Redes Neuronales

Redes Neuronales de base radial carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Marzo de 2019

Contenido

- 1 Funciones de base radial
- 2 Modelo neuronal
- 3 Algoritmo Kmeans
- 4 Entrenamiento
- 5 Redes de base radial frente a perceptrón multicapa

Contenido

- 1 Funciones de base radial
- 2 Modelo neuronal
- 3 Algoritmo Kmeans
- 4 Entrenamiento
- 5 Redes de base radial frente a perceptrón multicapa

Funciones de base radial

Definiciones

- Son funciones cuya salida depende de la distancia a un punto denominado centro
- Son funciones simétricas con respecto a 0
- Se definen al menos dos parámetros:
 - Centro: Punto donde la función posee un máximo
 - Anchura: Magnitud de la variación de la función según la distancia del centro.

Funciones de base radial

Definiciones

Figura: Función de Gauss. Tomado de Wikipedia.

Contenido

- 1 Funciones de base radial
- 2 Modelo neuronal
- 3 Algoritmo Kmeans
- 4 Entrenamiento
- 5 Redes de base radial frente a perceptrón multicapa

Definiciones

- Se tiene un modelo similar al perceptrón multicapa
- La capa de entrada recibe señales y no realiza ningún procesamiento
- Capa oculta: Realiza una transformación local de las entradas y no lineal de esas señales, a diferencia de perceptrón
- Capa de salida: Realiza una combinación lineal de las señales y actúa como salida

Figura: Arquitectura red neuronal base radial [Pinedo, 2015].

Capa de salida

- Cada elemento procesado calculado su valor neto como una combinación lineal de las salidas de la capa oculta
- Para un patrón dado $[x_1, x_2, ..., x_n]$ la salida cada elemento k de la capa de salida se obtiene así:

$$y_k(n) = \sum_{i=1}^m \underline{w_{ik}} z_i(n) + u_k, k \in [1, 2, ..., r]$$
 (1)

Donde w_{ik} son los pesos asociados a cada elemento k de la salida y el elemento i de la capa oculta y $z_i(n)$ son las salidas procesadas obtenidas de la capa oculta. En total tenemos m neuronas en la capa oculta y r en la capa de salida. u_k es el umbral de cada neurona de salida.

Capa oculta

Cada elemento de procesado tiene asociada una función de base radial de tal manera representa una clase o categoría, donde dicha clase viene dada por (C_i, d_i) . C_i representa el centro del cluster (pesos asociados a cada neuronal i) y d_i representa la desviación, anchura o dilatación de la función de base radial.

Capa oculta

La salida de cada elemento de la capa oculta z(n) se calcula como la distancia que existe entre el patrón X(n) al centro del cluster C_i ponderada inversamente por $\widehat{d_i}$, de la signiente forma:

$$z_i(n) = \phi \left(\frac{\sqrt{\sum_{j=1}^{p} (x_j(n) - c_{ij})^2}}{d_i} \right)$$
 (2)

Donde ϕ es una función de base radial. La más común es

$$\phi(r) = e^{-\frac{r^2}{2}}.$$

$$\left[\begin{array}{ccc} \chi_{1}, \chi_{2} & ... \chi_{0} \end{array}\right] \quad \left[\begin{array}{ccc} \zeta_{1}, \zeta_{2} & ... \zeta_{0} \end{array}\right]$$

$$\left(\begin{array}{ccc} \chi_{1} - \zeta_{1} \end{array}\right)^{2} + \left(\begin{array}{ccc} \chi_{2} - \zeta_{2} \end{array}\right)^{2}.$$

Características

- Las funciones de base radial tienen un carácter local, ya sólo se basan en el patrón de entrada actual y no en el total
- Estas funciones alcanzan un máximo cuando el patrón está próximo a la neurona ((en ro))
- A medida que se aleja el patrón del centro, la salida de la función disminuye
- Las salidas de las redes neuronales de base radial son una combinación lineal de gaussianas

Contenido

- 1 Funciones de base radial
- 2 Modelo neuronal
- 3 Algoritmo Kmeans
- 4 Entrenamiento
- 5 Redes de base radial frente a perceptrón multicapa

Introducción

- Es un algoritmo de agrupamiento
- Permite general partición de un conjunto de n datos en k grupos
- Es un método ampliamente utilizado en minería de datos
- En RBF lo requerimos para calcular los centros en la técnica de aprendizaje híbrido

Algoritmo

- Es un proceso iterativo, en que cada iteración determinamos los centros
- 2 Se asume un espacio *n* dimensional de características de entrada
- Inicialmente, calculamos los k centros aleatoriamente $c_i = (x_1, x_2,, x_n)$
- Tomamos las distancias a cada uno de los puntos de entrada y asignamos al centro más cercano

Algoritmo

- 5 Calculamos para cada cluster asignado su centro
- 6 Si los centros son distintos a los iniciales, volvamos a realizar el proceso
- 7 El algoritmo se detiene cuando de una iteración a otra no hay cambio en los centros

Ejemplo

Dados los siguiente datos:

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3
1	4	3
2	1	7
3	1	4
7	2	1

Tomamos k = 2

Ejemplo

Calculamos dos centros aleatorios $C_1 = (1, 1, 1)$, $C_2 = (4, 4, 4)$. Para la distancia a los centros se puede usar distancia geométrica o manhattan. En nuestro caso manhattan.

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	$dis(C_1)$	$dis(C_2)$	asig
1	4	3	5	, 4	C_2
2	1	7	7	8	Č
3	1	4	5	4	Ç 2
7	2	1	7	8	ζ_1

Los nuevos centros son: $C_1 = (4,5,1,5,4), C_2 = (2,5,3,5,5)$

Ejemplo

Centros son: $C_1 = (4,5,1,5,4), C_2 = (2,5,3,5,5)$

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	$dis(C_1)$	$dis(C_2)$	asig
1	4	3	7 `	4	C_2
2	1	7	6	5	C_2
3	1	4	2	4	C_1
7	2	1	6	9	C_1

Los nuevos centros son: $C_1 = (5, 1, 5, 2, 5), C_2 = (1, 5, 2, 5, 5)$

Ejemplo

CVentros son: $C_1 = (5, 1, 5, 2, 5), C_2 = (1, 5, 2, 5, 5)$

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	$dis(C_1)$	$dis(C_2)$	asig	
1	4	3	7	4	C_2	
2	1	7	8	4	C_2	
3	1	4	4	4	C_1^*	H
7	2	1	4	9	C_1	

^{*} Lo seleccionamos por conveniencia.

Los nuevos centros son: $C_1 = (5, 1, 5, 2, 5)$, $C_2 = (1, 5, 2, 5, 5)$. Hemos terminado ya que los centros no han cambiado.

Contenido

- 1 Funciones de base radial
- 2 Modelo neuronal
- 3 Algoritmo Kmeans
- 4 Entrenamiento
- 5 Redes de base radial frente a perceptrón multicapa

Entrenamiento

El entrenamiento de este tipo de redes determina todos los parámetros de la red

- Parámetros de salida: Pesos. Los cuales se determinan por la optimización del espacio de entradas
- Parámetros de capa oculta: Centros y desviaciones. Estos se determinan en base a las salidas deseadas

Para este tipo de redes se tienen varias estrategias de entrenamiento, la más popular es el entrenamiento híbrido, debido a su facilidad de implementación.

Entrenamiento híbrido

Este consiste en dos pasos:

- Fase no supervisada: Determinación de parámetros en capa oculta
- Fase supervisada: Determinación de pesos en la capa de salida

Entrenamiento híbrido: Fase no supervisada

- Determinación de centros: Algoritmo de K-means o Mapas de Kohonen
- Determinación de desviaciones: Se deben calcular de tal manera que cada neurona de la capa oculta se active de tal forma la solapación de espacios sea lo más pequeña posible.

Entrenamiento híbrido: Fase no supervisada

Existen varias estrategias para la determinación de desviaciones:

 Media uniforme de las distancias euclidianas del centro C_i a los p centros más cercanos

$$d_i = \frac{1}{2} \sum_{p} ||C_i - C_p|| \tag{3}$$

Media geométrica de la distancia del centro a sus dos vecinos más cercanos:

$$d_i = \sqrt{|C_i - C_t|| * ||C_i - C_s||}$$
 (4)

Donde C_t y C_s son los más cercanos a C_i

Entrenamiento híbrido: Fase supervisada

- Se utiliza la técnica de corrección del error que vimos en Adeline o MLP
- Minimización del error cuadrático medio
- Las reglas de entrenamiento son:

$$w_{ik}(t+1) = w_{ik}(t) + \epsilon(t^k - y^k) \underline{\phi(n)}$$

$$u_k(t+1) = u_k(t) + \epsilon(t^k - y^k)$$

Donde ϵ es el factor de entrenamiento, u_k el centro, t^k es la salida deseada, w_{ik} es el peso y y^k es la salida obtenida.

Contenido

- 1 Funciones de base radia
- 2 Modelo neuronal
- 3 Algoritmo Kmeans
- 4 Entrenamiento
- 5 Redes de base radial frente a perceptrón multicapa

RBF vs MLP

Comparación	
MLP	RBF
Uso de funciones de transferen-	Cada neurona en la capa oculta
cia sigmoidales	se especializa en una región del
	espacio de entradas, es decir en
	una clase.
Aprendizaje lento: Cambio de	Aprendizaje rapido: el cambio
pocos pesos por patrón	de pesos sólo afecta a la neu-
	rona asociada a dicho peso o a
	los patrones de la misma clase

RBF vs MLP

Comparación

MLP	RBF
Es robusta y tolerante al ruido.	Es necesario en algunos casos
No se requiere un gran núme-	un gran número de neuronas en
ro de neuronas con relación al	la capa oculta ya que se puede
espacio de entradas.	perder generalización. El núme-
	ro de neuronas en capa ocul-
	ta crece exponencialmente de
	acuerdo al espacio de entradas.

Referencias I

MacQueen, J. (1967).

Some methods for classification and analysis of multivariate observations.

In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif. University of California Press.

Pinedo, M. (2015).

Curso de sistemas conexionistas.

http://www.varpa.org/~mgpenedo/.

Accessed: Marzo-2017.

¿Preguntas?

Próximo tema:

Tendencias en redes neuronales.

