

Fakultät für Informatik Lehrstuhl 11 Prof. Dr. Petra Mutzel

Dipl.-Inf. Andre Droschinsky
Dipl.-Inf. Bernd Zey

Probeklausur zur Vorlesung

Effiziente Algorithmen

Sommersemester 2016

Datum: 21.06.2016

Hinweis: Der Umfang dieser Probeklausur entspricht in etwa einer halben Klausur.

Aufgabe 1 - Flussproblem

Betrachten Sie das folgende Netzwerk N=(G=(V,E),c) mit dem Fluss Φ : die Werte an den Kanten geben den jeweiligen aktuellen Flusswert $\Phi(e)$ (links) und die Kapazität c(e) (rechts) wieder.

Führen Sie **eine Iteration** des Algorithmus von Malhotra, Pramodh Kumar und Maheshwari aus. Geben Sie den **Restgraphen** und das **Niveaunetzwerk** – inklusive der Potenziale – zum aktuellen Fluss Φ an. Berechnen Sie anschließend den **Sperrfluss** Ψ und zeichnen Sie diesen sowie den **neuen Fluss** $\Phi':=\Phi+\Psi$, der durch das Hinzufügen des Sperrflusses entsteht. Wie lautet der **Wert des Flusses** von Φ und der von Φ' ? Tragen Sie den neuen Fluss Φ' in die folgende Vorlage ein:

Aufgabe 2 - Amortisierte Analyse: 3-Zähler

Analog zu dem in der Vorlesung betrachteten Binärzähler wird hier eine Zahl $z \in \mathbb{N}$ als lineare Liste $(z_{m-1}, \ldots, z_1, z_0)$ mit maximal m Stellen gespeichert. Das erste Element der Liste ist z_0 und das letzte Element z_{m-1} .

Hierbei wird als Basis 3 verwendet, so dass $z_i \in \{0, 1, 2\}$, $\forall i \in \{0, \dots, m-1\}$. Somit entspricht $(z_{m-1}, \dots, z_1, z_0)$ der Zahl $\sum_{i=0}^{m-1} z_i \cdot 3^i$.

Beispiel: (1, 2, 0) stellt die Zahl $1 \cdot 3^2 + 2 \cdot 3^1 + 0 \cdot 3^0 = 15$ dar.

Die Operation ErhöheUmEins() addiert 1 auf die aktuelle Zahl:

- 1. i := 0; 2. while $(z_i = 2 \text{ und } i < m - 1)$ 3. $z_i := 0$; 4. i := i + 1; 5. $z_i := z_i + 1$;
- Zeigen Sie mit Hilfe der Kostenverteilung, dass n ErhöheUmEins()-Operationen amortisierte Laufzeit $\mathcal{O}(n)$ haben.

Sie können davon ausgehen, dass initial z=0 gilt, also $z_i=0, \forall i\in\{0,\ldots,m-1\}$. Sie können außerdem davon ausgehen, dass $m\leq n<\sum_{i=0}^{m-1}3^i$ gilt.

Aufgabe 3 - Starke Zusammenhangskomponenten

Es sei G = (V, E) ein gerichteter Graph. In dieser Aufgabe geht es darum, wie sich die **Anzahl der starken Zusammenhangskomponenten (SZHK)** von G durch Einfügen oder Entfernen einer Kante ändern kann.

- a) Kann die Anzahl der SZHK von G größer werden,
 - i) wenn eine Kante $(u, v) \notin E$ hinzugefügt wird?
 - ii) wenn eine Kante $(u, v) \in E$ entfernt wird?

Begründen Sie jeweils, warum dies nicht der Fall sein kann, oder geben Sie einen Graphen mit mindestens 3 Knoten an, in welchem es nach der jeweiligen Operation zu einem größtmöglichen (in Bezug auf die Anzahl der Knoten in G) Zuwachs an SZHK kommt.

- b) Kann die Anzahl der SZHK von G gleich bleiben,
 - i) wenn eine Kante $(u, v) \notin E$ hinzugefügt wird?
 - ii) wenn eine Kante $(u, v) \in E$ entfernt wird?

Begründen Sie jeweils, warum dies nicht der Fall sein kann, oder geben Sie einen Graphen mit mindestens 3 Knoten an, in welchem es durch die jeweilige Operation zu keiner Änderung der Anzahl der SZHK kommt.

- c) Kann die Anzahl der SZHK von G kleiner werden,
 - i) wenn eine Kante $(u, v) \notin E$ hinzugefügt wird?
 - ii) wenn eine Kante $(u, v) \in E$ entfernt wird?

Begründen Sie jeweils, warum dies nicht der Fall sein kann, oder geben Sie einen Graphen mit mindestens 3 Knoten an, in welchem es nach der jeweiligen Operation zu einer größtmöglichen (in Bezug auf die Anzahl der Knoten in G) Reduktion von SZHK kommt.

Hinweis: Jede Teilaufgabe ist 1 Punkt wert.

Aufgabe 4 - Kurzaufgaben

Geben Sie Antworten auf die Fragen oder vervollständigen Sie die Sätze.

Hinweis: Bei Fragen zur Laufzeit oder Güte ist nur die scharfe/best-bekannte Schranke korrekt.

a) Wie viele Sperrflussberechnungen benötigt der Algorithmus von Dinic zur Berechnung von maximalen Flüssen in einem Netzwerk G = (V, E, c)?

b) Es sei G = (V, E) ein ungerichteter Graph. Ein Matching M ist genau dann maximal, wenn es ... keinen m verbessernden pfad gibt

Pfaden hinzugefügt. V titen Graphen <i>G</i> = (<i>V</i> :	ie viele Runden führt der Algorithmus von Hopcroft und K Ellaus?	Carp auf einem bipa
titeli Grapheli G — (V	n^(1/2)	

c) Im Algorithmus von Hopcroft und Karp wird in jeder Runde eine maximale Menge an M-verbessernden

d) Der Algorithmus von Stoer und Wagner zur Berechnung des minimalen Schnitts in einem ungerichteten, gewichteten Graphen G = (V, E) mit $|E| = \Theta(|V|^2)$ hat eine Laufzeit von:

1^3

e) Gegeben sei ein Maximierungsproblem und eine Instanz $\mathcal I$ davon. Weiterhin sei ein Approximationsalgorithmus der Güte 5/3 gegeben, der für $\mathcal I$ eine Lösung mit Lösungswert 100 berechnet. Wie groß kann die optimale Lösung maximal sein?

 $L_{opt} / L = 5/3 => 5/3 * L = 500/3 = L$

f) Die Minimum-Spanning-Tree-Approximation (MST-Heuristik) für das metrische TSP hat eine Güte von:

2