Discrete Mathematics: Lecture 15

- Last time:
 - Chap 5.3: Recursive definitions and structural induction
- Today:
 - Chap 5.4: Recursive algorithms
 - Course review

Review of last time

- Recursively defined functions
- A property of Fibonacci numbers and its application in analysis of time complexity of the Euclidean algorithm: whenever $n \geq 3$, $f_n > \alpha^{n-2}$, where $\alpha = (1 + \sqrt{5})/2$
- Recursively defined sets and structure
- Recursively defined functions on recursively defined sets
- Structural induction

Chap 4.4: Recursive algorithms

- Definition: An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.
- Examples
 - Computing n! (how the algorithm works)
 - Modular exponentiation
 - Computing gcd(a,b)
 - Binary search

Proving recursive algorithms correct

- Mathematical induction can be used to prove that a recursive algorithm is correct, that is, it produces the desired output for all possible input values.
- Example: prove the recursive algorithm for modular exponentiation is correct.

Recursion and iteration

- We can devise a recursive algorithm to evaluate a recursively defined function.
- We can also start with function values at base cases and successively apply the recursive definition to evaluate function values at larger integers. Such a procedure is called iterative.
- Often, an iterative approach requires much less computation than the recursive approach.
- Example: computing Fibonacci numbers linear versus exponential number of additions
- It is sometimes preferable to use a recursive procedure even if it is less efficient than an iterative procedure, since it is easier to write a recursive procedure

An recursive sorting algorithm: The merge sort

```
procedure mergesort (L = a_1, a_2, \dots, a_n) if n > 1 then m := \lfloor n/2 \rfloor L_1 := a_1, a_2, \dots, a_m L_2 := a_{m+1}, a_{m+2}, \dots, a_n L := merge(mergesort(L_1), mergesort(L_2))
```

```
procedure \operatorname{merge}(L_1, L_2:\operatorname{sorted\ lists}) L:=\operatorname{empty\ list} while both L_1 and L_2 are nonempty remove the smaller one of the first elements of L_1 and L_2 from its list and put it at the end of L if one list is empty then append the other list to L
```

Example: merge 2,3,5,6 and 1,4

Time complexity of the merge sort

- Lemma: Two sorted lists with m elements and n elements can be merged into a sorted list using $\leq m + n 1$ comparisons.
- Theorem: The number of comparisons needed to merge sort a list with n elements is $O(n \log n)$.

Course review: Propositional logic

- Propositional connectives
 - negation, conjunction, disjunction, implication, bi-implication
 - converse (逆命题), contrapositive, and inverse (否命题) of implication
 - truth table
- tautology, contradiction, contingency; valid, satisfiable, consistent
- Propositional equivalences
 - proof using truth table
 - proof using basic equivalences
- Translating sentences to logical formulas

Predicate logic

- Predicates: propositional functions
- Domains and quantifiers
- Logical equivalences
 - negating quantified expressions
- Translating sentences to quantified formulas

Rules of inference

- Proofs
 - arguments: a sequence of statements
 - valid arguments
- Rules of inference
 - modus ponens, modus tollens, hypothetical syllogism, disjunctive syllogism, addition, simplification, conjunction
 - universal instantiation, universal generalization, existential instantiation (must use a constant symbol not used before), existential generalization
 - using rules to construct valid arguments

Sets and functions

- Basic concepts of sets
 - empty set, subset, proper subset, power set, Cartesian product
- Set operations
 - union, disjoint, intersection, difference, complement
 - proving set identities: using basic set identities, using definition
- Basic concepts of functions
 - injection, surjection, bijection
 - inverse functions, composition of functions

Algorithms and integers

- Complexity of algorithms
 - measured in terms of the number of main operations
 - Big-O/ Ω/Θ notation
 - $(\log n)^c$, n^{d_1} , n^{d_2} , b_1^n , b_2^n , n!, where c>0, $d_2>d_1>0$, $b_2>b_1>1$
- Algorithms for integers
 - ullet Base b representation of integers
 - Euclidean algorithm

Basics of number theory

- divisibility and modular arithmetic
- ullet express gcd(a,b) as a linear combination of a and b
- solve linear congruence $ax \equiv b \pmod{m}$
- using Chinese reminder theorem to solve the system $x \equiv a_i \pmod{m_i}$, $i = 1, \dots, n$
 - m_1, \ldots, m_n have to be pairwise relatively prime
 - otherwise, get another system so that $lcm(m_1, \ldots, m_n) = m'_1 \cdot \ldots \cdot m'_n$
- Format's little theorem

Induction and recursion

- simple induction, strong induction, well-ordering property
- recursive definitions, structural induction, recursive algorithms