PARADIGMAS DA ANÁLISE

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Análise e Desenvolvimento de Sistemas

Prof. Evandro Zatti, M. Eng.

FUNDAMENTOS

- A Análise de Sistemas é uma das etapas da Engenharia de Software;
- Ela compreende basicamente o processo de estudo das necessidades do cliente como subsídio para a construção do software;
- Aqui são apresentados os diferentes paradigmas de análise:
 - ✓ Análise Estruturada;
 - ✓ Análise Essencial;
 - ✓ Análise Orientada a Objetos.

ANÁLISE ESTRUTURADA

- A Análise Estruturada é um método de análise baseado no paradigma procedimental;
- Criada na década de **1970**;
- O processo de análise foca no fluxo dos processos e na descrição funcional do sistema;
- Chris **Gane** (GANE, 1983) e Edward **Yourdon** (YOURDON, 1990) são autores de renome da Análise Estruturada.

ANÁLISE ESTRUTURADA

- Vantagens:
 - ✓ Representação gráfica de fácil entendimento;
 - ✓ Particionada em diversas especificações.
- Desvantagens:
 - ✓ Prazo estendido para desenvolvimento;
 - ✓ Documentação inadequada;
 - ✓ <u>Dificuldades de se realizar testes.</u>

ANÁLISE ESSENCIAL

- É uma evolução da Análise Estruturada clássica;
- Utiliza as mesmas ferramentas da Análise Estruturada;
- Diferente da Análise Estruturada, além dos fluxos e processos, a Análise Essencial **foca também nos dados**.

ANÁLISE ESSENCIAL

- A Análise Essencial compreende:
 - ✓ **Modelo Essencial:** Define o **comportamento interno** que o sistema deve ter para se relacionar adequadamente com o ambiente.
 - ✓ Modelo de Implementação: Define a forma de implementação do sistema em um ambiente técnico específico.

MODELO ESSENCIAL

- O Modelo Essencial é subdividido em:
 - ✓ **Modelo Ambiental**: Define **o que deverá ter**, ou seja, é a delimitação do sistema em relação ao ambiente.
 - ✓ Modelo Comportamental: Define como deverá funcionar, ou seja, o comportamento das partes internas do sistema para interagir com o ambiente.

MODELO AMBIENTAL

- O Modelo Ambiental define:
 - ✓ A **fronteira** do sistema com o ambiente onde ele se situa, determinando o que é **interno** e o que é **externo** a ele;
 - ✓ As interfaces entre o sistema e o ambiente externo, determinando que informações chegam ao sistema vindas do mundo exterior e vice-versa;
 - ✓ Os **eventos** do ambiente externo ao sistema aos quais este deve responder.

MODELO AMBIENTAL

- São produtos do Modelo Ambiental:
 - ✓ Declaração dos Objetivos;
 - ✓ Diagrama de Contexto;
 - ✓ Lista de Eventos;
 - ✓ Dicionário de Dados preliminar (opcional).

DECLARAÇÃO DOS OBJETIVOS

- Consiste de uma breve e concisa declaração dos objetivos do sistema;
- É dirigida para o cliente: gerentes e pessoas alheias ao desenvolvimento;
- Composta de várias sentenças: em forma de lista, não de parágrafos.
- Não apresenta descrição detalhada do sistema.

DIAGRAMA DE CONTEXTO

- Apresenta uma visão geral do sistema em relação ao meio em que está inserido:
- Componentes com os quais o sistema se comunica (entidades externas);
- Dados que o sistema recebe do mundo exterior, processa e fornece para o mundo.

DIAGRAMA DE CONTEXTO

Os componentes gráficos de um Diagrama de Contexto são:

- ✓ representa o processo do sistema em alto nível;
- ✓ não deve haver mais de um processo;

✓ representa as entidades externas ao sistema;

- ✓ representa as entidades externas ao sistema;
- ✓ retas ou curvas, indicam a direção do fluxo dos dados.

DIAGRAMA DE CONTEXTO

• Exemplo:

- Nome do Evento
 - ✓ Sujeito + Verbo + Complemento
 - ✓ Ex.: Cliente + Compra + Produto
- Descrição do Evento
 - ✓ Como acontece o evento?
- Ex.:
 - ✓ Atendente verifica se tem o produto no estoque
 - Se não tiver o produto em estoque, abre ordem de serviço.
 - Se tiver o produto em estoque, abre um orçamento.
 - ✓ Atendente verifica se o cliente tem cadastro
 - caso não tenha, poderá ser cadastrado.

- Tipo de Estímulo
 - ✓ (F) Fluxo de Dados: quando a entidade externa envia dados para o sistema.
 - ✓ (T) Temporal: quando as ações são do próprio sistema;
- O nome do evento deve começar com "É hora de...".
- Ação do Processo
 - ✓ Qual atividade será executada pelo sistema?
 - ✓ Ex.: Registrar Venda

- Resposta
 - ✓ Qual resposta será enviada à entidade externa?
 - Relatórios, e-mails, etc;
 - Não são consideradas mensagens em tela (Ex.: "Venda registrada com sucesso!".
 - ✓ Ex.: Venda_Efetuada

N ₀	Nome do Evento	Descrição do Evento	Estímulo	Tipo Estímulo	Ação ou Processo	Resposta
01	Cliente Compra Produto	 Atendente verifica se tem o produto no estoque ✓ Se não tiver o produto em estoque, abre ordem de serviço. ✓ Se tiver o produto em estoque, abre um orçamento. Atendente verifica se o cliente tem cadastro ✓ caso não tenha, poderá ser cadastrado. 	Cliente	F	Registrar Venda	Venda_Efetuada

MODELO COMPORTAMENTAL

- O Modelo Comportamental define:
 - ✓ O comportamento interno que o sistema deve ter para se relacionar com o ambiente;
 - ✓ De que maneira os componentes internos do sistema se relacionam entre si;
 - ✓ De que maneira os componentes reagem aos estímulos externos.

MODELO COMPORTAMENTAL

- O Modelo Comportamental é composto de:
 - ✓ Diagrama de Fluxo de Dados (DFD);
 - ✓ Diagrama Entidade-Relacionamento (DER);
 - √ Diagrama de Transição de Estados (DTE).

DIAGRAMA DE FLUXO DE DADOS (DFD)

 Retrata os componentes do sistema, com interfaces, processos e fluxo de dados;

• Regras:

- ✓ Todos objetos devem ter um **nome**;
- ✓ Todos os **processos** devem ter pelo menos um fluxo de **entrada** e um de **saída**;
- ✓ Todos os **fluxos** de dados devem ter uma **origem** e um **destino**;
- ✓ Todos os **fluxos** de dados devem **começar** ou **terminar** em um **processo**.

DIAGRAMA DE FLUXO DE DADOS (DFD)

• É composto de:

Notação:	Processos	Fluxos de Dados	Depósitos de Dados	Entidades Externas
✓ Chris Gane✓ Trish Sarson	P1 Calcular resultado		D1 Notas	Aluno
✓ Edward Yourdon✓ Peter Coad	Calcular resultado		Notas	Aluno

DIAGRAMA DE FLUXO DE DADOS (DFD)

DIAGRAMA ENTIDADE-RELACIONAMENTO (DER)

- Fornece uma visão lógica do banco de dados, fornecendo um conceito mais generalizado de como estão estruturados os dados de um sistema;
- Representa:
 - ✓ Entidades;
 - ✓ Atributos;
 - ✓ Relacionamentos;
 - ✓ Cardinalidade.

DIAGRAMA ENTIDADE-RELACIONAMENTO (DER)

Notação Peter Chen (CHEN, 1990):

DIAGRAMA ENTIDADE-RELACIONAMENTO (DER)

DIAGRAMA DE TRANSIÇÃO DE ESTADOS (DTE)

- Modela o comportamento em uma situação temporal;
- Utilizado em sistemas de tempo real;
- É composto de:
 - ✓ Estados;
 - ✓ Mudanças de estados (transições);
 - ✓ Condições e ações.

DIAGRAMA DE TRANSIÇÃO DE ESTADOS (DTE)

MODELO DE IMPLEMENTAÇÃO

- Define a forma de implementação do sistema em um ambiente técnico específico;
- Apresenta uma abstração do sistema considerando as restrições tecnológicas;
- Pode ser representado pelo Diagrama de Implantação.

ANÁLISE ORIENTADA A OBJETOS

- É um método de análise baseado no paradigma de orientação a objetos;
- Criada no final da década de 1980;
- O processo de análise foca em um conjunto de objetos, com atributos (dados) e métodos (procedimentos), e que interagem entre si através da troca de mensagens;
- Nos anos 1990 este paradigma ganhou maior atenção por autores como Booch (Análise e Projeto Orientados a Objetos com Aplicações), Jacobson (Engenharia de Software Orientada a Objetos), Rumbaugh (Técnicas de Modelagem de Objetos), sendo os idealizadores da UML (*Unified Modeling Language* – Linguagem de Modelagem Unificada).

ANÁLISE ORIENTADA A OBJETOS X ANÁLISE ESSENCIAL

- Em OO, o sistema é estruturado baseando-se em objetos de domínio do problema, ao invés de funções e procedimentos, que precisam ter conhecimento de onde os dados residem;
- Em OO, o sistema apresenta uma **abstração** que se mantém mais próxima do **mundo real**;
- Em OO, os objetos do domínio induzem a **requisitos mais estáveis**, e as modificações ficam limitadas somente a alterações nestes objetos.

CARACTERÍSTICAS DA ORIENTAÇÃO A OBJETOS

- Objetos são abstrações do mundo real;
- Objetos são independentes e encapsulam suas representações de estado e informações;
- A funcionalidade de um sistema é expressa em termos de serviços que objetos prestam;
- Áreas de dados compartilhadas são eliminadas;
- Objetos se comunicam através do envio de mensagens;
- Objetos podem ser distribuídos;
- Objetos podem ser executados sequencialmente ou em forma paralela.

MODELAGEM CONCEITUAL

- A modelagem de um sistema orientado a objetos consiste:
 - ✓ Na análise do domínio da aplicação;
 - ✓ Modelagem das entidades;
 - ✓ Modelagem dos fenômenos do domínio.
- Esta tarefa envolve basicamente dois mecanismos:
 - ✓ Abstração;
 - ✓ Representação.

MODELAGEM CONCEITUAL

ABSTRAÇÃO

Observar um domínio e capturar sua estrutura

Entidade Observada

REPRESENTAÇÃO

Descrever o domínio de forma convencionada (Ex.: UML)

Entidade Representada

CLASSE E OBJETO

- Classe é uma definição abstrata de um tipo composto;
 - ✓ permite a inserção de tipos heterogêneos de dados e as funcionalidades estão subordinadas a esse tipo.
- Objeto é a instância de uma classe.

ESTRUTURA DA CLASSE

- Nome: identificador único da classe
- Atributos: características da classe (variáveis de classe)
- Métodos: funcionalidades (operações) da classe

CLASSE (REPRESENTAÇÃO UML)

Classe 1 Nome - atributo1 - atributo2 + atributo3 **Atributos** + atributo4 # atributo5 membros + metodo1() + metodo2() Métodos + metodo3()

Veiculo

- placa
- modelo
- cor
- + inserir()
- + consultar()
- + alterar()
- + excluir()

DIAGRAMA DE CLASSES (UML)

• É a representação gráfica das estruturas e relações entre as classes de um sistema:

Este paradigma será visto com mais detalhes posteriormente

Cliente

- cpf
- nome
- + inserir()
- + consultar()
- + alterar()

Veiculo

- placa
- modelo
- cor
- regime
- cliente
- + inserir()
- + consultar()
- + alterar()
- + registrar_entrada()
- + registrar_saida()

Permanencia

- veiculo
- data
- entrada
- saida
- + inserir()
- + consultar()
- + alterar()

ANÁLISE ORIENTADA A OBJETOS X IRUP

- Atualmente a maioria dos sistemas comerciais são construídos sob o paradigma orientado a objetos;
- São diversas metodologias (prescritivas e ágeis) utilizadas com este paradigma;
- IRUP (IBM Rational Unified Process) é uma das principais metodologias prescritivas que norteiam o desenvolvimento de sistemas orientados a objeto;

ANÁLISE ORIENTADA A OBJETOS X IRUP

- As principais fases e artefatos gerados pelo IRUP para a análise e desenvolvimento orientados a objetos prevê:
 - ✓ Especificação de Requisitos;
 - ✓ Mapeamento de Processos de Negócio (BPMN);
 - ✓ Casos de Uso: diagrama e especificações (narrativas);
 - ✓ Diagrama de Classes;
 - ✓ Diagrama do Modelo Lógico Relacional do Banco de Dados;
 - ✓ Diagrama de Atividades;
 - ✓ Diagrama de Sequência.

REFERÊNCIAS

- CARDOSO. A. Análise Orientada a Objetos.
 - ✓ Disponível em http://www.alexandre.eletrica.ufu.br/esof/aula05.pdf. Acesso em 16/03/2019.
- CHEN, P. Gerenciando Banco de Dados A Abordagem Entidade-Relacionamento para Projeto Lógico. São Paulo: McGraw-Hill, 1990.
- GANE, C. Análise Estruturada de Sistemas. Rio de Janeiro: LTC, 1983.
- TAVARES, A. Sistema de Informação para a Toca do Sorvete. 2010.
 - ✓ Disponível em http://alinetavaresgi.blogspot.com/2010/11/sistema-de-informacao-para-toca-do.html. Acesso em 16/03/2019.
- YOURDON, E. Análise Estruturada Moderna. Rio de Janeiro: Campus-Elsevier, 1990.