에너지 Balance-IO 연계

August 1, 2016

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Questions

기본 개념

- 1. 1차 에너지 (TPES: Total Primary Energy Supply)
 - ▶ 정의: 자연이 제공한 그대로의 가공하지 않은 에너지.
 - ▶ TPES = 국내생산 + 수입-수출-국제 Bunkering + 재고증가 재고감소
 - ▶ TPES = 최종에너지소비 + 전환손실
- 2. 전환(Transformation)
 - ▶ 에너지의 형태를 변화시키는 과정
- 3. 최종 에너지(TFC: Total Final (Energy) consumption)
 - ▶ 유효에너지로 변환되기 위해 소비자에게 제공되는 에너지
 - ▶ TFC = 최종에너지 소비자에게 공급된 에너지양으로 전환손실 및 에너지산업체의 자체소비는 제외함
- 4. 에너지 Balance
 - ▶ 플로우(Flow)의 개념으로 일정기간동안 일정지역내 에너 지의 투입과 산출간의 균형을 나타내는 표
 - 형태: 에너지원을 가로축, 에너지수급량을 세로축에 나타내는 행렬 (Matrix)방식을 채택

에너지 Balance (World)

에너지 Balance (한국)

19. 에너지 수급밸런스 (Energy Balance)

1009 Year)	ear)																-						unioo,															
	-	5	3	4	- 5	- 6	7	8	9	90	- 11	15	13	14	15	16	17	18	19	20	- 21	22	23	24	25	26	27	26	29	34	36	12	33	34	36	36	33	
	4 5			_				4 8										_												5574	泉湖湾山	0 0	현지역	D 0	12	문제품	8.4	
		P 2 2			6 2 2				明州和			_		_					LPG			HHMM																
			246	+28		BER	288			RWR	8 0	8 8	2550		8589	28-1	39-4	AVI-G		XER	4 E		UXU	8 4	何ム業化	単独対象	用可能能力	4923	210.48									
	THIS IS		Comesto		Barros			Telephone	treny	l	Kennere	Diese	8-A	0.0	8-0					Programe		Non-			Aspend		Zaroffin.	Detroire	Other	LNO	Tean	Higg		Electricit	Mest	Removation Energy	Yotal	
	CHM	- Consume	Domestics	mpor	MATRICA.	coung	Staan	Petroeum	Use	5000me	**SSSS	Date	D-A	0.0	8-0						BUCANA	Like	sapreus	201410	Asphalt	Labreau	Wax	m Colle	Products	LNO	034	Hydro	Nucea N	Electron	Heat	predi	1993	
																			1,000	104																		
* 4 6 6 1	1,171	5,175	1,775								-					-			-	-								-	-	490	-	1,219	31,771		-	5,400	40,133	
0 2 2	61,431	4,296	-	4,236	55,194	13,667	45,567	190,144	65,109	18,809	4,558	32,735	438	75	22,199	54,379	-		10,490	4,599	5,900	58,915	49,586	643	4,465	3,327	17	966	4,483	50,566	-	-	-	-	-	-		
M 9 6 00 9		-	-	-			-	135,800	80,884	18,829	4,549	37,655	435	7%	10,068	56,279	-		3,656	1,436	2,299	33,84	29,867	105	4,465	3,271	17	166	4,483	-	-	-	-	-	-	-	126,850	Petrovus Products
(N T + S) 4		-	-	-			-	33,294	3,255	-	9	120	4	-	3,121	-	-		6,834	3,153	3,680	25,296	23,144	- 6	-	56	-	-	-	-	-	-	-	-	-	-	33,294	(Petroleum Imports)
		-	-	-			-	-40,758	-37,600	-5,111	-759	-19,053	-	-	-0,997	-9,712	-		-12	-12		-9,93	-9,400	-1	-2,495	-2,895	-	-22	-699	-	-	-	-	-	-	-	-66,758	
		-	-	-			-	-6,885	-4,885	-	-	-483	-54	-	-5,610	-938	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-6,985	INC BUILDING
42827	261	261	258	3	-	-	-	345	199	-30	14	100	1	0	67	26		- 0	37	18	19	109	164	-3		-62		0	-19	1,144	-	-		-	-	-	1,749	Stock Change(+>)
****	1,323	1,029	1,245	79	-	-	-	5,593	9,712	207	327	1,230	29	•	1,454	305			205	148	117	1,810	1,352	13	100	198		5	30	3,390	-	-		-	-	-	10,306	Former Stock
* # # # # # *	-(.863	-1,063	-987	-76				-5,248	-0,510	-407	-029	+0.073	-39	122	-1,306	=533		-	-226	-100	-98	+1,587	-1,066	-%	-181	-268		=5	-58	-2,146							-0,557	
第月至月2日 市場(円4日 日	3,741		1000	126	3,667	827	2,771	-6,410	-3,113	-263	2 424	-363 19-836	-33	123	-2,351	-4	-	-	564	-385 4.701	049	-1,861	1,002	-195	46	721	- 0	-45	1,367	+1,303	-	120	-	-	_	5.450	-1,672 263.311	Penan Consumptor
	-84,700		1,446	4,364	60,940	4,04	44,576	182,836	41,607	1,20	3,636	18,836	307	104	10,368	3,663	-	۰	11,676	4,211	4,868	45,661	41,300	454	1,065	328	17	88	1,967	84,000	-	1,218	31,771	-	-	-010		
	-44,700	-632	-632		-44,009		-44,009	-3,847	-0,714	-1	-105	-00		-	-3,687	-	-		-238	-238	-1	-14	-		-	-		-	-14	-33,000	10,460	-0,213	-31,771	33,825	953	-613		
X 9 12 18 14	-40,000	-692	-632		-64,004		-64,076	-3,40	-3,402	-1	-90	-99		-	-3,293	-	-				-	-96	-		-	-		-	-94	-U,AFF	-158	-020	-31,771	31,290	953	-619	-04,794	
7 4 4 5 5		-	-				-	-911	-311	-	-7		-	-	-904	-	-		-	-		- 1	-		-	-		-	- 1	-681	-855	-		-	683		-0,964	
DOMESTIC N		-	-				-	-239	-1	-		-1	-	-		-	-		-238	-237	-1		-		-	-		-		-00,50K	20,766	-					-0.581	
90.00 4H T	73.000	4 100	810				4.000	06.365	41.000	4.00	0.634	** ***	207	***	4.00	2.662	_	_	72.040	0.000	1.00			***	1.065	301	- 0	- 60	1.162		13.653	_	_	22,000	1.00	4.007	102.066	
	20,000	4.000					4.000	55.705	7,433	100	550	3.773	107	170	2.642			- 1	3.678	2.000	1,670			220	1,000	778		87	1.000		0.000			17,000	1,000	3.676	106,119	Industry
* B 0 2 9		-	- 1					3.764	2.226	100	700	1.000	-		7,041	- 1	- 1				-	-				-				- 1	-	- 1	- 1	786	- 1		3,635	ASS PERSON
# 10 20										-		41	-	- 7					- 6	- 1	- :	- 1		- 1					- 1		- 3			110			196	Motor
N & 9 2							4.000	61.704	4 338	-	242	467	-							1.00	1.000		-	***		778		- 01						W 103			91,999	100/20/00
84, 94 (0	-	- 1	- 1					300	700			-	-	- 10	770	- 1	- 0				-	77		-	- 1	-			77			- 1			- 1		1,601	F000 7303000
MH. NH 20	-		-	-	-		-	461	616		23	12	- 1	2	274				- 3	,		24	_	-	-		-		16		467			993			1,847	Texto S.Apparel
M46, 128 24	-	-	-	-	-		-	22	20			7			17	-	-		- 1		-	2	-	- 1	-	-	-	-		-	52	-		127	-	-	221	Wood & Wood Pts
\$0, 54 20								490	484		99		,	4	450				5	5				- 6							295			827			1,559	Pulp & Publication
48, 59 20	116		-		116		116	46,266	1,182		19	72	- 1		1,085				2,771	1,478	1,299	40,00	41,790	267	-		15		722		1,077			3,445			50,905	Petro Chemical
H 2 4 27	2,367		-	-	2,767	-	2,767	833	685		6		2	10	526	-	-	-	31	31		117	-		-	-	-	85	32	-	442	-	-	966	-		5,008	NON-SWEAK
1 20 20 40 20	94,894		-	-	14,014	94,014	-	269	228	-	0	3	0	1	223	-	-	-	34	10	23		-	0	-	-	-	2		-	1,239	-	-	3,023	-		19,045	Iron & Steel
H & B4 29			-	-	-	-		85	61			3	1	1	96				17	10		7	-	- 1	-		-	-			220			-	-		305	Non-female.
X 0 24 10	-		-	-	-	-	-	627	441	29	32	127	26		220		-		62	62		24	-		-	-	-	-	28	-	1,794	-	-	5,839	-		7,620	PROTESTED WHEN
対印視監督	1,200		-	-	1,200	-	1,290	1,070	423		132	105	6	14	211	-	-	-	612	407	105	85	-	55	-	-	-	-	38	-	490	-	-	167	-		2,853	Other Manufacturin
23E0E4E 32	-		-	-	-	-	-	903	60			4	-		54	-	-	-			-	943	-		-	725	2	-	110	-	-	-	-	-	-		903	Other Energy
S # 13 10				-				2,772	792	19	36	655	22	54	42				21	21		1,960	-		1,965			-						-			2,772	Construction
			-	-				34,529	29,983	6,995	7	54,876	152	38	2,740	3,04			5,862		5,800	4	-		-		-		3		960			167		254	35,939	Transportation
2 × 20 30	-		-	-	-	-	-	201	200	-	0	200	-	-	-	-	-	-	0	0	-		-	-	-	-	-	-		-	-	-	-	167	-	-	388	Mail
R & 24 M								27,8%	22,462	6,985		54,349	4		17				5,301		5,000				-				2		960					254	29,000	Land
+ 0 R+ 37			-	-	-	-		3,321	3,329		0	419	147	33	2,717	-			0				-	0	-		-	-	-		-			-	-		3,321	Water
8 8 84 10	-		-	-	-	-	-	3,101	3,100				1	1	7	3,04	-		0	0	-		-	-	-	-	-	-		-	-	-	-	-	-	-	3,181	All
8 4 2 10	540	940	812	128	-	-	-	3,860	2,857		2,007	545	3		287	-	-	-	930	931	39	33	-	10	-	-	-	-	10	-	9,267	-	-	4,953	1,388	129	20,537	Recontai
1 H 2 40	-		-	-	-	-	-	2,027	1,190	29	932	129	29	20	143		-		1,007	900	69	97	-	10	-	-	-	1	85	-	3,060	-	-	9,640	120	23	15,195	Commencial
* * 5 *	-	-	-	-	-	-	_	1,263	1,218	46	100	642	- 6	3	- 19	429	-		23	23		23	-	- 1	-	-	-	-	21	-	277	-	-	2,138	42	626	4,295	Public

© 1. 文字を終 音目的と呼吸された 予算を受け 裏見.

Nan : 1 Demonstra consequence for the commercial sector in included in the residential sector.

1. 文字を表 を引える。
Nan : 1 Demonstra consequence for the commercial sector in included in the residential sector.

에너지 Balance (한국-약식)

			석탄, 석유, 천연가스	도시 가스	전력	열	수력, 원자력, 신재생
(공	생산,수	:입	+				+
급)	수출, =	국제벙커링	-		0		0
	재고, 의	2차	+,-				0
TPES	5						
(전	에너	발전		-	+	+	-
환)	지전 환	지역난방	-	-	0	+	0
		가스제조		+	0	0	0
	자가소비, 손실		-,+	-,+			0
TFC	TFC						
소비(산업, 가정, 상업,공공)			+		+		+

에너지 밸런스와 1차에너지, 최종에너지

	개념	에너지밸런스
1차	국내생산 + 수입 - 수출 - 국제	국내생산 + 수입 + 수출(-) + 국제
에너지	벙커링 + 재고증감 + 오차	벙커링 (-) + 재고증감 + 오차
최종	1차에너지 - 전환손실- 자가소	1차에너지 + 에너지전환 + 자가소
에너지	비 및 손실	비 및 손실(-)
		= 1차에너지 + 전환(생성) + 전환손 실(-) + 자가소비 및 손실(-)

'업종별 온실가스 배출량 추정(20120703).HWP'의 'i표 4¿ 에너지 총수요'의 공식은 에너지 밸런스를 기준으로 작성된 공식

산업연관표-에너지 밸런스: TPSE + 전환 E \Rightarrow TFC

			석탄, 석유, 천연가스	도시 가스	전력	열	수력, 원자력, 신재생			
(공	생산,수	≐입	+			•	+			
급)	수출, -	국제벙커링	-	0			0 0			0
	재고, 의	오차	+,-				0			
TPES	5									
(전	에너	발전		-	+	+	-			
환)	지전 환	지역난방	-	-	0	+	0			
		가스제조		+	0	0	0			
	자가소비, 손실		-,+	-,+			0			
TFC	TFC									
소비	소비(산업, 가정, 상업,공공)		+	+			+ +			+

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Questions

에너지 IO, 온실가스 IO 생성

- ▶ Step 1: 순 발열량 에너지 Balance 구축
 - ▶ 순 발열량 Balance = 전환계수 × 총 발열량 Balance
- ▶ Step 2: 에너지원별 '총수요' 파악 (순 에너지 Balance 사용)
 - ▶ 총수요(E_i)= 최종에너지소비-수출-국제Bunker-재고증감-전환손실
- ▶ Step 3: 에너지 '총수요'를 산업연관표에 할당 (에너지 IO 생성)
 - ▶ 할당(*E_{ij}*) = 총수요 × 산업연관표 œll_{*i,j*} 산업연관표 에너지 j 총수요
- ▶ Step 4: 온실가스 계산 = 배출계수×할당 에너지 (온실가스 IO 생성)
 - ▶ 온실가스 (G_{ij}) = 배출계수 (θ_i) × 할당 에너지 (E_{ij})

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Questions

Step 1: 순 발열량 에너지 Balance 구축

1. 기본 공식 (i: 에너지원)

순 발열량
$$(E_i)$$
 = 총 발열량 (E_i^*) × $\frac{\mathsf{d} \mathbf{n}$ 환산계수 $($ 순발열량기준 $)_i$ \mathbf{d} 대한산계수 $($ 총발열량기준 $)_i$

- 2. Wax, Asphalt, Solvent 는 배출량을 산정하지 않아서 순발열량을 0으로 간주
- 3. 기타제품(석유)은 석유환산계수가 존재하지 않아서 전환계수를 구할 수 없음→ 0.93953으로 대치
- input: EB₋G.csv, CF.csv
- process: ghg.r (line 40:45)
- output:EB_N

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Questions

Step 2: 에너지 원별 총수요 파악-(1) 기본공식

총수요 = 최종에너지소비
- {발전
$$\times I$$
(발전 ≤ 0)+지역난방 $\times I$ (지역난방 ≤ 0)
+가스제조 $\times I$ (가스제조 ≤ 0)+자가소비 및 손실}
- (수출+국제벙커링+재고증감)

= 최종에너지소비 - 전화손실 - (수출 + 국제벙커링 + 재고증감)

$$= \begin{cases} 1차에너지공급 - (수출 + 국제벙커링 + 재고증감) & (Not 도시가스, 전력, 열 전환생성 - (수출 + 국제벙커링 + 재고증감) & (도시가스, 전력, 열$$

수출 및 재고증감 과정에서 발생하는 온실가스는 계상하지 않으므로 수출.

국제벙커링, 재고증감 과정의 에너지 증감도 무시→ 수출 = 0. 국제벙커링 = 0. 재고증감 = 0

총수요 =
$$\begin{cases} 1차에너지공급 & (for Not 도시가스, 전력, 열) \\ 전환생성 & (for 도시가스, 전력, 열) \end{cases}$$

에너지 총수요 기본공식

			석탄, 석유, 천연가스	도시 가스	전력	열	수력, 원자력, 신재생
(공	생산,수	<u>-</u> 입	+				+
급)	수출, 국제벙커링		-	0			0
	재고, 의	오차	+,-				0
TPES	5 (1차 어	너지)		0			
(전	에너	발전		-	+	+	-
환)	지전 환	지역난방	-	-	0	+	0
	_	가스제조		+	0	0	0
	자가소	· 비, 손실	-,+		-,+		0
TFC	(최종 어	너지 소비)					
소비	(산업, 기	·정, 상업,공공)	+	+			+
*총┤	*총수요 기본공식			-			
	├요 기본 5, 재고 .				-		

Step 2: 에너지 원별 총수요 파악-(1) 기본공식 활용

- 1. 석탄, 석유, 천연가스: 기본공식
 - ▶ 총수요 = 1차에너지
- 2. 수력, 원자력: 기본공식 × 보정계수
 - ▶ 총수요 = 1차에너지 $\times \frac{860}{2150}$
- 3. 전력: 기본공식 수력 원자력
 - ▶ 총수요 = 전환생성 수력총수요 원자력총수요
- 4. 도시가스: 천연가스 총수요를 도시가스 총수요에 부가
 - ▶ 산업연관표: 천연가스가 도시가스 원료로만 사용
 - ▶ 에너지 밸런스: 천연가스가 발전, 지역난방에 투입
 - ▶ 도시가스 에너지 총수요에 천연가스 총수요를 부가
 - 발전, 지역난방에 투입된 천연가스로부터 발생하는 온실가스를 도시가스
 사용 시 발생하는 온실가스에 포함
- 5. 열에너지, 신재생에너지 : 신재생에너지 총수요 → 열에너지 총수요
 - ▶ 열에너지 총수요 = 신재생에너지 총수요 + 열에너지 총수요
 - ▶ 신재생에너지 총수요 = 0

input: EB_N, process: ghg.r line 80-142, output: E.Demand_total

Step 2: 에너지 원별 총수요 파악-(2) 도시가스

도시가스 총수요

- = 도시가스 최종에너지소비
- (도시가스 발전 + 도시가스 지역난방 + 도시가스 가스제조 +도시가스 자가소비 및 손실)
- + (천연가스 최종에너지소비)
 - -(천연가스 발전 + 천연가스 지역난방 + 천연가스 가스제조
 - +천연가스 자가소비 및 손실)
- = 0 + 천연가스 1차에너지
- = 천연가스 1차에너지

도시가스 에너지 총수요

	천연가스	도시가스
국내생산	487	0
수입	38,315	0
수출	0	0
국제벙카링	0	0
재고증감	-1,079	0
통계오차	1,156	0
1차에너지소비	38,879	0
<u>1)발전</u>	-16,767	-834
2)지역난방	-766	-1,047
3)가스제조	-20,591	20,163
<mark>자가소비및손실</mark>	-250	797
최종에너지소비	505	19,078
연관표총수요	38,879	38,879

Step 2: 에너지 원별 총수요 파악-(3)원유, 연탄, 기타석탄제품, 화력발전,기타발전

에너지 Balance에 총수요 구성이 반영되지 않은 경우 외부자료를 사용하여 (국내)총생산과 수입의 합을 구함

- 1. 원유: (국내)총생산 원유, 수입 원유, 재고변동을 각각 재구성
- 2. 연탄: 가정부문 소비 무연탄을 (국내)총생산으로 간주하고 수입을 재구성
- 3. 기타석탄제품: 유연탄 중 발전으로 전환되지 않은 양을 기준으로 기타석탄제품 국내산출 및 수입액 재구성
- 4. 화력발전, 기타발전: '전력' 총수요를 산업연관표를 사용하여 분할
- input: EB_N, "OilData_2009.csv", "IO_Domestic_2009.csv", "IO_Import_2009.csv", "IO_whole_2009.csv"
- process : ghg.r line 143-242
- output : E.Demand_Crude,E.Demand_Coalbriquette,E.Demand.Other_c

Step 2: 에너지 원별 총수요 파악-(3)-1.원유

- 1. 총수요 = (국내)총생산 + 수입
- 2. (국내)총생산: 에너지 통계연보 >원유수급통계>'국내생산'(barrel)

'국내생산'(toe) = 7.33 × '국내생산'(barrel)

- 3. 수입 = 석유제품생산에 투입된 원유-재고변동-(국내)총생산
 - 3.1 석유제품 생산에 투입된 원유

$$\sum_{\begin{subarray}{c} 4 \ Power Power$$

3.2 재고변동:에너지 통계연보 >원유수급통계>'재고'(barrel)

'재고변동'(toe) =
$$7.33 \times$$
 '재고(당해년도)'-'재고(작년도)'(barrel)

4. 총공급 = 석유제품생산에 투입된 원유 - 재고변동=총수요

원유 총수요: 석유제품생산에 투입된 원유

		석유								
단위: 1,000 toe	에너지유	LPG	비에너지							
국내생산	0	0	0							
수입	89,511	9,688	49,319							
1)석유생산	86,768	3,097	26,992							
2)석유수입	2,743	6,592	22,327							
수출, 국제벙커링										
재고증감										
통계오차	-2,389	465	-1,941							
석유생산에 투입된 원유	=0.99 x(86,768+(- 2,389)*86,768/89,511)	?	?							

Step 2: 에너지 원별 총수요 파악-(3)-2. 연탄

- ▶ 연탄: 에너지 Balance 상의 무연탄 국내탄 항목은 실제 연탄과는 관계 희박
 - ▶ 연탄은 발전용으로 직접 사용되지 않으며, 실제로 수입 됨
- ▶ 무연탄 국내탄 최종에너지수요 중 가계수요 에너지를 연탄 (국내) 총산출 에너지로 가정
- 연탄 수입에너지는 (국내)총산출 에너지에 산업연관표 정보를 적용하여 도출

연탄 수입 = 연탄 총산출
$$\times$$
 $\frac{IO}{IO}$ 수입표 연탄 총수요액

▶ 연탄 총수요=연탄 (국내)총산출 + 연탄 수입

Step 2: 에너지 원별 총수요 파악-(3)-3. 기타석탄제품

- ▶ 기타석탄제품: 에너지 Balance 상에는 기타석탄제품이 없지만 IO 에는 존재(코크스)
- ▶ 기타석탄제품 (국내)총산출: 발전에 투입되지 않은 유연탄(유연탄 잔여분) 중 기타석탄제품에 투입된 양

기타석탄제품 총산출

- = $\{$ 유연탄 총수요 유연탄 발전 전환량 $\times I($ 유연탄 발전 전환량 $>0)\}$ IO 총거래표 기타석탄제품 투입 유연탄(금액)
- × IO 총거래표 유연탄 총산출액-IO 총거래표 발전 투입 유연탄(금액)
- ▶ 기타석탄제품 수입: 기타석탄제품 (국내)총산출에 산업연관표 정보를 적용하여 도출
 - 기타석탄제품 수입 = 기타석탄제품 총산출 \times $\frac{IO}{IO}$ 수입표 기타석탄제품 총수요액
- ▶ 기타석탄제품 총수요=기타석탄제품 (국내)총산출 + 기타석탄제품 수입

Step 2: 에너지 원별 총수요 파악-(3)-4. 화력발전, 기타발전

에너지 Balance 상 전력은 산업연관표의 화력, 기타발전을 포괄하므로 이를 분할

- 1. 화력 총수요
- = 전력 총수요

IO 총거래표 화력 총수요액

- × IO 총거래표 화력 총수요액 + IO 총거래표 기타발전 총거래액
 - 2. 기타발전 총수요
- = 전력 총수요
- IO 총거래표 기타발전 총수요액
- * IO 총거래표 화력 총수요액 + IO 총거래표 기타발전 총거래액

에너지 총수요: 산업-에너지원 match

	산업(IO)	에너지원(EB)
30	무연탄	무연탄
31	유연탄	유연탄
32	원유	-
33	천연가스	천연가스
131	연탄	-
132	기타석탄제품	-
133	나프타	나프타
134	휘발유	휘발유
135	Jet유	JA-1
136	등유	등유
137	경유	경유

	산업(IO)	에너지원(EB)
138	중유	경질중유, 중유, 중질 중유
139	LPG	LPG
140	윤활유제품	윤활기유
141	기타석유제품	석유코크+기타제품
298	수력	수력
299	화력	전력(일부)
300	원자력	원자력
301	기타발전	전력(일부)
302	도시가스	도시가스(천연가스)
303	증기 및 온수공급 업	열에너지(신재생)

input:

E.Demand_total, E.Demand_Crude, E.Demand_Coalbriquette, E.Demand.Other_c,"IO_whole_2009.csv"

- process : ghg.r line 243-294
- output :E.Demand_IO

차례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Questions

Step 3: 에너지 '총수요'를 산업연관표에 할당-(1) 기본공식, Naphta

산업별 에너지 '총수요'를 산업연관표의 중간수요액을 기준으로 각 산업으로 분할

1. 기본공식

에너지 중간수요
$$(E_{ij})$$
 = 에너지 총수요 (E_i) \times $\frac{IO$ 총거래표 중간수요액 $_{ij}$ IO 총거래표 총수요액 $_i$

2. 예외 1. Naphta는 석유화학제품(143-171)에 투입된 중간수요액만을 사용하여 할당

에너지 중간수요
$$(E_{ij}|_{143 \le j \le 171})$$

$$=$$
 에너지 총수요 $(E_i) imes rac{ extsf{IO}\$ 총거래표 중간수요액 $_{ij}|_{143\leq j\leq 171}}{\sum_{143\leq j\leq 171} extsf{IO}\$ 총거래표 중간수요액 $_{ij}$

- input : E.Demand_IO, IO_whole
- process : ghg.r line 295-330
- output :Energy_BE_overall

Step 3: 에너지 '총수요'를 산업연관표에 할당-(2) 무연탄, 유연탄, 중유, 도시가스

산업별 에너지 '총수요'의 일부를 산업연관표 중간수요에 직접 할당하고 나머지를 산업연관표 중간수요액 기준으로 분할

1. 기본공식

에너지 중간수요
$$(E_{ij|j\in J})=\overline{E}_{ij}$$
(에너지밸런스 특정항목) 에너지 중간수요 $(E_{ij|j\notin J})=$ 에너지 총수요 $(E_i)-\sum_{j\in J}\overline{E}_{ij}$ IO 총거래표 중간수요액 $_{ii|i\notin J}$

IO 총거래표 총수요액 $_{i} - \sum_{i \in J} IO$ 총거래표 중간수요액 $_{ij}$

- ▶ input : E.Demand_IO, IO_whole
- process: ghg.r line 331-410
- output :Energy_BE_residual,Energy_BE

에너지 중간수요 직접할당: 무연탄, 유연탄, 중유, 도시가스

- ▶ 연탄에 투입된 무연탄: 가정에서 소비한 무연탄 에너지
 - ▶ 민간최종소비 무연탄 항목에 할당할 수 있으면 좋겠지만 산업연관표의 무연탄 최종소비는 0
- 화력발전 투입 무연탄, 유연탄, 중유, 도시가스: 발전손실 무연탄, 유연탄, 경질중유, 중유, 중질중유, 천연가스, 도시가스 에너지
 - ▶ 산업연관표상 중유는 에너지밸런스의 경질중유, 중유, 중질중유를 포괄
 - 현재 hwp 화일에 발전손실 JA-1 에너지를 화력발전에 투입된 중유에너지에 포함하라고 되어있는데 오기로 보임
 - ▶ 산업연관표상 도시가스 = 도시가스에너지와 천연가스에너지 합
 - 에너지밸런스에는 천연가스가 발전연료로 사용되지만 산업연관표에서는 천연가스가 전량 도시가스 생산에만 투입됨. 발전용으로 사용되는 천연가스 에너지를 도시가스 에너지에 포함
- ▶ 증기 및 온수공급업에 투입된 도시가스: 지역난방 손실 천연가스, 도시가스
 - ▶ 중유도 일부 지역난방에 포함되지만 양이 적어서 무시
 - 에너지밸런스에는 천연가스가 지역난방에 사용되지만
 산업연관표에서는 천연가스가 전량 도시가스 생산에만 투입됨.
 지역난방에 사용되는 천연가스 에너지를 도시가스 에너지에 포함

에너지 중간수요 직접할당

산업연관표

	연탄(131)	화력 (299)	증기 및 온수공급 업(303)
무연탄 (30)			
유연탄 (31)			
중유(138)			
도시가스 (302)			

에너지 Balance

		무연 탄	유연 탄	질 유 유 중 중 중 중 중	천연 가스	도시 가스
전환	발전					
	지역 난방					
소비	가정					

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Questions

Step 4:온실가스 계산-(1) 기본공식

 에너지 중간수요에 배출계수와 몰입률을 적용하여 온실가스 배출량 계산

온실가스 배출량
$$(G_{ij}) = \left\{ egin{array}{ll} ext{배출계} & (heta_i) imes (1 - Sunk_i) imes E_{ij} \\ ext{(나프타, 윤활유)} \\ ext{배출계} & (heta_i) imes E_{ij} \\ ext{(for the rest)} \end{array}
ight.$$

- Sunk_i: 몰입률 = 연료가 아닌 중간재에 포함되는 탄소는 일부 제품에 체화(몰입)되므로 대기중의 온실가스로 전환되지 않음
- 2. 제외항목= 수출, 고정자본형성, 재고, 이중계산
 - ▶ 소비과정에서 발생하는 온실가스만 계산: 수출, 고정자본형성, 재고조정에 할당된 에너지는 온실가스로 전환하지 않음
 - 이중계산 방지: 전력 및 열에너지는 사용 시 온실가스가 배출되지 않는다고 가정
- input : Energy_BE,"EC1996.csv"
- process : ghg.r line 412-465
- output :ECO2

배출계수

			탄소배출계수			CO2	
산업연관표	IPCC 분류체계	kg C/GJ	(ton C/toe)	(TJ/10³TON)	탄소 몰입율	배출계수 (ton C/toe) *(44/12)	CO2 배출계수 *(1-몰입률)
무연탄	무연탄	26.8	1.1			4.0333	4.0333
유연탄	원료탄	25.8	1.059			3.8830	3.8830
	연료탄	25.8	1.059			3.8830	3.8830
원유	원유	20	0.829	-		3.0397	3.0397
천연가스	천연액화가스 (NGL)	17.2	0.63	-		2.3100	2.3100
연탄	무연탄	26.8	1.1			4.0333	4.0333
기타석탄제품	BKB & Patent Fuel	(25.80)(a)	1.059			3.8830	3.8830
나프타	납 사	(20.00)(a)	0.829	45.01	0.75	3.0397	0.7599
휘발유	휘발유	18.9	0.783	44.8		2.8710	2.8710
제트유	항공유	19.5	0.808	-		2.9627	2.9627
등유	아	19.6	0.812	44.75		2.9773	2.9773
경유	경 유	20.2	0.837	43.33		3.0690	3.0690
중유	중 유	21.1	0.875	40.19		3.2083	3.2083
액화석유가스	LPG	17.2	0.713	47.31		2.6143	2.6143
윤활유제품	윤활유	(20.00)(a)	0.829	40.19	0.5	3.0397	1.5198
기타석유정제품	Refinery Feedstock	(20.00)(a)	0.829	44.8		3.0397	3.0397
수력							
화력+기타발전							
원자력							
도시가스	LNG(dry)	15.3	0.637			2.3357	2.3357
증기 및 온수공급업							

제외항목: 수출, 고정자본형성, 재고, 이중계산 방지

산업연관표	Other	연탄, 기타석탄	석유류	전력	도시가스	증기 및 온수	소비	고정자본 형성	수출	재고
무연탄		×						X	×	X
유연탄		×						X	×	X
원유			X					X	×	X
천연가스					X			X	×	Х
연탄								X	×	Х
기타석탄제품								X	×	Х
석유제품								X	×	Х
액화석유가스 (LPG)					X			X	×	X
전력	X	×	X	Х	×	×	×	×	×	X
도시가스								×	×	X
증기 및 온수 공급	Х	×	X	Х	Х	×	×	X	X	X

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Questions

남는 질문들

- 1. 수출, 고정자본형성, 재고와 온실가스: 무시해도 좋은가?
- 2. 천연가스 에너지: 에너지 IO에서는 double counting. 온실가스 산정시에만 correction. 괜찮은가?
- 3. 신재생에너지는 열 에너지에 포괄: 바람직한가?
 - ▶ 산재생 발전, 신재상 수송, 신재생 가정-상업-공공이 모두 열에너지?

감사합니다.