

The CGAL Arrangement Package and Its Applications

Efi Fogel, Dan Halperin, Idit Haran, Michal Meyerovitch, Oren Nechushtan, Ron Wein, and Baruch Zukerman Tel Aviv Univ.

February 22, 2006

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- lacksquare Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- lacksquare Envelopes in \mathbb{R}^3
- \blacksquare Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

CGAL Goals

- "make the large body of geometric algorithms developed in the field of CG available for industrial and academic applications"
- Promote the research in Computational Geometry (CG)

CGAL Goals

- "make the large body of geometric algorithms developed in the field of CG available for industrial and academic applications"
- Promote the research in Computational Geometry (CG)

→ Develop robust programs

CGAL History

Written in C++
Follows the *generic programming* paradigm
Development started in 1995
GEOMETRY FACTORY was created in 2003
Consortium of 6 active European sites:

- Utrecht University
- **2** INRIA Sophia Antipolis
- ETH Zürich
- 4 MPII Saarbrücken
- Tel Aviv University
- **6** Freie Universität Berlin
- RISC Linz
- 8 Martin-Luther-Universität Halle

CGAL in numbers

- 350.000 lines of C++ code
- ~2000 pages manual
- Release cycle of \sim 12 months
- CGAL 2.4: 9300 downloads (18 months)
- CGAL 3.0.1: 6200 downloads (8 months)
- 4000 subscribers to the announcement list (7000 for gcc)
- 800 users registered on discussion list (600 in gcc-help)
- 50 developers registered on developer list

Commercial Customers of Geometry Factory

CGAL Structure

Basic Library

Algorithms and Data Structures

Kernel

Geometric Objects of constant size Geometric Operations on object of constant size Visualization

Files

I/O

Number Types

Generators

••

Support Library

configurations, assertions,...

CGAL Projects in TAU

CGAL Projects in TAU

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

Arrangements

Given a collection Γ of planar curves, the arrangement $\mathcal{A}(\Gamma)$ is the partition of the plane into vertices, edges and faces induced by the curves of Γ

An arrangement of lines

An arrangement of circles

Arrangement Background

- Arrangements have numerous applications
 - robot motion planning, computer vision, GIS, optimization, computational molecular biology

A planar map of the Boston area showing the top of the arm of cape cod.

Raw data comes from the US Census 2000 TIGER/line data files.

Arrangement Goals

- Construct, maintain, modify, traverse, query and present subdivisions of the plane
- Robust and exact
 - All inputs are handled correctly (including degenerate)
 - Exact number types are used to achieve exact results
- Efficient
- Generic, easy to interface, extend, and adapt
- Part of the CGAL basic library

Arrangement Traits

- Separates geometric aspects from topological aspects
 - Arrangement_2<Traits,Dcel> main component¹
- Parameter of package
 - Defines the family of curves in interest
 - Package can be used with any family of curves for which a traits class is supplied
- Aggregates
 - Geometric types (point, curve)
 - Operations over types (accessors, predicates, constructors)

¹Efi Fogel, Dan Halperin, Idit Haran, Ron Wein, and Baruch Zukerman

Arrangement Traits Requirements

■ Types: Curve_2, X_monotone_curve_2, Point_2

Methods:

XX

Arrangement Architecture

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

Point Location

Given a subdivision A of the space into cells and a query point q, find the cell of A containing q

Goals

- Fast query processing
- Reasonably fast preprocessing
- Small space data structure

Point-Location Strategies

	Naive	Walk	RIC	Landmarks	Triangulat	PST
Preprocess time	none	none	$O(n \log n)$	$O(k \log k)$	$O(n \log n)$	$O(n \log n)$
Memory space	none	none	O(n)	O(k)	O(n)	$O(n\log n)^{(*)}$
Query time	bad	reasonable	good	good	quite good	good
Code	simple	quite simple	complicated	quite simple	modular	complicated

Walk — Walk along a line

RIC — Random Incremental Construction based on Trapezoidal Decomposition

Triangulat — Triangulation

PST — Persistent search tree

(*) Can be reduced to O(n)

k – number of landmarks

Landmark Point-Location Strategy (jump & walk)

- Select landmarks: vertices, random points, grid, Halton, etc.²
- Store landmarks in nearest neighbor search structure, locate landmarks in arrg using batched point location (sweepline)
- For query q: find nearest landmark ℓ , walk from ℓ to q
- Much faster than CGAL's naive or walk strategies
- Much faster preprocessing than CGAL's RIC strategy
- The best combined performance see next slide
- The ultimate effective strategy? if programming effort and maintainability are considered as well

²Idit Haran and Dan Halperin

Landmark Point-Location: performance example

- ≈ 1.5 Million line segments
- Logarithmic scale
- Seconds per query

$$cost(m) = \frac{\text{preprocessing time}}{m} + \text{average query time}$$

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

The Complexity of the Outer Face

Outer Face — the unique unbounded face in $\mathcal{A}(\Gamma)$ Outer Face Complexity — the number of edges in the Outer Face (without repetitions)³

The outer-face complexity is 6

³Oren Nechushtan, Noga Alon, Dan Halperin, and Micha Sharir

The Complexity of the Outer Face

- Concentrating at random-segment arrangements
- Striving to compute the precise complexity
- Gives an improved analysis of the walk point location

Random-Segment Arrangements

- One endpoint is chosen randomly in the unit square
- The direction is chosen randomly
- Up to 20,000,000 segments

600 segments
579 boundary
before phase transition

900 segments 372 boundary after phase transition

1200 segments 393 boundary beyond ...

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

Boolean Set Operations

Union

Intersection

Complement

For two point sets P and Q and a point r:

Intersection predicate	$P \cap Q \neq \emptyset$, overlapping cell(s)		
intersection predicate	are not explicitly computed.		
Intersection	$R = P \cap Q$		
Union	$R = P \cup Q$		
Difference	$R = P \setminus Q$		
Symmetric Difference	$R = (P \setminus Q) \cup (Q \setminus P)$		
Complement	$R = \overline{P}$		
Containment predicate	$r \in P$		

Boolean set Operations: Terms and Definitions

- Regularized Boolean-set operations (op*)
 - $P ext{ op}^* Q = \operatorname{closure}(\operatorname{interior}(P ext{ op } Q))$
 - Appear in Constructive Solid Geometry (CSG)
 - Used to avoid isolated elements and open boundaries
- general polygon a connected point set whose boundary edges are weakly x-monotone
- general polygon with holes a general polygon that contains holes, which are general polygons
- general polygon set central component
 - Represented by an arrangement. Robust & exact
 - Can output a set of general polygons with holes
 - Parameterized by a traits class

Boolean Set Operations

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- \blacksquare Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

Minkowski Sums in \mathbb{R}^2

- Implemented using either decomposition or convolution⁴
- Based on CGAL's arrangements. Robust and exact
- Efficient
 - ullet Running times are two orders of magnitude faster than the ones reported with $C_{\rm GAL}$ 2.0

⁴Ron Wein and Dan Halperin

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

The Visibility-Voronoi Complex

- $lackbox{ }VV^{(c)}$ is a hybrid between the visibility graph and the Voronoi diagram 5
- Parameterized by a clearance value c
- Evolves from the visibility graph to the Voronoi diagram, as c grows $0 \to \infty$
- Can be used for planning natural-looking paths for a robot translating amidst obstacles

Natural-Looking path — smooth, keeps where possible an amount of clearance c from the obstacles

⁵Ron Wein, Jur P. van den Berg, and Dan Halperin

The Visibility-Voronoi Complex

Overview

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

Envelopes in \mathbb{R}^3

- Let $F = \{f_1, f_2, \dots, f_n\}$ be a collection of partially defined bivariate functions
- The lower envelope E_F of F is the pointwise minimum of these functions:

$$E_F(x, y) = \min f_i(x, y)$$
 $x, y \in R$

- If a function f_i is not defined over (x,y), $f_i(x,y) = \infty$
- The minimization diagram is the partition of the plane into maximal connected regions such that E_F is attained by the same subset of functions over each region⁶

⁶Michal Meyerovitch and Dan Halperin

- Partition F into 2 sub-collections F_1 , F_2
- lacktriangle Recursively construct the minimization diagrams M_1 , M_2
- lacktriangle Merge M_1 , M_2 to obtain the minimization diagram of F

- Partition F into 2 sub-collections F_1 , F_2
- lacktriangle Recursively construct the minimization diagrams M_1 , M_2
- lacktriangle Merge M_1 , M_2 to obtain the minimization diagram of F

- Partition F into 2 sub-collections F_1 , F_2
- lacktriangle Recursively construct the minimization diagrams M_1 , M_2
- lacktriangle Merge M_1 , M_2 to obtain the minimization diagram of F

- Partition F into 2 sub-collections F_1 , F_2
- lacktriangle Recursively construct the minimization diagrams M_1 , M_2
- lacktriangle Merge M_1 , M_2 to obtain the minimization diagram of F

- Partition F into 2 sub-collections F_1 , F_2
- lacktriangle Recursively construct the minimization diagrams M_1 , M_2
- lacktriangle Merge M_1 , M_2 to obtain the minimization diagram of F

Lower Envelope

Based on arrangements Robust & exact

Exploits:

Overlay

Isolated points

Zone traversal

Currently works for:

Triangles

Spheres

Near-future goal:

Quadrics (with MPII)

Overview

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- \blacksquare Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

Minkowski Sums in \mathbb{R}^3

- lacksquare P and Q are two convex polyhedra (polytopes) in \mathbb{R}^d
 - ullet P translated by a vector t is denoted by P^t

$$M=P\oplus Q=\{p+q\ |\ p\in P, q\in Q\} \qquad \text{Minkowski sum}$$

$$\delta(P,Q)=\min\{\|t\|\ |\ P^t\cap Q\neq\emptyset, t\in\mathbb{R}^d\} \qquad \text{minimum distance}$$

$$\pi(P,Q)=\min\{\|t\|\ |\ P^t\cap Q=\emptyset, t\in\mathbb{R}^d\} \qquad \text{penetration depth}$$

$$\pi_d(P,Q)=\min\{a\ |\ P^{\vec{da}}\cap Q=\emptyset\} \qquad \text{directional penetration depth}$$

The Cubical Gaussian Map

The Cubical Gaussian Map (CGM) C of a polytope P in \mathbb{R}^3 is a set-valued function from P to the 6 faces of the unit cube whose edges are parallel to the major axes and are of length two⁷

⁷Efi Fogel and Dan Halperin

The Cubical Gaussian Map of 3D Minkowski Sums

Amounts to computing the overlay of six arrangement pairs

The Minkowski sum of two geodesic spheres level 4 slightly rotated with respect to each other

The primal

The CGM

The CGM unfolded

Polytope complexities

Object Name	Primal			Dual		
	V	E	F	V	HE	F
Icosahedron (Icos)	12	30	20	72	192	36
Dioctagonal Pyramid (DP)	17	32	17	105	304	59
Pentagonal Hexecontahedron (PH)	92	150	60	196	684	158
Truncated Icosidodecahedron (TI)	120	180	62	230	840	202
Geodesic Sphere level 4 (GS4)	252	750	500	708	2124	366

Icos — Icosahedron

DP — Dioctagonal Pyramid ODP — Orthogonal Dioctagonal Pyramid

PH — Pentagonal Hexecontahedron

TI — Truncated Icosidodecahedron

GS4 — Geodesic Sphere level 4 RGS4 — Rotated Geodesic Sphere level 4

Minkowski sum of polytopes in \mathbb{R}^3

	Obj. 2	Minkowski Sum									<i>D D</i>	
Obj. 1		Primal		Dual			CGM	NGM	LP	CH	$\frac{F_1F_2}{F}$	
		V	E	F	V	HE	F					F
Icos	Icos	12	30	20	72	192	36	0.01	0.36	0.04	0.10	20
DP	ODP	131	261	132	242	832	186	0.02	1.08	0.35	0.31	2.2
PH	TI	248	586	340	514	1670	333	0.05	2.94	1.55	3.85	10.9
GS4	RGS4	1048	2568	1531	1906	6288	1250	0.31	14.33	5.80	107.35	163.3

Time consumption (in seconds) of various Minkowski-sum computations

CGM — the Cubical Gaussian Map based method

NGM — the Nef polyhedra based method [Hachenberger, Kettner]

LP — Linear Programming based algorithm [Fukuda, Weibel]

CH — the Convex Hull method

 $rac{F_1F_2}{F}$ — the ratio between the product of the number of input facets and the number of output facets

Overview

- CGAL
- Arrangements
- Point-Location Strategies
- Outer-Face Complexity
- Boolean Set Operations
- Minkowski Sums in \mathbb{R}^2
- The Visibility Voronoi Complex
- Envelopes in \mathbb{R}^3
- Minkowski Sums in \mathbb{R}^3
- Demo and/or Video

Demo and/or Video

The arrangement of the CGAL logo

■ Input: 425 line segments and 34 circles

■ Output: 944 vertices, 2941 halfedges, and 534 faces

TOC

Overview *

Overview *

CGAL Goals ❖

CGAL History �

CGAL in numbers �

Commercial Customers of GEOMETRY

Factory *

CGAL Structure ❖

CGAL Projects in TAU ❖

CGAL Projects in TAU ❖

Overview *

Arrangements �

Arrangement Background �

Arrangement Goals �

Arrangement Traits �

Arrangement Traits Requirements �

Arrangement Architecture �

Overview *

Point Location �

Point-Location Strategies �

Landmark Point-Location Strategy

(jump & walk) ❖

Landmark Point-Location: performance

example �

Overview *

The Complexity of the Outer Face �

The Complexity of the Outer Face �

Random-Segment Arrangements �

Overview *

Boolean Set Operations �

Boolean set Operations: Terms and

Definitions �

Boolean Set Operations �

Overview *

Minkowski Sums in \mathbb{R}^2 �

Overview �

The Visibility-Voronoi Complex �

The Visibility-Voronoi Complex �

Overview �

Envelopes in \mathbb{R}^3 *

Divide & Conquer Algorithm *

Divide & Conquer Algorithm *

Divide & Conquer Algorithm �

Divide & Conquer Algorithm �

Divide & Conquer Algorithm �

Lower Envelope ❖

Overview *

Minkowski Sums in \mathbb{R}^3 �

The Cubical Gaussian Map �

The Cubical Gaussian Map of 3D

Minkowski Sums �

Polytope complexities �

Minkowski sum of polytopes in \mathbb{R}^3 �

Overview *

Demo and/or Video �

