

Bootstrap and flavour spectroscopy

H. Garcia-Tecocoatzi, Andres Ramirez-Morales

Kyungpook National University

29th September 2020

Andres Ramirez-Morales

Kyungpook National University

Introduction

- Physics motivation:
 - Heavy quark meson sector contains a lot of interesting physics
 - Potentially enrich our knowledge of flavour physics: Nature
 - Experiments are dedicated to measure these effects: Belle(II), LHCb
 - Development of phenomenological models to describe mass spectra measurements
- Results motivation:
 - Improve the error treatment with statistical methods
 - The correct error treatment could guide future research
 - These errors could help to improve the phenomenological model itself
- Strategy:
 - Perform a parameter fitting using least minimum squares
 - Perform a statistical sampling to determine the statistics of the parameters

Andres Ramirez-Morales
Bootstrap and flavour spectroscopy

Changes w.r.t. last presentation

- Computation of the masses and errors directly from the bootstrap sample
- Formal statistic test were performed to ensure the normality of the simulated masses
- Cross-check of the parameter computation using linear algebra
- Fits were performed in several states groups: all, omegas, cascades, sigmas and lambdas
- Inclusion of asymmetric errors, using the quantile technique

Andres Ramirez-Morales

Bootstrap and flavour spectroscopy

Introduction OOO Introduction

Goal: determine the mass splitting parameters A,B,E,G by fitting the model Hamiltonian (plus the ω from the harmonic oscillator):

$$H = H_{\text{h.o.}} + AS^2 + BS \cdot L + EI^2 + GC_2(SU(3)_f)$$
 (1)

Mass eigenstates $|ssc, S_{\rho}, S_{tot}, I_{\rho}, I_{\lambda}, J\rangle$ follow:

$$H|ssc, S_{\rho}, S_{tot}, I_{\rho}, I_{\lambda}, J\rangle = m|ssc, S_{\rho}, S_{tot}, I_{\rho}, I_{\lambda}, J\rangle$$
 (2)

where *m* is the measured (predicted) meson masses. https://doi.org/10.1140/epjc/s10052-019-7527-4

4/19

Strategy: bootstrap

Strategy

- Use experimental masses and errors to build a Gaussian distribution. with $\mu = \text{mass}$ and $\sigma = \text{Error}_{exp}$ for each observed mass
- Randomly sample the Gaussian distribution to obtained a re-sampled mass spectrum
- With the re-sampled experimental masses perform a least minimum squares fit to fit the predicted/modelled masses:

$$d^2 = \sum_{i} (m_{sampled} - m_{predicted})^2 \tag{3}$$

- Iterate the previous steps to produce a bootstrap sample and obtain smooth Gaussian statistics (μ, σ)
- Inspired on Molina et.al. https://arxiv.org/abs/2001.05408

Andres Ramirez-Morales Bootstrap and flavour spectroscopy

Results: sampling distributions

A p_{value} was obtained to formally test the null hypothesis of data being Gaussian distributed, with a $\alpha=0.05$

Results: sampling distributions

A p_{value} was obtained to formally test the null hypothesis of data being Gaussian distributed, with a $\alpha=0.05$

7/19

Results: sampling distributions

A p_{value} was obtained to formally test the null hypothesis of data being Gaussian distributed, with a lpha=0.05

Results: parameters

	K	Α	В	Ε	G
Paper	5727.12±x.xx	21.54 ± 0.37	23.91 ± 0.31	30.34 ±0.23	54.37±0.58
Sampled	5339.2 ±11.38	22.26 ± 0.46	21.07 ± 0.47	28.62 ± 1.02	57.16 ± 0.36
L.Algebra	5339.1	22.24	21.05	28.63	57.17

Table: Model pararameters in MeV, for states: All

-	K	Α	В	Е	G
Paper	5727.12±x.xx	21.54 ± 0.37	23.91 ± 0.31	30.34 ± 0.23	54.37 ± 0.58
Sampled	5995.1 ±26.74	26.79 ± 0.48	31.92 ± 0.52	0.0 ± 0.0	49.56 ± 0.54
L.Algebra	5994.5	26.8	31.93	0.0	49.56

Table: Model pararameters in MeV, for states: omega

9/19

Results: parameters

	K	Α	В	Е	G
Paper	5727.12±x.xx	21.54 ± 0.37	23.91 ± 0.31	30.34 ±0.23	54.37±0.58
Sampled	5463.8 ±30.43	20.99 ± 0.7	23.82 ± 0.73	34.87 ± 4.75	56.76 ± 1.11
L.Algebra	5462.3	21.0	23.82	35.04	56.73

Table: Model pararameters in MeV, for states: cascades

	K	Α	В	Е	G
Paper	5727.12±x.xx	21.54 ± 0.37	23.91 ± 0.31	30.34 ±0.23	54.37±0.58
Sampled	5013.3 ±30.7	17.93 ± 0.92	14.93 ± 1.06	43.19 ± 2.5	50.81 ± 0.99
L.Algebra	5013.6	17.93	14.92	43.23	50.8

Table: Model pararameters in MeV, for states: sigma_l amb

Andres Ramirez-Morales

ntroduction Strategy Results Results Results Summary Backup

Masses, asymmetric errors calculated via 68% quantile method

Mass State	Experiment (MeV)	Predicted mass old (MeV)	Predicted mass sampled (MeV)	diff pred (%)	diff sampl (%)
ssc, 1/2, 1/2, 0, 0, 10/3	2695.0 ±2.0	2702.4 ±xx	2712.2 +1.0 -1.0	-7.4 (0.3)	-17.2 (0.6)
ssc, 3/2, 3/2, 0, 0, 10/3	2766.0 ±2.0	2767.0 ±xx	$\begin{array}{c} -1.0 \\ 2779.0 \begin{array}{c} +1.4 \\ -1.4 \end{array}$	-1.0 (0.0)	-13.0 (0.5)
ssc, 1/2, 1/2, 1, 0, 10/3	3000.4 ±0.4	3015.8 ±xx	$3005.6 \begin{array}{l} +1.0 \\ -1.0 \end{array}$	-15.4 (0.5)	-5.2 (0.2)
ssc, 1/2, 3/2, 1, 0, 10/3	3050.2 ±0.3	3044.5 ±xx	$3040.8 \begin{array}{l} +0.4 \\ -0.4 \end{array}$	5.7 (0.2)	9.4 (0.3)
$ ssc, 3/2, 1/2, 1, 0, 10/3\rangle$	3065.6 ±0.4	$3051.6 \pm xx$	$3037.2 \begin{array}{l} +0.6 \\ -0.5 \end{array}$	14.0 (0.5)	28.4 (0.9)
ssc, 1/2, 1/2, 0, 0, 10/3	3090.2 ±0.7	3080.4 ±xx	$3072.4 \begin{array}{l} +0.6 \\ -0.6 \end{array}$	9.8 (0.3)	17.8 (0.6)
suc, 1/2, 1/2, 0, 1/2, 10/3	2578.0 ±2.9	2570.1 ±xx	$2578.7 \begin{array}{l} +1.0 \\ -1.1 \end{array}$	7.9 (0.3)	-0.7 (0.0)
suc, 3/2, 3/2, 0, 1/2, 10/3	2645.9 ±0.6	2634.8 ±xx	$2645.5 \begin{array}{l} +0.9 \\ -0.9 \end{array}$	11.1 (0.4)	0.4 (0.0)
$ suc, 1/2, 3/2, 1, 1/2, 10/3\rangle$	2923.0 ±0.4	2934.1 ±xx	$2927.5 \begin{array}{l} +1.0 \\ -1.0 \end{array}$	-11.1 (0.4)	-4.5 (0.2)
suc, 3/2, 1/2, 1, 1/2, 10/3	2938.5 ±0.3	2941.2 ±xx	$2924.0 \begin{array}{l} +0.7 \\ -0.8 \end{array}$	-2.7 (0.1)	14.5 (0.5)
$ suc, 3/2, 3/2, 1, 1/2, 10/3\rangle$	2964.9 ±0.3	2969.9 ±xx	$2959.1 \begin{array}{l} +0.6 \\ -0.6 \end{array}$	-5.0 (0.2)	5.8 (0.2)
uuc, 1/2, 1/2, 0, 1, 10/3	2453.9 ±0.1	2453.1 ±xx	$2459.5 \begin{array}{l} +1.9 \\ -2.0 \end{array}$	0.8 (0.0)	-5.6 (0.2)
uuc, 3/2, 3/2, 0, 1, 10/3	2518.0 ±2.3	2517.7 $\pm xx$	$2526.3 \begin{array}{l} +1.3 \\ -1.4 \end{array}$	0.3 (0.0)	-8.3 (0.3)
$ \mathit{uuc}, 1/2, 1/2, 1, 1, 10/3\rangle$	2801.0 ±6.0	2819.0 $\pm xx$	$2802.0 \begin{array}{l} +2.5 \\ -2.6 \end{array}$	-18.0 (0.6)	-1.0 (0.0)
$ udc, 1/2, 1/2, 0, 0, 4/3\rangle$	2286.5 ±0.1	2283.7 ±xx	$2287.9 \begin{array}{l} +0.4 \\ -0.4 \end{array}$	2.8 (0.1)	-1.4 (0.1)
$ udc, 1/2, 1/2, 1, 0, 10/3\rangle$	2592.3 ±0.4	2649.7 ±xx	$2630.4 \begin{array}{c} +0.8 \\ -0.7 \end{array}$	-57.4 (2.2)	-38.1 (1.5)
$ udc, 3/2, 1/2, 1, 0, 4/3\rangle$	2625.0 ±0.2	2685.6 ±xx	$2662.0 \begin{array}{l} +0.4 \\ -0.4 \end{array}$	-60.6 (2.3)	-37.0 (1.4)
$ ssc, 1/2, 1/2, 0, 1/2, 4/3\rangle$	2469.0 ±4.0	2461.2 ±xx	$2464.4 \begin{array}{l} +0.6 \\ -0.6 \end{array}$	7.8 (0.3)	4.6 (0.2)
$ \mathit{ssc},1/2,1/2,1,1/2,4/3\rangle$	2792.0 ±3.3	2796.5 ±xx	$2778.0 \begin{array}{l} +1.3 \\ -1.3 \end{array}$	-4.5 (0.2)	14.0 (0.5)
$ ssc, 3/2, 1/2, 1, 1/2, 10/3\rangle$	2815.0 ±0.2	2832.4 $\pm xx$	$2809.7 \begin{array}{l} +0.8 \\ -0.8 \end{array}$	-17.4 (0.6)	5.3 (0.2)
			Total diff	261.0	232.2

Andres Ramirez-Morales

Masses, asymmetric errors calculated via 68% quantile method

Mass State	Experiment (MeV)	Predicted mass old (MeV)	Predicted mass sampled (MeV)	diff pred (%)	diff sampl (%)
ssc, 1/2, 1/2, 0, 0, 10/3	2695.0 ±2.0	2702.4 ±xx	$2690.3 \begin{array}{l} +1.6 \\ -1.6 \end{array}$	-7.4 (0.3)	4.7 (0.2)
$ ssc, 3/2, 3/2, 0, 0, 10/3\rangle$	2766.0 ±2.0	$2767.0 \pm xx$	$2770.6 \begin{array}{l} +1.6 \\ -1.6 \end{array}$	-1.0 (0.0)	-4.6 (0.2)
$ \textit{ssc}, 1/2, 1/2, 1, 0, 10/3\rangle$	3000.4 ±0.4	$3015.8 \pm xx$	$3011.4 \begin{array}{l} +0.7 \\ -0.8 \end{array}$	-15.4 (0.5)	-11.0 (0.4)
$ \mathit{ssc}, 1/2, 3/2, 1, 0, 10/3\rangle$	3050.2 ±0.3	$3044.5 \pm xx$	$3043.9 \begin{array}{l} +0.3 \\ -0.3 \end{array}$	5.7 (0.2)	6.3 (0.2)
$ \mathit{ssc}, 3/2, 1/2, 1, 0, 10/3\rangle$	3065.6 ±0.4	$3051.6 \pm xx$	$3059.3 \begin{array}{l} +0.4 \\ -0.4 \end{array}$	14.0 (0.5)	6.3 (0.2)
$ \mathit{ssc}, 1/2, 1/2, 0, 0, 10/3\rangle$	3090.2 ±0.7	$3080.4 \pm xx$	$3091.8 \begin{array}{l} +0.8 \\ -0.8 \end{array}$	9.8 (0.3)	-1.6 (0.1)
			Total diff	53.0	34.6

Table: Every quantity is in MeV, except for percentage differences. States: omega

Masses, asymmetric errors calculated via 68% quantile method

Mass State	Experiment (MeV)	Predicted mass old (MeV)	Predicted mass sampled (MeV)	diff pred (%)	diff sampl (%)
suc, 1/2, 1/2, 0, 1/2, 10/3	2578.0 ±2.9	2570.1 ±xx	2581.1 ^{+2.2} -2.2	7.9 (0.3)	-3.1 (0.1)
$ suc, 3/2, 3/2, 0, 1/2, 10/3\rangle$	2645.9 ± 0.6	2634.8 ±xx	$2644.0 \begin{array}{l} +1.3 \\ -1.2 \end{array}$	11.1 (0.4)	1.9 (0.1)
$ suc, 1/2, 3/2, 1, 1/2, 10/3\rangle$	2923.0 ±0.4	2934.1 ±xx	$2927.0 \begin{array}{l} +0.9 \\ -0.9 \end{array}$	-11.1 (0.4)	-4.0 (0.1)
$ suc, 3/2, 1/2, 1, 1/2, 10/3\rangle$	2938.5 ± 0.3	2941.2 ±xx	$2935.5 \begin{array}{l} +1.2 \\ -1.2 \end{array}$	-2.7 (0.1)	3.0 (0.1)
$ suc, 3/2, 3/2, 1, 1/2, 10/3\rangle$	2964.9 ± 0.3	2969.9 ±xx	$2962.8 \begin{array}{l} +0.7 \\ -0.7 \end{array}$	-5.0 (0.2)	2.1 (0.1)
$ ssc, 1/2, 1/2, 0, 1/2, 4/3\rangle$	2469.0 ±4.0	$2461.2 \pm xx$	$2467.6 \begin{array}{l} +2.3 \\ -2.5 \end{array}$	7.8 (0.3)	1.4 (0.1)
$ ssc, 1/2, 1/2, 1, 1/2, 4/3\rangle$	2792.0 ±3.3	2796.5 ±xx	$2786.3 + 1.8 \\ -1.8$	-4.5 (0.2)	5.7 (0.2)
$ \textit{ssc}, 3/2, 1/2, 1, 1/2, 10/3\rangle$	2815.0 ± 0.2	2832.4 $\pm xx$	$2822.0 \stackrel{+1.1}{-1.2}$	-17.4 (0.6)	-7.0 (0.2)
			Total diff	68.0	28.2

Table: Every quantity is in MeV, except for percentage differences. States: cascades

Masses, asymmetric errors calculated via 68% quantile method

Mass State	Experiment (MeV)	Predicted mass old (MeV)	Predicted mass sampled (MeV)	diff pred (%)	diff sampl (%)
uuc, 1/2, 1/2, 0, 1, 10/3	2453.9 ±0.1	2453.1 ±xx	$2464.2 {+1.6} \\ -1.6$	0.8 (0.0)	-10.3 (0.4)
uuc, 3/2, 3/2, 0, 1, 10/3	2518.0 ±2.3	2517.7 $\pm xx$	$2518.0 \begin{array}{l} +2.2 \\ -2.3 \end{array}$	0.3 (0.0)	0.0 (0.0)
$ uuc, 1/2, 1/2, 1, 1, 10/3\rangle$	2801.0 ±6.0	2819.0 $\pm xx$	$2790.6 \begin{array}{l} +4.8 \\ -4.8 \end{array}$	-18.0 (0.6)	10.4 (0.4)
$ udc, 1/2, 1/2, 0, 0, 4/3\rangle$	2286.5 ±0.1	2283.7 ±xx	$2276.2 {+1.6 \atop -1.6}$	2.8 (0.1)	10.3 (0.5)
$ udc, 1/2, 1/2, 1, 0, 10/3\rangle$	2592.3 ±0.4	2649.7 ±xx	$2602.6 {+1.6 \atop -1.6}$	-57.4 (2.2)	-10.3 (0.4)
$ \mathit{udc}, 3/2, 1/2, 1, 0, 4/3\rangle$	2625.0 ±0.2	2685.6 ±xx	$2625.0 \begin{array}{l} +0.2 \\ -0.2 \end{array}$	-60.6 (2.3)	-0.0 (0.0)
			Total diff	140.0	41.3

Table: Every quantity is in MeV, except for percentage differences. States: sigma_l amb

Results: summary

	K	Α	В	Ε	G
K	1				
Α	0.24	1			
В	0.43	0.46	1		
Ε	0.1	0.1	-0.03	1	
G	-0.53	-0.71	-0.23	-0.49	1

Table: Correlation matrix for the parameters

Summary and future work

- The bootstrap method was implemented successfully
- Results look promising
- Compute asymmetric uncertainties
- More sampling statistical methods could be applied for comparison
- Code is found on GitHub: https://github.com/andrex-naranjas/flavor_phys

Andres Ramirez-Morales

Thanks for listening!

trategy) Results DOO esults

Results: sampling distributions

 Results
 Results
 Summary
 Backup

 000
 0
 000000
 00
 0●

Results: sampling distributions

