Домашнее задание по мат. структурам №1.

Михайлов Никита Маратович, ПМИ-167.

Задание 1.

Решение. Заметим, что 1) 1001 = 1023 - 16 - 4 - 2; 2) 2017 = 2047 - 16 - 8 - 4 - 2;

- 3) $1023 = 11111111111_2$; 4) $2047 = 111111111111_2$. Обнулим соответствующие разряды и получим:
 - 1. $1001 = 1111101001_2$
 - $2. \ 2017 = 111111100001_2$

Задание 2.

Решение.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	10
2	2	3	4	5	10	11
3	3	4	5	10	11	12
4	4	5	10	11	12	13
5	5	10	11	12	13	14

X	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	10	12	14
3	0	3	10	13	20	23
4	0	4	12	20	24	32
5	0	5	14	23	32	41

Задание 3.

Решение. Ассоциативность проверяется матрицей сложения, а именно она должна быть симметрична.

Переберем все тройки чисел и проверим дистрибутивность:

Проверим вычитание:

$$0-0=0$$
 $0-1=2$ $0-2=1$
 $1-0=1$ $1-1=0$ $1-2=2$
 $2-0=2$ $2-1=1$ $2-2=0$

Деление – умножение на обратный элемент поля:

$$1^{-1} = 1$$
 $2^{-1} = 2$

Задание 4.

Решение. Составим $3^n \equiv x \pmod{11}$. Далее буду опускать, что вычисления делаются по модулю 11. Разделим n на 10 с остатком и получим: $3^{10k+r} \equiv x \Leftrightarrow (3^k)^{10} \cdot 3^r \equiv x$. По малой теореме Ферма имеем $(3^k)^{10} \equiv 1$. Подставляя получим $3^r \equiv x$. Рассмотрим случаи:

- 1. $r = 0 \Rightarrow x = 1$
- $2. r = 1 \Rightarrow x = 3$
- 3. $r = 2 \Rightarrow x = 9$
- 4. $r = 3 \Rightarrow x = 5$
- 5. $r = 4 \Rightarrow x = 4$
- 6. $r = 5 \Rightarrow x = 1$
- 7. $r = 6 \Rightarrow x = 3$
- 8. $r = 7 \Rightarrow x = 9$
- 9. $r = 8 \Rightarrow x = 5$
- 10. $r = 9 \Rightarrow x = 4$

Задание 5.

Решение. Пусть лектор пользовался системой счисления p, тогда переведем все числа в десятичную систему и составим уравнение:

$$24_p + 32_p = 100_p \Leftrightarrow 2 \cdot p^1 + 4 \cdot p^0 + 3 \cdot p^1 + 2 \cdot p^0 = 1 \cdot p^2 \Leftrightarrow 5p + 6 = p^2 \Rightarrow \begin{bmatrix} p = -1 \\ p = 6 \end{bmatrix}$$

Так как p как минимум 5, то p = 6.