Combining Symbolic Expressions and Black-box Function Evaluations in Neural Programs

Forough Arabshahi* Sameer Singh* Animashree Anandkumar†

*University of California, Irvine † California Institute of Technology

Neural Programming

- Learning black-box functions
- Observations:
- * black-box function evaluations (*fEval*)
- * program execution traces (eTrace)
- Challenges: Lack of generalization due to:
- * *fEval*: Insufficient structural information
- * eTrace: Computational issues affecting the domain coverage
- Solution:
 - * Most problems have access to symbolic representations (sym)
- * Combine *sym* and *fEval* data:
- * *sym*: preserve problem's structure
- * *fEval*: enable function evaluation
- Case study: Modeling mathematical equations
- Summary of contributions:
 - * Combine symbolic representation and function evaluation
- * Equation verification and equation completion using TreeLSTMs
- * Balanced dataset generation method

Mathematical Equation Modeling

• Grammar rules:

$$I \to = (E, E), \neq (E, E)$$

$$E \to T, F_1(E), F_2(E, E)$$

 $F_1 \to \sin, \cos, \tan, \dots$

$$F_2 \to +, \wedge, \times, \dots$$

 $T \rightarrow -1, 0, 1, 2, \pi, x, y, \dots$, any number in [-3.14,+3.14]

• Covered domain:

Table: Symbols in our grammar, i.e. the functions, variables, and constants

Unary functions, F_1					$\overline{\textbf{Terminal}, T}$		Binary, F_2	
sin	COS	CSC	sec	tan	0	1	+	
cot	arcsin	arccos	arccsc	arcsec	2	3	×	
arctan	arccot	\sinh	\cosh	csch	4	10	\wedge	
sech	tanh	coth	arsinh	arcosh	0.5	- 1		
arcsch	arsech	artanh	arcoth	exp	0.4	0.7		
					π	x		

• Examples of equation trees:

Dataset Generation Scheme:

Generating Symbolic Equations

- Generate possible equations valid in the grammar
- * Start from a small initial set of axioms
- * For each axiom, choose a random tree node
- * Make local random changes to the node:
- * Problem: More incorrect equations than correct
- Solution: Sub-tree matching
- Generate additional correct equations
 - * mathDictionary: A dictionary of valid mathematical statements.
 - \star E.g. (x + y : y + x) forms a key-value pair
- * For each correct equation in the dataset, chose a random tree node
- * Find a dictionary key whose pattern matches the chosen sub-tree
- * Replace the sub-tree with the value's pattern, e.g.
- * Equation: $\sin^2 \theta + \cos^2 \theta = 1$
- \star Key-value pair: (x + y : y + x)

★ Chosen node: +

 \star output: $\cos^2 \theta + \sin^2 \theta = 1$

Generating function evaluation equations

- Function Evaluation
- * Range of floating point numbers of precision 2: [-3.14, 3.14]
- * For each unary function: draw a random number and evaluate
- * For each binary function: draw two random numbers and evaluate
- Representation of numbers
- * For all numbers in the dataset, form the decimal tree expansion
- * E.g. $2.5 = 2 \times 10^0 + 5 \times 10^{-1}$

Tree LSTMs for Modeling Equations

- Tree LSTM whose structure mirrors the input equation
 - * Function blocks are LSTM cells
 - * Weight sharing between occurrences of the same function
 - * Symbol block is a 1-layer feed-forward net for embedding terminals
 - * Number block is a 2-layer feed-forward net for embedding numbers

- Baselines:
 - * Sequential Recurrent Neural Networks
 - * Sequential LSTMs
 - * Tree-structured RNNs without function evaluation data
- * Tree-LSTMs without function evaluation data
- * Tree-structured RNNs with function evaluation data

Experiments and Results

Complexity of an equation: its expression tree depth

• Equation Verification: Generalization to unseen identities

Table: Generalization Evaluation: the train and the test contain equations of the same depth [1,2,3,4]. Results are on unseen equations. Sym and F Eval refer to accuracy on Symbolic and function evaluation expressions, respectively. Test set sizes shown as the counts in (Sym + F Eval) data.

Approach	Sym	F Eval	depth 1	depth 2	depth 3	depth 4
Test set size	3527	401	5+2	542+158	2416+228	563+13
Majority Class	50.24	50.00	20.00	45.75	52.85	43.69
Sympy	81.74	-	80.00	89.11	82.98	69.44
RNN	66.37	-	50	62.93	65.13	72.32
LSTM	81.71	-	80.00	79.49	80.81	83.86
TreeNN	92.06	_	100	95.37	94.16	87.45
TreeLSTM	95.18	-	80.00	96.50	95.07	94.50
TreeNN + data	93.38	92.81	87.5	94.43	92.32	93.58
TreeLSTM + data	97.11	97.17	75.00	98.14	97.01	97.05
		1	_	1 .1		

Equation Verification: Extrapolation to unseen depths

Table: Extrapolation Evaluation to measure capability of the model to generalize to unseen depth. Acc: Accuracy, Prec: Precision, Rec: Recall

Approach	Train:1,2,3; Test on 4			Train:1,3,4; Test on 2			
прргоасп	Acc	Prec	Rec	Acc	Prec	Rec	
Majority Class	55.22	0	0	56.21	0	0	
RNN	65.15	68.61	75.51	71.27	82.98	43.27	
LSTM	76.40	71.62	78.35	79.31	75.27	79.31	
TreeNN	88.36	87.87	85.86	92.58	89.04	94.71	
TreeLSTM	93.27	90.20	95.33	94.78	94.15	93.90	
TreeNN + data	92.71	88.07	93.66	94.09	91.06	93.19	
TreeLSTM + data	96.17	92.97	97.15	97.37	96.08	96.86	

Equation Completion

0.9999

0.9999

0.999

0.999

0.27

0.29

0.26

0.25

0.9977

0.9977

0.9977

0.9977

