MF702 PROBLEM SET 6

- 1. Consider M assets whose return is a M-dimensional random vector r. The expected value of r is a M-dimensional column vector \overrightarrow{r} and the covariance matrix is Σ .
- (a) The Maximum Sharpe Ratio portfolio Δ_{MSR} solves

$$\max_{\Delta} \frac{\Delta^{\top} \overrightarrow{r}}{\sqrt{\Delta^{\top} \Sigma \Delta}}, \quad \text{s.t. } \Delta^{\top} \overrightarrow{1} = 1.$$

Use the Lagrange multiplier method to show that $\Delta_{MSR} = \frac{\Sigma^{-1} \overrightarrow{r}}{\overrightarrow{1} \Sigma^{-1} \overrightarrow{r}}$.

(b) The Global Minimum Variance portfolio Δ_{GMV} solves

$$\min_{\Delta} \Delta^{\top} \Sigma \Delta, \quad \text{s.t. } \Delta^{\top} \overrightarrow{1} = 1.$$

Show that $\Delta_{GMV} = \frac{\Sigma^{-1} \overrightarrow{1}}{\overrightarrow{1}^{\top} \Sigma^{-1} \overrightarrow{1}}$.

2. You can invest in three assets with expected returns and return covariance matrix given by

$$\overrightarrow{r} = \begin{pmatrix} 0.10 \\ 0.09 \\ 0.16 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 0.09 & -0.03 & 0.084 \\ -0.03 & 0.04 & 0.012 \\ 0.084 & 0.012 & 0.16 \end{pmatrix}.$$

You can also invest in the risk-free asset with return $r_f = 0.02$.

- (a) What is the market portfolio (Δ_{MSR}) in this setting? Compute the optimal weights invested in each risky security for this portfolio.
- (b) Find the minimum-volatility portfolio which achieves an expected return of $\bar{r} = 0.20$.
- 3. (ETF construction) Often we wish to track an index I, but for practical reasons (such as wishing to avoid transactions costs) we cannot invest in all the securities which comprise I. In this setting, we wish to construct a portfolio that mimics the index most closely, in the sense of minimizing the tracking error, while still maintaining a target level of return.

More precisely, suppose we may invest in a subset of the index, comprising of M stocks. The stocks have (random) returns r_1, \ldots, r_M with expected values $\overrightarrow{r} = (\overline{r}_1, \ldots, \overline{r}_M)$ and covariance matrix $\Sigma = \{\Sigma_{mk}\}_{m,k=1}^M$ where $\Sigma_{mk} = Cov(r_m, r_k)$. On the other hand, the index I has random return r_I with expected value \overline{r}_I and variance σ_I^2 . We are able to

estimate the covariance of the index and stock returns, obtaining the vector $\Upsilon = \{\Upsilon_m\}_{m=1}^M$, $\Upsilon_m = Cov(r_m, r_I)$. Lastly, we assume the investor may not allocate money to the ZCB.

We wish to find the portfolio weights $\Delta = (\Delta_1, \dots, \Delta_M)$ whose random return $r(\Delta)$ minimize

$$Var(r(\Delta) - r_I),$$
 (1)

still yielding an expected return of $\bar{r}(\Delta) = \bar{r}$, where \bar{r} is the target return.

(a) Consider the (related) problem of trying to find the portfolio which is most closely correlated with the index, but has no opinion about the expected return: i.e.

$$\max_{\Delta} Corr(r(\Delta), r_I), \quad \text{s.t. } \Delta^{\top} \overrightarrow{1} = 1.$$

Explicitly identify the optimal portfolio $\Delta_{Corr,I}$.

(b) Now, come back to the problem in (1):

$$Var(r(\Delta) - r_I), \quad \text{s.t.} \bar{r}(\Delta) = \bar{r}, \Delta^{\top} \overrightarrow{1} = 1.$$

Show that the optimal portfolio admits the decomposition

$$\Delta^* = \alpha_{C,I} \Delta_{Corr,I} + \alpha_M \Delta_{MSR} + \alpha_G \Delta_{GMV}.$$

Explicitly identify the constants $\alpha_{C,I}$, α_M , and α_G .