컴퓨터 그래픽스 제4장 2차원 그래픽스의 기본 요소

2017년 2학기

4장 학습 내용

- 2차원 그래픽스 기본 요소
 - 점
 - 선
 - 원
 - 영역 채우기
 - 앨리어싱 효과

점과 선의 정의 및 속성

- 2차원 그래픽스의 기본적인 출력 요소
 - 점, 선, 다각형, 원, 타원, 곡선, 문자 등
 - 점과 선은 모든 2차원 그래픽스 객체 표현의 기본 요소
- 점 (Point)
 - 래스터 방식의 출력장치에서의 기본 요소
 - 점의 속성: 크기, 명암, 색상, 모양 등
 - 기하공간에서의 점: 좌표 (x, y)

- 선 (Line)
 - 시작점 (x_a, y_a)과 끝점 (x_b, y_b) 또는 시작점 좌표 (x_a, y_a)와 증가 값 (Δx, Δy)의 상대좌표로 정의
 - 선의 속성: 유형, 굵기, 색상, 선 끝 모양 등
 - 직선 방정식을 이용하여 선의 좌표 값 구하기
 - y = mx + c m: 기울기 c: y축 절편
 - 두 끝점 (x1, y1) (x2, y2)를 사용하여 m과 c를 구한다
 - m = (y2 y1) / (x2 x1)
 - c = y1 mx1

선 그리기: DDA 알고리즘

- DDA (Digital Differential Analyzer) 알고리즘
 - 선의 양끝 좌표로부터 래스터 출력 장치로 변환하는 가장 기본적인 알고리즘
 - 선의 공식을 y = mx + c의 형태로 계산
 - $0 \le m \le 1 인 경우, x를 1씩 증가시키면 y값은 m만큼 증가$
 - m > 1인 경우, 그 반대로 y를 매번 1씩 증가시키면 x값이 $\frac{1}{m}$ 만큼씩 증가
 - 기울기 m이 음수인 경우, x 증가에 따라 y값이 증가 대신 감소

선 그리기: DDA 알고리즘

- 초기화를 한다.
 - $\triangle x = x_b x_a$, $\triangle y = y_b y_a$,
 - $m = \frac{\Delta y}{\Delta x}$
 - $x_1 = x_a, y_1 = y_a$
- 기울기에 m의 값에 따라 다음계산을 수행한다.
 - 기울기 $|m| \le 1$ 인 경우, 매번 k+1번 째 점에서 $(1 \le k \le \Delta x)$

$$x_{k+1} = x_k + 1$$

 $y_{k+1} = y_k + m$
 y_{k+1} 의 래스터 좌표 = Round(y_{k+1})

- 기울기 |m|>1 인 경우, 매번 k+1번 째 점에서 $(1 \le k \le \triangle y)$

$$y_{k+1} = y_k + 1$$

 $x_{k+1} = x_k + \frac{1}{m}$
 x_{k+1} 의 래스터 좌표 = Round(x_{k+1})

선 그리기: DDA 알고리즘

DDA 알고리즘의 특징

- 곱하기가 없이 소수점(Floating-point) 더하기 연산만을 반복
- 부동 소수 연산 사용, 정수연산에 비해서는 상대적으로 속도가 떨어진다.
- 반올림 연산 함수의 실행시간이 걸린다.
- 매번 정수좌표를 구할 때마다 오차가 축적

• Bresenham 알고리즘

- 선을 구성하고 있는 어느 한 점의 다음 점은 반드시 <u>오른쪽 점</u> 또는 <u>오른쪽 바로</u> <u>위의 점</u>이 된다.
- 가능한 두 점 중, 실 선과 두 개의 가능한 점의 차이 (아래 그림에서 d1과 d2)가
 더 작은 점을 선택하여 선을 나타내는 알고리즘
- 소수점 계산 없이 정수의 더하기 연산과 이동 연산만으로 처리되므로 속도가 빠르다.

- 알고리즘 초기화
 - 기울기가 1보다 작은 경우 (|m| < 1):
 - y = mx + c, $m = \frac{\Delta y}{\Delta x}$
 - 시작점: (x_a, y_a),
 - 가능한 두 점: (x_a+1, y_a), (x_a+1, y_a+1)
 - 일반적인 k번째 점: (x_k, y_k) ,
 - 가능한 두 점: (x_k+1, y_k), (x_k+1, y_k+1)

- 다음 점 x_{k+1} 에서

$$y = mx_{k+1} + c$$

 $d_1 = y - y_k = m(x_k + 1) + c - y_k$
 $d_2 = (y_k + 1) - y = (y_k + 1) - (m(x_k + 1) + c)$
 $\mathbf{d_1} - \mathbf{d_2} = \{m(x_k + 1) + c - y_k\} - \{y_k + 1 - (m(x_k + 1) + c)\}$
 $= 2m(x_k + 1) - 2y_k + 2c - 1 = (d_1 - d_2)$: 두 거리 사이의 차이)

- 양변에 ∆x를 곱한다

 $- (d_1 - d_2) \Delta x = p_k (판단매개변수)라고 하면 (m = <math>\triangle y / \triangle x)$

$$p_k = (d_1 - d_2) \Delta x$$

 $p_k = 2 \Delta y (x_k + 1) + \Delta x (-2y_k + 2c - 1) = 2 \Delta y x_k - 2 \Delta x y_k + 2 \Delta y + \Delta x (2c - 1)$
 p_k 에 p_{k+1} 를 대입하면,
 $p_{k+1} = 2 \Delta y \cdot x_{k+1} - 2 \Delta x y_{k+1} + 2 \Delta y + \Delta x (2c - 1)$

$$p_{k+1} - p_k = 2 \Delta y (x_{k+1} - x_k) - 2 \Delta x (y_{k+1} - y_k)$$

$$p_{k+1} = p_k + 2 \Delta y - 2 \Delta x (y_{k+1} - y_k)$$

- pk의 부호에 따라

$$\begin{aligned} & p_k \ge 0 \rightarrow d_1 - d_2 \ge 0 \rightarrow \ d_1 \ge d_2 \rightarrow y_{k+1} = y_k + 1 \\ & p_k < 0 \rightarrow d_1 - d_2 < 0 \rightarrow \ d_1 < d_2 \rightarrow y_{k+1} = y_k \end{aligned}$$

$$\mathbf{p_k} \ge \mathbf{0} \to p_{k+1} = p_k + 2 (\Delta y - \Delta x) \qquad (y_{k+1} - y_k == 1)
\mathbf{p_k} < \mathbf{0} \to p_{k+1} = p_k + 2 \Delta y \qquad (y_{k+1} - y_k == 0)$$

따라서
$$p_k < 0$$
 이면 \rightarrow 다음 점은 (x_k+1, y_k) $0 \le p_k$ 이면 \rightarrow 다음 점은 (x_k+1, y_k+1)

- 시작점: (x_a, y_a) 일 때 첫 번째 매개변수 값은,

$$p1 = 2 \Delta y x_k - 2 \Delta x y_k + 2 \Delta y + \Delta x (2c - 1)$$

$$= 2 \Delta y x_a - 2 \Delta x y_a + 2 \Delta y + \Delta x (2c - 1)$$

$$= 2 \Delta y x_a - 2 \Delta x (m x_a + c) + 2 \Delta y + \Delta x (2c - 1)$$

$$= 2 \Delta y x_a - 2(\Delta y x_a + \Delta x c) + \Delta y + \Delta x (2c - 1)$$

$$= 2 \Delta y - \Delta x$$

- 브레즌햄 선 그리기 알고리즘 정리:
 - 기울기가 0과 1 사이인 경우에 적용
 - 초기값을 구한다.
 - 시작점의 좌표: (x1, y1)

•
$$C1 = 2\Delta y$$
 $C2 = 2(\Delta y - \Delta x)$

- $p1 = 2\Delta y \Delta x$
- 판별식 pk값에 따라 다음 점의 위치를 구한다.

•
$$pk < 0 \rightarrow \text{ } Text{\rightarrow } P_k + 1, \ y_k)$$
 $p_k + 1 = p_k + C1$

•
$$pk \ge 0 \rightarrow \text{다음 점: } (x_k + 1, y_k + 1), \quad p_k + 1 = p_k + C2$$

원 그리기

- 원이나 타원 등 곡선은 매개변수 형태의 함수로 표현된다.

 - 점들을 선분으로 연결하여 곡선의 모양을 근사적으로 그린다.
 - 원의 공식: x² + y² = r²
 - 직교 좌표계에서 (x, y) 를 함수 형태로 표현하면 $y = \pm \sqrt{r^2 x^2}$
 - 극 좌표계 (Polar Coordinate)에서 매개변수 함수로 표현하면
 - $x = r \cos \theta$, $y = r \sin \theta$
 - 원의 중심이 (xc, yc) 일 때는,
 - 원의 공식은 $(x-x_c)^2 + (y-y_c)^2 = r^2$
 - 극좌표식은 $x = x_c + r \cos\theta$, $y = y_c + r \sin\theta$

Bresenham 알고리즘

- 제곱근이나 삼각함수 등의 계산이 없이 정수 연산만으로 처리
- 각도가 $45 \le \theta \le 90$ '인 부분에 대하여 계산
- x방향으로 1만큼 증가 → y축에서는 같은 점 또는 1감소된 점: k번째 점 (x_k, y_k) → k+1번째 점 (x_k+1, y_k) 또는 (x_k+1, y_k-1)

 $-x_k < y_k$ 인 동안 반복

$$x^{2} + y^{2} = r^{2}$$

 $y^{2} = r^{2} - x^{2}$ \rightarrow $y_{k+1}^{2} = r^{2} - (x_{k} + 1)^{2}$

$$d_1 = y_k^2 - y^2$$

$$d_2 = y^2 - (y_k - 1)^2$$

$$p_k = d_1 - d_2 = (y_k^2 - y^2) - \{y^2 - (y_k - 1)^2\}$$

$$p_{k+1} = (y_{k+1}^2 - y^2) - \{y^2 - (y_{k+1} - 1)^2\}$$

$$p_{k+1} - p_k = 2 y_{k+1}^2 - 2 y_k^2 - 2 y_{k+1} + 2 y_k + 4(x_k + 1) + 2$$

$$p_k < 0 \rightarrow d_1 - d_2 < 0$$

다음 점은 $y(x_k + 1, y_k)$
 $p_k >= 0 \rightarrow d_1 - d_2 >= 0$
다음 점은 $(x_k + 1, y_k - 1)$

$$p_{k+1} = p_k + 4x_k + 6$$

$$p_{k+1} = p_k + 4(x_k - y_k) + 10$$

$$p1 = (y_1^2 - y^2) - \{y^2 - (y_1 - 1)^2\} = 3 - 2r$$

초기화:
$$x_1 = x_c$$
, $y_1 = y_c + r$, $p_1 = 3-2r$

- 2차원 그래픽스에서 영역
 - 모든 그림들은 픽셀들로 구성되고,
 - 선이나 도형이 서로 만나서 영역이 생성된다.
- 영역의 특성
 - 영역: 같은 색상 값을 갖는 이웃한 픽셀들의 집합
 - 이웃한 픽셀간의 연결 방식 (픽셀의 연결 방식)

영역 연결방식의 예: 4방향 연결 - 2개의 영역 8방향 연결 - 1개의 영역

- 래스터 출력에서 영역의 경계 픽셀과 내부 픽셀은 연결방식을 다르게,
 - 경계 8방향 연결 ⇒ 내부는 반드시 4방향 연결 채우기
 - 경계 4방향 연결 ⇒ 일반적으로 내부는 8방향 연결 채우기
- 일반적인 래스터 방식의 출력장치
 - Bresenham 선 그리기 알고리즘은 8방향연결 방식
 - 영역 채우기 알고리즘은 내부 영역을 4방향연결 방식으로 채우기

4방향 연결 방식의 경계 8방향 연결 방식의 내부

영역 채우기 알고리즘

- 시드 채우기 방식
 - 그림이 래스터 버퍼에 그려진 후 이미지에서 영역의 채우기를 실행
 - 영역 내부의 한 픽셀이 시드로 주어지고 이 픽셀에서부터 채워나간다
 - 주로 페인팅 소프트웨어나 대화식 이미지 처리 프로그램 (사용자가 원하는 영역을 클릭하면 그 점을 시드로 하여 채우기를 실행)에서 사용
- 다각형 주사변환 방식
 - 매 주사선 별로 다각형의 내부 구간을 판단하여 해당 픽셀을 칠한다.
 - 주사선채우기(Scan-line Fill)라고도 한다.
 - 주로 벡터방식의 그리기 소프트웨어에서 사용 (채우기를 하는 도형의 벡터 데이터를 가지고 있다)

시드 채우기 방식

다각형 주사변환 방식

- 시드 채우기 (Seed fill) 방식
 - 다각형 내부의 한 점 (x, y)가 seed로 주어진다.
 - 이 점을 중심으로 이웃 픽셀이 영역의 내부에 있는지를 판단하여 영역 채우기를 하다.
 - 내부 영역에 대한 판단
 - Interior-defined: 같은 값을 가지고, 연결된 픽셀들을 내부 영역으로 판단 → 범람 채 우기 (Flood Fill)
 - Boundary-defined: 경계의 안쪽에 위치하는 픽셀들을 내부 영역으로 판단 → 경계 채 우기 (Boundary Fill)

주어진 시드

범람 채우기 (Flood-fill)

경계 채우기 (Boundary-fill)

- 알고리즘 진행 방법
 - 내부의 한 점 시드(seed)를 스택에 저장한다
 - Seed pixel을 중심으로 4방향 또는 8방향의 이웃 픽셀에 대해 내부의 점인지를 확인
 - 재귀적 함수 (Recursive) 사용하여 이웃한 픽셀들을 검사해나간다.

```
범람 채우기 알고리즘
 void flood fill (int x, int y)
                                                          // 시드 (x, y) 에서 시작
       if (read_pixel (x, y) == bgColor)
                                                          // 현재 픽셀이 배경색 'bgColor'이면,
       {
                                                         // 채우기 색 'fillColor'로 칠한다.
// 오른쪽으로 반복
// 왼쪽으로 반복
// 악래로 반복
           write_pixel (x, y, fillColor);
           flood fill (x+1, y);
           flood_fill (x-1, y);
           flood_fill (x, y+1);
           flood_fill (x, y-1);
경계 채우기 알고리즘
 void boundary fill(int x, int y)
                                                          // 시드 (x, y) 에서 시작
       current = read_pixel(x, y);
       if ((current != bdColor) && (current != fillColor)) // 경계 및 채울 색인지 확인
                                                         // 내부를 채우기 색 'fillColor'로 칠한다.
// 오른쪽으로 반복
// 왼쪽으로 반복
// 아래로 반복
// 위로 반복
           write pixel (x, y, fillColor);
           boundary_fill (x+1, y);
boundary_fill (x-1, y);
           boundary_fill (x, y+1);
           boundary fill (x, y-1);
```

다각형 내부 판단 규칙

 여러 개의 다각형으로 구성된 복잡한 도형이 주어지면 내부 영역을 다르게 판단할 수 있다.

- 판단 규칙
 - 홀짝 규칙 (Even-Odd rule)
 - 매 주사선별로 x값을 증가하면서
 - 다각형의 에지가 홀수 번째 교차하면 내부 구간이 시작
 - 짝수 번째 교차하면 외부 구간이 시작된다.
 - 알고리즘이 간단하다.
 - 서로 다른 두 개의 다각형이 겹쳐있을 때 그 겹친 부분은 항상 외부 영역으로 판단

다각형 내부 판단 규칙

- 접기회수 규칙 (Non-Zero Winding Rule): 에지의 방향을 고려
 - 다각형에서 각 에지의 벡터 방향은 꼭짓점이 주어진 순서에 따라 정해진다
 - 각 주사선에서 아래쪽 방향의 모서리와 교차: 1 증가
 - 각 주사선에서 위쪽 방향의 모서리와 교차: 1 감소
 - 합이 0이면 → 외부
 - 합이 0이 아니면 → 내부
 - 다각형 모서리의 방향에 따라 내부와 외부영역을 지정해줄 수가 있다.
 - 홀짝 규칙보다 약간 복잡, 도형 설계에서 자유롭게 내부와 외부 영역 지정 가능, 정교한 드로잉 소프트웨어에서 많이 사용

- 다각형 주사 변환 방식 (Polygon scan-conversion)
 - 매 주사선마다 교차되는 edge(에지, 모서리)들의 목록을 유지, 갱신하여 영역을 설정한다.
 - 가장 대표적인 방법: Y-X 다각형 주사선 알고리즘
 - Edge list
 - 에지 목록 EL (Edge List): 다각형의 전체 edge의 목록
 - 시작점의 y 좌표값 (더 작은 y 값) 순서로 다각형의 전체 에지를 정렬하여 전체 에 지의 EL 구성
 - 매 주사선에서 교차하는 에지를 EL에서 꺼내어 AEL로 옮겨 관리
 - <mark>활성화된 에지 목록</mark> AEL (Active Edge List): 각 주사선과 교차하여 활성화 된 edge 목록
 - 해당 주사선과 각 에지와의 교차점의 x값을 구한 후 2개 씩 짝을 만들어 이들 사이를 채운다.
 - 그리기가 완료된 AEL내의 에지를 찿아서 제거 (AEL의 에지 중 아래쪽 점의 y 좌표가 주사선의 y좌표보다 작게 되면 EL에서 제거

e1 (0, 5) (4, 1) e2 (4, 1) (8, 3) e3 (8, 3) (8, 7) e4 (8, 7) (5, 4) e5 (0, 5) (5, 4)

EL = {e1, e2, e3, e4, e5} -> 시작점의 y값 (작은 값)에 따라 정렬: {e2, e1, e3,e5, e4}

Y=1: $AEL = \{e2, e1\}$

 $Y=2: AEL = \{e2, e1\}$

Y=3: $AEL = \{e2, e2, e3\}$

 $Y=4: AEL = \{e1, e3, e5, e4\}$

Y=5: AEL = {e1, e3, e5, e4 }

Y=6: $AEL = \{e3, e4\}$

Y=7: $AEL = \{e3, e4\}$

Y=8: AEL = { }

- Y-X 다각형 주사선 알고리즘의 특징
 - Y-X 알고리즘: Y값 순서로 전체 에지 정렬, 교차점은 X좌표값 순서로 정렬
 - 효율성: 에지의 목록에 대한 부분적인 일관성(Coherence)으로 발생
- Y-X 다각형 주사선 알고리즘
 - 1) 초기화를 한다.

각 에지들을 Y좌표의 최소값 순서로 정렬하여 Edge List(EL)를 구성한다.

- 2) 매 주사선 y_k 에서 다음을 수행한다.
 - a) AEL을 갱신한다.

```
AEL에서 y_b < y_k 인 에지를 삭제하고,  // 완료된 에지 삭제 EL에서 y_a = y_k 인 에지를 AEL로 이동한다.  // 새로운 에지 삽입 단, AEL 과 EL에 더 이상의 에지가 없으면 종료한다.
```

- b) AEL에서 각 에지의 교차점을 계산한다.
- c) 교차점 x값을 정렬한 후 각 쌍을 결정하여 그 사이를 채운다

Antialiasing

- 래스터 출력의 문제점
 - 앨리어싱 효과
 - 계단 현상 (jaggies, aliasing)
 - 모양이 들쑥 날쑥하고 선이 움직일 때 위치가 바뀐다.
 - 작은 물체가 깜빡 깜빡 한다. (blinking)
 - 앨리어싱이 생기는 이유
 - 저해상도의 출력장치에서 두드러진다.
 - 아날로그 방식의 그림을 디지털 화 하는데 샘플링 오차가 발생

Antialiasing

- 안티 앨리어싱(Antialiasing)
 - 컬러 또는 회색조(Gray) 출력 장치에서 경계가 부드럽게 보이도록 하는 기법
 - 물체의 경계 픽셀에서 물체와 배경의 색상을 혼합해서 그린다.
 - 선 그리기, 다각형 채우기, 문자 생성 등에 적용이 가능
 - 해상도를 높인다. → 물리적 해상도의 한계
 - 안티 앨리어싱 기법
 - 수퍼 샘플링 (Super sampling) 기법
 - 영역 샘플링 (Area sampling) 기법

Antialiasing

Antialiasing: 슈퍼 샘플링 기법

- Super sampling 기법
 - 출력 장치의 해상도보다 고해상도에서 그림을 자세히 표현할 수 있도록 하나의 픽셀 영역을 여러 개로 분할하는 기법.
 - 원래의 해상도로 환원할 때 픽셀의 명암값을 계산하여 보여준다.
 - 픽셀의 영역에 포함되는 고해상도 픽셀의 개수에 비례하여 명암값을 계산

Antialiasing: 수퍼 샘플링 기법

Antialiasing: 영역 샘플링 기법

Area sampling 기법

- 다각형 영역의 경계를 부드럽게 한다.
- 선이나 다각형의 테두리에 걸치는 픽셀이 내부영역에 얼마나 포함되는지 면적을 계산하여 비율 값을 사용하여 명암을 결정한다.
- 각 점을 등분하여 경계 안쪽에 있는 영역의 퍼센트 만큼 명암을 결정

- $y_1 = m(x_k 0.5) + c$
- $y_2 = m(x_k + 0.5) + c$
- 면적 = { $(y_1 (y_k 0.5)) + (y_2 (y_k 0.5))$ } / 2 = $(y_1 + y_2) / 2 - y_k + 0.5$ = $mx_k + c - y_k + 0.5$

Antialiasing: 영역 샘플링 기법

