

Movie Recommendation System using Machine Learning

Submitted in the partial fulfillment for the award of the degree

of

BACHELOR OF SCIENCE

IN

B.Sc. CSM (Computer Science, Statistics and Mathematics)

Submitted by:

Mohammad Umar

University ID: 22BNM20076

Under the Supervision of:

Shivani Kamboj

Department of Mathematics

DISCOVER . LEARN . EMPOWER

Outline

- Project Identification
- Need for the project
- Objectives of the work
- Conceptual Design and Methodology

Project Identification

Project Title & Introduction

• Title: Movie Recommendation System

• Introduction:

- A recommendation system that suggests movies based on user preferences.
- Unlike OTT-specific models, this system is platform-independent and adapts to new data updates.
- Implements advanced ML techniques for personalized recommendations.

Need for the Project

Why is it important?

- Users have accounts on multiple streaming platforms but get recommendations limited to each platform.
- No unified system for recommending movies across different OTTs.
- Helps users discover movies from different sources without bias towards a single platform.
- Demonstrates practical ML implementation, reinforcing key learning in recommendation systems.

Objectives of the Work

Main Objective

- Build a **platform-independent recommendation system** using ML models.
- Improve recommendation accuracy by optimizing similarity measures and algorithms.
- Ensure adaptability to new data for up-to-date recommendations.

Sub-Objectives

- •Data Handling: Process and clean large-scale movie datasets.
- •Model Selection: Experiment with collaborative filtering, content-based, and hybrid models.
- •Performance Evaluation: Measure accuracy using RMSE, precision, recall, and A/B testing.
- •Scalability: Ensure the system can handle growing data and user base

Innovation & Uniqueness

- Unlike Netflix or Prime Video, this model is platform-independent.
- Works with dynamic data updates to stay relevant.
- Uses user-item interactions to improve predictions over time

Conceptual Design and Methodology

System Architecture:

- •User provides ratings or interactions.
- •Data is preprocessed, cleaned, and transformed into a user-item matrix.
- •KNN-based collaborative filtering or matrix factorization models predict unseen ratings.
- •Final recommendations are presented to the user

Methodology Steps

- Dataset Selection (MovieLens 20M dataset)
- Data Preprocessing (Cleaning, handling missing values, encoding)
- Exploratory Data Analysis (EDA)
- Building Recommendation Models (Collaborative filtering, KNN, Matrix Factorization)
- Evaluation & Optimization
- Deploying the Model (Future Scope)

Tools & Technologies Used

- Programming Language: Python
- Libraries: Pandas, NumPy, Scikit-Learn, Surprise
- Dataset: MovieLens 20M
- Models: KNN, Collaborative Filtering, Matrix Factorization