Directed Graphs

- Directed Graphs (Digraphs)
- Digraph Applications
- Transitive Closure
- Digraph Traversal
- Example: Web Crawling
- PageRank

COMP2521 20T2 \Diamond Directed Graphs [0/19]

Digraph Applications

Potential application areas:

Domain	Vertex	Edge
Web	web page	hype <mark>rlink</mark>
scheduling	task	precedence
chess	board position	legal move
science	journal article	citation
dynamic data	malloc'd object	pointer
programs	function	function call
make	file	dependency

COMP2521 20T2 \Diamond Directed Graphs [2/19]

... Digraph Applications

Problems to solve on digraphs:

- is there a directed path from s to t? (transitive closure)
- what is the shortest path from s to t? (shortest path)
- are all vertices mutually reachable? (strong connectivity)
- how to organise a set of tasks? (topological sort)
- which web pages are "important"? (PageRank)
- how to build a web crawler? (graph traversal)

COMP2521 20T2 \Diamond Directed Graphs [3/19]

Transitive Closure

Problem: computing reachability (reachable(G,s,t))

Given a digraph G it is potentially useful to know

• is vertex t reachable from vertex s? 5-7+

Example applications:

- can I complete a schedule from the current state?
- is a malloc'd object being referenced by any pointer?

COMP2521 20T2 \Diamond Directed Graphs [4/19]

... Transitive Closure

One possibility to implement a reachability check:

- use **hasPath**(**G**,**s**,**t**) (itself implemented by DFS or BFS algorithm)
- feasible only if *reachable(G,s,t)* is an infrequent operation

What about applications that frequently check reachability?

Would be very convenient/efficient to have:

reachable(
$$G,s,t$$
) $\equiv G.tc[s][t]$

tc[][] is called the transitive closure matrix

• tc[s][t] is 1 if there is a path from s to t, 0 otherwise

Of course, if *V* is large, then this may not be feasible either.

COMP2521 20T2 \Diamond Directed Graphs [5/19]

The tc[][] matrix shows all directed paths in the graph

	a	b	С	d	е	f	g
а	1	0	0	1	0	0	0
b	1	0	1	0	0	0	0
С	0	1	0	1	0	0	1
d	0	1	0	0	0	1	1
е	0	0	0	1	0	0	0
f	1	0	0	1	0	0	1
g	0	0	0	0	0	0	1
		7.					

	а	b	С	d	е	f	g
a	1	1	1	1	0	1	1
b	1	1	1	1	0	1	1
С	1	1	1	1	0	1	1
d	1	1	1	1	0	1	1
е	1	1	1	1	0	1	1
f	1	1	1	1	0	1	1
g	0	0	0	0	0	0	1

reachability matrix

Question: how to build tc[][] from edges[][]?

COMP2521 20T2 \Diamond Directed Graphs [6/19]

Goal: produce a matrix of reachability values

Observations:

- $\forall s,t \in \text{vertices}(G): (s,t) \in \text{edges}(G) \Rightarrow tc[s][t] = 1$
- $\forall i, s, t \in \text{vertices}(G)$: $(s, i) \in \text{edges}(G) \land (i, t) \in \text{edges}(G) \Rightarrow tc[s]$ [t] = 1 + vls[t] = 1

In other words

- tc[s][t]=1 if there is an edge from s to t (path of length 1)
- tc[s][t]=1 if there is a path from s to t of length 2 $(s \rightarrow i \rightarrow t)$

COMP2521 20T2 \Diamond Directed Graphs [7/19]

Extending the above observations gives ...

```
An algorithm to convert edges into a to the edges into a to the to[][] = edges[][]
     for all i E vertices(G) do
         for all s E vertices(G) do
             for all t E vertices(G) do
                 if tc[s][i]=1 \( tc[i][t]=1 \) then
                    tc[s][t]=1
                 end if
             end for
         end for
     end for
```

This is known as Warshall's algorithm

DLV3)

COMP2521 20T2 \Diamond Directed Graphs [8/19]

How it works ...

After copying edges[][], tc[s][t] is 1 if $s \rightarrow t$ exists

After first iteration (i=0), tc[s][t] is 1 if

• either $s \rightarrow t$ exists or $s \rightarrow 0 \rightarrow t$ exists

After second interation (i=1), tc[s][t] is 1 if any of

• $s \rightarrow t$ or $s \rightarrow 0 \rightarrow t$ or $s \rightarrow 1 \rightarrow t$ or $s \rightarrow 0 \rightarrow 1 \rightarrow t$ or $s \rightarrow 1 \rightarrow 0 \rightarrow t$

After the V^{th} iteration, tc[s][t] is 1 if

• there is a directed path in the graph from s to t

COMP2521 20T2 \Diamond Directed Graphs [9/19]

Tracing Warshall's algorithm on a simple graph:

	[0]	[1]	[2]	[3]
[0]	0	1	1	1
[1]	1	0	1	0
[2]	0	1	0	0
[3]	0	0	0	0

Graph

Initially

[1]

[2]

[3]

No change on any following

iterations

	[0]	[1]	[2]	[3]
[0]	0	1	1	1
[1]	1	1	1	1
[2]	0	1	0	0
[3]	0	0	0	0

After first iteration

After	second	iteration

1

COMP2521 20T2 \Diamond Directed Graphs [10/19]

[3]

1

1

1

<< ^

... Transitive Closure

Cost analysis:

- storage: additional V^2 items (but each item may be 1 bit)
- computation of transitive closure: V^3
- computation of reachable(): O(1) after generating tc[]

Amortisation: need many calls to **reachable()** to justify setup cost

Alternative: use DFS in each call to reachable()

Cost analysis:

- storage: cost of Stack and Set during DFS calculation
- computation of **reachable()**: $O(V^2)$ (for adjacency matrix)

COMP2521 20T2 \Diamond Directed Graphs [11/19]

Digraph Traversal

Same algorithms as for undirected graphs:

```
depthFirst(G,v):
   mark v as visited
   for each (v,w) \in edges(G) do
      if w has not been visited then
         depthFirst(w)
      end if
   end for
breadthFirst(G,v):
   enqueue v
   while queue not empty do
      curr=dequeue
      if curr not already visited then
         mark curr as visited
         enqueue each w where (curr, w) \in edges(G)
      end if
   end while
```

COMP2521 20T2 \Diamond Directed Graphs [12/19]

Example: Web Crawling

Goal: visit every page on the web

Solution: breadth-first search with "implicit" graph

visit scans page and collects e.g. keywords and links

COMP2521 20T2 \Diamond Directed Graphs [13/19]

PageRank

Goal: determine which Web pages are "important"

Approach: ignore page contents; focus on hyperlinks

- treat Web as graph: page = vertex, hyperlink = di-edge
- pages with many incoming hyperlinks are important
- need to computing "incoming degree" for vertices

Problem: the Web is a *very* large graph

• approx. 10¹⁰ pages, 10¹¹ hyperlinks

COMP2521 20T2 \Diamond Directed Graphs [14/19]

... PageRank

Assume for the moment that we could build a graph ...

Naive PageRank algorithm:

```
PageRank(myPage):
    rank=0
    for each page in the Web do
        if linkExists(page,myPage) then
            rank=rank+1
        end if
    end for
```

Note: requires inbound link check (normally, we check outbound)

... PageRank

V = # pages in Web, E = # hyperlinks in Web

Costs for computing PageRank for each representation:

Representation	linkExists(v,w)	Cost
Adjacency matrix	edge[v][w]	1
Adjacency lists	<pre>inLL(list[v],w)</pre>	≅ E/V

Not feasible ...

- adjacency matrix ... $V = 10^{10} \Rightarrow \text{matrix has } 10^{20} \text{ cells}$
- adjacency list ... V lists, each with ≈ 10 hyperlinks $\Rightarrow 10^{11}$ list nodes

So how to really do it?

COMP2521 20T2 \Diamond Directed Graphs [16/19]

... PageRank

The random web surfer strategy.

Each page typically has many outbound hyperlinks ...

- choose one at random, without a visited[] check
- follow link and repeat above process on destination page

If no visited check, need a way to (mostly) avoid loops

Important property of this strategy

- if we randomly follow links in the web ...
- ... more likely to re-discover pages with many inbound links

COMP2521 20T2 \Diamond Directed Graphs [17/19]

... PageRank

Random web surfer algorithm ...

COMP2521 20T2 \Diamond Directed Graphs [18/19]

Shortest Path Algorithms

- Shortest Path
- Single-source Shortest Path (SSSP)
- Edge Relaxation
- Dijkstra's Algorithm
- Tracing Dijkstra's Algorithm
- Analysis of Dijkstra's Algorithm

COMP2521 20T2 \diamondsuit Shortest Path [0/10]

\ >:

Shortest Path

Path = sequence of edges in graph G

• $p = (v_0, v_1, weight_1), (v_1, v_2, weight_2), ..., (v_{m-1}, v_m, weight_m)$

cost(path) = sum of edge weights along path

Shortest path between vertices s and t

- a simple path p(s,t) where s = first(p), t = last(p)
- no other simple path q(s,t) has cost(q) < cost(p)

Assumptions: weighted digraph, no negative weights.

Applications: navigation, routing in data networks, ...

COMP2521 20T2 \diamondsuit Shortest Path [1/10]

... Shortest Path

Some variations on shortest path (SP) ...

Source-target SP problem

shortest path from source vertex s to target vertex t

Single-source SP problem

set of shortest paths from source vertex s to all other vertices

All-pairs SP problems

set of shortest paths between all pairs of vertices s and

COMP2521 20T2 \$\times\$ Shortest Path [2/10]

Single-source Shortest Path (SSSP)

Shortest paths from s to all other vertices

- dist[] V-indexed array of cost of shortest path from s
- pred[] V-indexed array of predecessor in shortest path from s

Example:

COMP2521 20T2 \Diamond Shortest Path [3/10]

Edge Relaxation

Assume: dist[] and pred[] as above

• but containing data for shortest paths discovered so far

If we have ...

- dist[v] is length of shortest known path from s to v
- dist[w] is length of shortest known path from s to w
- edge (v,w,weight)

Relaxation updates data for w if we find a shorter path from s to w:

 if dist[v]+weight < dist[w] then update dist[w]←dist[v]+weight and pred[w]←v

COMP2521 20T2 \diamondsuit Shortest Path [4/10]

<< >>

... Edge Relaxation

Relaxation along edge e = (v, w, 3):

COMP2521 20T2 \diamondsuit Shortest Path [5/10]

Dijkstra's Algorithm

One approach to solving single-source shortest path ...

```
dist[] // array of cost of shortest path from s
pred[] // array of predecessor in shortest path from s
vSet
        // vertices whose shortest path from s is unknown
dijkstraSSSP(G,source):
   Input graph G, source node
   initialise all dist[] to ∞
   dist[source]=0
   initialise all pred[] to -1
   vSet=all vertices of G
   while vSet = Ø do with myty
      find v E vSet with minimum dist[v]
      for each (v,w,weight) E edges(G) do
         relax along (v,w,weight)
      end for
      vSet=vSet \ {v} - nmv v mode
   end while
```

Tracing Dijkstra's Algorithm

How Dijkstra's algorithm runs when source = 0:

Initially

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	inf	inf	inf	inf	inf
pred	-	-	-	-	-	-

First iteration, v=0

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	inf	int
pred	-	0	0	0	-	-

while vSet not empty do
 find v in vSet
 with min dist[v]
 for each (v,w,weight) in E do
 relax along (v,w,weight)
 end for
 vSet = vSet \ {v}
end while

5

15

Second Iteration, v=3

Third iteration, v=2

 $0 \qquad 9 \qquad 2 \qquad 5$

Fourth iteration, v=5

COMP2521 20T2 \diamondsuit Shortest Path [7/10]

Analysis of Dijkstra's Algorithm

Why Dijkstra's algorithm is correct ...

Hypothesis:

- (a) for visited s, dist[s] is shortest distance from source
- (b) for unvisited *t*, dist[*t*] is shortest distance from source *via visited nodes*

Ultimately, all nodes are visited, so ...

• ∀ v, dist[v] is shortest distance from source

COMP2521 20T2 \diamondsuit Shortest Path [8/10]

<<

.

... Analysis of Dijkstra's Algorithm

Time complexity analysis ...

Each edge needs to be considered once $\Rightarrow O(E)$.

Outer loop has O(V) iterations.

Implementing "find s E vSet with minimum
dist[s]"

- 1. try all $\mathbf{s} \in \mathbf{vSet} \Rightarrow \mathbf{cost} = O(V) \Rightarrow \mathbf{overall} \mathbf{cost} = O(E + V^2)$ $= O(V^2)$
- 2. using a PQueue to implement extracting minimum
 - can improve overall cost to O(E + V·log V)

COMP2521 20T2 \Diamond Shortest Path [10/10]