Problem 1

(a) We can get an intuitive understanding of $\phi(s,t) = \exp_{\gamma(s)}(t\mathbf{N}(s))$ from Figure 1. If t is too large, the geodesic α such that $\alpha(0) = \gamma(s)$, $\dot{\gamma}(0) = \mathbf{N}(s)$ may not exist on [0,t], and thus the exponential map is not well-defined.

Figure 1: Illustration of the map $\phi(s,t) = \exp_{\gamma(s)}(t\mathbf{N}(s))$.

- (b) By the definition of exponential map, for any fixed $s \in (-1,1)$, $t \mapsto \phi(s,t) = \exp_{\gamma(s)}(t\mathbf{N}(s))$ is a geodesic on S starting at $\gamma(s)$ with initial velocity $\mathbf{N}(s)$. Note that $t \mapsto \mathbf{E}_2(s,t)$ is the velocity of this geodesic. Hence by the geodesic equation we have $\nabla_{\mathbf{E}_2}\mathbf{E}_2 = 0$ for all s,t.
- (c) By the definition of exponential map, $\forall s \in (-1,1)$, there locally exists a geodesic α : $(-\varepsilon,\varepsilon) \to S$ such that $\alpha(0) = \gamma(s)$, $\dot{\alpha}(0) = \mathbf{N}(s)$ and $\exp_{\gamma(s)}(t\mathbf{N}(s)) = \alpha(t)$. Since α is of constant speed and $\|\dot{\alpha}(0)\| = \|\mathbf{N}(s)\| = 1$, α is parameterized by arc length. Then $\mathbf{E}_2 = \frac{\partial \phi}{\partial t} = \dot{\alpha}(t)$ and $\frac{\partial}{\partial t} \mathbf{E}_2 = \ddot{\alpha}(t)$. We have

$$\frac{\partial}{\partial t} \|\mathbf{E}_2\|^2 = 2 \left\langle \mathbf{E}_2, \frac{\partial \mathbf{E}_2}{\partial t} \right\rangle = 2 \langle \dot{\alpha}(t), \ddot{\alpha}(t) \rangle = 0.$$

Or equivalently we may notice that $\frac{\partial}{\partial t} \|\mathbf{E}_2\|^2 = \mathbf{E}_2(\langle \mathbf{E}_2, \mathbf{E}_2 \rangle) = 2\langle \nabla_{\mathbf{E}_2} \mathbf{E}_2, \mathbf{E}_2 \rangle = 0$. Therefore $\|\mathbf{E}_2(s,t)\| \equiv \|\mathbf{E}_2(s,0)\| = \|\dot{\alpha}(0)\| = \|\mathbf{N}(s)\| = 1$.

(d) Since $\mathbf{E}_1, \mathbf{E}_2$ are partial derivatives of ϕ , we have $[\mathbf{E}_1, \mathbf{E}_2] = \nabla_{\mathbf{E}_1} \mathbf{E}_2 - \nabla_{\mathbf{E}_2} \mathbf{E}_1 = 0$. Thus

$$\frac{\partial}{\partial t} \langle \mathbf{E}_1, \mathbf{E}_2 \rangle = \mathbf{E}_2(\langle \mathbf{E}_1, \mathbf{E}_2 \rangle) = \langle \nabla_{\mathbf{E}_2} \mathbf{E}_1, \mathbf{E}_2 \rangle + \langle \mathbf{E}_1, \nabla_{\mathbf{E}_2} \mathbf{E}_2 \rangle
= \langle \nabla_{\mathbf{E}_2} \mathbf{E}_1, \mathbf{E}_2 \rangle = \langle \nabla_{\mathbf{E}_1} \mathbf{E}_2, \mathbf{E}_2 \rangle = \frac{1}{2} \mathbf{E}_1(\langle \mathbf{E}_2, \mathbf{E}_2 \rangle) = \frac{1}{2} \frac{\partial}{\partial s} ||\mathbf{E}_2||^2 = 0,$$

where the last equality holds because in (c) we have shown that $\|\mathbf{E}_2\| \equiv 1$.

Problem 2

(a) By definition, for all $\mathbf{x} \in \mathbb{R}^3$, $df(\mathbf{x}) = \sum_{i=1}^3 f_i x^i = \langle \nabla f, \mathbf{x} \rangle$, which is just $\nabla f = (df)^{\sharp}$.

(b) By definition we have

$$\star \mathbf{d} \star (\mathbf{F}^{\flat}) = \star \mathbf{d} \star \left(\sum_{i=1}^{3} F^{i} \mathbf{d}x^{i}\right) = \star \mathbf{d} \left(F^{1} \mathbf{d}x^{2} \wedge \mathbf{d}x^{3} + F^{2} \mathbf{d}x^{3} \wedge \mathbf{d}x^{1} + F^{3} \mathbf{d}x^{1} \wedge \mathbf{d}x^{2}\right)$$

$$= \star \left(F_{1}^{1} \mathbf{d}x^{1} \wedge \mathbf{d}x^{2} \wedge \mathbf{d}x^{3} + F_{2}^{2} \mathbf{d}x^{2} \wedge \mathbf{d}x^{3} \wedge \mathbf{d}x^{1} + F_{3}^{3} \mathbf{d}x^{3} \wedge \mathbf{d}x^{1} \wedge \mathbf{d}x^{2}\right)$$

$$= \star \left(\left(\sum_{i=1}^{3} F_{i}^{i}\right) \mathbf{d}x^{1} \wedge \mathbf{d}x^{2} \wedge \mathbf{d}x^{3}\right) = \sum_{i=1}^{3} F_{i}^{i} = \nabla \cdot \mathbf{F}.$$

(c) By definition we have

$$\begin{split} (\star \mathrm{d}(\mathbf{F}^{\flat}))^{\sharp} &= \left(\star \mathrm{d} \left(\sum_{i=1}^{3} F^{i} \mathrm{d}x^{i} \right) \right)^{\sharp} \\ &= \left(\star \left((F_{1}^{2} - F_{2}^{1}) \mathrm{d}x^{1} \wedge \mathrm{d}x^{2} + (F_{2}^{3} - F_{3}^{2}) \mathrm{d}x^{2} \wedge \mathrm{d}x^{3} + (F_{3}^{1} - F_{1}^{3}) \mathrm{d}x^{3} \wedge \mathrm{d}x^{1} \right) \right)^{\sharp} \\ &= \left((F_{1}^{2} - F_{2}^{1}) \mathrm{d}x^{3} + (F_{2}^{3} - F_{3}^{2}) \mathrm{d}x^{1} + (F_{3}^{1} - F_{1}^{3}) \mathrm{d}x^{2} \right)^{\sharp} \\ &= \left(F_{2}^{3} - F_{3}^{2}, F_{3}^{1} - F_{1}^{3}, F_{1}^{2} - F_{2}^{1} \right)^{t} = \nabla \times \mathbf{F}. \end{split}$$

(d) By (a) and (b), $\Delta f = \nabla \cdot \nabla f = \star d \star (df)^{\sharp})^{\flat} = \star d \star df$.

Problem 3

(a) Since $dx^i \wedge \star dx^j = \langle dx^i, dx^j \rangle dA = g^{ij} \sqrt{|g|} dx^1 \wedge dx^2$, we conclude that

$$*dx^{1} = \sqrt{|g|} (-g^{12}dx^{1} + g^{11}dx^{2})$$
 and $*dx^{2} = \sqrt{|g|} (-g^{22}dx^{1} + g^{12}dx^{2})$.

And since

$$dx^1 \wedge dx^2 \wedge \star \left(dx^1 \wedge dx^2\right) = \left\|dx^1 \wedge dx^2\right\|^2 dA = |g^{-1}|\sqrt{|g|}dx^1 \wedge dx^2 = \frac{1}{\sqrt{|g|}}dx^1 \wedge dx^1.$$

we have $\star (\mathrm{d}x^1 \wedge \mathrm{d}x^2) = \frac{1}{\sqrt{|g|}}$. Now suppose $\mathbf{X} = X^i \frac{\partial}{\partial x^i}$ where $\frac{\partial}{\partial x^1}(\mathbf{p}), \frac{\partial}{\partial x^2}(\mathbf{p})$ form an basis of $T_{\mathbf{p}}S$. Then

$$\operatorname{div}(\mathbf{X}) dA = \star d \star (\mathbf{X}^{\flat}) dA = \star d \star (g_{ij} X^{j} dx^{i}) dA$$

$$= \star d \left(g_{1j} X^{j} \sqrt{|g|} \left(-g^{12} dx^{1} + g^{11} dx^{2} \right) + g_{2j} X^{j} \sqrt{|g|} \left(-g^{22} dx^{1} + g^{12} dx^{2} \right) \right) dA$$

$$= \star d \left(-\sqrt{|g|} \left(X^{1} g_{1j} g^{j2} + X^{2} g_{2j} g^{j2} \right) dx^{1} + \sqrt{|g|} \left(X^{1} g_{1j} g^{j1} + X^{2} g_{2j} g^{j1} \right) dx^{2} \right) dA$$

$$= \star d \left(-\sqrt{|g|} X^2 dx^1 + \sqrt{|g|} X^1 dx^2 \right) dA$$

$$= \star \left(-\left(\sqrt{|g|} X^2 \right)_2 dx^2 \wedge dx^1 + \left(\sqrt{|g|} X^1 \right)_1 dx^1 \wedge dx^2 \right) dA$$

$$= \star \left(\left(\sqrt{|g|} X^i \right)_i dx^1 \wedge dx^2 \right) dA = \frac{1}{\sqrt{|g|}} \left(\sqrt{|g|} X^i \right)_i \sqrt{|g|} dx^1 \wedge dx^2$$

$$= \left(\sqrt{|g|} X^i \right)_i dx^1 \wedge dx^2 = d \left(\sqrt{|g|} X^1 dx^2 - \sqrt{|g|} X^2 dx^1 \right).$$

Therefore $\operatorname{div}(\mathbf{X})dA$ is of the form $d\omega$ with $\omega = \sqrt{|g|} (X^1 dx^2 - X^2 dx^1)$, which implies that it is an exact form.

(b) Suppose $\mathbf{N} = N^i \frac{\partial}{\partial x^i}$. Since

$$\star \omega = |g|X^{1} \left(-g^{22} dx^{1} + g^{12} dx^{2}\right) - |g|X^{2} \left(-g^{12} dx^{1} + g^{11} dx^{2}\right),$$

and note that $dx^i\left(\frac{\partial}{\partial x^j}\right) = \delta_{ij}$, we have

$$\omega(\mathbf{T}) = \omega(\operatorname{Rot}_{\pi/2}(-\mathbf{N})) = \star \omega(-\mathbf{N}) = |g|X^{1} \left(g^{22}N^{1} - g^{12}N^{2}\right) - |g|X^{2} \left(g^{12}N^{1} - g^{11}N^{2}\right)$$

$$= X^{1} \left(g_{11}N^{1} + g_{12}N^{2}\right) - X^{2} \left(-g_{12}N^{1} - g_{22}N^{2}\right)$$

$$= X^{i}g_{ij}N^{j} = \left\langle X^{i} \frac{\partial}{\partial x^{i}}, N^{j} \frac{\partial}{\partial x^{j}} \right\rangle = \langle \mathbf{X}, \mathbf{N} \rangle.$$

Problem 4

- (a) $W(\mathbf{p}, \mathbf{q})$ measures the minimal "cost" of transporting the measures from \mathbf{p} to \mathbf{q} . Compared with KL divergence, $W(\mathbf{p}, \mathbf{q})$ measures the displacement between probability distributions, while KL divergence measures the overlap.
- (b) Let $K_{\alpha} = \exp(-D/\alpha)$, i.e. $(K_{\alpha})_{ij} = \exp(-D_{ij}/\alpha)$ for all i, j. Then

$$\alpha \cdot \text{KL}(T || K_{\alpha}) = \alpha \sum_{i,j} T_{ij} \left(\log T_{ij} - \log(K_{\alpha})_{ij} \right) = \alpha \sum_{i,j} T_{ij} \left(\log T_{ij} + \frac{D_{ij}}{\alpha} \right)$$
$$= \sum_{i,j} T_{ij} D_{ij} + \alpha \sum_{i,j} T_{ij} \log T_{ij},$$

which is the objective for $W_{\alpha}(\mathbf{p}, \mathbf{q})$.

(c) Note that for the entropy-regularized EMD, the $T_{ij} \ge 0$ constraint is no longer necessary since the term $\alpha \sum_{i,j} T_{ij} \log T_{ij}$ already requires $T_{ij} \ge 0$. Ignoring then $T_{ij} \ge 0$ constraint, the Lagrange multiplier for $W_{\alpha}(\mathbf{p}, \mathbf{q})$ is

$$\mathcal{L}(T; \lambda, \mu) = \sum_{i,j} T_{ij} D_{ij} + \alpha \sum_{i,j} T_{ij} \log T_{ij} + \sum_{i} \lambda_i \left(\sum_{j} T_{ij} - p_i \right) + \sum_{j} \mu_j \left(\sum_{i} T_{ij} - q_j \right).$$

Taking derivative on T_{ij} , we get

$$\frac{\partial \mathcal{L}}{\partial T_{ij}}(T; \lambda, \mu) = D_{ij} + \alpha \left(\log T_{ij} + 1 \right) + \lambda_i + \mu_j = 0,$$

which implies

$$\log T_{ij} = -\frac{D_{ij} + \gamma_i + \mu_j}{\alpha} - 1 \implies T_{ij} = \exp\left(-\frac{\gamma_i}{\alpha} - \frac{1}{2}\right) \exp\left(-\frac{D_{ij}}{\alpha}\right) \exp\left(-\frac{\mu_j}{\alpha} - \frac{1}{2}\right).$$

Hence $T = \operatorname{diag}(\mathbf{v}) K_{\alpha} \operatorname{diag}(\mathbf{w})$ where $v_i = \exp(-\gamma_i/\alpha - 1/2)$, $w_i = \exp(-\mu_j/\alpha - 1/2)$.

(d) Since $D_{ij} = d(x_i, y_j)^2 = \lim_{t\to 0} (-2t \log \mathcal{H}_t(x_i, y_j))$, when α is very small we have

$$(K_{\alpha})_{ij} = \exp\left(-\frac{D_{ij}}{\alpha}\right) = \lim_{t \to 0} \exp\left(\frac{2t \log \mathcal{H}_t(x_i, y_j)}{\alpha}\right) \approx \exp\left(\frac{2t \log \mathcal{H}_t(x_i, y_j)}{\alpha}\right) \Big|_{t=\alpha/2}$$
$$= \exp\left(\log \mathcal{H}_{\alpha/2}(x_i, y_j)\right) = \mathcal{H}_{\alpha/2}(x_i, y_j).$$

(e) If k is odd, the Lagrange multiplier for $T^{(k)}$ is

$$\mathcal{L}(T; \lambda) = \text{KL}\left(T \| T^{(k-1)}\right) + \sum_{i} \lambda_{i} \left(\sum_{j} T_{ij} - p_{i}\right)$$
$$= \sum_{i,j} T_{ij} \left(\log T_{ij} - \log T_{ij}^{(k-1)}\right) + \sum_{i} \lambda_{i} \left(\sum_{j} T_{ij} - p_{i}\right).$$

Taking derivative on T_{ij} , we get

$$\frac{\partial \mathcal{L}}{\partial T_{ij}} \left(T^{(k)}; \lambda \right) = \log T_{ij}^{(k)} + 1 - \log T_{ij}^{(k-1)} + \lambda_i = 0,$$

which implies

$$T_{ij}^{(k)} = \exp\left(\log T_{ij}^{(k-1)} - \lambda_i - 1\right) = \exp(-\lambda_i - 1)T_{ij}^{(k-1)}.$$

Hence $T^{(k)} = \operatorname{diag}\left(\widetilde{\mathbf{v}}^{(k)}\right) T^{(k-1)}$ where $\widetilde{v}_i^{(k)} = \exp(-\lambda_i - 1)$. If k is even, similarly we have $T^{(k)} = T^{(k-1)}\operatorname{diag}\left(\widetilde{\mathbf{w}}^{(k)}\right)$ where $\widetilde{\mathbf{w}}^{(k)}$ is of the form $\widetilde{w}_j^{(k)} = \exp(-\mu_j - 1)$. Altogether, by induction on k and notice that the product of two diagonal matrices is again a diagonal matrix, we have $T^{(k)} = \operatorname{diag}\left(\mathbf{v}^{(k)}\right) T^{(0)}\operatorname{diag}\left(\mathbf{w}^{(k)}\right) = \operatorname{diag}\left(\mathbf{v}^{(k)}\right) \mathcal{H}_{\alpha/2}\operatorname{diag}\left(\mathbf{w}^{(k)}\right)$ for some vectors $\mathbf{v}^{(k)}, \mathbf{w}^{(k)} \in \mathbb{R}^n$.

Now we deduce the recurrent relations of $\mathbf{v}^{(k)}$ and $\mathbf{w}^{(k)}$. By the KKT condition on $T^{(k)}$ (suppose k is odd) we have

$$\widetilde{v}_i^{(k)} = \exp\left(-\lambda_i^{(k)} - 1\right) = \frac{T_{ij}^{(k)}}{T_{ij}^{(k-1)}} = \frac{\sum_j T_{ij}^{(k)}}{\sum_j T_{ij}^{(k-1)}} = \frac{p_i}{\sum_j T_{ij}^{(k-1)}}.$$

And by the KKT conditions on $T^{(k-1)}$, $T^{(k-2)}$ we have

$$\widetilde{w}_{i}^{(k-1)} = \exp\left(-\mu_{i}^{(k-1)} - 1\right) = \frac{T_{ij}^{(k-1)}}{T_{ij}^{(k-2)}} = \frac{\sum_{j} T_{ij}^{(k-1)}}{\sum_{j} T_{ij}^{(k-2)}} = \frac{\sum_{j} T_{ij}^{(k-1)}}{p_{i}}.$$

Hence $\widetilde{\mathbf{v}}^{(k)} = \mathbf{1} \oslash \widetilde{\mathbf{w}}^{(k-1)}$, where the division " \bigcirc " operates element-wise. Similarly we have $\widetilde{\mathbf{w}}^{(k)} = \mathbf{1} \oslash \widetilde{\mathbf{v}}^{(k-1)}$ for even k. Notice that at the initial step $T^{(0)} = \mathcal{H}_{\alpha/2}$ and $\widetilde{\mathbf{v}}^{(1)} = \mathbf{v}^{(1)} = \mathbf{p} \oslash \left(\mathcal{H}_{\alpha/2}\mathbf{w}^{(0)}\right)$ with $\mathbf{w}^{(0)} = \mathbf{1}$. By induction we can show that

$$\mathbf{v}^{(2m+1)} = \widetilde{\mathbf{v}}^{(2m+1)} \otimes \mathbf{v}^{(2m-1)} = \left(\mathbf{1} \oslash \widetilde{\mathbf{w}}^{(2m)}\right) \otimes \left(\mathbf{p} \oslash \left(\mathcal{H}_{\alpha/2} \mathbf{w}^{(2m-2)}\right)\right)$$
$$= \mathbf{p} \oslash \left(\mathcal{H}_{\alpha/2} \mathbf{w}^{(2m-2)} \otimes \widetilde{\mathbf{w}}^{(2m)}\right) = \mathbf{p} \oslash \left(\mathcal{H}_{\alpha/2} \mathbf{w}^{(2m)}\right)$$

(" \otimes " stands for element-wise multiplication), where $\mathbf{v}^{(2m-1)} = \mathbf{p} \oslash (\mathcal{H}_{\alpha/2}\mathbf{w}^{(2m-2)})$ is the induction hypothesis and the definitions of $\mathbf{v}(2m+1)$, $\mathbf{w}^{(2m)}$ are

$$\mathbf{v}^{(2m+1)} = \widetilde{\mathbf{v}}^{(2m+1)} \otimes \widetilde{\mathbf{v}}^{(2m-1)} \otimes \cdots \otimes \widetilde{\mathbf{v}}^{(1)}$$
$$\mathbf{w}^{(2m+1)} = \widetilde{\mathbf{w}}^{(2m)} \otimes \widetilde{\mathbf{w}}^{(2m-2)} \otimes \cdots \otimes \widetilde{\mathbf{w}}^{(2)}.$$

Similarly we can also show that $\mathbf{w}^{(2m)} = \mathbf{p} \oslash (\mathcal{H}_{\alpha/2} \mathbf{v}^{(2m-1)})$ (in fact it should be $\mathcal{H}_{\alpha/2}^t$ in the equation, but note that the heat kernel is symmetric). Therefore the Sinkhorn algorithm can be written as in Algorithm 1.

Algorithm 1 Sinkhorn algorithm for computing W_{α}

Input: Probability distributions \mathbf{p}, \mathbf{q} on the mesh, parameter α

Output: $W_{\alpha}(\mathbf{p}, \mathbf{q}) = \alpha \cdot \mathbf{1}^{t}(\mathbf{p} \otimes \log \mathbf{v} + \mathbf{q} \otimes \log \mathbf{w})$

- 1: Initialize $\mathbf{v}, \mathbf{w} \leftarrow \mathbf{1}$
- 2: for $k = 1, 2, 3, \cdots$ (both \mathbf{v}, \mathbf{w} changes or any other relevant stopping criterion) do
- 3: $\mathbf{v} \leftarrow \mathbf{p} \oslash (\mathcal{H}_{\alpha/2}\mathbf{w})$
- 4: $\mathbf{w} \leftarrow \mathbf{q} \oslash (\mathcal{H}_{\alpha/2}\mathbf{v})$
- 5: end for

After iterating for enough steps, the pair (\mathbf{v}, \mathbf{w}) should converge to a fixed point, *i.e.* $\mathbf{v} = \mathbf{p} \oslash (\mathcal{H}_{\alpha/2}\mathbf{v})$, $\mathbf{w} = \mathbf{q} \oslash (\mathcal{H}_{\alpha/2}\mathbf{v})$. Hence the entropy-regularized EMD can be computed as

$$W_{\alpha}(\mathbf{p}, \mathbf{q}) = \alpha \cdot \text{KL}(T \| \mathcal{H}_{\alpha/2}) = \alpha \cdot \text{KL}(\text{diag}(\mathbf{v}) \mathcal{H}_{\alpha/2} \text{diag}(\mathbf{w}) \| \mathcal{H}_{\alpha/2})$$

$$= \alpha \sum_{i,j} v_i (\mathcal{H}_{\alpha/2})_{ij} w_j \log(v_i w_j)$$

$$= \alpha \left(\sum_i v_i \log v_i \sum_j (\mathcal{H}_{\alpha/2})_{ij} w_j + \sum_j w_j \log w_j \sum_i (\mathcal{H}_{\alpha/2})_{ij} v_i \right)$$

$$= \alpha \left(\sum_{i} v_{i} \log v_{i} \frac{p_{i}}{v_{i}} + \sum_{j} w_{j} \log w_{j} \frac{q_{j}}{w_{j}} \right)$$
$$= \alpha \cdot \mathbf{1}^{t} (\mathbf{p} \otimes \log \mathbf{v} + \mathbf{q} \otimes \log \mathbf{w}).$$

(f) We can take W_{α} between δ distributions as a vertex-to-vertex distance when α is small. Fix a source point \mathbf{x} (Figure 2a), we compute the distance $W_{\alpha}(\delta_{\mathbf{x}}, \delta_{\mathbf{y}})$ with any target point \mathbf{y} on the mesh. The results with different choice of α 's are shown in Figure 2b, 2c. We see that as α gets smaller, the distance becomes more accurate.

Figure 2: W_{α} between δ distributions as a vertex-to-vertex distance.

Problem 5

Figure 3: Shape interpolation by computing the Wasserstein barycenters.