

实验 6

学	期	2022-2023 学	年第1学期	实验日期		
学	院	信息	学部	专业	计算机科学与技	(实验班)
班	级	210710	学 号	21071003	姓名	高立扬
组	号	43	学 号	21071004	姓名	石昊阳

评阅内容

任务一	任务二	总结	格式	成绩

题	目
---	---

实验 6: 复杂接口设计

一、实验目的

通过本实验内容的学习,掌握常用复杂接口的工作原理及控制方法,对时序的控制更加熟练。 通过 LED 点阵、SPI 接口、I2C 接口等复杂接口电路的设计,掌握常用复杂接口的工作原理及控制方法, 学会使用 VerilogHDL 设计复杂接口的控制器。

二、任务一设计与实现

- 1. 要求
- (1) 系统时钟为 50MHz, 根据需要设计分频器。
- (2) 自定义显示内容,点亮 LED。

2. 设计思路

我们希望在 LED 点阵屏上显示"高"字。通过分析,我们发现可以从左至右依次扫描每一列,再在程序中输入每一列希望亮起的 LED 灯,将分频器输出的脉冲信号作为扫描生成器的输入信号,即可实现该电路。但我们发现,实验台的列引脚只有 4 个并非与列数相同的 16 个,而实验台内内置的两个 3-8 译码器可以将输入的四位信号转换为十六位信号,因此我们编程中只需要定义四位的列输入即可。

3. 详细设计

表 1.点阵扫描电路

	I_COL	COL—	一左〕	力为最	低位	COL	1										
1	0_000	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	0_001	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	0_010	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
4	0_011	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
5	0_100	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
6	0_101	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
7	0_110	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
8	0_111	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
9	1_000	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
10	1_001	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
11	1_010	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
12	1_011	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
13	1_100	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
14	1_101	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
15	1_110	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
16	1_111	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

实验 6

```
| Scanner.v | Scan
```

图 2.代码实现

4. 仿真验证

图 3.仿真验证

由图可见,我们成功打印出了"高"字。

5. 引脚分配

表 2.引脚分配

端	输入端		输出端								
П	时钟信号		I_COL								
名 称	clk	I_COL[3]	I_COL[3]								
引	T1	C4	A16	A15	A14						
脚											
编											
号											
平	T1	COL3	COL2	COL1	COL0						
台											
端											
П											

表 2.续表

实验 6

输出端

I_ROW

I_ROW[15]	I ROW[14]	I ROW[13]	I_ROW[12]	I ROW[11]	I_ROW[10]	I ROW[9]	I_ROW[8]
	- ' '	_ [-		- ' '		_ [,,	_ [-
A13	F9	D10	B10	В9	В8	В7	E14
1113	'3	510	D10	B)	_ Bo	D'	DI.
ROW16	ROW15	ROW14	ROW13	ROW12	ROW11	ROW10	ROW9
ROWIO	IKO W 13	IKO W 14	ICO W 13	10 W 12	IKO W 11	ROWIU	ROW
+ • /+ +:	I.	I	1	1	ı		I

表 2.续表

输出端

I_ROW

ı								
	I_ROW[7]	I_ROW[6]	I_ROW[5]	I_ROW[4]	I_ROW[3]	I_ROW[2]	I_ROW[1]	I_ROW[0]
	C15	F11	C13	E11	В6	A6	A5	A4
	ROW8	ROW7	ROW6	ROW5	ROW4	ROW3	ROW2	ROW1

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pai
I_COL[3]	Output	PIN_C4	8	B8_N1	PIN_C4	2.5 V (default)		8mA (default)	2 (default)	
I_COL[2]	Output	PIN_A16	7	B7_N1	PIN_A16	2.5 V (default)		8mA (default)	2 (default)	
I_COL[1]	Output	PIN_A15	7	B7_N1	PIN_A15	2.5 V (default)		8mA (default)	2 (default)	
I_COL[0]	Output	PIN_A14	7	B7_N1	PIN_A14	2.5 V (default)		8mA (default)	2 (default)	
LROW[15]	Output	PIN_A13	7	B7_N1	PIN_A13	2.5 V (default)		8mA (default)	2 (default)	
LROW[14]	Output	PIN_F9	8	B8_N1	PIN_F9	2.5 V (default)		8mA (default)	2 (default)	
UK I_ROW[13]	Output	PIN_D10	8	B8_N0	PIN_D10	2.5 V (default)		8mA (default)	2 (default)	
" I_ROW[12]	Output	PIN_B10	8	B8_N0	PIN_B10	2.5 V (default)		8mA (default)	2 (default)	
UK I_ROW[11]	Output	PIN_B9	8	B8_N0	PIN_B9	2.5 V (default)		8mA (default)	2 (default)	
" I_ROW[10]	Output	PIN_B8	8	B8_N0	PIN_B8	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[9]	Output	PIN_B7	8	B8_N0	PIN_B7	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[8]	Output	PIN_E14	7	B7_N1	PIN_E14	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[7]	Output	PIN_C15	7	B7_N1	PIN_C15	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[6]	Output	PIN_F11	7	B7_N1	PIN_F11	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[5]	Output	PIN_C13	7	B7_N1	PIN_C13	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[4]	Output	PIN_E11	7	B7_N1	PIN_E11	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[3]	Output	PIN_B6	8	B8_N0	PIN_B6	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[2]	Output	PIN_A6	8	B8_N0	PIN_A6	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[1]	Output	PIN_A5	8	B8_N1	PIN_A5	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[0]	Output	PIN_A4	8	B8_N1	PIN_A4	2.5 V (default)		8mA (default)	2 (default)	
clk_50mhz	Input	PIN_T1	2	B2_N0	PIN_T1	2.5 V (default)		8mA (default)		
< <new node="">></new>										

6. 实验现象

16*16LED 点阵上可以正常显示"高"字,与实验预期相符。

三、扩展实验

1. 设计思路

我们希望点阵上不止能打印单独一个图形,而是每隔 1 秒打印一个不一样的图形。由于通过图形来转换为 0101 点阵比较费时费力,易造成代码冗余,所以我们打算让 LED 流水动态打印"高立扬石昊阳"六个文字,这样能验证我们的想法。我们通过 python 程序,传入手动画好的 16x16 黑白二值图片,就能自动生成点阵,实现半自动化。之后分频器引出 1hz 信号用于打印文字的转换。

2. 详细设计

数字逻辑实验报告 实验 6 分≥**24hz** 频 单个文字 clk_50 16列扫描生成器 SEL1,SEL2 mhz 器 1hz 16x16大小JPG图像 流水打印"高立扬 石昊阳" python生成点阵 I_COL1 I_COL2 I_COL3 列扫描 16x16点阵 I_COL4 选38译码 器的信号

图 4.详细设计

```
case(1 COL)

0:I ROW = 16'b0000 0000 0000 0000;

1:I ROW = 16'b0000 0000 0000 0100;

2:I ROW = 16'b0000 0000 0000 0100;

3:I ROW = 16'b0000 0000 1000 0100;

3:I ROW = 16'b0000 0000 1101 10100;

5:I ROW = 16'b0000 1101 1101 0100;

6:I ROW = 16'b0000 1101 1101 0100;

8:I ROW = 16'b0000 1101 1101 0100;

1:I ROW = 16'b0010 1001 1100 0100;

1:I ROW = 16'b0010 0000 1000 0100;

1:I ROW = 16'b0010 0000 1000 0100;

1:I ROW = 16'b0010 0000 1000 0100;

1:I ROW = 16'b0010 000000000000000;

1:I ROW = 16'b0010000000000000000;

1:I ROW = 16'b001000000000000000;

1:I ROW = 16'b00100000000000000;

1:I ROW = 16'b001000000000000000;

1:I ROW = 16'b001000000000000000;

1:I ROW = 16'b0010000001000000;

1:I ROW = 16'b00100000001000000;

1:I ROW = 16'b00100000001000000;

1:I ROW = 16'b00100000001000000;
```

图 5.对 scanner 进行了修改,实现图形转换

3. 仿真验证

图 6.仿真验证

实验 6

图 7.仿真验证

对于内置的波形验证来说,分频器 **1hz** 频率和扫描频率不太好区分开,因此打印前两个字的时候出现了图形乱码。而第三个字则打印正确,因此展示第三个字的波形,可见我们的设计是正确的。出现文字左右反过来是因为波形图推进方向和 LED 推进方向相反。

4. 引脚分配

表 3.引脚分配

端	输入端		输出端								
П	时钟信号		I_	COL							
名	clk	T GOT 523	T GOT [2]	T COT [1]	T GOT 501						
称		I_COL[3]	I_COL[2]	I_COL[1]	I_COL[0]						
引	T1	C4	A16	A15	A14						
脚											
编											
号											
平	T1	COL3	COL2	COL1	COL0						
台											
端											
П											

表 3.续表

输出端

I_ROW

I_ROW[15]	I_ROW[14]	I_ROW[13]	I_ROW[12]	I_ROW[11]	I_ROW[10]	I_ROW[9]	I_ROW[8]
A13	F9	D10	B10	В9	B8	B7	E14
ROW16	ROW15	ROW14	ROW13	ROW12	ROW11	ROW10	ROW9

表 3.续表

输出端

I_ROW

实验 6

I_ROW[7]	I_ROW[6]	I_ROW[5]	I_ROW[4]	I_ROW[3]	I_ROW[2]	I_ROW[1]	I_ROW[0]
C15	F11	C13	E11	В6	A6	A5	A4
ROW8	ROW7	ROW6	ROW5	ROW4	ROW3	ROW2	ROW1

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pai
ut I_COL[3]	Output	PIN_C4	8	B8_N1	PIN_C4	2.5 V (default)		8mA (default)	2 (default)	
ut I_COL[2]	Output	PIN_A16	7	B7_N1	PIN_A16	2.5 V (default)		8mA (default)	2 (default)	
UL I_COL[1]	Output	PIN_A15	7	B7_N1	PIN_A15	2.5 V (default)		8mA (default)	2 (default)	
I_COL[0]	Output	PIN_A14	7	B7_N1	PIN_A14	2.5 V (default)		8mA (default)	2 (default)	
" I_ROW[15]	Output	PIN_A13	7	B7_N1	PIN_A13	2.5 V (default)		8mA (default)	2 (default)	
UL I_ROW[14]	Output	PIN_F9	8	B8_N1	PIN_F9	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[13]	Output	PIN_D10	8	B8_N0	PIN_D10	2.5 V (default)		8mA (default)	2 (default)	
U I ROW[12]	Output	PIN B10	8	B8_N0	PIN B10	2.5 V (default)		8mA (default)	2 (default)	
I ROW[11]	Output	PIN B9	8	B8 N0	PIN B9	2.5 V (default)		8mA (default)	2 (default)	
I ROW[10]	Output	PIN_B8	8	B8 N0	PIN_B8	2.5 V (default)		8mA (default)	2 (default)	
ut I ROW[9]	Output	PIN B7	8	B8_N0	PIN_B7	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[8]	Output	PIN_E14	7	B7_N1	PIN_E14	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[7]	Output	PIN_C15	7	B7_N1	PIN_C15	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[6]	Output	PIN_F11	7	B7_N1	PIN_F11	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[5]	Output	PIN_C13	7	B7_N1	PIN_C13	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[4]	Output	PIN_E11	7	B7_N1	PIN_E11	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[3]	Output	PIN_B6	8	B8_N0	PIN_B6	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[2]	Output	PIN_A6	8	B8_N0	PIN_A6	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[1]	Output	PIN_A5	8	B8_N1	PIN_A5	2.5 V (default)		8mA (default)	2 (default)	
I_ROW[0]	Output	PIN_A4	8	B8_N1	PIN_A4	2.5 V (default)		8mA (default)	2 (default)	
clk_50mhz	Input	PIN_T1	2	B2_N0	PIN_T1	2.5 V (default)		8mA (default)		
< <new node="">></new>	CONCRETED TO	100000000000000000000000000000000000000		(A)				1 - 200-141 - 201-151 - 151		

5. 实验现象

16*16LED 点阵上依次显示出"高""立""扬""石""昊""阳"六字,与实验预期相符。

四、总结

①任务一中我们发现实验台的 LED 点阵的上四行和下四行总是与我们期望的输出不符。请问老师后得知实验台在开启状态下尽量不要调整显示模式,这会导致输出显示错误。因此我们在开启实验台前更改好显示模式,实验台变可以正确的显示结果了。在实验七中我们也注意了这一点,没有再让上述问题发生过。

②拓展实验中我们用 Python 自动生成了想要输出的点阵样式,将我们在编程课上所学的知识、课外自学的知识与实验相结合。

实验 6

图 1-2 任务 1 代码和波形图

图 3-4 扩展任务代码

图 5 扩展任务波形图