Lecture 20: Single Proportion Test

Chapter 6.1

According to a poll done by the New York Times/CBS News in June 2012, only about 44% of the American public approved of the Supreme Court's performance.

According to a poll done by the New York Times/CBS News in June 2012, only about 44% of the American public approved of the Supreme Court's performance.

The sample proportion $\hat{p} = 0.44$ is point estimate of p: the true proportion of the American public who approves.

According to a poll done by the New York Times/CBS News in June 2012, only about 44% of the American public approved of the Supreme Court's performance.

The sample proportion $\hat{p} = 0.44$ is point estimate of p: the true proportion of the American public who approves.

What are some next things to ask?

According to a poll done by the New York Times/CBS News in June 2012, only about 44% of the American public approved of the Supreme Court's performance.

The sample proportion $\hat{p} = 0.44$ is point estimate of p: the true proportion of the American public who approves.

What are some next things to ask?

- ▶ What was *n*?
- ▶ What is the SE of $\hat{p} = 44\% = 0.44$?
- ▶ What is the sampling distribution of \hat{p} ?

Just like with \overline{x} , if we want to use the normal model to

- build confidence intervals via z*
- ightharpoonup conduct hypothesis tests via the normal tables we need the sampling distribution of \widehat{p} to be nearly normal.

Just like with \overline{x} , if we want to use the normal model to

- build confidence intervals via z*
- ▶ conduct hypothesis tests via the normal tables we need the sampling distribution of \hat{p} to be nearly normal.

This happens when the population distribution of 0's and 1's is not too strongly skewed. As the sample size $n \longrightarrow \infty$, this is less of an issue by the CLT.

Just like with \overline{x} , if we want to use the normal model to

- build confidence intervals via z*
- conduct hypothesis tests via the normal tables

we need the sampling distribution of \hat{p} to be nearly normal.

This happens when the population distribution of 0's and 1's is not too strongly skewed. As the sample size $n \longrightarrow \infty$, this is less of an issue by the CLT.

Note:

$$\widehat{p} = \frac{x_1 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

where each of the x_i 's are 0/1 success/failure Bernoulli random variables.

The sampling distribution of the sample proportion \widehat{p} based on sample size n is nearly normal when

The sampling distribution of the sample proportion \hat{p} based on sample size n is nearly normal when

► The observations are independent: the 10% rule

The sampling distribution of the sample proportion \widehat{p} based on sample size n is nearly normal when

- ▶ The observations are independent: the 10% rule
- We expect to see at least 10 successes and 10 failures in our sample. This is called the success-failure condition:
 - np ≥ 10
 - ▶ $n(1-p) \ge 10$

If conditions are met, then the sampling distribution of \widehat{p} is nearly normal with

- mean p (the true population proportion)
- standard error

$$SE_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

If conditions are met, then the sampling distribution of \widehat{p} is nearly normal with

- mean p (the true population proportion)
- standard error

$$SE_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Note the similarity of the previous formula for the sample mean \overline{x} :

$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{\sigma^2}{n}}$$

What p to use?

But we don't know what p is. So what p do we use

- to check the success/failure condition?
- for the $SE_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$?

For

What p to use?

But we don't know what p is. So what p do we use

- ▶ to check the success/failure condition?
- for the $SE_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$?

For

▶ Confidence intervals: plug in the point estimate \hat{p} of p

What *p* to use?

But we don't know what p is. So what p do we use

- ▶ to check the success/failure condition?
- for the $SE_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}}$?

For

- ▶ Confidence intervals: plug in the point estimate \hat{p} of p
- ▶ Hypothesis tests: plug in the null value p_0 from $H_0: p = p_0$

Going back to the poll: $\hat{p} = 0.44$ based on n = 976. What is a 95% confidence interval?

Going back to the poll: $\hat{p} = 0.44$ based on n = 976. What is a 95% confidence interval?

Going back to the poll: $\hat{p} = 0.44$ based on n = 976. What is a 95% confidence interval?

Check the conditions and find SE using $p = \hat{p}$

▶ 976 < 10% of 313 million \Rightarrow independence

Going back to the poll: $\hat{p} = 0.44$ based on n = 976. What is a 95% confidence interval?

- ▶ 976 < 10% of 313 million \Rightarrow independence
- ▶ Defining a success as a person approving of the job done by the Supreme Court:

Going back to the poll: $\hat{p} = 0.44$ based on n = 976. What is a 95% confidence interval?

- ▶ 976 < 10% of 313 million \Rightarrow independence
- ▶ Defining a success as a person approving of the job done by the Supreme Court:
 - ▶ $976 \times \hat{p} = 976 \times .44 = 429 \text{ successes} \ge 10$
 - ▶ $976 \times (1 \hat{p}) = 976 \times .56 = 547 \text{ failures } \ge 10$

Going back to the poll: $\hat{p} = 0.44$ based on n = 976. What is a 95% confidence interval?

- ▶ 976 < 10% of 313 million \Rightarrow independence
- ▶ Defining a success as a person approving of the job done by the Supreme Court:
 - ▶ $976 \times \hat{p} = 976 \times .44 = 429 \text{ successes} \ge 10$
 - ▶ $976 \times (1 \hat{p}) = 976 \times .56 = 547 \text{ failures } \ge 10$

$$SE_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}} = \sqrt{\frac{0.44(1-0.44)}{976}} = 0.016$$

A 95% confidence interval using the normal model has $z^* = 1.96$, thus:

point estimate $\pm\,1.96 imes \textit{SE}$

A 95% confidence interval using the normal model has $z^* = 1.96$, thus:

point estimate
$$\pm\,1.96 imes \textit{SE}$$

In our case

$$\widehat{\rho} \pm 1.96 \times \textit{SE}_{\widehat{\rho}} = 0.44 \pm 1.96 \times 0.016 = (0.409, 0.471)$$

Thomas Carcetti is running for mayor of Baltimore. His campaign manager claims he has more than 50% support of the electorate.

Thomas Carcetti is running for mayor of Baltimore. His campaign manager claims he has more than 50% support of the electorate.

The Baltimore Sun collects a random sample of n=500 likely voters and finds that 52% support him. Does this provide convincing evidence for the claim of Carcetti's manager at the 5% significance level?

The hypothesis test is, with the null value $p_0 = 0.5$

 $H_0: p=p_0$

vs $H_A: p > p_0$

The hypothesis test is, with the null value $p_0 = 0.5$

 $H_0: p = p_0$

vs $H_A: p > p_0$

The hypothesis test is, with the null value $p_0 = 0.5$

$$H_0: p = p_0$$
 vs $H_A: p > p_0$

Check the conditions and find SE using $p = p_0$

▶ 500 < 10% of the population of Baltimore \Rightarrow independence

The hypothesis test is, with the null value $p_0 = 0.5$

$$H_0: p=p_0$$
 vs $H_A: p>p_0$

- ▶ 500 < 10% of the population of Baltimore \Rightarrow independence
- Success-failure condition
 - ► $np_0 = 500 \times 0.5 = 250 \ge 10$
 - $n(1-p_0) = 500 \times (1-0.5) = 250 \ge 10$

The hypothesis test is, with the null value $p_0 = 0.5$

$$H_0: p = p_0$$
 vs $H_A: p > p_0$

- ▶ 500 < 10% of the population of Baltimore \Rightarrow independence
- Success-failure condition
 - ▶ $np_0 = 500 \times 0.5 = 250 \ge 10$
 - ► $n(1-p_0) = 500 \times (1-0.5) = 250 \ge 10$

$$SE_{\widehat{p}} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.5(1-0.5)}{500}} = 0.022$$

$$z = \frac{\text{point estimate } \widehat{p} - \text{ null value } p_0}{SE_{\widehat{p}}} = \frac{0.52 - 0.50}{0.022} = 0.89$$

$$z = \frac{\text{point estimate } \widehat{p} - \text{ null value } p_0}{SE_{\widehat{p}}} = \frac{0.52 - 0.50}{0.022} = 0.89$$

p-value is 0.1867. In the original %'age scale:

$$z = \frac{\text{point estimate } \widehat{p} - \text{ null value } p_0}{SE_{\widehat{p}}} = \frac{0.52 - 0.50}{0.022} = 0.89$$

p-value is 0.1867. In the original %'age scale:

Hence we do not reject the null hypothesis, and we do not find convincing evidence to support the campaign manager's claim.

Next Time

Same as with the jump from

$$\mu$$
 to $\mu_1 - \mu_2$

i.e. from one to two-sample tests for means, we make the jump from

$$p$$
 to $p_1 - p_2$

i.e. from one to two-sample tests for proportions.