가 .

NaOH용액으로 pH 8.2이 될 때가지 적정하였다. 적정한 양을 유기산 계수를 이용하여 다음식으로 나타내 총산으로 환산하였다. 휘발산은 와인을 증류하여 시료로 사용하였으며, 시료 10mL을 취하여 페놀프탈레인 용액 2~3방울을 떨어뜨린 후, pH를 측정하였고, 0.01N NaOH용액으로 pH 8.2이 될 때가지 적정하였다.

총산 =
$$\frac{F \times V \times f}{S} \times 100$$

V = 소비한 0.1N-NaOH의 mL수

f = 0.1N-NaOH의 Factor (= 1)

S = 검체량

F = 0.1N NaOH 용액 0.1ml에 상당하는 유기산의 계수(0.0075 주석산)

가

(2) 주정도

냉각관에 냉각수를 연결한 후 시료 100ml과 증류수 100ml을 넣고 끓였다. 증류하여 나온 액체를 100mL 메스실린더에 80ml을 받은 후, 증류수로 전체 부피를 100mL로 채웠다. 증류액의 온도가 10~15℃ 이하가 되도록 메스실린더를 냉각시키고 비중과 온도를 측정한 다음, 환산표에 대입하여 주정도를 측정하였다.

(3) 당도, 비중, Hue값과 color intensity, 색도

증류수 1ml을 넣은 후 영점을 맞추고, 시료 1ml을 디지털 당도계에 넣은 후 당도를 측정하였다. 비중은 알코올 발효정도를 확인하기 위하여 비중계를 이용하여 분석하였다. 분광광도계(Lambda 35 UV, Ferkin Elmer)를 사용하여 Hue 값은 420nm/520nm의 흡광도 비로 나타내었으며, color intensity는 420nm+520nm+620nm 흡광도의 합으로 나타내었다. 시료의 색도 측정은 색도색차계(CM-5, KONICA MINOLTA OPTICS)를 사용하여 3회 측정값의 평균값으로 나타내어 명도는 L값(lightness), 적색도는 a값(redness), 황색도는 b값(yellowness)을 비교하였고

(4) 유리당 분석

시료의 유리당 분석은 HPLC(1200 Infinity, Agilent)를 이용하여 분석하였다. 사용 컬럼은 Zorbax Carbohydrate(4.6x250mm)를 이용하여 RID(30℃)로 검출하였다. 이동상은 acetonitrle과 water를 75:25로 흘려주고 시료 20μℓ를 주입하여 flow rate를 1.5min/ml로 분석하였다.

(5) 유기산 함량

유기산 함량은 시료를 0.45 µm membrane filter로 여과한 후 HPLC(1200 Infinity, Agilent)로 분석하였다. 칼럼은 Hi-Plex H(7.7×300 mm)을 사용하였으며, 이동상은 0.01 M H2SO2, 유속은 0.6 mL/min, 시료 주입량은 20 µL로 하였다. 검출기는 UV 210nm(50℃)를 사용하였으며 표준물질은 와인의 주요 유기산인 citric acid, tartaric acid, malic acid, lactic acid, formic acid, acetic acid(Sigma)로 검량곡선을 작성하여 시료 중의 개별 유기산 함량을 정량하였다.

(6) 향기성분(Losada 등, 2012)

와인의 향기성분을 분석하기 위하여 20 mL headspace에 와인을 10mL를 넣고 내부표준물