Hartshorne solution 4.2

Pistol Dagger

1

\mathbb{P}^n が単連結であることを示せ。

mathoverflow に書いてあった解答 - $X \to \mathbb{P}^n$ を étale covering としたとき、smooth ゆえに X は regular である。X を connected と仮定すると、帰納法の仮定より $X \cap H$ は connected となり、よって \mathbb{P}^{n-1} と同型となる。flat かつ projective より、fiber の点の個数は変わらず、全単射である。

fiberwise isomorphism より、universally injective である。universally injective かつ étale は open immersion であるので、所望の射は同型となる。実際、これをみるためには universally homeomorphism かっ étale としてよく、homeomorphism ならば affine である。さらに $X \to S$ についてこれをいずれも affine としてよく、proper + affine \Rightarrow finite らしいが、今の状況では finite は成り立っているので割愛。

Noetherian setting として細かいことを割愛すると、 $A \to B$ とすれば B は locally free A-module となっている。

geometric point への base change を考えると、rank が 1 であることが理解される。よって構造射は同型となって、すべてが示された。lovelylittlelemmas.rjprojects.net/locally-free-algebras/ などを参考。

2

k を標数が 2 でない代数閉体とする。

- (a) X を genus 2 curve とすると、標準因子 K は埋め込み $f\colon X\to \mathbb{P}^1$ を定める。このとき、f はちょうど 6 点で分岐しており、X はこのような方法で \mathbb{P}^1 上の順序づけられていない 6 点集合を、 $\mathrm{Aut}(\mathbb{P}^1)$ での商のもとで定めることを示せ。
- (a) $\operatorname{ch}(k) \neq 2$ より、f は separable となる。よって、Hurwitz の定理を適用することができる。ramification divisor の degree は 6 であり、ramification index は 2 であるため、ちょうどこれは 6 点を定める。 $X \to \mathbb{P}^1$ は \mathbb{P}^1 の自己同型でちょうどズレるので、命題が示される。
 - (b) 逆に \mathbb{P}^1 の 6 点が与えられたとする。簡単のために無限遠点を避けて α_1,\dots,α_6 とする。このとき、X を $z^2=(x-\alpha_1)\dots(x-\alpha_6)$ によって切り出される代数曲線とする。このとき、X が種数 2 であり、かつ $p\colon X\to\mathbb{P}^1$ を射影とするとき f が標準因子の定める射と一致することを確認されよ。さらにこのとき分岐点が α_\bullet に一致することも確認されよ。
 - (b) X の構成をちゃんとやると、 $\operatorname{Spec} k[x,z]/(z^2-\prod(x-\alpha_{\bullet}))$ と $\operatorname{Spec} k[\widetilde{x},\widetilde{z}]/(\widetilde{z}^2-\prod(1-\alpha_{\bullet}\widetilde{x}))$ の貼り

合わせを \mathbb{P}^1 に送ったものとなり、これは nonsingular なスキーム X を作り、 $X \to \mathbb{P}^1$ は finite ゆえに X は curve となる。

f の degree は 2 であることはよく、また ramification point はちょうど α_{ullet} に一致することはファイバーの点の個数を計算すれば得られる。実際、 \mathbb{P}^2 を $z^2-f(x)$ で切り出した超曲面を C としたとき、C の normalization \tilde{C} があるわけで、 $\tilde{C}\to\mathbb{P}^1$ を考えればよい。また計算によって g(X)=2 であることも確認できる。

また、この射 p が定める可逆層を $\mathcal{L}(D)$ とすると、 $l(D)\leq 2$ かつ $\deg(D)=2$ という状況になっている。ここで、l(D)-l(K-D)=1 かつ $\deg(K-D)=0$ より、D は K と線形同値であることがわかる。よって、p は f_K と \mathbb{P}^1 での同型を除いて等しい。

- (c) $\mathrm{Aut}(\mathbb{P}^1)$ の同型によって三点をそれぞれ $0,\,1,\,\infty$ に送ることができる。この方法によって、 \mathbb{P}^1 の 三点 $\beta_1,\,\beta_2,\,\beta_3$ であって $0,\,1,\,\infty,\,\beta_1,\,\beta_2,\,\beta_3$ で分岐するようにできる。
- (c) その通りです。
- (d) $k\setminus\{0,1\}$ の三点組の集合について、(c) の方法で Σ_6 の作用を定めることができる。
- (d) その通りです。
- (e) この方法によって、genus 2 curve の分類が完了する。
- (e) X を genus 2 curve として、 $X \to \mathbb{P}^1$ を degree 2 map とする。このとき、K(X) は k(x) 上 2 次拡大 であるため、 $z^2 = f(x)$ なる方法で切り出される。ただし f(x) はここでは平方因子を持たないものとする。 \mathbb{P}^2 を $z^2 f(x)$ で切り出して得られる超曲面、と思ったがこれは (0:0:1) に特異点を持つことを思い出しておく。 δ -invariant が今興味あるケースだと多分 8 くらいあるのだろうか、そんな気がする。
- f(x) は平方因子を持たない、といったが、すると $\prod (x-\alpha_{\bullet})$ と表示できるため、先ほどの方法で非特異曲線を作ることができる。(ここで、奇数次数の場合には無限遠点で分岐する形になることに注意する。)

すると、f の次数が 2g+1 あるいは 2g+2 の場合においては種数が 2 の曲線となることが理解される。 よって X が種数 2 の (obviously hyperelliptic) curve であるならば $z^2-f(x)$ で切り出されるときの f は 5 あるいは 6 次でかける。しかし 5 次の場合は変数変換によって 6 次式に変更できる。よって、ここまでの 観察によって種数 2 の curve の分類が完了する。

3

 $X\subset \mathbb{P}^2$ を次数 d の平面曲線とする。 $P\in X$ について、 $T_P(X)$ によって P での X の接線を表すものとする。このとき、 $(\mathbb{P}^2)^*$ を \mathbb{P}^2 の双対平面として、 $P\mapsto T_P(X)$ によって得られる $X\to (\mathbb{P}^2)^*$ を双対曲線という。

ここまでのフレームワークを再設定しておく。まず、V を k 上 3 次元ベクトル空間として、その基底 x_0, x_1, x_2 を設定しておく。このとき、 $\mathbb{P}(V) = \mathbf{Proj}(\mathrm{Sym}(V))$ を射影空間とする。また、 $\mathbb{P}(V^*) = \mathbf{Proj}(\mathrm{Sym}(V))$ を双対空間とする。

 $X\subset \mathbb{P}(V)$ なる nonsingular curve について、 $X\to \mathbb{P}(V^*)$ を定める方法について考えたい。X は k-scheme であるため、自然な構造射 $\operatorname{st}_X\colon X\to \operatorname{Spec}(k)$ があり、 $X\to \mathbb{P}(V^*)$ を与えることは、 $\operatorname{st}_X^*(\widetilde{V^*})\to \mathcal{L}$ なる X上の可逆層 \mathcal{L} への全射を与えることと同値である。

この方法について述べると - $X \subset \mathbb{P}(V)$ がイデアル層 \mathcal{I} によって切り出されるとする。このとき、

$$0 \to \mathcal{T}_X \to \mathcal{T}_{\mathbb{P}(V)} \otimes \mathcal{O}_X \to \mathcal{N}_{X/\mathbb{P}(V)} = \mathcal{H}om(\mathcal{J}/\mathcal{J}^2, \mathcal{O}_X) \to 0$$

なる exact sequence がとれる。 さらに Euler sequence により

$$0 \to \mathcal{O}_{\mathbb{P}(V)} \to V^* \otimes \mathcal{O}_{\mathbb{P}(V)}(1) \to \mathcal{T}_{\mathbb{P}(V)} \to 0$$

なる図式も用意されている。

よって、 $V^*\otimes \mathcal{O}_X\to \mathcal{N}_{X/\mathbb{P}(V)}(-1)$ なる全射が自然に構成されるが、これは双対曲線 $X\to \mathbb{P}(V^*)$ に対応する。

これは計算すると、 $[x_i^*]$ なる双対基底について、 $\mathcal{J}/\mathcal{J}^2(1)$ の $D(x_j)$ での生成元 $\frac{f}{x_j^{\deg(f)-1}}$ を $\frac{f_i}{x_j^{\deg(f)-1}}$ に移す対応を充てることが理解される。

- (a) L を \mathbb{P}^2 内の直線であって、X に接しないものとする。このとき、 $\varphi\colon X\to L$ を、 $P\in X$ について $T_P(X)\cap L$ を充てる射とする。このとき、 φ が P で分岐することの必要充分条件として、次のいずれかが成り立つということが挙げられる。
 - $P \in L$.
 - $P \bowtie X \circ \text{o}$ inflection point $rac{\sigma}{\sigma}$.

このことから、X には inflection point は高々有限個であることが理解される。

代数曲線 $X \subset \mathbb{P}^2$ について、また接線 $T_P(X) \subset \mathbb{P}^2$ について、 $X \cap T_P(X)$ の P における length が 3 以上の点のことを inflection point という。

 $Q=T_P(X)\cap L$ とし、 $T=T_P(X)$ とする。 $\mathcal{O}_{L,Q}\to\mathcal{O}_{\mathbb{P}^*,T}\to\mathcal{O}_{X,P}$ による uniformizer の行き先についてみる。

座標変換を施して、有限部分でみたときには、 $L=(x_0)$ とすると、X=(f) とかけて、 $P=(P_0,P_1)\in X$ について $P_1+\frac{f_0(P)}{f_1(P)}P_0$ を充てる対応となる。 さらに $f_1(P)\neq 0$ としてよい。 ある点 P において $P_1+\frac{f_0(P)}{f_1(P)}P_0=0$ とすると(これは座標変換によって可能である)、 $k[x_0,x_1]/(f,f_1x_1+f_0x_0)_P$ の length こそが ramification number となる。

結局よくわかっていない。

4

X を $x^3y+y^3z+z^3x=0$ なる標数 3 の体上の曲線とする。このとき、すべての点が inflection point であって、dual curve がもとの curve と同型であるが、 $X\to X^*$ が inseparable であることを示せ。

自明です。

genus g > 1 curve X over an algebraic closed field k of characteristic 0 についてその自己同型群が 高々位数 84(g-1) のものであることを示す。

このとき G を $\mathrm{Aut}(X)$ とすれば G は K(X) に作用しその不変体を L とおくと、これは $X\to Y$ なる order n=|G| の射を誘導する。

(a) $P \in X$ を ramification point としてその degree を r とすると、g(P) はいずれも ramification point of degree r となる。また、 $g^{-1}(g(P))$ はちょうど $\frac{n}{r}$ 点となる。よって軌道を P_{\bullet} とすると

$$\frac{2g-2}{n} = 2g(Y) - 2 + \sum_{\bullet} \left(1 - \frac{1}{r_{\bullet}}\right)$$

が成り立つ。

(b) $n \le 84(g-1)$ を示せ。

curve X の関数体 K(X) に有限群 G が作用している状況について考える。 $P \in X$ は、これは K(X)/k 上の valuation ring R_P に対応する。また、 $R_P \cap L$ は P の $\pi\colon X \to Y = X/G$ への行き先であると理解される。

このとき、P と gP は必ずおなじ点 $\pi(P)$ に移ることが理解される。逆に、異なる軌道のものが存在するとき、Q と P が異なる G-軌道にあり $\pi(P)$ に移るとする。このとき、gQ の任意の点で消えておらず P で消えているような (かつ Q の軌道と P の軌道で定義されているような) 関数を探す - このような関数があれば、norm をとることによって矛盾を導くことができる。

このような関数については素イデアル避けで終わる気がする - どうやってもいい気がするが、一点を抜けば affine であるため、可換環論に素イデアル避けで終わる。

よって、Y の点の fiber は G-軌道と一致することが理解される。

6

 $f\colon X \to Y$ なる degree n の curve の射について、 $\mathrm{Div}(X) \to \mathrm{Div}(Y)$ なる押し出しを考えることができる。

- (a) X 上の因子 D について、 $\det(f_*\mathcal{L}(D)) \cong \det(f_*\mathcal{O}_X) \otimes \mathcal{L}(f_*(D))$ が成り立つことを示せ。
- (b) よって f_* は $\operatorname{Pic}(X) \to \operatorname{Pic}(Y)$ を誘導する。これによって $f_* \circ f^*$ は n 倍写像となる。
- (c) $\det(f_*\Omega_X) \cong \det(f_*\mathcal{O}_X)^{-1} \otimes \Omega_Y^{\otimes n}$ が成り立つことを示せ。
- (d) f が separable であるとする $B:=f_*R$ とする、これを branch divisor という。このとき、 $(\det(f_*\mathcal{O}_X)^2\cong\mathcal{L}(-B)$ が成り立つ。
- (a) について、まず f が flat であることを思いだすと、

$$0 \to \mathcal{L}(D') \to \mathcal{L}(D) \to \mathcal{O}_{D'-D} \to 0$$

なる完全系列により

$$0 \to f_* \mathcal{L}(D') \to f_* \mathcal{L}(D) \to f_* \mathcal{O}_{D'-D} \to 0$$

なる列を得ることができる。

この完全系列の絶対値をとれば示される。ここで $\mathcal{O}_{D'-D}$ の絶対値について計算する - \mathcal{O}_D とは、 \mathcal{O}_{nP} の直和である。

 $A \to B$ について B/\mathfrak{q} の A での determinant をとるとはどういうこと ? でもこれってよくよく考えたら A/\mathfrak{p} と同型ですよね、なのでそれで大丈夫です。

一般に B/\mathfrak{q}^n とかの場合は ? $A/\mathfrak{p}^n \to B/\mathfrak{q}^n$ は同型であることが簡単に理解される (NAK とか) ため、 determinant は計算できる。

- (b) 分岐に関することを思いだせばよく、P の引き戻しは $\sum_{Q\in f^{-1}(P)}e_QQ$ になり、よって押し出しは nP.
- (c) hint 通りやればいい 絶対値の計算だけ気をつければいい rank n の locally free sheaf $\mathcal F$ について $\mathcal F\otimes\mathcal E$ の determinant は $\det(\mathcal F)\otimes\mathcal E^{\otimes n}$ に一致することが理解される。より、 $\det(f_*\Omega_X)\cong\det((f_*\mathcal O_X)^{-1}\otimes\Omega_Y)\cong\det(f_*\mathcal O_X)^{-1}\otimes\Omega_Y^{\otimes n}$ が成り立つ。
- (d) $f^*\Omega_Y \otimes \Omega_X^{-1} \cong \mathcal{L}(-R)$ なる式が成り立っている。また、 $\det(f_*\mathcal{L}(R)) \cong \det(f_*\mathcal{O}_X) \otimes \mathcal{L}(B)$ なる式より、また $\det(f_*\mathcal{L}(R)) \cong \det(\Omega_Y^{-1} \otimes f_*\Omega_X) \cong \Omega_Y^{\otimes -n} \otimes \det(f_*\Omega_X) \cong \det(f_*\mathcal{O}_X)^{-1}$ が成り立つ。よって主張が導かれる。

7

Y を標数 2 でない体 k 上の曲線とする。このとき、Y 上の degree 2, étale cover X を分類することを考える。

- (a) $f: X \to Y$ なる degree 2, étale covering について、 $\mathcal{O}_Y \to f_*\mathcal{O}_X$ の cokernel を \mathcal{L} とおくと \mathcal{L} は $\mathrm{Pic}(Y)$ の 2-torsion な元となる。
- (b) \mathcal{L} を $\mathrm{Pic}(Y)$ の 2-torsion な元としたとき、 $\mathrm{Spec}(\mathcal{O}_Y\otimes\mathcal{L})$ は Y 上の degree 2, étale covering となる。
- (c) この対応によって分類が完了する。

曲線のあいだの étale な射について考える。 $f\colon X\to Y$ が étale であったならば、flat + of f.p. から open, よって全射ゆえに finite である。この finite étale 射について、これはつねに flat であるから、étale と unramified は同値 - これは分岐因子 R が消えていることと同値である。

Y が曲線であることから、X はまず体上有限型であることが理解され、 $X \to Y$ が finite であるなら X は separated, さらに $X \to \operatorname{Spec}(k)$ は regular であるため、X は smooth - よって特に connected component は regular variety となってさらに curve となる。

- (a) X が disconnected の場合は Y のコピー二枚となるのでよい。X が curve の場合は、 $A \to B$ として 環の射を考えると B/A は A-torsion free より $\mathcal L$ は可逆層。またさきの結果より $\mathcal L^{\otimes 2}$ は自明となる。
- (b) f.flat は明らかで、さらに étale をいうのは unramified を言えばよいが、これは微分が消えることをいえばよい すると finite étale が構成される。
- (c) (a)-構成から始める。X が Y の二枚コピーであったとすると、 $\mathcal{O}_Y \to f_*\mathcal{O}_X$ の cokernel は \mathcal{O}_Y となって、また (b)-構成は逆となる。

 $\mathcal{O}_Y \to f_*\mathcal{O}_X$ の \mathcal{O}_Y -module としての split を trace によって構成できる。このとき、 $\mathcal{L}^{\otimes 2} \to (f_*\mathcal{O}_X)^{\otimes 2} \to f_*\mathcal{O}_X \to \mathcal{O}_Y$ なる方法で非零な射を構成できる。よってこれは同型となる。これは $f_*\mathcal{O}_X$ が (b)-構成に登場する algebra と同型であることを示す。