Cyclistic Case Study Nov21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for November 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                                 – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                                   0.3.5
                        ✓ purrr
## ✓ tibble 3.1.8

✓ dplyr

                                   1.0.10
## ✔ tidyr
             1.2.1

✓ stringr 1.4.1

           2.1.3
                        ✓ forcats 0.5.2
## ✓ readr
## — Conflicts -
                                                           – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                     masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
   The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Nov21 <- read_csv("C:/Users/theby/Documents/202111-divvy-tripdata.csv")
```

```
## Rows: 359978 Columns: 13
## — Column specification
## Delimiter: ","
## chr (9): ride_id, rideable_type, started_at, ended_at, start_station_name, s...
## dbl (4): start_lat, start_lng, end_lat, end_lng
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
View(Nov21)
 colnames (Nov21)
      [1] "ride_id"
                                   "rideable_type"
                                                           "started_at"
      [4] "ended_at"
                                   "start_station_name"
 ##
                                                           "start_station_id"
     [7] "end station name"
                                                           "start lat"
                                   "end station id"
 ## [10] "start lng"
                                   "end lat"
                                                           "end lng"
 ## [13] "member_casual"
 nrow(Nov21)
 ## [1] 359978
 dim(Nov21)
 ## [1] 359978
                      13
 head(Nov21)
 ## # A tibble: 6 × 13
 ##
       ride_id
                        ridea...¹ start...² ended...³ start...⁴ start...⁵ end_s...6 end_s...7 start...8
 ##
                        <chr>
                                 <chr>
                                           <chr>
                                                    <chr>
                                                              <chr>
                                                                       <chr>
                                                                                <chr>
                                                                                            <dbl>
 ## 1 7C00A93E10556... electr... 11/27/... 11/27/... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                <NA>
                                                                                             41.9
 ## 2 90854840DFD50... electr... 11/27/... 11/27/... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                <NA>
                                                                                             42.0
 ## 3 0A7D10CDD1440... electr... 11/26/... 11/26/... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                <NA>
                                                                                             42.0
 ## 4 2F3BE33085BCF... electr... 11/27/... 11/27/... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                <NA>
                                                                                             41.9
 ## 5 D67B4781A1992... electr... 11/26/... 11/26/... <NA>
                                                              <NA>
                                                                       <NA>
                                                                                <NA>
                                                                                             41.9
 ## 6 02F85C2C3C5F7... electr... 11/26/... 11/26/... Michig... 13042
                                                                       <NA>
                                                                                <NA>
                                                                                             41.9
 ## # ... with 4 more variables: start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
         member casual <chr>, and abbreviated variable names ¹rideable type,
         <sup>2</sup>started at, <sup>3</sup>ended at, <sup>4</sup>start station name, <sup>5</sup>start station id,
 ## #
         <sup>6</sup>end station name, <sup>7</sup>end station id, <sup>8</sup>start lat
 ## #
 tail(Nov21)
 ## # A tibble: 6 × 13
 ##
       ride id
                        ridea...¹ start...² ended...³ start...⁴ start...⁵ end s...⁶ end s...⁶ start...௧
 ##
                                <chr>
                                           <chr> <chr>
                                                                                            <dbl>
                        <chr>
 ## 1 2E383B4D2965B... electr... 11/4/2... 11/4/2... Cityfr... 13427
                                                                       <NA>
                                                                                <NA>
                                                                                             41.9
```

```
## 2 E00E9F3500D69... electr... 11/29/... 11/29/... Logan ... TA1308... <NA>
                                                                            <NA>
                                                                                        41.9
## 3 8EAA66CE314E5... electr... 11/3/2... 11/3/2... Logan ... TA1308... <NA>
                                                                            <NA>
                                                                                        41.9
## 4 36C2DC8BB1E13... electr... 11/2/2... 11/2/2... Logan ... TA1308... <NA>
                                                                            <NA>
                                                                                        41.9
## 5 8E42FE5C67DF6... electr... 11/10/... 11/10/... Logan ... TA1308... <NA>
                                                                            <NA>
                                                                                        41.9
## 6 4F15069E2D251... electr... 11/30/... 11/30/... Ogden ... TA1305... <NA>
                                                                                        41.9
## # ... with 4 more variables: start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member_casual <chr>, and abbreviated variable names ¹rideable_type,
## #
        2started_at, 3ended_at, 4start_station_name, 5start_station_id,
## #
        6end_station_name, 7end_station_id, 8start_lat
```

```
summary(Nov21)
```

```
##
     ride id
                     rideable_type
                                        started_at
                                                           ended at
##
   Length:359978
                     Length: 359978
                                       Length:359978
                                                         Length: 359978
   Class :character Class :character
##
                                       Class :character
                                                         Class : character
##
   Mode :character Mode :character
                                       Mode :character
                                                         Mode :character
##
##
##
##
##
   start station name start station id
                                      end station name
                                                         end station id
##
   Length:359978
                   Length:359978
                                       Length:359978
                                                         Length: 359978
   Class :character Class :character
                                       Class :character
                                                         Class :character
##
##
   Mode :character Mode :character
                                      Mode :character
                                                         Mode :character
##
##
##
##
##
     start_lat
                    start_lng
                                     end lat
                                                     end lng
                  Min. :-87.84
                                  Min. :41.39
##
   Min. :41.65
                                                 Min. :-88.97
##
   1st Qu.:41.88
                  1st Qu.:-87.66
                                  1st Qu.:41.88
                                                  1st Qu.:-87.66
##
   Median :41.89
                  Median :-87.64
                                  Median :41.89
                                                  Median :-87.64
##
   Mean :41.89
                  Mean :-87.65
                                  Mean :41.89
                                                 Mean :-87.65
##
   3rd Qu.:41.93 3rd Qu.:-87.63
                                  3rd Qu.:41.93 3rd Qu.:-87.63
##
   Max. :42.07 Max. :-87.53
                                  Max. :42.12 Max. :-87.53
                                  NA's :191
                                                 NA's :191
##
##
   member casual
##
   Length: 359978
##
   Class :character
   Mode :character
##
##
##
##
##
```

str(Nov21)

```
## spc tbl [359,978 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                        : chr [1:359978] "7C00A93E10556E47" "90854840DFD508BA" "0A7D10CDD144061C" "2F3BE33085BCFF
## $ ride_id
02" ...
##
   $ rideable type
                       : chr [1:359978] "electric bike" "electric bike" "electric bike" "electric bike" ...
                        : chr [1:359978] "11/27/2021 13:27" "11/27/2021 13:38" "11/26/2021 22:03" "11/27/2021 9:5
## $ started at
6" ...
## $ ended_at
                        : chr [1:359978] "11/27/2021 13:46" "11/27/2021 13:56" "11/26/2021 22:05" "11/27/2021 10:
01"
##
    $ start_station_name: chr [1:359978] NA NA NA NA ...
   $ start station id : chr [1:359978] NA NA NA NA ...
##
   $ end station name : chr [1:359978] NA NA NA NA ...
   $ end_station_id : chr [1:359978] NA NA NA NA ..
##
   $ start_lat
                       : num [1:359978] 41.9 42 42 41.9 41.9 ...
                       : num [1:359978] -87.7 -87.7 -87.7 -87.8 -87.6 ...
##
    $ start_lng
                        : num [1:359978] 42 41.9 42 41.9 41.9 ...
##
    $ end lat
                        : num [1:359978] -87.7 -87.7 -87.7 -87.8 -87.6 ...
##
    $ end lng
                       : chr [1:359978] "casual" "casual" "casual" "casual" ...
##
    $ member_casual
##
    - attr(*, "spec")=
##
    .. cols(
##
     .. ride_id = col_character(),
##
          rideable_type = col_character(),
     . .
##
          started_at = col_character(),
     . .
##
          ended_at = col_character(),
##
          start station name = col_character(),
     . .
##
          start_station_id = col_character(),
     . .
##
          end_station_name = col_character(),
     . .
##
          end_station_id = col_character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member_casual = col_character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
```

Columns started_at and ended_at need to be convert from character data type to date data type. Str() syntax confirms changes.

```
Nov21$started_at <- mdy_hm(Nov21$started_at)
Nov21$ended_at <- mdy_hm(Nov21$ended_at)
str(Nov21)</pre>
```

```
## spc_tbl_[359,978 \times 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:359978] "7C00A93E10556E47" "90854840DFD508BA" "0A7D10CDD144061C" "2F3BE33085BCFF
## $ ride_id
02"
                       : chr [1:359978] "electric bike" "electric bike" "electric bike" ...
## $ rideable type
                       : POSIXct[1:359978], format: "2021-11-27 13:27:00" "2021-11-27 13:38:00" ...
##
   $ started at
                       : POSIXct[1:359978], format: "2021-11-27 13:46:00" "2021-11-27 13:56:00" ...
##
    $ ended at
##
   $ start station name: chr [1:359978] NA NA NA NA ...
## $ start_station_id : chr [1:359978] NA NA NA NA ...
## $ end station name : chr [1:359978] NA NA NA NA ...
## $ end_station_id : chr [1:359978] NA NA NA NA ...
##
   $ start lat
                     : num [1:359978] 41.9 42 42 41.9 41.9 ...
##
    $ start_lng
                       : num [1:359978] -87.7 -87.7 -87.7 -87.8 -87.6 ...
##
    $ end_lat
                       : num [1:359978] 42 41.9 42 41.9 41.9 ...
##
    $ end_lng
                       : num [1:359978] -87.7 -87.7 -87.8 -87.6 ...
                       : chr [1:359978] "casual" "casual" "casual" "casual" ...
##
    $ member casual
    - attr(*, "spec")=
##
##
     .. cols(
##
         ride_id = col_character(),
     . .
         rideable_type = col_character(),
##
     . .
##
         started_at = col_character(),
     . .
##
         ended at = col character(),
##
         start station name = col character(),
     . .
##
         start station id = col character(),
     . .
##
         end_station_name = col_character(),
     . .
##
         end station id = col character(),
     . .
##
          start lat = col double(),
     . .
##
          start lng = col double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
     . .
##
         member_casual = col_character()
     . .
##
     ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
Nov21$date <- as.Date(Nov21$started_at)
Nov21$month <- format(as.Date(Nov21$date), "%m")
Nov21$day <- format(as.Date(Nov21$date), "%d")
Nov21$year <- format(as.Date(Nov21$date), "%Y")
Nov21$year <- format(as.Date(Nov21$date), "%A")
Nov21$day_of_week <- format(as.Date(Nov21$date), "%A")
Nov21$ride_length <- difftime(Nov21$ended_at,Nov21$started_at)
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Nov21$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
Nov21$ride_length <- as.numeric(as.character(Nov21$ride_length))
is.numeric(Nov21$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Nov21 <- na.omit(Nov21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Nov21 <- subset(Nov21, nchar(as.character(ride_id)) == 16)
```

Remove rows with the ride_length less than 1 minute.

```
Nov21 <- subset (Nov21, ride_length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride length.

```
mean(Nov21$ride_length)
 ## [1] 853.4811
 median(Nov21$ride_length)
 ## [1] 540
 max(Nov21$ride_length)
 ## [1] 1336800
 min(Nov21$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(Nov21$ride_length)
 ##
         Min.
                 1st Qu.
                            Median
                                         Mean
                                                 3rd Qu.
                                                               Max.
 ##
         60.0
                   300.0
                              540.0
                                        853.5
                                                   900.0 1336800.0
Compare the members and casual users
 aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = mean)
      Nov21$member_casual Nov21$ride_length
 ##
 ## 1
                    casual
                                    1356.5661
 ## 2
                    member
                                     663.4331
 aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = median)
 ##
      {\tt Nov21\$member\_casual~Nov21\$ride\_length}
 ## 1
                    casual
                                           720
 ## 2
                    member
                                           480
 aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = max)
 ##
      Nov21$member_casual Nov21$ride_length
 ## 1
                    casual
                                      1336800
 ## 2
                                        87600
                    member
 aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = min)
 ##
      Nov21$member_casual Nov21$ride_length
 ## 1
                    casual
 ## 2
                    member
                                            60
Aggregate the average ride length by each day of the week for members and users.
```

aggregate(Nov21\$ride_length ~ Nov21\$member_casual + Nov21\$day_of_week, FUN = mean)

```
##
      Nov21$member_casual Nov21$day_of_week Nov21$ride_length
## 1
                                    Friday
                                                  1304.6541
                   casual
## 2
                   member
                                     Friday
                                                     641.7449
## 3
                   casual
                                    Monday
                                                    1478.2245
## 4
                                    Monday
                   member
                                                    652.1121
## 5
                                                    1486.5781
                   casual
                                   Saturday
## 6
                   member
                                   Saturday
                                                     733.8206
## 7
                                                    1609.6220
                   casual
                                    Sunday
## 8
                   member
                                     Sunday
                                                    738.6727
                                   Thursday
## 9
                   casual
                                                    1280.3687
## 10
                                                    637.6955
                   member
                                   Thursday
## 11
                   casual
                                    Tuesday
                                                    1065.9940
## 12
                   member
                                    Tuesday
                                                     635.2880
## 13
                   casual
                                  Wednesday
                                                    1102.2266
## 14
                                                    649.2026
                   member
                                  Wednesday
```

Sort the days of the week in order.

```
Nov21$day_of_week <- ordered(Nov21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Nov21$ride_length ~ Nov21$member_casual + Nov21$day_of_week, FUN = mean)
head(x)</pre>
```

```
##
     Nov21$member_casual Nov21$day_of_week Nov21$ride_length
## 1
                  casual
                                    Sunday
                                                    1609.6220
## 2
                  member
                                     Sunday
                                                     738.6727
## 3
                  casual
                                     Monday
                                                    1478.2245
## 4
                  member
                                    Monday
                                                     652.1121
## 5
                                   Tuesday
                  casual
                                                    1065.9940
## 6
                  member
                                   Tuesday
                                                     635.2880
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                      12170
                                                        1610.
                         1
## 2 casual
                          2
                                       9327
                                                        1478.
## 3 casual
                         3
                                      10050
                                                        1066.
## 4 casual
                          4
                                       8668
                                                        1102.
## 5 casual
                                       6890
                                                        1280.
## 6 casual
                          6
                                       8152
                                                        1305.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Nov21$member_casual)
```

```
##
## casual member
## 69553 184117
```

```
table(Nov21$rideable_type)
```

```
## classic_bike docked_bike electric_bike
## 152440 7536 93694
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

```
Nov21 %>%
  mutate(day_of_week) %>%
  group_by(member_casual,day_of_week) %>%
  summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge")+
labs(x = "Day of Week",
    y= "Number of Rides",
    title= "Days of the Week")
```


Wednesday Thursday

Day of Week

Plot the duration of the ride by user type during the week.

Monday

Sunday

Tuesday

```
Nov21 %>%

mutate(day_of_week) %>%

group_by(member_casual, day_of_week) %>%

summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%

arrange(member_casual, day_of_week) %>%

ggplot(aes(x = day_of_week, y = average_duration, fill = member_casual)) +

geom_col(position = "dodge") +

labs(x = "Day of Week",

y = "Average Duration in Seconds",

title= "Days of the Week vs Average Duration")
```

Friday

Saturday

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Nov21$day_of_week,Nov21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                        casual 12170
## 2
          Monday
                        casual 9327
         Tuesday
## 3
                        casual 10050
## 4
       Wednesday
                        casual 8668
## 5
       Thursday
                        casual 6890
## 6
                        casual 8152
          Friday
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends 20000 15000 15000 The Week 20000 Saturday Day Of The Week

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Nov21$rideable_type,Nov21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
                                   Freq
## 1 classic bike
                         casual
                                  31532
## 2
      docked bike
                          casual
                                   7536
## 3 electric_bike
                         casual 30485
## 4 classic bike
                         member 120908
## 5
      docked bike
                          member
## 6 electric_bike
                                 63209
                         member
```

Plot for bike user vs bike type.

Riders and Ride Types

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Nov21, "Nov21.csv")