1. Результаты численных экспериментов

3ададим функцию u(x) с большими градиентами:

$$u(x) = e^{-x/\varepsilon} + \cos\frac{\pi x}{2}, \ x \in [0, 1].$$

Вычислим $u(x + \delta)$, предполагая, что $\delta > 0$, на основе применения классического разложения в ряд Тейлора и модифицированного разложения в ряд Тейлора. Классическое разложение в ряд Тейлора:

$$u(x) \approx G_k(u, x) = \sum_{j=0}^k \frac{u^{(j)}(x_0)}{j!} (x - x_0)^j.$$

Модифицированное разложение:

$$u(x) \approx G_k(u, x) = \sum_{j=0}^k \frac{u^{(j)}(x_0)}{j!} (x - x_0)^j + \left[\Phi(x) - \sum_{j=0}^k \frac{\Phi^{(j)}(x_0)}{j!} (x - x_0)^j \right] \frac{u^{(k+1)}(x_0)}{\Phi^{(k+1)}(x_0)}.$$

Оценим погрешности вычисления $u(x+\delta)$ для классической формулы Тейлора:

$$\Delta_1^k = u(x+\delta) - u(x) - \delta u'(x) - \dots - \frac{\delta^k}{k!} u^{(k)}(x),$$

и для модифицированной формулы:

$$\Delta_{2}^{k} = u(x+\delta) - u(x) - \delta u'(x) - \ldots - \frac{\delta^{k}}{k!} u^{(k)}(x) - \left[\Phi(x+\delta) - \Phi(x) - \Phi^{'}(x)\delta - \ldots - \frac{\Phi^{(k)}(x)}{k!}\delta^{k}\right] \frac{u^{(k+1)}(x)}{\Phi^{(k+1)}(x)}.$$

Тогда для k = 1:

$$\Delta_1^1 = \left| u(x+\delta) - u(x) - \delta u'(x) \right|.$$

$$\Delta_{2}^{1} = \left| u(x+\delta) - u(x) - \delta u'(x) - (\Phi(x+\delta) - \Phi(x) - \Phi'(x)\delta) \frac{u''(x)}{\Phi''(x)} \right|.$$

Для k=2:

$$\Delta_1^2 = \left| u(x+\delta) - u(x) - \delta u'(x) - \frac{\delta^2}{2} u''(x) \right|.$$

$$\Delta_{2}^{2} = \left| u(x+\delta) - u(x) - \delta u'(x) - \frac{\delta^{2}}{2} u''(x) - (\Phi(x+\delta) - \Phi(x) - \Phi^{'}(x) \delta - \Phi^{''}(x) \frac{\delta^{2}}{2}) \frac{u^{'''}(x)}{\Phi^{'''}(x)} \right|.$$

При сравнении полученных результатов мы видим существенный выигрыш модифицированной формулы Тейлора при возрастании градиента решения:

- 1. Модифицированная формула Тейлора значительно точнее классической. Во всех случаях (для разных значений ε и δ) погрешность Δ_{τ} (модифицированная формула) меньше, чем Δ_{t} (классическая формула).
- 2. Классическая формула Тейлора неустойчива при малых ε .
- 3. Модифицированная формула сохраняет точность даже для малых δ .

Табл. 1 Погрешность вычисления $u(x+\delta)$ в точке x=0 с использованием формулы Тейлора второго порядка Δ^1_1 (вверху) и с использованием модифицированной формулы Тейлора Δ^2_1 (внизу)

ε	δ						
	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}		
1	7.47e - 03	7.35e - 05	7.34e - 07	7.34e - 09	7.34e - 11		
	3.76e - 04	4.08e - 07	4.11e - 10	4.11e - 13	4.44e - 16		
10^{-1}	3.56e - 01	4.71e - 03	4.86e - 05	4.87e - 07	4.88e - 09		
	3.23e - 03	4.01e - 06	4.10e - 09	4.11e - 12	4.22e - 15		
10^{-2}	8.99e + 00	3.68e - 01	4.84e - 03	4.98e - 05	5.00e - 07		
	1.01e - 02	3.26e - 05	4.01e - 08	4.10e - 11	4.11e - 14		
10^{-3}	9.90e + 01	9.00e + 00	3.68e - 01	4.84e - 03	4.98e - 05		
	1.21e - 02	1.01e - 04	3.26e - 07	4.01e - 10	4.10e - 13		
10^{-4}	9.99e + 02	9.90e + 01	9.00e + 00	3.68e - 01	4.84e - 03		
	1.23e - 02	1.21e - 04	1.01e - 06	3.26e - 09	4.01e - 12		

Табл. 2 Погрешность вычисления $u(x+\delta)$ в точке x=0 с использованием формулы Тейлора третьего порядка Δ_1^2 (вверху) и с использованием модифицированной формулы Тейлора Δ_1^2 (внизу)

ε	δ						
	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}		
1	1.37e - 04	1.64e - 07	1.66e - 10	1.67e - 13	2.22e - 16		
	2.53e - 05	2.54e - 09	2.54e - 13	2.22e - 16	2.22e - 16		
10^{-1}	1.32e - 01	1.63e - 04	1.66e - 07	1.67e - 10	1.67e - 13		
	2.53e - 05	2.54e - 09	2.54e - 13	2.22e - 16	2.22e - 16		
10^{-2}	4.10e + 01	1.32e - 01	1.63e - 04	1.66e - 07	1.67e - 10		
	2.53e - 05	2.54e - 09	2.54e - 13	2.22e - 16	0.00e + 00		
10^{-3}	4.90e + 03	4.10e + 01	1.32e - 01	1.63e - 04	1.66e - 07		
	2.53e - 05	2.54e - 09	2.54e - 13	2.22e - 16	2.22e - 16		
10^{-4}	4.99e + 05	4.90e + 03	4.10e + 01	1.32e - 01	1.63e - 04		
	2.53e - 05	2.54e - 09	2.50e - 13	2.22e - 16	2.22e - 16		