Questions to be addressed ML overview Big Data in astronomy ML applications in astronomy ML limitations

Machine Learning in Astronomy

Reza Monadi

UC Riverside

May 14, 2020

Questions to be addressed ML overview Big Data in astronomy ML applications in astronomy ML limitations

credit: 365datascience.com

Questions to be addressed ML overview Big Data in astronomy ML applications in astronomy ML limitations

• Is ML the same as Statistics?

Questions to be addressed ML overview Big Data in astronomy ML applications in astronomy ML limitations

- Is ML the same as Statistics?
- How astronomy is tied to **BIG DATA**?

Questions to be addressed ML overview Big Data in astronomy ML applications in astronomy MI limitations

- Is ML the same as Statistics?
- How astronomy is tied to BIG DATA?
- How to implement ML in astronomy?

- Is ML the same as Statistics?
- How astronomy is tied to BIG DATA?
- How to implement ML in astronomy?
- What are the pitfalls of **ML**?

Western Digital.

credit: javatpoint.com

• We need a set of measurements.

- We need a set of measurements.
- We need the label for each measurement.

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

Supervised learning vs. model fitting

Supervised learning:

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

- Supervised learning:
 - The model gets adapted by data

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

- Supervised learning:
 - The model gets adapted by data
 - 2 Can be very nonlinear and complex

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

- Supervised learning:
 - 1 The model gets adapted by data
 - 2 Can be very nonlinear and complex
- Traditional model fitting:

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

- Supervised learning:
 - The model gets adapted by data
 - 2 Can be very nonlinear and complex
- Traditional model fitting:
 - Model is predefined

- We need a set of measurements.
- We need the label for each measurement.
- We define a model and let the machine learn from examples.
- We ask the machine to predict label of unseen measurements.

- Supervised learning:
 - The model gets adapted by data
 - 2 Can be very nonlinear and complex
- Traditional model fitting:
 - Model is predefined
 - Model adaptivity is limited

• Training:

- Training:
 - Select a model

- Training:
 - Select a model
 - Set up hyper-parameters of model

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters
- Testing:

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters
- Testing:
 - Test learned model by an unseen part of the data-set.

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters
- Testing:
 - Test learned model by an unseen part of the data-set.
 - 2 Select the best model and use it for predictions.

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
- Regression: continuous targets
 - **(**

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
- Regression: continuous targets
 - **a**
 - Opening Photometry: redshift estimation
 - **G**

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - Opening Photometry: redshift estimation
 - C

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - Opening Photometry: redshift estimation
 - **(**
- DBSCAN:

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - O Photometry: redshift estimation
 - **(**
- DBSCAN:
- :

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - Opening Photometry: redshift estimation
 - **(**
- DBSCAN:
- •
- OPTICS:

Deep/Shallow Artificial Neural Networks

Supervised learning Unsupervised learning

How unsupervised learning works?

• KMeans:

- KMeans:
- DBSCAN:

- KMeans:
- DBSCAN:
- •

- KMeans:
- DBSCAN:
- •
- OPTICS:

TMT

JWST

Big telescopes Simulations Surveys

Sloan Digital Sky Server

Zwicky Transient Facility

Big telescopes Simulations Surveys

Gaia

DESI

Square Kilometer Array

text

Ь

Ь

text

a b