Winter – 2012 Examination

Subject & Code: Applied Maths (12054)

**Model Answer** 

Page No: 1/21

| Que. | Sub. | Model answers                                                                                                              | Marks   | Total |
|------|------|----------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.  | Que. |                                                                                                                            | IVIAIKS | Marks |
| 1)   | a)   | $\int \frac{\left(x-2\right)^2}{x} dx = \int \frac{x^2 - 4x + 4}{x} dx$ $= \int \left(x - 4 + \frac{4}{x}\right) dx$       | 1       |       |
|      |      |                                                                                                                            | 4       | 2     |
|      |      | $=\frac{x^2}{2}-4x+4\log x+c$                                                                                              | 1       | 2     |
|      |      | <b>Note:</b> In solution of integration problems, if the constant 'c' is not added, ½ mark <b>may be</b> deducted.         |         |       |
|      | b)   | $\int x \log x dx$                                                                                                         |         |       |
|      |      | $= \log x \int x dx - \int \left( \int x dx \right) \frac{d}{dx} (\log x) dx + c$                                          | 1/2     |       |
|      |      | $= \log x \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x} dx + c$                                               | 1/2     |       |
|      |      | $= \frac{x^2 \log x}{2} - \frac{1}{2} \int x dx + c$                                                                       |         |       |
|      |      | $= \frac{x^2 \log x}{2} - \frac{1}{2} \cdot \frac{x^2}{2} + c$                                                             | 1/2     |       |
|      |      | $=\frac{x^2\log x}{2} - \frac{x^2}{4} + c$                                                                                 | 1/2     | 2     |
|      | c)   | $\int \frac{1-\tan x}{1+\tan x} dx$                                                                                        |         |       |
|      |      | $= \int \frac{\cos x - \sin x}{\cos x + \sin x} dx$ $  Put \cos x + \sin x = t \\ (\cos x - \sin x) dx = dt$               |         |       |
|      |      | $\int_{-\infty}^{\infty} \cos x + \sin x dx = \int_{-\infty}^{\infty} (\cos x - \sin x) dx = dt$                           | 1       |       |
|      |      | $=\int_{-t}^{1} dt + c$                                                                                                    |         |       |
|      |      | $=\log t + c$                                                                                                              | 1/2     |       |
|      |      | $= \log(\cos x + \sin x) + c$                                                                                              | 1/2     | 2     |
|      |      | OR                                                                                                                         |         |       |
|      |      | $\int \frac{1-\tan x}{1+\tan x} dx$                                                                                        |         |       |
|      |      | $= \int \frac{\cos x - \sin x}{\cos x + \sin x} dx \qquad \left  \frac{d}{dx} (\cos x + \sin x) = \cos x - \sin x \right $ | 1       |       |
|      |      | $= \log(\cos x + \sin x) + c$                                                                                              | 1       | 2     |
|      |      | OR                                                                                                                         |         |       |
|      |      |                                                                                                                            |         |       |



(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_

Subject & Code: Applied Maths (12054)

Page No: 2/21

| Que. | Sub. | Model answers                                                                                                                      | Marks                              | Total |
|------|------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|
| No.  | Que. |                                                                                                                                    |                                    | Marks |
| 1)   |      | $\int \frac{1-\tan x}{1+\tan x} dx = \int \tan \left(\frac{\pi}{4} - x\right) dx$                                                  | 1/2                                |       |
|      |      | 1 · tail ·                                                                                                                         |                                    |       |
|      |      | $= \frac{\log \sec \left(\frac{\pi}{4} - x\right)}{1} + c$                                                                         | 1                                  |       |
|      |      | -1                                                                                                                                 |                                    |       |
|      |      | $=-\log\sec\left(\frac{\pi}{4}-x\right)+c$                                                                                         | 1/2                                | 2     |
|      | d)   | The given problem cannot be solved within the given limits                                                                         |                                    |       |
|      |      | because for the integrating the given function within the prescribed limits the function must be well defined on the given         |                                    |       |
|      |      | interval. For example at $x = \frac{\pi}{4}$ , $\frac{1}{\sqrt{1-x^2}}$ is a non-real number                                       |                                    |       |
|      |      | and hence the function is not defined on the interval $\left[0, \frac{\pi}{4}\right]$ .                                            | 2                                  | 2     |
|      | e)   | $\int_{1}^{e} \log x dx = \left[ \log x \int dx - \int \left( \int 1 dx \right) \frac{d}{dx} \left( \log x \right) dx \right]^{e}$ | 1/2                                |       |
|      |      | ے ہو جات ہے ا                                                                                                                      | /-                                 |       |
|      |      | $= \left[\log x \cdot x - \int x \cdot \frac{1}{x} dx\right]_{1}$                                                                  |                                    |       |
|      |      | $= \left[ x \log x - \int 1.dx \right]_{1}^{e}$                                                                                    |                                    |       |
|      |      | $= \left[ x \log x - x \right]_1^e$                                                                                                | 1/2                                |       |
|      |      | $= [e\log e - e] - [1\log 1 - 1]$                                                                                                  | 1/2                                |       |
|      |      | =0-[-1]                                                                                                                            |                                    |       |
|      |      | =1                                                                                                                                 | 1/2                                | 2     |
|      |      | OR                                                                                                                                 |                                    |       |
|      |      | $\int_{1}^{e} \log x dx = \left[ x \log x - x \right]_{1}^{e}$                                                                     | 1                                  |       |
|      |      | $= \left[e\log e - e\right] - \left[1\log 1 - 1\right]$                                                                            |                                    |       |
|      |      | $=0-\left[ -1\right]$                                                                                                              | 1/                                 |       |
|      |      | =1                                                                                                                                 | 1/ <sub>2</sub><br>1/ <sub>2</sub> | 2     |
|      |      | $d^2v = \sqrt{(dv)^2}$                                                                                                             |                                    |       |
|      | f)   | $\frac{d^2y}{dx^2} = \sqrt[4]{y + \left(\frac{dy}{dx}\right)^2}$                                                                   | 1                                  |       |
|      |      | Order = 2                                                                                                                          |                                    |       |
|      |      | $\left(\frac{d^2y}{dx^2}\right)^4 = y + \left(\frac{dy}{dx}\right)^2$                                                              |                                    |       |
|      |      | Degree = 4                                                                                                                         | 1                                  | 2     |



Page No: 3/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_

| Que. | Sub. Model answers                                                                                                                    |           | Marks | Total |
|------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|
| No.  | Que. $y = A\cos 3x + B\sin 3x$                                                                                                        |           |       | Marks |
| g)   | $\therefore \frac{dy}{dx} = -3A\sin 3x + 3B\cos 3x$ $\therefore \frac{d^2y}{dx^2} = -9A\cos 3x - 9B\sin 3x$                           | 1         |       |       |
|      | $= -9y$ $\therefore \frac{d^2y}{dx^2} + 9y = 0$                                                                                       | 1         | 2     |       |
| h)   | $\frac{dy}{dx} = \frac{1+x^2}{y}$ $ydy = (1+x^2)dx$                                                                                   |           |       |       |
|      | $\int y dy = \int (1 + x^2) dx$                                                                                                       | 1         |       |       |
|      | $\frac{y^2}{2} = x + \frac{x^3}{3} + c$                                                                                               | 1         | 2     |       |
| i)   | $L[3+2t^{2}-e^{-t}]$ $= \frac{3}{s} + \frac{4}{s^{3}} - \frac{1}{s+1}$                                                                | 2         | 2     |       |
|      | <b>Note:</b> In the above solution, each term carries ½ mark and if all the terms are correct, the whole answer carries full marks.   |           |       |       |
| j)   | $L[\cos 3t] = \frac{s}{2}$                                                                                                            | 1         |       |       |
| ,,   | $L[\cos 3t] = \frac{s}{s^2 + 9}$ $\therefore L[e^{-2t} \cdot \cos 3t] = \frac{s + 2}{(s + 2)^2 + 9}$                                  | 1         | 2     |       |
| k)   | $L^{-1} \left[ \frac{3s - 7}{s^2 + 9} \right]$ $= L^{-1} \left[ \frac{3s}{s^2 + 9} \right] - L^{-1} \left[ \frac{7}{s^2 + 9} \right]$ |           |       |       |
|      | $=3L^{-1}\left[\frac{s}{s^2+9}\right] - \frac{7}{3}L^{-1}\left[\frac{3}{s^2+3^2}\right]$                                              | 1         |       |       |
|      | $=3\cos 3t - \frac{7}{3}\sin 3t$                                                                                                      | 1/2 + 1/2 | 2     |       |
|      | <b>Note:</b> $\frac{1}{2}$ + $\frac{1}{2}$ means each term carries $\frac{1}{2}$ marks.                                               |           |       |       |



Subject & Code: Applied Maths (12054)

Page No: 4/21

| Sub.<br>Que.<br>l) | Model answers $ \frac{1}{s(s+2)} = \frac{1/2}{s} + \frac{-1/2}{s+2}  \text{or}  \frac{1}{2} \left( \frac{1}{s} + \frac{-1}{s+2} \right) $ $ L^{-1} \left[ \frac{1}{s(s+2)} \right] $ $ = L^{-1} \left[ \frac{1/2}{s} + \frac{-1/2}{s+2} \right] $ | Marks 1                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total<br>Marks                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | $L^{-1}\left[\frac{1}{s(s+2)}\right]$                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | $= \frac{1}{2} - \frac{1}{2} e^{-2t}$                                                                                                                                                                                                             | 1/2 + 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a)                 | $\frac{dx}{dt} = 6 - 3x$ $\therefore \frac{dx}{6 - 3x} = dt$ $\therefore \int \frac{dx}{6 - 3x} = \int dt$                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | $\therefore \frac{\log(6-3x)}{-3} = t + c$ $\therefore \text{ at } x = 0, \ t = 0$                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | $\therefore \frac{\log(6-3x)}{-3} = t - \frac{\log 6}{3}$                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| b)                 | $x^{2}ydx - (x^{3} + y^{3})dy = 0$ $\therefore \frac{dy}{dx} = \frac{x^{2}y}{x^{3} + y^{3}}$ Put $y = vx$ $\therefore \frac{dy}{dx} = v + x\frac{dv}{dx}$                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | $\therefore v + x \frac{dv}{dx} = \frac{x^2 vx}{x^3 + (vx)^3} = \frac{v}{1 + v^3}$ $\therefore x \frac{dv}{dx} = \frac{v}{1 + v^3} - v$ $\therefore x \frac{dv}{dx} = -\frac{v^4}{1 + v^3}$                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                  | o)                                                                                                                                                                                                                                                | $\therefore \text{ at } x = 0, \ t = 0$ $\frac{\log 6}{-3} = 0 + c$ $c = \frac{\log 6}{-3}$ $\therefore \frac{\log (6 - 3x)}{-3} = t - \frac{\log 6}{3}$ $x^2 y dx - (x^3 + y^3) dy = 0$ $\therefore \frac{dy}{dx} = \frac{x^2 y}{x^3 + y^3}$ Put $y = vx$ $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore v + x \frac{dv}{dx} = \frac{x^2 vx}{x^3 + (vx)^3} = \frac{v}{1 + v^3}$ $\therefore x \frac{dv}{dx} = \frac{v}{1 + v^3} - v$ | $\therefore \operatorname{at} x = 0, \ t = 0$ $\frac{\log 6}{-3} = 0 + c$ $c = \frac{\log 6}{-3}$ $\therefore \frac{\log (6 - 3x)}{-3} = t - \frac{\log 6}{3}$ $x^2 y dx - (x^3 + y^3) dy = 0$ $\therefore \frac{dy}{dx} = \frac{x^2 y}{x^3 + y^3}$ Put $y = vx$ $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\therefore v + x \frac{dv}{dx} = \frac{x^2 vx}{x^3 + (vx)^3} = \frac{v}{1 + v^3}$ $\therefore x \frac{dv}{dx} = \frac{v}{1 + v^3} - v$ |



Subject & Code: Applied Maths (12054)

Page No: 5/21

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                                                                  | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 2)          | ~            | $\therefore \int \left(\frac{1}{v^4} + \frac{1}{v}\right) dv = -\int \frac{1}{x} dx$ $\therefore \frac{v^{-3}}{-3} + \log v = -\log x + c$ $\therefore \frac{1}{-3v^3} + \log v = -\log x + c$ | 1     |                |
|             |              | $\therefore \frac{x^3}{-3y^3} + \log\left(\frac{y}{x}\right) = -\log x + c$                                                                                                                    | 1     | 4              |
|             | c)           | $\frac{dy}{dx} = \frac{x - y + 3}{2x - 2y + 5}$ Put $x - y = t$                                                                                                                                |       |                |
|             |              | $\therefore 1 - \frac{dy}{dx} = \frac{dt}{dx}$ $\therefore 1 - \frac{dt}{dx} = \frac{t+3}{2t+5}$                                                                                               | 1     |                |
|             |              | $\therefore \frac{dt}{dx} = 1 - \frac{t+3}{2t+5} = \frac{t+2}{2t+5}$ $\therefore \frac{2t+5}{t+2} dt = dx$                                                                                     |       |                |
|             |              | $\therefore \int \frac{2t+5}{t+2} dt = \int dx$ $\therefore \int \left(2 + \frac{1}{t+2}\right) dt = \int dx$                                                                                  | 1     |                |
|             |              |                                                                                                                                                                                                | 1     |                |
|             |              | $\therefore 2t + \log(t+2) = x+c$<br>$\therefore 2(x-y) + \log(x-y+2) = x+c$                                                                                                                   | 1 1   | 4              |
|             | d)           | $\cos^2 x \frac{dy}{dx} + y = \tan x$                                                                                                                                                          |       |                |
|             |              | $\therefore \frac{dy}{dx} + \sec^2 x \cdot y = \tan x \cdot \sec^2 x$<br>$\therefore P = \sec^2 x \text{ and } Q = \tan x \cdot \sec^2 x$                                                      |       |                |
|             |              | $\therefore IF = e^{\int pdx} = e^{\int \sec^2 x dx} = e^{\tan x}$                                                                                                                             | 1     |                |
|             |              | $\therefore y \cdot IF = \int Q \cdot IF \cdot dx + c$ $\therefore y \cdot e^{\tan x} = \int \tan x \cdot \sec^2 x \cdot e^{\tan x} \cdot dx + c$                                              | 1     |                |
|             |              | Put $\tan x = t$ $\therefore \sec^2 x \cdot dx = dt$                                                                                                                                           | 1/2   |                |
|             |              | $\therefore y \cdot e^{\tan x} = \int t  e^{t} \cdot dt + c$                                                                                                                                   |       |                |
|             |              | $\therefore y \cdot e^{\tan x} = te^t - e^t + c$                                                                                                                                               | 1/2   |                |



Subject & Code: Applied Maths (12054)

Page No: 6/21

|    | Model answers                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\therefore y \cdot e^{\tan x} = e^{\tan x} \left( \tan x - 1 \right) + c$ $\frac{dy}{dx} + \frac{y}{x} = y^3$ $\therefore \frac{1}{y^3} \frac{dy}{dx} + \frac{1}{x} \cdot \frac{1}{y^2} = 1$ Put $\frac{1}{y^2} = t$ $\therefore -2 \cdot \frac{1}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | $\frac{dy}{dx} + \frac{y}{x} = y^{3}$ $\therefore \frac{1}{y^{3}} \frac{dy}{dx} + \frac{1}{x} \cdot \frac{1}{y^{2}} = 1$ Put $\frac{1}{y^{2}} = t$ $\therefore -2 \cdot \frac{1}{y^{3}} \frac{dy}{dx} = \frac{dt}{dx}$                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore \frac{1}{y^3} \frac{dy}{dx} + \frac{1}{x} \cdot \frac{1}{y^2} = 1$ Put $\frac{1}{y^2} = t$ $\therefore -2 \cdot \frac{1}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore \frac{1}{y^3} \frac{dy}{dx} + \frac{1}{x} \cdot \frac{1}{y^2} = 1$ Put $\frac{1}{y^2} = t$ $\therefore -2 \cdot \frac{1}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | Put $\frac{1}{y^2} = t$<br>$\therefore -2 \cdot \frac{1}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore -2 \cdot \frac{1}{y^3} \frac{dy}{dx} = \frac{dt}{dx}$                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | •                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | 1 dt 1                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore \frac{1}{-2} \frac{dt}{dx} + \frac{1}{x} \cdot t = 1$                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore \frac{dt}{dx} + \frac{-2}{x} \cdot t = -2$                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\lambda$                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore IF = e^{\int pdx} = e^{\int \frac{-2}{x}dx} = e^{-2\log x} = e^{\log(x^{-2})} = x^{-2} = \frac{1}{x^2}$                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | ∴ the solution is,                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $t \cdot IF = \int Q \cdot IF \cdot dx + c$                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore t \cdot \frac{1}{x^2} = \int -2 \cdot \frac{1}{x^2} \cdot dx + c$                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore t \cdot \frac{1}{x^2} = -2 \cdot \frac{-1}{x} + c$                                                                                                                                                                                                                          | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore \frac{1}{x^2 y^2} = \frac{2}{x} + c$                                                                                                                                                                                                                                        | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| f) | $L \cdot \frac{di}{dt} = 30\sin\left(10\pi t\right)$                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore Ldi = 30\sin(10\pi t)dt$                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore \int Ldi = \int 30\sin(10\pi t)dt$                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore Li = 30 \frac{-\cos(10\pi t)}{10\pi} + c$                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore Li = \frac{-3}{\pi} \cos(10\pi t) + c$                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | Given $L = 2$ , $i = 0$ , $t = 0$                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $\therefore 0 = \frac{-3}{-1} + c$                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f  |                                                                                                                                                                                                                                                                                         | $P = \frac{-2}{x}  \text{and}  Q = -2$ $\therefore IF = e^{\int pdx} = e^{\int \frac{-2}{x}dx} = e^{-2\log x} = e^{\log(x^{-2})} = x^{-2} = \frac{1}{x^{2}}$ $\therefore \text{ the solution is,}$ $t \cdot IF = \int Q \cdot IF \cdot dx + c$ $\therefore  t \cdot \frac{1}{x^{2}} = \int -2 \cdot \frac{1}{x^{2}} \cdot dx + c$ $\therefore  t \cdot \frac{1}{x^{2}} = -2 \cdot \frac{-1}{x} + c$ $\therefore  \frac{1}{x^{2}} y^{2} = \frac{2}{x} + c$ $\therefore  Ldi = 30 \sin(10\pi t) dt$ $\therefore Ldi = \int 30 \sin(10\pi t) dt$ $\therefore Li = 30 \frac{-\cos(10\pi t)}{10\pi} + c$ $\therefore Li = \frac{-3}{\pi} \cos(10\pi t) + c$ Given $L = 2$ , $i = 0$ , $t = 0$ | $P = \frac{-2}{x}  \text{and}  Q = -2$ $\therefore IF = e^{\int pdx} = e^{\int \frac{-2}{x}dx} = e^{-2\log x} = e^{\log(x^{-2})} = x^{-2} = \frac{1}{x^{2}}$ $\therefore \text{ the solution is,}$ $t \cdot IF = \int Q \cdot IF \cdot dx + c$ $\therefore t \cdot \frac{1}{x^{2}} = \int -2 \cdot \frac{1}{x^{2}} \cdot dx + c$ $\therefore t \cdot \frac{1}{x^{2}} = -2 \cdot \frac{-1}{x} + c$ $\therefore \frac{1}{x^{2}y^{2}} = \frac{2}{x} + c$ $1$ $\therefore Ldi = 30 \sin(10\pi t) dt$ $\therefore Ldi = \int 30 \sin(10\pi t) dt$ $\therefore Li = 30 \frac{-\cos(10\pi t)}{10\pi} + c$ $\therefore Li = \frac{-3}{\pi} \cos(10\pi t) + c$ $\text{Given } L = 2, i = 0, t = 0$ $\therefore 0 = \frac{-3}{x} + c$ |

Subject & Code: Applied Maths (12054)

Page No: 7/21

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                                                                                                                                                                                                      | Marks | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| 2)          | ~            | $\therefore c = \frac{3}{\pi}$ $\therefore Li = \frac{-3}{\pi} \cos(10\pi t) + \frac{3}{\pi}  \text{OR}$ $i = \frac{3}{\pi L} \left[ -\cos(10\pi t) + 1 \right]$                                                                                                                                                                   | 1     | 4              |
| 3)          | a)           | Put $\tan \frac{x}{2} = t$ $\therefore dx = \frac{2dt}{1+t^2} \text{ and } \cos x = \frac{1-t^2}{1+t^2}$ $\therefore \int \frac{dx}{5+4\cos x} = \int \frac{1}{5+4\left(\frac{1-t^2}{1+t^2}\right)} \cdot \frac{2dt}{1+t^2}$                                                                                                       | 1     |                |
|             |              | $= 2\int \frac{1}{t^2 + 9} dt$ $= 2\int \frac{1}{t^2 + 3^2} dt$ $= 2 \times \frac{1}{3} \tan^{-1} \left(\frac{t}{3}\right) + c$ $= \frac{2}{3} \tan^{-1} \left(\frac{\tan \frac{x}{2}}{2}\right) + c$                                                                                                                              | 1     |                |
|             | b)           | $\int x^{2} \tan^{-1} x dx$ $= \tan^{-1} x \int x^{2} dx - \int \left( \int x^{2} dx \right) \frac{d}{dx} \left( \tan^{-1} x \right) dx + c$ $= \tan^{-1} x \cdot \frac{x^{3}}{3} - \int \frac{x^{3}}{3} \cdot \frac{1}{1+x^{2}} dx + c$ $= \frac{x^{3} \tan^{-1} x}{3} - \frac{1}{3} \int \frac{x^{3}}{1+x^{2}} dx + c$           | 1     | 4              |
|             |              | $= \frac{x^3 \tan^{-1} x}{3} - \frac{1}{3} \int \left( x - \frac{x}{1+x^2} \right) dx + c$ $= \frac{x^3 \tan^{-1} x}{3} - \frac{1}{3} \int \left( x - \frac{1}{2} \cdot \frac{2x}{1+x^2} \right) dx + c$ $= \frac{x^3 \tan^{-1} x}{3} - \frac{1}{3} \left[ \frac{x^2}{2} - \frac{1}{2} \cdot \log\left(1 + x^2\right) \right] + c$ | 1     | 4              |



Subject & Code: Applied Maths (12054)

Page No: 8/21

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                                                                       | Marks | Total<br>Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3)          | c)           | $\frac{1}{(x^2+4)(x+1)} = \frac{Ax+B}{x^2+4} + \frac{C}{x+1}$                                                                                                                                       |       | TVIALITY OF THE PROPERTY OF TH |
|             |              | $\therefore \text{ we get,}$ $A = -\frac{1}{5}$                                                                                                                                                     | 1/2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $B = \frac{1}{5}$                                                                                                                                                                                   | 1/2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $C = \frac{1}{5}$                                                                                                                                                                                   | 1/2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $\frac{1}{\left(x^2+4\right)\left(x+1\right)} = \frac{-\frac{1}{5}x+\frac{1}{5}}{x^2+4} + \frac{\frac{1}{5}}{x+1}$                                                                                  | 1/2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $\therefore \int \frac{1}{(x^2+4)(x+1)} dx = \int \left( \frac{-\frac{1}{5}x+\frac{1}{5}}{x^2+4} + \frac{\frac{1}{5}}{x+1} \right) dx$                                                              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $= -\frac{1}{5} \int \frac{x}{x^2 + 4} dx + \frac{1}{5} \int \frac{1}{x^2 + 4} dx + \frac{1}{5} \int \frac{1}{x + 1} dx$                                                                            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $= -\frac{1}{5} \cdot \frac{1}{2} \log(x^2 + 4) + \frac{1}{5} \cdot \frac{1}{2} \tan^{-1}(\frac{x}{2}) + \frac{1}{5} \log(x + 1) + c$                                                               | 1½    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $= -\frac{1}{10}\log(x^2+4) + \frac{1}{10}\tan^{-1}\left(\frac{x}{2}\right) + \frac{1}{5}\log(x+1) + c$                                                                                             | 1/2   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |              | <b>Note:</b> In the above example, the partial fractions may be carried out as, $ \frac{1}{A} + \frac{Bx + C}{A} $                                                                                  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $\frac{1}{(x^2+4)(x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+4}$                                                                                                                                       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $\therefore \text{ we get,}$ $A = \frac{1}{5},  B = -\frac{1}{5},  C = \frac{1}{5}$                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | Further note that, if one of the values (A, B or C) in the partial fraction is wrong but other values are correct and all the further solution is correct, it is adviced to give appropriate marks. |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | d)           | $\int_0^{\pi/2} \sin 5x \cos 3x dx$                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $=\int_0^{\pi/2} \frac{\sin 8x + \sin 2x}{2} dx$                                                                                                                                                    | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |              | $=\frac{1}{2}\left[-\frac{\cos 8x}{8} - \frac{\cos 2x}{2}\right]_0^{\pi/2}$                                                                                                                         | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Subject & Code: Applied Maths (12054)

Page No: 9/21

| Que | Sub. | Model answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks   | Total<br>Mark |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|
| No. | Que. | Woder answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Iviains | S             |
| 3)  |      | $= \frac{1}{2} \left[ -\frac{\cos 4\pi}{8} - \frac{\cos \pi}{2} \right] - \frac{1}{2} \left[ -\frac{\cos 0}{8} - \frac{\cos 0}{2} \right]$ $= \frac{1}{2} \left[ -\frac{1}{8} - \frac{-1}{2} \right] - \frac{1}{2} \left[ -\frac{1}{8} - \frac{1}{2} \right]$ $= \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       | 4             |
|     | e)   | $I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ $= \int_0^{\pi/2} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2     |               |
|     |      | $I = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1       |               |
|     |      | $\therefore 2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2     |               |
|     |      | $= \int_0^{\pi/2} 1 \cdot dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2     |               |
|     |      | $= \int_0^{\infty} 1 \cdot dx$ $= \left[ x \right]_0^{\pi/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2     |               |
|     |      | $=\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2     |               |
|     |      | $\therefore I = \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2     | 4             |
|     |      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |               |
|     |      | $I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ Replace $x \to \frac{\pi}{2} - x$ $\therefore \sin x \to \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2     |               |
|     |      | $\int_{0}^{\infty} \frac{1}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ $\frac{1}{\cos x} + \frac{1}{\cos x} + 1$ | 1       |               |
|     |      | $\therefore I = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2     |               |
|     |      | $\therefore 2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2     |               |
|     |      | $= \int_0^{\pi/2} 1 \cdot dx$ $= \left[ x \right]_0^{\pi/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2     |               |
|     |      | $=\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2     |               |
|     |      | $\therefore I = \frac{\pi}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2     | 4             |



Page No: 10/21

| Que.          | Sub. | Model answers                                                                                              | Marks | Total |
|---------------|------|------------------------------------------------------------------------------------------------------------|-------|-------|
| No. <b>3)</b> | Que. | Given $y = x^2 + 1$ and $y = 2x + 1$                                                                       |       | Marks |
|               |      | $\therefore x^2 + 1 = 2x + 1$                                                                              |       |       |
|               |      | $\therefore x = 0,  x = 2$                                                                                 | 1     |       |
|               |      | $A = \int_a^b (y_2 - y_1) dx$                                                                              | 1     |       |
|               |      | $= \int_{0}^{2} \left[ (2x+1) - (x^{2}+1) \right] dx$                                                      |       |       |
|               |      | $= \int_0^2 \left[ (2x+1)^2 (x+1)^2 dx \right] dx$ $= \int_0^2 \left[ (2x-x^2) dx \right]$                 |       |       |
|               |      |                                                                                                            | 1     |       |
|               |      | $= \left[x^2 - \frac{x^3}{3}\right]_0^2$                                                                   | 1     |       |
|               |      | $= \left[2^2 - \frac{2^3}{3}\right] - [0]$                                                                 |       |       |
|               |      | $=\frac{4}{3}$ or 1.333                                                                                    | 1     | 4     |
| 4)            | a)   | $L[\cos 2t.\cos 4t] = \frac{1}{2}L[2\cos 2t.\cos 4t]$                                                      |       |       |
|               |      | $=\frac{1}{2}L\left[\cos 6t + \cos \left(-2t\right)\right]$                                                | 1     |       |
|               |      | $= \frac{1}{2} \left[ \frac{s}{s^2 + 36} + \frac{s}{s^2 + 4} \right]$                                      | 1½+1½ | 4     |
|               | b)   | $L[\sin 2t] = \frac{2}{s^2 + 4}$                                                                           | 1     |       |
|               |      | $\therefore L\left[e^{-t}\sin 2t\right] = \frac{2}{\left(s+1\right)^2 + 4}$                                |       |       |
|               |      | $=\frac{2}{s^2+2s+5}$                                                                                      | 1     |       |
|               |      | $\therefore L\left[te^{-t}\sin 2t\right] = \left(-1\right)\frac{d}{ds}\left[\frac{2}{s^2 + 2s + 5}\right]$ | 1     |       |
|               |      | $= -2 \cdot \frac{d}{ds} \left[ \frac{1}{s^2 + 2s + 5} \right]$                                            |       |       |
|               |      | $=-2\cdot\frac{-1}{\left(s^2+2s+5\right)^2}\cdot\frac{d}{ds}\left[s^2+2s+5\right]$                         |       |       |
|               |      | $=2\cdot\frac{2s+2}{\left(s^2+2s+5\right)^2}$                                                              |       |       |
|               |      | $=\frac{4s+4}{\left(s^2+2s+5\right)^2}$                                                                    | 1     | 4     |



Page No: 11/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                           | Marks    | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| 4)          | 2            | OR                                                                                                                                                      |          |                |
|             |              | $L[\sin 2t] = \frac{2}{s^2 + 4}$                                                                                                                        | 1        |                |
|             |              | $\therefore L\left[e^{-t}\sin 2t\right] = \frac{2}{\left(s+1\right)^2 + 4}$                                                                             |          |                |
|             |              |                                                                                                                                                         | 1        |                |
|             |              | $= \frac{2}{s^2 + 2s + 5}$                                                                                                                              |          |                |
|             |              | $\therefore L\left[te^{-t}\sin 2t\right] = \left(-1\right)\frac{d}{ds}\left[\frac{2}{s^2 + 2s + 5}\right]$                                              | 1        |                |
|             |              | $= -2 \cdot \frac{d}{ds} \left[ \frac{1}{s^2 + 2s + 5} \right]$                                                                                         |          |                |
|             |              | $= -2 \cdot \frac{\left(s^2 + 2s + 5\right) \frac{d}{ds} \left[1\right] - 1 \cdot \frac{d}{ds} \left[s^2 + 2s + 5\right]}{\left(s^2 + 2s + 5\right)^2}$ |          |                |
|             |              | $= -2 \cdot \frac{\left(s^2 + 2s + 5\right)[0] - 1.[2s + 2]}{\left(s^2 + 2s + 5\right)^2}$                                                              |          |                |
|             |              | $= \frac{4s+4}{\left(s^2+2s+5\right)^2}$                                                                                                                | 1        | 4              |
|             | c)           | $\frac{1}{(s^2+1)(s+3)} = \frac{As+B}{s^2+1} + \frac{C}{s+3}$                                                                                           |          |                |
|             |              | Then we get,                                                                                                                                            | 1/2+1/2+ |                |
|             |              | $A = \frac{-1}{10},  B = \frac{3}{10},  C = \frac{1}{10}$                                                                                               | 1/2      |                |
|             |              | $\therefore \frac{1}{(s^2+1)(s+3)} = \frac{\frac{-1}{10}s + \frac{3}{10}}{s^2+1} + \frac{\frac{1}{10}}{s+3}$                                            | 1/2      |                |
|             |              | $\therefore \frac{1}{(s^2+1)(s+3)} = \frac{1}{10} \left[ \frac{-s+3}{s^2+1} + \frac{1}{s+3} \right]$                                                    |          |                |
|             |              | $\therefore L\left[\frac{1}{\left(s^2+1\right)\left(s+3\right)}\right] = \frac{1}{10}L\left[\frac{-s+3}{s^2+1} + \frac{1}{s+3}\right]$                  |          |                |
|             |              | $= \frac{1}{10}L\left[\frac{-s}{s^2+1} + \frac{3}{s^2+1} + \frac{1}{s+3}\right]$                                                                        |          |                |
|             |              | $= \frac{1}{10} \left[ -\cos t + 3\sin t + e^{-3t} \right]$                                                                                             | 2        | 4              |
|             |              | Note: In the last step, each term carries ½ marks and if all the terms are correct, the whole step carries 2 marks.                                     |          |                |



Page No: 12/21

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                                                                                                                                                                                    | Marks                                           | Total<br>Marks |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| 4)          | ~            | <b>Note:</b> In the above example, the partial fraction can be carried out as, $\frac{1}{\left(s^2+1\right)\left(s+3\right)} = \frac{A}{s+3} + \frac{Bs+C}{s^2+1} \text{ and we then get}$ $\frac{1}{\left(s^2+1\right)\left(s+3\right)} = \frac{\frac{1}{10}}{s+3} + \frac{\frac{-1}{10}s+\frac{3}{10}}{s^2+1}$ |                                                 |                |
|             | d)           | Let $f(s) = \frac{1}{s+1}$ and $g(s) = \frac{1}{s-2}$<br>$\therefore L^{-1}[f(s)] = e^{-t}$ and $L^{-1}[g(s)] = e^{2t}$<br>$\therefore F(u) = e^{-u}$ and $G(t-u) = e^{2(t-u)}$                                                                                                                                  | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> |                |
|             |              | $\therefore L^{-1} \left[ \frac{1}{(s+1)(s-2)} \right] = \int_0^t F(u) \cdot G(t-u) du$ $= \int_0^t e^{-u} \cdot e^{2(t-u)} du$                                                                                                                                                                                  | 1/2                                             |                |
|             |              | $= e^{2t} \int_0^t e^{-3u} \cdot du$ $= e^{2t} \left[ \frac{e^{-3u}}{-3} \right]_0^t$ $= \frac{e^{2t}}{-3} \left[ e^{-3t} - e^0 \right]$                                                                                                                                                                         | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> |                |
|             |              | $=\frac{e^{2t}}{-3}\Big[e^{-3t}-1\Big]$                                                                                                                                                                                                                                                                          | 1/2                                             |                |
|             |              | <b>Note:</b> Students may solve the problem by taking $f(s) = \frac{1}{s-2}  \text{and}  g(s) = \frac{1}{s+1}$ Appropriate marks are to be given. But if the problem is solved by any another method e.g., partial fraction method but not by above method of convolution, no marks to be given.                 |                                                 | 4              |
|             | e)           | $L^{-1} \left[ \frac{2}{(s-3)^4} + \frac{s}{s^2 - 9} \right] = 2L^{-1} \left[ \frac{1}{(s-3)^4} \right] + L^{-1} \left[ \frac{s}{s^2 - 9} \right]$ $= 2 \cdot e^{3t} \cdot \frac{t^3}{6} + \cosh 3t$                                                                                                             | 2+1                                             |                |
|             |              | $=\frac{t^3e^{3t}}{3} + \cosh 3t$                                                                                                                                                                                                                                                                                | 1                                               | 4              |



Page No: 13/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

| Que.          | Sub. | Model answers                                                                                                            | Marks | Total |
|---------------|------|--------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No. <b>4)</b> | Que. | OR                                                                                                                       |       | Marks |
| ,             |      | $L^{-1}\left[\frac{1}{s^4}\right] = \frac{t^3}{6}$                                                                       | 1     |       |
|               |      | $\therefore L^{-1} \left[ \frac{1}{\left( s - 3 \right)^4} \right] = e^{3t} \cdot \frac{t^3}{6}$                         | 1     |       |
|               |      | and $L^{-1} \left[ \frac{s}{s^2 - 9} \right] = \cosh 3t$                                                                 | 1     |       |
|               |      | $\therefore L^{-1} \left[ \frac{2}{(s-3)^4} + \frac{s}{s^2 - 9} \right] = 2 \cdot e^{3t} \cdot \frac{t^3}{6} + \cosh 3t$ |       |       |
|               |      | $=\frac{t^3e^{3t}}{3} + \cosh 3t$                                                                                        | 1     | 4     |
|               | f)   | $\frac{d^2y}{dt^2} = -y + t$                                                                                             |       |       |
|               |      | $\therefore L\left[\frac{d^2y}{dt^2}\right] = L\left[-y+t\right]$                                                        |       |       |
|               |      | $\therefore s^2 L[y] - s \cdot y(0) - y'(0) = -L[y] + \frac{1}{s^2}$                                                     | 1     |       |
|               |      | $\therefore s^2 L[y] + L[y] - s \cdot 1 - (-2) = \frac{1}{s^2}$                                                          | 1/2   |       |
|               |      | $\therefore (s^2 + 1)L[y] - s + 2 = \frac{1}{s^2}$                                                                       |       |       |
|               |      | $\therefore (s^2 + 1)L[y] = \frac{1}{s^2} + s - 2$                                                                       |       |       |
|               |      | $\therefore L[y] = \frac{1}{s^2(s^2+1)} + \frac{s-2}{s^2+1}$                                                             |       |       |
|               |      | $\therefore L[y] = \frac{1}{s^2} + \frac{-1}{s^2 + 1} + \frac{s - 2}{s^2 + 1}$                                           |       |       |
|               |      | $\therefore L[y] = \frac{1}{s^2} + \frac{s-3}{s^2+1}$                                                                    | 1     |       |
|               |      | $\therefore y = L^{-1} \left[ \frac{1}{s^2} + \frac{s-3}{s^2+1} \right]$                                                 |       |       |
|               |      | $=L^{-1}\left[\frac{1}{s^2} + \frac{s}{s^2 + 1} - \frac{3}{s^2 + 1}\right]$                                              |       | 4     |
|               |      | $= t + \cos t - 3\sin t$                                                                                                 | 1 ½   | 4     |
|               |      | <b>Note:</b> In the above example, in place $L[y]$ , the symbol $y$ is also                                              |       |       |
|               |      | used for convenience and the solution turn outs as illustrated further:                                                  |       |       |



Page No: 14/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_

| Que.   | Sub. | Model answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks   | Total |
|--------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No.    | Que. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Widiks  | Marks |
| No. 4) | Que. | $\frac{d^{2}y}{dt^{2}} = -y + t$ $\therefore L \left[ \frac{d^{2}y}{dt^{2}} \right] = L \left[ -y + t \right]$ $\therefore s^{2} \overline{y} - s \cdot y(0) - y'(0) = -\overline{y} + \frac{1}{s^{2}}$ $\therefore s^{2} \overline{y} + \overline{y} - s \cdot 1 - (-2) = \frac{1}{s^{2}}$ $\therefore (s^{2} + 1) \overline{y} - s + 2 = \frac{1}{s^{2}}$ $\therefore (s^{2} + 1) \overline{y} = \frac{1}{s^{2}} + s - 2$ $\therefore \overline{y} = \frac{1}{s^{2}} \left( \frac{s^{2} + 1}{s^{2} + 1} \right) + \frac{s - 2}{s^{2} + 1}$ $\therefore \overline{y} = \frac{1}{s^{2}} + \frac{-1}{s^{2} + 1} + \frac{s - 2}{s^{2} + 1}$ $\therefore \overline{y} = \frac{1}{s^{2}} + \frac{s - 3}{s^{2} + 1}$ | 1 1/2   | Marks |
| 5)     | a)   | $s^{2} 	 s^{2} + 1$ $y = L^{-1} \left[ \frac{1}{s^{2}} + \frac{s - 3}{s^{2} + 1} \right]$ $= L^{-1} \left[ \frac{1}{s^{2}} + \frac{s}{s^{2} + 1} - \frac{3}{s^{2} + 1} \right]$ $= t + \cos t - 3\sin t$ $f(x) = x^{3} + 2x - 1$ $\therefore f(0) = -1$ $f(1) = 2$ $\therefore \text{ the root is in } (0, 1).$ $\therefore x_{1} = \frac{0 + 1}{2} = 0.5$ $\therefore f(0.5) = 0.125$                                                                                                                                                                                                                                                                                                                          | 1 ½ 1 ½ | 4     |
|        |      | ∴ the root is in $(0, 0.5)$ .<br>∴ $x_2 = \frac{0+0.5}{2} = 0.25$<br>∴ $f(0.25) = -0.484$<br>∴ the root is in $(0.25, 0.5)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       |       |
|        |      | $\therefore x_3 = \frac{0.25 + 0.5}{2} = 0.375$ <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 4     |



Page No: 15/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_\_

| Que.          | Sub. |                                                      | Model    | answers                  |                          |               | Marks | Total |
|---------------|------|------------------------------------------------------|----------|--------------------------|--------------------------|---------------|-------|-------|
| No. <b>5)</b> | Que. | f()3 + 2 1                                           |          |                          |                          |               | 1     | Marks |
| 3)            |      | $f(x) = x^3 + 2x - 1$                                |          |                          |                          |               |       |       |
|               |      | $\therefore f(0) = -1$                               |          |                          |                          |               |       |       |
|               |      | f(1) = 2                                             | `        |                          |                          |               | 1     |       |
|               |      | $\therefore$ the root is in $(0, 1)$                 | <u> </u> | . 1                      |                          |               |       |       |
|               |      | a                                                    | b x      | $a = \frac{a+b}{2}$      | f(x)                     |               |       |       |
|               |      | 0                                                    | 1        | 0.5                      | 0.125                    |               | 1     |       |
|               |      | 0                                                    | 0.5      | 0.25                     | -0.484                   |               | 1     |       |
|               |      | 0.2                                                  | 5 0.5    | 0.375                    |                          |               | 1     | 4     |
|               | b)   | $x = \sqrt{6}$                                       |          |                          |                          |               |       |       |
|               |      | $\therefore x^2 - 6 = 0$                             |          |                          |                          |               |       |       |
|               |      | Put $f(x) = x^2 - 6$                                 |          |                          |                          |               |       |       |
|               |      | $\therefore f(2) = -2$                               |          |                          |                          |               |       |       |
|               |      | f(3)=3                                               |          |                          |                          |               | 1     |       |
|               |      | $\therefore$ the root is in (2, 3)                   | 3).      |                          |                          |               |       |       |
|               |      | `                                                    | *        |                          |                          |               | 4.1/  |       |
|               |      | $\therefore x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$ | = 2.4    |                          |                          |               | 1 ½   |       |
|               |      | $\therefore f(2.4) = -0.24$                          |          |                          |                          |               |       |       |
|               |      | $\therefore$ the root is in (2.4,                    | 3).      |                          |                          |               | 1.1/  | 4     |
|               |      | $x_2 = 2.44$                                         |          |                          |                          |               | 1 ½   | 1     |
|               |      | <b>—</b>                                             |          | OR                       |                          |               |       |       |
|               |      | $x = \sqrt{6} \qquad \therefore x^2 -$               | 6 = 0    |                          |                          |               |       |       |
|               |      | Put $f(x) = x^2 - 6$                                 |          |                          |                          |               |       |       |
|               |      | $\therefore f(2) = -2$                               |          |                          |                          |               |       |       |
|               |      | f(3) = 3                                             | . \      |                          |                          |               | 1     |       |
|               |      | $\therefore$ the root is in $(2, 3)$                 | 3).<br>  | 0.6                      | 1) 10()                  |               |       |       |
|               |      | a b f(a)                                             | f(b)     | $x = \frac{af(f)}{f(f)}$ | $\frac{b-bf(a)}{b-f(a)}$ | f(x)          |       |       |
|               |      | 2 3 -2                                               | 3        | - (                      | 2.4                      | -0.24         | 1 ½   |       |
|               |      | 2.4 3 -0.2                                           |          | l .                      | 2.44                     |               | 1 ½   | 4     |
|               |      | <b>Note:</b> If the probler                          |          |                          |                          |               |       |       |
|               |      | to be given si                                       |          |                          | •                        | _             |       |       |
|               |      | different valu                                       |          | _                        |                          |               |       |       |
|               |      | and it is not p<br>is to find its a                  |          |                          | impie as nei             | e giveii task |       |       |



Page No: 16/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_

| Que. | Sub. | Model answers                                                | Marks | Total |
|------|------|--------------------------------------------------------------|-------|-------|
| No.  | Que. |                                                              | Walks | Marks |
| 5)   | c)   | $f(x) = x^3 - 5x + 3$                                        | 1/2   |       |
|      |      | $f'(x) = 3x^2 - 5$                                           | , –   |       |
|      |      | f(0) = 3                                                     | 1/2   |       |
|      |      | f(1) = -1                                                    |       |       |
|      |      | $x - \frac{f(x)}{f'(x)} = x - \frac{x^3 - 5x + 3}{3x^2 - 5}$ |       |       |
|      |      | $=\frac{2x^3-3}{3x^2-5}$                                     | 1     |       |
|      |      | Start with $x_0 = 1$ ,                                       |       |       |
|      |      | $\therefore x_1 = 0.5$                                       | 1     | 4     |
|      |      | $x_2 = 0.647$                                                | 1     | 4     |
|      |      | $\mathbf{OR}$ $f(x) = x^3 - 5x + 3$                          |       |       |
|      |      | $f'(x) = 3x^2 - 5$                                           | 1/2   |       |
|      |      | f(0) = 3                                                     |       |       |
|      |      | f(1) = -1                                                    | 1/2   |       |
|      |      | Start with $x_0 = 1$ ,                                       |       |       |
|      |      | $\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$              |       |       |
|      |      | $f'(x_0)$                                                    |       |       |
|      |      | $=1-\frac{f(1)}{f'(1)}$                                      |       |       |
|      |      | $=1-\frac{-1}{-2}$                                           | 1     |       |
|      |      | = 0.5                                                        | 1/2   |       |
|      |      | $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$                         |       |       |
|      |      | $=0.5 - \frac{f(0.5)}{f'(0.5)}$                              |       |       |
|      |      | $=0.5 - \frac{0.625}{-4.25}$                                 | 1     |       |
|      |      | -4.25 = 0.647                                                | 1/2   | 4     |
|      | d)   | x + 2y + 3z = 14                                             |       |       |
|      |      | 3x + y + 2z = 11                                             |       |       |
|      |      | 2x + 3y + z = 11                                             |       |       |
|      |      |                                                              |       |       |
|      |      |                                                              | 1     |       |



Page No: 17/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_

| Que.<br>No. | Sub.<br>Que. | Model answers                                                                                                                                                                                                                                                                                                                                                                                     | Marks       | Total<br>Marks |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|
| 5)          | Que.         | 3x+6y+9z = 42  3x+y+2z=11                                                                                                                                                                                                                                                                                                                                                                         | 1           | Warks          |
|             |              | $5y+7z=31$ $5y+25z=85$ $-18z=-54$ $\therefore z=3$ $y=2$ $x=1$                                                                                                                                                                                                                                                                                                                                    | 1<br>1<br>1 | 4              |
|             |              | <b>Note:</b> In the above solution, first x is eliminated and then y is eliminated to find the value of z first. If in case the problem is solved by elimination of another unknown i. e., either first y or z, appropriate marks to be given as per above scheme of marking. Let us see, how the solution becomes by eliminating first y and then z to get the value of x, as illustrated below: |             |                |
|             |              | $     \begin{array}{r}       x + 2y + 3z = 14 & 9x + 3y + 6z = 33 \\       6x + 2y + 4z = 22 & 2x + 3y + z = 11 \\       & \\       -5x - z = -8 & 7x + 5z = 22     \end{array} $                                                                                                                                                                                                                 | 1           |                |
|             |              | $-25x - 5z = -40$ $\underline{7x + 5z = 22}$ $-18x = -18$ $\therefore x = 1$ $y = 2$ $z = 3$                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1 | 4              |
|             | e)           | $20x + y - 2z = 17$ $3x + 20y - z = -18$ $2x - 3y + 20z = 25$ $\therefore x = \frac{17 - y + 2z}{20}$                                                                                                                                                                                                                                                                                             |             |                |
|             |              | $y = \frac{-18 - 3x + z}{20}$ $z = \frac{25 - 2x + 3y}{20}$                                                                                                                                                                                                                                                                                                                                       | 1           |                |



Page No: 18/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

\_\_\_\_\_\_

| Que. | Sub. | Nr. 1.1                                                 | 3.6.1 | Total |
|------|------|---------------------------------------------------------|-------|-------|
| No.  | Que. | Model answers                                           | Marks | Marks |
| 5)   |      | Starting with $x_0 = 0 = y_0 = z_0$                     |       |       |
|      |      | $x_1 = 0.85$                                            | 1     |       |
|      |      | $y_1 = -0.9$                                            |       |       |
|      |      | $z_1 = 1.25$                                            |       |       |
|      |      | $x_2 = 1.02$                                            |       |       |
|      |      | $y_2 = -0.965$                                          | 1     |       |
|      |      | $z_2 = 1.03$                                            |       |       |
|      |      |                                                         |       |       |
|      |      | $x_3 = 1.001$                                           |       |       |
|      |      | $y_3 = -1.001$                                          | 1     | 4     |
|      |      | $z_3 = 1.003$                                           |       | _     |
|      |      |                                                         |       |       |
|      |      | 5x - 2y + 3z = 18                                       |       |       |
|      | f)   | x + 7y - 3z = -22                                       |       |       |
|      |      | 2x - y + 6z = 22                                        |       |       |
|      |      |                                                         |       |       |
|      |      | $\therefore x = \frac{18 + 2y - 3z}{5}$                 |       |       |
|      |      |                                                         | 1     |       |
|      |      | $y = \frac{-22 - x + 3z}{7}$                            |       |       |
|      |      | $z = \frac{22 - 2x + y}{z}$                             |       |       |
|      |      | $z = \frac{z}{6}$                                       |       |       |
|      |      |                                                         |       |       |
|      |      | Starting with $x_0 = 0 = y_0 = z_0$                     |       |       |
|      |      | $x_1 = 3.6$                                             | 1     |       |
|      |      | $y_1 = -3.657$                                          |       |       |
|      |      | $z_1 = 1.857$                                           |       |       |
|      |      | $x_2 = -4.0058$                                         |       |       |
|      |      | $x_2 = -4.0036$ $y_2 = -1.77$                           | 1     |       |
|      |      | $\begin{array}{c} y_2 - 1.77 \\ z_2 = 4.71 \end{array}$ |       |       |
|      |      |                                                         |       |       |
|      |      | $x_3 = 5.718$                                           |       |       |
|      |      | $y_3 = -0.55$                                           | 1     | 4     |
|      |      | $z_3 = 4.71$                                            | 1     | •     |
|      |      |                                                         |       |       |



Page No: 19/21

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

-----

| Que.          | Sub.   | Model answers                                                                                                                                                            | Marks   | Total |
|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| No. <b>6)</b> | Que.   | f(x) = x                                                                                                                                                                 | 1,14110 | Marks |
| 0)            | a) 1)  | $f(x) = x$ $f(x) \text{ is odd function.}$ $Fourier expansion is  f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{l}\right)$                                      | 1       |       |
|               |        | Where $b_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi x}{l}\right) dx$                                                                                             | 1       |       |
|               |        | Here, $l = \pi$ .                                                                                                                                                        |         |       |
|               |        | $\therefore b_n = \frac{2}{\pi} \int_0^{\pi} x \sin nx \cdot dx$                                                                                                         | 1       |       |
|               |        | $= \frac{2}{\pi} \left[ \frac{-x \cos nx}{n} + \frac{\sin nx}{n^2} \right]_0^{\pi}$                                                                                      | 1       |       |
|               |        | $= \frac{2}{\pi} \left[ \frac{-\pi \cos n\pi}{n} + \frac{\sin n\pi}{n^2} \right] - \frac{2}{\pi} \left[ \frac{-0\cos 0}{n} + \frac{\sin 0}{n^2} \right]$                 | 1       |       |
|               |        | $=\frac{2}{\pi}\left[\frac{-\pi\left(-1\right)^n}{n}+\frac{0}{n^2}\right]-0$                                                                                             | 1       |       |
|               |        | $= \frac{-2(-1)^n}{n}  \text{or may be taken as } \frac{2(-1)^{n+1}}{n}$                                                                                                 | 1       |       |
|               |        | $\therefore f(x) = \sum_{n=1}^{\infty} \frac{-2(-1)^n}{n} \cdot \sin n\pi x  \text{or}  \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \cdot \sin n\pi x$                     | 1       | 8     |
|               | a) ii) | $f(x) = e^x$                                                                                                                                                             |         |       |
|               | ,,     | Fourier expansion is $f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{l}\right)$                                                                                  | 1       |       |
|               |        | Where $b_n = \frac{2}{l} \int_0^l f(x) \sin\left(\frac{n\pi x}{l}\right) dx$                                                                                             | 1       |       |
|               |        | Here, $l = 1$ .<br>$\therefore b_n = 2 \int_0^1 e^x \sin n\pi x \cdot dx$                                                                                                |         |       |
|               |        | $= 2 \left[ \frac{e^x}{1 + n^2 \pi^2} \left( \sin n\pi x - n\pi \cos n\pi x \right) \right]^1$                                                                           | 2       |       |
|               |        | $= 2\left[\frac{e}{1+n^2\pi^2}(\sin n\pi - n\pi\cos n\pi)\right] - 2\left[\frac{1}{1+n^2\pi^2}(\sin 0 - n\pi\cos 0)\right]$                                              | 1       |       |
|               |        | $=2\left[\frac{e}{1+n^2\pi^2}\left(0-n\pi\left(-1\right)^n\right)\right]-2\left[\frac{1}{1+n^2\pi^2}\left(0-n\pi\right)\right]$ $2n\pi\left[2\left(-1\right)^n+1\right]$ | 1       |       |
|               |        | $=\frac{2n\pi}{1+n^2\pi^2}\Big[e(-1)^n+1\Big]$                                                                                                                           | 1       |       |
|               |        | $\therefore f(x) = \sum_{n=1}^{\infty} \frac{2n\pi}{1 + n^2 \pi^2} \left[ e(-1)^n + 1 \right] \sin n\pi x$                                                               | 1       | 8     |



Subject & Code: Applied Maths (12054)

Page No: 20/21

| Que. | Sub.  | Model answers                                                                             | Marks    | Total |
|------|-------|-------------------------------------------------------------------------------------------|----------|-------|
| No.  | Que.  |                                                                                           | TITULING | Marks |
| 6)   | b) i) | $I = \int_0^{\pi/4} \log\left(1 + \tan x\right) dx$                                       |          |       |
|      |       | $= \int_0^{\pi/4} \log \left[ 1 + \tan \left( \frac{\pi}{4} - x \right) \right] dx$       | 1/2      |       |
|      |       | $= \int_0^{\pi/4} \log \left[ 1 + \frac{1 - \tan x}{1 + \tan x} \right] dx$               | 1        |       |
|      |       | $= \int_0^{\pi/4} \log \left[ \frac{2}{1 + \tan x} \right] dx$                            |          |       |
|      |       | $= \int_0^{\pi/4} \left[ \log 2 - \log \left( 1 + \tan x \right) \right] dx$              | 1/2      |       |
|      |       | $= \int_0^{\pi/4} \log 2dx - \int_0^{\pi/4} \log (1 + \tan x) dx$                         | 1/2      |       |
|      |       | $=\int_0^{\pi/4}\log 2dx - I$                                                             |          |       |
|      |       | $\therefore 2I = \int_0^{\pi/4} \log 2dx$                                                 |          |       |
|      |       | $=\log 2\int_0^{\pi/4}dx$                                                                 |          |       |
|      |       | $=\log 2\left[x\right]_0^{\pi/4}$                                                         | 1/2      |       |
|      |       | $=\frac{\pi}{4}\log 2$                                                                    |          |       |
|      |       | •                                                                                         | 1/2      |       |
|      |       | $\therefore I = \frac{\pi}{8} \log 2$                                                     | 1/2      | 4     |
|      | ii)   | $I = \int_{4}^{5} \frac{\sqrt{5 - x}}{\sqrt{x - 4} + \sqrt{5 - x}}  dx$                   |          |       |
|      |       | $= \int_{4}^{5} \frac{\sqrt{5 - (9 - x)}}{\sqrt{(9 - x) - 4} + \sqrt{5 - (9 - x)}} dx$    | 1/2      |       |
|      |       | $I = \int_{4}^{5} \frac{\sqrt{x-4}}{\sqrt{5-x} + \sqrt{x-4}}  dx$                         | 1        |       |
|      |       | $\therefore 2I = \int_{4}^{5} \frac{\sqrt{x-4} + \sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$ | 1/2      |       |
|      |       | $= \int_4^5 1 \cdot dx$                                                                   | 1/2      |       |
|      |       | $= \begin{bmatrix} x \end{bmatrix}_4^5$ $= 5 - 4$                                         | 1/2      |       |
|      |       | =1                                                                                        | 1/2      |       |
|      |       | $\therefore I = \frac{1}{2}$                                                              | 1/2      | 4     |
|      |       | OR                                                                                        | , -      |       |



Subject & Code: Applied Maths (12054) Page No: 21/21

| Que.          | Sub. | Model answers                                                                                                                                                                                                                                                                                                                                                                       | Marks | Total |
|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No. <b>6)</b> | Que. | $I = \int_{4}^{5} \frac{\sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$ Replace $x \to 9-x$ $\therefore 5-x \to x-4$                                                                                                                                                                                                                                                                       | 1/2   | Marks |
|               |      | $I = \int_{4}^{5} \frac{\sqrt{x-4} + \sqrt{5-x}}{\sqrt{5-x} + \sqrt{x-4}} dx$                                                                                                                                                                                                                                                                                                       | 1     |       |
|               |      | $\therefore 2I = \int_{4}^{5} \frac{\sqrt{x-4} + \sqrt{5-x}}{\sqrt{x-4} + \sqrt{5-x}} dx$                                                                                                                                                                                                                                                                                           | 1/2   |       |
|               |      | $= \int_4^5 1 \cdot dx$                                                                                                                                                                                                                                                                                                                                                             | 1/2   |       |
|               |      | $= \begin{bmatrix} x \end{bmatrix}_4^5$ $= 5 - 4$                                                                                                                                                                                                                                                                                                                                   | 1/2   |       |
|               |      | = 3-4 $= 1$                                                                                                                                                                                                                                                                                                                                                                         | 1/2   |       |
|               |      | $\therefore I = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                        | 1/2   | 4     |
|               | iii) | Given $I = 10\sin(100\pi t)$                                                                                                                                                                                                                                                                                                                                                        |       |       |
|               | ,    | Mean Value $=\frac{1}{b-a}\int_a^b I \cdot dt$                                                                                                                                                                                                                                                                                                                                      |       |       |
|               |      | $= \frac{1}{\frac{1}{50} - 0} \int_0^{1/50} 10 \sin(100\pi t) dt$                                                                                                                                                                                                                                                                                                                   | 1     |       |
|               |      | $=500 \int_0^{1/50} \sin(100\pi t) dt$                                                                                                                                                                                                                                                                                                                                              |       |       |
|               |      | $=500 \left[ \frac{-\cos(100\pi t)}{100\pi} \right]_0^{1/50}$                                                                                                                                                                                                                                                                                                                       | 1     |       |
|               |      | $=\frac{-5}{\pi}\Big[\cos(2\pi)-\cos 0\Big]$                                                                                                                                                                                                                                                                                                                                        | 1     |       |
|               |      | $= \frac{-5}{\pi} [1-1]$ $= 0$                                                                                                                                                                                                                                                                                                                                                      | 1     | 4     |
|               |      | Important Note                                                                                                                                                                                                                                                                                                                                                                      |       |       |
|               |      | In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking. |       |       |