

Image painting using Genetic Algorithms and Classifiers

Arno, Giorgi, Ilias, Mohammed & Viktor

Table of contents

- Introduction
- Initial goal
- Project
 - Genetic Algorithm
 - CNN Classifier
 - First Integration
 - Siamese Networks
 - Second Integration
- Conclusion

Introduction

Introduction

- Genetic algorithms project
- Professor Oramas and Ms. Haidar
- Weekly meeting
- Milestones

Initial goal

The plan

- Divide and conquer
- Three phase plan
- First two phases simultaneously

Phase 1 - The painter

Approximating a reference image

Phase 1 - the painter

Approximating a reference image

Phase 2 – The classifier

- Fitness function for genetic algorithm
- Training to recognize
- Evolve

INPUT

Predicted: American Lizard

Confidence: 95%

OUTPUT

Phase 3 – Integrating the parts

Combine classifier and genetic algorithm painter

Project progress

Genetic algorithm

Genetic algorithm - practical considerations

- Giorgi, Ilias & Viktor
- Constraints:
 - Greyscale
 - Low resolution images
 - Simple dataset
- Orientation

Genetic algorithm - Pipeline

Organism

DNA [] = list of genes

Example

University of Antwerp

Mutation phase

Organism

Each gene has a
{mutationRate} %
chance to mutate

Crossover phase

Repeat while top fitness < threshold

- Implemented with strings
- Infinite Monkey Theorem

```
DNA [] =
['t', 'o', 'b', 'e', 'o', 'r', 'n', 'o', 't', 't', 'o', 'b', 'e']
```


• Ref Target: to be or not to be

- First pixel test
- It's getting there, but suffers Premature Convergence

Preventing Premature Convergence:

- Adding special algorithms to counteract the problem
 - Random Offspring Generation (ROG)

Increasing population size / decreasing search space

0.png paint.net Image 1.09 KB

150.png paint.net Image

300.png paint.net Image 1.09 KB

paint.net Image 1.09 KB

1700.png paint.net Image 1.09 KB

2150.png paint.net Image

50.png paint.net Image 1.09 KB

200.png paint.net Image

400.png paint.net Image

1250.png paint.net Image

1800.png paint.net Image

100.png paint.net Image 1.09 KB

paint.net Image 1.09 KB

2100.png paint.net Image

Triangles:

Project progress

CNN Classifier

Classifier

- Arno & Mohammed
- No experience ⇒ research needed

Classifier - Research

- Learn the basics of CNN's
 - Mentors provided resources
- Get acquainted with PyTorch

Classifier - Start

- Experiment with existing models
 - Trying EfficientNet Is a more complex model feasible?
- Come up with own model
- Deciding on the dataset
 - CIFAR-10, CIFAR-100, MNIST & Fashion MNIST

Classifier – First implementation

- Decided on MNIST digit dataset
 - Easy training ⇒ faster development & testing
- Good accuracy (± 99% TOP-1)

Predicted: 9

Confidence: xx%

OUTPUT

Project progress

First Integration

First Integration – The straightforward way

First Integration – Problems

- Model learns difference between classes
 - What makes a "3" a "3" instead of an "8"?
 - Obvious in hindsight, but an important intuition
- Universe composed of the training data
 - Everything is decided based on the data

First Integration – Mitigations

- Add an extra class to the model
 - Use representative data
 - ⇒ Still overconfident
- Try to find an explanation
 - E.g., Using GradCAM

Project progress

Siamese Networks

Siamese Networks

- Predict similarity input output
- Two inputs, painter & reference

Project progress

Second Integration

- Use similarity as fitness score
- Intuition: Should act more like a comparator network
 - Compares features not pixels

Second Integration – Limitations

- Siamese networks add computation overhead
- Hard to find representative data
- Performance at scale unknown
 - Could not test it

Second Integration – Further experiments

- Siamese network with multiple reference images
 - Average out the features and calculate loss
 - More computation overhead
- MNIST Fashion dataset
- Binary Siamese network
 - Hypothesis: Works better and easier to optimize
 - Easier training
 - Needs further research

Conclusion

Conclusion – What we learnt

- We learnt a lot, especially
 - Classifier: derivative image generation
 - Possible Siamese network visualization method?

Conclusion – Feedback

- Open for further research
- Good teamwork
- Great mentors
- Satisfying results

Thank you

The end

