

然而,从科学意义上讲,光?

课程简介

■ 介绍课程用书

参考书:

- · 《光学》,赵凯华,高等教育出版社, 2004年,第一版
- · 《光学》,赵凯华,钟锡华,北京大学出版社,1984年版,2004年重印
- 《现代光学基础》钟锡华 编著, 北京大学出版社, 2003
- Optical physics. 3rd edition. Stephen
 G. Lipson. Cambridge University
 Press, 2004, ISBN: 0521436311

参考书:

- 本课程教课书
- 图书馆有课本,也可以在 学校的电子图书库内下载 版,电子借阅
- 歧关车站旁图书服务部
- 本学院自己的图书阅览室

8

- 课程要求(投入,participation,engagement)
- ·课堂笔记:重视,"听课"小议
- · 基础光学依赖空间几何和波动传输图像来理解 光的物理行为。尺,规,笔,等
- · 平时作业:及时,迟交不收,不登入平时成绩,学习是过程,在初学时,过程和实效性是重要的评价因素
- 学业成绩评定: 2+2+6
- · 严肃纪律: 准时上课,保持堂上秩序,礼貌问答,探究的科学态度是绝对被欢迎的。

第一章 引言

§ 1.1 光学史

光学是人们对光进行研究和应用的科学。

首先,它是一门古老的学科。早在4000年前的古埃及和 约3000年前的中国,人们就有利用光学现象的先例。如 铜镜、凹面镜取火(《周礼·考工记》,周朝)等。到了 公园前400年,我国出现了有关针孔成像(《墨经》,先 秦。"景到(倒),在午有端,与景长,说在端。")、 平面镜和球面镜(《梦溪笔谈》,宋朝)等早期光学实 验记录。诸多光学教科书【图书馆电子资源,国学宝典 17: 栏目】都有丰富的描述。 10

其次,它又是一门朝阳学科。自**1960**年激光问世以来,光学渗透到了各个领域,并出现了交叉分支。

人们对光学的科学研究集中在光的本质、光的 传播以及光与物质的相互作用方面。对于光究竟 是什么,直到17世纪才形成两种看法各异的观点 ——微粒说和波动说。

- 微粒说的代表人物是笛卡尔(<u>R. Descartes</u>) 和牛顿(I. Newton)。
 - 其认为发光物体都发射光微粒,这些微粒可在真空或透明介质中以巨大速度沿直线运动。
 - 微粒说可解释光的直线传播、光的反射现象,亦可 勉强解释光的折射。但对实验中相继发现的大量光 的干涉、衍射和偏振现象却无法解释。

- 波动说是有胡克(R. Hooke)和惠更斯(<u>C.</u> <u>Huygens</u>)提出的。
 - 其认为光是一种波动,光的传播不是微粒的运动, 而是运动能量按波的形式迁移的过程。
 - 波动说能更简单地解释光的反射、折射现象。
 - 遗憾的是由于把光现象看成某种机械运动过程,认为光是一种弹性波,因而必须臆想一种特殊的弹性介质(以太)充满空间,这种介质应密度极小和弹性模量极大。这些均无法实验验证。

- 加之当时出于牛顿在力学方面的巨大贡献,因此对 波动说几乎无人相信。
- 直到19世纪初,由于杨氏(T. Young)、菲涅尔(A. J. Fresnel)等一批科学家的不懈努力,令人信服地用波动说解释了光的干涉、衍射和偏振现象,波动理论的地位才被确立。

在光学发展过程中,曾出现过令物理学家大为困惑的,极力寻找和证实的物质——以太(ether)。

既然光是一种波,那么,它赖以传播的介质是什么?

这个问题直到19世纪末随着洛伦兹(H. A. Lorentz)创立电子论及随后的场论,才使以太论最终抛弃。

- 至此,人们以为最终认识了光的本质。
- 然而本世纪初,在解释黑体辐射、光电效应及 康普顿散射等现象时,波动说却无能为力。
- **1905**年,爱因斯坦(<u>A. Einstein</u>)重新提出 光的粒子性概念--光子,从而解决了以上的 问题。

- 光有粒子性和波动性双重性质——波粒二相性, 不同场合表现出的属性不同。
- 60年代,由于激光的发明,使得人们在光通讯、 全息术、非线性光学、光信息处理等方面能大 显身手。

光源与光谱

■ 光是一种电磁波

- 对人的视觉起作用的电磁波称为可见光。波长范围约为4000 Å~7000 Å
- 波长以纳米 (nm) 或埃(A) 为单位。
 - 1 nm = 10^{-9} m
 - lacksquare 1 Å = 0.1 nm = 10 $^{-10}$ m
- 不同的波长,在视觉上形成不同的色觉。

■ 即赤、橙、黄、绿、青、蓝、紫。其中:

红 6400~7500 →红外

橙 6000~6400

黄 5500~6000

绿 4800~5500

蓝 4500~4800

紫 4000~4500 →紫外

■ 人眼对5550 Å (555nm) 的黄绿光最敏感

- 理论上,只有单一频率的光称为单色光。
- 实际的单色光光源总是包括了一定的波长范围, 称之为准单色光。
- 波长范围越窄,单色性越好。He-Ne的激光光 源的波长范围可以稳定在**10**-8Å量级。

光速

■ 按电磁理论,光在介质中的速度

$$V = \frac{1}{\sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_r}}$$

 $(\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}, \ \mu_0 = 4\pi \times 10^{-7} \text{ H/m})$

■ 因而真空中的光速 $c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 2.997 924 58 \times 10^8 \text{ m}/s$

- 而一般介质中的光速 $v = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$
- (一般 v < c)</p>

折射率

■ 定义折射率为 $n = \frac{c}{v}$

当光穿过不同介质中,频率不变,波长改变。其变化 为

$$\lambda' = v/v = c/(nv) = \lambda/n$$

其中,λ为真空中的波长。

光强又称光的辐照度,它与光振动的振幅有如下关系:

$$I=A^2$$

§ 1.2 光的几何光学传播定律

- 几何光学又叫射线(Light ray)光学, 是光学的重要组成部分,也是光学的基 础。
- 它采用几何方法研究光在均匀介质中的 传播及应用,不涉及光的本质问题。
- 其基础是光波长趋于零。

中学是的"三大定律"么

- 1. 三个基本定律
 - i° 光线在均匀介质中按直线传播,称直线传播定律。
 - ii° 来自不同方向的光线在介质中相遇后,各保持原来的传播方向继续传播,这就是光的独立传播定律。
 - iii° 光在两种各向同性、均匀介质分界面上要发生反射和折射。即一部分光能量反射回原介质,另一部分光能量折射入另一介质。

• 实验证明:

- a) 反射光线和折射光线都在入射面内,它们与入射光分别在法线两侧。
- b) 入射角等于反射角。即 $\theta_i = \theta_r$

law of reflection : $\theta_r = \theta_i$

• c) 入射角的正弦和折射角的正弦之比为一常数,即 $\sin \theta_1 / \sin \theta_2 = n_{21}$

n₂₁称为介质2相对介质1的相对折射率。上式称为斯涅尔(Snell)定律。

由于
$$\mathbf{n} = \mathbf{c/v}$$
 有 $n_{21} = n_2/n_1$ 因此 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

- 相对而言,
- n大的介质叫光密介质;
- n小的介质叫光疏介质。
- 当光线由光疏入光密时, $\theta_1 > \theta_2$ 。

■ 2. 光路可逆性原理

由上述的斯涅尔定律不难看出,光线的传播是可逆的,即光逆向传播时,将沿正向传播的反方向传播。

■ 3. 全反射 光纤

• i 。由斯涅尔定律可知,当光线由光密进入光疏时,有 $\theta_2 > \theta_1$,则当入射角增加至 θ_c 时,折射角为900。

• $\theta_1 > \theta_C$ 时,将无 θ_2 ,光将全部反射回光密介质,这种现象叫全反射。 θ_C 称为临界角。

由斯涅尔定律, $n_1 \sin \theta_C = n_2 \sin 90^\circ$ 则 $\theta_C = \arcsin n_{21}$

■ 例如,水的 n_1 = 1.33,空气的 n_2 = 1,则从水到空气的临界角约为49°

全反射有比一般反射更优越的性能,它几乎无能量的损失, 因此用途广泛。光纤就是其中的一种。如海市蜃楼

■ ii ° 光纤

光纤通常用d = 5~60μm的透明丝作芯料,为光密介质;外有涂层,为光疏介质。只要满足光线在其中全反射,则可实现无损传输。光通信

光纤按折射率随r分布特点可分为均匀光纤和非均匀 光纤两种。其中非均匀光纤具有光程短,光能损失小, 光透过率高等优点。

Type of Fiber	Cross Section of Fiber	Refractive Index Profile
Step Index	r	n_1
Gradient Index	r	n ₁

把大量光纤集成束, 并成规则排列即形成 传像束,它可把图像 从一端传递到另一端。 目前生产的传像束可 在每平方厘米中集5 万像素。

图中的细光 缆和粗电缆 的通信容量 相同!!!

■ 4. 棱镜

棱镜是常用光学元件之一, 它分为全反射棱镜和色散 棱镜。

■ i ° 全反射棱镜

- 主要用于改变光传播方向并 使像上下左右转变。
- 一般玻璃的折射率>1.5,则 入射角>42°即可。

a) 直角棱镜:可以改变 光路方向

b)波罗(Porro)镜: 180°偏转加上下倒像

Prisms 85% + light transmission ranges

>90%

>90%

<85%

>90%

Roof Prism Light Path Porro Prism Light Path

左: porro镜望远镜

下左: 反porro镜的望远镜下右: roof镜结构的望远镜

c) 多夫(Dove) 镜: 倒像镜

d) 直四角棱镜: 斜面入射时,出射光与之平行

色散棱镜——光谱分析元件

■ ii ° 色散棱镜

其主要作用是分光,因为不同的波长具有不同的折射率,且波长越短,折射率越大。

这样出射光出现色散,把光按照波长分离出来。

棱镜色散图示

§ 1.3 惠更斯原理

- 1. 惠更斯原理
 - 波前上每一个点都可看做是发出球面子波的波源, 这些子波的包络面就是下一时刻的波前。

■ 例如,均匀各向同性媒质内波的传播:

惠更斯原理的图示

t 时刻波面 $t+\Delta t$ 时刻波面

平面波

利用这个原理,可 通过作图法确定下 一时刻的波前位置。

应用举例1

■ <u>惠更斯原理</u> \caisoft.exe

- 2. 对反射和折射定律的解释
- 设一束平行光入射由 n_1 到 n_2 ,且 $n_1 < n_2$,入射角为 θ_1 。

- 对于三角形ABC: $\sin \theta_1 = BC/AB$
- 对于三角形ABE: $\sin \theta_2 = AE/AB$
- 即:入射角的正弦与折射角的正弦之比为一常数。 由折射率的定义不难推出: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

- 1 没能够确定光的电磁波特性;
- 2 将光误认为是机械波;
- 3 光波的前向传播的机理未能清晰阐述。

- 4 时序?
- 5 光的直进的数学表述?

§ 1.4 费马(Fermat)原理

费马首先引入了光程的概念,将几何光学中的基本原理统一起来。

1. 光程

■ 光由n₁, n₂, n₃从P点到Q点的时间t

$$t = S_1/v_1 + S_2/v_2 + S_3/v_3$$

$$= (n_1S_1 + n_2S_2 + n_3S_3) \cdot 1/c \qquad (\because v = c/n)$$

$$\Delta = n_1S_1 + n_2S_2 + n_3S_3$$

称Δ为P点到Q点的光程,亦可用[]表示。

- i ° 对于均匀介质, $\Delta = nS$
- ii ° 对于路径经过N种均匀介质,则: $\Delta = \sum_{i=1}^{N} n_i S_i$
- iii。 对于路径经过折射率连续变化的介质,则: $\Delta = \int_P^Q ndS$

引入光程Δ后,上式为:

 $t = \Delta/c$

这与光在△长的真空中所花的时间相同。

即不论介质如何,光走过同样光程的时间是相等的。这样便于将各介质中走过的路程折算为真空中的路程,给计算以方便。

■ 费马原理

■ 1605年,费马概括了光传播的实验规律,并归纳为: 光从空间一点到另一点是沿光程为极值(极大、极 小或常数)的路径传播,即光程的微商为0。

$$\delta\Delta = \delta \int_{P}^{Q} n dS = 0$$

• 例: i ° 光程取极小值

■ 反射的情况

任设M上的点C或E,作A的镜像A',

∴ ACB = A'CB (或AEB = A'EB)

在A'B中,以直线A'B,交反射面M 于D为最短路径,这时有

$$\theta_i = \theta_r$$

■ 折射的情况

设
$$A(0,y_2)$$
, $O(x,y)$, $B(x_1,y_1)$

则
$$\Delta = n_i AO + n_i OB$$

$$= n_i \sqrt{x^2 + y_2^2} + n_t \sqrt{(x - x_1)^2 + y_1^2}$$

$$\frac{d\Delta}{dx} = n_i \frac{x}{\sqrt{x^2 + y_2^2}} + n_t \frac{(x - x_1)}{\sqrt{(x - x_1)^2 + y_1^2}} = 0$$

$$n_i \frac{x}{\sqrt{x^2 + y_2^2}} = n_t \frac{(x - x_1)}{\sqrt{(x - x_1)^2 + y_1^2}}$$

· ii ° 光程取常数

- 平面镜就是光程取常数的一个例子。
- 由反射光知识可知,物件经 平面镜的反射光的延长线必 交于虚像,物件与虚像之间 的光程取常数0。

例题 大气中的光传输极端特例*

- 大气折射率n与空气的密度有关,假设折射率(n-1) 与密度成正比.由于大气密度遵从玻耳兹曼分布律, 大气折射率随高度的增加而递减,使得光线在大气中 弯曲传播.为使光线能沿着地球的圆弧线传播,地表 的空气密度应是实际密度的多少倍?假设大气层是等 温的,温度T=300K。
- 主: 地表空气的实测折射率为 $n_0=1.0003$, 空气的平均分子量为 $\mu=29$, 地球半径 $r_0=6.4\times10^6 m_o$

海市蜃楼课后拓展作业*

西方历史上的海市蜃楼,<u>海市蜃楼**.exe**</u>

高度为d的一块玻璃, 其折射率随高度 y 的变化为:

$$n(y) = \frac{n_0}{1 - y/r_0}$$

其中 n_0 =1.2, r_0 =13cm。一光线沿着x轴射向原点而进入这块玻璃,最终从A点出射,其倾角为: α =30°

求:

- •这条光纤在玻璃块中的轨迹;
- •玻璃块的厚度;
- •玻璃块在出射点A处的折射率。

折射率分布&几何空间的关系

§ 1.5 光度学基本概念

- i ° 光功率
 - 光波是光能流。
 - 若空间有一指定的面积为
 Δ A 的截面,每秒射到
 Δ A 的光能,叫做作用于
 Δ A 的光功率。
 - 光功率的单位是W(瓦)。

63

■ ii。 视见函数

- 人类的眼睛对色彩的感觉是视觉对光波的波长的响应;而亮度则是视觉对通过瞳孔的光功率的响应。
- 人眼对相同光强而不同波长的光波有着不同的灵敏度,在较明亮的环境中,人眼对波长为555nm的绿光最敏感。

光功率相同,对不同波长的光人眼感觉到的相对亮度曲线,叫做视见函数,用V(λ)表示。

- 波长为555nm的绿光的视见函数规定为1,其他波长以此推算。
- 例如,要引起与1mW的555nm的绿光相同亮暗感觉的400nm紫光需要2.5W,则400nm紫光的视见函数为

 $V(400nm) = 10^{-3}/2.5 = 0.0004.$

■暗环境的视见函数有紫移。

■ iii ° 光通量

- 为了把光功率与人的视觉联系起来,定义描述视觉感受到的光功率的量,叫光通量。
- 光通量的单位为流明(lumen),记为lm。
- 流明--1W 555nm波长的光的光通量等于683 lm。

- 光通量与光功率的数值之比,叫光视效能,记为 K(λ)。
- 555nm波长的光,其光视效能最大,叫最大光视效能, 记K_M:

$$K_{\rm M} = 683 \text{ lm/W}$$

$$K(\lambda) = K_M V(\lambda)$$

■ 常用的照明广有连续的光谱,若在波长为λ至λ+dλ 区间中的光功率为P(λ)dλ,则总的光功率为

$$P = \int P(\lambda) d\lambda$$

■ 因此,光通量为

$$\Phi = \int K_{M} V(\lambda) P(\lambda) d\lambda$$

■ iv° 照度

■ 一个被光照射的面,其照明的情况用照度描述。 若面元dA上的光通量为 $d\Phi$,则此面元上的照度为 $E_V = d\Phi/dA$

■ 照度的单位叫勒克斯(lux),记lx:

 $1 lx = 1 lm/m^2$

■ v° 发光强度与亮度

用以描述光源的参量,按光源的不同分别用发光强度与亮度。

■ 点光源:线度足够小的光源。

对于这种光源, 其参量用发光强度描述。

若在点光源为原点的r方向上有立体角 $d\Omega$,点光源在此立体角内辐射的光通量为 $d\Phi$,则光源在r方向的发光强度为:

$$I_V = d\Phi/d\Omega$$

■ **发光强度的单位**叫 坎德拉

(candela),记 作cd:

1 cd = 1 lm/1

sr

其中sr为球面度。

面光源:又叫扩展光源。是指光源在一个较大的面上 辐射光波。

对于这种光源,其参量用光度学亮度描述,简称亮度。

设面光源的面积为 ΔA ,法线方向的单位矢量为 e_n ,矢量r与 e_n 的夹角为 θ 。迎着r的方向观察,光源的投影面积为 ΔA_r :

$$\Delta A_r = \Delta A \cos \theta$$

若在r方向的立体角为 $d\Omega$,在此立体角内面光源辐射的光通量为 $d\Phi$,则面光源在r方向的亮度为:

$$LV = d\Phi/(\Delta A_r d\Omega) = d\Phi/(\Delta A \cos\theta d\Omega)$$

■ 亮度的单位名称是坎德拉每平方厘米,记为cd/cm²。

§ 1.5 光度学基本概念

17:23 75

本章提要:

- 1. 光学研究内容
- 2. 光学学科的发展概况
- 3. 几何光学基本定律
 - 直线传播、反射、折射
- 4. 几何光学基本原理(费马原理*)
- 5. 波动光学唯像描述(惠更斯原理*)
- 6. 光度学基本概念

备注: *为重点内容,需要深入理解、灵活运用

周礼 考工记

.....段氏为镈器. 桃氏为刃. 金有六

齐. 六分其金而锡居一. 谓之钟鼎之

齐. 五分其金而锡居一. 谓之斧斤之

齐. 四分其金而锡居一. 谓之戈戟之

齐.参分其金而锡居一.谓之大刃之

齐. 五分其金而锡居二. 谓之削杀矢之

齐. 金锡半. 谓之鉴燧之齐.

筑氏为削.长尺博寸.合六而成

规. 欲新而无穷. 敝尽而无恶.

梦溪笔谈卷三 辨证一

阳燧照物皆倒,中间有碍故也。算家谓之"格术"。如人 影与鸢遂相违, 查东则 又如窗隙中楼塔之影, 中间为窗所束, 亦皆倒垂. 下丰川影愈 遂成摇橹之势。故举手则影愈 中间 此妄说也。 塔影倒" 影入窗隙则倒, 乃其堂理。

Ren é Descartes

Born: 31 March 1596 in La Haye (now Descartes), Touraine, France Died: 11 Feb 1650 in Stockholm, Sweden

Sir Isaac Newton

Born: 4 Jan 1643 in Woolsthorpe, Lincolnshire, England

Died: 31 March 1727 in London, England

Christiaan Huygens

Born: 14 April 1629 in The Hague, Netherlands Died: 8 July 1695 in The Hague, Netherlands

Young, Thomas

(1773-1829)

Augustin Jean Fresnel

Born: 10 May 1788 in Broglie, France Died: 14 July 1827 in Ville-d'Avray, France

Hendrik Antoon Lorentz

Born: 18 July 1853 in Arnhem, Netherlands

Died: 4 Feb 1928 in Haarlem, Netherlands

Albert Einstein

Born: 14 March 1879 in Ulm, Württemberg, Germany Died: 18 April 1955 in Princeton, New Jersey, USA

Pierre de Fermat

Born: 17 Aug 1601 in Beaumont-de-Lomagne, France

Died: 12 Jan 1665 in Castres, France

波动的数学描述

- 简谐平面波和球面波
- 若波是简谐振动的传递,称为简谐波。表示为:

 $U(t) = A\cos\omega t$

其中A为振幅,ω为角频率

i ° 单色平行光可看着简谐平面波

设平行光沿K方向传播,现考虑空间中任一点P的振动。

设为P(x,y,z),用矢量r表示。

设光波速度为 v, 从o点传到P的时间为t',则

 $t' = r\cos\theta/\nu$

而P点的振动可写为

$$U(r,t) = A\cos(\omega t - \omega t')$$

= $A\cos[\omega t - (2\pi/\lambda)r\cos\theta]$

$$(\omega = 2\pi/T, \lambda = T \cdot \nu)$$

• 定义: $K = \frac{2\pi}{\lambda} \hat{k}$ 所以有 $U(r,t) = A\cos(\omega t - K'r)$

在直角坐标系下:

 $K \cdot r = K(x\cos\alpha + y\cos\beta + z\cos\gamma)$

这说明只要给出简谐平面波表示式的具体形式, 就已知了波的传播方向。

ii。 球面波

点光源在均匀介质中传播, 其波面是球面,称为球面波。

由平面波的知识可知:任一点 P(x,y,z)的振动可表示为 $U(r,t) = A(r)\cos(\omega t - K - r)$

其中A(r)表明球面波振幅会随传播距离而变化,由能量守恒定律可得:

$$A(r) = A_0/r.$$

(能量
$$4\pi r_0^2 I_0 = 4\pi r^2 I$$

$$\Rightarrow r_0^2 A_0^2 = r^2 A^2$$

$$\Rightarrow A = A_0 r_0 / r$$

 ϕr_0 为单位长度,即得)

所以 $U(r,t) = (A_0/r) \cos(\omega t - Kr)$

2. 复数表示

为使计算简化,往往将波动的余弦表达式用相应的复数表示。

- 前提: $e^{+i\alpha} = \cos\alpha + i\sin\alpha$ $e^{-i\alpha} = \cos\alpha - i\sin\alpha$
- 对一般的波动表达式有

$$U(r,t) = A(r) \cos[\omega t - \phi(r)]$$

复数表示形式写为

$$\tilde{\mathbf{U}}(\mathbf{r},\mathbf{t}) = \mathbf{A}(\mathbf{r}) \mathbf{e}^{+i\phi(\mathbf{r})} \mathbf{e}^{-i\omega\mathbf{t}}$$

其中 $\tilde{\mathbf{U}}(r) = \mathbf{A}(r) e^{+i\phi(r)}$ 称为复振幅

■ 相应地,平面波的复振幅为:

$$\tilde{\mathbf{U}}(\mathbf{r}) = \mathbf{A}_0 \, \mathbf{e}^{+i \, \mathbf{K} \cdot \mathbf{r}}$$
$$= \mathbf{A}_0 \, \mathbf{e}^{+i \, \mathbf{K} (\mathbf{x} \cos \alpha + \mathbf{y} \cos \beta + \mathbf{z} \cos \gamma)}$$

■ 而对球面波:

$$\tilde{\mathbf{U}}(\mathbf{r}) = (\mathbf{A}_0 / \mathbf{r}) \mathbf{e}^{+i \mathbf{K} \mathbf{r}}$$

有了复数表示,光强可表示为:

$$I = \tilde{U}(r) \cdot \tilde{U}(r)*$$

§ 2.4 有关成像的基本概念

光学系统的成像是几何光学的主要问题,下面先介绍概念。

- i° 许多光线集中表现为光束 若光束中各光线本身或其延长线交于同一点,则称 之为同心光束。我们谈到的点光源和平行光线均是 同心光束(平行光交于无穷远)。
- ii ° 光线系统一般由若干反射和折射面构成

iii 物点O亦分为实物点和虚物点
 相对光线系统而言,称发散同心光束之交点为实;会聚同心光束之交点为虚。

17:23 95

■ iv ° 一般光线系统均不具同心性 同心光束经过光线系统后不能严格成像于一点。以 后谈到的光线系统成像均是有条件的近似。 平面镜成像是严格成像的例子。

- v°虚、实像均能被人眼看到,但只有实像能用屏幕接收
- vi° 物点和像点互称为共轭点

根据光路可逆性,若把物点O移至像点O'处,则通过光线系统,用反向光入射,O'将成像于O处。

- vii[°] 相对光线系统,物点组成的空间叫物方(物空间),像点组成的空间叫像方(像空间)
- viii°物点O与像点O′之间的各光线的光程均相等, 称为物像之间的等光程原理。它是费马原理中光程 为常数的一个例子。

前面所述,一般光学系统均不具同心性,球面也不例外,不能严格成像,但在旁轴条件下,能近视成像。

■ 1. 什么是旁轴

- 如图,一球面镜Σ,圆心为C,过C作一直线交Σ于A, A为Σ面之中点,称CA为主光轴(或主轴)。
- 在主轴附近与主轴夹角较小(<5°)的光线叫旁轴 光线,或近轴光线。
- 由于绝大多数光学系统都是由一系列球形折射或反射面组成,下面讨论在近轴条件下的成像。

■ 2. 符号规则

- 为了从一具体情况出发导出物像的一般关系,必须对有关参量规定一套符号规则。设入射光从左到右。
- i 物点Q到顶点A的距离QA称为物距,用s表示。
 实物,s>0,虚物,s<0。(左正右负)

■ ii ° 像点Q′到A的距离Q′A称为像距,用s′表示。

实像, s' > 0, 虚像, s' < 0。

对反射镜, 左正右负;

对折射镜, 左负右正。

- iii ° 对于曲率半径r,则圆心C相对顶点A,左负 右正。
- iv° 在光路图中,标绝对值。

■ 3. 光在单球面上的反射

 从Q引一近轴光交于M,QM 与主轴夹角为u,Q'M与QA 夹角u'。

正弦定理:

 $QC/\sin\theta = MC/\sin u$

 $Q'C/\sin\theta = MC/\sin u'$

 \therefore QCsinu = Q'Csin u'

其中
$$QC = s-(-r) = s+r$$

 $Q'C = -r-s'$

代入并整理得,

$$\frac{s+r}{s} = \frac{-r-s'}{s'}$$

即

$$\frac{1}{s} + \frac{1}{s'} = -\frac{2}{r}$$

- i° 对于平行光入射, s = ∞,
 这时, s' = -r/2。这个像点称为像方焦点,
 记为F'。(第二,后焦点)
- ii ° 反之,若s=-r/2,则
 s'=∞。由光路可逆性可知,出射为平行光。
 因此,s=-r/2的点又称物方焦点,记为F。(第一,前焦点)

■ iii° 焦点到A的距离称为焦距,物方焦距f和像方 焦距f′定义如下:

$$f = \lim_{s' \to \infty} s \qquad f' = \lim_{s \to \infty} s'$$

对于反射球面, f = f' = -r/2

若 $r\to\infty$,则s=s'。这就是平面镜成像的情况。

4. 光在单球面上的折射

如图
$$\theta = \mathbf{u} + \mathbf{\varphi}$$

$$\theta' = \varphi - \mathbf{u}'$$

由近轴近似: u = tgu = MA/s

$$u' = tgu' = MA/s'$$
, $\phi = MA/r$

由折射定律: $n_1 sin\theta = n_2 sin\theta'$ (即 $n_1\theta = n_2\theta'$)

得:
$$\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{r}$$

由f,f'的定义:

$$f = \lim_{s' \to \infty} s = \frac{n_1 r}{n_2 - n_1}$$
$$f' = \lim_{s \to \infty} s' = \frac{n_2 r}{n_2 - n_1}$$

可得: $\frac{f}{s} + \frac{f'}{s'} = 1$

- 这个普遍的物像公式,称为高斯(Gauss)物像公式。
- ■前面的球面反射公式亦包括其中。

■ s、s'物距和像距也可以从F、F'算起,用x、x'表示。 符号法则如下:

对x, 若Q在F之左, x>0; Q在F之右, x<0。 对x', 若Q'在F'之左, x'<0; Q'在F'之右, x'>0。

- $\therefore x = s f, \quad x' = s' f'$
- 则高斯公式为:

xx' = ff' 称为牛顿公式。

■ 5. 近轴物点成像

物点位于主轴上的成像情况,前面已述。

- 若将主轴绕C转动φ角后,Q→P,Q'→P' 由对称性可知,P、P'是一对共轭点。
 - : φ角很小, PQ可看成是垂直于主轴的线段。三维地, PQ所在之平面也可看成是垂直于主轴之平面,称之为物平面, 用π表示。同样地, 有P'Q'所在之平面π', 称之为像平面。
- π, π'互为共轭平面。

设PQ长为y; PQ'长为y'。

- 符号法则规定: 上离主轴为正;下离主轴为负。
- 定义横向放大率V为: V = y'/y

因此, V > 0, 正立; V < 0, 倒立。

V > 1, 放大; V < 1, 缩小。

 $\theta = PQ/QA = y/s$

 $\theta' = P'Q'/Q'A = -y'/s'$

又 因为
$$\theta n_1 = \theta' n_2$$

所以,
$$n_1 y/s = -n_2 y'/s'$$

$$V = y/y' = -(n_1s')/(n_2s)$$

■ 对于球面反射镜,可以证明:

$$V = -s'/s$$

若成像系统由一系列反射或折射球面组成,则系统 总的横向放大率为:

 $V = V_1 \cdot V_2 \cdot V_3 \cdot \dots$, V_i 为各单球面的横向放大率。