AlphaTensor

Antoni Kowalczuk, prelekcja KNSI Golem Warszawa, 27.10.2022

https://www.nature.com/articles/s41586-022-05172

<u>-4</u>

Agenda

GOLEM KOL HILLOH 2 FILLENS AT LESSES

- O mnożeniu macierzy
- Algorytmy + setup
- AlphaZero
- Jak to działa?
- Wyniki
- Usprawnienia
- Inne zastosowania
- Losowe insighty z papera
- The FBHHRBNRSSSHK-Algorithm

Mnożenie kosztuje najwięcej

Cel: minimalizacja liczby mnożeń

Jak zdefiniować mnożenie macierzy?

Tensorem!

$$\begin{pmatrix}
c_1 & c_2 \\
c_3 & c_4
\end{pmatrix} = \begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix} \cdot \begin{pmatrix}
b_1 & b_2 \\
b_3 & b_4
\end{pmatrix}$$

Moment, ale jak w ogóle da się zmniejszyć liczbę mnożeń???

Przykład: Algorytm Strassena do mnożenia macierzy 2x2 z macierzą 2x2

$$m_{1} = (a_{1} + a_{4})(b_{1} + b_{4})$$

$$m_{2} = (a_{3} + a_{4}) b_{1}$$

$$m_{3} = a_{1} (b_{2} - b_{4})$$

$$m_{4} = a_{4} (b_{3} - b_{1})$$

$$m_{5} = (a_{1} + a_{2}) b_{4}$$

$$m_{6} = (a_{3} - a_{1})(b_{1} + b_{2})$$

$$m_{7} = (a_{2} - a_{4})(b_{3} + b_{4})$$

$$c_{1} = m_{1} + m_{4} - m_{5} + m_{7}$$

$$c_{2} = m_{3} + m_{5}$$

$$c_{3} = m_{2} + m_{4}$$

$$c_{4} = m_{1} - m_{2} + m_{3} + m_{6}$$

12.5% mniej!

Ilość wykonanych mnożeń = 7

Zadanie: dekompozycja tensora Wynik: algorytm mnożenia macierzy

Dekompozycja

Dlaczego i po co?

Algorytm Strassena jako przykład dekompozycji tensora mnożenia macierzy

$$\begin{aligned} m_1 &= (a_1 + a_4)(b_1 + b_4) \\ m_2 &= (a_3 + a_4)b_1 \\ m_3 &= a_1 (b_2 - b_4) \\ m_4 &= a_4 (b_3 - b_1) \\ m_6 &= (a_3 - a_1)(b_1 + b_2) \\ m_7 &= (a_2 - a_4)(b_3 + b_4) \\ c_1 &= m_1 + m_4 - m_5 + m_7 \\ c_2 &= m_3 + m_5 \\ c_3 &= m_2 + m_4 \end{aligned} \qquad \begin{aligned} \mathbf{m1} &= \mathbf{m2} &= \mathbf{m3} &= \mathbf{m4} &= \mathbf{m5} &= \mathbf{m6} &= \mathbf{m7} \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 & 1 & 0 \end{aligned}$$

Krótki pokaz jak to działa

Meta-algorytm wykorzystujący dekompozycję

Algorithm 1

return C

A meta-algorithm parameterized by $\{\mathbf{u}^{(r)}, \mathbf{v}^{(r)}, \mathbf{w}^{(r)}\}_{r=1}^{R}$ for computing the matrix product $\mathbf{C} = \mathbf{AB}$. It is noted that R controls the number of multiplications between input matrix entries.

```
Parameters: \{\mathbf{u}^{(r)}, \mathbf{v}^{(r)}, \mathbf{w}^{(r)}\}_{r=1}^{R}: length-n^2 vectors such that \mathcal{T}_n = \sum_{r=1}^{R} \mathbf{u}^{(r)} \otimes \mathbf{v}^{(r)} \otimes \mathbf{w}^{(r)}
Input: \mathbf{A}, \mathbf{B}: matrices of size n \times n
Output: \mathbf{C} = \mathbf{A}\mathbf{B}
(1) for r = 1, ..., R do
(2) m_r \in (u_1^{(r)}a_1 + \cdots + u_{n^2}^{(r)}a_{n^2})(v_1^{(r)}b_1 + \cdots + v_{n^2}^{(r)}b_{n^2})
(3) for i = 1, ..., n^2 do
(4) c_i \in w_i^{(1)}m_1 + \cdots + w_i^{(R)}m_R
```


Cel: dekompozycja tensora sumą jak najmniejszej ilości tensorów o rzędzie 1

Krótko o Reinforcement Learningu

Podstawowe pojęcia

- Krok
- Nr kroku
- Akcja
- Przestrzeń akcji
- Stan
- Stan początkowy
- Stan terminalny
- Przestrzeń stanów
- Policy
- Wartość stanu
- Nagroda

AlphaZero

Co to

- Stworzony również przez DeepMind
- Założenie: bez wcześniejszej wiedzy osiągnąć nadludzkie możliwości w grach
- Używa Reinforcement Learningu do uczenia
- Uczy się za pomocą techniki self-play
- Sieć wypluwa dwie rzeczy
 - ewaluację stanu
 - o rozkład prawdopodobieństwa, że dany ruch jest najlepszy dla każdego możliwego ruchu
- Dodatkowy mechanizm: Monte Carlo Tree Search (MCTS)

Osiągnięcia

- Nadludzki performance w grze Go
- Nadludzki performance w szachach
- Nadludzki performance w grze Shogi

Pomysł: niech dekompozycja będzie grą!

Definicje (każdy je lubi)

- akcja: wektory u, v, w zwracane przez model
- przestrzeń akcji: wszystkie wektory o wielkości n^2
- stan po kroku t: tensor S_t
- stan na początku: S_0 = T_n
- krok: $S_t \in S_{t-1} \mathbf{u}^{(t)} \otimes \mathbf{v}^{(t)} \otimes \mathbf{w}^{(t)}$
- Stan terminalny: S_t = 0 lub t_limit
- Nagroda: -1 za każdy krok + kara za osiągnięcie t_limit dla S_t != 0
- Składniki wektorów akcji należą do zbioru {-2, -1, 0, 1, 0}
- Wartość stanu: zwracana przez model

Zarys architektury

Zarys treningu

Wyniki

Mamy to! (czyli jest progress)

Konkretnie

Size (n, m, p)	Best method known	Best rank known		ensor rank r Standard	117.47				12, 12
(2, 2, 2)	(Strassen, 1969) ²	7	7	7	30			(9, 11, 11)	
(3, 3, 3)	(Laderman, 1976) ¹⁵	23	23	23					
(4, 4, 4)	(Strassen, 1969) ² $(2, 2, 2) \otimes (2, 2, 2)$	49	47	49	25		(9), 9, 11) (11, 1	1, 11)
(5, 5, 5)	(3,5,5)+(2,5,5)	98	96	98				(11, 1	•
(2, 2, 3)	(2, 2, 2) + (2, 2, 1)	11	11	11	술 20		(0	(10, 11 9, 10, 10)	, 12)
(2, 2, 4)	(2, 2, 2) + (2, 2, 2)	14	14	14	mprovement in rank		(0	, 10, 10)	
(2, 2, 5)	(2,2,2)+(2,2,3)	18	18	18	Ē.				
(2, 3, 3)	(Hopcroft and Kerr, 1971)16	⁶ 15	15	15	neu				
(2, 3, 4)	(Hopcroft and Kerr, 1971)16	20	20	20	₽ 15		(9. 9	0, 9)	
(2, 3, 5)	(Hopcroft and Kerr, 1971)10	25	25	25	pro		(0, 0	•	
(2, 4, 4)	(Hopcroft and Kerr, 1971)16	26	26	26	<u>=</u>			•	
(2, 4, 5)	(Hopcroft and Kerr, 1971)16	33	33	33	10			00	
(2, 5, 5)	(Hopcroft and Kerr, 1971)16	40	40	40			•	(10,	12, 12)
(3, 3, 4)	(Smirnov, 2013) ¹⁸	29	29	29		115	• •	••	
(3, 3, 5)	(Smirnov, 2013)18	36	36	36	5			(10, 10, 10)
(3, 4, 4)	(Smirnov, 2013) ¹⁸	38	38	38	5	00		(10, 10, 10	,
(3, 4, 5)	(Smirnov, 2013) ¹⁸	48	47	47		- •	0000		
(3, 5, 5)	Sedoglavic and Smirnov, 202	1) ¹⁹ 58	58	58		••• ••			
(4, 4, 5)	(4, 4, 2) + (4, 4, 3)	64	63	63	0		46-01-04-1	AND SELECTION OF THE SERVICES	**************************************
(4, 5, 5)	(2, 5, 5) \otimes (2, 1, 1)	80	76	76		200	400 Best	600 800	1,00

Best rank known

Zastosowane usprawnienia

Syntetyczne dane

- Dekompozycja jest NP-trudna, ale jej odwrotność już jest trywialna
- Losujemy R wektorów u, v i w. Z nich tworzymy tensor

$$\mathcal{D} = \sum_{r=1}^{R} \mathbf{u}^{(r)} \otimes \mathbf{v}^{(r)} \otimes \mathbf{w}^{(r)}.$$

- Uzyskaliśmy zwykły zbiór treningowy do Supervised Learningu
- Więc dorzucamy do lossa błąd predykcji na tym zbiorze

W efekcie znacznie lepszy performance modelu niż trenując tylko na własnych grach lub tylko na danych syntetycznych

Zmiana bazy

- Przejście z kanonicznej na jakąś wylosowaną
- Losujemy na początku każdej gry
- Co mamy:
 - o odpowiadające sobie tensory (rząd, dekompozycja)
- Po co:
 - wincyj danych
 - które są przy okazji znacznie bardziej zróżnicowane

Zmiana kolejności operacji

Motywacja: sumujemy tensory rzędu jeden by uzyskać dekomponowany tensor

Operacja sumowania jest przemienna

Pomieszajmy więc kolejność zestawów wektorów → wincyj danych → profit

Jeden model do wszystkich typów mnożenia

- Maksymalne rozmiary: 5x5 mnożone przez 5x5
- Niech model uczy się wszystkich mniejszych zestawów!
- Dla mniejszych macierzy: padding zerami

W efekcie: lepszy performance niż modele trenowane tylko na jednym "typie" mnożenia macieży

Optymalizacja pod runtime

Szybciej. Na konkretnym sprzęcie

O co chodzi

- Różne sprzęty różnie liczą rzeczy
- Optymalizujmy pod czas obliczeń!

Jak to osiągnąć?

- Dodatkowy czynnik w nagrodzie
- minus czas wykonania na danym sprzęcie (razy jakiś hiperparametr)

Wyniki

on both devices

Insights

Istnieje znacznie więcej algorytmów mnożenia macierzy (efektywnego)

14000

Tyle algorytmów mnożenia macierzy 4x4 przez 4x4 wypluł AlphaTensor

Każdy o rzędzie 49

Mnożenie macierzy skośno-symetrycznych przez wektor

50%

O tyle nowy algorytm (asymptotycznie) usprawnia taką operację

The FBHHRBNRSSSHK-Algorithm

[Submitted on 8 Oct 2022 (v1), last revised 13 Oct 2022 (this version, v3)]

The FBHHRBNRSSSHK-Algorithm for Multiplication in $\mathbb{Z}_2^{5\times5}$ is still not the end of the story

Manuel Kauers, Jakob Moosbauer

Download PDF

In response to a recent Nature article which announced an algorithm for multiplying 5×5 -matrices over \mathbb{Z}_2 with only 96 multiplications, two fewer than the previous record, we present an algorithm that does the job with only 95 multiplications.

Subjects: Symbolic Computation (cs.SC); Computational Complexity (cs.CC)

Cite as: arXiv:2210.04045 [cs.SC]

(or arXiv:2210.04045v3 [cs.SC] for this version)

https://doi.org/10.48550/arXiv.2210.04045

Dziękuję za uwagę