

Dibujo de Ingeniería - 15232-0-A-2

Presentación 07: Desarrollo de Mato y Pérdida de Material

M.Sc. Estefano Matías Muñoz Moya

Universidad de Santiago de Chile Facultad de Ingeniería - Departamento de Ingeniería Mecánica Av. Bdo. O'Higgins 3363 - Santiago - Chile Laboratorio de Biomecánica y Biomateriales e-mail: esteráno, munozówach, cl.

> INGENIERÍA CIVIL MECÁNICA 7 de mayo de 2021

- Explicar el desarrollo de manto
- 2 Desarrollo de cilindros, con vaciados
- 3 Desarrollo de conos
- 4 Pérdida de material
- 5 Intersección de material

- Explicar el desarrollo de manto
- Desarrollo de cilindros, con vaciados
- Desarrollo de conos
- Pérdida de material
- Intersección de material

Explicar el desarrollo de manto

Figura 1: Representación 2D.

Figura 2: Representación 3D.

- Explicar el desarrollo de manto
- 2 Desarrollo de cilindros, con vaciados
- Desarrollo de conos
- Pérdida de material
- Intersección de material

Desarrollo de cilindros, con vaciados

Figura 3: Representación 2D.

Figura 4: Representación 3D.

Manto de cilindro base

$$L = \pi * diametro$$

Figura 5: Procedimiento.

Divisiones en el manto y circunferencia

Figura 6: Procedimiento.

Proyección de líneas

Figura 7: Procedimiento.

Intersección de proyecciones

Figura 8: Procedimiento.

Curva unión de puntos

Figura 9: Procedimiento.

Proyección inferior

Figura 10: Procedimiento.

Curva inferior

Figura 11: Procedimiento.

Proyección de vaciado circular

Figura 12: Procedimiento.

Proyección de vaciado triangular

Figura 13: Procedimiento.

Manto final sin costura

Figura 14: Procedimiento.

- Explicar el desarrollo de manto
- Desarrollo de cilindros, con vaciados
- 3 Desarrollo de conos
- Pérdida de material
- Intersección de material

Caso base

Figura 15: Cono.

Metodología

Figura 16: Metodología.

Cono con vaciado

Figura 17: Cono con vaciado.

Ejercicio de cono con vaciado

Figura 18: Ejercicio.

- Explicar el desarrollo de manto
- Desarrollo de cilindros, con vaciados
- Desarrollo de conos
- 4 Pérdida de material
- Intersección de material

Pérdida de material

Figura 19: Ejercicio.

- Explicar el desarrollo de manto
- Desarrollo de cilindros, con vaciados
- Desarrollo de conos
- Pérdida de material
- 5 Intersección de material

Intersección de material

Figura 20: Intersección de material.

Dibujo de Ingeniería - 15232-0-A-2

Presentación 07: Desarrollo de Mato y Pérdida de Material

M.Sc. Estefano Matías Muñoz Moya

Universidad de Santiago de Chile
Facultad de Ingeniería - Departamento de Ingeniería Mecánica
Av. Bdo. O'Higgins 3363 - Santiago - Chile
Laboratorio de Biomecánica y Biomateriales
e-mail: eaterfano, munozousach, cl.

INGENIERÍA CIVIL MECÁNICA 7 de mayo de 2021