模型-评价主题-打分式评价-熵权法 【czy】

- 1. 模型名称
- 2. 适用范围
- 3. 形式
- 4. 求解过程
 - 4.1 概念
 - 4.2 步骤
 - 4.3 实例与代码实现
 - 4.3.1 例一
 - 4.3.2 例二
- 5.参考资料

模型-评价主题-打分式评价-熵权法 【czy】

1. 模型名称

熵权法 (Entropy Weight Method, EWM)

2. 适用范围

多属性决策问题

常见应用场景:一般在需要确定每个因素对总体影响的权重的过程中使用,可和很多模型方法结合使用。

熵权法与层次分析法 (AHP) 的比较

- 熵权法
 - 。 优点
 - 客观性(相对于主观赋值法)
 - 适应性 (用于任何确定权重的过程,也可以结合其它方法)
 - 。 缺点
 - 目前只在确定权重的过程中使用, 所以使用范围有限
- 层次分析法
 - 。 优点
 - 系统性的分析方法
 - 简洁实用的决策方法,所需定量数据信息较少
 - 。 不能为决策提供新方案, 定量数据上, 定性成分多

3. 形式

n个评价对象,m个评价指标。

4. 求解过程

4.1 概念

熵权法的基本思路是根据指标变异性的大小来确定客观权重。一般来说,若某个指标的信息熵 e_j 越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。

4.2 步骤

- 1. 第i个评价对象对于第j个指标变量的取值为 a_{ij} , $(i=1,2,\ldots,n;j=1,2,\ldots,m)$,构造数据矩阵 $A=(a_{ij})_{n imes m}$
- 2. 利用原始数据矩阵 $A=(a_{ij})_{n\times m}$ 计算 p_{ij} ,即第i个评价对象关于第j个指标值的比重:

$$p_{ij} = rac{a_{ij}}{\sum_{i=1}^n a_{ij}}$$

3. 计算第1项指标的熵值:

$$e_j = -rac{1}{\ln n} \sum_{i=1}^n p_{ij} \ln p_{ij}$$

4. 计算第 j项指标的变异系数:

$$g_j = 1 - e_j$$

对于第j项指标, e_j 越大,指标值的变异程度越小。

5. 计算第 j 项指标的权重:

$$w_j = rac{g_j}{\sum_{j=1}^m g_j}$$

6. 计算第i个评价对象的综合评价值:

$$s_i = \sum_{j=1}^m w_j p_{ij}$$

评价值越大越好

4.3 实例与代码实现

4.3.1 例—

1. 题目:根据表14.20给出的10个学生8门课的成绩,给出这10个人评奖学金的评分排序

表14.20 学生成绩表

学生编号	语	数	物	化	英	政	生	史
1	93	66	86	88	77	71	90	94
2	97	99	61	61	75	87	70	70
3	65	99	94	71	91	86	80	93
4	97	79	98	61	92	66	88	69
5	85	92	87	63	67	64	96	98
6	63	65	91	93	80	80	99	74
7	71	77	90	88	78	99	82	68
8	82	97	76	73	86	73	65	70
9	99	92	86	98	89	83	66	85
10	99	99	67	61	90	69	70	79

指标变量 $x1, x2, \ldots, x8$ 分别表示其语数物...史成绩

利用Matlab程序,求得各项指标的权重见表14.21,各学生的评价值及排名次序见表14.22。

各学生的评价值从高到低的次序是: 91376541082

表14.21 各指标的评价权重

指标	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
权重	0.1544	0.1363	0.1127	0.1972	0.0552	0.1064	0.1273	0.1104

表14.22 学生的综合评价及排名次序

学生编号	1	2	3	4	5	6	7	8	9	10
评 价 值 s _i	0.1039	0.0950	0.1019	0.0978	0.1000	0.1003	0.1012	0.0951	0.1091	0.0959
排名	2	10	3	7	6	5	4	9	1	8

3. Matlab代码实现

```
clc,clear
a=readmatrix('data14_9_1.txt');
[n,m]=size(a);
p=a./sum(a);
e=-sum(p.*log(p))/log(n);
g=1-e;w=g/sum(g)
                                 %计算权重
s=w*p'
                                 %计算各个评价对象的综合评价值
[ss,ind1]=sort(s,'descend')
                                 %对评价值从大到小排序
ind2(ind1)=1:n
                                 %学生编号对应的排序位置
writematrix(w,'data14_9_2.xlsx')
                                %把数据写到Excel文件的表单1
writematrix([1:n;s;ind2],'data14_9_2.xlsx','Sheet',2)%把数据写在表单2
```

4.3.2 例二

1. 题目: 医院对11个科室进行考核,有9个指标 $x_1, x_2, ..., x_9$ 。

科室	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
А	100	90	100	84	90	100	100	100	100
В	100	100	78.6	100	90	100	100	100	100
С	75	100	85.7	100	90	100	100	100	100
D	100	100	78.6	100	90	100	94.4	100	10
Е	100	90	100	100	100	90	100	100	8
F	100	100	100	100	90	100	100	85.7	10
G	100	100	78.6	100	90	100	55.6	100	100
Н	87.5	100	85.7	100	100	100	100	100	100
I	100	100	92.9	100	80	100	100	100	100
J	100	90	100	100	100	100	100	100	100
K	100	100	92.9	100	90	100	100	100	100

由于各项指标难易程度不同,需要对9项指标进行赋权 根据信息熵 e_i 的计算公式,求得信息熵如下:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
信息熵	0.95	0.87	0.84	0.96	0.94	0.96	0.96	0.96	0.96

根据权重 w_i 的计算公式,求得各个指标的权重如下:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
权重	0.08	0.22	0.27	0.07	0.11	0.07	0.07	0.07	0.07

对各科室进行评分,得分如下:

科室	A	В	С	D	E	F	G	н	1	J	К
得分	95.71	93.14	93.17	92.77	95.84	98.01	90.21	95.17	95.57	97.81	97.02

2. 代码实现

function weights = EntropyWeight(R)

‰ 熵权法求指标权重,R为输入矩阵,返回权重向量weights

[rows,cols]=size(R); % 输入矩阵的大小,rows为对象个数,cols为指标个数

% 求k k=1/log(rows);

f=zeros(rows,cols); % 初始化fij sumBycols=sum(R,1); % 输入矩阵的每一列之和(结果为一个1*cols的行向量)

% 计算fij for i=1:rows

```
for j=1:cols
       f(i,j)=R(i,j)./sumBycols(1,j);
end
lnfij=zeros(rows,cols); % 初始化lnfij
% 计算1nfij
for i=1:rows
   for j=1:cols
       if f(i,j)==0
                       lnfij(i,j)=0;
       else
           lnfij(i,j)=log(f(i,j));
       end
   end
end
Hj=-k*(sum(f.*lnfij,1)); % 计算熵值Hj
weights=(1-Hj)/(cols-sum(Hj));
end
```

```
import numpy as np
for i in range(10):
    print('hello world')
```

5.参考资料

- 1. 《数学建模算法与应用》 P432~P434 (主要)
- 2. 熵权法确定权重----知乎 (辅助)