Introduction to Natural Language Processing

COMP61332: Text Mining

Week 1

Riza Batista-Navarro

Natural Language Processing

A research field focussed on creating software systems with knowledge about **natural (human) language**

Interdisciplinary: makes use of theories from **Linguistics**, adopts an **Engineering** approach

Aimed at **human-like understanding of language** (but not yet there)

Contributing disciplines

Linguistics: formal models of language, linguistic knowledge

Computer Science: representations, efficient processing, state machines, parsing algorithms, probabilistic models, dynamic programming, machine learning

Mathematics: formal automata theory, computational modelling

Psychology: psychologically plausible modelling of language use

Is NLP difficult? Why?

Natural language (NL) is full of ambiguity

- having more than one possible interpretation
- humans not always aware of it, but machines need to deal with it

Many types of ambiguity:

- Phonological
- Lexical
- Syntactic
- Semantic

Source:

https://medium.com/@nstjohn10/ *Turning-ambiguity-into-action*a-framework-52043fbedd6a

Why is NLP difficult?

Phonological

multiple interpretations due to **how it sounds** (important in speech processing)

e.g., "I will be [writing|riding] this weekend." (writing a piece of text or horseback riding?)

Lexical

multiple interpretations due to a word having multiple senses

e.g., "I am going to the bank." (financial entity or river?)

Why is NLP difficult?

Syntactic

 due to a word having more than one possible part of speech

e.g., "I saw her duck." (animal [noun] or bend down [verb]?)

 or, due to prepositional phrase attachment

e.g., "I saw the man on the hill with the telescope." (who has the telescope?)

https://americanenglish.state.gov/

Why is NLP difficult?

Semantic

https://infinitewellbeing.co.uk/

multiple possible interpretations unless knowledge of the world is available

e.g., "The children ate the cookies because they were very hungry." (What does "they" refer to?)

- to a human: "children" (obviously)
- to a machine: "children" or "cookies" (unless it knows that cookies cannot feel hunger, or that eating usually follows being hungry)

Two major approaches to NLP

Symbolic

Rule- and dictionary-based systems

Captures linguistic knowledge in rules written by experts

Statistical/Machine learning-based

Data-driven

Use of large amounts of (labelled) textual data to train systems, discover patterns

Hybrid approaches

Comparison

Symbolic

Statistical/Machine learning

✓ Expert knowledge yields highly precise results

× Need people for labelling

X Shortage of experts

X Time consuming and laborious labelling

preparation

X Must retrain for new domain

✓ Can generalise well on unseen

✓ Results can be interpreted

X Domain adaptation problematic

X Laborious rule writing, dictionary

★ Often cannot inspect/change models

✓ Results can be interpreted
✓ Good when labelled data is hard to obtain

✓ Good where dictionaries are unavailable

NLP Pipelines

A 'complete' NLP system is usually a pipeline of components

Each component tackles a specific problem, e.g.,

- Sentence segmentation
- Tokenisation
- Part-of-speech tagging
- Parsing
- Information extraction

Source: https://www.sciencedirect.com/science/article/pii/S1532046415001756

NLP and Text Mining

Natural language processing

considers language structure, linguistics

requires knowledge of grammar

Text mining

not necessarily looking at grammar

possibly relying only on frequencies to find correlations

NLP-based Text Mining

TM that is driven by NLP