Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Source:

Spring and Durum Wheat Quality Laboratory USDA, Agricultural Research Service Harris Hall, N.D.S.U. Fargo, North Dakota 58105

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE in cooperation with STATE AGRICULTURAL EXPERIMENT STATIONS

QUALITY EVALUATION OF DURUM WHEAT VARIETIES

1986 CROP1/

by

R. D. Crawford, A. A. Ottenbacher, M. A. Dregseth, Technicians, J. E. Wohlman, Secretary, Agricultural Research Service; 2/ L. L. Nolte and M. Skunberg, Technicians, NDSU; 3/ Wallace H. Kunerth, Research Chemist and V. L. Youngs, Research Food Technologist.2/

This report was compiled by the Agricultural Research Service, U. S. Department of Agriculture. Special acknowledgment is made to the North Dakota State University for their facilities and services provided in support of these studies. The report is not intended for publication and should not be referred to in literature citations or quoted in publicity or advertising. Use of the data may be granted for certain purposes upon written request to the agency or agencies involved. Cooperators submitting samples for analysis have been given analytical data on their samples prior to release of this report.

This is a progress report of cooperative investigations containing some results that have not been sufficiently confirmed to justify general release; interpretations may be modified with additional experimentation. Confirmed results will be published through established channels. The report is primarily a tool for use of cooperators and their official staffs and to those persons having direct and special interest in the development of agricultural research programs.

^{2/} Hard Red Spring & Durum Wheat Quality Lab., NDSU. Youngs retired 10/3/86; Kunerth resigned 10/31/86; Crawford will retire 3/11/88.

^{3/} Dept. of Cereal Science & Food Technology, NDSU.

TABLE OF CONTENTS

Contents	Page No.
Introduction	3
Source of the Samples	4
Tables of Varieties and Crosses	5-6
Methods	7
Flow Diagram for Large Durum Wheat Samples	10
Flow Diagram for Small Durum Wheat Samples	11
Discussion	16
Experimental Results - 1986 Crop	18
Uniform Regional Nursery Samples	18-23
Western Durum Nursery Samples	24
Field Plot Nursery Samples	25
Preliminary Nursery Samples	26
Advanced Nursery Samples	27-28
Explanation of Abbreviations	29
1986 Crop Tables No. 1 through No. 25	
Reference Mixograms	

INTRODUCTION

The twenty-third Durum Wheat Quality Report contains data for the 1986 crop. Samples of standard varieties and new strains of durum wheat grown in cooperative experiments in the durum wheat regions of the United States 4/were milled and evaluated by the Hard Red Spring and Durum Wheat Quality Laboratory in cooperation with the Department of Cereal Chemistry and Technology on the campus of North Dakota State University at Fargo, ND. Methods and techniques are described in detail in the text of the report.

All samples received that were large enough to mill on the Buhler experimental mill were processed into spaghetti using the macro spaghetti processing method as described on page 13. A five pound wheat sample is required for the above method. All other samples were milled using the micro procedure and were not processed into spaghetti. Those samples having acceptable kernel characteristics and dust color score, if possible, should be included for macro processing the following year.

The purpose of this report is to make available to cooperators the quality data on standard varieties and new selections of durum wheat from the 1986 crop.

^{4/} Cantrell, R.G. and Brosz, J. Wheat varieties grown in cooperative plot and nursery experiments in the spring wheat region in 1986. Department of Agronomy, North Dakota State University, Fargo, ND.

SOURCE OF THE 1986 CROP SAMPLES

Tests were performed on seven hundred sixty-four samples from 17 stations and eight states (California, Arizona, Washington, Minnesota, Montana, South Dakota, North Dakota and Nebraska) for quality evaluation. However, data on 27 of these samples are not included in this report, because this information was of interest to plant breeders at specific experiment stations only. Data presented in this report are from the Field Plot Nursery, Uniform Regional Nursery, Western Durum Nursery, Preliminary Nursery and the Advanced Nursery samples.

FIELD PLOTS - 12

Mesa - Arizona

UNIFORM REGIONAL NURSERY - 244

Williston, Dickinson and Carrington - North Dakota
Day County and Selby - South Dakota
Bozeman and Sidney - Montana
Crookston - Minnesota

WESTERN DURUM NURSERY - 92

Tulelake - California
Royal Slope and Walla Walla - Washington

PRELIMINARY NURSERY - 129

Davis - California

ADVANCED NURSERY - 260

Imperial Valley, Davis and Kings County - California

1986 UNIFORM REGIONAL DURUM NURSERY

LIST OF ENTRIES

				••	
Datas	Ma	To burn		Year	Origin
Entry	NO.	Entry	P.I. No.	Entered	Origin
1		Mindum		1929	Minnesota
2	d	Ward	D6674	1969	ND-USDA
3		Rugby	D6722	1970	ND-USDA
4		Vic	D74112	1976	ND-USDA
5		Lloyd	D771*	1978	ND-USDA
6		Medora	DT433	1980	AC, Winnipeg
7		Monroe	D793	1981	ND-USDA
8		Laker	C881-4*	1984	WPB
9		Sceptre	DT380	1985	Univ. Sask.
10		D7224/Vic	D79168*	1983	ND
11		D74111/Cd	D79209*	1983	ND
12		D75149/Vic	D8012	1984	ND
13		D75149/Vic	D8016	1984	ND
14		D73121/Vic	D8019	1984	ND
15		Cal/Ed	NHD81-466*	1984	NAPB
16		Ed/Ward	NHD81-485	1984	NAPB
17		Rlt/Vic	D8172	1985	ND
18		D7690/Vic	D8191	1985	ND
19		D7690/Vic	D8193	1985	ND
20		D7690/Vic	D8194	1985	ND
21		D783/Vic	D81151	1985	ND
22		D785/Vic	D81154	1985	ND
23		Lloyd/Cd	D81183*	1985	ND
24		D773/Vic	D8261*	1985	ND
25		D773/Vic	D8263*	1985	ND
26		D77200/Vic	D8269*	1986	ND
27		D77173/D772	D8279*	1986	ND
28		D773/Clt	D8291*	1986	ND
29		D7618/Cd	D82136*	1986	ND
30			FA883-323	1986	WPB

^{*} Semidwarf

WESTERN REGIONAL DURUM

LIST OF ENTRIES

Aldura	T8300140
Carc "S"	T8300147
Durox	T8300175
Irridur	T8300179
Laker	TL730471
Lloyd	UC 499
Modoc	UC 606
Signadur	UC 640
Turbo	UC 642
Vic 1A	UC 647
Vic 220	#5
Waid	#6
WPB 881	#14
YAV "S"	#15
Yavaros 79	#16
YGA "S"	#17
D79209	#18
HD 810466	#19
Т8300136	#20
Т8300138	
10200120	

METHODS

The methods used in the testing of the samples were essentially the same as given in the last report.

Briefly, the following methods and terminologies were applied:

<u>Test Weight Per Bushel</u> - The weight per Winchester bushel of dockage-free wheat.

Thousand Kernel Weight - The 1000 kernel weight was determined by counting the number of kernels in a 10 g sample of cleaned, picked wheat on a Seedburo seed counter5/.

Kernel Size - The percentage of the size of the kernels [large, medium, and small] was determined on a wheat sizer as described by Shuey6/.

The sieves of the sizer were clothed as follows:

Top Sieve - Tyler # 7 with 2.92 mm opening Middle Sieve - Tyler # 9 with 2.24 mm opening Bottom Sieve - Tyler #12 with 1.65 mm opening

<u>Protein Content</u> - Both the Kjeldahl procedure and the near infrared technique were used to determine protein content. Nitrogen values, as determined by the Kjeldahl procedure, were multiplied by 5.7 to calculate protein values.

Hardness Test - This year wheat hardness scores are rereported on the samples. The procedure used requires
grinding the wheat samples with a UDY grinder, and
obtaining data from a Technicon 400 near infrared analyzer. Wavelengths used were 1680 nm and 2230 nm. This
procedure was developed by Mr. Karl Norris, USDA,
Beltsville through a co-operative research project in
which this Laboratory also participated. This procedure
is not official and may be replaced with another in the

- Mention of a trademark name or proprietary product does not constitute a guarantee or warranty of the product by the U. S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.
- 6/ Shuey, William C. A wheat sizing technique for predicting flour milling yield. Cereal Sci. Today 5:71 (1960).

future. Durum wheat hardness scores for the 1986 crop ranged from a low of 78 to a high of 147 with an average of 112.5.

Milling - All samples were cleaned by passing the wheat through an Emerson kicker and dockage tester and through a modified Forster scourer Model 6. The clean, dry wheat from the larger 2 kg samples was tempered in three statges: first to 12.5% moisture at least 72 hours prior to the second stage which is to add an additional 2.0% for 18 hours to give a cumulative moisture of 14.5%, then a final temper of 3.0%, 45 minutes prior to milling. The smaller 200 gram samples were pretempered to 12.5% moisture for at least 72 hours. They were then tempered to 16.5% moisture and allowed to stand overnight prior to milling.

The large field plot, preliminary and advanced samples were milled on a Buhler experimental mill specially designed for milling durum wheat. The mill is equipped with corrugated rolls throughout, and the semolina purified on a Miag laboratory purifier. All of the stock is handled pneumatically. The mill flow is shown on page 10. The purified semolina is used in testing the quality of semolina. The semolina extraction was calculated on a total products basis. Prior to milling this year's samples, the Buhler mill and purifiers were adjusted to maximize semolina yield, yet keep the speck count to an acceptable level.

The small samples were milled according to the method of Vasiljevic et al 7/. The flow diagram of this system is shown on page 11. In addition to this method the "purified" semolina was rebolted on a strand sifter equipped with a #35 tyler sieve. The sample was sifted for 30 seconds. The throughs of the #35 wire were classified as rebolted semolina. This was the material tested. The overs of the #35 wire were classified as crude shorts, and the overs of the rotating #34 wire sieve were classified as bran.

<u>Semolina Extraction</u> - For both the macro and micro method of milling, the percent semolina extraction was calculated on a total product basis.

^{7/} Vasiljevic, S., Banasik, O.J. and Shuey, W.C. A micro unit for producing durum semolina. Cereal Chem. 54:397 (1977).

Speck Count - The number of specks in three different one-inch square areas of semolina enclosed by a special glass and frame were counted. Any materials other than pure endosperm chunks, such as bran particles, etc. were considered specks. The average of three readings was converted to the number of specks per 10 sq in (speck count). Speck count is done only on the macro milled samples.

Color Score - The color of the spaghetti or semolina has been generally accepted as the most important single grading factor. A deep amber or golden color is the most preferable. The amount of yellow pigmentation determines the color.

Cooked Weight - After cooking the 10 g of spaghetti for 12 minutes, the samples were washed thoroughly with distilled water and allowed to drain in a buchner funnel for 2 minutes. The sample was then weighed, and this weight is recorded as the cooked weight.

TEON DIAGRAM FOR TARGE DURING MILEAT SAMPLES

FLOW DIAGRAM FOR SMALL DURUM WHEAT SAMPLES MICRO PROCEDURE

REBOLTED ON A STRAND SIFTER EQUIPPED WITH A #35 TYLER SIEVE

Samples which have a color rating 1.5 point below the standard spaghetti score or 15 points below the standard semolina color score are unsatisfactory. It is possible that the average color score for a crop year may be higher or lower than average; therefore, this would be taken into consideration when giving the overall rating of a variety over a number of years.

The grading system shown below has been adopted for scoring the semolina color and spaghetti relative to the standard color score.

COLOR SCORE

Semolina	<u>Spaghetti</u>	Description
15 above	1.5 above	Much deeper and intense yellow pigmentation than standard
10 above	1.0 above	Deeper and more intense yellow pigmentation than standard
5 above	0.5 above	Slightly deeper and more intense yellow pigmentation than standard
Equal to Standard	Equal to Standard	Standard quality, depth and intensity of yellow pig-mentation
5 below	0.5 below	Slightly less depth and in- tensity, but sufficient quantity of pigmentation
10 below	1.0 below	Slightly less quantity as well as depth and intensity of pigmentation than the standard, but still sufficient to be rated satisfactory on the basis of color
15 below	1.5 below	Sufficiently less quantity of yellow pigmentation than the standard to give a pale yellow color and graded unsatisfactory for color score.

Semolina Color Score - The semolina color score was determined by using Model D25M-9 Hunterlab tristimulus colorimeter equipped with an optical sensor and a signal processor. The instrument was calibrated using a yellow standard tile with Hunter L, a, b values of L = 77.33, a = -1.91, b = 20.94. A sample of semolina was placed in a cell normally used for near infrared analysis of flour in a Technicon 400 Infra Analyzer. This cell fits in the opening of the optical sensor. The b value was converted to a yellow color score ranging from l-14, with 14 being a deep yellow and the most desirable color. In this report, the semolina color score, reported as "Du" in the tables, is multiplied by a factor of 10.

Spaghetti Color - The spaghetti color scores also were measured in the Model D25M-9 colorimeter. The specimen area (2 in diameter) was covered with straight spaghetti strands and readings were taken against a black background with 0% reflectance. Color difference values (L%, a% and b%) were measured for all the spaghetti samples by the method of Walsh, Gilles and Shuey8/. A uniform chromaticity chart was used for determining spaghetti color scores.

MACRO Spaghetti Processing - Spaghetti was processed on a semi-commercial scale pasta extruder (DEMACO). The control as well as all samples was processed with the following extruding conditions.

Temperature . . . 49.5°C

Rate 12 rpm

Absorption 32.5%

Vacuum 18 in Hg

These were the optimum conditions for processing spaghetti.

^{8/} Walsh, D. E., Gilles, K. A. and Shuey, W. C. Color determination of spaghetti by the tristimulus method. Cereal Chem. 46:7 (1969).

To process the spaghetti, a 1000 g batch was premixed by slowly adding the water and mixing at a slow speed for approximately 30 seconds and high speed for 10 seconds. Then the remainder of the water was added at slow speed in a Hobart C-100-T mixer equipped with a pastry knife agitator. After all of the water had been added, the semolina and water were blended at high speed for 30 seconds; the mixer was stopped to scrape down the sides of the bowl, and the blending continued for 90 seconds more to complete the premix stage. The premixed pasta was then transferred to the vacuum mixer of the press and extruded through an 84-strand 0.043 in teflon spaghetti die. A jacketed extension tube (94 long x 1-3/4" inside diameter) was attached to the semicommercial pasta extruder to allow more time for hydration of the semolina and minimize the number of white specks (unhydrated semolina) in the spaghetti. Extrusion temperature was controlled by a circulating water bath.

Spaghetti Drying - Spaghetti was dried in an experimental pasta dryer for an 18 hour cycle as described by Gilles, Sibbitt and Shuey9/. During the drying period, the humidity of the dryer was decreased linearly from 95 to 60% R.H. and the temperature was held constant at 40°C.

^{9/} Gilles, K. A., Sibbitt, L. D. and Shuey, W. C. Automatic laboratory dryer for macaroni products. Cereal Sci. Today 11:322 (1966).

Cooking Characteristics of Spaghetti

A. Cooking Procedure

Spaghetti (10 g) which had been broken into lengths of approximately 5 cm, was placed into 300 ml of boiling water in a 500 ml beaker. After 12 minutes cooking, the samples were washed thoroughly with distilled water in a Buchner funnel, allowed to drain for 2 minutes and then weighed to determine cooked weight. This procedure is the same as last year, but differs from previous years, when a 1% salt solution was used and the spaghetti was cooked for 10 minutes.

B. Firmness Score

Two strands of cooked spaghetti were placed on a plexiglass plate and sheared at a 90° angle with a special plexiglass tooth. A continuous recording of distance versus force was made by the instrument during the operation. An automatic integrator was used to calculate the area under the curve (g cm) which was the amount of work required to shear the cooked spaghetti. To measure firmness, the average of three integrator scores was used, and the average work to shear was used as a measure of spaghetti firmness.

Calculations were as follows:

 $E = 0.0216 \times A (g cm)$

A = Average integrator reading

E = Area of curve expressed as g cm (work)

The higher the value, the firmer the spaghetti. A value of approximately 7.00 appears to be preferred.

C. Residue

This is the weight of the solids remaining after the combined cooking and washing water was evaporated.

DISCUSSION

The following discussion represents some of the basic techniques and criteria used in the milling and cooking quality evaluation of durum wheat samples. Several testing factors are used to determine the overall quality characteristics or final evaluation of a particular sample including, in general, the kernel characteristics, milling performance and cooking performance.

Each evaluation factor can be important. A sample could be of sufficiently poor quality for a given factor to eliminate it from possible future testing. However, a sample submitted for the first time and found to show little promise should be tested again to establish if it has some good promise, or no promise. A sample which is consistently rated as little promise or no promise should be discarded.

Data presented in this report were processed by using the Statistical Analysis System (SAS Institute, Inc., SAS Circle, Box 8000, Cary, NC 27511). The program developed from this system allows flexibility within the quality grading factors. This should allow us to relate more directly to industry and consumer requirements.10/

In this evaluation system 11 dependent variables are used. These are test weight, 1000 kernel weight, percent small kernels, wheat protein, total extraction, semolina extraction, dust color, speck count, semolina protein, spaghetti visual color score and spaghetti firmness score. Seven additional variables are measured and included in the tables for the reader's use and information but are not used in the computerized evaluation of the samples. These are percent large kernels, hardness, mixograph score, semolina mineral, falling number, cooked weight and cooking residue.

After computing an average of each of the 11 variables for the standards from a station or nursery, the computer subtracts established values from each of the standard averages to determine major (MJ) and minor (MI) faulting limits. There are two exceptions where precise values have been assigned, which are independent of the station standards. The first exception is wheat protein, where percentages below 11.5% will be classified as MJ faults, and percentages between 11.5% - 12.5% will be MI faults (14% m.b.). The second exception is semolina protein, where percentages below 11.0% are classified as MJ faults, and percentages between 11.0 and 11.5% are classified as MI faults (14% m.b.). Hence, the wheat and semolina protein faulting values remain the same for all stations and nurseries.

Nolte, L.L., Youngs, V.L., Crawford, R.D. and Kunerth, W.H. 1985. Computer program evaluation of hard red spring wheat. Cereal Foods World 30:227-229.

SELECTION OF STANDARDS

Whenever possible, the standards selected were named varieties grown at each location or in each nursery. In the tables of data, the varieties used as standards are identified by an "s" in the second column. At the bottom of each table are cited "average of standards". Quality deviation from these values determine the major and minor faults (note preceding paragraph). In nurseries where breeders did not grow named varieties, standard quality data were obtained from the 1986 North Dakota standard ('Vic'), which was processed separately with each nursery. This standard was grown in North Dakota, not at the particular nursery location. Other deviations are footnoted in the tables.

HOW SAMPLES ARE SCORED

Each sample is assigned an evaluation score of 4. Major and minor faults determined from the data by the computer will reduce this score, depending upon the quality factor being faulted. The effects of the different quality faults are shown in the table which follows:

DURUM PROGRAM FAULTING AND SCORING VALUES

Variable	Rangea		Effect on Evaluation Scoreb	
	Minor fault	Major fault	Minor fault	Major fault
Test Wt. (lb/bu)	-2.2	-3.1	-	-1
1000 KWT (g)	-2.1	-5.1	-	-1
Small Kernels (%)	+5	+10	-	-1
Wheat Prot. (%)	12.5	11.5	-1	-2
Tot. Ext. (%)	-2.5	- 3.5	-1	-2
Semo. Ext.(%)	-3.0	-4.0	-1	-2
Dust color	-10	- 15	-2	-3
Specks/10 sq. in.	+10	+15	-	-1
Semo. Prot. (%)	11.5	11.0	-1	-2
Visual Spag. color	-1.0	-1. 5	- 2	-3
Firmness (g cm)	-1.5	-2.25	-1	-2

Wheat and semolina protein percents are fixed lower limits for faults. All other values represent the deviation from the average of the standards required to warrant a minor or major fault.

b These values are subtracted from a beginning score of 4.

EXPERIMENTAL RESULTS - 1986 CROP

The results are tabulated and presented in the following order: Tables 1-8, Uniform Regional Nursery; Tables 9-11, Western Durum Nursery; Table 12, Field Plot Nursery; Tables 13-15, Preliminary Nursery; Tables 16-25, Advanced Nursery.

UNIFORM REGIONAL NURSERY

Two hundred forty-four samples were received from eight stations and four states. Thirty samples were received from six stations, and thirty-two samples were received from two stations. Nine of these samples were named varieties from six stations and eleven named varieties were from two stations. The remainder were experimental lines. The word descriptions of these numerical scores are as follows: 1-1.4, no promise; 1.5-2.4, little promise; 2.5-3.4, some promise; 3.5-4.0, good promise. The discussion which follows is based on averaged data from the eight stations.

Crosby (4.0 - 1/0)11/ (3 years) - Good promise. This variety was grown in 1986 at two stations only - Day County and Selby, South Dakota.

Faults (1986 crop, SD stations only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

Edmore (4.0 - 0/0) - Good promise. This variety was grown in 1986 at two stations only - Day County and Selby, South Dakota.

Faults (1986 crop, SD stations only)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory

^{11/ (}Average General Evaluation - Number of Total Deficiencies)

<u>Laker</u> (2.7 - 23/6) (3 years) - Some promise.

Faults (1986 crop only)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Semolina extraction, dust color.

Lloyd (3.4 - 22/8) (3 years) - Some promise.

Faults (1986 crop only)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

Medora (4.0 - 2/0) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

 $\underline{\text{Mindum}}$ (1.7 - 32/16) (3 years) - Little promise.

Faults (1986 crop only)

Kernel Characteristics - Test weight, 1000 KWT, small kernels, wheat protein.

Milling Performance - Dust color.

Monroe (3.9 - 5/0) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

Rugby (3.8 - 7/1) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

Sceptre (3.4 - 17/4) (2 years) - Some promise.

Faults (1986 crop only)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Semolina extraction, dust color.

 $\underline{\text{Vic}}$ (3.9 - 2/1) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - Satisfactory.

Milling Performance - Satisfactory.

 $\underline{\text{Ward}}$ (3.9 - 7/0) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

D8012 (3.9 - 6/0) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8016 (3.8 - 11/3) $(3 \text{ years}) - Good promise.}$

Faults (1986 crop only)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Satisfactory.

D8019 (3.6 - 7/0) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8172 (3.7 - 10/1) (2 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Dust color.

D8191 (3.7 - 4/1) (2 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8193 (3.8 - 5/1) (2 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D8194 (3.8 - 9/1) (2 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

D8261 (3.4 - 8/1) (1 year) - Some promise.

Faults (1986 crop)

Kernel Characteristics - Wheat protein, 1000 KWT, test weight.

Milling Performance - Semolina extraction, dust color.

D8263 (4.0 - 3/0) (1 year) - Good promise.

Faults (1986 crop)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Satisfactory.

D8269 (3.9 - 6/0) (1 year) - Good promise.

Faults (1986 crop)

Kernel Characteristics - Test weight, wheat protein, 1000 KWT.

Milling Performance - Satisfactory.

08279 (3.8 - 4/0) (1 year) - Good promise.

Faults (1986 crop)

Kernel Characteristics - Test weight, 1000 KWT, wheat protein.

Milling Performance - Satisfactory.

D8291 (2.9 - 13/9) (1 year) - Some promise.

Faults (1986 crop)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

D79168 (3.5 - 12/5) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT, small kernels,
wheat protein.

Milling Performance - Dust color.

D79209 (3.6 - 22/5) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Satisfactory.

D81151 (3.1 - 18/5) (2 years) - Some promise.

Faults (1986 crop only)

Kernel Characteristics - Test weight, 1000 KWT.

Milling Performance - Semolina extraction, dust color.

D81154 (3.7 - 14/1) (2 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

D81183 (3.3 - 18/5) (2 years) - Some promise.

Faults (1986 crop only)

Kernel Characteristics - 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

D82136 (2.0 - 16/8) (1 year) - Little promise.

Faults (1986 crop)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Semolina extraction, dust color.

FA883-323 (3.9 - 3/0) (1 year) - Good promise.

Faults (1986 crop)

Kernel Characteristics - 1000 KWT.

Milling Performance - Semolina extraction.

NHD81-466 (3.2 - 29/9) (3 years) - Some promise.

Faults (1986 crop only)

Kernel Characteristics - Test weight, 1000 KWT, small kernels.

Milling Performance - Semolina extraction.

NHD81-485 (3.7 - 7/2) (3 years) - Good promise.

Faults (1986 crop only)

Kernel Characteristics - Wheat protein, 1000 KWT.

Milling Performance - Semolina extraction.

WESTERN DURUM NURSERY

Tulelake, CA; Royal Slope and Walla Walla, WA - Tables 9-11

Ninety-two samples were received from three stations in two states. All analyses were done the same as for the Uniform Regional Nursery using our micro procedure. Aldura, Lloyd and Modoc were used as the standards. The average general score for Tulelake was 3.1. 1000 KWT and dust color were the two main areas for deficiencies. This data is in Table 9. The average general score for Royal Slope was 2.2 and for Walla Walla 3.1. Wheat protein was the major faulting area for both stations. This data is reported in Tables 10 and 11.

FIELD PLOT NURSERY

Mesa, Arizona - Table 12

Twelve samples were received from this station. All samples were milled, and the semolina was processed into spaghetti using our macro method. Aldura was used as the standard. Six samples showed good promise, 3 showed some promise and 3 showed no promise. The average general score was 3.0.

PRELIMINARY NURSERY

One hundred twenty-nine samples were received from this station in three different series. Our 1986 standard was used as the standard for all three series. All samples were milled, and the semolina was processed into spaghetti using our macro method.

699 Series - Table 13

Fifty samples were received in this set. The major faulting areas were total extraction, semolina extraction, dust color and semolina specks. The average general score was 1.1.

6100 Series - Table 14

Forty-one samples were received in this set. The major faulting areas were total extraction, dust color and semolina protein. The average general score was 1.0.

6101 Series - Table 15

Thirty-eight samples were received in this set. The major faulting areas were total extraction, semolina extraction, dust color and semolina protein. The average general score was 1.0.

ADVANCED NURSERY

A total of 260 samples were received from three stations in one state. All samples were milled, and the semolina was processed into spaghetti using our macro method.

Imperial Valley, California - Table 16

Twenty-six samples were received from this station. Aldura, Mexicali and Westbred 881 were used as standards. The average general score for this station was 2.2.

Imperial Valley, California - Table 17

Twenty-four samples were received in this set. Aldura, Mexicali 75 and Westbred 881 were used as the standards. The average general score for this set was 2.8.

Imperial Valley, California - Table 18

Thirty-six samples were received in this set. Aldura, Mexicali and Westbred 881 were used as the standards. The average general score for this set was 2.3.

Kings County, California - Table 19

Twenty-six samples were received from this station. Aldura, Mexicali and Westbred 881 were used as the standards. The average general score for this station was 2.3.

Davis, California - Table 20

Twenty-six samples were received from this station using Aldura, Mexicali and Westbred 881 as the standards. The average general score for this station was 1.1.

Davis, California, 620 Series - Table 21

Twenty selections were received in this set. Our 1986 standard was used as the standard for this set. The average general score for this series was 1.3.

Davis, California, 621 Series - Table 22

Thirty-one selections were received in this set. Our 1986 standard was used as the standard for this set. The average general score for this series was 1.2.

Davis, California, 622 Series - Table 23

Twenty-eight selections were received in this set. Our 1986 standard was used as the standard for this set. The average general score for this series was 2.0.

Davis, California, 623 Series - Table 24

Twenty-seven selections were received in this set. Our 1986 standard was used as the standard for this set. The average general score for this series was 1.6.

Davis, California, 624 Series - Table 25

Six varieties and ten selections were received from this station. Our 1986 standard was used as the standard. The average general score was 1.3.

EXPLANATION OF ABBREVIATIONS LISTED UNDER THE HEADINGS AND UNDER MINOR AND MAJOR DEFICIENCIES ON TABLES

MINOR AND MAJOR DEFICIENCIES ON COMPUTER PRINTOUT

S or STD = Standard TW = Test Weight

1000 KWT or KW = 1000 Kernel Weight LG = % Large Kernels

SM = % Small Kernels

WHT PRO or WP = Wheat Protein

TOT EXT or TX = Total Extraction (Semolina Plus Flour)

RES = Residue in Water of Cooked Spaghetti
VALU = Sample Evaluation Number (Example 4 = Good Promise)

GUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=NORTH DAKOTA STATION=WILLISTON NURSERY=UNIFORM

TW KW SM WP SX DU	HI MJ MI	EEE		MI MI MI
SCORE	4 4 4 6) ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ ਰਾ	प प प प प प प प प प प प	प प प प ⊣ प प प
MIXO	0 4 V C	1097010	N O N 4 N N 4 4 4 M M	
DUST	75 90 90 80	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	85 90 90 90 70 85 90
SEMO	54.1 54.8 53.8 54.0	54.6 53.1 54.0 56.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	52.6 55.4 50.0 50.0 50.0 50.0 60.0 60.0 60.0 60.0
HARD	103 100 105 89	101 99 97 101 109	103 97 101 100 98 98 98 100 100	99 103 99 104 103 97
WHT	13.6 13.8 15.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
LG SM	77 1 56 1 65 1 13 8		63 1 50 1 66 1 66 1 73 0 73 0 69 0 72 0	
1000 K.WT	53.2 45.5 45.7 31.9			46.5 44.4 45.2 46.3 46.3 46.1
TEST WT	63.0 62.3 60.2	63.0 63.0 61.8 62.8 63.0	6 6 2 3 3 6 6 5 2 5 6 6 5 2 6 6 6 5 3 6 6 6 5 3 6 6 6 6 6 6 6 6 6 6	6 6 2 3 . 1 . 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
 		ນ ນ ນ		
VARIETY STD	LAKER LLOYD MEDORA MINDUM	MINDON MONROE RUGBY SCEPTRE VIC WARD D 8012	D 8016 D 8019 D 8172 D 8191 D 8193 D 8261 D 8263 D 8263 D 8279 D 8279 D 79168	A A HI HI HI HI

DEFICIENCIES TW KW SM WP SX DU AVG OF STANDARDS 62.9 46.7 1 15.1 53.7 83 MINOR FAULTING VALUES 60.7 44.6 6 12.5 50.7 73 MAJOR FAULTING VALUES 59.8 41.6 11 11.5 49.7 68

1986 CROP NURSERY=UNIFORM QUALITY DATA OF DURUM SAMPLES STATE=NORTH DAKOTA STATION=CARRINGTON

DEFICIENCIES TW KW SM WP SX DU	IM	Jw Iw	и	IM	П	:	I H E E		I W
SCORE ***	4 4 4	. W 44 4	***************************************	ক ক ক	বা বা বা	ব ব ব	W W 4 4 4	ा चि चा च (ገ 4 4 W
MIXO	លខ4	N M -	- ๓ ๓ ୯	വ വ 4	ოოო	നനന	ოოოოი	N (N (B) (B)	тепе
DUST	80 06 06	90 90 95	6 6 6 6 V	90 90 90	75 80 90	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6 6 6 8 6 6 6 6	70 85 90
SEMO	56. 1 55. 8 56. 7		58.4 58.1 56.1				60. 59.3 60.2		58.4 57.7 57.5 54.3
HARD	95 95 95	85	0 0 0 4 0 0	87 81 89	90 92 88	90 87 85	8 9 9 9 9 9 9 9 9	2 8 8 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	91 90 89 100
WHT PRO	13.1 13.0	13.1		13.4 13.1 13.4	13.5 13.1 13.7	66.4	12.5 13.0 4.0 6.0		13.0 13.0
% SM	m N N	1000	N 10 14 10	в в и	е е и	N -1 -1	0	N 01 01	8
, 5	2. 2.4.3 8.0.0	34	54 60 57	49 43 60	37 53 59	57 57 61	51 45 12	4 C C C C C C C C C C C C C C C C C C C	55 58 51 60
1000 K. WT		37.3	38.6 44.1 12.1 10.0		600		44 44 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0	423.0 43.0 43.1 44.3
TEST	61.4		63.2 63.2 63.0				62.4 62.3 63.2		6.3.0 6.3.0 4.4.
		t	ນ ນ						
VARIETY STD	LAKER LLOYD MEDORA	MINDUM	KUGBY SCEPTRE VIC WARD	D 8012 D 8016 D 8019	D 8172 D 8191 D 8193	D 8194 D 8261 D 8263	D 8269 D 8279 D 8291 D 79168	D 79209 D 81151 D 81154 D 81183	D 82136 FA 883-323 NHD 81-466 NHD 81-485

3=SOME PROMISE, 4=GOOD PROMISE

DU 82 72 67

AVG OF STANDARDS 63.0 42.9 2 13.9 57.3 MINOR FAULTING VALUES 60.8 40.8 7 12.5 54.3 MAJOR FAULTING VALUES 59.9 37.8 12 11.5 53.3

***EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE,

1986 CROP QUALITY DATA OF DURUM SAMPLES STATE=NORTH DAKOTA STATION=CARRINGT

	NOKSEKIFOKE	
:: (_	

DEFICIENCIES KW SM WP SX DU	MI MJ			Ľ	DH D
TW KW SM	M M M IM	π	MI MI MI MJ		E E E E
SCORE	መ መ 4 4 4	' ব' ব' ব' ব'	4 4 4 6 6) (1) प प प प प प (1) प प प (1)	→ m 4 0
MIXO	N O O O O 4	מטמטטי	លលយ 4 ល) 4 4 M W W A 4 M M 4 W	ቢ 4 4 4
DUST	885 85 90	, a a a a a a a a a a a a a a a a a a a	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 90 95
SEMO	55.0 55.0 55.7 56.0	58.2 56.2 57.2 57.2	56.5 57.6 58.5 54.1	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	51.2 52.9 54.1 52.6
HARD	89 91 83	92 88 90 100 84	82 95 95 86	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	91 87 82 91
WHT				13.00	13.8 13.2 13.2
LG SM	29 3 13 5 40 2 17 5 50 2	44 31 31 31 32 33 33 33 34 34 35		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 6 35 3 14 5 30 3
1000 K. WT		24.04.0 20.00 20.00 20.00 20.00		32.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TEST				55.7 55.0 57.0 57.0 57.5 57.5 57.6 56.6	
 		വ വ			
VARIETY STD	LAKER LLOYD MEDOYA MINDUM MONROE	RUGBY SCEPTRE VIC WARD D 8012	D 8016 D 8019 D 8172 D 8191	D 8193 D 8263 D 8263 D 8269 D 8279 D 79168 D 79209 D 81151 D 81153	8213 A 883 HD 81 HD 81

DU 87 77 72 AVG OF STANDARDS 57.6 39.2 3 13.8 56.7 MINOR FAULTING VALUES 55.4 37.1 8 12.5 53.7 MAJOR FAULTING VALUES 54.5 34.1 13 11.5 52.7

QUALITY DATA OF DURUM SAMPLES STATE-SOUTH DAKOTA STATION-DAY CO.

TABLE 4

1986 CROP. NURSERY=UNIFORM

ES	SX DU			H			Ä					H							ı	ı				ר			ת	н	, J	J.		רי	
Ŀ	S M WP S			IM								IW							ΠE	E				MI			Σ		MI MJ	E		MI	Σ
DE	TW KW						IW		IW	IW								IW	MI					LM LM		MI	IW	H	IW	MI		H	
SCORE	* *	4	4	ო	4	4	7	4	4	4	4,	ო	4	4,	4	4	4	4,	ო	ო	4,	4,	4	- 1	4,	4	7	ო	α		4	7	7
MIXO	SCR	е	ស	9	ហ	4	7	ស	7	ស	4	ო	ហ	9	9	ហ	ហ	9	9	7	9	7	9	7	9	ហ	Ŋ	9	7	4	ល	വ	7
DUST	COLOR	90	90	85	90	90	70	ឧទ	80	85	90	90	95	95	85	85	90	90	90	95	95	85	90	95	95	90	95	100	90	80	95	95	100
SEMO	EXTR	55.0	52.2	51.9	53.3	53.3	53.1	53.5	53.6	53.3	56.7	51.6	53.1	54.7	52.9	54.5	52.4	52.4	51.2	51.7	55.0	54.0	55.5	50.0	55.5	53.5	48.8	51.4	50.7		54.7	49.1	50.7
HARD	NESS	94	95	92	80	66	91	87	88	78	90	68	94	92	91	105	68	89	96	90	68	94	90	92	90	ტ ტ	95	96	95	95	93	90	90
WHT	PRO	14.8	15.5	14.7	14.2		14.1	14.5	14.8	14.7	_				15.9	•			14.9	4.	14.5			14.9	14.6	14.2	14.9	14.9	14.6		•	14.7	•
	SM	ß	ო	4	9	ო	4	ო	Ŋ	ស	ო	ហ	ო	9	4	ហ	4,	ហ	ស	9	ស	9	ហ	13	7	7	7	9	σ	83	ო	11	4
*	2	σ	19	21	13	27	14	25	10	13	25	13	29	10	14	9	15	12	11	11	10	10	11	ო	9	ហ	11	σ	ស	4	15	ო	19
1000	K.WT	34.1	37.6	35.7	35.2	37.5	32.3	36.0	33.0	32.5	38.2	34.4	35.6	33.9	33.9	35.0	36.0	33.1	32.1	35.0	33,9	35.2	35.2	28.9	34.6	32.8	31.0	32.5	31.5	31.1	35.3	31.4	35.3
TEST	ΤM	59.0	σ.	58.8	57.1		61.4	59.6	58.7	58.0	59.6	59.7	59.8		58.1	60.7	58.6	58.3	58.7	58.1	58.4	57.8	58.6	56.0	59.7	59.2	57.0	58.8		_	58.9	58.4	60.9
									ß		ß																				,		
	VARIETY STD	CROSBY	EDMORE	LAKER	LLOYD	MEDORA	MINDUM	MONROE	RUGBY	SCEPTRE	VIC	WARD		8016							8263	D 8269				79209	81151	81154	81183	82136	FA 883-323	NHD 81-466	NHD 81-485

85 75 70 AVG OF STANDARDS 59.1 35.6 4 14.8 55.1 MINOR FAULTING VALUES 56.9 33.5 9 12.5 52.1 MAJOR FAULTING VALUES 56.0 30.5 14 11.5 51.1

DEFICIENCIES	SM WP SX DU				ш		MI			Ľ₩										M			M		W.		MI		H	MI MI		Ē	ΙW
DEFI	TW KW SI	MI			IM CM					IM CM		M				MI			H					IM UM		H	D.M.	H	MI	DE .		H H	
SCORE	*	4	4	4	7	4	7	4	4	-	4,	4	4,	4	4	4	4	4	4	ო	4	4	ო	ო	ო	4	7	4	ო	-1	4	7	ო
MIXO	SCR	7	ღ	ო	4	ო	-	ო	7	4	4	7	4,	4	4,	ო	ო	ო	ო	ო	4,	4,	ო	4,	ო	ო	ო	ო	ო	ო	ო	ო	4
DUST	COLOR	90	95	85	95	95	75	85	90	90	90	85	95	90	80	80	85	85	90	95	95	85	90	90	95	90	90	100	90	75	90	85	92
SEMO	EXTR	52.8	55.7	55.6	52.3	54.2	57.7	53.0	54.2	51.6	55.4	57.2	57.4	56.9	56.2	57.2	56.9	56.0	54.4	57.7	56.3	53.5	53.7	54.9	55.8	54.2	52.3			•	56.6	49.8	•
HARD	NESS	95	6	93	90	100	81	66	95	6	93	95	91	94	6	94	66	98	95	92	68	66	93	88	89	90	92	6	92	94	90	87	92
WHT	PRO	14.0	15.0		13.0		12.7	13.6	13.2		13.4		13.6		•	12.9	•		13.4		12.6			13.2	12.3		13.6					12.6	•
*	LG SM		30 2			44 1	30 30	50 2																2 6						8			
1000	K. WT	35.6				39.5		42.4	39.1					•									•	34.4								•	•
TEST	E.	60.0		60.7	•		62.2	59.9	61.7															57.5			58.2	61.4	61.4	61.4		61.0	
									ഗ		ល	ល																					
	VARIETY STD	CROSBY	EDMORE	LAKER	LLOYD	MEDORA	MINDUM	MONROE	RUGBY	SCEPTRE	VIC	WARD	D 8012	D 8016					D 8194		D 8263		D 8279	D 8291	D 79168	D 79209	D 81151	D 81154		D 82136	FA 883-323	NHD 81-466	NHD 81-485

 DEFICIENCIES
 TW
 KW
 SM
 WP
 SX
 DU

 AVG OF STANDARDS
 61.3 38.7 3 13.3 55.6 88

 MINOR FAULTING VALUES 59.1 36.6 8 12.5 52.6 78

 MAJOR FAULTING VALUES 58.2 33.6 13 11.5 51.6 73

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=MONTANA STATION=BOZEMAN NURSERY=UNIFORM

DEFICIENCIES KW SM WP SX DU	MJ	בי		Ë	H :	E FFFF	. мл
¥	-	-		-	2.	E EEEE	_
SCORE	-1 47 4	ነ () ፈ ፈ	ক ক ক ক ব	ਾ ਧਾ ਧਾ ਧਾ ਧਾ	' '	ক ক ক ক ক গে	ক ক N ক
MIXO	N 4 4	# N M =		ህ 4 60 60 4		មក្នុង ខាង	4 60 4 10
DUST	74 90 85	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 95 105	0 0 0 0 0 0 0 0 0 0 0 0 0	105 100 95 95	100 110 95 95 105	85 100 100
SEMO EXTR	60.2 57.8 56.7	58.9 55.8	58.1 59.9 59.1	57.9 59.0 58.9	56.9 58.4 58.1 58.6 57.2	55. 58.1 58.7 58.6 55.8	55.8 58.8 53.1 57.2
HARD	101	100 100 105	101 98 104 91	93 100 102 97	104 93 95 101	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	97 97 103 99
WHT			14.6 15.1 14.2	15.2 14.5 14.0	14.1 13.5 13.7	13.6 14.0 14.0 14.9	14.3 14.3 13.8
LG SM						14 20 25 30 12 4 4	
1000 K. WT	40.2		46640	4 4 5 5 5 4 4 4 5 5 5 5 6 4 4 5 5 5 5 5		40.7 40.3 40.5 37.5 5	39.8 42.9 41.8 42.9
TEST	62.7		61.5 61.9 62.1 61.2	60.9 61.6 62.2 61.9		60.2 62.5 61.0 61.5 61.6	61.2 61.8 62.4 62.7
		ល	លល				
VARIETY STD	LAKER LLOYD MEDODA	MEDUKA MINDUM MONROE RUGBY	OH <			D 8291 D 79168 D 79209 D 81151 D 81154 D 81183	D 82136 FA 883-323 NHD 81-466 NHD 81-485

DU 92 82 77

AVG OF STANDARDS 62.0 42.9 2 15.0 57.9 MINOR FAULTING VALUES 59.8 40.8 7 12.5 54.9 MAJOR FAULTING VALUES 58.9 37.8 12 11.5 53.9

3=SOME PROMISE, 4=GOOD PROMISE ***EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE,

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=MONTANA STATION=SIDNEY NURSERY=UNIFORM

DEFICIENCIES TW KW SM WP SX DU	IM	I W		IN IN IN IN IN	IM IM IM	UM CM	, ,
SCORE	ৰ ৰ ৰ N	। ব ব (4 4 4 4	ব () ব ব ব	ন ক ক ক ক	4 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	य य य य य य
MIXO	4 4 () ()	លេល។	п п п п	നനനനം	ស ០ ៣ 4 ០	८१ यः यः	4 6 4 6 10 6
DUST	100 95 90 85	9 6 9 9 8 8 8 8 8 8	100 100 90 100	998 998 100	80 100 95 100	80 80 80	99999999999999999999999999999999999999
SEMO	59.4 61.2 58.8 62.2	59.3 59.9	61.5 59.7 59.3 60.9	59.7 60.0 60.3 59.6	57.3 58.4 59.7 59.8	59.9 60.7 61.3	60.7 59.5 57.7 59.4 59.9 61.1
HARD	95 97 100 97	97 101 97	88 102 91 99	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 0 0 0 0 4 0 0 0 0	93 96 97	92 93 96 90
WHT PRO			6. 4. 6. 4.	14.1 14.0 14.0 13.5	2. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	14.3 15.0	14.1 14.3 14.6 15.1 13.8
LG SM	444 1 56 0 72 1	47 1 55 1 68 0	51 0 44 1 37 0 65 1		53 0 59 1 33 0 62 1		62 2 2 4 4 8 4 1 1 1 6 6 0 1 5 0 0
1000 K.WT	46.5 44.8 40.8			41.7 40.7 43.9 46.7			46.3 46.3 42.4 40.0 44.1 47.8
TEST	62.3 63.8 62.5 63.0	62.5 62.3 62.3	63.0 63.0 63.6 62.6	61.3 63.1 62.1 62.1	63.3 63.1 63.0 62.6	63.2 62.6 62.0	63.1 62.2 62.0 62.0 62.7 63.4
1 1 1		ß	ល ល				
VARIETY STD	LAKER LLOYD MEDORA MINDUM	MONROE RUGBY SCEPTRE	VIC WARD D 8012 D 8016		D 8261 D 8263 D 8269 D 8279		D 81154 D 81183 D 82136 FA 883-323 NHD 81-466 NHD 81-485

 DEFICIENCIES
 TW
 KW
 SM
 WP
 SX
 DU

 AVG OF STANDARDS
 63.1
 44.2
 1
 14.4
 60.4
 98

 MINOR FAULTING VALUES
 60.9
 42.1
 6
 12.5
 57.4
 88

 MAJOR FAULTING VALUES
 60.0
 39.1
 11
 11.5
 56.4
 83

DEFICIENCIES KW SM WP SX DU	IH	MI MJ						Ϊ	LM .
DEFICI TW KW SM	MJ MI MJ MI MI	IM UM	H F	Ę	Ψ	EE	I W I W I W I W I W I W I W I W I W I W	UE E E E	
SCORE	E 4	-1 4º 4	1 4 4 4	ক ক ক	य य ं	ব ব ব	ব ব ব ব	- 4 4 4 4 5	* - 4 - 4
MIXO	4 0 0	0.00	100	פיטא	0 4 1	s	ហេហល	ហហហហហ	വരാധതര
DUST	75 85 90	70	0 8 Q (8 9 0 0 0	85 80	8 8 5 5	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 8 8 5 5 0 9 5 5 5 0
SEMO	57.4 57.7 59.0	59.2	57.0	56.7 57.8 59.0	58.0	58.2 58.1 56.3	57.4 57.3 58.1 56.9	7.40 7.40 1.00 1.00 1.00	53.5 59.7 55.2 57.1
HARD	98 90 100	94	9 7 6 6	91 94	91	91 93 5	94 99 92	90 90 90 00 00 00	0 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6
WHT	14.1 15.0 14.4	12.3	14. 14.3 0 0 0 0	14.2 14.1 14.6	14.8 13.8	14.3 15.2 14.4	14.2 13.8 14.2	4. 6. 6. 6. 4. 6	11111111111111111111111111111111111111
LG SM	12 6 5 9 24 2			17 35 4 9 6			6 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0 15 0 15 12 7 1 16 10 5
1000 K. WT	31.8 29.8 35.1	29.2	32.3 37.9	32.6 34.5 33.6	31.7	33.0 31.4 31.0	30.5 31.1 32.4	28.5 30.8 33.0	25.0 33.9 27.4 32.5
TEST	56.8 55.4 61.3	59.4	58.7	60.3 58.7 59.0	59.4	58.7 58.4 59.4	57.7 57.5 57.3 57.8	56.1 58.2 59.0	56.8 56.8 56.0 56.0
VARIETY STD	LAKER LLOYD MEDORA	MINDUM MONROE	SCEPTRE S					D 8291 D 79168 D 79209 D 81151	D 81183 D 82136 F 883 NHD 81-466 NHD 81-485

***EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE DU 87 77 72 AVG OF STANDARDS 60.3 34.7 4 14.1 58.0 MINOR FAULTING VALUES 58.1 32.6 9 12.5 55.0 MAJOR FAULTING VALUES 57.2 29.6 14 11.5 54.0

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=TULELAKE NURSERY=WESTERN REGIONAL DURUM

1																																
1		DO		M.J													Ä	H	H				H			Ħ						T.
1	DEFICIENCIES	×		ΗI		Ä							Ä																	Ä	Ä	
-	ENC	¥ P		ΗI				HI										Ä														H
1	ici	S S																														
	DEF	X 3		MI					Ä							ΗH				H									H	Ï	Ä	
i		¥																	Ä													
1																																
	SCORE	*	4	-	4	7	4	ო	4	4	4	4	0	4	4	4,	7	-	-	4	4	4	0	4	4	8	4,	4	4	-	7	- 1
	MIXO	SCR	7	7	ო	7	4	ო	ო	9	60	7	7	ഗ	7	ო	ო	ო	ო	7	-	7	4	ო	ო	ო	7	4	73	4,	4	ო
	DUST	COLOR	80	9	80	80	80	85	75	75	75	85	85	80	80	75	20	20	20	75	75	75	70	80	80	20	80	80	80	75	75	65
	SEMO	EXTR	54.1	53.1	61.3	51.3	56.4	58.4	55.8	54.1	59.8	59.5	51.6	59.8	58.9	55. 1	56.2	60.2	58.7	57.9	57.7	57.2	55.6	59.3	57.2	54.9	56.2	56.6			50.0	
	HARD	NESS	111	101	108	109	111	104	108	110	106	109	110	110	102	98	102	110	100	100	107	105	106	102	105	108	97	108	105	108	112	06
	WHT	PRO	14.3	12.4		12.8				14.5	13, 3	13.3	14.0	13.4	14.9	12.6	13.1	12.4	13.5	14.0	13.4	13.1	13.1	13.0	13.1	12.9	13.1	13.1	13.3	14.0	13.4	
i		SM	-	0	-	-	-	7	0	0	-	٦	-	-	0	-	8	7	0	7	0	7	-	-	0	7	0	0	-	7	-	-
-	*	2	78	62	81	64	74	9	65	68	84	99	64	22	98	64	61	63	20	22	84	65	96	26	68	26	74	72	29	22	49	65
	1000	K. WT	48.3	43.3		44.6					51.8	47.1	45.5	44.6	55.6		45.0	45.0		43.5			55.2				48.8	•	•	•	43.9	•
	TEST	L	65.2		62.2	64.7	64.1		64.1		63.4		61.9	63.6	62.2	63.5	63.5	64.9	60.4	63.6	63.3		64.4	63.3			63.8	63.8	62.8	63.8	63.4	64.4
1			ល					ເນ	ທ																							
		VARIETY STD	ALDURA	CARC 'S'	DUROX	IRRIDUR	LAKER	LLOYD	MODOC	SIGNADUR	TURBO	VIC 1A	VIC 220	WAID	WPB 881	YAV 'S'	YAVAROS 79	Y G A 'S'	UC 499	nc 606	UC 640	UC 642	UC 647	Ŋ	9	14	15	16	17	18	19	20

DEFICIENCIES TW KW SM WP SX DU AVG OF STANDARDS 64.1 46.5 1 13.7 56.1 80 MINOR FAULTING VALUES 61.9 44.4 6 12.5 53.1 70 MAJOR FAULTING VALUES 61.0 41.4 11 11.5 52.1 65

***EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

TABLE 9

IES SX DU	Ę	Ë		אר אל אר או אר אר איני	<u> </u>
IENC	EΕ				
	DEE	Η	Ε Ε I Ε	H EE EE	1 H E
A.L					
SCORE	4 4	0 0 - 0 0 0		v cc cc	- m m m m - m n m m -
MIXO	имми	ღღო⊣ო 0	шииии ф т		n m m + N m m m
DUST	90 65 85 80	80 80 70 75 90 85	80 75 75 75 85	8 4 4 7 8 8 7 6 8 8 7 7 8 8 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 C B B B B B B B B B B B B B B B B B B
SEMO	54.0 60.6 50.6 58.8	62.2 59.2 56.9 60.1 57.8	58.4 57.7 59.5 59.2 64.2 60.0	56. 1 56. 3 56. 1 59. 9	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
HARD	111 99 110	102 98 83 99 102	106 106 97 99 105 104	104 104 108 108 106	94 103 106 100 112 101 96
WHT	12.9 11.1 10.9 12.7			11.3	11: 12: 10: 11: 11: 10: 10: 800 800 700
% SM			0 - 0 0 0 0 0		ហេហ
, 51 LG	26 69 77 70	80 77 49 67 87	74 73 73 73 81 81	71 71 71 72 73 74 75	24 69 69 78 78 78 78 78 72 72 72 72 72 72 72 72 72 72 72 72 73 74 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76
1000 K. WT			44.44.44.44.44.44.44.44.45.00.45.00.53.8	4 4 4 5 5 . 0 4 4 4 5 5 . 0 4 4 5 5 . 0 4 4 5 5 . 0 4 4 5 5 . 0 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
TEST	64.8 64.6 63.0 64.9			66.4.4 66.4.4 66.5.0 66.5.0 7	65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0
	ß	ល ល			
VARIETY STD	ALDURA CARC 'S' DUROX IRRIDUR	LAKER LLOYD MODOC SIGNADUR TURBO	VIC 220 WAID YAV 'S' YAVAROS 79 YGA 'S' WPB 881 D 79209	HD 810466 T8300136 T8300140 T8300147 T8300175 T8300179	

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=WASHINGTON STATION=WALLA WALLA NURSERY=WESTERN REGIONAL DURUM

		1 1 1	1 1 1							111111				1 - 1
	TEST		1000	×	_	WHT	HARD	SEMO	DUST	MIXO	SCORE	DEF1	DEFICIENCIES	ES
VARIETY STD	3	TW	K. WT	5 97	NS NS	PRO	NESS	EXTR	COLOR	SCR	*	TW KW	S AN MS	na x
ALDURA S	63.	4	46.7	72	0	12.8	114	56.7	85	7	4			
CARC 'S'	63.	8	44.4	74	0	11.6	66	57.3	65	7	7	Ħ	H	H
	62.	e		92	-		105	57.4	85	ന	ന		H	
IRRIDUR	63.	S	45.7	68	0		108	56.9	80	ന	4			
LAKER	64.	8		84	0		105	61.8	20	4	ო		H	
	63.	7	51.8	73	0	11.6	101	59.4	85	ന	ო		H	
MODOC	63.	4	44.1	99	-		90	57.8	65	ന	7	H	H	H
SIGNADUR	62.	6		92	0		102	56.6	90	7	4			
TURBO	64	۳.		81	-	12.1	106	59.9	90	4	ო		Ħ	
. VIC 1A	64.	9	_	20	0		102	61.1	90	က	ന		Ħ	
VIC 220	63.	0		68		13.2	104	56.9	80	ന	4	H		
WAID	63.	4	41.8	52			109	58.3	90	7	ო	CH		
YAV 'S'	64.	7	48.8	81		11.6	105		75	ന	ო		MI	
YAVAROS 79	64.	4	48.5	77			106	56.5	20	ന	ო		MI	
YGA 'S'	65.	0		75	-	11.9	109	61.9	75	ന	ო	H	MI	
WPB 881	63.	4	52.9	98	0	•	107	59.6	90	7	4			
D 79209	64	۳.		46	-		105	61.4	85	7	ო	H	Ħ	
HD 810466	63.	9	44.4	53		12.2	100	59,6	85	က	ო	H	Ï	
T8300136	62.	7	44.8	28	-	11.6	106	60.0	75	7	ო	H	Ï	
T8300138	62.	9	46.9	61		12.6	102	58.6	85	7	4			
T8300140	63.	4	47.1	99		12.1	108	59.5	85	က	ო		MI	
T8300147	63.	0	41.2	45			66	57.3	80	7	ო	CH.		
T8300175	63.	9	40.0	44	7	12.8	109	55.7	90	ന	ო	E		
T8300179	62.	9	40.0	32			110	55.2	90	ന	7	C W	Ï	
TL 730471	63.	8	46.9	69		12.4	98	57.5	65	က	7		H	Ï
UC 499	63.	0	47.6	92			101	61.8	85	ო	4			
nc 606	64.	9	46.7	71		13.0	106	58.8	80	7	4			
UC 640	63.	8	49.8	73	0		66	60.9	85	-	ო		Ä	
UC 642	64.6		49.3	68	-	12.5	100	60.9	. 85	7	ო		HI	
UC 647	63.	ດ		83	0		109	56.4	75	က	4			
DEFICIENCIES	A L	X		WP	XX	Da								
AVG OF STANDARDS	63.5	47.	2 0	ო	58.0	78								
MINOR FAULTING VALUES	ES 61.3	45.		12.5	55.0	68								
MAJOR FAULTING VALUES	ES 60.4	42.	10	s.	54.0	63								

CROP	LD PLOT
1986	NURSERY=FIELD PLOT
SAMPLES	
QUALITY DATA OF DURUM	STATION=MESA
/ DATA	
OUALIT)	STATE=ARIZONA

	ŧ	TEST	1000	SIZING	ING	WHT	WHT	HARD-	FALL	TOTL	SEHO	5	٠,	DUST	HIXO
ANTEIL SID	210		N.₩ G.	אַ	. ×	E ×	2 %	NE SS		4 %	4 ×	4	ב ה ה א	8	SCORE
ALDURA	S	63.7	50.3	75	-	1.55	14.1	112	400	76.3	59.9	7	0.62	06	٦
B 84-115B		62.5	50.8	4	8	1.72	14.1	101	400	76.4	61.1	13	0.72	85	ស
B 84-320		64.1	56.5	87	0	1.64	14.6	108	400	75.9	59.5	17	0.65	001 85	ო
W 423		63.0	54.6	83	-	1.67	14.0	98	400	77.4	60.8	40	0.71	85	9
W 584		63.7	51.3	79	-	1.48	13.6	95	400	78.0	62.2	10	0.63	100	ល
W 710		62.8	50.3	80	N	1.57	13.9	119	400	77.4	61.4	17	0.63	85	7
W 714		63.8	51.3	78	8	1.57	13.6	104	400	76.9	60.4	20	0.66	95	4
W 715		63.3	59.5	91	0	1.68	15.0	115	400	74.8	59, 2	23	0.66	75	7
W 742		62.8	57.8	77	-	1.66	14.1	114	400	76.6	61.7	27	0.69	85	ო
W 748		62.6	48.8	63	7	1.78	13.8	101	400	77.2	62.0	23	0.72	80	ო
W 770		64.3	53.8	80	N	1.59	13.3	101	400	75.7	59.2	11	0.61	20	4
W 798		62.8	51.0	78	-	1.80	14.7	103	400	76.3	59.6	37	0.74	90	ស

GUALITY DATA OF DURUH SAMPLES 1986 CROP STATE=ARIZONA STATION=MESA NURSERY=FIELD PLOT

VARIETY	STD	SENO PRO	VIS	C00K WT G.	FIRM- NESS	RES G.	SCORE	TW KW SM WP TX SX DU SK SP VI FR
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	! ! ! !	 	 	
\LDURA	ß	12.3	10.0	30.8	5.03	7.1	4	
3 84-115B		12.4	10.0	30.8	5, 59	6.7	4	
3 84-320		12.9	10.0	29.3	6.61	5.7	4	IN
V 423		12.6	10.0	29.8	6.42	6.9	ო	RJ.
1 1104		12,3	10.0	30.4	5.98	6.5	4	
V 710		12.3	10.0	30.8	5.44	6.3	4	IN
V 714		12.3	10.0	30.9	6.11	7.0	4	IN
W 715		13.4	9.5	30.9	6. 29	5.8	7	LM LM
1 742		12.7	10.0	29.4	6.67	6.7	ო	C.
1 748		12.2	9.5	30.1	7.21	6.7	7	CH IN
4 770		12.0	9.5	30.5	6.42	7.0	7	CM.
1 798		13.5	0.01	30, 1	5, 90	7.5	۳.	

DEFICIENCIES TW KW SH WP TX SX DU SK SP VI FR

AVG OF STANDARDS 63.7 50.3 1 14.1 76.3 59.9 90 7 12.3 10.0 5.03

HINOR FAULTING VALUES 61.5 48.2 6 12.5 73.8 56.9 80 17 11.5 9.0 3.53

MAJOR FAULTING VALUES 60.6 45.2 11 11.5 72.8 55.9 75 22 11.0 8.5 2.78

***ABORTON 1=NO PROMISE, Z=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

W/5

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY

VARIETY	TEST STD WT #/BU	1000 K. WT G.	SIZING LG SM	NG X	WHT ASH	WHT PRO	HARD-	FALL	TOTL EXTR %	SEMO EXTR	SPK	SEMO ASH %	DUST	MIXO
						: ! ! !	! ! !	 		 				! ! ! !
986 N.D. STANDARD	5 63.6	46.7	75	7	1.80	13.9	72	400	81.6	61.9	37	0.73	95	ស
99	63, 9	47.8	75	0	1.57		133	400	81.8	63.8	23	0°.0	70	ო
699-2	63.7	51.8	683	-	1.79	15.0	112	400	81.7	65.1	63	0.77	80	ღ
6-99-3	64.1	51.5	81	1	1,66	13.0	115	400	80.6	62.7	33	0.70	85	ღ
669-4	63.5	45.7	74	1	1.62	13.2	123	400	77.8	61.2	30	0.64	75	7
699-5	e,	45.7	74	-	1.66	12.5	108	400	78.8	9.09	27	0.66	20	7
9-669	63.6	47.1	4	0	1.58	13.6	107	400	77.1	58.8	27	0.65	82	ო
699-7	63.6	45.7	74	-	1.69	13.6	106	400	76.3	57.9	27	0.65	80	9
699-8	64.0	50.5	87	0	1.75	15.8	112	400	77.8	57.5		0.65	82	ო
6-669	62.8	47.4	75	-	1.70	14.0	117	400	76.5	58.1		0.65	20	ო
699-10	65.6	48.8	79	0	1.60	14.6	119	400	73.4	57.6		0.61	65	'n
699-11	64.7	47.8	74	0	1.61	12.7	109	400	76.7	59.6	33	0.62	70	ო
699-12		53, 5	80	-	1.63	13.1	110	400	76.8	60.0	30	0, 60	80	7
699-13		54.3	84	0	1.59	13.3	115	400	74.9	58.2	37	0.56	65	ო
699-14	65.3	55.9	95	0	1.58	12.6	104	400	77.1	60.4	27	0.59	65	7
699-15		48.1	71	0	1.52	12.6	111	400	78.4	60.8	37	0.61	75	7
699-16		57.3	90	0	1.65	13.2	103	400	78.2	60.9	50	0.67	85	7
699-17		54.6	90	0	1.63	12.7	114	400	80.8	62.5	23	0.65	90	ო
699-18		51.0	84	7	1.53	12.5	112	400	75.2	57.4	7	0.64	75	ო
699-19		51.5	83	0	1.58	14.1	105	400	76.5	52.7		0.58	95	7
699-20		61.3	88	-	1.53	12.0	105	400	77.7	61.0		0.62	80	ო
699-21			90	-	1.46	11.6	113	400	77.9	60,3	90	0.56	75	ო
699-22		51.3	83	-	1.60	13.4	114	400	76.8	58.2	37	0.58	95	7
699-23		52,6	85	0	1.68	13.8	118	400	76.0	56.5	43	0.61	90	ო
699-24		51.0	80	-	1.52	12.0	107	400	77.5	60.6	50	0.61	85	7
699-25		51.8	85	0	1.75	14.0	114	400	76.7	58.8	37	0.66	20	7
699-26		56.5	85	-	1.66	12.8	111	400	78.4	61.7		0, 68	90	ო
699-27		47.8	80	-	1.67	12.5	112	400	76.5	59.0		0.65	80	4
699-28		54.6	98	-	1.51	12.4	122	400	77.4	61.0		0.57	75	-
699-29		48.3	20	-	1.58	13.1	114	400	77.7	59.1	30	0.64	. 95	ო
699-30		56.2	84	0	1.66	12.9	114	400	77.8	61.5	30	0.65	95	-
699-31	4.		95	0	1.56	11.9	102	400	78.3	63.4	33	0.64	80	ო
99-	4.	51.8	83	0	1.56	12.7	118	400	75.6	60.2	33		90	ო
O	4.		83	0	1.68	13.6	112	400	77.0	57.8	27		75	4
-66	62.9	53, 5	83	-	1.79	13.1	109	400	78.1	60.8	37	0.65	90	ო
-66	4.		79	0	1.69	14.0	105	400	75.3	57.6	17		80	4

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY

TABLE 13 (Cont.)

VARIETY STD	TEST WT WT WT WE	1000 K.WT G.	SIZING LG SM		WHT ASH %	WHT PRO	HARD- NESS	FALL	TOTL EXTR %	SEMO EXTR	SPK	SEMO ASH %	DUST	MIXO
63.		16.7	75	0	1.80	13.9	72	400	81.6	61.9	37	0.73	95	ហ
64.		16.3	77	0	1.66	13.5	115	400	77.7	59.7	20	0.63	85	7
64.		53.2	86	0	1.74	13.9	114	400	77.0	57,6	30	99.0	85	ო
65.3		51.0	81	0	1.60	12.4	110	400	76.9	59, 1	7	0.63	95	ო
64.		14.4	20	-	1.69	12.2	110	400	75.5	57.7	9	0.67	95	ო
65.		53.8	81	0	1.63	12.8	111	400	75.3	58.2	20	0.65	90	ო
65.		52.6	87	0	1.65	11.8	112	400	74.8	57.7	37	0.63	85	ო
64.		50.8	82	0	1.71	11.9	114	400	75.2	56.9	30	0.64	95	٦
64.		48.8	98	0	1.80	13.9	115	400	76.3	57,3	47	0.69	75	ო
63.		14.2	65	-	1.63	13.1	111	400	74.6	55, 2	37	0.65	90	ო
63.		16.3	4	-	1.85	13.7	120	400	76.1		33	0.74	9 3	ო
64.		18.1	92	0	1.55	13.1	116	400	76.1	58.2	20	0.65	90	И
63.		46.5	71	т	1.65	13.4	115	400	82.9	57.6	23	0.62	90	ო
63.		15.5	73	0	1.62	13.0	117	400	78.0	59, 1	23	0.69	110	٦
65.		44.6	72	0	1.63	12.5	118	400	78.0	57.4	20	0.65	105	٦
63.		51.5	83	0	1.59	13.4	119	400	78.1	59.7	37	0.65	85	4

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY

														•			
	TW KW SM WP TX SX DU SK SP VI FR		DE.	LM LM	MI MI			MI MI	E	H	M	H	בא בא בא		MI MJ	æ	2
	SCORE ***	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1	=	1	-	٠ ج	7	-	7	7	-	7	-	۲,	≈ 4	~
	RES G.	6.5	6.1	6.8	6.9	7.1	7.0	7.4	7.5	6,5	6.5	6.7	6,3	6.0	7.2	6.8	6,6
1	FIRM- NESS	5.64	6.54	7.32	6.57	4,60	4.34	5.44	5.51	6.46	4.73	6.35	6.13	5, 59	6.70	5.88	5.00 00
	C00K WT G.	31.5	30.9	30.3	31.6	31.9	32.0	30.8	30.9	30.2	31.9	29.7	30.3	32.2	29, 4	31.3	31. 1
1	VIS	10.0	9 8	10.0	10.0	10.01	ი ა	10.01	10.0	10.0	9,5	9.5	9, S	10.0	9. S	დ დ	ທີ່
	SEMO PRO												11.0				
	IETY STD	1986 N. D. STANDARD S	699-1	699-2	€-669	669-4	2-669	9-669	2-669	. 8-669	6-669	699-10	699-11	699-12	699-13	699-14	699-15

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY

TABLE 13 (Cont.)

F.														H																						
l i														Ħ																						
ds.			H	Д		L'H	МJ	Ä		MJ		μJ	МJ	Ξ	MI		ПJ			Ħ		H		E	E E	I	МJ	Ä		MI		Ä			Ξ	MI
SS.																						Ä			MJ	H			HH							
-DEFICIENCIES WP TX SX DU SI		MI		Ä		Ω	MJ			H	H		HJ	щĵ			M		E.		MJ	H	H				H		ΗĴ							M
SX				MJ	МJ			Ä	MJ		MI								Ä		Σ		ΜŢ					MJ					МJ		Ä	
EFIC		MI		MJ	MJ	H.J	MJ	HJ	MJ	MJ	MJ	H	H		МJ	MJ		MJ	E	МJ	ΗJ	Ä				E	MJ	MJ	MJ	MJ	ΗĴ	MJ		MJ	MJ	MJ
1 1				MI		MI	MI			H			HΠ	H			MI							MI	M		H	MI							H	
SA																																				
X X																									MI					ΗI					H	
 																																				
. !																																				
SCORE	4	-	ო	-	т	п	7	-	-	-	~	-	т	-	-	7	-	7	1	-	-	-	-	-1	-	~	7	-	1	-	-	~ 4	7	7	7	-
RES G.		6.6			•			6.9														6.5			6,4						-	5.7				
FIRM- NESS	6.6	5.21	5.36						5.77			4.90						5.18				5.27									5.44	5.05	5.57			
1		9					9		ហ	-	ო	83	2	0															ო	0 3	σ	9				
COOK WT G.	31.	31.	31.	•	•	31.	•	31.	ë ë	33	32°	30.	è.	32.	30.	33.	31.	21.	31.	31.	29.	31.0	31.	35.	31.	è.	31.	34.	32.		è.	32.	32.		4.	'n
VIS	ó	10.0			٠		10.0	10.0			10.0	10.0	0.0	9,0	0.0	10.0	0.0	10.0	10.0	10.0	0.0	10.0	0.0				10.0	10.0	10.0		0.0	9. S	0.01	0.0	0.0	
% % % % % % % % % % % % % % % % % % %	1		7		6																	2						ო	-	ო			•		2	S
SEMO PRO	13,	1	11.	10.	11.	10.	10.	11.	11.	10.	12.	10.	10.	10.	11.	7	10.	11.	11.	11.	11.	11.	11.	11.	10°	10.	ď	10.	12.	11.	12.	11.	11.	11.	11.	11.
STD	G	1																																		
, i	ARD																																			
	Α																																			
	ST	i																																		
-VARIETY	ď																																			
À		-16	-17	-18	-19	-20	-21	-22	-23	-24	-25	-26	-27	-28	-29	-30	-31	-32	-33	-34	-35	-36	-37	-38	-39	-40	-41	-42	-43	-44	-45	-46	-47	-48	-49	-50
	ď	669	699-17	669	669	699-20	669	669	669	669	669	669	669	669	669	669	669	699-32	669	669	669	96-669	669	669	669	669	699-41	699-42	669	669	g	669	669	669	669	96

FR 5.64 4.14 3.39

SK SP V1 37 13.1 10.0 47 11.5 9.0 52 11.0 8.5

95 85 80

AVG OF STANDARDS

AVG OF STANDARDS

AVG OF STANDARDS

ALLO AG OF S

^{**}EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GGOD PROMISE

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY

4
٠
ā
4

	STD WT #/BU	K. WT	LG SM	S X	ASH %	PRO %	NESS	SEC	EXTR %	EXTR %	SPK	ASH %	COLOR	SCORE
1986 N.D. STANDARD S	63.6		75	N	1.80	13.9	72	400	81.6	61.9	37	0,73	95	ß
6011-1	64.9	56.8	90	0			109	400			27	-	20	N
6100-2			88	0	1.64	13.2	113	400	78.3		37	-	75	ო
6100-3		58,5	92	0	1.61	13.7	115	400	76.8	60.9	67	0.64	80	ო
6100-4			63	7	1.54	11.7	119	400	79, 1	60.7	27	0.65	75	ო
6100-5		57.1	87	0	1.61	12.5	119	400	79.6		53		100	ო
6100-6		52.9	90	0	1.62	۰	116	400	78.3	61.3	40		85	ო
6100-7		51.8	81	0	1.61	14.3	108	400	77.1		20		70	ო
6100-10		50,3	74	7	1.59	12.8	115	400	78.1	61.0	33		80	ល
6100-11	65.1	53.5	88	0	1.62		108	400	77.4	61.1	27	0.68	85	ო
6100-12	65.4	8	22	-	1.63		105	400	77.0	_	33		90	0
6100-13		55.2	98	0	1.63	13.3	103	400	77.8	60.9	9	0.63	75	-1
6100-15			80	7	1.66	12.2	110	400	74:5	57, 1	27		90	-
6100-16		55.2	90	0	1.79	14.0	115	400	76.9	60.1	47	0.72	80	ო
6100-17			69	0	1,69	13.4	118	400	76.0	59.1		0.67	85	8
6100-18		54.9	69	7	1,65	13.1	111	400	75, 5	58.1	37		80	8
6100-19		62.9	93	-	1.66	13.8	109	400	77.2	62.1		0.71	80	ល
6100-20		56.5	85	0	1.53	12, 1	114	400	76.8	9.09	40		80	4
6100-21	65.5	59, 9	68	0	1.42	12.4	112	400	78.0		37	0.57	75	8
6100-22		63, 7	96	0	1.65	13.8	114	400	77.9	62.5	27		80	4
6100-23	65.0	60, 2	90	т	1.68	13.5	120	400	78.8	61.7	30	0,72	75	ო
6100-25		55, 6	84	-	1.61	12.7	115	400	77.3	60.1	37		85	8
6100-27		49.5	22	0	1.68	12.6	114	400	77.0	58.1	47	0.67	85	7
6100-28		57.1	87	0	1.74	12,9	114	400	74.3	62.0	27		75	4
6100-29	64.8	55.2	87	0	1.68	13.7	108	400	78.4	62.0	17	0.69	75	-1
6100-30		51.8	85	0	1.60	ະສ.	109	400	77.5		27		75	-1
6100-31		46.1	72	0	1.53		111	400	77.9	57,5	10	0.63	80	0
6100-32		43,3	63	7	1.53		113	400	78.4		13		85	0
6100-33	-		76	0	1.62	13.2	109	400	78.1		23		95	ო
6100-35		ė.	73	-1	1.56	ŝ	109	400	79.7	62.3	10		80	ო
6100-36	63, 5	53, 2	87	0	1.65	13.5	116	400	79.2	58.4	50		75	0
6100-37	65.1	61.0	93	0	1,70	•	117	400	77.7	61.1	47		75	-1
6100~3 8			76	0	1.70		114	400	77.7	57.9	20		20	-
6100-39			67	-	1.67		104	400	77.3	58.4	10	0, 63	70	ო
6100-40		ကံ	84	0	1.62		117	400	76.8	59, 1	63		80	-1
6100-42	-		90	0	1,55	12.6	110	400	79.6	62.5	43		80	-
6100-43	-		7.1	-	1.52		105	400	77.7		27		95	п
6100-44			80	٦	1.52	12.7	119	400	59.3	63, 2	20	0,67	75	4
6100-45	64.4	54.6	83	-	1,59	13.4	119	400	79.8	62.7	30	0.66	70	ო
6100-46	64.1		88	-	1.70	12.3	114	400	79.2	62,3	10	0.69	65	4
6100-48	63.5	÷	82	٦	1,52	13.1	117	400	79.1	63.7	37	0,63	75	ო
6100-50		54.6	77	7	1.58		114	400	79.3	63.9	47		60	ო

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY

TABLE 14 (Cont.)

-VARTETY	st GTS	P P C	COL	100 100 100 100 100 100 100 100 100 100	EXEN EXEN	RES	3COKE	TW KW S	SM WP	ž	WP TX SX DU	ശേശ	X	P VI FR
	2	2 ×		6.]	: O :			ı			, ;	1	•
DARGNATA O N SAPI	ŭ	ر. -	0		ر 4	ינ	4							
))			33.2	1	6.4	٠ -			E	Σ	ר	Ξ	_
6100-2	11	•		+		6.4	н			H	Ξ	MJ	MI	_
6100-3	11	•	10.0	•	9	S. B	т			E	Σ	Ξ	רי	
6100-4	10	•	10.0	-			т		H	MI	Ξ	ר	Σ	ח
6100-5	11	•		1,		5,9	f		MI			Ξ	JMI	h-u4
6100-6	11			31.6			T			H	Σ	HI		
6100-7	12			31.4		•	п			E	E	Σ	н	
6100-10	11	0:1	10.0	31.1		-	ī			H	Σ	MJ	Ξ	_
6100-11	11	•		32.4		5,6	г			H	Σ	H	Ξ	_
6100-12	7	0.5		32, 1		6.4	-		MI	HJ			E	_
6100-13	11			31.7		6.4	-			H	Ξ	E D	E	_
6100-15	10			32.4		5,2	-		MI	Ľ	ΩÜ		Ξ	-
6100-16	12		۰	31.5			7			H	Ξ	E D	H	
6100-17	11		10.0	31,4		e, 3	ન			H	Σ	MI		
6100-18	13			31.9		۰	-1			E	MIM	MJ	Ξ	_
6100-19	12		10.0	32.8			-			μ	Σ	D H		
6100-20	7	9.0		33.5			-		ĬΨ	μ	Σ	MJ	r	_
6100-21	7		10.0	31.9		7.6	т		MI	Σ	MJM	MJ	Ä	-
6100-22	11	•		32.2			п			H	Ξ	חת		
6100-23	11	۰		1.		•	п			MI	Σ	υĽ		
6100-25	11	•	10.0	32.8			п			MJ			E	ם
.27				33, 2			ศ			E	MIM	Ξ	H	ה
6100-28	11	r.	ó	31.7		6.8	т			M	Σ	МJ	Ξ	H
6100-29	7	۰	å	32, 5		-	-			H	E	רי		
6100-30	11	7	ó				7			E		רי		
6100-31	7		ċ	่ก่		6.7	-1	1	Σ	E		Ξ:	E :	
6100-32	7	10.4	o o		6.57	6.0	٦,	Ħ H	Σ		E IE	H	T :	- .
6100-33	7;		င်	i e		•	٠, ٠			Ē		,	E 3	
6100-33 6100-36	7 -	- u		24.0		ם נ	٠,				Z 2) F	Ž	
6100-32	-						- ۱			Σ		Σ		
6100-38	-						- ۱			Σ	E E	:	Σ	-
6100-39	: -		i				- ۱	¥	F	Σ		- E	Σ	
6100 33 6100-40	1 -		; c	•			1 ~	:	:	Σ.		E E		
100-40				; -			4 -			:	: Σ			
2100-42	, .		i c						7	2	:	,	2	, -
	, . T		;				٠.		1 1	2 2	2		ź	
6100-44	7 .	•		; .	ه د		٠.			2	= >	֓֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֡֓֜֝֓֓֓֡֓֡֓֡֡֡֡֡֓֡֓֡֓֡֡֡֡֡֡֡		
6100-43	7		•	÷	٥		٦				Ε, :	י ר		
6100-46	11		9. S	•	4		٦.		H	:	E :	T :	É	ר
6100-48		۰		÷			-1			H	Ξ			
((•				2	Σ	2	- 7

FR 5.64 4.14 3.39 SK SP VI 37 13.1 10.0 47 11.5 9.0 52 11.0 8.5 95 85 80 AVG OF STANDARDS

AVG OF STANDARDS

AVG OF STANDARDS

AND OF STAND

STATE TES: TTY STD WT TES: TY STD WT STANDARD S 63. 62. 62. 62. 64. 64. 64. 64. 64. 64. 64. 64. 64. 64	QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY	1	S 63.6 46.7 75 2 . 13.9 72 400 81.6 61.9 37 0.73 95	0 45,7 46 1 1,55 12,9 115 400 78.8 62.8 13 0.71 85	1 50.0 77 1 1.50 13.7 123 400 79.5 62.4 40 0.68 70	2 43.7 58 2 1.59 13.5 115 400 81.5 65.7 23 0.72 70	6 48.8 67 1 1.49 12.8 120 400 77.5 61.9 27 0.67 70	2 51.3 75 1 1.75 13.1 122 400 78.8 62.4 40 0.76	8 49.0 73 1 1.67 14.0 113 400 78.4 59.7 17 0.71 70	4 53.2 75 2 1.65 13.3 131 400 78.3 60.4 17 0.70 70	4 40.8 57 2 1.67 14.1 104 400 79.1 59.2 13 0.71 75	2 42.4 54 2 1.59 12.2 105 400 80.7 61.6 10 0.63 75	1 42.7 63 2 1.66 12.4 107 400 78.4 60.6 17 0.67 75	4 47.1 81 1 1.55 12.1 100 400 77.9 60.4 17 0.58 75	4 40.0 40 3 1.58 12.0 98 400 78.5 58.2 10	8 46.1 59 2 1.63 11.9 97 400 78.4 60.0 3 0.66 70	5 40.2 42 2 1.53 13.1 107 400 79.1 58.3 13 0.64	6 35.5 39 3 1.58 12.7 105 400 79.5 57.9 13 0.66	6 40.0 55 2 1.59 13.2 111 400 78.7 57.7 13 0.69	5 42.7 70 1 1.64 14.2 107 400 78.4 58.0 7	2 43.3 63 1 1.64 13.5 104 400 78.3 59.8 0 0.67	9 41.8 49 1 1.73 13.8 102 400 77.4 57.7 3 0.68	3 41.0 60 2 1.58 14.4 107 400 77.6 55.8 13
	ы	ST T BU	9	0	-	01	o c	1 (80	4	ঝ	N	-	4,	4	89	S	9	9	S	N	6	3 41.

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=PRELIMINARY

TABLE 15 (Cont.)

TW KW SM WP TX SX DU SK SP VI FR	MI M
SCORE ***	
RES G.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
FIRM- NESS	6. 01 6 16 16 16 16 16 16 16 16 16 16 16 16
COOK WT G.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VIS	
SEMO PRO	
STD	1986 N. D. STANDARD S 6101-2 6101-3 6101-7 6101-9 6101-11 6101-12 6101-19 6101-20 6101-21 6101-24 6101-25 6101-25 6101-27 6101-27 6101-31 6101-31

**EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

5.64 4.14 3.39

SK SP VI 37 13.1 10.0 3 47 11.5 9.0 52 11.0 8.5

DU 95 85 80

AVG OF STANDARDS

AVG OF STANDARDS

ANG OF STAND

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=ADVANCED

VARIETY		TEST	1000	SIZI	NG.	WHT	WHT	HARD-	FALL	TOTL	SEMO		SEMO	DUST	MIXO
	- STD	46	K. WT G.	LG SM	ig %	ASH %	PRO %	NESS	SEC	EXTR %	EXTR %	SPK	ASH %	COLOR	SCORE
 1	 	 	1	 	! ! !	 	 	 	1	 	! ! ! !	 	 	 	! ! !
ALDURA	ល	65.0	48.8	78	0	1.54	11.8	66	400	78.9	61.8	90	0.61	92	4
FRIGATE 'S'		65.5		79	7	1.52	12.9	92	400	78.6	61.6	47	0.59	90	4,
GEDIZ 1		65.2	51.0	79	1	1,55	12.0	98	400	78.1	61.4	93	0.56	90	ო
MEXICALI	ຜ	64.3		86	0	1.58	12.4	96	400	78.0	63.0	47	0.68	85	7
MODOC			48.1	75	-	1.69	13.2	100	400	76.2	58.8	67	09.0	85	9
ROKEL 'S'			50.0	82	0	1.49	11.8	100	400	77.6	62.4	22	0.61	95	9
STIFFTAIL 3			57.8	90	т	1.44	12.4	94	400	77.7	63.6	66	0.53	85	ო
STIFFTAIL 4		65,8	58.8	93	0	1.45	12.8	104	400	79.1	64.5	63	0.60	80	7
WAHA 'S'		62, 9	51.8	83	0	1,54	12,7	106	400	78.4	61.9	27	0.65	90	ო
WESTBRED TURBO			57.3	89	0	1.48	12.2	116	400	77.7	60.5	33	0.61	82	ល
WESTBRED 881	ហ	64.0	54.6	90	0	1.69	14,3	117	400	76.0	59.7	30	0.62	92	89
YAVAROS		66.4	55, 6	82	T	1.52	12.4	91	400	77.5	61.5	9	0.55	80	4
CD 25126		66.3	45.5	80	0	1.54	12.1	109	400	77.7	61.3	67	0.62	95	7
L-0162		65.7	54.3	98	0	1.53	12.0	103	400	78.6	63.0	67	0.59	65	7
P883-2		62.9	49.0	80	0	1.49	13.7	101	400	77.4	60.5	53	0.61	100	89
P883-15		63.3	57.1	92	0	1.69	14.0	93	400	79.0	62.1	20	0.76	90	69
P884-32		65.3	49.8	78	0	1.74	12.5	93	400	77.7	61.4	23	0.67	95	9
UC 640		64.9	54.9	88	0	1.50	13.2	106	400	77.7	62.3	47	0.65	90	7
UC 707		65.3	48.1	78	0	1.62	12.8	118	400	77.0	60.2	30	0.58	75	9
UC 708		64.9	45.7	70	1	1.60	13.7	110	400	76.7	59.9	57	0.63	85	7
UC 709		65.2	43.9	72	0	1.66	13,3	117	400	77.1	59.9	9	99.0	82	4,
		65, 1	44.2	61	т	1.64	13.1	107	400	74.1	58.0	66	0.64	95	ო
		65.2	46.9	92	т	1.68	12.6	92	400	76.0	59.1	80	0.61	105	7
UC 712		64.9	56.5	91	0	1.55	13.2	106	400	77.3	61.1	9	0.00	100	ø
C 713		65.3	50.0	92	п	1.63	13.0	102	400	76.7	60.4	63	0.64	95	ល
UC 714		67.0	50.3	83	0	1.53	11.2	102	400	76.9	61.8	40	0,60	85	4,

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=ADVANCED

TABLE 16 (Cont.)

DEFICIENCIES	IM CM	DM DM		MJ MJ	Ä	MI MI MI		υ		MI MJ	LM IM	MJ MI MJ MI		IM	IΨ		IM			MJ MI MJ	MJ MJ		MI	ΩN			
	Η	H :	H	H	HI			MI		Ħ	H	H			MI					Ξ				ĽΨ	ፍ	5.21 3.71	2.96
TW KW SM	ΗH		MI	H							E		H		H		MI	Ä	MJ	MJ	Ω		M	H		11.5 9.3 11.5 8.3	7.
;																										56 11 66 11	
SCORE	-1 4		ে ধ	·	-	-	ず	-	4	-	-	-	4	4,	N	4	~	ო	ო	-	-	4	ო	-		92	
RES G.	7.3																		7.1			6.7			×	61.5 58.5	57.5
FIRM-	4.38 4.49	4.17	5.31 9.98	5.12	4.00	5.57	4.45	4.62	5.94	5.31	5.55	3.89	6.57	5.72	5.14	4.43	4.77	3.87	4.47	5, 25		5.31		4.77	Ϋ́		74.1
C00K €1	30.8 31.0	31.6	30.5	31.1	32.3	30.1	31.6	31.6	31.2	30.4	31.4	32.5	29.6	31.8	32.2	33.1	30.6		32.1			31.3	31.8	32.1		0 12.8 5 12.5	11.
VIS	ດ ດ ດີ																									52.7 50.6	
SEMO PRO	- 1 0				σ																	7	11.5	4			
VARIETY STD	LDURA RIGATE 'S'		MEXICALI S	ROKEL 'S'	STIFFTAIL 3	STIFFTAIL 4	WAHA 'S'	WESTBRED TURBO	WESTBRED 881 S	YAVAROS	CD 25126	L-0162	P883-2	P883-15	P884-32	UC 640	UC 707	UC 708	UC 709	UC 710	UC 711	UC 712	UC 713	UC 714	DEFICIENCIES	AVG OF STANDARDS MINOR FAULTING VALUES	MAJOR FAULTING VALUES

		OO	QUALITY	DATA OF	DURUM	DURUM SAMPLES		1986 CROP	ROP					
TABLE 17	STATE=	TE=CALIFORNIA		STATION=IMPERIAL VALLEY	=IMPER	TAL VAL		NURSERY=ADVANCED	=ADVAN(CED				
VARIETY-	STD	TEST	1000 K. WT	SIZING LG SM	WHT	WHT	HARD-	FALL	TOTL	SEMO	SPK	SEMO	DUST	MIX
	1	#/BU	6.	- 1	-	 	1	SEC	%	*		×		
AT.DURA	ď	65.2	49.0	76 0	1,60	13, 4	108	400	77.1	59,5	57	0.58	06	ന
ALTAR				84 1	1.56	12.8	105	400	77.3	59.9		0.56	85	ഗ
GEM		66.1	59.2	1 68	1.46	12.7	115	400	76.7	. 2.09	33	0.52	20	7
MEXICALI 75	ຜ	64.1	59, 2	87 1	1.52	13.7	109	400	78.1	61.7		0.58	80	9
WESTBRED TURBO	0	65.4	56.5	89 1	1.41	13, 3	107	400	75.5	58.7		0.53	82	ഗ
WESTBRED 881	ល	64.2	56.2	89 0	1.58	15.1	100	400	75.1	59, 1		0.60	92	33
YAVAROS		9.99	58.1	88 1	1,39	12.5	92	400	77.7	60.8	13	0.54	20	ന
D 46		65, 4	49.8	82 2	1.65	13.6	107	400	77.6	61.4		0.66	82	7
P883-2		64.5	48.3	77 1	1,65	14.9	102	400	76.3	59.1		0.60	92	9
P883-15		62.7	55.9	0 68	1.77	15.1	103	400	77.0	58.7		0.70	90	7
		64.4	55.2	85 1	1,48	13.1	110	400	77.3	61.9		0.60	80	9
UC 496		66.7	56.5	86 1	1.53	12.7	105	400	77.4	60.4		0.54	75	7
UC 499		64.9	51.8	83 2	1.52	13,4	101	400	77.2	61.3		0.56	82	4
OC 606		65.6	51.0	81 1	1,59	14.3	113	400	27.6	60.8		0.60	80	m
		65.5	56.5	99	1.60	14.1	106	400	77.1	61.0		0, 60	82	7
UC 642		64.7	52.1	81 1	1.58	13.7	105	400	76.2	58.2		0.53	82	0
UC 646		65, 2	9.09	91 1	1.50	14.1	107	400	76.8	59, 4	23	0.53	80	7
UC 647		65.8	61.7	93 0	1.46	14.0	113	400	77.8	59.8		0.57	75	4,
UC 685		65.1	56.2	86 0	1.51	13.7	115	400	77.6	60.1		0.58	65	7
UC 686		66.2	45.7	80 0	1.45	13.3	109	400	77.7	61.1		0.57	92	ស
UC 714		65.4	52.6	86 0	1,54	13.7	110	400	9.92	57.8		0.54	75	4,
£ (C)		66.99	54,3	86 1	1.55	13.1	112	400	9.92	62.1		0.59	80	4
₩ 583		63.9	49.8	77 2	1.50	14.2	110	400	76.5	60.1	22	0.58	100	ന
W 595		65.7	59.5	0 68	1.55	14.0	109	400	76.2	60.2		0.58	75	m

1986 CROP NURSERY=ADVANCED

QUALITY DATA OF DURUM SAMPLES STATE=CALIFORNIA STATION=IMPERIAL VALLEY TABLE 17 (Cont.)

I E	I
SP VI	H H H H H H H H H H H H H H H H H H H
SK S	
CIE	
CIEN	
DEFIC	
SM WP	E I
TW KW SM WP TX SX DU SK S	
3	
SCORE	
RES G.	auaaaaaaaaaa, aaaaaaaaaaaa
FIRM- NESS	0 4 4 8 9 1 4 9 0 0 4 4 8 9 9 4 4 8 9 7 4 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
C00K &T G.	00000000000000000000000000000000000000
VIS	α
SEMO PRO %	
STD	വ വ
, , , , , , , , , , , , , , , , , , ,	75 TURBO 881
RIET	400
VARIETY	ALDURA ALTAR GEM GEM MEXICALI WESTBRED WESTBRED VAVAROS D0 46 P883-15 UC 499 UC 499 UC 640 UC 640 UC 640 UC 640 UC 685 UC 685 UC 685 W 683
	ALDURA ALTAR GEM MEXICALI WESTBRED VAVAROS D 46 UC 169 UC 499 UC 640 UC 640 UC 640 UC 642 UC 642 UC 648 UC 648 UC 685 UC 685 UC 685 UC 685 UC 685 UC 685

^{4.74} VI 9.3 8.3 7.8 SK SP 34 12.3 44 11.5 49 11.0 DU 88 78 73 AVG OF STANDARDS 64.5 54.8 O 14.1 76.8 60.1 MINOR FAULTING VALUES 62.3 52.7 S 12.5 74.3 57.1 MAJOR FAULTING VALUES 61.4 49.7 10 11.5 73.3 56.1

^{**}EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GGOD PROMISE

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=ADVANCED

TABLE 18															
VARIETY	А		1000 K. WT G.	SIZING LG SM	SM SM %	WHT ASH %	WHT PRO	HARD-	FALL NO SEC	TOTL EXTR	SEMO EXTR	SPK	SEMO ASH %	DUST	MIXO SCORE
	1		 	1			 	1	 						
ALDURA		65.0	51.0	81	-1	1.63		126	400			20		90	Ŋ
MEXICALI	ທ	64.4	58.1	98	ન	1,55	12.8	108	400	78.3	62.5	23		80	ល
MODOC		64.4	47.1	92	ო	1.64	۰	118	400	78.7	57.3	10		80	ო
WESTBRED 881	ß	64.1	56.2	88	7	1.57	14.2	115	400		58.2	27	0.62	90	ល
YAVAROS		66.1		68	7	1.47		108	400	77.2	60.8	37		20	8
520/2			53.2	80	7	1.62	13, 5	116	400	78.6	60.8	30		75	ღ
520/3		66.0	57, 1	68	7	1.64	14,1	114	400	78.0	60.6	40	0.65	65	ღ
520/6				80	-1	1.61	13,4	110	400	78.4	60.3	17	0.62	85	8
520/9			48.3	74	N	1.60	12.6	102	400	77.7	60.8	13		85	8
520/18			.50.0	75	7	1.68	12.8	107	400.	78.9	62.6	43	0.65	75	4,
520/19		•	52, 9	87	0	1.47	12.7	106	400	77.2	60.8	10	0.64	60	ო
520/28			49.3	83	-	1.60	13,8	112	400	77.3	59.4	57	0.63	85	ო
520/29			44.1	72	-1	1.70	13, 9	104	400	75.8	56.9	37	0.61	06	ო
520/32			45.2	74	Ŋ	1.72	14.0	111	400	75.2	56.3	23	0.62	95	ო
520/36		65.8	53.8	84	-1	1.55	12.8	105	400	77.9	61.5	23	0.67	90	8
520/43			50.0	81	ო	1.66	14.4	115	400	76.9	59,6	53	0.65	95	И
520/46			45.7	75	4	1.63	13.9	114	400	75.6	58.5	13	0,60	95	7
520/51			46.5	78	N	1.63	13.4	102	400	75.0	57.7	53	0, 60	95	7
520/53			43.9	71	Ŋ	1.65	14.0	111	400	75.7	58.1	27	0.63	80	7
520/55		64.9	49.8	83	٦	1.66	14.0	110	400	76.9	61,3	23	0.64	80	ო
520/62			52.9	86	Ŋ	1,59	13,4	100	400	78.9	63.0	43	0.66	85	ო
521/4		65.6	51.0	84	N	1.68	14.0	116	400	75.8	59.0	27	0.60	80	4,
521/8			42.0	62	ო	1.68	12,7	107	400	77,6	60.0	27		65	7
521/13		65.0	45.7	72	7	1.66		100	400	26. 0		10	0,59	75	8
522/1				78	7	1.61	0	95	400	76.9	60. в	13		80	7
522/6		_	50.8	84	7	1,58		87	400	75.6	59,8	73		20	ო
522/17		64.6	51,5	81	-	1.63	13.8	107	400			23	0, 60	90	7
522/27		_	43.9	63	N	1.73	14.0	114	400	77.3	60.0	30		80	-
522/38		_	49.0	67	7	1.60	12.1	105	400	76.9	59.8	17		75	-
524/24		-	42.6	22	Ŋ	1.64	12,7	104	400	76.8	59,9	23	0, 60	90	8
524/26		62.9	55.6	84	-	1.64	13.7	119	400	_	59.5	70	0.57	85	ო
524/39			48.1	77	0	1.69	13.8	108	400		٥	27	0.63	95	7
524/55			52, 1	76	-	1.67	13,4	108	400	78.0	61.9	22		85	ღ
524/87			57.1	88	N	1,75	14.1	98	400	75.9	59.9	90	9	85	7
572/24		0.99	52.1	82	7	1.77	13.0	111	400			30	0.62	75	ღ
572/27			50.8	82	7	1.66	12.7	104	400	78.0	62. g	27	0.61	80	ব

	STATI	S=CAL.	QUALITY STATE=CALIFORNIA	54	A OF D	URUM S	QUALITY DATA OF DURUM SAMPLES FORNIA STATION=IMPERIAL VALLEY	1986 CROP NURSERY=ADVANCED	
FABLE 18 (Cont.)									
VARIETY	STD	SEMO PRO	VIS	COOK WT G.	FIRM- NESS	RES G.	SCORE ***	TW KW SM WP TX SX DU SK SP VI FR	K SP VI FR
1 1 1 1 1 1 1 1 1 1 1 1 1		! !	 	 	i I i i				
DURA	ល	12.2	12.2 10.0		4.64	7.7	4	IW	
CXICALI	ß	11.4	10.0		5.55	7.6	ო		MI
DOC		10.9	9, 53		5.36	7.6	-	Ľ₩	L'M
STBRED 881	ល	12.4	10.0		5.90	7.8	4		
VAROS		11.4	9.0	31.3	5.10	7.8	٦	M DM	MI MI MI
20/2		11.8	10.0		5,44	7.3	7	IM	
5/03		12.2	9.S		5.68	6.9	-	LM LM	7
50/6		12.1	10.0		5, 25	6.7	41	IM	
6/0		11.2	10.0		5.90	7.9	7	רב	MI
0/18		11.2	9. S		6.00	7.2	٦		JMI
91/19		11.4	9.5		5.59	8.1	=	MI MJ	MI
20/28		12.0	10.0		5.66	7.4	7	Ж	ח
97/29		12.3	10.0		5.92	7.0	7	IM IM CM	н
20/32		12.2	10.0		6.00	7.3	7	M	ר
00/36		11, 1	10.0		5, 96	7,3	ന		HE

AARIETY STD PRO X ALI ALI S 11.4 1 10.9 0S RED 881 S 12.2 1 11.8 1 11.2 1 12.2 1 2 12.2 1 2 12.2 1 3 12.2 1	VIS COL 10.0 10.0 10.0 10.0 10.0 10.0 10.0	©00K G.T G.T G.T G.T G.T G.T G.T G.T	NEIRM - 44 - 44 - 44 - 44 - 44 - 77 - 44 - 77 - 44 - 77 - 44 - 77 - 44 - 77 - 44 - 77 - 45 - 66 - 67 - 67 - 67 - 67 - 67 - 67 - 6	й ·	80 * 40 - 4 - 0 - 4 (FICIEN TX SX	CIES	SP VI FR
ED 881 S 11:2 S 10:9 S 12:4 10:9 11:4 11:8 11:2 12:2 12:2 12:2 12:2 12:2 12:2	000000000000	5 4 8 7 8 8 9 8 9 8 9 7 8	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ጥሮብ ጥ ብ (V ብ ጭ)	IM M.			
ED 881 S 110.4 S 110.4	000000000000	N 4 8 7 8 8 9 9 9 7 7 8 9 9 9 7 7 8 9 9 9 9	4 5 5 6 6 7 7 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9		ਰਹਿਜਿਰਜ਼ਨ।ਜਿਥਾ।	I E II			
ED 8811 S 10.9 9 11.8 S 10.9 9 11.8 S 12.2 S	0 11 0 0 0 0 11 0 0 11 0 0 0 11 0 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 0 0 11 0 0 0 0 11 0 0 0 0 11 0	4 8 7 8 8 9 8 9 8 7 8 7	0 0 0 4 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ମ ନ ଫ ନ ଠା ନ ଫ ।	L H			
ED 881 S 10.9 11.4 4 11.8 8 11.2 2 11.2 2 11.1 11.2 2 11.2 2 11.2 2 11.2 2 11.2 2 11.2 2 11.2 2 11.2 2 11.2 2 11.2 2 11.2 2 11.3 8 8 11.3 2 2 11.3 2 2 11.3 2 2 11.3 2 2 11.3 2 2 11.3 2 2 11.3 2 2 11.3 2 2 11.3 2 2 11.3 2 2 1 11.3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nooonoonno	0700000000	336 900 110 900 900		ㅋ 작ㅋ Nㅋ 작 !	Č IN			MI
ED 8811 S 112.4 111.6 B 112.2 C 112.2	000000000	~ m m u u u n ~ ~ ~	90 110 688 90 000		なっこしょ (n I			MJ
2	00000000	07000000	10 68 68 68 00 00 00		- C - 4 1	H			
11 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0 0 0 0	2729666	4 8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		N → 4 (I		MJ MI	MI MI
	000000	2 2 2 2 2 2 2	68 25 00 00		न वा ।	ΙW		MI	
	00000	0 0 0 0 0	25 90 00		41	IW		MJ MJ	
	0000	00170	060		•				
	ທທວ	0 7 0	000		7	MJ			MI
11 12 13 13 14 15 16 16 17 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	w 0	2 2	(п	MI		MI MJ	MI
12.00	0	7	U U		7	ΙŒ		МJ	MI
10.000000000000000000000000000000000000			99		0	MJ		Ω'n	
12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	0	N	92		7	J.M.J	H	M	
11.12.2.2.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2	0	7	00		7	MJ	H	H.J.	
12. 7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	0	ო	96		ო				MI
12.1 11.2.2 12.2.2 12.2.2 12.1.1 10.5	0	4	21		ო	MI		MJ	
11,8 12.2 12.2 12.2 12.1 12.1 11.1	0	9	24		ო	DM.			
12.2	0	e	13		1	J.M.	MI	H	
12.2	ທ	-	59		ო	MJ			
12.2	0		92		ო	J.M.			
12.1	0	7	22		ღ	MI		MJ	
11.1	ın	-	36		4	MI			
12.5	ល	-	41		-	E		D E	MI MJ
10.1	0		86		7			H	
	0	4			-	M W			T.W.
11.8	ល	7	97		7	H H		MJ MJ	
0	0	٦.			4,	IW			
12.5	ហ	7			ო	ДЩ	٠		
ო	0	9	21		п	IM CM		MI	ДЩ
ო	0	ღ	14		7	ΩM			MI
σ	0	_	00		4.				
ď	0		29		ო	M.J.			
Ð		7			ო	MI		M	
-	ທ	о. в	40		4				
11.2	0	s	62	₽.	п	MI		Ä	MI
N		1.3	.75		ღ	IM			M3

FR 5.36 3.86 3.11 SK SP VI 23 12.0 10.0 33 11.5 9.0 38 11.0 8.5 bu 87 77 72
 DEFICIENCIES
 TW
 KW
 SM
 WP
 TX
 SX

 AVG OF STANDARDS
 64.5
 55.1
 1 13.5
 77.7
 60.3

 MINOR FAULTING VALUES
 62.3
 53.0
 6 12.5
 75.2
 57.3

 MAJOR FAULTING VALUES
 61.4
 50.0
 11 11.5
 74.2
 56.3

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=KINGS CO. NURSERY=ADVANCED

	STD	TEST WT #/BU	1000 K.WT G.	SIZING LG SM	SN X	WHT ASH %	WHT PRO	HARD-	FALL NO SEC	TOTL EXTR %	SEMO EXTR	SPK	SEMO ASH %	DUST	MIXO SCORE
] 		 	 	 	1 1 1 1	 	 	 	 	 	 		 	
ALDURA	ໜ	62.9	49.0	72	0	1,53	13, 5	125	400	78.0	60, 5	40	0.63	100	ល
ALTAR 84		64.5	44.1	72	N	1.53	12.0	118	400	78.6	61.9	43	0.67	85	7
FRIGATE 'S'		62.8	45,5	99	7	1.55	13.8	125	400	77.6	60.2	20	0.63	90	4
GEDIZ 1		63. B	51,8	22	N	1,41	12.5	123	400	76.4	59.1	43	0, 56	90	ស
MEXICALI	ທ	62, 1	50.5	77	7	1.57	12.6	131	400	76.7	60.8	20	0.70	90	7
MODOC		64.2	47,1	74	-	1.53	13.6	135	400	74.4	26.7	47	0.65	90	7
ROKEL 'S'		62.2	42.6	99	7	1.53	12.6	123	400	76.3	59.4	20	0.68	95	9
STIFFTAIL 3		62.5	56.8	88	-	1.49	14.1	127	400	76.5	58.8	43	0.64	90	ល
STIFFTAIL 4		63.1	55, 6	86	7	1.50	14.0	127	400	76.8	60.5	20	0.66	80	8
WAHA 'S'		63.7	48.3	74	0	1.44	12.9	118	400	77.2	60.2	27	0.68	90	9
WESTBRED TURBO		63.2	51.0	82	0	1.41	12.8	121	400	76.4	59.3	37	0.56	90	7
WESTBRED 881	ល	63.2	56.8	90	0	1.48	13.6	126	400	75.3	58.7	37	0,64	95	89
YAVAROS		64,5	54,3	81	7	1.44	12.7	137	400	77.2	60.7	47	0,60	85	ស
CD 25126		64.4	46.3	81	7	1.50	13.0	119	400	77.0	59.1	47	0.63	100	8
L-0162		62.5	49.0	67	7	1.54	13.7	113	400	78.5	62.1	22	0.67	20	ო
P883-2		62.8	50.3	83	T	1.64	14.7	123	400	77.6	58.7	43	0.73	95	83
P883-15		61.6	57.1	90	7	1.71	14.3	114	400	78.3	60.2	22	0.73	90	7
P884-32		63.0	44.4	58	~	1,66	13.0	117	400	78.2	61.0	40	0.67	100	7
UC 640		62.4	56.8	88	0	1.65	14.6	131	400	77.7	60.3	37	0.67	95	ო
UC 707		64.1	49.3	74	~	1.59	13.0	125	400	77.0	59.4	27	0.61	75	7
UC 708		62,3	42.6	20	7	1.62	13.7	130	400	77.6	60.3	90	0.69	85	ო
UC 709		62.8	40.2	46	7	1.55	13.2	122	400	78.1	59.7	90	0.68	90	9
		64.2	46.7	67	-	1.60	13.3	121	400	76.7	58.8	23	0.65	95	9
UC 711		63.7	47.6	7.1	-1	1.67	13.0	135	400	76.4	59.2	30	0,65	110	ო
		62.3	.51,8	84	-1	1.62	13,6	133	400	77.4	60.5	43	0.71	100	7
UC 713		63, 4	47.6	68	7	1.49	12.9	127	400	6.94	59.B	73	0.64	100	9

QUALITY DATA OF DURUM SAMPLES STATE=CALIFORNIA STATION=KINGS CO.

1986 CROP NURSERY=ADVANCED TABLE 19 (Cont.)

VI FR									H I	MI				MI		MJ					HI						
SP) 		H.J		D.E.	Ä	HI				ΗÏ	H		Ä					Η		HI		HI		MI		H
7																Ħ		Η				Ω	Ä	Η			Ξ
SX DU SK			H							Ĭ				H		Ä					Ä	MI					
SX							H																				
-DEFICIENCIES WP TX SX DU S																											
			MI		ΉI																						
S		H	т	ח			Ħ	ני			i=4				ה	H			ר		H	ר	J.	-	_		н
TW KW		Ξ	E	E			MI	Σ			E				MJ	Σ			E E		Σ	Σ	HJ	E	Σ		Œ
-																											
ជ																											•
SCORE) !	₹,	~ 1	ო	-	8	7	7	8	~	ന	ന	4	-1	7	-	4	4	7	4	٦	-1	-1	m	ო	4	7
		ന	ທ	m	m	മ	m	~	_	m	ın	ct i	~	m	7		m	0	_	₩	m	0	മ	랙	'n	_	0
RES G.																											
FIRM- NESS	! !	25	90	47	21	23	42	92	38	62	95	21	32	4	60	98	39	56	22	12	81	43	55	22	90	00	53
E N		ທ່	4,	4	4,	'n	ហំ	4.	ហ	ហ	4	ທໍ	ġ.	ທ່	ġ	4,	Ġ.	ė	ທ່	ហ	ທໍ	4	ល	Ġ.	ហ	Ġ	ທໍ
COOK WT G.	 		31.2																								29.9
	! !		e C																								•
VIS	1		0,																								
SEMO PRO	<u> </u>	1.7	10.6			0:1																					
			ä	4	ĭ			4	-	ä	-	4		<u>ۃ</u>	-	ä	ä	ä	4	ä	=	-	4	-4	- i	ä	-
STD	 	ល				ល							ഗ														
1												_															
T Y -	1 1								m	4,		URB	81														
RIE	 		4	,s		H		'n	ıL	IL		D L	8		9												
VARIETY-	! !	IRA	IR B	SATE	1 2	CAL	ပ္	۲,	FTA	FTA	S,	BRE	BRE	ROS	512	62	3-2	3-15	1-32	340	707	90,	60,	10	111	112	113
	! !	ALDURA	ALTA	FRIGATE '	GEDIZ 1	MEXICALI	MODOC	ROKE	STIFFTAIL	STIFFTAIL	WAHA 'S'	WEST	WEST	YAVA	CD 25126	L-0162	P883	P883-15	P884	30.	JC 7	JC 7	UC 709	7 2	JC 7	700	UC 7
				-	Ī	_	_				_		_			_		_		_	_	_		_	_	_	

5.61 4.11 3.36 VI 9.5 8.5 8.0 SK SP 42 11.6 52 11.5 57 11.0 95 85 80 AVG OF STANDARDS 62.7 52.1 1 13.2 76.7 60.0 MINOR FAULTING VALUES 60.5 50.0 6 12.5 74.2 57.0 MAJOR FAULTING VALUES 59.6 47.0 11 11.5 73.2 56.0

^{**}EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PRUMISE

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZING LG SM	SM	WHT ASH	WHT PRO	HARD- NESS	FALL	TOTL	SEMO EXTR	SPK	SEMO ASH	DUST	MIXO
	(•		ċ		1	. (0	Ċ	0	Ċ	C
ALDURA	ທ	64.6		91	0	1.56	ໝ ກໍ່	102	400	78.6	29. /	23	0.70	0	י ני
ALTAR 84		66,7	54.6	86	0	1,45	9.2	135	400	78.3	60.9	33	0, 62	82	9
FRIGATE 'S'		65.8	56,8	92	0	1.52	9,4	112	400	74.1	55.0	17	0.65	85	ო
GEDIZ 1		65.5	57.3	86	7	1.56	10.4	122	400	6.94	59.6	47	0.61	85	4.
MEXICALI	ល	63.5	62.9	92	7	1,62	10.4	123	400	75.5	57.2	47	0.72	80	7
MODOC		65.4	54.6	90	0	1.71	11.7	130	400	80.4	58.2	43	0.69	85	9
ROKEL 'S'		64.3	62.9	91	-1	1,56	10.5	118	400	76.5	60.9	43	0.66	85	ß
STIFFTAIL 3		64.5	65, 4	94	0	1,47	9.5	130	400	76.5	58.8	33	0.62	80	4
STIFFTAIL 4		65,6	66.7	96	0	1.39	8.9	132	400	77.2	60.2	20	0.63	75	83
WAHA 'S'		65, 7	56.5	90	0	1.51	10.8	130	400	76.4	59.2	20	0.63	85	4
WESTBRED TURBO		64.3	62, 5	96	0	1.42	9.6	131	400	6.94	58,3	37	0.60	85	7
WESTBRED 881	ល	63, 3	62.5	96	0	1.75	13.2	112	400	76.8	59,6	73	0.67	90	83
YAVAROS		66.0	9.09	94	0	1.46	9.0	118	400	76.8	59,5	33	0.60	75	Ŋ
CD 25126		65, 4	51.3	91	-	1.45	8, 4	136	400	75.3	56.4	33	0.69	90	ហ
L-0162		64.8	61.3	91	-	1.52	11.4	137	400	78.4	60° B	23	0.64	65	ო
P883-2		64.4	57,8	95	0	1.68	11.2	127	400	76.7	58.0	40	0.68	90	83
P883-15		62,8	60, 2	95	0	1,73	9,7	130	400	78.5	58.2	37	0.78	90	7
P884-32		64.8	56.5	90	0	1.74	11.5	135	400	77.2	57.7	43	0.68	90	7
UC 640		64.0	65.4	95	0	1,67	12.6	140	400	77.1	57.8	23	0.70	85	ო
UC 707		64.8	48, 5	83	0	1.63	11.2	131	400	76.0	56.1	40	0.67	75	7
UC 708		64.9	50.0	90	٦	1.67	12, 3	147	400	77.1	59.0	23	0.68	75	ო
UC 709		65.1	54.1	92	4	1.60	11.0	143	400	78.3	59, 7	33	0.74	75	9
UC 710		64.5	48.8	81	0	1,65	11.3	137	400	75.3	55,6	63	0.70	90	ហ
UC 711		64.8	55.9	91	0	1.76	11.8	141	400	74.9	56.9	40	0.00	95	ო
UC 712		63.7	66.7	6	0	1.64	11.5	128	400	75.6	56.8	33	0.74	90	7
UC 713		64.8	61.0	16	-	1.62	11.1	125	400	76.1	57.1	23	0.68	90	Ŋ

TABLE 20 (Cont.)		STATE	QUALITY DATA STATE=CALIFORNIA	DATA PORNIA	OF	DURUM SAMPLES STATION=DAVIS		1986 CROP NURSERY=ADVANCED	ROP VANCE	۵			
variety	STD	SEMO PRO %	VIS	COOK WT G.	FIRM- NESS	RES G.	SCORE		E S	-DEFICIENCIES-WP TX SX DU SK	NCIE	SK SP	VI FR
ALDURA	S	6.9		31.7	4.23	7.7	-	IM		Σ		E	
ALTAR 84		9.0	8. S		4.49	8.1	-	D.H.		MJ		MJ	
FRIGATE 'S'				N	5.14	8.1	- 1	MI		IM IM CM		M	
GEDIZ 1		9,2		σ	4.10	7.8	-	MI	Σ	ДIJ		Z.	
MEXICALI	ß	9.5		30.8	4.26	7.7	7		Σ	МJ		MJ	
MODOC		10.2		30.5	4.97	7.3	7	T K		MI		Ë	
ROKEL 'S'		9.8		30.9	4.56	7.4	7		Σ	ДIJ		E	
STIFFTAIL 3		9.6		31.7	4.28	7.7	-		Σ	D.M.		H	MI
STIFFTAIL 4		ი	9,5	30.8	4.56	8.1	- 1		Σ	MJ	MI	MJ	
WAHA 'S'		9.8		32.1	4.23	8.2	7	MI	Σ	M.J.		MJ	
WESTBRED TURBO		9.0		30.7	4.41		~		E	H.J.		H	
WESTBRED 881	S	11.4		29.1	5, 53	7.6	0					MJ MI	
YAVAROS		8 . 5		30.9	4.21		7		Σ	חצ	Ħ	ΗJ	
CD 25126		8.1		30.6	4.23	7.9	-	HJ		HJ.		E	
L-0162		10.1		30.0	4.19		~		E	ΉJ	ΗJ	E	I W I
P883-2		10.6		29.5	4.90		7	MI		ΩT		E	
P883-15		9.5	9,0	29.6	4.62	7.2	-		Σ	E C		H	
P884-32		10.1	8 5	30.3	4.86		-	MI	Ξ	MJ		E	
UC 640		11.4		30.9	4.04	8,2	ო					M	
707		9. 5			5.27	7.6	٦	UM	E	H.J.	Ä	Œ	
708		10.7	8.0	31.5	4.54	7.4	-	ΩMJ	E	MI	MI	E	MI
709		10.0			4.45	7.2	-	MJ	Σ	ДH	Ħ	MJ	MI
710		9.8	9.0	30.0	5,27	7.4	-	LM		IM CM		MJ MJ	
711		10.4	10.0	30.8	4.56	7.9	-	MI		MI		E	
712		10.4			5.42	7.6	-		Ξ	ם		. MJ	
713		9.9	8. S	29.9	5.70	7.5	-		Σ	ם		Œ	_

FR	4.67	3.17	2.42
ΝΙ	9.2	8.2	7.7
SP	9,8	11.5	11.0
SK	48	58	63
Da	87	22	72
TW KW SM WP TX SX DU SK SP VI	58.8	55.8	54.8
ΤX	77.0	74.5	73.5
ΜÞ	11.1	12.5	11.5
S	0	ហ	10
¥	60,7	58.6	55,6
ΑL	63.8	61.6	60.7
70	S	VALUES	VALUES
DEFICIENCIES	AVG OF STANDARDS 63.8 60.7 0 11.1 77.0 58.8 87 48 9.8 9.2 4.67	AULTING	MAJOR FAULTING VALUES 60.7 55.6 10 11.5 73.5 54.8 72 63 11.0 7.7 2.42
DEF1	AVG OF	MINOR F	MAJOR F

³⁼SOME PROMISE, 4=GOOD PROMISE 2=LITTLE PROMISE, **EVALUATION 1=NO PROMISE,

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

TABLE 21															
VARIETY	STD	TEST WT #/BU	1000 K. WT G.	SIZING LG SM	N S X	WHT ASH %	WHT PRO	HARD- NESS	FALL NO SEC	TOTL EXTR %	SEMO EXTR %	SPK	SEMO ASH %	DUST	MIXO SCORE
	 	! ! !	 	! ! ! !	1			; i l l	1 ! !	 	 				
1986 N.D. STANDARD S		59.0	39.7	42	4	1.80	13.7	101	400	9.92	57.4	27	0,69	90	ល
620-2		66.2	61.3	94	7	1.61	11.6	125	400	78.0	58.7	10	0.69	65	4
620-8		0.99	52.1	88	o	1.71	10.2	112	400	76.0	56.1	23	0.69	80	m
620-9		66.1	57.1	90	0	1.49	8.3	96	400	73.9	56.4	23	0.60	75	7
620-11		63.8	62.1	93	0	1.70	9, 1	98	400	73, 4	57.4	37	0.65	75	ო
620-16		65.3	56.8	92	0	1.54	9.8	113	400	77.9	58.7	37	0.62	82	7
620-17		64.7	54.3	91	0	1.65	12.1	118	400	74.2	54.5	40	0.67	80	ო
620-18		65.1	49.3	83	0	1.68	11.7	116	400	77.0	57.4	23	0.62	20	-
620-19		65.4	48.8	83	0	1.78	11.9	116	400	75.3	55.6	30	0.69	85	ო
620-20		64.8	46.1	73	0	1.67	11.2	108	400	76.0	57.1	47	0, 70	80	7
620-21		63.7	49.0	88	0	1.80	13.5	116	400	75.2	53.9	40	0.55	95	m
620-24		64.8	48.1	71	7	1,55	9.5	98	400	71.5	52.0	40	0.61	20	7
620-25		64.4	53, 5	90	-1	1.62	12.1	124	400	76.5	56,6	23	0.64	65	7
620-26		65.3	44.6	82	-	1.78	12.7	116	400	76.3	55.7	23	0.71	90	7
620-27		65.0	51.8	90	0	1.77	12.4	118	400	75.7	56.7	17	0.68	95	ო
620-28		65.1	51.0	89	0	1.84	12.4	120	400	76.4	57.2	90	0.72	95	ო
620-30		65, 3	50.8	88	0	1.76	12.3	110	400	75.5	56.7	67	0.71	70	7
620-31		64.5	55, 9	93	0	1.73	12.0	116	400	77.4	58.3	20	0. 20	80	ო
620-33		66.3	52, 9	88	~	1.64	11.1	109	400	77.2	58.5	37	0.71	85	ო
620-34		64.0	64.1	26	0	1,73	13.4	123	400	76.9	59.4	30	0.71	75	ო
620-37		64.3	41.7	9	-1	1.65	12.0	111	400	77.1	57.5	10	0.66	75	ო

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED		SEMO VIS COOK FIRM- SCOREDEFICIENCIES
APLES AVIS N		SCORE
M SAI		1 (
QUALITY DATA OF DURUM SAMPLES TE=CALIFORNIA STATION=DAVIS		SEMO VIS COOK FIRM-
DATA (SEMO VIS COOK FIRM-
ALITY =CALI		VIS
QU STATE		SEMO
		! ! ! !
	ند	

	!																									
٦.	! !																									
I ^																										
SP	! !		Ę	Ę	Ľ	щJ	Ę	Ή	ΠĴ	ПJ	щ		Ä	ΠJ	Π	H	Ξ	Ä	Ĭ	Ę		Z				
SK						ΗE	H	Ħ			Z C	ΗH	H					IJ	Ä	Η						
חמ	! !		ΠŢ	ΗI	ΠÜ	Ę		H	Z		ΗE		Z C	Ξ				ΩÜ	Ħ		Ę	'n				
SX	! ! !											Ξ	Ω̈́E													
ΤX	! ! !				MI	H							E											Ŋ	N	7
ΑÞ	! ! !		ΜI	ΠJ	MJ	H	MJ	MI	Η	ΗW	ПJ		MJ	HH		ΙW	ΗE	H	H	MJ		H	Я	5.6	4.1	ო ო
ES.	 																							ຜ	เก	0
X	1 																						ΙŃ	9	æj	9
 ≱	1																						a.	٦.	ល	0
	1																							13.1		
	1																						ŝ	27	37	42
:	 	4,	-1	-	٦	7	ન	п	-	-	-1	ო	ન	ન	ო	7	-	-	-	-	7	-	DO	90	80	75
RES G.	 							. 7															XS	57.4	4.4	3.4
~	! !	7	7	7	8	8	89	7.	8	8	7	7	7	7	7	7	7	7	7	7	7	7				
NESS	1							10															Ϋ́	76.6	74.	73.
Z	1	ß	9	ທ	4	4	4	ທ່	4	4	ໝ່	ຜ	4	ໝ່	ທ	ໝ່	ý	4	ໝ່	ທ	ß	4				
¥T G.	i !							1.9															3	13.7	12,	11,
		5	8	ĕ	ä	'n	Ä	31.	Ä	ĕ	ĕ	ĕ	Ä	ä	ä	ä	ĕ	ĕ	Ň	ĕ	ĕ	ä	S	4	σ	14
COL	į							5															3	9.7	7.6	9.6
	į							в 10.														80	-	39.	ä	ň
PRO %								10.															Ϋ́L	59.0	56.	55.
STD	1	S																								
SI I	 																								ALU	ALU
-	 	NDARD																					53	RDS	>	>
TY-	-	STA																					NCI	NDA	LIN	LIN
RIE	1																						IEI	STA	.TO	, UL.
-VAI	į		٥,	~	•	1 1	9	17	8	6	ő	21	24	25	56	27	28	õ	31	23	34	37	FIC	. 년	F.	F F
VARIETY-	i	1986 N.D.	620-2	620-8	620-9	620-11	620-16	620-17	620-18	620-19	620-20	620-21	620-24	620-25	620-26	620-27	620-28	620-30	620-31	620-33	620-34	620-37	DE	AVG OF STANDARDS	NOF	JOR
i	i	15	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62		AV	H	A

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

TABLE 22									1	1	1		1	
VAR	Ш ≥ \	K. WT G.	SIZING LG SM	SM SM %	WHT ASH	WHT PRO	HARD-	FALL NO SEC	TOTL EXTR %	SEMO EXTR	SPK	SEMO ASH %	DUST	MIXO SCORE
 	! 1 1 ! !	((1 1 1	!	; ! !	! !	 	1 1 1 1 1	1 1 1 1 1	(! ! ! ! !
1986 N.D. STANDARD	S	39.7	42	4	1.80		101	400	76.6	۰	27	0.69	90	ស
621-1	65.6	54.9	85	-	1,43	11.5	110	400	77.3	60.2	33	0.56	20	ო
621-2	65.6	1 58.1	94	0	1.42	12.0	114	400	79.4	63.6	20	0.59	65	7
- 1	0	ß	80	7	1.49	11.4	107	400	76.4	58.5	43	0,60	90	4,
621-5	(7)	3 55.6	81	-	1.41	11.4	109	400	81.4	63.4	13	0,60	20	ო
-	67	9	92	0	1,65	12.8	112	400	77.1	59.4	20	0.64	20	4,
621-7	64.6	48.5	78	0	1.62	11.7	116	400	77.4	58.0	30	0.62	20	0
621-8	64.6	49.8	82	0	1,68	13.7	110	400	73.5	49.1	17	0.64	85	ß
621-10	65.1	53.8	82	0	1,45	11.2	111	400	78.1	61.1	13	09.0	80	ო
621-11	65.4	1 54.1	84	0	1.49	11.6	110	400	78.0	60.3	7	0, 57	80	7
621-13	63,2	62.5	93	0	1.52	10.9	115	400	77.4	60.7	33	0.63	65	ო
621-15	65.3	52.9	87	0	1.46	11.7	117	400	77.2	59.8	7	0, 57	75	ო
621-16	64.5	5 63.7	66	0	1.58	12.9	117	400	80.7	62.7	13	0.61	65	ო
621-17	66.1	50.8	82	0	1.61	12.3	114	400	74.3	56.9	33	0.59	85	ო
621-18	66.4	9 .09 1	90	0	1,43	11.0	108	400	77.7	60.1	23	0.56	75	7
621-20	64.4	1 56.2	88	0	1,49	12.1	115	400	79.4	60.9	13	0.55	9	7
621-21	64.7	59.2	63	-	1.47	12.2	117	400	76.8	59, 5	13	0.56	20	8
621-24	65.2	52.6	88	0	1.58	12.0	123	400	78.6	61.6	63	0,63	75	4
621-25	65.6	53.8	90	0	1.48	11.2	116	400	9.92	58.1	27	0.60	75	ო
621-26	64.6	47.4	82	0	1,68	12.8	109	400	75.9	56.0	30	0.61	80	7
621-27	65.5	50.8	85	0	1,56	12.0	114	400	77.5	59, 9	23	0.57	82	7
621-28	64.1	51,3	77	-	1.59	12.7	109	400	77.0	59, 2	33	0.63	75	ო
621-30	64.5	45.7	63	-	1.68	12.5	114	400	76.4	57.7	27	0.66	80	ო
621-31	65.5	49.3	75	-	1.62	12.0	116	400	77.1	59.0	30	0.68	80	ო
621-32	64.5	48.8	92	-	1.56	11.5	104	400	78.3	9.09	27	0.67	100	7
621-33	65.2	46.5	20	-	1.60	12.1	108	400	78.1	59.4	43	69.0	85	ო
621-34	65.1	50.8	84	0	1.69	14.1	112	400	74.9	58.0	70	0.67	80	ო
621-35	65.0	57:1	68	0	1.48	11.7	114	400	77.8	61.1	27	0.61	85	e
1	64.6	52.9	83	0	1,55	11.4	117	400	76.7	58.1	20	0.61	100	4,
~	65.1	56.2	88	o	1.51	11.9	120	400	78.2	60.9	17	0.62	90	7
	64.5	•	68	-	1.62	11.5	111	400	78.6	58.0	7	0.66	70	-
621-40	65.3	49.5	80	0	1.56	12.3	114	400	76.0	54.8	23	0.62	105	ო

1986 CROP NURSERY=ADVANCED	
QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED	TABLE 22 (Cont.)
	TABLE 22 (Cont.)

TW KW SM WP TX SX DU SK SP VI FR

1986 N.D. STANDARD S 13.1 9.5 28.7 5.62 7.0 4 621-1 621-2 11.1 9.0 32.0 5.25 7.6 1 621-4 11.1 9.0 32.0 5.25 7.6 1 621-5 621-6 11.2 10.6 30.3 3.4 6.5 1 11.2 10.5 31.0 5.16 7.6 1 11.3 10.5 31.0 5.16 7.6 1 621-10 621-10 621-11 10.0 10.5 31.0 5.16 6.3 1 11.7 10.5 30.3 5.86 6.5 1 11.7 10.5 30.1 6.16 5.7 1 11.8 10.5 30.1 6.16 5.7 1 11.8 10.6 9.8 31.0 7.3 1 11.8 10.0 9.0 31.4 5.16 6.4 1 11.8 10.0 31.0 5.2 5.9 2 11.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	VARIETY STD	SEMO PRO	VIS	COOK WT G.	FIRM-	RES G.	SCORE * * *	TW KW SM WP 7	-DEFICIENCIES-WP TX SX DU SK	SK SP	VI F
D. STANDARD 5 13.1 9.5 28.7 5.62 7.0 4 10.6 10.5 30.0 5.25 7.6 1 11.1 9.0 32.0 5.25 7.8 1 11.1 9.0 32.0 5.25 7.8 1 11.2 10.5 30.3 5.88 6.5 1 11.2 4 10.5 30.3 5.88 6.5 1 10.6 4 10.5 30.3 5.88 6.5 1 10.6 9.5 30.1 4.3 6.4 1 10.6 9.5 30.2 7.8 1 10.6 9.5 30.3 7.8 1 10.6 9.5 30.3 7.8 1 10.6 9.5 30.3 7.8 1 10.6 9.5 30.3 7.8 1 10.7 30.0 7.3 10 7.3 1 10.8 9.0 32.7 7.8 1 10.8 9.0 32.7 7.6 2 6.6 1 10.9 10.0 30.8 6.00 5.9 1 10.1 10.5 10.5 30.3 6.5 6.6 1 10.1 10.5 10.5 30.3 6.5 6.6 1 10.1 10.5 10.5 30.3 6.5 6.6 1 10.1 10.5 10.5 30.3 6.5 6.6 6.7 1 10.1 10.5 10.5 30.3 6.5 6.6 6.7 1 10.1 10.5 10.5 30.3 6.5 6.6 6.7 1 10.1 10.5 10.5 30.3 6.5 6.6 6.7 1 10.1 10.5 10.5 30.3 6.5 6.6 6.7 1 10.1 10.5 10.5 30.3 6.5 6.6 6.7 1 10.1 10.5 10.5 30.3 6.5 6.6 6.7 1 10.5 10.5 30.3 6.5 7 6.2 1 10.5 10.5 30.3 6.5 7 6.2 1 10.5 10.5 30.3 6.5 7 7 1 10.5 10.5 30.3 6.5 7 7 1 10.5 10.5 30.3 6.5 7 7 1 10.5 10.5 30.3 6.5 7 7 1 10.5 10.5 30.3 6.5 7 7 1 10.5 10.5 30.3 6.5 7 7 1 10.5 10.5 30.3 6.5 7 7 1 10.5 10.5 10.5 30.3 6.5 7 1 10.5 10.5 10.5 30.3 6.5 7 1 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5											
10.6 10.5 30.7 5.16 7.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 0 0 0 0	N.D. STANDARD	13, 1		28.7			4		;	:	
11.1 9.0 32.0 5.25 7.8 1 MI MI MI MI MI MI MI	621-1	10.6		30.7			-4	E	EM	2	
10.6 10.5 31.0 5.16 1	621-2	11.1		32.0			-1	MI	υM		
11.0 10.5 31.4 5.53 7.8 1 MJ 10.6 9.5 30.3 5.88 6.5 1 MJ 10.6 9.5 31.9 4.43 6.4 1 MJ 10.6 9.5 31.2 4.43 6.4 1 MJ 10.6 9.5 31.2 5.25 7.2 1 MJ 10.6 9.5 31.2 5.25 7.2 1 MJ 10.8 9.0 31.1 5.21 7.0 1 MJ 11.3 10.0 32.7 4.62 6.6 1 MJ 11.3 10.0 31.2 6.24 6.1 1 MJ 11.3 10.0 31.4 5.94 6.1 1 MJ 11.3 10.0 31.4 5.94 6.1 1 MJ 11.4 9.5 31.3 5.66 6.4 1 MJ 11.5 10.0 31.4 5.94 6.1 1 MJ 11.5 10.0 31.6 5.96 6.0 1 MJ 11.5 10.0 30.8 5.90 6.2 2 MJ 11.5 10.0 30.8 5.90 6.4 7.1 1 MJ 11.5 10.0 30.8 5.90 6.7 7.1 1 MJ 11.5 10.0 30.8 5.90 6.7 7.1 1 MJ 11.5 10.	621-4	10.8		31.0			ન	DE.			
11.7 10.5 30.3 5.88 6.5 1 10.6 9.5 31.9 4.58 7.1 1	621-5	11.0		31.4			-	D.M.	Ę	ΗJ	
10.6 9.5 31.9 4.58 7.1 1	621-6	11.7		30.3		6.5	-1		Œ		
12.4 10.5 30.1 6.16 5.7 1 M M M M M M M M M	621-7	10.6		31.9		7.1	-	MI	CM	Ü	
10.4 10.5 31.5 4.43 6.4 1 MJ MI 10.5 10.5 10.5 30.7 5.10 7.3 1 MJ MI 10.6 9.0 31.4 5.10 7.3 1 MJ MJ 10.6 9.0 31.4 5.12 7.0 1 MJ MJ MJ 11.3 10.5 31.0 5.72 5.9 2 MI MJ MJ 11.3 10.5 31.0 5.72 5.9 2 MI MJ MJ 11.3 10.0 32.7 4.49 6.7 1 MJ MJ MJ 11.5 10.0 31.2 5.88 6.7 1 MJ MJ MJ 11.5 10.0 31.2 5.88 6.7 1 MJ MJ MJ 11.3 10.0 31.3 6.22 6.8 1 MJ MJ MJ 11.3 10.0 31.4 5.55 5.9 1 MJ MJ 11.4 9.5 31.6 5.55 5.9 1 MJ MJ 11.4 9.5 31.6 5.55 5.9 1 MJ MJ 11.5 10.0 30.9 6.44 5.9 2 MJ MJ 11.5 10.0 32.1 6.50 6.2 2 MJ MJ 11.5 10.0 32.1 6.50 7.1 1 MJ MJ 11.5 10.0 32.1 6.50 7.3 2 MJ MJ MJ 11.5 10.0 32.1 6.50 7.3 2 MJ MJ MJ 11.5 10.0 32.1 6.50 7.3 2 MJ MJ MJ MJ 11.5 10.0 32.1 6.50 7.3 2 MJ	621-8	12.4		30.1	6.16	5.7	-	~			
10.5 10.5 30.7 5.10 7.3 1 MI MI 10.0 10.0 9.0 31.4 5.16 6.8 1 MI MI 10.0 10.0 9.0 31.4 5.16 6.8 1 MI MI 10.0 10.0 5.25 7.2 1 MI MI 10.0 10.0 5.10 5.72 5.9 2 MI MI MI 10.0 31.0 5.72 5.9 2 MI MI MI 10.0 31.0 5.72 6.6 1 MI MI MI 10.0 31.0 5.72 6.6 1 MI MI MI 10.0 31.0 5.74 6.4 1 MI MI MI 10.0 31.0 5.74 6.4 1 MI MI MI 11.1 10.5 31.3 5.25 5.9 1 MI MI MI 11.1 10.5 31.3 5.64 6.0 1 MI MI MI 11.1 10.5 31.3 5.66 6.4 1 MI MI MI 11.1 10.5 31.3 5.66 6.4 1 MI MI 11.1 10.5 30.9 6.57 6.2 1 MI MI 11.2 10.0 30.8 5.90 6.2 2 MI MI MI 10.5 10.5 30.9 6.57 6.2 1 MI MI 10.5 30.9 6.50 6.50 6.50 6.50 MI MI 10.5 30.9 6.50 6.50 6.50 6.50 MI MI 10.5 30.9 6.50 6.50 6.50 MI MI 10.5 30.9 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50	621-10	10.4		31.5		6.4	-	CM	H	E	
10.0 9.0 31.4 5.16 6.8 1 MI MJ MJ 10.6 9.5 31.2 5.25 7.2 1 MI MJ 11.4 10.5 31.0 5.72 5.9 2 MI MJ MJ 11.3 10.5 31.0 5.72 5.9 2 MJ MJ 11.3 10.0 32.7 4.62 6.6 1 MI MJ 11.3 10.0 32.7 4.62 6.6 1 MI MJ 11.3 10.0 31.3 6.22 6.8 1 MI MJ MJ 10.3 10.0 31.3 6.24 6.1 1 MI MJ 11.3 10.0 31.4 5.94 6.1 1 MI MJ 11.3 10.0 31.4 5.94 6.1 1 MI MJ 11.3 10.0 31.4 5.94 6.1 1 MI MJ 11.3 10.5 31.3 5.64 6.0 1 MJ MJ 11.3 10.5 31.3 5.64 6.0 1 MI MI MI 11.3 10.5 31.3 5.64 6.0 1 MI MI MI 11.3 10.5 31.3 5.64 6.0 1 MI MI 11.3 10.5 31.3 5.65 6.4 1 MI MI 11.3 10.5 31.3 5.65 6.4 1 MI MI 11.3 10.0 31.4 5.94 7.3 2 MI MJ 11.3 10.0 31.5 5.94 7.3 2 MI MJ 11.3 10.0 31.1 5.94 7.3 2 MI	621-11	10.5		30.7	5.10	7.3	-	H	H	MJ	
10.6 9.5 31.2 5.25 7.2 1 MI MJ 11.4 9.0 31.1 5.51 7.0 1 10.8 9.0 32.1 4.49 6.7 1 MI MJ 10.8 9.0 32.7 4.49 6.7 1 MI MI 11.3 10.0 32.8 6.00 5.9 1 MI MI 11.5 10.0 31.2 5.88 6.7 1 MI MI 11.3 10.0 31.2 5.84 6.7 1 MI MI 11.3 10.0 31.3 6.22 6.8 1 MI MI 11.4 9.5 31.3 5.44 6.1 1 MI MI 11.4 9.5 31.3 5.64 6.0 1 MI MI 11.1 10.5 30.1 6.24 6.0 1 MI 11.5 10.5 30.9 6.57 6.2 1 MI 11.5 10.0 30.8 6.57 6.2 1 MI 11.5 10.0 30.8 6.57 6.2 1 MI 11.5 10.0 32.4 5.0 5.9 2 MI 11.5 10.0 32.4 5.0 5.9 2 MI 11.5 10.0 30.8 6.57 6.2 1 MI 11.5 10.0 30.8 6.57 6.2 1 MI 11.5 10.0 32.4 5.0 5.0 0 MI 11.5 10.0 32.4 5.0 5.0 0 MI 11.5 10.0 32.4 5.0 5.0 0 MI 11.5 10.0 32.1 4.90 7.1 1 MI 11.5 10.0 31.1 5.94 7.3 2 MI 11.5 10.0 31.1 5.94 7.3 2 MI 11.5 10.0 31.1 5.94 7.3 2 MI	621-13	10.0		31.4	5.18	6.8	-	CM	ĽM.	μJ	
11.4 9.0 31.1 5.51 7.0 1 11.3 10.5 31.0 5.72 5.9 2 10.8 9.5 32.3 4.49 6.7 1 11.3 10.0 30.8 6.00 5.9 1 11.3 10.0 31.2 5.88 6.7 1 11.3 10.0 31.3 6.22 6.8 1 11.3 10.0 31.4 5.94 6.1 1 11.3 10.0 31.4 5.94 6.1 1 11.4 9.5 31.3 5.64 6.0 1 11.5 10.5 30.1 6.24 6.0 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.54 5.9 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 1 11.5 10.5 30.9 6.57 6.2 2 11.7 10.0 30.8 5.90 7.1 1 10.7 10.5 32.1 4.90 7.1 1 11.2 10.0 31.1 5.94 7.3 2 11.5 10.0 31.1 5.94 7.3 2	621-15	10.6			5, 25	7.2	-	IW	D.M.	MJ	
11.3 10.5 31.0 5.72 5.9 2 MI MJ HJ 10.8 9.5 32.3 4.49 6.7 1 MI MJ 11.3 10.0 32.7 4.62 6.6 1 MI MI MJ 11.3 10.0 31.2 5.88 6.7 1 MI MJ 11.3 10.0 31.2 5.88 6.7 1 MI MJ 11.3 10.0 31.2 5.88 6.7 1 MI MJ 11.3 10.0 31.9 6.74 6.4 1 MI MJ 11.4 9.5 31.6 5.55 5.9 1 MI MI MI MI 11.1 10.5 30.1 6.24 6.0 1 MI MI MI 11.5 10.5 30.1 6.24 6.0 1 MI MI MI 11.5 10.5 30.9 6.57 6.2 1 MI MI 11.5 10.5 30.9 6.57 6.2 1 MI MI 11.5 10.0 30.9 6.57 6.2 2 MI MI MI 11.2 10.0 32.4 5.03 6.4 2 MI MI 11.4 10.0 32.4 5.03 6.4 2 MI MI MI 11.4 10.0 32.4 5.03 6.4 2 MI MI MI 11.2 10.0 31.1 5.94 7.1 1 MI MI MI 11.2 10.0 31.1 5.94 7.3 2 MI MI MI MI 11.2 10.0 31.1 5.94 7.3 2 MI	621-16	11.4	_	31.1	5.51	7.0	ศ		ΩM	MI	
9.9 9.5 32.3 4.49 6.7 1 MJ MJ MJ 10.8 9.0 32.7 4.62 6.6 1 MI MI MJ 11.3 10.0 30.8 6.00 5.9 1 MI MJ MJ 11.5 10.0 31.2 5.88 6.7 1 MJ MJ MJ 11.5 10.0 31.3 6.22 6.8 1 MJ MJ MJ 11.3 10.0 31.9 6.74 6.4 1 MJ MJ MJ 11.4 9.5 31.3 5.64 6.0 1 MJ MJ 11.4 10.5 30.9 6.57 6.2 1 MJ MJ 11.5 10.5 30.9 6.57 6.2 1 MJ MJ 11.5 10.5 30.9 6.57 6.2 1 MJ MJ 11.2 10.0 30.8 5.90 6.2 2 MJ MJ 11.4 10.0 30.8 5.90 6.2 2 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.5 10.5 32.1 4.90 7.1 1 MM MJ MJ 11.2 10.0 31.6 5.34 7.3 2 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ	621-17	11.3		31.0	5.72	5.9	7	IW		MI	
10.8 9.0 32.7 4.62 6.6 1 MI MJ MJ 11.3 10.0 30.8 6.00 5.9 1 MI MJ MJ 11.5 10.0 31.2 5.88 6.7 1 MI MJ MJ 11.5 10.0 31.2 5.88 6.7 1 MJ MJ 11.3 10.0 31.3 6.22 6.8 1 MJ MJ MJ 11.3 10.0 31.3 6.22 6.8 1 MJ MJ MJ 11.3 10.0 31.3 5.64 6.0 1 MI MI MI 11.1 10.5 31.6 5.55 5.9 1 MJ MJ 11.1 10.5 30.1 6.24 6.0 1 MJ MJ 11.5 10.5 30.9 6.57 6.2 1 MJ MJ 11.2 10.0 30.9 6.44 5.9 2 MJ MJ 11.2 10.0 30.8 5.90 6.2 2 MI MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.2 10.0 31.6 5.34 7.1 1 MM MJ MJ 11.2 10.0 31.6 5.34 7.1 1 MM MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MM MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MM	621-18	9.6		32, 3	4.49	6.7	ન	ĘW	£MJ	MJ	
11.3 10.0 30.8 6.00 5.9 1 MI MJ MJ 11.5 10.0 31.2 5.88 6.7 1 MJ MJ 11.5 10.0 31.2 5.88 6.7 1 MJ MJ MJ 11.3 10.0 31.3 6.22 6.8 1 MJ MJ 11.3 10.0 31.9 6.74 6.1 1 MI MJ 12.1 10.5 31.3 5.54 6.0 1 MJ MJ 11.1 10.5 31.6 5.55 5.9 1 MJ MJ 11.1 10.5 30.1 6.24 6.0 1 MJ MJ 11.5 10.5 30.9 6.57 6.2 1 MJ MJ 11.2 10.0 30.9 6.44 5.9 2 MJ MJ 11.2 10.0 30.8 5.90 6.2 2 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.2 10.0 31.6 5.34 7.1 1 MJ MJ 11.2 10.0 31.6 5.34 7.1 1 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ	621-20	10.8	_	32,7	4.62	9.9	႕	IW	DM.	MJ	
11.5 10.0 31.2 5.88 6.7 1 MI MJ MJ 10.3 10.0 31.3 6.22 6.8 1 MJ MJ 11.3 10.0 31.3 6.22 6.8 1 MJ MJ MJ 11.3 10.0 31.9 6.74 6.4 1 MI MJ MJ 11.4 10.5 31.3 5.54 6.0 1 MJ MJ 11.1 10.5 31.3 5.64 6.0 1 MJ MJ MJ 11.1 10.5 30.1 6.24 6.0 1 MJ MJ MJ 11.5 10.5 30.9 6.57 6.2 1 MJ MJ 11.5 10.0 30.9 6.44 5.9 2 MJ MJ 11.2 10.0 30.8 5.90 6.2 2 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MJ	621-21	11.3		30.8	6.00	5.9	п	IW	D.M.	MI	
10.3 10.0 31.3 6.22 6.8 1 MJ MJ 11.3 10.0 31.9 6.74 6.4 1 MI 10.8 10.0 31.4 5.94 6.1 1 MI 11.4 9.5 31.3 5.64 6.0 1 MI 11.1 10.5 31.3 5.65 5.9 1 MI 11.5 10.5 30.9 6.54 6.0 1 MI 11.5 10.0 30.9 6.44 5.9 2 MI 11.2 10.0 30.8 5.90 6.2 2 MI 11.4 10.0 32.4 5.03 6.4 2 MI 11.4 10.0 32.4 5.03 6.4 2 MI 11.5 10.0 31.6 5.34 7.1 1 MI 11.5 10.0 31.1 5.94 7.3 2 MI	621-24	11.5		31.2	5.88	6.7	-1	H	CM		
11.3 10.0 31.9 6.74 6.4 1 10.8 10.0 31.4 5.94 6.1 1 12.1 10.5 31.3 5.64 6.0 1 11.4 9.5 31.6 5.55 5.9 1 11.5 10.5 30.1 6.24 6.0 1 11.5 10.5 30.9 6.4 1 11.5 10.0 30.9 6.4 5.9 2 11.7 10.0 30.8 5.90 6.2 2 11.4 10.0 32.4 5.03 6.4 2 11.4 10.0 32.4 5.03 6.4 2 11.5 10.0 31.6 5.34 7.1 1 11.5 10.0 31.6 5.34 7.1 1 11.7 10.0 31.6 5.34 7.1 1 11.7 10.0 31.7 5.34 7.1 1 11.7 10.0 31.8 5.90 6.7 1 11.7 10.0 31.1 5.94 7.3 2 MJ MJ MJ MJ	621-25	10.3		31.3	6.22	6.8	- 1	ДM	CM	E.	
10.8 10.0 31.4 5.94 6.1 1 MI MI 12.1 10.5 31.3 5.64 6.0 1 MI MI 11.4 9.5 31.6 5.55 5.9 1 MI MI MI 11.1 10.5 30.1 6.24 6.0 1 MI MI MI 11.5 10.5 30.9 6.57 6.2 1 MI MI MI 12.7 10.0 30.9 6.57 6.2 1 MI MI 11.2 10.0 30.8 5.90 6.2 2 MI MI MI 10.5 10.0 31.6 5.34 7.1 1 MI 10.5 10.0 32.4 5.03 6.4 2 MI MI 11.2 10.0 32.4 5.03 6.4 2 MI MI 11.2 10.0 31.6 5.34 7.1 1 MI MI 11.2 10.0 31.6 5.34 7.1 1 MI MI MI 11.2 10.0 31.1 5.94 7.3 2 MI MI MI MI MI 11.2 10.0 31.1 5.94 7.3 2 MI	621-26	11,3		31.9	6.74	6.4	-		MI	MI	
12.1 10.5 31.3 5.64 6.0 1 MI MI MI 11.4 9.5 31.6 5.5 5.9 1 MI MI MI 11.1 10.5 30.1 6.24 6.0 1 MI MI MI 11.5 10.5 30.1 6.24 6.0 1 MI MI MI 11.5 10.5 30.9 6.57 6.2 1 MI MI MI 12.7 10.0 30.9 6.57 6.2 1 MI MI MI 11.2 10.0 30.8 5.90 6.2 2 MI MI MI 10.5 10.0 31.6 5.34 7.1 1 MI MI 10.5 10.0 32.4 5.03 6.4 2 MI MI MI 11.2 10.0 31.1 5.94 7.3 2 MI MI MI MI 11.2 10.0 31.1 5.94 7.3 2 MI	621-27	10.8		31.4	5.94	6.1	-	IM		M	
11.4 9.5 31.6 5.55 5.9 1 NI NI NI 11.1 10.5 30.1 6.24 6.0 1 NI NI NI 11.1 10.5 30.1 6.24 6.0 1 NI NI NI 11.5 10.5 31.3 5.66 6.4 1 NI NI NI 11.5 10.5 30.9 6.57 6.2 1 NI NI NI 11.2 10.0 30.8 5.90 6.2 2 NI NI NI 11.4 10.0 32.4 5.03 6.4 2 NI NI 11.4 10.0 32.4 5.03 6.4 2 NI NI 11.2 10.0 31.1 5.94 7.3 2 NI NI NI NI NI 11.2 10.0 31.1 5.94 7.3 2 NI	621-28			31.3	5.64	6.0	-		ΩΉ		
11.1 10.5 30.1 6.24 6.0 1 MI MI 10.5 10.5 10.5 31.3 5.66 6.4 1 MJ 11.5 10.5 30.9 6.57 6.2 1 MI MI 12.7 10.0 30.9 6.44 5.9 2 MI 11.2 10.0 30.8 5.90 6.2 2 MI 10.5 10.0 31.6 5.34 7.1 1 MJ 11.4 10.0 32.4 5.03 6.4 2 MI 11.4 10.0 32.4 5.03 6.4 2 MI 11.2 10.0 31.1 5.94 7.3 2 MI MJ 11.2 10.0 31.1 5.94 7.3 2 MI	621-30	11.4			5,55	5,9	-	IW	MI	H	
10.5 10.5 31.3 5.66 6.4 1 MJ 11.5 10.5 30.9 6.57 6.2 1 MI MI 12.7 10.0 30.9 6.44 5.9 2 MI 11.2 10.0 30.8 5.90 6.2 2 MI 10.5 10.0 31.6 5.34 7.1 1 MJ 11.4 10.0 32.4 5.03 6.4 2 MI 10.7 10.5 32.1 4.90 7.1 1 MJ 11.2 10.0 31.1 5.94 7.3 2 MI	621-31				6.24	6.0	-	M	MI	Η	
11.5 10.5 30.9 6.57 6.2 1 MI MJ 12.7 10.0 30.9 6.44 5.9 2 MI 11.2 10.0 30.8 5.90 6.2 2 MI 10.5 10.0 31.6 5.34 7.1 1 MJ 11.4 10.0 32.4 5.03 6.4 2 MI 10.7 10.5 32.1 4.90 7.1 1 MJ 11.2 10.0 31.1 5.94 7.3 2 MI	621-32	10.5				6.4	-	HJ		M	
12.7 10.0 30.9 6.44 5.9 2 MI 11.2 10.0 30.8 5.90 6.2 2 MI 10.5 10.0 31.6 5.34 7.1 1 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MI 10.7 10.5 32.1 4.90 7.1 1 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 MI	621-33	11.5				6.2	-	IW			
11.2 10.0 30.8 5.90 6.2 2 MI 10.5 10.0 31.6 5.34 7.1 1 MJ 11.4 10.0 32.4 5.03 6.4 2 MI 10.7 10.5 32.1 4.90 7.1 1 MJ 11.2 10.0 31.1 5.94 7.3 2 MI	621-34	12.7				5.9	7		H		
10.5 10.0 31.6 5.34 7.1 1 MJ MJ 11.4 10.0 32.4 5.03 6.4 2 MI 10.7 10.5 32.1 4.90 7.1 1 MJ 11.2 10.0 31.1 5.94 7.3 2 MI	621-35	11.2				6.2	8	IW		H	
11.4 10.0 32.4 5.03 6.4 2 MI 10.7 10.5 32.1 4.90 7.1 1 MJ MJ 11.2 10.0 31.1 5.94 7.3 2 Ml	621-36	10.5				7,1	-	CM			
-38 10.7 10.5 32.1 4.90 7.1 1 MJ MJ -40 11.2 10.0 31.1 5.94 7.3 2 M1	621-37	11.4		32.4	5.03	6.4	8	MI		MI	
-40 11.2 10.0 31.1 5.94 7.3 2 M1	621-38			32.1	4.90	7.1	-	ΩW	Ω	E	
		11.2	10.0	31.1	5.94	7.3	~	M		H	

FR 5.62 4.12 3.37 VI 5.5 8.5 8.0 SK SP 27 13.1 37 11.5 42 11.0 50 90 80 75 AVG OF STANDARDS
AVG OF STANDARDS
S9.0 39.7 4 13.7 76.6 57.4
MINOR FAULTING VALUES 56.8 37.6 9 12.5 74.1 54.4
MAJOR FAULTING VALUES 55.9 34.6 14 11.5 73.1 53.4

^{**}EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

TABLE 23	n e	E-CALIFORNIA	2 2 2		CTAWA-WOTINIC	CT A W G =	NON I	NORSERI-ADVANCED	, vice					
VARIETY		F 1000 K. WT	SIZ	SIZING LG SM	WHT ASH %	WHT PRO	HARD-	FALL	TOTL EXTR	SEMO EXTR	SPK	SEMO ASH %	DUST	MIXO SCORE
8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			 	 	 	! !	 	 - . - -	1 	! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	! ! ! !
1986 N.D. STANDARD	5 59.	39.7	42	4	1.80	13, 7	101	400	76.6	57.4	27	0.69	90	ល
622-4	۰	5 54.6	88	0	1,61	12.0	112	400	77.2	59.8	10	0.63	75	7
622-5			84	٦	1.66	12.9	110	400	77.1	60.0	30	0.65	85	ო
622-6	65.5	9 51.3	82	0	1.68	13, 1	111	400	75.8	57.1	13	0.68	100	7
622-7	64.	1 52.6	84	0	1.69	12, 9	105	400	75.7	57.3	20	0.66	80	п
622-9	65.	5 53.2	82	0	1,59	12, 4	108	400	76.2	59.9	27	0.63	75	7
622-10	65.3	2 50.5	85	٦	1.71	13.9	102	400	75.6	57.2	23	0.63	90	ო
622-11	64. (95	0	1.72	13.7	117	400	78.4	61.5	30	0.72	85	4,
622-12	65.	3 45.8	64	7	1,53	12.4	109	400	76.1	59,6	20	0.64	96	ო
622-14	64.5	9 57.8	90	0	1.63	13.2	111	400	76.8	58,6	37	0.64	82	ო
622-15	65.	9 50.0	83	0	1.67	12.7	106	400	76.0	56.8	40	0.64	80	8
622-16	65.3	2 57.3	89	0	1.48	11.0	108	400	78.2	60.7	27	09.0	75	N
622-18	66. (56.2	92	-	1.63	13.0	106	400	77.3	59,1	33	0.66	80	1
622-22	66.3	2 50.8	83	~	1.61	11.9	111	400	78.2	60.5	30	0, 65	75	ო
622-25	64.5	9 52.6	84	-	1.57	12.5	109	400	79.1	59,7	10	0.64	85	CI
622-26	64.	2 53.2	89	0	1.62	13.9	107	400	76.8	58,3	23	0.62	80	7
622-27	64.6	5 48.5	79	-	1,65	12.6	114	400	77.7	58.5	33	0.62	82	8
622-28	64.5	9 52.9	84	0	1.64	11,3	104	400	78.8	58, 3	33	0.65	95	m
622-29	64.	\$ 52.6	80	-	1.61	12.0	104	400	79.1	58.0	23	0.63	80	8
622-30	65. 6	3 56.8	89	0	1.66	12.5	114	400	77.6	58.1	30	0.63	92	7
622-31	65.	5 50.0	85	~	1.73	13, 5	106	400	77.0	58,3	40	0.67	95	-1
622-32	65.3	2 56.8	88	0	1.57	11.3	104	400	79.1	62.5	17	0.62	20	7
622-34	65. (56.2	90	0	1,56	11,4	105	400	79.6	59.6	17	0,65	90	7
622-35	64.	5 47.1	74	0	1.72	13, 3	119	400	73.8	59.6	30	0.67	92	8
622-36	64.	0.15 1	83	-1	1.71	12.5	109	400	79.2	62.1	22	0.67	80	8
622-37	65.6	5 49.5	83	ન	1.69	13.7	108	400	77.3	60.0	23	0,71	75	ღ
622-38	.64.8	3 48.5	80	0	1.75	12.2	106	400	76.1	58.4	13	0.71	90	7
622-39	63.0	3 47.6	27	-	1,89	14.8	104	400	75.8	56.9	33	0.76	92	-1
622-40	65.	1 49.0	81	0	1.70	13,3	114	400	75.3	57.7	30	0.67	90	ო

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

_
(Cont.
23
ABLE
Z

TW KW SM WP TX SX DU SK SP VI FK		MI MJ MJ		IM	MI MJ	IM LM IM	IW		IM	M	MI	MJ MJ	MI	IM LM IM		IW			CM IM IM		MI	EM EM EM		IW	MI MI MI	LM.	IM IM		HI
SCORE ***	4	7	4	ო	-	~	7	4,	7	4	-	-	8	7	8	8	4,	-	-	7	4	-	1	ო	-	٦	7	4,	7
RES G.		6.7				7.0													7.1			6.0	•	6.1				6.5	
FIRM- NESS	5.62	6.03	7.39	6.18	5, 29	4.90	5.42	5.85	5.59	5,38	5,64	4.56	4.86	5.27	4.38	4.82	5.83	5, 55	5.70	6.35	5.66	5.18		5.90	5.49	6.26	5, 36	5.53	6.44
COOK WT G.	28.7	31.7			31.0	30.8	31.0	30,2	30.7	30.8	30.7	31.5	31.2	31.3	32,5	31.6	31.1	30.4	30.4	32.3	31.5	31.2	•	30.5	31.6		31.6	30.7	30.2
VIS		9, S																					•					10.0	
SEMO PRO %	13.1	10.8	11.9	11.3	11.9	11.3	12.6	12.4	11.5	11.7	11,5	10.4	11.6	11.4	11.4	12.1	11.7	10.0	10.5	10.9	12.2	10.8	10.8	12.0	11.7	12.5	11.4	12.9	12.0
VARIETY STD	1986 N.D. STANDARD S	622-4	622-5	622-6	622-7	622-9	622-10	622-11	622-12	622-14	622-15	622-16	622-18	622-22	622-25	622-26	622-27	622-28	622-29	622-30	622-31	622-32	622-34	622-35	622-36	622-37	622-38	622-39	622-40

FR 5.62 4.12 3.37 V1 9.5 8.5 SK SP 27 13.1 37 11.5 42 11.0 bu 90 80 75 AVG OF STANDARDS

AVG OF STANDARDS

AVG OF STANDARDS

AND OF FAULTING VALUES 56.8 37.6 9 12.5 74.1 54.4 54.4 54.0 55.9 34.6 14 11.5 73.1 53.4

TABLE 24	QU STATE	GUALITY DATA STATE=CALIFORNIA	DATA (OF D	OF DURUM SAMPLE, STATION=DAVIS	SAMPLES =DAVIS		1986 CROP NUKSERY=ADVANCED	ROP					
VARIETY STD	TEST WT #/BU	1000 K. WT G.	SIZING LG SM	!	WHT ASH %	WHT PRO	HARD- NESS	FALL	TOTL EXTR %	SEMO EXTR	SPK	SEMO ASH %	DUST	MIXO
		 					1 1 1 1 1 1 1			1 1 1 1 1 1 1				
1986 N.D. STANDARD S	59.0	39.7	42	4.	1.80	13.7	101	400	76.6	57.4	27	0.69	90	ហ
623-1	65.3	52,4	85	0	1.72	12.9	104	400		57.6	37	0.67	80	т
623-2	64.7	51,5	62	0	1,71	13,2	108	400	75.2	58.4	43	0,65	82	- 1
623-3	64.7	46.5	81	0	1.65	13.0	103	400	75.7	57.6	20	0.68	85	7
623-4	66.2	51.5	84	0	1.72	11.7	113	400	76.5	61.9	17	0.67	85	п
623-5	65, 1	47.1	69	N	1.60	12.3	106	400	75.5	57.2	27	0.63	100	п
623-6	65.1	51.0	88	0	1.66	12.3	102	400	76.2	59, 1	23	0.65	90	8
623-7	65.0	48.3	78	0	1.61	12.7	110	400	76.8	59° 5	20	0.65	90	7
623-8	65,3	48.8	84	0	1,77	12.0	103	400	76.4	58.1	33	0.75	85	٦
623-9	64.9	48.8	80	-	1.68	12.1	111	400	77.6	52,5	40	69.0	80	f
623-10	64.3	50.3	68	0	1.84	14.4	105	400	73.3	54.2	20	0.72	90	7
623-11	65.0	55, 6	87	0	1,69	12,2	111	400	78.3	61.4	90	0,69	20	8
623-12	63.4	49.3	73	-1	1,48	11,3	105	400	78.2	59,7	13	0.63	85	8
623-15	65.7	47.8	80	0	1,66	12.6	101	400	76.6	57,4	23	0.66	80	ო
623-16	65,6	57.3	83	0	1.47	10.7	103	400	77.3	60.1	20	0.58	75	И
623-21	63.6	48.8	78	-	1,69	12.8	114	400	77.7	59.8	20	0. 20	80	4
623-24	65, 3	51.5	82	-	1.69		108	400	78.5	60,5	30	69.0	85	4,
623-26	64.2	46.7	75	0	1.74	11.5	104	400	76.4	56.1	23	0,68	95	-
623-27	64.4	49.3	86	0	1.71	12.7	105	400	77.6	58.2	20	0.68	20	8
623-28	65.3	52.6	82	0	1.66	13.2	110	400	77.4	58,7	20	0.64	80	ო
623-29	65.3	51,3	82	0	1,57	12.0	113	400	80.3	62.0	13	0,69	75	4,
623-31	63.7	38.0	91	0	1,70	11.0	100	400	75.4	59,3	30	0.69	75	ო
623-34	65.6	56.2	90	0	1.60	12.2	114	400	76.6	58.6	13		85	ო
623-35	65.2	45.7	74	0	1,65	12, 1	110	400	77.7	57.7	20	0.63	85	7
623-36	65.3	52.1	74	-	1,65	11.9	117	400	6.94	60.1	40		75	m
623-37	66.2	52.6	80	0	1.61	12.1	112	400	77.5	59.5	27	0,65	90	7
623-38	63, 3	54.3	83	0	1.76	13.2	109	400	76.4	56.1	27	69.0	75	7
623-40	63.6	55.6	68	0	1.73	12.4	103	400	76.7	58.5	23	69.0	85	8

QUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED

TABLE 24 (Cont.)

1																													
K SP VI		MI	1,7		MJ	H	IM	MI	H	MI MJ	J.F.	MJ MI	МJ	MI	MJ		MJ		H		MI	υ	EM.	щ	MI MI	МĴ		MI	
-DEFICIENCIES WP TX SX DU S		HI	-			,				MJ MI		E.W.		ΙW	ΩĐ	M			D.W.	M	ΜJ	Ľ₩			μÜ		ĽW		
X S S					MI	IW	IW		IW	H	-	IΨ	MJ		MJ		IW	Ш			MI	MJ	IM	MI	IW	IW		M	
SCORE	4	2	ო	4,	7	7	7	ო	-	-	-	7	7	-	-	7	ī	H	-	7	-	-	-	-	-	-	-	7	
RES G.		9.9											6.9				6.8										9.9		
FIRM- NESS	5.62	5.03	5.40	5.38	4.67	5.14	6.07	5.10	5.27		4.13	5.12	5.21	5, 75	5,03	5.53	5.40	4.92	5.70	5.79	5.44	4.88	5.70	5.72	5.46	5.38	5.92	5.18	
COOK WT G.	28.7	31.4	31.0	31.6	31.8	31.5	•	31.7	31.4	•	31.3	30.9	32.1	30.2	30.8	30.7	31.0	31.5	31.1	32.1	30.5	31.4	30.8		31.3		30.4	31.3	
VIS	<u>.</u> در	10.0			10.0				10.0	•	10.0	9. 5	10.0	10.0	9.5	10.0	10.0	10.0	8.5	10.0	9. 8	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
SEMO PRO	13,1	11.9	11.9	11.9	10.6	11.2	11.1	11.3	10.9	11.0	12.6	11.3	10.4	11.2	10.1	11.6	10.4	10.4	11.7	11.7	11.1	10.4	11.0	11.0	11.2	11.0	12.3	11.4	
VARIETY STD	STANDAR																												
VAR	ż		623-2	623-3	623-4	623-5	623-6	623-7	623-8	623-9	623-10	623-11	623-12	623-15	623-16	623-21	623-24	623-26	623-27	623-28	623-29	623-31	623-34	623-35	623-36	623-37	623-38	623-40	

FR 5.62 4.12 3.37

VI 9.5 8.5 8.0

SK SP 27 13.1 37 11.5 42 11.0

DU 90 80 75

AVG OF STANDARDS

AVG OF STANDARDS

S9.0 39.7 4 13.7 76.6 57.4 MINOR FAULTING VALUES 56.8 37.6 9 12.5 74.1 54.4 MAJOR FAULTING VALUES 55.9 34.6 14 11.5 73.1 53.4

^{**}EVALUATION 1=NO PROMISE, 2=LITTLE PROMISE, 3=SOME PROMISE, 4=GOOD PROMISE

	MIXO R SCORE		ស	ო	ო	ო	ო	ო	7	8	4	ო	7	ო	ო	4,	4,	4	4
	DUST		90	70	55	75	65	95	70	90	80	9	75	75	70	80	85	70	9
	SEMO ASH %		0.69	0.63	0,60	0.58	0.66	0.66	0.57	0.64	0.63	0.66	0,60	0.64	0.63	0.62	0.65	0.62	0.66
	SPK		27	33	23	47	37	23	13	30	37	10	47	27	9	43	27	17	13
	SEMO EXTR %		57.4	60.9	61.1	59.4	59,8	59,4	60.0	60.0	61.7	61.7	62.0	59, 5	62.0	62.0	61.2	58.5	60.3
1986 CROP NURSERY=ADVANCED	TOTL EXTR		76.6	77.5	78.8	76.6	78.4	77.1	76.9	77.5	77.8	77.6	77.9	77.6	77.8	78.9	80.0	74.9	77.3
1986 CROP ERY=ADVAN	FALL NO SEC		400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400
(n	HARD-	 	101	117	108	106	107	112	111	107	103	106	108	111	112	118	116	112	110
DURUM SAMPLES STATION=DAVIS	WHT PRO		13.7	12.0	11,5	13.3	12.9	12.6	11.7	12.0	12.1	11.7	12.0	12.5	11.7	12.4	13.2	11.9	12.1
DURUM	WHT ASH	 	1.80	1,50	1.51	1.52	1.75	1.78	1.44	1,55	1.55	1.48	1.60	1.58	1.54	1.53	1,50	1.50	1.52
OF	SIZING LG SM % %	! ! !	N	7	т	0	0	7	0	0	0	0	0	-	-	0	0	0	0
DATA ORNI	S12 LG	 	42	86	81	91	85	64	90	83	89	90	88	91	89	88	92	88	88
QUALITY DATA STATE=CALIFORNIA	1000 K. WT G.		39.7	57,3	57,8	59, 5	54.9	42.4	58.8	54.3	57.8	60.6	57.8	59.2	55.2	55.9	61.7	53, 5	57.3
QU STATE	TEST WT #/BU	 	59.0	64.0	64.7	65, 1	64.0	64.0	65.7	64.8	62.7	65.4	64.4	63.9	64.2	64.6	63.0	65.8	65.7
TABLE 25	VARIETY STD		1986 N.D. STANDARD S	BOYEROS 'S'	CARCUMUN 'S'	CHEN 'S'	HORA	HYBRID #77018	YAVAROS	624-1	624-6	624-21	624-22	624-23	624-25	624-28	624-30	624-31	624-32

		QU STATE	ALITY =CALI	FORNIA	OF DUR	UM SAP ION=D/	IPLES IVIS N	GUALITY DATA OF DURUM SAMPLES 1986 CROP STATE=CALIFORNIA STATION=DAVIS NURSERY=ADVANCED
TABLE 25 (Cont.)								TABLE 25 (Cont.)
		SEMO	VIS	COOK	SEMO VIS COOK FIRM-		SCORE	DEFICIENCIES
VARIETY STD PRO COL WT	STD	PRO	COL	LΜ	NESS RES	RES	*	TW KW SM WP TX SX DU SK SP
		×		ö		ဗ		

------VI FR

	Ħ	'n	H.J		T.	HJ		MI MJ	E	MJ MJ		HJ HJ			MJ	Ä	
	D.M.	D.M.				T E			υ	HUE					ſΨ	Ľ.	
	MI	DW.				H	MI	H	MI	H	HI	MI	H		MI	MI	
4	-	-	ส	-	7	-	7	-	-	-	-	-	ન	4	-1	т	
7.0	6.5	6.8	6.3	7.0	9.9	7.8	6.4	6.8	7.2	6.4	6.7	6.8	9.9	6.7	6. S	7.2	
5.62	5, 25	5.79	5.98	60.9	5, 79	5, 53	4.73	5, 23	5.72	5.14	6.29	6.11	5.77	7.08	6.39	6.05	
28.7	30.8	31.8	30.3	30.3	30.3	30.6	31.0	31.0	31.0	31.5	31.2	31.1	31.3	30.7	31.2	30.9	
						10.0											
13.1	11.1	10.6	11.9	12.1	11.0	10.8	11.1	11.0	10.6	10.9	11.4	10.9	11.5	12.1	10.9	11.2	
1986 N.D. STANDARD S	BOYEROS 'S'	CARCUMUN 'S'	CHEN 'S'	HORA	HYBRID #77018	YAVAROS	624-1	624-6	624-21	624-22	624-23	624-25	624-28	624-30	624-31	624-32	

FR 5.62 4.12 3.37 VI 9.9 6.0
 DU
 SK
 SP

 90
 27
 13.1

 80
 37
 11.5

 75
 42
 11.0

 DEFICIENCIES
 TW
 KW
 SM
 TX
 SX

 AVG OF STANDARDS
 59.0
 39.7
 2
 13.7
 76.6
 57.4

 MINOR FAULTING VALUES
 56.8
 37.6
 7
 12.5
 74.1
 54.4

 MAJOR FAULTING VALUES
 55.9
 34.6
 12
 11.5
 73.1
 53.4

REFERENCE MIXOGRAMS
DURUM WHEAT

