SOME FIXED POINT THEOREMS ON GENERALIZED METRIC SPACES

ESRA YOLACAN

ABSTRACT. In this paper, we establish fixed point theorems for mappings satisfying a modified $\gamma - \psi$ —contractive mappings in generalized metric spaces. Moreover, the effectiveness of our work is validated with the help of a suitable example.

1. Introduction and preliminaries

In this section, we give some useful definitions and lemmas that will be needed in the sequel.

Definition 1. [2] Let X be a nonempty set and let $\rho: X \times X \to [0, \infty)$ satisfy the following conditions for all $x, y \in X$ and all distinct $u, v \in X$ each of them different from x and y.

- (1) $\rho(x,y) = 0$ if and only if x = y,
- (2) $\rho(x,y) = \rho(y,x)$,
- (3) $\rho(x,y) < \rho(x,u) + \rho(u,v) + \rho(v,y)$.

Then the map ρ is called generalized metric and abbreviated as GM. Here, the pair (X, ρ) is called generalized metric space and abbreviated as GMS.

Definition 2. [2] Let (X, ρ) a g.m.s and $\{x_n\}$ be sequence in X.

- (1) $\{x_n\}$ is called g.m.s convergent to a limit x if and only if $\rho(x_n, x) \to 0$ as $n \to \infty$,
- (2) $\{x_n\}$ is called g.m.s Cauchy sequence if and only if for every $\varepsilon > 0$ there exists positive integer $N(\varepsilon)$ such that $\rho(x_n, x_m) < \varepsilon$ for all $n > m > N(\varepsilon)$.
- (3) A rectangular metric spaces (X, ρ) is called complete if every g.m.s Cauchy sequence is g.m.s convergent.
- (4) A mapping $T: (X, \rho) \to (X, \rho)$ is continuous if for any sequence $\{x_n\}$ in X such that $\rho(x_n, x) \to 0$ as $n \to \infty$, we have $\rho(Tx_n, Tx) \to 0$ as $n \to \infty$.

Lemma 1. [6] Let (X, ρ) be a g.m.s., and let $\{x_n\}$ be a Cauchy sequence in X such that $x_n \neq x_m$ whenever $n \neq m$. Then $\{x_n\}$ can converge to at most one point.

Lemma 2. [6] Let (X, ρ) be a g.m.s, and let $\{x_n\}$ be a sequence in X with distinct elements $(x_n \neq x_m \text{ for } n \neq m)$. Suppose that $\rho(x_n, x_{n+1})$ and $\rho(x_n, x_{n+2})$ tend to 0 as $n \to \infty$ and

Key words and phrases. fixed point; $\alpha - admissible$; generalized metric spaces.

that $\{x_n\}$ is not a Cauchy sequence. Then there exists $\varepsilon > 0$ and two sequences $\{m_k\}$ and $\{n_k\}$ of positive integers such that $n_k > m_k > k$ and the following sequences

(1.1)
$$\rho(x_{m_k}, x_{n_k}), \rho(x_{m_k}, x_{n_{k+1}}), \rho(x_{m_{k-1}}, x_{n_k}), \rho(x_{m_{k-1}}, x_{n_{k+1}})$$

tend to ε as $k \to \infty$.

In 2012, Samet et al. introduced the notion of $\alpha - admissible$ mappings as follows.

Definition 3. [1] Let $T: X \to X$ and $\alpha: X \times X \to [0, \infty)$ be given mappings. We say that T is $\alpha - admissible$ if for all $x, y \in X$, we have

$$\alpha(x,y) \ge 1 \Rightarrow \alpha(Tx,Ty) \ge 1.$$

In 2014, Popescu [3] investigated the notion of triangular α -orbital admissible as follows.

Definition 4. [3] Let $T: X \to X$ be a mapping and $\alpha: X \times X \to [0, \infty)$ be a function. We say that T is α – orbital admissible if

$$\alpha\left(x,Tx\right) \ge 1 \Rightarrow \alpha\left(Tx,T^{2}x\right) \ge 1.$$

Definition 5. [3] An α – orbital admissible map T is said to be triangular α – orbital admissible if

$$\alpha(x,y) \ge 1$$
 and $\alpha(y,Ty) \ge 1$ imply $\alpha(x,Ty) \ge 1$.

Lemma 3. [3] Let $T: X \to X$ be a triangular α – orbital admissible mapping. Assume that there exists $x_1 \in X$ such that $\alpha(x_1, Tx_1) \geq 1$. Define a sequence $\{x_n\}$ by $x_{n+1} = Tx_n$. Then we $\alpha(x_n, x_m) \geq 1$ for all $m, n \in \mathbb{N}$ with n < m.

Definition 6. [5] Let T be a self-mapping on a metric space (X, ρ) and let $\alpha, \eta : X \times X \to [0, \infty)$ be two functions. We say that T is an α – admissible with respect to η mapping if

$$x,y\in X,\ \alpha\left(x,y\right)\geq\eta\left(x,y\right)\Rightarrow\alpha\left(Tx,Ty\right)\geq\eta\left(Tx,Ty\right).$$

Remark 1. [4] Define the mapping $\gamma: X \times X \to [0, \infty)$ by

$$\gamma(x,y) = \begin{cases} 1 & if \ \alpha(x,y) \ge \eta(x,y), \\ 0 & otherwise \end{cases}.$$

Also, Bergiz and Karapinar [4] showed that

$$\gamma\left(x,Tx\right)\gamma\left(y,Ty\right) = \begin{cases} 1 & if \ \alpha\left(x,Tx\right)\alpha\left(y,Ty\right) \geq \eta\left(x,Tx\right)\eta\left(y,Ty\right), \\ 0 & otherwise \end{cases}.$$

Clearly, if T is an α – admissible with respect to η , then T is γ – admissible.

In this paper, we establish fixed point theorems for mappings satisfying a modified γ – ψ -contractive mappings in generalized metric spaces. Moreover, the effectiveness of our work is validated with the help of a suitable example.

2. Main Results

We denote by Ψ the set of functions $\psi:[0,+\infty)\to[0,+\infty)$ satisfying the following hypotheses:

- (1) ψ is continuous and nondecreasing,
- (2) $\psi(t) = 0$ if and only if t = 0.

We denote by Φ^* the set of functions $\varphi:[0,+\infty)\to[0,+\infty)$ satisfying the following hypotheses:

- (1) $\liminf_{t\to r^+} \varphi(t) > 0$ for all r > 0,
- (2) $\varphi(t) = 0$ if and only if t = 0.

Theorem 1. Let (X, ρ) be a g.m.s, and let T be a mapping. Assume that for $\psi \in \Psi$ and $\varphi \in \Phi^*$,

$$(2.1) x, y \in X, \gamma(x, Tx) \gamma(y, Ty) \ge 1$$

$$\Rightarrow \psi(\rho(Tx, Ty)) \le \psi(\rho(x, y)) - \varphi(\rho(x, y)).$$

Also suppose that the following assertions hold:

- (i) T is triangular γ orbital admissible;
- (ii) there exists $x_0 \in X$ such that $\gamma(x_0, Tx_0) \ge 1$;
- (iii) T is continuous or for any sequence $\{x_n\}$ in X with $\gamma(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$, and $\lim_{n\to\infty} x_n = x$, we have $\gamma(x, Tx) \ge 1$ for all $n \in \mathbb{N}$.

Then T has a fixed point $u \in X$ and $\rho(u, u) = 0$.

Proof. From (ii) let $x_0 \in X$, construct the sequence $\{x_n\}$ as $x_n = T^n x_0 = T x_{n-1}$ for all $n \in \mathbb{N}$. If $x_{n+1} = x_n$ for some $n \in \mathbb{N}$, then $x = x_n$ is a fixed point for T. Assume further that $x_{n+1} \neq x_n$ for each $n \in \mathbb{N}$. By (ii) if there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq \eta(x_0, Tx_0)$, then this x_0 satisfies also $\gamma(x_0, Tx_0) \geq 1$. By Lemma 3, we have $\gamma(x_n, x_{n+1}) \geq 1$. Clearly,

$$\alpha\left(x_{n},Tx_{n}\right)\alpha\left(x_{n+1},Tx_{n+1}\right)\geq\eta\left(x_{n},Tx_{n}\right)\eta\left(x_{n+1},Tx_{n+1}\right).$$

Consequently, we have

$$(2.2) \gamma(x_n, Tx_n) \gamma(x_{n+1}, Tx_{n+1}) \ge 1.$$

Since T is triangular γ – orbital admissible, by Lemma 3, we have that

(2.3)
$$\gamma(x_n, x_m) \ge 1, \quad \forall \ m < n \in \mathbb{N}.$$

Then,

$$\alpha(x_n, Tx_n) \alpha(x_m, Tx_m) \ge \eta(x_n, Tx_n) \eta(x_m, Tx_m).$$

Thus, we have

(2.4)
$$\gamma(x_n, Tx_n) \gamma(x_m, Tx_m) \ge 1.$$

By (2.1), we have

(2.5)
$$\psi\left(\rho\left(x_{n}, x_{n+1}\right)\right) = \psi\left(\rho\left(Tx_{n-1}, Tx_{n}\right)\right)$$

$$\leq \psi\left(\rho\left(x_{n-1}, x_{n}\right)\right) - \varphi\left(\rho\left(x_{n-1}, x_{n}\right)\right).$$

From (2.5), using the monotone property of function ψ , and $\varphi(\rho(x_{n-1}, x_n)) > 0$, we get

$$\rho\left(x_{n}, x_{n+1}\right) < \rho\left(x_{n-1}, x_{n}\right) \text{ for all } n \in \mathbb{N}.$$

By (2.6), it follows that the sequence of positive reals $\{\rho(x_n, x_{n+1})\}$ is nonincreasing and eventually, there exists $a \ge 0$ such that $\lim_{n\to\infty} \rho(x_n, x_{n+1}) = a$. We claim that $\lim_{n\to\infty} \rho(x_n, x_{n+1}) = a = 0$.

Suppose, to the contrary, that a > 0. Letting $n \to \infty$ in (2.5) and by the continuity of ψ and the property (1) of function $\varphi \in \Phi^*$, we have

$$\psi\left(a\right) \leq \psi\left(a\right) - \lim\inf_{\rho\left(x_{n}, x_{n+1}\right) \to a^{+}} \varphi\left(a\right) < \psi\left(a\right),$$

a contradiction. Then

$$\lim_{n \to \infty} \rho\left(x_n, x_{n+1}\right) = 0.$$

Analogously, we shall prove that $\lim_{n\to\infty} \rho(x_n, x_{n+2}) = 0$. By (2.1), we have

(2.8)
$$\psi\left(\rho\left(x_{n}, x_{n+2}\right)\right) = \psi\left(\rho\left(Tx_{n-1}, Tx_{n+1}\right)\right)$$

$$\leq \psi\left(\rho\left(x_{n-1}, x_{n+1}\right)\right) - \varphi\left(\rho\left(x_{n-1}, x_{n+1}\right)\right).$$

From (2.8), using the monotone property of function ψ , and $\varphi(\rho(x_{n-1}, x_{n+1})) > 0$, we get

(2.9)
$$\rho(x_n, x_{n+2}) < \rho(x_{n-1}, x_{n+1}) \text{ for all } n \in \mathbb{N}.$$

By (2.9), it follows that the sequence of positive reals $\{\rho(x_{n-1}, x_{n+1})\}$ is monotone decreasing and eventually, there exists $b \geq 0$ such that $\lim_{n\to\infty} \rho(x_{n-1}, x_{n+1}) = b$. We claim that $\lim_{n\to\infty} \rho(x_{n-1}, x_{n+1}) = b = 0$.

Suppose, to the contrary, that b > 0. Letting $n \to \infty$ in (2.8) and by the continuity of ψ and the property (1) of function $\varphi \in \Phi^*$, we have

$$\psi\left(b\right) \leq \psi\left(b\right) - \liminf_{a\left(x_{0}, y_{0}, y_{0}, y_{0}\right) \to b^{+}} \varphi\left(b\right) < \psi\left(b\right),$$

a contradiction. On the other hand, the continuity of ψ yields that

(2.10)
$$b = \lim_{n \to \infty} \rho(x_{n-1}, x_{n+1}) = 0 = \lim_{n \to \infty} \rho(x_n, x_{n+2}).$$

Assume that $x_n = x_m$ for some $m, n \in \mathbb{N}, m < n$

$$\psi\left(\rho\left(x_{m}, x_{m+1}\right)\right) = \psi\left(\rho\left(x_{n}, x_{n+1}\right)\right)
\leq \psi\left(\rho\left(x_{n-1}, x_{n}\right)\right) - \varphi\left(\rho\left(x_{n-1}, x_{n}\right)\right)
< \psi\left(\rho\left(x_{n-1}, x_{n}\right)\right)
\leq \psi^{n-m}\left(\rho\left(x_{m}, x_{m+1}\right)\right)
< \psi\left(\rho\left(x_{m}, x_{m+1}\right)\right),$$

a contradiction. Therefore, all elements of the sequence $\{x_n\}$ are distinct.

In order to prove that $\{x_n\}$ is a Cauchy sequence in (X, ρ) , suppose that it is not. Then by Lemma 2, from (2.7) and (2.10), we claim that there exists $\varepsilon > 0$ and two sequences $\{m_k\}$ and $\{n_k\}$ of positive integers such that $n_k > m_k > k$ and (1.1) tends to ε as $k \to \infty$. Regarding (2.1) and (2.4), we find that

$$\psi\left(\rho\left(x_{m_{k}}, x_{n_{k+1}}\right)\right) = \psi\left(\rho\left(Tx_{m_{k-1}}, Tx_{n_{k}}\right)\right) \\
\leq \psi\left(\rho\left(x_{m_{k-1}}, x_{n_{k}}\right)\right) - \varphi\left(\rho\left(x_{m_{k-1}}, x_{n_{k}}\right)\right).$$

Letting $n \to \infty$ in (2.11) and by the continuity of ψ and the property (1) of function $\varphi \in \Phi^*$, we have

$$\psi\left(\varepsilon\right) \leq \psi\left(\varepsilon\right) - \lim_{\rho\left(x_{m_{k-1}}, x_{n_{k}}\right) \to \varepsilon^{+}} \varphi\left(\varepsilon\right) < \psi\left(\varepsilon\right),$$

which is a contradiction. Thus, $\{x_n\}$ is a Cauchy sequence. Since (X, ρ) is a complete g.m.s., there exists $u \in X$ such that $\lim_{n\to\infty} \rho(x_n, u) = 0$. We suppose that T is continuous, then we have

$$\lim_{n \to \infty} \rho\left(Tx_n, u\right) = \lim_{n \to \infty} \rho\left(x_{n+1}, Tu\right) = 0.$$

From Lemma 1, we obtain that Tu = u. On the other hand, in view of (2.2) and $x_n \to u$ as $n \to \infty$, so

$$\alpha\left(u,Tu\right) \geq \eta\left(u,Tu\right),$$

which implies

$$\alpha\left(x_{n},x_{n+1}\right)\alpha\left(u,Tu\right)\geq\eta\left(x_{n},x_{n+1}\right)\eta\left(u,Tu\right).$$

This implies also

$$\gamma(x_n, Tx_n) \gamma(u, Tu) \ge 1.$$

By (2.1) we have

$$\psi\left(\rho\left(x_{n+1}, Tu\right)\right) = \psi\left(\rho\left(Tx_{n}, Tu\right)\right)$$

$$\leq \psi\left(\rho\left(x_{n}, u\right)\right) - \varphi\left(\rho\left(x_{n}, u\right)\right).$$

Now, by using the properties of ψ and φ and taking \liminf as $n \to \infty$, we obtain

$$\psi\left(\rho\left(u,Tu\right)\right) = \lim_{n \to \infty} \psi\left(\rho\left(x_{n+1},Tu\right)\right) = 0.$$

Then $\rho(u, Tu) = 0$. In this way u = Tu. Therefore, we obtain that T has a fixed point $u \in X$ and $\rho(u, u) = 0$.

In consequence of Theorem 1, we may indicate the following corollary. Taking $\psi(t) = t$ and $\varphi(t) = (1 - k)t$ in Theorem 1, we have following.

Corollary 1. Let (X, ρ) be a g.m.s, and let T be a mapping. Assume that there exists $k \in [0, 1)$ and such that for all $x, y \in X$

(2.12)
$$x, y \in X, \gamma(x, Tx) \gamma(y, Ty) \ge 1$$
$$\Rightarrow \rho(Tx, Ty) \le k\rho(x, y).$$

Also suppose that the following assertions hold:

- (i) T is triangular γ orbital admissible;
- (ii) there exists $x_0 \in X$ such that $\gamma(x_0, Tx_0) \ge 1$;
- (iii) T is continuous or for any sequence $\{x_n\}$ in X with $\gamma(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$, and $\lim_{n\to\infty} x_n = x$, we have $\gamma(x, Tx) \ge 1$ for all $n \in \mathbb{N}$.

Then T has a fixed point $u \in X$ and $\rho(u, u) = 0$.

We give an example which is inspired by Example 39 of [7].

Example 1. Let $X = \{0, 1, 2, 3\}$. Define $\rho : X \times X \to [0, \infty)$ as follows: $\rho(x, y) = \rho(y, x)$ for all $x, y \in X$ and $\rho(x, y) = 0$ if and only if y = x. Further, let

$$\rho(0,2) = \rho(0,3) = \rho(2,3) = 2;$$

$$\rho(0,1) = \rho(1,2) = 4;$$

$$\rho(1,3) = 1.$$

Then it easy to show that (X, ρ) is a complete g.m.s., but (X, ρ) is not a metric space since the triangle inequality does not hold for all $x, y, z \in X$:

$$4 = \rho(1,2) > \rho(1,3) + \rho(3,2) = 1 + 2 = 3.$$

$$\begin{aligned} \textit{Define $T: X \to X$, $T(x) = $} \left\{ \begin{array}{ll} 1 & \textit{if $x \neq 2$} \\ 3 & \textit{if $x = 2$} \end{array} \right. & \textit{and $\gamma(x,y) = $} \left\{ \begin{array}{ll} 1 & \textit{if $x, y \in X - \{2\}$} \\ \frac{5}{6} & \textit{otherwise} \end{array} \right. . \\ \textit{Firstly, we will prove that} \end{aligned} \right. .$$

- (1) T is triangular γ orbital admissible;
- (2) there exists $x_0 \in X$ such that $\gamma(x_0, Tx_0) \ge 1$;
- (3) for any sequence $\{x_n\}$ in X with $\gamma(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$, and $\lim_{n\to\infty} x_n = x$, i have $\gamma(x, Tx) \ge 1$ for all $n \in \mathbb{N}$;
- (4) T has a fixed point $u \in X$ and $\rho(u, u) = 0$.

Proof. 1. (a) Let $x \in X$ such that $\gamma(x, Tx) \ge 1$ implies $\gamma(Tx, T^2x) \ge 1$. Then, by the definition of γ , we have $x \in X - \{2\}$, therefore, we obtain

$$\begin{split} \gamma\left(0,T0\right) &=& \gamma\left(0,1\right) \geq 1 \text{ and } \gamma\left(T0,T^{2}0\right) = \gamma\left(1,1\right) \geq 1; \\ \gamma\left(1,T1\right) &=& \gamma\left(1,1\right) \geq 1 \text{ and } \gamma\left(T1,T^{2}1\right) = \gamma\left(1,1\right) \geq 1; \\ \gamma\left(3,T3\right) &=& \gamma\left(3,1\right) \geq 1 \text{ and } \gamma\left(T3,T^{2}3\right) = \gamma\left(1,1\right) \geq 1. \end{split}$$

We have also shown that T is $\gamma - orbital \ admissible$.

(b) Let $x, y \in X$ such that $\gamma(x, y) \ge 1$ and $\gamma(y, Ty) \ge 1$ imply $\gamma(x, Ty) \ge 1$. Again the definition of γ gives $x, y \in X - \{2\}$, hence we obtain

$$\gamma(0,1) \geq 1 \text{ and } \gamma(1,T1) \geq 1 \text{ imply } \gamma(0,T1) \geq 1;$$

 $\gamma(0,3) \geq 1 \text{ and } \gamma(3,T3) \geq 1 \text{ imply } \gamma(0,T3) \geq 1;$
 $\gamma(1,3) \geq 1 \text{ and } \gamma(3,T3) \geq 1 \text{ imply } \gamma(1,T3) \geq 1.$

Thereby, (a) and (b) imply that T is triangular γ – orbital admissible.

- 2. Taking $x_0 = 1$, we have $\gamma(1, T1) = \gamma(1, 1) \ge 1$.
- 3. Let $\{x_n\}$ be sequence in X such that $\gamma(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$, and $\lim_{n \to \infty} x_n = x$. By the definition of γ , for each n, $x_n \in X \{2\} = \{0, 1, 3\}$. Since $\{0, 1, 3\}$ is closed, we get that $x \in \{0, 1, 3\}$. Thus, we have $\gamma(x_n, x) = 1$ for each n.
 - 4. Clearly, T has a fixed point $1 \in X$. Thus, by the definition of γ , we obtain $\gamma(1,1) = 1$. Now, we claim that there exists $k \in [0,1)$ and such that for all $x, y \in X$

$$x, y \in X, \gamma(x, Tx) \gamma(y, Ty) \ge 1$$

 $\Rightarrow \rho(Tx, Ty) \le k\rho(x, y).$

Firstly, $\gamma(x, Tx) \gamma(y, Ty) \ge 1$ implies $x, y \in X - \{2\}$.

Also, let $x, y \in X$ with $x \neq y$ and consider the following possible cases.

Case 1. If $x, y \in \{0, 1, 3\}$, then $\rho(Tx, Ty) = \rho(1, 1) = 0$ and thus (2.12) trivially holds.

Case 2. If x = 2, $y \in \{0, 1, 3\}$, then $\rho(Tx, Ty) = \rho(3, 1) = 1$. Let k = 0.6.

If y = 0, then

$$1 = \rho(T2, T0) \le k\rho(2, 0) = 0.6.2 = 1.2.$$

If y = 1, then

$$1 = \rho(T2, T1) \le k\rho(2, 1) = 0.6.4 = 2.4.$$

If y = 3, then

$$1 = \rho(T2, T3) \le k\rho(2, 3) = 0.6.2 = 1.2.$$

Case 3. Let $x \in \{0, 1, 3\}$, y = 2. Since ρ is symmetric, thus (2.12) holds trivially by Case 2.

In this way, inequality (2.12) is satisfied. Hence all the conditions of Corollary 1 are satisfied. \Box

References

- [1] Samet, B, Vetro, C, Vetro, P: Fixed point theorems for $\alpha \psi$ -contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012).
- [2] Branciari A., A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publicationes Mathematicae Debrecen, 57(1) (2000) 31-37.
- [3] Popescu: Some new fixed point theorems for α -Geraghty contraction type maps in metric saces. Fixed Point Theory and Applications 2014, 2014:190.
- [4] Berzig M. and Karapinar E, Note on "Modified $\alpha \psi$ -contractive mappings with Applications", Thai Journal of Mathematics, Vol 13 (2015) No:1, 147-152.
- [5] P. Salimi, A. Latif, N. Hussain, Modified $\alpha \psi$ —contractive mappings with Applications, Fixed Point Theory and Applications 2013, 2013:151.
- [6] Kadelburg, Z, Radenovic, S: Fixed point results in genelralized metric spaces without Housdorff propery. Math. Sci. 8, 125 (2014).
- [7] Asadi et al.: $\alpha \psi$ —Geraghty contractions on generalized metric spaces. Journal of Inequalities and Applications 2014 2014: 423.

Ataturk University, Faculty of Science, Department of Mathematics, 25240 Erzurum-Turkey