigen Vectors

```
array([[ 0.15,  0.16,  0.16,  ...,  0.14,  0.15,  0.14],  [-0.12, -0.08, -0.09, ...,  0.04, -0.05, -0.04],  [ 0.1 , -0.04,  0.03, ..., -0.1 , -0.13, -0.03],  ...,  [ 0. , -0.01,  0.02, ..., -0.01,  0.06, -0.01],  [ 0. ,  0.05,  0. , ...,  0.01, -0.08, -0. ],  [-0. , -0. ,  0.01, ...,  0. ,  0.01,  0. ]])
```

Table 2.8: Eigen Vectors

Eigen Values

```
array([3.56488638e+01, 7.64357559e+00, 3.76919551e+00, 2.77722349e+00, 1.90694892e+00, 1.15490310e+00, 9.87726707e-01, 4.64629906e-01, 3.96708513e-01, 3.22346888e-01, 2.73207369e-01, 2.35647574e-01, 1.81401107e-01, 1.69243770e-01, 1.38592325e-01, 1.31505852e-01, 1.03809666e-01, 9.55333831e-02, 8.58580407e-02, 8.09138742e-02, 6.60179067e-02, 6.30797999e-02, 4.82756124e-02, 4.59506197e-02, 4.37747566e-02, 3.19339710e-02, 2.86194563e-02, 2.75481445e-02, 2.34340044e-02, 2.20296816e-02, 1.87487040e-02, 1.59004895e-02, 1.39957919e-02, 1.18916465e-02, 1.11133495e-02, 9.07842645e-03, 7.25127869e-03, 6.27213692e-03, 4.95541908e-03, 4.60667097e-03, 3.45902033e-03, 2.18408510e-03, 2.13514664e-03, 1.92111328e-03, 1.43840980e-03, 1.09968912e-03, 9.65752052e-04, 8.62630267e-04, 6.51634478e-04, 5.76658846e-04, 4.35790607e-04, 3.70037468e-04, 3.06660171e-04, 2.07854170e-04, 1.38286484e-04, 8.97034441e-05, 4.61745385e-05])
```

Table 2.9: Eigen Values

2.25 Extracting the Variability of the PC's

Check the explained variance for each PC

Explained variance = (eigen value of each PC)/(sum of eigen values of all PCs)

```
array([6.24441446e-01, 1.33888289e-01, 6.60229147e-02, 4.86470891e-02, 3.34029704e-02, 2.02297994e-02, 1.73014629e-02, 8.13866529e-03, 6.94892379e-03, 5.64637229e-03, 4.78562250e-03, 4.12770833e-03, 3.17750294e-03, 2.96454958e-03, 2.42764517e-03, 2.30351534e-03, 1.81837655e-03, 1.67340548e-03, 1.50392785e-03, 1.41732362e-03, 1.15639919e-03, 1.10493400e-03, 8.45617224e-04, 8.04891611e-04, 7.66778221e-04, 5.59369722e-04, 5.01311201e-04, 4.82545623e-04, 4.10480504e-04, 3.85881758e-04, 3.28410688e-04, 2.78520087e-04, 2.45156553e-04, 2.08299401e-04, 1.94666401e-04, 1.59021779e-04, 1.27016642e-04, 1.09865556e-04, 8.68013375e-05, 8.06925096e-05, 6.05897475e-05, 3.82574118e-05, 3.74001838e-05, 3.36510796e-05, 2.51958296e-05, 1.92626466e-05, 1.69165450e-05, 1.51102177e-05, 1.14143210e-05, 1.01010143e-05, 7.63350323e-06, 6.48174183e-06, 5.37159674e-06, 3.64086663e-06, 2.42228792e-06, 1.57128566e-06, 8.08813873e-07])
```

Table 2.10: Variability of the PC's

2.26 Creating a Scree Plot

Figure 2.11: Scree Plot

2.27 Building PCA model with the 5 PC's

```
array([[ 0.14922158, 0.15916917,
                                                                                                                 0.15820921, 0.15634043,
                              0.14335015, 0.14353705,
                                                                                                                  0.01884873, 0.01787797,
                                                                                                                                                                                                       0.15515239,
                                                                                                                  0.15828347, 0.15407627,
                             0.14544984,
                                                                       0.1545511 .
                                                                                                                                                                                                       0.14252995,
                             0.14193201, 0.12573163, 0.11169244, 0.08303496,
                                                                                                                                                                                                       0.11929067,
                              0.09008881, 0.14184969,
                                                                                                                 0.13388011,
                                                                                                                                                          0.1227618 .
                                                                                                                                                                                                       0.1168656 ,
                                                                                                                                                                                                       0.1272781
                             0.15665637, 0.14869489, 0.08816344, 0.06516026,
                                                                     0.14536607,
                             0.11588826.
                                                                                                                0.14230182,
                                                                                                                                                          0.15087675,
                                                                                                                                                                                                       0.14801846.
                             0.15790761, 0.15583101, 0.15764021, 0.1495015,
                                                                                                                                                                                                       0.0947852 .
                             0.06715842, 0.12818439, 0.11395923,
                                                                                                                                                         0.14510769, 0.14102942,
                             0.15092232, 0.14753416, 0.14298675, 0.13378373, 0.06296394,
                             0.05674058, 0.11910165, 0.11304417, 0.14213963, 0.14136961,
                             0.14762899, 0.14210263],
                      [-0.11548673, -0.08023879, -0.09371751, -0.02034061, -0.01431023, -0.07966701, -0.08709832, 0.06910144, 0.06731586, -0.10598636, -0.13323356, -0.0945956, -0.02179345, -0.12091195, -0.07600253, -0.16669997, -0.14224991, 0.04255228, 0.09589258, -0.05334228, -0.07246688, -0.10183528, -0.11325661, -0.2036023, -0.20589888, 0.07903864, 0.10881279, 0.2715224, 0.27539755, 0.15657864, 0.13504767
                         0.13504767, 0.04097368, 0.00668481, -0.07344039, -0.08836101, -0.04404402, -0.09238317, 0.06620762, 0.08965133, 0.26126801,
                          0.26669101, 0.14983097, 0.12064763, 0.03676265, -0.00368515, -0.0777393, -0.10114106, 0.13683939, 0.16641612, 0.28188148, 0.28754091, 0.18234077, 0.17711216, 0.05292484, 0.03510934,
                          -0.04912234, -0.03984815],
                      -0.0491234, -0.0394613, 0.0289595, -0.07441918, -0.06822314, -0.03761902, 0.02134973, 0.32382724, 0.33870545, -0.03210704, -0.00513336, -0.04705352, 0.07934454, -0.0011159, 0.19412998, 0.01982148, 0.20997642, 0.03313125, 0.1888222, 0.22583087, 0.35656643, -0.10220234, 0.02161302, -0.02814398, 0.06903375, -0.06868497, 0.10495656, -0.10474484, -0.03632536, 0.0704345, 0.256000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, -0.03632536, 0.0704345, 0.266000651, 0.10474684, 0.03632536, 0.0704345, 0.266000651, 0.10474684, 0.03632536, 0.0704345, 0.266000651, 0.10474684, 0.03632536, 0.0704345, 0.266000651, 0.10474684, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.266000651, 0.1047484, 0.03632536, 0.0704345, 0.066000651, 0.1047484, 0.066000651, 0.1047484, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.066000651, 0.0660
                            0.25998651, -0.14434657, -0.09383805, -0.13141498, -0.05388345,
                          -0.06687743, -0.05871826, -0.06017243, 0.1257919, -0.09655088,
                          -0.01825633, 0.07819427, 0.28323496, -0.14251113, -0.08935617, -0.13068659, -0.05848926, -0.10356452, 0.03342285, -0.1202934, -0.08809749, 0.02617609, 0.16477413, -0.14441938, -0.10217491,
                           -0.12667281, -0.02854464],
                      [ 0.07681409, 0.05297633, 0.07002217, 0.02851986, 0.01639807, 0.01021041, 0.01624416, 0.09114279, 0.07955449, 0.08918669,
                         0.01021041, 0.01624416, 0.09114279, 0.07955449, 0.08918669, 0.12541201, -0.03466478, -0.01057813, 0.06904579, 0.11105656, 0.10018791, 0.13301329, 0.07885146, 0.2650219, -0.12137878, -0.02098921, -0.02196919, -0.04543644, 0.14702469, 0.15591746, -0.07857186, 0.01578813, 0.15710396, 0.28502411, -0.25059413, -0.15379789, -0.16753968, -0.15146925, 0.02119534, 0.05996115, 0.03931895, 0.04613025, -0.09131505, 0.01886534, 0.13159069, 0.29284517, -0.2503371, -0.14304544, -0.16600189, -0.14259884, 0.01988712. 0.0600874, -0.01822291, 0.0059541, 0.20894141,
                      0.01988712, 0.0600874, -0.01822291, 0.0059541, 0.20894141, 0.2404994, -0.24041564, -0.18940781, -0.16755357, -0.16901995, 0.02403566, 0.05740164], [-0.01209003, -0.04234376, -0.02292653, -0.08033939, -0.07832648,
                         -0.16789316, -0.15809156, 0.41841183, 0.4159652, -0.01403251, 0.02908422, -0.10407302, -0.11033167, -0.02310352, -0.01893052, -0.04322541, -0.054674 , -0.30337639, -0.25792534, -0.25313081, -0.19921997, -0.06081182, -0.0230627 , 0.06990677, 0.10677437,
                         0.06581161, 0.07762414, -0.01800453, -0.05515214, -0.04720013, -0.01264328, 0.00557458, 0.04361632, 0.1451087, 0.19075649, -0.0598864, -0.02247554, 0.05907845, 0.06434924, -0.01388688, -0.06101878, -0.05866475, -0.02538622, 0.00331493, 0.04167758,
                          0.13279387, 0.17059608, 0.0942929, 0.11235112, -0.01807012, -0.03629271, 0.01698094, 0.04753801, 0.01418678, 0.04750424,
                            0.19178951, 0.2497654411)
```

2.28 Extracting factor loadings

Table 2.11: Extracted Factor Loadings

2.29 Identifying the actual columns wirh most variance

Figure 2.12: Most Variance in PC's

2.30 Checking the presence of correlations among the PCs

Figure 2.13: Correlation among PC's

2.31 Identifying the actual variables

Name	Description	PC	Name
TOT_M	Total population Male	PC1	Total Population Male & Female
TOT_F	Total population Female	PC1	rotal Population Male & Peniale
M_ST	Scheduled Tribes population Male	PC5	Total Population Male & Female ST
F_ST	Scheduled Tribes population Female	PC5	Total Population Male & Pentale 31
MAIN_AL_F	Main Agricultural Labourers Population Female	PC3	Main Agricultural Labourers Population Female
MARG_CL_F	CL_F Marginal Cultivator Population Female		Female Population - Cultivator & Agricultural (3-6)
MARG_AL_3_6_F	Marginal Agriculture Labourers Population 3-6 Female	PC4	remaie ropulation - Cultivator & Agricultural (5-6)
MARG_AL_0_3_M	Marginal Agriculture Labourers Population 0-3 Male	PC2	Total Population Male & Female of Marginla Agricultural Labourers
MARG_AL_0_3_F	Marginal Agriculture Labourers Population 0-3 Female	PC2	rotal Population Male & Pemale of Marginia Agricultural Cabourers

Table 2.12: Identifying the actual variables

	pc_total_male_female	pc_total_male- female_marginal_agricultural_labourers	pc_main_agricultural_labourers_female_population	pc_female_population_cultivator_agricultural_3-6
0	-5.528161	0.430378	-1.473827	-1.278049
1	-5.492016	-0.106110	-2.015641	-1.750168
2	-7.474643	-0.217194	-0.247428	0.006079
3	-7.919737	-0.652311	-0.659220	-0.735550
4	-5.175695	2.304059	-1.157327	1.060796

Table 2.13: Adding the Identified variables with the data

2.32 EDA (Categorical Fields & Principal Components)

	State	Area Name	pc_total_male_female	pc_total_male- female_marginal_agricultural_labourers	pc_main_agricultural_labourers_female_population	pc_female_population_ci
0	Jammu & Kashmir	Kupwara	-5.528161	0.430378	-1.473827	
1	Jammu & Kashmir	Badgam	-5.492016	-0.106110	-2.015641	
2	Jammu & Kashmir	Leh(Ladakh)	-7.474643	-0.217194	-0.247428	
3	Jammu & Kashmir	Kargil	-7.919737	-0.652311	-0.659220	
4	Jammu & Kashmir	Punch	-5.175695	2.304059	-1.157327	

Table 2.14: Adding PC's to the Categorical columns

2.33 Inferences

2.14 State Wise : pc_total_male_female

2.15 State Wise : pc_total_male-female_marginal_agricultural_labourers

2.16 State Wise: pc_main_agricultural_labourers_female_population

 ${\bf 2.17\ State\ Wise: pc_female_population_cultivator_agricultural_3-6}$

2.18 State Wise : pc_total_st_male_female

- West Bengal has the highest average male & female total
- Daman & Diu has the lowest average male & female total
- Himachal Pradesh has the highest average of total male & female population of marginal agricultural labourers
- Kerala & NCT of Delhi has the lowest average of total male & female population of marginal agricultural labourers
- Andra Pradesh has the highest average female population of agricultural labourers
- Kerala has the lowest average female population of agricultural labourers
- Himachel Pradesh has the highest average female population of Cultivator & agricultural labourers of age 3-6
- Bihar has the lowest average female population of Cultivator & agricultural labourers of age 3-6
- Kerala has the highest average Total male & female Scheduled Tribe population
- Uttarakhand has the lowest average Total male & female Scheduled Tribe population

2.34 Linear Equation

0.149 * No HH + 0.159 * TOT M + 0.158 * TOT F + 0.156 * M 06 + 0.157 * $F_06 + 0.143 * M_SC + 0.144 * F_SC + 0.019 * M_ST + 0.018 * F_ST + 0.15$ 5 * M LIT + 0.145 * F LIT + 0.155 * M ILL + 0.158 * F ILL + 0.154 * TOT WORK M + 0.143 * TOT WORK F + 0.142 * MAINWORK M + 0.126 * MAINWORK F + 0.112 * MAIN CL M + 0.083 * MAIN CL F + 0.119 * MAIN AL M + 0.09 * MA IN AL F + 0.142 * MAIN HH M + 0.134 * MAIN HH F + 0.123 * MAIN OT M + 0 .117 * MAIN OT F + 0.157 * MARGWORK M + 0.149 * MARGWORK F + 0.088 * MARG CL M + 0.065 * MARG CL F + 0.127 * MARG_AL_M + 0.116 * MARG_AL_F + 0.127.145 * MARG HH M + 0.142 * MARG HH F + 0.151 * MARG OT M + 0.148 * MARG OT_F + 0.158 * MARGWORK_3_6_M + 0.156 * MARGWORK_3_6_F + 0.158 * MARG_ CL 3 6 M + 0.15 * MARG CL 3 6 F + 0.095 * MARG AL 3 6 M + 0.067 * MARG AL 3 6 F + 0.128 * MARG HH 3 6 M + 0.114 * MARG HH 3 6 F + 0.145 * MARG OT 3 6 M + 0.141 * MARG OT 3 6 F + 0.151 * MARGWORK 0 3 M + 0.148 * MA RGWORK 0 3 F + 0.143 * MARG CL 0 3 M + 0.134 * MARG CL 0 3 F + 0.063 * MARG AL $\overline{0}$ $\overline{3}$ M + 0.057 * MARG AL $\overline{0}$ $\overline{3}$ F + 0.119 * MARG HH $\overline{0}$ $\overline{3}$ M + 0.113 * MARG_HH_0_3_F + 0.142 * MARG_OT_0_3_M + 0.141 * MARG_OT_0_3_F + 0.148 * NON WORK M + 0.142 \star NON WORK F +