IN THE CLAIMS

1-16 (Canceled)

17. (Currently amended) A process for the production of a compound of formula I:

wherein

A represents CH or N;

 R^1 represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR^5 , $C(O)R^6$, $C(O)OR^7$, $C(O)NR^8R^9$, $NR^{10a}R^{10b}$ and $SO_2NR^{11a}R^{11b}$;

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl;

 R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl,

which process comprises the reaction of a compound of formula II,

wherein

R^x is a group, substitutable by an aminopyrazole, selected from:

-OR $^{\rm e}$, wherein R $^{\rm e}$ independently represents the same groups as defined by R $^{\rm 1}$;

-NH_{2:}

-NHR^a, wherein R^a represents -OR¹ or halo;

-N(R^b) R^c , wherein R^b and R^c each independently represent the same groups as defined by R^1 ;

-SH; and

-SR d ; wherein R d independently represents the same groups as defined by R 1 ;

and A, R³ and R⁴ are as defined above, with a compound of formula III,

$$H_2N$$
 N
 R^1
 R^2

Ш

wherein R¹ and R² are as defined above and wherein the compound of formula II is prepared by way of reaction of a compound of formula IV,

wherein G represents a carboxylic acid group (-C(O)OH), <u>CO₂Et, -CN, -C(OR^e)₃, -C(O)NH₂, -C(=NOR^f)N(R^e)₂, wherein R^f represents H or lower alkyl and R^e is as hereinbefore defined, 5- or 6-membered heterocyclic group containing at least two heteroatoms selected from O, S, N and mixtures thereof wherein the heterocyclic group is bonded by a carbon atom or a derivative thereof, with an appropriate reagent for converting wherein the group G is converted to a -C(R^x)=NH group.</u>

18. (Previously presented) A process as claimed in Claim 17, wherein, in the compound of formula IV, the group G represents -CN, -C(OR^e)₃, -C(ONH_2 or -C(= NOR^f)NR₂, wherein R^f represents H or lower alkyl and R^e is lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR^5 , $C(O)R^6$, $C(O)OR^7$, $C(O)NR^8R^9$, $NR^{10a}R^{10b}$ and $SO_2NR^{11a}R^{11b}$.

- 19. (Previously presented) A process as claimed in Claim 18, wherein, when R^x represents -OR^e (wherein R^e represents lower alkyl (optionally interrupted by O), alkylHet or alkylaryl):
 - (a) a corresponding compound of formula IV in which G represents -CN is reacted with an alcohol of formula VA,

 $R^{\alpha}OH$ VA

wherein R^{α} represents lower alkyl (optionally interrupted by O), alkylHet or alkylaryl, and Het is as defined in Claim 17 in the presence of a protic acid;

(b) a corresponding compound of formula IV in which G represents -C(O)NH₂ is reacted with an appropriate alkylating agent of formula VB,

 R^{α} - Z^{1} VB

wherein Z^1 represents a leaving group and R^{α} is as defined above; or

- (c) a corresponding compound of formula IV in which G represents $-C(OR^{\alpha})_3$, wherein R^{α} is as defined above, is reacted with ammonia, or an *N*-protected derivative thereof.
- 20. (Previously presented) A process as claimed in Claim 18, wherein, when R^x represents -OR^e (wherein R^e represents Het or aryl), a corresponding compound of formula IV in which G represents -CN is reacted with a compound of formula VC,

 $R^{\beta}OH$ VC

wherein R^{β} represents Het or aryl, and Het is as defined in Claim 17.

- 21. (original) A process as claimed in Claim 18, wherein, when R^x represents -NH₂:
 - (a) a corresponding compound of formula IV in which G represents -CN is reacted with hydrazine, hydroxylamine or O-lower alkyl hydroxylamine, followed by reduction of the resultant intermediate under standard conditions; or
 - (b) a corresponding compound of formula IV in which G represents
 -C(=NOR^f)NR₂, wherein R^f is as defined in Claim 18, is reduced under standard conditions.

22. (Previously presented) A process as claimed in Claim 18, wherein, when R^x represents -NH₂, -NHR^a or -N(R^b)R^c, a corresponding compound of formula IV in which G represents -CN is reacted with a compound of formula VD,

 $HN(R^{\chi})(R^{\delta})$ VD

wherein R^{χ} and R^{δ} independently represent H or R^{a} , and R^{a} is lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR^{5} , $C(O)R^{6}$, $C(O)OR^{7}$, $C(O)NR^{8}R^{9}$, $NR^{10a}R^{10b}$ and $SO_{2}NR^{11a}R^{11b}$.

- 23. (original) A process as claimed in Claim 18, wherein, when R^{x} represents -SH:
 - (a) a corresponding compound of formula IV in which G represents -CN is reacted with hydrogen sulfide; or
 - (b) a corresponding compound of formula IV in which G represents -C(O)NH₂ is reacted with a reagent that effects oxygen-sulfur exchange.
- 24. (Previously presented) A process as claimed in Claim 18, wherein, when R^x represents -SR^d, a corresponding compound of formula IV in which G represents -CN is reacted with a compound of formula VE,

R^dSH VE

wherein R^d is lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b}.

- 25. (original) A process as claimed in Claim 18, wherein, when R^x represents halo, a corresponding compound of formula IV in which G represents -C(O)NH₂ is reacted with a halogenating agent.
- 26. (Currently amended) A process for the production of a compound of formula I:

wherein

A represents CH or N;

R¹ represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b};

R² and R⁴ independently represent lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen;

Het represents an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur;

R⁵, R⁶, R⁷, R⁸, R⁹, R^{11a} and R^{11b} independently represent H or lower alkyl;

R^{10a} and R^{10b} either independently represent, H or lower alkyl or, together with the nitrogen atom to which they are attached, represent azetidinyl, pyrollidinyl or piperidinyl,

which process comprises the reaction of a compound of formula II,

wherein R^x is a group, substitutable by an aminopyrazole, selected from:

-OR $^{\rm e}$, wherein R $^{\rm e}$ independently represents the same groups as defined by R $^{\rm 1}$;

-NH_{2:}

-NHR^a, wherein R^a represents -OR¹ or halo;

 $-N(R^b)R^c$, wherein R^b and R^c each independently represent the same groups as defined by R^1 ;

-SH; and

-SR d ; wherein R d independently represents the same groups as defined by R 1 ;

and A, R³ and R⁴ are as defined above, with a compound of formula III,

$$H_2N$$
 N
 R^1
 R^2

Ш

wherein R¹ and R² are as defined above and wherein the compound of formula II is prepared by way of reaction of another compound of formula II such that with a reagent that will convert one R^x group is converted to another.

- 27. (Currently amended) A process as claimed in Claim 26, wherein, when R^x represents -ORe (wherein Re represents lower alkyl, alkylHet or alkylaryl), a corresponding compound of formula II in which R^x represents CI is reacted with a compound of formula VA, R^α OH wherein R^α represents lower alkyl (optionally interrupted by O), alkylHet or alkylaryl, and Het is an optionally substituted four- to twelve-membered heterocyclic group, which group contains one or more heteroatoms selected from nitrogen, oxygen and sulfur.
- 28. (Previously presented) A process as claimed in Claim 26, wherein, when R^x represents -NH₂, -NHR^a or -N(R^b)R^c, a corresponding compound of formula II in which R^x represents CI, -SH, -SR^d or -OR^e, wherein R^d and R^e are lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR⁵, C(O)R⁶, C(O)OR⁷, C(O)NR⁸R⁹, NR^{10a}R^{10b} and SO₂NR^{11a}R^{11b}, is reacted with an appropriate compound of formula VD, HN(R^{χ})(R^{δ}), or an acid addition salt thereof.
- 29. (Currently amended) A process as claimed in Claim 26, wherein, when R^x represents -SR^d, a corresponding compound of formula IV,

wherein G represents a carboxylic acid group (-C(O)OH), CO₂Et, -CN, -C(OR^e)₃, -C(O)NH₂,

-C(=NOR^f)N(R^e)₂, wherein R^f represents H or lower alkyl and R^e is as hereinbefore defined, 5- or 6-membered heterocyclic group containing at least two heteroatoms selected from O, S, N and mixtures thereof wherein the heterocyclic group is bonded by a carbon atom;

in which R^x represents -SH is reacted with a compound of formula VF,

R^d-Z²

VE

wherein Z^2 represents a leaving group and R^d is lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR^5 , $C(O)R^6$, $C(O)OR^7$, $C(O)NR^8R^9$, $NR^{10a}R^{10b}$ and $SO_2NR^{11a}R^{11b}$.

30. (Previously presented) A process as claimed in Claim 17, wherein the compound of formula IV is prepared by reaction of a compound of formula VI,

$$OR^3$$
 $O=S=O$
 L^1

wherein L¹ is a leaving group and A, G and R³ are as defined in Claim 17, with a compound of formula VII,

wherein R4 is as defined in Claim 17.

31. (Currently amended) A process as claimed in Claim 30, wherein the compound of formula VI is prepared by reaction of a compound of formula VIII,

wherein

A represents CH or N,

G represents a carboxylic acid group (-C(O)OH) or a derivative thereof, and R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen, with a reagent that may be used for the introduction of such that a -SO₂L¹ group is introduced into an aromatic or heteroaromatic ring system.

32. (Previously presented) A process as claimed in Claim 17, wherein the compound of formula IV is one in which G represents -CN or -C(O)NH₂, and is prepared by reaction of a compound of formula IX,

$$\begin{array}{c}
\downarrow^2 \\
Q \\
O=S=O
\end{array}$$
IX

wherein Q represents -CN or -C(O)NH₂ and L² represents a leaving group, with a compound that will provide the group R³O.

- 33. (original) A process as claimed in Claim 32, wherein the compound that will provide the group R³O is a lower alkyl alcohol.
- 34. (Previously presented) A process as claimed in Claim 32, wherein the leaving group L^2 is chloro.
- 35. (previously presented) A process as claimed in Claim 32, wherein the compound of formula IX is prepared by reaction of a compound of formula X,

with a compound of formula VII

wherein R4 is lower alkyl.

- 36. (Previously presented) A process as claimed in Claim 17, wherein the compound of formula IV is one in which G represents -CN, and is prepared by dehydration of a corresponding compound of formula IV in which G represents -C(O)NH₂.
- 37. (Previously presented) A process as claimed in Claim 17, wherein the compound of formula IV in which G represents -C(O)NH₂ is prepared from a corresponding compound of formula IV in which G represents -C(O)OH by reaction with ammonia or a derivative thereof.
 - 38. (Previously presented) A compound of formula II,

wherein

R^x is a group substitutable by an aminopyrazole,

A is CH or N;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen; and

R⁴ represents lower alkyl.

- 39. (original) A compound according to Claim 38 wherein A represents CH, R³ represents Et, R⁴ represents Me and R* represents NH₂.
- 40. (original) A compound according to Claim 38 wherein A represents CH, R³ represents Et, R⁴ represents Et and Rx represents NH₂.
 - 41. (Currently amended) A compound of formula IV,

wherein

G represents a carboxylic acid group (-C(O)OH) or a derivative selected from - CN, $\underline{CO_2Et}$, $-C(OR^e)_3$, $-C(O)NH_2$ or $-C(=NOR^f)N(R^e)_2$ wherein R^f represents H or lower alkyl and R^e is as defined in Claim 17,

A represents CH or N;

 R^4 represents lower alkyl, with the proviso that when A is CH, G is (-C(O)OH) and R^3 is ethyl, R^4 cannot be methyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen, with the proviso that when A is N, G is (-C(O)OH) and R⁴ is ethyl, R³ cannot be ethylethoxy.

- 42. (Cancel)
- 43. (Cancelled)
- 44. (Previously presented) A compound according to Claim 41 wherein A represents -CH, R³ represents Et, R⁴ represents Et and G represents CN.

- 45. (Previously presented) A compound according to Claim 41 wherein A represents -CH, R³ represents Et, R⁴ represents Me and G represents CN.
 - 46. (New) A compound of formula IV,

wherein

G represents a carboxylic acid group derivative selected from -CN, CO_2Et , - $C(OR^e)_3$, - $C(O)NH_2$ or - $C(=NOR^f)N(R^e)_2$ wherein R^f represents H or lower alkyl and R^e represents H, lower alkyl (which alkyl group is optionally interrupted by O), Het, alkylHet, aryl or alkylaryl, which latter five groups are all optionally substituted (and/or, in the case of lower alkyl, optionally terminated) by one or more substituents selected from halo, cyano, nitro, lower alkyl, OR^5 , $C(O)R^6$, $C(O)OR^7$, $C(O)NR^8R^9$, $NR^{10a}R^{10b}$ and $SO_2NR^{11a}R^{11b}$;

A represents N;

R⁴ represents lower alkyl;

R³ represents lower alkyl, which alkyl group is optionally interrupted by oxygen.