Cvičení 12

Úloha 1. Převeďte problém CNF-SAT na problém *vrcholové pokrytí* (VP) následujícím způsobem:

- Každé proměnné v instanci SATu bude odpovídat nějaký vyhrazený vrchol v instanci VP.
- Pro každou klauzuli v instanci SATu budeme mít kliku v instanci VP (ne nutně sestávající přímo z vrcholů reprezentujících proměnné, ty bude potřeba s klikami chytře spojit).
- ullet Parametr k ve VP je potřeba vhodně zvolit, aby tyto dvě instance byly skutečně ekvivalentní.

Úloha 2. Jak souvisí problém *vrcholového pokrytí* s problémem *nezávislá množina* z přednášky? Ukažte, že tyto dva problémy jsou na sebe vzájemně převoditelné.

Úloha 3. Máte k dispozici *blackbox* (podproces), který říká, jestli má daná formule splňující ohodnocení. Jak nějaké takové splňující ohodnocení naleznete? Blackbox můžete použít vícekrát.

Úloha 4. Máte algoritmus pro problém NEZÁVISLÁ MNOŽINA, tj. blackbox, který na vstup (G,k) odpoví, jestli graf G obsahuje nezávislou množinu velikosti k. Jak pomocí polynomiálně mnoha volání tohoto algoritmu nalezneme maximální nezávislou množinu v grafu?

Úloha 5. Lehké problémy.

Ukažte, že v polynomiálním čase umíme řešit následující problémy:

- Lze graf G obarvit dvěma barvami (2-BAREVNOST)?
- Je formule v DNF splnitelná?
- $\bullet\,$ Existuje v grafu Gklika velikosti 42?

Úloha 6. Navrhněte polynomiální algoritmus pro problém NEZÁVISLÁ MNO-ŽINA pokud je vstupem strom.

Úloha 7. Uvažujme následující algoritmus pro *nejmenší* vrcholové pokrytí grafu. Graf projdeme do hloubky, do výstupu vložíme všechny vrcholy vzniklého DFS stromu kromě listů. Dokažte, že vznikne vrcholové pokrytí a že 2-aproximuje to nejmenší (tedy že je nanejvýš dvakrát tak velké jako skutečné minimální v.p.).