Agricultural Bank of China, New York Branch Project (ABCNY)

Machine Learning Algorithm to Detect String Matches and Automated Test Case Generator

Student Team

Bohao He (bohaohe16@gwu.edu)

Shuning Ma (shuning Ma (shuningma@gwu.edu)

Wenyuan Zou (iriszou@gwu.edu)

Xuan Zhao (xuanzhao@gwu.edu)

Yingying Liu (<u>liuyy0201@gwu.edu</u>)

Yuqi Wu (wyuqi30@gwu.edu)

Clients

 $And rew\ McAdams\ (\underline{mcadams.and rew@outlook.com})$

Matthew Finan (matthewfinan@abchinausa.com)

Neelansh Prasad (neelanshprasad@abchinausa.com)

Business Analytics Practicum (DNSC 6317)

Professor: Brian Murrow (brianmurrow@gwu.edu)

Due Date: December 09, 2022

Table of Contents

1. Executive Summary	2
2. Problem Understanding	2
3. Methodology	3
3.1 Data Analyzed	4
3.2 Analytics Techniques Used	5
4. Results, Conclusion, and Recommendations	6
5. Potential Next Steps	8
6. Appendices Including Code Developed for The Project	9

• Executive Summary

Agricultural Bank of China, New York Branch ("ABCNY") and a student team built a machine learning algorithm that classifies two strings as matches or not matches. The classification algorithm takes two names, an input name and a reference name, and classifies the two strings as match or no match.

To build the algorithm, the student team first created an automated test case name generator to automatically generate hundreds of name variations based on a Test Case Type Tracker provided by the client.

The student team then developed a machine learning algorithm that classified the input name and reference name as matches or not matches. The client indicated the algorithm would be used to weed out the obvious false positives generated by the ABCNY's name matching system.

• Problem Understanding

Our Description Objectives

Generate test case types data by Python to provide it to clients. Then confirm bad actors matching, as well as the confusion matrix based on the machine learning model. Increase the degree of accuracy for matching correctly along with the OFAC sanctions list.

Assess Overall Situation

1. Project Requirement

- Technical Demand: Generate an automated test case generator in Python that creates name variations of actual names for our testing, we need to acquire name scores for ABCNY's name matching system.
- 2) Business Demand: Eventually figure out the bank's fuzzy string-matching system to increase the degree of accuracy when employees want to check a specific name in financial background information.

2. Assess Risks

Both of the following risk types will reduce the accuracy of the financial system, which could cause a certain probability to affect the trust of the bank's financial system.

 False Negative: The risk will lead to the entities such as sanctioned individuals or companies to escape from the financial system and lead to potential financial crime risks. 2) False Positive: The risk will cause an unnecessary financial cost for those individuals, companies, and vessels entities who are not on the sanctions list. That's why we want to

weed out false positives.

3. Contingencies

1) Subjective: Hacker intrusion

2) Objective: Catastrophic events

4. Cost-Benefit Analysis

Manpower maintenance like model revising and version upgrading when the project done.

But a mature fuzzy string matching system can dramatically enhance a bank's work

efficiency. At the same time, it can also reduce the probability of society's financial crimes

such as tax evasion, embezzlement of company funds, etc.

Output Determine Data Processing Goals

In order to achieve the business objectives, to determine data processing goals is one of the

critical processes. At the very beginning, each of us will spend time generating an automated test

case generator. After we accomplished fuzzy string-matching tasks, we wrote out machine

learning models so as to train test case prediction along with the sanctions list to weed out false

positives.

Methodology

1. As part of this project, the team generated an automated test case generator in Python that

created name variations of actual names for our testing.

2. The student team then test name variations and created an algorithm using Machine

Learning, which classifies strings as matches or not matches.

Data Analyzed

Data Source

1. OFAC list: U.S. Department of The Treasury website

3

	0	1	2	3	4	5	6	7	8	9	10	11
0	36	AEROCARIBBEAN AIRLINES	-0-	CUBA	-0-	-0-	-0-	-0-	-0-	-0-	-0-	-0-
1	173	ANGLO-CARIBBEAN CO., LTD.	-0-	CUBA	-0-	-0-	-0-	-0-	-0-	-0-	-0-	-0-
2	306	BANCO NACIONAL DE CUBA	-0-	CUBA	-0-	-0-	-0-	-0-	-0-	-0-	-0-	a.k.a. 'BNC'.
3	424	BOUTIQUE LA MAISON	-0-	CUBA	-0-	-0-	-0-	-0-	-0-	-0-	-0-	-0-
4	475	CASA DE CUBA	-0-	CUBA	-0-	-0-	-0-	-0-	-0-	-0-	-0-	-0-
10563	39257	ABNOUSH, Salar	individual	IRAN- HR	-0-	-0-	-0-	-0-	-0-	-0-	-0-	DOB 02 May 1962; POB Hamedan, Iran; nationalit
10564	39258	IRAN'S MORALITY POLICE	-0-	IRAN- HR	-0-	-0-	-0-	-0-	-0-	-0-	-0-	$\label{eq:Additional Sanctions Information - Subject to } \mbox{\dots}$
10565	39259	MIRZAEI, Haj Ahmad	individual	IRAN- HR	Colonel	-0-	-0-	-0-	-0-	-0-	-0-	DOB 09 Feb 1957; nationality Iran; Additional
10566	39260	ROSTAMI CHESHMEH GACHI, Mohammad	individual	IRAN- HR	General	-0-	-0-	-0-	-0-	-0-	-0-	DOB 1976 to 1977; nationality Iran; Additional
10567		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

10568 rows x 12 columns

2. Automated Test Case Generator: 515 types of name variations generated from student team members

	UID	Theme	Category	Sub-category	Entity- Type	Test Case ID	OFAC List UID	Original Name	Test Case Name
0	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 9105	34658	FRADKOV, Petr Mikhailovich	F1ADKOV, Petr Mikhailovi()h
1	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 7000	26683	ALVARES, Carlos	ALVARE6, C#rlos
2	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 600	7828	AMDOUNI, Mehrez	AM(10UNI, Mehrez
3	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 6690	26078	TUBAIGY, Salah Muhammed A.	1UBAIGY, Salah Mu)ammed A.
4	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 1100	9390	ALTAMIRANO LOPEZ, Hector	ALTAMIRANO 00PEZ, Hec^or
5	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 3678	16993	SCHIAVONE, Francesco	S(HIAVONE, Frances7o
6	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 9508	35491	TSED, Nikolay Grigorevich	TSED, #ikolay Grigorevic1
7	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 2197	12088	PELAEZ LOPEZ, John Jairo	PELAEZ LOPEZ, John Ja&7o
8	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 6002	24519	AL-SAYYID, Ibrahim Amin	AL-SAYYID, Ibrah3m Am#n
9	UID- 212	Names where name parts are Modified	Character replaced by Number and Special Chara	1 Letter replaced by number and 1 letter repla	Individual	UID- 212 - 5363	22863	AL-MANSUR, Salim Mustafa Muhammad	AL-MANSUR, Salim Mustafa @uhamma8

3. Bridger Score: derived from ABCNY side's specific software

index UID	Theme	Category	Sub-category	Entity-Typ	e Test Case ID	OFAC List UID Original Name	Test Case Name	BRIDGER SCORE
18 UID-4	Positive Control	Exact Match	100% true match	Individual	UID-4 - 9547	35523 SIMIGIN, Pavel Vladimirovich	SIMIGIN, Pavel Vladimirovich	100
19 UID-4	Positive Control	Exact Match	100% true match	Individual	UID-4 - 2726	13480 GONZALEZ PARADA, Juvencio Ignacio	GONZALEZ PARADA, Juvencio Ignacio	100
20 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 3564	16736 CHERNOMORNEFTEGAZ	AN CHERNOMORNEFTEGAZ AN A	100
21 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 7762	29058 CASTLE HOLDING GMBH	OF CASTLE HOLDING GMBH A A	79
22 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 9153	34753 MOBILNYE PLATEZHI LIMITED LIABILITY COMPANY	OR MOBILNYE PLATEZHI LIMITED LIABILITY COMPANY OF A	96
23 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 352	7295 VISCAYA LTDA.	OF VISCAYA LTDA. AN OR	76
24 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 1877	11477 CONSULTORIA EN CAMBIOS FALCON S.A. DE C.V.	A CONSULTORIA EN CAMBIOS FALCON S.A. DE C.V. OF OF	87
25 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 6678	25978 GRANATURA, S. DE P.R. DE R.L. DE C.V.	A GRANATURA, S. DE P.R. DE R.L. DE C.V. OR A	72
26 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 6136	25017 BONYAD TAAVON BASIJ	AN BONYAD TAAVON BASIJ OF OR	97
27 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 5273	22488 TSMRBANK, OOO	OR TSMRBANK, OOO OF OF	80
28 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 9102	34644 PUBLIC JOINT STOCK COMPANY ALROSA	A PUBLIC JOINT STOCK COMPANY ALROSA OF OR	80
29 UID-5	Name Additions	Articles	> 2 Articles added	Entity	UID-5 - 8326	30874 IRAN MOBIN ELECTRONIC DEVELOPMENT COMPAI	N A IRAN MOBIN ELECTRONIC DEVELOPMENT COMPANY AN A	97
30 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 8127	30372 RAH NEGAR PARS MIDDLE EAST COMPANY	RAH NEGAR PARS MIDDLE EAST COMPANY A	100
31 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 1199	9571 AGROPECUARIA PALMA DEL RIO S.A.	AGROPECUARIA PALMA DEL RIO S.A. AN	96
32 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 10874	39188 INTERNATIONAL CENTER FOR QUANTUM OPTICS A	INTERNATIONAL CENTER FOR QUANTUM OPTICS AND QUAN	100
33 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 8751	32895 BRAVERY MARITIME CORPORATION	BRAVERY MARITIME CORPORATION AN	96
34 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 9833	35896 AKTSIONERNOE OBSHCHESTVO VERKHNEUFALEISE	II AKTSIONERNOE OBSHCHESTVO VERKHNEUFALEISKII ZAVOD	100
35 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 306	7219 ASKATASUNA	ASKATASUNA AN	100
36 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 7751	29042 DAMASCUS CHAM FOR MANAGEMENT LLC	DAMASCUS CHAM FOR MANAGEMENT LLC OF	100
37 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 7092	26897 ORIENT CLUB	ORIENT CLUB OF	97
38 UID-7	Name Additions	Articles	1 Articles added	Entity	UID-7 - 1535	10575 BELNEFTEKHIM USA, INC.	BELNEFTEKHIM USA, INC. AN	96

Data Proportion

We set 50% matches and 50% no-matches to form a balanced dataset, therefore build a proper machine learning model.

- 1. 25% match (fuzzy match): 4627 rows from automated test case generator
- 2. 25% match (exact match): 4627 rows with totally same original name and test case name randomly selected from OFAC list
- 3. 50% no-match: 9254 rows with totally different original name and test case name randomly selected from OFAC list

Analytics Techniques Used

The project was divided in three parts:

- 1. Pandas to create an automated test case generator to build and test a classification algorithm.
- 2. Create an algorithm using machine learning that determines if two strings are matches
- 3. Generated automated reports and visualizations in Python to support building the machine learning model

• Results, Conclusions, and Recommendations

Machine Learning Algorithm Result

Feature Engineering

The 17 X features are generated using similarity functions with original names and test case names as inputs.

X Features	Description
levenshtein_distance	Levenshtein distance represents the number of insertions, deletions, and substitutions required to change one word to another.
damerau_levenshtein_distance	A modification of Levenshtein distance, Damerau-Levenshtein distance counts transpositions (such as ifsh for fish) as a single edit.
hamming_distance	Hamming distance is the measure of the number of characters that differ between two strings.
jaro_similarity	Jaro distance is a string-edit distance that gives a floating point response in [0,1] where 0 represents two completely dissimilar strings and 1 represents identical strings.
jaro_winkler_similarity	Jaro-Winkler is a modification/improvement to Jaro distance, like Jaro it gives a floating point response in [0,1] where 0 represents two completely dissimilar strings and 1 represents identical strings.
match_rating_comparison	The Match rating approach algorithm is an algorithm for determining whether or not two names are pronounced similarly.
ratio	Ratio function computes the standard Levenshtein distance similarity ratio between two sequences.
partial_ratio	Partial Ratio matches based on best substrings
token_sort_ratio	Token Sort Ratio tokenizes the strings and sorts them alphabetically before matching
token_set_ratio	Token Set Ratio tokenizes the strings and compared the intersection and remainder
w_ratio	W ratio handles lower and upper cases and some other parameters too
uq_ratio	UQ ratio is a unicode version of QRatio.
q_ratio	Q ratio method performs a quick ratio comparison between two strings. Runs full_process from utils on both strings. Short circuits if either of the strings is empty after processing.
matching_numbers	Matching numbers extracts numeric data from the names, i.e. 64, and looks at their level of similarity between the two names.
matching_numbers_log	Log version of matching_numbers
log_fuzz_score	Log version of (ratio + partial_ratio + token_sort_ratio + token_set_ratio)
log_fuzz_score_numbers	Log version of (fuzz_score + matching_numbers)

Feature Importance

The feature importance plot shown below was from ReLU-DNN model, our machine learning model with the best result. It was generated using a built-in visualization function of PiML package.

Validation Data Result

Charts below indicate that all 13 machine learning models performed well and all had high accuracy result for validation dataset.

	,		mod	lel accı	ıracv	ma	e pre	cision	ro	call		f1	r	oc ru	n_time	tp	fp	tn	fn
			11100	iei acci	aracy	IIIa	Pic	CISIOII		can				. 14	11_tillie	Ψ,	יף		
0 D	ummyC	lassifier	_stratifi	ed 0.50	3671	0.496329	9 0.5	12557	0.522	162	0.5173	15	0.5033	18	0.0	1449	1378	1295	1326
1	KNe	eighbor	sClassif	ier 0.99	4310	0.005690	0.9	97823	0.9909	991	0.99439	95	0.99437	73	0.01	2750	6	2667	25
2		XG	BClassif	ier 0.99	3759	0.00624	1 0.9	94587	0.993	153	0.9938	69	0.9937	71	0.06	2756	15	2658	19
3	Deci	sionTre	eClassif	ier 0.98	9537	0.01046	3 0.9	86399	0.993	153	0.9897	65	0.98946	88	0.0	2756	38	2635	19
4	Rando	mFores	tClassif	ier 0.99	4677	0.00532	3 0.9	96744	0.992	793	0.9947	64	0.9947	13	0.02	2755	9	2664	20
5	Α	daBoos	tClassif	ier 0.99	3025	0.00697	5 0.9	94937	0.9913	351	0.99314	41	0.9930	57	0.02	2751	14	2659	24
6 G	radient	Boostin	gClassif	ier 0.99	4310	0.005690	0.9	96023	0.9927	793	0.99440	05	0.99433	39	0.03	2755	11	2662	20
7		Р	erceptr	on 0.98	4031	0.015969	9 0.9	95941	0.9726	613	0.9841	39	0.98424	19	0.0	2699	11	2662	76
8			М	LP 0.99	3759	0.00624	1 0.9	97098	0.9906	631	0.9938	54	0.9938	19	0.04	2749	8	2665	26
9	X	GBClass	ifer tun	ed 0.99	3209	0.00679	1 0.9	92092	0.994	595	0.99334	42	0.99318	32	0.01	2760	22	2651	15
Regi	ster ReLU-[ONN Done				Regist	er GAMI-N	let Done					Regist	er EBM [)one				
	ACC	AUC	Recall	Precision	ı F	1	ACC	AUC	Recal1	Precis	sion	F1		ACC	AUC	Reca11	Precis	ion	F1
Train	0.9893	0.9974	0.9863	0.9923	0.989	3 Train	0.9920	0.9987	0.9882	0.9	960 0.9	9921	Train	0.9945	0.9995	0.9920	0.99	71 0.99	945
Test	0.9933	0.9982	0.9920	0.9945	0.993	3 Test	0.9951	0.9995	0.9938	0.9	963 0.9	951	Test	0.9950	0.9993	0.9934	0.99	63 0.99	949
Gap	0.0041	0.0007	0.0057	0.0023	0.004	Gap	0.0031	0.0008	0.0056	0.0	0.004	0030	Gap	0.0004	-0.0002	0.0014	-0.00	0.00	004

Test Data Result and Model selection

ReLU-DNN had significantly larger number of true negatives than all the others, and only several more false negatives as exchange. Since we viewed the number of true negatives as the most important evaluation criteria of our classification models, we chose ReLU-DNN as our best machine learning model.

73000	50	141	70010			
Model	tp	fn	fp	tn		
XGBClassifier tuned	2961	86	51366	19447		
ReLU-DNN	2959	88	49767	21046		
GAMI-Net	2964	83	52561	18252		
EBM	2964	83	51030	19783		

Loss	Improvement
2.82%	27.46%
2.89%	29.72%
2.72%	25.77%
2.72%	27.94%

Overall Result and Conclusion

Test data

After creating our Machine Learning algorithm and training it on the test cases we generated with our automated test case generator, we used our machine learning name matching

classification algorithm to increase the efficiency of the Branch's production system output by weeding out obvious false positives.

The Bank's production system Bridger created 73,860 possible matches during a review period. Our machine learning algorithm ingested those matches and accurately designated 21,046 of them as "Not Matches", while incorrectly designated 88 as "Not Matches" when they were actually "Matches".

As such, we were able to reduce the population of matches by 30% by classifying them accurately as false positives while creating false negatives for only 2.9% of the Matches population, which the Bank found to be a successful tradeoff.

• Potential Next Steps

Limitations and Improvements

1. **Limitation 1:** Limitation on language translation. Our data set contains lists of foreign names that might be very different in their original language but seem to be similar in English.

Improvements:

- 1) Translate letters in other languages into English.
- 2) Recruit consultants who are native speakers of corresponding foreign languages.
- 2. **Limitation 2:** Data examples are too idealistic and do not accurately capture real world situations (e.g. Entity, Individual, Vessel's matching).

Improvements:

- Reconstruct current data composition with building more realistic no-match name variations.
- 2) Build more test case names with different name variations.
- 3. **Limitation 3:** Limitation on similarity metrics. As our similarity metrics are calculated from similarity distance, and the mathematical theory behind some of them would be similar, these

similarity metrics, as our X-features, probably are not comprehensive enough to do the classification.

Improvement:

Look for more similarity metrics which evaluate 2 strings with different principles.

Monitoring and Maintaining

Establish a weekly or monthly check system based on the log, which describes the problems during the running time.

• Appendices Including Code Developed for The Project

Coding Documents Link: ABCNY Project Coding Documents

- 1. Automated Test Case Generator Coding
- 2. Machine Learning Algorithms Coding