A5 Linear Law Answers P3

'		Equate es Obtain va Calculate	timate of $\ln y$ -intercept to $\ln A$ thue A between 1.97 and 2.03 the gradient of the line of data points thue $n = 0.25$, or equivalent	M1 A1 M1 A1	[5]
			© UCLES 2005	9709/0	03/O/N/05
2		EITHED.	State on imply who we have the C	D.1	
2	(i)	EITHER:	State or imply $n \ln x + \ln y = \ln C$ Substitute x - and y -values and solve for n Obtain $n = 1.50$ Solve for C	B1 M1 A1 M1	
		OR:	Obtain $C = 6.00$ Obtain two correct equations by substituting x - and y -values in $x^n y = C$ Solve for n Obtain $n = 1.50$ Solve for C	A1 B1 M1 A1 M1	
			Obtain $C = 6.00$	A1	[5]
	(ii)	<i>linear</i> in 1	the graph of $\ln y$ against $\ln x$ has equation $n \ln x + \ln y = \ln C$ which is $\ln y$ and $\ln x$, or has equation of the form $nX + Y = \ln C$, where $X = \ln x$ and $\ln x$ is thus a straight line	B1	[1]
			© UCLES 2010	9709/31	1/M/J/10
3	EITHER: State or imply $\ln y = \ln A - kx^2$				
	Substitute values of $\ln y$ and x^2 , and solve for k or $\ln A$ Obtain $k = 0.42$ or $A = 2.80$ Solve for $\ln A$ or k Obtain $A = 2.80$ or $k = 0.42$				
	OR1:		n A	B1 M1 A1 M1 A1	
	OR2:	$y = Ae^{-kx^2}$ Solve for k Obtain $k =$ Solve for A Obtain $A =$ [SR: If uns	0.42	B1 M1 A1 M1 A1	[5]
		scheme.]	© UCLES 2013	9709/32/	/M/J/13

1

State or imply that $\ln y = \ln A + n \ln x$

B1

State a correct un-simplified version of the x or x^2 or x^3 term 4 **M1** State correct first two terms 1 + x**A1** Obtain the next two terms $\frac{3}{2}x^2 + \frac{5}{2}x^3$ [4] A1 A1 [Symbolic binomial coefficients, e.g. $\binom{-\frac{1}{2}}{3}$ are not sufficient for the M mark.]

5	EITHER: State a correct unsimplified version of the x or x^2 or x^3 term in the expansion of $(1+6x)^{-\frac{1}{3}}$	(M1	
	State correct first two terms $1-2x$		
	Obtain term $8x^2$	A1	
	Obtain term $-\frac{112}{3}x^3\left(37\frac{1}{3}x^3\right)$ in final answer		
	OR: Differentiate expression and evaluate $f(0)$ and $f'(0)$, where $f'(x) = k(1+6x)^{-\frac{4}{3}}$	(M1	
	Obtain correct first two terms $1-2x$	A1	
	Obtain term $8x^2$	A1	
	Obtain term $-\frac{112}{3}x^3$ in final answer	A1)	
	Total:	4	

© UCLES 2017 9709/31/O/N/17

9709/33/M/J/16