量子场论讲义

余钊焕

中山大学物理学院

http://yzhxxzxy.github.io/cn/teaching.html

更新日期: 2018年9月3日

© 2018 余钊焕 版权所有

参考书目

- M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley (1995).
- 2. M. Srednicki, Quantum Field Theory, Cambridge University Press (2007).
- 3. 李灵峰,《量子场论》,科学出版社 (2015)。
- 4. S. Weinberg, *The Quantum Theory of Fields*, Volume 1 *Foundations*, Cambridge University Press (1995).
- 5. W. Greiner and J. Reinhardt, Field Quantization, Springer (1996).
- 6. W. Greiner and J. Reinhardt, Quantum Electrodynamics, 3rd edition, Springer (2003).
- 7. L. H. Ryder, Quantum Field Theory, 2nd edition, Cambridge University Press (1996).
- 8. A. Zee, Quantum Field Theory in a Nutshell, 2nd edition, Princeton University Press (2010).
- 9. T. P. Cheng and L. F. Li, *Gauge Theory of Elementary Particle Physics*, Oxford University Press (1984).
- 10. 戴元本,《相互作用的规范理论》,第 2 版,科学出版社 (2005)。
- 11. S. Weinberg, *The Quantum Theory of Fields*, Volume 2 *Modern Applications*, Cambridge University Press (1996).
- 12. W. Greiner and B. Müller, Gauge Theory of Weak Interactions, 3rd edition, Springer (2000).
- 13. W. Greiner, S. Schramm, and E. Stein, *Quantum Chromodynamics*, 2nd edition, Springer (2002).

目 录

第	1章	预备知识	1
	1.1	量子场论的必要性	1
	1.2	自然单位制	2
	1.3	Lorentz 变换和 Lorentz 群	3
	1.4	Lorentz 矢量	8
	1.5	Lorentz 张量	10
	1.6	作用量原理	14
		1.6.1 经典力学中的作用量原理	14
		1.6.2 经典场论中的作用量原理	15
	1.7	Noether 定理、对称性与守恒定律	17
		1.7.1 场论中的 Noether 定理	17
		1.7.2 时空平移对称性	20
		1.7.3 Lorentz 对称性	21
		1.7.4 U(1) 整体对称性	24
第	2 章	标量场	27
713	2.1	—	- · 27
	2.2		30
	2.3		32
			33
			34
			36
			38
	2.4		42
			43
			44
			47

第	3 章	矢量场	5 1
	3.1	量子 Lorentz 变换	51
	3.2	量子矢量场的 Lorentz 变换	54
		3.2.1 Lorentz 群矢量表示的生成元	54
		3.2.2 量子标量场的 Lorentz 变换形式	57
		3.2.3 量子矢量场的 Lorentz 变换形式	59
	3.3	有质量矢量场的正则量子化	60
		3.3.1 极化矢量与平面波展开	62
		3.3.2 产生湮灭算符的对易关系	68
		3.3.3 哈密顿量和总动量	71
	3.4	无质量矢量场的正则量子化	7 9
		3.4.1 无质量情况下的极化矢量	7 9
		3.4.2 无质量矢量场与规范对称性	81
		3.4.3 产生湮灭算符的对易关系	85
		3.4.4 哈密顿量和总动量	87
附	录 A	英汉对照	93

第 1 章 预备知识

1.1 量子场论的必要性

量子力学是描述微观世界的物理理论。然而,非相对论性量子力学的适用范围有限,不能正确地描述伴随着高速粒子产生和湮灭的相对论性系统。为了合理而自治地描述这样的系统,需要用到量子场论,它结合了量子力学、相对性原理和场的概念。

在量子力学的基础课程中,量子化的对象通常是由**粒子**组成的动力学系统。如果对相对论性的粒子作类似的量子化,会遇到一些困难。考虑到相对论效应,可以用相对论性的波函数方程来描述单个粒子的运动。此类方程中第一个被提出的是 Klein-Gordon 方程:

$$-\hbar^2 \frac{\partial^2}{\partial t^2} \psi(\mathbf{x}, t) = (-\hbar^2 c^2 \nabla^2 + m^2 c^4) \psi(\mathbf{x}, t). \tag{1.1}$$

它给出的自由粒子能量为

$$E = \pm \sqrt{|\mathbf{p}|^2 c^2 + m^2 c^4},\tag{1.2}$$

其中 \mathbf{p} 为粒子的动量,m 为粒子的静止质量。可见,能量 E 可以为正,取值范围为 $mc^2 \leq E < \infty$; 也可以为负,取值范围为 $-\infty < E \leq mc^2$ 。一个粒子具有负无穷大的能量,在物理上是不可接受的。而且,即使粒子的初始能量为正,也可以通过跃迁到负能态而改变能量的符号。这就是负能量困难。另一方面,据此计算粒子在空间中的概率密度

$$\rho = \frac{i\hbar}{2mc^2} \left(\psi^* \frac{\partial \psi}{\partial t} - \frac{\partial \psi^*}{\partial t} \psi \right), \tag{1.3}$$

会发现 ρ 不总是正的,有可能在一些空间区域中为负。这是一个非物理的结果,称为**负概率困难**。

Klein-Gordon 方程出现负概率困难的根源在于方程中含有波函数对时间的二阶导数。为了克服这个问题,Dirac 方程被提出来,它只包含对时间的一阶导数,且具有 Lorentz 不变性。它描述的是自旋 1/2 的粒子,一开始是用来描述电子 (electron) 的。Dirac 方程能够保证概率密度正定和概率守恒。但是,负能量困难仍然存在。

为了解决负能量困难,P. A. M. Dirac 提出真空 (vacuum) 是所有 E < 0 的态都被填满而所有 E > 0 的态都为空的状态。这样一来,Pauli 不相容原理会阻止一个 E > 0 的电子跃迁到 E < 0 的态。如果负能海中缺失一个带有电荷 -|e| 和能量 -|E| 的电子,即产生一个空穴 (hole),则空穴的行为等价于一个带有电荷 +|e| 和能量 +|E| 的"反粒子",称为正电子 (positron)。正电子在 1932 年被 Carl Anderson 发现。

但是,Dirac 的空穴理论仍然面临一些困难,比如,为何没有观测到无穷多个负能电子具有的无穷大电荷密度所引起的电场? 另一方面,Dirac 方程一开始作为描述单个粒子波函数的方程提出来,但 Dirac 的解释却包含了无穷多个粒子。而且,像光子和 π 介子这些不满足 Pauli 不相容原理的粒子,空穴理论是不能成立的。此外,Dirac 方程只能描述自旋 1/2 的粒子,不能解决描述整数自旋粒子的困难。

用相对论性的波函数方程描述单个粒子会遇到这么多困难,是否意味着处理这些问题的基础本身就不正确呢?确实是这样的。量子力学的一条基本原理是:观测量由 Hilbert 空间中的厄米算符 (Hermitian operator) 描写。然而,时间显然是一个观测量,却没有用一个厄米算符来描写它。在 Schrödinger 绘景 (picture) 中,描述系统的量子态时可以让态依赖于一个时间参数 t,这是时间的概念进入量子力学的方式,但并没有假定这个参数是某个厄米算符的本征值。另一方面,粒子的空间位置 \mathbf{x} 则是位置算符 $\hat{\mathbf{x}}$ 的本征值。可见,在量子力学中,对时间和空间的处理方式是完全不同的。而在狭义相对论中,Lorentz 对称性将两者混合起来。因此,在结合量子力学与狭义相对论的过程中出现困难,也是正常的。

那么,如何在量子力学中平等地处理时间和空间呢?一种途径是将时间提升为一个厄米算符,但这样做在实际操作中非常困难。另一种途径是将空间位置降格为一个参数,不再由厄米算符描写。这样,我们可以在每个空间点 \mathbf{x} 处定义一个算符 $\hat{\phi}(\mathbf{x})$,所有这些算符的集合称为量子场。在 Heisenberg 绘景中,量子场算符也依赖于时间 t:

$$\hat{\phi}(\mathbf{x},t) = e^{i\hat{H}t/\hbar} \hat{\phi}(\mathbf{x}) e^{-i\hat{H}t/\hbar}.$$
(1.4)

如此,量子化的对象变成是由依赖于时空坐标的**场**组成的动力学系统,这就是**量子场论**。这里的量子算符用 ^ 符号标记,为了简化记号,后面将省略 ^ 符号。

在量子场论中,前面提到的困难都可以得到解决。现在,Klein-Gordon 方程和 Dirac 方程 这样的相对论性方程描述的是自由量子场的运动。真空是量子场的基态,包含粒子的态则是激 发态,激发态可以包含任意多个粒子。量子场论平等地描述正粒子和反粒子,由正反粒子的产 生算符和湮灭算符表达出来的哈密顿量是正定的,不再出现负能量困难。概率密度 ρ 的空间积分 $\int d^3x \, \rho$ 也可以用产生湮灭算符表达出来,虽然它不一定是正定的,但是它不再被解释为总概率,而是被解释为正粒子数与反粒子数之差,因而也不再出现负概率困难。

1.2 自然单位制

量子场论是结合量子力学和相对论的理论,因而时常出现约化 Planck 常量 \hbar 和光速 c,这一点可以从上一节的几个公式中看出来。于是,为了简化表述,通常采用**自然单位制**,取

$$\hbar = c = 1. \tag{1.5}$$

从而, Klein-Gordon 方程 (1.1) 化为

$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2\right)\psi(\mathbf{x}, t) = 0. \tag{1.6}$$

在自然单位制中,速度没有量纲 (dimension);长度量纲与时间量纲相同,是能量量纲的倒数;能量、质量和动量具有相同的量纲。可以将能量单位电子伏特 (eV) 视作上述有量纲物理量的基本单位。利用转换关系

$$1 = \hbar = 6.582 \times 10^{-22} \text{ MeV} \cdot \text{s}, \quad 1 = \hbar c = 1.973 \times 10^{-11} \text{ MeV} \cdot \text{cm},$$
 (1.7)

可得

$$1 \text{ s}^{-1} = 6.582 \times 10^{-22} \text{ MeV}, \quad 1 \text{ cm}^{-1} = 1.973 \times 10^{-11} \text{ MeV}.$$
 (1.8)

精细结构常数

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} = \frac{1}{137.036} \tag{1.9}$$

是没有量纲的,它的数值在任何单位制下都应该相同。因此,自然单位制不可能将 \hbar 、c、 ε_0 和 e 这四个常数同时归一化。在量子场论中,通常再取真空介电常数

$$\varepsilon_0 = 1, \tag{1.10}$$

同时可得真空磁导率 $\mu_0 = 1/(\varepsilon_0 c^2) = 1$,这样做其实是取了 Heaviside-Lorentz 单位制。从而,不同于 Gauss 单位制,Maxwell 方程组中不会出现无理数 4π :

$$\nabla \cdot \mathbf{E} = \rho, \quad \nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t}.$$
 (1.11)

此处的单位制称为**有理化**的自然单位制。现在,精细结构常数可以简便地表达为 $\alpha=e^2/(4\pi)$,而单位电荷量 $e=\sqrt{4\pi\alpha}=0.3028$ 是没有量纲的; 4π 因子会出现在 Coulomb 定律中,点电荷 Q 的 Coulomb 势表达成

$$\Phi = \frac{Q}{4\pi r}.\tag{1.12}$$

1.3 Lorentz 变换和 Lorentz 群

描述高速运动的系统需要用到狭义相对论、它的基本原理如下。

- (1) 光速不变原理: 在任意惯性参考系中, 光速的大小不变。
- (2) 狭义相对性原理: 在任意惯性参考系中, 物理定律具有相同的形式。

两个惯性参考系的 Descartes 坐标由 Lorentz 变换联系起来。

设惯性坐标系 O' 沿着惯性坐标系 O 的 x 方向以速度 β 匀速运动,则 Lorentz 变换的形式 是

$$t' = \gamma(t - \beta x), \quad x' = \gamma(x - \beta t), \quad y' = y, \quad z' = z,$$
 (1.13)

其中 Lorentz 因子 $\gamma \equiv (1 - \beta^2)^{-1/2}$. 这种 Lorentz 变换称为沿 x 方向的增速 (boost)。在此变换下,有

$$t'^{2} - x'^{2} - y'^{2} - z'^{2} = t^{2} - x^{2} - y^{2} - z^{2}.$$
(1.14)

可见, $t^2 - x^2 - y^2 - z^2$ 在 Lorentz 变换下不变,是一个 **Lorentz 不变量**。Lorentz 不变量在不同惯性系中具有相同的值,这是 Lorentz 变换对应的对称性,称为 **Lorentz 对称性**。

将时间坐标和空间坐标结合起来,可以构成 Minkowski 时空,坐标记为

$$x^{\mu} = (x^{0}, x^{1}, x^{2}, x^{3}) = (t, x, y, z) = (x^{0}, \mathbf{x}), \quad \sharp \, \psi \, \mu = 0, 1, 2, 3.$$
 (1.15)

上式中四种记法是等价的。 x^{μ} 是一个逆变 (contravariant) 的 Lorentz 四维矢量 (vector),"逆变"指它的指标 (index) μ 写在右上角。受到 (1.14) 式的启发,可以定义 Lorentz 不变的内积¹

$$x^{2} \equiv x \cdot x \equiv (x^{0})^{2} - (x^{1})^{2} - (x^{2})^{2} - (x^{3})^{2} = (x^{0})^{2} - |\mathbf{x}|^{2}.$$
(1.16)

引入对称的 Minkowski 度规 (metric)

$$g_{\mu\nu} = g_{\nu\mu} = \begin{pmatrix} +1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}, \tag{1.17}$$

可以把内积 (1.16) 简洁地写成

$$x^2 = g_{\mu\nu} x^{\mu} x^{\nu}. \tag{1.18}$$

这里采用了 Einstein 求和约定:不写出求和符号,重复的指标即表示求和。除非特别指出,后面都默认使用这个约定。在上式中,用同个字母表示的指标分别在上标和下标重复出现并求和,这称为缩并 (contraction),是 Lorentz 不变量的特点。

为了进一步简化记号, 定义协变 (covariant) 的 Lorentz 四维矢量

$$x_{\mu} = g_{\mu\nu}x^{\nu} = (x^{0}, -x^{1}, -x^{2}, -x^{3}) = (x^{0}, -\mathbf{x}).$$
 (1.19)

"协变"指的是指标 μ 写在右下角。于是,内积 x^2 的表达式 (1.18) 可以简化为

$$x^2 = x^{\mu} x_{\mu}. \tag{1.20}$$

(1.19) 式可以看作是用度规 $g_{\mu\nu}$ 通过缩并将逆变矢量 x^{ν} 的指标降下来,变成协变矢量 x_{μ} 。从方阵的角度看, $g_{\mu\nu}$ 的逆为

$$g^{\mu\nu} = g^{\nu\mu} = \begin{pmatrix} +1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}, \tag{1.21}$$

满足

$$g^{\mu\rho}g_{\rho\nu} = \delta^{\mu}_{\ \nu},\tag{1.22}$$

 $^{^{1}}$ 这里的记号有些不一致,第一个 x^{2} 是内积的记号,而第二个 x^{2} 是第 2 个空间坐标。

其中 Kronecker 符号 δ^{μ}_{ν} 定义为

$$\delta^{\mu}{}_{\nu} = \delta_{\mu}{}^{\nu} = \delta^{\mu\nu} = \delta_{\mu\nu} = \begin{cases} 1, & \mu = \nu, \\ 0, & \mu \neq \nu. \end{cases}$$
 (1.23)

对于 Minkowski 度规, $g_{\mu\nu}$ 的逆 $g^{\mu\nu}$ 与自己的矩阵形式相同,但更一般的度规有可能与它的逆不同. 将 (1.19) 式 $x_{\mu}=g_{\mu\nu}x^{\nu}$ 两边都乘以 $g^{\sigma\mu}$,对 μ 求和,得

$$g^{\sigma\mu}x_{\mu} = g^{\sigma\mu}g_{\mu\nu}x^{\nu} = \delta^{\sigma}{}_{\nu}x^{\nu} = x^{\sigma},$$
 (1.24)

这相当于用 $g^{\sigma\mu}$ 通过缩并将协变矢量 x_{μ} 的指标升起来,变成逆变矢量 x^{σ} 。可见,逆变矢量与协变矢量是一一对应的,是对同一个 Lorentz 矢量的两种等价描述。

利用 Kronecker 符号的定义和 (1.22) 式,可得

$$g^{\mu\nu} = g^{\mu\rho}\delta^{\nu}{}_{\rho} = g^{\mu\rho}g^{\nu\sigma}g_{\sigma\rho} = g^{\mu\rho}g^{\nu\sigma}g_{\rho\sigma}, \tag{1.25}$$

$$g_{\mu\nu} = g_{\mu\rho}\delta^{\rho}{}_{\nu} = g_{\mu\rho}g^{\rho\sigma}g_{\sigma\nu} = g_{\mu\rho}g_{\nu\sigma}g^{\rho\sigma}. \tag{1.26}$$

这两条式子表明,度规也可以用来对度规自身的指标进行升降。

利用四维矢量的记号,可以把 Lorentz 增速变换 (1.13) 改写为

$$x^{\prime \mu} = \Lambda^{\mu}_{\ \nu} x^{\nu},\tag{1.27}$$

其中

$$\Lambda^{\mu}{}_{\nu} = \begin{pmatrix} \gamma & -\gamma\beta & \\ -\gamma\beta & \gamma & \\ & & 1 \\ & & & 1 \end{pmatrix}.$$
(1.28)

注意:在将 Λ^{μ}_{ν} 视作矩阵时,偏左的指标 μ 表示行的编号,偏右的指标 ν 表示列的编号。 Λ^{μ}_{ν} 的特点是保持内积 $x^2=x^{\mu}x_{\mu}$ 不变,从而使 $x^{\mu}x_{\mu}$ 在不同惯性系中具有相同的值。我们可以将 Λ^{μ}_{ν} 推广为所有保持 $x^{\mu}x_{\mu}$ 不变的线性变换,称为(齐次)Lorentz 变换,使下式成立:

$$x^{\prime 2} = g_{\mu\nu} x^{\prime\mu} x^{\prime\nu} = g_{\mu\nu} \Lambda^{\mu}{}_{\alpha} \Lambda^{\nu}{}_{\beta} x^{\alpha} x^{\beta} = g_{\alpha\beta} x^{\alpha} x^{\beta} = x^2. \tag{1.29}$$

可见,Lorentz 变换 Λ^{μ}_{ν} 必须满足**保度规条件**

$$g_{\mu\nu}\Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta} = g_{\alpha\beta}. \tag{1.30}$$

空间旋转变换能够保持 $|\mathbf{x}|^2$ 不变,根据 (1.16) 式,易见它也是一种 Lorentz 变换。例如,绕 z 轴旋转 θ 角的变换可以表示为

$$[R_z(\theta)]^{\mu}_{\ \nu} = \begin{pmatrix} 1 & & \\ & \cos\theta & \sin\theta \\ & -\sin\theta & \cos\theta \\ & & 1 \end{pmatrix}. \tag{1.31}$$

容易验证,它满足保度规条件(1.30)。

将 (1.30) 式两边都乘以 $g^{\gamma\alpha}$ 并对 α 缩并, 可得

$$\Lambda_{\nu}{}^{\gamma}\Lambda^{\nu}{}_{\beta} = g^{\gamma\alpha}g_{\mu\nu}\Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta} = g^{\gamma\alpha}g_{\alpha\beta} = \delta^{\gamma}{}_{\beta}, \tag{1.32}$$

其中

$$\Lambda_{\nu}{}^{\gamma} \equiv g^{\gamma\alpha}g_{\mu\nu}\Lambda^{\mu}{}_{\alpha} \tag{1.33}$$

可以看作是用度规对 Λ^{μ}_{α} 的两个指标分别升降的结果。定义

$$(\Lambda^{-1})^{\mu}_{\nu} \equiv \Lambda_{\nu}^{\mu}, \tag{1.34}$$

则由 (1.32) 式可得

$$(\Lambda^{-1})^{\mu}_{\ \rho} \Lambda^{\rho}_{\ \nu} = \delta^{\mu}_{\ \nu}. \tag{1.35}$$

 δ^{μ}_{ν} 也是一个 Lorentz 变换,它使得 $x'^{\mu} = \delta^{\mu}_{\nu} x^{\nu} = x^{\mu}$,即 x^{μ} 在这个变换下不变。可见, δ^{μ}_{ν} 是一个恒等变换。(1.35) 式表明,对时空坐标矢量先作 Λ 变换,再作 Λ^{-1} 变换,得到的矢量还是原来的矢量。也就是说,由 (1.34) 式定义的 Λ^{-1} 是 Λ 的逆变换,也是一个 Lorentz 变换。在这些记号下,协变矢量 x_{μ} 的 Lorentz 变换可以表达为

$$x'_{\mu} = g_{\mu\nu} x'^{\nu} = g_{\mu\nu} \Lambda^{\nu}{}_{\rho} x^{\rho} = g_{\mu\nu} \Lambda^{\nu}{}_{\rho} g^{\rho\sigma} x_{\sigma} = \Lambda_{\mu}{}^{\sigma} x_{\sigma} = x_{\sigma} (\Lambda^{-1})^{\sigma}{}_{\mu}. \tag{1.36}$$

 Λ^{-1} 既然是一个 Lorentz 变换, 必定满足保度规条件

$$g_{\mu\nu}(\Lambda^{-1})^{\mu}_{\alpha}(\Lambda^{-1})^{\nu}_{\beta} = g_{\alpha\beta}, \tag{1.37}$$

于是有

$$g^{\rho\sigma} = g_{\alpha\beta}g^{\alpha\rho}g^{\beta\sigma} = g_{\mu\nu}(\Lambda^{-1})^{\mu}{}_{\alpha}(\Lambda^{-1})^{\nu}{}_{\beta}g^{\alpha\rho}g^{\beta\sigma} = g^{\gamma\delta}g_{\gamma\mu}g_{\delta\nu}\Lambda_{\alpha}{}^{\mu}\Lambda_{\beta}{}^{\nu}g^{\alpha\rho}g^{\beta\sigma}$$
$$= g^{\gamma\delta}(g^{\alpha\rho}g_{\gamma\mu}\Lambda_{\alpha}{}^{\mu})(g^{\beta\sigma}g_{\delta\nu}\Lambda_{\beta}{}^{\nu}) = g^{\gamma\delta}\Lambda^{\rho}{}_{\gamma}\Lambda^{\sigma}{}_{\delta}. \tag{1.38}$$

这给出了保度规条件 (1.30) 的一个等价形式:

$$g^{\mu\nu}\Lambda^{\alpha}{}_{\mu}\Lambda^{\beta}{}_{\nu} = g^{\alpha\beta}. \tag{1.39}$$

将 Λ^{μ}_{ν} 视作矩阵 Λ ,则其转置矩阵 $\Lambda^{\rm T}$ 的分量满足 $(\Lambda^{\rm T})_{\nu}^{\ \mu}=\Lambda^{\mu}_{\nu}$,由保度规条件 (1.30) 可得

$$g_{\alpha\beta} = g_{\mu\nu} \Lambda^{\mu}{}_{\alpha} \Lambda^{\nu}{}_{\beta} = (\Lambda^{\mathrm{T}})_{\alpha}{}^{\mu} g_{\mu\nu} \Lambda^{\nu}{}_{\beta}, \tag{1.40}$$

写成矩阵等式是

$$\mathbf{g} = \Lambda^{\mathrm{T}} \mathbf{g} \, \Lambda. \tag{1.41}$$

取行列式得 $\det \mathbf{g} = \det \Lambda^{\mathrm{T}} \cdot \det \mathbf{g} \cdot \det \Lambda = \det \mathbf{g} \cdot (\det \Lambda)^2$, 因此,

$$(\det \Lambda)^2 = 1, \quad \det \Lambda = \pm 1. \tag{1.42}$$

Lorentz 坐标变换 $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ 的 Jacobi 行列式为

$$\mathcal{J} = \det \left[\frac{\partial (x'^0, x'^1, x'^2, x'^3)}{\partial (x^0, x^1, x^2, x^3)} \right] = \det \Lambda, \tag{1.43}$$

故体积元 d^4x 在 Lorentz 变换下的变化是

$$d^{4}x' = |\mathcal{J}|d^{4}x = |\det \Lambda|d^{4}x = d^{4}x. \tag{1.44}$$

可见,Minkowski 时空的体积元是 Lorentz 不变的。

 $\det \Lambda$ 的值可以用来为 Lorentz 变换分类: $\det \Lambda = +1$ 的变换称为固有 (proper) Lorentz 变换, $\det \Lambda = -1$ 的则是非固有 (improper) Lorentz 变换。此外,由保度规条件 (1.30) 可得

$$1 = g_{00} = g_{\mu\nu} \Lambda^{\mu}{}_{0} \Lambda^{\nu}{}_{0} = (\Lambda^{0}{}_{0})^{2} - (\Lambda^{i}{}_{0})^{2}, \tag{1.45}$$

则 $(\Lambda^0_0)^2 = 1 + (\Lambda^i_0)^2 \ge 1$,故有 $\Lambda^0_0 \ge +1$ 或 $\Lambda^0_0 \le -1$ 。 $\Lambda^0_0 \ge +1$ 的 Lorentz 变换称为保时 向 (orthochronous) Lorentz 变换, $\Lambda^0_0 \le -1$ 的称为反时向 (antichronous) Lorentz 变换。

在数学上,对称性由群论描述。对称变换的集合称为**群**,群元素具有乘法,满足下列四个条件。

- (1) 两个群元素的乘积即是两次对称变换相继作用,乘法满足结合律。
- (2) 群中任意两个元素的乘积仍属于此群(封闭性)。
- (3) 群中必有一个恒元(对应于恒等变换),它与任一元素的乘积仍为此元素。
- (4) 任一元素都可以在群中找到一个逆元(对应于逆变换),两者之积为恒元。

所有 Lorentz 变换组成的集合称为 Lorentz 群。

Lorentz 变换可以用一组连续变化的参数(如 β 、 θ 等)来描述,因而是一种连续变换,所以 Lorentz 群是一个连续群,参数的变化区域称为群空间。Lorentz 群的整个群空间不是连通的,它有四个连通分支,如图 1.1 所示,分别是固有保时向分支 (det Λ = +1 且 Λ^0 ₀ \geq +1)、固有反时向分支 (det Λ = +1 且 Λ^0 ₀ \leq -1)、非固有保时向分支 (det Λ = -1 且 Λ^0 ₀ \geq +1) 和非固有反时向分支 (det Λ = -1 且 Λ^0 ₀ \leq -1),四个分支之间彼此不连通。恒元(即恒等变换)在固有保时向分支里,这个分支也称为**固有保时向 Lorentz 群**。

这里引入两个特殊的 Lorentz 变换。定义字称 (parity) 变换为

$$\mathcal{P}^{\mu}{}_{\nu} = (\mathcal{P}^{-1})^{\mu}{}_{\nu} = \begin{pmatrix} +1 & & & \\ & -1 & & \\ & & -1 & \\ & & & -1 \end{pmatrix}, \tag{1.46}$$

图 1.1: Lorentz 群的四个连通分支示意图。 $\mathbf{1}$ 、 \mathcal{P} 和 \mathcal{T} 分别代表恒等变换、字称变换和时间反演变换, $\tilde{\Lambda}$ 是固有保时向分支中的任意元素。

它是非固有保时向的,亦称为空间反射 (space inversion) 变换。定义时间反演 (time reversal) 变换为

$$\mathcal{T}^{\mu}{}_{\nu} = (\mathcal{T}^{-1})^{\mu}{}_{\nu} = \begin{pmatrix} -1 & & & \\ & +1 & & \\ & & +1 & \\ & & & +1 \end{pmatrix}, \tag{1.47}$$

它是非固有反时向的。一个固有保时向 Lorentz 群中的元素,乘上宇称变换或(和)时间反演变换,就可以到达 Lorentz 群的其它分支。

1.4 Lorentz 矢量

如果一些 $m \times m$ 矩阵的乘法关系与某个群中元素的乘法关系完全相同,就可以用这些矩阵来表示这个群,这些矩阵构成了这个群的一个 m 维**线性表示**。利用群的线性表示,可以将对称变换视作矩阵,将变换作用的态视作列矩阵。

在上一节中,我们已经用矩阵的形式表示过 Lorentz 变换 Λ^{μ}_{ν} ,可见, Λ^{μ}_{ν} 自然而然地构成了 Lorentz 群的一个 4 维线性表示。这个表示被称为**矢量表示**,因为 Lorentz 矢量 x^{ν} 可以看作是变换 Λ^{μ}_{ν} 所作用的态。一般地,一个 **Lorentz 矢量** A^{μ} 的定义是它在 Lorentz 变换下满足

$$A^{\prime\mu} = \Lambda^{\mu}_{\ \nu} A^{\nu}. \tag{1.48}$$

类似于 (1.36) 式,逆变矢量 A^{μ} 对应的协变矢量 $A_{\mu}=g_{\mu\nu}A^{\nu}$ 在 Lorentz 变换下满足

$$A_{\mu} = A_{\nu} (\Lambda^{-1})^{\nu}_{\ \mu}. \tag{1.49}$$

两个 Lorentz 矢量 $A^{\mu} = (A^0, \mathbf{A})$ 和 $B^{\mu} = (B^0, \mathbf{B})$ 的内积定义为

$$A \cdot B \equiv A^{\mu}B_{\mu} = g_{\mu\nu}A^{\mu}B^{\nu} = A^{0}B^{0} - \mathbf{A} \cdot \mathbf{B}, \tag{1.50}$$

由保度规条件 (1.30) 可知这个内积是 Lorentz 不变量:

$$A' \cdot B' = g_{\mu\nu} A'^{\mu} B'^{\nu} = g_{\mu\nu} \Lambda^{\mu}{}_{\alpha} \Lambda^{\nu}{}_{\beta} A^{\alpha} B^{\beta} = g_{\alpha\beta} A^{\alpha} B^{\beta} = A \cdot B. \tag{1.51}$$

这样的 Lorentz 不变量是 **Lorentz 标量** (scalar)。由于度规 $g_{\mu\nu}$ 的对角元有正有负,Lorentz 矢量 A^{μ} 的自我内积不是正定的,可以分为三类。

- (1) 若 $A^2 > 0$,则称 A^{μ} 为类时矢量。
- (2) 若 $A^2 < 0$,则称 A^{μ} 为类空矢量。
- (3) 若 $A^2 = 0$,则称 A^{μ} 为**类光**矢量。

由于 A^2 是 Lorentz 不变量,不能通过 Lorentz 变换改变 A^{μ} 的类型。

在狭义相对论中,质点的能量 E、动量 \mathbf{p} 和 (静止) 质量 m 之间的关系为

$$E = \sqrt{|\mathbf{p}|^2 + m^2}.\tag{1.52}$$

可以用 E 和 \mathbf{p} 组成一个 Lorentz 矢量

$$p^{\mu} = (E, \mathbf{p}),\tag{1.53}$$

称为四维动量,它的内积为

$$p^{2} = p^{\mu}p_{\mu} = g_{\mu\nu}p^{\mu}p^{\nu} = E^{2} - |\mathbf{p}|^{2} = m^{2}.$$
 (1.54)

这是合理的,因为质量 m 在狭义相对论中是一个 Lorentz 不变量。 p^{μ} 在 m>0 时是类时矢量,在 m=0 时是类光矢量。

将对时空坐标的导数记为

$$\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \nabla\right), \quad \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}} = \left(\frac{\partial}{\partial t}, -\nabla\right) = g^{\mu\nu}\partial_{\nu},$$
 (1.55)

则有

$$\partial^{\mu}x^{\nu} = g^{\mu\rho}\partial_{\rho}x^{\nu} = g^{\mu\rho}\delta_{\rho}^{\ \nu} = g^{\mu\nu}. \tag{1.56}$$

可见,这里关于时空导数指标位置的写法是合理的。对时空坐标作 Lorentz 变换 $x'^{\mu}=\Lambda^{\mu}_{\nu}x^{\nu}$ 时,时空导数的 Lorentz 变换形式为

$$\partial^{\prime \mu} = \frac{\partial}{\partial x_{\mu}^{\prime}} = \Lambda^{\mu}{}_{\nu} \partial^{\nu}. \tag{1.57}$$

由上式、(1.56) 式和保度规条件 (1.39) 可得,

$$\partial^{\prime \mu} x^{\prime \nu} = \Lambda^{\mu}{}_{\rho} \partial^{\rho} (\Lambda^{\nu}{}_{\sigma} x^{\sigma}) = \Lambda^{\mu}{}_{\rho} \Lambda^{\nu}{}_{\sigma} \partial^{\rho} x^{\sigma} = \Lambda^{\mu}{}_{\rho} \Lambda^{\nu}{}_{\sigma} g^{\rho \sigma} = g^{\mu \nu}, \tag{1.58}$$

说明 (1.56) 式在惯性坐标系 O' 中也成立。这显然是正确的,从而验证了时空导数 Lorentz 变换形式 (1.57) 的正确性。

(1.57) 式表明, 时空导数的 Lorentz 变换形式与 Lorentz 矢量相同, 因而我们可以将时空导数看作一个 Lorentz 矢量。定义 d'Alembert 算符

$$\partial^2 \equiv \partial^\mu \partial_\mu = \partial_0^2 - \nabla^2,\tag{1.59}$$

则由保度规条件 (1.30) 可得

$$\partial'^{2} = g_{\mu\nu}\partial'^{\mu}\partial'^{\nu} = g_{\mu\nu}\Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}\partial^{\rho}\partial^{\sigma} = g_{\rho\sigma}\partial^{\rho}\partial^{\sigma} = \partial^{2}. \tag{1.60}$$

可见, ∂^2 算符是 Lorentz 不变的。用它可以把 Klein-Gordon 方程 (1.6) 改写成紧凑的形式

$$(\partial^2 + m^2)\psi(x) = 0, (1.61)$$

其中x表示四维时空坐标。这样可以明显地看出 Klein-Gordon 方程的 Lorentz 不变性。

1.5 Lorentz 张量

Lorentz 张量 (tensor) 是 Lorentz 矢量的推广。一个 p+q 阶的 (p,q) 型 Lorentz 张量 $T^{\mu_1\cdots\mu_p}{}_{\nu_1\cdots\nu_q}$ 应满足如下 Lorentz 变换规则:

$$T'^{\mu_1 \cdots \mu_p}{}_{\nu_1 \cdots \nu_q} = \Lambda^{\mu_1}{}_{\rho_1} \cdots \Lambda^{\mu_p}{}_{\rho_q} T^{\rho_1 \cdots \rho_p}{}_{\sigma_1 \cdots \sigma_q} (\Lambda^{-1})^{\sigma_1}{}_{\nu_1} \cdots (\Lambda^{-1})^{\sigma_q}{}_{\nu_q}. \tag{1.62}$$

Lorentz 标量是 0 阶 Lorentz 张量,Lorentz 矢量是 1 阶 Lorentz 张量。Minkowski 度规 $g_{\mu\nu}$ 是 一个 2 阶的 (0,2) 型 Lorentz 张量,不过它在任何惯性系中不变,Lorentz 变换规则就是保度规条件 (1.37)。

利用 (1.35) 式和 Lorentz 张量的变换规则 (1.62),可以验证,如下表达式都是 Lorentz 标量 (亦即是 Lorentz 不变量):

$$g_{\mu\nu}T^{\mu\nu}$$
, $T^{\mu\nu}A_{\mu}B_{\nu}$, $T^{\mu\nu}T_{\mu\nu}$, $g_{\mu\sigma}T^{\mu\nu}{}_{\rho}T^{\sigma\rho}{}_{\nu}$. (1.63)

实际上,可以通过缩并若干个 Lorentz 张量的所有指标来构造 Lorentz 不变量。对 (p,q) 型 Lorentz 张量的一个逆变指标和一个协变指标进行缩并,可以得到一个 (p-1,q-1) 型 Lorentz 张量。例如,由

$$T'^{\mu\nu}{}_{\mu} = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}T^{\alpha\beta}{}_{\gamma}(\Lambda^{-1})^{\gamma}{}_{\mu} = \Lambda^{\nu}{}_{\beta}T^{\alpha\beta}{}_{\gamma}\delta^{\gamma}{}_{\alpha} = \Lambda^{\nu}{}_{\beta}T^{\alpha\beta}{}_{\alpha} \tag{1.64}$$

可知, $T^{\mu\nu}_{\mu}$ 是一个 Lorentz 矢量。

引入四维 Levi-Civita 符号

$$\varepsilon^{\mu\nu\rho\sigma} = \begin{cases} +1, & (\mu,\nu,\rho,\sigma) \ \mathbb{E} \ (0,1,2,3) \ \text{的偶次置换,} \\ -1, & (\mu,\nu,\rho,\sigma) \ \mathbb{E} \ (0,1,2,3) \ \text{的奇次置换,} \\ 0, & 其它情况。 \end{cases}$$
 (1.65)

这样定义出来的 $\varepsilon^{\mu\nu\rho\sigma}$ 是**全反对称**的,即关于任意两个指标反对称,如 $\varepsilon^{\mu\nu\rho\sigma} = -\varepsilon^{\nu\mu\rho\sigma} = -\varepsilon^{\rho\nu\mu\sigma} = -\varepsilon^{\sigma\nu\rho\mu}$ 。它的协变形式为

$$\varepsilon_{\mu\nu\rho\sigma} = g_{\mu\alpha}g_{\nu\beta}g_{\rho\gamma}g_{\sigma\delta}\varepsilon^{\alpha\beta\gamma\delta}.$$
 (1.66)

根据这些定义, $\varepsilon^{0123}=+1$, $\varepsilon_{0123}=-1$ 。从而,

$$\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\mu\nu\rho\sigma} = 4!\,\varepsilon^{0123}\varepsilon_{0123} = -4!. \tag{1.67}$$

利用 Levi-Civita 符号可以把 det Λ 按照行列式定义写成

$$\det \Lambda = \Lambda^0{}_{\alpha} \Lambda^1{}_{\beta} \Lambda^2{}_{\gamma} \Lambda^3{}_{\delta} \varepsilon^{\alpha\beta\gamma\delta} = -\frac{1}{4!} \varepsilon_{\mu\nu\rho\sigma} \Lambda^{\mu}{}_{\alpha} \Lambda^{\nu}{}_{\beta} \Lambda^{\rho}{}_{\gamma} \Lambda^{\sigma}{}_{\delta} \varepsilon^{\alpha\beta\gamma\delta}. \tag{1.68}$$

对于固有 Lorentz 变换, $\det \Lambda = +1$, 有

$$\varepsilon^{0123} = \varepsilon^{0123} \det \Lambda = \Lambda^0_{\alpha} \Lambda^1_{\beta} \Lambda^2_{\gamma} \Lambda^3_{\delta} \varepsilon^{\alpha\beta\gamma\delta}. \tag{1.69}$$

利用 $\varepsilon^{\mu\nu\rho\sigma}$ 的全反对称性质,可得

$$\varepsilon^{1023} = -\varepsilon^{0123} = -\Lambda^0_{\ \alpha}\Lambda^1_{\ \beta}\Lambda^2_{\ \gamma}\Lambda^3_{\ \delta}\varepsilon^{\alpha\beta\gamma\delta} = -\Lambda^1_{\ \beta}\Lambda^0_{\ \alpha}\Lambda^2_{\ \gamma}\Lambda^3_{\ \delta}\varepsilon^{\alpha\beta\gamma\delta} = \Lambda^1_{\ \beta}\Lambda^0_{\ \alpha}\Lambda^2_{\ \gamma}\Lambda^3_{\ \delta}\varepsilon^{\beta\alpha\gamma\delta}. \tag{1.70}$$

依此类推, 可以证明

$$\varepsilon^{\mu\nu\rho\sigma} = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\Lambda^{\rho}{}_{\gamma}\Lambda^{\sigma}{}_{\delta}\varepsilon^{\alpha\beta\gamma\delta}. \tag{1.71}$$

可见,在固有 Lorentz 变换下, $\varepsilon^{\mu\nu\rho\sigma}$ 可以看成是一个 4 阶 Lorentz 张量,不过它在任何惯性系中不变。

接下来讨论 Maxwell 方程组在 Lorentz 张量语言中的形式。在 Maxwell 方程组 (1.11) 中, ρ 是电荷密度, \mathbf{J} 是电流密度,它们可以组成一个 Lorentz 矢量 $J^{\mu}=(\rho,\mathbf{J})$,从而,电流连续性方程

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0 \tag{1.72}$$

可以写成 Lorentz 不变的形式

$$\partial_{\mu}J^{\mu} = 0. \tag{1.73}$$

此外, 电场强度 E 和磁感应强度 B 可以用电势 Φ 和矢势 A 表达为

$$\mathbf{E} = -\nabla \Phi - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}. \tag{1.74}$$

这样,方程

$$\nabla \cdot \mathbf{B} = 0 \tag{1.75}$$

是自动满足的。 Φ 和 **A** 可以组成一个 Lorentz 矢量 $A^{\mu} = (\Phi, \mathbf{A})$,称为四维矢势,则 (1.74) 式的分量形式为

$$E^{i} = -\partial_{i}A^{0} - \partial_{0}A^{i}, \quad B^{k} = \varepsilon^{kij}\partial_{i}A^{j}, \quad i, j, k = 1, 2, 3.$$

$$(1.76)$$

这里的三维 Levi-Civita 符号可以用四维 Levi-Civita 符号定义为

$$\varepsilon^{ijk} \equiv \varepsilon^{0ijk},\tag{1.77}$$

因而 $\varepsilon^{123} = +1$ 。

引入电磁场的场强张量 (field strength tensor)

$$F^{\mu\nu} = -F^{\nu\mu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}, \tag{1.78}$$

它是一个 2 阶反对称 Lorentz 张量。由于两个时空导数可以交换次序,从上述定义可得

$$\partial^{\rho} F^{\mu\nu} = \partial^{\rho} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) = \partial^{\mu} \partial^{\rho} A^{\nu} - \partial^{\mu} \partial^{\nu} A^{\rho} + \partial^{\nu} \partial^{\mu} A^{\rho} - \partial^{\nu} \partial^{\rho} A^{\mu}$$
$$= \partial^{\mu} F^{\rho\nu} + \partial^{\nu} F^{\mu\rho} = -\partial^{\mu} F^{\nu\rho} - \partial^{\nu} F^{\rho\mu}, \tag{1.79}$$

即

$$\partial^{\rho} F^{\mu\nu} + \partial^{\mu} F^{\nu\rho} + \partial^{\nu} F^{\rho\mu} = 0. \tag{1.80}$$

 $F^{\mu\nu}$ 的 0i 分量为

$$F^{0i} = \partial^0 A^i - \partial^i A^0 = \partial_0 A^i + \partial_i A^0 = -E^i, \tag{1.81}$$

可见, F^{0i} 对应于电场强度。由三维 Levi-Civita 符号的全反对称性有 $\varepsilon^{12k}\varepsilon^{12k} = \varepsilon^{123}\varepsilon^{123} = 1$ 和 $\varepsilon^{12k}\varepsilon^{21k} = \varepsilon^{123}\varepsilon^{213} = -1$,依此类推,可以归纳出如下求和关系:

$$\varepsilon^{ijk}\varepsilon^{kmn} = \varepsilon^{ijk}\varepsilon^{mnk} = \delta^{im}\delta^{jn} - \delta^{in}\delta^{jm}, \tag{1.82}$$

利用这个关系,可得

$$\varepsilon^{ijk}B^k = \varepsilon^{ijk}\varepsilon^{kmn}\partial_m A^n = \delta^{im}\delta^{jn}\partial_m A^n - \delta^{in}\delta^{jm}\partial_m A^n = \partial_i A^j - \partial_j A^i, \tag{1.83}$$

从而,

$$F^{ij} = \partial^i A^j - \partial^j A^i = -\partial_i A^j + \partial_j A^i = -\varepsilon^{ijk} B^k, \tag{1.84}$$

故 $F^{\mu\nu}$ 的 ij 分量对应于磁感应强度。把 $F^{\mu\nu}$ 写成矩阵形式是

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E^1 & -E^2 & -E^3 \\ E^1 & 0 & -B^3 & B^2 \\ E^2 & B^3 & 0 & -B^1 \\ E^3 & -B^2 & B^1 & 0 \end{pmatrix}.$$
 (1.85)

Gauss 定律对应的方程

$$\nabla \cdot \mathbf{E} = \rho \tag{1.86}$$

等价于

$$J^{0} = \rho = \partial_{i} E^{i} = -\partial_{i} F^{0i} = \partial_{i} F^{i0} = \partial_{i} F^{i0} + \partial_{0} F^{00} = \partial_{\mu} F^{\mu 0}, \tag{1.87}$$

而 Ampère 定律对应的方程

$$\nabla \times \mathbf{B} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial t} \tag{1.88}$$

等价于

$$J^{i} = \varepsilon^{ijk} \partial_{i} B^{k} - \partial_{0} E^{i} = -\partial_{i} F^{ij} + \partial_{0} F^{0i} = \partial_{i} F^{ji} + \partial_{0} F^{0i} = \partial_{\mu} F^{\mu i}. \tag{1.89}$$

归纳起来,有

$$\partial_{\mu}F^{\mu\nu} = J^{\nu}.\tag{1.90}$$

这个方程完全是用 Lorentz 张量写出来的,它在不同惯性系中具有相同的形式,即具有 **Lorentz 协变性**,因而满足狭义相对性原理。

现在,Maxwell 方程组中还有一个方程没有讨论,它是 Maxwell-Faraday 方程

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.\tag{1.91}$$

将它写成分量的形式,得

$$\varepsilon^{kmn}\partial_m E^n = -\varepsilon^{kmn}\partial_m F^{0n} = \varepsilon^{kmn}\partial_m F^{n0} = -\partial_0 B^k, \tag{1.92}$$

从而

$$\partial_0 F^{ij} = -\varepsilon^{ijk} \partial_0 B^k = \varepsilon^{ijk} \varepsilon^{kmn} \partial_m F^{n0} = (\delta^{im} \delta^{jn} - \delta^{in} \delta^{jm}) \partial_m F^{n0} = \partial_i F^{j0} - \partial_j F^{i0}, \tag{1.93}$$

即

$$\partial^0 F^{ij} + \partial^i F^{j0} + \partial^j F^{0i} = 0. \tag{1.94}$$

这个方程与 Maxwell-Faraday 方程等价,不过,它只是前面得到的方程 (1.80) 取特定分量的形式。

利用四维 Levi-Civita 符号,可以定义电磁场的对偶场强张量 (duel field strength tensor)

$$\tilde{F}^{\mu\nu} = -\tilde{F}^{\nu\mu} \equiv \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}, \tag{1.95}$$

它也是一个 2 阶反对称 Lorentz 张量。由 $\varepsilon^{1jk}\varepsilon^{1jk}=\varepsilon^{123}\varepsilon^{123}+\varepsilon^{132}\varepsilon^{132}=2$ 和 $\varepsilon^{1jk}\varepsilon^{2jk}=\varepsilon^{123}\varepsilon^{223}+\varepsilon^{132}\varepsilon^{232}=0$ 可以归纳出三维 Levi-Civita 符号的另一条求和关系

$$\varepsilon^{ijk}\varepsilon^{ljk} = 2\delta^{il},\tag{1.96}$$

利用这个关系,可得

$$\tilde{F}^{0i} = \frac{1}{2} \varepsilon^{0i\rho\sigma} F_{\rho\sigma} = \frac{1}{2} \varepsilon^{0ijk} F_{jk} = \frac{1}{2} \varepsilon^{0ijk} g_{j\mu} g_{k\nu} F^{\mu\nu} = \frac{1}{2} \varepsilon^{0ijk} g_{jm} g_{kn} F^{mn} = -\frac{1}{2} \varepsilon^{ijk} \delta^{jm} \delta^{kn} \varepsilon^{mnl} B^{l}
= -\frac{1}{2} \varepsilon^{ijk} \varepsilon^{jkl} B^{l} = -\frac{1}{2} \varepsilon^{ijk} \varepsilon^{ljk} B^{l} = -\frac{1}{2} 2 \delta^{il} B^{l} = -B^{i},$$
(1.97)

故 \tilde{F}^{0i} 对应于磁感应强度。另一方面,

$$\tilde{F}^{ij} = \frac{1}{2} \varepsilon^{ij\rho\sigma} F_{\rho\sigma} = \frac{1}{2} (\varepsilon^{ij0k} F_{0k} + \varepsilon^{ijk0} F_{k0}) = \varepsilon^{0ijk} F_{0k} = \varepsilon^{0ijk} g_{0\mu} g_{k\nu} F^{\mu\nu}$$

$$= \varepsilon^{ijk} g_{00} g_{kl} F^{0l} = -\varepsilon^{ijk} \delta^{kl} F^{0l} = -\varepsilon^{ijk} F^{0k} = \varepsilon^{ijk} E^k, \tag{1.98}$$

说明 \tilde{F}^{ij} 对应于电场强度。 $\tilde{F}^{\mu\nu}$ 的矩阵形式是

$$\tilde{F}^{\mu\nu} = \begin{pmatrix}
0 & -B^1 & -B^2 & -B^3 \\
B^1 & 0 & E^3 & -E^2 \\
B^2 & -E^3 & 0 & E^1 \\
B^3 & E^2 & -E^1 & 0
\end{pmatrix}.$$
(1.99)

由 \tilde{F}^{ij} 的定义,有

$$\partial_{\mu}\tilde{F}^{\mu\nu} = \frac{1}{2}\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu}F_{\rho\sigma} = -\frac{1}{2}\varepsilon^{\nu\mu\rho\sigma}\partial_{\mu}F_{\rho\sigma} = -\frac{1}{6}(\varepsilon^{\nu\mu\rho\sigma}\partial_{\mu}F_{\rho\sigma} + \varepsilon^{\nu\sigma\mu\rho}\partial_{\mu}F_{\rho\sigma} + \varepsilon^{\nu\rho\sigma\mu}\partial_{\mu}F_{\rho\sigma})$$

$$= -\frac{1}{6}(\varepsilon^{\nu\mu\rho\sigma}\partial_{\mu}F_{\rho\sigma} + \varepsilon^{\nu\mu\rho\sigma}\partial_{\rho}F_{\sigma\mu} + \varepsilon^{\nu\mu\rho\sigma}\partial_{\sigma}F_{\mu\rho}) = -\frac{1}{6}\varepsilon^{\nu\mu\rho\sigma}(\partial_{\mu}F_{\rho\sigma} + \partial_{\rho}F_{\sigma\mu} + \partial_{\sigma}F_{\mu\rho}), \quad (1.100)$$

因此, 方程 (1.80) 等价于

$$\partial_{\mu}\tilde{F}^{\mu\nu} = 0. \tag{1.101}$$

从这些讨论可以看到,用 Lorentz 张量语言表达 Maxwell 方程组是十分简单的,而且方程的 Lorentz 协变性非常明确。

1.6 作用量原理

1.6.1 经典力学中的作用量原理

在经典力学中,质点力学系统可以用**拉格朗日量**(Lagrangian)描述。对于具有 n 个自由度的系统,可以定义 n 个相互独立的广义坐标 (generalized coordinate) q_i ,它们的时间导数是广义速度 (generalized velocity) $\dot{q}_i = dq_i/dt$ 。拉格朗日量是广义坐标和广义速度的函数 $L(q_i,\dot{q}_i)$ 。拉格朗日量的时间积分

$$S = \int_{t_1}^{t_2} dt \, L[q_i(t), \dot{q}_i(t)] \tag{1.102}$$

称为作用量。

作用量原理指出,作用量的变分极值 ($\delta S = 0$) 对应于系统的经典运动轨迹。假设时间 t 的变分为零,则有

$$\delta \dot{q}_i = \delta \frac{dq_i}{dt} = \frac{d}{dt} \delta q_i, \tag{1.103}$$

即时间导数的变分等于变分的时间导数。从而可得

$$\begin{split} \delta S &= \int_{t_1}^{t_2} dt \, \delta L[q_i(t), \dot{q}_i(t)] = \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i \right) = \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \dot{d}t \delta q_i \right) \\ &= \int_{t_1}^{t_2} dt \left[\frac{\partial L}{\partial q_i} \delta q_i + \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \delta q_i \right) - \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} \right) \delta q_i \right] \end{split}$$

$$= \int_{t_1}^{t_2} dt \left(\frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} \right) \delta q_i + \left. \frac{\partial L}{\partial \dot{q}_i} \delta q_i \right|_{t_1}^{t_2}, \tag{1.104}$$

其中第四步用了分部积分。再假设初始和结束时刻处广义坐标的变分为零,即 $\delta q_i(t_1) = \delta q_i(t_2) = 0$,则上式最后一行第二项为零,而 $\delta S = 0$ 等价于

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0, \quad i = 1, \dots, n.$$
(1.105)

这是 Euler-Lagrange 方程,它给出质点系统的经典运动方程。

引入广义动量 (generalized momentum)

$$p_i \equiv \frac{\partial L}{\partial \dot{q}_i}, \quad i = 1, \dots, n.$$
 (1.106)

反解上式表示的 n 个方程,则可以用 q_i 和 p_i 将 \dot{q}_i 表达出来,然后用 Legendre 变换定义哈密 顿量 (Hamiltonian)

$$H(q_i, p_i) \equiv p_i \dot{q}_i - L, \tag{1.107}$$

它是 q_i 和 p_i 的函数。可以用 H 取替 L 来表示作用量,变分为

$$\delta S = \int_{t_{1}}^{t_{2}} dt \, \delta L = \int_{t_{1}}^{t_{2}} dt \, \delta(p_{i}\dot{q}_{i} - H) = \int_{t_{1}}^{t_{2}} dt \left(\dot{q}_{i}\delta p_{i} + p_{i}\delta\dot{q}_{i} - \frac{\partial H}{\partial q_{i}}\delta q_{i} - \frac{\partial H}{\partial p_{i}}\delta p_{i} \right)$$

$$= \int_{t_{1}}^{t_{2}} dt \left(\dot{q}_{i}\delta p_{i} + p_{i}\frac{d}{dt}\delta q_{i} - \frac{\partial H}{\partial q_{i}}\delta q_{i} - \frac{\partial H}{\partial p_{i}}\delta p_{i} \right)$$

$$= \int_{t_{1}}^{t_{2}} dt \left[\dot{q}_{i}\delta p_{i} + \frac{d}{dt}(p_{i}\delta q_{i}) - \dot{p}_{i}\delta q_{i} - \frac{\partial H}{\partial q_{i}}\delta q_{i} - \frac{\partial H}{\partial p_{i}}\delta p_{i} \right]$$

$$= \int_{t_{1}}^{t_{2}} dt \left[\left(\dot{q}_{i} - \frac{\partial H}{\partial p_{i}} \right) \delta p_{i} - \left(\dot{p}_{i} + \frac{\partial H}{\partial q_{i}} \right) \delta q_{i} \right] + p_{i}\delta q_{i} \Big|_{t_{1}}^{t_{2}}. \tag{1.108}$$

根据前面的假设,上式最后一行第二项为零,于是, $\delta S = 0$ 给出

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad i = 1, \dots, n.$$
 (1.109)

这是 Hamilton 正则运动方程,相当于用 2n 个一阶方程代替原来的 n 个二阶方程 (1.105).

1.6.2 经典场论中的作用量原理

场是时空坐标的函数。在经典场论中,场 $\phi(\mathbf{x},t)$ 是系统的广义坐标,每一个空间点 \mathbf{x} 都是一个自由度,因此场论相当于具有无穷多自由度的质点力学。在局域场论中,拉格朗日量 $L = \int d^3x \, \mathcal{L}(x)$,其中 $\mathcal{L}(x)$ 称为**拉格朗日量密度**(下文将它简称为**拉氏量**)。 \mathcal{L} 是系统中 n 个场 $\phi_a(\mathbf{x},t)$ ($a=1,\cdots,n$) 及其时空导数 $\partial_\mu\phi_a$ 的函数。现在,作用量可以表达为

$$S = \int dt L = \int d^4x \, \mathcal{L}(\phi_a, \partial_\mu \phi_a). \tag{1.110}$$

(1.44) 式告诉我们,时空体积元 d^4x 是 Lorentz 不变的,如果拉氏量 \mathcal{L} 也是 Lorentz 不变的,则作用量 S 就是 Lorentz 不变的,从而,由作用量原理得到的运动方程满足狭义相对性原理。因此,构建相对论性场论的关键在于使用 Lorentz 不变的拉氏量 \mathcal{L} ,即要求 \mathcal{L} 是一个 Lorentz 标量。

类似于前面质点力学的处理方式,假设时空坐标的变分为零,则对场的时空导数的变分等于场变分的时空导数,即

$$\delta(\partial_{\mu}\phi_{a}) = \partial_{\mu}(\delta\phi_{a}). \tag{1.111}$$

于是,利用分部积分可得

$$\delta S = \int d^4x \, \delta \mathcal{L} = \int d^4x \left[\frac{\partial \mathcal{L}}{\partial \phi_a} \delta \phi_a + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \delta (\partial_\mu \phi_a) \right] = \int d^4x \left[\frac{\partial \mathcal{L}}{\partial \phi_a} \delta \phi_a + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \partial_\mu (\delta \phi_a) \right]
= \int d^4x \left\{ \frac{\partial \mathcal{L}}{\partial \phi_a} \delta \phi_a + \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \delta \phi_a \right] - \left[\partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \right] \delta \phi_a \right\}
= \int d^4x \left[\frac{\partial \mathcal{L}}{\partial \phi_a} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \right] \delta \phi_a + \int d^4x \, \partial_\mu \left[\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_a)} \delta \phi_a \right].$$
(1.112)

上式最后一行第二项的积分项是关于时空坐标的全散度,利用 Stokes 定理,可以将它转化为积分区域边界面 S 上的积分:

$$\int d^4x \,\partial_\mu \left[\frac{\partial \mathcal{L}}{\partial(\partial_\mu \phi_a)} \delta \phi_a \right] = \int_{\mathcal{S}} d\mathcal{S}_\mu \, \frac{\partial \mathcal{L}}{\partial(\partial_\mu \phi_a)} \delta \phi_a, \tag{1.113}$$

其中 dS_{μ} 是 S 上的面元。进一步假设在边界面 S 上 $\delta\phi_a=0$,则上式为零。我们通常讨论整个时空区域上的场,从而这里相当于假设 ϕ_a 在无穷远时空边界上的变分为零,是很合理的。这样一来, $\delta S=0$ 给出

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} - \frac{\partial \mathcal{L}}{\partial \phi_{a}} = 0. \tag{1.114}$$

这就是场的 Euler-Lagrange 方程,它给出场的经典运动方程。

引入场的共轭动量密度 (conjugate momentum density)

$$\pi_a(\mathbf{x}, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{\phi}_a},$$
(1.115)

则可以用 Legendre 变换将哈密顿量定义为

$$H \equiv \int d^3x \, \pi_a \dot{\phi}_a - L \equiv \int d^3x \, \mathcal{H}, \qquad (1.116)$$

其中,哈密顿量密度

$$\mathcal{H}(\phi_a, \pi_a, \nabla \phi_a) = \pi_a \dot{\phi}_a - \mathcal{L}. \tag{1.117}$$

作用量变分为

$$\delta S = \int d^4x \, \delta \mathcal{L} = \int d^4x \, \delta(\pi_a \dot{\phi}_a - \mathcal{H})$$

$$= \int d^4x \left[\dot{\phi}_a \delta \pi_a + \pi_a \delta \dot{\phi}_a - \frac{\partial \mathcal{H}}{\partial \phi_a} \delta \phi_a - \frac{\partial \mathcal{H}}{\partial \pi_a} \delta \pi_a - \frac{\partial \mathcal{H}}{\partial (\nabla \phi_a)} \cdot \delta(\nabla \phi_a) \right]$$

$$= \int d^4x \left[\dot{\phi}_a \delta \pi_a + \pi_a \frac{d}{dt} \delta \phi_a - \frac{\partial \mathcal{H}}{\partial \phi_a} \delta \phi_a - \frac{\partial \mathcal{H}}{\partial \pi_a} \delta \pi_a - \frac{\partial \mathcal{H}}{\partial (\nabla \phi_a)} \cdot \nabla (\delta \phi_a) \right]$$

$$= \int d^4x \left\{ \dot{\phi}_a \delta \pi_a + \frac{d}{dt} (\pi_a \delta \phi_a) - \dot{\pi}_a \delta \phi_a - \frac{\partial \mathcal{H}}{\partial \phi_a} \delta \phi_a - \frac{\partial \mathcal{H}}{\partial \pi_a} \delta \pi_a - \nabla \cdot \left[\frac{\partial \mathcal{H}}{\partial (\nabla \phi_a)} \delta \phi_a \right] + \left[\nabla \cdot \frac{\partial \mathcal{H}}{\partial (\nabla \phi_a)} \right] \delta \phi_a \right\}$$

$$= \int d^4x \left\{ \left(\dot{\phi}_a - \frac{\partial \mathcal{H}}{\partial \pi_a} \right) \delta \pi_a - \left[\dot{\pi}_a + \frac{\partial \mathcal{H}}{\partial \phi_a} - \nabla \cdot \frac{\partial \mathcal{H}}{\partial (\nabla \phi_a)} \right] \delta \phi_a \right\}$$

$$+ \int d^4x \frac{d}{dt} (\pi_a \delta \phi_a) - \int d^4x \nabla \cdot \left[\frac{\partial \mathcal{H}}{\partial (\nabla \phi_a)} \delta \phi_a \right]. \tag{1.118}$$

与前面一样,假设在时空区域边界面上 $\delta\phi_a=0$,则上式最后一行的两项均为零,于是, $\delta S=0$ 给出场的正则运动方程

$$\dot{\phi}_a = \frac{\partial \mathcal{H}}{\partial \pi_a}, \quad \dot{\pi}_a = -\frac{\partial \mathcal{H}}{\partial \phi_a} + \nabla \cdot \frac{\partial \mathcal{H}}{\partial (\nabla \phi_a)}.$$
 (1.119)

1.7 Noether 定理、对称性与守恒定律

若一种对称变换可以用一组连续变化的参数来描述,则它是一种连续变换,连续变换对应的对称性称为连续对称性。Noether 定理指出,如果一个系统具有某种不显含时间的连续对称性,就必然存在一种对应的守恒定律。Noether 定理首先是在经典物理中给出的,但实际上它对所有物理行为由作用量原理决定的系统都成立。因此,可以将它推广到量子物理中。

1.7.1 场论中的 Noether 定理

下面在场论中证明 Noether 定理。在时空区域 R 中的作用量为

$$S = \int_{R} d^{4}x \, \mathcal{L}(\phi_{a}, \partial_{\mu}\phi_{a}). \tag{1.120}$$

考虑一个连续变换, 使得

$$\phi_a(x) \to \phi_a'(x'),$$
 (1.121)

其中已包含了坐标的变换

$$x^{\mu} \to x^{\prime \mu}, \tag{1.122}$$

它引起的拉氏量变换为

$$\mathcal{L}(x) \to \mathcal{L}'(x').$$
 (1.123)

记这个变换的无穷小变换形式为

$$\phi_a'(x') = \phi_a(x) + \delta\phi_a, \quad x'^{\mu} = x^{\mu} + \delta x^{\mu}, \quad \mathcal{L}'(x') = \mathcal{L}(x) + \delta\mathcal{L}, \tag{1.124}$$

如果在此变换下

$$\delta S = \int_{R'} d^4 x' \, \mathcal{L}'(x') - \int_{R} d^4 x \, \mathcal{L}(x) = 0, \tag{1.125}$$

则系统具有相应的连续对称性。

体积元的变化为

$$d^4x' = |\mathcal{J}|d^4x, \quad \mathcal{J} = \det\left(\frac{\partial x'^{\mu}}{\partial x^{\nu}}\right) \simeq \det\left[\delta^{\mu}_{\ \nu} + \frac{\partial(\delta x^{\mu})}{\partial x^{\nu}}\right],$$
 (1.126)

上式中约等于号表示只展开到一阶小量,下同。若方阵 $\mathbf A$ 满足 $\det(\mathbf A) \ll 1$,则有如下表达式:

$$\det(\mathbf{1} + \mathbf{A}) \simeq 1 + \operatorname{tr}(\mathbf{A}). \tag{1.127}$$

利用上式可以将 Jacobi 行列式 \mathcal{J} 化为

$$\mathcal{J} \simeq 1 + \operatorname{tr} \left[\frac{\partial (\delta x^{\mu})}{\partial x^{\nu}} \right] = 1 + \partial_{\mu} (\delta x^{\mu}),$$
 (1.128)

从而,体积元的无穷小变换形式为

$$d^4x' \simeq [1 + \partial_\mu(\delta x^\mu)]d^4x. \tag{1.129}$$

作用量在此无穷小变换下的变分为

$$\delta S = \int_{R'} d^4 x' \, \mathcal{L}'(x') - \int_{R} d^4 x \, \mathcal{L}(x)$$

$$= \int_{R'} d^4 x' \, \mathcal{L}'(x') - \int_{R} d^4 x \, \mathcal{L}'(x') + \int_{R} d^4 x \, \mathcal{L}'(x') - \int_{R} d^4 x \, \mathcal{L}(x)$$

$$\simeq \int_{R} d^4 x [1 + \partial_{\mu}(\delta x^{\mu})] \, \mathcal{L}'(x') - \int_{R} d^4 x \, \mathcal{L}'(x') + \int_{R} d^4 x \, \delta \mathcal{L}$$

$$\simeq \int_{R} d^4 x \, \mathcal{L}'(x') \partial_{\mu}(\delta x^{\mu}) + \int_{R} d^4 x \, \delta \mathcal{L} \simeq \int_{R} d^4 x \, [\delta \mathcal{L} + \mathcal{L}(x) \partial_{\mu}(\delta x^{\mu})]$$

$$= \int_{R} d^4 x \, \left[\frac{\partial \mathcal{L}}{\partial \phi_a} \delta \phi_a + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_a)} \delta(\partial_{\mu} \phi_a) + \mathcal{L} \partial_{\mu}(\delta x^{\mu}) \right]. \tag{1.130}$$

记 x^{μ} 固定时的变分算符为 $\bar{\delta}$, 使得

$$\bar{\delta}\phi_a(x) = \phi_a'(x) - \phi_a(x). \tag{1.131}$$

 $\bar{\delta}$ 算符可以与时空导数交换,

$$\bar{\delta}(\partial_{\mu}\phi_{a}) = \partial_{\mu}(\bar{\delta}\phi_{a}), \tag{1.132}$$

 δ 算符则不能。 $\delta \phi_a$ 与 $\bar{\delta} \phi_a$ 的关系为

$$\delta\phi_a = \phi_a'(x') - \phi_a(x) = \phi_a'(x') - \phi_a'(x) + \phi_a'(x) - \phi_a(x) = \phi_a'(x') - \phi_a'(x) + \bar{\delta}\phi_a$$

$$\simeq \bar{\delta}\phi_a + (\partial_\mu\phi_a')\delta x^\mu \simeq \bar{\delta}\phi + (\partial_\mu\phi_a)\delta x^\mu, \tag{1.133}$$

即

$$\bar{\delta}\phi = \delta\phi_a - (\partial_\mu\phi_a)\delta x^\mu. \tag{1.134}$$

同理,

$$\delta(\partial_{\mu}\phi_{a}) = \bar{\delta}(\partial_{\mu}\phi_{a}) + \partial_{\nu}(\partial_{\mu}\phi_{a})\delta x^{\nu} = \partial_{\mu}(\bar{\delta}\phi_{a}) + \partial_{\nu}(\partial_{\mu}\phi_{a})\delta x^{\nu}. \tag{1.135}$$

将 (1.133) 和 (1.135) 式代入 (1.130) 式,得到

$$\delta S = \int_{R} d^{4}x \left\{ \frac{\partial \mathcal{L}}{\partial \phi_{a}} [\bar{\delta}\phi_{a} + (\partial_{\mu}\phi_{a})\delta x^{\mu}] + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} [\partial_{\mu}(\bar{\delta}\phi_{a}) + \partial_{\nu}(\partial_{\mu}\phi_{a})\delta x^{\nu}] + \mathcal{L}\partial_{\mu}(\delta x^{\mu}) \right\} \\
= \int_{R} d^{4}x \left\{ \frac{\partial \mathcal{L}}{\partial \phi_{a}} \bar{\delta}\phi_{a} + \frac{\partial \mathcal{L}}{\partial \phi_{a}} \frac{\partial \phi_{a}}{\partial x^{\mu}} \delta x^{\mu} + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \bar{\delta}\phi_{a} \right) - \left(\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \right) \bar{\delta}\phi_{a} \right. \\
+ \frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\phi_{a})} \frac{\partial(\partial_{\nu}\phi_{a})}{\partial x^{\mu}} \delta x^{\mu} + \mathcal{L} \frac{\partial}{\partial x^{\mu}} (\delta x^{\mu}) \right\} \\
= \int_{R} d^{4}x \left\{ \left[\frac{\partial \mathcal{L}}{\partial \phi_{a}} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \right] \bar{\delta}\phi_{a} + \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \bar{\delta}\phi_{a} \right] \right. \\
+ \left. \left[\frac{\partial \mathcal{L}}{\partial \phi_{a}} \frac{\partial \phi_{a}}{\partial x^{\mu}} \delta x^{\mu} + \frac{\partial \mathcal{L}}{\partial(\partial_{\nu}\phi_{a})} \frac{\partial(\partial_{\nu}\phi_{a})}{\partial x^{\mu}} \delta x^{\mu} + \mathcal{L} \frac{\partial}{\partial x^{\mu}} (\delta x^{\mu}) \right] \right\} \\
= \int_{R} d^{4}x \left\{ \left[\frac{\partial \mathcal{L}}{\partial \phi_{a}} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \right] \bar{\delta}\phi_{a} + \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \bar{\delta}\phi_{a} + \mathcal{L}\delta x^{\mu} \right] \right\}. \tag{1.136}$$

第二步用到分部积分,最后一步用到求导关系式

$$\frac{\partial}{\partial x^{\mu}}(\mathcal{L}\delta x^{\mu}) = \frac{\partial \mathcal{L}}{\partial \phi_{a}} \frac{\partial \phi_{a}}{\partial x^{\mu}} \delta x^{\mu} + \frac{\partial \mathcal{L}}{\partial (\partial_{\nu}\phi_{a})} \frac{\partial (\partial_{\nu}\phi_{a})}{\partial x^{\mu}} \delta x^{\mu} + \mathcal{L} \frac{\partial}{\partial x^{\mu}} (\delta x^{\mu}). \tag{1.137}$$

根据 Euler-Lagrange 方程 (1.114),(1.136) 式最后一行花括号中第一项为零。由于积分区域 R 可以是任意的, $\delta S=0$ 等价于第二项为零,即

$$\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} \bar{\delta} \phi_{a} + \mathcal{L} \delta x^{\mu} \right] = 0. \tag{1.138}$$

定义 Noether 守恒流 (conserved current)

$$j^{\mu} \equiv \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_a)} \bar{\delta} \phi_a + \mathcal{L} \delta x^{\mu}, \tag{1.139}$$

则有守恒流方程

$$\partial_{\mu}j^{\mu} = 0. \tag{1.140}$$

方程 (1.140) 左边对整个三维空间积分,运用 Stokes 定理,得

$$\int d^3x \,\partial_\mu j^\mu = \int d^3x \,\partial_0 j^0 + \int d^3x \,\partial_i j^i = \frac{d}{dt} \int d^3x \,j^0 + \int_{\mathcal{S}} d\mathcal{S}_i \,j^i, \tag{1.141}$$

其中 i=1,2,3。对于整个三维空间而言,边界面 S 位于无穷远处。通常假设场 ϕ_a 在无穷远处 消失,从而,在无穷远处 $j^i \to 0$,所以上式最后一项为零。定义**守恒荷** (conserved charge)

$$Q \equiv \int d^3x \, j^0, \tag{1.142}$$

则由 (1.141) 和 (1.140) 式可得

$$\frac{dQ}{dt} = \frac{d}{dt} \int d^3x \, j^0 = \int d^3x \, \partial_\mu j^\mu = 0.$$
 (1.143)

可见, Q 不随时间变化, 是守恒的。

综上,在场论中,如果一个系统具有某种连续对称性,则存在相应的守恒流 (1.139),它满足守恒流方程 (1.140),而守恒荷 (1.142) 不随时间变化。下面举一些应用 Noether 定理的例子。

1.7.2 时空平移对称性

考虑时空坐标的无穷小平移变换

$$x'^{\mu} = x^{\mu} - \varepsilon^{\mu},\tag{1.144}$$

其中 ε^{μ} 是常数。要求场 ϕ_a 具有时空平移对称性,则

$$\phi_a'(x') = \phi_a'(x - \varepsilon) = \phi_a(x). \tag{1.145}$$

现在, $\delta x^{\mu} = -\varepsilon^{\mu}$,由 (1.134) 式可得

$$\bar{\delta}\phi_a = \delta\phi_a - (\partial_\mu\phi_a)\delta x^\mu = \phi_a'(x') - \phi_a(x) + \varepsilon^\mu\partial_\mu\phi_a = 0 + \varepsilon^\mu\partial_\mu\phi_a = \varepsilon^\rho\partial_\rho\phi_a, \tag{1.146}$$

代入到 Noether 守恒流表达式 (1.139), 得

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \varepsilon^{\rho} \partial_{\rho} \phi_{a} - \mathcal{L}\varepsilon^{\mu} = \left[\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \partial_{\rho} \phi_{a} - \delta^{\mu}{}_{\rho} \mathcal{L} \right] \varepsilon^{\rho}. \tag{1.147}$$

从而, $\partial_{\mu}j^{\mu}=0$ 给出

$$\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} \partial_{\rho} \phi_{a} - \delta^{\mu}{}_{\rho} \mathcal{L} \right] = 0, \tag{1.148}$$

各项乘以 $q^{\rho\nu}$, 缩并, 得

$$\partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} \partial^{\nu} \phi_{a} - g^{\mu\nu} \mathcal{L} \right] = 0. \tag{1.149}$$

上式方括号部分是场的能动张量 (energy-momentum tensor)

$$T^{\mu\nu} \equiv \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \partial^{\nu}\phi_{a} - g^{\mu\nu}\mathcal{L}, \tag{1.150}$$

它满足

$$\partial_{\mu}T^{\mu\nu} = 0. \tag{1.151}$$

因此,对 $T^{0\nu}$ ($\nu=0,1,2,3$) 作全空间积分,就可以得到 4 个守恒荷。

 $T^{\mu\nu}$ 的 00 分量为

$$T^{00} = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi_a)} \partial^0 \phi_a - \mathcal{L}, \tag{1.152}$$

与 (1.117) 和 (1.115) 式比较,可以看出 T^{00} 就是哈密顿量密度 \mathcal{H} 。 T^{00} 的全空间积分

$$H = \int d^3x \, T^{00} = \int d^3x \, \mathcal{H} \tag{1.153}$$

是场的哈密顿量,或者说**总能量**。 $T^{\mu\nu}$ 的0i分量

$$T^{0i} = \frac{\partial \mathcal{L}}{\partial (\partial_0 \phi_a)} \partial^i \phi_a = \pi_a \partial^i \phi_a \tag{1.154}$$

是场的动量密度,它的全空间积分

$$P^{i} = \int d^{3}x \, T^{0i} = \int d^{3}x \, \pi_{a} \partial^{i} \phi_{a} \tag{1.155}$$

是场的总动量。根据 (1.55) 式,上式也可以写成

$$\mathbf{P} = -\int d^3x \,\pi_a \nabla \phi_a. \tag{1.156}$$

H 和 P^i 都是守恒荷,可见,时间平移对称性对应于能量守恒定律,空间平移对称性对应于动量守恒定律。

1.7.3 Lorentz 对称性

考虑无穷小固有保时向 Lorentz 变换

$$\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \omega^{\mu}_{\ \nu},\tag{1.157}$$

其中 ω^{μ} , 是变换的无穷小参数。由保度规条件 (1.30), 有

$$g_{\alpha\beta} = g_{\mu\nu}\Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta} = g_{\mu\nu}(\delta^{\mu}{}_{\alpha} + \omega^{\mu}{}_{\alpha})(\delta^{\nu}{}_{\beta} + \omega^{\nu}{}_{\beta}) \simeq g_{\mu\nu}\delta^{\mu}{}_{\alpha}\delta^{\nu}{}_{\beta} + g_{\mu\nu}\delta^{\mu}{}_{\alpha}\omega^{\nu}{}_{\beta} + g_{\mu\nu}\omega^{\mu}{}_{\alpha}\delta^{\nu}{}_{\beta}$$
$$= g_{\alpha\beta} + \omega_{\alpha\beta} + \omega_{\beta\alpha}, \tag{1.158}$$

可见,

$$\omega_{\mu\nu} \equiv g_{\mu\rho}\omega^{\rho}_{\ \nu} \tag{1.159}$$

关于两个指标反对称:

$$\omega_{\mu\nu} = -\omega_{\nu\mu}.\tag{1.160}$$

因此, $\omega_{\mu\nu}$ 只有 6 个独立分量。

下面举两个例子说明 $\omega_{\mu\nu}$ 的具体形式。对于绕 z 轴旋转 θ 角的变换 (1.31),利用三角函数 展开式 $\cos\theta = 1 + \mathcal{O}(\theta^2)$ 和 $\sin\theta = \theta + \mathcal{O}(\theta^3)$,可得

$$\omega^{\mu}{}_{\nu} = \begin{pmatrix} 0 & & & \\ & 0 & \theta & \\ & -\theta & 0 & \\ & & & 0 \end{pmatrix}, \quad \omega_{\mu\nu} = g_{\mu\rho}\omega^{\rho}{}_{\nu} = \begin{pmatrix} 0 & & & \\ & 0 & -\theta & \\ & \theta & 0 & \\ & & & 0 \end{pmatrix}. \tag{1.161}$$

对于沿x 的增速变换 (1.28), 可以先定义快度 (rapidity)

$$\xi \equiv \tanh^{-1}\beta,\tag{1.162}$$

再利用双曲函数公式 $\tanh \xi = \sinh \xi / \cosh \xi$ 和 $\cosh^2 \xi - \sinh^2 \xi = 1$ 得

$$\gamma = (1 - \beta^2)^{-1/2} = (1 - \tanh^2 \xi)^{-1/2} = \left(\frac{\cosh^2 \xi - \sinh^2 \xi}{\cosh^2 \xi}\right)^{-1/2} = \cosh \xi,$$

$$\beta \gamma = \tanh \xi \cosh \xi = \sinh \xi,$$
(1.163)

从而将 (1.28) 式改写成

$$\Lambda^{\mu}{}_{\nu} = \begin{pmatrix}
\cosh \xi & -\sinh \xi & \\
-\sinh \xi & \cosh \xi & \\
& & 1 \\
& & & 1
\end{pmatrix}.$$
(1.164)

根据双曲函数展开式 $\cosh \xi = 1 + \mathcal{O}(\xi^2)$ 和 $\sinh \xi = \xi + \mathcal{O}(\xi^3)$,有

$$\omega^{\mu}_{\nu} = \begin{pmatrix} 0 & -\xi & & \\ -\xi & 0 & & \\ & & 0 & \\ & & & 0 \end{pmatrix}, \quad \omega_{\mu\nu} = g_{\mu\rho}\omega^{\rho}_{\nu} = \begin{pmatrix} 0 & -\xi & & \\ \xi & 0 & & \\ & & 0 & \\ & & & 0 \end{pmatrix}. \tag{1.165}$$

在无穷小 Lorentz 变换 (1.157) 的作用下,一般地,场的变换可以写成

$$\phi_a'(x') = \left[\delta_{ab} - \frac{i}{2} \omega_{\mu\nu} (I^{\mu\nu})_{ab} \right] \phi_b(x) = \phi_a(x) - \frac{i}{2} \omega_{\mu\nu} (I^{\mu\nu})_{ab} \phi_b(x), \tag{1.166}$$

其中 $I^{\mu\nu}$ 是 ϕ_a 所属 Lorentz 群线性表示的**生成元** (generator)。由于 $\omega_{\mu\nu}$ 是反对称的,有

$$\omega_{\mu\nu}(I^{\mu\nu})_{ab} = \omega_{\nu\mu}(I^{\nu\mu})_{ab} = -\omega_{\mu\nu}(I^{\nu\mu})_{ab}, \tag{1.167}$$

因而 $(I^{\mu\nu})_{ab}$ 也应该关于 μ 和 ν 反对称:

$$(I^{\mu\nu})_{ab} = -(I^{\nu\mu})_{ab}. (1.168)$$

现在, $\delta x^{\mu} = \omega^{\mu}_{\nu} x^{\nu}$,而

$$\bar{\delta}\phi_a = \delta\phi_a - (\partial_\mu\phi_a)\delta x^\mu = \phi_a'(x') - \phi_a(x) - (\partial_\mu\phi_a)\delta x^\mu = -\frac{i}{2}\omega_{\nu\rho}(I^{\nu\rho})_{ab}\phi_b - (\partial_\nu\phi_a)\omega^\nu_{\rho}x^\rho, \quad (1.169)$$

故 Noether 流为

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} \bar{\delta}\phi_{a} + \mathcal{L}\delta x^{\mu} = -\frac{i}{2}\omega_{\nu\rho} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} (I^{\nu\rho})_{ab}\phi_{b} - \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} (\partial_{\nu}\phi_{a})\omega^{\nu}{}_{\rho}x^{\rho} + \mathcal{L}\omega^{\mu}{}_{\rho}x^{\rho}$$

$$= \frac{1}{2}\omega_{\nu\rho} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} (-iI^{\nu\rho})_{ab}\phi_{b} - \left[\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} (\partial_{\nu}\phi_{a}) - \delta^{\mu}{}_{\nu}\mathcal{L}\right] \omega^{\nu}{}_{\rho}x^{\rho}$$

$$= \frac{1}{2}\omega_{\nu\rho} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})} (-iI^{\nu\rho})_{ab}\phi_{b} - T^{\mu}{}_{\nu}\omega^{\nu}{}_{\rho}x^{\rho}, \qquad (1.170)$$

其中

$$T^{\mu}{}_{\nu} \equiv T^{\mu\rho} g_{\rho\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi_{a})} \partial_{\nu} \phi_{a} - \delta^{\mu}{}_{\nu} \mathcal{L}$$
 (1.171)

是能动张量的另一种写法。利用度规可以进行如下指标升降操作:

$$T^{\mu}_{\ \nu}\omega^{\nu}_{\ \rho} = T^{\mu}_{\ \nu}\delta^{\nu}_{\ \sigma}\omega^{\sigma}_{\ \rho} = T^{\mu}_{\ \nu}g^{\nu\alpha}g_{\alpha\sigma}\omega^{\sigma}_{\ \rho} = T^{\mu\alpha}\omega_{\alpha\rho} = T^{\mu\nu}\omega_{\nu\rho}, \tag{1.172}$$

即参与缩并的指标一升一降不会改变表达式的结果。再利用 $\omega_{\mu\nu}$ 的反对称性可得

$$T^{\mu}{}_{\nu}\omega^{\nu}{}_{\rho}x^{\rho} = T^{\mu\nu}\omega_{\nu\rho}x^{\rho} = \frac{1}{2}(T^{\mu\nu}\omega_{\nu\rho}x^{\rho} - T^{\mu\nu}\omega_{\rho\nu}x^{\rho}) = \frac{1}{2}(T^{\mu\nu}\omega_{\nu\rho}x^{\rho} - T^{\mu\rho}\omega_{\nu\rho}x^{\nu})$$
$$= \frac{1}{2}\omega_{\nu\rho}(T^{\mu\nu}x^{\rho} - T^{\mu\rho}x^{\nu}). \tag{1.173}$$

于是, Noether 流 (1.170) 可化为

$$j^{\mu} = \frac{1}{2}\omega_{\nu\rho}\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi_{a})}(-iI^{\nu\rho})_{ab}\phi_{b} - \frac{1}{2}\omega_{\nu\rho}(T^{\mu\nu}x^{\rho} - T^{\mu\rho}x^{\nu}) = \frac{1}{2}J^{\mu\nu\rho}\omega_{\nu\rho}$$
(1.174)

其中

$$J^{\mu\nu\rho} \equiv T^{\mu\rho}x^{\nu} - T^{\mu\nu}x^{\rho} + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi_{a})}(-iI^{\nu\rho})_{ab}\phi_{b}. \tag{1.175}$$

 $\partial_{\mu}j^{\mu}=0$ 给出

$$\partial_{\mu}J^{\mu\nu\rho} = 0, \tag{1.176}$$

守恒荷为

$$J^{\nu\rho} \equiv \int d^3x J^{0\nu\rho} = \int d^3x \left[T^{0\rho} x^{\nu} - T^{0\nu} x^{\rho} + \frac{\partial \mathcal{L}}{\partial (\partial_0 \phi_a)} (-iI^{\nu\rho})_{ab} \phi_b \right]. \tag{1.177}$$

易见 $J^{\nu\rho} = -J^{\rho\nu}$, 因而一共有 6 个独立的守恒荷, 满足 $dJ^{\nu\rho}/dt = 0$ 。

为明确物理含义,可将 $J^{\nu\rho}$ 分解成两项:

$$J^{\nu\rho} = L^{\nu\rho} + S^{\nu\rho}. (1.178)$$

第一项为

$$L^{\nu\rho} \equiv \int d^3x \left(T^{0\rho} x^{\nu} - T^{0\nu} x^{\rho} \right)$$

$$= \int d^3x \left[\left(\frac{\partial \mathcal{L}}{\partial (\partial_0 \phi_a)} \partial^{\rho} \phi_a - g^{0\rho} \mathcal{L} \right) x^{\nu} - \left(\frac{\partial \mathcal{L}}{\partial (\partial_0 \phi_a)} \partial^{\nu} \phi_a - g^{0\nu} \mathcal{L} \right) x^{\rho} \right]$$

$$= \int d^3x \left[(\pi_a \partial^{\rho} \phi_a - g^{0\rho} \mathcal{L}) x^{\nu} - (\pi_a \partial^{\nu} \phi_a - g^{0\nu} \mathcal{L}) x^{\rho} \right]$$

$$= \int d^3x \left[\pi_a (x^{\nu} \partial^{\rho} - x^{\rho} \partial^{\nu}) \phi_a + (g^{0\nu} x^{\rho} - g^{0\rho} x^{\nu}) \mathcal{L} \right]. \tag{1.179}$$

它的纯空间分量 L^{jk} 中只有 3 个是独立的,可以等价地定义成

$$L^{i} \equiv \frac{1}{2} \varepsilon^{ijk} L^{jk} = \frac{1}{2} \varepsilon^{ijk} \int d^{3}x \, \pi_{a}(x^{j} \partial^{k} - x^{k} \partial^{j}) \phi_{a}, \qquad (1.180)$$

这是场的**轨道角动量**。第二项为

$$S^{\nu\rho} \equiv \int d^3x \, \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi_a)} (-iI^{\nu\rho})_{ab} \phi_b = \int d^3x \, \pi_a (-iI^{\nu\rho})_{ab} \phi_b, \tag{1.181}$$

同样, 3 个独立的等价纯空间分量是

$$S^{i} \equiv \frac{1}{2} \varepsilon^{ijk} S^{jk} = \frac{1}{2} \varepsilon^{ijk} \int d^{3}x \, \pi_{a}(-iI^{jk})_{ab} \phi_{b}, \qquad (1.182)$$

这是场的**自旋角动量**。因此, $J^{\nu\rho}$ 的纯空间分量等价于

$$J^{i} \equiv \frac{1}{2}\varepsilon^{ijk}J^{jk} = L^{i} + S^{i}, \qquad (1.183)$$

这是场的**总角动量**。固有保时向 Lorentz 群的纯空间部分就是空间旋转群 SO(3),而空间旋转对称性对应于**角动量守恒定律**。

另一方面, $L^{\nu\rho}$ 的 i0 分量为

$$L^{i0} = \int d^3x \left(T^{00}x^i - T^{0i}x^0 \right) = \int d^3x \left(x^i \mathcal{H} - x^0 \pi_a \partial^i \phi_a \right) = \int d^3x \, x^i \mathcal{H} - tP^i. \tag{1.184}$$

若 $dS^{i0}/dt=0$,则有 $dL^{i0}/dt=0$,从而

$$L^{i0}(t) = L^{i0}|_{t=0} = \int d^3x \, x^i \mathcal{H}(t=0),$$
 (1.185)

这是场在 t=0 时刻的能量中心。在低速极速下,能量密度相当于质量密度,则 L^{i0} 是 t=0 时刻的质心 (即质量中心,center of mass)。 L^{i0} 的守恒在经典力学中对应于质心运动守恒定律: 当没有外力存在时,质心的加速度为零,质心保持静止或作匀速直线运动。

1.7.4 U(1) 整体对称性

考虑一个包含复场 $\phi(x)$ 及其复共轭 $\phi^*(x)$ 的拉氏量

$$\mathcal{L} = (\partial^{\mu}\phi^*)\partial_{\mu}\phi - m^2\phi^*\phi. \tag{1.186}$$

对 φ 作 U(1) 整体变换

$$\phi'(x) = e^{iq\theta}\phi(x),\tag{1.187}$$

其中 θ 是不依赖于 x^{μ} 的连续变换实参数, q 是一个常数。这里不包含坐标的变换。 $e^{iq\theta}$ 是个纯相位因子,可以看成是一个 1 维幺正 (unitary) 矩阵,形式为 $e^{iq\theta}$ 的所有变换组成的群称为 **U(1)** 群。整体 (global) 指的是变换参数不依赖于时空坐标。相应地, ϕ^* 的 U(1) 整体变换形式为

$$[\phi^*(x)]' = [\phi'(x)]^* = e^{-iq\theta}\phi^*(x). \tag{1.188}$$

容易看出,由 (1.186) 式定义的 \mathcal{L} 在这种变换下不变,即具有 U(1) 整体对称性。与前面叙述的两种对称性不同,这里的对称性出现在由场组成的抽象空间中,与时间和空间相对独立 $(\delta x^{\mu} = 0)$,因而是一种**内部对称性**。

U(1) 整体变换的无穷小形式为

$$\phi'(x) = \phi(x) + iq\theta\phi(x), \quad [\phi^*(x)]' = \phi^*(x) - iq\theta\phi^*(x), \tag{1.189}$$

结合 $\delta x^{\mu} = 0$,有

$$\bar{\delta}\phi = \delta\phi = iq\theta\phi, \quad \bar{\delta}\phi^* = \delta\phi^* = -iq\theta\phi^*,$$
 (1.190)

于是, Noether 流为

$$j^{\mu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \bar{\delta}\phi + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi^{*})} \bar{\delta}\phi^{*} = \partial^{\mu}\phi^{*}(iq\theta\phi) + \partial^{\mu}\phi(-iq\theta\phi^{*})$$
$$= iq\theta[(\partial^{\mu}\phi^{*})\phi - (\partial^{\mu}\phi)\phi^{*}] = -q\theta\phi^{*}i\overleftarrow{\partial^{\mu}}\phi, \tag{1.191}$$

其中, 💝 符号通过下式定义:

$$\phi^* \overleftrightarrow{\partial^{\mu}} \phi \equiv \phi^* \partial^{\mu} \phi - (\partial^{\mu} \phi^*) \phi. \tag{1.192}$$

扔掉无穷小参数 $-\theta$, 定义

$$J^{\mu} \equiv q\phi^* i \overleftrightarrow{\partial^{\mu}} \phi, \tag{1.193}$$

则 Noether 定理给出 $\partial_{\mu}J^{\mu}=0$,相应的守恒荷为

$$Q = \int d^3x J^0 = q \int d^3x \, \phi^* i \overleftrightarrow{\partial^0} \phi. \tag{1.194}$$

在实际情况中,q 是由 ϕ 场描述的粒子所携带的某种荷,如电荷、重子数、轻子数、奇异数、粲数、底数、顶数等。因此,一种 U(1) 整体对称性对应于一条荷数守恒定律,比如,电磁 U(1) 整体对称性就对应于电荷守恒定律。

第2章 标量场

本章讲述标量场的**正则量子化** (canonical quantization) 方法。标量场的量子化可以看作简谐振子量子化的推广,因此,我们先来回顾一下简谐振子的正则量子化程序。

2.1 简谐振子的正则量子化

一维简谐振子 (simple harmonic oscillator) 的哈密顿量可以表达为

$$H = \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2 x^2,$$
 (2.1)

其中 m 是质量, ω 是角频率。第一项是动能,第二项是势能。在量子力学中,把坐标 x 和动量 p 当成厄米算符,满足**正则对易关系**

$$[x,p] = xp - px = i. (2.2)$$

可以用 x 和 p 构造两个非厄米的无量纲算符

$$a = \frac{1}{\sqrt{2m\omega}}(m\omega x + ip), \quad a^{\dagger} = \frac{1}{\sqrt{2m\omega}}(m\omega x - ip).$$
 (2.3)

a 称为**湮灭算符** (annihilation operator), a^{\dagger} 称为**产生算符** (creation operator),两者互为厄米共轭 (Hermitian conjugate)。它们的对易关系为

$$[a, a^{\dagger}] = \frac{1}{2m\omega} [m\omega x + ip, m\omega x - ip] = \frac{1}{2m\omega} ([m\omega x, -ip] + [ip, m\omega x])$$
$$= \frac{1}{2} (-i[x, p] + i[p, x]) = -i[x, p] = 1.$$
(2.4)

根据 (2.3) 式,可以反过来用 a 和 a^{\dagger} 表示 x 和 p:

$$x = \frac{1}{\sqrt{2m\omega}}(a+a^{\dagger}), \quad p = -i\sqrt{\frac{m\omega}{2}}(a-a^{\dagger}). \tag{2.5}$$

从而,哈密顿量表示成

$$H = -\frac{1}{2m} \frac{m\omega}{2} (a - a^{\dagger})^{2} + \frac{1}{2} m\omega^{2} \frac{1}{2m\omega} (a + a^{\dagger})^{2}$$

$$= -\frac{\omega}{4} (aa - aa^{\dagger} - a^{\dagger}a + a^{\dagger}a^{\dagger}) + \frac{\omega}{4} (aa + aa^{\dagger} + a^{\dagger}a + a^{\dagger}a^{\dagger}) = \frac{\omega}{2} (aa^{\dagger} + a^{\dagger}a).$$
 (2.6)

由对易关系 (2.4) 可得 $aa^{\dagger} = a^{\dagger}a + 1$, 于是

$$H = \frac{\omega}{2}(2a^{\dagger}a + 1) = \omega\left(a^{\dagger}a + \frac{1}{2}\right) = \omega\left(N + \frac{1}{2}\right),\tag{2.7}$$

其中, $N \equiv a^{\dagger}a$ 是个厄米算符,称为**粒子数算符**。N 还是个正定算符,对于任意态 $|\psi\rangle$,N 的平均值非负:

$$\langle \psi | N | \psi \rangle = \langle \psi | a^{\dagger} a | \psi \rangle = \langle a \psi | a \psi \rangle \ge 0.$$
 (2.8)

设 $|n\rangle$ 是 N 的本征态,满足本征方程

$$N|n\rangle = n|n\rangle. \tag{2.9}$$

由 $n = \langle n | N | n \rangle = \langle n | a^{\dagger} a | n \rangle \ge 0$ 可知, n 是个非负实数。利用对易子公式

$$[AB, C] = ABC - ACB + ACB - CAB = A[B, C] + [A, C]B,$$
 (2.10)

$$[A, BC] = ABC - BAC + BAC - BCA = [A, B]C + B[A, C],$$
(2.11)

可得

$$[N, a^{\dagger}] = [a^{\dagger}a, a^{\dagger}] = a^{\dagger}[a, a^{\dagger}] = a^{\dagger}, \quad [N, a] = [a^{\dagger}a, a] = [a^{\dagger}, a]a = -a,$$
 (2.12)

从而,有

$$Na^{\dagger} |n\rangle = ([N, a^{\dagger}] + a^{\dagger}N) |n\rangle = (a^{\dagger} + a^{\dagger}n) |n\rangle = (n+1)a^{\dagger} |n\rangle, \qquad (2.13)$$

$$Na |n\rangle = ([N, a] + aN) |n\rangle = (-a + an) |n\rangle = (n - 1)a |n\rangle.$$
 (2.14)

可见, $a^{\dagger}|n\rangle$ 和 $a|n\rangle$ 都是 N 的本征态,本征值分别为 n+1 和 n-1,也就是说,

$$a^{\dagger} |n\rangle = c_1 |n+1\rangle, \quad a |n\rangle = c_2 |n-1\rangle,$$
 (2.15)

其中 c_1 和 c_2 是两个归一化常数。 a^{\dagger} 将本征值为 n 的态变成本征值为 n+1 的态,因而也称为升算符 (raising operator); a 将本征值为 n 的态变成本征值为 n-1 的态,因而也称为降算符 (lowering operator)。为确定归一化常数的值,可作如下计算:

$$n+1 = \langle n | (N+1) | n \rangle = \langle n | (a^{\dagger}a+1) | n \rangle = \langle n | aa^{\dagger} | n \rangle = |c_1|^2 \langle n+1 | n+1 \rangle = |c_1|^2, \quad (2.16)$$

$$n = \langle n | N | n \rangle = \langle n | a^{\dagger} a | n \rangle = |c_2|^2 \langle n + 1 | n + 1 \rangle = |c_2|^2.$$
 (2.17)

将 c_1 和 c_2 都取为实数,则有 $c_1 = \sqrt{n+1}$ 和 $c_2 = \sqrt{n}$,故

$$a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle, \quad a |n\rangle = \sqrt{n} |n-1\rangle.$$
 (2.18)

从 N 的某个本征态 $|n\rangle$ 出发,用降算符 a 逐步操作,可得本征值逐次减小的一系列本征态

$$a|n\rangle, a^2|n\rangle, a^3|n\rangle, \cdots,$$
 (2.19)

本征值分别为

$$n-1, n-2, n-3, \cdots$$
 (2.20)

由于 $n \ge 0$, 必定存在一个最小本征值 n_0 , 它的本征态 $|n_0\rangle$ 满足

$$a|n_0\rangle = 0. (2.21)$$

于是,有

$$N |n_0\rangle = a^{\dagger} a |n_0\rangle = 0 = 0 |n_0\rangle,$$
 (2.22)

可见, $n_0 = 0$, 即

$$|n_0\rangle = |0\rangle. \tag{2.23}$$

反过来,从 $|0\rangle$ 出发,用升算符 a^{\dagger} 逐步操作,可得本征值逐次增加的一系列本征态

$$a^{\dagger} |0\rangle$$
, $(a^{\dagger})^2 |0\rangle$, $(a^{\dagger})^3 |0\rangle$, \cdots ,
$$(2.24)$$

本征值分别为

$$1, 2, 3, \cdots$$
 (2.25)

综上,本征值 n 的取值是非负整数,是量子化的;本征态 $|n\rangle$ 可以用 a^{\dagger} 和 $|0\rangle$ 表示为

$$|n\rangle = c_3 (a^{\dagger})^n |0\rangle. \tag{2.26}$$

为确定归一化常数 c_3 , 可作如下运算:

$$\langle n|n\rangle = |c_3|^2 \langle 0| a^n (a^{\dagger})^n |0\rangle = |c_3|^2 \langle 1| a^{n-1} (a^{\dagger})^{n-1} |1\rangle = 1 \cdot 2 |c_3|^2 \langle 2| a^{n-2} (a^{\dagger})^{n-2} |2\rangle = \cdots$$

$$= (n-1)! |c_3|^2 \langle n-1| aa^{\dagger} |n-1\rangle = n! |c_3|^2 \langle n|n\rangle, \qquad (2.27)$$

故 $|c_3|^2 = 1/n!$ 。取 c_3 为实数,可得 $c_3 = 1/\sqrt{n!}$,于是

$$|n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle. \tag{2.28}$$

从 (2.7) 式容易看出, $|n\rangle$ 也是 H 的本征态:

$$H|n\rangle = \omega \left(N + \frac{1}{2}\right)|n\rangle = \omega \left(n + \frac{1}{2}\right)|n\rangle = E_n|n\rangle,$$
 (2.29)

相应的能量本征值为

$$E_n = \omega \left(n + \frac{1}{2} \right). \tag{2.30}$$

基态 $|0\rangle$ 的能量本征值不是零,而是 $E_0 = \omega/2$,称为零点能 (zero-point energy),这是量子力学的特有结果。我们可以将 $|0\rangle$ 看作真空态,将 n>0 的 $|n\rangle$ 看作包含 n 个声子 (phonon) 的激发态,每个声子具有一份能量 ω 。这样一来,n 表示声子的数目,故粒子数算符 N 描述的是声子数。 a^{\dagger} 的作用是产生一个声子,从而增加一份能量;a 的作用是湮灭一个声子,从而减少一份能量。这是将 a^{\dagger} 和 a 称为产生算符和湮灭算符的原因。

2.2 量子场论中的正则对易关系

在量子力学中,Schrödinger 绘景和 Heisenberg 绘景提供了两种等价的描述方法,它们之间可以通过一个幺正变换联系起来。在 Schrödinger 绘景中,波函数 $\psi_{\rm S}(t)$ 代表随时间演化的物理态,而任意算符 $O_{\rm S}$ 不依赖于时间。在 Heisenberg 绘景中,波函数 $\psi_{\rm H}$ 代表不随时间演化的物理态,它与 $\psi_{\rm S}(t)$ 的关系为

$$\psi_{\rm H} = e^{iHt} \psi_{\rm S}(t), \tag{2.31}$$

其中 H 是哈密顿量; 而算符 $O_{\rm H}(t)$ 依赖于时间,通过下式与 $O_{\rm S}$ 联系起来:

$$O_{\rm H}(t) = e^{iHt}O_{\rm S}(t)e^{-iHt}.$$
 (2.32)

上一节的量子化可以认为是在 Schrödinger 绘景中实现的,因为我们没有考虑坐标算符 x 和动量算符 p 的时间依赖性。将正则对易关系 (2.2) 改记为 $[x_{\rm S},p_{\rm S}]=i$,它在 Heisenberg 绘景中的形式为

$$[x_{H}(t), p_{H}(t)] = [e^{iHt}x_{S}e^{-iHt}, e^{iHt}p_{S}e^{-iHt}] = e^{iHt}x_{S}e^{-iHt}e^{iHt}p_{S}e^{-iHt} - e^{iHt}p_{S}e^{-iHt}e^{iHt}x_{S}e^{-iHt}$$
$$= e^{iHt}x_{S}p_{S}e^{-iHt} - e^{iHt}p_{S}x_{S}e^{-iHt} = e^{iHt}[x_{S}, p_{S}]e^{-iHt} = e^{iHt}ie^{-iHt} = i.$$
(2.33)

可见,正则对易关系的形式不依赖于绘景。(2.33) 式是在同一时刻 t 成立的,称为**等时** (equal time) 对易关系。

将讨论推广到自由度为 n 的系统,记 $q_i(t)$ 为系统在 Heisenberg 绘景中的广义坐标算符, $p_i(t)$ 为相应的广义动量算符。由于不同自由度不应该相互影响,这些算符需要满足如下等时对易关系:

$$[q_i(t), p_j(t)] = i\delta_{ij}, \quad [q_i(t), q_j(t)] = 0, \quad [p_i(t), p_j(t)] = 0.$$
 (2.34)

1.1 节提到,在量子场论中,为了平等地处理时间和空间,空间坐标 \mathbf{x} 应该与时间坐标 t 一样作为量子场算符 $\phi(\mathbf{x},t)$ 的参数。由于这里量子场作为算符是依赖于时间的,使用 Heisenberg 绘景会比较合适。接下来的讨论在 Heisenberg 绘景中进行,省略绘景的标志性下标 H。

场论讨论的是无穷多自由度的系统,每一个空间点 \mathbf{x} 上的 $\phi(\mathbf{x},t)$ 都是一个广义坐标。为了从有限可数个自由度过渡到无穷多个自由度,我们可以先将空间离散化,划分成 n 个小体积元 V_i ,然后再取 $V_i \to 0$ 的极限来得到 $n \to \infty$ 的结果。在体积元 V_i 中,定义相应的广义坐标为

$$\phi_i(t) \equiv \frac{1}{V_i} \int_{V_i} d^3x \, \phi(\mathbf{x}, t), \tag{2.35}$$

它是场 $\phi(\mathbf{x},t)$ 在 V_i 中的平均值。将拉格朗日量密度 $\mathcal{L}(\phi,\partial_{\mu}\phi)$ 在小体积元 V_i 中的平均值记为

$$\mathcal{L}_{i} \equiv \frac{1}{V_{i}} \int_{V_{i}} d^{3}x \, \mathcal{L}(\phi, \partial_{\mu}\phi), \qquad (2.36)$$

当体积元取得足够小时,它就成为 ϕ_i 和 $\partial_0\phi_i$ 的函数 $\mathcal{L}_i(\phi_i,\partial_0\phi_i)$ 。拉格朗日量可表达为

$$L = \int d^3x \,\mathcal{L} = \sum_i \int_{V_i} d^3x \,\mathcal{L} = \sum_i V_i \frac{1}{V_i} \int_{V_i} d^3x \,\mathcal{L} = \sum_i V_i \,\mathcal{L}_i(\phi_i, \partial_0 \phi_i). \tag{2.37}$$

于是,由(1.106)式定义的广义动量为

$$\Pi_{i}(t) = \frac{\partial L}{\partial [\partial_{0}\phi_{i}(t)]} = \sum_{j} V_{j} \frac{\partial \mathcal{L}_{j}}{\partial [\partial_{0}\phi_{i}(t)]} = \sum_{j} V_{j} \frac{\partial \mathcal{L}_{j}}{\partial [\partial_{0}\phi_{i}(t)]} = \sum_{j} V_{j} \delta_{ji} \frac{\partial \mathcal{L}_{i}}{\partial [\partial_{0}\phi_{i}(t)]} = V_{i}\pi_{i}(t), \quad (2.38)$$

其中,

$$\pi_i(t) \equiv \frac{\partial \mathcal{L}_i}{\partial [\partial_0 \phi_i(t)]}.$$
 (2.39)

现在,等时对易关系变成

$$[\phi_i(t), \Pi_j(t)] = i\delta_{ij}, \quad [\phi_i(t), \phi_j(t)] = 0, \quad [\Pi_i(t), \Pi_j(t)] = 0.$$
 (2.40)

第一条和第三条关系可以用 $\pi_i(t)$ 表达为

$$[\phi_i(t), \pi_j(t)] = i \frac{\delta_{ij}}{V_i}, \quad [\pi_i(t), \pi_j(t)] = 0.$$
 (2.41)

对于任意连续函数 f(x), **Dirac** δ **函数** $\delta(x)$ 使下式成立:

$$f(x) = \int dy f(y)\delta(x - y). \tag{2.42}$$

函数 $\delta(x)$ 只在 x=0 处非零,是关于 \mathbf{x} 的偶函数,即

$$\delta(x) = \delta(-x),\tag{2.43}$$

而且满足

$$\int dx \,\delta(x) = 1. \tag{2.44}$$

定义三维 δ 函数为

$$\delta^{(3)}(\mathbf{x}) = \delta(x^1)\delta(x^2)\delta(x^3), \tag{2.45}$$

则对于任意连续函数 $f(\mathbf{x})$, 下式成立:

$$f(\mathbf{x}) = \int d^3y \, f(\mathbf{y}) \delta^{(3)}(\mathbf{x} - \mathbf{y}). \tag{2.46}$$

类似地,函数 $\delta^{(3)}(\mathbf{x})$ 只在 $\mathbf{x}=0$ 处非零,是关于 \mathbf{x} 的偶函数,即 $\delta^{(3)}(\mathbf{x})=\delta^{(3)}(-\mathbf{x})$,而且满足 $\int d^3x \, \delta^{(3)}(\mathbf{x})=1$ 。

设 f_i 是 $f(\mathbf{x})$ 在 V_i 上的平均值,则它会满足

$$f_i = \sum_j f_j \,\delta_{ij} = \sum_j V_j \,f_j \,\frac{\delta_{ij}}{V_j}. \tag{2.47}$$

(2.46) 式是 (2.47) 式在 $V_i \rightarrow 0$ 时的极限。可见,在 $V_i \rightarrow 0$ 极限下,

$$\frac{\delta_{ij}}{V_i} \to \delta^{(3)}(\mathbf{x} - \mathbf{y}). \tag{2.48}$$

另一方面,在此极限下, $\phi_i(t) \to \phi(\mathbf{x},t)$,而 $\pi_i(t)$ 变成由 (1.115) 式定义的共轭动量密度:

$$\pi_i(t) = \frac{\partial \mathcal{L}_i}{\partial [\partial_0 \phi_i(t)]} \to \frac{\partial \mathcal{L}}{\partial [\partial_0 \phi(\mathbf{x}, t)]} = \pi(\mathbf{x}, t).$$
 (2.49)

因此, 等时对易关系化为

$$[\phi(\mathbf{x},t),\pi(\mathbf{y},t)] = i\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad [\phi(\mathbf{x},t),\phi(\mathbf{y},t)] = 0, \quad [\pi(\mathbf{x},t),\pi(\mathbf{y},t)] = 0. \tag{2.50}$$

推广到包含若干个场 ϕ_a 的系统,假设不同的场不会相互影响,则有

$$[\phi_a(\mathbf{x},t),\pi_b(\mathbf{y},t)] = i\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad [\phi_a(\mathbf{x},t),\phi_b(\mathbf{y},t)] = 0, \quad [\pi_a(\mathbf{x},t),\pi_b(\mathbf{y},t)] = 0. \tag{2.51}$$

这就是**量子场论中的正则对易关系**。此时, $\phi_a(\mathbf{x},t)$ 和 $\pi_a(\mathbf{x},t)$ 都是算符。

2.3 实标量场的正则量子化

如果场 $\phi(x)$ 是一个 Lorentz 标量,就称它为**标量场**。在固有保时向 Lorentz 变换下,若时 空坐标的变换为 $x' = \Lambda x$,则标量场 $\phi(x)$ 的变换形式是

$$\phi'(x') = \phi(x). \tag{2.52}$$

在本节中,我们讨论实标量场 $\phi(x)$, 它满足自共轭 (self-conjugate) 条件

$$\phi^{\dagger}(x) = \phi(x), \tag{2.53}$$

即 $\phi(x)$ 是个厄米算符。

假设 $\phi(x)$ 是不参与相互作用的自由实标量场,相应的 Lorentz 不变拉氏量可以写成

$$\mathcal{L} = \frac{1}{2} (\partial^{\mu} \phi) \partial_{\mu} \phi - \frac{1}{2} m^2 \phi^2. \tag{2.54}$$

注意到

$$\frac{1}{2}(\partial^{\mu}\phi)\partial_{\mu}\phi = \frac{1}{2}g^{\mu\nu}(\partial_{\mu}\phi)\partial_{\nu}\phi = \frac{1}{2}[(\partial_{0}\phi)^{2} - (\partial_{1}\phi)^{2} - (\partial_{2}\phi)^{2} - (\partial_{3}\phi)^{2}],\tag{2.55}$$

可得

$$\frac{\partial \mathcal{L}}{\partial (\partial_0 \phi)} = \partial_0 \phi = \partial^0 \phi, \quad \frac{\partial \mathcal{L}}{\partial (\partial_i \phi)} = -\partial_i \phi = \partial^i \phi, \tag{2.56}$$

归纳起来,有

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} = \partial^{\mu}\phi, \quad \frac{\partial \mathcal{L}}{\partial\phi} = -m^{2}\phi. \tag{2.57}$$

因此, Euler-Lagrange 方程 (1.114) 给出

$$0 = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} - \frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \partial^{\mu}\phi + m^{2}\phi, \qquad (2.58)$$

也就是说, $\phi(x)$ 满足 Klein-Gordon 方程

$$(\partial^2 + m^2)\phi(x) = 0. (2.59)$$

2.3.1 平面波展开

设 Klein-Gordon 方程具有平面波解 (plane-wave solution)

$$\varphi(x) = \exp(-ik \cdot x) = \exp(-ik_{\mu}x^{\mu}) = \exp(-ik^{\mu}x_{\mu}), \qquad (2.60)$$

则有

$$\partial^2 \varphi = \partial^{\mu} \partial_{\mu} \varphi = \partial^{\mu} (-ik_{\mu} \varphi) = -ik_{\mu} \partial^{\mu} \varphi = (-i)^2 k_{\mu} k^{\mu} = -k^2, \tag{2.61}$$

从而,

$$0 = (\partial^2 + m^2)\varphi = -(k^2 - m^2)\varphi = -[(k^0)^2 - |\mathbf{k}|^2 - m^2]\varphi.$$
 (2.62)

这就要求 $(k^0)^2 = |\mathbf{k}|^2 + m^2$, 即 $k^0 = \pm E_{\mathbf{k}}$, 其中 $E_{\mathbf{k}} \equiv \sqrt{|\mathbf{k}|^2 + m^2}$ 。因此,有两种平面波解。

(1) $k^0 = E_k$ 对应于正能解

$$\varphi_{\mathbf{k}}^{(+)}(x) = \exp[-i(k^0 x^0 - \mathbf{k} \cdot \mathbf{x})] = \exp[-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})]. \tag{2.63}$$

(2) $k^0 = -E_k$ 对应于负能解

$$\varphi_{\mathbf{k}}^{(-)}(x) = \exp[-i(k^0 x^0 - \mathbf{k} \cdot \mathbf{x})] = \exp[i(E_{\mathbf{k}}t + \mathbf{k} \cdot \mathbf{x})]. \tag{2.64}$$

从而,场算符 $\phi(\mathbf{x},t)$ 的通解可以写成如下形式:

$$\phi(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}} \varphi_{\mathbf{k}}^{(+)}(x) + \tilde{a}_{\mathbf{k}} \varphi_{\mathbf{k}}^{(-)}(x) \right]$$

$$= \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}} e^{-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + \tilde{a}_{\mathbf{k}} e^{i(E_{\mathbf{k}}t + \mathbf{k} \cdot \mathbf{x})} \right], \qquad (2.65)$$

其中 $a_{\mathbf{k}}$ 和 $\tilde{a}_{\mathbf{k}}$ 是两个只依赖于 \mathbf{k} 的算符。这是一种 Fourier 变换,把 $\phi(\mathbf{x},t)$ 展开成三维动量空间中的无穷多个动量模式 (mode)。取上式的厄米共轭,得

$$\phi^{\dagger}(\mathbf{x},t) = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}}^{\dagger} e^{i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + \tilde{a}_{\mathbf{k}}^{\dagger} e^{-i(E_{\mathbf{k}}t + \mathbf{k} \cdot \mathbf{x})} \right]$$

$$= \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{-\mathbf{k}}^{\dagger} e^{i(E_{\mathbf{k}}t + \mathbf{k} \cdot \mathbf{x})} + \tilde{a}_{-\mathbf{k}}^{\dagger} e^{-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} \right]. \tag{2.66}$$

第二步利用了如下性质:对整个三维动量空间进行积分时,将积分项中的 \mathbf{k} 换成 $-\mathbf{k}$ 不会改变积分的结果。于是,由自共轭条件 $\phi^{\dagger}(\mathbf{x},t)=\phi(\mathbf{x},t)$ 可得

$$\tilde{a}_{\mathbf{k}} = a_{-\mathbf{k}}^{\dagger}.\tag{2.67}$$

(注意:由上式可以推出 $\tilde{a}_{\mathbf{k}}^{\dagger}=a_{-\mathbf{k}}$ 和 $\tilde{a}_{-\mathbf{k}}^{\dagger}=a_{\mathbf{k}}$ 。)因而,有

$$\phi(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}} e^{-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + a_{-\mathbf{k}}^{\dagger} e^{i(E_{\mathbf{k}}t + \mathbf{k} \cdot \mathbf{x})} \right]$$

$$= \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}} e^{-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + a_{\mathbf{k}}^{\dagger} e^{i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} \right]. \tag{2.68}$$

替换一下动量记号,可以把 $\phi(\mathbf{x},t)$ 的平面波解展开式整理成

$$\phi(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(a_{\mathbf{p}} e^{-ip\cdot x} + a_{\mathbf{p}}^{\dagger} e^{ip\cdot x} \right), \tag{2.69}$$

其中, p^0 应该满足

$$p^0 = E_{\mathbf{p}} \equiv \sqrt{|\mathbf{p}|^2 + m^2},\tag{2.70}$$

而 $a_{\mathbf{p}}$ 是湮灭算符, $a_{\mathbf{p}}^{\dagger}$ 是产生算符。 $\phi(\mathbf{x},t)$ 对应的共轭动量密度算符为

$$\pi(\mathbf{x},t) = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi)} = \partial_0 \phi = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(-ip_0\right) \left(a_{\mathbf{p}} e^{-ip \cdot x} - a_{\mathbf{p}}^{\dagger} e^{ip \cdot x}\right). \tag{2.71}$$

正则量子化程序要求它们满足等时对易关系

$$[\phi(\mathbf{x},t),\pi(\mathbf{y},t)] = i\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad [\phi(\mathbf{x},t),\phi(\mathbf{y},t)] = 0, \quad [\pi(\mathbf{x},t),\pi(\mathbf{y},t)] = 0. \tag{2.72}$$

2.3.2 产生湮灭算符的对易关系

利用 Fourier 变换公式

$$\int d^3x \, e^{i\mathbf{p}\cdot\mathbf{x}} = \int d^3x \, e^{-i\mathbf{p}\cdot\mathbf{x}} = (2\pi)^3 \delta^{(3)}(\mathbf{p}), \tag{2.73}$$

可得

$$\int d^3x \, e^{iq \cdot x} \phi = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, \left[a_{\mathbf{p}} e^{-i(p-q) \cdot x} + a_{\mathbf{p}}^{\dagger} e^{i(p+q) \cdot x} \right]
= \int d^3p \, \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[a_{\mathbf{p}} e^{-i(p^0 - q^0)t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) + a_{\mathbf{p}}^{\dagger} e^{i(p^0 + q^0)t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]
= \frac{1}{\sqrt{2E_{\mathbf{q}}}} \left(a_{\mathbf{q}} + a_{-\mathbf{q}}^{\dagger} e^{2iq^0 t} \right),$$
(2.74)

以及

$$\int d^3x \, e^{iq\cdot x} \partial_0 \phi = \int \frac{d^3p}{(2\pi)^3} \frac{-ip_0}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \left[a_{\mathbf{p}} e^{-i(p-q)\cdot x} - a_{\mathbf{p}}^{\dagger} e^{i(p+q)\cdot x} \right]
= \int d^3p \, \frac{-ip_0}{\sqrt{2E_{\mathbf{p}}}} \left[a_{\mathbf{p}} e^{-i(p^0-q^0)t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) - a_{\mathbf{p}}^{\dagger} e^{i(p^0+q^0)t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]
= \frac{-iq_0}{\sqrt{2E_{\mathbf{q}}}} \left(a_{\mathbf{q}} - a_{-\mathbf{q}}^{\dagger} e^{2iq^0t} \right).$$
(2.75)

从而,有

$$-i\sqrt{2E_{\mathbf{q}}}a_{\mathbf{q}} = \frac{-2iq_0}{\sqrt{2E_{\mathbf{q}}}}a_{\mathbf{q}} = \int d^3x \, e^{iq\cdot x}\partial_0\phi - iq_0 \int d^3x \, e^{iq\cdot x}\phi = \int d^3x \, e^{iq\cdot x}(\partial_0\phi - iq_0\phi), \quad (2.76)$$

亦即

$$a_{\mathbf{p}} = \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{ip \cdot x} \left[\partial_0 \phi(x) - ip_0 \phi(x) \right]. \tag{2.77}$$

上式取厄米共轭,并使用自共轭条件 $\phi^{\dagger} = \phi$,得

$$a_{\mathbf{p}}^{\dagger} = \frac{-i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{-ip \cdot x} \left[\partial_0 \phi(x) + ip_0 \phi(x) \right]. \tag{2.78}$$

利用上面两个表达式和等时对易关系 (2.72), 可得

$$\begin{aligned}
& = \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{ip\cdot x} \{ \partial_0 \phi(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t) \}, \ e^{-iq\cdot y} \{ \partial_0 \phi(\mathbf{y}, t) + iq_0 \phi(\mathbf{y}, t) \} \right] \\
& = \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p\cdot x - q\cdot y)} \left[\pi(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t), \ \pi(\mathbf{y}, t) + iq_0 \phi(\mathbf{y}, t) \right] \\
& = \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p^0 - q^0)t} e^{-i(\mathbf{p}\cdot \mathbf{x} - \mathbf{q}\cdot \mathbf{y})} \left(iq_0 [\pi(\mathbf{x}, t), \phi(\mathbf{y}, t)] - ip_0 [\phi(\mathbf{x}, t), \pi(\mathbf{y}, t)] \right) \\
& = \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p^0 - q^0)t} e^{-i(\mathbf{p}\cdot \mathbf{x} - \mathbf{q}\cdot \mathbf{y})} \left[-i(p_0 + q_0)i\delta^{(3)}(\mathbf{x} - \mathbf{y}) \right] \\
& = \frac{E_{\mathbf{p}} + E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x e^{i(p^0 - q^0)t} e^{-i(\mathbf{p} - \mathbf{q})\cdot \mathbf{x}} = \frac{E_{\mathbf{p}} + E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}). \end{aligned} \tag{2.79}$$

最后一行中的 $\delta^{(3)}(\mathbf{p}-\mathbf{q})$ 因子说明上式只有可能在 $\mathbf{p}=\mathbf{q}$ 时非零,此时有 $E_{\mathbf{p}}=E_{\mathbf{q}}$,则 $E_{\mathbf{p}}+E_{\mathbf{q}}=2E_{\mathbf{p}}=\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}$,故

$$[a_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}).$$
 (2.80)

类似地,

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{i\mathbf{p}\cdot\mathbf{x}} \{\partial_0\phi(\mathbf{x},t) - ip_0\phi(\mathbf{x},t) \}, e^{i\mathbf{q}\cdot\mathbf{y}} \{\partial_0\phi(\mathbf{y},t) - iq_0\phi(\mathbf{y},t) \} \right]$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(\mathbf{p}\cdot\mathbf{x}+\mathbf{q}\cdot\mathbf{y})} \left[\pi(\mathbf{x},t) - ip_0\phi(\mathbf{x},t), \pi(\mathbf{y},t) - iq_0\phi(\mathbf{y},t) \right]$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(\mathbf{p}^0+\mathbf{q}^0)t} e^{-i(\mathbf{p}\cdot\mathbf{x}+\mathbf{q}\cdot\mathbf{y})} \left(-iq_0[\pi(\mathbf{x},t),\phi(\mathbf{y},t)] - ip_0[\phi(\mathbf{x},t),\pi(\mathbf{y},t)] \right)$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(\mathbf{p}^0+\mathbf{q}^0)t} e^{-i(\mathbf{p}\cdot\mathbf{x}+\mathbf{q}\cdot\mathbf{y})} \left[-i(p_0-q_0)i\delta^{(3)}(\mathbf{x}-\mathbf{y}) \right]$$

$$= \frac{E_{\mathbf{q}} - E_{\mathbf{p}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x e^{i(p^0+q^0)t} e^{-i(\mathbf{p}+\mathbf{q})\cdot\mathbf{x}} = \frac{E_{\mathbf{q}} - E_{\mathbf{p}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e^{i(E_{\mathbf{p}}+E_{\mathbf{q}})t} (2\pi)^3 \delta^{(3)}(\mathbf{p}+\mathbf{q}). \tag{2.81}$$

最后一行中的 $\delta^{(3)}(\mathbf{p}+\mathbf{q})$ 因子说明上式只有可能在 $\mathbf{p}=-\mathbf{q}$ 时非零,此时有 $E_{\mathbf{p}}=E_{\mathbf{q}}$,故

$$[a_{\mathbf{p}}, a_{\mathbf{q}}] = 0. \tag{2.82}$$

第2章 标量场

此外,

$$[a_{\mathbf{p}}^{\dagger}, a_{\mathbf{q}}^{\dagger}] = a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} - a_{\mathbf{q}}^{\dagger} a_{\mathbf{p}}^{\dagger} = (a_{\mathbf{q}} a_{\mathbf{p}} - a_{\mathbf{p}} a_{\mathbf{q}})^{\dagger} = [a_{\mathbf{q}}, a_{\mathbf{p}}]^{\dagger} = 0.$$

$$(2.83)$$

综上,产生湮灭算符满足如下对易关系:

$$[a_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}), \quad [a_{\mathbf{p}}, a_{\mathbf{q}}] = [a_{\mathbf{p}}^{\dagger}, a_{\mathbf{q}}^{\dagger}] = 0.$$
 (2.84)

这可以看成是对易关系 (2.4) 在量子场论中的推广。

2.3.3 哈密顿量和总动量

根据定义式 (1.117), 实标量场的哈密顿量密度为

$$\mathcal{H} = \pi \partial_0 \phi - \mathcal{L} = (\partial_0 \phi)^2 - \frac{1}{2} (\partial^\mu \phi) \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 = \frac{1}{2} [(\partial_0 \phi)^2 + (\nabla \phi)^2 + m^2 \phi^2]. \tag{2.85}$$

对全空间积分以得到哈密顿量:

$$\begin{split} H &= \int d^3x \, \mathcal{H} = \frac{1}{2} \int d^3x \, [(\partial_0 \phi)^2 + (\nabla \phi)^2 + m^2 \phi^2] \\ &= \frac{1}{2} \int \frac{d^3x \, d^3p \, d^3q}{(2\pi)^6 \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left[\left(-ip_0 a_{\mathbf{p}} e^{-ip \cdot x} + ip_0 a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \left(-iq_0 a_{\mathbf{q}} e^{-iq \cdot x} + iq_0 a_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right) \right. \\ &\quad + \left. \left(i\mathbf{p} \, a_{\mathbf{p}} e^{-ip \cdot x} - i\mathbf{p} \, a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \cdot \left(i\mathbf{q} \, a_{\mathbf{q}} e^{-iq \cdot x} - i\mathbf{q} \, a_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right) \right. \\ &\quad + m^2 \left(a_{\mathbf{p}} e^{-ip \cdot x} + a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \cdot \left(i\mathbf{q} \, a_{\mathbf{q}} e^{-iq \cdot x} - i\mathbf{q} \, a_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right) \right] \\ &= \frac{1}{2} \int \frac{d^3x \, d^3p \, d^3q}{(2\pi)^6 \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left[\left(p_0 q_0 + \mathbf{p} \cdot \mathbf{q} + m^2 \right) a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{-i(p-q) \cdot x} + \left(p_0 q_0 + \mathbf{p} \cdot \mathbf{q} + m^2 \right) a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i(p+q) \cdot x} \right. \\ &\quad + \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p+q) \cdot x} + \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i(p+q) \cdot x} \right. \\ &\quad + \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p+q) \cdot x} + \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i(p+q) \cdot x} \right. \\ &\quad + \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) \left[a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{-i(p-q_0)t} e^{i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p-q_0)t} e^{-i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} \right. \\ &\quad + \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) \left[a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p-q_0)t} e^{i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p-q_0)t} e^{-i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} \right] \right. \\ &\quad + \left. \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) \left[a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p_0 - q_0)t} e^{i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p_0 - q_0)t} e^{-i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} \right] \right. \\ &\quad + \left. \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) \left[a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p_0 - q_0)t} e^{i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p_0 - q_0)t} e^{-i(\mathbf{p} - \mathbf{q}) \cdot \mathbf{x}} \right] \right. \\ &\quad + \left. \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) \left(a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p_0 - q_0)t} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p_0 - q_0)t} \right] \right. \\ &\quad + \left. \left(-p_0 q_0 - \mathbf{p} \cdot \mathbf{q} + m^2 \right) \left(a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p_0 - q_0)t} + a$$

由 (2.70) 式可得 $-E_{\mathbf{p}}^2 + |\mathbf{p}|^2 + m^2 = 0$,故上式最后两行方括号中第二项没有贡献。从而,

$$H = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3 2E_{\mathbf{p}}} (E_{\mathbf{p}}^2 + |\mathbf{p}|^2 + m^2) \left(a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right) = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3 2E_{\mathbf{p}}} 2E_{\mathbf{p}}^2 \left(a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right)$$
$$= \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} E_{\mathbf{p}} \left(a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right) = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} E_{\mathbf{p}} \left[2a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}) \right]$$

$$= \int \frac{d^3p}{(2\pi)^3} E_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + (2\pi)^3 \delta^{(3)}(0) \int \frac{d^3p}{(2\pi)^3} \frac{E_{\mathbf{p}}}{2}, \tag{2.87}$$

其中第四步用到对易关系 (2.84)。

这个结果可以看作是一维简谐振子哈密顿量 (2.7) 向无穷多自由度的推广。 $a_{\mathbf{p}}^{\dagger}a_{\mathbf{p}}$ 是动量为 \mathbf{p} 的模式对应的**粒子数密度算符**(动量空间中的密度),相应的能量是 $E_{\mathbf{p}}$ 。在 (2.87) 式最后一行中,第一项代表所有动量模式所有粒子贡献的能量之和。由 (2.73) 式可得

$$(2\pi)^3 \delta^{(3)}(0) = \int d^3x = V, \tag{2.88}$$

其中 V 是进行积分的空间体积,对于全空间而言是无穷大的。因此,(2.87) 式最后一行的第二项是一个无穷大 c 数,是真空的零点能,是所有动量模式在全空间贡献的零点能之和。2.1 节末尾的讨论表明,一维简谐振子的零点能为 $E_0 = \omega/2$ 。这是自由度为 1 时的结果,推广到无穷多自由度自然会得到无穷大的零点能。如果不讨论引力现象,这个零点能通常并不重要,因为实验上只能测量两个能量之差。经过正则量子化之后,实标量场的哈密顿量 H 是正定的,不存在负能量困难。

哈密顿量 H 与产生算符和湮灭算符的对易子分别为

$$[H, a_{\mathbf{p}}^{\dagger}] = \int \frac{d^{3}q}{(2\pi)^{3}} E_{\mathbf{q}}[a_{\mathbf{q}}^{\dagger}a_{\mathbf{q}}, a_{\mathbf{p}}^{\dagger}] = \int \frac{d^{3}q}{(2\pi)^{3}} E_{\mathbf{q}}a_{\mathbf{q}}^{\dagger}[a_{\mathbf{q}}, a_{\mathbf{p}}^{\dagger}] = \int d^{3}q E_{\mathbf{q}}a_{\mathbf{q}}^{\dagger}\delta^{(3)}(\mathbf{q} - \mathbf{p}) = E_{\mathbf{p}}a_{\mathbf{p}}^{\dagger}, (2.89)$$

$$[H, a_{\mathbf{p}}] = \int \frac{d^3q}{(2\pi)^3} E_{\mathbf{q}}[a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}, a_{\mathbf{p}}] = \int \frac{d^3q}{(2\pi)^3} E_{\mathbf{q}}[a_{\mathbf{q}}^{\dagger}, a_{\mathbf{p}}] a_{\mathbf{q}} = -\int d^3q E_{\mathbf{q}} a_{\mathbf{q}} \delta^{(3)}(\mathbf{q} - \mathbf{p}) = -E_{\mathbf{p}} a_{\mathbf{p}}.$$
(2.90)

设 $|E\rangle$ 是 H 的本征态,本征值为 E,则

$$H|E\rangle = E|E\rangle. \tag{2.91}$$

从而,有

$$Ha_{\mathbf{p}}^{\dagger}|E\rangle = (a_{\mathbf{p}}^{\dagger}H + E_{\mathbf{p}}a_{\mathbf{p}}^{\dagger})|E\rangle = (E + E_{\mathbf{p}})a_{\mathbf{p}}^{\dagger}|E\rangle.$$
 (2.92)

$$Ha_{\mathbf{p}}|E\rangle = (a_{\mathbf{p}}H - E_{\mathbf{p}}a_{\mathbf{p}})|E\rangle = (E - E_{\mathbf{p}})a_{\mathbf{p}}|E\rangle.$$
 (2.93)

可见,产生算符 $a_{\mathbf{p}}^{\dagger}$ 的作用是使能量本征值增加 $E_{\mathbf{k}}$,湮灭算符 $a_{\mathbf{p}}$ 的作用是使能量本征值减少 $E_{\mathbf{k}}$ 。

根据 (1.156) 式,实标量场的总动量是

$$\mathbf{P} = -\int d^3x \, \pi \nabla \phi = -\int d^3x \, (\partial_0 \phi) \nabla \phi$$

$$= -\int \frac{d^3x \, d^3p \, d^3q}{(2\pi)^6 \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left(-ip_0 a_{\mathbf{p}} e^{-ip \cdot x} + ip_0 a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \left(i\mathbf{q} \, a_{\mathbf{q}} e^{-iq \cdot x} - i\mathbf{q} \, a_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right)$$

$$= -\int \frac{d^3x \, d^3p \, d^3q}{(2\pi)^6 \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left[-p_0 \mathbf{q} \, a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{-i(p-q) \cdot x} - p_0 \mathbf{q} \, a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p-q) \cdot x} \right]$$

$$+ p_{0}\mathbf{q} \, a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p+q)\cdot x} + p_{0}\mathbf{q} \, a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i(p+q)\cdot x} \Big]$$

$$= -\int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \Big\{ - p_{0}\mathbf{q} \, \Big[a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{-i(p_{0}-q_{0})t} e^{-i(\mathbf{p}-\mathbf{q})\cdot \mathbf{x}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p_{0}-q_{0})t} e^{i(\mathbf{p}-\mathbf{q})\cdot \mathbf{x}} \Big]$$

$$+ p_{0}\mathbf{q} \, \Big[a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p_{0}+q_{0})t} e^{-i(\mathbf{p}+\mathbf{q})\cdot \mathbf{x}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i(p_{0}+q_{0})t} e^{i(\mathbf{p}+\mathbf{q})\cdot \mathbf{x}} \Big] \Big\}$$

$$= -\int \frac{d^{3}p \, d^{3}q}{(2\pi)^{3} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \Big\{ - p_{0}\mathbf{q} \, \delta^{(3)}(\mathbf{p} - \mathbf{q}) \, \Big[a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{-i(p_{0}-q_{0})t} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p_{0}-q_{0})t} \Big]$$

$$+ p_{0}\mathbf{q} \, \delta^{(3)}(\mathbf{p} + \mathbf{q}) \, \Big[a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p^{0}+q^{0})t} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i(p^{0}+q^{0})t} \Big] \Big\}$$

$$= -\int \frac{d^{3}p}{(2\pi)^{3}2E_{\mathbf{p}}} (-E_{\mathbf{p}}\mathbf{p}) \, \Big(a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2iE_{\mathbf{p}}t} + a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} e^{2iE_{\mathbf{p}}t} \Big)$$

$$= \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \, \mathbf{p} \, \Big(a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2iE_{\mathbf{p}}t} + a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} e^{2iE_{\mathbf{p}}t} \Big). \tag{2.94}$$

先作 $\mathbf{p} \rightarrow -\mathbf{p}$ 的替换,再利用对易关系 (2.84),可得

$$\frac{1}{2} \int \frac{d^3p}{(2\pi)^3} \mathbf{p} \left(a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2iE_{\mathbf{p}}t} + a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} e^{2iE_{\mathbf{p}}t} \right) = \frac{1}{2} \int \frac{d^3p}{(2\pi)^3} \left(-\mathbf{p} \right) \left(a_{-\mathbf{p}} a_{\mathbf{p}} e^{-2iE_{\mathbf{p}}t} + a_{-\mathbf{p}}^{\dagger} a_{\mathbf{p}}^{\dagger} e^{2iE_{\mathbf{p}}t} \right) \\
= -\frac{1}{2} \int \frac{d^3p}{(2\pi)^3} \mathbf{p} \left(a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2iE_{\mathbf{p}}t} + a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} e^{2iE_{\mathbf{p}}t} \right). \tag{2.95}$$

可见,(2.94)式最后一行圆括号中最后两项没有贡献。从而,

$$\mathbf{P} = \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} \left(a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right) = \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} \left[2a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + (2\pi)^3 \delta^{(3)}(0) \right]$$

$$= \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{2} \delta^{(3)}(0) \int d^3 p \, \mathbf{p}.$$
(2.96)

由于 $\int d^3p \, \mathbf{p} = \int d^3p \, (-\mathbf{p}) = -\int d^3p \, \mathbf{p}$,上式最后一行第二项没有贡献。于是,

$$\mathbf{P} = \int \frac{d^3 p}{(2\pi)^3} \,\mathbf{p} \,a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}},\tag{2.97}$$

即总动量是所有动量模式所有粒子贡献的动量之和。

P 与产生湮灭算符的对易子为

$$[\mathbf{P}, a_{\mathbf{p}}^{\dagger}] = \int \frac{d^3q}{(2\pi)^3} \mathbf{q} \left[a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}, a_{\mathbf{p}}^{\dagger} \right] = \int \frac{d^3q}{(2\pi)^3} \mathbf{q} a_{\mathbf{q}}^{\dagger} \left[a_{\mathbf{q}}, a_{\mathbf{p}}^{\dagger} \right] = \int d^3q \mathbf{q} a_{\mathbf{q}}^{\dagger} \delta^{(3)}(\mathbf{q} - \mathbf{p}) = \mathbf{p} a_{\mathbf{p}}^{\dagger}, \qquad (2.98)$$

$$[\mathbf{P}, a_{\mathbf{p}}] = \int \frac{d^3q}{(2\pi)^3} \mathbf{q} \left[a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}}, a_{\mathbf{p}} \right] = \int \frac{d^3q}{(2\pi)^3} \mathbf{q} \left[a_{\mathbf{q}}^{\dagger}, a_{\mathbf{p}} \right] a_{\mathbf{q}} = -\int d^3q \, \mathbf{q} \, a_{\mathbf{q}} \delta^{(3)}(\mathbf{q} - \mathbf{p}) = -\mathbf{p} \, a_{\mathbf{p}}. \quad (2.99)$$

2.3.4 粒子态

真空态 $|0\rangle$ 是能量最低的态,对于任意动量 ${f p}$ 对应的湮灭算符 $a_{f p}$,满足

$$a_{\mathbf{p}}|0\rangle = 0, \tag{2.100}$$

归一化为

$$\langle 0|0\rangle = 1. \tag{2.101}$$

由哈密顿量的表达式 (2.87)可得

$$H|0\rangle = E_{\text{vac}}|0\rangle, \quad E_{\text{vac}} = \delta^{(3)}(0) \int d^3p \, \frac{E_{\mathbf{p}}}{2},$$
 (2.102)

可见,这样定义的真空态的能量本征值 E_{vac} 确实是能量最低的零点能。此外,由 (2.97) 式可知, $|0\rangle$ 的总动量本征值是零:

$$\mathbf{P}\left|0\right\rangle = 0\left|0\right\rangle,\tag{2.103}$$

即真空态不具有动量。

接着,定义动量为 p 的单粒子态为

$$|\mathbf{p}\rangle \equiv \sqrt{2E_{\mathbf{p}}} \, a_{\mathbf{p}}^{\dagger} \, |0\rangle \,. \tag{2.104}$$

从而,利用 (2.89)和 (2.98)式可得

$$H|\mathbf{p}\rangle = \sqrt{2E_{\mathbf{p}}} H a_{\mathbf{p}}^{\dagger} |0\rangle = \sqrt{2E_{\mathbf{p}}} (a_{\mathbf{p}}^{\dagger} H + E_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}) |0\rangle = \sqrt{2E_{\mathbf{p}}} (E_{\text{vac}} + E_{\mathbf{p}}) a_{\mathbf{p}}^{\dagger} |0\rangle = (E_{\text{vac}} + E_{\mathbf{p}}) |\mathbf{p}\rangle,$$
(2.105)

$$\mathbf{P}|\mathbf{p}\rangle = \sqrt{2E_{\mathbf{p}}}\,\mathbf{P}\,a_{\mathbf{p}}^{\dagger}|0\rangle = \sqrt{2E_{\mathbf{p}}}(a_{\mathbf{p}}^{\dagger}\,\mathbf{P} + \mathbf{p}\,a_{\mathbf{p}}^{\dagger})|0\rangle = \sqrt{2E_{\mathbf{p}}}\,\mathbf{p}\,a_{\mathbf{p}}^{\dagger}|0\rangle = \mathbf{p}\,|\mathbf{p}\rangle. \tag{2.106}$$

可以看出,相比于真空态 $|0\rangle$,单粒子态 $|\mathbf{p}\rangle$ 多了一份能量 $E_{\mathbf{p}}$,也多了一份动量 \mathbf{p} 。因此, $|\mathbf{p}\rangle$ 描述的是一个动量为 \mathbf{p} 的粒子,这个粒子的能量为 $E_{\mathbf{p}} = \sqrt{|\mathbf{p}|^2 + m^2}$,满足狭义相对论中的能量一动量关系 (1.52),而拉氏量 (2.54) 中的参数 m 就是粒子的**质量**。可以看出,产生算符 $a_{\mathbf{p}}^{\dagger}$ 的作用是产生一个动量为 \mathbf{p} 的粒子。

此外,可作如下计算:

$$a_{\mathbf{p}} |\mathbf{q}\rangle = \sqrt{2E_{\mathbf{q}}} a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} |0\rangle = \sqrt{2E_{\mathbf{q}}} \left[a_{\mathbf{q}}^{\dagger} a_{\mathbf{p}} + (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) \right] |0\rangle = \sqrt{2E_{\mathbf{p}}} (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) |0\rangle.$$

$$(2.107)$$

如果 $\mathbf{p} \neq \mathbf{q}$,则上式为零;如果 $\mathbf{p} = \mathbf{q}$,则单粒子态 $|\mathbf{q}\rangle = |\mathbf{p}\rangle$ 在 $a_{\mathbf{p}}$ 的作用下变成真空态 $|0\rangle$ 。可见,湮灭算符 $a_{\mathbf{p}}$ 的作用是湮灭一个动量为 \mathbf{p} 的粒子。

单粒子态的内积关系为

$$\langle \mathbf{q} | \mathbf{p} \rangle = \sqrt{2E_{\mathbf{q}}2E_{\mathbf{p}}} \langle 0 | a_{\mathbf{q}}a_{\mathbf{p}}^{\dagger} | 0 \rangle = \sqrt{2E_{\mathbf{q}}2E_{\mathbf{p}}} \langle 0 | [a_{\mathbf{p}}^{\dagger}a_{\mathbf{q}} + (2\pi)^{3}\delta^{(3)}(\mathbf{p} - \mathbf{q})] | 0 \rangle$$
$$= 2E_{\mathbf{p}}(2\pi)^{3}\delta^{(3)}(\mathbf{p} - \mathbf{q}). \tag{2.108}$$

上式是 Lorentz 不变的,这是 (2.104) 式中归一化因子取成 $\sqrt{2E_{\mathbf{p}}}$ 的原因。相关证明如下。 证明 若实函数 f(x) 连续且方程 f(x)=0 具有若干个分立的根 x_i ,则如下等式成立:

$$\delta(f(x)) = \sum_{i} \frac{\delta(x - x_i)}{|f'(x_i)|}.$$
(2.109)

引入阶跃函数 (step function)

$$\theta(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0, \end{cases}$$
 (2.110)

则任意 Lorentz 标量函数 F(p) 在四维动量 p^{μ} 满足质壳条件 $p^2-m^2=0$ 且能量为正 $(p^0>0)$ 的动量空间区域上的 Lorentz 不变积分为

$$\int d^4 p \, \delta(p^2 - m^2) \theta(p^0) F(p) = \int d^3 p \, dp^0 \, \delta\left((p^0)^2 - |\mathbf{p}|^2 - m^2\right) \theta(p^0) F(p^0, \mathbf{p})$$

$$= \int d^3 p \, \frac{1}{2\sqrt{|\mathbf{p}|^2 + m^2}} F\left(\sqrt{|\mathbf{p}|^2 + m^2}, \mathbf{p}\right) = \int \frac{d^3 p}{2E_{\mathbf{p}}} F\left(\sqrt{|\mathbf{p}|^2 + m^2}, \mathbf{p}\right). \tag{2.111}$$

这里第二步用到 (2.109) 式。可见,

$$\frac{d^3p}{2E_{\mathbf{p}}}\tag{2.112}$$

是 Lorentz 不变的体积元。对任意 Lorentz 标量函数 $g(\mathbf{q})$, 按照 δ 函数定义, 有

$$g(\mathbf{q}) = \int d^3 p \, \delta^{(3)}(\mathbf{p} - \mathbf{q})g(\mathbf{p}) = \int \frac{d^3 p}{2E_{\mathbf{p}}} 2E_{\mathbf{p}}\delta^{(3)}(\mathbf{p} - \mathbf{q})g(\mathbf{p}). \tag{2.113}$$

由于上式最左边和最右边都是 Lorentz 不变的,

$$2E_{\mathbf{p}}\delta^{(3)}(\mathbf{p} - \mathbf{q}) \tag{2.114}$$

必定是 Lorentz 不变的。证毕。

进一步,可以定义动量分别为 $\mathbf{p}_1, \cdots, \mathbf{p}_n$ 的 n 个粒子对应的**多粒子态**为

$$|\mathbf{p}_1, \cdots, \mathbf{p}_n\rangle \equiv \sqrt{2E_{\mathbf{p}_1}} \cdots \sqrt{2E_{\mathbf{p}_n}} a_{\mathbf{p}_1}^{\dagger} \cdots a_{\mathbf{p}_n}^{\dagger} |0\rangle.$$
 (2.115)

H 对它的作用给出

$$H | \mathbf{p}_{1}, \cdots, \mathbf{p}_{n} \rangle = \sqrt{2E_{\mathbf{p}_{1}}} \cdots \sqrt{2E_{\mathbf{p}_{n}}} H a_{\mathbf{p}_{1}}^{\dagger} \cdots a_{\mathbf{p}_{n}}^{\dagger} | 0 \rangle$$

$$= \sqrt{2E_{\mathbf{p}_{1}}} \cdots \sqrt{2E_{\mathbf{p}_{n}}} (a_{\mathbf{p}_{1}}^{\dagger} H + E_{\mathbf{p}_{1}} a_{\mathbf{p}_{1}}^{\dagger}) \cdots a_{\mathbf{p}_{n}}^{\dagger} | \mathbf{p}_{1}, \cdots, \mathbf{p}_{n} \rangle$$

$$= \sqrt{2E_{\mathbf{p}_{1}}} \cdots \sqrt{2E_{\mathbf{p}_{n}}} a_{\mathbf{p}_{1}}^{\dagger} H a_{\mathbf{p}_{2}}^{\dagger} \cdots a_{\mathbf{p}_{n}}^{\dagger} | 0 \rangle + E_{\mathbf{p}_{1}} | \mathbf{p}_{1}, \cdots, \mathbf{p}_{n} \rangle$$

$$= \sqrt{2E_{\mathbf{p}_{1}}} \cdots \sqrt{2E_{\mathbf{p}_{n}}} a_{\mathbf{p}_{1}}^{\dagger} a_{\mathbf{p}_{2}}^{\dagger} H \cdots a_{\mathbf{p}_{n}}^{\dagger} | 0 \rangle + (E_{\mathbf{p}_{1}} + E_{\mathbf{p}_{2}}) | \mathbf{p}_{1}, \cdots, \mathbf{p}_{n} \rangle$$

$$= \cdots = \sqrt{2E_{\mathbf{p}_{1}}} \cdots \sqrt{2E_{\mathbf{p}_{n}}} a_{\mathbf{p}_{1}}^{\dagger} a_{\mathbf{p}_{2}}^{\dagger} \cdots a_{\mathbf{p}_{n}}^{\dagger} H | 0 \rangle + (E_{\mathbf{p}_{1}} + E_{\mathbf{p}_{2}} + \cdots + E_{\mathbf{p}_{n}}) | \mathbf{p}_{1}, \cdots, \mathbf{p}_{n} \rangle$$

$$= (E_{\text{vac}} + E_{\mathbf{p}_{1}} + E_{\mathbf{p}_{2}} + \cdots + E_{\mathbf{p}_{n}}) | \mathbf{p}_{1}, \cdots, \mathbf{p}_{n} \rangle, \qquad (2.116)$$

同理,P 对它的作用给出

$$\mathbf{P} |\mathbf{p}_1, \cdots, \mathbf{p}_n\rangle = (\mathbf{p}_1 + \mathbf{p}_2 + \cdots + \mathbf{p}_n) |\mathbf{p}_1, \cdots, \mathbf{p}_n\rangle.$$
 (2.117)

也就是说,多粒子态 $|\mathbf{p}_1,\cdots,\mathbf{p}_n
angle$ 的能量本征值和动量本征值直接由各个粒子的能量和动量叠加贡献。

由对易关系 (2.84) 可得

$$|\mathbf{p}_{1}, \dots, \mathbf{p}_{i}, \dots, \mathbf{p}_{j}, \dots, \mathbf{p}_{n}\rangle = \sqrt{2E_{\mathbf{p}_{1}}} \dots \sqrt{2E_{\mathbf{p}_{n}}} a_{\mathbf{p}_{1}}^{\dagger} \dots a_{\mathbf{p}_{i}}^{\dagger} \dots a_{\mathbf{p}_{i}}^{\dagger} \dots a_{\mathbf{p}_{n}}^{\dagger} |0\rangle$$

$$= \sqrt{2E_{\mathbf{p}_{1}}} \dots \sqrt{2E_{\mathbf{p}_{n}}} a_{\mathbf{p}_{1}}^{\dagger} \dots a_{\mathbf{p}_{j}}^{\dagger} \dots a_{\mathbf{p}_{i}}^{\dagger} \dots a_{\mathbf{p}_{n}}^{\dagger} |0\rangle$$

$$= |\mathbf{p}_{1}, \dots, \mathbf{p}_{j}, \dots, \mathbf{p}_{i}, \dots, \mathbf{p}_{n}\rangle. \qquad (2.118)$$

可以看出,对调多粒子态中的任意两个粒子,得到的态相同,即多粒子态对于全同粒子交换是对称的。这说明实标量场描述的粒子是**玻色子** (boson),服从 Bose-Einstein 统计。得到这个结论的关键是两个产生算符相互对易。

双粒子态的内积关系为

$$\langle \mathbf{q}_{1}, \mathbf{q}_{2} | \mathbf{p}_{1}, \mathbf{p}_{2} \rangle = \sqrt{16E_{\mathbf{p}_{1}}E_{\mathbf{p}_{2}}E_{\mathbf{q}_{1}}E_{\mathbf{q}_{2}}} \langle 0 | a_{\mathbf{q}_{2}}a_{\mathbf{q}_{1}}a_{\mathbf{p}_{1}}^{\dagger}a_{\mathbf{p}_{2}}^{\dagger} | 0 \rangle$$

$$= \sqrt{16E_{\mathbf{p}_{1}}E_{\mathbf{p}_{2}}E_{\mathbf{q}_{1}}E_{\mathbf{q}_{2}}} \left[\langle 0 | a_{\mathbf{q}_{2}}a_{\mathbf{p}_{1}}^{\dagger}a_{\mathbf{q}_{1}}a_{\mathbf{p}_{2}}^{\dagger} | 0 \rangle + (2\pi)^{3}\delta^{(3)}(\mathbf{p}_{1} - \mathbf{q}_{1}) \langle 0 | a_{\mathbf{q}_{2}}a_{\mathbf{p}_{2}}^{\dagger} | 0 \rangle \right]$$

$$= \sqrt{16E_{\mathbf{p}_{1}}E_{\mathbf{p}_{2}}E_{\mathbf{q}_{1}}E_{\mathbf{q}_{2}}} \left[(2\pi)^{3}\delta^{(3)}(\mathbf{p}_{2} - \mathbf{q}_{1}) \langle 0 | a_{\mathbf{q}_{2}}a_{\mathbf{p}_{1}}^{\dagger} | 0 \rangle + (2\pi)^{3}\delta^{(3)}(\mathbf{p}_{1} - \mathbf{q}_{1}) \langle 0 | a_{\mathbf{q}_{2}}a_{\mathbf{p}_{2}}^{\dagger} | 0 \rangle \right]$$

$$= \sqrt{16E_{\mathbf{p}_{1}}E_{\mathbf{p}_{2}}E_{\mathbf{q}_{1}}E_{\mathbf{q}_{2}}} \left[(2\pi)^{6}\delta^{(3)}(\mathbf{p}_{2} - \mathbf{q}_{1})\delta^{(3)}(\mathbf{p}_{1} - \mathbf{q}_{2}) + (2\pi)^{6}\delta^{(3)}(\mathbf{p}_{1} - \mathbf{q}_{1})\delta^{(3)}(\mathbf{p}_{2} - \mathbf{q}_{2}) \right]$$

$$= 4E_{\mathbf{p}_{1}}E_{\mathbf{p}_{2}}(2\pi)^{6} \left[\delta^{(3)}(\mathbf{p}_{1} - \mathbf{q}_{2})\delta^{(3)}(\mathbf{p}_{2} - \mathbf{q}_{1}) + \delta^{(3)}(\mathbf{p}_{1} - \mathbf{q}_{1})\delta^{(3)}(\mathbf{p}_{2} - \mathbf{q}_{2}) \right]. \tag{2.119}$$

此外,还可以定义动量均为 \mathbf{p} 的 n 个粒子对应的多粒子态为

$$|n_{\mathbf{p}}\rangle \equiv (2E_{\mathbf{p}})^{n_{\mathbf{p}}/2} \left(a_{\mathbf{p}}^{\dagger}\right)^{n_{\mathbf{p}}} |0\rangle,$$
 (2.120)

则粒子数密度算符

$$N_{\mathbf{p}} \equiv a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \tag{2.121}$$

对它的作用为

$$N_{\mathbf{p}} | n_{\mathbf{q}} \rangle = (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}} | 0 \rangle = (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} \left[a_{\mathbf{q}}^{\dagger} a_{\mathbf{p}} + (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) \right] \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}-1} | 0 \rangle$$

$$= (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} a_{\mathbf{p}} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}-1} | 0 \rangle + (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}-1} | 0 \rangle$$

$$= (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{q}}^{\dagger} \right)^{2} a_{\mathbf{p}} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}-2} | 0 \rangle + 2(2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}-1} | 0 \rangle$$

$$= \cdots = (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}} a_{\mathbf{p}} | 0 \rangle + n_{\mathbf{q}} (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}-1}} | 0 \rangle$$

$$= n_{\mathbf{q}} (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{q}}^{\dagger} \right)^{n_{\mathbf{q}}-1} | 0 \rangle . \tag{2.122}$$

在动量空间对粒子数密度算符进行积分,得到的是**粒子数算符**

$$N \equiv \int \frac{d^3 p}{(2\pi)^3} N_{\mathbf{p}} = \int \frac{d^3 p}{(2\pi)^3} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}.$$
 (2.123)

由 (2.122) 式,可得

$$N |n_{\mathbf{q}}\rangle = \int \frac{d^{3}p}{(2\pi)^{3}} N_{\mathbf{p}} |n_{\mathbf{q}}\rangle = \int \frac{d^{3}p}{(2\pi)^{3}} n_{\mathbf{q}} (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{q}) (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} a_{\mathbf{p}}^{\dagger} (a_{\mathbf{q}}^{\dagger})^{n_{\mathbf{q}}-1} |0\rangle$$
$$= n_{\mathbf{q}} (2E_{\mathbf{q}})^{n_{\mathbf{q}}/2} (a_{\mathbf{q}}^{\dagger})^{n_{\mathbf{q}}} |0\rangle = n_{\mathbf{q}} |n_{\mathbf{q}}\rangle.$$
(2.124)

因此, $|n_{\mathbf{q}}\rangle$ 是 N 的本征态,本征值为粒子数 $n_{\mathbf{q}}$ 。

更一般地,可以定义多粒子态

$$|n_{\mathbf{p}_1}, \cdots, n_{\mathbf{p}_m}\rangle \equiv \prod_{i=1}^m (2E_{\mathbf{p}_i})^{n_{\mathbf{p}_i}/2} \left(a_{\mathbf{p}_i}^{\dagger}\right)^{n_{\mathbf{p}_i}} |0\rangle \tag{2.125}$$

来描述动量为 $\mathbf{p}_1, \dots, \mathbf{p}_m$ 的粒子分别有 $n_{\mathbf{p}_1}, \dots, n_{\mathbf{p}_m}$ 个的情况。此时,有

$$N \mid n_{\mathbf{p}_{1}}, \dots, n_{\mathbf{p}_{m}} \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \prod_{i=1}^{m} (2E_{\mathbf{p}_{i}})^{n_{\mathbf{p}_{i}}/2} \left(a_{\mathbf{p}_{i}}^{\dagger} \right)^{n_{\mathbf{p}_{i}}} \mid 0 \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \left[\prod_{i=1}^{m} (2E_{\mathbf{p}_{i}})^{n_{\mathbf{p}_{i}}/2} \right] a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \left(a_{\mathbf{p}_{1}}^{\dagger} \right)^{n_{\mathbf{p}_{1}}} \dots \left(a_{\mathbf{p}_{i}}^{\dagger} \right)^{n_{\mathbf{p}_{i}}} \mid 0 \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \left[\prod_{i=1}^{m} (2E_{\mathbf{p}_{i}})^{n_{\mathbf{p}_{i}}/2} \right] \left[a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{p}_{1}}^{\dagger} \right)^{n_{\mathbf{p}_{1}}} a_{\mathbf{p}} \left(a_{\mathbf{p}_{2}}^{\dagger} \right)^{n_{\mathbf{p}_{2}}} \dots \left(a_{\mathbf{p}_{i}}^{\dagger} \right)^{n_{\mathbf{p}_{i}}} \mid 0 \rangle$$

$$+ n_{\mathbf{p}_{1}} (2\pi)^{3} \delta^{(3)} (\mathbf{p} - \mathbf{p}_{1}) a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{p}_{1}}^{\dagger} \right)^{n_{\mathbf{p}_{1}} - 1} \left(a_{\mathbf{p}_{2}}^{\dagger} \right)^{n_{\mathbf{p}_{2}}} \dots \left(a_{\mathbf{p}_{i}}^{\dagger} \right)^{n_{\mathbf{p}_{i}}} \mid 0 \rangle \right]$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \left[\prod_{i=1}^{m} (2E_{\mathbf{p}_{i}})^{n_{\mathbf{p}_{i}}/2} \right] \left[a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{p}_{1}}^{\dagger} \right)^{n_{\mathbf{p}_{1}}} a_{\mathbf{p}} \left(a_{\mathbf{p}_{2}}^{\dagger} \right)^{n_{\mathbf{p}_{i}}} \mid 0 \rangle \right] + n_{\mathbf{p}_{1}} \left| n_{\mathbf{p}_{1}}, \dots, n_{\mathbf{p}_{m}} \rangle$$

$$= \dots = \int \frac{d^{3}p}{(2\pi)^{3}} \left[\prod_{i=1}^{m} (2E_{\mathbf{p}_{i}})^{n_{\mathbf{p}_{i}}/2} \right] \left[a_{\mathbf{p}}^{\dagger} \left(a_{\mathbf{p}_{1}}^{\dagger} \right)^{n_{\mathbf{p}_{1}}} \dots \left(a_{\mathbf{p}_{i}}^{\dagger} \right)^{n_{\mathbf{p}_{i}}} a_{\mathbf{p}} \mid 0 \rangle \right]$$

$$+ (n_{\mathbf{p}_{1}} + \dots + n_{\mathbf{p}_{m}}) \left| n_{\mathbf{p}_{1}}, \dots, n_{\mathbf{p}_{m}} \rangle$$

$$= (n_{\mathbf{p}_{1}} + \dots + n_{\mathbf{p}_{m}}) \left| n_{\mathbf{p}_{1}}, \dots, n_{\mathbf{p}_{m}} \rangle$$

$$(2.126)$$

可见,N 确实是描述总粒子数的算符。

2.4 复标量场的正则量子化

在本节中,我们讨论复标量场 $\phi(x)$,它不满足自共轭条件 (2.53),即

$$\phi^{\dagger}(x) \neq \phi(x). \tag{2.127}$$

自由复标量场的拉氏量具有 1.7.4 小节中 (1.186) 式的形式。不过,由于 $\phi(x)$ 是量子场算符,需要把那里的复共轭记号 * 改成厄米共轭记号 †,故 **Lorentz 不变拉氏量**为

$$\mathcal{L} = (\partial^{\mu}\phi^{\dagger})\partial_{\mu}\phi - m^{2}\phi^{\dagger}\phi. \tag{2.128}$$

把 $\phi(x)$ 和 $\phi^{\dagger}(x)$ 当成两个独立的场变量,注意到

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi^{\dagger})} = \partial^{\mu} \phi, \quad \frac{\partial \mathcal{L}}{\partial \phi^{\dagger}} = -m^{2} \phi, \quad \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = \partial^{\mu} \phi^{\dagger}, \quad \frac{\partial \mathcal{L}}{\partial \phi} = -m^{2} \phi^{\dagger}, \tag{2.129}$$

则 Euler-Lagrange 方程 (1.114) 给出

$$(\partial^2 + m^2)\phi(x) = 0, \quad (\partial^2 + m^2)\phi^{\dagger}(x) = 0.$$
 (2.130)

也就是说, $\phi(x)$ 和 $\phi^{\dagger}(x)$ 均满足 Klein-Gordon 方程.

可以将复标量场 ϕ 分解为两个实标量场 ϕ_1 和 ϕ_2 的线性组合:

$$\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2), \quad \phi^{\dagger} = \frac{1}{\sqrt{2}}(\phi_1 - i\phi_2). \tag{2.131}$$

从而, 拉氏量 (2.128) 化为

$$\mathcal{L} = \frac{1}{2} [\partial^{\mu} (\phi_1 - i\phi_2)] \partial_{\mu} (\phi_1 + i\phi_2) - \frac{1}{2} m^2 (\phi_1 - i\phi_2) (\phi_1 + i\phi_2)
= \frac{1}{2} (\partial^{\mu} \phi_1) \partial_{\mu} \phi_1 - \frac{1}{2} m^2 \phi_1^2 + \frac{1}{2} (\partial^{\mu} \phi_2) \partial_{\mu} \phi_2 - \frac{1}{2} m^2 \phi_2^2.$$
(2.132)

与 (2.54) 式比较可知, 复标量场的拉氏量相当于两个质量相同的实标量场的拉氏量。

2.4.1 平面波展开

对于复标量场,我们可以遵循 2.3.1 小节中的方法讨论它的平面波解展开,但不能够应用自共轭条件。因此,场算符 $\phi(\mathbf{x},t)$ 的通解也具有的 (2.65) 式的形式:

$$\phi(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}} e^{-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + \tilde{a}_{\mathbf{k}} e^{i(E_{\mathbf{k}}t + \mathbf{k} \cdot \mathbf{x})} \right]$$

$$= \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}} e^{-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + \tilde{a}_{-\mathbf{k}} e^{i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} \right]. \tag{2.133}$$

由于不满足自共轭条件 (2.53), 算符 $\tilde{a}_{-\mathbf{k}}$ 与 $a_{\mathbf{k}}$ 没有什么关系, 改记为

$$b_{\mathbf{k}}^{\dagger} = \tilde{a}_{-\mathbf{k}},\tag{2.134}$$

则展开式变成

$$\phi(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{k}}}} \left[a_{\mathbf{k}} e^{-i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} + b_{\mathbf{k}}^{\dagger} e^{i(E_{\mathbf{k}}t - \mathbf{k} \cdot \mathbf{x})} \right]. \tag{2.135}$$

替换一下动量记号,可以把 $\phi(\mathbf{x},t)$ 的平面波解展开式整理成

$$\phi(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(a_{\mathbf{p}} e^{-ip\cdot x} + b_{\mathbf{p}}^{\dagger} e^{ip\cdot x} \right), \qquad (2.136)$$

其中, p^0 应该满足

$$p^0 = E_{\mathbf{p}} \equiv \sqrt{|\mathbf{p}|^2 + m^2}.$$
 (2.137)

取厄米共轭,就得到 $\phi^{\dagger}(\mathbf{x},t)$ 的平面波解展开式

$$\phi^{\dagger}(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(b_{\mathbf{p}} e^{-ip\cdot x} + a_{\mathbf{p}}^{\dagger} e^{ip\cdot x} \right). \tag{2.138}$$

现在, $a_{\mathbf{p}}$ 和 $b_{\mathbf{p}}$ 是两个相互独立的湮灭算符,而 $a_{\mathbf{p}}^{\dagger}$ 和 $b_{\mathbf{p}}^{\dagger}$ 是两个相互独立的产生算符。 $\phi(\mathbf{x},t)$ 对应的共轭动量密度是

$$\pi(\mathbf{x},t) = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi)} = \partial_0 \phi^{\dagger} = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(-ip_0\right) \left(b_{\mathbf{p}} e^{-ip \cdot x} - a_{\mathbf{p}}^{\dagger} e^{ip \cdot x}\right), \tag{2.139}$$

 $\phi^{\dagger}(\mathbf{x},t)$ 对应的共轭动量密度是

$$\pi^{\dagger}(\mathbf{x},t) = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi^{\dagger})} = \partial_0 \phi = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left(-ip_0\right) \left(a_{\mathbf{p}} e^{-ip \cdot x} - b_{\mathbf{p}}^{\dagger} e^{ip \cdot x}\right). \tag{2.140}$$

根据 (2.51) 式,等时对易关系为

$$[\phi(\mathbf{x},t),\pi(\mathbf{y},t)] = i\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad [\phi(\mathbf{x},t),\phi(\mathbf{y},t)] = [\pi(\mathbf{x},t),\pi(\mathbf{y},t)] = 0,$$

$$[\phi^{\dagger}(\mathbf{x},t),\pi^{\dagger}(\mathbf{y},t)] = i\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad [\phi^{\dagger}(\mathbf{x},t),\phi^{\dagger}(\mathbf{y},t)] = [\pi^{\dagger}(\mathbf{x},t),\pi^{\dagger}(\mathbf{y},t)] = 0,$$

$$[\phi(\mathbf{x},t),\pi^{\dagger}(\mathbf{y},t)] = [\phi^{\dagger}(\mathbf{x},t),\pi(\mathbf{y},t)] = [\phi(\mathbf{x},t),\phi^{\dagger}(\mathbf{y},t)] = [\pi(\mathbf{x},t),\pi^{\dagger}(\mathbf{y},t)] = 0.$$
(2.141)

2.4.2 产生湮灭算符的对易关系

由

$$\int d^3x \, e^{iq \cdot x} \phi = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, \left[a_{\mathbf{p}} e^{-i(p-q) \cdot x} + b_{\mathbf{p}}^{\dagger} e^{i(p+q) \cdot x} \right]
= \int d^3p \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[a_{\mathbf{p}} e^{-i(p^0 - q^0)t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) + b_{\mathbf{p}}^{\dagger} e^{i(p^0 + q^0)t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]
= \frac{1}{\sqrt{2E_{\mathbf{q}}}} \left(a_{\mathbf{q}} + b_{-\mathbf{q}}^{\dagger} e^{2iq^0 t} \right)$$
(2.142)

和

$$\int d^{3}x \, e^{iq \cdot x} \partial_{0} \phi = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{-ip_{0}}{\sqrt{2E_{\mathbf{p}}}} \int d^{3}x \left[a_{\mathbf{p}} e^{-i(p-q) \cdot x} - b_{\mathbf{p}}^{\dagger} e^{i(p+q) \cdot x} \right]
= \int d^{3}p \, \frac{-ip_{0}}{\sqrt{2E_{\mathbf{p}}}} \left[a_{\mathbf{p}} e^{-i(p^{0}-q^{0})t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) - b_{\mathbf{p}}^{\dagger} e^{i(p^{0}+q^{0})t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]
= \frac{-iq_{0}}{\sqrt{2E_{\mathbf{q}}}} \left(a_{\mathbf{q}} - b_{-\mathbf{q}}^{\dagger} e^{2iq^{0}t} \right),$$
(2.143)

可得

$$-i\sqrt{2E_{\mathbf{q}}}\,a_{\mathbf{q}} = \frac{-2iq_0}{\sqrt{2E_{\mathbf{q}}}}a_{\mathbf{q}} = \int d^3x\,e^{iq\cdot x}\partial_0\phi - iq_0\int d^3x\,e^{iq\cdot x}\phi = \int d^3x\,e^{iq\cdot x}\left(\partial_0\phi - iq_0\phi\right). \quad (2.144)$$

于是,

$$a_{\mathbf{p}} = \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{ip \cdot x} \left(\partial_0 \phi - ip_0 \phi \right), \quad a_{\mathbf{p}}^{\dagger} = \frac{-i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{-ip \cdot x} \left(\partial_0 \phi^{\dagger} + ip_0 \phi^{\dagger} \right). \tag{2.145}$$

从而,有

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{ip\cdot x} \{ \partial_0 \phi(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t) \}, \ e^{-iq\cdot y} \{ \partial_0 \phi^{\dagger}(\mathbf{y}, t) + iq_0 \phi^{\dagger}(\mathbf{y}, t) \} \right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p\cdot x - q\cdot y)} \left[\pi^{\dagger}(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t), \ \pi(\mathbf{y}, t) + iq_0 \phi^{\dagger}(\mathbf{y}, t) \right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p^0 - q^0)t} e^{-i(\mathbf{p}\cdot \mathbf{x} - \mathbf{q}\cdot \mathbf{y})} \left(iq_0 [\pi^{\dagger}(\mathbf{x}, t), \phi^{\dagger}(\mathbf{y}, t)] - ip_0 [\phi(\mathbf{x}, t), \pi(\mathbf{y}, t)] \right)$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p^0 - q^0)t} e^{-i(\mathbf{p}\cdot \mathbf{x} - \mathbf{q}\cdot \mathbf{y})} \left[-i(p_0 + q_0)i\delta^{(3)}(\mathbf{x} - \mathbf{y}) \right]$$

$$= \frac{E_{\mathbf{p}} + E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x e^{i(p^0 - q^0)t} e^{-i(\mathbf{p} - \mathbf{q})\cdot \mathbf{x}} = \frac{E_{\mathbf{p}} + E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q})$$

$$= (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}), \tag{2.146}$$

以及

$$= \frac{[a_{\mathbf{p}}, a_{\mathbf{q}}]}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{ip\cdot x} \{ \partial_0 \phi(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t) \}, e^{iq\cdot y} \{ \partial_0 \phi(\mathbf{y}, t) - iq_0 \phi(\mathbf{y}, t) \} \right]$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p\cdot x + q\cdot y)} \left[\pi^{\dagger}(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t), \pi^{\dagger}(\mathbf{y}, t) - iq_0 \phi(\mathbf{y}, t) \right] = 0. \quad (2.147)$$

另一方面,由

$$\int d^3x \, e^{iq \cdot x} \phi^{\dagger} = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, \left[b_{\mathbf{p}} e^{-i(p-q) \cdot x} + a_{\mathbf{p}}^{\dagger} e^{i(p+q) \cdot x} \right]
= \int d^3p \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[b_{\mathbf{p}} e^{-i(p^0 - q^0)t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) + a_{\mathbf{p}}^{\dagger} e^{i(p^0 + q^0)t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]
= \frac{1}{\sqrt{2E_{\mathbf{q}}}} \left(b_{\mathbf{q}} + a_{-\mathbf{q}}^{\dagger} e^{2iq^0 t} \right)$$
(2.148)

和

$$\int d^3x \, e^{iq\cdot x} \partial_0 \phi^{\dagger} = \int \frac{d^3p}{(2\pi)^3} \frac{-ip_0}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \left[b_{\mathbf{p}} e^{-i(p-q)\cdot x} - a_{\mathbf{p}}^{\dagger} e^{i(p+q)\cdot x} \right]
= \int d^3p \, \frac{-ip_0}{\sqrt{2E_{\mathbf{p}}}} \left[b_{\mathbf{p}} e^{-i(p^0-q^0)t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) - a_{\mathbf{p}}^{\dagger} e^{i(p^0+q^0)t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]
= \frac{-iq_0}{\sqrt{2E_{\mathbf{q}}}} \left(b_{\mathbf{q}} - a_{-\mathbf{q}}^{\dagger} e^{2iq^0t} \right),$$
(2.149)

可得

$$-i\sqrt{2E_{\mathbf{q}}}\,b_{\mathbf{q}} = \frac{-2iq_{0}}{\sqrt{2E_{\mathbf{q}}}}b_{\mathbf{q}} = \int d^{3}x\,e^{iq\cdot x}\partial_{0}\phi^{\dagger} - iq_{0}\int d^{3}x\,e^{iq\cdot x}\phi^{\dagger} = \int d^{3}x\,e^{iq\cdot x}\left(\partial_{0}\phi^{\dagger} - iq_{0}\phi^{\dagger}\right). \tag{2.150}$$

于是,

$$b_{\mathbf{p}} = \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{ip \cdot x} \left(\partial_0 \phi^{\dagger} - ip_0 \phi^{\dagger} \right), \quad b_{\mathbf{p}}^{\dagger} = \frac{-i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{-ip \cdot x} \left(\partial_0 \phi + ip_0 \phi \right). \tag{2.151}$$

从而,有

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{ip\cdot x} \{ \partial_0 \phi^{\dagger}(\mathbf{x}, t) - ip_0 \phi^{\dagger}(\mathbf{x}, t) \}, e^{-iq\cdot y} \{ \partial_0 \phi(\mathbf{y}, t) + iq_0 \phi(\mathbf{y}, t) \} \right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p\cdot x - q\cdot y)} \left[\pi(\mathbf{x}, t) - ip_0 \phi^{\dagger}(\mathbf{x}, t), \pi^{\dagger}(\mathbf{y}, t) + iq_0 \phi(\mathbf{y}, t) \right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p^0 - q^0)t} e^{-i(\mathbf{p}\cdot \mathbf{x} - \mathbf{q}\cdot \mathbf{y})} \left(iq_0 [\pi(\mathbf{x}, t), \phi(\mathbf{y}, t)] - ip_0 [\phi^{\dagger}(\mathbf{x}, t), \pi^{\dagger}(\mathbf{y}, t)] \right)$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p^0 - q^0)t} e^{-i(\mathbf{p}\cdot \mathbf{x} - \mathbf{q}\cdot \mathbf{y})} \left[-i(p_0 + q_0)i\delta^{(3)}(\mathbf{x} - \mathbf{y}) \right]$$

$$= \frac{E_{\mathbf{p}} + E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x e^{i(p^0 - q^0)t} e^{-i(\mathbf{p} - \mathbf{q})\cdot \mathbf{x}} = \frac{E_{\mathbf{p}} + E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q})$$

$$= (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}), \tag{2.152}$$

以及

$$= \frac{[b_{\mathbf{p}}, b_{\mathbf{q}}]}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{ip\cdot x} \{ \partial_0 \phi^{\dagger}(\mathbf{x}, t) - ip_0 \phi^{\dagger}(\mathbf{x}, t) \}, \ e^{iq\cdot y} \{ \partial_0 \phi^{\dagger}(\mathbf{y}, t) - iq_0 \phi^{\dagger}(\mathbf{y}, t) \} \right]$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p\cdot x + q\cdot y)} \left[\pi(\mathbf{x}, t) - ip_0 \phi^{\dagger}(\mathbf{x}, t), \ \pi(\mathbf{y}, t) - iq_0 \phi^{\dagger}(\mathbf{y}, t) \right] = 0. \quad (2.153)$$

此外,还有

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{ip\cdot x} \{ \partial_0 \phi(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t) \}, \ e^{-iq\cdot y} \{ \partial_0 \phi(\mathbf{y}, t) + iq_0 \phi(\mathbf{y}, t) \} \right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \ e^{i(p\cdot x - q\cdot y)} \left[\pi^{\dagger}(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t), \ \pi^{\dagger}(\mathbf{y}, t) + iq_0 \phi(\mathbf{y}, t) \right] = 0, \quad (2.154)$$

以及

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y \left[e^{ip\cdot x} \{ \partial_0 \phi(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t) \}, e^{iq\cdot y} \{ \partial_0 \phi^{\dagger}(\mathbf{y}, t) - iq_0 \phi^{\dagger}(\mathbf{y}, t) \} \right]$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p\cdot x + q\cdot y)} \left[\pi^{\dagger}(\mathbf{x}, t) - ip_0 \phi(\mathbf{x}, t), \pi(\mathbf{y}, t) - iq_0 \phi^{\dagger}(\mathbf{y}, t) \right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x d^3y e^{i(p^0 + q^0)t} e^{-i(\mathbf{p}\cdot \mathbf{x} + \mathbf{q}\cdot \mathbf{y})} \left(-iq_0 [\pi^{\dagger}(\mathbf{x}, t), \phi^{\dagger}(\mathbf{y}, t)] - ip_0 [\phi(\mathbf{x}, t), \pi(\mathbf{y}, t)] \right)$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x \, d^3y \, e^{i(p^0+q^0)t} e^{-i(\mathbf{p}\cdot\mathbf{x}+\mathbf{q}\cdot\mathbf{y})} \left[-i(p_0-q_0)i\delta^{(3)}(\mathbf{x}-\mathbf{y}) \right]$$

$$= \frac{E_{\mathbf{p}}-E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x \, e^{i(p^0+q^0)t} e^{-i(\mathbf{p}+\mathbf{q})\cdot\mathbf{x}} = \frac{E_{\mathbf{p}}-E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e^{i(E_{\mathbf{p}}+E_{\mathbf{q}})t} (2\pi)^3 \delta^{(3)}(\mathbf{p}+\mathbf{q}) = 0. \quad (2.155)$$

归纳起来,产生湮灭算符的对易关系如下:

$$[a_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}] = (2\pi)^{3} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \quad [a_{\mathbf{p}}, a_{\mathbf{q}}] = [a_{\mathbf{p}}^{\dagger}, a_{\mathbf{q}}^{\dagger}] = 0,$$

$$[b_{\mathbf{p}}, b_{\mathbf{q}}^{\dagger}] = (2\pi)^{3} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \quad [b_{\mathbf{p}}, b_{\mathbf{q}}] = [b_{\mathbf{p}}^{\dagger}, b_{\mathbf{q}}^{\dagger}] = 0,$$

$$[a_{\mathbf{p}}, b_{\mathbf{q}}^{\dagger}] = [b_{\mathbf{p}}, a_{\mathbf{q}}^{\dagger}] = [a_{\mathbf{p}}, b_{\mathbf{q}}] = [a_{\mathbf{p}}^{\dagger}, b_{\mathbf{q}}^{\dagger}] = 0.$$
(2.156)

这说明 $a_{\mathbf{p}}^{\dagger}, a_{\mathbf{p}}$ 与 $b_{\mathbf{p}}^{\dagger}, b_{\mathbf{p}}$ 是两套不同的产生湮灭算符,描述两种不同的玻色子。

2.4.3 U(1) 整体对称性

对复标量场作 U(1) 整体变换

$$\phi'(x) = e^{iq\theta}\phi(x), \quad [\phi^{\dagger}(x)]' = e^{-iq\theta}\phi^{\dagger}(x), \tag{2.157}$$

则拉氏量 (2.128) 不变。依照 1.7.4 小节的讨论,相应的守恒流为

$$J^{\mu} = q\phi^{\dagger}i\overleftrightarrow{\partial^{\mu}}\phi, \qquad (2.158)$$

相应的守恒荷为

$$+ (E_{\mathbf{k}} - E_{\mathbf{p}})\delta^{(3)}(\mathbf{p} + \mathbf{k}) \left[b_{\mathbf{p}} a_{\mathbf{k}} e^{-i(E_{\mathbf{p}} + E_{\mathbf{k}})t} - a_{\mathbf{p}}^{\dagger} b_{\mathbf{k}}^{\dagger} e^{i(E_{\mathbf{p}} + E_{\mathbf{k}})t} \right] \right\}$$

$$= q \int \frac{d^{3}p}{(2\pi)^{3} 2E_{\mathbf{p}}} 2E_{\mathbf{p}} \left(-b_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right) = q \int \frac{d^{3}p}{(2\pi)^{3}} \left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} - b_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} \right). \tag{2.159}$$

利用对易关系 (2.156), 可得

$$Q = \int \frac{d^3p}{(2\pi)^3} \left(q \, a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} - q \, b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} \right) - (2\pi)^3 \delta^{(3)}(0) \int \frac{d^3p}{(2\pi)^3} \, q. \tag{2.160}$$

上式第二项是零点荷。在第一项的圆括号中,粒子数密度算符 $a_{\mathbf{p}}^{\dagger}a_{\mathbf{p}}$ 的系数是 q,而粒子数密度算符 $b_{\mathbf{p}}^{\dagger}b_{\mathbf{p}}$ 的系数是 -q。可见, $a_{\mathbf{p}}^{\dagger}$, $a_{\mathbf{p}}$ 描述的粒子具有的荷为 q,习惯上称为**正粒子**;另一方面, $b_{\mathbf{p}}^{\dagger}$, $b_{\mathbf{p}}$ 描述的粒子具有相反的荷 -q,习惯上称为**反粒子**。除去零点荷,总荷 Q 是所有动量模式所有正反粒子贡献的荷之和。注意到 Q/q 的表达式与 (1.3) 式类似,但 Q/q 被解释为正粒子数与反粒子数之差,因而不存在负概率困难。

这里单个粒子的荷 q 或 -q 对总荷 Q 的贡献是相加性的,并且来自于一种内部对称性,因而是一种**内部相加性量子数**。实际上,反粒子的所有内部相加性量子数都与正粒子相反。

如果对实标量场作类似的 U(1) 整体变换,则自共轭条件 (2.53) 使得

$$e^{iq\theta}\phi(x) = \phi'(x) = [\phi'(x)]^{\dagger} = [e^{iq\theta}\phi(x)]^{\dagger} = e^{-iq\theta}\phi^{\dagger}(x) = e^{-iq\theta}\phi(x).$$
 (2.161)

上式要求 q = 0。因此,对实标量场不能进行非平庸的 U(1) 整体变换。实际上,自共轭条件使实标量场描述的粒子不能具有任何非零的内部相加性量子数,也就是说,正粒子与反粒子是相同的,实标量场描述的是一种纯中性粒子。

2.4.4 哈密顿量和总动量

根据 (1.117) 式, 复标量场的哈密顿量密度为

$$\mathcal{H} = \pi \partial_0 \phi + \pi^{\dagger} \partial_0 \phi^{\dagger} - \mathcal{L} = (\partial^0 \phi^{\dagger}) \partial_0 \phi + (\partial^0 \phi) \partial_0 \phi^{\dagger} - (\partial^{\mu} \phi^{\dagger}) \partial_{\mu} \phi + m^2 \phi^{\dagger} \phi$$
$$= (\partial^0 \phi^{\dagger}) \partial_0 \phi + (\nabla \phi^{\dagger}) \cdot \nabla \phi + m^2 \phi^{\dagger} \phi. \tag{2.162}$$

于是,哈密顿量可以写成

$$H = \int d^3x \,\mathcal{H} = \int d^3x \, [(\partial^0 \phi^{\dagger}) \partial_0 \phi + (\nabla \phi^{\dagger}) \cdot \nabla \phi + m^2 \phi^{\dagger} \phi]$$

$$= \int d^3x \, [(\partial^0 \phi^{\dagger}) \partial_0 \phi + \nabla \cdot (\phi^{\dagger} \nabla \phi) - \phi^{\dagger} \nabla^2 \phi + m^2 \phi^{\dagger} \phi]$$

$$= \int d^3x \, [(\partial^0 \phi^{\dagger}) \partial_0 \phi - \phi^{\dagger} \partial^0 \partial_0 \phi + \phi^{\dagger} (\partial^0 \partial_0 - \nabla^2 + m^2) \phi]$$

$$= \int d^3x \, [(\partial^0 \phi^{\dagger}) \partial_0 \phi - \phi^{\dagger} \partial^0 \partial_0 \phi + \phi^{\dagger} (\partial^2 + m^2) \phi]. \tag{2.163}$$

上式第三步用了分部积分,第四步扔掉了一个全散度,最后一行方括号里第三项可以通过 ϕ 的运动方程 (2.130) 消去。从而,得到

$$H = \int d^3x \left[(\partial^0 \phi^{\dagger}) \partial_0 \phi - \phi^{\dagger} \partial^0 \partial_0 \phi \right]$$

$$= \int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left[\partial^{0} \left(b_{\mathbf{p}} e^{-ip \cdot x} + a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \, \partial_{0} \left(a_{\mathbf{q}} e^{-iq \cdot x} + b_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right) \right]$$

$$- \left(b_{\mathbf{p}} e^{-ip \cdot x} + a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \, \partial^{0} \partial_{0} \left(a_{\mathbf{q}} e^{-iq \cdot x} + b_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right) \right]$$

$$= \int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left\{ \left(-ip^{0} \right) \left(b_{\mathbf{p}} e^{-ip \cdot x} - a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \left(-iq_{0} \right) \left(a_{\mathbf{q}} e^{-iq \cdot x} - b_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right) \right.$$

$$- \left(b_{\mathbf{p}} e^{-ip \cdot x} + a_{\mathbf{p}}^{\dagger} e^{ip \cdot x} \right) \left[\left(-iq^{0} \right) \left(-iq_{0} \right) a_{\mathbf{q}} e^{-iq \cdot x} + iq^{0} iq_{0} b_{\mathbf{q}}^{\dagger} e^{iq \cdot x} \right] \right\}$$

$$= \int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left[\left(p^{0}q_{0} + q^{0}q_{0} \right) b_{\mathbf{p}} b_{\mathbf{q}}^{\dagger} e^{-i(p-q) \cdot x} + \left(p^{0}q_{0} + q^{0}q_{0} \right) a_{\mathbf{p}}^{\dagger} b_{\mathbf{q}}^{\dagger} e^{i(p+q) \cdot x} \right]$$

$$+ \left(-p^{0}q_{0} + q^{0}q_{0} \right) b_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p+q) \cdot x} + \left(-p^{0}q_{0} + q^{0}q_{0} \right) a_{\mathbf{p}}^{\dagger} b_{\mathbf{q}}^{\dagger} e^{i(p+q) \cdot x} \right]$$

$$= \int \frac{d^{3}p \, d^{3}q}{(2\pi)^{3} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} E_{\mathbf{q}} \left\{ \left(E_{\mathbf{p}} + E_{\mathbf{q}} \right) \delta^{(3)} (\mathbf{p} - \mathbf{q}) \left[b_{\mathbf{p}} b_{\mathbf{q}}^{\dagger} e^{-i(E_{\mathbf{p}} - E_{\mathbf{q}})t} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(E_{\mathbf{p}} - E_{\mathbf{q}})t} \right] \right\}$$

$$+ \left(E_{\mathbf{q}} - E_{\mathbf{p}} \right) \delta^{(3)} (\mathbf{p} + \mathbf{q}) \left[b_{\mathbf{p}} a_{\mathbf{q}} e^{-i(E_{\mathbf{p}} + E_{\mathbf{q}})t} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(E_{\mathbf{p}} + E_{\mathbf{q}})t} \right] \right\}$$

$$= \int \frac{d^{3}p}{(2\pi)^{3} 2E_{\mathbf{p}}} 2E_{\mathbf{p}} \left(b_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right) = \int \frac{d^{3}p}{(2\pi)^{3}} E_{\mathbf{p}} \left(b_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \right)$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} E_{\mathbf{p}} \left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} \right) + (2\pi)^{3} \delta^{(3)} (0) \int \frac{d^{3}p}{(2\pi)^{3}} E_{\mathbf{p}} \right)$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} E_{\mathbf{p}} \left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} \right) + (2\pi)^{3} \delta^{(3)} (0) \int \frac{d^{3}p}{(2\pi)^{3}} E_{\mathbf{p}} \right)$$

除了零点能,哈密顿量是所有动量模式所有正反粒子的能量之和。对于相同的动量模式 \mathbf{p} ,正粒子与反粒子具有相同的能量 $E_{\mathbf{p}}$,因而它们具有相同的质量 m。

根据 (1.156) 式,复标量场的总动量为

$$+ \delta^{(3)}(\mathbf{p} + \mathbf{q}) \left[(E_{\mathbf{p}} \mathbf{q} \, b_{\mathbf{p}} a_{\mathbf{q}} + E_{\mathbf{q}} \mathbf{p} \, a_{\mathbf{q}} b_{\mathbf{p}}) e^{-i(E_{\mathbf{p}} + E_{\mathbf{q}})t} \right.$$

$$+ (E_{\mathbf{p}} \mathbf{q} \, a_{\mathbf{p}}^{\dagger} b_{\mathbf{q}}^{\dagger} + E_{\mathbf{q}} \mathbf{p} \, b_{\mathbf{q}}^{\dagger} a_{\mathbf{p}}^{\dagger}) e^{i(E_{\mathbf{p}} + E_{\mathbf{q}})t} \right]$$

$$= -\int \frac{d^{3}p}{(2\pi)^{3} 2E_{\mathbf{p}}} \left[-E_{\mathbf{p}} \mathbf{p} \, (b_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} + b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}) \right.$$

$$- E_{\mathbf{p}} \mathbf{p} \, (b_{\mathbf{p}} a_{-\mathbf{p}} - a_{-\mathbf{p}} b_{\mathbf{p}}) e^{-2iE_{\mathbf{p}}t} - E_{\mathbf{p}} \mathbf{p} \, (a_{\mathbf{p}}^{\dagger} b_{-\mathbf{p}}^{\dagger} - b_{-\mathbf{p}}^{\dagger} a_{\mathbf{p}}^{\dagger}) e^{2iE_{\mathbf{p}}t} \right]$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\mathbf{p}}{2} \left(b_{\mathbf{p}} b_{\mathbf{p}}^{\dagger} + b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}} + a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} \right) = \int \frac{d^{3}p}{(2\pi)^{3}} \mathbf{p} \, (a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}) + \delta^{(3)}(0) \int d^{3}p \, \mathbf{p}$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \, \mathbf{p} \, (a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + b_{\mathbf{p}}^{\dagger} b_{\mathbf{p}}). \tag{2.165}$$

总动量是所有动量模式所有正反粒子的动量之和。

第3章 矢量场

3.1 量子 Lorentz 变换

设 Lorentz 变换 Λ 在物理 Hilbert 空间中诱导出态矢 $|\Psi\rangle$ 的线性幺正变换

$$|\Psi'\rangle = U(\Lambda) |\Psi\rangle, \tag{3.1}$$

其中 $U(\Lambda)$ 是一个线性幺正算符,描述量子 Lorentz 变换,满足

$$U^{\dagger}(\Lambda)U(\Lambda) = U(\Lambda)U^{\dagger}(\Lambda) = 1, \quad U^{-1}(\Lambda) = U^{\dagger}(\Lambda). \tag{3.2}$$

先作 Lorentz 变换 Λ_1 ,再作 Lorentz 变换 Λ_2 ,相当于作 Lorentz 变换 $\Lambda_2\Lambda_1$,故以下同态 (homomorphic) 关系成立:

$$U(\Lambda_2\Lambda_1) = U(\Lambda_2)U(\Lambda_1). \tag{3.3}$$

从而,由

$$U^{-1}(\Lambda)U(\Lambda) = 1 = U(1) = U(\Lambda^{-1}\Lambda) = U(\Lambda^{-1})U(\Lambda)$$
(3.4)

可得

$$U^{-1}(\Lambda) = U(\Lambda^{-1}). \tag{3.5}$$

将无穷小 Lorentz 变换 (1.157) 记为 $\Lambda_{\omega} = \mathbf{1} + \omega$,它诱导的无穷小幺正算符可表达为

$$U(\mathbf{1} + \omega) = 1 - \frac{i}{2}\omega_{\mu\nu}J^{\mu\nu}.$$
(3.6)

这里只展开到 ω 的一阶项。 $J^{\mu\nu}$ 是量子 Lorentz 变换的**生成元算符**¹。根据 1.7.3 小节的讨论,实 参数 $\omega_{\mu\nu}$ 是反对称的,因而 $J^{\mu\nu}$ 也是反对称的:

$$J^{\mu\nu} = -J^{\nu\mu}.\tag{3.7}$$

由 $U(1+\omega)$ 的幺正性可得

$$1 = U^{\dagger}(\mathbf{1} + \omega)U(\mathbf{1} + \omega) = \left[1 + \frac{i}{2}\omega_{\mu\nu}(J^{\mu\nu})^{\dagger}\right] \left(1 - \frac{i}{2}\omega_{\mu\nu}J^{\mu\nu}\right) = 1 + \frac{i}{2}\omega_{\mu\nu}[(J^{\mu\nu})^{\dagger} - J^{\mu\nu}], \quad (3.8)$$

 $^{^{1}}$ 虽然用了相同的符号,这里的算符 $J^{\mu\nu}$ 不同于守恒荷 (1.177)。

最后一步忽略了 ω 的二阶项。可见, $J^{\mu\nu}$ 是厄米算符:

$$(J^{\mu\nu})^{\dagger} = J^{\mu\nu}. \tag{3.9}$$

对算符乘积

$$U^{-1}(\Lambda)U(\mathbf{1}+\omega)U(\Lambda) = U(\Lambda^{-1}(\mathbf{1}+\omega)\Lambda). \tag{3.10}$$

的左边和右边分别展开,得

$$U^{-1}(\Lambda)U(\mathbf{1}+\omega)U(\Lambda) = U^{-1}(\Lambda)\left(1 - \frac{i}{2}\omega_{\mu\nu}J^{\mu\nu}\right)U(\Lambda) = 1 - \frac{i}{2}U^{-1}(\Lambda)\omega_{\mu\nu}J^{\mu\nu}U(\Lambda), \quad (3.11)$$

$$U(\Lambda^{-1}(\mathbf{1} + \omega)\Lambda) = U(\mathbf{1} + \Lambda^{-1}\omega\Lambda) = 1 - \frac{i}{2}(\Lambda^{-1}\omega\Lambda)_{\mu\nu}J^{\mu\nu}.$$
 (3.12)

因此,有

$$U^{-1}(\Lambda)\omega_{\mu\nu}J^{\mu\nu}U(\Lambda) = (\Lambda^{-1}\omega\Lambda)_{\mu\nu}J^{\mu\nu} = g_{\mu\alpha}(\Lambda^{-1}\omega\Lambda)^{\alpha}_{\ \nu}J^{\mu\nu} = g_{\mu\alpha}(\Lambda^{-1})^{\alpha}_{\ \beta}\omega^{\beta}_{\ \gamma}\Lambda^{\gamma}_{\ \nu}J^{\mu\nu}$$
$$= g_{\mu\alpha}\Lambda_{\beta}{}^{\alpha}\omega^{\beta}_{\ \gamma}\Lambda^{\gamma}_{\ \nu}J^{\mu\nu} = \Lambda^{\beta}_{\ \mu}\omega_{\beta\gamma}\Lambda^{\gamma}_{\ \nu}J^{\mu\nu} = \omega_{\mu\nu}\Lambda^{\mu}_{\ \rho}\Lambda^{\nu}_{\ \sigma}J^{\rho\sigma}, \tag{3.13}$$

第四步用到 (1.34) 式。上式对任意 $\omega_{\mu\nu}$ 成立,于是,

$$U^{-1}(\Lambda)J^{\mu\nu}U(\Lambda) = \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}J^{\rho\sigma}. \tag{3.14}$$

因此, $J^{\mu\nu}$ 在 $|\Psi'\rangle$ 中的期待值 (expectation value) 与它在 $|\Psi\rangle$ 中的期待值有如下关系:

$$\langle \Psi' | J^{\mu\nu} | \Psi' \rangle = \langle \Psi | U^{-1}(\Lambda) J^{\mu\nu} U(\Lambda) | \Psi \rangle = \Lambda^{\mu}{}_{\rho} \Lambda^{\nu}{}_{\sigma} \langle \Psi | J^{\rho\sigma} | \Psi \rangle. \tag{3.15}$$

也就是说, $U^{-1}(\Lambda)J^{\mu\nu}U(\Lambda)$ 可以看作量子 Lorentz 变换诱导出来的 $J^{\mu\nu}$ 算符的 Lorentz 变换:

$$J^{\prime\mu\nu} \equiv U^{-1}(\Lambda)J^{\mu\nu}U(\Lambda) = \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}J^{\rho\sigma}. \tag{3.16}$$

可见, $J^{\mu\nu}$ 是一个 2 阶 Lorentz 张量。

接着, 考虑 Λ 的无穷小形式 $\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \tilde{\omega}^{\mu}_{\nu}$, 则

$$U(\Lambda) = 1 - \frac{i}{2}\tilde{\omega}_{\alpha\beta}J^{\alpha\beta}, \quad U^{-1}(\Lambda) = U^{\dagger}(\Lambda) = 1 + \frac{i}{2}\tilde{\omega}_{\gamma\delta}J^{\gamma\delta}. \tag{3.17}$$

忽略二阶小量, (3.14) 式左边为

$$U^{-1}(\Lambda)J^{\mu\nu}U(\Lambda) = \left(1 + \frac{i}{2}\tilde{\omega}_{\gamma\delta}J^{\gamma\delta}\right)J^{\mu\nu}\left(1 - \frac{i}{2}\tilde{\omega}_{\alpha\beta}J^{\alpha\beta}\right)$$
$$= J^{\mu\nu} - \frac{i}{2}\tilde{\omega}_{\alpha\beta}J^{\mu\nu}J^{\alpha\beta} + \frac{i}{2}\tilde{\omega}_{\gamma\delta}J^{\gamma\delta}J^{\mu\nu} = J^{\mu\nu} - \frac{i}{2}\tilde{\omega}_{\rho\sigma}[J^{\mu\nu}, J^{\rho\sigma}], \quad (3.18)$$

右边为

$$\begin{split} \Lambda^{\mu}{}_{\rho}\Lambda^{\nu}{}_{\sigma}J^{\rho\sigma} &= (\delta^{\mu}{}_{\rho} + \tilde{\omega}^{\mu}{}_{\rho})(\delta^{\nu}{}_{\sigma} + \tilde{\omega}^{\nu}{}_{\sigma})J^{\rho\sigma} = \delta^{\mu}{}_{\rho}\delta^{\nu}{}_{\sigma}J^{\rho\sigma} + \delta^{\mu}{}_{\rho}\tilde{\omega}^{\nu}{}_{\sigma}J^{\rho\sigma} + \tilde{\omega}^{\mu}{}_{\rho}\delta^{\nu}{}_{\sigma}J^{\rho\sigma} \\ &= J^{\mu\nu} + \tilde{\omega}^{\nu}{}_{\sigma}J^{\mu\sigma} + \tilde{\omega}^{\mu}{}_{\rho}J^{\rho\nu} = J^{\mu\nu} + \tilde{\omega}_{\rho\sigma}g^{\nu\rho}J^{\mu\sigma} + \tilde{\omega}_{\sigma\rho}g^{\mu\sigma}J^{\rho\nu} \end{split}$$

$$= J^{\mu\nu} + \tilde{\omega}_{\rho\sigma} (g^{\nu\rho} J^{\mu\sigma} + g^{\mu\sigma} J^{\nu\rho})$$

$$= J^{\mu\nu} + \frac{1}{2} \tilde{\omega}_{\rho\sigma} (g^{\nu\rho} J^{\mu\sigma} + g^{\mu\sigma} J^{\nu\rho}) + \frac{1}{2} \tilde{\omega}_{\sigma\rho} (g^{\nu\sigma} J^{\mu\rho} + g^{\mu\rho} J^{\nu\sigma})$$

$$= J^{\mu\nu} + \frac{1}{2} \tilde{\omega}_{\rho\sigma} (g^{\nu\rho} J^{\mu\sigma} - g^{\nu\sigma} J^{\mu\rho} + g^{\mu\sigma} J^{\nu\rho} - g^{\mu\rho} J^{\nu\sigma}), \qquad (3.19)$$

最后三步用到 $J^{\mu\nu}$ 和 $\tilde{\omega}_{\mu\nu}$ 的反对称性。比较上面两式,可得

$$[J^{\mu\nu}, J^{\rho\sigma}] = i(g^{\nu\rho}J^{\mu\sigma} - g^{\mu\rho}J^{\nu\sigma} - g^{\nu\sigma}J^{\mu\rho} + g^{\mu\sigma}J^{\nu\rho})$$
$$= i[g^{\nu\rho}J^{\mu\sigma} - (\mu \leftrightarrow \nu)] - (\rho \leftrightarrow \sigma). \tag{3.20}$$

这是 $J^{\mu\nu}$ 满足的对易关系。以 $J^{\mu\nu}$ 作为基底张成线性空间,通过 (3.20) 式定义线性空间中的矢量乘积,则称此线性空间为 **Lorentz** 代数。

Lie 群是一类特殊的连续群,n 维 Lie 群的群空间由 n 个独立的连续实参数描述,具有 n 维微分流形的结构。Lie 群的任何线性表示的生成元均满足共同的对易关系,这些对易关系定义了生成元的 Lie 乘积,而生成元张成的线性空间关于 Lie 乘积是封闭的,构成代数,称为 **Lie** 代数。Lie 代数描述 Lie 群在恒元附近的局域结构。

Lorentz 群是一个 6 维 Lie 群,它对应的 Lie 代数就是 Lorentz 代数。Lorentz 群的任何线性表示的生成元都要满足 (3.20) 式。反过来,可以通过构造满足 (3.20) 式的生成元矩阵,来得到 Lorentz 群的线性表示。

我们可以把算符 $J^{\mu\nu}$ 的 6 个独立分量组合成 2 个三维矢量算符:

$$J^{i} \equiv \frac{1}{2} \varepsilon^{ijk} J^{jk}, \quad K^{i} \equiv J^{0i},$$
 (3.21)

即

$$\mathbf{J} = (J^{23}, J^{31}, J^{12}), \quad \mathbf{K} = (J^{01}, J^{02}, J^{03}). \tag{3.22}$$

 J^i 与 J^j 的对易关系为

$$\begin{split} [J^{i}, J^{j}] &= \frac{1}{4} \varepsilon^{ikl} \varepsilon^{jmn} [J^{kl}, J^{mn}] = \frac{i}{4} \varepsilon^{ikl} \varepsilon^{jmn} \{ [g^{lm} J^{kn} - (k \leftrightarrow l)] - (m \leftrightarrow n) \} \\ &= \frac{i}{2} \varepsilon^{ikl} \varepsilon^{jmn} [g^{lm} J^{kn} - (k \leftrightarrow l)] = i \varepsilon^{ikl} \varepsilon^{jmn} g^{lm} J^{kn} = -i \varepsilon^{ikl} \varepsilon^{jmn} \delta^{lm} J^{kn} = -i \varepsilon^{ikl} \varepsilon^{jln} J^{kn} \\ &= i \varepsilon^{ikl} \varepsilon^{jnl} J^{kn} = i (\delta^{ij} \delta^{kn} - \delta^{in} \delta^{kj}) J^{kn} = -i J^{ji} = i J^{ij}, \end{split}$$
(3.23)

第二、三步用到三维 Levi-Civita 符号的反对称性, 第八步用到 (1.82) 式。由 (1.96) 式, 有

$$J^{ij} = \frac{1}{2} 2\delta^{il} J^{lj} = \frac{1}{2} \varepsilon^{ijk} \varepsilon^{ljk} J^{lj} = \frac{1}{2} \varepsilon^{ijk} \varepsilon^{klj} J^{lj} = \varepsilon^{ijk} J^k, \tag{3.24}$$

从而推出

$$[J^i, J^j] = i\varepsilon^{ijk}J^k. (3.25)$$

在量子力学中,轨道角动量算符 $\mathbf{L} = \mathbf{x} \times \mathbf{p}$,写成分量的形式是 $L^i = \varepsilon^{ijk} x^j p^k$,从而,

$$\varepsilon^{ijk}L^k = \varepsilon^{ijk}\varepsilon^{klm}x^lp^m = (\delta^{il}\delta^{jm} - \delta^{im}\delta^{jl})x^lp^m = x^ip^j - x^jp^i.$$
 (3.26)

由 (2.10) 式、(2.11) 式及对易关系 $[x^i, p^j] = i\delta^{ij}$ 可得

$$\begin{split} [L^{i},L^{j}] &= \varepsilon^{ikl}\varepsilon^{jmn}[x^{k}p^{l},x^{m}p^{n}] = \varepsilon^{ikl}\varepsilon^{jmn}\{x^{k}[p^{l},x^{m}]p^{n} + x^{m}[x^{k},p^{n}]p^{l}\} \\ &= \varepsilon^{ikl}\varepsilon^{jmn}(-i\delta^{lm}x^{k}p^{n} + i\delta^{kn}x^{m}p^{l}) = i(-\varepsilon^{ikl}\varepsilon^{jln}x^{k}p^{n} + \varepsilon^{ikl}\varepsilon^{jmk}x^{m}p^{l}) \\ &= i(\varepsilon^{ikl}\varepsilon^{jnl}x^{k}p^{n} - \varepsilon^{ilk}\varepsilon^{jmk}x^{m}p^{l}) = i[(\delta^{ij}\delta^{kn} - \delta^{in}\delta^{kj})x^{k}p^{n} - (\delta^{ij}\delta^{lm} - \delta^{im}\delta^{lj})x^{m}p^{l}] \\ &= i[\delta^{ij}x^{k}p^{k} - x^{j}p^{i} - \delta^{ij}x^{l}p^{l} + x^{i}p^{j}] = i(x^{i}p^{j} - x^{j}p^{i}) = i\varepsilon^{ijk}L^{k}. \end{split} \tag{3.27}$$

可见, J 与 L 具有相同的对易关系, J 也是一个角动量算符。实际上, J 描述**总角动量**,不止可以包含轨道角动量 L,也可以包含自旋角动量。

满足

$$O^{\mathrm{T}}O = \mathbf{1} \tag{3.28}$$

的实方阵 O 称为实正交矩阵 (real orthogonal matrix)。对上式取行列式,得

$$1 = \det O^{\mathrm{T}} \cdot \det O = (\det O)^{2}. \tag{3.29}$$

可见,实正交矩阵 O 的行列式为 $\det O = \pm 1$ 。由行列式为 ± 1 的 3 维实正交矩阵按照矩阵乘法构成的群,称为**空间旋转群 \pm 1** SO(3),描述三维空间中的旋转变换。1.7.3 小节提到,SO(3) 群是 Lorentz 群的子群, ± 1 可以看作 SO(3) 群的生成元算符,而 (3.25) 式是 SO(3) 群的 Lie 代数关系。

另一方面, K 是增速算符。J 与 K 的对易关系为

$$[J^{i}, K^{j}] = \frac{1}{2} \varepsilon^{ikl} [J^{kl}, J^{0j}] = \frac{i}{2} \varepsilon^{ikl} \{ [g^{l0}J^{kj} - (k \leftrightarrow l)] - (0 \leftrightarrow j) \}$$

$$= i \varepsilon^{ikl} [g^{l0}J^{kj} - (0 \leftrightarrow j)] = i \varepsilon^{ikl} (g^{l0}J^{kj} - g^{lj}J^{k0}) = -i \varepsilon^{ikl} g^{lj}J^{k0} = i \varepsilon^{ikl} \delta^{lj}J^{k0}$$

$$= i \varepsilon^{ikj}J^{k0} = i \varepsilon^{ijk}J^{0k} = i \varepsilon^{ijk}K^{k}, \qquad (3.30)$$

而 K 自身的对易关系为

$$[K^{i}, K^{j}] = [J^{0i}, J^{0j}] = i(g^{i0}J^{0j} - g^{00}J^{ij} - g^{ij}J^{00} + g^{0j}J^{i0})$$

= $-i(g^{00}J^{ij} + g^{ij}J^{00}) = -iJ^{ij} = -i\varepsilon^{ijk}J^{k}.$ (3.31)

归纳起来,有

$$[J^i, J^j] = i\varepsilon^{ijk}J^k, \quad [J^i, K^j] = i\varepsilon^{ijk}K^k, \quad [K^i, K^j] = -i\varepsilon^{ijk}J^k.$$
 (3.32)

3.2 量子矢量场的 Lorentz 变换

3.2.1 Lorentz 群矢量表示的生成元

Lorentz 变换的无穷小参数 ω^{α} 可以转化为

$$\omega^{\alpha}{}_{\beta} = g^{\alpha\mu}\omega_{\mu\beta} = \frac{1}{2}(g^{\alpha\mu}\omega_{\mu\beta} - g^{\alpha\mu}\omega_{\beta\mu}) = \frac{1}{2}(g^{\alpha\mu}\omega_{\mu\nu}\delta^{\nu}{}_{\beta} - g^{\alpha\mu}\omega_{\nu\mu}\delta^{\nu}{}_{\beta}) = \frac{1}{2}(g^{\alpha\mu}\omega_{\mu\nu}\delta^{\nu}{}_{\beta} - g^{\alpha\nu}\omega_{\mu\nu}\delta^{\mu}{}_{\beta})$$

$$= \frac{1}{2}\omega_{\mu\nu}(g^{\mu\alpha}\delta^{\nu}{}_{\beta} - \delta^{\mu}{}_{\beta}g^{\nu\alpha}) = -\frac{i}{2}\omega_{\mu\nu}i(g^{\mu\alpha}\delta^{\nu}{}_{\beta} - \delta^{\mu}{}_{\beta}g^{\nu\alpha}) = -\frac{i}{2}\omega_{\mu\nu}(\mathcal{J}^{\mu\nu})^{\alpha}{}_{\beta}, \tag{3.33}$$

其中 $(\mathcal{J}^{\mu\nu})^{\alpha}_{\beta}$ 定义为

$$(\mathcal{J}^{\mu\nu})^{\alpha}{}_{\beta} \equiv i(g^{\mu\alpha}\delta^{\nu}{}_{\beta} - \delta^{\mu}{}_{\beta}g^{\nu\alpha}) = i(g^{\mu\alpha}\delta^{\nu}{}_{\beta} - g^{\nu\alpha}\delta^{\mu}{}_{\beta}). \tag{3.34}$$

容易看出, $\mathcal{J}^{\mu\nu}$ 是反对称的:

$$\mathcal{J}^{\mu\nu} = -\mathcal{J}^{\nu\mu}.\tag{3.35}$$

它的另一种写法是

$$(\mathcal{J}^{\mu\nu})_{\alpha\beta} = g_{\alpha\gamma}(\mathcal{J}^{\mu\nu})^{\gamma}{}_{\beta} = ig_{\alpha\gamma}(g^{\mu\gamma}\delta^{\nu}{}_{\beta} - \delta^{\mu}{}_{\beta}g^{\nu\gamma}) = i(\delta^{\mu}{}_{\alpha}\delta^{\nu}{}_{\beta} - \delta^{\mu}{}_{\beta}\delta^{\nu}{}_{\alpha}). \tag{3.36}$$

这样的话,可以把无穷小 Lorentz 变换 Λ_{ω} 写成

$$(\Lambda_{\omega})^{\alpha}{}_{\beta} = \delta^{\alpha}{}_{\beta} + \omega^{\alpha}{}_{\beta} = \delta^{\alpha}{}_{\beta} - \frac{i}{2}\omega_{\mu\nu}(\mathcal{J}^{\mu\nu})^{\alpha}{}_{\beta}. \tag{3.37}$$

 $\mathcal{J}^{\mu\nu}$ 与 $\mathcal{J}^{\rho\sigma}$ 的对易关系为

$$\begin{split} & \left[\mathcal{J}^{\mu\nu}, \mathcal{J}^{\rho\sigma} \right]^{\alpha}{}_{\beta} = \left(\mathcal{J}^{\mu\nu} \right)^{\alpha}{}_{\gamma} (\mathcal{J}^{\rho\sigma})^{\gamma}{}_{\beta} - \left(\mathcal{J}^{\rho\sigma} \right)^{\alpha}{}_{\gamma} (\mathcal{J}^{\mu\nu})^{\gamma}{}_{\beta} \\ & = i^{2} (g^{\mu\alpha} \delta^{\nu}{}_{\gamma} - \delta^{\mu}{}_{\gamma} g^{\nu\alpha}) (g^{\rho\gamma} \delta^{\sigma}{}_{\beta} - \delta^{\rho}{}_{\beta} g^{\sigma\gamma}) - (\mu \leftrightarrow \rho, \nu \leftrightarrow \sigma) \\ & = -g^{\mu\alpha} \delta^{\nu}{}_{\gamma} g^{\rho\gamma} \delta^{\sigma}{}_{\beta} + g^{\mu\alpha} \delta^{\nu}{}_{\gamma} \delta^{\rho}{}_{\beta} g^{\sigma\gamma} + \delta^{\mu}{}_{\gamma} g^{\nu\alpha} g^{\rho\gamma} \delta^{\sigma}{}_{\beta} - \delta^{\mu}{}_{\gamma} g^{\nu\alpha} \delta^{\rho}{}_{\beta} g^{\sigma\gamma} - (\mu \leftrightarrow \rho, \nu \leftrightarrow \sigma) \\ & = -g^{\mu\alpha} g^{\rho\nu} \delta^{\sigma}{}_{\beta} + g^{\mu\alpha} \delta^{\rho}{}_{\beta} g^{\sigma\nu} + g^{\nu\alpha} g^{\rho\mu} \delta^{\sigma}{}_{\beta} - g^{\nu\alpha} \delta^{\rho}{}_{\beta} g^{\sigma\mu} - (\mu \leftrightarrow \rho, \nu \leftrightarrow \sigma) \\ & = -g^{\nu\rho} g^{\mu\alpha} \delta^{\sigma}{}_{\beta} + g^{\mu\rho} g^{\nu\alpha} \delta^{\sigma}{}_{\beta} + g^{\nu\sigma} g^{\mu\alpha} \delta^{\rho}{}_{\beta} - g^{\mu\sigma} g^{\nu\alpha} \delta^{\rho}{}_{\beta} \\ & - [-g^{\sigma\mu} g^{\rho\alpha} \delta^{\nu}{}_{\beta} + g^{\rho\mu} g^{\sigma\alpha} \delta^{\nu}{}_{\beta} + g^{\sigma\nu} g^{\rho\alpha} \delta^{\mu}{}_{\beta} - g^{\rho\nu} g^{\sigma\alpha} \delta^{\mu}{}_{\beta}] \\ & = g^{\nu\rho} (g^{\sigma\alpha} \delta^{\mu}{}_{\beta} - g^{\mu\alpha} \delta^{\sigma}{}_{\beta}) + g^{\mu\rho} (g^{\nu\alpha} \delta^{\sigma}{}_{\beta} - g^{\sigma\alpha} \delta^{\nu}{}_{\beta}) + g^{\nu\sigma} (g^{\mu\alpha} \delta^{\rho}{}_{\beta} - g^{\rho\alpha} \delta^{\mu}{}_{\beta}) + g^{\mu\sigma} (g^{\rho\alpha} \delta^{\nu}{}_{\beta} - g^{\nu\alpha} \delta^{\rho}{}_{\beta}) \\ & = -i g^{\nu\rho} (\mathcal{J}^{\sigma\mu})^{\alpha}{}_{\beta} - i g^{\mu\rho} (\mathcal{J}^{\nu\sigma})^{\alpha}{}_{\beta} - i g^{\nu\sigma} (\mathcal{J}^{\mu\rho})^{\alpha}{}_{\beta} + g^{\mu\sigma} (\mathcal{J}^{\nu\rho})^{\alpha}{}_{\beta}], \end{split}$$

$$(3.38)$$

即

$$[\mathcal{J}^{\mu\nu}, \mathcal{J}^{\rho\sigma}] = i(g^{\nu\rho}\mathcal{J}^{\mu\sigma} - g^{\mu\rho}\mathcal{J}^{\nu\sigma} - g^{\nu\sigma}\mathcal{J}^{\mu\rho} + g^{\mu\sigma}\mathcal{J}^{\nu\rho}). \tag{3.39}$$

可见, $\mathcal{J}^{\mu\nu}$ 满足 Lorentz 代数关系 (3.20)。 $\Lambda^{\alpha}{}_{\beta}$ 属于 Lorentz 群的矢量表示,因而 $\mathcal{J}^{\mu\nu}$ 就是**矢** 量表示的生成元。

无穷小 Lorentz 变换 (3.37) 的矩阵记法为

$$\Lambda_{\omega} = \mathbf{1} + \omega = \mathbf{1} - \frac{i}{2}\omega_{\mu\nu}\mathcal{J}^{\mu\nu},\tag{3.40}$$

它可以看作矩阵级数

$$\Lambda = \exp\left(-\frac{i}{2}\omega_{\mu\nu}\mathcal{J}^{\mu\nu}\right) = e^{\omega} = \sum_{n=0}^{\infty} \frac{\omega^n}{n!}$$
 (3.41)

只展开到 ω 一阶项的结果。矩阵 ω 与度规矩阵 \mathbf{g} 有如下关系:

$$(\mathbf{g}^{-1}\omega^{\mathrm{T}}\mathbf{g})^{\alpha}{}_{\beta} = g^{\alpha\gamma}(\omega^{\mathrm{T}})_{\gamma}{}^{\delta}g_{\delta\beta} = g^{\alpha\gamma}\omega^{\delta}{}_{\gamma}g_{\delta\beta} = g^{\alpha\gamma}\omega_{\beta\gamma} = -g^{\alpha\gamma}\omega_{\gamma\beta} = -\omega^{\alpha}{}_{\beta}, \tag{3.42}$$

即

$$\mathbf{g}^{-1}\omega^{\mathrm{T}}\mathbf{g} = -\omega. \tag{3.43}$$

从而,有

$$\mathbf{g}^{-1}\Lambda^{\mathrm{T}}\mathbf{g} = \mathbf{g}^{-1} \left[\sum_{n=0}^{\infty} \frac{(\omega^{\mathrm{T}})^n}{n!} \right] \mathbf{g} = \sum_{n=0}^{\infty} \frac{(\mathbf{g}^{-1}\omega^{\mathrm{T}}\mathbf{g})^n}{n!} = \exp(\mathbf{g}^{-1}\omega^{\mathrm{T}}\mathbf{g}) = e^{-\omega}.$$
(3.44)

若两个同阶方阵 A 和 B 相互对易,即 [A,B]=0,则二项式定理成立:

$$(A+B)^n = \sum_{j=0}^n \frac{n!}{j!(n-j)!} A^j B^{n-j}.$$
 (3.45)

阶乘的定义可以推广到负整数:对于整数 m < 0,定义

$$m! \to \infty, \quad \frac{1}{m!} \to 0.$$
 (3.46)

从而,对于 j > n,有 $[(n-j)!]^{-1} \to 0$ 。这样一来,我们可以将 (3.45) 式右边的级数化成无穷级数:

$$(A+B)^n = \sum_{j=0}^{\infty} \frac{n!}{j!(n-j)!} A^j B^{n-j}.$$
 (3.47)

利用上式,可得

$$e^{A+B} = \sum_{n=0}^{\infty} \frac{1}{n!} (A+B)^n = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{j=0}^{\infty} \frac{n!}{j!(n-j)!} A^j B^{n-j} = \sum_{j=0}^{\infty} \frac{A^j}{j!} \sum_{n=0}^{\infty} \frac{B^{n-j}}{(n-j)!} = e^A e^B. \quad (3.48)^n = \sum_{n=0}^{\infty} \frac{1}{n!} (A+B)^n = \sum_$$

值得注意的是,上式不仅对相互对易的方阵成立,也对相互对易的算符成立。

根据 (3.44) 和 (3.48) 式,有

$$\mathbf{g}^{-1}\Lambda^{\mathrm{T}}\mathbf{g}\Lambda = e^{-\omega}e^{\omega} = e^{-\omega+\omega} = e^{\mathbf{0}} = \mathbf{1}.$$
(3.49)

于是,

$$\Lambda^{\mathrm{T}} \mathbf{g} \Lambda = \mathbf{g}, \tag{3.50}$$

即 Λ 满足保度规条件 (1.41)。因此,由 (3.41) 式定义的 Λ 确实是 Lorentz 变换。此时,变换参数 $\omega_{\mu\nu}$ 不是无穷小量,而具有有限的数值,所以

$$\Lambda = \exp\left(-\frac{i}{2}\omega_{\mu\nu}\mathcal{J}^{\mu\nu}\right) \tag{3.51}$$

是用 Lorentz 群矢量表示生成元 $\mathcal{J}^{\mu\nu}$ 表达出来的**有限变换**。由于变换参数 $\omega_{\mu\nu}$ 可以连续地变化 到 $\omega_{\mu\nu}=0$,用 (3.51) 式表达的 Lorentz 变换在群空间中与恒等变换是连通着的,因而它属于固有保时向 Lorentz 群。

3.2.2 量子标量场的 Lorentz 变换形式

在正则量子化程序中,标量场 $\phi(x)$ 是物理 Hilbert 空间中的算符,类似于 (3.16) 式, $\phi(x)$ 的固有保时向 Lorentz 变换关系 (2.52) 可以表示为

$$\phi'(x') = U^{-1}(\Lambda)\phi(x')U(\Lambda) = \phi(x). \tag{3.52}$$

上式表明,变换后的标量场在变换后的时空点上的值等于变换前的标量场在变换前的时空点上的值。图 3.1(a) 以空间旋转变换为例说明这种情况。由于 $x' = \Lambda x$ 等价于 $x = \Lambda^{-1}x'$,(3.52) 式可以通过改变记号写作

$$U^{-1}(\Lambda)\phi(x)U(\Lambda) = \phi(\Lambda^{-1}x). \tag{3.53}$$

相应地, $\phi(x)$ 在变换后的态 $|\Psi'\rangle$ 中的期待值为

$$\langle \Psi' | \phi(x) | \Psi' \rangle = \langle \Psi | U^{-1}(\Lambda)\phi(x)U(\Lambda) | \Psi \rangle = \langle \Psi | \phi(\Lambda^{-1}x) | \Psi \rangle. \tag{3.54}$$

另一方面,由 (1.57) 式可得 $\partial^{\mu}\phi(x)$ 的相应 Lorentz 变换形式为

$$\partial'^{\mu}\phi'(x') = U^{-1}(\Lambda)\partial'^{\mu}\phi(x')U(\Lambda) = \partial'^{\mu}[U^{-1}(\Lambda)\phi(x')U(\Lambda)] = \partial'^{\mu}\phi(x) = \Lambda^{\mu}_{\nu}\partial^{\nu}\phi(x). \tag{3.55}$$

于是,在固有保时向 Lorentz 变换下,自由实标量场的拉氏量 (2.54) 的变换形式为

$$\mathcal{L}'(x') = U^{-1}(\Lambda)\mathcal{L}(x')U(\Lambda) = \frac{1}{2}U^{-1}(\Lambda)[\partial'^{\mu}\phi(x')\partial'_{\mu}\phi(x') - m^{2}\phi^{2}(x')]U(\Lambda)$$

$$= \frac{1}{2}\{g_{\mu\nu}U^{-1}(\Lambda)\partial'^{\mu}\phi(x')U(\Lambda)U^{-1}(\Lambda)\partial'^{\nu}\phi(x')U(\Lambda) - m^{2}[U^{-1}(\Lambda)\phi(x')U(\Lambda)]^{2}\}$$

$$= \frac{1}{2}[g_{\mu\nu}\Lambda^{\mu}{}_{\rho}\partial^{\rho}\phi(x)\Lambda^{\nu}{}_{\sigma}\partial^{\sigma}\phi(x) - m^{2}\phi^{2}(x)] = \frac{1}{2}[g_{\rho\sigma}\partial^{\rho}\phi(x)\partial^{\sigma}\phi(x) - m^{2}\phi^{2}(x)]$$

$$= \mathcal{L}(x), \tag{3.56}$$

图 3.1: 在绕 z 轴空间旋转变换下,标量场 $\phi(x)$ 和矢量场 $A^{\mu}(x)$ 的变换示意图。

倒数第二步用到保度规条件 (1.30)。从而,

$$U^{-1}(\Lambda)\mathcal{L}(x)U(\Lambda) = \mathcal{L}(\Lambda^{-1}x). \tag{3.57}$$

可见, 拉氏量 (2.54) 确实是个 Lorentz 标量。

对于无穷小 Lorentz 变换 $\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\nu}$, 可得

$$(\Lambda^{-1})^{\mu}_{\ \nu} = \Lambda_{\nu}^{\ \mu} = g_{\nu\alpha}g^{\mu\beta}\Lambda^{\alpha}_{\ \beta} = g_{\nu\alpha}g^{\mu\beta}(\delta^{\alpha}_{\ \beta} + \omega^{\alpha}_{\ \beta}) = g_{\nu\beta}g^{\mu\beta} + g^{\mu\beta}\omega_{\nu\beta} = \delta^{\mu}_{\ \nu} - g^{\mu\beta}\omega_{\beta\nu}$$
$$= \delta^{\mu}_{\ \nu} - \omega^{\mu}_{\ \nu}, \tag{3.58}$$

从而,有

$$(\Lambda^{-1}x)^{\mu} = (\delta^{\mu}_{\ \nu} - \omega^{\mu}_{\ \nu})x^{\nu} = x^{\mu} - \omega^{\mu}_{\ \nu}x^{\nu}. \tag{3.59}$$

将 (3.53) 式右边在 x 处展开到 ω 的一阶项,得

$$\phi(\Lambda^{-1}x) = \phi(x) - \omega^{\mu}_{\nu}x^{\nu}\partial_{\mu}\phi(x) = \phi(x) - \omega_{\mu\nu}x^{\nu}\partial^{\mu}\phi(x) = \phi(x) - \frac{1}{2}(\omega_{\mu\nu}x^{\nu}\partial^{\mu} + \omega_{\nu\mu}x^{\mu}\partial^{\nu})\phi(x)$$

$$= \phi(x) - \frac{1}{2}\omega_{\mu\nu}(x^{\nu}\partial^{\mu} - x^{\mu}\partial^{\nu})\phi(x) = \phi(x) + \frac{1}{2}\omega_{\mu\nu}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\phi(x)$$

$$= \phi(x) - \frac{i}{2}\omega_{\mu\nu}i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\phi(x). \tag{3.60}$$

根据 (3.6) 式,将 (3.53) 式左边展开到 ω 的一阶项,得

$$U^{-1}(\Lambda)\phi(x)U(\Lambda) = \left(1 + \frac{i}{2}\omega_{\gamma\delta}J^{\gamma\delta}\right)\phi(x)\left(1 - \frac{i}{2}\omega_{\alpha\beta}J^{\alpha\beta}\right)$$
$$= \phi(x) - \frac{i}{2}\omega_{\alpha\beta}\phi(x)J^{\alpha\beta} + \frac{i}{2}\omega_{\gamma\delta}J^{\gamma\delta}\phi(x) = \phi(x) - \frac{i}{2}\omega_{\mu\nu}[\phi(x), J^{\mu\nu}]. \tag{3.61}$$

两相比较,给出

$$[\phi(x), J^{\mu\nu}] = i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})\phi(x) = L^{\mu\nu}\phi(x), \tag{3.62}$$

其中 L^{μν} 定义为

$$L^{\mu\nu} \equiv i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu}). \tag{3.63}$$

对于空间分量 L^{ij} , 可以等价地定义

$$L^{i} \equiv \frac{1}{2} \varepsilon^{ijk} L^{jk} = \frac{i}{2} \varepsilon^{ijk} (x^{j} \partial^{k} - x^{k} \partial^{j}) = \frac{i}{2} (\varepsilon^{ijk} x^{j} \partial^{k} - \varepsilon^{ikj} x^{j} \partial^{k}) = i \varepsilon^{ijk} x^{j} \partial^{k}, \qquad (3.64)$$

写成空间矢量的形式是

$$\mathbf{L} = -i\,\mathbf{x} \times \nabla. \tag{3.65}$$

可见, L 就是微分算符形式的轨道角动量算符。根据 (3.21) 式, (3.62) 式的空间分量部分可以 改写为

$$[\phi(x), \mathbf{J}] = \mathbf{L}\,\phi(x). \tag{3.66}$$

上式表明,总角动量算符 J 生成了轨道角动量,但没有生成自旋角动量。这说明标量场没有自旋,对应于**零自旋**粒子。

3.2.3 量子矢量场的 Lorentz 变换形式

 $\partial^{\mu}\phi(x)$ 是通过对标量场 $\phi(x)$ 取时空导数得到的 Lorentz 矢量。自身就是 Lorentz 矢量的场 $A^{\mu}(x)$ 也应该具有像 (3.55) 式那样的 Lorentz 变换形式,即

$$A^{\prime \mu}(x') = U^{-1}(\Lambda)A^{\mu}(x')U(\Lambda) = \Lambda^{\mu}{}_{\nu}A^{\nu}(x), \tag{3.67}$$

或者写成

$$U^{-1}(\Lambda)A^{\mu}(x)U(\Lambda) = \Lambda^{\mu}{}_{\nu}A^{\nu}(\Lambda^{-1}x). \tag{3.68}$$

这就是**量子矢量场的 Lorentz 变换形式**。相应地, $A^{\mu}(x)$ 在 $|\Psi'\rangle$ 中的期待值为

$$\langle \Psi' | A^{\mu}(x) | \Psi' \rangle = \langle \Psi | U^{-1}(\Lambda) A^{\mu}(x) U(\Lambda) | \Psi \rangle = \Lambda^{\mu}_{\ \nu} \langle \Psi | A^{\nu}(\Lambda^{-1}x) | \Psi \rangle. \tag{3.69}$$

对于固有保时向 Lorentz 变换,根据矢量表示中的无穷小形式 (3.40), (3.67) 式的无穷小形式为

$$A^{\prime \mu}(x^{\prime}) = \left[\delta^{\mu}_{\ \nu} - \frac{i}{2} \omega_{\rho\sigma} (\mathcal{J}^{\rho\sigma})^{\mu}_{\ \nu} \right] A^{\nu}(x) = A^{\mu}(x) - \frac{i}{2} \omega_{\rho\sigma} (\mathcal{J}^{\rho\sigma})^{\mu}_{\ \nu} A^{\nu}(x). \tag{3.70}$$

将上式与 (1.166) 式比较,可以发现,1.7.3 小节中的 $I^{\mu\nu}$ 在矢量表示中对应于 $\mathcal{J}^{\mu\nu}$ 。图 3.1(b) 以空间旋转变换为例说明矢量场的变换情况。可以看出,在 Lorentz 变换下,除了矢量场的分布区域发生变化之外,矢量场的分量也要以 Lorentz 矢量分量的身份发生变化。

利用 (3.59) 式, 在 x 处将 $A^{\nu}(\Lambda^{-1}x)$ 展开到 ω 的一阶项, 得

$$A^{\nu}(\Lambda^{-1}x) = A^{\nu}(x) - \omega^{\alpha}{}_{\beta}x^{\beta}\partial_{\alpha}A^{\nu}(x) = A^{\nu}(x) - \omega_{\alpha\beta}x^{\beta}\partial^{\alpha}A^{\nu}(x)$$
$$= A^{\nu}(x) + \frac{1}{2}\omega_{\alpha\beta}(x^{\alpha}\partial^{\beta} - x^{\beta}\partial^{\alpha})A^{\nu}(x). \tag{3.71}$$

从而, (3.68) 式右边可展开为

$$\Lambda^{\mu}{}_{\nu}A^{\nu}(\Lambda^{-1}x) = \left[\delta^{\mu}{}_{\nu} - \frac{i}{2}\omega_{\rho\sigma}(\mathcal{J}^{\rho\sigma})^{\mu}{}_{\nu}\right] \left[A^{\nu}(x) + \frac{1}{2}\omega_{\alpha\beta}(x^{\alpha}\partial^{\beta} - x^{\beta}\partial^{\alpha})A^{\nu}(x)\right]
= A^{\mu}(x) + \frac{1}{2}\omega_{\alpha\beta}(x^{\alpha}\partial^{\beta} - x^{\beta}\partial^{\alpha})A^{\mu}(x) - \frac{i}{2}\omega_{\rho\sigma}(\mathcal{J}^{\rho\sigma})^{\mu}{}_{\nu}A^{\nu}(x)
= A^{\mu}(x) - \frac{i}{2}\omega_{\rho\sigma}[L^{\rho\sigma}A^{\mu}(x) + (\mathcal{J}^{\rho\sigma})^{\mu}{}_{\nu}A^{\nu}(x)].$$
(3.72)

另一方面, (3.68) 式左边的无穷小展开式为

$$U^{-1}(\Lambda)A^{\mu}(x)U(\Lambda) = \left(1 + \frac{i}{2}\omega_{\gamma\delta}J^{\gamma\delta}\right)A^{\mu}(x)\left(1 - \frac{i}{2}\omega_{\alpha\beta}J^{\alpha\beta}\right)$$
$$= A^{\mu}(x) - \frac{i}{2}\omega_{\alpha\beta}A^{\mu}(x)J^{\alpha\beta} + \frac{i}{2}\omega_{\gamma\delta}J^{\gamma\delta}A^{\mu}(x) = A^{\mu}(x) - \frac{i}{2}\omega_{\rho\sigma}[A^{\mu}(x), J^{\rho\sigma}]. \tag{3.73}$$

由此可得

$$[A^{\mu}(x), J^{\rho\sigma}] = L^{\rho\sigma} A^{\mu}(x) + (\mathcal{J}^{\rho\sigma})^{\mu}_{\ \nu} A^{\nu}(x). \tag{3.74}$$

生成元 グル 的空间分量等价于三维矢量

$$\mathcal{J}^{i} \equiv \frac{1}{2} \varepsilon^{ijk} \mathcal{J}^{jk}, \quad \mathcal{J} = (\mathcal{J}^{23}, \mathcal{J}^{31}, \mathcal{J}^{12}). \tag{3.75}$$

- 60 - 第 3 章 矢量场

再根据 (3.21) 和 (3.64) 式, (3.74) 式的空间分量部分可以改写为

$$[A^{\mu}(x), \mathbf{J}] = \mathbf{L} A^{\mu}(x) + (\mathcal{J})^{\mu}_{\ \nu} A^{\nu}(x). \tag{3.76}$$

上式表明,总角动量算符 \mathbf{J} 不仅生成了轨道角动量,还生成了由 \mathbf{J} 描述的**自旋角动量**。 \mathbf{J}^i 的 具体矩阵形式为

$$(\mathcal{J}^{1})^{\mu}_{\ \nu} = (\mathcal{J}^{23})^{\mu}_{\ \nu} = i(g^{2\mu}\delta^{3}_{\ \nu} - g^{3\mu}\delta^{2}_{\ \nu}) = \begin{pmatrix} 0 & & \\ & 0 & \\ & & 0 & -i \\ & & i & 0 \end{pmatrix}, \tag{3.77}$$

$$(\mathcal{J}^2)^{\mu}_{\ \nu} = (\mathcal{J}^{31})^{\mu}_{\ \nu} = i(g^{3\mu}\delta^1_{\ \nu} - g^{1\mu}\delta^3_{\ \nu}) = \begin{pmatrix} 0 & & & \\ & 0 & & i \\ & & 0 & \\ & -i & & 0 \end{pmatrix}, \tag{3.78}$$

$$(\mathcal{J}^3)^{\mu}_{\ \nu} = (\mathcal{J}^{12})^{\mu}_{\ \nu} = i(g^{1\mu}\delta^2_{\ \nu} - g^{2\mu}\delta^1_{\ \nu}) = \begin{pmatrix} 0 & & \\ & 0 & -i \\ & i & 0 \\ & & & 0 \end{pmatrix}. \tag{3.79}$$

只关注空间分量,可得

$$(\mathcal{J}^{1}\mathcal{J}^{1})_{j}^{i} = \begin{pmatrix} 0 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \quad (\mathcal{J}^{2}\mathcal{J}^{2})_{j}^{i} = \begin{pmatrix} 1 & & \\ & 0 & \\ & & 1 \end{pmatrix}, \quad (\mathcal{J}^{3}\mathcal{J}^{3})_{j}^{i} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 0 \end{pmatrix}.$$
 (3.80)

因此,有

$$(\mathcal{J}^{2})_{j}^{i} = (\mathcal{J}^{1}\mathcal{J}^{1} + \mathcal{J}^{2}\mathcal{J}^{2} + \mathcal{J}^{3}\mathcal{J}^{3})_{j}^{i} = \begin{pmatrix} 2 & \\ 2 & \\ & 2 \end{pmatrix} = 2\delta_{j}^{i}.$$
(3.81)

根据量子力学的角动量理论, \mathcal{J}^2 的本征值为 s(s+1),即 $(\mathcal{J}^2)^i_{\ j}=s(s+1)\delta^i_{\ j}$,其中 s 为自旋量子数。可见,矢量场 $A^\mu(x)$ 的自旋量子数为

$$s = 1. (3.82)$$

经过量子化程序之后,矢量场 $A^{\mu}(x)$ 应当描述**自旋为 1** 的粒子。

3.3 有质量矢量场的正则量子化

类似于电磁场,对任意的矢量场 A^{μ} 可以定义反对称的场强张量

$$F^{\mu\nu} = -F^{\nu\mu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}. \tag{3.83}$$

对于一个自由的**有质量**的实矢量场 A^{μ} ,用场强张量可以将它的 Lorentz 不变拉氏量写为

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_{\mu}A^{\mu}.$$
 (3.84)

上式右边第一项是动能项,第二项是质量项。动能项可以用 A^{μ} 表达成

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = -\frac{1}{4}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu})$$

$$= -\frac{1}{4}[(\partial_{\mu}A_{\nu})\partial^{\mu}A^{\nu} - (\partial_{\mu}A_{\nu})\partial^{\nu}A^{\mu} - (\partial_{\nu}A_{\mu})\partial^{\mu}A^{\nu} + (\partial_{\nu}A_{\mu})\partial^{\nu}A^{\mu}]$$

$$= -\frac{1}{2}(\partial_{\mu}A_{\nu})\partial^{\mu}A^{\nu} + \frac{1}{2}(\partial_{\nu}A_{\mu})\partial^{\mu}A^{\nu}.$$
(3.85)

从而,有

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} = -\partial^{\mu} A^{\nu} + \partial^{\nu} A^{\mu} = -F^{\mu\nu}, \quad \frac{\partial \mathcal{L}}{\partial A_{\nu}} = m^{2} A^{\nu}. \tag{3.86}$$

Euler-Lagrange 方程 (1.114) 给出

$$0 = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} A_{\nu})} - \frac{\partial \mathcal{L}}{\partial A_{\nu}} = -\partial_{\mu} F^{\mu\nu} - m^2 A^{\nu}, \tag{3.87}$$

即

$$\partial_{\mu}F^{\mu\nu} + m^2 A^{\nu} = 0. \tag{3.88}$$

上式称为 Proca 方程,是自由的有质量矢量场的相对论性运动方程。

由
$$\partial_{\nu}\partial_{\mu}F^{\mu\nu} = -\partial_{\nu}\partial_{\mu}F^{\nu\mu} = -\partial_{\mu}\partial_{\nu}F^{\nu\mu} = -\partial_{\nu}\partial_{\mu}F^{\mu\nu}$$
 可知

$$\partial_{\nu}\partial_{\mu}F^{\mu\nu} = 0. \tag{3.89}$$

于是,从 Proca 方程 (3.88) 可得

$$0 = \partial_{\nu}(\partial_{\mu}F^{\mu\nu} + m^2A^{\nu}) = \partial_{\nu}\partial_{\mu}F^{\mu\nu} + m^2\partial_{\nu}A^{\nu} = m^2\partial_{\nu}A^{\nu}. \tag{3.90}$$

这意味着,质量 $m \neq 0$ 时,矢量场 A^{μ} 应当满足 Lorenz 条件

$$\partial_{\mu}A^{\mu} = 0. \tag{3.91}$$

从而,有

$$\partial_{\mu}F^{\mu\nu} = \partial_{\mu}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) = \partial^{2}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = \partial^{2}A^{\nu}. \tag{3.92}$$

因此, Proca 方程 (3.88) 可化为 Klein-Gordon 方程

$$(\partial^2 + m^2)A^{\mu}(x) = 0. (3.93)$$

A^μ 对应的共轭动量密度为

$$\pi_{\mu} = \frac{\partial \mathcal{L}}{\partial (\partial^0 A^{\mu})} = -\partial_0 A_{\mu} + \partial_{\mu} A_0 = -F_{0\mu}. \tag{3.94}$$

时间分量和空间分量分别是

$$\pi_0 = -F_{00} = 0, \quad \pi_i = -\partial_0 A_i + \partial_i A_0 = -F_{0i}.$$
(3.95)

由于 $\pi_0 = 0$,它不能作为与 A^0 对应的正则共轭场,因而不能为 A^0 构造正则对易关系。实际上,由于 Lorenz 条件 (3.91) 的存在, A^μ 只有 3 个独立分量,我们可以将 A^0 视作依赖于其它 3 个分量的量。因此,正则量子化程序要求独立的正则变量满足等时对易关系

$$[A^{i}(\mathbf{x},t),\pi_{j}(\mathbf{y},t)] = i\delta^{i}{}_{j}\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad [A^{i}(\mathbf{x},t),A^{j}(\mathbf{y},t)] = [\pi_{i}(\mathbf{x},t),\pi_{j}(\mathbf{y},t)] = 0.$$
(3.96)

3.3.1 极化矢量与平面波展开

 $A^{\mu}(x)$ 既然满足 Klein-Gordon 方程,应该具有两个平面波解,即正能解 $\exp(-ip \cdot x)$ 和负能解 $\exp(ip \cdot x)$ 。由于 $A^{\mu}(x)$ 带有一个 Lorentz 矢量指标,平面波展开式的系数也必须具有一个这样的指标。一般地,对于确定的动量 **p**,矢量场的正能解模式具有如下形式:

$$A^{\mu}(x; \mathbf{p}, \sigma) = e^{\mu}(\mathbf{p}, \sigma) \exp(-ip \cdot x), \quad p^{0} = E_{\mathbf{p}} = \sqrt{|\mathbf{p}|^{2} + m^{2}}.$$
 (3.97)

这里的系数 $e^{\mu}(\mathbf{p}, \sigma)$ 是 Lorentz 矢量,称为**极化矢量** (polarization vector),它依赖于动量 p,而且具有另外一个指标 σ 以描述矢量粒子的极化态。我们希望一组极化矢量能够构成 Lorentz 矢量空间的一组基底,从而,可以用它们来展开一个任意的 Lorentz 矢量。为了做到这一点,一组极化矢量应当是线性独立且正交完备的。Lorentz 矢量空间是一个 4 维空间,因而这样的极化矢量应该有 4 个,包括 1 个类时的极化矢量 $e^{\mu}(\mathbf{p}, 0)$ 与 3 个类空的极化矢量 $e^{\mu}(\mathbf{p}, 1)$ 、 $e^{\mu}(\mathbf{p}, 2)$ 和 $e^{\mu}(\mathbf{p}, 3)$ 。在没有额外约束的情况下,我们要求这 4 个极化矢量是实的,而且满足 Lorentz 矢量空间中的正交归一关系

$$e_{\mu}(\mathbf{p},\sigma)e^{\mu}(\mathbf{p},\sigma') = g_{\sigma\sigma'} \tag{3.98}$$

和完备性关系

$$\sum_{\sigma=0}^{3} g_{\sigma\sigma} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma) = g_{\mu\nu}.$$
(3.99)

上面这两个关系都是 Lorentz 协变的。只要在某个惯性参考系中取定一组符合这两个关系的极化矢量,通过 Lorentz 变换就可以在其它惯性参考系中得到依然满足这两个关系的一组极化矢量。

我们可以根据与动量 p^{μ} 的关系来选择一组极化矢量。首先,选取 2 个只有空间分量的类空 **横向**极化矢量

$$e^{\mu}(\mathbf{p}, 1) = (0, \mathbf{e}(\mathbf{p}, 1)), \quad e^{\mu}(\mathbf{p}, 2) = (0, \mathbf{e}(\mathbf{p}, 2)).$$
 (3.100)

此处,

$$\mathbf{e}(\mathbf{p}, 1) = \frac{1}{|\mathbf{p}||\mathbf{p}_{\mathrm{T}}|} (p^{1}p^{3}, p^{2}p^{3}, -|\mathbf{p}_{\mathrm{T}}|^{2}), \quad \mathbf{e}(\mathbf{p}, 2) = \frac{1}{|\mathbf{p}_{\mathrm{T}}|} (-p^{2}, p^{1}, 0), \tag{3.101}$$

其中

$$|\mathbf{p}_{\rm T}| \equiv \sqrt{(p^1)^2 + (p^2)^2}.$$
 (3.102)

"横向"指的是它们在三维空间中与 p 垂直,即

$$\mathbf{p} \cdot \mathbf{e}(\mathbf{p}, 1) = \frac{1}{|\mathbf{p}||\mathbf{p}_{\mathrm{T}}|} [(p^{1})^{2}p^{3} + (p^{2})^{2}p^{3} - p^{3}|\mathbf{p}_{\mathrm{T}}|^{2}] = 0, \tag{3.103}$$

$$\mathbf{p} \cdot \mathbf{e}(\mathbf{p}, 2) = \frac{1}{|\mathbf{p}_{\mathrm{T}}|} (-p^{1}p^{2} + p^{2}p^{1}) = 0.$$
 (3.104)

此外,存在如下关系:

$$\mathbf{e}(\mathbf{p}, 1) \cdot \mathbf{e}(\mathbf{p}, 1) = \frac{1}{|\mathbf{p}|^2 |\mathbf{p}_{\mathrm{T}}|^2} [(p^1)^2 (p^3)^2 + (p^2)^2 (p^3)^2 + |\mathbf{p}_{\mathrm{T}}|^4]$$

$$= \frac{1}{|\mathbf{p}|^2 |\mathbf{p}_{\mathrm{T}}|^2} |\mathbf{p}_{\mathrm{T}}|^2 [(p^3)^2 + |\mathbf{p}_{\mathrm{T}}|^2] = \frac{1}{|\mathbf{p}|^2 |\mathbf{p}_{\mathrm{T}}|^2} |\mathbf{p}_{\mathrm{T}}|^2 |\mathbf{p}|^2 = 1, \quad (3.105)$$

$$\mathbf{e}(\mathbf{p}, 2) \cdot \mathbf{e}(\mathbf{p}, 2) = \frac{1}{|\mathbf{p}_{\mathrm{T}}|^2} [(p^2)^2 + (p^1)^2] = \frac{1}{|\mathbf{p}_{\mathrm{T}}|^2} |\mathbf{p}_{\mathrm{T}}|^2 = 1, \tag{3.106}$$

$$\mathbf{e}(\mathbf{p},1) \cdot \mathbf{e}(\mathbf{p},2) = \frac{1}{|\mathbf{p}||\mathbf{p}_{\mathrm{T}}|^2} (-p^1 p^3 p^2 + p^2 p^3 p^1) = 0.$$
(3.107)

也就是说,它们在三维空间中是正交归一的:

$$\mathbf{e}(\mathbf{p}, i) \cdot \mathbf{e}(\mathbf{p}, j) = \delta_{ij}, \quad i, j = 1, 2. \tag{3.108}$$

因此,这两个横向极化矢量可以满足四维时空中的横向条件

$$p_{\mu}e^{\mu}(\mathbf{p},1) = p_{\mu}e^{\mu}(\mathbf{p},2) = 0,$$
 (3.109)

和正交归一关系

$$e_{\mu}(\mathbf{p}, i)e^{\mu}(\mathbf{p}, j) = -\mathbf{e}(\mathbf{p}, i) \cdot \mathbf{e}(\mathbf{p}, j) = -\delta_{ij} = g_{ij}.$$
(3.110)

接着,要求第 3 个类空极化矢量 $e^{\mu}(\mathbf{p},3)$ 是**纵向**的,即在三维空间中与 \mathbf{p} 平行。这样还不能确定它的时间分量,为此,我们进一步要求它满足四维时空的横向条件 $p_{\mu}e^{\mu}(\mathbf{p},3)=0$,而正交归一关系 (3.98) 将决定它的归一化。于是,纵向极化矢量的形式为

$$e^{\mu}(\mathbf{p},3) = \left(\frac{|\mathbf{p}|}{m}, \frac{p^0 \,\mathbf{p}}{m|\mathbf{p}|}\right). \tag{3.111}$$

可以验证,它确实满足四维时空的横向条件

$$p_{\mu}e^{\mu}(\mathbf{p},3) = p^{0}\frac{|\mathbf{p}|}{m} - \mathbf{p} \cdot \frac{p^{0}\mathbf{p}}{m|\mathbf{p}|} = \frac{p^{0}|\mathbf{p}|}{m} - \frac{p^{0}|\mathbf{p}|}{m} = 0,$$
 (3.112)

和正交归一关系

$$e_{\mu}(\mathbf{p},3)e^{\mu}(\mathbf{p},3) = \frac{|\mathbf{p}|}{m}\frac{|\mathbf{p}|}{m} - \frac{(p^0)^2\mathbf{p}\cdot\mathbf{p}}{m^2|\mathbf{p}|^2} = \frac{|\mathbf{p}|^2}{m^2} - \frac{(p^0)^2}{m^2} = -\frac{(p^0)^2 - |\mathbf{p}|^2}{m^2} = -1 = g_{33};$$
 (3.113)

$$e_{\mu}(\mathbf{p},3)e^{\mu}(\mathbf{p},i) = -\frac{p^0}{m|\mathbf{p}|}\mathbf{p} \cdot \mathbf{e}(\mathbf{p},i) = 0, \quad i = 1, 2.$$
 (3.114)

最后,我们可以将**类时**极化矢量取为正比于 p^{μ} 的矢量

$$e^{\mu}(\mathbf{p},0) = \frac{1}{m} p^{\mu} = \frac{1}{m} (p^0, \mathbf{p}).$$
 (3.115)

它满足正交归一关系 (3.98):

$$e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},0) = \frac{p^2}{m^2} = 1 = g_{00};$$
 (3.116)

$$e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},i) = -\frac{1}{m}\mathbf{p} \cdot \mathbf{e}(\mathbf{p},i) = 0, \quad i = 1,2;$$
 (3.117)

$$e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},3) = \frac{1}{m^2}p^0|\mathbf{p}| - \frac{p^0}{m^2|\mathbf{p}|}\mathbf{p} \cdot \mathbf{p} = 0.$$
 (3.118)

不过,它不满足四维时空的横向条件:

$$p_{\mu}e^{\mu}(\mathbf{p},0) = \frac{p^2}{m} = m.$$
 (3.119)

可以验证,由 (3.100)、(3.101)、(3.111) 和 (3.115) 式定义的这组极化矢量确实满足完备性关系 (3.99):

$$\begin{split} &\sum_{\sigma=0}^{3} g_{\sigma\sigma}e_{\mu}(\mathbf{p},\sigma)e_{\nu}(\mathbf{p},\sigma) \\ &= e_{\mu}(\mathbf{p},0)e_{\nu}(\mathbf{p},0) - e_{\mu}(\mathbf{p},1)e_{\nu}(\mathbf{p},1) - e_{\mu}(\mathbf{p},2)e_{\nu}(\mathbf{p},2) - e_{\mu}(\mathbf{p},3)e_{\nu}(\mathbf{p},3) \\ &= \frac{1}{m^{2}} \begin{pmatrix} p^{0}p^{0} & -p^{0}p^{1} & -p^{0}p^{2} & -p^{0}p^{3} \\ -p^{1}p^{0} & p^{1}p^{1} & p^{1}p^{2} & p^{1}p^{3} \\ -p^{2}p^{0} & p^{2}p^{1} & p^{2}p^{2} & p^{2}p^{3} \\ -p^{3}p^{0} & p^{3}p^{1} & p^{3}p^{2} & p^{3}p^{3} \end{pmatrix} - \frac{1}{|\mathbf{p}|^{2}|\mathbf{p}_{T}|^{2}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & p^{1}p^{3}p^{1}p^{3} & p^{1}p^{3}p^{2}p^{3} & -p^{1}p^{3}|\mathbf{p}_{T}|^{2} \\ 0 & p^{2}p^{3}p^{1}p^{3} & p^{2}p^{3}p^{2}p^{3} & -p^{2}p^{3}|\mathbf{p}_{T}|^{2} \\ 0 & -|\mathbf{p}_{T}|^{2}p^{1}p^{3} & -|\mathbf{p}_{T}|^{2}p^{2}p^{3} & |\mathbf{p}_{T}|^{4} \end{pmatrix} \\ &- \frac{1}{|\mathbf{p}_{T}|^{2}} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & p^{2}p^{2} & -p^{2}p^{1} & 0 \\ 0 & -p^{1}p^{2} & p^{1}p^{1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} - \frac{1}{m^{2}} \begin{pmatrix} |\mathbf{p}|^{2} & -p^{0}p^{1} & -p^{0}p^{2} & -p^{0}p^{3} \\ -p^{0}p^{1} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{1}p^{1} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{1}p^{2} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{1}p^{3} \\ -p^{0}p^{3} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{2}p^{1} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{2}p^{2} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{(p^{1})^{2}}{m^{2}} \left[1 - \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}\right] - \frac{(p^{1}p^{3})^{2} + (p^{2})^{2}|\mathbf{p}|^{2}}{|\mathbf{p}|^{2}|\mathbf{p}|^{2}} & \frac{p^{1}p^{2}}{|\mathbf{p}|^{2}}p^{2}p^{3}p^{3} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{(p^{1})^{2}}{m^{2}} \left[1 - \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}\right] - \frac{(p^{1}p^{3})^{2} + (p^{2})^{2}|\mathbf{p}|^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{(p^{1})^{2}}{m^{2}} \left[1 - \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}\right] - \frac{(p^{1})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} & \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{(p^{1})^{2}}{m^{2}} \left[1 - \frac{(p^{0})^{2}}{|\mathbf{p}|^{2}}\right] - \frac{(p^{1})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} & \frac{(p^{1})^{2}}{|\mathbf{p}|^{2}}p^{3}p^{3} & \frac{(p^{1})^{2}}{|\mathbf{p$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\frac{(p^1)^2|\mathbf{p}_{\mathrm{T}}|^2 + (p^1)^2(|\mathbf{p}|^2 - |\mathbf{p}_{\mathrm{T}}|^2) + (p^2)^2|\mathbf{p}|^2}{|\mathbf{p}|^2|\mathbf{p}_{\mathrm{T}}|^2} & -\frac{p^1p^2}{|\mathbf{p}|^2} + \frac{p^1p^2}{|\mathbf{p}|^2} & -\frac{p^1p^3}{|\mathbf{p}|^2} + \frac{p^1p^3}{|\mathbf{p}|^2} \\ 0 & -\frac{p^1p^2}{|\mathbf{p}|^2} + \frac{p^1p^2}{|\mathbf{p}|^2} & -\frac{(p^2)^2|\mathbf{p}_{\mathrm{T}}|^2 + (p^2)^2(|\mathbf{p}|^2 - |\mathbf{p}_{\mathrm{T}}|^2) + (p^1)^2|\mathbf{p}|^2}{|\mathbf{p}|^2|\mathbf{p}_{\mathrm{T}}|^2} & -\frac{p^2p^3}{|\mathbf{p}|^2} + \frac{p^2p^3}{|\mathbf{p}|^2} \\ 0 & -\frac{p^1p^3}{|\mathbf{p}|^2} + \frac{p^1p^3}{|\mathbf{p}|^2} & -\frac{p^2p^3}{|\mathbf{p}|^2} + \frac{p^2p^3}{|\mathbf{p}|^2} & -\frac{(p^3)^2 + |\mathbf{p}_{\mathrm{T}}|^2}{|\mathbf{p}|^2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = g_{\mu\nu}.$$
 (3.120)

由于有质量矢量场 A^{μ} 必须满足 Lorenz 条件 (3.91), 正能解模式 (3.97) 应满足

$$0 = \partial_{\mu} A^{\mu}(x; \mathbf{p}, \sigma) = -ip_{\mu} e^{\mu}(\mathbf{p}, \sigma) \exp(-ip \cdot x), \tag{3.121}$$

即

$$p_{\mu}e^{\mu}(\mathbf{p},\sigma) = 0. \tag{3.122}$$

也就是说,描述有质量矢量场的极化矢量必须满足四维时空的横向条件。因此,类时极化矢量 $e^{\mu}(\mathbf{p},0)$ 不能用于描述有质量矢量场 A^{μ} 。这说明 A^{μ} 只有 3 个物理的极化状态,由类空的极化 矢量 $e^{\mu}(\mathbf{p},1)$ 、 $e^{\mu}(\mathbf{p},2)$ 和 $e^{\mu}(\mathbf{p},3)$ 描述。根据完备性关系 (3.99),这 3 个物理的极化矢量满足

$$-\sum_{\sigma=1}^{3} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma) = \sum_{\sigma=1}^{3} g_{\sigma\sigma} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma) = g_{\mu\nu} - g_{00} e_{\mu}(\mathbf{p}, 0) e_{\nu}(\mathbf{p}, 0) = g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{m^{2}}, (3.123)$$

即具有求和关系

$$\sum_{\sigma=1}^{3} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma) = -g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{m^{2}}.$$
 (3.124)

通过如下线性组合,我们可以定义另一套物理的极化矢量 $\varepsilon^{\mu}(p,\lambda)$,其中 $\lambda = +,0,-$:

$$\varepsilon^{\mu}(\mathbf{p}, \pm) \equiv \frac{1}{\sqrt{2}} \left[\mp e^{\mu}(\mathbf{p}, 1) - ie^{\mu}(\mathbf{p}, 2) \right], \tag{3.125}$$

$$\varepsilon^{\mu}(\mathbf{p},0) \equiv e^{\mu}(\mathbf{p},3). \tag{3.126}$$

这样定义的 $\varepsilon^{\mu}(p,\pm)$ 是复的,而 $\varepsilon^{\mu}(p,0)$ 是实的。它们都满足**四维横向条件**

$$p_{\mu}\varepsilon^{\mu}(\mathbf{p},\lambda) = 0. \tag{3.127}$$

它们还满足

$$\varepsilon_{\mu}^{*}(\mathbf{p}, \pm)\varepsilon^{\mu}(\mathbf{p}, \pm) = \frac{1}{2} [\mp e_{\mu}(\mathbf{p}, 1) + ie_{\mu}(\mathbf{p}, 2)] [\mp e^{\mu}(\mathbf{p}, 1) - ie^{\mu}(\mathbf{p}, 2)]
= \frac{1}{2} e_{\mu}(\mathbf{p}, 1)e^{\mu}(\mathbf{p}, 1) + \frac{1}{2} e_{\mu}(\mathbf{p}, 2)e^{\mu}(\mathbf{p}, 2) = \frac{1}{2} (g_{11} + g_{22}) = -1, \quad (3.128)$$

第 3 章 矢量场

$$\varepsilon_{\mu}^{*}(\mathbf{p}, \pm)\varepsilon^{\mu}(\mathbf{p}, \mp) = \frac{1}{2} [\mp e_{\mu}(\mathbf{p}, 1) + ie_{\mu}(\mathbf{p}, 2)] [\pm e^{\mu}(\mathbf{p}, 1) - ie^{\mu}(\mathbf{p}, 2)]
= -\frac{1}{2} e_{\mu}(\mathbf{p}, 1)e^{\mu}(\mathbf{p}, 1) + \frac{1}{2} e_{\mu}(\mathbf{p}, 2)e^{\mu}(\mathbf{p}, 2) = \frac{1}{2} (-g_{11} + g_{22}) = 0, \quad (3.129)$$

$$\varepsilon_{\mu}^{*}(\mathbf{p},0)\varepsilon^{\mu}(\mathbf{p},0) = e_{\mu}(\mathbf{p},3)e^{\mu}(\mathbf{p},3) = -1, \tag{3.130}$$

$$\varepsilon_{\mu}^{*}(\mathbf{p}, \pm)\varepsilon^{\mu}(\mathbf{p}, 0) = \frac{1}{2} [\mp e_{\mu}(\mathbf{p}, 1) + ie_{\mu}(\mathbf{p}, 2)]e^{\mu}(\mathbf{p}, 3) = 0, \tag{3.131}$$

即具有正交归一关系

$$\varepsilon_{\mu}^{*}(\mathbf{p},\lambda)\varepsilon^{\mu}(\mathbf{p},\lambda') = -\delta_{\lambda\lambda'}.$$
(3.132)

极化矢量求和关系则是

$$\sum_{\lambda=\pm,0} \varepsilon_{\mu}^{*}(\mathbf{p},\lambda)\varepsilon_{\nu}(\mathbf{p},\lambda) = \frac{1}{2} [e_{\mu}(p,1) + ie_{\mu}(p,2)][e_{\nu}(p,1) - ie_{\nu}(p,2)]
+ \frac{1}{2} [-e_{\mu}(p,1) + ie_{\mu}(p,2)][-e_{\nu}(p,1) - ie_{\nu}(p,2)] + e_{\mu}(p,3)e_{\nu}(p,3)
= e_{\mu}(p,1)e_{\nu}(p,1) + e_{\mu}(p,2)e_{\nu}(p,2) + e_{\mu}(p,3)e_{\nu}(p,3)
= \sum_{\sigma=1}^{3} e_{\mu}(\mathbf{p},\sigma)e_{\nu}(\mathbf{p},\sigma),$$
(3.133)

与 (3.124) 式左边相等, 故

$$\sum_{\lambda=\pm 0} \varepsilon_{\mu}^{*}(\mathbf{p}, \lambda) \varepsilon_{\nu}(\mathbf{p}, \lambda) = -g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{m^{2}}.$$
 (3.134)

四维横向条件 (3.127) 在上式中体现为

$$p^{\nu} \sum_{\lambda=\pm 0} \varepsilon_{\mu}^{*}(\mathbf{p}, \lambda) \varepsilon_{\nu}(\mathbf{p}, \lambda) = -p_{\mu} + \frac{p_{\mu}p^{2}}{m^{2}} = -p_{\mu} + p_{\mu} = 0.$$
(3.135)

粒子的自旋角动量在动量方向上的归一化投影称为**螺旋度** (helicity)。动量 \mathbf{p} 的方向由 $\hat{\mathbf{p}} \equiv \mathbf{p}/|\mathbf{p}|$ 表征,于是,在 Lorentz 群矢量表示中,螺旋度定义为

$$\hat{\mathbf{p}} \cdot \mathbf{\mathcal{J}} = \frac{1}{|\mathbf{p}|} \mathbf{p} \cdot \mathbf{\mathcal{J}} = \frac{1}{|\mathbf{p}|} \begin{pmatrix} 0 & & & \\ & 0 & -ip^3 & ip^2 \\ & ip^3 & 0 & -ip^1 \\ & -ip^2 & ip^1 & 0 \end{pmatrix}.$$
(3.136)

将 (3.101) 和 (3.111) 式代入 (3.125) 和 (3.126) 式,得到 $\varepsilon^{\mu}(p,\lambda)$ 的列矢量形式为

$$\varepsilon^{\mu}(p,0) = \frac{1}{m|\mathbf{p}|} \begin{pmatrix} |\mathbf{p}|^2 \\ p^0 p^1 \\ p^0 p^2 \\ p^0 p^3 \end{pmatrix}, \quad \varepsilon^{\mu}(p,+) = \frac{1}{\sqrt{2}|\mathbf{p}||\mathbf{p}_{\mathrm{T}}|} \begin{pmatrix} 0 \\ -p^1 p^3 + ip^2 |\mathbf{p}| \\ -p^2 p^3 - ip^1 |\mathbf{p}| \\ |\mathbf{p}_{\mathrm{T}}|^2 \end{pmatrix},$$

$$\varepsilon^{\mu}(p,-) = \frac{1}{\sqrt{2}|\mathbf{p}||\mathbf{p}_{\mathrm{T}}|} \begin{pmatrix} 0\\ p^{1}p^{3} + ip^{2}|\mathbf{p}|\\ p^{2}p^{3} - ip^{1}|\mathbf{p}|\\ -|\mathbf{p}_{\mathrm{T}}|^{2} \end{pmatrix}.$$
 (3.137)

从而,可得

$$(\hat{\mathbf{p}} \cdot \boldsymbol{\mathcal{J}})\varepsilon^{\mu}(p,0) = \frac{1}{m|\mathbf{p}|^2} \begin{pmatrix} 0 \\ -ip^3p^0p^2 + ip^2p^0p^3 \\ ip^3p^0p^1 - ip^1p^0p^3 \\ -ip^2p^0p^1 + ip^1p^0p^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 0 \,\varepsilon^{\mu}(p,0), \tag{3.138}$$

$$(\hat{\mathbf{p}} \cdot \boldsymbol{\mathcal{J}}) \varepsilon^{\mu}(p,+) = \frac{1}{\sqrt{2}|\mathbf{p}|^{2}|\mathbf{p}_{T}|} \begin{pmatrix} 0 \\ ip^{2}(p^{3})^{2} - p^{1}p^{3}|\mathbf{p}| + ip^{2}|\mathbf{p}_{T}|^{2} \\ -ip^{1}(p^{3})^{2} - p^{2}p^{3}|\mathbf{p}| - ip^{1}|\mathbf{p}_{T}|^{2} \\ ip^{1}p^{2}p^{3} + (p^{2})^{2}|\mathbf{p}| - ip^{1}p^{2}p^{3} + (p^{1})^{2}|\mathbf{p}| \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}|\mathbf{p}|^2|\mathbf{p}_{\mathrm{T}}|} \begin{pmatrix} 0\\ -p^1p^3|\mathbf{p}| + ip^2|\mathbf{p}|^2\\ -p^2p^3|\mathbf{p}| - ip^1|\mathbf{p}|^2\\ |\mathbf{p}_{\mathrm{T}}|^2|\mathbf{p}| \end{pmatrix} = +\varepsilon^{\mu}(p, +), \tag{3.139}$$

$$(\hat{\mathbf{p}} \cdot \boldsymbol{\mathcal{J}}) \varepsilon^{\mu}(p, -) = \frac{1}{\sqrt{2} |\mathbf{p}|^2 |\mathbf{p}_{\mathrm{T}}|} \begin{pmatrix} 0 \\ -ip^2 (p^3)^2 - p^1 p^3 |\mathbf{p}| - ip^2 |\mathbf{p}_{\mathrm{T}}|^2 \\ ip^1 (p^3)^2 - p^2 p^3 |\mathbf{p}| + ip^1 |\mathbf{p}_{\mathrm{T}}|^2 \\ -ip^1 p^2 p^3 + (p^2)^2 |\mathbf{p}| + ip^1 p^2 p^3 + (p^1)^2 |\mathbf{p}| \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}|\mathbf{p}|^2|\mathbf{p}_{\mathrm{T}}|} \begin{pmatrix} 0\\ -p^1p^3|\mathbf{p}| - ip^2|\mathbf{p}|^2\\ -p^2p^3|\mathbf{p}| + ip^1|\mathbf{p}|^2\\ |\mathbf{p}_{\mathrm{T}}|^2|\mathbf{p}| \end{pmatrix} = -\varepsilon^{\mu}(p, -). \tag{3.140}$$

归纳起来,有

$$(\hat{\mathbf{p}} \cdot \boldsymbol{\mathcal{J}})\varepsilon^{\mu}(p,\lambda) = \lambda \,\varepsilon^{\mu}(p,\lambda). \tag{3.141}$$

上式说明极化矢量 $\varepsilon^{\mu}(p,\lambda)$ 是螺旋度的本征态,本征值为 λ 。因此, $\varepsilon^{\mu}(p,\lambda)$ 描述动量为 \mathbf{p} 、螺旋度为 λ 的矢量粒子的极化态。螺旋度 $\lambda=\pm 1$ 对应于两种**横向极化**, $\lambda=0$ 对应于**纵向极化**。

有质量的实矢量场算符 $A^{\mu}(\mathbf{x},t)$ 的平面波展开应当包含正能解和负能解的所有动量模式的 所有极化态,形式为

$$A^{\mu}(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda=\pm 0} \left[\varepsilon^{\mu}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-ip\cdot x} + \varepsilon^{\mu*}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^{\dagger} e^{ip\cdot x} \right], \tag{3.142}$$

其中 $p^0=E_{f p}=\sqrt{|{f p}|^2+m^2}$,产生算符 $a^\dagger_{{f p},\lambda}$ 和湮灭算符 $a_{{f p},\lambda}$ 带着极化指标 λ 。容易验证,这个展开式满足自共轭条件

$$[A^{\mu}(\mathbf{x},t)]^{\dagger} = A^{\mu}(\mathbf{x},t). \tag{3.143}$$

根据 (3.95) 式, 共轭动量密度为

$$\pi_{i} = -\partial_{0}A_{i} + \partial_{i}A_{0} = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda=\pm,0} \left\{ [ip_{0}\varepsilon_{i}(\mathbf{p},\lambda) - ip_{i}\varepsilon_{0}(\mathbf{p},\lambda)] a_{\mathbf{p},\lambda} e^{-ip\cdot x} + [-ip_{0}\varepsilon_{i}^{*}(\mathbf{p},\lambda) + ip_{i}\varepsilon_{0}^{*}(\mathbf{p},\lambda)] a_{\mathbf{p},\lambda}^{\dagger} e^{ip\cdot x} \right\}, \quad (3.144)$$

引入

$$\tilde{\varepsilon}_i(\mathbf{p}, \lambda) \equiv \varepsilon_i(\mathbf{p}, \lambda) - \frac{p_i}{p_0} \varepsilon_0(\mathbf{p}, \lambda),$$
(3.145)

则有

$$p_0 \varepsilon_i(\mathbf{p}, \lambda) - p_i \varepsilon_0(\mathbf{p}, \lambda) = p_0 \tilde{\varepsilon}_i(\mathbf{p}, \lambda),$$
 (3.146)

从而,可以将共轭动量密度的平面波展开式写得更加紧凑:

$$\pi_i(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3} \frac{ip_0}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda=\pm,0} \left[\tilde{\varepsilon}_i(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-ip\cdot x} - \tilde{\varepsilon}_i^*(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^{\dagger} e^{ip\cdot x} \right]. \tag{3.147}$$

3.3.2 产生湮灭算符的对易关系

利用

$$\int d^{3}x \, e^{iq\cdot x} A^{\mu}
= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \int d^{3}x \sum_{\lambda=\pm,0} \left[\varepsilon^{\mu}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-i(p-q)\cdot x} + \varepsilon^{\mu*}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^{\dagger} e^{i(p+q)\cdot x} \right]
= \int d^{3}p \, \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda=\pm,0} \left[\varepsilon^{\mu}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-i(p^{0}-q^{0})t} \delta^{(3)}(\mathbf{p}-\mathbf{q}) + \varepsilon^{\mu*}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^{\dagger} e^{i(p^{0}+q^{0})t} \delta^{(3)}(\mathbf{p}+\mathbf{q}) \right]
= \frac{1}{\sqrt{2E_{\mathbf{q}}}} \sum_{\lambda=\pm,0} \left[\varepsilon^{\mu}(\mathbf{q},\lambda) a_{\mathbf{q},\lambda} + \varepsilon^{\mu*}(-\mathbf{q},\lambda) a_{-\mathbf{q},\lambda}^{\dagger} e^{2iq^{0}t} \right]$$
(3.148)

和

$$\int d^3x \, e^{i\mathbf{q}\cdot\mathbf{x}} \partial_0 A^{\mu} = \int \frac{d^3p}{(2\pi)^3} \frac{-ip_0}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, \sum_{\lambda=\pm,0} \left[\varepsilon^{\mu}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-i(p-q)\cdot\mathbf{x}} - \varepsilon^{\mu*}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^{\dagger} e^{i(p+q)\cdot\mathbf{x}} \right] \\
= \int \frac{d^3p}{(2\pi)^3} \frac{-ip_0}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda=\pm,0} \left[\varepsilon^{\mu}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-i(p^0-q^0)t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) \right. \\
\left. - \varepsilon^{\mu*}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^{\dagger} e^{i(p^0+q^0)t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right] \\
= \frac{-iq_0}{\sqrt{2E_{\mathbf{q}}}} \sum_{\lambda=\pm,0} \left[\varepsilon^{\mu}(\mathbf{q},\lambda) a_{\mathbf{q},\lambda} - \varepsilon^{\mu*}(-\mathbf{q},\lambda) a_{-\mathbf{q},\lambda}^{\dagger} e^{2iq^0t} \right], \tag{3.149}$$

以及正交归一关系 (3.132), 可得

$$\varepsilon_{\mu}^{*}(\mathbf{q}, \lambda') \int d^{3}x \, e^{iq \cdot x} \left(\partial_{0} A^{\mu} - iq_{0} A^{\mu} \right) = \varepsilon_{\mu}(\mathbf{q}, \lambda') \frac{-2iq_{0}}{\sqrt{2E_{\mathbf{q}}}} \sum_{\lambda = \pm, 0} \varepsilon^{\mu}(\mathbf{q}, \lambda) a_{\mathbf{q}, \lambda} \\
= -i\sqrt{2E_{\mathbf{q}}} \sum_{\lambda = \pm, 0} \delta_{\lambda'\lambda} a_{\mathbf{q}, \lambda} = -i\sqrt{2E_{\mathbf{q}}} \, a_{\mathbf{q}, \lambda'}. \tag{3.150}$$

由 Lorenz 条件 (3.91) 可得

$$\partial_0 A^0 = -\partial_i A^i, \tag{3.151}$$

根据 (3.95) 式,有

$$\partial_0 A^i = -\partial_0 A_i = \pi_i - \partial_i A_0 = \pi_i - \partial_i A^0. \tag{3.152}$$

于是,湮灭算符 $a_{\mathbf{p},\lambda}$ 可表达为

$$a_{\mathbf{p},\lambda} = \frac{i}{\sqrt{2E_{\mathbf{p}}}} \, \varepsilon_{\mu}^{*}(\mathbf{p},\lambda) \int d^{3}x \, e^{ip\cdot x} \, (\partial_{0}A^{\mu} - ip_{0}A^{\mu})$$

$$= \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^{3}x \, e^{ip\cdot x} \, \left[\varepsilon_{0}^{*}(\mathbf{p},\lambda)\partial_{0}A^{0} + \varepsilon_{i}^{*}(\mathbf{p},\lambda)\partial_{0}A^{i} - ip_{0}\varepsilon_{\mu}^{*}(\mathbf{p},\lambda)A^{\mu} \right]$$

$$= \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^{3}x \, e^{ip\cdot x} \, \left[-\varepsilon_{0}^{*}(\mathbf{p},\lambda)\partial_{i}A^{i} + \varepsilon_{i}^{*}(\mathbf{p},\lambda)\pi_{i} - \varepsilon_{i}^{*}(\mathbf{p},\lambda)\partial_{i}A^{0} - ip_{0}\varepsilon_{0}^{*}(\mathbf{p},\lambda)A^{i} \right]. \tag{3.153}$$

上式最后两行方括号中的第一项和第三项可以通过分部积分化为

$$\int d^3x \, e^{ip\cdot x} [-\varepsilon_0^*(\mathbf{p}, \lambda)\partial_i A^i - \varepsilon_i^*(\mathbf{p}, \lambda)\partial_i A^0] = \int d^3x \, [\varepsilon_0^*(\mathbf{p}, \lambda)(\partial_i e^{ip\cdot x})A^i + \varepsilon_i^*(\mathbf{p}, \lambda)(\partial_i e^{ip\cdot x})A^0]
= \int d^3x \, [ip_i \varepsilon_0^*(\mathbf{p}, \lambda)e^{ip\cdot x}A^i + ip_i \varepsilon_i^*(\mathbf{p}, \lambda)e^{ip\cdot x}A^0]
= \int d^3x \, e^{ip\cdot x} [i\varepsilon_0^*(\mathbf{p}, \lambda)p_i A^i + ip_i \varepsilon_i^*(\mathbf{p}, \lambda)A^0], \quad (3.154)$$

从而,有

$$a_{\mathbf{p},\lambda} = \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{ip\cdot x} \left[i\varepsilon_0^*(\mathbf{p},\lambda) p_i A^i + \varepsilon_i^*(\mathbf{p},\lambda) \pi_i + ip_i \varepsilon_i^*(\mathbf{p},\lambda) A^0 - ip_0 \varepsilon_0^*(\mathbf{p},\lambda) A^0 - ip_0 \varepsilon_i^*(\mathbf{p},\lambda) A^i \right]$$

$$= \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{ip\cdot x} \left\{ \varepsilon_i^*(\mathbf{p},\lambda) \pi_i - ip^\mu \varepsilon_\mu^*(\mathbf{p},\lambda) A^0 - i[p_0 \varepsilon_i^*(\mathbf{p},\lambda) - p_i \varepsilon_0^*(\mathbf{p},\lambda)] A^i \right\}. \quad (3.155)$$

再利用四维横向条件 (3.127) 和 (3.146) 式,得到

$$a_{\mathbf{p},\lambda} = \frac{i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{ip \cdot x} \left[-\varepsilon^{i*}(\mathbf{p},\lambda)\pi_i(x) - ip_0\tilde{\varepsilon}_i^*(\mathbf{p},\lambda)A^i(x) \right]. \tag{3.156}$$

对上式取厄米共轭,得

$$a_{\mathbf{p},\lambda}^{\dagger} = \frac{-i}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, e^{-ip\cdot x} \left[-\varepsilon^i(\mathbf{p},\lambda)\pi_i(x) + ip_0\tilde{\varepsilon}_i(\mathbf{p},\lambda)A^i(x) \right]. \tag{3.157}$$

利用等时对易关系 (3.96), 可得湮灭算符与产生算符的对易关系为

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^{3}x \, d^{3}y \, e^{i(\mathbf{p}\cdot\mathbf{x}-\mathbf{q}\cdot\mathbf{y})} \left[-\varepsilon^{i*}(\mathbf{p},\lambda)\pi_{i}(\mathbf{x},t) - ip_{0}\tilde{\varepsilon}_{i}^{*}(\mathbf{p},\lambda)A^{i}(\mathbf{x},t), \right. \\
\left. -\varepsilon^{j}(\mathbf{q},\lambda')\pi_{j}(\mathbf{y},t) + iq_{0}\tilde{\varepsilon}_{j}(\mathbf{q},\lambda')A^{j}(\mathbf{y},t) \right] \\
= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^{3}x \, d^{3}y \, e^{i(\mathbf{p}\cdot\mathbf{x}-\mathbf{q}\cdot\mathbf{y})} \left\{ -iq_{0}\varepsilon^{i*}(\mathbf{p},\lambda)\tilde{\varepsilon}_{j}(\mathbf{q},\lambda')[\pi_{i}(\mathbf{x},t),A^{j}(\mathbf{y},t)] \right. \\
\left. +ip_{0}\tilde{\varepsilon}_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{j}(\mathbf{q},\lambda')[A^{i}(\mathbf{x},t),\pi_{j}(\mathbf{y},t)] \right\} \\
= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^{3}x \, d^{3}y \, e^{i(\mathbf{p}\cdot\mathbf{x}-\mathbf{q}\cdot\mathbf{y})}\delta^{(3)}(\mathbf{x}-\mathbf{y}) \left[-q_{0}\varepsilon^{i*}(\mathbf{p},\lambda)\tilde{\varepsilon}_{j}(\mathbf{q},\lambda')\delta^{j}_{i} - p_{0}\tilde{\varepsilon}_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{j}(\mathbf{q},\lambda')\delta^{i}_{j} \right] \\
= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^{3}x \, e^{i(\mathbf{p}^{0}-\mathbf{q}^{0})t}e^{-i(\mathbf{p}-\mathbf{q})\cdot\mathbf{x}} \left[-E_{\mathbf{q}}\varepsilon^{i*}(\mathbf{p},\lambda)\tilde{\varepsilon}_{i}(\mathbf{q},\lambda') - E_{\mathbf{p}}\tilde{\varepsilon}_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i}(\mathbf{q},\lambda') \right] \\
= -\frac{1}{2}(2\pi)^{3}\delta^{(3)}(\mathbf{p}-\mathbf{q}) \left[\varepsilon^{i*}(\mathbf{p},\lambda)\tilde{\varepsilon}_{i}(\mathbf{p},\lambda') + \tilde{\varepsilon}_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i}(\mathbf{p},\lambda') \right]. \tag{3.158}$$

根据定义式 (3.145)、四维横向条件 (3.127) 和正交归一关系 (3.132), 有

$$\varepsilon^{i*}(\mathbf{p},\lambda)\tilde{\varepsilon}_{i}(\mathbf{p},\lambda') = \varepsilon^{i*}(\mathbf{p},\lambda)\varepsilon_{i}(\mathbf{p},\lambda') - \frac{1}{p_{0}}p_{i}\varepsilon^{i*}(\mathbf{p},\lambda)\varepsilon_{0}(\mathbf{p},\lambda')$$

$$= \varepsilon^{i*}(\mathbf{p},\lambda)\varepsilon_{i}(\mathbf{p},\lambda') + \frac{1}{p_{0}}p_{0}\varepsilon^{0*}(\mathbf{p},\lambda)\varepsilon_{0}(\mathbf{p},\lambda')$$

$$= \varepsilon^{\mu*}(\mathbf{p},\lambda)\varepsilon_{\mu}(\mathbf{p},\lambda') = -\delta_{\lambda\lambda'}, \qquad (3.159)$$

取复共轭,可得

$$\tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^i(\mathbf{p},\lambda') = -\delta_{\lambda\lambda'}.$$
 (3.160)

于是,

$$[a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}^{\dagger}] = -\frac{1}{2} (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{q}) \left(-\delta_{\lambda\lambda'} - \delta_{\lambda\lambda'} \right) = (2\pi)^3 \delta_{\lambda\lambda'} \delta^{(3)}(\mathbf{p} - \mathbf{q}). \tag{3.161}$$

另一方面,

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x \, d^3y \, e^{i(p\cdot x + q\cdot y)} \left[-\varepsilon^{i*}(\mathbf{p}, \lambda)\pi_i(\mathbf{x}, t) - ip_0\tilde{\varepsilon}_i^*(\mathbf{p}, \lambda)A^i(\mathbf{x}, t), \right. \\ \left. - \varepsilon^{j*}(\mathbf{q}, \lambda')\pi_j(\mathbf{y}, t) - iq_0\tilde{\varepsilon}_j^*(\mathbf{q}, \lambda')A^j(\mathbf{y}, t) \right] \\ = \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x \, d^3y \, e^{i(p\cdot x + q\cdot y)} \left\{ iq_0\varepsilon^{i*}(\mathbf{p}, \lambda)\tilde{\varepsilon}_j^*(\mathbf{q}, \lambda')[\pi_i(\mathbf{x}, t), A^j(\mathbf{y}, t)] \right. \\ \left. + ip_0\tilde{\varepsilon}_i^*(\mathbf{p}, \lambda)\varepsilon^{j*}(\mathbf{q}, \lambda')[A^i(\mathbf{x}, t), \pi_j(\mathbf{y}, t)] \right\} \\ = \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x \, d^3y \, e^{i(p\cdot x + q\cdot y)} \delta^{(3)}(\mathbf{x} - \mathbf{y}) \left[q_0\varepsilon^{i*}(\mathbf{p}, \lambda)\tilde{\varepsilon}_j^*(\mathbf{q}, \lambda')\delta^j_i - p_0\tilde{\varepsilon}_i^*(\mathbf{p}, \lambda)\varepsilon^{j*}(\mathbf{q}, \lambda')\delta^i_j \right] \\ = \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \int d^3x \, e^{i(p^0 + q^0)t} e^{i(\mathbf{p} + \mathbf{q})\cdot \mathbf{x}} \left[E_{\mathbf{q}}\varepsilon^{i*}(\mathbf{p}, \lambda)\tilde{\varepsilon}_i^*(\mathbf{q}, \lambda') - E_{\mathbf{p}}\tilde{\varepsilon}_i^*(\mathbf{p}, \lambda)\varepsilon^{i*}(\mathbf{q}, \lambda') \right]$$

$$= -\frac{1}{2} (2\pi)^3 \delta^{(3)}(\mathbf{p} + \mathbf{q}) e^{2iE_{\mathbf{p}}t} \left[\varepsilon^{i*}(\mathbf{p}, \lambda) \tilde{\varepsilon}_i^*(-\mathbf{p}, \lambda') - \tilde{\varepsilon}_i^*(\mathbf{p}, \lambda) \varepsilon^{i*}(-\mathbf{p}, \lambda') \right]. \tag{3.162}$$

对四维横向条件 (3.127) 取复共轭,得

$$p_{\mu}\varepsilon^{\mu*}(\mathbf{p},\lambda) = p_0\varepsilon^{0*}(\mathbf{p},\lambda) + p_i\varepsilon^{i*}(\mathbf{p},\lambda) = 0.$$
(3.163)

将上式中的 p 替换成 -p, 得

$$p_0 \varepsilon^{0*}(-\mathbf{p}, \lambda) - p_i \varepsilon^{i*}(-\mathbf{p}, \lambda) = 0.$$
(3.164)

因此,有

$$p_i \varepsilon^{i*}(\mathbf{p}, \lambda) = -p_0 \varepsilon^{0*}(\mathbf{p}, \lambda), \quad -p_i \varepsilon^{i*}(-\mathbf{p}, \lambda) = -p_0 \varepsilon^{0*}(-\mathbf{p}, \lambda),$$
 (3.165)

或者写成

$$\mathbf{p} \cdot \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda) = p_0 \boldsymbol{\varepsilon}^{0*}(\mathbf{p}, \lambda), \quad -\mathbf{p} \cdot \boldsymbol{\varepsilon}^*(-\mathbf{p}, \lambda) = p_0 \boldsymbol{\varepsilon}^{0*}(-\mathbf{p}, \lambda). \tag{3.166}$$

从而,可得

$$\varepsilon^{i*}(\mathbf{p},\lambda)\widetilde{\varepsilon}_{i}^{*}(-\mathbf{p},\lambda') = \varepsilon^{i*}(\mathbf{p},\lambda) \left[\varepsilon_{i}^{*}(-\mathbf{p},\lambda) + \frac{p_{i}}{p_{0}} \varepsilon_{0}^{*}(-\mathbf{p},\lambda) \right] \\
= \varepsilon^{i*}(\mathbf{p},\lambda)\varepsilon_{i}^{*}(-\mathbf{p},\lambda') + \frac{1}{p_{0}} p_{i}\varepsilon^{i*}(\mathbf{p},\lambda)\varepsilon_{0}^{*}(-\mathbf{p},\lambda') \\
= \varepsilon^{i*}(\mathbf{p},\lambda)\varepsilon_{i}^{*}(-\mathbf{p},\lambda') - \frac{1}{p_{0}} p_{0}\varepsilon^{0*}(\mathbf{p},\lambda)\varepsilon_{0}^{*}(-\mathbf{p},\lambda') \\
= \varepsilon^{i*}(\mathbf{p},\lambda)\varepsilon_{i}^{*}(-\mathbf{p},\lambda') - \varepsilon^{0*}(\mathbf{p},\lambda)\varepsilon_{0}^{*}(-\mathbf{p},\lambda'), \qquad (3.167)$$

$$\widetilde{\varepsilon}_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i*}(-\mathbf{p},\lambda') = \left[\varepsilon_{i}^{*}(\mathbf{p},\lambda) - \frac{p_{i}}{p_{0}}\varepsilon_{0}^{*}(\mathbf{p},\lambda) \right] \varepsilon^{i*}(-\mathbf{p},\lambda') \\
= \varepsilon_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i*}(-\mathbf{p},\lambda') - \frac{1}{p_{0}}\varepsilon_{0}^{*}(\mathbf{p},\lambda)p_{i}\varepsilon^{i*}(-\mathbf{p},\lambda') \\
= \varepsilon_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i*}(-\mathbf{p},\lambda') - \frac{1}{p_{0}}\varepsilon_{0}^{*}(\mathbf{p},\lambda)p_{0}\varepsilon^{0*}(-\mathbf{p},\lambda') \\
= \varepsilon_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i*}(-\mathbf{p},\lambda') - \varepsilon_{0}^{*}(\mathbf{p},\lambda)\varepsilon^{0*}(-\mathbf{p},\lambda'). \qquad (3.168)$$

可见, $\varepsilon^{i*}(\mathbf{p},\lambda)\tilde{\varepsilon}_i^*(-\mathbf{p},\lambda')-\tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^{i*}(-\mathbf{p},\lambda')=0$,故

$$[a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}] = 0. \tag{3.169}$$

综上,产生湮灭算符的对易关系为

$$[a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}^{\dagger}] = (2\pi)^3 \delta_{\lambda\lambda'} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \quad [a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}] = [a_{\mathbf{p},\lambda}^{\dagger}, a_{\mathbf{q},\lambda'}^{\dagger}] = 0. \tag{3.170}$$

3.3.3 哈密顿量和总动量

由 (3.95) 式有

$$\pi^{i} = -\pi_{i} = \partial_{0}A_{i} - \partial_{i}A_{0} = -\partial^{0}A^{i} + \partial^{i}A^{0} = -F^{0i} = F^{i0},$$
(3.171)

写成空间矢量的形式为

$$\boldsymbol{\pi} = -\dot{\mathbf{A}} - \nabla A_0, \tag{3.172}$$

故

$$\dot{\mathbf{A}} = -\boldsymbol{\pi} - \nabla A_0. \tag{3.173}$$

Proca 方程 (3.88) 在 $\nu = 0$ 时的形式是 $\partial_{\mu}F^{\mu 0} + m^2A^0 = 0$, 因此,

$$A^{0} = -\frac{1}{m^{2}} \partial_{\mu} F^{\mu 0} = -\frac{1}{m^{2}} \partial_{i} F^{i0} = -\frac{1}{m^{2}} \partial_{i} \pi^{i} = -\frac{1}{m^{2}} \nabla \cdot \boldsymbol{\pi}. \tag{3.174}$$

从而,可得

$$-\boldsymbol{\pi} \cdot \dot{\mathbf{A}} = \boldsymbol{\pi} \cdot (\boldsymbol{\pi} + \nabla A_0) = \boldsymbol{\pi}^2 + \nabla \cdot (A_0 \boldsymbol{\pi}) - A_0 (\nabla \cdot \boldsymbol{\pi}) = \boldsymbol{\pi}^2 + \nabla \cdot (A_0 \boldsymbol{\pi}) + \frac{1}{m^2} (\nabla \cdot \boldsymbol{\pi})^2. \quad (3.175)$$

另一方面,

$$\frac{1}{2}F_{0i}F^{0i} = \frac{1}{2}\pi_i\pi^i = -\frac{1}{2}\boldsymbol{\pi}^2. \tag{3.176}$$

利用 (1.82) 式可得

$$F^{ij} = \partial^i A^j - \partial^j A^i = (\delta^{im} \delta^{jn} - \delta^{in} \delta^{jm}) \partial^m A^n = \varepsilon^{ijk} \varepsilon^{kmn} \partial^m A^n = -\varepsilon^{ijk} \varepsilon^{kmn} \partial_m A^n, \qquad (3.177)$$

从而,

$$\frac{1}{4}F_{ij}F^{ij} = \frac{1}{4}F^{ij}F^{ij} = \frac{1}{4}\varepsilon^{ijk}\varepsilon^{kmn}(\partial_m A^n)\varepsilon^{ijl}\varepsilon^{lpq}\partial_p A^q = \frac{1}{4}2\delta^{kl}\varepsilon^{kmn}(\partial_m A^n)\varepsilon^{lpq}\partial_p A^q
= \frac{1}{2}\varepsilon^{kmn}(\partial_m A^n)\varepsilon^{kpq}\partial_p A^q = \frac{1}{2}(\nabla \times \mathbf{A})^2.$$
(3.178)

于是,有

$$\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}F_{0i}F^{0i} + \frac{1}{4}F_{ij}F^{ij} = -\frac{1}{2}\boldsymbol{\pi}^2 + \frac{1}{2}(\nabla \times \mathbf{A})^2.$$
 (3.179)

根据 (1.117) 式,有质量矢量场的哈密顿量密度为

$$\mathcal{H} = \pi_{i} \partial_{0} A^{i} - \mathcal{L} = \pi_{i} \partial_{0} A^{i} + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m^{2} A_{\mu} A^{\mu}$$

$$= -\boldsymbol{\pi} \cdot \dot{\mathbf{A}} - \frac{1}{2} \boldsymbol{\pi}^{2} + \frac{1}{2} (\nabla \times \mathbf{A})^{2} - \frac{1}{2} m^{2} (A_{0}^{2} - \mathbf{A}^{2})$$

$$= \boldsymbol{\pi}^{2} + \nabla \cdot (A_{0} \boldsymbol{\pi}) + \frac{1}{m^{2}} (\nabla \cdot \boldsymbol{\pi})^{2} - \frac{1}{2} \boldsymbol{\pi}^{2} + \frac{1}{2} (\nabla \times \mathbf{A})^{2} - \frac{1}{2m^{2}} (\nabla \cdot \boldsymbol{\pi})^{2} + \frac{1}{2} m^{2} \mathbf{A}^{2}$$

$$= \frac{1}{2} \boldsymbol{\pi}^{2} + \nabla \cdot (A_{0} \boldsymbol{\pi}) + \frac{1}{2m^{2}} (\nabla \cdot \boldsymbol{\pi})^{2} + \frac{1}{2} (\nabla \times \mathbf{A})^{2} + \frac{1}{2} m^{2} \mathbf{A}^{2}. \tag{3.180}$$

上式最后一行第二项是一个全散度,对全空间积分时它没有贡献。于是,哈密顿量为

$$H = \int d^3x \,\mathcal{H} = \frac{1}{2} \int d^3x \left[\boldsymbol{\pi}^2 + \frac{1}{m^2} (\nabla \cdot \boldsymbol{\pi})^2 + (\nabla \times \mathbf{A})^2 + m^2 \mathbf{A}^2 \right]. \tag{3.181}$$

下面逐项进行计算。

哈密顿量的第一项是

$$\begin{split} &\frac{1}{2}\int d^3x\,\pi^2\\ &=\frac{1}{2}\sum_{\lambda\lambda'}\int \frac{d^3x\,d^3p\,d^3q}{(2\pi)^6\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}}\,(ip_0)(iq_0)\left[\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)a_{\mathbf{p},\lambda}e^{-ip\cdot x}-\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)a_{\mathbf{p},\lambda}^\dagger e^{ip\cdot x}\right]\\ &\quad \cdot \left[\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')a_{\mathbf{q},\lambda'}e^{-iq\cdot x}-\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')a_{\mathbf{q},\lambda'}^\dagger e^{iq\cdot x}\right]\\ &=-\frac{1}{2}\sum_{\lambda\lambda'}\int \frac{d^3x\,d^3p\,d^3q\,p_0q_0}{(2\pi)^6\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}}\left[-\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}^\dagger e^{-i(p-q)\cdot x}\right.\\ &\quad \left.-\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'}e^{i(p-q)\cdot x}+\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}e^{-i(p+q)\cdot x}\right.\\ &\quad \left.+\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'}e^{i(p+q)\cdot x}\right]\\ &=-\frac{1}{2}\sum_{\lambda\lambda'}\int \frac{d^3p\,d^3q\,p_0q_0}{(2\pi)^3\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}}\left\{-\delta^{(3)}(\mathbf{p}-\mathbf{q})\left[\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}e^{-i(p_0-q_0)t}\right.\right.\\ &\quad \left.+\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}e^{-i(p_0-q_0)t}\right]\\ &\quad \left.+\delta^{(3)}(\mathbf{p}+\mathbf{q})\left[\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}e^{-i(p_0+q_0)t}\right.\right.\\ &\quad \left.+\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}e^{-i(p_0+q_0)t}\right]\right\}\\ &=\sum_{\lambda\lambda'}\int \frac{d^3p}{(2\pi)^3}\,\frac{1}{4E_{\mathbf{p}}}E_{\mathbf{p}}^2\Big[\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda')a_{\mathbf{p},\lambda}a_{\mathbf{p},\lambda'}^\dagger+\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda')a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{p},\lambda'}^\dagger e^{2iE_{\mathbf{p}}t}\Big]. \quad (3.182) \end{split}$$

第二项是

$$\begin{split} &\frac{1}{2}\int d^3x\,\frac{1}{m^2}(\nabla\cdot\boldsymbol{\pi})^2\\ &=\frac{1}{2}\sum_{\lambda\lambda'}\int\frac{d^3x\,d^3p\,d^3q}{(2\pi)^6\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}}\,\frac{(ip_0)(iq_0)}{m^2}\left[i\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)a_{\mathbf{p},\lambda}e^{-ip\cdot x}+i\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)a_{\mathbf{p},\lambda}^{\dagger}e^{ip\cdot x}\right]\\ &\times\left[i\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')a_{\mathbf{q},\lambda'}e^{-iq\cdot x}+i\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')a_{\mathbf{q},\lambda'}^{\dagger}e^{iq\cdot x}\right]\\ &=-\frac{1}{2}\sum_{\lambda\lambda'}\int\frac{d^3x\,d^3p\,d^3q\,p_0q_0}{(2\pi)^6\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}\,m^2}\left\{-\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}^{\dagger}e^{-i(p-q)\cdot x}\right.\\ &\left.-\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}^{\dagger}a_{\mathbf{q},\lambda'}e^{i(p-q)\cdot x}-\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}e^{-i(p+q)\cdot x}\right.\\ &\left.-\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}^{\dagger}a_{\mathbf{q},\lambda'}e^{i(p+q)\cdot x}\right\}\right\}\\ &=\frac{1}{2}\sum_{\lambda\lambda'}\int\frac{d^3p\,d^3q\,p_0q_0}{(2\pi)^3\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}\,m^2}\left\{\delta^{(3)}(\mathbf{p}-\mathbf{q})\left(\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}a_{\mathbf{q},\lambda'}^{\dagger}e^{-i(p_0-q_0)t}\right.\right.\\ &\left.+\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}^{\dagger}a_{\mathbf{q},\lambda'}e^{i(p_0-q_0)t}\right)\right.\\ &\left.+\delta^{(3)}(\mathbf{p}+\mathbf{q})\left(\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}^{\dagger}a_{\mathbf{q},\lambda'}e^{-i(p_0+q_0)t}\right.\right.\right.\\ &\left.+\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}^{\dagger}a_{\mathbf{q},\lambda'}e^{-i(p_0+q_0)t}\right.\right.\right.\\ &\left.+\left[\mathbf{p}\cdot\tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda)\right]\!\left[\mathbf{q}\cdot\tilde{\boldsymbol{\varepsilon}}(\mathbf{q},\lambda')\right]\!a_{\mathbf{p},\lambda}^{\dagger}a_{\mathbf{q},\lambda'}e^{-i(p_0+q_0)t}\right.\right.$$

$$= \sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{1}{4E_{\mathbf{p}}} \frac{E_{\mathbf{p}}^2}{m^2} \left\{ [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(\mathbf{p}, \lambda)] [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p}, \lambda')] a_{\mathbf{p}, \lambda} a_{\mathbf{p}, \lambda'}^{\dagger} + [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p}, \lambda)] [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(\mathbf{p}, \lambda')] a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{p}, \lambda'} - [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(\mathbf{p}, \lambda)] [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(-\mathbf{p}, \lambda')] a_{\mathbf{p}, \lambda} a_{-\mathbf{p}, \lambda'} e^{-2iE_{\mathbf{p}}t} - [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p}, \lambda)] [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}^*(-\mathbf{p}, \lambda')] a_{\mathbf{p}, \lambda}^{\dagger} a_{-\mathbf{p}, \lambda'}^{\dagger} e^{2iE_{\mathbf{p}}t} \right\}.$$
(3.183)

第三项是

$$\begin{split} &\frac{1}{2}\int d^3x \, (\nabla \times \mathbf{A})^2 \\ &= \frac{1}{2} \sum_{\lambda\lambda'} \int \frac{d^3x \, d^3p \, d^3q}{(2\pi)^6 \sqrt{2E_\mathbf{p} 2E_\mathbf{q}}} \left[i\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda) a_{\mathbf{p},\lambda} e^{-ip\cdot x} - i\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda) a_{\mathbf{p},\lambda}^\dagger e^{ip\cdot x} \right] \\ & \quad \cdot \left[i\mathbf{q} \times \varepsilon(\mathbf{q}, \lambda') a_{\mathbf{q},\lambda'} e^{-ip\cdot x} - i\mathbf{q} \times \varepsilon^*(\mathbf{q}, \lambda') a_{\mathbf{q},\lambda'}^\dagger e^{ip\cdot x} \right] \\ &= \frac{1}{2} \sum_{\lambda\lambda'} \int \frac{d^3x \, d^3p \, d^3q}{(2\pi)^6 \sqrt{2E_\mathbf{p} 2E_\mathbf{q}}} \left\{ [\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda)] \cdot [\mathbf{q} \times \varepsilon^*(\mathbf{q}, \lambda')] a_{\mathbf{p},\lambda} a_{\mathbf{q},\lambda'}^\dagger e^{-i(p-q)\cdot x} \right. \\ & \quad + [\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda)] \cdot [\mathbf{q} \times \varepsilon(\mathbf{q}, \lambda')] a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p-q)\cdot x} - [\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda)] \cdot [\mathbf{q} \times \varepsilon(\mathbf{q}, \lambda')] a_{\mathbf{p},\lambda} a_{\mathbf{q},\lambda'} e^{-i(p+q)\cdot x} \\ & \quad - [\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda)] \cdot [\mathbf{q} \times \varepsilon^*(\mathbf{q}, \lambda')] a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p+q)\cdot x} \right\} \\ &= \frac{1}{2} \sum_{\lambda\lambda'} \int \frac{d^3p \, d^3q}{(2\pi)^3 \sqrt{2E_\mathbf{p} 2E_\mathbf{q}}} \left\{ \delta^{(3)}(\mathbf{p} - \mathbf{q}) \left([\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda)] \cdot [\mathbf{q} \times \varepsilon^*(\mathbf{q}, \lambda')] a_{\mathbf{p},\lambda} a_{\mathbf{q},\lambda'}^\dagger e^{-i(p_0 - q_0)t} \right. \\ & \quad \quad + [\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda)] \cdot [\mathbf{q} \times \varepsilon(\mathbf{q}, \lambda')] a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p_0 - q_0)t} \right) \\ & \quad - \delta^{(3)}(\mathbf{p} + \mathbf{q}) \left([\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda)] \cdot [\mathbf{q} \times \varepsilon(\mathbf{q}, \lambda')] a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p_0 + q_0)t} \right) \right\} \\ &= \sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{1}{4E_\mathbf{p}} \left\{ [\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda')] a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'}^\dagger \right. \\ & \quad + [\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda')] a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{p},\lambda'} e^{-2iE_\mathbf{p}t} \\ & \quad + [\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda')] a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{p},\lambda'} + [\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \varepsilon(-\mathbf{p}, \lambda')] a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'} e^{-2iE_\mathbf{p}t} \\ & \quad + [\mathbf{p} \times \varepsilon^*(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \varepsilon(-\mathbf{p}, \lambda')] a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{p},\lambda'} + [\mathbf{p} \times \varepsilon(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \varepsilon(-\mathbf{p}, \lambda')] a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'} e^{-2iE_\mathbf{p}t} \right\}. \end{split}$$

第四项是

$$\begin{split} &\frac{1}{2} \int d^3x \, m^2 \mathbf{A}^2 \\ &= \frac{1}{2} \sum_{\lambda \lambda'} \int \frac{d^3x \, d^3p \, d^3q \, m^2}{(2\pi)^6 \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left[\boldsymbol{\varepsilon}(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda} e^{-ip \cdot x} + \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}^{\dagger} e^{ip \cdot x} \right] \\ & \quad \cdot \left[\boldsymbol{\varepsilon}(\mathbf{q}, \lambda') a_{\mathbf{q}, \lambda'} e^{-ip \cdot x} + \boldsymbol{\varepsilon}^*(\mathbf{q}, \lambda') a_{\mathbf{q}, \lambda'}^{\dagger} e^{ip \cdot x} \right] \\ &= \frac{1}{2} \sum_{\lambda \lambda'} \int \frac{d^3x \, d^3p \, d^3q \, m^2}{(2\pi)^6 \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left[\boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^*(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda} a_{\mathbf{q}, \lambda'}^{\dagger} e^{-i(p-q) \cdot x} \right. \\ & \quad \left. + \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{q}, \lambda'} e^{i(p-q) \cdot x} + \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda} a_{\mathbf{q}, \lambda'} e^{-i(p+q) \cdot x} \right. \\ & \quad \left. + \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^*(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{q}, \lambda'}^{\dagger} e^{i(p+q) \cdot x} \right] \end{split}$$

$$= \frac{1}{2} \sum_{\lambda \lambda'} \int \frac{d^{3}p \, d^{3}q \, m^{2}}{(2\pi)^{3} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \left\{ \delta^{(3)}(\mathbf{p} - \mathbf{q}) \left[\boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^{*}(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda} a_{\mathbf{q}, \lambda'}^{\dagger} e^{-i(p_{0} - q_{0})t} \right. \right. \\ \left. + \boldsymbol{\varepsilon}^{*}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{q}, \lambda'} e^{i(p_{0} - q_{0})t} \right] \\ \left. + \delta^{(3)}(\mathbf{p} + \mathbf{q}) \left[\boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda} a_{\mathbf{q}, \lambda'} e^{-i(p_{0} + q_{0})t} \right. \right. \\ \left. + \boldsymbol{\varepsilon}^{*}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^{*}(\mathbf{q}, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{q}, \lambda'}^{\dagger} e^{i(p_{0} + q_{0})t} \right] \right\} \\ = \sum_{\lambda \lambda'} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{4E_{\mathbf{p}}} m^{2} \left[\boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^{*}(\mathbf{p}, \lambda') a_{\mathbf{p}, \lambda} a_{\mathbf{p}, \lambda'}^{\dagger} + \boldsymbol{\varepsilon}^{*}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{p}, \lambda'} \right. \\ \left. + \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda') a_{\mathbf{p}, \lambda} a_{-\mathbf{p}, \lambda'} e^{-2iE_{\mathbf{p}}t} + \boldsymbol{\varepsilon}^{*}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^{*}(-\mathbf{p}, \lambda') a_{\mathbf{p}, \lambda'}^{\dagger} a_{-\mathbf{p}, \lambda'}^{\dagger} e^{2iE_{\mathbf{p}}t} \right]. \quad (3.185)$$

综合起来,哈密顿量化为

$$H = \sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{1}{4E_{\mathbf{p}}} \left[f_1(\mathbf{p}, \lambda, \lambda') a_{\mathbf{p}, \lambda} a_{\mathbf{p}, \lambda'}^{\dagger} + f_1^*(\mathbf{p}, \lambda, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{p}, \lambda'} + f_2^*(\mathbf{p}, \lambda, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{p}, \lambda'} + f_2^*(\mathbf{p}, \lambda, \lambda') a_{\mathbf{p}, \lambda}^{\dagger} a_{\mathbf{p}, \lambda'} e^{2iE_{\mathbf{p}}t} \right], \quad (3.186)$$

其中,

$$f_{1}(\mathbf{p},\lambda,\lambda') \equiv E_{\mathbf{p}}^{2} \tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda) \cdot \tilde{\boldsymbol{\varepsilon}}^{*}(\mathbf{p},\lambda') + \frac{E_{\mathbf{p}}^{2}}{m^{2}} [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)] [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}^{*}(\mathbf{p},\lambda')]$$

$$+ [\mathbf{p} \times \boldsymbol{\varepsilon}(\mathbf{p},\lambda)] \cdot [\mathbf{p} \times \boldsymbol{\varepsilon}^{*}(\mathbf{p},\lambda')] + m^{2} \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}^{*}(\mathbf{p},\lambda'), \qquad (3.187)$$

$$f_{2}(\mathbf{p},\lambda,\lambda') \equiv -E_{\mathbf{p}}^{2} \tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda) \cdot \tilde{\boldsymbol{\varepsilon}}(-\mathbf{p},\lambda') - \frac{E_{\mathbf{p}}^{2}}{m^{2}} [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda)] [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(-\mathbf{p},\lambda')]$$

$$+ [\mathbf{p} \times \boldsymbol{\varepsilon}(\mathbf{p},\lambda)] \cdot [\mathbf{p} \times \boldsymbol{\varepsilon}(-\mathbf{p},\lambda')] + m^{2} \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda'). \qquad (3.188)$$

现在,我们计算 $f_1(\mathbf{p}, \lambda, \lambda')$ 。由 (3.145)、(3.166) 和 (3.132) 式,可得

$$\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda) \cdot \tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p},\lambda') = \left[\boldsymbol{\varepsilon}(\mathbf{p},\lambda) - \frac{\mathbf{p}}{p_0} \varepsilon_0(\mathbf{p},\lambda)\right] \cdot \left[\boldsymbol{\varepsilon}^*(\mathbf{p},\lambda') - \frac{\mathbf{p}}{p_0} \varepsilon_0^*(\mathbf{p},\lambda')\right] \\
= \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}^*(\mathbf{p},\lambda') - \frac{\varepsilon_0(\mathbf{p},\lambda)}{p_0} \mathbf{p} \cdot \boldsymbol{\varepsilon}^*(\mathbf{p},\lambda') - \frac{\varepsilon_0^*(\mathbf{p},\lambda')}{p_0} \mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p},\lambda) + \frac{|\mathbf{p}|^2}{p_0^2} \varepsilon_0(\mathbf{p},\lambda) \varepsilon_0^*(\mathbf{p},\lambda') \\
= \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}^*(\mathbf{p},\lambda') - \frac{\varepsilon_0(\mathbf{p},\lambda)}{p_0} p_0 \varepsilon^{0*}(\mathbf{p},\lambda') - \frac{\varepsilon_0^*(\mathbf{p},\lambda')}{p_0} p_0 \varepsilon^{0}(\mathbf{p},\lambda) + \frac{|\mathbf{p}|^2}{p_0^2} \varepsilon_0(\mathbf{p},\lambda) \varepsilon_0^*(\mathbf{p},\lambda') \\
= -\varepsilon_{\mu}(\mathbf{p},\lambda) \varepsilon^{\mu*}(\mathbf{p},\lambda') + \left(\frac{|\mathbf{p}|^2}{p_0^2} - 1\right) \varepsilon_0(\mathbf{p},\lambda) \varepsilon_0^*(\mathbf{p},\lambda') \\
= \delta_{\lambda\lambda'} - \frac{m^2}{E_{\mathbf{p}}^2} \varepsilon_0(\mathbf{p},\lambda) \varepsilon_0^*(\mathbf{p},\lambda'). \tag{3.189}$$

另一方面,

$$\begin{aligned} & [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(\mathbf{p}, \lambda)] [\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}^*(\mathbf{p}, \lambda')] \\ & = \left[\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) - \frac{|\mathbf{p}|^2}{p_0} \varepsilon_0(\mathbf{p}, \lambda) \right] \left[\mathbf{p} \cdot \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda') - \frac{|\mathbf{p}|^2}{p_0} \varepsilon_0^*(\mathbf{p}, \lambda') \right] \end{aligned}$$

第3章 矢量场

$$= [\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)][\mathbf{p} \cdot \boldsymbol{\varepsilon}^{*}(\mathbf{p}, \lambda')] - \frac{|\mathbf{p}|^{2}}{p_{0}}[\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)]\varepsilon_{0}^{*}(\mathbf{p}, \lambda')$$

$$- \frac{|\mathbf{p}|^{2}}{p_{0}}\varepsilon_{0}(\mathbf{p}, \lambda)[\mathbf{p} \cdot \boldsymbol{\varepsilon}^{*}(\mathbf{p}, \lambda')] + \frac{|\mathbf{p}|^{4}}{p_{0}^{2}}\varepsilon_{0}(\mathbf{p}, \lambda)\varepsilon_{0}^{*}(\mathbf{p}, \lambda')$$

$$= p_{0}\varepsilon^{0}(\mathbf{p}, \lambda)p_{0}\varepsilon^{0*}(\mathbf{p}, \lambda') - \frac{|\mathbf{p}|^{2}}{p_{0}}p_{0}\varepsilon^{0}(\mathbf{p}, \lambda)\varepsilon_{0}^{*}(\mathbf{p}, \lambda')$$

$$- \frac{|\mathbf{p}|^{2}}{p_{0}}\varepsilon_{0}(\mathbf{p}, \lambda)p_{0}\varepsilon^{0*}(\mathbf{p}, \lambda) + \frac{|\mathbf{p}|^{4}}{p_{0}^{2}}\varepsilon_{0}(\mathbf{p}, \lambda)\varepsilon_{0}^{*}(\mathbf{p}, \lambda')$$

$$= \left(p_{0}^{2} - 2|\mathbf{p}|^{2} + \frac{|\mathbf{p}|^{4}}{p_{0}^{2}}\right)\varepsilon_{0}(\mathbf{p}, \lambda)\varepsilon_{0}^{*}(\mathbf{p}, \lambda') = \left[p_{0}^{2} - |\mathbf{p}|^{2} + \frac{|\mathbf{p}|^{2}}{p_{0}^{2}}(|\mathbf{p}|^{2} - p_{0}^{2})\right]\varepsilon_{0}(\mathbf{p}, \lambda)\varepsilon_{0}^{*}(\mathbf{p}, \lambda')$$

$$= \left(m^{2} - m^{2}\frac{|\mathbf{p}|^{2}}{p_{0}^{2}}\right)\varepsilon_{0}(\mathbf{p}, \lambda)\varepsilon_{0}^{*}(\mathbf{p}, \lambda') = \frac{m^{4}}{E_{\mathbf{p}}^{2}}\varepsilon_{0}(\mathbf{p}, \lambda)\varepsilon_{0}^{*}(\mathbf{p}, \lambda'). \tag{3.190}$$

对于任意空间矢量 a 和 b, 利用 (1.82) 式, 有

$$(\mathbf{p} \times \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{b}) = \varepsilon^{ijk} p^j a^k \varepsilon^{imn} p^m b^n = (\delta^{jm} \delta^{kn} - \delta^{jn} \delta^{km}) p^j a^k p^m b^n$$
$$= p^j a^k p^j b^k - p^j a^k p^k b^j = |\mathbf{p}|^2 \mathbf{a} \cdot \mathbf{b} - (\mathbf{p} \cdot \mathbf{a}) (\mathbf{p} \cdot \mathbf{b}), \tag{3.191}$$

从而,可得

$$[\mathbf{p} \times \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda')] = |\mathbf{p}|^2 \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda') - [\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)][\mathbf{p} \cdot \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda')]$$

$$= |\mathbf{p}|^2 \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda') - p_0 \varepsilon^0(\mathbf{p}, \lambda) p_0 \varepsilon^{0*}(\mathbf{p}, \lambda')$$

$$= |\mathbf{p}|^2 \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}^*(\mathbf{p}, \lambda') - E_{\mathbf{p}}^2 \varepsilon^0(\mathbf{p}, \lambda) \varepsilon^{0*}(\mathbf{p}, \lambda'). \tag{3.192}$$

于是, (3.187) 式化为

$$f_{1}(\mathbf{p},\lambda,\lambda') = E_{\mathbf{p}}^{2}\delta_{\lambda\lambda'} - m^{2}\varepsilon_{0}(\mathbf{p},\lambda)\varepsilon_{0}^{*}(\mathbf{p},\lambda') + m^{2}\varepsilon_{0}(\mathbf{p},\lambda)\varepsilon_{0}^{*}(\mathbf{p},\lambda')$$

$$+|\mathbf{p}|^{2}\varepsilon(\mathbf{p},\lambda)\cdot\varepsilon^{*}(\mathbf{p},\lambda') - E_{\mathbf{p}}^{2}\varepsilon^{0}(\mathbf{p},\lambda)\varepsilon^{0*}(\mathbf{p},\lambda') + m^{2}\varepsilon(\mathbf{p},\lambda)\cdot\varepsilon^{*}(\mathbf{p},\lambda')$$

$$= E_{\mathbf{p}}^{2}\delta_{\lambda\lambda'} + E_{\mathbf{p}}^{2}\varepsilon(\mathbf{p},\lambda)\cdot\varepsilon^{*}(\mathbf{p},\lambda') - E_{\mathbf{p}}^{2}\varepsilon^{0}(\mathbf{p},\lambda)\varepsilon^{0*}(\mathbf{p},\lambda')$$

$$= E_{\mathbf{p}}^{2}\delta_{\lambda\lambda'} - E_{\mathbf{p}}^{2}\varepsilon_{\mu}(\mathbf{p},\lambda)\varepsilon^{\mu*}(\mathbf{p},\lambda') = 2E_{\mathbf{p}}^{2}\delta_{\lambda\lambda'}. \tag{3.193}$$

因此,

$$f_1(\mathbf{p}, \lambda, \lambda') = f_1^*(\mathbf{p}, \lambda, \lambda') = 2E_{\mathbf{p}}^2 \delta_{\lambda \lambda'}.$$
 (3.194)

接着,我们计算 $f_2(\mathbf{p},\lambda,\lambda')$ 。由 (3.145) 和 (3.166) 式,可得

$$\tilde{\boldsymbol{\varepsilon}}(\mathbf{p},\lambda) \cdot \tilde{\boldsymbol{\varepsilon}}(-\mathbf{p},\lambda') = \left[\boldsymbol{\varepsilon}(\mathbf{p},\lambda) - \frac{\mathbf{p}}{p_0} \varepsilon_0(\mathbf{p},\lambda)\right] \cdot \left[\boldsymbol{\varepsilon}(-\mathbf{p},\lambda') + \frac{\mathbf{p}}{p_0} \varepsilon_0(-\mathbf{p},\lambda')\right] \\
= \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda') - \frac{\varepsilon_0(\mathbf{p},\lambda)}{p_0} \mathbf{p} \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda') + \frac{\varepsilon_0(-\mathbf{p},\lambda')}{p_0} \mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p},\lambda) - \frac{|\mathbf{p}|^2}{p_0^2} \varepsilon_0(\mathbf{p},\lambda) \varepsilon_0(-\mathbf{p},\lambda') \\
= \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda') + \frac{\varepsilon_0(\mathbf{p},\lambda)}{p_0} p_0 \varepsilon^0(-\mathbf{p},\lambda') + \frac{\varepsilon_0(-\mathbf{p},\lambda')}{p_0} p_0 \varepsilon^0(\mathbf{p},\lambda) - \frac{|\mathbf{p}|^2}{p_0^2} \varepsilon_0(\mathbf{p},\lambda) \varepsilon_0(-\mathbf{p},\lambda') \\
= \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda') + \frac{1}{E_{\mathbf{p}}^2} (2E_{\mathbf{p}}^2 - |\mathbf{p}|^2) \varepsilon_0(\mathbf{p},\lambda) \varepsilon_0(-\mathbf{p},\lambda'). \tag{3.195}$$

另一方面,

$$\begin{aligned}
&[\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(\mathbf{p}, \lambda)][\mathbf{p} \cdot \tilde{\boldsymbol{\varepsilon}}(-\mathbf{p}, \lambda')] \\
&= \left[\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) - \frac{|\mathbf{p}|^2}{p_0} \varepsilon_0(\mathbf{p}, \lambda)\right] \left[\mathbf{p} \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda') + \frac{|\mathbf{p}|^2}{p_0} \varepsilon_0(-\mathbf{p}, \lambda')\right] \\
&= \left[\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)\right][\mathbf{p} \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda')] + \frac{|\mathbf{p}|^2}{p_0} [\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)] \varepsilon_0(-\mathbf{p}, \lambda') \\
&- \frac{|\mathbf{p}|^2}{p_0} \varepsilon_0(\mathbf{p}, \lambda)[\mathbf{p} \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda')] - \frac{|\mathbf{p}|^4}{p_0^2} \varepsilon_0(\mathbf{p}, \lambda) \varepsilon_0(-\mathbf{p}, \lambda') \\
&= -p_0 \varepsilon^0(\mathbf{p}, \lambda) p_0 \varepsilon^0(\mathbf{p}, \lambda') + \frac{|\mathbf{p}|^2}{p_0} p_0 \varepsilon^0(\mathbf{p}, \lambda) \varepsilon_0(-\mathbf{p}, \lambda') \\
&+ \frac{|\mathbf{p}|^2}{p_0} \varepsilon_0(\mathbf{p}, \lambda) p_0 \varepsilon^0(\mathbf{p}, \lambda') - \frac{|\mathbf{p}|^4}{p_0^2} \varepsilon_0(\mathbf{p}, \lambda) \varepsilon_0(-\mathbf{p}, \lambda') \\
&= \left(-p_0^2 + 2|\mathbf{p}|^2 - \frac{|\mathbf{p}|^4}{p_0^2}\right) \varepsilon_0(\mathbf{p}, \lambda) \varepsilon_0(-\mathbf{p}, \lambda') = -\frac{1}{E_{\mathbf{p}}^2} (E_{\mathbf{p}}^2 - |\mathbf{p}|^2)^2 \varepsilon_0(\mathbf{p}, \lambda) \varepsilon_0(-\mathbf{p}, \lambda') \\
&= -\frac{m^4}{E_{\mathbf{p}}^2} \varepsilon_0(\mathbf{p}, \lambda) \varepsilon_0(-\mathbf{p}, \lambda'), \tag{3.196}
\end{aligned}$$

而

$$[\mathbf{p} \times \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)] \cdot [\mathbf{p} \times \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda')] = |\mathbf{p}|^{2} \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda') - [\mathbf{p} \cdot \boldsymbol{\varepsilon}(\mathbf{p}, \lambda)][\mathbf{p} \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda')]$$

$$= |\mathbf{p}|^{2} \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda') + p_{0} \boldsymbol{\varepsilon}^{0}(\mathbf{p}, \lambda) p_{0} \boldsymbol{\varepsilon}^{0}(-\mathbf{p}, \lambda')$$

$$= |\mathbf{p}|^{2} \boldsymbol{\varepsilon}(\mathbf{p}, \lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p}, \lambda') + E_{\mathbf{p}}^{2} \boldsymbol{\varepsilon}^{0}(\mathbf{p}, \lambda) \boldsymbol{\varepsilon}^{0}(-\mathbf{p}, \lambda'). \tag{3.197}$$

于是,(3.188) 式化为

$$f_{2}(\mathbf{p},\lambda,\lambda') = -E_{\mathbf{p}}^{2} \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda') - (2E_{\mathbf{p}}^{2} - |\mathbf{p}|^{2})\varepsilon_{0}(\mathbf{p},\lambda)\varepsilon_{0}(-\mathbf{p},\lambda') + m^{2}\varepsilon_{0}(\mathbf{p},\lambda)\varepsilon_{0}(-\mathbf{p},\lambda') + |\mathbf{p}|^{2} \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda') + E_{\mathbf{p}}^{2} \varepsilon^{0}(\mathbf{p},\lambda)\varepsilon^{0}(-\mathbf{p},\lambda') + m^{2} \boldsymbol{\varepsilon}(\mathbf{p},\lambda) \cdot \boldsymbol{\varepsilon}(-\mathbf{p},\lambda')$$

$$= (-2E_{\mathbf{p}}^{2} + |\mathbf{p}|^{2} + m^{2} + E_{\mathbf{p}}^{2})\varepsilon_{0}(\mathbf{p},\lambda)\varepsilon_{0}(-\mathbf{p},\lambda') = 0.$$

$$(3.198)$$

因此,

$$f_2(\mathbf{p}, \lambda, \lambda') = f_2^*(\mathbf{p}, \lambda, \lambda') = 0. \tag{3.199}$$

将 (3.194) 和 (3.199) 式代入 (3.186) 式,再利用产生湮灭算符的对易关系 (3.170),可得有质量矢量场的哈密顿量为

$$H = \sum_{\lambda \lambda'} \int \frac{d^3 p}{(2\pi)^3} \frac{1}{4E_{\mathbf{p}}} 2E_{\mathbf{p}}^2 \delta_{\lambda \lambda'} \left(a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'}^{\dagger} + a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda'} \right) = \sum_{\lambda} \int \frac{d^3 p}{(2\pi)^3} \frac{E_{\mathbf{p}}}{2} \left(a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda}^{\dagger} + a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda} \right)$$
$$= \sum_{\lambda = \pm 0} \int \frac{d^3 p}{(2\pi)^3} E_{\mathbf{p}} a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda} + (2\pi)^3 \delta^{(3)}(0) \int \frac{d^3 p}{(2\pi)^3} \frac{3}{2} E_{\mathbf{p}}. \tag{3.200}$$

上式第二行第一项是所有动量模式所有极化态所有粒子贡献的能量之和,第二项是零点能。

- 78 – 第 3 章 下量场

根据 (1.156) 式,有质量矢量场的总动量为

$$\begin{split} \mathbf{P} &= -\int d^3x \, \pi_i \nabla A^i \\ &= -\sum_{\lambda\lambda'} \int \frac{d^3x \, d^3p \, d^3q}{(2\pi)^6 \sqrt{2E_\mathbf{p}2E_\mathbf{q}}} \, (ip_0) \left[\tilde{\varepsilon}_i(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-ip\cdot x} - \tilde{\varepsilon}_i^*(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^\dagger e^{ip\cdot x} \right] \\ &\times \left[i\mathbf{q}\varepsilon^i(\mathbf{q},\lambda') a_{\mathbf{q},\lambda'} e^{-ip\cdot x} - i\mathbf{q}\varepsilon^{i*}(\mathbf{q},\lambda') a_{\mathbf{q},\lambda'}^\dagger e^{ip\cdot x} \right] \\ &= \sum_{\lambda\lambda'} \int \frac{d^3x \, d^3p \, d^3q \, p_0\mathbf{q}}{(2\pi)^6 \sqrt{2E_\mathbf{p}2E_\mathbf{q}}} \left[-\tilde{\varepsilon}_i(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{q},\lambda') a_{\mathbf{p},\lambda} a_{\mathbf{q},\lambda'}^\dagger e^{-i(p-q)\cdot x} \right. \\ &\quad \left. - \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^i(\mathbf{q},\lambda') a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p-q)\cdot x} + \tilde{\varepsilon}_i(\mathbf{p},\lambda)\varepsilon^i(\mathbf{q},\lambda') a_{\mathbf{p},\lambda} a_{\mathbf{q},\lambda'} e^{-i(p+q)\cdot x} \right. \\ &\quad \left. + \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{q},\lambda') a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p+q)\cdot x} \right] \\ &= \sum_{\lambda\lambda'} \int \frac{d^3p \, d^3q \, p_0\mathbf{q}}{(2\pi)^3 \sqrt{2E_\mathbf{p}2E_\mathbf{q}}} \left\{ -\delta^{(3)}(\mathbf{p}-\mathbf{q}) \left[\tilde{\varepsilon}_i(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{q},\lambda') a_{\mathbf{p},\lambda} a_{\mathbf{q},\lambda'}^\dagger e^{-i(p_0-q_0)t} \right. \right. \\ &\quad \left. + \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^i(\mathbf{q},\lambda') a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p_0-q_0)t} \right] \\ &\quad \left. + \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{q},\lambda') a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{q},\lambda'} e^{i(p_0-q_0)t} \right] \right\} \\ &= -\sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} \left[\tilde{\varepsilon}_i(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{p},\lambda') a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'}^\dagger + \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^i(\mathbf{p},\lambda') a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{p},\lambda'}^\dagger e^{i(p_0+q_0)t} \right. \\ &\quad \left. + \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{q},\lambda') a_{\mathbf{p},\lambda} a_{\mathbf{q},\lambda'}^\dagger e^{i(p_0+q_0)t} \right] \right\} \\ &= -\sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} \left[\tilde{\varepsilon}_i(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{p},\lambda') a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'}^\dagger + \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^i(\mathbf{p},\lambda') a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{p},\lambda'}^\dagger e^{i(p_0+q_0)t} \right] \right\} \\ &= -\sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} \left[\tilde{\varepsilon}_i(\mathbf{p},\lambda)\varepsilon^{i*}(\mathbf{p},\lambda') a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'}^\dagger + \tilde{\varepsilon}_i^*(\mathbf{p},\lambda)\varepsilon^i(\mathbf{p},\lambda') a_{\mathbf{p},\lambda}^\dagger a_{\mathbf{p},\lambda'}^\dagger e^{2iE_\mathbf{p}t} \right]. \quad (3.201) \end{aligned}$$

由 (3.145) 和 (3.165) 式可得

$$\tilde{\varepsilon}_{i}(\mathbf{p},\lambda)\varepsilon^{i}(-\mathbf{p},\lambda') = \varepsilon_{i}(\mathbf{p},\lambda)\varepsilon^{i}(-\mathbf{p},\lambda') - \frac{\varepsilon_{0}(\mathbf{p},\lambda)}{p_{0}}p_{i}\varepsilon^{i}(-\mathbf{p},\lambda')
= \varepsilon_{i}(\mathbf{p},\lambda)\varepsilon^{i}(-\mathbf{p},\lambda') - \frac{\varepsilon_{0}(\mathbf{p},\lambda)}{p_{0}}p_{0}\varepsilon^{0}(-\mathbf{p},\lambda')
= \varepsilon_{i}(\mathbf{p},\lambda)\varepsilon^{i}(-\mathbf{p},\lambda') - \varepsilon_{0}(\mathbf{p},\lambda)\varepsilon^{0}(-\mathbf{p},\lambda'),$$
(3.202)

从而,有

$$-\sum_{\lambda\lambda'}\int \frac{d^{3}p}{(2\pi)^{3}} \frac{\mathbf{p}}{2} \left[\tilde{\varepsilon}_{i}(\mathbf{p},\lambda)\varepsilon^{i}(-\mathbf{p},\lambda')a_{\mathbf{p},\lambda}a_{-\mathbf{p},\lambda'}e^{-2iE_{\mathbf{p}}t} + \tilde{\varepsilon}_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i*}(-\mathbf{p},\lambda')a_{\mathbf{p},\lambda}^{\dagger}a_{-\mathbf{p},\lambda'}^{\dagger}e^{2iE_{\mathbf{p}}t} \right]$$

$$= \sum_{\lambda\lambda'}\int \frac{d^{3}p}{(2\pi)^{3}} \frac{\mathbf{p}}{2} \left\{ \left[\varepsilon_{i}(\mathbf{p},\lambda)\varepsilon^{i}(-\mathbf{p},\lambda') - \varepsilon_{0}(\mathbf{p},\lambda)\varepsilon^{0}(-\mathbf{p},\lambda') \right] a_{\mathbf{p},\lambda}a_{-\mathbf{p},\lambda'}e^{-2iE_{\mathbf{p}}t} + \left[\varepsilon_{i}^{*}(\mathbf{p},\lambda)\varepsilon^{i*}(-\mathbf{p},\lambda') - \varepsilon_{0}^{*}(\mathbf{p},\lambda)\varepsilon^{0*}(-\mathbf{p},\lambda') \right] a_{\mathbf{p},\lambda}^{\dagger}a_{-\mathbf{p},\lambda'}^{\dagger}e^{2iE_{\mathbf{p}}t} \right\}$$

$$= \sum_{\lambda\lambda'}\int \frac{d^{3}p}{(2\pi)^{3}} \frac{-\mathbf{p}}{2} \left\{ \left[\varepsilon_{i}(-\mathbf{p},\lambda')\varepsilon^{i}(\mathbf{p},\lambda) - \varepsilon_{0}(-\mathbf{p},\lambda')\varepsilon^{0}(\mathbf{p},\lambda) \right] a_{-\mathbf{p},\lambda'}a_{\mathbf{p},\lambda}e^{-2iE_{\mathbf{p}}t} + \left[\varepsilon_{i}^{*}(-\mathbf{p},\lambda')\varepsilon^{i*}(\mathbf{p},\lambda) - \varepsilon_{0}^{*}(-\mathbf{p},\lambda')\varepsilon^{0*}(\mathbf{p},\lambda) \right] a_{-\mathbf{p},\lambda'}a_{\mathbf{p},\lambda}e^{2iE_{\mathbf{p}}t} \right\}$$

$$= -\sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} \Big\{ \left[\varepsilon_i(-\mathbf{p}, \lambda') \varepsilon^i(\mathbf{p}, \lambda) - \varepsilon_0(-\mathbf{p}, \lambda') \varepsilon^0(\mathbf{p}, \lambda) \right] a_{\mathbf{p},\lambda} a_{-\mathbf{p},\lambda'} e^{-2iE_{\mathbf{p}}t} + \left[\varepsilon_i^*(-\mathbf{p}, \lambda') \varepsilon^{i*}(\mathbf{p}, \lambda) - \varepsilon_0^*(-\mathbf{p}, \lambda') \varepsilon^{0*}(\mathbf{p}, \lambda) \right] a_{\mathbf{p},\lambda}^{\dagger} a_{-\mathbf{p},\lambda'}^{\dagger} e^{2iE_{\mathbf{p}}t} \Big\}.$$
(3.203)

上式第二步进行了 $\mathbf{p} \to -\mathbf{p}$ 的替换和 $\lambda \leftrightarrow \lambda'$ 的互换,由于要对整个三维动量空间积分且对 λ 和 λ' 进行求和,这两种操作都不会改变结果。第三步用到产生湮灭算符的对易关系 (3.170)。留意到第一步与第三步的结果互为相反数,可知上式为零。因此,(3.201) 式最后两行方括号中最后两项没有贡献。再利用 (3.160) 式,可得

$$\mathbf{P} = -\sum_{\lambda\lambda'} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} \left[-\delta_{\lambda\lambda'} a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda'}^{\dagger} - \delta_{\lambda\lambda'} a_{\mathbf{p},\lambda'}^{\dagger} a_{\mathbf{p},\lambda'} \right] = \sum_{\lambda} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} \left[a_{\mathbf{p},\lambda} a_{\mathbf{p},\lambda}^{\dagger} + a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda} \right]$$
$$= \sum_{\lambda=\pm,0} \int \frac{d^3p}{(2\pi)^3} \mathbf{p} a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda} + \frac{3}{2} \delta^{(3)}(0) \int d^3p \, \mathbf{p} = \sum_{\lambda=\pm,0} \int \frac{d^3p}{(2\pi)^3} \mathbf{p} a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda}. \tag{3.204}$$

这表明总动量是所有动量模式所有极化态所有粒子贡献的动量之和。

3.4 无质量矢量场的正则量子化

3.4.1 无质量情况下的极化矢量

当质量 m=0 时,由 (3.100) 和 (3.101) 式定义的两个横向极化矢量 $e^{\mu}(\mathbf{p},1)$ 和 $e^{\mu}(\mathbf{p},2)$ 的 形式不变,但 (3.111) 式显然不是纵向极化矢量 $e^{\mu}(\mathbf{p},3)$ 的良好定义。实际上,在满足正确归一化的条件下,m=0 时不能构造第 3 个符合四维横向条件的极化矢量。另一方面,由于无质量矢量粒子的动量 p^{μ} 的内积为 $p^2=0$,也不能像 (3.115) 式那样将类时极化矢量 $e^{\mu}(\mathbf{p},0)$ 取为正比于 p^{μ} 的矢量,否则将出现 $e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},0)=0$ 而不能得到正确的归一化。因此,我们需要重新定义 $e^{\mu}(\mathbf{p},3)$ 和 $e^{\mu}(\mathbf{p},0)$ 。

在用 (3.100) 和 (3.101) 式定义 $e^{\mu}(\mathbf{p},1)$ 和 $e^{\mu}(\mathbf{p},2)$ 时,我们已经选取了一个特定的惯性参考系。在这个参考系中,可以定义一个类时单位矢量

$$n^{\mu} = (1, 0, 0, 0), \tag{3.205}$$

它的 Lorentz 不变内积是

$$n^2 = 1. (3.206)$$

然后,将类时极化矢量 $e^{\mu}(\mathbf{p},0)$ 在此参考系中的形式就取为 n^{μ} ,即

$$e^{\mu}(\mathbf{p},0) = n^{\mu}.\tag{3.207}$$

 $e^{\mu}(\mathbf{p},0)$ 在其它惯性参考系中的形式可通过 Lorentz 变换得到。另一方面,纵向极化矢量 $e^{\mu}(\mathbf{p},3)$ 可以用 p^{μ} 和 n^{μ} 定义成如下 Lorentz 协变的形式:

$$e^{\mu}(\mathbf{p},3) = \frac{p^{\mu} - (p \cdot n)n^{\mu}}{p \cdot n}.$$
 (3.208)

- 80 - 第 3 章 矢量场

 $p^2 = (p^0)^2 - |\mathbf{p}|^2 = 0$ 表明

$$p^0 = |\mathbf{p}|,\tag{3.209}$$

从而, $e^{\mu}(\mathbf{p},3)$ 在我们选取的参考系中化为

$$e^{\mu}(\mathbf{p},3) = \frac{p^{\mu} - (p \cdot n)n^{\mu}}{p \cdot n} = \frac{p^{\mu} - p^{0}n^{\mu}}{p^{0}} = \left(0, \frac{\mathbf{p}}{|\mathbf{p}|}\right).$$
 (3.210)

这样定义的 $e^{\mu}(\mathbf{p},0)$ 和 $e^{\mu}(\mathbf{p},3)$ 满足正交归一关系 (3.98):

$$e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},0) = n^2 = 1, \quad e_{\mu}(\mathbf{p},3)e^{\mu}(\mathbf{p},3) = -\frac{\mathbf{p} \cdot \mathbf{p}}{|\mathbf{p}|^2} = -1;$$
 (3.211)

$$e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},1) = e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},2) = e_{\mu}(\mathbf{p},0)e^{\mu}(\mathbf{p},3) = 0;$$
 (3.212)

$$e_{\mu}(\mathbf{p}, 3)e^{\mu}(\mathbf{p}, i) = -\frac{1}{|\mathbf{p}|}\mathbf{p} \cdot \mathbf{e}(\mathbf{p}, i) = 0, \quad i = 1, 2.$$
 (3.213)

此外,可以验证,由 (3.100)、(3.101)、(3.207) 和 (3.208) 式定义的这组极化矢量确实满足完备性关系 (3.99):

不过, $e^{\mu}(\mathbf{p},0)$ 和 $e^{\mu}(\mathbf{p},3)$ 都不满足四维横向条件:

$$p_{\mu}e^{\mu}(\mathbf{p},0) = p \cdot n = p^{0} = |\mathbf{p}|, \quad p_{\mu}e^{\mu}(\mathbf{p},3) = -\frac{\mathbf{p} \cdot \mathbf{p}}{|\mathbf{p}|} = -|\mathbf{p}| = -p \cdot n.$$
 (3.215)

横向极化矢量 $e^{\mu}(\mathbf{p},1)$ 和 $e^{\mu}(\mathbf{p},2)$ 具有求和关系

$$-\sum_{\sigma=1}^{2} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma) = \sum_{\sigma=1}^{2} g_{\sigma\sigma} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma) = g_{\mu\nu} - g_{00} e_{\mu}(\mathbf{p}, 0) e_{\nu}(\mathbf{p}, 0) - g_{33} e_{\mu}(\mathbf{p}, 3) e_{\nu}(\mathbf{p}, 3)$$

$$= g_{\mu\nu} - n_{\mu} n_{\nu} + \frac{p_{\mu} - (p \cdot n) n_{\mu}}{p \cdot n} \frac{p_{\nu} - (p \cdot n) n_{\nu}}{p \cdot n}$$

$$= g_{\mu\nu} - n_{\mu} n_{\nu} + \frac{p_{\mu} p_{\nu} - (p \cdot n) p_{\mu} n_{\nu} - (p \cdot n) p_{\nu} n_{\mu} + (p \cdot n)^{2} n_{\mu} n_{\nu}}{(p \cdot n)^{2}}$$

$$= g_{\mu\nu} + \frac{p_{\mu} p_{\nu}}{(p \cdot n)^{2}} - \frac{p_{\mu} n_{\nu} + p_{\nu} n_{\mu}}{p \cdot n}, \qquad (3.216)$$

即

$$\sum_{\sigma=1}^{2} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma) = -g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{(p \cdot n)^{2}} + \frac{p_{\mu}n_{\nu} + p_{\nu}n_{\mu}}{p \cdot n}.$$
 (3.217)

根据 (3.125) 式,作为螺旋度本征态的极化矢量 $arepsilon^{\mu}(\mathbf{p},\pm)$ 满足

$$\sum_{\lambda=\pm} \varepsilon_{\mu}^{*}(\mathbf{p}, \lambda) \varepsilon_{\nu}(\mathbf{p}, \lambda) = \frac{1}{2} [e_{\mu}(\mathbf{p}, 1) + ie_{\mu}(\mathbf{p}, 2)] [e_{\nu}(\mathbf{p}, 1) - ie_{\nu}(\mathbf{p}, 2)]$$

$$+ \frac{1}{2} [-e_{\mu}(\mathbf{p}, 1) + ie_{\mu}(\mathbf{p}, 2)] [-e_{\nu}(\mathbf{p}, 1) - ie_{\nu}(\mathbf{p}, 2)]$$

$$= e_{\mu}(\mathbf{p}, 1) e_{\nu}(\mathbf{p}, 1) + e_{\mu}(\mathbf{p}, 2) e_{\nu}(\mathbf{p}, 2) = \sum_{\sigma=1}^{2} e_{\mu}(\mathbf{p}, \sigma) e_{\nu}(\mathbf{p}, \sigma), \quad (3.218)$$

因而具有求和关系

$$\sum_{\lambda=\pm} \varepsilon_{\mu}^{*}(\mathbf{p}, \lambda) \varepsilon_{\nu}(\mathbf{p}, \lambda) = -g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{(p \cdot n)^{2}} + \frac{p_{\mu}n_{\nu} + p_{\nu}n_{\mu}}{p \cdot n}.$$
 (3.219)

四维横向条件 $p_{\mu}\varepsilon^{\mu}(\mathbf{p},\pm)=0$ 在上式中体现为

$$p^{\nu} \sum_{\lambda=+} \varepsilon_{\mu}^{*}(\mathbf{p}, \lambda) \varepsilon_{\nu}(\mathbf{p}, \lambda) = -p_{\mu} - \frac{p_{\mu}p^{2}}{(p \cdot n)^{2}} + \frac{p_{\mu}(p \cdot n) + p^{2}n_{\mu}}{p \cdot n} = -p_{\mu} + p_{\mu} = 0.$$
 (3.220)

3.4.2 无质量矢量场与规范对称性

在自由有质量矢量场的拉氏量 (3.84) 中,令参数 m=0,就得到自由无质量实矢量场 $A^{\mu}(x)$ 的**拉氏量**

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \tag{3.221}$$

其中 $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ 。同理,令 Proca 方程中 m=0,就得到自由无质量矢量场的运动方程

$$\partial_{\mu}F^{\mu\nu} = 0. \tag{3.222}$$

根据 1.5 节的讨论,这个方程就是无源的 **Maxwell 方程**。电磁场是一种无质量矢量场。作为电磁场的量子,**光子**是一种无质量矢量粒子。

可以对 $A^{\mu}(x)$ 作规范变换 (gauge transformation)

$$A'^{\mu}(x) = A^{\mu}(x) + \partial^{\mu}\chi(x),$$
 (3.223)

其中,作为变换参数的 $\chi(x)$ 是一个任意的 Lorentz 标量函数,依赖于时空坐标,因而这样的变换是**局域** (local) 变换。在此规范变换下,场强张量不变:

$$F'^{\mu\nu}(x) = \partial^{\mu}[A^{\nu}(x) + \partial^{\nu}\chi(x)] - \partial^{\nu}[A^{\mu}(x) + \partial^{\mu}\chi(x)]$$

$$= \partial^{\mu}A^{\nu}(x) - \partial^{\nu}A^{\mu}(x) + \partial^{\mu}\partial^{\nu}\chi(x) - \partial^{\nu}\partial^{\mu}\chi(x)$$

$$= \partial^{\mu}A^{\nu}(x) - \partial^{\nu}A^{\mu}(x) = F^{\mu\nu}(x). \tag{3.224}$$

因而,拉氏量 (3.221) 和无源 Maxwell 方程 (3.222) 都不会改变,这称为规范对称性 (gauge symmetry)。

在经典电动力学中,这种对称性广为人知,它表明四维矢势 $A^{\mu}(x)$ 不能被唯一地确定,因而不是直接观测量。电动力学中的直接观测量都不依赖于 $\chi(x)$,也就是说,不依赖于**规范**的选取。规范对称性的存在对研究无质量矢量场带来了不便。为了便于计算,常常将规范固定下来,使得计算过程依赖于选取的规范,不过,最后得出的可观测量必须是规范不变 (gauge invariant)的。

一种常用的规范是 Lorenz 规范,规范条件为

$$\partial_{\mu}A^{\mu} = 0. \tag{3.225}$$

它具有明显的 Lorentz 协变性。虽然这个规范条件看起来与有质量矢量场的 Lorenz 条件 (3.91) 相同,但是,在研究有质量矢量场时它是从运动方程推导出来的必须满足的条件,而在研究无质量矢量场时它只是一种人为选择。

对于任意的 $A^{\mu}(x)$, 令规范变换函数 $\chi(x)$ 满足方程

$$\partial^2 \chi(x) = -\partial_\mu A^\mu(x), \tag{3.226}$$

那么,作规范变换之后的场 $A'^{\mu}(x)$ 就会满足 Lorenz 规范条件:

$$\partial_{\mu}A^{\prime\mu}(x) = \partial_{\mu}A^{\mu}(x) + \partial^{2}\chi(x) = \partial_{\mu}A^{\mu}(x) - \partial_{\mu}A^{\mu}(x) = 0.$$
 (3.227)

但是,经过这种变换之后,矢量场仍然没有被唯一地确定:对于满足 Lorenz 规范条件的矢量场 $A^{\mu}(x)$,取满足齐次波动方程

$$\partial^2 \tilde{\chi}(x) = 0 \tag{3.228}$$

的任意规范变换函数 $\tilde{\chi}(x)$ 再作一次规范变换,都能得到满足 Lorenz 规范条件的另一个矢量场 $A'^{\mu}(x)$ 。可见,存在无穷多个规范等价的矢量场,它们描述相同的物理,而且全都满足 Lorenz 规范条件 (3.225)。

矢量场 $A^{\mu}(x)$ 有 4 个分量,因而在没有任何约束的情况下可以具有 4 个独立的自由度。要求 Lorenz 规范条件成立将减少 1 个独立自由度。但是,上述规范等价性表明, $A^{\mu}(x)$ 并没有 3 个独立的自由度,否则它在强加 Lorenz 规范条件之后就必须唯一地确定下来。实际上,无质量矢量场 $A^{\mu}(x)$ 只具有 2 个独立的自由度,也就是说,有 2 个虚假 (spurious) 的自由度。这在电动力学中是一个熟知的结论:电磁波具有 2 种独立的极化态,以螺旋度 λ 来表征的话,就是 $\lambda = +1$ (右旋极化) 和 $\lambda = -1$ (左旋极化) 的态。

在上一节讨论有质量矢量场 $A^{\mu}(x)$ 的量子化程序时,由于场的第 0 分量 $A^{0}(x)$ 不拥有非零的共轭动量密度,因而没有将它作为独立的正则运动变量。但这种情况并没有使正则量子化出现困难,因为 Proca 方程要求 $A^{0}(x)$ 不是独立变量,而是由 (3.174) 式决定的:

$$A^0 = -\frac{1}{m^2} \nabla \cdot \boldsymbol{\pi}. \tag{3.229}$$

于是,以场的空间分量 $A^i(x)$ 作为 3 个独立正则变量进行量子化是足够的,自由度恰好与有质量矢量粒子的 3 种物理极化态 (螺旋度 $\lambda = +1, 0, -1$) 相符。

当 m = 0 时,(3.229) 式显然不能成立。因此,对于无质量矢量场,最好把 $A^0(x)$ 也当作独立的正则变量。为了使 $A^0(x)$ 拥有非零的共轭动量密度,可以在拉氏量中增加一个不会影响最终物理结果的项:

$$\mathcal{L}_1 = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \xi (\partial_\mu A^\mu)^2, \tag{3.230}$$

其中 ξ 是一个可以自由选取的实参数。可以看出,在 $A^{\mu}(x)$ 满足 Lorenz 规范条件 (3.225) 的情况下,由 (3.230) 式定义的 \mathcal{L}_1 等价于由 (3.221) 式定义的 \mathcal{L}_2 。新增的项 $-\frac{1}{2}\xi(\partial_{\mu}A^{\mu})^2$ 破坏了规范对称性,相当于把规范固定下来,因而称为规范固定项 (gauge-fixing term)。可以将 \mathcal{L}_1 展开为

$$\mathcal{L}_{1} = -\frac{1}{2}(\partial_{\mu}A_{\nu})\partial^{\mu}A^{\nu} + \frac{1}{2}(\partial_{\nu}A_{\mu})\partial^{\mu}A^{\nu} - \frac{1}{2}\xi(\partial_{\mu}A^{\mu})^{2}, \tag{3.231}$$

从而, A^{μ} 对应的共轭动量密度为

$$\pi_{\mu} = \frac{\partial \mathcal{L}_{1}}{\partial (\partial^{0} A^{\mu})} = -\partial_{0} A_{\mu} + \partial_{\mu} A_{0} - \xi (\partial_{\nu} A^{\nu}) \frac{\partial (\partial_{\sigma} A^{\sigma})}{\partial (\partial_{0} A^{\mu})} = -F_{0\mu} - \xi g_{\mu 0} \partial_{\nu} A^{\nu}, \tag{3.232}$$

即

$$\pi_i = -F_{0i} = -\partial_0 A_i + \partial_i A_0, \quad \pi_0 = -\xi \partial_\mu A^\mu.$$
 (3.233)

因此, $\xi \neq 0$ 时 A^0 可以拥有非零的共轭动量密度 π_0 。

现在,正则量子化程序要求算符 A^{μ} 和 π_{μ} 满足如下等时对易关系:

$$[A^{\mu}(\mathbf{x},t),\pi_{\nu}(\mathbf{y},t)] = i\delta^{\mu}_{\nu}\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad [A^{\mu}(\mathbf{x},t),A^{\nu}(\mathbf{y},t)] = [\pi_{\mu}(\mathbf{x},t),\pi_{\nu}(\mathbf{y},t)] = 0.$$
 (3.234)

但是,这样的等时对易关系与 Lorenz 规范条件相互矛盾。计算 A^0 与 $\partial_\mu A^\mu$ 的对易子,利用 (3.233) 式,可得

$$[A^{0}(\mathbf{x},t),\partial_{\mu}A^{\mu}(\mathbf{y},t)] = -\frac{1}{\xi}[A^{0}(\mathbf{x},t),\pi_{0}(\mathbf{y},t)] = -\frac{i}{\xi}\delta^{(3)}(\mathbf{x}-\mathbf{y}).$$
(3.235)

上式在 $\mathbf{x} = \mathbf{y}$ 处非零,因而必有 $\partial_{\mu}A^{\mu} \neq 0$ 。所以, A^{μ} 作为场算符在满足等时对易关系的同时不能满足 Lorenz 规范条件 (3.225)。这说明 Lorenz 规范条件虽然适用于经典场 $A^{\mu}(x)$,但对于量子场 $A^{\mu}(x)$ 来说限制太强了,下面会采用一个弱化的 Lorenz 规范条件。

由

$$\frac{\partial \mathcal{L}_1}{\partial (\partial_{\mu} A_{\nu})} = -\partial^{\mu} A^{\nu} + \partial^{\nu} A^{\mu} - \xi g^{\mu\nu} (\partial_{\rho} A^{\rho}), \quad \frac{\partial \mathcal{L}_1}{\partial A_{\nu}} = 0, \tag{3.236}$$

可得,与 £1 对应的 Euler-Lagrange 方程为

$$0 = \partial_{\mu} \frac{\partial \mathcal{L}_{1}}{\partial(\partial_{\mu} A_{\nu})} - \frac{\partial \mathcal{L}_{1}}{\partial A_{\nu}} = -\partial^{2} A^{\nu} + \partial^{\nu} \partial_{\mu} A^{\mu} - \xi g^{\mu\nu} \partial_{\mu} (\partial_{\rho} A^{\rho}) = -\partial^{2} A^{\nu} + (1 - \xi) \partial^{\nu} (\partial_{\rho} A^{\rho}), \quad (3.237)$$

即

$$\partial^2 A^{\mu} - (1 - \xi)\partial^{\mu}(\partial_{\nu}A^{\nu}) = 0. \tag{3.238}$$

若取 $\xi = 1$,则上式化为 **d'Alembert** 方程

$$\partial^2 A^{\mu}(x) = 0, \tag{3.239}$$

可以看作无质量情况下的 Klein-Gordon 方程。可见,将规范固定参数取为

$$\xi = 1 \tag{3.240}$$

将有利于简化计算,这种取法称为 **Feynman 规范**,本节后续计算采用这个规范。在 Feynman 规范下,拉氏量化为

$$\mathcal{L}_{1} = -\frac{1}{2}(\partial_{\mu}A_{\nu})\partial^{\mu}A^{\nu} + \frac{1}{2}(\partial_{\nu}A_{\mu})\partial^{\mu}A^{\nu} - \frac{1}{2}\partial^{\mu}A_{\mu}(\partial_{\nu}A^{\nu})
= -\frac{1}{2}(\partial_{\mu}A_{\nu})\partial^{\mu}A^{\nu} + \frac{1}{2}\partial_{\nu}(A_{\mu}\partial^{\mu}A^{\nu}) - \frac{1}{2}A_{\mu}\partial_{\nu}\partial^{\mu}A^{\nu} - \frac{1}{2}\partial^{\mu}(A_{\mu}\partial_{\nu}A^{\nu}) + \frac{1}{2}A_{\mu}\partial^{\mu}\partial_{\nu}A^{\nu}
= -\frac{1}{2}(\partial_{\mu}A_{\nu})\partial^{\mu}A^{\nu} + \frac{1}{2}\partial_{\mu}(A_{\nu}\partial^{\nu}A^{\mu} - A_{\mu}\partial_{\nu}A^{\nu}).$$
(3.241)

上式最后一行第二项是一个全散度,它不会影响作用量和运动方程,可以舍弃。因此,可以采用更加简化的拉氏量

$$\mathcal{L}_2 = -\frac{1}{2} (\partial_\mu A_\nu) \partial^\mu A^\nu. \tag{3.242}$$

此时,共轭动量密度为

$$\pi_{\mu} = \frac{\partial \mathcal{L}_2}{\partial (\partial^0 A^{\mu})} = -\partial_0 A_{\mu}. \tag{3.243}$$

对于 d'Alembert 方程 (3.239), 平面波解的正能解和负能解分别正比于 $\exp(-ip \cdot x)$ 和 $\exp(ip \cdot x)$, 其中

$$p^0 = E_{\mathbf{p}} = |\mathbf{p}|. \tag{3.244}$$

使用上一小节讨论的实极化矢量组 $e^{\mu}(\mathbf{p},\sigma)$,可以对无质量矢量场 $A^{\mu}(\mathbf{x},t)$ 作如下平面波展开:

$$A^{\mu}(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\sigma=0}^3 e^{\mu}(\mathbf{p},\sigma) \left(a_{\mathbf{p};\sigma} e^{-ip\cdot x} + a_{\mathbf{p};\sigma}^{\dagger} e^{ip\cdot x} \right). \tag{3.245}$$

容易验证,这个展开式满足自共轭条件

$$[A^{\mu}(\mathbf{x},t)]^{\dagger} = A^{\mu}(\mathbf{x},t). \tag{3.246}$$

相应的共轭动量展开式为

$$\pi_{\mu}(\mathbf{x},t) = -\partial_0 A_{\mu} = \int \frac{d^3 p}{(2\pi)^3} \frac{ip_0}{\sqrt{2E_{\mathbf{p}}}} \sum_{\sigma=0}^3 e_{\mu}(\mathbf{p},\sigma) \left(a_{\mathbf{p};\sigma} e^{-ip\cdot x} - a_{\mathbf{p};\sigma}^{\dagger} e^{ip\cdot x} \right). \tag{3.247}$$

3.4.3 产生湮灭算符的对易关系

利用

$$\int d^3x \, e^{iq\cdot x} A^{\mu} = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \int d^3x \, \sum_{\sigma=0}^3 e^{\mu}(\mathbf{p}, \sigma) \left[a_{\mathbf{p};\sigma} e^{-i(p-q)\cdot x} + a_{\mathbf{p};\sigma}^{\dagger} e^{i(p+q)\cdot x} \right]
= \int d^3p \, \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\sigma=0}^3 e^{\mu}(\mathbf{p}, \sigma) \left[a_{\mathbf{p};\sigma} e^{-i(p^0-q^0)t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) + a_{\mathbf{p};\sigma}^{\dagger} e^{i(p^0+q^0)t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]
= \frac{1}{\sqrt{2E_{\mathbf{q}}}} \sum_{\sigma=0}^3 \left[e^{\mu}(\mathbf{q}, \sigma) a_{\mathbf{q};\sigma} + e^{\mu}(-\mathbf{q}, \sigma) a_{\mathbf{q};\sigma}^{\dagger} e^{2iq^0t} \right]$$
(3.248)

和

$$\int d^{3}x \, e^{iq\cdot x} \partial_{0} A^{\mu}$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{-ip_{0}}{\sqrt{2E_{\mathbf{p}}}} \int d^{3}x \sum_{\sigma=0}^{3} e^{\mu}(\mathbf{p}, \sigma) \left[a_{\mathbf{p};\sigma} e^{-i(p-q)\cdot x} - a_{\mathbf{p};\sigma}^{\dagger} e^{i(p+q)\cdot x} \right]$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{-ip_{0}}{\sqrt{2E_{\mathbf{p}}}} \sum_{\sigma=0}^{3} e^{\mu}(\mathbf{p}, \sigma) \left[a_{\mathbf{p};\sigma} e^{-i(p^{0}-q^{0})t} \delta^{(3)}(\mathbf{p} - \mathbf{q}) - a_{\mathbf{p};\sigma}^{\dagger} e^{i(p^{0}+q^{0})t} \delta^{(3)}(\mathbf{p} + \mathbf{q}) \right]$$

$$= \frac{-iq_{0}}{\sqrt{2E_{\mathbf{q}}}} \sum_{\sigma=0}^{3} \left[e^{\mu}(\mathbf{q}, \sigma) a_{\mathbf{q};\sigma} - e^{\mu}(-\mathbf{q}, \sigma) a_{\mathbf{q};\sigma}^{\dagger} e^{2iq^{0}t} \right], \tag{3.249}$$

以及正交归一关系 (3.98), 可得

$$e_{\mu}(\mathbf{q}, \sigma') \int d^3x \, e^{i\mathbf{q}\cdot\mathbf{x}} \left(\partial_0 A^{\mu} - iq_0 A^{\mu}\right) = e_{\mu}(\mathbf{q}, \sigma') \, \frac{-2iq_0}{\sqrt{2E_{\mathbf{q}}}} \sum_{\sigma=0}^3 e^{\mu}(\mathbf{q}, \sigma) a_{\mathbf{q};\sigma}$$

$$= -i\sqrt{2E_{\mathbf{q}}} \sum_{\sigma=0}^3 \delta_{\sigma'\sigma} a_{\mathbf{q};\sigma'} = -i\sqrt{2E_{\mathbf{q}}} \, a_{\mathbf{q};\sigma'}. \tag{3.250}$$

于是,有

$$a_{\mathbf{p};\sigma} = \frac{i}{\sqrt{2E_{\mathbf{p}}}} e_{\mu}(\mathbf{p},\sigma) \int d^3x \, e^{ip\cdot x} \left(\partial_0 A^{\mu} - ip_0 A^{\mu}\right). \tag{3.251}$$

对上式取厄米共轭,得

$$a_{\mathbf{p};\sigma}^{\dagger} = \frac{-i}{\sqrt{2E_{\mathbf{p}}}} e_{\mu}(\mathbf{p},\sigma) \int d^3x \, e^{-ip\cdot x} \left(\partial_0 A^{\mu} + ip_0 A^{\mu}\right). \tag{3.252}$$

第3章 矢量场

根据等时对易关系 (3.234), 湮灭算符与产生算符的对易关系为

$$[a_{\mathbf{p};\sigma}, a_{\mathbf{q};\sigma'}^{\dagger}] = \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(\mathbf{p}\cdot\mathbf{x}-\mathbf{q}\cdot\mathbf{y})}$$

$$\times \left[\partial_{0}A^{\mu}(\mathbf{x}, t) - ip_{0}A^{\mu}(\mathbf{x}, t), \, \partial_{0}A^{\nu}(\mathbf{y}, t) + iq_{0}A^{\nu}(\mathbf{y}, t)\right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(\mathbf{p}\cdot\mathbf{x}-\mathbf{q}\cdot\mathbf{y})}$$

$$\times \left[-\pi^{\mu}(\mathbf{x}, t) - ip_{0}A^{\mu}(\mathbf{x}, t), -\pi^{\nu}(\mathbf{y}, t) + iq_{0}A^{\nu}(\mathbf{y}, t)\right]$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(\mathbf{p}\cdot\mathbf{x}-\mathbf{q}\cdot\mathbf{y})}$$

$$\times \left\{-iq_{0}\left[\pi^{\mu}(\mathbf{x}, t), A^{\nu}(\mathbf{y}, t)\right] + ip_{0}\left[A^{\mu}(\mathbf{x}, t), \pi^{\nu}(\mathbf{y}, t)\right]\right\}$$

$$= \frac{1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(\mathbf{p}\cdot\mathbf{x}-\mathbf{q}\cdot\mathbf{y})} \left[-(p_{0}+q_{0})g^{\mu\nu}\delta^{(3)}(\mathbf{x}-\mathbf{y})\right]$$

$$= -\frac{E_{\mathbf{p}}+E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e^{\mu}(\mathbf{q}, \sigma') \int d^{3}x \, e^{i(\mathbf{p}^{0}-\mathbf{q}^{0})t}e^{-i(\mathbf{p}-\mathbf{q})\cdot\mathbf{x}}$$

$$= -\frac{E_{\mathbf{p}}+E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e^{\mu}(\mathbf{q}, \sigma')e^{i(E_{\mathbf{p}}-E_{\mathbf{q}})t}(2\pi)^{3}\delta^{(3)}(\mathbf{p}-\mathbf{q})$$

$$= -(2\pi)^{3}e_{\mu}(\mathbf{p}, \sigma)e^{\mu}(\mathbf{p}, \sigma')\delta^{(3)}(\mathbf{p}-\mathbf{q}) = -(2\pi)^{3}g_{\sigma\sigma'}\delta^{(3)}(\mathbf{p}-\mathbf{q}). \tag{3.253}$$

最后一步用到正交归一关系 (3.98)。另一方面,两个湮灭算符之间的对易关系为

$$[a_{\mathbf{p};\sigma}, a_{\mathbf{q};\sigma'}] = \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(p \cdot x + q \cdot y)}$$

$$\times \left[\partial_{0}A^{\mu}(\mathbf{x}, t) - ip_{0}A^{\mu}(\mathbf{x}, t), \, \partial_{0}A^{\nu}(\mathbf{y}, t) - iq_{0}A^{\nu}(\mathbf{y}, t) \right]$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(p \cdot x + q \cdot y)}$$

$$\times \left[-\pi^{\mu}(\mathbf{x}, t) - ip_{0}A^{\mu}(\mathbf{x}, t), \, -\pi^{\nu}(\mathbf{y}, t) - iq_{0}A^{\nu}(\mathbf{y}, t) \right]$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(p \cdot x + q \cdot y)}$$

$$\times \left\{ iq_{0} \left[\pi^{\mu}(\mathbf{x}, t), A^{\nu}(\mathbf{y}, t) \right] + ip_{0} \left[A^{\mu}(\mathbf{x}, t), \pi^{\nu}(\mathbf{y}, t) \right] \right\}$$

$$= \frac{-1}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e_{\nu}(\mathbf{q}, \sigma') \int d^{3}x \, d^{3}y \, e^{i(p \cdot x + q \cdot y)} \left[(q_{0} - p_{0})g^{\mu\nu}\delta^{(3)}(\mathbf{x} - \mathbf{y}) \right]$$

$$= \frac{E_{\mathbf{p}} - E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e^{\mu}(\mathbf{q}, \sigma') \int d^{3}x \, e^{i(p^{0} + q^{0})t}e^{-i(\mathbf{p} + \mathbf{q}) \cdot \mathbf{x}}$$

$$= \frac{E_{\mathbf{p}} - E_{\mathbf{q}}}{\sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} e_{\mu}(\mathbf{p}, \sigma)e^{\mu}(\mathbf{q}, \sigma')e^{i(E_{\mathbf{p}} + E_{\mathbf{q}})t}(2\pi)^{3}\delta^{(3)}(\mathbf{p} + \mathbf{q}) = 0.$$
(3.254)

归纳起来,产生湮灭算符的对易关系为

$$[a_{\mathbf{p};\sigma}, a_{\mathbf{q};\sigma'}^{\dagger}] = -(2\pi)^3 g_{\sigma\sigma'} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \quad [a_{\mathbf{p};\sigma}, a_{\mathbf{q};\sigma'}] = [a_{\mathbf{p};\sigma}^{\dagger}, a_{\mathbf{q};\sigma'}^{\dagger}] = 0. \tag{3.255}$$

3.4.4 哈密顿量和总动量

根据 (1.117)、(3.243) 和 (3.242) 式,无质量矢量场的哈密顿量密度是

$$\mathcal{H} = \pi_{\mu} \partial^{0} A^{\mu} - \mathcal{L}_{2} = -(\partial_{0} A_{\mu}) \partial^{0} A^{\mu} + \frac{1}{2} (\partial_{\mu} A_{\nu}) \partial^{\mu} A^{\nu}$$

$$= -\frac{1}{2} (\partial_{0} A_{\mu}) \partial^{0} A^{\mu} + \frac{1}{2} (\partial_{i} A_{\mu}) \partial^{i} A^{\mu} = -\frac{1}{2} \left[\pi_{\mu} \pi^{\mu} + (\nabla A_{\mu}) \cdot (\nabla A^{\mu}) \right]. \tag{3.256}$$

于是,哈密顿量表达为

$$\begin{split} H &= \int d^{3}x \,\mathcal{H} = -\frac{1}{2} \int d^{3}x \, [\pi_{\mu}\pi^{\mu} + (\nabla A_{\mu}) \cdot (\nabla A^{\mu})] \\ &= -\frac{1}{2} \sum_{\sigma\sigma'} \int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \, e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{q}, \sigma') \\ &\qquad \times \left[(ip_{0})(iq_{0}) \, \left(a_{\mathbf{p},\sigma} e^{-ip\cdot x} - a_{\mathbf{p},\sigma}^{\dagger} e^{ip\cdot x} \right) \, \left(a_{\mathbf{q},\sigma'} e^{-iq\cdot x} - a_{\mathbf{q},\sigma'}^{\dagger} e^{iq\cdot x} \right) \\ &\qquad + (i\mathbf{p} \, a_{\mathbf{p},\sigma} e^{-ip\cdot x} - i\mathbf{p} \, a_{\mathbf{p},\sigma}^{\dagger} e^{ip\cdot x}) \, \left(i\mathbf{q} \, a_{\mathbf{q},\sigma'} e^{-iq\cdot x} - i\mathbf{q} \, a_{\mathbf{q},\sigma'}^{\dagger} e^{iq\cdot x} \right) \right] \\ &= -\frac{1}{2} \sum_{\sigma\sigma'} \int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \, e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{q}, \sigma') \left[(p_{0}q_{0} + \mathbf{p} \cdot \mathbf{q}) a_{\mathbf{p},\sigma} a_{\mathbf{q},\sigma'}^{\dagger} e^{-i(p-q)\cdot x} \\ &\qquad + (p_{0}q_{0} + \mathbf{p} \cdot \mathbf{q}) a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{q},\sigma'} e^{i(p-q)\cdot x} + (p_{0}q_{0} - \mathbf{p} \cdot \mathbf{q}) a_{\mathbf{p},\sigma} a_{\mathbf{q},\sigma'} e^{-i(p+q)\cdot x} \\ &\qquad + (-p_{0}q_{0} - \mathbf{p} \cdot \mathbf{q}) a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{q},\sigma'}^{\dagger} e^{i(p+q)\cdot x} \right] \\ &= -\frac{1}{2} \sum_{\sigma\sigma'} \int \frac{d^{3}p \, d^{3}q}{(2\pi)^{3} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \, e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{q}, \sigma') (p_{0}q_{0} + \mathbf{p} \cdot \mathbf{q}) \\ &\qquad \times \left\{ \delta^{(3)}(\mathbf{p} - \mathbf{q}) \left[a_{\mathbf{p},\sigma} a_{\mathbf{q},\sigma'}^{\dagger} e^{-i(p_{0}-q_{0})t} + a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{q},\sigma'} e^{i(p_{0}+q_{0})t} \right] \right\} \\ &= -\frac{1}{2} \sum_{\sigma\sigma'} \int \frac{d^{3}p \, d^{3}q}{(2\pi)^{3} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \, e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{p}, \sigma') (E_{\mathbf{p}}^{2} + |\mathbf{p}|^{2}) \left(a_{\mathbf{p},\sigma} a_{\mathbf{p},\sigma'}^{\dagger} + a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{p},\sigma'} \right) \\ &\qquad - \delta^{(3)}(\mathbf{p} - \mathbf{q}) \left[a_{\mathbf{p},\sigma} a_{\mathbf{q},\sigma'} e^{-i(p_{0}-q_{0})t} + a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{q},\sigma'} e^{i(p_{0}-q_{0})t} \right] \right\} \\ &= -\frac{1}{2} \sum_{\sigma\sigma'} \int \frac{d^{3}p}{(2\pi)^{3} 2E_{\mathbf{p}}} \left[e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{p}, \sigma') (E_{\mathbf{p}}^{2} + |\mathbf{p}|^{2}) \left(a_{\mathbf{p},\sigma} a_{\mathbf{p},\sigma'}^{\dagger} + a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{p},\sigma'} \right) \\ &\qquad - e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{p}, \sigma') (E_{\mathbf{p}}^{2} - |\mathbf{p}|^{2}) \left(a_{\mathbf{p},\sigma} a_{\mathbf{p},\sigma'} + a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{p},\sigma'} \right) \\ &= -\frac{1}{2} \sum_{\sigma\sigma'} \int \frac{d^{3}p}{(2\pi)^{3}} E_{\mathbf{p}} \sum_{\sigma} a_{\sigma'} \left(a_{\mathbf{p},\sigma} a_{\mathbf{p},\sigma'}^{\dagger} + a_{\mathbf{p},\sigma}^{\dagger} a_{\mathbf{p},\sigma'} \right) \\ &= -\sum_{\sigma\sigma'} \int \frac{d^{3}p}{(2\pi)^{3}} E_{\mathbf{p}} \sum_{\sigma} a_{\sigma'} \left(a_{\mathbf{p},\sigma} a_{\mathbf{p},\sigma'}^{\dagger} + a_{\mathbf{p},\sigma}^{\dagger} a_$$

上式最后一行第二项是零点能。第一项中类时极化态的贡献为负,与类空极化态的贡献不一样。造成这种情况的原因是 Minkowski 度规 $g_{\sigma\sigma'}$ 是一个不定度规,时间对角元 g_{00} 与空间对角元 g_{ii} 具有相反的符号。

仿照 2.3.4 小节的讨论,将真空态定义为被任意 $a_{\mathbf{p};\sigma}$ 湮灭的态,满足

$$a_{\mathbf{p};\sigma} |0\rangle = 0, \quad \langle 0|0\rangle = 1, \quad H|0\rangle = E_{\text{vac}} |0\rangle, \quad E_{\text{vac}} = 2\delta^{(3)}(0) \int d^3p \, E_{\mathbf{p}}.$$
 (3.258)

动量为p、极化态为 σ 的单粒子态定义为

$$|\mathbf{p};\sigma\rangle \equiv \sqrt{2E_{\mathbf{p}}} \, a_{\mathbf{p};\sigma}^{\dagger} |0\rangle \,.$$
 (3.259)

从而,由

$$[H, a_{\mathbf{p};\sigma}^{\dagger}] = \int \frac{d^{3}q}{(2\pi)^{3}} E_{\mathbf{q}} \sum_{\sigma'=0}^{3} (-g_{\sigma'\sigma'}) [a_{\mathbf{q};\sigma'}^{\dagger} a_{\mathbf{q};\sigma'}, a_{\mathbf{p};\sigma}^{\dagger}] = \int \frac{d^{3}q}{(2\pi)^{3}} E_{\mathbf{q}} \sum_{\sigma'=0}^{3} (-g_{\sigma'\sigma'}) a_{\mathbf{q};\sigma'}^{\dagger} [a_{\mathbf{q};\sigma'}, a_{\mathbf{p};\sigma}^{\dagger}]$$

$$= \int \frac{d^{3}q}{(2\pi)^{3}} E_{\mathbf{q}} \sum_{\sigma'=0}^{3} (-g_{\sigma'\sigma'}) a_{\mathbf{q};\sigma'}^{\dagger} (2\pi)^{3} (-g_{\sigma'\sigma}) \delta^{(3)} (\mathbf{q} - \mathbf{p})$$

$$= E_{\mathbf{p}} \sum_{\sigma'=0}^{3} g_{\sigma'\sigma'} g_{\sigma'\sigma} a_{\mathbf{p};\sigma'}^{\dagger} = E_{\mathbf{p}} a_{\mathbf{p};\sigma}^{\dagger}$$

$$(3.260)$$

可得

$$H|\mathbf{p};\sigma\rangle = \sqrt{2E_{\mathbf{p}}} H a_{\mathbf{p};\sigma}^{\dagger} |0\rangle = \sqrt{2E_{\mathbf{p}}} (E_{\mathbf{p}} a_{\mathbf{p};\sigma}^{\dagger} + a_{\mathbf{p};\sigma}^{\dagger} H) |0\rangle$$
$$= \sqrt{2E_{\mathbf{p}}} (E_{\mathbf{p}} + E_{\text{vac}}) a_{\mathbf{p};\sigma}^{\dagger} |0\rangle = (E_{\mathbf{p}} + E_{\text{vac}}) |\mathbf{p};\sigma\rangle. \tag{3.261}$$

这似乎是一个正常的结果,说明单粒子态 $|\mathbf{p};\sigma\rangle$ 比真空多了一份能量 $E_{\mathbf{p}}$ 。 利用产生湮灭算符的对易关系 (3.255),可以计算单粒子态的内积:

$$\langle \mathbf{q}; \sigma' | \mathbf{p}; \sigma \rangle = \sqrt{2E_{\mathbf{q}}2E_{\mathbf{p}}} \langle 0 | a_{\mathbf{q};\sigma'} a_{\mathbf{p};\sigma}^{\dagger} | 0 \rangle = \sqrt{2E_{\mathbf{q}}2E_{\mathbf{p}}} \langle 0 | \left[a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{q};\sigma'} - (2\pi)^{3} g_{\sigma\sigma'} \delta^{(3)}(\mathbf{p} - \mathbf{q}) \right] | 0 \rangle$$

$$= -\sqrt{2E_{\mathbf{p}}} g_{\sigma\sigma'} (2\pi)^{3} \delta^{(3)}(\mathbf{p} - \mathbf{q}). \tag{3.262}$$

于是,有

$$\langle \mathbf{p}; 0 | \mathbf{p}; 0 \rangle = -\sqrt{2E_{\mathbf{p}}} (2\pi)^3 \delta^{(3)}(0), \quad \langle \mathbf{p}; i | \mathbf{p}; i \rangle = \sqrt{2E_{\mathbf{p}}} (2\pi)^3 \delta^{(3)}(0), \quad i = 1, 2, 3.$$
 (3.263)

上式表明,单粒子态 |**p**; 0> 的自我内积是负的,从而导致它的能量期待值也是负的:

$$\langle \mathbf{p}; 0 | H | \mathbf{p}; 0 \rangle = (E_{\mathbf{p}} + E_{\text{vac}}) \langle \mathbf{p}; 0 | \mathbf{p}; 0 \rangle = -(E_{\mathbf{p}} + E_{\text{vac}}) \sqrt{2E_{\mathbf{p}}} (2\pi)^3 \delta^{(3)}(0) < 0.$$
 (3.264)

这个负能量结果在物理上看起来是不可接受的,它的根源在于不定度规。

不过,如前所述,无质量矢量场只有 2 种独立的极化态,对应于 2 种横向极化矢量 $e^{\mu}(\mathbf{p}, 1)$ 和 $e^{\mu}(\mathbf{p}, 2)$,纵向极化和类时极化都应该是非物理的。选取一定的规范条件,应该可以除去非物理的极化态。由于 Lorenz 规范条件 (3.225) 与正则量子化程序不相容,我们不能直接使用这个条件,而需要将它转换到物理 Hilbert 空间中的态的期待值上,要求任意物理态 $|\Psi\rangle$ 应满足

$$\langle \Psi | \, \partial_{\mu} A^{\mu}(x) \, | \Psi \rangle = 0. \tag{3.265}$$

上式称为弱 Lorenz 规范条件。

 $A^{\mu}(x)$ 的平面波展开式 (3.245) 可以分解成正能解和负能解两个部分:

$$A^{\mu}(x) = A^{(+)\mu}(x) + A^{(-)\mu}(x). \tag{3.266}$$

其中,正能解部分为

$$A^{(+)\mu}(\mathbf{x},t) \equiv \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\sigma=0}^3 e^{\mu}(\mathbf{p},\sigma) \, a_{\mathbf{p};\sigma} e^{-ip\cdot x}, \tag{3.267}$$

上式的厄米共轭即是负能解部分

$$A^{(-)\mu}(\mathbf{x},t) \equiv [A^{(+)\mu}(\mathbf{x},t)]^{\dagger} = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\sigma=0}^3 e^{\mu}(\mathbf{p},\sigma) \, a_{\mathbf{p};\sigma}^{\dagger} e^{ip\cdot x}. \tag{3.268}$$

如果要求

$$\partial_{\mu} A^{(+)\mu}(x) |\Psi\rangle = 0 \tag{3.269}$$

对任意物理态 $|\Psi\rangle$ 成立,则伴随有

$$\langle \Psi | \partial_{\mu} A^{(-)\mu}(x) = \langle \Psi | [\partial_{\mu} A^{(+)\mu}(x)]^{\dagger} = 0,$$
 (3.270)

从而,弱 Lorenz 规范条件 (3.265) 得到满足:

$$\langle \Psi | \partial_{\mu} A^{\mu}(x) | \Psi \rangle = \langle \Psi | \partial_{\mu} A^{(+)\mu}(x) | \Psi \rangle + \langle \Psi | \partial_{\mu} A^{(-)\mu}(x) | \Psi \rangle = 0. \tag{3.271}$$

利用 (3.109) 和 (3.215) 式, 规范条件 (3.269) 可化为

$$0 = \partial_{\mu} A^{(+)\mu}(x) |\Psi\rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{-ie^{-ip\cdot x}}{\sqrt{2E_{\mathbf{p}}}} \left[p_{\mu}e^{\mu}(\mathbf{p}, 0)a_{\mathbf{p};0} + p_{\mu}e^{\mu}(\mathbf{p}, 1)a_{\mathbf{p};1} + p_{\mu}e^{\mu}(\mathbf{p}, 2)a_{\mathbf{p};2} + p_{\mu}e^{\mu}(\mathbf{p}, 3)a_{\mathbf{p};3} \right] |\Psi\rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3}} \frac{-ie^{-ip\cdot x}}{\sqrt{2E_{\mathbf{p}}}} p \cdot n \left(a_{\mathbf{p};0} - a_{\mathbf{p};3} \right) |\Psi\rangle.$$
(3.272)

这意味着

$$\left(a_{\mathbf{p};0} - a_{\mathbf{p};3}\right)|\Psi\rangle = 0\tag{3.273}$$

对任意物理态 $|\Psi\rangle$ 和任意动量 \mathbf{p} 成立。从而,也有

$$\langle \Psi | (a_{\mathbf{p};0}^{\dagger} - a_{\mathbf{p};3}^{\dagger}) = 0.$$
 (3.274)

于是,

$$\langle \Psi | a_{\mathbf{p};0}^{\dagger} a_{\mathbf{p};0} | \Psi \rangle = \langle \Psi | a_{\mathbf{p};3}^{\dagger} a_{\mathbf{p};3} | \Psi \rangle. \tag{3.275}$$

这样一来,根据 (3.257) 式计算, $|\Psi\rangle$ 的能量期待值为

$$\langle \Psi | H | \Psi \rangle = \int \frac{d^3 p}{(2\pi)^3} E_{\mathbf{p}} \langle \Psi | \left(-a_{\mathbf{p};0}^{\dagger} a_{\mathbf{p};0} + \sum_{\sigma=1}^{3} a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma} \right) | \Psi \rangle + E_{\text{vac}} \langle \Psi | \Psi \rangle$$

$$= \int \frac{d^3 p}{(2\pi)^3} E_{\mathbf{p}} \sum_{\sigma=1}^2 \langle \Psi | a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma} | \Psi \rangle + E_{\text{vac}} \langle \Psi | \Psi \rangle.$$
 (3.276)

也就是说,非物理的类时极化与纵向极化对能量的贡献总是相互抵消的,除了零点能,只有两种物理的横向极化才对能量有净贡献 (net contribution)。因此,要求弱 Lorenz 规范条件成立可以除去非物理的极化态。

另一方面,由 (1.156) 式可得无质量矢量场的总动量为

$$\mathbf{P} = -\int d^{3}x \, \pi_{\mu} \nabla A^{\mu}$$

$$= -\sum_{\sigma\sigma'} \int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \, e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{q}, \sigma')$$

$$\times (ip_{0}) \left(a_{\mathbf{p};\sigma} e^{-ip \cdot x} - a^{\dagger}_{\mathbf{p};\sigma} e^{ip \cdot x} \right) \left(i\mathbf{q} \, a_{\mathbf{q};\sigma'} e^{-iq \cdot x} - i\mathbf{q} \, a^{\dagger}_{\mathbf{q};\sigma'} e^{iq \cdot x} \right)$$

$$= \sum_{\sigma\sigma'} \int \frac{d^{3}x \, d^{3}p \, d^{3}q}{(2\pi)^{6} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \, p_{0}\mathbf{q} \, e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{q}, \sigma')$$

$$\times \left[-a_{\mathbf{p};\sigma} a^{\dagger}_{\mathbf{q};\sigma'} e^{-i(p-q) \cdot x} - a^{\dagger}_{\mathbf{p};\sigma} a_{\mathbf{q};\sigma'} e^{i(p-q) \cdot x} + a_{\mathbf{p};\sigma} a_{\mathbf{q};\sigma'} e^{-i(p+q) \cdot x} + a^{\dagger}_{\mathbf{p};\sigma} a^{\dagger}_{\mathbf{q};\sigma'} e^{i(p+q) \cdot x} \right]$$

$$= \sum_{\sigma\sigma'} \int \frac{d^{3}p \, d^{3}q}{(2\pi)^{3} \sqrt{2E_{\mathbf{p}}2E_{\mathbf{q}}}} \, p_{0}\mathbf{q} \, e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{q}, \sigma')$$

$$\times \left\{ -\delta^{(3)}(\mathbf{p} - \mathbf{q}) \left[a_{\mathbf{p};\sigma} a^{\dagger}_{\mathbf{q};\sigma'} e^{-i(p_{0}-q_{0})t} + a^{\dagger}_{\mathbf{p};\sigma} a_{\mathbf{q};\sigma'} e^{i(p_{0}-q_{0})t} \right] \right\}$$

$$+\delta^{(3)}(\mathbf{p} + \mathbf{q}) \left[a_{\mathbf{p};\sigma} a_{\mathbf{q};\sigma'} e^{-i(p_{0}+q_{0})t} + a^{\dagger}_{\mathbf{p};\sigma} a^{\dagger}_{\mathbf{q};\sigma'} e^{i(p_{0}+q_{0})t} \right] \right\}$$

$$= \sum_{\sigma\sigma'} \int \frac{d^{3}p}{(2\pi)^{3}} \, \frac{\mathbf{p}}{2} \left[-e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{p}, \sigma') \left(a_{\mathbf{p};\sigma} a^{\dagger}_{\mathbf{p};\sigma'} + a^{\dagger}_{\mathbf{p};\sigma} a_{\mathbf{p};\sigma'} \right) - e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(-\mathbf{p}, \sigma') \left(a_{\mathbf{p};\sigma} a_{-\mathbf{p};\sigma'} e^{-2iE_{\mathbf{p}}t} + a^{\dagger}_{\mathbf{p};\sigma} a^{\dagger}_{-\mathbf{p};\sigma'} e^{2iE_{\mathbf{p}}t} \right) \right]. \quad (3.277)$$

对上式最后两行方括号内第二项的积分及求和作 $\mathbf{p} \to -\mathbf{p}$ 的替换和 $\lambda \leftrightarrow \lambda'$ 的互换,可得

$$-\sum_{\sigma\sigma'} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\mathbf{p}}{2} e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(-\mathbf{p}, \sigma') \left(a_{\mathbf{p};\sigma} a_{-\mathbf{p};\sigma'} e^{-2iE_{\mathbf{p}}t} + a_{\mathbf{p};\sigma}^{\dagger} a_{-\mathbf{p};\sigma'}^{\dagger} e^{2iE_{\mathbf{p}}t} \right)$$

$$= -\sum_{\sigma\sigma'} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{-\mathbf{p}}{2} e_{\mu}(-\mathbf{p}, \sigma') e^{\mu}(\mathbf{p}, \sigma) \left(a_{-\mathbf{p};\sigma'} a_{\mathbf{p};\sigma} e^{-2iE_{\mathbf{p}}t} + a_{-\mathbf{p};\sigma'}^{\dagger} a_{\mathbf{p};\sigma}^{\dagger} e^{2iE_{\mathbf{p}}t} \right)$$

$$= \sum_{\sigma\sigma'} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\mathbf{p}}{2} e_{\mu}(-\mathbf{p}, \sigma') e^{\mu}(\mathbf{p}, \sigma) \left(a_{\mathbf{p};\sigma} a_{-\mathbf{p};\sigma'} e^{-2iE_{\mathbf{p}}t} + a_{\mathbf{p};\sigma}^{\dagger} a_{-\mathbf{p};\sigma'}^{\dagger} e^{2iE_{\mathbf{p}}t} \right). \tag{3.278}$$

可以看出,上式为零。于是,总动量化为

$$\mathbf{P} = -\sum_{\sigma\sigma'} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} e_{\mu}(\mathbf{p}, \sigma) e^{\mu}(\mathbf{p}, \sigma') \left(a_{\mathbf{p};\sigma} a_{\mathbf{p};\sigma'}^{\dagger} + a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma'} \right)$$

$$= -\sum_{\sigma\sigma'} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} g_{\sigma\sigma'} \left(a_{\mathbf{p};\sigma} a_{\mathbf{p};\sigma'}^{\dagger} + a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma'} \right) = \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}}{2} \sum_{\sigma=0}^{3} \left(-g_{\sigma\sigma} \right) \left(a_{\mathbf{p};\sigma} a_{\mathbf{p};\sigma}^{\dagger} + a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma} \right)$$

$$= \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} \sum_{\sigma=0}^3 \left(-g_{\sigma\sigma} a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma}\right) + \delta^{(3)}(0) \int d^3 p \, \frac{\mathbf{p}}{2} \sum_{\sigma=0}^3 \left(-g_{\sigma\sigma}\right)^2$$

$$= \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} \left(-a_{\mathbf{p};0}^{\dagger} a_{\mathbf{p};0} + \sum_{\sigma=1}^3 a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma}\right). \tag{3.279}$$

根据 (3.275) 式,物理态 $|\Psi\rangle$ 的动量期待值为

$$\langle \Psi | \mathbf{P} | \Psi \rangle = \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} \langle \Psi | \left(-a_{\mathbf{p};0}^{\dagger} a_{\mathbf{p};0} + \sum_{\sigma=1}^3 a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma} \right) | \Psi \rangle = \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} \sum_{\sigma=1}^2 \langle \Psi | a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma} | \Psi \rangle.$$
(3.280)

同样,只有两种物理的横向极化才对动量有净贡献。

通过线性组合,可以用湮灭算符 $a_{\mathbf{p};1}$ 和 $a_{\mathbf{p};2}$ 定义另一组等价的湮灭算符

$$a_{\mathbf{p},\pm} \equiv \frac{1}{\sqrt{2}} (\mp a_{\mathbf{p};1} + i a_{\mathbf{p};2}),$$
 (3.281)

相应的产生算符可以通过取厄米共轭得到。反过来,有

$$a_{\mathbf{p};1} = -\frac{1}{\sqrt{2}}(a_{\mathbf{p},+} - a_{\mathbf{p},-}), \quad a_{\mathbf{p};2} = -\frac{i}{\sqrt{2}}(a_{\mathbf{p},+} + a_{\mathbf{p},-}).$$
 (3.282)

利用对易关系 (3.255), 可得

$$[a_{\mathbf{p},\pm}, a_{\mathbf{q},\pm}^{\dagger}] = \frac{1}{2} [\mp a_{\mathbf{p};1} + i a_{\mathbf{p};2}, \mp a_{\mathbf{q};1}^{\dagger} - i a_{\mathbf{q};2}^{\dagger}] = \frac{1}{2} [a_{\mathbf{p};1}, a_{\mathbf{q};1}^{\dagger}] + \frac{1}{2} [a_{\mathbf{p};2}, a_{\mathbf{q};2}^{\dagger}] = (2\pi)^{3} \delta^{(3)}(\mathbf{p} - \mathbf{q}),$$

$$[a_{\mathbf{p},\pm}, a_{\mathbf{q},\pm}^{\dagger}] = \frac{1}{2} [\mp a_{\mathbf{p};1} + i a_{\mathbf{p};2}, \pm a_{\mathbf{q};1}^{\dagger} - i a_{\mathbf{q};2}^{\dagger}] = -\frac{1}{2} [a_{\mathbf{p};1}, a_{\mathbf{q};1}^{\dagger}] + \frac{1}{2} [a_{\mathbf{p};2}, a_{\mathbf{q};2}^{\dagger}] = 0,$$

$$[a_{\mathbf{p},\pm}, a_{\mathbf{q},\pm}] = \frac{1}{2} [\mp a_{\mathbf{p};1} + i a_{\mathbf{p};2}, \mp a_{\mathbf{q};1} + i a_{\mathbf{q};2}] = 0,$$

$$[a_{\mathbf{p},\pm}, a_{\mathbf{q},\mp}] = \frac{1}{2} [\mp a_{\mathbf{p};1} + i a_{\mathbf{p};2}, \pm a_{\mathbf{q};1} + i a_{\mathbf{q};2}] = 0.$$

$$(3.283)$$

于是,这组产生湮灭算符的对易关系可以整理为

$$[a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}^{\dagger}] = (2\pi)^3 \delta_{\lambda\lambda'} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \quad [a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}] = [a_{\mathbf{p},\lambda}^{\dagger}, a_{\mathbf{q},\lambda'}^{\dagger}] = 0, \quad \lambda, \lambda' = \pm.$$
 (3.284)

根据 (3.125) 式,可以用对应着螺旋度的横向极化矢量 $\varepsilon^{\mu}(\mathbf{p},\pm)$ 表示 $e^{\mu}(\mathbf{p},1)$ 和 $e^{\mu}(\mathbf{p},2)$:

$$e^{\mu}(\mathbf{p},1) = -\frac{1}{\sqrt{2}} [\varepsilon^{\mu}(\mathbf{p},+) - \varepsilon^{\mu}(\mathbf{p},-)], \quad e^{\mu}(\mathbf{p},2) = \frac{i}{\sqrt{2}} [\varepsilon^{\mu}(\mathbf{p},+) + \varepsilon^{\mu}(\mathbf{p},-)].$$
(3.285)

从而,有

$$\sum_{\sigma=1}^{2} e^{\mu}(\mathbf{p}, \sigma) a_{\mathbf{p}; \sigma} = e^{\mu}(\mathbf{p}, 1) a_{\mathbf{p}; 1} + e^{\mu}(\mathbf{p}, 2) a_{\mathbf{p}; 2}$$

$$= \frac{1}{2} [\varepsilon^{\mu}(\mathbf{p}, +) - \varepsilon^{\mu}(\mathbf{p}, -)] (a_{\mathbf{p}, +} - a_{\mathbf{p}, -}) + \frac{1}{2} [\varepsilon^{\mu}(\mathbf{p}, +) + \varepsilon^{\mu}(\mathbf{p}, -)] (a_{\mathbf{p}, +} + a_{\mathbf{p}, -})$$

$$= \varepsilon^{\mu}(\mathbf{p}, +) a_{\mathbf{p}, +} + \varepsilon^{\mu}(\mathbf{p}, -) a_{\mathbf{p}, -} = \sum_{\lambda = +} \varepsilon^{\mu}(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}, \qquad (3.286)$$

- 92 - 第 3 章 · 矢量场

取厄米共轭,得

$$\sum_{\sigma=1}^{2} e^{\mu}(\mathbf{p}, \sigma) a_{\mathbf{p}; \sigma}^{\dagger} = \sum_{\lambda=\pm} \varepsilon^{\mu*}(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}^{\dagger}.$$
 (3.287)

于是,可以把 $A^{\mu}(x)$ 的平面波展开式 (3.245) 改写成

$$A^{\mu}(\mathbf{x},t) = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\sigma=0,3} e^{\mu}(\mathbf{p},\sigma) \left(a_{\mathbf{p};\sigma} e^{-ip\cdot x} + a_{\mathbf{p};\sigma}^{\dagger} e^{ip\cdot x} \right)$$

$$+ \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda=+} \left[\varepsilon^{\mu}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} e^{-ip\cdot x} + \varepsilon^{\mu*}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda}^{\dagger} e^{ip\cdot x} \right], \qquad (3.288)$$

第一行对应于非物理极化态,第二行对应于两种物理的螺旋度本征极化态。可见,(3.281) 式定义的湮灭算符 $a_{\mathbf{p},\pm}$ 正是螺旋度 $\lambda=\pm$ 对应的湮灭算符。

此外,由(3.282)式可得

$$\sum_{\sigma=1}^{2} a_{\mathbf{p};\sigma}^{\dagger} a_{\mathbf{p};\sigma} = a_{\mathbf{p};1}^{\dagger} a_{\mathbf{p};1} + a_{\mathbf{p};2}^{\dagger} a_{\mathbf{p};2} = \frac{1}{2} (a_{\mathbf{p},+}^{\dagger} - a_{\mathbf{p},-}^{\dagger}) (a_{\mathbf{p},+} - a_{\mathbf{p},-}) + \frac{1}{2} (a_{\mathbf{p},+}^{\dagger} + a_{\mathbf{p},-}^{\dagger}) (a_{\mathbf{p},+} + a_{\mathbf{p},-}^{\dagger})$$

$$= a_{\mathbf{p},+}^{\dagger} a_{\mathbf{p},+} + a_{\mathbf{p},-}^{\dagger} a_{\mathbf{p},-} = \sum_{\lambda=+}^{2} a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda},$$

$$(3.289)$$

故物理态 |Ψ⟩ 的能量期待值和动量期待值可以用螺旋度对应的产生湮灭算符表示为

$$\langle \Psi | H | \Psi \rangle = \int \frac{d^3 p}{(2\pi)^3} E_{\mathbf{p}} \sum_{\lambda = +} \langle \Psi | a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda} | \Psi \rangle + E_{\text{vac}} \langle \Psi | \Psi \rangle, \qquad (3.290)$$

$$\langle \Psi | \mathbf{P} | \Psi \rangle = \int \frac{d^3 p}{(2\pi)^3} \mathbf{p} \sum_{\lambda = \pm} \langle \Psi | a_{\mathbf{p},\lambda}^{\dagger} a_{\mathbf{p},\lambda} | \Psi \rangle. \tag{3.291}$$

附录 A 英汉对照

Annihilation operator: 湮灭算符

Antichronous: 反时向 Axial vector: 轴矢量

Boost: 增速 Boson: 玻色子

Canonical quantization: 正则量子化

Conjugate momentum density: 共轭动量密度

Conserved charge: 守恒荷 Conserved current: 守恒流

Contraction: 缩并

Contravariant vector: 逆变矢量 Covariant vector: 协变矢量 Creation operator: 产生算符

Electron: 电子

Energy-momentum tensor: 能动张量

Expectation value: 期待值

Fermion: 费米子

Field strength tensor: 场强张量
Gauge-fixing term: 规范固定项
Gauge invariant: 规范不变量
Gauge symmetry: 规范对称性
Gauge transformation: 规范变换
Generalized coordinate: 广义坐标

Generator: 生成元

Global: 整体 Helicity: 螺旋度

Hermitian conjugate: 厄米共轭

Hermitian operator: 厄米算符

Homomorphic: 同态 Improper: 非固有的

Local: 局域

Lowering operator: 降算符

Metric: 度规 Mode: 模式

Orthochronous: 保时向

Parity: 宇称 Phonon: 声子 Picture: 绘景

Plane-wave solution: 平面波解 Polarization vector: 极化矢量

Positron: 正电子 Proper: 固有的

Pseudoscalar: 赝标量 Raising operator: 升算符

Real orthogonal matrix: 实正交矩阵

Scalar: 标量

Self-conjugate: 自共轭

Simple harmonic oscillator: 简谐振子

Space inversion: 空间反射

Spinor: 旋量

Spinor bilinear: 旋量双线性型 Spinor representation: 旋量表示

Step function: 阶跃函数

Tensor: 张量

Time reversal: 时间反演

Unitary: 幺正 Vacuum: 真空 Vector: 矢暈

Zero-point energy: 零点能