Семинар 7. Инвариантные и собственные подпространства. Часть 1.

1. Инвариантные подпространства

Будем работать только с преобразованиями.

1.1. Определение

Определение 1.1. Подпространство $L' \subset L$ называется инвариантным относительно преобразования φ , если

$$\forall \mathbf{x} \in L' \mapsto \varphi(\mathbf{x}) \in L'$$
 или $\varphi(L') \subset L'$.

Например:

- o, L вырожденные случаи.
- Поворот \mathbb{R}^3 вокруг \mathbf{e}_3 на $\pi/2$. Инвариантные подпространства: $\mathbf{o}, \mathbb{R}^3, \langle \mathbf{e}_1, \mathbf{e}_2 \rangle, \langle \mathbf{e}_3 \rangle$.
- Ядро преобразования φ (ker φ) всегда инвариантно относительно этого преобразования φ .
- $\operatorname{Im} \varphi$

Теорема 1.1. Если какое-то подпространство содержит в себе образ, то L' инвариантно относительно φ .

Доказательство.

$$\forall \mathbf{x} \in L' \mapsto \varphi(\mathbf{x}) \subset \operatorname{Im} \varphi \subset L'$$

1.2. Свойства инвариантных подпространств

Предложение 1.1. Сумма инвариантных подпространств инвариантна.

Доказательство.

$$\left. \begin{array}{l} \mathbf{x} \in L_1, \varphi(\mathbf{x}) \in L_1 \\ \mathbf{y} \in L_2, \varphi(\mathbf{y}) \in L_2 \end{array} \right\} \Rightarrow \varphi(\mathbf{x}) + \varphi(\mathbf{y}) \in L_1 + L_2$$

Предложение 1.2. Пересечение инвариантных подпространств инвариантно.

Доказательство.

$$\left. \begin{array}{l} \mathbf{x} \in L_1, \varphi(\mathbf{x}) \in L_1 \\ \mathbf{x} \in L_2, \varphi(\mathbf{x}) \in L_2 \end{array} \right\} \Rightarrow \varphi(\mathbf{x}) \in L_1 \cap L_2$$

2. Матрица преобразования

2.1. Вид матрицы преобразования

Рассмотрим линейное пространство L, $\dim L = n$. Пусть $L' \subset L$, $\dim L' = k$ — инвариантное подпространство относительно φ , базис в $L' : \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$, базис в $L : \{\mathbf{e}_1, \dots, \mathbf{e}_k, \mathbf{e}_{k+1}, \dots, \mathbf{e}_n\}$.

1

Напомним, что матрица преобразования A строится из образов базисных векторов:

$$A = \left(\left[\varphi(e_1) \right] \cdots \left[\varphi(e_n) \right] \right)$$

Т.о. матрица преобразования в выбранном базисе имеет следующий вид:

$$A = \left(egin{array}{c|c} A_1 & A_2 \ \hline O & A_4 \end{array}
ight)^\square$$
 — клетчочно-треугольный вид. 1

Пусть теперь $L = L_1 \oplus L_2 \oplus \cdots \oplus L_s, \forall i \ L_i$ — инвариантное подпространство относительно φ . Тогда матрица преобразования имеет вид:

$$A = egin{pmatrix} oxedsymbol{A_1} & O & \dots & O \\ O & A_2 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & A_s \end{pmatrix}^{\square} -$$
 клеточно-диагноальный вид.

Ширина и высота каждой клетки равны размерности инвариантного подпространства.

Пример 1

Найти инвариантные подпространства в \mathbb{R}^3 относительно φ .

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

Из вида A видно, что существует два не пересекающихся инвариантных подпространства. $\mathbf{o}, \mathbb{R}^3, \langle \mathbf{e}_1, \mathbf{e}_2 \rangle, \langle \mathbf{e}_3 \rangle$.

2.2. Геометрический смысл матрицы преобразования

Поговорим о геометрии. Научимся определять по внешнему виду матрицы ее геометрический смысл.

мысл.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} - \text{отражение относительно } \langle \mathbf{e}_1, \mathbf{e}_2 \rangle.$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \text{проекция.}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \text{растяжение вдоль } \mathbf{e}_2 \text{ в 3 раза.}$$

Нам интересны матрины вида:

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$
 — обобщённое растяжение $\Leftrightarrow \varphi(\mathbf{e}_i) = \lambda_i \mathbf{e}_i$.

¹Квадрат над матрицей значит, что матрица блочная.

3. Собственный вектор

3.1. Определение

Рассмотрим преобразование φ с матрицей A, тогда ненулевой вектор $\mathbf x$ называется собственным вектором, если $\varphi(\mathbf e) = \lambda \mathbf e$; λ — собственное значение.

Множество собственных векторов, отвечающих одному и тому же собственному значению, образует собственное пространство.

3.2. Свойства

Предложение 3.1. Собственный вектор (и только он) порождает одномерное инвариантное подпространство.

Доказательство. Рассмотрим инвариантное подпространство $\langle \mathbf{x} \rangle \Rightarrow \varphi(\alpha \mathbf{x}) = \alpha \varphi(\mathbf{x}) = \alpha \lambda \mathbf{x} \in \langle \mathbf{x} \rangle$.

4. Алгоритм поиска собственных значений и собственных векторов

$$\varphi(\mathbf{x}) = \lambda \mathbf{x}$$
$$\varphi(\mathbf{x}) - \lambda \mathbf{x} = \mathbf{o}$$

Рассмотрим тождественное преобразование Id, матрица его преобразования E.

$$(\varphi - \lambda Id)(\mathbf{x}) = \mathbf{o}$$

Перейдём к матричному виду:

$$(\varphi - \lambda E)\mathbf{x} = \mathbf{o} \tag{*}$$

Итак, мы получили СЛУ размеров $n \times n$. Она имеет либо одно решение (нулевое), но оно нам не интересно, т. к. $\mathbf{x} \neq \mathbf{o}$, либо бесконечно много решений $\Rightarrow A$ должна быть вырожденной $\Rightarrow \det(A - \lambda E) = 0 \rightarrow \lambda_i$ — собственное значение $\rightarrow (*) \rightarrow \mathbf{x}$ — собственный вектор.

Пример 2

Найти собственные значения и собственные векторы.

$$A = \left(\begin{array}{rrr} 2 & 2 & 1 \\ -2 & -3 & 2 \\ 3 & 6 & 0 \end{array}\right)$$

Найдём λ из условия $\det(A - \lambda E) = 0$:

$$\begin{vmatrix} 2 - \lambda & 2 & 1 \\ -2 & -3 - \lambda & 2 \\ 3 & 6 & -\lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^3 - \lambda^2 + 17\lambda + 15 = 0$$

Ответ: $\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 5$ Далее подставим числа λ в (*):

1.
$$\lambda_1 = 1: \begin{pmatrix} 1 & 2 & 1 & 0 \\ -2 & -4 & 2 & 0 \\ 3 & 6 & -1 & 0 \end{pmatrix}$$
,

 $L_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \langle \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \rangle$ — Собственный вектор, перейдёт сам в себя т.к. $\lambda = 1$.

2.
$$\lambda_2 = 3: L_2 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rangle$$

3.
$$\lambda_3 = 5: L_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \langle \begin{pmatrix} -\frac{1}{8} \\ 9 \end{pmatrix} \rangle$$

Лемма 4.1. Собственные векторы, соответствующие различным собственным значениям, попарно линейно независимы.

Соберём базис
$$\mathbf{f}$$
 $\left\{ \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -8 \\ 9 \end{pmatrix} \right\}$ \mathbf{f}_1 \mathbf{f}_2 \mathbf{f}_3 $\varphi(\mathbf{f}_1) = \mathbf{f}_1$ $\varphi(\mathbf{f}_2) = 3\mathbf{f}_2 \rightarrow A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -5 \end{pmatrix}$ в базисе \mathbf{f} .

5. Диагонализируемость матрицы

Пример 3

Диагонализировать матрицу

$$A = \begin{pmatrix} 3 & 1 & -2 \\ 2 & 2 & -2 \\ 2 & 1 & -1 \end{pmatrix}$$

1.
$$\lambda = 1$$

$$\begin{pmatrix} 2 & 1 & -2 & | & 0 \\ 2 & 1 & -2 & | & 0 \\ 2 & 1 & -2 & | & 0 \end{pmatrix}, L_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \langle \underbrace{\begin{pmatrix} -1/2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}}_{\text{формирует}}_{\text{плоскость}}$$

 $\dim L_1 = 2$ — геометрическая кратность (размерность собственного подпространства).

4

$$2. \lambda = 2$$

$$\Longrightarrow \begin{pmatrix} 1 & 1 & -2 & | & 0 \\ 2 & 0 & -2 & | & 0 \\ 2 & 1 & -3 & | & 0 \end{pmatrix} \Rightarrow L_1 = \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rangle = \langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rangle$$

Выберем базис: $\left\{ \begin{pmatrix} -1/2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

Поэтому $\varphi(\mathbf{f}_1) = \mathbf{f}_1, \ \varphi(\mathbf{f}_2) = \mathbf{f}_2, \ \varphi(\mathbf{f}_3) = 2\mathbf{f}_3$

Ответ:
$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

 \bullet Если геометрическая кратность строго меньше (<) алгебраической кратности хотя бы для одного λ , то преобразование **недиагонализируемо**.

Пример 4

Диагонализировать матрицу: $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

$$\det (A - \lambda E) = 0 \Rightarrow \begin{vmatrix} 2 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 = 0$$

Получаем, что $\lambda=2$ алгоритмической кратности 3

$$\Longrightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; L_1 = \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rangle = \langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rangle$$

Получили, что геометрическая кратность (равна 1) меньше алгебраической кратности (равна 3). Тогда матрица недиагонализируема (не хватило собственных векторов).

Пример 5

Диагонализировать матрицу:

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\det (A - \lambda E) = 0 \Rightarrow \begin{vmatrix} -\lambda & -1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda^2 + 1) = 0$$
 $\lambda = 1$, $\lambda = \pm i$
отвечают за инвариантную

$$\begin{pmatrix} -1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; L_1 = \langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \rangle$$

Условие диагонализируемости матрицы:

- 1. B частности: $A_{n \times n}$ диагонализируема, если A имеет n различных вещественных собственных значений.
- 2. B общем случае: A диагонализируема $\Leftrightarrow L$ раскладывается в прямую сумму собственных подпространств.