

Training language models to follow instructions with human feedback

Long Ouyang* Jeff Wu* Xu Jiang* Diogo Almeida* Carroll L. Wainwright*

Pamela Mishkin* Chong Zhang Sandhini Agarwal Katarina Slama Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Amanda Askell[†] Peter Welinder Paul Christiano*[†]

Jan Leike* Ryan Lowe*

OpenAI

NeurIPS 2022 HUMANE Lab 최종현 2025.03.14 랩 세미나

Background

- Large models like GPT-3 weren't following user instructions
- Could generate bias, toxic, or misleading content
- Wants models to be helpful, honest, harmless
- Introduces InstructGPT
 - a version of GPT-3 fine-tuned with human-feedback
 - improves instruction following capabilities
 - uses methods such as SFT, RM training, and RLHF

Why it's needed

Method

This data is used to fine-tune GPT-3 with supervised learning.

behavior.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

This data is used to train our reward model.

A labeler ranks

the outputs from best to worst.

D > G > A = B

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

Write a story

about frogs

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Dataset

- Collect prompts from OpenAI API Playground and human labelers
- Human labelers prompts include:
 - Plain prompts
 - Few-shot prompts
 - User-based prompts
- Prompt filtering (e.g., personal information, deduplication)
- Split dataset based on user ID train / validation / test
- Split again for SFT, RM, PPO dataset

Dataset

- SFT 13k training data (API + labeler)
- RM 33k training data (API + labeler)
- PPO 31k training data (API)

SFT Data			RM Data			PPO Data		
split	source	size	split	source	size	split	source	size
train train valid valid	labeler customer labeler customer	11,295 1,430 1,550 103	train train valid valid	labeler customer labeler customer	6,623 26,584 3,488 14,399	train valid	customer customer	31,144 16,185

Supervised Fine-Tuning (SFT)

- Fine-tune GPT-3 using supervised learning with SFT dataset
- Training configurations:
 - 16 epochs overfits after 1 epoch but training for more epochs helps both RM score and human preference ratings
- Starting point for next step reward model training

Reward Model (RM) Training

Basics of RL - Terms

- Agent: model that makes decisions
- Environment: system that agent interacts with (user prompts)
- State: current situation
- Action: choices made by agent (generated text)
- Reward: feedback on how good or bad an action was
- Policy: strategy the agent uses to choose actions based on states
 - $\pi(a|s) = P(a_t = a|s_t = s)$
 - probability that agent selects action a at time step t, given its state s

- Generate multiple candidate outputs per prompt (K=4 to K=9 outputs)
- Human annotators rank the outputs from best to worst
- Convert labeler rankings to pairwise preference data $\binom{K}{2}$
- Train the reward model to predict which response is preferred

$$loss(\theta) = -\frac{1}{\binom{K}{2}} E_{(x,y_w,y_l)\sim D} \left[log\left(\sigma\left(r_{\theta}\left(x,y_w\right) - r_{\theta}\left(x,y_l\right)\right)\right)\right]$$

- Loss function for the reward model
- x: prompt
- y_w : human-preferred completion
- y_l : less preferred completion
- $r_{\theta}(x, y)$: human-preferred completion
- σ : sigmoid that converts scores into probs between 0 and 1

Prompt: "Explain why exercise is good for health"

A: "Exercise improves health, and helps with weight management"

B: "It's recommended by doctors"

C: "You should exercise daily for your health"

D: "Exercising boots health by improving sleep"

HUMANE Lab

13

Prompt: "Explain why exercise is good for health"

A: "Exercise improves health, and helps with weight management"

B: "It's recommended by doctors"

C: "You should exercise daily for your health"

D: "Exercising boots health by improving sleep"

- Two components
 - SFT model: current language model
 - RM model: outputs score indicating how well the generated text aligns with humans
- How it's done
 - Environment present prompt
 - Model generates a completion
 - Reward model evaluates the completion
 - Reward is given back to the policy → fine-tunes this with PPO

objective
$$(\phi) = E_{(x,y) \sim D_{\pi_{\phi}^{\text{RL}}}} \left[r_{\theta}(x,y) - \beta \log \left(\pi_{\phi}^{\text{RL}}(y \mid x) / \pi^{\text{SFT}}(y \mid x) \right) \right] + \gamma E_{x \sim D_{\text{pretrain}}} \left[\log(\pi_{\phi}^{\text{RL}}(x)) \right]$$

- Objective function to optimize policy in RLHF
- Reward score from reward model (RM)
- KL divergence prevents the RL policy from deviating too much from the SFT model
- Ensures RL-trained policy to retain general knowledge and fluency from the original pretraining distribution (prevents forgetting)

objective
$$(\phi) = E_{(x,y) \sim D_{\pi_{\phi}^{\text{RL}}}} \left[r_{\theta}(x,y) - \beta \log \left(\pi_{\phi}^{\text{RL}}(y \mid x) / \pi^{\text{SFT}}(y \mid x) \right) \right] +$$

PPO

objective
$$(\phi) = E_{(x,y) \sim D_{\pi_{\phi}^{\text{RL}}}} \left[r_{\theta}(x,y) - \beta \log \left(\pi_{\phi}^{\text{RL}}(y \mid x) / \pi^{\text{SFT}}(y \mid x) \right) \right] + PO-ptx$$

$$\gamma E_{x \sim D_{\text{pretrain}}} \left[\log(\pi_{\phi}^{\text{RL}}(x)) \right]$$

pretraining mix (ptx)

Result

- InstructGPT (1.3B) > GPT-3 (175B)
- PPO-ptx models are preferred (vs GPT-3)
- Scaling model doesn't fix misalignment
- Alignment matters more than just scaling

Result

- InstructGPT is preferred across instruction categories
- More reliable and easier to control than GPT-3
- Less likely to hallucinate

Conclusion

- InstructGPT model using SFT, RM, PPO
- Aligns with human preferences
- Alignment is more important than just scaling
- RLHF can make models more helpful, truthful, and safe
- Foundation of modern instruction-following AI models

Q&A