		Temperature	Paskaga		
Device	Alternate	Range			
MC1741CD	M9.	0°C to +70°C	90-8		
MC1341C0	LM741CH, pA741HC	O'C to 472°C	Matel Car		
MC1741CP1	LIMPATION, AAPAITO	OC to +79°C	Plastic DIP		
MC1741CU		O'C to +70°C	Ceramiz DP		
MC1741G	_	~ 88°C to ⊕ 125°C	Metal Cas.		
MC1741U		-66°C to +125°C	Committe DIP		

MC1741 MC1741C

OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT

INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATIONAL AMPLIFIERS

...designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feachack components.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

MAXIMUM RATINGS (TA = +25°C ur	less other	wise noted)		
Rating	Symbol	MC1741C	MC1741	Unit
Power Supply Voltage	VCC VEE	+19 ≈18	+22 -22	Vde Vdc
Input Differential Voltage	ViD	4	Volts	
Input Common Mode Voltage (Note 1)	Vicм		Volts	
Output Short Circuit Duration (Note 2)	ts	Cont		
Operating Ambient Temperature Range	TA	0 to +70	- 55 to + 125	*C
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	T _{sig}	-65 t	**	

Note 1. For supply voltages loss then + 16 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply votage equal to ar less than 16 V.

MC1741, MC1741C

ELECTRICAL CHARACTERISTICS (VCC = +15 V. VEE = -15 V, TA = 25°C unless otherwise noted).

Symbol	MC1741			MC1741C			-
	Min	Typ	Мен	Min	Тур	Max	Unit
VIO	-	1.0	6.0		2.0	6.0	mV
110	-	20	200	-	20	200	nA
fig	=	80	500	_	80		eA.
r _i	0.3	2.0	-	0.3	2.0	-	MΩ
Cj	-	1.4	-	-	1.4	-	ρF
Vior	_	±16	10	- 60	±16	-	=V
	≜12	±13	=	±12	±13		V
A.,	50	200	-	20	200	-	VAnV
ra	-	76	-		75	-	Ω
CMRR	70	60	1.0	30	90	-	d3
PSRR	-	30	160	-	30	159	JIV/V
٧o	±12	±13	-	±12	±14	-	٧
los	-		-	-		-	mA
	-	1.7	2.0			2.8	mA
PC	•	50	85	-		-	Wm
IT LIH	-	0.3	-	-	0.3 15	-	β % V/h
	VIO III III Ci VIOR VIOR VICR Av FORR PERR VO III III III ITLII	ViO	Symbol Min Tye Ys0 - 1,0	Symbol Min Typ Meix ViQ - 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0	Symbol Min Typ Men Min Ys0 - 1.0 6.0 -	Symbol Min Typ Men Min Typ	Symbol Min Typ Men Min Typ Max

ELECTRICAL CHARACTERISTICS (VCC = + 15 V, VEE = -15 V, TA = Tigw to Thigh unless otherwise noted).

	Symbal	MC1741 MC1741C					7.9	
Characteristic		Min	Typ	Man	Min	Typ	Max	Unit
Input Offset Voltage (Rg ≤ 10 kΩ)	Vio	-	1.0	6.0		-	7.5	mV
Input Offset Current (TA = 125°C) (TA = -55°C) (TA = 0°C to +70°C)	140	-	7.0 85	200 500	· -	-	300	M
IMBUI Side Correct (TA = 125°C) (TA = -66°C) (TA = 6°C to +70°C)	10	-	30 300	600 1500	9 -	-	800	nA
Common Mode Imput Voltage Hange	Vice	±12	4,13	**	-	-	-	V
Common Mode Rejection Ratio IRg ≤10 k)	CMRR	70	90	-	-	-	-	d\$
Supply Voltage Rejection Flatio IRs ≤10 k)	PSRA	-	30	15/2	-	-	-	₩/V
Cultur Voltage Swing [Rig > 10 k) [Rig > 2 k]	٧o	±12	2.14 ±13		±.10	- ±13	-	v
Large Signal Voltage Gain R _L > 2 k, V _{out} = ±10 V)	~	25	-	-	15	-	-	V/mV
Supply Cerrents (TA = 125°C) (TA = -55°C)	10	-	1.5 2.0	2.5 3.3	m- (m)	-	-	mA
*Centr Consumption (T _A = +126°C) (T _A = -55°C)	Pc	-	45 60	76 100	-	-	-	er#V

^{*}Talgh * 128°C for MC1741 and 70°C for MC1741C Tlow = -55°C for MC1741 and 0°C for MC1741C

FIGURE 6 - BURST NOISE TEST CIRCUIT

Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 seconds and the 20 μV peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test.

TYPICAL CHARACTERISTICS

{VCC = +15 Vdc, VEE = -15 Vdc, TA - +25°C unless otherwise noted}

2

FIGURE 12 — NONINVERTING PULSE RESPONSE

FIGURE 13 — TRANSIENT REPONSE TEST CIRCUIT

FIGURE 14 — OPEN LOOP VOLTAGE GAIN Versus SUPPLY VOLTAGE

