Лабораторная работа 1.1.1 Измерение удельного сопротивления нихромовой проволоки 8 сентября 2023 г.

1. Цели и задачи

Измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, аперметр, вольтметр и мост постоянного тока.

2. Оборудование

Линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

	Вольтметр	Амперметр
Класс точности	0,03	$0,\!5$
Погрешность	?	?
Внутр. сопротивление	10 МОм??	22/75 Ом

Таблица 1: Характеристики приборов.

3. Теория

Формула удельного сопротивления:

$$\rho = \frac{R_{\rm np}}{l} \frac{\pi d^2}{4} \tag{1}$$

$$\sigma = \sqrt{\frac{1}{N-1} \left(d_i - \overline{d} \right)^2} \tag{2}$$

4. Результаты измерений

d, мм 0.3 0.3 0.3	0.3 0.3	0.3 0.3	0.3 0.3	0.3
-------------------------	---------	---------	---------	-----

Таблица 2: Измерения диаметра штангенциркулем

d, mm	0.36	0.365	0.38	0.365	0.36	0.365	0.36	0.365	0.37	0.36

Таблица 3: Измерения диаметра микрометром

l = 20,0 см		l = 30	,0 см	l=50,0 см		
U , м B	I, м A	U , м B	I, м A	U , м B	I, м A	
11,0	5,0	15,9	5,0	65,3	12,5	
30,7	15,0	47,3	15,0	107,0	20,0	
52,9	25,0	77,6	25,0	183,6	35,0	
74,1	35,0	114,1	35,0	292,5	55,0	
117,1	55,0	175,8	55,0	399,8	75,0	
160,2	75,0	240,4	75,0	345,2	65,0	
139,2	65,0	208,3	65,0	240,7	45,0	
106,4	50,0	159,4	50,0	128,4	25,0	
85,8	40,0	126,7	40,0	373,6	70,0	
63,1	30,0	96,2	30,0	321,1	60,0	
41,5	20,0	64,3	20,0	156,2	30,0	
20,8	10,0	31,6	10,0	25,1	5,0	

Таблица 4: Измерения

Рис. 1: График

5. Выводы

ТООО кресты погрешностей

https://matica.org.ua/metodichki-i-knigi-po-matematike/kurs-vysshei-matematiki-4/23-funktciia-laplasa

покрасить прямые и обратные точки в разные

погрешности

посмотреть устройство моста

В работе получено значение удельного сопротивления образца проволоки из нихромового сплава с точностью 6.5%. Табличные значения для нихрома лежат в диапазоне $\rho\rho$ табл = $0.97 \dots 1.14 \cdot 10 - 6 \text{ Ом} \cdot \text{м}$ в зависимости от состава. Измеренные значения $\rho \rho = (1.07 \pm 0.07)$ · 10-6 Ом · м попадают в этот диапазон в пределах одного стандартного от- клонения, однако погрешность результата не позволяет определить марку сплава. Использованный в работе метод измерения сопротивлений позволил получить значения RR образцов с довольно высокой точностью (0.5%), которая ограничивалась в основном погреш- ностью аналогового вольтметра. Величина случайной погрешности $\sigma\sigma RR$ сл., найденная в п. 4.2., по- казывает, что использование более совершенных измерительных приборов позволило бы дове- сти точность измерения по данной методике до 0.1-0.2% (при неизменном количестве измере- ний), что сопоставимо с точностью измерений с помощью мостовой схемы. Точность измерения удельного сопротивления $\rho\rho$ существенно ограничивается измерением диаметра проволоки. Поскольку случайная ошибка измерения диаметра оказалась меньше цены деления прибора (микрометра), уточнение значения диаметра за счет многократных из- мерений невозможно. По той же причине не удалось проверить, насколько однородной явля- ется проволока по сечению.