Getting Even with Odd Functions

Recall that a function is even if f(-x) = f(x), and odd if f(-x) = -f(x).

1. Determine whether each function is even, odd or neither. Then compute $\int_{-a}^{a} f(x) dx$.

(a)
$$f(x) = \frac{\sin x}{\cos x}, \ a = \pi/4$$

(b)
$$f(x) = x^5 - x^3 + x$$
, $a = 1$.

2. Let
$$f(x) = x^5 - x^3 + x$$
.

(a) Integrate
$$\int_{-1}^{2} f(x) dx$$
.

(b) Without evaluating any further integrals (i.e. without using the Evaluation Theorem), find $\int_{1}^{2} f(x) dx$.

Hint: Can you split $\int_{-1}^{2} f(x) dx$ up so that you can use your work from earlier problems?

3. (a) Let f(x) be an even function. Show $\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(x) dx$. (*Hint*: Try the substitution u = -x.)

(b) Use part (a) to explain why $2\int_0^a f(x) dx = \int_{-a}^a f(x) dx$.