|Chapter 2 Motion in One Dimension

Kinematics

- Describes a motion, without the agent that moved it
- Will use the particle model, where a particle is a point-like object. It has mass but the size is very small.

Position

- Defined in terms of a frame of reference
 - In one dimension (x-axis or y-axis)
 - Origin must be well defined
- The object's position is its location with respect to the frame of reference
- The frame can be moving or stationary

Position-Time Graph

 The instantaneous velocity indicates what is happening at every point of time. The information includes the direction of movement and magnitude of velocity.

Displacement

- Change in position during some time interval
 - ullet $\Delta x = x_f x_i$
 - SI Units is meters (m).
- Displacement does not mean distance

Vector and Scalars

- Vector has:
 - Magnitude
 - Direction
 - Use + and signs to indicate directions
- Scalars has:
 - Magnitude
 - Always +ve numerical value

Velocity

- Vector quantity
- SI Unit is m/s

Average Velocity

The **Average Velocity** is the rate with respect to time at which the displacement occurs

Instantaneous Velocity

The Instantaneous Velocity indicates what is happening at every point of time.

Average Speed

- Scalar quantity
- $\bullet \ \ \mathsf{SI} \ \mathsf{Unit} \ m/s$

$$rac{d_T}{t_T}$$

Average speed does not necessarily mean the magnitude of the average velocity.

Acceleration

SI Unit is m/s^2

Average Acceleration

Rate of change of the velocity

$$a_{average} = rac{\Delta v_x}{\Delta t} = rac{v_{xf} - v_{xi}}{\Delta t}$$

Instantaneous Acceleration

The magnitude for **instantaneous acceleration** is the limit of the magnitude for average acceleration as the Δt approaches 0, which is the value of the constant when Δt tends to 0.

Graph

velocity vs time graph

The slope of the tangent in is the magnitude for acceleration Blue line is the average acceleration from A to B

Kinematic Equations

Only for one dimensional motion with constant acceleration

Equation (Physics notation)	Equation (Alternative notation)	Information Given by Equation
$v_{xf}=v_{xi}+a_x t$	v=u+at	Velocity as a function of time
$x_f = x_i + rac{1}{2}(v_{xi} + v_{xf})t$	$s=s_0+rac{1}{2}(u+v)t$	Position as a function of velocity and time
$x_f = x_i + v_{xi}t + rac{1}{2}a_xt^2$	$s=s_0+ut+rac{1}{2}at^2$	Position as a function of time
$v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$	$v^2=u^2+2a(s-s_0)$	Velocity as a function of position

where,

- u: initial velocity
- v: final velocity
- s_0 : initial position
- s: final position
- a: acceleration

Freely Falling Objects

A **freely falling object** is any object moving freely under the influence of gravity **alone** Does not depend upon the initial motion:

- Dropped (released from rest) $v_i = 0$
- ullet Thrown downward $v_i
 eq 0$
- $\bullet \quad \text{Thrown upward } v_i \neq 0$

Acceleration of Freely Falling Object

The acceleration is **directed downward**, regardless of the initial motion and position.

$$g=a=9.80\,m/s^2$$

This is the average gravitational acceleration at the Earth's surface, if the $\uparrow altitude$ then $\downarrow g$ Free fall motion is constantly accelerated motion in one dimension

Let upwards
ightarrow +ve and downwards
ightarrow -ve, so the $a=-g=9.80\,m/s^2$