

Chapter 9 Continuity Ex 9.2 Q14

The given function is $f(x) = \cos(x^2)$

This function f is defined for every real number and f can be written as the composition of two functions as,

 $f = g \circ h$, where $g(x) = \cos x$ and $h(x) = x^2$

 $\left[\because (goh)(x) = g(h(x)) = g(x^2) = \cos(x^2) = f(x)\right]$ It has to be first proved that $g(x) = \cos x$ and $h(x) = x^2$ are continuous functions.

It is evident that g is defined for every real number.

Let c be a real number.

Then, $g(c) = \cos c$ Put x = c + h

If $x \to c$, then $h \to 0$

 $\lim_{x \to c} g(x) = \lim_{x \to c} \cos x$ $= \lim_{x \to c} \cos(c + h)$

 $= \lim_{h \to 0} \left[\cos c \cos h - \sin c \sin h \right]$

 $= \lim_{h \to 0} \cos c \cos h - \lim_{h \to 0} \sin c \sin h$

 $= \cos c \cos 0 - \sin c \sin 0$

 $=\cos c \times 1 - \sin c \times 0$

 $=\cos c$

 $\therefore \lim_{x \to c} g(x) = g(c)$

Therefore, $g(x) = \cos x$ is continuous function.

 $h(x) = x^2$

Clearly, h is defined for every real number.

Let k be a real number, then $h(k) = k^2$

 $\lim_{x \to k} h(x) = \lim_{x \to k} x^2 = k^2$

 $\therefore \lim_{x \to k} h(x) = h(k)$

Therefore, h is a continuous function.

It is known that for real valued functions g and h, such that $(g \circ h)$ is defined at c, if g is continuous at c and if f is continuous at g (c), then $(f \circ g)$ is continuous at c.

Therefore, $f(x) = (goh)(x) = \cos(x^2)$ is a continuous function.

Chapter 9 Continuity Ex 9.2 Q15

The given function is $f(x) = |\cos x|$

This function f is defined for every real number and f can be written as the composition of two functions as,

 $f = g \circ h$, where g(x) = |x| and $h(x) = \cos x$

$$\left[\because (goh)(x) = g(h(x)) = g(\cos x) = |\cos x| = f(x) \right]$$

It has to be first proved that g(x) = |x| and $h(x) = \cos x$ are continuous functions.

g(x) = |x| can be written as

$$g(x) = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If
$$c < 0$$
, then $g(c) = -c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x < 0

Case II:

If
$$c > 0$$
, then $g(c) = c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0

Case III:

If c = 0, then g(c) = g(0) = 0

$$\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} (-x) = 0$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$

$$\therefore \lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = g(0)$$

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

$$h(x) = \cos x$$

It is evident that $h(x) = \cos x$ is defined for every real number.

Let c be a real number. Put x = c + h

If
$$x \to c$$
, then $h \to 0$

 $h(c) = \cos c$

$$\lim_{x \to c} h(x) = \lim_{x \to c} \cos x$$

$$= \lim_{h \to 0} \cos (c + h)$$

$$= \lim_{h \to 0} [\cos c \cos h - \sin c \sin h]$$

$$= \lim_{h \to 0} \cos c \cos h - \lim_{h \to 0} \sin c \sin h$$

$$= \cos c \cos 0 - \sin c \sin 0$$

$$= \cos c \times 1 - \sin c \times 0$$

$$= \cos c$$

$$\therefore \lim_{x \to c} h(x) = h(c)$$

Therefore, $h(x) = \cos x$ is a continuous function.

It is known that for real valued functions g and h, such that $(g \circ h)$ is defined at c, if g is continuous at c and if f is continuous at g (c), then $(f \circ g)$ is continuous at c.

Therefore, $f(x) = (goh)(x) = g(h(x)) = g(\cos x) = |\cos x|$ is a continuous function

********* FND ********