NOTES FOR ALGEBRAIC NUMBER THEORY M3P15

AMBRUS PÁL

1. Gaussian Integers

The Gaussian integers are complex numbers of the form:

$$\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}.$$

Proposition 1.1. Gaussian integers form a subring of complex numbers.

Proof. Clearly $\mathbb{Z}[i]$ contains 0 and 1, so we only need to show that it is closed under addition and multiplication. We compute:

$$(a+bi) + (x+yi) = (a+x) + (b+y)i,$$

 $(a+bi)(x+yi) = (ax-by) + (ay+bx)i.$

Proposition 1.2. The function:

$$N: \mathbb{Z}[i] - \{0\} \longrightarrow \mathbb{N} - \{0\}$$

given by the rule:

$$N(a+bi) = a^2 + b^2$$

is well-defined and it is a homomorphism of semi-groups, i.e. it is multiplicative.

Proof. Note that:

$$N(a+bi) = (a+bi)\overline{(a+bi)}.$$

In particular for every non-zero $a + bi \in \mathbb{Z}[i]$ the number N(a + bi) is positive, and therefore the function N is well-defined. Since it is the restriction of the complex norm onto $\mathbb{Z}[i]$, it is multiplicative, too.

Proposition 1.3. Let A, B, C, D be four points on the plane such that the rectangle \overline{ABCD} is a square with sides of length one. Let P be an point on \overline{ABCD} . Prove that the distance of P from one of the four points A, B, C, D is at most $\frac{\sqrt{2}}{2}$.

Proof. For one of the four triangles \overline{ABP} , \overline{BCP} , \overline{CDP} or \overline{ADP} the angle at P is at least 90 degrees. We may assume that this holds for the triangle \overline{ABC} without the loss of generality. Let a, b, and c denote the length of the sides \overline{AP} , \overline{BP} or \overline{AB} , respectively. Let α denote the angle at P. By the cosine law:

$$1 = c^2 = a^2 + b^2 - 2ab\cos(\alpha) > a^2 + b^2$$

since α is at least 90 degrees. We may assume that $a \geq b$ without the loss of generality. Then

$$1 > 2b^2$$
.

Date: February 8, 2013.

Proposition 1.4. The ring of Gaussian integers is an Euclidean domain.

Proof. It will be enough to show that for every $x,y\in\mathbb{Z}[i]-\{0\}$ such that x does not divide y there is a $q\in\mathbb{Z}[i]$ such that N(r)< N(x) where r=y-xq. Let z=y/x. Since on the complex plane the Eisenstein integers are the vertices of a mosaic which consists of squares whose sides have length one, there is a $q\in\mathbb{Z}[i]$ such that $|z-q|\leq \frac{\sqrt{2}}{2}$ by the previous proposition. For this choice of q we get

$$N(r) = |r|^2 = |y - xq|^2 = |z - q|^2 |x|^2 \le \frac{1}{2}N(x).$$

Proposition 1.5. We have $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}$.

Proof. First note that $u=a+bi\in\mathbb{Z}[i]$ is a unit if and only if N(a+bi)=1. Indeed if N(a+bi)=1 then $1=(a+bi)\overline{(a+bi)}$ and since $\overline{(a+bi)}\in\mathbb{Z}[i]$ we get that a+bi is a unit. On the other hand if $u\in\mathbb{Z}[i]^*$ then there is a $v\in\mathbb{Z}[i]$ such that uv=1. By the multiplicativity of the the norm N(u)N(v)=1. We get that N(u) is a positive integer which divides 1, so it must be equal to 1. Let $a+bi\in\mathbb{Z}[i]$ be a unit. By the above

$$1 = N(a + bi) = a^2 + b^2,$$

and hence either $a = \pm 1$ and b = 0 or $b = \pm 1$ and a = 0.

Lemma 1.6. Let $u \in \mathbb{Z}[i]$ be a prime. Then either $u = \pm p, \pm ip$ where $p \in \mathbb{Z}$ is a prime number or $N(u) \in \mathbb{Z}$ is a prime number.

Proof. Note that u divides the integer N(u) so it must divide one of its prime factors, say $p \in \mathbb{Z}$. By the multiplicativity of the norm the integer N(u) divides $N(p) = p^2$. Because u is not a unit we get that N(u) = p or $N(u) = p^2$. We may assume that we are in the second case. Let p = uv with $v \in \mathbb{Z}[i]$. By the multiplicativity of the the norm N(u)N(v) = N(p). Because N(u) = N(p) we get that N(v) = 1. The claim now follows from the previous proposition.

Lemma 1.7. Let $p \in \mathbb{Z}$ be an odd prime number. Then -1 is square mod p if and only if $p \equiv 1 \mod 4$.

Proof. Recall that $(\mathbb{Z}/p\mathbb{Z})^*$ is a cyclic group of order p-1. In particular $-1 \mod p$ is its unique element of order 2, since p is odd. Moreover -1 is square mod p if and only if $(\mathbb{Z}/p\mathbb{Z})^*$ has and element of order 4. This happens if and only if 4 divides the order of this group, that is $p \equiv 1 \mod 4$.

Proposition 1.8. A prime number $p \in \mathbb{N}$ is a prime of $\mathbb{Z}[i]$ if and only if $p \equiv -1 \mod 4$.

Proof. By the above p remains a prime in $\mathbb{Z}[i]$ if and only if it is not a norm of an element of $\mathbb{Z}[i]$. Since 1+1=2, this is not the case for 2. When $p\equiv -1 \mod 4$ the congruence

$$x^2 + y^2 \equiv p \mod 4$$

has no nontrivial solution so p must remain a prime in $\mathbb{Z}[i]$. So we may assume that $p \equiv 1 \mod 4$. Suppose that p remains a prime! By the previous lemma the congruence $x^2 + 1 \equiv 0 \mod p$ has a solution. Let x be such a solution; then p divides one of the Gaussian integers x + i or x - i, since it divides their product. This implies that p divides ± 1 which is a contradiction.

Theorem 1.9. For every positive integer n the Diophantine equation:

$$a^2 + b^2 = n, \quad a, b \in \mathbb{Z}$$

has a solution if and only if for every prime number $p \in \mathbb{N}$ such that $p \equiv -1 \mod 4$ has an even exponent in the prime factorisation of n.

Proof. First note that this Diophantine equation has a solution if and only if n is the norm of a Gaussian integer. So in particular it has a solution for n prime when p=2 or $p\equiv 1 \mod 4$ and for $n=p^2$. Because the norm is multiplicative it also has a solution for any positive integer which can written as a product of such numbers. Therefore the condition is sufficient.

Assume now that N(a+ib) = n with $a+bi \in \mathbb{Z}[i]$. Let p be a prime factor of n with number $p \equiv -1 \mod 4$. It remains a prime in $\mathbb{Z}[i]$. By conjugating the unique prime factorisations of a+bi and a-bi we get that p has the same exponent in the prime factorisation of a+bi and a-bi. Therefore it must have an even exponent in the prime factorisation of n, and hence the condition is necessary, too.