LISTING OF CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1.-19. (Cancelled)

20. (Withdrawn) A method according to Claim 17 wherein the CB1 receptor antagonist is N-piperidino-5 (4-bromophenyl)-1 – (2,4-dichlorophenyl) -4-ethylpyrazole-4-ethylpyrazole-3-carboxamide or one of it pharmaceutically acceptable salt.

21.-27. (Cancelled)

28. (Previously Presented) A method of treating hepatic fibrosis in a mammal in need thereof which comprises administering a therapeutically effective amount of at least one CB1 receptor antagonist.

29. (Currently Amended) The method of Claim 28 wherein the CB1 <u>antagonist</u> receptor is a compound of Formula II:

$$g_{5}$$
 g_{4}
 g_{2}
 g_{3}
 g_{4}
 g_{5}
 g_{4}
 g_{5}
 g_{4}
 g_{5}
 g_{4}
 g_{5}
 g_{4}
 g_{5}
 g_{4}
Formula II

or a pharmaceutically acceptable salt thereof, wherein

 g_2 , g_3 , g_4 , g_5 and g_6 are identical or different and are independently hydrogen, a chlorine or bromine atom, a (C_1-C_3) alkyl, a (C_1-C_3) alkoxy, a trifluoromethyl or a nitro group and g_4 is optionally a phenyl group;

 R_4 is hydrogen or a (C_1 - C_3) alkyl;

X is either a direct bond or a group $-(CH_2)_xN(R_3)$ - in which R3 is hydrogen or a (C_1-C_3) alkyl and x is zero or one;

R is a group-NR₁R₂ in which R₁ and R₂ are independently a (C₁-C₆)-alkyl; an non-aromatic (C₃-C₁₅) carbocyclic radical which is optionally substituted, said substituent (s) being other than a substituted carbonyl; an amino (C₁-C₄) alkyl group in which the amino is optionally disubstituted by a (C₁-C₃) alkyl; a cycloalkyl (C₁-C₃) alkyl group in which the cycloalkyl is C₃-C₁₂; a phenyl which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C₁-C₅) alkyl or by a (C_1-C_5) alkoxy; a phenyl (C_1-C_3) alkyl; a diphenyl (C_1-C_3) alkyl; a naphthyl; an anthracenyl; a saturated 5- to 8-membered heterocyclic radical which in unsubstituted or substituted by a (C1-C₃) alkyl; by a hydroxyl or by a benzyl; a 1-adamantylmethyl; an aromatic heterocycle which is unsubstituted or monosubstituted or polysubstituted by a halogen, by a (C₁-C₅) alkyl or by a (C₁-C₅) alkoxy; a (C₁-C₅) alkyl which is substituted by an aromatic heterocycle which is unsubstituted or monosubstituted or polysubstitued by a halogen, by a (C1-C5) alkyl or by a (C1-C₅) alkoxy; or else R is hydrogen and R₂ is as defined above; or else R₁ and R₂ form a saturated 5- to 8-membered heterocyclic radical with the nitrogen atom to which they are bonded, said heterocyclic radical being other than morpholine when w₂, w₃, w₄, w₅, w₆, g₂, g₃, g₄, g₅ and g₆ are all hydrogen; a group R_2 as defined above when X is $-(CH_2)_xN(R_3)$ -; a group R_5 when X is a direct bond, R₅ being a (C₁-C₃) alkyl; a (C₃-C₁₂) cycloalkyl which is unsubstituted or substituted by a (C_1-C_5) alkyl; a phenyl (C_1-C_3) alkyl which is unsubstituted or substituted by a halogen or

by a (C_1-C_5) alkyl; a cycloalkyl (C_1-C_3) alkyl in which the cycloalkyl is C_3-C_{12} and is unsubstituted by a (C_1-C_5) alkyl; or a 2-norbornylmethyl.

- 30. (Previously Presented) The method according to Claim 28 wherein the CB1 receptor antagonist is N-piperidino-3-pyrazolecarboxamide or a pharmaceutically acceptable salt therof.
- 31. (Previously Presented) The method of Claim 28 wherein the CB1 receptor antagonist is N-piperidino-5 (4-bromophenyl)-1 (2,4-dichlorophenyl) -4-ethylpyrazole-4-ethylpyrazole-3-carboxamide or a pharmaceutically acceptable salt thereof.
- 32. (Currently Amended) The method of Claim 28 wherein the CB1 receptor antagonist is N-piperidino-5- (4-chlorophenyl)-1- (2,4-dichlorophenyl) -4 methylpyrazole-3-carboxamide or a pharmaceutically acceptable salt thereof.
- 33. (Previously Presented) The method of Claim 28 wherein the daily dosage of CB1 receptor antagonist is from 0.01 mg to 500 mg.
- 34. (Previously Presented) The method of Claim 33 wherein the daily dosage of CB1 receptor antagonist is from 1 mg to 100 mg.
- 35. (Previously Presented) The method of Claim 28 wherein the CB1 receptor is selected from the group consisting of:
- a) a protein having an amino acid sequence comprising SEQ ID NO: 1 or a portion of SEQ ID NO: 1, having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal;

- b) a protein having an amino acid sequence comprising SEQ ID NO: 2 or a portion of SEQ ID NO: 2, having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal;
- c) an allele of the protein having the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2, having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal;
- d) a protein having the amino acid sequence of SEQ ID NO: 1 with a Phenylalanine to Leucine substitution at position 200; and/or Isoleucine to Valine substitution at position 216; and/or a Valine to Alanine substitution at position 246;
- e) a protein having the amino acid sequence of SEQ ID NO: 2 with a Phenylalanine to Leucine substitution at position 139; and/or an Isoleucine to Valine substitution at position 155; and/or a Valine to Alanine substitution at position 185; and
- f) a protein comprising the amino acid sequences of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, and SEQ ID NO: 9 or amino acid sequences 80% homologous to these, said protein having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal.
- 36. (Previously Presented) The method of Claim 28 wherein the CB1 receptor is a protein having a homology at the amino acid level with SEQ ID NO: 1 of at least 45% having the biological function of a G protein-coupled cellular receptor, capable of binding THC and transducing a cellular signal.
- 37. (Previously Presented) The method of Claim 36 wherein the homology is at least 60%.