MATH50003 Numerical Analysis

VI.3 Gaussian Quadrature

Dr Sheehan Olver

Part VI

Orthogonal Polynomials

- 1. General Orthogonal Polynomials and basic properties
- 2. Classical Orthogonal Polynomials with special structure
- 3. Gaussian Quadrature for high-accuracy integration

IV.5 Gaussian Quadrature = Intervolutory quadrature \foots of \text{OP}

$$M(X) = \frac{1}{\sqrt{1-x^2}}$$

Example 26 (Gauss-Chebyshev). Use roots of To (x) for interp. qual.

$$T_3(x) = 4x^3 - 3x, \quad \text{w)} \quad roots$$

$$x_2 = 0$$
, roots of

$$\Diamond$$

$$4x^{2}-3=0$$
 \Rightarrow $x_{1}=-\frac{\sqrt{3}}{2}$

$$X_{2} = \frac{\sqrt{3}}{2}$$

We want to find winns, we so that

$$\int_{0}^{\infty} \int_{0}^{\infty} dx \lesssim$$

$$\int_{0}^{\infty} \frac{1}{f(x)} dx \propto w_{1} f(x_{1}) + w_{2} f(x_{2}) + w_{3} (x_{3})$$

How? use Lagrange basis,

Note (by trig subs.)

$$\int_{-1}^{1} W(x)dx = TT, \quad \int_{-1}^{1} x w(x)dx = 0, \quad \int_{-1}^{1} x^{2} v(x)dx = TT, \quad \int_{-1}^{1} x^{2}$$

Ve find

$$W_{1} = \begin{cases} 1 & \text{if } (x) = \frac{17}{3} \\ \frac{x(x + \sqrt{3}/2)}{\sqrt{3}} \end{cases}$$

$$W_{L} = \begin{cases} 1 & w(x) & l_{2}(x) & d_{2}(x) \\ -1 & \frac{1}{2} & \frac{1}{2} \end{cases}$$

$$w_3 = \int_{-1}^{1} w(x) l_3(x) dx = \pi_3$$

$$\bigcirc$$

$$\sum_{n=1}^{w,x} [x] = \frac{\pi}{3} \left[x \left(\frac{\sqrt{x}}{2} \right) + f(0) + f\left(-\frac{\sqrt{3}}{2} \right) \right]$$

Note

$$\sum_{n=1}^{N} \left[\sqrt{1} \right] = M = \left\{ \frac{1}{n} \right\}^{-1} \frac{2^{n}}{n} = \sqrt{2}$$

$$\sum_{n}^{n} \left[X \right] = \Omega = \sum_{n}^{n} \frac{u^{-x_{2}}}{x} q^{x}$$

(mounder] beca~10

$$\sum_{n} \left[\frac{x^{3}}{x^{3}} \right] = 0 = \int_{-1}^{1} \frac{x^{3}}{\sqrt{1 - x^{2}}} dx$$

$$\sum_{n} \left[\frac{x^{4}}{x^{5}} \right] = 0 = \int_{-1}^{1} \frac{x^{4}}{\sqrt{1 - x^{2}}} dx$$

$$\sum_{n} \left[\frac{x^{5}}{x^{5}} \right] = 0 = \int_{-1}^{1} \frac{x^{5}}{\sqrt{1 - x^{2}}} dx$$

$$\sum_{n} \left[\frac{x^{6}}{x^{5}} \right] + \int_{-1}^{1} \frac{x^{6}}{\sqrt{1 - x^{2}}} dx$$

Why exact for degree 2n-1?

VI.3.1 Roots of orthogonal polynomials and truncated Jacobi matrices We can compute roots from eigenvalues

Lemma 11 (OP roots). An orthogonal polynomial $p_n(x)$ has exactly n distinct roots.

 $\Rightarrow f(x) := P_n(x)(x - x_1) - (x - x_1)$ does not change sign

 \Rightarrow (x-x,)—(x-x,) is not legal < b

is = n is all roots in this list,

Definition 42 (truncated Jacobi matrix). Given a Jacobi matrix J associated with a family of orthonormal polynomials, the $truncated\ Jacobi\ matrix$ is

$$J_n := \begin{bmatrix} a_0 & b_0 \\ b_0 & \ddots & \ddots \\ & \ddots & a_{n-2} & b_{n-2} \\ & & b_{n-2} & a_{n-1} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Lemma 12 (OP roots and Jacobi matrices). The zeros x_1, \ldots, x_n of an orthonormal polynomial $q_n(x)$ are the eigenvalues of the truncated Jacobi matrix J_n . More precisely,

Proof Show V; are eignech Weigral X;

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{$$

Example 27 (Chebyshev roots).

See note

Gauss quad is to OPS
What Trapezium rule is to Fowier

VI.3.2 Properties of Gaussian quadrature Interpolatory quadrature rule associated with roots of OPs

Definition 43 (Gaussian quadrature). Given a weight w(x), the Gauss quadrature rule is:

$$\int_a^b f(x)w(x)\mathrm{d}x \approx \sum_{j=1}^n w_j f(x_j)$$
 where x_1,\dots,x_n are the roots of the orthonormal polynomials $q_n(x)$ and
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \|f(x)\|_{L^2(x_j)}$$

$$w_j := \frac{1}{\alpha_j^2} = \frac{1}{q_0(x_j)^2 + \dots + q_{n-1}(x_j)^2}.$$

$$= \int_{a}^{b} w(x) dx \qquad \underbrace{\int_{0}^{b} (x_{j})^{2}}_{Q_{2}(x_{j})}$$

$$Q_{3}(x_{j})^{2}$$

Lemma 13 (Discrete orthogonality). For $0 \le \ell, m \le n-1$, the orthonormal polynomials $q_n(x)$ satisfy

$$\sum_{n=0}^{w} [q_{\ell} q_{m}] = \delta_{\ell m}$$

Proof

$$\sum_{n=1}^{\infty} \left[q_{n} q_{m} \right] = \sum_{i=1}^{\infty} \frac{q_{n}(x_{i}) q_{m}(x_{i})}{\alpha_{i}^{2}}$$

$$= \left[\frac{q_{n}(x_{i})}{\alpha_{i}} \right] - \left[\frac{q_{n}(x_{n})}{\alpha_{m}} \right] \left[\frac{q_{m}(x_{n})}{\alpha_{m}} \right]$$

$$= e_{2n}^{T} Q_{n} Q_{n}^{T} e_{m+1} = \delta_{2m} Q_{n}^{T} e_{m+1}$$

Theorem 19 (interpolation via quadrature). For the orthonormal polynomials $q_n(x)$,

$$f_n(x) := \sum_{k=0}^{n-1} c_k^n q_k(x) \text{ for } c_k^n := \sum_{k=0}^w [fq_k] \stackrel{\gamma}{=} \underbrace{}_{}^{} \searrow_{}^{} \searrow_{}^{} \searrow_{}^{} (\times_{}^{}) \xrightarrow{}_{}^{} (\times_{}^{})$$

interpolates f(x) at the Gaussian quadrature points x_1, \ldots, x_n .

Proof

Consider Vandermonde - like matrix

$$\sqrt{n} = \begin{bmatrix}
q_0(x_1) & q_{n+1}(x_1) \\
q_0(x_n) & q_{n+1}(x_n)
\end{bmatrix}$$

$$q_0(x_n) & q_0(x_n)$$

Del'one

$$Q_{n}^{w} := V_{n}^{T} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

$$\begin{cases} c_{0}^{v} \\ c_{n}^{v} \end{bmatrix} = Q_{n}^{w} \begin{bmatrix} f(x_{1}) \\ f(x_{n}) \end{bmatrix}$$

$$\begin{cases} g_{n}^{w} \\ g_{n}^{w} \end{bmatrix} = \begin{cases} g_{n}^{w} \begin{bmatrix} a_{0} a_{0} \end{bmatrix} \\ g_{n}^{w} \end{bmatrix}$$

$$\begin{cases} g_{n}^{w} \\ g_{n}^{w} \end{bmatrix} = \begin{cases} g_{n}^{w} \begin{bmatrix} a_{0} a_{0} \end{bmatrix} \\ g_{n}^{w} \end{bmatrix} = \begin{cases} g_{n}^{w} \begin{bmatrix} a_{n} a_{n} \\ a_{n} \end{cases} \end{cases}$$

$$\begin{cases} g_{n}^{w} \\ g_{n}^{w} \end{bmatrix} = \begin{cases} g_{n}^{w} \begin{bmatrix} a_{n} a_{0} \\ a_{n} \end{cases} \end{cases} = \begin{cases} g_{n}^{w} \begin{bmatrix} a_{n} a_{n} \\ a_{n} \end{cases} \end{cases}$$

$$= \int_{a_{n}(x; y)} \left\{ \int_{a_{n}(x; y)} \left(\int_{a_{n}($$

Example 28 (Chebyshev expansions).

See notes

Corollary 11 (Gaussian quadrature is interpolatory). Gaussian quadrature is an interpolatory quadrature rule with the interpolation points equal to the roots of q_n :

$$\Sigma_n^w[f] = \int_a^b f_n(x)w(x) dx.$$

Proof Followe immediately ser noter.

Theorem 20 (Exactness of Gauss quadrature). If p(x) is a degree 2n-1 polynomial then Gauss quadrature is exact:

$$\int_a^b p(x)w(x)\mathrm{d}x = \Sigma_n^w[p].$$

Proof Polynomial Division
$$\Rightarrow$$

$$P(x) = Q(x) S(x) + (Cx)$$
degree
$$Include Include Incl$$

 $= \int_{\alpha}^{\beta} r(x) w(x) dx$ $=\int_{\rho}^{\rho} d^{2}(x) ((x) M(x)) dx + \int_{\rho}^{\alpha} (x) M(x) dx$ =0 since s is degree < n $= \int_{\rho}^{\rho} f(x) M(x) dx$

Example 29 (Double exactness).