Іспит з предмету "Еволюційні Системи"

Захаров Дмитро Олегович

6 грудня, 2024

Варіант 5

Зміст

1	Іспі	IT																	2
	1.1	Питання 1.																	2
	1.2	Питання 2.																	4
	1.3	Питання 3.																	6
	1.4	Питання 4.																	7

1 Іспит

1.1 Питання 1.

Умова. Фундаментальна система розв'язків еволюційної системи різницевих рівнянь. Приклад. *(10 балів)*

Розв'язання. Розглядаємо еволюційну систему різницевих рівнянь (або лінійне різницеве рівняння першого порядку над \mathbb{C}^n) відносно невідомих векторів $\{\mathbf{x}_k\}_{k\in\mathbb{Z}_{>0}}$:

$$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{f}_k, \quad k \in \mathbb{Z}_{>0}$$

Також, нехай задана початкова умова $\mathbf{x}_0 = \mathbf{a}_0 \in \mathbb{C}^n$. Як і з будь-яким неоднорідним рівнянням, розглядаємо його однорідну частину:

$$\mathbf{x}_{k+1} = \boldsymbol{A}_k \mathbf{x}_k$$

Тепер, ми готові дати визначення фундаментальної системи розв'язків.

Definition 1.1. Будь-який набір

$$\boldsymbol{v}_{k}^{(1)} = \begin{pmatrix} v_{1,k}^{(1)} \\ v_{2,k}^{(1)} \\ \vdots \\ v_{n,k}^{(1)} \end{pmatrix}, \dots \boldsymbol{v}_{k}^{(n)} = \begin{pmatrix} v_{1,k}^{(n)} \\ v_{2,k}^{(n)} \\ \vdots \\ v_{n,k}^{(n)} \end{pmatrix}, \quad k \in \mathbb{Z}_{\geq 0}$$

з n лінійно незалежних розв'язків системи $\mathbf{x}_{k+1} = A_k \mathbf{x}_k$ (де кожна компонента вектору $v_i^{(j)}: \mathbb{N} \to \mathbb{C}$ є послідовністю) називається фундаментальною системою розв'язків цієї системи. При цьому, матрицю $\Phi_k = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$ називають фундаментальною матрицею розв'язків системи.

Додамо властивості фундаментальної системи розв'язків. Одна з ключових теорем, що використовується на практиці, наступна

Theorem 1.2. Загальний розв'язок однорідного лінійного різницевого рівняння $\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k$ має вигляд $\mathbf{x}_k = \mathbf{\Phi}_k \mathbf{c}$, де $\mathbf{c} \in \mathbb{C}^n$ — довільний вектор.

Доведення. Для доведення цього факту згадаємо, що якщо $\{v_k\}_{k\in\mathbb{Z}_{\geq 0}}$ та $\{w_k\}_{k\in\mathbb{Z}_{\geq 0}\}$ та $\{w_k\}_{k\in\mathbb{Z}_{\geq 0}}$ та $\{w_k\}_{k\in\mathbb{Z}_{\geq 0}}$ та $\{w_k\}_{k\in\mathbb{Z}_{\geq 0}}$ та $\{w_k\}_{k\in\mathbb{Z}_{\geq 0}}$ та $\{w_k\}_{k\in\mathbb{Z$

Окрім цього, наведемо наступні дві теореми

Theorem 1.3. Фундаментальна матриця Φ_k задовільняє матричне різницеве рівняння:

$$\mathbf{\Phi}_{k+1} = \mathbf{A}_k \mathbf{\Phi}_k$$

Як наслідок, за фундаментальною матрицею однозначно відновлюється однорідна еволюційна система, причому $A_k = \Phi_{k+1}\Phi_k^{-1}$.

Theorem 1.4. Загальний розв'язок неоднорідної системи $\mathbf{x}_{k+1} = \boldsymbol{A}_k \mathbf{x}_k + \boldsymbol{f}_k$ можна подати у вигляді

$$\mathbf{x}_k = \mathbf{\Phi}_k \mathbf{c} + \boldsymbol{\psi}_k, \quad k \in \mathbb{Z}_{>0},$$

де $\boldsymbol{c} \in \mathbb{C}^n$ — довільний вектор, а $\boldsymbol{\psi}_k$ — частинний розв'язок неоднорідної системи.

Доведення. Нехай $\{\mathbf{x}_k\}_{k\in\mathbb{Z}_{\geq 0}}$ та $\{\boldsymbol{\psi}_k\}_{k\in\mathbb{Z}_{\geq 0}}$ — розв'язки неоднорідної системи. Тоді, $\boldsymbol{\delta}_k := \mathbf{x}_k - \boldsymbol{\psi}_k$ є розв'язком однорідної системи. Отже, за доведеною теоремою, $\boldsymbol{\delta}_k = \boldsymbol{\Phi}_k \boldsymbol{c}$ і в такому разі, $\mathbf{x}_k = \boldsymbol{\Phi}_k \boldsymbol{c} + \boldsymbol{\psi}_k$.

Нарешті, наведемо приклад.

Example. Нехай задана еволюційна система:

$$\begin{cases} x_{k+1} = y_k + 2^k, \\ y_{k+1} = 2x_k + y_k \end{cases}$$

Ïї можна пересати у матричному вигляді:

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_k \\ y_k \end{pmatrix} + \begin{pmatrix} 2^k \\ 0 \end{pmatrix}, \quad k \in \mathbb{Z}_{\geq 0}$$

Або $\mathbf{z}_{k+1} = A\mathbf{z}_k + \mathbf{b}_k$, де $A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$, $\mathbf{b}_k = \begin{pmatrix} 2^k \\ 0 \end{pmatrix}$. Насправді, систему можна розв'язати (робиться це доволі складно) і отримати наступний розв'язок:

$$\begin{cases} x_k = c_0 \cdot 2^k - c_1 \cdot (-1)^k + \frac{1}{18} \left(4(-1)^{k+1} + 4 \cdot 2^k + 3k \cdot 2^k \right), \\ y_k = 2c_0 \cdot 2^k + c_1(-1)^k + \frac{1}{9} \left(2((-1)^k - 2^k) + 3k \cdot 2^k \right) \end{cases}$$

Серед цього всього, можна виділити фундаментальну систему розв'язків:

$$\begin{pmatrix} 2^k \\ 2^{k+1} \end{pmatrix}, \begin{pmatrix} (-1)^{k+1} \\ (-1)^k \end{pmatrix}$$

Відповідна фундаментальна матриця має вигляд:

$$\mathbf{\Phi}_k = \begin{pmatrix} 2^k & (-1)^{k+1} \\ 2^{k+1} & (-1)^k \end{pmatrix}$$

Частковий розв'язок, у свою чергу, має вигляд $\boldsymbol{\psi}_k = \begin{pmatrix} \frac{1}{18} \left(4(-1)^{k+1} + 4 \cdot 2^k + 3k \cdot 2^k\right) \\ \frac{1}{9} \left(2((-1)^k - 2^k) + 3k \cdot 2^k\right) \end{pmatrix}$

1.2 Питання 2.

Умова. Знайти загальний розв'язок лінійного різницевого рівняння:

$$x_{k+2} - 3x_{k+1} + 2x_k = f_k, \quad k \in \mathbb{Z}_{\geq 0}.$$

Розв'язання. Маємо лінійне стаціонарне різницеве рівняння порядку 2. Тому, спочатку знайдемо загальний розв'язок однорідного рівняння $\widetilde{x}_{k+2}-3\widetilde{x}_{k+1}+2\widetilde{x}_k=0$. Його характеристичне рівняння має вигляд $\chi(\lambda)=\lambda^2-3\lambda+2=0$, звідки $\lambda_1=1,\lambda_2=2$. Таким чином, фундаментальна система розв'язків має вигляд $v_k^{(1)}\equiv 1, v_k^{(2)}\equiv 2^k$. Отже, загальний розв'язок однорідного рівняння має вигляд $\widetilde{x}_k=c_1+c_2\cdot 2^k$.

Далі, в загальному випадку, розв'язати рівняння складно. Пропонується два варіанти. Спосіб 1. В разі, якщо f_k є квазіполіномом, то алгоритм доволі простий. Дійсно, нехай $f_k = \mu^k P_s(k)$, де $P_s(k) = \sum_{j=0}^s p_j x^j$, $\mu \neq 0$. Далі розбираємо випадки:

- Якщо $\mu = 1$ (себто права частина поліном), то оскільки μ є коренем характеристичного поліному $\chi(\lambda)$ першого порядку, то шукаємо частковий розв'язок у вигляді $x_k = kQ_s(k) = \widetilde{Q}_{s+1}(k) = \sum_{j=0}^{s+1} q_j k^j$ поліном степеня на один більше.
- Якщо $\mu \neq 1$, то розв'язок шукаємо у вигляді $x_k = \mu^k Q_s(k) = \mu^k \sum_{j=0}^s q_j k^j$.

Так чи інакше, отримуємо коефіцієнти поліному $\{q_j\}_j$ і підставляємо у загальний розв'язок. Спосіб 2. Є метод, як знайти явно розв'язок для довільної f_k . Для цього, введемо вектор $\boldsymbol{z}_k = (x_{k+1}, x_k)^\top$. В такому разі, рівняння можна переписати у вигляді:

$$\begin{pmatrix} x_{k+2} \\ x_{k+1} \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{k+1} \\ x_k \end{pmatrix} + \begin{pmatrix} f_k \\ 0 \end{pmatrix} \Leftrightarrow \boldsymbol{z}_{k+1} = \boldsymbol{A}\boldsymbol{z}_k + \boldsymbol{b}_k,$$

де $\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$, $\mathbf{b}_k = (f_k, 0)^{\top}$. Таке рівняння має явний розв'язок:

$$oldsymbol{z}_k = oldsymbol{A}^k oldsymbol{z}_0 + \sum_{j=0}^{k-1} oldsymbol{A}^j oldsymbol{b}_{k-j-1}, \quad oldsymbol{z}_0 = egin{pmatrix} c_0 \ c_1 \end{pmatrix}$$

Знайдемо \mathbf{A}^k . Можна переконатись, що ця матриця має власні числа $\lambda_1 = 2$, $\lambda_2 = 1$ та відповідні власні вектори $\mathbf{v}_1 = (2,1)^{\top}$, $\mathbf{v}_2 = (1,1)^{\top}$, тому діагоналізація має вигляд:

$$\boldsymbol{A} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \boldsymbol{V} \operatorname{diag}\{\lambda_1, \lambda_2\} \boldsymbol{V}^{-1}$$

Тому, $\boldsymbol{A}^k = \boldsymbol{V} \operatorname{diag}\{\lambda_1^k, \lambda_2^k\} \boldsymbol{V}^{-1}$ і тому явний вигляд степеня:

$$\mathbf{A}^k = \begin{pmatrix} 2^{k+1} - 1 & 2 - 2^{k+1} \\ 2^k - 1 & 2 - 2^k \end{pmatrix}$$

Також, домноживши на b_{k-j-1} , отримаємо:

$$\mathbf{A}^{j}\mathbf{b}_{k-j-1} = \begin{pmatrix} (2^{j+1} - 1)f_{k-j-1} \\ (2^{j} - 1)f_{k-j-1} \end{pmatrix}$$

Таким чином, з векторної різності, прирівняємо нижні компоненти:

$$x_k = c_0(2^k - 1) + c_1(2^{k+1} - 1) + \sum_{j=0}^{k-1} (2^j - 1) f_{k-j-1}$$

Якщо ввести інші константи: $\gamma_0 := -c_0 - c_1$ та $\gamma_1 := c_0 + 2c_1$. Таким чином, отримаємо загальний розв'язок:

$$x_k = \gamma_0 + \gamma_1 \cdot 2^k + \sum_{j=1}^{k-1} (2^j - 1) f_{k-j-1}$$

Відповідь. $x_k = \gamma_0 + \gamma_1 \cdot 2^k + \sum_{j=1}^{k-1} (2^j - 1) f_{k-j-1}$.

Зауваження. Отже, частковий розв'язок має вигляд $y_k = \sum_{j=1}^{k-1} (2^j - 1) f_{k-j-1}$. Переконаємося в цьому:

$$y_{k+2} - 3y_{k+1} + 2y_k$$

$$= \sum_{j=1}^{k+1} (2^j - 1) f_{k+1-j} - 3 \sum_{j=1}^{k} (2^j - 1) f_{k-j} + 2 \sum_{j=1}^{k-1} (2^j - 1) f_{k-j-1}$$

$$= ((2^{k+1} - 1) f_0 + \dots + f_k) - 3((2^k - 1) f_0 + \dots + f_{k-1}) + 2((2^{k-1} - 1) f_0 + \dots + f_{k-2})$$

$$= \sum_{j=0}^{k} \alpha_j f_j$$

Порівнюючи коефіцієнти в лівій і правій частині, бачимо, що перед f_j , де $j \leq k-2$, стоїть $\alpha_j = (2^{k-j+1}-1)-3\cdot(2^{k-j}-1)+2\cdot(2^{k-j-1}-1)$. Спростимо цей вираз:

$$(2^{k-j+1}-1)-3\cdot(2^{k-j}-1)+2\cdot(2^{k-j-1}-1)=2\cdot2^{k-j}-1-3\cdot2^{k-j}+3+2^{k-j}-2=0$$

Отримали $\alpha_j = 0, j \le k-2$. Більш того, для j = k-1, теж маємо $\alpha_{k-1} = 3f_{k-1} - 3 \cdot f_{k-1} = 0$. Очевидно, f_k вже міститься з коефіцієнтом 1. Таким чином, y_k є частковим розв'язком.

1.3 Питання 3.

Умова. Розв'язати початкову задачу для лінійної системи різницевих рівнянь:

$$\begin{cases} x_{k+1} = 5x_k + 4y_k + 2(-1)^k, \\ y_{k+1} = -9x_k - 7y_k + 2(-1)^{k+1}, \\ x_0 = 0, y_0 = -1 \end{cases}$$

Розв'язання. Маємо лінійну систему різницевих рівнянь порядку 2:

$$\boldsymbol{v}_{k+1} = \boldsymbol{A}\boldsymbol{v}_k + \boldsymbol{f}_k, \quad \boldsymbol{v}_k = \begin{pmatrix} x_k \\ y_k \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 5 & 4 \\ -9 & -7 \end{pmatrix}, \quad \boldsymbol{f}_k = 2(-1)^k \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Розв'язується воно наступним чином: зведемо все до розв'язку лінійного різницевого рівняння другого порядку. Зсунемо індекс першого рівняння на один, отримавши:

$$x_{k+2} = 5x_{k+1} + 4y_{k+1} + 2(-1)^{k+1}$$

Далі почнемо перетворювати це рівняння, користуючись другим рівнянням, а потім знову першим:

$$x_{k+2} = 5x_{k+1} + 4(-9x_k - 7y_k + 2(-1)^{k+1}) + 2(-1)^{k+1}$$
 Підставили рівняння 2 $x_{k+2} = 5x_{k+1} - 36x_k - 28y_k - 10(-1)^k$ Розкрили дужки $x_{k+2} = 5x_{k+1} - 36x_k - 7(x_{k+1} - 5x_k - 2(-1)^k) - 10(-1)^k$ Підставили $4y_k$ з рівняння 1 $x_{k+2} = -2x_{k+1} - x_k + 4(-1)^k$ Розкрили дужки

Таким чином, треба розв'язати рівняння $x_{k+2}+2x_{k+1}+x_k=4(-1)^k$. Характеристичне рівняння лінійної частини має вигляд $\lambda^2+2\lambda+1=0$, звідки $\lambda=-1$. Отже, загальний розв'язок однорідного рівняння має вигляд $\widetilde{x}_k=c_1(-1)^k+c_2k(-1)^k$. Тепер, оскільки права частина має вигляд $P_0(k)\mu^k$, де $\mu=-1$, $P_0(k)\equiv 4$, то шукаємо частинний розв'язок у вигляді $\psi_k=\gamma k^2(-1)^k$. Підставимо це у рівняння:

$$\gamma(-1)^k ((k+2)^2 - 2(k+1)^2 + k^2) = 4(-1)^k \implies 2\gamma(-1)^k = 4(-1)^k$$

Звідси $\gamma=2$. Таким чином, частковий розв'язок має вигляд $\psi_k=2k^2(-1)^k$. Отже,

$$x_k = (c_1 + c_2 k + 2k^2) (-1)^k$$

Оскільки за умовою $x_0=0$, то маємо $c_1=0$, тому $x_k=c_2k(1+2k)(-1)^k$. Також відмітимо, що $y_k=\frac{1}{4}(x_{k+1}-5x_k-2(-1)^k)$ з першого рівняння, тому одразу отримаємо вираз для y_k :

$$y_k = \frac{c_2(-1)^{k+1}}{4} (1+6k) + (-1)^{k+1} (1+k+3k^2)$$

Оскільки $y_0 = -1$, то і $c_2 = 0$. Отже, остаточно:

$$x_k = 2k^2(-1)^k$$
, $y_k = (-1)^{k+1}(1+k+3k^2)$

Відповідь. $x_k = 2k^2(-1)^k$, $y_k = (-1)^{k+1}(1+k+3k^2)$.

1.4 Питання 4.

Умова. Довести, що жмуток матриць $\lambda \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ регулярний та знайти його спектральні проектори.

Розв'язання. Позначимо матрицю $\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ та $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Тоді, для доведення регулярності $\lambda \mathbf{A} + \mathbf{B}$, покажемо, що поліном $\det(\mathbf{A} + \mu \mathbf{B})$ не тотожньо нульовий:

$$\det(\mathbf{A} + \mu \mathbf{B}) = \det\begin{pmatrix} \mu & \mu \\ -\mu & \mu + 1 \end{pmatrix} = \mu(1 + 2\mu)$$

Отже, $\lambda {\bm A} + {\bm B}$ регулярний і має ненульове власне значення $\lambda_0 = -\frac{1}{2}$. Знайдемо:

$$\mathbf{R}_0(\mu) = (A + \mu \mathbf{B})^{-1} = \begin{pmatrix} \mu & \mu \\ -\mu & \mu + 1 \end{pmatrix}^{-1} = \frac{1}{\mu(1 + 2\mu)} \begin{pmatrix} 1 + \mu & -\mu \\ \mu & \mu \end{pmatrix}$$

Знайдемо спектральні проектори $\boldsymbol{P}_1,\,\boldsymbol{P}_2,\,\boldsymbol{Q}_1,\,\boldsymbol{Q}_2.$ Для цього послідовно рахуємо:

$$\mathbf{R}_0(\mu)\mathbf{B} = \begin{pmatrix} 1/\mu & 1/(\mu + 2\mu^2) \\ 0 & 2/(1 + 2\mu) \end{pmatrix}, \quad \mathbf{P}_2 = \operatorname{Res}_{\mu=0}\mathbf{R}_0(\mu)\mathbf{B}$$

Порахуємо лишки кожної компоненти. В нижньому рядку лишок нуль, оскільки 0 не є полюсом жодного виразу. З чисельником більш уважно:

$$\operatorname{Res}_{\mu=0} \frac{1}{\mu} = 1, \quad \operatorname{Res}_{\mu=0} \frac{1}{\mu(1+2\mu)} = 1$$

Таким чином, ${m P}_2=\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$. Для матриці ${m Q}_2$ спочатку порахуємо ${m B}{m R}_0(\mu)$:

$$BR_0(\mu) = \begin{pmatrix} 1/\mu & 0 \\ -1/(\mu + 2\mu^2) & 2/(1+2\mu) \end{pmatrix}$$

Логіка з лишками тут аналогічна. Отримуємо $\mathbf{Q}_2 = \mathrm{Res}_{\mu=0} \mathbf{B} \mathbf{R}_0(\mu) = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$. Нарешті, можемо знайти $\mathbf{P}_1 = \mathbf{E}_{2\times 2} - \mathbf{P}_2$ та $\mathbf{Q}_1 = \mathbf{E}_{2\times 2} - \mathbf{Q}_2$:

$$\boldsymbol{P}_1 = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}, \quad \boldsymbol{Q}_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Відповідь. Жмуток матриць $\lambda A + B$ регулярний, а його спектральні проектори мають вигляд:

$$oldsymbol{P}_1 = egin{pmatrix} 0 & -1 \ 0 & 1 \end{pmatrix}, \quad oldsymbol{P}_2 = egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix}, \quad oldsymbol{Q}_1 = egin{pmatrix} 0 & 0 \ 1 & 1 \end{pmatrix}, \quad oldsymbol{Q}_2 = egin{pmatrix} 1 & 0 \ -1 & 0 \end{pmatrix}$$