

11-13-12

33443

P-11

ARCHIVES

CSDL-R-1582

EQUATIONS OF MOTION FOR A FLEXIBLE SPACECRAFT – LUMPED PARAMETER IDEALIZATION

by
Joel Storch
Stephen Gates

September 1982

PROPERTY OF THE
TECHNICAL INFORMATION CENTER
CHARLES STARK DRAPER LABORATORY, INC.

The Charles Stark Draper Laboratory, Inc.
Cambridge, Massachusetts 02139

CSDL-R-1582 EQUATIONS OF MOTION FOR A
FLEXIBLE SPACECRAFT – LUMPED PARAMETER
IDEALIZATION (Draper, Charles Stark Lab.)
7-80

USC 220

Unclassified
7371° 0033443

Draper Laboratory

PUBLICATION AUTHORIZATION FORM

For External Distribution and Formal Program Documents

TCO Work Order No.

8209H217

Document No. assigned

R-1582

DESCRIPTION - to be filled in by author

1. Title of document: Equations of Motion for a Flexible
Spacecraft - Lumped Parameter Idealizations

2. Author(s): Joel Storch
Stephen Gates

3. Work generated
under Lab account No.

92521

4. Classification Unclassified
Confidential Secret S/RD

5. Date(s) due:
Draft copy _____ Final copies _____

6. DOCUMENT TYPE

Series

- Technical Report (interim/final) R
- Specification S
- Technical Memorandum C
- Thesis T
- Technical Paper, slides, etc. P

Remarks _____

To be prepared by: Publications (65E)

Other _____

7. DISTRIBUTION

List attached List included
in document

copies

Program

Internal

CSDL

Author(s) 2

TIC/Library

External: Gov't Agencies/Contractors

Other external 3TOTAL 2x5

Remarks Security Review
3 Copies to Security

8. PAPERS & PRESENTATIONS-public dissemination

- Abstract, for submission/acceptance or oral presentation. - (resulting paper requires a separate authorization form)
- Manuscript, for external publishing
- Slides, vugraphs, etc. not included in a paper
- Copies to be released at seminar/symposium
- Oral presentation only

To be published by _____

Society _____

Subject of meeting _____

Meeting date(s) _____

Location _____

9. Will any invention be disclosed that has not been submitted to CSDL Patent Committee ? YES NO 10. Is sponsor review required for technical content ? YES NO

11. Charge this effort to Lab account No.

Reviewing Agency _____

92521

Joel Storch 9/18/21

Senior Author

date

AUTHORIZATION TO PREPARE - document described above

Signatures R. Storch 9/17/82 and Joseph A. Turnbull 9/27/82 if nonproject funded _____
Author's Supervisor date Program Manager date Chief Scientist date

APPROVAL TO PUBLISH - camera-ready copy/manuscript

TCO/Publications: CSDL Styleguide and/or sponsor specs met? YES NO 9/27/82
C. K. W. Storch Reviewing Editor date J. P. O'Neill Security Officer date 9/17/82

camera-ready copy Joel Storch overall approval M. DeLoach 9-27-82 date
Senior Author date Department Head - Sponsor Interface date

technical approval Joseph A. Turnbull 9/27/82 IF thesis or IR&D
Program Manager or Technical Supervisor date Department Head - Education IR&D date

overall approval M. DeLoach 9-27-82 IF nonproject funded _____
(Author's Department Head date Chief Scientist date)

Remarks _____

DOCUMENT CONTROL:

received STM copies, from negro signed M. DeLoach 9/27/82 date

Distribution: Program _____ copies, on _____ Internal _____ copies, on _____ External _____ copies, on _____

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle Equations of Motion for a Flexible Spacecraft — Lumped Parameter Idealization		5. Report Date September 1982	
7. Author(s) Joel Storch, Stephen Gates		6. Performing Organization Code	
9. Performing Organization Name and Address The Charles Stark Draper Laboratory, Inc. 555 Technology Square Cambridge, Massachusetts 02139		8. Performing Organization Report No. CSDL-R-1582	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Johnson Space Center Houston, Texas 77058		10. Work Unit No.	
		11. Contract or Grant No. NAS-9 16023	
		13. Type of Report and Period Covered Technical Report	
15. Supplementary Notes		14. Sponsoring Agency Code	
16. Abstract The equations of motion for a flexible vehicle capable of arbitrary translational and rotational motions in inertial space accompanied by small elastic deformations are derived in an unabridged form. The vehicle is idealized as consisting of a single rigid body with an ensemble of mass particles interconnected by massless elastic structure. The internal elastic restoring forces are quantified in terms of a stiffness matrix. A transformation and truncation of elastic degrees of freedom is made in the interest of numerical integration efficiency. Deformation dependent terms are partitioned into a hierarchy of significance. The final set of motion equations are brought to a fully assembled first order form suitable for direct digital implementation. A FORTRAN program implementing the equations is given and its salient features described.			
17. Key Words Suggested by Author Spacecraft Dynamics Flexible Body Mechanics Lumped Parameter Modal Coordinates Mechanical Vibrations		18. Distribution Statement	
19. Security Classif. (of this report) UNCLASSIFIED	20. Security Classif. (of this page) UNCLASSIFIED	21. No. of Pages 74	22. Price

The final chapter of this report pertains to a FORTRAN computer program which implements and numerically integrates the complete set of equations. The salient features of the program, its subroutines, and the input and output data are described. An annotated flowchart along with a full listing of the code is provided.

It is noteworthy that while the idealization and methodology applied in this report are essentially those of Likins,⁽⁵⁾ the equations formulated herein are unique from those developed in Reference 5, and indeed the distinction is fundamental. It was the express desire to avoid the kinematic restrictions required there to effect a coordinate transformation on the elastic deflections which motivated this approach.

From an applications standpoint, the basic discretization of the vehicle of interest is performed in the manner of lumped mass structural dynamics modeling. The required stiffness matrix which quantifies the internal elastic restoring forces can in general be obtained from pre-processed linear structural finite element analysis programs (e.g., NASTRAN). Because of the mass particle idealization of the elastic domain, only translational displacements are defined at those points, hence any finite element model used to provide stiffness matrix information must be purged of any rotational degrees of freedom that may exist. This requirement is easily satisfied through the application of the static condensation procedure. Thus the analyst is afforded these familiar and versatile structural modeling techniques augmented by the arbitrary motion capability..

The motion equations formulated here are complete and unabridged for a single unconstrained flexible vehicle. However, they could, in a straightforward fashion, be coupled to the dynamics equations for other independent bodies to form an articulated system. This can be done through the identification and elimination of interbody constraint forces/torques and redundant kinematic variables. Indeed, it is for just such an application that these equations are intended. Specifically they are to represent a generic flexible payload to be terminally attached to the

Space Shuttle Orbiter remote manipulator system, which is an articulated chain of rigid and flexible bodies. For this case the model's rigid-body is taken to be the payload grapple fixture with all outboard structure represented by the particle assemblage.

CHAPTER 2

PRELIMINARIES

2.1 Vehicle Idealization

The system being analyzed (see Figure 1) consists of a single rigid body and an attached flexible appendage. The appendage is idealized as a system of particles connected by massless elastic structure. There is no articulation between the appendage and rigid base, i.e., the appendage is "cantilevered" to the rigid body. At an arbitrary point, O_g , of the rigid body we locate the origin of the body fixed frame which rotates as the body rotates in inertial space. The vector \vec{R} serves to determine the position of O_g relative to the inertially fixed point O . The particle masses m_i ($i = 1, 2, \dots, n$) are located via the position vectors \vec{r}_i relative to O_g in the undeformed state. The elastic displacement of m_i is \vec{q}_i , measured in the body frame.

Many space vehicles or parts of spacecraft can be approximated in this manner. A specific example is the Shuttle Remote Manipulation System in which the "appendage" corresponds to a flexible payload and the "rigid base" to the grapple fixture (this component being attached to the orbiter through the links of the manipulator arm).

2.2 External and Internal Forces

With the ultimate goal in mind of applying the present analysis to more complicated situations, we wish to accommodate all forces and torques which will arise when the system in Figure 1 is attached to other spacecraft components. Hence, at the point O_g , let there be a force-torque

pair: $\vec{f}^o(t)$, $\vec{\tau}^o(t)$. In the domain of the elastic appendage we have an external force $\vec{f}^i(t)$ acting upon the point mass m_i .

As an example, in the case of the Shuttle Remote Manipulator Arm, \vec{f}^o and $\vec{\tau}^o$ would represent the force and torque exerted by the end-effector on the grapple fixture.

We assume that we are given a stiffness matrix reflecting the mutual elastic forces between the mass points of the appendage. Assemble the elastic displacements as

$$\underline{q} = (q_x^1 \ q_y^1 \ q_z^1 \ q_x^2 \ q_y^2 \ q_z^2, \dots, q_x^n \ q_y^n \ q_z^n)^T$$

(x, y, z) refer to Cartesian components along the axes of the body fixed frame.

If $[K]$ is the stiffness matrix, then $-[K]\underline{q}$ is the vector of elastic forces exerted on the point masses. Assume that $[K]$ is partitioned such that the vector of elastic forces are ordered exactly as the elements in \underline{q} . Note that in generating $[K]$ the appendage is cantilevered to the rigid base.

Figure 1. Idealized vehicle.

CHAPTER 3

EQUATIONS OF MOTION

3.1 Particle Translational Equations

\vec{v}^i , the inertial velocity of the i^{th} particle, is given by

$$\vec{v}^i = \frac{d}{dt} (\vec{R} + \vec{r}^i + \vec{q}^i)$$

Let $\begin{pmatrix} u \\ v \\ w \end{pmatrix}$ and $\underline{\omega}$ represent the (absolute) velocity and angular velocity of the body frame resolved in body axes, we then have

$$\underline{v}^i = \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \underline{\omega} \times (\underline{r}^i + \underline{q}^i) + \dot{\underline{q}}^i$$

Differentiating this expression we arrive at the particle acceleration

$$\begin{aligned} \frac{d}{dt} \underline{v}^i &= \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} - (\underline{r}^i + \underline{q}^i) \times \dot{\underline{\omega}} + \ddot{\underline{q}}^i \\ &\quad + \underline{\omega} \times \left[\begin{pmatrix} u \\ v \\ w \end{pmatrix} + 2\dot{\underline{q}}^i \right] + \underline{\omega} \times [\underline{\omega} \times (\underline{r}^i + \underline{q}^i)] \end{aligned}$$

Expanding the cross product in the last term and using the matrix-vector form for the cross product $\underline{a} \times \underline{b} \equiv [\underline{a}]^{\sim} \underline{b}$ where $[\underline{a}]^{\sim} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}$

the particle acceleration can be written as

$$\begin{aligned} \frac{d}{dt} \underline{v}^i &= \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} - ([\underline{r}^i]^{\sim} + [\underline{q}^i]^{\sim}) \dot{\underline{\omega}} + \ddot{\underline{q}}^i + [\underline{\omega}]^{\sim} \begin{pmatrix} u \\ v \\ w \end{pmatrix} + 2[\underline{\omega}]^{\sim} \dot{\underline{q}}^i \\ &\quad + (\underline{\omega}^T \underline{r}^i) \underline{\omega} - ||\underline{\omega}||^2 \underline{r}^i + (\underline{\omega}^T \underline{q}^i) \underline{\omega} - ||\underline{\omega}||^2 \underline{q}^i \quad (3-1) \end{aligned}$$

If \underline{f}^i is the external force on the i^{th} particle and \underline{f}_e^i the elastic force exerted on the i^{th} particle by the rest of the assemblage (both resolved along body axes), the translational equation is

$$\underline{f}^i + \underline{f}_e^i = m_i \frac{d}{dt} \underline{v}^i$$

(i = 1, 2, ..., n)

Partitioning the stiffness matrix into (3×3) arrays

$$[K] = \begin{pmatrix} [K_{11}] & [K_{12}] \dots [K_{1n}] \\ [K_{21}] & [K_{22}] \dots [K_{2n}] \\ \vdots & \vdots \\ [K_{n1}] & [K_{n2}] \dots [K_{nn}] \end{pmatrix}$$

$$\underline{f}_e^i = - \sum_{j=1}^n [K_{ij}] \underline{q}^j$$

Employing Eq. (3-1) for the particle acceleration, the translation equations for the appendage particles may be assembled as

$$\begin{aligned}
 & \left[\begin{array}{c} m^1 \\ \vdots \\ m^2 \\ \vdots \\ u \\ \vdots \\ v \\ \vdots \\ w \\ m^n \end{array} \right] - \left[\begin{array}{c} m_1(\tilde{r}^1 + \tilde{q}^1) \\ \vdots \\ m_2(\tilde{r}^2 + \tilde{q}^2) \\ \vdots \\ \vdots \\ m_n(\tilde{r}^n + \tilde{q}^n) \end{array} \right] \dot{\omega} + \left[\begin{array}{ccccc} m^1 & 0 & 0 & \cdots & 0 \\ 0 & m^2 & 0 & \cdots & 0 \\ 0 & 0 & m^3 & \cdots & \cdot \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & m^n \end{array} \right] \ddot{q} \\
 & + [K] \ddot{q} = \left[\begin{array}{c} f^1 \\ f^2 \\ \vdots \\ f^n \end{array} \right] + \underline{u}_v \quad (3-2)
 \end{aligned}$$

where we have introduced the symbol $m^i = \begin{bmatrix} m_i & 0 & 0 \\ 0 & m_i & 0 \\ 0 & 0 & m_i \end{bmatrix}$ ($i = 1, 2, \dots, n$)

and the nonlinear kinematic term \underline{u}_v is given by

$$\begin{aligned}
 \underline{u}_v &= - \left[\begin{array}{c} m_1 \tilde{\omega} \\ \vdots \\ m_2 \tilde{\omega} \\ \vdots \\ m_n \tilde{\omega} \end{array} \right] \left(\begin{array}{c} u \\ v \\ w \end{array} \right) - 2 \left[\begin{array}{c} m_1 \tilde{\omega} \dot{q}^1 \\ \vdots \\ m_2 \tilde{\omega} \dot{q}^2 \\ \vdots \\ m_n \tilde{\omega} \dot{q}^n \end{array} \right] - \left[\begin{array}{c} m_1 \omega \cdot (\tilde{r}^1 + \tilde{q}^1) \omega \\ \vdots \\ m_2 \omega \cdot (\tilde{r}^2 + \tilde{q}^2) \omega \\ \vdots \\ m_n \omega \cdot (\tilde{r}^n + \tilde{q}^n) \omega \end{array} \right] \\
 &+ |\dot{\omega}|^2 \left[\begin{array}{c} m_1(\tilde{r}^1 + \tilde{q}^1) \\ \vdots \\ m_2(\tilde{r}^2 + \tilde{q}^2) \\ \vdots \\ m_n(\tilde{r}^n + \tilde{q}^n) \end{array} \right] \quad (3-3)
 \end{aligned}$$

Equation (3-2) constitutes a set of $3n$ scalar differential equations.

3.2 Vehicle Translational Equations

For the composite system (rigid body and appendage) the sum of the external forces equals the total mass times the acceleration of the mass center.

If m_b is the mass of the rigid body and \underline{s} is the vector from O_g to the mass center of the rigid body (expressed in the body frame)

$$\underline{m_c} = \sum_{i=1}^n m_i (\underline{r}^i + \underline{q}^i) + m_b \underline{s} \quad (3-4)$$

$m = m_b + \sum_{i=1}^n m_i$ is the total mass.

$\underline{c}(t)$ is the vector position of the instantaneous mass center relative to O_g .

The acceleration of the mass center is: $\frac{d^2}{dt^2} (\vec{R} + \vec{c})$

$$\frac{d^2 \vec{R}}{dt^2} = \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} + \underline{\omega} \times \begin{pmatrix} u \\ v \\ w \end{pmatrix} \quad (\text{in body frame})$$

$$m \frac{d^2 \underline{c}}{dt^2} = \sum_{i=1}^n m_i \ddot{q}^i - \underline{m_c} \times \dot{\underline{\omega}} + 2\underline{\omega} \times \sum_{i=1}^n m_i \dot{q}^i + \underline{\omega} \times (\underline{\omega} \times \underline{m_c})$$

Expressing this last term as: $(\underline{\omega} \cdot \underline{m_c}) \underline{\omega} - ||\underline{\omega}||^2 \underline{m_c}$ the vehicle translational equation assumes the form

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{bmatrix} \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} - [\underline{m_c}] \dot{\underline{\omega}} + [m^1 \ m^2 \ \dots \ m^n] \ddot{\underline{q}} = \sum_{i=0}^n \underline{f}^i + \underline{u}_t \quad (3-5)$$

The nonlinear term \underline{u}_t is given by

$$\underline{u}_t = -\underline{m}\underline{\omega} \times \begin{pmatrix} u \\ v \\ w \end{pmatrix} - 2\underline{\omega} \times \sum_{i=1}^n m_i \dot{\underline{q}}^i - (\underline{\omega} \cdot \underline{m}_c)\underline{\omega} + ||\underline{\omega}||^2 \underline{m}_c \quad (3-6)$$

3.3 Vehicle Rotational Equations

For the composite system (rigid body and appendage) the sum of the external torques taken about the mass center equals the time rate of change of the angular momentum taken about the mass center.

Let $[I_b]$ be the inertia matrix of the rigid body with respect to a coordinate system located at the mass center of the rigid body and parallel to the body fixed axes system at O_g .

$$[I_b] = \iiint [\lambda \cdot \underline{\lambda} E - \underline{\lambda} \underline{\lambda}^T] dm$$

$\underline{\lambda}$ is the position vector of a mass element dm in the rigid body relative to the rigid body mass center and the integration is performed over the region occupied by the rigid base. $[E]$ denotes the unit matrix.

The system angular momentum can be split into two parts:

\underline{H}_b — angular momentum of rigid base

$\sum_{i=1}^n \underline{H}_i$ — angular momentum of appendage particles

Let $\underline{\ell}^i$ and $\underline{\ell}$ denote the position vectors from the system mass center to m_i and a generic mass element in the rigid body respectively.

$$\underline{H}_b = \iiint \underline{\ell} \times \frac{d}{dt} \underline{\ell} dm$$

$$\underline{H}_i = \underline{\ell}^i \times m_i \frac{d}{dt} \underline{\ell}^i$$

Figure 2. Vector geometry.

From Figure 2, $\underline{l}^i = \underline{r}^i + \underline{q}^i - \underline{c}$, $\underline{l} = \underline{s} + \underline{\lambda} - \underline{c}$.

Inserting this expression for \underline{l} into the integral definition of \underline{H}_b and recalling the definition of $[I_b]$ and the fact that $\iiint \underline{\lambda} dm = 0$ we arrive at the following expression for \underline{H}_b

$$\underline{H}_b = [I_b] \underline{\omega} + m_b (\underline{s} - \underline{c}) \times \frac{d}{dt} (\underline{s} - \underline{c})$$

Thus

$$\begin{aligned} \frac{d}{dt} \underline{H}_b &= [I_b] \dot{\underline{\omega}} + \underline{\omega} \times [I_b] \underline{\omega} + m_b (\underline{s} - \underline{c}) \times [\dot{\underline{\omega}} \times \underline{s} + \underline{\omega} \times (\underline{\omega} \times \underline{s})] \\ &\quad - m_b (\underline{s} - \underline{c}) \times \frac{d^2}{dt^2} \underline{c} \end{aligned}$$

Turning to the angular momentum of the i^{th} particle

$$\frac{d}{dt} \underline{H}^i = \underline{\ell}^i \times m_i \frac{d^2}{dt^2} \underline{\ell}^i$$

Now

$$\begin{aligned} \frac{d^2}{dt^2} \underline{\ell}^i &= -(\underline{r}^i + \underline{q}^i) \times \dot{\underline{\omega}} + \ddot{\underline{q}}^i + 2\underline{\omega} \times \dot{\underline{q}}^i + [\underline{\omega} \cdot (\underline{r}^i + \underline{q}^i)] \underline{\omega} \\ &\quad - ||\underline{\omega}||^2 (\underline{r}^i + \underline{q}^i) - \frac{d^2}{dt^2} \underline{c} \end{aligned}$$

Combining the above expressions for $\frac{d}{dt} \underline{H}_b$ and $\frac{d}{dt} \underline{H}^i$ (with the substitution for $\frac{d^2}{dt^2} \underline{\ell}^i$) the terms involving $\frac{d^2}{dt^2} \underline{c}$ conveniently cancel leaving the following result for the time derivative of the angular momentum

$$\begin{aligned} \frac{d}{dt} \underline{H} &= ([I_b] - m_b (\underline{s} - \underline{c}) \tilde{\underline{s}}) \dot{\underline{\omega}} + \underline{\omega} \times [I_b] \underline{\omega} + \sum_{i=1}^n m_i [\underline{\ell}^i] \tilde{\underline{q}}^i \\ &\quad + m_b (\underline{s} - \underline{c}) \times [\underline{\omega} \times (\underline{\omega} \times \underline{s})] - \sum_{i=1}^n m_i [\underline{\ell}^i] \tilde{\underline{q}}^i (\underline{r}^i + \underline{q}^i) \tilde{\underline{\omega}} \\ &\quad + 2 \sum_{i=1}^n m_i [\underline{\ell}^i] \tilde{\underline{\omega}} \dot{\underline{q}}^i + \sum_{i=1}^n [\underline{\omega} \cdot (\underline{r}^i + \underline{q}^i)] m_i \underline{\ell}^i \times \underline{\omega} \\ &\quad - ||\underline{\omega}||^2 \sum_{i=1}^n m_i \underline{\ell}^i \times (\underline{r}^i + \underline{q}^i) \end{aligned} \tag{3-7}$$

The system rotational motion equation is

$$\begin{aligned}\frac{d}{dt} \underline{H} &= \underline{\tau}^o - \underline{c} \times \underline{f}^o + \sum_{i=1}^n (\underline{r}^i + \underline{q}^i - \underline{c}) \times \underline{f}^i \\ &= \underline{\tau}^o - \underline{c} \times \sum_{j=0}^n \underline{f}^j + \sum_{i=1}^n (\underline{r}^i + \underline{q}^i) \times \underline{f}^i\end{aligned}$$

If we were to insert Eq. (3-7) into this last equation we would have a valid equation for system rotation. Note, however, that this equation would not depend upon $(\dot{u}, \dot{v}, \dot{w})$ explicitly. Since the translational equations (3-5) depend upon $\dot{\omega}$ explicitly, and we wish to have a final set of equations with a symmetric coefficient matrix of the generalized accelerations, we force the coupling between the rotational equations and the acceleration vector $(\dot{u} \dot{v} \dot{w})$ by the following device.

Take Eq. (3-5) and (3-6) and solve for $\sum_{j=0}^n \underline{f}^j$. The system rotational motion equation then becomes

$$\begin{aligned}\frac{d}{dt} \underline{H} &= \underline{\tau}^o + \sum_{i=1}^n (\underline{r}^i + \underline{q}^i) \times \underline{f}^i - [\underline{m}\underline{c}]^{-} \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} + [\underline{c}]^{-} [\underline{m}\underline{c}]^{-} \dot{\omega} \\ &\quad - \underline{c} \times \sum_{i=1}^n m_i \ddot{q}^i - [\underline{m}\underline{c}]^{-} \dot{\omega} \begin{pmatrix} u \\ v \\ w \end{pmatrix} - 2[\underline{c}]^{-} \dot{\omega} \sum_{i=1}^n m_i \dot{q}^i \\ &\quad - (\omega + \underline{m}\underline{c}) \underline{c} \times \omega\end{aligned}\tag{3-8}$$

Combining Eq. (3-7) and (3-8), we arrive at the final desired form for the vehicle rotational equation

$$\begin{aligned}
 [\underline{m}\underline{c}]^{\sim} \begin{pmatrix} \dot{u} \\ \vdots \\ \dot{v} \\ \vdots \\ \dot{w} \end{pmatrix} + [\underline{I}(t)] \dot{\underline{\omega}} + \left[m_1 (\underline{r}^1 + \underline{q}^1)^{\sim} | m_2 (\underline{r}^2 + \underline{q}^2)^{\sim} | \dots | m_n (\underline{r}^n + \underline{q}^n)^{\sim} \right] \ddot{\underline{q}} \\
 = \underline{\tau}^o + \sum_{i=1}^n (\underline{r}^i + \underline{q}^i) \times \underline{f}^i + \underline{u}_r
 \end{aligned} \tag{3-9}$$

Here

$$[\underline{I}(t)] = [\underline{I}_b] - m_b (\underline{s} - \underline{c})^{\sim} \tilde{\underline{s}} - \sum_{i=1}^n m_i [\underline{\ell}^i]^{\sim} (\underline{r}^i + \underline{q}^i)^{\sim} - [\tilde{\underline{c}}] [\underline{m}\underline{c}]^{\sim}$$

which can be simplified to

$$[\underline{I}(t)] = [\underline{I}_b] - m_b [\tilde{\underline{s}}]^2 - \sum_{i=1}^n m_i (\tilde{\underline{r}}^i + \tilde{\underline{q}}^i)^2 \tag{3-10}$$

In this form we recognize $[\underline{I}(t)]$ as the inertia matrix of the vehicle about point O_g .

The nonlinear rotation term \underline{u}_r is given by

$$\begin{aligned}
 \underline{u}_r &= -[\underline{m}\underline{c}]^{\sim} \dot{\underline{\omega}} \begin{pmatrix} u \\ v \\ w \end{pmatrix} - 2[\underline{c}]^{\sim} [\underline{\omega}]^{\sim} \sum_{i=1}^n m_i \dot{\underline{q}}^i - (\underline{\omega} \cdot \underline{m}\underline{c}) [\underline{c}]^{\sim} \underline{\omega} \\
 &\quad - [\underline{\omega}]^{\sim} [\underline{I}_b] \underline{\omega} - m_b (\underline{s} - \underline{c}) \times [\underline{\omega} \times (\underline{\omega} \times \underline{s})] - 2 \sum_{i=1}^n m_i [\underline{\ell}^i]^{\sim} [\underline{\omega}]^{\sim} \dot{\underline{q}}^i \\
 &\quad - \sum_{i=1}^n [\underline{\omega} \cdot (\underline{r}^i + \underline{q}^i)] m_i \underline{\ell}^i \times \underline{\omega} + ||\underline{\omega}||^2 \sum_{i=1}^n m_i \underline{\ell}^i \times (\underline{r}^i + \underline{q}^i)
 \end{aligned} \tag{3-11}$$

(3-11)

CHAPTER 4

EXPANSION AND PARTITIONING OF TERMS

4.1 Deformation Dependent Coefficients

In the equations developed thus far, specifically Eq. (3-2), (3-5), and (3-9), we have isolated the accelerations on the left hand sides of the respective equations. The acceleration coefficients are time dependent through the elastic deformations. It is quite desirable from an applications viewpoint to rank the constituents in these coefficients in accordance with their relative magnitude. Thus, in a computer simulation, one can choose to omit certain terms and speed up execution with a minimal impact on computed results.

We will rank terms amongst three categories:

- (1) Terms independent of \underline{q} .
- (2) Terms first order in \underline{q} .
- (3) Terms second order in \underline{q} .

The majority of coefficients are directly identifiable in this hierarchy. We have two coefficients which require additional attention: \underline{mc} and $[I(t)]$.

From Eq. (3-4), $\underline{mc} = \underline{m_b} \underline{s} + \sum_{i=1}^n \underline{m_i} \underline{r}^i + \sum_{i=1}^n \underline{m_i} \underline{q}^i(t)$. The first two terms are of category 1 and the sum will be denoted by \underline{mc}_0 . The time-dependent term will be denoted by $\underline{mc}_1(t)$.

The matrix $[I(t)]$ is given by Eq. (3-10) and can be written as

$$[I(t)] = [I_1] + [I_2(t)] + [I_3(t)]$$

The three matrices $[I_1]$, $[I_2(t)]$, and $[I_3(t)]$ are of category 1, 2, and 3 respectively and are given by

$$[I_1] = [I_b] - m_b [\tilde{s}]^2 - \sum_{i=1}^n m_i [\tilde{x}^i]^2$$

$$[I_2(t)] = - \sum_{i=1}^n m_i ([\tilde{x}^i] [\tilde{q}^i] + [\tilde{q}^i] [\tilde{x}^i])$$

$$[I_3(t)] = - \sum_{i=1}^n m_i [\tilde{q}^i]^2$$

4.2 Nonlinear Kinematic Terms

In this section, we concentrate upon the three nonlinear terms: \underline{u}_t , \underline{u}_v , and \underline{u}_r appearing on the right hand sides of the motion equations. Following a procedure similar to that of the previous section, the nonlinear terms are partitioned amongst three categories:

- (1) Nonlinear terms independent of \underline{q} , $\dot{\underline{q}}$
- (2) Nonlinear terms first order in \underline{q} , $\dot{\underline{q}}$
- (3) Nonlinear terms second order in \underline{q} , $\dot{\underline{q}}$

Accordingly, from Eq. (3-6), $\underline{u}_t = \underline{u}_t^{(1)} + \underline{u}_t^{(2)}$ with

$$\underline{u}_t^{(1)} = -m[\underline{\omega}] \sim \begin{pmatrix} u \\ v \\ w \end{pmatrix} - (\underline{\omega} \cdot \underline{mc}_0) \underline{\omega} + ||\underline{\omega}||^2 \underline{mc}_0 \quad (4-1)$$

$$\underline{u}_t^{(2)} = -2[\underline{\omega}] \sim \sum_{i=1}^n m_i \dot{q}^i - (\underline{\omega} \cdot \underline{mc}_1) \underline{\omega} + ||\underline{\omega}||^2 \underline{mc}_1 \quad (4-2)$$

In a similar manner from Eq. (3-3)

$$\underline{u}_v = \underline{u}_v^{(1)} + \underline{u}_v^{(2)}$$

$$\underline{u}_v^{(1)} = - \begin{bmatrix} m_1 \dot{\underline{\omega}} \\ m_2 \dot{\underline{\omega}} \\ \vdots \\ m_n \dot{\underline{\omega}} \end{bmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} - \begin{bmatrix} m_1 (\underline{\omega} \cdot \underline{r}^1) \underline{\omega} \\ m_2 (\underline{\omega} \cdot \underline{r}^2) \underline{\omega} \\ \vdots \\ m_n (\underline{\omega} \cdot \underline{r}^n) \underline{\omega} \end{bmatrix} + ||\underline{\omega}||^2 \begin{bmatrix} m_1 \underline{r}^1 \\ m_2 \underline{r}^2 \\ \vdots \\ m_n \underline{r}^n \end{bmatrix} \quad (4-3)$$

$$\underline{u}_v^{(2)} = -2 \begin{bmatrix} m_1 \dot{\underline{\omega}} \dot{\underline{q}}^1 \\ m_2 \dot{\underline{\omega}} \dot{\underline{q}}^2 \\ \vdots \\ m_n \dot{\underline{\omega}} \dot{\underline{q}}^n \end{bmatrix} - \begin{bmatrix} m_1 (\underline{\omega} \cdot \underline{q}^1) \underline{\omega} \\ m_2 (\underline{\omega} \cdot \underline{q}^2) \underline{\omega} \\ \vdots \\ m_n (\underline{\omega} \cdot \underline{q}^n) \underline{\omega} \end{bmatrix} + ||\underline{\omega}||^2 \begin{bmatrix} m_1 \underline{q}^1 \\ m_2 \underline{q}^2 \\ \vdots \\ m_n \underline{q}^n \end{bmatrix} \quad (4-4)$$

Expansion of \underline{u}_x

The two terms in \underline{u}_x (Eq. (3-11)) depending upon \underline{q} can be combined as

$$\begin{aligned} -2 \sum_{i=1}^n m_i ([\underline{c}]^i + [\underline{x}^i]^i) [\underline{\omega}]^i \dot{\underline{q}}^i &= -2 \sum_{i=1}^n m_i (\underline{x}^i + \underline{q}^i)^i [\underline{\omega}]^i \dot{\underline{q}}^i \\ &= -2 \sum_{i=1}^n m_i [\underline{x}^i]^i [\underline{\omega}]^i \dot{\underline{q}}^i - 2 \sum_{i=1}^n m_i [\underline{q}^i]^i [\underline{\omega}]^i \dot{\underline{q}}^i \end{aligned}$$

The third term in \underline{u}_r can be expressed as

$$(\underline{\omega} \cdot \underline{m}\underline{c}) [\underline{c}]^{\sim} \underline{\omega} = (\underline{\omega} \cdot \underline{m}\underline{c}_0) [\underline{c}_0]^{\sim} \underline{\omega} + (\underline{\omega} \cdot \underline{m}\underline{c}_0) [\underline{c}_1]^{\sim} \underline{\omega} + (\underline{\omega} \cdot \underline{m}\underline{c}_1) [\underline{c}_0]^{\sim} \underline{\omega} \\ + (\underline{\omega} \cdot \underline{m}\underline{c}_1) [\underline{c}_1]^{\sim} \underline{\omega}$$

For the last two terms in \underline{u}_r the following expansions are useful

$$[\underline{\omega} \cdot (\underline{r}^i + \underline{q}^i)] \underline{m}_i \underline{\ell}^i \times \underline{\omega} = (\underline{\omega} \cdot \underline{r}^i) \underline{m}_i (\underline{r}^i - \underline{c}_0) \times \underline{\omega} \\ + (\underline{\omega} \cdot \underline{q}^i) \underline{m}_i (\underline{r}^i - \underline{c}_0) \times \underline{\omega} \\ + (\underline{\omega} \cdot \underline{r}^i) \underline{m}_i (\underline{q}^i - \underline{c}_1) \times \underline{\omega} \\ + (\underline{\omega} \cdot \underline{q}^i) \underline{m}_i (\underline{q}^i - \underline{c}_1) \times \underline{\omega}$$

$$\underline{\ell}^i \times (\underline{r}^i + \underline{q}^i) = \underline{r}^i \times \underline{c}_0 + \underline{r}^i \times \underline{c}_1 + \underline{q}^i \times \underline{c}_0 + \underline{q}^i \times \underline{c}_1$$

Collecting terms in \underline{u}_r independent of deformation

$$\underline{u}_r^{(1)} = -[\underline{m}\underline{c}_0]^{\sim} [\underline{\omega}]^{\sim} \begin{pmatrix} \underline{u} \\ \underline{v} \\ \underline{w} \end{pmatrix} - (\underline{\omega} \cdot \underline{m}\underline{c}_0) [\underline{c}_0]^{\sim} \underline{\omega} - \underline{\omega} \times [\underline{I}_b] \underline{\omega} \\ - \underline{m}_b (\underline{s} - \underline{c}_0) \times [\underline{\omega} \times (\underline{\omega} \times \underline{s})] - \sum_{i=1}^n \underline{m}_i (\underline{\omega} \cdot \underline{r}^i) (\underline{r}^i - \underline{c}_0) \times \underline{\omega} \\ + |\underline{\omega}|^2 \sum_{i=1}^n \underline{m}_i \underline{r}^i \times \underline{c}_0$$

The expression for $\underline{u}_r^{(1)}$ can be further simplified by use of the following identities

$$\sum_{i=1}^n m_i \underline{r}^i \times \underline{c}_0 = -m_b \underline{s} \times \underline{c}_0$$

$$\begin{aligned} \sum_{i=1}^n m_i (\underline{\omega} \cdot \underline{r}^i) (\underline{r}^i - \underline{c}_0) \times \underline{\omega} &= -[\underline{\omega}]^* \sum_{i=1}^n m_i \underline{r}^i \underline{r}^{iT} \underline{\omega} \\ &\quad + [\underline{\omega} \cdot (m_b \underline{s} - m_c \underline{c}_0)] \underline{c}_0 \times \underline{\omega} \end{aligned}$$

$$\begin{aligned} -m_b (\underline{s} - \underline{c}_0) \times [\underline{\omega} \times (\underline{\omega} \times \underline{s})] &= -(\underline{\omega} \cdot \underline{s}) m_b \underline{s} \times \underline{\omega} + (\underline{\omega} \cdot \underline{s}) m_b \underline{c}_0 \times \underline{\omega} \\ &\quad - |\underline{\omega}|^2 m_b \underline{c}_0 \times \underline{s} \end{aligned}$$

Incorporating these results we arrive at the final expression

$$\begin{aligned} \underline{u}_r^{(1)} &= -[m_c \underline{c}_0]^* [\underline{\omega}]^* \begin{pmatrix} u \\ v \\ w \end{pmatrix} + [\underline{\omega}]^* \sum_{i=1}^n m_i \underline{r}^i \underline{r}^{iT} \underline{\omega} - \underline{\omega} \times [I_b] \underline{\omega} \\ &\quad - m_b (\underline{s} \cdot \underline{\omega}) \underline{s} \times \underline{\omega} \end{aligned} \tag{4-5}$$

Collecting first order deformation dependent terms in \underline{u}_r

$$\begin{aligned} \underline{u}_r^{(2)} &= -[m_c \underline{c}_1]^* [\underline{\omega}]^* \begin{pmatrix} u \\ v \\ w \end{pmatrix} - 2 \sum_{i=1}^n m_i [\underline{r}^i]^* [\underline{\omega}]^* \underline{q}^i - (\underline{\omega} \cdot m_c \underline{c}_0) [\underline{c}_1]^* \underline{\omega} \\ &\quad - (\underline{\omega} \cdot m_c \underline{c}_1) [\underline{c}_0]^* \underline{\omega} + m_b \underline{c}_1 \times [\underline{\omega} \times (\underline{\omega} \times \underline{s})] \\ &\quad - \sum_{i=1}^n [(\underline{\omega} \cdot \underline{q}^i) m_i (\underline{r}^i - \underline{c}_0) \times \underline{\omega} + (\underline{\omega} \cdot \underline{r}^i) m_i (\underline{q}^i - \underline{c}_1) \times \underline{\omega}] \\ &\quad + |\underline{\omega}|^2 \sum_{i=1}^n m_i (\underline{r}^i \times \underline{c}_1 + \underline{q}^i \times \underline{c}_0) \end{aligned}$$

The expression for $\underline{u}_r^{(2)}$ can be further simplified by use of the following identities

$$\begin{aligned}
 \sum_{i=1}^n m_i (\underline{r}^i \times \underline{c}_1 + \underline{q}^i \times \underline{c}_0) &= m_b \underline{c}_1 \times \underline{s} \\
 - \sum_{i=1}^n [(\underline{\omega} \cdot \underline{q}^i) m_i (\underline{r}^i - \underline{c}_0) \times \underline{\omega} + (\underline{\omega} \cdot \underline{r}^i) m_i (\underline{q}^i - \underline{c}_1) \times \underline{\omega}] &= \\
 [\underline{\omega}]^{\sim} \sum_{i=1}^n m_i (\underline{r}^i \underline{q}^{iT} + \underline{q}^i \underline{r}^{iT}) \underline{\omega} + (\underline{\omega} \cdot m \underline{c}_1) \underline{c}_0 \times \underline{\omega} + [\underline{\omega} \cdot (m \underline{c}_0 - m_b \underline{s})] \underline{c}_1 \times \underline{\omega} \\
 m_b \underline{c}_1 \times [\underline{\omega} \times (\underline{\omega} \times \underline{s})] &= m_b (\underline{\omega} \cdot \underline{s}) \underline{c}_1 \times \underline{\omega} - m_b |\underline{\omega}|^2 \underline{c}_1 \times \underline{s} \\
 \underline{u}_r^{(2)} &= -[m \underline{c}_1]^{\sim} [\underline{\omega}]^{\sim} \begin{pmatrix} u \\ v \\ w \end{pmatrix} - 2 \sum_{i=1}^n m_i [\underline{r}^i]^{\sim} [\underline{\omega}]^{\sim} \dot{q}_i \\
 &\quad + [\underline{\omega}]^{\sim} \sum_{i=1}^n m_i (\underline{r}^i \underline{q}^{iT} + \underline{q}^i \underline{r}^{iT}) \underline{\omega} \tag{4-6}
 \end{aligned}$$

Collecting second order deformation dependent terms in \underline{u}_r and simplifying

$$\underline{u}_r^{(3)} = -2 \sum_{i=1}^n m_i [\underline{q}_i]^{\sim} [\underline{\omega}]^{\sim} \dot{q}_i + [\underline{\omega}]^{\sim} \sum_{i=1}^n m_i \underline{q}^i \underline{q}^{iT} \underline{\omega} \tag{4-7}$$

$\underline{u}_r = \underline{u}_r^{(1)} + \underline{u}_r^{(2)} + \underline{u}_r^{(3)}$ where the terms on the right hand side are given by Eq. (4-5) - (4-7).

CHAPTER 5

MODAL COORDINATE TRANSFORMATION

When the number of particles in the appendage idealization becomes large, high frequencies obtain which make numerical integration difficult. We will describe a truncated coordinate transformation to circumvent this difficulty. Note that the treatment to follow is somewhat heuristic and hence requires good engineering judgement and caution in its implementation.

Since the high frequencies arise from the appendage vibration, it is natural to start with its governing equation (3-2, 3-3). Consider the case where no external forces act, $\underline{\omega} = \underline{0}$ and $(\dot{u}, \dot{v}, \dot{w}) = \underline{0}$. The "constrained" appendage equation then assumes the familiar form

$$[\mathbf{M}] \ddot{\underline{q}} + [\mathbf{K}] \underline{q} = \underline{0} \quad \text{where } [\mathbf{M}] = \text{diag}(m^1, m^2, \dots, m^n)$$

The natural frequencies, ω_i^i , and corresponding mode shapes, \underline{v}^i , are determined from

$$([\mathbf{K}] - \omega^2 [\mathbf{M}]) \underline{v} = \underline{0} \quad (5-1)$$

For the vehicle we are treating here, the appendage is rigidly attached to the base body hence no rigid body modes are present in the above eigenvalue problem. Equivalently, $[\mathbf{K}]$ is positive definite. Since $[\mathbf{K}]$ and $[\mathbf{M}]$ are symmetric and positive definite there exists 3n independent eigenvectors \underline{v}^i corresponding to positive eigenvalues ω_i^2 , even if there are multiple eigenvalues.

We assume that the eigenvectors are normalized such that $(\underline{v}^i, [\mathbf{M}] \underline{v}^i) = 1$. It follows that $(\underline{v}^i, [\mathbf{K}] \underline{v}^i) = \omega_i^2$. We can always create a mutually orthogonal set such that

$$(\underline{v}^i, [\mathbf{M}] \underline{v}^j) = 0 = (\underline{v}^i, [\mathbf{K}] \underline{v}^j) \quad (i \neq j)$$

In actual computation we can deal with a simpler eigenvalue problem than that presented by Eq. (5-1). Specifically we will transform Eq. (5-1) to an ordinary symmetric eigenvalue problem. Introduce the change of variables: $\underline{w} = [\mathbf{M}]^{1/2} \underline{v}$. Since $[\mathbf{M}]$ is diagonal, $[\mathbf{M}]^{1/2}$ is a diagonal matrix whose elements are the square roots of the corresponding elements in $[\mathbf{M}]$. The eigenvalue problem transforms into

$$[\mathbf{K}] [\mathbf{M}]^{-1/2} \underline{w} = \omega^2 [\mathbf{M}]^{1/2} \underline{w} \quad \text{or} \quad [\mathcal{G}] \underline{w} = \omega^2 \underline{w} \quad (5-2)$$

where $[\mathcal{G}]$ is the symmetric matrix: $[\mathcal{G}] = [\mathbf{M}]^{-1/2} [\mathbf{K}] [\mathbf{M}]^{-1/2}$

It is easily verified that if the eigenvectors \underline{w}^i ($i = 1, 2, \dots, 3n$) of Eq. (5-2) are orthogonal (which can always be done) then the corresponding eigenvectors of (5-1) satisfy all orthogonality and normality conditions specified above.

Order the eigenvalues such that $\omega_1^2 \leq \omega_2^2 \leq \dots \leq \omega_{3n}^2$ and let $[\Phi]$ be the $(3n \times t)$ matrix whose columns are the eigenvectors $\underline{v}^1, \underline{v}^2, \dots, \underline{v}^t$ ($t \leq 3n$). We now make the transformation

$$\underline{q} = [\Phi] \underline{\eta} \quad (5-3)$$

This is not a coordinate transformation in the strict sense, since $[\Phi]$ does not have an inverse when $t < 3n$. The appendage deformation is now characterized by t "modal coordinates" instead of the original $3n$ deformation coordinates. We formally make the substitution, Eq. (5-3), into the full set of motion equations.

Substituting into the appendage deformation equation (3-2), pre-multiplying by $[\Phi]^T$ and recalling the orthogonality and normality conditions we arrive at

$$[\Phi]^T \begin{bmatrix} m^1 \\ m^2 \\ \vdots \\ m^n \end{bmatrix} \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} - [\Phi]^T \begin{bmatrix} m_1(\underline{x}^1 + \underline{q}^1)^\sim \\ m_2(\underline{x}^2 + \underline{q}^2)^\sim \\ \vdots \\ m_n(\underline{x}^n + \underline{q}^n)^\sim \end{bmatrix} \underline{\omega} + \underline{\ddot{n}} + \begin{bmatrix} \omega_1^2 & 0 & 0 & \dots & 0 \\ 0 & \omega_2^2 & & & 0 \\ 0 & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & \dots & \dots & \omega_t^2 \end{bmatrix} \underline{n} =$$

$$[\Phi]^T \begin{bmatrix} f^1 \\ f^2 \\ \vdots \\ f^n \end{bmatrix} + [\Phi]^T \underline{u}_v \quad (5-4)$$

The vehicle translational equations (3-5) become

$$\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{bmatrix} \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} - [\underline{m_c}]^\sim \underline{\omega} + [m^1 \ m^2 \ \dots \ m^n] [\Phi] \underline{n} = \sum_{i=0}^n f^i + \underline{u}_t$$

The vehicle rotational equations (3-9) become

$$[\underline{m_c}]^\sim \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{pmatrix} + [I(t)] \underline{\omega} + [m_1(\underline{x}^1 + \underline{q}^1)^\sim \ | \ m_2(\underline{x}^2 + \underline{q}^2)^\sim \ | \ \dots \ | \ m_n(\underline{x}^n + \underline{q}^n)^\sim] [\Phi] \underline{n} =$$

$$\underline{\tau}^0 + \sum_{i=1}^n (\underline{x}^i + \underline{q}^i) \times f^i + \underline{u}_r$$

The assembled equations of motion in matrix form are presented in Figure 3.

$$\begin{bmatrix}
\begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{bmatrix} & -[\underline{m}\underline{c}]^{\sim} & [\underline{m}^1 \underline{m}^2 \dots \underline{m}^n] [\Phi] \\
-[\underline{m}\underline{c}]^{\sim} & [I(t)] & [\underline{m}_1(\underline{r}^1 + \underline{q}^1)^{\sim} \dots \underline{m}_n(\underline{r}^n + \underline{q}^n)^{\sim}] [\Phi] \\
[\Phi]^T \begin{bmatrix} \underline{m}^1 \\ \underline{m}^2 \\ \vdots \\ \underline{m}^n \end{bmatrix} & -[\Phi]^T \begin{bmatrix} \underline{m}_1(\underline{r}^1 + \underline{q}^1)^{\sim} \\ \underline{m}_2(\underline{r}^2 + \underline{q}^2)^{\sim} \\ \vdots \\ \underline{m}_n(\underline{r}^n + \underline{q}^n)^{\sim} \end{bmatrix} & \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}
\end{bmatrix}
\begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \\ \dot{\omega} \\ \dot{\eta} \end{bmatrix}$$

$$\begin{bmatrix}
\sum_{i=0}^n \underline{f}^i \\
\underline{r}^0 + \sum_{i=1}^n (\underline{r}^i + \underline{q}^i) \times \underline{f}^i \\
[\Phi]^T \begin{pmatrix} \underline{f}^1 \\ \underline{f}^2 \\ \vdots \\ \underline{f}^n \end{pmatrix}
\end{bmatrix} - \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\
\begin{bmatrix} \omega_1^2 & 0 & 0 & \dots & 0 \\ 0 & \omega_2^2 & \ddots & & \\ 0 & 0 & \ddots & \ddots & \omega_t^2 \end{bmatrix} \underline{\eta}
\end{bmatrix} + \begin{bmatrix} \underline{u}_t \\ \underline{u}_r \\ [\Phi]^T \underline{u}_v \end{bmatrix}$$

Figure 3. Assembled equations of motion.

CHAPTER 6

SYSTEM KINETIC ENERGY

The kinetic energy of the vehicle is the sum of the translational and rotational kinetic energy of the rigid body and the kinetic energy of the particles comprising the appendage

$$T = \frac{1}{2} m_b v_b^2 + \frac{1}{2} \underline{\omega} \cdot [I_b] \underline{\omega} + \frac{1}{2} \sum_{i=1}^n m_i v_i^2$$

$$\underline{v}_b = \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \underline{\omega} \times \underline{s}$$

\underline{v}_b is the velocity of the mass center of the base

$$\underline{v}^i = \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \underline{\omega} \times (\underline{r}^i + \underline{q}^i) + \dot{\underline{q}}^i$$

\underline{v}^i is the velocity of i^{th} particle

Forming the inner products $(\underline{v}_b, \underline{v}_b); (\underline{v}^i, \underline{v}^i)$ and recalling Eq. (3-10) for $[I(t)]$ the kinetic energy can be written as

$$\begin{aligned} T &= \frac{1}{2} m(u^2 + v^2 + w^2) + \frac{1}{2} \underline{\omega}^T [I(t)] \underline{\omega} + \frac{1}{2} \sum_{i=1}^n \{\dot{\underline{q}}^i\}^T m_i \dot{\underline{q}}^i \\ &\quad - \frac{1}{2} (uvw) [\underline{m}\underline{c}] \sim \underline{\omega} + \frac{1}{2} \underline{\omega}^T [\underline{m}\underline{c}] \sim \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \frac{1}{2} (uvw) \sum_{i=1}^n m_i \dot{\underline{q}}^i \\ &\quad + \frac{1}{2} \sum_{i=1}^n m_i \{\dot{\underline{q}}^i\}^T \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \frac{1}{2} \underline{\omega}^T \sum_{i=1}^n m_i (\underline{r}^i + \underline{q}^i) \sim \dot{\underline{q}}^i - \frac{1}{2} \sum_{i=1}^n m_i \{\dot{\underline{q}}^i\}^T (\underline{r}^i + \underline{q}^i) \sim \underline{\omega} \end{aligned}$$

We now rewrite those terms in T which depend upon \dot{q}^i in terms of \dot{n}

$$\sum_{i=1}^n \{\dot{q}^i\}^T m_i \dot{q}^i = \dot{q}^T [M] \dot{q} = \dot{n}^T [\Phi]^T [M] [\Phi] \dot{n} = \dot{n}^T [E] \dot{n}$$

$[E]$ is the $(t \times t)$ identity matrix

$$\begin{aligned} (uvw) \sum_{i=1}^n m_i \dot{q}^i &= (uvw) \left[m^1 | m^2 | \dots | m^n \right] \begin{pmatrix} \dot{q}^1 \\ \dot{q}^2 \\ \vdots \\ \dot{q}^n \end{pmatrix} \\ &= (uvw) [m^1 \ m^2 \ \dots \ m^n] [\Phi] \dot{n} \end{aligned}$$

$$\underline{\omega}^T \sum_{i=1}^n m_i (\underline{x}^i + \underline{q}^i) \dot{\underline{q}}^i = \underline{\omega}^T [m_1 (\underline{x}^1 + \underline{q}^1) \ \dots \ m_n (\underline{x}^n + \underline{q}^n)] [\Phi] \dot{n}$$

The kinetic energy can be written as the quadratic form $T = \frac{1}{2} \underline{U}^T [A] \underline{U}$ where $[A]$ is the coefficient matrix (symmetric) of the generalized accelerations appearing in the equations of motion (see Figure 3) and \underline{U} is the vector of non-holonomic velocities

$$\underline{U} = (uvw | \underline{\omega}^T | \dot{\underline{n}})^T$$

Since $[I_b]$ is positive definite, an inspection of the initial expression for T reveals that $T \geq 0$ for all \underline{U} . If $T = 0$ then $\dot{\underline{v}}_b = \underline{\omega} = \underline{v}^i = \underline{0}$ ($i = 1, 2, \dots, n$). But $\dot{\underline{v}}_b = \underline{0} = \underline{\omega}$ implies $(uvw) = \underline{0}$ and $\underline{v}^i = \underline{0} = (uvw) = \underline{\omega}$ implies $\dot{\underline{q}} = \underline{0}$. Hence $[\Phi] \dot{\underline{n}} = \underline{0}$. Since the columns of $[\Phi]$ are linearly independent we must have $\dot{\underline{n}} = \underline{0}$ also. In other words, $T = 0$ if and only if $\underline{U} = \underline{0}$. This argument proves that $[A]$ is positive definite and consequently nonsingular (see Chapter 8 where we require $[A]^{-1}$).

Note that if we replace the rigid body by a particle then $s = 0$ and $[I_b] = [0]$. We still have $T \geq 0$ but if $T = 0$ we can only argue that $(uvw) = 0$. We can have $T = 0$ for nonzero ω and $\dot{\eta}$ as long as $\omega \times (r^i + q^i) + \dot{q}^i = 0$ ($i = 1, 2, \dots, n$). Thus for this later case $[A]$ is positive semi-definite. In particular $[A]$ will be singular. The situation here can be understood by simply enumerating the degrees of freedom involved. Originally we had a system consisting of a rigid body and n particles: $(6 + 3n)$ degrees of freedom. The number of dynamic equations was also $(6 + 3n)$. When degenerating the rigid body to a particle we have a system of $(n + 1)$ particles: $(3n + 3)$ degrees of freedom. However, when we retain the same equations of motion as in the original case $(6 + 3n)$ there will clearly be a redundancy present. Indeed, this explains why $[A]$ is singular for the degenerate case. Consequently, we cannot use the equations developed here for a system composed solely of particles; at least not without modification.

CHAPTER 7

KINEMATICAL RELATIONSHIPS

Let the transformation from the inertial frame $\{x^1, y^1, z^1\}$ to the body frame $\{x^4, y^4, z^4\}$ be arrived at by a sequence of three Euler angles $\theta_1, \theta_2, \theta_3$ as depicted below.

$$R^{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_1 & -\sin \theta_1 \\ 0 & \sin \theta_1 & \cos \theta_1 \end{pmatrix} \quad R^{23} = \begin{pmatrix} \cos \theta_2 & 0 & \sin \theta_2 \\ 0 & 1 & 0 \\ -\sin \theta_2 & 0 & \cos \theta_2 \end{pmatrix}$$

$$R^{34} = \begin{pmatrix} \cos \theta_3 & -\sin \theta_3 & 0 \\ \sin \theta_3 & \cos \theta_3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$[R^{ij}]$ is the transformation matrix from frame 'j' to frame 'i'

Concatenating transformations, $[R^{14}] = [R^{12}][R^{23}][R^{34}]$

$$[R^{14}] = \begin{pmatrix} \cos\theta_2 \cos\theta_3 & -\cos\theta_2 \sin\theta_3 & \sin\theta_2 \\ \cos\theta_1 \sin\theta_3 + \sin\theta_1 \sin\theta_2 \cos\theta_3 & \cos\theta_1 \cos\theta_3 - \sin\theta_1 \sin\theta_2 \sin\theta_3 & -\sin\theta_1 \cos\theta_2 \\ \sin\theta_1 \sin\theta_3 - \cos\theta_1 \sin\theta_2 \cos\theta_3 & \sin\theta_1 \cos\theta_3 + \cos\theta_1 \sin\theta_2 \sin\theta_3 & \cos\theta_1 \cos\theta_2 \end{pmatrix} \quad (7-1)$$

We next derive the relationship between the body frame angular velocity $\underline{\omega}$ (expressed in body coordinates) and the Euler rates $\dot{\theta}_1, \dot{\theta}_2, \dot{\theta}_3$. Let $\{\underline{i}_p, \underline{j}_p, \underline{k}_p\}$ be the set of unit vectors along the axes of frame 'p' ($p = 1, 2, 3, 4$) .

$$\vec{\omega} = \dot{\theta}_1 \vec{i}_1 + \dot{\theta}_2 \vec{j}_2 + \dot{\theta}_3 \vec{k}_3$$

To express $\vec{\omega}$ in the body frame, we must use the representation of the unit vectors in frame 4. With the aid of the transformations listed above we arrive at

$$\underline{\omega} = \begin{pmatrix} \dot{\theta}_1 \cos\theta_2 \cos\theta_3 + \dot{\theta}_2 \sin\theta_3 \\ \dot{\theta}_2 \cos\theta_3 - \dot{\theta}_1 \cos\theta_2 \sin\theta_3 \\ \dot{\theta}_3 + \dot{\theta}_1 \sin\theta_2 \end{pmatrix} \quad (\text{in body frame})$$

This system can be inverted to yield

$$\begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{pmatrix} = \begin{bmatrix} \frac{\cos\theta_3}{\cos\theta_2} & \frac{-\sin\theta_3}{\cos\theta_2} & 0 \\ \sin\theta_3 & \cos\theta_3 & 0 \\ -\cos\theta_3 \tan\theta_2 & \sin\theta_3 \tan\theta_2 & 1 \end{bmatrix} \underline{\omega} \quad (\cos\theta_2 \neq 0) \quad (7-2)$$

CHAPTER 8

EQUATIONS OF MOTION — FIRST ORDER FORM

The assembled motion equations (Figure 3) can be written as

$$[\mathbf{A}(t)] \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \\ \vdots \\ \dot{\theta} \\ \vdots \\ \dot{\omega} \end{bmatrix} = \underline{\mathbf{F}} + \underline{\mathbf{U}} - \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \omega_1^2 n_1 \\ \omega_2^2 n_2 \\ \vdots \\ \omega_t^2 n_t \end{bmatrix} \quad (8-1)$$

where

$$\underline{\mathbf{F}} = \begin{bmatrix} \sum_{i=0}^n f^i \\ \vdots \\ \tau^0 + \sum_{i=1}^n (r^i + g^i) \times f^i \\ \vdots \\ [\Phi]^T \begin{pmatrix} f^1 \\ f^2 \\ \vdots \\ f^n \end{pmatrix} \end{bmatrix} \quad (8-2)$$

and

$$\underline{U} = \begin{bmatrix} \underline{u}_t \\ \vdash \\ \underline{u}_x \\ \vdash \\ [\Phi]^T \underline{u}_v \end{bmatrix} \quad (8-3)$$

Let R_x, R_y, R_z be the components of the inertial position vector of O_g (origin of body frame) resolved along inertial axes and $[\Gamma]$ denote the matrix in Eq. (7-2). The kinematic relationships can now be written

$$\begin{pmatrix} \dot{R}_x \\ \dot{R}_y \\ \dot{R}_z \end{pmatrix} = [R^{14}]_1 \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \quad \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\theta}_3 \end{pmatrix} = [\Gamma] \underline{\omega}$$

Define $[\Omega^2] = \text{diag}(\omega_1^2, \omega_2^2, \dots, \omega_t^2)$. The state vector \underline{Y} is defined to be

$$\underline{Y} = (R_x R_y R_z \theta_1 \theta_2 \theta_3 \underline{n}^T u v w \underline{\omega}^T \dot{\underline{n}}^T)^T \quad (8-4)$$

The equations of motion written in first order form are

$$\frac{d}{dt} \underline{Y} = \begin{bmatrix} [R^{14}] \begin{pmatrix} u \\ v \\ w \end{pmatrix} \\ [\Gamma] \underline{\omega} \\ \dot{\underline{n}} \\ A^{-1} \left[\underline{F} + \underline{U} - \begin{pmatrix} 0 \\ [\Omega^2] \underline{n} \end{pmatrix} \right] \end{bmatrix} \quad (8-5)$$

This system of $(2t + 12)$ first order equations can be integrated numerically with appropriate initial conditions.

CHAPTER 9

DIGITAL SIMULATION

This chapter is concerned with the FORTRAN computer program which implements and numerically integrates the complete set of first order ordinary differential equations presented in Chapter 8, Eq. (8-5). A description of the main program, its subroutines, and the input data is given. An annotated flowchart of the program is given in Figure 4 and a complete listing of the program and its subroutines is provided in Appendix A. An example of the input data for a sample vehicle is provided in Appendix B. The code is liberally commented throughout and in most instances the FORTRAN variable names are mnemonically similar to the corresponding analytical quantities. Virtually all computations involving real number quantities are performed in (IBM) double precision. External subroutines from the double precision IMSL library⁽⁸⁾ are used to perform certain standard computations. IMSL subroutine "EIGRS" is used for eigenvalue/eigenvector extraction and subroutine "LEQT1P" is used to solve simultaneous linear equations. In addition, IMSL subroutine "USPLT" is used to generate time history graphs of selected elements of the vector

$$\{ R_x^T R_y^T R_z^T \theta_1^T \theta_2^T \theta_3^T q^1 \dots q^n^T u v w \omega_1^T \omega_2^T \omega_3^T \dot{q}^1 \dots \dot{q}^n^T \} \quad (9-1)$$

via the line printer.

Throughout the program deformation dependent terms are arranged and computed hierarchically as quantities involving structural deflections to the first and second degree. Similarly the nonlinear kinematic terms

Figure 4. Program flowchart.

are organized into the three categories of Section 4.2 with the contributions of each group of terms being computed independently. This partitioned structure of the computations provides the capability to assess the influence of these higher order terms on the final solution and upon such analysis bypass those deemed negligible.

Main Program

The main program is simply an executive module which calls the appropriate subroutines in the proper order. The reader will note that if external forces are required, these must be explicitly coded either in the main program or as individual subroutines. If the external forces are time dependent, it is essential that they be recomputed prior to each call to subroutine "EXTF" (see comments in main program). For the system in Figure 1 the external excitation is accommodated via the three arrays: $F\emptyset$, * $TAU\emptyset$, FP .

$F\emptyset$ — sum of external forces on rigid body

$TAU\emptyset$ — sum of external moments on rigid body taken about body frame origin.

$F\emptyset$ and $TAU\emptyset$ are three-dimensional vectors whose elements refer to components along body frame axes.

$FP(I,J)$ — is the I^{th} component of the external force acting upon particle J in the appendage ($I = 1, 2, 3; J = 1, 2, \dots, N$).

The external forces for each of the "N" particles comprising the appendage are resolved along body axes.

Subroutines

Subroutine INITL reads in all program input data and performs consistency checks. Selected input data is echo printed. The eigenvalues

* "g" denotes the number zero.

and eigenvectors of the standard symmetric eigenvalue problem given by Eq. (5-2) are computed via a call to IMSL subroutine EIGRS. The eigenvectors are then transformed to those corresponding to Eq. (5-1). All time-invariant terms of the generalized mass matrix of Figure 3 are computed. Finally, the initial conditions on the particle displacements, modal coordinates, and the respective time derivatives are set.

Subroutine GNMASS computes and assembles the deformation dependent generalized mass matrix of Figure 3.

Subroutine EXTF computes and assembles the generalized force vector \underline{F} of Eq. (8-2).

Subroutine NLKT computes and assembles the vector of nonlinear kinematic terms of Eq. (8-3).

Subroutine SOLVE computes the transformation matrices given by Eq. (7-1) and (7-2). The set of simultaneous equations given by Eq. (8-1) are solved via a call to IMSL subroutine LEQT1P. The state vector Eq. (8-4) is assembled and its time derivative, Eq. (8-5), evaluated. The value of the state vector is advanced one time step via a call to subroutine ODESLV.

Subroutine ODESLV integrates the state equation, Eq. (8-5), using the Adams method with third order differences.

Subroutine PRINT is executed only at print-time intervals specified in the input (see below). When called, the subroutine prints the time, force, and torque on the rigid body, applied forces on the particles and all the variables of the vector given in Eq. (9-1).

Entry point GRAF in subroutine PRINT stores selected variables for plotting at a specified time interval (see namelist items DTG and IPLOT below).

Program Input Data

Program input data is read in during execution of subroutine INITL. Input is achieved through four READ-NAMELIST combinations and a single unformatted READ of the stiffness matrix. It is worth noting that while the code given in Appendix A requires the stiffness matrix (described in Section 3.1) and from this and the appendage mass matrix (assembled internally) computes the constrained appendage eigenvalues and eigenvectors, it could be modified to read in the appropriate eigenvalues/eigenvectors directly. The four NAMELIST inputs are defined below, and their use illustrated in Appendix B.

- (1) NAMELIST/INPUT/M \emptyset , N, MASS, RM, I \emptyset , S, NT; contains all mass and geometry data as well as the number of modes to be retained.

M \emptyset = mass of rigid body (real)

N = number of particles (integer)

MASS = masses of particles 1 through N (real N × 1 array)

RM = position vectors of particles 1 through N prior to deformation, expressed in body frame (real 3 × N array)

I \emptyset = inertia matrix of the rigid body with respect to a frame located at the rigid body mass center with axes parallel to body frame (real 3 × 3 array)

S = position vector from body frame origin to mass center of rigid body expressed in body frame (real 3 × 1 array)

NT = number of modes to be retained; modes 1 through NT are used (integer)

(2) NAMELIST/KIN/UVW, OMEGA, R, THETA: contains initial conditions for kinematic variables.

UVW = initial velocity vector of body frame origin,
expressed in body frame coordinates (real 3×1
array)

OMEGA = initial angular velocity vector of body frame
with respect to inertial frame, components ex-
pressed in body frame (real 3×1 array)

R = initial inertial position vector of body frame
origin, components expressed in inertial frame
(real 3×1 array)

THETA = initial 1-2-3 Euler angles of body frame with
respect to inertial frame (real 3×1 array)

(3) NAMELIST/RUN/DT, TSTOP, DTP, DTG: contains numerical
integration parameters and print and plot time intervals.

DT = integration time step in seconds (real)

TSTOP = integration termination time in seconds (real)

DTP = print output time interval in seconds; output
printed every DTP seconds (real)

DTG = plot output time interval in seconds; selected
variables plotted every DTG seconds (real)

(4) NAMELIST/PLOT/IPLOT: specifies which elements of vector
in Eq. (9-1) are to be plotted via line printer.

IPLOT = integer array with the integers corresponding
to those elements of the vector in Eq. (9-1)
that are to be plotted versus time (see sample
use in Appendix B).

APPENDIX A

FORTRAN PROGRAM LISTING

LEVEL 2.3.0 (JUNE 78)	09/350 FORTRAN H EXTENDED	DATE 02.271/12.43.05	PAGE 1
REQUESTED OPTIONS: NOOBJ,TERM,,NOXREF,,NOMAP,,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(304K),LC(60),			
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOCDL(NONE)			
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORNAT C03HT NOALC NOANSF TERM IBM FLAG(I)			
<pre> C **** C *THIS PROGRAM SOLVES THE EQUATIONS OF MOTION OF A VEHICLE 00000100 C *CONSISTING OF A RIGID BASE WITH AN ATTACHED FLEXIBLE APPENDAGE. 00000300 C *THE APPENDAGE IS IDEALIZED AS A COLLECTION OF PARTICLES CONNECTED 00000400 C *BY MASSLESS ELASTIC STRUCTURE. IN ADDITION TO EXTERNAL FORCES ACTING 00000500 C UPON EACH OF THE PARTICLES, A FORCE AND TORQUE ARE ACCOMMODATED AT 00000700 C *THE GRAPPLE FIXTURE CORRESPONDING TO THE ORIGIN OF BODY FRAME.. 00000800 C *(WRITTEN BY JOEL STORCH & STEPHEN GATES C.S.D.L. BASED UPON 00000900 C C.S.D.L. REPORT #21502 SEPT. 1982) 00001000 C **** C 00001200 C 00001300 C NOTE: ARRAYS ARE DIMENSIONED TO ACCOMODATE A MAXIMUM OF 50 PARTICLES 00001400 C 00001500 C IMPLICIT REAL*8(A-H,O-Z) 00001600 C DIMENSION F0(3),TAU0(3),FP(3,50) 00001700 C COMMON /TIME/ DT,TSTOP,DTP,DTG 00001800 C T=0.0 00001900 C INPUT PROGRAM DATA AND CALCULATE ALL TIME INVARIANT PARAMETERS. 00002000 C 00002100 C ISN 0002 CALL INITL 00002200 C ISN 0003 TP=DTP 00002300 C ISN 0004 TG=DTG 00002400 C ISN 0005 00002500 C CALCULATE GENERALIZED MASS MATRIX 00002600 C 00002700 C ISN 0006 10 CALL GMMASS 00002800 C 00002900 C INPUT VALUES REQUIRED FOR 'EXTF' 00003000 C (ALL VECTORS EXPRESSED IN BODY FRAME) 00003100 C 00003200 C F0 - EXTERNAL FORCE ON M0 (AT ORIGIN OF BODY FRAME) 00003300 C TAU0 - EXTERNAL TORQUE AT LOCATION OF BODY FRAME ORIGIN. 00003400 C FP - VECTOR OF EXTERNAL FORCES ON PARTICLES 1,2,...,N. 00003500 C 00003600 C ISN 0010 CALL EXTF(F0,TAU0,FP) 00004300 C 00004400 C CALCULATE NON-LINEAR KINEMATIC TERMS 00004500 C 00004600 C ISN 0011 CALL NLKT 00004700 C 00004800 C INTEGRATE EQUATIONS OF MOTION 00004900 C 00005000 C ISN 0012 CALL SOLVE 00005100 C T=T+DT 00005200 C IF(T .LT. TP) GO TO 15 00005300 </pre>			

LEVEL 2.3.0 (JUNE 78) MAIN OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.44 PAGE 2
 ISN 0026 CALL PRINT(T,F0,TAU0,FP)
 ISN 0027 TP=TP+DTP
 ISN 0028 15 IF(T .LT. TG) GO TO 20
 ISN 0029 CALL GRAF(T)
 ISN 0030 TG=TG+DTG
 ISN 0031 20 IF(T .LT. TSTOP) GO TO 10
 ISN 0032 CALL PLOT
 ISN 0033 STOP
 ISN 0034 END
 00005400
 00005500
 00005600
 00005700
 00005800
 00005900
 00006000
 00006100
 00006200
 *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0364K) AUTODBL(NONE)
 *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)
 STATISTICS SOURCE STATEMENTS = 35, PROGRAM SIZE = 2002, SUBPROGRAM NAME = MAIN
 STATISTICS NO DIAGNOSTICS GENERATED
 ***** END OF COMPIRATION ***** 280K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 02.246/12.21.45

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOXREF,,NOMAP,,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISH 0002	SUBROUTINE SKEW(V,A)	00006300
C		00006400
C	THIS SUBROUTINE CREATES THE SKEW SYMMETRIC MATRIX CORRESPONDING	00006500
C	TO THE VECTOR "V".	00006600
C		00006700
ISN 0003	REAL*8 V,A	00006800
ISN 0004	DIMENSION V(3),A(3,3)	00006900
ISN 0005	A(1,1)=0.0	00007000
ISN 0006	A(1,2)=-V(3)	00007100
ISN 0007	A(1,3)=V(2)	00007200
ISN 0008	A(2,1)=V(3)	00007300
ISN 0009	A(2,2)=0.0	00007400
ISN 0010	A(2,3)=-V(1)	00007500
ISN 0011	A(3,1)=-V(2)	00007600
ISN 0012	A(3,2)=V(1)	00007700
ISN 0013	A(3,3)=0.0	00007800
ISN 0014	RETURN	00007900
ISN 0015	END	00008000

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 14, PROGRAM SIZE = 388, SUBPROGRAM NAME = SKEW

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILED *****

280K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.46

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOMAP,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),
OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISN 0002 SUBROUTINE CROSS(A,B,C) 00008100
C 00008200
C THIS SUBROUTINE CALCULATES THE VECTOR CROSS PRODUCT 00008300
C A X B =C 00008400
C 00008500
C 00008600
ISN 0003 REALW8 A(3),B(3),C(3) 00008700
ISN 0004 C(1)=A(2)*B(3)-A(3)*B(2) 00008800
ISN 0005 C(2)=A(3)*B(1)-A(1)*B(3) 00008900
ISN 0006 C(3)=A(1)*B(2)-A(2)*B(1) 00009000
ISN 0007 RETURN 00009100
ISN 0008 END

#OPTIONS IN EFFECT=NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
#OPTIONS IN EFFECT=SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)
STATISTICS SOURCE STATEMENTS = 7, PROGRAM SIZE = 484, SUBPROGRAM NAME = CROSS
STATISTICS NO DIAGNOSTICS GENERATED
***** END OF COMPIRATION ***** 280K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.47

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOXREF,,NOMAP,,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISN 0002	SUBROUTINE INITL	00009200
C	THIS SUBROUTINE READS IN PROGRAM DATA AND CALCULATES ALL TIME	00009300
C	INVARIANT PARAMETERS.	00009400
C		00009500
C		00009600
ISN 0003	IMPLICIT REAL*8(A-H,O-Z)	00009700
ISN 0004	REAL*8 MASS,M0,K,MCO,INERT1,MRM,IO,MOS	00009800
ISN 0005	REAL*4 PLTDAT	00009900
ISN 0006	DIMENSION MASS(50),RM(3,50),K(150,150),MCO(3),INERT1(3,3), 1 MRM(3,50),CHAT(3,3),A12(3,3),A23(3,150),A(156,156),Q(3,50), 1 QOOT(3,50),UVW(3),OMEGA(3),R(3),THETA(3),IO(3,3),S(3),MOS(3), 2 AV(11325),FREQ(150),EV(150,150),WK(150),IPLOT(42),PLTDAT(100,20), 3 WK(3,150),ETA(150),ETAD(150)	00010000
ISN 0007	COMMON /CONST/ TH,MASS,MCO,MRM,CHAT,N,N3,N3P6,NT,NTP6,NO	00010100
ISN 0008	COMMON /AMAT/ A,A12,INERT1,A23	00010200
ISN 0009	COMMON /STATE/ R,THETA,Q,UVW,OMEGA,QOOT	00010300
ISN 0010	COMMON /GEOM/ RM	00010400
ISN 0011	COMMON /TIME/ DT,TSTOP,DTP,DTG	00010500
ISN 0012	COMMON /RIGID/ MOS,IO,S	00010600
ISN 0013	COMMON /PLOTT/ PLTDAT,IPLOT,NP	00010700
ISN 0014	COMMON /MODCO/ ETA,ETAD	00010800
ISN 0015	COMMON /MODES/ EV,FREQ	00010900
ISN 0016	EQUIVALENCE(K(1,1),EV(1,1))	00011000
ISN 0017	NAMELIST /INPUT/ M0,N,MASS,RM,IO,S,NT	00011100
ISN 0018	NAMELIST /KIN/ UVW,OMEGA,R,THETA	00011200
ISN 0019	NAMELIST /RUN/ DT,TSTOP,DTP,DTG	00011300
ISN 0020	NAMELIST /PLOT/ IPLOT	00011400
C	DESCRIPTION OF NAMELIST VARIABLES	00011500
C	"M0" IS THE MASS OF THE RIGID BASE	00011600
C	"N" IS THE NUMBER OF PARTICLES THAT COMprise THE FLEXIBLE APPENDAGE	00011700
C	"MASS" CONTAINS THE MASSES OF PARTICLES 1 TO N	00011800
C	"RM" CONTAINS THE POSITION VECTORS OF PARTICLES 1 THRU N IN THE UNDEFORMED STATE EXPRESSED IN THE BODY FRAME.	00011900
C	"IO" IS THE INERTIA MATRIX OF THE RIGID BASE WITH RESPECT TO A FRAME LOCATED AT THE MASS CENTER OF THE BASE AND PARALLEL TO THE BODY FIXED AXIS SYSTEM.	00012000
C	"S" IS THE VECTOR FROM THE BODY FRAME ORIGIN TO THE MASS CENTER OF THE RIGID BODY.	00012100
C	"NT" NUMBER OF RETAINED MODES IN APPENDAGE VIBRATION	00012200
C	"UVW" IS THE INITIAL VELOCITY OF THE BODY FRAME ORIGIN EXPRESSED IN BODY COORDINATES.	00012300
C	"OMEGA" IS THE INITIAL ANGULAR VELOCITY OF THE BODY FRAME EXPRESSED IN BODY COORDINATES.	00012400

LEVEL 2.3.0 (JUNE 78)

INITL

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.47

PAGE 2

```

C          00014500
C          00014600
C "R" IS THE INITIAL INERTIAL POSITION VECTOR OF THE BODY FRAME 00014700
C          00014800
C          00014900
C "THETA" IS THE INITIAL SET OF ATTITUDE ANGLES FOR THE BODY FRAME 00015000
C          00015100
C          00015200
C "DT" IS THE INTEGRATION TIME STEP                                00015300
C          00015400
C "TSTOP" IS THE TERMINAL TIME FOR THE SIMULATION                  00015500
C          00015600
C "DTP" IS THE TIME INTERVAL BETWEEN PRINTOUTS                      00015700
C          00015800
C "DTG" IS THE TIME INTERVAL BETWEEN PLOTTED POINTS                00015900
C          00016000
C "IPLOT" IS AN ARRAY INDICATING VARIABLES TO BE PLOTTED.          00016100
C          NUMBERING CORRESPONDS TO LOCATION IN STATE VECTOR.
C          POINTS ARE PLOTTED EVERY "DTG" SECONDS.                         00016200
C          00016300
C          00016400
C          00016500
ISN 0021      READ(5,INPUT)                                         00016600
ISN 0022      IF(NT .LE. 3*N) GO TO 8                               00016700
ISN 0024      WRITE(6,112) NT,N                                     00016800
ISN 0025      STOP                                              00016900
ISN 0026      8       WRITE(6,100) M0                                00017000
ISN 0027      DO 10 I=1,N                                         00017100
ISN 0028      10      WRITE(6,101) I,MASS(I),(RM(J,I),J=1,3)
ISN 0029      100     FORMAT(1H1,20X,'MASS OF RIGID BASE=',E12.4,' SLUGS',//,1H ,T10,
ISN 0030      101     1 'PARTICLE',T21,'MASS(SLUGS)',T41,'POSITION(FT.)',//)
ISN 0031      102     FORMAT(1H ,T12,I3,T21,F7.2,T34,3(F7.2,2X))
ISN 0032      103     WRITE(6,106) ((IO(I,J),J=1,3),I=1,3)           00017300
ISN 0033      104     WRITE(6,107) S,NT                                00017400
ISN 0034      105     READ(5,KIN)                                         00017500
ISN 0035      106     READ(6,104) R,THETA                           00017600
ISN 0036      107     WRITE(6,103) UVW,OMEGA                          00017700
ISN 0037      108     FORMAT(1H0,5X,'INITIAL VELOCITY=',3F7.2,3X,'FT/SEC',4X,
ISN 0038      109     1 'INITIAL ANGULAR VELOCITY=',3F7.2,' DEG/SEC')
ISN 0039      110     WRITE(6,103) UVW,OMEGA                          00017800
ISN 0040      111     FORMAT(1H0,5X,'INITIAL POSITION=',3F7.2,3X,'FT',4X,
ISN 0041      112     1 'INITIAL ATTITUDE=',3F8.3,' DEG')            00017900
ISN 0042      113     READ(5,RUN)                                         00018000
ISN 0043      114     WRITE(6,105) DT,TSTOP,DTP,DTG                   00018100
ISN 0044      115     READ(5,PLOT)                                         00018200
ISN 0045      116     II=0                                             00018300
ISN 0046      117     DO 108 I=1,42                                         00018400
ISN 0047      118     IF(IPLOT(I) .EQ. 0) GO TO 109
ISN 0048      119     II=II+1                                         00018500
ISN 0049      120     IF(II .EQ. 0) GO TO 111
ISN 0050      121     WRITE(6,110) (IPLOT(I),I=1,II)                   00018600
ISN 0051      122     110     FORMAT(1H0,5X,(IPLOT(I),I=1,II))        00018700
ISN 0052      123     111     FORMAT(1H0,5X,'VARIABLES PLOTTED',4X,42(I2,1X))
ISN 0053      124     112     FORMAT(1H0,5X,'TIME STEP=',E12.4,' SEC',3X,'TERMINATION TIME=',
ISN 0054      125     113     1 E12.4,' SEC',2X,'PRINT INTERVAL=',E12.4,' SEC','PLOT INTERVAL=',
ISN 0055      126     114     2 E12.4,' SEC')
ISN 0056      127     115     FCORMAT(1H0,3X,I2,' MODES REQUESTED',2X,I3,' PARTICLES IN MODEL') 00019100
ISN 0057      128     116     FORMAT(1H0,T15,'INERTIA MATRIX OF RIGID BODY(SLUG FT**2)', 00019200
ISN 0058      129     117     1 //,(T15,3E13.5))
ISN 0059      130     118     FORMAT(1H0,15X,'S=',3E13.5,' FT',3X,I2,' CONSTRIINED APPENDAGE MODE') 00019300
ISN 0060      131     119     1 S RETAINED'                                00019400
ISN 0061      132     120     C CHANGE ANGULAR VELOCITY & ATTITUDE TO RADIAN MEASURE 00019500
ISN 0062      133     121     00019600
ISN 0063      134     122     00019700
ISN 0064      135     123     00019800
ISN 0065      136     124     00019900
ISN 0066      137     125     00020000
ISN 0067      138     126     00020100
ISN 0068      139     127     00020200

```

LEVEL 2.3.0 (JUNE 78) INITL OS/360 FORTRAN H EXTENDED DATE 82-246/12.21.47 PAGE 3

```

      C
  ISN 0054   111  DTR=DATAN(1.000)/45.          00020300
  ISN 0055   DO 15 I=1,3                         00020400
  ISN 0056   OMEGA(I)=DTR*OMEGA(I)             00020500
  ISN 0057   15   THETA(I)=DTR*THETA(I)         00020600
      C
      C TM - TOTAL BODY MASS
      C
  ISN 0058   TM=M0                            00020700
  ISN 0059   DO 20 I=1,N                         00020800
  ISN 0060   20   TM=TM+MASS(I)                 00020900
  ISN 0061   DO 30 J=1,3                         00021000
  ISN 0062   MOS(J)=M0*S(J)                   00021100
  ISN 0063   30   MCO(J)=0.0                  00021200
  ISN 0064   DO 40 I=1,N                         00021300
  ISN 0065   DO 45 J=1,3                         00021400
  ISN 0066   MRM(J,I)=MASS(I)*RM(J,I)        00021500
  ISN 0067   45   MCO(J)=MCO(J)+MRM(J,I)     00021600
  ISN 0068   40   CONTINUE                      00021700
  ISN 0069   DO 42 I=1,3                         00021800
  ISN 0070   42   MCO(I)=MCO(I)+MOS(I)       00021900
  ISN 0071   N3=3*N                         00022000
  ISN 0072   N3P6=N3+6                       00022100
  ISN 0073   NTP6=NT+6                       00022200
  ISN 0074   NO=2*NTP6                     00022300
  ISN 0075   NP=0                           00022400
      C
      C READ IN STIFFNESS MATRIX
      C
  ISN 0076   READ(8) NDOF,((K(I,J),J=1,NDOF),I=1,NDOF) 00022500
  ISN 0077   IF(NDOF .EQ. N3) GO TO 400           00022600
  ISN 0079   WRITE(6,102) N,NDOF                00022700
  ISN 0080   STOP                           00022800
  ISN 0081   400  CONTINUE                      00022900
  ISN 0082   102  FORMAT(1H0,10X,'INCONSISTENT DATA',2X,I3,' PARTICLES',2X,I3,
  1 ' DEGREES OF FREEDOM IN STIFFNESS MATRIX') 00023000
      C
      C GET CONSTRAINED FREQUENCIES AND MODE SHAPES OF APPENDAGE
      C
  ISN 0083   L=1                           00023100
  ISN 0084   DO 300 J=1,N3                  00023200
  ISN 0085   LC=1+J/3                      00023300
  ISN 0086   IF( (J-3*(J/3)) .EQ. 0 ) LC=LC-1 00023400
  ISN 0088   DO 300 I=1,J                  00023500
  ISN 0089   LR=1+I/3                      00023600
  ISN 0090   IF( (I-3*(I/3)) .EQ. 0 ) LR=LR-1 00023700
  ISN 0092   AV(L)=K(I,J)/DSQRT(MASS(LR)*MASS(LC)) 00023800
  ISN 0093   L=L+1                         00023900
  ISN 0094   300  CONTINUE                      00024000
  ISN 0095   CALL EIGRS(AV,N3,1,FREQ,EV,150,WK,IER) 00024100
  ISN 0096   IF(IER .EQ. 0) GO TO 310           00024200
  ISN 0098   WRITE(6,301) IER                00024300
  ISN 0099   301  FORMAT(1H0,10X,'ERROR FROM IMSL ROUTINE "EIGRS" ERROR CODE=',I4) 00024400
  ISN 0100   STOP                           00024500
      C
      C TRANSFORM EIGENVECTORS
      C
  ISN 0101   310  DO 311 L=1,N               00024600
  
```

LEVEL 2.3.0 (JUNE 78) INITL OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.47 PAGE 4

```

ISN 0102      C1=DSQRT(MASS(L))          00026100
ISN 0103      DO 311 I=1,3             00026200
ISN 0104      IR=3*(L-1)+I             00026300
ISN 0105      DO 311 J=1,N3            00026400
ISN 0106      311 EV(IR,J)=EV(IR,J)/C1 00026500
ISN 0107      DO 320 I=1,N3            00026600
ISN 0108      FHZ=DSQRT(FREQ(I))/6.283185 00026700
ISN 0109      WRITE(6,321) I,FHZ,(EV(J,I),J=1,N3) 00026800
ISN 0110      321 FORMAT(1HO,3X,'MODE ',I2,' FREQUENCY=',E12.4,1X,'(HZ)',/,1H,
ISN 0111      1 'MODE SHAPE: ',(9(G12.4,1X))) 00026900
ISN 0111      320 CONTINUE              00027000
C           THE ROUTINE "EIGRS" RETURNS AN ORTHONORMAL SET OF EIGENVECTORS.
C           THIS IS ESSENTIAL SINCE WE ASSUME IN THE DERIVATION THAT THE
C           EIGENVECTORS(OF THE ORIGINAL GENERALIZED EIGENVALUE PROBLEM)
C           ARE ORTHOGONAL WITH RESPECT TO MASS(STIFFNESS) AND NORMALIZED
C           WITH RESPECT TO MASS.                                         00027100
C           CALCULATE TIME INVARIANT PART OF INERTIA MATRIX "INERT1"
C           AND "CMAT"                                              00027200
C
ISN 0112      DO 50 I=1,3             00027300
ISN 0113      DO 50 J=1,3             00027400
ISN 0114      INERT1(I,J)=0.0        00027500
ISN 0115      CMAT(I,J)=0.0         00027600
ISN 0116      50 CONTINUE              00027700
ISN 0117      DO 60 I=1,N             00027800
ISN 0118      XS=RM(1,I)**2           00027900
ISN 0119      YS=RM(2,I)**2           00028000
ISN 0120      ZS=RM(3,I)**2           00028100
ISN 0121      INERT1(1,1)=INERT1(1,1)+MASS(I)*(YS+ZS) 00028200
ISN 0122      INERT1(1,2)=INERT1(1,2)-MASS(I)*RM(1,I)*RM(2,I) 00028300
ISN 0123      INERT1(1,3)=INERT1(1,3)-MASS(I)*RM(1,I)*RM(3,I) 00028400
ISN 0124      INERT1(2,2)=INERT1(2,2)+MASS(I)*(XS+ZS) 00028500
ISN 0125      INERT1(2,3)=INERT1(2,3)-MASS(I)*RM(2,I)*RM(3,I) 00028600
ISN 0126      INERT1(3,3)=INERT1(3,3)+MASS(I)*(XS+YS) 00028700
ISN 0127      CMAT(1,1)=CMAT(1,1)+MASS(I)*XS 00028800
ISN 0128      CMAT(2,2)=CMAT(2,2)+MASS(I)*YS 00028900
ISN 0129      CMAT(3,3)=CMAT(3,3)+MASS(I)*ZS 00029000
ISN 0130      60 CONTINUE              00029100
ISN 0131      CMAT(1,2)=-INERT1(1,2) 00029200
ISN 0132      CMAT(1,3)=-INERT1(1,3) 00029300
ISN 0133      CMAT(2,3)=-INERT1(2,3) 00029400
ISN 0134      INERT1(1,1)=INERT1(1,1)+IO(1,1)+MO*(S(2)**2+S(3)**2) 00029500
ISN 0135      INERT1(1,2)=INERT1(1,2)+IO(1,2)-MO*S(1)*S(2) 00029600
ISN 0136      INERT1(1,3)=INERT1(1,3)+IO(1,3)-MO*S(1)*S(3) 00029700
ISN 0137      INERT1(2,2)=INERT1(2,2)+IO(2,2)+MO*(S(1)**2+S(3)**2) 00029800
ISN 0138      INERT1(2,3)=INERT1(2,3)+IO(2,3)-MO*S(2)*S(3) 00029900
ISN 0139      INERT1(3,3)=INERT1(3,3)+IO(3,3)+MO*(S(1)**2+S(2)**2) 00030000
ISN 0140      DO 70 I=1,3             00030100
ISN 0141      DO 70 J=1,3             00030200
ISN 0142      IF(I .LE. J) GO TO 70 00030300
ISN 0143      INERT1(I,J)=INERT1(J,I) 00030400
ISN 0144      CMAT(I,J)=CMAT(J,I) 00030500
ISN 0145      70 CONTINUE              00030600
ISN 0146      C           CREATE TIME INVARIANT PORTIONS OF GENERALIZED MASS MATRIX "A" 00030700
C
  
```

LEVEL 2.3.0 (JUNE 78)

INITL

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.47

PAGE 5

```

C          00031900
C          (1,2) PARTITION "A12"      00032000
C          00032100
ISN 0147    CALL SKEW(MCO,A12)      00032200
ISN 0148    DO 80 I=1,3            00032300
ISN 0149    DO 80 J=1,3            00032400
ISN 0150    IF(I .EQ. J) GO TO 80  00032500
ISN 0152    A12(I,J)=A12(I,J)      00032600
ISN 0153    80 CONTINUE           00032700
C          00032800
C          (2,3) PARTITION "A23"      00032900
C          00033000
ISN 0154    DO 90 I=1,N            00033100
ISN 0155    L=3*I-2              00033200
ISN 0156    90 CALL SKEW(MRM(1,I),WKM(1,L)) 00033300
ISN 0157    DO 92 I=1,3            00033400
ISN 0158    DO 92 J=1,NT            00033500
ISN 0159    A23(I,J)=0.0          00033600
ISN 0160    DO 94 L=1,N3          00033700
ISN 0161    94 A23(I,J)=A23(I,J)+WKM(I,L)*EV(L,J) 00033800
ISN 0162    92 CONTINUE           00033900
C          00034000
C          STORE CONSTANT PARTITIONS OF "A" 00034100
C          00034200
ISN 0163    DO 200 I=1,NTP6        00034300
ISN 0164    DO 200 J=1,NTP6        00034400
ISN 0165    A(I,J)=0.0            00034500
ISN 0166    200 CONTINUE           00034600
C          00034700
C          CREATE (1,1) PARTITION 00034800
C          00034900
ISN 0167    DO 210 I=1,3            00035000
ISN 0168    DO 210 J=1,3            00035100
ISN 0169    IF(I .EQ. J) A(I,J)=TM  00035200
ISN 0171    210 CONTINUE           00035300
C          00035400
C          CREATE (1,3) PARTITION 00035500
C          00035600
ISN 0172    DO 215 I=1,3            00035700
ISN 0173    DO 215 J=1,N3          00035800
ISN 0174    215 WKM(I,J)=0.0        00035900
ISN 0175    DO 220 L=1,N            00036000
ISN 0176    JS=3*L-2              00036100
ISN 0177    DO 221 I=1,3            00036200
ISN 0178    WKM(I,JS)=MASS(L)      00036300
ISN 0179    JS=JS+1              00036400
ISN 0180    221 CONTINUE           00036500
ISN 0181    220 CONTINUE           00036600
ISN 0182    DO 283 I=1,3            00036700
ISN 0183    DO 283 J=1,NT            00036800
ISN 0184    JP6=J+6              00036900
ISN 0185    A(I,JP6)=0.0          00037000
ISN 0186    DO 281 L=1,N3          00037100
ISN 0187    281 A(I,JP6)=A(I,JP6)+WKM(I,L)*EV(L,J) 00037200
ISN 0188    283 CONTINUE           00037300
C          00037400
C          CREATE (3,3) PARTITION 00037500
C          00037600

```

PAGE 6

DATE 82.246/12.21.47

LEVEL 2.3.0 (JUNE 78) INITL

OS/360 FORTRAN H EXTENDED

ISN 0189	DO 230 L=1,NT	00037700
ISN 0190	230 A(L+6,L+6)=1.	00037800
C		00037900
C	SET INITIAL DEFORMATION AND RATE TO ZERO	00038000
C		00038100
ISN 0191	DO 250 I=1,N	00038200
ISN 0192	DO 250 J=1,3	00038300
ISN 0193	Q(J,I)=0.0	00038400
ISN 0194	QDOT(J,I)=0.0	00038500
ISN 0195	250 CONTINUE	00038600
ISN 0196	DO 293 I=1,NT	00038700
ISN 0197	ETA(I)=0.0	00038800
ISN 0198	ETAD(I)=0.0	00038900
ISN 0199	293 CONTINUE	00039000
ISN 0200	RETURN	00039100
ISN 0201	END	00039200

*OPTIONS IN EFFECT=NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)

*OPTIONS IN EFFECT=SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTHT NOXREF NOALC NOANSF TERM IBM FLAG(I)

*STATISTICS= SOURCE STATEMENTS = 200, PROGRAM SIZE = 103026, SUBPROGRAM NAME = INITL

*STATISTICS= NO DIAGNOSTICS GENERATED

232K BYTES OF CORE NOT USED

***** END OF COMPIRATION *****

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.50

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOXREF,,NOMAP,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISN 0002	SUBROUTINE GNMASS	00039300
	C	00039400
	C THIS SUBROUTINE CALCULATES THE GENERALIZED MASS MATRIX "A"	00039500
	C	00039600
ISN 0003	IMPLICIT REAL*8(A-H,O-Z)	00039700
ISN 0004	REAL*8 MASS,MC0,MRM,INERT1,MQ,MC1,INERT2,INERT3	00039800
ISN 0005	DIMENSION MASS(50),MC0(3),MRM(3,50),CMAT(3,3),A(156,156), 1 A12(3,3),INERT1(3,3),A23(3,150),Q(3,50),MQ(3,50),MC1(3), 2 WM(3,3),INERT2(3,3),A23Q(3,150),INERT3(3,3),QDOT(3,50),UVH(3), 3 OMEGA(3),R(3),THETA(3)	00039900
ISN 0006	COMMON /CONST/ TM,MASS,MC0,MRM,CMAT,N,N3,N3P6,NT,NTP6,NO	00040000
ISN 0007	COMMON /AMAT/ A,A12,INERT1,A23	00040100
ISN 0008	COMMON /STATE/ R,THETA,Q,UVH,OMEGA,QDOT	00040200
ISN 0009	COMMON /TDEPV/ MQ,MC1	00040300
ISN 0010	COMMON /MODES/ EV(150,150),FREQ(150)	00040400
ISN 0011	DO 10 I=1,3	00040500
ISN 0012	10 MC1(I)=0.0	00040600
ISN 0013	DO 40 I=1,N	00040700
ISN 0014	DO 45 J=1,3	00040800
ISN 0015	MQ(J,I)=MASS(I)*Q(J,I)	00040900
ISN 0016	45 MC1(J)=MC1(J)+MQ(J,I)	00041000
ISN 0017	40 CONTINUE	00041100
	C COMPUTE "A" NEGLECTING TIME DEPENDENT(DEFORMATION DEPENDENT) TERMS	00041200
	C	00041300
ISN 0018	DO 50 J=1,3	00041400
ISN 0019	JP3=J+3	00041500
ISN 0020	DO 50 I=1,3	00041600
ISN 0021	50 A(I,JP3)=A12(I,J)	00041700
ISN 0022	DO 60 I=1,3	00041800
ISN 0023	IP3=I+3	00041900
ISN 0024	DO 60 J=1,3	00042000
ISN 0025	JP3=J+3	00042100
ISN 0026	60 A(IP3,JP3)=INERT1(I,J)	00042200
ISN 0027	DO 70 J=1,NT	00042300
ISN 0028	JP6=J+6	00042400
ISN 0029	DO 70 I=1,3	00042500
ISN 0030	IP3=I+3	00042600
ISN 0031	70 A(IP3,JP6)=A23(I,J)	00042700
	C ADD IN FIRST ORDER DEFORMATION TERMS	00042800
	C	00042900
ISN 0032	CALL SKEW(MC1,WM)	00043000
ISN 0033	DO 80 J=1,3	00043100
ISN 0034	JP3=J+3	00043200
ISN 0035	DO 80 I=1,3	00043300
ISN 0036	80 A(I,JP3)=A(I,J)-WM(I,J)	00043400
	C FIRST ORDER DEFORMATION TERMS IN INERTIA MATRIX - "INERT2"	00043500
	C	00043600
ISN 0037	DO 85 I=1,3	00043700
ISN 0038	DO 85 J=1,3	00043800
ISN 0039	85 INERT2(I,J)=0.0	00043900
	C	00044000
	C	00044100
	C	00044200
	C	00044300
	C	00044400
	C	00044500

LEVEL 2.3.0 (JUNE 78) GNMSS OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.50 PAGE 2

```

    ISN 0040      DO 90 L=1,3
    ISN 0041      SUM=0.0
    ISN 0042      DO 100 I=1,N
    ISN 0043      100  SUM=SUM+MRM(L,I)*Q(L,I)
    ISN 0044      SUM=2.0*SUM
    ISN 0045      LL=L+1
    ISN 0046      DO 110 II=1,2
    ISN 0047      IF(LL .GT. 3) LL=1
    ISN 0048      INSERT2(LL,LL)=INSERT2(LL,LL)+SUM
    ISN 0049      LL=LL+1
    ISN 0050      CONTINUE
    ISN 0051      110  CONTINUE
    ISN 0052      90   CONTINUE
    ISN 0053      SUM=0.0
    ISN 0054      DO 120 I=1,N
    ISN 0055      120  SUM=SUM-(MRM(1,I)*Q(2,I)+MRM(2,I)*Q(1,I))
    ISN 0056      INSERT2(I,2)=SUM
    ISN 0057      SUM=0.0
    ISN 0058      DO 130 I=1,N
    ISN 0059      130  SUM=SUM-(MRM(1,I)*Q(3,I)+MRM(3,I)*Q(1,I))
    ISN 0060      INSERT2(I,3)=SUM
    ISN 0061      SUM=0.0
    ISN 0062      DO 140 I=1,N
    ISN 0063      140  SUM=SUM-(MRM(2,I)*Q(3,I)+MRM(3,I)*Q(2,I))
    ISN 0064      INSERT2(2,3)=SUM
    ISN 0065      DO 150 I=1,3
    ISN 0066      DO 150 J=1,3
    ISN 0067      IF(I .LE. J) GO TO 150
    ISN 0068      INSERT2(I,J)=INSERT2(J,I)
    ISN 0069      CONTINUE
    ISN 0070      150  CONTINUE
    ISN 0071      DO 160 I=1,3
    ISN 0072      IP3=I+3
    ISN 0073      DO 160 J=1,3
    ISN 0074      JP3=J+3
    ISN 0075      160  A(IP3,JP3)=A(IP3,JP3)+INSERT2(I,J)
    ISN 0076      DO 170 I=1,N
    ISN 0077      L=3*I-2
    ISN 0078      170  CALL SKEW(MQ(1,I),A23Q(1,L))
    ISN 0079      DO 180 I=1,3
    ISN 0080      IP3=I+3
    ISN 0081      DO 180 J=1,NT
    ISN 0082      JP6=J+6
    ISN 0083      DO 185 L=1,N3
    ISN 0084      185  A(IP3,JP6)=A(IP3,JP6)+A23Q(I,L)*EV(L,J)
    ISN 0085      180  CONTINUE
    C
    C ADD IN SECOND ORDER DEFORMATION TERMS - "INSERT3"
    C
    ISN 0086      DO 190 I=1,3
    ISN 0087      DO 190 J=1,3
    ISN 0088      190  INSERT3(I,J)=0.0
    ISN 0089      DO 200 L=1,3
    ISN 0090      SUM=0.0
    ISN 0091      DO 210 I=1,N
    ISN 0092      210  SUM=SUM+MQ(L,I)*Q(L,I)
    ISN 0093      LL=L+1
    ISN 0094      DO 220 II=1,2
    ISN 0095      IF(LL .GT. 3) LL=1
    ISN 0096      INSERT3(LL,LL)=INSERT3(LL,LL)+SUM
  
```

LEVEL 2.3.0 (JUNE 78) GNMAS5 OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.50 PAGE 3

ISN 0098	LL=LL+1	00050400
ISN 0099 220	CONTINUE	00050500
ISN 0100 200	CONTINUE	00050600
ISN 0101	SUM=0.0	00050700
ISN 0102	DO 240 I=1,N	00050800
ISN 0103 240	SUM=SUM-MQ(1,I)*Q(2,I)	00050900
ISN 0104	INERT3(1,2)=SUM	00051000
ISN 0105	SUM=0.0	00051100
ISN 0106	DO 250 I=1,N	00051200
ISN 0107 250	SUM=SUM-MQ(1,I)*Q(3,I)	00051300
ISN 0108	INERT3(1,3)=SUM	00051400
ISN 0109	SUM=0.0	00051500
ISN 0110	DO 260 I=1,N	00051600
ISN 0111 260	SUM=SUM-MQ(2,I)*Q(3,I)	00051700
ISN 0112	INERT3(2,3)=SUM	00051800
ISN 0113	DO 270 I=1,3	00051900
ISN 0114	DO 270 J=1,3	00052000
ISN 0115	IF(I .LE. J) GO TO 270	00052100
ISN 0117	INERT3(I,J)=INERT3(J,I)	00052200
ISN 0118 270	CONTINUE	00052300
ISN 0119	DO 280 I=1,3	00052400
ISN 0120	IP3=I+3	00052500
ISN 0121	DO 280 J=1,3	00052600
ISN 0122	JP3=J+3	00052700
ISN 0123 280	A(IP3,JP3)=A(IP3,JP3)+INERT3(I,J)	00052800
ISN 0124 302	C	00052900
ISN 0124 302	FORMAT(1H0,//,1H ,10X,'A MATRIX')	00053000
ISN 0125 301	FORMAT(1H0,2X,15(F7.2,1X))	00053100
ISN 0126	RETURN	00053200
ISN 0127	END	00053300

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
 *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)
 STATISTICS SOURCE STATEMENTS = 126, PROGRAM SIZE = 8156, SUBPROGRAM NAME =GNMASS
 STATISTICS NO DIAGNOSTICS GENERATED
 ***** END OF COMPILATION ***** 256K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.52

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOXREF,,NOMAP,,NAME(MAIN),AD(NONE),OPT(0),,FLAG(I),SIZE(384K),LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISM 0002	SUBROUTINE EXTF(F0,TAU0,FP)	00053400
	C THIS SUBROUTINE ASSEMBLES THE FORCE VECTOR "F" IN THE	00053500
	C MOTION EQUATIONS AND IS PARTITIONED AS: FORCES FOR BODY	00053600
	C TRANSLATION, FORCES FOR BODY ROTATION, AND FORCES FOR	00053700
	C PARTICLE TRANSLATION.	00053800
	C INPUT TO SUBROUTINE	00053900
	C F0 - EXTERNAL FORCE ON M0 (AT ORIGIN OF BODY FRAME)	00054000
	C TAU0 - EXTERNAL TORQUE AT LOCATION OF BODY FRAME ORIGIN.	00054100
	C FP - VECTOR OF EXTERNAL FORCES ON PARTICLES 1,2,...,N.	00054200
	C (ALL VECTORS EXPRESSED IN BODY FRAME)	00054300
	C IMPLICIT PEAL#8(A-H,O-Z)	00054400
ISM 0003	REAL*8 MASS,MCO,NRM	00054500
ISM 0004	DIMENSION F0(3),TAU0(3),FP(3,50),Q(3,50),RM(3,50),MASS(50),MCO(3),00055000	00055100
ISM 0005	1 HRM(3,50),CMAT(3,3),F(156),SUM(3),WV(3),WV1(3),QDOT(3,50),UVW(3),00055200	00055300
	2 OMEGA(3),R(3),THETA(3),WV2(150),PHI(150,150),WS(150)	00055400
	COMMON /STATE/ R,THETA,Q,UVW,OMEGA,QDOT	00055500
ISM 0006	COMMON /GEOM/ RM	00055600
ISM 0007	COMMON /CONST/ TM,MASS,MCO,NRM,CMAT,N,N3,N3P6,NT,NTP6,NO	00055700
ISM 0008	COMMON /FORCE/ F	00055800
ISM 0009	COMMON /MODES/ PHI,WS	00055900
ISM 0010	DO 10 J=1,3	00056000
ISM 0011	F(J)=F0(J)	00056100
ISM 0012	10 DO 20 I=1,N	00056200
ISM 0013	DO 20 J=1,3	00056300
ISM 0014	F(J)=F(J)+FP(J,I)	00056400
ISM 0015	20 DO 30 J=1,3	00056500
ISM 0016	SUM(J)=0.0	00056600
ISM 0017	30 SUM(J)=SUM(J)+WV1(J)	00056700
ISM 0018	DO 40 I=1,N	00056800
ISM 0019	DO 50 J=1,3	00056900
ISM 0020	50 WV(J)=RM(J,I)+Q(J,I)	00057000
ISM 0021	CALL CROSS(WV,FP(1,I),WV1)	00057100
ISM 0022	DO 60 J=1,3	00057200
ISM 0023	60 SUM(J)=SUM(J)+WV1(J)	00057300
ISM 0024	CONTINUE	00057400
ISM 0025	DO 70 J=1,3	00057500
ISM 0026	JP3=J+3	00057600
ISM 0027	70 F(JP3)=TAU0(J)+SUM(J)	00057700
ISM 0028	L=1	00057800
ISM 0029	DO 80 I=1,N	00057900
ISM 0030	DO 85 J=1,3	00058000
ISM 0031	WV2(L)=FP(J,I)	00058100
ISM 0032	L=L+1	00058200
ISM 0033	85 CONTINUE	00058300
ISM 0034	80 CONTINUE	00058400
ISM 0035	DO 90 I=1,NT	00058500
ISM 0036	IP6=I+6	00058600
ISM 0037	F(IP6)=0.0	
ISM 0038	DO 95 L=1,N3	
ISM 0039	95 F(IP6)=F(IP6)+PHI(L,I)*WV2(L)	

LEVEL 2.3.0 (JUNE 78) EXTF OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.52 PAGE 2

ISN 0040 90 CONTINUE 00058700
ISN 0041 RETURN 00058800
ISN 0042 END 00058900

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 41, PROGRAM SIZE = 2734, SUBPROGRAM NAME = EXTF

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPIRATION ***** 280K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.54

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOXREF,,NOMAP,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISN 0002	SUBROUTINE NLKT	00059000
	C THIS SUBROUTINE CALCULATES THE NON-LINEAR KINEMATIC TERMS IN THE	00059100
	C MOTION EQUATIONS. THESE TERMS ARE ASSEMBLED INTO THE VECTOR "U".	00059200
	C	00059300
	C IMPLICIT REAL*8(A-H,O-Z)	00059400
ISN 0003	REAL*8 MASS,MCO,MRM,MQ,MC1,MOS,IO	00059500
ISN 0004	DIMENSION MASS(50),MCO(3),MRM(3,50),CMAT(3,3),MQ(3,50),MC1(3),	00059600
ISN 0005	1 QDOT(3,50),UVH(3),OMEGA(3),UT(3),UR(3),UV(150),U(156),WV1(3),	00059700
	2 WV2(3),WV3(3),WV4(3),WM1(3,3),Q(3,50),R(3),THETA(3),MOS(3),	00059800
	3 IO(3,3),S(3),WS(150),PHI(150,150)	00059900
ISN 0006	COMMON /CONST/ TH,MASS,MCO,MRM,CMAT,N,N3,N3P6,NT,NTP6,NO	00060000
ISN 0007	COMMON /TDEPV/ MQ,MC1	00060100
ISN 0008	COMMON /STATE/ R,THETA,Q,UVH,OMEGA,QDOT	00060200
ISN 0009	COMMON /FCFCRC/ U	00060300
ISN 0010	COMMON /RIGID/ MOS,IO,S	00060400
ISN 0011	COMMON /MODES/ PHI,WS	00060500
ISN 0012	EQUIVALENCE(U(1),UT(1)),(U(4),UR(1))	00060600
	C CALCULATE DEFORMATION INDEPENDENT TERMS	00060700
	C	00060800
ISN 0013	CALL CROSS(UVH,OMEGA,WV1)	00060900
ISN 0014	SUM=OMEGA(1)*MCO(1)+OMEGA(2)*MCO(2)+OMEGA(3)*MCO(3)	00061000
ISN 0015	OHS=OMEGA(1)**2+OMEGA(2)**2+OMEGA(3)**2	00061100
ISN 0016	DO 20 J=1,3	00061200
ISN 0017	20 UT(J)=TH*WV1(J)-SUM*OMEGA(J)+OHS*MCO(J)	00061300
ISN 0018	CALL CROSS(MCO,WV1,WV2)	00061400
ISN 0019	DO 30 J=1,3	00061500
ISN 0020	30 WV3(J)=CMAT(J,1)*OMEGA(1)+CMAT(J,2)*OMEGA(2)+CMAT(J,3)*OMEGA(3)	00061600
ISN 0021	CALL CROSS(OMEGA,WV3,WV4)	00061700
ISN 0022	DO 40 J=1,3	00061800
ISN 0023	40 UR(J)=WV2(J)+WV4(J)	00061900
ISN 0024	SUM=OMEGA(1)*S(1)+OMEGA(2)*S(2)+OMEGA(3)*S(3)	00062000
ISN 0025	CALL CROSS(MOS,OMEGA,WV2)	00062100
ISN 0026	DO 42 J=1,3	00062200
ISN 0027	42 WV3(J)=IO(J,1)*OMEGA(1)+IO(J,2)*OMEGA(2)+IO(J,3)*OMEGA(3)	00062300
ISN 0028	CALL CROSS(OMEGA,WV3,WV4)	00062400
ISN 0029	DO 44 J=1,3	00062500
ISN 0030	44 UR(J)=UR(J)-SUM*WV2(J)-WV4(J)	00062600
ISN 0031	DO 50 I=1,N	00062700
ISN 0032	L=3*I-2	00062800
ISN 0033	DO 55 J=1,3	00062900
ISN 0034	55 WV2(J)=MASS(I)*WV1(J)	00063000
ISN 0035	SUM=OMEGA(1)*MRM(1,I)+OMEGA(2)*MRM(2,I)+OMEGA(3)*MRM(3,I)	00063100
ISN 0036	DO 60 J=1,3	00063200
ISN 0037	60 WV3(J)=SUM*OMEGA(J)	00063300
ISN 0038	WV4(J)=OHS*MRM(J,I)	00063400
ISN 0039	LL=L	00063500
ISN 0040	DO 70 J=1,3	00063600
ISN 0041	70 UV(LL)=WV2(J)-WV3(J)+WV4(J)	00063700
ISN 0042	LL=LL+1	00063800
ISN 0043	50 CONTINUE	00063900
ISN 0044	DO 74 I=1,NT	00064000

LEVEL 2.3.0 (JUNE 78)	NLKT	OS/360 FORTRAN H EXTENDED	DATE 82.246/12.21.54	PAGE 2
ISN 0045		IP6=I+6	00064300	
ISN 0046		U(IP6)=0.0	00064400	
ISN 0047		DO 74 L=1,N3	00064500	
ISN 0048	74	U(IP6)=U(IP6)+PHI(L,I)*UV(L)	00064600	
	C	C CALCULATE FIRST ORDER DEFORMATION DEPENDENT TERMS	00064700	
	C		00064800	
			00064900	
ISN 0049		DO 80 J=1,3	00065000	
ISN 0050	80	WV2(J)=0.0	00065100	
ISN 0051		DO 90 I=1,N	00065200	
ISN 0052		DO 95 J=1,3	00065300	
ISN 0053	95	WV2(J)=WV2(J)+MASS(I)*QDOT(J,I)	00065400	
ISN 0054	90	CONTINUE	00065500	
ISN 0055		CALL CROSS(OMEGA,WV2,WV3)	00065600	
ISN 0056		SUM=OMEGA(1)*MC1(1)+OMEGA(2)*MC1(2)+OMEGA(3)*MC1(3)	00065700	
ISN 0057		DO 100 J=1,3	00065800	
ISN 0058	100	UT(J)=UT(J)-2.0*WV3(J)-SUM*OMEGA(J)+OMS*MC1(J)	00065900	
ISN 0059		CALL CROSS(MC1,WV1,WV2)	00066000	
ISN 0060		DO 110 I=1,3	00066100	
ISN 0061		DO 110 J=1,3	00066200	
ISN 0062	110	WM1(I,J)=0.0	00066300	
ISN 0063		DO 120 I=1,N	00066400	
ISN 0064		DO 125 J=1,3	00066500	
ISN 0065	125	WM1(J,J)=WM1(J,J)+2.0*MRM(J,I)*Q(J,I)	00066600	
ISN 0066		WM1(I,2)=WM1(I,2)+MRM(I,I)*Q(2,I)+MRM(2,I)*Q(1,I)	00066700	
ISN 0067		WM1(1,3)=WM1(1,3)+MRM(1,I)*Q(3,I)+MRM(3,I)*Q(1,I)	00066800	
ISN 0068		WM1(2,3)=WM1(2,3)+MRM(2,I)*Q(3,I)+MRM(3,I)*Q(2,I)	00066900	
ISN 0069	120	CONTINUE	00067000	
ISN 0070		DO 130 I=1,3	00067100	
ISN 0071		DO 130 J=1,3	00067200	
ISN 0072		IF(I .LE. J) GO TO 130	00067300	
ISN 0074		WM1(I,J)=WM1(J,I)	00067400	
ISN 0075	130	CONTINUE	00067500	
ISN 0076		DO 140 J=1,3	00067600	
ISN 0077	140	WV3(J)=WM1(J,1)*OMEGA(1)+WM1(J,2)*OMEGA(2)+WM1(J,3)*OMEGA(3)	00067700	
ISN 0078		CALL CROSS(OMEGA,WV3,WV4)	00067800	
ISN 0079		SUM=0.0	00067900	
ISN 0080		DO 150 I=1,N	00068000	
ISN 0081	150	SUM=SUM+MRM(I,I)*QDOT(I,I)+MRM(2,I)*QDOT(2,I)+MRM(3,I)*QDOT(3,I)	00068100	
ISN 0082		DO 160 J=1,3	00068200	
ISN 0083	160	WV1(J)=SUM*OMEGA(J)	00068300	
ISN 0084		DO 170 J=1,3	00068400	
ISN 0085	170	WV3(J)=0.0	00068500	
ISN 0086		DO 180 I=1,N	00068600	
ISN 0087		SUM=SUM+MRM(I,I)*OMEGA(1)+MRM(2,I)*OMEGA(2)+MRM(3,I)*OMEGA(3)	00068700	
ISN 0088		DO 190 J=1,3	00068800	
ISN 0089	190	WV3(J)=WV3(J)+SUM*QDOT(J,I)	00068900	
ISN 0090	180	CONTINUE	00069000	
ISN 0091		DO 200 J=1,3	00069100	
ISN 0092	200	UR(J)=UR(J)+WV2(J)+WV4(J)+2.0*(WV3(J)-WV1(J))	00069200	
ISN 0093		DO 300 I=1,N	00069300	
ISN 0094		L=3*I-2	00069400	
ISN 0095		CALL CROSS(OMEGA,QDOT(I,I),WV1)	00069500	
ISN 0096		DO 310 J=1,3	00069600	
ISN 0097	310	WV2(J)=MASS(I)*WV1(J)	00069700	
ISN 0098		SUM=OMEGA(1)*MQ(1,I)+OMEGA(2)*MQ(2,I)+OMEGA(3)*MQ(3,I)	00069800	
ISN 0099		DO 320 J=1,3	00069900	
ISN 0100		WV3(J)=SUM*OMEGA(J)	00070000	

LEVEL 2.3.0 (JUNE 78) NLKT OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.54 PAGE 3

```

  ISN 0101      320  WV4(J)=OM5*MQ(J,I)          00070100
  ISN 0102          LL=L                         00070200
  ISN 0103      DO 330 J=1,3                   00070300
  ISN 0104          UV(LL)=UV(LL)-2.*WV2(J)-WV3(J)+WV4(J) 00070400
  ISN 0105      330  LL=LL+1                  00070500
  ISN 0106      300  CONTINUE                 00070600
  ISN 0107      DO 307 I=1,NT                00070700
  ISN 0108          IP6=I+6                  00070800
  ISN 0109          U(IP6)=0.0               00070900
  ISN 0110      DO 307 L=1,N3                00071000
  ISN 0111      307  U(IP6)=U(IP6)+PHI(L,I)*UV(L) 00071100
  C
  C   CALCULATE SECOND ORDER DEFORMATION DEPENDENT TERMS
  C
  ISN 0112      DO 311 I=1,3          00071200
  ISN 0113      DO 311 J=1,3          00071300
  ISN 0114      311  WM1(I,J)=0.0        00071400
  ISN 0115          DO 321 I=1,N          00071500
  ISN 0116          DO 331 J=1,3          00071600
  ISN 0117      331  WM1(J,J)=WM1(J,J)+MQ(J,I)*Q(J,I) 00071700
  ISN 0118          WM1(1,2)=WM1(1,2)+MQ(1,I)*Q(2,I) 00071800
  ISN 0119          WM1(1,3)=WM1(1,3)+MQ(1,I)*Q(3,I) 00071900
  ISN 0120          WM1(2,3)=WM1(2,3)+MQ(2,I)*Q(3,I) 00072000
  ISN 0121      321  CONTINUE                 00072100
  ISN 0122          DO 340 I=1,3          00072200
  ISN 0123          DO 340 J=1,3          00072300
  ISN 0124          IF(I .LE. J) GO TO 340 00072400
  ISN 0125          WM1(I,J)=WM1(J,I)        00072500
  ISN 0126      340  CONTINUE                 00072600
  ISN 0127          DO 350 J=1,3          00072700
  ISN 0128          DO 350 I=1,3          00072800
  ISN 0129      350  CALL CROSS(OMEGA,WV1,WV2) 00072900
  ISN 0130          SUM=0.0                  00073000
  ISN 0131          DO 360 I=1,N          00073100
  ISN 0132          SUM=SUM+MQ(1,I)*QDOT(1,I)+MQ(2,I)*QDOT(2,I)+MQ(3,I)*QDOT(3,I) 00073200
  ISN 0133      360  DO 370 J=1,3          00073300
  ISN 0134          WM3(J)=SUM*OMEGA(J)        00073400
  ISN 0135      370  WV3(J)=SUM*OMEGA(J)        00073500
  ISN 0136          MV4(J)=0.0              00073600
  ISN 0137          DO 380 I=1,N          00073700
  ISN 0138          SUM=OMEGA(1)*MQ(1,I)+OMEGA(2)*MQ(2,I)+OMEGA(3)*MQ(3,I) 00073800
  ISN 0139          DO 385 J=1,3          00073900
  ISN 0140      385  WV4(J)=WV4(J)+SUM*QDOT(J,I) 00074000
  ISN 0141      380  CONTINUE                 00074100
  ISN 0142          DO 390 J=1,3          00074200
  ISN 0143      390  UR(J)=UR(J)+WV2(J)+2.*(WV4(J)-WV3(J)) 00074300
  ISN 0144          RETURN                  00074400
  ISN 0145          END                     00074500
  —
  *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(9384K) AUTOUBL(NONE)
  *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)
  *STATISTICS* SOURCE STATEMENTS = 144, PROGRAM SIZE = 8226, SUBPROGRAM NAME = NLKT
  —*STATISTICS* NO DIAGNOSTICS GENERATED
  ***** END OF COMPILATION *****
  244K BYTES OF CORE NOT USED
  
```

LEVEL 2.3.0 (JUNE 78)

05/360 FORTRAN H EXTENDED

DATE 82.246/12.21.56

PAGE 1

REQUESTED OPTIONS: NOOBJ,TERM,,NOXREF,,NOMAP,,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISN 0002	SUBROUTINE SOLVE	00074800
C	THIS SUBROUTINE ASSEMBLES THE EQUATIONS OF MOTION IN FIRST ORDER	00074900
C	FORM AND SOLVES THE SET OF SIMULTANEOUS DIFFERENTIAL EQUATIONS	00075000
C	(SIZE 6*N+12)	00075100
ISN 0003	IMPLICIT REAL*8(A-H,O-Z)	00075200
ISN 0004	REAL*8 MASS,MCO,MRM,INERT1	00075300
ISN 0005	DIMENSION MASS(50),MCO(3),MRM(3,50),CMAT(3,3),A(156,156),A12(3,3),00075500	00075400
1	INERT1(3,3),A23(3,156),Q(3,50),QDOT(3,50),UVW(3),OMEGA(3),	00075600
2	R(3),THETA(3),F(156),U(156),R14(3,3),GAMA(3,3),	00075700
3	B(156),YDOT(312),Y(312),WV1(3),WV2(3),WV3(156),	00075800
4	QV(150),QDQT(150),AV(12246)	00075900
ISN 0006	EQUIVALENCE (QV(1),Q(1,1)),(QDQT(1),QDOT(1,1))	00076000
ISN 0007	COMMON /CONST/ TM,MASS,MCO,MRM,CMAT,N,N3,N3P6,NT,NTP6,NO	00076100
ISN 0008	COMMON /AMATA/ A,A12,INERT1,A23	00076200
ISN 0009	COMMON /STATE/ R,THETA,Q,UVW,OMEGA,QDOT	00076300
ISN 0010	COMMON /FORCE/ F	00076400
ISN 0011	COMMON /FICFRC/ U	00076500
ISN 0012	COMMON /TIME/ DT,TSTOP,DTP,BTG	00076600
ISN 0013	COMMON /MODES/ PHI(150,150),WS(150)	00076700
ISN 0014	COMMON /MODCO/ ETA(150),ETAO(150)	00076800
ISN 0015	DATA GAMA/8*0.0,1.0/,IPASS/0/	00076900
C	CALCULATE R14 -TRANSFORMATION FROM BODY FRAME TO INERTIAL FRAME	00077000
C	00077100	
C	00077200	
ISN 0016	S1=DSIN(THETA(1))	00077300
ISN 0017	C1=DCOS(THETA(1))	00077400
ISN 0018	S2=DSIN(THETA(2))	00077500
ISN 0019	C2=DCOS(THETA(2))	00077600
ISN 0020	S3=DSIN(THETA(3))	00077700
ISN 0021	C3=DCOS(THETA(3))	00077800
ISN 0022	R14(1,1)=C2*C3	00077900
ISN 0023	R14(1,2)=-C2*S3	00078000
ISN 0024	R14(1,3)=S2	00078100
ISN 0025	R14(2,1)=C1*S3+S1*S2*C3	00078200
ISN 0026	R14(2,2)=C1*C3-S1*S2*S3	00078300
ISN 0027	R14(2,3)=-S1*C2	00078400
ISN 0028	R14(3,1)=S1*S3-C1*S2*C3	00078500
ISN 0029	R14(3,2)=S1*C3+C1*S2*S3	00078600
ISN 0030	R14(3,3)=C1*C2	00078700
C	CALCULATE "GAMA" - TRANSFORMS ANGULAR VELOCITY TO ATTITUDE RATES	00078800
C	00078900	
C	00079000	
ISN 0031	GAMA(1,1)=C3/C2	00079100
ISN 0032	GAMA(1,2)=-S3/C2	00079200
ISN 0033	GAMA(2,1)=S3	00079300
ISN 0034	GAMA(2,2)=C3	00079400
ISN 0035	T2=S2/C2	00079500
ISN 0036	GAMA(3,1)=-C3*T2	00079600
ISN 0037	GAMA(3,2)=S3*T2	00079700
ISN 0038	DO 30 I=1,6	00079800
ISN 0039	30 B(I)=F(I)+U(I)	00079900
ISN 0040	DO 40 I=1,NT	00080000

LEVEL 2.3.0 (JUNE 78) SOLVE OS/360 FORTRAN H EXTENDED DATE 02.246/12.21.56 PAGE 2

```

ISN 0041      IP6=I+6          00080100
ISN 0042      40   B(IP6)=F(IP6)+U(IP6)-WS(I)*ETA(I)  00080200
C
C   STORE UPPER TRIANGLE OF "A" IN "AV"
C
ISN 0043      L=1            00080300
ISN 0044      DO 300 J=1,NTP6  00080400
ISN 0045      DO 300 I=1,J    00080500
ISN 0046      AV(L)=A(I,J)   00080600
ISN 0047      L=L+1          00080700
ISN 0048      300  CONTINUE   00080800
ISN 0049      CALL LEQTIP(AV,1,NTP6,B,156,0,D1,D2,IER) 00080900
ISN 0050      IF(IER .EQ. 0) GO TO 60  00081000
ISN 0052      WRITE(6,61) IER  00081100
ISN 0053      STOP           00081200
ISN 0054      61   FORMAT(1H0,5X,'ERROR DETECTED BY IMSL LIBRARY ROUTINE "LEQTIP"' 00081300
ISN 0055      1ERROR CODE=1,I3) 00081400
ISN 0056      60   IF(IPASS .EQ. 1) GO TO 105  00081500
ISN 0057      IPASS=1        00081600
C
C   SET INITIAL VALUE OF "Y"
C
ISN 0058      DO 70 I=1,3      00081700
ISN 0059      IP3=I+3          00081800
ISN 0060      Y(I)=R(I)        00081900
ISN 0061      70   Y(IP3)=THETA(I)  00082000
ISN 0062      DO 80 I=1,NT    00082100
ISN 0063      Y(I+6)=ETA(I)   00082200
ISN 0064      DO 90 I=1,3      00082300
ISN 0065      L=NTP6+I        00082400
ISN 0066      LL=L+3          00082500
ISN 0067      Y(LL)=UVW(I)   00082600
ISN 0068      90   Y(LL)=OMEGA(I) 00082700
ISN 0069      DO 100 I=1,NT   00082800
ISN 0070      L=12+NT+I       00082900
ISN 0071      100  Y(L)=ETAD(I) 00083000
C
C   SET UP "YDOT"
C
ISN 0072      105  DO 110 I=1,3  00083100
ISN 0073      W1(I)=R14(I,1)*UVW(1)+R14(I,2)*UVW(2)+R14(I,3)*UVW(3) 00083200
ISN 0074      110  W2(I)=GAMA(I,1)*OMEGA(I)+GAMA(I,2)*OMEGA(2)+GAMA(I,3)*OMEGA(3) 00083300
ISN 0075      DO 120 I=1,3      00083400
ISN 0076      YDOT(I)=W1(I)    00083500
ISN 0077      120  YDOT(I+3)=W2(I) 00083600
ISN 0078      DO 130 I=1,NT    00083700
ISN 0079      130  YDOT(6+I)=ETAD(I) 00083800
ISN 0080      DO 140 I=1,NTP6  00083900
ISN 0081      140  YDOT(NTP6+I)=B(I) 00084000
C
C   UPDATE VARIABLES IN STATE VECTOR
C
ISN 0082      CALL QDESLV(NO,Y,YDOT,DT) 00084100
ISN 0083      DO 150 I=1,3      00084200
ISN 0084      R(I)=Y(I)        00084300
ISN 0085      150  THETA(I)=Y(I+3) 00084400
ISN 0086      DO 160 I=1,NT    00084500
ISN 0087      160  ETA(I)=Y(6+I) 00084600

```

LEVEL 2.3.0 (JUNE 78) SOLVE OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.56 PAGE 3

ISN 0088	DO 170 I=1,3	00085900
ISN 0089	L=NTP6+I	00086000
ISN 0090	LL=L+3	00086100
ISN 0091	UVN(I)=Y(LL)	00086200
ISN 0092	170 OMEGA(I)=Y(LL)	00086300
ISN 0093	DO 180 I=1,NT	00086400
ISN 0094	180 ETAD(I)=Y(NT+12+I)	00086500
C		00086600
C COMPUTE NEW VALUES FOR "Q" AND "QDOT"		00086700
C		00086800
ISN 0095	DO 200 I=1,N3	00086900
ISN 0096	QV(I)=0.0	00087000
ISN 0097	QDOTV(I)=0.0	00087100
ISN 0098	DO 220 L=1,NT	00087200
ISN 0099	QV(I)=QV(I)+PHI(I,L)*ETA(L)	00087300
ISN 0100	220 QDOTV(I)=QDOTV(I)+PHI(I,L)*ETAD(L)	00087400
ISN 0101	200 CONTINUE	00087500
ISN 0102	RETURN	00087600
ISN 0103	END	00087700

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
 *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)
 STATISTICS SOURCE STATEMENTS = 102, PROGRAM SIZE = 107808, SUBPROGRAM NAME = SOLVE
 STATISTICS NO DIAGNOSTICS GENERATED
 ***** END OF COMPILATION ***** 256K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.21.58

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOXREF,,NOMAP,,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),
 OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOBL(NONE)
 SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

```

ISN 0002      SUBROUTINE ODESLV(N,Y,DERIV,H)          00087800
ISN 0003      IMPLICIT REAL*8(A-H,O-Z)            00087900
ISN 0004      DIMENSION DERIV(N),Y(N),DERIVO(312),BD1(312,2),BD2(312,2),BD3(312) 00088000
ISN 0005      DATA INTF/1./,C1/0.0/,C2/0.0/,C3/0./ 00088100
C
C THIS SUBROUTINE INTEGRATES THE FIRST ORDER SYSTEM OF ORDINARY 00088200
C DIFFERENTIAL EQUATIONS "DY/DT=DERIV" BY THE ADAMS METHOD 00088300
C USING THIRD ORDER DIFFERENCES. 00088400
C N- SIZE OF SYSTEM 00088500
C Y- VECTOR OF INITIAL VALUES ON INPUT. "Y" IS OVERWRITTEN 00088600
C WITH THE NEW SOLUTION 00088700
C H- STEP SIZE 00088800
C
C IF(N .LE. 312) GO TO 10 00088900
ISN 0006      WRITE(6,12) N 00089000
ISN 0008      STOP 00089300
ISN 0009      12 FORMAT(1H0,5X,'ERROR IN SUBROUTINE **ODESLV** CALLED WITH STATE 00089400
ISN 0010      1SIZE =',I3,' EXCEEDS DIMENSION SIZE OF ARRAYS') 00089500
ISN 0011      10 GO TO(1000,2000,3000,4000),INTF 00089600
C
C FIRST CALL TO ROUTINE - EULER INTEGRATION 00089700
C
ISN 0012      1000 DO 20 I=1,N 00089800
ISN 0013      20 DERIVO(I)=DERIV(I) 00089900
ISN 0014      INTF=2 00090000
ISN 0015      GO TO 5000 00090100
C
C SECOND CALL TO ROUTINE - FIRST ORDER DIFFERENCES 00090200
C
ISN 0016      2000 DO 30 I=1,N 00090300
ISN 0017      BD1(I,1)=DERIV(I)-DERIVO(I) 00090400
ISN 0018      BD1(I,2)=BD1(I,1) 00090500
ISN 0019      30 DERIVO(I)=DERIV(I) 00090600
ISN 0020      C1=.5 00090700
ISN 0021      INTF=3 00090800
ISN 0022      GO TO 5000 00090900
C
C THIRD CALL TO ROUTINE - SECOND ORDER DIFFERENCES 00091000
C
ISN 0023      3000 DO 40 I=1,N 00091100
ISN 0024      BD1(I,2)=DERIV(I)-DERIVO(I) 00091200
ISN 0025      BD2(I,1)=BD1(I,2)-BD1(I,1) 00091300
ISN 0026      BD2(I,2)=BD2(I,1) 00091400
ISN 0027      DERIVO(I)=DERIV(I) 00091500
ISN 0028      40 BD1(I,1)=BD1(I,2) 00091600
ISN 0029      INTF=4 00091700
ISN 0030      C2=5.0/12.0 00091800
ISN 0031      GO TO 5000 00091900
C
C ADAMS METHOD WITH 3RD ORDER DIFFERENCES. 00092000
C
ISN 0032      4000 DO 50 I=1,N 00092100
ISN 0033      BD1(I,2)=DERIV(I)-DERIVO(I) 00092200

```

LEVEL 2.3.0 (JUNE 78) ODESLV OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.58 PAGE 2
 ISN 0034 BD2(I,2)=BD1(I,2)-BD1(I,1) 00093100
 ISN 0035 BD3(I)=BD2(I,2)-BD2(I,1) 00093200
 ISN 0036 DERIVO(I)=DERIV(I) 00093300
 ISN 0037 BD1(I,1)=BD1(I,2) 00093400
 ISN 0038 50 BD2(I,1)=BD2(I,2) 00093500
 ISN 0039 C3=3.0/8.0 00093600
 ISN 0040 GO TO 5000 00093700
 C 00093800
 C UPDATE VECTOR 'Y' 00093900
 C 00094000
 ISN 0041 5000 DO 60 I=1,N 00094100
 ISN 0042 60 Y(I)=Y(I)+H*(DERIV(I)+C1*BD1(I,2)+C2*BD2(I,2)+C3*BD3(I)) 00094200
 ISN 0043 RETURN 00094300
 ISN 0044 END 00094400

 *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
 *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)
 STATISTICS SOURCE STATEMENTS = 43, PROGRAM SIZE = 16838, SUBPROGRAM NAME =ODESLV
 STATISTICS NO DIAGNOSTICS GENERATED
 ***** END OF COMPILATION ***** 276K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

09/360 FORTRAN H EXTENDED

DATE 82.246/12.21.59

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,,NOXREF,,NOMAP,,NAME(MAIN),AD(NONE),OPT(0),,,FLAG(I),SIZE(384K),LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISN 0002	SUBROUTINE PRINT(T,F0,TAU0,FP)	00094500
ISN 0003	IMPLICIT REAL*8(A-H,O-Z)	00094600
ISN 0004	REAL*8 MASS,MCO,MRM	00094700
ISN 0005	REAL*4 TD(3),OO(3),PLTDAT	00094800
ISN 0006	DIMENSION R(3),THETA(3),Q(3,50),UVH(3),OMEGA(3),QDOT(3,50), 1 MCO(3),MRM(3,50),CMAT(3,3),MASS(50),F0(3),TAU0(3),FP(3,50), 2 IPLOT(42),PLTDAT(100,20)	00094900 00095000 00095100
ISN 0007	COMMON /STATE/R,THETA,Q,UVH,OMEGA,QDOT	00095200
ISN 0008	COMMON /CONST/ TM,MASS,MCO,MRM,CMAT,N,N3,N3P6,NT,NTP6,NO	00095300
ISN 0009	COMMON /PLOTT/ PLTDAT,IPLOT,np	00095400
ISN 0010	WRITE(6,100) T	00095500
ISN 0011	WRITE(6,200) F0,TAU0	00095600
ISN 0012	DO 201 I=1,N	00095700
ISN 0013	201 WRITE(6,202) I,(FP(J,I),J=1,3)	00095800
ISN 0014	DO 10 I=1,3	00095900
ISN 0015	TD(I)=57.29578*THETA(I)	00096000
ISN 0016	10 OO(I)=57.29578*OMEGA(I)	00096100
ISN 0017	WRITE(6,110) R,TD,UVH,OO	00096200
ISN 0018	DO 20 I=1,N	00096300
ISN 0019	20 WRITE(6,120) I,(Q(J,I),J=1,3)	00096400
ISN 0020	DO 30 I=1,N	00096500
ISN 0021	30 WRITE(6,130) I,(QDOT(J,I),J=1,3)	00096600
ISN 0022	100 FORMAT(1H0,/,5X,'TIME=',F10.3,' SEC')	00096700
ISN 0023	110 FORMAT(1H ,8X,'R=',3(2X,1PE11.4),' FT',/,4X,'THETA=', 1 3(2X,1PE11.4),' DEG',/,6X,'UVH=',3(2X,1PE11.4),' FT/SEC',/, 2 4X,'OMEGA=',3(2X,1PE11.4),' DEG/SEC',/)	00096800 00096900 00097000
ISN 0024	120 FORMAT(1H ,5X,'Q',I3,'=',3(2X,1PE11.4),' FT')	00097100
ISN 0025	130 FORMAT(1H ,2X,'QDOT',I3,'=',3(2X,1PE11.4),' FT/SEC')	00097200 00097300
ISN 0026	200 FORMAT(1H0,8X,'F0=',3(2X,1PE11.4),' LB',/, 1 6X,'TAU0=',3(2X,1PE11.4),' FT LB')	00097400
ISN 0027	202 FORMAT(1H ,4X,'F',I3,'=',3(2X,1PE11.4),' LB')	00097500
ISN 0028	RETURN	00097600
ISN 0029	ENTRY GRAF(T)	00097700
ISN 0030	IF(IPLOT(1).EQ. 0) GO TO 203	00097800
C	STORE VARIABLES FOR PLOTTING	00097900
C		00098000
ISN 0032	NP=NP+1	00098100
ISN 0033	IF(NP.GT. 100) GO TO 203	00098200
ISN 0035	PLTDAT(NP,1)=T	00098300
ISN 0036	DO 300 I=1,42	00098400
ISN 0037	NY=IPLOT(I)	00098500
ISN 0038	IF(NY.EQ. 0) GO TO 203	00098600
ISN 0040	IF(NY.GT. 3) GO TO 310	00098700
C	STORE INERTIAL POSITION	00098800
C		00098900
ISN 0042	PLTDAT(NP,I+1)=R(NY)	00099000
ISN 0043	GO TO 300	00099100
ISN 0044	310 IF(NY.GT. 6) GO TO 320	00099200 00099300 00099400 00099500
C	STORE ATTITUDE ANGLES IN DEGREES	00099600
C		00099700

LEVEL 2.3.0 (JUNE 78) PRINT OS/360 FORTRAN H EXTENDED DATE 82.246/12.21.59 PAGE 2
 ISN 0046 PLTDAT(NP,I+1)=57.29578*THETA(NY-3) 00099800
 ISN 0047 GO TO 300 00099900
 ISN 0048 320 IF(NY .GT. N3P6) GO TO 330 00100000
 C 00100100
 C STORE DEFORMATION COORDINATES 00100200
 C 00100300
 ISN 0050 L=NY-6 00100400
 ISN 0051 I1=1+L/3 00100500
 ISN 0052 I2=L-3*(I1-1) 00100600
 ISN 0053 IF(I2 .NE. 0) GO TO 321 00100700
 ISN 0055 I1=I1-1 00100800
 ISN 0056 I2=3 00100900
 ISN 0057 321 PLTDAT(NP,I+1)=Q(I2,I1) 00101000
 ISN 0058 GO TO 300 00101100
 ISN 0059 330 IF(NY .GT. (N3P6+3)) GO TO 340 00101200
 C 00101300
 C STORE TRANSLATIONAL VELOCITY 00101400
 C 00101500
 ISN 0061 PLTDAT(NP,I+1)=UVW(NY-N3P6) 00101600
 ISN 0062 GO TO 300 00101700
 ISN 0063 340 IF(NY .GT. (N3P6+6)) GO TO 350 00101800
 C 00101900
 C STORE ANGULAR VELOCITY IN DEG./SEC. 00102000
 C 00102100
 ISN 0065 PLTDAT(NP,I+1)=57.29578*OMEGA(NY-(N3+9)) 00102200
 ISN 0066 GO TO 300 00102300
 C 00102400
 C STORE DEFORMATION RATES 00102500
 C 00102600
 ISN 0067 350 L=NY-(N3+12) 00102700
 ISN 0068 I1=1+L/3 00102800
 ISN 0069 I2=L-3*(I1-1) 00102900
 ISN 0070 IF(I2 .NE. 0) GO TO 351 00103000
 ISN 0072 I1=I1-1 00103100
 ISN 0073 I2=3 00103200
 ISN 0074 351 PLTDAT(NP,I+1)=QDOT(I2,I1) 00103300
 ISN 0075 300 CONTINUE 00103400
 ISN 0076 203 RETURN 00103500
 ISN 0077 END 00103600

 *OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTOUBL(NONE)
 *OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)
 STATISTICS SOURCE STATEMENTS = 76, PROGRAM SIZE = 2324, SUBPROGRAM NAME = PRINT
 - *STATISTICS* NO DIAGNOSTICS GENERATED
 ***** END OF COMPILATION ***** 268K BYTES OF CORE NOT USED

LEVEL 2.3.0 (JUNE 78)

OS/360 FORTRAN H EXTENDED

DATE 82.246/12.22.01

PAGE 1

REQUESTED OPTIONS: NOOBJ, TERM,, NOXREF,, NOMAP,,, NAME(MAIN), AD(NONE), OPT(0),,, FLAG(I), SIZE(384K), LC(60),

OPTIONS IN EFFECT: NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTODBL(NONE)
SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

ISN 0002	SUBROUTINE PLOT	00103700
ISN 0003	IMPLICIT REAL*8(A-H,O-Z)	00103800
ISN 0004	REAL*4 RAN,PLTDAT	00103900
ISN 0005	DIMENSION IPLOT(42),PLTDAT(100,20),IT(144),RAN(4),IC(10), I IMAG4(5151)	00104000 00104100
ISN 0006	COMMON /PLOTT/ PLTDAT,IPLOT,NP	00104200 00104300
ISN 0007	DATA IT(1)/0/,RAN/4*0.,/IC(1)/1H/	00104400
C	CALCULATE NUMBER OF VARIABLES TO BE PLOTTED	00104500 00104600
C		00104700
ISN 0008	NV=0	00104800
ISN 0009	DO 100 I=1,42	00104900
ISN 0010	IF(IPLOT(I) .EQ. 0) GO TO 110	00105000
ISN 0012	100 NV=NV+1	00105100
ISN 0013	110 IF(NV .EQ. 0) RETURN	00105200
ISN 0015	DO 120 IP=1,NV	00105300
ISN 0016	CALL USPLT(PLTDAT(1,1),PLTDAT(1,IP+1),100,NP,1,1,IT,RAN,IC,1, I IMAG4,IER)	00105400 00105500
ISN 0017	120 CONTINUE	00105600
ISN 0018	RETURN	00105700
ISN 0019	END	

*OPTIONS IN EFFECT*NAME(MAIN) NOOPTIMIZE LINECOUNT(60) SIZE(0384K) AUTODBL(NONE)

*OPTIONS IN EFFECT*SOURCE EBCDIC NOLIST NODECK NOBJECT NOMAP NOFORMAT GOSTMT NOXREF NOALC NOANSF TERM IBM FLAG(I)

STATISTICS SOURCE STATEMENTS = 18, PROGRAM SIZE = 21736, SUBPROGRAM NAME = PLOT

STATISTICS NO DIAGNOSTICS GENERATED

***** END OF COMPILATION *****

276K BYTES OF CORE NOT USED

STATISTICS NO DIAGNOSTICS THIS STEP

APPENDIX B

SAMPLE INPUT DATA

This appendix provides an illustrative example of the program NAMELIST input data corresponding to the vehicle in Figure 5. The vector geometry and inertia matrix for that vehicle are

$$\vec{s} = -\frac{b}{2}\underline{i}_4 + \frac{b}{2}\underline{j}_4 + \frac{h}{2}\underline{k}_4$$

$$\vec{r}^1 = -\frac{b}{2}\underline{i}_4 + (b + L)\underline{j}_4 + \frac{h}{2}\underline{k}_4$$

$$\vec{r}^2 = -\frac{b}{2}\underline{i}_4 + (b + 2L)\underline{j}_4 + \frac{h}{2}\underline{k}_4$$

$$\vec{r}^3 = -\frac{b}{2}\underline{i}_4 - L\underline{j}_4 + \frac{h}{2}\underline{k}_4$$

$$\vec{r}^4 = -\frac{b}{2}\underline{i}_4 - 2L\underline{j}_4 + \frac{h}{2}\underline{k}_4$$

$$[I_b] = \frac{m_b}{12} \begin{bmatrix} (b^2 + h^2) & 0 & 0 \\ 0 & (b^2 + h^2) & 0 \\ 0 & 0 & 2b^2 \end{bmatrix}$$

$$\vec{R} = R_x\underline{i}_1 + R_y\underline{j}_1 + R_z\underline{k}_1$$

Figure 5. Example vehicle.

The namelist input items given below correspond to the following dimensions and masses

$$m_b = 5 \text{ slugs}$$

$$m_1 = m_3 = 1 \text{ slug}$$

$$m_2 = m_4 = 0.5 \text{ slug}$$

$$b = 1 \text{ ft}$$

$$h = 2 \text{ ft}$$

$$L = 10 \text{ ft}$$

Also two constrained modes are to be used in the simulation. The initial conditions on the kinematic variables are

$$@ t_0 \quad R_x = 1 \cdot 10^3 \text{ ft} \quad \theta_1 = 5 \text{ degrees}$$

$$R_y = 2 \cdot 10^3 \text{ ft} \quad \theta_2 = 20 \text{ degrees}$$

$$R_z = 3 \cdot 10^3 \text{ ft} \quad \theta_3 = 0 \text{ degrees}$$

$$u = 0 \text{ ft/s} \quad \omega_1 = 0 \text{ deg/s}$$

$$v = 5 \text{ ft/s} \quad \omega_2 = 10 \text{ deg/s}$$

$$w = 0 \text{ ft/s} \quad \omega_3 = 0 \text{ deg/s}$$

Note that the program in Appendix A sets the initial particle deflections, modal coordinates and the respective time derivatives to zero (see subroutine INITL).

The numerical integration is to proceed from time = 0 (set internally, see main program) to a final time of 60 seconds using an integration time step of 0.01 second. The print time step is to be 6 seconds and the plot time step 0.6 second.

The following variables are to be plotted versus time: R_y , θ_2 , q_x^4 , q_y^4 , q_z^4 , v , ω_2 .

NAMELIST Input Data

```
&INPUT MØ = 5.0, N = 4, MASS = 1.0, 0.5, 1.0, 0.5,  
RM = -0.5, 11.0, 1.0, -0.5, 21.0, 1.0, -0.5, -10.0, 1.0, -0.5,  
-20.0, 1.0,  
IØ = 2.083, 0.0, 0.0, 0.0, 2.083, 0.0, 0.0, 0.0, 0.833,  
S = -0.5, 0.5, 1.0, NT = 2 &END  
&KIN R = 1.E3, 2.E3, 3.E3, THETA = 5.0, 20.0, 0.0,  
UVW = 0.0, 5.0, 0.0, OMEGA = 0.0, 10.0, 0.0 &END  
&RUN DT = 0.01, TSTOP = 60.0, DTP = 6.0, DTG = 0.6 &END  
&PLT IPLOT = 2, 5, 16, 17, 18, 20, 23 &END
```

LIST OF REFERENCES

1. Hughes, P.C., "A Model for the Attitude Dynamics of CTS with Reference to Attitude Control System Design," Aerospace Engineering and Research Consultants Ltd., Downsview, Ont., AERCOL Report No. 75-14-4, 1975.
2. Likins, P.W., "Analytical Dynamics and Nonrigid Spacecraft Simulation," Technical Report 32-1593, Jet Propulsion Laboratory, Pasadena, CA 1974.
3. Bodley, C.S., A.D. Devers, A.C. Park, and H.P. Frisch, "A Digital Computer Program for the Dynamic Interaction Simulation of Controls and Structures (DISCOS)," Volume I, NASA Technical Paper 1219, 1978.
4. Gates, S.S., "DISCOS Method for Incorporation of Finite-Element Model," Draper Intralab Memo DYN-82-1, January 1982.
5. Likins, P.W., "Dynamics and Control of Flexible Space Vehicles," Technical Report 32-1329, Revision 1, Jet Propulsion Laboratory, Pasadena, CA, 1970.
6. Likins, P.W., "Finite Element Appendage Equations for Hybrid Coordinate Dynamic Analysis," International Journal of Solids and Structures, Volume 8, pp. 709-731, 1972.

7. Storch, J., "Dynamic Equations for Arbitrary Motion of a Flexible Body - Finite Element Idealization," Draper Intralab Memo DYN-82-4, January 1982.
8. IMSL Library Reference Manual, Edition 8, International Mathematical and Statistical Libraries, Inc., Houston, TX, 1980.

