Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #8

2023/04/13

1. Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V = \text{null } T \oplus \text{range } T$.
假设 $T \in \mathcal{L}(V)$ 是可对角化的, 证明 $V = \text{null } T \oplus \text{range } T$.
<i>Proof.</i> Since T is diagonalizable, then n linearly independent eigenvectors of T can be a basis V .
If 0 is not an eigenvalue of T , $Tv_i = \lambda_i v_i$, $\lambda_i \neq 0 \Rightarrow v_i = \frac{Tv_i}{\lambda_i} \in \text{range } T$, so $V = \text{range } T \oplus \{0\}$
range $T \oplus \text{null } T$.

Student Number: _____

2. Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$ has dim V distinct eigenvalues, and $S \in \mathcal{L}(V)$ has the same eigenvectors as T (not necessarily with the same eigenvalues). Prove that ST = TS.

设 V 是有限维向量空间, $T \in \mathcal{L}(V)$ 有 dim V 个互异特征值, $S \in \mathcal{L}(V)$ 和 T 有相同的特征向量 (特征值不一定相同). 证明 ST = TS.

Proof. Assume dim $V=n, \lambda_1, \dots, \lambda_n$ be n distinct eigenvalues of T and ξ_1, \dots, ξ_n be the corresponding eigenvectors of T. And let $S\xi_i=\mu_i\xi_i, i=1,\dots,n$,

$$ST\xi_i = \lambda_i S\xi_i = \lambda_i \mu_i \xi_i, \quad TS\xi_i = \mu_i T\xi_i = \mu_i \lambda_i \xi_i$$

Since ξ_1, \dots, ξ_n is a basis of V, we have $\forall v \in V$, STv = TSv, so ST = TS.