MA2101 - Linear Algebra II

Liew Zhao Wei

Semester 1, 2023-2024

1 Vector spaces

1.1 Subspaces

Definition 1.1 (Subspace)

A subset U of V is a *subspace* of V if it is also a vector space using the same operations as V.

It is troublesome to prove all the axioms of a vector space for a subset. It turns out that we only need to prove that the following conditions hold.

Theorem 1.2 (Conditions for a subspace)

U is a subspace of V if and only if the following conditions hold:

- 1. $0 \in U$ (i.e. additive identity exists)
- 2. If $u, v \in U$, then $u + v \in U$. (i.e. closed under addition)
- 3. If $u \in U$, then $c \in \mathbb{F}$, $cu \in U$. (i.e. closed under scalar multiplication)

The notion of a direct sum (and hence, a sum) is important in the study of linear maps.

Definition 1.3 (Sum of subsets)

Let U_1, \ldots, U_m be subsets of V. The sum of U_1, \ldots, U_m , denoted $U_1 + \cdots + U_m$, is defined as

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_m \mid u_i \in U_i\}$$

That is, it is the set of all possible sums of elements from U_1, \ldots, U_m .

Theorem 1.4 (Sum of subspaces is smallest containing subspace)

Let U_1, \ldots, U_m be subspaces of V. Then, $U_1 + \cdots + U_m$ is the smallest subspace of V containing U_1, \ldots, U_m .

Definition 1.5 (Direct sum)

Let U_1, \ldots, U_m be subspaces of V. The sum $U_1 + \cdots + U_m$ is a direct sum if each element of $U_1 + \cdots + U_m$ can be written in exactly one way as $u_1 + \cdots + u_m$ with $u_i \in U_i$. The direct sum is denoted as $U_1 \oplus \cdots \oplus U_m$.

It is clear that sums of subspaces are analogous to unions of subsets, while direct sums of subspaces are analogous to disjoint unions of subsets.

Theorem 1.6 (Condition for a direct sum)

Let U_1, \ldots, U_m be subspaces of V. Then, $U_1 + \cdots + U_m$ is a direct sum if and only if the only solution to $u_1 + \cdots + u_m = 0$ with $u_i \in U_i$ is $u_1 = \cdots = u_m = 0$.

With this, there is a simple condition for the sum of two subspaces to be a direct sum.

Theorem 1.7 (Direct sum of two subspaces)

Let U and W be subspaces of V. Then, U+W is a direct sum if and only if $U\cap W=\{0\}$.

2 Linear maps

2.1 Isomorphism and invertibility

Theorem 2.1 (Inverse and invertible)

A linear map $S \in \mathcal{L}(W, V)$ is an *inverse* of a linear map $T \in \mathcal{L}(V, W)$ if $ST = I_V$ and $TS = I_W$. T is said to be *invertible* if it has an inverse.

Remark 2.2 (Inverses are unique). An invertible linear map has a unique inverse.

Theorem 2.3 (Invertiblity is equivalent to bijectivity)

A linear map is invertible if and only if it is bijective.

Definition 2.4 (Isomorphism)

An isomorphism is an invertible linear map. Two vector spaces are isomorphic if there is an isomorphism from one to the other.

Theorem 2.5 (Isomorphic vector spaces have the same dimension)

Two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.

Theorem 2.6 ($\mathcal{L}(V,W)$ is isomorphic to $M_{m\times n}(\mathbb{F})$)

Let V and W be finite-dimensional vector spaces with dim V = n and dim W = m. Then, \mathcal{M} is an isomorphism between $\mathcal{L}(V, W)$ and $\mathbb{F}_{m \times n}$.

Corollary 2.7 $(\dim \mathcal{L}(V, W) = (\dim V)(\dim W))$

Let V and W be finite-dimensional vector spaces. Then, $\dim \mathcal{L}(V,W) = (\dim V)(\dim W)$.

Definition 2.8 (Linear operator, $\mathcal{L}(V)$)

A linear map from a vector space V to itself is called a linear operator and is denoted by $\mathcal{L}(V)$.

Theorem 2.9 (Injectivity is equivalent to surjectivity)

Let $T \in \mathcal{L}(V)$ be a linear operator on a finite-dimensional vector space V. Then, T is injective if and only if it is surjective.

2.2 Duality

Definition 2.10 (Linear functional)

A linear functional $T \in \mathcal{L}(V, \mathbb{F})$ is a linear map from a vector space to its underlying field.

Example 2.11 (Examples of linear functionals)

We present some common examples of linear functionals.

- 1. Let $(c_1, \ldots, c_n) \in \mathbb{F}^n$. Then, the map $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$ is a linear functional on \mathbb{F}^n .
- 2. The trace of an $n \times n$ matrix A, defined as $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$, is a linear functional on $\mathbb{F}_{n \times n}$.
- 3. Let [a, b] be a closed interval in \mathbb{R} . Then, the map $L(f) = \int_a^b f(x) dx$ is a linear functional on the space of continuous real-valued functions on [a, b], denoted C([a, b]).

Definition 2.12 (Dual space)

The dual space of a vector space V, denoted V^* , is the vector space of all linear functionals on V. That is, $V^* = \mathcal{L}(V, \mathbb{F})$.

Theorem 2.13 $(\dim V^* = \dim V)$

Let V be a finite-dimensional vector space. Then, $\dim V^* = \dim V$.

2.3 Matrix transpose

Definition 2.14 (Transpose of a matrix, A^t)

Let A be an $m \times n$ matrix. The transpose of A is the $n \times m$ matrix A^t defined by $A_{ij}^t = A_{ji}$. That is, the rows and columns of A are interchanged.

Theorem 2.15 (Transpose of matrix products)

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Then, $(AB)^t = B^t A^t$.

(Skipping some definitions here regarding the dual basis and going straight to more pertinent results – will revisit it later.)

Definition 2.16 (Row rank, column rank)

Let $A \in \mathbb{F}^{m \times n}$ be an $m \times n$ matrix.

- The row rank of A is the dimension of the span of the rows of A in $\mathbb{F}^{1,n}$.
- The column rank of A is the dimension of the span of the columns of A in $\mathbb{F}^{m,1}$.

Theorem 2.17 (dim R(T) equals to column rank of $\mathcal{M}(T)$)

Let V and W be finite-dimensional vector spaces and $T \in \mathcal{L}(V, W)$. Then, dim R(T) equals the column rank of $\mathcal{M}(T)$.

Theorem 2.18 (Row rank equals column rank)

Let $A \in \mathbb{F}^{m \times n}$ be an $m \times n$ matrix. Then, the row rank of A is equal to the column rank of A.

Since the row rank and column rank are equal, we can simply refer to the rank of a matrix.

Definition 2.19 (Rank)

The rank of a matrix A, denoted rank A, is the column rank of A.

3 Trace and Determinant

Trace and determinants are primarily used to establish the properties of eigenvalues in the next section.

Definition 3.1 (Characteristic polynomial)

Let T be an operator on a complex vector space. If T has distinct eigenvalues $\lambda_1, \ldots, \lambda_m$ with multiplicities d_1, \ldots, d_m , then the *characteristic polynomial* of T is defined as

$$p_T(z) = (z - \lambda_1)^{d_1} \cdots (z - \lambda_m)^{d_m}$$
(1)

3.1 Trace

Definition 3.2 (Trace of an operator)

The trace of an operator T, denoted $\operatorname{tr} T$, is defined as follows:

- If $\mathbb{F} = \mathbb{C}$, then $\operatorname{tr} T$ is the sum of the eigenvalues of T, counted with multiplicity.
- If $\mathbb{F} = \mathbb{R}$, then $\operatorname{tr} T$ is the sum of the eigenvalues of $T_{\mathbb{C}}$, counted with multiplicity.

Theorem 3.3 (Relation between trace to characteristic polynomial)

For any operator $T \in \mathcal{L}(V)$ with $n = \dim V$, $\operatorname{tr} T$ is equal to the negative of the coefficient of z^{n-1} in the characteristic polynomial of T.

Definition 3.4 (Trace of a matrix)

The trace of an $n \times n$ matrix A, denoted $\operatorname{tr} A$, is the sum of the diagonal entries of A. That is, $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$.

We will show that the trace of an operator is equal to the trace of any of its matrix representation.

Lemma 3.5 (Trace is cyclic)

For any two square matrices A and B of the same size,

$$tr AB = tr BA \tag{2}$$

Lemma 3.6 (Trace of matrix is oblivious to basis)

Suppose T is a linear operator. For any two bases \mathcal{B} and \mathcal{C} of a finite-dimensional vector space,

$$\operatorname{tr} \mathcal{M}_{\mathcal{B}}(T) = \operatorname{tr} \mathcal{M}_{\mathcal{C}}(T) \tag{3}$$

Theorem 3.7 (Trace of linear operator and its matrix are equal)

For any operator T,

$$tr T = tr \mathcal{M}(T) \tag{4}$$

Corollary 3.8 (Trace is additive)

For any two operators S and T,

$$tr(S+T) = tr S + tr T \tag{5}$$

Theorem 3.9 $(ST - TS \neq I)$

For any two operators S and T,

$$ST - TS \neq I \tag{6}$$

3.2 Determinant

Definition 3.10 (Determinant of an operator)

The determinant of an operator T, denoted $\det T$, is defined as follows:

- If $\mathbb{F} = \mathbb{C}$, then det T is the product of the eigenvalues of T, counted with multiplicity.
- If $\mathbb{F} = \mathbb{R}$, then det T is the product of the eigenvalues of $T_{\mathbb{C}}$, counted with multiplicity.

Similar to the trace, the determinant is closely related to the characteristic polynomial.

Theorem 3.11 (Relation between determinant and characteristic polynomial)

For any operator $T \in \mathcal{L}(V)$ with $n = \dim V$, $\det T$ is equal to $(-1)^n$ times the constant term of the characteristic polynomial of T.

Remark 3.12. Combining the trace and determinant, we can rewrite the characteristic polynomial as

$$p_T(t) = z^n - (\operatorname{tr} T)z^{n-1} + \dots + (-1)^n \det T$$
 (7)

Theorem 3.13 (Invertible iff nonzero determinant)

An operator T is invertible if and only if $\det T \neq 0$.

Theorem 3.14 (Invertible iff nonzero determinant)

A square matrix A is invertible if and only if $\det A \neq 0$.

4 Eigenvalues and Eigenvectors

Definition 4.1 (Invariant subspace)

A subspace $U \subseteq V$ is invariant under a linear operator T if $T(U) \subseteq U$.

Example 4.2 (Examples of trivially invariant subspaces)

For any linear operator $T \in \mathcal{L}(V)$, the following subspaces are invariant under T:

- {0}
- V
- $\bullet \ker T$
- *R*(*T*)

Of particular interest are the invariant subspaces of dimension 1.

Definition 4.3 (Eigenvalue and eigenvector)

A scalar $\lambda \in \mathbb{F}$ is an eigenvalue of a linear operator $T \in \mathcal{L}(V)$ if there exists a nonzero vector $v \in V$ such that $Tv = \lambda v$. The vector v is called an eigenvector of T corresponding to λ .

Remark 4.4 (Equivalent definition of eigenvector). A non-zero vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \in \ker(T - \lambda I)$.

With that remark, we arrive at the following equivalences for eigenvalues.

Theorem 4.5 (Equivalent conditions for eigenvalues)

Let V be finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. Then, the following are equivalent:

- 1. λ is an eigenvalue of T.
- 2. $T \lambda I$ is not injective.
- 3. $T \lambda I$ is not surjective.
- 4. $T \lambda I$ is not invertible.

Theorem 4.6 (Eigenvectors corresponding to distinct eigenvalues are linearly independent)

Let $T \in \mathcal{L}(V)$. Every list of eigenvectors of T corresponding to distinct eigenvalues is linearly independent.

Theorem 4.7 (Number of eigenvalues is at most $\dim V$)

Any linear operator on a finite-dimensional vector space V has at most dim V distinct eigenvalues.

Definition 4.8 (T^m)

Let $T \in \mathcal{L}(V)$ and $m \in \mathbb{N}$.

- T^0 is defined as the identity operator I on V.
- $T^m \in \mathcal{L}(V)$ is defined as $T^m = T \circ T^{m-1}$.
- If T is invertible, then $T^{-m} \in \mathcal{L}(V)$ is defined as $T^{-m} = (T^{-1})^m$.

Remark 4.9. $T^m T^n = T^{m+n}$ and $(T^m)^n = T^{mn}$.

Definition 4.10 (Matrix similarity)

Two order-n square matrices A and B are similar if there is an invertible matrix P such that

$$B = P^{-1}AP \tag{8}$$

Similar matrices represent the same linear map under two different bases.

Remark 4.11 (Similarity equivalence). Similarity is an equivalence relation on the set of all order-n square matrices.

Definition 4.12 (Characteristic polynomial equals det(zI - T))

The characteristic polynomial of an operator T is equal to $\det(zI - T)$.

Remark 4.13. Similar matrices have the same characteristic polynomial.

Theorem 4.14 (Multiplicies sum to $\dim V$)

For any operator T on a complex vector space V, the sum of the multiplicities of the eigenvalues of T is equal to $\dim V$.