on the set
$$[-1,1]$$
, fix \int on $[-1,0]$,

fix \int on $[-1,0]$,

fix \int on $[-1,0]$,

global min is $f(0)=9$

$$(\cos x)^{1/smx} = \frac{1}{s^{smx}} \cdot \ln \cos x = e \left(e = \frac{\ln(\cos x)}{s^{smx}} \right)$$

$$\lim_{x\to 00} \frac{l(\cos x)}{\sin x} = L.H \Rightarrow \lim_{x\to 000} \frac{1}{\cos^2 x} = -\frac{\sin x}{\cos^2 x} = -0$$

b)
$$\lim_{x\to 0^{-0}} (x \cdot \ln(-x)) = 0.0$$

$$=\lim_{x\to 0^{-0}}\frac{\ln(-x)}{\frac{1}{x}}=\lim_{x\to 0^{-0}}\frac{\ln(-x)}{\frac{1}{x}}=\lim_{x\to 0^{-0}}\frac{1}{x^{2}}=x$$