Подбор тематических моделей для построения порядка чтения на коллекции документов

Мамонов Кирилл Романович

Московский физико-технический институт

Консультант: Еремеев М. А. Эксперт: Воронцов К. В. 30 апреля 2020

Задача построение порядка чтения

Цель

Разработать алгоритм для рекомендации порядка чтения коллекции документов.

Решаемая проблема

Документы должны ранжироваться от простого к сложному, от общего к частному, то есть в том порядке, в котором пользователю будет легче разбираться в новой для него тематической области.

Методы решение

Рассматриваются тематическая модель ARTM и её вариации (мультимодальная, иерархическая), предлагается новый подход к измерению общности документов.

Постановка задачи построение порядка чтения

Обозначения

Порядок чтения R(V,E) коллекции документов D — ориентированный ацикличный граф. $v_i \in V$ соответствует множеству эквивалентных документов $D_i \neq \emptyset \subseteq D$. Ребро $v_i \to v_j$ показывает, что документы, принадлежащие множеству D_i , предшевствуют в порядке чтения документам D_j .

Матрица смежности

Порядок чтения представим в виде матрицы смежности:

Метрика качества

Разность двух порядков чтения, представленных матрицами A и \hat{A} : $MSE(A,\hat{A})=rac{1}{n}\sum_{i=1}^{n}{(A_{ij}-\hat{A}_{ij})^2}.$

Литература

Основная

- Georgia Koutrika, Lei Liu, and Steven J. Simske. Generating reading orders over document collections. 31st IEEE International Conference on Data Engineering, 2015, pages 507–518.
- Konstantin Vorontsov, Oleksandr Frei, Murat Apishev, Peter Romov, and Marina Dudarenko. Bigartm: open source library for regularized multimodal topic modeling of large collections. In International Conference on Analysis of Images, Social Networks and Texts, pages 370–381. Springer, 2015.

Решение

Первый этап

Строим тематическую модель документов из коллекции.

Второй этап

Оценивается общность каждого документа.

Третий этап

Самые общие документы объединяются в вершину графа N, остальные документы кластеризуются по взаимопересечению, алгоритм рекурсивно продолжается на каждом из кластеров, а потроенные деревья становятся детьми N.

Тематические модели

Центральное предположение тематического моделирования, что вероятность появления слова w в документе d:

$$p(w \mid d) = \sum_{t \in T} p(w \mid t)p(t \mid d) = \sum_{t \in T} \phi_{wt}\theta_{td},$$

где матрица Φ содержит распределение слов w в документ d (ϕ_{wt}), матрица Θ — вероятности θ_{td} появления темы t в документе d, T — общее количество тем в моделе.

PLSA

$$L(\Phi, \Theta) = \sum_{d \in D} \sum_{w \in d} n_{wd} \log p(w \mid d) \to \max_{\Phi, \Theta},$$

ограничения на Φ, Θ : $\sum_{w \in W} \phi_{wt} = 1, \phi_{wt} \geq 0, \sum_{t \in \mathcal{T}} \theta_{td} = 1, \ \theta_{td} \geq 0.$

Тематические модели

ARTM

$$L(\Phi,\Theta) + \sum R(\Phi,\Theta) o \max_{\Phi,\Theta}.$$

$$R(\Phi) = \sum_{t \in T} \sum_{w \in W} \beta_{wt} \log \phi_{wt}, \quad R(\Theta) = \sum_{d \in D} \sum_{t \in T} \alpha_{td} \log \theta_{td},$$

$$R = -\frac{\tau}{2} \sum_{t \in T} \sum_{s \in T} \sum_{w \in W} \phi_{wt} \phi_{ws}.$$

Hierarchical ARTM (hARTM)

Слои — ARTM модели, связаны между собой регуляризатором

$$R = \sum_{t \in T} \sum_{w \in W} n_{wt} \log \sum_{s \in S} \phi_{ws} \psi_{st},$$

где T — темы родительского слоя, S — темы дочернего слоя, Ψ — вероятностная матрица смежности тем родительского и дочернего уровней.

Метрики общности

Так как порядок чтения должен идти от общего к частному, то измерение общности каждого документа d — одна из главных проблем.

Энтропия

$$g(d) = -\sum_{t \in T} \theta_{td} log(\theta_{td})$$

Иерархическая энтропия для двуслойной hARTM

$$g_h(d) = -\sum_{t \in T} \theta_{td}^1 \sum_{s \in S} \psi_{st} \theta_{sd}^2 \log \theta_{sd}^2$$

Метрика пересечения документов

Еще одной важной характеристико является мера пересечения документов по темам. Это определяет, какие документы могут быть прочитаны независимо друг от друга, а какие стоит читать в определённой последовательности.

Пересечение по темам

$$o(d_i, d_j) = \frac{\theta_{td}^i \cdot \theta_{td}^j}{|\theta_{td}^i|^2 + |\theta_{td}^j|^2 - \theta_{td}^i \cdot \theta_{td}^j}$$

Вычислительный эксперимент

Данные

Два эталонных графа чтения русскоязычной Википедии: из категории Математика (глубина — 8, содержит 9503 документов) и из её подкатегории Машинное Обучение (глубина — 5, содержит 425 документов)

Построеннные тематические модели

Тип	Sparsity θ	Sparsity Φ	Sparsity Φ
		для слов	для биграмм
LDA	0.76	0.93	-
ARTM	0.77	0.93	-
PLSA	0.74	0.93	-
hARTM	0.87	0.95	-
ARTM с биграммами	0.82	0.90	0.75
hARTM с биграммами	0.90	0.93	0.81

Результаты вычислительного эксперимента

Рис.: Результаты для каталога Википедии по Математике

Результаты вычислительного эксперимента

Рис.: Результаты для каталога Википедии по Машинному Обучению

Заключение

- Существуют оптимальные параметры, зависящие только от типа используемой энтропии, а не от тематических моделей, как можно было ожидать.
- Рейтинг порядков чтения, построенных с использованием. разных тематических моделей, по качеству не сохраняется при маштабировании.
- Порядки чтения, потсроенные на основе тематической модели PLSA, дают одно из наилучших качеств, но применимы только к небольшим коллекциям документов из-за их большого времени построения в сравнении с другими моделями.
- Иерархическая энтропия повышает качество порядков чтения на больших коллекциях документов.
- Для произвольной коллекции лучше использовать hARTM и по качеству, и времени построения.
- Использование биграмм повышет ошибку, но снижает время построения.