МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Мельницька А.Р.

3BIT

Дослідження ВАХ транзисторів

Київ. КНУ ім. Т. Шевченка, 2021

I-72

Укладачі: Мельницька А.Р.

I-72 Звіт. Дослідження ВАХ транзисторів./ укл. Мельницька А. Р. – К. : КНУ ім. Т. Шевченка, 2021. – 17 с. (Укр. мов.)

Наведено загальний звіт виконання роботи з моделювання електронних ${\sf cxem}$ у програмі NI Multisim ${\sf TM}$.

УДК 001.008 (002.21)

ББК 73Ц

© Київський Національний Університет імені Тараса Шевченка, 2021

РЕФЕРАТ

Звіт про Дослідження ВАХ транзисторів: 17 с., 24 рис.

Об'єкт дослідження: транзистори.

Мета роботи: дослідити вихідні характеристики транзисторів різних типів.

Метод вимірювання: 1) одержання зображення ВАХ транзисторів на екрані двоканального осцилографа, що працює в режимі характериографа, 2) побудова сімейства ВАХ шляхом вимірювання певної кількості значень сили струму I_{κ} , що відповідають певним значенням напруги $U_{\kappa e}$ (для певної сили струму бази I_{δ} або напруги $U_{\delta e}$) для δ іполярного транзистора та певної кількості значень сили струму стоку I_{c} , що відповідають певним значенням напруги U_{cs} (для певних значень напруги між затвором і витоком U_{3e}) для польового транзистора, подання результатів вимірів у вигляді графіків.

В роботі використано програмне забезпечення для моделювання електронних схем NI Multisim $^{\mathrm{TM}}$.

3MICT

Вступ. Теоретичні відомості	5
Практична частина	6
1. Параметри моделювання	7
2. Біполярний транзистор	
3. Польовий транзистор	11
Висновки	18
Список використаної літератури	23

ВСТУП. ТЕОРЕТИЧНІ ВІДОМОСТІ

Біполярний транзистор — це напівпровідниковий прилад з двома р-п— переходами, що взаємодіють між собою, та трьома виводами, підсилювальні властивості якого зумовлені явищами інжекції (введення) та екстракції (вилучення) неосновних носіїв заряду.

Вихідна вольт-амперна характеристика (ВАХ) біполярного транзистора — це залежність сили струму колектора I_{κ} від напруги між колектором та емітером $U_{\kappa e}$ при певному значенні струму бази I_{δ} (або напруги між базою та емітером $U_{\delta e}$) в схемі зі спільним емітером.

Польовий (уніполярний) транзистор – це напівпровідниковий прилад, підсилювальні властивості якого зумовлені струмом основних носіїв, що течуть по провідному каналу, провідність якого керується зовнішнім електричним полем.

Польовий транзистор з керувальним електродом – це польовий транзистор, керування струмом основних носіїв у якому здійснюється за допомогою p-n—переходу, зміщеного у зворотному напрямі.

Вихідна вольт-амперна характеристика (ВАХ) польового транзистора — це залежність сили струму стоку Іс від напруги між стоком та витоком U_{cb} при певному значенні напруги між затвором та витоком U_{3b} .

ПРАКТИЧНА ЧАСТИНА

1. Параметри моделювання

Рисунок 1.1. Генератор

T1	Channel_A		Reverse Save	Ext. triagger
Timebase Range: 10 ms	Channel A Scale: 200 mV/Div	Channel B Scale: 10 mV/Div	Trigger Edge:	Ext. trigger
X pos.(Div): 0 Y/T Add B/A A/B	Y pos.(Div): 0 AC 0 DC	Y pos.(Div): 0	<u>L</u>	0 V Normal Auto None

Рисунок 1.2. Осцилограф

2. Біполярний транзистор

Рисунок 2.1 Схема

Надалі позначення S1, S2 — відповідний ключ на схемі, R2 — реостат, у відсотках подано частку опору на реостаті.

2.1. R2 - 100%

2.1.1. S2 off

Рисунок 2.1.1.1. S1 off

Рисунок 2.1.1.2. S1 on

2.1.2. S2 on

Рисунок 2.1.2.1. S1 off

Рисунок 2.1.2.2. S1 on

2.2. R2 - 81%

2.2.1. S2 off

Рисунок 2.2.1.1. S1 off

Рисунок 2.2.1.2. S1 on

2.2.2. S2 on

Рисунок 2.2.2.1. S1 off

Рисунок 2.2.2.2. S1 on

2.3. R2 - 60%

2.3.1. S2 off

Рисунок 2.3.1.1. S1 off

Рисунок 2.3.1.2. S1 on

2.3.2. S2 on

Рисунок 2.3.2.1. S1 off

Рисунок 2.3.2.2. S1 on

2.4. R2 - 39%

2.4.1. S2 off

Рисунок 2.4.1.1. S1 off

Рисунок 2.4.1.2. S1 on

2.4.2. S2 on

Рисунок 2.4.2.1. S1 off

Рисунок 2.4.2.2. S1 on

2.5. R2 -21%

2.5.1. S2 off

Рисунок 2.5.1.1. S1 off

Рисунок 2.5.1.2. S1 on

2.5.2. S2 on

Рисунок 2.5.2.1. S1 off

Рисунок 2.5.2.2. S1 on

3. Польовий транзистор

Рисунок 3.0.1. Схема роботи

Waveforms				
\sim	~~ -			
Signal options				
Frequency:	100	Hz		
Duty cycle:	50	%		
Amplitude:	10	Vp		
Offset:	0	V		
Set rise/Fall time				
+	Common	Ō		

Рисунок 3.0.1. Генератор

У цій частині роботи потенціометр позначений на схемі як R3.

3.1. R3 – 100%

Рисунок 3.1.1. S1 off

Рисунок 3.1.2. S1 on

3.2. R3 - 81%

Рисунок 3.2.1. S1 off

Рисунок 3.2.2. S1 on

3.3. R3 - 60%

Рисунок 3.3.1. S1 off

Рисунок 3.3.2. S1 on

3.4. R3 - 39%

Рисунок 3.4.1. S1 off

Рисунок 3.4.2. S1 on

3.5. R3 - 21%

Рисунок 3.5.1. S1 off

ВИСНОВКИ

В ході роботи ми провели дослідження біполярного та польового транзисторів, оцінено їх вихідні характеристики. Було використано наступні методи: 1) одержання зображення ВАХ транзисторів на екрані двоканального осцилографа, що працює в режимі характериографа, 2) побудова сімейства ВАХ шляхом вимірювання певної кількості значень сили струму I_{κ} , що відповідають певним значенням напруги $U_{\kappa e}$ (для певної сили струму бази I_{δ} або напруги $U_{\delta e}$) для біполярного транзистора та певної кількості значень сили струму стоку Іс, що відповідають певним значенням напруги $U_{c g}$ (для певних значень напруги між затвором і витоком $U_{3 g}$) для польового транзистора, подання результатів вимірів у вигляді графіків. Як результат, ми отримали характеристики транзисторів і змогли якісно оцінити їх значимість.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк,
- 2. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. К.: 2006.- с.