

MATLAB을 이용한 고강도강 겹치기 레이저 용접부의 모델링

- 회귀 모델 (Regression model) -

안 내

- 본 자료는 아래의 사람들이 만들었습니다.
 유현정 (Portland State University)
 김철희 (한국생산기술연구원, Portland State University)
- 예제 파일은 아래에서 받을 수 있습니다.
 https://deepjoining.github.io
- 문의사항 및 의견: <u>deepjoining@gmail.com</u>
- 자료는 한국생산기술연구원 신입대학원생 교육자료입니다.
 일체의 다른 용도 사용을 금지합니다.

1. 회귀 모델을 통해 얻을 수 있는 결과

회귀 모델을 사용하는 예: 어떠한 소재에 대해서 용접했을 때 원하는 강도를 가질 수 있는 지 판단하기 위함

실험조건	측정 강도	예측 강도
Case 1	15659.4667	13597.4391
Case 2	16660.7333	15228.9722
Case 3	18593.6333	17104.9873
	18619.1	18858.7613
	18859.8333	20612.5354
	18765.0333	21755.1047
	14681.7333	13660.5778
	15620.3667	15292.1109
	18561.8	17168.126
	18555.9333	18146.0536
	18899.8	19533.1048
	18918.9	20920.156
	16050.6333	14911.2022
	17751.6667	16542.7353
Case n	18583.3333	18418.7503

2. 풀어야 할 문제

- 소재: 인장강도 590~1500 MPa급 자동차용 강판 (cf. 연강의 경우 인장강도 270~300 MPa)
- 용접방법: 레이저 겹치기 용접
- 용접부 시험방법: 비드 폭 길이 측정 및 인장-전단 강도 평가
- 품질판단 기준: 파단의 위치
- 모델링할 문제
 - * 다양한 소재 조합 및 다양한 레이저 용접조건하에서
 - (1) 용접 후 용접 비드폭은 얼마인가? (회귀)
 - (2) 인장-전단 시험에서 강도는? (회귀)

인장-전단시험

용접 계면파단

HPF2.0G 용접부

3. 머신 러닝 모델 구축에 사용된 Input, Output parameter

- Input parameter

No.	1~7	8~14	15	16
Input	Chemical composition of the	Chemical composition of the	Wolding apood	Focal
parameter	upper sheet	lower sheet	Welding speed	position

- Output parameter

	Regression model						
Output	Bead width	Fracture load					
parameter	at the faying surface	Fracture load					

- Chemical compositions

Base materials (thickness)	С	Si	Mn	Р	S	Cr	В
590 DP (1.2 mm)	0.078	0.363	1.808	0.011	0.001	-	-
780 DP (1.2 mm)	0.070	0.977	2.264	0.010	0.015	-	-
980 DP (1.2 mm)	0.170	1.340	2.000	0.016	0.001	-	-
1180 CP (1.2 mm)	0.110	0.110	2.790	0.019	0.004	1.040	-
1500 HPF (1.1 mm)	0.216	0.240	1.255	0.002	0.002	0.001	0.003

3. 머신 러닝 모델 구축에 사용된 데이터

- Input parameter

- Output parameter

		Che	emical con	nposition o	f upper sh	eet			Chemical composition of lower sheet									
С	Si		Mn	Р	S	Cr	В	С	Si	Mn	Р	S	Cr	В	Weldingsp	Focalposit	Bead widtl	Fracture lo
0.0	78	0.363	1.808	0.011	0.001	0	0	0.078	0.363	1.808	0.011	0.001	0	C	70	0	0.82	15659.47
0.0	78	0.363	1.808	0.011	0.001	0	0	0.078	0.363	1.808	0.011	0.001	0	C	60	-5	0.87	16660.73
0.0	78	0.363	1.808	0.011	0.001	0	0	0.078	0.363	1.808	0.011	0.001	0	(48	-10	1.02	18593.63
0.0	78	0.363	1.808	0.011	0.001	0	0	0.078	0.363	1.808	0.011	0.001	0	(37	-15	1.33	18619.1
0.0	78	0.363	1.808	0.011	0.001	0	0	0.078	0.363	1.808	0.011	0.001	0	C	26	-20	1.99	18859.83
0.0	78	0.363	1.808	0.011	0.001	0	0	0.078	0.363	1.808	0.011	0.001	0	C	20	-25	2.02	18765.03
0.0	78	0.363	1.808	0.011	0.001	0	0	0.07	0.977	2.264	0.01	0.015	0	(70	0	0.76	14681.73
0.0	78	0.363	1.808	0.011	0.001	0	0	0.07	0.977	2.264	0.01	0.015	0	C	60	-5	0.81	15620.37
0.0	78	0.363	1.808	0.011	0.001	0	0	0.07	0.977	2.264	0.01	0.015	0	C	48	-10	1.1	18561.8
0.0	78	0.363	1.808	0.011	0.001	0	0	0.07	0.977	2.264	0.01	0.015	0	(40	-10	1.09	18555.93
0.0	78	0.363	1.808	0.011	0.001	0	0	0.07	0.977	2.264	0.01	0.015	0	C	32	-15	1.41	18899.8
0.0	78	0.363	1.808	0.011	0.001	0	0	0.07	0.977	2.264	0.01	0.015	0	C	24	-20	2.01	18918.9
0.0	78	0.363	1.808	0.011	0.001	0	0	0.17	1.34	2	0.016	0.001	0	C	70	0	0.74	16050.63
0.0	78	0.363	1.808	0.011	0.001	0	0	0.17	1.34	2	0.016	0.001	0	(60	-5	0.86	17751.67

- 1. MATLAB 실행
- 2. 홈에서 데이터 가져오기 실행

3. Input과 Output data가 포함된 파일(all_data) 불러오기

4. 왼쪽 상단 메뉴 탭에서 앱 클릭 후 회귀 학습기 클릭

- 6. 작업 공간에서 데이터 불러오기 (alldata)
- 7. 응답 변수는 현재 모델에서 확인하고자 하는 output data, 예측 변수는 input data로 파단 강도, 파단 위치는 응답 변수이기 때문에 선택하지 않음

- 8. 모델유형: 모두 선택 후 훈련 누르기
 - 모델별 평균 제곱근 편차(RMSE) 확인

▲ 회귀 학습기 - 응답 플롯

새 세션 특징 선택 PCA

모두

선형

상호 작용

모든 빠른

9. 모든 회귀 모델을 내보내기

10. 다음과 같이 스크립트를 작성하여 데이터 추출하기

5. 추출한 데이터를 통해 모델의 정확성 판단하기

- 비드폭에 대한 회귀 모델의 데이터 분석 (오차율, 결정계수 및 표준편차)

	Error (mm)	Error rate (%)	Standard deviation (mm) Error abs	Standard deviation (mm) Error	\mathbb{R}^2
Linear regression	0.08	6.12	0.09	0.12	0.91
Regression tree	0.09	6.48	0.10	0.12	0.92
SVM	0.05	4.62	0.09	0.11	0.93
GPR	0.04	2.56	0.04	0.06	0.98

5. 추출한 데이터를 통해 모델의 정확성 판단하기

- 비드폭에 대한 회귀 모델의 데이터 분석 (잔차분석)

감사합니다

다음 강의 내용: 매트랩을 이용한 분류 모델 분석 방법