INFO 2950: Intro to Data Science

Lecture 17 2023-10-25

Agenda

- 1. Bootstrap vs Permutation
- 2. Hypothesis testing with regressions
- 3. Reading regression tables for significance

Did we find something?

The first part of the class was about tools for finding patterns. But they will find patterns even in data that is actually random!

In order to say that a pattern is outside the bounds of randomness, we need to be precise about what *could* be possible through randomness.

Do you trust this regression?

Do you trust this regression?

Do you trust this regression?

What are we saying?

Null (boring) hypothesis:

X and Y have no relationship

Spooky (alternative) hypothesis:

There *is* a linear relationship between X and Y

(i.e., the slope of Y ~ X is not equal to 0)

Alternative: permutation test

- If there was no connection between X and Y, what is the chance we would get a slope as large as the one we actually observed?
- Insight: we can simulate no connection between X and Y by shuffling the order of X values!

Bootstrap

Refresher: what are the two key components of bootstrapped samples?

Bootstrap

Refresher: what are the two key components of bootstrapped samples?

- 1. *N* stays the same (3 rows in each sample)
- 2. Sampling is with replacement (rows can be repeated)

Bootstrap

5.3	2	2.1			5.3	}	2.1
5.3	2	1.7		3.2	1.7	,	3.2
5.8	2	1.7		3.2	5.3	3	2.1
		5.8		2.4			

Are these 2 components true for permutations too?

Permutation

1.7	1.7 2.1			1.7	2.1
5.3	3.2	5.8	2.1	5.8	3.2
5.8	2.4	1.7	3.2	5.3	2.4
		5.3	2.4		

One is the same, one is different:

- 1. In permutations, N is still the same (3 rows in each sample)
- 2. But, sampling is different: now, we randomly shuffle the order of rows for each column, without replacement

Permutation

	Bootstrap	Permutation
What stays the same?	Rows are preserved	Column distributions are preserved

						Bootst	rap	Permutation
What stays the same?					е	Rows	are preserved /	Column distributions are preserved
5.3		2.1		ſ	5.3	2.1	П	
5.3		2.1		L	1.7	3.2		
5.8		2.4	1.7	3	5.3	2.1		
			1.7	3	.2			
			5.8	2	.4			

							Bootst	rap	Permutation
What stays the same?					he		Rows a	re preserved	Column distributions are preserved
-		0.4							
5.3		2.1			5.	.3	2.1		
5.3		2.1			1.	.7	3.2		
5.8		2.4	1.7		3. 5	3	2.1		
			4 7				2.1		
			1.7		3.2				
			5.8		2.4				

	Bootstrap								Permutation					
	What stays the same?				th	e	Rows	.			Colum are pre			ons
5.3		2.1									V			
		0.4				5.3	2.1		1.7	2.1			1.7	2.1
5.3		2.1				1.7	3.2		5.3	3.2	5.8	2.1	5.8	3.2
8.8		2.4	1.7		3.	5.3	2.1				1.7	3.2	5.3	2.4
			1.7		3	.2			5.8	2.4	5.3	2.4	5.5	2.4
											3.3	2.7		
			5.8		2.	.4								

5.3 2.1 3.2 1.7 2.4 5.8

	Bootstrap							Permutation						
	What stays the same?					е	Rows	Rows are preserved Column distribution are preserved					_	ons
5.3		2.1												
						5.3	2.1		1.7	2.1			1.7	2.1
5.3		2.1				1.7	3.2		5.3	3.2	5.8	2.1	5.8	3.2
5.8		2.4	1.7		3.	5.3	2.1				1.7	3.2	5.3	2.4
			1.7		3.	.2			5.8	2.4	5.3	2.4	5.3	2.4
			5.8		2.	4								

	Bootstrap	Permutation
What stays the same?	Rows are preserved	Column distributions are preserved
What is different?	Rows may be repeated or removed	Order of values in columns are random

	Bootstrap	Permutation
What stays the same?	Rows are preserved	Column distributions are preserved
What is different?	Rows may be repeated or removed	Order of values in columns are random

(with replacement)

(without replacement)

	Bootstrap	Permutation
What stays the same?	Rows are preserved	Column distributions are preserved
What is different?	Rows may be repeated or removed	Order of values in columns are random
What question are we asking?	What if we had a similar but not exactly identical dataset?	What if there were no connection between columns?

Original data: there's some relationship between month and temperature

Month	Temp
Aug	90
Oct	50
Dec	25

	Bootstrap	Permutation
What question are we asking?		What if there were no connection between columns?

Month	Temp
Aug	90
Oct	50
Dec	25

Month	Temp
Aug	50
Oct	25
Dec	90

Permuted data: there is likely no longer some relationship between month and temperature

	Bootstrap	Permutation
What question are we asking?	What if we had a similar but not exactly identical dataset?	What if there were no connection between columns?

	Bootstrap	Permutation
What stays the same?	Rows are preserved	Column distributions are preserved
What is different?	Rows may be repeated or removed	Order of values in columns are random
What question are we asking?	What if we had a similar but not exactly identical dataset?	What if there were no connection between columns?

If you have one column with 5 rows, how many permutations (distinct orderings) can you make?

If you have one column with 5 rows, how many permutations (distinct orderings) can you make?

X	Y
1	20
2	30
3	50
4	10
5	40

If you had 5 X values and 5 Y values, how could you permute the values within each column to create the largest regression slope?

X	Y
1	10
2	20
3	30
4	40
5	50

If you had 5 X values and 5 Y values, how could you permute the values within each column to create the largest regression slope?

In general: sort both arrays. Pair the lowest X with the lowest Y, and so forth until you get to the highest X and the highest Y

Sample some random points

```
X = np.random.normal(0, 1, 5)
Y = np.random.normal(0, 1, 5)
```

Generate 5
normally-distributed X
values (mean 0 stdev 1),
and same for Y

seaborn.scatterplot(x=X, y=Y)

Calculate regression slope

```
df = pd.DataFrame({"X": X, "Y": Y})
model = LinearRegression().fit(df[["X"]], df["Y"])
model.coef_
array([0.82531542])
```

Calculate regression slope

```
df = pd.DataFrame({"X": X, "Y": Y})
model = LinearRegression().fit(df[["X"]], df["Y"])
model.coef_
array([0.82531542])
```


For these X and Y values, our regression slope is 0.825

Create permutations

```
x_permutations = list(itertools.permutations(X))
```

Now let's permute our X values! (No need to permute both columns)

Create permutations

```
x_permutations = list(itertools.permutations(X))
len(x_permutations), 5 * 4 * 3 * 2 * 1

(120, 120)
    Double check that
    x_permutations is the right size
```

Calculate regressions for all permutations

```
permutation_slopes = np.zeros(120)
```

```
For each permutation, run a regression and record the slope
```

```
for i, x_permutation in enumerate(x_permutations):
    df = pd.DataFrame({"X": x_permutation, "Y": Y})
    model = LinearRegression().fit(df[["X"]], df["Y"])
    permutation_slopes[i] = model.coef_[0]
```

How does our actual value compare?

```
permutation_slopes = sorted(permutation_slopes)
```

These are the 120 slopes we calculated from Y ~ permuted X values.

Let's sort them low to high.

How does our actual value compare?

```
permutation_slopes = sorted(permutation_slopes)
permutation_slopes[:5], permutation_slopes[-5:]
```

Now let's print the smallest 5 and largest 5 slopes we got among our permutations...

How does our actual value compare?

```
permutation_slopes = sorted(permutation_slopes)
permutation_slopes[:5], permutation_slopes[-5:]
```

Now let's print the smallest 5 and largest 5 slopes we got among our permutations...

```
([-0.848, -0.844, -0.819, -0.812, -0.775], [0.752, 0.778, 0.785, 0.822, 0.825])
```

Calculate regression slope df = pd.DataFrame({"X": X, "Y": Y}) model = LinearRegression().fit(df[["X"]], df["Y"]) model.coef array([0.82531542]) For these X and values, our regressio slope is 0.825 -1.0-1.5-1.5 -0.5 0.0 0.5

```
permutation_slopes = sorted(permutation_slopes)
permutation_slopes[:5], permutation_slopes[-5:]

([-0.848, -0.844, -0.819, -0.812, -0.775],
  [0.752, 0.778, 0.785, 0.822, 0.825])
```

What is the probability we would have gotten 0.825 by chance?

Hint: what is len(permutation_slopes)?

```
permutation_slopes = sorted(permutation_slopes)
permutation_slopes[:5], permutation_slopes[-5:]

([-0.848, -0.844, -0.819, -0.812, -0.775],
  [0.752, 0.778, 0.785, 0.822, 0.825])
```

What is the probability we would have gotten 0.825 by chance?

1/120

```
permutation_slopes = sorted(permutation_slopes)
permutation_slopes[:5], permutation_slopes[-5:]

([-0.848, -0.844, -0.819, -0.812, -0.775],
  [0.752, 0.778, 0.785, 0.822, 0.825])

What is the probability that
```

β > 0.8 purely by chance?

One-sided test

```
permutation_slopes = sorted(permutation_slopes)
permutation_slopes[:5], permutation_slopes[-5:]

([-0.848, -0.844, -0.819, -0.812, -0.775],
  [0.752, 0.778, 0.785, 0.822, 0.825])
```

What is the probability that β > 0.8 purely by chance? 2/120

```
permutation slopes = sorted(permutation slopes)
permutation slopes[:5], permutation slopes[-5:]
([-0.848, -0.844, -0.819, -0.812, -0.775],
 [0.752, 0.778, 0.785, 0.822, 0.825])
       What is the probability
       that |\beta| > 0.8 purely by
       chance?
```

Two-sided test

```
permutation slopes = sorted(permutation slopes)
permutation slopes[:5], permutation slopes[-5:]
([-0.848, -0.844, -0.819, -0.812, -0.775],
 [0.752, 0.778, 0.785, 0.822, 0.825])
       What is the probability that
       |\beta| > 0.8 purely by chance?
       6/120
```

seaborn.histplot(permutation_slopes, bins=30)

Originally, we had the actual largest possible β by sheer luck!

seaborn.histplot(permutation_slopes, bins=30)

Permutations of β centered at zero

seaborn.histplot(permutation_slopes, bins=30)

A two-sided test would look in both directions

Sample some random points

```
X_30 = np.random.normal(0, 1, 30)
Y_30 = np.random.normal(0, 1, 30)
Let's try again with
more simulated data
(30 instead of 5
points)
```

Sample some random points

```
X_30 = np.random.normal(0, 1, 30)
Y_30 = np.random.normal(0, 1, 30)
seaborn.regplot(x=X_30, y=Y_30)
```


regplot in seaborn allows you to automatically plot the regression line with your X's and Y's

Calculate regression slope

```
df = pd.DataFrame({"X": X_30, "Y": Y_30})
model = LinearRegression().fit(df[["X"]], df["Y"])
model.coef_
array([0.13104837])
```

Calculate regression slope

```
df = pd.DataFrame({"X": X_30, "Y": Y_30})
model = LinearRegression().fit(df[["X"]], df["Y"])
model.coef_
array([0.13104837])
```

How many permutations of 30 rows can we make? (express using the factorial sign)

Create permutations

factorial(30) There are 30! permutations of 30 rows

2.652528598121911e+32

Create permutations

factorial(30)

2.652528598121911e+32

Nope, way too many for our computers!

Calculate regressions for all a lot of permutations

```
permutation_slopes = np.zeros(1000)

for i in range(1000):
    permuted_X = np.random.choice(X_30, 30, replace=False)
    df = pd.DataFrame({"X": permuted_X, "Y": Y_30})
    model = LinearRegression().fit(df[["X"]], df["Y"])
    permutation_slopes[i] = model.coef_[0]
```

Calculate regressions for all a lot of permutations

```
permutation_slopes = np.zeros(1000)

for i in range(1000): Shuffling without replacement = permutations
    permuted_X = np.random.choice(X_30, 30, replace=False)
    df = pd.DataFrame({"X": permuted_X, "Y": Y_30})
    model = LinearRegression().fit(df[["X"]], df["Y"])
    permutation_slopes[i] = model.coef_[0]
```

Calculate regressions for all a lot of permutations

```
permutation slopes = np.zeros(1000)
for i in range(1000):
  permuted_X = np.random.choice(X_30, 30, replace=False)
  df = pd.DataFrame({"X": permuted_X, "Y": Y_30})
  model = LinearRegression().fit(df[["X"]], df["Y"])
  permutation_slopes[i] = model.coef_[0]
     Storing each of our 1,000 permuted slopes into
     permutation slopes
```

seaborn.histplot(permutation_slopes, bins=30)

Our original β=0.13 is not at all unusual!

seaborn.histplot(permutation_slopes, bins=30)

Bootstrap vs. Permutation for β

	Bootstrap	Permutation
What is the average?	Same as original data	0
What question are we asking?	What is a confidence interval around the estimated value?	What is a confidence interval around the null hypothesis?
What are we looking for?	Does the confidence interval include 0?	Does the confidence interval include the original data value?

Bootstrap vs. Permutation for β

	Bootstrap	Permutation
Best for	Estimating Confidence Intervals	Testing Hypotheses

```
seaborn.scatterplot(x=X 30, y=Y 30)
domain = np.array([-3,3])
original_df = pd.DataFrame({"X": X_30, "Y": Y_30})
for i in range(50):
  df = original df.sample(30, replace=True)
  model = LinearRegression().fit(df[["X"]], df["Y"])
  y_pred = domain * model.coef_[0] + model.intercept_
  seaborn.lineplot(x=domain, y=y pred, color="lightblue")
df = pd.DataFrame({"X": X 30, "Y": Y 30})
model = LinearRegression().fit(df[["X"]], df["Y"])
y_pred = domain * model.coef_[0] + model.intercept_
seaborn.lineplot(x=domain, v=v pred, color="blue")
pyplot.show()
```

Bootstrap test Resampling may change (mean X, mean Y), so lines don't all pass through the same point.

Confidence region is centered around original slope


```
seaborn.scatterplot(x=X 30, y=Y 30)
domain = np.array([-3,3])
for i in range(50):
  df = pd.DataFrame({"X": np.random.choice(X_30, 30, replace=False), "Y": Y_30})
  model = LinearRegression().fit(df[["X"]], df["Y"])
  y pred = domain * model.coef [0] + model.intercept
  seaborn.lineplot(x=domain, y=y pred, color="lightblue")
df = pd.DataFrame({"X": X_30, "Y": Y_30})
model = LinearRegression().fit(df[["X"]], df["Y"])
                                                                1.0
y pred = domain * model.coef [0] + model.intercept
                                                                0.5
seaborn.lineplot(x=domain, y=y_pred, color="blue")
                                                                0.0
pyplot.show()
```

Permutation test All regression lines go through the point at (mean X, mean Y). Permutation doesn't change these means.

Confidence region is centered around 0 slope (not Y=0!)

1 min break

when you have a small *n* but you bootstrap 10,000 times and just say you now have population standard deviation and use *z* tests

Hypothesis testing for a linear model

- $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$
- Have you ever heard people talk about whether their regression coefficients are "significant"?

Hypothesis testing for a linear model

•
$$y = a + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

 Have you ever heard people talk about whether their regression coefficients are "significant"?

```
Call:
lm(formula = log(medv) ~ crim + chas + rad + lstat)
Residuals:
              10 Median
-0.77765 -0.14342 -0.02525 0.10632 0.88673
Coefficients:
                                                            significance
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5728575 0.0220849 161.778 < 2e-16 ***
           -0.0090038 0.0015482 -5.816 1.08e-08 ***
                                                            stars... on a β?!
chas1
            0.1766052 0.0399708 4.418 1.22e-05
rad
           -0.0008834 0.0015599 -0.566
           -0.0402739 0.0016669 -24.161 < 2e-16 ***
Istat
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2274 on 501 degrees of freedom
Multiple R-squared: 0.6929, Adjusted R-squared: 0.6904
F-statistic: 282.6 on 4 and 501 DF, p-value: < 2.2e-16
```

- Null (boring) hypothesis: there is no relationship between output (y) and input x₁
 - Equivalently, $\beta_1 = 0$

- Null (boring) hypothesis: there is no relationship between output (y) and input x₁
 - Equivalently, $\beta_1 = 0$
- Alternative (spooky) hypothesis: there is some relationship between output(y) and a specific input (x₁)
 - Equivalently, $\beta_1 \neq 0$

Model only includes intercept and error

Model includes intercept, error, and the beta estimate (from Python)

- Null (boring) hypothesis: there is no relationship between output (y) and input x₁
 - Equivalently, $\beta_1 = 0$
- Alternative (spooky) hypothesis: there is some relationship between output(y) and a specific input (x₁)
 - Equivalently, $\beta_1 \neq 0$

$$\lambda^{i} = \alpha + \varepsilon^{i}$$

$$y_i = a + \beta_1 x_1 + \epsilon_i$$

- Null (boring) hypothesis: there is no relationship between output (y) and input x₁
 - Equivalently, $\beta_1 = 0$
- Alternative (spooky) hypothesis: there is some relationship between output(y) and a specific input (x_1)

$$y_i = a + \epsilon_i$$

For this to work, need to assume normally distributed errors centered at 0

$$y_i = a + \beta_1 x_1 + \epsilon_i$$

- Null (boring) hypothesis: there is no relationship between output (y) and input x₁
 - Equivalently, $\beta_1 = 0$
 - Alternative (spooky) hypothesis: there is some relationship between output(y) and a specific input (x_1)

- A t-test will give you a t-statistic, which you can plot against a t-distribution to evaluate spookiness
- A one-sample t-test answers:
 - If the true slope is zero, how unlikely is it that we would find a sample of data that presents evidence for a non-zero slope that it as convincing as the sample we have actually observed? (quantified with p-value)

Testing for differences

- One Sample t-tests: comparing a group to a known value
 - Distribution of slopes vs. your specific slope
 - WTA players' distribution vs. Serena William's # Aces
- Two Sample t-tests: comparing two groups to each other
 - WTA players' distribution vs. Men's tennis players' distribution

A one-sample t-test answers:

This sounds like what we were doing with permutations earlier!

If the true slope is zero, how *unlikely* is it that we would find a sample of data that presents evidence for a non-zero slope that it as convincing as the sample we

have actually observed? (quantified with p-value)

Student's t

Permutation vs. t-test

 If we can sample permutations, why bother with a t-test?

Student's t

Permutation vs. t-test

- If we can sample permutations, why bother with a t-test?
- We couldn't run 1,000 permutations in 1938
- The t-test is an approximation to permutation tests
- They usually give you the same answer, and you will see t-tests frequently

Student's t

- t-statistic: t = (b β) / SE_b
- Compare to t-distribution
- Decide if t spooky enough to reject null

Student's t

 \circ t-statistic: t = (b - β) / SE_b

Python gives you everything you need to calculate this!

- Compare to t-distribution
- Decide if t spooky enough to reject null

Student's t

Hypothesis Testing: Regression

- o t-statistic: $\mathbf{t} = (\mathbf{b} \mathbf{\beta}) / \mathbf{SE}_{\mathbf{b}}$
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - \blacksquare β = the coefficient under the null

Student's t

• t-statistic: $\mathbf{t} = (\mathbf{b} - \mathbf{\beta}) / \mathbf{SE}_{\mathbf{b}}$

We've also called this β-hat

- b = the estimated coefficient
- SE_b = the "standard error" of the estimated coefficient
- β = the coefficient under the null

Student's t

 \circ t-statistic: **t** = (**b** - **β**) / **SE**_b

We've also called this β-hat

- b = the estimated coefficient
- SE_b = the "standard error" of the estimated coefficient
- β = the coefficient under the null

How do we get this in Python? model._____

Student's t

 \circ t-statistic: t = (b - β) / SE_b

We've also called this β-hat

- b = the estimated coefficient
- SE_b = the "standard error" of the estimated coefficient
- β = the coefficient under the null

How do we get this in Python? model.coef_

Student's t

- t-statistic: t = (b β) / SE_b
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - β = the coefficient under the null

Standard Error is the standard deviation of the estimates (remember the margin of error calculations when doing opinion polls?)

Student's t

- o t-statistic: $\mathbf{t} = (\mathbf{b} \mathbf{\beta}) / \mathbf{SE}_{\mathbf{b}}$
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - β = the coefficient under the null

Smaller Standard Error → more precise estimate of that coefficient

Student's t

- t-statistic: $\mathbf{t} = (\mathbf{b} \mathbf{\beta}) / \mathbf{SE}_{\mathbf{b}}$
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - \blacksquare β = the coefficient under the null

SE is calculated for each coefficient x. Intuition: it multiplies the SE of the regression times a factor that's specific to that coefficient

Standard Error of the Regression

x = number of minutes trick-or-treating

Standard Error

The "S" here is also used to denote Standard Error (SE)

Interpretation: the average distance of data points from the fitted line is 3.53 pieces of candy

x = number of minutes trick-or-treating

Standard Error

- SE represents the average distance between observed values and the regression line
- x = # minutes of trick-or-treating
- y = pieces of candy obtained
- O What units does SE take?

Standard Error

- SE represents the average distance between observed values and the regression line
- x = # minutes of trick-or-treating
- y = pieces of candy obtained
- What units does SE take? The same units as the y-axis value (pieces of candy obtained)

Student's t

- t-statistic: t = (b β) / SE_b
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - β = the coefficient under the null

How do we get SE_b in Python?

Another package for regressions

Using statsmodels

instead of scikit-learn

```
>>> import statsmodels.api as sm
>>> import numpy as np
>>> duncan_prestige = sm.datasets.get_rdataset("Duncan", "carData")
>>> Y = duncan_prestige.data['income']
>>> X = duncan_prestige.data['education']
>>> X = sm.add_constant(X)
>>> model = sm.OLS(Y, X)
>>> results = model.fit()
```

Another package for regressions

This example is from Lec 7 slides: fitting $Y = \alpha + \beta x$

```
>>> import statsmodels.api as sm
>>> import numpy as np
>>> duncan_prestige = sm.datasets.get_rdataset("Duncan", "carData")
>>> Y = duncan_prestige.data['income']
>>> X = duncan_prestige.data['education']
>>> X = sm.add_constant(X)
>>> model = sm.OLS(Y, X)
>>> results = model.fit()
```

Printing .summary()
of our model gives us
a nice regression
table!

Dep. Vari	able:	y OLS Least Squares			R-sq		0.862	
Model:					,			0.806 15.56
Method:								
Date:		Thu, 12 May 2022			Prob	0.00713		
Time:			14:15	:07	Log-	Likelihood:		-24.316
No. Obser	vations:		8		AIC:			54.63
Df Residu	als:			5	BIC:			54.87
Df Model: Covariance Type:		2		2				
		nonrobust						
	coef		std err		t	P> t	[0.025	0.975]
const	5.5226	; ;	4.431		1.246	0.268	-5.867	16.912
x1	0.4471		0.285		1.567	0.178	-0.286	1.180
x2	0.2550)	0.453		0.563	0.598	-0.910	1,420

Dep. Varia	able:		y R-	-squa	0.862 0.806		
Model:		01	_S Ac	dj. R			
Method:	Method: Least Squares		es F-	-stat	15.56 0.00713 -24.316		
Date: Thu, 12 May		u, 12 May 202	22 Pi	Prob (F-statistic):			
Time:	14:15:0	07 Lo	og-Lil				
No. Obser	vations:		8 A	IC:			54.63
Df Residua	als:		5 B	IC:			54.87
Df Model:	f Model: 2		2				
Covariance	e Type:	nonrobus	st				
	coef	std err		t	P> t	[0.025	0.975
const	5.5226	4.431	1.24		0.268	-5.867	
x1	0.4471	0.285	1.56	67	0.178	-0.286	1.180
x2	0.2550	0.453	0.56	63	0.598	-0.910	1.420

Dep. Varia	able:		У	R-squared:			0.862
Model:		OLS Least Squares		, , , , , , , , , , , , , , , , , , , ,			0.806 15.56
Method:							
Date:		Thu, 12 May 2022		Prob (F-statistic):			0.00713
Time:		14:15:	07	Log-I	Likelihood:		-24.310
No. Observ	vations:	8		AIC:			54.63
Df Residuals: Df Model:		5 2		BIC:	:		54.87
Covariance	e Type:	nonrobu	ıst				
	coef	std err		t	P> t	[0.025	0.975
const	5.5226	4.431	1.		0.268	-5.867	16.91
x1	0.4471	0.285	1	.567	0.178	-0.286	1.18
x2	0.2550	0.453	0	.563	0.598	-0.910	1.42

Fill in the blank with our estimated model:

y = _____

Dep. Vari	able:		y R-	R-squared: Adj. R-squared:			0.862 0.806
Model:		01	S Ad				
Method: Date:		Least Square	es F-	F-statistic: Prob (F-statistic):			15.56 0.00713
		Thu, 12 May 202	22 Pr				
Time:		14:15:0	7 Lo	g-Li	kelihood:		-24.31
No. Obser	vations:		8 AI	AIC: BIC:			54.63 54.87
Df Residu	als:		5 BI				
Df Model:			2				
Covarianc	e Type:	nonrobus	st				
	coef	std err		==== t	P> t	[0.025	0.975
const	5.5226	4.431	1.24	6 6	0.268	-5.867	16.91
x1	0.4471	0.285	1.56	7	0.178	-0.286	1.18
x2	0.2550	0.453	0.56	3	0.598	-0.910	1.42

Dep. Varia	able:		У	R-squa	0.862		
Model:		01	_S	Adj. R-squared:			0.806
Method: Least Squares Date: Thu, 12 May 2022 Time: 14:15:07			es	F-statistic: Prob (F-statistic):			15.56 0.00713 -24.316
			22				
			7	Log-Li			
No. Obser	vations:		8	AIC:			54.63
Df Residuals: 5			5	BIC:			54.8
Df Model: 2			2				
Covariance	e Type:	nonrobus	st				
	coef	std err		t	P> t	[0.025	0.975
const	5.5226	4.431	1.	. 246	0.268	-5.867	16.91
x1	0.4471	0.285	1.	567	0.178	-0.286	1.18
x2	0.2550	0.453	0.	563	0.598	-0.910	1.42

Python gives us the SE too! (and the t-statistic, and the p-value!)

>>> print(results.summary()) OLS Regression Results Dep. Variable: 0.862 R-squared: Model: Adi. R-squared: 0.806 Least Squares F-statistic: 15.56 Method: Prob (F-statistic): Date: Thu, 12 May 2022 0.00713 Time: 14:15:07 Log-Likelihood: -24.316No. Observations: AIC: 54.63 Df Residuals: BIC: 54.87 Df Model: Covariance Type: nonrobust std err P>|t| [0.025 0.975] coef 4.431 1.246 0.268 -5.867 16.912 const 5.5226 x1 0.4471 0.285 1.567 0.178 -0.2861.180 x2 0.2550 0.453 0.563 0.598 -0.9101,420

(this is why we like statsmodels for regression tables – you need lin alg to calculate these if using sklearn)

Dep. Variable: 0.862 R-squared: Model: Adi. R-squared: 0.806 Least Squares F-statistic: 15.56 Method: Thu, 12 May 2022 Prob (F-statistic): Date: 0.00713 Time: 14:15:07 Log-Likelihood: -24.316No. Observations: AIC: 54.63 Df Residuals: BIC: 54.87 Df Model: Covariance Type: nonrobust std err P>|t| [0.025 0.975] coef 4.431 1.246 0.268 -5.867 16,912 const 5.5226 x1 0.4471 0.285 1.567 0.178 -0.2861.180 x2 0.2550 0.453 0.563 0.598 -0.9101,420

>>> print(results.summary()) OLS Regression Results

Which coefficient is most precisely estimated, based on SE?

Dep. Vari	able:		У	R-squa	0.862		
Model:		0	LS	Adj. R	0.806		
Method: Least Squares			es	F-statistic:			15.56
Date: Thu, 12 May 2022			22	Prob (F-statistic):	0.00713
Time: 14:15:07				Log-Li	kelihood:		-24.310
No. Obser	vations:		8	AIC:			54.63
Df Residuals: 5				BIC:			54.8
Df Model: 2							
Covarianc	e Type:	nonrobu	st				
	coef	std err		t	P> t	[0.025	0.975
const	5.5226	4.431	1.	. 246		-5.867	
x1	0.4471	0.285	1.	. 567	0.178	-0.286	1.18
x2	0.2550	0.453	0.	.563	0.598	-0.910	1.42

x1 (has the lowest SE)

Student's t

Hypothesis Testing: Regression

Python gives us both of these

- t-statistic: $t = (b β) / SE_b$
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - \blacksquare β = the coefficient under the null

Student's t

- o t-statistic: t = (b β) / SE_b
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - \blacksquare β = the coefficient under the null

How do we get this?

Student's t

Hypothesis Testing: Regression

- t-statistic: t = (b β) / SE_b
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - β = the coefficient under the null

Null (boring) hypothesis: there is no relationship between output (y) and input x

 \bigcirc Equivalently, $\beta_1 = 0$

Student's t

- t-statistic: t = (b β) / SE_b
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient
 - \blacksquare β = the coefficient under the null

Just set
$$\beta = 0$$

Student's t

Hypothesis Testing: Regression

- t-statistic: t = b / SE_b
 - b = the estimated coefficient
 - SE_b = the "standard error" of the estimated coefficient

Let's practice with an example:

y = price of skincare product x₁ = weight of product

Least-Squares Regression Line:
$$y = a + bx \rightarrow$$

Predictor	Coeff
Constant	1.352
Weight	0.9207

Least-Squares Regression Line: $\hat{y} = a + bx \rightarrow \hat{y} = 1.352 + 0.9207x$

Least-Squares Regression Line: $\hat{y} = a + bx \rightarrow \hat{y} = 1.352 + 0.9207x$

If
$$H_o: \beta = 0$$
 and $H_a: \beta \neq 0$, then

Test Statistic:
$$t = \frac{b-\beta}{SE_b} \rightarrow t = \frac{b-\beta}{SE_b} \rightarrow t = \frac{0.9207-0}{0.8104} = 1.136$$

If
$$H_o: \beta = 0$$
 and $H_a: \beta \neq 0$, then

Test Statistic:
$$t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{0.9207 \cdot 0}{0.8104}$$
 1.136

If
$$H_o: \beta = 0$$
 and $H_a: \beta \neq 0$, then

Test Statistic:
$$t = b - \beta$$
 $\rightarrow t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{0.9207 - 0}{0.8104} = 1.136$

If
$$H_o: \beta = 0$$
 and $H_a: \beta \neq 0$, then

Test Statistic:
$$t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{0.9207 - 0}{0.8104} = 1.136$$

If
$$H_o: \beta = 0$$
 and $H_a: \beta \neq 0$, then

Test Statistic:
$$t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{0.9207 - 0}{0.8104} = 1.136$$

- o t-statistic: $t = (b β) / SE_b$
- Compare to t-distribution
- Decide if t spooky enough to reject null

Student's t

- o t-statistic: $t = (b \beta) / SE_b$
- Compare to t-distribution not knowing the error s's variance
- Decide if t spooky enough to reject null

Degrees of freedom is N-p-1, where p = # x's in the regression, due to some math involving us not knowing the error ϵ 's variance

Student's t

- o t-statistic: $t = (b β) / SE_b$
- Compare to t-distribution
- Decide if t spooky enough to reject null

Test Statistic:
$$t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{0.9207 - 0}{0.8104} = 1.136$$

Not very spooky!

Student's t

- o t-statistic: $t = (b β) / SE_b$
- Compare to t-distribution
- Decide if t spooky enough to reject null

Test Statistic:
$$t = \frac{b-\beta}{SE_b} \rightarrow t = \frac{b-\beta}{SE_b} \rightarrow t = \frac{0.9207-0}{0.8104} = 1.136$$

Not very spooky!

Student's t

- o t-statistic: $t = (b β) / SE_b$
- Compare to t-distribution
- Decide if t spooky enough to reject null

Test Statistic:
$$t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{b - \beta}{SE_b} \rightarrow t = \frac{0.9207 - 0}{0.8104} = 1.136$$

P-Value:
$$p = 2P(t > |test statistic|) \rightarrow p = 2P(t > 1.136) = 0.1375$$

Summarize the relationship between weight (grams) and price (\$) of skincare products based on the regression.

For 1 additional gram increase in skincare product weight, our model predicts that price will increase by 92 cents.

- For 1 additional gram increase in skincare product weight, our model predicts that price will increase by 92 cents.
- But, we cannot reject the null hypothesis. Null hypothesis (b=0): there is no relationship between price and weight of skincare products
- Our weight coefficient is not significant (even at the 10% level)

Coefficients SE Coef Term Coef 389.166 Constant 66.0937 5.8881 0.000 0.092 East 2.125 1.2145 1.7495 5.5232 0.000 South 5.318 0.9629 North -24.132 1.8685 -12.91530.000

Coefficients

Term	Coef	SE Coef	Т	Р
Constant			5.8881	0.000
East	2.125	1.2145	1.7495	
South	5.318	0.9629	5.5232	0.000
North	-24.132	1.8685	-12.9153	0.000

How many β coefficients are significant at the 5% level?

Coefficients

Term	Coef	SE Coef	T	P
Constant	389.166	66.0937	5.8881	0.000
East	2.125	1.2145	1.7495	
South	5.318	0.9629	5.5232	0.000
North	-24.132	1.8685	-12.9153	0.000

How many β coefficients are significant at the 5% level?

Two of them: only South and North inputs have significant coefficients (we're not counting Constant – the intercept)

Coefficients

Term	Coef	SE Coef	T	P
Constant	389.166	66.0937	5.8881	0.000
East	2.125	1.2145		0.092
South	5.318	0.9629	5.5232	0.000
North	-24.132	1.8685	-12.9153	0.000

We think that South and North inputs each have significant effects on the outcome

Coefficients Term Coef SE Coef 0.000 Constant 389,166 66.0937 5.8881 1.7495 0.092 East 2.125 1.2145 5.318 0.9629 5.5232 0.000 South North -24.132 1.8685 -12.91530.000

South has a significant positive effect;
North has a significant negative effect

Coefficie	nts			
Term	Coef	SE Coef	T	P
Constant	389.166	66.0937	5.8881	0.000
East	2.125	1.2145	1.7495	0.092
South	5.318	0.9629	5.5232	0.000
North	-24.132	1.8685	-12.9153	0.000

Sometimes, if a variable is very not-significant and has near-0 magnitude effect on the output, it can be a good idea to drop them from the regression since they might just be adding noise to your model

1 min break & attendance

tinyurl.com/4fkxswx9

```
>>> print(results.summary())
OLS Regression Results
Dep. Variable:
                                                                          0.862
                                        R-squared:
Model:
                                        Adi. R-squared:
                                                                          0.806
                       Least Squares F-statistic:
                                                                          15.56
Method:
Date:
                    Thu, 12 May 2022
                                       Prob (F-statistic):
                                                                        0.00713
Time:
                            14:15:07
                                        Log-Likelihood:
                                                                        -24.316
No. Observations:
                                        AIC:
                                                                          54.63
Df Residuals:
                                                                          54.87
                                        BIC:
Df Model:
Covariance Type:
                            nonrobust
                coef
                        std err
                                                 P>|t|
                                                             [0.025
                                                                         0.975]
                          4.431
                                      1.246
                                                             -5.867
                                                                         16.912
const
              5.5226
                                                 0.268
x1
              0.4471
                           0.285
                                      1.567
                                                 0.178
                                                             -0.286
                                                                          1.180
x2
              0.2550
                           0.453
                                      0.563
                                                 0.598
                                                             -0.910
                                                                          1,420
```

We've talked about these columns already

Dep. Varia	able:			У	R-squa	0.862		
Model:			(DLS	Adj. F	0.806		
Method:		L	east Squa	res	F-stat	15.56		
Date:		Thu,	12 May 20	22	Prob ():	0.00713 -24.316	
Time:			14:15	07	Log-Li			
No. Obser	vations:	8		8	AIC:			54.63
Df Residuals:			5	BIC:			54.87	
Df Model:		2		2				
Covarianc	e Type:		nonrob	ıst				
	coe	f	std err		t	P> t	[0.025	0.975]
const	5.5226	 5	4.431	:	1.246	0.268	-5.867	16.912
x1	0.4471	L	0.285	1	1.567	0.178	-0.286	1.180
x2	0.2550	9	0.453	(0.563	0.598	-0.910	1.420

Python gives us the 95% CI for free for each coef, too

When we thought about Confidence Intervals before, we thought about how much we trust the regression output ŷ for any given input x

$$100(1-\alpha)\%$$
 Confidence Interval for Slope
Point Estimate \pm Margin of Error
$$b \pm t^* \left(SE_b \right)$$

But we can actually also think about the CI for each individual slope, too!

 $100(1-\alpha)\%$ Confidence Interval for Slope

Point Estimate ± Margin of Error

$$b \pm t^*(SE_b)$$

95% CI \rightarrow alpha of 0.05

	coef	std err	t	P> t	[0.025	0.975]
const	5.5226	4.431	1.	0.268	-5.867	16.912
x1	0.4471	0.285	1	0.178	-0.286	1.180
x2	0.2550	0.453	J63	0.598	-0.910	1.420

n-p-1 degrees of freedom 8-2-1=5

Dep. Variabl	e:		y R-squa	red:		0.862	
Model:		0	LS Adj. F	Adj. R-squared:			
Method:		Least Squar	es F-stat	F-statistic:			
Date:	Th	u, 12 May 20	22 Prob (F-statistic):	0.00713	
Time:		14:15:	07 Log-Li	Log-Likelihood:			
No. Observat	ions:	n =	8 AIC:			54.63	
Df Residuals	:		5 BIC:	BIC:			
Df Model:			2				
Covariance T	ype:	nonrobu	st				
	coef	std err	t	P> t	[0.025	0.975]	
const	5.5226	4.431	1.246	0.268	-5.867	16.912	
×1	0.4471	0.285	1.567	0.178	-0.286	1.180	
x2	0.2550	0.453	0.563	0.598	-0.910	1.420	

2 predictors p

From t-Table:

- n-p-1 degrees of freedom 8-2-1=5
- two-tailed 0.05 alpha
- t = 2.571

 $100(1-\alpha)\%$ Confidence Interval for Slope

Point Estimate ± Margin of Error

95% CI \rightarrow alpha of 0.05

	coef	std err	t	P> t	[0.025	0.975]
const	5.5226	4.431	1.	0.268	-5.867	16.912
x1	0.4471	0.285	1	0.178	-0.286	1.180
x2	0.2550	0.453	J63	0.598	-0.910	1.420

From t-Table:

- n-p-1 degrees of freedom 8-2-1=5
- two-tailed 0.05 alpha
- t = 2.571

cum. prob	t .50	t .75	t .80	t .85	t .90	t .95	t .975	t .99	t .995	t .999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.5/1	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
H	270	5570	5570	. 570		dence Lo		2370	2370	22.070	00.070

 $100(1-\alpha)\%$ Confidence Interval for Slope

Point Estimate ± Margin of Error

	coef	std err	t	P> t	[0.025	0.975]
const	5.5226	4.431	1.246	0.268	-5.867	16.912
x1	0.4471	0.285	1.567	0.178	-0.286	1.180
x2	0.2550	0.453	0.563	0.598	-0.910	1.420

 $100(1-\alpha)\%$ Confidence Interval for Slope

Point Estimate ± Margin of Error

The coefficient estimate will be exactly in the middle of the confidence interval

	coef	std err	t	P> t	[0.025	0.975]
const	5.5226	4.431	1.246	0.268	-5.867	16.912
×1	0.4471	0.285	1.567	0.178	-0.286	1.180
x2	0.2550	0.453	0.563	0.598	-0.910	1.420

 $100(1-\alpha)\%$ Confidence Interval for Slope Point Estimate \pm Margin of Error

$$b = t^* (SE_b)$$

Remember when we said Margin of Error was about 2*SE for a 95% CI?

This is because t = 1.96 (check a t-table)!

Dep. Varia	able:		У	R-squa	0.862			
Model:		A	0LS	Adj. R	-squared:		0.806	
Method:		Least Squa	res	F-stat	15.56			
Date:		Thu, 12 May 2	022	Prob ():	0.00713		
Time:		14:15	:07	Log-Likelihood:			-24.316	
No. Observ	vations:	8		AIC:			54.63	
Df Residuals:		5	BIC:	54.87				
Df Model:			2					
Covariance	e Type:	nonrob	ust					
	coe	f std err		t	P> t	[0.025	0.975	
const	5.5226	4.431	1	1.246	0.268	-5.867	16.91	
x1	0.4471	0.285	1	1.567	0.178	-0.286	1.18	
x2	0.2550	0.453	0	563	0.598	-0.910	1,420	

What does it mean if 0 is in the CI?

It means that if we take 100 samples of the coefficient and compute a 95% CI for each sample, about 95/100 samples will contain the value $\beta = 0$

What does $\beta = 0$ mean?

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:			y R-9	R-squared: Adj. R-squared:			0.862 0.806								
		0	LS Ad												
		Least Squares		F-statistic:			15.56								
		Thu, 12 May 20	22 Pro	Prob (F-statistic):			0.00713								
		14:15:07 8 5 2 nonrobust		Log-Likelihood: AIC: BIC:			-24.316 54.63 54.87								
									coef	std err			P> t	[0.025	0.975]
								const	5.5226	4.431	1.246	 j	0.268	-5.867	16.912
								x1	0.4471	0.285	1.567	7	0.178	-0.286	1.180
								x2	0.2550	0.453	0.563	3	0.598	-0.910	1.420

 β = 0 means that input has no effect on the outcome

```
>>> print(results.summary())
OLS Regression Results
Dep. Variable:
                                                                          0.862
                                       R-squared:
Model:
                                        Adj. R-squared:
                                                                         0.806
                       Least Squares F-statistic:
                                                                         15.56
Method:
                    Thu, 12 May 2022 Prob (F-statistic):
Date:
                                                                       0.00713
Time:
                            14:15:07 Log-Likelihood:
                                                                       -24.316
No. Observations:
                                       AIC:
                                                                         54.63
Df Residuals:
                                                                          54.87
                                        BIC:
Df Model:
Covariance Type:
                           nonrobust
                                                            [0.025
                                                                         0.975]
                        std err
                                                 P>|t|
                coef
                                     1.246
                                                            -5.867
                                                                         16.912
const
              5.5226
                          4.431
                                                 0.268
x1
              0.4471
                          0.285
                                     1.567
                                                 0.178
                                                            -0.286
                                                                         1.180
x2
              0.2550
                          0.453
                                      0.563
                                                 0.598
                                                            -0.910
                                                                         1.420
```

 β = 0 means that input has no effect on the outcome

Summarizing: a 1 unit increase in x_1 yields a ____ increase in y.

```
>>> print(results.summary())
OLS Regression Results
Dep. Variable:
                                                                          0.862
                                        R-squared:
Model:
                                        Adi. R-squared:
                                                                          0.806
                       Least Squares F-statistic:
                                                                         15.56
Method:
                    Thu, 12 May 2022 Prob (F-statistic):
Date:
                                                                        0.00713
Time:
                            14:15:07
                                       Log-Likelihood:
                                                                        -24.316
No. Observations:
                                       AIC:
                                                                          54.63
Df Residuals:
                                                                          54.87
                                        BIC:
Df Model:
Covariance Type:
                           nonrobust
                                                             [0.025
                                                                         0.975]
                        std err
                                                 P>|t|
                coef
                                                            -5.867
                                                                         16.912
const
              5.5226
                          4.431
                                      1.246
                                                 0.268
x1
              0.4471
                          0.285
                                      1.567
                                                 0.178
                                                            -0.286
                                                                          1.180
x2
              0.2550
                          0.453
                                      0.563
                                                 0.598
                                                            -0.910
                                                                          1.420
```

Hypothesis Testing: Regression

 β = 0 means that input has no effect on the outcome

Summarizing: a 1 unit increase in x_1 yields a 0 unit increase in y.

Predicting: no matter what value we put in x_1 , y will not be affected

Dep. Variable:		y F	R-squared:			0.862	
Model:		0LS		Adj. R-squared:			0.806
Method: Least Squar Date: Thu, 12 May 20			ares F-statistic:			15.56	
			22 F	Prob (F-statistic):			0.00713
Time:		14:15:	07 L	Log-Likelihood:			-24.316
No. Observations: 8			8 /	AIC:			54.63
Df Residuals:			5 E	BIC:			54.87
Df Model:			2				
Covariance	Type:	nonrobu	st				
	coef	std err	=====	t	P> t	[0.025	0.975]
const	5.5226	4.431	1.2	246	0.268	-5.867	16.912
x1	0.4471	0.285	1.5	567	0.178	-0.286	1.180
x2	0.2550	0.453	0.5	563	0.598	-0.910	1.420

Assume we do an experiment and find p = 0.05

What is the chance that there isn't actually an effect, and the result we got is purely due to random chance?

Assume we do an experiment and find p = 0.05

What is the chance that there isn't actually an effect, and the result we got is purely due to random chance?

5%, or about 1 in 20

Assume we do 100 experiments

How many results do we expect to be "significant" at p < 0.05 purely by random chance?

Assume we do 100 experiments

How many results do we expect to be "significant" at p < 0.05 purely by random chance?

On average: 5, the expected value of Binomial(p=0.05, N=100)

WE FOUND NO

WE FOUND NO

LINK BETWEEN

WE FOUND NO

WE FOUND A

Hypothesis Testing: Regression

- If you have n input coefficients x₁, x₂, ..., x_m, you'd have m hypothesis tests to do (one for each coefficient) using the t-test
- Or, we can do them all at once using an f-test!

Regression significance: F-tests

t-tests: compare small-sample, unknown sd population's means

<u>f-tests</u>: compare normal population's **variances**

Regression significance: F-tests

- Use f-tests to assess multiple regression coefficients simultaneously
- null hypothesis = your model's fit is the same as that of the intercept-only model
- alternative hypothesis: your model's fit is better than that of the intercept-only model

Hypothesis Testing: Regression

```
>>> print(results.summary())
OLS Regression Results
Dep. Variable:
                                                                        0.862
                                       R-squared:
Model:
                                       Adi. R-squared:
                                                                        0.806
                     Least Squares
                                                                        15.56
Method:
                                      F-statistic:
Date:
                  Thu, 12 May 2022
                                      Prob (F-statistic):
                                                                      0.00713
Time:
                            14:15:07
                                       Log-Likelihood:
                                                                      -24.316
No. Observations:
                                       AIC:
                                                                        54.63
Df Residuals:
                                       BIC:
                                                                        54.87
Df Model:
Covariance Type:
                           nonrobust
                        std err
                                                P>|t|
                                                           [0.025
                                                                       0.975]
                coef
                          4.431
                                     1.246
                                                0.268
                                                           -5.867
                                                                       16,912
const
              5.5226
x1
              0.4471
                          0.285
                                     1.567
                                                0.178
                                                           -0.286
                                                                        1.180
x2
              0.2550
                          0.453
                                     0.563
                                                0.598
                                                           -0.910
                                                                        1.420
```

Regression significance: F-tests

Hypotheses 1

Is the regression model containing at least one predictor useful in predicting the size of the infarct?

$$\theta : \beta_1 = \beta_2 = \beta_3 = 0$$

• H_A : At least one $\beta_i \neq 0$ (for j = 1, 2, 3)

Hypotheses 2

Is the size of the infarct significantly (linearly) related to the area of the region at risk?

$$H_0: \beta_1 = 0$$

$$\circ H_A: \beta_1 \neq 0$$

Hypotheses 3

(Primary research question) Is the size of the infarct area significantly (linearly) related to the type of treatment upon controlling for the size of the region at risk for infarction?

$$P_0: \beta_2 = \beta_3 = 0$$

$$\circ$$
 H_A : At least one $eta_j
eq 0$ (for j = 2, 3)

Let's test each of the hypotheses now using the general linear *F*-statistic:

$$F^* = \left(rac{SSE(R) - SSE(F)}{df_R - df_F}
ight) \div \left(rac{SSE(F)}{df_F}
ight)$$

When the multiple regression F-test detects non-zero effects of covariates, but the post-hoc t-tests fail to reject H0:

'Is the model statistically significant?'

Multiple hypothesis testing (generally)

- We can test multiple hypotheses at "once"!
- If we have a null hypothesis H_0 and m different hypotheses H_1 , H_2 , ... H_m :
 - Test H₀ and H₁; reject the null if "significant"
 - Test H₀ and H₂; reject the null if "significant"
 - o ...etc.
- Can summarize results over them in a table

Multiple hypothesis testing

	Null hypothesis is true (H_0)	Alternative hypothesis is true (H _A)	Total
Test is declared significant	V	S	R
Test is declared non-significant	U	T	m-R
Total	m_0	$m-m_0$	m

- m is the total number hypotheses tested
- ullet m_0 is the number of true null hypotheses, an unknown parameter
- ullet $m-m_0$ is the number of true alternative hypotheses
- V is the number of false positives (Type I error) (also called "false discoveries")
- S is the number of true positives (also called "true discoveries")
- T is the number of false negatives (Type II error)
- U is the number of true negatives
- ullet R=V+S is the number of rejected null hypotheses (also called "discoveries", either true or false)

Reminds us of...?

Controlling your errors

- We talk about rejecting the null at some level a
- If we do *m* hypothesis tests, there's an issue: generally, as the number of comparisons *m* increases, the number of false positives (V) increases too!

Controlling your errors

- We talk about rejecting the null at some level a
- If we do *m* hypothesis tests, there's an issue: generally, as the number of comparisons *m* increases, the number of false positives (V) increases too!
- This means we artificially get a bunch of comparisons telling us to reject the null when we really shouldn't
- We can fix this by using different *correction* methods

Correction methods

- Not correcting for this is p-hacking!
- Keywords to know: Bonferroni correction and Benjamini-Hochberg procedure
 - These methods correct for the issue of uncontrolled false positives
- We'll show more about these in next Friday (Nov 3rd) discussion section!

Recap on hypothesis testing

- We can do hypothesis testing on specific coefficients of a regression, which helps us interpret a model
- We can do multiple hypothesis testing to compare a bunch of different alternative hypotheses, but we need to be careful with correcting for bias
- All of these hypothesis tests give us p-values... be wary of how much to trust them!

