Outline

- 1. Fourier series: sum of sines and cosines
- 2. Discrete Fourier transform
- 3. Power spectrum using Matlab
- 4. Power spectrum using Chronux
- 4. Sampling frequency, aliasing
- 5. Spectrogram
- 6. Autocorrelation, crosscorrelation, coherence
- 7. Noise and filters

Periodicity in time

EEG during seizures

Rhythmic firing in STG

California spiny lobster

Periodicity in space

Ocular dominance columns in V1

Axons

Fourier series ~ sum of sines and cosines

Fourier series

How to find the coefficients:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \longleftrightarrow a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

a_k is a complex-valued coefficient

Magnitude of a_k: Content at that frequency

- The sequence of squared magnitude $|a_k|^2$ is the power spectrum

Phase of a_k: Time-shifts of the sinusoidal

Harmonic frequencies

Fourier transform

Recall Fourier series at harmonic frequencies:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

More general is the Fourier transform:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \qquad X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt.$$

There are many types of transform (e.g. Hilbert, Laplace).

The idea is that some signals are easier to work with in the transformed space.

Example of Fourier transform pairs

Examples of Fourier transform pairs

Examples of operations

×(2t)	
	t

Property	Aperiodic signal	Fourier transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Y to contact		$aX(j\omega) + bY(j\omega)$
Linearity	ax(t) + by(t)	$e^{-j\omega t_0}X(j\omega)$
Time Shifting	$x(t-t_0)$	
Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\boldsymbol{\omega}-\boldsymbol{\omega}_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time Reversal	x(-t)	$X(-j\omega)$
Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$

Discrete Fourier transform

<u>Problem</u>: Fourier transform works on continuous functions, but real data are measured at discrete time points.

Discrete Fourier transform (finite sequence of samples x[n])
$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}.$$

Interim summary

- Fourier series
 - Sum of sines and cosines
- Fourier transform
 - For continuous functions
- Discrete Fourier transform
 - For discretized sequence of samples
 - fft in MATLAB = Fast Fourier transform, an efficient algorithm for calculating DFT
 - Chronux a Matlab toolbox for spectral analysis (www.chronux.org)

The neonatal spinal cord preparation

Coherence

The association between two signals in frequency domain.

$$C_{xy}(\omega) := \frac{P_{xy}(\omega)}{\sqrt{P_{xx}(\omega)P_{yy}(\omega)}},$$

$$P_{xx}(\omega) := |\hat{x}(\omega)|^2 = \hat{x}(\omega)\overline{\hat{x}(\omega)},$$

$$P_{xy}(\omega) := \hat{x}(\omega)\overline{\hat{y}(\omega)},$$

$$\hat{x}(\omega) := \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt$$

Power spectrum and cross-power spectrum

Intuition:

Sampling frequency

Aliasing

Nyquist frequency

= f_o / 2 (half of the sampling frequency)

e.g. want to record axon potential width ~ 2 ms set patch-clamp amplifier sampling rate > 1 kHz

Filters (in frequency domain)

Filtering characteristics

An <u>ideal</u> low-pass filter

An <u>non-ideal</u> low-pass filter

Filtering characteristics

