AIDE À LA DÉCISION DE TYPE MULTICRITÈRES

MODULE: SYSTÈMES D'AIDE À LA DÉCISION LICENCE 3 ISIL PAR: L.OUKID

Introduction

- □ Aide à la décision multicritère
- □ Exemple:
 - Choix d'une voiture ? Plusieurs modèles disponible
 - Plusieurs critères à prendre en considération
 - Prix
 - Puissance
 - Consommation
 - Puissance
 - Espaces
 - Equipements ...

Critères

□ Le critère peut avoir plusieurs formes:

- quantitatif:
 - Exemple: Prix= 1MDA

- □ qualitatif:
 - Exemple: Confort (bon, moyen, mauvais)

Processus d'Aide MultiCritère à la Décision

Structuration

 But: Choisir la décision la plus adéquate en fonctions de plusieurs critères

- □ Démarche: Il faut définir
 - √ Les alternatives
 - ✓ La liste des critères à prendre en considération
 - ✓ Matrices de performances partielles

Modélisation des préférences

 Comparer les différentes alternatives et critères en utilisant une relation de préférences binaire

Situation	Définition	Propriété de la relation binaire
Indifférence	Les deux actions sont équivalentes	I : réflexive et symétrique
Préférence stricte	Préférence significative en faveur d'une action	P : asymétrique (irréflexive)
Préférence faible	Entre les deux précédentes	Q : asymétrique (irréflexive)
incomparabilité	Aucun des cas précédents	R : symétrique irreflexive

AGRÉGATION

 Synthèse des préférences afin de faire ressortir une préférence globale (la meilleure alternative ou un classement des alternatives)

Dépend de la méthode d'IMCD utilisée

MÉTHODE AHP ANALYTIC HIERARCHY PROCESS

Structuration d'un problème par AHP

□ Proposé par le mathématicien Thomas Saaty (1980)

hiérarchie d'objectif, de critères, de sous critères et

d'alternatives.

Méthode AHP

- AHP compare chaque paire de: Critères; Sous critères; Alternatives
- □ La matrice de comparaison: Elle est établie en utilisant les mesures ci-dessous

Intensité de la préférence	Valeur associée		
différence nulle ou négligeable	1		
Préférence légère	3		
Préférence	5		
Préférence forte	7		
Préférence très forte	9		

Matrices de comparaison

- Critères: chaque élément dans la matrice de comparaison exprime avec quel poids le critère contribue à la réalisation de l'objectif
- Sous-critère: chaque élément dans la matrice de comparaison exprime avec quel poids le souscritère contribue à la réalisation du critère
- Alternatives : chaque élément dans la matrice de comparaison exprime à quel point l'alternative satisfait le critère

Méthode AHP: Etapes

- Pour chaque matrice de comparaison:
 - Additionner les colonnes de la matrice: tous les éléments d'une même colonne sont additionnés.
 - normaliser la matrice: chaque entrée de la matrice est divisé par le total de sa colonne.
 - calculer la moyenne des lignes: tous les éléments d'une même ligne de la matrice normalisé sont additionnés et ensuite divisé par le nombre d'entrées qu'elle comporte.
- Calcul de la performance globale pour chaque alternative en utilisant la méthode de la somme pondérée.

Cohérence des matrices de comparaison

 Ratio de consistance: permet de vérifier la cohérence des matrices de comparaison

IC (Indice de cohérence)

$$IC = \frac{\lambda_{max} - N}{N - 1}$$

N : est le nombre des éléments en comparaison (N*N dimension de la matrice).

 λ_{max} : est la valeur propre maximale, qu'on obtient à partir de la résolution du système d'équations:

$$M\omega = \lambda \omega$$

Tel que:

- M est la matrice considérée.
- \succ ω c'est le vecteur normalisé des poids ou des performances partielles
- \triangleright λ est la valeur qu'on cherche à déterminer.
- □ Si $RC \le 0.1$ alors la matrice est cohérente sinon elle doit être révisée.

Cohérence des matrices de comparaison

 Ratio de consistance: permet de vérifier la cohérence des matrices de comparaison

□ RI (Random Index) est obtenu par le tableau suivant:

n	3	4	5	6	7	8	9	10
RI	0.58	0.90	0.12	1.24	1.32	1.41	1.45	1.49

 Remarque: Ce tableau est le résultat de la moyenne des lcs sur un échantillon de matrices générées aléatoirement

Exercice

 Soit le problème décisionnel de choix d'un nouveau téléphone mobile selon plusieurs critères. Les matrices de comparaison de ce problème sont définies comme suit:

Objectif	Batterie	Caméra	Ecran
Batterie	1	1/4	3
Caméra		1	7
Ecran			1
Caméra	A	В	С
A	1	5	3
В	1/5	1	1/4
С	1/3	4	1

Batterie	A	В	С
A	1	4	3
В	1/4	1	1/2
С	1/3	2	1
Ecran	A	В	С
A	1	1/3	1/7
В	3	1	1/2
С	7	2	1

_

- Déduire la structuration hiérarchique de ce problème.
- \square Que signifient les valeurs 1, $\frac{1}{4}$ et 7 dans la matrice objectif.
- Classer les alternatives en se basant sur la méthode AHP.

Exercice

- Quel est la différence entre un système d'aide à la décision uni critère et multicritères ?
- Décrire la phase de structuration dans le modèle AHP.
- Comment modéliser les préférences du décideur dans la méthode AHP?
- Quelles sont les mesures de préférences utilisées pour la comparaison binaire entre critères ?
- Comment vérifier la consistance d'une matrice dans la méthode AHP

référence

cours Aide MultiCritère à la Décision par Dr. Saloua CHETTIBI, Université de Jijel