

ivaille, Matili	kelnummer	Campus Essling	gen Flandernstraße
Prüfer:	Prof. DrIng. Rainer Keller	Anzahl der Seiten:	10
Studiengänge	e: Softwaretechnik und Medieninformatik	Semester:	SWB2
	Technische Informatik		TIB2
Klausur:	Betriebssysteme	Prüfungsnummern:	IT 105 2004 2 SWB 3072
viausui.	betriebssysteme		2 TIB 3072
Hilfsmittel:	keine, außer 1 DIN A4 Blatt, beidseitig von Hand selbst beschrieben	Dauer der Klausur:	90 Minuten
Aufaah	e 1: Allgemeines	(9 F	Punkte)
Turgab	e i. Angememes	(51	unkte)
a) Wie v	waren die ersten elektrischen Comp	outer aufgebaut?	
Mit Vaku	umröhren, Relays		
Verdrahtı			
Trennund	r Parachaungcainhait und Spaichar		
	g Berechnungseinheit und Speicher	•	
	g berechnungsemmen und Speichei	•	
	g berechnungsemmen und Speichei		
	g berechnungsemmen und Speichei		
b) Was	kennzeichnet den Übergang zu mo	odernen Rechner de	er 2. Generation?
b) Was	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ	odernen Rechner de	er 2. Generation?
b) Was	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ	odernen Rechner de	er 2. Generation?
b) Was	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ	odernen Rechner de	er 2. Generation?
b) Was	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ	odernen Rechner de	er 2. Generation?
b) Was	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ	odernen Rechner de	er 2. Generation?
b) Was	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ	odernen Rechner de	er 2. Generation?
b) Was Prozesso Transisto	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ	dernen Rechner de anium oder Siliziur	er 2. Generation?
b) Was Prozesso Transisto	kennzeichnet den Übergang zu mo oren auf Halbleitertechnik auf Germ oren he Linux-Distribution haben wir in	dernen Rechner de anium oder Siliziur	er 2. Generation?

Name.	Matrikelnummer	

Aufgabe 2: Bash Shell

(14 Punkte)

a) Was machen die folgenden Bash Befehle?

mkdir help	den Ordner help erstellen	
strace ./program	die System Calls von program verfolgen und ausgeben	
ps	Zeigt Informationen zu allen Prozessen die kontrollierende Terminals haben	
rm -fr verzeichnis/	"Verzeichnis" und alle Unterordner und Dateien ohne Nachfrage bei Problemen löschen	
wc datei	Ausgabe der Wörter, Zeilen und Zeichen in "datei"	
bg	sendet den aktuellen job in den Hintergrund	9
grep datei text.txt	sucht in "text.txt" nach "datei" und gibt alle Zeilen damit	aus
mount	kann Dateisysteme einhängen, gibt alle eingehängten FS und Geräte aus	
mknod c 1 1 nod	neuer Dateisystem node	

b) Welche Betriebssystem-Tools müssen Sie hier verwenden?

Alle offenen Netzwerkverbindungen zeigen:	netstat	
Module Informationen anzeigen:	modinfo	
Module laden:	insmod oder modprobe	5
Einen Prozess "netter" machen:	nice	
Header in einer Binärdatei (Module) zeigen:	objdump -h	

Name,	Matrikelnummer	
Aufg	yabe 3: Hardwa	are (10 Punkte)
	Wie nennt man die Sof Hardware, bspw. einen L	ftware eines Betriebssystems, welche bestimmte JSB-Stick ansprechen?
	ernelmodul, ein (Hardwai est im Kernel integriert s	re-)Treiber, diese können als Module eingebunden ein
	Nennen Sie Ihnen bekan Hardware des Rechners	nte systemnahe Programme (mindestens zwei) um herauszufinden?
Isus	sb, Ispci, cat /proc/cpuinfo	0
c)	Meine Hardware tut nich	nt, wo finde ich mehr Informationen raus?
dr	nesg, journalctl -xe, Ismo	od
d)	Was gehört zum Betrieb	ossystem, was nicht?
da	zu: alles das notwendig i	ist die Hardware zu

abstrahieren, Kernel, Module, Treiber

systemnahe Programme, Editoren etc

nicht dazu: alles was der Nutzer darauf ausführen möchte,

Name,	Matrikelnummer

Aufgabe 4: Systemaufrufe

(19 Punkte)

a) Welche Möglichkeiten gibt es auf x86-Prozessoren (32-Bit und 64-Bit), Funktionen im Linux-Betriebssystem aufzurufen?

syscall, sysenter, glibc, SW-Interrupt x80

3

- b) Beschreiben Sie den Ablauf eines Hardwareinterrupts anhand eines Tastendrucks auf dem Keyboard ihres PCs?
- 1) Tastendruck -> Tastaturgerät meldet Interrupt auf Bus (von Interrupt Controller, CPU und Geräten) -> Interrupt Controller entscheidet was getan werden muss, wenn gerade ein anderer Interrupt bearbeitet wird oder auf einem höherpriorisierten Bus ein Interrupt liegt, dann bleibt das Signal solange auf dem Bus, bis es durch den Prozessor behandelt wird. -
- > IC erzeugt Interrupt auf Bus
- 2) Mikroprozessor wird unterbrochen
- 3) aktueller Prozess merkt davon nichts
- 4) ISR wird geladen und liest die Daten vom Gerät in Puffer
- 5) Betriebssystem springt in den unterbrochenen Prozess zurück
- 6) Periodisch muss der OS-interne Puffer kopiert werden
- 7) Wartet ein Prozess auf den Tastendruck im Puffer kann er jetzt wieder ausgeführt werden

6

c) Zeichen Sie die Interrupt-Klassifikation auf:

d) Wie lange dauert ein Systemaufruf circa? Und wieso war getpid() so schnell?

mehrere Hundert Taktzyklen

4

getpid() war so schnell, weil die pid in einem Cache lag und von dort kopiert werden konnte

Name,	Matrikelnummer

Aufgabe 5: Virtueller Speicher (18 Punkte)

a) Welche beiden Eigenschaften müssen für Speicherzugriffe gelten, damit Caches optimal funktionieren? (bitte erklären)

die relevanten Daten müssen im Cache liegen, nur wenn das, was am wahrscheinlichsten Gebraucht wird im Cache liegt, wird die erwartete Speicherzugriffzeit kürzer

temporal, in kurzer Zeit wird wahrscheinlich wieder auf den selben oder in der Nähe wieder auf Speicher zugegriffen

partial, mit hoher Wahrscheinlichkeit die wieder in der Nähe zugreifen

b) Wie viele Bits bietet der Intel Prozessor für Schutzebenen, wie viele Ebenen erlaubt dies und wie viele nutzt Linux?

1.	Wie viele Bits?	3
2.	Wie viele Ebenen?	4
3.	Linux nutzt?	2

c) Welche Speicherseitengrößen unterstützen 64-Bit Intel & AMD CPUs?

4KiB, 2/4MiB, 1GiB	

4

3

3

Name	Matrikelnummer	

- d) Der Buddy-Allokator erlaubt, sehr schnell freie Speicherbereiche zu identifizieren. Die untenstehende Ansicht entspricht der Darstellung von Wikipedia. Zuerst ist der Speicher komplett frei. Zeichnen Sie die folgenden Allokationen ein:
 - 1. Programm A alloziiert 17 kB Speicher
 - 2. Programm B alloziiert 3 kB Speicher
 - 3. Programm A alloziiert 13 kB Speicher

	4kB															
1.	24															
2.																
3.																
4.																
5.																
6.																
7.																
8.																
9.																
10																
11																

8

Name, Matrikelnummer

Aufgabe 6: Linux Kernel

(13 Punkte)

a) Wohin werden Linux Kernel Module Dateien installiert?

/lib/modules/VERSION/

2

8

b) Erklären Sie die Zeilen der Ausgabe von 1smod:

Betriebssysteme WS2016/17

Name, Matrikelnummer	
c) Circa wie groß ist der Linux Kernel in Lines-of-Code und in welcher grammiersprache ist der geschrieben?	Pro-
C 00Mio LoC	
C, 20Mio LoC	
Aufgabe 7: IPC (9 Punkte)	
a) Welches ist die schnellste Art der Interprozesskommunikation zwisc Prozessen eines Rechners und warum?	hen
Sich Gegenseitig in den RAM schreiben, Memoymaps / Sharedmemory Argumentation?	
process_vm_read und process_vm_write bei Elternkindprozessen	
process_tm_read and precess_tm_tmte ser Elemininaprezesser	
b) Warum sind Dateien keine gute Form der Interprozesskommunikation?	
Langsam, man muss auf Platte schreiben, was wenn ein zweiter Prozess auch auf die Datei zugreift	
	4

Name, Matrikelnummer	
Aufgabe 8: Dateisysteme a) Welche Dateisysteme haben wir in der Vo	(8 Punkte) orlesung behandelt?
NTFS, ExtFS, FAT	
b) Was zeichnet das Dateisystem vom alte immer noch verwendet?	n MS-Dos aus und wieso wird es
es kann keine sehr großen Dateien beinhal es ist ein sehr einfaches Dateisystem und d embedded Devices wie zB mp3 Sticks gut	deshalb können auch