Arithmetische Komplexität

Polynome & Schaltkreise

Julian Lorenz

February 9, 2021

Goethe University

Polynome

Berechnung:				
von	Polynomen $f \in \mathbb{F}[x_1, x_2, \cdots]$			
durch	Arithmetische Schaltkreise			

- Beliebiger Körper F mit Charakteristik 0
- $\rightarrow \min k \in \mathbb{N} \setminus \{0\} : k \cdot neutral(\times) = neutral(+)$
 - Grad d von f ist polynomiell in n
 - Multilinear: d durch Anzahl der Variablen beschränkt
- \rightarrow Größtmögliches Monom: $x_1 \cdot x_2 \cdot \ldots \cdot x_{n-1} \cdot x_n$

Arithmetische Schaltkreise

- Entsprechen gerichteten kreisfreien Graphen G(V, E)
- Knoten / Gatter mit Eingangsgrad 0 sind Polynome
- ullet Alle anderen Knoten / Gatter entsprechen + oder imes
- Arithmetische Formel: $\forall V \in G$: Ausgangsgrad = 1
- Größe: Anzahl der Kanten (oder Knoten) von G

Größe von Schaltkreisen

Definition

S(f) ist die minimale Größe eines arithmetischen Schaltkreises, der f berechnet. L(f) ist die minimale Größe einer arithmetischen Formel, die f berechnet.

- \Rightarrow Es gilt $S(f) \le L(f)$
 - Sei $p(x) \in \mathbb{F}(x)$ ein univariates Polynom vom Grad d

Horner's Rule:

$$p(x) = \sum_{i=0}^{d} a_i x^i = a_0 + x(a_1 + \cdots + x(a_{d-1} + xa_d) \cdots)$$

• d Additionen & d Multiplikationen $\Rightarrow S(f) = \mathcal{O}(d)$

Einfache univariate Polynome

Polynom $g(x) = x^d$, $d \in \mathbb{N}$

Ausgabegatter

Best Case: $d = 2^n$, $n \in \mathbb{N}$

Worst Case: $d = 2^{n} - 1$

$$\Rightarrow S(g) = \Theta(\log(d))$$

- Vielfache Nullstelle
- $x^2 = x$ für \mathbb{F}_2 4
- $\Leftrightarrow x^2 x = 0 \neq \text{Nullpolyom}$

Schwere univariate Polynome

• **Idee:** Polynom h(x) mit d unterschiedlichen Nullstellen

$$\Rightarrow h(x) = (x-1) \cdot (x-2) \cdot \ldots \cdot (x-(d-1)) \cdot (x-d)$$

- Nur das offensichtliche $\log(d) \leq S(h) \leq d$ bekannt!
- Offene Frage: Grad d Polynom mit $S(f) \neq \mathcal{O}(\log(d))$

Theorem

Falls $S(h) \leq (\log(d))^{O(1)}$ ist Integer Factoring in \mathcal{P}/poly .

Erinnerung: \mathcal{P}/poly ist die Menge aller Funktionen $f: \mathbb{I} \to \mathbb{I}$, die von einer Familie von Schaltkreisen polynomieller Größe berechnet werden kann.

Symmetrische Polynome

Definition

 $p(x_1, \dots, x_n)$ ist ein *symmetrisches Polynom* genau dann, wenn man zwei beliebige x_i, x_j , $i \neq j$ miteinander vertauschen kann, ohne das Polynom zu verändern.

• Elementare symmetrische Polynome als Bausteine:

$$SYM_n^k(x_1, \cdots, x_n) = \sum_{S \subset [n]: |S| = k} \prod_{i \in S} x_i$$

- → Summe von dem Produkt aller Variablen aller Teilmengen
 - Einzigartig für Grad d in n Variablen

Beispiel: Elementares symmetrisches Polynom

$$SYM_n^k(x_1, \cdots, x_n) = \sum_{S \subset [n]: |S| = k} \prod_{i \in S} x_i$$

$n = 4, S = \{x_1, x_2, x_3, x_4\}$								
k	SYM_n^k							
k = 1	<i>x</i> ₁	+	<i>X</i> ₂	+	<i>X</i> ₃	+	<i>X</i> ₄	
k=2	X_1X_2	+	<i>X</i> ₁ <i>X</i> ₃	+	<i>X</i> ₁ <i>X</i> ₄	+	<i>X</i> ₂ <i>X</i> ₃	$+ x_2x_4 + x_3x_4$
k=3	$X_1X_2X_3$	+	$X_1 X_2 X_4$	+	$x_1 x_3 x_4$	+	$x_2x_3x_4$	

- $|SYM_n^k(x_1, \dots, x_n)| = \binom{n}{k}$
- Exponentielle Komplexität

Komplexität: Binomialkoeffizient

- Stirling Approximation: $n! \approx \sqrt{2\pi n} (n/e)^n$
- Worst-Case für Binomialkoeffizient: $\binom{2n}{n}$

 \Rightarrow Komplexität von $\mathcal{O}(\frac{2^n}{\sqrt{n}})$.

Symmetrische Polynome

Symmetrische Polynome sind die Koeffizienten des univariaten Polynoms $g(t) = \prod_{i=1}^{n} (t - x_i)$ in einer neuen Variable t.

$$g(t) = t^{3} + a_{2}t^{2} + a_{1}t + a_{0}$$

$$\Leftrightarrow (t - x_{1}) \cdot (t - x_{2}) \cdot (t - x_{3})$$

$$a_{2} = -x_{1} - x_{2} - x_{3}$$

$$a_{1} = x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3}$$

$$a_{0} = -x_{1}x_{2}x_{3}$$

- Lineare Interpolation von n+1 unterschiedlichen t
- \Rightarrow Sum-Product-Sum: $\sum \prod \sum$

Theorem

Für alle n, k gilt $L(f) \leq \mathcal{O}(n^2)$.

Matrix Multiplikation

Matrix Multiplikation

$$C = AB$$
, $A \in \mathbb{K}^{m \times n}$, $B \in \mathbb{K}^{n \times p}$, $C \in \mathbb{K}^{m \times p}$ mit $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Pseudocode:

$$C = [[0 \text{ for } _ \text{ in } range(p)] \text{ for } _ \text{ in } range(m)]$$

for i in $range(m)$:
for j in $range(p)$:

for
$$k$$
 in range(n):

$$C[i][j] += A[i][k] * B[k][j]$$

 $\Rightarrow \mathcal{O}(m \cdot n \cdot p)$ bzw für quadratische Matrizen $\mathcal{O}(n^3)$

Divide & Conquer

$$C = AB$$
, $A, B, C \in \mathbb{K}^{m \times m}$ mit $m = 2^n$, $n \in \mathbb{N}$

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \quad A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C = \left(\begin{array}{c|c} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ \hline A_{21}B_{11} + A_{21}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{array} \right)$$

- 8 Multiplikationen

 Teilmatrizen der Größe n/2• $\Theta(n^2)$ elementweise Addition

 Rekursionsgleichung: $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ $\Rightarrow T(n) = 8 \cdot T(\frac{n}{2}) + n^2$

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

$$\Rightarrow T(n) = 8 \cdot T(\frac{n}{2}) + n^2$$

Master Theorem

Master Theorem: $T(n) = a \cdot T(\frac{n}{b}) + f(n)$

Falls gilt:	Dann folgt:
$f(n) \in \mathcal{O}(n^{\log_b(a-\varepsilon)})$	$T(n) \in \Theta(n^{\log_b(a)})$
$f(n) \in \Theta(n^{\log_b(a)})$	$T(n) \in \Theta(n^{log_b(a)} \cdot \log(n))$
$f(n) \in \Omega(n^{\log_b(a+\varepsilon)})$	$T(n) \in \Theta(f(n))$

•
$$T(n) = 8 \cdot T(n/2) + n^2$$

(1) $\log_b(a) = \log_2(8) = 3$
(2) $f(n) = n^2 \in \mathcal{O}(n^{\log_2(8-\varepsilon)})$
(3) $T(n) \in \Theta(n^{\log_b(a)}) = \Theta(n^3)$

 \Rightarrow Solange $2 \leq log_b(a) < 3$ gilt $T(n) \in \Theta(n^{\log_b(a)})$

Strassen Algorithmus

$$C_{12} = S_3 + S_5 = A_{11} \cdot (B_{12} - B_{22}) + (A_{11} + A_{12}) \cdot B_{22}$$

= $A_{11}B_{12} - A_{11}B_{22} + A_{11}B_{22} + A_{12}B_{22} = A_{11}B_{12} + A_{12}B_{22}$

$$C_{11} = S_1 + S_4 - S_5 + S_7$$
 $C_{12} = S_3 + S_5$

$$C_{21} = S_2 + S_4$$
 $C_{22} = S_1 - S_2 + S_3 + S_6$

$$S_{1} = (A_{11} + A_{22}) \cdot (A_{22} + B_{22})$$

$$S_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$S_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$S_{5} = (A_{11} + A_{12}) \cdot B_{22}$$

$$S_{6} = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

$$S_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

Matrix Multiplikation: Timeline

Determinante

• DET(A) =
$$\sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma_i} \right)$$
, $A \in \mathbb{K}^{n \times n}$, $n \in \mathbb{N}$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{pmatrix}$$

$$\det(A) = + a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

• Es gibt n! Summanden \leftrightarrow Anzahl der Permutationen

Komplexität

Laplace Expansion
$$\mathcal{O}(n!)$$

LU Dekomposition $\mathcal{O}(n^3)$
 $\mathcal{O}(\mathsf{S}(\mathit{MM})log(n)) \quad \mathcal{O}(n^{2.37286...})$

- Achtung: Gauss Elimination nutzt Division
- → Hier nicht erlaubt!
 - Determinante als Produkt von Matrizen

$$\frac{\mathsf{L}(DET) = \mathcal{O}(n^{\log(n)})}{\mathsf{L}(DET) = \Omega(n^3)}$$

Permanente

•
$$\mathsf{PER}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma_i}, \ A \in \mathbb{K}^{n \times n}, \ n \in \mathbb{N}$$

- Große Schwester der Determinante
- Es gibt *n*! Summanden!
- Bezug in der Graphentheorie:
- → Zählt perfekte Matchings in Bipartiten Graphen
- ightarrow Jedes Monom eq 0 entspricht einem Matching

Beispiel: Bipartites Matching

		b_1	b_2	<i>b</i> ₃	
a_1	/	1	1	0	\
a₁a₂a₃		1	1	1	
a 3	\	0	0	1	

$$m_{11} \cdot m_{22} \cdot m_{33} = 1$$

$$m_{12} \cdot m_{21} \cdot m_{33} = 1$$

$$\Rightarrow PER(M) = 2$$

⇒ Es gibt 2 Matchings

Ryser Formel

•
$$PER(A) = (-1)^n \sum_{S \subseteq \{1,...,n\}} (-1)^{|S|} \prod_{i=1}^n \sum_{j \in S} a_{ij}$$

$$S = \{1, 2\}$$
 $(a_{11} + a_{12})(a_{21} + a_{22})$
 $S = \{1\}$ $-a_{11}a_{21}$ $a_{11}a_{22} + a_{12}a_{21}$
 $S = \{2\}$ $-a_{12}a_{22}$

	Ryser	Ryser + Gray code
Additionen:	$n(n-2)2^{n-1}$	$(n-1)(2^n-1)$
Multiplik.:	$n(2^{n}-2)$	$(n-1)(2^n-1)$

Komplexität

- Ryser-Formel entspricht $\sum \prod \sum$ -Formel
- Gray-Code gibt keine kleinere Formel, nur Schaltkreis

Theorem

$$L(PER) = \mathcal{O}(n^2 2^n)$$

- Annahme: $S(PER) \neq n^{O(1)}$
- Bedeutung in mehreren Komplexitätsklassen
- ightarrow $\{0,1\}$ -Permanente ist $\#\mathcal{P}$ -vollständig **Erinnerung:** Klasse von Zählproblemen
- ightarrow #SAT, Anzahl Matchings in einem bipartiten Graphen

Valiant's Komplexitätsklassen

COMPLETENESS CLASSES IN ALCEBRA

L.G. Valiant
Computer Science Department
Edinburgh University
Edinburgh, Scotland.

Eingeführt von Leslie Valiant in 1979

- ullet (Teilweise) Analoge Klassen zu ${\mathcal P}$ und ${\mathcal N}{\mathcal P}$
- $ightarrow \, \mathcal{VP}$ und \mathcal{VNP} (Valiant $\mathcal{P} \, \& \, \mathcal{NP}$)
 - Projektion als Reduzierbarkeit bei Polynomen
 - Einstufung der besprochenen Beispiele

Die Klasse VP

Definition

Eine Sequenz von Polynomen $f = \{f_n\}$ ist in \mathcal{VP} wenn $S(f) \leq n^{\mathcal{O}(1)}$.

- Alle Polynome die von arithmetischen Schaltkreisen polynomieller Größe berechnet werden können
- \Rightarrow SYM, MM, DET sind alle in \mathcal{VP}
 - ullet Unterklasse ${\cal VL}$ aller Polynome mit polynomiellen Formeln
- ightarrow DET ist \mathcal{VP} -hard
- $\Leftrightarrow \forall f = \{f_n\} \in \mathcal{VL}, \ \forall n: \ f_n \leq DET_{n^{\mathcal{O}(1)}}$

Affine Projektion

Definition

Seien $f \in \mathbb{F}[x_1, \dots, x_n]$ und $g \in \mathbb{F}[y_1, \dots, y_m]$, dann ist f eine **affine Projektion** $f \leq g$ von g, wenn m affine Funktionen $I_i : \mathbb{F}^n \to \mathbb{F}$ existieren, so dass $f(x) = g(I_1(x), \dots, I_m(x))$. f ist eine **Projektion** von g, wenn alle affinen Funktionen I_i von maximal einer Variablen abhängig sind.

- \Rightarrow Falls $f \leq g$ folgt $S(f) \leq S(g) + \mathcal{O}(mn)$
 - Relation ist Transitiv
- → Partielle Ordnung der Komplexität von Polynomen

Affine Projektion: Idee

Reduktion:

- Variablen können skaliert oder ganz ausgetauscht werden
- $\rightarrow y_i = a \cdot x_j + b$ für ein beliebiges $j \in \{1, \dots, n\}$
 - Variablen können weggelassen werden mit $y_i = 0$

Die Klasse VNP

Definition

Eine Sequenz von Polynomen $f = \{f_n\} \in \mathbb{F}[x_1, \cdots, x_n]$ ist in \mathcal{VNP} wenn es ein $g = \{g_n\} \in \mathbb{F}[x_1, \cdots, x_n, y_1, \cdots, y_n] \in \mathcal{VP}$ gibt, so dass $f_n(x) = \sum_{\alpha \in \{0,1\}^n} g_n(x, \alpha)$.

- Wähle f = g, $f \in \mathcal{VP} \Rightarrow \mathcal{VP} \subseteq \mathcal{VNP}$
- Koeffizienten von Monomen in f in polynomieller Zeit
- PER ist VNP-vollständig

Zusammenhänge

Bezug:

- ullet Direkter Bezug zur Klasse $\#\mathcal{P}$
- ullet Eher indirekter Bezug zun den Klassen ${\mathcal P}$ und ${\mathcal N}{\mathcal P}$

Fakten:

- $P \neq NP \Rightarrow VP \neq VNP$
- $\bullet \ \ \mathcal{VP} \neq \mathcal{VNP} \Rightarrow \mathcal{P}/\textit{poly} \neq \mathcal{NP}/\textit{poly}$

Vermutung:

• $VP \neq VNP$

Monotone Schaltkreise

- Junge Wissenschaft, bisher wenig Schranken
- ⇒ Eingeschränkte Modelle für stärkere Schranken

Monotone Schaltkreise

- Nur positive Koeffizienten des Körpers
- Vergleichbar mit boolschen Schaltkreisen ohne Negation

Theorem

Es existiert ein positives Polynom $f \in \mathcal{VP}$, das monotone Schaltkreise der Größe exp(n) benötigt.

Nicht-kommutative Schaltkreise

- Variablen in einem Monom nicht vertauschbar
- $x^2 y^2$ bisher eine Multiplikation $(x y) \cdot (x + y)$
- \Rightarrow Jetzt $x^2 y^2 + xy yx \rightarrow$ Nicht mehr möglich!
 - DET < PER und PER < DET

Theorem

PER und DET benötigen nicht-kommutative Formeln der Größe exp(n).

Vielen Dank!