

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alexandra, Virginia 22313-1450 www.unpto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/700,041	11/04/2003	Joon-Kui Ahn	P-0613	3151
34610 7590 05/14/2008 KED & ASSOCIATES, LLP P.O. Box 221200 Chantilly, VA 20153-1200			EXAMINER	
			DEAN, RAYMOND 8	
			ART UNIT	PAPER NUMBER
			2618	
			MAIL DATE	DELIVERY MODE
			05/14/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/700,041 AHN ET AL. Office Action Summary Examiner Art Unit RAYMOND S. DEAN 2618 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 31 January 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-24 and 27-31 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1.2.6-8.11-14.16-24 and 27-31 is/are rejected. 7) Claim(s) 3-5,9,10 and 15 is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 04 November 2003 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date. Notice of Draftsherson's Patent Drawing Review (PTO-948)

Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date ______.

Notice of Informal Patent Application

6) Other:

Art Unit: 2618

DETAILED ACTION

Response to Arguments

 Applicant's arguments filed January 31, 2008 have been fully considered but they are not persuasive.

Examiner respectfully disagrees with Applicants' assertion on Page 2 3rd Paragraph "The applied references do not teach or suggest at least these features of ...". Malladi teaches an uplink power control method wherein the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal demodulation (See Cols. 2 lines 14 - 31, lines 40 - 47, 3 lines 12 - 17, lines 36 - 49). The DPCCH and the HS-DPCCH have a power ratio thus if the transmission power of the DPCCH is increased or decreased the transmission power of the HS-DPCCH is also increased or decreased. The above power adjustment renders scenarios such as the power level of the DPCCH being increased to a higher power requested for demodulation of the HS-DPCCH for a finite period of time if transmission of the HS-DPCCH signal is executed and said increased power level being decreased to a power level. Since the power level of the DPCCH and the HS-DPCCH can be adjusted for optimal demodulation, this renders a scenario wherein the power level of the DPCCH is increased or decreased if transmission on the HS-DPCCH is completed thus enabling the demodulation to remain optimal.

Examiner respectfully disagrees with Applicants' assertions regarding Claims 16, 20, and 28 on Page 5, 1st Paragraph for the same reasons set forth above.

Page 3

Application/Control Number: 10/700,041

Art Unit: 2618

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

Claims 1 – 2, 11 – 14, 16 – 22, 24, and 28 – 31 are rejected under 35 U.S.C.
 102(e) as being anticipated by Malladi et al. (US 6,850,771).

Regarding Claim 1, Malladi teaches In a mobile communication terminal continuously transmitting a general control channel signal and intermittently transmitting a specific control channel signal (Col. 2 lines 10 – 11, lines 40 – 47, the general control channel is the DPCCH and the specific control channel is the HS-DPCCH, the HS-DPCCH signal is transmitted intermittently for HSDPA), a power control method comprising the steps of: temporarily increasing a power of a general control channel to a power level requested to demodulate a specific control channel once transmission of the specific control channel signal is executed (Cols. 2 lines 14 – 31, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal demodulation, since the power level can be adjusted there can be scenarios such as said power level being increased to a higher power for a finite

Art Unit: 2618

period of time, hence temporarily, and said increased power level being decreased to a power level); and decreasing the increased power to meet a power level requested by a current general control channel transmission if the specific control channel transmission is completed (Cols. 2 lines 14 – 31, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal demodulation, since the power level of the DPCCH and the HS-DPCCH can be adjusted for optimal demodulation there can be a scenario in which the power level of the DPCCH is increased or decreased if transmission on the HS-DPCCH is completed thus enabling the demodulation to remain optimal).

Regarding Claim 2, Malladi teaches all of the claimed limitations recited in Claim

1. Malladi further teaches removing a power level increment from the increased power; and re-adjusting the increased power from which the power level increment is removed to the power level requested by the current general control channel transmission (Col. 3 lines 12 – 17, lines 36 – 49, the power level of the DPCCH can be increased or decreased, an increase or decrease comprises the addition or removal of a power level increment).

Regarding Claim 11, Malladi teaches all of the claimed limitations recited in Claim 1. Malladi further teaches wherein the specific control channel is a HS_DPCH (high speed-dedicated physical control channel) in a HSDPA system and the general control channel is DPCCH (dedicated physical control channel) (Col. 2 lines 10 – 11, lines 40 – 47).

Art Unit: 2618

Regarding Claim 12, Malladi teaches all of the claimed limitations recited in Claim 1. Malladi further teaches wherein the terminal is in soft handover (Cols. 1 lines 66 – 67, 2 line 1, lines 26 – 34, the OR of DOWNS method occurs in power control during soft handoff).

Regarding Claim 13, Malladi teaches all of the claimed limitations recited in Claim 1. Malladi further teaches wherein the terminal performs HSDPA (high-speed downlink packet access) service (Col. 2 lines 46 – 47).

Regarding Claim 14, Malladi teaches all of the claimed limitations recited in Claim 1. Malladi further teaches wherein the decreased power is applied to transmission of a first slot section after completion of the specific control channel transmission (Cols. 2 lines 14 – 31, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the control channel frames comprise slots).

Regarding Claim 16, Malladi teaches a method of adjusting uplink DPCCH (dedicated physical control channel) transmission power for a terminal that transmits a DPCCH using a first power control method, the adjusting method comprising: applying a second power control method to the DPCCH transmission for at least a K_algo1 number of slots upon completion of HS-DPCCH (high speed dedicated physical control channel) transmission (Cols. 2 lines 14 – 34, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the control channel frames comprise slots, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for a particular number of slots for optimal demodulation, since the power level can be adjusted there can be scenarios such as said power level being increased

Art Unit: 2618

to a higher power for a finite period of time or number of slots, hence temporarily, and said increased power level being decreased to a power level).

Regarding Claim 17, Malladi teaches all of the claimed limitations recited in Claim 16. Malladi further teaches applying, after completion of HS-DPCCH transmission, the first power control method beginning from a boundary of a first N slot group or a first M.times.N slot group appearing after a (K_algo1).sup.th slot (Cols. 2 lines 14 – 34, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the control channel frames comprise slots thus the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for a particular number of slots for optimal demodulation).

Regarding Claim 18, Malladi teaches all of the claimed limitations recited in Claim 16. Malladi further teaches wherein a region operating under the second power control method is dynamically reduced (Cols. 2 lines 14 – 34, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the control channel frames comprise slots thus the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for a particular number of slots for optimal demodulation, a particular slot region will thus operate under said power adjustment).

Regarding Claim 19, Malladi teaches all of the claimed limitations recited in Claim 17. Malladi further teaches wherein a region operating under the second power control method is dynamically reduced (Cols. 2 lines 14 – 34, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the control channel frames comprise slots thus the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of

Art Unit: 2618

the DPCCH and the HS-DPCCH for a particular number of slots for optimal demodulation, a particular slot region will thus operate under said power adjustment).

Regarding Claim 20, Malladi teaches a method of adjusting uplink transmission control power for a terminal, the method comprising; increasing a first uplink transmission power up to a second uplink transmission power such that a high speed control channel can be transmitted (Cols. 2 lines 14 - 34, lines 40 - 47, 3 lines 12 - 17, lines 36 - 49, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal demodulation); and forcibly decreasing the second uplink power back to the first uplink transmission control power after transmission of the high speed control channel is completed (Cols. 2 lines 14 - 34, lines 40 - 47, 3 lines 12 - 17, lines 36 - 49, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal demodulation, since the power level of the DPCCH and the HS-DPCCH can be adjusted for optimal demodulation there can be a scenario in which the power level of the DPCCH is increased or decreased if transmission on the HS-DPCCH is completed thus enabling the demodulation to remain optimal).

Regarding Claim 21, Malladi teaches all of the claimed limitations recited in Claim 20. Malladi further teaches wherein the first uplink transmission power is related to a DPCCH (dedicated physical control channel) (Col. 2 lines 10 – 11)

Regarding Claims 22, 27. Malladi teaches all of the claimed limitations recited in Claim 20. Malladi further teaches wherein the second uplink transmission power is Application/Control Number: 10/700,041
Art Unit: 2618

related to a HS-DPCCH (high speed dedicated physical control channel) (Col. 2 lines 40 – 47).

Regarding Claim 24, Malladi teaches all of the claimed limitations recited in Claim 20. Malladi further teaches wherein the forcibly decreasing is applied by the terminal for a plurality of slots (Cols. 2 lines 14 - 34, lines 40 - 47, 3 lines 12 - 17, lines 36 - 49, the control channel frames comprise slots thus the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for a particular number of slots for optimal demodulation).

Regarding Claim 28, Malladi teaches a method of transmission on an uplink control channel for a terminal, the method comprising: adjusting an uplink transmission power from a first power level to a second uplink transmission power level (Cols. 2 lines 14 – 34, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal demodulation); and performing transmission on a high-speed control channel using the adjusted uplink transmission power (Cols. 2 lines 14 – 34, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal demodulation) and re-adjusting the uplink transmission power from the second power level to the first power level after completing transmission on the high-speed control channel (Cols. 2 lines 14 – 31, lines 40 – 47, 3 lines 12 – 17, lines 36 – 49, the adjusting of the threshold (T) and the traffic to pilot ratio enables an adjustment of the power level of the DPCCH and the HS-DPCCH for optimal

Art Unit: 2618

demodulation, since the power level of the DPCCH and the HS-DPCCH can be adjusted for optimal demodulation there can be a scenario in which the power level of the DPCCH is increased or decreased to an original or first power level if transmission on the HS-DPCCH is completed thus enabling the demodulation to remain optimal).

Regarding Claim 29, Malladi teaches all of the claimed limitations recited in Claim 28. Malladi further teaches wherein the first power level is appropriate for a general control channel transmission power and the second power level is appropriate for the high-speed control channel transmission power (Cols. 2 lines 10 – 31, lines 40 – 47.3 lines 12 – 17. lines 36 – 49).

Regarding Claim 30, Malladi teaches all of the claimed limitations recited in Claim 29. Malladi further teaches wherein the general control channel is a DPCCH (Col. 2 lines 10 – 11).

Regarding Claim 31, Malladi teaches all of the claimed limitations recited in Claim 29. Malladi further teaches wherein the high-speed control channel is a HS-DPCCH (Col. 2 lines 40 – 47).

Claim Rejections - 35 USC § 103

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made. Application/Control Number: 10/700,041
Art Unit: 2618

Claims 6 – 8, 23 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Malladi et al. (US 6.850.771) in view of Kitagawa et al. (US 6.603.980).

Regarding Claim 6, Malladi teaches all of the claimed limitations recited in Claim

2. Malladi does not teach wherein the re-adjusted power includes a value for

compensating power control error occurring due to abrupt power reduction.

Kitagawa teaches a value for compensating power control error occurring due to abrupt power reduction (Col. 9 lines 18 – 22. lines 42 – 47).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the power control system of Malladi with the compensation system Kitagawa for the purpose of converging to the desired signal quality quickly as taught by Kitagawa.

Regarding Claim 7, Malladi in view of Kitagawa teaches all of the claimed limitations recited in Claim 6. Kitagawa further teaches wherein the value for compensating the power control error is 0 (Col. 9 lines 18 – 22, lines 42 – 47, the dynamic compensation enables a plurality of compensation values).

Regarding Claim 8, Malladi in view of Kitagawa teaches all of the claimed limitations recited in Claim 6. Kitagawa further teaches wherein the value for compensating the power control error is 1 (Col. 9 lines 18 – 22, lines 42 – 47, the dynamic compensation enables a plurality of compensation values).

Regarding Claim 23. Malladi teaches all of the claimed limitations recited in Claim 20. Malladi does not teach wherein the decreasing step includes compensation for power control errors.

Action dated October 31, 2006.

Art Unit: 2618

Kitagawa teaches wherein the decreasing step includes compensation for power control errors (Col. 9 lines 18 – 22, lines 42 – 47).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the power control system of Malladi with the compensation system Kitagawa for the purpose of converging to the desired signal quality quickly as taught by Kitagawa.

Allowable Subject Matter

6. Claims 3-5, 9-10, and 15 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

The following is a statement of reasons for the indication of allowable subject matter: Claims 3-5, 9-10, 15 are allowable for the same reasons set forth in the Office

Conclusion

 THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the

Art Unit: 2618

shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to RAYMOND S. DEAN whose telephone number is (571)272-7877. The examiner can normally be reached on Monday-Friday 6:00-2:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Edward F. Urban can be reached on 571-272-7899. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system. call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Raymond S Dean/ Primary Examiner, Art Unit 2618 Raymond S. Dean April 25, 2008

/Edward Urban/ Supervisory Patent Examiner, Art Unit 2618 Art Unit: 2618