Embarcadero Conference 2024

Inovação faz parte do nosso DNA!

Comunicação Industrial Modbus com RAD Studio

Emerson Maurício de Almeida Alves

Uso da biblioteca libmodbus em C++ Builder para desenvolver aplicações robustas de comunicação industrial. Exemplo medidor de energia.

Comunicação Industrial

No passado cada fabricante tinha seu protocolo proprietário.

MODBUS era o protocolo da empresa **MODICOM**

- Atualmente OPC veio resolver o problema.
- OPC
 - Padrão de comunicação industrial atual adotado por toda industria.

OPC - Open Platform Communications - multiplataforma – definição atual

Modbus

- Modbus é um protocolo de comunicação de dados utilizado em sistemas de automação industrial.
- Desenvolvido pela Modicon (atualmente parte da Schneider Electric) em 1979.
- Conecta e comunica com dispositivos em um sistema de controle.

RTU e Ethernet

Modbus RTU: Serial RS232 ou RS485 codificação binária, compacta e eficiente.

Modbus TCP: Ethernet, usando o protocolo TCP/IP.

Protocolo

Cada dispositivo possui um endereço único. Mestre inicia a comunicação, o escravo do endereço responde.

Tipos de Dados

Holding Registers: Registros de leitura e

escrita para armazenar dados.

Input Registers: Registros de leitura

apenas para dados de entrada.

Coils: Dados de saída binária para controle

de dispositivos.

Libmodus

- **Libmodbus**: é uma biblioteca em C++ de código aberto para implementar o protocolo Modbus, suporta Modbus RTU e TCP.
- Operações de Leitura e Escrita: Permite realizar operações básicas como leitura e escrita em registros e coils.
- Gestão de Erros: Inclui mecanismos para lidar com erros e exceções na comunicação.
- Facilidade de Uso: Simplifica a implementação do Modbus com funções e ferramentas para comunicação.

Link: https://libmodbus.org/

Libmodus em C++ Builder - Preparo

- Baixe a biblioteca compactada no Github:
 - https://github.com/stephane/libmodbus

- Descompacte, no diretório \libmodbus-master\src\win32
- Execute o arquivo configure.js para gerar o config.h

Libmodus em C++ Builder – Adicionar bibliotecas

- Adicione ao projeto todos arquivos .C e .h da pasta \src
- Adicione o arquivo config.h da pasta src\ win32

Libmodus em C++ Builder - Correção Identificador Compilador

• Na compilação da biblioteca ocorrerá um erro de arquivo unist.h inexistente.

É necessário trocar, na macro, o identificado de compilador :

_MSC_VER

por:

_BORLAND

Aplicação Exemplo - Medidor de Energia Industrial PM5330

- PM5330: Medidor industrial da <u>Schneider Electric</u> Empresa que adquiriu a Modicon
- Conversor USB para RS485 para barramento de até 1200m.

Aplicação Exemplo - Endereço Registradores

• Endereço das memórias é fornecido pelo fabricante do equipamento, mas a forma de consulta é padrão no protocolo, nesse caso será leitura de **Holding Registers.**

registradores PM5330.ods — LibreOffice Calc							
1	Sub Çat 2	Description	Register	<u>Units</u>	Size (INT16)	<u>Data Type</u>	Access
201		Current Avg	3010	Α	2	FLOAT32	R
202	Current Unbalance		3012				
203		Current Unbalance A	3012	%	2	FLOAT32	R
204		Current Unbalance B	3014	%	2	FLOAT32	R
205		Current Unbalance C	3016	%	2	FLOAT32	R
206		Current Unbalance Worst	3018	%	2	FLOAT32	R
207	Voltage		3020				
208		Voltage A-B	3020	V	2	FLOAT32	R
209		Voltage B-C	3022	V	2	FLOAT32	R
210		Voltage C-A	3024	V	2	FLOAT32	R

Endereços registradores fornecidos pela Schneider Electric – Medidor PM5330

Aplicação Exemplo - Função Conecta

- Chama as funções:
- modbus_new_rtu ou modbis_new_tcp

- Importante:
- try...catch
- Bloco protegido evita travamento em conexão serial.

```
| bool TformMed::conectaModbus(bool RTU){
try{
          //bloco protegido
char szBuffer[200];
int rc;
//API que cria nova cobexão MODBUS
if (RTU)
ctx = modbus_new_rtu("COM4", 19200, 'N', 8, 1);
else
ctx = modbus_new_tcp("127.0.0.1", 502);
//Executa a conexão
if (modbus connect(ctx) == -1) {
    sprintf(szBuffer, "Falha na conexão: %s\n", modbus strerror(errno));
    modbus free(ctx);
    return false; \\
catch(...)
    desConecta();
```

Aplicação Exemplo - Função Ler Registradores

Holding Registers: Leitura dos registradores

- Chama a função:
- modbus_read_registers

- CUIDADO:
- Timeout Resposta
- pode gerar travamentos na aplicação.

```
void __fastcall TformMed::readModBus(int add,int n, uint16 t *reg ){
int rc:
char szBuffer[200];
                     Atenção - ´Risco de atrasos na Aplicação
Função pode gerar atrasos pelo timeout do Modbus
Não deve ser chamadas em eventos de timer
Deve ser chamada em Threads - ou processo de segundo plano
rc =modbus_read_registers(ctx, add,n, reg); //carrega os valores no vetor
                                             //passado como parâmetro da função
if (rc == -1) {
        sprintf(szBuffer, "Connection failed: %s\n", modbus strerror(errno));
   Memo1->Lines->Add(szBuffer );
    Memo1->Lines->Add("err= "+ IntToStr(errno));
    return ;
for (int i=0; i < rc; i++) {
Memo1->Lines->Add("Reg: " + IntToStr(i+add)+" - "+FormatFloat("00", reg[i]));
```

Aplicação Exemplo - Função Ler Registradores

Função readValues(): função de leituras para registradores não sequenciais.


```
void __fastcall TformMed::readValues()
if(!ctx)
return; 🖊
int n=2;
uint16_t reg[2];
readModBus( 2999, n, reg );
iMed= int16ToFloat(reg[0], reg[1]);
readModBus( 3109, n, reg );
freq= int16ToFloat(reg[0], reg[1]);
readModBus( 3019, n, reg );
vMed= int16ToFloat(reg[0], reg[1]);
readModBus( 3053, n, reg );
potA= int16ToFloat(reg[0], reg[1]);
```

Aplicação Exemplo – Multitarefa (Threads)

Thread: Processo independente da aplicação principal para leitura no barramento RS485.

Atrasos no processo devido a aguardar termpo de resposta (timeout) não atinge a aplicação

principal.

Aplicação Exemplo – Multitarefa (Threads)

Thread: Processo independente realiza a leitura no barramento RS485, Modbus RTU.

Start Thread

Stop Thread

```
bool fastcall TformMed::stopThread()
     DWORD dwExitCode;
         if (pThreadRead != NULL )
         GetExitCodeThread((void*)(pThreadRead->Handle), &dwExitCode);
        if (dwExitCode == STILL ACTIVE)
           TerminateThread((void*)(pThreadRead->Handle), dwExitCode);
        pThreadRead->Terminate();
        delete pThreadRead ;
        pThreadRead= NULL;
         if( pThreadRead == NULL)
         threadStart = false;
         return true; \
         else
         return false;
```

IoT- Microcontrolador - ESP32 - Modbus TCP/IP

ESP32: Microcontrolador 80 MHz da Espressif

- WiFi, Bluetooth, BLE, SPI, I2C, USART- embutido
- Ideal para IoT
- Já possui biblioteca nativa para Modbus
- Custo baixo
- Pode ser programado na IDE Arduino
- Vários exemplos de códigos na Internet
- Exemplo escrita Modbus escrita binária

Obrigado!

Embarcadero Conference 2024

Inovação faz parte do nosso DNA!

Quer me ver na
#ECON25?
Acesse o QRCode
e avalie minha palestra!

Emerson Alves

in <u>linkedindopalestrante</u>

(38) 9 9151 4981