Research Update

Joey Doll Worm Club 10/1/2009

Today

- Feedback modeling
- Circuit design
- Printed circuit boards
- PR+PE Characterization

Motivation

Worm TRNs

Turtle hair cell

10

Time (ms)

The Device

Piezoresistive force detection Piezoelectric actuation

The Device

Circuit/Control Overview

Uncompensated cantilever open loop response

Closed loop, PID compensated, 2nd order Bessel, medium Q, lever = 100kHz, LP = 30kHz

Circuit Design

Circuit Design

PCB Layout

Ordered, received, mostly assembled and tested

Circuits - Amplifiers

Skinnier tips this time

Circuits - Feedback

Analog Potentiometers

Digital Potentiometers

2.5"

Device Characterization

- Noise spectrum
- Piezoresistor resistance
- Spring constant
- Electrical cross-talk
- Force/displacement sensitivity
- Actuation distance

Noise spectra look good

1/f noise higher than expected

Two unknowns, one equation

- Alpha is higher than expected or Nz is lower than expected. Which?
- Need an additional parameter for fitting.

Piezoresistor resistance

Accidental etching

Adjusted resistance model

Alpha adjustment

Overall impact?

- Noise is higher
 - Johnson noise ~2.5x higher
 - 1/f noise ~10x higher
- Sensitivity is higher
 - − Beta* ~2x higher
 - Thickness ~50% less
- Net effect = 5x worse force resolution
 - Back of the envelope, will vary...

Spring Constant

- Can estimate spring constant from resonant frequency, cantilever geometry
 - Complicated geometry, made some assumptions for now, FEA later
- Measured thermomechanical noise spectrum using LDV

Spring Constant

Design #	Theoretical Frequency (kHz)	Measured Frequency (kHz)	Estimated Stiffness (pN/nm)
1	0.5	0.5	2.0
2	2.1	1.8	0.02
3	10.7	13.2	0.1
4	84.8	128.9	3
5	0.9	1.2	100
6	4	8.25	0.09

Ballpark estimates. N=1 for each, simplified model.

Crosstalk overview

- Showed preliminary data last time, but not a realistic experimental setup
- This time: using actual PCB, cables, etc. that would be used for experiments
- Possible mechanisms
 - Capacitive: worse at higher frequencies, due to changing voltages in vicinity of each other
 - Mechanical: Piezoelectric bending changes piezoresistor resistance

There is capacitive crosstalk

Some mechanical crosstalk

Minimal crosstalk from PCB

Time (microseconds)

Some crosstalk from cantilever PCB

Connected cantilever PCB, shorted the bondpads by wirebonding

Crosstalk - What next?

- Investigate with more devices, measurement conditions
- Model in terms of device design parameters
- Affects highest speed measurements, not bad enough to stop system development, slower demonstration measurements (msec)
- Solution: compensation on silicon die (next fab run) – piezoelectric next to temperature compensation PR

Conclusions

- Piezoresistors are noisier, higher resistance than expected, but minimal impact on performance.
- There is electrical crosstalk on the microsecond scale.
- Devices usable for system testing and some measurements.

What's next?

- Test feedback control (mock cantilever)
- Measure PR force sensitivity, tip deflection
- Demonstrate on microscope in MERL
- Choose an experiment based upon performance
- Fab run for improved devices