Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-224. Вариант 12

- 1. Пусть $z=2\sqrt{3}+2i$. Вычислить значение $\sqrt[6]{z^3}$, для которого число $\frac{\sqrt[6]{z^3}}{\sqrt[4]{2}-\frac{i}{2}}$ имеет аргумент $-\frac{3\pi}{4}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-10-3i) + y(2-12i) = -97 - 11i \\ x(-2-i) + y(-8+5i) = 6 + 169i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 16x^5 + 121x^4 + 502x^3 + 1208x^2 + 1792x + 1280$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -1 2i$, $x_2 = -4 + 4i$, $x_3 = -2$.
- 4. Даны 3 комплексных числа: 15+25i, 21+13i, 20-28i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -1 + \sqrt{3}i$, $z_2 = -1 \sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi,\pi])$:

$$\begin{cases} |z-3+5i| < 2\\ |arg(z-4-4i)| < \frac{\pi}{2} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, -1, -1), b = (0, -7, -2), c = (1, 8, 1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-1,-13,-13) и плоскость P: 2x-24z-20=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(3,12,1), $M_1(0,11,4)$, $M_2(-12,-1,4)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 15x - 9y - 5z + 63 = 0 \\ -4x - 12y - 13z - 333 = 0 \end{cases} \qquad L_2: \begin{cases} 19x + 3y + 8z - 1340 = 0 \\ -2x + 16y + 15z - 207 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.