Machine Learning HW6 Report

學號:R07942115 系級:電信碩一 姓名:謝硯澤

1. (1%) 請說明你實作之 RNN 模型架構及使用的 word embedding 方法,回報模型的正確率並繪出訓練曲線*

RNN Model Architecture:

Layer (type)	Output Shape	Param #		
embedding_2 (Embed	======================================	======================================		
bidirectional_3 (Bidirection (None, None, 512) 778752				
bidirectional_4 (Bidire	ection (None, None, 512)	1181184		
time_distributed_2 (T	imeDist (None, None, 25	56) 131328		
batch_normalization_3 (Batch (None, None, 256) 1024				
dropout_3 (Dropout)	(None, None, 256) 0		
dense_5 (Dense)	(None, None, 16)	4112		
batch_normalization_4 (Batch (None, None, 16) 64				
dropout_4 (Dropout)	(None, None, 16)	0		
dense_6 (Dense)	(None, None, 2)	34		
Tatal navama: 0.467	400			

Total params: 9,467,498 Trainable params: 2,095,954 Non-trainable params: 7,371,544

<< loss = 'binary_crossentropy', optimizer = 'adam' >>

Word Embedding 實作方法:

- (1)首先,使用套件 jieba 分割句子。 Ex: "人生短短幾個秋" => "人生", "短短", "幾個", "秋"
- (2) 再來,使用 gensim 套件中的 word2vec,訓練一個 word-to-vector model word2vec.Word2Vec(seg_train_x, size=250, window=5, min_count=5, workers=4, iter=10, sg=1)

RNN 模型正確率:

Public score	0.75800
Private score	0.74950

使用 RNN 架構訓練 10 個 epoch 的訓練曲線:

2. (1%) 請實作 BOW+DNN 模型,敘述你的模型架構,回報模型的正確率並繪出訓 練曲線*。

BOW+DNN Model Architecture:

Layer (type)	Output Shape	Param #	
dense_11 (Dense)	(None, 1, 512)	15095808	
leaky_re_lu_9 (LeakyR	eLU) (None, 1, 512)	0	
batch_normalization_9	(Batch (None, 1, 512)	2048	
dropout_9 (Dropout)	(None, 1, 512)	0	
dense_12 (Dense)	(None, 1, 128)	65664	
leaky_re_lu_10 (LeakyF	ReLU) (None, 1, 128)	0	
batch_normalization_1	0 (Batc (None, 1, 128)	512	<u> </u>
dropout_10 (Dropout)	(None, 1, 128)	0	h
dense_13 (Dense)	(None, 1, 64)	8256	
leaky_re_lu_11 (LeakyF	ReLU) (None, 1, 64)	0	
batch_normalization_1	1 (Batc (None, 1, 64)	256	
dropout_11 (Dropout)	(None, 1, 64)	0	
dense_14 (Dense)	(None, 1, 32)	2080	
leaky_re_lu_12 (LeakyF	ReLU) (None, 1, 32)	0	
batch_normalization_1	2 (Batc (None, 1, 32)	128	
dropout_12 (Dropout)	(None, 1, 32)	0	
dense_15 (Dense)	(None, 1, 2)	66	
Total params: 15,174,8 Trainable params: 15,1 Non-trainable params	73,346		

使用 BOW+DNN 訓練 10 個 epoch 的 training accuracy& validation accuracy:

<< loss = 'binary_crossentropy', optimizer = 'adam' >>

BOW+DNN 模型正確率:

Public score	0.52590
Private score	0.52540

備註:BOW+DNN 的 performance 沒有很好,幾乎是用猜的,但 training acc.又有到 0.95,可能是 over-fitting 了,因為 valid. Acc.隨著 training acc.升高而下降。

3. (1%) 請敘述你如何 improve performance (preprocess, embedding, 架構等), 並解釋為何這些做法可以使模型進步。

Word embedding model 的訓練並沒有特別改什麼,主要更動的地方是 model 的架構。首先,我有把 word embedding 放在第一層一起進行訓練,再來我加了兩層 GRU(Gated Recurrent Unit),我也有試過 LSTM 但發現效果差一點且訓練時間好像比較久一點?! 而兩層 GRU 都是使用 Bidirectional 的 wrapper(考量到句子前後也具有高度的相關性),助教上課時也有講過疊兩層其實表現就已經很不錯了~我自己也有試過多疊幾層發現 performance 並沒有提升,所以只疊了兩層 GRU。最後則是三層的全連結層,第一層全連階層則使用 TimeDistributed() wrapper。
<< TimeDistributedDense applies a same Dense (fully-connected) operation to every timestep of a 3D tensor. >> 上網查使用 TimeDistributed 可以解決序列預測問題的多對多網路問題~

4. (1%) 請比較不做斷詞 (e.g., 以字為單位) 與有做斷詞,兩種方法實作出來的效果差異,並解釋為何有此差別。

<< 不斷詞做法:以字為單位,訓練一個 word embedding >>

	有斷詞	無斷詞
Public score	0.75800	0.75000
Private score	0.74950	0.74270

不做斷詞的表現差了一點,因為少了詞的結構後,有些語句的意思可能會完全不同了,例如:"啊不就好棒棒"拆成每個單詞後會變成["啊", "不", "就", "好", "棒", "棒"] 跟理想情況["啊", "不", "就", "好棒棒"]的,解讀後的意思可能就完全不一樣了!但其實我用到的斷詞套件,其實也沒有每個斷詞都斷很精準,以至於有無斷詞的分數差異不是特別明顯。

5. (1%) 請比較 RNN 與 BOW 兩種不同 model 對於 "在說別人白痴之前,先想想自己 "與"在說別人之前先想想自己,白痴" 這兩句話的分數 (model output),並討論 造成差異的原因。

	RNN	BOW+DNN
'在說別人白痴之前,先想	善意:58.73%	善意:48.03%
想自己'		
	惡意:41.27%	惡意:51.97%
'在說別人之 前先想想自	善意:47.02%	善意:48.05%
己,白痴'		
	惡意:52.98%	惡意:51.95%

RNN 的 model 兩個句子都判斷正確,而 BOW+DNN 則有一個判斷錯誤。我覺得 BOW+DNN 會判斷錯誤的原因是沒有加入 Bidirectional 的機制進去,學習表現上會比較差,因為前後句子其實是有很大的相關性在裡面,但 model 並沒有學習到。只會從前面的句子來做判斷。