HW4

2024-09-29

Homework 4

Due October 13

$\mathbf{Q}\mathbf{1}$

Question: 3.6 (a), (b) Casella & Berger

A large number of insects are expected to be attracted to a certain variety of rose plant. A commercial insecticide is advertised as being 99% effective. Suppose 2,000 insects infest a rose garden where the insecticide has been applied and let X = number of surviving insects.

(a)

What probability distribution might provide a reasonable model for this experiment?

(b)

Write down, but do not evaluate, an expression for the proibability that fewer than 100 insects survive, suing the model in part (a)

Answer > (a)

(b)

 $\mathbf{Q2}$

Question: 3.13 (a) Casella & Berger

A truncated discrete distribution is one in which a particular class cannot be observed and is eliminated from the sample space. In particular, if X has range 0, 1, 2, ... and the 0 class cannot be observed (as is usually the case), the 0-truncated random variable X_T has pmf:

$$P(X_T = x) = \frac{P(X = x)}{P(X > 0)}$$

for $x = 1, 2, \dots$

Find the pmf, mean, and variance of the 0-truncated random variable starting from:

(a)

 $X \sim Poisson(\lambda)$

Answer > (a)

$\mathbf{Q3}$

Question: 3.17 Casella & Berger

Establish a formula simial to (3.3.18) for the gamma distribution. If $X \sim Gamma(\alpha, \beta)$, then for any positive constant v,

$$EX^v = \frac{\beta^v \Gamma(v+\alpha)}{\Gamma(\alpha)}$$

 ${\bf Answer}$

 $\mathbf{Q4}$

Question: 3.19 Casella & Berger

Show that:

$$\int\limits_{x}^{\infty}\frac{1}{\Gamma(\alpha)}z^{\alpha-1}e^{-z}dz=\sum\limits_{y=0}^{\alpha-1}\frac{x^{y}e^{-x}}{y!}$$

For $\alpha = 1, 2, 3, ...$

Hint: Use integration by parts. Express this formula as a probabilistic relationbship between Poisson and Gamma random variables.

Answer

 $\mathbf{Q5}$

Question: 3.24 (a), (c) Casella & Berger Note: You can skip the part about showing that the pdf is a pdf; also, in (c), the variance will not exist unless a >2.

Many "named" distributions are special cases of the more common distributions already discussed. For each of the following named distributions derive the form of the pdf, \dots , and calculate the mean and variance.

(a)

If $X \sim Exponential(\beta)$, then $Y = X^{1/\gamma}$ has the Weibull (γ, β) distribution, where $\gamma > 0$ is a constant.

(c)

If $X \sim Gamma(a, b)$, then Y = 1/X has the inverted Gamma IG(a,b) distribution.

Answer > (a)

(c)

Q6

Question: 3.39 Casella & Berger

Consider the Cauchy family defined in Section 3.3. This family can be extended to a location-scale family yielding pdfs of the form:

$$f(x|\mu,\sigma) = \frac{1}{\sigma\pi(1 + (\frac{x-\mu}{\sigma})^2)}$$

For $-\infty < x < \infty$

The mean and variance do not exist for this Cauchy distribution. So the parameters μ , σ^2 are not the mean and variance. But they do have important meaning. Show that if X is a random variable with a Cauchy distribution with parameters μ and σ , then:

(a)

 μ is the median of the distribution of X, that is, $P(X \ge \mu) = P(X \le \mu) = \frac{1}{2}$

(b)

 $\mu + \sigma$ and $\mu - \sigma$ are the quartiles of the distribution of X, that is $P(X \ge \mu + \sigma) = P(X \le \mu - \sigma) = \frac{1}{4}$

Hint: Prove this first for $\mu = 0$ and sigma = 1 and then use Exercise 3.38.

Note: $\frac{d(arctanx)}{dx} = \frac{1}{1+x^2}$

Answer > (a)

(b)

$\mathbf{Q7}$

 ${\bf Question:}$

If $X \sim N(\mu, \sigma^2)$, find values of μ and σ such that $P(|X| < 2) = \frac{1}{2}$. Prove or disprove that the values of μ and σ are unique.

Answer