The Chemical Mechanism of MECCA

KPP version: 2.2.1_rs3

MECCA version: 2.5i

Date: July 8, 2009.

Selected reactions:

"((Tr && (G || Het) && !I) || St)"

Number of aerosol phases: 0

Number of species in selected mechanism:

Gas phase: 134

Aqueous phase:

All species:

Number of reactions in selected mechanism: Gas phase (Gnnn): 229

Aqueous phase (Annn):

Henry (Hnnn):

Photolysis (Jnnn):

Heterogeneous (HETnnn):

Equilibria (EQnn):

All equations: Dummy (Dnn):

R. Sander et al. (Atmos. Chem. Phys. 5, 445-450, 2005), available at The new comprehensive atmospheric chemistry module MECCA" by Further information can be found in the article "Technical Note: http://www.atmos-chem-phys.net/5/445.

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G1000	StTrG	$O_2 + O(^1D) \to O(^3P) + O_2$	3.3E-11*EXP(55./temp)	Sander et al. (2006)
G1001	StTrG	$\mathrm{O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{O_3}$	6.E-34*((temp/300.)**(-2.4))*cair	Sander et al. (2006)
G1002	StG	$\mathrm{O_3} + \mathrm{O(^1D)} \rightarrow 2 \ \mathrm{O_2}$	1.2E-10	Sander et al. $(2006)^*$
G1003	StG	$\mathrm{O_3} + \mathrm{O(^3P)} ightarrow 2 \mathrm{O_2}$	8.E-12*EXP(-2060./temp)	Sander et al. (2006)
G2100	StTrG	$\mathrm{H} + \mathrm{O}_2 o \mathrm{HO}_2$	k_3rd(temp,cair,4.4E-32,1.3,4.7E-11,	Sander et al. (2006)
			0.2,0.6)	
G2101	StG	$\mathrm{H} + \mathrm{O}_3 \rightarrow \mathrm{OH} + \mathrm{O}_2$	1.4E-10*EXP(-470./temp)	Sander et al. (2006)
G2102	StG	$\mathrm{H_2} + \mathrm{O(^1D)} \rightarrow \mathrm{H} + \mathrm{OH}$	1.1E-10	Sander et al. (2006)
G2103	StG	$OH + O(^3P) \rightarrow H + O_2$	2.2E-11*EXP(120./temp)	Sander et al. (2006)
G2104	StTrG	$OH + O_3 \rightarrow LossOH + HO_2 + O_2$	1.7E-12*EXP(-940./temp)	Sander et al. (2006)
G2105	StTrG	$\mathrm{OH} + \mathrm{H_2} \rightarrow \mathrm{H_2O} + \mathrm{H}$	2.8E-12*EXP(-1800./temp)	Sander et al. (2006)
G2106	StG	$\mathrm{HO_2} + \mathrm{O(^3P)} \rightarrow \mathrm{OH} + \mathrm{O_2}$	3.E-11*EXP(200./temp)	Sander et al. (2006)
G2107	StTrG	$HO_2 + O_3 \rightarrow LossHO2 + OH + 2 O_2$	1.E-14*EXP(-490./temp)	Sander et al. (2006)
G2108a	StG	$\mathrm{HO_2} + \mathrm{H} \rightarrow 2 \mathrm{OH}$	7.2E-11	Sander et al. (2006)
G2108b	StG	$\mathrm{HO_2} + \mathrm{H} ightarrow \mathrm{H_2} + \mathrm{O_2}$	6.9E-12	Sander et al. (2006)
G2108c	StG	$\mathrm{HO_2} + \mathrm{H} \rightarrow \mathrm{O(^3P)} + \mathrm{H_2O}$	1.6E-12	Sander et al. (2006)
G2109	StTrG	$\mathrm{HO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{O_2}$	4.8E-11*EXP(250./temp)	Sander et al. (2006)
G2110	StTrG	$\mathrm{HO_2} + \mathrm{HO_2} ightarrow \mathrm{H_2O_2} + \mathrm{O_2}$	k_H02_H02	Christensen et al. (2002),
				Kircher and Sander (1984)*
G2111	StTrG	$H_2O + O(^1D) \rightarrow LossO1D + 2 OH$	1.63E-10*EXP(60./temp)	Sander et al. (2006)
G2112	StTrG	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HO_2}$	1.8E-12	Sander et al. (2006)
G3100	StGN	$N + O_2 \rightarrow NO + O(^3P)$	1.5E-11*EXP(-3600./temp)	Sander et al. (2006)
G3101	StTrG	$N_2 + O(^1D) \to O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Sander et al. (2006)
G3102a	StGN	$N_2O + O(^1D) \rightarrow 2 NO$	6.7E-11*EXP(20./temp)	Sander et al. (2006)
G3102b	StGN	$N_2O + O(^1D) \rightarrow N_2 + O_2$	4.7E-11*EXP(20./temp)	Sander et al. (2006)
G3103	StTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.E-12*EXP(-1500./temp)	Sander et al. (2006)
G3104	StGN	$NO + N \rightarrow O(^{3}P) + N_{2}$	2.1E-11*EXP(100./temp)	Sander et al. (2006)
G3105	StGN	$NO_2 + O(^3P) \rightarrow NO + O_2$	5.1E-12*EXP(210./temp)	Sander et al. (2006)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Sander et al. (2006)
G3107	StGN	$NO_2 + N \rightarrow N_2O + O(^3P)$	5.8E-12*EXP(220./temp)	Sander et al. (2006)
G3108	StTrGN	$\mathrm{NO_3} + \mathrm{NO} \rightarrow 2 \ \mathrm{NO_2}$	1.5E-11*EXP(170./temp)	Sander et al. (2006)
G3109	StTrGN	$\mathrm{NO_3} + \mathrm{NO_2} ightarrow \mathrm{N_2O_5}$	k_N03_N02	Sander et al. (2006)*
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(2.7E-27*EXP(11000./temp))	Sander et al. $(2006)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3200	TrGN	$NO + OH \rightarrow HONO$	k_3rd(temp,cair,7.0E-31,2.6,3.6E-11,	Sander et al. (2006)
			0.1,0.6)	
G3201	StTrGN	$NO + HO_2 \rightarrow ProdHO2 + NO_2 + OH$	3.5E-12*EXP(250./temp)	Sander et al. (2006)
G3202	StTrGN	$NO_2 + OH \rightarrow HNO_3$	k_3rd(temp,cair,1.8E-30,3.0,2.8E-11,0.,	Sander et al. (2006)
			0.6)	,
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Sander et al. $(2006)^*$
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Sander et al. (2006)
G3205	TrGN	$\mathrm{HONO} + \mathrm{OH} \rightarrow \mathrm{NO}_2 + \mathrm{H}_2\mathrm{O}$	1.8E-11*EXP(-390./temp)	Sander et al. (2006)
G3206	StTrGN	$\mathrm{HNO_3} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{NO_3}$	k_HNO3_OH	Sander et al. (2006)*
G3207	StTrGN	$\mathrm{HNO_4} ightarrow \mathrm{NO_2} + \mathrm{HO_2}$	k_NO2_HO2/(2.1E-27*EXP(10900./temp))	Sander et al. (2006)*
G3208	StTrGN	$\mathrm{HNO_4} + \mathrm{OH} \rightarrow \mathrm{NO_2} + \mathrm{H_2O}$	1.3E-12*EXP(380./temp)	Sander et al. (2006)
G3209	TrGN	$NH_3 + OH \rightarrow NH_2 + H_2O$	1.7E-12*EXP(-710./temp)	Kohlmann and Poppe (1999)
G3210	TrGN	$NH_2 + O_3 \rightarrow NH_2O + O_2$	4.3E-12*EXP(-930./temp)	Kohlmann and Poppe (1999)
G3211	TrGN	$NH_2 + HO_2 \rightarrow NH_2O + OH$	4.8E-07*EXP(-628./temp)*temp**(-1.32)	Kohlmann and Poppe (1999)
G3212	TrGN	$NH_2 + HO_2 \rightarrow HNO + H_2O$	9.4E-09*EXP(-356./temp)*temp**(-1.12)	Kohlmann and Poppe (1999)
G3213	TrGN	$\mathrm{NH_2} + \mathrm{NO} \rightarrow \mathrm{HO_2} + \mathrm{OH} + \mathrm{N_2}$	1.92E-12*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3214	TrGN	$\mathrm{NH_2} + \mathrm{NO} \rightarrow \mathrm{N_2} + \mathrm{H_2O}$	1.41E-11*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3215	TrGN	$NH_2 + NO_2 \rightarrow N_2O + H_2O$	1.2E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3216	TrGN	$NH_2 + NO_2 \rightarrow NH_2O + NO$	0.8E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3217	TrGN	$NH_2O + O_3 \rightarrow NH_2 + O_2$	1.2E-14	Kohlmann and Poppe (1999)
G3218	TrGN	$\mathrm{NH_2O} ightarrow \mathrm{NHOH}$	1.3E+3	Kohlmann and Poppe (1999)
G3219	TrGN	$\mathrm{HNO} + \mathrm{OH} \rightarrow \mathrm{NO} + \mathrm{H_2O}$	8.0E-11*EXP(-500./temp)	Kohlmann and Poppe (1999)
G3220	TrGN	$\mathrm{HNO} + \mathrm{NHOH} \rightarrow \mathrm{NH_2OH} + \mathrm{NO}$	1.66E-12*EXP(-1500./temp)	Kohlmann and Poppe (1999)
G3221	TrGN	$\mathrm{HNO} + \mathrm{NO}_2 \rightarrow \mathrm{HONO} + \mathrm{NO}$	1.0E-12*EXP(-1000./temp)	Kohlmann and Poppe (1999)
G3222	TrGN	$NHOH + OH \rightarrow HNO + H_2O$	1.66E-12	Kohlmann and Poppe (1999)
G3223	TrGN	$NH_2OH + OH \rightarrow NHOH + H_2O$	4.13E-11*EXP(-2138./temp)	Kohlmann and Poppe (1999)
G3224	TrGN	$\mathrm{HNO} + \mathrm{O}_2 \rightarrow \mathrm{HO}_2 + \mathrm{NO}$	3.65E-14*EXP(-4600./temp)	Kohlmann and Poppe (1999)
G4100	StG	$CH_4 + O(^1D) \rightarrow .75 CH_3O_2 + .75 OH + .25 HCHO + .4$	1.5E-10	Sander et al. (2006)
		$\mathrm{H}+.05~\mathrm{H}_{2}$,
G4101	StTrG	$CH_4 + OH \rightarrow CH_3O_2 + H_2O$	1.85E-20*EXP(2.82*log(temp)-987./temp)	Atkinson $(2003)^*$
G4102	$\operatorname{Tr} G$	$CH_3OH + OH \rightarrow HCHO + HO_2$	2.9E-12*EXP(-345./temp)	Sander et al. (2006)
G4103	StTrG	$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$	4.1E-13*EXP(750./temp)	Sander et al. (2006)*
G4104	StTrGN	$CH_3O_2 + NO \rightarrow ProdMeO_2 + HCHO + NO_2 + HO_2$	2.8E-12*EXP(300./temp)	Sander et al. (2006)
G4105	TrGN	$CH_3O_2 + NO_3 \rightarrow HCHO + HO_2 + NO_2$	1.3E-12	Atkinson et al. (1999)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4106a	StTrG	$\mathrm{CH_3O_2} + \mathrm{CH_3O_2} \rightarrow 2 \; \mathrm{HCHO} + 2 \; \mathrm{HO_2}$	9.5E-14*EXP(390./temp)/(1.+1./	Sander et al. (2006)
			26.2*EXP(1130./temp))	
G4106b	StTrG	$CH_3O_2 + CH_3O_2 \rightarrow HCHO + CH_3OH + O_2$	9.5E-14*EXP(390./temp)/(1.+	Sander et al. (2006)
			26.2*EXP(-1130./temp))	
G4107	StTrG	$CH_3OOH + OH \rightarrow .7 CH_3O_2 + .3 HCHO + .3 OH + H_2O$	k_CH300H_OH	Sander et al. $(2006)^*$
G4108	StTrG	$\mathrm{HCHO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	9.52E-18*EXP(2.03*log(temp)+636./temp)	Sivakumaran et al. (2003)
G4109	TrGN	$\mathrm{HCHO} + \mathrm{NO}_3 \rightarrow \mathrm{HNO}_3 + \mathrm{CO} + \mathrm{HO}_2$	3.4E-13*EXP(-1900./temp)	Sander et al. $(2006)^*$
G4110	StTrG	$\mathrm{CO} + \mathrm{OH} \rightarrow \mathrm{H} + \mathrm{CO}_2$	1.57E-13 + cair*3.54E-33	McCabe et al. (2001)
G4111	$\operatorname{Tr} G$	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{HO}_2$	4.0E-13	Sander et al. (2006)
G4200	TrGC	$\mathrm{C_2H_6} + \mathrm{OH} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{H_2O}$	1.49E-17*temp*temp*EXP(-499./temp)	Atkinson (2003)
G4201	TrGC	$C_2H_4 + O_3 \rightarrow HCHO + .22 HO_2 + .12 OH + .23 CO +$	1.2E-14*EXP(-2630./temp)	Sander et al. $(2006)^*$
		$.54 \text{ HCOOH} + .1 \text{ H}_2$		
G4202	TrGC	$C_2H_4 + OH \rightarrow .6666667 CH_3CH(O_2)CH_2OH$	k_3rd(temp,cair,1.0E-28,4.5,8.8E-12,	Sander et al. (2006)
			0.85,0.6)	
G4203	TrGC	$\mathrm{C_2H_5O_2} + \mathrm{HO_2} \rightarrow \mathrm{C_2H_5OOH}$	7.5E-13*EXP(700./temp)	Sander et al. (2006)
G4204	TrGNC	$C_2H_5O_2 + NO \rightarrow ProdRO2 + CH_3CHO + HO_2 + NO_2$	2.6E-12*EXP(365./temp)	Sander et al. (2006)
G4205	TrGNC	$C_2H_5O_2 + NO_3 \rightarrow CH_3CHO + HO_2 + NO_2$	2.3E-12	Atkinson et al. (1999)
G4206	TrGC	$C_2H_5O_2 + CH_3O_2 \rightarrow .75 \text{ HCHO} + HO_2 + .75 \text{ CH}_3\text{CHO}$	1.6E-13*EXP(195./temp)	see note
		$+.25 \mathrm{~CH_3OH}$		
G4207	TrGC	$C_2H_5OOH + OH \rightarrow .3 C_2H_5O_2 + .7 CH_3CHO + .7 OH$	k_CH300H_OH	see note
G4208	TrGC	$CH_3CHO + OH \rightarrow CH_3C(O)OO + H_2O$	4.4E-12*EXP(365./temp)	Atkinson et al. (2006)
G4209	TrGNC	$CH_3CHO + NO_3 \rightarrow CH_3C(O)OO + HNO_3$	1.4E-12*EXP(-1900./temp)	Sander et al. (2006)
G4210	TrGC	$CH_3COOH + OH \rightarrow CH_3O_2 + CO_2 + H_2O$	4.2E-14*EXP(855./temp)	Atkinson et al. (2006)
G4211a	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \to \mathrm{CH_3C}(\mathrm{O})\mathrm{OOH}$	4.3E-13*EXP(1040./temp)/(1.+1./	Tyndall et al. (2001)
			37.*EXP(660./temp))	
G4211b	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COOH} + \mathrm{O_3}$	4.3E-13*EXP(1040./temp)/(1.+	Tyndall et al. (2001)
			37.*EXP(-660./temp))	
G4212	TrGNC	$CH_3C(O)OO + NO \rightarrow ProdRO2 + CH_3O_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001)
G4213	TrGNC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{NO}_2 \to \mathrm{PAN}$	k_PA_NO2	Sander et al. (2006)
G4214	TrGNC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{NO_3} \rightarrow \mathrm{CH_3O_2} + \mathrm{NO_2}$	4.E-12	Canosa-Mas et al. (1996)
G4215a	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{CH_3O_2} \rightarrow \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{CH_3O_2} + \mathrm{CO_2}$	0.9*2.E-12*EXP(500./temp)	Sander et al. (2006)
G4215b	TrGC	$\mathrm{CH_3C(O)OO} + \mathrm{CH_3O_2} \rightarrow \mathrm{CH_3COOH} + \mathrm{HCHO}$	0.1*2.E-12*EXP(500./temp)	Sander et al. (2006)
G4216	TrGC	$CH_3C(O)OO + C_2H_5O_2 \rightarrow .82 \ CH_3O_2 + CH_3CHO + .82$	4.9E-12*EXP(211./temp)	Atkinson et al. (1999), Kirchner
		$\mathrm{HO_2} + .18~\mathrm{CH_3COOH}$		and Stockwell $(1996)^*$
G4217	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{CH_3C}(\mathrm{O})\mathrm{OO} \rightarrow 2\ \mathrm{CH_3O_2} + 2\ \mathrm{CO_2} + \mathrm{O_2}$	2.5E-12*EXP(500./temp)	Tyndall et al. (2001)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4218	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{OH} \to \mathrm{CH_3C}(\mathrm{O})\mathrm{OO}$	k_CH300H_OH	see note
G4219	TrGNC	$NACA + OH \rightarrow NO_2 + HCHO + CO$	5.6E-12*EXP(270./temp)	see note
G4220	TrGNC	$PAN + OH \rightarrow HCHO + NO_2$	2.E-14	see note
G4221	TrGNC	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Sander et al. $(2006)^*$
G4300	TrGC	$C_3H_8 + OH \rightarrow .82 C_3H_7O_2 + .18 C_2H_5O_2 + H_2O$	1.65E-17*temp*temp*EXP(-87./temp)	Atkinson (2003)
G4301	TrGC	$\begin{array}{l} {\rm C_3H_6+O_3 \rightarrow .57\; HCHO+.47\; CH_3CHO+.33\; OH+.26} \\ {\rm HO_2+.07\; CH_3O_2+.06\; C_2H_5O_2+.23\; CH_3C(O)OO+.04\; CH_3COCHO+.06\; CH_4+.31\; CO+.22\; HCOOH+.03\; CH_3OH} \end{array}$	6.5E-15*EXP(-1900./temp)	Sander et al. (2006)*
G4302	TrGC	$C_3H_6 + OH \rightarrow CH_3CH(O_2)CH_2OH$	k_3rd(temp,cair,8.E-27,3.5,3.E-11,0., 0.5)	Atkinson et al. (1999)
G4303	TrGNC	$C_3H_6 + NO_3 \rightarrow ONIT$	4.6E-13*EXP(-1155./temp)	Atkinson et al. (1999)
G4304	TrGC	$\mathrm{C_3H_7O_2} + \mathrm{HO_2} \rightarrow \mathrm{C_3H_7OOH}$	k_Pr02_H02	Atkinson $(1997)^*$
G4305	TrGNC	$C_3H_7O_2 + NO \rightarrow 0.96 \text{ ProdRO2} + .96 \text{ CH}_3\text{COCH}_3 + .96 \text{ HO}_2 + .96 \text{ NO}_2 + .04 \text{ C}_3H_7\text{ONO}_2$	k_Pr02_NO	Atkinson et al. (1999)*
G4306	TrGC	$C_3H_7O_2 + CH_3O_2 \rightarrow CH_3COCH_3 + .8 \text{ HCHO} + .8 \text{ HO}_2 + .2 \text{ CH}_3OH$	k_Pr02_CH302	Kirchner and Stockwell (1996)
G4307	TrGC	$C_3H_7OOH + OH \rightarrow .3 C_3H_7O_2 + .7 CH_3COCH_3 + .7 OH$	k_CH300H_OH	see note
G4308	TrGC	$CH_3CH(O_2)CH_2OH + HO_2 \rightarrow CH_3CH(OOH)CH_2OH$	6.5E-13*EXP(650./temp)	Müller and Brasseur (1995)
G4309	TrGNC	${\rm CH_3CH(O_2)CH_2OH} + {\rm NO} \rightarrow 0.98 \ {\rm ProdRO2} + .98 \ {\rm CH_3CHO} + .98 \ {\rm HCHO} + .98 \ {\rm HO_2} + .98 \ {\rm NO_2} + .02 \ {\rm ONIT}$	4.2E-12*EXP(180./temp)	Müller and Brasseur (1995)*
G4310	TrGC	$\mathrm{CH_3CH}(\mathrm{OOH})\mathrm{CH_2OH} + \mathrm{OH} \rightarrow .5~\mathrm{CH_3CH}(\mathrm{O_2})\mathrm{CH_2OH} + .5~\mathrm{CH_3COCH_2OH} + .5~\mathrm{OH} + \mathrm{H_2O}$	3.8E-12*EXP(200./temp)	Müller and Brasseur (1995)
G4311	TrGC	$CH_3COCH_3 + OH \rightarrow CH_3COCH_2O_2 + H_2O$	1.33E-13+3.82E-11*EXP(-2000./temp)	Sander et al. (2006)
G4312	TrGC	$\mathrm{CH_3COCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COCH_2O_2H}$	8.6E-13*EXP(700./temp)	Tyndall et al. (2001)
G4313	TrGNC	$\mathrm{CH_3COCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{ProdRO2} + \mathrm{NO_2} + \mathrm{CH_3C(O)OO} + \mathrm{HCHO}$	2.9E-12*EXP(300./temp)	Sander et al. (2006)
G4314	TrGC	${\rm CH_3COCH_2O_2 + CH_3O_2} \rightarrow .5 {\rm \ CH_3COCHO} + .5 {\rm \ CH_3OH} + .3 {\rm \ \ CH_3COOH_2OH} + .8 {\rm \ \ HCHO} + .3 {\rm \ \ HO_2} + .2 {\rm \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	7.5E-13*EXP(500./temp)	Tyndall et al. (2001)
G4315	TrGC	$\mathrm{CH_3COCH_2O_2H}$ + OH \rightarrow .3 $\mathrm{CH_3COCH_2O_2}$ + .7 $\mathrm{CH_3COCHO}$ + .7 OH	k_CH300H_0H	see note
G4316	TrGC	$\text{CH}_3\text{COCH}_2\text{OH} + \text{OH} \rightarrow \text{CH}_3\text{COCHO} + \text{HO}_2$	2.15E-12*EXP(305./temp)	Dillon et al. (2006)
G4317	TrGC	$CH_3COCHO + OH \rightarrow CH_3C(O)OO + CO$	8.4E-13*EXP(830./temp)	Tyndall et al. (1995)
G4318	TrGNC	$MPAN + OH \rightarrow CH_3COCH_2OH + NO_2$	3.2E-11	Orlando et al. (2002)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4319	TrGNC	$MPAN \rightarrow MVKO2 + NO_2$	k_PAN_M	see note
G4320	TrGNC	$C_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Atkinson et al. (1999)
G4400	TrGC	$C_4H_{10} + OH \rightarrow C_4H_9O_2 + H_2O$	1.81E-17*temp*temp*EXP(114./temp)	Atkinson (2003)
G4401	TrGC	$C_4H_9O_2 \ + \ CH_3O_2 \ \rightarrow \ .88 \ CH_3COC_2H_5 \ + \ .68 \ HCHO \ +$	k_Pr02_CH302	see note
		$1.23 \text{ HO}_2 + .12 \text{ CH}_3 \text{CHO} + .12 \text{ C}_2 \text{H}_5 \text{O}_2 + .18 \text{ CH}_3 \text{OH}$		
G4402	TrGC	$C_4H_9O_2 + HO_2 \rightarrow C_4H_9OOH$	k_Pr02_H02	see note
G4403	TrGNC	$C_4H_9O_2 + NO \rightarrow ProdRO2 + .84 NO_2 + .56 CH_3COC_2H_5$	k_Pr02_N0	see note
		$+ .56 \text{ HO}_2 + .28 \text{ C}_2\text{H}_5\text{O}_2 + .84 \text{ CH}_3\text{CHO} + .16 \text{ ONIT}$		
G4404	TrGC	$C_4H_9OOH + OH \rightarrow .15 C_4H_9O_2 + .85 CH_3COC_2H_5 + .85$	k_CH300H_OH	see note
		$OH + .85 H_2O$		
G4405	TrGC	$MVK + O_3 \rightarrow .45 \text{ HCOOH} + .9 \text{ CH}_3\text{COCHO} + .1$	<u>*</u>	Pöschl et al. (2000)
	T	$CH_3C(O)OO + .19 OH + .22 CO + .32 HO_2$	+7.51E-16*EXP(-1521./temp))	D" 11 (2000)
G4406	TrGC	$MVK + OH \rightarrow MVKO2$.5*(4.1E-12*EXP(452./temp)	Pöschl et al. (2000)
~	T. C.C	MULION - HO MULIONI	+1.9E-11*EXP(175./temp))	D" 11 (2000)
G4407	TrGC	$MVKO2 + HO_2 \rightarrow MVKOOH$	1.82E-13*EXP(1300./temp)	Pöschl et al. (2000)
G4408	TrGNC	$MVKO2 + NO \rightarrow ProdRO2 + NO_2 + .25 CH_3C(O)OO +$	2.54E-12*EXP(360./temp)	Pöschl et al. (2000)
		$.25 \text{ CH}_3\text{COCH}_2\text{OH} + .75 \text{ HCHO} + .25 \text{ CO} + .75 \text{ HO}_2 + .75 \text{ CH}_2\text{COCH}_2$		
G4409	TrGNC	.5 CH_3COCHO $MVKO2 + NO_2 \rightarrow MPAN$.25*k_3rd(temp,cair,9.7E-29,5.6,	Pöschl et al. (2000)*
G4409	HGNC	$\text{NIV} \text{KO2} + \text{NO}_2 \rightarrow \text{NIFAN}$	9.3E-12,1.5,0.6)	Fosciii et al. (2000)
G4410	TrGC	$MVKO2 + CH_3O_2 \rightarrow .5 CH_3COCHO + .375$	2.E-12	von Kuhlmann (2001)
UTTIO	1100	$CH_3COCH_2OH + .125 CH_3C(O)OO + 1.125 HCHO$	2.11 12	von Rummann (2001)
		$+.875 \text{ HO}_2 +.125 \text{ CO} +.25 \text{ CH}_3 \text{OH}$		
G4411	TrGC	$MVKO2 + MVKO2 \rightarrow CH_3COCH_2OH + CH_3COCHO +$	2.E-12	Pöschl et al. (2000)
41111	1100	$.5 \text{ CO} + .5 \text{ HCHO} + \text{HO}_2$	2.2 12	1 05011 01 (2000)
G4412	TrGC	$MVKOOH + OH \rightarrow MVKO2$	3.E-11	Pöschl et al. (2000)
G4413	TrGC	$CH_3COC_2H_5 + OH \rightarrow MEKO2$	1.3E-12*EXP(-25./temp)	Atkinson et al. (1999)
G4414	TrGC	$MEKO2 + HO_2 \rightarrow MEKOOH$	k_PrO2_HO2	see note
G4415	TrGNC	$MEKO2 + NO \rightarrow 0.985 \text{ ProdRO2} + .985 \text{ CH}_3\text{CHO} + .985$		see note
		$CH_3C(O)OO + .985 NO_2 + .015 ONIT$		
G4416	TrGC	$MEKOOH + OH \rightarrow .8 MeCOCO + .8 OH + .2 MEKO2$	k_CH300H_OH	see note
G4417	TrGNC	$\mathrm{ONIT} + \mathrm{OH} \rightarrow \mathrm{CH_3COC_2H_5} + \mathrm{NO_2} + \mathrm{H_2O}$	1.7E-12	Atkinson et al. $(1999)^*$
G4500	TrGC	ISOP + $O_3 \rightarrow .28 \text{ HCOOH} + .65 \text{ MVK} + .1 \text{ MVKO2} +$	7.86E-15*EXP(-1913./temp)	Pöschl et al. (2000)
		$.1 \text{ CH}_3\text{C(O)OO} + .14 \text{ CO} + .58 \text{ HCHO} + .09 \text{ H}_2\text{O}_2 + .08$		
		$CH_3O_2 + .25 OH + .25 HO_2$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4501	TrGC	$\overline{\text{ISOP} + \text{OH} \rightarrow \text{ISO2}}$	2.54E-11*EXP(410./temp)	Pöschl et al. (2000)
G4502	TrGNC	$ISOP + NO_3 \rightarrow ISON$	3.03E-12*EXP(-446./temp)	Pöschl et al. (2000)
G4503	TrGC	$ISO2 + HO_2 \rightarrow ISOOH$	2.22E-13*EXP(1300./temp)	Boyd et al. (2003)*
G4504a	TrGNC	$ISO2 + IO_2 + ISOOII$ $ISO2 + IO_2 + ISOOII$ $ISO2 + IO_2 + ISOOII$ $ISO2 + IO_2 + ISOOII$	2.54E-12*EXP(360./temp)	Pöschl et al. (2000)*
4 100 14	110110	$+.956 \text{ HCHO} + .956 \text{ HO}_2 + .044 \text{ ISON}$	2.012 12 2m (000., comp)	1 05011 01 41. (2000)
G4505	TrGC	$ISO2 + CH_3O_2 \rightarrow .5 \text{ MVK} + 1.25 \text{ HCHO} + HO_2 + .25$	2.E-12	von Kuhlmann (2001)
4 10 00	2100	$\mathrm{CH_3COCHO} + .25\ \mathrm{CH_3COCH_2OH} + .25\ \mathrm{CH_3OH}$		(2001)
G4506	TrGC	$ISO2 + ISO2 \rightarrow 2 \text{ MVK} + HCHO + HO_2$	2.E-12	Pöschl et al. (2000)
G4507	TrGC	$ISOOH + OH \rightarrow MVK + OH$	1.E-10	Pöschl et al. (2000)
G4508	TrGNC	$ISON + OH \rightarrow CH_3COCH_2OH + NACA$	1.3E-11	Pöschl et al. (2000)
G6100	StTrGCl	$Cl + O_3 \rightarrow ClO + O_2$	2.8E-11*EXP(-250./temp)	Atkinson et al. (2007)
G6101	StGCl	$ClO + O(^3P) \rightarrow Cl + O_2$	2.5E-11*EXP(110./temp)	Atkinson et al. (2007)
G6102a	StTrGCl	$ClO + ClO \rightarrow Cl_2 + O_2$	1.0E-12*EXP(-1590./temp)	Atkinson et al. (2007)
G6102b	StTrGCl	$ClO + ClO \rightarrow 2 Cl + O_2$	3.0E-11*EXP(-2450./temp)	Atkinson et al. (2007)
G6102c	StTrGCl	$ClO + ClO \rightarrow Cl + OClO$	3.5E-13*EXP(-1370./temp)	Atkinson et al. (2007)
G6102d	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Atkinson et al. (2007)
G6103	StTrGCl	$\text{Cl}_2\text{O}_2 \rightarrow \text{ClO} + \text{ClO}$	k_C10_C10/(9.3E-28*EXP(8835./temp))	Atkinson et al. (2007), Sander
40100	2011001		010_010, (0.02 10 1 (0000, 00p,,	et al. (2006)*
G6200	StGCl	$Cl + H_2 \rightarrow HCl + H$	3.9E-11*EXP(-2310./temp)	Atkinson et al. (2007)
G6201a	StGCl	$Cl + HO_2 \rightarrow HCl + O_2$	4.4E-11-7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6201b	StGCl	$Cl + HO_2 \rightarrow ClO + OH$	7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Atkinson et al. (2007)
G6203	StGCl	$ClO + OH \rightarrow .94 Cl + .94 HO_2 + .06 HCl + .06 O_2$	7.3E-12*EXP(300./temp)	Atkinson et al. (2007)
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl$	2.2E-12*EXP(340./temp)	Atkinson et al. (2007)
G6205	StTrGCl	$HCl + OH \rightarrow Cl + H_2O$	1.7E-12*EXP(-230./temp)	Atkinson et al. (2007)
G6206	StGCl	$HOCl+OH \rightarrow ClO + H_2O$	3.0E-12*EXP(-500./temp)	Sander et al. (2006)
G6300	StTrGNCl	$ClO + NO \rightarrow NO_2 + Cl$	6.2E-12*EXP(295./temp)	Atkinson et al. (2007)
G6301	StTrGNCl	$ClO + NO_2 \rightarrow ClNO_3$	k_3rd_iupac(temp,cair,1.6E-31,3.4,	Atkinson et al. (2007)
		_	7.E-11,0.,0.4)	,
G6302	TrGCl	$ClNO_3 \rightarrow ClO + NO_2$	6.918E-7*exp(-10909./temp)*cair	Anderson and Fahey (1990)
G6303	StGNCl	$CINO_3 + O(^3P) \rightarrow CIO + NO_3$	4.5E-12*EXP(-900./temp)	Atkinson et al. (2007)
G6304	StTrGNCl	$\text{ClNO}_3 + \text{Cl} \rightarrow \text{Cl}_2 + \text{NO}_3$	6.2E-12*EXP(145./temp)	Atkinson et al. (2007)
G6400	StTrGCl	$\text{Cl} + \text{CH}_4 \rightarrow \text{HCl} + \text{CH}_3\text{O}_2$	6.6E-12*EXP(-1240./temp)	Atkinson et al. (2006)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-34./temp)	Atkinson et al. (2006)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow HCHO + HCl + OH$	5.9E-11	Atkinson et al. (2006)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow HO_2 + Cl + HCHO$	3.3E-12*EXP(-115./temp)	Sander et al. (2006)
G6404	StGCl	$\mathrm{CCl_4} + \mathrm{O(^1D)} \rightarrow \mathrm{ClO} + 3 \mathrm{Cl}$	3.3E-10	Sander et al. (2006)
G6405	StGCl	$CH_3Cl + O(^1D) \rightarrow OH + Cl$	1.65E-10	see note
G6406	StGCl	$CH_3Cl + OH \rightarrow H_2O + Cl$	2.4E-12*EXP(-1250./temp)	Sander et al. (2006)
G6407	StGCCl	$\mathrm{CH_3CCl_3} + \mathrm{O(^1D)} \to \mathrm{OH} + 3 \; \mathrm{Cl}$	3.E-10	see note
G6408	StTrGCCl	$CH_3CCl_3 + OH \rightarrow H_2O + 3 Cl$	1.64E-12*EXP(-1520./temp)	Sander et al. (2006)
G6409	TrGCCl	$Cl + C_2H_4 \rightarrow .6666667 CH_3CH(O_2)CH_2OH + HCl$	k_3rd_iupac(temp,cair,1.85E-29,3.3,	Atkinson et al. (2006)
			6.0E-10,0.0,0.4)	
G6410	TrGCCl	$Cl + CH_3CHO \rightarrow HCl + CH_3C(O)OO$	7.9e-11	Atkinson et al. $(2006)^*$
G6412	TrGCCl	$C_2H_6 + Cl \rightarrow CH_3O_2 + HCl$	8.3E-11*EXP(-100./temp)	Atkinson et al. (2006)
G6500	StGFCl	$CF_2Cl_2 + O(^1D) \rightarrow ClO + Cl$	1.4E-10	Sander et al. (2006)
G6501	StGFCl	$CFCl_3 + O(^1D) \rightarrow ClO + 2 Cl$	2.3E-10	Sander et al. (2006)
G7100	StTrGBr	$Br + O_3 \rightarrow BrO + O_2$	1.7E-11*EXP(-800./temp)	Atkinson et al. (2007)
G7101	StGBr	$BrO + O(^{3}P) \rightarrow RG7101 + Br + O_{2}$	1.9E-11*EXP(230./temp)	Atkinson et al. (2007)
G7102a	StTrGBr	$\mathrm{BrO} + \mathrm{BrO} \rightarrow 2 \; \mathrm{Br} + \mathrm{O}_2$	2.7E-12	Atkinson et al. (2007)
G7102b	StTrGBr	$BrO + BrO \rightarrow Br_2 + O_2$	2.9E-14*EXP(840./temp)	Atkinson et al. (2007)
G7200	StTrGBr	$\mathrm{Br} + \mathrm{HO}_2 \to \mathrm{HBr} + \mathrm{O}_2$	7.7E-12*EXP(-450./temp)	Atkinson et al. (2007)
G7201	StTrGBr	$\mathrm{BrO} + \mathrm{HO}_2 \rightarrow \mathrm{HOBr} + \mathrm{O}_2$	4.5E-12*EXP(500./temp)	Atkinson et al. (2007)
G7202	StTrGBr	$\mathrm{HBr} + \mathrm{OH} \rightarrow \mathrm{Br} + \mathrm{H}_2\mathrm{O}$	6.7E-12*EXP(155./temp)	Atkinson et al. (2007)
G7203	StGBr	$HOBr + O(^{3}P) \rightarrow OH + BrO$	1.2E-10*EXP(-430./temp)	Atkinson et al. (2007)
G7204	$\operatorname{StTrGBr}$	$\mathrm{Br}_2 + \mathrm{OH} \to \mathrm{HOBr} + \mathrm{Br}$	2.0E-11*EXP(240./temp)	Atkinson et al. (2007)
G7300	TrGBr	$Br + BrNO_3 \rightarrow Br_2 + NO_3$	4.9E-11	Orlando and Tyndall (1996)
G7301	StTrGNBr	$BrO + NO \rightarrow RG7301 + Br + NO_2$	8.7E-12*EXP(260./temp)	Atkinson et al. (2007)
G7302	StTrGNBr	$BrO + NO_2 \rightarrow BrNO_3$	k_Br0_N02	Atkinson et al. $(2007)^*$
G7303	TrGBr	$BrNO_3 \rightarrow BrO + NO_2$	$k_Br0_N02/(5.44E-9*exp(14192./temp)$	Orlando and Tyndall (1996),
			*1.E6*R_gas*temp/(atm2Pa*N_A))	Atkinson et al. $(2007)^*$
G7400	StTrGBr	$Br + HCHO \rightarrow HBr + CO + HO_2$	7.7E-12*EXP(-580./temp)	Atkinson et al. (2006)
G7401	TrGBr	$Br + CH_3OOH \rightarrow CH_3O_2 + HBr$	2.66E-12*EXP(-1610./temp)	Mallard et al. (1993)
G7402a	TrGBr	$BrO + CH_3O_2 \rightarrow HOBr + HCHO$	0.8/1.1*5.7E-12	Aranda et al. (1997)
G7402b	TrGBr	$BrO + CH_3O_2 \rightarrow Br + HCHO + HO_2$	0.3/1.1*5.7E-12	Aranda et al. (1997)
G7403	StTrGBr	$CH_3Br + OH \rightarrow H_2O + Br$	2.35E-12*EXP(-1300./temp)	Sander et al. (2006)
G7404	TrGCBr	$Br + C_2H_4 \rightarrow .6666667 CH_3CH(O_2)CH_2OH + HBr$	2.8E-13*EXP(224./temp)/(1.+1.13E+	Atkinson et al. (2006)
			24*EXP(-3200./temp)/C(ind_02))	
G7405	TrGCCl	$Br + CH_3CHO \rightarrow HBr + CH_3C(O)OO$	1.8e-11*EXP(-460./temp)	Atkinson et al. (2006)
G7407	TrGBr	$CHBr_3 + OH \rightarrow H_2O + 3 Br$	1.35E-12*EXP(-600./temp)	Sander et al. (2006)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7408	TrGBr	$\mathrm{CH_2Br_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + 2 \; \mathrm{Br}$	2.0E-12*EXP(-840./temp)	Sander et al. (2006)*
G7600	TrGBrCl	$Br + BrCl \rightarrow Br_2 + Cl$	3.3E-15	Mallard et al. (1993)
G7601	TrGClBr	$Br + Cl_2 \rightarrow BrCl + Cl$	1.1E-15	Mallard et al. (1993)
G7602	TrGClBr	$\mathrm{Br}_2 + \mathrm{Cl} \to \mathrm{BrCl} + \mathrm{Br}$	1.2E-10	Mallard et al. (1993)
G7603a	StTrGClBr	$BrO + ClO \rightarrow Br + OClO$	1.6E-12*EXP(430./temp)	Atkinson et al. (2007)
G7603b	StTrGClBr	$BrO + ClO \rightarrow Br + Cl + O_2$	2.9E-12*EXP(220./temp)	Atkinson et al. (2007)
G7603c	StTrGClBr	$BrO + ClO \rightarrow BrCl + O_2$	5.8E-13*EXP(170./temp)	Atkinson et al. (2007)
G7604	TrGClBr	$BrCl + Cl \rightarrow Br + Cl_2$	1.5E-11	Mallard et al. (1993)
G7605	TrGBr	$CHCl_2Br + OH \rightarrow H_2O + Br$	2.0E-12*EXP(-840./temp)	see note
G7606	TrGBr	$CHClBr_2 + OH \rightarrow H_2O + 2 Br$	2.0E-12*EXP(-840./temp)	see note
G7607	TrGBr	$CH_2ClBr + OH \rightarrow H_2O + Br$	2.4E-12*EXP(-920./temp)	Sander et al. $(2006)^*$
G9200	StTrGS	$SO_2 + OH \rightarrow H_2SO_4 + HO_2$	k_3rd(temp,cair,3.3E-31,4.3,1.6E-12,0.,	Sander et al. (2006)
			0.6)	, ,
G9400a	TrGS	$DMS + OH \rightarrow CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. $(2004)^*$
G9400b	TrGS	$\mathrm{DMS} + \mathrm{OH} \rightarrow \mathrm{DMSO} + \mathrm{HO}_2$	k_DMS_OH	Atkinson et al. $(2004)^*$
G9401	TrGNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2004)
G9402	TrGS	$DMSO + OH \rightarrow .6 SO_2 + HCHO + .6 CH_3O_2 + .4 HO_2$	1.E-10	Hynes and Wine (1996)
		$+ .4 \mathrm{CH_3SO_3H}$		
G9403	TrGS	$CH_3SO_2 \rightarrow SO_2 + CH_3O_2$	1.9E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$CH_3SO_2 + O_3 \rightarrow CH_3SO_3$	3.E-13	Barone et al. (1995)
G9405	TrGS	$\mathrm{CH_3SO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3SO_3H}$	5.E-11	Barone et al. (1995)
G9600	TrGSCl	$DMS + Cl \rightarrow CH_3SO_2 + HCl + HCHO$	3.3E-10	Atkinson et al. (2004)
G9700	TrGSBr	$DMS + Br \rightarrow CH_3SO_2 + HBr + HCHO$	9.E-11*EXP(-2386./temp)	Jefferson et al. (1994)
G9701	TrGSBr	$\mathrm{DMS} + \mathrm{BrO} \to \mathrm{DMSO} + \mathrm{Br}$	2.54E-14*EXP(850./temp)	Ingham et al. (1999)
G10600	TrGHgCl	$Hg + Cl \rightarrow HgCl$	1.0E-11	Ariya et al. (2002)
G10601	TrGHgCl	$\mathrm{Hg} + \mathrm{Cl}_2 \to \mathrm{HgCl}_2$	2.6E-18	Ariya et al. (2002)
G10700	TrGHgBr	$\mathrm{Hg} + \mathrm{Br} \to \mathrm{HgBr}$	3.0E-13	Donohoue et al. (2006)
G10701	TrGHgBr	$\mathrm{HgBr} + \mathrm{Br} \to \mathrm{HgBr}_2$	3.0E-12	Calvert and Lindberg (2003)
G10702	TrGHgBr	$\mathrm{Hg} + \mathrm{Br}_2 \to \mathrm{HgBr}_2$	9.0E-17	Ariya et al. (2002)
G10703	TrGHgBr	$\mathrm{Hg} + \mathrm{BrO} \to \mathrm{HgO} + \mathrm{Br}$	1.0E-15	Raofie and Ariya (2003)
G10704	TrGHgBr	$HgBr + BrO \rightarrow BrHgOBr$	3.0E-12	Calvert and Lindberg (2003)
G10705	TrGHgClBr	$\mathrm{HgCl} + \mathrm{BrO} \rightarrow \mathrm{ClHgOBr}$	3.0E-12	Calvert and Lindberg (2003)
G10706	TrGHgClBr	$HgBr + Cl \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)
G10707	TrGHgClBr	$HgCl + Br \rightarrow ClHgBr$	3.0E-12	Calvert and Lindberg (2003)
G01Diag	StTrG	$O_3(s) \to LO_3(s)$	k_03s	?*

Rate coefficients for three-body reactions are defined via the function $k_3rd(T,\,M,\,k_0^{300},\,n,\,k_{\rm inf}^{300},\,m,\,f_c)$. In the code, the temperature T is called temp and the concentration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T),\,k_{\rm inf}(T),\,$ and $k_{\rm ratio},\,k_3rd$ is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n \tag{1}$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (2)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{3}$$

k_3rd =
$$\frac{k_0(T)M}{1 + k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\text{ratio}}))^2}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Atkinson et al. (2005) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n \tag{5}$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m \tag{6}$$

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{7}$$

$$N = 0.75 - 1.27 \times \log_{10}(f_{\rm c}) \tag{8}$$

$$\texttt{k_3rd_iupac} \ = \ \frac{k_0(T)M}{1+k_{\mathrm{ratio}}} \times f_{\mathrm{c}}^{\left(\frac{1}{1+(\log_{10}(k_{\mathrm{ratio}})/N)^2}\right)} \tag{9}$$

G1002: The path leading to $2 O(^{3}P) + O_{2}$ results in a null cycle regarding odd oxygen and is neglected.

G2110: The rate coefficient is: $k_{H02}=0.05$ (1.5E-12*EXP(19./temp)+1.7E-33*EXP(1000./temp)

cair) (1.+1.4E-21*EXP(2200./temp)*C(ind_

H20)). The value for the first (pressure-independent) part is from Christensen et al. (2002), the water term from Kircher and Sander (1984).

G3109: The rate coefficient is: $k_N03_N02 = k_3rd(temp, cair, 2.E-30, 4.4, 1.4E-12, 0.7, 0.6)$.

G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3203: The rate coefficient is: $k_N02_H02 = k_3 rd(temp, cair, 1.8E-31, 3.2, 4.7E-12, 1.4, 0.6)$.

G3206: The rate coefficient is: k_HN03_ OH = 2.4E-14 * EXP(460./temp) + 1./(1./(6.5E-34 * EXP(1335./temp)*cair) + 1./(2.7E-17 * EXP(2199./temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4103: Sander et al. (2006) recommend a zero product yield for HCHO.

G4107: The rate coefficient is: $k_CH300H_0H = 3.8E-12*EXP(200./temp)$.

(5) G4109: The same temperature dependence assumed as for $CH_3CHO+NO_3$.

G4201: The product distribution is from von Kuhlmann (2001) (see also Neeb et al. (1998)).

G4206: The rate coefficient was calculated by von Kuhlmann (pers. comm. 2004) using self reactions of CH₃OO and C₂H₅OO from Sander et al. (2003) and geometric mean as suggested by Madronich and Calvert (1990) and Kirchner and Stockwell (1996). The product distribution (branching=0.5/0.25/0.25) is calculated by von Kuhlmann (pers. comm. 2004) based on Villenave and Lesclaux (1996) and Tyndall et al. (2001).

G4207: Same value as for G4107: $CH_3OOH+OH$ assumed.

G4216: The value 1.0E-11 is from Atkinson et al. (1999), the temperature dependence from Kirchner and Stockwell (1996).

G4218: Same value as for G4107: $CH_3OOH+OH$ assumed.

G4219: According to Pöschl et al. (2000), the same value as for $CH_3CHO+OH$ can be assumed.

G4220: This is 50% of the upper limit given by Sander et al. (2003), as suggested by von Kuhlmann (2001).

G4221: The rate coefficient is: k_PAN_M = k_PA_N02/9.E-29*EXP(-14000./temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G4301: The product distribution is for terminal olefin carbons from Zaveri and Peters (1999).

G4304: The rate coefficient is: $k_Pr02_H02 = 1.9E-13*EXP(1300./temp)$. Value for generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used.

G4305: The rate coefficient is: $k_Pr02_N0 = 2.7E-12*EXP(360./temp)$.

G4307: Same value as for G4107: $CH_3OOH+OH$ assumed.

G4309: The products are from von Kuhlmann (2001).

G4315: Same value as for G4107: $CH_3OOH+OH$ assumed.

G4319: Same value as for PAN assumed.

G4401: Same value as for propyl group assumed (k_Pr02_CH302).

G4402: Same value as for propyl group assumed (k_Pr02_H02).

G4403: Same value as for propyl group assumed (k_Pr02_N0).

G4404: Same value as for G4107: CH₃OOH+OH assumed.

G4409: The factor 0.25 was recommended by Uli G6402: The initial products are probably HCl and Poeschl (pers. comm. 2004).

G4414: Same value as for propvl group assumed (k_ Pr02_H02).

G4415: Same value as for propyl group assumed (k_ Pr02_N0).

G4416: Same value as for G4107: CH₃OOH+OH assumed.

G4417: Value for C₄H₉ONO₂ used here.

G4503: Same temperature dependence assumed as for other RO_2+HO_2 reactions.

G4504: Yield of 12 % RONO₂ assumed as suggested in Table 2 of Sprengnether et al. (2002).

G6103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

CH₂OOH (Atkinson et al., 2006). It is assumed that CH₂OOH dissociates into HCHO and OH.

G6405: Average of reactions with CH₃Br and CH₃F from Sander et al. (2006) (B. Steil, pers. comm.).

G6407: Rough extrapolation from reactions with CH₃CF₃, CH₃CClF₂, and CH₃CCl₂F from Sander et al. (2006).

G7302: The rate coefficient is: k_Br0_N02 = k_ 3rd(temp, cair, 5.2E-31, 3.2, 6.9E-12, 2.9, 0.6).

G7303: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (Orlando and Tyndall, 1996).

G7407: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7408: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7605: Same value as for G7408: CH_2Br_2+OH assumed. It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7606: Same value as for G7408: CH₂Br₂+OH assumed. It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G7607: It is assumed that the reaction liberates all Br atoms but not Cl. The fate of the carbon atom is currently not considered.

G9400: Addition path. The rate coefficient is: $k_DMS_OH = 1.0E-39*EXP(5820./temp)*C(ind_02)$ $/ (1.+5.0E-30*EXP(6280./temp)*C(ind_02)).$

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J1000	StTrGJ	$O_2 + h\nu \to O(^3P) + O(^3P)$	jx(ip_02)	see note
J1001a	StTrGJ	${ m O_3} + { m h} u ightarrow { m O(^1D)}$	jx(ip_01D)	see note
J1001b	StTrGJ	${ m O_3} + { m h} u ightarrow { m O(^3P)}$	jx(ip_03P)	see note
J2100	StGJ	$H_2O + h\nu \rightarrow H + OH$	jx(ip_H2O)	see note
J2101	StTrGJ	$\mathrm{H_2O_2} + \mathrm{h}\nu \rightarrow 2 \mathrm{OH}$	jx(ip_H2O2)	see note
J3100	StGNJ	$N_2O + h\nu \rightarrow O(^1D)$	jx(ip_N20)	see note
J3101	StTrGNJ	$NO_2 + h\nu \rightarrow NO + O(^3P)$	<pre>jx(ip_N02)</pre>	see note
J3102	StGNJ	$NO + h\nu \rightarrow N + O(^{3}P)$	<pre>jx(ip_NO)</pre>	see note
J3103a	StTrGNJ	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_N020)	see note
J3103b	StTrGNJ	$NO_3 + h\nu \rightarrow NO$	jx(ip_N002)	see note
J3104a	StTrGNJ	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	see note
J3104b	StGNJ	$N_2O_5 + h\nu \rightarrow NO + O(^3P) + NO_3$	jx(ip_N03N00)	see note
J3200	TrGJ	$HONO + h\nu \rightarrow NO + OH$	<pre>jx(ip_HONO)</pre>	see note
J3201	StTrGNJ	$\mathrm{HNO_3} + \mathrm{h}\nu \rightarrow \mathrm{NO_2} + \mathrm{OH}$	<pre>jx(ip_HNO3)</pre>	see note
J3202	StTrGNJ	$\mathrm{HNO_4} + \mathrm{h}\nu \rightarrow .667 \ \mathrm{NO_2} + .667 \ \mathrm{HO_2} + .333 \ \mathrm{NO_3} + .333 \ \mathrm{OH}$	<pre>jx(ip_HNO4)</pre>	see note
J4100	StTrGJ	$\mathrm{CH_3OOH} + \mathrm{h}\nu \rightarrow \mathrm{HCHO} + \mathrm{OH} + \mathrm{HO_2}$	jx(ip_CH300H)	see note
J4101a	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H}_2 + \mathrm{CO}$	<pre>jx(ip_COH2)</pre>	see note
J4101b	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H} + \mathrm{CO} + \mathrm{HO}_2$	<pre>jx(ip_CHOH)</pre>	see note
J4102	StGJ	$\mathrm{CO}_2 + \mathrm{h}\nu \to \mathrm{CO} + \mathrm{O}(^3\mathrm{P})$	<pre>jx(ip_CO2)</pre>	see note
J4103	StGJ	$CH_4 + h\nu \rightarrow CO + 0.31 H + 0.69 H_2 + 1.155 H_2O$	<pre>jx(ip_CH4)</pre>	see note
J4200	TrGCJ	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	jx(ip_CH300H)	see note
J4201	TrGCJ	$\mathrm{CH_3CHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O_2} + \mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH3CHO)	see note
J4202	TrGCJ	$CH_3C(O)OOH + h\nu \rightarrow CH_3O_2 + OH$	jx(ip_PAA)	see note
J4203	TrGNCJ	$NACA + h\nu \rightarrow NO_2 + HCHO + CO$	0.19*jx(ip_CHOH)	see note
J4204	TrGNCJ	$PAN + h\nu \rightarrow .6 CH_3C(O)OO + .6 NO_2 + .4 CH_3O_2 + .4 NO_3$	<pre>jx(ip_PAN)</pre>	see note
		$+ .4 \text{ CO}_2$		
J4300	TrGCJ	$C_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	jx(ip_CH300H)	see note
J4301	TrGCJ	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O)OO + CH_3O_2$	<pre>jx(ip_CH3COCH3)</pre>	see note
J4302	TrGCJ	$CH_3COCH_2OH + h\nu \rightarrow CH_3C(O)OO + HCHO + HO_2$	0.074*jx(ip_CHOH)	see note
J4303	TrGCJ	$CH_3COCHO + h\nu \rightarrow CH_3C(O)OO + CO + HO_2$	jx(ip_CH3COCHO)	see note
J4304	TrGCJ	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O)OO + HO_2 + OH$	<pre>jx(ip_CH300H)</pre>	see note
J4305	TrGNCJ	$MPAN + h\nu \rightarrow CH_3COCH_2OH + NO_2$	<pre>jx(ip_PAN)</pre>	see note
J4306	TrGNCJ	$C_3H_7ONO_2 + h\nu \rightarrow CH_3COCH_3 + NO_2 + HO_2$	3.7*jx(ip_PAN)	see note

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J4400	TrGCJ	$C_4H_9OOH + h\nu \rightarrow OH + .67 CH_3COC_2H_5 + .67 HO_2 + .33$	jx(ip_CH300H)	see note
		$\mathrm{C_2H_5O_2} + .33~\mathrm{CH_3CHO}$		
J4401	TrGCJ	$MVK + h\nu \rightarrow CH_3C(O)OO + HCHO + CO + HO_2$	0.019*jx(ip_COH2)+.015*jx(ip_	see note
			CH3COCHO)	
J4402	TrGCJ	$MVKOOH + h\nu \rightarrow OH + .5 CH_3COCHO + .25 CH_3COCH_2OH$	jx(ip_CH300H)	see note
		$+ .75 \text{ HCHO} + .75 \text{ HO}_2 + .25 \text{ CH}_3\text{C(O)OO} + .25 \text{ CO}$		
J4403	TrGCJ	$\mathrm{CH_3COC_2H_5} + \mathrm{h}\nu \rightarrow \mathrm{CH_3C(O)OO} + \mathrm{C_2H_5O_2}$	0.42*jx(ip_CHOH)	see note
J4404	TrGCJ	$MEKOOH + h\nu \rightarrow CH_3C(O)OO + CH_3CHO + OH$	jx(ip_CH300H)	see note
J4405	TrGCJ	$MeCOCO + h\nu \rightarrow 2 CH_3C(O)OO$	2.15*jx(ip_CH3COCHO)	see note
J4406	TrGNCJ	$ONIT + h\nu \rightarrow NO_2 + .67 CH_3COC_2H_5 + .67 HO_2 + .33 C_2H_5O_2$	3.7*jx(ip_PAN)	see note
		$+ .33 \text{ CH}_3 \text{CHO}$		
J4500	TrGCJ	ISOOH + $h\nu \rightarrow MVK + HCHO + HO_2 + OH$	jx(ip_CH300H)	see note
J4501	TrGNCJ	$ISON + h\nu \rightarrow MVK + HCHO + NO_2 + HO_2$	3.7*jx(ip_PAN)	see note
J6000	StTrGClJ	$\text{Cl}_2 + \text{h}\nu \rightarrow \text{Cl} + \text{Cl}$	jx(ip_Cl2)	see note
J6100	StTrGClJ	$\text{Cl}_2\text{O}_2 + \text{h}\nu \to 2 \text{ Cl}$	1.4*jx(ip_Cl2O2)	see note
J6101	StTrGClJ	$OClO + h\nu \rightarrow ClO + O(^{3}P)$	<pre>jx(ip_0Cl0)</pre>	see note
J6200	StGClJ	$\mathrm{HCl} + \mathrm{h}\nu \to \mathrm{Cl} + \mathrm{H}$	<pre>jx(ip_HCl)</pre>	see note
J6201	StTrGClJ	$HOCl + h\nu \rightarrow OH + Cl$	<pre>jx(ip_HOC1)</pre>	see note
J6300	TrGNClJ	$\text{ClNO}_2 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_2$	<pre>jx(ip_ClNO2)</pre>	see note
J6301a	StTrGNClJ	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_3$	<pre>jx(ip_ClNO3)</pre>	see note
J6301b	StTrGNClJ	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{ClO} + \text{NO}_2$	<pre>jx(ip_Cl0N02)</pre>	see note
J6400	StGClJ	$CH_3Cl + h\nu \rightarrow Cl + CH_3O_2$	jx(ip_CH3C1)	see note
J6401	StGClJ	$\mathrm{CCl}_4 + \mathrm{h}\nu \to 4 \mathrm{Cl}$	<pre>jx(ip_CCl4)</pre>	see note
J6402	StGCClJ	$\mathrm{CH_3CCl_3} + \mathrm{h}\nu \to 3 \mathrm{Cl}$	<pre>jx(ip_CH3CCl3)</pre>	see note
J6500	StGFClJ	$CFCl_3 + h\nu \rightarrow 3 Cl$	<pre>jx(ip_CFCl3)</pre>	see note
J6501	StGFClJ	$CF_2Cl_2 + h\nu \rightarrow 2 Cl$	jx(ip_CF2C12)	see note
J7000	StTrGBrJ	$Br_2 + h\nu \rightarrow Br + Br$	jx(ip_Br2)	see note
J7100	TrGBrJ	$BrO + h\nu \rightarrow RJ7100 + Br + O(^{3}P)$	jx(ip_BrO)	see note
J7200	StTrGBrJ	$HOBr + h\nu \rightarrow Br + OH$	jx(ip_HOBr)	see note
J7300	TrGNBrJ	$BrNO_2 + h\nu \rightarrow Br + NO_2$	<pre>jx(ip_BrN02)</pre>	see note
J7301	StTrGNBrJ	$BrNO_3 + h\nu \rightarrow 0.29 Br + 0.29 NO_3 + 0.71 BrO + 0.71 NO_2$	jx(ip_BrNO3)	see note
J7400	StGBrJ	$CH_3Br + h\nu \rightarrow Br + CH_3O_2$	jx(ip_CH3Br)	see note
J7401	TrGBrJ	$\mathrm{CH_2Br_2} + \mathrm{h}\nu \to 2~\mathrm{Br}$	jx(ip_CH2Br2)	see note
J7402	TrGBrJ	$\mathrm{CHBr}_3 + \mathrm{h}\nu \to 3~\mathrm{Br}$	<pre>jx(ip_CHBr3)</pre>	see note
J7500	StGFBrJ	$CF_3Br + h\nu \rightarrow Br$	jx(ip_CF3Br)	see note

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J7600	StTrGClBrJ	$BrCl + h\nu \rightarrow Br + Cl$	jx(ip_BrCl)	see note
J7601	StGFBrJ	$CF_2ClBr + h\nu \rightarrow Br + Cl$	<pre>jx(ip_CF2C1Br)</pre>	see note
J7602	TrGClBrJ	$\mathrm{CH_2ClBr} + \mathrm{h}\nu \to \mathrm{Br} + \mathrm{Cl}$	<pre>jx(ip_CH2ClBr)</pre>	see note
J7603	TrGClBrJ	$\mathrm{CHCl_2Br} + \mathrm{h}\nu \to \mathrm{Br} + 2 \; \mathrm{Cl}$	jx(ip_CHCl2Br)	see note
J7604	TrGClBrJ	$\mathrm{CHClBr}_2 + \mathrm{h}\nu \to 2~\mathrm{Br} + \mathrm{Cl}$	<pre>jx(ip_CHClBr2)</pre>	see note
J8401a	TrGJ	$CH_3I + h\nu \rightarrow CH_3O_2$	JX(ip_CH3I)	see note
J9002	StGSJ	$SF_6 + h\nu \rightarrow products$	JX(ip_SF6)	see note

J-values are calculated with an external module and then supplied to the MECCA chemistry

J6100: Stimpfle et al. (2004) claim that the combination of absorption cross sections from Burkholder et al. (1990) and the Cl_2O_2 formation rate coefficient by

Sander et al. (2003) can approximately reproduce the observed $\mathrm{Cl_2O_2/ClO}$ ratios and ozone depletion. They give an almost zenith-angle independent ratio of 1.4 for Burkholder et al. (1990) to Sander et al. (2003) J-values. The IUPAC recommendation for the $\mathrm{Cl_2O_2}$ formation rate is about 5 to 15 % less than the value by Sander

et al. (2003) but more than 20 % larger than the value by Sander et al. (2000). The J-values by Burkholder et al. (1990) are within the uncertainty range of the IUPAC recommendation.

J7301: The quantum yields are from Sander et al. (2003).

Table 3: Henry's law coefficients

substance	$\frac{k_{ m H}^{\ominus}}{N_{ m I}/L}$	$\frac{-\Delta_{\rm soln}H/R}{T}$	reference
	M/atm	K	
O_2	1.3×10^{-3}	1500.	Wilhelm et al. (1977)
O_3	1.2×10^{-2}	2560.	Chameides (1984)
ОН	3.0×10^{1}	4300.	Hanson et al. (1992)
HO_2	3.9×10^{3}	5900.	Hanson et al. (1992)
$\mathrm{H_2O_2}$	$1.\times10^{5}$	6338.	Lind and Kok (1994)
NH_3	58.	4085.	Chameides (1984)
NO	1.9×10^{-3}	1480.	Schwartz and White (1981)
NO_2	7.0×10^{-3}	2500.	Lee and Schwartz (1981)*
NO_3	2.	2000.	Thomas et al. (1993)
HONO	4.9×10^{1}	4780.	Schwartz and White (1981)
HNO_3	$2.45\times10^{6}/1.5\times10^{1}$	8694.	Brimblecombe and Clegg (1989)*
HNO_4	1.2×10^4	6900.	Régimbal and Mozurkewich (1997)
$\mathrm{CH_{3}O_{2}}$	6.	5600.	Jacob (1986)*
CH_3OOH	3.0×10^{2}	5322.	Lind and Kok (1994)
HCHO	7.0×10^{3}	6425.	Chameides (1984)
HCOOH	3.7×10^{3}	5700.	Chameides (1984)
CO_2	3.1×10^{-2}	2423.	Chameides (1984)
Cl_2	9.2×10^{-2}	2081.	Bartlett and Margerum (1999)
HCl	2./1.7	9001.	Brimblecombe and Clegg (1989)
HOCl	6.7×10^2	5862.	Huthwelker et al. (1995)
Br_2	7.7×10^{-1}	3837.	Bartlett and Margerum (1999)
$\overline{\mathrm{HBr}}$	1.3	10239.	Brimblecombe and Clegg (1989)*
HOBr	9.3×10^{1}	5862.	Vogt et al. (1996)*
BrCl	9.4×10^{-1}	5600.	Bartlett and Margerum (1999)
SO_2	1.2	3120.	Chameides (1984)
H_2SO_4	$1.\times10^{11}$	0.	see note
DMSO	$5.\times10^{4}$	6425.	De Bruyn et al. (1994)*
Hg	0.13	0.	Schroeder and Munthe (1998)
$_{ m HgO}$	3.2×10^{6}	0.	Shon et al. (2005)
HgCl_2	2.4×10^{7}	0.	Shon et al. (2005)
$_{\mathrm{HgBr}_{2}}^{2}$	2.4×10^{7}	0.	see note
ClHgBr	2.4×10^{7}	0.	see note
BrHgOBr	2.4×10^{7}	0.	see note

Table 3: Henry's law coefficients (... continued)

substance	$\frac{k_{ m H}^{\ominus}}{ m M/atm}$	$rac{-\Delta_{ m soln} H/R}{ m K}$	reference	
ClHgOBr	2.4×10^{7}	0.	see note	

The temperature dependence of the Henry constants is:

$$K_{\mathrm{H}} = K_{\mathrm{H}}^{\ominus} \times \exp\left(\frac{-\Delta_{\mathrm{soln}}H}{R}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right)$$

where $\Delta_{\mathrm{soln}}H=\mathrm{molar}$ enthalpy of dissolution [J/mol] and R = 8.314 J/(mol K).

(1984).

HNO₃: Calculated using the acidity constant from Davis and de Bruin (1964).

 CH_3O_2 : This value was estimated by Jacob (1986).

HBr: Calculated using the acidity constant from Lax (1969).

NO₂: The temperature dependence is from Chameides HOBr: This value was estimated by Vogt et al. (1996).

H₂SO₄: To account for the very high Henry's law coefficient of H₂SO₄, a very high value was chosen arbitrarily.

DMSO: Lower limit cited from another reference.

HgBr₂: Assumed to be the same as for HgCl₂

ClHgBr: Assumed to be the same as for HgCl₂

BrHgOBr: Assumed to be the same as for HgCl₂

ClHgOBr: Assumed to be the same as for HgCl₂

Table 4: Accommodation coefficients

		Λ. Η/Ρ	
substance	$lpha^\ominus$	$\frac{-\Delta_{\rm obs}H/R}{\rm K}$	reference
O_2	0.01	2000.	see note
O_3	0.002	0.	DeMore et al. (1997)*
OH	0.01	0.	Takami et al. (1998)*
HO_2	0.5	0.	Thornton and Abbatt (2005)
$\mathrm{H_2O_2}$	0.077	3127.	Worsnop et al. (1989)
NH_3	0.06	0.	DeMore et al. (1997)*
NO	5.0×10^{-5}	0.	Saastad et al. (1993)*
NO_2	0.0015	0.	Ponche et al. (1993)*
NO_3	0.04	0.	Rudich et al. (1996)*
N_2O_5	0.1	0.	DeMore et al. (1997)*
HONO	0.04	0.	DeMore et al. (1997)*
HNO_3	0.5	0.	Abbatt and Waschewsky (1998)*
HNO_4	0.1	0.	DeMore et al. (1997)*
$\mathrm{CH_{3}O_{2}}$	0.01	2000.	see note
$\mathrm{CH_{3}OOH}$	0.0046	3273.	Magi et al. (1997)
HCHO	0.04	0.	DeMore et al. (1997)*
НСООН	0.014	3978.	DeMore et al. (1997)
CO_2	0.01	2000.	see note
Cl_2	0.038	6546.	Hu et al. (1995)
HCl	0.074	3072.	Schweitzer et al. $(2000)^*$
HOCl	0.5	0.	see note
$ClNO_3$	0.108	0.	Deiber et al. $(2004)^*$
Br_2	0.038	6546.	Hu et al. (1995)
$_{ m HBr}$	0.032	3940.	Schweitzer et al. $(2000)^*$
HOBr	0.5	0.	Abbatt and Waschewsky (1998)*
$BrNO_3$	0.063	0.	Deiber et al. $(2004)^*$
BrCl	0.38	6546.	see note
SO_2	0.11	0.	DeMore et al. (1997)
H_2SO_4	0.65	0.	Pöschl et al. (1998)*
$\mathrm{CH_{3}SO_{3}H}$	0.076	1762.	De Bruyn et al. (1994)
DMSO	0.048	2578.	De Bruyn et al. (1994)
Hg	0.1	0.	see note
$_{ m HgO}$	0.1	0.	see note
HgCl_2	0.1	0.	see note

Table 4: Accommodation coefficients (... continued)

substance	α^{\ominus}	$\frac{-\Delta_{ m obs}H/R}{ m K}$	reference	
HgBr_2	0.1	0.	see note	
ClHgBr	0.1	0.	see note	
BrHgOBr	0.1	0.	see note	
ClHgOBr	0.1	0.	see note	

The temperature dependence of the accommodation coefficients is given by (Jayne et al., 1991):

$$\frac{\alpha}{1 - \alpha} = \exp\left(\frac{-\Delta_{\text{obs}}G}{RT}\right)$$
$$= \exp\left(\frac{-\Delta_{\text{obs}}H}{RT} + \frac{\Delta_{\text{obs}}S}{R}\right)$$

where $\Delta_{\rm obs}G$ is the Gibbs free energy barrier of the transition state toward solution (Jayne et al., 1991), and $\Delta_{\text{obs}}H$ and $\Delta_{\text{obs}}S$ are the corresponding enthalpy and entropy, respectively. The equation can be rearranged to:

$$\ln\left(\frac{\alpha}{1-\alpha}\right) = \frac{-\Delta_{\rm obs}H}{R} \times \frac{1}{T} + \frac{-\Delta_{\rm obs}S}{R}$$

and further:

$$\mathrm{d}\ln\left(\frac{\alpha}{1-\alpha}\right) / \mathrm{d}\left(\frac{1}{T}\right) = \frac{-\Delta_{\mathrm{obs}}H}{R}$$

If no data were available, a value of $\alpha = 0.01$, $\alpha = \text{HCl}$: Temperature dependence derived from published 0.1, or $\alpha = 0.5$, and a temperature dependence of $-\Delta_{\rm obs}H/R = 2000$ K has been assumed.

 O_2 : Estimate.

O₃: Value measured at 292 K.

OH: Value measured at 293 K.

NH₃: Value measured at 295 K.

NO: Value measured between 193 and 243 K.

NO₂: Value measured at 298 K.

NO₃: Value is a lower limit, measured at 273 K.

N₂O₅: Value for sulfuric acid, measured between 195 and 300 K.

HONO: Value measured between 247 and 297 K.

HNO₃: Value measured at room temperature. Abbatt and Waschewsky (1998) say $\gamma > 0.2$. Here $\alpha = 0.5$ is used.

HNO₄: Value measured at 200 K for water ice.

 CH_3O_2 : Estimate.

HCHO: Value measured between 260 and 270 K.

 CO_2 : Estimate.

data at 2 different temperatures

HOCl: Assumed to be the same as $\alpha(HOBr)$.

ClNO₃: Value measured at 274.5 K.

HBr: Temperature dependence derived from published data at 2 different temperatures

HOBr: Value measured at room temperature. Abbatt and Waschewsky (1998) say $\gamma > 0.2$. Here $\alpha = 0.5$ is used.

BrNO₃: Value measured at 273 K.

BrCl: Assumed to be the same as $\alpha(Cl_2)$.

H₂SO₄: Value measured at 303 K.

Hg: Estimate.

HgO: Estimate.

HgCl₂: Estimate.

HgBr₂: Estimate.

ClHgBr: Estimate.

BrHgOBr: Estimate.

ClHgOBr: Estimate.

Table 5: Henry's law equilibria

# labels reaction	rate coefficient	reference	

The forward (k_exf) and backward (k_exb) rate coefficients are calculated in the file messy_mecca_aero.f90 using the accommodation coefficients in subroutine mecca_aero_alpha and Henry's law constants in subroutine mecca_aero_henry.

 $k_{\rm mt} = {\rm mass} \ {\rm transfer} \ {\rm coefficient}$

lwc = liquid water content of aerosol mode H3201, H6300, H6301, H6302, H7300, H7301, H7302, H7601, H7602: For uptake of X (= N₂O₅, ClNO₃, BrNO₃) and subsequent reaction with H₂O, Cl⁻, and Br⁻, we define $k_{\rm exf}(X) = k_{\rm mt}(X) \times lwc/([H_2O] + 5.0E2[Cl^-] + 3.0E5[Br^-])$.

H6301, H6302, H7601: The total uptake is determined

by $k_{\rm mt}({\rm ClNO_3})$. The relative rates are assumed to be the same as for N₂O₅ (H3201, H6300, H7300).

H7301, H7302, H7602: The total uptake is determined by $k_{\rm mt}({\rm BrNO_3})$. The relative rates are assumed to be the same as for N₂O₅ (H3201, H6300, H7300).

Table 6: Heterogeneous reactions

#	labels	reaction	rate coefficient	reference
HET200	StHetN	$N_2O_5 + H_2O \rightarrow 2 \text{ HNO}_3$	khet_St(ihs_N2O5_H2O)	see note
HET201	TrHetN	$N_2O_5 \to 2 NO_3^-(aq) + 2 H^+(aq)$	khet_Tr(iht_N2O5)	see note
HET202	TrHetN	$HNO_3 \rightarrow NO_3^-(aq) + H^+(aq)$	khet_Tr(iht_HNO3)	see note
HET410	StHetCl	$HOCl + HCl \rightarrow Cl_2 + H_2O$	khet_St(ihs_HOC1_HC1)	see note
HET420	StHetNCl	$ClNO_3 + HCl \rightarrow Cl_2 + HNO_3$	khet_St(ihs_C1NO3_HC1)	see note
HET421	StHetNCl	$ClNO_3 + H_2O \rightarrow HOCl + HNO_3$	khet_St(ihs_C1NO3_H2O)	see note
HET422	StHetNCl	$N_2O_5 + HCl \rightarrow ClNO_2 + HNO_3$	khet_St(ihs_N2O5_HCl)	see note
HET510	StHetBr	$\mathrm{HOBr} + \mathrm{HBr} \rightarrow \mathrm{Br}_2 + \mathrm{H}_2\mathrm{O}$	khet_St(ihs_HOBr_HBr)	see note
HET520	StHetNBr	$BrNO_3 + H_2O \rightarrow HOBr + HNO_3$	khet_St(ihs_BrNO3_H2O)	see note
HET540	StHetNClBr	$ClNO_3 + HBr \rightarrow BrCl + HNO_3$	khet_St(ihs_C1NO3_HBr)	see note
HET541	StHetNClBr	$BrNO_3 + HCl \rightarrow BrCl + HNO_3$	khet_St(ihs_BrNO3_HC1)	see note
HET542	StHetClBr	$HOCl + HBr \rightarrow BrCl + H_2O$	khet_St(ihs_HOC1_HBr)	see note
HET543	StHetClBr	$\mathrm{HOBr} + \mathrm{HCl} \rightarrow \mathrm{BrCl} + \mathrm{H_2O}$	khet_St(ihs_HOBr_HCl)	see note
HET1001	StTrHetHg	$Hg \to Hg(aq)$	<pre>khet_Tr(iht_Hg) + khet_St(ihs_Hg)</pre>	see note
HET1002	StTrHetHg	$HgO \rightarrow Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note
HET1003	StTrHetHg	$HgCl \rightarrow Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note
HET1004	StTrHetHg	$HgCl_2 \to Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note
HET1005	StTrHetHg	$HgBr \to Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note
HET1006	StTrHetHg	$HgBr_2 \rightarrow Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note
HET1007	StTrHetHg	$ClHgBr \rightarrow Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note
HET1008	StTrHetHg	$BrHgOBr \rightarrow Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note
HET1009	StTrHetHg	$ClHgOBr \rightarrow Hg(aq)$	<pre>khet_Tr(iht_RGM) + khet_St(ihs_RGM)</pre>	see note

^{*}Notes:

Heterogeneous reaction rates are calculated with an external module and then supplied to the MECCA chemistry (see www.messy-interface.org for details)

Table 7: Acid-base and other eqilibria

# labels reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference	

Table 8: Aqueous phase reactions

# labels reaction	$k_0 [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference	

References

- Abbatt, J. P. D. and Waschewsky, G. C. G.: Heterogeneous interactions of HOBr, HNO₃, O₃, and NO₂ with deliquescent NaCl aerosols at room temperature, J. Phys. Chem. A, 102, 3719–3725, 1998.
- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O₃ chemiluminescence detector, J. Phys. Chem., 94, 644–652, 1990.
- Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The $BrO + CH_3O_2$ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, 1997.
- Ariya, P. A., Khalizov, A., and Gidas, A.: Reactions of gaseous mercury with atomic and molecular halogens: Kinetics, product studies, and atmospheric implications, J. Phys. Chem. A, 106, 7310–7320, 2002.
- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version August 1999, http://www.iupac-kinetic.ch.cam.ac.uk/, 1999.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N.,
 Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi,
 M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I

- gas phase reactions of O_x, HO_x, NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, Jr., R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: Web version March 2005, http://www.iupac-kinetic.ch.cam.ac.uk/, 2005.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, 2006.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N.,
 Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi,
 M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III
 gas phase reactions of inorganic halogens, Atmos.
 Chem. Phys., 7, 981–1191, 2007.
- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmospheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39–54, 1995.
- Bartlett, W. P. and Margerum, D. W.: Temperature dependencies of the Henry's law constant and the aqueous phase dissociation constant of bromine chloride, Environ. Sci. Technol., 33, 3410–3414, 1999.
- Boyd, A. A., Flaud, P.-M., Daugey, N., and Lesclaux, R.: Rate constants for RO₂ + HO₂ reactions measured under a large excess of HO₂, J. Phys. Chem. A, 107, 818–821, 2003.
- Brimblecombe, P. and Clegg, S. L.: Erratum, J. Atmos. Chem., 8, 95, 1989.

- Burkholder, J. B., Orlando, J. J., and Howard, C. J.: Ultraviolet absorption cross sections of Cl₂O₂ between 210 and 410 nm, J. Phys. Chem., 94, 687–695, 1990.
- Calvert, J. G. and Lindberg, S. E.: A modeling study of the mechanism of the halogen-ozone-mercury homogeneous reactions in the troposphere during the polar spring, Atmos. Environ., 37, 4467–4481, 2003.
- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time troposphere?, J. Chem. Soc. Faraday Trans., 92, 2211–2222, 1996.
- Chameides, W. L.: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89D, 4739–4755, 1984.
- Christensen, L. E., Okumura, M., Sander, S. P., Salawitch, R. J., Toon, G. C., Sen, B., Blavier, J.-F., and Jucks, K. W.: Kinetics of HO₂ + HO₂ → H₂O₂ + O₂: Implications for stratospheric H₂O₂, Geophys. Res. Lett., 29, doi:10.1029/2001GL014525, 2002.
- Davis, Jr., W. and de Bruin, H. J.: New activity coefficients of 0-100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem., 26, 1069–1083, 1964.
- De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res., 99D, 16927–16932, 1994.
- Deiber, G., George, C., Le Calvé, S., Schweitzer, F., and Mirabel, P.: Uptake study of $ClONO_2$ and $BrONO_2$ by halide containing droplets, Atmos. Chem. Phys., 4, 1291–1299, 2004.

- DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12, JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena, CA, 1997.
- Dillon, T. J., Horowitz, A., Hölscher, D., Crowley, J. N., Vereecken, L., and Peeters, J.: Reaction of HO with hydroxyacetone ($HOCH_2C(O)CH_3$): rate coefficients (233-363 K) and mechanism, Phys. Chem. Chem. Phys., 8, 236–246, 2006.
- Donohoue, D. L., Bauer, D., Cossairt, B., and Hynes, A. J.: Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: a pulsed laser photolysis-pulsed laser induced fluorescence study, J. Phys. Chem. A, 110, 6623–6632, 2006.
- Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.: Measurement of OH and HO₂ radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985, 1992.
- Hu, J. H., Shi, Q., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Reactive uptake of Cl₂(g) and Br₂(g) by aqueous surfaces as a function of Br⁻ and I⁻ ion concentration: The effect of chemical reaction at the interface, J. Phys. Chem., 99, 8768–8776, 1995.
- Huthwelker, T., Clegg, S. L., Peter, T., Carslaw, K., Luo, B. P., and Brimblecombe, P.: Solubility of HOCl in water and aqueous H₂SO₄ to stratospheric temperatures, J. Atmos. Chem., 21, 81–95, 1995.
- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and

- mechanism of the OH + DMSO reaction, J. Atmos. Lee, Y.-N. and Schwartz, S. E.: Reaction kinetics of ni-Chem., 24, 23–37, 1996.
- Ingham, T., Bauer, D., Sander, R., Crutzen, P. J., and Crowley, J. N.: Kinetics and products of the reactions BrO + DMS and Br + DMS at 298 K, J. Phys. Chem. A, 103, 7199–7209, 1999.
- Jacob, D. J.: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91D, 9807-9826, 1986.
- Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase alcohol and organic acid molecules by water surfaces, J. Phys. Chem., 95, 6329-6336, 1991.
- Jefferson, A., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of the reactions $Br(^{2}P_{3/2}) + CH_{3}SCH_{3} \leftrightarrow CH_{3}SCH_{2} + HBr.$ Heat of formation of the CH₃SCH₂ radical, J. Phys. Chem., 98, 7128–7135, 1994.
- Kircher, C. C. and Sander, S. P.: Kinetics and mechanism of HO₂ and DO₂ disproportionations, J. Phys. Chem., 88, 2082–2091, 1984.
- Kirchner, F. and Stockwell, W. R.: Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals, J. Geophys. Res., 101D, 21007-21022, 1996.
- Kohlmann, J.-P. and Poppe, D.: The tropospheric gasphase degradation of NH₃ and its impact on the formation of N₂O and NO_x, J. Atmos. Chem., 32, 397– 415, 1999.
- Lax, E.: Taschenbuch für Chemiker und Physiker, Springer Verlag, Berlin, 1969.

- trogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85, 840-848, 1981.
- Lind, J. A. and Kok, G. L.: Correction to "Henry's law determinations for aqueous solutions of hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid" by John A. Lind and Gregory L. Kok, J. Geophys. Res., 99D, 21119, 1994.
- Madronich, S. and Calvert, J. G.: Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res., 95D, 5697-5715, 1990.
- Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. A, 101, 4943–4949, 1997.
- Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., and Frizzel, D. H.: NIST Chemical Kinetics Database: Version 5.0, National Institute of Standards and Technology, Gaithersburg, MD, 1993.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions, Geophys. Res. Lett., 28, 3135–3138, 2001.
- Müller, J.-F. and Brasseur, G.: IMAGES: A threedimensional chemical transport model of the global troposphere, J. Geophys. Res., 100D, 16445–16490, 1995.
- Neeb, P., Horie, O., and Moortgat, G. K.: The etheneozone reaction in the gas phase, J. Phys. Chem. A, 102, 6778–6785, 1998.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19398-19405, 1996.

- Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with CH₂=C(CH₃)C(O)OONO₂ (MPAN), Atmos. Environ., 36, 1895–1900, 2002.
- Ponche, J. L., George, C., and Mirabel, P.: Mass transfer at the air/water interface: Mass accommodation coefficients of SO₂, HNO₃, NO₂ and NH₃, J. Atmos. Chem., 16, 1–21, 1993.
- Pöschl, U., Canagaratna, M., Jayne, J. T., Molina, L. T., Worsnop, D. R., Kolb, C. E., and Molina, M. J.: Mass accommodation coefficient of H₂SO₄ vapor on aqueous sulfuric acid surfaces and gaseous diffusion coefficient of H₂SO₄ in N₂/H₂O, J. Phys. Chem. A, 102, 10 082–10 089, 1998.
- Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J.: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem., 37, 29–52, 2000.
- Raofie, F. and Ariya, P. A.: Kinetics and products study of the reaction of BrO radicals with gaseous mercury, J. Phys. IV France, 107, 1119–1121, 2003.
- Régimbal, J.-M. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829, 1997.
- Rudich, Y., Talukdar, R. K., Imamura, T., Fox, R. W., and Ravishankara, A. R.: Uptake of NO_3 on KI solutions: Rate coefficient for the $NO_3 + I^-$ reaction and gas-phase diffusion coefficients for NO_3 , Chem. Phys. Lett., 261, 467–473, 1996.
- Saastad, O. W., Ellermann, T., and Nielsen, C. J.: On the adsorption of NO and NO₂ on cold H₂O/H₂SO₄ surfaces, Geophys. Res. Lett., 20, 1191–1193, 1993.

- Sander, S. P., Friedl, R. R., DeMore, W. B., Golden, D. M., Kurylo, M. J., Hampson, R. F., Huie, R. E., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling. Supplement to evaluation 12: Update of key reactions. Evaluation number 13, JPL Publication 00-3, Jet Propulsion Laboratory, Pasadena, CA, http://ipldataeval.jpl.nasa.gov/, 2000.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo,
 M. J., Moortgat, G. K., Keller-Rudek, H., Wine,
 P. H., Ravishankara, A. R., Kolb, C. E., Molina,
 M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin,
 V. L.: Chemical Kinetics and Photochemical Data
 for Use in Atmospheric Studies, Evaluation Number
 15, JPL Publication 06-2, Jet Propulsion Laboratory,
 Pasadena, CA, 2006.
- Schroeder, W. H. and Munthe, J.: Atmospheric mercury An overview, Atmos. Environ., 32, 809–822, 1998.
- Schwartz, S. E. and White, W. H.: Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in: Advances in Environmental Science and Engineering, edited by Pfafflin, J. R. and Ziegler, E. N., vol. 4, pp. 1–45, Gordon and Breach Science Publishers, NY, 1981.
- Schweitzer, F., Mirabel, P., and George, C.: Uptake of

- hydrogen halides by water droplets, J. Phys. Chem. A, 104, 72–76, 2000.
- Shon, Z.-H., Kim, K.-H., Kim, M.-Y., and Lee, M.: Modeling study of reactive gaseous mercury in the urban air, Atmos. Environ., 39, 749–761, 2005.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, 2003.
- Sprengnether, M., Demerjian, K. L., Donahue, N. M., and Anderson, J. G.: Product analysis of the OH oxidation of isoprene and 1,3-butadiene in the presence of NO, J. Geophys. Res., 107D, doi:10.1029/2001JD000716, 2002.
- Stimpfle, R. M., Wilmouth, D. M., Salawitch, R. J., and Anderson, J. G.: First measurements of ClOOCl in the stratosphere: The coupling of ClOOCl and ClO in the Arctic polar vortex, J. Geophys. Res., 109, doi: 10.1029/2003JD003811, 2004.
- Takami, A., Kato, S., Shimono, A., and Koda, S.: Uptake coefficient of OH radical on aqueous surface, Chem. Phys., 231, 215–227, 1998.
- Thomas, K., Volz-Thomas, A., and Kley, D.: Zur Wechselwirkung von NO₃-Radikalen mit wässrigen Lösungen: Bestimmung des Henry- und des Massenakkomodationskoeffizienten, Ph.D. thesis, Institut für Chemie und Dynamik der Geosphäre 2, Forschungszentrum Jülich GmbH, Germany, 1993.
- Thornton, J. and Abbatt, J. P. D.: Measurements of HO₂ uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss, J. Geophys. Res., 110D, doi:10.1029/2004JD005402, 2005.

- Tyndall, G. S., Staffelbach, T. A., Orlando, J. J., and Calvert, J. G.: Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde, Int. J. Chem. Kinetics, 27, 1009–1020, 1995.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, 2001.
- Villenave, E. and Lesclaux, R.: Kinetics of the cross reactions of CH₃O₂ and C₂H₅O₂ radicals with selected

- peroxy radicals, J. Phys. Chem., 100, 14372–14382, 1996.
- Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, doi:10.1038/383327A0, 1996.
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3D-modeling study considering non-methane hydrocarbons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
- Wilhelm, E., Battino, R., and Wilcock, R. J.: Low-pressure solubility of gases in liquid water, Chem. Rev., 77, 219–262, 1977.
- Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Watson, L. R., van Doren, J. M., Jayne, J. T., and Davidovits, P.: The temperature dependence of mass accommodation of SO₂ and H₂O₂ on aqueous surfaces, J. Phys. Chem., 93, 1159–1172, 1989.
- Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res., 104D, 30 387–30 415, 1999.