International Bureau

(43) International Publication Date 2 September 2004 (02.09.2004)

PCT

CIZN (51) International Patent Classification7:

PCT/DK2004/000117 (21) International Application Number:

International Filing Date: 23 February 2004 (23.02.2004)

(25) Filing Language

Z

English

English (26) Publication Language:

22 September 2003 (22.09.2003) 21 February 2003 (21.02.2003) 21 February 2003 (21.02.2003) 21 February 2003 (21.02.2003) 18 September 2003 (18.09.2003) 21 February 2003 (21.02.2003) PA 2003 00268 PA 2003 00269 PA 2003 01356 (30) Priority Data: 60/448.480 50/448,460 50/504.748

(71) Applicant (for all designated States except US): NUEVO-LUTION AS [DK/DK]; Rønnegade 8,5. sal, DK-2100 København Ø (DK)

Inventors; and 33

(SE). GOULLAEV, Alex, Hashr [DK/DK]; Brødsted 223, DK-3670 Veksø Sjælland (DK). THISTED, Thomas Frederikssund DK). OLSEN, Eva, Kampmann [DK/DK]; Vingetoften FRESKGÁRD Per-Ola [SE/SE]; Örtugsgatan 50, S-603 79 Norrköping DK/DKI; Fjordskrænten 14, DK-3600 Inventors/Applicants (for US only): 7, DK-2730 Herlev (DK). Kongensgade 59 A, Store DK-1264 Copenhagen K. (DK). HØIBERG A/S; (74) Agent:

kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, (81) Designated States (unless otherwise indicated, for every

7Y

GB, GD, GE, GH, GM, HR, HU, D, IL, IN, IS, JP, KE, KG, KP, KR, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MX, HN, NI, NO, NZ, OM, PG, PH, PI, FT, RO, RU, SC, SD, SE, SG, SK, SJ, SY, TJ, TM, TN, RT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), Buropean (AT, BR, BG, CH, CY, CZ, DB, DK, EB, ES, FI, FR, GB, GR, HU, IB, IT, LU, MC, NL, PT, RO, SB, SI, SK, TR), OAPI (BF, BJ, CP, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NB, SN, TD, TG).

Declaration under Rule 4.17:

THE KES KOR RR KZ, LC, LK, LR, LS, LT, LU, LW, MA, MD, MG, MK, MN, MW, MX, MZ, NN, NI, NO, NZ, OM, PG, PH, PL, PT RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TM, TT, TZ, UA, UG, UZ, VC, VW, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurration patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AM, AZ, BY, CG, CZ, CB, DK, EE, SS, FI, FR, GB, GR, HU, IE, TT, LU, MC, NL, PT, RO, SE, SI, SK, TR, OAP! patent (BF, BL, CF, CG, CI, CM, GA, GA, GQ, GW, ML, MR, NE, SN, TD, TG) as to applican's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG AL AM, AT AU, ÁZ BA, BB, BG, BR, BW, BI, BZ, CA, CH, CN, CO, CR, CU, CZ DE, DK, DM, DZ EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,

without international search report and to be republished Published:

upon receipt of that report

ance Notes on Codes and Abbreviations" appearing at the begin-For two-letter codes and other abbreviations, refer to the "Guidning of each regular issue of the PCT Gazette 8

(54) Title: METHOD FOR PRODUCING SECOND-GENERATION LIBRARY

(54) Title: METHOD FOR PRODUCING SECOND-GENERATION LIBRARY

(57) Abstract: The present invention relates to a method for generating a second-generation library. In a first step, a library of concoded molecules associated with an identifier nucleic acid comprising codous identificial entities that have participated in the formation of the formation of the concoded molecules are subsequently identified, Codons of identifiers of selected encoded molecules are subsequently identified, and a second-generation property are selected. Codons of identifiers of selected encoded molecules are subsequently identified, and a second-generation step to select encoded molecules with a certain property.

. (10) International Publication Number WO 2004/074429

METHOD FOR PRODUCING SECOND-GENERATION LIBRARY

語

Various patent and non-patent references cited in the present application are hereby

incorporated by reference in their entirety. S

rechnical Field of the Invention

The invention relates to a method for producing a second-generation compound library with an improved desired property profile. In nature and artificial methods

retained, unless a mutation and/or recombination has occurred. The present method based on the natural system, the parent genotype is carried on to the off-spring and wholly or partly is scrambled. The result is a focused second-generation library with only retains the identity of chemical entitles, e.g. amino acids, while the sequence results in a phenotype in which the exact type and sequence of amino acids is 9

Background of the Invention

lower diversity.

5

phenotypes with the most suitable functionalities in a certain environment. In all livhe biological evolution is based on the survival of specific genotypes that encode

natural selection process. One function is obviously to encode for the type of nucleosequences in a nucleic acid sequence. The strategy used in nature, I.e. encoding for the exact type as well as the precise sequence of nucleotides, ensures an extremely ing species DNA programs the genotype. DNA serves two important functions in the ides used and the other function is to encode for the specific order of nucleotide 2

similarity between the progeny and its parents. Thus, conserving almost the exact spring with a high functionality. The changes in the genotype from one generation sequence and type of the nucleotides is absolutely essential in order to create off to another, which allow for evolution, are determined by the random mutation rate and recombination between the two parent's genotypes. 22

to its progeny and secured that the characteristics of phenotype from one generallon The natural selection cannot afford too many changes in the DNA from one generaevolved sophisticated means to proofread the copying of the DNA from the parents iton to the next in order to secure survival of the species. Therefore, nature has

to the next is carried only by the DNA.

Within the art of selecting ligands from a library of encoded polypeptides associated with a corresponding identifier nucleic acid sequence, the method of nature is used. acid sequences (genotype) carries the Information from one generation to the next. Thus, when more than a single library generation is needed, the identifier nucleic

ß

desired property in a polypeptide library. In a first step, a translatable mRNA mixture is provided, which is mixed with a mixture of ribosome complexes to form a transla-WO 93/03172 A1 discloses a method for identifying a polypeptide ligand having a

- tion product attached to the mRNA strand responsible for the formation thereof. In a remainder of the library. In a third step, an amplification of mRNA strands of the parsubjected to a renewed contact with the target. The method is repeated a sufficient number of times until the size of the library has narrowed to a small pool of high afmRNA strands are used for the production of a second generation library, which is itioned ribosome complexes, which has bound to the target follows. The amplified second step the ribosome complexes binding to a target are partitioned from and inity binders. 9 5
- candidates RNA molecules, which subsequently is translated into a corresponding subjected to a selection process, i.e. the fusion products are presented for a target pool of RNA-protein fusions. Subsequently the mRNA-protein fusion products are molecule, and a new pool of complexes capable of binding to the target are partidesired protein, is disclosed. The method implies the initial presence of a pool of In WO98/31700 A1 a method for selecting a DNA molecule, which encodes for a ೪
 - for use in a subsequent round of library generation. Xu, L. et al Chemistry & Biology, Vol. 9, 933-942, August 2002 discloses a practical embodiment in which a library of more than 1012 unique mRNA-protein fusion products through ten rounds of library tioned. From the new pool of complexes, the mRNAs are recovered and amplified generation and selection are used to identify a high affinity binding protein. 22

identifier nucleic acid sequence, and the selection of synthetic molecules from such The preparation of libraries of synthetic molecules associated with a corresponding generations of libraries are needed, the identifier nucleic acid sequence is used as libraries, have been the subject of various patent applications. When two or more carrier between an initial library and the next generation library.

સ

PCT/DK2004/000117 WO 2004/074429

Thus, in WO 00/23458A1 libraries of complexes comprising non-natural molecules attached to corresponding nucleic acid sequences are suggested. After a selection plexes are amplified by PCR and a new library is prepared from these nucleic acid of the library has been conducted, the nucleic acid sequences of successful com-

sequences. The same method of carrying information from an initial library to the

S

next library is applied in WO 02/074929A2 and WO 02/103008A2.

The present invention provides a new method for evolving encoded molecules. The these chemical entities in the preparation of the next generation library. The utilization of preferable chemical entitles and the exclusion of certain undesired chemical method is based on the identification of chemical entities used in the synthesis of reaction products of successful complexes and the application, at least in part, of 9

entities in the next library generation generally imply that the next generation library has a smaller size compared to the size of the initial library, thereby, at the same lime, retaining the desirable encoded molecules in the library. 5

Summary of the Invention

The present invention concerns a method for producing a composition of molecules

- an initial library comprising a plurality of different encoded molecules associated with with an improved desired property, said method comprising the steps of: providing a corresponding identifier nucleic acid sequence, wherein each encoded molecule comprises a reaction product of multiple chemical entities and the identifier nucleic acid sequence comprises codons identifying said chemical entities; subjecting the 8
 - members of the initial library; and preparing a second-generation library of encoded molecules using the chemical entities coded for by the codons of the partitioned displaying a predetermined property from the remainder of the initial library; identifying codons of the identifier nucleic acid sequences of the partitioned initial library to a condition partitioning members having encoded molecules members of the initial library or a part thereof. 22

ജ

The present invention relates to a novel approach to perform evolution of molecules with a desired property, said approach being different from the approach of nature counterpart of amino acids in Nature, instead of the precise sequence of chemical and the prior art. The invention is based on the selecting of chemical entities, the

4

entities. This new approach is powerful in ex vivo conditions when high functionality of the off spring is not vital for success and when the number of chemical entities relative to the number of reactants used in each encoded molecule is high.

The method disclosed herein will be increasingly effective as the library size increases. This is due to the fact that more chemical entities is used when a library size is increased, when the number of reactions for the formation of the encoded is fixed and the fact that different chemical entities tend to be involved in encoded molecules having the desired property. The chemical entities, which are part of the

വ

- 10 final selected molecules, will be enriched in each round of selection. Finally, when the diversity has been extensively reduced, the enriched molecules are decoded from the identifier nucleic acid sequence comprising the codons of the chemical entities that have participated in the formation of the encoded molecule.
- The strategy of performing enrichment of chemical entities instead of specific combinations of chemical entities more efficiently search the chemical space for all combinations of chemical entities that are eager to show a certain property, such as a binding ability towards a target. Thus, chemical entities having a certain impact on the formation of encoded molecules is allowed in a new library to recombine in each
 - random, i.e. once a chemical entity has qualified as being of interest it is allowed in every position of the reaction sequence. In another aspect of the invention, the recombination is semi-random, i.e. once a chemical entity is qualified as being of interest it is used in a certain position in the reaction sequence of the encoded molecule. In still a further aspect of the invention, the amount of the chemical entity used in a subsequent library generation is dependent on the frequency and the amount of the partitioned library members.
- The present invention may be of special interest when a group of chemical entities are selected from a larger pool of chemical entities in the formation of a first library. Selecting chemical entities resulting in encoded molecules having a certain property in a first library and spiking with remaining chemical entities of the pool allows for the formation of a second-generation library not necessarily of a smaller size but enriched in encoded molecules having a certain property.

WO 2004/074429

PCT/DK2004/000117

'n

The second-generation library may be formed of a reaction product of the chemical entities without attaching the reaction product to a nucleic acid. In an embodiment of such second-generation library the individual reaction products are formed in discrete reaction compartments in accordance with traditional combi-chem technology.

- In a certain aspect of the invention, the second-generation library is prepared as the first generation library, i.e. the second-generation library comprises a plurality of different encoded molecules associated with a corresponding identifier nucleic acid sequence, wherein each encoded molecule comprises a reaction product of multiple chemical entities and the identifier nucleic acid sequence comprises codons identify.
 - ing said chemical entities.

In a preferred aspect of the invention, it comprises subjecting the second-generation library to a condition partitioning members having encoded molecules displaying a predetermined property from the remainder of the second-generation library. The

15 second-generation library may be partitioned as to the same property or a different property. Notably, the second-generation library can be screening against the same target or a different target.

After the partitioning of the second-generation library, the invention comprises the

- step of deducing the identity of the encoded molecule(s) using the identifier nucleic acid sequence, when present. Optionally, a third or further generation library may be formed and screened before the final deducing step is performed. In a certain embodiment, the decoding includes that the codons of the identifier nucleic acid sequence is decoded to establish the synthesis history of the encoded molecules. The
- 25 synthesis history includes the identity of the chemical entities used and the point in time they enter the sequence of reactions resulting in the encoded molecule.
- The encoded molecule is preferably a reaction product in which multiple chemical entity precursors have participated. The encoded molecule may have any chemical structure. Generally, the multiple chemical entities are precursors for a structural unit appearing in the encoded molecule. However, the chemical entities may also perform a chemical reaction with the nascent encoded molecule, which result in an altering or removal of chemical groups. In certain aspects of the invention, the encoded molecule is a scaffolded molecule, i.e. various chemical entities have

reacted with a chemical core structure like steroid, benzodiazepine, retinol,

33

polymer may be of a type which occurs naturally or may be a non-naturally occurring some aspects of the invention, the encoded molecule is not a a-peptide. Notably, in some aspects of the invention, the chemical entities are reacted without enzymatic recognition of a codon of an mRNA strand by the anticodon of a charged tRNA. In camphor, ephedrine, penicillin, cannabinol, coumarin, oxazol, etc. In certain other aspects of the invention the encoded molecule is fully or partly a polymer. The polymer. Nature only has the possibility of preparing a-polypeptides using the interaction to produce the encoded molecule.

S

5

tachment of the encoded molecule to the identifier nucleic acid sequence. In another entity separated from the encoded molecule, wherein the identifier identifies the spatial position of an encoded molecule, e.g. in the same compartment in which an enassociated with the corresponding identifier nucleic acid sequence is a bifunctional complex. The bifunctional complex may be formed by covalent or non-covalent at-The encoded molecule can be associated with the nucleic acid sequence identifier in any appropriate way. In a certain aspect of the invention, the encoded molecule aspect of the invention, an identifier nucleic acid sequence is physically a distinct coded molecule is formed a corresponding identifier oligonucleotide is generated.

5

certain temperature conditions, certain acidic conditions, certain radiation conditions may be chosen from a variety of possibilities. In one aspect the condition relates to The conditions partitioning complexes of interests from the remainder of the library physical parameters, so that complexes displaying a physical stability under e.g.

ឧ

lar target and partitioning complexes binding to this target. The molecular target may partitioning the desired complexes includes subjecting the initial library to a molecuconditions used. Typically the binding complexes are eluted from the column using be any compound of interest. Exemplary targets are proteins, carbohydrates, poly-In certain aspects the target is immobilized on a solid support, such as column maetc. are selected from the library. In other aspects of the invention the condition for partitioning of the complexes capable of binding to the target under the contacting saccharides, hormones, receptors, antibodies, viruses, antigens, cells, tissues etc. terial and contacted with the candidate complexes in a fluid media followed by a increased stringency conditions. 22 ႙

WO 2004/074429

PCT/DK2004/000117

cation step. The amplification is suitably performed applying polymertse chain reacstep. Usually the identifier nucleic acid sequences are amplified prior to the identifi-The complexes as such or only the identifier part is harvested after the partitioning tion (PCR). The amplified identifiers may be explicitly or implicitly identified. When

the codons are identified explicitly, the sequence and identity of nucleotides in the

Ŋ

invention, traditional sequencing, e.g. by using a modification of the Sangers method of the initial library are identified by contacting said identifier nucleic acid sequences codon is made known to the experimenter, whereas, when the codons of the identition, the codons of the identifier nucleic acid sequences of the partitioned members Any suitable method for identifying codons may be used. In a certain aspect of the or pyrosequencing methods, identifies the codons. In another aspect of the invenflers are implicitly identifled, the experimenter is not presented for the Information. with a pool of nucleic acid fragments under conditions allowing for hybridisation. 9

single stranded nucleic acid probes immobilized in discrete areas of a solid support, aspect of the invention, the pool of nucleic acid fragments comprises a plurality of The pool of nucleic acid fragments may be immobilized or in solution. In a certain wherein the nucleic acid probes are capable of hybridising to a codon of the

- identifier nucleic acid sequence comprising codons. The nucleic cid probes may be positioned on a microarray, such that the identity of the codons is revealed by observing the discrete areas of the support in which a hybridisation event has 8
- adapter oligonucleotide having a sequence complementing the probe as well as one The nucleic acid probe can be directly hybridised to the identifier or the nucleic acid single codon of an identifier or a probe of the array is capable of hybridising to two or more codons of the identifier nucleic acid sequence. The probe may identify a probe of the array is hybridised to an identifier nucleic acid sequence through an 25
 - codons of the identifier nucleic acid sequence or a sequence complementary to said sequence. The ability to hybridise two or more codons makes it possible to study the nucleic acid sequence. This latter option will fully decode the Identity of the encoded nucleic acid probe of the array is capable of hybridising to all codons of an identifier influences of neighbouring chemical entitles on each other. In a certain aspect, a ဗ္က

٠ :

motecule. Usually however, a fully decoding is only possible for a relative small library size, as it presupposes a nucleic acid probe for each member of the library.

When single codons are detected, useful information about a certain codon may be gathered by detecting the codon together with a framing sequence identifying the position in the reaction history of the chemical entity corresponding to said codon.

S

As an example, if a library of complexes is prepared from 100 chemical entities and the three reactions, i.e. each identifier comprises 4 codons, the library size is 10°.

- 10 For most practical uses 10° is in the excess of what is possible to detect on an array, especially if multiple determinations for each identifier are considered necessary to obtain a high accuracy. However, an array of just 100 probes complementary to the 100 codons will reveal important information prior to or subsequent to a selection. In the event a framing sequence is detected together with the codon an array of 400 probes is needed.
- A suitable method for identifying an hybridisation event is to use a label. Therefore, in a preferred embodiment, the existence of a hybridisation event is measured through labelling of the identifier nucleic acid sequence, or an amplification product thereof. When the label emits light, the hybridisation event is measured by the emission of light in a scanner. To reveal the relative abundance of each chemical entity in the library of encoded molecules, the relative intensity of light in each discrete spot is measured.

ឧ

The measurement of a hybridisation event may be conducted by various methods known in the art. In the event the label emits lights, the presence or absence of a hybridisation event may be measured in a scanner, e.g. a confocal scanner. The scanner may be connected with computer software, which is able to quantify the amount of lights measured. The amount of light measured correlates with the 30 amount of identifier annealed to the probes. Thus, it is possible to measure not only the presence or absence of one or more codons of an identifier; it is also possible to measure the relative amount of the codons in one or more identifiers.

After the complexes have been partitioned and the specific codons have been iden-35 tifled on the microarray, the information can be used to design optimized libraries

WO 2004/074429 PCT/DK2004/000117

თ

including chemical entities based on both the selection data and the chemical structure. The microarray analysis will first of all detect which chemical entities pass the partitioning step. Secondly, the relative intensity on the microarray will reflect the relative binding affinity of the chemical entities. Finally, the structures of the chemi-

- cal entities are directly identified due to the position of the probes on the array. For instance, chemical entities that are strongly selected in a partitioning process but possess some unfavourable chemical structure can be excluded in the next generation of library. Similarly, chemical entities that are weekly selected in a partitioning process but possess some favourable chemical structure can be included in the next
- 10 generation of library. Thus, the next generation library design can be based both on a rational choice of chemical entities with lead-like structures and the selection pressure detected on the microarray.

Another method of identifying codons includes that nucleic acid fragments are primer oligonucleotides, and the identification involves subjecting the hybridisation complex between the primer oligonucleotides and the identifier nucleic acid sequences to a condition allowing for an extension reaction to occur when the primer is sufficient complementary to a part of the identifier nucleic acid sequence, and evaluating based on measurement of the extension reaction, the presence,

20 absence, or relative abundance of one or more codons.

The extension reaction requires a primer, a polymerase as well as a collection of deoxyribonucleotide triphosphates (abbreviated dNTP's herein) to proceed. An extension product may be obtained in the event the primer is sufficient complementary

- 25 to an identifier oligonucleotide for a polymerase to recognise the double helix as a substrate. After binding of the polymerase to the double helix, the deoxyribonucleotide triphosphates (blend of dATP, dCTP, dGTP, and dTTP) are incorporated into the extension product using the identifier oligonucleotide as identifier. The conditions allowing for the extension reaction to occur usually includes a suitable buffer. The buffer may be any acuted, or organic solvent or mixture of solvents in which the
- buffer may be any aqueous or organic solvent or mixture of solvents in which the polymerase has a sufficient activity. To facilitate the extension process the polymerase and the mixture of dNTP's are generally included in a buffer which is added to the identifier oligonucleotide and primer mixture. An exemplary kit comprising the polymerase and the nNTP's for performing the extension process comprises the

following: 50 mM KCl; 10 mM Tris-HCl at pH 8.3; 1.5 mM MgCl2; 0.001% (wt/vol)

ઝ

PCT/DK2004/000117

Thermus aquaticus (Taq) DNA polymerase I (U.S. Pat. No. 4,889,818) per 100 migelatin, 200 µM dATP; 200 µM dTTP; 200 µM dCTP; 200 µM dGTP; and 2.5 units croliters (µl) of buffer.

the polymerase. The presence or absence of one or more codons is indicated by the The primer may be selected to be complementary to one or more codons or parts of more preferred at least 15 nucleotides in length to allow for an efficient extension by measured by any suitable method, such as size fractioning on an agarose gel and codons, however, the primers usually are at least about 11 nucleotides in length, presence of or absence of an extension product. The extension product may be such codons. The length of the primers may be determined by the length of the staining with ethidium bromide. S

9

temperature of the mixture within a temperature range whose lower limit is about 30 degrees Celsius (30°C) to about 55°C and whose upper limit is about 90°C to about 100° C. The increasing and decreasing can be continuous, but is preferably phasic with time periods of relative temperature stability at each of temperatures favouring In a preferred embodiment the admixture of identifier oligonucleotide and primer is thermocycling is typically carried out by repeatedly increasing and decreasing the termocycled to obtain a sufficient number of copies of the extension product. The polynucleotide synthesis, denaturation and hybridization. 5

ឧ

sult may be used to verify the presence or absence of a specific chemical entity durindicative of the presence of an oligonucleotide part complementary to the primer in When a single complex is analysed in accordance with the present method, the reing the formation of the display molecule. The formation of an extension product is indicative of the absence of an oligonucleotide part complementary to the primer in the identifier oligonucleotide. Conversely, the absence of an extension product is the identifier oligonucleotide. Selecting the sequence of the primer such that it is complementary to one or more codons will therefore provide information of the structure of the encoded molecule coded for by this codon(s). 3 ဓ

In a preferred aspect of the invention, in the mixture of the identifier oligonucleotide the extension product is included. The second primer is also termed reverse primer and the primer oligonucleotide, a second primer complementary to a sequence of

સ

WO 2004/074429

PCT/DK2004/000117

and ensures an exponential increase of the number of produced extension products the art and is generally referred to as polymerase chain reaction (abbreviated PCR) The method using a forward and reverse primer is well known to skilled person in in the present application with claims. In one embodiment of the invention the re-

- the 3'end of the extension product, or a part complementing the coding part of the anneals to an upstream position of the identifier oligonucleotide, preferably before identifier oligonucleotide. In another embodiment, the first primer (forward primer) verse primer is annealed to a part of the extension product downstream, i.e. near the coding part, and the reverse primer anneals to a sequence of the extension Ŋ
 - product complementing one or more codons or parts thereof. 9

pared with e.g. ethidium bromide or a similar staining agent. As an example, ampli-The amplicons resulting from the PCR process may be stained during or following the reaction to ease the detection. A staining after the PCR process may be pre-

- cons from the PCR process is run on an agarose gel and subsequently stained with possible to incorporate the staining agent in the agarose gel or to allow a solution of ethidium bromide. Under UV illumination bands of amplicons becomes visible. It is the staining agent to migrate through the gel. The amplicons may also be stained during the PCR process by an intercalating agent, like CYBR. In presence of the 5
- intercalating agent while the amplification proceeds it will incorporate in the doubte helix. The intercalation agent may then be made visible by irradiation by a sultable 8

The intensity of the staining is informative of the relative abundance of a specific

- lected can be quantified using this method. As an example a sample of the selected oligonucleotide. When a library of bifunctional complexes has been subjected to a amplicon. Thus, it is possible to quantify the occurrence of a codon in an identifier identifier oligonucleotides is subjected to various PCR amplifications with different selection the codons in the pool of identifier oligonucleotides which has been se-22
 - appear can be quantified by a densitometric analysis after irradiation by ultraviolet analysed by electrophoresis in the presence of ethidium bromide. The bands that primers in separate compartments and the PCR product of each compartment is light and the relative abundance of the codons can be measured. 8

label and anti-digoxigenin when digoxigenin is used as the label. Once captured, the plication of a solid support covered with streptavidin or avidin when biotin is used as Alternatively, the primers may be labelled with a suitable small molecule, like biotin the amplicons comprising the small molecule. A preferred method includes the apor digoxigenin. A PCR-ELISA analysis may subsequently be performed based on amplicons can be detected using an enzyme-labelled avidin or anti-dixigenin reporter molecule similar to a standard ELISA format.

2

To avoid laborious post-PCR handling steps required to evaluate the amplicons, it is step of the present invention and are include in the present scope of protection. The PCR process available to the skilled person in the art can be used in the evaluating Several real time PCR processes has been developed and all the suitable real time in a certain embodiment preferred to measure the extension process "real time". PCR reactions discussed below are of particular interest.

9

5

PCR, mainly due to reduced cycles time and the use of sensitive methods for detectra. An advantage of many real time PCR methods is that they can be carried out in labelling of primers, probes, or amplicons with fluorogenic molecules. The real time tion of emissions from the fluorogenic labels. The most commonly used fluorogenic cence. FRET is a spectroscopic process by which energy is passed between moletion of the potential for carry-over contamination and the ability to closely scrutinise cules separated by 10-100 A that have overlapping emission and absorption spec-The monitoring of accumulating amplicons in real time has been made possible by result of the PCR. A closed system implies a reduced result turnaround, minimisa-PCR amplification is usually performed with a speed faster than the conventional a closed system, i.e. a system which does not need to be opened to examine the fluorescent quencher (NFQ), which disperse energy as heat rather than fluoresoligoprobes rely upon fluorescent resonance energy transfer (FRET) between fluorogenic labels or between one flourophor and a dark or "black-hole" nonthe essay's performance.

22

ဓ

8

the non-specific detection methods is a DNA-binding fluorogenic molecule. Included The real time PCR methods currently available to the skilled person can be classified into either amplicon sequence specific or non-specific methods. The basis for in this class are the earliest and simplest approaches to real time PCR. Ethidium

35

PCT/DK2004/000117 WO 2004/074429

provides for a real time detection of the fluorescent agent as it is incorporated into double stranded DNA which is exposed to a suitable wavelength of light. This approach requires the fluorescent agent to be present during the PCR process and bromide, YO-PRO-1, and SYBR® green 1 all fluorescence when associated with

the double stranded helix. S

TaqMan®, hairpin, LightCycler®, Sunrise®, and Scorpion® methods. The LlghtCycler® method also designated "HybProbes" make use of a pair of adjacent, fluorogenic The amplicons sequence specific methods includes, but are not limited to, the

- phore a the 5' terminus so that when both oligoprobes are hybridised the two fluorobelied with a 3' donor fluorophore and the second, usually the downstream probe is hybridisation oligonucleotide probes. A first, usually the upstream oligoprobe is lacommonly labelled with either a Light cycler Red 640 or Red 705 acceptor fluorophores are located in close proximity, such as within 10 nm, of each other. The 2
- downstream of the codon region on the identifier oligonucleotide. Alternatively, when annealing of the probes may be any suitable position that does not interfere with the primer annealing. In a suitable setup, the site for binding the probes are positioned suitable light source, such a blue diode in case of the LightCycler[®]. The region for close proximity provides for the emission of a fluorescence when irradiated with a 5 ន
- a reverse primer is used, the region for annealing the probes may be at the 3' end of the strand complementing the identifier oligonucleotide. Another embodiment of the LightCycler method includes that the pair of oligonucleotide probes are annealed to one or more codons and primer sites exterior to the coding part of the identifier oligonucleotide are used for PCR amplification.

rhodamine, at each end. When in close proximity, i.e. annealed to an identifier ollcarboxy-fluoroscein, and a quencher fluorophore, such as 6-carboxy-tetramethyl-The TaqMan® method, also referred to as the 5' nuclease or hydrolysis method, requires an oligoprobe, which is attached to a reporter flourophor, such as 6-

- the hydrolyses the oligoprobe via its $5' \! o \! 3'$ endonuclease activity. Once the reporter reporter. As the polymerase progresses along the relevant strand, it displaces and is removed from the extinguishing influence of the quencher, it is able to release quencher will "hijack" the emissions that have resulted from the excitation of the gonucleotide, or a sequence complementing the identifier oligonucleotide, the ဓ
 - excitation energy at a wavelength that can be monitored by a suitable Instrument, 33

rescence signal mirrors progression of the reaction above the background noise is normally used as an Indicator of successful identifier oligonucleotide amplification. such as ABI Prism® 7700. The fractional cycle number at which the real-time fluo-This threshold cycle (Ct) is defined as the PCR cycle in which the gain in fluores-

- signed to hybridise at a position downstream of a primer binding site; be it a forward cence generated by the accumulating amplicons exceeds 10 standard deviations of or a reverse primer. When the primer is designed to anneal to one or more codons the mean base line fluorescence. The C_T is proportional to the number of identifier oligonucleotide copies present in the sample. The TaqMan probe is usually de-ည
 - of the identifier oligonucleotide, the presence of these one or more codons is indicated by the emittance of light. Furthermore, the quantity of the identifier oligonucleotides comprising the one or more codons may be measured by the $C_{
 m T}$ value. 9

regions of homologous base pairing deliberately designed to create a hairpin structransfer by a collision mechanism is used the quencher is usually different from the The Hairpin method involves an oligoprobe, in which a fluorophore and a quencher ture which result in quenching either by FRET or a direct energy transfer by a colliare positioned at the termini. The labels are hold in close proximity by distal stem sional mechanism due to the intimate proximity of the labels. When direct energy 5

- primer, or within the bounds of the primer binding sides in case of more than one a FRET mechanism, and is suitably 4-(4'-dimethylamino-phenylazo)-benzene (DABsingle primer, the oligoprobe will hybridise, shifting into an open configuration. The fluorophore is now spatially removed from the quencher's influence and fluores-CYL). In the presence of a complementary sequence, usually downstream of a ន
 - This is probably because the hairpin structure provides a highly stable alternate conprobe may be designed to anneal to a codon in order to detect this codon if present differs from each other with a single or a few nucleotides, because is in well-known quence has a greater destabilising effect on the duplex than the introduction of an that the occurrence of a mismatch between a hairpin oligoprobe and its target secence emissions are monitored during each cycle. In a certain aspect, the hairpin on the identifier oligonucleotide. This embodiment may be suitable if codons only equivalent mismatch between the target oligonucleotide and a linear oligoprobe. 22 ဓ္က

PCT/DK2004/000117 WO 2004/074429

sunrise primer is closed. At the 3' terminus is a target specific primer sequence. In a preferred embodiment the target sequence is a codon, optionally more codons. The primers) comprising a 5' fluorophore and a quencher, e.g. DABCYL. The labels are sunrise primer's sequence is intended to be duplicated by the nascent complemenexcept that the label becomes irreversible incorporated in to the PCR product. The The Sunrise and Scorpion methods are similar in concept to the hairpin oligoprobe. tary stand and, in this way, the stem is destabilised, the two fluorophores are held Sunrise method involves a primer (commercially available as Ampliffuor TM halrpin separated by complementary stretches of sequence that create a stem when the

വ

- but derivate in having a molety that blocks duplication on the signalling portion of the apart, usually between 15 and 25 nucleotides, and the fluorophore is free to emit its excitation energy for monitoring. The Scorpion primer resembles the sunrise primer, the difference in structure, the function of the scorpion primers differs slightly in that codon on the identifier oligonucleotide. The hybridisation forces the labels apart disthe 5' region of the oligonucleotide is designed to hybridise to a complementary region within the amplicons. In a certain embodiment the complementary region is a scorpion primer. The blocking moiety is typically hexethylene glycol. In addition to rupting the hairpin and permitting emission in the same way as the halrpin probes. 9 5
- After the selection has been performed the codon profile is indicative of the chemical entities that have been used in the synthesis of encoded molecules having a certain sufficient effective it may be possible directly to deduce a part or the entire structure of encoded molecules with the desired property. Alternatively, it may be possible to property, such as an affinity towards a target. In the event the selection has been 8
 - relationship (SAR). If the selection process has not narrowed the size of the library to a manageable number, the formation of a second-generation library is useful. In been involved in the synthesis of encoded molecules that have been successful in deduce a structural unit appearing more frequently among the encoded molecules same time increasing the concentration of complexes with the requested property, e.g. the ability to bind to a target. The second-generation library may then be subjected to more stringent selection conditions to allow only the encoded molecules the formation of the second-generation library chemical entities, which have not the selection may be omitted, thus limiting the size of the new library and at the after the selection, which gives important information to the structure-activity-ဓ္က 22
- with a higher affinity to bind to the target. The second-generation library may also be ജ

The use in a second-generation library of chemical entities, which have proved to be generated using the chemical entities coded for in addition to certain chemical entiindication of certain successful chemical entities may be obtained from the SAR. ties suspected of increasing the performance of the final encoded molecule. The

interesting for further investigation in a preceding library, may thus entail a shuffling with new chemical entities that may focus the second-generation library in a certain ß

ment is associated with a chemical entity precursor capable of being transferred to a recipient reactive group. The recipient reactive group may be a part of a chemical An Example of implicit identification of codons includes that the nucleic acid frag-2

scaffold and the chemical entity precursor may add a structural unit to said scaffold. It is preferred that the nucleic acid fragment codes for the chemical entity. In some

chemical entities are present the anticodon is preferably unique, i.e. a unique correcomprises an anticodon, which identifies the chemical entity. When a plurality of aspects of the present invention each member of the nucleic acid fragment pool spondence between the chemical entities and the associated anticodons exists. 5

The identifier nucleic acid sequence comprises codons, which may be able to pair 2

anticodons is preferably specific, i.e. the one or more codons of the identifier nucleic ment containing more than one anticodon can encode for scaffold molecules where acid sequence are only recognized by particular anticodons. The nucleic acid fragwith one or more anticodons of the pool of nucleic acid fragments. The pairing between one or more codons of an identifier nucleic acid sequence and one or more

each anticodon encodes for specific chemical entities of that scaffold molecule. The specific pairing makes it possible implicitly to decode the codon of an identifier nucleic acid sequence. In the method according to the invention, non-specific pairing between codons and anticodons can be cleaved with an enzyme or chemically 32

ase I, CEL I, nuclease S1, or variants thereof. The cleavage is preferable used when matches. Notably, the enzyme is selected from T4 endonuclease VII, T4 endonuclemore than one codon and anticodon is involved in pairing between the identifier nutreated to break the double stranded nucleotides. The non-pairing region can be cleaved using enzymes that cleaves specifically nucleotide sequences with miscleic acid sequence and the nucleic acid fragment. ဓ

PCT/DK2004/000117 WO 2004/074429

quence as well as anticodons which are not complemented by codons on any identi-The pool of nucleic acid fragments associated with a chemical entity may comprise fier nucleic acid sequence. In other words, the amount of genetic information conanticodons complemented by codons of one or more identifler nucleic acid se-

tained in the anticodons of the pool is larger than the amount of genetic information complemented by the codons. S

The contacting of the one or more identifier nucleic acid sequences with the pool of nucleic acid fragments are usually conducted at conditions, which allow for hybridi-

- he identifier nucleic acid sequences, the identifier nucleic acid sequences are usubeads and column material, e.g. beads and column material associated with a secsation, i.e. conditions at which cognate nucleic acid sequences can anneal to each other. To facilitate the recovery of nucleic acid fragments, which have annealed to ally immobilized on a solid support. Examples of suitable solid supports include 9
- support is associated with streptavidin and the identifier nucleic acid sequences are ond part of the affinity pair to bind identifier nucleic acid sequences attached to the first part of the molecular affinity pair. In certain aspects of the invention the solid 5
- ragments in the pool which are sufficient complementary to a particular part of an When the identifier nucleic an acid sequences are immobilized on a solid support dentifier nucleic acid sequence for a binding to occur. Fragments not finding any the pool of nucleic acid fragments is typically present in a mobile phase, i.e. dissolved in a liquid. The identifier nucleic acids will hybridise to these nucleic acid 2
- fragments not having a cognate codon will be maintained in the mobile phase. When cleic acid sequences are segregated into codons and the fragments comprises anticodons and anticodons are present in the method of the present invention, specific complementing sequence will remain in the solution. In the event, the identifier nucodons, the anticodons which are able to anneal to a codons will be caught while 22
 - hybridisation implies that the tendency of an anticodon to cross-hybridise to another codon will be impede or avoided. To avoid cross-hybridisation, codons may be designed such that each codon is distinguished from all other codons be one, two or more mismatching nucleotides. ജ

conditions which separate the two strands. If the parent nucleic acid sequences are The mobile phase is subsequently separated from the solid phase e.g. by washing, immobilized on beads, the separation of the fragments can be effected using denaand the enriched pool of fragments is recovered. The recovery of the nucleic acid fragments are usually done by subjecting the hybrid to denaturing conditions, i.e. turing conditions and centrifugation/spinning.

ည

generation of the next generation library. In another embodiment, additional building quence which codes for this molecule. In one embodiment of the invention, building blocks are added having modified transferable chemical entities in order to improve blocks comprising a particular transferable chemical entity associated with an anti-The enriched pool of nucleic acid fragments associated with a chemical entity may codon corresponding to the anticodons of the detected fragments are used in the be used directly to prepare a next generation library of complexes, in which each member of the library comprises an encoded molecule and the nucleic acid seon a certain property of the encoded molecule.

9

5

formed by a) mixing under hybridisation conditions, nascent bifunctional complexes bifunctional complexes through a reaction involving a reactive group of the nascent bifunctional complex, in conjunction with a transfer of the genetic information of the entities, with the recovered nucleic acid fragments, said fragments comprising an oligonucleotide sufficient complementary to at least a part of the identifier nucleic disclosed above. According to a particular method, the next generation library is anticodon identifying the chemical entity, to form hybridisation products; and b) identifier nucleic acid sequence comprising codon(s) identifying said chemical comprising a chemical entity or a reaction product of chemical entities, and an acid sequence to allow for hybridisation, a transferable chemical entity and an The complexes may be prepared by various known methods starting from the transferring the chemical entities of the nucleic acid fragments to the nascent nucleic acid fragment comprising the anticodon and the chemical entity, as 8

22

ဓ္က

recovering the complexes. If further chemical entities are intended to participate in Preferably, the above method for preparing the next generation library comprises the further step of c) separating the components of the hybridisation product and

32

33

PCT/DK2004/000117 WO 2004/074429

the formation of the encoded molecule of the nascent complex, steps a) through c) are repeated as appropriate using the recovered complexes in step c) as the nascent bifunctional complexes in step a) of the next round.

- The genetic information of the anticodon may be transferred to the nascent complex the anticodon is transferred by enzymatically extending the oligonucleotide identifier by a variety of methods. According to a first embodiment the genetic information of codon is transferred to the nascent complexes by hybridisation to a cognate codon chemical entity. A second embodiment implies that genetic information of the antiregion to obtain a codon attached to the bifunctional complex having received the 9
- of the nascent complex.
- affinity oligonucleotide sufficient complementary to an identifier region of the nascent codon remains single stranded. Subsequently, the chemical entity is transferred to gonucleotide of the building block to form the hybridisation product, while the antithe recipient reactive group of the complex to form the encoded molecule prior to, oligonucleotide identifier region of the nascent complex anneals to the affinity oilcomplex, said oligonucleotide being distinct from the anticodon. Accordingly, the According to the first embodiment, the enriched pool of fragments comprises an 5
 - tion product using the anticodon as identifier. Specific examples of suitable enzymes embodiment is the subject PCT/DK03/00739, the content thereof being incorporated simultaneously with, or subsequent to the enzymatically extension of the hybridisaare polymerases and ligases, which requires dNTPs and oligonucleotides, respectively as substrates. The method for forming the complexes according to this first herein by reference. ಜ 22

According to the second embodiment, the anticodon form part of the affinity oligonucleotide, i.e. the anticodon is a part of or the entire affinity oligonucleotide. Initially, a plurality of identifiers comprising different codons and/or different order of codons is provided. The identifiers are associated with a recipient reactive group, i.e. the reac-Notably, a codon of the identifier may be used for the attachment of a building block ferable chemical entity. The mixture of identifiers and building biocks are maintained enriched pool of building blocks, i.e. nucleic acid fragments associated with a transive group may be covalently attached to the identifier or attached by hybridisation. harbouring the reactive group. The identifiers are subsequently contacted with the

ဓ

ject of various patent applications, including WO 02/103008, WO 02/074929, Danish at hybridisation conditions to anneal the anticodon of the building blocks to the cogmethod for forming the complexes according to the second embodiment is the subpatent application No. PA 2002 01347, and US provisional patent application No. chemical entity is transferred to the recipient reactive group of the identifier. The 60/409,968. The content of these patent applications are incorporated herein by nate codon of the identifier. After or simultaneously with the annealing step, the reference in their entirety.

2

- the library of complexes is subjected to a condition partitioning complexes displaying ing procedure a desired number of times using still more stringent conditions, until a plained above. Thus, using the present method, it is possible to repeat the partitionsingle or a few encoded molecules are identified which display the desired property a predetermined property from the remainder of the next generation library, as ex-The new generation of library complexes may be used in a partition step, in which to a high extent. When the partitioning is based on an affinity assay, the library of next and at the same time the high affinity binders are increased in concentration. encoded molecules are increasingly narrowed in size from one generation to the 5 5
- between the specific binders compared to the background. Still, there will be a large selection process. An efficient and specific selection will generate a large difference The outcome of a codon analysis will be dependent of the enrichment factor in the amount of molecules in the background that will reduce the possibility to obtain measurable differences between the binders and the background in the codon ឧ
- few) positions are important in the selection process. Therefore, the sum of all molein the other position) will be many due to the diversity obtained when only one (or a analysis procedure. If the enrichment factor (or too large library) is not good enough mal" binders (a certain important chemical entity in one position and less important sum of all molecules with a non-binding chemical entity, which will make the codon codon analysis will probably not be detectable. However, there will be a continuing of binders that use a certain chemical entity in a certain position. These "non opticules with a preferable chemical entity in a certain position will be larger than the to distinguish a specific binder among the background binders, the signal in the 22 ဓ

analysis easier

સ

PCT/DK2004/000117

are produced and pre-clinical candidates are picked. The extensive data obtained in used both to design new libraries and in the final process where the lead structures This invention may involve an extensive analysis of all the chemical entities in a library and how they are involved in the binding to targets. This information can be

the codon analysis can for instance be used for selecting candidates with the appropriate specificity. This can be done if selection has been performed on a family of proteins where one of the members is the target.

The invention enables pharmacophore identification and transformation into small

- dicinal chemistry and cheminformatics and guided by matching the pharmacophore derived from massive structure activity relationship (SAR) data information from the codon analysis. A "pharmacophore" is a description of the structural criteria a moletide/petidomimetic lead to small molecule conversion process is supported by memolecule drugs. In cases where peptide-like libraries is used, the pep-우
- cule must fulfil in order that it is active against a specified biological receptor. These sometimes include the steric boundaries, within which the molecule must fit. There criteria are usually the 3D spatial relationships of a set of chemical features, and is a set of software methods, which automatically infers such pharmacophores, given a SAR, in the absence of direct macromolecular structural data. 5

The extensive SAR information obtained using the codon analyses described in this ample pharmacophore models and the plausible interactions between the potential invention can be combined with molecular modeling technologies to refine for exbinders and a target.

8

The codon analysis measures the abundance of chemical entities after a selection in The codon analysis is also a valuable experimental tool for SAR on weak binders. all binding molecules. Thus, even week binders, which there might be many of, is detected even though the detected codon is selected in many different combina-

8

tions. The selection procedure can also be tuned to enrich predominately for weak binders, which will simplify the codon analysis data. ဓ္က

formation by hand with an automated process using suitable algorithm and software programs. The codon analysis (e.g. array or QPCR measurements) can be directly This invention is also suitable for replacing the laborious task of extracting SAR in-

સ

۲.

feed into a data handling software program that use both the codon abundances and structural data to generate SAR information and potential pharmacophore models.

The SAR information and potential pharmacophore models obtained from the codon analysis can be used to design focused libraries in an array format allowing massive and parallel testing. Thus, the selection procedure and codon analysis can be seen as a diversity reduction step to allow a complete test of potential binders in an array format.

S

9

Various methods for identifying the codons of the identifiers of step iii) are disclosed herein. When a pool of partitioned identifier nucleic acid sequences is subjected to the identification step it is normally not practically to decode a sufficient number of sequences comprising the entire "genome" of an encoded molecule to ensure that all interesting encoded molecules have been revealed. Therefore, a modified sequencing technique preferably identifies the codons in each position occurring with the highest frequency. The next generation library is then build using in each position the chemical entities occurring with the highest frequency.

5

2

In a certain embodiment of the invention, the codon identification step uses the entire population of identifier nucleic acid sequences in the analysis and informs the experimenter of the relative abundance of each codon in a certain position. The codon information may be obtained using microarray, QPCR, or any equivalent method for revealing the identity of codons. In contrary, sequencing a subset of identifier nucleic acid sequences only provides the experimenter with a limited insight as to the population of codons and the corresponding encoded molecules.

22

Detailed Description of the Invention

Complex

30 The complex comprises an encoded molecule and an identifier oligonucleotide. The identifier comprises codons that identify the encoded molecule. Preferably, the identifier oligonucleotide identifies the encoded molecule uniquely, i.e. in a library of complexes a particular identifier is capable of distinguishing the molecule it is attached to from the rest of the molecules.

WO 2004/074429

PCT/DK2004/000117

23

The encoded molecule and the identifier may be attached directly to each other or through a bridging moiety. In one aspect of the invention, the bridging moiety is a selectively cleavable linkage.

- 5 The identifier oligonucleotide may comprise two or more codons. In a preferred aspect the identifier oligonucleotide comprises three or more codons. The sequence of each codon can be decoded utilizing the present method to identify reactants used in the formation of the encoded molecule. When the identifier comprises more than one codon, each member of a pool of chemical entities can be identified and the
- 10 order of codons is informative of the synthesis step each member has been incorporated in.

In a certain embodiment, the same codon is used to code for several different chemical entities. In a subsequent identification step, the structure of the encoded

- molecule can be deduced taking advantage of the knowledge of different attachment chemistries, steric hindrance, deprotection of orthogonal protection groups, etc. In another embodiment, the same codon is used for a group of chemical entities having a common property, such as a lipophilic nature, a certain attachment chemistry etc. In a preferred embodiment, however, the codon is unique i.e. a similar combina-
- 10 tion of nucleotides does not appear on the identifier oligonucleotide coding for another chemical entity. In a practical approach, for a specific chemical entity, only a single combination of nucleotides is used. In some aspects of the invention, it may be advantageous to use several codons for the same chemical entity, much in the same way as Nature uses up to six different codons for a single amino acid. The two or more codons identifying the same chemical entity may carry further Information
 - 25 or more codons identifying the same chemical entity may carry further Informati related to different reaction conditions.
- The sequence of the nucleotides in each codon may have any suitable length. The codon may be a single nucleotide or a plurality of nucleotides. In some aspects of the invention, it is preferred that each codon independently comprises four or more nucleotides, more preferred 4 to 30 nucleotides. In some aspects of the invention the lengths of the codons vary.

A certain codon may be distinguished from any other codon in the library by only a 35 single nucleotide. However, to facilitate a subsequent decoding process and to in-

crease the ability of the primer to discriminate between codons it is in general desired to have two or more mismatches between a particular codon and any other codon appearing on identifier oligonucleotide. As an example, if a codon length of 5 nucleotides is selected, more than 100 nucleotide combinations exist in which two or more mismatches appear. For a certain number of nucleotides in the codon, it is generally desired to optimize the number of mismatches between a particular codon relative to any other codon appearing in the library.

S

The identifier oligonucleotide will in general have at least two codons arranged in sequence, i.e. next to each other. Two neighbouring codons may be separated by a framing sequence. Depending on the encoded molecule formed, the identifier may comprise further codons, such as 3, 4, 5, or more codons. Each of the further codons may be separated by a suitable framing sequence. Preferably, all or at least

15 by a framing sequence. The framing sequence may have any suitable number of nucleotides, e.g. 1 to 20. Alternatively, codons on the identifier may be designed with overlapping sequences.

a majority of the codons of the identifier are separated from a neighbouring codon

The framing sequence, if present, may serve various purposes. In one setup of the 20 invention, the framing sequence identifies the position of the codon. Usually, the framing sequence either upstream or downstream of a codon comprises information

ឧ

which positions the chemical entity and the reaction conditions in the synthesis history of the encoded molecule. The framing sequence may also or in addition provide for a region of high affinity. The high affinity region may ensure that a hybridisation 25 event with an anti-codon will occur in frame. Moreover, the framing sequence may adjust the annealing temperature to a desired level.

A framing sequence with high affinity can be provided by incorporation of one or more nucleobases forming three hydrogen bonds to a cognate nucleobase. Examples of nucleobases having this property are guanine and cytosine. Alternatively, or in addition, the framing sequence may be subjected to backbone modification. Several back bone modifications provides for higher affinity, such as 2-O-methyl substitution of the ribose moiety, peptide nucleic acids (PNA), and 2-4' O-methylene cyclisation of the ribose moiety, also referred to as LNA (Locked Nucleic Acid).

ဓ္က

35

WO 2004/074429 PCT/DK2004/000117

25

The sequence comprising a codon and an adjacent framing sequence has in a certain aspect of the invention a total length of 11 nucleotides or more, preferably 15 nucleotides or more. A primer may be designed to complementary to the codon sequence as well as the framing sequence. The presence of an extension reaction under conditions allowing for such reaction to occur is indicative of the presence of the chemical entity encoded in the codon as well as the position said chemical entity has in the entire synthesis history of the encoded molecule.

S

The identifier may comprise flanking regions around the coding section. The flanking regions can also serve as priming sites for amplification reactions, such as PCR or as binding region for oligonucleotide probe. The identifier may in certain embodiments comprise an affinity region having the property of being able to hybridise to a building block.

It is to be understood that when the term identifier oligonucleotide is used in the present description and claims, the identifier oligonucleotide may be in the sense or the anti-sense format, i.e. the identifier can be a sequence of codons which actually codes for the encoded molecule or can be a sequence complementary thereto.

Moreover, the identifier may be single-stranded or double-stranded, as appropriate.

The encoded molecule part of the complex is generally of a structure expected of having an effect according to the property sought for, e.g. the encoded molecule has a binding affinity towards a target. When the target is of pharmaceutical importance, the encoded molecule is generally a possible drug candidate. The complex may be formed by tagging a library of different possible drug candidates with a tag, e.g. a

formed by tagging a library of different possible drug candidates with a tag, e.g. a nucleic acid tag identifying each possible drug candidate. In another embodiment of the invention, the molecule formed by a variety of reactants which have reacted with each other and/or a scaffold molecule. Optionally, this reaction product may be postmodified to obtain the final molecule displayed on the complex. The post-

30 modification may involve the cleavage of one or more chemical bonds attaching the encoded molecule to the identifier in order more efficiently to display the encoded molecule.

The formation of an encoded molecule generally starts by a scaffold, i.e. a chemical 35 unit having one or more reactive groups capable of forming a connection to another

reactive group positioned on a chemical entity, thereby generating an addition to the chemical entity. Further chemical entities may be involved in the formation of the original scaffold. A second chemical entity may react with a reactive group also appearing on the original scaffold or a reactive group incorporated by the first

- example, if the nascent encoded molecule and the chemical entity both comprise an amine group a connection between these can be mediated by a dicarboxylic acid. A and the nascent encoded molecule may be mediated by a bridging molecule. As an synthetic molecule is in general produced in vitro and may be a naturally occurring or an artificial substance. Usually, a synthetic molecule is not produced using the final reaction product. The formation of a connection between the chemical entity naturally translation system in an in vitro process. Ŋ 9
- in the formation of the reaction product leading the final encoded molecule. Besides the encoded molecule may be attached to a building block prior to the participation The chemical entities that are precursors for structural additions or eliminations of the chemical entity, the building block generally comprises an anti-codon. In some embodiments the building blocks also comprise an affinity region providing for affinity towards the nascent complex.

5

- enzymes having similar activity. In other aspects of the invention, enzymes are used conjunction with the transfer of a chemical entity. The transfer of genetic information reacted without enzymatic interaction in some aspects of the invention. Notably, the Thus, the chemical entities are suitably mediated to the nascent encoded molecule by a building block, which further comprises an anticodon. The anti-codon serves and chemical entity may occur in any order. The chemical entities are preferably reaction of the chemical entities is preferably not mediated by ribosomes or the function of transferring the genetic information of the building block in ಜ 22
- and attach this oligonucleotide to the complex, e.g. by ligation. A still further method codon is transferred by specific hybridisation to a codon on a nucleic acid identifier. nascent complex is to anneal an oligonucleotide complementary to the anti-codon According to certain aspects of the invention the genetic information of the anti-Another method for transferring the genetic information of the anti-codon to the ဓ္က

to mediate the reaction between a chemical entity and a nascent encoded molecule.

PCT/DK2004/000117 WO 2004/074429

complex by an extension reaction using a polymerase and a mixture of dNTPs. involves transferring the genetic information of the anti-codon to the nascent

nascent encoded molecule. Therefore, when it in the present application with claims cursor for the structural entity eventually incorporated into the encoded molecule. In other cases the chemical entity provides for the eliminations of chemical units of the be understood that not necessarily all the atoms of the original chemical entity is to is stated that a chemical entity is transferred to a nascent encoded molecule it is to The chemical entity of the building block may in most cases be regarded as a pre-

be found in the eventually formed encoded molecule. Also, as a consequence of the subsequent step can participate in the formation of a connection between a nascent changed when it appears on the nascent encoded molecule. Especially, the cleavage resulting in the release of the entity may generate a reactive group which in a reactions involved in the connection, the structure of the chemical entity can be complex and a chemical entity. 9 5

pable of participating in a reaction which results in a connection between the chemi-The chemical entity of the building block comprises at least one reactive group cacal entity of the building block and another chemical entity or a scaffold associated

- blocks having two reactive groups are suitable for the formation of the body part of a chemical entity is suitably one to ten. A building block featuring only one reactive polymer or scaffolds capable of being reacted further. One, two or more reactive group is used i.a. in the end positions of polymers or scaffolds, whereas building with the nascent complex. The number of reactive groups which appear on the ಜ
- groups intended for the formation of connections, are typically present on scaffolds. Non-limiting examples of scaffolds are oplates, steroids, benzodiazepines, hydancines, and peptidylphosphonates. 22

nection to a reactive group of the nascent complex or the reactive group of the buildng block may be capable of forming a connection to a reactive group of the nascent of a reactive group are necessarily maintained in the connection formed. Rather, the reactive groups are to be regarded as precursors for the structure of the connection. complex through a bridging fill-in group. It is to be understood that not all the atoms The reactive group of the chemical entity may be capable of forming a direct con-ဓ

can be performed in any appropriate way. In an aspect of the invention the cleavage involves usage of a chemical reagent or an enzyme. The cleavage results in a trans-The subsequent cleavage step to release the chemical entity from the building block cases it may be advantageous to introduce new chemical groups as a consequence subsequent cycle, either directly or after having been activated. In other cases it is of linker cleavage. The new chemical groups may be used for further reaction in a fer of the chemical entity to the nascent encoded molecule or in a transfer of the nascent encoded molecule to the chemical entity of the building block. In some desirable that no trace of the linker remains after the cleavage.

2

5

no trace of the linker remains or such that a new chemical group for further reaction In another aspect, the connection and the cleavage is conducted as a simultaneous reaction, i.e. either the chemical entity of the building block or the nascent encoded appropriate to design the system such that the connection and the cleavage occur The simultaneous connection and cleavage can also be designed such that either molecule is a leaving group of the reaction. In some aspects of the invention, it is simultaneously because this will reduce the number of steps and the complexity. is introduced, as described above.

5

spacer can be at any entity available for attachment, e.g. the chemical entity can be chemical entity by a spacer moiety. The spacer may be designed such that the conpoint is usually at the 7 position of the purines or 7-deaza-purins or at the 5 position chemical entity at the phosphor of the internucleoside linkage or at the nucleobase. When the nucleobase is used for attachment of the chemical entity, the attachment The attachment of the chemical entity to the building block, optionally via a suitable attached to a nucleobase or the backbone. In general, it is preferred to attach the formational spaced sampled by the reactive group is optimized for a reaction with of pyrimidines. The nucleotide may be distanced from the reactive group of the the reactive group of the nascent encoded molecule. 8 23

The encoded molecules may have any chemical structure. In a preferred aspect, the encoded molecule can be any compound that may be synthesized in a componentby-component fashion. In some aspects the synthetic molecule is a linear or branched polymer. In another aspect the synthetic molecule is a scaffolded motecule. The term "encoded motecule" also comprises naturally occurring

ജ

33

WO 2004/074429

PCT/DK2004/000117

molecules like a-polypeptides etc, however produced in vitro usually in the absence of enzymes, like ribosomes. In certain aspects, the synthetic molecule of the library is a non-α-polypeptide.

- The encoded molecule may have any molecular weight. However, in order to be molecular weight less than 2000 Daltons, preferably less than 1000 Dalton, and orally available, it is in this case preferred that the synthetic molecule has a more preferred less than 500 Daltons. Ŋ
- by the size of the vessel in which the library is comprised. It may be calculated that a more different complexes. The upper limit for the size of the library is only restricted The size of the library may vary considerably pending on the expected result of the library comprises 1,000 or more different complexes, more preferred 1,000,000 or different complexes are desired to obtain a higher diversity. In some aspects, the inventive method. In some aspects, it may be sufficient that the library comprises two, three, or four different complexes. However, in most events, more than two vial may comprise up to 1014 different complexes. 5 5

Methods for forming libraries of complexes

- The encoded molecules associated with an identifier oligonucleotide having two or more codons that code for reactants that have reacted in the formation of the mole-WO 93/20242, WO 93/06121, WO 00/23458, WO 02/074929, and WO 02/103008, the content of which being incorporated herein by reference as well as methods of 2003. Any of these methods may be used, and the entire content of the patent apcule part of the complex may be formed by a variety of processes. Generally, the molecule. Suitable examples of processes include prior art methods disclosed in the present applicant not yet public available, including the methods disclosed in PCT/DK03/00739 filed 30 October 2003, and DK PA 2003 00430 filed 20 March preferred methods can be used for the formation of virtually any kind of encode ន ß
- incorporate unnatural nucleotides as building blocks. Initially, a plurality of Identifier disclosed in more detail in WO 02/103008 is based on the use of a polymerase to Below five presently preferred embodiments are described. A first embodiment

plications are included herein by reference.

ဓ

oligonucleotides is provided. Subsequently primers are annealed to each of the

PCT/DK2004/000117

30

identifiers and a polymerase is extending the primer using nucleotide derivatives, which have appended chemical entities. Subsequent to or simultaneously with the incorporation of the nucleotide derivatives, the chemical entities are reacted to form a reaction product. The encoded molecule may be post-modified by cleaving some of the linking moieties to better present the encoded molecule.

S

Several possible reaction approaches for the chemical entities are apparent. First, the nucleotide derivatives can be incorporated and the chemical entities subsequently polymerised. In the event the chemical entities each carry two reactive

groups, the chemical entities can be attached to adjacent chemical entities by a reaction of these reactive groups. Exemplary of the reactive groups are amine and carboxylic acid, which upon reaction form an amide bond. Adjacent chemical entities can also be linked together using a linking or bridging moiety. Exemplary of this approach is the linking of two chemical entities each bearing an amine group by a bi-carboxylic acid. Yet another approach is the use of a reactive group between a chemical entity and the nucleotide building block, such as an ester or a hoister group. An adjacent building block having a reactive group such as an amine may cleave the interspaced reactive group to obtain a linkage to the chemical entity, e.g.

A second embodiment for obtainment of complexes disclosed in WO 02/103008 pertains to the use of hybridisation of building blocks to an identifier and reaction of chemical entities attached to the building blocks in order to obtain a reaction product. This approach comprises that identifiers are contacted with a plurality of building blocks, unbeging and a purification blocks.

by an amide linking group.

೪

- 25 building blocks, wherein each building block comprises an anti-codon and a chemical entity. The anti-codons are designed such that they recognise a sequence, i.e. a codon, on the identifier. Subsequent to the annealing of the anti-codon and the codon to each other a reaction of the chemical entity is effected.
- 30 The identifier may be associated with a scaffold. Building blocks bringing chemical entities in may be added sequentially or simultaneously and a reaction of the reactive group of the chemical entity may be effected at any time after the annealing of the building blocks to the identifier.

WO 2004/074429

PCT/DK2004/000117

સ

A third embodiment for the generation of a complex includes chemical or enzymatic ligation of building blocks when these are lined up on a identifier. Initially, identifiers are provided, each having one or more codons. The identifiers are contacted with building blocks comprising anti-codons linked to chemical entities. The two or more

5 anti-codons annealed on an identifier are subsequently ligated to each other and a reaction of the chemical entities is effected to obtain a reaction product. The method is disclosed in more detail in DK PA 2003 00430 filed 20 March 2003.

. A fourth embodiment makes use of the extension by a polymerase of an affinity

- 10 sequence of the nascent complex to transfer the anti-codon of a building block to the nascent complex. The method implies that a nascent complex comprising a scaffold and an affinity region is annealed to a building block comprising a region complementary to the affinity section. Subsequently, the anti-codon region of the building block is transferred to the nascent complex by a polymerase. The transfer of the chemical entity may be transferred prior to, simultaneously with or subsequent to the transfer of the anti-codon. This method is disclosed in detail in
 - to the transfer of the anth-codon. This method is disclosed in detail in PCT/DK03/00739.

 A fifths embodiment also disclosed in PCT/DK03/00739 comprises reaction of a reactant with a reaction site on nascent bifunctional molecule and addition of a nucleic acid tag to the nascent bifunctional molecule using an enzyme, such as a ligase. When a library is formed, usually an array of compartments is used for reaction of reactants and enzymatic addition of tags with the nascent bifunctional

nucleic acid tag to the nascent bifunctional molecule using an enzyme, such as a ligase. When a library is formed, usually an array of compartments is used for reaction of reactants and enzymatic addition of tags with the nascent bifunctional molecule.

Thus, the codons are either pre-made into one or more identifiers before the encoded molecules are generated or the codons are transferred simultaneously with

22

30 After or simultaneously with the formation of the reaction product some of the linkers to the identifier may be cleaved, however, usually at least one linker is maintained to provide for the complex.

the formation of the encoded molecules.

32

The nucleotides used in the present invention may be linked together in a sequence of nucleotides, i.e. an oligonucleotide. Each nucleotide monomer is normally composed of two parts, namely a nucleobase moiety, and a backbone. The backbone may in some cases be subdivided into a sugar moiety and an internucleoside linker.

The nucleobase moiety may be selected among naturally occurring nucleobases as well as non-naturally occurring nucleobases. Thus, "nucleobase" includes not only

- the known purine and pyrimidine hetero-cycles, but also heterocyclic analogues and tautomers thereof. Illustrative examples of nucleobases are adenine, guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo-N⁶-methyladenine, 7-deazaxanthine, 7-deazaguanine, N⁴, N⁴-ethanocytosin, N⁶, N⁶-ethano-2, 6-diaminopurine, 5-methylcytosine, 5-(C³-C⁶)-alkynylcytosine, 5-fluorouracil,
- pseudoisocytosine, 2-hydroxy-5-methyl-4-triazolopyridine, isocytosine, isoguanine, inosine and the "non-naturally occurring" nucleobases described in Benner et al.,
 U.S. Pat No. 5,432,272. The term "nucleobase" is intended to cover these examples as well as analogues and tautomers thereof. Especially interesting nucleobases are adenine, guanine, thymine, cytosine, 5-methylcytosine, and uracil, which are considered as the naturally occurring nucleobases in relation to therapeutic and diagnostic application in humans.

Examples of suitable specific pairs of nucleobases are shown below:

WO 2004/074429

PCT/DK2004/000117

al Base Peirs

ဗ္ဗ

Synthatic Rase Do

ynthetic purine bases pairring with natural pyrimidines

Suitable examples of backbone units are shown below (B denotes a nucleobase):

The sugar moiety of the backbone is suitably a pentose but may be the appropriate 5 part of a PNA or a six-member ring. Suitable examples of possible pentoses include ribose, 2'-deoxyribose, 2'-O-methyl-ribose, 2'-flour-ribose, and 2'-4'-O-methylene-ribose (LNA). Suitably the nucleobase is attached to the 1' position of the pentose entity.

10 An internucleoside linker connects the 3' end of preceding monomer to a 5' end of a succeeding monomer when the sugar moiety of the backbone is a pentose, like ribose or 2-deoxyribose. The internucleoside linkage may be the natural occurring phospodiester linkage or a derivative thereof. Examples of such derivatives include phosphorothicate, methylphosphonate, phosphoramidate, phosphotriester, and phosphodithloate. Furthermore, the internucleoside linker can be any of a number of non-phosphorous-containing linkers known in the art.

Preferred nucleic acid monomers include naturally occurring nucleosides forming part of the DNA as well as the RNA family connected through phosphodiester linkages. The members of the DNA family include deoxyadenosine, deoxyguanosine,

- ages. The members of the DNA family include deoxyadenosine, deoxyguanosine, deoxythymidine, and deoxycytidine. The members of the RNA family include adenosine, unidine, cytidine, and inosine. Inosine is a non-specific pairing nucleoside and may be used as universal base because inosine can pair nearly isoenergetically with A, T, and C. Other compounds having the same ability of non-specifically base-pairing with natural nucleobases have been formed. Suitable com-
 - 10 pounds which may be utilized in the present invention includes among others the compounds depicted below

PCT/DK2004/000117

Examples of Universal Bases:

3-Nitropyrrole 5-Nitroindole Inosine

N8-8aza-7deazaadenine

ξ

SMICS MICS

PIM

ķ

큠

Nebularine

37

the participation in the formation of the reaction product leading to the final encoded eliminations of the encoded molecule may be attached to a building block prior to molecule. Besides the chemical entity, the building block generally comprises an The chemical entitles or reactants that are precursors for structural additions or ß

anti-codon.

tive group is used i.a. in the end positions of polymers or scaffolds, whereas building tive groups of the chemical entity. The number of reactive groups, which appear on chemical entity of the building block and another chemical entity or a scaffold associated with the nascent complex. The connection is facilitated by one or more reache chemical entity, is suitably one to ten. A building block featuring only one reac-The chemical entity of the building block comprises at least one reactive group capable of participating in a reaction, which results in a connection between the 9

blocks having two reactive groups are suitable for the formation of the body part of a The reactive group of the building block may be capable of forming a direct connection to a reactive group of the nascent complex or the reactive group of the building groups intended for the formation of connections are typically present on scaffolds. polymer or scaffolds capable of being reacted further. One, two or more reactive 8

of a reactive group are necessarily maintained in the connection formed. Rather, the reactive groups are to be regarded as precursors for the structure of the connection. complex through a bridging fill-in group. It is to be understood that not all the atoms block may be capable of forming a connection to a reactive group of the nascent 22

The subsequent cleavage step to release the chemical entity from the building block can be performed in any appropriate way. In an aspect of the Invention the cleavage coded molecule to the chemical entity of the building block. In some cases it may be cycle, either directly or after having been activated. In other cases it is desirable that involves usage of a reagent or an enzyme. The cleavage results in a transfer of the chemical entity to the nascent encoded molecule or in a transfer of the nascent enadvantageous to introduce new chemical groups as a consequence of linker cleavage. The new chemical groups may be used for further reaction in a subsequent no trace of the linker remains after the cleavage. ဓ ઝ

ous reaction, i.e. either the chemical entity of the building block or the nascent encoded molecule is a leaving group of the reaction. In general, it is preferred to de-In another aspect, the connection and the cleavage are conducted as a simultane

connection and cleavage can also be designed such that either no trace of the linker because this will reduce the number of steps and the complexity. The simultaneous remains or such that a new chemical group for further reaction is introduced, as design the system such that the connection and the cleavage occur simultaneously scribed above. Ω

9

spacer can be at any entity available for attachment, e.g. the chemical entity can be The attachment of the chemical entity to the building block, optionally via a suitable chemical entity at the phosphor of the internucleoside linkage or at the nucleobase. attached to a nucleobase or the backbone. In general, it is preferred to attach the

formational space sampled by the reactive group is optimized for a reaction with the When the nucleobase is used for attachment of the chemical entity, the attachment point is usually at the 7 position of the purines or 7-deaza-purins or at the 5 position chemical entity by a spacer moiety. The spacer may be designed such that the conof pyrimidines. The nucleotide may be distanced from the reactive group of the

5

reactive group of the nascent encoded molecule or reactive site. 8

codon may be adjoined with a fixed sequence, such as a sequence complementing and generally comprises the same number of nucleotides as the codon. The anti-The anticodon complements the codon of the identifier oligonucleotide sequence a framing sequence.

22

Various specific building blocks are envisaged. Building blocks of particular interest are shown below Building blocks transferring a chemical entity to a recipient nucleophilic group to a recipient nucleophilic group, typically an amine group. The bold lower horizontal line illustrates the building block comprising an anti-codon and the vertical line illus-The building block indicated below is capable of transferring a chemical entity (CE) trates a spacer. The 5-membered substituted N-hydroxysuccinimid (NHS) ring ဗ္က

WO 2004/074429

PCT/DK2004/000117

nected to the NHS ring and the chemical entity. The labile bond may be cleaved by serves as an activator, i.e. a labile bond is formed between the oxygen atom cona nucleophilic group, e.g. positioned on a scaffold

When the chemical entity is connected to the activator through a carbonyl group and tor, i.e. a labile bond is formed between the oxygen atom connected to the NHS ring the recipient group is an amine, the bond formed on the scaffold will an amide bond. The 5-membered substituted N-hydroxysuccinimid (NHS) ring serves as an activa-The above building block is the subject of WO03078627A2, the content of which is and the chemical entity. The labile bond may be cleaved by a nucleophilic group, e.g. positioned on a scaffold, to transfer the chemical entity to the scaffold, thus converting the remainder of the fragment into a leaving group of the reaction. 9

Another building block, which may form an amide bond, is

incorporated herein in their entirety by reference.

R may be absent or NO2, CF3, halogen, preferably Cl, Br, or I, and Z may be S or O. This type of building block is disclosed in WO03078626A2. The content of this patent application is incorporated herein in the entirety by reference 2

thereby transferring the chemical entity –(C=O)-CE' to said nucleophilic group. A nucleophilic group can cleave the linkage between Z and the carbonyl group

Building blocks transferring a chemical entity to a recipient reactive group forming a C=C bond 2

aldehylde group thereby forming a double bond between the carbon of the aldehyde A building block as shown below is able to transfer the chemical entity to a recipient and the chemical entity

2

The above building block is disclosed in WO03078445A2, the content of which be-

ing incorporated herein in the entirety by reference. 15

Building blocks transferring a chemical entity to a recipient reactive group forming a C-C bond The below building block is able to transfer the chemical entity to a recipient group

reference.

15

thereby forming a single bond between the receiving moiety, e.g. a scaffold, and the chemical entity. 2

WO 2004/074429

PCT/DK2004/000117

The above building block is disclosed in WO03078445A2, the content of which being incorporated herein in the entirety by reference. Another building block capable of transferring a chemical entity to a receiving reactive group forming a single bond is S

block is disclosed in WO03078446A2, the content of which is incorporated herein by atom, or the receiving group may be an electronegative carbon atom, thereby forming a C-C bond between the chemical entity and the scaffold. The above building atom, thereby forming a single bond between the chemical entity and the hetero The receiving group may be a nucleophile, such as a group comprising a hetero 9

The chemical entity attached to any of the above building blocks may be a selected H or entities selected among the group consisting of a C₁-C₆ alkyl, C_2 -C₆ alkenyl, from a large arsenal of chemical structures. Examples of chemical entities are

heteroaryl, said group being substituted with 0-3 R4, 0-3 R6 and 0-3 R9 or C1-C3 al-C2-C6 alkynyl, C4-C8 alkadienyl, C3-C7 cycloalkyl, C3-C7 cycloheteroalkyl, aryl, and cylene-NR*2, C,-C3 alkylene-NR*C(O)R8, C,-C3 alkylene-NR*C(O)OR8, C,-C2 al-20

kylene-O-NR², C₁-C₂ alkylene-O-NR²C(O)R³, C₁-C₂ alkylene-O-NR⁴C(O)OR⁸ substituted with 0-3 R° where R4 is H or selected independently among the group consisting of C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C, cycloalkyl, C₃-C, cycloheteroalkyl, aryl, heteroaryl, said group being substituted with 0-3 R⁹ and

വ

NHNHR $^{\circ}$, -C(O)R $^{\circ}$, -SnR $^{\circ}$ 3, -B(OR $^{\circ}$)2, -P(O)(OR $^{\circ}$ 3, or the group consisting of C₂-C $_{\circ}$ R5 is selected independently from -N3, -CNO, -C(NOH)NH2, -NHOH, alkenyl, C2-C6 alkynyl, C4-C9 alkadienyl said group being substituted with 0-2 R7, where R⁸ is selected independently from H, C₁-C₈ alkyl, C₃-C₇ cycloalkyl, aryl or C1-Ce alkylene-aryl substituted with O-5 halogen atoms selected from -F, -Cl, -Br, and -I; and

2

R7 is independently selected from -NO2, -COOR*, -CON, -OSiR³, -OR⁶ and -NR².

R⁸ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, aryl or C₁-C₆ alkylene-aryl substituted with 0-3 substituents independently selected from -F, -CI, -NO2, -R3, -OR3, -SIR3 5

-NR*-C(0)OR*, -SR*, -S(0)R*, -S(0)2R*, -COOR*, -C(0)NR*2 and -S(0)2NR*2. R° is =0, -F, -C1, -Br, -I, -CN, -NO2, -OR°, -NR°2, -NR°-C(0)R°,

Cross-link cleavage building blocks 2

ive group into two separate steps, namely a cross-linking step and a cleavage step It may be advantageous to split the transfer of a chemical entity to a recipient reacbecause each step can be optimized. A suitable building block for this two-step process is illustrated below:

22

. WO 2004/074429

PCT/DK2004/000117

4

scaffold, thereby forming a cross-link. Subsequently, a cleavage is performed, usually by adding an aqueous oxidising agent such as ½, Br2, Cl2, H*, or a Lewis acld. Initially, a reactive group appearing on the chemical entity precursor (abbreviated FEP) reacts with a recipient reactive group, e.g. a reactive group appearing on a

The cleavage results in a transfer of the group HZ-FEP- to the reciplent molety, such

In the above formula

Z is O, S, NR⁴

Q is N, CR

9

said group being substituted with 0-3 R⁴, 0-3 R⁵ and 0-3 R⁹ or C₁-C₃ alkylene-NR², C1.6O-alkylene, C1.6S-alkylene, NR1-alkylene, C1.6alkylene-O, C1.6alkylene-S option P is a valence bond, O, S, NR⁴, or a group C₆₋₇arylene, C₁₋₈alkylene, C,-C₃ alkylene-NR⁴C(O)R⁹, C,-C₃ alkylene-NR⁴C(O)OR⁶, C,-C₂ alkylene-O-NR⁴2,

C₁-C₂ alkylene-O-NR*C(O)R^a, C₁-C₂ alkylene-O-NR*C(O)OR^a substituted with 0-3 5

B is a group comprising D-E-F, in which

 $_{
m ealkynylene}$, $_{
m c_{s,7}}$ arylene, or $_{
m c_{s,7}}$ heteroarylene, said group optionally being substl-D is a valence bond or a group C₁₋₆alkylene, C₁₋₆alkenylene, C₁. tuted with 1 to 4 group R11,

2

ealkylene, C1.ealkenylene, C1.ealkynylene, Cs.arylene, or Cs.yheteroarylene, said E is, when present, a valence bond, O, S, NR4, or a group C1. group optionally being substituted with 1 to 4 group R11,

F is, when present, a valence bond, O, S, or NR4

A is a spacing group distancing the chemical structure from the complementing element, which may be a nucleic acid, 2

C₃-C₇ cycloalkyl, C₃-C₇ cycloheteroalkyl, aryl, and heteroaryl, said group being subylene-NR*C(O)R³, C₁-C₃ alkylene-NR*C(O)OR⁶, C₁-C₂ alkylene-O-NR*₂, C₁-C₂ algroup consisting of H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₄-C₆ alkadienyl, R¹, R², and R³ are independent of each other selected among the kylene-O-NR*C(O)R*, C,-C2 alkylene-O-NR*C(O)OR* substituted with 0-3 R*, stituted with 0-3 R⁴, 0-3 R⁵ and 0-3 R⁹ or C₁-C₃ alkylene-NR⁴2, C₁-C₃ al-

ജ

Cz-Ce alkenyl, Cz-Ce alkynyl, C4-Ce alkadienyl, Cs-Cr cycloalkyl, C4-Cr cycloheteroal-FEP is a group selected among the group consisting of H, C₁-C₈ alkyl,

kyl, aryl, and heteroaryl, said group being substituted with 0-3 R4, 0-3 R9 and 0-3 R9

or C₁-C₂ alkylene-NR², C₁-C₃ alkylene-NR²C(O)R³, C₁-C₃ alkylene-NR²C(O)OR³, C₁-C₂ alkylene-O-NR², C₁-C₂ alkylene-O-NR²C(O)R³, C₁-C₂ al-kylene-O-NR²C(O)OR³ substituted with 0-3 R³,

where R⁴ is H or selected independently among the group consisting of C₁-C₆ alkyl, C₂-C₅ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, C₃-C₇ cycloheteroalkyl, aryl, heteroaryl, said group being substituted with 0-3 R² and

'n

R⁵ is selected independently from -N₃, -CNO, -C(NOH)NH₂, -NHOH, -NHNHR⁶, -C(O)R⁶, -SnR⁵, -B(OR⁶)₂, -P(O)(OR⁶)₂ or the group consisting of C₂-C₆ alkynyl, C₄-C₆ alkynyl, C₄-C₆ alkynyl, C₄-C₆ alkadienyl said group being substituted with 0-2 R⁷,

where R° is selected independently from H, C,-C₆ alkyl, C₅.C₇ cycloal-kyl, aryl or C₁-C₆ alkylene-aryl substituted with 0-5 halogen atoms selected from -F, -Cl, -Br, and -I; and R⁷ is independently selected from -NO₂, -COOR°, -COR°, -CN, -OSIR°s, -OR° and -NR°₂.

9

Con s, Con and The s.

R⁸ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₇ alkynyl, C₃-C₇ cycloalkyl, aryl or C₁-C₆
alkylene-aryl substituted with 0-3 substituents independently selected from -F, -Cl, -

5

NO₂, -R³, -OR³, -SiR³, R° is =O, -F, -Ci, -Br, -I, -CN, -NO₂, -OR°, -NR°₂, -NR°-C(O)R°, -NR°-C(O)OR°, -SR°, -S(O)R°, -S(O)R°, -S(O)R°, -C(O)NR°, and -S(O)₈NR°.

20 In a preferred embodiment Z is O or S, P is a valence bond, Q is CH, B is CH₂, and R¹, R², and R³ is H. The bond between the carbonyl group and Z is cleavable with aqueous I₂.

Partitioning conditions

The partition step may be referred to as a selection or a screen, as appropriate, and includes the screening of the library for encoded molecules having predetermined desirable characteristics. Predetermined desirable characteristics can include binding to a target, catalytically changing the target, chemically reacting with a target in a manner which alters/modifies the target or the functional activity of the target, and covalently attaching to the target as in a suicide inhibitor.

The target can be any compound of interest. E.g. the target can be a protein, peptide, carbohydrate, polysaccharide, glycoprotein, hormone, receptor, antigen, antibody, virus, substrate, metabolite, transition state analogue, cofactor, inhibitor, drug, dye, nutrient, growth factor, cell, tissue, etc. without limitation. Particularly preferred

32

WO 2004/074429

45

targets include, but are not limited to, angiotensin converting enzyme, renin, cyclooxygenase, 5-lipoxygenase, IIL- 1 0 converting enzyme, cytokine receptors, PDGF receptor, type II inosine monophosphate dehydrogenase, β -lactamases, integrin, and fungal cytochrome P-450. Targets can include, but are not limited to,

- 5 bradykinin, neutrophil elastase, the HIV proteins, including tat, rev, gag, Int, RT, nucleocapsid etc., VEGF, bFGF, TGFB, KGF, PDGF, thrombin, theophylline, caffeine, substance P, IgE, sPLA2, red blood cells, glioblastomas, fibrin clots, PBMCs, hCG, lectins, selectins, cytokines, ICP4, complement proteins, etc.
- 10 Encoded molecules having predetermined desirable characteristics can be partitioned away from the rest of the library while still attached to the identifier nucleic acid sequence by various methods known to one of ordinary skill in the art. In one embodiment of the invention the desirable products are partitioned away from the entire library without chemical degradation of the attached nucleic acid identifier
- 15 such that the identifiers are amplifiable. The identifiers may then be amplified, either still attached to the desirable encoded molecule or after separation from the desirable encoded molecule.

In a preferred embodiment, the desirable encoded molecule acts on the target with-

- 20 out any interaction between the nucleic acid attached to the desirable encoded molecule and the target. In one embodiment, the bound complex-target aggregate can be partitioned from unbound complexes by a number of methods. The methods include nitrocellulose filter binding, column chromatography, filtration, affinity chromatography, centrifugation, and other well known methods.
- Briefly, the library of complexes is subjected to the partitioning step, which may include contact between the library and a column onto which the target is immobilised. Identifier nucleic acids associated with undesirable encoded molecules, i.e. encoded molecules not bound to the target under the stringency conditions used, will pass

22

30 through the column. Additional undesirable encoded molecules (e.g. encoded molecules which cross-react with other targets) may be removed by counter-selection methods. Desirable complexes are bound to the column and can be eluted by changing the conditions of the column (e.g., salt, pH, surfactant, etc.) or the identi-

PCT/DK2004/000117

46

Additionally, encoded molecules which react with a target can be separated from those products that do not react with the target. In one example, a chemical compound which covalently attaches to the target (such as a suicide inhibitor) can be washed under very stringent conditions. The resulting complex can then be treated with proteinase, DNAse or other suitable reagents to cleave a linker and liberate the nucleic acids which are associated with the desirable chemical compound. The liberated nucleic acids can be amplified.

2

- 10 In another example, the predetermined characteristic of the desirable product is the ability of the product to transfer a chemical group (such as acyl transfer) to the target and thereby inactivate the target. One could have a product library where all of the products have a thioester chemical group. Upon contact with the target, the desirable products will transfer the chemical group to the target concomitantly changing the desirable product from a thioester to a thiol. Therefore, a partitioning method which would identify products that are now thiols (rather than thioesters) will enable the selection of the desirable products and amplification of the nucleic acid associated therewith.
- There are other partitioning and screening processes, which are compatible with this invention that are known to one of ordinary skill in the art. In one embodiment, the products can be fractionated by a number of common methods and then each fraction is then assayed for activity. The fractionization methods can include size, pH, hydrophobicity, etc.

22

Inherent in the present method is the selection of encoded molecules on the basis of a desired function; this can be extended to the selection of molecules with a desired function and specificity. Specificity can be required during the selection process by first extracting identifier nucleic acid sequences of chemical compounds which are capable of interacting with a non-desired "target" (negative selection, or counterselection), followed by positive selection with the desired target. As an example, inhibitors of fungal cytochrome P-450 are known to cross-react to some extent with mammalian cytochrome P-450 (resulting in serious side effects). Highly specific inhibitors of the fungal cytochrome could be selected from a library by first removing those products capable of interacting with the mammalian cytochrome, followed by

റ്റ

ဗ္ဟ

WO 2004/074429

PCT/DK2004/000117

47

retention of the remaining products which are capable of interacting with the fungal cytochrome.

'n

Brief Description of the Figures

Fig. 1 illustrates the overall process of building block evolution.

Fig. 2 shows the distribution of codon in different positions in an output from a selection.

10 Fig. 3 shows the difference between identifier driven and building block driven evolu-

Fig. 4 shows a method for reducing the library diversity through codon analysis.

Fig. 5 discloses two embodiments of using a Taqman probe (5' nuclease probe) in the measurement of the presence or absence of a certain codon.

15 Fig. 6 shows a standard curve referred to in example 4.

Fig. 7 shows a result of example 4.

Fig. 8 discloses a result of example 4.

Fig. 9 discloses a scheme relating to combined structural Information and codon abundances in library design.

20 Fig. 10 discloses a relationship between codon analysis and structural information.

Fig. 11 shows the detection of single codons of identifiers.

Fig. 12 shows the detection of codon pairs of identifiers.

Fig. 13 shows the detection of codon pairs at specific codon positions.

Fig. 14 shows the detection of single codons of identifiers after the separation of the

individual codons.

22

Fig. 15 discloses a method for selecting from a library, complexes capable of binding to a target molecule.

Fig. 16 discloses a method for enriching specific nucleic acid fragments and the utility of these fragments for the generation of a new library.

30 Fig. 17 discloses a method for reducing the diversity of a library of complexes.

Detailed description of the figures

Fig. 1A Shows the principle steps in BB evolution. An initial library of desired size is produced. This initial library is subjected to a selection process where encoded

35 molecules that associate with a target of interest are enriched. The encoding identi-

This step monitors the relative abundance of each codon in the selected library. The contains the preferable chemical entities and their corresponding codons. This new information obtained in this analysis is used to design a new enriched library, which library is then subjected to a new selection process to select for binders. This diverfier oligonucleotide is preferably amplified and the used in the codon analysis step. sity reduction cycle can be repeated until the desirable result is obtained and the binders have been obtained.

2

Fig. 1B shows how the diversity of a library (n⁴) is reduced by reducing the number volved in the encoded molecules partitioned, a reduction in library diversity can be of chemical entities (n) in the library. Thus, by removing chemical entities not inobtained to allow the identification of binders.

9

Each of these codon positions can be analysed for the precise sequence, which will The identifier oligonucleotide that encodes for the display molecule is composed of codons possess information about the chemical entities in the encoded molecule. reflect which chemical entities that have been enrich for in the selection process. codons and associated with the encoded molecule, as shown in Fig. 2. These

5

more focused library with a lower and more enrich diversity that can be subjected to The relative amount can also be obtained by comparing the signal in the measuring These fingerprints in each position can subsequently be used to put together a new fingerprint on which chemical entitles that the selected display molecules possess. procedure (e.g. QPCR and array analysis). Each codon position will have its own another round of selection. This can then repeated until the preferable encoded molecules have been obtained. ឧ 23 Fig. 3 illustrates the main difference between identifier and chemical entity (CE) evois used in a new selection. Thus, the strongest binders that were enriched in the first lution. In both cases the initial selection starts on a library with certain diversity. After tion is maintained. This distribution is then transferred to the next generation which the first round of selection the encoding identifiers are amplified where the distriburound of selection will be present at a relatively higher concentration compared to analysis is used to design a new library. In this example, the new library is conthe weaker binders and the background. In the CE-driven evolution the codon

ဓ

structed to contain all the chemical entities that were identified as a positive signal in

સ

PCT/DK2004/000117 WO 2004/074429

the analysis. In other words, all the chemical entities that were not detected through the codon analysis were excluded in the new library. The new library is designed to have an equal amount of each selected chemical entity, which will generate all the possible display molecules at the same concentration. This will allow all binders to

binders in each round of selection. This is especially important for small molecules compete at the same concentration and potentially retain a more diverse set of here not only the affinity is of interest. S

Figure 4. This illustrates the process where the diversity is reduced through the

- new library is the again subjected to a selection process. The identifier oligonucleocodon analysis. An initial library of 1019 (e.g. 317*317*317*317) library members is used in the codon analysis. The codon analysis result is used to design a new $10^7\,$ (e.g. 57*57*57) library where the enriched chemical entities are included. This subjected to a selection. The enrich identifier oligonucleotides are amplified and 9
- ides are amplified and used for codon analysis. This new codon analysis results is chemical entities are included. Finally a last selection step is performed in this reagain used to design a new 104 (e.g. 10*10*10) library where the enriched duced diversity library to identify the binders. 5
- primers Pr.1 and Pr. 2. These primers could be the same as used for amplification of flanking regions (light pattern). A universal Taqman probe anneals to a region adjashown in Fig.5. Four codons are shown (P1 through P4; bold pattern) along with cent to the codon region, but within the amplicon defined by the universal PCR A preferred embodiment of the invention utilizing a universal Tagman probe is 20
- specific target. However, are minimal length identifiers preferred during the encoding process, the region involved in Taqman probe annealing could be appended to the the identifier oligonucleotides encoding binders after an enrichment process on a library identifier oligonucleotides by e.g. overlap PCR, ligation, or by employing a long downstream PCR primer containing the necessary sequences. The added 22
 - would be form 20 to 40 nts depending on the type of TaqMan probe and TA of the PCR primers. The Q-PCR reactions are preferably performed in a 96- or 384-well length corresponding to the region necessary for annealing of the Taqman probe format on a real-time PCR thermocycling machine. ജ

PCT/DK2004/000117

20

Panel A shows the detection of abundance of a specific codon sequence in position one. Similar primers are prepared for all codon sequences. For each codon sequence utilized to encode a specific BB in the library a Q-PCR reaction is performed with a primer oligonucleotide complementary to the codon sequence in question. A

- 5 downstream universal reverse primer Pr. 2 is provided after the Taqman probe to provide for an exponential amplification of the PCR amplicon. The setup is most suited for cases where the codon constitutes a length corresponding to a length suitable for a PCR primer.
- 10 Panel B shows the detection of abundance of a specific codon sequence in a specific codon position using a primer, which is complementing a codon and a framing sequence. Similar primers are used for all the codons and framing sequences. For each codon sequence utilized to encode a specific BB at a specific codon position in the library a Q-PCR reaction is performed with an oligo complementary to the codon sequence in question as well as a short region up- or downstream of the codon re
 - qion which ensures extension of the primer in a PCR reaction only when annealed to the codon sequence in that specific codon position. The number of specific primers and Q-PCR reactions needed to cover all codon sequences in all possible codon positions equals the number of codon sequences times the number of codon positions equals the number of codon sequences times the number of codon positions. Thus, monitoring the abundance of 96 different codon sequences in 4 different positions can be performed in a single run on four 96 wells micro titre plates (as shown in Panel B) or a single 384 well plate on a suitable instrument. This architecture allows for the decoding of a 8,5 ×10⁷ library of different encoded molecules.
- 25 Quantification is performed relative to the amount of full-length PCR product obtained in a parallel control reaction on the same input material performed with the two external PCR primers Pr. 1 + Pr. 2. Theoretically, a similar rate of accumulation of this control amplicon compared to the accumulation of a product utilizing a single codon + sequence specific primer would indicate a 100% dominance of this particular sequence in the position in question.

Although the setups shown in Panel A and B employ a Taqman probe strategy, other detection systems (SYBR green, Molecular Beacons etc.) could be utilized. In theory, multiplex reactions employing up to 4 different fluorofors in the same reaction could increase throughput correspondingly.

સ

WO 2004/074429

5

PCT/DK2004/000117

An example of how a deconvolution process of a library of encoded molecules occurs is described in the following. Imagine that at the end of a selection scheme a pool of 3 ligand families (and the corresponding coding identifiers) are dominating

- the population and present at approx. the same concentration. Three different chemical entities are present in the first position of the encoded compounds, and each of these chemical entities are present in combination with one unique chemical entity out of 3 different chemical entities in position P2. Only one chemical entity in position 3 gives rise to active binders, whereas any of a 20% subset of chemical
- 10 entities (e.g. determined by charge, size or other characteristics) is present in posltion 4. The outcome of the initial codon profile analysis would be: 3 codon sequences are equally dominating in position P1, 3 other codon sequences in position P2, 1 unique codon sequence is dominant in P3 whereas somewhat similarly increased levels of 20% of the codon sequences (background levels of the remaining
- 15 80% sequences) are seen in P4. In such cases it could be relevant to use an iterative Q-PCR (*IQ-PCR*) strategy to perform a further deconvolution of a library after selection. Again with reference to the example above, by taking the PCR products from the 3 individual wells that contained primers giving the high yields in position P1, diluting the product appropriately and performing a second round of Q-PCR on each of these identifier oligonucleotides separately, it would be possible to deduce which codon sequence(s) is preferred in P2 when a given codon sequence is pre-
- which codon sequence(s) is preferred in P2 when a given codon sequence is present in P1.
- Fig. 9. This figure illustrates the possibility to combine structural information about the chemical entities and the relative abundance when designing a new more focused library. The structural information about the chemical entities can be used at least in two ways. First the similarities between the chemical entities in each position can be used to choose chemical entities to a new library. Secondly, the combination of the selected chemical entities can be analyzed to investigate possible pattern that chemical properties in each complete that is especially useful if the binding site or the structure
- 30 generate potential ligands. This is especially useful if the binding site or the structura of a known ligand is known. Any type of structural analysis tool can be used that generate information about the structure of separate chemical entities or combination of chemical entities (the potential binders). By combining these three analysis approaches a more focused library can be generated that potentially will contain more specific binders compare to background binders. This new focused library can

be used in another round of selection to reduce the diversity. This procedure can be repeated until the desired binders have been identified.

can be designed, certain follow up chemistry can be used and information in the hit ance of structure activity relationship analysis (SAR) where the relative abundance Figure 10. This figure shows how the combination of codon analysis and structural SAR measurements. Pharmacophore models can be generated, focused libraries in the codon analysis will represent the activity parameter (e.g. IC $_{\! 50}$ values) in the information can generate valuable information. This invention allows the performto lead process can be used.

S

which display a certain property, is provided as disclosed above. The initial library of Fig. 11 shows an array detection system in which a single codon is detected. Initially and the amplification products are added to an array (30). The array (30) comprises and/or codons leading to encoded molecules with high affinity. The information may sired property or the information may be used for selection of building blocks, which quence, which theoretical gives a library of 10° complexes. The selected complexes complexes is prepared from e.g. 100 codons and identifiers having 4 codons in seprobes (32) complementary to each of the codons of the identifiers (31). At hybridieach codon may be measured to find codons abundant in more than one identifier be used for decoding of the encoded motecule of the complexes displaying the dea library of selected complexes (29), i.e. complexes comprised of the initial library, are subjected to amplification to amplify the identifiers of the selected complexes sation conditions the PCR products of the identifiers are annealed to the cognate probes are detected to elucidate the codons (33) of the identifier. The quantity of probes of the array and in a suitable scanner the spatial position of the annealed is to be added in a next round of library formation.

ನ

22

5

9

sequence of four, making the total amount of combinations possible $10^8\,.$ The initial codons in the vicinity of each other. Initially (as shown in this example) a library of desired property. The identifiers of the sub-library are amplified by a PCR reaction library is subjected to a condition in order to select a sub-library (29) displaying a complexes is prepared from 100 different codons deposited on an identifier in a and the reaction product is added under hybridisation conditions to an array (34). Fig. 12 discloses an array detection system for establishing codons pairs, i.e. ജ 32

PCT/DK2004/000117 WO 2004/074429

The detection of the codons may be conducted quantitatively, i.e. the relative abun-The array is designed with probes (35) capable of detecting two codons at a time To cover all possible combinations of a library based on 100 different codons 104 probes are needed, which is practically feasible with the current technology.

pair detections depict the entire identifier. In the event the same codon pair appears may be used to reconstruct the selected identifiers (36) as three overlapping codon codon pair maybe used to decipher the sequence of codons of the selected identifiers as it can be assumed that each codon pair of the same identifier appears in the dance of each of the codon pairs may be determined. The detection on the array on more than one Identifier, the information on the relative abundance of each same amounts in the PCR products added to the array. 9

Fig. 13 discloses an array for detecting codon pairs at specific codon positions. Inftially, a library of complexes comprising identifiers with framing sequences is pro-

- sequences (40) between the codons. The framing sequence determines the position quences next to each codon. The initial library is subjected to a selection process to of the codon in the reaction history, i.e. it is possible to deduct which chemical entity plified by a PCR reaction and the reaction products are added to an array (38). The that reacted at which point in time of the synthesis history of the encoded molecule, vided. The framing sequence is specific for each position of the codons on the idenisolate complexes (37) having a desired property. The selected complexes are amarray comprises probes capable of detecting codon pairs as wells as the framing position of the codons also should be detected in the analysis which is practically tifier. Four times more probes on the microarray is needed per each codon if the feasible with current technology. The position is detected due to the framing se-20 5
- identifiers as it can be assumed that each codon pair of the same identifier appears array may be used to reconstruct the selected identifiers (41) as three overlapping codon pair detections depict the entire identifier. In the event the same codon pair appears on more than one identifier, the information on the relative abundance of The detection of the codon pairs may be conducted quantitatively, i.e. the relative each codon pair maybe used to decipher the sequence of codons of the selected abundance of each of the codon pairs may be determined. The detection on the ဓ

thus making it possible to reconstruct the structure of the encoded molecule.

22

in the same amounts in the PCR products added to the array. 35

which display a certain property, is provided as disclosed above. The initial library of Fig. 14 shows an array detection system in which a single codon is detected. Initially complexes is prepared from e.g. 100 codons and identifiers having 4 codons in sea library of selected complexes (42), i.e. complexes comprised of the initial library

- quence, which theoretical gives a library of $10^{
 m s}$ complexes. The selected complexes and the amplification products are treated with suitable reagents to cut between the individual codons (43). The individual codon is the applied to the array. The array are subjected to amplification to amplify the Identifiers of the selected complexes S
 - quantity of each codon may be measured to find codons abundant in more than one playing the desired property or the information may be used for selection of building (46). At hybridisation conditions the PCR products of the identifiers are annealed to the cognate probes of the array and in a suitable scanner the spatial position of the (44) comprises probes (45) complementary to each of the codons of the identifiers Identifier and/or codons leading to encoded molecules with high affinity. The information may be used for decoding of the encoded molecule of the complexes disannealed probes are detected to elucidate the codons (47) of the identifier. The blocks, which is to be added in a next round of library formation. 9 5
- Fig. 15 discloses a method for selection of a suitable complex in several steps. In a prises an encoded molecule 2 composed of four chemical entities which is attached first step the library of complexes 1 is provided. Each member of the library comto an identifier oligonucleotide 3, which comprises four codons. The initial library shown comprises three complexes. In a second step the library of complexes is ឧ
- immobilized target molecules. The washing process is usually conducted using mild affinity towards the target molecule is bound to the immobilized target whereas encarded by a washing process, while the bound complexes remain attached to the incubated with immobilized target molecules 4. The encoded molecule having an remains in the liquid media. The complexes remaining in the liquid media are discoded molecules not having affinity towards the target under the conditions used ဓ 22
- usually requires high stringency conditions to detach the encoded molecule from the ers to remain attached to the target. Subsequent to the washing step the complexes working stringency conditions are usually increased to allow only high affinity bindstringency conditions in the initial rounds of selection. In later stage selections the having affinity towards the target molecule are recovered. The recovery process ઝ

PCT/DK2004/000117 WO 2004/074429

Preferably, a modification of the PCR method is followed such that a biotin molecule sequence of the selected complexes is usually performed using the PCR method. immobilized the target. The selected sub-library resulting from the elution is subjected to an amplification process. The amplification of the identifier nucleic acld

- sequences, which codes for the encoded molecules which have survived the selecis attached to one of the primers to obtain a handle for subsequent immobilization. The result of the amplification step is multiple copies of the identifier nucleic acid
- be used for generation of a new library. Initially, identifier nucleic acid sequences are Fig. 16 discloses an enrichment process of building blocks. The building blocks can acid sequences are the product of the selection procedure described in Fig. 1. Each codon of the identifier nucleic acid sequence is identified with an uppercase letter, immobilized on solid support. In one aspect of the invention the identifier nucleic 9
 - are indicated with a apostrophe, e.g. A', B', etc. The transferable chemical entity of a i.e. A, B, C, or D. The immobilized identifier acid sequences are contacted with the be present on the identifier nucleic acid sequence. The complementary sequences are illustrated with an sequence complementary to a codon which may or may nor pool of building blocks under hybridisation conditions. Each of the building blocks 5
- any immobilized sequence remain in aqueous media. The immobilized sequences of cleic acid sequences are hybridised to each other while sequences not recognizing building block is illustrated with a lowercase letter. The conditions providing for hymmobilised identifier nucleic acid sequence are preferably such that cognate nuoridisation of the complementing sequences of the pool of building blocks to the ឧ
 - blocks not being able to find a complementing sequence is discarded. The building blocks with complementing sequences. Following the incubation step, non-binding blocks attached to the immobilized nucleic acid sequences are detached using debuilding bocks are removed by washing, whereby the part of the pool of building the identifier nucleic acid sequences are thus used as balt in catching building 22
- attached to the enriched building blocks. Because the order of building blocks which have participated in the formation of the encoded molecules successful in the selecmolecule comprises a reaction product comprising additions from chemical entitles subsequent round for preparing a new library of complexes, in which the encoded hybridisaton conditions. The diminished pool of building blocks may be used in a ဓ

tion procedure, is not preserved by the method for enriching building blocks a

scrämbling of the encoded molecules may be obtained in some of the methods described herein for obtaining a library of complexes. In some applications of the library it will be an advantage to have a scrambling of the building blocks because and increased diversity is obtained.

Fig. 17 discloses a method for reducing the diversity of the library of complexes resulting from the method described in Fig. 16. In some of the applications of the library the diversity induced by scrambling of the building blocks are not desired. In a first step the sequences complementary to the identifier acid sequences used in Fig.

- 10 16 are provided and immobilized on a suitable solid support. In one aspect of the invention the complementary sequence is obtained from the PCR product resulting from the method according to Fig. 15. Alternatively, the complementing sequence may be obtained by extending the identifier nucleic acid sequence using a suitable primer, optionally attached to a handle such as a biotin or dinitrophenol. In a second
 - step the immobilized complementary sequence is incubated with the scrambled library under conditions, which provide for hybridisation between the complementary sequence and members of the library having affinity towards this sequence. Members of the library not having affinity to the complementary sequences remains in the media and is discarded, while members of the library being able to hybridise to the immobilized nucleic acid sequences is recovered. Occasionally, nucleic acids not perfectly matching with the complementary sequence immobilized on the solid support are caught. In one aspect of the invention the hybridisation products, prior to the recovery step, are treated with an enzyme capable of recognizing mismatching nu-
- cleotides and cleaving the double stranded helix in which they are situated. An example of an enzyme with this ability is T4 endonuclease VII. After the treatment with the enzyme, complexes displaying a hybridisation toward the immobilized sequence are eluted under dehybridisation conditions. Nucleotide sequences remaining from the cleavage by the enzyme will also be present in the new library, however, these sequences will not have any effect of a subsequent selection because no molecule

is attached thereto.

ဓ

WO 2004/074429

PCT/DK2004/000117

2

Examples

Example 1, Enrichment of nucleic acid fragments

A codon was included in the oligonucleotide sequence shown below. The codon is underlined and the boldface sequences represent the "framing" regions next to each codon. These framing regions can be used for specifying the position of each codon.

Biotin-AATTCCGGAACATACTAGTCAACATGA-3' (SEQ ID NO:1)

This identifier oligonucleotide was immobilized on streptavidin beads using standard protocols, i.e. 600 pmol identifier oligonucleotide with 5- dT biotin in 50 µl 100 mM Mes pH 6.0 was mix with 50 µl SA-magnetic beads (Roche). The mixture was washed 2-3 times with 100 mM MES pH 6.0 to remove non-bound identifier oligonucleotides. To reduce background binding, the oligos and beads was incubated at RT for 10 min on shaker, then incubated on ice for 10 min while rotating the tube. FI-

15 nally, the sample was washed with 100 mM MES 4 times in 800 µl at 60°C.

In the case where a PCR product is immobilized, the complementing (non-sense) strand is removed using 10 mM NaOH. This will generate single-stranded DNA with the selected codons. The same procedure described in this example can be used for a collection of different identifier nucleic acid molecules that contain one or more codons. The codons in the identifier nucleic acid molecules can be the same or dif-

2

ferent determined from the enrichment performed on the initial library.

The immobilized identifier nucleic acid molecule was mixed with the pool of nucleic acid fragments shown below. This pool of fragments illustrates an original pool that was used for generating an initial library of complexes. Each fragment may possess in the 3'-end a specific chemical entity that is encoded by the codon sequence. These nucleic acid fragments contain a specific sequence in the codon region (underlined) while the framing region shown in boldface is identical among the fragments. Thus, the pool of fragments represents different codons in the same position

22

1. CGT GTG ATC GAA CTC GTG TG GTATGATCAGTTGTACT-5' (SEQ ID NO:2)

of the identifier nucleic acid.

ဓ

PCT/DK2004/000117

28

CGT GTG ATC GAA CTC GTG TG GTAT<u>CTAGTCGGT</u>TACT-5' (SEQ ID NO:3)

- CGT GTG ATC GAA CTC GTG TG GTAT<u>TCGAGTGTT</u>TACT-5' (SEQ ID NO:4)
- CGT GTG ATC GAA CTC GTG TG GTATAGCTCATGGTACT-5' (SEQ ID NO:5)

The nucleic acid fragments are mixed with the immobilized identifier nucleic acid using 600 pmol of each nucleic acid fragment mixed with the immobilized identifier nucleic acid molecules (100 mM MES pH 6.0, 150 mM NaCl)). The mixture was incubated at 25°C for 30 minutes in a shaker. The non-hybridized fragments were removed by 4 times washing in 800 µl 100 mM MES, 150 mM NaCl. This step should separate the complementing fragments (bound) encoding for the select chemical entities from the non-complementing fragments (non-bound) encoding for chemical entities that were not effective in the preceding selection process. The an-

2

chemical entities that were not effective in the preceding selection process. The annealed fragments are eluted from the immobilized identifier nucleic acid molecules by re-suspending the beads in 25 µl 60°C H₂O and incubating for 2 min at 60°C. The enriched fragments were purified on a micro-spin gel filtration column (BiRad).

The eluted fragments were prepared for mass spectroscopy (MS) analysis by mixing in half volume of ion exchanger resin and incubating minimum 2 h at 25°C on a shaker. After incubation the resin was removed by centrifugation and 15 µl of the supernatant was mixed with 7 µl of water, 2 µl of piperidine and imidazole (each 625 mM) and 24 µl acetonitrile. The sample was analysed using a Mass Spectroscopy instrument (Bruker Daltonics, Esquire 3000plus). The result for the MS analysis is

shown below.

2

WO 2004/074429

PCT/DK2004/000117

8

The mass from the correct complementary fragment (number 1) is obtained in the MS analysis (11438.39, expected 11439 Da) No masses for the other fragments (number 2-4) could not be found in the MS spectra (expected masses; 11415,

5 11430, 11424 Da). This result shows that the right fragment is strongly enriched and other fragments with the wrong codon sequences are removed. The enrichment is possible even when the "spacing" region (boldface) is identical in each fragment.

Two control experiments were also performed to validate the enrichment protocol. In the first experiment, the fragment with the correct codon sequence (number 1) was mixed with the immobilized identifier molecule as described above. The sample was washed end eluted also as described above and prepared for MS analysis. The result from the MS analysis is shown below.

The result indicates that the fragment with the correct sequence (number 1) anneals to the immobilized identifier molecules and is eluted under the conditions used in this example. The expected mass (11439) correlate well with the experimental

20 mass, 11438.39 Da.

In the other control experiment, a fragment with a wrong codon sequence (number 3) was allow to bind to the immobilized identifier molecule as described above. Again, the eluted sample was prepared and analysed with MS. The result is shown

below.

with a anticodon sequence different from the enriched codons in the identifier nu-(11430) of the tested building block (number 1). Again, this shows that fragments In this experiment, no mass was found that corresponded to the expected mass cleic acid molecules are not captured using this approach.

S

a new library of encoded molecules. This new library will contain encoded molecules duced due to the removal of chemical entities not involved in binding encoded mole-The enriched fragments obtained using this strategy may then be used to generate cules, and enriched in chemical entities that are highly represented in the encoded composed of the enriched chemical entities. Thus, the library size have been remolecules which binds to the target molecule.

9

i.e. nucleic acid fragments associated with transferable chemical entities. The same stringency in the annealing step. Parameters such as temperature, salt, pH, forma-Example 1 shows the possibility of enriching for specific building block molecules, procedure can be used for a larger pool of building block than four as used herein. The codon design will determine the maximum number of building blocks that can crimination in the annealing step. Various conditions can be used to increase the be used. The sequence in the codon region should be large enough to allow dismide concentration, time and other conditions could be used 5

ន

Example 2 (model): Multiple codon selection in a library.

acid (identifier) molecule with multiple codons. These codons encode for a displayed This example describes the enrichment of building blocks using an identifier nucleic molecule (DM) that are attached to the identifier molecule before the selection is 25

9

are indicated with underlines and the region separating (framing region) the codons below contains three codons. The codons, which codes for the displayed molecule performed. The library size is determined both by the number of different chemical entities and the total number of chemical entities. The identifier molecule shown

- in boldface. The size of the codons can be varied dependent in the diversity need in the library and the optimal setup for chemical entity enrichment. The framing region important for the generation of the library. This can be understood when the encodcan also be varied dependent on the discrimination needed to distinguish the precise position of a codon in the identifier molecule. The framing region will also be ιO .
- 2002 01955 and US 60/434,425, incorporated herein by reference. There need to be a perfect match in the 3'-end in order to get efficient extension with a polymerase or a ligase. The size of this spacing/framing region should be long enough to form a complementing region to allow extension with a polymerase or ligase. Preferably, ing is accomplished by extension of the encoding region as disclosed in DK PA 9
- gether with the spacing region will also be useful when codons are to be identified using a micro array setup. The identifier molecule with the right codon sequences the spacing region should be between 3 and 6 nucleotides. The codon region towill hybridize to the array and be detected 5
- The sequence below represents an enriched identifier molecule attached to the disthat the DM binds to the target molecule in the selection process. In practice, more than one enriched identifier molecules will be obtained when using a library of displayed molecule (DM). This identifier molecule has been enriched due to the fact played molecules attached to its identifier sequence. ឧ

23

gcacacttgagcacacacastgacacastgasastcacatacttgacaatgasastgagaactccggaagctttaggatccggaagstaacc

reaction. For example, 500 nM of each primer, 2,5 units Taq polymerase, 0.2 mM of 0.1 mg/ml BSA). Run 25 cycles (94°C melt for 30 seconds, 55°C anneal for 45 sec-This identifier molecule is amplified with two primers (below) using a standard PCR each NTP, in a PCR buffer (50 mM KCI, 10 mM Tris-CI, 3 mM DTT, 1.5 mM MgCl₂, onds, 72°C extension for 60 seconds). ജ

B-GCACACTAGCTTGAGCACACTGACA-3' CGAAATGCTAGGGCGTCCATTGGCA-5'

PCT/DK2004/000117

8

This will amplify the identifier molecule from the selection process and add a biotin in the 5'-end of one of the strand (below). This amplified product is then immobilized on a solid support, streptavidin beads for example. This can be performed identical as describe in example 1.

When the identifier molecules have been immobilized and the excess has been removed by a washing step (as describe in example 1), the complementing non-sense stand is removed by incubating in 10 NaOH for about 2 min and washed with 100 mM Mes buffer, pH 6.0. This procedure will generate the strand shown below where the codon regions are exposed to allow hybridization with the complementing se-

quences. B-Garchchagctttarcachchaganantalchag<u>tttgarchingarchingarch</u>aganticcgachgtttncgarcaganaganacc

5

9

The next step is to protect the complementing sequences outside the codons to prevent the binding of the building block to these sequences. This can be performed by adding "blocking" oligonucleotides that has a complementing sequence. This is

20 shown below.

gcacachachtsacacacachach<u>ighthigh athmicracaaracaacachtsacathacancachacacachacancachacancanachacacancanachacacancanachacacancachacacancachacacancachacacancachacacancachacacacancachacacacancachacacacancacharacacancachar</u>

Next, the pool of different building blocks is added and is allowed annealing to the codon region in the identifier region. The position of annealing is determined by the

- 30 spacing region shown in boldface. The stringency is adjusted to only allow hybridization of the correct building block in the right position. This can be accomplished by mixing the right component together using various conditions. The condition can for example include the presence of salt, formamide and various buffers adjusted to suitable pH and temperature. Below is the correct building block that will anneal to 35 the enriched identifier molecules. These building blocks is annealed and eluted as
 - the enriched identifier molecules. These building blocks is anneale described in example 1.

CB-CGTGTGATCGAACTCGTGTGACTGTGTACCTCTAGTGTAC

WO 2004/074429

PCT/DK2004/000117

ස

The next pool of building blocks is blocked with an oligonucleotide that also protects the first codon. This is necessary to prevent binding of the building blocks in that codon.

Again, the library of building blocks is added to enrich for the selected codons. Below is the building block with the correct sequence. These building blocks is annealed and eluted as described in example 1.

15 ce--cotororactogractororatilililitacoaagetotaco

Finally, the identifier molecule is protected with a blocking oligo that expose only the last codon.

25 A new pool of building blocks is added and allowed hybridizing to the Identifier molecule. These building blocks is annealed and eluted as described in example 1.

Ce--cetetgancgaactegtgactgtaniiiiiiiiiiiiiiiiiaggeetgaggggg

ဗ္ဂ

The enrichment of each library of building blocks are performed in separate tubes in order to keep the libraries of building block separated. The enrichment is performed with building blocks loaded with chemical entities (CE).

35 Example 3 - Template versus chemical entity evolution

The graph below illustrates the relationship between the number of chemical entitles and the library size. The example below is calculated on that the final encoded molecules contains four chemical entities that is individually encoded by the corresponding building block (n⁴, where n is the number of building blocks). The graph shows that the diversity decreases dramatically with the reduction of the total number of building blocks. If the number of different building can be reduced to about 20-

30 (library size of 16*10³ and 81*10⁴, respectively) in the selection process, then the library size for the final round of selection is low enough for identification of the binding molecules.

S

When the same analysis is performed on a protein another situation is obtained. The example shown below is on a very small protein (50 amino acids in length). The diversity is enormous when all amino acids are included in the library. The size of the library is also decreasing with the total number of amino acids, but not to the same extent as show above for a small molecule. Even when the different amino acids are reduced to 2, the library size is huge (1.2.10¹⁵). This shows that amino acid enrichment is impossible on protein. This is even more pronounced for mid-size protein which contains about 300 amino acids.

6

5

WO 2004/074429

PCT/DK2004/000117

65

Example 4 - Codon analysis

This example illustrates one possibility to perform codon analysis on a whole population of different identifier oligonucleotides. The analysis can also be performed using array where the probe oligonucleotides (complementary to the codons) are immobilized in discreet areas and the signal is monitored dependent on the amount of identifiers oligonucleotides are hybridised in each specific area. Codon analysis

can also be performed using standard sequencing using a polymerase extension

step.

2

In fig. 5, Four codons are shown (P1 through P4; bold pattern) along with flanking regions (light pattern). A universal Taqman probe anneals to a region adjacent to the codon region, but within the amplicon defined by the universal PCR primers Pr.1 and Pr. 2. These primers could be the same as used for amplification of the identifier

- oligonucleotides encoding binders after an enrichment process on a specific target.

 However, are minimal length identifiers preferred during the encoding process, the region involved in Taqman probe annealing could be appended to the library identifier oligonucleotides by e.g. overlap PCR, ligation, or by employing a long downstream PCR primer containing the necessary sequences. The added length correscream
- sponding to the region necessary for annealing of the Taqman probe would be form 20 to 40 nts depending on the type of TaqMan probe and T_A of the PCR primers. The Q-PCR reactions are preferably performed in a 96- or 384-well format on a real-time PCR thermocycling machine.
- 25 Fig. 5, panel A, shows the detection of abundance of a specific codon sequence In position one. Similar primers are prepared for all codon sequences. For each codon sequence utilized to encode a specific BB in the library a Q-PCR reaction is performed with a primer oligonucleotide complementary to the codon sequence in question. A downstream universal reverse primer Pr. 2 is provided after the Tagman probe to provide for an exponential amplification of the PCR amplicon. The setup is most suited for cases where the codon constitutes a length corresponding to a length suitable for a PCR primer.
- Fig. 5, panel B shows the detection of abundance of a specific codon sequence in a specific codon position using a primer which is complementing a codon and a fram-

PCT/DK2004/000117

tion in the library a Q-PCR reaction is performed with an oligo complementary to the For each codon sequence utilized to encode a specific BB at a specific codon posiing sequence. Similar primers are used for all the codons and framing sequences. codon sequence in question as well as a short region up- or downstream of the

- annealed to the codon sequence in that specific codon position. The number of specific primers and Q-PCR reactions needed to cover all codon sequences in all possible codon positions equals the number of codon sequences times the number of codon positions. Thus, monitoring the abundance of 96 different codon sequences in 4 different positions can be performed in a single run on four 96 wells micro titre codon region which ensures extension of the primer in a PCR reaction only when plates (as shown in Fig. 5, panel B) or a single 384 well plate on a suitable instru-တ
 - ment. This architecture allows for the decoding of a $8,5\,^{14}0^7$ library of different encoded molecules. 6
- codon + sequence specific primer would indicate a 100% dominance of this particuof this control amplicon compared to the accumulation of a product utilizing a single two external PCR primers Pr.1 + Pr. 2. Theoretically, a similar rate of accumulation tained in a parallel control reaction on the same input material performed with the Quantification is performed relative to the amount of full-length PCR product oblar sequence in the position in question. ξ 8

Although the setups shown in Fig. 5, panel A and B employ a Tagman probe strategy, other detection systems (SYBR green, Molecular Beacons etc.) could be utilized. In theory, multiplex reactions employing up to 4 different fluorofors in the same

reaction could increase throughput correspondingly.

ß

curs is described in the following. Imagine that at the end of a selection scheme a An example of how a deconvolution process of a library of encoded molecules ocpool of 3 ligand families (and the corresponding coding identifiers) are dominating chemical entities are present in the first position of the encoded compounds, and the population and present at approx. the same concentration. Three different

each of these chemical entities are present in combination with one unique chemical entities (e.g. determined by charge, size or other characteristica) are present in posientity out of 3 different chemical entities in position P2. Only one chemical entity in position 3 gives rise to active binders, whereas any of a 20% subset of chemical റ്റ 33

WO 2004/074429

PCT/DK2004/000117

quences are equally dominating in position P1, 3 other codon sequences in position creased levels of 20% of the codon sequences (background levels of the remaining P2, 1 unique codon sequence is dominant in P3 whereas somewhat similarly Intion 4. The outcome of the initial codon profile analysis would be: 3 codon se-

- P1, diluting the product appropriately and performing a second round of Q-PCR on tive Q-PCR ("IQ-PCR") strategy to perform a further deconvolution of a library after 80% sequences) are seen in P4. In such cases it could be relevant to use an iteraselection. Again with reference to the example above, by taking the PCR products from the 3 individual wells that contained primers giving the high yields in position ß
 - each of these identifier oligonucleotides separately, it would be possible to deduce which codon sequence(s) is preferred in P2 when a given codon sequence is pre-2

Tagman MGB probe binding region: *=AATTCCAGCTTCTAGGAAGAC

Identifiers used for Q-PCR quantification

	P1	P2	P3	P4	
5'- <u>Cagettegacaccaegtcatac</u> tagctgctagagatg	PGOTGATATTAGTGTGTG	ACGATGGTACGCACAAGTACG	nacotgcatcagagagga	.CGAGCAGGACCTGGAACCTGGTGC+ <u>TTCCTCCACCACGTCTCTGAC</u>	-3'
aaaa.	CAGAAGACCTG			CTCGACCACTGCAGGTGGAGCTCC	
				CGTGCTTCCTCTGCTGCACCACCG	
	GAGAACYGAAG			CCTGGTGTCGAGGTGAGCAGCAGC	
	CAACACGTCAG			CTCGACGAGGTCCATCCTGGTCGC	
	ACCATCCAAGG			CGTGAGGAGCAGGTCCTCCTGTCG	
				CCTGACACTGGTCGTCGAGGC	
					တ
TCACGAAGO	TGGATGATGAG				00
	TCGAACGTAGG			CCACTGAGCTGCTCCAGGTGG	
AACCTGTCC TCACJAAGC TAGCATCGA	ATCOTTGOAAG TOTGAGATCTG TGGATGATGAG TCGAACGTAGG			CCTGACACTGGTCGTCGAGGC CCATCTCGACGACCTGCTCCTGGG CCACGAGGTCTCCACTGGTCCAGG	68

Oligos for identifier synthesis:

FPv2: C	AGCTTGGACACCACGTCATAC
---------	-----------------------

GTCAGAGACGTGGTGGAGGAA

Temp1-1: CAGCTTGGACACCACGTCATACTAGCTGCTAGAGATGTGGTGATATTAGTGTGTGACGAT

CGAAGCTACTGTCGAGATG

Temp1-2: CAGCTTGGACACCACGTCATACGGAAGAAGACAGAAGACCTGATATTAGTGTGTGACGAT

Temp1-3: CAGCTTGGACACCACGTCATACTCAGGAGTCGAGAACTGAAGATATTAGTGTGTGACGAT

Temp1-4: CAGCTTGGACACCACGTCATACTGTGTACGTCAACACGTCAGATATTAGTGTGTGACGAT

Temp1-5: CAGCTTGGACACCACGTCATACTGTGGAACTACCATCCAAGGATATTAGTGTGTGACGAT

Temp1-6: CAGCTTGGACACCACGTCATACCCATCCAACATCGTTGGAAGATATTAGTGTGTGACGAT

Temp1-7: CAGCTTGGACACCACGTCATACAACCTGTCCTGTGAGATCTGATATTAGTGTGTGACGAT

Temp1-8: CAGCTTGGACACCACGTCATACTCACGAAGCTGGATGATGAGATATTAGTGTGTGACGAT Temp1-9: CAGCTTGGACACCACGTCATACTAGCATCGATCGAACGTAGGATATTAGTGTGTGACGAT

Temp1-10: CAGCTTGGACACCACGTCATACTCGAAGCTACTGTCGAGATGATATTAGTGTGTGACGAT

GTCCTCTCTGATGCACGTTCGTACTTGTGCGTACCATCGTCACACACTAATATC

Temp3-1: GAACGTGCATCAGAGAGGACGAGCAGGACCTGGAACCTGGTGCAATTCCAGCTTCTAGGAAGACT

Temp3-2: GAACGTGCATCAGAGAGGACTCGACCACTGCAGGTGGAGCTCCAATTCCAGCTTCTAGGAAGACT

Temp3-3: GAACGTGCATCAGAGAGGACGTGCTTCCTCTGCTGCACCACCGAATTCCAGCTTCTAGGAAGACT

Temp3-4: GAACGTGCATCAGAGAGGACCTGGTGTCGAGGTGAGCAGCAGCAGTTCCAGCTTCTAGGAAGACT Temp3-5: GAACGTGCATCAGAGAGGACTCGACGAGGTCCATCCTGGTCGCAATTCCAGCTTCTAGGAAGACT

Temp3-6: GAACGTGCATCAGAGAGGACGTGAGGAGCAGGTCCTCCTGTCGAATTCCAGCTTCTAGGAAGACT

Temp3-7: GAACGTGCATCAGAGAGGACCTGACACTGGTCGTGGTCGAGGCAATTCCAGCTTCTAGGAAGACT Temp3-8: GAACGTGCATCAGAGAGGACCATCTCGACGACCTGCTCCTGGGAATTCCAGCTTCTAGGAAGACT

Temp3-9: GAACGTGCATCAGAGAGGACCACGAGGTCTCCACTGGTCCAGGAATTCCAGCTTCTAGGAAGACT

Temp3-10:GAACGTGCATCAGAGAGGACCACTGAGCTGCTCCTCCAGGTGGAATTCCAGCTTCTAGGAAGACT

GTCAGAGACGTGGTGGAGGAAGTCTTCCTAGAAGCTGGAATT

PCT/DK2004/000117

2

Synthesis of identifier oligonucleotides:

Temp4 (x=1 through 10) and 25 pmol of the external primers FPv2 and RPv2 with TA≂ QIAGEN (Cat. No. 28706) and quantified on spectrophotometer. As a control, 20 ng of The 10 identifier oligonucleotides were assembled in 10 seperate 50 µl PCR reactions 53°C. The 160 bp products were gel-purified using QIAquick Gel Extraction Kit from each containing 0.05 pmol of the oligos Q-Temp1-X, Q-Temp2, Q-Temp3-X and Q-

S

each of the identifiers (as estimated from these measurements) were loaded on an

Preparation of samples for Q-PCR: 9

ume was adjusted to 50 µl. Concentration: 4 ng/µl = 38.46 fmol/µl (160bp x 650 Da/bp Sample A: Generated by mixing 20 ng from each identifier oligonucleotide prep. Vol-=1.04x105 g/mol. 1 ng= 9.615 fmol). Diluted to 10^7 copies/5µl (0.00332 fmol/µl). Sample B: 20 ng/20µl stocks of each identifier were prepared. The sample was mixed as follows: 5

5µl undil. Identifier #10

5µl 4x dil. Identifier #8 5µl 2x dil. Identifier #9

5µl 8x dil. Identifier #7

2

5µl 16x dil. Identifier #6

5µl 32x dil. Identifier #5

5µl 64x dil. Identifier #4

5µl 128x dil. Identifier #3

5µl 256x dil. Identifier #2 22 5µl 512x dil. Identifier #1

Concentration: $10ng/50\mu = 0.20 \, ng/\mu = 1.923 \, fmol/\mu$. Diluted 579.2-fold to $10^7 \, cop$ ies/5µl (0.00332 fmol/µl).

serial dilution of this sample. 5 µl was used for each PCR reaction. The standard curve Standard curve: The samples for the standard curve was prepared by diluting Sample A 116.55-fold to 10° copies/5 µl (0.33 fmol/µl) and subsequently performing a 10-fold is shown in Fig. 2. ဓ

Q-PCR reactions 32

WO 2004/074429

۲

PCT/DK2004/000117

For 5 ml premix (for one 96-well plate):

2.5 mi Taqman Universal PCR Master Mix (Applied Blosystems; includes Taq polymerase, dNTPs and optimized Taq pol. buffer) 450 µl RPv2 (10 pmol/ul)

25 µl Taqman probe (6-FAM-TCCAGCTTCTAGGAAGAC-MGBNFQ; 50 µM; Applied 1075 µl H2O Biosystems)

40.5 µl premix was aliquoted into each well and 4.5 µl of relevant upstream PCR primer pmol/µl) and 5 µl sample (H2O in wells for negative controls) was added. The codonspecific PCR primers were: (Tm calculations shown are from Vector NTI; matched to (FPv2 (for standard curve) or one of the codon specific primers listed below; 10 Tm for RPv2 (67.7°C)) 9

ල	P1-1: GTCATACTAGCTGCTAGAGATGTGGTGATA	96.8°C
CATACGGA	CATACGGAAGAAGACAGAAGACCTGATA 67.8°C	
TCATACTCA	P1-3: TCĄĮACTCAGGAGTCGAGAACTGAAGATA 67.8°C	
P1-4: CATACTGTG	CATACTGTGTACGTCAACGTCAGATA 67.4°C	
P1-5: CATACTGTG	CATACTGTGGAACTACCATCCAAGGATA 68.0°C	
P1-6: CCATCCAAC	CCATCCAACATCGTTGGAAGAT	67.8°C
CATACAACCT	P1-7: CATACAACCTGTCCTGTGAGATCTGATA 67.7°C	
ATACTCACG/	P1-8: ATACTCACGAAGCTGGATGATGAGATA 67.3°C	
CATACTAGCA	P1-9: CATACTAGCATCGAACGTAGGATA 68.1°C	
TCATACTCGA	P1-10: TCATACTCGAAGCTACTGTCGAGATGATA 68.2°C	
ATATTAGTGT	P2-1: ATATTAGTGTGTGACGATGGTACGCA	67.8°C
ACAAGTACGA	P3-1: ACAAGTACGAACGTGCATCAGAGA	67.7°C
P4-1: CGAGCAGGACCTGGAACCT	CCTGGAACCT 67.7°C	
P4-2: TCGACCACTGCAGGTGGA	CAGGTGGA	68.3°C
P4-3: GCTTCCTCTGCTGCACCA	CTGCACCA	66.7°C
P4-4: GGTGTCGAG(GGTGTCGAGGTGAGCAGCA 69.1°C	
P4-5: CGACGAGGTCCATCCTGGT	CCATCCTGGT 68.8°C	
P4-6: GTGAGGAGC	GTGAGGAGCAGGTCCTCCTGT	68.0°C
CTGACACTGG	P4-7: CTGACACTGGTCGTCGA 68.8°C	
CATCTCGACC	P4-8: CATCTCGACGACCTGCTCCT 87.9°C	
P4-9: ACGAGGTCT(ACGAGGTCTCCACTGGTCCA 68.3°C	

PCT/DK2004/000117

23

66.5°C

P4-10: ACTGAGCTGCTCCTCCAGGT

Thermocycling/measurement of fluoresence was performed on an Applied Blosystems ABI Prism 7900HT real-time instrument utilizing the standard cycling parameters:

95°C 10 min;

S

40 cycles of

95°C 15 sec;

60°C 1 min

. X.

10 All samples were run in duplicate.

Results

Fig. 6 shows the standard curve calculated by the 7900HT system software. The log of the starting copy number was plotted against the measured C_{τ} value. The relationship

15 between C_T and starting copy number was linear in the range from 10 to 10⁸ identifier copies.

This standard curve was utilized by the system software to calculate the quantity in the "unknown" samples as shown below.

8

Table I: Sample A (Shown graphically in Fig. 7)

Sample A:

Equimolar

	Expected	10000000	1000000	1000000	1000000	1000000	1000000	1000000	1000000	1000000	1000000	1000000
	Observed B	11977503,00	480382,03	847478,56	948770,00	741304,40	1275155,50	1337928,50	747371,56	653874,00	705785,75	836037.90
	Observed A	12539947,00	445841,90	884840,70	1013073,56	764187,94	1352874,60	1284075,60	658161,80	742187,20	824587,75	813550.75
-	ratios	FPv2	P1-1	P1-2	P1-3	P14	P1-5	P1-6	P1-7	P1-8	P1-9	P1-10

10000000	1000000	1000000	1000001	1000000	1000000	1000000	100000	100000	1000000
14482606,00 12773780,00	1472576,80 2481824,80	2085476,40	1364621,40	2065813,60	1873777,20	1416153,00	1581067,00	1594593,80	1912277,40
13145159,00 13263911,00	1430704,80 2681652,00	1933106,80	1359684,40	2206709,80	1652718,10	1468208,10	1664467,50	1462520,60	2020088,20
P2-1	P4-1	P4-3	P4-4	P4-5	P4-6	P4-7	P4-8	P4-9	P4-10

Table II: Sa	Table II: Sample B (Shown graphically in Fig. 8)	phically in Fig	<u>∞</u>
Sample B:		Observed	
2-fold dil.	Observed A	m	Expected
FPv2	4,97E+06	5,05E+06	10000000
P1-1	9955,07	10899,97	9765,625
P1-2	12732,32	13469,12	19531,25
P1-3	25542,8	25419,85	39062,5
P14	34748,89	44070,81	78125
P1-5	110881,41	123734,13	156250
P1-6	163687,44	166220,5	312500
P1-7	156993,81	172005,64	625000
P1-8	343176,78	374809,13	1250000
P1-9	646619,44	576151	2500000
P1-10	1,49E+06	1,72E+06	2000000
P2-1	5,19E+06	5,37E+06	10000000
P3-1	5,29E+06	5,09E+08	10000000
P4-1	(no signal)	70223,8	9765,625
P4-2	42103,32	22733,17	19531,25
P4-3	54480,62	39663,62	39062,5
P4-4	51293,07	43950,9	78125
P4-5	137946,95	115027,34	156250

7

1250000 2500000 500000 312500 625000 156442,55 283856,84 591296,75 1,45E+06 3,52E+06 737661,44 174134,64 316505,78 1,42E+06 3,72E+06 P4-10 P4-8 P4-6 P4-9 P4-7

The results of the experiments show the possibility of accurately quantification of identifier oligonucleotides down to or even below 10 copies with a 9 fold dynamic range, and reliable relative quantification of the tested codons in various positions in the identifier oligonucleotide.

S

Example 5 - Codon analysis

Another possibility to analyse codons in identifier oligonucleotides is to use array format with attached probe oligonucleotides.

9

5

discrete binding on the microarray. Probe design is known in the art. Adaptors harboursigned. All the adaptors contain a probe binding sequence (20 nucleotides) that allows cleotide harbours the complementing codon sequence and the position directing framing one to three deletions in the spacing region were used as negative controls to en-Thus, the negative controls contain another framing sequence. The identifier oligonusure that only the framing region is responsible for the hybridization of the identifier. Six adaptors with the different anti-codon sequences in all three positions were de-

5

8

3'TTTGGTAGCTGAGTGCCCTAGGC<u>TGGGTTTGGGCGGTTGGGGGCTTGGGGGCTTTGGG</u>GCTTTGG 3' CTCATCGGAAGGGCTCGTAACGGTGGGTTTGGGGGCTTTGGGGGCGTGGGTTTGGGGCGT Adaptor oligonucleotides 8

3' TAACTGGTTTGACGCCACGCGCGTGGGTTTGGGGCGTGGGTTTGGG**CGG**TGGGTTTGGGGGGC

25

3'TAATTGAGCTGACGCGCACGCTGGCTTTGGCCGTGGGTTTGGGGCTGGGTTTGGGGGCG-5'

3' TGTTGCTACTCTGGCCCGAGGCTGGGTTTGGGCTGGGTTTGGGGCTGGGTTTGGGGCG-5'

WO 2004/074429

75

PCT/DK2004/000117

Biotin-5' GCCACCCAAACCCCCCG Identifier Oligonucleotide

S

exposed to 2 washes in 6xSSPE-T at 25°C followed by 12 washes in 0.5xSSPE-T at phycoerythrin conjugate, final concentration 2 μg/μl (Molecular Probes, Eugene, OR) in to 95°C for 5 min and subsequently cooled and maintained at 40°C for 5 min before loading onto the Affymetrix GenFlex probe array cartridge. The probe array was then buffer (100mM MES, 1 M NaCl, 20 mM EDTA, 0,01% Tween 20, 1x Denhardt's). The identifier hybridisation mix was heated to 95°C for 5 min and subsequently cooled and cartridge and hybridised for 2h at 45°C at constant rotation (60 rpm). The washing and staining procedure was performed in the Affymetrix Fluidics Station. The probe array was GenFlex hybridisation and scanning. Prior to hybridization, the Adaptor mix (100 pM final concentration for each of the adaptor oligonucleotides) in a hybridization buffer (100mM MES, 1 M NaCl, 20 mM EDTA, 0,01% Tween 20, 1x Denhardt s), was heated incubated for 2h at 45°C at constant rotation (60 rpm). The remaining Adaptor mix was removed from the GenFlex cartridge, and replaced with the identifier in a hybridization maintained at 40°C for 5 min before loading onto the Affymetrix GenFlex probe array The biotinylated Identifier oligonucleotIde was stained with a streptavidin-6xSSPE-T for 10 min at 25°C followed by 6 washes in 6xSSPE-T at 25°C.

2

The probe arrays were scanned at 560 nm using a confocal laser-scanning microscope G2500A). The readings from the quantitative scanning were analysed by the Affymetrix with an argon ion laser as the excitation source (Hewlett Packard GeneArray Scanner Gene Expression Analysis Software. The results are depicted in Scheme 1.

Scheme 1:

22

္က

tect codons with the correct framing region allowing distinguishing first of the right codon tinguish between the different probe oligonucleotides. The designed probes will only deframing regions reduces significantly the hybridization of the identifier. Thus, the framing the point in the reaction history when a given reaction of a chemical entity has occurred. The Array analysis shows that the codons including the framing regions are able to dissequence may be used to obtain information about the position of a specific codon and and secondly as to which position the codon is positioned. Only one deletion in both

2

The information obtained in this example using either QPCR or array codon analysis as QPCR analysis or the array analysis can directly be used to combine preferable chemiexample can be used to generate a new more focused library. The signal from the cal entities

9

EXAMPLE 6. Generation of a second-generation library.

5

The information obtained from a codon analysis performed according to the principles duced diversity. This example illustrates how sequence data can be utilized to make a described in Examples 4 or 5 can be utilized for assembly a new more focused library. Sequence information can also be used to design a second-generation library with remore focused library with the enriched chemical entities. Identical strategy can be based on the codon analysis methods described in Examples 4 or 5.

ឧ

WO 2004/074429

PCT/DK2004/000117

A 700-member library was generated composing of 4 x 25 x 7 chemical entities. The library generation protocol is described below with the sequence information and chemical entity structure.

General arrangement of each complex composed of display molecule and identifier oligonucleotide in the library generation:

ιΩ

Specific codons in each oligo (Ax, Bx, Cx) was used and can be designed by using a gonucleotide in each position is ligated with that attachment of the encoded chemical codon are allow to hybridize before the ligation step. The ligation of each codon olicomplementary oligonucleotides (e.g. oligo Ax and oligo ax) containing a particular specific nucleotide sequence for each chemical entity. In this particular setup, two entity.

9

Overview of the library generation procedure:

5

First round of library generation (round A):

8

"Pnt" corresponds to pentencyl - an amine protecting group. "R" can by any molecule fragment. The chemical used in library generation comprise a primary (shown) or a secondary amine.

PCT/DK2004/000117

~

Second round of library generation (round B):

Third round of library generation (round C)

General procedure: Library generation, selection and mismatch subsequent selection

9

First round of library generation (round A):

First oligonucleotides of the A series are each modified by adding to each type of oligo a small molecule building block (BB_Ax) to the 5' amine forming an amide bond. After this step the identifier is comprised of oligo Ax.

5

Second round of library generation (round B):

4 nmol of a mixture of different modified A oligos are then split into a number tubes corresponding to the number of different building blocks to be used in round B. 190 pmol Oligo a and 2 µl heering DNA is added to each tube and the DNA material in each tube is lyophilized. The lyophilized DNA is then redissolved in 50 µl water and purified by spining through Biospin P-6 columns (Biorad) equilibrated with water.

8

25 Addition of building block

WO 2004/074429

PCT/DK2004/000117

79

The DNA material in each tube is again lyophilized and redissolved in 2 µl 100 mM Naborate pH 8.0/100 mM sulfo N-hydroxy succinimide (sNHS). For each tube 10 µl building block BB_ex (100 mM sulfo N-hydroxy succinimide (sNHS). For each tube 10 µl building block BB_ex (100 mM in dimethyl sulfoxide [DMSO]) is preactivated by mixing with 10 µl 1-Ethyl-3-(3-dimethylaminopropyl)-carbodilmide (EDC) (90 mM in dimethylformamide [DMF]) and incubating at 30°C for 30 mln. 3 µl of this preactivated mixture is then mixed with the 2 µl in each tube and allowed to react 45 mln at 30 °C. Then an additional 3 µl freshly preactivated BB is added and the reaction is allowed to proceed for 45 min at 30 °C. The resulting mixture is then purified by spinning through Blo-Rad P6 DG (Desalting gel).

S)

Addition of codon oligonucleotide

5

The DNA material is then lyophilized and redissolved in 10 µl water containing 200 pmol oligo Bx (eg. B1) and the corresponding oligo bx (eg. b1). This is done so that the codon in oligo Bx identifies the BB_Bx added to the DNA identifier. 10 units of T4 DNA ligase (Promega) and 1.2 µl T4 DNA ligase buffer is then added to each tube and the mixture is incubated at 20°C for 1 hour. The DNAn Identifier linked to the small molecules now comprises an Ax oligo with a Bx oligo ligated to its 3° end. The reactions are then pooled, an appropiate volume of water is allowed to evaporate and the remaining sample is purified by spining through Blospin P-6 columns (Biorad) equilibrated with

5

Removal of building block protecting group

2

The pooled sample (~ 50 µl) is adjusted to 10 mM Na-acetate (pH 5). 0.25 volumes of 25 mM todine in tetrahydrofuran/water (1:1) is added and the sample is incubate at 37 °C for 2h. The reaction is then quenched by addition of 2 µl of 1M Na₂S₂O₃ and incubation at room temperature for 5 min. The complexes are then purified by spining through Biospin P-6 columns (Blorad) equilibrated with water

22

To remove sulphonamide protecting groups, the sample is adjusted to 50 µl 100 mM sodium borate pH 8.5 and 20 µl 500 mM 4-methoxy thiophenol (in acetonitrile) is added and the reaction is incubated at 25°C overnight. Then the complexes are purfed by spinning through Biospin P-6 columns (Biorad) equilibrated with water and then lyophilized.

ဓ

Third round of library generation (round C):

The samples are dissolved in 175 µl 100 mM Na-borate pH 8.0 and distributed into 25 wells (7 µl / well). 2 µl 100 mM BB_cx in water/DMSO and 1 µl of 250 mM DMT-MM is added to each reaction and incubated at 30 °C overnigth. Water is added to 50 µl and the reactions are then spin purified using Bio-Rad P6 DG (Desalting gel) and subsequently water is allowed to evaporate so that the final volume is 10 µl.

Addition of building block

9

S

The DNA material is then lyophilized and redissolved in 10 µl water containing 200 pmol oligo Cx (eg. C1) and the corresponding oligo cx (eg. c1). This is done so that the codon in oligo Cx corresponds to the BB_cx added to the DNA identifier. 10 units of 74 DNA ligase (Promega) and 1.2 µl 74 DNA ligase buffer is then added to each tube and incubated at 20°C for 1 hour. The DNAn identifier linked to the small molecules now comprises and Ax oligo with a Bx ligated to its 3' end and a Cx oligo ligated to the 3' end of the Bx oligo. The reactions are then pooled, the pooled sample volume is reduced by evaporation and the sample is purified by spining through Biospin P-6 columns (Biorad) equilibrated with water. The pooled sample (~50 µl) is adjusted to 10 mM Na-acetate (pH 5). 0.25 volumes of 25 mM lodine in tetrahydrofuran/water (1:1) is added and the sample is incubate at 37 °C for 2h. The reaction is then quenched by addition of 2 µl of 1M Na₂S₂O₃ and incubation at RT for 5 min. Then the DNA identifiers of carrying small molecules) are purified by spinning through Biospin P-6 columns (Biorad) equilibrated with water and then lyophilized.

5

Final deprotection step

8

Some building blocks contain methyl esters that are deprotected to acids by dissolving the pooled sample in 5 µl 20 mM NaOH, heating to 80 °C for 10 minutes and adding 5 µl of 20 mM HCI.

22

Final extension step

ജ

To ensure that the DNA identifiers are double stranded prior to selection oligo d is extended along the identifier by adding to the sample 10 µl of 5 X sequenase EX-buffer [100 mM Hepes, pH 7.5, 50 mM MgCl₂, 750 mM NaCl] and 4000 pmol oligo d. Annealing is performed by heating to 80°C and cooling to 20 °C. To the sample is then added 500 µL dNTP, water to 50 µl and 39 units of Sequenase version 2.0 (USB). The reaction is incubated at 37°C for 1 hour.

WO 2004/074429

PCT/DK2004/000117

₩

Selection

This library is subjected to selection, whereby binders to the selection target are enriched.

Maxisorp ELISA wells (NUNC A/S, Denmark) were coated with each 100 µL 2µg/mL

S

integrin aVβ3 in PBS buffer [2.8 mM NaH₂PO₄, 7.2 mM Na₂HPO₄, 0.15 M NaCl, pH 7.2] overnight at 4°C. Then the integrin solution was substituted for 200 µl blocking buffer [TBS, 0.05% Tween 20 (Sigma P-9416), 1% bovine serum alnumin (Sigma A-7030), 1 mM MnCl₂] which was left on for 3 hours at room temperature. Then the wells were washed 10 times with blocking buffer and the encoded library was added to the wells after diluting it 100 times with blocking buffer. Following 2 hours incubation at room temperature the wells were washed 10 times with blocking buffer. After the final wash the wells were cleared of wash buffer and subsequently inverted and exposed to UV light at 300-350 nm for 30 seconds using a trans-illuminator set at 70% power. Then 100 µl blocking buffer without Tween-20 was immediately added to each well, the wells

9

Cloning

2

were shaken for 30 seconds, and the solutions containing eluted identifiers were re-

noved for PCR amplification.

5

A TOPO-TA (Invitrogen) ligation reaction is assembled with 4 µl PCR product, 1 µl salt solution (Invitrogen) and 1 µl vector. Water is added to 6 µl. The reaction is then incubated at RT for 30 min. Heat-shock competent TOP10 E.coli cells are then thawed on ice and 5 µl of the ligation reaction is added to the thawed cells. The cells are then incubated 30 min on ice, heatshocked in 42°C water for 30 sec, and then put on ice again. 250 µl of growth medium is added to the cells and they are incubated 1 h at 37°C. The medium containing cells is then spread on a growth plate containing 100 µg / mi ampicillin and incubated at 37°C for 16 hours.

Sequencing

22

ဓ

35

Individual *E.coli* clones are then picked and transferred to PCR wells containing 50 µl water. These 50 µl were incubated at 94°C for 5 minutes and used in a 20 µl in a 25 µl PCR reaction with 5 pmol of each TOPO primer M13 forward & M13 reverse and Ready-To-Go PCR beads (Amersham Biosciences). The following PCR profile is used: 94°C 2 min, then 30 x (94°C 4 sec, 50°C 30 sec, 72°C 1 min) then 72°C 10 min. Primers and nucleotides are then degraded by adding 1 µl 1:1 EXO/SAP mixture (USB corp.) to 2 µl PCR product and incubating at 37°C for 15 min and then 80°C for 15 min

ဆ

to heat-inactivate the enzymes. 5 pmol T7 primer is added and water is added to 12 µl. added to each well. A thermocycling profile of 30 x (95°C 20 sec, 50°C 15 sec, 60°C 1 min) is then run. Then 10 µl water is added to each well and sequencing reactions are purified using seq96 spinplates (Amersham Biosciences). Reactions are then run on a parameters 2 kV, 50 sec and run parameters: 9 kV 45 min and analyzed using Contig MegaBace capillary electrophoresis instrument (Molecular Dynamics) using injection Then 8 µl DYEnamic ET cycle sequencing Terminator Mix (Applied biosystems) is Express software (Informax).

S

The chemical entities used in each position are shown below. 5

Position 1

Position 2

WO 2004/074429

Position 3

After the selection as described above, the codons in the identifier oligonucleotides were analysed. Before the analysis, the identifier oligonucleotides were amplified using the constant flanking regions and the amplified material was used in the identifier sequence analysis.

ຜ

WO 2004/074429

8

A sequence codon analysis of the selected codons showed a bias for specific chemical entities. They are listed in the table below. For instance, in position 1 chemical entity 98 was seem 47 times (out of 51 sequences, 92%, compare to 25% before the selection) and chemical entity 99 was seen 14 times (out 51 sequences, 27%, compare to 4%

5 before selection) and chemical entity 53 was seen 35 times (out of 51 sequences, 68%,

compare to 14% before selection).

The chemical entities listed in the table below can then be used to generate a new and more focused library.

Oligo(-s)	Count	pos 1	pos 2	pos 3
BB-A-000098	47.5	∞ 98		
BB-A-000282	4	282		
BBA0004242	Ø,		424	
BBA0004182	2		418	
BBA0001101	2			
BBA0003172	2			
BBA0004212	2			
BBA0004232	2			
BBA000064	1			
BBA0001011	1			
BBA0003132	١			
BBA0003142	1			
BBA0003152	1			
225 200	38			
BBA0001006	4			100
BBA0008512	2			
BBA0008312	-			

The new focused library with the selected chemical entities can be selected against the target and the outcome from the selection can be analysed. The most abundant binders will be the combination between the chemical entities 98-99-53 and the second most abundant binder is 98-158-53 as shown below.

Oligo(-e)	Count	pos 1	pos 2	pos 3
BB-A-000098 BBA000099 BBA0000531	11	86		in Section
BB-A-000098 BBA0001582 BBA0000531	7	86	128	188
BB-A-000098 BBA0004242 BBA0000531	4	86	424	10 ES
BB-A-000098 BBA0001582 BBA0001391	3	86	1089	139
BB-A-000098 BBA0004182 BBA0000531	3	86,	418	
BB-A-000098 BBA000099 BBA0001391	2	86		
BB-A-000098 BBA0001582 BBA0001008	2	86		100

riched chemical entities in a new library and perform another round of selection on the This example exemplifies the possibility to reduce the library diversity by using the enchosen chemical entities.

Example 7

'n.

The following experiment illustrates the principle of chemical entity (also termed buildng block herein) evolution through multiple rounds of library generation and selection. The experiment is not intended to limit the scope of the current invention.

9

the reaction of the following building block. Oligonucleotide 1 (Oligo1) carried an amine amine was protected by M-pentenoylation and deprotected by iodine treatment prior to gonucleotides are optionally derivatized by phosphorylation to allow ligation. Oligonu-Libraries were assembled by the combination of building blocks (BB) each of which functional group to allow reaction with the building block 1's carboxylic acid and olicleotide3 (oligo3) also comprised a primer region for PCR amplification. EDC/NHS, was encoded by an oligonucleotide (oligo). Some of the building blocks carried an amine functional group and a carboxylic acid functional group. The building block EDC/sulfoNHS or DMTMM was used as coupling reagents.

5

The following scheme describes the split and mix assembly of the libraries:

ឧ

- i.) n times [BB1 + Oligo1 → BB1-Oligo1] in separate wells
- Optionally purify product 22

WO 2004/074429

PCT/DK2004/000117

87

ii.) mix all n wells into one tube

iii.) split product of ii.) into m separate wells

iv.) m times [BB2 + BB1-Oligo1 + Oligo2 → BB2-BB1-Oligo1-Oligo2] in separate wells

* Optionally purify product

v.) mix all m wells into one tube 9 vi.) split product of v.) into p separate wells

vii.) p times [BB3 + BB2-BB1-Oligo1-Oligo2 + Oligo3 → BB3-BB2-BB1-Oligo1-Oligo2-

Oligo3] in separate wells

5

* Optionally purify product

viii.) mix all p wells into one tube

2

ix.) Selection was performed and binders isolated

x.) PCR of DNA and sequencing

xi.) Analyse for building block abundancy and full sequence information 22

Building block abundances analysis may be done by QPCR or by sequencing full sequences and then analyzing for the abundance of Individual building blocks. The following types of building blocks were used, wherein R describes a group which is varied for different building blocks: ဓ

Building block types used in position 1, 2 and 3

Building block types which were only used in position 3

The overall process leads to molecules of the following structure, where the oligonucleotide was double stranded.

Ω

N- (CHR), N- (CHR), N- (PEG-spacer)-Oigo1-Oilgo2-Oilgo3-Primer
R** R** R** A H αvβ3 Integrin receptor binding region Oligonucleotide

R = H or R (as indicated for building blocks) R" = H or R (as indicated for building blocks) R = H or R (as indicated for building blocks) n = 1-2

The oligonucleotide was made double stranded by the use of double stranded Oligo's 1, 2 and 3 with an overhang to allow ligation of both strands. 9

Summary of the experimental outcome:

Two libraries of 61,875 members (Library 1 and 2) were generated as described in ex-The libraries were generated with 99 different building blocks in position 1, 25 different ample 6 above and selected for binders of the Integrin $\alpha\nu\beta3$ receptor separately.

building blocks in position 2 and 25 different building blocks in position 3.

- The identified sequences were then analyzed for the abundances of building blocks at library of 1,365 members, which was selected for binders of the Integrin $\alpha\nu\beta3$ receptor. each position in the sequence. The most abundant building blocks at each position from the two libraries 1 and 2 were then used again to generate a new and smaller The library was generated with 7 different building blocks in position 1, 13 different building blocks in position 2 and 15 different building blocks in position 3. വ 9
- cleotide used to identify each building block may not necessarily be the same between in the tables below, each of the building block numbers identify one specific building same numbers are used for each building block in all libraries, however the oligonublock or in two instances (library 1) a mixture of three different building blocks. The libraries to avoid potential problems of cross contamination. 5

The following tables describes the codon sequences and corresponding building blocks used. The codon is only indicated for one of the strands.

Library 1, Position 1 ន

ID ID 1 TGTC BBA000035 2 CGAGC BBA000035 3 GGATA BBA000081 4 CGCTG BBA000081 5 GTTAT BBA000081 6 AGTGC BBA000081 7 ACCTG BBA000081 9 TAGGA BBA000081 9 TAGGA BBA000081 10 ACTCA BBA000081 11 CTTAC BBA000015 12 CGCAC BBA000015 13 TCGCG BBA000056	odon no.	Codon no. Codon sequence	Building Block
TGTTC CGAGC GGATA CGCTG GTTAT AGTGC AGTGC TGGA ACCTG TAGGA ACCTG TAGGA CTTAC TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA		Ω	<u>Q</u>
CGAGC GGATA CGCTG GTTAT AGTGC ACCTG CTGGT TAGGA TAGGA TAGGA TAGGA TAGGA TAGGA TGCGG TGGG TGGG TGGGG TGGGG TGGGG TGGGG TGGCG TGGCGC TGGCG TGGCG TGGCG TGGCG TGGCG TGGCG TGGCG TGGCGC TGGCG TGGCG TGGCG TGGCG TGGCG TGGCG TGGCG TGGCGC TGGCGCC TGGCCC TGGCCC TGGCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCC TGGCCCCC TGGCCCCC TGGCCCCC TGGCCCCC TGGCCCCC TGGCCCCC TGGCCCCC TGGCCCCCC TGGCCCCCC TGGCCCCCC TGCCCCCCCC TGCCCCCCC TGCCCCCCCC TGCCCCCCC TGCCCCCCCC		TGTTC	BBA000092
GGATA CGCTG GTTAT AGTGC ACCTG CTGGT TAGGA 0 ACTCA 1 CTTAC 2 CGCAC 3 TCGCG		CGAGC	BBA000354
CGCTG GTTAT AGTGC ACCTG CTGGT TAGGA 0 ACTCA 1 CTTAC 2 CGCAC 3 TCGCG		GGATA	BBA000085
6TTAT		сесте	BBA000086
AGTGC ACCTG CTGGT TAGGA 0 ACTCA 1 CTTAC 1 CGCAC 2 TGGCG		GTTAT	BBA000098
ACCTG CTGGT TAGGA ACTCA CTTAC CGCAC TCGCG		АGTGC	BBA000099
CTGGT TAGGA ACTCA CTTAC CGCAC TCGCG		АССТВ	BBA000089
TAGGA ACTCA CTTAC CGCAC TCGCG		стеет	BBA000090
ACTCA CTTAC CGCAC TCGCG		TAGGA	BBA000087
CGCAC TCGCG		ACTCA	BBA000088
CGCAC	1	CTTAC	BBA000153
TCGCG	2	CGCAC	BBA000154
_	9	TCGCG	BBA000059

																															٠						
						T										·	,						14,	<u>. </u>				e) y	_			1	_	_			
06	BBA000152	BBA000101	BBA000110	BBA000112	BBA000113	BBA000114	BBA000286	BBA000123	BBA000124	BBA000155	BBA000156	BBA000158	BBA000159	BBA000160	BBA000161	BBA000162	BBA000163	BBA000165	BBA000166	BBA000167	BBA000168	BBA000169	BBA000170	BBA000171	BBA000172	BBA000173	BBA000174	BBA000175	BBA000176	BBA000177	BBA000178	BBA000179	BBA000180	BBA000098	BBA000181	BBA000182	BBA000183
	CGGAT	GAGAT	TGTAG	стетт	AGATG	Атсст	ттест	ACGTA	ATCAC	ТАТСС	GGAAG	севтс	твстт	TTAGC	естел	GAACG	CATGG	ТБСТА	TCAAG	ATCGA	ATGCA	ACTAG	TACCT	TACGA	сттса	стстт	TCATC	ATTCC	CGACG	ccrGT	ссттс	ACACC	TAACA	TAACA	CCAGG	ATGTC	GAGGA
	14	15		17	18	19	20	21	22	23			58												88	æ	40			43	4	45	48	47		49	20

BBA000184	BBA000185	BBA000186	BBA000190	BBA000195	BBA000196	BBA000197	BBA000198	BBA000201	BBA000202	BBA000203	BBA000204	BBA000205	BBA000206	BBA000207	BBA000208	BBA000209	BBA000210	BBA000211	BBA000212	BBA000112	BBA000280	BBA000281	BBA000282	BBA000313	BBA000314	BBA000315	BBA000316	BBA000317	BBA000287	BBA000419	BBA000420	BBA000421	BBA000422	BBA000200	BBA000194
GGTCA	GACTT	GGTGG	CAACT	ATGAG	TCTGC	ATAGG	CTACC	AAGTG	TCCAA	GCTCT	GGAGT	AATCG	AAGCT	CCGAA	TTTGT	ссете	TTTCG	TGAGG	сттес	AACTA	AACTA	сстсе	AGCAA	TTCCA	AGACT	AGGTT	GCGTC	AACGT	CAAGA	AGAGA	GTACT	TAGAG	ACGAT	GACCA	TCGTT
5.	25	53	28	55	95	25	28	69	09	61	62	83	2	98	98	29	89	69	92	71	72	73	74	75	76	11	78	79	8	18	82	8			86

											
BBA000428	BBA000199	BBA000187	BBA000191	BBA000284	BBA000458	BBA000459	BBA000461	OBA000610	OBA000611	OBA000609	OBA000615
CAGCA	TAGTC	бесте	CTCAG	AGAAC	GCGAG	GATGT	TCACT	CGTCT	AGCTC	CACTC	САСТТ
88	68	06	91	92	93	8	95	96	26	88	66

Library 1, Position 2

Codon	Codon sequence ID	Building Block ID
ē.		
-	AGTACGAACGTGCATCAGAG	BBA000098
2	TAGTCTCCTCCACTTCCATG	BBA000099
3	TACATCGTTCCAGACTACCG	BBA000085
4	TCCAGTGCAAGACTGAACAG	BBA000153
5	AGCATCACTACTCTGG	BBA000206
9	TCTTGTCAACCTTCCATGCG	BBA000200
7	AAGGACGTTCCTAGTAGGTG	BBA000208
80	GGAACCATCAAGATCCTGAG	BBA000091
6	ATCTCTGACGAGATCCAAGG	BBA000090
10	тславеттестестете	BBA000092
11	тселеттеттестсе	BBA000123
12	CTGAGTGTGTAGTACCAACG	BBA000156
13	Атсттееттетстесе	BBA000163
14	TAGTAGCTTGGAGTAGACCG	BBA000197
15	TTCACTCCATGCAGCATGTG	BBA000083
16	ACGATGGTGATCGATCAACG	BBA000181
17	TTCAGTGCTTGAGCTACCTG	BBA000152
18	TTGGACTCTTCTTGCACCAG	BBA000088
19	TCAACCAACTGGTTCTTGGG	BBA000100

•		
	2	ı
	¢	
	٥	
	•	
	200	
	000	
	000	
	0001100110	
	001110	
	00112011001	
	000 1 200 1 000	
	000 1 200 1 000 1	
	20000	
	20000	

83

TAGTACTCTACACTGCTGCG BBA00087/101/196 TACACCATGACTTGCAGACG BBA00087/101/198 GCATCTTGAGTGGTTGAACG BBA000159 GACTCATCTGGAGTTG BBA000124 TCCAACTTCTAGGAAGACAG BBA000160

Library 1, Position 3

Codon	Codon sequence ID	Building Block
по.		<u>Q</u>
-	CGAGCAGGACCTGGAACCTGGTGC	BBA000098
2	CTCGACCACTGCAGGTGGAGCTCC	BBA000099
9	CGTGCTTCCTCTGCTGCACCACCG	BBA000085
4	CCTGGTGTCGAGGTGAGCAGCAGC	BBA000153
2	CTCGACGAGGTCCATCCTGGTCGC	BBA000206
9	CGTGAGGAGGTCCTCCTGTCG	BBA000200
7	CCTGACACTGGTCGTGGTCGAGGC	BBA000208
80	CCATCTCGACGACCTGCTCCTGGG	BBA000091
6	CCACGAGGTCTCCACTGGTCCAGG	BBA000090
9	CCACTGAGCTGCTCCTCCAGGTGG	BBA000092
11	CCTCCTGTCCTGCACGTCCATCCG	BBA000123
12	CAGCACCTGGAGGTAGGACCACGG	BBA000156
13	CGACCAGACGAGGACCAGGTAGGC	BBA000163
14	CCAGGTTCGAGGACCTCGTCAGCC	BBA000197
15	CGAGCACGAGGAGCACGTGTCCAG	BBA000100
16	CCACGTCCACAGGTGCACCAGGTG	BBA000181
11	CCTGGTGCTCCACGACGTGCTTCG	BBA000152
18	CACGTGACGACCTGGTCAGGTGGG	BBA000088
19	CGTAGCTCGTGCTGGTCCTCCTGG	BBA000101
50	CGACGACCACCTTGGACACCC	BBA000196
21	CCTACGTCGTGCTCACGTCCTGCC	BBA00087
22	CGACGACAGCTAGGAGGAGGTGGG	BBA000083
23	CTGGTGGAGCTGCACGAGCACAGC	BBA000059
24	CAGGACTGGACGACCAGGTCG	BBA000124
52	CGATGCTGCAGACGACCAGCACCC	BBA000160

lbrary 2,	Library 2, Position 1		
Codon no.	Codon sequence	Building Block	
	٥	۵	
	теттс	BBA000092	
2 .	CGAGC	BBA000354	
3	GGATA	BBA000085	
4	сесте	BBA000086	. •
5	GTTAT	BBA000098	
9	AGTGC	BBA000099	
7	ACCTG	BBA000089	
8	стеет	BBA000090	
6	TAGGA	BBA000087	
10	ACTCA	BBA000088	
=	сттас	BBA000153	
12	CGCAC	BBA000154	
13	TCGCG	BBA000059	
14	CGGAT	BBA000152	
15	GAGAT	BBA000101	
16	TGTAG	BBA000110	
17	стст	BBA000112	
18	AGATG	BBA000113	
19	ATCCT	BBA000114	
22	TTGCT	BBA000286	
21	ACGTA	BBA000123	
22	ATCAC	BBA000124	
23	TATCC	BBA000155	
24	GGAAG	BBA000156	
25	севтс	BBA000158	
26	тест	BBA000159	
27	TTAGC	BBA000160	
28	GCTGA	BBA000161	
58	GAACG	BBA000162	
30	CATGG	BBA000163	
31	теета	BBA000165	

BBA000181
BBA000182
BBA000183
BBA000184
BBA000185

GAGGA

ATGTC

BBA000186 BBA000180 BBA000195 BBA000198

GGTGG

ATGAG TCTGC ATAGG CTACC

GACTT

BBA000198

BBA000201

AAGTG

TCCAA

BBA000197

BBA000202

BBA000203

BBA000204 BBA000205 BBA000206

GGAGT

GCTCT

BBA000208

BBA000207

CCGAA

AAGCT

BBA000209

BBA000210

•

95

BBA000166

TCAAG

BBA000171 BBA000172 BBA000173

BBA000169

BBA000168

ATGCA ACTAG TACCT TACGA CTTCA

BBA000170

BBA000174

TCATC

СТСТТ

ATTCC

BBA000175

BBA000176 BBA000177

CGACG

CCTGT CCTTC

BBA000178 BBA000179

ACACC

TAACA

BBA000180 BBA000098

CCAGG

BBA000211	BBA000212	BBA000112	BBA000280	BBA000281	BBA000282	BBA000313	BBA000314	BBA000315	BBA000316	BBA000317	BBA000287	BBA000419	BBA000420	BBA000421	BBA000422	BBA000200	BBA000194	BBA000427	BBA000428	BBA000199	BBA000187	BBA000191	BBA000284	BBA000458	BBA000459	BBA000461	OBA000610	OBA000611	OBA000609	OBA000615
TGAGG	еттес	AACTA	AACTA	сстсе	AGCAA	TTCCA	AGACT	AGGTT	осетс	AACGT	CAAGA	AGAGA	GTACT	TAGAG	ACGAT	GACCA	тсетт	втстс	CAGCA	TAGTC	GGGTG	CTCAG	AGAAC	GCGAG	GATGT	TCACT	сетст	AGCTC	CACTC	CAGTT
69	02	74	72	73	74	75	76	11	78	79	8	84	82	83	22	85	88	87	88	68	06	91	85	83	2	92	88	97	88	66

Library 2, Position 2

Building Block	<u> </u>
Codon sequence ID	•
Codon	<u>.</u>

WO 2004/074429

97

PCT/DK2004/000117

2 TAGTCTCCTCCATC BBA000085 3 TACATCGTTCCAGACTACG BBA000088 4 TCCAGTGCAAGACTACG BBA000010 5 AGCATCACTACTCTCTCTGG BBA000110 7 AAGGACGTCCTAGTAGGTG BBA000114 9 ATCTCTGACGAGATCCTAGG BBA000123 10 TCAAGGTTGATGCTAGG BBA000124 11 TCGAACTTGATGCTCAGG BBA000156 13 ATCTTGGTTGTTGCTCCTGG BBA000160 14 TCGAACTTGGTGCTCAGG BBA000161 15 TTCACTCCATGCAGCAGG BBA000161 16 ACGATGGTGATCGATCAGG BBA000181 16 ACGATGGTGATCGATCACG BBA000181 17 TTCACTCCATGCACCACG BBA000181 17 TCAGCATGGTGATCGATCACG BBA000314 20 TAGTACTTCTTGAGCTACCTGG BBA000316 21 TAGTACTCTACACTGCTGG BBA000317 22 GCATCTTGAGGACTTGAACG BBA000317 23 GCATCTTGAGGAGTGG BBA000317 24 TAGAGGATTGAGGGTTGAACG BBA000317 <	-	AGTACGAACGTGCATCAGAG	BBA000059
TACATGGTTCCAGACTACGG TCCAGTGCAACAGG TCCAGTGCAACAGG AGCATCACTACTCTGTGGG TCTTGTCAACCTTCCTGGG AGCATCACTACTCTGTGGG AGCACCATCAAGATCCTGAGG ATCTCTGACGAGTTCCTGAG ATCTCTGACGAGTTCCTGGG TCAAGTTGTTGCTTCCTGG TCAAGTTGTTGCTTCCTGG TCAAGTTGTTGCTTCCTGG TTCAACTTGTTGCTTCCTGG TTCAGTGTTGGAGTACACG TTCAGTGTTGGAGTACACG TTCAGTGTTGGAGTACACG TTCAGTGCTTGAGTCAACG TTCAGTGCTTGAGCTACGGG TAGTACTCTTGCACCAGG TTCAGTCTTTGCACCAGG TAGTACTCTACACTGGTTGGG TAGTACTCTACACTGCTTGGG TAGTACTCTACACTGCTTGGG TAGTACTTCTACACTGCAGGG TAGTACTTCTACACTGCTTGGG TAGTACTTCTACACTGCAGGG TAGTACTTCTACACTGCAGGGTTG TCCAGCTTCTAGAGAGGGG TCCAGCTTCTAGAGAGAGGG TCCATCTCAGGAGAGAGGG TCCATCTCAGGAGAGAGGG TCTTTGAGTGCATTGGAACAGG	2	TAGTCTCCTCCACTTCCATG	BBA000085
TCCAGTGCAAGACTGAACAG AGCATCACTACTCTCTGG TCTTGTCAACCTTCCATGGG AGGACCATCCATGCTGGGTG GGAACCATCAGAGATCCTGAG ATCTCGACGTTGGTTGCTTCCTGG TCGAACTTGTTGCTTCCTCGG TCGAACTTGTTGCTTCCTCGG TCGAACTTGTTGCTTCCTCGG TTCAGTGTTGTTCTCCTCGG TTCAGTGTTGTTGCTTCCTGGG TTCAGTGTTGAGTCACCAGG TTCAGTGTTGATCCATGGGTGG TTCAGTGCTTGAGTCGATCGG TTCAGTGCTTGAGTCGATCGG TTCAGTCCTTGAGTCGTTCTGGG TTCAGTCCTTGAGTCTTGGGG TTCAGTCCTTGAGTCTTTGGG TTCAGTCCTTCACACTGGGG TTCAGTCCTTACACTGGGTGG TCAGCCATGGTTCTTGGGG TAGTACTTCTACACTGGAGGGG GACTCTTCAGTGGTTGAGCG TCCAGCTTCTACAGTGGTTG TCCAGCTTCTAGAGAGGAGG TCCAGCTTCTAGAGAGGAGG TCCAGCTTCTAGAGAGAGAGG TCCAGCTTCTAGAGAGACAGG TCCAGCTTCTAGAGAGAGAGG TCCTTTCAGAGACACTAGCAGG TCTTTCAGAGAGACAGG TCTTTTGAGTGCACTAGCAGG TCTTTTTCAGTGCACTAGCAGG TCTTTTCAGTGCACTAGCAGG TCTTTTCAGTGCACTAGCAGG TCTTTTCAGTGCACTAGCAGG TCTTTTCAGTGCACTAGCAGG TCTTTTCAGTGCACTAGCAGG TCTTTTCAGTGCACTAGCAGG TCTTTTCAGTGCACTAGCAGG TCTTTTTCAGTGCACTAGCAGG TCTTTTTCAGTCACTAGCAGG TCTTTTCAGTCACTAGCAGG TCTTTTCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	6	TACATCGTTCCAGACTACCG	BBA000098
AGCATCACTACTGTCTGG TCTTGTCAACCTTCCATGCG AAGGACGTTCCTAGTAGGTG GGAACCATCAGAGATCCTGAG ATCTCTGACGAGATCCTGAG TCAAGGTTGGTGGTGTACTG TCAAGGTTGGTTGTACCAGG TTCATCTCATGCATCCTGG TTCACTCCATGCATCCTGG TTCACTCCATGCATCACG TTCACTCCATGCATCGATCGG TTCACTCCATGCATCGATCGG TTCACTCCATGCATCGACG TTCACTCCATGCATCGACG TTGACTCTTGACTTGGG TTGACCTTCATGCATCGGG TAGTACTTTGAGTCTTGGGG TAGTACTTCTACACTGCGG TAGTACTCTACACTGGTTCAGGG GACTCATCTCAGGAGTTG TCCAGCTTTGAGTCGTTGAGCG GACTCATCTCAGGAGTTG TCCAGCTTCTAGGAGTTG TCCAGCTTCTAGGAGTTG TCCAGCTTCTAGGAGAGAGGG TCCAGCTTCTAGGAGAGAGAGGG TCCAGCTTCTAGGAGAGAGAGGG TCCAGCTTCTAGGAGAGAGAGGG TCCAGCTTCTAGGAGAGAGAGAGAGAGAGAGAGAGAGAGA	4	TCCAGTGCAAGACTGAACAG	BBA000099
TCTTGTCAACCTTCCATGCG AAGGACGTTCCTAGTGGTG GGAACCATCAAGATCCTGAG TCAAGGTTGGTGGTGTTACTG TCAAGGTTGTTGCTCCCTCG TCAAGGTTGTTGTTCCTCCCG TAGTAGCTTGGAGTGATCCACG TAGTAGCTTGGAGTGATCCACG TTCACTCCATGCATCCATCGCTG TTCAGTGCTTGAGTCACCG TTCAGTGCTTGAGTCACCG TTGACTCTTCTTGCACCG TTGACTCTTTTTCCACCCG TTGACTCTTTTTCCACCCG TAGTACTCTTTTTCCACCCG TAGTACTCTTACACCCTCG TAGTACTCTTACACCCTCGC TAGTACTCTTCACCTCCCCG TAGTACTCTTACACCCTCCCCG TAGTACTCTTACACCTCCTCCCC TAGTACTCTTACACCTCCTCCCCC TAGTACTCTTCACCTCCTCCCCCC TACCCCATCTCACCTCCTCCCCCCC TACCCCATCTCACCTCCCTC	2	AGCATCACTACTCTGG	BBA000101
AAGGACGTTCCTAGTAGGTG GGAACCATCCAGAGATCCTGAG ATCTCTGACGAGATCCTGAG TCAAGGTTGGTGGTGTACTG TCGAGTTGGTGTGTCCTCG TCGAGTGTGTTGTTCCTCGG TCGAGTGTGTTGTTCCTCGG TTCACTCCATGCAGCATGG TTCACTCCATGCAGCATGG TTCAGTGGTTGAGTCACGG TTCAGTGGTTGAGTCACGG TTCAGTGCTTCTTGCACCGG TTCAGTCCTTCTTGCACCGG TTCAGTCCTTCTTGCACCGG TAGTACTTTGAGTCTTGCAGG TAGTACTTTGAGTCTTGCAGG GCATCTTGAGTCGTTGAGCG GAGTCATCTCAGGAGTTG TCCAGCTTTGAGAGTCGTTGAGCG TACACCATCTCAGGAGTTG TCCAGCTTTGAGAGAGAGGG TCCATCTCAGGAGTTG TCCAGCTTCTAGGAGAGAGAG	9	TCTTGTCAACCTTCCATGCG	BBA000110
GGAACCATCAAGATCCTGAG ATCTCTGACGAGATCCAAGG TCAAGGTTGGTGTACTGC TCGAACTTGTTGCTTCCTCGC ATCTTGGTTGTTCTCCTCGC TAGTAGCTTGGAGAGACCG TAGTAGCTTGGAGAGACCG TTCACTCCATGCAGCATCGACCG TTCACTCCATGCATCGACCGC TTCACTCCATGCATCAACG TTCACTCCATGCATCAACG TTCACTCATGCATCAACG TTCACTCTACACTCTCGCG TAGTACTTTGAGCTTTGGGC TAGTACTTTGAGCTTCGCGCG TAGTACTTCTACACTGCAGCC GCATCTTGAGTCGTTGAACG GCATCTTGAGTCGTTGAACG TCCAGCTTCTACACTGGAGTTC TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACG TCCAGCTTCTAGAACACACG TCCAGCTTCTAGAACACACG TCCAGCTTCTAGAACACACG TCCAGCTTCTAGAACACACG TCCAGCTTCTAGAACACACACACACACACACACACACACA	7	AAGGACGTTCCTAGTAGGTG	BBA000113
ATCTCTGACGAGATCCAAGG TCAAGGTTGGTGGTGTACTG TCGAACTTGTTGCTTCCTCG TTGAACTTGGTTGTTCCTCGC TTGATGGTTGGTGAGACCG TTCACTCCATGCACGATGGCATGTG TTCACTCCATGCATCACG TTCACTCCATGCATCACG TTCACTCCATGCATCACG TTCAGTCTTTGCACCAG TTCACCCATGCTTCGAGCTG TTCACCCATGCTTCGAGCTG TAGTACTCTTACACTGCACG GCATCTTGAGTTCTTCCACGC TAGCCATCATCACTGCAGCG GCATCTTGAGTTCTTCACGCG TAGCCATCATCACTGCAGCG GCATCTTGAGTTCTTCACGAGCG TCAGCTTCTACACTGCAGCG TCACCATCACTGCAGAGACG TCCAGCTTCTAGAGAGACAG TCCAGCTTCTAGAGAGACAG TCCAGCTTCTAGAGAGACAG	8	GGAACCATCAAGATCCTGAG	BBA000114
TCAAGGTTGGTGGTGTATGCTG TCGAACTTGTTGCTTCCTCGG CTGAGTGTGTAGTACCAACG ATCTTGGTTGTTCTCCTGCG TTCACTCCATGCATCACTCGTG TTCACTCCATGCATCATCACG TTCACTCCATGCATCACCG TTCACTCCATGCATCACCG TTCACTCCATGCATCACCG TTCACTCCTTCTTGCACCTG TTGACTCTTCACTCTTGGG TAGTACTTTGAGTTCTTGGG TAGTACTTCTACACTGCTTCGGG GACTCTTCACTCTACAGGGTTG TCAGCCATCTCACTGGAGTTG TCAGCCTTCACTGGAGTTG TCAGCTTCTAGGAGTTG TCAGCTTCTAGGAGTTG TCAGCTTCTAGGAGTTG TCAGCTTCTAGGAGTTG TCAGCTTCTAGGAGAGAGGG TCATCTTCAGGAGAGAGGG TCTTTCAGGTTCTAGGAGAGAGGG TCCATCTTCAGGAGAGAGAGGG TCCATCTTCAGGAGAGAGAGGG TCCATCTTCAGGAGAGAGAGGG	മ	ATCTCTGACGAGATCCAAGG	BBA000123
TCGAACTTGTTGCTCGTCG CTGAGTGTGTAGTACCAACG ATCTTGGTTGTTCCTCCCGCG TAGTAGCTTGCAGCATGTG TTCACTCCATCGAGCATGTG ACGATGGTGATCGATCACCG TTCAGTGCTTGAGCTACCTG TTGACTCTTCTTGCACCAG TTGACTCTTCTTGCACCG TAGTACTCTACACTCTCGCG TAGTACTCTACACTCTCGCG TAGTACTTGAGCTTCTGCG GACTCATCCTCAGCAGTTG TCCAGCTTCTAGGAGTTG TCCAGCTTCTAGGAGTTG TCCAGCTTCTAGGAGGAGG CTTCTTGAGTGCATTGAGGAGTTG TCCAGCTTCTAGGAGGAGGG CTTCTTGAGTGCATGCAGGGGG TCCATCTCTAGGAGGAGGG	10	TCAAGGTTGGTGGTGTACTG	BBA000124
TGAGTGTGTAGTACCAAGG ATCTTGGTTGTTCTCCTGCG TAGTAGCTTGGAGTAGCCG TTCACTCCATGCAGCATGTG ACGATGGTGATCGATCACG TTCAGTGCTTGAGCTACCG TTGAGCTTTCTTGCACCG TGACCAACTGGTTCTTGGG TAGTACTTTCACCTTCTTGGC TAGTACTTTGAGTCTTCAGACG GACTCATCTCAGGAGTTG TCCAGCTTCTAGGAGTTG GACTCATCTCAGGAGTTG TCCAGCTTCTAGGAGTTG TCCAGCTTCTAGGAGTTG TCCAGCTTCTAGGAGAGAGG TCCAGCTTCTAGGAGAGAGG	11	TCGAACTTGTTGCTTCCTCG	BBA000152
ATCTTGGTTGTTCCCTGCG TAGTAGCTTGAGTAGACCG TTCACTCCATGCAGCATGTG ACGATGGTGATCGATCACG TTCAGTGGTGATCGATCACG TTCAGTCTTCTTGCACCAG TCAACCAACTGGTTCTTGGG TAGTACTCTACACTGCTGGG TAGTACTTGAGTCGTTGAGCG GCATCTTGAGTCGTTGAGCG GCATCTTGAGTCGTTGAGCG GCATCTTGAGTCGTTGAGCG TCCAGCTTCTAGGAGTTG TCCAGCTTCTAGGAGGAGT TCCAGCTTCTAGGAAGACAG TCCAGCTTCTAGGAAGACAG TCCAGCTTCTAGGAAGACAG	12	CTGAGTGTGTAGTACCAACG	BBA000158
TAGTAGCTTGGAGTAGACCG TTCACTCCATGCAGCATGTG ACGATGGTGATCGATCAACG TTCAGTGCTTGAGCTACCTG TTCAGTCCTTCTTGCACCAG TTCACCAACTGGTTCTTGGG TAGTACTCTACACTGCTCTGGG TAGTACTCTACACTGCAGCG GCATCTTGAGTCGTTGAACG GCATCTTGAGTCGTTGAACG GCATCTTGAGTCGTTGAACG GCATCTTGAGTTCTTGAACG CTTCTTGAGTTCTTGAACG CTTCTTGAGTTCTTGAACG	13	АТСТТВЕТТВТСТССТВСВ	BBA000160
TTCACTCCATGCAGCATGTG ACGATGGTGATCGATCAACG TTCAGTGCTTGAGCTACCTG TTGGACTCTTGCACCAG TCAACCAACTGGTTTGGGG TAGTACTCTACACTGCTGCG TAGTACTCTACACTGCAGCG GCATCTTGAGTCGTTGAACG GCATCTTGAGTCGTTGAACG GACTCATCTCACTGGAGTTG TCCAGCTTCTAGGAGACAG CTTCTTGAGTGCATTGCAGCAGC CTTCTTGAGTGCATTGCAGCAGC	4	TAGTAGCTTGGAGTAGACCG	BBA000161
ACGATGGTGATCGATCAGG TTCAGTGCTTGAGCTACCTG TTGGACTCTTCTTGCACCAG TCACCAACTGGTTCTTGGG TAGTACTCTACACTGCTGCG TACACCATGAGTTCTTGCAGG GACTCATCTCAGGAGTTG TCAGCATCTTGAGGTTGAACG GACTCATCTCAGGAGTTG TCCAGCTTTTGAGAGTTG TCCAGCTTCTAGGAAGACAG CTTCTTGAGTTGCAGGAGTTG TCCAGCTTCTAGGAAGACAG	15	TTCACTCCATGCAGCATGTG	BBA000167
TTCAGTGCTTGAGCTACCTG TTGGACTCTTCTTGCACCAG TCAACCAACTGGTTCTTGGG TAGTACTCTACACTGCTGCG TACACCATGACTTGCAGACG GCATCTTGAGTCGTTGAACG GACTCATCTCACTGGAGTTG TCCAGCTTCTAGGAAGACAG TCCAGCTTCTAGGAAGACAG TCCAGCTTCTAGGAAGACAG	16	ACGATGGTGATCGATCAACG	BBA000176
TTGGACTCTTCTTGCACCAG TCAACCAACTGGTTCTTGGG TAGTACTCTACACTGCTGCG TACACCATGACTTGCAGACG GCATCTTGAGTCGTTGAACG GACTCATCTACACTGGAGTTG TCCAGCTTCTAGGAAGACAG CTTCTTGAGTGCACTAGCAGG CTTCTTGAGTGCACTAGCAGG	17	TTCAGTGCTTGAGCTACCTG	BBA000181
TCAACCAACTGGTTCTTGGG TAGTACTCTACACTGCTGCG TACACCATGACTTGCAGACG GCATCTTGAGTCGTTGAACG GACTCATCTCACTGGAGTTG TCCAGCTTCTAGGAAGACAG CTTCTTGAGTCGTTGGAGGCGG CTTCTTGAGTCGTTGAACAG	18	TTGGACTCTTCTTGCACCAG	BBA000313
TAGTACTCTACACTGCGGG TACACCATGACTTGCAGACG GCATCTTGAGTCGTTGAACG GACTCATCTCACTGGAGTTG TCCAGCTTCTAGGAAGACAG TCCAGCTTCTAGGAAGACAG CTTCTTGAGTGCACTAGCAG	19	TCAACCAACTGGTTCTTGGG	BBA000314
TACACCATGACȚTGCAGACG GCATCTTGAGTCGTTGAACG GACTCATCTCACTGGAGTTG TCCAGCTTCTAGGAAGACAG CTTCTTGAGTGAGACAG	8	TAGTACTCTACACTGCTGCG	BBA000315
GCATCTTGAGTCGTTGAACG GACTCATCTCACTGGAGTTG TCCAGCTTCTAGGAAGACAG CTTCTTGAGTGCACTAGCAG	21	TACACCATGACTTGCAGACG	BBA000316
GACTCATCTCACTGGAGTTG TCCAGCTTCTAGGAAGACAG CTTCTTGAGTGCACTAGCAG	22	GCATCTTGAGTCGTTGAACG	BBA0003:17
TCCAGCTTCTAGGAAGACAG CTTCTTGAGTGCACTAGCAG	23	GACTCATCTCACTGGAGTTG	BBA000420
CTTCTTGAGTGCACTAGCAG	24	TCCAGCTTCTAGGAAGACAG	BBA000421
	25	CTTCTTGAGTGCACTAGCAG	BBA000422

Library 2, Position 3

no. ID 1 CGAGCAGGACCTGGAACCTGGTGC BBA000052 2 CTCGACCACTGCAGGTGGAGCTCC BBA000053 3 CGTGCTTCCTCTGCTGCACCACCACC BBA000054 4 CCTGGTGTCAGGTGAGCAGCC BBA000056 5 CTCGACGAGGTCCATCCTGGTCG BBA000057 6 CGTGAGGAGGAGCTCCTTCTTCG BBA000058	Codon	Codon sequence ID	Building Block
 	9		<u>Q</u>
 	-	CGAGCAGGACCTGGAACCTGGTGC	BBA000052
1 1 1-1	2	CTCGACCACTGCAGGTGGAGCTCC	BBA000053
	8	CGTGCTTCCTCTGCTGCACCG	BBA000054
	4	CCTGGTGTCGAGGTGAGCAGCAGC	BBA000058
	ស	CTCGACGAGGTCCATCCTGGTCGC	BBA000057
	9	CGTGAGGAGCAGGTCCTCCTGTCG	BBA000058

86

_																		
BBA000062	BBA000139	BBA000140	BBA000100	BBA000059	BBA000085	BBA000098	BBA000099	BBA000101	BBA000110	BBA000113	BBA000114	BBA000123	BBA000124	BBA000152	BBA000158	BBA000160	BBA000161	BBA000167
CCTGACACTGGTCGTGGTCGAGGC	CCATCTCGACGACCTGCTCGGG	CCACGAGGTCTCCACTGGTCCAGG	CCACTGAGCTGCTCCTCCAGGTGG	CCTCCTGTCCTGCACGTCCATCCG	CAGCACCTGGAGGTAGGACCACGG	CGACCAGACGAGGACCAGGTAGGC	CCAGGTTCGAGGACCTCGTCAGCC	CGAGCACGAGGAGCACGTGTCCAG	CCACGTCCACAGGTGCACCAGGTG	CCTGGTGCTCCACGACGTGCTTCG	CACGTGACGACCTGGTCAGGTGGG	CGTAGCTCGTGCTGGTCCTCCTGG	CGACGACCACCTTGGACACCC	CCTACGTCGTGCTCACGTCCTGCC	CGACGACAGCTAGGAGGAGGTGGG	CTGGTGGAGCTGCACGAGCACAGC	CAGGACTGGACGACCAGGTCG	CGATGCTGCAGACGACCAGCACCC
7	8	6	10	=	12	13	4	15	16	17	18	19 .	20	21	22	23	24	25

Library 3, Position 1

	Codon sequence Building Block		More abundant in position 1
Codon no. ID	Ω.	2	In library no.
-	теттс	BBA000092	
2	ACTCA	BBA000088	-
3	CTTAC	BBA000153	1 and 2
4	CGGAT	BBA000152	-
5	ATTCC	BBA000175	1 and 2
9	GTCTC	BBA000427	1
7	ACAGT	BBA000098	1 and 2

Library 3, Position 2

More abundant in in positio	
Building Block ID	
o. Codon sequence ID	
Codon ne	

WO 2004/074429

PCT/DK2004/000117

66

			2 in library no.
÷	6CACAAGTACGAACGTGCATCAGAG BBA000059	BA000059	_
2	6CACATAGTCTCCTCCACTTCCATG BBA000083	BA000083	-
3	6CACATACATCGTTCCAGACTACCG BBA000085	BA000085	2
4	6CACATCCAGTGCAAGACTGAACAG BBA000088	BA000088	_
2	6CACAAGCATCACTCTGTCTGG BBA000090	BA000090	
9	6CACATCTTGTCAACCTTCCATGCG BBA000089	BA000099	1 and 2
7	6CACAAAGGACGTTCCTAGTAGGTG BBA000110	BA000110	
æ	6CACAGGAACCATCAAGATCCTGAG BBA000114	BA000114	2
6	6CACAATCTCTGACGAGATCCAAGG BBA000152	BA000152	2
10	6CACATCAAGGTTGGTGGTGTACTG BBA000160	BA000160	2
11	6CACATCGAACTTGTTGCTTCCTCG BBA000200	BA000200	-
12	BCACACTGAGTGTGTAGTACCAACG BBA000201	BA000201	
13	6CACAATCTTGGTTGTTCTCCTGCG BBA000422	BA000422	2

Library 3, Position 3

			More
			abunda
			n in pc
Codon		Building Block	flon 3 i
<u>6</u>	Codon sequence ID	<u> </u>	library
-	ваваасвавсаваасствеатвстветсетссассасетстссв	BBA000053	2
2	BAGGACTCGACCACTGCAGGTGGAGCTCCGTTCCTCCACCACGTCTCCG	BBA000085	_
က	BAGGACGTGCTTCCTCTGCTGCACCGGTTCCTCCACCACGTCTCCG	BBA000087	-
4	BAGGACCTGGTGTCGAGGTGAGCAGCGTTCCTCCACCACGTCTCCG	BBA000090	-
rD.	8AGGACTCGACGAGGTCCATCCTGGTCGCGTTCCTCCACCACGTCTCCG	BBA000091	-
ဖ	BAGGACGTGAGGAGCAGGTCCTCTGTCGGTTCCTCCACCACGTCTCCG	BBA000098	1
7	8AGGACCTGACACTGGTCGTCGAGGCGTTCCTCCACCACGTCTCCG	BBA000100	1 and 2
ω	BAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTCCACCACGTCTCCG	BBA000139	2
6	BAGGACCACGAGGTCTCCACTGGTCCAGGGTTCCTCCACCACGTCTCCG	BBA000140	7
9	8AGGACCACTGAGGTGCTCCTCCAGGTGGGTTCCTCCACCACGTCTCCG	BBA000152	
=	BAGGACCTCCTGTCCTGCACGTCCATCCGGTTCCTCCACCACGTCTCCG	BBA000153	-
12	BAGGACACCTGGAGGTAGGACCACGGGTTCCTCCACCACGTCTCCG	BBA000161	
5	BAGGACGACCAGACGAGGACCAGGTAGCGTTCCTCCACCACGTCTCCG	BBA000167	2
14	6AGGACCAGGTTCGAGGACCTCGTCAGCCGTTCCTCCACCACGTCTCCG	BBA000197	-

100

GOCAGCACTAGATCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTTCGACTGANCTGCCTCCTGTGGGC GOCAGCOGGATCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTC GGCAGCAGTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCACGACTACCTTGGCTCCCTGGGGTTC **GOCAGCCGGATCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTC** GOCAGCACAGTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGAGGTGCTCCTGGGGTTCCTC **GOCAGCACAGTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTC** GOCAGCCGGAT423CGTCGCACATCTTGTCAACCTTCCATGCGAGGACCTGACACTGGTCGTGGTCGAGGCGTTC GGCAGCCTTACGTCGCACAATTCTCTGACAGAATCCAACGGAGGACCTGACACGTGCGTCGTGGCTCGATGCGT GGCAGCACACTCGTCGCACATCATTGTACAAACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTNC **GECAGCACACTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTC** GECAGCACAGTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGACGACTTCCTGGGGGTTCCTC **GECAGCACAGTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTC** GECAGCACACTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTC GGCAGCCGGATCGTCGCACATCTTGTCACCTTCCATGCGAGGACCATCTCGACGACCTGCTCGTGGGGTTCCTC GBCAGCACAGTCGTCGCACATCTTGTCACCTTCCATGCGAGGACCATCTCGACGACCTGCTCCTGGGGTTCCTC GGCAGCACAGTCGTCGCACATACATCGTTCCAGACTACCGAGGACCTGACACTGGTCGTGGTCGAGGCGTTCCT (19) GGCAGCACAGTCGTCGCAATCCAGTCAAGACTGAACAGAGGACCATCTCGACGACGTCCTGGTCTTGGGTT A subset of the isolated sequences from the library post selection was analysed: BBA000200 CGTCGCTACATGCTTGTCAACCTTCCATGCGAGTACCTTACACTGGTTCGTGGTCGAGGCGTTCCT CGTCGCACATCTTGTCAACCTTCCATGCGAGGACCATCTCGACGANCTGCTCCTGGGGTTCCTC BAGGACGACGAGGAGCACGTGTCCAGGTTCCTCCACCACGTCTCCG TCCTC TCCTC CTC © ε 22 ဓ္တ 35 6 45 2 5 8 S

WO 2004/074429

PCT/DK2004/000117

5

(20) GGCAGCACACTCGTCGCACATCTTGTCAACCTTTTCCATGCGAGGAGGAGGAGGAGCTGGAACCTGGTGCGTTCC

5 GGCAGCACAGTCGTCGCACATCTTGTCACTTCCATGCGAGGACGAGCAGGACCTGGAACCTGGTGCGTTCCTC (22)

GGCAGCACAGTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACGATGCAGGACCTGGAACCTGGTGCGTTCCT

ပ

10 весавсоватсетсесасатеттветнаансттосатвсвавеасвавсатвааствеаасетветветност

(24) GGCGGATCGTCGCACATCTTGTCAACCTTCCATGCGAGGACCACGAGGTCTCCACTGGTCCAGGGGTTCCTC

GGCAGCACAGTCGTCGGCACATCTTTGGTCAACCTTCCATGCGAGGACCACGAGGGTCTCCAGGGTTC

15 CTC

(28)

GGCAGCCGGCATCGTCGCACATCTTGTCAACCTTCCATGCGAGGACGACGAGGACGAGGACCAGGTAGGCGTTCCT

авсивсоваятизисятовсисатеттетси в подавание в подавание в подавати в подават

(28) GGCAGGACAGTCGTCGCACATCTTGTCAACCTTCCATGCGAGGACACGAGGTCTCCACTGGTCCAGGTTCCTC (28) GCCCAAACAAGTGGTGGCACATCTTGTCAACCTTCCATGGGAGGACGGAGNNNGTAGCTGGANNCTCGGATGGGT

30 GGAGCCGGATCGTCGCACATCGTTTGGCTGGTGATGCTGAGGACCACGACGTCTACACTTGGTTCCAGGG
TTCCTC

These sequences could be translated into the following building block compositions:

Sequence	Postion 1	Position 2	Position 3
ĵ.			
-	BBA000098	BBA000085	BBA000100
2	BBA000098	BBA000099	BBA000100
3	BBA000152	BBA000099	BBA000100
4	BBA000153	BBA000152	BBA000100
5	BBA000098	BBA000099	BBA000139
9	BBA000098	BBA000099	BBA000139
7	BBA000098	BBA000099	BBA000139
8	BBA000098	BBA000099	BBA000139

BBA000139	BBA000053	BBA000053	BBA000053	BBA000053	BBA000140	BBA000140	BBA000167	BBA000098	BBA000200													
BBA000099	BBA000088	BBA000099	BBA000099	BBA000099	BBA000099	BBA000099	BBA000099	BBA000099	BBA000099	BBA000099	BBA000099	BBA000099	BBA000160									
BBA000098	BBA000152	BBA000152	BBA000152	BBA000098	BBA000098	BBA000098	BBA000098	BBA000152	BBA000152	BBA:000098	BBA000152	BBA000152	BBA000098	BBA000098	BBA000098	BBA000152						
6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	8	31

In position 1 L-Asp (BBA00098) dominated. D-Asp was also found (BBA000152) In position 2 Gly (BBA00099) dominated. In position 3 building blocks carrying an amidine and no amine functionality was found to dominate: S)

WO 2004/074429

<u>გ</u>

The most abundant sequence was thereby found to correspond to the following struc-

BBA000139-BBA000099-BBA000098 က

BBA000098-BBA000099-BBA000139 The following 3 sequences

BBA000098-BBA000099-BBA000100 BBA000098-BBA000099-BBA000053

9

out of the 31 identified sequences were selected for further analysis using an standard ELISA assay and thereby verified as binders of the $\alpha\nu\beta3$ Integrin receptor.

bodiments, it will be appreciated that various modifications and changes may be made While the invention has been described with references to specific methods and emwithout departing from the invention. All patent and literature references cited herein are hereby incorporated by reference in their entirety. 5

ଥ

PCT/DK2004/000117

\$

Claims

- 1. A method for producing a composition of molecules with an improved desired property, comprising the steps of:
- chemical entities and the identifier nucleic acid sequence comprises codons molecules associated with a corresponding identifier nucleic acid sequence, providing an initial library comprising a plurality of different encoded wherein each encoded molecule comprises a reaction product of multiple identifying said chemical entities,

ß

encoded molecules displaying a predetermined property from the remainder of subjecting the initial library to a condition partitioning members having the initial library,

9

- identifying codons of the identifier nucleic acid sequences of the partitioned members of the initial library, and
- chemical entities coded for by the codons of the partitioned members of the initial preparing a second-generation library of encoded molecules using the library or a part thereof.

5

product of multiple chemical entities and the identifier nucleic acid sequence comprises identifier nucleic acid sequence, wherein each encoded molecule comprises a reaction comprises a plurality of different encoded molecules associated with a corresponding 2. The method according to claim 1, wherein the second-generation library codons identifying said chemical entities.

೪

displaying a predetermined property from the remainder of the second generation generation library to a condition partitioning members having encoded molecules 3. The method of claim 1 or 2, further comprising subjecting the second library.

23

- 4. The method according to any of the claims 1 to 3, further comprising the step of deducing the identity of the encoded molecule(s) using the identifier nucleic acid
- 5. The method according to claim 4, wherein the codons of the identifier nucleic acid sequence is decoded to establish the synthesis history of the encoded molecules.

ဓ

6. The method according to any of the claims 1 to 5, wherein the encoded molecule associated with the corresponding identifier nucleic acld sequence is a bifunctional complex.

PCT/DK2004/000117 WO 2004/074429

- 7. The method according to any of the claims 1 to 6, wherein the encoded molecule is covalently associated with the corresponding identifier nucleic acid sednence.
- 8. The method according to any of the claims 1 to 7, wherein the multiple chemical entitles are precursors for a structural unit appearing in the encoded molecule.

Ŋ

- entities are reacted without enzymatic interaction to produce the encoded molecule. 9. The method according to any of the claims 1 to 8, wherein the chemical
 - 11. The method according or any of the claims 1 to 10, wherein the encoded chemical entitles are not naturally occurring a-amino acids or precursors thereof. 10. The method according to any of the claims 1 to 9, wherein some or all molecule is not an a-polypeptide.

9

- 12. The method according to any of the claims 1 to 11, wherein each codon comprises 4 or more nucleotides.
- 13. The method according to any of the claims 1 to 12, wherein the codons are separated by a framing sequence.

5

- 14. The method according to claim 13, wherein the framing sequence positions the reaction of a chemical entity in the synthesis history of the encoded molecule.
 - 15. The method according to any of the claims 1 to 14, wherein the identifier
- 16. The method according to any of the claims 1 to 15, wherein the identifier nucleic acid sequence comprises two or more codons.

2

- 17. The method according to any of the claims 1 to 16, wherein the Identifier nucleic acid sequence is amplifiable and comprises codons identifying chemical nucleic acid sequence comprises three or more codons.
- condition for partitioning of the desired library members includes subjecting the Initial 18. The method according to any of the claims 1 to 17, wherein in step ii) the library to a molecular target and partitioning members binding to said target. entities, which have participated in the formation of the encoded molecule.

22

19. The method according to any of the claims 1 to 18, wherein the encoded molecule has a molecular weight less than 2000 Dalton, preferably less than 1000 Dalton, and more preferred less than 500 Dalton.

ဓ္က

- 20. The method according to any of the claims 1 to 19, wherein the identifier nucleic acid sequence identifies the encoded molecule uniquely.
- 21. The method according to any of the claims 1 to 20, wherein the identifier
 - nucleic acid sequence is detached from the encoded molecule. 32

œ

- 22. The method according or any of the claims 1 to 21, wherein identifier nucleic acid sequence prior to step iii) is amplified.
- The method of claim 22, wherein the identifier nucleic acid sequence is amplified applying the polymerase chain reaction (PCR).

S

- 24. The method according to any of the claims 1 to 23, wherein the codons of the identifier nucleic acid sequences of the partitioned members of the initial library are identified by contacting said identifier nucleic acid sequences with a pool of nucleic acid fragments under conditions allowing for hybridisation.
- 25. The method according to claim 24, wherein the pool of nucleic acid fragments comprises a plurality of single stranded nucleic acid probes immobilized in discrete areas of a solid support, wherein the nucleic acid probes are capable of hybridising to a codon of the identifier nucleic acid sequence comprising codons.

9

26. The method of claim 25, wherein the identity of the codons is revealed by observing the discrete areas of the support in which a hybridisation event has occurred.

5

- 27. The method according to any of the claims 24 to 26, wherein the nucleic acid probe of the array is hybridised to an identifier nucleic acid sequence through an adapter oligonucleotide having a sequence complementing the probe as well as one or more codons of the identifier nucleic acid sequence.
- 28. The method according to any of the claims 24 to 27, wherein a probe of the array is capable of hybridising to two codons of the identifier nucleic acid sequence or a sequence complementary to said sequence.

8

- 29. The method according to claims 24 to 28, wherein a nucleic acid probe of the array is capable of hybridising to all codons of an identifier nucleic acid sequence.
 - 30. The method according to any of the claims 24 to 29, wherein a nucleic acid probe is capable of hybridising to all but one codon of the identifier, or less.

22

- 31. The method according to any of the preceding claims, wherein the existence of a hybridisation event is measured through labelling of the Identifier nucleic acid sequence, or an amplification product thereof.
- 32. The method according to any of the claims 24 to 31, wherein the hybridisation event is measured by the emission of light in a scanner.

ဗ္က

- 33. The method according to claim 31 or 32, wherein the relative intensity of light in each discrete spot is measured.
- 34. The method according to claim 24, wherein nucleic acid fragments are primer oligonucleotides, and the identification involves subjecting the hybridisation complex between the primer oligonucleotides and the identifier nucleic acid sequences to a

33

WO 2004/074429

107

PCT/DK2004/000117

condition allowing for an extension reaction to occur when the primer is sufficient complementary to a part of the identifier nucleic acid sequence, and evaluating based on measurement of the extension reaction, the presence, absence, or relative abundance of one or more codons.

- 35. The method according to claim 34, wherein the condition, which allows for an extension reaction to occur, includes a polymerase or a ligase as well as suitable substrates.
- 36. The method according to claim 35, wherein the condition includes a polymerase and a substrate comprising a blend of (deoxy)ribonucleotide triphosphates.
- 10 37. The method according to any of the claims 34 to 36, wherein at least a part of the primer oligonucleotide is complementary to a codon.
- 38. The method according to claims 34 to 37, wherein at least a part of the primer oligonucleotide is complementary to a codon and an adjacent framing sequence.
- 39. The method according to any of the claims 34 to 38, wherein the sequence comprising the codon and an adjacent framing sequence has a total length of 11 nucleotides or more.

5

- 40. The method according to any of the claims 34 to 39, wherein the extension reaction is measured using the polymerase chain reaction (PCR), wherein the primer of claim 34 is involved in said PCR.
- 41. The method according to any of the claims 34 to 40, wherein a primer is labelled

ಣ

- 42. The method according to claim 41, wherein the primer is labelled with a small molecule, a radioactive component, or a fluorogenic molecule.
- 43. The method according to claim 42, wherein the small molecule label is selected from biotin, dinitrophenol, and digoxigenin, and the PCR amplicons are detected using an enzyme labelled streptavidin, anti-dinitrophenol, or anti-digoxigenin, respectively, reporter molecule.

- 44. The method according to any of the claims 34 to 43, wherein extension reaction is measured by real-time PCR.
- 30 45. The method according to claim 44, wherein the real-time PCR involves the use of an oligonucleotide probe responsible for the generation of a detectable signal during the propagation of the PCR reaction.
- 46. The method according to any of the claims 34 to 45, wherein the probe is designed to hybridise at a position downstream of a primer binding site.

108

- 47. The method according to claim 45 or 46, wherein the probe is a 5' nuclease oligoprobe or a hairpin oligoprobe.
- 48. The method according to claim 24, wherein the nucleic acid fragment is associated with a chemical entity precursor capable of being transferred to a recipient reactive group.

Ŋ

- 49. The method according to claim 48, wherein the pool of nucleic acid fragments comprise an anti-codon identifying the chemical entity, said anti-codon complementing a codon of one or more identifier nucleic acid sequences.
- 50. The method according to claim 48 or 49, whereIn the pool of nucleic acid fragments further comprises anti-codons not complemented by codons on an identifier nucleic acid sequence.

5

- 51. The method according to any of the claims 48 to 50, wherein the nucleic acid fragments, each comprising an anti-codon and a chemical entity, hybridised to the identifier nucleic acid sequences comprising codons are recovered.
 - 52. The method according or claim 51, further comprising formation of a second generation library of complexes, each member of the library comprising an encoded molecule and an identifier nucleic acid sequence, which codes therefore, using the recovered nucleic acid fragments as building blocks.

5

53. The method according to any of claims 48 to 52, wherein the identifier nucleic acid sequences of the complexes are recovered from the partitioned complexes of step ii) in claim 1.

ឧ

- 54. The method according to claim 1, wherein the identifier nucleic acid sequences of the partitioned library members are amplified prior to the identification stan.
- 55. The method according to claim 54, wherein the amplification is conducted using the polymerase chain reaction (PCR).

3

- 56. The method according to any of claims 1 to 55, wherein the identifier nucleic acid sequences comprising codons are immobilized during step iii).
- 57. The method according to 56, wherein, in step iii), the identifier nucleic acid sequences are immobilized on a solid phase and the pool of nucleic acid fragments is present in a mobile phase.

റ്റ

58. The method according to any of claims 1 to 57, wherein the conditions used during the contacting step allow for specific hybridisation between nucleic acid fragments and the identifier nucleic acid sequence comprising codons.

 The method according to any of the claims 51 to 58, wherein the nucleic acid ents are recovered using denaturing conditions.

- fragments are recovered using denaturing conditions. 60. The method according to any of the claim 1 to 59, wherein the second
- generation library is formed by a promoned in a promoned as a mixing under hybridisation conditions, nascent bifunctional complexes

S

- a) mixing under hybridisation conditions, nascent prunctional complexes
 comprising a chemical entity or a reaction product of chemical entities, and an
 identifier nucleic acid sequence comprising codon(s) identifying said chemical
 entities, with the recovered nucleic acid fragments, said fragments comprising an
 oligonucleotide sufficient complementary to at least a part of the identifier nucleic
 - acid sequence to allow for hybridisation, a transferable chemical entity and an anticodon identifying the chemical entity, to form hybridisation products, b) transferring the chemical entities of the nucleic acid fragments to the nascent

9

- b) transferring the chemical entities of the nucleic acid fragments to the nascent
 bifunctional complexes through a reaction involving a reactive group of the
 nascent bifunctional complex, in conjunction with a transfer of the genetic
- information of the anticodon.

 61. The method according to claim 60, further comprising step c) separating the components of the hybridisation product and recovering the complexes.

ਨ

62. The method of claim 60 or 61, wherein steps a) through c) are repeated as appropriate using the recovered complexes in step c) as the nascent bifunctional complexes in step a).

ຊ

- 63. The method according to claims 60 to 62, wherein the genetic information of the anticodon is transferred by enzymatically extending the identifier nucleic acid sequence to obtain a codon attached to the bifunctional complex having received the chemical entity.
- 64. The method according to any of the claims 60 to 63, wherein the genetic information of the anticodon is transferred to the nascent complexes by hybridisation to a cognate codon of the identifier region.

22

65. The method according to any of the claims 60 to 64, wherein the second generation library are subjected to a partitioning according to step ii) of claim 1.

66. The method according to any of the claims 1 to 65, wherein, prior to the partitioning according to claim 65, the second generation library of complexes are contacted with sequences complementary to the identifier nucleic acid sequences, and the complexes which have hybridised with the complementary sequences are

ဓ

recovered and used in the method of claim 60.

10

recovery of the complexes, is treated with an enzyme cleaving in the event a mismatch 67. The method according to claim 66, wherein the hybridisation product, prior to

endonuclease VII, T4 endonuclease I, CEL I, nuclease S1, or variants thereof 68. The method according to claim 67, wherein the enzyme is selected from T4

S

chemical entities foreign to the initial library. generation library is prepared using chemical entities appearing in the initial library and 69. The method according to any of the claims 1 to 68, wherein the second-

above a certain threshold in the partitioned library. entities used in the formation of the second-generation library occur in a concentration 70. The method according to any of the claims 1 to 69, wherein the chemical

5

occurring above a certain threshold is excluded in the second or further generation 71. The method according to claim 70, wherein certain chemical entities

5

according to the method of any of the claims 1 to 71

72. A composition of molecules with an improved desired property, obtainable

the composition, and identifying the partitioned encoded molecule(s) by a method according to any of the claims 1 to 71 to a condition partitioning members having encoded molecules displaying a predetermined property from the remainder of 73. A molecule identifiable by subjecting a composition of molecules obtainable

identified by decoding the identifier nucleic acid sequence 74. The molecule according to claim 73, wherein the encoded molecule(s) are

8

molecules used in claim 73 is a second or further generation library. 75. The molecule according to claims 73 or 74, wherein the composition of

SUBSTITUTE SHEET (RULE 26)

1/17

PCT/DK2004/000117

Fig. 6

Fig. 7

SUBSTITUTE SHEET (RULE 26)

PCT/DK2004/000117

Fig. 8

32

11/17

15

Z6

13

33

[**89**]

65

88 97

カレ

11

ZE

10

[6]

62

SUBSTITUTE SHEET (RULE 26)

Build new complexes

<u>i</u> ['

f F'

Wash

a A¹

ь **В**'

Enriched

building blocks

Elute

c **C**

Discard

d **D**3

k K

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property International Bureau Organization

(43) International Publication Date 2 September 2004 (02.09.2004)

PCT

(10) International Publication Number

WO 2004/074429 C12Q 1/68,

> (51) International Patent Classification7: C12N 15/10, C12P 1/00, C07B 61/00 (21) International Application Number:

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SB, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW. Bursian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Buropean (AT, BH, BG, CH, CY, CZ, DB, DK, BH, BS, FH, FG, GH, CY, CZ, DH, DK, BH, ES, FH, FR, CM, BH, BH, CH, CM, CM, PT, RO, SE, SI, SK, TR, OAPI (BF, BJ, CF, CG, CJ, CM, GA, GN, GQ, GW, ML, MR, NR, SN, TD, TG). GM, KE, LS, MW, MZ, SD, SI., SZ, TZ, UG, ZM, ZW), (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH

PCT/DK2004/000117

(22) International Filling Date: 23 February 2004 (23.02.2004)

English English

(26) Publication Language:

(25) Filing Language:

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted

21 February 2003 (21.02.2003) 21 February 2003 (21.02.2003)

(30) Priority Data: PA 2003 00268 PA 2003 00269

a poperation of the property o 21 February 2003 (21.02.2003) 21 February 2003 (21.02.2003) 18 September 2003 (18.09.2003) 22 September 2003 (22.09.2003) 60/448,460 PA 2003 01356 60/448,480 50/504,748

LUTION A/S [DK/DK]; Rønnegade 8,5. sal, DK-2100 Applicant (for all designated States except US); NUEVO. København Ø (DK). Ē

Inventors; and E

Inventors/Applicants (for US only): FRESKGARD, er-Ola [SE/SE]; Ortugsgatan 50, S-603 79 Norrköping (SE). GOULIAEV, Alex, Haahr [DK/DK]; Brødsted 223, DK-3670 Veksø Sjælland (DK). THISTED, Thomas [DK/DK]; Fjordskrænten 14, DK-3600 Frederikssund (DK). OLSEN, Eva, Kampmann [DK/DK]; Vingetoffen 17, DK-2730 Herley (DK).

(74) Agent: HØIBERG A/S; Store Kongensgade 59 DK-1264 Copenhagen K. (DK).

AT, AÜ, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DB, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GB, GB, GB, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, IR, IS, IT, IJJ, IJY, MA, MD, Designated States (unless otherwise indicated, for every kind of national protection available): AB, AG, AL, AM, <u>e</u>

εA

Published:

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of with international search report

(88) Date of publication of the international search report:

30 September 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

, ,

INTERNATIONAL SEARCH REPORT

PCT/DK2004/000117

Rollovant to claim No. 46, 48-66, 69-75 32,33, 44,45, 1-30, 34-43, 47-66, 69,72-75 31-33, 44-46, 67,68, *X* document of particular relevance; the claimed invention cannot be considered to be considered to involve an inventive step when the document is taken alone. *P document of particular relevance; the chained invention cannot be considered to involve an inventive stop when the document is combined with one or more other such docu-ments, such combination being orbitous to a porson stitled "I later document published after the International filling date or priority date and not in contrat with the application but cited to understand the principle or theory underlying the invention: 1-31, 34-43, Date of mailing of the International search report Patent tamby members are listed in annox. umentation searched other than minimum documentation to the extent that such documents are included in the fields searched 'a' document member of the same patent family Bedronic data base consulted during the International search (name of data base and, where practical, search terms used 19/08/2004 Authorized office FRANK WO 02/074929 A (KANAN MATTEN W; GARTNER ZEV J ; LIU DAVID R (US); HARVARD COLLEGE (US)) 26 September 2002 (2002-09-26) Citation of document, with indicalixn, where appropriate, of the relevant passages According to International Patent Classification (IPC) or to both national classification and IPC page 1 - page 81; claims 1-46; figures 1,3,5,11 WO 02/103008 A (GOUILAEV ALEX HAAHR; NOERREGAARD-MADSEN MADS (DK); SLOEK F ABILGA) 27 December 2002 (2002-12-27) - EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS C12P1/00 X Further documents are ligted in the continuation of box C. European Patent Office, P.B. 6816 Patentlaan 2 NL – 2250 FV Player(ft. Tat. (+31–70) 340–2046, Tx. 31 651 opo nl, Fext. (+31–70) 340–3016 *p* document published prior to the International filling date but later than the priority date claimed "A" document defining the general state of the art which is not considered to be of particular relevance. "E" earler document but published on or after the international filing date Occument retering to an oral disclosure, use, exhibition or other means L' document which may throw doubts on priority claim(s) or which is cled to establish the publication date of another clation or other special reason (as specified) A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C1201/68 C12N15/10 (classification system | C12P C07B Date of the actual completion of the international search C. DOCUMENTS CONSIDERED TO BE RELEVANT the whole document Special categories of cited documents Vame and mailing address of the ISA searched (C12N 13 August 2004 documentation (B. FIELDS SEARCHED Catagory *

om PCT/BA/210 (second shed) (Jenuary 2004

\vdash
œ
0
Δ.
Ж
œ
I
\mathbf{g}
₩,
В
S
_
₹
Z
0
F
⋖
Z
Œ
끧
Ż
=

International Application No PCT/DK2004/000117

C.(Continu	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Catagory *	Clathon of document, with indication, where appropriate, of the misward passages	Holevant to claim No.
×	GARTNER Z J ET AL: "Multistep small-molecule synthesis programmed by DNA templates" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, vol. 124, no. 35, vol. 202 (2002-09-04), pages 10304-10306, XP002266219 ISSN: 0002-7863 the whole document	1–75
×	WO 00/23458 A (UNIV LELAND STANFORD JUNIOR) 27 April 2000 (2000-04-27) the whole document	1-75
· -	WO 93/20242 A (BRENNER SYDNEY; SCRIPPS RESEARCH INST (US); JANDA KIM (US); LERNER RI) 14 October 1993 (1993-10-14) the whole document	1–75
>	CALDERONE C T ET AL: "Directing otherwise incompatible reactions in a single solution by using DNA-templated organic synthesis" ANGENANDTE CHEMIE, VCH VERLAGSGESELLSCHAFT, WETNHEIM, DE, vol. 41, no. 21, November 2002 (2002-11), pages 4104-4108, XP002282854 the whole document	1-75
>	SUMMERER D ET AL: "DNA-templated synthesis: more versatile than expected" ANGENANDTE CHEMIE, WILEY-VCH, WEINHEIM, DE, vol. 41, no. 1, 4 January 2002 (2002-01-04), pages 89-90, XP002265218 ISSN: 1433-7851 the whole document	1-75
×	WO 2004/013070 A (NUEVOLUTION AS ; PEDERSEN HENRIK (DK)) 12 February 2004 (2004-02-12) the whole document	1-75

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/DK2004/000117

total language	_	rublication		racelli italiny		rugication
Today In Book III Comp		Odie		member(8)		8
WO 02103008	¥	27-12-2002	S	-	A1	27-12-2002
			읓	_	A2	27-12-2002
			3		41 41	27-12-2002
		•	2	_	: 2	21 72 5005
			: 6	_	ų -	21 02 5004
			5	-	₹:	31-03-2004
			3	_	A.	31-07-2003
			S	_	A1	11-03-2004
			웊	03078625 A	4 2	25-09-2003
			웊		A 2	25-09-2003
			웊		~	25-09-2003
			£	_	A	25-09-2003
			웆		١٨	25-09-2003
•			S		. A	25-09-2003
				- 1	,	2007 20 07
WO 02074929	∢	26-09-2002	S	2003113738 A	A1	19-06-2003
			5	2441820 A1	_	26-09-2002
			a		A2	02-06-2004
			옻		A2	26-09-2002
			-			
WO 0023458	Ø	27-04-2000	₽	1318400 A		08-05-2000
			5	2346989 A1	_	27-04-2000
			品	1123305 A1	_	16-08-2001
			웆	0023458 A1	_	27-04-2000
MO 9320242	⋖	14-10-1993	S	5573905 A		12-11-1996
			A	193561 T		15-06-2000
			₽	685050 R2		15-01-1998
			1			2001 11 00
			2 5	-		5661-11-00
			3		_	14-10-1993
			H	_	_	06-07-2000
			띰		ر د	26-04-2001
			품		<u>ء</u>	07-08-2000
			G.	0643778 A1	1	22-03-1995
			ដ	2147197 T	3	01-09-2000
			<u>ڄ</u>	•	,	22-06-1995
			S	6060596 A		00-02-500
			3	9320242 A1	_	14-10-1993
			S			03-03-1998
	İ			1		
WO 2004013070	∢	12-02-2004	웈	2004013070 A2	~	12-02-2004
			İ			

Form PCT/ISA/210 (patent family envex) (Jenuary 2004)

In addition, in the case that more than one veneion or copy of a sequence listing and/or table relating thereio has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished. With regard to any nucleotide and/or amino add sequence discussed in the international application and necessary to the claimed invention, the international search was carried out on the basis of: PCT/DK2004/000117 International application No. Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.b of the first sheet) filed together with the international application in computer readable form furnished subsequently to this Authority for the purpose of search contained in the international application as fled
 Red together with the international application in c
 turnished subsequently to this Authority for the pu INTERNATIONAL SEARCH REPORT Form PCT/ISA/210 (continuation of first sheet (1)) (January 2004) table(s) related to the sequence listing format of material
In written format
In computer readable form a sequence listing

X table(s) related to the time of filing/furnishing a. type of material Additional comments: ×