Automatic Control Theory

Chapter 3

Fan zichuan School of Computer and Information Science Southwest University

The performance of feedback control systems

Main contents

- 1. Typical test signals for the time response of control systems.
- 2. The unit-step response and time-domain specifications.
- 3. Time response of first-order and second-order systems.
- 4. Improvement performance of second systems.
- 5. Condition for a feedback system to be stable
- 6. Routh-Hurwitz criterion
- 7. The steady-state error of feedback control system.

The performance of feedback control systems

Review

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

(f)
$$\zeta > 1$$

what is next

Improvement performance of second systems

Example

m: mass

K: elasticity coefficient

f: friction ratio

Try to get best damping ratio

Solution

$$\Phi(s) = \frac{X(s)}{F_0(s)} = \frac{1}{ms^2 + fs + K} = \frac{\frac{1}{m}}{s^2 + \frac{f}{m}s + \frac{K}{m}}$$

$$\omega_{\rm n} = \sqrt{K/m}$$
 $\zeta = \frac{f}{2\sqrt{Km}}$

$$\frac{f}{2\sqrt{Km}} = 0.707$$
 $f = 1.414\sqrt{Km}$

(1). Velocity feedback control of output

Open loop gain is reduced

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2(\zeta + K_t \omega_n/2)\omega_n s + \omega_n^2} = \frac{\omega_n^2}{s^2 + 2\zeta_t \omega_n s + \omega_n^2}$$

where

$$\zeta_t = \zeta + \frac{1}{2} K_t \omega_n$$

(2). The proportion-differential control of error signal

A new zero is generated

where

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{(T_d s + 1)\omega_n^2}{s^2 + 2\zeta\omega_n s + (T_d s + 1)\omega_n^2} = \frac{(T_d s + 1)\omega_n^2}{s^2 + 2\zeta_d\omega_n s + \omega_n^2} \qquad \zeta_d = \zeta + \frac{1}{2}T_d\omega_n$$

$$\zeta_d = \zeta + \frac{1}{2} T_d \omega_n$$

(2). The proportion-differential control of error signal

$$\zeta_d = \zeta + \frac{1}{2} T_d \omega_n$$

(2). The proportion-differential control of error signal

Implemented by RC circuit

$$\frac{U_{\rm c}(s)}{U_{\rm r}(s)} = \frac{\alpha(T_{\rm d}s+1)}{\alpha T_{\rm d}s+1}$$

$$\alpha = \frac{R_2}{R_1 + R_2} < 1$$
, $T_d = R_1 C$

$$\frac{U_{\rm c}(s)}{U_{\rm r}(s)} \approx \alpha (T_{\rm d}s + 1)$$
 for $\alpha \ll 1$ $\alpha T_{\rm d} \ll T_{\rm d}$

for
$$\alpha \ll 1$$
 $\alpha T_{\rm d} \ll T_{\rm d}$

Effects of third pole on the second-order system response

The response of a third-order system can be approximated by the second-order system!

核心

Poles distribution for different Damping ratio

续

Condition for a feedback system to be stable