PRIME: Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory

Presented by: Ravi Raju

March 23, 2018

QII Presentation Spring 2018

Overview

Problem Statement and Solution

Background

Architecture and System Design

Evaluations and Results

Discussion

Problem Statement and Solution

Problem Statement/Motivation

- 1. Neural Networks
 - Popular for image/speech recognition application
 - High Memory Bandwidth Requirement
- 2. Current Solutions
 - DaDianNao large on-chip eDRAM for high bandwith and data locality
 - TrueNorth SRAM crossbar memory for synapses
- 3. Both solutions suffer from latency of data movement

Proposed Solution: PRIME

- 1. Processing in Memory is a natural solution
 - Inspired by HMC
 - Place compute units in memory to do NN computation
 - Latency of In-memory data communication vs. DRAM memory access

2. PRIME

- ReRAM crossbar array solution
- Dynamically reconfigure between NN accerelation and memory
 - 2.1 Architectural/circuit level support
 - 2.2 Software interface
- 3. Targets large-scale MLP and CNN applications

Key Idea: PRIME

Background

What is ReRAM

Figure 1. (a) Conceptual view of a ReRAM cell; (b) I-V curve of bipolar switching; (c) schematic view of a crossbar architecture.

What is a Neural Network

ReRAM in relation to Neural Nets

Figure 2. (a) An ANN with one input/output layer; (b) using a ReRAM crossbar array for neural computation.

Architecture and System Design

High Level Overview of Architecture

Precision Issues

- Input precision
- Weight precision
- Output precision
- Multiple low-precision input signals
- Multiple cells to make one high precision weight
- Multiple phases for one computation

System Level Design

- Small-Scale NN: Replication
- Medium-Scale NN: Split-Merge
- Large-Scale NN: Inter-Bank Communication

Figure 7. The software perspective of PRIME: from source code to execution.

Evaluations and Results

Experimental Setup

Table III
THE BENCHMARKS AND TOPOLOGIES.

MlBench		MLP-S	784-500-250-10		
CNN-1	conv5x5-pool-720-70-10	MLP-M	784-1000-500-250-10		
CNN-2	conv7x10-pool-1210-120-10	MLP-L	784-1500-1000-500-10		
	conv3x64-conv3x64-pool-conv3x128-conv3x128-pool				
	conv3x256-conv3x256-conv3x256-pool-conv3x512				
VGG-D	conv3x512-conv3x512-pool-conv3x512-conv3x512				
	conv3x512-pool-25088-4096-4096-1000				

 $\begin{tabular}{l} Table\ IV\\ Configurations\ of\ CPU\ and\ Memory. \end{tabular}$

Processor	4 cores; 3GHz; Out-of-order		
L1 I&D cache	Private; 32KB; 4-way; 2 cycles access;		
L2 cache	Private; 2MB; 8-way; 10 cycles access;		
ReRAM-based Main Memory	16GB ReRAM; 533MHz IO bus; 8 chips/rank; 8 banks/chip; tRCD-tCL-tRP-tWR 22.5-9.8-0.5-41.4 (ns)		

Table V
THE CONFIGURATIONS OF COMPARATIVES.

Description		Data path	Buffer	
pNPU-co	Parallel NPU [17] as co-processor	16×16 multiplier 256-1 adder tree		
pNPU-pim	PIM version of parallel NPU, 3D stacked to each bank			

Performance

Figure 8. The performance speedups (vs. CPU).

Figure 9. The execution time breakdown (vs. pNPU-co).

Energy

Figure 10. The energy saving results (vs. CPU).

Figure 11. The energy breakdown (vs. pNPU-co).

Figure 12. Area Overhead of PRIME.

Discussion

Critique

- 1. PRIME only supports unsigned input vectors
- 2. Dot-product computations in PRIME are lossy
 - Precision of ADC does not always match precision of dot-product
- 3. Opportunity to exploit sparsity of NN for energy savings
 - Introduce some logic into pipeline to check how many non-zero weights in crossbar
 - If below some defined threshold, skip the computation

Conclusion

- PRIME is the solution to the data movement and high memory bandwidth problem
- Using ReRAM crossbar accerlerates NN computation
- Circuit/microarchitectural changes as well as software interface enables wide spectrum of NN applications
- Very little area overhead and extra processing elements

References

P. Chi, et al. (2016, Sept. 4). PRIME: A Novel Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory [Online]. Available: http://ieeexplore.ieee.org/document/7551380/citations?tabFilter=papers

A. Shafiee, et al. (2016, Aug. 25). *ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars* [Online]. Available:

http://ieeexplore.ieee.org/document/7551379/

Thank you and Questions

