Neizrazito, evolucijsko i neuroračunarstvo: izvješće uz 6. laboratorijsku vježbu - sustav ANFIS

Lovre Mrčela

7. siječnja 2017.

Derivacije pogreške s obzirom na parametre mreže

Ukupna pogreška E je:

$$E = \frac{1}{2} \sum_{n=1}^{N} (o^{(n)} - t^{(n)})^{2},$$

gdje je N broj pravila, $o^{(n)}$ dobiveni izlaz iz sustava, a $t^{(n)}$ očekivani izlaz iz sustava, za n-ti primjer.

n-ti izlaz $o^{(n)}$ je:

$$o^{(n)} = \sum_{m=1}^{M} \widetilde{w}_m f_m \left(x^{(n)}, y^{(n)}; p_m, q_m, r_m \right),$$

gdje je \widetilde{w}_m pripadna normalizirana težina, a f_m prijenosna funkcija s parametrima p_m , q_m , i r_m , m-tog pravila; $x^{(n)}$ i $y^{(n)}$ su vrijednosti n-tog primjera u ovom zadatku.

Prijenosna funkcija m-tog pravila f_m je, u ovom zadatku, linearna kombinacija vrijednosti $x^{(n)}$ i $y^{(n)}$ n-tog ulaza:

$$f_m(x^{(n)}, y^{(n)}; p_m, q_m, r_m) = p_m x^{(n)} + q_m y^{(n)} + r_m.$$

Normalizirana težina m-tog pravila \widetilde{w}_m je:

$$\widetilde{w}_m = \frac{w_m}{\sum_{k=1}^M w_k}.$$

Nenormalizirana težina m-tog pravila w_m jednaka je t-normi mjera pripadnosti n-tog ulaznog primjera paru neizrazitih skupova (A_m, B_m) . U ovom zadatku zadana t-norma je algebarski produkt (\cdot) , pa je nenormalizirana težina w_m :

$$w_m = \mu_{A_m} \left(x^{(n)} \right) \cdot \mu_{B_m} \left(y^{(n)} \right),$$

gdje je $\mu_{X_{m}}\left(x\right)$ mjera pripadnosti elementa x neizrazitom skupu X m-tog pravila.

Mjere pripadnosti $\mu_{X_m}(x)$ u ovom zadatku modelirane su parametriziranim sigmoidalnim funkcijama s parametrima a_{X_m} i b_{X_m} :

$$\mu_{X_m}(x; a_{X_m}, b_{X_m}) = \frac{1}{1 + e^{-b_{X_m}(x - a_{X_m})}}.$$

Za m-to pravilo postoji 7 parametara koje je potrebno trenirati na zadanom skupu podataka: p_m , q_m , r_m , a_{A_m} , a_{B_m} , b_{A_m} , i b_{B_m} . Ukupno je 7M parametara, gdje je M broj pravila.

Derivacija ukupne pogreške s obzirom na izlaz iz sustava $o^{(n)}$ za n-ti primjer je:

$$\frac{\partial E}{\partial o^{(n)}} = o^{(n)} - t^{(n)}.$$

Derivacija izlaza $o^{(n)}$ za n-ti primjer po prijenosnoj funkciji f_m m-tog pravila je:

$$\frac{\partial o^{(n)}}{\partial f_m} = \widetilde{w}_m.$$

Derivacije prijenosne funkcije f_m m-tog pravila po parametrima p_m , q_m , i r_m , za n-ti primjer, su:

$$\frac{\partial f_m}{\partial p_m} = x^{(n)}, \qquad \frac{\partial f_m}{\partial q_m} = y^{(n)}, \qquad \frac{\partial f_m}{\partial r_m} = 1.$$

Derivacije nenormalizirane težine w_m m-tog pravila po mjerama pripadnosti neizrazitim skupovima μ_{A_m} i μ_{B_m} , za n-ti primjer su:

$$\frac{\partial w_m}{\partial \mu_{A_m}} = \mu_{B_m} \left(x^{(n)}; a_{B_m}, b_{B_m} \right), \qquad \frac{\partial w_m}{\partial \mu_{B_m}} = \mu_{A_m} \left(x^{(n)}; a_{A_m}, b_{A_m} \right),$$

a normalizirane težine \widetilde{w}_m :

$$\frac{\partial \widetilde{w}_m}{\partial \mu_{A_m}} = \frac{1}{\sum_{k=1}^M w_k} \cdot \frac{\partial w_m}{\partial \mu_{A_m}}, \qquad \frac{\partial \widetilde{w}_m}{\partial \mu_{B_m}} = \frac{1}{\sum_{k=1}^M w_k} \cdot \frac{\partial w_m}{\partial \mu_{B_m}}.$$

Derivacije mjere pripadnosti μ_{X_m} neizrazitom skupu X_m m-tog pravila po parametrima a_{X_m} i b_{X_m} su:

$$\frac{\partial \mu_{X_m}}{\partial a_{X_m}} = \frac{-1}{\left(1 + e^{-b_{X_m}(x - a_{X_m})}\right)^2} \cdot e^{-b_{X_m}(x - a_{X_m})} \cdot (-b)$$
$$= -b \cdot \mu_{X_m} \left(x^{(n)}; a_{X_m}, b_{X_m}\right) \cdot \left(1 - \mu_{X_m} \left(x^{(n)}; a_{X_m}, b_{X_m}\right)\right)$$

$$\frac{\partial \mu_{X_m}}{\partial b_{X_m}} = \frac{-1}{(1 + e^{-b_{X_m}(x - a_{X_m})})^2} \cdot e^{-b_{X_m}(x - a_{X_m})} \cdot (-(x - a))$$
$$= (x - a) \cdot \mu_{X_m} \left(x^{(n)}; a_{X_m}, b_{X_m} \right) \cdot \left(1 - \mu_{X_m} \left(x^{(n)}; a_{X_m}, b_{X_m} \right) \right)$$

Konačno, tražene derivacije ukupne pogreške s obzirom na sve parametre sustava za *m*-to pravilo i *n*-ti ulazni primjer su:

$$\frac{\partial E}{\partial p_m} = \frac{\partial E}{\partial o^{(n)}} \frac{\partial o^{(n)}}{\partial f_m} \frac{\partial f_m}{\partial p_m} = \left(o^{(n)} - t^{(n)}\right) \cdot \widetilde{w}_m \cdot x^{(n)},$$

$$\frac{\partial E}{\partial q_m} = \frac{\partial E}{\partial o^{(n)}} \frac{\partial o^{(n)}}{\partial f_m} \frac{\partial f_m}{\partial q_m} = \left(o^{(n)} - t^{(n)}\right) \cdot \widetilde{w}_m \cdot y^{(n)},$$

$$\frac{\partial E}{\partial r_m} = \frac{\partial E}{\partial o^{(n)}} \frac{\partial o^{(n)}}{\partial f_m} \frac{\partial f_m}{\partial r_m} = \left(o^{(n)} - t^{(n)}\right) \cdot \widetilde{w}_m,$$

$$\begin{split} \frac{\partial E}{\partial a_{A_m}} &= \frac{\partial E}{\partial o^{(n)}} \frac{\partial o^{(n)}}{\partial w_m} \frac{\partial w_m}{\mu_{A_m}} \frac{\partial \mu_{A_m}}{\partial a_{A_m}}, \\ &= \left(o^{(n)} - t^{(n)}\right) \cdot \frac{1}{\sum_{k=1}^M w_k} \cdot \mu_{B_m} \left(x^{(n)}; a_{B_m}, b_{B_m}\right) \\ &\cdot \left(-b\right) \cdot \mu_{A_m} \left(x^{(n)}; a_{A_m}, b_{A_m}\right) \cdot \left(1 - \mu_{A_m} \left(x^{(n)}; a_{A_m}, b_{A_m}\right)\right), \end{split}$$

$$\begin{split} \frac{\partial E}{\partial b_{A_m}} &= \frac{\partial E}{\partial o^{(n)}} \frac{\partial o^{(n)}}{\partial w_m} \frac{\partial w_m}{\mu_{A_m}} \frac{\partial \mu_{A_m}}{\partial b_{A_m}}, \\ &= \left(o^{(n)} - t^{(n)}\right) \cdot \frac{1}{\sum_{k=1}^M w_k} \cdot \mu_{B_m} \left(x^{(n)}; a_{B_m}, b_{B_m}\right) \\ &\cdot \left(x - a\right) \cdot \mu_{A_m} \left(x^{(n)}; a_{A_m}, b_{A_m}\right) \cdot \left(1 - \mu_{A_m} \left(x^{(n)}; a_{A_m}, b_{A_m}\right)\right), \end{split}$$

$$\begin{split} \frac{\partial E}{\partial a_{B_m}} &= \frac{\partial E}{\partial o^{(n)}} \frac{\partial o^{(n)}}{\partial w_m} \frac{\partial w_m}{\mu_{B_m}} \frac{\partial \mu_{B_m}}{\partial a_{B_m}}, \\ &= \left(o^{(n)} - t^{(n)}\right) \cdot \frac{1}{\sum_{k=1}^M w_k} \cdot \mu_{A_m} \left(x^{(n)}; a_{A_m}, b_{A_m}\right) \\ &\cdot \left(-b\right) \cdot \mu_{B_m} \left(x^{(n)}; a_{B_m}, b_{B_m}\right) \cdot \left(1 - \mu_{B_m} \left(x^{(n)}; a_{B_m}, b_{B_m}\right)\right), \end{split}$$

$$\begin{split} \frac{\partial E}{\partial b_{B_m}} &= \frac{\partial E}{\partial o^{(n)}} \frac{\partial o^{(n)}}{\partial w_m} \frac{\partial w_m}{\mu_{B_m}} \frac{\partial \mu_{B_m}}{\partial b_{B_m}}, \\ &= \left(o^{(n)} - t^{(n)}\right) \cdot \frac{1}{\sum_{k=1}^M w_k} \cdot \mu_{A_m} \left(x^{(n)}; a_{A_m}, b_{A_m}\right) \\ &\cdot \left(x - a\right) \cdot \mu_{B_m} \left(x^{(n)}; a_{B_m}, b_{B_m}\right) \cdot \left(1 - \mu_{B_m} \left(x^{(n)}; a_{B_m}, b_{B_m}\right)\right). \end{split}$$

Mjere pripadnosti

Pogreške na primjerima

Ukupna pogreška tokom treniranja