Programozás I.

Rendezések

Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Óbudai Egyetem Neumann János Informatikai Kar

2012. november 5.

Rendezési algoritmusok

- A rendezési algoritmusok alapfeladata egy N elemű sorozat nagyság szerinti sorba rendezése.
- Szükséges, hogy a sorozat elemei között értelmezhető legyen a < művelet.
- A rendezéseket általában helyben az eredeti sorozatban hajtjuk végre, így a rendezetlen sorozatot elveszítjük.

5	3	9	1	7	\rightarrow	1	3	5	7	9
---	---	---	---	---	---------------	---	---	---	---	---

 A rendezési algoritmusok bemenete minden esetben egy N elemű X tömb, kimenete pedig ugyanez a tömb, de növekvő módon rendezetten.

Rendezések

- Egyszerű cserés rendezés
- 2 Minimumkiválasztásos rendezés
- Buborékos rendezés
- 4 Javított buborékos rendezés
- Beillesztéses rendezés
- 6 Javított beillesztéses rendezés
- Rendezés Shell módszerre

Egyszerű cserés rendezés

Alapötlet

- Hasonlítsuk össze a sorozat első elemét az összes őt követővel.
- Ha egy elem kisebb mint az első, akkor cseréljük meg őket.
- Így a sorozat első helyére a megfelelő (azaz legkisebb) elem kerül.
- Ezt követően ugyanezt tegyük meg a második elemmel, majd az összes következővel.

4 / 40

Egyszerű cserés rendezés

Algoritmus

Eljárás Rendezés(N,X)Ciklus $i \leftarrow 1$ -től N-1-ig
Ciklus $j \leftarrow i+1$ -től N-ig
Ha X[i] > X[j] akkor
Csere(X[i],X[j])Elágazás vége
Ciklus vége
Ciklus vége
Eljárás vége

Példa

$$i = 1 \rightarrow \begin{bmatrix} 5 & 3 & 9 & 1 & 7 \\ 3 & 5 & 9 & 1 & 7 \\ 3 & 5 & 9 & 1 & 7 \\ 1 & 5 & 9 & 3 & 7 \\ 1 & 5 & 9 & 3 & 7 \\ 1 & 5 & 9 & 3 & 7 \\ 1 & 5 & 9 & 3 & 7 \\ 1 & 5 & 9 & 3 & 7 \\ 1 & 3 & 9 & 5 & 7 \\ 1 & 3 & 9 & 5 & 7 \\ 1 & 3 & 5 & 9 & 7 \\ 1 & 3 & 5 & 9 & 7 \\ 1 & 3 & 5 & 9 & 7 \\ 1 & 3 & 5 & 7 & 9 \end{bmatrix}$$

Csere megvalósítása

 Két sorozatbeli elem megcseréléséhez szükséges egy plusz elem a sorozaton kívül, melynek típusa azonos a sorozat elemeinek típusával.

Algoritmus

Eljárás Csere
$$(X[i],X[j])$$

 $TEMP \leftarrow X[i]$
 $X[i] \leftarrow X[j]$
 $X[j] \leftarrow TEMP$
Eljárás vége

6 / 40

2012, november 5.

Egyszerű cserés rendezés

Hatékonyság

- Helyfoglalás: N + 1
- Hasonlítások száma: $\frac{N(N-1)}{2}$
- Mozgatások száma: Legalább 0, legfeljebb $3 \cdot \frac{N(N-1)}{2}$

Rendezések összehasonlítása

30 elemű sorozatokat hasonlítottunk össze

- A majdnem rendezett sorozatban két elem nem volt a helyén.
- A fordítva rendezett sorozat csökkenő sorrendben volt rendezett.
- A véletlen sorozat az első 30 pozitív egész szám egy véletlen permutációja volt.

	Majdnem	rendezet	t sorozat	Fordítva	rendezett	sorozat	Véletlen sorozat			
	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.	
Egyszerű cserés	435	29	87	435	435	1305	435	231	693	

Rendezések

- Minimumkiválasztásos rendezés

2012, november 5.

Minimumkiválasztásos rendezés

Alapötlet

- Az Egyszerű cserés rendezés hibája, hogy általában túl sok cserét hajt végre annak érdekében, hogy az elemek a megfelelő helyre kerüljenek.
- Ezen javíthatunk, ha az aktuális elemet a mögötte állók minimumával cseréljük fel, ha egyáltalán kell cserélni.

Minimumkiválasztásos rendezés

Algoritmus

```
Eljárás Rendezés(N,X)
   Ciklus i \leftarrow 1-től N-1-ig
       MIN \leftarrow i
       Ciklus j \leftarrow i + 1-től N-ig
          Ha X[MIN] > X[j] akkor
               MIN \leftarrow i
           Elágazás vége
       Ciklus vége
       Csere(X[i],X[MIN])
   Ciklus vége
Eljárás vége
```

Példa

i = 1	\rightarrow	5	3	9	1	7
i = 2	\rightarrow	1	3	9	5	7
i = 3	\rightarrow	1	3	9	5	7
i = 4	\rightarrow	1	3	5	9	7
		1	3	5	7	9

Minimumkiválasztásos rendezés

Hatékonyság

- Helyfoglalás: N + 1
- Hasonlítások száma: $\frac{N(N-1)}{2}$
- Mozgatások száma: $3 \cdot (N-1)$
- A mozgatások száma akár több is lehet, mint az Egyszerű cserés rendezésnél.
- Ennek oka, hogy a külső ciklusban mindenképp cserélünk, annak érdekében, hogy ne kelljen mindig egy összehasonlítást is elvégezni.

Rendezések összehasonlítása

	Majdnem rendezett sorozat			Fordítva	rendezett	sorozat	Véletlen sorozat		
	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.
Egyszerű cserés	435	29	87	435	435	1305	435	231	693
Minimumkiválasztásos	435	435 29 87		435	29	87	435	29	87

Rendezések

- Egyszerű cserés rendezés
- Minimumkiválasztásos rendezés
- Buborékos rendezés
- Javított buborékos rendezés
- Beillesztéses rendezés
- 6 Javított beillesztéses rendezés
- 7 Rendezés Shell módszerre

Buborékos rendezés

Alapötlet

- Osszehasonlítjuk egymással a szomszédos elemeket, s ha a sorrendjük nem jó, akkor cseréljük meg őket.
- A szomszédok cseréje miatt először a legnagyobb elem fog a helyére kerülni, majd ezt követően a második legnagyobb, és így tovább.
- Az algoritmusban az elemek úgy kerülnek a sorozatbeli helyükre a legnagyobbtól kezdve, mint a felfelé szálló buborékok.

Buborékos rendezés

Algoritmus

```
Eljárás Rendezés(N,X)
Ciklus i \leftarrow N-től 2-ig -1-esével
Ciklus j \leftarrow 1-től i-1-ig
Ha X[j] > X[j+1] akkor
Csere(X[j],X[j+1])
Elágazás vége
Ciklus vége
Ciklus vége
Eljárás vége
```

Példa

Buborékos rendezés

Hatékonyság

- Helyfoglalás: N + 1
- Hasonlítások száma: $\frac{N(N-1)}{2}$
- Mozgatások száma: Legalább 0, legfeljebb 3 $\cdot \frac{N(N-1)}{2}$

Rendezések összehasonlítása

	Majdnem	Majdnem rendezett sorozat			rendezett	sorozat	Véletlen sorozat		
	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.
Egyszerű cserés	435	29	87	435	435	1305	435	231	693
Minimumkiválasztásos	435	29	87	435	29	87	435	29	87
Buborékos	borékos 435 29 87		435	435	1305	435	231	693	

Rendezések

- Egyszerű cserés rendezés
- 2 Minimumkiválasztásos rendezés
- Buborékos rendezés
- 4 Javított buborékos rendezés
- Beillesztéses rendezés
- 6 Javított beillesztéses rendezés
- Rendezés Shell módszerrel

Javított buborékos rendezés

Alapötlet

- Ha a Buborékos rendezés belső ciklusában egyáltalán nincs már csere, akkor az algoritmust kár folytatni.
- Ha volt csere, de az utolsó csere például a sorozat közepénél volt, akkor az utolsó csere helyétől a sorozat végéig a sorozat már rendezett, tehát kár azzal a résszel foglalkozni.

Javított buborékos rendezés

Algoritmus

```
Eljárás Rendezés(N,X)
   i \leftarrow N
   Ciklus amíg i \ge 2
       CS \leftarrow 0
       Ciklus i \leftarrow 1-től i - 1-ig
           Ha X[j] > X[j+1] akkor
               Csere(X[j],X[j+1])
                CS \leftarrow i
           Elágazás vége
       Ciklus vége
       i \leftarrow CS
   Ciklus vége
Eljárás vége
```

Példa

Javított buborékos rendezés

- Helyfoglalás: N + 1
- Hasonlítások száma: Legalább N-1, legfeljebb $\frac{N(N-1)}{2}$
- Mozgatások száma: Legalább 0, legfeljebb $3 \cdot \frac{N(N-1)}{2}$
- A Buborékos rendezéshez képest szignifikáns javulás az átlagos végrehajtási időben van.

Rendezések összehasonlítása

	Majdnem	Majdnem rendezett sorozat			rendezett	sorozat	Véletlen sorozat		
	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.
Egyszerű cserés	435	29	87	435	435	1305	435	231	693
Minimumkiválasztásos	435	29	87	435	29	87	435	29	87
Buborékos	435	29	87	435	435	1305	435	231	693
Javított buborékos	254	29	87	435	435	1305	429	231	693

2012. november 5.

Rendezések

- Beillesztéses rendezés

2012, november 5.

Beillesztéses rendezés

Alapötlet

- Egy elem önmagában rendezett.
- A második elemet tegyük a helyére.
- A harmadikat és az összes következőt tegyük a helyére.

Beillesztéses rendezés

Algoritmus

Eljárás vége

```
Eljárás Rendezés(N,X)
Ciklus i \leftarrow 2-től N-ig
j \leftarrow i-1
Ciklus amíg j > 0 és X[j] > X[j+1]
Csere(X[j],X[j+1])
j \leftarrow j-1
Ciklus vége
Ciklus vége
```

Példa

i Ciua							
i = 2	\rightarrow	5	3	9	1	7	l
		3	5	9	1	7	l
i = 3	\rightarrow	3	5	9	1	7	
i = 4	\rightarrow	3	5	9	1	7	
		3	5	1	9	7	
		3	1	5	9	7	
		1	3	5	9	7	
i = 5	\rightarrow	1	3	5	9	7	
		1	3	5	7	9	

Beillesztéses rendezés

Hatékonyság

- Helyfoglalás: N + 1
- Hasonlítások száma: Legalább N-1, legfeljebb $\frac{N(N-1)}{2}$
- Mozgatások száma: Legalább 0, legfeljebb $3 \cdot \frac{\textit{N}(\textit{N}-1)}{2}$

27 / 40

Rendezések összehasonlítása

	Majdnem	Majdnem rendezett sorozat			rendezett	sorozat	Véletlen sorozat		
	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.
Egyszerű cserés	435	29	87	435	435	1305	435	231	693
Minimumkiválasztásos	435	29	87	435	29	87	435	29	87
Buborékos	435	29	87	435	435	1305	435	231	693
Javított buborékos	254	29	87	435	435	1305	429	231	693
Beillesztéses rendezés	58	29	87	435	435	1305	260	231	693

2012. november 5.

Rendezések

- Egyszerű cserés rendezés
- 2 Minimumkiválasztásos rendezés
- Buborékos rendezés
- 4 Javított buborékos rendezés
- Beillesztéses rendezés
- 6 Javított beillesztéses rendezés
- 7 Rendezés Shell módszerre

Javított beillesztéses rendezés

Alapötlet

- A Beillesztéses rendezésben túl sok cserét hajtunk végre annak érdekében, hogy egy elem a helyére kerüljön.
- Hasznosabb lenne, ha a szükséges elemeket hátrább tolnánk eggyel.

Javított beillesztéses rendezés

Algoritmus

Eljárás Rendezés
$$(N,X)$$

Ciklus $i \leftarrow 2$ -től N -ig
 $j \leftarrow i-1$
 $Y \leftarrow X[i]$
Ciklus amíg $j > 0$ és $X[j] > Y$
 $X[j+1] \leftarrow X[j]$
 $j \leftarrow j-1$
Ciklus vége
 $X[j+1] \leftarrow Y$
Ciklus vége
Eljárás vége

Példa

$$i = 2 \rightarrow \begin{bmatrix} 5 & 3 & 9 & 1 & 7 \\ 5 & 5 & 9 & 1 & 7 \\ 3 & 5 & 9 & 1 & 7 \\ 3 & 5 & 9 & 1 & 7 \\ 3 & 5 & 9 & 1 & 7 \\ 3 & 5 & 9 & 9 & 7 \\ 3 & 5 & 5 & 9 & 7 \\ 3 & 3 & 5 & 9 & 7 \\ 1 & 3 & 5 & 9 & 9 \\ 1 & 3 & 5 & 7 & 9 \end{bmatrix}$$

Javított beillesztéses rendezés

Hatékonyság

- ullet Helyfoglalás: N+1
- Hasonlítások száma: Legalább N-1, legfeljebb $\frac{N(N-1)}{2}$
- ullet Mozgatások száma: Legalább 2 \cdot (N 1), legfeljebb

$$2\cdot (N-1)+\frac{N(N-1)}{2}$$

32 / 40

Rendezések összehasonlítása

	Majdnem	Majdnem rendezett sorozat			rendezett	sorozat	Véletlen sorozat		
	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.	Hason.	Csere	Mozg.
Egyszerű cserés	435	29	87	435	435	1305	435	231	693
Minimumkiválasztásos	435	29	87	435	29	87	435	29	87
Buborékos	435	29	87	435	435	1305	435	231	693
Javított buborékos	254	29	87	435	435	1305	429	231	693
Beillesztéses rendezés	58	29	87	435	435	1305	260	231	693
Javított beillesztéses	58		87	435		493	260		289

2012. november 5.

Rendezések

- Egyszerű cserés rendezés
- 2 Minimumkiválasztásos rendezés
- Buborékos rendezés
- Javított buborékos rendezés
- Beillesztéses rendezés
- 6 Javított beillesztéses rendezés
- Rendezés Shell módszerrel

Rendezés Shell módszerrel

Alapötlet

- Hasonlítsuk először össze az egymástól távoli elemeket, és ha kell cseréljük meg őket
- Így az egyes elemek gyorsan közel kerülnek a végleges helyükhöz

Algoritmus

```
Eljárás Rendezés(N,X)
   L \leftarrow L_0
   Ciklus amíg L > 1
       Ciklus K \leftarrow L + 1-tól 2L-ig
           Ciklus i \leftarrow K-tól N-ig L-esével
               i \leftarrow i - L
                Y \leftarrow X[i]
                Ciklus amíg j > 0 és X[j] > Y
                    X[i+L] \leftarrow X[i]
                   i \leftarrow i - L
                Ciklus vége
                X[j+L] \leftarrow Y
           Ciklus vége
       Ciklus vége
       L \leftarrow Következő(L)
   Ciklus vége
Eljárás vége
```

```
Algoritmus \begin{aligned} & \textbf{Eljárás} \; \text{Rendezés}(N,X) \\ & \textbf{Ciklus} \; i \leftarrow 2 \text{-} \textbf{tő} \; N \text{-} \textbf{ig} \\ & j \leftarrow i - 1 \\ & Y \leftarrow X[i] \\ & \textbf{Ciklus} \; \text{amfg} \; j > 0 \; \text{\'es} \; X[j] > Y \\ & X[j+1] \leftarrow X[j] \\ & j \leftarrow j - 1 \\ & \textbf{Ciklus} \; \text{v\'ege} \\ & X[j+1] \leftarrow Y \\ & \textbf{Ciklus} \; \text{v\'ege} \end{aligned}
```

Módosított algoritmus

```
Eljárás Rendezés(N,X)
   L \leftarrow L_0
   Ciklus amíg L \ge 1
       Ciklus i \leftarrow L + 1-től N-ig
           i \leftarrow i - L
            Y \leftarrow X[i]
            Ciklus amíg i > 0 és X[i] > Y
                X[i+L] \leftarrow X[i]
                i \leftarrow i - L
            Ciklus vége
            X[i+L] \leftarrow Y
       Ciklus vége
       L \leftarrow Következő(L)
   Ciklus vége
```

Eljárás vége

Rendezés Shell módszerrel

- L₀ nem lépheti túl N-t
- A Következő(L) függvény meghatározására pár példa:

$2^k - 1$ alakú eset

Következő←
$$(L+1)/2-1$$

Eljárás vége

Fibonacci szám alakú eset

$$L2 \leftarrow L - L1$$

$$L \leftarrow L1$$

$$L1 \leftarrow L2$$

Eljárás vége

L meghatározására további javaslatok

Shell sorozat

$$L \leftarrow \left\lfloor \frac{N}{2^k} \right\rfloor,$$

ahol k = 1, 2, ...

Ebben az esetben a rendezés $O(n^2)$ -es

Pratt sorozat

L értékei a $2^p \cdot 3^q$ alakban előállítható számok, azaz pl.

$$\{1, 2, 3, 4, 6, 8, 9, 12 \ldots\}$$

Ebben az esetben a rendezés $O(n \cdot \log^2 n)$ -es

Knuth sorozat

L értékei a $(3^k - 1)/2$ értékei, azaz pl.

$$\{1,3,13,40,121,\ldots\}$$

Ebben az esetben a rendezés $O(n^{3/2})$ -es

Felhasznált irodalom

 Szlávi Péter, Zsakó László: Módszeres programozás: Programozási tételek (Mikrológia 19). ELTE TTK, 2002

