El átomo de helio

Funciones de onda para átomo de Helio

$$\Psi(r_1, r_2) = N * (1s(r_1)1s(r_2)) * \frac{1}{\sqrt{2}} (\alpha(\omega_1)\beta(\omega_2) + \alpha(\omega_2)\beta(\omega_1))$$
$$= \Psi_0(r_1, r_2) = \frac{1}{\pi} \zeta^3 e^{-\zeta(r_1 + r_2)}$$

Ventajas:

- ▶ Permite obtener una energía variacional con un error relativo de solamente 1.5%!
- Al obtener la energía variacional utilizando un Hamiltioniano exacto, la función de onda solamente considera las interacción coulombica entre las distribuciones de carga de los dos electrones sobre todo el espacio.

Desventajas:

La función de onda no considera el efecto de la posición instantánea relativa entre los electrones.

Función de onda de Hylleraas:

Una forma de incluir el efecto de la interacción electron electron en la función de onda es agregando una tercera variable a la función de onda: la distancia interelectrónica.

$$\Psi = \Psi(r_1, r_2, r_{12}) = Ne^{-\zeta(r_1 + r_2)} (1 + br_{12})$$
(1)

Ventaje

- Incluye explicitamente la coordenada interelectrónica lo que perimte correlacionar el movimiento electrónico.
- Cumple con la condición de cuspide tanto Nucleo-Nucleo como electron-electron.

Desventaja

➤ Al tener átomos multielectrónicos aparecen integrales de 3, 4, etc. electrones las que son muy dificiles de evaluar.

Función de onda de Hylleraas:

Función de onda de Hylleraas:

$$\Psi_{\it corr} = \Psi_{\it hyl} - \Psi_{\it ref}$$

Función de onda CI

$$\Psi_{CI} = c_1 |1s^2| + c_2 |1s2s| + c_3 |2s^2| + c_4 |2p^2|$$
 (2)

¿Como puedo obtener los coeficientes?