Isostatisme et Montage d'Usinage

Définition - Objectifs

- Isostatisme = principe du système spatial où un objet reprend toujours la même position par rapport à un même référentiel.
- Ex : mise en position et maintien d'une pièce soumise aux efforts de coupe.
- But :
 - conception des montages d'usinage (gabarit ...)
 - Réalisation des gammes d'usinage et contrat de phase

Repérage d'un objet

• Dans un plan

Dans l'espace

Différents Mouvements

Translation

Rotation

Mouvements possibles

- Il y a 6 degrés de liberté pour un objet libre dans l'espace
 - 3 translations
 - Selon axe x
 - Selon axe y
 - · Selon axe z
 - 3 rotations
 - Selon axe x
 - Selon axe y
 - · Selon axe z

Immobiliser un objet dans l'espace

- H(xoy) = appui plan
- P (zox) = appui linéaire
- F (yoz) = appui ponctuel

Immobiliser un objet dans l'espace

Nombres d'appuis Fixes dans le plan	Degrés de liberté supprimés	Types de liaison	Définitions	Surfaces de référence
XOY / 3 appuis	1 T sur OZ 1 R sur OX 1 R sur OY	Plan	3 points non alignés	SR1
XOZ / 1 appuis	1 T sur OY 1 R sur OR	Ligne	2 points	SR2
YOZ / 1 appui	1 T sur OX	Point	1 point	SR3

La suppression des 6 degrés de liberté se fait par l'apposition des 6 points d'appui (fixes).

Elimination des degrés de liberté

1 appui → appui ponctuel

Éliminer les 6 degrés de liberté = mettre en position

Si 6 degrés de liberté supprimé
→ Mise en position isostatique

Si plus de 6 appuis

→ Mise en position hyperstatique

Symboles Symboles

Nature de la surface de contact	Symbole	
Surface usinée		
Surface brute		

Fonction des éléments	Symboles		
technologique	Vue de face	Vue projetée	
Mise en position Appui			
Maintien en position	\triangleright	\otimes	

Nature du contact avec la surface ou type d'appui	Symbole	
Contact ponctuel)	
Contact surfacique		
Contact strié (entraîneur)	*	
Vé (mise en place des cylindres)	八人	
Pointe fixe (tours)	>	
Pointe tournante (tours)	>	

Type de technologie des éléments	Symbole
Appui fixe	
Centrage fixe	0
Système de serrage P : Presseur hydraulique V : Vérin pneumatique D : Dépression	S
Système de soutien réversible	W^
Système à serrage concentrique	0

Symboles - application métier du bois

TYPE DU CONTACT			NATURE DU CONTACT		
APF	וטי	MAINTIEN			
symbole	désignation	symbole	désignation	symbole	désignation
+	appui fixe	↓E	Entraîneur]	continu (guide, table)
├	appui irréversible appui escamotable centrage	- p s - v 	Maintien manuel <u>Serrage</u> - presseur - vérin)	ponctuel (boulon, vis, entraîneur
→	fixe	∨ - d	- à dépression		

Exemple:

Montage d'Usinage Fonction

Les montages d'usinage sont des appareils destinés à assurer avec précision la mise en position, le maintien en position et le guidage de pièces dont l'usinage ne peut être directement réalisé par la machine à elle seule (travaux de série ...)

Conception théorique d'un MU

• MIP: MIse en Position isostatique

- MAP: MAintien en Position isostatique
 - Ne doit pas modifier MIP
- Guidage
 - Très précis, assure le défilement correct dvt l'outil

Conception pratique d'un MU

- Mise en position
 - Appui plan: indéformable

Contre-plaqué

Latté

Panneau de particules

Appui linéaire : réglage (vis)

Conception pratique d'un MU

 Appui ponctuel : réglage (en opposition à l'effort de coupe)

Amenage

Maintien en position: MAP

• Mécanique: sauterelle à levier, came, vis

Maintien en position: MAP

• Pneumatique : vérin, système à dépression

La dépression pour CN

Ventouse

Joint mousse

Guidage

• Glissement : résistant à l'usure (rail Nylon, stratifié)

Rail Nylon

Stratifié

Sécurité - Exemple

Pour être efficace, un montage d'usinage doit être élaboré avec précision. La qualité, la rapidité d'exécution, la sécurité et la rentabilité sont des facteurs qui déterminent l'emploi d'un montage d'usinage.

Exemple

