Notes on discussions with Oscar during his 4/28 visit to Yale.

Fix $f \in \mathbb{C}[x, y]$, unibranch through (0, 0). Fix a coordinate t on the normalization of f(x, y) = 0. Let $R = \mathbb{C}[[x, y]]/(f)$ and $S = \mathbb{C}[[t]]$, so that the normalization map defines an embedding $R \hookrightarrow S$. Abusing notation, let $x(t), y(t) \in S$ be the images of $x, y \in R$.

5.1.

Fix k > 0. Form

$$R_k = R[[x, y]]/(f^k)$$
 and $S_r = \mathbf{C}[[t]][\epsilon]/(\epsilon^k)$.

We want to lift $R \hookrightarrow S$ to an embedding $R_k \hookrightarrow S_k$. By construction, such a lift must send $x \mapsto x(t) + \epsilon p$ and $y \mapsto y(t) + \epsilon q$ for some $p, q \in S_k$.

Example 5.1. Take $f = y^2 - x^3$ and k = 2. Then we may assume that $x(t) = t^2$ and $y(t) = t^3$ If the lift $R_2 \hookrightarrow S_2$ exists, then it must send $x \mapsto t^2 + \epsilon p$ and $y \mapsto t^3 + \epsilon q$, where we may assume that p, q only involve t. Then it also sends f to

$$f(t^{2} + \epsilon p, t^{3} + \epsilon q) = (t^{3} + \epsilon q)^{2} - (t^{2} + \epsilon p)^{3}$$
$$= (t^{6} + 2t^{3} \epsilon q) - (t^{6} + 2t^{2} \epsilon p)$$
$$= 2t^{2} \epsilon (tq - p).$$

So many lifts are possible: for example, p = t - 1 and q = 1.

5.2.

Recall that the conductor ideal of the inclusion $R \subseteq S$ is precisely

$${p \in S \mid \operatorname{val}_t(p) \ge 2\delta} = t^{2\delta} S.$$

(In fact, this result holds for any Gorenstein integral domain embedded in $\mathbb{C}[[t]]$, according to Serre as cited by Pfister–Steenbrink in the introduction of their article.)

Following Carlsson–Oblomkov, let $\bar{R} = R/t^{2\delta}S$. For any R-module M, let $\mathcal{Q}(M)$ be the Quot scheme parametrizing (finite-colength) R-submodules of M. For any (finite-colength) R-submodule $N \subseteq M$, let $\mathcal{G}(M,N)$ be the closed subscheme parametrizing the R-submodules of M that contain N. Then Carlsson–Oblomkov claim that there is an isomorphism

$$\Psi: \mathscr{G}(S,R) \xrightarrow{\sim} \mathscr{Q}(\bar{R}) \quad \text{given by } \Psi(M) = \operatorname{Ext}^1_R(S/M,R).$$

To clarify how the map is defined: Observe that applying $\operatorname{Hom}_R(-, R)$ to the s.e.s. of R-modules $0 \to R \to S \to S/R \to 0$, then simplifying, we get

$$0 = \operatorname{Hom}(S/R, R) \to \operatorname{Hom}(S, R) \to \operatorname{Hom}(R, R) \to \operatorname{Ext}^1(S/R, R) \to \operatorname{Ext}^1(S, R),$$

which further simplifies to

$$0 \to t^{2\delta} S \to R \to \operatorname{Ext}^1(S/R, R) \to 0.$$

Thus $\operatorname{Ext}^1(S/R,R) = \bar{R}$. But applying $\operatorname{Hom}_R(-,R)$ to the s.e.s. of *R*-modules $0 \to M/R \to S/R \to S/M \to 0$, then simplifying, we get

$$0 = \operatorname{Hom}(M/R, R) \to \operatorname{Ext}^1(S/M, R) \to \operatorname{Ext}^1(S/R, R).$$

Thus $\operatorname{Ext}^1(S/M,R)$ forms an *R*-submodule of \bar{R} .

Note that we can further identify $\mathcal{Q}(\bar{R})$ with $\mathcal{G}(R, t^{2\delta}S)$ via pullback along the quotient map $R \to \bar{R}$.

Also note that, by quot Lem. 2.4, the fundamental domain for the semilattice action on the Quot scheme $\mathcal{Q}(S)$ is given on points by

$$\mathcal{D} = \{ M \in \mathcal{G}(S) \mid M \cap S^{\times} \neq \emptyset \},$$

whereas we can check that

$$\mathscr{G}(S,R) = \{ M \in \mathscr{G}(S) \mid M \ni 1 \}.$$

So we always have $\mathscr{G}(S,R) \subseteq \mathscr{D}$, but this inclusion is usually not an equality, since S^{\times} is usually larger than R^{\times} . (In fact, S^{\times}/R^{\times} is the local Picard group.)

Example 5.2. Take $f = y^2 - x^3$, so that $\delta = 1$ and $R = \mathbb{C}[[t^2, t^3]]$ under the embedding into S. For all integers $i \ge 0$ and $\lambda \in \mathbb{C}$, let

$$M_{i,\lambda} = \langle t^i + \lambda t^{i+1} \rangle,$$

 $N_i = \langle t^i, t^{i+1} \rangle.$

By quot Ex. 2.8, the Quot schemes $\mathcal{Q}^{\ell}(S)$ parametrizing R-submodules of S of specific colengths ℓ look like

$$\mathcal{Q}^{0}(S) = \{N_{0} = S\},$$

$$\mathcal{Q}^{\ell}(S) = \{M_{\ell-1} \mid \lambda \in \mathbb{C}\} \cup \{N_{\ell}\} \quad \text{for } \ell \ge 1.$$

Moreover, $\mathscr{D} = \{N_0\} \cup \{M_{0,\lambda} \mid \lambda \in \mathbb{C}\}$. By comparison, $\mathscr{G}(S,R) = \{N_0, M_{0,0}\}$ and $\mathscr{G}(R, t^{2\delta}S) = \{M_0, N_2\}$.

5.3.

There is a silver lining. For any $[u] \in S^{\times}/R^{\times}$, we may replace the s.e.s.'s in the arguments above with

$$0 \to uR \to S \to S/uR \to 0$$
 and $0 \to M/uR \to S/uR \to S/M \to 0$

to deduce that Carlsson-Oblomkov's map generalizes to an isomorphism

$$\Psi_u: \mathscr{G}(S, uR) \xrightarrow{\sim} \mathscr{G}(R, t^{2\delta}S).$$

However, the $\mathcal{G}(S, uR)$ intersect: for example, because they all contain $N_0 = S$. It seems that the intersections can be complicated when f is complicated.