Natural Language Processing with Artificial Learning Project Part II

Project Name: Detection of Hate Speech in Turkish Tweets

Purpose of the Project

The purpose of this project is to develop a machine learning-based system for detecting hate speech in Turkish tweets. It aims to achieve the following objectives:

- **Hate Speech Identification**: Automatically classify tweets into predefined categories such as hate speech, offensive content, or neutral language.
- Balancing Class Imbalance: Address the issue of class imbalance in the dataset through advanced techniques like synthetic tweet generation using GPT-2 and data resampling using SMOTE.
- **Real-Time Predictions**: Enable real-time predictions for newly provided tweets using the trained model, making the system applicable in real-world scenarios such as monitoring social media platforms.
- **Model Evaluation and Comparison**: Test multiple classification algorithms (e.g., Random Forest, XGBoost, LightGBM, ANN) to identify the most accurate model for hate speech detection.
- Feature Representation: Use advanced text processing techniques, including Word2Vec embeddings, to capture the contextual and semantic meanings of tweets.
- **Support for Turkish Language**: Incorporate specialized tools like **Zemberek** for Turkish language processing, ensuring accurate text analysis for a morphologically rich language.
- Automation and Scalability: Build a scalable and automated pipeline that can handle imbalanced datasets, generate synthetic data, and evaluate multiple classifiers for efficient and effective hate speech detection.

1. Installation and Import of Required Libraries

At the beginning of the code, the necessary libraries for NLP and machine learning are loaded:

- **JPype1 and Zemberek-Python**: Used for spelling correction and language analysis in Turkish text processing.
- Transformers: Text is produced using Hugging Face's GPT-2 model.
- scikit-learn: Essential tool for model training.
- Word2Vec: Creating word vectors.
- **Keras:** For developing Artificial Neural Network (ANN) model.

2. Spelling Correction with Zemberek

Using the Zemberek library, spelling errors in Turkish tweets are corrected.

• **Function:** correct_spelling(sentence) works on each tweet and returns the correct Turkish form.

3. Dataset Processing

Loading the Dataset

- Tweet and Tag columns are pulled from all sheets (tables) in the Excel file.
- These data are then combined.

Original class distribution:

Etiket HİÇBİRİ 7722 NEFRET 2336

SALDIRGAN 166

NAME: COUNT, DTYPE: İNT6

Class Distribution

• The distribution of labels (hate speech classes) in the data set is checked.

Creating a Balanced Data Set

- **Problem:** Class imbalance in the data set can make it difficult for models to learn.
- **Solution:** A balanced data set is created.
 - o For low-class tags, synthetic tweets are generated using GPT-2.
 - o For tags with more classes, they are equalized by random sampling.

Balanced class distribution:

ETİKET

HİCBİRİ 1000

NEFRET 1000

SALDIRGAN 1000

NAME: COUNT, DTYPE: INT64

4. Representing Text with Word2Vec

Converting Tweets to Word Vectors

• The Word2Vec model is used to capture the contextual meaning of words.

- Education:
 - vector size=200: Each word is represented by a 200-dimensional vector.
 - window=10: Increasing the context window between words.
 - sg=1: Skip-gram algorithm is preferred.
 - By averaging the word vectors of the tweets, each tweet is converted into a 200-dimensional vector.

5. Model Training and Evaluation

Classifiers Used

- Random Forest
- XGBoost
- LightGBM
- Logistic Regression
- Gradient Boosting
- Support Vector Machine (SVM)
- k-Nearest Neighbors (k-NN)

The following operations are performed for each model:

- SMOTE: Used to eliminate class imbalance.
- Training and prediction are done.

Performance Measurements:

- Accuracy, Precision, Recall, F1-Score.
- Confusion Matrix is visualized.

Artificial Neural Network (ANN) Model

• Input Layer: 256 neurons, relu activation function.

- Dropout Layers: 30% neurons are disabled to reduce overfitting.
- Output Layer: Neurons as many as the number of classes, softmax activation function.
- Education:
 - Epochs: 20Batch size: 32
 - o ANN is also trained on a balanced dataset with SMOTE+Tomek Links.

6. Performance Comparison

Best Model

- All models are evaluated on the test set.
- The model that provides the highest accuracy is selected.

Performance Results

• Performance metrics are saved in a CSV file.

Performance Table

Classifier	Class	Precision	Recall	F1-Score	Accuracy
Random Forest	hiçbiri	0.47844827586206 895	0.51152073732718 9	0.49443207126948 774	0.595
Random Forest	nefret	0.42723004694835 68	0.46192893401015 23	0.44390243902439 025	0.595
Random Forest	saldırgan	1.0	0.8333333333333333333333333333333333333	0.90909090909090 91	0.595
Random Forest	macro avg	0.63522610760347 52	0.60226100155689 16	0.61580847312826 24	0.595
Random Forest	weighted avg	0.62331265851815 88	0.595	0.60638574840698 8	0.595
XGBoost	hiçbiri	0.51739130434782 61	0.54838709677419 35	0.53243847874720 36	0.62
XGBoost	nefret	0.45794392523364 486	0.49746192893401 014	0.47688564476885 64	0.62
XGBoost	saldırgan	0.99358974358974 36	0.8333333333333333333333333333333333333	0.90643274853801 17	0.62
XGBoost	macro avg	0.65630832439040 49	0.62639411968051 24	0.63858562401802 39	0.62
XGBoost	weighted avg	0.64549426437033 11	0.62	0.63013685522613 02	0.62
LightGBM	hiçbiri	0.5	0.53917050691244 24	0.51884700665188 47	0.608333333333 333
LightGBM	nefret	0.44019138755980 863	0.46700507614213 2	0.45320197044334 976	0.608333333333 333

LightGBM	saldırgan	0.99363057324840 76	0.83870967741935 49	0.90962099125364 43	0.608333333333 333
LightGBM	macro avg	0.64460732026940 55	0.61496175349130 98	0.62722332278295 96	0.608333333333 333
LightGBM	weighted avg	0.63338831662247 69	0.6083333333333 33	0.61843348832329 45	0.608333333333 333
Logistic Regression	hiçbiri	0.49851632047477 745	0.77419354838709 68	0.60649819494584 83	0.623333333333 333
Logistic Regression	nefret	0.472222222222 22	0.25888324873096 447	0.33442622950819 67	0.623333333333 333
Logistic Regression	saldırgan	1.0	0.8333333333333333333333333333333333333	0.90909090909090 91	0.623333333333 333
Logistic Regression	macro avg	0.65691284756566 66	0.62213671015046 49	0.61667177784831 81	0.62333333333333333333333333333333333333
Logistic Regression	weighted avg	0.64534303220134 08	0.62333333333333333333333333333333333333	0.61097164101212 15	0.6233333333333 333
Gradient Boosting	hiçbiri	0.49392712550607 29	0.56221198156682 03	0.52586206896551 72	0.6
Gradient Boosting	nefret	0.42346938775510 207	0.42131979695431 47	0.42239185750636 13	0.6
Gradient Boosting	saldırgan	0.98726114649681 53	0.8333333333333333333333333333333333333	0.90379008746355 68	0.6
Gradient Boosting	macro avg	0.63488588658599 68	0.60562170395148 94	0.61734800464514 5	0.6
Gradient Boosting	weighted avg	0.62372704811830 09	0.6	0.60904703527082	0.6
Support Vector Machine (SVM)	hiçbiri	0.48735632183908 045	0.97695852534562 21	0.65030674846625 77	0.618333333333333333333333333333333333333
Support Vector Machine (SVM)	nefret	0.4	0.02030456852791 878	0.03864734299516 908	0.618333333333 333
Support Vector Machine (SVM)	saldırgan	1.0	0.8333333333333 34	0.90909090909090 91	0.618333333333 333
Support Vector Machine (SVM)	macro avg	0.62911877394636 02	0.61019880906895 81	0.53268166685077 87	0.618333333333 333
Support Vector Machine (SVM)	weighted avg	0.61759386973180 07	0.6183333333333 33	0.52970166679689 22	0.618333333333 333
k-Nearest Neighbors	hiçbiri	0.49206349206349 204	0.57142857142857 14	0.52878464818763 33	0.606666666666666666666666666666666666
k-Nearest Neighbors	nefret	0.44270833333333 33	0.43147208121827 413	0.43701799485861 18	0.606666666666666666666666666666666666
k-Nearest Neighbors	saldırgan	0.99358974358974 36	0.8333333333333333333333333333333333333	0.90643274853801 17	0.606666666666666666666666666666666666
k-Nearest Neighbors	macro avg	0.64278718966218 96	0.61207799532672 62	0.62407846386141 9	0.606666666666666666666666666666666666
k-Nearest Neighbors	weighted avg	0.63133168625356 12	0.606666666666666666666666666666666666	0.61572550811988 86	0.606666666666666666666666666666666666
Artificial Neural Network (ANN) + SMOTE+Tom ek Links	Overall				0.675