Beyond the SEA (algorithm): Computing the trace of a supersingular endomorphism

Travis Morrison

Virginia Tech

joint work with: Lorenz Panny, Jana Sotáková, Michael Wills

Isogenies and endomorphisms of elliptic curves

Let E, E' be elliptic curves over k.

Definition

An isogeny $\phi \colon E \to E'$ is a rational map which induces a group homomorphism $E(\overline{k}) \to E'(\overline{k})$. An endomorphism of E is an isogeny $\phi \colon E \to E$ (or the 0 map).

If n is an integer, then the multiplication-by-n map

$$[n]: P \mapsto nP$$

is an endomorphism of E

• If $k = \mathbb{F}_q$, then the *Frobenius endomorphism* of *E* is an endomorphism:

$$\pi_E \colon E \to E$$

 $(x,y) \mapsto (x^q, y^q).$

A cheatsheet		
_	Endomorphisms	Imaginary quadratic integers
Notation	α	$a+b\sqrt{-D}$
Involution	The dual map	complex conjugation
Norm	$\deg\alpha=\widehat{\alpha}\circ\alpha$	$ a+b\sqrt{-D} ^2=a^2+Db^2$
Trace	$\operatorname{tr} \alpha = \alpha + \widehat{\alpha}$	2 <i>a</i>
Discriminant	$(\operatorname{tr} \alpha)^2 - 4 \operatorname{deg} \alpha$	$-4b^2D$

• Let $[n]: E \to E$ be the multiplication-by-n map. We have

$$\deg[n] = n^2, \quad \operatorname{tr}[n] = 2n.$$

• Let $[n]: E \to E$ be the multiplication-by-n map. We have

$$\deg[n] = n^2, \quad \operatorname{tr}[n] = 2n.$$

• Let π_E be the Frobenius endomorphism of E/\mathbb{F}_q . Then

$$\deg \pi_{\mathsf{E}} = q, \quad \operatorname{tr} \pi_{\mathsf{E}} = q + 1 - \# \mathsf{E}(\mathbb{F}_q)$$

ullet Let $[n]\colon E o E$ be the multiplication-by-n map. We have

$$\deg[n] = n^2, \quad \operatorname{tr}[n] = 2n.$$

• Let π_E be the Frobenius endomorphism of E/\mathbb{F}_q . Then

$$\deg \pi_{\mathsf{E}} = q, \quad \operatorname{tr} \pi_{\mathsf{E}} = q + 1 - \# \mathsf{E}(\mathbb{F}_q)$$

• Hasse bound: $|\operatorname{tr} \pi_E| \leq 2\sqrt{q}$

ullet Let $[n]\colon E o E$ be the multiplication-by-n map. We have

$$\deg[n] = n^2, \quad \operatorname{tr}[n] = 2n.$$

• Let π_E be the Frobenius endomorphism of E/\mathbb{F}_q . Then

$$\deg \pi_{\mathsf{E}} = q, \quad \operatorname{tr} \pi_{\mathsf{E}} = q + 1 - \# \mathsf{E}(\mathbb{F}_q)$$

- Hasse bound: $|\operatorname{tr} \pi_E| \leq 2\sqrt{q}$
- More generally, if $\alpha \in \operatorname{End}(E)$, then

$$\operatorname{disc} \alpha = (\operatorname{tr} \alpha)^2 - 4 \operatorname{deg} \alpha \leq 0 \implies |\operatorname{tr} \alpha| \leq 2 \sqrt{\operatorname{deg} \alpha}.$$

Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/\mathbb{F}_q and $\alpha \in \operatorname{End}(E)$, compute $\operatorname{Tr} \alpha := \alpha + \widehat{\alpha} \in \mathbb{Z}$.

Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/\mathbb{F}_q and $\alpha \in \operatorname{End}(E)$, compute $\operatorname{Tr} \alpha := \alpha + \widehat{\alpha} \in \mathbb{Z}$.

Why? Ordinary case

Point counting! Also, tr π_E reveals the structure of $\mathbb{Z}[\pi_E]$ as an algebra.

Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/\mathbb{F}_q and $\alpha \in \operatorname{End}(E)$, compute $\operatorname{Tr} \alpha := \alpha + \widehat{\alpha} \in \mathbb{Z}$.

Why? Ordinary case

Point counting! Also, tr π_E reveals the structure of $\mathbb{Z}[\pi_E]$ as an algebra.

Why? Supersingular case

If E is supersingular: computing traces lets us determine a multiplication table for basis elements of $\operatorname{End}(E)$ (or a suborder) (e.g. we can efficiently decide whether $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ generate $\operatorname{End}(E)$ as a \mathbb{Z} -lattice by checking whether $\det(\operatorname{tr}(\alpha_i\widehat{\alpha_j})_{i,j})=p^2$)

Schoof's algorithm

If we know

$$t_{\ell} := \operatorname{tr} \alpha \pmod{\ell}$$

for primes ℓ such that $\prod_{\ell} \ell > 4\sqrt{\deg \alpha}$ then we can recover tr α with the CRT.

Schoof's algorithm

If we know

$$t_{\ell} := \operatorname{tr} \alpha \pmod{\ell}$$

for primes ℓ such that $\prod_{\ell} \ell > 4 \sqrt{\deg \alpha}$ then we can recover tr α with the CRT.

Algorithm 2: Schoof's algorithm

Input: Ordinary E/\mathbb{F}_q

Output: $tr(\pi_E)$

Set $\ell = 2$ and M = 1;

while $M \le 4\sqrt{q}$ do

Compute $t_{\ell} = \operatorname{tr} \pi_{E} \mod \ell$;

Update $M = M \cdot \ell$;

Update ℓ with the next prime after ℓ ;

Solve $t \equiv t_{\ell} \pmod{\ell}$ for $t \in [-2\sqrt{q}, 2\sqrt{q}]$ with CRT;

return t

Computing $t_{\ell} = \operatorname{tr} \alpha \mod \ell$

Suppose $(\ell, q) = 1$. An endomorphism $\alpha \in \operatorname{End}(E)$ acts on $E[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^2$ as a "matrix" $\alpha|_{E[\ell]} \in \operatorname{End}(E[\ell]) \cong M_2(\mathbb{Z}/\ell\mathbb{Z})$

Computing $t_{\ell} = \operatorname{tr} \alpha \mod \ell$

Suppose $(\ell,q)=1$. An endomorphism $\alpha\in \operatorname{End}(E)$ acts on $E[\ell]\cong (\mathbb{Z}/\ell\mathbb{Z})^2$ as a "matrix" $\alpha\big|_{E[\ell]}\in \operatorname{End}(E[\ell])\cong M_2(\mathbb{Z}/\ell\mathbb{Z})$

Schoof's method for computing t_ℓ

Compute t_{ℓ} by computing the characteristic polynomial of $\alpha|_{E[\ell]}$. We have

$$\operatorname{tr} \alpha \equiv \operatorname{Tr} \left(\alpha \big|_{E[\ell]} \right) \pmod{\ell}.$$

Computing $t_{\ell} = \operatorname{tr} \alpha \mod \ell$

Suppose $(\ell, q) = 1$. An endomorphism $\alpha \in \operatorname{End}(E)$ acts on $E[\ell] \cong (\mathbb{Z}/\ell\mathbb{Z})^2$ as a "matrix" $\alpha|_{F[\ell]} \in \operatorname{End}(E[\ell]) \cong M_2(\mathbb{Z}/\ell\mathbb{Z})$

Schoof's method for computing t_ℓ

Compute t_{ℓ} by computing the characteristic polynomial of $\alpha|_{E[\ell]}$. We have

$$\operatorname{tr} \alpha \equiv \operatorname{Tr} \left(\alpha \big|_{E[\ell]} \right) \pmod{\ell}.$$

Rather than working with points in $E[\ell]$: find $0 \le c < \ell$ such that

$$\alpha \big|_{E[\ell]}^2 + [\deg \alpha] \big|_{E[\ell]} = c(\alpha \big|_{E[\ell]})$$

by working with the *division polynomial* ψ_{ℓ} , the monic polynomial vanishing precisely x(P) for $P \neq 0 \in E[\ell]$

Since deg $\psi_{\ell} = (\ell^2 - 1)/2$, we can compute t_{ℓ} in $\tilde{O}((\log p)^4)$ bit operations.

Elkies' method for computing $t_{\ell} = \operatorname{tr} \pi_{E} \mod \ell$

For 50% of primes ℓ (asymptotically), ℓ is an *Elkies' primes* for E (E admits a \mathbb{F}_q -rational ℓ -isogeny ϕ) so π_E fixes $\ker \phi \subset E[\ell]$, and

$$\pi_E|_{\ker\phi}\in\operatorname{End}(\ker\phi)\cong\mathbb{Z}/\ell\mathbb{Z}$$

Elkies' method for computing $t_\ell = \operatorname{tr} \pi_E \mod \ell$

For 50% of primes ℓ (asymptotically), ℓ is an *Elkies' primes* for E (E admits a \mathbb{F}_q -rational ℓ -isogeny ϕ) so π_E fixes $\ker \phi \subset E[\ell]$, and

$$\pi_{\mathsf{E}}|_{\ker\phi}\in\mathsf{End}(\ker\phi)\cong\mathbb{Z}/\ell\mathbb{Z}$$

By working modulo the *kernel polynomial* h(x) of ϕ , find $0 \le c < \ell$ such that

$$\alpha^2 \big|_{\ker \phi} + [\deg \alpha] \big|_{\ker \phi} = c(\alpha \big|_{\ker \phi})$$

Then $t_\ell=c$. This gives a speedup of a factor of $\ell=O(\log p)$ in computing t_ℓ , because

$$\deg \psi_{\ell} = (\ell^2 - 1)/2, \quad \deg h(x) = \ell + 1.$$

Assuming heuristics including (but not limited to!) GRH, the SEA algorithm computes tr π_E in $O((\log p)^4)$ bit operations.

The SEA algorithm for supersingular endomorphisms

Suppose E/\mathbb{F}_q is supersingular. Then $j(E) \in \mathbb{F}_{p^2}$.

- Assume *E* itself is defined over \mathbb{F}_{p^2} , and $j(E) \neq 0, 1728$.
- In this case, $\pi_E = [\pm p]$.

The SEA algorithm for supersingular endomorphisms

Suppose E/\mathbb{F}_q is supersingular. Then $j(E) \in \mathbb{F}_{p^2}$.

- Assume *E* itself is defined over \mathbb{F}_{p^2} , and $j(E) \neq 0,1728$.
- In this case, $\pi_E = [\pm p]$.

Then E/\mathbb{F}_{p^2} has **all** of its ℓ -isogenies defined over \mathbb{F}_{p^2} .

- Every prime is an Elkies prime for supersingular E!
- But $\alpha \in \operatorname{End}(E)$ need not fix $\ker \phi$
- Instead: we compute $\operatorname{tr} \alpha \mod \ell$ by finding c such that the characteristic equation

$$\alpha^2 \big|_{\ker \phi} + [\deg \alpha] \big|_{\ker \phi} = c(\alpha \big|_{\ker \phi})$$

holds in $\mathsf{Hom}(\ker\phi, E[\ell])$

The SEA algorithm for supersingular endomorphisms

Suppose E/\mathbb{F}_q is supersingular. Then $j(E) \in \mathbb{F}_{p^2}$.

- Assume *E* itself is defined over \mathbb{F}_{p^2} , and $j(E) \neq 0,1728$.
- In this case, $\pi_E = [\pm p]$.

Then E/\mathbb{F}_{p^2} has **all** of its ℓ -isogenies defined over \mathbb{F}_{p^2} .

- Every prime is an Elkies prime for supersingular E!
- But $\alpha \in \operatorname{End}(E)$ need not fix $\ker \phi$
- Instead: we compute $\operatorname{tr} \alpha \mod \ell$ by finding c such that the characteristic equation

$$\alpha^2 \big|_{\ker \phi} + [\deg \alpha] \big|_{\ker \phi} = c(\alpha \big|_{\ker \phi})$$

holds in $\operatorname{Hom}(\ker \phi, E[\ell])$

Theorem (M.-Panny-Sotáková-Wills)

There is an algorithm for computing the trace of an endomorphism α of a supersingular E/\mathbb{F}_{p^2} . Assuming GRH and that deg $\alpha=d^e$ with $e=O(\log p)$ and d=O(1), the algorithm terminates in expected $\tilde{O}((\log p)^4)$ bit operations.

Beyond the SEA algorithm: computing t_ℓ for $\ell | \# E(\mathbb{F}_{p^2})$

Since we assume E/\mathbb{F}_{p^2} is supersingular and $j(E) \neq 0,1728$, we know $\#E(\mathbb{F}_p^2) = (p \pm 1)^2$. To compute $t_\ell = \operatorname{tr} \alpha \mod \ell$ for $\ell | \#E(\mathbb{F}_{p^2})$:

- **2** Compute $(\alpha + \widehat{\alpha})(P)$
- **3** solve a small discrete log: t_{ℓ} is the solution to

$$cP = (\alpha + \widehat{\alpha})(P).$$

Beyond the SEA algorithm: computing t_p

Let ω_E be an invariant differential for E. Then $\alpha^*\omega_E=c_\alpha\omega_E$ for some $c_\alpha\in\mathbb{F}_{p^2}$, and the map

$$\mathsf{End}(E) \to \mathbb{F}_{p^2}$$
$$\alpha \mapsto c_{\alpha}$$

is a homomorphism of rings, and (when E is supersingular)

$$\operatorname{tr} \alpha \equiv \operatorname{Tr}_{\mathbb{F}_{p^2}/\mathbb{F}_p} c_{\alpha} \pmod{p}.$$

Beyond the SEA algorithm: computing t_p

Let ω_E be an invariant differential for E. Then $\alpha^*\omega_E=c_\alpha\omega_E$ for some $c_\alpha\in\mathbb{F}_{p^2}$, and the map

$$\mathsf{End}(E) o \mathbb{F}_{p^2}$$
 $\alpha \mapsto c_{\alpha}$

is a homomorphism of rings, and (when E is supersingular)

$$\operatorname{tr} \alpha \equiv \operatorname{Tr}_{\mathbb{F}_{n^2}/\mathbb{F}_p} c_{\alpha} \pmod{p}.$$

We can "read off" c_{α} from α : for separable α , we have

$$\alpha(x,y) = \left(\frac{N(x)}{D(x)}, \mathbf{c}_{\alpha} \cdot \left(\frac{N(x)}{D(x)}\right)' y\right)$$

Timings

Implemented in sagemath. To demonstrate the asymptotic speedups offered:

- For each $b \in [16, ..., 32]$, repeat 5 times:
 - Compute random *b*-bit prime p, pseudorandom supersingular E/\mathbb{F}_{p^2} , and endomorphism $\alpha \in \operatorname{End}(E)$ of degree $\approx p^4$
 - **2** Compute $\operatorname{tr} \alpha$ using Schoof (i.e. get t_ℓ with division polynomials), SEA (i.e get t_ℓ with kernel polynomials), SEA + "mod p", SEA + "mod p" + "points"

