Cours L2 Résolution numérique des systèmes d'équations linéaires et non linéaires

Roland Masson

Année 2019-2020

Chapitre II: Résolution numérique des systèmes non linéaires

Zéro d'une fonction: soit $\mathbf{f} \in C^0(U, \mathbb{R}^n)$ où U est un ouvert de \mathbb{R}^n . On dit que $\bar{\mathbf{x}}$ est un zéro de \mathbf{f} ssi $\mathbf{f}(\bar{\mathbf{x}}) = 0$.

Point fixe d'une fonction: soit $\mathbf{g} \in C^0(U, \mathbb{R}^n)$ où U est un ouvert de \mathbb{R}^n . On dit que $\bar{\mathbf{x}}$ est un point fixe de \mathbf{g} ssi $\mathbf{g}(\bar{\mathbf{x}}) = \bar{\mathbf{x}}$.

Algorithme du point fixe: soit $\mathbf{g} \in C^0(U, \mathbb{R}^n)$ avec U ouvert de \mathbb{R}^n , l'algorithme du point fixe est la suite récurrente définie par $\mathbf{x}^{(0)} \in U$ et

$$\mathbf{x}^{(k+1)} = \mathbf{g}(\mathbf{x}^{(k)})$$
 pour tout $k \in \mathbb{N}$.

Propriété: si $\lim_{k\to+\infty} \mathbf{x}^{(k)} = \bar{\mathbf{x}} \in U$, alors $\mathbf{g}(\bar{\mathbf{x}}) = \bar{\mathbf{x}}$.

Preuve: par continuité de g sur U,

$$\bar{\mathbf{x}} = \lim_{k \to +\infty} \mathbf{x}^{(k+1)} = \lim_{k \to +\infty} \mathbf{g}(\mathbf{x}^{(k)}) = \mathbf{g}(\lim_{k \to +\infty} \mathbf{x}^{(k)}) = \mathbf{g}(\bar{\mathbf{x}}).$$

Lien entre zéro et point fixe d'une fonction: soient $\mathbf{f} \in C^0(U, \mathbb{R}^n)$ avec U ouvert de \mathbb{R}^n , et $\bar{\mathbf{x}} \in U$ un zéro de \mathbf{f} . On considère une fonction $M \in C^0(U, \mathcal{M}_n(\mathbb{R}))$, alors $\bar{\mathbf{x}}$ est un point fixe de

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} - M(\mathbf{x})\mathbf{f}(\mathbf{x})$$

Exemple: **l'algorithme de Newton** est l'algorithme de point fixe obtenu pour

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} - D\mathbf{f}(\mathbf{x})^{-1}\mathbf{f}(\mathbf{x}),$$

il s'écrit:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - D\mathbf{f}(\mathbf{x}^{(k)})^{-1}\mathbf{f}(\mathbf{x}^{(k)})$$
 pour tout $k \in \mathbb{N}$.

On considère une suite $\mathbf{x}^{(k)} \in \mathbb{R}^n$, $k \in \mathbb{N}$ telle que $\lim_{k \to +\infty} \mathbf{x}^{(k)} = \bar{\mathbf{x}}$.

Convergence linéaire d'une suite: On dit que la suite converge linéairement (ou à l'ordre 1) ssi il existe $\beta < 1$ tel que

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \beta \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|$$
 pour tout $k \in \mathbb{N}$.

Convergence quadratique d'une suite: On dit que la suite converge quadratiquement (ou à l'ordre 2) ssi il existe $\gamma \geq 0$ tel que

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2$$
 pour tout $k \in \mathbb{N}$.

Objectifs

Etablir des conditions suffisantes de convergence des algorithmes de point fixe (et de Newton) et évaluer leur ordre de convergence.

On étudiera la **convergence "locale"** des algorithmes de point fixe au sens où:

- le point fixe $\bar{\mathbf{x}}$ est supposé exister,
- le point de départ $\mathbf{x}^{(0)}$ sera supposé dans un voisinage de $\bar{\mathbf{x}}$.

Chapitre II: Résolution numérique des systèmes non linéaires

Section 1: Algorithmes de point fixe et de Newton en dimension 1

Algorithme de point fixe

Soit

$$g \in C^0(U,\mathbb{R}), \ U$$
 ouvert de \mathbb{R}

telle qu'il existe $\bar{x} \in U$ avec $g(\bar{x}) = \bar{x}$.

Etant donné $x^{(0)} \in U$, la méthode du point fixe est définie par la suite récurrente $x^{(k)}$, $k \in \mathbb{N}$ telle que

$$x^{(k+1)} = g(x^{(k)}).$$

Convergence linéaire locale de l'algorithme de point fixe

Soit $g \in C^1(U,\mathbb{R})$ avec U ouvert de \mathbb{R} et soit $\bar{x} \in U$ tel que $g(\bar{x}) = \bar{x}$. On suppose que $|g'(\bar{x})| < 1$. Alors il existe $\alpha > 0$ et $\beta < 1$ tels que si

$$x^{(0)} \in I_{\alpha} =]\bar{x} - \alpha, \bar{x} + \alpha[,$$

on a

- $\blacksquare I_{\alpha} \subset U$,
- $\mathbf{x}^{(k)} \in I_{\alpha}$ pour tout $k \in \mathbb{N}$,
- $|x^{(k+1)} \bar{x}| < \beta |x^{(k)} \bar{x}|$ pour tout $k \in \mathbb{N}$,
- $|x^{(k)} \bar{x}| \le \beta^k |x^{(0)} \bar{x}|$ pour tout $k \in \mathbb{N}$,

$$\lim_{k \to +\infty} \frac{x^{(k+1)} - \bar{x}}{x^{(k)} - \bar{x}} = g'(\bar{x}).$$

Convergence linéaire locale de l'algorithme de point fixe: preuve

■ D'après la formule des accroissements finis pour $g \in C^1(U, \mathbb{R})$, en tenant compte de $g(\bar{x}) = \bar{x}$, il existe $c^{(k)} \in]\bar{x}, x^{(k)}[$ tel que

$$x^{(k+1)} - \bar{x} = g(x^{(k)}) - g(\bar{x}) = g'(c^{(k)})(x^{(k)} - \bar{x}).$$

■ Comme $|g'(\bar{x})| < 1$ et que g' est continue sur U alors il existe $\alpha > 0$ et $\beta < 1$ tels que

$$|g'(x)| \leq \beta$$
 pour tout $x \in I_{\alpha}$.

lacksquare Si $x^{(k)} \in I_{lpha}$ on a $c^{(k)} \in I_{lpha}$ et donc

$$|x^{(k+1)} - \bar{x}| \le \beta |x^{(k)} - \bar{x}|.$$

Convergence linéaire locale de l'algorithme de point fixe: preuve

■ Montrons par récurrence que si $x^{(0)} \in I_{\alpha}$, il résulte que $x^{(k)} \in I_{\alpha}$ pour tout $k \in \mathbb{N}$. Puis ceci impliquera que

$$|x^{(k+1)} - \bar{x}| \le \beta |x^{(k)} - \bar{x}|$$
 pour tout $k \in \mathbb{N}^*$.

Preuve: on suppose que $x^{(k)} \in I_{\alpha}$ et on va montrer que ceci implique $x^{(k+1)} \in I_{\alpha}$.

Par hypothèse $|x^{(k)} - \bar{x}| < \alpha$. Comme

$$|x^{(k+1)} - \bar{x}| \le \beta |x^{(k)} - \bar{x}| < \beta \alpha < \alpha.$$

Il en résulte bien que $x^{(k+1)} \in I_{\alpha}$.

Convergence linéaire locale de l'algorithme de point fixe: Preuve suite

■ Montrons par récurrence que

$$|x^{(k)} - \bar{x}| \le \beta^k |x^{(0)} - \bar{x}|.$$

Pour k=0, l'inégalité se réduit à $|x^{(0)}-\bar{x}| \leq |x^{(0)}-\bar{x}|$ toujours vérifiée.

Supposons la vérifiée pour $k \in \mathbb{N}$, d'où

$$|x^{(k+1)} - \bar{x}| \le \beta |x^{(k)} - \bar{x}| \le \beta \beta^k |x^{(0)} - \bar{x}| = \beta^{k+1} |x^{(0)} - \bar{x}|$$

L'inégalité est donc aussi vraie pour k + 1.

Convergence linéaire locale de l'algorithme de point fixe: Preuve suite

- Comme $\beta < 1$, on a $\lim_{k \to +\infty} \beta^k = 0$ et donc $\lim_{k \to +\infty} x^{(k)} = \bar{x}$.
- On a montré que $x^{(k+1)} \bar{x} = g'(c^{(k)})(x^{(k)} \bar{x})$ avec $c^{(k)} \in]\bar{x}, x^{(k)}[\subset I_{\alpha}.$

On a $\lim_{k\to+\infty}c^{(k)}=\bar{x}$ puis par continuité de g' au point $\bar{x}\in U$ on en déduit que

$$\lim_{k\to+\infty}\frac{x^{(k+1)}-\bar{x}}{x^{(k)}-\bar{x}}=\lim_{k\to+\infty}g'(c^{(k)})=g'(\bar{x}).$$

Convergence linéaire locale de l'algorithme de point fixe: Preuve suite

Remarque: l'hypothèse de contraction locale au voisinage de \bar{x} suivante: $g \in C^0(U, \mathbb{R})$ et il existe $\alpha > 0$ et $\beta < 1$ tels que

$$|g(y) - g(x)| \le \beta |y - x|$$
 pour tout $(x, y) \in I_{\alpha} \times I_{\alpha}$,

suffit à obtenir la convergence linéaire du point fixe vers \bar{x} .

Convergence quadratique locale de l'algorithme de point fixe

Soit $g \in C^2(U,\mathbb{R})$ avec U ouvert de \mathbb{R} et soit $\bar{x} \in U$ tel que $g(\bar{x}) = \bar{x}$. On suppose que $g'(\bar{x}) = 0$. Alors il existe $\alpha > 0$, $\beta < 1$ et $\gamma \geq 0$ avec $\alpha \gamma \leq \beta$ tels que si

$$x^{(0)} \in I_{\alpha} =]\bar{x} - \alpha, \bar{x} + \alpha[,$$

on a

- \blacksquare $I_{\alpha} \subset U$,
- $\mathbf{x}^{(k)} \in I_{\alpha}$ pour tout $k \in \mathbb{N}$,
- $|x^{(k+1)} \bar{x}| < \gamma |x^{(k)} \bar{x}|^2$ pour tout $k \in \mathbb{N}$,
- $|x^{(k)} \bar{x}| \le \beta^{(2^k-1)} |x^{(0)} \bar{x}| \text{ pour tout } k \in \mathbb{N},$
- $\lim_{k \to +\infty} \frac{x^{(k+1)} \bar{x}}{(x^{(k)} \bar{x})^2} = \frac{1}{2} g''(\bar{x}).$

Convergence quadratique locale de l'algorithme de point fixe: Preuve

■ D'après la formule de Taylor à l'ordre 2 en tenant compte que $g(\bar{x}) = \bar{x}$ et $g'(\bar{x}) = 0$, il existe $c^{(k)} \in]\bar{x}, x^{(k)}[$ tel que

$$x^{(k+1)} - \bar{x} = g(x^{(k)}) - g(\bar{x}) - g'(\bar{x})(x^{(k)} - \bar{x}) = \frac{1}{2}g''(c^{(k)})(x^{(k)} - \bar{x})^2$$

■ Soit $\tilde{\alpha} > 0$ tel que $I_{\tilde{\alpha}} \subset U$. On pose

$$\gamma = \sup_{\mathbf{x} \in I_{\tilde{\alpha}}} rac{1}{2} |g''(\mathbf{x})| \quad ext{ et } \quad lpha = \min\Bigl(\tilde{lpha}, rac{eta}{\gamma} \Bigr).$$

On a bien $\alpha \gamma < \beta$.

■ Si $x^{(k)} \in I_{\alpha}$ on a $c^{(k)} \in I_{\alpha}$ et donc

$$|x^{(k+1)} - \bar{x}| \le \gamma |x^{(k)} - \bar{x}|^2.$$

Convergence quadratique locale de l'algorithme de point fixe: Preuve

On va montrer par récurrence que si $x^{(0)} \in I_{\alpha}$, il résulte que $x^{(k)} \in I_{\alpha}$ pour tout $k \in \mathbb{N}$. Puis cela impliquera que

$$|x^{(k+1)} - \bar{x}| \le \gamma |x^{(k)} - \bar{x}|^2$$
 pour tout $k \in \mathbb{N}^*$,

Preuve: on suppose que $x^{(k)} \in I_{\alpha}$ et on va montrer que ceci implique $x^{(k+1)} \in I_{\alpha}$.

On a

$$|x^{(k+1)} - \bar{x}| \le \gamma |x^{(k)} - \bar{x}|^2 < \gamma \alpha^2 = (\alpha \gamma)\alpha \le \beta \alpha < \alpha$$
 et donc $|x^{(k+1)} - \bar{x}| < \alpha$ ce qui implique que $x^{(k+1)} \in I_{\alpha}$.

4□ > 4問 > 4 = > 4 = > = 900

Convergence quadratique locale de l'algorithme de point fixe: Preuve suite

■ Montrons par récurrence que

$$|x^{(k)} - \bar{x}| \le \beta^{(2^k - 1)} |x^{(0)} - \bar{x}|.$$

Pour k=0, l'inégalité se réduit à $|x^{(0)} - \bar{x}| \leq |x^{(0)} - \bar{x}|$ toujours vérifiée. Supposons la vérifiée pour $k \in \mathbb{N}$, d'où

$$|x^{(k+1)} - \bar{x}| \le \gamma |x^{(k)} - \bar{x}|^2 \le \gamma \beta^{(2^{k+1}-2)} |x^{(0)} - \bar{x}|^2$$
$$< \gamma \alpha \beta^{(2^{k+1}-2)} |x^{(0)} - \bar{x}|$$

comme $\alpha\gamma \leq \beta$, l'inégalité est donc aussi vraie pour k+1.

Convergence quadratique locale de l'algorithme de point fixe: Preuve suite

- Comme $\beta < 1$, on a $\lim_{k \to +\infty} \beta^{(2^k-1)} = 0$ puis donc $\lim_{k \to +\infty} x^{(k)} = \bar{x}$.
- On a montré que $x^{(k+1)} \bar{x} = \frac{1}{2}g''(c^{(k)})(x^{(k)} \bar{x})^2$ avec $c^{(k)} \in]\bar{x}, x^{(k)}[\subset I_{\alpha}.$

On a $\lim_{k\to +\infty} c^{(k)}=\bar x$ puis par continuité de g'' au point $\bar x\in U$ on en déduit que

$$\lim_{k \to +\infty} \frac{x^{(k+1)} - \bar{x}}{(x^{(k)} - \bar{x})^2} = \lim_{k \to +\infty} \frac{1}{2} g''(c^{(k)}) = \frac{1}{2} g''(\bar{x}).$$

Algorithme de Newton en dimension 1

L'algorithme de Newton pour trouver un zéro \bar{x} d'une fonction f est l'algorithme de point fixe obtenu pour $g(x) = x - \frac{1}{f'(x)} f(x)$:

$$x^{(k+1)} = x^{(k)} - \frac{1}{f'(x^{(k)})} f(x^{(k)})$$
 pour tout $k \in \mathbb{N}$.

On remarque que $g'(\bar{x})=1-\frac{1}{f'(\bar{x})}f'(\bar{x})+\frac{f''(\bar{x})}{(f'(\bar{x}))^2}f(\bar{x})=0$, en supposant $f'(\bar{x})\neq 0$.

Le théorème de convergence quadratique locale s'applique donc si $f'(\bar{x}) \neq 0$ et $g \in C^2(U, \mathbb{R})$ (on verra dans la section 3 que $f \in C^2(U, \mathbb{R})$ suffit).

Algorithme de Newton en dimension 1

L'algorithme de Newton s'obtient aussi par approximations successives de f par sa tangente aux points $x^{(k)}$:

$$I(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}),$$

La solution de I(x) = 0 donne bien

$$x^{(k+1)} = x^{(k)} - \frac{1}{f'(x^{(k)})} f(x^{(k)}).$$

en supposant que $f'(x^{(k)}) \neq 0$.

Chapitre II: Résolution numérique des systèmes non linéaires

Section 2: Rappels et compléments de calcul différentiel

Rappels sur les fonctions vectorielles: différentielles

■ Application linéaire tangente: soit U un ouvert de \mathbb{R}^n et $\mathbf{f}: U \to \mathbb{R}^m$, on dit que \mathbf{f} est différentiable au point $\mathbf{x} \in U$ ssi il existe une application linéaire notée $D\mathbf{f}(\mathbf{x}) \in \mathcal{L}\left(\mathbb{R}^n, \mathbb{R}^m\right)$ telle que

$$\lim_{\mathbf{h}\neq 0\rightarrow 0}\frac{\|\mathbf{f}(\mathbf{x}+\mathbf{h})-\mathbf{f}(\mathbf{x})-D\mathbf{f}(\mathbf{x})(\mathbf{h})\|}{\|\mathbf{h}\|}=0.$$

En utilisant la notation: $o(\mathbf{h}): \mathbb{R}^n \to \mathbb{R}^m$ pour les applications telles que $\lim_{\mathbf{h} \neq 0 \to 0} \frac{\|o(\mathbf{h})\|}{\|\mathbf{h}\|}$ on écrit de façon équivalente que

$$f(x+h) - f(x) - Df(x)(h) = o(h).$$

Rappels sur les fonctions vectorielles: différentielles

- Remarque: si \mathbf{f} est différentiable au point $\mathbf{x} \in U$ alors \mathbf{f} est continue en \mathbf{x} .
- Différentielle: si **f** est différentiable pour tout $\mathbf{x} \in U$, on note $\mathbf{x} \to D\mathbf{f}(\mathbf{x})$ l'application de U dans $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ appelée différentielle de **f**

Rappels sur les fonctions vectorielles: différentielles

Exemples:

- pour n = 1 on retrouve la dérivée au sens classique $D\mathbf{f}(x) = \mathbf{f}'(x) \in \mathbb{R}^m$
- **p** pour m=1, $Df(\mathbf{x})$ est une forme linéaire de $\mathcal{L}(\mathbb{R}^n,\mathbb{R})$

Dérivées partielles: $\frac{\partial \mathbf{f}}{\partial x_j}(\mathbf{x})$ est la dérivée (si elle existe) de \mathbf{f} selon la direction $\boldsymbol{\epsilon}^{(j)}$ au point \mathbf{x} ie

$$\frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{x}) = \lim_{h_j \to 0} \frac{\mathbf{f}(\mathbf{x} + h_j e^{(j)}) - \mathbf{f}(\mathbf{x})}{h_i}.$$

avec $\epsilon^{(j)}$ le j^{ieme} vecteur de la base canonique $\epsilon^{(j)}_i = I_{i,j}$ pour $i=1,\cdots,n$.

Si f est différentiable au point x alors elle admet des dérivées partielles au point x et

$$D\mathbf{f}(\mathbf{x})(\mathbf{h}) = \sum_{j=1}^{n} \frac{\partial \mathbf{f}}{\partial x_{j}}(\mathbf{x})h_{j} \text{ pour tout } h \in \mathbb{R}^{n}.$$

■ En notant, dans la base canonique de \mathbb{R}^m

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{pmatrix}$$

on a donc

$$(D\mathbf{f}(\mathbf{x})(\mathbf{h}))_i = \sum_{i=1}^n \frac{\partial f_i}{\partial x_j}(\mathbf{x})h_j \text{ pour tout } h \in \mathbb{R}^n.$$

■ Matrice représentant l'application linéaire $D\mathbf{f}(\mathbf{x})$:

$$J(\mathbf{x}) \in \mathcal{M}_{m,n}(\mathbb{R})$$

telle que $J_{i,j}(\mathbf{x}) = rac{\partial f_i}{\partial x_j}(\mathbf{x}), i = 1, \cdots, m; j = 1, \cdots, n$

est appelée la matrice Jacobienne de ${\bf f}$ au point ${\bf x}$, avec

$$Df(\mathbf{x})(\mathbf{h}) = J(\mathbf{x})\mathbf{h}.$$

$$J(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{pmatrix}$$

- La réciproque n'est pas vraie: si **f** admet des dérivées partielles en **x**, elle n'est pas nécéssairement différentiable au point **x**.
 - Exemple: $f(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \frac{x_1 x_2}{\sqrt{x_1^2 + x_2^2}}$ a des dérivées partielles nulles en 0 mais n'est pas différentiable en 0.
- Si **f** admet des dérivées partielles continues au point **x** pour tout $i = 1 \cdots, n$ alors **f** est différentiable au point **x**
- **f** est continuement différentiable sur U (ie $D\mathbf{f}$ existe et est continue sur U) ssi \mathbf{f} admet des dérivées partielles continues sur U. On dit que \mathbf{f} est $C^1(U,\mathbb{R}^m)$.

Rappels sur les fonctions vectorielles: différentiation des fonctions composées

Soient

- $\mathbf{g}: \mathbb{R}^p \to \mathbb{R}^n$ différentiable en $\mathbf{x} \in \mathbb{R}^p$
- $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ différentiable en $g(\mathbf{x}) \in \mathbb{R}^n$.

Alors la fonction $\mathbf{f} \circ \mathbf{g} : \mathbb{R}^p \to \mathbb{R}^m$ est différentiable en \mathbf{x} et on a

$$D(\mathbf{f} \circ \mathbf{g})(\mathbf{x}) = D\mathbf{f}(\mathbf{g}(\mathbf{x}))D\mathbf{g}(\mathbf{x}).$$

$$\begin{split} &\text{avec } D\mathbf{g}(\mathbf{x}) \in \mathcal{L}\Big(\mathbb{R}^p, \mathbb{R}^n\Big), \ Df(\mathbf{g}(\mathbf{x})) \in \mathcal{L}\Big(\mathbb{R}^n, \mathbb{R}^m\Big), \\ &D(\mathbf{f} \circ \mathbf{g})(\mathbf{x}) \in \mathcal{L}\Big(\mathbb{R}^p, \mathbb{R}^m\Big), \end{split}$$

Rappels sur les fonctions vectorielles: formule des accroissements finis

Rappel dans le cas n=m=1 (théorème des accroissements finis): $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$:

si f est continue sur [a,b] et différentiable sur (a,b) alors il existe $c \in (a,b)$ tel que

$$f(b) - f(a) = f'(c)(b - a).$$

Rappels sur les fonctions vectorielles: formule des accroissements finis

- Extension au cas m = 1, $n \ge 1$
 - $\bullet [\mathbf{a}, \mathbf{b}] = \{(1-t)\mathbf{a} + t\mathbf{b}, t \in [0, 1]\} \subset U \subset \mathbb{R}^n,$
 - $(\mathbf{a}, \mathbf{b}) = \{(1-t)\mathbf{a} + t\mathbf{b}, t \in (0,1)\}.$
 - Si f est différentiable sur U, alors il existe $\mathbf{c} \in (\mathbf{a}, \mathbf{b})$ tel que

$$f(\mathbf{b}) - f(\mathbf{a}) = Df(\mathbf{c})(\mathbf{b} - \mathbf{a})$$

Preuve: on applique le théorème des accroissements finis à $\varphi(t) = f((1-t)\mathbf{a} + t\mathbf{b})$

Rappels sur les fonctions vectorielles: formule des accroissements finis

• Cas général: n > 1, m > 1:

$$\mathbf{f}: U \subset \mathbb{R}^n \to \mathbb{R}^m$$
 différentiable sur U et $[\mathbf{a}, \mathbf{b}] \subset U$, alors $\|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})\| \le \sup_{\mathbf{x} \in (\mathbf{a}, \mathbf{b})} \|D\mathbf{f}(\mathbf{x})\| \|\mathbf{b} - \mathbf{a}\|.$

Rappels sur les fonctions vectorielles: formule des accroissements finis: Preuve

Soit
$$\phi(t) = \mathbf{f}((1-t)\mathbf{a} + t\mathbf{b})$$
.
On a $\phi'(t) = D\mathbf{f}((1-t)\mathbf{a} + t\mathbf{b})(\mathbf{b} - \mathbf{a})$ et
$$\|\phi'(t)\| \le \sup_{\mathbf{x} \in (\mathbf{a}, \mathbf{b})} \|D\mathbf{f}(\mathbf{x})\| \|\mathbf{b} - \mathbf{a}\|.$$

On conclut par
$$\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a}) = \int_0^1 \phi'(t) dt$$
, d'où
$$\|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})\| \le \int_0^1 \|\phi'(t)\| dt \le \sup_{\mathbf{x} \in (\mathbf{a}, \mathbf{b})} \|D\mathbf{f}(\mathbf{x})\| \|\mathbf{b} - \mathbf{a}\|.$$

Soit
$$\mathbf{f} \in C^1(U, \mathbb{R}^m)$$
 avec U ouvert de \mathbb{R}^n . On a $D\mathbf{f} \in C^0(U, \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m))$.

On dit que \mathbf{f} admet une différentielle seconde, notée $D^2\mathbf{f}$, en $\mathbf{x} \in U$ ssi $D\mathbf{f}$ est différentiable en $\mathbf{x} \in U$, donc ssi pour tous $\mathbf{h} \in \mathbb{R}^n$ et $\mathbf{k} \in \mathbb{R}^n$ on a

$$D\mathbf{f}(\mathbf{x} + \mathbf{h})(\mathbf{k}) - D\mathbf{f}(\mathbf{x})(\mathbf{k}) - D^2\mathbf{f}(\mathbf{x})(\mathbf{h})\mathbf{k} = o(\mathbf{h})\mathbf{k}.$$

La différentielle seconde $D^2\mathbf{f}(\mathbf{x})$ est un élément de $\mathcal{L}\left(\mathbb{R}^n;\mathcal{L}(\mathbb{R}^n;\mathbb{R}^m)\right)$ isomorphe à l'ensemble des applications bilinéaires $\mathcal{L}\left(\mathbb{R}^n,\mathbb{R}^n;\mathbb{R}^m\right)$.

Soit
$$\mathbf{f} \in C^1(U, \mathbb{R}^m)$$
 avec U ouvert de \mathbb{R}^n . On a $D\mathbf{f} \in C^0(U, \mathcal{L}(\mathbb{R}^n; \mathbb{R}^m))$.

Si $D\mathbf{f}$ est continuement différentiable sur U on dit que $\mathbf{f} \in C^2(U,\mathbb{R}^m)$ et on note

$$D^2\mathbf{f}: U \to \mathcal{L}\Big(\mathbb{R}^n, \mathbb{R}^n; \mathbb{R}^m\Big),$$

la différentielle de Df appelée différentielle seconde de f.

■ Dérivées partielles d'ordre 2: si **f** est différentiable d'ordre 2 en **x** alors elle admet des dérivées partielles d'ordre 2 au point **x** notées $\frac{\partial^2 \mathbf{f}(\mathbf{x})}{\partial x_i \partial x_i}$ avec

$$D^2\mathbf{f}(\mathbf{x})(\mathbf{h})\mathbf{k} = \sum_{i,j=1}^n \frac{\partial^2\mathbf{f}(\mathbf{x})}{\partial x_i \partial x_j} h_i k_j$$
 pour tous $\mathbf{h}, \mathbf{k} \in \mathbb{R}^n$

On a alors le **théorème de Schwarz**: $D^2 f(x)$ est **symétrique** au sens où $D^2 f(x)(h)k = D^2 f(x)(k)h$ ou encore

$$\frac{\partial^2 \mathbf{f}(\mathbf{x})}{\partial x_i \partial x_j} = \frac{\partial^2 \mathbf{f}(\mathbf{x})}{\partial x_j \partial x_i} \text{ pour tous } i, j = 1, \dots, n.$$

■ Dans le cas m=1, on appelle $H(\mathbf{x}) \in \mathcal{M}_{n,n}(\mathbb{R})$ la matrice dite Hessienne représentant la forme bilinéaire $D^2f(\mathbf{x})$ dans la base canonique.

Rappels sur les fonctions vectorielles: formule de Taylor à l'ordre 2 dans le cas $\mathbf{f} \in C^2(U, \mathbb{R}^m)$

Soit $\mathbf{f} \in C^2(U, \mathbb{R}^m)$ avec U ouvert de \mathbb{R}^n et $\mathbf{a}, \mathbf{b} \in U$ tels que $[\mathbf{a}, \mathbf{b}] \subset U$. Alors on a

$$\|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a}) - D\mathbf{f}(\mathbf{a})(\mathbf{b} - \mathbf{a})\| \leq \frac{1}{2} \sup_{\mathbf{x} \in (\mathbf{a}, \mathbf{b})} \|D^2\mathbf{f}(\mathbf{x})\| \|\mathbf{b} - \mathbf{a}\|^2,$$

avec

$$||D^2\mathbf{f}(\mathbf{x})|| = \sup_{\mathbf{u},\mathbf{v}\neq 0\in\mathbb{R}^n} \frac{||D^2\mathbf{f}(\mathbf{x})(\mathbf{u},\mathbf{v})||}{||\mathbf{u}||||\mathbf{v}||}.$$

Rappels sur les fonctions vectorielles: formule de Taylor à l'ordre 2 dans le cas $\mathbf{f} \in C^2(U, \mathbb{R}^m)$

Preuve: soit

$$\varphi(t) = \mathbf{f}(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \mathbf{f}(\mathbf{x}) - t \ D\mathbf{f}(\mathbf{x})(\mathbf{y} - \mathbf{x}),$$
 on a $\varphi'(t) = \Big(D\mathbf{f}(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - D\mathbf{f}(\mathbf{x})\Big)(\mathbf{y} - \mathbf{x})$ et donc
$$\varphi(1) = \varphi(1) - \varphi(0) = \int_0^1 \Big(D\mathbf{f}(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - D\mathbf{f}(\mathbf{x})\Big)(\mathbf{y} - \mathbf{x})dt$$

$$\|\varphi(1)\| = \|\mathbf{f}(\mathbf{y}) - \mathbf{f}(\mathbf{x}) - D\mathbf{f}(\mathbf{x})(\mathbf{y} - \mathbf{x})\| \le \int_0^1 \|D\mathbf{f}(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - D\mathbf{f}(\mathbf{x})\|\|\mathbf{y} - \mathbf{x}\|dt$$
 on conclut par la formule des accroissements finis sur $D\mathbf{f} \in C^1(U, \mathbb{R}^m)$:

 $\|D\mathbf{f}(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-D\mathbf{f}(\mathbf{x})\| \leq \sup_{\mathbf{z}\in(\mathbf{x},\mathbf{x}+t(\mathbf{y}-\mathbf{x}))}\|D^2\mathbf{f}(\mathbf{z})\| \|\mathbf{y}-\mathbf{x}\| t$

Chapitre II: Résolution numérique des systèmes non linéaires

Section 3: Algorithmes de point fixe et de Newton en dimension n

Algorithme de point fixe

Soit

$$\mathbf{g} \in C^0(U, \mathbb{R}^n), \ U$$
 ouvert de \mathbb{R}^n

telle qu'il existe $\bar{\mathbf{x}} \in U$ avec $\mathbf{g}(\bar{\mathbf{x}}) = \bar{x}$.

Etant donné $\mathbf{x}^{(0)} \in U$, la méthode du point fixe est définie par la suite récurrente $\mathbf{x}^{(k)}$, $k \in \mathbb{N}$ telle que

$$\mathbf{x}^{(k+1)} = \mathbf{g}(\mathbf{x}^{(k)}).$$

L'analyse de la méthode du point fixe doit donner des conditions suffisantes sur \mathbf{g} et sur $\mathbf{x}^{(0)}$ pour que la suite $\mathbf{x}^{(k)}$ converge vers $\bar{\mathbf{x}}$ et estimer l'ordre de convergence.

Convergence linéaire locale de l'algorithme de point fixe

Soit $\mathbf{g} \in C^1(U, \mathbb{R}^n)$ avec U ouvert de \mathbb{R}^n et soit $\bar{\mathbf{x}} \in U$ tel que $\mathbf{g}(\bar{\mathbf{x}}) = \bar{\mathbf{x}}$. On suppose que $\|D\mathbf{g}(\bar{\mathbf{x}})\| < 1$. Alors il existe $\alpha > 0$ et $\beta < 1$ tels que si

$$\mathbf{x}^{(0)} \in B(\bar{\mathbf{x}}, \alpha) = {\mathbf{x} \in \mathbb{R}^n \text{ tels que } ||\mathbf{x} - \bar{\mathbf{x}}|| < \alpha},$$

on a

- $\blacksquare B(\bar{\mathbf{x}}, \alpha) \subset U$,
- $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ pour tout $k \in \mathbb{N}$,
- $\|\mathbf{x}^{(k+1)} \bar{\mathbf{x}}\| \le \beta \|\mathbf{x}^k \bar{\mathbf{x}}\|$ pour tout $k \in \mathbb{N}$,
- $\|\mathbf{x}^{(k)} \bar{\mathbf{x}}\| \le \beta^k \|\mathbf{x}^{(0)} \bar{\mathbf{x}}\| \text{ pour tout } k \in \mathbb{N},$

Convergence linéaire locale de l'algorithme de point fixe: preuve

■ D'après la formule des accroissements finis pour $\mathbf{g} \in C^1(U, \mathbb{R}^n)$ on a en tenant compte de $\mathbf{g}(\bar{\mathbf{x}}) = \bar{\mathbf{x}}$, on a:

$$\begin{aligned} \|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| &= \|\mathbf{g}(\mathbf{x}^{(k)}) - \mathbf{g}(\bar{\mathbf{x}})\| \\ &\leq \sup_{\mathbf{x} \in]\bar{\mathbf{x}}, \mathbf{x}^{(k)}[} \|D\mathbf{g}(\mathbf{x})\| \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|. \end{aligned}$$

■ Comme $||D\mathbf{g}(\bar{\mathbf{x}})|| < 1$ et que $D\mathbf{g}$ est continue en $\bar{\mathbf{x}}$, alors il existe $\alpha > 0$ et $\beta < 1$ tels que

$$||D\mathbf{g}(\mathbf{x})|| \leq \beta$$
 pour tout $\mathbf{x} \in B(\bar{\mathbf{x}}, \alpha)$.

■ Si $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ on a donc

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \beta \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|.$$

Convergence linéaire locale de l'algorithme de point fixe: preuve

On va montrer par récurrence que si $\mathbf{x}^{(0)} \in B(\bar{\mathbf{x}}, \alpha)$, il résulte que $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ pour tout $k \in \mathbb{N}$. Puis ceci impliquera que

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \beta \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|$$
 pour tout $k \in \mathbb{N}^*$.

Preuve: on suppose que $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ et on va montrer que ceci implique $\mathbf{x}^{(k+1)} \in B(\bar{\mathbf{x}}, \alpha)$.

Comme

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \beta \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\| < \beta \alpha < \alpha,$$

il en résulte bien que $\mathbf{x}^{(k+1)} \in B(\bar{\mathbf{x}}, \alpha)$.

Convergence linéaire locale de l'algorithme de point fixe: Preuve suite

■ Montrons par récurrence que

$$\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\| \le \beta^k \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|.$$

Pour k = 0, l'inégalité se réduit à $\|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\| \le \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|$ toujours vérifiée.

Supposons la vérifiée pour $k \in \mathbb{N}$, d'où

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \beta \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\| \le \beta \beta^k \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\| = \beta^{k+1} \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|$$

L'inégalité est donc aussi vraie pour k + 1.

La convergence s'en déduit car $\beta < 1$.

Convergence quadratique locale de l'algorithme de point fixe

Soit $\mathbf{g} \in C^2(U, \mathbb{R}^n)$ avec U ouvert de \mathbb{R}^n et soit $\bar{\mathbf{x}} \in U$ tel que $\mathbf{g}(\bar{\mathbf{x}}) = \bar{\mathbf{x}}$. On suppose que $D\mathbf{g}(\bar{\mathbf{x}}) = 0$. Alors il existe $\alpha > 0$, $\beta < 1$ et $\gamma \geq 0$ avec $\alpha \gamma \leq \beta$ tels que si

$$\mathbf{x}^{(0)} \in B(\bar{\mathbf{x}}, \alpha) = {\mathbf{x} \in \mathbb{R}^n \text{ tels que } ||\mathbf{x} - \bar{\mathbf{x}}|| < \alpha},$$

on a

- $\blacksquare B(\bar{\mathbf{x}}, \alpha) \subset U$,
- $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ pour tout $k \in \mathbb{N}$,
- $\|\mathbf{x}^{(k+1)} \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^k \bar{\mathbf{x}}\|^2$ pour tout $k \in \mathbb{N}$,
- $\|\mathbf{x}^{(k)} \bar{\mathbf{x}}\| \le \beta^{(2^k-1)} \|\mathbf{x}^{(0)} \bar{\mathbf{x}}\|$ pour tout $k \in \mathbb{N}$,
- $\lim_{k\to+\infty} \mathbf{x}^{(k)} = \bar{\mathbf{x}}.$

Convergence quadratique locale de l'algorithme de point fixe: Preuve

■ D'après la formule de Taylor à l'ordre 2 en tenant compte que $\mathbf{g}(\bar{\mathbf{x}}) = \bar{\mathbf{x}}$ et $D\mathbf{g}(\bar{\mathbf{x}}) = 0$, on a

$$\begin{split} \|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| &= \|\mathbf{g}(\mathbf{x}^{(k)}) - \mathbf{g}(\bar{\mathbf{x}}) - D\mathbf{g}(\bar{\mathbf{x}})(\mathbf{x}^{(k)} - \bar{\mathbf{x}})\| \\ &\leq \sup_{\mathbf{x} \in]\bar{\mathbf{x}}, \mathbf{x}^{(k)}[} \frac{1}{2} \|D^2 \mathbf{g}(\mathbf{x})\| \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2. \end{split}$$

■ Soit $\tilde{\alpha} > 0$ tel que $B(\bar{\mathbf{x}}, \tilde{\alpha}) \subset U$. On pose

$$\gamma = \sup_{\mathbf{x} \in B(\bar{\mathbf{x}}, \tilde{\alpha})} \frac{1}{2} \|D^2 \mathbf{g}(\mathbf{x})\| \quad \text{ et } \quad \alpha = \min \Big(\tilde{\alpha}, \frac{\beta}{\gamma}\Big).$$

On a bien $\alpha \gamma \leq \beta$.

■ Si $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ on a donc

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \leq \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2.$$

Convergence quadratique locale de l'algorithme de point fixe: Preuve

On va montrer par récurrence que si $\mathbf{x}^{(0)} \in B(\bar{\mathbf{x}}, \alpha)$, il résulte que $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ pour tout $k \in \mathbb{N}$. Puis ceci impliquera que

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2$$
 pour tout $k \in \mathbb{N}^*$.

Preuve: on suppose que $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ et on va montrer que ceci implique $\mathbf{x}^{(k+1)} \in B(\bar{\mathbf{x}}, \alpha)$.

Comme

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2 < \gamma \alpha^2 = (\alpha \gamma)\alpha \le \beta \alpha < \alpha,$$

on a $\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| < \alpha$ ce qui implique que $\mathbf{x}^{(k+1)} \in B(\bar{\mathbf{x}}, \alpha)$.

Convergence quadratique locale de l'algorithme de point fixe: Preuve suite

■ Montrons par récurrence que

$$\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\| \le \beta^{(2^k - 1)} \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|.$$

Pour k = 0, l'inégalité se réduit à $\|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\| \le \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|$ toujours vérifiée.

Supposons la vérifiée pour $k \in \mathbb{N}$, d'où

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2 \le \gamma \beta^{(2^{k+1}-2)} \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|^2 < \gamma \alpha \beta^{(2^{k+1}-2)} \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|$$

comme $\alpha \gamma \leq \beta$, l'inégalité est donc aussi vraie pour k+1.

La convergence s'en déduit car $\beta < 1$.

Algorithme de Newton

Soit

$$\mathbf{f} \in C^1(U, \mathbb{R}^n), \ U$$
 ouvert de \mathbb{R}^n

telle qu'il existe $\bar{\mathbf{x}} \in U$ avec $\mathbf{f}(\bar{\mathbf{x}}) = 0$.

Etant donné $\mathbf{x}^{(0)} \in U$, la méthode de Newton est définie par la suite récurrente $\mathbf{x}^{(k)}$, $k \in \mathbb{N}$ telle que

$$D\mathbf{f}(\mathbf{x}^{(k)})(\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)})=-\mathbf{f}(\mathbf{x}^{(k)}), \quad k \in \mathbb{N}.$$

- A chaque itération il faudra donc calculer la différentielle $D\mathbf{f}(\mathbf{x}^{(k)})$, vérifier qu'elle est bien inversible et résoudre un système linéaire.
- L'analyse de la méthode de Newton doit donner des conditions suffisantes sur \mathbf{f} et sur $\mathbf{x}^{(0)}$ pour que $D\mathbf{f}(\mathbf{x}^{(k)})$ soit inversible pour tout $k \in \mathbb{N}$ et pour que la suite $\mathbf{x}^{(k)}$ converge vers $\bar{\mathbf{x}}$.

Algorithme de Newton

Remarque: l'algorithme de Newton équivaut à l'algorithme de point fixe pour la fonction

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} - D\mathbf{f}(\mathbf{x})^{-1}\mathbf{f}(\mathbf{x}).$$

En supposant que $D\mathbf{f}(\bar{\mathbf{x}})$ est **inversible**, on vérifie que $\mathbf{g}(\bar{\mathbf{x}}) = \bar{\mathbf{x}}$ et que $D\mathbf{g}(\bar{\mathbf{x}}) = 0$ qui sont les conditions de convergence quadratique locale de l'algorithme de point fixe associé à \mathbf{g} .

Cependant, l'hypothèse $\mathbf{g} \in C^2(U, \mathbb{R}^n)$ est trop forte. On va donc faire une preuve directe de la convergence quadratique locale de l'algorithme de Newton.

Convergence quadratique locale de l'algorithme de Newton

Soit $\mathbf{f} \in C^2(U, \mathbb{R}^n)$ avec U ouvert de \mathbb{R}^n et soit $\bar{\mathbf{x}} \in U$ tel que $\mathbf{f}(\bar{\mathbf{x}}) = 0$. On suppose que $D\mathbf{f}(\bar{\mathbf{x}})$ est **inversible**. Alors il existe $\alpha > 0$, $\beta < 1$ et $\gamma \geq 0$ avec $\alpha \gamma \leq \beta$ tels que si

$$\mathbf{x}^{(0)} \in B(\bar{\mathbf{x}}, \alpha) = {\mathbf{x} \in \mathbb{R}^n \text{ tels que } ||\mathbf{x} - \bar{\mathbf{x}}|| < \alpha},$$

on a

- $\blacksquare B(\bar{\mathbf{x}}, \alpha) \subset U$,
- $Df(\mathbf{x}^{(k)})$ est inversible pour tout $k \in \mathbb{N}$,
- $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ pour tout $k \in \mathbb{N}$,

Convergence quadratique locale de l'algorithme de Newton: Preuve

On commence par montrer le lemme suivant:

Soit $\mathbf{f} \in C^2(U, \mathbb{R}^n)$ avec U ouvert de \mathbb{R}^n et $\bar{\mathbf{x}} \in U$ tel que $D\mathbf{f}(\bar{\mathbf{x}})$ est inversible. Alors il existe $\tilde{\alpha} > 0$, $C_1 > 0$, $C_2 > 0$ tels que $B(\bar{\mathbf{x}}, \tilde{\alpha}) \subset U$ et

- $D\mathbf{f}(\mathbf{x})$ inversible et $\|(Df(\mathbf{x}))^{-1}\| \leq C_1$ pour tous $\mathbf{x} \in B(\bar{\mathbf{x}}, \tilde{\alpha})$

Preuve: le point 1 est une application de $D\mathbf{f}(\mathbf{x})^{-1} = \frac{1}{\det(D\mathbf{f}(\mathbf{x}))}{}^t \mathsf{Co}(D\mathbf{f}(\mathbf{x}))$ et de sa continuité en $\bar{\mathbf{x}}$ pour $\det(D\mathbf{f}(\bar{\mathbf{x}})) \neq 0$.

Le point 2 résulte directement de la formule de Taylor d'ordre 2 pour $\mathbf{f} \in C^2(U, \mathbb{R}^n)$.

Convergence quadratique locale de l'algorithme de Newton: Preuve suite

- On pose $\gamma = C_1 C_2$ et $\alpha = \min \left(\tilde{\alpha}, \frac{\beta}{\gamma} \right)$. On a bien $\alpha \gamma \leq \beta$.
- On suppose que $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$. D'après le lemme $D\mathbf{f}(\mathbf{x}^{(k)})$ est inversible donc $\mathbf{x}^{(k+1)}$ est bien défini.

Comme
$$D\mathbf{f}(\mathbf{x}^{(k)})(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) + \mathbf{f}(\mathbf{x}^{(k)}) = 0$$
, on a
$$D\mathbf{f}(\mathbf{x}^{(k)})(\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}) = \mathbf{f}(\bar{\mathbf{x}}) - \mathbf{f}(\mathbf{x}^{(k)}) - D\mathbf{f}(\mathbf{x}^{(k)})(\bar{\mathbf{x}} - \mathbf{x}^{(k)})$$

d'où

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \|(D\mathbf{f}(\mathbf{x}^{(k)}))^{-1}\|C_2\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2 \le C_1C_2\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2 = \gamma\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2.$$

Convergence quadratique locale de l'algorithme de Newton: Preuve suite

■ On va montrer par récurrence que si $\mathbf{x}^{(0)} \in B(\bar{\mathbf{x}}, \alpha)$, il résulte que $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ pour tout $k \in \mathbb{N}$. Puis ceci impliquera que

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2$$
 pour tout $k \in \mathbb{N}$.

■ On suppose que $\mathbf{x}^{(k)} \in B(\bar{\mathbf{x}}, \alpha)$ et on va montrer que ceci implique $\mathbf{x}^{(k+1)} \in B(\bar{\mathbf{x}}, \alpha)$. Comme

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2 < \gamma \alpha^2 = (\alpha \gamma)\alpha \le \beta \alpha < \alpha$$
 et donc $\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| < \alpha$ ce qui implique que $\mathbf{x}^{(k+1)} \in B(\bar{\mathbf{x}}, \alpha)$.

Convergence quadratique locale de l'algorithme de Newton: Preuve suite

■ Montrons par récurrence que

$$\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\| \le \beta^{(2^k - 1)} \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|.$$

Pour k=0, l'inégalité se réduit à $\|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\| \le \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|$ toujours vérifiée. Supposons la vérifiée pour $k \in \mathbb{N}$, d'où

$$\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}\| \le \gamma \|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\|^2 \le \gamma \beta^{(2^{k+1}-2)} \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|^2 < \gamma \alpha \beta^{(2^{k+1}-2)} \|\mathbf{x}^{(0)} - \bar{\mathbf{x}}\|$$

comme $\alpha \gamma \leq \beta$, l'inégalité est donc aussi vraie pour k+1.

La convergence s'en déduit car $\beta < 1$.

Variantes de l'algorithme de Newton: Inexact Newton

Si le système linéaire est résolu avec une méthode itérative on veut ajuster le critère d'arrêt du solveur linéaire pour préserver la convergence quadratique de l'algorithme de Newton à moindre coût.

Ceci revient à résoudre le système linéaire de façon approchée avec un résidu ${f r}^k$

$$D\mathbf{f}(\mathbf{x}^{(k)})(\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)})=-\mathbf{f}(\mathbf{x}^{(k)})+\mathbf{r}^k,$$

tel que

$$\|\mathbf{r}^k\| \leq \eta_k \|f(\mathbf{x}^{(k)})\|.$$

Différentes stratégies existent pour ajuster η_k de façon à préserver la convergence quadratique sans trop résoudre le système linéaire: par exemple

$$\eta_k = \min \Big(\eta_{max}, \frac{|\|\mathbf{f}(\mathbf{x}^{(k)})\| - \|\mathbf{f}(\mathbf{x}^{(k)}) + D\mathbf{f}(\mathbf{x}^{(k)})(\mathbf{x}^{(k)} - \mathbf{x}^{(k)})\||}{\|\mathbf{f}(\mathbf{x}^{(k)})\|} \Big),$$

avec $\eta_{max}=0.1$. Ce choix prend en compte la fiabilité de l'approximation tangentielle de ${\bf f}$.

Variantes de l'algorithme de Newton: Quasi Newton

On n'a pas toujours en pratique accès au calcul exact de la Jacobienne de \mathbf{f} . Il existe des méthodes itératives pour l'approcher comme par exemple l'algorithme de Broyden suivant:

- Initialisation: $\mathbf{x}^{(0)}$, $\mathbf{x}^{(1)} \in U$, $B^{(0)} \in \mathcal{M}_n(\mathbb{R})$
- Itérations
 - lacksquare On pose $oldsymbol{\delta}^{(k)} = oldsymbol{\mathsf{x}}^{(k)} oldsymbol{\mathsf{x}}^{(k)}$ et $oldsymbol{\mathsf{y}}^{(k)} = oldsymbol{\mathsf{f}}(oldsymbol{\mathsf{x}}^{(k)}) oldsymbol{\mathsf{f}}(oldsymbol{\mathsf{x}}^{(k)})$
 - Mise à jour de rang 1 de la Jacobienne approchée:

$$B^{(k)} = B^{(k-1)} + \left(\frac{\mathbf{y}^k - B^{(k-1)}\boldsymbol{\delta}^{(k)}}{({}^t\boldsymbol{\delta}^{(k)})\boldsymbol{\delta}^{(k)}}\right)({}^t\boldsymbol{\delta}^{(k)})$$

• On résoud le système linéaire $B^{(k)}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = -\mathbf{f}(\mathbf{x}^{(k)})$

La correction de rang 1 de la Jacobienne approchée est construite pour vérifier la condition dite de la sécante:

$$B^{(k)}(\mathbf{x}^{(k)} - \mathbf{x}^{(k)}) = \mathbf{f}(\mathbf{x}^{(k)}) - \mathbf{f}(\mathbf{x}^{(k)}).$$

