Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Visualization

Class Logistics and Agenda

- Logistics:
 - Lab One due very soon!
- Agenda:
 - Finish Visualization Demo
 - Town Hall
- Next Time:
 - Dimensionality Reduction
 - PCA
 - Sampling
 - Images

Class Overview, by topic

Self Test: What is the main difference in these plots?

	Passengerld	Survived	Polass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	2	3	male	۵	8
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A6-211/1	7.2500	S	0	1	1	0	1
1	2	1	1	Comings, Mrs. John Bradley (Florence Enggs Th	female	36.0	1	0	PC 17599	71.2033	c	0	0	0	0	0
2	3	1	3	Heikkinen, Miss I aina	temale	26.0	D	0	S10N/02. 3101282	£ 9250	s	a	1	D	a	1

- A. These correlation plots are not different
- B. Correlation taken is across rows (left) or columns (right)
- C. The colormap in each is different
- D. The left plot clusters, the right does not.

Let's look at some graphs

You tell me what conclusions we are getting from

these graphs

- Histogram
- · KDE
- HeatMaps and Correlation
- Scatter and Scatter Matrix
- Box / Violin / Swarm

03.Data Visualization.ipynb

Matplotlib Seaborn Plotly

Now you have visualization building blocks

Lab One: Town Hall

Supplemental Slides

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Visualization Techniques: Distributions

Histogram

- Usually shows the distribution of values of a single variable
- Divide the values into bins and show a bar plot of the number of objects in each bin.

KDE

- Add up Gaussian underneath each point value
- STD of gaussian is equivalent to number of bins in histogram

Two-Dimensional Distributions

- Estimate the joint distribution of the values of two attributes
- Example: petal width and petal length
 - What does this tell us?

Scatter Plot Matrix Colored by Class

Visualization Techniques: Box Plots

Box Plots

- Invented by J. Tukey
- Another way of displaying the distribution of data
- Following figure shows the basic part of a box plot

Visualization Techniques: Box Plots

Box Plots

Example: Comparing Attributes

