

TREE INDUCTION ALGORITHMS

Training Set

	Tid	Attrib1	Attrib2	Attrib3	Class
1	11	No	Small	55K	?
1	12	Yes	Medium	80K	?
1	13	Yes	Large	110K	?
1	14	No	Small	95K	?
1	15	No	Large	67K	?

Test Set

OUR PREVIOUS EXAMPLE...

class

Tid	Refund	Marital Status	Taxable Income	Fraud
1	Yes	Single	125K	NO
2	No	Married	100K	NO
3	No	Single	70K	NO
4	Yes	Married	120K	NO
5	No	Divorced	95K	YES
6	No	Married	60K	NO
7	Yes	Divorced	220K	NO
8	No	Single	85K	YES
9	No	Married	75K	NO
10	No	Single	90K	YES

A DIFFERENT MODEL!

class

Tid	Refund	Marital Status	Taxable Income	Fraud
1	Yes	Single	125K	NO
2	No	Married	100K	NO
3	No	Single	70K	NO
4	Yes	Married	120K	NO
5	No	Divorced	95K	YES
6	No	Married	60K	NO
7	Yes	Divorced	220K	NO
8	No	Single	85K	YES
9	No	Married	75K	NO
10	No	Single	90K	YES

A pure node (all of the cases have the same class label)

A node with impurity (cases are more evenly distributed across classes)

A pure node (all of the cases have the same class label)

A node with impurity (more evenly distributed across classes)

Entropy at a given node *t*:

$$Entropy = -\sum_{i=0}^{c-1} p_i(t) \log_2 p_i(t)$$

Where $p_i(t)$ is the frequency of class i at node t, and c is the total number of classes

- Maximum entropy when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum entropy when all records belong to one class, implying most beneficial situation for classification

$$P(Class Yes) = 0/3 = 0$$

 $P(Class No) = 3/3 = 1$

Entropy =
$$-0 \log_2 0 - 1 \log_2 1 = -0 - 0 = 0$$

P(Class Yes) =
$$3/7 = 0.43$$

P(Class No) = $4/7 = 0.57$

Entropy =
$$-(0.43) \log_2 (0.43) - (0.57) \log_2 (0.57)$$

= $-(0.43) \times (-1.22) - (0.57) \times (-0.81)$
= $0.52 + 0.46 = 0.98$

$$P(Class Yes) = 0/4 = 0$$

 $P(Class No) = 4/4 = 1$

Entropy =
$$-0 \log_2 0 - 1 \log_2 1 = -0 - 0 = 0$$

$$P(Class Yes) = 3/6 = 0.5$$

 $P(Class No) = 3/6 = 0.5$

Entropy =
$$-(0.5) \log_2 (0.5) - (0.5) \log_2 (0.5)$$

= $-(0.5) \times (-1) - (0.5) \times (-1)$
= $0.5 + 0.5 = 1$

Information Gain:

$$Gain_{split} = Entropy(p) - \sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)$$

Parent node, p is split into k nodes (children) n_i is number of records in child node i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

Refund

Marital

Status

Parent Node:

Class YES: 3

Class NO: 7

Yes

	Tid	Refund	Marital	Taxable	Fraud
			Status	Income	rraud
	1	Yes	Single	125K	NO
	2	No	Married	100K	NO
	3	No	Single	70K	NO
	4	Yes	Married	120K	NO
	5	No	Divorced	95K	YES
	6	No	Married	60K	NO
	7	Yes	Divorced	220K	NO
	8	No	Single	85K	YES
	9	No	Married	75K	NO
*	10	No	Single	90K	YES
		\cap			

10) $\log_2 (3/10) - (7/10) \log_2 (7/10)$ - $(0.7) \times (-0.51) = 0.52 + 0.36 = 0.88$

1/10 × (0) - (7/10) × (0.98) = 0.19

Class YES: 0

Class NO: 3

Class YES: 3

No

Class NO: 4

Entropy at Parent Node

Entropy at Child Nodes

 $in \quad w = 0.88 - (4/10) \times (0) - (6/10) \times (0)$

Married Single, Divorced

Class YES: 0

Class NO: 4

Class YES: 3

Class NO: 3

 $Gain_{split} = 0.88 - (4/10) \times (0) - (6/10) \times (1) = 0.28$

DECISION TREE MODELS: INDUCTION, ALGORITHMS, & ATTRIBUTES

