ODE solver

李钦 2024312371

li-q24@mails.tsinghua.edu.cn

Problem 1. 《数值分析基础 (第二版) (关治, 陆金甫)》P404 第九章 常微分方程初值问题的数值解法 4.

用梯形方法解初值问题 y' = -y, y(0) = 1, 试证明:

- (1) $\mathfrak{P}(y_0 = y(0) = 1, \, \text{ff}(y_n = \left(\frac{2-h}{2+h}\right)^n)$.
- (2) 当 $h \to 0$, $x_n = nh$ 不变时, y_n 收敛于初值问题的准确解 e^{-x_n} .

Proof.

(1) 梯形方法的递推公式为:

$$y_{n+1} = y_n + \frac{h}{2} (f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$$

对于 y' = -y, 有 f(x,y) = -y, 因此递推公式变为:

$$y_{n+1} = y_n + \frac{h}{2} (-y_n - y_{n+1})$$

整理得到:

$$y_{n+1}\left(1+\frac{h}{2}\right) = y_n\left(1-\frac{h}{2}\right)$$

于是:

$$y_{n+1} = \frac{1 - \frac{h}{2}}{1 + \frac{h}{2}} y_n$$

这是一个等比数列递推关系, 初始条件为 $y_0 = 1$, 因此:

$$y_n = \left(\frac{1 - \frac{h}{2}}{1 + \frac{h}{2}}\right)^n = \left(\frac{2 - h}{2 + h}\right)^n$$

(2) 当 $h \to 0$ 时, $x_n = nh$ 保持不变. 我们需要证明:

$$\lim_{h \to 0} \left(\frac{2-h}{2+h}\right)^n = e^{-x_n}$$

$$\lim_{h \to 0} \left(\frac{2-h}{2+h} \right)^n = \lim_{n \to \infty} \left(\frac{2 - \frac{x_n}{n}}{2 + \frac{x_n}{n}} \right)^n$$

将分子和分母同时除以 2:

$$\lim_{n \to \infty} \left(\frac{1 - \frac{x_n}{2n}}{1 + \frac{x_n}{2n}} \right)^n$$

利用极限公式 $\lim_{n\to\infty} \left(1+\frac{a}{n}\right)^n = e^a$, 我们有:

$$\lim_{n\to\infty} \left(1 - \frac{x_n}{2n}\right)^n = e^{-\frac{x_n}{2}}, \quad \lim_{n\to\infty} \left(1 + \frac{x_n}{2n}\right)^n = e^{\frac{x_n}{2}}$$

因此:

$$\lim_{n \to \infty} \left(\frac{1 - \frac{x_n}{2n}}{1 + \frac{x_n}{2n}} \right)^n = \frac{e^{-\frac{x_n}{2}}}{e^{\frac{x_n}{2}}} = e^{-x_n}$$

即:

$$\lim_{h \to 0} \left(\frac{2-h}{2+h}\right)^n = e^{-x_n}$$

这表明当 $h \to 0$ 时, 梯形方法的数值解 y_n 收敛于初值问题的准确解 e^{-x_n} .

Problem 2. 《数值分析基础 (第二版) (关治, 陆金甫)》P404 第九章 常微分方程初值问题的数值解法 5.

试求出单步法

$$\begin{cases} y_{n+1} = y_n + hf(x_{n+1}, y_n + hf(x_n, y_n)) \\ y_0 = y(x_0) \end{cases}$$

的局部截断误差主项及绝对稳定性区间.

Solution.

局部截断误差主项 假设精确解为 y(x), 则有:

$$y(x_{n+1}) = y(x_n + h) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + \cdots$$

根据微分方程 $y'(x_n) = f(x_n, y(x_n))$, 所以:

$$y(x_{n+1}) = y(x_n) + hf(x_n, y(x_n)) + \frac{h^2}{2}f'(x_n, y(x_n)) + \cdots$$

而数值方法给出:

$$y_{n+1} = y_n + hf(x_{n+1}, y_n + hf(x_n, y_n))$$

展开 $f(x_{n+1}, y_n + hf(x_n, y_n))$:

$$f(x_{n+1},y_n+hf(x_n,y_n))=f(x_n+h,y_n+hf(x_n,y_n))=f(x_n,y_n)+h\frac{\partial f}{\partial x}(x_n,y_n)+hf(x_n,y_n)\frac{\partial f}{\partial y}(x_n,y_n)+\cdots$$

因此:

$$y_{n+1} = y_n + h \left[f(x_n, y_n) + h \frac{\partial f}{\partial x}(x_n, y_n) + h f(x_n, y_n) \frac{\partial f}{\partial y}(x_n, y_n) + \cdots \right]$$

比较精确解和数值解的展开式,得到局部截断误差的主项:

$$t_{n+1} = y(x_{n+1}) - y_{n+1} = \left(y_n + hf + \frac{h^2}{2}(f_x + ff_y)\right) - \left(y_n + hf + h^2(f_x + ff_y)\right) + \dots = -\frac{h^2}{2}y''(x_n)$$

绝对稳定性区间 考虑线性测试方程 $y' = \lambda y$, 其中 λ 是复数. 令 $f(x,y) = \lambda y$, 则:

$$y_{n+1} = y_n + hf(x_{n+1}, y_n + hf(x_n, y_n)) = y_n + h\lambda(y_n + h\lambda y_n) = y_n(1 + h\lambda + h^2\lambda^2)$$

绝对稳定性要求 $|1 + h\lambda + h^2\lambda^2| < 1$. 假设 $\lambda = \mu$ 是实数, 则:

$$1 + h\mu + h^2\mu^2 < 1$$
 \exists $1 + h\mu + h^2\mu^2 > -1$

首先, $1 + h\mu + h^2\mu^2 < 1$, 即 $h\mu(1 + h\mu) < 0$, 所以 $-1 < h\mu < 0$. 其次, $1 + h\mu + h^2\mu^2 > -1$ 总是成立. 因此, 绝对稳定性区间是 (-1,0).

Problem 3. 《数值分析基础 (第二版) (关治, 陆金甫)》P404 第九章 常微分方程初值问题的数值解法 6.

应用中点公式及 Heun 方法

$$y_{n+1} = y_n + \frac{1}{4}hf(x_n, y_n) + \frac{3}{4}hf(x_n + \frac{2}{3}h, y_n + \frac{2}{3}hf(x_n, y_n))$$

计算初值问题

$$y' = y - x^2 + 1$$
, $x \in [0, 1]$, $y(0) = 0.5$.

取 h = 0.2, 列出数值解及相应的误差 (问题的解析解为 $y(x) = (x+1)^2 - \frac{1}{2}e^x$.).

Solution.

x_n	$y(x_n)$	中点公式	误差	Heun 方法	误差
0	0.5000000	0.5000000	0	0.5000000	0
0.2	0.8292986	0.8280000	0.0012986	0.8273333	0.0019653
0.4	1.2140877	1.2113600	0.0027277	1.2098800	0.0042077
0.6	1.6489406	1.6446592	0.0042814	1.6421869	0.0067537
0.8	2.1272295	2.1212842	0.0059453	2.1176014	0.0096281
1.0	2.6408591	2.6331668	0.0076923	2.6280070	0.0128521

Problem 4. 《数值分析基础 (第二版) (关治, 陆金甫)》P404 第九章 常微分方程初值问题的数值解法 8.

试求出中点公式

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{1}{2}hf(x_n, y_n)\right)$$

的局部截断误差主项.

Solution. 首先, 我们考虑中点公式:

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{1}{2}hf(x_n, y_n)\right)$$

我们需要求出其局部截断误差的主项.为此,我们将精确解 $y(x_{n+1})$ 展开成泰勒级数,并与中点公式的表达式进行比较.精确解的泰勒展开为:

$$y(x_n + h) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + \cdots$$

其中,

$$y'(x_n) = f(x_n, y_n)$$
$$y''(x_n) = f_x + f_y f$$
$$y'''(x_n) = f_{xx} + 2f_{xy}f + f_x f_y + f_{yy}f^2 + f_y^2 f$$

中点公式的右边展开为:

$$y_{n+1} = y_n + h \left[f(x_n, y_n) + \frac{h}{2} f_x + \frac{h}{2} f_y + \frac{h^2}{8} f_{xx} + \frac{h^2}{4} f_{xy} f + \frac{h^2}{8} f^2 f_{yy} + \cdots \right]$$

清华大学, 软件学院

比较精确解和中点公式的展开式,得到局部截断误差的主项:

$$T_{n+1} = y(x_n + h) - y_{n+1}$$

$$= h^3 \left(\frac{1}{6} (f_{xx} + 2f_{xy}f + f_x f_y + f_{yy} f^2 + f_y^2 f) - \left(\frac{1}{8} f_{xx} + \frac{1}{4} f_{xy} f + \frac{1}{8} f^2 f_{yy} \right) \right) + \cdots$$

化简后得到:

$$T_{n+1} = h^3 \left[\frac{1}{6} y'' \frac{\partial f}{\partial y} + \frac{1}{24} \left(\frac{\partial^2 f}{\partial x^2} + 2f \frac{\partial f}{\partial xy} + f^2 \frac{\partial^2 f}{\partial y^2} \right) \right]_{(x_n, y(x_n))}$$

Problem 5. 《数值分析基础 (第二版) (关治, 陆金甫)》P404 第九章 常微分方程初值问题的数值解法 10.

试求出隐式中点方法

$$y_{n+1} = y_n + hf\left(x_n + \frac{1}{2}h, \frac{1}{2}(y_n + y_{n-1})\right)$$

的绝对稳定性区间 (推广 §3.5 节方法).

Solution. 首先, 我们考虑隐式中点方法:

$$y_{n+1} = y_n + hf\left(x_n + \frac{1}{2}h, \frac{1}{2}(y_n + y_{n+1})\right)$$

对于测试方程 $y' = \lambda y$, 我们有 $f(x,y) = \lambda y$, 因此方法变为:

$$y_{n+1} = y_n + \frac{h\lambda}{2}(y_n + y_{n+1})$$

整理得到:

$$y_{n+1}\left(1 - \frac{h\lambda}{2}\right) = y_n\left(1 + \frac{h\lambda}{2}\right)$$

解出 y_{n+1} :

$$y_{n+1} = y_n \cdot \frac{1 + \frac{h\lambda}{2}}{1 - \frac{h\lambda}{2}}$$

记 $R=\frac{1+\frac{h\lambda}{2}}{1-\frac{h\lambda}{2}}$,为了保证绝对稳定性,要求 $|R|\leqslant 1$.设 $z=h\lambda$,则 $R=\frac{1+\frac{z}{2}}{1-\frac{z}{2}}$,要求:

$$\left| \frac{1 + \frac{z}{2}}{1 - \frac{z}{2}} \right| \leqslant 1$$

展开模的平方:

$$\left|1 + \frac{z}{2}\right|^2 \leqslant \left|1 - \frac{z}{2}\right|^2$$

设 $z = \mu + i\nu$, 展开并简化得到:

$$1 + \mu + \frac{\mu^2}{4} + \frac{\nu^2}{4} \leqslant 1 - \mu + \frac{\mu^2}{4} + \frac{\nu^2}{4}$$

消去相同项后得到:

$$\mu \leqslant -\mu$$

即:

$$\mu \leqslant 0$$

因此, 只要 $Re(z) \le 0$, 即 $Re(h\lambda) \le 0$, 方法是绝对稳定的. 综上所述, 隐式中点方法的绝对稳定性区间为:

$$(-\infty,0)$$