Numerical Linear Algebra Fundamentals of LA

Zahra Lakdawala

October 2, 2021

Outline

- 1 Matrix Multiplications
- 2 Range, Rank and Inverses
- 3 Inner products
- 4 Unitary matrices
- 5 Vector Norms
- 6 Matrix Norms
- 7 SVD

Matrix Multiplications

Definition

■ Matrix-vector product **b** = **Ax**

$$b_i = \sum_{j=1}^n a_{ij} x_j$$

■ All entries belong to \mathbb{C} , the field of complex numbers. The space of m-vectors is \mathbb{C}^m , and the space of $m \times n$ matrices is $\mathbb{C}^{m \times n}$.

Definition

■ Matrix-vector product **b** = **Ax**

$$b_i = \sum_{j=1}^n a_{ij} x_j$$

- All entries belong to \mathbb{C} , the field of complex numbers. The space of m-vectors is \mathbb{C}^m , and the space of $m \times n$ matrices is $\mathbb{C}^{m \times n}$.
- The map $\mathbf{x} \to \mathbf{A}\mathbf{x}$ is linear, which means for any $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ and any $\alpha \in \mathbb{C}$

$$\mathbf{A}(\mathbf{x} + \mathbf{y}) = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{y}$$

$$\mathbf{A}(\alpha \mathbf{x}) = \alpha \mathbf{A} \mathbf{x}$$

Definition

Matrix-vector product b = Ax

$$b_i = \sum_{j=1}^n a_{ij} x_j$$

- All entries belong to \mathbb{C} , the field of complex numbers. The space of m-vectors is \mathbb{C}^m , and the space of $m \times n$ matrices is $\mathbb{C}^{m \times n}$.
- The map $\mathbf{x} \to \mathbf{A}\mathbf{x}$ is linear, which means for any $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ and any $\alpha \in \mathbb{C}$

$$\mathbf{A}(\mathbf{x} + \mathbf{y}) = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{y}$$

$$\mathbf{A}(\alpha \mathbf{x}) = \alpha \mathbf{A} \mathbf{x}$$

In lecture notes. I use boldface UPPERCASE for matrices, and boldface lowercase letters for vectors.

This should be straightforward to convert into real computer codes in any programming language.

```
Pseudo-code for \mathbf{b} = \mathbf{A}\mathbf{x}
for i = 1 to m do
     b(i) = 0;
     for i = 1 to n do
          b(i) = b(i) + A(i,j) * x(j);
     end for
end for
```

Linear Combination

Alternatively, matrix-vector product can be viewed as

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \sum_{j=i}^{n} x_j \mathbf{a}_j$$

i e h is a linear combination of column vectors of A

Alternatively, matrix-vector product can be viewed as

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \sum_{j=i}^{n} x_j \mathbf{a}_j$$

i e b is a linear combination of column vectors of A

- Two different views of matrix-vector products:
 - **1** $b_i = \sum_{i=1}^n a_{ii} x_i$: **A** acts on **x** to produce **b**; scalar operations
 - **2** $\mathbf{b} = \sum_{i=1}^{n} x_i \mathbf{a}_i$: **x** acts on **A** to produce **b**; vector operations

000000000

Alternatively, matrix-vector product can be viewed as

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \sum_{j=i}^{n} x_j \mathbf{a}_j$$

i e b is a linear combination of column vectors of A

- Two different views of matrix-vector products:
 - **1** $b_i = \sum_{i=1}^n a_{ii} x_i$: **A** acts on **x** to produce **b**; scalar operations
 - **2** $\mathbf{b} = \sum_{i=1}^{n} x_i \mathbf{a}_i$: **x** acts on **A** to produce **b**; vector operations
- If **A** is $m \times n$, **Ax** can be viewed as a mapping from \mathbb{C}^n to \mathbb{C}^m

Takeaways

000000000

- Space travel: Matrix Vector multiplication takes you from one 'space' to another
- Two ways to do the same thing
 - We like the product expressed as linear combinations
 - Let's convince ourselves: Algorithmic investigation
- Getting started with Python and numpy package/library.

Matrix-Matrix Multiplication

If A is $l \times m$ and C is $m \times n$, then B = AC is $l \times n$, with entries defined by

$$b_{ij} = \sum_{k=1}^m a_{ik} c_{kj}.$$

Written in columns, we have

$$\mathbf{b}_j = \mathbf{A}\mathbf{c}_j = \sum_{k=1}^m c_{kj} \mathbf{a}_k.$$

In other words, each column of B is a linear combination of the columns of A.

Pseudo-Code for Matrix-Matrix Multiplication

```
Pseudo-code for B = AC
    for i = 1 to l do
        for j = 1 to n do
            B(i,j) = 0;
            for k = 1 to m do
                 B(i,j) = B(i,j) + A(i,k) * C(k,j);
            end for
        end for
    end for
```

Pseudo-Code for Matrix-Matrix Multiplication

```
Pseudo-code for B = AC
    for i = 1 to / do
        for j = 1 to n do
            B(i,j) = 0;
            for k = 1 to m do
                 B(i,j) = B(i,j) + A(i,k) * C(k,j);
            end for
        end for
    end for
```

TODO: Write the pseudo code where B is expressed as a linear combination of columns of A

00000000

Rank-1 Matrices

- Full-rank matrices are important
- Another interesting space case is rank-1 matrices
- \blacksquare A matrix A is rank-1 if it can be written as $\textbf{A} = \textbf{u} \textbf{v}^*$ where u and v are non zero vectors
- uv* is called the outer product of the two vectors, as opposed to the inner product u*v

Perspective: Vector Space

A useful way in understanding matrix operations is to think in terms of vector spaces

- Vector space spanned by a set of vectors is composed of linear combinations of these vectors
 - It is closed under addition and scalar multiplication
 - 0 is always a member of a subspace
 - Space spanned by *m*-vectors is subspace of \mathbb{C}^m
- If S_1 and S_2 are two subspaces, then $S_1 \cap S_2$ is a subspace, so is $S_1 + S_2$, the space of sum of vectors from S_1 and S_2 .
 - Note that $S_1 + S_2$ is different from $S_1 \cup S_2$
- Two subspaces S_1 and S_2 of \mathbb{C}^m are complementary subspaces of each other if $S_1 + S_2 = \mathbb{C}^m$ and $S_1 \cap S_2 = \{0\}.$
 - In other words, $\dim(S_1) + \dim(S_2) = m$ and $S_1 \cap S_2 = \{0\}$

Range, Rank and Inverses

Range

Definition

The range of a matrix A, written as range(A), is the set of vectors that can be expressed as Ax for some x.

Range

Definition

The range of a matrix A, written as range(A), is the set of vectors that can be expressed as Ax for some x.

Theorem

range(A) is the space spanned by the columns of A.

Therefore, the range of **A** is also called the column space of **A**.

Range and Null Space

Definition

The null space of $\mathbf{A} \in \mathbb{C}^{m \times n}$, written as null(\mathbf{A}), is the set of vectors \mathbf{x} that satisfy $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Entries of $x \in null(A)$ give coefficient of $\sum x_i a_i = 0$. Note: The null space of A is in general **not** a complimenary subspace of range(A).

Definition

The column rank of a matrix is the dimension of its column space. The row rank is the dimension of the space spanned by its rows.

Question: Can the column rank and row rank be different?

Definition

The column rank of a matrix is the dimension of its column space. The row rank is the dimension of the space spanned by its rows.

- Question: Can the column rank and row rank be different?
 - Answer: No
 - Simply referred as the rank of a matrix.

Definition

The column rank of a matrix is the dimension of its column space. The row rank is the dimension of the space spanned by its rows.

- Question: Can the column rank and row rank be different?
 - Answer: No
 - Simply referred as the rank of a matrix.
- Question: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, what is dim(null(\mathbf{A})) + rank(\mathbf{A}) equal to?

Definition

The column rank of a matrix is the dimension of its column space. The row rank is the dimension of the space spanned by its rows.

- Question: Can the column rank and row rank be different?
 - Answer: No
 - Simply referred as the rank of a matrix.
- Question: Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, what is dim(null(\mathbf{A})) + rank(\mathbf{A}) equal to?
 - Answer: *n*

Full Rank

Definition

A matrix has full rank if it has the maximum possible rank, i.e., $\min\{m,n\}$

Full Rank

Definition

A matrix has full rank if it has the maximum possible rank, i.e., $min\{m,n\}$

Theorem

A matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ with $m \geq n$ has full rank if and only if it maps no two distinct vectors to the same vector.

In other words, the linear mapping defined by $\mathbf{A}\mathbf{x}$ for $\mathbf{x} \in \mathbb{C}^n$ is one-to-one

Proof

(⇒) Column vectors of **A** forms a basis of range(**A**), so every **b** ∈ range(**A**) has a unique linear expansion in terms of the columns of **A**. (⇐) If **A** does not have full rank, then its column vectors are linear dependent, so its vectors do not have a unique linear combination

Inverse

Definition

A nonsingular or invertible matrix is a square matrix of full rank.

Inverse

Definition

A nonsingular or invertible matrix is a square matrix of full rank.

Definition

Given a nonsingular matrix A, its inverse is written as A^{-1} , and $AA^{-1} = A^{-1}A = I$

■ Note that $(AB)^{-1} = (B^{-1}A)^{-1}$

000000000

 $(A^{-1})^* = (A^*)^{-1}$, and we use A^{-*} as a shorthand for it

Inverse

Theorem

For $\mathbf{A} \in \mathbb{C}^{m \times m}$, the following conditions are equivalent:

- (a) ${\bf A}$ has an inverse ${\bf A}^{-1}$
- (b) rank(A) is m
- (c) range(\mathbf{A}) is \mathbb{C}^m
- (d) null(**A**) is {0}
- (e) 0 is not an eigenvalue of A
- (f) 0 is not a singular value of A
- (g) $det(\mathbf{A}) \neq 0$

Matrix Inverse Times a Vector

- When writing $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$, it means \mathbf{x} is the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$
- In other words, $A^{-1}b$ is a vector of coefficients of the expansion of b in the basis of columns of A
- Multiplying **b** by A^{-1} is a change of basis operations from $\{a_1, a_2, ..., a_m\}$ to $\{e_1, e_2, ..., e_m\}$
- Multiplying $A^{-1}b$ by A^{-1} is a change of basis operations from $\{e_1, e_2, ..., e_m\}$ to $\{a_1, a_2, ..., a_m\}$

Inner products

Transpose and Adjoint

- Transpose of **A**, denoted by \mathbf{A}^{T} , is the matrix **B** with $b_{ii} = a_{ii}$
- Adjoint or Hermitian conjugate, denoted by A^* or A^H , is the matrix B with $b_{ii} = \bar{a}_{ii}$
- Note that, $(AB)^T = B^T A^T$ and $(AB)^* = B^* A^*$
- A matrix **A** is symmetric if $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$ (i.e., $a_{ii} = a_{ii}$). It is Hermitian if $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$ (i.e., $a_{ii} = \overline{a}_{ii}$)
- For $\mathbf{A} \in \mathbb{R}^{m \times n}$, null(\mathbf{A}) and range(\mathbf{A}^{T}) are complementary subspaces. In addition, null(A) and range(A^T) are orthogonal to each other (to be explained later)
- For $\mathbf{A} \in \mathbb{C}^{m \times n}$, null(\mathbf{A}) and range(\mathbf{A}^*) are complementary subspaces

Inner Product

- Inner product (dot product) of two column vectors \mathbf{u} , $\mathbf{v} \in \mathbb{C}$ is $\mathbf{u}^*\mathbf{v}$
- In contrast, *outer* product of **u** and **v** is **uv***
- Note that cross product is different

Inner Product

- Inner product (dot product) of two column vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}$ is $\mathbf{u}^*\mathbf{v}$
- In contrast, *outer* product of **u** and **v** is **uv***
- Note that cross product is different

Different ways to see the inner product

- 1 Vector-vector multiplication: $\mathbf{u}^*\mathbf{v} = \sum_{i=1}^m \bar{u}_i v_i$
- Euclidean length of u is the square root of the inner product of u with itself, i.e., $\sqrt{u^*u}$
- Inner product of two unit vectors $\bf u$ and $\bf v$ is the cosine of the angle α between $\bf u$ and \mathbf{v} , i.e., $\cos \alpha = \frac{u^* v}{\|\mathbf{u}\| \|\mathbf{v}\|}$

Inner product is bilinear, in the sense that it is linear in each vertex separately:

$$(u_1 + u_2)^* v = u_1^* v + u_2^* v$$

$$u^*(v_1+v_2)=u^*v_1+u^*v_2$$

$$(\alpha u)^*(\beta v) = \bar{\alpha}\beta u^* v$$

Orthogonal Vectors

Definition

A pair of vectors are *orthogonal* if $\mathbf{x}^*\mathbf{y} = 0$.

In other words, the angle between them is 90 degrees

Definition

A pair of vectors are *orthogonal* if $\mathbf{x}^*\mathbf{y} = 0$.

In other words, the angle between them is 90 degrees

Definition

Two sets of vectors X and Y are orthogonal if every $\mathbf{x} \in X$ is orthogonal to every $\mathbf{y} \in Y$.

Definition

A pair of vectors are *orthogonal* if $\mathbf{x}^*\mathbf{y} = 0$.

In other words, the angle between them is 90 degrees

Definition

Two sets of vectors X and Y are orthogonal if every $\mathbf{x} \in X$ is orthogonal to every $\mathbf{y} \in Y$.

Definition

A set of nonzero vectors S is *orthogonal* if they are pairwise orthogonal. They are *orthonormal* if it is orthogonal and in addition each vector has unit Euclidean length.

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself

Question: If the column vectors of an $m \times n$ matrix **A** are orthogonal, what is the rank of **A**?

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof

Prove by contradiction. If a vector can be expressed as linear combination of the other vectors in the set, then it is orthogonal to itself

Question: If the column vectors of an $m \times n$ matrix **A** are orthogonal, what is the rank of **A**?

Answer: $n = min\{m, n\}$. In other words, **A** has full rank

Components of Vector

■ Given an orthonormal set $\{\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_m\}$ forming a basis of \mathbb{C}^m , vector \mathbf{v} can be decomposed into orthogonal components as $\mathbf{v} = \sum_{i=1}^m (\mathbf{q}_i^* \mathbf{v}) \mathbf{q}_i$

Components of Vector

- Given an orthonormal set $\{\mathbf{q}_1,\mathbf{q}_2,\cdots,\mathbf{q}_m\}$ forming a basis of \mathbb{C}^m , vector \mathbf{v} can be decomposed into orthogonal components as $\mathbf{v} = \sum_{i=1}^{m} (\mathbf{q}_{i}^{*}\mathbf{v})\mathbf{q}_{i}$
- Another way to express the condition is $\mathbf{v} = \sum_{i=1}^{m} (\mathbf{q}_{i}^{*}\mathbf{q}_{i})\mathbf{v}$
- **q**; **q**; is an orthogonal projection matrix. Note that it is NOT an orthogonal matrix

Components of Vector

- Given an orthonormal set $\{\mathbf{q}_1,\mathbf{q}_2,\cdots,\mathbf{q}_m\}$ forming a basis of \mathbb{C}^m , vector \mathbf{v} can be decomposed into orthogonal components as $\mathbf{v} = \sum_{i=1}^{m} (\mathbf{q}_{i}^{*} \mathbf{v}) \mathbf{q}_{i}$
- Another way to express the condition is $\mathbf{v} = \sum_{i=1}^{m} (\mathbf{q}_{i}^{*}\mathbf{q}_{i})\mathbf{v}$
- **q**; **q**; is an orthogonal projection matrix. Note that it is NOT an orthogonal matrix
- More generally, given an orthonormal set $\{\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n\}$ with $n \leq m$, we have

$$\mathbf{v} = \mathbf{r} + \sum_{i=1}^{n} (\mathbf{q}_{i}^{*} \mathbf{v}) \mathbf{q}_{i} = \mathbf{r} + \sum_{i=1}^{n} (\mathbf{q}_{i} \mathbf{q}_{i}^{*}) \mathbf{v}$$
 and $\mathbf{r}^{*} \mathbf{q}_{i} = 0, \ 1 \leq i \leq n$

■ Let **Q** be composed of column vectors $\{\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n\}$. $\mathbf{Q}\mathbf{Q}^* = \sum_{i=1}^n (\mathbf{q}_i \mathbf{q}_i^*)$ is an orthogonal projection matrix.

Unitary matrices

Unitary Matrices

Definition

A matrix is unitary if $\mathbf{Q}^* = \mathbf{Q}^{-1}$, i.e. if $\mathbf{Q}^*\mathbf{Q} = \mathbf{Q}\mathbf{Q}^* = I$

- In the real case, we say the matrix is orthogonal. Its column vectors are orthonormal.
- In other words, $\mathbf{q}_i^*\mathbf{q}_i = \delta_{ii}$, the Kronecker delta

Unitary Matrices

Definition

A matrix is unitary if $\mathbf{Q}^* = \mathbf{Q}^{-1}$, i.e. if $\mathbf{Q}^*\mathbf{Q} = \mathbf{Q}\mathbf{Q}^* = I$

- In the real case, we say the matrix is orthogonal. Its column vectors are orthonormal.
- In other words, $\mathbf{q}_i^*\mathbf{q}_i = \delta_{ii}$, the Kronecker delta

Question: What is the geometric meaning of multiplication by a unitary matrix?

Unitary Matrices

Definition

A matrix is unitary if $\mathbf{Q}^* = \mathbf{Q}^{-1}$, i.e. if $\mathbf{Q}^*\mathbf{Q} = \mathbf{Q}\mathbf{Q}^* = I$

- In the real case, we say the matrix is orthogonal. Its column vectors are orthonormal
- In other words, $\mathbf{q}_i^*\mathbf{q}_i = \delta_{ii}$, the Kronecker delta

Question: What is the geometric meaning of multiplication by a unitary matrix? Answer: It preserves angles and Euclidean length. In the real case, multiplication by an orthogonal matrix **Q** is a rotation (if $det(\mathbf{Q}) = 1$) or reflection (if $det(\mathbf{Q}) = -1$).

Vector Norms

Definition of Norms

- Norm captures "size" of vector or "distance" between vectors
- There are many different measures for "sizes" but a norm must satisfy some requirements:

Definition

A norm is a function $||\cdot||: \mathbb{C}^m \to \mathbb{R}$ that assigns a real-valued length to each vector. It must satisfy the following conditions:

- 1 $\|\mathbf{x}\| \ge 0$, and $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = 0$
- $||\mathbf{x} + \mathbf{v}|| < ||\mathbf{x}|| + ||\mathbf{v}||$
- $3 \quad \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|.$
 - An example is Euclidean length (i.e. $||\mathbf{x}|| = \sqrt{\sum_{i=1}^{m} |x_i|^2}$)

$$\|\mathbf{x}\|_{p} = (\sum_{i=1}^{m} |x_{i}|^{p})^{\frac{1}{p}}$$

for
$$1$$

$$\|\mathbf{x}\|_{p} = (\sum_{i=1}^{m} |x_{i}|^{p})^{\frac{1}{p}}$$

for
$$1 \le p \le \infty$$

■ Euclidean norm is 2-norm
$$\|\mathbf{x}\|_2$$
 (i.e., $p = 2$)

p-norms

$$\|\mathbf{x}\|_{p} = (\sum_{i=1}^{m} |x_{i}|^{p})^{\frac{1}{p}}$$

for
$$1$$

- Euclidean norm is 2-norm $\|\mathbf{x}\|_2$ (i.e., p=2)
- 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$

p-norms

$$\|\mathbf{x}\|_{p} = (\sum_{i=1}^{m} |x_{i}|^{p})^{\frac{1}{p}}$$

for
$$1$$

- Euclidean norm is 2-norm $\|\mathbf{x}\|_2$ (i.e., p = 2)
- 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$
- ∞-norm: $\|\mathbf{x}\|_{\infty}$. What is its value? Answer: $\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le m} |x_i|$
- Why we require p > 1? What happens if 0 ?

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components.
 - It is anisotropic instead of isotropic
- Algebraically, $\|\mathbf{x}\|_{\mathbf{W}} = \|\mathbf{W}\mathbf{x}\|$, where **W** is diagonal matrix with *i*—th diagonal entry $w_i \neq 0$ being weight for ith component
- In other words.

$$\|\mathbf{x}\|_{\mathbf{W}} = (\sum_{i=1}^{m} |w_i x_i|^p)^{\frac{1}{p}}$$

• What happens if we allow $w_i = 0$?

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components.
 - It is anisotropic instead of isotropic
- Algebraically, $\|\mathbf{x}\|_{\mathbf{W}} = \|\mathbf{W}\mathbf{x}\|$, where **W** is diagonal matrix with *i*—th diagonal entry $w_i \neq 0$ being weight for ith component
- In other words,

$$\|\mathbf{x}\|_{\mathbf{W}} = (\sum_{i=1}^{m} |w_i x_i|^p)^{\frac{1}{p}}$$

- What happens if we allow $w_i = 0$?
- Can we further generalize it to allow W being arbitrary matrix?
- No. But we can allow **W** to be arbitrary nonsingular matrix.

Matrix Norms

Matrix Norms Induced by Vector Norms

- Viewing $m \times n$ matrix as mn-vectors is not always useful, as operations involving $m \times n$ matrices do not behave this way
- Induced matrix norms capture such behavior

Definition

Given vector norms $||\cdot||_{(n)}$ and $||\cdot||_{(m)}$ on domain and range of $\mathbf{A} \in \mathbb{C}^{m \times n}$, respectively, the induced matrix norm $||\mathbf{A}||_{(m,n)}$ is the smallest number $\mathbb{C} \in \mathbb{R}$ for which the following inequality holds for all $\mathbf{x} \in \mathbb{C}^n$:

$$\|\mathbf{A}\mathbf{x}\|_{(m)} \le C \|\mathbf{x}\|_{(n)}$$
.

<u>Matrix No</u>rms Induced by Vector Norms

- Viewing $m \times n$ matrix as mn-vectors is not always useful, as operations involving $m \times n$ matrices do not behave this way
- Induced matrix norms capture such behavior

Definition

Given vector norms $||\cdot||_{(n)}$ and $||\cdot||_{(m)}$ on domain and range of $\mathbf{A} \in \mathbb{C}^{m \times n}$, respectively, the induced matrix norm $||\mathbf{A}||_{(m,n)}$ is the smallest number $\mathbb{C} \in \mathbb{R}$ for which the following inequality holds for all $\mathbf{x} \in \mathbb{C}^n$:

$$\|\mathbf{A}\mathbf{x}\|_{(m)} \le C \|\mathbf{x}\|_{(n)}$$
.

- In other words, it is supremum of ratio $||\mathbf{A}\mathbf{x}||_{(n)}/||\mathbf{x}||_{(n)}$ for all nonzero vectors $\mathbf{x} \in \mathbb{C}^n$
- Maximum factor by which **A** can "stretch" $\mathbf{x} \in \mathbb{C}^n$

$$\|\mathbf{A}\|_{(m,n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \mathbf{x} \neq \mathbf{0}} \|\mathbf{A}\mathbf{x}\|_{(m)} / \|\mathbf{x}\|_{(n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{(n)} = 1} \|\mathbf{A}\mathbf{x}\|_{(m)}$$

Matrix Norms Induced by Vector Norms

- Viewing $m \times n$ matrix as mn-vectors is not always useful, as operations involving $m \times n$ matrices do not behave this way
- Induced matrix norms capture such behavior

Definition

Given vector norms $||\cdot||_{(n)}$ and $||\cdot||_{(m)}$ on domain and range of $\mathbf{A} \in \mathbb{C}^{m \times n}$, respectively, the induced matrix norm $||\mathbf{A}||_{(m,n)}$ is the smallest number $\mathbb{C}\in\mathbb{R}$ for which the following inequality holds for all $\mathbf{x} \in \mathbb{C}^n$:

$$\|\mathbf{A}\mathbf{x}\|_{(m)} \leq C \|\mathbf{x}\|_{(n)}.$$

- In other words, it is supremum of ratio $||\mathbf{A}\mathbf{x}||_{(m)}/||\mathbf{x}||_{(n)}$ for all nonzero vectors $\mathbf{x} \in \mathbb{C}^n$
- Maximum factor by which **A** can "stretch" $\mathbf{x} \in \mathbb{C}^n$

$$\|\mathbf{A}\|_{(m,n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \mathbf{x} \neq \mathbf{0}} \|\mathbf{A}\mathbf{x}\|_{(m)} / \|\mathbf{x}\|_{(n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{(n)} = 1} \|\mathbf{A}\mathbf{x}\|_{(m)}$$

■ Is vector norm consistent with matrix norm of $m \times 1$ -matrix?

By definition

$$||\mathbf{A}||_1 = \sup_{\mathbf{x} \in \mathbb{C}^n, ||\mathbf{x}||_1 = 1} ||\mathbf{A}\mathbf{x}||_1$$

By definition

$$||\mathbf{A}||_1 = \sup_{\mathbf{x} \in \mathbb{C}^n, ||\mathbf{x}||_1 = 1} ||\mathbf{A}\mathbf{x}||_1$$

What is it equal to?

By definition

$$||\mathbf{A}||_1 = \sup_{\mathbf{x} \in \mathbb{C}^n, ||\mathbf{x}||_1 = 1} ||\mathbf{A}\mathbf{x}||_1$$

- What is it equal to?
 - Maximum of 1-norm of column vectors of A
 - "maximum column sum" of A is oversimplified in the textbook
- To show it, note that for $\mathbf{x} \in \mathbb{C}^n$ and $||\mathbf{x}||_1 = 1$

$$||\mathbf{A}\mathbf{x}||_1 = ||\sum_{j=1}^n x_j \mathbf{a}_j||_1 \le \max_{1 \le j \le n} ||a_j||_1 ||\mathbf{x}||_1$$

Let $k=\arg\max_{1\leq j\leq n}||\mathbf{a}_j||_1$, then $||\mathbf{A}e_k||_1=||\mathbf{a}_k||_1$, so $\max_{1\leq j\leq n}||a_j||_1$ is tight upper bound

■ By definition

$$||\mathbf{A}||_{\infty} = \sup_{\mathbf{x} \in \mathbb{C}^n, ||\mathbf{x}||_{\infty} = 1} ||\mathbf{A}\mathbf{x}||_{\infty}$$

What is ||A||_∞ equal to?

∞—norm

Bv definition

$$||\mathbf{A}||_{\scriptscriptstyle{\infty}} = \sup_{\mathbf{x} \in \mathbb{C}^n, ||\mathbf{x}||_{\scriptscriptstyle{\infty}} = 1} ||\mathbf{A}\mathbf{x}||_{\scriptscriptstyle{\infty}}$$

- What is ||A||_∞ equal to?
 - Maximum of 1-norm of column vectors of A^T
- To show it, note that for $\mathbf{x} \in \mathbb{C}^n$ and $||\mathbf{x}||_{\infty} = 1$

$$||\mathbf{A}\mathbf{x}||_{\infty} = \mathsf{max}_{1 \leq i \leq m} |\mathbf{a}_i^* x| \leq \mathsf{max}_{1 \leq i \leq m} ||\mathbf{a}_i^*||_1 ||\mathbf{x}||_{\infty}$$

where \mathbf{a}_{i}^{*} denotes the i-th row vector of \mathbf{A}

- Furthermore, $\max_{1 \le i \le m} ||\mathbf{a}_i^*||_1$ is a tight bound.
 - Which vector can we choose to reach the bound?

■ What is 2-norm of a matrix?

- What is 2-norm of a matrix?
- Answer: Its largest singular value.
- We will talk more about singular-value decomposition

- What is 2-norm of a matrix?
- Answer: Its largest singular value.
- We will talk more about singular-value decomposition
- What is 2-norm of a diagonal matrix?

Cauchy-Schwarz and Holder Inequalities

■ Holder inequality: Let p and q satisfy 1/p+1/q=1 with $1 \le p$, $q \le \infty$, then

$$|\mathbf{x}^*\mathbf{y}| \leq ||\mathbf{x}||_p ||\mathbf{y}||_q$$

Cauchy-Schwarz inequality

$$|\textbf{x}^*\textbf{y}| \leq ||\textbf{x}||_2||\textbf{y}||_2$$

Cauchy-Schwarz inequality is a special case of Holder inequality

Cauchy-Schwarz and Holder Inequalities

■ Holder inequality: Let p and q satisfy 1/p+1/q=1 with $1 \le p$, $q \le \infty$, then

$$|\mathbf{x}^*\mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q$$

Cauchy-Schwarz inequality

$$|\boldsymbol{x}^*\boldsymbol{y}| \leq ||\boldsymbol{x}||_2||\boldsymbol{y}||_2$$

- Cauchy-Schwarz inequality is a special case of Holder inequality
- Example: What is 2-norm of rank-one matrix? Hint: Use Cauchy-Schwarz inequality.

Bounding Matrix-Matrix Multiplication

■ Let **A** be an $I \times m$ matrix and **B** an $m \times n$ matrix, then for $\mathbf{x} \in \mathbb{C}^n$

$$||\mathbf{A}\mathbf{B}||_{(I,n)} \le ||\mathbf{A}||_{(I,m)}||\mathbf{B}||_{(m,n)}$$

To show it, note

$$||\mathbf{A}\mathbf{B}\mathbf{x}||_{(I)} \leq ||\mathbf{A}||_{(I,m)}||\mathbf{B}\mathbf{x}||_{(m)} \leq ||\mathbf{A}||_{(I,m)}||\mathbf{B}||_{(m,n)}||\mathbf{x}||_{(n)},$$

Bounding Matrix-Matrix Multiplication

Let **A** be an $I \times m$ matrix and **B** an $m \times n$ matrix, then for $\mathbf{x} \in \mathbb{C}^n$

$$||\mathbf{A}\mathbf{B}||_{(I,n)} \le ||\mathbf{A}||_{(I,m)}||\mathbf{B}||_{(m,n)}$$

To show it. note

$$||\mathbf{A}\mathbf{B}\mathbf{x}||_{(I)} \le ||\mathbf{A}||_{(I,m)} ||\mathbf{B}\mathbf{x}||_{(m)} \le ||\mathbf{A}||_{(I,m)} ||\mathbf{B}||_{(m,n)} ||\mathbf{x}||_{(n)},$$

- In general, this inequality is not an equality
- In particular, $||\mathbf{A}^n|| \le ||\mathbf{A}||^n$ but $||\mathbf{A}^n|| \ne ||\mathbf{A}||^n$ in general for $n \ge 2$

One can view $m \times n$ matrices as mn-dimensional vectors and obtain general matrix norms, which satisfy (for $A, B \in \mathbb{C}^{m \times n}$)

- **1** $||\mathbf{A}|| > 0$, and $||\mathbf{A}|| = 0$ only if $\mathbf{A} = 0$
- $||A + B|| \le ||A|| + ||B||$
- $||\alpha \mathbf{A}|| = |\alpha|||\mathbf{A}||$

Frobenius Norm

One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{j=1}^n \|\mathbf{a}_j\|_2^2}$$

i.e., 2-norm of mn-vector

Furthermore.

$$\|\mathbf{A}\|_F = \sqrt{tr(\mathbf{A}^\mathsf{T}\mathbf{A})}$$

where $tr(\mathbf{B})$ denotes trace of B, the sum of its diagonal entries

One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{j=1}^n \|\mathbf{a}_j\|_2^2}$$

i.e., 2-norm of mn-vector

Furthermore.

$$\|\mathbf{A}\|_F = \sqrt{tr(\mathbf{A}^\mathsf{T}\mathbf{A})}$$

where $tr(\mathbf{B})$ denotes trace of B, the sum of its diagonal entries

Note that

$$\|\mathbf{A}\mathbf{B}\|_{\textit{F}} \leq \|\mathbf{A}\|_{\textit{F}} \, \|\mathbf{B}\|_{\textit{F}}$$

because

$$\|\mathbf{A}\mathbf{B}\|_{F}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} |\mathbf{a}_{i}^{*}\mathbf{b}_{j}|^{2} \leq \sum_{i=1}^{n} \sum_{j=1}^{m} (\|\mathbf{a}_{i}^{*}\|_{2} \|\mathbf{b}_{j}\|_{2})^{2} = \|\mathbf{A}\|_{F}^{2} \|\mathbf{B}\|_{F}^{2}$$

Theorem

For any $\mathbf{A} \in \mathbb{C}^{m \times n}$ and unitary $\mathbf{Q} \in \mathbb{C}^{m \times m}$, we have

$$\|\mathbf{QA}\|_2 = \|\mathbf{A}\|_2$$
 and $\|\mathbf{QA}\|_F = \|A\|_F$

In other words, 2-norm and Frobenius norms are invariant under unitary multiplication. Proof for 2-norm: $\|\mathbf{Q}\mathbf{y}\|_2 = \|\mathbf{y}\|_2$ for $\mathbf{y} \in \mathbb{C}^m$ and therefore $\|\mathbf{Q}\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\mathbf{x}\|_2$ for $\mathbf{x} \in \mathbb{C}^n$. It then follows from definition of 2-norm

SVD

Geometric Observation

- The image of unit sphere under any $m \times n$ matrix is a hyperellipse
- **Give** a unit sphere **S** in \mathbb{R}^n , let **AS** denote the shape after transformation
- SVD is

$$A = U\Sigma V^*$$

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary and $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ is diagonal

- \blacksquare Singular values are diagonal entries of Σ , correspond to the principal semiaxes, with entries $\sigma_1 > \sigma_2 > \cdots > \sigma_n > 0$.
- Left singular vectors of A are column vectors of U and are oriented in the directions of the principal semiaxes of AS
- Right singular vectors of A are column vectors of V and are the preimages of the principal semiaxes of AS
- **Av**_i = $\sigma_i \mathbf{u}_i$ for 1 < i < n

■ Full SVD: $\mathbf{U} \in \mathbb{C}^{m \times m}$, $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$, and $\mathbf{V} \in \mathbb{C}^{n \times n}$ is

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^*$$

■ Reduced SVD: $\hat{\mathbf{U}} \in \mathbb{C}^{m \times n}$, $\hat{\mathbf{\Sigma}} \in \mathbb{R}^{n \times n}$ (assume $m \ge n$)

$$\boldsymbol{A} = \hat{\boldsymbol{U}}\hat{\boldsymbol{\Sigma}}\boldsymbol{V}^*$$

Furthermore, notice that

$$\mathbf{A} = \sum_{i=1}^{\min\{m,n\}} \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$

so we can keep only entries of **U** and **V** corresponding to nonzero σ_i .

Existence of SVD

$\mathsf{Theorem}$

(Existence) Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ has an SVD

Proof: Let $\sigma = \|\mathbf{A}\|_2$. There exists $\mathbf{v}_1 \in \mathbb{C}^n$ with $\|\mathbf{v}_1\|_2 = 1$ and $\|\mathbf{A}\mathbf{v}_1\|_2 = \sigma_1$. Let \mathbf{U}_1 and V_1 be unitary matrices whose first columns are $u_1 = \frac{Av_1}{\sigma_1}$ (or any unit-length vector if $\sigma_1 = 0$) and \mathbf{v}_1 , respectively. Note that

$$\mathbf{U}_1^* \mathbf{A} \mathbf{V}_1 = \mathbf{S} = \begin{bmatrix} \sigma_1 & \omega^* \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$$

Furthermore, $\omega = 0$ because $\|\mathbf{S}\|_2 = \sigma_1$, and

$$\left\| \begin{bmatrix} \sigma_1 & \omega^* \\ \boldsymbol{0} & \boldsymbol{B} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \omega \end{bmatrix} \right\| \geq \sigma_1^2 + \omega^* \omega = \sqrt{\sigma_1^2 + \omega^* \omega} \left\| \begin{bmatrix} \sigma_1 \\ \omega \end{bmatrix} \right\|_2,$$

implying that $\omega_1 \geq \sqrt{\sigma_1^2 + \omega^* \omega}$ and $\omega = 0$

We then prove by induction using (1). If m=1 or n=1, then **B** is empty and we have $\boldsymbol{A} = \boldsymbol{U}_1 \boldsymbol{S} \boldsymbol{V}_1^*$. Otherwise, suppose $\boldsymbol{B} = \boldsymbol{U}_2 \boldsymbol{\Sigma}_2 \boldsymbol{V}_2^*$, and then

$$\mathbf{A} = \underbrace{\mathbf{U}_1 \begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \mathbf{U}_2 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \sigma_1 & \mathbf{0}^* \\ \mathbf{0} & \boldsymbol{\Sigma}_2 \end{bmatrix}}_{\boldsymbol{\Sigma}}, \underbrace{\begin{bmatrix} 1 & \mathbf{0}^* \\ \mathbf{0} & \mathbf{V}_2^* \end{bmatrix} \mathbf{V}_1^*}_{\boldsymbol{V}^*}$$

where **U** and **V** are unitary.

Uniquesness of SVD

Theorem

(Uniqueness) The singular values $\{\sigma_j\}$ are uniquely determined. If **A** is square and the σ_j are distinct, the left and right singular vectors are uniquely determined **up to** complex signs (i.e., complex scalar factors of absolute value 1).

Geometric argument: If the lengths of semiaxes of a hyperellipse are distinct, then the semiaxes themselves are determined by the geometry up to signs.

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , \mathbf{u}_1 , and \mathbf{v}_1 are determined, the remainder of SVD is determined by the space orthogonal to \mathbf{v}_1 . Because \mathbf{v}_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , \mathbf{u}_1 , and \mathbf{v}_1 are determined, the remainder of SVD is determined by the space orthogonal to \mathbf{v}_1 . Because \mathbf{v}_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

Question: What if we change the sign of a singular vector?

Uniqueness of SVD Cont'd

Algebraic argument: Based on 2-norm and prove by induction. Consider the case where the σ_j are distinct. The 2-norm is unique, so is σ_1 . If \mathbf{v}_1 is not unique up to sign, then the orthonormal bases of these vectors are right singular vectors of \mathbf{A} , implying that σ_1 is not a simple singular value.

Once σ_1 , \mathbf{u}_1 , and \mathbf{v}_1 are determined, the remainder of SVD is determined by the space orthogonal to \mathbf{v}_1 . Because \mathbf{v}_1 is unique up to sign, the orthogonal subspace is uniquely defined. Then prove by induction.

- Question: What if we change the sign of a singular vector?
- Question: What if σ_i is not distinct?

SVD vs Eigenvalue Decomposition

Eigenvalue decomposition of nondefective matrix **A** is $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$

Differences

- Not every matrix has eigenvalue decomposition, but every matrix has singular value decomposition
- Eigenvalues may not always be real numbers, but singular values are always non-negative real numbers
- Eigenvectors are not always orthogonal to each other (orthogonal for symmetric matrices), but left (or right) singular vectors are orthogonal to each other

SVD vs Eigenvalue Decomposition

Similarities

- Singular values of A are square roots of eigenvalues of AA* and A*A, and their eigenvectors are left and right singular vectors, respectively
- Singular values of hermitian matrices are absolute values of eigenvalues, and eigenvectors are singular vectors (up to complex signs)
- This relationship can be used to compute singular values by hand

Matrix Properties via SVD

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - rank(A) is r
 - range(**A**) = < **u**₁, **u**₂, ..., **u**_r >
 - \blacksquare null(**A**) = < **u**_{r+1}, **u**_{r+2}, ..., **u**_n >
- 2-norm and Frobenius norm

$$\|\mathbf{A}\|_2 = \sigma_1 \text{ and } \|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$$

- Determinant of matrix
 - For $\mathbf{A} \in \mathbb{C}^{m \times m}$, $|det(\mathbf{A})| = \prod_{i=1}^{m} \sigma_i$

Matrix Properties via SVD

- Let r be number of nonzero singular values of $\mathbf{A} \in \mathbb{C}^{m \times n}$
 - \blacksquare rank(\mathbf{A}) is r
 - range(**A**) = < **u**₁, **u**₂, ..., **u**_r >
 - \blacksquare null(**A**) = $\langle \mathbf{u}_{r+1}, \mathbf{u}_{r+2}, ..., \mathbf{u}_n \rangle$
- 2-norm and Frobenius norm

$$lacksquare$$
 $\|\mathbf{A}\|_2 = \sigma_1$ and $\|\mathbf{A}\|_F = \sqrt{\sum_i \sigma_i^2}$

- Determinant of matrix
 - For $\mathbf{A} \in \mathbb{C}^{m \times m}$, $|det(\mathbf{A})| = \prod_{i=1}^{m} \sigma_i$
- However, SVD may not be the most efficient way in solving problems
- Algorithms for SVD are similar to those for eigenvalue decomposition and we will discuss them later in the semester

