FVE3011

OpenCV in Python

담당교수: 최 학남

Contents

- OpenCV 설치
- Read and display images using OpenCV
- Data augmentation using OpenCV

OpenCV 설치

- Anaconda 설치
 - https://www.anaconda.co m/download/
- Anaconda prompt
 - pip install opency-python
 - conda install -c menpo opencv3
- Pycharm
 - File → settings → project:
 → project interpreter
- Python program
 - import cv2

Read and display image


```
import cv2
img = cv2.imread('img.jpg')
cv2.imshow('img',img)
cv2.waitKey(0)
```

Smoothing images

- Filter2D function
 - Need to design the filter
 - Apply the convolution with designed filter

```
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

img = cv.imread('opencv_logo.png')

kernel = np.ones((5,5),np.float32)/25
dst = cv.filter2D(img,-1,kernel)

plt.subplot(121),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(dst),plt.title('Averaging')
plt.xticks([]), plt.yticks([])
plt.xticks([]), plt.yticks([])
```

Smoothing images

- Averaging
 - blur = $\underline{\text{cv.blur}}(\text{img},(5,5))$
- Gaussian filter
 - blur = cv.GaussianBlur(img,(5,5),0)
- Median filter
 - median = <u>cv.medianBlur</u>(img,5)

Gaussian Noise

- Img = cv.imread(' ');
- row,col,ch= img.shape
- mean = 0
- var = 0.5
- sigma = var**0.5
- gauss = np.random.normal(mean,sigma,(row,col,ch))
- noisylmg = Img + gauss img = img + noise.astype(np.uint8)

Mean, var을 이용하여 노이즈 레벨을 조절

- Scaling
 - Resizing the image
 - cv.resize()

```
import numpy as np
import cv2 as cv

img = cv.imread('messi5.jpg')

res = cv.resize(img,None,fx=2, fy=2, interpolation = cv.INTER_CUBIC)

#OR

height, width = img.shape[:2]
res = cv.resize(img,(2*width, 2*height), interpolation = cv.INTER_CUBIC)
```


Translation

$$M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}$$

```
import numpy as np
import cv2 as cv

img = cv.imread('messi5.jpg',0)
rows,cols = img.shape

M = np.float32([[1,0,100],[0,1,50]])
dst = cv.warpAffine(img,M,(cols,rows))

cv.imshow('img',dst)
cv.waitKey(0)
cv.destroyAllWindows()
```


image

Rotation

 Rotation of an image for an angle theta is achieved by the transformation matrix of the form

$$M = egin{bmatrix} cos heta & -sin heta \ sin heta & cos heta \end{bmatrix}$$

```
img = cv.imread('messi5.jpg',0)
rows,cols = img.shape

M = cv.getRotationMatrix2D((cols/2,rows/2),90,1)
dst = cv.warpAffine(img,M,(cols,rows))
```


Affine transformation

```
img = cv.imread('drawing.png')
rows,cols,ch = img.shape

pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])

M = cv.getAffineTransform(pts1,pts2)

dst = cv.warpAffine(img,M,(cols,rows))

plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
```


Perspective transformation

```
img = cv.imread('sudoku.png')
rows,cols,ch = img.shape

pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])

M = cv.getPerspectiveTransform(pts1,pts2)

dst = cv.warpPerspective(img,M,(300,300))

plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
```


Data augmentation

- MNIST data
 - Download from http://yann.lecun.com/exdb/mnist/
 - Binary files
 - Pycharm setting
 - File → settings → project: → project interpreter
 - python-mnist 추가

```
from mnist import MNIST

mndata = MNIST('MNIST/')
mndata.gz = True
print(mndata)
images, labels = mndata.load_training()
```

MNIST 구조

Homework: data augmentation (\)

n	1	2	3	1	5	6
0.jpg	1.jpg	2.jpg	3.jpg	4.jpg	5.jpg	6.jpg
7.jpg	8.jpg	9.jpg	beo.jpg	bo.jpg	bu.jpg	da.jpg
deo.jpg	do.jpg	du.jpg	eo.jpg	Jł ga.jpg	月 geo.jpg	go.jpg
gu.jpg	Ol heo.jpg	jeo.jpg	jo.jpg	주 ju.jpg	ma.jpg	meo.jpg
Mo.jpg	T mu.jpg	na.jpg	neo.jpg	no.jpg	nu.jpg	9

HW1: data augmentation

- 4중 for(while)문을 사용하여 data augmentation을 진행하시오.
 - Blur \rightarrow 2
 - Filter size: 3x3
 - Filter size: 5x5
 - Noise \rightarrow 10
 - Gaussian (Normal) noise: mean=0, std: 1~20, 2씩 증가
 - Translation \rightarrow 10
 - $(0,0) \rightarrow (tx, ty)$
 - tx:1~10, 1씩 증가
 - ty:1~10, 1씩 증가
 - Rotation \rightarrow 11
 - (-5~5) degree, 1도 간격으로 증가