演習問題1(配分問題を動的計画法で解く)

3つの工場における資源 x (> 0) と収益 $g_i(x)$ の関係が次式で与えられている.

$$g_1(x) = -x^2 + 5x + 10$$

$$g_2(x) = -2x^2 + 11x + 14$$

$$g_3(x) = x^2 - 5x + 12$$

ただし, $g_i(0) = 0$ とする. ここで, x_i を工場 i に配分する資源の量とする. このとき,

$$\sum_{i=1}^{3} x_i \le 6, \qquad x_i > 0$$

という制約(配分する資源の総量が6以下)のもとで、収益の合計

$$\sum_{i=1}^{3} g_i(x_i)$$

を最大にする資源の分配 x_i (i = 1,2,3) を求めよ.

演習問題2 (経路探索問題を動的計画法で解く)

- 1. 右図に示した経路探索問題において, 各パスに置かれた数字を収益と見て, 総収益を最大にする経路を求めるプロ グラムを作れ。それを用いて,最適経 路を求めよ。
- 2. 右図に示した経路探索問題において, 各パスに置かれた数字をコストと見て, 総コストを最小にする経路を求めるプログラムを作れ。それを用いて,最適 経路を求めよ。

演習問題3 (文字列の距離を動的計画法で求める)

参照用の文字列を R, 入力文字列を X とする. いま,文字の脱落・挿入をトレリス上で以下のように扱うことにしたうえで,文字列 R と X の距離を求めることを考える.

演習問題3(文字列の距離を動的計画法で求める)

このとき,以下の問に答えよ.

- 1. 文字列 X の 1 文字目から i 文字目までの部分文字列と文字列 R の 1 文字目から j 文字目までの部分文字列の距離を $\alpha(j,i)$ とする。 $\mathrm{subCost}(a,b)$ を文字 a を文字 b に誤るコスト, $\mathrm{delCost}()$ を R の文字1文字が脱落する(R にあるものが X にない)コスト, $\mathrm{insCost}()$ を X に1文字が挿入する(R にないものが X にある)コストとするとき, $\alpha(j,i)$ を漸化式の形で表せ.
- 2. 文字列 X と文字列 R の距離を求めるアルゴリズムを記述せよ.
- 3. "KOBATAKE" と "KOBEATAK" は,トレリス上のどのようなパスで対応づけられるかを示せ、ただし, subCost(a,b), delCost(), insCost() はともに 1 とする.

演習問題(文字列の距離を動的計画法で求める)

3)

