





Aayush Bista

# WHAT IS CONTROL SYSTEM?

- A system Controlling the operation of another system.
- A system that can regulate itself and another system.
- A control System is a device, or set of devices to manage, command, direct or regulate the behavior of other device(s) or system(s).

#### CONTROL SYSTEM

• A control system consists of *subsystems* and *processes* (or plants) assembled for the purpose of obtaining a *desired output* with *desired performance*, given a *specified input*.





- System An interconnection of elements and devices for a desired purpose.
- Control System An interconnection of components forming a system configuration that will provide a desired response.
- Process The device, plant, or system under control. The input and output relationship represents the cause-and-effect relationship of the process.



#### DEFINITIONS

- Controlled Variable
   – It is the quantity or condition that is measured
   and Controlled. Normally controlled variable is the output of the control
   system.
- **Manipulated Variable** It is the quantity of the condition that is varied by the controller so as to affect the value of a controlled variable.
- **Control** Control means measuring the value of a controlled variable of the system and applying the manipulated variable to the system to correct or limit the deviation of the measured value from a desired value.

#### DEFINITION



• **Disturbances**– A disturbance is a signal that tends to adversely affect the value of the system. It is an unwanted input of the system.

If a disturbance is generated within the system, it is called *internal disturbance*. While an *external disturbance* is generated outside the system.



INPUT

PUSH OF THE EIGHTEEN FLOOR BUTTON

OUTPUT

SHOWN AS STEP RESPONSE IN FIGURE

#### MEASURE OF PARAMETERS



- Transient Response
- Steady State Response

Stability

Two major measure of parameters





#### ADVANTAGES OF CONTROL SYSTEM



Keeping the instruments within the acceptable limits of error



Attaining optimum performance of a dynamic system



Improves reliability and productivity of system



Maintains plant production rate at minimum cost



Ensures safety of the plant process, environment and the people involved

# TYPES OF CONTROL SYSTEM

- Natural Control System
  - Universe
  - Human Body

- Manmade Control
   System
  - Vehicles
  - Aeroplanes, ...

#### TYPES OF CONTROL SYSTEM



- Manual Control Systems
  - Room Temperature regulation Via Electric Fan
  - Water Level Control

- Automatic Control System
  - Room Temperature regulation Via A.C
  - Human Body Temperature Control
    - The hypothalamus works with other parts of the body's temperature-regulating system.
  - Blood Glucose Control in Body



#### CONFIGURATION OF CONTROL SYSTEM

• Two main configurations of control system

OPEN LOOP

CLOSED LOOP









#### **OPEN-LOOP SYSTEM**







• Since in open loop control systems reference input is not compared with measured output, for each reference input there is fixed operating condition.

Therefore, the accuracy of the system depends on calibration.

 The performance of open loop system is severely affected by the presence of disturbances, or variation in operating/ environmental conditions.

#### CLOSED LOOP CONTROL SYSTEM



## CLOSED LOOP CONTROL SYSTEM









# EXAMPLE OF CONTROL SYSTEM: TRAFFIC LIGHT CONTROLLER

- A traffic flow control system used on roads is time dependent.
- The traffic on the road becomes mobile or stationary depending on the duration and sequence of the light glow.
- The sequence and duration are controlled by relays which are predetermined and not dependent on the rush on the road.



#### EXAMPLE OF CONTROL SYSTEM:

#### SERVO

- A Servo System (or servomechanism) is a feedback control system.
- Servo means slave/serving and mechanism means command; thus servo mechanism systems are slave to command systems.
- Usually, the output is some mechanical position, velocity or acceleration.



## EXAMPLE OF CONTROL SYSTEM: HUMAN

| Human traveling on the road |                               |  |
|-----------------------------|-------------------------------|--|
| Input                       | Information about surrounding |  |
| Plant                       | Human                         |  |
| Controller                  | Brain                         |  |
| Output                      | Position adjustment           |  |

#### ANALYSIS AND DESIGN OF CONTROL SYSTEM

#### Linear vs. Nonlinear Control System

• A Control System in which output varies linearly with the input is called a linear control system. In other words, a system in which the principle of superposition applies.

#### Time Invariant and Time Variant System

- When the characteristics of the system do not depend upon time itself then the system is said to time invariant control system.
- Time varying control system is a system in which one or more parameters vary with time.

#### THE DESIGN PROCESS



#### IDEAL CONTROL SYSTEM

Accuracy

Sensitivity

External disturbance or noise

Stability

Bandwidth

Speed

Oscillations

# READINGS

| No. | Book                                                    | Details                              |
|-----|---------------------------------------------------------|--------------------------------------|
| 1   | Control systems Engineering, N.Nise,<br>Seventh Edition | Chapter 1                            |
| 2   | Modern Control systems Engineering, R.<br>Dorf          | Good for examples of control systems |
| 3   | Control systems Principles and Design by M.Gopal        | Chapter 1, 3 (optional)              |

#### ASSIGNMENT

- 1. History of Control System
- 2. Analog and Digital Control Systems
- 3. Single Input Single Output and Multiple Input Multiple Output Control System
- 4. Open-loop versus Closed loop systems
- 5. Continuous Data vs. Discrete Data System
- 6. Study the case study of Antenna Azimuth: An Introduction to Position Control Systems