8 Refractomet Division
WINIVERSAL-CYCLODE CTPT

Technical Report

404 026

Bridgeville, Pennsylvania

3) 902800 DNA OU

ASC INTERIM REPORT 7-786 (IV) April, 1963

(6) INFAB PROCESSING OF TZM SHEET

(S) Contract AF 33(657)-8495

Description Technical
Engineering Report. 15

January 1963 - 15 April 1963 and Phase of

Phase IV Report

Prepared By
F. R. Cortes
(1) Aprice 3,
(2) 29 p.

UNIVERSAL-CYCLOPS STEEL CORPORATION REFRACTOMET DIVISION BRIDGEVILLE, PENNSYLVANIA

(13)-(14) MA-

(B) NA

DNA-

BASIC INDUSTRY BRANCH
MANUFACTURING TECHNOLOGY LABORATORY

Directorate of Materials and Processes
Aeronautical Systems Division
United States Air Force
Wright-Patterson Air Force Base, Ohio

ABSTRACT Fourth Interim Report

ASC INTERIM REPORT 7-786 (IV) April, 1963

INFAB PROCESSING OF TZM SHEET

Refractomet Division Universal-Cyclops Steel Corporation

Twenty-nine pieces of intermediate gage (mold out) TZM have been evaluated for soundness, contamination, recrystallization and tensile properties. Results show that mold out produced by rolling at 2400 and 2800°F are superior to hold out rolled at 2000 or 3200°F regardless of forging practice. Mold out properties are correlated with forging practice and results show that mold out produced from fine hot forged or partially hot forged sheet bar structures exhibit the heat combination of properties. This evaluation essentially completes the Phase IV program.

ASC TR 7-786 (IV)

ASC INTERIM REPORT 7-786 (IV) April, 1963

INFAB PROCESSING OF TZM SHEET

Contract AF 33(657)-8495

Fourth Interim Technical Engineering Report 15 January 1963 - 15 April 1963

Phase IV Report

Prepared By F. R. Cortes

UNIVERSAL-CYCLOPS STEEL CORPORATION REFRACTOMET DIVISION BRIDGEVILLE, PENNSYLVANIA

BASIC INDUSTRY BRANCH
MANUFACTURING TECHNOLOGY LABORATORY

Directorate of Materials and Processes Aeronautical Systems Division United States Air Force Wright-Patterson Air Force Base, Ohio

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any potential invention that may in any way be related thereto.

Waulified requesters may obtain copies of this report from ASTIA, Document Service Center, Arlington Hall Station, Arlington 12, Virginia.

Copies of this report have been released for sale to the public and may be purchased from the Office of Technical Service (OTS), Department of Commerce, Washington 25, D. C.

Copies of AMC Technical Reports should not be returned to the AMC Aeronautical Systems Center unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This Interim Technical Progress Report covers work performed under Contract AF 33(657)-8495 from 15 January 1963 to 15 April 1963. It is published for technical information only and does not necessarily represent the recommendations, conclusions, or approval of the Air Force.

This contract with the Refractomet Division of Universal-Cyclops Steel Corporation, Bridgeville, Pennsylvania was initiated under ASC Aeronautical System Division, Project 7-786, "InFab Processing of TZM Sheet." It was administered under the direction of Mr. Hugh L. Black, Project Engineer, Basic Industry Branch, Manufacturing Technology Laboratory, Wright-Patterson Air Force Base, Ohio. F. R. Cortes of the Development Group, Refractomet Division, Universal-Cyclops Steel Corporation was the engineer in charge.

Since the nature of this work is of interest to so many fields of endeavor, your comments are solicited as to the potential utilization of the material produced under this contract. In this manner, it is felt that a full realization of the resultant material produced will be accomplished.

PUBLICATION REVIEW

Reviewed By

W. A. McNeish

Assistant Technical Manager

REFRACTOMET DIVISION

Approved By

L. M. Bianchi Technical Manager

REFRACTOMET DIVISION

TABLE OF CONTENTS

		Page
I	Introduction	1
II	Phase IV Intermediate Breakdown and Evaluation	
	A. Continuation of Mold Out Evaluation	1
	1. Mold Out Contamination	2
	 Structure and Recrystallization of Mold Out 	5
	3. Tensile Properties of Mold Out	18
III	Summary and Conclusions	23
IV	Phase V Program Outline	26

LIST OF TABLES

		Page
•	Iron and Interstitial Analyses of .125" Mold Out	3
[]	Recrystallization Temperatures and Grain Size of Nominal 0.125" Mold Out	6
III	Room Temperature Ultimate Strength of .125 Mold Out	21
ιv	Room Temperature Tensile Ductility .125 Mold Out	22
1	Quality Ratings for Phase III Sheet Bar and Phase IV Mold Out	24

LIST OF FIGURES

		Page
1.	As Rolled Mold Out Structures	8
2.	As-Rolled Structures of Mold Out Rolled at 2800°F	9
3.	Effect of Annealing Temperature on the Hardness of Nominal 0.125" Mold Out Rolled at 2000°F	10
4.	Effect of Annealing Temperature on the Hardness of Nominal 0.125" Mold Out Rolled at 2400°F	12
5.	Progress of Recrystallization in Mold Out T3 Produced From Hot Forged Sheet Bar by Rolling at 2400°F.	13
6.	Effect of Annealing Temperatures on the Hardness of Nominal 0.125" Mold Out Rolled at 2800°F.	1 5
7.	Effect of Annealing Temperatures on the Hardness of Nominal 0.125" Mold Out Rolled at 3200°F.	1 6
8.	Effect of Rolling Temperature on Temperature for 50% Recrystallization of .125" Mold Out	19
9.	Phase V Forging Outline	2 7
0.	Phase V Sheet Rolling Outline	28

I. Introduction

This program was designed to evaluate the potential of the InFab facility for the production of TZM alloy sheet. The evaluation consists of the following six phase program.

Phase I Literature Survey

Phase II Ingot Production and Evaluation

Phase III Production of Sheet Bar

Phase IV Intermediate Breakdown

Phase V Production of Evaluation Sheets

Phase VI Production of Sheets by Best Techniques

During this report period the Phase IV evaluation of intermediate gage was completed. This report covers the results of the Phase IV evaluation and the determination of the best sheet bar forging and mold out rolling practices for the Phase V program. The Phase V program was designed and billets were prepared for forging in InFab when operation resumes approximately May 1, 1963.

II. Phase IV Intermediate Breakdown and Evaluation

The previous interim report described sheet bar rolling procedures to nominal 0.125 mold out. Of the 34 sheet bar sections rolled, 29 pieces of mold out were produced for full evaluation.

A. Continuation of Mold Out Evaluation

Initial evaluation of 0.125" mold out was reported
in the previous interim report. Included were the
results of ultrasonic inspection. determination of

surface contamination and hardness surveys. The remainder of this evaluation was completed during this report period.

1. Mold Out Contamination

Visible contamination layers were reported previously along with chemical analyses to determine surface iron pickup during rolling. Wrought surface layers on recrystallized mold out (attributed to interstitial contaminants) appeared on all mold out rolled at 2800°F and on a few sections rolled at 2400°F but not on all mold out rolled at 2000°F. Mold out rolled at 3200°F, exhibited lightly worked structures, and showed no wrought contamination layers either as-rolled or recrystallized as the high rolling temperature offset any effects of contamination on recrystallization during rolling and the lightly worked surface prevented any delineation between surface and sub strate after annealing. Chemical analyses revealed that surface iron pickup became a problem at rolling temperatures above 2800°F.

Interstitial analyses of mold out, during this report period (Table I) revealed that:

Mold Out Code	Rolling	Reheats	Gauge	Ct As-Roll	Chemistry of As-Rolled Cross Section	of Section	•		Surface	Surface	Chemistry of Surface Milled Cross Section	y of Cross Se	ction
			1911 ON 50	ų,	د	z	0-LAD 1	0-Lab 2	Removed (per side)	r. e	ပ	×.	0
17	3200 3200	91	.138	.010	.054	2000.	.0048	.0050	.025"	. 0018	.034	.0014	.0011
T17	3200	, ,	.162	ı	.055	•	.0040	0.0070	.025"		.031		.0010
110 114 18	2800 2800 2800	ထေးလ ရ	. 131 . 129 . 126	.0025	.034	6000	.0056	.0110 .016	.020".020".	<.0015	.036	6000.	.0010
T11 T19	2400	10	. 131	.0025	.030	9000.	.0050	.0080	.015"	<.0015	.032	.0014	.0005
112	2000	« 0	.133	<.0015	.031	9000.	.0118	0200-	.010.	<.0015	.033	.0012	.0012
120	2000	•	.131	•	.030		.0045	.021	.010.	•	.034	•	8000

- Nitrogen contamination did not occur as nitrogen contents did not differ in asrolled and surface milled mold out.
- 2. Carbon contamination occurred only at the very highest rolling temperature, 3200°F. Mold out rolled at 3200°F showed carbon levels of .055% or almost double those for mold out rolled at the lower temperatures or for surface milled samples.
- Oxygen contamination occurred in all cases but there was no correlation with folling temperatures.

The graphite suscepter of the induction heating furnace is the known source of the carbon contamination. During this report period the induction furnace was replaced with a tungsten element resistance heated furnace which should prevent carbon contamination during future sheet rolling operations.

The source of the oxygen contamination at temperatures below 3200°F has not as yet been accurately determined but it is also believed to be a function of the induction furnace temperature though this was not necessarily indicated by analyses of the mold out. The difficulty in obtaining reproducible oxygen

analyses between laboratories is readily apparent from Table I. Initial analyses (Lab-1) of asrolled mold out cross sections showed oxygen levels of about 50 ppm regardless of the rolling temperature. After removing from .010 to .025" per side by milling and pickling the oxygen contents dropped to about 10 ppm. A recheck of the analyses (Lab 2) on as-rolled mold out showed oxygen levels to be from 50 to 300% greater than results obtained from Lab 1. In addition results from Lab 2 give some indication of increasing oxygen contamination with rolling temperature up to 2800°F. The lowest oxygen levels reported by both laboratories were for mold-out rolled at 3200°F. Since carbon contamination was at its peak at 3200° it may have been a factor contributing to the lower level of oxygen contamination.

2. Recrystallization and Structures of .125" Mold Out

The effects of rolling temperature and sheet bar forging practice on mold out structures, recrystallization temperatures and recrystallized grain size are summarized in Table II. As rolled mold out structures can

TABLE II

RECRYSTALLIZATION TEMPERATURES AND RECRYSTALLIZED GRAIN SIZE OF NOMINAL 0.125" MOLD OUT

Sheet	Mo1d Out	Furnace or Rolling Temperature °F	As-Rolled Mold As Out Structure	As Rolled Hardness	1 Hr. ReXL Temp 50%	o. Est.	ReXL Temp. Est. From Micros 50% 100%	ReXL Grain Size
Extruded & Forged								(ASTM)
1098A1	11	3200	Hot Rolled to	27.6	,	*	>3000°F	4.5
	T3	2400	Lightly Mo. Fibered	376	2750°F	*	2900°F	6.5
1098A2	ŢŞ	3200	Hot Rolled to	276	1		×3000	Non Uniform
	16 18	2800 2000	Fibered Fibered	327 405	2650 2650		2850 2850	7.5
1098A3	13	3200	Hot Rolled to	281			>3000	Non Uniform
	T10	2800	Worked, Fibered	289	2850	*	2900	4.5
	T11 T12	2400 2000	Fibered Fibered	348 373	2650 2600		2900	7.7
1098B1	T13	3200	Hot Rolled to	262	ı		>3000	3-6
	T14	2800	Fibered +	333	2725	*	2850	•
	T15	2400	Irace Keal Fibered	373	2725	*	2800	6.5
109882	T17 T18	3200 2800	Worked, Not Fibered Worked, Fibered	257 289	2800 2750	,	2950 2900	3.6 Non Uniform
	T19 T20	2400 2000	Center Heavily Fibered Heavily Fibered	333 360	2600 2550		2900 2700	6-7 7.5
1098B3	T21 T22	3200 2800	Worked Worked, Fibered	297 312	2800 2650		2950 2725	3-6
	T23 T24	2400	Center Fibered Heavily Fibered	330 354	2500 2500		2650 2600	7.5
109884	T25 T26	3200 2800	Worked Worked, Fibered	302 279	2625	*	2725 2900	S Non Uniform
	T27 T28	2400 2000	Fibered Heavily Fibered	336 357	2500		2600 2575	7.5
Cast and Forged			•					
V6601	T34	2800	Fibered +	333	2725		2825	6.5
	T35	2400	Heavily Fibered	360	2600		2800	7.5
1099C	T38 T39 T40	2800 2400 2000	Heavily Worked Fibered Heavily Fibered	299 351 370	2750 2625 2575	*	2900 2800 2750	00t 20

-6-

}

be grouped with rolling temperature into three classes as follows:

Rolling Temp °F

Structure

2000 & 2400 2800 3200 Fibered Worked & Fibered Center Hot Rolled to Lightly Worked

Structural variations were greatest in mold out rolled at 2800° as this temperature falls between the hot and cold working range for TZM. Figures 1 and 2 show typical structures for each group as well as some variations between mold out rolled at 2800°F.

The annealing response of TZM mold out rolled at 2000°F is shown in Figure 3. Hardnesses dropped to recrystallized values of 200-210 after a 1 hour anneal at 2600°F. Only six pieces of mold out were rolled successfully at 2000°F as 3 sections from hot forged sheet bars were not fabricable. Of the six produced mold out T8, from a hot forged sheet bar, maintained the highest annealed hardness and required 2850°F for 100% recrystallization.

Though hardnesses dropped rapidly upon annealing at 2600°F the microstructures revealed

I

200X MOLD OUT T-5 ROLLED AT 3200°F R12745

MOLD OUT T-15 ROLLED AT 2400°F R12752

200X

MOLD OUT T-8 ROLLED AT 2000°F

-8-

200X MOLD OUT T34 ROLLED FROM SHEET BAR 1099A HOT FORGED FROM 6" DIA INGOT R12757 MOLD OUT T22 ROLLED FROM HOT-COLD FORGED SHEET BAR 1098B3

EFFECT OF ANNEALING TEMPERATURE ON THE HARDNESS OF NOMINAL 0.125" MOLDOUT ROLLED AT 2000°F

that temperatures of 2700 to 2850°F were required for 100% recrystallization as shown in Table II except for mold out T24 and T28. These latter two, having been produced from heavily hot-cold forged sheet bars 1098Bc and 1098B4, were fully recrystallized at 2600°F. A fine recrystallized grain size of about ASTM 7.5 was produced in all mold out sections rolled at 2000°F indicating, as expected, finer grain size with lowest prior rolling temperature.

Except for sections T3 and T15, Figure 4 shows that hardness of mold out rolled at 2400°F also dropped close to recrystallized values after a 2600°F anneal. Sections T3 and T15 were rolled from primarily hot forged sheet bars and maintained worked hardness levels of 275 and 250 QPH up to 2700°F with microstructural evidence of 100% recrystallization at 2900 and 2800°F respectively. Progress of recrystallization in mold out T3 is shown in Figure 5.

The lowest recrystallization temperatures for mold out rolled at 2400°F occurred in sections T23 and T27 which were rolled from heavily cold forged sheet bar 1098B3 and 1098B4. Recrystallized grain sizes

EFFECT OF ANNEALING TEMPERATURE ON THE HARDNESS OF NOMINAL DI25" MOLDOUT ROLLED AT 2400°F

FIGURE 5
PROGRESS OF RECRYSTALLIZATION IN MOLD OUT T3 PRODUCED FROM HOT FORGED SHEET BAR BY ROLLING AT 2400°F

for mold out rolled at 2400°F averaged about ASTM 6.9 and ranged from 6.5 to 7.5. Thus increasing the rolling temperature from 2000 to 2400°F resulted in only a slight coarsening of recrystallized gram size amounting to about one half an ASTM number.

Mold out rolled at 2800 and 3200°F developed as-rolled hardnesses ranging from 255 to 332 in comparison to hardness ranging from 330 to 400 for mold out rolled at 2000 and 2400°F. As a result softening upon annealing appeared more gradual, Figures 6 and 7, for mold out rolled at the higher temperatures. Annealing temperatures from 2750°F to 2800°F were necessary to produce recrystallized hardness levels in mold out rolled at 2800°F except for sections T18, T22 and T26. These sections were produced from hot cold forged sheet bar and softened at about 2650 to 2700°F. Softening temperatures for mold out rolled at 3200 were the same as for mold out rolled at 2800°F, about 2750 to 2800°F. The microstructures indicated that recrystallization was complete at temperatures ranging from 2725 to 2900°F for mold out rolled at 2800 and at temperatures

EFFECT OF ANNEALING TEMPERATURE ON THE HARDNESS OF NOMINAL 0.125" MOLDOUT ROLLED AT 2800°F FIGURE 6

EFFECT OF ANNEALING TEMPERATURE ON THE HARDNESS 3200°F OF NOMINAL 0.125" MOLDOUT ROLLED AT FIGURE 7

from 2725 to >3000°F for mold out rolled at 3200°F. The very high (>3000°) recrystallization temperatures for mold out rolled at 3200°F resulted from the small amount of work retained at the high rolling temperature.

Recrystallized grain size of mold out rolled at 2800°F ranged from ASTM 4.5 to 7 with an average about 5.75 while mold out rolled at 3200 exhibited coarse, non uniform structures averaging about ASTM 4.5.

Mold out sections which exhibited the outstanding hardness stability with annealing temperatures are as follows:

Mo1d Dut	Rolling Temp.	Rex. Temp.	Sheet Bar Source	Sheet Forging 1		ce
T1 T3	3200 2 4 00	2800 2775	1098A1 1098A1	3850°F to 3850°F to		
T10	2800	2 7 2 5	1 098A3	3850°F to	2300	min.
T14 T15	2800 2400	2750 2725	1098B1 1098B1	3200°F to		
T38	2800	2725	1099C*	3850°F to	2770	min.

^{*} Forged directly from ingot

Significant observations are:

- Outstanding hardness stability is exhibited by mold out rolled at either 2400 or 2800°F.
- Sheet bars from which each mold out was rolled were primarily hot forged.

The supporting microstructural evidence for (50%) recrystallization is summarized in Figure 8. Mold out from cold forged sheet bar exhibit the lowest recrystallization temperatures while mold out from hot forged sheet bar showing good hardness stability (circled code nos.) exhibit the highest recrystallization temperatures. Mold out produced from directly forged ingots exhibit only average recrystallization temperatures.

3. Tensile Properties of .125" Mold Out

Room temperature tensile properties were obtained in the following conditions:

As-Rolled - Longitudinal Direction Only

As Rolled and Conditioned Surface - Longitudinal and Transverse

Stress Relieved and Conditioned Surface -Longitudinal and Transverse

Recrystallized and Conditioned Surface -Longitudinal and Transverse

FIGURE 8

EFFECT OF ROLLING TEMPERATURE ON TEMPERATURE
FOR 50% RECRYSTALLIZATION OF 0.125" MOLDOUT

Ultimate strength and elongation for each of the above conditions is summarized in Tables III and IV. Comparing longitudinal tensile properties of as-rolled mold out with as-rolled and conditioned mold out reveals the detrimental surface contamination effect. In particular, mold out rolled at 2400 and above exhibited no as-rolled tensile ductility, Table IV, in the longitudinal direction. (Transverse properties were not determined as-rolled.) However surface conditioning by belt grinding produced tensile elongations of 5 to 15% in the longitudinal direction and 2 to 10% transverse. Surface conditioning plus a stress relief further increased tensile ductility of most of the mold out sections. However, mold out sections T1 and T5 hot rolled at 3200°F from hot forged sheet bar showed no improvement in elongation with either the surface conditioning or stress relief treatment. Recrystallization anneals greatly improved tensile elongation in almost every case.

A technique for rating mold out ductility was devised giving equal weight to as-rolled and stress relieved elongations and one half weight

TABLE IV

							THOUT	-				
					TENSILE DU	TENSILE DUCTILITY OF .	125" MOLI	D OUT AT 1	.125" MOLD OUT AT ROOM TEMPERATURE	ATURE		
Sheet Bar	Mo1d Out	Rolling Temp.	Annealing Temp.	As.Ro.	Longitudinal	Elongation Str.Re.&C.	ReXI&C A	As.Ro.&C.	Transverse Elongation	gation ReXI&C	Overall EL. Ratir	erall % Rating
1098A1	T1 T3	3200 2400	2600 2600	0.0	6.7	0.8	14.3	1.8	0.0	1.9	.0	Average 1.cl
1098A2	T5 T6 T8	3200 2800 2000	2600 2500 2500	0.0	7:0	0.6 (18.2) 4.6	1.0 28.5 27.3	3.4 4.6	2.1 1.6	7.0 35.7 7.3	. 6 2. 66 2. 0	1.75
1098A3	T9 T10 T11 T12	3200 2800 2400 2000	2600 2700 2400. 2500	66.66	4.4 7.8 (10.7) 8.6	13.9	7.4 23.1 30.9	7.00 7.00 7.00 7.00	1.5 1.4 11.8	8.8 17.2 18.1 25.4	1.66 2.33 2.86 3.16	2.50
1098B1	T13 T14 T15	3200 2800 2400	2600 2600 2500	0	2,5 9.4 (10.2)	14.6	19.4	2.1 4.7 1.6	1.8	27.7	1.4 2.84 2.0	2.08
1098B2	T17. T18 T19 T20	3200 2800 2400 2000	2600 2600 2400 2400	0.6	15.0 8.0 (15.6) 11.7	6.8 (22.8) 17.6 24.0	27.7 26.2 39.4 43.3	2.9 9.6 3.9	0.9 3.3 (19.5) 11.8	19.5 7.0 39.3 34.7	2.5 2.72 4.33 3.86	3.35
1098B3	T21 T22 T23 T24	3200 2800 2400 2000	2600 2600 2400 2400	0.5	0.6 8.1 (15.8) 8.6	10.1 (19.8) 18.1	27.5 39.0	3.2	3.8 (20.0)	21.3 32.2 37.0	1.0 2.42 3.0 3.8	2.55
1098B4	125 126 127 128	3200 2800 2400 2000	2600 2600 2400 2400	1.4	12.2 (15.6) 10.2	9.4 (20.5)	16.8 36.7 9.2	2.0 11.5 1.4	0.7 2.5 (16.7) 5.6	13.4 9.3 39.8 36.2	1.25 2.5 4.66 3.42	2.96
1099A	T34 T35	2800	2500 2400	0.7	11.3 8.8	14.6	9.0	6.6	(11.9)	26.7 25.8	3.00	2.92
1099C	T38 T39 T40	2800 2400 2000	2500 2500 2400	0.00	0.2 10.3 7.8	(15.7)	28.1 36.5 26.6	0.0 3.1	1.8	1.0 17.9 .6	1.56 2.50 1.42	1.82

TABLE IV

TENSILE DUCTILITY OF .125" MOLD OUT AT ROOM TEMPERATURE

	ating .	Average 1.cl	1.75	2.50	2.08	3.35	2.55	2.96	2.92	1.82
	Overall % EL. Rating	2.5	2.66 2.0	1.66 2.33 2.86 3.16	1.4 2.84 2.0	2.5 2.72 4.33 3.86	1.0 2.42 3.0 3.8	1.25 2.5 4.66 3.42	2.84	1.56 2.50 1.42
RATURE	ngation ReXI&C	1.9	7.0 35.7 7.3	8.8 17.2 18.1 25.4	27.7	19.5 7.0 39.3 34.7	21.3 32.2 37.0	13.4 9.3 39.8	26.7 25.8	1.0 17.9
ROOM TEMPE	As.Ro.&C. Str.Re.&C. ReXL	0.0	2.1	1.5 1.4 7.8 11.8	1.8	0.9 3.3 (19.5)	3.8 (20.0)	0.7 2.5 (16.7) 5.6	(11.9)	1.8 4.7 1.0
LD OUT AT		1.8	3.4		2.1 4.7 1.6	1.8 8.9 9.6 3.9	3.2	2.0 11.5	6.6	0.0 2.1 3.1
OW "C21.	ReXI&C	14.3	28.5	23.1 24.4 30.9	19.4 25.0	27.7 26.2 39.4 43.3	5.3 27.5 39.0	16.8 36.7 9.2	9.0	28.1 36.5 26.6
DOCILLII OF .125" MOLD OUT AT ROOM TEMPERATURE	1 Elongation Str.Re.&C.	0.8	0.6 (18.2) 4.6	13.9	14.6	6.8 (22.8) 17.6 24.0	10.1 (19.8) 18.1	9.4 (20.5) 19.2	14.6	(15.7)
T TILLY	Longitudinal	0.7	7.0	4.4 7.8 (10.7) 8.6	2.5 9.4 (10.2)	15.0 8.0 (15.6)	0.6 8.1 (15.8) 8.6	_ 12.2 (15.6) 10.2	11.3	10.2 10.3 7.8
	As.Ro	0.0	0.0	50.00	0.1	5.8	0.5	1.4	0.7	0.0
	Annealing Temp.	2600 2600	2600 2500 2500	2600 2700 2400. 2500	2600 2600 2500	2600 2600 2400 2400	2600 2600 2400 2400	2600 2600 2400 2400	2500	2500 2500 2400
	Rolling Temp.	3200 2400	3200 2800 2000	3200 2800 2400 2000	3200 2800 2400	3200 2800 2400 2000	3200 2800 2400 2000	3200 2800 2400 2000	2800	2800 2400 2000
	Mo1d Out	T1 T3	15 16 18	T9 T10 T11 T12	T13 T14 T15	T17 T18 T19 T20	T21 T22 T23 T23	T25 T26 T27 T28	T34 T35	T38 T39 T40
	Sheet	1098A1	1098A2	1098A3	1098B1	1098B2	1098B3	1098B4	1099A	1099C

to recrystallized values. The resultant elongation rating is also listed in Table IV. On the basis of this rating, sheet bar 1098B2, forged between 3200 and 2300°F, produced the most uniformly ductile mold out. Of further significance is the fact that the best ductility rating for mold out from any one sheet bar occurred for the most part in sections rolled either at 2400 or 2800°F. Mold out rolled at 3200 showed the poorest overall ductility.

III Summary and Conclusions

The results obtained from the Phase III Sheet Bar Evaluation, reported in the last interim report, and the Phase IV Mold Out Evaluation of this report are summarized in Table V using an arbitrary rating system for the various properties. Sheet bar exhibiting the best quality rating of (18), (1098B1), was entirely hot forged at the low end of the hot work range for TZM which prevented excess grain growth. Sheet bars 1098A3 and 1098B2 exhibiting the next best quality ratings (15 and 16) were initially hot forged and then finish forged in the hot cold work range. Sheet bars produced by forging primarily at very high temperatures 3850°F, were low rated on the basis of grain size, carbide distribution and rollability while sheet bar forged at low temperatures 2000 to 2700 were low rated primarily because of low receystallization temperatures

TABLE V
PHASE III AND IV
QUALITY RATING FOR INFAB TZN

10990	3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	T38 T39 T40 28 24 20 2 2 2 3 7 5 4 4 3 4 5 1.56 2.5 1.42 1 15.5 15.4 13 28.82
1099A 3350-2400	~~ ~ ~ ~	T27 T28 T34 T35 T38 T39 T40 24 20 28 24 28 24 20 2 2 3 1 1 2 2 2 2 2 3 4 5 3 4 5 (5) 5 4 (5) 3 4 5 4.66 3.42 2.84 3.0 1.56 2.5 1.4 15.66 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.3 15.4 15.69 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.42 17.84 16.0 16.56 15.45 15.40 15.40 16.56 15.45 15.40 15.40 16.56 15.45 15.40 15.40 16.56 15.45 15.40 15.40 16.56 15.45 15.40 15.40 16.56 15.45 15.40 15.40 15.40 15.40 15.40 15.40 16.50 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40 15.40
104684	8	17.5 17.6 17.7 17.8 3.2 2.0 2.0 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2
109683 2700-2400	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	121. T22 T23 T24 T3 T24 T3 T24 T3
109882 3200-2300	2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	T11 T12 T13 T14 T15 T17 T16 T19 T20 T21 T22 T23 T24 T24 T25 T23 T24 T25
10981 3200-2950	(19)	713 714 715 32 28 24 2 3 3 1 2 3 4 1.4 2.84 2.0 17.4 10.84 18.0 17.8 10.84 18.0 18.91 18.91
109843	20 1 n 2 46	78 79 710 711 712 20 32 28 24 20 3 3 1 2 2 2 5 2 2 4 5 2.0 1.66 2.33 2.86 3.16 15.40 17.56 17.33 15.86 15.16 15.41 17.66 17.33 15.86 15.16 15.42 17.63 15.86 15.16
1098A2 3850~2700	20 t 0 2 t	75 76 78 32 28 20 3 3 3 5 2 4 5 .6 2.66 2.0 15.6 15.60 15.40 14 29.40
1098A1 3850-3200	20 2 5 N	71. 73 32 24 1 1 1 9 7 2 4 .72 2.5 1 1 1 1 1 1 1 10.61 13
SMET MAR Porging Practice	Marchaes Uniformity— As Porget Bird (1.2) Grain Size Grain Size Uniformity—Marco Bird (1.3) Carpstallization Temp. (4.2) Birlibution (1.4) Ballability (1.4) Sub Total 1	MOLD OUT Carbide Dist. (1-3) Soaic Nating (1-3) Soaic Pating (1-3) Soaic Pating (1-3) Temp. (1-10) Temp. (1-

١,

which would undoubtedly be transmitted to finished sheet. Sheet bar produced by direct ingot forging were also low rated due to coarse non uniform carbides and structures. In addition sheet bar forged directly from ingot contained more surface contamination (both iron and interstitial) as many more forging blows and reheats were required. Though a rating was not applied for degree of contamination it is a factor in the choice of forging or rolling variables for the Phase V program.

15

Although the grain size of hot forged sheet bar was more coarse than the recrystallized grain size of hot-cold forged sheet bar, this difference had little effect on the grain size of recrystallized mold out (Table V). The recrystallized mold out grain size was instead more dependent upon rolling temperatures. However, the sheet bar forging practice did have considerable influence on other mold out properties such as recrystallization temperature, carbide distribution and tensile ductility. On the basis of these properties the three sheet bar rated as highest quality were also equal or superior to other sheet bar practices in mold out form, sub totals 2 and 2A of Table V.

Individual mold out sections with stand out ratings were T9 and 10, T14 and 15, and T17, 18, 19 and 20 all rolled from the three top quality sheet bars. The latter four in particular, all rolled from sheet bar 1098B2 (forged at 3200 to 2300°F) exhibited the most consistently good quality ratings for any one

group of mold out sections. The mold out section exhibiting the very highest quality rating, T14, was rolled at 2800°F from sheet bar entirely hot forged in the 3200°F range.

A cursory examination of Table V for outstanding individual property ratings as indicated by check marks reveals that in almost every case the standout values for recrystallization, elongation, etc., occurred in mold out rolled either at 2400 or 2800°F. Of particular note, was the fact that tensile ductility of mold out improved as rolling temperatures decreased to 2400°F but a further decrease to 2000°F did not result in any further ductility improvement.

IV Phase V Program

The overall objective of this investigation is to develop an improved TZM alloy sheet product through the use of the InFab facility. Primarily this means the evaluation of higher processing temperatures then those available for present commercial TZM practice. The proposed Phase V Program design resulting from the Phase III and Phase IV evaluation is shown in Figures 9 and 10. A total of 35 variables to .040" sheet are incorporated. Evaluation of reductions is limited to two and there is no evaluation of intermediate anneals as both parameters have been fully evaluated on previous programs, the results of which have been considered in this program design. Forging and rolling variables incorporated

(1) Navy Sheet Rolling Program Contract NOas 59-6142-C

後あり

FIGURE 9
PHASE X FORGING VARIABLES

PHASE X SHEET ROLLING VARIABLES

from Phase III and IV are as follows:

Sheet Bar - Three best practices from Phase III

- 1. 3250 start, 2950°F min. (2 pcs)
- 2. 3250 start, 2300°F Min. (1 pcs)
- 3. 3850 start, 2300°F Min. (1 pcs)

Mold Out - Two best Phase IV practices

- 1. 2400°F
- 2. 2800°F

Recrystallized mold out will then be rolled to final mold out at temperatures ranging from 2000 to 2800°F. Stress relief temperatures will be determined and final sheet produced at two temperatures 1400 and 1800°F. In addition one section from each sheet bar will be rolled to sheet according to the process developed on the Navy's Molybdenum Sheet Rolling Program. The .040" sheet produced from the 3 forging practices will contain a total of 90% reduction from recrystallized mold out. An additional reduction will be evaluated however by rolling a fourth sheet bar (from the 2nd forging practice Figure 9) to the same temperature schedule in Figure 9 but to a total of 80% reduction in .040" sheet.

DISTRIBUTION LIST - CONTRACT AF33(657)-8495

Aerojet-General Corporation Attn: Mr. Kenneth P. Mundt Vice President, Mfg. P, O, Box 296 Azusa, California

Aeronca Manufacturing Company Attn: Mr. Edward C. Klein Middletown, Ohio

Aircraft Industries Association 7660 Beverly Boulevard Attn: Mr. H. D. Moran Los Angeles 36, California

Alloyd Research Corporation Attn: Mr. Louis Mager, General Manager 202 Arsenal Street Watertown 72, Massachusetts

AMC Aeronautical Systems Center Attn: LMEMRP Wright-Patterson Air Force Base, Ohio

Armed Services Technical Information Center Arlington Hall Station Arlington 12, Virginia

Armour Research Foundation Metals Research Department Technology Center Chicago 16, Illinois Attn: Dr, William Rostoker Assistant Manager

Battelle Memorial Institute Attn: Dr. R. I. Jaffee 505 King Avenue Columbus 1, Ohio

Battelle Memorial Institute Defense Materials Information Center 505 King Avenue Columbus 1, Ohio Bell Aerospace Corporation Attn: Mr. H. D. Ellett, Manager Production Engineering P. O. Box 1 Fort Worth 1, Texas

Bell Aerospace Corporation Attn: Mr. R. W. Varrial, Manager P. O. Box 1 Buffalo 5, New York

Bendix Products Division Bendix Aviation Corporation Attn: Mr. W. O. Ribbinson 401 N. Bendix Drive South Bend, Indiana

Boeing Airplane Company
Attn: Mr. Edward Czarnecki
Materials Mechanics and Structures
Branch
Systems Management Office
P. O. Box 3707
Seattle 24, Washington

Boeing Airplane Company Wichita Division Attn: Mr. W. W. Rutledge Mfg, Manager Wichita, Kansas

Ballistic Missiles Center Attn: Major A, F. Lett, Jr, P, G, Box 262 Los Angeles 45, California

Bureau of Mines Albany, Oregon Attn: Mr. R. Beall

Bureau of Naval Weapons
Department of the Navy
Materials Branch (AER-AE-4)
Attn: Mr. N. E. Promisel
Washington 25, D. C.

Page 2 - Distribution List - Contract AP33(657)-8495

Chance Vought Aircraft, Inc. Attn: Mr. William Akin Chief, Research and Development Dallas, Texas

Climax Molybdenum Company of Michigan 14410 Woodrow Wilson Boulevard Detroit 3, Michigan Attn: Mr. George A. Timmons Director of Research

Commanding Officer Watertown Arsenal Attn: Mr. S. V. Arnold Watertown 72, Massachusetts

Convair-Division
General Dynamics Corporation
Attn: Mr. A. T. Seeman, Chief of
Manufacturing Engineering
P. O. Box 1011
Pomona, California

Convair-Division
General Dynamics Corporation
Attn: Mr. J. H. Famme, Director
Manufacturing Development
Mail Zone 2-22
San Diego 12, California

Convair-Division
General Dynamics Corporation
Attn: Mr. W. O. Sunafrank
Project Engineer
Department 23-2
Fort Worth, Texas

Curtiss-Wright Corporation Attn: Mr. O. Podel1 Vice President-Operational Planning 304 Valley Boulevard Wood-Ridge, New Jersey

Curtiss-Wright Corporation Metals Processing Division Attn: Mr. V. T. Gorguze, Gen. Mgr. 760 Northland Avenue Buffalo 15, New York Douglas Aircraft Company, Inc. Attn: Production Design Engineer 2000 N. Memorial Drive Tulsa, Oklahoma

Douglas Aircraft Company, Inc. Attn: Materials Division Group El Segundo, California

The Dow Chemical Company
Attn: Mr. T. E. Leontis,
Assistant to the Director
Midland, Michigan

Firth Sterling, Incorporated 3113 Forbes Street Pittsburgh 30, Pennsylvania Attn: Dr. C. H. Toensing

General Electric Company
Attn: Mr. Louis P. Jahnke
Manager, Metallurgical Engineering
Applied Research Operations Propulsion Laboratory
Aircraft Gas Turbine Department
Evendale, Ohio

Grumman Aircraft Engineering Corp.
Manufacturing Engineering
Attn: Mr. William J. Hoffman
Vice President
Bethpage, Long Island, New York

Aerojet General Corporation Attn: Mr. Alan V. Levy, Head Materials Research and Development Solid Rocket Plant P. O. Box 1947 Sacramento, California

Ladish Company Attn: Mr. R. T. Daykin 5400 Packard Avenue Cudahy, Wisconsin

Page 3 - Distribution List - Contract AP33(657)-8495

Lockheed Aircraft Corporation Attn: Mr. H. Caldwell, Manager Manufacturing P. O. Box 511 Burbank, California

Lockheed Aircraft Corporation Attn: Mr. Roger A. Perkins Metallurgical and Ceramic Research Attn: Dr. Joseph Lane Missile and Space Division 3251 Hanover Street Palo Alto, California

Lockheed Aircraft Corporation Attn: Mr. H. Fletcher Brown Manufacturing Manager Marietta, Georgia

Lockheed Aircraft Corporation Van Nuys, California

Lockheed Aircraft Corporation Missile Systems Division Attn: Mr, Clayton O, Matthews Sunnyvale, California

Lycoming Division AVCO Manufacturing Corporation Attn: Mr. W. A. Panke, Superintendent Manufacturing Engineer Stratford, Connecticut

Marquardt Aircraft Company Attn: Mr. John S. Liefeld Director of Manufacturing 16555 Saticoy Street Van Nuys, California

Marquardt Aircraft Company Attn: Mr, Gene Klein Manufacturing Engineer Box 670 Ogden, Utah

The Martin Company Attn: Chief Librarian Engineering Library Baltimore 3, Maryland

The Martin Company Denver Division Attn: Mr. R. F. Breyer, Materials Engineering Mail No. L-8 Denver 1, Colorado

Materials Advisory Board 2101 Constitution Avenue Washington 25, D. C.

McDonnell Aircraft Corporation Attn: Mr. A, F. Hartwig, Chief Industrial Engineer P. O. Box 516 Lambert St. Louis Municipal Airport St. Louis 3, Missouri

National Aeronautics and Space Administration 21000 Brookpark Road Cleveland 35, Ohio Attn: Mr. G. Vervin Ault, Assistant Chief, Materials and Structures Division, Lewis Research Center

Navy Department Industrial Planning Division Attn: E. G. Gleason Washington 25, D. C.

North American Aviation, Inc. Attn: Mr. D. H. Mason Staff Engineering General Data Section International Airport Los Angeles 45, California

North American Aviation, Inc. Attn: Mr. Jim Huffman Materials Engineer International Airport Los Angeles 45, California

Northrup Corporation Attn: Mr. R. R. Nolan, Vice President 1001 E. Broadway Hawthorne, California

Page 4 - Distribution List - Contract AF33(657)-8495

Nuclear Metals, Inc. Attn: Mr. A. Kaufmann 155 Massachusetts Avenue Cambridge 39, Massachusetts

Pratt & Whitney Aircraft Corporation CANEL, Connecticut Operations Attn: Mr. L. M. Raring, Chief Metallurgical and Chemical Laboratory P. O. Box 611 Middletown, Connecticut

Reactive Metals, Inc. Attn: Mr. L. G. McCoy Government Contract Administrator Niles, Ohio

Republic Aviation Corporation
Attn: Mr. Adolph Kastelowitz,
Director of Manufacturing Research
Farmingdale, Long Island, New York

Rocketdyne Division
North American Aviation Corporation
Department 574
Attn: Mr. J. D. Hall
6633 Canoga Avenue
Canoga Park, California

Rohr Aircraft Corporation
Attn: Mr. Burt F. Raynes, Vice President
Manufacturing
P. O. Box 878
Chula Vista, California

Ryan Aeronautical Company Attn: Mr. Lawrence M. Limbach Vice President, Manufacturing 2701 Harbor Drive San Diego 12, California

Sandia Corporation
Sandia Base
Attn: Mr. Donald R. Adolphson
Section 1621-1
Albuquerque, New Mexico

Sandia Corporation P. O. Box 969 Livermore, California

Sikorsky Aircraft Division United Aircraft Corporation Attn: Mr. Alex Sperber, Factory Manager North Main Street Stratford, Connecticut

Solar Aircraft Company Attn: Dr. A. G. Metcalfe, Assistant Director Advanced Research 2200 Pacific Highway San Diego 12, California

Sperry Gyroscope Company
Division of Sperry Rand Corporation
Attn: Mr. F. W. Trunbull
Engineering Librarian
Great Neck, Long Island, New York

Sylvania Electric Products Corporation Attn: Dr. Paul Felton Director of Research Towanda, Pennsylvania

Sylvania Electric Products Corporation Attn: Dr. L. L. Seigle, Manager Metallurgical Laboratory P. O. Box 59 Bayside, New York

Temco Aircraft Corporation Attn: Mr. V. N. Ferguson Manufacturing Manager P. O. Box 6191 Dallas, Texas

Thiokol Chemical Corporation
Reaction Motor Division
Attn: Mr. W. F. Brown, Manager
Manufacturing Engineering
Contracts Department - Ford Road
Danville, New Jersey

Page 5 - Distribution List - Contract AP33(657)-8495

Thiokol Chemical Corporation Utah Division Attn: Patrick McAllister Materials and Processes Section Brigham City, Utah

Titanium Metals Corporation of America Attn: Mr. Keith Curry Toronto, Ohio

Thompson Ramo Wooldridge, Inc. Attn: Dr. Al Nemy Engineering Supervisor 23555 Euclid Avenue Cleveland 17, Ohio

University of California Radiation Laboratory Attn: Mr. Duane C. Sewall P. O. Box 808 Livermore, California

University of California Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico

Wah Chang Corporation Technical Library P. O. Box 366 Albany, Oregon

Westinghouse Electric Corporation Lamp Division Bloomfield, New Jersey Attn: Dr. R. H. Atkinson

Westinghouse Laboratories Churchill Boro Pittsburgh 35, Pennsylvania Attn: Dr. J. H. Bechtold, Manager Metallurgy Department

Wright Air Development Division Attn: WWRCMP-1

Wright-Patterson Air Force Base, Ohio

Wright Air Development Division Attn: WWRMES-2

Mr. B. E. Zink

Wright-Patterson Air Force Base, Ohio

Wright Air Development Division Attn: ASD (ASRCMP-4) Wright-Patterson Air Force Base, Ohio

Stauffer Metals Company Attn: Dr. Jack Hum 1201 South 47th Street Richmond, California

University of California Lawrence Radiation Laboratory Technical Information Division P. O. Box 808 Livermore, California Attn: Clovis G. Craig

Wah Chang Corporation
P. O. Box 366
Albany, Oregon
Attn: Mable E. Russell
Librarian