Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No. : 1/9

N-Channel Enhancement Mode Power MOSFET

MTB7D0N06RJ3

Features

- Low On Resistance
- Simple Drive Requirement
- Low On-resistance
- Fast Switching Characteristic
- RoHS compliant package

BVDSS	60V
ID@VGS=10V, Tc=25°C	53A
ID@VGS=10V, TA=25°C	12A
RDS(ON)@VGS=10V, ID=12A	6 m Ω
RDS(ON)@VGS=4.5V, ID=12A	9.5mΩ

Equivalent Circuit

Outline

Ordering Information

Device	Package	Shipping	
MTB7D0N06RJ3-0-T3-G	TO-252 (Pb-free lead plating and halogen-free package)	2500 pcs / Tape & Reel	
1 1 1 1	Environment friendly grade : S for RoHS compliant product green compound products	ts, G for RoHS compliant and	
	- Packing spec, T3: 2500 pcs / tape & reel, 13" reel		
	— Product name		

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No.: 2/9

Absolute Maximum Ratings (TA=25°C)

Parameter	Symbol	Limits	Unit		
Drain-Source Voltage				60	V
Gate-Source Voltage			Vgs	±20	V
Continuous Drain Current	t @ V _G s=10V, T _C =25°C	*a		53	
Continuous Drain Current	: @ V _G s=10V, T _C =100°C	*a	ID	33	
Continuous Drain Current	: @ V _{GS} =10V, T _A =25°C	*b	ID	12	A
Continuous Drain Current	: @ V _{GS} =10V, T _A =70°C	*b		9.6	
Pulsed Drain Current		*c	Idm	214	
Continuous Body Diode Forward Current @ Ta=25°C				10 40	
Pulsed Body Diode Forward Current @ Ta=25°C					
Avalanche Current @ L=0	Ias	25			
Avalanche Energy @ L=0	.5mH		Eas	56	mJ
	Tc=25°C	*a		50	W
Total Power Dissipation	Tc=100°C	*a	P_{D}	20	
	T _A =25°C	*b	PD	2.5	
	T _A =70°C	*b		1	
Operating Junction and Storage Temperature Range			TJ, Tstg	-55~+150	°C

Thermal Data

Parameter	Symbol	Steady State	Unit
Thermal Resistance, Junction-to-case	RөJC	2.5	0 <i>C/W</i>
Thermal Resistance, Junction-to-ambient *b	RөJA	50	°C/W

Note:

^{*}a. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

^{*}b. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2 oz. copper, in a still air environment with T_A=25°C. The power dissipation P_{DSM} is based on R_{θJA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

^{*}c. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and low duty cycles to keep initial T_J=25°C.

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No.: 3/9

Electrical Characteristics (TA=25°C, unless otherwise specified)

Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
Static							
BV _{DSS}	60	-	-	V	V _{GS} =0V, I _D =250μA		
V _{GS(th)}	1	-	2.5] v	V _{DS} =V _{GS} , I _D =250μA		
GFS	-	21	-	S	V _{DS} =5V, I _D =10A		
I _{GSS}	-	-	±100	nA	$V_{GS}=\pm20V, V_{DS}=0V$		
Idss	-	-	1	μΑ	V_{DS} =48V, V_{GS} =0V		
Prayour	-	6	8	mΩ	$V_{GS}=10V, I_{D}=12A$		
Rds(on)	-	9.5	13.5	111 2 2	V _{GS} =4.5V, I _D =12A		
Dynamic							
Ciss	-	2333	-				
Coss	-	338	-	pF	V_{DS} =30V, V_{GS} =0V, f=1MHz		
Crss	-	37	-				
Rg	-	2	-	Ω	f=1MHz		
Qg *1,2	-	37	-				
Qgs *1,2	-	9	-	nC	V _{DS} =48V, I _D =12A, V _{GS} =10V		
Qgd *1, 2	-	8	-				
t _{d(ON)} *1,2	-	20	-				
tr *1, 2	-	19	-	ns	Vpc-20V Ip-12A Vcc-10V Pcc-20		
td(OFF) *1, 2	-	62	-	113	$V_{DS}=30V$, $I_{D}=12A$, $V_{GS}=10V$, $R_{GS}=3\Omega$		
t _f *1, 2	-	13	-				
Source-Drain	Diode						
V _{SD} *1	-	0.8	1.2	V	$I_S=10A, V_{GS}=0V$		
trr	-	24	-	ns	$-I_F=10A$, $dI_F/dt=100A/\mu s$		
Qrr	-	19	-	nC	- 11-10/A, α11/αι-100/A/μ5		

Note

^{*1.} Pulse Test : Pulse Width \leq 300µs, Duty Cycle \leq 2%

^{*2.} Independent of operating temperature

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No. : 4/9

Typical Characteristics

Typical Output Characteristics

Static Drain-Source On-State resistance vs Drain Current

Static Drain-Source On-State Resistance vs Gate-Source Voltage

Breakdown Voltage vs Ambient Temperature

Body Diode Current vs Source-Drain Voltage

Drain-Source On-State Resistance vs Junction Temperature

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No. : 5/9

Typical Characteristics (Cont.)

Capacitance vs Drain-to-Source Voltage

Forward Transfer Admittance vs Drain Current

Maximum Safe Operating Area

Threshold Voltage vs Junction Temperature

Gate Charge Characteristics

Maximum Drain Current vs Junction Temperature

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No.: 6/9

Typical Characteristics (Cont.)

Single Pulse Power Rating, Junction to Ambient

Transient Thermal Response Curves

Recommended soldering footprint

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No.: 7/9

Reel Dimension

Carrier Tape Dimension

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No.: 8/9

Recommended wave soldering condition

Product	Peak Temperature	Soldering Time		
Pb-free devices	260 +0/-5 °C	5 +1/-1 seconds		

Recommended temperature profile for IR reflow

Profile feature	Sn-Pb eutectic Assembly	Pb-free Assembly		
Average ramp-up rate (Tsmax to Tp)	3°C/second max.	3°C/second max.		
Preheat				
-Temperature Min(Ts min)	100°C	150°C		
-Temperature Max(Ts max)	150°C	200°C		
-Time(ts min to ts max)	60-120 seconds	60-180 seconds		
Time maintained above:				
−Temperature (T∟)	183°C	217°C		
– Time (t∟)	60-150 seconds	60-150 seconds		
Peak Temperature(T _P)	240 +0/-5 °C	260 +0/-5 °C		
Time within 5°C of actual peak temperature(tp)	10-30 seconds	20-40 seconds		
Ramp down rate	6°C/second max.	6°C/second max.		
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.		

Note: All temperatures refer to topside of the package, measured on the package body surface.

Spec. No. : C034J3 Issued Date : 2017.10.31 Revised Date :2022.07.18

Page No.: 9/9

TO-252 Dimension

3-Lead TO-252 Plastic Surface Mount Package CYStek Package Code: J3 Date Code(counting from left to right):

1st code: year code, the last digit of Christian year

 2^{nd} code : month code, Jan \rightarrow A, Feb \rightarrow B, Mar \rightarrow C, Apr \rightarrow D May \rightarrow E, Jun \rightarrow F, Jul \rightarrow G, Aug \rightarrow H, Sep \rightarrow J,

4.Drain

 $Oct \rightarrow K$, $Nov \rightarrow L$, $Dec \rightarrow M$

 3^{rd} and 4^{th} codes : production serial number, $01\sim99$

DIM	Inches		Millimeters		DIM	Inches		Millimeters	
DIIVI	Min.	Max.	Min.	Max.	DIM	Min.	Max.	Min.	Max.
Α	0.087	0.094	2.200	2.400	L	0.382	0.406	9.712	10.312
A1	0.000	0.005	0.000	0.127	L1	0.114	REF	2.900	REF
b	0.025	0.030	0.635	0.770	L2	0.055	0.067	1.400	1.700
С	0.018	0.023	0.460	0.580	L3	0.063	REF	1.600	REF
D	0.256	0.264	6.500	6.700	L4	0.024	0.039	0.600	1.000
D1	0.201	0.215	5.100	5.460	Ф	0.043	0.051	1.100	1.300
D2	0.190	REF	4.830	REF	θ	0°	8°	0°	8°
Е	0.236	0.244	6.000	6.200	h	0.000	0.012	0.000	0.300
е	0.086	0.094	2.186	2.386	V	0.207	REF	5.250	REF

Notes: 1.Controlling dimension: millimeters.

2. Maximum lead thickness includes lead finish thickness, and minimum lead thickness is the minimum thickness of base material.

3.If there is any question with packing specification or packing method, please contact your local CYStek sales office.

Material:

• Lead : Pure tin plated.

• Mold Compound: Epoxy resin family, flammability solid burning class: UL94V-0.

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of CYStek.
- CYStek reserves the right to make changes to its products without notice.
- CYStek semiconductor products are not warranted to be suitable for use in Life-Support Applications, or systems.
- CYStek assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.