

Частное учреждение профессионального образования «Высшая школа предпринимательства» (ЧУПО «ВШП»)

КУРСОВАЯ РАБОТА

«Разработка базы данных для онлайн-платформы дистанционного обучения»

Выполнил:
студент 3-го курса специальности
09.02.07 «Информационные системы и
программирование»
Зайцев Ярослав Сергеевич
подпись:
Проверил:
преподаватель дисциплины
«Численные методы»
колледжа ЧУПО «ВШП»
Ткачёв П.С
оценка:
подпись:

Оглавление

Введение	;
Первая глава	7
Определение бизнес-процессов условной онлайн-платформы дистанционно обучения	
Формулировка требований к разрабатываемой базе данных	8
Выбор СУБД для реализации базы данных	10
Почему MySQL, а не альтернативы?	12
Почему не PostgreSQL?	12
Почему не NoSQL?	12
Примеры использования в онлайн платформе дистанционного обучения	13
Краткий вывод	14
Вторая глава	;
Построение схемы базы данных.	15
Возможности MySQL WorkBench	15
ER-Диаграмма и набор таблиц проекта	16
Связи в проекте	21
Примеры разработки таблиц	22
Реализация бизнес-процессов на уровне СУБД22	2
Заключение	j
Список литературы	}
Приложение 1)
Приложение 2	
Приложение 3	}
Приложение 4	,

Введение

Актуальность

В наше время высоких технологий и стремительного развития онлайн сервисов появились и довелись до ума возможности дистанционного обучения. Которые крайне упрощают жизнь, теперь для получения определённых знаний не требуется куда-то уезжать и любую информацию можно получить прямо из дома, занимаясь напрямую с профессионалами. Данную тему можно считать актуальной и интересной, по скольку многие процессы дистанционного обучения актуальны и в других информационных сферах.

Определение цели работы

Для начало стоит внести ясность в тему и правильно сформировать цель курсовой работы. Темой является: «Разработка базы данных для онлайн-платформы дистанционного обучения». Исходя из этого цель работы - разработать базу данных для онлайн платформы дистанционного обучения. Прежде чем перейти к формулировки задачи, стоит разобраться в дистанционном обучении как явлении.

По версии сайта открытой онлайн энциклопедии ru.wikipedia.org, дистанционное обучение - образовательный процесс с применением совокупности телекоммуникационных технологий, имеющих целью предоставление возможности обучаемым освоить основной объём требуемой им информации без непосредственного контакта обучаемых и преподавателей в ходе процесса обучения.[2]

Если рассматривать, как онлайн платформы, то это способ получить информация используя телекоммуникационные сервисы, например Zoom, Google Meets. Онлайн платформы играют ключевую роль в организации дистанционного обучения, обеспечивая доступ к учебным материалам, интерактивным заданиям и обратной связи с преподавателями. Такие платформы, как Moodle, Coursera, Stepik и другие, позволяют организовать процесс обучения в удобной и доступной форме, поддерживая модульную систему, видеолекции, тесты и дискуссионные форумы.

Краткая история дистанционного обучения

Первый формы дистанционного обучения сформировались в XVIII века. Тогда британский учёный-стенограф Исаак Питман организовал дистанционное обучение по почте (так называемое корреспондентское обучение). Он полагал, что доступ к получению высшего образования должен быть обеспечен для всех желающих, независимо от их финансового достатка, национальности и вероисповедания. Следующий вклад в дистанционное обучения внесла Анна Тинкор, продолжавшая систему «корреспондентского обучения» по почте в конце XIX века. [1]

С развитием телекоммуникационных технологий таких как телефония, радио, телевиденье в начала и середине XX века, дистанционной обучения получило более широкое распространение, включая СССР, в виде теле, радиопередач, например «Чему и как учат в ПТУ». [1]

Важным этапом развития стал 1969 год. В Великобритании открыли The Open University – крупнейший центр дистанционного образования.

На территории России, дистанционное обучение начало развивается приблизительно в 1917 году, после конца революции. В рамках программ по ликвидации безграмотности выходили пособия для самообучения: «Школа на дому», «Рабочий техникум на дому», «Учись сам» и так далее. [1]

С появлением и развитием интернета, дистанционное обучение претерпело изменения. Интернет позволил упростить многие процессы, создавать онлайн курсы, лекции уроки, которые стали доступны по всему миру.

Стоит упомянуть важный этап популяризации дистанционного обучения. Пандемия COVID-19 стала глобальным катализатором для стремительного роста дистанционного образования. Закрытие школ и вузов по всему миру вынудило образовательные учреждения срочно внедрять онлайн-форматы, чтобы обеспечить непрерывность обучения. В этот период наблюдался резкий рост использования видеоконференцсвязи, электронных дневников, цифровых платформ и облачных сервисов.

Во многих странах, включая Россию, были разработаны национальные программы поддержки дистанционного образования. Преподаватели и студенты в

ускоренном режиме осваивали цифровые инструменты и платформы. Были запущены масштабные онлайн-курсы, разработаны рекомендации для эффективной организации учебного процесса в дистанционном формате. Появилось новое направление — смешанное обучение, совмещающее онлайн и очные элементы. В результате, несмотря на вызовы, пандемия дала мощный толчок цифровизации образования и сделала дистанционное обучение привычной и неотъемлемой частью образовательной системы.

Современное дистанционное обучение отличается следующими особенностями:

- 1. Доступность и гибкость. Обучающиеся могут осваивать материал в любое удобное время и из любой точки мира, имея лишь доступ в интернет.
- 2. Разнообразие платформ. Используются как международные, так и отечественные платформы (Coursera, Stepik, Сферум, РЭШ), что позволяет выбрать подходящий формат и язык преподавания.
- 3. Интерактивные форматы. Широко применяются видеолекции, тесты, вебинары, практические задания и симуляции, что делает процесс обучения более вовлекающим.
- 4. Поддержка обратной связи. Студенты могут взаимодействовать с преподавателями через чаты, форумы, электронную почту и видеосвязь, что позволяет быстро получать помощь и рекомендации.
- 5. Адаптивные технологии. Некоторые системы обучения подстраиваются под уровень знаний учащегося, предлагая индивидуальные траектории обучения.

Разница между традиционным и современным подходом очевидна: если раньше обучение было жёстко привязано ко времени и месту, то сегодня оно становится персонализированным, гибким и технологически продвинутым.

Постановка задач

Исходя из определения выше — сформулируем возможные задачи для достижения цели курсовой работы:

1. Анализ образовательных и бизнес-процессов в рамках дистанционного обучения.

- 2. Формулирование требований к создаваемой базе данных для поддержки дистанционного образовательного процесса.
- 3. Выбор подходящей системы управления базами данных (СУБД) для реализации проекта.
- 4. Построение логической и физической схемы базы данных.
- 5. Разработка набора взаимосвязанных таблиц базы данных на основе требований и особенностей дистанционного обучения.
- 6. Заполнение таблиц тестовыми образовательными данными (учебные курсы, студенты, преподаватели, задания и т.д.).
- 7. Реализация ключевых образовательных процессов с помощью выбранной СУБД (регистрация студентов, назначение заданий, ведение прогресса и т.д.).
- 8. Проведение тестирования работоспособности и корректности реализации процессов на тестовых данных.

Объект исследования

Объектом исследования является процесс проектирования и внедрения базы данных, предназначенной для обслуживания процессов дистанционного обучения.

Метод исследования

Методом исследования является моделирование, включающее анализ образовательной среды, структурирование пользовательского взаимодействия и формализацию требований к хранению и обработке данных в дистанционном обучении.

Первая глава

Определение бизнес-процессов условной онлайн-платформы дистанционного обучения

Для более полного понимания необходимо определить понятие "бизнес-процесса" в контексте дистанционного обучения.

Суть бизнес-процесса — это совокупность скоординированных активностей, имеющих конечной целью производство ценности для потребителя. В контексте электронного образования такими потребителями служат обучающиеся лица и преподаватели, а производимой ценностью — организация образовательных услуг высокого качества без географических ограничений.

В рамках образовательной деятельности также можно выделить три основных типа процессов:

- 1. Управляющие процессы, связанные с организацией учебного процесса, управлением расписанием, формированием образовательной политики и стратегическим планированием.
- 2. Основные (операционные) непосредственно реализующие обучение: регистрация студентов, организация доступа к курсам, выполнение заданий, сдача экзаменов, получение обратной связи и оценок.
- 3. Поддерживающие процессы, обеспечивающие бесперебойную работу системы: техническая поддержка, учет данных, сопровождение пользователей, обновление учебных материалов и цифровой платформы.

Бизнес-процесс дистанционного обучения начинается с потребности обучающегося в освоении знаний и заканчивается достижением образовательных результатов, подтверждённых оценками, сертификатами или дипломами.

Каждый бизнес-процесс может быть разбит на более мелкие подпроцессы, которые легче анализировать и оптимизировать: например, процесс сдачи экзамена может включать регистрацию на экзамен, подготовку заданий, автоматическую проверку,

анализ результатов и уведомление студента. Такой подход позволяет улучшать эффективность и адаптивность системы дистанционного образования.

Процессы в системе дистанционного обучения должны быть организованы так, чтобы минимизировать излишние действия и обеспечивать максимальную ценность для обучающихся. Эффективно выстроенные процессы снижают затраты ресурсов, повышают удовлетворенность студентов и улучшают образовательные результаты.

В данном исследовании рассматривается условная образовательная платформа "EduPlus", которая должна быть масштабируемой, надёжной и универсальной. Все внутренние процессы платформы должны быть стандартизированы, обеспечивать быстрый отклик и точную обработку данных пользователей и преподавателей.

Ключевые бизнес-процессы платформы дистанционного обучения "EduPlus":

- 1. Хранение и обслуживание данных пользователей (обучающихся и преподавателей).
- 2. Регистрация студентов и преподавателей в системе.
- 3. Назначение курсов, модулей и заданий обучающимся.
- 4. Отслеживание прогресса, оценивание и хранение результатов обучения.
- 5. Предоставление обратной связи и отчётов для пользователей.

Эти процессы будут учтены при формировании требований к базе данных и проектировании её архитектуры.

Формулировка требований к разрабатываемой базе данных

Чтобы грамотно спроектировать базу данных для платформы дистанционного обучения, важно определить, какие требования предъявляются к такой системе хранения данных.

Согласно рекомендациям, приведённым в [3], все требования можно условно разделить на две большие категории:

- 1. Функциональные требования описывают, что должна делать база данных. В контексте дистанционного обучения это может быть:
 - хранение информации о курсах, пользователях, оценках и заданиях;

- реализация механизма регистрации и авторизации;
- отслеживание прогресса студента;
- -предоставление доступа к материалам и автоматическая проверка заданий.
- 2. Нефункциональные требования описывают, как система должна выполнять свои функции. Это включает:
 - надёжность хранения данных;
 - масштабируемость при росте числа пользователей;
 - обеспечение безопасности персональных данных;
- возможность одновременного доступа множества пользователей (асинхронные запросы);
- совместимость с внешними сервисами (например, платёжные или почтовые системы).

Бизнес-требования к базе данных помогают:

- согласовать цели заказчика и разработчика;
- установить чёткие технические задачи;
- обеспечить надлежащее качество реализации образовательного сервиса.

Исходя из вышеуказанного, можно выделить конкретные требования к базе данных системы "EduPlus":

- 1. Использование реляционной модели. Табличная структура с чёткими связями между сущностями (курсы, студенты, преподаватели) обеспечивает упорядоченное и масштабируемое хранение информации. SQL позволяет точно и гибко обрабатывать такие данные.
- 2. Наличие таблиц для ключевых компонентов: пользователей, учебных материалов, обратной связи, системы контроля прогресса.
- 3. Корректная организация связей между таблицами, что позволяет реализовать логику образовательных процессов, например, чтобы студент не мог получить доступ к модулю без прохождения предыдущего.
- 4. Поддержка высокой нагрузки и множества одновременных подключений. Для этого база данных должна быть легко масштабируемой и иметь механизмы кэширования и оптимизации запросов.

В качестве альтернативы реляционным базам можно рассматривать NoSQL-решения (MongoDB, Cassandra и др.), которые подходят для хранения больших объёмов неструктурированных данных. Однако, учитывая строгую структуру образовательного процесса и важность связей между элементами (например, студент — курс — оценка), наиболее рациональным выбором остаётся реляционная СУБД (например, PostgreSQL или MySQL).

Учитывая сформулированные требования, следующим шагом будет построение логической модели базы данных, соответствующей описанным процессам платформы "EduPlus".

Выбор СУБД для реализации базы данных

Для реализации данной базы данных онлайн платформы дистанционного обучения «EduPlus» была выбрана СУБД MySQL. Этот выбор обоснован рядом преимуществ, которые соответствуют требованиям, как и техническим, так и бизнес-требованиям проекта:

- 1. Производительность и масштабируемость данных. MySQL эффективно обрабатывает большие объемы информации и поддерживает множество одновременных подключений, что важно для систем с высоким количеством пользователей, но не без ограничений, в случае данного проекта это не критично.
- 2. Поддержка реляционной модели. MySQL идеально подходит для структурированных образовательных данных например: таблицы пользователей, курсов, заданий и оценок. Такие данные легко организуются и взаимосвязываются
- 3. Безопасность. Система предоставляет огромный инструментарий для осуществления безопасности данных. Например, для разграничения доступа, аутентификации шифрования и аудита что является крайне важным для хранения персональных данных обучающихся.
- 4. Гибкость и функциональность. MySQL поддерживает хранимые процедуры, триггеры, различные типы данных, индексов и обеспечивает возможность глубокой работы с данными. Также легкость импорта в языки программирования, например Python, Java и так далее.

- 5. Доступность, простота и открытый исходный код. MySQL бесплатное решение с огромным сообществом, что облегчает работу с СУБД, поддержку и адаптацию под нужды платформы.
- 6. Кроссплатформенность. MySQL работает на большинстве современных стационарных ОС, что делает её удобным и универсальным решением.
 Области применения MySQL в проекте «EduPlus:
 - Учёт студентов и преподавателей;
 - Хранения структуры курсов и учебных материалов;
 - Фиксация результатов обучения и оценивания;
 - Формирования аналитики

Хотя у MySQL есть некоторые ограничения (например, по работе со сложными временными или географическими данными или могут возникнуть проблемы с безопаснотью), в рамках задач образовательной платформы эти ограничения не критичны. В случае необходимости в будущем возможен переход на более специализированные решения или использование гибридного подхода.

Стоит поговорить и о возможных минусах данной СУБД:

- 1. Безопасность. Как и любая СУБД, MySQL не может быть защищена на 100% и в случае реальной базы данных могут потребоваться дополнительные меры безопасности.
- 2. Ограниченность типов данных. Некоторые другие СУБД имеют намного больший набор типов данных, что добавляет им универсальности, например временные данные, но в случае данной работы это не является существенным недостатком
- 3. Возможные проблемы с производительностью. При обработке огромных потоков данных, расширяемой масштабируемостью могут возникнуть серьёзные проблемы производительности вплоть до замедления работы или вовсе отказа, утери данных и уничтожения базы данных. В данном случае, данный минус не актуален, так как работа хоть и отражает почти полный функционал базы данных

для платформы онлайн обучения, но всё же она не имеет такого объема информации.

Таким образом, MySQL полностью соответствует текущим потребностям платформы "ЭдуПлюс" и предоставляет надёжную основу для построения и масштабирования образовательной базы данных.

Почему MySQL, а не альтернативы?

Выбор системы управления базами данных (СУБД) — критически важный этап в разработке платформы дистанционного обучения. При оценке различных вариантов для реализации проекта "EduPlus" рассматривались как реляционные, так и не реляционные решения. На основе анализа было принято решение в пользу MySQL. Ниже представлено подробное обоснование этого выбора, а также сравнение с альтернативами.

Основными конкурентами в выборе СУБД были PostgeSQL и нереляционные СУБД, такие как MongoDB, Cassandra, Redis или Neo4j.

Почему не PostgreSQL?

PostgreSQL - мощная и надёжная СУБД, однако в контексте проекта "EduPlus" она имеет ряд особенностей, которые делают её менее приоритетной:

- 1. PostgreSQL может требовать больше ресурсов при больших объемах одновременных запросов
- 2. PostgreSQL имеет более сложные настройки для создания, развертывания базы данных
- 3. Избыточный функционал, например расширенные типы данных, пространственные индексы, они не будут использованы в функционале платформы

Почему не NoSQL?

Нереляционные СУБД, такие как MongoDB, Cassandra, Redis или Neo4j, также были рассмотрены. Однако у них есть ряд недостатков в контексте образовательной системы:

- 1. MongoDB не поддерживает сложные связи между документами на уровне СУБД. В результате логика работы системы (например, последовательное прохождение модулей курса) должна реализовываться вручную, что увеличивает сложность разработки.
- 2. Redis отличное решение для кэширования и хранения временных данных, но не предназначено для долговременного хранения структурированных данных.
- 3. Cassandra подходит для обработки больших потоков данных, но не имеет нативной поддержки SQL и ограничена в функциональности для транзакций.
- 4. Neo4j графовая СУБД, ориентированная на другие задачи (например, социальные графы), и требует специфической модели хранения, неприменимой к типичным структурам курса.

Примеры использования в онлайн платформе дистанционного обучения

- 1. Регистрация и учет пользователей: Система должна обеспечивать быстрое добавление новых студентов, преподавателей и администраторов, а также хранить историю их активности, прохождения курсов, выполнения заданий и получения сертификатов.
- 2. Управление образовательным контентом: Хранение информации о курсах, темах, модулях, материалах, тестах и заданиях. MySQL позволяет эффективно организовать структуру образовательных данных и легко управлять их изменениями.
- 3. Финансовые операции: Учёт оплаты за курсы, подписки, скидки, промокоды и возвраты. MySQL обеспечивает надёжную обработку транзакций и хранение финансовых данных с соблюдением принципов согласованности и целостности.
- 4. Обслуживание и техническая поддержка: Хранение истории обращений в службу поддержки, регистрации ошибок, анализа обратной связи от пользователей. Это позволяет анализировать качество платформы и оперативно реагировать на проблемы.

Выбор MySQL в качестве основной СУБД для платформы «EduPlus» обусловлен рядом причин. Например, простата установки и администрирования, высокая производительность при большом количестве запросов, легкая интеграция и распространённость. Благодаря использованию MySQL можно достичь эффективного управления структурированными данными образовательной платформы с минимальными затратами и высокой надёжностью

Краткий вывод

После анализа требований к онлайн-платформе «EduPlus» и возможных архитектурных решений, реляционная модель и функциональные возможности MySQL были признаны оптимальными. MySQL позволяет организовать стабильную, масштабируемую и безопасную работу системы, отвечающую всем ключевым бизнес-процессам: от регистрации пользователей до анализа учебной активности. На основе этих данных сформирована модель базы данных, максимально соответствующая задачам платформы онлайн-обучения.

Дополнительно MySQL обеспечивает:

- 1. централизованное хранение информации о курсах, пользователях и прогрессе;
- 2. быстрое выполнение запросов при построении отчётности и аналитики обучения;
- 3. гибкость в управлении правами доступа и разграничении ролей (преподаватель, администратор, слушатель);
- 4. устойчивую работу с возможностью масштабирования при росте числа пользователей и объёмов данных.

Таким образом, использование MySQL позволяет построить надёжную техническую основу для платформы дистанционного обучения, обеспечивая как повседневную работу пользователей, так и развитие функционала в будущем.

Вторая глава

Построение схемы базы данных.

Для работы с MySQL был выбран официальный инструмент MySQL Workbench

MySQL Workbench - инструмент для визуального проектирования баз данных, интегрирующий проектирование, моделирование, создание и эксплуатацию БД в единое бесшовное окружение для системы баз данных MySQL. Является преемником DBDesigner 4 от FabForce. [4]

Возможности MySQL WorkBench

MySQL Workbench предоставляет широкий спектр возможностей для проектирования баз данных в купе с достаточно простым, удобным интерфейсом и функционалом, позволяет выполнять любые задачи в сфере проектирования баз данных.

Если рассматривать сферу проектирования баз данных, то можно выделить обширный функционал например:

- 1. Средства для проектирования ER-диаграмм, с возможностями прямого проектирования и Reverse Engineer (обратного).
 - 2. Простота изменений проектировочных данных.

Если рассматривать MySQL Workbench со стороны разработки, то можно привести примеры. Упрощения множества SQL запросов. Сама MySQL Workbench упрощает некоторые задачи с помощью визуальных инструментов, без обязательной работы с кодом. Также различные дополнительные средства по типу автозаполнении, выделения синтаксиса, подробный отчет об ошибке, хранение большого количество подключений локально

Стоит затронуть тему администрирования. MySQL Workbench предоставляет широкий спектр возможностей для администрирования базы данных. Администраторы и разработчики имеют доступ к визуальной консоли, которая может быть использована для просмотра всё базы данных. Еще одной

возможностью станет широкая возможность к настройке серверов и подключения, помимо этого есть еще огромное количество средств, например возможность резервного копирования данных и восстановления их.

Всё это при поддержке визуальных инструментов MySQL Workbench, что значительно облегчает задачи в любых сферах, начиная от проектирования, заканчивая сложной серверной работой.

ER-Диаграмма и набор таблиц проекта

По версии сайта ru.wikipedia.com ER-модель (от англ. Entity-Relationship model, модель «сущность — связь») — модель данных, позволяющая описывать концептуальные схемы предметной области. [4]

ER-модель (модель "Сущность-Связь") — это инструмент для начального планирования базы данных. Она помогает определить главные сущности в системе (например, Клиент, Заказ) и понять, как они связаны друг с другом (например, Клиент делает Заказ).

Позже, когда приходит время строить реальную базу данных, этот план (ER-схему) переводят в конкретные правила и таблицы под выбранный тип базы (реляционную, объектную и т.д.).

Сама ER-модель — это просто идея, набор правил. Её можно нарисовать, но рисовать не обязательно. Самый популярный способ нарисовать такую модель — диаграмма "сущность-связь" (ERD).

Часто люди путают термины:

ER-модель — это сама идея, план структуры данных.

ER-диаграмма (ERD) — это один из способов нарисовать этот план.

Фактически ER-диаграмма это разновидность блок-схем. Простыми словами данная схема отражает сущности внутри системы и как-либо связаны между собой для. Чаще всего применяется в проектировании баз данных в разных сферах от образовательных и вплоть до научных целей.

Перед построением определим таблицы который будут входить в перечисленные в прошлых главах возможности:

1.users

Рисунок 1. – Таблица студентов.

Сущность «пользователь» хранит данные для входа и работы с курсами.

- 1) id INT PRIMARY KEY AUTO_INCREMENT уникальный идентификатор.
- 2) username VARCHAR(100) логин, до 100 символов достаточно для удобства.
- 3) hash_password VARCHAR(255) хэш пароля (bcrypt/scrypt), до 255 символов.
- 4) email VARCHAR(255) адрес электронной почты для восстановления доступа.
- 5) balance DECIMAL(10,2) текущий баланс пользователя (точное хранение денежных сумм).

2.teachers

Рисунок 2. – таблица преподавателей.

Сущность «преподаватель» хранит информацию о лицах, которые ведут курсы.

- 1) id INT PRIMARY KEY AUTO_INCREMENT уникальный идентификатор преподавателя.
 - 2) name VARCHAR(255) полное имя.
 - 3) bio TEXT текст биографии, опыта, достижений.

3.courses

Рисунок 3. – Таблица курсов.

Сущность «курс» объединяет уроки под единым названием и ценой.

- 1) id INT PRIMARY KEY AUTO_INCREMENT уникальный номер курса.
- 2) title VARCHAR(255) заголовок курса.
- 3) description TEXT развернутое описание целей и содержания.
- 4) price DECIMAL(10,2) стоимость доступа к курсу.
- 5) teacher_id INT внешняя ссылка на teachers.id, связывает курс с его автором. 4.lessons

Рисунок 4. – Таблица уроков

Сущность «урок» описывает отдельные занятия внутри курса.

- 1) id INT PRIMARY KEY AUTO_INCREMENT уникальный номер урока.
- 2) course_id INT внешний ключ на courses.id, указывает, к какому курсу относится.
 - 3) title VARCHAR(255) заголовок урока.
 - 4) content TEXT основной материал (текст, ссылки, вёрстка).
 - 5)duration_min INT рекомендуемая длительность в минутах.

5.enrollments

Рисунок 5. -Таблица записей на курс.

Сущность «запись на курс» фиксирует факт подключения пользователя к курсу.

- 1) id INT PRIMARY KEY AUTO_INCREMENT идентификатор записи.
- 2) user_id INT внешний ключ на users.id, кто записался.
- 3) course_id INT внешний ключ на courses.id, на какой курс.
- 4) enroll_date DATETIME дата и время подписки.

6.payments

Рисунок 6. – Таблица платежей.

Сущность «платёж» хранит информацию о финансовых транзакциях.

- 1) id INT PRIMARY KEY AUTO_INCREMENT номер транзакции.
- 2)user_id INT внешний ключ на users.id, кто оплатил.
- 3) course_id INT внешний ключ на courses.id, за что оплатил.
- 4) amount DECIMAL(10,2) сумма платежа.
- 5) paid_at DATETIME момент совершения оплаты.

7.sessions

Рисунок 7. – Таблица сессий (фактических взаимодействий с уроками и курсами)

Сущность «сессия» фиксирует фактическое взаимодействие пользователя с уроком.

- 1) id INT PRIMARY KEY AUTO_INCREMENT идентификатор сессии.
- 2) user_id INT внешний ключ на users.id, кто работал.
- 3) lesson_id INT внешний ключ на lessons.id, какой урок.
- 4) started_at DATETIME время начала.
- 5) completed_at DATETIME время окончания урока (может быть NULL, если не завершён).

Каждая связь один ко многим задаётся внешними ключами (user_id, teacher_id, course_id, lesson_id), что позволяет:

- 1) одному пользователю иметь много записей на курсы (enrollments), платежей (payments) и сессий (sessions);
 - 2) одному курсу принадлежать много уроков и записей на курс;
 - 3) одному уроку соответствовать множество сессий;
 - 4)одному преподавателю вести несколько курсов.

Исходя из ранее применяемых формулировок приступим к построению ER диаграммы. Для лучшего вида сам рисунок перенесен на другую страницу.

Рисунок 8. – ER-диаграмма базы данных для онлайн платформы дистанционного обучения.

Связи в проекте

Вся модель данных спроектирована с опорой на связь «один-ко-многим» — именно она лежит в основе взаимодействия пользователей, курсов, уроков, платежей и сессий. Подробное описание структуры и логики этих связей представлено в разделе «ЕR-диаграмма и набор таблиц проекта»

Я сознательно отказался от использования связей «один-к-одному» и «многие-комногим»: на практике они не приносят дополнительной ценности, но существенно усложняют создание и поддержку БД, особенно при наполнении тестовыми данными и масштабировании системы в будущем. Такое решение делает архитектуру более прозрачной и облегчает дальнейшую поддержку и развитие сервиса.

Примеры разработки таблиц

В данной главе я продемонстрирую часть разработанного кода. Весь код можно просмотреть в разделе: Приложении

Код для создания таблицы Users:

```
CREATE TABLE users (

id INT AUTO_INCREMENT PRIMARY KEY,

username VARCHAR(100) NOT NULL UNIQUE,

hash_password VARCHAR(255) NOT NULL,

email VARCHAR(255) NOT NULL UNIQUE,

balance DECIMAL(10,2) NOT NULL DEFAULT 0.00

) ENGINE=InnoDB;
```

Код для создания таблицы Teachers:

Полный код для создания всех таблиц в Приложение 1

Пример заполнения таблиц Users и Teachers:

```
-- Заполнение Users

INSERT INTO users (username, hash_password, email) VALUES

('alice','$2y$...','alice@eduplus.com'),

('bob' ,'$2y$...','bob@eduplus.com'),

('carol','$2y$...','carol@eduplus.com');

-- Заполнение Teachers

INSERT INTO teachers (name,bio) VALUES

('Иван Иванов','Эксперт по Python'),

('Пётр Петров','Веб-разработка и JavaScript');
```

Полный код в Приложении 2

Реализация бизнес-процессов на уровне СУБД

Классические запросы типизированные запросы состоят из следующих операторов

- SELECT — извлечение отдельных полей или всех записей из таблицы/представления;

- FROM указание источника данных (таблица или VIEW);
- WHERE фильтрация по условиям (например, `WHERE balance >= price` для отбора оплаченных курсов);
- GROUP BY группировка результатов по столбцу (например, `GROUP BY course_id`);
- HAVING фильтрация сгруппированного набора (например, только курсы с более чем 10 студентами);
- ORDER BY сортировка по одному или нескольким полям (например, по дате 'ORDER BY paid at DESC').

Типовые запросы представляют из себя:

```
-- 1) Список всех курсов с именем преподавателя
SELECT c.id, c.title, t.name
FROM courses c
JOIN teachers t ON c.teacher id = t.id;
-- 2) Tporpecc Alice no kypcy 1
SELECT fn user progress(1,1) AS pct_done;
-- 3) Уроки курса 2
SELECT id, title, duration min
FROM lessons
WHERE course id = 2;
-- 4) Статистика по зачислениям
SELECT course id, COUNT(*) AS students
FROM enrollments
GROUP BY course id;
-- 5) Текущие активные сессии Alice
SELECT * FROM sessions
WHERE user id = 1 AND completed at IS NULL;
```

Триггер — это пользовательская процедура, автоматически выполняемая при INSERT/UPDATE/DELETE.

B EduPlus есть trg_after_payment (AFTER INSERT ON payments) – после оплаты записывает студента в enrollments и списывает баланс.

```
DELIMITER $$
CREATE TRIGGER trg_after_payment
AFTER INSERT ON payments
FOR EACH ROW
BEGIN
   INSERT IGNORE INTO enrollments(user_id, course_id)
     VALUES (NEW.user_id, NEW.course_id);

UPDATE users
   SET balance = balance - NEW.amount
WHERE id = NEW.user_id;
END$$
DELIMITER;
```

Представление реализует отображение всех курсов преподавателей, зачисленных и проценты прохождения

	teacher_id	teacher_name	teacher_bio	course_id	course_title	course_description	enrolled_count	total_lessons	total_revenue
>	1	Иван Иванов	Эксперт по Python	1	Python для начинающих	Основы Python	1	5	1000.00
	1	Иван Иванов	Эксперт по Python	3	Python для начинающих	Основы синтаксиса, работа с библиотеками,	0	2	0.00
	1	Иван Иванов	Эксперт по Python	4	Продвинутый Python	Глубокое погружение: ООР, асинхронность,	0	2	0.00
	2	Пётр Петров	Веб-разработка и JavaScript	2	Frontend: HTML/CSS/JS	С нуля до PRO	0	4	0.00
	2	Пётр Петров	Веб-разработка и JavaScript	5	Web-разработка	HTML, CSS, JavaScript, фреймворки React и Vue	0	2	0.00
	3	Иван Иванов	Эксперт по Python и Data Science	6	SQL и базы данных	Проектирование схем, оптимизация запросо	0	0	0.00
	4	Пётр Петров	Специалист по веб-разработке и JavaScript	7	DevOps практики	CI/CD, Docker, Kubernetes, мониторинг	0	0	0.00
	5	Мария Смирнова	Преподаватель по базам данных и SQL		HULL	NULL	0	0	0.00
	6	Елена Кузнецова	Инструктор по DevOps и CI/CD	NULL	NULL	NULL	0	0	0.00

Рисунок 9. – Пример вывода View

Некоторый учителя просто числятся в базе данных без назначения, при желании можно выдать им назначения и курсы.

Транзакция объединяет несколько операций в атомарный блок - В sp_enroll_and_pay проверяются баланс, вставляется запись в payments, триггером создаётся enrollment. Все в START TRANSACTION...COMMIT/ROLLBACK. (Приложение 3)

Хранимые процедуры и функции (Полный код см в приложении 3):

- sp_enroll_and_pay процедура для оплаты и зачисления.
- fn_user_progress функция для расчёта процента выполнения курса.

Система ролей:

-- Администратор CREATE USER IF NOT EXISTS 'admin'@'%' IDENTIFIED BY 'admin pwd'; GRANT ALL PRIVILEGES ON eduplus.* TO 'admin'@'%'; -- Студент CREATE USER IF NOT EXISTS 'student'@'%' IDENTIFIED BY 'stud_pwd'; GRANT SELECT, INSERT ON eduplus.sessions TO 'student'@'%'; GRANT SELECT, INSERT ON eduplus.payments TO 'student'@'%'; ON eduplus.courses GRANT SELECT TO 'student'@'%'; ON eduplus.lessons TO 'student'@'%'; GRANT SELECT GRANT SELECT ON eduplus.enrollments TO 'student'@'%';

-- Преподаватель

```
CREATE USER IF NOT EXISTS 'teacher'@'%' IDENTIFIED BY 'teach_pwd';
GRANT SELECT, INSERT, UPDATE ON eduplus.lessons TO 'teacher'@'%';
GRANT SELECT, UPDATE ON eduplus.courses TO 'teacher'@'%';
```

Заключение

В ходе выполнения курсовой работы была разработана реляционная база данных для онлайн-платформы «EduPlus», полностью удовлетворяющая поставленным функциональным и нефункциональным требованиям. В результате проделанной работы:

- 1. Проведён анализ бизнес- и образовательных процессов дистанционного обучения и сформулированы требования к системе хранения данных.
- 2. Спроектирована концептуальная ER-модель и выполнено её преобразование в физическую схему баз данных MySQL, включающую семь основных таблиц (users, teachers, courses, lessons, enrollments, payments, sessions) с корректно настроенными внешними ключами.
 - 3. Реализован полный набор механизмов СУБД:
- Типовые запросы для выборки курсов, уроков, статистики зачислений и прогресса;
- Триггер trg_after_payment для автоматического зачисления и обновления баланса;
- Представление vw_course_overview (и дополнительное vw_teacher_courses) для получения консолидированной информации о курсах и преподавателях;
- Хранимая процедура sp_enroll_and_pay и функция fn_user_progress с транзакцией и обработчиком ошибок;
- Роли (admin, student, teacher) с разграничением прав на чтение и изменение данных.
- 4. Наполнены таблицы тестовыми данными, проверена корректность всех операций и отсутствие конфликтов при повторном выполнении скриптов.

Полученная база данных обеспечивает целостность и консистентность информации, поддерживает ключевые образовательные сценарии: регистрацию пользователей, оплату курсов, ведение прогресса и аналитику. Архитектура легко расширяется — для внедрения новых сущностей (сертификатов, тестов, чатов) достаточно добавить таблицы и соответствующие связи. Конечно данная база

данных открыта для будущих улучшений функционала. Таким образом, разработанная база данных создаёт надёжную и масштабируемую основу для эффективного функционирования онлайн-платформы дистанционного обучения «EduPlus».

Список литературы

- 1. Мельник, М. В. Использование онлайн-обучения в условиях цифровизации образования / М. В. Мельник // Современные проблемы науки и образования. 2020. № 6. URL: https://science-education.ru/article/view?id=30871 (дата обращения: 18.06.2025).
- 2. Дистанционное обучение // Википедия: свободная энциклопедия. URL: https://ru.wikipedia.org/wiki/Дистанционное_обучение (дата обращения: 18.06.2025).
- 3. Бизнес-процесс // Википедия: свободная энциклопедия. URL: https://ru.wikipedia.org/wiki/Бизнес-процесс (дата обращения: 19.06.2025
- 4. ER-модель // Википедия: свободная энциклопедия. URL: https://ru.wikipedia.org/wiki/ER-модель (дата обращения: 23.06.2025).
- 5. MySQL 8.0 Reference Manual / MySQL Documentation. URL: https://dev.mysql.com/doc/ (дата обращения: 24.06.2025).
- 6. Онлайн-платформы для обучения: особенности, функционал, востребованность // Skillspace. URL: https://skillspace.ru/blog/onlain-platformy-dlia-obuchieniia-osobiennosti-funktsional-vostriebovannost (дата обращения: 18.06.2025).

Приложение 1.

```
-- 2. Таблица пользователей (студентов)
CREATE TABLE users (
               INT AUTO INCREMENT PRIMARY KEY,
 username VARCHAR(100) NOT NULL UNIQUE,
 hash password VARCHAR(255) NOT NULL,
 email
               VARCHAR (255) NOT NULL UNIQUE,
 balance DECIMAL(10,2) NOT NULL DEFAULT 0.00
) ENGINE=InnoDB;
-- 3. Таблица преподавателей
CREATE TABLE teachers (
                INT AUTO INCREMENT PRIMARY KEY,
 name
               VARCHAR (255) NOT NULL,
 bio
               TEXT
) ENGINE=InnoDB;
-- 4. Таблица курсов
CREATE TABLE courses (
               INT AUTO INCREMENT PRIMARY KEY,
 title
               VARCHAR (255) NOT NULL,
 description
              TEXT,
 price
               DECIMAL(10,2) NOT NULL,
              INT NOT NULL,
 teacher id
 FOREIGN KEY (teacher id) REFERENCES teachers(id)
) ENGINE=InnoDB;
-- 5. Таблица уроков
CREATE TABLE lessons (
                INT AUTO INCREMENT PRIMARY KEY,
              INT NOT NULL,
  course id
 title
               VARCHAR (255) NOT NULL,
 content
               TEXT,
 FOREIGN KEY (course_id) REFERENCES courses(id)
) ENGINE=InnoDB;
```

```
-- 6. Таблица зачислений: enroll date автоматически ставится
CURRENT TIMESTAMP
     CREATE TABLE enrollments (
                    INT AUTO INCREMENT PRIMARY KEY,
       user id
                    INT NOT NULL,
                    INT NOT NULL,
       course id
       enroll date DATETIME NOT NULL DEFAULT CURRENT TIMESTAMP,
       FOREIGN KEY (user id) REFERENCES users(id),
       FOREIGN KEY (course id) REFERENCES courses(id)
     ) ENGINE=InnoDB;
     -- 7. Таблица платежей
     CREATE TABLE payments (
                    INT AUTO INCREMENT PRIMARY KEY,
                    INT NOT NULL,
       user id
       course id INT NOT NULL,
                    DECIMAL(10,2) NOT NULL,
       amount
                    DATETIME NOT NULL DEFAULT CURRENT TIMESTAMP,
       paid at
       FOREIGN KEY (user id) REFERENCES users(id),
       FOREIGN KEY (course id) REFERENCES courses (id)
     ) ENGINE=InnoDB;
     -- 8. Таблица сессий (просмотр урока)
     CREATE TABLE sessions (
                    INT AUTO INCREMENT PRIMARY KEY,
       id
                    INT NOT NULL,
       user id
       lesson id
                    INT NOT NULL,
       started_at DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
       completed at DATETIME NULL,
       FOREIGN KEY (user id) REFERENCES users(id),
       FOREIGN KEY (lesson id) REFERENCES lessons(id)
) ENGINE=InnoDB;
```

Приложение 2.

```
-- 14. Пример наполнения данными
INSERT INTO users (username, hash password, email) VALUES
('alice','$2y$...','alice@eduplus.com'),
('bob' ,'$2y$...','bob@eduplus.com'),
('carol','$2y$...','carol@eduplus.com');
INSERT INTO teachers (name, bio) VALUES
('Иван Иванов', 'Эксперт по Python'),
('Пётр Петров', 'Веб-разработка и JavaScript');
INSERT INTO courses (title, description, price, teacher id) VALUES
('Python для начинающих', 'Основы Python', 500.00,1),
('Frontend: HTML/CSS/JS','С нуля до PRO',700.00,2);
INSERT INTO lessons (course id, title, content, duration min) VALUES
(1, 'Введение', 'Что такое Python', 10),
(1, 'Переменные', 'Типы и переменные', 20),
(2, 'HTML основы', 'Разметка страницы', 15),
(2, 'CSS стили', 'Оформление', 25);
INSERT IGNORE INTO users (username, hash password, email, balance) VALUES
  ('alice', '$2y$abc1', 'alice@eduplus.com', 1000.00),
           '$2y$abc2', 'bob@eduplus.com', 800.00),
  ('bob',
  ('carol', '$2y$abc3', 'carol@eduplus.com', 1200.00),
  ('dave', '$2y$abc4', 'dave@eduplus.com', 500.00),
  ('erin', '$2y$abc5', 'erin@eduplus.com', 1500.00),
  ('frank', '$2y$abc6', 'frank@eduplus.com', 700.00);
-- Преподаватели
INSERT IGNORE INTO teachers (name, bio) VALUES
  ('Иван Иванов',
                     'Эксперт по Python и Data Science'),
  ('Пётр Петров',
                     'Специалист по веб-разработке и JavaScript'),
  ('Мария Смирнова', 'Преподаватель по базам данных и SQL'),
  ('Елена Кузнецова', 'Инструктор по DevOps и CI/CD');
-- Курсы
INSERT IGNORE INTO courses (title, description, price, teacher id) VALUES
```

```
('Python для начинающих', 'Основы синтаксиса, работа с библиотеками, первые
проекты', 500.00, 1),
  ('Продвинутый Python',
                         'Глубокое погружение: ООР, асинхронность,
оптимизация', 700.00, 1),
  ('Web-разработка', 'HTML, CSS, JavaScript, фреймворки React и Vue',
800.00, 2),
  ('SQL и базы данных',
                        'Проектирование схем, оптимизация запросов,
транзакции', 600.00, 3),
  ('DevOps практики',
                               'CI/CD, Docker, Kubernetes, мониторинг',
900.00, 4)
ON DUPLICATE KEY UPDATE title=VALUES(title);
-- Уроки
INSERT IGNORE INTO lessons (course id, title, content, duration min) VALUES
  (1, 'Введение в Python',
                                    'Обзор языка, установка окружения',
15),
     'Переменные и типы данных', 'int, float, str, list, dict',
20),
     'Условные операторы',
                                                   'if, else, elif',
  (1,
25),
                                      'Создание классов, наследование',
  (2, 'Классы и объекты',
30),
 (2, 'Асинхронность',
                                     'asyncio, задачики, event loop',
35),
  (3,
     'Основы HTML/CSS',
                                                'Теги, стили, макеты',
20),
      'JavaScript для веба',
                                                'DOM, события, ES6+',
  (3,
25),
 (4, 'Введение в SQL',
                                     'SELECT, INSERT, UPDATE, DELETE',
15),
                                     'INNER, LEFT, RIGHT, FULL JOIN',
  (4, 'Продвинутые JOIN',
20),
  (5, 'Введение в Docker',
                                          'Контейнеризация приложений',
30),
 (5, 'Kubernetes в практике', 'Создание подов, сервисов, deployment',
40)
ON DUPLICATE KEY UPDATE title=VALUES(title);
```

Приложение 3.

```
-- Студент
CREATE USER IF NOT EXISTS 'student'@'%' IDENTIFIED BY 'stud pwd';
GRANT SELECT, INSERT ON eduplus.sessions TO 'student'@'%';
GRANT SELECT, INSERT ON eduplus.payments TO 'student'@'%';
                ON eduplus.courses TO 'student'@'%';
GRANT SELECT
GRANT SELECT
                     ON eduplus.lessons TO 'student'@'%';
                   ON eduplus.enrollments TO 'student'@'%';
GRANT SELECT
-- Преподаватель
CREATE USER IF NOT EXISTS 'teacher'@'%' IDENTIFIED BY 'teach pwd';
GRANT SELECT, INSERT, UPDATE ON eduplus.lessons TO 'teacher'@'%';
GRANT SELECT, UPDATE
                       ON eduplus.courses TO 'teacher'@'%';
-- 10. Пользовательская функция: прогресс в курсе
DELIMITER $$
CREATE FUNCTION fn user progress (u id INT, c id INT)
RETURNS DECIMAL(5,2) DETERMINISTIC
BEGIN
  DECLARE total lessons INT;
  DECLARE done lessons INT;
  DECLARE pct DECIMAL(5,2);
  SELECT COUNT(*) INTO total lessons
    FROM lessons WHERE course id = c id;
  SELECT COUNT(*) INTO done lessons
   FROM sessions s
    JOIN lessons 1 ON s.lesson id = 1.id
   WHERE s.user id = u id
     AND l.course id = c id
     AND s.completed at IS NOT NULL;
  IF total lessons = 0 THEN
   SET pct = 0;
  ELSE
    SET pct = done lessons/total lessons*100;
```

```
END IF;
  RETURN pct;
END$$
DELIMITER ;
-- 11. Триггер: после оплаты автоматически зачисляем и списываем баланс
DELIMITER $$
CREATE TRIGGER trg after payment
AFTER INSERT ON payments
FOR EACH ROW
BEGIN
  INSERT IGNORE INTO enrollments(user_id, course_id)
    VALUES (NEW.user_id, NEW.course_id);
  UPDATE users
    SET balance = balance - NEW.amount
  WHERE id = NEW.user id;
END$$
DELIMITER ;
-- Вьюшки
CREATE
    ALGORITHM = UNDEFINED
    DEFINER = `root`@`localhost`
    SQL SECURITY DEFINER
VIEW `vw course overview` AS
    SELECT
        `c`.`id` AS `course_id`,
        `c`.`title` AS `course_title`,
        `c`.`description` AS `course description`,
        `t`.`name` AS `teacher`,
        COUNT(DISTINCT `e`.`user id`) AS `enrolled count`,
        COUNT(DISTINCT `l`.`id`) AS `total lessons`,
        IFNULL(SUM(`p`.`amount`), 0) AS `total revenue`,
        IFNULL(AVG(FN USER PROGRESS(`e`.`user id`, `c`.`id`)),
                0) AS `avg progress pct`
    FROM
        ((((`courses` `c`
```

```
JOIN `teachers` `t` ON ((`c`.`teacher id` = `t`.`id`)))
        LEFT JOIN `enrollments` `e` ON ((`c`.`id` = `e`.`course id`)))
        LEFT JOIN `lessons` `l` ON ((`c`.`id` = `l`.`course id`)))
        LEFT JOIN `payments` `p` ON (('c'.'id' = 'p'.'course id')))
    GROUP BY `c`.`id`
CREATE
    ALGORITHM = UNDEFINED
    DEFINER = `root`@`localhost`
    SQL SECURITY DEFINER
VIEW `vw course overview` AS
    SELECT
        `c`.`id` AS `course_id`,
        `c`.`title` AS `course title`,
        `c`.`description` AS `course description`,
        `t`.`name` AS `teacher`,
        COUNT(DISTINCT `e`.`user id`) AS `enrolled_count`,
        COUNT(DISTINCT `l`.`id`) AS `total lessons`,
        IFNULL(SUM(`p`.`amount`), 0) AS `total revenue`,
        IFNULL(AVG(FN USER PROGRESS(`e`.`user id`, `c`.`id`)),
                0) AS `avg progress pct`
    FROM
        ((((`courses` `c`
        JOIN `teachers` `t` ON ((`c`.`teacher id` = `t`.`id`)))
        LEFT JOIN `enrollments` `e` ON ((`c`.`id` = `e`.`course id`)))
        LEFT JOIN `lessons` `l` ON ((`c`.`id` = `l`.`course id`)))
        LEFT JOIN `payments` `p` ON (('c'.'id' = 'p'.'course id')))
    GROUP BY `c`.`id`
-- хранимая процедура с обработчиком ошибок
CREATE DEFINER=`root`@`localhost` PROCEDURE `sp enroll and pay`(
  IN p user INT,
  IN p course INT
)
BEGIN
  DECLARE course price DECIMAL(10,2);
  DECLARE user bal DECIMAL(10,2);
  DECLARE EXIT HANDLER FOR SQLEXCEPTION
```

```
BEGIN
    ROLLBACK;
    SELECT 'Ошибка: транзакция отменена.' AS msg;
  END;
  START TRANSACTION;
    SELECT price INTO course price
      FROM courses
      WHERE id = p_course
      FOR UPDATE;
    SELECT balance INTO user_bal
      FROM users
      WHERE id = p_user
      FOR UPDATE;
    IF user_bal >= course_price THEN
      INSERT INTO payments(user id, course id, amount)
        VALUES (p user, p course, course price);
      -- enrollments и списание баланса сделает триггер
      COMMIT;
      SELECT 'Успешно зачислен на курс!' AS msg;
    ELSE
      ROLLBACK;
      SELECT 'Недостаточно средств.' AS msg;
    END IF;
END
```

Приложение 4.

```
-- 1) Список всех курсов с именем преподавателя
SELECT c.id, c.title, t.name
FROM courses c
JOIN teachers t ON c.teacher_id = t.id;
-- 2) Прогресс Alice по курсу 1
SELECT fn user progress(1,1) AS pct done;
-- 3) Уроки курса 2
SELECT id, title, duration min
FROM lessons
WHERE course id = 2;
-- 4) Статистика по зачислениям
SELECT course id, COUNT(*) AS students
FROM enrollments
GROUP BY course id;
-- 5) Текущие активные сессии Alice
SELECT * FROM sessions
WHERE user id = 1 AND completed at IS NULL;
```


Уважаемый пользователь!

Обращаем ваше внимание, что система Антиплагиус отвечает на вопрос, является тот или иной фрагмент текста заимствованным или нет. Ответ на вопрос, является ли заимствованный фрагмент именно плагиатом, а не законной цитатой, система оставляет на ваше усмотрение.

Отчет о проверке № 9535024

Дата выгрузки: 2025-06-25 11:27:48

Пользователь: trololo11431143@gmail.com, ID: 9535024

Отчет предоставлен сервисом «Антиплагиат» на сайте antiplagius.ru/

Информация о документе

№ документа: 9535024

Имя исходного файла: Курсовая (1).pdf

Размер файла: 0.83 МБ Размер текста: 38601 Слов в тексте: 5426 Число предложений: 586

Информация об отчете

Дата: 2025-06-25 11:27:48 - Последний готовый отчет

Оценка оригинальности: 75%

Заимствования: 25%

Источники:

Доля в тексте	Ссылка	
6.63%	https://chat01.ai/ru/chat/01JM6QSTXX5K18A0RMRBY5RMPK	
3.74%	https://cyberpedia.su/6x5e8e.html	
3.56% https://gist.github.com/forestman-zt-ua/21267ad975167d0c340d2092		
3.21%	https://otherreferats.allbest.ru/programming/01318874_0.html	
3.15%	https://resources.oreilly.com/examples/9781782166801/-/raw/d4034	
2.93%	https://infopedia.su/29x11fd7.html	
2.89%	https://www.cyberforum.ru/php-database/thread2499961.html	
2.86%	https://habr.com/ru/articles/575044/	
2.73%	https://habr.com/ru/companies/sberbank/articles/899728/	
2.62%	https://github.com/pingcap/tidb/issues/59889	
2.56%	https://otherreferats.allbest.ru/programming/00978687_0.html	
2.43%	https://github.com/anisul-Islam/relational-database-sql	
2.27%	https://science-education.ru/article/view?id=30871	
2.25%	https://myrusakov.ru/search.html?query=tab	
2.03%	https://zametkinapolyah.ru/zametki-o-mysql/tema-13-triggery-v-sq	
1.94%	https://scienceforum.ru/2015/article/2015010607	

Доля в тексте	Ссылка			
1.86%	https://atlasgo.io/blog/2025/04/06/atlas-and-golang-migrate			
1.80%	https://studopedia.net/18_18987_sozdanie-kontseptualnoy-logiches			
1.75%	https://tut-files.ru/previewfile/161370			
1.73%	https://xnhlajim.xnplai/%D0%94%D0%B8%D1%81%D1%82%D0%B0%D0%BD			
1.59%	http://www.dslib.net/mat-obespechenie/teoreticheskie-osnovy-mnog			
1.58%	https://dis-group.ru/blogs/subd-chto-takoe-sistemy-upravleniya-b			
1.51%	https://ru.m.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D0%B0%D			
1.51%	https://ru.m.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D1%82%D0%B0%D			
1.51%	https://www.lezhenkin.ru/examples/php/pdo/registracziya-i-avtori			
1.44%	https://referat.co/ref/644567/read?p=1			
1.42%	https://sqlinfo.ru/forum/viewtopic.php?id=3720			
1.37%	https://ru.ruwiki.ru/wiki/%D0%94%D0%B8%D1%81%D1%82%D0%B0%D0%BD%D			
1.26%	https://files.student-it.ru/previewfile/86440			
1.23%	https://www.ripo.by/index.php?id=7073			
1.22%	https://stackoverflow.com/questions/61121868/whats-the-problem-i			
1.15%	https://github.com/jc21/nginx-proxy-manager/issues/1115			
1.14%	https://studycat.ru/kursovaya-s-praktikoj-na-temu-razrabotka-soz			
1.12%	https://www.timetoast.com/timelines/5b1b3c29-8c65-4adf-87fa-649d			
1.03%	https://github.com/EvanCoppa/Cascade			
0.92%	https://files.student-it.ru/previewfile/253177			
0.91%	https://moluch.ru/conf/ped/archive/405/16741/			
0.82%	https://infourok.ru/referat-po-teme-otlichie-distancionnogo-obuc			
0.74%	https://science-education.ru/article/view?id=20810			
0.72%	https://multiurok.ru/index.php/files/doklad-adaptatsiia-detei-s			
0.71%	https://science-education.ru/ru/article/view?id=30349			
0.71%	https://scienceforum.ru/2016/article/2016027811			
0.70%	https://spravochnick.ru/sociologiya/internet_v_kontekste_globali			
0.69%	https://ya.ru/neurum/c/nauka-i-obrazovanie/q/v_chem_raznica_mezh			
0.51%	https://www.wikiwand.com/ru/articles/ER-%D0%BC%D0%BE%D0%B4%D0%B5			
0.51%	https://ru.wikipedia.org/wiki/ER-%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%			
0.46%	https://learn.microsoft.com/en-us/answers/questions/448821/creat			
0.39%	https://infostart.ru/pm/1305386/			
0.39%	https://www.businessstudio.ru/articles/article/razrabotka_v_busi			

Доля в тексте	Ссылка	
0.38%	0.38% https://infourok.ru/deyatelnost-uchitelya-po-dostizheniyu-rezult	
0.29%	https://sessiya1.ru/referat-na-temu-istoriya-razvitiya-naznachen	

Информация о документе:

Частное учреждение профессионального образования Высшая школа предпринимательства ЧУПО ВШП КУРСОВАЯ РАБОТА Разработка базы данных для онлайн платформы дистанционного обучения Выполнил студент 3 го специальности 09 02 07 **Информационные системы** и программирование Зайцев Ярослав Сергеевич подпись Проверил преподаватель дисциплины Численные методы колледжа ЧУПО ВШП Ткачёв П С оценка подпись Тверь 2025 г Оглавление Введение 3 Первая глава 7 Определение бизнес процессов условной онлайн платформы дистанционного обучения 7 Формулировка требований к разрабатываемой базе данных 8 Выбор СУБД для реализации базы данных 10 Почему MySQL а не альтернативы 12 Почему не PostgreSQL 12 Почему не NoSQL 12 Примеры использования в онлайн платформе дистанционного обучения 13 Краткий вывод 14 Вторая глава 15 Построение схемы базы данных 15 Возможности MySQL WorkBench 15 ER Диаграмма и набор таблиц проекта 16 Связи в проекте 21 Примеры разработки таблиц 22 Реализация бизнес процессов на уровне СУБД 22 Заключение 26 Список литературы 28 Приложение 1 29 Приложение 2 31 Приложение 3 33 Приложение 4 37 Введение Актуальность В наше время высоких технологий и стремительного развития онлайн сервисов появились и довелись до ума возможности дистанционного обучения Которые крайне упрощают жизнь теперь для получения определённых знаний не требуется куда то уезжать и любую информацию можно получить прямо из дома занимаясь напрямую с профессионалами Данную тему можно считать актуальной и интересной по скольку многие процессы дистанционного обучения актуальны и в других информационных сферах Определение цели работы Для начало стоит внести ясность в тему и правильно сформировать цель курсовой работы Темой является Разработка базы данных для онлайнплатформы дистанционного обучения Исходя из этого цель работы разработать базу данных для онлайн платформы дистанционного обучения Прежде чем перейти к формулировки задачи стоит разобраться в дистанционном обучении как явлении По версии сайта открытой энциклопедии ru wikipedia org дистанционное обучение образовательный процесс с применением совокупности телекоммуникационных технологий имеющих целью предоставление возможности обучаемым освоить основной объём требуемой им информации без непосредственного контакта обучаемых и преподавателей в ходе процесса обучения 2 Если рассматривать как онлайн платформы то это способ получить информация используя телекоммуникационные сервисы например Zoom Google Meets Онлайн платформы играют ключевую роль в организации дистанционного обучения обеспечивая доступ к учебным материалам интерактивным заданиям и обратной связи с преподавателями Такие платформы как Moodle Coursera Stepik и другие позволяют организовать процесс обучения в удобной и доступной форме поддерживая модульную систему видеолекции тесты и дискуссионные форумы Краткая история дистанционного обучения Первый формы дистанционного обучения сформировались в XVIII века Тогда британский учёный стенограф Исаак Питман организовал дистанционное обучение по почте так называемое корреспондентское обучение Он полагал что доступ к получению высшего образования должен быть обеспечен для всех желающих независимо от их финансового достатка национальности и вероисповедания Следующий вклад в дистанционное обучения внесла Анна Тинкор продолжавшая систему корреспондентского обучения по почте в конце XIX века 1 С развитием телекоммуникационных технологий таких телефония радио телевиденье в начала и середине XX века дистанционной обучения получило более широкое распространение включая СССР в виде теле радиопередач например Чему и как учат в ПТУ 1 Важным этапом развития стал 1969 год В Великобритании открыли The Open University крупнейший центр дистанционного образования На территории России дистанционное обучение начало развивается приблизительно в 1917 году после конца революции В рамках программ по ликвидации безграмотности выходили пособия для самообучения Школа на дому Рабочий техникум на дому Учись сам и так далее 1 С появлением и развитием интернета дистанционное обучение претерпело изменения Интернет позволил упростить многие процессы создавать онлайн курсы лекции уроки которые стали доступны по всему миру Стоит упомянуть важный этап популяризации дистанционного обучения Пандемия COVID 19 стала глобальным катализатором для стремительного роста дистанционного образования Закрытие школ и вузов по всему миру вынудило образовательные учреждения срочно внедрять онлайн форматы чтобы обеспечить непрерывность обучения В этот период наблюдался резкий рост использования видеоконференцсвязи электронных дневников цифровых платформ и облачных сервисов Во многих странах включая Россию были разработаны национальные программы поддержки дистанционного образования Преподаватели и студенты в ускоренном режиме осваивали цифровые инструменты и платформы Были запущены масштабные онлайн курсы разработаны рекомендации для эффективной организации учебного процесса в дистанционном формате Появилось новое направление смешанное обучение совмещающее онлайн и очные элементы В результате несмотря на вызовы пандемия дала мощный толчок цифровизации образования и сделала дистанционное обучение привычной и неотъемлемой частью образовательной системы Современное дистанционное обучение отличается следующими особенностями 1 Доступность и гибкость Обучающиеся могут осваивать материал в любое удобное время и из любой точки мира имея лишь доступ в интернет 2 Разнообразие платформ Используются как международные так и отечественные платформы Coursera Stepik Сферум РЭШ что позволяет выбрать подходящий формат и язык преподавания 3 Интерактивные форматы Широко применяются видеолекции тесты вебинары практические задания и симуляции что делает процесс обучения более вовлекающим 4 Поддержка обратной связи Студенты могут взаимодействовать с преподавателями через чаты форумы электронную почту и видеосвязь что позволяет быстро

получать помощь и рекомендации 5 Адаптивные технологии Некоторые системы обучения подстраиваются под уровень знаний учащегося предлагая индивидуальные траектории обучения Разница между традиционным и современным подходом очевидна если раньше обучение было жёстко привязано ко времени и месту то сегодня оно становится персонализированным гибким и технологически продвинутым Постановка задач Исходя из определения выше сформулируем возможные задачи для достижения цели курсовой работы 1 Анализ образовательных и бизнес процессов в рамках дистанционного обучения 2 Формулирование требований к создаваемой базе данных для поддержки дистанционного образовательного процесса 3 подходящей системы управления базами данных СУБД для реализации проекта 4 Построение логической и физической схемы базы данных 5 Разработка набора взаимосвязанных таблиц базы данных на основе требований и особенностей дистанционного обучения 6 Заполнение таблиц тестовыми <mark>образовательными данными</mark> учебные курсы преподаватели задания и т д 7 Реализация ключевых образовательных <mark>процессов с помощью</mark> выбранной СУБД регистрация студентов назначение заданий ведение прогресса и т д 8 Проведение работоспособности и корректности реализации процессов на тестовых данных Объект исследования исследования <mark>является процесс проектирования и</mark> внедрения <mark>базы данных</mark> предназначенной обслуживания процессов дистанционного обучения Метод исследования Методом исследования является моделирование включающее анализ образовательной среды структурирование пользовательского взаимодействия и формализацию требований к хранению и обработке данных в дистанционном обучении Первая глава Определение бизнес процессов условной онлайн <mark>платформы</mark> дистанционного обучения Для более полного понимания необходимо определить понятие бизнес <mark>процесса в</mark> контексте дистанционного обучения Суть <mark>бизнес процесса</mark> это скоординированных активностей конечной производство ценности потребителя В контексте образования такими потребителями служат обучающиеся <mark>лица и преподаватели а</mark> производимой ценностью организация образовательных услуг высокого качества без географических ограничений В рамках образовательной деятельности также можно выделить три основных типа процессов 1 Управляющие процессы связанные с организацией учебного процесса управлением расписанием формированием образовательной политики и стратегическим планированием 2 Основные операционные непосредственно реализующие обучение регистрация студентов организация доступа к курсам выполнение заданий сдача экзаменов получение обратной связи и оценок 3 Поддерживающие процессы обеспечивающие бесперебойную работу системы техническая поддержка учет данных сопровождение пользователей обновление учебных материалов и цифровой платформы Бизнес процесс дистанционного обучения начинается с потребности обучающегося в освоении знаний и заканчивается достижением образовательных результатов подтверждённых оценками сертификатами или дипломами Каждый бизнес процесс может быть разбит на более мелкие подпроцессы которые легче анализировать и оптимизировать например процесс сдачи экзамена может включать регистрацию на экзамен подготовку заданий автоматическую проверку анализ результатов и уведомление студента Такой подход позволяет улучшать эффективность и адаптивность системы дистанционного образования Процессы в системе дистанционного обучения должны быть организованы так чтобы минимизировать излишние действия и обеспечивать максимальную ценность для обучающихся Эффективно выстроенные процессы снижают затраты ресурсов повышают удовлетворенность студентов и улучшают образовательные результаты В данном исследовании рассматривается условная образовательная платформа EduPlus которая должна быть масштабируемой надёжной и универсальной Все внутренние процессы платформы должны быть стандартизированы обеспечивать быстрый отклик и точную обработку данных пользователей и преподавателей Ключевые бизнес процессы платформы дистанционного обучения EduPlus 1 Хранение и обслуживание данных пользователей обучающихся и преподавателей 2 Регистрация студентов и преподавателей в системе 3 Назначение курсов модулей и заданий обучающимся 4 Отслеживание прогресса оценивание и хранение результатов обучения 5 Предоставление обратной связи и отчётов для пользователей Эти процессы будут учтены при формировании требований к базе данных и проектировании её архитектуры Формулировка требований к разрабатываемой базе данных Чтобы грамотно спроектировать базу данных для платформы дистанционного обучения важно определить какие требования предъявляются к такой системе хранения данных Согласно рекомендациям приведённым в 3 все требования можно условно разделить на две большие категории 1 Функциональные требования описывают что должна делать база данных В контексте дистанционного обучения это может быть хранение информации о курсах пользователях оценках и заданиях реализация механизма регистрации и авторизации отслеживание прогресса студента предоставление доступа к материалам и автоматическая проверка заданий 2 Нефункциональные требования описывают как система должна выполнять свои функции Это включает надёжность хранения данных масштабируемость при росте числа пользователей обеспечение безопасности персональных данных возможность одновременного доступа множества пользователей асинхронные запросы совместимость с внешними сервисами например платёжные или почтовые системы Бизнес требования к базе данных помогают согласовать цели заказчика и разработчика установить чёткие технические задачи обеспечить надлежащее качество реализации образовательного сервиса Исходя из вышеуказанного выделить конкретные требования к базе данных системы EduPlus 1 Использование реляционной модели Табличная структура с чёткими <mark>связями между сущностями</mark> курсы преподаватели упорядоченное и масштабируемое <mark>хранение</mark> информации SQL позволяет точно и гибко обрабатывать такие данные 2 Наличие таблиц для ключевых компонентов пользователей учебных материалов обратной связи системы контроля прогресса 3 Корректная организация связей между таблицами что позволяет реализовать логику образовательных процессов например чтобы студент не мог <mark>получить доступ к</mark> модулю без прохождения предыдущего 4 высокой нагрузки и множества одновременных подключений Для этого база данных должна быть легко масштабируемой и иметь механизмы кэширования и оптимизации запросов В качестве альтернативы реляционным базам можно рассматривать NoSQLpeшeния MongoDB Cassandra и др которые подходят для хранения больших объёмов неструктурированных Однако учитывая строгую структуру образовательного процесса и важность <mark>связей между</mark> элементами например студент курс оценка наиболее рациональным выбором остаётся реляционная СУБД например PostgreSQL или MySQL Учитывая сформулированные требования следующим шагом будет построение логической модели базы данных

соответствующей описанным процессам платформы EduPlus Выбор СУБД для реализации базы данных Для реализации данной базы данных онлайн платформы обучения EduPlus была выбрана СУБД MySQL Этот обоснован рядом преимуществ соответствуют требованиям как и техническим так и бизнес требованиям проекта 1 Производительность и масштабируемость данных MySQL эффективно обрабатывает большие объемы информации и поддерживает множество одновременных подключений что важно для систем с высоким количеством пользователей но не без ограничений в случае данного проекта это не критично 2 Поддержка реляционной модели идеально подходит структурированных образовательных например таблицы курсов заданий и оценок Такие данные легко организуются и взаимосвязываются 3 Безопасность предоставляет огромный инструментарий осуществления безопасности данных Например для разграничения аутентификации шифрования и аудита что является крайне важным для хранения персональных обучающихся 4 Гибкость и функциональность поддерживает хранимые процедуры триггеры различные типы данных индексов и обеспечивает возможность глубокой работы с данными Также легкость импорта в языки программирования например Python Java и так далее 5 Доступность простота и <mark>открытый исходный код</mark> MySQL бесплатное решение с огромным сообществом что облегчает работу с СУБД поддержку и адаптацию под нужды платформы 6 Кроссплатформенность MySQL работает на большинстве современных стационарных ОС что делает её удобным и универсальным решением Области применения MySQL в проекте EduPlus Учёт студентов и преподавателей Хранения структуры курсов и учебных материалов Фиксация результатов обучения и оценивания Формирования аналитики Хотя у MySQL есть некоторые ограничения например по работе со сложными временными или географическими данными или могут возникнуть проблемы с безопаснотью в рамках задач образовательной платформы эти ограничения не критичны В случае необходимости в будущем возможен переход на более специализированные решения или использование гибридного подхода Стоит поговорить и о возможных минусах данной СУБД 1 Безопасность Как и любая СУБД MySQL не может быть защищена на 100 и в случае реальной базы данных могут потребоваться дополнительные меры безопасности 2 Ограниченность типов данных Некоторые другие СУБД имеют намного больший набор типов данных что добавляет им универсальности например временные данные но в случае данной работы это не является существенным недостатком 3 Возможные проблемы с производительностью При обработке огромных потоков данных расширяемой масштабируемостью могут возникнуть серьёзные проблемы производительности вплоть до замедления работы вовсе отказа утери данных и уничтожения базы данных В данном случае данный минус не актуален так как работа хоть и отражает почти функционал <mark>базы данных для платформы онлайн обучения</mark> но всё же она не имеет объема <mark>информации Таким</mark> образом полностью соответствует текущим потребностям платформы ЭдуПлюс и предоставляет надёжную <mark>основу для построения и</mark> масштабирования образовательной <mark>базы данных</mark> Почему а не альтернативы Выбор системы управления базами данных СУБД критически важный этап в разработке платформы дистанционного обучения При оценке различных вариантов реализации EduPlus рассматривались реляционные и не реляционные решения На основе анализа было принято решение в пользу MySQL Ниже представлено подробное обоснование этого выбора а также сравнение с альтернативами Основными конкурентами в выборе СУБД были PostgeSQL и нереляционные СУБД такие как MongoDB Cassandra Redis или Neo4j Почему не PostgreSQL PostgreSQL мощная и надёжная СУБД однако в контексте проекта EduPlus она имеет ряд особенностей которые делают её менее приоритетной 1 PostgreSQL может требовать больше ресурсов при больших объемах одновременных запросов 2 PostgreSQL имеет более сложные настройки для создания развертывания базы данных 3 Избыточный функционал например расширенные типы данных пространственные индексы они не будут использованы в функционале платформы Почему не NoSQL Нереляционные СУБД такие как MongoDB Cassandra Redis или Neo4j также были рассмотрены Однако у них есть ряд недостатков в контексте образовательной системы 1 MongoDB не поддерживает сложные связи между документами на уровне СУБД В результате логика работы системы например последовательное прохождение модулей курса должна реализовываться вручную что увеличивает сложность разработки 2 Redis отличное решение для кэширования и хранения временных данных но не предназначено для долговременного хранения структурированных данных 3 Cassandra подходит для обработки больших потоков данных но не имеет нативной поддержки SQL и ограничена в функциональности для транзакций 4 Neo4j графовая СУБД ориентированная на другие задачи например социальные графы и требует специфической модели хранения неприменимой к типичным структурам курса Примеры использования в онлайн платформе дистанционного обучения 1 Регистрация и учет пользователей Система должна обеспечивать быстрое добавление новых студентов преподавателей и администраторов а также хранить историю их активности прохождения курсов выполнения заданий и получения сертификатов 2 Управление образовательным контентом Хранение информации о курсах темах модулях материалах тестах и заданиях MySQL позволяет эффективно организовать структуру образовательных данных и легко управлять их изменениями 3 Финансовые операции Учёт оплаты за курсы подписки скидки промокоды и возвраты MySQL обеспечивает надёжную обработку транзакций и хранение финансовых данных с соблюдением принципов согласованности и целостности 4 Обслуживание и техническая поддержка Хранение истории обращений в службу поддержки регистрации ошибок анализа обратной связи от пользователей Это позволяет анализировать качество платформы и оперативно реагировать на проблемы Выбор MySQL в качестве основной СУБД для платформы EduPlus обусловлен рядом причин Например простата установки и администрирования высокая производительность при большом количестве запросов легкая интеграция и распространённость Благодаря использованию MySQL можно достичь эффективного управления структурированными данными образовательной платформы с минимальными затратами и высокой надёжностью Краткий вывод После анализа требований к онлайн платформе EduPlus и возможных архитектурных решений реляционная модель и функциональные возможности MySQL были признаны оптимальными MySQL позволяет организовать стабильную масштабируемую и безопасную работу системы отвечающую всем ключевым бизнес процессам от регистрации пользователей до анализа учебной активности <mark>На основе</mark> этих сформирована модель <mark>базы данных</mark> максимально соответствующая платформы онлайн обучения Дополнительно MySQL 1 централизованное хранение информации о курсах пользователях и прогрессе 2 быстрое выполнение запросов при построении отчётности и аналитики обучения 3 гибкость в правами доступа и разграничении

ролей преподаватель администратор слушатель 4 устойчивую работу с возможностью масштабирования при росте числа пользователей и объёмов данных Таким образом использование MySQL позволяет построить надёжную техническую основу для <mark>платформы</mark> дистанционного обеспечивая как повседневную работу пользователей <mark>так и</mark> развитие функционала в будущем Вторая глава Построение схемы базы данных Для работы с MySQL был выбран официальный инструмент MySQL Workbench MySQL Workbench инструмент для визуального проектирования баз данных интегрирующий проектирование моделирование создание и эксплуатацию БД в единое бесшовное окружение для системы баз данных MySQL Является преемником DBDesigner 4 от FabForce 4 Возможности MySQL WorkBench MySQL Workbench предоставляет широкий спектр возможностей для проектирования баз данных в купе с достаточно простым удобным интерфейсом и функционалом позволяет выполнять любые <u>задачи в сфере</u> проектирования баз данных Если рассматривать сферу проектирования баз данных то можно выделить обширный функционал например 1 Средства для проектирования ЕК диаграмм с возможностями прямого проектирования и Reverse Engineer обратного 2 Простота изменений проектировочных данных Если рассматривать MySQL Workbench со стороны то привести Упрощения множества SQL запросов Сама MySQL Workbench упрощает некоторые задачи с помощью визуальных инструментов без обязательной работы с кодом Также различные дополнительные средства по типу автозаполнении выделения синтаксиса подробный отчет об ошибке хранение большого количество подключений локально Стоит затронуть тему администрирования MySQL Workbench предоставляет широкий спектр возможностей для администрирования базы данных Администраторы и разработчики имеют доступ к визуальной консоли которая может быть использована для просмотра всё базы данных Еще одной возможностью станет широкая возможность к настройке серверов и подключения помимо этого есть еще огромное количество средств например резервного копирования <mark>данных и</mark> восстановления их Всё это при поддержке визуальных инструментов MySQL Workbench что значительно облегчает задачи в любых сферах начиная от заканчивая серверной работой ER Диаграмма и набор таблиц проекта По версии сайта ru wikipedia com ER модель от англ Entity Relationship model модель сущность связь модель данных позволяющая описывать концептуальные схемы предметной области 4 ER модель модель Сущность Связь это инструмент для начального планирования базы данных Она помогает определить главные сущности в системе например Клиент Заказ и понять как они связаны друг с другом например Клиент делает Заказ Позже когда приходит время строить реальную базу данных этот план ER схему переводят в конкретные правила и таблицы под выбранный тип базы реляционную объектную и т д Сама ER модель это просто идея набор правил Её можно нарисовать но рисовать не обязательно Самый популярный способ нарисовать такую модель диаграмма сущность связь ERD Часто люди путают термины ER модель это сама идея план структуры данных ER диаграмма ERD это один из способов нарисовать этот план Фактически ER диаграмма это разновидность блок схем Простыми словами данная схема отражает сущности внутри системы и как либо <mark>связаны между собой</mark> для Чаще всего применяется в проектировании баз данных в разных сферах от образовательных и вплоть до научных целей Перед построением определим таблицы который <mark>будут входить в</mark> перечисленные <mark>в прошлых</mark> главах возможности 1 users Рисунок 1 Таблица студентов Сущность пользователь хранит данные для входа и работы с курсами 1 id INT PRIMARY KEY AUTO INCREMENT уникальный идентификатор 2 username VARCHAR 100 логин до символов достаточно для удобства 3 hash password VARCHAR 255 хэш пароля bcrypt scrypt до символов 4 email VARCHAR 255 адрес электронной почты для восстановления доступа 5 balance DECIMAL 10 2 текущий баланс пользователя точное хранение денежных сумм 2 teachers Рисунок 2 таблица преподавателей Сущность преподаватель хранит информацию о лицах ведут курсы 1 id INT PRIMARY KEY AUTO INCREMENT уникальный идентификатор преподавателя 2 name VARCHAR 255 полное имя 3 bio TEXT текст биографии опыта достижений 3 courses Рисунок 3 Таблица курсов Сущность курс объединяет уроки под единым названием и ценой 1 id INT PRIMARY KEY AUTO INCREMENT уникальный номер курса 2 title VARCHAR 255 заголовок курса 3 description TEXT развернутое целей и содержания 4 price DECIMAL 10 2 стоимость доступа к курсу 5 teacher id INT внешняя ссылка на teachers id связывает курс с его автором 4 lessons Рисунок 4 Таблица уроков Сущность урок описывает отдельные занятия внутри курса 1 id INT PRIMARY KEY AUTO INCREMENT уникальный номер урока 2 course id INT внешний ключ на courses id указывает к какому курсу относится 3 title VARCHAR 255 заголовок урока 4 content TEXT основной материал текст ссылки вёрстка 5 duration min INT рекомендуемая длительность в минутах 5 enrollments Рисунок 5 Таблица записей на курс Сущность запись на курс фиксирует факт подключения пользователя к курсу 1 id INT PRIMARY KEY AUTO INCREMENT идентификатор записи 2 user id INT внешний ключ на users id кто записался 3 course id INT внешний ключ на courses id на какой курс 4 enroll date DATETIME дата и время подписки 6 payments Рисунок 6 Таблица платежей Сущность платёж хранит информацию о финансовых транзакциях 1 id INT PRIMARY KEY AUTO INCREMENT номер транзакции 2 user id INT внешний ключ на users id кто оплатил 3 course id INT внешний ключ на courses id за что оплатил 4 amount DECIMAL 10 2 сумма платежа 5 paid at DATETIME момент совершения оплаты 7 sessions Рисунок 7 Таблица сессий фактических взаимодействий с уроками и курсами Сущность сессия фиксирует фактическое взаимодействие пользователя с уроком 1 id INT PRIMARY KEY AUTO INCREMENT идентификатор сессии 2 user id INT внешний ключ на users id кто работал 3 lesson id INT внешний ключ на lessons id какой урок 4 started at DATETIME время начала 5 completed at DATETIME время окончания урока может быть NULL если не завершён Каждая связь один ко многим задаётся внешними ключами user id teacher id course id lesson <mark>id что</mark> позволяет 1 одному пользователю иметь много записей <mark>на курсы</mark> enrollments платежей payments и сессий sessions 2 одному курсу принадлежать много уроков и записей на курс 3 одному уроку соответствовать множество сессий 4 одному преподавателю вести несколько курсов Исходя из ранее применяемых формулировок приступим к построению ER диаграммы Для лучшего вида сам рисунок перенесен на другую страницу Рисунок 8 ER <mark>диаграмма базы данных для онлайн</mark> платформы дистанционного Связи в проекте Вся модель данных спроектирована с опорой на связь один ко многим именно лежит в основе взаимодействия пользователей курсов уроков платежей и сессий Подробное описание структуры и логики этих связей представлено в разделе ER <mark>диаграмма и</mark> набор проекта Я сознательно отказался от использования связей <mark>один к одному</mark> и многие комногим на практике они не приносят дополнительной ценности но существенно усложняют создание и поддержку БД особенно при наполнении тестовыми данными и масштабировании системы в будущем Такое решение делает архитектуру

более прозрачной и облегчает поддержку и развитие сервиса разработки таблиц В данной главе я продемонстрирую разработанного Весь можно просмотреть в разделе Приложении Код для создания таблицы Users CREATE TABLE users id INT AUTO INCREMENT PRIMARY KEY username VARCHAR 100 NOT NULL UNIQUE hash password VARCHAR 255 NOT NULL email VARCHAR 255 NOT NULL UNIQUE balance DECIMAL 10 2 NOT NULL DEFAULT 0 00 ENGINE InnoDB Код для создания таблицы Teachers CREATE TABLE teachers id INT AUTO INCREMENT PRIMARY KEY name VARCHAR 255 NOT NULL bio ENGINE InnoDB Полный код для создания всех таблиц в Приложение 1 Пример заполнения таблиц Users и Teachers Заполнение Users INSERT INTO users username hash password email VALUES alice 2y eduplus com bob 2y eduplus carol 2y carol eduplus com Заполнение Teachers INSERT INTO teachers bio Иван Иванов Эксперт по Python Пётр Петров Веб разработка и JavaScript Полный код в Приложении 2 Реализация бизнес процессов на уровне СУБД Классические запросы типизированные запросы состоят из следующих операторов SELECT извлечение отдельных полей или всех записей из таблицы представления FROM указание источника данных таблица или VIEW WHERE фильтрация по условиям например WHERE balance price для отбора оплаченных курсов GROUP BY группировка результатов по столбцу например GROUP BY course id HAVING фильтрация сгруппированного набора например только курсы с более чем 10 студентами ORDER BY сортировка по одному или нескольким полям например по дате ORDER BY paid at DESC Типовые запросы представляют из себя 1 Список всех курсов с именем преподавателя SELECT c id c title t name FROM courses c JOIN teachers t ON c teacher id t id 2 Прогресс Alice по курсу 1 SELECT fn user progress 1 1 AS pct done 3 Уроки курса 2 SELECT id title duration min FROM lessons WHERE course id 2 4 Статистика по зачислениям SELECT course id COUNT AS students FROM enrollments GROUP BY course id 5 Текущие активные сессии Alice SELECT FROM sessions WHERE user id 1 AND completed at IS NULL Триггер это пользовательская автоматически выполняемая при INSERT UPDATE DELETE B EduPlus есть trg payment AFTER INSERT ON payments после оплаты записывает студента в enrollments и списывает баланс DELIMITER CREATE TRIGGER trg payment AFTER INSERT ON payments FOR EACH ROW BEGIN INSERT IGNORE enrollments user id course id VALUES NEW user id NEW course id UPDATE users SET balance balance amount WHERE id NEW user id END DELIMITER Представление реализует отображение всех курсов преподавателей зачисленных и проценты прохождения Рисунок 9 Пример вывода View Некоторый учителя просто числятся в базе данных без назначения при желании можно выдать им назначения и курсы Транзакция объединяет несколько операций в атомарный блок В sp enroll and рау проверяются баланс вставляется запись в payments триггером создаётся enrollment Все в START TRANSACTION COMMIT ROLLBACK Приложение 3 Хранимые процедуры и функции Полный код см в приложении 3 sp enroll and рау процедура для оплаты и зачисления fn user progress функция для расчёта процента выполнения курса Система ролей Администратор CREATE USER IF NOT EXISTS admin IDENTIFIED BY admin pwd GRANT ALL PRIVILEGES ON eduplus TO admin Студент CREATE USER IF NOT EXISTS student IDENTIFIED BY stud pwd GRANT SELECT INSERT ON eduplus sessions TO student GRANT SELECT INSERT ON eduplus payments TO student GRANT SELECT ON eduplus courses TO student GRANT SELECT ON eduplus lessons TO student GRANT SELECT ON eduplus enrollments TO student Преподаватель CREATE USER IF NOT EXISTS teacher IDENTIFIED BY teach pwd GRANT SELECT INSERT UPDATE ON eduplus lessons TO teacher GRANT SELECT UPDATE ON eduplus courses TO teacher Заключение В ходе выполнения курсовой работы <mark>была разработана реляционная база данных для</mark> онлайн платформы EduPlus полностью удовлетворяющая поставленным функциональным и нефункциональным требованиям В результате проделанной работы 1 Проведён анализ бизнес и образовательных процессов дистанционного обучения и сформулированы требования к системе хранения данных 2 Спроектирована концептуальная ER модель и выполнено её преобразование в физическую схему баз данных MySQL включающую семь таблиц users teachers courses lessons enrollments payments sessions с корректно настроенными внешними ключами 3 Реализован полный набор механизмов СУБД Типовые запросы для выборки курсов уроков статистики зачислений и прогресса Триггер trg after payment для автоматического зачисления и обновления баланса Представление vw course overview и дополнительное vw teacher courses для получения консолидированной информации о курсах и преподавателях Хранимая процедура sp enroll and pay и функция fn user progress с транзакцией и обработчиком ошибок Роли admin student teacher с разграничением прав на чтение и изменение данных 4 Наполнены таблицы тестовыми данными проверена корректность всех операций и отсутствие конфликтов при повторном выполнении скриптов Полученная база данных обеспечивает целостность и консистентность информации поддерживает ключевые образовательные сценарии регистрацию пользователей оплату курсов ведение прогресса и аналитику Архитектура легко расширяется внедрения сущностей сертификатов тестов чатов достаточно добавить таблицы и соответствующие Конечно данная база данных открыта будущих улучшений функционала Таким образом разработанная база данных создаёт надёжную и масштабируемую основу для эффективного функционирования онлайн платформы дистанционного EduPlus Список литературы 1 Мельник М В Использование онлайн обучения в условиях цифровизации образования М В Мельник Современные проблемы науки и образования 2020 No 6 URL https science education ru article view id 30871 дата обращения 18 06 2025 2 Дистанционное обучение Википедия энциклопедия URL https ru wikipedia wiki Дистанционное обучение дата обращения 18 06 2025 3 Бизнес процесс Википедия свободная энциклопедия https ru wikipedia wiki Бизнес процесс дата обращения 19 06 2025 URL 4 ER модель Википедия свободная энциклопедия https ru wikipedia org wiki ER модель дата обращения 23 06 2025 URL 5 MySQL 8 0 Reference Manual MySQL Documentation URL https dev mysql com doc дата обращения 24 06 2025 6 Онлайн платформы для обучения особенности функционал востребованность Skillspace URL skillspace ru blog onlain platformydlia obuchieniia osobiennosti funktsional vostriebovannost дата обращения 18 06 2025 Приложение 1 2 Таблица пользователей студентов CREATE TABLE users id INT AUTO INCREMENT PRIMARY KEY username VARCHAR 100 NOT NULL UNIQUE hash password VARCHAR 255 NOT NULL email VARCHAR 255 NOT NULL UNIQUE balance DECIMAL 10 2 NOT NULL DEFAULT 0 00 ENGINE InnoDB 3 Таблица преподавателей CREATE TABLE teachers id INT AUTO INCREMENT PRIMARY KEY name VARCHAR 255 NOT NULL bio TEXT ENGINE InnoDB 4 KYPCOB CREATE TABLE courses id INT AUTO INCREMENT PRIMARY KEY title VARCHAR 255 NOT NULL description TEXT price DECIMAL 10 2 NOT NULL teacher id INT NOT NULL FOREIGN KEY teacher id REFERENCES teachers id ENGINE InnoDB 5 Таблица уроков CREATE TABLE lessons id INT AUTO INCREMENT PRIMARY KEY course id INT NOT NULL title VARCHAR 255 NOT NULL content TEXT duration min INT NOT NULL FOREIGN KEY course id REFERENCES courses id ENGINE InnoDB 6 Таблица зачислений enroll

автоматически ставится CURRENT TIMESTAMP CREATE TABLE enrollments id INT AUTO INCREMENT PRIMARY KEY user id INT NOT NULL course id INT NOT NULL enroll date DATETIME NOT NULL DEFAULT CURRENT TIMESTAMP FOREIGN KEY user id REFERENCES users id FOREIGN KEY course id REFERENCES courses id ENGINE InnoDB 7 Таблица платежей CREATE TABLE payments id INT AUTO INCREMENT PRIMARY KEY user id INT NOT NULL course id INT NOT NULL amount DECIMAL 10 2 NOT NULL paid at DATETIME NOT NULL DEFAULT CURRENT TIMESTAMP FOREIGN KEY user id REFERENCES users id FOREIGN KEY course id REFERENCES courses id ENGINE InnoDB 8 Таблица сессий просмотр урока CREATE TABLE sessions id INT AUTO INCREMENT PRIMARY KEY user id INT NOT NULL lesson id INT NOT NULL started at DATETIME NOT NULL DEFAULT CURRENT TIMESTAMP completed at DATETIME NULL FOREIGN KEY user id REFERENCES users id FOREIGN KEY lesson id REFERENCES lessons id ENGINE InnoDB Приложение 2 14 Пример наполнения данными INSERT INTO users username hash password email VALUES alice 2y alice eduplus bob 2y bob eduplus com carol 2y carol eduplus com INSERT INTO teachers bio VALUES Иван Иванов Эксперт по Python Пётр Петров Веб разработка и JavaScript INSERT INTO courses description teacher id VALUES Python для начинающих Основы Python 500 00 1 Frontend HTML CSS JS С нуля до PRO 700 00 2 INSERT INTO lessons course id title content duration min VALUES 1 Введение Что такое Python 10 1 Переменные Типы и переменные 20 2 HTML основы Разметка страницы 15 2 CSS стили Оформление 25 INSERT IGNORE INTO users username hash password email balance VALUES alice 2y abc1 alice eduplus com 1000 00 bob 2y abc2 bob eduplus com 800 00 carol 2y abc3 carol eduplus com 1200 00 dave 2y abc4 dave eduplus com 500 00 erin 2y abc5 erin eduplus com 1500 00 frank 2y abc6 frank eduplus com 700 00 Преподаватели INSERT IGNORE INTO teachers name bio VALUES Иван Иванов Эксперт по Python и Data Science Пётр Петров Специалист по веб разработке и JavaScript Мария Смирнова Преподаватель по базам данных и SQL Елена Кузнецова Инструктор по DevOps и CI CD Курсы INSERT IGNORE INTO courses title description price teacher id VALUES Python для начинающих Основы синтаксиса работа с библиотеками первые проекты 500 00 1 Продвинутый Python Глубокое погружение ООР асинхронность оптимизация 700 00 1 Web разработка HTML CSS JavaScript фреймворки React и Vue 800 00 2 SQL и базы данных Проектирование схем оптимизация запросов транзакции 600 00 3 DevOps практики CI CD Docker Kubernetes мониторинг 900 00 4 ON DUPLICATE KEY UPDATE title VALUES title Уроки INSERT IGNORE INTO lessons course id title content duration min VALUES 1 Введение в Python Обзор языка установка окружения 15 1 Переменные и типы данных int float str list dict 20 1 Условные операторы if else elif 25 2 Классы и объекты Создание классов наследование 30 2 Асинхронность asyncio задачики event loop 35 3 Основы HTML CSS Теги стили макеты 20 3 JavaScript для веба DOM события ES6 25 4 Введение в SQL SELECT INSERT UPDATE DELETE 15 4 Продвинутые JOIN INNER LEFT RIGHT FULL JOIN 20 5 Введение в Docker Контейнеризация приложений 30 5 Kubernetes в практике Создание подов сервисов deployment 40 ON DUPLICATE KEY UPDATE title VALUES title Приложение 3 Студент CREATE USER IF NOT EXISTS student IDENTIFIED BY stud pwd GRANT SELECT INSERT ON eduplus sessions TO student GRANT SELECT INSERT ON eduplus payments TO student GRANT SELECT ON eduplus courses TO student GRANT SELECT ON eduplus lessons TO student GRANT SELECT ON eduplus enrollments TO student Преподаватель CREATE USER IF NOT EXISTS teacher IDENTIFIED BY teach pwd GRANT SELECT INSERT UPDATE ON eduplus lessons TO teacher GRANT SELECT UPDATE ON eduplus courses TO teacher 10 Пользовательская функция прогресс в курсе DELIMITER CREATE FUNCTION fn user progress u id INT c id INT RETURNS DECIMAL 5 2 DETERMINISTIC BEGIN DECLARE total lessons INT DECLARE done lessons INT DECLARE pct DECIMAL 5 2 SELECT COUNT INTO total lessons FROM lessons WHERE course id c id SELECT COUNT INTO done lessons FROM sessions s JOIN lessons I ON s lesson id I id WHERE s user id u id AND I course id c id AND s completed at IS NOT NULL IF total lessons 0 THEN SET pct 0 ELSE SET pct done lessons total lessons 100 END IF pct DELIMITER 11 Триггер после оплаты автоматически зачисляем и списываем баланс DELIMITER CREATE TRIGGER trg payment AFTER INSERT ON payments FOR EACH ROW BEGIN INSERT IGNORE enrollments user id course id VALUES NEW user id NEW course id UPDATE users SET balance balance amount WHERE id NEW user id END DELIMITER Вьюшки ALGORITHM UNDEFINED DEFINER root localhost SECURITY DEFINER vw course overview AS c id AS course id c AS course c description AS course description t name AS teacher COUNT DISTINCT e user id AS enrolled count COUNT DISTINCT I id AS total lessons IFNULL SUM p amount 0 AS total revenue IFNULL AVG FN USER PROGRESS e user id c id 0 AS avg progress pct FROM courses c JOIN teachers t ON c teacher id t id LEFT JOIN enrollments e ON c id e course id LEFT JOIN lessons I ON c id I course id LEFT JOIN payments p ON c id p course id GROUP BY c id CREATE ALGORITHM UNDEFINED DEFINER root localhost SQL SECURITY DEFINER VIEW vw course overview AS SELECT c id AS course id c title AS course title c description AS course description t name AS teacher COUNT DISTINCT e user id AS enrolled count COUNT DISTINCT I id AS total lessons IFNULL SUM p amount 0 AS total revenue IFNULL AVG FN USER PROGRESS e user id c id 0 AS avg progress pct FROM courses c JOIN teachers t ON c teacher id t id LEFT JOIN enrollments e ON c id e course id LEFT JOIN lessons I ON c id I course id LEFT JOIN payments p ON c id p course id GROUP BY c id хранимая процедура с обработчиком ошибок CREATE DEFINER root localhost PROCEDURE sp enroll and pay IN p user INT IN p course INT BEGIN DECLARE course price DECIMAL 10 2 DECLARE user bal DECIMAL 10 2 DECLARE EXIT HANDLER FOR SQLEXCEPTION BEGIN ROLLBACK SELECT Ошибка транзакция отменена AS msg END START TRANSACTION SELECT price INTO course price FROM courses WHERE id p course FOR UPDATE SELECT balance INTO user bal FROM users WHERE id p user FOR UPDATE IF user bal course price THEN INSERT INTO payments user id course id amount VALUES p user p course course price enrollments и списание баланса сделает триггер COMMIT SELECT Успешно зачислен на курс AS msg ELSE ROLLBACK SELECT Недостаточно средств AS msg END IF END Приложение 4 1 Список всех курсов с именем преподавателя SELECT с id с title t name FROM courses с JOIN teachers t ON с teacher id t id 2 Прогресс Alice по курсу 1 SELECT fn user progress 1 1 AS pct done 3 Уроки курса 2 SELECT id title duration min FROM lessons WHERE course id 2 4 Статистика по зачислениям SELECT course id COUNT AS students FROM enrollments GROUP BY course id 5 Текущие активные сессии Alice SELECT FROM sessions WHERE user id 1 AND completed at IS NULL 2 2