Modelos de ordem superior

- Até aqui, trabalhámos essencialmente com fontes sem memória S dadas, embora admitíssemos proceder à codificação das suas extensões S^n .
- Num modelo de ordem k, são dadas as probabilidades conjuntas $P(s_{i1}s_{i2}\cdots s_{i,k+1})$ de todas as mensagens possíveis de comprimento k+1. Note-se que então
 - como $P(s_{i_1}s_{i_2}\cdots s_{i_m})=\sum_{i_{m+1}}\sum_{i_{m+2}}\cdots\sum_{i_{k+1}}P(s_{i_1}s_{i_2}\cdots s_{i_m}s_{i_{m+1}}\cdots s_{i_{k+1}})$, os modelos de uma ordem são dedutíveis dos modelos de ordem superior;
 - como $P(s_{i,m+1}|s_{i1}s_{i2}\cdots s_{im}) = \frac{P(s_{i1}s_{i2}\cdots s_{im}s_{i,m+1})}{P(s_{i1}s_{i2}\cdots s_{im})}$, podemos construir modelos de Markov de ordens m < k+1, conhecidas que fixam as probabilidades para cada estado e cada transição.
- Vejamos como as codificações de Huffman e aritmética são afetadas pela passagem a modelos de ordem superior.

Codificação de Huffman de ordem superior

- A questão básica que desde logo se coloca é como é que as probabilidades para S^n são obtidas, conhecido um modelo de ordem k.
 - \blacksquare para $n \leq k+1$, podemos usar a fórmula acima.
 - Para n > k + 1, podemos trabalhar como se a memória se perdesse.
- Mas, na realidade, como é obtido um modelo para começar? Naturalmente pela estimativa das probabilidades face às observações das mensagens produzidas pela fonte.

Assim, as probabilidades são estimadas pela fórmula

$$P(s_{i1}s_{i2}\cdots s_{i,k+1}) = \frac{C(s_{i1}s_{i2}\cdots s_{i,k+1})}{\sum_{j_1,j_2,\dots,j_{k+1}} C(s_{j_1}s_{j_2}\cdots s_{j_{k+1}})}$$

onde $C(s_{i1}s_{i2}\cdots s_{i,k+1})$ representa o número de vezes que a mensagem $s_{i1}s_{i2}\cdots s_{i,k+1}$ foi observada.

Exemplo

A menos de escala, podemos então trabalhar com os inteiros $C(s_{i1}s_{i2}\cdots s_{i,k+1})$ em vez das probabilidades.

Por exemplo se, para uma fonte binária, na mensagem de comprimento 100 se observa as contagens indicadas, então o código de Huffman binário é dado pela seguinte árvore:

palavra	C	(100)
000	47	1
001	12	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
010	7	1
011	8	$\overbrace{29}$ 0 $\underbrace{24}$
100	12	1
101	3	$ \begin{array}{c c} \hline & 15 \\ \hline & 14 \\ \hline & 12 \\ \hline & 1$
110	7	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
111	4	$\begin{pmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $
		$\overbrace{4}$ 0 $\overline{}$ 3

Teoria da Informação e Codificação - p. 228

Codificação aritmética de ordem superior

- Para a codificação arimética de uma mensagem de comprimento n precisamos das probabilidades condicionadas $P(s_{ij}|s_{i1}\cdots s_{i,j-1})$ para $j=1,\ldots,n$. Conhecido o modelo k-ário,
 - para $j \leq k+1$, $P(s_{ij}|s_{i1}\cdots s_{i,j-1}) = \frac{P(s_{i1}\cdots s_{i,j-1}s_{ij})}{P(s_{i1}\cdots s_{ij})}$;
 - para j > k + 1, toma-se $P(s_{ij}|s_{i1} \cdots s_{i,j-1}) = P(s_{ij}|s_{i,j-k} \cdots s_{i,j-1}).$
- Para a codificação aritmética, poder-se-á também trabalhar com estimativas das probabilidades pela frequências observadas nas mensagens produzidas pela fonte. Ao contrário do que vimos para os códigos de Huffman, além dos valores de $C(s_{i1} \cdots s_{i,k+1})$, precisamos também da soma $\sum_{i_1,i_2,...,i_{k+1}} C(s_{i_1}s_{i_2}\cdots s_{i_{k+1}})$.

Exemplo

Consideremos a codificação aritmética binária da mensagem 01011 baseada no modelo de segunda ordem resultante da contagem do exemplo anterior (de terceira ordem):

palavra	000	001	010	011	100	101	110	111
C	47	12	7	8	12	3	7	4

As probabilidades resultantes até à terceira ordem são:

palavra	000	001	010	011	100	101	110	111
prob.	0.47	0.12	0.07	0.08	0.12	0.03	0.07	0.04

palavra	00	01	10	11
prob.	0.59	0.15	0.15	0.11

palavra	0	1	
prob.	0.74	0.26	

Aplicando o algoritmo de codificação aritmética à mensagem 01011, obtemos:

$s_{ij} _{s_{i,j-2}s_{i,j-1}}$	$P(s_{ij} s_{i1}\cdots s_{i,j-1})$	[m, M[
_		[0, 1[
0 -	P(0) = .74	[0, .74[
1 0	$P(1 0) = \frac{P(01)}{P(0)} = .203$	[.59, .74[
0 01	$P(0 01) = \frac{P(010)}{P(01)} = .467$	[.59, .66[
1 10	$P(1 10) = \frac{P(101)}{P(10)} = .2$	[.646, .660[
1 01	$P(1 01) = \frac{P(011)}{P(01)} = .533$	[.6525, .6600[

Obtemos portanto o subintervalo [.6525, .6600[associado à mensagem inicial 01011.

Na base 2, o intervalo é [0.101001110000, 0.101010001111] pelo que a codificação da mensagem inicial é 10101.

4 Compressão de dados

- Recorde-se que a entropia é uma medida da dificuldade de prever ou da falta de redundância, i.e., do conteúdo de informação. Aumentar a entropia corresponde portanto a aumentar a informação e reduzir a redundância.
- Como vimos, a entropia pode ser alterada por codificação. Quando esta via é seguida para aumentar a entropia, falamos em *compressão de dados*.
- Naturalmente, para que a compressão dos dados seja eficaz, deve-se explorar a estrutura dos próprios dados, processo este que exige cálculo adicional.

Exemplo

- Dada uma mensagem nas letras A, B, C, D, uma medida da informação, em bits, contida na mensagem é o comprimento dessa mensagem codificada em código binário.
- No caso das letras ocorrerem aleatoriamente, o melhor que podemos alcançar é a codificação por blocos de dois bits para cada letra da mensagem, ou seja a medida da informação é 2 bits por letra.
- Suponhamos pelo contrário que as letras não ocorrem aleatoriamente mas que se verifica uma restrição por exemplo como a seguinte: cada A é seguido de B ou C, cada B é seguido de C ou D, cada C é seguido de D ou A, e cada D é seguido de A ou B. Numa tal mensagem, conhecida uma letra, a seguinte tem uma de duas possibilidades, pelo que basta uma alternativa binária para a descrever. Podemos portanto descrever a primeira letra por dois bits acrescentando em seguida um bit por letra, ou seja, para uma mensagem de comprimento n bastam n+1 bits.

Conceitos básicos

- Estudamos anteriormente métodos de codificação que visavam reduzir o comprimento médio da mensagem codificada tendo em atenção simplesmente a frequência de ocorrência das letras na mensagem original.
- Em certas situações, há segmentos de letras (*sub-palavras*) ou, mais geralmente, padrões, que se repetem frequentemente, pelo que a sua representação por palavras mais curtas pode comprimir a informação. Fala-se aqui em *codificação por dicionário* (*dictionary coding*).

- Em alguns casos, são conhecidos modelos estatísticos aproximados que podem ser usados para prever a informação e portanto comprimi-la na descrição do modelo—*técnicas de compressão estática*. Se o modelo não for exacto, as previsões por vezes falharão. Nas *técnicas semi-adaptativas de compressão* constrói-se um modelo estatístico que se acrescenta à informação comprimida. Os melhores algoritmos de compressão usam *técnicas adaptativas* nas quais o modelo é construído tanto pelo compressor como pelo descompressor à medida que decorre o processo de codificação ou descodificação.
- Em certas situações, como por exemplo na compressão de ficheiros de computador, em geral estamos interessados em recuperar fidedignamente a informação da sua versão comprimida. Esperamos portanto que a compressão seja feita *sem perda de informação*.
- Noutras situações, como na compressão de som ou imagem (ou suas sequências), o limiar de percepção pelos seres humanos é relativamente baixo, pelo que a redução do conteúdo de informação original pode não ser percetível. É então aceitável que a compressão se faça *com perda de informação*. O tratamento digital do som e da imagem, como por exemplo a fotografia digital, explora esta faceta.

A norma CCITT para transmissão de facsimile (fax)

- A CCITT (*Comité Consultatif International Téléphonique et Télégraphique*) desenvolveu um método de compressão de informação adequado à transmissão de informação, lida linha a linha, por *fax*. O método é tão eficaz que este meio de comunicação se tornou tão sistemático como o uso do correio ou do telefone e em muitos casos suplantando-os.
- A norma *CCITT grupo 3* destina-se à transmissão de facsimile de páginas A4 (210mm × 297mm) a preto e branco por linhas analógicas. A imagem em causa é decomposta em linhas horizontais que são varridas por um dispositivo de leitura (*scanner*), cada linha tendo 215mm e contendo 1728 *pixels*. Cada pixel é digitalizado pela representação por 0 ou 1 para indicar se é branco ou preto. Linhas de varrimento consecutivas distam 0.26mm ou 0.13mm conforme se utilize a resolução normal ou melhorada, o que dá cerca de 2 × 10⁶ ou 4 × 10⁶ bits por página.

- A transmissão da informação nesta forma seria demasiado cara para que este método de comunicação fosse utilizado tão sistematicamente, pelo que é essencial proceder à compressão da informação antes de a transmitir. Por exemplo, numa carta há muitas linhas de varrimento que são completamente brancas, pelo que bastaria dizer que a linha tem 1728 0's.
- Assim, usa-se um sistema de codificação que comprime a informação. Cada linha é tratada não como uma sequência de 0's e 1's mas como sequências alternadas de segmentos de 0's e 1's, que podem ser vistas como duas palavras cujas letras são inteiros positivos (≤ 1728). Usa-se uma versão modificada dos códigos de Huffman para proceder à codificação desta informação. De facto os blocos são partidos módulo 64: comprimentos de 0 a 63 e múltiplos de 64 (até $1728 = 27 \times 64$) são representados por palavras-código. Assim, blocos de 64 pixels consecutivos iguais, o que corresponde a $\frac{64}{1728}215$ mm $\simeq 8$ mm são codificados por uma palavra-código.

- Na passagem de uma linha para a seguinte descreve-se somente as diferenças em relação à linha anterior, o que permite reduzir o comprimento de uma palavra descrevendo a informação contida na nova linha. No caso de se verificarem erros de transmissão os erros locais poderiam desta forma propagar-se desastrosamente, pelo que este método só é usado de duas em duas linhas.
- Também existe uma norma *CCITT grupo 4* para a transmissão de fax por linhas telefónicas digitais, mais eficientes que as analógicas, o que permite codificar imagens com tons de cinzento ou a cores.
- Este método de compressão é usado no programa de compressão *bzip2* (além dos códigos de Huffman). Consiste em decompor a mensagem em blocos e reordenar as letras em cada bloco, por permutação cíclica, de forma a maximizar a compressão por blocos de letras iguais.

Compressão por ordenação de blocos

Vejamos num exemplo como esta ideia funciona: consideremos a mensagem "the fat cat sat". As sucessivas permutações circulares produzem a primeira coluna de palavras. eordenando por ordem lexicográfica da direita para a esquerda, a menos do último caráter, obtemos:

```
the_fat_cat_sa
                        at_cat_satthe_
he_fat_cat_sat
                        atthe fat cat
e_fat_cat_satt
                        at satthe fat
fat cat satth
                        satthe fat ca
fat_cat_satthe
                        _cat_satthe_fa
at_cat_satthe_
                        the fat cat sa
               a
t_cat_satthe_f
                        t_satthe_fat_c
                                        а
_cat_satthe_fa
                        fat_cat_satthe
cat_satthe_fat
                        t_cat_satthe_f
                        _fat_cat_satth
at satthe fat
t_satthe_fat_c a
                        tthe_fat_cat_s
_satthe_fat_ca t
                        satthe_fat_cat
satthe_fat_cat _
                        cat_satthe_fat
atthe fat cat s
                        he fat cat sat
tthe_fat_cat_s a
                        e_fat_cat_satt
```

o que produz a mensagem modificada "fscttta_aea__th", onde encontramos os blocos de letras repetidas "ttt" e "__".

- Como recuperar a mensagem inicial da mensagem modificada "fscttta_aea__th"?
- Reordenando os carateres, obtemos "___aaacefhstttt". Juntando estas duas sequências, obtemos:

fscttta laea lith

Conhecendo qual das letras é a primeira (o que tem de ser registado), começamos por a ler na segunda coluna, no caso concreto o último t. A seguir, localizamos o último t na primeira coluna, a que corresponde a leitura do h ao fundo da segunda coluna. Vamos sucessivamente decifrando a letra seguinte notando qual é aquela que aparece na segunda coluna da linha onde aparece na primeira coluna a mesma ésima ocorrência da letra anterior que aquela que acabamos de encontrar na segunda coluna.

Codificação por dicionário

- Na compressão de texto podemos fazer uma lista das palavras que ocorrem, substituindo cada palavra por uma referência para essa lista.
- Ziv e Lempel (1977) propuseram um método que permite a compressor e descompressor trabalhar sem conhecer a lista completa.
- O algoritmo de codificação LZ77 produz uma sequência de ternos (m, n, c), onde m e n são inteiros (positivos) e c é um caráter. Tal terno indica que os próximos n+1 carateres são os n carateres que se encontram m posições à esquerda seguidos do caráter c.
- Por exemplo, consideremos o texto "the_fat_cat_sat_on_the_mat.". Até ao segundo "t" não há repetições pelo que a codificação correspondente é $(0,0,t)(0,0,h)(0,0,e)(0,0,_)(0,0,f)(0,0,a)$. Reconhecida a repetição t, a seguir encontramos o terno $(6,1,_)$. Segue-se a nova letra c, que produz o terno (0,0,c) e as repetições at_, seguidas das letras s e o, que produzem os ternos (4,3,s)(4,3,o). Prosseguimos com $(0,0,n)(0,0,_)$ e, finalmente, (19,4,m)(11,2,.).
- Até onde levar a procura de segmentos do texto idênticos aos já encontrados? Normalmente é fixado um majorante para essa procura. O programa *gzip* cria uma tabela *hash* para acelerar a procura de ocorrências anteriores de segmentos.

LZ78

- No algoritmo LZ78, é construído sucessivamente um dicionário, tanto no processo de compressão como de descompressão e o que efetivamente ocorre no texto comprimido são referências a este dicionário. O dicionário em vez de ser tomado como uma lista de palavras é tratado como uma árvore, o que facilita a sua localização. Mais precisamente o texto comprimido consiste da árvore em causa e de pares (i, c) onde i é o i-ésimo termo no dicionário (num percurso natural da árvore) que deve ser seguido do caráter c.
- No exemplo anterior, "the_fat_cat_sat_on_the_mat.", começamos com $(0,t)(0,h)(0,e)(0,_)(0,f)(0,a)$ que vai sucessivamente conduzindo às seguintes entradas do dicionário:

1: t 2: h 3: e 4: _f 6: a

A seguir, encontramos um caráter que já consta do dicionário e vamos lendo o texto ao longo da árvore até que surja uma discrepância, ou seja t_{-} , o que produz a codificação $(1, _)$ e um novo item, $7: t_{-}$, para o dicionário. Segue-se (0, c) e o novo item 8: c. A seguir vem o segmento at, onde o último caráter é o que o faz sair da árvore, produzindo (6, t) e 9: at. Note-se que, representando efetivamente a árvore, os números correspondem à numeração dos vértices à medida que eles vão aparecendo.

the_fat_cat_sat_on_the_mat.

 $(0,\mathtt{t})(0,\mathtt{h})(0,\mathtt{e})(0,\mathtt{j})(0,\mathtt{f})(0,\mathtt{a})(1,\mathtt{j})(0,\mathtt{c})(6,\mathtt{t})(4,\mathtt{s})(9,\mathtt{j})(0,\mathtt{o})(0,\mathtt{n})(4,\mathtt{t})(2,\mathtt{e})(4,\mathtt{m})(9,.)$

Outros algoritmos

- Note-se que a árvore pode ser construída igualmente a partir do texto original e a partir do texto comprimido. A árvore por sua vez determina completamente ambos. Ou seja, qualquer destes dados permite recuperar os outros dois, e além disso de forma eficiente.
- Na versão *LZW* (Lempel-Ziv-Welch), começa-se com os códigos ASCII dos carateres, correspondendo ao início da árvore, a qual vai crescendo de forma análoga a partir daí. O velho comando *compress* do sistema *Unix* usa este algoritmo.
- O algoritmo **PPM** (*Prediction by partial matching*) constrói sucessivamente para o texto a comprimir modelos de Markov que lhe permitam prever qual o caráter seguinte e os próprios modelos vão sendo actualizados no processo.