MACHINE LEARNING QUESTION BANK

- 1. Define machine learning. Discuss with examples some applications of machine learning.
- 2. What do you mean by well posed learning problem? Explain Important features that are required to define well posed learning problems.
- 3. Describe briefly the steps involved in designing a learning system.
- 4. Discuss the concept of learning as the task of searching with respect to the general to specific ordering of hypothesis.

5. Illustrate Find S algorithm over the Enjoy Sport training instances given.

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy Sport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

- 6. Define consistent hypothesis and version space .With example data(Qn. No 5) discuss version space and trace candidate elimination algorithm .
- 7. Explain the candidate elimination learning algorithm
- 8. Consider the given below training example which finds Malignant tumours from the MRI Scans.

Example	Shape	Size	Color	Surface	Thickness	Target concept
1 /	Circular	Large	Light	Smooth	Thick	Malignant
2		Large	Light	Irregular	Thick .	Malignant
3	Oval	Large	Dark	Smooth	Thin	Benign
4	Oval	Large	Light	Irregular	Thick	Malignant
5	Circular	Small	Light	Smooth	Thick	Benign

Show the specific and general boundaries of the version space after applying candidate elimination algorithm. (Note: Malignant is +ve, Benign is -ve).

9. Describe ID3 algorithm. Calculate entropy and information gain of A2 for the following dataset.

Instance	Classification	A1	A2
1	+	Т	Т
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	-	F	Т

- 10.Describe inductive bias in decision tree learning
- 11. What is linearly inseparable problem. Design a network of perceptron to implement X AND Y.
- 12. What is Perceptron? Discuss Perceptron training rule.
- 13. What do you mean by Gradient descent? What are the conditions in which Gradient descent is applied?
- 14. Explain the importance of Stochastic Gradient descent.
- 15. Write the Back propagation algorithm for feedforward network with two layers of Sigmoid units.