Efficient calculation of fluid phase equilibria with equations of state

Ulrich K. Deiters

Institute of Physical Chemistry, University of Cologne, Cologne, Germany

Sergio E. Quiñones-Cisneros

Institute of Material Science, National Autonomous University of Mexico, Mexico City, Mexico

The task

given:

- \bullet a fluid consisting of N components
- with known composition $\vec{x}' \equiv (x_1', x_2', \dots x_N')$ [mole fractions]
- ullet at temperature T

requested:

- composition of equilibrium phase $\vec{x}'' \equiv (x_1'', x_2'', \dots x_N'')$
- equilibrium pressure p

Note: The unknown properties have different dimensions. \rightarrow The path of the computations depends on the units used.

E.g., during the iteration a deviation vector may appear, $(\Delta x_1'', \Delta p)$ — Can we say that the length of this vector is $\sqrt{(\Delta x_1'')^2 + (\Delta p)^2}$?

Many computer programs use \vec{x}'' and $V_{\rm m}'$, $V_{\rm m}''$ internally, but the problem of having different dimensions remains.

Phase equilibrium criteria

2-phase equilibrium (here: fluid phases)

temperature criterion:

$$T' = T''$$

pressure criterion:

$$p' = p''$$

chemical potential criterion

$$\mu_i' = \mu_i'' \quad i = 1, \dots N$$

Stability criteria

for pure fluids:

$$\left(\frac{\partial^2 A}{\partial V^2}\right)_T \ge 0$$

for binary mixtures:

$$\left(\frac{\partial^2 G_{\mathbf{m}}}{\partial x_1^2}\right)_{p,T} \ge 0$$

Why do we need two different criteria for the same phenomenon?

Isochoric formulation: definitions

... the esthetic approach to fluid phase equilibria!

get rid of mole fractions x_i !

treat the total volume V as a constant, use only amounts of substance ("mole numbers") n_i as variables

alternative view:

express compositions by means of particle densities (concentrations):

$$\rho_i = \frac{n_i}{V} = \frac{x_i}{V_{\rm m}}$$

$$\rho = \sum_i \rho_i = \frac{1}{V_{\rm m}}$$

$$x_i = \frac{\rho_i}{\rho}$$

Isochoric formulation: equilibrium criteria

$$\mu_i = \left(\frac{\partial A}{\partial n_i}\right)_{V,T,n_{j\neq i}} = \frac{1}{V} \left(\frac{\partial A}{\partial \rho_i}\right)_{\rho_{j\neq i}}$$

$$\mu_i' = \mu_i'' \quad \Rightarrow \quad \left(\frac{\partial A'}{\partial \rho_i}\right) = \left(\frac{\partial A''}{\partial \rho_i}\right) \quad \text{with} \quad i = 1,\dots N$$

derivation of the pressure:

$$pV = G - A \qquad G = \sum_{i}^{N} \mu_{i} n_{i} = V \sum_{i}^{N} \mu_{i} \rho_{i}$$
$$p = -\frac{1}{V} \left(A + \sum_{i}^{N} \left(\frac{\partial A}{\partial \rho_{i}} \right) \rho_{i} \right)$$

at this stage, switch to the Helmholtz energy *density*: $\Psi = A/V$ (Sengers & Levelt Sengers):

$$p = -\Psi + \sum_{i}^{N} \left(\frac{\partial \Psi}{\partial \rho_{i}}\right) \rho_{i}$$

$$p' = p'' \quad \Rightarrow \quad \sum_{i}^{N} \left(\frac{\partial \Psi''}{\partial \rho_{i}}\right) \rho_{i}'' - \sum_{i}^{N} \left(\frac{\partial \Psi'}{\partial \rho_{i}}\right) \rho_{i}' = \Psi'' - \Psi'$$

at this stage, switch to the Helmholtz energy *density*: $\Psi = A/V$ (Sengers & Levelt Sengers):

$$p = -\Psi + \sum_{i}^{N} \left(\frac{\partial \Psi}{\partial \rho_i} \right) \rho_i$$

$$p' = p'' \quad \Rightarrow \quad \sum_{i}^{N} \left(\frac{\partial \Psi''}{\partial \rho_i} \right) \rho_i'' - \sum_{i}^{N} \left(\frac{\partial \Psi'}{\partial \rho_i} \right) \rho_i' = \Psi'' - \Psi'$$

the μ equilibrium criterion written in terms of Ψ :

$$\mu_i' = \mu_i'' \quad \Rightarrow \quad \left(\frac{\partial \Psi'}{\partial \rho_i}\right) = \left(\frac{\partial \Psi''}{\partial \rho_i}\right) \quad \text{with } i = 1, \dots N$$

insertion into the pressure criterion:

$$\sum_{i}^{N} \left(\frac{\partial \Psi}{\partial \rho_{i}} \right) \left(\rho_{i}^{"} - \rho_{i}^{"} \right) = \Delta \Psi$$

phase equilibrium criteria with vector notation:

$$\begin{array}{ccc} \vec{\mu}' = \vec{\mu}'' & \Rightarrow & \nabla_{\rho} \Psi'' = \nabla_{\rho} \Psi' \\ p' = p'' & \Rightarrow & \nabla_{\rho} \Psi \cdot \Delta \vec{\rho} = \Delta \Psi \\ \text{with } \Delta \vec{\rho} = \vec{\rho}'' - \vec{\rho}' \end{array}$$

Algorithm 1: finding initial values

total differential of Ψ :

$$d\Psi = -\frac{S_{\rm m}}{V_{\rm m}} dT + \sum_{i=1}^{N} \left(\frac{\partial \Psi}{\partial \rho_i}\right) d\rho = -\frac{S_{\rm m}}{V_{\rm m}} dT + \nabla \Psi \cdot d\vec{\rho}$$

integration of $d\Psi$ along an isothermal path between $\vec{\rho}'$ and $\vec{\rho}''$

• in the limit $\vec{\rho}'' \rightarrow \vec{\rho}'$:

$$\int_{\vec{\rho}'}^{\vec{\rho}''} \nabla \Psi \, d\vec{\rho} = \nabla \Psi \cdot \Delta \vec{\rho} = \Delta \Psi$$

(= the pressure criterion)

• for longer distances, up to 2nd order:

$$\int_{\vec{\rho}'}^{\vec{\rho}''} \nabla \Psi \, d\vec{\rho} = \nabla \Psi \cdot \Delta \vec{\rho} + \frac{\lambda}{2} (\Delta \vec{\rho})^2 = \Delta \Psi$$

calculate the gradient:

$$\nabla_{\rho} \cdot \nabla_{\rho} \Psi \cdot \Delta \vec{\rho} + \nabla_{\rho} \Psi + \lambda \Delta \vec{\rho} = \nabla_{\rho} (\Delta \Psi)$$

left-hand side: Hessian of the Helmholtz energy density:

$$oldsymbol{\Psi} \equiv
abla_{
ho} \cdot
abla_{
ho} \Psi = \left(egin{array}{cccc} \Psi_{11} & \Psi_{12} & \dots & \Psi_{1N} \ \Psi_{21} & \Psi_{22} & \dots & \Psi_{2N} \ dots & dots & \ddots & dots \ \Psi_{N1} & \Psi_{N2} & \dots & \Psi_{NN} \end{array}
ight) \quad ext{with } \Psi_{ij} = \left(rac{\partial^2 \Psi}{\partial
ho_i \partial
ho_j}
ight)$$

right-hand side:

$$\nabla_{\rho}(\Delta\Psi) = \nabla_{\rho'}\Psi' - \underbrace{\nabla_{\rho'}\Psi''}_{=0} = \nabla_{\rho'}\Psi'$$

after insertion of these two equations:

$$\Psi \Delta \vec{\rho} + \lambda \Delta \vec{\rho} = 0$$

Note: This is an eigenvalue problem.

- If the start phase $(\vec{\rho}')$ is stable, all eigenvalues are positive.
- If $\Delta \vec{\rho}$ is small, one of the eigenvectors (most likely the one belonging to the lowermost eigenvalue) points to the equilibrium phase.
- If $\Delta \vec{\rho}$ is not small, the path from the start phase to the equilibrium phase is curved, with the local eigenvector defining its direction.

Supercritical example: px_1 diagram of $\{CH_4 + C_3H_8\}$ at 250 K. Calculation method: PR+1FS (Peng–Robinson EOS with Soave's 1-fluid mixing rules). No interpolation is required at the critical point.

 $\Psi(\rho_1,\rho_2)$ diagram of {CH₄ + C₃H₈} at 250 K. —: phase envelope, - - -: connodes, white: eigenvector path. Colour code: "rainbow" (red = low, violet = high, white = very high or forbidden).

Behaviour of the lowermost eigenvalue (= principal curvature of the Ψ surface) along the search path. Note that there must be a concave region between the two coexisting phases.

Subcritical example: px_1 diagram of {CH₄ + C₃H₈} at 150 K.

 $\Psi(\rho_1,\rho_2) \text{ diagram of } \{\text{CH}_4+\text{C}_3\text{H}_8\} \text{ at 150 K.} \longrightarrow \text{phase envelope, ---: connodes, white: eigenvector path.}$

Algorithm 2: solving the equilibrium conditions

the conditions:

$$egin{aligned}
abla_{
ho}\Psi'' &=
abla_{
ho}\Psi' \
abla_{
ho}\Psi \cdot \Delta ec{
ho} &= \Delta \Psi \quad ext{with } \Delta ec{
ho} &= ec{
ho}'' - ec{
ho}' \end{aligned}$$

This is a system of N+1 nonlinear equations for ρ' and $\vec{\rho}''$. It can be solved with common methods, e.g. the Marquardt–Levenberg method.

Note: The orthobaric molar volumes do not appear in these equations, except as sums of the ρ_i . It is not necessary to calculate the molar volumes from the pressure at each iteration step.

CPU time [s] for the computation of 1 isotherm (40 states):

model	$G_{ m m}$ -based	Ψ -based
PR + 1FS	0.09	0.10
XD + 1FPKP	2.45	0.55
PCSAFT + 1FGS	10.50	0.36

PR + 1FS: Peng–Robinson EOS, 1-fluid theory after Soave (cubic)

XD + 1FPKP: Xiang-Deiters EOS, Plöcker-Knapp-Prausnitz mixing rules (corresponding states, noncubic)

PCSAFT + 1FGS: PC-SAFT EOS, mixing rules of Groß & Sadowski (noncubic)

software: ThermoC, http://thermoc.uni-koeln.de/index.html

As the molar volumes do not have to be computed from the pressure, the calculation can follow isopleths into the negative-pressure regime.

(useful for work with metastable states, but also a way to locate liquid-liquid phase splitting)

Isopleths of $\{x_1 \text{ CH}_4 + x_2 \text{ C}_3\text{H}_8 + x_3 \text{ C}_{10}\text{H}_{22}\}$ with $x_1 = 0.9$; parameter: x_2 .

Incidentally ...

The phase stability criterion (spinodal criterion) in isochoric thermodynamics is that Ψ , the Hessian of $\Psi(\vec{\rho})$ must be positive definite.

Consequently,

$$\det \Psi > 0$$

must be fulfilled (necessary condition, but neither sufficient nor efficient!). For a pure fluid, this translates into

$$\left(\frac{\partial^2 \Psi}{\partial \rho^2}\right)_T > 0 ,$$

for a binary mixture, into

$$\left|\begin{array}{cc} \Psi_{11} & \Psi_{12} \\ \Psi_{12} & \Psi_{22} \end{array}\right| > 0 \quad \text{with } \Psi_{ij} = \left(\frac{\partial^2 \Psi}{\partial \rho_i \partial \rho_j}\right)_T \; .$$

Conclusion

The isochoric approach leads to a symmetric and esthetically satisfying formulation of the phase equilibrium problem.

The search for initial values (Algorithm 1)

- is 1-dimensional even for multicomponent mixtures,
- is especially efficient if the coexisting phases have similar density vectors (VLE near to critical points, LLE).

The calculation of the phase compositions (Algorithm 2)

- shows robust convergence in the vicinity of critical points,
- is not affected by azeotropy,
- can be done for negative pressures, if required,
- saves CPU time in connexion with noncubic equations of state.

Acknowledgments

financial support: Mexican and German science foundations (CONACyT & DFG)

Thank you for your attention!