

EXERCICE D'ORAL

ELECTROCINETIQUE

-EXERCICE 3.3-

• ENONCE :

« Circuits R-C et R-L en parallèle »

Le condensateur C étant initialement déchargé, on ferme l'interrupteur K à l'instant t=0.

- 1) Déterminer les courants $i_1(t)$ et $i_2(t)$, puis tracer les courbes correspondantes.
- 2) A quel instant aura-t-on $i_1 = i_2$?
- L'interrupteur étant toujours fermé, on attend la fin de l'établissement du régime permanent ; à un instant pris comme nouvelle origine des temps t', on ouvre l'interrupteur K.
- 3) Etablir les équations différentielles vérifiées par l'intensité du courant i(t') et par la tension u(t') aux bornes du condensateur.
- 4) A t'=0, quelles sont les valeurs initiales $i(0^-)$ et $u(0^-)$?
- 5) En déduire les expressions de i(t') et de u(t'), en distinguant les différents cas possibles (on ne calculera pas les constantes d'intégration).

EXERCICE D' ORAL

ELECTROCINETIQUE

CORRIGE :

«Circuits R-C et R-L en parallèle »

1) Les 2 équations différentielles sont :

$$E = Ri_1(t) + L\frac{di_1(t)}{dt} \quad \text{et} \quad E = u_c(t) + RC\frac{du_c(t)}{dt}, \text{ avec } i_2(t) = C\frac{du_c(t)}{dt}$$

• En tenant compte de $i_1(0^-) = i_1(0^+) = 0$ (continuité du courant traversant une inductance) et de $u_c(0^-) = u_c(0^-) = 0$ (continuité de la tension aux bornes d'un condensateur), un calcul développé dans le cours conduit à :

$$i_1(t) = \frac{E}{R} \left[1 - \exp(-t/\tau_1) \right]$$

$$\tau_1 = \frac{L}{R}$$

$$\boxed{i_1(t) = \frac{E}{R}[1 - \exp(-t/\tau_1)]} \qquad \boxed{\tau_1 = \frac{L}{R}}; \quad u_c(t) = E[1 - \exp(-t/\tau_2)] \quad \Rightarrow \quad \boxed{i_2(t) = \frac{E}{R}\exp(-t/\tau_2)} \qquad \boxed{\tau_2 = RC}$$

$$i_2(t) = \frac{E}{R} \exp(-t/\tau_2)$$

$$\tau_2 = RC$$

• On en déduit les courbes suivantes :

2) Cet instant, noté t_0 , est déterminé par : $1 - \exp(-t_0/\tau_1) = \exp(-t_0/\tau_2)$

$$1 - \exp(-t_0 / \tau_1) = \exp(-t_0 / \tau_2)$$

l'instant t_0 n'est pas donné de façon analytique, mais on pourrait le calculer numériquement si les valeurs de R,L,C étaient fournies.

3) Pour $t' \ge 0$, le circuit se ramène à :

La loi des mailles donne:

$$u_L(t') + u(t') + 2u_R(t') = 0$$

avec: $u_L(t') = L \frac{di(t')}{dt'}$; $u_R(t') = Ri(t')$ et $i(t') = C \frac{du(t')}{dt'}$

On en déduit :

$$\frac{d^{2}u(t')}{dt'^{2}} + \frac{2R}{L} \times \frac{du(t')}{dt'} + \frac{u(t')}{LC} = 0$$
 et
$$\frac{d^{2}i(t')}{dt'^{2}} + \frac{2R}{L} \times \frac{di(t')}{dt'} + \frac{i(t')}{LC} = 0$$

$$\frac{d^2i(t')}{dt'^2} + \frac{2R}{L} \times \frac{di(t')}{dt'} + \frac{i(t')}{LC} = 0$$

4) D'après la question 1), on sait que $i_2(t=\infty)=0 \Rightarrow u(t=\infty)=u(t'=0^-)=u(t'=0^+)=E$ D'autre part : $\overline{i_1(t=\infty)=\frac{E}{R}}=-i(t'=0^-)=-i(t'=0^+)$

 ${f Rq}:$ le signe « moins » provient de l'orientation contraire des courants i_1 et i .

ELECTROCINETIQUE

EXERCICE D' ORAL

- 5) Les solutions des équations de la question 3) sont à chercher en $\exp(rt')$, où $r \in \mathbb{C}$; le polynôme caractéristique est : $r^2 + \frac{2R}{L} \times r + \frac{1}{LC} = 0 \Rightarrow \Delta' = \frac{R^2}{L^2} \frac{1}{LC}$
- si $R = \sqrt{\frac{L}{C}}$, $\Delta' = 0$: le régime est dit **critique**, de la forme : $u(t') = (A + Bt') \exp(-\frac{R}{L}t')$
- si $R \succ \sqrt{\frac{L}{C}}$, $\Delta' \succ 0$: le régime est **apériodique**, de la forme : $u(t') = A \exp(r_1 t') + B \exp(r_2 t')$

(où
$$r_1$$
 et $r_2 \in \mathbb{R}^-$)

ullet si $R \prec \sqrt{\frac{L}{C}}$, $\Delta' \prec 0$: le régime est **pseudopériodique**, de la forme :

$$u(t') = \exp(-\frac{R}{L}t') \times [A\cos(\Omega t') + B\sin(\Omega t')] \qquad \text{avec} : \boxed{\Omega = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}} \quad (= \text{ pseudo-pulsation})$$

Rq: dans les 3 cas, les 2 constantes d'intégration se déterminent à l'aide des 2 **conditions initiales** de la question 4), qui portent sur la grandeur u(t') et sa dérivée i(t') (à une constante multiplicative près).