Categorical predictors

WiSe23/24

Daniela Palleschi

2023-10-11

Table of contents

Set-up environment	2
Bimodal distribution	3
Bimodal distribution	4
Re-run our model Model fit and overfitting	4 4
Categorical predictors Including a categorical predictor	5 5 6
Contrasts	6
Dummy coding/treatment contrasts	7
Age-only coefficients	8 8 9
Default contrasts	9 10
Sum contrasts/coding	10 11
	12 13

Exploring predicted values	15
Summary	17
Important terms	17
Task	18
Reading time data	18
Treatment contrasts	18
Sum contrasts	19
Multiple regression	19

Learning Objectives

Today we will learn...

- ullet about cateogorical predictors
- how to interpret different contrast coding

Set-up environment

Load data

• load in the the dataset from the languageR package

```
df_freq_eng <-
   as.data.frame(english) |>
```

Bimodal distribution

• in your exploratory data analysis, you might've noticed a bimodal distribution.

Bimodal distribution

- \bullet this is a bimodal distribution
 - there are two *modes* (most frequent value, i.e., peak in a histogram)
- We know that there were two subject groups: old and young
 - it might be that each group has a different mode

Re-run our model

• re-run our multiple regression model (reaction times ~ frequency + length)

Model fit and overfitting

```
glance(fit_freq_length)$r.squared
[1] 0.1896649
glance(fit_freq_length)$adj.r.squared
```

[1] 0.1891323

• seems like we don't have any overfitting in our model (\mathbb{R}^2 and adjusted \mathbb{R}^2 are comparable)

Model coefficients

• look at our coefficients.

```
tidy(fit_freq_length) |> select(term, estimate)
```

- looks similar to the dataset we explored yesterday
- the bimodal distribution we saw earlier suggests age group could be an important a predictor
- does the effect of frequency and length also differ as a function of age group?

Categorical predictors

- we'd predict longer reading times for older participants than younger participants
 - although we should hypothesise before collecting and visualising our data!
- though age is numerical, all we have is two categories: old or young

Including a categorical predictor

• include age_subject in our model

Model fit

- compare R^2 and adjusted R^2
- R^2 our model without age as a predictor:

```
# rt_lexdec ~ freq_z*length_z
glance(fit_freq_length)$adj.r.squared
```

[1] 0.1891323

• R^2 our model with age as a predictor:

```
# rt_lexdec ~ freq_z*length_z + age_subject
glance(fit_age)$r.squared
```

[1] 0.6888949

• adjusted \mathbb{R}^2 our model with age as a predictor:

```
# rt_lexdec ~ freq_z*length_z + age_subject
glance(fit_age)$adj.r.squared
```

[1] 0.6886222

- large increase in proportion of variance explained when we include age
- and the R^2 and adjusted R^2 values are comparable for the model with age
- this suggests that age captures variance that was not explained without it

Check for absence of collinearity

```
car::vif(fit_age)

freq_z length_z age_subject freq_z:length_z
1.012553 1.004461 1.000000 1.008108
```

- VIF values for all coefficients are near 1
 - this indicates that our predictors all contribute to the variance explained by the model and are not correlated

Contrasts

• let's take a look at our model estimates

- there is a negative slope for age_subjectyoung
 - reaction times decrease when...what?
- how does a categorical variable get fit to a line?
- the factor levels (i.e., the categories in a categorical variable) are given numerical values
 - We call these numerical values mapped onto factor levels contrast coding

Dummy coding/treatment contrasts

• we can check the contrasts with contrasts()

```
contrasts(df_freq_eng$age_subject)
         young
old          0
young          1
```

- old was coded at 0 and young as 1
- our slope for age_subjectyoung represents the change in reaction times when we move from old to young
- this is called **treatment coding** (a.k.a., dummy coding), where one factor level is coded as 0 and the other as 1

Age-only model

- remove frequency and length to focus on age_subject
- use raw reaction times, to more easily interpret the results

```
fit_age <-
lm(exp(rt_lexdec) ~ age_subject,
    data = df_freq_eng)</pre>
```

• what's the variance explained by our (simple) model with only age as a predictor?

```
glance(fit_age)$r.squared
```

[1] 0.4682224

- R^2 is lower than when we included frequency and length
 - but higher than our model with frequeny and length but no age

Age-only coefficients

- reaction times decrease by 157ms going from old to young group compared to the old group
- what does the intercept represent here?

```
df_freq_eng |>
   select(rt_lexdec, age_subject) |>
   mutate(rt_lexdec = exp(rt_lexdec)) |>
   summary()
```

```
rt_lexdec age_subject
Min. : 495.4 old :2284
1st Qu.: 617.4 young:2284
Median : 699.6
Mean : 708.1
3rd Qu.: 775.3
```

Max. :1323.2

• don't see the intercept value there

Summarisinggroup effects

- our intercept was 786.72, but that wasn't the grand mean reaction time
 - what is the intercept?
- how does rt_lexdec look for the two groups?

- the intercept corresponds to the mean reaction time for the old group. Why?
 - because old coded as 0

Intercept at 0

- the intercept corresponds to the value of y when x is 0
 - when predictors are *centered*, this will correspond to the mean value of y, because when x = 0 it aligns with the centre value of y
 - when predictors are not centered, this will correspond to the value of y when x is 0 in the original unit of measurement

Default contrasts

- which variable is coded as 0?
 - R simply takes the first level name alphabetically: old comes before young, so old was automatically taken as the 'baseline' to which young was compared
- if we were to add the slope to the intercept, we would get the mean for the *young* group. Why is this?

```
coef(fit_age)['(Intercept)'] + coef(fit_age)['age_subjectyoung']
(Intercept)
629.5473
```

Simple linear regression as a two-sample t-test

• this actually is the same thing as a *t*-test:

```
t.test(exp(rt_lexdec) ~ age_subject, data = df_freq_eng)
    Welch Two Sample t-test
data: exp(rt_lexdec) by age_subject
t = 63.406, df = 4144.6, p-value < 0.0000000000000022
alternative hypothesis: true difference in means between group old and group young is not eq
95 percent confidence interval:
 152.3128 162.0325
sample estimates:
  mean in group old mean in group young
           786.7200
                               629.5473
  • if we compare this to our model, we see that the t- and p-values are identical (more on
    these later).
  tidy(fit_age)
# A tibble: 2 x 5
                   estimate std.error statistic p.value
  term
  <chr>
                      <dbl>
                               <dbl>
                                           <dbl>
                                                   <dbl>
                       787.
                                1.75
                                           449.
                                                       0
1 (Intercept)
```

Visualing treatment contrasts

2 age_subjectyoung

```
fig_nocontrasts <-
df_freq_eng |>
    ggplot() +
    aes(x = age_subject, y = exp(rt_lexdec)) +
    labs(title = "No contrasts") +
    # geom_vline(xintercept = 0, linetype="dashed", size = .5) +
    geom_point(position = position_dodge(.6)) +
    geom_smooth(method = 'lm', aes(group=1)) + theme_minimal() +
    theme_bw()
```

2.48

-157.

-63.4

0

```
fig_treatment <-
df_freq_eng |>
mutate(age_subject = if_else(age_subject=="young",1,0)) |>
ggplot() +
aes(x = age_subject, y = exp(rt_lexdec)) +
labs(title = "Treatment contrasts") +
geom_vline(xintercept = 0, linetype="dashed", size = .5) +
geom_point(position = position_dodge(.6)) +
geom_smooth(method = 'lm', aes(group=1)) + theme_minimal() +
theme_bw()
```


Sum contrasts/coding

- sum coding is another frequently used coding scheme
 - essentially centring categorical variables
- simplifies interpretation of interaction effects
- instead of 0 and 1, we set our contrasts to +/-1 or 0.5 (I prefer 0.5)

Setting sum contrasts

• ensure we're working with a factor

```
# first, make sure your variable is a factor
df_freq_eng$age_subject <- as.factor(df_freq_eng$age_subject)</pre>
```

• check it is a factor (could do this first)

```
# check
class(df_freq_eng$age_subject)
```

[1] "factor"

contr.sum()

- we can use the contr.sum() function to set sum contrasts
 - takes as its argument the number of factor levels

```
# next, you could use the contr.sum() function
contrasts(df_freq_eng$age_subject) <- contr.sum(2) # where 2 means we have 2 levels
contrasts(df_freq_eng$age_subject)</pre>
```

```
[,1]
old 1
young -1
```

- old is coded as -1 and young as +1
- I prefer to use +/-0.5 for reasons we don't need to go into here
 - I would also prefer to have young coded in the negative value, and old in the positive value
 - this aids in the way I interpret the slope: a change in reaction times for the older group compared to the younger group

By-hand

Model with sum coded factor

• run our model

```
fit_age_sum <-
   lm(exp(rt_lexdec) ~ age_subject,
   data = df_freq_eng)

glance(fit_age_sum)$r.squared</pre>
```

[1] 0.4682224

```
glance(fit_age)$r.squared
```

[1] 0.4682224

• no difference in variance account for by our model (remember, centering a variable just shifts values, doesn't affect the relationship between values)

Coefficients

- there is a difference in the intercept
 - and a change in sign in our slope. Why is this?

Treatment/Dummy vs. Sum contrasts

```
fig_sum1 <-
df_freq_eng |>
 mutate(age_subject = if_else(age_subject=="young",-1,1)) |>
 ggplot() +
 aes(x = age_subject, y = exp(rt_lexdec)) +
 labs(title = "Sum contrasts") +
 geom_vline(xintercept = 0, linetype="dashed", size = .5) +
 geom_point(position = position_dodge(.6)) +
 geom_smooth(method = 'lm', aes(group=1)) + theme_minimal() +
 theme bw()
fig sum5 <-
df_freq_eng |>
 mutate(age_subject = if_else(age_subject=="young", -.5, .5)) |>
 ggplot() +
 aes(x = age_subject, y = exp(rt_lexdec)) +
 labs(title = "Sum contrasts") +
 geom_vline(xintercept = 0, linetype="dashed", size = .5) +
 geom_point(position = position_dodge(.6)) +
 geom_smooth(method = 'lm', aes(group=1)) + theme_minimal() +
 theme_bw()
fig_treatment + fig_sum5 + plot_annotation(tag_levels = "A")
```


Figure 1: The difference in slope corresponds to which level is coded as 0 (dummy coding) or -5/-1 (sum coding)

Intercept

- the intercept value is now the overall mean of all observed reaction times, because now the y value when x equals zero lies in the middle of the two groups
- the slope magnitude (i.e., size of the value) hasn't changed, because the difference betwen the two group means has not changed

```
mean(exp(df_freq_eng$rt_lexdec))
```

[1] 708.1336

Exploring predicted values

• let's explore the predicted values of our model with a categorical variable

```
fitted(fit_age)[1:6]

338  1790  3125  3957  3313  4145
629.5473  786.7200  629.5473  786.7200
```

- there are only 2 values, 630 and 787
 - these correspond to the means for each group that we saw above
 - they also seem to be in a pattern: mean(young), mean(old), mean(young), mean(old), etc.
 - how does this correspond to the age group of the participant for the first ten observations?

```
df_freq_eng$age_subject[1:6]

[1] young old young old young old
attr(,"contrasts")
       [,1]
old 0.5
young -0.5
Levels: old young
```

• first ten observations in our data are in young-old pairs. What are the first values in the raw data?

```
exp(df_freq_eng$rt_lexdec[1:6])
```

```
[1] 623.61 775.67 617.10 715.52 575.70 742.19
```

• what is the difference between these reaction times and the fitted values?

```
exp(df_freq_eng$rt_lexdec[1:6]) - fitted(fit_age)[1:6]
```

```
338 1790 3125 3957 3313 4145 -5.937299 -11.049991 -12.447299 -71.199991 -53.847299 -44.529991
```

```
residuals(fit_age)[1:6]
```

```
338 1790 3125 3957 3313 4145
-5.937299 -11.049991 -12.447299 -71.199991 -53.847299 -44.529991
```

term | description/other terms

- we see again that predicted values correspond to the x value for the corresponding row in the dataframe
 - but with our two-level factor, we only have two x values, young and old

```
df_freq_eng <-
    augment(fit_age, df_freq_eng)
  df_freq_eng |>
    select(word, age_subject, rt_lexdec, .fitted, .resid) |>
    mutate(rt_lexdec = exp(rt_lexdec)) |>
    head()
# A tibble: 6 x 5
 word age_subject rt_lexdec .fitted .resid
  <fct> <fct>
                        <dbl>
                                <dbl> <dbl>
                                 630. -5.94
1 ace
        young
                         624.
2 ace
        old
                         776.
                                 787. -11.0
                                 630. -12.4
3 act
        young
                         617.
                                 787. -71.2
                         716.
4 act
        old
5 add
                         576.
                                 630. -53.8
        young
                                 787. -44.5
6 add
        old
                         742.
```

Summary

- we saw that the equation for a straight line boils down to its intercept and slope
- we fit our first linear model with a categorical predictor

Important terms

Learning Objectives

Today we learned...

- about cateogorical predictors
- how to interpret different contrast coding

Task

Follow the instructions on the website (Multiple regression > Task) (or continue to the next slides).

Reading time data

We'll use a dataset from Biondo et al. (2022), an eye-tracking reading study exploring the processing of adverb-tense concord in Spanish past and future tenses. Participants read sentences that began with a temporal adverb (e.g., yesterday/tomorrow), and had a verb marked with the congruent or incongruent tense (past/future).

Load in the data.

Treatment contrasts

We will look at the measure total reading time (tt) at the verb region (roi == 4). Subset the data to only include the verb region.

```
df_verb <-
  df_tense |>
  filter(roi == 4)
```

- 1. Run a simple linear model with (log-transformed) total reading time (tt) as an independent variable and grammaticality (gramm) as a dependent variable. Use treatment contrasts.
- 2. Inspect your coefficients again. What conclusions do you draw?
- 3. Run model diagnostics:

- check model assumptions where relevant (normality, constant variance, collinearity)
- check model fit (R^2)

Sum contrasts

- 1. Re-run your model with sum contrasts.
- 2. Inspect your coefficients again. Do your conclusions change?
- 3. Re-run your model diagnostics. How does it compare to your first model?

Multiple regression

- 1. Add verb tense (verb_t: past, future) as a predictor, including an interaction term. Use sum contrasts.
- 2. Inspect your coefficients again. Do your conclusions change?
- 3. Re-run your model diagnostics. How does it compare to the last models?

Literaturverzeichnis

Biondo, N., Soilemezidi, M., & Mancini, S. (2022). Yesterday is history, tomorrow is a mystery: An eye-tracking investigation of the processing of past and future time reference during sentence reading. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 48(7), 1001–1018. https://doi.org/10.1037/xlm0001053