Contact Time Calculation From Maximum Elevation Angle

Hongseok Kim, UT Austin

I. Orbital Kinematics of SSO satellite

Suppose the ECI frame is on XYZ cartesian coordinate. The satellite orbit trajectory is stable in this frame.

- We alreay have satellite height(600km) and earth radious information, so all we have to choose is inclination angle i.
- In this coordinate, suppose the radious of orbital circle is 1 for simple calculation.
- Also, given the satellite hight, we can calculate the satellite's velocity and orbital period.

flight velocity :
$$v = \sqrt{\frac{398600.5}{6378.14 + h}} \text{ (km/s)}$$
 , orbital period : $P = 2\pi \frac{6378.14 + h}{v} \text{ (sec)}$ if $h = 600 \text{ km} \rightarrow v = 7.5579 \text{km/s}$, $P = 5801.23 \text{ Sec} = 1:36:41.23 \text{ (hh: mm: ss)}$

Therefore, we can express the orbital trajectory as follows.

Satellite trajectory (x, y, z) at ECI frame

$$(x, y, z) = (\cos \theta, \cos i \sin \theta, \sin i, \sin \theta), \ \theta = \frac{2\pi t}{P}, i = \text{inclination angle } \left(-\frac{\pi}{2} \le i \le \frac{\pi}{2}\right)$$

 $(x, y, z) = \left(\cos \frac{2\pi t}{P}, \cos i \sin \frac{2\pi t}{P}, \sin i \sin \frac{2\pi t}{P}\right)$

For changing from ECI frame to ECF frame, we should consider the rotation of earth.

• Suppose the direction of satellit rotation and earth rotation is same, +Z rotation (counterclockwise)

• The earth rotation period is known: $P_E = 23:56:4.09$ (hh: mm: ss)

Satellite trajectory (x, y, z) at ECF frame

z remains same,
$$z = \sin i \sin \frac{2\pi t}{P}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos\frac{2\pi t}{P_E} & \sin\frac{2\pi t}{P_E} \\ -\sin\frac{2\pi t}{P_E} & \cos\frac{2\pi t}{P_E} \end{bmatrix} \begin{bmatrix} \cos\frac{2\pi t}{P} \\ \cos i \sin\frac{2\pi t}{P} \end{bmatrix} = \begin{bmatrix} \cos\frac{2\pi t}{P_E} \cos\frac{2\pi t}{P} + \sin\frac{2\pi t}{P_E} \cos i \sin\frac{2\pi t}{P} \\ -\sin\frac{2\pi t}{P_E} \cos\frac{2\pi t}{P} + \cos\frac{2\pi t}{P_E} \cos i \sin\frac{2\pi t}{P} \end{bmatrix}$$

Therefore,
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \cos \frac{2\pi t}{P_E} \cos \frac{2\pi t}{P} + \cos i \sin \frac{2\pi t}{P_E} \sin \frac{2\pi t}{P} \\ -\sin \frac{2\pi t}{P_E} \cos \frac{2\pi t}{P} + \cos i \cos \frac{2\pi t}{P_E} \sin \frac{2\pi t}{P} \\ \sin i \sin \frac{2\pi t}{P} \end{bmatrix}$$

We can get the graph of basic trajectories.

```
i = 97.8/180*pi();
t_{end} = 1000;
h = 500;
v = sgrt(398600.5/(6378.14 + h));
P = 2 * pi() * (6378.14+h) / v;
r E = 6378.14;
t = 0:0.1:t end;
P_E = 23 * 3600 + 56 * 60 + 4.09;
x_ECI_x = cos(2*pi()*t/P);
x_{ECI_y} = cos(i)*sin(2*pi()*t/P);
x_{ECI_z} = sin(i)*sin(2*pi()*t/P);
x_ECF_x = cos(2*pi().*t/P_E).*cos(2*pi()*t/P) + cos(i).*sin(2*pi()*t/P)
P_E) .* sin(2*pi()*t/P);
x_{ECF_y} = -\sin(2*pi().*t/P_E).*\cos(2*pi()*t/P) + \cos(i).*\cos(2*pi()*t/P)
P_{E}) .* sin (2*pi()*t/P);
x_{ECF_z} = \sin(i) * \sin(2*pi()*t/P);
%plot3(x_ECI_x, x_ECI_y, x_ECI_z);
%plot3(x_ECF_x,x_ECF_y,x_ECF_z);
```

II. Calculating Elevation angle

We can express the position relationship by ground station and satellite by following diagram.

From Slant Range to Elevation Angle

```
s = 1272:10:3000;
og = 6378.14;
os = 6378.14 + 1272;
elev_plus_90 = acos((og^2 + s.^2 - os.^2)./(2.*og.*s));
elev_angle = elev_plus_90*180/pi() - 90;
%plot(s,elev_angle)
plot(elev_angle,s)
```


III. Calculating Contact Time From Maximum Elevation angle

In our SSO orbit satellite case,

$$\overline{\text{OG}} = r_E = 6378.14 \text{km}$$

$$\overline{\mathrm{OS}} = r_E + h = 6978.14 \mathrm{km}$$

We should find \overline{GS} by calculating distance in ECF frame

In the ECF frame, let G is at latitude = $\phi = 36^{\circ} \, 21'03''N$, which is the position of Daejeon, Korea, longitude = θ , and assume G is on XZ plane.

Then we can get the position data of G, $G(x, y, z) = (r \cos \phi \cos \theta, r \cos \phi \sin \theta, r \sin \phi)$

From, S(x, y, z) at ECF frame we have got, we can calculate the length of \overline{GS}

```
n = (-11 - (-5))/0.1+1;
data = zeros(n,2);
k = 1;
figure;
hold on
for theta_trans = -13:1:-8
% theta = -8.3/180*pi();
theta = theta_trans/180*pi();
phi = (36 + 21/60 + 3/3600)/180*pi();
G_x = r_E * cos(phi) * cos(theta);
G_y = r_E * cos(phi) * sin(theta);
G_z = r_E * sin(phi);
GS = sqrt(((r_E+h) * x_ECF_x - G_x).^2+((r_E+h) * x_ECF_y - G_y).^2+((r_E+h))
* x_ECF_z - G_z).^2);
OGS_rad = acos((r_E^2+ GS.^2 - (r_E+h)^2)./(2.*r_E.*GS));
OGS_deg = OGS_rad/pi()*180;
elev = OGS_deg - 90;
elev mat = [t',elev'];
elev_filtered = elev_mat(elev_mat(:,2)>=30,:);
plot(elev_filtered(:,1), elev_filtered(:,2),'LineWidth',1)
end
hold off
xlabel('Elapsed time (sec)','FontSize',15,'FontWeight','bold')
ylabel('Elevation angle (deg)','FontSize',15,'FontWeight','bold')
grid on
title('Time vs Elevation Angle', 'FontSize', 20, 'FontWeight', 'bold')
```



```
for theta_input = -13:0.1:-8
theta = theta_input/180*pi();
phi = (36 + 21/60 + 3/3600)/180*pi();
G_x = r_E * cos(phi) * cos(theta);
G_y = r_E * cos(phi) * sin(theta);
G_z = r_E * sin(phi);
GS = sqrt(((r_E+h) * x_ECF_x - G_x).^2+((r_E+h) * x_ECF_y - G_y).^2+((r_E+h))
* x_ECF_z - G_z).^2);
OGS_rad = acos((r_E^2+ GS.^2 - (r_E+h)^2)./(2.*r_E.*GS));
OGS_deg = OGS_rad/pi()*180;
elev = OGS_deg - 90;
% plot(t, elev)
observe_boundary = find(elev > 30);
T_min = min(observe_boundary);
T_max = max(observe_boundary);
elev_max = max(elev);
```

```
duration = (T_max-T_min)/10;
data(k,1) = elev_max;
data(k,2) = duration;
k = k+1;
end

figure;
scatter(data(:,1),data(:,2),'red','*')
title('Contact Time (min.elev > 30 deg) ','FontSize',20,'FontWeight','bold')
xlabel('Maximum elevation angle (deg)','FontSize',15,'FontWeight','bold')
ylabel('Contact Time (Sec)','FontSize',15,'FontWeight','bold')
grid on
```


V. Calculate Energy Transmission Efficiency in Single Contact

```
theta = -8.3/180*pi();

phi = (36 + 21/60 + 3/3600)/180*pi();

G_x = r_E * cos(phi) * cos(theta);
G_y = r_E * cos(phi) * sin(theta);
```

```
G_z = r_E * sin(phi);
GS = sqrt(((r_E+h) * x_ECF_x - G_x).^2+((r_E+h) * x_ECF_y - G_y).^2+((r_E+h))
* x_ECF_z - G_z).^2);
OGS_rad = acos((r_E^2+ GS.^2 - (r_E+h)^2)./(2.*r_E.*GS));
OGS_deg = OGS_rad/pi()*180;
total_received_energy = 0;
elev = OGS deg - 90;
elev = elev(elev>=30);
t = 1:length(elev);
t = t/10;
P_received_vec = zeros(length(elev),1);
for i = 1:length(elev)
r earth = 6378.14*10^3; %earth radius in m
h = 500*10^3; %altitude in m
%frequency
f = 5.8*10^9; %in
%Wavelength
lambda = 299792458/(f); %in 1/m
%Power Added Efficiency
eff_PAE = .79;
%Antenna Efficiency
eff_ant = 0.856; %(max) around 0.55-.75
%diameter of Rectenna
dr = 50;
%Area of Rectenna
A_r = pi*(d_r/2).^2;
%diameter of antenna
d t = 3.75;
%Rectenna Efficiency (from tech papers)
eff_rec = 0.80;
%eff
eff_BCE = eff_PAE*eff_ant*eff_rec*(0.86*(1-
\exp(-1.1*(\operatorname{sqrt}((\operatorname{pi}*(\operatorname{d_t/2}).^2)*\operatorname{eff_ant})*\operatorname{A_r})./(\operatorname{lambda}*(\operatorname{sqrt}(\operatorname{r_earth}^2+
(r_earth+h).^2-2.*r_earth.*(r_earth+h).*cosd(90-elev(i)))))).^2)));
%Power input into transmission from energy acquisition analysis
P solar = 6.74*10^5;
P_received = P_solar*eff_BCE;
P_received_vec(i) = P_received;
total_received_energy = total_received_energy + P_received * 0.1;
```

end

total_received_energy

```
total_received_energy = 145.8700
```

```
figure;
plot(t,P_received_vec,'LineWidth',2)
title('Power Tranmitted in Single Contact','FontSize',20,'FontWeight','bold')
ylabel('Received Power (W)','FontSize',15,'FontWeight','bold')
xlabel('Time(sec)','FontSize',15,'FontWeight','bold')
grid on
```



```
figure;
scatter(elev, P_received_vec,'r','*')
title('Power Tranmitted by Elevation
Angle','FontSize',20,'FontWeight','bold')
ylabel('Received Power (W)','FontSize',15,'FontWeight','bold')
xlabel('Elevation Angle(Deg)','FontSize',15,'FontWeight','bold')
grid on
```


V. Calculate Total Energy Transmitted in Single Contact

```
clear all;
i = 97.8/180*pi();
t_end = 1000;
h = 500;

v = sqrt(398600.5/(6378.14 + h));
P = 2 * pi() * (6378.14+h) / v;

r_E = 6378.14;
t = 0:0.1:t_end;
P_E = 23 * 3600 + 56 * 60 + 4.09;

x_ECI_x = cos(2*pi()*t/P);
x_ECI_y = cos(i)* sin(2*pi()*t/P);
x_ECI_z = sin(i)* sin(2*pi()*t/P);
```

```
x_{ECF_x} = cos(2*pi().*t/P_E).*cos(2*pi()*t/P) + cos(i).* sin(2*pi()*t/P)
P_E) .* sin(2*pi()*t/P);
x_{ECF_y} = -\sin(2*pi().*t/P_E).*\cos(2*pi()*t/P) + \cos(i).*\cos(2*pi()*t/P)
P_{E} .* sin (2*pi()*t/P);
x_{ECF_z} = sin(i) * sin(2*pi()*t/P);
t = 0:0.1:1000;
ii = 1;
max_elevation_angle = zeros(length(-13:0.5:-8),1);
total_received_energy_vec = zeros(length(-13:0.5:-8),1);
figure;
hold on;
for theta_trans = -13:0.5:-8
theta = theta trans/180*pi();
phi = (36 + 21/60 + 3/3600)/180*pi();
G_x = r_E * cos(phi) * cos(theta);
G_y = r_E * cos(phi) * sin(theta);
G_z = r_E * sin(phi);
GS = sqrt(((r_E+h) * x_ECF_x - G_x).^2+((r_E+h) * x_ECF_y - G_y).^2+((r_E+h))
* x_ECF_z - G_z).^2);
OGS_{rad} = acos((r_E^2 + GS.^2 - (r_E + h)^2)./(2.*r_E.*GS));
OGS_deg = OGS_rad/pi()*180;
elev = OGS deg - 90;
elev_mat = [t',elev'];
elev_filtered = elev_mat(elev_mat(:,2)>=30,:);
max elevation angle(ii) = max(elev filtered(:,2));
P_received_vec = zeros(length(elev_filtered),1);
total_received_energy = 0;
for i = 1:length(elev_filtered)
r earth = 6378.14*10^3; %earth radius in m
h sim = 500*10^3; %altitude in m
%frequency
f = 5.8*10^9; %in
%Wavelength
lambda = 299792458/(f); %in 1/m
%Power Added Efficiency
eff PAE = .79;
%Antenna Efficiency
```

```
eff_ant = 0.856; %(max) around 0.55-.75
%diameter of Rectenna
dr = 50;
%Area of Rectenna
A_r = pi*(d_r/2).^2;
%diameter of antenna
d_t = 3.75;
%Rectenna Efficiency (from tech papers)
eff_rec = 0.80;
%eff
eff_BCE = eff_PAE*eff_ant*eff_rec*(0.86*(1-
exp(-1.1*(sqrt(((pi*(d_t/2).^2)*eff_ant)*A_r)/(lambda*(sqrt(r_earth^2+
(r_earth+h_sim).^2-2.*r_earth.*(r_earth+h_sim).*cosd(90-
elev_filtered(i,2))))).^2)));
%Power input into transmission from energy acquisition analysis
P_{solar} = 675200;
P_received = P_solar*eff_BCE;
P_received_vec(i) = P_received;
total_received_energy = total_received_energy + P_received * 0.1;
end
plot(elev_filtered(:,1),P_received_vec,'LineWidth',2)
total_received_energy_vec(ii) = total_received_energy;
ii = ii+1;
end
hold off
title('Power Tranmitted in Single Contact', 'FontSize', 20, 'FontWeight', 'bold')
ylabel('Received Power (W)','FontSize',15,'FontWeight','bold')
xlabel('Time(sec)','FontSize',15,'FontWeight','bold')
grid on
```



```
total_received_energy_vec

total_received_energy_vec = 11x1
    13.2748
    15.0534
    17.1405
    19.7136
    23.0625
    27.6715
    34.5606
    46.1123
    68.9486
```

max_elevation_angle

121.4329

```
max_elevation_angle = 11x1
47.2154
50.4869
54.0427
57.8974
62.0586
66.5236
71.2757
76.2818
81.4910
86.8355
```

```
figure;

plot(max_elevation_angle, total_received_energy_vec, 'LineWidth',2)
title('Total Energy Tranmitted in Single
Contact','FontSize',20,'FontWeight','bold')
ylabel('Received Energy (J)','FontSize',15,'FontWeight','bold')
xlabel('Maximum Elevation Angle (Deg)','FontSize',15,'FontWeight','bold')
grid on
```


$$E_{\text{transmitted}} = \int_{t_{\text{start}}}^{t_{\text{end}}} \eta_{\text{BCE}}(\theta_{\text{elevation}}) P_{\text{in}} \, \text{dt} \approx \sum_{t_{\text{start}}}^{t_{\text{end}}} \eta_{\text{BCE}}(\theta_{\text{elevation}}) P_{\text{in}} \Delta t$$

E: Total Transmitted Energy [J]

 $P_{\rm in}$: Transmitted Energy from Payload – Constant: 675kW

 η_{BCE} : Power transmisstion efficiecy – Function of Elev Angle [deg]

 $\theta_{\text{elevation}}$: Elevation Angle [deg]

 Δt : Step time – Constant: 0. 1 seconds