Improved Multi-way Time Series Join on Multi-length Patterns

17/11/2022

Group 1: Yue Deng Jiaxi Zhang Junze Li Zihan Li

Background

- Time series
- Multiple time series
- Subsequence
- Patterns
- Time series join (two-way and multi-way join)
- Non-trivial multi-way join

MultiPAL(multi-way and multi-length)

 Naive algorithm: the time complexity of multiway join on time series is exponential to the number of time series

----- s2 ----- T2

- MultiPAL has three improvements:
 - only considers the similarity between the candidate subsequence and the last added one
 - applies BFS to better control memory
 - exploits Matrix Profile to develop the algorithm

Project Pipeline

Problem Definition: There is a collection of n time series. The goal is to discover at most k non-trivial multi-way joins (N<=n, L, C) where k and subsequece length L is given by users to **maximize** the number of subsequences **N** and the <u>minimum</u> correlation coefficient **C**.

Methodology

MultiPAL

Rep-MultiPAL

Similarity Evaluation

MultiPAL

An Intuitive Example

Fig. 3. An illustration of the proposed MultiPAL algorithm generating the best multi-way join for a length L=30.

Rep-MultiPAL

MultiPAL:

 $O((nm)^2 + n^2Mt + Mt \log(Mt))$

Rep-MultiPAL:

 $O((nm)^2 + (n^2+p^2)Mt + Mt log(Mt))$

Parameter p: only when # of subsequences < p, compute the similarity matrix and reelect a representative one.

(a) the schematic diagram of the original method

(b1) the schematic diagram of our proposed method

(b2) the similarity matrix

Similarity Metrics

We also considered other metrics to evaluate the multi-way joins.

- Double Correlation Coefficient (DCO)
- k-Derivative Dynamic Time Warping (k-DDTW)
- Improved Periodogram-based Distance (IPD)

Experiment Settings

(Adaption: Choose different length of patterns (L) and combine the results together manually.)

- SUSh: The unsupervised shapelet discovery algorithm to find <u>fixed-length patterns</u>.
- mSTAMP: The multivariate motif discorvey algorithm to find <u>fixed-length patterns.</u>
- **Exact:** The naive version algorithm.
- MultiPAL: The MultiPAL algorithm can discover <u>multi-length patterns</u> in multiple time series.
- Rep-MultiPAL: The improved version of MultiPAL algorithm.

Sanity Check

Rep-MultiPAL

MultiPAL

Performance Evaluation

Adjusted Rand Index (ARI)

	Rep-MultiPAL	MultiPAL	Exact	mSTAMP	SUSh
Sinusoidal	0.97(12)	0.97(12)	1.0(12)	0.64(24)	0.73(6)
Birds	1.0(15)	0.93(15)	1.0(15)	0.61(24)	0.79(8)
Trace	0.94(200)	0.88(200)	-	0.63(400)	0.68(189)
PAMAP	0.94(120)	0.90(120)	-	0.73(240)	0.81(105)

Performance Evaluation

	DCO		1-DDTW		IPD	
	MultiPAL	Rep-MultiPAL	MultiPAL	Rep-MultiPAL	MultiPAL	Rep-MultiPAL
Sinusoidal Birds Trace PAMAP	0.5890 0.5378 0.6613 0.5930	0.5643 0.5470 0.6645 0.6349	0.0979 0.0141 0.0019 0.1177	0.0875 0.0081 0.0018 0.0970	0.3603 0.2627 0.0574 0.0459	0.3959 0.3040 0.0252 0.0685

Parameter Sensitivity

Scalability

(Trace dataset)

Case Study - Real World Datasets

Case Study -Trading Volume of Stock

REP-MultiPAL

Case Study -Closing Price of Stock

Zihan Li

MultiPAL

Case Study - Reported Death with COVID-19

Conclusion

- Propose a novel multi-way time series join algorithm, Rep-MultiPAL
- Evaluate the performance difference between Rep-MultiPAL and other baseline algorithms
- Most of the experiment results indicate that Rep-MultiPAL can achieve a better performance than MultiPAL with a little decrease in time efficiency.
- Further explore some real-world time series datasets