

Optimality in Policies

Easwar Subramanian

TCS Innovation Labs, Hyderabad

 $Email: easwar.subramanian@tcs.com\ /\ cs5500.2020@iith.ac.in$

September 2, 2021

Overview

- Review
- 2 Action Value Function
- Optimality in Policies
- Towards Finding an Optimal Policy
- **5** Towards Optimal Value Functions
- 6 Bellman Optimality Principle
- **7** Value Iteration Algorithm

Review

Markov Decision Process

Markov decision process is a tuple $\langle S, A, P, R, \gamma \rangle$ where

- \triangleright S: (Finite) set of states
- \triangleright \mathcal{A} : (Finite) set of actions
- $\triangleright \mathcal{P}$: State transition probability

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a), a_t \in \mathcal{A}$$

 \triangleright \mathcal{R} : Reward for taking action a_t at state s_t and transitioning to state s_{t+1} is given by the deterministic function \mathcal{R}

$$r_{t+1} = \mathcal{R}(s_t, a_t, s_{t+1})$$

 $ightharpoonup \gamma$: Discount factor such that $\gamma \in [0,1]$

Policy

Let π denote a policy that maps state space \mathcal{S} to action space \mathcal{A}

Policy

- ▶ Deterministic policy: $a = \pi(s), s \in \mathcal{S}, a \in \mathcal{A}$
- ▶ Stochastic policy $\pi(a|s) = P[a_t = a|s_t = s]$

Value Functions with Policy

Given a MDP and a policy π , we define the value of a policy as follows:

State-value function

The value function $V^{\pi}(s)$ in state s is the expected (discounted) total return starting from state s and then following the policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right)$$

The state-value function can be decomposed into immediate reward plus discounted value of successor state

$$V^{\pi}(s) = \mathbb{E}_{\pi}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s)$$

Action Value Function

Action Value Function

Action-value function

The action-value function Q(s,a) under policy π is the expected return starting from state s and taking action a and then following the policy π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right)$$

The action-value function can similarly be decomposed as

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a)$$

Expanding the expectation we have $Q^{\pi}(s, a)$ to be

$$Q^{\pi}(s, a) = \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma \sum_{s'} \pi(a'|s') Q^{\pi}(s', a') \right]$$

Relationship between $V^{\pi}(\cdot)$ and $Q^{\pi}(\cdot)$

Using definitions of $V^{\pi}(s)$ and $Q^{\pi}(s,a)$, we can arrive at the following relationships

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) Q^{\pi}(s, a)$$

$$Q^{\pi}(s, a) = \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

Optimality in Policies

Optimal Policy

Define a partial ordering over policies

$$\pi \ge \pi'$$
, if $V^{\pi}(s) \ge V^{\pi'}(s)$, $\forall s \in \mathcal{S}$

Theorem

- ▶ There exists an optimal policy π_* that is better than or equal to all other policies.
- ▶ All optimal policies achieve the optimal value function, $V_*(s) = V^{\pi_*}(s)$
- ▶ All optimal policies achieve the optimal action-value function, $Q_*(s,a) = Q^{\pi_*}(s,a)$

Solution to an MDP

Solving an MDP means finding a policy π_* as follows

$$\pi_* = \operatorname*{arg\,max}_{\pi} \left[\mathbb{E}_{\pi} \left(\sum_{t=0}^{\infty} \gamma^t r_{t+1} \right) \right]$$

is maximum

▶ The main goal in RL or solving an MDP means finding an **optimal value function** V_* or **optimal action value function** Q_* or **optimal policy** π_*

Grid World Problem

TCS Research & Innovation

Consider a 4×4 grid world problem

 $R_t = -1 \\ \text{on all transitions}$

- \triangleright $S: \{1, 2, \dots, 14\}$ (non-terminal) + 2 terminal states (shaded)
- $ightharpoonup A: \{East, West, North, South\}$
- \triangleright \mathcal{P} : Upon choosing an action from \mathcal{A} , state transitions are deterministic; except the actions that would take the agent off the grid in fact leave the state unchanged
- \triangleright \mathcal{R} : Reward is -1 on all transitions until the terminal state is reached

Grid World Problem

		1	2	3
4	1	5	6	7
8	3	9	10	11
1	2	13	14	

 $R_t = -1 \\ \text{on all transitions}$

 $\underline{\mathbf{Goal}}$: Reach any of the goal state in as minimum plays as possible

Question: What could be an optimal policy to achieve the above objective?

Grid World Problem : Optimal Policies

Question: How many optimal policies are there?

Answer: There are infinite optimal policies (including some deterministic ones)

Towards Finding an Optimal Policy

Finding an Optimal Policy

Question: Suppose we are given $Q_*(s,a)$. Can we find an optimal policy?

Answer: An optimal policy can be found by maximising over $Q_*(s,a)$

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} Q_*(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

- ▶ If we know $Q_*(s, a)$, we immediately have an optimal policy
- ▶ There is always a deterministic optimal policy for any MDP

Question: Suppose we are given $Q_*(s, a), \forall s \in \mathcal{S}$. Can we find $V_*(s)$?

$$V_*(s) = \max_a Q_*(s, a)$$

Question: Suppose we are given $V_*(s), \forall s \in \mathcal{S}$. Can we find $Q_*(s, a)$?

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Towards Optimal Value Functions

Optimality Equation for State Value Function

Recall the Bellman Evaluation Equation for an MDP with policy π

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

Question: Can we have a recursive formulation for $V_*(s)$?

$$V_*(s) = \max_{a} Q_*(s, a) = \max_{a} \left[\sum_{s' \in S} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

Optimality Equation for Action-Value Function

Similarly, there is a recursive formulation for $Q_*(\cdot,\cdot)$

$$Q_*(s, a) = \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

Question: These are also a system of equations with n = |S| with n variables. Can we solve them?

<u>Answer</u>: Optimality equations are non-linear system of equations with n unknowns and n non-linear constraints (i.e., the max operator).

Solving the Bellman Optimality Equation

- ▶ Bellman optimality equations are non-linear
- ▶ In general, there are no closed form solutions
- ▶ Iterative methods are typically used
- ► Exact and Approximate methods
 - ★ Exact methods (Model based): Value iteration and Policy Iteration
 - ★ Approximate methods (Model free) : Q-learning and variants

Bellman Optimality Principle

Bellman's Optimality Principle

Principle of Optimality

The tail of an optimal policy must be optimal

$$OPT = HEAD + \gamma TAIL (=OPT)$$

 \blacktriangleright Any optimal policy can be subdivided into two components; an optimal first action, followed by an optimal policy from successor state s'.

Bellman optimality equation:

$$V_*(s) = \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma V_*(s') \right) \right]$$

Optimal Substructure: Optimal solution can be decomposed into subproblems

Overlapping Subproblems: Value functions stores and reuses solutions

- ▶ Markov Decision Processes, generally, satisfy both these characteristics
- ▶ Dynamic Programming is a popular solution method for problems having such properties

Value Iteration Algorithm

Value Iteration : Idea

- ▶ Suppose we know the value $V_*(s')$
- ▶ Then the solution $V_*(s)$ can be found by one step look ahead

$$V_*(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V_*(s') \right) \right]$$

▶ Idea of value iteration is to perform the above updates iteratively

Value Iteration: Algorithm

Algorithm Value Iteration

- 1: Start with an initial value function $V_1(\cdot)$;
- 2: **for** $k = 1, 2, \dots, K$ **do**
- 3: for $s \in \mathcal{S}$ do
- 4: Calculate

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

- 5: end for
- 6: end for

Value Iteration : Example

No noise and discount factor $\gamma = 1$

Value Iteration : Example

Value Iteration : Remarks

- ▶ The sequence of value functions $\{V_1, V_2, \cdots, \}$ converge
- ▶ It converges to V_*
- \triangleright Convergence is independent of the choice of V_1 .
- ▶ Intermediate value functions need not correspond to a policy in the sense of satisfying the Bellman Evaluation Equation
- \blacktriangleright However, for any k, one can come up with a greedy policy as follows

$$\pi_{k+1}(s) \leftarrow \operatorname{greedy} V_k(s)$$

Optimality Equation for Action-Value Function

There is a recursive formulation for $Q_*(\cdot,\cdot)$

$$Q_*(s, a) = \left[\sum_{s' \in S} \mathcal{P}_{ss'}^a \left(\mathcal{R}_{ss'}^a + \gamma \max_{a'} Q_*(s', a') \right) \right]$$

One could similarly conceive an iterative algorithm to compute optimal Q_* using the above recursive formulation!!