IN THE CLAIMS

- 1. (CANCELLED).
- 2. (CURRENTLY AMENDED) The method of claim 1 A method for measuring conductivity (σ) of a liquid or paste electrophotographic toner comprising:

providing two parallel plane conductive plates with a uniform separation (d) between the plates to form a space between the plates;

filling the space between the plates with liquid or paste electrophotographic toner;

applying a voltage of at least 1V between the plates across the liquid or paste toner;

measuring as data [[the]] current vs. time passing through the plates; digitizing the data;

sending digitizing data to a processor; and

determining the conductivity from the digitized data.

wherein determining conductivity and charge per mass from the digitized data includes determining toner particle current according to the relationships:

$$\begin{split} i &= i_1 + i_2 \\ \text{where } i_1 \text{=af '(t)} \\ \text{and } i_2 \text{=} i_0 \text{exp}(-t/\tau_2) \\ \text{Q=af(t)} \\ i_1 \text{=af '(t)} \\ \text{A}^2 = 2\epsilon \zeta \text{A}^2 \text{V}_0 \\ \tau = (\text{R} + \text{R}_2)(2\epsilon \zeta \text{A}^2) \\ \hline \text{F(t)} = (e^{2\text{at/}\tau} - 1)/(e^{2\text{at/}\tau} + 1) \\ \text{F '(t)} = (\text{a/}\tau)(1 - \text{f}^2(t)) \end{split}$$

$$R = d / \sigma A,$$

$$i_2 = i_0 \exp(-t/\tau_2)$$

and
$$i_2 = i_0 exp(-t/\tau_2)$$

$$Q = af(t)$$

$$I_1 = af'(t)$$

$$A^2 = 2\epsilon \zeta A^2 V_0$$

$$\tau = (R + R_2)(2\epsilon \zeta A^2)$$

$$F(t) = (e^{2at/\tau} - 1)/(e^{2at/\tau} + 1)$$

$$F'(t) = (a/\tau)(1 - f^2(t))$$

R= d / σ A, i_2 = i_0 exp(-t/ τ_2)

Q/M (charge per mass)= $\zeta/\rho\alpha$, where ρ is [[the]] toner paste density and α is '[[the]] paste concentration;

Wherein the terms in the Formulae affected are defined as	Symbol or letter	Meaning
	q	Total toner charge accumulated on plate 6 at time t
Q=af(t)	a	Square root of formula $a^2=2\epsilon\zeta A^2V_0$ defined below
	f(t)	Function of time
	i ₁	Toner particle current
$i_1=af'(t)$	a	Square root of formula $a^2=2\varepsilon\zeta A^2V_0$
	f	Derivative of f, above
	t	Time
A^2 =2εζ A^2 V_0	a ²	A parameter defined by solving the adjacent formula
	2ε	Two times the dielectric constant of the toner ink/paste
	ζ	Toner charge density
	A^2	The area of the plate, squared
	V_0	Applied voltage

· · · · ·	τ	A parameter defined by
,		solving the formula
	· R	Derived from R=d/σA,
-		defined below
	R ₂	Resistance of resistor
$=(B \mid B)(2a \land 4^2)$		R_2 ,
$\tau = (R + R_2)(2\varepsilon \zeta A^2)$	2ε	Two times the
		dielectric constant of
		the toner
	ζ	Toner charge density
	A^2	The area of the plate,
		squared
	R	A parameter defined by
		solving the adjacent
		formula
R=d/Σa	d	Separation between
R-d/2a		plates/distance
	σ	Conductivity of the
·		ink/paste
	Α	Area of the plate
	f(t)	Definition of the
		function of time
$f(t)=e^{2at/\tau}-1)/(e^{2at/\tau}+1)$	e	Natural logarithm
	2at/τ	Solve using symbols
		defined above
$f'(t)=a/\tau)(1-f^2(t))$	As defined above	
	i ₀	The initial impurity
		current
$i_2 = i_0 \exp(-t/\tau_2)$	$ au_2$	The impurity migration
		time constant

- 3. (CURRENTLY AMENDED) The method of claim [[1]] 2 wherein the voltage is between 50V and 1000V.
- 4. (CURRENTLY AMENDED) The method of claim [[1]] $\underline{2}$ including calculating [[the]] charge to mass ratio of the toner (Q/m) wherein Q is charge and m is mass from ζ by assuming that [[the]] percent solids of [[the]] toner particles collected on [[the]] \underline{a} ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.

- 5. (CURRENTLY AMENDED) The method of claim 2 including calculating the charge to mass ratio of the toner (Q/m) from ζ by assuming that [[the]] percent solids of [[the]] toner particles collected on [[the]] <u>a</u> ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.
- 6. (CURRENTLY AMENDED) The method of claim 3 including calculating [[the]] charge to mass ratio of the toner (Q/m, wherein Q is charge and m is mass) from ζ by assuming that [[the]] percent solids of [[the]] toner particles collected on [[the]] a ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.
- 7. CURRENTLY AMENDED) A method for measuring [[the]] conductivity (σ) of a liquid or paste electrophotographic toner comprising:

providing two parallel plane conductive plates with a uniform separation (d) between the plates to form a space between the plates;

filling the space between the plates with liquid or paste electrophotographic toner;

applying a current voltage of at least 1V between the plates across the liquid or paste toner;

measuring as data the current passing through an external component into the plates;

adjusting the data to remove current contributions attributable to impurity ions;

sending adjusted data to a processor; and determining the conductivity from the adjusted data.

- 8. (ORIGINAL) The method of claim 7 wherein the voltage is between 1V and 1000V.
- 9. (CURRENTLY AMENDED) The method of claim 7 including calculating [[the]] charge to mass ratio of the toner (Q/m, wherein Q is charge and m is mass) from ζ by

assuming that [[the]] percent solids of the toner particles collected on [[the]] \underline{a} ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.

- 10. (CURRENTLY AMENDED) The method of claim 8 including calculating [[the]] charge to mass ratio of the toner (Q/m) from ζ by assuming that [[the]] percent solids of the toner particles collected on [[the]] a ground plate is the same as that collected on a development roller under a similar electroplating condition, wherein ζ is [[the]] associated charge density.
- 11. (CURRENTLY AMENDED) An apparatus for measuring [[the]] conductivity of a liquid or paste toner comprising:

two parallel conductive plates (4, 6), an electrical switch (10) between the plates, a power supply (12) between the electrical switch(10) and one of the two conductive plates, a current sensor for measuring data relating to current (14), filter (16), a digitizer (18), data storage and processor (20) having analytic capability for adjusting the data relating to current to remove contributions to [[the]] data attributable to impurity ions.

- 12. (ORIGINAL) The apparatus of claim 11 wherein a data digitizer (18) is present between the sensor and the data storage and processor having analytic capability (20).
- 13. (ORIGINAL) The apparatus of claim 11 wherein the switch is a high speed switch.
- 14. (ORIGINAL) The apparatus of claim 11 wherein the switch is a bounceless switch.
- 15. (ORIGINAL) The method of claim 7 wherein the voltage is between 50V and 1000V.
- 16. (ORIGINAL) The method of claim 7 wherein the voltage is between 100V and 1000V.