Geometria Analítica e Vetores

Dependência linear, Base e Coordenadas de Vetores no Espaço

Docente: $\operatorname{Prof}^{\operatorname{a}}$. $\operatorname{Dr}^{\operatorname{a}}$. Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil

Referência: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

Recordação

Base, combinação linear, coordenadas no Plano

No plano, dados dois vetores não colineares $\vec{v_1}$ e $\vec{v_2}$, então para qualquer que seja \vec{v} , existem sempre dois números reais a_1 e a_2 tais que

$$\overrightarrow{v} = a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2}.$$

- ① Dizemos que \vec{v} é uma combinação linear de dois vetores \vec{v}_1 e \vec{v}_2 .
- ② O conjunto $\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$ de dois vetores (não colineares) $\vec{v_1}$ e $\vec{v_2}$ é chamado *base* do plano.
- **3** Os números a_1 e a_2 são chamados de *coordenadas* do vetor \vec{v} em relação à base \mathcal{B} . **Notação:** $\vec{v} = (a_1, a_2)_{\mathcal{B}}$.

Recordação: Dependência linear, Independência linear

No plano \mathbb{R}^2 , se dois vetores \vec{v}_1 e \vec{v}_2 não são colineares, dizemos que \vec{v}_1 e \vec{v}_2 são *linearmente independente* (LI) ou o conjunto $\{\vec{v}_1,\vec{v}_2\}$ é LI. Caso contrário, dizemos que $\{\vec{v}_1,\vec{v}_2\}$ é *linearmente dependente* (LD).

Definição

Consideremos o plano \mathbb{R}^2 ou o espaço \mathbb{R}^3 .

① Consideremos o conjunto de vetores $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ $(n \ge 1)$. Se

$$\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_n\vec{v}_n, \qquad a_1, a_2, \ldots, a_n \in \mathbb{R},$$

dizemos que \vec{v} é uma combinação linear dos vetores $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.

Um conjunto de n vetores é LI se nenhum vetor deste conjunto pode ser escrito como uma combinação linear dos demais vetores neste conjunto.

Definição

Consideremos o plano \mathbb{R}^2 ou o espaço \mathbb{R}^3 .

• Consideremos o conjunto de vetores $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n\}$ $(n\geqslant 1)$. Se

$$\vec{v} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots + a_n \vec{v}_n, \qquad a_1, a_2, \ldots, a_n \in \mathbb{R},$$

dizemos que \vec{v} é uma combinação linear dos vetores $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$.

② Um conjunto de n vetores é LI se nenhum vetor deste conjunto pode ser escrito como uma combinação linear dos demais vetores neste conjunto.

Observação

No espaço, três vetores não coplanares \vec{v}_1, \vec{v}_2 e \vec{v}_3 sempre estão LI.

Pergunta: No espaço, dados três vetores não coplanares $\vec{v_1}, \vec{v_2}$ e $\vec{v_3}$. Qualquer que seja vetor \vec{v} , existem $a_1, a_2, a_3 \in \mathbb{R}$ tais que

$$\vec{v} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3$$
?

Pergunta - Recordação: No sistema cartesiano 0*xyz*, como determinar as coordenadas de um ponto dado *A*?

Recordação

No sistema cartesiano 0xyz, o ponto A tem coordenadas x_A , y_A e z_A .

Notação: $A(x_A, y_A, z_A)$.

 x_A : abscissa; y_A : ordenada; z_A : cota.

Voltamos à pergunta: No espaço, dados três vetores não coplanares \vec{v}_1, \vec{v}_2 e \vec{v}_3 . Qualquer que sejam vetor \vec{v} , existem $a_1, a_2, a_3 \in \mathbb{R}$ tais que $\vec{v} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3$?

$$\vec{v}_1 = \overrightarrow{OA}, \quad \vec{v}_2 = \overrightarrow{OB}, \quad \vec{v}_3 = \overrightarrow{OC}, \quad \vec{v} = \overrightarrow{OD}.$$

$$\vec{v_1} = \overrightarrow{\textit{OA}}, \quad \vec{v_2} = \overrightarrow{\textit{OB}}, \quad \vec{v_3} = \overrightarrow{\textit{OC}}, \quad \vec{v} = \overrightarrow{\textit{OD}}.$$

$$\vec{v}_1 = \overrightarrow{OA}, \quad \vec{v}_2 = \overrightarrow{OB}, \quad \vec{v}_3 = \overrightarrow{OC}, \quad \vec{v} = \overrightarrow{OD}.$$

$$\overrightarrow{OD} = \overrightarrow{OD'} + \overrightarrow{OH} = \overrightarrow{OD'} + \overrightarrow{OA'} + \overrightarrow{OB'} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + a_3 \vec{v}_3$$

com $a_1, a_2, a_3 \in \mathbb{R}$.

Definição

No espaço \mathbb{R}^3 , dados três vetores não coplanares $\vec{v_1}, \vec{v_2}$ e $\vec{v_3}$. Então:

- $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ sempre é LI. Dizemos que o conjunto $\mathcal{B} = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ é uma base para o espaço.
- ② Para qualquer que seja \vec{v} , existem sempre três números reais a_1, a_2, a_3 tais que

$$\overrightarrow{v} = a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + a_3 \overrightarrow{v_3}.$$

Os números a_1, a_2, a_3 são chamados de *coordenadas* do vetor \vec{v} em relação à base \mathcal{B} . **Notação:** $\vec{v} = (a_1, a_2, a_3)_{\mathcal{B}}$.

Nota: Nesta disciplina, usamos a notação \mathbb{R}^3 como o espaço euclidiano (de dimensão 3). Note que usamos também a notação \mathbb{V}^3 paro o conjunto dos vetores no espaço. Veremos que tem uma correspondência 1-1 entre o conjunto dos pontos (\mathbb{R}^3) e o conjunto do vetores (V^3) nas próximas aulas.

(A mesma obsevação para \mathbb{R}^2).

Fixamos uma base $\mathcal B$ no espaço $\mathbb R^3$. A seguir, escrevemos $\vec u=(x,y,z)$ significa que o vetor $\vec u$ tem coordenadas (x,y,z) em relação à base $\mathcal B$.

Propriedades

Sejam $\vec{u} = (x_1, y_1, z_1)$ e $\vec{v} = (x_2, y_2, z_2)$, temos:

- **1** $\vec{u} = \vec{v} \Leftrightarrow (x_1 = x_2, y_1 = y_2 \in z_1 = z_2);$
- $\vec{u} + \vec{v} = (x_1 + x_2, y_1 + y_2, z_1 + z_2);$
- $\vec{u} \vec{v} = (x_1 x_2, y_1 y_2, z_1 z_2);$
- $\bullet \quad k\vec{u} = (kx_1, ky_1, kz_1), \text{ com } k \in \mathbb{R}.$

Fixamos uma base \mathcal{B} no espaço \mathbb{R}^3 . A seguir, escrevemos $\vec{u}=(x,y,z)$ significa que o vetor \vec{u} tem coordenadas (x,y,z) em relação à base \mathcal{B} .

Exercício 1: Sendo

$$\overrightarrow{u} = (1, -1, 3), \quad \overrightarrow{\nabla} = (2, 1, 3), \quad \overrightarrow{w} = (-1, -1, 4).$$

Ache as coordenadas dos vetores:

- $\mathbf{0} \ \overrightarrow{u} + \overrightarrow{v};$

Observação

Dados dois vetores $\vec{v_1}$ e $\vec{v_2}$ no espaço onde $\vec{v_2} \neq \vec{0}$. Então $\{\vec{v_1}, \vec{v_2}\}$ é LD se, e somente se, existe um número real k tal que $\vec{v_1} = k\vec{v_2}$.

Exercício 2: Fixamos uma base \mathcal{B} no espaço \mathbb{R}^3 . A seguir, escrevemos $\vec{u} = (x, y, z)$ significa que o vetor \vec{u} tem coordenadas (x, y, z) em relação à base \mathcal{B} . Verifique se $\{\overrightarrow{u}, \overrightarrow{v}\}$ é L.I. ou L.D., nos seguintes casos:

- $\overrightarrow{u} = (0,1,0), \overrightarrow{v} = (1,0,1),$
- $\overrightarrow{u} = (0,1,1), \overrightarrow{\nabla} = (0,3,1),$
- **3** $\overrightarrow{u} = (1, -3, 14), \overrightarrow{v} = (\frac{-1}{14}, \frac{3}{14}, -1).$

Observação

Fixamos uma base \mathcal{B} no plano \mathbb{R}^3 . Sejam \vec{u}, \vec{v} e \vec{w} três vetores que têm coordenadas em relação à base \mathcal{B} , respectivamente:

$$\vec{u} = (x_1, y_1, z_1), \quad \vec{v} = (x_2, y_2, z_2), \quad \vec{v} = (x_3, y_3, z_3).$$

Então, $\{\vec{u}, \vec{v}, \vec{w}\}$ é uma base se, e somente se:

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \neq 0.$$

Exercício 3: Verifique se $\mathcal{B} = \{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ é uma base:

- $\mathbf{0} \ \overrightarrow{u} = (1,2,1), \ \overrightarrow{v} = (1,-1,-7), \ \overrightarrow{w} = (4,5,-4),$
- $\overrightarrow{u} = (7, 6, 1), \overrightarrow{v} = (2, 0, 1), \overrightarrow{w} = (1, -2, 1).$

No caso \mathcal{B} é uma base, determine as coordenadas do vetor $\vec{t}=(0,1,2)$ em relação a essa base. Caso contrário, expresse um vetor desse conjunto como uma combinação dos outros dois vetores.

Exercícios

Exercício 1

Sejam $E = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ uma base, $\overrightarrow{f_1} = 2\overrightarrow{e_1} - \overrightarrow{e_2} + \overrightarrow{e_3}$, $\overrightarrow{f_2} = \overrightarrow{e_2} - \overrightarrow{e_3}$, $\overrightarrow{f_3} = 3\overrightarrow{e_3}$.

- **1** Mostre que $F = \{\overrightarrow{f_1}, \overrightarrow{f_2}, \overrightarrow{f_3}\}$ é uma base de V^3 .
- ② Determine as coordenadas do vetor $\overrightarrow{u} = (0,1,-1)_F$ na base E.
- **3** Calcule m para que $(0, m, 1)_E$ e $(0, 1, -1)_F$ sejam LD.

Exercício 2

Sejam \overrightarrow{OABC} um tetraedro e M o ponto médio de BC. Explique por que $\{\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\}$ é uma base do espaço \mathbb{R}^3 e determine as coordenadas do vetor \overrightarrow{AM} em relação desta base.

Exercícios

Exercício 3

Sejam $\mathcal{B} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$ uma base de V^3 , e $\vec{f_1} = \vec{e_1} - \vec{e_2}$, $\vec{f_2} = m\vec{e_1} + \vec{e_3}$, $\vec{f_3} = -\vec{e_1} - \vec{e_2} - \vec{e_3}$.

- **①** Para que valores de m, a tripla $\mathcal{B}'=\{\vec{e_1},\vec{e_2},\vec{e_3}\}$ é uma base de V^3 ?
- ② Nas condições do item (a), calcule a e b de modo que os vetores $\vec{u} = (1, 1, 1)_{\mathcal{B}}$ e $\vec{v} = (2, a, b)_{\mathcal{B}'}$ sejam LD.

Bom estudo!!