

irreducible representations of S_n

Date of creation 2013-03-22 17:14:13 Last modified on 2013-03-22 17:14:13

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 8

Author rm50 (10146)

Entry type Result
Classification msc 20C99

This article describes the theory of complex representations of S_n by Young diagrams, as developed by Frobenius, Schur, and Young. The situation for representations in nonzero characteristic is more complicated.

Recall the well-known result that the conjugacy class of any $\sigma \in S_n$ is determined by its cycle type. The number of different cycle structures is simply the number of partitions of n. Therefore the number of conjugacy classes of S_n , and thus the number of irreducible representations of S_n , is just the number of partitions of n.

For example, for S_4 the partitions, and a representative of each conjugacy class, are

$$\begin{array}{cccc} 4 & & (1\ 2\ 3\ 4) \\ 3,1 & & (1\ 2\ 3) \\ 2,2 & & (1\ 2)(3\ 4) \\ 2,1,1 & & (1\ 2) \\ 1,1,1,1 & e \end{array}$$

The partitions can be represented visually using Young diagrams, and there is an algorithm for explicitly extracting the dimensions of the irreducible representations of S_n from the Young diagrams. Of course, each diagram corresponds to a single irreducible representation. with each square in a given Young diagram the number of squares directly to its right plus the number of squares directly below it, and add 1 for the square itself. Multiply these numbers together for all squares in the diagram, and divide into n!. The result is the dimension of an irreducible representation of S_n .

Taking again S_4 , we have

 S_4 has two 1-dimensional irreducible representations - ϵ and sgn. One of the 3-dimensional representations is the augmentation of the natural action of S_4 on \mathbb{C}^4 , and the other is the tensor of that representation with sgn. The irreducible representation of dimension 2 arises from the map $S_4 \to S_4/V_4 \cong S_3$.