Nomenclatura Química Orgànica

- 1. Representació dels compostos orgànics
- 2. Nomenclatura dels compostos orgànics
 - 2.1 Alcans i cicloalcans
 - 2.2 Alquens i cicloalquens
 - 2.3 Alquins
 - 2.4 Compostos aromàtics
 - 2.5 Haloalcans o halurs d'alquil R-X
 - 2.6 Compostos amb grups funcionals
 - 2.6.1 Alcohols
 - 2.6.2 Èters
 - 2.6.3 Aldehids i Cetones
 - 2.6.4 Àcids carboxílics
 - 2.6.5 Esters
 - 2.6.6 Amines
 - 2.6.7 Amides
 - 2.6.8 Nitrils

1. Representació dels compostos orgànics

Els compostos orgànics es poden representar de diferents maneres:

a) Fórmules de Lewis: representació de tots els enllaços covalents i els parells d'electrons no compartits. Sovint els parells d'electrons no compartits no es representen. En tots el compostos orgànics neutres els principals àtoms presenten els següents enllaços i parells d'electrons no compartits:

Carboni: quatre enllaços covalents (senzills o múltiples) sense parells

d'electrons no compartits

Hidrogen: un enllaç covalent sense parells d'electrons no compartits

Oxigen: dos enllaços covalents (senzills o dobles) amb dos parells

d'electrons no compartits

Halògens: un enllaç covalent senzill amb tres parells d'electrons no

compartits

Nitrogen. tres enllaços covalents generalment senzills amb un parell

d'electrons no compartits

- **b) Fórmules condensades:** agrupar tots els hidrògens units al mateix carboni i també en cadenes lineals molt llargues agrupar les unitats metilè –(CH₂)-. En els hidrocarburs ramificats també se solen condensar les unitats metil –(CH₃) unides a un mateix àtom de carboni.
- c) Línies i angles: representació de les cadenes carbonades en zig-zag i els compostos cíclics com a poliedres regulars. Els hidrògens units a carboni no es representen però sí els grups funcionals. Els extrems de la cadena i els angles representen àtoms de carboni.

d)	Fórmules	en perspectiva:	representar la	a geometria de	les molècules
----	-----------------	-----------------	----------------	----------------	---------------

 enllaços en el pla del paper		
enllaços que surten del pla del paper		
 enllaços que entren del pla del paper		

Fórmules de Lewis	Fórmules condensades	Línies i angles	Fórmules en perspectiva
H H-C-H H	CH ₄		H H, C H
H H H-C-C-H H H	CH₃CH₃		H H, C H H, C H
H H H H H-C-C-C-C-H H H H H	CH ₃ CH ₂ CH ₂ CH ₃ o també CH ₃ (CH ₂) ₂ CH ₃		H H H H H C C C H H H H H
H H H H-C-C-C-O-H H H H	CH ₃ CH ₂ CH ₂ OH	ОН	H H H H H
H H-C-H H H H H H-C-C-C-C-C-H H H H H H-C-H H	(CH ₃) ₃ C(CH ₂) ₂ CH ₃	<i>></i>	Н ₃ ССН ₃ НН Н С С С Н Н Н Н Н Н

2. Nomenclatura dels compostos orgànics

En els primers anys de la química orgànica, a cada nou compost se li donava un nom, normalment el de la persona que l'havia sintetitzat o aïllat. Els noms no eren sistemàtics, aportaven certa informació, sovint en relació a l'origen de la substància. Per exemple, l'àcid fòrmic (àcid metanoic) rep aquest nom perquè s'obtenia de la destil·lació de certes formigues.

Ben aviat fou necessari un mètode per donar-los nom i al 1892 es va proposar i adoptar un sistema. El sistema de la Unió Internacional de Química Pura i Aplicada (IUPAC en anglès, www.iupac.org) no és ambigu i s'ha acceptat internacionalment. Ara bé, un gran nombre de noms comuns i les seves abreviatures (exemple DDT, cloroform, acetilè, etc.) s'han continuat utilitzant per la seva brevetat i conveniència. Per tant, és necessari conèixer els dos sistemes, el IUPAC i els noms comuns.

2.1 Alcans i cicloalcans

Els hidrocarburs saturats o alcans estan formats per àtoms de C i H. amb fórmula general C_nH_{2n+2} . Presenten enllaços senzills (C-C, C-H) i estan formats per carbonis tetraèdrics enllaçats a àtoms d'hidrogen i a altres carbonis també tetraèdrics.

<u>Nomenclatura</u>

a) Hidrocarburs saturats de cadena lineal: Els quatre primers hidrocarburs acíclics lineals saturats s'anomenen metà, età, propà i butà. Els noms dels membres superiors d'aquesta sèrie es formen amb el prefix que indica el número de carbonis seguit del sufix "-à".

Nº d'àtoms de carboni	Prefix	Nom	Fórmula molecular	Fórmula condensada
1	met	metà	CH ₄	CH ₄
2	et	età	C ₂ H ₆	CH ₃ CH ₃
3	prop	propà	C ₃ H ₈	CH ₃ CH ₂ CH ₃
4	but	butà	C ₄ H ₁₀	CH ₃ (CH ₂) ₂ CH ₃
5	pent	pentà	C ₅ H ₁₂	CH ₃ (CH ₂) ₃ CH ₃
6	hex	hexà	C ₆ H ₁₄	CH ₃ (CH ₂) ₄ CH ₃
7	hept	heptà	C ₇ H ₁₆	CH ₃ (CH ₂) ₅ CH ₃
8	oct	octà	C ₈ H ₁₈	CH ₃ (CH ₂) ₆ CH ₃
9	non	nonà	C ₉ H ₂₀	CH ₃ (CH ₂) ₇ CH ₃
10	dec	decà	C ₁₀ H ₂₂	CH ₃ (CH ₂) ₈ CH ₃
11	undec	undecà	C ₁₁ H ₂₄	CH ₃ (CH ₂) ₉ CH ₃
12	dodec	dodecà	C ₁₂ H ₂₆	CH ₃ (CH ₂) ₁₀ CH ₃
13	tridec	tridecà	C ₁₃ H ₂₈	CH ₃ (CH ₂) ₁₁ CH ₃
14	tetradec	tetradecà	C ₁₄ H ₃₀	CH ₃ (CH ₂) ₁₂ CH ₃
20	icos	icosà	C ₂₀ H ₄₂	CH ₃ (CH ₂) ₁₈ CH ₃
21	henicos	henicosà	C ₂₁ H ₄₄	CH ₃ (CH ₂) ₁₉ CH ₃
22	docos	docosà	C ₂₂ H ₄₆	CH ₃ (CH ₂) ₂₀ CH ₃
23	tricos	tricosà	C ₂₃ H ₄₈	CH ₃ (CH ₂) ₂₁ CH ₃
30	triacont	triacontà	C ₃₀ H ₆₂	CH ₃ (CH ₂) ₂₈ CH ₃
31	henitriacont	henitriacontà	C ₃₁ H ₆₄	CH ₃ (CH ₂) ₂₉ CH ₃
32	dotriacont	dotriacontà	C ₃₂ H ₆₆	CH ₃ (CH ₂) ₃₀ CH ₃
40	tetracont	tetracontà	C ₄₀ H ₈₂	CH ₃ (CH ₂) ₃₈ CH ₃
50	pentacont	pentacontà	C ₅₀ H ₁₀₂	CH ₃ (CH ₂) ₄₈ CH ₃
100	hect	hectà	C ₁₀₀ H ₂₀₂	CH ₃ (CH ₂) ₉₈ CH ₃

b) Hidrocarburs saturats ramificats o amb substituents: quan els alcans tenen quatre o més àtoms de carboni els àtoms es poden organitzar en una cadena principal i grups laterals anomenats *ramificacions o substituents*. Per exemple, podem dibuixar dues fórmules estructurals diferents per la fórmula molecular C₄H₁₀.

Els alcans amb almenys una ramificació s'anomenen alcans ramificats. En la nomenclatura IUPAC, els carbonis ramificats s'anomenen grups alquil els quals són alcans que han perdut un àtom d'hidrogen. Els grups alquil s'anomenen reemplaçant la terminació "-à" de l'alcà corresponent per "il" Els grups alquil de fórmula general C_nH_{2n+1} no existeixen per ells mateixos i han d'estar sempre units a una cadena principal.

Fórmula	Nom	Abreviatura
CH ₃ -	metil	Me
CH ₃ CH ₂ -	etil	Et
CH ₃ CH ₂ CH ₂ -	propil	Pr
CH ₃ (CH ₂) ₂ CH ₂ -	butil	Bu
$CH_3(CH_2)_3CH_2$ -	pentil	
CH ₃ (CH ₂) ₄ CH ₂ -	hexil	

Regles per anomenar alcans amb substituents o ramificacions

Pas escriu el nom de l'alcà corresponent a la cadena carbonada continua més1: llarga

Pas la cadena continua més llarga s'enumera de manera que els carbonis
2: substituïts tinguin els números més baixos possibles

Pas indicar la localització i el nom de cada substituent com a prefix de l'alcà
3: principal. Separar el número de localització i el nom del substituent amb un guionet

✓ Quan hi ha dos o més substituents, la cadena principal s'enumera en la direcció que s'obtinguin els nombres més baixos i s'anomenen per ordre alfabètic independentment de l'ordre numèric

$$\overset{1}{\text{CH}_{3}} \overset{2}{\text{CH}_{2}} \overset{3\text{I}}{\overset{4}{\text{CH}_{2}}} \overset{5}{\text{CH}_{2}} \overset{6}{\text{CH}_{2}} \overset{7}{\text{CH}_{2}} \overset{8}{\text{CH}_{2}} \overset{}{\text{CH}_{2}} \overset{}{\text{CH}_{3}}$$
 4-etil-3-metiloctà

✓ Ara bé, si dos o més substituents estan en posicions equivalents, s'assigna el número més baix al primer que se cita en el nom

$$\overset{\text{1}}{\text{CH}_{3}}\overset{\text{2}}{\text{CH}_{2}}\overset{\text{3}}{\text{CH}_{2}}\overset{\text{CH}_{3}}{\text{CHCHCHCH}_{2}}\overset{\text{8}}{\text{CH}_{2}}\overset{\text{8}}{\text{CH}_{3}}$$

4-etil-5-metiloctà i no 5-etil-4-metiloctà

✓ Utilitzar els prefixos multiplicadors (di-, tri-, tetra-, etc.) per indicar els grups que apareixen en la cadena principal més d'una vegada. Utilitzar comes per separar dos o més números indicadors

✓ Els prefixos multiplicadors no es tenen en compta a l'hora d'anomenar els substituents per ordre alfabètic

c) Hidrocarburs saturats amb substituents o radicals complexos: un radical complex és un radical ramificat i se l'anomena com a derivat de la cadena carbonada més llarga anteposant la designació de les cadenes laterals al nom de la cadena més llarga com a radical. Es dóna el número 1 al carboni de valència lliure (carboni directament unit a la cadena principal)

Alguns radicals complexos tenen noms comuns:

Fórmula	Nom comú	Nom IUPAC	Abreviatura
CH ₃ CH—	isopropil	(metiletil)	<i>i</i> -Pr
3 2 1 CH ₃ CHCH ₂ - CH ₃	isobutil	(2-metilpropil)	<i>i</i> -Bu
³ CH ₃ CH ₂ CH— CH ₃	sec-butil*	(1-metilpropil)	s-Bu
CH ₃ CH ₃ C CH ₃ C	tert-butil*	(1,1-dimetiletil)	<i>t</i> -Bu

^{*}Els prefixes *tert* i *sec* no es tenen en compte en l'ordre alfabètic

Un alcà que conté un radical complex s'anomena com s'ha dit al punt anterior, tenint en compte que en l'ordenació dels substituents es considera la primera lletra del seu nom **encara que sigui un multiplicador** i aquest es col·loca entre parèntesi.

6-(1,1-dimetiletil)-4-etil-6-metildecà o utilitzant el nom comú del radical

complex 6-tert-butil-4-etil-6-metildecà

Cicloalcans: fórmula general C_nH_{2n}. Els hidrocarburs poden també formar estructures cícliques, els quals tenen dos àtoms d'hidrogen menys que els corresponents alcans lineals. La manera més convenient de representar els cicloalcans és en forma de figures geomètriques. Els cicloalcans s'anomenen afegint el prefix "ciclo" al nom de l'alcà lineal que té el mateix nombre d'àtoms de carboni.

Nom	Fórmula molecular	Fórmula condensada	Línies i angles
ciclopropà	C₃H ₆	CH ₂ CH ₂ —CH ₂	\triangle
ciclobutà	C ₄ H ₈	сн ₂ —сн ₂ 	
ciclopentà	C ₅ H ₁₀	СН ₂	
ciclohexà	C ₆ H ₁₂	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	
cicloheptà	C ₇ H ₁₄	H ₂ C CH ₂ H ₂ C CH ₂ H ₂ C CH ₂	
ciclooctà	C ₈ H ₁₆	H ₂ C - CH ₂ H ₂ C CH ₂	

Si els cicloalcans són substituïts per més d'una radical, s'enumera el cicle de manera que els substituents tinguin els números més baixos possibles. A l'hora d'anomenar es fa igual que el alcans lineals.

$$\begin{array}{c} CH_3 \\ CH_3 \end{array} \qquad \text{metilciclopropà} \qquad \begin{array}{c} CH_3 \\ 4 \\ 2 \\ 1 \end{array} \qquad \text{i no 3-etil-1-metilciclopentà} \\ CH_2CH_3 \end{array}$$

2.2 Alquens i cicloalquens

Un alquè, amb fórmula general C_nH_{2n} , és un hidrocarbur insaturat que conté almenys un doble enllaç entre dos àtoms de carboni. L'alquè més simple és l'etilè (nom comú) C_2H_4 . En l'etilè cada àtom de carboni esta unit a dos àtoms d'hidrogen i a l'altre àtom de carboni mitjançant un doble enllaç. La molècula resultant té geometria plana. Cada àtom de carboni del doble enllaç té geometria plana trigonal.

Nom comú	Fórmula condensada	Fórmula en perspectiva	Línies i angles
etilé	CH ₂ =CH ₂	H H H	_
propilè	CH ₃ CH=CH ₂	$\begin{array}{c} H \\ H \\ C \\ C \\ H \end{array}$	

Nomenclatura

a) Alquens lineals: pels alquens la cadena carbonada continua més llarga ha de contenir els dobles enllaços

Pas Anomenar els alquens reemplaçant la terminació –à de l'alcà corresponent per "-è"

Pas per alquens amb més de 3 àtoms de carboni cal indicar la posició del doble enllaç. S'enumera la cadena principal en la direcció que s'obtingui el primer carboni del doble enllaç en la numeració més baixa.

quan un compost conté més d'un doble enllaç s'utilitzen les terminacions "adiè", "atriè"...

1
 2 3 4 5 6 6 1 2

quan els alquens estan substituïts es col·loquen els localitzadors i el nom dels substituents com a prefix del nom de l'alquè

b) Cicloalquens: els cicloalquens anteposant el prefix "ciclo" al nom de l'alquè lineal corresponent

✓ Quan hi ha més d'un doble enllaç en un anell cal indicar la posició. Els dobles enllaços han de tenir la numeració més baixa possible

✓ Quan tenim cicloalquens substituïts es col·loquen els localitzadors i el nom dels substituents com a prefix del nom del cicloalquè

$$\begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){10$$

2.3 Alquins

Un alquí es forma quan dos àtoms de carboni comparteixen tres parells d'electrons de valència. L'alquí més simple és l'acetilè (nom comú) C_2H_2 . En l'acetilè cada àtom de carboni esta unit a un àtom d'hidrogen i a l'altre àtom de carboni mitjançant un triple enllaç. En aquest cas, la molècula resultant és lineal. De fet, en els alquins, cada àtom de carboni amb triple enllaç té geometria local lineal.

Nom comú	Fórmula condensada	Fórmula en perspectiva	Línies i angles
acetilè	HC≡CH	H-C≡C-H	=

Hi ha dos tipus d'alquins:

- ✓ Alquins o acetilens terminals: R-C≡C-H, tenen un hidrogen acetilènic, és a dir, tenen un triple enllaç al final de la cadena.
- ✓ Alquins interns: RC≡CR', el triple enllaç es troba en qualsevol altre lloc de la molècula.

Nomenclatura

Per anomenar un alquí cal seguir els mateixos passos que en els alquens

Pas Anomenar els alquins reemplaçant la terminació –à de l'alcà corresponent per "-í"

HC≡CH etí (acetilè) CH₃C≡CH propí

per alquins amb més de 3 àtoms de carboni cal indicar la posició del triple
enllaç. S'enumera la cadena principal en la direcció que s'obtingui el primer carboni del triple enllaç en la numeració més baixa.

 $CH_3CH_2C\equiv CH$ 1-butí $CH_3C\equiv CCH_3$ 2-butí

quan un compost conté més d'un triple enllaç s'utilitzen les terminacions "adií", "atrií"...

 1 2 3 4 5 6 6 6 1 ,5-hexadií

quan els alquins estan substituïts es col·loquen els localitzadors i el nom dels substituents com a prefix del nom de l'alquí

2.4 Compostos aromàtics

El benzè té fórmula molecular C_6H_6 . Una molècula de benzè consisteix en un anell de sis àtoms de carboni i tres dobles enllaços alternats. L'anell de benzè és completament pla. Existeixen, entre altes, dues maneres de dibuixar l'anell de benzè, les estructures de Lewis I i II. Ara bé, només existeix una estructura del benzè. Actualment sé sap que tots els enllaços en l'anell de benzè són iguals (idèntica longitud i energia). Es va determinar que en l'anell de benzè els sis àtoms de carboni comparteixen per igual els sis electrons dels dobles enllaços i això provoca que el benzè sigui un compost molt estable. Per indicar la deslocalització dels dobles enllaços dins l'anell de benzè sovint es representa com un hexàgon amb un cercle en el seu interior.

<u>Nomenclatura</u>

A l'hora d'anomenar els compostos aromàtics que contenen un anell de benzè i un sol substituent se'ls anomena com a derivats del benzè

Ara bé molts d'aquests compostos han estat molt importants des de fa molts anys i conserven el nom comú

Fórmula	Nom IUPAC	Nom comú
CH ₃	metilbenzè	toluè
OH	hidroxibenzè	fenol
NH ₂	benzenamina	anilina
CO ₂ H		àcid benzoic
СНО	formilbenzè	benzaldehid

Quan l'anell de benzè és un substituent s'anomena com a grup fenil. S'indica dibuixant tot l'anell, o bé en fórmula condensada C₆H₅-, o també amb l'abreviació Ph del nom del radical fenil en anglès (phenil). D'aquesta manera el 3-fenil-1-pentè es pot dibuixar de les següents maneres:

Quan tinguem anells de benzè disubstituïts per indicar la posició dels substituents es poden fer servir els prefixos *orto, meta, para* (*o, m, p*) o 1,2-, 1,3-, 1,4-respectivament. Els substituents s'anomenen per ordre alfabètic

Pels anells polisubstituïts s'assignen els substituents de manera que tinguin els números més baixos possibles. Els substituents s'anomenen per ordre alfabètic. Si es considera un nom comú, s'assigna la posició 1 al carboni que té el substituent que dóna nom al compost.

2.5 Haloalcans o halurs d'alquil R-X

En una haloalcà, al menys un enllaç covalent C-H d'un alcà s'ha reemplaçat per un enllaç covalent carboni-halogen.

Nomenclatura

En la nomenclatura IUPAC es consideren els halògens com una ramificació i es procedeix igual que en els alcans substituïts, utilitzant els prefixes.

Pels haloalcans més senzills es conserva la nomenclatura **radico-funcional** és a dir anomenar-los com halurs d'alquil, primer el nom de l'halogen com halogenur seguit del nom del radical. Les dues nomenclatures són acceptades.

	CH ₃ -CI	CH₃CH₂Br	CH₃CHCH₃ F
IUPAC	clorometà	bromoetà	2-fluoropropà
Radico-funcional	clorur de metil	bromur d'etil	fluorur d'isopropil

Pels haloalcans més simples derivats del metà es conserven els següents noms comuns:

	Nom comú	IUPAC
CCI ₄	tetraclorur de carboni	tetraclorometà
CHCI ₃	cloroform	triclorometà
CH ₂ Cl ₂	clorur de metilè	diclorometà
CHF ₃	fluoroform	trifluorometà
CHI ₃	iodoform	triiodometà

2.6 Compostos amb grups funcionals

Generalitats sobre la nomenclatura

Els principals grups funcionals es troben llistats a la **Taula 1**. Quan un compost presenta diferents grups funcionals, cal determinar el que s'emprarà com a principal (segons **Taula 1** d'ordre de preferències). El grup principal s'anomena com a sufix, tots els altres presents en el compost s'anomenaran com a substituents amb un prefix. A l'hora d'enumerar té prioritat el grup funcional principal.

ATENIR EN COMPTE: la "n" etimològica. Quan el nom de l'hidrocarbur no figura al final del nom cal afegir la "n" etimològica. Així, el nom de l'alcohol CH₃CH₂OH no és etaol, sinó *etanol*.

Taula 1. Principals grups funcionals per ordre decreixent de prioritat:

Nom genèric	Grup	Prefix	Sufix
	funcional		
Àcids carboxílics	-СООН	Carboxi	Àcidoic
Èsters	-COOR	Alquiloxicarbonil	-oat d'alquil
	(RC00-)	Ariloxicarbonil	
Amides	-CONH ₂	(Aciloxi) Carbamoïl	-amida
Amues	_		-arriiua
Nitrils	-CN	Ciano	-nitril
Aldehids	-CHO	Formil, oxo	-al
Cetones	СО	Охо	-ona
Alcohols	-OH	Hidroxi	-ol
Amines	-NH ₂	Amino	-amina
Èters	-OR	Alquiloxi (alcoxi)	
Alquins	-C≡C-		-í
Alquens	-C=C-		-è
Alcans	-C-C-		-à
Halurs d'alquil i nitr	oderivat només s	e citen com a prefixos	S.:
Clorur d'alquil	-CI	Cloro	
Bromur d'alquil	-Br	Bromo	
Fluorur d'alquil	-F	Fluoro	
lodur d'alquil	-1	lodo	
Nitro derivats	-NO ₂	Nitro	

2.6.1 Alcohols

Els alcohols són compostos orgànics que contenen el grup hidroxil (-OH) unit a un àtom de carboni saturat. Així si substituïm un -H en el CH₄ per un grup –OH obtenim l'alcohol metílic CH₃OH. La fórmula general dels alcohols és R-OH on R és el grup alquil.

Els alcohols es classifiquen en alcohols primaris, secundaris i terciaris, depenent de si l'àtom de carboni que conté el grup –OH està unit a un, dos o tres àtoms de carboni, respectivament. Les fórmules generalitzades dels alcohols 1^{ari}, 2^{ari} i 3^{ari} són:

Nomenclatura

IUPAC: quan el grup hidroxil és el grup principal del compost s'anomena afegint el sufix "-ol" al nom del compost fonamental:

CH₃CH₂OH etanol

Per alcohols de més de 2 carbonis caldrà seguir els següents passos:

Pas Seleccionar la cadena continua de carbonis més llarga que contingui el qrup hidroxil

Pas Enumerar els carbonis d'aquesta cadena de manera que el grup –OH tingui el nombre més baix possible

Pas Anomenar l'alcohol afegint el sufix "-ol" (atenció a la "n" etimològica) al nom del compost fonamental precedit del localitzador de la posició de l'alcohol

Anomenar les cadenes laterals alquil (o algun altre grup funcional no preferent) com a prefix indicant la posició amb els localitzadors

$$\overset{6}{\text{CH}_3} \overset{5}{\text{CH}_2} \overset{4}{\text{CHCH}_2} \overset{3}{\text{CHCH}_3} \overset{2}{\text{CH}_3} \overset{1}{\text{OH}} \qquad \text{4-metil-2-hexanol}$$

✓ Per alcohols polihidroxilats s'utilitzen els prefixos "-diol", "-triol", etc, precedits dels localitzadors

HOCH₂CH₂CH₂CH₂OH 1,4-butandiol

Quan la funció alcohol no és el grup principal o quan es troba a les cadenes laterals s'indica la seva posició i s'anomena "hidroxi"

Per molts alcohols es continua utilitzant molt el nom comú. Generalment per monoalcohols el nom comú es forma amb el nom del grup alquil (R) en forma adjectiva (acabat amb ílic) precedit de la paraula alcohol. Els diols i triols més simples tenen noms comuns propis.

Classe	Compost	Nom IUPAC	Nom comú
Primari	CH₃OH	metanol	alcohol metílic
Primari	CH ₃ CH ₂ OH	etanol	alcohol etílic
Primari	CH ₃ CH ₂ CH ₂ OH	<i>n</i> -propanol	alcohol n-propílic
Primari	CH ₃ CH ₂ CH ₂ CH ₂ OH	<i>n</i> -butanol	alcohol n-butílic
Secundari	CH₃CHCH₃ о́Н	2-propanol	alcohol isopropílic
Primari	CH ₃ CHCH ₂ OH CH ₃	2-metil-1- propanol	alcohol isobutílic
Secundari	CH ₃ CHCH ₂ CH ₃ о́Н	2-butanol	alconol sec-butílic
Terciari	СН ₃ СН ₃ —С-ОН СН ₃	2-metil-2- propanol	alcohol tert-butílic
Diol	HOCH ₂ CH ₂ OH	1,2-etandiol	etilenglicol
Triol	HOCH₂CHCH₂OH OH	1,2,3-propantriol	glicerol o glicerina

2.6.2 **Èters**

Els èters tenen la fórmula general R-O-R'. Els grups R i R' poden ser derivats d'hidrocarburs saturats, insaturats o aromàtics i per un determinat èter poden ser iguals (èters simètrics) o diferents (èters asimètrics).

Nomenclatura

IUPAC: s'anomenen com a derivats, R'O- dels grup R més jeràrquic generalment la cadena carbonada més llarga en la molècula. Per assignar el nom d'un èter mitjançant aquest sistema es segueixen els següents passos:

- Pas 1: seleccioneu la cadena R de més jerarquia, generalment la cadena carbonada més llarga i identifiqueu-la amb el nom corresponent CH₃CH₂OCH₂CH₂CH₃ propà
- Pas 2: Canvieu la terminació "-il" de l'altre grup hidrocarbonat R'O per "-oxi" per obtenir el nom del grup alcoxi etoxi CH₃CH₂OCH₂CH₃
- Pas 3: Combineu els dos noms dels pasos 1 i 2, primer el nom de l'alcoxi (si cal amb el localitzador al davant), per formar el nom de l'èter

 1 2 3

 CH₃CH₂OCH₂CH₃ 1-etoxipropà

Igual que en els alcohols pels èters més senzills es continuen utilitzant molt els noms comuns. Els noms comuns dels èters es formen anteposant el mot "èter" als noms dels radicals R i R' en ordre alfabètic, el segon dels quals es troba en forma adjectiva (acabat amb -ílic). Alternativament els noms d'aquests compostos es poden formar anteposant els noms dels radicals R i R', citats en ordre alfabètic al mot "èter"

Compost	Nom IUPAC	Nom comú
CH ₃ OCH ₂ CH ₃	metoxietà	èter etil metílic o etil metil èter
CH ₃ CH ₂ OCH ₂ CH ₃	etoxietà	èter dietílic o dietil èter
CH ₃ CHCH ₃ OCH ₃	2-metoxipropà	èter isopropil metílic o isopropil metil èter

2.6.3 Aldehids i cetones

Els aldehids i cetones són un tipus de compostos molt relacionats. Les seves estructures contenen el grup carbonil (C=O), un carboni que està formant un doble enllaç amb l'oxigen. El carboni carbonílic d'aldehids i cetones té geometria plana trigonal. Els aldehids tenen almenys un àtom d'hidrogen enllaçat al carboni carbonílic, mentre que les cetones tenen dos grups alquil (R) o aromàtics (Ar) enllaçats al carbonil:

En una expressió lineal, sovint el grup aldehid s'escriu CHO o CH=O i la funció cetona com CO, per exemple:

Nomenclatura aldehids

IUPAC: els aldehids s'anomenen afegint el sufix "-al" o "-dial" (quan hi ha dues funcions aldehid) al nom de l'hidrocarbur que conté el mateix nombre d'àtoms de carboni. Per assignar el nom d'un aldehid mitjançant aquest sistema es segueixen els següents passos:

Pas 1: seleccioneu la cadena carbonada més llarga que contingui la funció aldehid. No cal localitzador per la funció aldehid perquè sempre es troba a l'extrem d'una cadena carbonada.

Pas 2: enumerar la cadena carbonada a partir del carboni carbonílic que serà el numero 1. Anomeneu qualsevol altre substituents precedit pels corresponents localitzadors com a prefix del nom de l'aldehid

Quan l'aldehid no és el grup preferent es designa amb el prefix "formil" per tot el grup -CHO

Pels aldehids més senzills es continua utilitzant molt el seu nom comú:

Compost	Nom IUPAC	Nom comú
O H C H	metanal	formaldehid
CH ₃ C H	etanal	acetaldehid
O II CH ₃ CH ₂ C H	propanal	propionaldehid
СНО	formilbenzè	benzaldehid

Nomenclatura de les cetones

IUPAC: les cetones s'anomenen afegint el sufix "ona" o en "ndiona", "ntriona" (per més d'una funció cetona) a la cadena carbonada més llarga que contingui la funció o funcions cetona. Per assignar el nom d'una cetona mitjançant aquest sistema es segueixen els següents passos

Pas 1: seleccioneu la cadena carbonada més llarga que contingui la funció cetona:

Pas 2: si el compost és de més de quatre àtoms de carboni cal indicar la posició de la funció cetona. Enumerar de manera que la funció carbonílica tingui el nombre més baix possible i aquest s'indica com a prefix

Pas 3: altres grups enllaçats a la cadena principal s'anomenen i enumeren com a prefixes

Pas 4: Per cetones cícliques (C=O forma part d'una anell). S'utilitza el prefix "ciclo" davant del nom de la corresponent cetona lineal. Qualsevol substituent es localitza enumerant l'anell començant amb el carboni carbonílic com a C-1

Quan el grup ceto no és el grup preferent es designa amb el prefix "oxo" indicant la seva posició amb el corresponent localitzador

Per les cetones més senzilles es continuen utilitzant molt els noms comuns. Els noms comuns de les cetones, igual que en els èters, es formen anteposant el mot "cetona" als noms dels radicals R i R' en ordre alfabètic, el segon dels quals es troba en forma adjectiva (acabat amb -ílic). Alternativament els noms d'aquests compostos es poden formar anteposant els noms dels radicals R i R', citats en ordre alfabètic al mot "cetona"

Compost	Nom IUPAC	Nom comú
0	2-butanona	cetona etil metílica o etil metil cetona
0	propanona	cetona dimetílica o dimetil cetona
		(més coneguda com acetona)
0	3-metil-2-butanona	cetona isopropil metílica o isopropil metil cetona
	1-fenil-1-butanona	cetona fenil propílica o fenil propil cetona

2.6.4 Àcids carboxílics

Els àcids orgànics coneguts com àcids carboxílics es caracteritzen pel grup funcional anomenat grup carboxílic (COOH ó CO₂H). El grup carboxílic es representa en les formes següents:

Nomenclatura

El grup carboxílic **sempre està en un extrem de la cadena** carbonada i a l'enumerar el compost se sobreentén que l'àtom de carboni carboxílic és el carboni 1. Per assignar el nom IUPAC d'un àcid carboxílic se segueixen els següents passos

Pas 1: seleccioneu la cadena carbonada més llarga que contingui el grup carboxílic. Anomenar afegint l'expressió "àcid......oic" al nom de l'hidrocarbur corresponent. Quan hi ha dues funcions àcid s'utilitza la terminació "dioic"

Pas 2: enumerar la cadena carbonada començant amb el carboni carboxílic. Doneu la localització i el nom dels substituents de la cadena principal com a prefixes del nom de l'àcid carboxílic. En el cas dels diàcids la cadena s'enumera en la direcció que proporcioni els substituents en les posicions més baixes

Pas 3: la funció àcid carboxílic unida a un anell aromàtic s'anomena àcid benzoic. L'àtom de carboni directament unit al grup —COOH serà el carboni 1, l'anell s'enumera en la direcció que s'obtinguin els substituents en les posicions més baixes

Molts àcids carboxílics es continuen anomenant amb els seus noms comuns, els quals deriven de les seves fonts d'obtenció naturals

Fórmula	Nom IUPAC	Nom comú
НСООН	àcid metanoic	àcid fòrmic
CH₃COOH	àcid etanoic	àcid acètic
CH ₃ CH ₂ COOH	àcid propanoic	àcid propiònic
CH ₃ (CH ₂) ₂ COOH	àcid butanoic	àcid butíric
CH ₃ (CH ₂) ₃ COOH	àcid pentanoic	àcid valèric
CH ₃ (CH ₂) ₁₀ COOH	àcid dodecanoic	àcid làuric
CH ₃ (CH ₂) ₁₄ COOH	àcid hexadecanoic	àcid palmític
CH ₃ (CH ₂) ₁₆ COOH	àcid octadecanoic	àcid estèaric

2.6.5 Esters

Els àcids carboxílics reaccionen amb els alcohols per formar esters. En un èster, el grup -H de l'àcid carboxílic és reemplaçat per un grup alquil.

En forma lineal els èsters es representen R-COOR' o bé R-CO₂R' i la seva geometria és plana trigonal al voltant del carboni que suporta els dos oxígens amb angles aproximats de 120°.

Nomenclatura

Igual que els àcids carboxílics els èsters sempre estan en un extrem de la cadena carbonada i a l'enumerar el compost se sobreentén que l'àtom de carboni carboxílic és el carboni 1.

Per anomenar els èsters es reemplaça la terminació "oic" de l'àcid corresponent per "oat", afegint la preposició "de" i seguit del nom del radical alquil procedent de l'alcohol.

Si s'utilitza el nom comú de l'àcid es reemplaça la terminació "-ic" per "-at"

CH₃ CUPAC: etanoat de metil Comú: acetat de metil

2.6.6 Amines

Les amines es consideren derivats de l'amoníac (NH₃), en els quals un o més àtoms d'hidrogen es reemplacen per grups alquil o aril. Per exemple, en la metilamina, un grup metil reemplaça un àtom d'hidrogen de l'amoníac. L'enllaç amb dos grups metil proporciona la dimetilamina i amb tres la trietilamina.

Les amines es classifiquen de manera similar als alcohols, en funció del nombre d'àtoms de carboni directament units al nitrogen. En una amina primària tenim un sol enllaç C-N, en una secundària dos en una terciària 3.

amoníac	amina primària	amina secundària	amina terciària
		 R—N—H R	: R—N—R R
	CH ₃ —N—H H metilamina	CH ₃ —N—H CH ₃ dimetilamina	CH ₃ —N—CH ₃ CH ₃ Trimetilamina

Nomenclatura

Per assignar el nom IUPAC d'amines primàries, secundàries i terciàries es segueixen els següents passos

Pas seleccionar la cadena carbona més llarga que contingui la funció amina 1:

Pas Enumerar els carbonis d'aquesta cadena de manera que la funció amina tingui el nombre més baix possible. Anomenar l'amina afegint el sufix "-amina" (atenció a la "n" etimològica) al nom del compost fonamental precedit del localitzador que indica la posició de l'amina

Pas Per amines secundàries i terciàries els grups alquil units al nitrogen s'anomenen com a productes de *N*-substitució

Les amines més senzilles sovint s'identifiquen pels noms comuns, formats llistant el nom dels grups alquil units a l'àtom de nitrogen en ordre alfabètic seguit del mot amina. Els prefixes di i tri s'utilitzen per indicar dos o tres substituents idèntics

Classe	Compost	Nom IUPAC	Nom comú
Primària	CH ₃ NH ₂	metanamina	metilamina
Secundària	CH ₃ NHCH ₃	N-metilmetanamina	dimetilamina
Secundària	CH ₃ NHCH ₂ CH ₃	N-metiletanamina	etilmetilamina
Terciària	CH ₃ CH ₂ CH ₂ N-CH ₃ CH ₃	N,N-dimetil-1- propanamina	propildimetilamina
Terciària	N(CH ₂ CH ₃) ₃	N,N-dimetiletanamina	trietilamina

Quan la funció amina no és el grup preferent de la molècula s'anomena amb el prefix "amino"

2.6.7 Amides

Les amides són derivats dels àcids carboxílics. Els àcids carboxílics reaccionen amb amoníac o amines per formar amides. En una amida, el –OH de l'àcid carboxílic es reemplaçat per un àtom de nitrogen

En forma lineal es representen R-CONH₂.

Nomenclatura

Tant pels noms comuns com pel nom IUPAC, les amides s'anomenen reemplaçant la terminació "-ic" o "-oic" de l'àcid corresponent per "amida"

	O H NH ₂	O CH ₃ NH ₂	O CH ₃ CH ₂ NH ₂
IUPAC	metanamida	etanamida	propanamida
Comú	formamida	acetamida	propionamida

Si hi ha substituents en el nitrogen s'indiquen els grups alquil per ordre alfabètic precedits per N (en itàlica)

$$N,N$$
-dimetilbutanamida N -etil- $N,2$ -dimetilpentanamida

2.6.8 NITRILS

Els nitrils, R-C≡N, són compostos orgànics on tenim un triple enllaç carboni-nitrogen a l'extrem d'una cadena carbonada. Els nitrils es poden considerar derivats orgànics del cianur d'hidrogen (àcid cianídric, HCN), en els que l'hidrogen ha estat substituït per un radical alquil o aril.

Nomenclatura

En nomenclatura IUPAC els nitrils es denoten amb el sufix "-nnitril" o "dinitril" al nom de la cadena carbonada més gran que contingui la funció nitril. A l'hora d'enumerar el carboni que forma el triple enllaç amb el nitrogen serà el carboni 1.

Comunament, els nitrils més senzills s'anomenen indicant el nom "cianur" pel grup -CN seguit de la preposició "de" i el nom del radical R.

	CH ₃ CH ₂ CH ₂ CN	CH₃CHCH₂CN CH₃
IUPAC	pentannitril	3-metilbutannitril
Comú	cianur de butil	cianur d'isobutil

Quan el grup nitril no és el grup preferent es designa amb el prefix "ciano"