MATH 4070 R Session 6: Stationary Processes

Whitney

Contents

Examples realizations of white noise processes
MA(1) processes
AR(1) processes
Random walk
Gaussian process
Different covaraince functions (kernels)
Generate one sample from each Gaussian Process with different kernels
Mean Estimation and Inference
Differencing
First-order differencing to remove linear trend
Seasonal Differening

Examples realizations of white noise processes

If Z_t is a white noise process, then its mean and variance are constants and uncorrelated in time Note: here we do not require the sequence follow the same distribution.

```
T = 100
t <- 1:T
WN1 <- rnorm(n = T, mean = 2, sd = 2)

par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(t, WN1, type = "l", xlab = "Time", ylab = "i.i.d. N(2, 4) noise")
abline(h = 2, col = "gray")</pre>
```



```
acf(WN1)
points(0:20, c(1, rep(0, 20)), pch = 16, col = "blue")
```



```
WN2 <- rchisq(n = T, df = 2)
plot(t, WN2, type = "l", xlab = "Time", ylab = expression(paste("i.i.d. ", chi[2], " noise")))
abline(h = 2, col = "gray")</pre>
```



```
acf(WN2)
points(0:20, c(1, rep(0, 20)), pch = 16, col = "blue")
```



```
WN3 <- c(WN1, WN2)[sample(1:200)]
plot(1:200, WN3, type = "1", xlab = "Time", ylab = expression(paste("White noise")))
abline(h = 2, col = "gray")</pre>
```



```
acf(WN3)
points(0:23, c(1, rep(0, 23)), pch = 16, col = "blue")
```


MA(1) processes

$$\eta_t = Z_t + \theta Z_{t-1},$$

where $Z \sim WN(0, \sigma^2)$.


```
##another way to simulate MA(1)
MA1 <- arima.sim(n = 100, list(ma = c(0.5)))
plot(MA1)
acf(MA1)</pre>
```


AR(1) processes

$$\eta_t = \phi \eta_{t-1} + Z_t,$$

where $|\rho| < 1$ is a constant and η_s and Z_t are uncorrelated for all $s < t \Rightarrow$ future noise is uncorrelated with the current value.

```
phi <- c(0.25, 0.9, -0.5)

par(las = 1, mgp = c(2, 0.5, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(2, 1))
for (i in 1:3){
   AR1 <- arima.sim(n = 100, list(ar = c(phi[i])))
   plot(t, AR1, type = "l", xlab = "Time",
        ylab = paste("AR(1), rho = ", phi[i]))
   abline(h = 0, col = "gray")
   acf(AR1)
   points(0:20, phi[i]^(0:20), pch = 16, col = "blue")
}</pre>
```


Random walk

$$\eta_t = \sum_{s=1}^t Z_s.$$

Gaussian process

Different covaraince functions (kernels)

Generate one sample from each Gaussian Process with different kernels

Mean Estimation and Inference

Given a stationary process $\{\eta_t\}_{t=1}^T$, the point estimator is $\bar{\eta} = \frac{1}{T} \sum_{t=1}^T \eta_t$. The variance of this estimator is

$$\nu_T = \operatorname{Var}(\bar{\eta}) = \operatorname{Var}\left(\frac{1}{T} \sum_{t=1}^T \eta_t\right) = \frac{1}{T} \sum_{h=-(T-1)}^{T-1} \left(1 - \frac{|h|}{T}\right) \gamma(h)$$

```
# Monte Carlo approximation
M = 1000; T = 200; phi = 0.9
set.seed(123)
sim <- replicate(M, arima.sim(n = T, list(ar = c(phi))))
eta_bar <- apply(sim, 2, mean)
hist(eta_bar, 40, col = "lightblue", border = "gray", las = 1, prob = T, main = "")
(nu_T_hat <- var(eta_bar))</pre>
```

[1] 0.4659671

```
# Theoretical sampling dist
mu = 0
h <- -(T-1):(T-1)
nu_T <- (1 / T) * sum((1 - (abs(h) / T)) * (phi^(abs(h)) / (1 - phi^2)))
## Superimpose the true density curve
xg <- seq(-2.5, 2.5, 0.01)
abline(v = mu, lty = 2)
lines(xg, dnorm(xg, sd = sqrt(nu_T)), col = "red")</pre>
```



```
## Compare nu_T and nu
(nu_T <- (1 / T) * sum((1 - (abs(h) / T)) * (phi^(abs(h)) / (1 - phi^2))))</pre>
```

[1] 0.4763158

```
(nu <- (1 / T) * (1 / (1 - phi)^2))
```

[1] 0.5

Differencing

First-order differencing to remove linear trend

```
T = 200
t <- (1:T) / 50
set.seed(123)
y = 2 + 5 * t + rnorm(T)
dy <- diff(y)
par(las = 1, mar = c(3.5, 3.5, 1, 0.5), mgp = c(2.2, 1, 0), mfrow = c(2, 1))
plot(t, y, type = "l")
plot(t[-1], dy, type = "l")</pre>
```


Seasonal Differening

```
y1 = y + 4 * cos(2 * pi * t) + 2 * sin(2 * pi * t)
sdy <- diff(y, lag = 50)
par(las = 1, mar = c(3.5, 3.5, 1, 0.5), mgp = c(2.2, 1, 0), mfrow = c(2, 1))
plot(t, y1, type = "l")
plot(t[-(1:50)], sdy, type = "l")</pre>
```

