



Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

# Inferencia Estadística

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$ 

## Índice general

| 1. | Relaciones de Ejercicios |                         | 5  |
|----|--------------------------|-------------------------|----|
|    | 1.1.                     | Ejercicios de clase     | Ę  |
|    | 1.2.                     | Estadísticos muestrales | 10 |

## 1. Relaciones de Ejercicios

### 1.1. Ejercicios de clase

Esta sección tiene el propósito de recoger todos los ejercicios propuestos en clase por parte de la profesora y que fueron resueltos por los alumnos en pizarra.

**Ejercicio 1.1.1.** Obtener la función masa de probabilidad conjunta de una m.a.s. de  $X \rightsquigarrow B(k_0, p)$  y la función de densidad de una m.a.s. de  $X \rightsquigarrow U(a, b)$ .

Recordamos que si  $X \rightsquigarrow B(k_0, p)$ , entonces:

$$P[X = x] = {k_0 \choose x} p^x (1-p)^{n-x} \quad \forall x \in \{0, \dots, k_0\}$$

Por lo que si tenemos una m.a.s. de n variables independientes e idénticamente distribuidas a X,  $(X_1, \ldots, X_n)$ , su función de densidad vendrá dada por:

$$P[X_1 = x_1, \dots, X_n = x_n] \stackrel{\text{indep.}}{=} \prod_{i=1}^n P[X_i = x_i] \stackrel{\text{id. d.}}{=} \prod_{i=1}^n P[X = x_i]$$

$$= \prod_{i=1}^n \binom{k_0}{x_i} p^{x_i} (1-p)^{k_0 - x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{nk_0 - \sum_{i=1}^n x_i} \prod_{i=1}^n \binom{k_0}{x_i}$$

$$\forall x_i \in \{0, \dots, k_0\}$$

Si ahora  $X \leadsto U(a, b)$  para ciertos  $a, b \in \mathbb{R}$  con a < b, entonces:

$$f_X(x) = \frac{1}{b-a} \quad \forall x \in [a, b]$$

de donde:

$$f_{(X_1,\dots,X_n)}(x_1,\dots,x_n) \stackrel{\text{indep.}}{=} \prod_{i=1}^n f_{X_i}(x_i) \stackrel{\text{id. d.}}{=} \prod_{i=1}^n f_X(x_i) = \prod_{i=1}^n \frac{1}{b-a} = \frac{1}{(b-a)^n} \quad \forall x \in [a,b]$$

**Ejercicio 1.1.2.** Para cada realización muestral,  $(x_1, \ldots, x_n) \in \mathcal{X}^n$ ,  $F_{x_1, \ldots, x_n}^*$  es una función de distribución en  $\mathbb{R}$ . En particular es una función a saltos, con saltos de amplitud 1/n en los sucesivos valores muestrales ordenados de menor a mayor, supuestos que sean distintos, y de saltos múltiplos en el caso de que varios valores muestrales coincidieran.

En las condiciones del enunciado, es decir, suponiendo que  $x_1, \ldots, x_n$  están ordenados de menor a mayor y son distintos, entonces es fácil ver que:

$$F_{x_1,\dots,x_n}^*(x) = \begin{cases} 0 & \text{si } x < x_1 \\ \frac{1}{n} & \text{si } x_1 \leqslant x < x_2 \\ & \vdots \\ 1 & \text{si } x > x_n \end{cases} \quad \forall x \in \mathbb{R}$$

Por lo que es claro que  $F_{x_1,\dots,x_n}^*$  es no decreciente, continua por la derecha, con límite 0 en  $-\infty$  y con límite 1 en  $+\infty$ .

**Ejercicio 1.1.3.**  $\forall x \in \mathbb{R}, F_{X_1,\dots,X_n}^*(x)$  es una variable aleatoria tal que  $nF_{X_1,\dots,X_n}^*(x) \rightsquigarrow B(n,F(x))$  y:

$$E[F_{X_1,\dots,X_n}^*(x)] = F(x), \qquad Var[F_{X_1,\dots,X_n}^*(x)] = \frac{F(x)(1-F(x))}{n}$$

donde F(x) es la función de distribución de X.

Recordamos que:

$$F_{X_1,\dots,X_n}^*(x) = \frac{1}{n} \sum_{i=1}^n I_{]-\infty,x]}(X_i) \qquad \forall x \in \mathbb{R}$$

Fijado  $x \in \mathbb{R}$ , tenemos que  $I_{]-\infty,x]}(X) \rightsquigarrow B(1,P[X \leqslant x]) \equiv B(1,F(x))$ , por lo que por la propiedad reproductiva de la binomial tenemos que:

$$nF_{X_1,\dots,X_n}^*(x) \leadsto B(n,F(x))$$

Por lo que:

$$nE[F_{X_1,\dots,X_n}^*(x)] = E[nF_{X_1,\dots,X_n}^*(x)] = nF(x)$$

de donde:

$$E[F_{X_1,\dots,X_n}^*(x)] = F(x)$$

Para la varianza:

$$n^{2}Var[F_{X_{1},...,X_{n}}^{*}(x)] = Var[nF_{X_{1},...,X_{n}}^{*}(x)] = nF(x)(1 - F(x))$$

de donde:

$$Var[F_{X_1,...,X_n}^*(x)] = \frac{F(x)(1 - F(x))}{n}$$

**Ejercicio 1.1.4.** Para valores grandes de n, en virtual del Teorema Central del Límite:

$$F_{X_1,\dots,X_n}^*(x) \rightsquigarrow \mathcal{N}\left(F(x), \frac{F(x)(1-F(x))}{n}\right)$$

Sea  $(X_1, \ldots, X_n)$  una m.a.s. de *n* muestras, sea:

$$S_n = \sum_{i=1}^n I_{]-\infty,x]}(X_i) \quad \forall n \in \mathbb{N}$$

Por el Teorema Central del Límite tenemos que:

$$\frac{S_n - E[S_n]}{\sqrt{Var[S_n]}} \overset{n \to \infty}{\leadsto} \mathcal{N}(0, 1) \Longrightarrow S_n \overset{n \to \infty}{\leadsto} \mathcal{N}\left(F(x), \frac{F(x)(1 - F(x))}{n}\right)$$

Como  $S_n \leadsto B(n, F(x))$ , entonces tenemos que:

$$E[S_n] = nF(x)$$

$$Var[S_n] = nF(x)(1 - F(x))$$

Por lo que:

$$F_{X_1,\dots,X_n}^*(x) = \frac{1}{n} S_n \overset{n \to \infty}{\leadsto} \mathcal{N}\left(F(x), \frac{F(x)(1 - F(x))}{n}\right)$$

**Ejercicio 1.1.5.** Dada una muestra aleatoria simple formada por las observaciones (3, 8, 5, 4, 5), obtener su función de distribución muestral y realizar la representación gráfica.

Aplicando la definición de la función de distribución muestral obtenemos que:

$$F_{(3,8,5,4,5)}^*(x) = \begin{cases} 0 & \text{si } x < 3\\ 1 & \text{si } 3 \le x < 4\\ 2 & \text{si } 4 \le x < 5\\ 4 & \text{si } 5 \le x < 8\\ 5 & \text{si } x \geqslant 8 \end{cases}$$



Figura 1.1: Representación gráfica de  $F_{(3,8,5,4,5)}^*(x)$ .

**Ejercicio 1.1.6.** Sea X una variable aleatoria con distribución B(1, p) con  $p \in (0, 1)$ . Se toma una muestra de tamaño 5,  $(X_1, X_2, X_3, X_4, X_5)$ , y se obtiene la siguiente observación (0, 1, 1, 0, 0). Determinar el valor de los estadísticos estudiados en la observación.

Aplicando las fórmulas vistas en clase obtenemos:

- Media: 0,4.
- Varianza: 0,24.

• Cuasivarianza: 0,3.

• 
$$x_{(1)} = 0$$
,  $x_{(2)} = 0$ ,  $x_{(3)} = 0$ ,  $x_{(4)} = 1$ ,  $x_{(5)} = 1$ .

**Ejercicio 1.1.7.** Sea  $(X_1, \ldots, X_n)$  una m.a.s. y  $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ , entonces:

$$M_{\overline{X}}(t) = (M_X(t/n))^n$$

$$M_{\overline{X}}(t) = E\left[e^{t\overline{X}}\right] = E\left[e^{\frac{t}{n}\sum_{i=1}^{n}X_{i}}\right] = M_{\sum_{i=1}^{n}X_{i}}\left(\frac{t}{n}\right) \stackrel{\text{indep.}}{=} \prod_{i=1}^{n}M_{X_{i}}\left(\frac{t}{n}\right) \stackrel{\text{id. d.}}{=} \left(M_{X}\left(\frac{t}{n}\right)\right)^{n}$$

**Ejercicio 1.1.8.** Obtener la distribución muestral de  $\overline{X}$  para  $(X_1, \ldots, X_n)$  una m.a.s. de  $X \rightsquigarrow \mathcal{N}(\mu, \sigma^2)$ .

$$M_{\overline{X}}(t) = \left(M_X\left(\frac{t}{n}\right)\right)^n = \left(e^{\mu t + \frac{\sigma^2 t^2}{2n^2}}\right)^n = e^{\mu t + \frac{\sigma^2 t^2}{2n}}$$

Luego  $\overline{X} \leadsto \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$ , ya que la función generatriz de momentos caracteriza la distribución.

**Proposición 1.1.** Si tenemos una m.a.s.  $(X_1, \ldots, X_n)$ , entonces:

$$F_{X_{(n)}}(x) = (F_X(x))^n \quad \forall x \in \mathbb{R}$$
  
 $F_{X_{(1)}}(x) = 1 - (1 - F_X(x))^n$ 

Demostración. Para la distribución del máximo:

$$F_{X_{(n)}}(x) = P[X_{(n)} \le x] = P[X_1 \le x, \dots, X_n \le x] \stackrel{\text{indep.}}{=} \prod_{i=1}^n P[X_i \le x]$$

$$\stackrel{\text{id. d.}}{=} \prod_{i=1}^n P[X \le x] = (F_X(x))^n$$

Para la del mínimo:

$$F_{X_{(1)}}(x) = P[X_{(1)} \leq x] = 1 - P[X_{(1)} > x] = 1 - P[X_1 > x, \dots, X_n > x]$$

$$\stackrel{\text{indep.}}{=} 1 - \prod_{i=1}^n P[X_i > x] \stackrel{\text{id. d.}}{=} 1 - (P[X > x])^n = 1 - (1 - F_X(x))^n$$

**Ejercicio 1.1.9.** Obtener las distribuciones muestrales de  $X_{(1)}$  y  $X_{(n)}$  para  $X \leadsto U(a,b)$ .

Si  $X \leadsto U(a,b)$ , entonces:

$$F_X(x) = \frac{x-a}{b-a} \quad \forall x \in [a,b]$$

Por lo que aplicando la Proposición superior:

$$F_{X_{(n)}}(x) = (F_X(x))^n = \left(\frac{x-a}{b-a}\right)^n \quad \forall x \in [a,b]$$

$$F_{X_{(1)}}(x) = 1 - (1 - F_X(x))^n = 1 - (1 - F_X(x))^n = 1 - \left(1 - \frac{x-a}{b-a}\right)^n$$

$$= 1 - \left(\frac{b-x}{b-a}\right)^n \quad \forall x \in [a,b]$$

#### 1.2. Estadísticos muestrales

**Ejercicio 1.2.1.** Sea  $(X_1, \ldots, X_n)$  una muestra aleatoria simple de una variable aleatoria X. Dar el espacio muestral y calcular la función masa de probabilidad de  $(X_1, \ldots, X_n)$  en cada uno de los siguientes casos:

- a)  $X \rightsquigarrow \{B(k_0, p) : p \in (0, 1)\}$  Binomial.
- b)  $X \leadsto \{\mathcal{P}(\lambda) : \lambda \in \mathbb{R}^+\}$  Poisson.
- c)  $X \rightsquigarrow \{BN(k_0, p) : p \in (0, 1)\}$  Binomial Negativa.
- d)  $X \rightsquigarrow \{G(p) : p \in (0,1)\}$  Geométrica.

e) 
$$X \leadsto \{P_N : N \in \mathbb{N}\}, \quad P_N(X = x) = \frac{1}{N}, \quad x = 1, ..., N.$$

**Ejercicio 1.2.2.** Sea  $(X_1, \ldots, X_n)$  una muestra aleatoria simple de una variable aleatoria X. Dar el espacio muestral y calcular la función de densidad de  $(X_1, \ldots, X_n)$  en cada uno de los siguientes casos:

- a)  $X \leadsto \{U(a,b) : a,b \in \mathbb{R}, a < b\}$  Uniforme.
- b)  $X \leadsto \{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+\}$  Normal.
- c)  $X \leadsto \{\Gamma(p, a) : p, a \in \mathbb{R}^+\}$  Gamma.
- d)  $X \rightsquigarrow \{\beta(p,q) : p, q \in \mathbb{R}^+\}$  Beta.

e) 
$$X \rightsquigarrow \{P_{\theta} : \theta \in \mathbb{R}^+\}, \quad f_{\theta}(x) = \frac{1}{2\sqrt{x\theta}}, \quad 0 < x < \theta.$$

**Ejercicio 1.2.3.** Se miden los tiempos de sedimentación de una muestra de partículas flotando en un líquido. Los tiempos observados son:

11,5;1,8;7,3;12,11,8;21,3;7,3;15,2;7,3;12,1;15,2;7,3;12,1;1,8;10,5;15,2;21,3;10,5;15,2;11,5

- Construir la función de distribución muestral asociada a a dichas observaciones.
- Hallar los valores de los tres primeros momentos muestrales respecto al origen y respecto a la media.
- Determinar los valores de los cuartiles muestrales y el percentil 70.

**Ejercicio 1.2.4.** Se dispone de una muestra aleatoria simple de tamaño 40 de una distribución exponencial de media 3, ¿cuál es la probabilidad de que los valores de la función de distribución muestral y la teórica, en x = 1, difieran menos de 0,01? Aproximadamente, ¿cuál debe ser el tamaño muestral para que dicha probabilidad sea como mínimo 0,98?

**Ejercicio 1.2.5.** Se dispone de una muestra aleatoria simple de tamaño 50 de una distribución de Poisson de media 2, ¿cuál es la probabilidad de que los valores de la función de distribución muestral y la teórica, en x = 2, difieran menos de 0,02? Aproximadamente, ¿qué tamaño muestral hay que tomar para que dicha probabilidad sea como mínimo 0,99?

**Ejercicio 1.2.6.** Sea  $X \leadsto B(1,p)$  y  $(X_1, X_2, X_3)$  una muestra aleatoria simple de X. Calcular la función masa de probabilidad de los estadísticos  $\overline{X}$ ,  $S^2$ , mín  $X_i$  y máx  $X_i$ .

**Ejercicio 1.2.7.** Obtener la función masa de probabilidad o función de densidad de  $\overline{X}$  en el muestreo de una variable de Bernoulli, de una Poisson y de una exponencial.

**Ejercicio 1.2.8.** Calcular las funciones de densidad de los estadísticos máx  $X_i$  y mín  $X_i$  en el muestreo de una variable X con funcion de densidad:

$$f_{\theta}(x) = e^{\theta - x}, \qquad x > \theta.$$

Ejercicio 1.2.9. El número de pacientes que visitan diariamente una determinada consulta médica es una variable aleatoria con varianza de 16 personas. Se supone que el número de visitas de cada día es independiente de cualquier otro. Si se observa el número de visitas diarias durante 64 días, calcular aproximadamente la probabilidad de que la media muestral no difiera en más de una persona del valor medio verdadero de visitas diarias.

**Ejercicio 1.2.10.** Una máquina de refrescos está arreglada para que la cantidad de bebida que sirve sea una variable aleatoria con media 200 ml. y desviación típica 15 ml. Calcular de forma aproximada la probabilidad de que la cantidad media servida en una muestra aleatoria de tamaño 36 sea al menos 204 ml.