

# Data Science for People in a Hurry

**Scattered Data Interpolation** 

Scientific Visualization Professor Eric Shaffer



#### **Scattered Data**

Scattered data is irregularly sampled

No spatial structure



Using bilinear or trilinear interpolation problematic



## Shepard's Method

Simplest scattered data interpolation method



- x<sub>k</sub> are the locations in space with known function values
- x is the query point
- w is a weight function inversely dependent on distance to x
- p is a positive real number
  - larger p is, the greater influence points close to x will have



# Shepard's Method Issues

For p ≤ 1 the interpolant has peaks...not ideal for smooth interpolation



Example with p=1



# Shepard's Method Issues

For p > 1 the interpolant is smooth...

But, first derivative is equal to 0 at data points...again not usually a desired behavior



Example with p=2



# Modified Shepard's Method

One other issue is lack of scalability...ALL points in a data set used at each query x

Modified Shepard's Method uses only points within a radius of r around x

For those points, the weight function is 
$$w_j(\mathbf{x}) = \left[\frac{r - d(\mathbf{x}, \mathbf{x}_i)}{r d(\mathbf{x}, \mathbf{x}_i)}\right]^2$$

Requires use of a spatial data structure such as kd-tree or quadtree/octree



#### **Radial Basis Functions**

- Any function dependent on distance from a center is radial
- We can compute an interpolating function as a weighted sum...

r- 11x-P11

$$\phi(x,p) = \phi(||x-p||)$$

$$f(x) \approx \sum_{i=1}^{N} w_i \phi(x, p_i)$$

• Some popular kernel functions

$$\phi(r) = e^{-\lambda r^2}$$
 Gaussian

$$\phi(r) = \frac{1}{1+r^2}$$
 Inverse distance



# **RBFs Computing Weights**

- Need to compute weights
- Constraint is function interpolates data points

- For scalability use a kernel function with width
  - Can lead to non-smooth interpolant

$$f(p_j) = \sum_{i=1}^{N} w_i \phi(p_j, p_i)$$

$$Aw = p$$

$$A = \begin{bmatrix} \phi(p_{1}, p_{1}) & \dots & \phi(p_{1}, p_{N}) \\ \dots & \dots & \dots \\ \phi(p_{N}, p_{1}) & \dots & \phi(p_{N}, p_{N}) \end{bmatrix}$$

$$w = \begin{bmatrix} w_1 \\ \dots \\ w_N \end{bmatrix}$$

$$p = \begin{bmatrix} f(p_1) \\ \dots \\ f(p_N) \end{bmatrix}$$



## **RBF Interpolation Example**



Example radial basis interpolation with a Gaussian kernel



#### Kernel Function Choice

Positive definite functions will result in non-singular A for any data points

One definition of positive definite function: matrix A has all positive eigenvalues

Some useful kernels are not positive definite



### Other Interpolation Method Options

- Moving Least Squares
- Natural Neighbor Interpolation
- ...many more

