TODO SOBRE LAS RESISTENCIAS

Resistencias

Función — Oponerse al paso de la corriente

Unidades ----

Ohmio (Ω) kΩ kiloohmio (10 3 Ω)

MΩ megaohmio (10⁶ Ω)

Jerga electrónica 2K7 3M8

CARACTERÍSTICAS

- Las más habituales son de película de carbón.
- Se clasifican en función de su potencia por tamaños: de 1 W, de 1/2 W y de 1/4 W
- Su valor está indicado mediante un código de colores sobre su superficie.

Resistencia de un trozo de material

$$R = \rho \frac{l}{S}$$

La <u>resistividad</u> ρ se expresa en Ω ·m

La longitud / se expresa en m

La **sección** S, se expresa en m².

Asociación de resistencias

Para sólo dos resistencias

$$R_{AB} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Tipos de resistencias

- Fijas
- Variables
- Dependientes de parámetros físicos

Resistencias fijas

- Caracterizadas por
 - Su valor (tres/cuatro bandas)
 - Su tolerancia (banda adicional)

Código de colores

Resistencias variables o potenciómetros

Resistencias dependientes de parámetros físicos

Resistencias dependientes de la luz (LDR)

Resistencias dependientes de la temperatura (PTC y NTC)

Resistencias dependientes del voltaje (VDR)

Light Dependent Resistor

Negative Temperature Coefficient

Possitive Temperature Coefficient

Voltage Dependent Resistor

