Integrating NASA Institutional Management Efforts through Spatial Data Standards FY04

Progress on NASA FY03

Efforts

- Completed addition of all 14 NASA Documents identified in the Statement of Work (NPDs and NPGs)
- Added 4 US Code Sections and 18 Code of Federal Regulation Sections referenced in the basic NASA documents
- Correlated the NASA documents with the appropriate laws and SDS entity sets

Additional documents added

- Researched and entered 18 additional NASA NPDs and NPGs not identified in the Statement of Work
- Added 19 US Code sections and 24 Code of Federal Regulation sections referenced in the additional NASA documents
- Correlated the additional NASA documents with the appropriate laws and SDS entity sets

Additional work

- Correlated all 32 NASA documents with the associated 9 KM business lines
- Began correlating the NASA documents with the CADD/GIS Center Spatial Data Standards at the entity class level (~170 entity classes)

Demonstration

CADD/GIS Center for Facilities, Infrastructure, and Environment

Real Property Management Home

NASA Policy Documents and related information

for facilities, infrastructure, and environment CADD and Geospatial Technologies WNNY are these eliorts

• Consolidated location for NASA institutional management policy documents and laws saves time searching for electronic copies of policies and referenced laws

 Correlation between NASA information and the CADD/GIS spatial data standards supports information sharing and the development of an integrated geospatial approach to institutional management

for facilities, infrastructure, and environment. CALL and Geo special rechnologies

framework for data collection and data sharing

- SDS is the ANSI standard data model for geospatial information
- Use of the SDS ensures consistent data collection and naming conventions
- Consistency in data collection and data naming supports efficient and accurate institutional management

institutional management

- Reduced data entry error and redundancy
- Complete data sets collected for all assets
- More accurate searches and reporting
- Reduced geospatial data costs
 - Data can be shared across NASA organizations
 - NASA can better leverage work done by other federal agencies

data model for the geospatial database

- Data tables **Structure**
- Data attributes
- Data names
- Relationships among data
- Database hierarchy reflects the SDS hierarchy
 - Entity sets, classes, types
 - Attributes, domains

for facilities, infrastructure, and environment CADD and Geospatial Technologies

for facilities, infrastructure, and environment CADD and Geospatial Technologies

internal space is stored in a

ctandard forms SDSFIE/FMSFIE Browser/Viewer/Printer Configure Browse Print Filters Windows Help Entity Sets ×Ι Entity Sets Entity Types _ | _ | × | Entity Classes SDS / FMS CADD TECHNOLOGY CENTER CADD tor Facilities, Intrastructure, and Environment Entity Types TECHNOLOGY CENTER Entity Type Name Select an Entity Set building_space_area auditory Select the desired Entity Type Entity Class Name buildings_space boundary Tables buildings ▲ | buildings cadastre Definition | File/Table | Symbology ▲ | buildings_space • climate Attributes common building floor area Discriminator N/A MZA communications building_room_area Domains cultural Attribute Table building space area bgspaspa demographics ARC Coverages ecology List Domains environmental_hazards SDS / FN Buildings CADD≋GIS tor Facilities, Intrastructure, CADDS€GIS TECHNOLOGY Entity Class Name Space Area TECHNOLOGY buildings_ Attribute Table Name bgspaspa Select the desired Entity Class Entity Set Name Attribute Name Select the Table and Attribute spacetcost ▲ | buildings buildings ▲ All Entity Classes Full or Common Attribute Name buildings_general Delineated areas associated with the interior of **Building Space Total Cost Amount** bgspaspa ouildings and structures. media id • DISA Reference Definition coord_id Data Type Character Length room_id View IDEF Model building id Table Position 41 Standard SDS V Nulls Allowed floor id Class Code space_area ☐ Displayable Attribute ☐ Required □ Discriminator snacevac id Design File Prefix bgspa Standard space_cl_d No Change in Release 2,210 spacetyp_d No Change in Release 2.210 stimated or assigned total cost of the building space space_cuse Close Print Selected I space_puse address_id Facility Management spacename [FIS] FMSFIE Classes Only ALL Included Entity Classes SDSFIE Classes Only poc id Close Help Print Selected Attribute agency_id Release 2,210 All Features ARCInfo/ARCView \\EMA-BSB\EXPD 2nd Floor South Stairs

NASA policy documents are now tied into the SDS

structure

- The relationship of NASA policy documents provide the foundation for an integrated approach to real property cost accounting and institutional management through a common operational map.
- Users can track real property assets and liabilities visually and have immediate access to relevant laws as well.

FY04 Recommendations further progress against integration and

- **Step 1** Build a relationship between NASA investment categories and the SDS to allow NASA to map and track assets by both established ID and SDS
- **Step 2** Analyze NASA facilities management data sets and sources against the SDS to ensure the standard is adequate to support NASA's information architecture
- **Step 3** Convert NASA geospatial data into the SDS format according to NASA-established priorities.

for facilities, infrastructure, and environment GADD and Geospatial Jechnologies

Step 1 - Correlate NASA Investment Categories with the SDS

- Building a relationship between NASA's investment categories and the spatial data standard entity classes ties the tabular data to the geospatial data for incorporation into a common operational picture
- This correlation further establishes the foundation needed for geospatial tracking of asset status, cost and other information on NASA real property

Step 2 – NASA Facilities SDS Gap Analysis

- Use of the Standards depends on its adequacy for NASA's particular business concerns
- Review of NASA's data requirements against the SDS/FM standard to identify any "gaps" that would prevent NASA from effectively using the Center's standard information model
- NASA input would enhance the Standards and support better data sharing

for facilities, infrastructure, and environment CADD and Geospatial Technologies

Step 3 – NASA Data Conversion Effort

- Implement existing NASA data into a database that follows the SDS structure
- Identify data required by the SDS but not yet gathered by NASA
- Collect and incorporate required data
- Include keys that tie to financial databases to allow visual cost accounting on the common operational map

for facilities, infrastructure, and environment SARD and Geospatial Technologies

additional structure for cost accounting

- The Navy's Installation Core Business Model (ICBM) provides a business oriented view of activities in all areas of an operation for accurate cost allocation
- The ICBM subfunctions are tied to the SDS for data sharing
- The ICBM approach benefits the entire Navy
 - Streamlined cost collection
 - Accurate and consistent data reporting
 - Identification of the real cost of doing business

CADD/GIS

NASA's cost collection structure can be similarly correlated to the SDS

- Consistent cost accounting by business area
- Costs collected by business areas to ensure accurate representation of business expenses
- Normalized geospatial information using the SDS/FMS model allows data sharing across NASA sites

Conclusion

- NASA is moving towards a common operational picture
- The SDS is essential for accuracy and consistency in that common picture
- The SDS allows for efficient data sharing and cost savings
- An SDS-compliant system can be implemented at NASA's pace according to NASA priorities