

Etude d'un manège

Soit la nacelle de manège ci-contre Elle est composée des éléments suivants :

- l'ensemble (0) est fixe, c'est le bâti lié au repère R_0 ($0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}$)
- l'ensemble (1) lié au repère R_1 ($O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}$) translate et tourne autour de l'axe O $\overrightarrow{z_0}$ par rapport au bâti (0) avec : $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1})$ et $\overrightarrow{OA} = \lambda(t)$ $\overrightarrow{z_0}$
- l'ensemble (2) lié au repère R_2 (B, $\overrightarrow{x_2}$, $\overrightarrow{y_2}$, $\overrightarrow{z_2}$) tourne autour de l'axe B $\overrightarrow{x_1}$ par rapport à

l'ensemble (1) avec : $\theta = (\overrightarrow{y_1}, \overrightarrow{y_2})$ et $\overrightarrow{AB} = b.\overrightarrow{y_1}$

- l'ensemble (3) lié au repère R_3 (C, $\overrightarrow{x_3}$, $\overrightarrow{y_3}$, $\overrightarrow{z_3}$) tourne autour de l'axe C $\overrightarrow{z_2}$ par rapport à l'ensemble (2) avec : $\phi = (\overrightarrow{y_2}, \overrightarrow{y_3})$ et $\overrightarrow{BC} = c$. $\overrightarrow{z_2}$

- le point D est à la périphérie de (3) tel que $\overrightarrow{CD} = d. \overrightarrow{x_3}$

- 1) Représenter les figures des rotations planes (changements de repères)
- 2) Exprimez $\ \overrightarrow{\Omega}_{R_1/R_0}$; $\ \overrightarrow{\Omega}_{R_2/R_1}$, $\ \overrightarrow{\Omega}_{R_3/R_2}$, $\ \overrightarrow{\Omega}_{R_2/R_0}$ et $\ \overrightarrow{\Omega}_{R_3/R_0}$
- 3) Exprimez $\vec{V}_{A\ 1/0}$ par dérivation . *Vous l'exprimerez dans la base* $(\vec{x_0}, \vec{y_0}, \vec{z_0})$
- 4) Exprimez $\vec{V}_{B\ 1/0}$ par changement de point . *Vous l'exprimerez dans la base* $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 5) Exprimez $\vec{V}_{B\ 1/0}$ par dérivation. . Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 6) Exprimez $\vec{V}_{C\ 2/0}$ par changement de point . . Vous l'exprimerez dans la base ($\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$)
- 7) Exprimez $\vec{V}_{C\,2/0}$ par dérivation . . Vous l'exprimerez dans la base $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 8) Exprimez $\vec{V}_{D \ 3/0}$ par changement de point . *Vous l'exprimerez dans la base* $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 9) Exprimez $\vec{V}_{D \ 3/0}$ par dérivation . . Vous l'exprimerez dans la base $(\vec{x_1}, \vec{y_1}, \vec{z_1})$
- 10) Exprimez $\vec{I}_{B\ 1/0}$, . . . Vous l'exprimerez dans la base ($\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$)