- [3] (25 points) Two object of mass m_1 and m_2 and negligible size interact through a model potential $V(r) = \frac{a^2}{4r^4} \frac{b^2}{3r^3}$ where a and b are constants with the appropriate units. $r = |\vec{r}|$ is the distance between the two objects and \vec{r} is along the line connecting the centers of each object. In a particular reference frame, the Lagrangian for this isolated system can be written $L = \frac{1}{2}\mu |\vec{r}|^2 V(r)$.
- a) Specify the reference frame in which L has this form.
- b) What is the equation determining μ ?
- c) Briefly explain why the angular momentum, l, must be conserved in this system.

Because angular momentum is conserved, we can assume the motion is in a plane and use polar coordinates, so that $L = \frac{1}{2}\mu\dot{r}^2 + \frac{l^2}{2\mu r^2} - V(r)$

- d) What is the maximum angular momentum at which the masses can move in stable circular orbits around each other?
- e) What is the relative separation r in a circular orbit with angular momentum infinitesimally below the breakup value?
- f) Find the equilibrium separation of the objects in the case where they don't rotate around each other, and compare to the result in (e).