МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Санкт-Петербургский государственный политехнический университет Физико-механический факультет Кафедра гидроаэродинамики

Д	иссер	тация допу	ущена к	: защите
	Зав.	кафедрой,	проф.,	д.ф-м.н.
			_ E.M. (Смирнов
!!	"			2012г.

Численное исследование течения в фильтре-циклоне Диссертация на соискание ученой степени магистра по направлению 010600 – Прикладные математика и физика

Выполнил студент гр. 6054/11 Руководитель, к.ф.-м.н., доц.

Богданов Д.А. Поняев С.А.

Санкт-Петербург 2012

Содержание

1	Вве	Введение				
	1.1	Актуальность проблемы				
	1.2	Цели работы				
2	Обз	Обзор существующих исследований 4				
	2.1	Экспериментальные исследования				
	2.2	Теоретические исследования				
	2.3	Численные исследования				
3	Численное моделирование					
	3.1	OpenFOAM				
	3.2	Метод конечных объёмов [8]				
		3.2.1 Дискретизация расчётной области				
		3.2.2 Дискретизация уравнений				
	3.3	Основные уравнения				
		3.3.1 Уравнение баланса массы				
		3.3.2 Уравнение баланса импульса				
		3.3.3 Уравнение баланса энтальпии				
		3.3.4 Уравнение состояния				
	3.4	Зависимость вязкости от температуры				
	3.5	Модель турбулентности				
		3.5.1 Уравнение баланса кинетической энергии				
		3.5.2 Уравнение баланса удельной скорости диссипации .				
		3.5.3 Пристеночные функции				
	3.6	Поправка на кривизну линий тока				
4	Рез	ультаты 10				
	4.1	Валидация модели турбулентности с поправкой на кривиз-				
		ну линий тока				
	4.2	Постановка залачи				

1 Введение

1.1 Актуальность проблемы

Задача очищения атмосферного воздуха от загрязняющих выбросов промышленных предприятий достаточно актуальна. Выбросы от стационарных источников вредных веществ в атмосферу городов и населенных пунктов, расположенных на территории северо-западного федерального округа, по данным Росстата за 2007 год, составили 2319000 тонн, в том числе твёрдых — 289400 тонн [3].

В некоторых отраслях промышленности доля выбросов пыли в атмосферу достигает 15% от общего числа получаемого продукта. Так, при изготовлении одной тонны цемента в воздух выбрасывается ≈ 160 кг цементной пыли [4]. Динамика изменения объёма выбросов твёрдых вредных веществ в атмосферу (рис. 1) имеет тенденцию к росту, что говорит о том, что решение проблемы инженерной защиты воздуха от вредных веществ останется актуальной и в ближайшем будущем.

Рис. 1: Динамика выбросов твёрдых вредных веществ в атмосферу [3]

Для очищения воздуха от твёрдых примесей широкое распространение получили фильтры типа циклон. Циклон представляет собой инерционный пылеуловитель, в котором выделение частиц из воздушной среды происходит, в основном, под действием центробежной силы, возникающей при вращении воздушного потока в корпусе аппарата.

Запылённый воздух входит в циклон через тангенциальный патрубок и, приобретая вращательное движение, опускается винтообразно вниз вдоль внутренних стенок цилиндра и конуса. Небольшая часть этого потока, в котором сконцентрированы пылевые частицы, движется в непосредственной близости от стенок циклона и поступает через пылеотводящее отверстие в пылесборный бункер, где происходит осаждение и накопление пылевых частиц.

В центральной зоне циклона воздушный поток, освобождённый от пыли, поднимается винтообразно вверх и удаляется через выхлопную трубу наружу.

Вследствие вращательного движения воздушного потока в центральной зоне циклона (в конусе, выхлопной трубе и пылесборном бункере) наблюдается пониженное давление.[6]

В силу высокой степени закрученности потока, необходимо введение поправок в модели турбулентности для учёта кривизны линий тока. Кроме того, учитывая высокую концентрацию частиц в потоке, в инженерных расчётах необходимо учитывать не только влияние потока на частицы, но также и обратное влияние частиц на поток.

1.2 Цели работы

- 1. Реализация $k-\omega-SST$ модели турбулентности с поправкой на кривизну линий тока при помощи открытой интегрируемой платформы для численного моделирования задач механики сплошных сред OpenFOAM.
- 2. Реализация с использованием OpenFOAM солвера, имеющего в основе модель идеального газа и учитывающего при этом обратное влияние частиц на поток.
- 3. Численное моделирование циклона с учётом обратного влияния частиц на поток и поправки на кривизну линий тока к генерации турбулентности.

2 Обзор существующих исследований

2.1 Экспериментальные исследования

Существует большое количество работ по экспериментальному исследованию течения с криволинейными линиями тока. Среди них стоит выделить достаточно подробный эксперимент, приведённый в статье Monson et al. [2]. Авторы статьи проводят численное и экспериментальное исследование турбулентного течения воздуха в U-образном канале.

Экспериментальному моделированию циклонов также уделено немало внимания. Среди статей, приводящих экспериментальные данные по турбулентному течению в циклонах, нужно отметить детальное исследование течения в циклоне модели Stairmand, описанное в статье J. Dirgo, D. Leith [5]. В этой статье приведены данные для профилей скорости в нескольких сечениях фильтра для большого диапазона рабочих параметров. К сожалению!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

2.2 Теоретические исследования

Среди теоретических исследований течения в циклонах особо выделим статью

2.3 Численные исследования

Численному моделированию течения в циклонах посвящено очень много инженерных исследований.

3 Численное моделирование

3.1 OpenFOAM

ОрепFOAM — свободно распространяемый инструментарий вычислительной гидродинамики для операций с полями (скалярными, векторными и тензорными). На сегодняшний день является одним из самых известных приложений с открытым кодом, предназначенных для FVM-вычислений.[1] Код OpenFOAM, разработан в Великобритании в компании *OpenCFD*, *Limited*, и используется многими промышленными предприятиями более 12 лет. Свое название и идеологию построения код берет от предшественника FOAM (Field Operation And Manipulation), который является закрытым и продолжает развиваться параллельно с ОреnFOAM. Первоначально, программа предназначалась для прочностных расчетов и в результате многолетнего академического и промышленного развития на сегодняшний момент позволяет решать следующие задачи:

- Прочностные расчеты;
- Гидродинамика сжимаемых и несжимаемых сред. Для моделирования турбулентных течений возможно использование RANS и LES методов. Возможно решение дозвуковых, околозвуковых и сверхзвуковых задач;
- Задачи теплопроводности в твёрдом теле;
- Течения многофазных сред;
- Течения химически реагирующих смесей;
- Задачи, связанные с деформацией расчётной сетки;
- Распараллеливание расчёта как в кластерных, так и многопроцессорных системах.

В основе кода лежит набор библиотек, предоставляющих инструменты для решения систем дифференциальных уравнений в частных производных. Рабочим языком кода является С++. В терминах данного языка большинство математических операторов в программном коде уравнений может быть представлено в удобочитаемой форме, а метод дискретизации и решения для каждого оператора может быть выбран уже пользователем в процессе расчёта. Таким образом, в коде полностью инкапсулируются и разделяются понятия расчетной сетки, дискретизации основных уравнений и методов решения алгебраических уравнений.

3.2 Метод конечных объёмов [8]

3.2.1 Дискретизация расчётной области

Суть метода конечных объёмов

3.2.2 Дискретизация уравнений

Дискретизация уравнений преобразует уравнения в частных производных в систему алгебраических уравнений, которые обычно представляются в виде матричной форме:

$$[A][x] = [B], \tag{1}$$

где [A] - квадратная матрица, [x] - столбец неизвестных, а [B] -

3.3 Основные уравнения

3.3.1 Уравнение баланса массы

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i}(\rho u_i) = 0 \tag{2}$$

3.3.2 Уравнение баланса импульса

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_i u_j) = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij_{eff}}}{\partial x_j}, \tag{3}$$

где $au_{ij_{eff}}$ - тензор вязких напряжений, выражаемый по формуле

$$\tau_{ij_{eff}} = \mu_{eff} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu_{eff} \frac{\partial u_i}{\partial x_j} \delta_{ij} \quad \mu_{eff} = \mu + \mu_t$$
 (4)

3.3.3 Уравнение баланса энтальпии

3.3.4 Уравнение состояния

При расчётах течений сжимаемой жидкости используется модель идеального газа:

$$\frac{p}{\rho} = \frac{R}{m}T, \quad m = 28.966 \frac{kg}{mole} \tag{5}$$

3.4 Зависимость вязкости от температуры

Зависимость вязкости от температуры выражается формулой Саттерленда для сильно неизотермических течений.

$$\mu = \mu_0 \frac{T_0 + C}{T + C_0} \frac{T^{\frac{3}{2}}}{T}, \quad \mu_0 = 1.73 \cdot 10^{-5} kg \cdot m/s, \quad T_0 = 273K, \quad C = 110K$$
(6)

Для течений, температура в которых меняется слабо, вязкость полагается постоянной.

3.5 Модель турбулентности

В качестве базовой модели турбулентности, в которую вводится поправка на кривизну линий тока используется $k-\omega$ SST модель Ментера для течений сжимаемых сред, предложенная в [7].

3.5.1 Уравнение баланса кинетической энергии

$$\frac{\partial \rho k}{\partial t} + \nabla(\rho \vec{V} k) = P_k f_{rot} + \beta^* \rho k \omega + \nabla[(\mu + \mu_t) \nabla k], \tag{7}$$

3.5.2 Уравнение баланса удельной скорости диссипации

$$\frac{\partial \rho \omega}{\partial t} + \nabla (\rho \vec{V} \omega) = \alpha \frac{\rho P_k}{\mu_t} f_{rot} - D_\omega + C d_\omega + \nabla [(\mu + \mu_t) \nabla \omega], \tag{8}$$

где f_{rot} - поправочный коэффициент Шура-Спалларта к генерации турбулентности, учитывающий криволинейность потока.

3.5.3 Пристеночные функции

3.6 Поправка на кривизну линий тока

$$f_{r1}(r^*, \tilde{r}) = 2r^* \left(\frac{1 + C_{r1}}{1 + r^*}\right) \left[1 - C_{r3} \arctan\left(C_{r2}\tilde{r}\right)\right] - C_{r1},$$
 (9)

$$\tilde{r} = 2\Omega_{ik} S_{kj} \frac{DS_{ij}}{Dt} \frac{1}{\Omega D^3}, \quad D^2 = \max(S^2, 0.09\omega^2),$$

$$S^2 = 2S_{ij} S_{ij}, \quad \Omega^2 = 2\Omega_{ij} \Omega_{ij}, \quad r^* = S/\Omega$$
(10)

$$C_{r1} = 1$$
, $C_{r2} = 2$, $C_{r3} = 1$, $f_{rot} = \max[\min(f_{r1}, 1.25), 0]$

- 4 Результаты
- 4.1 Валидация модели турбулентности с поправкой на кривизну линий тока

4.2 Постановка задачи

Таблица 1: Геометрия фильтра

Диаметр цилиндра, <i>D</i>	0.205m
Диаметр выходной трубы, D_e	0.5D
Высота входного канала, a	0.5D
Ширина входного канала, b	0.2D
Длина выходной трубы, h_e	0.75D
Полная высота фильтра, Н	4.0D
Высота цилиндра, h	1.5D
Диаметр нижнего сечения фильтра, B	0.36D
Высота пылесборника, h_d	0.25D
Диаметр пылесборника, D_d	0.75D

Рис. 2: Схема фильтра

Список литературы

- [1] Официальный сайт OpenFOAM, http://www.openfoam.com
- [2] Monson, D. J., Seegmiller, H. L., Mc Connaughey, P. K., and Chen, Y. S., "Comparison of Experiment With Calculations Using Curvature-Corrected Zero and Two Equation Turbulence Models for a Two-Dimensional U-Duct", AIAA Paper No. 90-1484, 1990.
- [3] Загрязнение окружающей среды в субъектах РФ, http://protown.ru/information/hide/2659.html
- [4] A. Wilson, "Cement and Concrete: Environmental Considerations", EBN Volume 2, No. 2, 1993
- [5] J. Dirgo, D. Leith, "Cyclone collection efficiency: comparison of experimental results with theoretical predictions", Aerosol Sci. Tech. 4 410–415, 1985.
- [6] Ужов В.Н. Циклоны НИИОГАЗ. Руководящие указания по проектированию, изготовлению, монтажу и эксплуатации. Ярославль, 1970
- [7] Menter, F., Esch, T. "Elements of Industrial Heat Transfer Prediction", 16th Brazilian Congress of Mechanical Engineering (COBEM), Nov. 2001
- [8] OpenFOAM Programmer's Guide, 2011