

Überblick

- 1. Wissenschaftliche Methode (*scientific method*)
- 2. Messung von Laufzeit
- 3. Mathematische Modelle für Laufzeiten
- **4.** Klassifikation von Komplexität: Θ -, \mathcal{O} -, und Ω -Notation

Programmiertechnik II

Überblick

- 1. Wissenschaftliche Methode (*scientific method*)
- 2. Messung von Laufzeit
- 3. Mathematische Modelle für Laufzeiten
- **4.** Klassifikation von Komplexität: Θ -, \mathcal{O} -, und Ω -Notation

Programmiertechnik II

Mathematische Modelle der Laufzeit

Ein vereinfachtes Laufzeitmodell. Für die Laufzeit T(n) gilt

$$T(n) = \sum_{\{ops\}} C(ops) \cdot N(ops)$$
Anzahl Einzeloperationen des Typs ops

Donald Knuth (1938 -)

Zeit(kosten) der Einzeloperation ops

- $\mathcal{C}(\text{ops})$ hängt von Hardware und Compiler/Interpreter ab
- \square N(ops) hängt von Algorithmus und Eingabedaten ab
- Im Prinzip gibt es akkurate Modelle für Laufzeiten!

Programmiertechnik II

Laufzeit-(Kosten) C(ops) von Einzeloperationen

Beispiel für C(ops) **(OS-X auf Macbook Pro 2.2 GHz)**

Operation	Beispiel	C(ops)
Ganzzahladdition	a + b	2.1 ns
Ganzzahlmultiplikation	a * b	2.4 ns
Ganzzahldivision	a / b	5.4 ns
Gleitkommazahladdition	a + b	4.6 ns
Gleitkommazahlmultiplikation	a * b	4.2 ns
Gleitkommazahldivision	a / b	13.5 ns

Viele Basisoperationen brauchen konstante Laufzeit

Operation	Beispiel	C(ops)
Zuweisung	a = b	c_1
Ganzzahlvergleich	a < b	c_2
Arrayzugriff	a[i]	c_4
Speicheranforderung	a = new int[n]	$n \cdot c_3$

Programmiertechnik II

Beispiel: 1-Summen Problem

• Wie viele Operationen hat das Programm als Funktion der Eingabelänge n?

```
int count_lsum(const int* list, const int size) {
    int count = 0;
    for (auto i = 0; i < size; i++) {
        if (list[i] == 0) {
            count++;
        }
    }
    return count;
}</pre>
```

Operation	N(ops)	
Zuweisung	2	
Kleiner-Vergleich	n + 1	
Gleichheits-Vergleich	n	
Arrayzugriff	n	
Inkrement	n bis 2n	

Programmiertechnik II

Beispiel: 2-Summen Problem

• Wie viele Operationen hat das Programm als Funktion der Eingabelänge n?

```
// counts the number of tuples that sum to exactly 0
int count_2sums(const int* list, const int size) {
   int count = 0;
   for (auto i = 0; i < size; i++) {
      for (auto j = i + 1; j < size; j++) {
        if (list[i] + list[j] == 0) {
            count++;
        }
    }
   return count;
}</pre>
```

Kleiner-Vergleich
$$(n+1)+n+\cdots+1=\frac{(n+2)\cdot(n+1)}{2}$$

Gleichheits-Vergleich
$$(n-1) + (n-2) + \dots + 0 = \frac{n \cdot (n-1)}{2}$$

Operation	N(ops)	
Zuweisung	n + 2	
Kleiner-Vergleich	$\frac{(n+1)\cdot(n+2)}{2}$	
Gleichheits-Vergleich	$\frac{(n-1)\cdot n}{2}$	
Arrayzugriff	$(n-1)\cdot n$	Dominante Operati
Inkrement	$\frac{(n-1)\cdot n}{2}$ bis $(n-1)\cdot n$	

Programmiertechnik II

Tilde-Notation

- Wir wollen die Laufzeit als Funktion der Eingabelänge *n* schätzen
- **Idee**: Wir ignorieren alle Ausdrücke niedriger Ordnung/Potenz von n
 - □ **Fall 1**: *n* ist groß: ignorierte Ausdrücke sind vernachlässigbar
 - **Fall 1**: *n* ist klein: die gesamte Laufzeit ist klein
- **Tilde-Notation**. Für zwei Funktion f und g bedeutet $f \sim g$, dass

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

Beispiele:

$$\frac{1}{6}n^3 + 20n + 16 \qquad \sim \frac{1}{6}n^3$$

$$\frac{1}{6}n^3 + 100n^{\frac{4}{3}} + 56 \qquad \sim \frac{1}{6}n^3$$

 $\frac{1}{6}n^3 - \frac{1}{2}n^2 + \frac{1}{3}n \qquad \sim \frac{1}{6}n^3$

Beispiel: 2-Summen Problem

• Wie viele Operationen hat das Programm als Funktion der Eingabelänge n?

```
int count_2sum(const int* list, const int size) {
    int count = 0;
    for (auto i = 0; i < size; i++) {
        for (auto j = i+1; i < size; i++) {
            if (list[i] + list[j] == 0) {
                 count++;
            }
        }
    return count;
}</pre>
```

Operation	N(ops)	Tilde-Notation
Zuweisung	n+2	~ n
Kleiner-Vergleich	$\frac{(n+1)\cdot(n+2)}{2}$	$\sim \frac{1}{2}n^2$
Gleichheits-Vergleich	$\frac{(n-1)\cdot n}{2}$	$\sim \frac{1}{2}n^2$
Arrayzugriff	$(n-1)\cdot n$	$\sim n^2$
Inkrement	$\frac{(n-1)\cdot n}{2}$ bis $(n-1)\cdot n$	$\sim \frac{1}{2}n^2$ bis $\sim n^2$

Programmiertechnik II

3-Summen Problem

■ **Frage**: Wie viele Arrayzugriffe braucht das 3-Summen Problem approximativ?

Antwort: In der inneren Schleife haben wir

Anzahl Möglichkeiten, 3 eindeutige Indizes ohne Beachtung der Reihenfolge aus *n* auszuwählen

$$\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{n} 3 = 3 \cdot \binom{n}{3} = 3 \cdot \frac{n \cdot (n-1)(n-2)}{6} \sim \frac{1}{2} n^{3}$$

Mathematische Modelle der Laufzeit

Im Prinzip gibt es akkurate Modelle für Laufzeiten!

In der Praxis

- können die Gleichungen kompliziert sein
- Ist aufwendige Berechnung von Reihen notwendig
- Sind exakte Modelle sehr aufwendig
- Daher werden in der Praxis, drei Vereinfachungen benutzt:
 - 1. Ein lineares Modell von Laufzeit von Einzeloperationen und deren Häufigkeit
 - 2. Fokus auf die dominanten Einzeloperationen
 - 3. Approximation durch Tilde-Notation

Programmiertechnik II

Überblick

- 1. Wissenschaftliche Methode (*scientific method*)
- 2. Messung von Laufzeit
- 3. Mathematische Modelle für Laufzeiten
- **4.** Klassifikation von Komplexität: Θ-, \mathcal{O} -, und Ω -Notation

Programmiertechnik II

Wachstumsordnung

- **Definition**. Wir sagen, dass die Funktion $f: \mathbb{N} \to \mathbb{N}$ die Wachstumsordnung $\Theta(g)$ hat, wenn es eine Konstante $c \in \mathbb{R}$ gibt, so dass $f \sim c \cdot g$.
- In der Praxis sind die meisten Algorithmen mit Hilfe der folgenden Wachstumsordnungen beschreibbar. n^3

Programmiertechnik II

Unit 3b – Analyse von Algorithmen

13/23

$\Theta(n)$	Name	Beispielcode	Algorithmus	T(2n)/T(n)
1	Konstant	a = b + c	Addition zweier Zahlen	1
$\log_2(n)$	Logarithmisch	while (n > 1) { n /= 2; }	Binäre Suche	~ 1
n	Linear	<pre>for(int i=0; i < n; i++) { }</pre>	Schleife	2
$n \cdot \log_2(n)$	Linearitmisch	[Quick-Sort Vorlesung]	divide & conquer	~ 2
n^2	Quadratisch	<pre>for(int i=0; i < n; i++) { for(int j=0; j < n; j++) { } }</pre>	Doppelschleife	4
n^3	Kubisch	<pre>for(int i=0; i < n; i++) { for(int j=0; j < n; j++) { for(int k=0; k < n; k++) { } }</pre>	Dreifachschleife	8
2^n	Exponentiell	[Algorithmenparadigmen Vorlesung]	Erschöpfenden Suche	T(n)

Programmiertechnik II

Beschleunigung vom 3-Summen Problem

- Idee: Wenn wir zwei der drei Zahlen kennen, d.h. a[i] und a[j], dann muss dritte Element (a[i] + a[j]) sein, damit die Summe Null ist.
- **Problem**: Wie schnell können wir in einer Liste von eindeutigen Zahlen eine spezielle Zahl finden?

 - Clever: Wenn die Liste sortiert ist, binäre Suche

```
// binary search algorithm to find the key in the list
int binary_search(const int* list, const int size, const int key) {
    int lo = 0;
    int hi = size - 1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        if (key < list[mid]) {
            hi = mid - 1;
        } else if (key > list[mid]) {
            lo = mid + 1;
        } else {
            return mid;
        }
        return -1;
}
```


John Mauchly (1907 - 1980)

Programmiertechnik II

Binäre Suche: Mathematische Analyse

- **Satz**. Binäre Suche findet den Schlüssel oder terminiert nach höchstens $1 + \log_2(n)$ 3-wertigen Vergleichen in einem sortierten Feld der Länge n.
- **Beweis**. Wir definieren T(n) als die maximale Anzahl der 3-wertigen Vergleiche in einem Array der Länge kleiner oder gleich n.

Aufgrund des Algorithmus wissen wir dass

$$T(n) \le T(n/2) + 1$$
 und $T(1) = 1$

Daher gilt

```
T(n) \le T(n/2) + 1

\le T(n/4) + 1 + 1

\vdots

\le T(n/n) + 1 + 1 + \dots + 1

\le 1 + \log_2(n)
```

// binary search algorithm to find the key in the list
int binary_search(const int* list, const int size, const int key) {
 int lo = 0;
 int hi = size - 1;
 while (lo <= hi) {
 int mid = lo + (hi - lo) / 2;
 if (key < list[mid]) {
 hi = mid - 1;
 } else if (key > list[mid]) {
 lo = mid + 1;
 } else {
 return mid;
 }
 }
 return -1;
}

Programmiertechnik II

Unit 3b – Analyse von Algorithmen

Die Rekurrenz kann

maximal $log_2(n)$

angewandt werden

Ein $\Theta(n^2 \cdot \log_2(n))$ Algorithmus für 3-Summen

Algorithmus:

- 1. Sortierte die n eindeutigen Zahlen in der Liste.
- Für alle eindeutigen Paare a[i] und a[j], suche (a[i] + a[j]) mit binärer Suche in den verbleibenden Elementen.

Analyse:

- 1. Das Sortieren kann mit Hilfe eines Algorithmus in $\Theta(n^2)$
- 2. Für die $\Theta(n^2)$ eindeutigen Paare benötigt binäre Suche $\Theta(\log_2(n))$ Vergleiche
- **Ergebnis**: Der Algorithmus wird von Schritt 2. dominiert, welcher $\Theta(n^2 \cdot \log_2(n))$ Schritte benötigt!
- **Bemerkung**: Wir können sogar $\Theta(n^2)$ erzielen (aber viel komplizierter Algorithmus)

Programmiertechnik II

Empirische Analyse

3 Summen Problem $(\Theta(n^3))$

n	Laufzeit (in s)	
1000	0.02104	
2000	0.107	
4000	0.6583	
8000	4.904	
16000	37.93	

3 Summen Problem $(\Theta(n^2 \cdot \log_2(n)))$

n	Laufzeit (in s)	
1000	0.02714	
2000	0.0795	
4000	0.2644	
8000	1.105	
16000	4.557	
32000	18.91	

Programmiertechnik II

Beste, Schlechteste und Durchschnittliche Laufzeit

- In der Praxis hängt die Laufzeit stark von der **konkreten** Eingabe ab!
- **Bester Fall (***Best Case***)**: Untere Schranke an die Laufzeit
 - Wird durch die einfachste Eingabe bestimmt
 - Gibt ein Ziel für alle Eingaben
- Schlechtester Fall (Worst Case): Obere Schranke an die Laufzeit
 - Wird durch die schwierigste Eingabe bestimmt
 - Gibt eine Garantie für alle Eingaben
- **Durchschnittlicher Fall (***Average Case***)**: Erwartete Laufzeit bei "zufälliger" Eingabe
 - Benötigt ein Modell für "zufällige" Eingabe
 - Möglichkeit, die Laufzeit vorherzusagen

Arrayzugriffe bei naive 3-Summen

Bester Fall: $\sim 1/2 \cdot n^3$

Schlechtester Fall: $\sim 1/2 \cdot n^3$

Durchschnittlicher Fall: $\sim 1/2 \cdot n^3$

3-wertige Vergleich bei binärer Suche

Bester Fall: ~ `

Schlechtester Fall: $\sim \log_2(n)$

Durchschnittlicher Fall: $\sim \log_2(n)$

Programmiertechnik II

Unit 3b – Analyse von Algorithmen

19/23

Komplexitätsnotationen in Algorithmentheorie

Notation	Bedeutung	Beispiel	Abkürzung für	Benutzung
Tilde	dominierender Ausdruck	~ 10n ²		Approximatives Laufzeitmodell
Big Theta	Wachstumsordnung	$\Theta(n^2)$	$1/2 \cdot n^2$ $10n^2$ $5n^2 + 22n \cdot \log_2(n) + 3n$	Klassifikation von Algorithmen
Big-O	$\Theta(n^2)$ oder kleiner	$\mathcal{O}(n^2)$	$10n^2$ $100n$ $22n \cdot \log_2(n) + 3n$	Entwicklung von oberen Schranken
Big-Omega	$\Theta(n^2)$ oder größer	$\Omega(n^2)$		Entwicklung von unteren Schranken

Programmiertechnik II

Algorithmentheorie

Ziele:

- 1. Bestimmung der "Schwierigkeit" eines Problems (Komplexität)
- 2. Entwicklung von "optimalen" Algorithmen

Optimaler Algorithmus: Untere Schranke = Obere Schranke

Ansatz:

- 1. Analyse der Komplexität bis auf einen multiplikativen Faktor
- 2. Keine Annahmen über die Eingabe machen und Fokus auf schwierigsten Fall
- **Beispiel**: 1-Summen Problem (d.h., Wie viele "0" gibt es in einem Array?)
 - **Obere Schranke**: Überprüfe jedes einzelne Element: O(n)
 - Untere Schranke: Jedes nicht-untersuchte Element könnte 0 sein: $\Omega(n)$
 - Optimaler Algorithmus: Brute-Force Suche durch das Array, da untere und obere Schranke übereinstimmen

```
int count_1sum(const int* list, const int size) {
    int count = 0;
    for (auto i = 0; i < size; i++) {
        if (list[i] == 0) {
            count++;
        }
    }
    return count;
}</pre>
```

Programmiertechnik II

Unit 3b – Analyse von Algorithmen

■ Mehr Details und Tiefe zu Algorithmentheorie in **TI 1**!

Zusammenfassung

Empirische Analyse

- Programm ausführen, um experimentelle Ergebnisse zu sammeln
- Annahme eines power laws und Formulierung einer Laufzeithypothese
- Schätzung der Parameter des power laws um Laufzeitvorhersagen zu machen

Mathematische Analyse

- Algorithmen analysieren, um Häufigkeit von Einzeloperationen zu zählen
- Tilde Notation benutzen, um (approximative) Analyse zu vereinfachen
- Model erlaubt es, Laufzeitverhalten zu erklären

Wissenschaftliche Methode

- Mathematischen Modelle sind unabhängig von Hard- und Software; gelten auch für zukünftige Computer!
- Empirische Analyse ist notwendig, um mathematische Analyse zu validieren durch Laufzeitvorhersagen

Programmiertechnik II

Viel Spaß bis zur nächsten Vorlesung!