

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

EXERCÍCIOS DE CÁLCULO

Renan Wenzel - 11169472

Thaís Jordão - tjordao@icmc.usp.br

3 de abril de 2022

Conteúdo

1		neros Reais, Funções e Introdução a Limites	3	
	1.1	Exercícios de Funções e Panorama Geral	3	
		1.1.1 Exercício 1	3	
		1.1.2 Exercício 2	4	
		1.1.3 Exercício 3		
	1.2	Um Panorama Geral		
		1.2.1 Exercício 4	7	
2	2 Propriedades dos Limites, Limites Laterais, Limites de Determinadas Funções, Funções Contínuas e Suas Propriedades			
3	Ret	a Tangente, Derivada, Derivada de Algumas funções, Regra da Cadeia	9	
4	Teo	rema do Valor Médio e Suas Consequências, Derivadas de Ordem Superior	10	
5	Ant	Antiderivada, Integral, Teorema Fundamental do Cálculo, Métodos, Integrais Impróprias		

1 Números Reais, Funções e Introdução a Limites

1.1 Exercícios de Funções e Panorama Geral

1.1.1 Exercício 1

Parte 1 - Se considerarmos

$$f(x) = \frac{x^3 + x^2 - x - 1}{x - 1}, x \neq 1,$$

então a que classe de funções ela pertence? Note que se efetuarmos a divisão polinomial, concluiremos que

$$\frac{x^3 + x^2 - x - 1}{x - 1} = x^2 + 2x + 1.$$

Isto significa que f é uma função polinomial de grau 2? Justifique e faça o passo-a-passo.

Prova:. Considere a função

$$f(x) = \frac{x^3 + x^2 - x - 1}{x - 1}, x \neq 1,$$

 $e\ p(x)=x^3+x^2-x-1, q(x)=x-1,\ em\ que\ p:\mathbb{R}\to\mathbb{R}\ e\ q(x)\mathbb{R}/\{1\}\to\mathbb{R}\ s\~ao\ polin\^omios.$ Segue que:

$$f(x) = \frac{x^3 + x^2 - x - 1}{x - 1} = \frac{p(x)}{q(x)}, x \neq 1.$$

Por definição, uma função na forma de quociente de polinômios, em que o denominador é um polinômio com o domínio tal que ele nunca é nulo, é conhecida como uma função racional.

No entanto, é melhor lidar com frações de polinômios simplificados, ou seja, é preciso encontrar o fator comum entre ambos. Observe que, em x = 1,

$$p(x) = 1^3 + 1^2 - 1 - 1 = 1 + 1 - 1 - 1 = 0$$

e

$$q(x) = 1 - 1 = 0$$
,

então (x-1) é um fator comum entre ambos, isto é, ele pode ser fatorado após manipular o polinômio p(x). Assim, note que, somando e subtraindo fatores para que possamos fatorar (x-1) de p(x), chegamos em:

$$p(x) = x^3 + x^2 - x - 1 = x^3 + (2x^2 - x^2) + (x - 2x) - 1 = (x - 1)(x^2 + 2x^2 + 1) = q(x)(x^2 + 2x^2 + 1),$$

de forma que:

$$f(x) = \frac{x^3 + x^2 - x - 1}{x - 1} = \frac{p(x)}{q(x)} = \frac{q(x)(x^2 + 2x^2 + 1)}{q(x)} = x^2 + 2x^2 + 1, x \neq 1.$$

Logo, após efetivada a divisão, obtemos que f é uma função polinomial de grau 2.

Parte 2 - Verifique as seguintes identidades:

a)
$$x^2 - a^2 = (x - a)(x + a)$$

b)
$$x^3 - a^3 = (x - a)(x^2 + ax + a^2)$$

c)
$$x^4 - a^4 = (x - a)(x^3 + ax^2 + a^2x + a^3)$$

d)
$$x^5 - a^5 = (x - a)(x^4 + ax^3 + a^2x^2 + a^3x + a^4)$$

e)
$$x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + a^2x^{n-3} + ... + a^{n-2}x + a^{n-1})$$
 em que $n \ne 0$ é um natural.

<u>Prova:</u> Antes da formalização da prova, um bom começ ϕ analisar a imagem cuidadosamente. De fato, ao fazer isso, observe a repetição do termo (x - a) à direita de cada igualdade. Outro ponto notável ϕ que, para cada ϕ , ocorre uma expansão de $\sum_{i=0}^{n} a^{i}x^{n-i-1}$ ao lado de (x - a), em que ϕ . Em outras palavras, isso está indicando fortemente a presença de uma hipótese indutiva para demonstrar o resultado.

Com efeito, provemos o caso base do item a, ou seja, n = 2. Considere o produto (x-a)(x+a):

$$(x-a)(x+a) = x^2 + xa - ax - a^2 = x^2 + ax - ax - a^2 = x^2 - a^2.$$

Destarte, obtivemos o caso base como verdadeiro. Nessa linha de raciocínio, a hipótese indutiva afirma que, dado uma base verdadeira, o resultado será provado se, assumindo o caso n-1 como verdade, o caso n também será (pois assim, o caso n sendo verdadeiro implica que o n também é, consequentemente o n0, o n0, etc.). Suponha que o resultado vale para n0 - n1, isto é, para n1, n2

$$x^{n-1} - a^{n-1} = (x - a) \left(\sum_{i=0}^{n-2} a^i x^{n-i-1} \right)$$

Então, temos

$$\sum_{i=0}^{n-1} a^i x^{n-1} = x^{n-1} + \left(\sum_{i=1}^{n-2} a^i x^{n-i-1}\right) + a^{n-1}.$$

Multiplicando ambos os lados por (x-a), chegamos em:

$$(x-a)\left(\sum_{i=0}^{n-1}a^{i}x^{n-i-1}\right) = (x-a)\left(x^{n-1} + \left(\sum_{i=1}^{n-2}a^{i}x^{n-i-1}\right) + a^{n-1}\right) = (x^{n} - ax^{n-1}) + (x^{n-1} - a^{n-1} - (x-a)^{2}x^{n-1}) + (xa^{n-1} - a^{n}) = x^{n} - ax^{n-1} + x^{n-1} - a^{n-1} + xa^{n-1} - a^{n} = .$$

1.1.2 Exercício 2

Parte 1 - Fazendo todos os detalhes e explicando todos os passos, explicite o domínio de cada umas das funções abaixo e calcule os produtos $f \cdot g, g \cdot h$ e $h \cdot i$, em que:

$$f(x) = 2x^3 - 5x^2 + 3$$
, $g(x) = 3x^2 - x + 2$, $h(x) = \frac{x^2 - 1}{x - 3}$ & $i(x) = \frac{x^3 - 1}{x^2 + 1}$

Solução:. A priori, analisemos os domínios de cada uma das funções. Começando por f, levando em conta que, quando não explicitado, o domínio de uma função é o maior subconjunto de \mathbb{R} em que faz sentido definíla, temos $D_f = \mathbb{R}$, pois a função não possui pontos problemáticos (com isso, queremos dizer um ponto em que, por exemplo, teríamos $\frac{1}{0}$ ou $\sqrt{-x}, x > 0$ e $x \in \mathbb{R}$.) Analogamente, segue que o domínio de g também é $D_g = \mathbb{R}$.

Contudo, ao lidarmos com os domínios de h e i, é necessário ter cautela, já que são definidas por frações. No caso de h, seu domínio é o conjunto dos reais tais que x - 3 não é nulo, ou seja,

$$D_h = \{x \in \mathbb{R} : x - 3 \neq 0\} = \mathbb{R}/\{3\}.$$

Em primeira vista, o caso da função i pode parecer o mesmo, ou seja, que vai ser definido como o conjunto dos reais a menos de um conjunto finito de pontos. No entanto, note que, para isso, seria preciso que $x^2 + 1 = 0, x \in \mathbb{R}$, o que nunca acontece (nos reais!). Portanto, i está definido em $D_i = \mathbb{R}$.

Ademais, a forma de realizar produtos entre funções deve ser esclarecida: O produto entre duas funções f e g, definido ponto-a-ponto, é dado por

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

Com isso em mente, vamos aos cálculos:

i.) $f \cdot q$ (produto de f com q)

$$(f \cdot g)(x) = f(x) \cdot g(x) = (2x^3 - 5x^2 + 3) \cdot (3x^2 - x + 2) = 2x^3 (3x^2 - x + 2) - 5x^2 (3x^2 - x + 2) + 3(3x^2 - x + 2) = 6x^5 - 2x^4 + 4x^3 - 15x^4 + 5x^3 - 10x^2 + 9x^2 - 3x + 6 = 6x^5 - 17x^4 + 9x^3 - x^2 + 6$$

ii.) $g \cdot h$ (produto de g com h)

$$(g \cdot h)(x) = g(x) \cdot h(x) = (3x^2 - x + 2) \cdot \left(\frac{x^2 - 1}{x - 3}\right) = \left(\frac{(3x^2 - x + 2)(x^2 - 1)}{x - 3}\right) = \left(\frac{3x^4 - 3x^2 - x^3 + x + 2x^2 - 2}{x - 3}\right) = \left(\frac{3x^4 - x^2 - x^3 + x - 2}{x - 3}\right)$$

iii.) $h \cdot i$ (produto de h com i)

$$(h \cdot i)(x) = h(x) \cdot i(x) = \left(\frac{x^2 - 1}{x - 3}\right) \left(\frac{x^3 - 1}{x^2 + 1}\right) = \left(\frac{(x^2 - 1)(x^3 - 1)}{(x - 3)(x^2 + 1)}\right)$$
$$= \left(\frac{x^5 - x^2 - x^3 + 1}{x^3 + x - 3x^2 - 3}\right)$$

Parte 2 - Sabendo que $\sin x$ não é uma função racional, mostre que a função $\tan x$ não pode ser uma função racional.

<u>Prova:</u>. A priori, sabemos que, para uma função ser racional, ela deve ser o quociente de dois polinômios. Analogamente, se uma função não é racional, ela não pode ser escrita como o quociente de dois polinômios. A posteriori, suponha que sin x não é uma função racional. Defina

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Desta forma, segue de cara que $\tan(x)$ não é uma função racional, pois um de seus componentes, no caso, $\sin(x)$, não pode ser escrito como o quociente de dois polinômios, de forma que, mesmo se $\cos(x)$ fosse racional, ainda assim seria impossível escrevê-la como o quociente desejado. Portanto, a tangente $\tan(x)$ não pode ser uma função racional. \blacksquare

1.1.3 Exercício 3

Parte 1 - Defina os conceitos de injetividade e sobrejetividade.

Solução:. Antes de definí-los explicitamente, é importante conhecer um pouco de suas utilidades. O primeiro deles, a injetividade, lida com a questão da unicidade na imagem da função, tanto é que também é conhecido como função 1-1, enquanto a sobrejetividade lida com o "alcance" da função. Se ambos os casos ocorrem, chamamos a função de bijeção, uma classe muito importante pois ela relaciona cada elemento de cada um dos conjuntos (o domínio e o contra-domínio) unicamente, de forma que há um inverso pra função, mas isso é outro tópico.

Destarte, definamos ambas matematicamente. Dados dois conjuntos A e B não-vazios, seja $f: A \to B$ uma função entre os dois conjuntos. Dizemos que:

- a) $f \notin uma função injetora se, para <math>a_1, a_2 \in A, f(a_1) = f(a_2)$ implica que $a_1 = a_2$.
- b) $f \in uma função sobrejetora se, dado <math>b \in B$, existe (pelo menos) um elemento $a \in A$ tal que f(a) = b.

Com essas definições em mente, retomemos o primeiro parágrafo. A unicidade mencionada segue pois, para uma aplicação qualquer de A em B ser uma função, ela precisa que, dados $a_1, a_2 \in A$, caso $a_1 = a_2, f(a_1) = f(a_2)$. A injetividade diz o oposto, ou seja, se $f(a_1) = f(a_2), a_1 = a_2$. Juntando os dois, uma funç ao injetora obedece $f(a_1) = f(a_2)$ se, e somente se, $a_1 = a_2$, dados $a_1, a_2 \in A$, tal que cada elemento de um conjunto define unicamente um elemento no outro. Quanto à sobrejetividade, ela define quando uma função tem alcance máximo, pois como cada $b \in B$ pode ser escrito como a função aplicada a algum elemento de A, segue que $B \subset f(A)$, tal que, como por definição $f(A) \subset B$, temos f(A) = B, ou seja, a imagem da função é o contra-domínio inteiro.

Parte 2 - Mostre que a função $f(x) = \sin(x), x \in [0, \pi]$ não é injetora, mas para $x \in [0, \frac{\pi}{2}]$ ela é.

Prova:. Vamos mostrar uma contradição engraçada. Suponha que, de fato, $f(x) = \sin(x)$ é injetora no intervalo $[0, \pi]$. Em particular, temos:

$$\sin(0) = 0 = \sin(\pi) \Rightarrow 0 = \pi.$$

Se isso fosse verdade, alguns desastres aconteceriam. Dentre eles, não existiriam círculos, pois todos eles poderiam ser vistos como pontos, já que sua área, $\pi \cdot r^2 = 0$ para todo r, ou seja, também não existiria engenharia e, quem sabe, nem mesmo o universo. Isso está obviamente errado. Logo, $\sin(x)$ não pode ser injetora em $[0,\pi]$.

De lado com os cataclismas e fins do mundo, considere, agora, o intervalo $[0, \frac{\pi}{2}]$. Sabemos que a função seno é estritamente crescente nesse intervalo, que é o primeiro quadrante. Assim, temos, para $x, y \in [0, \frac{\pi}{2}]$,

$$\sin(x) < \sin(y), x < y \text{ ou } \sin(x) > \sin(y), x > y.$$

Assim, a única forma de $\sin(x) = \sin(y)$ é quando x = y, que é a exata definição de uma função injetora.

Parte 3 - Faça as seguintes composições: $f \circ g, g \circ f, f \circ h$ e $h \circ f$, em que:

$$f(x) = -3x + 2$$
, $g(x) = 3x^2 - x + 2$, $g(x) = \frac{x^2 - 1}{x - 3}$.

Solução:. Antes de dar início às contas propriamente ditas, note que, ao compor h com f, ou f com h, o d domínio de f mudará de $D_f = \mathbb{R}$ para $D_f = \mathbb{R}/\{3\}$. Feita essa observação, sigamos em frente:

$$(f \circ q)(x) = f(q(x)) = f(3x^2 - x + 2) = -3(3x^2 - x + 2) + 2 = -9x^2 + 3x - 6 + 2 = -9x^2 + 3x - 4.$$

$$(g \circ f)(x)$$

$$(g \circ f)(x) = g(f(x)) = g(-3x+2) = 3(-3x+2)^2 + 3x - 2 + 2 = 3(9x^2 - 12x + 4) + 3x = 27x^2 - 36x + 12 + 3x = 27x^2 - 33x + 12.$$

$$(f \circ h)(x) = f(h(x)) = f(\frac{x^2 - 1}{x - 3}) = -3\left(\frac{x^2 - 1}{x - 3}\right) + 2 =$$

$$= \frac{-3x^2 + 3}{x - 3} + 2 = \frac{-3x^2 + 3 + 2x - 6}{x - 3} = \frac{-3x^2 + 2x - 3}{x - 3}.$$

$$iv) \ (h \circ f)(x)$$

$$(h \circ f)(x) = h(f(x)) = h(-3x+2) = \frac{(-3x+2)^2 - 1}{-3x+2-3} = \frac{9x^2 - 12x + 4 - 1}{-3x-1} = -\frac{3(3x^2 - 4x + 1)}{3x+1}$$

1.2 Um Panorama Geral

1.2.1 Exercício 4

Parte 1 - Quais são os dois principais problemas a que se refere o Cálculo diferencial e integral?

Solução:. ■

Parte 2 - Utilize a construção da secante ao gráfico para obter a tangente, em que $f(x) = x^5$, explicitando a reta tangente no ponto (a, f(a)) e deixando claro como obteve o coeficiente angular desta reta.

Solução:. ■

Parte 3 - Calcule a área de $f(x) = x^3$ dividindo o intervalo [0,1] em 7 parte iguais. Qual o valor aproximado da área a que se chega? Dividindo-se o intervalo em mais partes, digamos $\lfloor \pi \rfloor \cdot 10^{36}$, espera-se que esta aproximação do valor real da área melhore ou piore?

Solução:. ■

2 Propriedades dos Limites, Limites Laterais, Limites de Determinadas Funções, Funções Contínuas e Suas Propriedades

3 Reta Tangente, Derivada, Derivada de Algumas funções, Regra da Cadeia

4 Teorema do Valor Médio e Suas Consequências, Derivadas de Ordem Superior

5 Antiderivada, Integral, Teorema Fundamental do Cálculo, Métodos, Integrais Impróprias