Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Cinétique et application du Principe Fondamental de la

Dynamique

Sciences Industrielles de l'Ingénieur

TD 2

Stabilisateur passif d'image **

Mines Ponts 2018 - PSI

Savoirs et compétences :

Mise en situation

Objectif Suite à une sollicitation brève de 0,5 m s⁻², l'amplitude des oscillations de la caméra ne doit pas dépasser les 0,5°.

Travail demandé

Question 1 Par une étude dynamique que vous mettrez en œuvre, montrer que l'équation de mouvement de (E) dans (0) galiléen s'exprime comme $Q_1 \frac{d^2 \varphi(t)}{dt^2} + Q_2(t) = Q_3(t)a(t)$.

Correction (1) et (E) sont en liaison pivot d'axe $(O, \overrightarrow{Y_0})$. On va donc réaliser un théorème du moment dynamique appliqué à (E) en O en projection sur $\overline{Y_0}$.

Calcul de $\delta(O, E/0)$

Méthode 1 – En passant par le calcul de $\delta(0,2/0)$, $\delta(0,C/0)$ et $\delta(0,Cp/0)$

Le support 2 étant sans masse, on a $\delta(O,2/0) = \overrightarrow{O}$. La caméra et le contrepoids étant considérés comme des masses ponctuelles, on a $\overline{\delta(G_C, C/0)} = \overrightarrow{0}$ et $\overline{\delta(G_{Cp}, Cp/0)} = \overrightarrow{0}$.

Calcul de
$$\delta(O, \mathbb{C}/0)$$

On a
$$\overrightarrow{\delta}(O, C/O) = \overrightarrow{\delta}(G_C, C/O) + \overrightarrow{OG_C} \wedge M_C \overrightarrow{\Gamma}(G_C \in C/O)$$
.

Calcul de $\Gamma(G_C \in \mathbb{C}/0)$

$$\overrightarrow{V(G_C \in C/0)} = \overrightarrow{V(G_C \in C/1)} + \overrightarrow{V(G_C \in 1/0)} = \overrightarrow{G_CO} \wedge \overrightarrow{\Omega(C/0)} + v(t)\overrightarrow{X_0} = -L_C \overrightarrow{Z_2} \wedge \dot{\varphi} \overrightarrow{Y_2} + v(t)\overrightarrow{X_0} = L_C \dot{\varphi} \overrightarrow{X_2} + v(t)\overrightarrow{X_0}.$$

De plus
$$\overrightarrow{\Gamma(G_C \in C/0)} = L_C \ddot{\varphi} \overrightarrow{X_2} - L_C \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}$$
.

De plus
$$\Gamma(G_C \in C/0) = L_C \ddot{\varphi} \overrightarrow{X_2} - L_C \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}$$
.
Au final, $\delta(O, C/0) = \overrightarrow{OG_C} \wedge M_C \Gamma(G_C \in C/0) = L_C \overrightarrow{Z_2} \wedge M_C \left(L_C \ddot{\varphi} \overrightarrow{X_2} - L_C \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}\right)$

$$\overrightarrow{\delta(O,C/O)} = L_C M_C \Big(L_C \ddot{\varphi} \overrightarrow{Y_2} + a(t) \cos \varphi \overrightarrow{Y_0} \Big).$$

Calcul de $\delta(O, \mathbb{Cp}/0)$

On a
$$\overrightarrow{\delta(O, Cp/0)} = \overrightarrow{\delta(G_{Cp}, Cp/0)} + \overrightarrow{OG_{Cp}} \wedge M_{Cp} \overrightarrow{\Gamma(G_{Cp} \in C/0)}$$
.

Calcul de
$$\Gamma(G_{Cp} \in \mathbf{Cp}/0)$$

De même,
$$\overrightarrow{V(G_{Cp} \in \text{Cp}/0)} = \overrightarrow{V(G_{Cp} \in \text{Cp}/1)} + \overrightarrow{V(G_{Cp} \in \text{1/0})} = \overrightarrow{G_{Cp}O} \wedge \overrightarrow{\Omega(\text{Cp}/0)} + v(t)\overrightarrow{X_0} = L_{Cp}\overrightarrow{Z_2} \wedge \overrightarrow{Y_2} + v(t)\overrightarrow{X_0} = -L_{Cp}\overrightarrow{\varphi}\overrightarrow{X_2} + v(t)\overrightarrow{X_0}.$$

De plus
$$\overrightarrow{\Gamma(G_{Cp} \in Cp/0)} = -L_{Cp} \ddot{\varphi} \overrightarrow{X_2} + L_{Cp} \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0}$$
.

Au final,
$$\overrightarrow{\delta(O, \mathsf{Cp/0})} = \overrightarrow{OG_{Cp}} \wedge M_{Cp} \overrightarrow{\Gamma(G_{Cp} \in \mathsf{Cp/0})} = -L_{Cp} \overrightarrow{Z_2} \wedge M_{Cp} \left(-L_{Cp} \ddot{\varphi} \overrightarrow{X_2} + L_{Cp} \dot{\varphi}^2 \overrightarrow{Z_2} + a(t) \overrightarrow{X_0} \right)$$

1

$$\overrightarrow{\delta(O,C/0)} = -L_{Cp}M_{Cp}\left(-L_{Cp}\ddot{\varphi}\overrightarrow{Y_2} + a(t)\cos\varphi\overrightarrow{Y_0}\right)$$

On a donc
$$\overrightarrow{\delta(O, E/O)} \cdot \overrightarrow{Y_0} = M_{Cp} L_{Cp}^2 \ddot{\varphi} - M_{Cp} L_{Cp} a(t) \cos \varphi + M_C L_C^2 \ddot{\varphi} + M_C L_C a(t) \cos \varphi$$

Méthode 2 – En passant par le calcul de
$$I_O(E)$$

On a
$$I_O(C) = M_C \begin{pmatrix} L_C^2 & 0 & 0 \\ 0 & L_C^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\mathcal{B}_2} \text{ et } I_O(Cp) = M_{Cp} \begin{pmatrix} L_{Cp}^2 & 0 & 0 \\ 0 & L_{Cp}^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\mathcal{B}_2} \text{ et donc}$$

$$I_O(E) = \begin{pmatrix} M_{Cp} L_{Cp}^2 + M_C L_C^2 & 0 & 0 \\ 0 & M_{Cp} L_{Cp}^2 + M_C L_C^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{\mathcal{B}_2}.$$

$$O \text{ est un point quelconque: donc } \overrightarrow{\delta}(O, E/0) \cdot \overrightarrow{V_O} = 0$$

O est un point quelconque; donc
$$\overrightarrow{\delta(O, E/O)} \cdot \overrightarrow{Y_0} = \overrightarrow{\delta(O, E/R_0)} = \left[\frac{\overrightarrow{\mathrm{d}\sigma(O, E/R_0)}}{\overrightarrow{\mathrm{d}t}}\right]_{R_0} + \overrightarrow{V(O/R_0)} \wedge \overrightarrow{R_c}(E/R_0) \text{ et } \overrightarrow{\sigma(O, E/R_0)} = I_O(E) \cdot \overrightarrow{\Omega(E/R_0)} + M \overrightarrow{OG} \wedge \overrightarrow{R_c}(E/R_0)$$

 $\overrightarrow{V(O \in E/R_0)}$.

De plus,
$$\overrightarrow{OG} = \frac{M_C L_C - M_{Cp} L_{Cp}}{M_C + M_{Cp}} \overrightarrow{Z_2}$$
, $\overrightarrow{V(O \in E/R_0)} = v(t) \overrightarrow{X_0}$ et $\overrightarrow{V(G \in E/R_0)} = v(t) \overrightarrow{X_0} + \frac{M_C L_C - M_{Cp} L_{Cp}}{M_C + M_{Cp}} \dot{\varphi} \overrightarrow{X_2}$.

On a donc,
$$\overrightarrow{\sigma(O,S/R_0)} = \dot{\varphi} \left(M_{Cp} L_{Cp}^2 + M_C L_C^2 \right) \overrightarrow{Y_2} + \left(M_C + M_{Cp} \right) \frac{M_C L_C - M_{Cp} L_{Cp}}{M_C + M_{Cp}} \overrightarrow{Z_2} \wedge v(t) \overrightarrow{X_0} = \\ \dot{\varphi} \left(M_{Cp} L_{Cp}^2 + M_C L_C^2 \right) \overrightarrow{Y_2} + \left(M_C L_C - M_{Cp} L_{Cp} \right) v(t) \cos \varphi \overrightarrow{Y_0}. \\ \left[\frac{d\overrightarrow{\sigma(O,E/R_0)}}{dt} \right]_{R_0} = \ddot{\varphi} \left(M_{Cp} L_{Cp}^2 + M_C L_C^2 \right) \overrightarrow{Y_2} + \left(M_C L_C - M_{Cp} L_{Cp} \right) \left(a(t) \cos \varphi - v(t) \dot{\varphi} \sin \varphi \right) \overrightarrow{Y_0}. \\ \overrightarrow{V(O/R_0)} \wedge \overrightarrow{R_c} (E/R_0) = v(t) \overrightarrow{X_0} \wedge \left(M_C + M_{Cp} \right) \left(v(t) \overrightarrow{X_0} + \frac{M_C L_C - M_{Cp} L_{Cp}}{M_C + M_{Cp}} \dot{\varphi} \overrightarrow{X_2} \right) =$$

$$(O/R_0) \wedge R_c(E/R_0) = v(t)X_0 \wedge (M_C + M_{Cp}) \left(v(t)X_0 + \frac{1}{M_C + M_{Cp}} \varphi X_2\right)$$

$$(M_C + M_{Cp}) \left(\frac{M_C L_C - M_{Cp} L_{Cp}}{M_C + M_{Cp}} \dot{\varphi} v(t) \sin \varphi\right) \overrightarrow{Y_2} = \left(M_C L_C - M_{Cp} L_{Cp}\right) \dot{\varphi} v(t) \sin \varphi \overrightarrow{Y_2}.$$

Au final,
$$\overrightarrow{\delta}(O, E/R_0) = \overrightarrow{\varphi} \left(M_{Cp} L_{Cp}^2 + M_C L_C^2 \right) \overrightarrow{Y_2} + \left(M_C L_C - M_{Cp} L_{Cp} \right) a(t) \cos \varphi \overrightarrow{Y_0}$$

Bilan des actions mécaniques en O agissant sur E

- Liaison pivot $\{\mathcal{T}(1 \to E)\}\ \text{avec}\ \overline{\mathcal{M}(O, 1 \to E)} \cdot \overline{Y_2} = 0.$
- $\{\mathscr{T}(\text{pes} \to C)\}\ \text{avec}\ \overrightarrow{\mathscr{M}(O, \text{pes} \to C)} \cdot \overrightarrow{Y_2} = \left(\overrightarrow{OG_C} \land -M_C g \overrightarrow{Z_0}\right) \overrightarrow{Y_2} = \left(L_C \overrightarrow{Z_2} \land -M_C g \overrightarrow{Z_0}\right) \overrightarrow{Y_2} = L_C M_C g \sin \varphi \overrightarrow{Y_2}.$
- $\{\mathscr{T}(\text{pes} \to Cp)\}\ \text{avec}\ \overrightarrow{\mathscr{M}(O, \text{pes} \to Cp)} \cdot \overrightarrow{Y_2} = \left(-L_{Cp}\overrightarrow{Z_2} \land -M_{Cp}g\overrightarrow{Z_0}\right)\overrightarrow{Y_2} = -L_{Cp}M_{Cp}g\sin\varphi\overrightarrow{Y_2}.$

Théorème du moment dynamique en O en projection sur $\overrightarrow{Y_2}$

$$\ddot{\varphi}\left(M_{Cp}L_{Cp}^2+M_CL_C^2\right)+\left(M_CL_C-M_{Cp}L_{Cp}\right)a(t)\cos\varphi=L_CM_Cg\sin\varphi-L_{Cp}M_{Cp}g\sin\varphi.$$

$$\Leftrightarrow \ddot{\varphi}\left(M_{Cp}L_{Cp}^{2}+M_{C}L_{C}^{2}\right)+\left(L_{Cp}M_{Cp}-L_{C}M_{C}\right)g\sin\varphi=-\left(M_{C}L_{C}-M_{Cp}L_{Cp}\right)a(t)\cos\varphi.$$

On a donc:
$$Q_1 = M_{Cp} L_{Cp}^2 + M_C L_C^2$$
, $Q_2(t) = (L_{Cp} M_{Cp} - L_C M_C) g \sin \varphi$, $Q_3(t) = (M_{Cp} L_{Cp} - M_C L_C) \cos \varphi$.

Question 2 Établir sous forme canonique la fonction de transfert $H(p) = \frac{\Phi(p)}{A(p)}$. Donner l'expression de la pulsation propre ω_0 en fonction de m_c , m_{cp} , L_c , L_{cp} et g.

Correction Dans les conditions précédentes, on a $Q_1 = M_{Cp}L_{Cp}^2 + M_CL_C^2$, $Q_2(t) = (L_{Cp}M_{Cp} - L_CM_C)g\varphi$ et $Q_3(t) = \left(M_{Cp}L_{Cp} - M_CL_C\right).$

L'équation de comportement devient donc $Q_1 \frac{d^2 \varphi(t)}{dt^2} + (L_{Cp} M_{Cp} - L_C M_C) g \varphi = Q_3 a(t)$

$$\Rightarrow Q_1 p^2 \Phi(p) + \left(L_{Cp} M_{Cp} - L_C M_C \right) g \Phi(p) = Q_3 A(p) \text{ et } H(p) = \frac{Q_3}{Q_1 p^2 + \left(L_{Cp} M_{Cp} - L_C M_C \right) g}.$$

$$\Rightarrow Q_1 p^2 \Phi(p) + \left(L_{Cp} M_{Cp} - L_C M_C \right) g \Phi(p) = Q_3 A(p) \text{ et } H(p) = \frac{Q_3}{Q_1 p^2 + \left(L_{Cp} M_{Cp} - L_C M_C \right) g}.$$
On a donc $\omega_0^2 = \frac{\left(L_{Cp} M_{Cp} - L_C M_C \right) g}{Q_1} = \frac{\left(L_{Cp} M_{Cp} - L_C M_C \right) g}{M_{Cp} L_{Cp}^2 + M_C L_C^2}.$ Le gain K vaut $\frac{M_{Cp} L_{Cp} - M_C L_C}{\left(L_{Cp} M_{Cp} - L_C M_C \right) g} = \frac{1}{g}$

Question 3 Tracer l'allure du diagramme asymptotique de gain $G_{dB} = f(\omega)$ de la fonction de transfert $H(j\omega)$. Placer les caractéristiques remarquables.

Correction

Question 4 Pour un fonctionnement filtrant satisfaisant, on impose que $\omega_0 = 0$, $1\omega_a$. Le stabilisateur est réglé en conséquence par l'intermédiaire du couple (m_{cp}, L_{cp}) . En utilisant le comportement asymptotique en gain de G_{dB} , estimer numériquement l'amplitude $\Delta \varphi$ (en degrés) des oscillations de (E) selon l'axe $(O, \overline{y_0})$.

Correction On a $\omega_a=10\omega_0$. Une décade après ω_0 , $G_{\rm dB}=-20\log 10-40=-60\,{\rm dB}$. Une atténuation de $-60\,{\rm dB}$ correspond à un gain de $10^{-}\frac{60}{20}=0,001$. L'amplitude des oscillations sera donc de $0,001a_0=5\times 10^{-4}\,{\rm rad}$ soit $0,03^\circ$.

Retour sur le cahier des charges

Question 5 Conclure vis-à-vis de l'objectif et sur les écarts obtenus.

Correction On a $0.03^{\circ} < 0.5^{\circ}$. Le cahier des charges est vérifié au voisinage de $10\omega_0$.