

MA3077 MA4077 MA7077 All Candidates

Semester 1 Examinations 2023

School	School of Computing and Mathematical Sciences
Module Code	MA3077-MA4077-MA7077
Module Title	Operational Research
Exam Duration (in words)	Two hours
CHECK YOU HAVE THE CORRECT QUESTION PAPER	
Number of Pages	5 (including cover page)
Number of Questions	4
Instructions to Candidates	Please answer all questions and motivate your answers.
FOR THIS EXAM YOU ARE ALLOWED TO USE THE FOLLOWING:	
Calculators	Permitted calculators are the Casio FX83 and FX85 models
Books/Statutes provided by the University	No
Are students permitted to bring their own Books/Statutes/Notes?	No
Additional Stationery	No

Version 1 Page **1** of **5**

All Candidates

Question 1

a) **[2 Marks]** Explain why the following optimisation problem is not a linear programming problem.

$$\min e^{x+y}$$
 subject to $x \le y$.

b) Consider the following linear programming problem.

$$\max y - 2x \quad subject \ to \begin{cases} x - y \le 1 \\ 4y \le 4 - x \\ x \ge 0 \end{cases} \tag{1}$$

- i. **[6 Marks]** Draw the feasible set, determine an optimal solution, and indicate which constraints are active.
- ii. **[4 Marks]** Write the linear programming problem (1) in standard form.
- iii. **[5 Marks]** Derive the dual problem of the linear programming problem you formulated in ii (the previous question), identifying clearly the Lagrangian and the dual function.
- c) [3 Marks] The Matlab code

$$x = linprog([-1;2], [1, 2; -2, 3; 3, -5], [1; 0; 2]);$$

solves a linear programming problem. Identify the objective function and all constraints of this linear programming problem.

d) [5 Marks] Let p^* denote the optimal objective value of the linear programming problem

$$\min x$$
 subject to $0 \le x \le -1$,

and let d^* denote the optimal objective value of its dual. Prove that $p^* \neq d^*$.

Version 1 Page 2 of 5

All Candidates

Question 2

a) Consider the following network.

- i. [3 Marks] Explain why this network is not a tree.
- ii. **[6 Marks]** Determine and draw a minimal spanning tree starting at node O using the version of Prim's algorithm presented in class. Show all intermediate steps.
- b) Consider the following output of Dijkstra's algorithm:

- i. [3 marks] Explain the meaning of the vectors, d, p, and v.
- ii. **[6 marks]** Draw the corresponding shortest path three and indicate the capacity of each edge.
- c) [7 Marks] Prove or disprove the following statement:

If a two-person zero-sum game with payoff matrix M is stable, then the two-person zero-sum game with payoff matrix M^T is also stable.

Version 1 Page **3** of **5**

All Candidates

Question 3

- a) **[7 marks]** Write the definition of the queueing model M/M/s/K. Then, assuming that s < K, represent the M/M/s/K queueing model as a birth-and-death process by drawing the corresponding sketch and by specifying the formulas of the parameters λ_n , $n \ge 0$ and μ_n , $n \ge 1$ involved.
- b) Let a queueing system be described by a birth-and-death process with parameters

$$\lambda_i = \max(6 - i, 4) \text{ for } i \ge 0,$$
 and $\mu_1 = \mu_2 = 1,$ $\mu_i = 5 \text{ for } i \ge 3$

- i. **[4 marks]** Show that in a steady state scenario, the probability that the queueing system is empty is $p_0 = (157)^{-1}$.
- ii. [2 mark] Compute the probability that, in a steady state scenario, the system contains at least 2 customers.
- iii. [6 marks] Compute the mean number of customers L and the mean waiting time W.
- c) [6 marks] Prove that in an M/M/1 model, the following equality

$$\rho + \rho L - L = 0$$

holds, where $\rho = \frac{\lambda}{\mu} < 1$ is the service facility utilisation factor and L is the mean number of customers.

[*Hint*: prove first that $p_0 = 1 - \rho$]

Version 1 Page **4** of **5**

All Candidates

Question 4

- a) Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^2 + 2 \exp(-x^2)$. The objective of this exercise is to minimise (at least approximately) the function f.
 - i. **[4 Marks]** Determine all stationary points of f in \mathbb{R} .
 - ii. **[4 Marks]** Perform one step of Newton's method starting from $x_0 = 1$.
- b) **[7 Marks]** For $n \in \mathbb{N}$ fixed, consider the function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) \coloneqq \cos(x^T x)$. Perform one step of Newton's method using the starting point $x_0 = (1,0,...,0) \in \mathbb{R}^n$.
- c) [10 Marks] Consider the constrained optimisation problem

$$\min_{x \in \mathbb{R}^2} (x_1 + x_2)^2 \text{ subject to } x_1 + x_2 - 1 = 0$$

Perform one step of the quadratic penalty method using the penalty parameter $p_0 = 2$. To solve the internal iteration, use one step of the steepest descent method with initial guess $x_0 = (0,0)^T \in \mathbb{R}^2$ and exact line search.

END OF PAPER

Version 1 Page 5 of 5