Meshing of the work

Using symmetry to produce the other half

Calculating mass flow rate for 500 iterations

2D Nozzle Mesh after Adaption

Contours of static pressure (steady flow)

Velocity vectors showing recirculation (steady flow)

Zoomed image

Flux report after computing for inlet and outlet

Calculating mass flow rate for 600 iterations

Pressure contour at t = 0.017136s

Mach number contour at t=0.017136 s

Here are some animation playback images for pressure contour

Here are some animation playback images for pressure contour

Velocity vector

Third order

MASS FLOW RATE

SCALED RESIDUALS

CONTOUR OF STATIC PRESSURE (STEADY FLOW)

VELOCITY VECTOR SHOWING RECIRCULATION (STEADY STATE)

ZOOMED VIEW

CONTOUR OF STATIC PRESSURE(t= 0.01736s)----transient state

CONTOUR OF MACH NUMBER (t= 0.01736s)-----transient state

VELOCITY VECTOR FOR 3RD ORDER CALCULATIONS

In this tutorial

We generated the steady state conditions as an initial condition for the transient case

We set the solution parameters for implicit time-stepping and apply a user -defined transient pressure profile at the outlet

Used mesh adoption to refine the mesh in areas with high pressure gradients to better capture the shocks

Learned to save the solution information as the transient calculation's proceeds

Created solution animation profile of the transient flow