Graphs of Inverse Functions

Let's examine the graphs of both pairs of inverse functions we've recently seen:

$$h^{-1}(x) = \frac{x+2}{4}$$

$$q^{-1}(x) = (x+8)^3$$

Think for a moment . . .

... do you see any commonalities between the two pairs of graphs?

If not, now look at them:

If you think about it, each pair of inverse functions are . . .

... reflections of each other ...

 \dots across the line y = x

Note that the line $y = x \dots$

... is another way of saying the identity function, f(x) = x!

This is not a coincidence.

It's a rule:

The graphs of inverse functions are reflections of each other across the line y=x.

Domain and Range of Inverse Functions

Consider the function:

$$f(x) = -\sqrt{x}$$

What is its domain?

We considered a very similar situation a couple weeks ago!

No negative numbers are allowed into the function!

So the domain is $[0, \infty)$.

How about the range?

We can see from the formula that *only negative numbers* (and zero) come out of this function.

$$f(x) = -\sqrt{x}$$

So the range is $(-\infty, 0]$.

Now let's think about what $f^{-1}(x)$ would be! This is going to be a bit tricky!!

Why? Because we need to consider the domain and range! Suppose we tried to find $f^{-1}(x)$. . . the "formal" way:

$$y = -\sqrt{x}$$

$$x = -\sqrt{y}$$

$$(x)^{2} = (-\sqrt{y})^{2}$$

$$x^{2} = y$$

$$f^{-1}(x) = x^{2}$$

Giving us

Everything seems right . . . but there's a problem!

To see it, let's consider the circular inverse function diagram:

Now suppose we plug 4 into f(x):

It works great!!! f(4) = 2 and $f^{-1}(2) = 4$.

This is the way it's supposed to work!

However . . .

Look what happens when you plug 2 into $f^{-1}(x)$:

Do you see the problem? We start with +2 and end up with -2!!!

This is not how inverse functions are supposed to work!!

WHAT WENT WRONG???

To understand this, we need to look at the domain and range!

Remember that the domain for $f(x) = -\sqrt{x}$ was $[0, \infty)$.

Remember that the range for $f(x) = -\sqrt{x}$ was $(-\infty, 0]$.

Let's build this into our inverse function diagram:

The key idea here is the following:

The domain of any function must be the range of its inverse

So we were not allowed to plug x = 2 into f^{-1} . . .

 \dots because 2 is not in the range of f!

Let's look at the graphs to understand this better!

We saw that the graph of $f(x) = -\sqrt{x}$ looked like this:

$$f(x) = -\sqrt{x}$$

Since the range of f(x) is $(-\infty, 0]$...

... we must **restrict** the domain of $f^{-1}(x)$ to $(-\infty, 0]$

So the graph of $f^{-1}(x) = x^2$ will only exist for $x \le 0$:

$$f(x) = -\sqrt{x}$$
$$f^{-1}(x) = x^2$$

$$f^{-1}(x) = x^2$$

Notice how both graphs are **reflections across the line** y = x:

This brings us to a final important concept of inverse functions!!!