

Faculté des sciences et de génie Département de génie des mines, de la métallurgie et des matériaux

# Examen du mardi 11 octobre 8h30 -10h25

### GML-10463, Matériaux de l'ingénieur, section A GML-21452, Science des matériaux

Professeur : Diego Mantovani

| Nom :                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                  | Prénom :                                                                                                                                                                 |                                                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Matricule : _                                                                                                                                                                                         |                                                                                              |                                                                                                                                                                                                                  | Programme                                                                                                                                                                | :                                                                                                     |  |
| Matériaux de                                                                                                                                                                                          | e l'ingénieur :                                                                              |                                                                                                                                                                                                                  | Science des matériaux :                                                                                                                                                  |                                                                                                       |  |
|                                                                                                                                                                                                       |                                                                                              | INSTRUC                                                                                                                                                                                                          | <u>CTIONS</u>                                                                                                                                                            |                                                                                                       |  |
| <ul> <li>Aucun doc</li> <li>Déposez su</li> <li>Le professu correction</li> <li>Ordinateur</li> <li>Lisez attent</li> <li>Maîtrisez v</li> <li>Écrivez seu au verso ne</li> <li>Évaluez le</li> </ul> | du français et ce, justes, baladeurs, système<br>tivement l'ensemble cotre impulsivité et ré | votre carte d'étud<br>it d'enlever des not<br>squ'à concurrence<br>s complexes de calc<br>de l'examen avant d<br>fléchissez plusieurs<br>cés prévus au recto<br>si le contraire est in-<br>iez à chaque question | iant; tes en regard de la pr de 10 points sur 100 cul et téléphones cellu e commencer à réport fois avant de répond . Le verso est pour ve diqué); on en fonction de sor | résentation générale et de la ; alaires interdits ; andre ; re ; otre brouillon. <u>Aucune notion</u> |  |
|                                                                                                                                                                                                       | zz remettre TOUTES                                                                           | les feuilles de ce                                                                                                                                                                                               | formulaire d'examer                                                                                                                                                      | 1.                                                                                                    |  |
|                                                                                                                                                                                                       |                                                                                              |                                                                                                                                                                                                                  | formulaire d'examer                                                                                                                                                      | 1.                                                                                                    |  |

-1- **E1** (25)

Une éprouvette d'un alliage inconnu de 1,45 cm de diamètre est soumise à un essai de traction. La longueur initiale entre les repères est de 8,0 cm. Les résultats de l'essai sont les suivants:

|                      | Force (N)                | Longueur entre les repères (cm)                                                                                                            |
|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                      | 38 530                   | 8,005                                                                                                                                      |
|                      | 67 580                   | 8,010                                                                                                                                      |
|                      | 96 510                   | 8,015                                                                                                                                      |
|                      | 116 670                  | 8,020                                                                                                                                      |
|                      | 125 950                  | 8,025                                                                                                                                      |
|                      | 135 370                  | 8,048                                                                                                                                      |
|                      | 143 280                  | 8,050 (max, rupture)                                                                                                                       |
| REPONSES             | S (indiquer le dévelop   | pement détaillé avec éventuel graphique aux pages suivantes) :                                                                             |
| a) Quelle est        | la valeur du module d    | 'élasticité de ce matériau?                                                                                                                |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
| <b>b</b> ) Quelle es | t la valeur de la limite | élastique de l'ingénieur (0,2%)?                                                                                                           |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
| tonne métriq         |                          | riquer un câble pour transporter des lingots ayant une masse de 1<br>re de celui-ci sachant qu'on ne peut tolérer un allongement supérieur |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
|                      |                          |                                                                                                                                            |
| <b>DÉVELOP</b>       | PEMENT :                 |                                                                                                                                            |





a) Déterminez les indices de direction correspondant aux vecteurs illustrés aux figures ci-dessous.



#### **REPONSES**

| Directions | Indices |
|------------|---------|
| AI         |         |
| ВІ         |         |
| CI         |         |
| DI         |         |

| Directions | Indices |
|------------|---------|
| AII        |         |
| ви         |         |
| CII        |         |
| DII        |         |

b) Déterminez les indices de Miller des plans illustrés dans les cubes suivants.



#### **REPONSES**:

| Plans | Indices de Miller |
|-------|-------------------|
| AI    |                   |
| BI    |                   |
|       |                   |
| AII   |                   |
| BII   |                   |
|       |                   |
| AIII  |                   |
| BIII  |                   |

| <b>c</b> ) | Les feuilles d'aluminium servant à l'emballage des aliments ont environ 0,0254 mm d'épaisseur. En assumant que toutes les cellules unitaires sont arrangées de façon à ce que l'axe a <sub>o</sub> soit perpendiculaire à la surface de la feuille, déterminez l'épaisseur de la feuille exprimée en nombre de cellules unitaires. Tenez présent que l.aluminium présente une structure cubique à faces centrées, et que son rayon atomique est de 0,1432 nm. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>d</b> ) | À partir de 42,6 K, et jusqu'à sa fusion (Tfus = 54,2 K), l'oxygène (O2) cristallise selon une structure                                                                                                                                                                                                                                                                                                                                                      |
|            | cubique de paramètre a = 683 pm. Sa masse volumique est évaluée à 1,32 x 103 kg/m3. Combien de groupement d'O2 contient cette maille élémentaire?                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Une tige d'alumine est fabriquée selon la géométrie et les dimensions présentées ci-dessous. Au milieu de sa longueur, deux petits trous doivent être percés pour des raisons techniques liées au montage de la pièce finale. Sous quelle charge cette tige d'alumine se rompra-t-elle ?





Facteur de concentration de contraintes en fonction de la géométrie de la pièce soumise en traction

| REPONSES ET DÉVEL | <u>OPPEMENT :</u> |  |  |
|-------------------|-------------------|--|--|
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |
|                   |                   |  |  |





Un acier inoxydable type 305 possède les caractéristiques mécaniques en fonction du pourcentage de travail à froid (% CW) telles que données sur le graphique à la page suivante.

On veut fabriquer des tiges de 0,55 cm de diamètre dont la résistance doit être supérieure à 1050 MPa, la dureté supérieure à 28 Rc et la limite élastique inférieure à 1050 MPa. Le matériau tel que reçu est sous forme de tiges de 1 cm de diamètre dont la dureté est de 28 Rc. L'usine n'est pas équipée pour le travail à chaud (laminages à froid et recuits seulement). De plus, pour des raisons de résistance à l'usure des matrices, la dureté des tiges ne doit jamais être supérieure à 36 Rc et pour éviter la fissuration de ces tiges la striction à la rupture ne doit jamais être inférieure à 60%.

- a) Établissez en détail la procédure à suivre pour obtenir le produit demandé en minimisant le nombre d'étape pour réduire les coûts.
- **b**) Sachant que la section d'une tige diminue avec le pourcentage de travail à froid pendant que sa résistance augmente linéairement, après quel pourcentage de travail à froid une tige supportera-t-elle la plus grande charge? La tige de départ est à l'état recuit (0 % de C.W).

## <u>REPONSES ET DÉVELOPPEMENT :</u>



Variations des propriétés mécaniques de l'acier inoxydable de type 305 en fonction du pourcentage de travail à froid



Mowsy , 24 septembre 2019: Chapitre 7 Pratique Examen type: (Partiel) chose : or et e à chaque point 3 o (MPa) 6,25×16-4 1,25 × 10-3 1.88×10-3 585 Dessiner Graphique o(E) 2.50×10-3 707 3.13×10-3 763 820 6,00 ×10 6.25×10-3 865 300 200 100 3 Loi de HOOK: 0= EE-0.1 02 013 94 05 016 Alors E = 0 = A0 = 02-01 F=283 Reon - 800 MPa (Graphique) masse lingot C) (1 tonne métrique = 1000 kg/. On cherche D en sachant que  $\Delta l_{max} = 12 cm = 0.12 m$   $= 0.12 m = 10^{-3} = 0.0041$ Omax = EEmax = (283GPa)(10-3) = 2831 F = (mzingot)(q) = (1000 Kg)(9181 m) = 9810 N on peut trouver So = F = 9810N = 4.06 mm<sup>2</sup> -> d= 250/# = 6.64 min = Reponse





