南京航空航天大学

第1页 (共3页)

	<u></u> O-	二〇一九 ~ 二〇二〇 学年			第 I 学期 《随机信号分析》考试试题						
	考证	忒日期:	2020 至	丰 1月5	日	试卷类	型: A 卷		试卷代	号:	
		班	号		学号			姓名			
题号	_	二	三	四	五.	六	七	八	九	十	总分
得分											

本题	满分	28
得	分	

(试卷最后一页给出了可能用到的傅立叶变换对)

_	情空師	(每空2分,	# 28 4)
-,	吳工咫	(母工2万,	大 28 万 J

1、各态历经过程 x(t)自	相关函数 R _x (τ) = exp(-τ²), 其均方导	数为 $Y(t) = X'(t)$,则 $Y(t)$ 的
总平均功率为	, 互相关函数 R _{rr} (τ) = _	
2、随机序列{Y(n)}处处	收敛于随机变量 y 的定义式为	; 随机序
列{Y(n)} 依概率收敛于附	值机变量 r 的定义式为	aa stora
	2]上的均匀分布,随机变量 r 服从[x²,8	
学期望 E[Y X] =	, x 的特征函数Q _x (u)=_	•
4、随机过程 X(t) 和 Y(t)	联合平稳,且相互独立,均值皆为零,自相	目关函数分别为 $R_x(\tau) = e^{- \tau }$,
$R_{\tau}(\tau) = \cos(2\pi\tau)$ 。 定义	两个新的随机过程: $W(t) = X(t)+Y(t)$	(t, V(t) = X(t) - 2Y(t)。则
$R_{WY}(t_1, t_2) = \underline{\hspace{1cm}}$	$D\left[W\left(t\right)+V\left(t\right)\right]=\underline{\hspace{1cm}}\circ$	
5、设计一个稳定的线性	系统,当输入信号的功率谱密度为 G_x (ω)=1时,输出信号的功率
谱密度为 $G_{\mathbf{I}}(\omega) = \frac{1}{\omega^2 + 3}$	。则此线性系统的传递函数 Η (ω) =	, 输出信号 Y(t) 的
等效噪声带宽为		
6、 随相余弦信号 s(t) 和	和窄带高斯噪声 $N(t)$ 之和为 $Y(t) = s(t) + t$	N(t)。则在某固定时刻 t , $N(t)$
的相位服从	分布, Y(t) 的包络服从	分布。
7、 exp(j300πt) 的看	爷尔伯特变换为	
$\frac{\sin t}{\sin(300\pi t)}$	的希尔伯特变换为	•

本题满分	72
得 分	

二、计算题(共72分,给出计算过程)

1、随机过程 $X(t) = B^2 + \cos t$, 其中变量 B 服从 [0.1] 区间的均匀分布。求: ① E[X(t)] ; ②在 t = 0 时刻, X(t) 的一维概率密度函数 f(x;0) ; ③时间均值 $\overline{X(t)}$ 。 (12 分)

2、随机过程 $X(t) = A \sin t + B$,其中随机变量A和B互不相关,且均服从期望为 1,方差为 4 的高斯分布。求X(t):①期望;②方差;③自相关函数;④自协方差函数;⑤画出随机

过程 X(t)的一条样本函数 (标明横坐标和纵坐标) (14分)

3、随机过程 $X(t) = Ae^{it}$, 其中变量A 服从期望为 1, 方差为 2 的高斯分布。定义一个新的过程Y(t) = 2X(t)。求: ①自相关函数 $R_{Y}(t_{1},t_{2})$; ②互相关函数 $R_{YY}(t_{1},t_{2})$; ③判断Y(t)是否平稳,

给出理由; ④判断 X(t) 和 Y(t) 同一时刻是否正交, 给出理由。(12分)

4、窄带平稳随机信号x(t)的希尔伯特变换为 $\dot{x}(t)$,已知其解析形式 $\dot{x}(t)$ 的自相关函数为 $R_{\dot{x}}(\tau) = \exp\left(j2000\tau - \tau^2\right)$,且 $\dot{x}(t)$ 的复包络为 $\dot{x}(t)$,求: ①D[x(t)];②希尔伯特变换 $\dot{x}(t)$

的自相关函数 $R_i(t)$: ③M(t)的功率谱密度 $G_N(\omega)$ 。 (12分) a Store

5、 已知齐次马尔可夫链的一步转移概率矩阵为

$$\mathbf{P} = \begin{bmatrix} 0.2 & 0.8 \\ 0.5 & 0.5 \end{bmatrix}$$

①求转移概率 P1,(2), P1,(3)? ②问此链是否遍历? 给出理由。如果遍历,求其极限分布。

(12分)

$$6$$
、二维高斯随机矢量 $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ 的均值矢量为 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$,方差阵为 $\begin{bmatrix} 4 & 1 \\ 1 & 2 \end{bmatrix}$,且随机矢量

 $\begin{cases} Y_1 = X_1 + 2X_2 \\ Y_2 = 2X_1 - X_2 \end{cases}$ 。求:① Y_1, Y_2 的二维联合概率密度;② Y_1, Y_2 的二维联合特征函数;

③判断 Y, Y, 是否独立,给出理由。 (10分)

可能用到的傅立叶变换对

$$e^{-a|t|} \Leftrightarrow \frac{2a}{a^2 + \omega^2} \qquad \qquad e^{-at}U(t) \Leftrightarrow \frac{1}{a + j\omega}$$

$$te^{-at}U(t) \Leftrightarrow \frac{1}{(a + j\omega)^2} \qquad \qquad \exp\left[-\frac{t^2}{2\sigma^2}\right] \Leftrightarrow \sigma\sqrt{2\pi} \exp\left[-\frac{\sigma^2\omega^2}{2}\right]$$

本资源免费共享 收集网站 nuaa.store