EE2000 Logic Circuit Design

Lecture 6 – Programmable Logic Devices

mouser.com

Implement the following functions with a PAL

$$x(a,b,c,d) = abc' + a'b'cd'$$

$$y(a,b,c,d) = a + bcd$$

$$z(a,b,c,d) = abc' + a'b'cd' + a'b'c'd + ac'd'$$

$$x(a,b,c,d) = abc' + a'b'cd'$$

$$y(a,b,c,d) = a + bcd$$

$$z(a,b,c,d) = abc' + a'b'cd' + a'b'c'd + ac'd'$$

Implement the following functions with a PAL

$$x(a,b,c,d) = a'b'cd' + abc'$$

$$y(a,b,c,d) = a'b'cd' + abc' + bc'd + ab'$$

$$z(a,b,c,d) = a'b'cd' + abc' + a'b'c'd + ac'd'$$

$$x(a,b,c,d) = a'b'cd' + abc'$$

$$y(a,b,c,d) = a'b'cd' + abc' + bc'd + ab'$$

$$z(a,b,c,d) = a'b'cd' + abc' + a'b'c'd + bc'd'$$

$$f_1(a,b,c) = \sum m(0,2,3,6)$$

$$f_2(a,b,c) = \sum m(3,6,7)$$

$$f_1(a,b,c) = a'c' + bc' + a'bc$$

$$f_2(a,b,c) = ab + a'bc$$

Four distinct product term

$$f_1(a,b,c) = \sum m(0,2,3,6)$$

$$f_2(a,b,c) = \sum m(3,6,7)$$

$$f_1(a,b,c) = a'c' + a'b + abc'$$

$$f_2(a,b,c) = bc + abc'$$

Four distinct product term

$$f_1(a,b,c) = a'c' + bc' + a'bc$$

$$f_2(a,b,c) = ab + a'bc$$

Simplify the following functions and their complements.

$$f_1(a, b, c, d) = \sum m(0, 2, 3, 5, 7, 8, 10, 12, 13, 15)$$

$$f_2(a, b, c, d) = \sum m(0, 4, 6, 7, 8, 10, 14, 15)$$

$$f_1(a, b, c, d) = a'b'c + abc' + bd + b'd'$$

 $f_2(a, b, c, d) = a'c'd' + bc + ab'd'$

Simplify the following functions and their complements.

$$f_1(a, b, c, d) = \sum m(0, 2, 3, 5, 7, 8, 10, 12, 13, 15)$$

 $f_2(a, b, c, d) = \sum m(0, 4, 6, 7, 8, 10, 14, 15)$

$$f_1'(a,b,c,d) = \frac{bcd'}{bc'} + \frac{b'c'd}{d} + \frac{ab'd}{d} + \frac{a'bd'}{d}$$

 $f_2'(a,b,c,d) = \frac{a'b'c}{d} + \frac{abc'}{d} + \frac{ab'd}{d} + \frac{c'd}{d}$

Simplify the following functions and their complements.

$$f_1(a, b, c, d) = \sum m(0, 2, 3, 5, 7, 8, 10, 12, 13, 15)$$

 $f_2(a, b, c, d) = \sum m(0, 4, 6, 7, 8, 10, 14, 15)$

 $f_1(a, b, c, d) = a'b'c + abc' + bd + b'd'$ $f'_2(a, b, c, d) = a'b'c + abc' + ab'd + c'd$ Look for common terms!!!

 $f_1(a,b,c,d) = a'b'c + abc' + bd + b'd'$ Exercise $f'_2(a,b,c,d) = a'b'c + abc' + ab'd + c'd$

