度量空间中的序列收敛

定义 (度量空间中的序列) (于品数分讲义中称为点列) (X,d)是一个任意的度量空间,(X,d)中的一个任意的点列就是 $\mathbb{Z}_{>1}$ $\longrightarrow X$ 的 一个映射 f:

$$f: \mathbb{Z}_{\geqslant 1} \longrightarrow X$$

$$n \longmapsto f(n) = x_n$$

记上述由映射了确定的点列为[xn]~

Remark: 度量空间 (X,d) 中的点列也可以是 $\mathbb{Z}_{>0}$ $\longrightarrow X$ 的映射或 $\mathbb{Z}_{>0}$ $\longrightarrow X$ 的映射或 $\mathbb{Z}_{>0}$ $\longrightarrow X$ 的映射 没有本质区别 .

定义(度量空间中点列的权限) (X, d)是度量空间, $[x_n]_{n>1}$ 是(X, d)中点的序列. 如果存在 $x \in X$,使得又 $\forall Y \in \mathbb{R}_{>0}$, $\exists N \in \mathbb{Z}_{>1}$,使得又 $\forall Y \in \mathbb{R}_{>0}$, $\exists N \in \mathbb{Z}_{>1}$,使得又 $\forall Y \in \mathbb{R}_{>0}$, $\exists N \in \mathbb{Z}_{>1}$, 使得又 $\forall Y \in \mathbb{R}_{>0}$, $\exists N \in \mathbb{Z}_{>1}$, $\exists X \in \mathbb{R}_{>0}$, \exists

例:(X,d)是离散度量空间,{xn}n;是X中的一个点列,则有:

 $\exists x \in X$, s.t. $\lim_{n \to +\infty} x_n = x$ <=> $\exists N \in \mathbb{Z}_{\geqslant 1}$, s.t. $x \notin A \cap A \cap A$, 有: $x_n = x$ $Proof: (=>): :: \exists x \in X$, s.t. $\lim_{n \to +\infty} x_n = x$

 $\therefore x + f \neq \in \mathbb{R}_{>0}$, $\exists N \in \mathbb{Z}_{>1}$, $s + t \neq h > N$, $\exists n \neq h \neq h \neq h > N$, $\exists n \neq h \neq h \neq h > N$,

: ** ∀ N > N, 有: xn = x

(金): $xt \forall \in \mathbb{R}_{>0}$, $N \in \mathbb{Z}_{\geq 1}$, $xt \forall n \geq N$, 有: $d(x_n, x) = d(x, x) = \infty$: $\lim_{x \to \infty} x_n = x$.

例: (X_1, d_1) 和 (X_2, d_2) 是两个度量空间, $\{(X_1, X_2, d_2)\}_{n>1}$ 是 $(X_1 \times X_2, d_2)$ 中的一个事意点列。 $(x^{(1)}, x^{(2)}) \in X_1 \times X_2$ 则有: $\lim_{n\to +\infty} (x_n^{(1)}, x_n^{(2)}) = (x^{(1)}, x^{(2)}) <= \lim_{n\to +\infty} (x_n^{(1)}, x_n^{(2)}) = x^{(2)}$ Proof: (=>): 2+ YEER>0, $O(((X_n^{(1)}, X_n^{(2)}), (X_n^{(1)}, X_n^{(2)})) < \varepsilon$ $= \mathscr{A}\left(\left(X_{n}^{(1)}, X_{n}^{(2)}\right), \left(X_{n}^{(1)}, X_{n}^{(2)}\right)\right) < \varepsilon$ $\therefore \lim_{n \to +\infty} \chi_n^{(1)} = \chi^{(1)}$ $\exists x \neq \forall n > N, \not f_1: d_2(x_n^{(2)}, x^{(2)}) \leq d_1(x_n^{(1)}, x^{(1)}) + d_2(x_n^{(2)}, x^{(2)})$ $= \mathscr{A}\left(\left(\left(X_{n}^{(1)}, X_{n}^{(2)}\right), \left(X_{n}^{(1)}, X_{n}^{(2)}\right)\right) < \varepsilon$ (€): xt V E ∈ R>0 $\frac{1}{n + 100} \times \frac{1}{n} = \times \frac{1}{n} = \frac{\varepsilon}{2} \in \mathbb{R}_{>0} \quad \text{if } \mathbb{N}_{1} \in \mathbb{Z}_{>0}, \quad \text{if } \mathbb{N}_{1}, \quad \text{if } \mathbb{N}_{1}$ $\lim_{n\to\infty} x_n^{(2)} = x^{(2)}$, $\frac{\varepsilon}{2} \in \mathbb{R}_{>0}$ $\lim_{n\to\infty} x_n^{(2)} = x^{(2)}$, $\frac{\varepsilon}{2} \in \mathbb{R}_{>0}$, $\lim_{n\to\infty} x_n^{(2)} = x^{(2)}$, $\lim_{n\to\infty} x_n^{(2$

任取N∈ZN,满足N>max [N,N2], xHN>N,有: $d((x_{n}^{(1)},x_{n}^{(2)}),(x_{n}^{(1)},x_{n}^{(2)})) = d_{1}(x_{n}^{(1)},x_{n}^{(1)}) + d_{2}(x_{n}^{(2)},x_{n}^{(2)}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ $: \lim_{n \to +\infty} (X_n^{(1)}, X_n^{(2)}) = (X^{(1)}, X^{(2)})$

Lenna (用点列的 权限来刻 画 闭集) (X, d)是度量空间, $F \subseteq X$,则有: F是(X,d)的闭集 <=> xty F中的点到[xn]n=1, 若lim xn=x,则有xeF | roof: (=>): 对 \ F中的点列 [xn] n=1, 若 lim xn = x, 则有: 假设x年F,则·{xn}nzl是F中的点列,limxn=x ··xeX ··xeX/F :: F = (X, d)的闭集 $:: X \setminus F = (X, d)$ 的开集 ·· xeX\F :. 3reR>o, st. B(x;r) SX\F : xf∀n≥N, 有: xn∈B(x;r)⊆X\F.这与[xn]nn是F中的点到矛盾. .. x∈ F (金):··(X,d)是度量空间, FSX : FSdF xtVxeclF,有:xtVneZxx,有: ←∈R>0 $x \in clF, \frac{1}{n} \in \mathbb{R}_{>0}$ $B(x; \frac{1}{n}) \cap F \neq \emptyset$ ··] xn ∈ B(x; t) AF : xn ∈ B(x; t) 且 xn ∈ F =xxx ·· xtVneZz, xneF ·· (xn)nz,是F中的点列 $Z \neq V \in \mathbb{R}_{>0}$,取 $N \in \mathbb{Z}_{>1}$ 满足 $N > \frac{1}{N} < \varepsilon$ xt $\forall n \ge N$, $f: \frac{1}{n} \le \frac{1}{N} < \Sigma$ $: d(x_n, x) < \frac{1}{n} \le \frac{1}{N} < \Sigma$ $\lim_{n \to \infty} x_n = x \qquad \lim_{n \to \infty} x_n = x \qquad \lim_{n$... F是 (X,d) 的闭集 \square

例:取R上的度量为通常的绝对值 d(x,y) = |x-y|, $\forall x,y \in \mathbb{R}$.

A=(0,1) U[2] 则有:A的所有极限点组成的集合为[0,1] .

A自的所有孤立点组成自分集合为 [2]

Proof: etyx∈[0,1],有:x∈R.

 $\begin{array}{ll} x + y \in \mathbb{R}_{>0}, & B(x; \varepsilon) = \left\{\lambda \in \mathbb{R} : d(x, \lambda) < \varepsilon\right\} = \left\{\lambda \in \mathbb{R} : |\lambda - x| < \varepsilon\right\} \\ = \left\{\lambda \in \mathbb{R} : -\varepsilon < \lambda - x < \varepsilon\right\} = \left\{\lambda \in \mathbb{R} : x - \varepsilon < \lambda < x + \varepsilon\right\} = (x - \varepsilon, x + \varepsilon) \quad (\text{FEii}) \end{array}$

当x=0时,有处下的示意图: ***

$$\therefore x + \varepsilon = 0 + \varepsilon = \varepsilon > 0 \qquad \therefore B(x; \varepsilon) \cap A = (0, x + \varepsilon)$$

··]aeB(X;E) MA满足 a≠X.

 $3 \times 为其他值时,类似地可证 <math>3 \in B(x; E) \cap A$ 满足 $\alpha \neq x$

:X是A的极限点.

 $x \neq Y \times \in \mathbb{R} \setminus \mathbb{C}^{0,1}$, $+ x \neq Z$, 则 引 充分的 $\varepsilon \in \mathbb{R} > 0$, s.t. $B(x; \varepsilon) \cap A = \emptyset$.: \times 不是 A 的 极 限 点 .

 $\# \times = 2$,则于充分的 $\& \in \mathbb{R}_{>0}$,S.t. $\& (\times; \&) \cap A = \{2\}$ 而 $2 = \times$.

- ·· ×不是A的权限点。
- :. A的所有极限点组成的集合为 [0,1]
- .. A的所有孤立点组成的集合为 [2].

定义(点列台分列)(X,d)是度量空间, [xn]nzz 是X中的一个点列则有: 又 $\dagger \forall n_1, n_2, \dots \in \mathbb{Z}_{\geqslant 1}$, $n_1 < n_2 < \dots$, $\{x_{n_k}\}_{k > 1}$ 是 $\{x_n\}_{n > 1}$ 的一个子到. $L_{emma}: (X,d)$ 是度量空间, $\{x_n\}_{n>1}$ 是X中的一个点列, $\lim_{n\to +\infty} x_n = x$, $x \in X$. 则有: $x + y \in X_n \in X_n$ Prof: xtVEER>0, $\lim_{n\to\infty} x_n = x$... $\exists N \in \mathbb{Z}_{\geq 1}$, $\forall x \in \mathbb{Z}_{\geq 1}$. :. xt Y k > N, 有: nx > k > N :: d(xnx, x) < E $\lim_{k \to \infty} x_{n_k} = x$ Remark: [xn]n,是序列, [xnk]k,是[xn]n, 65任一子列,则有; xfyk∈Z,, $\text{Proof: } \cdot \cdot \cdot \mid \leq n_1 < n_2 < \cdot \cdot \cdot < n_k < n_{k+1} < \cdot \cdot \cdot \quad , \quad n_1, n_2, \cdot \cdot \cdot \cdot , n_k, \cdot \cdot \cdot \in \mathbb{Z}_{\geqslant 1}$.. N₁≥|, N₂≥2,..., N_k≥k,... $L_{ema}: (X, d)$ 是度量空间, $\{x_n\}_{n=1}$ 是X中的一个点列, $x \in X$,则有: $\lim_{n\to\infty} x_n = x$ $\langle -\rangle \lim_{k\to+\infty} x_{2k} = x$ $\lim_{k\to+\infty} x_{2k-1} = x$ Proof: (=>):由上一引理之得. (€): 2+ V E ∈ R>0,

··lim xx = x ··]K, ∈ Z>1, 对 k>K, , 有: d(xx, x) < E ·· [im X2k-1 = x .. 3 K2 ∈ Z>1, 对 X k> K2, 有: d(X2k-1, x) < E

:. 任取N∈Z>1, s.t. N>max{2K1,2K2-1}, x+∀n>N,有:

①甲若n为偶数,则::n>N,N∈Z≥1 :: n为偶数 :: 引\eZ_N, s.t. n=2\ : $2\lambda = n > N > max \{2K_1, 2K_2 - 1\} \ge 2K_1$.. λ≥K, $\therefore d(x_n, x) = d(x_{2\lambda}, x) < \varepsilon$ ②若n为奇数,则:::n>N,N∈Zzi ::n∈Zzi ·· n为奇数 ·· 3 μ ∈ Z>1, S.t. n = 2 μ - 1 $2\mu - 1 = n > N > \max\{2k_1, 2k_2 - 1\} > 2k_2 - 1$:. M>K2 $\therefore d(x_n, x) = d(x_{2\mu-1}, x) < \varepsilon$ $\therefore d(x_n, x) < \xi$ $\therefore \lim_{n \to +\infty} x_n = x$ 定义(度量空间中子集的极限点,另一表述)(X,d)是度量空间,ASX, $x \in X$, 若对 $Y \in \mathbb{R}$, $B(x; \varepsilon) \cap (A(x)) \neq \emptyset$, 则称 x是A的权限点. Remark: ∃a∈B(x; E) ∩ A 满足 a≠x <=> B(x; E) ∩ (A(ixj)) ≠ Ø Proof: (=>): ·: ∃a∈B(x; E) ∩A 满足a≠x $x \in B(X; \Sigma)$, $a \in A$, $a \notin \{x\}$.. a∈ B(x; E) 1 a∈ A\{x} $B(x; z) \cap (A(x)) \neq \emptyset$ $(\Leftarrow): : B(x; \epsilon) \cap (A(ix)) \neq \emptyset$ $\exists \alpha \in \beta(x; \epsilon) \cap (A \setminus \{x\})$:.aeB(x;E)且aeA(Ex) : aeB(x; E) A aeA A a +x ·· a e B(X; E) MA A a + X