Лабораторная работа № 2.1

Шеховцова Е. Г. Группа 1.2

Компьютерная алгебра — научная область, которая относится к исследованию и разработке алгоритмов и программного обеспечения для манипулирования математическими выражениями и другими объектами.

Компьютерная алгебра — область математики, лежащая на стыке алгебры и вычислительных методов. Для нее, как и для любой области, лежащей на стыке различных наук, трудно определить четкие границы.

Компьютерная алгебра — область математики, лежащая на стыке алгебры и вычислительных методов.

Виды математических объектов компьютерной алгебры:

- алгебраические выражения
- ряды
- уравнения
- векторы
- матрицы

Алгебраическая функция — элементарная функция, которая в окрестности каждой точки области определения может быть неявно задана с помощью алгебраического уравнения.

Классификация алгебраических функций:

- основные элементарные,
- элементарные
- неэлементарные

Основными элементарными функциями называются следующие функции:

- постоянная функция y=cost;
- степенная функция $y=x^n$;
- показательная функция $y = a^x$, где $a > 0, a \ne 1$;
- логарифмическая функция $y = \log_a x$, где $a > 0, a \ne 1$;
- тригонометрические функции $y = \sin x$, $y = \cos x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$;
- обратные тригонометрические функции $y = \arcsin x$, $y = \arccos x$, $y = \arccos x$, $y = \arccos x$
- гиперболические функции $y = \sinh x$, $y = \cosh x$, $y = \coth x$

Элементарной функцией называется функция, которая записывается одной формулой вида y = f(x), где справа стоящее выражение f(x) составлено из основных элементарных функций и чисел при помощи конечного числа операций сложения, вычитания, умножения, деления и суперпозиции функций.

Неэлементарной функцией называется функция, которая не относится к элементарным; например, если она не записывается одной формулой или содержит бесконечное число арифметических операций.

Формы представления матриц

Различают две формы представления матриц:

Двумерный массив:

$$\begin{pmatrix}
a_{11}, a_{12}, \dots, a_{1n} \\
a_{21}, a_{22}, \dots, a_{2n} \\
\dots \dots \dots \\
a_{m1}, a_{m2}, \dots, a_{mn}
\end{pmatrix}$$

Список списков:

$$((a_{11}, a_{12}, ..., a_{1n}), (a_{21}, a_{22}, ..., a_{2n}), ..., (a_{m1}, a_{m2}, ..., a_{mn}))$$

Для представления матриц обычно используется плотное представление (т.е. хранятся все элементы матриц, включая нулевые).

В некоторых особых случаях для матриц специального вида (диагональных, ленточных и т.п.) применяется разреженное представление. В случае использования разреженного представления требуются специальные алгоритмы преобразований матриц.

Диагональная матрица

Квадратная матрица называется диагональной, если элементы, расположенные вне главной диагонали равны нулю. Пример диагональной матрицы:

Единичная матрица

Квадратную матрицу n-го порядка, у которой на главной диагонали стоят единицы, а все остальные элементы равны нулю, называется **единичной матрицей** и обозначается через E или E^n , где n - порядок матрицы. Единичная матрица порядка 3 имеет следующий вид:

Верхняя треугольная матрица

Квадратная матрица $A = \|a_{ij}\|$ порядка $n \times n$ называется **верхней треугольной** матрицей, если равны нулю все элементы матрицы, расположенные под главной диагональю, т.е. $a_{ij} = 0$, при всех i > j.

$$A = \begin{vmatrix} 4 & 3.2 & -4 \\ 0 & 9.43 & 7 \\ 0 & 0 & 87 \end{vmatrix}$$

Нижняя треугольная матрица

Квадратная матрица $A = \|a_{ij}\|$ порядка $n \times n$ называется **нижней треугольной** матрицей, если равны нулю все элементы матрицы, расположенные над главной диагональю, т.е. $a_{ij} = 0$, при всех i < j.

$$A = \begin{vmatrix} 1 & 0 & 0 \\ 5 & 9.43 & 0 \\ 5 & -8 & 87 \end{vmatrix}$$