

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА на тему:

«Исследование характеристик эшелонированного крейсерского полета транспортного самолета»

Автор квалификационной работы: студент гр.М1О-403Б-18 Москвитин Андрей Семенович Руководитель: к.т.н., доцент кафедры 106 Мальцев Юрий Иванович

Постановка задачи

Задачи:

Общеспециальная часть

- Расчет основных летно-технических характеристик, взлетно-посадочных характеристик, транспортные возможности, характеристики маневренности, характеристик продольной устойчивости и управляемости
- Синтезировать систему автоматической стабилизации высоты

Специальная часть

 Исследовать характеристики самолета при выполнении эшелонированного полета

Объект исследования

Прототип транспортного самолета Ил-76

Параметры	Величина
m	140000 кг
S	300 м ²
b _a	6.436м

Диапазон высот и скоростей полета

Значения статического и практического потолка

Значения километрового и часового расхода для массы 140 т.

Расчет траектории полета

Параметры в наборе высоты:

$m_{T_{\rm Ha6}}$	$L_{\rm Ha6}$	$t_{ m Ha6}$
КГ	KM	мин
3830.5	175.7	18.3

Параметры крейсерского полета:

$T_{\rm \kappa p}$	$L_{\mathrm{\kappa p}}$	$\rho_{H{ m kp}}$	$H_{0 \text{ kp}}$	$H_{\text{K KP}}$
мин	км	$\frac{\text{K}\Gamma}{\text{M}^3}$	км	км
316.22	3069.0	0.3158	11	11.9

Параметры при снижении высоты:

$m_{T_{ m cH}}$	$L_{\rm ch}$	$t_{ m cH}$
ΚΓ	км	мин
443.5	197.3	19.7

Расчет траектории полета

Профиль полета:

Транспортные возможности

Диаграмма транспортных возможностей

Взлетно-посадочные характеристики

Основные параметры взлета и посадки:

$V_{ m orp}$	$L_{ m p}$	$L_{ m p}$ $L_{ m BA}$ $V_{ m kac}$		$L_{\rm npo6}$	$L_{\pi_{\mathcal{I}}}$
<u>M</u> C	M	M	<u>M</u> C	M	M
90.0	1830.0	2289.0	64.0	790.0	1384.0

Расчет правильного виража

Зависимость различных параметров виража

Характеристики продольной статической устойчивости и управляемости

Определение $ar{S}_{ ext{ro}}^*$

Характеристики продольной статической устойчивости и управляемости

Балансировочная диаграмма в полетной конфигурации

Характеристики продольной статической устойчивости и управляемости

$$\delta_{\scriptscriptstyle
m B}^{\it n_y}$$
 при $ar x=0.25$

Структурная схема стабилизации высоты в тангажном варианте:

Выбранные коэффициенты обратных связей для контура стабилизации тангажа:

Для регулятора K_{ϑ}

Выбранные коэффициенты обратных связей для контура стабилизации высоты:

Частотный анализ ЛАФЧХ для разомкнутого контура стабилизации высоты при: $q_{min} \Rightarrow M = 0.3071, \; q_{max} \Rightarrow M = 0.6119, \; q_{\text{KD}} \Rightarrow M = 0.61.$

М	0.3071	0.61	0.6119
$\omega_{ m cp}$, рад/с	0.284	0.267	0.862
ΔQ , дБ	9.813	11.866	7.198
ΔL , град.	35.362	39.075	28.364

Сравнение переходных процессов линейной и нелинейной модели.

Сравнение переходных процессов линейной и нелинейной модели.

Сравнение переходных процессов при различных скоростях отклонения привода.

Сравнение переходных процессов при различных скоростях отклонения привода.

Рассмотрим такие варианты полета:

- 1 При постоянной высоте и оптимальной скорости полета
- 2 При оптимальном изменении высоты и скорости полета
- 3 Эшелонированный полет с изменением высоты с шагом 300 м.

Таблица параметров крейсерского полета:

т, то	нн					Н, м				
,		8500	9000	9500	10000	10500	11000	11500	12000	12500
100.0	М	0.544	0.551	0.557	0.563	0.568	0.574	0.58	0.586	0.593
	q _{km}	7.781	7.399	7.048	6.73	6.446	6.198	5.987	5.816	5.685
	V	166.669	167.322	167.86	168.397	169.046	169.921	171.135	172.802	175.035
110.0	М	0.553	0.56	0.5 65	0.571	0.576	0.582	0.588	0.594	0.602
	q _{km}	8.11	7.737	7.4	7.104	6.856	6.664	6.534	6.473	6.488
	V	169.436	169.962	170.357	170.762	171.316	172.157	173.424	175.257	177.794
120.0	М	0.561	0.567	0.572	0.578	0.583	0.589	0.596	0.603	0.61
	q _{km}	8.444	8.092	7.787	7.538	7.353	7.241	7.209	7.266	7.42
	V	171.738	172.178	172.523	172.912	173.481	174.366	175.705	177.634	180.29
130.0	М	0.567	0.573	0.579	0.585	0.591	0.597	0.603	0.61	-
	q_{km}	8.801	8.5	8.263	8.088	7.977	7.93	7.945	8.023	-
	V	173.73	174.161	174.533	174.969	175.592	176.525	177.892	179.815	-
140.0	М	0.574	0.58	0.586	0.591	0.597	0.603	0.61	-	- 1
	q_{km}	9.215	8.975	8.808	8.706	8.661	8.663	8.705	-	-
	V	175.54	176.07	176.56	177.079	177.695	178.476	179.491	-	-
150.0	М	0.58	0.586	0.592	0.598	0.604	0.61	-	-	-
	q_{km}	9.703	9.506	9.39	9.352	9.391	9.501	-	-	-
	V	177.414	177.992	178.518	179.032	179.575	180.185	-	-	-
160.0	М	0.586	0.592	0.598	0.604	0.61	-	-	-	-
	q_{km}	10.243	10.081	10.017	10.059	10.215	-	-	-	-
	V	179.208	179.745	180.265	180.822	181.47	-	-	-	-
170.0	М	0.591	0.597	0.603	0.61	-	-	-	-	-
	q_{km}	10.82	10.705	10.714	10.871	=	-	=	-	-
	V	180.96	181.43	181.934	182.577	-	-	-	-	-
180.0	М	0.597	0.602	0.609	-	=	-	=	-	-
	q_{km}	11.437	11.382	11.509	-	-	-	-	-	-
	V	182.568	183.003	183.598	-	-	-	-	-	-
190.0	М	0.602	0.607	-	-	-	-	-	-	-
	q_{km}	12.098	12.146	-	-	-	-	-	-	-
	V	184.086	184.564	-	-	-	-	-	-	-

Изменения характеристик при постоянной высоте и оптимальной скорости полета:

Изменения характеристик при оптимальном изменении высоты и оптимальной скорости полета:

Изменения характеристик при эшелонированном полете:

Сравнение израсходованного топлива по сравнению с оптимальной траекторией

Режим	$m_{\text{изр}}, \%$
Полет по оптимальной траек-	100
тории	
Полет на $H=8500~{ m M}$	101.19
Полет эшелонированный по-	100.11
лет $\Delta H=300 { m M}$	

Зависимость расхода топлива от количества полетов

Заключение

- В данной работе мы определили основные летно-технические характеристики, область располагаемых высот и скоростей полета, практический и статические потолок, взлетно-посадочные характеристики, параметры правильного виража, характеристики продольной устойчивости и управляемости.
- Синтезировали систему стабилизации высоты в тангажном варианте.
 Подобрали такие коэффициенты обратной связи, которые обеспечивают устойчивость на всем диапазоне полетов.
- Также провели исследование характеристик эшелонированного полета из которого следует, экономически целесообразно проводить эшелонированный полет. Выигрыш в топливе по сравнению с полетом на постоянной высоте в нашем случае составляет порядка 1.19 %.