Technika bezdrátové komunikace **B2B17TBK**

Cást 4 - Komponenty VF a mikrovlnných radiových systémů

Přemysl Hudec

ČVUT-FEL katedra elektromagnetického pole

verze 2025

Obsah

- Přenosová vedení
- Konektory, adaptéry
- Bezodrazové koncovky, atenuátory
- Filtry, diplexery
- Děliče výkonu / slučovače
- Zesilovače
- Směšovače
- Oscilátory
- Násobiče frekvence
- VF přepínače

Leads
CASE STYLE:AT1029

CASE STYLE: FF658

VF a mikrovlnné systémy

- Bezdrátové komunikační zařízení a systémy, radary, RFID, měřící systémy, ...
- Skládají se ze standardních komponent:
 - Oscilátory
 - Zesilovače
 - Filtry
 - Směšovače, modulátory, demodulátory
 - o Přepínače
 - Násobiče frekvence
 - Atenuátory, bezodrazové koncovky
 - Děliče výkonu
 - o Antény podrobnosti dále v kurzu
 - 0

Příklad: Transceiver TDMA

Blokové schéma:

Důležité parametry

- Přenosové parametry → výkonový zisk G, vložný útlum IL (v AWR = dBs21)
- Také *F*, *IP2*, *IP3*, *L_c*, ...
- Impedanční přizpůsobení v propojovacích rovinách (např. na konektorech) musí všechny VF obvody vykazovat impedanci blízkou Z₀=50Ω
- Tato podmínka se často vyhodnocuje pomocí RL (v AWR = dBs11, dBs22) nebo SWR
- Impedanční přizpůsobení → podmínka RL>10dB (lépe >20dB)
- Méně jen ve výjimečných případech

INSERTION LOSS vs. TEMPERATURE

INPUT RETURN LOSS vs. TEMPERATURE

Diskrétní x integrované

- VF a mikrovlnné obvody:
 - Skládají se z diskrétních SMD prvků R, L, C, tranzistory, diody, ...
 - Mohou být integrované → více prvků skládajících složitější obvod nebo subsystém – systém na 1 čipu nebo v 1 modulu
 - Mikrovlnné monolitické integrované obvody (MMIC) od relativně jednoduchého zesilovače až po celé VF transceivery nebo radary
 - Moderní VF obvody velmi vysoká integrace, např. všechny VF části mobilního
 TF jsou v 1-2 MMIC, automobilový radar = 1 MMIC

CASE STYLE: DG983-2

Pouzdra

- Mnoho různých možností:
 - Obvody v krabičkách se vstupními/výstupními Z₀ konektory
 - Moduly se vstupními/výstupními Z₀ přenosovými vedeními
 - o MMIC → čipy nebo pouzdřené:
 - Materiály Si, GaAs, InP, GaN
 - Z_0 vstupy/výstupy, přizpůsobovací obvody na čipu
 - Samotné čipy nebo QFN pouzdra
 - Nyní většina moderních VF obvodů = MMIC
 - Např.: www.analog.com, www.qorvo.com,

CASE STYLE: HU1186

CASE STYLE: DG983-2

Přenosová vedení TL

- 3 základní typy / aplikace:
 - Propojovací vedení → propojení obvodů a subsystémů (např. anténa + RX, …)
 - Planární TL → potřebné pro konstrukci miniaturních VF obvodů využívajících SMD komponenty → tranzistory, MMIC, ...
 - Konektory
- TL jsou nepostradatelné součásti všech radiových systémů
- Jsou na MMIC čipech, v mobilních TF, v základnových stanicích (BS), WiFi routerech, automobilových radarech, ...
- V současné době je důraz kladen na miniaturizaci kde to jde, tak se používají planární TL

Propojovací TL - vlnovody

- Propojovací TL = koaxiální vedení, vlnovody
- Vlnovody:
 - Fungují v nich složitější vidy TExx, TMxx
 - Vykazují dolní mezní ("cut-off") frekvenci a horní frekvenci dominantního vidu
 - Příklad: vlnovod R100 má vnitřní rozměry 20,86x10,16mm → cut-off frekvence = 6,557GHz, horní frekvence dominatního vidu TE₁₀ = 13,114GHz
 - o Mechanicky rozměrné, dosti drahé
 - ALE velmi nízké útlumy, vysoké výkony
 - Aplikace:
 - Systémy s velmi vysokými výkony (radary, vysoušení, ...)
 - Systémy pracující na velmi vysokých GHz frekvencích >30GHz (mm-pásmo) - např. www.erevant.com
- Pro ostatní aplikace jsou preferována koaxiální vedení → širokopásmovější, menší, ohebná, levnější
- ALE vlnovody se stále vyrábějí a používají

Propojovací TL - koaxiální kabely

Koaxiální kabely:

- o Nejpoužívanější TL
- Vid TEM, ale vykazují horní frekvenci použití

- $50\Omega \rightarrow \text{radiov\'e komunikace, radary, } \dots$
- 75Ω→ TV aplikace
- Mnoho výrobců, mnoho různých typů, struktur, materiálů
- o Malé průměry (<5mm):</p>
 - Ohebné, vyšší mezní frekvence
 - ALE vysoký útlum
- Velké průměry (až třeba ~30mm):
 - Tuhé, nízké horní frekvence
 - ALE malý vložný útlum

Horní frekvence:

elmaq.org

Objevuje se vlnovodový vid

Úplně jiné rozložení pole, impedance, fázová konstanta, ...

Field lines for TE₁₁ mode of a

Příklady: Koaxiální kabely

- LMR-100A = tenký VF koaxiální kabel
 - www.timesmicrowave.com
 - D_i =0,46 mm, D_o =1,65 mm, vnější průměr 2,8 mm
 - $C/l=101,1 \text{ pF/m } L/l=0,25 \text{ } \mu\text{H/m}$
 - PE dielektrikum $\varepsilon_r = 2,3$

$$\hat{Z}_0 = \sqrt{\frac{L/l}{C/l}} = \sqrt{\frac{0,25.10^{-6}}{101,1.10^{-12}}} = 49,73 \,\Omega$$

f [MHz]	30	150	450	900	1800	2500	5800
<i>L</i> /100 m [dB]	12,9	29,4	51,9	74,9	109,0	130,6	210,3

- LMR-400A = střední průměr
 - o D_i =2,74 mm, D_0 =7,4 mm, vnější průměr 10,3 mm
 - $C/I=78,4 \text{ pF/m } L/I=0,2 \text{ }\mu\text{H/m}$
 - Pěnové PE dielektrikum

$$\varepsilon_r = 1.38$$

ctrikum
$$\hat{Z}_0 = \sqrt{\frac{L/l}{C/l}} = \sqrt{\frac{0.2.10^{-6}}{78,4.10^{-12}}} = 50,51\Omega$$

f [MHz]	30	150	450	900	1800	2500	5800
L/100m [dB]	2,2	5,0	8,9	12,8	18,6	22,2	35,5

Planární TL

- Koaxiální kabely nejsou vhodné pro konstrukci moderních VF obvodů
- Například je velmi složité zapojit jakékoliv SMD komponenty
- Proto byly vyvinuty jiné vhodnější struktury → planární TL:
 - Obdobné jako PCB
 - Podobná výroba a osazování
 - ALE pro výrobu VF substrátů se používají kvalitnější dielektrické materiály
- Dielektrické materiály:
 - Na VF velmi nízké ztráty
 - Homogenní
 - Příklady: www.rogerscorporation.com

Mikropáskové TL

- Pásky šířky W na substrátech s výškou h, relativní permitivitou ε_r a ztrátovým činitelem tg δ
- Vid = přibližně (kvazi) TEM

- Profesionální VF substráty nižší ztráty (tgδ~0,001) lepší homogenita, drahé
- Příklad výpočetního vztahu pro Z_0 :

- Standardní PCB výroba = fotorezist, maskování, leptání
- Standardní osazování zejména SMD komponent

Nevýhody:

- Otevřená struktura musí být ve stíněných boxech
- Zemnění musí být vytvořeny prokovky (via-holes)
- Vyšší průchozí útlum IL

 $Z_o = \frac{60}{\sqrt{\frac{\varepsilon_r + 1}{2}}} \left[\ln \left(\frac{8h}{w} + \frac{w}{4h} \right) - \frac{0.9}{\pi} \cdot \frac{\varepsilon_r - 1}{\varepsilon_r + 1} \right]$

Příklad: Mikropáskové TL

- Praktické výpočty: AWR TXLINE
- Realizovatelné hodnoty Z_0 od cca 30 do 110 Ω
- Omezení W>0,1mm a $W<\lambda/4$
- Příklad: S použitím materiálu ROGERS
 RO4350B (www.rogerscorporation.com)
 h=0,504mm, ε_r=3.66, tgδ =0.0036 navrhněte na
 frekvenci f=10GHz mikropásková vedení s
 impedancemi Z₀ od 20 do 110Ω
- Výsledky → v připojené tabulce

$Z_0\left[\Omega ight]$	20	30	50	70	90	110
W[mm]	3,87	2,28	1,06	0,56	0,31	0,16
L [dB/m]	7,7	7,4	7,2	7,1	7,3	7,7
$arepsilon_{e\!f\!f}$ [-]	3,2	3,1	2,8	2,7	2,6	2,4

Koplananární vedení (CPW)

- Jak střední pásek, tak i zemní plochy jsou na jedné straně PCB
- E se uzavírá mezi středním vodičem a zemními plochami
- Nejčastěji zemněný ("grounded") GCPW
- DŮLEŽITÉ všechny země musí být na stejném potenciálu → nutné je použití mnoha prokovek ("via-holes")
- Výhody GCPW:
 - Velmi dobrá zem na horní straně PCB
 - o Lze současně měnit W a S a udržet Z_0 konstantní
 - Velmi vhodné pro napojení MMIC
- Pravděpodobně nejvíce používané TL pro konstrukci moderních miniaturních VF zařízení (mobilní TF, Wi-Fi modemy, ...)
- ALE hůře se realizují filtry, děliče výkonu, ...

VF konektory

- Pro rozebíratelné spojení VF obvodů a subsystémů
- Nejdůležitější parametry:
 - \circ Impedance co nejpřesněji Z_0
 - o Perfektní stínění
 - Vysoká opakovatelnost spojení
- Instalují se na kabely, mikropásková i koplanární vedení
- Impedance: 50Ω nebo 75Ω
- Typy → standardizované: BNC, N, SMA,
 3.5mm, 2.9mm, 2.4mm, 1.8mm, 1mm
- Vykazují horní frekvenci použití (TEM)
- Miniaturní konektory:
 - Nižší VF výkon

Vyšší horní frekvence

- Robustnější typy:
 - Vyšší VF výkon
 - Ale nižší horní frekvence
- Pohlaví:
 - Male
 - Female

Standardní 50Ω konektory

 \circ N $R_o=7$ mm, robustní, <18GHz

BNC horší zem, <4GHz

SMA nejpoužívanější, <24GHz

o 3.5mm $R_0 = 3.5$ mm, < 33GHz

o 2.9mm $R_o = 2.9$ mm, < 40GHz

o 2.4mm R_0 =2.4mm, <50GHz

o 1.8mm $R_o = 1.8$ mm, < 66GHz

 \circ 1.0mm $R_o=1.0$ mm, <110GHz

- Konektory < 3.5mm, f>33GHz, zvenku stejné (podobné), liší se vnitřními průměry
- Při záměně je lze snadno zničit
- Další používané typy:
 - SMB, SMC, SMP, U-FL, ... (příklady na www.farnell.com, www.mouser.com, ...)

Horní frekvence - odpovídají rozměrům

Adaptéry

- Nepostradatelné vybavení každé VF a mikrovlnné laboratoře
- Vyrábějí se kombinace téměř všech typů a pohlaví, například:

o N-male SMA-male

o N-male SMA-female

o N-female SMA-male

o N-female SMA-female

0

- Mohou být velmi drahé obzvláště typy <2,4mm pro vysoká GHz pásma
- Vyrábí se také všechny potřebné přechody koaxiál-vlnovod

Bezodrazové koncovky

- Perfektní impedanční zakončení Z_0 , neodráží se skoro žádný VF výkon
- Velmi vysoké RL>25 dB → "black body"
- Širokopásmové → např. 0-18GHz
- **Příklad:** ANNE-50+ (www.minicircuits.com)
 - o 0-18GHz, konektor SMA, RL>23dB

- Realizace SMD odporem funkce omezená parazitními C a L
- Příklad: Rezistor 50Ω velikosti 0402 na konci mikropásku
- Použitelné do ~7GHz, *RL*>15dB

CASE STYLE: LL561

Atenuátory

Snižují VF výkon

$$L = P_{in} / P_{out}$$

- Důležitý parametr → vysoké RL
- Použití: Nastavení VF zesilovačů, nastavení výstupního výkonu TX, měření, ...
- 3 základní typy:
 - o Pevné
 - o Proměnné analogové
 - o Proměnné digitální
- Pevné atenuátory
 - o 3 odpory
 - T nebo Π články
 - 2 rovnice pro 2 neznámé parametry L, Z₀
- Realizace:
 - Koaxiální s konektory

MMIC elmago Ze 3 SMD odporů

Electrical Schematic

CASE STYLE: FF658

CASE STYLE: MC1630

Příklady: Pevné atenuátory

- Koaxiální: BW-SxxW2 series (minicircuits.com)
 - o xx = útlum v dB, 1...50 dB
 - o 0 18GHz, *RL*>15dB

CASE STYLE: FF658

- MMIC: YAT-xx series (minicircuits.com)
 - o $xx = \text{útlum } v \text{ dB}, 0 \dots 30 \text{dB}$
 - o Pouzdro 2x2mm, 0-18GHz, *SWR*<1,75 *RL*>11,3dB

CASE STYLE: MC1630

$$\left|\hat{\Gamma}\right| = \frac{SWR - 1}{SWR + 1}$$

Proměnné atenuátory - analogové

- 3 FETy místo odporů
- 1 až 2 řídící napětí
- Příklad: HMC973A (www.analog.com)
 - o 0,5 5 GHz, 3 30dB
 - Řídící napětí od 0 do +5V
 - MMIC pouzdro 3x3mm

Attenuation vs. Frequency Over Vctrl @ VDD=5 V

Functional Diagram

Proměnné atenuátory - digitální

- Kaskáda pevných atenuátorů a přepínačů
- Přepínací doby ~ 10¹ ns
- Příklad: DAT-31R5A-PN+ (www.minicircuits.com)
 - o 0 4 GHz
 - o 6-bitů → změna 1 32,5dB, krok 0,5dB
 - o MMIC pouzdro 4x4mm

CASE STYLE: DG983-2

Filtry

- Základní komponenty všech VF a mikrovlnných systémů → aplikace například:
 - Potlačení sousedních radiových kanálů = selektivita
 - Potlačení interferencí
 - Potlačení šumu
 - o EMI/EMC
 - o Parametry:
 - Nízký IL a vysoké RL v propustném pásmu
 - Vysoký IL a RL→0 v zádržném pásmu
 - Návrh → v B2M17MIO
- Realizace:
 - Koaxiální
 - Planární
 - SMD moduly
 - Keramické LTCC

SAW, BAW

CASE STYLE: FF1118

CASE STYLE: HQ1157

- Frekvenční závislosti:
 - Dolní propust (DP)
 - Horní propust (HP)
 - Pásmová propust (PP)
 - Pásmová zádrž (PZ)

Příklad: Filtr DP

 VLFX-1350+, filtr DP, koaxiální LC (www.minicircuits.com)

CASE STYLE: FF1118

Functional Schematic

Příklad: Filtr HP

- HFCN-8400, filtr HP, keramický LTCC
- 3,2 x 1,6 x 0,89mm (www.minicircuits.com)

CASE STYLE: FV1206-1

electrical schematic

Příklad: Filtr PP

- BPF-A580+ filtr PP, provedení modul LC
- modul 9,3 x 34,5 x 8,9mm (minicircuits.com)

CASE STYLE: HQ1157

INSERTION LOSS vs. TEMPERATURE

Příklad: Filtr PP - planární

- Mikropásková PP
 - Vázané λ/2 rezonátory
 - Analýza úlohaAWR2
 - o Návrh v B2M17MIO

Příklad: Filtr PZ

- BSF-C88108+, filtr PZ, provedení modul LC
- Modul 22,1 x 20,3 x 6,3mm (minicircuits.com)

CASE STYLE: HU1186

Functional Schematic

Filtry SAW, BAW

- "Surface / Bulk Acoustic-Wave" filtry
- Založeny na piezo-elektrickém jevu
- Miniaturní filtry s vysokou selektivitou
- Nepostradatelné součásti všech mobilních TF, ...
- Příklad: B4327 BPF (Qualcomm)
 - 1550 1605 MHz (GPS, GALILEO)
 - o 1,4 x 1.1 x 0,4 mm

Transfer function (wideband)

Diplexery

- Speciální filtry určené pro sloučení TX a RX do 1 antény v FDMA radiových transceivrech
- Velmi nízký slučovací útlum
- Ale TX a RX musí pracovat na různých frekvencích
- Vykazují mrtvé pásmo ("dead band")
- Příklad: RDP-272+ diplexer
 - minicircuits.com
 - Pásmo 1: DC-950 MHz
 - *IL*<0,7dB
 - Pásmo 2: 1700-2700 MHz
 - *IL*<0,7dB
 - o Modul 12,7 x 12,7 x 4,6mm

500

1000

1500

Frequency (MHz)

2000

2500

3000

LOW PASS

HIGH PASS

Functional Schematic

Děliče výkonu / slučovače

- Ve VF a mikrovlnném oboru není možné sloučit nebo rozdělit signály přímým spojením "drátů"
- Paralelní spojení snižuje impedanci a porušuje impedanční přizpůsobení
- Nutné jsou speciální komponenty = děliče výkonu:
 - o 2 až *n* výstupů
 - Vysoké hodnoty RL na všech branách
 - Vysoká izolace IS mezi výstupy
 - Stejnou strukturu lze použít jako dělič i slučovač
- 2 základní typy:
 - Děliče = mají (přibližně) stejný dělicí útlum do všech výstupů

Vazby = nesymetrické děliče, často mají směrové účinky

Děliče ("Splitters")

- Stejné dělicí útlumy do všech výstupů
- 1:2 → fázové rozdíly typ. 0º, 90º, 180º
- *n* výstupů
- Vysoké RL na všech branách
- IL se skládá z:
 - Rozdělení výkonu do více výstupů
 - o Přídavné vnitřní ztráty

- o Důležitý parametr
- Typ. hodnota IS>20dB → redukuje vzájemné ovlivňování připojených obvodů

dělič 1:n	insertion loss	IL
IN O	insertion loss $ \begin{array}{c c} \hline Z_0 \\ \hline O & OUT1 \\ \hline O & OUT2 \\ \hline \hline O & OUTn \\ \hline Z_0 & OUTn $	izolace IS

$$L_d = 10\log n$$

No. of outputs	basic attenuation	typical insertion loss
2	3 dB	3,5 - 4,0 dB
4	6 dB	6,5 - 7,5 dB
8	9 dB	10 – 11 dB

Základní typy:

Integrované SMD

Planární

Příklad: Děliče

SCW-2-722+ 4.8 - 7.2 GHz (minicircuits.com)

o n=2, 0° integrovaný LTCC 1,6 x 0,8 x 0,6mm

Pianarni mikropaskovy typu vviikinson (B2M17MIO)

Vazby ("Couplers")

Nesymetrické děliče výkonu:

- Nejčastěji *n*=2
- Např. 10/1dB
- Paralelní λ/4 vázaná vedení
- Nebo induktivně vázané transformátory
- BK na jednom vázaném výstupu
- Vazební útlum C~ 8 až 50dB
- IL závisí také na C
- Často směrové účinky směrové vazby ("directional couplers") IS>>C
- Používají se také pro měření odrazů
- Směrovost ("directivity") D=IS-C (vše v dB)
- Návrh mikropáskové vazby v B2B17MIO

- OUTPUT

DIRECTIONAL COUPLER (DC SHORT TO GND)*

INTERNAL STERMINATION

Příklad: Vazba

- ZFDC-20-50+ (minicircuits.com)
 - o *C*=20dB
 - o 20 2000MHz
 - V krabičce s konektory SMA

Frequency (MHz)

Zesilovače ("Amplifiers")

- Jsou nutné pro pokrytí útlumů ve VF systémech
- Mnoho různých typů:
 - Úzkopásmové x širokopásmové
 - Nízký výkon x vysoký výkon
 - Nízkošumové (LNA)
- Vnitřní struktura:
 - Tranzistory + přizpůsobovací obvody PO
 - Někdy se zpětnou vazbou
 - Často se skládají z více tranzistorů
- Analýza úloha AWR 3, návrh úloha AWR 5
- Podrobněji včetně teorie B2M17MIO

Příklad: Nízkošumový zesilovač - LNA

- HMC903LP3E (analog.com)
 - Širokopásmový 5 17GHz
 - o Zisk G~17dB
 - Nízkošumový F~2dB
 - Nízký výstupní výkon P_{-1dB}~13dBm
 - o MMIC pouzdro 3x3mm
 - o 3V/80mA

FUNCTIONAL BLOCK DIAGRAM

Příklad: Výkonový zesilovač - PA

- ZHL-5W-2G+ (minicircuits.com)
 - Výkonový zesilovač 5W
 - o 800 2000MHz, konektory SMA
 - o 24V/2,5A, 177x82x30mm

Směšovače ("Mixers")

- Jsou obsaženy v min. 95% všech radiových RX a TX
 - Jsou provozovány jako down-konvertory nebo upkonvertory, IQ modulátory, ...
 - Jsou založeny na nelinearitách 2. řádu → IM2
 - Vyžadují relativně silný LO signál (typ. 5 15dBm)
 - Matematický popis → násobička

$$\begin{aligned} u_{IF}(t) &= k_2 V_{LO} \cos(\omega_{LO} t) V_{RF} \cos(\omega_{RF} t) = \\ &= \frac{1}{2} k_2 V_{LO} V_{RF} \left[\cos(\omega_{LO} t + \omega_{RF} t) + \cos(\omega_{LO} t - \omega_{RF} t) \right] \end{aligned}$$

Užitečný signál = nové frekvenční složky $\omega_{IF} = \omega_{IO} + \omega_{RF}$ $\omega_{IF} = \omega_{LO} - \omega_{RF}$

elmaq.org

$$\omega_{IF} = \omega_{LO} + \omega_{RF}$$

$$\omega_{IF} = \omega_{LO} - \omega_{RF}$$

- Signály jsou konvertovány na nové vyšší nebo nižší frekvence
 - **Down-konverze** → na nižší frekvenci, typ. v přijímačích
 - **Up-konverze** → na vyšší frekvenci, typ. ve vysílačích (brány RF a IF mohou být prohozeny)

Směšovače

- Díky nelineárnímu procesu je na výstupu směšovačů také mnoho dalších parazitních složek:
 - o Vstupní frekvence ω_{RF} , ω_{LO}
 - o Harmonické $2\omega_{RF}$, $2\omega_{LO}$, $3\omega_{LO}$,
 - o Vyšší IM produkty $\omega_{RF}\pm2\omega_{LO}$, $2\omega_{RF}\pm3\omega_{LO}$,...
 - \circ Filtry (často SAW) musí propustit jen užitečné produkty $ω_{IF} = ω_{LO} + ω_{RF}$ nebo $ω_{IF} = ω_{LO} ω_{RF}$ =
- Důležité parametry:
 - o Frekvenční rozsahy RF, LO, IF
 - Konverzní ztráty (zisk)
 - Nominální výkon LO
 - Útlumy parazitních produktů
- Podrobnější popis:

elmag.org

Na cvičeních → praktická měření
 B2B37ROZ, B2M17MIO

Transfer function (wideband)

Realizace:

- MMIC x krabičky s konektory
- Pasivní (s diodami), L_c
- Aktivní (s tranzistory), G_c
- o IQ

Příklad: Mikrovlnný směšovač

- HMC412BMS8G (analog.com)
 - Širokopásmový, MMIC 3x3mm
 - \circ RF,LO \rightarrow 8-16GHz
 - \circ IF \rightarrow DC-2,5GHz
 - o P_{LO} = typ. 15dBm

Functional Diagram

Conversion Loss vs. LO Drive RFIN = -5 dBm, USB, Ta = +25C

Noise Figure vs. LO Power RFIN = -5 dBm, USB, Ta = +25C

LO to RF, LO to IF, and RF to IF Isolation LO Power = +13 dBm, USB, Ta = +25C

Příklad: IQ směšovač

- HMC521LC4 (analog.com)
 - o MMIC, pouzdro 4x4mm
 - \circ RF,LO \rightarrow 8,5-13,5GHz, P_{LO} = 19dBm
 - \circ IF \rightarrow DC-3,5GHz
 - Uvnitř 2 směšovače + dělič 1:2 0/90°
 - o Násobení $sin(ω_{LO}t)$ a $cos(ω_{LO}t)$
 - Použití → přímé IQ modulátory, demodulátory – (popis později v kurzu)

Functional Diagram

Conversion Gain vs. LO Drive

Amplitude Balance vs. LO Drive

Phase Balance vs. LO Drive

Oscilátory

- 2 hlavní funkce:
 - TX → zdroje sinusové nosné ("carrier")
 - RX → místní oscilátory nutné pro buzení LO vstupů směšovačů
- Vnitřní struktura:
 - Mnoho různých typů
 - Rezonátor s vysokým Q definuje výstupní frekvenci
 - Tranzistor kryje vnitřní ztráty
 - Často je použita kladná zpětná vazba
- Základní typy:

elmag.org

- Pevná frekvence → DRO, OCXO, TCXO, ...
- Proměnná frekvence → VCO
- Návrh v B2M17MIO

Oscilátory řízené napětím - VCO

"Voltage controlled oscillators":

- Rezonátory jsou elektronicky laditelné
- Ladění umožňuje změnit frekvenci
- Obvody fázového závěsu (PLL) stabilizují výstupní frekvenci a snižují fázový šum
- PLL je velmi důležitý obvod používaný např. ve všech mobilních TF
- o Popis PLL později
- Ladící prvky:
 - Varaktorové diody
 - \circ V_{tune} =0 až 15V mění kapacitu typ. 10:1
 - Přeladění frekvence max. 2:1
 - Často výrazně méně
- · Realizace:
 - MMIC

- HMC513LP5E (analog.com)
 - Přeladitelný 10,43 11,46GHz
 - o Výstupy $f_0/2$ a $f_0/4$ (obsahuje vnitřní děličky frekvence)
 - o 3V/275mA
 - QFN pouzdro 5x5mm

Functional Diagram

Frequency vs. Tuning Voltage, T= 25°C

Sensitivity vs. Tuning Voltage, Vcc= +3V

Output Power vs. Tuning Voltage, Vcc= +3V

Násobiče frekvence ("Frequency Multipliers")

- Používají se často pro generování vysokých GHz frekvencí
- Za oscilátorem pracujícím na relativně nízké frekvenci je zapojen násobič 2x, 3x, ...
- Na nižších frekvencích:
 - Lze vyrobit kvalitnější VCO
 - Snáze lze realizovat PLL

- Příklad: Automobilové radary 77GHz používají
 VCO 12,83GHz + frekvenční násobič 6x
- Násobení frekvence → provádí se na nelineárním prvku (dioda, tranzistor)
- Násobiče 2x:
 - Využívají nelinearitu 2. řádu
 - Nechtěné produkty f₁, 3f₁, 4f₁, ... musí být vyfiltrovány

Pasivní násobiče →
$$P_{in}$$
 ~10dBm

$$v_2 = k_2 v_1^2 = k_2 V_1^2 \cos^2(\omega_1 t + \psi) =$$

$$= \frac{1}{2} k_2 V_1^2 (1 + \cos(2\omega_1 t + 2\psi))$$

Násobiče frekvence

Násobiče 3x:

- Využívají nelinearitu 3. řádu
- Užitečný signál = 3. harmonická

- Nechtěné produkty f₁, 2f₁, 4f₁, ... musí být vyfiltrovány
- Pasivní násobiče → P_{in} ~ 10dBm
- Aktivní násobiče (tranzistorové) → stačí nižší vstupní výkon typ. 2dBm

násobič

$$v_{2} = k_{3}v_{1}^{3} = k_{3}V_{1}^{3}\cos^{3}(\omega_{1}t + \psi) =$$

$$= po \ filtraci = \frac{1}{4}k_{3}V_{1}^{3}\cos(3\omega_{1}t + 3\psi)$$

Důležité parametry:

- Nominální vstupní výkon P_{in}
- Konverzní ztráty

$$L_c = \frac{P_{in}(at \ \omega_1)}{P_{out}(at \ 2\omega_1)} \qquad L_c = \frac{P_{in}(at \ \omega_1)}{P_{out}(at \ 3\omega_1)}$$

$$L_c = \frac{P_{in}(at \ \omega_1)}{P_{out}(at \ 3\omega_1)}$$

 Potlačení nežádoucích signálů = měření výkonu signálů $f_1, \ldots, 4f_1, \ldots$ na výstupu

Příklad: Násobič frekvence 2x

- HMC814LC3B (www.analog.com)
 - Aktivní násobič 2x
 - Obsahuje 2 zesilovače
 - o Vstup 6,5 12,3GHz
 - Výstup 13 24,6GHz
 - Vstupní výkon 2-6dBm, výstupní 17dBm
 - o 5V/90mA, pouzdro QFN 3x3mm

Functional Diagram

Output Power vs. Drive Level

Isolation @ +4 dBm Drive Level

VF přepínače ("RF Switches")

- VF a mikrovlnné elektronicky nastavitelné přepínače
- Používají se např. pro TDMA provoz nebo pro přepínání sub-pásem v mobilních TF
- Přepínací prvky:
 - PIN diody → pro výkonové aplikace
 - FETy (ON $\rightarrow V_G$ =0, OFF $\rightarrow V_G$ =-3V)
 - Spínače zapojené sériově a proti zemi
- Obvyklé typy:
 - SPST
 - SPDT
 - o SP4T
 - 0

elmag.org

Popis vnitřních struktur v B2B37ROZ,
 B2M17MIO

Příklad: VF přepínač

- HMC1118 (www.analog.com)
 - o 9kHz 10GHz
 - Řídící napětí 0 / 3,3V
 - CMOS compatible
 - Non-reflective
 - o QFN pouzdro 3x3mm

FUNCTIONAL BLOCK DIAGRAM

Shrnutí - VF a mikrovlnné komponenty

- VF a mikrovlnné systémy se skládají z mnoha různých typických obvodů:
 - TL, filtry, děliče výkonu, zesilovače, ...
 - Aktivní x pasivní
 - Diskrétní x integrované
 - MMIC x s konektory
- Všechny komponenty a obvody musí vykazovat:
 - ∨ aktivním frekvenčním pásmu kanálu → velmi dobré impedanční přizpůsobení (RL>>10dB)
 - Požadovaný zisk G nebo útlum IL
 - \circ V případě nelineárních prvků \to IP2, IP3, P_{IM2} , P_{IM3} , $L_{c_{+}...}$
- Pokud jsou tyto podmínky splněny → lze navrhnout a vyrobit kvalitní a spolehlivě pracující zařízení a systémy

