Basics and Arithmetic of the Real Numbers

Otto Stolz

THEOREM.

(1) Let n be a whole positive number that grows without limit. If the unique function $\phi(n)$ grows (decreases) continuously with n from a value $n=n_1$, and thus has a limit at $\lim =+\infty$ according to No. 6, which is supposed to be infinite; then it follows from the existence of the limit

$$\lim_{n=+\infty}\frac{f(n+1)-f(n)}{\phi(n+1)-\phi(n)}=K,$$

where f(n) also means a unique function of n, that there is also a limit for the fraction f(n): $\phi(n)$ at $\lim n = +\infty$, namely that it is equal to K.

(2) The same theorem applies if the unique functions f(n), $\phi(n)$ each have the limit 0 for $\lim n = +\infty$ and $\phi(n)$ grows (decreases) continuously with n from $n = n_1$.

Proof. For the proof, it is sufficient to assume that $\phi(n)$ increases continuously with n and that K does not have the sign —. Then two cases can be distinguished for the first theorem, to which we restrict the following development.

a) $K \ge 0$. According to the assumption, for every number $\varepsilon > 0$ there belongs a number G such that

$$\left|\frac{f(n+1)-f(n)}{\phi(n+1)-\phi(n)}-K\right|<\epsilon \quad n>G.$$

From this we conclude that, since $\varphi(m+1) > \varphi(n)$,

$$(K-\epsilon)[\phi(n+1)-\phi(n)]< f(n+1)-f(n)< (K+\epsilon)[\phi(n+1)-\phi(n)].$$

Now let m be a certain integer > G, so that in this relation we can set n = m, m+1, ..., m+r-1 one after the other. If we add the r inequalities obtained in this way, we get

$$(K-\epsilon)[\phi(m+r)-\phi(m)] < f(m+r)-f(m) < (K+\epsilon)[\phi(m+r)-\phi(m)]$$

and

$$-\epsilon[\phi(\mathfrak{m}+r)-\phi(\mathfrak{m})]< f(\mathfrak{m}+r)-f(\mathfrak{m})-K[\phi(\mathfrak{m}+r)-\phi(\mathfrak{m})]<\epsilon[\phi(\mathfrak{m}+r)-\phi(\mathfrak{m})].$$

Since $\varphi(m)$ and $\varphi(m+r)$ can be assumed to be positive, we also find:

$$\begin{split} -\epsilon \phi(m+r) &< f(m+r) - f(m) - K[\phi(m+r) - \phi(m)] < \epsilon \phi(m+r), \\ -\epsilon &< \frac{f(m+r)}{\phi(m+r)} - K - \frac{f(m) - K\phi(m)}{\phi(m+r)} < \epsilon. \end{split}$$

However large the number m may be; then, because $\lim \phi(n) = +\infty$ we can find a number $\rho > 0$ such that

$$\frac{|f(m)-K\phi(m)|}{\phi(m+r)}<\epsilon\quad \text{for}\quad r>\varrho.$$

We therefore have

$$\left|\frac{f(m+r)}{\phi(m+r)}-K\right|<2\epsilon$$

or $|f(n): \varphi(n) - K| < 2\varepsilon$ for all $n > m + \varrho$. Now then, the number 2ε , which can be any positive number, indeed corresponds to the number $m + \varrho$, since m results from ε initially and after m the number ϱ from ε . Thus we have

$$\lim f(n) : \varphi(n) = K$$

for $\lim n = +\infty$.

b) $K = +\infty$. Let 0 < H < H'. According to the assumption, for H' > 0 there should be a number G' such that for n > G'

$$f(n+1) - f(n) > H'\{\varphi(n+1) - \varphi(n)\},\$$

from which we find as above -m > G'

$$\begin{split} f(\mathfrak{m}+r)-f(\mathfrak{m}) > H'\{\phi(\mathfrak{m}+r)-\phi(\mathfrak{m})\}, \\ \frac{f(\mathfrak{m}+r)}{\phi(\mathfrak{m}+r)} > H' + \frac{f(\mathfrak{m})-H'\phi(\mathfrak{m})}{\phi(\mathfrak{m}+r)}. \end{split}$$

Now a number $\rho > 0$ can be specified such that

$$r > \rho$$
 $|f(m) - H'\phi(m)| : \phi(m+r) < H' - H;$

1

2

therefore, for all $n > m + \varrho$

$$\frac{f(n)}{\phi(n)} > H' - (H' - H) = H \quad \text{i.e.} \quad \lim \frac{f(n)}{\phi(n)} = +\infty.$$

At the same time, we can see from (3) that $\lim f(n) = +\infty$, so that we could also conclude as follows: According to theorem a),

$$lim\{\phi(n):f(n)\}=0,$$

therefore, since $\phi(n): f(n) > 0$,

$$lim\{f(n):\phi(n)\}=+\infty. \hspace{1.5cm} \Box$$

Remark. The above theorems can be extended to the case that the independent variable grows continuously over all limits.