MA 341: HW

Jason Shipp

September 1, 2016

Problem 1

Let X be a set with $A, B, C \subseteq X$

Questions

- a Prove that $A \cap B \subseteq A$, $A \cap B \subseteq B$. Determine when $A \cap B = A$
- b Prove that $A \subseteq A \cup B$, and $B \subseteq A \cup B$. Determine when $A \cup B = A$
- c Prove that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- d Prove that if $C \subseteq A$ and $C \subseteq B$, then $C \subseteq A \cap B$
- e Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$

Answers

- a For all $a \in A \cap B, a \in A$ and $a \in B$ by the definition of intersection By definition of proper subset it immediately follows that $A \cap B \subseteq A$ and $A \cap B \subseteq B$ $A \cap B = A$ when $A \subseteq B$ as all elements $a \in A$ would also exist in B, which allows the definition of intersection to create A.
- b By the definition of union all $a \in A$ and $b \in B$, $a, b \in A \cup B$ By definition of subset $A, B \subseteq A \cup B$ as elements of both sets are included in the union. $A \cup B = A$ when $B \subseteq A$ as no new elements in B would be added to A in the union.
- c $A \subseteq B$ implies for all $a \in A$ $a \in B$. $B \subseteq C$ implies for all $b \in B$ $b \in C$. Finally this implies $a \in A, B, C$ and $A \subseteq B \subseteq C \to A \subseteq C$
- d For all $c \in C, C \subseteq A$ implies $c \in A$ For all $c \in C, C \subseteq B$ implies $c \in B$ All $c \in C, c \in A, B$ which is the definition of $A \cap B$. Therefore $C \subseteq A \cap B$
- e $A \subseteq C$ implies for all $a \in A, a \in C$ $B \subseteq C$ implies for all $b \in B, b \in C$ $A \cup B = \{a : a \in A \text{ and } B\}$ which immediately implies $A \cup B \subseteq C$

Problem 2

Let X be a set and $A \subseteq X$

Questions

- a Prove that $A \cap (X A) = \emptyset$
- b Prove that $A \cup (X A) = X$

Answer

- a $X A = \{x \in X : x \ni A\}$
 - X and X-A are by definition disjoint and the intersection of disjoint sets is the empty set. Therefore $A \cap X - A = \emptyset$
- b Using X A as defined above
 - $A \cup X A$ states the elements $a \in A$ as well as the elements $x \in X$ and $x \ni A$. Combining the elements of A and the elements of X excluding only A trivially yields X.

Problem 3

Questions

a Prove that for any subset $I \subseteq \mathcal{P}(X)$, we have

$$f(\bigcup_{A\in I}^{\circ}A)=\bigcup_{A\in I}^{-}f(A).$$

b Prove that for any subset $I \subseteq \mathcal{P}(X)$, we have

$$f(\bigcap_{A\in I} A) \subseteq \bigcap_{A\in I} f(A).$$

c Prove that for any subset $J \subseteq \mathcal{P}(Y)$, we have

$$f^{-1}(\bigcup_{B\in J}B)=\bigcup_{B\in J}f^{-1}(B).$$

d Prove that for any subset $J \subseteq \mathcal{P}(Y)$, we have

$$f^{-1}(\bigcap_{B \in J} B) = \bigcap_{B \in J} f^{-1}(B)$$

Answers

a Must prove $f(\bigcup_{A\in I}A)\subseteq\bigcup_{A\in I}f(A)$ and $\bigcup_{A\in I}f(A)\subseteq f(\bigcup_{A\in I}A)$ $\exists x\in\bigcup_{A\in I}A$ such that f(x)=y

$$\exists x \in \bigcup_{x \in I} A \text{ such that } f(x) = y$$

$$\exists x \in A_i \text{ for some i such that } f(x) = y$$

$$y \in f(A_i) \to f(A_i) \subseteq \bigcup_{A \in I} A$$

Therefore
$$f(\bigcup A) \subseteq \bigcup^{A \in I} f(A)$$

$$y \in f(A_i) \to f(A_i) \subseteq \bigcup_{A \in I} A$$
Therefore $f(\bigcup_{A \in I} A) \subseteq \bigcup_{A \in I} f(A)$
Let $y \in \bigcup_{A \in I} f(A) \to y \in f(A_i)$ for some A_i

$$\exists \in A_i \text{ such that } f(x) = y$$

$$x \in \bigcup_{A \in \mathcal{A}} A$$

$$y \in f(\bigcup_{A} A)$$
 therefore $\bigcup_{A} f(A) \subseteq f(\bigcup_{A} A)$

$$y \in f(\bigcup_{A \in I}^{A \in I} A) \text{ therefore } \bigcup_{A \in I} f(A) \subseteq f(\bigcup_{A \in I} A)$$

$$f(\bigcup_{A \in I} A) \subseteq \bigcup_{A \in I} f(A) \text{ and } \bigcup_{A \in I} f(A) \subseteq f(\bigcup_{A \in I} A) \to f(\bigcup_{A \in I} A) = \bigcup_{A \in I} f(A)$$

- b Let $y \in \bigcap f(A_i)$. $y \in f(A_i)$ for all $A_i \in I$.
 - $\exists x \in A_1 \text{ for all } A \in I \text{ such that } y = f(x)$
 - Therefore $y \in f(\bigcap A_i) \to \bigcap F(A) \subseteq F(\bigcap A)$

```
c By definition of preimage, this proof follows exactly as A. Must prove f^{-1}(\bigcup_{B\in J}B)\subseteq\bigcup_{B\in J}f^{-1}(B) and \bigcup_{B\in J}f^{-1}(B)\subseteq f^{-1}(\bigcup_{B\in J}B) \exists x\in\bigcup_{B\in J}B such that f^{-1}(x)=y \exists x\in B_i for some i such that f^{-1}(x)=y y\in f^{-1}(B_i)\to f^{-1}(B_i)\subseteq\bigcup_{B\in J}B Therefore f^{-1}(\bigcup_{B\in J}B)\subseteq\bigcup_{B\in J}f^{-1}(B) Let y\in\bigcup_{B\in J}f^{-1}(B)\to y\in f^{-1}(B_i) for some B_i \exists\in B_i such that f^{-1}(x)=y x\in\bigcup_{B\in J}B y\in f^{-1}(\bigcup_{B\in J}B) therefore \bigcup_{B\in J}f^{-1}(B)\subseteq f^{-1}(\bigcup_{B\in J}B) f^{-1}(\bigcup_{B\in J}B)\subseteq\bigcup_{B\in J}f^{-1}(B) and \int_{B\in J}f^{-1}(\bigcup_{B\in J}B)\to f^{-1}(\bigcup_{B\in J}B)=\bigcup_{B\in J}f^{-1}(B) d Let x\in f^{-1}(\cap A)\to f(x)\in\cap B f(x)\in alB_i x\in all\ f^{-1}(B_i) f(x)\in alB_i f(x)\in alB_i f(x)\in alB_i f(x)\in alB_i f(x)\in alB_i Therefore f(x)\in alB_i f(x)\in alB_i
```

Problem 4

Let X,Y,Z be sets and $f:X\mapsto Y,g:Y\mapsto Z$ be functions

Questions

- a Prove that if f, g are one-to-one, then $g \circ f$ is one-to-one.
- b Prove that if $g \circ f$ is one-to-one then f is one-to-one. Give an example where $g \circ f$ is one to one but g is not one-to-one.
- c Prove that if f, q are onto, then $q \circ f$ is onto.
- d Prove that if $g \circ f$ is onto, then g is onto. Give an example where $g \circ f$ is onto but f is not onto.

Answer

- a Let $a, b \in X$. If f(a) = f(b) because f is injective g(f(a)) = g(f(b)) because g is injective. It then must be true that $g \circ f$ is injective.
- b For $x,y\in X$ let f(x)=g(y). It follows that g(f(x))=f(g(y)). Thus x=y because $g\circ f$ is injective

```
For g is not one-to-one: Let X = \{1\}, Y = \{2,3\}, Z\{4\}
Let f(1) = 2, g(2) = 4, g(3) = 4.
Here the composition of g \circ f is injective, but g is not because g(2) = g(3) and 2 \neq 3
```

- c Assume $g \circ f$ is not onto given f, g are onto. This would mean $\exists b \in Z$ such that for all elements $a \in Xg(f(a)) \neq b$ this contradicts the surjective quality of g, so $g \circ f$ must be surjective.
- d Since $g \circ f$ is surjective then for all $c \in Z$ there exists an $a \in X$ such that c = g(f(a)). Then there exists some b such that $b = f(a) \in B$ which satisfies g(b) = c. Therefore g is onto.

Let
$$X = \{1\}, Y = \{1, 2\}, Z = \{1\}$$

 $f(1) = 1, g(1) = 1, g(2) = 1.$
 $g \circ f$ is surjective but f is not.

Problem 5

Question

Give an example of a function $f: X \mapsto Y$ and subsets $A, B \subseteq X$ such that $f(A \cap B) \neq f(A) \cap f(B)$.

Answer

$$A = \{0\}, B = \{1, ..., n\}, \text{ Let } f(n) = 1 \ f(A \cap B) = \emptyset \to \emptyset, f(A) = \{1\}, f(B) = \{1\}$$

 $f(A) \cap f(B) = \{1\} \to f(A \cap B) \neq f(A) \cap f(B)$

Problem 6

Question

Let X be a set and let P_1, P_2 be partitions of X such that P_1 is a refinement of P_2 . Prove that for each $A_2 \in P_2$, the subset $P_{1,A_2} = \{A_1 \in P_1 : A_1 \subseteq A_2\}$ is a partition of A_2 .

Answer

```
Let P_2 = A_i such that A_i \subset A_i and A_i \cap A_j = \emptyset by definition of partition.
Let P_{1,A_i} contain some B_i \subset A_i \cup A_j
B_i \cap B_j = \emptyset by definition of partition x'in \bigcup B_i
A_j \in \bigcup B_i = \text{some set } C
Since x \in A_j
```

Since P_1 is a partition $\exists B_i \in P_1$ such that $x \in B_i$. If $B_i \not\subset A_i$, $\exists A_j$ such that $B_i \subset A_j$, $x \in B_i \subset A_j$, $x \in A_j$. Which contradicts the definition of partition.

Problem 7

Question

Given an integer d > 0, prove that the sets $[j] = \{x \in \mathbb{Z} : d|x-j\}$ for j = 0, ..., d-1 is a partition of \mathbb{Z} . Describe the equivalence relation associated to this partition in terms of d.

Answer

By the euclidian algorithm x = dn + j such that d|x - j, n times.

By definition of partition all sets must be disjoint, which can easily be shown by substituting in values for j into the algorithm.

dn = (x - d - j) with j < d. (n + 1)d = (x - j) which is a different subset of [j] thus the sets are disjoint.

Problem 8

Question

```
Let f: \mathbb{R} \to \mathbb{R} be a function and let x_0 \in \mathbb{R}. Prove that one of the subsets A_{f,+} = \{x \in \mathbb{R} : f(x) > x_0\}, A_{f,-} = \{x \in \mathbb{R} : f(x) < x_0\}, A_{f,0} = \{x \in \mathbb{R} : f(x) = x_0\} must be infinite
```

Answer

This can be shown, assuming I am understanding the problem correctly, for all but $A_{f,0}$. the cardinality of the other two is trivially $|\mathbb{R}| > x_0$ or $\mathbb{R} < x_0$. because x_0 is some real number it is non-infinite, so there lies an infittely large span of numbers greater and less than it.

Thus the subsets of \mathbb{R} are infinite.