PRIMA ESPERIENZA DI LABORATORIO.

1 Strumentazione

- Breadboard
- Alimentatore da banco (alimentatore duale flottante max/min: +/-30V, 2A; alimentatore singolo flottante max: +8V, 5A)
- Multimetro DMM (sensibilità corrente: 200 μA 10 A; sensibilità tensione: 200 mV 1000 V)

2 Misure di tensione

3 Misure di Corrente

4 Legge di Ohm

4.1 Dati sperimentali

Utilizzando il multimetro¹ si sono misurate le intensità di corrente (I) al variare arbitrario del voltaggio (V), con una resistenza equivalente di 500Ω ottenuta mettendo in parallelo 2 resistori da $R = 1k\Omega$.

Table 1: MISURE DI LABORATORIO

V (Volt)	
1	1.948
2	3.998
3	5.846
4	7.796
5	9.747
6	11.699
7	13.956
8	15.955

4.2 Relazione fra V ed I

La legge che mette in relazione la corrente che fluisce in un resistore e la caduta di potenziale che quest' ultimo causa è la **Legge di Ohm**.

$$V = RI \tag{2}$$

In particolare:

$$\frac{V}{I} = R \tag{3}$$

Dunque fra V ed l c'è una relazione **lineare**. In cui **R** è una costante che dipende dalle proprietà fisiche del resistore.

4.3 Stima del valore di R

lpotizzando di non conoscere a priori la R_{eq} , dai dati sperimentali, si nota già una relazione fra V ed I:

$$\frac{V}{I} \simeq 500\Omega$$
 (4)