

UNIVERSITÀ DEGLI STUDI DI MILANO

MECCANICA ANALITICA: APPUNTI DEL CORSO

Lorenzo Liuzzo

December 16, 2022

Contents

1.	Lagrangiana
1.1	Problema ad un corpo
1.2	Problema a N corpi
1.3	Spazio ambiente e coordinate generalizzate
1.4	4 Equazioni di Lagrange
2.	Hamiltoniana
3.	Principi variazionali.

1 Lagrangiana

1.1 Problema ad un corpo

Theorem 1.1. (della forza viva)

Sia T la forza viva (o energia cinetica) come $T = \frac{1}{2}m\dot{x}\cdot\dot{x}$. Allora lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F(x)$, si ha

$$\dot{T} = F(x) \cdot \dot{x}$$

o equivalentemente

$$T(t_1) - T(t_0) = \int_{t_0}^{t_1} F(x) \cdot \dot{x} dt$$

dove $F(x) \cdot \dot{x}$ è la potenza della forza e $\int_{t_0}^{t_1} F(x) \cdot \dot{x}$ è il lavoro svolto dalla forza.

Proof. Moltiplicando l'equazione di Newton per \dot{x} e applicando la regola di Leibniz per la derivata di un prodotto, si ottiene

$$(m\ddot{x})\cdot\dot{x}=rac{d}{dt}(rac{1}{2}m\dot{x}\cdot\dot{x})=\dot{T}$$

Nel caso di un campo di forze posizionali F = F(x) l'integrale a secondo membro dipende dal movimento x(t) nell'intervallo (t_0, t_1) attraverso la corrispondente traiettoia γ . Si ha dunque un integrale curvilineo della forma differenziale:

$$T(t_1) - T(t_0) = \int_{\gamma} F(x) \cdot dx$$

Nel caso in cui la forza sia conservativa, cioè in cui la forza ammetta potenziale, ossia una funzione scalare V = V(x) tale che F = -grad(V), chiamiamo V energia potenziale (o funzione delle forze). Questa condizione può essere riscritta dicendo che la forma differenziale del lavoro è esatta, cioè è il differenziale di una funzione, in particolare: $F(x) \cdot dx = -dV(x)$.

Theorem 1.2. (dell'energia)

Per un punto soggetto ad un campo di forze posizionali conservativo F = F(x), lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, si ha

$$E = T + V \quad \dot{E} = 0$$

Proof.

$$F \cdot \dot{x} = -\frac{\partial V}{\partial x} \cdot \frac{dx}{dt} = -\frac{dV}{dt} = -\dot{V} \implies \dot{T} = -\dot{V}$$

oppure, sfruttando la definizione integrale di lavoro (1.1) e il fatto che l'integrale curvilineo di una forma differenziale esatta lungo una curva orientata dipenda solo dai suoi estremi (cioè che $\oint F(x) \cdot dx = 0$), si ha

$$\int_{\gamma} F(x) \cdot dx = -\int_{\gamma} dV = V(A) - V(B)$$

Definition 1.1. (costante del moto)

Una variabile dinamica che assume un medesimo valore per ogni punto del moto corrispondente ad una soluzione dell'equazione di Newton è detta costante del moto.

Dunque, la funzione $E(x, \dot{x}) = T(\dot{x}) + V(x)$ è una costante del moto. Pertanto, fissati i dati iniziali x_0 e \dot{x}_0 , e quindi anche E_0 , il teorema di conservazione dell'energia totale (1.2) va inteso nella forma

$$T - V = E_0 = E(x, \dot{x})$$

Introducendo la quantitità di moto $p = m\dot{x}$, è possibile riscrivere dell'equazione di Newton come

$$\dot{p} = F \longleftrightarrow p(t_1) - p(t_0) = \int_{t_0}^{t_1} F dt$$

dove l'integrale della forza nel tempo viene detto impulso della forza.

Theorem 1.3. (del momento angolare)

Per un punto materiale soggetto ad una generica forza $F = F(x, \dot{x}, t)$, lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, si ha

$$\dot{L} = M$$

dove $L = x \times p$ è il momento angolare e $M = x \times F$ è il momento angolare della forza.

Proof. Moltiplicando vettorialmente l'equazione di Newton per x e applicando la regola di Leibniz per la derivata di un prodotto, si ottiene

$$M = x \times F = x \times m\ddot{x} = x \times \frac{d}{dt}(m\dot{x}) = \frac{d}{dt}(x \times p) - \frac{dx}{dt} \times p = \frac{d}{dt}(x \times p) = \dot{L}$$

Corollary 1.3.1. (conservazione del momento angolare)

Per un punto materiale soggetto ad un campo di forze centrali F = F(x), lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, si ha

$$\dot{L} = 0$$

ossia che il momento angolare L è una costante del moto.

Proof. Si applica il teorema del momento angolare (1.3). Poichè F è un campo di forze centrali, si ha che la forza è parallela al raggio vettore, perciò $M = x \times F = 0 \Longrightarrow \dot{L} = 0$.

Corollary 1.3.2. (campi centrali e moti bidimensionali)

Per un punto materiale soggetto ad un campo di forze centrali F = F(x), per ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, la traiettoia x = x(t) giace in un piano passante per il centro di forza e ortogonale al vettore L momento angolare, determinato dalle condizioni iniziali x_0 e \dot{x}_0 che definiscono $L_0 = x_0 \times m\dot{x}_0$.

Proof. Per le proprietà del prodotto vettoriale, si ha che $L = x \times p$ è ortogonale a x. Ma per la conservazione del momento angolare (1.3.1), si ha che L è una costante del moto. Dunque, per ogni tempo t, il vettore x(t), dovendo essere ortogonale ad un vettore costante, giace in un piano ortogonale a quel vettore.

Prendendo l'equazione della quantità di moto $\dot{p}=F$ e proiettandola su un asse qualsiasi, ad esempio x, si ottiene $\dot{p}_x=F_x$ e quindi se $F_x=0\Longrightarrow\dot{p}_x=0$ e quindi $p_x=cost$.

Ma per forze posizionali conservative, $F_x = 0$ corrisponde a dire che V è invariante per traslazione lungo l'asse x, ossia

$$\frac{\partial V}{\partial x} = 0$$
 ovvero che $V(x+h,...) = V(x,...)$ $\forall h$

Proposition 1.1. Se l'energia potenziale V è invariante per traslazioni lungo un asse, allora la componente della quantità di moto p lungo quell'asse è una costante del moto.

Analogamente per il momento angolare, se ad esempio $M_x = x \cdot \frac{\partial V}{\partial y} - y \cdot \frac{\partial V}{\partial x} = \frac{\partial V}{\partial \varphi} = 0$, allora $L_x = cost$.

Proposition 1.2. Se l'energia potenziale V è invariante per rotazioni rispetto ad un asse, allora la componente del momento angolare L su quell'asse è una costante del moto.

Inoltre, nei casi in cui la forza sia indipendente dal tempo, cioè $\frac{\partial V}{\partial t} = 0$, si dice che l'energia potenziale è invariante per traslazioni temporali.

Proposition 1.3. Se l'energia potenziale V è invariante per traslazioni temporali, allora l'energia E = T + V è una costante del moto.

1.2 Problema a N corpi

In un sistema di N punti materiali, le N equazioni di Newton del secondo ordine

$$m_k \cdot \ddot{x}_k = F_k \quad (k = 1, 2, \dots, N)$$

si possono scrivere come un sistema di 2N equazioni di primo ordine

$$\dot{x}_k = \frac{p_k}{m_k}$$
 $\dot{p}_k = F_k$ $(k = 1, 2, ..., N)$

Si introducono la quantitità di moto totale del sistema, il momento angolare totale del sistema, la risultante delle forze e il momento risultante delle forze rispettivamente

$$p = \sum_{k} p_{k} = \sum_{k} m_{k} \dot{x}_{k}$$

$$L = \sum_{k} L_{k} = \sum_{k} x_{k} \times p_{k}$$

$$R = \sum_{k} F_{k}$$

$$M = \sum_{k} M_{k} = \sum_{k} x_{k} \times F_{k}$$

Le ipotesi sulle forze sono:

- ogni forza può essere decomposta in una componente dovuta agli altri punti del sistema e una dovuta ad agenti esterni, cioè $F_k = F_k^{(int)} + F_k^{(est)}$.
- ogni forza interna può essere decomposta nella somma di forze dovute singolarmente ad ogni altro punto del sistema, cioè $F_k^{(int)} = \sum_{j \neq k} F_{kj}$.

- ogni forza rispetti il principio di azione e reazione, cioè $F_{kj} = -F_{jk}$.
- ogni forza sia centrale, cioè $F_{kj} = f_{kj}(r_{kj}) \cdot \frac{x_k x_j}{r_{kj}}$, dove $f_{kj} = f_{jk}$ e $r_{kj} = ||x_k x_j||$.

Le forze che soddisfano queste ipotesi sono anche dette forze classiche.

Theorem 1.4. (equazioni cardinali della dinamica)

Lungo le soluzioni del sistema di equazioni di Newton per un sistema a N punti materiali soggetto a forze di tipo classico si hanno le seguenti relazioni, dette rispettivamente la prima e la seconda equazione cardinale:

$$\dot{p} = R^{(est)}$$
 $\dot{L} = M^{(est)}$

 $dove\ R^{(est)}\ e\ M^{(est)}$ sono la risultante e il momento risultante delle forze esterne.

Corollary 1.4.1. (condizioni necessarie per l'equilibrio di un sistema)

Un sistema a N punti materiali soggetto a forze di tipo classico è in equilibrio se e solo se

$$R^{(est)} = 0 \quad e \quad M^{(est)} = 0$$

Theorem 1.5. (potenziale delle forze interne)

Per forze interne di tipo classico, il lavoro elementare delle forze interne è un differenziale esatto e si ha

$$F^{(int)} \cdot dx = \sum_{k} F_{k}^{(int)} \cdot dx_{k} = -d\left[\frac{1}{2} \sum_{k,j}^{k \neq j} V_{kj}(r_{kj})\right] = -dV^{(int)}$$

Proof. Consideriamo una coppia di punti materiali k e j. Poichè su essi agiscono soltanto forze di tipo classico ed essendo valido il principio di azione e reazione $F_{kj} = -F_{jk}$, possiamo prendere $r_{kj} = x_k - x_j$ e scrivere

$$F_{ki} \cdot dx_k + F_{ik} \cdot dx_i = F_{ki} \cdot dr_{ki}$$

ossia ci siamo ridotti al problema di un solo corpo soggetto ad una forza centrale con simmetria sferica.

Theorem 1.6. (problema dei due corpi)

Per un sistema di due corpi soggetti soltanto a forze interne, $R^{(est)} = 0$, soddisfacenti il principio di azione e reazione, si ha

$$\ddot{x}_{CM} = 0 \qquad \mu \cdot \ddot{r} = F(r)$$

dove μ è la massa ridotta $\mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$ e r è la distanza tra i due corpi.

Proof. Dalle equazioni di Newton per i due corpi, sommando membro a membro si ha che

$$m_1 \cdot \ddot{x}_1 + m_2 \cdot \ddot{x}_2 = F_{12} + F_{21} = 0$$

da cui si deduce che

$$\ddot{x}_{CM} = \frac{m_1 \cdot \ddot{x}_1 + m_2 \cdot \ddot{x}_2}{m_1 + m_2} = 0$$

Invece, sottraendo membro a membro le due equazioni divise rispettivamente per le masse, si ha

$$\ddot{x}_1 - \ddot{x}_2 = \frac{F_{12}}{m_1} - \frac{F_{21}}{m_2} = 2 * \frac{F(r)}{\mu}$$

da cui deduciamo

$$\mu \cdot \ddot{r} = F(r)$$

1.3 Spazio ambiente e coordinate generalizzate

Spesso definiamo globalmente una superficie mediante un'equazione implicita F(x, y, z) = 0. Tale rapprestazione impone un vincolo sulle coordinate.

Definition 1.2. (carta locale e formula di immersione)

Si ha una rappresentata parametrica locale o una carta locale quando è assegnata una funzione

$$F: U \to \mathbb{R}^n$$
, $U \subseteq \mathbb{R}^{n-1}$ aperto t.c. $x = F(q)$, $q = (q_1, \dots, q_n - 1)$

Si dice 'formula di immersione' la funzione x = x(q) che porta dalla carta locale alla superficie nello spazio ambiente.

Definition 1.3. (linee e vettori coordinati)

Data una carta U e una superficie M, si definiscono linee coordinate quelle linee di M lungo le quali una sola delle coordinate rimane costante, corrispondenti alle linee $q_i = \cos t$ sulla carta. Preso un punto $P \in M$ di coordinate $q = (q_1, \ldots, q_n)$ nella carta x = x(q), sono detti vettori coordinati i vettori

$$\frac{\partial x}{\partial q_i} \quad (i = 1, \dots, n)$$

Tali vettori, spiccati dal punto P e tangenti alle linee coordinate q_1, \ldots, q_n , sottengono il piano tangente T_PM alla varietà M in P, dunque debbono essere linearmenti indipendenti. Introducendo la matrice

$$g_{ik} = \frac{\partial x}{\partial q_i} \cdot \frac{\partial x}{\partial q_k}$$

questa condizione di lineare indipendenza si traduce in

$$det(g_{ik}) \neq 0$$

Per assegnare un movimento x = x(t) sulla superficie M, basterà comporto con la funzione q = q(t) sulla carta locale, in modo tale da ottenere

$$x = x(q(t))$$
 $v = \frac{dx}{dt} = \frac{\partial x}{\partial q}\dot{q} = \sum_i \frac{\partial x}{\partial q_i}\dot{q}_i$

Theorem 1.7. (formula del binomio lagrangiano)

Vale

Proof.

$$\ddot{x} \cdot \frac{\partial x}{\partial q_i} = \frac{d}{dt} \frac{\partial \frac{1}{2} \dot{x}^2}{\partial \dot{q}_i} - \frac{\partial \frac{1}{2} \dot{x}^2}{\partial q_i} \quad (i = 1, \dots, n)$$

che in termini di energia cinetica T diventa

$$m\ddot{x} \cdot \frac{\partial x}{\partial a_i} = \frac{d}{dt} \frac{\partial T}{\partial \dot{a}_i} - \frac{\partial T}{\partial a_i} \quad (i = 1, \dots, n)$$

Lemma 1.7.1. Valgono le relazioni

$$\frac{\partial v}{\partial \dot{q}_i} = \frac{\partial x}{\partial q_i}$$
 $\frac{\partial v}{\partial q_i} = \frac{d}{dt} \frac{\partial x}{\partial q_i}$ $(i = 1, \dots, n)$

Proof. La prima si ricava dal fatto che $v = \frac{\partial x}{\partial q_i}\dot{q}_i$ mentre la seconda segue usando la regola per la derivata del prodotto

$$\frac{d}{dt}\frac{\partial x}{\partial q_i} = \sum_k \frac{\partial}{\partial q_k} (\frac{\partial x}{\partial q_i}) \dot{q}_k = \sum_k \frac{\partial^2 x}{\partial q_k \partial q_i} \dot{q}_k = \frac{\partial}{\partial q_i} (\sum_k \frac{\partial x}{\partial q_k} \dot{q}_k) = \frac{\partial v}{\partial q_i}$$

Pertanto, fissata una carta con formula di immersione x=x(q), si esprime l'energia cinetica in funzione delle q e delle \dot{q} come

$$T = \frac{1}{2} \sum_{i,k} a_{ik}(q) \dot{q}_i \dot{q}_k \qquad a_{ik} = \frac{m}{2} g_{ik} = \frac{m}{2} \frac{\partial x}{\partial q_i} \frac{\partial x}{\partial q_k}$$

1.4 Equazioni di Lagrange

Definition 1.4. (vincolo)

Definition 1.5. (reazione vincolare)

Definition 1.6. (Lagrangiana)

Si consideri un punto materiale su una superficie rappresentata in una carta locale da una formula di immersione x = x(q) con $q = (q_1, \ldots, q_n)$ e si ammetta che valga l'equazione di Newton-d'Alembert

$$m\ddot{x} = F + F^{(v)}$$

Moltiplicando scalarmente l'equazione di Newton per i vettori coordinati $\frac{\partial x}{\partial q_i}$ (i = 1, ..., n), poichè essi giacciono nel piano tangente alla superficie ed essendo $F^{(v)}$ ortogonale alla superficie per definizione di reazione vincolare si ha che

 $F^{(v)} \cdot \frac{\partial x}{\partial q_i} = 0$

e dunque

$$m\ddot{x} \cdot \frac{\partial x}{\partial q_i} = F \cdot \frac{\partial x}{\partial q_i}$$

Nel caso di forze derivanti da potenziale, per cui F = -grad(V), si ottiene che

$$F \cdot \frac{\partial x}{\partial q_i} = -\frac{\partial V}{\partial q_i}$$
 $(i = 1, \dots, n)$

Rielaborando il primo membro con la formula del binomio lagrangiano 1.7 si ottiene

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = -\frac{\partial V}{\partial q_i}$$

Si definisce dunque la funzione lagrangiana $L=L(q,\dot{q})$ come la differenza tra l'energia cinetica e l'energia potenziale del sistema, ossia

$$L = T - V$$

Si osserva come $L:TM\to\mathbb{R}$ sia definita intrinsecamente nello spazio degli stati TM, il fibrato tangente dello spazio M detto spazio delle configurazioni.

Theorem 1.8. (equazioni di Eulero-Lagrange)

Si consideri un punto materiale la cui posizione sia rappresentata in una carta locale x = x(q) da coordinate $q = (q_1, \ldots, q_n)$, allora i movimenti q = q(t) sulla carta corrispondenti alle soluzioni dell'equazione di Newton

$$m\ddot{x} = -grad(V) + F^{(v)}$$

sono soluzioni delle equazioni di Eulero-Lagrange nella carta delle coordinate q

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \qquad (i = 1, \dots, n)$$

Proof. Proiettando le equazioni di Newton sulle linee coordinate si ha

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = -\frac{\partial V}{\partial q_i} \qquad (i = 1, \dots, n)$$

Definita la lagrangiana $L=L(q,\dot{q}),$ poichè V=V(q), si osserva che $\frac{\partial T}{\partial \dot{q}_i}=\frac{\partial L}{\partial \dot{q}_i}$ e quindi si ha la tesi.

Definition 1.7. (forza generalizzata)

Nel caso generale in cui la forza attiva dipenda anche dalla velocità o dal tempo, cioè $F = F(q,\dot{q},t)$, si introduce la forza generalizzata Q come

$$Q_i = F \cdot \frac{\partial x}{\partial q_i}$$
 $(i = 1, \dots, n)$

e le equazioni di Eulero-Lagrange prendono la forma di

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_i \qquad (i = 1, \dots, n)$$

Se consideriamo il lavoro elementare δW della forza F si ha

$$\delta W = F \cdot dx = \sum_{i} Q_{i} dq_{i} = Q dq$$

Theorem 1.9. Per un sistema a N punti con vincoli perfetti, in una carta locale con coordinate $q = (q_1, \ldots, q_n)$, i movimenti q = q(t) sulla carta corrispondenti alle soluzioni del sistema di equazioni di Newton-d'Alembert sono soluzioni delle equazioni di Eulero-Lagrange 1.8 La condizione geometrica di perfezione del vincolo è equivalente alla condizione che sia nullo il lavoro totale delle reazioni vincolari per ogni spostamento compatibile. Infatti, gli spostamenti infinitesimi compatibili con i vincoli si esprimono nella forma

$$dX = \frac{\partial X}{\partial a} dq$$

da cui si ottiene l'espressione del lavoro elementare totale delle reazioni vincolari

$$\delta W = \sum_{i} F_{i}^{(v)} \cdot dx_{i} = F^{(v)} \cdot dX = F^{(v)} \cdot \frac{\partial X}{\partial q} dq$$

Theorem 1.10. (dell'energia generalizzata)

Per un sistema lagrangiano con lagrangiana $L=L(q,\dot{q})$ in una carta locale assegnata, per ogni movimento q=q(t) soddisfacente le equazioni di Eulero-Lagrange 1.8 si ha

$$\dot{\mathcal{E}} = -\frac{\partial L}{\partial t}$$

dove $\dot{\mathcal{E}} = \dot{\mathcal{E}}(q,\dot{q},t)$ è l'energia generalizzata del sistema definita come

$$\dot{\mathcal{E}} \coloneqq p\dot{q} - L \qquad p \coloneqq \frac{\partial L}{\partial \dot{q}}$$

In particolare, se la lagrangiana è invariante per traslazioni temporali ossia non dipende la tempo, si ha che l'energia generalizzata è una costante del moto.

2 Hamiltoniana

3 Principi variazionali