Жидкость в трубке. Горизонтальная сила Архимеда

Kанал автора—https://t.me/kinenergy228

Содержание

1	Жи	ідкость в трубке	3
	1.1	Задача 1 (Физтех — 2020)	3
	1.2	Задача 2 (Физтех — 2016)	5
	1.3	Задача 3 (Физтех — 1998)	7
	1.4	Задача 4 (Физтех — 1996)	9
	1.5	Задача 5 (Физтех — 1996)	10
2	Гор	изонтальная сила Архимеда	11
	2.1	Задача 1 (Физтех — 2002)	11
		Задача 2 $(\Phi$ изтех — 2015 $)$	

1 Жидкость в трубке

1.1 Задача $1 \; (\Phi$ изтех — 2020)

ЗАДАЧА 5. («Физтех», 2020, 10) Тонкая Γ -образная трубка с горизонтальным коленом, закрытым с одного конца, и вертикальным коленом высотой H=40 мм, открытым в атмосферу, заполнена полностью ртутью (см. рис.). Если трубку двигать (в плоскости рисунка) с ускорением, не большим некоторого a_0 , то ртуть из трубки не выливается.

- 1. Найти давление P_1 внутри трубки в точке A, находящейся от вертикального колена на расстоянии 1/3 длины горизонтального колена, если трубка движется с ускорением a_0 .
- 2. Найти давление P_2 в точке A, если трубка движется с ускорением $0.6a_0$.
- 3. Найти давление P_3 вблизи закрытого конца трубки, если она движется с ускорением $0.8a_0$.

Атмосферное давление $P_0 = 740$ мм рт. ст. Давлением насыщенных паров ртути в условиях опыта пренебречь. Ответы дать в «мм рт. ст.».

1)

Пусть дина горизонтального колена l. Разделим горионтальный участок на два участка с длинами $\frac{1}{3}l$ и $\frac{2}{3}l$ соответственно.

Обозначим давление в начале горизонтального участка как p^* , на расстоянии $\frac{1}{3}l$ как p_1 . Давление в правом конце горизонтального участка равно нулю (так как жидкость движется с ускорением a_0 при котором жидкость только начинает выливаться, т.е она уже не оказывает давления на правую стенку).

Найдем p^* . Так как ускорение направлено горизонтально, то его проекция на вертикаль равна нулю, а значит оно не влияет распределение давления в вертикальном участке жидкости. Значит,

$$p^* = p_0 + \rho q H$$

Найдем p_1 . Рассмотрим левую часть горизонтального участка жидкости. По второму закону Ньютона на ось, направленную горизонтально влево (S — площадь поперечного сечения трубки):

$$(p^* - p_1)S = m_1 a_0 = \rho S \cdot \frac{1}{3}l \cdot a_0$$

$$p_1 = p_0 + \rho gH - \frac{1}{3}\rho l a_0$$

Рассмотрим правую часть горизонтального участка. По 23Н:

$$(p_1-0)S=m_2a_0=rac{2}{3}
ho Sla_0$$
 $ho la_0=rac{3}{2}p_1 o p_1=rac{2}{3}(p_0+
ho gH)=520$ мм рт. ст.

Запомним, что $ho la_0 = p_0 +
ho g H$

2) Распишем 23Н для левой части горизонтального участка жидкости:

$$(p^*-p_2)S=m_1\cdot 0, 6a_0=\frac{1}{5}\rho la_0S=\frac{1}{5}(p_0+\rho gH)S$$

$$p_2=(p_0+\rho gH)-\frac{1}{5}(p_0+\rho gH)=\frac{4}{5}(p_0+\rho gH)=624$$
 мм рт. ст

3) Распишем 23Н для всей горизонтальной части жидкости:

$$(p^*-p_3)S=(m_1+m_2)\cdot 0, 8a_0=0, 8
ho lSa_0$$
 $p_3=(p_0+
ho gH)-0, 8(p_0+
ho gH)=rac{1}{5}(p_0+
ho gH)=156$ мм рт.ст.

Идея во всех таких задачах похожая — писать вторые законы Ньютона для разных кусокв жидкости. Если ускорение направлено под углом, то нужно писать 23H еще и для вертикальных кусков жидкости (посмотреть можно тут). Теперь рассмотрим случай, когда жидкость выливается.

1.2 Задача $2 (\Phi$ изтех — 2016)

Задача 6. («Физтех», 2016, 10) Тонкая U-образная трубка постоянного внутреннего сечения с горизонтальным коленом длиной L и двумя одинаковыми вертикальными коленами, открытыми в атмосферу, заполнена водой не полностью (см. рисунок). В каждом вертикальном колене остаётся слой воздуха. Вода начинает выливаться, если трубку двигать вдоль горизонтального колена с постоянным ускорением, не меньшим, чем $a_0 = g/8$.

- 1) Найти длину H слоя воздуха в одном вертикальном колене, когда трубка покоится.
 - 2) Найти длину вылившегося слоя воды при движении с ускорением $a_1 = g/6$. Горизонтальное колено остаётся всегда заполненным водой.

1)

При движении с ускорением a_0 вправо жидкость подойдет к границе левой трубки, поднимется на высоту H. Тогда уровень жидкости в левой части опустится на величину H (сохранение массы). Распишем 23H для горизонтальной части трубки:

$$(p_1 - p_2)S = \rho SLa_0$$

Если высота вертикального колена l, то:

$$p_{1} = p_{0} + \rho g l, \ p_{2} = p_{0} + \rho g (l - 2H)$$
$$(p_{0} + \rho g l - (p_{0} + \rho g (l - 2H))) = \rho L a_{0}$$
$$2gH = L a_{0} \to H = \frac{L a_{0}}{2g} = \frac{L}{16}$$

2)

Пусть длина вылившегося слоя жидкости x. Запишем 23H для горизонтального участка жидкости (давление у левого края не изменится, так как ускорение горизонтально, а уровень жидкости не изменился):

$$(p_1 - p_3)S = \rho SLa_1$$

$$p_3 = p_0 + \rho g(l - (2H + x))$$

$$(p_0 + \rho gl - (p_0 + \rho g(l - (2H + x))) = \rho SLa_1$$

$$2gH + gx = La_1$$

$$x = \frac{La_1 - 2gH}{a} = \frac{1}{6}L - \frac{1}{8}L = \frac{1}{24}L$$

1.3 Задача 3 (Физтех — 1998)

Задача 11. ($M\Phi T U$, 1998) «Тройник» из трёх вертикальных открытых в атмосферу трубок полностью заполнен водой (см. рисунок). После того, как «тройник» стали двигать в горизонтальном направлении (в плоскости рисунка) с некоторым постоянным ускорением a, из него вылилось 9/32 всей массы содержавшейся в нём воды. Чему равна величина ускорения a? Внутреннее сечение трубок одинаково, длины трубок равны l.

Начальная масса воды в тройнике $m_0=4\rho Sl$, где S — площадь поперечного сечения тройника. Из условия следует, что конечная масса воды в тройнике $m=\frac{23}{32}m_0=\frac{23}{8}\rho Sl$. Пусть из второго колена вылился слой жидкости длиной x, а из третьего колена — длиной y. Тогда:

$$\rho Sx + \rho Sy = \frac{9}{32}m_0 = \frac{9}{8}\rho Sl$$
$$x + y = \frac{9}{8}l$$

Найдем давления в точках 1, 2 и 3 из вертикальных столбов жидкости:

$$p_1 = p_0 + \rho g l, \ p_2 = p_0 + \rho g (l - x), \ p_3 = p_0 + \rho g (l - y)$$

Напишеи 23H для части жидкости, находящейся между точками 1 и 2 и между точками 2 и 3 (их массы равны $m_1=\frac{1}{2}\rho Sl)$:

$$\begin{cases} (p_1 - p_2)S = m_1 a \\ (p_2 - p_3)S = m_1 a \end{cases}$$

Вычитая из первого уравнения второе получаем:

$$p_1 - p_2 - p_2 + p_3 = 0$$
$$p_1 + p_3 = 2p_2$$

Подставляя давления, получаем:

$$p_0 + \rho gl + p_0 + \rho g(l - y) = 2(p_0 + \rho g(l - x))$$

 $y = 2x$

Так как $x+y=\frac{9}{8}l$, то находим x и y:

$$x = \frac{3}{8}l , y = \frac{3}{4}l$$

Подставляем значения в уравнение $(p_1 - p_2)S = m_1a$:

$$\rho gx = m_1 a$$

$$\rho gxS = \frac{1}{2}\rho Sla$$

$$a = \frac{3}{4}g$$

1.4 Задача 4 (Физтех — 1996)

Задача 13. ($M\Phi T U$, 1996) Тонкая запаянная с одного конца трубка заполнена ртутью и закреплена на горизонтальной платформе, вращающейся с угловой скоростью ω вокруг вертикальной оси так, что ртуть не выливается и заполняет полностью горизонтальное колено трубки (см. рисунок). Открытое колено трубки вертикально. Геометрические размеры установки указаны на рисунке. Атмосферное давление p_0 , плотность ртути ρ .

- 1) Найти давление ртути в месте изгиба трубки.
- 2) Найти давление ртути у запаянного конца трубки.

 $_{2}H_{z}mdv - Hbd + 0d = _{2}d (z : Hbd + _{0}d = _{1}d (z : Hbd + _$

Давление у запаянного конца трубки (точка 1) найдем из вертикального колена:

$$p_1 = p_0 + \rho g H$$

Найдем давление p_2 у запаянного конца. Нужно рассмотреть горизонтальный участок жидкости (его масса $m = \rho S \cdot 2R$). Но каждая его часть движется с разным ускорением. Поэтому нужно писать теорему о движении центра масс (центр масс — точка C — расположен на расстоянии 2R от оси вращения):

$$(p_1 - p_2)S = ma_{\text{IIM}}$$

$$(p_0 + \rho gH - p_2)S = 2\rho SR \cdot \omega^2 2R$$

$$p_2 = p_0 + \rho gH - 4\rho \omega^2 R^2$$

1.5 Задача $5 (\Phi изтех - 1996)$

Задача 15. ($M\Phi T U$, 1996) Тонкая трубка, запаянная с одного конца, заполнена маслом и закреплена на горизонтальной платформе, вращающейся с угловой скоростью ω вокруг вертикальной оси так, что масло не выливается и заполняет полностью горизонтальное колено трубки (см. рисунок). Открытое колено трубки вертикально. Геометрические размеры установки даны на рисунке. Атмосферное давление p_0 , плотность масла ρ .

- 1) Найти давление масла в месте изгиба трубки.
- 2) Найти давление масла у запаянного конца трубки.

- 1) $p_1 = p_0 + \rho g H$
- 2) Тут горизонтальный участок жидкости пересекает ось вращения, но это не важно. Запишем теорему о движении центра масс для всего горизонтального участка жидкости (центр масс находится на расстоянии $\frac{L+2L}{2}=\frac{3}{2}L$ от левого конца трубки и на расстоянии $\frac{1}{2}L$ от оси вращения):

$$(p_1 - p_2)S = ma_{\text{ILM}}$$
 $(p_1 - p_2)S = \rho S3L \cdot \omega^2 \frac{1}{2}L$ $p_2 = p_0 + \rho gH - \frac{3}{2}\rho\omega^2 L^2$

2 Горизонтальная сила Архимеда

2.1 Задача 1 (Физтех -2002)

Задача 1. ($M\Phi T U$, 2002) Стеклянный шар объёмом V и плотностью ρ находится в сосуде с водой (см. рисунок). Угол между стенкой сосуда и горизонтальным дном равен α . Внутренняя поверхность сосуда гладкая. Плотность воды ρ_0 . Найти силу давления шара на дно в двух случаях:

- 1) сосуд неподвижен;
- 2) сосуд движется с постоянным горизонтальным ускорением a.

На шар действует сила тяжести mg, сила давления со строны дна N_1 , сила давления со стороны стенки N_2 и сила Архимеда. У силы Архимеда будет две компоненты: вертикальная и горизонтальная. Вертикальная сила Архимеда считается как обычно — $F_{A1} = \rho_0 gV$. Горизонтальная сила Архимеда обусловлена ускорением сосуда — $F_{A2} = \rho_0 aV$. Запишем 23H в проекциях на оси X и Y:

$$\begin{cases} F_{A2} + N_2 \sin \alpha = ma \\ F_{A1} - mg + N_1 - N_2 \cos \alpha = 0 \end{cases}$$

Из первого уравнения системы выражаем N_2 :

$$N_2 = \frac{ma - F_{A2}}{\sin \alpha} = \frac{ma - \rho_0 aV}{\sin \alpha}$$

Подставляем N_2 во второе уравнение системы:

$$F_{A1} - mg + N_1 - (ma - \rho_0 aV) \operatorname{ctg} \alpha = 0$$

$$N_1 = (ma - \rho_0 aV) \operatorname{ctg} \alpha - F_{A1} + mg$$

$$N_1 = (\rho V a - \rho_0 aV) \operatorname{ctg} \alpha - \rho_0 gV + \rho V g$$

$$N_1 = (\rho - \rho_0)V(a \operatorname{ctg} \alpha + g)$$

Если сосуд покоится, то сила давления на дно равна $(\rho - \rho_0)Vg$.

2.2 Задача $2~(\Phi$ изтех — 2015)

ЗАДАЧА 8. («Физтех», 2015, 11) В сосуде с водой закреплён клин. На гладкой поверхности клина, наклонённой к горизонту под углом α (tg $\alpha = 1/4$), удерживается стеклянный шар с помощью горизонтально натянутой нити (см. рисунок). Объём шара V, плотность воды ρ , плотность стекла 3ρ .

- Найдите силу натяжения нити при неподвижном сосуде.
- 2) Найдите силу натяжения нити при движении сосуда с горизонтальным ускорением a = g/8.

В обоих случаях шар находится полностью в воде.

Все аналогично прошлой задаче:

$$\begin{cases} F_{A2} + T - N \sin \alpha = ma \\ F_{A1} - mg + N \cos \alpha = 0 \end{cases}$$

$$N = \frac{F_{A2} + T - ma}{\sin \alpha}$$

$$F_{A1} - mg + (F_{A2} + T - ma) \operatorname{ctg} \alpha = 0$$

$$\rho gV - 3\rho gV + (\rho aV + T - 3\rho aV) \operatorname{ctg} \alpha = 0$$

$$-2\rho gV - 8\rho \cdot \frac{1}{8}gV + 4T = 0$$

$$T = \frac{3}{4}\rho gV$$

При a=0 сила натяжения нити равна $\frac{1}{2}\rho gV$. **Канал автора**—https://t.me/kinenergy228