

Kryptographie für CTFs

Eine Einführung - Teil 2

KITCTF

Letztes Mal: Einführung

- Klassiker
 - Caesar-Chiffre
 - Vigenère-Chiffre
- Symmetrische Verschlüsselungsverfahren (DES, AES)
 - Blockchiffren
 - Stromchiffren
- Asymmetrische Verschlüsselungsverfahren
 - RSA
 - ElGamal
 - McEliece

Heute

- Diskreter Logarithmus
 - Gegeben sei eine endliche zyklische Gruppe G mit Erzeuger α der Ordnung n. Finde x, $0 \le x \le n-1$ mit $\alpha^x = \beta$.
- Verfahren
 - ElGamal
 - Diffie-Hellman-Schlüsselaustausch
- Attacken

Diffie-Hellman-Schlüsselaustausch

 $K = A^b \% p = B^a \% p$

18.10.2018

Diffie Hellman Key Exchange

- Attacken:
 - Man-in-the-Middle-Angriff
 - Seitenkanalangriffe
 - diskrete Exponentialfunktion, square-and-multiply Algorithmus
 - Zeitangriff
 - Stromangriff
 - DLog Problem lösen

Dlog berechnen

- Verfahren:
 - Pohlig-Hellman
 - Babystep-Giantstep-Algorithmus
 - Pollard Rho
 - Pollard Lambda

Pohlig-Hellman

- Pohlig-Hellman
 - Idee: Reduziere DLog Problem auf einfachere Teilprobleme
 - Primfaktorzerlegung der Gruppenordnung muss bekannt sein

Vorgehen:

- Reduktion des Problems der Gruppe G in zyklische Gruppen G_{p^k} deren Ordnung p^k ist, wobei p^k ein Teiler von n ist
- Reduktion von Gruppen mit Primzahlpotenzordnung in Gruppen mit Primordnung
- Zusammensetzen des Ergebnisses mittels des Chinesischen Restsatzes

Lisa Masserova - Kryptographie KITCTF

7

Babystep-Giantstep-Algorithmus

- Falls $\alpha^x = \beta$ und x = i * m + j, $m \approx \sqrt{n}$, dann gilt $\alpha^{im+j} = \beta$ und somit auch $\alpha^j = \beta(\alpha^{-im})$
- Berechne Tabelle der "baby steps" (j, α^j)
- Berechne sukzessive "giant steps"(i, $\beta(\alpha^{-im})$)
- Prüfe auf Gleichheit
- -> Erhöhter Speicheraufwand
- -> Für große Gruppen immer noch nicht einsetzbar

Pollard's Rho

- Teile Gruppenelemente in 3 etwa gleich große Mengen auf
- Definiere Sequenz $x_0 = 1$, $x_{i+1} = f(x_i) = \begin{cases} x_i \beta, \text{ falls } x_i \in S_1 \\ x_i^2, \text{ falls } x_i \in S_2 \\ x_i \alpha, \text{ falls } x_i \in S_3 \end{cases}$
- Dadurch werden Sequenzen $\{a_i\}$ und $\{b_i\}$ definiert mit $x_{i+1} = \alpha^{a_i} \beta^{b_i}$

■ Falls $\alpha^{a_k}\beta^{b_k} = \alpha^{a_m}\beta^{b_m}$: $\dot{\beta} = \alpha^{(a_m - a_k)/(b_k - b_m)}$

Lisa Masserova - Kryptographie

9

Dlog Verfahren

Bedingung	Verfahren	Komplexität
	BSGS	$O(\sqrt{n})$
Faktorisierung $n = \prod_{i=1}^k q_i^{e_i}$ bekannt	Pohlig-Hellman	$O(\sqrt{q_i})$
	Pollard's Rho	$O(\sqrt{n})$
$x \in \{a, \dots, b\} \in Z_n$	Pollard's Lambda	$O(\sqrt{b-a})$

Und mehr!

Nützliches/Aufgaben

SageMath http://www.sagemath.org/ free open-source mathematics software system

- Picoctf.com (writeup <u>https://hgarrereyn.gitbooks.io/th3g3ntl3man-ctf-</u> <u>writeups/2017/picoCTF_2017/problems/cryptography/E</u> <u>CC2/ECC2.html</u>)
- cryptopals.com (set 5, set 8)