

TEAM IMP

HYPER PARAMETER TUNING

Using genetic algorithm

SUMMARY

Genetic algorithms
Hyper-parameters tuning
Limitations (+ solutions)
Implementation
Some results

GLOSSARY

Genes

Genomes

Population

Generations

Fitness

GENETIC OPERATIONS

FULL MUTATION

Creates a fully random new genome

PARTIAL MUTATION

Copies a genome from the population and changes randomly one of his genes

CROSSOVER

Performs a uniform crossover between 2 parents: picks random genes from parent 1 and 2

HYPERPARAMETERS OPTIMIZATION

GENE = HYPER-PARAMETER

GENOME = HYPER-PARAMETERS CONFIGURATION

FITNESS FUNCTION = TRAIN AND EVALUATE
THE MODEL WITH THE HYPER-PARAMETERS
CONFIGURATION

RUN THE GA TO FIND THE BEST-FITTING CONFIGURATION

DEMO VISUALIZATIONS

INITIAL SPACE EXPLORATION

unsufficiently explored space

POSSIBLE CAUSES

- not enough genomes
- too large bounds
- too many dimensions

NOILUTIOS

INITIAL SPACE EXPLORATION

well explored space: numerous genomes

well explored space: low discrepancy sequence (Halton sequence here)

CONVERGENCE TOWARDS A LOCAL OPTIMUM

genomes converging towards a local optimum

POSSIBLE CAUSES

- not enough genomes
- not enough mutation

POSSIBLE SOLUTIONS

- same as previous
- add mutation (full and partial)
- penalize values too close to each other

NO CLEAR STOP CRITERION MOST OF THE TIME

global optimum not reached

POSSIBLE SOLUTIONS

- variance of the best genomes
- not always applicable, and never certain

JUPYTER NOTEBOOK

RESULTS

LECTURE EXAMPLE - L6.3 RNN

OUR RESULTS

Batch size 32
Hidden layers size 100
Loss function MSE
Number of hidden layers 1
Random state ?
RNN architecture LSTM
Window size 12

Best R2 score 0.9399

Batch size	8
Hidden layers size	80
Loss function	Huber
Number of hidden layers	2
Random state	15
RNN architecture	GRU
Window size	12
Best R2 score	0.9636
Generations	40

RESULTS WITHOUT
HYPER PAREMETER
TUNING

RESULTS WITH
HYPER PAREMETER
TUNING

LOW-DISCREPANCY SEQUENCES (HALTON SEQUENCE)

http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/

VARIANCE AS A STOPPING CRITERION FOR GENETIC ALGORITHMS

https://www.isical.ac.in/~sankar/paper/Bhandari-2012.pdf

QUESTIONS?

THANKS FOR YOUR ATTENTION

GITHUB REPOSITORY

https://github.com/thuas-imp-2021/Learning-Lab

CONTACT

Adrien: A.Lucbert@student.hhs.nl

Michael: M.T.Weij@student.hhs.nl