Théorie des Langages Rationnels A Framework for Languages

Adrien Pommellet, LRE

January 23, 2023

Deciding Languages

A premature goal

Before giving meaning to a word in a language, a computer should be able to tell **whether said word belongs to the language** in the first place.

Deciding Languages

Languages and algorithms

Decidable language

A language L over an alphabet Σ is said to be decidable (or **recursive**) if there exists an algorithm A such that, on any input $w \in \Sigma^*$:

- If $w \in L$, then A(w) answers true.
- If $w \notin L$, then A(w) answers false.

We keep the **exact** definition of an algorithm vague on purpose: assume for now it is any method we can implement using a computer program, memory and speed issues notwithstanding.

Practical Application

Exercise 1. Are the following languages decidable?

- The set of prime numbers.
- The empty set \(\empty \).
- 3 The set Σ^* of all words
- ullet The set of C source codes of programs that halt on a given input x.
- The set of C source codes of programs that halt in less than ten seconds on a given input x.

Answer

Deciding Languages

A surprising result

Deciding Languages

Weaker decidability

Semi-decidable language

A language L over an alphabet Σ is said to be semi-decidable (or recursively enumerable) if there exists an algorithm A such that, on any input $w \in \Sigma^*$:

- If $w \in L$, then A(w) answers true.
- If $w \notin L$, then A(w) answers false or does not end.

Semi-decidable languages are said to be recursively enumerable because it is possible to design an algorithm that **enumerates** all the words in said language.

Practical Application

Exercise 2. Is the halting problem ${\mathcal H}$ recursively enumerable?

Answer

Deciding Languages

Recursive or recursively enumerable?

Theorem

If a language L is recursive, then it is recursively enumerable as well.

Union

Given two languages A and B over an alphabet Σ , for all word $w \in \Sigma^*$, $w \in A \cup B$ if and only if $w \in A$ or $w \in B$.

Intersection

Given two languages A and B over an alphabet Σ , for all word $w \in \Sigma^*$, $w \in A \cap B$ if and only if $w \in A$ and $w \in B$.

Inclusion

Given two languages A and B over an alphabet Σ , $A \subseteq B$ if for all $w \in \Sigma^*$, $w \in A$ implies that $w \in B$.

Subtraction

Given two languages A and B over an alphabet Σ , for all word $w \in \Sigma^*$, $w \in A \setminus B$ if and only if $w \in A$ but $w \notin B$.

Complement

Given a language A over an alphabet Σ , for all word $w \in \Sigma^*$, $w \in A^{\complement}$ if and only if $w \notin A$. Note that $A^{\complement} = \Sigma^* \setminus A$. We also write $\bar{A} = A^{\complement}$.

Common properties

Given three languages A, B and C over an alphabet Σ , these properties hold:

$$A^{\mathbb{C}^{\mathbb{C}}} = A$$

$$A \cup A^{\mathbb{C}} = \Sigma^{*}$$

$$(A \cup B)^{\mathbb{C}} = A^{\mathbb{C}} \cap B^{\mathbb{C}}$$

$$(A \cap B)^{\mathbb{C}} = A^{\mathbb{C}} \cup B^{\mathbb{C}}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Other Operations

Concatenation of languages

Some operations on words can be extended to languages.

Concatenation

Given two languages L_1 and L_2 , we define their concatenation as the language $L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}$.

Exponentiation of languages

Exponentiation

Given an integer $k \in \mathbb{N}$ and a language L, we define the languages:

- $L^0 = \{ \varepsilon \}$.
- $L^k = \underbrace{L \cdot \cdots \cdot L}_{k \text{ times}}$.

 L^k is the set of all words obtained by concatenating k words of L.

Note that $L^k \neq \{u^k \mid u \in L\}$. We can concatenate k different words together, we don't always have to repeat the same word k times.

As an example, if $L = \{ab, cd, e\}$, then $abcde \in L^3$.

Other Operations

Prefixes, suffixes, factors

Prefix of a language

Let L be a language on Σ . The language Pref(L) is the set of all words that are the prefix of **at least one** word of L.

Formally, $\operatorname{Pref}(L) = \{ w \mid x \in L, w \in \operatorname{Pref}(x) \}$. We define $\operatorname{Suff}(L)$ and $\operatorname{Fact}(L)$ in a similar manner.

Note that $w \in Pref(L)$ does not have to be a prefix of every word in L.

As an example, $Pref({a, bc}) = {\varepsilon, a, b, bc}.$

Practical Application

Exercise 3. Are the following properties true in the general case, assuming a generic language *L*? If they're not, use **counter-examples** to falsify them.

```
\begin{aligned} \mathsf{Fact}(L) &= \mathsf{Pref}(L) \cup \mathsf{Suff}(L) \\ \mathsf{Pref}(L) &= \mathsf{Pref}(\mathsf{Pref}(L)) \\ \mathsf{Pref}(\mathsf{Fact}(L)) &= \mathsf{Pref}(L) \\ \mathsf{Pref}(\mathsf{Fact}(L)) &= \mathsf{Fact}(L) \\ \mathsf{Fact}(L) &= \mathsf{Pref}(\mathsf{Suff}(L)) \end{aligned}
```

Answer

Other Operations

Kleene star

Kleene star

Given a language L, we introduce $L^* = L^0 \cup L_1 \cup L^2 \cup \cdots = \bigcup_{n \geq 0} L^n$, that is, the set of words than we can obtain by concatenating a **finite** number of words (possibly **none**) of L.

In a similar manner, we define $L^+ = \bigcup_{n \ge 1} L^n$ as the set of words than we can obtain by concatenating at least one word of L.

Other Operations

Properties of the Kleene star

For any language L, the following properties hold:

- $\varepsilon \in L^*$, even if $\varepsilon \notin L$. We can always pick 0 words of L to concatenate.
- However, $\varepsilon \in L^+$ if and only if $\varepsilon \in L$.
- $\emptyset^* = \varepsilon$. Again, we pick 0 words to concatenate.
- $\Sigma^* = \Sigma^*$. A word is indeed a finite concatenation of letters, and our initial notation makes sense.

Practical Application

Exercise 4. Are the following properties true in the general case, assuming three generic languages L_1, L_2, L_3 ?

$$\{ab\} \cup \{ba\} = \{abba\}
 \{a\}^n = \{a^n\}
 \{a\}^* = \{a^n \mid n \ge 0\}
 \{a,b\}^n = \{a^n,b^n\}
 \{a,b\}^3 = \{aaa,aab,aba,abb,baa,bab,bba,bbb\}
 (L_1 \cup L_2)^2 = L_1^2 \cup L_1L_2 \cup L_2L_1 \cup L_2^2
 L_1 \cdot (L_2 \cup L_3) = (L_1 \cdot L_2) \cup (L_1 \cdot L_3)$$

Answer

See you next class!