Discharging sub-derivations: A proof-theoretic Curry-Howard correspondence for a λ -calculus with patterns

Nissim Francez
Computer Science dept.,
Technion-IIT, Haifa, Israel
francez@cs.technion.ac.il

Work in progress ...

Introduction

- From the perspective of the Curry-Howard correspondence (CH), abstraction over a variable in the simply-typed λ -calculus TA_{λ} corresponds to the proof-theoretic notion of discharge of an assumption in implication-introduction within natural-deduction (ND) proof-systems.
- Various (propositional) logics and λ -calculi can be obtained by side-conditions on the discharge/abstraction (e.g., side-conditions on the number of occurrences of the free abstracted variable in the body of the expression, Gabbay and de Queiroz 92). Similarly, application in the λ -calculus corresponds by CH to implication-elimination in ND.
- Schroeder-Heister makes a distinction is made between *specific* and *non-specific* assumptions. The former are introduced in an ND proof/derivation "according to their meanings", while the latter are mere "placeholders" (for a closed proof). While he focuses on differences in *introducing* the two kinds of assumptions, I focus on differences in the *discharge* of the two kinds.

Aim

- In the standard (simply-typed) λ -calculus, abstraction is based on non-specific assumptions: the term $\lambda x.M$ does not impose any restrictions on the "role" of x within M. This view is corroborated by the standard β -reduction, that allows the (capture free) substitution of an *arbitrary* term N for x in M, as the result of applying $\lambda x.M$ to N.
- I study a generalization of the λ -calculus that *does* allow imposing restrictions on the form of N as a precondition to a reduction step.
- This results from *specific abstraction* over assumptions producing a term, with which N has to *match* for the reduction to take place.
- Formally, a new term is introduced, having the form $\lambda[M'].M$, where M' is itself a term, not necessarily a variable.
- This term is interpreted proof-theoretically as a discharge of a sub-derivation (with all its open assumptions).
- By identifying $\lambda[x].M$ with $\lambda x.M$ we recover the usual λ -calculus as a sub-calculus.

Simultaneous Abstraction

- Technically, the proposed generalization amounts to an *interdependent simultaneous abstraction* of a collection of related variables: when well-typed, $\lambda[M'].M$ binds *simultaneously* the *free* variables of M', imposing a mutual-dependence relation over them. The role of the *bound* variables in M' is an auxiliary means for expressing the required dependency relation.
- A simple example: suppose it is desired to have an abstraction over M to be applicable *only* to terms N that are themselves applications, say (PQ). This is facilitated by abstracting over a "generic application", say (uv), forming $\lambda[(uv)].M$; during a reduction-step, (uv) has to match(PQ), producing a substitution s = [u/P, v/Q], and the result of the reduction-step is the term sM = M[u/P, v/Q], i.e., the simultaneous substitution of P, Q for all free occurrences of u, v, respectively, in M.
- Note that this renders reduction as a *partial* operation: if N is *not* of the form (PQ), the reduction-step cannot take place.
- -The term $\lambda x.M$ is the special case where no restriction is imposed on N in a reduction-step.

Relation to Previous Work

– A similar calculus, $\lambda \phi$ -calculus, was presented in van Oostrom (TR, 1990), with the aim of *pattern matching* in functional programming. The focus there is is on establishing *confluence* of the induced reduction

Later, Barthe, Cirstea, Kirshner and Liquori (POPL 03) studied typing in such functional language. None of them considers the proof-theoretical interpretation of the calculus, in particular not sub-proof discharge.

 In Logic Programming (e.g., PROLOG) the same effect is obtained via term-unification.

Generalized Terms

The set GLTerm of $generalized \lambda$ -terms is defined below, with Free(.) the set of free variables.

- 1. If $x \in V$, then $x \in GLTerm$, and $Free(x) = \{x\}$.
- 2. If $M, N \in GLTerm$, then $(MN) \in GLTerm$, with $GFree(MN) = Free(M) \cup Free(N)$.
- 3. If $M, M' \in GLTerm$, then $\lambda[M].M' \in GLTerm$, with $Free(\lambda[M].M') = Free(M') Free(M)$.

Examples of generalized GLTerms are $\lambda[(uv)].(vu), \lambda[\lambda w.(u(wv))].(u(xv)).$

Matching

The *matching* of a term $M \in LTerm$ with another term $M' \in LTerm$, where $M \sqsubseteq M'$, (subsumption) producing the *induced substitution* $s = \mu(M, M')$, is defined by induction on M.

- 1. If $M \equiv x$, then for every M', $\mu(M, M') = [x/M']$.
- 2. If $M \equiv (PQ)$, M' = (P'Q'), $\mu(P, P') = s_1$ and $\mu(Q, Q^p rime) = s_2$, then $\mu(M, M') = s_1 \cup s_2$ (implying compatibility of s_1, s_2).
- 3. If $M \equiv \lambda[P].N$, $M' \equiv \lambda[P'].N'$, and $\mu(N, N') = s_1 \cup s_2$, where $mu(P, P') = s_2$, then $\mu(M, M') = s_1$

The induced substitution $\mu(M, M')$ is the most general substitution s satisfying $sM \equiv M'$. Note that matching is invariant under α -equivalence.

Examples of Matching and Non-matching

- M = (uv) matches (PQ) with induced substitution [u/P, v/Q] (possibly, P = Q-untypable).
- (uu) matches (PP) with [u/P], but does not match (PQ) (for $P \not\equiv Q$), because u matches P with [u/P] and u matches Q with [u/Q] and those two substitutions are not compatible.
- -(uv) does not match $\lambda x.x$, the latter not of the form of an application.
- $-\lambda w.(u(wv))$ matches $\lambda w'.(P(w'Q))$, with s=[u/P,v/Q].
- $-\lambda x.(wx)$ does not match $\lambda y.((yu)(yv))$ (the latter *untypable*) with [w/(yu)], since such a matching would require [x/(yv)], not compatible with [x/y].
- -Matching can "dig" deeper, as with $((\lambda x.(yy))((zu)y))$, which matches $((\lambda w.(PP))((\lambda r.(rr)Q)P))$ (for any P,Q), with $[y/P,z/\lambda r.(rr),u/Q]$.

Generalized β -Reduction

We now define a generalization of β -reduction, denoted by $\widehat{\beta}$ -reduction, a (binary) relation between generalized terms.

The contextual closure of

$$((\lambda[N].M)P) \leadsto_{\widehat{\beta}} sM$$

where $s = \mu(N, P)$.

- Note that the usual β -reduction is a special case of the $\widehat{\beta}$ -reduction, since for $(\lambda x.MP)$, x matches P with induced substitution s = [x/P], so we get [x/P]M, the usual result of β -reduction.

Example: since $\mu((uv), (PQ)) = [a/u, v/P]$, we have

$$(\lambda[(uv)].(uv)(PQ)) \leadsto_{\widehat{\beta}} [u/P, v/Q](uv) = (PQ)$$
(1)

The System $TA_{\widehat{\lambda}}$

– We now pass to the proof-theoretic reflection of generalized terms and the reduction among them. The ND-rules below are a *typing rules* for generalized terms, still using the intuitionistic implicational fragment as types.

$$\frac{[\Gamma_1]_i, \Gamma_2 \vdash Q : \tau \quad \left[\Gamma_1 \vdash P : \sigma \right]_i}{\Gamma_2 \vdash \lambda[P].Q : (\sigma \to \tau)} (\to I_i)$$

$$\frac{\Gamma_1 \vdash \lambda[P].Q : \sigma \to \tau \quad \Gamma_2 \vdash P' : \sigma}{\Gamma_1 \Gamma_2 \vdash sQ : \tau} (\to E), \text{ where } s = \mu(P, P')$$

Here s is the substitution produced by *matching P* and P' (defined below). The second premise is called a *licensing derivation*. σ , τ range over wffs in the implicational fragment of the propositional calculus.

Abstracting application

- Consider the (simply-typed) identity function $\lambda x.x$: $B \rightarrow B$. Suppose we want to restrict it to terms of type B that are *applications*, i.e., matching (uv): hence, u is of type $A \rightarrow B$, and v of type A, for some A, B. This is achieved by abstracting *simultaneously* two assumptions, by a licensing derivation that establishes the type B for (uv), thereby recording in the term that this type was formed by an application, abstracted over.

$$\frac{[u:A \rightarrow B]_1 \quad [v:A]_1}{(uv):B} (\rightarrow E) \quad \left[\begin{array}{c} \underline{u:A \rightarrow B} \quad \underline{v:A} (\rightarrow E) \\ (uv):B \end{array} \right]_1}{\lambda[(uv)].(uv):B \rightarrow B} (\rightarrow I_1)$$

First, observe that the conclusion is of the required form. It is of the type of the identity function, and its term restricts application (via $\widehat{\beta}$ -reduction) only to terms in the form of an application. What we did is to abstract simultaneously over $\{u,v\}$ (by discharging simultaneously a "package" of two different assumptions, indexed 1 in the example), producing a type (B in the example), that becomes an antecedent of an implication based on a a *licensing derivation*. The licensing (sub-)derivation is discharged together with the discharged assumptions.

Restricting Contexts (Open Assumptions)

Consider another example, showing the effect on context (undischarged (open) assumptions).

$$\frac{[u:(A \to B)]_1}{(u(xv)):B} \frac{x:(A \to A) \quad [v:A]_1}{(xv):A} (\to E) \\ \frac{[u:(A \to B)]_1}{(u(xv)):B} \frac{(xv):A}{(vv):A} (\to E) \\ \frac{[u:(A \to B)]_1}{(uv):B} (\to E) \\ \frac{[u:(A \to$$

Here x has to be of a "mediating" type $A \rightarrow A$ for the term to be well-typed in contrast to being of the "mediating" typed $A \rightarrow B$ in simple typing.

Abstracting abstraction

Consider the term $\lambda[\lambda w.(u(wv))].(u(xv))$. Here too, the abstracted term will have to be well-typed, restricting simultaneously both u and v, but not w, abstracted over internally (reflecting an assumption discharge within the licensing derivation). The restriction is that u must have a type applicable to a function applied to (xv), not to v itself. Thus, in the body of the generalized term, (the free!) x will reflect an assumption having such a type.

$$\frac{[u:(B\rightarrow C)]_1}{(u(xv)):C} \frac{x:(A\rightarrow B)\quad [v:A]_1}{(xv):B} (\rightarrow E) \\ \frac{(u(xv)):C}{\lambda[\lambda w.(u(wv))].(u(xv)):(((A\rightarrow B)\rightarrow C)\rightarrow C)} (\rightarrow I_1)$$

$$\left[\begin{array}{c} [w : (A \to B)]_2 \quad v : A \\ (W) : B \\ (W) : B \\ (W) : C \\$$