

Controle Automático I

TRABALHO #1

Engenharia Elétrica Prof. Fernando Passold

Objetivos

O objetivo geral deste trabalho é avaliar o conhecimento adquirido na primeira parte da disciplina associado com equações diferenciais e transformada de Laplace e seu uso para análise de sistemas.

Execução

Este trabalho está previsto para ser executado em duplas de alunos ou no máximo, em equipes de 3 alunos. Cada equipe devolve para o professor um arquivo PDF contendo a resolução das questões.

Não se exige nenhuma "capa" para este trabalho, nem nenhuma formatação especial, mas sugere-se uso de fonte tamanho 10 pt, espaçamento 1,1. Os gráficos podem ser traçados usando software como o Matlab ou Octave.

Data de entrega: 09/05/2025.

Pontuação

Todos os itens valem 1,0 ponto, com excessão do item 7 que vale 2,0 pontos.

ITENS:

1) A figura abaixo ilustra várias formas comuns de sinais de entrada para sistemas. Com auxílio de tabela, deduza as Transformadas de Laplace para estes sinais.

Obs.: (a) função degrau de amplitude 4 Volts; (b) função degrau atrasada de 2 segundos e amplitude de 4 Volts; (c) função rampa, com razão/taxa de 3 Volts/segundo; (d) função rampa deslocada (atrasada) no tempo em 2 segundos e com razão de 3 Volts/segundo; (e) impulso de amplitude 4 Volts no instante de tempo t=3 segundos; (f) onda senoidal de amplitude de 2 Volts de pico e frequência de 10 Hz.

- 2) Use MATLAB/Octave (o outro software) para traçar gráficos (temporais) das funções abaixo. Também determine suas transformadas de Laplace:
 - a) $y(t) = t^2 (0 < t < 4 \text{ segundos});$
 - b) $y(t) = t^2 e^{-at}$ (0 < t < 10 segundos);
 - c) $y(t) = t^2 (1 + e^{-at})$ (0 < t < 5 segundos).

Obs.: Suponha que $a = \{0.5, 1, 2, 4\}$ (4 valores à serem simulados); apresente 4 curvas (com legendas) num mesmo gráfico para cada um dos itens anteriores..

3) Determine as transformas inversas de Laplace para:

a)
$$Y(s) = \frac{2}{s}$$
.

b)
$$Y(s) = \frac{3}{2s+1}$$

$$(c) \quad Y(s) = \frac{2}{s-5}$$

4) Use a transformada de Laplace para resolver a seguinte equação diferencial:

$$3\frac{dx}{dt} + 2x = 4,$$

com x = 0 em t = 0.

5) Para um degrau de amplitude E aplicado no instante t=0 em um circuito RC (série), a equação diferencial para a d.d.p. no capacitor, V_C , é dada por:

$$E \cdot u(t) = RC \frac{d V_C(t)}{dt} + V_C(t)$$
 (eq. 1)

 $V_c(t) = 0$, é zero em t = 0 (isto é, o capacitor inicia descarregado; u(t) =degrau unitário).

- a) Usar transformada de Laplace para deduzir a equação de $v_c(t)$ (eq. 1) apresente a dedução.
- b) Apresente um gráfico mostrando como varia a tensão $v_C(t)$, depois de aplicada a tensão degrau de amplitude E=5 Volts. Ressalte no mesmo gráfico, o valor de $v_c(t)$ comparado percentualmente com E quando: a) $t = \tau$ (uma constante de tempo), b) $t=2\tau$ (2 constantes de tempo), e c) $t=4\tau$ (4 constantes de tempo); O termo $RC=\tau$, corresponde a constante de tempo deste sistema. Supor $R = 10 \text{ K}\Omega$ e $C = 50 \mu\text{F}$.
- 6) Realizar a expansão em frações parciais da função abaixo:

$$F(s) = \frac{s+5}{s^2 + 3s + 2}$$

Obs.: Você pode usar as funções roots() e residue() do MATLAB.

7) Considere um circuito RC série com uma tensão de entrada (V_{in}) em rampa. A equação diferencial para a d.d.p. no capacitor, V_c , é dada por:

$$RC\frac{dV_C}{dt} + V_C = V_{ir}$$

 $RC \frac{dV_C}{dt} + V_C = V_{in}$ Obs.: quando t = 0, o valor (inicial) de V_C é zero (capacitor inicia descarregado).

- Desenvolva a função transferência que define $V_c(s)/V_{in}(s)$.
- Determine $V_{\mathcal{C}}(s)$ quando $V_{in}(s)$ é uma rampa de razão de amplitude V
- Determine $v_c(t)$ fazendo $\mathcal{L}^{-1}\{V_c(s)\}$, usando $V_c(s)$ determinado no item c) anterior.
 - Dica: será necessário fazer uso de frações parciais.
- d) Por fim, trace um esboço gráfico com 2 curvas, uma tracejada para $v_{in}(t)$ e outro traço contínuo para $v_C(t)$. Considere neste caso: R=10 K Ω , C=100 μF, e V = 1,0 Volt/segundo. Trace o gráfico para $0 \le t \le 3\tau$, onde $\tau = RC$ corresponde a constante de tempo deste sistema. Ressalte no mesmo gráfico o valor de v_c comparado com v quando d.1) $t = \tau$, d.2) $t = 2\tau$ e d.3) $t = 3\tau$.

Obs.: Para o item (d) é esperada uma figura semelhante à mostrada ao lado da questão.

Fim.