HW1 Least square approximation & QR iterative algorithm

VLSI DSP HW1

Shun-Linag Yeh, NCHU Lab612

3/16 2023

Github Src Code

INDEX

- 1. Least square approximation
- 2. QR iterative algorithm
- 3. References

Least square approximation

Problem

Lest square optimization problem

For an over constrained linear system Ax=b, find the least square solution of x using

- a) Pseudo inverse $\hat{\mathbf{x}} = \mathbf{A}^+ \cdot \mathbf{b}$
- b) QR decomposition,
- c) Compare if a) and b) yield the same result?

Derivation steps

- 1. For pseudoinverse uses the pinv matlab function to find the pseudoInverse of A, then approximation x through the equation.
- 2. For QR decomposition approximation, generate QR using matlab function, using the normal equation $(A^t) Ax = (A^t)b$, since A = QR, replace A with QR in the normal equation yields, plug the QR into the derived equation to get the solution.

Code

```
• • •
1 A = [15 -13 20 -8;
       -5 -15 -4 -4;
       -17 16 -2 9;
       10 -19 -14 -15;
       -7 8 -7 15;
       14 10 -8 -17;
       -5 -3 16 -2;
       13 -5 -10 -19];
10 b = [13 10 -15 9 3 18 3 20];
11 b = b';
12 A_dagger = pinv(A);
14 % disp(Q);
15 % disp(R);
17 x_hat_dagger = A_dagger * b;
18 x_{qr} = ((R')*R)^{-1}*(R')*(Q')*b;
20 disp("Solution with pseuodoInverse");
21 disp(x_hat_dagger);
22 disp("Solution with QR");
23 disp(x_hat_qr);
```

Result

```
Solution with pseuodolnverse

0.4638

-0.1005

-0.0716

-0.4137

Solution with QR

0.4638

-0.1005

-0.0716

-0.4137
```

QR iterative algorithm

Problem

2 Figen decomposition

For a symmetric matrix ${\bf M}$ shown below, find its Eigen value decomposition using a QR decomposition based iterative algorithm.

$$\mathbf{M} = \begin{bmatrix} -2 & 16 & -6 & -16 & 3 & 15 & -6 & -19 \\ 16 & -17 & 10 & -2 & 7 & 8 & 3 & 5 \\ -6 & 10 & 15 & -1 & -15 & -18 & 9 & -8 \\ -16 & -2 & -1 & 9 & 0 & 0 & 0 & 18 \\ 3 & 7 & -15 & 0 & 14 & 19 & -12 & 11 \\ 15 & 8 & -18 & 0 & 19 & 10 & -8 & -17 \\ -6 & 3 & 9 & 0 & -12 & -8 & 15 & 20 \\ -19 & 5 & -8 & 18 & 11 & -17 & 20 & 20 \end{bmatrix}$$

Eigen decomposition means to find a matrix decomposition of the format shown below

$$\mathbf{M} = \mathbf{Q} \cdot \mathbf{\Lambda} \cdot \mathbf{Q}^t \quad \text{where } \quad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & 0 \\ & 0 & \ddots \\ 0 & & \lambda_n \end{bmatrix} \text{ is a diagonal matrix consisting of real}$$

Eigen values. \mathbf{Q} is orthogonal with the property $\ \mathbf{Q}\cdot\mathbf{Q}^t=\mathbf{I}$ and all its column vectors as Eigen vectors.

Givens rotation

- • So, to transform A into an upper triangular matrix R, we can find a product of rotations Q such that $Q^TA=R.$
- • It is important to note that the straightforward approach to computing the entries c and s of the Givens rotation,

$$c = \frac{a}{\sqrt{a^2 + b^2}}, \quad s = \frac{b}{\sqrt{a^2 + b^2}},$$

is not always advisable, because in floating-point arithmetic, the computation of $\sqrt{a^2+b^2}$ could overflow.

 • To get around this problem, suppose that $|b| \geq |a|.$ Then, we can instead compute

$$t = \frac{a}{b}$$
, $s = \frac{\text{sgn}(b)}{\sqrt{1+t^2}}$, $c = st$, (1)

which is guaranteed not to overflow since the only number that is squared is at most one in magnitude. $\,$

• Similarly, if $|a| \ge |b|$, then we compute

$$t = \frac{b}{a}$$
, $c = \frac{\text{sgn}(a)}{\sqrt{1 + t^2}}$, $s = ct$. (2)

Tridiagnalization

- 1. After computing M' = Q'M using givens rotation through the linear transformation of rotation matrices where Q' is products of a series of Rotation matrices G, we yields an upper triangular matrix that is close to tridiagonal form.
- 2. Replace the upper symmetrical part of M' with the same result as the lower entries where i<j.
- 3. We can get triangularized matrix M", where M" = Q Q' M

QR Iterative Algorithm

Algorithm. (QR Factorization via Givens rotations) Let $m \geq n$ and let $A \in \mathbb{R}^{m \times n}$ have full column rank. The following algorithm uses Givens rotations to compute the QR Factorization A = QR, where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

```
Q=I R=A for j=1,2,\ldots,n do for i=m,m-1,\ldots,j+1 do [c,s]=\mathtt{givens}(r_{i-1,j},r_{ij}) R=G(i-1,i,c,s)^TR Q=QG(i-1,i,c,s) end for end for
```

Code

Main driver

```
= [2 16 -6 -16 3 15 -6 -19;
        16 -17 10 -2 7 8 3 5;
        -6 10 15 -1 -15 -18 9 -8;
        -16 -2 -1 9 0 0 0 18;
        3 7 -15 0 14 19 -12 11;
        15 8 -18 0 19 10 -8 -17;
        -19 5 -8 18 11 -17 20 20];
10 max_iters = 20000;
12 [M_tilda, Q, R] = tridiagonal_and_QR(m);
13 disp("Tridiagonalized matrix");
14 disp(M_tilda);
16 M = QR_eigen_decompose(m, max_iters);
17 disp("M after QR_eigen_decompose");
18 disp(M);
20 [V, D] = eig(m);
21 disp("M after eigen_decomposition through matlab function");
22 disp(D);
24 function M = QR_eigen_decompose(A, n)
           [M_tilda, Q, R] = tridiagonal_and_QR(M);
           M = R * Q;
```

Tridiagonalization and QR iterative

```
% qrgivens.m
function [M_tilda, Q, R] = tridiagonal_and_QR(A)
     [m, m] = size(A);
     Q = eye(m);
     R_close = A;
          for i = m:-1:(j + 1)
               G = eye(m);
               [c, s] = givensrotation(R(i - 1, j), R(i, j));
G([i - 1, i], [i - 1, i]) = [c -s; s c];
%Near Upper triangular matrix
if i >= j + 2
                     R_close = G' * R_close;
               Q = G' * Q;
     end
     for i = 1:m
                    R_close(i, j) = R_close(j, i);
     M_tilda = R_close;
     Q = Q';
```

Givens Rotation

Result

Tridiagonalized matrix

Tridiagonal	ized matri	X					
2.0000	-34.3366	0.0000	-0.0000	0.0000	-0.0000	0.0000	0.0000
-34.3366	7.9216	-21.8460	-0.0000	0.0000	0.0000	-0.0000	0.0000
0.0000	-21.8460	14.2004	28.3512	-0.0000	-0.0000	-0.0000	0.0000
-0.0000	-0.0000	28.3512	-9.1448	-10.1490	-0.0000	-0.0000	-0.0000
0.0000	0.0000	-0.0000	-10.1490	-11.3477	-4.7140	0.0000	-0.0000
-0.0000	0.0000	-0.0000	-0.0000	-4.7140	-9.0758	9.4462	-0.0000
0.0000	-0.0000	-0.0000	-0.0000	0.0000	9.4462	-1.4133	-10.2268
0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-10.2268	-18.2736

Eigenvalue matrix after eigen-decomposition

M after QR_	eigen_deco	mpose					
67.8045	-0.0000	-0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000
0.0000	46.9072	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000
0	-0.0000	-36.1316	0.0000	-0.0000	-0.0000	0.0000	0.0000
0	0	-0.0000	-25.4939	0.0000	-0.0000	0.0000	0.0000
0	0	0	0.0000	17.0615	0.0000	-0.0000	0.0000
0	0	0	0	-0.0000	-9.6425	0.0000	-0.0000
0	0	0	0	0	-0.0000	6.0585	-0.0000
0	0	0	0	0	0	0.0000	1.4364

Eigenvalue decompose using matlab

M after eig	en_decompos	sition thro	ugh matlab	function			
-36.1316	0	0	0	0	0	0	0
0	-25.4939	0	0	0	0	0	0
0	0	-9.6425	0	0	0	0	0
0	0	0	1.4364	0	0	0	0
0	0	0	0	6.0585	0	0	0
0	0	0	0	0	17.0615	0	0
0	0	0	0	0	0	46.9072	0
0	0	0	0	0	0	0	67.8045

Note

- 1. The result of the Eigen-decomposition differs due to the ordering of the orthnormal basis and the ordering of eigenvectors when calculating the QR matrcies.
- 2. The eigenvalues are all the same but in different orderings.

Reference

[1] University of South California, Section 4.2.1: Givens Rotations, Math610 Jim Lambers