Parallel and Distributed Computing CS3006 (BCS-6C/6D) Lecture 07

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science, FAST
14 February, 2023

Previous Lecture

- Evaluating static interconnections
 - Cost, diameter, bisection width, arc connectivity
- Parallel Algorithm Design
 - Identification (of tasks)
 - Mapping (tasks to processes)
 - Data Partitioning
 - Defining access protocol, Synchronizing
- Tasks & Decomposition
 - Task-Dependency Graphs
 - Granularity of decomposition (depends on size of tasks)
 - Maximum and average degree of concurrency
 - Task-Interaction Graphs
 - Example of sparse-matrix multiplication

Principles of Parallel Algorithm Design

Task Interact Graph (Sparse-matrix multiplication)

Figure 3.6 A decomposition for sparse matrix-vector multiplication and the corresponding task-interaction graph. In the decomposition Task i computes $\sum_{0 \le j \le 11, A[i,j] \ne 0} A[i,j].b[j]$.

Processes and Mapping

- The logical processing or computing agent that performs tasks is called a process.
- The *mechanism* by which tasks are *assigned to processes* for execution is called *mapping*.
- Multiple tasks can be mapped on a single process
- Independent tasks should be mapped onto different processes
- Tasks with high mutual-interactions should be mapped onto a single process

Processes and Mapping

Figure 3.7 Mappings of the task graphs of Figure 3.5 onto four processes.

Processes vs. Processors

- Processes are logical computing agents that perform tasks
- **Processors** are the hardware units that physically perform computations
- Depending on the problem, multiple processes can be mapped onto a single processor
- But, in most of the cases, there is a *one-to-one correspondence between processors and processes*
- So, we assume that there are as many processes as the number of physical CPUs on the parallel computer

Exercise:

- For the task graph given above, determine:
- Maximum degree of concurrency
- Critical path
- Maximum possible speedup assuming large number of process are available
- Minimum number of processes needed to obtain the maximum possible speedup
- Maximum speedup if number of processes are limited to 4

- The process of decomposing larger problems into smaller tasks for concurrent executions is known as *decomposition*.
- The techniques that facilitate this decomposition are known as decomposition techniques.
- Common techniques:
 - Recursive
 - Data-decomposition
 - Exploratory decomposition
 - Speculative decomposition
 - Hybrid
- Recursive and data decompositions are relatively general purpose
- Exploratory and speculative are special purpose in nature

Recursive Task Decomposition

- Recursive decomposition is a method for inducing concurrency in the problems that can be solved using a divide and conquer strategy
- It divides each problem into a set of independent sub-problems
- Each one of these subproblems is solved by recursively applying a similar division into smaller subproblems followed by a combination of their results
- A natural concurrency exists as different subproblems can be solved concurrently.

Recursive Decomposition

At each level and for each vector

- Select a pivot
- 2. Partition set around pivot
- 3. Recursively sort each subvector

Figure 3.8 The quicksort task-dependency graph based on recursive decomposition for sorting a sequence of 12 numbers.

Recursive Decomposition

Modifying simple problem to support recursive decomposition

```
    procedure SERIAL_MIN (A, n)
    begin
    min = A[0];
    for i := 1 to n - 1 do
    if (A[i] < min) min := A[i];</li>
    endfor;
    return min;
    end SERIAL_MIN
```

Algorithm 3.1 A serial program for finding the minimum in an array of numbers A of length n.

```
procedure RECURSIVE_MIN (A, n)
     begin
     if (n = 1) then
        min := A[0];
5.
     else
6.
        lmin := RECURSIVE\_MIN(A, n/2);
        rmin := RECURSIVE\_MIN (&(A[n/2]), n - n/2);
        if (lmin < rmin) then
           min := lmin;
10
        else
11.
           min := rmin;
12.
        endelse;
    endelse;
    return min;
    end RECURSIVE_MIN
```

Algorithm 3.2 A recursive program for finding the minimum in an array of numbers A of length n.

Recursive Decomposition

Modifying simple problem to support recursive decomposition

Figure 3.9 The task-dependency graph for finding the minimum number in the sequence {4, 9, 1, 7, 8, 11, 2, 12}. Each node in the tree represents the task of finding the minimum of a pair of numbers.

Data Decomposition

- Powerful and commonly used method
- Two step procedure:
 - Partition data on which computation is to be performed
 - This data partitioning is used to induce a partitioning of the computations into tasks.
- Partitioning output data
 - Used where each element of the output can be computed independently of others as a function of the input.
 - Partitioning of the output data automatically induces a decomposition of the problems into tasks
 - Each task is assigned the work of computing a portion of the output

Data Decomposition (Partitioning Output Data)

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \rightarrow \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$\text{(a)}$$

$$\text{Task 1: } C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$

$$\text{Task 2: } C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$$

$$\text{Task 3: } C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$$

$$\text{Task 4: } C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$$

$$\text{(b)}$$

Figure 3.10 (a) Partitioning of input and output matrices into 2×2 submatrices. (b) A decomposition of matrix multiplication into four tasks based on the partitioning of the matrices in (a).

Data Decomposition (Partitioning Output Data)

Decomposition I

Decomposition II

Task 1:
$$C_{1,1} = A_{1,1}B_{1,1}$$

Task 2: $C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$
Task 3: $C_{1,2} = A_{1,1}B_{1,2}$
Task 4: $C_{1,2} = C_{1,2} + A_{1,2}B_{2,2}$
Task 5: $C_{2,1} = A_{2,1}B_{1,1}$
Task 7: $C_{2,2} = A_{2,1}B_{1,2}$
Task 8: $C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$
Task 1: $C_{1,1} = A_{1,1}B_{1,1}$
Task 2: $C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$
Task 3: $C_{1,2} = A_{1,2}B_{2,2}$
Task 4: $C_{1,2} = C_{1,2} + A_{1,1}B_{1,2}$
Task 5: $C_{2,1} = A_{2,2}B_{2,1}$
Task 6: $C_{2,1} = C_{2,1} + A_{2,1}B_{1,1}$
Task 7: $C_{2,2} = A_{2,1}B_{1,2}$
Task 8: $C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$

Figure 3.11 Two examples of decomposition of matrix multiplication into eight tasks.

Data Decomposition (Partitioning Output Data)

(a) Transactions (input), itemsets (input), and frequencies (output)

(b) Partitioning the frequencies (and itemsets) among the tasks

Figure 3.12 Computing itemset frequencies in a transaction database.

Data Decomposition

Partitioning input data

- In many algorithms, it is not possible or desirable to *partition the output data*.
 - The output may be a *single unknown value*.
 - Such as in case of *finding sum*, *minimum*, *maximum* or *frequencies of a number*.
- It is sometimes possible to *partition the input data*, and then use this partitioning to *induce concurrency*
- A task is created for each partition of the input data and this task performs as much computation as possible using this local data
- Then local solutions are combined to generate a global solution

Decomposition Techniques Partitioning input data

(a) Partitioning the transactions among the tasks

task 1 task 2

Data Decomposition

Partitioning both input and output data

- Consider the problems where output data-partitioning is possible
- Here, partitioning the input also, can offer additional concurrency
- The next example shows 4-way decomposition of the previous example based on both input-output partitioning.

(b) Partitioning both transactions and frequencies among the tasks

Figure 3.13 Some decompositions for computing itemset frequencies in a transaction database.

Stage I

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \rightarrow \begin{pmatrix} \begin{pmatrix} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \\ D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{pmatrix}$$

Stage II

$$\begin{pmatrix} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \end{pmatrix} + \begin{pmatrix} D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{pmatrix} \rightarrow \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

A decomposition induced by a partitioning of D

 $\begin{array}{llll} \operatorname{Task} & 01: & D_{1,1,1} = A_{1,1}B_{1,1} \\ \operatorname{Task} & 02: & D_{2,1,1} = A_{1,2}B_{2,1} \\ \operatorname{Task} & 03: & D_{1,1,2} = A_{1,1}B_{1,2} \\ \operatorname{Task} & 04: & D_{2,1,2} = A_{1,2}B_{2,2} \\ \operatorname{Task} & 05: & D_{1,2,1} = A_{2,1}B_{1,1} \\ \operatorname{Task} & 06: & D_{2,2,1} = A_{2,2}B_{2,1} \\ \operatorname{Task} & 07: & D_{1,2,2} = A_{2,1}B_{1,2} \\ \operatorname{Task} & 08: & D_{2,2,2} = A_{2,2}B_{2,2} \\ \operatorname{Task} & 09: & C_{1,1} = D_{1,1,1} + D_{2,1,1} \\ \operatorname{Task} & 10: & C_{1,2} = D_{1,1,2} + D_{2,1,2} \\ \operatorname{Task} & 11: & C_{2,1} = D_{1,2,1} + D_{2,2,1} \\ \operatorname{Task} & 12: & C_{2,2} = D_{1,2,2} + D_{2,2,2} \end{array}$

Figure 3.15 A decomposition of matrix multiplication based on partitioning the intermediate three-dimensional matrix.

Figure 3.16 The task-dependency graph of the decomposition shown in Figure 3.15.

Stage I

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \rightarrow \begin{pmatrix} \begin{pmatrix} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \\ D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{pmatrix}$$

Stage II

$$\begin{pmatrix} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,2} & D_{1,2,2} \end{pmatrix} + \begin{pmatrix} D_{2,1,1} & D_{2,1,2} \\ D_{2,2,2} & D_{2,2,2} \end{pmatrix} \rightarrow \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

A decomposition induced by a partitioning of D

```
\begin{array}{llll} \operatorname{Task} & 01: & D_{1,1,1} = A_{1,1}B_{1,1} \\ \operatorname{Task} & 02: & D_{2,1,1} = A_{1,2}B_{2,1} \\ \operatorname{Task} & 03: & D_{1,1,2} = A_{1,1}B_{1,2} \\ \operatorname{Task} & 04: & D_{2,1,2} = A_{1,2}B_{2,2} \\ \operatorname{Task} & 05: & D_{1,2,1} = A_{2,1}B_{1,1} \\ \operatorname{Task} & 06: & D_{2,2,1} = A_{2,2}B_{2,1} \\ \operatorname{Task} & 07: & D_{1,2,2} = A_{2,1}B_{1,2} \\ \operatorname{Task} & 08: & D_{2,2,2} = A_{2,2}B_{2,2} \\ \operatorname{Task} & 09: & C_{1,1} = D_{1,1,1} + D_{2,1,1} \\ \operatorname{Task} & 10: & C_{1,2} = D_{1,1,2} + D_{2,1,2} \\ \operatorname{Task} & 11: & C_{2,1} = D_{1,2,1} + D_{2,2,1} \\ \operatorname{Task} & 12: & C_{2,2} = D_{1,2,2} + D_{2,2,2} \end{array}
```

Figure 3.15 A decomposition of matrix multiplication based on partitioning the intermediate three-dimensional matrix.

Figure 3.16 The task-dependency graph of the decomposition shown in Figure 3.15.

Owner Compute Rule

- Task decomposition based on data-partitioning is widely known as owner compute rule.
- Two types of partitioning hence, two definitions:

- 1. If we assign partitions of the input data to tasks:
 - The rule means that a task performs all the computations that can be done using this data
- 2. If we assign partition of the output data to the tasks:
 - The rule means that a task computes all the data in the partition assigned to it (portion of the output).

3. Exploratory Decomposition

• Specially used to decompose the problems having underlying computation *like search-space exploration*.

• Steps:

- 1. Partition the *search space into smaller parts*
- 2. Search each one of these parts concurrently, until the desired solutions are found.

3. Exploratory Decomposition

Figure 3.17 A 15-puzzle problem instance showing the initial configuration (a), the final configuration (d), and a sequence of moves leading from the initial to the final configuration.

Figure 3.18 The states generated by an instance of the 15-puzzle problem.

Sources

- Slides of Dr. Rana Asif Rahman & Dr. Haroon Mahmood, FAST
- (Chapter 2) Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to parallel computing (Vol. 110). Redwood City, CA: Benjamin/Cummings.
- Quinn, M. J. Parallel Programming in C with MPI and OpenMP, (2003).