WRITING EQUATIONS IN POINT-SLOPE FORM

Wolff Algebra 1H

POINT-SLOPE FORM

$$y - y_1 = m(x - x_1)$$

 $\uparrow \qquad \uparrow \qquad \uparrow$
 y -coordinate slope x -coordinate

Need to know:

- ◆ Slope (m)
- \spadesuit a point on the line (x_1,y_1)

$$(X,Y)$$
 VS. (X_1,Y_1)

- ► What's the difference?
 - > x and y represent any point on the line
 - (x_1,y_1) represents one specific point on the line

GRAPHING FROM POINT-SLOPE FORM

- 1. Identify the point that you know (x_1,y_1) from the equation
- 2. Plot that point
- 3. Use slope from that point to plot more points
- 4. Draw a line through your points

EXAMPLE: Y + 3 = 2(X + 4)

Step 1: (-4,-3)

LET'S PRACTICE IT!

GRAPHING LINES IN POINT-SLOPE FORM

$$y-1=\frac{2}{3}(x+2)$$

HOM DID AON DOS

$$y - 1 = \frac{2}{3}(x + 2)$$

GRAPHING LINES IN POINT-SLOPE FORM

$$y + 2 = -\frac{4}{5}(x - 4)$$

WERE YOU CORRECT?

$$\gamma + 2 = -\frac{4}{5}(x - 4)$$

GRAPHING LINES IN POINT-SLOPE FORM

$$y - 3 = -(x - 1)$$

DOES YOUR GRAPH LOOK LIKE THIS?

$$y - 3 = -(x - 1)$$

EXAMPLE

Write an equation in point-slope form for the line that passes through (-2,1) with a slope of -6

$$y - 1 = -6(x - -2)$$

$$y - 1 = -6(x + 2)$$

WRITING EQUATIONS IN POINT-SLOPE FORM

(8, -4) and a slope of 2/3

HOM DID AON DOS

(8, -4) and a slope of 2/3

$$y + 4 = \frac{2}{3}(x - 8)$$

WRITING EQUATIONS IN POINT-SLOPE FORM

(-3, 6) and a slope of -5

WERE YOU RIGHT?

(-3, 6) and a slope of -5

$$y - 6 = -5(x + 3)$$

WRITING EQUATIONS IN POINT-SLOPE FORM WHEN GIVEN 2 POINTS

- 1. Use the 2 points to find slope (m)
- 2. Choose one of the points for (x_1,y_1)

HOM DID AON DOS

$$m = \frac{7}{3}$$

$$y - 4 = \frac{7}{3}(x - 1)$$

or
 $y + 3 = \frac{7}{3}(x + 2)$

WRITING AN EQUATION IN POINT-SLOPE

FORM FROM A TABLE

The table shows the altitude of a hot-air balloon during its linear descent. What equation in pointslope form gives the balloon's altitude at any time? What equation in slope-intercept form gives the balloon's altitude at any time? What do the slope and y-intercept represent?

Hot-Air Balloon Descent	
Time, <i>x</i> (s)	Altitude, <i>y</i> (m)
10	640
30	590
70	490
90	440

