New Mexico, Albuquerque: Top 5 zip codes to invest in

By: Brittney Nitta-Lee

Project Summary

The objective of this project was to examine the historical real estate data for Albuquerque, New Mexico and determine the top 5 zip codes for investment based on anticipated median home prices. A time series modeling approach was utilized to predict future values, assisting investors in making informed decisions.

For the data preparation phase, the zip codes were filtered based on the Albuquerque Metro and sorted according to the cumulative ROI. Then, a train-test split was conducted, and a baseline naive model was established. The Root Mean Squared Error was used as the evaluation metric to assess the accuracy of the models.

Next, a SARIMAX model was constructed to forecast each zip code. The confidence intervals, forecast range, and ROI were calculated for each zip code.

The SARIMAX model outperformed other models for Albuquerque, New Mexico 87043. Despite having a higher RMSE than the baseline model, it produced realistic outcomes.

Business Understanding

My clients are real estate investors with a focus on properties in King County. Seeking to escape the cold weather, they are interested in exploring investment opportunities in Albuquerque, New Mexico. I will identify five potential zip codes for investment in the area and provide a list of recommendations along with suggested next steps.

Dataset

The dataset was sourced from Zillow Research and can be accessed here. The dataset includes 14,723 rows, each representing a zip code, and 272 columns. The data provides median sales for every zip code from April 1996 to April 2018.

Load the Data/Filtering for Chosen Zipcodes

```
In [1]: # imports
    from math import sqrt
    from sklearn.metrics import mean_squared_error
    import warnings
    from pylab import hist, show, xticks
    import itertools
    from statsmodels.tsa.stattools import adfuller
```

```
from matplotlib.pylab import rcParams
import statsmodels.api as sm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('fivethirtyeight')
warnings.filterwarnings('ignore')
import seaborn as sns
from sklearn.model_selection import TimeSeriesSplit
from statsmodels.tsa.arima.model import ARIMA
import warnings
from scipy import stats
from statsmodels.graphics.tsaplots import plot_acf
```

```
In [2]: df_zillow = pd.read_csv("zillow_data.csv")
    df_zillow.head()
```

t[2]:		RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04	1996-05
	0	84654	60657	Chicago	IL	Chicago	Cook	1	334200.0	335400.0
	1	90668	75070	McKinney	ТХ	Dallas- Fort Worth	Collin	2	235700.0	236900.0
	2	91982	77494	Katy	TX	Houston	Harris	3	210400.0	212200.0
	3	84616	60614	Chicago	IL	Chicago	Cook	4	498100.0	500900.0
	4	93144	79936	El Paso	TX	El Paso	El Paso	5	77300.0	77300.0

5 rows × 272 columns

Out

```
In [3]: df_zillow.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14723 entries, 0 to 14722
Columns: 272 entries, RegionID to 2018-04
dtypes: float64(219), int64(49), object(4)
memory usage: 30.6+ MB

Data Preprocessing

The data has 272 columns and 14723 entries. For this project, I want to focus on Albuquerque, so I'll create a new dataframe called abq_data to include all data from Albuquerque from Metro column.

```
In [4]: abq_data = df_zillow.loc[df_zillow["Metro"] == "Albuquerque"]
abq_data

Out[4]: RegionID RegionName City State Metro CountyName SizeRank 1996-04
```

110 95306 87111 Albuquerque NM Albuquerque Bernalillo 111 156900.0

	RegionID	RegionName	City	State	Metro	CountyName	SizeRank	1996-04
114	95309	87114	Albuquerque	NM	Albuquerque	Bernalillo	115	139000.0
196	95314	87120	Albuquerque	NM	Albuquerque	Bernalillo	197	130900.0
268	95315	87121	Albuquerque	NM	Albuquerque	Bernalillo	269	99900.0
430	95318	87124	Rio Rancho	NM	Albuquerque	Sandoval	431	113200.0
734	95304	87109	Albuquerque	NM	Albuquerque	Bernalillo	735	136100.0
772	95307	87112	Albuquerque	NM	Albuquerque	Bernalillo	773	112200.0
893	95300	87105	South Valley	NM	Albuquerque	Bernalillo	894	96700.0
994	95317	87123	Albuquerque	NM	Albuquerque	Bernalillo	995	114400.0
1006	95305	87110	Albuquerque	NM	Albuquerque	Bernalillo	1007	110500.0
1027	95303	87108	Albuquerque	NM	Albuquerque	Bernalillo	1028	96300.0
1628	95265	87031	Los Lunas	NM	Albuquerque	Valencia	1629	107300.0
1958	95321	87144	Rio Rancho	NM	Albuquerque	Sandoval	1959	135600.0
2698	95302	87107	Albuquerque	NM	Albuquerque	Bernalillo	2699	114700.0
3005	95301	87106	Albuquerque	NM	Albuquerque	Bernalillo	3006	112300.0
4333	95297	87102	Albuquerque	NM	Albuquerque	Bernalillo	4334	88200.0
5337	95239	87002	Belen	NM	Albuquerque	Valencia	5338	101200.0
6420	95316	87122	Albuquerque	NM	Albuquerque	Bernalillo	6421	232000.0
6840	95308	87113	Albuquerque	NM	Albuquerque	Bernalillo	6841	183600.0
7089	95299	87104	Albuquerque	NM	Albuquerque	Bernalillo	7090	113200.0
8082	95240	87004	Bernalillo	NM	Albuquerque	Sandoval	8083	138400.0
8163	95280	87048	Corrales	NM	Albuquerque	Sandoval	8164	193500.0
8314	95286	87059	Tijeras	NM	Albuquerque	Bernalillo	8315	142000.0
10088	95275	87043	Placitas	NM	Albuquerque	Sandoval	10089	222200.0
10207	95279	87047	Sandia Park	NM	Albuquerque	Bernalillo	10208	188700.0
11468	95274	87042	Peralta	NM	Albuquerque	Valencia	11469	111700.0
11474	95292	87068	Bosque Farms	NM	Albuquerque	Valencia	11475	122200.0
12222	95244	87008	Cedar Crest	NM	Albuquerque	Bernalillo	12223	186000.0

28 rows × 272 columns

The data contains 28 different zipcodes in Albuquerque. I will drop RegionID and SizeRank as I don't need those columns for this project. I will also look for any missing data.

```
In [5]: abq_data.drop(['RegionID', 'SizeRank'], axis=1, inplace=True)
```

```
0 rows × 270 columns
```

04

05

06

07

08

07

```
In [7]: abq_data['CountyName'].unique()
Out[7]: array(['Bernalillo', 'Sandoval', 'Valencia'], dtype=object)
```

There's three different counties listed in abq_data . Next, I'll explore the data and narrow down the zipcodes I want to use for my time series model.

```
In [8]: abq_data2 = abq_data.copy()
```

Exploratory Data Analysis

To provide more insightful information to our stakeholders, I will create a new column ROI in the abq_data. This column will represent the total Return on Investment (ROI) for each zip code, which is a more comprehensive measure of profitability. I'll also include the cumulative percent change as these are features to evaluate the performance of my model.

Out[9]:		RegionName	City	State	Metro	CountyName	Total_ROI	Cumulative_Percent_(
	110	87111	Albuquerque	NM	Albuquerque	Bernalillo	0.695347	169.
	114	87114	Albuquerque	NM	Albuquerque	Bernalillo	0.565468	156.
	196	87120	Albuquerque	NM	Albuquerque	Bernalillo	0.486631	148.
	268	87121	Albuquerque	NM	Albuquerque	Bernalillo	0.434434	143.4
	430	87124	Rio Rancho	NM	Albuquerque	Sandoval	0.595406	159.

```
In [10]: # Find the top 10 zipcodes in Albuquerque
abq_roi.sort_values('Total_ROI', ascending=False).head(10)
```

Out[10]:

	RegionName	City	State	Metro	CountyName	Total_ROI	Cumulative_Percen
8163	87048	Corrales	NM	Albuquerque	Sandoval	1.204651	2
6420	87122	Albuquerque	NM	Albuquerque	Bernalillo	1.180603	2′
3005	87106	Albuquerque	NM	Albuquerque	Bernalillo	1.102404	2.
10088	87043	Placitas	NM	Albuquerque	Sandoval	0.903690	19
7089	87104	Albuquerque	NM	Albuquerque	Bernalillo	0.750883	17
734	87109	Albuquerque	NM	Albuquerque	Bernalillo	0.713446	17
8314	87059	Tijeras	NM	Albuquerque	Bernalillo	0.702817	1.
110	87111	Albuquerque	NM	Albuquerque	Bernalillo	0.695347	16
2698	87107	Albuquerque	NM	Albuquerque	Bernalillo	0.684394	16
1027	87108	Albuquerque	NM	Albuquerque	Bernalillo	0.666667	1€

New Mexico's largest county is Bernalillo, which contains 47 zipcodes. In comparison, Sandoval county only contains 18 zipcodes. Interestingly, despite its smaller size, the median household income in Sandoval county is \$10,000 higher than that of Bernalillo county.

	ound etro	method Data CountyName	aFrame.sort_valu 1996-04 \	es of	Regio	nName	City	State
11		87111	Albuquerque	NM	Albuquerque	Bernalillo	156900.	0
11		87114	Albuquerque	NM	Albuquerque	Bernalillo		
19		87120	Albuquerque	NM	Albuquerque	Bernalillo		
26		87121	Albuquerque	NM	Albuquerque	Bernalillo		
43		87124	Rio Rancho	NM	Albuquerque	Sandoval		
73		87109	Albuquerque	NM	Albuquerque	Bernalillo		
77		87112	Albuquerque	NM	Albuquerque	Bernalillo		
89		87105	South Valley	NM	Albuquerque	Bernalillo		
99		87123	Albuquerque	NM	Albuquerque	Bernalillo		
	006	87110	Albuquerque	NM	Albuquerque	Bernalillo		
	27	87108	Albuquerque	NM	Albuquerque	Bernalillo		
	528	87031	Los Lunas	NM	Albuquerque	Valencia		
	958	87144	Rio Rancho	NM	Albuquerque	Sandoval		
	598	87107	Albuquerque	NM	Albuquerque	Bernalillo		
	005	87106	Albuquerque	NM	Albuquerque	Bernalillo		
	333	87102	Albuquerque	NM	Albuquerque	Bernalillo		
	337	87002	Belen	NM	Albuquerque	Valencia		
	120	87122	Albuquerque	NM	Albuquerque	Bernalillo		
	340	87113	Albuquerque	NM	Albuquerque	Bernalillo		
70	89	87104	Albuquerque	NM	Albuquerque	Bernalillo		
80	82	87004	Bernalillo	NM	Albuquerque	Sandoval	138400.	0
81	163	87048	Corrales	NM	Albuquerque	Sandoval	193500.	0
83	314	87059	Tijeras	NM	Albuquerque	Bernalillo	142000.	0
10	8800	87043	Placitas	NM	Albuquerque	Sandova	222200.	0
10	207	87047	Sandia Park	NM	Albuquerque	Bernalillo	188700.	0
11	1468	87042	Peralta	NM	Albuquerque	Valencia	111700.	0
11	474	87068	Bosque Farms	NM	Albuquerque	Valencia	122200.	0
12	2222	87008	Cedar Crest	NM	Albuquerque	Bernalillo	186000.	0
		1996-05	1996-06 1996-	-07	1996-08	2017-09	2017-10 2	017-1
11	L O		154200.0 152800		51400.0	253700		25600
11	4	139200.0	139300.0 139400	0.0 1	39500.0	209600	210700	21180

				1 IIIai-	NOICOOK			
196	130500.0	130000.0	129500.	0 12900	0.0	191400	192300	193000
268	99600.0	99600.0	99600.	0 9970		139800	140100	140600
430	113400.0	113600.0	113600.			175300	176700	178800
734	135800.0	135500.0	135300.			229100	228700	229000
772	112400.0	112600.0	112800.			170900	171000	172100
893	95800.0	95100.0	94600.			136200	136900	137600
994	114700.0	115000.0	115200.			181000	181700	181800
1006	110600.0	110700.0	110900.		0.0	180400	180300	180500
1027	96600.0	97000.0	97500.	0 9790	0.0	155500	155400	156200
1628	107200.0	107100.0	106900.	0 10680	0.0	135900	137000	138100
1958	135300.0	135000.0	134700.	0 13450	0.0	183700	184000	185400
2698	115000.0	115400.0	115800.			189300	190000	190100
3005	112300.0	112400.0	112400.			221000	221400	223700
4333	88000.0	87900.0	87900.			126200	128700	129500
		101200.0						
5337	101300.0		101200.			107100	107900	109500
6420	232000.0	232000.0	232200.			497500	499600	503100
6840	183900.0	184200.0	184500.			269200	269400	270300
7089	113300.0	113400.0	113500.			181600	184100	186500
8082	138400.0	138400.0	138400.	0 13840	0.0	203500	203800	205600
8163	193700.0	193800.0	194000.	0 19420	0.0	408900	408300	411400
8314	141900.0	141700.0	141500.	0 14130	0.0	232300	231900	232900
10088	222400.0	222700.0	223100.	0 22360		392600	395000	402400
10207	188800.0	188800.0	188800.			275000	274800	277200
11468	112000.0	112100.0	112200.			166400	167000	167200
11474	122600.0	123000.0	123400.			193800	195900	196100
12222	185600.0	185100.0	184700.	0 18420	0.0	277300	279000	278800
							,	
	2017-12		2018-02	2018-03	2018-04	Total_ROI	\	
110	258600	260500	262300	264500	266000	0.695347		
114	213100	214100	215200	216600	217600	0.565468		
196	193400	193300	193600	194300	194600	0.486631		
268	141100	141200	141900	142800	143300	0.434434		
430	180700	181400	181000	180500	180600	0.595406		
734	230100	231100	231800	232700	233200	0.713446		
772	173500	174400	176000	178500	180100	0.605169		
893	138200	138400	138500	138600	138400	0.431231		
994	181600	181200	182200	184300	185300	0.619755		
1006	180500	179900	180400	182400	184000	0.665158		
1027	157300	158000	158600	159700	160500	0.666667		
1628	139200	139900	141100	142400	143200	0.334576		
1958	186700	187100	187100	187600	188100	0.387168		
2698	189700	189600	190000	191600	193200	0.684394		
3005	227500	230500	232700	234700	236100	1.102404		
4333	129300	129400	129600	130700	132200	0.498866		
5337	111100	111800	112900	114300	115100	0.137352		
6420	505700	508200	509300	508200	505900	1.180603		
6840	271300	271500	272900	274600	274600	0.495643		
7089	188800	190300	192100	195300	198200	0.750883		
8082	207500	207600	207100	209500	212800	0.537572		
8163	414400	415000	418200	423200	426600	1.204651		
8314	234200	234900	237200	240300	241800	0.702817		
10088	410900	416700	419400	421000	423000	0.903690		
10207	282200	286300	290500	295100	298200	0.580286		
11468	167700	168600	170200	171500	172000	0.539839		
11474	195700	196900	198600	199700	200400	0.639935		
12222	278200	279200	280800	281900	282000	0.516129		
12222	270200	273200	200000	201900	202000	0.510125		
	Cumulatio	ve Percent	Chango					
110	Cumurat1\		_					
110			.534736					
114			.546763					
196			.663102					
268			.443443					
430		159	.540636					
734		171	.344600					

160.516934

772

Final-Notebook 4/13/23, 10:08 AM

```
893
                       143.123061
994
                       161.975524
1006
                       166.515837
1027
                       166.666667
1628
                       133.457596
1958
                       138.716814
2698
                       168.439407
3005
                       210.240427
4333
                       149.886621
5337
                       113.735178
6420
                       218.060345
6840
                       149.564270
7089
                       175.088339
8082
                       153.757225
8163
                       220.465116
8314
                       170.281690
10088
                       190.369037
10207
                       158.028617
11468
                       153.983885
11474
                       163.993453
12222
                       151.612903
```

[28 rows x 272 columns]>

Visualization

Now that I have selected the top 10 zipcodes in Albuquerque, I'll create a bar graph to see the growth percentage.

```
# formatting for the rest of our visualizations
In [12]:
          font = {'family': 'DejaVu Sans',
                  'weight': 'bold',
                  'size': 22}
          plt.rc('font', **font)
In [13]:
          # Sort values by Total ROI
          abq roi sorted = abq roi.sort values(by='Total ROI', ascending=False)
          ax = abq roi sorted.head(10).plot.bar(x='RegionName', y='Total ROI', figsize=(
              16, 8), alpha=0.5, edgecolor="black", linewidth=2)
          plt.title('Top 10 Zip Codes in Albuquerque', fontsize=25)
          plt.legend('')
          ax.set_yticklabels(["0%", "20%", "40%", "60%", "80%", "100%"])
          plt.xlabel('Zip Codes', fontsize=20)
          plt.ylabel('Growth Percentage', fontsize=20)
```

Out[13]: Text(0, 0.5, 'Growth Percentage')


```
In [14]: # Create new dataframe for top 10 zipcodes in Albuquerque
abq_10 = abq_roi.sort_values(by='Total_ROI', ascending=False).head(10)
abq_10
```

Out[14]:	RegionName	City	State	Metro	CountyName	Total_ROI	Cumulative_Percen
8163	87048	Corrales	NM	Albuquerque	Sandoval	1.204651	2
6420	87122	Albuquerque	NM	Albuquerque	Bernalillo	1.180603	2′
3005	87106	Albuquerque	NM	Albuquerque	Bernalillo	1.102404	2.
10088	87043	Placitas	NM	Albuquerque	Sandoval	0.903690	19
7089	87104	Albuquerque	NM	Albuquerque	Bernalillo	0.750883	17
734	87109	Albuquerque	NM	Albuquerque	Bernalillo	0.713446	11
8314	87059	Tijeras	NM	Albuquerque	Bernalillo	0.702817	1.
110	87111	Albuquerque	NM	Albuquerque	Bernalillo	0.695347	1€
2698	87107	Albuquerque	NM	Albuquerque	Bernalillo	0.684394	1€
1027	87108	Albuquerque	NM	Albuquerque	Bernalillo	0.666667	16

```
In [15]: abq_10['RegionName'] = abq_10['RegionName'].astype(str)

# Plotting the historical data
fig, ax = plt.subplots(figsize=(30,10))
plt.bar(abq_10.RegionName, abq_10['Cumulative_Percent_Change'])
plt.title('ROI by Zipcode 1996 - 2018')
plt.xlabel('Zipcode')
plt.ylabel('ROI percent')
plt.show()
```

4/13/23, 10:08 AM

This graph shows the top 10 zipcodes with the highest ROI over the period of 1996 to 2018. There's subtle changes between 87101 and 87108.

```
In [16]: # list of top 5 zipcodes
    region_list = ['87048', '87122', '87106', '87043', '87104']

# filter rows with desired RegionNames
    abq_top_5 = abq_data[abq_data['RegionName'].isin(region_list)]

abq_top_5 = abq_top_5.drop(columns=['Total_ROI', 'Cumulative_Percent_Change'])

# display new dataframe
    abq_top_5.head()
```

\bigcirc 11+	г	1	6 1	
out	L	+	ΟJ	0

	RegionName	City	State	Metro	CountyName	1996-04	1996-05	1996-06
3005	87106	Albuquerque	NM	Albuquerque	Bernalillo	112300.0	112300.0	112400.0
6420	87122	Albuquerque	NM	Albuquerque	Bernalillo	232000.0	232000.0	232000.0
7089	87104	Albuquerque	NM	Albuquerque	Bernalillo	113200.0	113300.0	113400.0
8163	87048	Corrales	NM	Albuquerque	Sandoval	193500.0	193700.0	193800.0
10088	87043	Placitas	NM	Albuquerque	Sandoval	222200.0	222400.0	222700.0

5 rows × 270 columns

In [17]: abq_top_5

Out[17]:

	RegionName	City	State	Metro	CountyName	1996-04	1996-05	1996-06
3005	87106	Albuquerque	NM	Albuquerque	Bernalillo	112300.0	112300.0	112400.0
6420	87122	Albuquerque	NM	Albuquerque	Bernalillo	232000.0	232000.0	232000.0
7089	87104	Albuquerque	NM	Albuquerque	Bernalillo	113200.0	113300.0	113400.0
8163	87048	Corrales	NM	Albuquerque	Sandoval	193500.0	193700.0	193800.0
10088	87043	Placitas	NM	Albuquerque	Sandoval	222200.0	222400.0	222700.0

5 rows × 270 columns

Reshape from Wide to Long Format

Now that I have the data that I want to use, I'll reshape the data from a wideformat to a long format. The abq_data contains the wide format dataset.

```
def melt_data(df):
In [18]:
             # Melt data into wide version
              melted = pd.melt(df, id_vars=['RegionName', 'City', 'State', 'Metro', 'Count
              # Create new column as datetime variable
              melted['time'] = pd.to datetime(melted['time'], infer datetime format=True)
              # Remove rows with missing values
              melted = melted.dropna(subset=['value'])
              # set `time` as index
              melted.set_index('time', inplace=True)
              return melted.groupby('time').aggregate({'value':'mean'})
In [19]:
          # Create new data frame for zipcodes
          abq_zip = [zip_code for zip_code in abq_10['RegionName']]
In [20]:
          abq zip
Out[20]: ['87048',
           '87122',
           '87106'
           '87043',
           '87104',
           '87109',
           '87059',
           '87111',
           '87107',
           '87108']
```

Final top 10 zipcodes

I want to create a visualization for the top 10 zipcodes. The visualization helps with detecting and trends or patterns.

```
abq df = pd.DataFrame()
In [21]:
          for i in abq top 5['RegionName']:
              x = melt_data(abq_top_5[abq_top_5['RegionName'] == i])
               abq df = pd.concat([abq df, x], axis=1)
               abq df .rename(columns = {'value':i}, inplace = True)
          # Display results
          abq df.head(10)
                       87106
                                87122
                                         87104
                                                 87048
                                                          87043
Out[21]:
                time
          1996-04-01 112300.0 232000.0 113200.0 193500.0
                                                        222200.0
          1996-05-01 112300.0 232000.0 113300.0
                                               193700.0
                                                        222400.0
         1996-06-01 112400.0 232000.0 113400.0 193800.0 222700.0
```

	87106	87122	87104	87048	87043
time					
1996-07-01	112400.0	232200.0	113500.0	194000.0	223100.0
1996-08-01	112400.0	232400.0	113600.0	194200.0	223600.0
1996-09-01	112400.0	232800.0	113700.0	194400.0	224100.0
1996-10-01	112500.0	233200.0	113800.0	194700.0	224700.0
1996-11-01	112600.0	233800.0	114000.0	194700.0	225000.0
1996-12-01	112800.0	234500.0	114100.0	194600.0	224900.0
1997-01-01	113100.0	235300.0	114300.0	194700.0	225100.0

To make it easier to analyze and visualize the data, I'm going to resample the time series to a monthly frequency with the start of each month as the observation point. This will aggregate the data for each month and create a new dataframe with the data for the first day of each month. This is particularly useful for forecasting and filling in any gaps in the data.

Now we can see our training data and the testing data. 80% of our data is in the train and 20% of the data is in test. It looks like the split point is in 2014. The trend line has an upward pattern up until 2008 where you can see a downward trend. This is due to the Great Recession. The "Subprime Mortgage Crisis" was a period of time (2007 to 2010) when there was an increase in the number of high-risk mortgages that went into default and caused a ripple effect on the housing market and broader economy. This is important to highlight as I am not inlouding this data into my modeling.

[More information about the Subprime Mortgage Crisis] (https://www.history.com/topics/21st-century/recession)

Train Validation Split and Naive Model

I'll create a naive model by shifting the train data by one day to create a simple baseline model for comparison with my SARIMAX model. The naive model predicts that the current value is the same as the value from the previous day and does not take into account any patterns or trends in the data. The purpose of this model is to establish a baseline performance metric, which is the root mean squared error (RMSE).

```
# Create new dataframe with datapoints beginning in 2011
In [24]:
          abq_df_new = abq_df['2011-01-01':]
          # Get a list of unique zipcodes (column names)
In [25]:
          unique_zipcodes = abq_df_new.columns
          # Initialize an empty dictionary to store the RMSE values for each zipcode
          rmse dict = {}
          # Define the train-test split ratio
          split_ratio = 0.8
          # Loop through the unique zipcodes
          for zipcode in unique zipcodes:
              # Get the data for the current zipcode
              data = abq df new[zipcode]
              # Calculate the index for the train-test split
              cutoff = int(len(data) * split ratio)
              # Split the data into train and test sets
              train = data[:cutoff]
              test = data[cutoff:]
              # Shift the train data by 1 time step to create the naive model predictions
              naive predictions = train.shift(1)
              # Calculate the RMSE between the actual values and the naive model prediction
              rmse naive train = np.sqrt(np.mean((train[1:] - naive predictions[1:])**2))
              # Shift the test data by 1 time step to create the naive model predictions
              naive predictions test = test.shift(1)
              # Calculate the RMSE between the actual values and the naive model prediction
              rmse naive test = np.sqrt(np.mean((test[1:] - naive predictions test[1:])**2
              # Add the RMSE values to the dictionary with the zipcode as the key
              rmse dict[zipcode] = {'train': rmse naive train, 'test': rmse naive test}
          # Print the baseline RMSE values for each zipcode
          print('Baseline RMSE values for each zipcode:')
          for zipcode, rmse values in rmse dict.items():
              print(f'Zipcode {zipcode}: Train RMSE = {rmse values["train"]:.2f}, Test RMS
```

```
Baseline RMSE values for each zipcode:
Zipcode 87106: Train RMSE = 1992.74, Test RMSE = 1763.69
Zipcode 87122: Train RMSE = 2483.10, Test RMSE = 2151.74
Zipcode 87104: Train RMSE = 1084.01, Test RMSE = 1848.21
Zipcode 87048: Train RMSE = 3602.07, Test RMSE = 2825.51
Zipcode 87043: Train RMSE = 2222.06, Test RMSE = 3517.35
```

- 1. 87106, the baseline model has a train RMSE of 1992.74 and a test RMSE of 1763.69. This suggests that the model performs slightly better on the test dataset compared to the train dataset, with a smaller error in predicting the test dataset.
- 1. 87122, the train RMSE is 2483.10, and the test RMSE is 2151.74. In this case, the model also performs better on the test dataset, with a lower error compared to the train dataset.
- 1. 87104, the train RMSE is 1084.01, while the test RMSE is 1848.21. The model performs significantly better on the train dataset; however, the test RMSE is relatively high, indicating that the model's predictions on the test dataset are less accurate.
- 1. 87048, the train RMSE is 3602.07, and the test RMSE is 2825.51. The model's performance is better on the test dataset, with a smaller error in predictions.
- 1. 87043, the train RMSE is 2222.06, and the test RMSE is 3517.35. In this case, the model performs better on the train dataset, but its predictions on the test dataset have a larger error.

SARIMAX Modeling

Now that I have my baseline model, I will use a SARIMA model to forecast the median value of the top 5 zipcodes in Albuquerque. The top five zipcodes will have individual predictions and forecast results. I will evaluate each model by calculate the Root Mean Squared Error (RMSE). I will also include the 95% confidence interval, which will give a range of values within the true future value is likely to fall, with of course, 95% confidence.

I chose a SARIMAX model for forecasting the top 5 zipcodes for multiple reasons:

- 1. Seasonality Real Estate prices exhibit seasonal patterns.
- 2. Autoregressive and Moving Average Components SARIMAX is an extension of the ARIMA model, which combines AR and moving average components.
- 3. Flexibility Specifiy different orders for AR, MA, Seasonal, which allows for fine-tuning the model to better fit the data for each zipcode.
- 4. Interpretability Interpretable results.

Code citation:

towardsdatascience.com

stackoverflow

Albuquerque, New Mexico 87106

```
# Define train and validation datasets based 20% and 80%
In [26]:
          training_data = abq_df_new[87106][:cutoff]
          validation data = abq df new[87106][cutoff:]
          # Define the range of parameters for p, d, q, P, D, Q, and s
          p = d = q = range(0, 2)
          P = D = Q = range(0, 2)
          s = 12 # monthly data
          # Generate a list of all possible combinations of parameters
          pdq = list(itertools.product(p, d, q))
          seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
          # Initialize variables to store the best parameters and the lowest RMSE
          best params = (0, 0, 0, 0, 0, 0, 0)
          lowest_rmse = float('inf')
          # Loop through all possible combinations of parameters
          for param in pdq:
              for param_seasonal in seasonal_pdq:
                  try:
                      # Fit a SARIMAX model with the current combination of parameters
                      model = sm.tsa.statespace.SARIMAX(training data,
                                                         order=param,
                                                         seasonal_order=param_seasonal,
                                                         enforce_stationarity=False,
                                                         enforce invertibility=False).fit()
                      # Make predictions on the validation data
                      predictions = model.predict(start=validation data.index[0], end=vali
                      # Calculate the RMSE of the predictions
                      rmse = np.sqrt(np.mean((predictions - validation data)**2))
                      # Update the best parameters and lowest RMSE if the current RMSE is
                      if rmse < lowest rmse:</pre>
                          best params = (param, param seasonal)
                          lowest rmse = rmse
                  except ValueError: # skip combinations that fail to converge or produce
                      continue
          print(f'Best parameters: {best_params}')
          print(f'Lowest RMSE: {lowest rmse:.2f}')
```

```
Best parameters: ((1, 0, 0), (0, 0, 0, 12))
Lowest RMSE: 4536.00
```

The root mean squared error(RMSE) is \$4,536, which represents the average difference between the actual data points and the predictions made by the SARIMAX model. This is higher than our baseline model and it indicates that the model may not be adequately capturing the data's structure.

```
# Forecast 52 months into the future (4 years)
forecast1 = sarima mod1.get forecast(steps=52).summary frame()
# Calculate the mean of the last week of the forecast as the predicted value
forecast1_mean = round(forecast1['mean'][51])
#Calculate the difference between lower and upper 95% confidence intervals of th
low_int1 = round(forecast1['mean_ci_lower'][51])
high_int1 = round(forecast1['mean_ci_upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci_delta1 = round(high_int1 - low_int1)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87106:')
print(f'95% confidence: ${low_int1} and ${high_int1}')
print(f'Confidence range: ${ci_delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq_df_new[87106])
plt.plot(forecast1['mean'])
ax.fill_between(forecast1.index, forecast1['mean_ci_lower'],
                    forecast1['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87106')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87106: 95% confidence: \$236629.0 and \$293381.0 Confidence range: \$56752.0

The result shows the forecast for the median home price in zipcode 87106. The 95% confidence interval is a measure of uncertainty around the predicted value. The 95% confidence interval is between 236,629 and 293,381. This means that based on the model's predictions, there is a 95% probability that the true median home price will fall within this range. The confidence range is \$56,752 which is the difference between the upper and lower bounds of the confidence interval.

Albuquerque, New Mexico 87122

```
# Define train and validation datasets based 20% and 80%
In [28]:
          training_data2 = abq_df_new[87122][:cutoff]
          validation_data2 = abq_df_new[87122][cutoff:]
          # Define the range of parameters for p, d, q, P, D, Q, and s
          p = d = q = range(0, 2)
          P = D = Q = range(0, 2)
          s = 12 # monthly data
          # Generate a list of all possible combinations of parameters
          pdq = list(itertools.product(p, d, q))
          seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
          # Initialize variables to store the best parameters and the lowest RMSE
          best params = (0, 0, 0, 0, 0, 0, 0)
          lowest_rmse = float('inf')
          # Loop through all possible combinations of parameters
          for param in pdq:
              for param_seasonal in seasonal_pdq:
                  try:
                      # Fit a SARIMAX model with the current combination of parameters
                      model2 = sm.tsa.statespace.SARIMAX(training_data2,
                                                         order=param,
                                                         seasonal order=param seasonal,
                                                         enforce stationarity=False,
                                                         enforce invertibility=False).fit()
                      # Make predictions on the validation data
                      predictions2 = model2.predict(start=validation data2.index[0], end=v
                      # Calculate the RMSE of the predictions
                      rmse2 = np.sqrt(np.mean((predictions2 - validation data2)**2))
                      # Update the best parameters and lowest RMSE if the current RMSE is
                      if rmse2 < lowest rmse:</pre>
                          best params = (param, param seasonal)
                          lowest rmse = rmse2
                  except ValueError: # skip combinations that fail to converge or produce
                      continue
          print(f'Best parameters: {best params}')
          print(f'Lowest RMSE: {lowest rmse:.2f}')
         Best parameters: ((0, 1, 1), (0, 0, 1, 12))
```

The RMSE is a little closer to our baseline model. The baseline train RMSE is 2483.10, and the test RMSE is 2151.74. The model is not performing well on this dataset.

Lowest RMSE: 3155.22

```
enforce invertibility=False).fit()
# # Forecast 52 months into the future (4 years)
forecast2 = sarima_mod2.get_forecast(steps=52).summary_frame()
# Calculate the mean of the last week of the forecast as the predicted value
forecast2 mean = round(forecast2['mean'][51])
#Calculate the difference between lower and upper 95% confidence intervals of th
low_int2 = round(forecast2['mean_ci_lower'][51])
high_int2 = round(forecast2['mean_ci_upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci_delta2 = round(high_int2 - low_int2)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87122:')
print(f'95% confidence: ${low int1} and ${high int1}')
print(f'Confidence range: ${ci_delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq_df_new[87122])
plt.plot(forecast2['mean'])
ax.fill_between(forecast2.index, forecast2['mean_ci_lower'],
                    forecast2['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87122')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87122: 95% confidence: \$236629.0 and \$293381.0 Confidence range: \$56752.0

Zipcode 87122 has the same results as 87106. Let's move on and see the results of our other zipcodes.

Albuquerque, NM, 87104

```
In [30]:
          # Define train and validation datasets based 20% and 80%
          training_data3 = abq_df_new[87104][:cutoff]
          validation data3 = abq df new[87104][cutoff:]
          # Define the range of parameters for p, d, q, P, D, Q, and s
          p = d = q = range(0, 2)
          P = D = Q = range(0, 2)
          s = 12 # monthly data
          # Generate a list of all possible combinations of parameters
          pdq = list(itertools.product(p, d, q))
          seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
          # Initialize variables to store the best parameters and the lowest RMSE
          best params = (0, 0, 0, 0, 0, 0, 0)
          lowest_rmse = float('inf')
          # Loop through all possible combinations of parameters
          for param in pdq:
              for param_seasonal in seasonal_pdq:
                  try:
                      # Fit a SARIMAX model with the current combination of parameters
                      model3 = sm.tsa.statespace.SARIMAX(training data3,
                                                         order=param,
                                                         seasonal order=param seasonal,
                                                         enforce_stationarity=False,
                                                         enforce invertibility=False).fit()
                      # Make predictions on the validation data
                      predictions3 = model3.predict(start=validation data3.index[0], end=v
                      # Calculate the RMSE of the predictions
                      rmse3 = np.sqrt(np.mean((predictions3 - validation data3)**2))
                      # Update the best parameters and lowest RMSE if the current RMSE is
                      if rmse3 < lowest rmse:</pre>
                          best_params = (param, param_seasonal)
                          lowest rmse = rmse3
                  except ValueError: # skip combinations that fail to converge or produce
                      continue
          print(f'Best parameters: {best_params}')
          print(f'Lowest RMSE: {lowest rmse:.2f}')
         Best parameters: ((1, 0, 1), (1, 0, 1, 12))
```

The RMSE is a lot higher than our baseline model. The baseline train RMSE is 1084.01, while the test RMSE is 1848.21. The models predictions are definely less accurate.

Lowest RMSE: 5235.02

```
# Calculate the mean of the last week of the forecast as the predicted value
forecast3_mean = round(forecast3['mean'][51])
#Calculate the difference between lower and upper 95% confidence intervals of th
low_int3 = round(forecast3['mean_ci_lower'][51])
high int3 = round(forecast3['mean ci upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci_delta3 = round(high_int3 - low_int3)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87104:')
print(f'95% confidence: ${low_int1} and ${high_int1}')
print(f'Confidence range: ${ci delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq df new[87104])
plt.plot(forecast3['mean'])
ax.fill_between(forecast3.index, forecast3['mean_ci_lower'],
                    forecast3['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87104')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87104:
95% confidence: \$236629.0 and \$293381.0

This also gave the same results as the previous zipcodes.

Albuquerque, NM, 87048

```
In [32]: # Define train and validation datasets based 20% and 80%
    training_data4 = abq_df_new[87048][:cutoff]
    validation_data4 = abq_df_new[87048][cutoff:]
```

```
# Define the range of parameters for p, d, q, P, D, Q, and s
p = d = q = range(0, 2)
P = D = Q = range(0, 2)
s = 12 # monthly data
# Generate a list of all possible combinations of parameters
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
# Initialize variables to store the best parameters and the lowest RMSE
best params = (0, 0, 0, 0, 0, 0, 0)
lowest_rmse = float('inf')
# Loop through all possible combinations of parameters
for param in pdg:
    for param_seasonal in seasonal_pdq:
        try:
            # Fit a SARIMAX model with the current combination of parameters
            model4 = sm.tsa.statespace.SARIMAX(training data4,
                                               order=param,
                                               seasonal_order=param_seasonal,
                                               enforce stationarity=False,
                                               enforce_invertibility=False).fit()
            # Make predictions on the validation data
            predictions4 = model4.predict(start=validation_data4.index[0], end=v
            # Calculate the RMSE of the predictions
            rmse4 = np.sqrt(np.mean((predictions4 - validation data4)**2))
            # Update the best parameters and lowest RMSE if the current RMSE is
            if rmse4 < lowest rmse:</pre>
                best params = (param, param seasonal)
                lowest rmse = rmse4
        except ValueError: # skip combinations that fail to converge or produce
            continue
print(f'Best parameters: {best params}')
print(f'Lowest RMSE: {lowest rmse:.2f}')
```

```
Best parameters: ((1, 0, 1), (1, 0, 0, 12))
Lowest RMSE: 4128.81
```

The baseline train RMSE is 3602.07, and the test RMSE is 2825.51. The lowest RMSE is a lot higher compared to our baseline model with a 4128.81 RMSE.

```
low int4 = round(forecast4['mean ci lower'][51])
high int4 = round(forecast4['mean ci upper'][51])
#Calculate the difference between the upper and lower confidence intervals
ci_delta4 = round(high_int4 - low_int4)
# Print predicted value and confidence intervals
print(f'Albuquerque, NM, 87048:')
print(f'95% confidence: ${low_int1} and ${high int1}')
print(f'Confidence range: ${ci_delta1}')
# Plot the original data and predicted values with confidence intervals
fig, ax = plt.subplots(figsize=(15, 7))
plt.plot(abq_df_new[87048])
plt.plot(forecast4['mean'])
ax.fill_between(forecast4.index, forecast4['mean_ci_lower'],
                    forecast1['mean_ci_upper'], color='k', alpha=0.1)
plt.title('Albuquerque, NM, 87048')
plt.legend(['Original','Predicted'], loc='lower right')
plt.xlabel('Year')
plt.ylabel('Median Home Price')
plt.show()
```

Albuquerque, NM, 87048: 95% confidence: \$236629.0 and \$293381.0 Confidence range: \$56752.0

Albuquerque, NM, 87043

```
In [34]: # Define train and validation datasets based 20% and 80%
    training_data5 = abq_df_new[87043][:cutoff]
    validation_data5 = abq_df_new[87043][cutoff:]

# Define the range of parameters for p, d, q, P, D, Q, and s
    p = d = q = range(0, 2)
    P = D = Q = range(0, 2)
    s = 12 # monthly data

# Generate a list of all possible combinations of parameters
    pdq = list(itertools.product(p, d, q))
```

```
seasonal_pdq = [(x[0], x[1], x[2], s) for x in itertools.product(P, D, Q)]
# Initialize variables to store the best parameters and the lowest RMSE
best params = (0, 0, 0, 0, 0, 0, 0)
lowest_rmse = float('inf')
# Loop through all possible combinations of parameters
for param in pdq:
    for param_seasonal in seasonal_pdq:
        try:
            # Fit a SARIMAX model with the current combination of parameters
            model5 = sm.tsa.statespace.SARIMAX(training data5,
                                               order=param,
                                               seasonal_order=param_seasonal,
                                               enforce stationarity=False,
                                               enforce invertibility=False).fit()
            # Make predictions on the validation data
            predictions5 = model5.predict(start=validation data5.index[0], end=v
            # Calculate the RMSE of the predictions
            rmse5 = np.sqrt(np.mean((predictions5 - validation_data5)**2))
            # Update the best parameters and lowest RMSE if the current RMSE is
            if rmse5 < lowest rmse:</pre>
                best_params = (param, param_seasonal)
                lowest rmse = rmse5
        except ValueError: # skip combinations that fail to converge or produce
            continue
print(f'Best parameters: {best_params}')
print(f'Lowest RMSE: {lowest rmse:.2f}')
```

Best parameters: ((1, 0, 0), (1, 1, 0, 12))Lowest RMSE: 8373.23

Even conducting a grid search to find the best parameters, the RMSE is higher than our baseline model. The train RMSE is 2222.06, and the test RMSE is 3517.35. The baseline model is more accurate in its predictions on the test dataset and the optimized model actually performs worse.

```
In [35]:
          #Define SARIMAX model and fit data save as sarima mod5
          sarima mod5 = sm.tsa.statespace.SARIMAX(abq df new[87043],
                                                  order=(1, 0, 0),
                                                  seasonal order=(1, 1, 0, 12),
                                                  enforce stationarity=False,
                                                  enforce invertibility=False).fit()
          # Forecast 52 months into the future (4 years)
          forecast5 = sarima mod5.get forecast(steps=52).summary frame()
          # Calculate the mean of the last week of the forecast as the predicted value
          forecast5 mean = round(forecast5['mean'][51])
          #Calculate the difference between lower and upper 95% confidence intervals of th
          low int5 = round(forecast5['mean ci lower'][51])
          high_int5 = round(forecast5['mean_ci_upper'][51])
          #Calculate the difference between the upper and lower confidence intervals
          ci delta5 = round(high int5 - low int5)
          # Plot the original data and predicted values with confidence intervals
          fig, ax = plt.subplots(figsize=(15, 7))
          plt.plot(abq df new[87043])
```


Albuquerque, NM, 87043: 95% confidence between: \$375097.0 and \$441879.0 Confidence range: \$66782.0

These results are a lot different compared to the above zipcodes. The 95% confidence level is between 375,097 and 441,879. The confidence range is \$66,782. The SARIMAX model seems to perform better for this particular zipcode as well and seems more realistic. Let's examine the residuals.

```
In [36]:
          # Residuals
          residuals = model5.resid
          # Histogram of residuals
          plt.figure(figsize=(12, 6))
          sns.histplot(residuals, kde=True)
          plt.title('Histogram of Residuals')
          plt.xlabel('Residuals')
          plt.show()
          # Q-Q plot of residuals
          plt.figure(figsize=(12, 6))
          stats.probplot(residuals, plot=plt)
          plt.title('Q-Q Plot of Residuals')
          plt.xlabel('Theoretical Quantiles')
          plt.ylabel('Sample Quantiles')
          plt.show()
```

```
# ACF plot of residuals
plt.figure(figsize=(12, 6))
plot_acf(residuals, lags=40) # You can adjust the number of lags according to y
plt.title('Autocorrelation Function (ACF) Plot of Residuals')
plt.xlabel('Lag')
plt.ylabel('Autocorrelation')
plt.show()
```


<Figure size 864x432 with 0 Axes>

The histogram of residuals looks normally distributed but with some outliers. So it doesn't completely deviate significantly from a normal distribution. The QQ plot curves off and could mean the data has extreme values.

The ACF plot is a bar chart of coefficients of correlation between a time series and it's lagged values. The blue area shows the 95% confidence interval and is an indicator of the significance threshold. Anything within the blue area is statistically close to zero and anything outside the blue are is a statistically close to non-zero. There's a strong correlation at lag 1 and lag 2. There are not many autocorrelations that are significantly non-zero, which is a good indications for a time series model, as it suggests that the model has captured the underlying patterns in the data.

Evaluation

Now that I have my models for the top five zipcodes to invest in Albuquerque, I want to see the RMSE, low confidence, high confidence, forecast range and ROI for each of the zipcodes.

```
# Define a list of zipcodes to include
In [37]:
          zipcodes = [87106, 87122, 87104, 87048, 87043]
          # Subset the DataFrame to only include rows where the year is 2018 and the zipco
          abq df 2018 = abq df new.loc[(abq df new.index.year == 2018) & (abq df new.index
          # Calculate the median of the values for each zipcode in 2018
          medians 2018 = abg df 2018.median()
          # Print the results
          for zipcode, median in medians 2018.items():
              print(f"The median home value for zipcode {zipcode} in 2018 was ${median:,.2
         The median home value for zipcode 87106 in 2018 was $230,500.00
         The median home value for zipcode 87122 in 2018 was $508,200.00
         The median home value for zipcode 87104 in 2018 was $190,300.00
         The median home value for zipcode 87048 in 2018 was $415,000.00
         The median home value for zipcode 87043 in 2018 was $416,700.00
          # Define lists for the zipcode, city, median value, RMSE, low confidence, high c
In [38]:
          zipcodes = ['87106', '87122', '87104', '87048', '87043']
```

```
cities = ['Albuquerque, NM', 'Albuquerque, NM', 'Albuquerque, NM', 'Corrales, NM'
med values = [230500, 508200, 190300, 415000, 416700]
rmse = [rmse, rmse2, rmse3, rmse4, rmse5]
low confs = [low int1, low int2, low int3, low int4, low int5]
high_confs = [high_int1, high_int2, high_int3, high_int4, high_int5]
forecast_ranges = [ci_delta1, ci_delta2, ci_delta3, ci_delta4, ci_delta5]
# Create a dictionary 'abq' that contains the zipcode, city, median value, RMSE,
abq = {'Zipcode': zipcodes,
        'City': cities,
        '2018 median value': med values,
        'rmse': rmse,
        'low_conf': low_confs,
        'high_conf': high_confs,
        'forecast range': forecast ranges}
# Create a DataFrame 'df results' using the dictionary 'abg'.
df_results = pd.DataFrame(data=abq)
\# Calculate the low and high ends of the confidence interval for each row, and s
df_results['low_end'] = df_results['2018 median value'] + df_results['low_conf']
df_results['high_end'] = df_results['2018 median value'] + df_results['high_conf
# Calculate the ROI percentage for each row, and store the results in a new colu
df results['ROI%'] = round(((df results['high end'] - df results['2018 median va
                                      df_results['2018 median value']) * 100, 2)
```

In [39]: | df_:

df_results

Out[39]:

	Zipcode	City	2018 median value	rmse	low_conf	high_conf	forecast range	low_end	high_e
0	87106	Albuquerque, NM	230500	28566.613682	236629.0	293381.0	56752.0	467129.0	52388
1	87122	Albuquerque, NM	508200	4276.872528	465108.0	543586.0	78478.0	973308.0	105178
2	87104	Albuquerque, NM	190300	6118.499377	202629.0	239505.0	36876.0	392929.0	42980
3	87048	Corrales, NM	415000	16113.137999	447569.0	581744.0	134175.0	862569.0	99674
4	87043	Santa Ana Pueblo, NM	416700	16992.337405	375097.0	441879.0	66782.0	791797.0	85857

```
# sort the DataFrame by the ROI% column
df = df.sort_values('ROI%', ascending=False)

# plot the ROI values as a bar chart
ax = df.plot(x='zipcode', y='ROI%', kind='bar', figsize=(10, 8))
ax.set_xticklabels(df['zipcode'])
ax.set_xlabel('Zipcode')
ax.set_ylabel('ROI%')

# Add a title to the bar chart
ax.set_title('ROI% by Zipcode')
plt.show()
```


These results are showing the predicted median home value, the root mean squared error (RMSE), the low and high confidence intervals for the predicted median home value, the forecast range (high value minus low value), the low and high end values of the predicted range, and the ROI% for five different zip codes.

The low and high confidence intervals represent the range within which the true median home value is expected to fall with a 95% confidence level. The forecast range is the difference

between the high and low values of the predicted median home value range. The ROI represents the return on investment for each zipcode.

Recommendations

For those who are intersted investing in properties in New Mexico, there are the following zipcodes that has a high return on investment.

- 1. Corrales, NM (87048)
- 2. Albuquerque, NM (87106)
- 3. Santa Ana Pueblo, NM (87043)
- 4. Albuquerque, NM (87104)
- 5. Albuquerque, NM (87122)

The model's inability to generate realistic forecasts resulted in identical forecast ranges for zipcodes 87048, 87106, 87104, and 87122. However, analyzing the ROI paints a different picture. Investors seeking property in New Mexico would be better off considering Corrales or Santa Ana Pueblo. A 2023 Zillow search revealed that Santa Ana Pueblo's home prices range from 200,000to1,795,950, while Corrales' prices range from 205,000to3,800,000. These wide ranges suggest that further investigation of these zipcodes could reveal intriguing insights.

Next Steps

- 1. Further investigation into Santa Ana Pueblo and Corrales.
- 2. Include external factors that may influence real estate prices, such as population growth or unemployment rates.
- 3. Investigate rapidly growing neighborhoods in New Mexico.