# 第3章 组合逻辑电路

作业: 习题 3、4、6、7、9、11

3. 写出图 3.34 所示电路对应的逻辑表达式。



图 3.34 习题 3 所用组合逻辑电路

## 【分析解答】

 $F1=A \cdot B + \overline{A} \cdot C + \overline{A} \cdot B \cdot D$ 

 $F2 = \overline{A} \cdot B \cdot D + \overline{A} \cdot C + \overline{B} \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot \overline{D}$ 

4. 假定输出 F 的逻辑表达式为  $A \bullet B \bullet C \oplus D + \overline{A} + D$ ,画出对应的逻辑电路图,并将该逻辑表达式转换成与-或表达式后,画出对应的两级组合逻辑电路图。

#### 【分析解答】

异或运算的优先级高于或运算,但低于与运算。输出F对应的逻辑电路图如下。



输出 F 转换为与-或表达式为:  $F=A \cdot \overline{B} \cdot \overline{D} + A \cdot \overline{C} \cdot \overline{D}$ 

与-或表达式对应的逻辑电路图如下:



6. 假定一个优先权编码器的输入端为  $I_0$ ,  $I_1$ , …,  $I_7$ , 输出端为  $O_0$ ,  $O_1$ ,  $O_2$ 和 Z, 8 个输入端构成一个 8 位二进制数  $I_0I_1I_2I_3I_4I_5I_6I_7$ , 3 个输出端  $O_0$ ,  $O_1$ ,  $O_2$ 构成一个 3 位二进制数  $O_0O_1O_2$ 。若输入二进制数  $I_0I_1I_2I_3I_4I_5I_6I_7$ 为 0,则输出二进制数  $O_0O_1O_2$ 为 0,Z 为 1;否则,若输入二进制数  $I_0I_1I_2I_3I_4I_5I_6I_7$ 中最左边的 1 所在位为  $I_i$ ,则输出二进制数  $O_0O_1O_2$ 的值为  $I_i$ ,Z 为 0。请用与非门设计该优先权编码器电路,并说明优先级顺序是什么。

#### 【分析解答】

根据题意,可画出真值表如下:

| Io | $I_1$ | I <sub>2</sub> | I3 | <i>I</i> 4 | I5 | <i>I</i> 6 | <i>I</i> 7 | <i>O</i> <sub>0</sub> | <i>O</i> 1 | O2 | Z |
|----|-------|----------------|----|------------|----|------------|------------|-----------------------|------------|----|---|
| 1  | х     | х              | х  | Х          | Х  | Х          | х          | 0                     | 0          | 0  | 1 |
| 0  | 1     | X              | X  | X          | X  | X          | X          | 0                     | 0          | 1  | 0 |
| 0  | 0     | 1              | x  | x          | X  | x          | x          | 0                     | 1          | 0  | 0 |
| 0  | 0     | 0              | 1  | X          | X  | X          | X          | 0                     | 1          | 1  | 0 |
| 0  | 0     | 0              | 0  | 1          | x  | x          | x          | 1                     | 0          | 0  | 0 |
| 0  | 0     | 0              | 0  | 0          | 1  | x          | x          | 1                     | 0          | 1  | 0 |
| 0  | 0     | 0              | 0  | 0          | 0  | 1          | x          | 1                     | 1          | 0  | 0 |
| 0  | 0     | 0              | 0  | 0          | 0  | 0          | 1          | 1                     | 1          | 1  | 0 |

根据上述真值表,可以写出各个输出端的逻辑表达式如下:

$$\begin{split} O_0 &= \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet I_4 + \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet I_4 \bullet I_5 + \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet I_4 \bullet I_5 \bullet I_6 + \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet I_4 \bullet I_5 \bullet I_6 \bullet I_7} \\ &= \overline{\overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet I_4 \bullet \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet I_4 \bullet I_5 \bullet \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet I_4 \bullet I_5 \bullet I_6 \bullet \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet \overline{I_4 \bullet I_5 \bullet I_6 \bullet I_7}} \\ O_1 &= \overline{\overline{I_0 \bullet I_1 \bullet I_2 \bullet \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet \overline{I_0 \bullet I_1 \bullet I_2 \bullet I_3 \bullet \overline{I_4 \bullet I_5 \bullet I_6 \bullet I_7}} \\ O_2 &= \overline{\overline{I_0 \bullet I_1 \bullet \overline{I_1 \bullet I_2 \bullet I_3 \bullet \overline{I_1 \bullet I_2 \bullet I_3 \bullet \overline{I_4 \bullet I_5 \bullet I_6 \bullet I_7}}} \\ Z &= I_0 \end{split}$$

根据上述表达式, 画出对应的逻辑电路图 (用与非门实现) 如下:



优先权编码器的优先级顺序为:  $I_0>I_1>I_2>I_3>I_4>I_5>I_6>I_7$ 

- 7. 已知一个组合逻辑电路的功能可用如图 3.35 所示的真值表来描述。分别用下列器件实现该电路。
  - (1) 一个8路选择器。
  - (2) 一个 4 路选择器和一个非门。
  - (3)一个2路选择器和两个逻辑门。

| A | В | C | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

图 3.35 题 7 真值表

## 【分析解答】

用一个8路选择器、一个4路选择器和一个非门、一个2路选择器和两个逻辑

门分别实现如下:



- 9. 已知一个组合逻辑电路的功能可用如图 3.36 所示的真值表来描述。要求完成以下任务。
  - (1) 利用无关项进行化简,并写出函数 F 的最简逻辑表达式。
  - (2) 根据最简逻辑表达式, 画出函数 F 对应的逻辑电路图。
  - (3)对于(2)中的逻辑电路,请判断是否存在竞争冒险?若 存在竞争冒险,则解释在什么情况下会出现毛刺,并画出 发生毛刺时的时序图,若不存在竞争冒险,则分析说明其 不存在竞争冒险的理由。

#### 【分析解答】



| A | В | С | D | 1 F |
|---|---|---|---|-----|
| 0 | 0 | 0 | 0 | d   |
| 0 | 0 | 0 | 1 | d   |
| 0 | 0 | 1 | 0 | d   |
| 0 | 0 | 1 | 1 | 0   |
| 0 | 1 | 0 | 0 | 0   |
| 0 | 1 | 0 | 1 | d   |
| 0 | 1 | 1 | 0 | 0   |
| 0 | 1 | 1 | 1 | d   |
| 1 | 0 | 0 | 0 |     |
| 1 | 0 | 0 | 1 | 0   |
| 1 | 0 | 1 | 0 | d   |
| 1 | 0 | 1 | 1 | 1   |
| 1 | 1 | 0 | 0 | 1   |
| 1 | 1 | 0 | 1 | 1   |
| 1 | 1 | 1 | 0 | d   |
| 1 | 1 | 1 | 1 | 1   |

图 3.36 题 9 真值表

 $F = A \cdot B + A \cdot C + A \cdot \overline{D}$ 

上面的逻辑电路不存在竞争冒险,因为得到的最简逻辑表达式是积之和(即与-或)表达式, 各乘积项中不存在逻辑相反的变量(这个是必要但非充分条件)。

11. 根据图 3.37 中给出的逻辑门的传输延迟 Tpd 和最小延迟 Tcd, 计算 2.4.3 节中图 2.30a、2.30b 和 2.30c 中所示组合逻辑电路的传输延迟和最小延迟, 并比较哪个电路的传输延迟最长,哪个电路的传输延迟最短。



# 【分析解答】

电路(a)的传输延迟为 40+55=95ps; 最小延迟为 25ps。

电路(b)的传输延迟为 40+15+15+55=125ps; 最小延迟为 10+10+25=45ps。

电路(c)中,反向输入端与门是或非门的等效电路,反向输入端或门是与非门的等效电路,因此,传输延迟为 30+30=60ps;最小延迟为 10+30=40ps。