

planetmath.org

Math for the people, by the people.

nuclear space

Canonical name NuclearSpace

Date of creation 2013-03-22 16:37:28 Last modified on 2013-03-22 16:37:28

Owner Simone (5904) Last modified by Simone (5904)

Numerical id 6

Author Simone (5904)
Entry type Definition
Classification msc 46B20

If E is a Frchet space and (p_j) an increasing sequence of semi-norms on E defining the topology of E, we have

$$E = \lim_{\longleftarrow} \widehat{E}_{p_j},$$

where \widehat{E}_{p_j} is the Hausdorff completion of (E, p_j) and $\widehat{E}_{p_{j+1}} \to \widehat{E}_{p_j}$ the canonical morphism. Here \widehat{E}_{p_j} is a Banach space for the induced norm \widehat{p}_j .

A Frchet space E is said to be nuclear if the topology of E can be defined by an increasing sequence of semi-norms p_j such that each canonical morphism $\widehat{E}_{p_{j+1}} \to \widehat{E}_{p_j}$ of Banach spaces is nuclear.

Recall that a morphism $f : E \to F$ of complete locally convex spaces is said to be nuclear if f can be written as

$$f(x) = \sum \lambda_j \xi_j(x) y_j$$

where (λ_j) is a sequence of scalars with $\sum |\lambda_j| < +\infty, \xi_j \in E'$ an equicontinuous sequence of linear forms and $y_j \in F$ a bounded sequence.