

Name: Chirag Shah ASSIGNMENT-1 Roll No.: FWC22053

Sequence Detector

A sequence detector is a sequential state machine that takes an input string of bits and generates an output 1 whenever the target sequence has been detected. In a Mealy machine, output depends on the present state and the external input (x).

Working

A sequence detector accepts as input a string of bits: either 0 or 1. Its output goes to 1 when a target sequence has been detected.

There are two basic types:

- Overlap
- Non-overlap.

Problem Statement:

Using Platformio CLI wite a programm to identify if the Sequence is either 11 or 00110.

SOLUTION: Steps for using State Diagram:

- 1. To detect 00110 and 11 . first input is given to SO . if the first bit i/p is 0 it will go to next state i.e S1 and o/p will be 0 (LED=OFF) .
- 2.If the i/p is 1 it will go to state S5. o/p will be 0 (LED=OFF)
- $3. {\rm Same}$ steps will be repeated for all states .
- 4.when it detects 00110 the o/p will be 1 (LED=ON)
- 5.Same as above if it detects 11 o/p will be 1 (LED=ON)
- 6. Again it repeats as it is overlapping.

State Diagram

State Diagram -Input and Outputs

States	Input	output
a1	0	0
a2	1	0
b1	0	0
b2	1	0
c1	0	0
c2	1	0
d1	0	0
d2	1	0
e1	0	1
e2	1	0
f1	0	0
f2	1	1

Truth table

Truth table							
$\mathbf{q2}$	q1	$\mathbf{q0}$	x	d2	d1	d0	\mathbf{y}
0	0	0	0	0	0	1	0
0	0	0	1	1	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	0	1	0
0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	1
1	0	0	1	1	0	1	0
1	0	1	0	0	0	1	0
1	0	1	1	1	0	1	1
1	1	0	0	X	X	X	X
1	1	0	1	Х	х	Х	X
1	1	1	0	X	X	Х	x
1	1	1	1	X	X	Х	x
1	1	1	1	X	x	x	X

Boolean expressions

The boolean expressions for \mathbf{d} and \mathbf{x} are:

With don't care(X):

$$d_2 = q_1' x + q_0 x$$

$$d_1 = q1q_0' + q_2'q_1'q0x'$$

$$d_0 = q_2 + q_1'q_0' + q_1'x + q_0'x + q_1q_0x'$$

$$x = q_2 q_0' x' + q_2 q_0 x$$

Without don't care(X):

$$d_2 = q_1' x + q_2' q_0 x$$

$$d_1 = q_2' q_1 q_0' + q_2' q_1' q_0 x'$$

$$d_0 = q_1'q_0' + q_1'x + q_2q_1' + q_2'q_0'x + q_2'q_1q_0x'$$

$$x = q_2 q_1' q_0' x' + q_2 q_1' q_0 x$$

The above truth table can be verified in arduino.

1.consider 4 digital pins 6,7,8,9 as inputs D9 is given to +vcc or ground.

2. Consider 4 digital pins 2,3,4,5 as Outputs. Here D5 is given to LED .

3. D13 acts as clock signal.

4. The connections are given in the Hardware Connection

Components

Component	Value	Quantity
Breadboard	-	1
Resistor	220 ohms	1
Arduino	Uno	1
Led	$5\mathrm{v}$	1
Flip Flop	7474	2
Jumper Wires	-	20

7474 IC Pin details

D Flip-Flop

Working of D Flip-Flop

CLK	D	Q	$\overline{\mathbf{Q}}$
0	0	Q	\overline{Q}
0	1	Q	\overline{Q}
1	0	0	1
1	1	1	0

The D flip-flop is a clocked flip-flop with a single digital input 'D'.

Each time a D flip-flop is clocked, its output follows the state of 'D'.

Hardware Connections

Arduino pins	D6	D7	D 8	D9	D2	D3	D4	D5	D13
7474 (2-FF)	5	9			2	12			CLK
7474 (1-FF)			5				2		CLK
I/P				5v/GND					
Detector								LED	

Download the code from the link below and upload into the arduino

Github link: Assignment-1.