LPHYS2114 Non linear dynamics Exercise 2 – Bifurcations. Linear systems.

Bifurcations

1. Evolution of fish populations. We will start by looking at a simple model of a fish population. If there is no fishing, the population $P = P(t) \ge 0$ follows the logistic model.

Simplistic model

The impacts of fishing is modelled by the term -H, added to the logistic equation where H > 0 is a constant removal of fish from the population :

$$\dot{P} = aP\left(1 - \frac{P}{N}\right) - H. \tag{1}$$

where a>0 is the growth rate of the population and N>0 is the population saturation.

(a) We will make a change of variables $P(t) = \mu x(\tau = \lambda t)$ to simplify the equation for further analysis, show this results in :

$$\dot{x} = x(1-x) - h. \tag{2}$$

and find μ, λ et h.

- (b) Graphically analyse this ODE as a function of h.
- (c) Show there is a bifurcation at a critical value $h = h_c$ which we will determine. What kind of bifurcation is this?
- (d) Discuss the evolution of the fish population over the long term for $h < h_c$ and $h > h_c$.
- (e) Discuss the weaknesses of this model.

Improved model

To improve the original model (1), we will consider a model where the decrease of the population through fishing varies with P. We will model this by ensuring the deduction goes to zero as P goes to zero, and reaches a constant -H for large P. A possible model is given by :

$$\dot{P} = aP\left(1 - \frac{P}{N}\right) - \frac{HP}{B+P}.\tag{3}$$

with $B \geqslant 0$.

(f) Discuss the importance of parameter B.

(g) Show that there is a change of variables that allow the equation to be re-written as:

$$\dot{x} = x(1-x) - \frac{hx}{b+x} \tag{4}$$

where b and h are to be determined.

- (h) Show that the ODE can have two or three equilibria depending on the values of b and h. Determine their stability. Remember that : $x \ge 0$.
- (i) Analyse the dynamics in a neighbourhood of x = 0. Determine that a bifurcation takes place at h = b.
- (j) Show that another bifurcation occurs when $h = \frac{1}{4}(1+b)^2$ at a value $b < b_c$ where b_c is to be determined.
- (k) Analyse the stability of the system on a b-h diagram.

Linear systems on the plane

2. Solutions of linear systems. For the matrices

(i)
$$A = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}$$
 et (ii) $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ (5)

Find the following:

- (a) Find the eigan values and eigan vectors of A.
- (b) Find the matrix T such that $\bar{A} = TAT^{-1}$ is a normal form.
- (c) Find the general solution of $\dot{\bar{x}} = \bar{A}\bar{x}$ and $\dot{x} = Ax$.
- (d) Sketch the phase portrait of the two systems.

3. Harmonic oscillator with friction. We take the equations of a harmonic oscillator

$$\ddot{x} + 2\gamma \dot{x} + \omega^2 x = 0, \quad \omega > 0, \gamma \geqslant 0. \tag{6}$$

- (a) Write the equation in the form a a linear 2-dimensional ODE $\dot{x} = Ax$.
- (b) For what values of ω and γ , the matrix A has eigan values that are (i) complex, (ii) real and distinct values, and (iii) repeating values?
- (c) Find the general solution of the system in any of the cases (i), (ii), and (iii). Sketch the phase portraits for each case and describe the movement of the oscillator.

4. Classification of **2**-dimensional linear systems. We take a generalised 2-dimensional linear system :

$$\dot{\boldsymbol{x}} = A\boldsymbol{x}, \quad \boldsymbol{x} \in \mathbb{R}^2. \tag{7}$$

where, A is a 2×2 real valued matrix. Let $D = \det A$ and $T = \operatorname{tr} A$.

- (a) Find the eigan values of A in terms of D and T. Describe the value of the eigan values according to the sign of T, D and $T^2 4D$.
- (b) On the T-D plane, sketch a typical phase portrait in each of the regions that are separated by the curves D = 0, T = 0, and $T^2 4D = 0$.