Unit 6.1 Dynamic Programming

Algorithms

EE3980

May 12, 2020

Unit 6.1 Dynamic Programming

May 12, 2020

Rod Cutting Problem

- Rod cutting problem Given a rod of n inches and a price table, p_i , i = 1, ..., n, determine the maximum revenue r_n obtainable to cutting the rod and selling the pieces.
- Example of the price table for rods.

Length, inches	1	2	3	4	5	6	7	8	9	10
Price, Dollars	1	5	8	9	10	17	17	20	24	30

- Example of cutting a rod of length of 4 inches.
 - Eight different ways of cutting.
 - Maximum revenue is 10.

Rod Cutting Problem, Formulation

- ullet Given a rod of length n inches, there are totally 2^{n-1} ways of cutting.
- In brute-force approach, the maximum revenue of all these cutting is the optimal solution.
- Using recursive function, we can formulate the solution as

$$r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \dots, p_{n-1} + r_1\},\tag{6.1.1}$$

where r_k is the maximum revenue of cutting the rod of length k, and p_k is the price of length k rod.

• This is a recursive formula and it evaluates all possible rod-cutting solutions and finds the maximum revenue.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

3/2

Rod Cutting Problem, Recursive Algorithm

Algorithm 6.1.1. Recursive Rod-cutting

```
// Find the maximum revenue for cutting rod of length n. p[1:n] is the price table. 

// Input: int n, price table p[1:n] 

// Output: max revenue. 

1 Algorithm \operatorname{rod}_{\mathbb{R}}(p,n) 

2 { 
    if (n=0) return 0; 

4    max := p[n]; // no cut. 

5    for i := 1 to n-1 do { // check all possible cutting using recursion. 

        if (p[i] + \operatorname{rod}_{\mathbb{R}}(p, n-i) > max) then max := p[i] + \operatorname{rod}_{\mathbb{R}}(p, n-i); 

7    } 

8    return max; 

9 }
```

ullet Example of ${f Rod}_{f R}(p,4)$ unrolling

```
\begin{array}{llll} \operatorname{Rod}_{-R}(p,4) \Rightarrow & p[1] + \operatorname{Rod}_{-R}(p,3) & p[2] + \operatorname{Rod}_{-R}(p,2) & p[3] + \operatorname{Rod}_{-R}(p,1) & p[4] \\ \operatorname{Rod}_{-R}(p,3) \Rightarrow & p[1] + \operatorname{Rod}_{-R}(p,2) & p[2] + \operatorname{Rod}_{-R}(p,1) & p[3] \\ \operatorname{Rod}_{-R}(p,2) \Rightarrow & p[1] + \operatorname{Rod}_{-R}(p,1) & p[2] \\ \operatorname{Rod}_{-R}(p,1) \Rightarrow & p[1] \end{array}
```

- As it is, $rod_R(p, n)$ may be called many times for i, $1 \le i \le n$.
- This inefficiency can be improved using dynamic programming method.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Rod Cutting Problem, Top-Down Dynamic Programming

- The efficiency of the recursive rod-cutting algorithm can be improved significantly using a revenue array, r[0:n].
- ullet Before calling this ${\tt rod_TD}(p,n,r)$ function, the revenue array should be initialized as

 $r[i] = \left\{ egin{array}{ll} 0, & ext{if } i=0, \ -\infty, & ext{otherwise}. \end{array}
ight.$

Algorithm 6.1.2. Rod-cutting top-down dynamic programming

```
// Find the maximum revenue for cutting rod of length n.
   // Input: int n, price table p[1:n]
   // Output: max revenue and array r[1:n].
 1 Algorithm rod_TD(p, n, r)
 2 {
 3
         if (r[n] \ge 0) return r[n]; // if prior evaluation is done, return value.
 4
         max := p[n]; // \text{ no cut.}
         for i := 1 to n - 1 do \{ / / \text{ check all possible cutting using recursion.} \}
5
6
               if (p[i] + rod_TD(p, n - i, r) > max) then
7
                      max := p[i] + rod_TD(p, n - i, r);
8
         r[n] := max; // record max revenue in r array.
9
10
         return max;
11 }
```

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

5/2

Rod Cutting Problem, Bottom-Up Dynamic Programming

- For the top-down dynamic function, in addition to the proper initialization of the revenue, r[0:n], table, the function should be called as rod TD(p, n, r);
- A corresponding bottom-up dynamic programming algorithm is as the following.

Algorithm 6.1.3. Rod-cutting bottom-up dynamic programming

```
// Find the maximum revenue for cutting rod of length n.
   // Input: int n, price table p[1:n]
   // Output: max revenue and array r[1:n].
 1 Algorithm rod_BU(p, n, r)
 2 {
 3
         r[0] := 0;
         for i := 1 to n do \{
 4
              max := -\infty;
6
              for j := 1 to i do {
7
                    if (p[j] + r[i-j] > max) then max := p[j] + r[i-j];
8
9
               r[i] := max;
10
11
         return r[n];
12 }
```

Rod Cutting Problem, Complexities

- For the $rod_BU(p, n, r)$ algorithm, for loop on lines 4-10 executes n times.
- The inner for loop on lines 6-8 executes $\frac{n(n+1)}{2}$ times overall.
- Thus the computational complexity is $\Theta(n^2)$.
- The space complexity is $\Theta(n)$ due to the r[0:n] and p[1:n] arrays.
- For the $rod_TD(p, n, r)$ algorithm, both time and space complexities are the same of the $rod_BU(p, n, r)$ algorithm asymptotically.
- In both $rod_BU(p, n, r)$ and $rod_TD(p, n, r)$ algorithms, the maximum revenue array, r[1:n], is found. But, not the actual cutting solution. By adding a solution table, s[1:n], the following algorithm finds the cutting solution as well.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

7/2

Rod Cutting Problem, Maximum Revenue and Cutting

Algorithm 6.1.4. Rod-cutting with solution

```
// Find the maximum revenue for cutting rod of length n.
   // Input: int n, price table p[1:n]
   // Output: max revenue and array r[1:n].
 1 Algorithm rod_SBU(p, n, r, s)
 2 {
        r[0] := 0;
 3
        for i := 1 to n do {
             max := -\infty;
 5
             for j := 1 to i do {
 6
                  if (p[j] + r[i - j] > max) then {
 7
                       max := p[j] + r[i-j];
 8
                       s[i] := j;
 9
10
11
             r[i] := max;
12
13
        return r[n];
14
15 }
```

Rod Cutting Problem, Maximum Revenue and Cutting

• Once the cutting solution is found by the $rod_SBU(p, n, r, s)$ algorithm, the following algorithm can be used to print out the cutting solution.

Algorithm 6.1.5. Rod-cutting printing solutions

```
// Printing the cutting solution store in the solution table, s[1:n].

// Input: int n, solution array s[1:n]

// Output: cutting solution.

1 Algorithm rod_PS(n, s)

2 {

while (n > 0) do {

write s[n];

n := n - s[n];

}
```

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

9/2

Rod Cutting Problem, Solution Example

- The algorithm $\operatorname{rod_SBU}(p,n,r,s)$ has the same complexities as the $\operatorname{rod_BU}(p,n,r)$ algorithm.
 - Time complexity: $\Theta(n^2)$,
 - Space complexity: $\Theta(n)$.
- Solution example:

Assuming n=10, the following table lists the price table p, maximum revenue table r, solution table s, and the cutting solutions for various rod lengths, $1 \le i \le 10$.

T	i	1	2	3	4	5	6	7	8	9	10
$\overline{p[}$	$\overline{i]}$	1	5	8	9	10	17	17	20	24	30
r[i]	1	5	8	10	13	17	18	22	25	30
s[1	2	3	2	2	6	1	2	3	10
Cu	ts:	1	2	3	2	2	6	1	2	3	10
					2	3		6	6	6	

Matrix Multiplication

• Given two matrices, A and B, each of dimensions $p \times q$ and $q \times r$, respectively, i.e., A[1:p,1:q] and B[1:q,1:r]. The product $C=A\times B$ has the dimension of $p \times r$, C[1:p,1:r], and it can be found by

$$C[i,j] = \sum_{k=1}^{q} A[i,k] \cdot B[k,j], \qquad 1 \le i \le p, 1 \le j \le r.$$
 (6.1.2)

There are $p \times r$ elements in C and each takes q multiplications. Thus, the total number of multiplications to form the resultant matrix is $p \cdot q \cdot r$.

• Given thee matrices $A_1[1:10,1:100]$, $A_2[1:100,1:5]$, and $A_3[1:5,1:50]$, the product of these three matrices, $B = A_1 \cdot A_2 \cdot A_3$, can be formed in two different ways.

$$B = (A_1 \cdot A_2) \cdot A_3$$

$$= A_1 \cdot (A_2 \cdot A_3)$$
(6.1.4)

$$= A_1 \cdot (A_2 \cdot A_3) \tag{6.1.4}$$

Though the resulting matrix is identical, the number of operations to get matrix B is different.

Unit 6.1 Dynamic Programming

May 12, 2020

Matrix-Chain Multiplication Problem

• Using Eq. (6.1.3),

$$\begin{array}{ll} A_{12} = A_1[1:10,1:100] \cdot A_2[1:100,1:5] & 10 \times 100 \times 5 = 5000 \text{ multiplications} \\ B = A_{12}[1:10,1:5] \cdot A_3[1:5,1:50] & 10 \times 5 \times 50 = 2500 \text{ multiplications} \\ & \text{Total} & 7500 \text{ multiplications} \end{array}$$

• Using Eq. (6.1.4),

$$\begin{array}{ll} A_{23} = A_2[1:100,1:5] \cdot A_3[1:5,1:50] & 100 \times 5 \times 50 = 25000 \text{ multiplications} \\ B = A_1[1:10,1:100] \cdot A_{23}[1:100,1:50] & 10 \times 100 \times 50 = 50000 \text{ multiplications} \\ & \text{Total} & 75000 \text{ multiplications} \end{array}$$

- The order of multiplications can make significant difference in computing the resulting product.
- The matrix-chain multiplication problem is to find the sequence of matrix multiplications for a given matrix chain, $A_1 \cdot A_2 \cdot \cdot \cdot A_n$, each with dimensions $p_{i-1} \times p_i$, such that the number of scalar multiplications is minimum.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Matrix-Chain Multiplication Problem, Analysis

• Given a chain of matrices, A_1, A_2, \ldots, A_n , the number of possible sequences, P(n), can be shown to be

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$
 (6.1.5)

- It is shown that $P(n) \ge 2^{n-1}$. Thus, P(n) is $\Theta(2^n)$.
- Brute force approach is very inefficient.
- Let the dimensions of the matrices A_i , $1 \le i \le n$, be $p_{i-1} \times p_i$.
 - These dimensions can be stored in the array p[0:n].
- Let the minimum number of scalar products of performing matrix-chain, $A_i\cdot A_{i+1}\cdots A_{j-1}\cdot A_j$ be m(i,j), then

$$m(i,j) = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \left\{ m(i,k) + m(k+1,j) + p_{i-1} \cdot p_k \cdot p_j \right\} & \text{if } i < j. \end{cases}$$
 (6.1.6)

• This is to try all groupings, $(A_i \cdots A_k) \cdot (A_{k+1} \cdots A_j)$, and find the minimum recursively.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

13/2

Matrix-Chain Multiplication Problem, Recursive Algorithm

 \bullet Eq. (6.1.6) can be translated into a recursive algorithm as the following.

Algorithm 6.1.6. Recursive matrix-chain multiplication.

```
// To find the minimum scalar multiplications for a matrix chain multiplication. 

// Input: int n, range: i, j, dim array p[1:n] 

// Output: min multiplication. 

1 Algorithm MCM_R(i, j, n, p) 

2 { 

3          if (i=j) return 0; 

4          u:=\infty; 

5          for k:=i to j-1 do { 

v:= MCM_R(i, k, n, p)+ MCM_R(k+1, j, n, p)+ p[i-1] \times p[k] \times p[j]; 

7          if (v < u) u:=v; 

8          } 

9          return u; 

10 }
```

- Again, this recursive algorithm is inefficient due to repeated evaluation of the MCM_R function with the same arguments.
- Using the top-down dynamic programming technique, this inefficiency can be avoided by saving the value into an array, in this case, it needs to be a two-dimensional matrix, m[i,j].

Matrix-Chain Multiplication, Top-Down Approach

• The top-down dynamic programming approach to solve the matrix-chain multiplication problem is shown below.

Algorithm 6.1.7. Top-down matrix-chain multiplication.

```
// To find the minimum scalar multiplications for a matrix chain multiplication. 

// Input: int n, range: i, j, dim array p[1:n] 

// Output: min and m matrix. 

1 Algorithm MCM_TD(i, j, n, p, m) 

2 { 
3          if (m[i,j] \geq 0) return m[i,j]; 

4          u := \infty; 

5          for k := i to j-1 do { 
          v := \text{MCM}\_TD(i, k, n, p, m) + \text{MCM}\_TD(k+1, j, n, p, m) + p[i-1] \times p[k] \times p[j]; 

7          if (v < u) u := v; 

8          } 

9          m[i,j] := u; return m[i,j]; 

10 }
```

- Before MCM_TD(1, n, n, p, m) is called from the main function, initialization of m[i][j] = -1, $i \neq j$ and m[i][i] = 0, $1 \leq i \leq n$, should be performed.
- Also note that only the upper triangular matrix of m[1:n,1:n] is used.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

15 / 2

Matrix-Chain Multiplication, Bottom-Up Approach

• The bottom-up dynamic programming algorithm is as following.

Algorithm 6.1.8. Bottom-up matrix-chain multiplication.

```
// To find the minimum scalar multiplications for a matrix chain multiplication.
   // Input: int n, range: i, j, dim array p[1:n]
   // Output: min and m, s matrices
 1 Algorithm MCM_BU(i, j, n, p, m, s)
 2 {
 3
          for i := 1 to n do m[i, i] := 0;
          for l := 2 to n do \{ \ // \ l is the chain length.
                for i := 1 to n - l + 1 do \{ // \text{ all possible } i \}
                       j := i + l - 1; // j - i = l - 1.
 6
 7
                       for k := i to j - 1 do \{ // \text{ all possible groupings.} \}
 8
                             v := m[i, k] + m[k+1, j] + p[i-1] \times p[k] \times p[j];
 9
10
                             if (v < u) {
                                   u := v; s[i, j] := k; // record for solution
11
12
13
                       m[i,j] := u;
14
                }
15
          }
16
17 }
```

- There is more than one way to implement bottom-up approach
 - The complexities should be maintained

Matrix-Chain Multiplication, Print Solution

- In this bottom-up dynamic programming algorithm, again, the solution is recorded in the s[1:n,1:n] matrix.
- To print out the multiplication sequence after calling MCM_BU algorithm, the following algorithm should be called to print out the solution.

Algorithm 6.1.9. Matrix-chain multiplication print solution.

```
// To print the matrix multiplication sequence.
   // Input: range: i, j
   // Output: multiplication sequence.
 1 Algorithm MCM_PS(i, j, s)
 2 {
         if (i = j) write ("A" i);
 3
 4
         else {
              write ("(");
 5
              MCM_PS(i, s[i, j], s); // (A_i \cdots A_k)
 6
              MCM_PS(s[i, j] + 1, j, s); // (A_{k+1} \cdots A_j)
 7
              write (")");
 8
 9
         }
10 }
```

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

17 / 2

Matrix-Chain Multiplication, Example

• A chain of 6 matrices and their dimensions are shown below.

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

The optimal solution is

$$(A_1(A_2A_3))((A_4A_5)A_6)$$

with 15125 scalar multiplications.

ullet The m and s tables are also shown below.

m table										
0	15750 7875 9375 11875 1									
	0	2625	4375	7125	10500					
		0	750	2500	5375					
			0	1000	3500					
	0									
					0					

	s table										
	-	1	1	3	3	3					
ĺ		-	2	3	3	3					
			-	3	3	3					
				-	4	5					
	·				-	5					
						-					

Matrix-Chain Multiplication, Complexities

- The bottom-up matrix-chain multiplication algorithm (6.1.8) has three nested loops, each executed at most n times.
 - Total time complexity is $\mathcal{O}(n^3)$.
 - The space complexity is $\Theta(n^2)$ due to m and s tables.
- The top-down algorithm (6.1.7) has essentially the same complexities.
 - Time complexity: $\mathcal{O}(n^3)$
 - Space complexity: $\Theta(n^2)$
- ullet Note that the m and s tables need only the upper triangular matrix only, but the space complexity is still $\Theta(n^2)$.
- For the recursive algorithm (6.1.6), however, the time complexity is $\mathcal{O}(2^n)$. It's space complexity is $\mathcal{O}(n)$.

Unit 6.1 Dynamic Programming

Dynamic Programming

• For the rod-cutting problem, the solution is found by solving Eq. (6.1.1), which is repeated below.

$$r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \dots, p_{n-1} + r_1\}.$$
 exity is $\mathcal{O}(n^2)$.

Time complexity is $\mathcal{O}(n^2)$.

• For the matrix-chain multiplication problem, the solution is found by solving Eq. (6.1.6).

$$m(i,j) = \min_{i \le k \le j} \left\{ m(i,k) + m(k+1,j) + p_{i-1} \cdot p_k \cdot p_j \right\}.$$

This requires $\mathcal{O}(n^3)$ time complexity.

- To apply dynamic programming method, the problem can be formulated to the overall optimal solution is constructed using the optimal solutions of its subproblems.
 - The problem should be divided into subproblems.
 - The optimal solutions for the subproblems need to be found.
 - Overall optimal solution is then constructed from those solutions.
- Recursive algorithm can usually developed from the equation.
 - Using table to record solutions of subproblems improves the efficiency greatly.
 - Bottom-up approach, without recursion, usually improve the efficiency further.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Longest Common Subsequence Problem

• Practical problem: Given two strands of DNA, such as

 $S_1 = \texttt{ACCGGTCGAGTGCGCGGAAGCCGGCCGAA}$

 $S_2 = \mathtt{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$

find the longest strand S_3 such that S_3 is a subsequence of both S_1 and S_2 .

Definition 6.1.10. Subsequence

Given a sequence $X=\langle x_1,x_2,\cdots,x_m\rangle$, another sequence $Z=\langle z_1,z_2,\cdots,z_k\rangle$ is a subsequence of X if there is a strictly increasing sequence $\langle i_1,i_2,\cdots,i_k\rangle$ of indices of X such that for all $j=1,2,\ldots,k$, $x_{i_j}=z_j$.

• Example: Given $X = \langle A, B, C, B, D, A, B \rangle$, $Z = \langle B, C, D, B \rangle$ is a subsequence of X.

Definition 6.1.11. Common subsequence

Given two sequences X and Y, sequence Z is a common subsequence of X abd Y if Z is a subsequence of both X and Y.

• Example: Given $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, then $Z = \langle B, C, B, A \rangle$ is a common subsequence of X and Y.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

21 / 2

Longest Common Subsequence – Properties

- Given a sequence $X_m = \langle x_1, x_2, \dots, x_m \rangle$, then there are 2^m subsequence for X_m .
- Brute-force approach to find a longest common subsequence (LCS) would be impractical for reasonable size sequences.

Theorem 6.1.12.

Given two sequences, $X_m=\langle x_1,x_2,\ldots,x_m\rangle$ and $Y_n=\langle y_1,y_2,\ldots,y_n\rangle$, if $Z_k=\langle z_1,z_2,\ldots,z_k\rangle$ is any LCS of X and Y, then

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $x_m \neq z_k$ implies Z is an LCS of X_{m-1} and Y_n .
- 3. If $x_m \neq y_n$, then $y_n \neq z_k$ implies Z is an LCS of X_m and Y_{n-1} .
- Proof please see textbook [Cormen], p. 392.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

22 / 28

Longest Common Subsequence - Properties, II

• Let c[i,j] be the length of an LCS of the sequences X_i and Y_j , then we have

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max\left\{c[i,j-1],c[i-1,j]\right\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$
(6.1.7)

- Based on this equation, recursive algorithm can be derived to solve the LCS problem.
 - However, due to exponential number of subsequences the recursive algorithm is very inefficient to solve reasonable size problems.
- A bottom-up dynamic programming algorithm is shown next which is rather efficient.
 - Inputs are two sequences: $X_m = \langle x_1, x_2, \dots, x_m \rangle$, $Y_n = \langle y_1, y_2, \dots, y_n \rangle$.
 - Two tables are built by the algorithm.

```
c[0:m,0:n]: record the length of the LCS for X_i and Y_j at c[i,j]. b[1:m,1:n]: record the solution sequence of the LCS for X_i and Y_j at b[i,j].
```

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

23/2

Longest Common Subsequence – Algorithm

Algorithm 6.1.13. Longest Common Subsequence

```
// To find a LCS of X = \langle x_1, \dots, x_m \rangle and Y = \langle y_1, \dots, y_n \rangle.
    // Input: int m, n; sequences X, Y
    // Output: matrices b, c.
 1 Algorithm LCS(X, Y)
 2 {
           for i := 1 to m do c[i, 0] := 0;
           for j := 0 to n do c[0, j] := 0;
 4
           for i := 1 to m do {
 6
                  for j := 1 to n do {
 7
                         if (x_i = y_i) then {
                                c[i,j] := c[i-1,j-1] + 1;

b[i,j] := " \nwarrow ";
 9
10
                         else if (c[i-1,j] \ge c[i,j-1]) then \{
11
12
                                c[i,j] := c[i-1,j];
                                b[i,j] := "\uparrow ";
13
                         }
14
                         else {
15
                               c[i,j] := c[i,j-1];

b[i,j] := " \leftarrow ";
16
17
                         }
18
                  }
19
20
           }
21 }
```

Longest Common Subsequence - Print Solution

- After the LCS (X, Y) algorithm is called, tables b[1:m,1:n] and c[0:m,0:n] are built.
- The length of the LCS is in c[m, n].
- And the following recursive algorithm can print out the LCS using X and table b[1:m,1:n].
- It should be invoked by LCS_PS(b, X, m, n).

Algorithm 6.1.14. Print Longest Common Subsequence

```
// Use X_m and b[1:m,1:n] to print the LCS found recursively.
                        // Input: int m, n, i, j; array X; matrix b
                        // Output: solution found.
       1 Algorithm LCS_PS(b, X, i, j)
       2 {
       3
                                                                  if (i = 0 \text{ or } j = 0) \text{ return };
                                                                 \begin{array}{c} \text{if } (b[i,j] = \begin{subarray}{c} \b
       4
                                                                                                         write ("x_i");
      6
      7
                                                                  else if (b[i, j] = " \uparrow ") then LCS_PS(b, X, i - 1, j);
                                                                  else LCS_PS(b, X, i, j - 1);
      9
10 }
```

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

25 / 2

Longest Common Subsequence – Example

Given two sequences

$$X_7 = \langle A, B, C, B, D, A, B \rangle, Y_6 = \langle B, D, C, A, B, A \rangle.$$

After LCS(X, Y) call, we have the following tables.

	Table $c[0:7,0:6]$											
	j	0	1	2	3	4	5	6				
i		y_{j}	В	D	C	Α	В	Α				
0	x_i	0	0	0	0	0	0	0				
1	Α	0	0	0	0	1	1	1				
2	В	0	1	1	1	1	2	2				
3	C	0	1	1	2	2	2	2				
4	В	0	1	1	2	2	3	3				
5	D	0	1	2	2	2	3	3				
6	Α	0	1	2	2	3	3	4				
7	В	0	1	2	2	3	4	4				

- The length of the LCS found is c[7,6] = 4.
- And the LCS is $\langle B, C, B, A \rangle$.

Longest Common Subsequence - Complexity

- The bottom-up dynamic algorithm to solve LCS problem, Algorithm (6.1.13), is dominated by the double loops, lines 5-6.
- Thus, the time complexity is $\Theta(mn)$.
- The LCS solution printing algorithm (6.1.14) traces the b[1:m,1:n] table for the lower-right corner to the upper-left corner.
 - Thus, the time complexity is $\mathcal{O}(m+n)$.
- The overall space complexity is $\Theta(mn)$ due to those two tables, c[0:m,0:n] and b[1:m,1:n].
- It is possible to print out the LCS solution using table c[0:m,0:n] alone, thus save memory space requirement.
 - Starting from c[m][n], each step it requires to compare x_m vs. y_n and c[m-1][n] vs. c[m][n-1].
- Note that in Algorithm (6.1.13), in constructing c[i] row it needs only the previous row c[i-1].
 - Thus, if only the length of LCS is required, table b[1:m,1:n] needs not be built. The space complexity can be reduced to $\mathcal{O}(m)$.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

May 12, 2020

27 / 2

Summary

- Rod-cutting problem
- Matrix-chain multiplication problem
- Dynamic programming
- Longest common subsequence problem