Gretel Rajamoney April 7, 2022 CS 321 Assignment 3

Section 3.1 (Question 1):

Input	Result
a	Accept
aa	Accept
aaa	Reject
b	Reject
bb	Reject
bbb	Reject
ab	Reject
ba	Accept
aab	Reject
bba	Accept
aaab	Reject
bbba	Accept

States: {q0, q1, q2} Input Alphabet: {a, b}

Initial State: q0

Final States: {q1, q2}

Transitions:

 δ (q0, a) = q1

 δ (q1, a) = q2

 δ (q0, b) = q0

Section 3.1 (Question 2):

The regular expression can be defined by the following.

R = (aa)*a + bb

Section 3.2 (Question 3):

Input	Result
а	Reject
aa	Reject
aaa	Reject
b	Accept
bb	Accept
bbb	Accept
ab	Reject
ba	Reject
aab	Reject
bba	Reject
aaab	Reject
bbba	Reject
aba	Accept

States: {q0, q1, q2, q3, q4}

Input Alphabet: {a, b}

Initial State: q0

Final States: {q1, q4}

Transitions:

 δ (q0, a) = q2

 δ (q3, a) = q4

 δ (q0, b) = q1

 δ (q1, b) = q1

 δ (q2, b) = q3

Section 3.2 (Question 4):

The regular expression can be defined by the following.

 $R = bb*(a + \lambda) + bb$

Section 3.3 (Question 5):

Input	Result
aaa	Reject
bbb	Accept
abba	Accept
abbaa	Accept
baab	Reject
baabb	Reject
bbbb	Accept
bbbbb	Accept
bbbbbb	Accept

States: {q0, q1, q2, q3, q4, q5, q6, q7, q8}

Input Alphabet: {a, b}

Initial State: q0

Final States: {q4, q5, q8}

Transitions:

 δ (q0, a) = q1

 δ (q3, a) = q4

 δ (q4, a) = q5

 δ (q0, b) = q6

 δ (q1, b) = q2

 δ (q2, b) = q3

 δ (q6, b) = q7

 δ (q7, b) = q8

 δ (q8, b) = q8

Section 3.3 (Question 6):

The right-linear grammar for the language can be defined by the following.

 $S \to aS$

 $S \to bS$

 $S \to \varepsilon$