Kapitel 0

Definition 0.1 (Topologie): Sei X eine Menge. Eine Familie $\mathcal{T} \subset \mathcal{P}(X)$ heißt **Topologie** auf X, falls gilt:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$, d.h. \mathcal{T} ist abgeschlossen unter endlichen Durchschnitten
- 3. $A_i \in \mathcal{T} \Rightarrow \cup_{i \in I} A_i \in \mathcal{T}$, d.h. \mathcal{T} ist abgeschlossen unter beliebigen Vereinigungen.

Ein Element $O \in \mathcal{T}$ heißt dann **offene Menge**.

Definition 0.2 (Umgebung): Sei (X,\mathcal{T}) ein topologischer Raum, $x\in X$. Eine Menge $U\subseteq X$ heißt Umgebung von x, falls es eine offene Menge O gibt mit $x\in O\subseteq U$.

Proposition 0.1: Eine Menge ist offen genau dann wenn sie Umgebung jeder ihrer Punkte ist.

Beweis: " \Rightarrow ": Sei M eine offene Menge, $x \in M$ beliebig. Wir finden eine offene Menge O = M, für die $x \in O = M \subseteq M$ gilt, d.h. M ist eine Umgebung von x.

" \Leftarrow ": Sei M eine Menge die Umgebung jeder ihrer Punkte ist, d.h. für jedes $x \in M$ gibt es eine offene Mengen O_x mit $x \in O_x \subseteq M$. Dann ist $\cup_{x \in M} O_x$ eine Vereinigung offener Mengen und es gilt $M = \cup_{x \in M} O_x$, also ist M offen.

Definition 0.3 (Punkte, Begriffe): Sei $S \subseteq X$, $p \in X$. Der Punkt p heißt

- innerer Punkt von S, falls gilt: $\exists O \in \mathcal{T} : p \in O \text{ und } O \subseteq S$,
- äußerer Punkt von S, falls gilt: $\exists O \in \mathcal{T} : p \in O \text{ und } O \subseteq X \setminus S$,
- Randpunkt von S, falls gilt: $\forall O \in \mathcal{T}$ mit $p \in O : O \cap S \neq \emptyset$ und $O \cap S^c \neq \emptyset$,
- Häufungspunkt von S, falls gilt: $\forall O \in \mathcal{T}$ mit $p \in O : O \setminus \{p\} \cap S \neq \emptyset$.

Proposition 0.2: p ist Randpunkt von S genau dann wenn p weder innerer Punkt noch äußerer Punkt von S ist.

Beweis: " \Rightarrow ": Sei p Randpunkt von S, d.h. für alle offenen Mengen O mit $p \in O$ gilt $O \cap S \neq \emptyset$ und $O \cap S^c \neq \emptyset$. Wäre p ein innerer Punkt von S, dann gäbe es eine offene Menge O mit $p \in O$ und $O \subseteq S$, was ein Widerspruch zu $O \cap S^c \neq \emptyset$ wäre. Wäre p ein äußerer Punkt von S, dann gäbe es eine offene Menge O mit $p \in O$ und $O \subseteq S^c$, was ein Widerspruch zu $O \cap S \neq \emptyset$ wäre. Also ist p weder innerer noch äußerer Punkt von S.

" \Leftarrow ": Sei p weder innerer noch äußerer Punkt von S, d.h. es gibt keine offene Menge O mit $p \in O$ und $O \subseteq S$ oder $O \subseteq S^c$. Äquivalent: Für alle offenen Mengen O mit $p \in O$ muss $O \nsubseteq S$ und $O \nsubseteq S^c$ gelten. Für diese Mengen gilt somit $O \cap S^c \neq \emptyset$ und $O \cap S \neq \emptyset$, also ist p ein Randpunkt.

Definition 0.4 (Mengen, Begriffe): Sei $S \subseteq X$.

- $S^o := \{ p \in X : p \text{ ist innerer Punkt von } S \}$ heißt **Inneres** von S,
- $\operatorname{Ext}(S) \coloneqq \{ p \in X : p \text{ ist äußerer Punkt von } S \}$ heißt Äußeres von S,
- $\partial S := \{ p \in X : p \text{ ist Randpunkt von } S \}$ heißt **Rand** von S,
- S heißt **abgeschlossen**, falls $X \setminus S$ offen ist,
- Die kleinste abgeschlossene Menge, die S enthält, heißt **Abschluss** von S. Wir schreiben hierfür \overline{S} .

Beispiel 0.1: $X = \mathbb{R}, \mathcal{T} = \{\emptyset, \mathbb{R}\} \cup \{(a, \infty) | a \in \mathbb{R}\}$. Betrachte S = (0, 1):

• Ist keine offene Menge,

- hat keine inneren Punkte, d.h. $S^o = \emptyset$,
- $\operatorname{Ext}(S) = (1, \infty)$
- $\partial S = (-\infty, 1]$

Lemma 0.1: Sei I eine beliebige Indexmenge, $i\in I,$ $A_i\subseteq X$ abgeschlossen. Dann ist $\bigcap_{i\in I}A_i$ abgeschlossen.

Beweis: $\bigcap_{i\in I}A_i$ abgeschlossen heißt $X\setminus\bigcap_{i\in I}A_i$ offen. Zeige Offenheit:

$$X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i,$$

d.h. offen als Vereinigung offener Mengen.

Proposition 0.3: Sei (X,\mathcal{T}) ein topologischer Raum, $S\subseteq X$. Dann gilt:

$$\overline{S} = \bigcap \underbrace{\{A \mid S \subseteq A, A \text{ abgeschlossen}\}}_{=:\mathcal{A}}.$$

Beweis: Wir zeigen, dass \cap \mathcal{A} die kleinste abgeschlossene Menge ist, die S enthält. Da alle A abgeschlossen, ist nach Lemma 0.1 deren Durchschnitt auch abgeschlossen. Außerdem gilt klarerweise $S \subseteq \cap \mathcal{A}$. Sei nun $C \subseteq X$ eine beliebige abgeschlossene Menge mit $S \subseteq C$. Dann ist $C \in \mathcal{A}$ und aufgrund einer allgemeinen Tatsache über Durchschnitte gilt $C \supseteq \cap \mathcal{A}$, d.h. $\cap \mathcal{A}$ ist die kleinste Menge mit diesen Eigenschaften.

Proposition 0.4: Eine Menge $S \subseteq X$ ist abgeschlossen genau dann wenn $S = \overline{S}$.

Beweis: " \Rightarrow ": Sei S abgeschlossen, dann ist S die kleinste abgeschlossene Menge, die S enthält, d.h. $S = \overline{S}$.

" \Leftarrow ": Sei $S=\overline{S},$ dann ist S nach Definition von \overline{S} abgeschlossen.

Definition 0.5 (Konvergenz einer Folge): Sei (X,\mathcal{T}) ein topologischer Raum, $(a_n)_{n\in\mathbb{N}}$ eine Folge in X. Die Folge heißt **konvergent** gegen $a\in X$, falls:

$$\forall O \in \mathcal{T} \text{ mit } a \in O \quad \exists N \in \mathbb{N} \quad \forall n > N : \quad a_n \in O.$$

In Worten: jede offene Menge, die a enthält, enthält auch fast alle Folgenglieder a_n . Wir nennen a einen **Grenzwert** der Folge $(a_n)_{n\in\mathbb{N}}$ und schreiben $a_n\to a$.

Bemerkung 0.1: Mit dieser Definition ist der Grenzwert i.Allg. **nicht eindeutig**! Wir betrachten dazu das Beispiel von vorher: Sei $X=\mathbb{R},\,\mathcal{T}=\{\emptyset,\mathbb{R}\}\cup\{(a,\infty)|a\in\mathbb{R}\}.$ Sei $(a_n)_{n\in\mathbb{N}}=\left(\frac{1}{n}\right)_{n\in\mathbb{N}}.$ Wir sehen:

- $a_n \rightarrow 0$,
- $a_n \rightarrow -1$,
- $\bullet \ a_n \to a \text{ mit } a \le 0,$

d.h. der Grenzwert ist nicht eindeutig! Um das zu berücksichtigen definieren wir folgenden Begriff:

Definition 0.6 (Hausdorffraum): Ein topologischer Raum (X, \mathcal{T}) heißt **Hausdorffraum**, falls gilt:

Für alle $x, y \in X$ mit $x \neq y$ gibt es offene Umgebungen U, V von x, y mit $U \cap V = \emptyset$.

Satz 0.1 (Eindeutigkeit des Grenzwerts in Hausdorffräumen): Sei (X, \mathcal{T}) ein Hausdorffraum. Dann sind Folgengrenzwerte eindeutig.

Beweis: Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in X mit $a_n\to a$. Angenommen $a_n\to b, a\ne b$. Da $a_n\to a$, enthält eine beliebige offene Umgebung von a fast alle Folgenglieder a_n . Da (X,\mathcal{T}) Hausdorff ist, gibt es offene Umgebungen U,V von a,b mit $U\cap V=\emptyset$. U enthält fast alle Folgenglieder von $(a_n)_{n\in\mathbb{N}}$ und wegen $U\cap V=\emptyset$ kann V nicht fast alle Folgenglieder von $(a_n)_{n\in\mathbb{N}}$ enthalten. Das ist ein Widerspruch zu $a_n\to b$.

Bemerkung 0.2: Obiges Beispiel ist kein Hausdorffraum, da z.B. 0 und -1 keine disjunkten Umgebungen haben.

Definition 0.7 (Stetigkeit): Seien (X,\mathcal{T}) und (Y,\mathcal{U}) topologische Räume, $f:X\to Y$ eine Funktion. Dann heißt f **stetig im Punkt** $x\in X$, falls für jede Umgebung $U\subseteq Y$ von f(x) das Urbild $f^{-1}(U)\subseteq X$ eine Umgebung von x ist. f heißt **stetig**, falls f in jedem Punkt $x\in X$ stetig ist.

Proposition 0.5: Seien X,Y topologische Räume, $f:X\to Y$ eine Abbildung. Dann sind folgende Aussagen äquivalent:

- 1. f ist stetig,
- 2. Urbilder unter f von offenen Mengen in Y sind offen in X,
- 3. Urbilder unter f von abgeschlossenen Mengen in Y sind abgeschlossen in X.

Beweis: "1. \Rightarrow 2.": Sei f stetig, $O \subseteq Y$ offen. Nach <u>Proposition 0.1</u> ist O Umgebung jeder ihrer Punkte. Sei $y \in O$ mit y = f(x) für ein $x \in X$. Da f stetig, ist $f^{-1}(O)$ eine Umgebung von x. Da dies für alle x mit $y = f(x) \in O$ gilt, ist $f^{-1}(O)$ Umgebung jeder ihrer Punkte und somit offen.