Overview

This project applies imitation learning to robot motion control in **Gazebo + ROS.** Expert trajectories are generated with the built-in *move_base* stack in Gazebo. A dataset is automatically collected in 2.5 hours, and extracted from a rosbag, a NN is trained **with five input features** (x, y, θ , goal_x, goal_y) and finally deployed in a **hybrid NN + sequential PID** controller that runs onboard the TurtleBot3.

The emphasis of this document is on the data pipeline and the **new hybrid controller** that appears in the attached nn_controller.py.

Objective

The goal was to automatically collect navigation data from a TurtleBot3 in Gazebo, preprocess it, train a NN controller, and implement it as a **control system** in ROS to navigate to user-defined setpoints.

Implementation Process

1. Data Collection: Automating Navigation Goals

- **File**: goals_sender.py
- **Purpose**: To automate the process of sending navigation goals to the TurtleBot3 in Gazebo, thereby generating a diverse dataset of expert navigation trajectories provided by the move_base stack.

• Operation Flow:

 Goal Definition: A list of 43 predefined (x, y, theta) goals is created. The orientation theta is fixed at 0.0 to standardize the final heading. ROS Action Client: An actionlib.SimpleActionClient is initialized to communicate with the /move_base action server, which handles the robot's navigation.

• Execution Loop:

- On the first run, the script iterates sequentially through all 43 goals.
- On subsequent runs, it selects a random goal from the list.
- Goal Transmission: The send_goal function converts the yaw angle to a quaternion, sends the goal, and waits up to 150 seconds for completion, sleeping for 1.5 seconds on success to prevent system overload.

Logic and Rationale:

- Diverse Trajectories: Iterating through all goals and then selecting randomly ensures the dataset includes a wide variety of paths, improving the NN's ability to generalize across the map.
- Robust Goal Management: Using actionlib provides reliable goal handling with feedback on success or failure.
- Dependency Management: Manual quaternion conversion avoids external libraries like tf, simplifying setup.
- **System Stability**: The timeout and sleep periods ensure stable navigation and prevent overwhelming the system.

2. Data Recording: Capturing ROS Topics

• **Command**: rosbag record -O Recorded_Robot /gazebo/model_states /cmd_vel /move_base/goal

• **Purpose**: To record the robot's state, control inputs, and navigation goals during the automated runs.

• Operation Flow:

• Recorded Topics:

- /gazebo/model_states: Provides the robot's current pose (x, y, θ) .
- /cmd_vel: Captures the control inputs (linear velocityv and angular velocity w).
- /move_base/goal: Logs the goals being pursued.
- **Execution**: This command runs in a terminal while goals_sender.py operates, saving the data into a .bag file.

Logic and Rationale:

- Comprehensive Data: These topics capture the complete information needed for imitation learning: the state (pose), the expert action (cmd_vel), and the reference (goal).
- ROS Bag Format: This standard format preserves timestamps and message structures, facilitating accurate preprocessing.

3. Data Preprocessing: Extracting and Synchronizing Data

- File: preprocess_bag.py
- **Purpose**: To convert the recorded ROS bag file into a synchronized CSV dataset suitable for NN training.

• Operation Flow:

- Data Extraction: The script iterates through the rosbag messages. It extracts the robot's pose from /gazebo/model_states, the goal pose from /move_base/goal, and the control commands from /cmd_vel.
- Synchronization Logic: A new data row [x, y, theta, goal_x, goal_y, goal_theta, v, w] is created and appended to the dataset every time a /cmd_vel message is received. This row uses the most recently recorded values for current_pose and goal_pose.
- Output: The synchronized dataset is saved as training_data.csv.

• Logic and Rationale:

- Temporal Alignment: This synchronization approach
 ensures that every expert control action (v, w) is paired with
 the state and goal that produced it, which is critical for
 supervised learning.
- Consistent Orientation: Using euler_from_quaternion ensures a consistent representation of the robot's and goal's orientation (yaw).
- CSV Format: This universal format simplifies data loading for the training phase.

4. Neural Network Training: Learning from Collected Data

- **File**: training_notebook.ipynb
- **Purpose**: To train a NN to predict control actions (*v*, *w*) based on the robot's current state and goal.

• Operation Flow:

- Data Loading: The script loads training_data.csv, shuffles it randomly, and splits it into an 80% training and 20% validation set.
- Feature and Target Selection:
 - Inputs (X): 6 features representing the state and goal: x, y, theta, goal_x, goal_y, and goal_theta.
 - Outputs (y): 2 target variables: v and w.
- Model Architecture: A 7-layer deep NN was defined:
 - **Input Layer**: 6 neurons
 - Hidden Layers (ReLU): $256 \rightarrow 128 \rightarrow 128 \rightarrow 64 \rightarrow 64 \rightarrow 32$ neurons
 - **Output Layer (Linear)**: 2 neurons for v and w
- o Training:
 - **Optimizer**: Adam with a learning rate of **0.0005**.
 - Loss Function: Mean Squared Error (MSE).
 - Regularization: Early stopping with a patience of 25 epochs was used to prevent overfitting.

Figure 4. Model Loss Plot

• **Output**: The trained model is saved as model.h5.

• Logic and Rationale:

- Data Randomization: Shuffling and splitting ensure an unbiased evaluation of the model's performance on unseen data.
- Network Design: The deep architecture is designed to capture the complex, non-linear relationship between the robot's state/goal and the expert's control commands. ReLU activation aids gradient flow, and early stopping ensures the model generalizes well.
- Regression Task: The linear output layer and MSE loss are appropriate for this regression task, where the goal is to predict continuous velocity values.

5. Hybrid NN+PID Controller Implementation

- **File**: nn_controller.py
- **Purpose**: To deploy the trained NN in a robust, hybrid control scheme. The NN handles long-range navigation, while a sequential PID controller takes over for precise docking at the goal.

• Operation Flow:

- Model Loading: The node loads the weights and biases from model.h5 directly into NumPy arrays using the h5py library, avoiding a full TensorFlow/Keras dependency.
- Forward Pass: A pure NumPy nn_forward function is implemented to perform the NN's forward propagation.
- ROS Node Setup: The node subscribes to
 /gazebo/model_states for the current pose and
 /reference_pose for the goal coordinates [x_r, y_r]. It
 publishes commands to /cmd_vel and a boolean flag to
 /goal_reached.

o Hybrid Control Logic:

- The distance to the goal is calculated at each step.
- NN Mode (Far): If the distance is greater than 0.35m, the node uses the NN. It constructs a 6D input vector [x, y, th, gx, gy, 0.0] and calls nn_forward to predict v and w.
- PID Mode (Near): If the distance is less than or equal to 0.35m, the node switches to a sequential PID controller. This controller executes three phases in order:

- 1. align1: Rotate to face the goal.
- 2. drive: Move straight toward the goal.
- 3. align2: Rotate to the final desired orientation (0 radians).
- Once the PID controller finishes, the node publishes
 True to /goal_reached.

• Logic and Rationale:

- Hybrid Approach: This design combines the strengths of both control methods. The NN, trained on expert data, provides efficient, human-like navigation over long distances. The classical PID controller ensures guaranteed precision and stability for the final approach, a task where NNs can sometimes struggle.
- State Representation: The 6D input vector for the NN matches the format of the training data, ensuring accurate predictions.
- Safe Operation: The predicted velocities are clamped to the TurtleBot3's maximum limits to ensure safe and realistic operation.
- Modularity: Publishing a /goal_reached flag allows for easy integration with a higher-level planner like motion_planner.py.

6. Motion Planning: User-Defined Setpoints

- File: motion_planner.py
- **Purpose**: To provide a simple user interface for testing the controller by sending sequential goals.

Operation Flow:

- User Input: The script prompts the user to enter target X and Y coordinates.
- Goal Publishing: It publishes the [x_r, y_r] coordinates to the /reference_pose topic as a Float64MultiArray.
- Sequential Execution: The script subscribes to the /goal_reached topic and waits until it receives a True message before prompting the user for the next goal.

Logic and Rationale:

- User-Friendly Testing: This node allows for easy, interactive testing of the nn_controller with any custom goal within the map.
- Task Management: By waiting for the /goal_reached signal, it ensures that goals are executed one at a time, mimicking a real-world sequential task planner.

Discussion

Automated data collection and careful preprocessing were critical to the success of this problem. The key innovation was the implementation of a **hybrid controller**. The NN generalized well across diverse navigation scenarios, but by handing over control to a deterministic PID controller near the goal, the system achieved high precision and reliability at the goal boundaries. This hybrid approach proved to be a robust solution, combining the learned efficiency of the NN with the predictable accuracy of classical control