CLAIMS

What is claimed is:

1	1. A method for translating between logical addresses and ports of a first network and a
2	logical address and ports of a second network connected to the first network at an
3	intermediate device, the method comprising the computer-implemented step of:
4	receiving at the intermediate device a first packet from a first device having a first
5	address on the first network;
6	sending a second packet to a second device on the second network in response to
7	receiving the first packet, the second packet including, in a source address
8	field, data indicating a particular address of the intermediate device on the
9	second network;
10	determining whether the first packet includes a first message that registers a first
11	resource on the first device with a protocol server for a particular protocol, the
12	protocol server available at the second device on the second network; and
13	if it is determined that the first packet includes the first message registering the first
14	resource, then
15	determining first information in the first message for uniquely requesting the
16	first resource, and
17	storing data indicating the first information in a first data structure in
18	association with the first address.
1	2. A method as recited in Claim 1, further comprising the computer-implemented step
2	of:
3	receiving at the intermediate device a third packet from a third device on the second
4	network;
5	determining whether the third packet includes a second message requesting a second
6	resource according to the particular protocol; and
7	if it is determined that the third packet includes the second message requesting the
8	second resource, then

1

2 3

1

9	determining second information in the second message for uniquely requesting				
10	the second resource,				
11	determining whether the second information matches the first information				
12	the data structure, and				
13	if the second information matches the first information, sending the second				
14	message to the first device having the first address associated with the				
15	first information.				
1	3. A method as recited in Claim 1, wherein, if it is determined that the first packet				
2	includes the first message, then inserting in the second packet a second message based on the				
3	first message.				
1	4. A method as recited in Claim 3, wherein the second message is the same as the first				

- 2 message.
 - A method as recited in Claim 3, further comprising the computer-implemented step of 5. generating the second message by replacing, in a source address field, data indicating the first address with data indicating the particular address of the intermediate device on the second network.
- 1 6. A method as recited in Claim 1, wherein. 2 a source port field in the first packet includes data indicating a first source port; said step of sending the second packet to the second device further comprises 3 4 storing in a second data structure uniquely associated with the first address and 5 the first source port a particular translated port, and 6 inserting data indicating the particular translated port into a source port field of 7 the second packet.
- A method as recited in Claim 1, wherein the particular protocol uses a well-known 7. 2 port for requesting the first resource:

- 1 8. A method as recited in Claim 1, wherein the particular protocol is a network basic
- 2 input and output system (NetBIOS) open protocol.
- 1 9. A method as recited in Claim 1, wherein the protocol server is a network basic input
- and output system (NetBIOS) name server.
- 1 10. A method as recited in Claim 1, wherein the first information is a resource name.
- 1 11. A method as recited in Claim 5, wherein the protocol server is a name server that
- 2 stores a resource name of the first resource in the second message in association with an
- 3 address based on data in the source address field of the second message.
- 1 12. A method as recited in Claim 1, wherein the protocol server is a name server that
- 2 stores data indicating a resource name of the first resource, and does not store data in a source
- 3 port field of the second packet in association with the resource name.
- 1 13. A method as recited in Claim 2, wherein the third packet includes, in a destination
- address field, data indicating the particular address of the intermediate device.
- 1 14. A method as recited in Claim 2, said step of determining whether the third packet
- 2 includes the second message comprising determining whether a destination port field in the
- 3 third packet includes data indicating a well-known port associated with requesting a resource
- 4 according to the particular protocol.
- 1 15. A method as recited in Claim 1, further comprising the computer-implemented steps
- 2 of:
- 3 monitoring messages associated with registering the first resource with the protocol
- 4 server;
- 5 determining whether the first resource is not registered with the protocol server; and

2

message.

6	if it is determined that the first resource is not registered with the protocol server, then				
7	removing from the first data structure the data indicating the first information				
8	in association the first address.				
1	16. A method for translating between logical addresses and ports of a first network, and a				
2	logical address and ports of a second network connected to the first network at an				
3	intermediate device, the method comprising the computer-implemented steps of:				
4 5	receiving a first packet at the intermediate device from a first device not on the first network,				
6	sending a second packet to a second device on the first network in response to				
7	receiving the first packet, the second packet including, in a destination address				
8	field, data indicating a translated address;				
9	determining whether the first packet includes a first message requesting a resource				
10	according to a particular protocol; and				
11	if it is determined that the first packet includes the first message requesting the				
12	resource, then				
13	determining first information in the first message for uniquely requesting the				
14	resource, and				
15	before said step of sending the second packet, determining the translated				
16	address on the first network based on a data item in a first data				
17	structure, the data item indicating the translated address and the first				
18	information.				
1	17. A method as recited in Claim 16, wherein, if it is determined that the first packet				
2	includes the first message, then inserting in the second packet a second message based on the				
3	first message.				
1	18. A method as recited in Claim 17, wherein the second message is the same as the first				

3

- 1 19. A method as recited in Claim 16, wherein the particular protocol uses a well-known
- 2 port for requesting the resource.
- 1 20. A method as recited in Claim 16, wherein the particular protocol is a network basic
- 2 input and output system (NetBIOS):open protocol.
- 1 21. A method as recited in Claim 16, wherein the first information is a resource name.
- 1 22. A method as recited in Claim 16, wherein the first packet includes, in a destination
- 2 address field, data indicating a particular address of the intermediate device.
- 1 23. A method as recited in Claim 16, said step of determining whether the second packet
- 2 includes the first message comprising determining whether a destination port field in the first
 - packet includes data indicating a well-known port associated with requesting a resource
- 4 according to the particular protocol.
- 1 24. A method as recited in Claim 16, wherein the first device obtains the first information
- 2 from a protocol server that is not on the first network.
- 1 25. A method as recited in Claim 24, wherein the protocol server is a network basic input
- and output system (NetBIOS) name server.
- 1 26. A computer-readable medium carrying one or more sequences of instructions for
- 2 translating between logical addresses and ports of a first network, and logical addresses and
- 3 ports of a second network connected to the first network at an intermediate device, which
- 4 instructions, when executed by one or more processors, cause the one or more processors to
- 5 carry out the steps of:
- 6 receiving at the intermediate device a first packet from a first device having a first
- 7 address on the first network:

O	schang a second packet to a second device on the second network in response to				
9	receiving the first packet, the second packet including, in a source address				
10	field, data indicating a particular address of the intermediate device on the				
11	second network;				
12	determining whether the first packet includes a first message that registers a first				
13	resource on the first device with a protocol server for a particular protocol, the				
14	protocol server available at the second device on the second network; and				
15	if it is determined that the first packet includes the first message registering the first				
16	resource, then				
17	determining first information in the first message for uniquely requesting the				
18	first resource, and				
19	storing data indicating the first information in a first data structure in				
20	association with the first address.				
1	27. A computer-readable medium carrying one or more sequences of instructions for				
2	translating between logical addresses and ports of a first network, and logical addresses and				
3	ports of a second network connected to the first network at an intermediate device, which				
4	instructions, when executed by one or more processors, cause the one or more processors to				
5	carry out the steps of:				
6	receiving a first packet at the intermediate device from a first device not on the first				
7	network,				
8	sending a second packet to a second device on the first network in response to				
9	receiving the first packet, the second packet including, in a destination address				
10	field, data indicating a translated address;				
11	determining whether the first packet includes a first message requesting a resource				
12	according to a particular protocol; and				
13	if it is determined that the first packet includes the first message requesting the				
14	resource, then				
15	determining first information in the first message for uniquely requesting the				
16	resource, and				

17	before said step of sending the second packet, determining the translated			
18	address on the first network based on a data item in a first data			
19	structure, the data item indicating the translated address and the first			
20	information.			
1	28. An apparatus for translating between logical addresses and ports of a first network,			
2	and logical addresses and ports of a second network connected to the first network at an			
3	intermediate device, comprising:			
4	means for receiving at the intermediate device a first packet from a first device having			
5	a first address on the first network;			
6	means for sending a second packet to a second device on the second network in			
7	response to receiving the first packet, the second packet including, in a source			
8	address field, data indicating a particular address of the intermediate device on			
9	the second network;			
10	means for determining whether the first packet includes a first message that registers a			
11	first resource on the first device with a protocol server for a particular			
12	protocol, the protocol server available at the second device on the second			
13	network;			
14	means for determining first information in the first message for uniquely requesting			
15	the first resource, if it is determined that the first packet includes the first			
16	message, and			
17	means for storing data indicating the first information in a first data structure in			
18	association with the first address, if it is determined that the first packet			
19	includes the first message.			
1	29. An apparatus for translating between logical addresses and ports of a first network,			
2	and logical addresses and ports of a second network connected to the first network through			
3	the apparatus, comprising:			
4	a first network interface that is coupled to the first network for sending and receiving			
5	messages thereon;			

	0	a second network interface that is coupled to the second network for sending and
	7	receiving messages thereon;
	8	a processor;
	9	one or more stored sequences of instructions which, when executed by the processor,
	10	cause the processor to carry out the steps of:
	11	receiving at the intermediate device a first packet from a first device having a
	12	first address on the first network;
	13	sending a second packet to a second device on the second network in response
	14	to receiving the first packet, the second packet including, in a source
	15	address field, data indicating a particular address of the intermediate
	16	device on the second network;
13	17	determining whether the first packet includes a first message that registers a
den das den III des de de des	18	first resource on the first device with a protocol server for a particular
	19	protocol, the protocol server available at the second device on the
	20	second network; and
	21	if it is determined that the first packet includes the first message registering the
thus (frame	22	first resource, then
	23	determining first information in the first message for uniquely
	24	requesting the first resource, and
thing their their thing hate	25	storing data indicating the first information in a first data structure in
	26	association with the first address.