Demultiplexing and data processing were performed on CentOS 7.9.2009 Data analyses were performed on Ubuntu 22.04 and MacOS

Demultiplexing

Sequencing was done at the University of Wisconsin, Madison Biotechnology Center. We used double-digest restriction site-associated DNA sequencing (ddRADseq) with the enzymes EcoRI and Msel.

FASTQ files were partially demultiplexed into rows A-H, with each file containing columns 1-10 (11 and 12 were not filled in our plate). Each of the eight FASTQ files was demultiplexed using the same set of column barcodes to identify individual samples. We used stacks 2.5 process_radtags to demultiplex the files with the --inline_null flag. Files were demultiplexed into rows with combinatorial barcodes in the FASTQ headers, and then demultiplexed into individual samples with inline barcodes unique to each column on the forward reads.

```
for i in {A..H}
do

/location/of/stacks-2.5/process_radtags -P -p /path/to/multiplexed/files/ -o
/path/to/fastqs/ -b ./row$i-barcodes.txt -c -q -r --inline-null --renz-1 ecoRI
--renz-2 bfaI

done
```

To import the demultiplexed FASTQ files into ipyrad, they need to renamed from file.1.fq.gz to $file_R1_.fq.gz$. The rename command on Linux systems is a good way to do this.

```
rename .1. _R1_. *.fq.gz
rename .2. _R2_. *.fq.gz
```

Data processing

Following demultiplexing, we used the software package ipvrad 0.9.84 to process raw reads.

Note:

Conda has had some issues (at least on Ubuntu) with environment solving. This update has been very helpful:

```
conda update -n base conda
conda install -n base conda-libmamba-solver
```

```
conda config --set solver libmamba
```

It can be helpful to install ipyrad in a new conda environment, to avoid conflicts with other programs.

```
conda init
conda create -n ipyrad
conda activate ipyrad
conda install ipyrad -c bioconda -c conda-forge
```

We ran the data processing on 12 cores using the multithread option in ipyrad.

```
ipyrad -p params-sa-pter.txt -s 1234567 -c 12 --MPI
```

We used the following parameters for data processing. A majority are the default parameters suggested by the ipyrad documentation. A few notable changes are:

- [14] clustering threshold
- [21] minimum samples per locus we altered this number based to slightly reduce the amount of missing data retained in the final dataset [add more details later]

```
------ ipyrad params file (v.0.9.84)------
sa-pter
/data/sylvia/sa-pteridium/pteridium/ipyrad ## [1] [project_dir]: Project
                               non-demultiplexed fastq files
                               file
/data/sylvia/sa-pteridium/fastqs/*.fq.gz ## [4] [sorted fastq path]:
denovo
                               (denovo, reference)
                               ## [6] [reference sequence]: Location of
                               reference sequence file
                               ## [7] [datatype]: Datatype (see docs): rad,
pairddrad
                               gbs, ddrad, etc.
AATT, ATA
                               ## [8] [restriction_overhang]: Restriction
                               overhang (cut1,) or (cut1, cut2)
5
                               base calls (Q<20) in a read
```

```
33
                               ## [10] [phred Qscore offset]: phred Q score
6
                               ## [11] [mindepth statistical]: Min depth
                               for statistical base calling
6
                               ## [12] [mindepth majrule]: Min depth for
                               majority-rule base calling
10000
                               ## [13] [maxdepth]: Max cluster depth within
0.85
                               ## [14] [clust threshold]: Clustering
                               threshold for de novo assembly
0
                               ## [15] [max barcode mismatch]: Max number
                               of allowable mismatches in barcodes
2
                               ## [16] [filter adapters]: Filter for
                               adapters/primers (1 or 2=stricter)
35
                               ## [17] [filter_min_trim_len]: Min length of
                               reads after adapter trim
2
                               ## [18] [max alleles consens]: Max alleles
                               per site in consensus sequences
0.05
                               ## [19] [max Ns consens]: Max N's (uncalled
0.05
                               (heterozygotes) in consensus
                               per locus for output
0.2
                               ## [22] [max SNPs locus]: Max # SNPs per
                               locus
8
                               ## [23] [max Indels locus]: Max # of indels
                               per locus
0.5
                               ## [24] [max shared Hs locus]: Max #
                               heterozygous sites per locus
0, 0, 0, 0
0, 0, 0, 0
p, s, 1
                               ## [28] [pop assign file]: Path to
                               population assignment file
                               ## [29] [reference as filter]: Reads mapped
                               to this reference are removed in step 3
```

After processing each row, I removed samples that had less that 1000 loci retiatined. I think combined all samples and re-ran ipyrad, and removed samples that had less than ~3000 loci retained. This higher threshold was due to the fact that most other samples had very good recovery, of well over 10,000 loci.

Phylogenetic reconstruction

We used RAxML to build a phylogeny for the samples. In short, geography was a better predictor of phylogeny than morphological identification.

```
raxmlHPC -s sa-pter.phy -n sa-pter.out -m GTRCAT -f a -x $RANDOM -N 100 -p $RANDOM -T 16
```

Plotting the tree in R

```
library(phytools)
t <- read.tree("RAxML_bipartitions.output_bootstrap.tre")
tr <- reroot(t, 47)

#plot the tree without branch lengths but with BS values
plot(tr, use.edge.length=FALSE, show.node.label=TRUE)</pre>
```

Structure

We ran 50 chains each for K=2-6
Mainparams and extraparams files were left at default setting
-L # loci
-N # inds

```
for i in {2..6}
do
    for j in {1..50}
do
        structure -K $i -L 42147 -N 47 -i sa-pter.ustr -o
out/sa-pter$i_$j.txt
        done
done
```

Structure output files were run through the processing software **CLUMPAK**

Plotting

```
# load in ks from clummpack files
k2 <- read.csv("k2.txt", sep = '', header = F)</pre>
k3 <- read.csv("k3.txt", sep = '', header = F)
k4 <- read.csv("k4.txt", sep = '', header = F)</pre>
k5 <- read.csv("k5.txt", sep = '', header = F)</pre>
k6 <- read.csv("k6.txt", sep = '', header = F)</pre>
k7 <- read.csv("k7.txt", sep = '', header = F)</pre>
# names file includes individual ids, species names, and geographic
locations
names <- read.csv("names.csv", sep = ',', header = T)</pre>
x <- as.data.frame(matrix(ncol = 17, nrow = 47))</pre>
x[,1:2] \leftarrow k2
x[,3:5] < - k3
x[,6:9] < - k4
x[,10:14] \leftarrow k5
x[,15] < -names[,1]
x[,16] < -names[,2]
# order by species
x \leftarrow x[order(x[,16]),]
## find locations for each column, each species
## variables
# labels - species names
# xlabels - specimen labels
# ninds - number of individuals
# klist - list of x values
labels \leftarrow x[,16]
x_{labels} <- x[,15]
ninds <- 47
klist <- list(x[,1:2], x[,3:5], x[,6:9], x[,10:14])
# each unique species names
sp.names <- as.character(unique(labels))</pre>
# locations of each column, found via barplot column locations
b <- as.data.frame(matrix(ncol = 1, nrow = ninds))</pre>
b[,1] <- barplot(t(klist[[1]][1]), beside = F, col = c('black', 'white'),</pre>
cex.name = 1, cex.axis = 1.2, border = 1, space = 0.05, xaxt = 'n', yaxt =
'n', cex.lab = 1, cex.main = 2)
```

```
# find locations for labels in the barplot
my.mean <- tapply(X = b[,1], INDEX = labels, mean)
my.min <- tapply(X = b[,1], INDEX = labels, min)
my.max \leftarrow tapply(X = b[,1], INDEX = labels, max)
# data frame for plotting
d <- sp labels(names = sp.names, min = my.min, mean = my.mean, max =</pre>
my.max)
plot_chains_species(kqlist = klist, xlabel = x_labels)
plot chains ids(kqlist = klist, xlabel = labels)
# functions needed
# plotting and labeling function
# create labels
sp_labels <- function(names, min, mean, max, ...){</pre>
    d <- as.data.frame(matrix(nrow = length(names), ncol = 4))</pre>
    colnames(d) <- c("names", "min", "mean", "max")</pre>
    for (j in 1:length(names)){
            d[j,1] <- names[j]</pre>
            d[j,3] <- min[[j]][1]</pre>
            d[j,2] <- mean[[j]][1]</pre>
            d[j,4] <- max[[j]][1]</pre>
    return(d)
}
plot_chains_ids <- function(kqlist, xlabel){</pre>
    # define colors
    cols <- c('pink','#5928ED', '#00BF7D','#FFFF00', '#69C261', '#FF59AC',</pre>
'#26CDCD', '#C1C6FF')
    par(mfrow = c(length(kqlist),1), mar = c(1,3,3,1) + 0.1, oma =
c(15,0,0,0), mgp = c(1,1,0)
    chain <- seq(1, length(kqlist), 1)</pre>
```

```
for(i in 1:(length(kqlist)-1)){
                      barplot(t(kqlist[[i]]), beside = F, col = cols, border = 1, space =
0.05, xaxt = 'n', yaxt = 'n', ylab = paste("k =", chain[i]+1, sep = ' '),
cex.lab = 1.2, cex.main = 1.6)
                     # y axis
                      -0.2)
                     # lines
                      for (i in 1:length(d[,1])){
                                 lines(x = d[i,3:4], y = rep(-0.09, 2), lwd = 2.5, col =
"black", xpd = NA)
                                 \#lines(x = d[i,3:4], y = rep(1.1, 2), lwd = 2.5, col =
           }
          # plot last k with labels
          for(i in length(kqlist)){
                      barplot(t(kqlist[[i]]), beside = F, col = cols, border = 1, space =
0.05, yaxt = 'n', ylab = paste("k =", chain[i]+1, sep = ' '), cex.lab =
1.1, cex.main = 1.6, names.arg = xlabel, las = 2)
                      axis(2, at = c(0, 0.25, 0.5, 0.75, 1), cex.axis = 1, las = 2, pos = 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.
-0.2)
                     # lines
                      for (i in 1:length(d[,1])){
                                 lines(x = d[i,3:4], y = rep(-0.09, 2), lwd = 2.5, col =
"black", xpd = NA, )
          }
}
plot_chains_species <- function(kqlist, xlabel){</pre>
          # define colors
           cols <- c('#A8FFFD','#B862D3', '#A39D9D','#FFFF00', '#69C261',
 '#FF59AC', '#26CDCD', '#C1C6FF')
 '#3CB44B')
```

```
par(mfrow = c(length(kqlist),1), mar = c(1,3,3,1) + 0.1, oma =
c(15,0,0,0), mgp = c(1,1,0))
              chain <- seq(1, length(kqlist), 1)</pre>
              for(i in 1:length(kqlist)){
                             barplot(t(kqlist[[i]]), beside = F, col = cols, border = 1, space =
0.05, xaxt = 'n', yaxt = 'n', ylab = paste("k =", chain[i]+1, sep = ' '),
cex.lab = 1.2, cex.main = 1.6)
                             axis(2, at = c(0, 0.25, 0.5, 0.75, 1), cex.axis = 1, las = 2, pos = 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.
-0.2)
                            for (i in 1:length(d[,1])){
                                            lines(x = d[i,3:4], y = rep(-0.1, 2), lwd = 2.5, col =
"black", xpd = NA)
              }
              text(cex = 1.3, x = (d[,2]-0.3), y = -0.7, labels = d[,1], xpd=NA,
srt=50, font=3)
# saving pdfs
pdf('k2-6_ids.pdf', width = 10, height = 9)
plot_chains_ids(kqlist = klist, xlabel = x_labels)
dev.off()
```

Genetic - geographic distance

Code is from this landscape population genetics tutorial, and this article on Mantel tests

```
library(poppr)
library(ape)
library(magrittr)
library(letsR)
```

```
library(vegan)
# all samples
sa2 <- read.structure("sa-pter2 u.str", n.ind=47, n.loc=42161,</pre>
onerowperind=FALSE, col.lab=1)
sa2 <- read.structure("sa-pter2.str", n.ind=47, n.loc=121892,</pre>
onerowperind=FALSE, col.lab=1)
# esculentum only
sa2 <- read.structure("esc-pter2.str", n.ind=45, n.loc=121892,</pre>
onerowperind=FALSE, col.lab=1)
# south american esculentum only
sa2 <- read.structure("esc-sa-pter2.str", n.ind=44, n.loc=121892,</pre>
onerowperind=FALSE, col.lab=1)
# 0 or enter for any prompts when loading in data
handle missing data)
sadist <- provesti.dist(sa2)</pre>
tr <- sadist %>%
nj() %>%
ladderize()
plot(tr)
coord <- read.csv("coords.csv")</pre>
coord <- read.csv("coords-esculentum.csv")</pre>
coord <- read.csv("coords-esculentum-sa.csv")</pre>
# order is long, lat
my_points <- coord[,4:3]</pre>
# create a dissimilarity matrix for geographic locations as class dist
dist mat <- lets.distmat(my points, asdist=TRUE)</pre>
mantel(sadist, dist mat)
### for all samples ###
# Mantel statistic based on Pearson's product-moment correlation
```

```
Call:
Mantel statistic r: 0.2567
      Significance: 0.016
Upper quantiles of permutations (null model):
0.105 0.149 0.191 0.577
Permutation: free
Number of permutations: 999
### without outgroups ###
Mantel statistic based on Pearson's product-moment correlation
Call:
Mantel statistic r: -0.1013
Upper quantiles of permutations (null model):
0.160 0.202 0.245 0.302
Permutation: free
Call:
Mantel statistic r: 0.1422
      Significance: 0.123
Upper quantiles of permutations (null model):
                  99%
0.152 0.183 0.212 0.236
Permutation: free
Number of permutations: 999
```

geographic and genetic variation/distance are not correlated with P.
esculentum

Map

```
library(maps)
p <- read.csv("coords.csv", header = T, sep = ",")</pre>
coords <- p[1:47, 3:4]
map(database = 'world', regions = c('Brazil', 'Uruguay', 'Argentina', 'Chile',
'Colombia', 'Peru', 'Venezuela', 'Ecuador', 'Paraguay', 'Guyana', 'Suriname',
'French Guiana', 'Falkland Islands', 'Bolivia', 'Mexico', 'Panama', 'Costa Rica',
'Belize', 'El Salvador', 'Guatemala', 'Honduras', 'Nicaragua', 'Cuba', 'Dominican
Republic', 'Haiti'), fill =T, col= 'white', border="grey", bg="lightgrey")
# aquilinum
points(coords[1,2], coords[1,1], col = "#000000", bg = "black", cex = 2, pch = 21)
# arachnoideum
points(coords[2:30,2], coords[2:30,1], col = "#000000", bg = "#5928ED", cex = 2,
pch = 21)
# a. paedomorficum
points(coords[46:47,2], coords[46:47,1], col = "#000000", bg = "#0073E6", cex = 2,
pch = 21)
points(coords[31,2], coords[31,1], col = "#000000", bg = "#2546F0", cex = 2, pch =
21)
points(coords[32,2], coords[32,1], col = "#000000", bg = "pink", cex = 2, pch = 21)
# gryphus
points(coords[34:41,2], coords[34:41,1], col = "#000000", bg = "#00BF7D", cex = 2,
pch = 21)
# g. harpianum
```

```
points(coords[42:44,2], coords[42:44,1], col = "#000000", bg = "#00B4C5", cex = 2,
pch = 21)

# indet
# points(coords[45,2], coords[45,1], col = "#000000", bg = "blue", cex = 2, pch =
21)

legend(x = "bottomleft", legend = c("P. aquilinum", "P. caudatum", "P. e.
arachnoideum", "P. e. a. paedomorficum", "P. e. campestre", "P. e. gryphus", "P. e.
g. harpianum"), bg = "white", pch = 19, cex = 1, col = c("black", "pink",
"#5928ED", "#0073E6", "#2546F0", "#00BF7D", "#00B4C5"), text.font = 3)
```


http://blog.phytools.org/2019/03/projecting-phylogeny-onto-geographic.html