м

Rachunek zdań

Dalej rozważmy *system aksjomatyczny T* dla rachunku zdań, który jest adekwatny rachunku zdań w tym sensie, że pozwala innym (składniowym) metodom rozwiązywać problem tautologiczności formuł logicznych, w przeciwieństwie do tzw. semantycznej metody, kiedy wartośc logiczna formuly jest obliczana za pomocą pobudowy tablic wartości logicznych dla tych formul.

System T będziemy nazywać systemem aksjomatycznym dla rachunku zdań.

Pewna formalna teoria aksjomatyczna jest określona, jeźeli:

- 1. Określony jest pewien *alfabet skończony* lub *przeliczalny*, zawierający symbole teorii. Skończone ciągi tych symboli nazywamy wyrazami.
- 2. Dany jest podzbiór wyrazów teorii, zwany *zbiorem* formuł teorii.
- 3. Dany jest podzbiór zbioru formuł, którego elementy zwane są *aksjomatami teorii*. Jeźeli istnieje procedura, za pomocą której moźna określić czy dana formuła jest aksjomatem czy teź nie, to *T* nazywamy *teorią aksjomatyczną*.
- 4. Dany jest zbiór skończony formuł, zwany regulami wyprowadzenia (wnioskowania).

Rachunek zdań

System aksjomatyczny T

Symbole systemu T to są symbole następujących kategorii:

a) Małe litery łacińskie z indeksami i bez

$$(a, b, ..., x, y, z, a_1, ..., f).$$

Symbole te nazywane są zmiennymi zdaniowymi.

b) Symbole

$$\wedge, \vee, \rightarrow, \neg,$$

które nazywane są połączeniami logicznymi.

c) Symbole (,), które są nazywane lewymi i prawymi nawiasami.

Rachunek zdań

System aksjomatyczny T

Formuły systemu T to skończone ciągi symboli systemu T. Aby wskazać formuły, używamy wielkich liter łacińskich z indeksami i bez (A, B, C_1, \ldots) .

Często istnieje procedura pozwalająca zawsze określić czy dany wyraz jest formułą czy teź nie.

Definicja (formuły).

- a) Zmienne zdaniowe jest formułą.
- b) Jeśli A i B są formułami, to słowa $(A \land B), (A \lor B), (A \to B), \neg A$
- są również formułami.
- c) pozostałe wyraźenia, tj. nie spełniajce warunków a), b) nie są formulami.

Definicja (wyprowadzalnych formuł). Aby wyznaczyć wyprowadzalne formuły, najpierw definiujemy się początkowe wyprowadzalne formuły, a następnie określamy się zasady tworzenia nowych wyprowadzalnych formuł na podstawie początkowych.

Reguły te nazywane są *regułami wyprowadzenia*, a początkowe wyprowadzalne formuły nazywane są *aksjomatami*.

Wyprowadzalne formuly systemu *T* są wyznaczane w następujący sposób:

- (1) początkowe wyprowadzalne formuly (aksjomaty) są wyprowadzalne formuly;
- (2) jeśli *A* jest wyprowadzalną formułą, a *B* jest formułą otrzymaną z *A* za pomocą operacji podstawienia, to *B* jest wyprowadzalną formułą;
- (3) jeśli A i $A \rightarrow B$ są formułami wyprowadzalnymi, to formuła B otrzymana za pomocą reguły wnioskowania jest formułą wyprowadzalną.

Aksjomaty rachunku zdań

I

1.
$$a \rightarrow (b \rightarrow a)$$
.

2.
$$((a \rightarrow (b \rightarrow c)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))$$
.

 Π

1.
$$a \wedge b \rightarrow a$$
.

$$2. a \wedge b \rightarrow b.$$

3.
$$(a \rightarrow b) \rightarrow ((a \rightarrow c) \rightarrow (a \rightarrow b \land c))$$
.

٧

Rachunek zdań

Aksjomaty rachunku zdań

 \prod

1.
$$a \rightarrow a \lor b$$
.

$$2, b \rightarrow a \vee b$$

3.
$$(a \rightarrow c) \rightarrow ((b \rightarrow c) \rightarrow ((a \lor b) \rightarrow c))$$
.

IV

1.
$$(a \rightarrow b) \rightarrow (\neg b \rightarrow \neg a)$$
.

$$2. a \rightarrow \neg \neg a.$$

$$3. \neg \neg a \rightarrow a.$$

Aksjomaty systemu T upraszczają się, jeśli uważać, że symbol \land jest silniejszy od wszystkich ostatnich, \lor jest silniejszy od \rightarrow .

Ze względu na te zasady, na przykład formuła $(A \land B) \lor C$

może być zapisana w postaci

$$A \wedge B \vee C$$
.

Zauważmy że aksjomaty systemu *T* dzielą się na cztery grupy w zależności od symboli zawartych w nich polączeń logicznych.

Rachunek zdań

Reguly wyprowadzenia

- 1. Regula zastępstwa (RZ). Niech A będzie formułą zawierającą literę a. Wtedy, jeśli A jest wyprowadzalną formułą systemu T, to zastępując wszędzie w niej występowanie litery a formułą B, otrzymamy wyprowadzalnę formułę rachunku zdań.
- 2. Reguła konkluzji (modus ponens (MP)). Jeśli A i $A \rightarrow B$ są wyprowadzalnymi formułami rachunku zdań, to B jest wyprowadzalną formułą rachunku zdań.

Aksjomaty i reguły wyprowadzania całkowicie definiują pojęcie wyprowadzalnej formuły rachunku zdań.

Przykłady. Pokażmy, że formuła

$$(a \rightarrow b) \rightarrow (a \rightarrow a)$$

jest wyprowadzalną formułą systemu *T*. Rzeczywiście, wyprowadzenie tej formuły z aksjomatów wygląda jak:

1.
$$((a \rightarrow (b \rightarrow a)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow a)) \text{ (RZ, I.2)}.$$

2. $(a \rightarrow b) \rightarrow (a \rightarrow a)$ (MP 1, I.1).

Podobnie dla formuly $\neg \neg \neg a \rightarrow \neg a$ mamy:

1.
$$(a \rightarrow \neg \neg a) \rightarrow (\neg \neg \neg a \rightarrow \neg a)$$
 (RZ, IV.1)
2. $\neg \neg \neg a \rightarrow \neg a$ (MP 1, I.2).

Definicja. Wyprowadzeniem formuly w systemie T nazywamy dowolny ciąg formuł

$$A_1, A_2, \dots, A_n$$

taki, źe kaźda formuła A_i jest wyprowadzalną lub bezpośrednim wnioskiem z pewnych poprzednich formuł za pomocą regul wyprowadzenia.

Jest oczywiste, że wszystkie formuly w ciągu są wyprowadzalne.

Definicja. Formułą A nazywamy *twierdzeniem systemu* T, jeźeli istnieje wyprowadzenie A_1, A_2, \ldots, A_n w T dla A takie, źe ostatnim elementem w tym wyprowadzeniu jest formuła A $(A=A_n)$. Dowód ten nazywamy dowodem A w teorii T.

Formuły systemu aksjomatycznego *T* dla rachunku zdań można interpretować jako formuły rachunku zdań. W tym celu zmienne zdaniowe będziemy traktować jako zmienne rachunku zdań, czyli takie, które przyjmują wartości 0 i 1. Symbole operacji logicznych definiujemy jak w rachunku zdań.

Twierdzenie (o poprawności). Każde twierdzenie systemu aksjomatycznego jest tautologią.

Dowód. Nietrudno sprawdzić, że wszystkie aksjomaty są tautologiami. Jeżeli formuły $A \rightarrow B$ i A są tautologiami, to formuła B również jest tautologią. Zatem wszystkie twierdzenia są tautologiami.

Odwrotne stwierdzenie jest trudniejsze do udowodnienia.

Niektóre reguly systemu aksjomatycznego

Dalej *R* będzie oznaczać dowolnę formulę wyprowadzalnę.

Twierdzenie. $b \rightarrow R$ jest formulą wyprowadzalną. Dowód.

1. R (wyprowadzalną);

 $2. R \rightarrow (b \rightarrow R)$ (RZ I.1);

3. $(b \to R)$ (MP 1, 2).

Rachunek zdań

Twierdzenie. $a \rightarrow a$ jest formulą wyprowadzalną.

Dowód.

1.
$$((a \rightarrow (b \rightarrow a)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow a))$$
 (RZ, I.2);
2. $(a \rightarrow b) \rightarrow (a \rightarrow a)$ (MP 1, I.1);
3. $(a \rightarrow R) \rightarrow (a \rightarrow a)$ (RZ 2);
4. $(a \rightarrow R)$ Twierdzenie;
5. $(a \rightarrow a)$ (MP 3, 4).

w

Rachunek zdań

Istnieją inne sposoby udowodnienia tego twierdzenia.

Przykład.

1.
$$(d \rightarrow ((d \rightarrow d) \rightarrow d)) \rightarrow ((d \rightarrow (d \rightarrow d))) \rightarrow (d \rightarrow d))$$
 (PZ I.2);
2. $d \rightarrow ((d \rightarrow d) \rightarrow d)$ (PZ I.1);
3. $(d \rightarrow (d \rightarrow d)) \rightarrow (d \rightarrow d)$ (MP 1,2);
4. $(d \rightarrow (d \rightarrow d))$ (PZ I.1);
5. $(d \rightarrow d)$ (MP 3,4).

м

Rachunek zdań

Niech Γ będzie pewnym zbiorem formuł.

Wyprowadzone z Γ formuły RZ są określane w następujący sposób:

- (1) jeśli A jest formułą z Γ , to A jest formułą wyprowadzalną z Γ ;
- (2) jeśli A jest formułą wyprowadzalną, to A jest formułą wyprowadzalną z Γ ;
- (3) jeśli A i $A \rightarrow B$ są formułami wyprowadzanymi z Γ , to formuła B otrzymana za pomocą reguły wnioskowania jest formułą wyprowadzalną z Γ .

Rachunek zdań

Definicja. Skończony ciąg formuł, z których każda jest formułą wyprowadzalną z Γ lub otrzymaną z poprzednich za pomocą reguły MP nazywany jest *wyprowadzeniem* formuły A z Γ . Ostatnią formułą ciągu jest formuła A, nazywana *wyprowadzalną* z Γ .

Definicja. Jeśli formuła A jest wyprowadzalna z Γ , to w tym przypadku piszemy $\Gamma \vdash A$.

Jeśli Γ jest puste, to piszemy $\vdash A$ i powiemy, że A jest wyprowadzalną w RZ.

Twierdzenie (o dedukcji). Niech G będzie zbiorem formuł i niech A i B będą formułami. Jeśli G, $A \vdash B$, to $G \vdash A \rightarrow B$.

Dowód. Musimy skonstruować wyprowadzenie formuły $A \rightarrow B$ z G. Niech C_1, C_2, \ldots, C_n będzie wyprowadzeniem formuły $B = C_n$ z $G \cup \{A\}$. Przekształćmy to wyprowadzenie do następującego ciągu formuł:

$$(A \rightarrow C_1), (A \rightarrow C_2), \dots, (A \rightarrow C_n).$$

Ten ciąg kończy się formułą

$$(A \rightarrow B)$$
.

м

Rachunek zdań

Przekształćmy ten ciąg (przechodząc od lewej strony ciągu do prawej strony ciągu i dodając niektóre formuły) do wyprowadzenia formuly $(A \rightarrow B)$.

Niech dotarliśmy do formuły $(A \rightarrow C_i)$. Z założenia formuła C_i albo równa się A, albo należy do G, albo jest wyprowadzalna, albo wynika z dwóch poprzednich zgodnie z regułą MP.

Rozważmy po kolei wszystkie te przypadki.

v

Rachunek zdań

- (1) Jeśli C_i jest A, to formuła ma postać $A \rightarrow A$. Ona jest wyprowadzana. Dodajemy te wyprowadzenie przed formulą $A \rightarrow A$.
- (2) Niech C_i należy do G. Następnie wstawiamy formuły C_i i $C_i \rightarrow (A \rightarrow C_i)$. Zastosowanie reguły MP do tych formuł daje formułę $(A \rightarrow C_i)$.
- (3) Te same formuły można dodać, jeśli S_i jest wyprowadzaną formułą RZ.

7

Rachunek zdań

(4) Jest jasne, że formuła C_1 albo równa się A, albo należy do G, albo jest wyprowadzalną. Zatem formuła $A \to C_1$ jest wyprowadzalną z G. To samo dotyczy formuły C_2 . Na koniec niech formułę C_3 otrzymamy z dwóch poprzednich C_1 i C_2 zgodnie z regułą MP. Oznacza to, że poprzednie formuły to C_1 i $C_2 = C_1 \to C_3$.

Wtedy w nowym ciągu (z formułą A) będą już formuły $(A \rightarrow C_1)$ i $(A \rightarrow (C_1 \rightarrow C_3))$.

Formuły te są wyprowadzalnymi z *G*. Rzeczywiście mamy ciągi:

$$C_1, C_1 \rightarrow (A \rightarrow C_1), A \rightarrow C_1;$$

 $C_1 \rightarrow C_3, (C_1 \rightarrow C_3) \rightarrow (A \rightarrow (C_1 \rightarrow C_3)), A \rightarrow (C_1 \rightarrow C_3),$
które są wyprowadzeniem tych formuł z G .

Rachunek zdań

Dlatego możemy dodać do ciągu

$$\begin{array}{l} C_1, C_1 \rightarrow (A \rightarrow C_1), A \rightarrow C_1, C_1 \rightarrow C_3, (C_1 \rightarrow C_3) \rightarrow \\ \rightarrow (A \rightarrow (C_1 \rightarrow C_3)), A \rightarrow (C_1 \rightarrow C_3), \end{array}$$

formuly

$$\begin{array}{c} ((A {\rightarrow} (C_1 {\rightarrow} C_3)) {\rightarrow} ((A {\rightarrow} C_1) {\rightarrow} (A {\rightarrow} C_3)) \text{ (PZ)}; \\ ((A {\rightarrow} C_1) {\rightarrow} (A {\rightarrow} C_3)) \\ (A {\rightarrow} C_3) \end{array} \tag{MP)}; \\ (A {\rightarrow} C_3) \end{array}$$

Zatem formuła $A \to C_3$ jest wyprowadzalną z G. Kontynuując w ten sposób, otrzymujemy, że formuła $A \to C_n$ jest wyprowadzalna z G. Twierdzenie zostało udowodnione.

м

Rachunek zdań

Niektóre twierdzenia i reguly RZ

Twierdzenie 1.

$$\vdash (a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c)).$$

Dowód. Rozważmy formuły $(a \rightarrow b)$, $(b \rightarrow c)$ i a. Z tych formuł, korzystając z reguły MP, można wyprowadzić formułę c. Naprawdę:

- 1. $(a \rightarrow b)$ (formula); 4. b (MP 1,3);
- 2. $(b\rightarrow c)$ (formula); 5. c (MP 2,4).
- 3. *a* (formula);

Zgodnie z twierdzeniem o dedukcji, formuła

$$\vdash (a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$$

jest wyprowadzalnej w RZ.

м

Rachunek zdań

Regula sylogizmu (przechodniości)

Zrobimy podstawienia w ostatniej formule: zamiast a podstawimy formulę A, zamiast b podstawimy formulę B, zamiast c podstawimy formulę C. Otrzymujemy wyprowadzalnę formulę

$$\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)).$$

Jeżeli formuly $(A \rightarrow B)$ i $(B \rightarrow C)$ są wyprowadzalne, to zgodnie z regułą MP formula $(A \rightarrow C)$ również jest wyprowadzalną. Więc, otrzymujemy *regułę sylogizmu*, którę można zapisać w następujący sposób

$$A \rightarrow B, B \rightarrow C$$
 $A \rightarrow C$

Twierdzenie 2.

$$\vdash (a \rightarrow (b \rightarrow c)) \rightarrow (b \rightarrow (a \rightarrow c)).$$

Dowód. Rozważmy formuly $a \rightarrow (b \rightarrow c)$, b i a. Z tych formuł, korzystając z reguły MP, można wyprowadzić formułę c.

Zgodnie z twierdzeniem o dedukcji, formula

$$(a \rightarrow (b \rightarrow c)) \rightarrow (b \rightarrow (a \rightarrow c))$$

jest wyprowadzalną. Podobnie jak w poprzednim przypadku, otrzymujemy *regułę permutacji*

$$\frac{A \rightarrow (B \rightarrow C)}{B \rightarrow (A \rightarrow C)}$$

Twierdzenie 3.

$$\vdash a \rightarrow (b \rightarrow a \land b).$$

Dowód. Pokażmy że

$$(R \rightarrow a) \rightarrow ((R \rightarrow b) \rightarrow (R \rightarrow a \land b)), a, b \vdash a \land b,$$

gdzie R, jak poprzednio, oznacza dowolnę wyprowadzalnę formulę. Dalej pierwsza formuła w ciągu będzie oznaczona przez U.

Formula $a \rightarrow (R \rightarrow a)$ jest wyprowadzalna. Zatem formulę $R \rightarrow a$ można wyprowadzić z formuly a, a tym bardziej z formul U, a, b. Więc, będziemy mieli:

$$U, a, b \vdash R \rightarrow a.$$

Rachunek zdań

Podobnie otrzymujemy

$$U, a, b \vdash R \rightarrow b.$$

Formułę $a \wedge b$ można wyprowadzić z U za pomocą reguły MP. Więc,

$$U, a, b \vdash a \land b.$$

Stąd, zgodnie z twierdzeniem o dedukcji, będziemy mieli $\vdash U \rightarrow (a \rightarrow (b \rightarrow a \land b)).$

Ale U jest formułą wyprowadzalną. Jej można otrzymać za pomocą RZ w aksjomacie II.3. Zgodnie z regułą MP

$$\vdash a \rightarrow (b \rightarrow a \land b).$$

Z tego stwierdzenia wynika reguła:

$$\frac{A, B}{A \wedge B}$$
.

Regula odwrotna

$$\frac{A \wedge B}{A, B}$$
.

wynika z aksjomatów.

Z tych dwóch reguł wynika następująca reguła:

$$\frac{A \wedge B}{B \wedge A}$$

Twierdzenie 4.

a)
$$\vdash (a \rightarrow (b \rightarrow c)) \rightarrow (a \land b \rightarrow c),$$

b)
$$\vdash (a \land b \rightarrow c) \rightarrow (a \rightarrow (b \rightarrow c)).$$

Dowód. a) Mamy

$$a \rightarrow (b \rightarrow c), a \wedge b \vdash c.$$

Rzeczywiście formuły

$$a \wedge b \rightarrow a i a \wedge b \rightarrow b$$

są aksjomatami. Dlatego formuły *a* i *b* są wyprowadzalnymi z formuł

$$a \rightarrow (b \rightarrow c) i a \wedge b$$
.

м

Rachunek zdań

Zgodnie z regułą MP z formuł $a, b, a \rightarrow (b \rightarrow c)$ otrzymujemy, że formuła c jest wyprowadzalną z formuł $a \rightarrow (b \rightarrow c)$ i $a \wedge b$.

Stąd, przez twierdzenie o dedukcji, otrzymujemy dowód punktu a).

Aby udowodnić punkt b), pokażemy, że prawdziwa jest zależność

$$a \wedge b \rightarrow c$$
, a , $b \vdash c$.

Z twierdzenia 3 mamy

$$\vdash a \rightarrow (b \rightarrow a \land b).$$

Z tego wynika, że formula $a \wedge b$ jest wyprowadzalną z formuł

$$a \wedge b \rightarrow c, a, b.$$

Wtedy formuła *c* jest wyprowadzałną z tych formuł. Dalej, przez twierdzenie o dedukcji, otrzymujemy dowód punktu b).

Z tego twierdzenia wynikają dwie reguly:

$$\frac{A \rightarrow (B \rightarrow C)}{A \land B \rightarrow C} \qquad \frac{A \land B \rightarrow C}{A \rightarrow (B \rightarrow C)}$$

Pierwsza nazywa się regułą *połączenia*, druga to reguła *rozłączenia*.

Teraz możemy udowodnić

Twierdzenie (o zupełności). Każda tautologia jest wyprowadzalną w systemu T.

Idea dowodu. Niech A będzie dowolną formułą zawierającą zmienne p, q, r. Załóżmy, że wartość A wynosi 1, gdy wszystkie trzy zmienne są równe 1. Wtedy, jak pokażemy poniżej, p, q, $r \vdash A$.

Ogólnie, każdemu zestawu wartości zmiennych formuły A odpowiada twierdzenie o wyprowadzeniu.

Na przykład, jeśli wartość A jest równa 0 na zbiorze wartości 0, 0, 1 zmiennych, to

$$\neg p, \neg q, r \vdash \neg A.$$

Jeśli formuła *A* jest tautologią, to okazuje się, że da się ją wyprowadzić ze wszystkich możliwych interpretacji (przedstawionych w postaci zbiorów atomów).

Jeśli teraz p, q, $\neg r \vdash A$ i p, q, $r \vdash A$, to możemy otrzymać p, q, $(r \lor \neg r) \vdash A$. Rzeczywiście

$$p, q \vdash \neg r \rightarrow A i p, q \vdash r \rightarrow A$$

przez twierdzenie o dedukcji.

Z aksjomatu III.3 otrzymujemy

$$\vdash (r \rightarrow A) \rightarrow ((\neg r \rightarrow A) \rightarrow (r \lor \neg r \rightarrow A)).$$

Zgodnie z regułą MP

$$p, q \vdash r \lor \neg r \rightarrow A,$$

to jest,

$$p, q, r \vee \neg r \vdash A$$
.

Ponieważ $\vdash r \lor \neg r$, to $p, q \vdash A$.

Poniżej przedstawimy te rozważania bardziej szczegółowo. Ale najpierw mamy lemat.

Rachunek zdań

Lemat. Dla dowolnych formuł *P* i *Q*:

$$P,Q$$
 $\vdash (P \land Q);$ P,Q $\vdash (P \lor Q);$ $P,\neg Q$ $\vdash (P \lor Q);$ $P,\neg Q$ $\vdash (P \lor Q);$ $\neg P,Q$ $\vdash (P \land Q);$ $\neg P,Q$ $\vdash (P \lor Q);$ $\neg P,\neg Q$ $\vdash (P \land Q);$ $\neg P,\neg Q$ $\vdash (P \land Q);$ $P,\neg Q$ $\vdash (P \lor Q);$ $P \vdash \neg P,$ $P,\neg Q$ $\vdash (P \to Q);$ $\neg P,\neg Q$ $\vdash (P \to Q);$

Dowód. Na przykład dla formuły $P,Q \vdash (P \land Q)$ dowód otrzymujemy zgodnie z regułą

$$\frac{A, B}{A \wedge B}$$

Dla formuły
$$\neg P, Q \vdash \neg (P \land Q)$$
 z aksjomatu IV.1 mamy $\vdash ((P \land Q) \rightarrow P) \rightarrow (\neg P \rightarrow \neg (P \land Q)).$

Ale $\vdash (P \land Q) \rightarrow P$ (aksjomat II.1), a więc przez regułę MP $\vdash (\neg P \rightarrow \neg (P \land Q))$. Temu

$$\neg P \vdash \neg (P \land Q).$$

Dla formuły
$$P, \neg Q \vdash (P \lor Q)$$
 z III.1 otrzymujemy $\vdash P \rightarrow (P \lor Q)$.

Więc,
$$P \vdash (P \lor Q)$$
 i $P, \neg Q \vdash (P \lor Q)$.

Dla formuły $P,Q \vdash (P \rightarrow Q)$ mamy na mocy aksjomatu I.1 $\vdash Q \rightarrow (P \rightarrow Q)$.

Więc, $Q \vdash (P \rightarrow Q)$.

Jeśli chodzi np. o formuł z negacją, pierwsza z nich wynika z aksjomatu IV.2, druga z twierdzenia $\vdash A \rightarrow A$.

Lemat. Jeżeli A jest dowolną formułą ze zmiennymi p_1, \ldots, p_n , to dla każdej interpretacji I (zbiór atomów) twierdzenie

$$p'_1, \ldots, p'_n \vdash A$$

jest prawdziwe, gdzie $p'_{i} = p_{i}$ lub $p'_{i} = \neg p_{i}$.

Lemat dowodzi się przez indukcję, konstruując formułę A i korzystając z poprzedniego lematu.

Następnie rozważamy interpretacje różniące się pozycją p_1 (w jednej interpretacji mamy p_1 , w drugiej $\neg p_1$) i wykluczamy zmienną p_1 . Robiąc to dla wszystkich par, otrzymujemy 2^{n-1} wyprowadzeń, których lewe części nie mają p_1 . Powtarzamy ten proces ze zmiennymi p_2 i $\neg p_2$ itd. Ostatecznie otrzymujemy, że formuła A jest wyprowadzalna, jak stwierdza twierdzenie o zupełności.

×

Rachunek zdań

Niesprzeczność RZ

Problem niesprzeczności jest jednym z najważniejszych problemów logiki matematycznej.

Definicja. Rachunek logiczny nazywamy *niesprzecznym*, jeśli nie istnieje w nim żadnych dwóch wyprowadzalnych formuł, z których jedna jest zaprzeczeniem drugiej.

Innymi słowy, rachunek niesprzeczny jest takim rachunkiem, że dla dowolnej formuly A, formuly A i $\neg A$ nigdy nie mogą być jednocześnie wyprowadzone z aksjomatów rachunku zdań.

Problem niesprzeczności jest następujący: czy rachunek jest sprzeczny, czy nie?