

CHEM F111: General Chemistry Semester II: AY 2017-18

Lecture-15, 14-02-2018

Mapping clouds of molecules in interstellar medium

Microwave and millimeter wave astronomy: Microwave identification of molecules

GMC₁

Taurus molecular cloud observed at 115 GHz 12 CO emission (J = 1 – 0)

Not part of the Syllabus

Line of sight through three Giant Molecular Clouds to the Hubble Space Telescope

GMC₂

GMC 3

{Source: Astrochemistry from Astronomy to Astrobiology, by Andrew M. Shaw, Wiley}

Notice

Notice for Quiz-02

Quiz-02 will be conducted during **15-02-2018** (Thursday) to **20-02-2018** (Tuesday) in the regular Tutorial Classes.

Syllabus: L-09 to L-15 according to Hand out, i.e. Many Electron system to Vibrational Spectroscopy.

EXTRA CLASS NOTICE for GENERAL CHEMISTRY TUTORIAL SECTION No. 5

- ROOM NO: 3253
- Time 5.00 PM
- Date: 15-February 2018 (THURSDAY)

INSTRUCTOR: Rajeev Sakhuja

Boltzmann population distribution:

$$\frac{N_j}{N_i} = \frac{g_j}{g_i} e^{-(E_2 - E_1)/kT}, \quad k \text{ is Boltzmann's constant}$$

 $N_i =>$ Population in the ith state and $g_i =>$ degeneracy of the ith state

Population in rotational states:

Population in rotational states:

$$P_{J} = P_{0} (2J + 1) e^{-hBJ(J+1)/KT} \qquad J_{max} = \left(\frac{KT}{2hB}\right)^{1/2} - 1/2$$

Rotational transitions – microwave spectroscopy

Gross selection rule: Molecule must be polar.

Specific selection rules: $\Delta J = \pm 1$

Case-I: Molecule gains energy, ∆E; State changes from J to J'.

Case-II: Molecule release energy, ∆E; State changes from J" to J'.

$$u' = \nu_i - \Delta \nu$$
 $\Rightarrow \nu_S = \nu_i - \frac{\Delta E}{h}$

Stokes' radiation

$$\nu'' = \nu_i + \Delta \nu$$

$$\Rightarrow \nu_{as} = \nu_i + \frac{\Delta E}{h}$$

Anti-Stokes' radiation

Pure rotational Raman Spectroscopy

Gross selection rule: $\frac{d\alpha}{dq} \neq 0$

Specific selection rule: $\Delta J = 0 \ or \ \pm 2$ only

$$\Delta \bar{\nu}_S = \bar{\nu}_{ex} - B(4J+6) cm^{-1}$$

$$\Delta \bar{\nu}_{as} = \bar{\nu}_{ex} + B(4J + 6) cm^{-1}$$

Intensity of Stoke's and anti-Stoke's lines?

Vibrational spectroscopy

Diatomic molecule: A-B
$$V = \frac{1}{2} k x^2 = \frac{1}{2} k (R - R_e)^2$$

K: force constant with dimension N m⁻¹

In the harmonic approximation:

$$E_{v} = \left(v + \frac{1}{2}\right)hv; \ v = 0, 1, 2, \dots$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}; \quad \mu = \frac{m_A m_B}{m_A + m_B}$$

In terms of wave number:

$$E_{v} = \left(v + \frac{1}{2}\right)hc\bar{v}, v = 0, 1, 2, \dots$$

Vibrational spectroscopy – selection rules

Vibrational transitions: At frequencies of 10^{13} to 10^{14} Hz, infrared spectroscopy.

Transition probability $\propto |\int \Psi_n^* \hat{\mu} \Psi_m d\tau|^2$

Gross selection rule: The electric dipole moment of the molecule must

change during the vibration, $\frac{d\mu}{dq} \neq 0$

Dipole moment change during vibration allows interaction with electromagnetic interaction

Specific selection rule: $\Delta v = \pm 1$

$$\Delta E = hv$$

Most important transition from v = 0 to v = 1.

Homonuclear diatomics are IR inactive as Rotational inactive

Vibrational spectroscopy

A single oxygen atom is attached to a smooth metal surface. The atom vibrates at a frequency of 1.80 X 10^{13} s⁻¹. Calculate its total energy for n = 0, 1, and 2 quantum no. states.

E (n=0) = 5.963 X
$$10^{-21}$$
 J
E (n=1) = 1.789 X 10^{-20} J
E (n=2) = 2.982 X 10^{-20} J

Calculate the wavelength of light necessary to excite a harmonic oscillator from one energy state to the adjacent state in the previous example. 16.66 μm

Workout: For temperatures of 25 °C and 1000 °C, calculate the ratio of molecules in the typical excited vibrational energy level to that in the lowest energy level, assuming that the level is 1000 cm⁻¹ above the lowest energy level.

Anharmonicity

channel

Fragmentation

 D_0 D_{eq}

Anharmonicity: Internuclear distance- $E_{\nu} = (\nu + \frac{1}{2})hc\bar{\nu} - (\nu + \frac{1}{2})^2 hc\bar{\nu}x_{\rho} +$ x_a is anharmonicity constant

v = 9

Can not break or make a bond

Vibrational spectra: Polyatomic molecules

Degrees of freedom

Translational: 3

Rotational: 2 for linear and 3 for nonlinear molecule

Vibrational: 3N – 5 for linear and 3N – 6 for nonlinear molecule.

- For a molecule with N atoms, the number of coordinates required to specify the position of all the atoms is 3N.
- These 3N
 displacements can be
 thought of in terms of
 various degrees of
 freedom.

Normal modes of vibrations

Description of vibration most convenient and simple in terms of <u>normal modes</u>.

Normal mode – Collective, independent, synchronous motion of group of atoms, that may be excited without exciting any other mode.

Each normal mode may be approximated as a harmonic oscillator with a characteristic frequency and an effective mass.

Any arbitrary displacement may be expressed as a superposition of the normal modes.

Vibrational spectroscopy

Actual (total) stretching motion

Independent components contributing to the motion (Normal modes): symmetric and asymetric stretching

Water: Normal modes of vibrations

Symmetric stretch

Bend

Asymmetric stretch

Carbon dioxide: Normal modes of vibrations

Symmetric stretch – IR inactive

Why??
Bend

Bend

 $\frac{d\mu}{dq} = 0$

Asymmetric stretch

Vibrational transitions in CO₂

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

$$\Psi_{vib} = \psi_1(\nu_1)\psi_2(\nu_2)\psi_3(\nu_3)\psi_4(\nu_4)$$

Vibrational spectroscopy

- Infrared spectroscopy powerful tool in identifying organic molecules.
- Some modes essentially motions of individual functional groups.
- Others are collective motions of the molecule as a whole – fingerprint region of spectrum.

Vibrational (IR) spectroscopy

Absorption frequency:

 $v = 1/2\pi (k/\mu)^{1/2}$ where $\mu = m_A m_B/(m_A + m_B)$ is the reduced mass and k is force constant

Typical range: $10^{13} - 10^{14}$ Hz ~ $10^2 - 10^3$ cm⁻¹ (Infrared region)

Hence, vibrational (absorption) spectroscopy is also known as IR spectroscopy.

{IR spectrum is generally represented in Transmission mode}

IR frequency calculation

Absorption frequency:

$$v(cm^{-1}) = (k/\mu)^{1/2}/2\pi c$$

```
C-H: k \sim 494 \text{ Nm}^{-1}; (v \sim 3000 \text{ cm}^{-1})

N-H: k \sim 642 \text{ Nm}^{-1}; (v \sim 3400 \text{ cm}^{-1})

O-H: k \sim 726 \text{ Nm}^{-1}; (v \sim 3600 \text{ cm}^{-1})

C=C: k \sim 972 \text{ Nm}^{-1}; (v \sim 1650 \text{ cm}^{-1})

C=C: k \sim 1650 \text{ Nm}^{-1}; (v \sim 2150 \text{ cm}^{-1})
```


GROUP	BOND	FREQUENCY RANGE (CM ⁻¹)
Alkyl	С—Н	2853-2962
Alcohol	0—Н	3590-3650
Amine	N—H	3300-3500

Here the effect is mainly due to bond strength

BOND	FREQUENCY RANGE (CM ⁻¹)
C≡C	2100-2260
C≡N	2220-2260
C = C	1620-1680
C=0	1630-1780

Interpreting IR spectra

Ketones have C=O at 1715 cm⁻¹ and no NH, OH, C-O or -CHO Anhydrides have two C=O peaks near 1800 cm⁻¹ and two C-O

IR frequency data

Group		Frequency Range (cm ⁻¹)		Intensity*
A. Alkyl C—H (stretching) Isopropyl, —CH(CH)	~~~	and and	2853-2962 1380-1385 1365-1370 1385-1395 ~ 1365	(m-s) (s) (s) (m) (s)
B. Alkenyl C—H (stretching) C—C (stretching) R—CH—CH ₂ R ₂ C—CH ₂ cis-RCH—CHR trans-RCH—CHR	(out-of-plane C—H bendings)	and	3010-3095 1620-1680 985-1000 905-920 880-900 675-730 960-975	(m) (v) (s) (s) (s) (s)
C. Alkynyl =C—H (stretching) C=C (stretching)			~ 3300 2100-2260	(s) (v)
D. Aromatic Ar—H (stretching) Aromatic substitution (C—H out-of-plane to the Monosubstituted or Disubstituted		and	~ 3030 690-710 730-770	(v) (very s) (very s)
<i>m</i> -Disubstituted p-Disubstituted		and	735-770 680-725 750-810 800-860	(s) (s) (very s) (very s)

IR frequency data

E. Alcohols, Phenols, and Carboxylic Acids O—H (stretching) Alcohols, phenols (dilute solutions) Alcohols, phenols (hydrogen bonded)	3590-3650 3200-3550	(sharp, v) (broad, s)			
Carboxylic acids (hydrogen bonded)	2500-3000	(broad, v)			
F. Aldehydes, Ketones, Esters, and Carboxylic					
C=O (stretching)	1630-1780	(s)			
Aldehydes	1690-1740	(s)			
Ketones	1680-1750	(8)			
Esters	1735-1750	(8)			
Carboxylic acids	1710-1780	(s)			
Amides	1630-1690	(s)			
G. Amines					
N—H	3300-3500	(m)			
H. Nitriles					
C≡N	2220-2260	(m)			
*Abbreviations: $s = strong$, $m = medium$, $w = weak$, $v = variable$, $w = approximately$.					

BITS Pilani, Pilani Campus

Interpreting IR spectra

C-H stretching frequencies:

```
<3000 \text{ cm}^{-1} \text{ for sp}^3; >3000 \text{ cm}^{-1} \text{ for sp}^2; ~3300 \text{ cm}^{-1} \text{ for sp};
```

Methylene and methyl C-H stretching: ~2850 cm⁻¹ (sym); ~2950 cm⁻¹ (asym)

O-H stretching: ~3600 cm⁻¹ for alcohols;

brodens and lowers to 3300 cm⁻¹ due to H-bonding in alcohols, acids, etc.

How to distinguish between intramolecular and intermolecular H-bonding?

Diatomic vibrating rotor

Diatomic vibrating rotor: CO

Unidentified Infrared Transitions (UIR)

Application of IR spectroscopy in Laboratory Astrochemistry

Further information:

- Astrochcemistry Laboratory: NASA
 {https://science.gsfc.nasa.gov/solarsystem/astrochemistry/}
- European Union {http://www.astrochemistry.eu/}
- Astrochemistry Society of India Established in 2015 {https://www.prl.res.in/~acsi/}

Supporting information

Factors affecting absorption frequency

Absorption frequency:

- Increases with increase in % of s character: sp³<sp² <sp
- e.g. C-H stretching frequencies:
- $< 3000 \text{ cm}^{-1} \text{ for sp}^3, > 3000 \text{ cm}^{-1} \text{ for sp}^2, ~3300 \text{ cm}^{-1} \text{ for sp}$
- Decreases on increase in conjugation
- e.g. In aldehydes, ketones and esters, C=O stretching frequency decreases by 25~30 cm⁻¹ when conjugated with C=C
- Is affected by inductive/resonance/electromeric effects
- Decreases due to hydrogen bonding

Supporting information: Methane, normal modes of vibrations

Supporting information: Interpreting IR spectra

Toluene: Ar-H, CH2-H, C=C

Supporting information: Interpreting IR spectra

C=O is highly sensitive to its environment

EACH DIFFERENT KIND OF C=O COMES AT A DIFFERENT FREQUENCY

1810 and 1760

THESE VALUES ARE WORTH LEARNING