Hanoi University of Science and Technology

GENERAL PHYSICS

(PHYS2520)

Fabculty of Engineering Physics

TROY IT Program

Lecturer: Asso. Prof. Dr. Nguyen Hoang Thoan

Lab. 1. Density of a metal or solid material

Student name:	•••••
HUST ID:	TROY ID:
Group:	Time/date:

I. Purpose of the experiment

- Learn to use length and mass measuring tools.
- Learn how to analys experimental data, and treat measuring errors.

II. Theoretical basis

Volume of a ball: $V = \frac{\pi}{6}D^3$

Volume of a solid cylinder: $V = \frac{\pi}{4}D^2H$

Volume of a hollow cylinder: $V = \frac{\pi}{4}(D^2 - d^2)H$

where D is the outside diameter; d is the inner diameter, and H the height.

Density of a substance is calculated from: $\rho = \frac{m}{V}$

where m is the mass and V is the volume of the object.

III. Experimental plan

3.1. Tools and Materials

- Screw gauge; Vernier caliper;
- Metal ball; solid/hollow cylinder;

3.2. Lab Procedure

- 1. Use a Panmer (Scraw Gauge) to measure the diameter of a metal ball; mass of the ball will be given. Write the obtained results on table 1.
- 2. Calculate volume and density of the ball;
- 3. Use a vernier caliper to measure the diameter of a **hollow** cylinder and a **solid** cylinder; and use a balance to measure the mass of them. Write the obtained results on table 2, and Table 3.
- 4. Calculate volume and density of the cylinders

IV. Experimental results and analysis

4.1. Volume and Mass Density of Metal – A Metal Ball

a) Use a Panme (Screw Gauge) to measure the diameter of a metal ball; and use a balance to measure the mass of the ball. Write the obtained results on table 1.

Table 1.

	Tool error of	f the Screw Gauge: $\Delta D_{tool} = \dots$
		Mass of the ball: $m = \dots \pm (g)$
No.	Diameter, D (mm)	$\Delta D \text{ (mm)}$
1		
2		
3		
4		
5		
	The everage \overline{D} =	$\overline{\Delta D}$ =

b) Diameter

Absolute uncertainty

$$\Delta D = \overline{\Delta D} + \Delta D_{tool} = \dots \pm \dots = \dots$$
 (mm)

Measuring results:

$$D = \dots \pm \dots \pm \dots \pmod{mm}$$

c) Volume of the ball

$$V = \frac{\pi}{6}D^3 = \dots \times 10^{-9} \text{ (mm}^3) = \dots \times 10^{-9} \text{ (m}^3)$$

+ Percentage uncertainty of volume *V*:

$$\delta_V = \frac{\Delta V}{V} = \frac{\Delta \pi}{\pi} + \frac{3\Delta D}{D} = \dots = \dots$$

+ absolute uncertainty volume *V*:

$$\Delta V = V \times \delta_V = \dots = \dots$$

d) Mass of the ball:

+ Mass:

$$m = \dots \pm 10^{-3} \text{ (kg)}$$

e) Mass density of the ball:

$$\rho = \frac{m}{v} = \dots (kg/m^3)$$

Estimate the error:

+ Percentage uncertainty of density ρ :

$$\delta_{
ho} = \frac{\Delta
ho}{
ho} = \frac{\Delta V}{V} + \frac{\Delta m}{m} = \delta_{V} + \frac{\Delta m}{m}$$

$$\delta_m =$$
 =

+ absolute uncertainty density ρ :

$$\delta \rho = \rho \times \\ \delta_{\rho} = \dots (kg/m^3)$$

Writing final results:

The average value of g measured for the entire experiment is:

$$\overline{\rho} = \dots \pm \dots \pm (kg/m^3)$$

4.2. Volume and Mass Density of a solid cylinder

a) Use a vernier caliper to measure the diameter and the height of a solid cylinder; and use a balance to measure the mass of the cylinder. Write the obtained results on table 2.

Table 2.

	Tool err	or of the Vernier Calip	ber: $\Delta D_{tool} = \Delta H_{tool}$	
		Mass of the sol	id cylinder: $m = \dots$	<u>±</u> (g)
No.	Diameter, D (mm)	ΔD (mm)	Height, H (mm)	ΔH (mm)
1				
2				
3				
4				
5				
	\overline{D} =	$\overline{\Delta D} = \dots$	H =	$\overline{\Delta H} = \dots$

b) Diameter and height

Absolute uncertainty of diameter and height

$$\Delta D = \overline{\Delta D} + \Delta D_{tool} = \dots \pm \dots \pm \dots$$
 (mm)

$$\Delta H = \overline{\Delta H} + \Delta H_{tool} = \dots \pm \dots \pm \dots$$
 (mm)

Measuring results:

$$D = \dots \pm \dots \pmod{mm}$$

$$H = \dots \pm \dots \pm \dots \pmod{mm}$$

c) Volume of the solid cylinder

$$V = \frac{\pi}{4}D^2H = \dots \times 10^{-9} \text{ (mm}^3) = \dots \times 10^{-9} \text{ (m}^3)$$

+ Percentage uncertainty of volume *V*:

$$\delta_V = \frac{\Delta V}{V} = \frac{\Delta \pi}{\pi} + \frac{2\Delta D}{D} + \frac{\Delta H}{H} = \dots = \dots$$

+ absolute uncertainty volume *V*:

$$\Delta V = V \times \delta_V = \dots \times 10^{-9} \, (\text{m}^3)$$

d) Mass of the solid cylinder:

+ Mass:

$$m = \dots \pm 10^{-3} \text{ (kg)}$$

d) Mass density of the solid cylinder:

$$\rho = \frac{m}{V} = \dots (kg/m^3)$$

Estimate the error of density:

+ Percentage uncertainty of density ρ :

$$\delta_{\rho} = \frac{\Delta \rho}{\rho} = \frac{\Delta V}{V} + \frac{\Delta m}{m} = \delta_{V} + \delta_{m} = \dots + \dots = \dots$$

+ absolute uncertainty density ρ :

$$\Delta \rho = \rho \times \delta_{\rho} = \dots (kg/m^3)$$

Writing final results:

The average value of density measured for the entire experiment is:

$$\overline{\rho} = \dots + \dots + \dots + (kg/m^3)$$

4.3. Volume and Mass Density of a hollow cylinder

a) Use a vernier caliper to measure the diameter and the height of a solid cylinder; and use a balance to measure the mass of the cylinder. Write the obtained results on table 3.

Table 3.

	Tool error of the Vernier Caliper: $\Delta D_{tool} = \Delta d_{tool} = \Delta H_{tool}$							
			Mass of the s	<mark>olid</mark> cylinder:	<i>m</i> =	± (g)		
No.	Outer Diameter	ΔD (mm)	Inner Diameter	Δd (mm)	Height	Л Ц (mm)		
INO.	D (mm)	ΔD (IIIII)	d (mm)	Δ <i>α</i> (IIIII)	H (mm)	$\Delta H \text{ (mm)}$		
1								
2								
3								
4								
5								
	\overline{D} =	$\overline{\Delta D}$ =	\overline{d} =	$\overline{\Delta d}$ =	\overline{H} =	$\overline{\Delta H}$ =		

b) Outer/inner diameters and height

Absolute uncertainty of diameter and height

$$\Delta D = \overline{\Delta D} + \Delta D_{tool} = \dots \pm \dots = \dots$$
 (mm)

$$\Delta H = \overline{\Delta H} + \Delta H_{tool} = \dots \pm \dots \pm \dots$$
 (mm)

Measuring results:

$$D = \dots \pm \dots \pmod{mm}$$

$$H = \dots \pm \dots \pm (mm)$$

c) Volume of the hollow cylinder

$$V = \frac{\pi}{4} (D^2 - d^2) H = \dots (mm^3) = \dots \times 10^{-9} (m^3)$$

+ Percentage uncertainty of volume *V*:

$$\delta_V = \frac{\Delta V}{V} = \frac{\Delta \pi}{\pi} + 2 \frac{D \cdot \Delta D + d \cdot \Delta d}{D^2 - d^2} + \frac{\Delta h}{h} = \dots$$

S										
o_V –	•••	•••	•••	•••	•••	••••	•••	•••	•••	• • • •

+ absolute uncertainty volume *V*:

$$\Delta V = V \times \delta_V = \dots = \dots$$

- d) Mass of the hollow cylinder:
 - + Mass:

$$m = \dots \pm \dots + 10^{-3} \text{ (kg)}$$

e) Mass density of the hollow cylinder:

$$\rho = \frac{m}{v} = \dots (kg/m^3)$$

Estimate the error of density:

+ Percentage uncertainty of density ρ :

$$\delta_{\rho} = \frac{\Delta \rho}{\rho} = \frac{\Delta V}{V} + \frac{\Delta m}{m} = \delta_{V} + \delta_{m} = \dots + \dots = \dots$$

+ Absolute uncertainty density ρ :

$$\Delta \rho = \rho \times \delta_{\rho} = \dots = (kg/m^3)$$

Writing final results:

The average value of density measured for the entire experiment is:

$$\overline{\rho} = \dots \pm \dots \pm (kg/m^3)$$

Hanoi University of Science and Technology

PHYSICAL SCIENCE (SCL223)

School of Engineering Physics

TROY BA Program Thoan

Lecturer: Asso. Prof. Dr. Nguyen Hoang

Lab. 2. Free fall

Student name:	•••••
HUST ID:	TROY ID:
Group:	Time/date:

I. Purpose of the experiment

- + Determine the value of free fall acceleration by experiment.
- + Practice skills in using vibrators and digital time meters to measure small periods of time thereby reinforcing basic operations of experiments and processing results with calculations and graphs.
- + Consolidate knowledge about free fall.

II. Theoretical basis

- Free fall is falling only under the influence of gravity.
- Characteristic:
 - + Vertical direction, from top to bottom.
- + At a certain place on Earth and near the ground, all objects fall freely with the same acceleration g. (A contant acceleration motion)
- Formula to calculate free fall acceleration: $\mathbf{s} = \frac{1}{2}$. \mathbf{g} . \mathbf{t}^2

In which, s is distance traveled by a freely falling object (m). t is time that the object falls freely (s) between two points.

- Falling velocity at time t: $v = \frac{2s}{t}$

III. Experimental plan

3.1. Laboratory instruments

- + Digital timer.
- + Free fall acceleration measuring device.
- + Electromagnet N is installed on the top of the holder.
- + Optical sensor port Q is installed below, at a distance s ~ 0.60 m from N

3.2. Experimental process

- + Adjust the base screws and observe plumb bob D so that the two round holes of Q and N are coaxial.
- + Place the falling object V (metal pillar) attached to the electromagnet N.
- + Press the switch button R to let the cylinder fall, and at the same time start the meter.
- + Read the falling time results on the clock.
- + Repeat the operation with other distances, for example of 0.200; 0.300; 0.400; 0.500; 0.600 m.

3.3. Record data

- + Read the time measurements t corresponding to different distances s and create an appropriate data table.
- + Data processing.
 - Calculate values for data table.
 - Draw a graph of v versus t and s versus t^2 .
 - Comment on the obtained graphs.

IV. Experimental results

Table 1.

No.	Distance	Falling time t (s)		Averag	Δt	t^2	g	Δg	ν	
	s (m)	No. 1	No. 2	No. 3	e time	(s)	(s^2)	g (m/s ²)	Δg (m/s ²)	(m/s)
					\overline{t} (s)					
1										
2										
3										
4										
•										
5										

4.1. Graph

a) Based on the results in the Table 1, choose the appropriate scale on the vertical and horizontal axes to draw the graph $s = s(t^2)$.

	Draw tl	he straig	tht line	of bes	st fit.
--	---------	-----------	----------	--------	---------

Determine the gradient of this line. gradient =

Because we have: $s = \frac{1}{2}$. g. $t^2 = s(t^2)$. So: the gradient $= \frac{1}{2}$. g.

Then, $g = 2 \times \text{gradient} = \dots (\text{m/s}^2)$

b) Determine value of velocity when it's passing through

Draw the graph v = v(t) based on the data in the table, to once again verify the properties of free fall motion.

- Draw a straight line best fit to the experimental data, then give a conclusion about the dependence of velocity v on time t.

4.2. Determine errors and average values a) The average value of g and error Δg after 3 measurements (at the same distance) are determined as follows:
+ avergae value of g: $\overline{g} = \frac{2s}{(\overline{t})^2}$
+ Percentage uncertainty of g: $\delta_g = \frac{\Delta g}{g} = \frac{\Delta s}{s} + \frac{2\Delta t}{t}$
+ where: $\Delta s = 2\Delta s_{d.cu} = \dots (m)$
+ error (absolute uncertainty): $\Delta g = \overline{g} \times \delta_g$
Then write coresponding results in Table 1.
b) The average value of g measured for the entire experiment is: $\overline{g} = \frac{g_1 + g_2 + \dots + g_n}{n} = \dots \qquad (m/s^2)$
The average value of Δg measured for the entire experiment is:
$\frac{\overline{\Delta g}}{n} = \frac{\Delta g_1 + \Delta g_2 + \dots + \Delta g_n}{n} = \dots = \dots (m/s^2)$
The results of the free fall acceleration measurement are:
$g = \overline{g} \pm \overline{\Delta g} = \dots \pm \dots \pm \dots \pm \dots \pm \dots \pm \dots $ (m/s ²)
Compare the obtained value with g-value obtained in section 4.1.(a).