Adaptive meshing

Magnetic scalar potential
$$\mathbf{H} = -\operatorname{grad} \psi$$

solve
$$\psi \in H_1 (order = N)$$

$$\int_{\Omega} \mu \nabla \omega \cdot \nabla \psi = -\int_{\partial \Omega} \omega \mathbf{B}_{s} \cdot \mathbf{n} \quad for \ \omega \in H_{1}^{0}(order = N)$$

Error estimation

element error:
$$E_e = \int_e \mu^{-1} \left| \mathbf{B'} - \mathbf{B} \right|^2$$

$$\mathbf{B} = -\mu \nabla \psi \ \mathbf{B}' = I_h(\mathbf{B}) \ I_h$$
: Local interpolation to $\mathbf{H}_{\text{div}}(order = N - 1)$

Refinement

for elements,
$$E_e > r * \max(E_e)$$
 $r: 0.25$ for example

Zienkiewicz-Zhu type error estimator

https://docu.ngsolve.org/latest/i-tutorials/unit-1.6-adaptivity/adaptivity.html

Adaptive meshing (Ω - Ω r法)

feOrder=3

Initial Mesh Ne=150, Ndof=783,Nnonzero=26111

Mesh after 10 Refinement Ne=243903, Ndof=1108002, Nnonzero=53237796

Adaptive meshing (Ω - Ω r法)

2025/9/2 A. kameari

Wm

一点の磁場は滑らかに収束しない。特に、二次要素では精度が出ない。

評価点(0,0,0)近傍は細分割されない。 磁場は一様で誤差が小さいと評価される。

磁気エネルギの積分量は滑らかに収束。

Error \sim T_{cal}^{-1.3} for order \geq 3