## Dylan Faulhaber | CS 382-A | End-Term Exam Reference Sheet | 12/13/23

## **Digital Logic**

(Data)

Clock cycles begin on rising edge and gates provide delay Combinational Logic: Adders, Multiplexor

Does not depend on itself, no loops

Updates are nearly instant

Sequential Logic: SR Latch, D-Latch, flip-flop, write to reg State is dependent on itself, has loops

S R Q+ Q-

1 0 1

1

С D

0 d

0 0 q !q

1 0

Q+

q

Has delay and updates on rising edge



Multiplexor: to have more inputs must have lg N number of switch signal bits where N is the number of inputs



and y together and if there is a carry then the cout is 1. Same for the cin

> Allows for output to change only when C is on the rising edge

> > Target Register
> > B: Rt = 00000
> > BL: Rt = 11110
> > RET: Rt = 11110

111000





Latched (Stored)

State

Storing

Resetting

Setting Metastable/Error

Q-

! q





ALU operation

| AIND | 10  | 0000 | Acoust - InputA o Imputo            |
|------|-----|------|-------------------------------------|
| ORR  | 10  | 0001 | ALUout = inputA   inputB            |
| SUB  | 10  | 0011 | ALUout = inputA - inputB            |
| ADD  | 10  | 0010 | ALUout = inputA + inputB            |
| LDR  | 99  |      |                                     |
| STR  | 99  |      |                                     |
| В    | 01  | 0111 | pass inputB, i.e., ALUout = inputB  |
| BL   | 01  |      |                                     |
| CBZ  | 01  |      |                                     |
| RET  | 01  |      |                                     |
| ANDS | 11  | 1000 | ALUout = inputA & inputB(set Z)     |
| ADDS | 11  | 1010 | ALUout = inputA + inputB(set Z)     |
| SUBS | 11  | 1011 | ALUout = inputA - inputB(set Z)     |
| 5005 | 4.1 | 1011 | Account - Imputer - Imputer (set 2) |



- 1. (IF) Instruction Fetching: the instruction is obtained from memory;
- 2. (ID) Instruction Decoding: the fetched instruction will pass different fields to different data signals, and the opcode will be used for converting into control signals. Register data will also be read;
- 3. (EX) Execution: ALU will perform the operation based on the decoded instruction, and produce the result;
- (ME) Memory Access: Sending data to memory or reading data from memory:
- 5. (WB) Writing Back: Write result back to register.

## In none Pipe:

CC: sum of all stages Latency: sum of all stages

## In Pipelined:

CC: length of longest stage Latency: number of stages multiplied by the CC