

ALADIN: Generator für SQL-Aufgaben und Lösungshilfen – von der Syntaktik zur Semantik

"(Didaktische) Herausforderung" vor ALADIN

- nur wenige Übungsaufgaben
- kaum unbekannte Aufgaben zum selbständigen Üben
- keine Skalierung der Aufgaben hinsichtlich Schwierigkeitsgrades und Umfangs
- keine Musterklausuren zu Prüfungsvorbereitung
- Lösungshilfen nur durch Lehrenden möglich → erheblicher Aufwand
- keine motivierenden Impulse f
 ür Lernprozesse
- keine orts- und zeitflexible Lehre
- keine Selbstkontrolle beim Lernen durch Abgleich mit Musterlösungen
- kein selbstorganisiertes und selbsttätiges Lernen

"(Didaktische) Ziele" von ALADIN

- bekannte Lösungsansätze wiederholt selbsttätig auf zufällig generierte Probleme anwendbar
- Orientierung des Schwierigkeitsgrads an individueller Leistungsfähigkeit
- leistungsgerechte Aufgaben für heterogene Zielgruppen
- hohe Problemlösungskompetenz der Studierenden → höherer Studienerfolg
- Generierung von Online-Selbsttests und elektronischen Test- oder Probeklausuren und sofortiges automatisches und leistungsabhängiges Feedback → weniger Aufwand
- fachlich und zeitlich unbegrenzt wiederverwendbar
- Generierung der Aufgaben parametrisier- und somit den Lehrinhalt aktiv mitgestaltbar
- Lernen mit eigener Geschwindigkeit
- zeitlich, räumlich und institutionell flexibel nutzbar
- Erweiterbarkeit um neue Aufgabentypen
- Vernetzung der Studierenden
- Feedback an/von Lehrende/n
- ...

Derzeitiger Leistungsumfang von ALADIN

- unterstützte Aufgabentypen:
 - Stücklistenauflösung mittels dreier, unterschiedlicher Verfahren
 - SQL-Abfragen
 - Geostatistische Interpolationsverfahren (Inverse Distanzwichtung)
 - Shortest-Path-Algorithmen (Dijkstra)
- Aufzeichnung, Wiedergabe und Fortführung von Lösungsversuchen
- zum großen Teil deklarative Erstellung neuer Aufgabentypen

Lernen und Lehren mit und ohne ALADIN

Ablauf ohne ALADIN

Ablauf mit ALADIN

Hinter den Kulissen von ALADIN

Deklarativ konfigurierbar im JSON-Format

Hinter den Kulissen von ALADIN

Möglichkeiten:

- "Atomare" Fehlerbehandlung und Lösungshilfe
- Aufzeichnung aller Interaktionen
- Abspielen aller Interaktionen
- Wiedereinstieg an beliebiger Stelle
- Vervollständigung des Lösungsversuchs als neue Aufzeichnung

Hinter den Kulissen von ALADIN

Nutzereingabe

Ausführungsumgebung

Algorithmus zur Generierung von SQL-Statements

Limitation auf semantischer Ebene

Patient					
ID	Name	Vorname	Geburtsdatum	Geschlecht	
0	Mustermann	Max	01.01.2000	m	
1	Decker	Dirk	31.12.1999	m	
2	Räubertochter	Ronja	03.02.1952	W	
3	Lustig	Lea	04.05.1965	W	

Patientenzustand				
ID	PatientenID	Status	Erfassungsdatum	
0	0	Genesen	14.04.2020	
1	1	Geimpft	01.06.2021	
2	2	Geimpft	21.08.2021	
3	3	Infiziert	05.12.2020	
4	1	Infiziert	01.01.2022	
	γ			

- Welche Patienten wurden trotz Impfung infiziert?
- SQL-Abfrage:

SELECT p.Name, p.Vorname FROM Patient AS p

JOIN Patientenzustand AS pz ON p.ID = pz.PatientenID

WHERE pz.Status = 'Infiziert'

AND pz.PatientenID IN

(SELECT PatientenID FROM Patientenzustand

WHERE Status = 'Geimpft' AND Erfassungsdatum < pz.Erfassungsdatum);

Ergebnis				
Name	Vorname			
Decker	Dirk			

Limitation auf semantischer Ebene

Bilde die Schnittmenge, welche die korrespondierenden Einträge der beiden Tabellen "Patient" und "Patientenzustand" enthält. Gib die Spalten "Name" und "Vorname" aus. Es sollen nur Daten ausgegeben werden für die "Zustand" 'Infiziert' ist und die Ausprägungen von "ID" in einer Untermenge liegen, für die "Zustand" 'Geimpft' ist und "Erfassungsdatum" kleiner ist als "Erfassungsdatum" der Obermenge.

Finde Name und Vorname der Patienten, welche den Status 'Geimpft' und nachfolgend den Status 'Infiziert' aufweisen.

Welche Patienten wurden trotz Impfung infiziert?

SELECT p.Name, p.Vorname FROM Patient AS p

JOIN Patientenzustand AS pz ON p.ID = pz.PatientenID

WHERE pz.Status = 'Infiziert'

AND pz.PatientenID IN

(SELECT PatientenID FROM Patientenzustand

WHERE Status = 'Geimpft'

AND Erfassungsdatum < pz.Erfassungsdatum);

- Nicht hinreichend inferierbare Informationen
 - Kardinalität
 - Semantische Beziehung

Limitation auf semantischer Ebene

Finde Name und Vorname der Patienten, welche den Status 'Geimpft' und nachfolgend den Status 'Infiziert' aufweisen und von 'Quentin Quacksalber' behandelt werden.

Von der Syntaktik zur Semantik

- Wir kennen die Symbole
 - Tabelle, Attribute, Metainformationen
- Wir kennen die Syntaktik
 - Fremdschlüsselbeziehungen, Tabelle <-> Tabelle
 - Tabellenattribute, Tabelle <-> Attribut
 - Metainformationen, Attribut <-> Metainformation (Datentyp, Schlüsselausprägung etc.)
- Problem:
 - Fehlendes semantisches Wissen
 - (Rollen und Generalisierung/Spezialisierung)
 - Semantische Bedeutung von Fremdschlüsselbeziehungen
 - Insb. Interaktionsrichtungen
- Lösungsmöglichkeiten:
 - -> Händische Annotation bestehender Datenbanken
 - -> Generieren von relationalen Datenbanken aus Datenbestand mit vorliegenden semantischen Informationen

Projektion mittels Semantischer Netze / Wissensdatenbanken

Angepasster Algorithmus zur Generierung von SQL-Statements

Frei zugängliche Wissensdatenbanken

- Häufige Einschränkungen
 - Größtenteils rein taxonomischer Natur
 - Bspw. isA-, hasA-Beziehungen
 - Keine einheitlichen Schnittstellen und Repräsentationen
 - Meist einsprachig (Englisch)
 - Meist keine lexikalische Informationen

CYC: The Common Sense Knowledge Base

Dynamische Erzeugung von Wissensdatenbanken

 Generative Erzeugung der Wissensdatenbank nach Anforderungsprofil des jeweiligen Aufgabentyps, mit minimalen Aufwänden

Beispiel: Symbolic Knowledge Distillation [2]

	Event	Relation	Inferenz	
	X starts running	xEffect so, X	gets in shape	
	X and Y engage in an argument	xWant so, X wants	to avoid Y	
	X learns to type fast	xNeed X needed	to have taken typing lessons	
	X steals his grandfather's sword	xEffect so, X	is punished by his grandfather	
	X takes up new employment	xIntent because X wants	to be self sufficient	
In 10er	100 menschlich kreierte Beispiele	Definierte Zielrelationen	100 menschlich kreierte Beispiele je Zielrelation	•
	ompt	Pro	ompt	In 10er Kombinationen
		eilmenge	6.5M	
	176K / Events		Inferenzen	

$ATOMIC_{20}^{20}$	$ATOMIC^{10x}$
77,616	1,028,092
100,995	760,232
109,098	730,223
54,839	965,921
62,424	1,033,123
113,096	884,318
90,868	1,054,391
608,936	6,456,300
~\$40,000	~\$6,000
~\$0.06	~\$0.001
	77,616 100,995 109,098 54,839 62,424 113,096 90,868 608,936 ~\$40,000

Corpus	Accept	Reject	N/A S	ize Size (div)		
$ATOMIC_{20}^{20}$	86.8	11.3	1.9 0.	6M 0.56		
ATOMIC ^{10x}	78.5	18.7		5M 4.38	\	
	88.4 91.5	9.5 6.8		1M 3.68 4M 3.25	'	Strenge
	94.3	4.6		6M 2.74		des "Critics"
	95.3 96.4	3.8 2.7		0M 2.33 5M 2.00	. •	1

Einführung des "Critic"

Klassifikationsmodell, das auf 10K, durch Crowdsourcing bewerteter zufällig gewählter Tupel trainiert wurde

[2] Symbolic Knowledge Distillation: from General Language Models to Commonsense Models

[3] <u>LAMA</u> [4] <u>COMET</u>

SQL - Relationsschema

Mögliche Relationen:

- isA-Beziehung
 - X ist ein Patient; X ist ein Arzt; X ist ein Covid-Status...
- hasA-Beziehung (X = Instanz einer "Klasse")
 - X hat einen Nachnamen; X hat einen Covid-Status
- isAbleTo-Beziehung (X, Y = Instanzen einer "Klasse")
 - X kann eine Behandlung durchführen; Y kann sich behandeln lassen; X kann Y behandeln
- hasDate-Beziehung (X = Datumsinstanz, Y = Instanz einer "Klasse")
 - am X wurde Y geboren; am X wurde Y erfasst
- occuredBefore/occuredAfter
 - Status X vor Status Y ("Geimpft" vor "Infiziert")

Ermöglicht:

- Datenbankgenerierung
- Aufgabenstellung, welche n\u00e4her an einer Formulierung durch den Menschen liegt

Integration in ALADIN

- Nutzung von Open-Source Alternativen (GPT-Neo/-J/-X)
- Definition von Relationen und Erstellen von Beispieltupeln durch Lehrende/Entwickler bei Bedarf an neuen Aufgabentypen
- "Flagging" von möglicherweise inakzeptablen Tupeln während der Bearbeitung durch Studenten (integriertes Crowdsourcing)
- Eröffnet domänenspezifische und von Semantik abhängige Aufgabentypen
 - Biologie, Jura, Medizin, etc.
 - Modellierungsaufgaben (ERM, UML, BPMN, etc.)
 - **–** ...

Ausblick I: neue Aufgabentypen

- aus ALADIN-II-Antrag:
 - Terminierung
 - Spatial SQL
 - Netzplantechnik
 - PERT
 - Datenfluss-, ERM- und UML-Modellierung.
- aus OPALADIN-Antrag:
 - Kodierung (Faltungscodes, Huffman)
 - Prüfmuster / Paragraphennetzwerke für Rechtsfälle / Gesetze
 - Chemische Strukturformeln von Molekülverbindungen
 - Euler-Tonnetze/PLR-Regeln in der Musiktheorie

Ausblick II: ALADIN goes OPAL (OPALADIN)

fachlich/inhaltlich

- "Generalisierung" der Aufgabentypen
- "programmierfreie" Erstellung neuer Aufgabentypen
- statistische Auswertungen zu Nutzerverhalten und Aufgabenbearbeitung

technisch:

- "von der Syntaktik zur Semantik" …
- Integration in OPAL (und ONYX)
- Technische Umsetzung mittels LTI-Schnittstelle und Shibboleth-Nutzer
- Einbettung in OPAL-Kurse als Abschluss der jeweiligen Lektionen
- Eigenständige Nutzung ermöglichen (bspw. analog zu LAVA-Kursen)
- Hochschulübergreifende Nutzung

Fragen & Diskussion

Vielen Dank für die Aufmerksamkeit!