

Bài 7 Phân tích cú pháp tiền định

- Tư tưởng chính của giải thuật phân tích cú pháp trên xuống quay lui
 - Bắt đầu từ gốc, phát triển xuống các nút cấp dưới
 - Chọn một sản xuất và thử xem có phù hợp với xâu vào không
 - Quay lui nếu lựa chọn dẫn đến ký hiệu được sinh bởi văn phạm không phù hợp ký hiệu đang xét
- Có thể tránh được quay lui?
 - Cho sản xuất $A \rightarrow \alpha \mid \beta$ bộ phân tích cú pháp cần chọn giữa α và β
- Làm thế nào?
 - Cho ký hiệu không kết thúc A và ký hiệu xem trước t, sản xuất nào của A chắc chắn sinh ra một xâu bắt đầu bởi t?

- Nếu có hai sản xuất: $A \rightarrow \alpha \mid \beta$, ta mong muốn có một phương pháp rõ ràng để chọn đúng sản xuất cần thiết
- Định nghĩa:
 - Với α là một xâu chứa ký hiệu kết thúc và không kết thúc,
 x ∈ FIRST(α) nếu từ α có thể suy dẫn ra xγ (x chứa 0 hoặc 1 ký hiệu)
- Nếu FIRST(α) và FIRST(β) không chứa ký hiệu chung ta biết phải chọn A→α hay A→β khi đã xem trước một ký hiệu

- Tính FIRST(X):
 - Nếu X là ký hiệu kết thúc FIRST(X)={X}
 - Nếu $X \rightarrow \epsilon$ là một sản xuất thì thêm ϵ vào FIRST(X)
 - Nếu X là ký hiệu không kết thúc và X→Y₁Y₂...Y_n là một sản xuất
 - Thêm FIRST(Y₁) vào FIRST(X)
 - Thêm FIRST(Y_{i+1}) vào FIRST(X) nếu FIRST(Y_1),... FIRST(Y_j) chứa ϵ
- Tính FIRST(α) tương tự bước thứ ba trong tính FIRST(X)

- Nếu ta có sản xuất để chọn là A→α với α=ε hoặc α⇒*ε? Ký hiệu nào sẽ là ký hiệu đầu tiên được sinh bởi một dạng câu chứa A?
- Có thể mở rộng A nếu ta biết rằng tồn tại một dạng câu mà ký hiệu đang xét xuất hiện sau A, nghĩa là ký hiệu đang xét thuộc FOLLOW(A)
- Định nghĩa:
 - Với A là ký hiệu không kết thúc, x∈FOLLOW(A) nếu và chỉ nếu S có thể suy dẫn ra αAxβ, |x| = 1 hoặc x = ε (khi ấy β cũng là ε)

Tính FOLLOW

- FOLLOW(S) chứa ε (EOF)
- Với các sản xuất dạng $A \rightarrow \alpha B\beta$, mọi ký hiệu trong FIRST(β) trừ ϵ tham gia vào FOLLOW(B)
- Với các sản xuất dạng A→αB hoặc A→αBβ trong đó FIRST(β) chứa ε, FOLLOW(B) chứa mọi ký hiệu của FOLLOW(A) và ε (hoặc \$)

- Với các khái niệm
 - FIRST
 - FOLLOW
- Ta có thể xây dựng bộ phân tích cú pháp mà không đòi hỏi quay lui
- Chỉ có thể xây dựng bộ phân tích cú pháp như vậy cho những văn phạm đặc biệt
- Loại văn phạm như vậy bao gồm văn phạm một số ngôn ngữ lập trình đơn giản, chẳng hạn KPL,PL/0, PASCAL-S

Bảng phân tích tiền định

- Dùng cho bộ sinh phân tích cú pháp
- Đầu vào của giải thuật: văn phạm G và xâu w
- Căn cứ
 - Ký hiệu đang xét
 - Ký hiệu đang ở đỉnh stack
- Quyết định
 - Thay thế ký hiệu không kết thúc
 - Chuyển con trỏ sang ký hiệu tiếp
 - Chấp nhận xâu
 - Thông báo lỗi

Bộ phân tích cú pháp tiền định

Vào: Văn phạm phi ngữ cảnh LL(1) G Xâu w

Các thành phần cơ bản

- Stack
- Bảng phân tích
- Băng vào
- Chương trình phân tích

Mô tả các thành phần

- Băng vào chứa xâu cần phân tích, kết thúc bằng \$ (EOF)
- Stack giống như stack D2 của bộ phân tích cú pháp top down quay lui, # ở đáy của stack. Ban đầu S ở đỉnh stack, trên ký hiệu #.
- Bảng phân tích M[A,a] với A là một ký hiệu của văn phạm, a là ký hiệu kết thúc hoặc \$.

Hoạt động của bộ phân tích cú pháp

- Nếu stack còn lại # (đáy), đầu đọc chỉ \$ (EOF), dừng và đoán nhận xâu.
- If X=a (ký hiệu kết thúc đang xét trên xâu vào) và không là \$, xóa X trên đỉnh stack, chuyển đầu đọc sang ô kế tiếp.
- Nếu X là ký hiệu không kết thúc, bộ PTCP tra bảng phân tích cú pháp M, tìm ô M[X,a], thay thế ký hiệu đỉnh stack (X) bằng vế phải sản xuất trong ô (nếu có). Nếu là ô rỗng -> ERROR, gọi thủ tục thông báo lỗi.

Bảng phân tích LL(1)

- Dùng cho bộ sinh phân tích cú pháp
- Căn cứ
 - Ký hiệu đang xét
 - Ký hiệu đang ở đỉnh stack
- Quyết định
 - Thay thế ký hiệu không kết thúc
 - Chuyển con trỏ sang ký hiệu tiếp
 - Chấp nhận xâu

Giải thuật xây dựng bảng phân tích

- 1. Với mỗi sản xuất A→α của văn phạm G, thực hiện các bước 2 và 3.
- Với mỗi ký hiệu kết thúc a ∈ FIRST(α), thêm A→α vào M[A,a].
- 3. If ε thuộc FIRST(α), thêm $A \rightarrow \alpha$ vào M[A,b] với mỗi b thuộc FOLLOW(A). If ε thuộc FIRST(α), và \$ thuộc FOLLOW(A), thì thêm $A \rightarrow \alpha$ vào M[A,\$]
- Các ô M(a,a) với a là ký hiệu kết thúc, thêm hành động "đẩy"
- 5. M[#,\$] ="nhận"
- 6. Các ô còn lại đánh dấu là "lỗi".

Ví dụ

• Văn phạm:

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' | \varepsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' | \varepsilon$
 $F \rightarrow (E) | id$

Văn phạm này LL(1) có thể xây dựng bộ phân tích tiền định

Bảng phân tích

Daily phan tion												
	FIRST(E) = {(, id}											
	FIRST(+TE') = {+}			FOLLOW(E') = {\$,)}								
	E			E→YE'								
	E'	É'→+TE'			E'→ε •		Ε'→ε					
	T			T→FT'		T→FT'						
	T'	T' → ε	T'→ * FT'		T' → ε		T'→ε					
	F			F→ (E)		F→id						
	+	Đẩy										
	*		Đẩy									
	(Đẩy								
)				Đẩy							
	id					Đẩy						
	#						Nhận					
BALHOC	2	ART SARM	ı			<u> </u>		1				

Phân tích xâu vào id*id sử dụng bảng phân tích và stack

Bước Stack Xâu vào Hành động kế tiếp

1 #E	id*id\$	E→TE'	
2 #E'T	id*id\$	T→FT'	
3 #E'T'F	id*id\$	F→id	
4 #E'T'id	id*id\$	đẩy id	
5 #E'T'	*id\$	$T' \rightarrow *FT'$	
6 #E'T'F*	*id\$	đẩy *	
7 #E'T'F	id\$	F→id	
8 #E'T'id	id\$	đẩy id	
9 #E'T'	\$	T'→ε	
10#E'	\$	$E' \rightarrow \varepsilon$	
11#		nhận	

