Graph Diameter

Time Limit: 2 seconds

Problem Description

Given an undirected graph G = (V, E) and a weight function $w : E \to \mathbb{Z}^+$. The length of a path $p = (e_1, \ldots, e_k)$ is define as $\sum_{i=1}^k w(e_i)$. The diameter D(G) of G is the length of the longest shortest path between any pair of vertices. Formally, $D(G) = \max_{u,v \in V} d(u,v)$ where d(u,v) is the length of the shortest path from u to v. Write a program to compute D(G). Note: $D(G) = \infty$ if G is disconnected, and d(v,v) = 0 for every $v \in V$.

Technical Specifications

- 1. The number of test cases is no more than 20.
- 2. Basic: $1 \le |V| \le 30, 1 \le |E| \le \binom{n}{2}$.
- 3. Hard: $1 \le |V| \le 300$, $1 \le |E| \le \min(10000, \binom{n}{2})$.
- 4. $0 < w(e) \le 1000$ for every $e \in E$.

Input Format

The first line of the input file contains an integer indicating the number of test cases. The first line of each test case contains two integers n and m where n is the number of vertices and m is the number of edges. For convenience, $V = \{1, \ldots, n\}$. The i-th of the following m lines contains three integers u, v, w indicating the i-th edge $e_i = \{u, v\}$ has weight $w(e_i) = w$. Note: the graph is undirected.

Output Format

For each test case, output D(G) if D(G) is finite. Output Infinity if $D(G) = \infty$.

Sample Input

Sample Output

1 5 Infinity

1 3 1