

Курс «Моделировании климата городов», занятие №9

Промежуточные итоги и разбор PW3 Комфортность городского климата, часть 2

Михаил Иванович Варенцов

mvarentsov@hse.ru

Курс «Моделировании климата городов», занятие №9

Промежуточные итоги и разбор PW3

Комфортность городского климата, часть 2

Ощущаемая температура и термический комфорт

Архив погоды в Брэдшоу - Ангаллари Вэлли (Северная территория, Австралия)

	емя), дата		тер э.,м/с)	Видим.	Явления	Облачность	T (C)	Td (C)	f (%)	Te (C)	Tes (C)	Комфортность	Р (гПа)	Ро (гПа)	Tmin (C)	Tmax (C)
19	25.02	штиль	0 {2}	н/о		н/о	+28.5	+26.1	87	+43	+43	очень душно	1006.0	999.1		
20	25.02	В	1 {2}	н/о		н/о	+28.1	+25.7	87	+42	+42	очень душно	1005.9	999.0		
21	25.02	штиль	0 {1}	н/о		н/о	+27.2	+24.8	87	+39	+39	очень душно	1005.8	998.9		
22	25.02	штиль	0	н/о		н/о	+27.5	+25.1	87	+40	+40	очень душно	1006.6	999.7		
23	25.02	В	1 {2}	н/о		н/о	+30.8	+28.4	87	+52	+52	очень душно	1007.7	1000.8		
00	26.02	СВ	2 {4}	н/о		н/о	+32.1	+29.7	87	+58	+58	очень душно	1008.6	1001.7		
01	26.02	СВ	2 {3}	н/о		н/о	+33.4	+30.9	87	+64	+64	очень душно	1008.1	1001.2		
02	26.02	В	2 {5}	н/о		н/о	+34.8	+32.3	87	+71	+71	очень душно	1007.7	1000.8	+27.0	
03	26.02	ЮВ	2 {5}	н/о		н/о	+35.6	+33.1	87	+76	+76	опасность перегрева	1006.6	999.7		
04	26.02	ЮВ	3 {6}	н/о		н/о	+35.6	+33.1	87	+76	+76	опасность перегрева	1005.8	998.9		
05	26.02	В	2 {5}	н/о		н/о	+37.0	+34.5	87	+84	+84	опасность перегрева	1004.7	997.8		
06	26.02	Ю	2 {4}	н/о		н/о	+36.0	+33.5	87	+78	+78	опасность перегрева	1003.6	996.7		
07	26.02	ЮВ	1 {4}	н/о		н/о	+36.0	+33.5	87	+78	+78	опасность перегрева	1002.9	996.0		
80	26.02	ЮВ	1 {3}	н/о		н/о	+35.6	+33.1	87	+76	+76	опасность перегрева	1003.3	996.4		

Ощущаемая температура и термический комфорт

Mean Radiant Temperature

The **mean radiant temperature (MRT)**, in relation to a given person placed in a given environment, in a given body posture and clothing, is defined as that uniform temperature of a fictive black-body radiation enclosure (emission coefficient $\varepsilon = 1$) which would result in the same net radiation energy exchange with the subject as the actual, more complex radiation environment.

<u>Kántor, N., & Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment - The mean radiant temperature. Central European Journal of Geosciences, 3(1), 90–100.</u>

Mean Radiant Temperature

$$T_{MRT} = \left[\frac{K^* abs + L^* abs}{\varepsilon \cdot \sigma}\right]^{0.25} - 273.15$$

$$K^* = \sum_{i=6}^{i=1} W_i \cdot \alpha_K \cdot K_i \; \; ; \; \; L^* = \sum_{i=6}^{i=1} W_i \cdot \alpha_L \cdot L_i$$

Figure 2. Silhouettes of a standing male corresponding to the areas illuminated by direct solar radiation at different values of solar azimuth and altitude [12].

Моделирование термического комфорта

Модель RayMan

X

Center Point(s)

Cancel Help Convert

Trees (optional)

Please choose the Please choose the the trunc hight: the raduis of the tr

Please choose the Please choose the f Please choose the

the tree hight: the radius of the tree type:

Trees config

Сайт модели: https://www.urbanclimate.net/rayman/index.htm

Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51, 323–334 (2007).

Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54, 131–139 (2010). https://doi.org/10.1007/s00484-009-0261-0

Биометеорология в Python

□ Библиотека для расчета инсоляции pvlib [Holmgren et al., 2018]: https://pvlibpython.readthedocs.io/en/stable/ □ Библиотека pythermalcomfort [Tartarini, Schiavon, 2020 https://pypi.org/project/pythermalcomfort/ □ Библиотека biometeo [Yung-Chang Chen, 2023]: https://pypi.org/project/biometeo/0.2.1/ ☐ Библиотека Outdoor Thermal Comfort in 3D < (OTC3D) [Nazarian et al., 2017] https://github.com/tiffanyts/OTC3D

Thermal indices for human biometeorology based on Python

Yung-Chang Chen

Scientific Reports 13, Article number: 20825 (2023) | Cite this article

657 Accesses | Metrics

Outdoor Thermal Comfort in 3D (OTC3D)

<u>Description</u> <u>Motivations</u> Installation of OTC3D

Биометеорология в Python

	Fundmental inputs	Optional inputs	Defaults	Outputs	
Tmrt_calc	Ta, RH, v1.1m, longitude, latitude, sea_level_height	day_of_year, hour_of_day, timezone_offset, N, G, DGratio, Tob, ltf, alb, albhum, RedGChk, foglimit, bowen"	now time, N=0, OmegaF=1.0, alb=0.3, albhum=0.3, RedGChk=False, foglimit=90, bowen=1.0	{Tmrt, VP, Imax, Gmax, Dmax, Itat, Gtat, A, Eu, Es, Tob}	
VP_RH_exchange	Ta, VP or RH			{VP} or {RH}	
v1m_cal	WS, height			v1.1m	
PMV	Ta, VP, v1.1m, Tmrt	icl, work, ht, mbody, age, sex	icl=0.6, work=80, ht=1.75, mbody=75, age=35, sex=1 (male)	{PMV, Teq, hclo}	
SET*	Ta, RH, v1.1m, Tmrt	icl, work, ht, mbody	icl=0.9, work=80, ht=1.75, mbody=75	SET*	
PET	Ta, VP, v1.1m, Tmrt	icl, work, ht, mbody, age, sex, pos	icl=0.9, work=80, ht=1.75, mbody=75, age=35, sex=1(male), pos=1 (stand)	{PET, Tcore, Tsk, Tcl, wetsk, metabolic_rate, respiratory_flux, convective_flux, radiative_flux, diffuse_flux, sweating_flux}	

Article Open access Published: 27 November 2023

Thermal indices for human biometeorology based on Python

ung-Chang Chen

✓

Scientific Reports 13, Article number: 20825 (2023) Cite this article

657 Accesses Metrics

Практическое задание №4

Моделирование биоклиматической комфортности в городской среде

Часть 1. Работа с моделью микромасштабной моделью RayMan

- Конвертировать данные реанализа или наблюдений для вашего города (для периода продолжительностью 1 месяц) для теплого времени года в формат форсинга, требуемый для модели RayMan
- Сконфигурировать настройки модели (координаты и пр.)
- Выполнить модельный расчет индексов термического комфорта для открытой площадки (без застройки)
- Сравнить в формате графиков временную динамику температуры воздуха, радиационной температуры (MRT) и индексов UTCI, PET, mPET
- Повторить расчеты, изменяя физиологические параметры человека (пол/возраст, уровень физической активности) и параметры одежды, сравнить результаты
- Сконфигурировать фрагмент городской среды выбранного города (задать несколько зданий), используя шейпфайлы из OSM
- Выполнить модельный расчет индексов термического комфорта для точки в окружении застройки
- Сравнить в формате графиков результаты расчетов для открытой площадки и точки в окружении застройки
- Выделить моменты времени с различными градациями теплового стресса
- Закончить первую часть нужно к следующему понедельнику. Дальше будет продолжение.

Практическое задание №4

Моделирование биоклиматической комфортности в городской среде

Часть 2. Расчет индексов термического комфорта в Python

- Выполнить расчет индексов термического комфорта для вашего города для открытой площадки (без застройки) с использованием библиотеки biometeo для python, по тому же набору данных, который использовался в RayMan
- Сравнить в формате графиков и диаграмм рассеяния результаты расчетов MRT, PET и/или UTCI, а также суммарной солнечной радиации (global radiation) средствами biometeo и RayMan
- Выполнить расчет индексов термического комфорта с использованием библиотеки **biometeo** для python по данным реанализа ERA5:
 - За период не менее 1 года
 - В качестве радиационного форсинга использовать не балл облачности, а радиационные потоки (задать для функции Tmrt_calc параметры G (global radiation in W/m2), DGratio (ratio of diffuse and global radiation dimensionless).
- Выполнитель дополнительный расчет по тем же данным, изменив альбедо поверхности (параметр alb для функции Tmrt_calc)
- Сравнить результаты двух расчетов для MRT и PET
- Построить диаграмму повторяемости градаций термического стресса по индексу РЕТ за рассматриваемый период

	Fundmental inputs	Optional inputs	Defaults
Tmrt_calc	Ta, RH, v1.1m, longitude, latitude, sea_level_height	day_of_year, hour_of_day, timezone_offset, N, G, DGratio, Tob, ltf, alb, albhum, RedGChk, foglimit, bowen"	now time, N=0, OmegaF=1.0, alb=0.3, albhum=0.3, RedGChk=False, foglimit=90, bowen=1.0

Figure 3. Frequency diagram for the occurrence of PET classes for Moscow in each decade in 1991-2021 (3-hour resolution)