Unit -3

Buraly Number Systems Boolean Algebra George Boole (1864) Also called switching Algebra.

X:0=0

1.1-21

× = -

X+0=X

X+1=1

x + x = x

 $x + \bar{x} = 1$

X + XY = X(1+Y) = X

 $x + \overline{x} y = x + xy + \overline{x} y = x + y(x + \overline{x}) = x + y$

They are digital counts that take in 1/more wigner signals to produce one output signal.
The input/output signals are either low/high voltage.

Logical duisions -> AND, OF, NOT gate.

El takes in two/nore uput signals to produce one output signals. It performs logical additions. If both inputs are high, the output is also high.

Z = X + Y Synbol Tuth table AND gate
The fales in two/rure input signals to produce one output signal. It performs logical multiplication. If either of the two inputs is low, the output signal is also low. Touth Table

	classmate	lis
6	DotaPage	0

Page
NOT Grate
It is also called invertor. It performs complementation. It converts one logic level to another logic level. It takes on one input signal & produces one output signal
converts one loss level to see yours complementation. It
one input agazel go and in anyour logic level. 4t takes as
one input signal & produces one output signal.
Symbol
X
Touth Table
XX
NAND Gate
At takes in two/ruse input signals to produce are output sign when all inputs are low, the output produces is high. Z = X.Y
when all inputs are low the output exoduces is high.
$Z = \overline{X \cdot Y}$
(1.10)
Symbol X X·V
y p n
Tenth table X Y X·Y X·Y X·Y
XXXXXX
0 0 0

NOP Grate It later in two more input variables to produce one output If so all inputs are low, the output is high Synbol Buth toble 0 0 XOR Grate / EX-OR gate It takes in two/now input signals to produce one output signal. The output is high when any one of the wiput is Also called irequality composatos, $Z = X \oplus Y = X \bar{Y} + \bar{X} Y$ Gruth table

alisonia.

Checonate 47

XNOF gate / Ex-NOF gate
It takes in two/more uput signals to produce one output
signal. When all inputs are low, the output is high.

Z = XOY Trutt Table Universal gates NAND & NOT are called Universal gates, because, with their lufe we can realise AND, OF, NOT gates / constration of these gates. Realise NOT, AND, OF, XNOP GIXNOP Grates with NAND brate NOT Grate realisation could NANI Grate A - A A+A De-molgaris theorem A godenpolerce law

Pralise NOT, OF, AND, XOK, XNOR using NOF gate (i) Not gate realisation with NOP gate OA+A=A(ii) Of gate realisation with NOP gate A+8 = A+B (iii) AND gate realisation with NOP gate JOATP - A.B (10) Ex-Not gate realisation with NOF gates

Cheemate Date Page

		Page	
	Signed Magnitude form		
		0	51
Sti) +34 represent in 8 bit for (bute form).		34
			17-0
	90100010		8-1
	N/		4 0
	MSB magnitude		2-0
			1-70
8:2)	-34 Represent is Phil form.		
	10100010		
	· · · · · · · · · · · · · · · · · · ·		
	MSB Mognitude		
3.2	+0, Shit => 0 000000		
1 9)	-0, Cht -> 1 0 0 0 0 0 0 0		
100			
	The Compliment Representation Supresentation of +1x 10 is some as that of sign	-	1
	February to tion of +x no is some as that of sig	red Mag	form-
	· of sistering		
	steps for obtaining 1's complement of a number		
6)	led - Ala crisa is in Duranal NO system -		,
(1)	la set the dilinal NO will the birthy No. 21	but format	-
(ii)	Interhange all the o's - 1's & 1's - 10's		
(11)	You will obtain the ones compliand		
(111)			
(b)	loter No given is in binary form, ->		
(i)	Introduce all the o's - i's & i's - o's		
	You will obtain the Oris compliment		
(n)	Type Down Jacob	-	Annual Miles
(1)	lot or Whesel given is in any other No system -		
		noly-	
(i)			
(11)	The state of the s	BRIE.	200

(vi) Roodise XNOP Operation with NAND gate XY+XX y. y.y (A+B) (A+B) Simplify AA - AB + AB + BB O+ AB+ AB+ B $B(\overline{A}+A+1)$ B(1+1) R(1) =71 84.) f (X, Y, Z) = XY+ YZ+ YZ+ XYZ Simplify XY(2+Z)+ (X+X) YZ+ (X+X) YZ + X VZ X YZ + X YZ + X YZ + X YZ + XYZ + X YZ + X YZ XYZ + YYZ + XYZ + XYZ + XYZ + XYZ XYZ + XYZ + XY(2+Z) + XYZ xyz + xyz + xy6)+xy5 xy.6+2) + xy + xyz XY+XY+XYZ Y (x+x) + xyz y + x 72 and Jano Y-1 XZ

(3=3) F(P, Q, R) = (P+Q)(Q+R) Simplify - PQ+PP+QQ+QR

- PQ+PR+Q+QR Adempotent laws
- PQ+PQF+Q(I+R) Com 9 dutity laws - 19+9+ rR Q(1+P)+PR 9 dentity law. Q+PR 3-4) f x, yz) = XYZ+ XZ+ XZ surprify $\overline{\chi}\overline{\gamma}$ = + $(\chi + \overline{\chi})\gamma$ = + $\chi(\gamma + \overline{\gamma})$ = XYZ+ XYZ+ XYZ+ XYZ+ XYZ XYZ+ XYZ+ XYZ+ XYZ XYZ+. YZ (X+X) + XYZ XYZ+ YZ + XYZ ȳz (x+x)+ yz Y2+ Y2 2(/+4) = 2 B-5) fabc = (AB(C+BO) + AB)C Simplify

BC(AIA) -> BC

 $\frac{a_{i}(b)}{a_{i}(b+c)} + \frac{a_{i}b}{a_{i}(b+c)} + \frac{$

abc + abc + abc + abc abc + abc + abc ac + abc + abc

Portean Algebra also called as Klustering Algebra / Logical Algebra
Is used to analyse & swinglery digital waterets
Of deals with logical operations & binary variables

Temphologies

In the combination of multiple variables & logical OR epocates

X+Y, $\overline{X}+\overline{Y}$

Execute team

Al is the conscious of multiple variables Ep logical

AND applicated

The speciated teams and the second teams are the second teams.

X·Y & X·Y

(iii) SOP -> logical of of multiple product turns

\[
\begin{align*}
\text{Y} + \overline{\text{X}}\times + \overline{\text{X}}\times + \overline{\text{X}}\times
\end{align*}

(iv) POS -> Logical AND of multiple sun long St. (x+v) (x+v) (x+y) (x+y) It is a broduct ten, consisting of all literals, coult/ without compliment to make a Boolean expression.

Maxtern -> It is a sum tur consisting of all literal, with without compliment to make a Boolin expession

Carored SOP Complete set of ninterns that are defined when output is logic 12 / true $f(\bar{x}, y) = xy + \bar{x}y + x\bar{y} + \bar{x}\bar{y}$

Caronad POS (Ouglete set of mostorus that are defined when output is $\log (c'') = (x+y) (x+y) (x+y) (x+y)$

Laws of Boolean Algebra

Name	AND John	OR Joan
Identity law	1. A = A	0+A=A
Null lave	0.A=0	1+A=1
Adempotent law	A.A = A	A+A=A
Complimentary law	A.A = 0	$A+\bar{A}=1$
Commulative law	AP = BA	A+8= B+A
Associative law	(AR) (= A(B())	(A+R)+(= A+(B+1) _
Distribution laws	A+B(=(A+P)(A+C)	A (P+C) = AR+ BE AC
Absorption law	A(A+P)= A	A + AB = A
De-Morgans law	AP = A+8	AIB = A.B

K-Map

AB	(1)	(1)	CD	CD
18	ABED	ABED	APCD 3	ABID
AB	ABED	ABCD 5	ABCD -	, ARCD
AB	ABOD	ABÉD 13	ABCD 15	ABCD
AF			ABCO	

> RC	Carrier Sol	X - X 5	4505	Z × 500
A	BC	BC	BC	BZ
Ā	ARCO	ABC	APC ?	APC,
Ā	ABE	ABC	ARC	ADE

 $\begin{array}{c|cccc}
A & \overline{B} & \overline{B} & B \\
\overline{A} & \overline{A}\overline{P} & \overline{A}B & \overline{A}B & AB \\
\hline
P & A\overline{B} & AB & AB \\
\hline
2 & 2 & 2 & 3
\end{array}$

GD NOWE Y= AR + AR + AR

A B B B Plais 1

A Pais 2

Miles enjoursion for Pair 1 => Mo + M,

Reduced engression for pair 2 => M₁ + M₃

Reduced engression for pair 2 => B

find reduced engression is => Y=A+B

(Pa) /shr > Y = ABC + ABC + ABC + ABC + ABC + ABC

93) solve Z = 5 P, B, F (1,3,6,7)

P D. A. O. Pout?

rection enjoys on of pair 1=7 m,+m3

reduced enjoyers on for pair 1=7 pR

minter enjoyers on for pair 2 => m3 + m7

soduced enjoyers on for pair 2 => QR.

minter enjoyers on for pair 3 => my +m7

suduced enjoyers on for pair 3 => PQ.

find sodued enjoyers on is => Z= PQ+QR+ PR

f(1,9,R,5) = \(\(0,2,5,7,8,10,13,15 \).

final emphasion => 95 + 95

Consulational Circuls

Half Adder A communical circuit which cools two one-but beingry numbers is called half adder.

Half - Sun 5)
Addis - Cassy (c)

Embers &

Touth table for Half adder

A	B	Sum	Cossy		
0	0	0	0		
0	1	1	0		
- 1	0	as [6 %]	0	١	
1	1	0	1		

Problem expression for the sum $\Rightarrow \overline{A}B + A\overline{B}$ $S = \overline{A}B + A\overline{B}$ $S = A \oplus B$

Boolson engression for the casey => AB [C=AB]

hogic gates expression for holf Address

Fall addes

A combinational logic circuit which performs the addition of there hills - two significant buts & one begin but is called

a full addes

A		
D	full -	- Sur (5)
	lodder -	Cout (Corry)
- in	1	,

Touth table for full adders

	A	13	Go	Sum	(assignt)	
1	0	0	0.	0	0	
1	0	0	1	Total Bas	0	
1	0		0	1.	0	
7	0	1	1	0.	1 / 1 M	9
T	1	0	0	1-40	0	
1	1	0	- (0	1	
177	1	1	0	0		
	1	Thomas		- 1	1_000	

Boolar expression for the Sum => ABGn + ABGn + ABGn + ABGn -> (in(AR+AB) + (in (AB+AB)

Steps for reducing Roobon engression is logic gates format with NAND gale Y=A+BE ADI (Md, OF, Invester (NOT)). Apply bubble to 9/2 of AND gate & Input of of gate Apply not got NOT gate at places where bushles have been inserted. (Donot clase the added bushles). $\begin{array}{c|c}
B & D & D & D \\
\hline
C & D & D & D
\end{array}$ hook out for sousle woodens & canel extra NOT gates - - - y