第十三讲 「函数与B函数

北京大学 物理学院 数学物理方法课程组

2007年春

讲授要点

- ❶「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- 2 B函数
 - · B函数的定义
 - · B函数与Γ函数
 - 有关[函数两个公式的证明

讲授要点

- ❶「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- ② B函数
 - · B函数的定义
 - Β函数与Γ函数
 - 有关「函数两个公式的证明

References

► 吴崇试, 《数学物理方法》, §8.1 — 8.4

▶ 梁昆淼, 《数学物理方法》, 附录13

● 胡嗣柱、倪光炯,《数学物理方法》,§4.3, 4.4

讲授要点

- ❶「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- 2 B函数
 - · B函数的定义
 - · B函数与Γ函数
 - 有关「函数两个公式的证明

「函数的常用定义

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$
 Re $z > 0$

其中的积分变量t应该理解为argt = 0

称为第二类Euler积分

© 这是一个反常积分: 既是瑕积分(在t = 0端), 又是无穷积分

「函数的常用定义

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$
 $\operatorname{Re} z > 0$

其中的积分变量t应该理解为arg t = 0

称为第二类Euler积分

「函数的常用定义

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$
 Re $z > 0$

其中的积分变量t应该理解为arg t = 0

称为第二类Euler积分

© 这是一个反常积分: 既是瑕积分(在t = 0端), 又是无穷积分

讲授要点

- ❶「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- 2 B函数
 - · B函数的定义
 - · B函数与Γ函数
 - 有关「函数两个公式的证明

为讨论「函数的解析性, 需将积分拆成两部分

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$

$$= \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z, 1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z, 1)}$$

先先看第二部分
$$\Gamma(z,1)=\int_1^\infty \mathrm{e}^{-t}t^{z-1}\mathrm{d}t$$

为讨论「函数的解析性, 需将积分拆成两部分

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$

$$= \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z, 1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z, 1)}$$

先先看第二部分
$$\Gamma(z,1) = \int_1^\infty e^{-t} t^{z-1} dt$$

$$\Gamma(z,1) = \int_{1}^{\infty} e^{-t} t^{z-1} dt$$
的解析性

<ロ > ← □ > ← □ > ← □ > ← □ = − のへ()

$\Gamma(z,1) = \int_{1}^{\infty} e^{-t} t^{z-1} dt$ 的解析性

- 当 $t \ge 1$ 时,被积函数 $e^{-t}t^{z-1}$ 是t的连续函数
- 作为 z 的函数, 在全平面解析
- 要证明它代表一个解析函数,就只需证明积分一致收敛

$\Gamma(z,1) = \int_{1}^{\infty} e^{-t} t^{z-1} dt$ 的解析性

- 当 $t \ge 1$ 时,被积函数 $e^{-t}t^{z-1}$ 是t的连续函数
- 作为z的函数, 在全平面解析
- 要证明它代表一个解析函数,就只需证明积分一致收敛

$\Gamma(z,1)=\int_{1}^{\infty}\!\mathrm{e}^{-t}t^{z-1}\mathsf{d}t$ 的解析性

- 当 $t \ge 1$ 时,被积函数 $e^{-t}t^{z-1}$ 是t的连续函数
- 作为 z 的函数, 在全平面解析
- 要证明它代表一个解析函数,就只需证明积分一致收敛

$\Gamma(z,1) = \int_{1}^{\infty} e^{-t} t^{z-1} dt$ 的解析性

- 当 $t \ge 1$ 时,被积函数 $e^{-t}t^{z-1}$ 是t的连续函数
- 作为z的函数, 在全平面解析
- 要证明它代表一个解析函数,就只需证明积分一致收敛

$$\boxed{ \mathbf{e}^t = \sum_{n=0}^{\infty} \frac{t^n}{n!} \Longrightarrow} \begin{vmatrix} \mathbf{e}^t > \frac{t^N}{N!} \\ \mathbf{e}^{-t} < \frac{N!}{t^N} \end{vmatrix} \quad \forall N \in \mathbb{N}$$

$$\Gamma(z,1) = \int_1^\infty e^{-t} t^{z-1} dt$$
 的解析性
故对于 z 平面上任一闭区域(区
域内任意一点,均有Re $z < x_0$)
 $|e^{-t} t^{z-1}| < N! \cdot t^{x_0-N-1}$

Gamma Function: Analyticity

$\Gamma(z,1) = \int_{-\infty}^{\infty} e^{-t} t^{z-1} dt$ 的解析性

故对于2平面上任一闭区域(区 域内任意一点,均有 $Re z < x_0$) $|e^{-t}t^{z-1}| < N! \cdot t^{x_0-N-1}$

• 只要选择足够大的N(使得 $N>x_0$)

积分
$$\int_1^\infty t^{x_0-N-1} dt$$
就收敛

- 故Γ(z,1)在z平面内闭一致收敛

$\Gamma(z,1) = \int_{-\infty}^{\infty} e^{-t} t^{z-1} dt$ 的解析性

故对于2平面上任一闭区域(区 域内任意一点,均有Re $z < x_0$) $|e^{-t}t^{z-1}| < N! \cdot t^{x_0-N-1}$

• 只要选择足够大的N(使得 $N > x_0$)

积分
$$\int_{1}^{\infty} t^{x_0-N-1} dt$$
就收敛

- 故Γ(z,1)在z平面内闭一致收敛
- 因此Γ(z,1)在全平面解析

$\Gamma(z,1) = \int_{-\infty}^{\infty} e^{-t} t^{z-1} dt$ 的解析性

故对于2平面上任一闭区域(区 域内任意一点,均有Re $z < x_0$) $|e^{-t}t^{z-1}| < N! \cdot t^{x_0-N-1}$

• 只要选择足够大的N(使得 $N > x_0$)

积分
$$\int_{1}^{\infty} t^{x_0-N-1} dt$$
就收敛

- 故Γ(z,1)在z平面内闭一致收敛
- 因此Γ(z,1)在全平面解析

$\gamma(z,1) = \int_0^1 e^{-t} t^{z-1} dt$ 的解析性

$\gamma(z,1)=\int_0^1\!\mathrm{e}^{-t}t^{z-1}\mathsf{d}t$ 的解析性

$$\gamma(z,1) = \int_0^1 e^{-t} t^{z-1} dt$$
的解析性

$$(x = \operatorname{Re}z)$$

$\gamma(z,1) = \int_0^1 e^{-t} t^{z-1} dt$ 的解析性

• 因为
$$\left|\mathbf{e}^{-t}t^{z-1}\right| = \mathbf{e}^{-t}t^{x-1}$$
 $(x = \operatorname{Re}z)$

- 所以对于z平面上右半平面 的任一区域,有 $\operatorname{Re} z \geq \delta > 0$ $\left| \operatorname{e}^{-t} t^{z-1} \right| \leq t^{\delta-1}$
- 而 $\int_0^1 t^{\delta-1} dt$ 收敛

$\gamma(z,1) = \int_0^1 e^{-t} t^{z-1} dt$ 的解析性

• 因为
$$\left|\mathbf{e}^{-t}t^{z-1}\right| = \mathbf{e}^{-t}t^{x-1}$$
 $(x = \operatorname{Re}z)$

- 所以对于z平面上右半平面 的任一区域,有 $\operatorname{Re} z \geq \delta > 0$ $\left| \operatorname{e}^{-t} t^{z-1} \right| \leq t^{\delta-1}$
- 而 $\int_0^1 t^{\delta-1} dt$ 收敛

$\gamma(z,1)=\int_0^1\!{ m e}^{-t}t^{z-1}{ m d}t$ 的解析性

• 因为
$$|e^{-t}t^{z-1}| = e^{-t}t^{x-1}$$
 $(x = \text{Re}z)$

- 所以对于z平面上右半平面 的任一区域,有 $\operatorname{Re} z \geq \delta > 0$ $\left| \operatorname{e}^{-t} t^{z-1} \right| \leq t^{\delta-1}$
- 而 $\int_0^1 t^{\delta-1} dt$ 收敛

- 因此 $\gamma(z,1)$ 在右半平面解析

$\gamma(z,1) = \int_0^1 e^{-t} t^{z-1} dt$ 的解析性

关键也是证明它的一致收敛性

• 因为
$$\left|e^{-t}t^{z-1}\right|=e^{-t}t^{x-1}$$
 $(x=\operatorname{Re} z)$

- 所以对于z平面上右半平面 的任一区域,有 $\operatorname{Re} z \geq \delta > 0$ $\left| \operatorname{e}^{-t} t^{z-1} \right| \leq t^{\delta-1}$
- 而 $\int_0^1 t^{\delta-1} dt$ 收敛

- 故 $\gamma(z,1)$ 在z平面上右半平面内闭一致收敛
- 因此 $\gamma(z,1)$ 在右半平面解析

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt = \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z, 1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z, 1)}$$

Γ(z,1)在全平面解析
 γ(z,1)在右半平面解析
 因此Γ(z)在右半平面解析

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt = \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z, 1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z, 1)}$$

- $\Gamma(z,1)$ 在全平面解析
- $\gamma(z,1)$ 在右半平面解析

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt = \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z, 1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z, 1)}$$

- $\Gamma(z,1)$ 在全平面解析
- $\gamma(z,1)$ 在右半平面解析
- 因此Γ(z)在右半平面解析

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt = \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z, 1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z, 1)}$$

- Γ(z,1)在全平面解析
- $\gamma(z,1)$ 在右半平面解析
- 因此 $\Gamma(z)$ 在右半平面解析

积分路径的修改

• 上面的积分定义中, 积分路径 并不需要限定在实轴上, 而可 修改为 $\Gamma(z) = \int_{T} e^{-t} t^{z-1} dt$ Rez > 0

积分路径
$$L$$
是 t 平面上从 $t=0$ 出发的半射线 arg $t=\alpha$ 为常数, $|\alpha|<\pi/2$

积分路径的修改

• 上面的积分定义中, 积分路径 并不需要限定在实轴上, 而可 修改为 $\Gamma(z) = \int_{x} e^{-t} t^{z-1} dt$ Rez > 0积分路径L是t平面上从t=0出 发的半射线

 $\arg t = \alpha$ 为常数, $|\alpha| < \pi/2$

• 进一步修改:积分路径L可以是t平面上从t=0出 发的任意分段光滑曲线, 只要最后 以 $Ret \rightarrow +\infty$ 的方式趋于无穷远 点即可

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt = \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z,1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z,1)}$$

- Γ 函数的上述定义只适用于Rez > 0
- 积分的第一部分在右半平面解析,第二部分在全平面解析
- 因此,为了延拓到2的全平面,只要用适当的 方法将积分第一部分延拓到全平面即可

解析延拓

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt = \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z,1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z,1)}$$

- 「函数的上述定义只适用于Rez > 0
- 积分的第一部分在右半平面解析,第二部分在全平面解析
- 因此,为了延拓到z的全平面,只要用适当的 方法将积分第一部分延拓到全平面即可

解析延拓

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt = \underbrace{\int_0^1 e^{-t} t^{z-1} dt}_{\gamma(z, 1)} + \underbrace{\int_1^\infty e^{-t} t^{z-1} dt}_{\Gamma(z, 1)}$$

- 「函数的上述定义只适用于Rez > 0
- 积分的第一部分在右半平面解析, 第二部分 在全平面解析
- 因此,为了延拓到2的全平面,只要用适当的 方法将积分第一部分延拓到全平面即可

解析延拓

• 比较直接的方法是将指数函数作Taylor展开

$$\int_{0}^{1} e^{-t} t^{z-1} dt = \sum_{n=0}^{\infty} \frac{(-)^{n}}{n!} \int_{0}^{1} t^{n+z-1} dt$$
$$= \sum_{n=0}^{\infty} \frac{(-)^{n}}{n!} \frac{1}{n+z}$$

- 这个结果是在Rez > 0的条件下得到的
- 但右端的级数显然在全平面上 $(z \neq 0, -1, -2, \cdots)$ 一致收敛, 因而在全平面解析 $(z \neq 0, -1, -2, \cdots)$

解析延拓

• 比较直接的方法是将指数函数作Taylor展开

$$\int_{0}^{1} e^{-t} t^{z-1} dt = \sum_{n=0}^{\infty} \frac{(-)^{n}}{n!} \int_{0}^{1} t^{n+z-1} dt$$
$$= \sum_{n=0}^{\infty} \frac{(-)^{n}}{n!} \frac{1}{n+z}$$

- 这个结果是在Rez > 0的条件下得到的
- 但右端的级数显然在全平面上 $(z \neq 0, -1,$

解析延拓

• 比较直接的方法是将指数函数作Taylor展开

$$\int_{0}^{1} e^{-t} t^{z-1} dt = \sum_{n=0}^{\infty} \frac{(-)^{n}}{n!} \int_{0}^{1} t^{n+z-1} dt$$
$$= \sum_{n=0}^{\infty} \frac{(-)^{n}}{n!} \frac{1}{n+z}$$

- 这个结果是在Re z > 0的条件下得到的
- 但右端的级数显然在全平面上 $(z \neq 0, -1,$ -2,…)一致收敛, 因而在全平面解析 $(z \neq 0, -1, -2, \cdots)$

• 这说明, 等式

$$\int_0^1 e^{-t} t^{z-1} dt = \sum_{n=0}^{\infty} \frac{(-)^n}{n!} \frac{1}{n+z}$$

右端的级数表达式就是左端积分表达式在全 平面上的解析延拓

• 因此, $\Gamma(z)$ 的下列表达式在全平面有效 $\Gamma(z) = \int_1^\infty e^{-t} t^{z-1} dt + \sum_{n=0}^\infty \frac{(-)^n}{n!} \frac{1}{n+z}$ $(z \neq 0, -1, -2, \cdots)$

• 这说明, 等式

$$\int_{0}^{1} e^{-t} t^{z-1} dt = \sum_{n=0}^{\infty} \frac{(-)^{n}}{n!} \frac{1}{n+z}$$

右端的级数表达式就是左端积分表达式在全 平面上的解析延拓

• 因此, $\Gamma(z)$ 的下列表达式在全平面有效 $\Gamma(z) = \int_1^\infty e^{-t} t^{z-1} dt + \sum_{n=0}^\infty \frac{(-)^n}{n!} \frac{1}{n+z}$ $(z \neq 0, -1, -2, \cdots)$

讲授要点

- ❶「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- 2 B函数
 - · B函数的定义
 - · B函数与Γ函数
 - 有关「函数两个公式的证明

Gamma Function: Definition Gamma Function: Analyticit Gamma Function: Properties

性质1

$$\Gamma(1)=1$$

【证】直接在「函数的定义中代入z=1即得

$$\Gamma(1) = \int_0^\infty e^{-t} t^{1-1} dt = \int_0^\infty e^{-t} dt = 1$$

$$\Gamma(1)=1$$

【证】直接在「函数的定义中代入z=1即得

$$\Gamma(1) = \int_0^\infty e^{-t} t^{1-1} dt = \int_0^\infty e^{-t} dt = 1$$

$$\Gamma(1)=1$$

【证】直接在 Γ 函数的定义中代入z=1即得

$$\Gamma\left(1
ight)=\int_{0}^{\infty}\mathrm{e}^{-t}t^{1-1}\mathrm{d}t=\int_{0}^{\infty}\mathrm{e}^{-t}\mathrm{d}t=1$$

$$\Gamma(1)=1$$

【证】直接在「函数的定义中代入z=1即得

$$\Gamma\left(1
ight)=\int_{0}^{\infty}\mathsf{e}^{-t}t^{1-1}\mathsf{d}t=\int_{0}^{\infty}\mathsf{e}^{-t}\mathsf{d}t=1$$

$$\Gamma(1)=1$$

【证】直接在 Γ 函数的定义中代入z=1即得

$$\Gamma\left(1
ight)=\int_{0}^{\infty}\mathsf{e}^{-t}t^{1-1}\mathsf{d}t=\int_{0}^{\infty}\mathsf{e}^{-t}\mathsf{d}t=1$$

$$\Gamma(z+1) = z\Gamma(z)$$

$$\Gamma(z+1) = \int_0^\infty e^{-t} t^z dt$$

$$= -e^{-t} t^z \Big|_0^\infty + \int_0^\infty e^{-t} z t^{z-1} dt$$

$$= z \int_0^\infty e^{-t} t^{z-1} dt$$

$$\Gamma(z+1) = z\Gamma(z)$$

$$\Gamma(z+1) = \int_0^\infty e^{-t} t^z dt$$

$$= -e^{-t} t^z \Big|_0^\infty + \int_0^\infty e^{-t} z t^{z-1} dt$$

$$= z \int_0^\infty e^{-t} t^{z-1} dt$$

$$\Gamma(z+1) = z\Gamma(z)$$

$$\Gamma(z+1) = \int_0^\infty e^{-t} t^z dt$$

$$= -e^{-t} t^z \Big|_0^\infty + \int_0^\infty e^{-t} z t^{z-1} dt$$

$$= z \int_0^\infty e^{-t} t^{z-1} dt$$

$$\Gamma(z+1) = z\Gamma(z)$$

$$\Gamma(z+1) = \int_0^\infty e^{-t} t^z dt$$

$$= -e^{-t} t^z \Big|_0^\infty + \int_0^\infty e^{-t} z t^{z-1} dt$$

$$= z \int_0^\infty e^{-t} t^{z-1} dt$$

$$\Gamma(z+1) = z\Gamma(z)$$

$$\Gamma(z+1) = \int_0^\infty e^{-t} t^z dt$$

$$= -e^{-t} t^z \Big|_0^\infty + \int_0^\infty e^{-t} z t^{z-1} dt$$

$$= z \int_0^\infty e^{-t} t^{z-1} dt$$

$$= z \Gamma(z) \qquad \Box$$

Gamma Function: Definition Gamma Function: Analyticity Gamma Function: Properties

性质2

$$\Gamma(z+1) = z\Gamma(z)$$

第一种看法

 $\Gamma(z+1)$ 和 $z\Gamma(z)$ 都在全平面解析 $(z=0,-1,-2,\cdots$ 除外)

$$\Gamma(z+1) = z\Gamma(z)$$

第一种看法

- 证明过程中用到了条件Rez > 0
- $\Gamma(z+1)$ 和 $z\Gamma(z)$ 都在全平面解析 $(z=0,-1,-2,\cdots$ 除外)
- 因此,根据解析延拓原理,可以断定,这个 递推关系在全平面均成立

$$\Gamma(z+1) = z\Gamma(z)$$

第一种看法

- 证明过程中用到了条件Re z > 0
- $\Gamma(z+1)$ 和 $z\Gamma(z)$ 都在全平面解析 $(z = 0, -1, -2, \cdots$ 除外)
- 因此、根据解析延拓原理、可以断定、这个

$$\Gamma(z+1) = z\Gamma(z)$$

第一种看法

- 证明过程中用到了条件Re z > 0
- $\Gamma(z+1)$ 和 $z\Gamma(z)$ 都在全平面解析 $(z=0,-1,-2,\cdots$ 除外)
- 因此、根据解析延拓原理、可以断定、这个 递推关系在全平面均成立

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 将递推关系改写成 $\Gamma(z) = \frac{1}{z}\Gamma(z+1)$
- 左端的函数在半平面Re z > 0上解析

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 将递推关系改写成 $\Gamma(z) = \frac{1}{z}\Gamma(z+1)$
- 左端的函数在半平面Re z > 0上解析

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 将递推关系改写成 $\Gamma(z) = \frac{1}{z}\Gamma(z+1)$
- 左端的函数在半平面Re z > 0上解析
- 右端的函数在半平面Re z > -1上解析
- 两者在公共区域Re z > 0上相等

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 将递推关系改写成 $\Gamma(z) = \frac{1}{z}\Gamma(z+1)$
- 左端的函数在半平面Re z > 0上解析
- 右端的函数在半平面Rez > -1上解析
- 两者在公共区域Rez>0上相等
- $\Gamma(z+1)/z$ 就是右端的 $\Gamma(z)$ 在区域Rez>-1

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 将递推关系改写成 $\Gamma(z) = \frac{1}{z}\Gamma(z+1)$
- 左端的函数在半平面Re z > 0上解析
- 右端的函数在半平面Re z > -1上解析
- 两者在公共区域Re z > 0上相等
- $\Gamma(z+1)/z$ 就是右端的 $\Gamma(z)$ 在区域Rez>-1上的解析延拓

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 仍将 $\Gamma(z+1)/z$ 记为 $\Gamma(z)$
- 这就是说,可以把

$$\Gamma(z) = \frac{1}{z}\Gamma(z+1)$$
 $z \neq 0$

$$res \Gamma(0) = 1$$

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 仍将 $\Gamma(z+1)/z$ 记为 $\Gamma(z)$
- 这就是说,可以把

$$\Gamma(z) = \frac{1}{z}\Gamma(z+1)$$
 $z \neq 0$

看成是 $\Gamma(z)$ 在区域Rez>1上的定义

• z = 0点是「函数的一阶极点

$$res \Gamma(0) = 1$$

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

- 仍将 $\Gamma(z+1)/z$ 记为 $\Gamma(z)$
- 这就是说,可以把

$$\Gamma(z) = \frac{1}{z}\Gamma(z+1)$$
 $z \neq 0$

看成是 $\Gamma(z)$ 在区域Rez > 1上的定义

• z = 0点是 Γ 函数的一阶极点

$$res \Gamma(0) = 1$$

Gamma Function: Properties

性质2

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

• 重复上述步骤,还可以将「函数延拓到区域 Re z > -2

$$\Gamma(z) = \frac{1}{z(z+1)}\Gamma(z+2)$$
 $z \neq 0, -1$

z=-1也是「函数的一阶极点, res $\Gamma(-1)=-1$

• 如此继续, 就可将「函数解析延拓到全平面、

$$\operatorname{res}\Gamma\left(-n\right) = \frac{(-1)^{n}}{n!}$$

$$\Gamma(z+1) = z\Gamma(z)$$

第二种看法

• 重复上述步骤,还可以将「函数延拓到区域 Re z > -2

$$\Gamma(z) = \frac{1}{z(z+1)}\Gamma(z+2)$$
 $z \neq 0, -1$

$$z=-1$$
也是「函数的一阶极点,res $\Gamma(-1)=-1$

• 如此继续,就可将「函数解析延拓到全平面、 而 $z = 0, -1, -2, \cdots$ 都是「函数的一阶极点

$$\operatorname{res}\Gamma(-n) = \frac{(-1)^n}{n!}$$

$$\Gamma(z+1) = z\Gamma(z)$$

推论

$$\Gamma(n+1) = n!$$
 $n \in \mathbb{N}$

正是因为这个原因,「函数又称为阶乘函数

$$\Gamma(z+1) = z\Gamma(z)$$

推论

$$\Gamma(n+1) = n!$$
 $n \in \mathbb{N}$

正是因为这个原因, 数又称为阶乘函数

性质3 互余宗量定理

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

$$\Gamma\left(1/2\right) = \sqrt{\pi}$$

并注意Γ(1/2) > 0 (因为被利

性质3 互余宗量定理

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

证明见下节

$$\Gamma\left(1/2\right) = \sqrt{\pi}$$

并注意 $\Gamma(1/2) > 0$ (因为被积 函数值恒为正)即可得此结

性质3 互余宗量定理

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

证明见下节

推论

$$\Gamma\left(1/2\right) = \sqrt{\pi}$$

并注意Γ(1/2) > 0 (因为被积 函数值恒为正)即可得此结

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

证明见下节

推论

$$\Gamma(1/2) = \sqrt{\pi}$$

只要在性质3中代入z=1/2, 并注意 $\Gamma(1/2) > 0$ (因为被积 函数值恒为正)即可得此结果

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

- 因为 $\pi/\sin \pi z \neq 0$,所以 $\Gamma(z)\Gamma(1-z)\neq 0$
- 这样,如果在 $z=z_0$ 点有 $\Gamma(z_0)=0$,则必有

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

- 因为 $\pi/\sin \pi z \neq 0$,所以 $\Gamma(z)\Gamma(1-z)\neq 0$
- 这样,如果在 $z=z_0$ 点有 $\Gamma(z_0)=0$,则必有 $\Gamma(1-z_0)=\infty$
- 这只能发生在 $1-z_0=-n$ (亦即 $z_0=n+1$),

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

- 因为 $\pi/\sin \pi z \neq 0$,所以 $\Gamma(z)\Gamma(1-z)\neq 0$
- 这样,如果在 $z=z_0$ 点有 $\Gamma(z_0)=0$,则必有 $\Gamma(1-z_0)=\infty$
- 这只能发生在 $1-z_0=-n$ (亦即 $z_0=n+1$), $n = 0, 1, 2, \cdots$ 时
- 但此时 $\Gamma(z_0) = \Gamma(n+1) = n!$, 与所设矛盾

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

- 因为 $\pi/\sin \pi z \neq 0$,所以 $\Gamma(z)\Gamma(1-z)\neq 0$
- 这样,如果在 $z=z_0$ 点有 $\Gamma(z_0)=0$,则必有 $\Gamma(1-z_0)=\infty$
- 这只能发生在 $1-z_0=-n$ (亦即 $z_0=n+1$), $n = 0, 1, 2, \cdots$ 时
- 但此时 $\Gamma(z_0) = \Gamma(n+1) = n!$, 与所设矛盾
- 因此「函数在全平面无零点

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

- 因为 $\pi/\sin \pi z \neq 0$,所以 $\Gamma(z)\Gamma(1-z)\neq 0$
- 这样,如果在 $z=z_0$ 点有 $\Gamma(z_0)=0$,则必有 $\Gamma(1-z_0)=\infty$
- 这只能发生在 $1-z_0=-n$ (亦即 $z_0=n+1$), $n = 0, 1, 2, \cdots$ 时
- 但此时 $\Gamma(z_0) = \Gamma(n+1) = n!$, 与所设矛盾
- 因此「函数在全平面无零点

x为实数时 $\Gamma(x)$ 的图形

x为实数时 $\Gamma(x)$ 的图形

从实数范围直观表现出上述推论及「函数的奇点分布

$$\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$$

证明亦见下节

对此式的理解: z = n的特殊情形

$$\Gamma(2n) = 2^{2n-1}\pi^{-1/2}\Gamma(n)\Gamma(n+1/2)$$

$$(2n-1)! = 2^{2n-1}(n-1)!(n-1/2)$$

 $\times (n-3/2) \cdots (3/2)(1/2)$

☞ 你能否预测「(3z) =?

$$\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$$

证明亦见下节

$$\Gamma(2n) = 2^{2n-1}\pi^{-1/2}\Gamma(n)\Gamma(n+1/2)$$

$$(2n-1)! = 2^{2n-1}(n-1)!(n-1/2)$$

 $\times (n-3/2)\cdots(3/2)(1/2)$

$$\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$$

证明亦见下节

|对此式的理解: z = n的特殊情形

$$\Gamma(2n) = 2^{2n-1}\pi^{-1/2}\Gamma(n)\Gamma(n+1/2)$$

$$(2n-1)! = 2^{2n-1}(n-1)!(n-1/2) \times (n-3/2)\cdots(3/2)(1/2)$$

$$\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$$

证明亦见下节

|对此式的理解: z = n的特殊情形

$$\Gamma(2n) = 2^{2n-1}\pi^{-1/2}\Gamma(n)\Gamma(n+1/2)$$

$$(2n-1)! = 2^{2n-1}(n-1)!(n-1/2) \times (n-3/2)\cdots(3/2)(1/2)$$

$$\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$$

证明亦见下节

|对此式的理解: z = n的特殊情形

$$\Gamma(2n) = 2^{2n-1}\pi^{-1/2}\Gamma(n)\Gamma(n+1/2)$$

$$(2n-1)! = 2^{2n-1}(n-1)!(n-1/2) \times (n-3/2)\cdots(3/2)(1/2)$$

☞ 你能否预测 $\Gamma(3z)=?$

性质5 「函数的渐近展开(Stirling公式) (不证)

当
$$|z| o \infty$$
, $|\arg z| < \pi$ 时,有 $\Gamma(z) \sim z^{z-1/2} \mathrm{e}^{-z} \sqrt{2\pi} \Big\{ 1 + rac{1}{12z} + rac{1}{288z^2} - rac{139}{51840z^3} - rac{571}{2488320z^4} + \cdots \Big\}$ In $\Gamma(z) \sim \left(z - rac{1}{2}\right) \ln z - z + rac{1}{2} \ln(2\pi) + rac{1}{12z} - rac{1}{360z^3} + rac{1}{1260z^5} - rac{1}{1680z^7} + \cdots \Big\}$

性质5 「函数的渐近展开(Stirling公式) (不证)

当
$$|z| o \infty$$
, $|\arg z| < \pi$ 时,有 $\Gamma(z) \sim z^{z-1/2} \mathrm{e}^{-z} \sqrt{2\pi} \Big\{ 1 + rac{1}{12z} + rac{1}{288z^2} - rac{139}{51840z^3} - rac{571}{2488320z^4} + \cdots \Big\}$ $\ln \Gamma(z) \sim \left(z - rac{1}{2}
ight) \ln z - z + rac{1}{2} \ln(2\pi) + rac{1}{12z} - rac{1}{360z^3} + rac{1}{1260z^5} - rac{1}{1680z^7} + \cdots$

性质5 「函数的渐近展开(Stirling公式) (不证)

当
$$|z| o \infty$$
, $|\arg z| < \pi$ 时,有 $\Gamma(z) \sim z^{z-1/2} \mathrm{e}^{-z} \sqrt{2\pi} \Big\{ 1 + rac{1}{12z} + rac{1}{288z^2} - rac{139}{51840z^3} - rac{571}{2488320z^4} + \cdots \Big\}$ $\ln \Gamma(z) \sim \left(z - rac{1}{2}
ight) \ln z - z + rac{1}{2} \ln(2\pi) + rac{1}{12z} - rac{1}{360z^3} + rac{1}{1260z^5} - rac{1}{1680z^7} + \cdots$

物理中常用

 $\ln n! \sim n \ln n - n$

讲授要点

- □「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- ② B函数
 - · B函数的定义
 - · B函数与Γ函数
 - 有关[函数两个公式的证明

B函数的常用定义

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p \! > \! 0 \;\; \mathsf{Re}\, q \! > \! 0$$

其中的积分变量t应该理解为arg t = 0

这个积分称为第一类Euler积分

作变换 $t=\sin^2 heta$,可得到B函数的另一个表达式

$$B(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta$$

B函数的常用定义

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p \! > \! 0 \;\; \mathsf{Re}\, q \! > \! 0$$

其中的积分变量t应该理解为arg t = 0

这个积分称为第一类Euler积分

作变换 $t = \sin^2 \theta$,可得到B函数的另一个表达式

$$B(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta$$

B函数的常用定义

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p \! > \! 0 \;\; \mathsf{Re}\, q \! > \! 0$$

其中的积分变量t应该理解为arg t = 0

这个积分称为第一类Euler积分

作变换 $t = \sin^2 \theta$, 可得到B函数的另一个表达式

$$\mathsf{B}(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1}\theta \, \cos^{2q-1}\theta \, \mathrm{d}\theta$$

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p > 0 \ \mathsf{Re}\, q > 0$$

作变换
$$s=1-t$$
, 可得

$$B(p,q) = \int_{1}^{0} (1-s)^{p-1} s^{q-1} (-ds)^{p-1} ds$$
$$= \int_{0}^{1} s^{q-1} (1-s)^{p-1} ds$$

 $\mathsf{B}(p,q) = \mathsf{B}(q,p)$

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p \! > \! 0 \;\; \mathsf{Re}\, q \! > \! 0$$

作变换s = 1 - t,可得

$$B(p,q) = \int_{1}^{0} (1-s)^{p-1} s^{q-1} (-ds)^{p-1} ds$$
$$= \int_{0}^{1} s^{q-1} (1-s)^{p-1} ds$$

.

$$B(p,q) = B(q,p)$$

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p > 0 \;\; \mathsf{Re}\, q > 0$$

作变换
$$s = 1 - t$$
,可得
$$\mathsf{B}(p,q) = \int_1^0 (1-s)^{p-1} s^{q-1} (-\mathsf{d} s)$$

$$= \int_0^1 s^{q-1} (1-s)^{p-1} \mathsf{d} s$$

. .

$$B(p,q) = B(q,p)$$

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p \! > \! 0 \;\; \mathsf{Re}\, q \! > \! 0$$

作变换
$$s = 1 - t$$
,可得
$$\mathsf{B}(p,q) = \int_1^0 (1-s)^{p-1} s^{q-1} (-\mathsf{d}s)$$

$$= \int_0^1 s^{q-1} (1-s)^{p-1} \mathsf{d}s$$

$$\mathsf{B}(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} \mathsf{d}t \qquad \mathsf{Re}\, p > 0 \ \mathsf{Re}\, q > 0$$

作变换
$$s = 1 - t$$
,可得
$$\mathsf{B}(p,q) = \int_{1}^{0} (1-s)^{p-1} s^{q-1} (-\mathsf{d}s)$$

$$= \int_{0}^{1} s^{q-1} (1-s)^{p-1} \mathsf{d}s$$

$$\therefore \qquad \mathsf{B}(p,q) = \mathsf{B}(q,p)$$

讲授要点

- □「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- ② B函数
 - · B函数的定义
 - Β函数与Γ函数
 - 有关[函数两个公式的证明

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

【证】在Rep > 0,Req > 0的条件下,显然有

$$\Gamma(p) = \int_0^\infty e^{-t} t^{p-1} dt = 2 \int_0^\infty e^{-x^2} x^{2p-1} dx$$

$$\Gamma(q) = 2\int_0^\infty e^{-y^2} y^{2q-1} dy$$

$$\therefore \quad \Gamma(p) \Gamma(q) = 4 \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} x^{2p - 1} y^{2q - 1} dx dy$$

令 $x = r \cos \theta$, $y = r \sin \theta$, 即得

$$\mathsf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

【证】在Re p > 0,Re q > 0的条件下,显然有

$$\Gamma\left(p\right) = \int_{0}^{\infty} e^{-t} t^{p-1} dt = 2 \int_{0}^{\infty} e^{-x^{2}} x^{2p-1} dx$$

$$\Gamma(q) = 2 \int_0^\infty e^{-y^2} y^{2q-1} dy$$

$$\therefore \quad \Gamma(p) \Gamma(q) = 4 \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} x^{2p - 1} y^{2q - 1} dx dy$$

$$\mathsf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

【证】在Re p > 0,Re q > 0的条件下,显然有

$$\Gamma\left(p\right) = \int_{0}^{\infty} e^{-t} t^{p-1} dt = 2 \int_{0}^{\infty} e^{-x^{2}} x^{2p-1} dx$$

$$\Gamma(q) = 2\int_0^\infty e^{-y^2} y^{2q-1} dy$$

$$\therefore \Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} x^{2p-1} y^{2q-1} dx dy$$

令 $x = r\cos\theta$, $y = r\sin\theta$, 即得

$$\mathsf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

【证】在Re p > 0,Re q > 0的条件下,显然有

$$\Gamma(p) = \int_0^\infty e^{-t} t^{p-1} dt = 2 \int_0^\infty e^{-x^2} x^{2p-1} dx$$

$$\Gamma(q) = 2 \int_0^\infty e^{-y^2} y^{2q-1} dy$$

$$\therefore \Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^\infty e^{-(x^2+y^2)}x^{2p-1}y^{2q-1}dxdy$$

令 $x = r\cos\theta$, $y = r\sin\theta$, 即得

$$\mathsf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

【证】在Re p > 0,Re q > 0的条件下,显然有

$$\Gamma\left(p\right) = \int_{\mathbf{0}}^{\infty} \mathrm{e}^{-t} t^{p-1} \mathrm{d}t = 2 \int_{\mathbf{0}}^{\infty} \mathrm{e}^{-x^2} x^{2p-1} \mathrm{d}x$$

$$\Gamma(q) = 2 \int_0^\infty e^{-y^2} y^{2q-1} dy$$

$$\therefore \Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} x^{2p-1} y^{2q-1} dx dy$$

令 $x = r \cos \theta$, $y = r \sin \theta$, 即得

$$\mathsf{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^{\pi/2} e^{-r^2} (r\cos\theta)^{2p-1} (r\sin\theta)^{2q-1} r dr d\theta$$

$$= 4\int_0^\infty e^{-r^2} r^{2p+2q-2} r dr \int_0^{\pi/2} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta$$

$$= \Gamma(p+q)B(p,q) \qquad \Box$$

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^{\pi/2} e^{-r^2} (r\cos\theta)^{2p-1} (r\sin\theta)^{2q-1} r dr d\theta$$

$$= 4\int_0^\infty e^{-r^2} r^{2p+2q-2} r dr \int_0^{\pi/2} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta$$

$$= \Gamma(p+q)B(p,q) \qquad \Box$$

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^{\pi/2} e^{-r^2} (r\cos\theta)^{2p-1} (r\sin\theta)^{2q-1} r dr d\theta$$

$$= 4\int_0^\infty e^{-r^2} r^{2p+2q-2} r dr \int_0^{\pi/2} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta$$

$$= \Gamma(p+q)\mathsf{B}(p,q) \qquad \Box$$

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^{\pi/2} e^{-r^2} (r\cos\theta)^{2p-1} (r\sin\theta)^{2q-1} r dr d\theta$$

$$= 4\int_0^\infty e^{-r^2} r^{2p+2q-2} r dr \int_0^{\pi/2} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta$$

$$= \Gamma(p+q)\mathsf{B}(p,q) \qquad \Box$$

- 从这个关系式,可以清楚地看出B(p,q)对于 p和q对称
- 利用这个关系式,可把B函数解析延拓到p和

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\Gamma(p)\Gamma(q) = 4\int_0^\infty \int_0^{\pi/2} e^{-r^2} (r\cos\theta)^{2p-1} (r\sin\theta)^{2q-1} r dr d\theta$$

$$= 4\int_0^\infty e^{-r^2} r^{2p+2q-2} r dr \int_0^{\pi/2} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta$$

$$= \Gamma(p+q)\mathsf{B}(p,q) \qquad \Box$$

- 从这个关系式,可以清楚地看出B(p,q)对于 p和q对称
- •利用这个关系式,可把B函数解析延拓到p和q的全平面

讲授要点

- 1 「函数
 - 「函数的定义
 - 「函数的解析性
 - 「函数的基本性质
- ② B函数
 - · B函数的定义
 - · B函数与Γ函数
 - 有关「函数两个公式的证明

补证有关Γ函数的两个性质

性质3 互余宗量定理

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

性质4 倍乘公式

$$\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$$

互余宗量定理 $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin \pi z}$ 的证明

【证】计算积分 $\mathsf{B}(z,1-z)=\int_{\hat{z}}^{1}t^{z-1}(1-t)^{-z}\mathsf{d}t$

作变换
$$x=t/(1-t)$$
,上式即可化为 $\mathsf{B}(z,1-z)=\int_0^\infty rac{x^{z-1}}{1+x}\mathsf{d}x$

这个积分在上一讲已经计算过,这样就求得 $B(z,1-z) = \frac{\pi}{\sin \pi z}$

另一方面,将B(z,1-z)表示为「函数,即证得 B $(z,1-z)=\Gamma(z)$ $\Gamma(1-z)=\frac{\pi}{\sin \pi z}$

互余宗量定理 $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin \pi z}$ 的证明

【证】计算积分

$$B(z, 1-z) = \int_0^1 t^{z-1} (1-t)^{-z} dt$$

作变换x = t/(1-t), 上式即可化为

$$B(z, 1-z) = \int_0^\infty \frac{x^{z-1}}{1+x} dx$$

这个积分在上一讲已经计算过, 这样就求得

$$\mathsf{B}(z,1-z) = rac{---}{\sin\pi z}$$

另一方面,将B(z,1-z)表示为 Γ 函数,即证得

互余宗量定理 $\Gamma(z)\Gamma(1-z)=\dfrac{\pi}{\sin\pi z}$ 的证明

【证】计算积分

$$B(z, 1-z) = \int_0^1 t^{z-1} (1-t)^{-z} dt$$

作变换x = t/(1-t),上式即可化为

$$\mathsf{B}(z,1-z) = \int_0^\infty \frac{x^{z-1}}{1+x} \mathsf{d}x$$

这个积分在上一讲已经计算过, $_{\pi}$ 这样就求得

$$B(z, 1-z) = \frac{\pi}{\sin \pi z}$$

另一方面,将B(z,1-z)表示为「函数,即证得 B(z,1-z)- $\Gamma(z)$ - $\Gamma(z)$

互余宗量定理 $\Gamma(z)\Gamma(1-z)=\dfrac{\pi}{\sin\pi z}$ 的证明

【证】计算积分

$$B(z, 1-z) = \int_0^1 t^{z-1} (1-t)^{-z} dt$$

作变换x = t/(1-t),上式即可化为

$$\mathsf{B}(z,1-z) = \int_0^\infty \frac{x^{z-1}}{1+x} \mathsf{d}x$$

这个积分在上一讲已经计算过, $_{\pi}$ 这样就求得

$$B(z, 1-z) = \frac{\pi}{\sin \pi z}$$

另一方面,将B(z,1-z)表示为「函数,即证得

$$B(z, 1-z) = \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

互余宗量定理 $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin \pi z}$ 的证明

【解析延拓】以上的证明是在

$$\operatorname{Re} z > 0 \qquad \operatorname{Re} (1 - z) > 0$$

亦即

$$0 < \text{Re } z < 1$$

的条件下进行的. 但是,由于等式的两端在全平面都解析,因此,根据解析延拓原理可知,此等式在全平面成立

互余宗量定理 $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin \pi z}$ 的证明

【解析延拓】以上的证明是在

$$\operatorname{Re} z > 0 \qquad \operatorname{Re} (1 - z) > 0$$

亦即

$$0<\operatorname{Re}z<1$$

的条件下进行的. 但是,由于等式的两端在全平面都解析,因此,根据解析延拓原理可知,此等式在全平面成立

互余宗量定理 $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin\pi z}$ 的证明

【解析延拓】以上的证明是在

$$\operatorname{Re} z > 0 \qquad \operatorname{Re} (1 - z) > 0$$

亦即

$$0<\operatorname{Re}z<1$$

的条件下进行的. 但是,由于等式的两端在全平面都解析,因此,根据解析延拓原理可知,此等式在全平面成立

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

【证】计算积分 $I = \int_{-1}^{1} (1 - x^2)^{z-1} dx$

① 作变换 $t=x^2$,即得 $I=2\int_0^1(1-x^2)^{z-1}\mathrm{d}x=\int_0^1(1-t)^{z-1}t^{-1/2}\mathrm{d}t$ $=\mathrm{B}(z,1/2)=rac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+1/2)}$

② 作变换1+x=2t, 1-x=2(1-t), 则有 $I=2^{2z-1}\int_0^1 t^{z-1}(1-t)^{z-1}dt$

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

【证】计算积分
$$I = \int_{-1}^{1} (1 - x^2)^{z-1} dx$$

① 作变换 $t=x^2$,即得 $I=2\int_0^1 (1-x^2)^{z-1} \mathrm{d}x = \int_0^1 (1-t)^{z-1} t^{-1/2} \mathrm{d}t$ $=\mathrm{B}(z,1/2) = rac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+1/2)}$

② 作变换
$$1+x=2t$$
, $1-x=2(1-t)$, 则有
$$I=2^{2z-1}\int_0^1 t^{z-1}(1-t)^{z-1}dt$$

 $=2^{2z-1}B(z,z)=2^{2z-1}\frac{|(z)|(z)}{\Gamma(2z)}$

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

【证】计算积分
$$I = \int_{-1}^{1} (1 - x^2)^{z-1} dx$$

① 作变换 $t=x^2$,即得 $I=2\int_0^1(1-x^2)^{z-1}\mathrm{d}x=\int_0^1(1-t)^{z-1}t^{-1/2}\mathrm{d}t$ $=\mathsf{B}(z,1/2)=rac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+1/2)}$

② 作变换
$$1+x=2t$$
, $1-x=2(1-t)$, 则有
$$I=2^{2z-1}\int_0^1 t^{z-1}(1-t)^{z-1}dt$$
$$=2^{2z-1}B(z,z)=2^{2z-1}\frac{\Gamma(z)\Gamma(z)}{z-1}$$

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

【证】计算积分
$$I = \int_{-1}^{1} (1 - x^2)^{z-1} dx$$

① 作变换
$$t=x^2$$
,即得 $I=2\int_0^1 (1-x^2)^{z-1} \mathrm{d}x = \int_0^1 (1-t)^{z-1} t^{-1/2} \mathrm{d}t$ $=\mathrm{B}(z,1/2) = rac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+1/2)}$

② 作变换
$$1+x=2t$$
, $1-x=2(1-t)$, 则有
$$I=2^{2z-1}\int_0^1 t^{z-1}(1-t)^{z-1}dt$$
$$=2^{2z-1}B(z,z)=2^{2z-1}\frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$$

倍乘公式 $\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

【证】计算积分
$$I = \int_{-1}^{1} (1 - x^2)^{z-1} dx$$

① 作变换
$$t=x^2$$
,即得 $I=2\int_0^1 (1-x^2)^{z-1} \mathrm{d}x = \int_0^1 (1-t)^{z-1} t^{-1/2} \mathrm{d}t$ $=\mathrm{B}(z,1/2) = rac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+1/2)}$

② 作变换
$$1+x=2t$$
, $1-x=2(1-t)$, 则 $I=2^{2z-1}\int_0^1 t^{z-1}(1-t)^{z-1} dt$ $=2^{2z-1}\mathsf{B}(z,z)=2^{2z-1}\frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

【证】计算积分
$$I = \int_{-1}^{1} (1 - x^2)^{z-1} dx$$

① 作变换 $t=x^2$,即得 $I=2\int_0^1 (1-x^2)^{z-1} \mathrm{d}x = \int_0^1 (1-t)^{z-1} t^{-1/2} \mathrm{d}t$ $=\mathrm{B}(z,1/2) = rac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+1/2)}$

② 作变换
$$1+x=2t$$
, $1-x=2(1-t)$,则 $I=2^{2z-1}\int_0^1 t^{z-1}(1-t)^{z-1}\mathrm{d}t$ $=2^{2z-1}\mathsf{B}(z,z)=2^{2z-1}rac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

【证】计算积分
$$I = \int_{-1}^{1} (1 - x^2)^{z-1} dx$$

① 作变换
$$t=x^2$$
,即得 $I=2\int_0^1 (1-x^2)^{z-1} \mathrm{d}x = \int_0^1 (1-t)^{z-1} t^{-1/2} \mathrm{d}t$ $=\mathrm{B}(z,1/2) = rac{\Gamma(z)\Gamma(1/2)}{\Gamma(z+1/2)}$

② 作变换
$$1+x=2t$$
, $1-x=2(1-t)$,则有 $I=2^{2z-1}\int_0^1 t^{z-1}(1-t)^{z-1} dt = 2^{2z-1}\mathsf{B}(z,z) = 2^{2z-1}\frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

$$\therefore I = \int_{-1}^{1} (1 - x^2)^{z - 1} dx$$

$$= \frac{\Gamma(z)\Gamma(1/2)}{\Gamma(z + 1/2)} = 2^{2z - 1} \frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$$

$$\therefore \Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2) \qquad \Box$$

【解析延拓】以上的证明是在Re 2 > 0的条件下进 行的. 但根据解析延拓原理可知, 此等式在全平面 成立

倍乘公式 $\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

$$\therefore I = \int_{-1}^{1} (1 - x^2)^{z - 1} dx$$

$$= \frac{\Gamma(z)\Gamma(1/2)}{\Gamma(z + 1/2)} = 2^{2z - 1} \frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$$

$$\therefore \qquad \Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2) \qquad \Box$$

【解析延拓】以上的证明是在Rez>0的条件下进行的。但根据解析延拓原理可知,此等式在全平面成立

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

$$\therefore I = \int_{-1}^{1} (1 - x^2)^{z - 1} dx$$

$$= \frac{\Gamma(z)\Gamma(1/2)}{\Gamma(z + 1/2)} = 2^{2z - 1} \frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$$

$$\therefore \qquad \Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2) \qquad \Box$$

【解析延拓】以上的证明是在Re z > 0的条件下进行的. 但根据解析延拓原理可知, 此等式在全平面成立

倍乘公式 $\Gamma(2z)=2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2)$ 的证明

$$\therefore I = \int_{-1}^{1} (1 - x^2)^{z - 1} dx$$

$$= \frac{\Gamma(z)\Gamma(1/2)}{\Gamma(z + 1/2)} = 2^{2z - 1} \frac{\Gamma(z)\Gamma(z)}{\Gamma(2z)}$$

$$\therefore \qquad \Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+1/2) \qquad \Box$$

【解析延拓】以上的证明是在Rez>0的条件下进行的. 但根据解析延拓原理可知, 此等式在全平面成立

