

AD-A064 181 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERD--ETC F/6 1/3
HIGHLY SURVIVABLE TRUSS TYPE TAIL BOOM. (U)
NOV 78 T F ERLINE

UNCLASSIFIED

ARBRL-TR-02123

SBIE-AD-E430 172

NL

1 OF 2
AD
A064181

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DDC FILE COPY

ADA064181

(12)

LEVEL

AD-E430172

TECHNICAL REPORT ARBRL-TR-02123

HIGHLY SURVIVABLE TRUSS TYPE
TAIL BOOM

Thomas F. Erline

November 1978

US ARMY AMMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

79 01 19 04 4

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

The use of trade names or firm names in this report
does not constitute endorsement of any product or service.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ⑦ TECHNICAL REPORT ARBRL-TR-02123	2. GOVT ACCESSION NO. ⑨	3. RECIPIENTIC CATALOG NUMBER <i>Technical rep.</i>
4. TITLE (and Subtitle) ⑥ HIGHLY SURVIVABLE TRUSS TYPE TAIL BOOM.	5. TYPE OF REPORT & PERIOD COVERED	
7. AUTHOR(s) ⑩ Thomas F. Erline	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory ATTN: DRDAR-BLB Aberdeen Proving Ground, MD 21005	8. CONTRACT OR GRANT NUMBER(S) ⑫ 178P.	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command US Army Ballistic Research Laboratory ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS ⑪ NOV 1978	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) ⑯ SBIE	12. REPORT DATE ⑬ NOV 1978	
15. NUMBER OF PAGES 177	13. SECURITY CLASS. (of this report) Unclassified	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE FEB 5 1979	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	DDC REF ID: A641979 B FEB 5 1979 R ILLINOIS	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Airframes Tail Boom Vulnerability Reduction 30mm HEI Structural Integrity	Helicopters Survivable Semimonocoque 23mm HEI Highly Redundant	Truss Design Anti-Aircraft Threat Substructured
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
<p>⑭ Highly redundant truss type structures, which are lightweight, have been analyzed by NASTRAN for replacement of the semimonocoque type tail boom. Analyses show that even with massive damage criterion imposed the structure retains its integrity with level flight loads up to 130 knots. The truss presents itself as a structural challenge to Soviet AA threat of the 23mm and 30mm HEI rounds.</p> <p>Comparing the vulnerable semimonocoque configuration with the truss structure: semimonocoque's vulnerable area is nearly 100% of the present area; the</p>		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The truss has a greatly reduced vulnerable area (the joints are most vulnerable and their areas are small). The semimonocoque is blast sensitive to the AA threats mentioned because the detonation is confined and a large surface area is blown away; the truss does not confine the blast, thus is less sensitive. Since the thin skin structure of the semimonocoque carries a great deal of load it is sensitive to crack propagation; the truss is insensitive to crack propagation. Since the truss can be easily designed lightweight, the truss presents itself as a highly survivable competitive alternate for future Army helicopters.

ACCESSION for		
NTIS	<input checked="" type="checkbox"/> White Section <input type="checkbox"/> Buff Section	
DOC	<input type="checkbox"/>	
UNANNOV/DO	<input type="checkbox"/>	
JUS/EXC/		
CV		
DISSEMINATION COPY CABLES		
P- <input type="checkbox"/> SPECIAL		
A		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	Page
LIST OF ILLUSTRATIONS	5
LIST OF TABLES	7
I. INTRODUCTION	9
II. PROCEDURES	11
2.1 First Design Development	11
2.2 Weight Reduction by Changing Geometry Layout	22
2.3 Second Design Case	22
2.4 The Third Design Case.	22
2.5 Analyses	24
2.6 Procedural Assumption.	25
III. RESULTS	25
3.1 Displacements.	25
3.2 Margins of Safety.	25
3.3 Natural Frequencies.	54
3.4 Observable Surface Area.	64
IV. DISCUSSION	65
V. CONCLUSIONS	66
ACKNOWLEDGEMENT	67
REFERENCES	69
APPENDIX A - NASTRAN Mathematical Model of the Undamaged Truss Model 1 Plus Output of Displacements, Stresses and Margins of Safety Due to Flight Loads	71
APPENDIX B - NASTRAN Mathematical Model of the Undamaged Truss Model 2 Plus Output of Displacements, Stresses and Margins of Safety Due to Flight Loads	111

TABLE OF CONTENTS (CONT)

	Page
APPENDIX C - NASTRAN Mathematical Model of the Undamaged Truss Model 3 Plus Output of Displacements, Stresses and Margins of Safety Due to Flight Loads	139
APPENDIX D - Element Identification Table for All Models.	167
APPENDIX E - Grid Point Locations Model 1.	171
APPENDIX F - Grid Point Locations Models 2 and 3	173
DISTRIBUTION LIST	175

LIST OF ILLUSTRATIONS

Figure		Page
1.	Geometry of Helicopter Tail Boom	12
2.	First Iteration Member Layout.	14
3.	Computer Drawing of a Complete Triangular Substructure of Model 1.	16
4.	Computer Drawing of the Complete Quad Based Structure Model 1.	18
5.	Computer Drawing of the Base and Vertical Station 1 Illustrating the Fully Connected Composition of the Structure	19
6.	Computer Drawing of Base Vertical Station 1 and 2 Illustrating Complete Substructure Connections	20
7.	Computer Drawing of Model 2.	23
8.	Computer Drawing of Model 3.	23
9.	Maximum Deflection Constraint Due to Drive Shaft Couplings	26
10.	Computer Drawing of Model 2 with Damage of -Joint 7.	41
11.	Computer Drawing of Model 3 with Damage of -Joint 7.	42
12.	Computer Drawing of Model 2 with Damage of -Joint 8.	43
13.	Computer Drawing of Model 2 with Damage of -Joint 15	44
14.	Computer Drawing of Model 3 with Damage of -Joint 15	45
15.	Computer Drawing of Model 2 with Damage of -Joint 16	46
16.	Computer Drawing of First Mode Shape Superimposed Over Undeformed Shape Model 1	55
17.	Computer Drawing of Second Mode Shape Superimposed Over Undeformed Shape Model 1	56
18.	Computer Drawing of Third Mode Shape Superimposed Over Undeformed Shape Model 1	57

LIST OF ILLUSTRATIONS (CONT.)

Figure		Page
19.	Computer Drawing of the First Mode Shape Superimposed Over Undefomed Shape Model 2	38
20.	Computer Drawing of Second Mode Shape Superimposed Over Undefomed Shape Model 2	39
21.	Computer Drawing of the Third Mode Shape Superimposed Over the Undefomed Shape Model 2	60
22.	Computer Drawing of the First Mode Shape Superimposed Over the Undefomed Shape Model 3	61
23.	Computer Drawing of Second Mode Shape Superimposed Over Undefomed Shape Model 3	62
24.	Computer Drawing of the Third Mode Shape Superimposed Over the Undefomed Shape Model 3	63

LIST OF TABLES

Table	Page
1. Common Design Parameters and Formulas	13
2. Different Weight Cases of First Design	21
3. Maximum Displacement at End of Boom Due to 100% Flight Load With Joints Deleted	27
4a. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 1.	28
4b. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 1.	29
4c. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 1.	30
4d. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 1.	31
5a. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 2.	32
5b. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 2.	33
5c. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 2.	34
5d. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 2.	35
6a. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 3.	36
6b. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 3.	37
6c. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 3.	38
6d. Ratio of Damaged Displacements to Undamaged Displacements on Longeron Opposite Damage Criterion - Model 3.	39
7. Compressive Margins of Safety Under 10.0 Due to 130 knot Flight Load on Forward Vertical Sta with 100% Loading.	47

LIST OF TABLES (CONTD)

Table	Page
8. Compressive Margins of Safety Under 10.0 Due to 130 knot Flight Load on Middle Vertical Sta with 100% Loading	48
9. Compressive Margins of Safety Under 10.0 Due to 130 knot Flight Load on End Vertical Sta with 100% Loading	49
10. Compressive Margins of Safety Under 10.0 Due to 130 knot Flight Load on Forward Vertical Sta with 100% Loading for Models 2 and 3	50
11. Compressive Margins of Safety Under 10.0 Due to 130 knot Flight Load on Middle Vertical Sta with 100% Loading for Models 2 and 3	51
12. Compressive Margins of Safety Under 10.0 Due to 130 knot Flight Load on End Vertical Sta with 100% Loading for Models 2 and 3	52
13. Cases of Models 2 and 3 Where M.S. Less Than 1.0.	53
14. Natural Frequencies	54
15. Observable Presented Area	64

I. INTRODUCTION

Successful completion of Army helicopter missions in future battle scenarios may well depend upon survival of the structure after battle damage. Survivability of a helicopter will depend significantly upon the structure's ability to retain structural integrity. The principal purpose of this study is to develop a structural concept which assures a high degree of confidence in the integrity of a structure that has received combat damage. This study has been pursued because the Army needs to meet and provide a solution to the ever escalating high explosive anti-aircraft threat to the helicopter tail boom.

The highly lethal 23mm high explosive projectile represents an existing widely deployed threat to Army helicopters. The more lethal 30mm high explosive projectile appears on the horizon as the potential future threat. Because of this potentially severe 30mm threat and the possible inadequacy of present semimonocoque designs to survive hits by the 30mm, the present study was initiated to develop a structural challenge to the 30mm and to improve upon the present designs.

The tail boom of a helicopter (for example, the present AH-1 and UH-1 models) presents a significant amount of vulnerable area, and due to the flight loads of the tail rotor and elevators, the tail boom is constantly in some stressed condition. The semimonocoque tail boom construction configuration consists of skins, longerons, stringers, and bulkheads. Four longerons provide the main bending support for the tail boom. Shear loads are carried by the skin structure which is locally supported against buckling by the stringers. Presently the semimonocoque structure is configured to a minimum weight design. Ballistics tests using the 23mm high explosive against the minimum weight semimonocoque tail boom design have demonstrated its lack of damage tolerance¹. Structural modifications have been shown to increase the damage tolerance of the structure but the amount of damage is predictably a function of confined volume and detonation distance to the surface¹. Clearly the larger 30mm projectile reduces the survivability of the entire semimonocoque tail boom structure.

The solution for a structural challenge in this study took the form of a search for a highly redundant tail boom structure. A highly redundant structure is a structure that starts with a compact unit structure. The compact unit structure is interconnected within itself by comparatively small, relative to the entire structure, but stiff structural elements. The entire structure is then built up by a replication of the unit structure, scaling as desired or necessitated. The main reason for a high degree of redundancy is to build up damage tolerance by attempting to keep damage strictly localized.

¹D.F. Haskell, Damage Tolerance of Semimonocoque Aircraft, Paper at 41st Meeting of NATO-AGARD Impact Damage Tolerance of Structures Conference, Ankara, Turkey, October 1975.

A possible engineering solution that can easily be made highly redundant is the truss type structure. Use of modern technology and standard elements can make a truss both practical and economical. Because of its potential to fulfill such characteristics, the truss type structure was selected for this study in place of the semimonocoque structure. This study not only utilizes the truss concept but also introduces the concept of complete imbedded substructures. Complete imbedded substructures are easily generated within a truss structure that has a base figure equivalent to a quadrilateral by including the interior diagonals in a simple open truss structure. The intent is to develop a truss type tail boom with complete substructures that is highly redundant so that it can absorb massive damage and yet still hold the aerodynamic loads of flight. The truss tail boom can reduce vulnerability while lowering the weight of the tail boom. The observable surface area drops significantly reducing visibility and radar echo. A bonus would be the possibility of mounting a recoilless rifle on the helicopter because the openness of the truss allows the passage of back blast.

The development was performed throughout by computer modeling. The aerodynamic loads can be simulated and a damage criterion established very easily by this technique. A damage criterion should reflect a maximum amount of damage that can be sustained by the structure. The design objective is to retain structural integrity after imposition of the damage criterion.

Damage to a truss structure would not be in terms of confined volume or surface distance as it is in the semimonocoque structure, but damage would be in terms of loss of a member(s) or a loss of a joint. Not counting a completely destructive blast, the most catastrophic single event that could occur to a truss structure would be the destruction of a joint. The loss of a joint in a truss structure can be considered as massive damage because the loss of many members assembled at the joint is associated with loss of the joint. The demand that the truss sustain loss of a single joint and still retain structural integrity (not have other members buckle or fail) under flight loads is considered maximum survivability for the purpose of this study. Thus, loss of a joint is the damage criterion employed in this study.

Static and dynamic analyses of three truss design concepts were performed by the NASTRAN (NASA STRuctural ANalysis)² program. One of these truss concepts is a simple open truss design. The other two models incorporate the concept of complete substructures. The semi-monocoque tail boom of AH-1 helicopter series is used as the basis for a replacement truss tail boom model. The AH-1 series helicopter presents a logical choice to develop a truss structure tail boom to

²Caleb, W. McCormick, Editor, The NASTRAN User's Manual, NASA SP 222(03), March 1976, Washington, D.C.

replace a semimonocoque structure. This helicopter has been in the Army's arsenal for a while and will continue in service for a number of years.

Selection of the design concept that is most likely to defeat the AA threat mentioned previously is dependent upon highest survivability and lowest weight. A selected design will be built, tested experimentally and reported on separately.

II. PROCEDURES

The longerons are the longitudinal elements which constitute the basic configuration to be employed in the truss structure model development. The basic overall dimensions come from the AH-1G helicopter reported in reference 3 (see figure 1). Longerons pattern at the larger (or base) end has been selected to conform to the bolt pattern of the AH-1G model at the tail boom - main fuselage manufacturing break line. The aerodynamic loading conditions were obtained from Bell Helicopter Company⁴. Common design parameters and formulas are listed in Table 1.

2.1 First Design Development

The initial goal was a high degree of redundancy. Thus, in the first iteration the structural member layout was generated by orienting the outside diagonals at 45° angles from the base. The vertical and transverse members were located at diagonal and longeron intersection points, see figure 2. In addition to the longeron, outside diagonal, and transverse members, diagonal members were included within the

³J.D. Cronkite, V.L. Berry, J.E. Brunlsen, A. NASTRAN Vibration Model of AH-1G Helicopter Airframe, June 1974, AD A009482.

⁴Private communication between D.F. Haskell of BRL and D. Reisdorfer, Bell Helicopter Company.

Figure 1. Geometry of Helicopter Tail Boom.

TABLE 1.
Common Design Parameters and Formulas

Material:	Aluminum Alloy
Modulus of Elasticity:	$E = 7. \times 10^{10} \text{ N/m}^2 (10.5 \times 10^6 \text{ psi})$ (5)
Density ρ :	$\rho = 2.7 \times 10^3 \text{ kg/m}^3 (0.1 \text{ lbs/in}^3)$ (5)
Margin of Safety: of Individual Member	$M.S. = \frac{\text{stress limit}}{\text{applied stress}} - 1.$ (6)

Stress Limits per member

Compressive	$CSL = .8 * \delta_{cr}$
Tensile	$TSL = \delta_{cr}$

Euler Column Buckling (7)

$$\delta_{cr} = \frac{P_{cr}}{CSA}$$

Cross Sectional Area of Tube: $CSA = \pi(r_o^2 - r_i^2)$

Compressive Critical Load with Hinged Ends (7)

$$P_{cr} = \frac{\pi^2 EI}{l^2} \quad \text{where } l = \text{length of member}$$

⁵ALCOA STRUCTURAL HANDBOOK. A Design Manual for Aluminum Company of America, Pittsburg, PA, 1958.

⁶NASTRAN Programmer's Manual, NASA SP-221(03), July, 1976, Washington, D.C.

⁷S. Timoshenko, Strength of Materials, Part I. D. VanNostrand Company, Inc., New York, N.Y., 1940, pp 244-254.

Figure 2. First Iteration Member Layout.

transverse sections defined by the transverse members, see figure 2. This layout was aided by geometry programs developed in-house⁸. The overall configuration consists of 44 joints, 120 degrees of freedom, with 186 members.

Analyses of this first design concept were started with the structural optimization program OPTBAR⁹. The OPTBAR program is an optimization procedure based on an energy criterion and a search procedure based on constraint gradient values. Constraint values of the geometric configuration, same material throughout, minimum element sizes and stress limit are input to OPTBAR and the indeterminate structure is optimized to lowest weight design. For this first simple open truss model the lowest weight was 44.45 kg (98 lbs). Initial damage criteria was loss of a member or members, and analyses of these cases produced higher weights. This was predictable because as the load path changes OPTBAR must strengthen the remaining members to take up the load. Of course, a critical event would be the loss of a joint and analyses simulating the loss of a joint using OPTBAR on the first iteration model indicated a geometrical instability.

Intuitively, one can observe the geometrical instability in a triangular cross section based truss (figure 3) if it would lose a joint. The structural integrity of a quadrilateral cross section based simple open truss that absorbed a loss of a joint has an uncertainty factor. This uncertainty in the simple open quad based truss led to the belief that it may be dependent on each and every joint. Dependence on a joint and the uncertainty of structural stability due to a geometric instability when a joint is lost reduces confidence in structural integrity.

This "simple" open truss structure was deemed unacceptable (simple is defined here as joint dependent). At this time the damage criterion was firmly established to be the loss of a single joint. A concept for independence of a joint was needed to reduce uncertainty of stability and increase confidence of structural integrity after damage. A number of ideas were passed over until the idea of complete substructures was conceived.

The concept that was used to generate complete substructures so as to obtain joint independence introduced the interior diagonals. The connection of all the interior diagonals from vertical station to vertical station generates forty additional elements in this first design. Because of the inclusion of these interior diagonals an increase in weight occurs, however, an increase in survivability is conceptually

⁸Keith Applin, Gary Kuehl; "Geometry Programs to Aid in Producing COM-GEOM Target Descriptions," BRL Memorandum Report No. 2712 Dec 1976.

⁹V.B. Venkayya, Design of Optimum Structures-Computers and Structures, Vol. 1, pp 285-309, Pergamon Press 1971.

Figure 3. Computer Drawing of a Complete Triangular Substructure of Model 1.

assured because the structure's configuration has increased the ability to retain structural integrity after imposition of the loss of a joint. This method populates a joint with eleven members to be connected and generates a structure that has four complete triangular-based substructures (figure 3) within the entire quadrilateral cross section based structure (figure 4). This structure is highly redundant. The structure of figure 3 is a subset of that shown in figure 4. Figure 5 shows the fully connected composition of the addition of interior diagonals to the structure between the base and vertical station 1. The composition of this structure is truly shown in figure 6 which presents the base, vertical station 1 and vertical station 2. Note that the joints within the extremities are highly populated with eleven members per joint.

This new configuration has 226 members with 44 joints and 120 degrees of freedom. This complete, highly redundant truss when operated on by OPTBAR optimization analysis came to a weight of approximately 52.16 kg (115 lbs). The problem with the structural optimization scheme is that the optimization is for one and only one particular solution (weight optimization). The program results in a wide variety of cross sectional areas to the members so as to optimize the load path. Realistically there cannot be a universe of different size members; however, the weight output can be thought of as representative of an ideal lower bound. Being limited to this one area obviously does not account for a design-to-cost or a design-to-logistics solution.

A full accounting optimization could be defined as: design-to-cost, design-to-weight, design-to-logistics, and many other design-to-areas. For our purposes this study attempts to account for the three areas specifically mentioned. Considering cost and logistics, the ideal design would be to have all the truss members with the same cross sectional end dimensions. It costs less to buy a large quantity of structural elements all the same size than to buy small quantities of various sizes.

The standard tube structural element was chosen for this conceptual design study because of the tube's high inertia over rods of the same cross sectional area. Standard structural tube dimensions⁵ provide a wide range of possible designs (see Table 2). Analyses of the first design by changing standard dimensions allow a number of possible choices. Cases increment upward in weight by the different standard structural member dimensions. The structural element choice is 3.81 cm (1 1/2") outside diameter tubes with .159 cm (1/16") thickness. Using these element dimensions the first design weighs 63.73 kg (140.5 lbs) and meets our definition of full accounting.

Since these parameters are now set, the weight optimization program cannot be used for our analysis. Structural analyses from here on are performed by NASTRAN (NASA STructural ANalysis)². NASTRAN is a large, comprehensive, general purpose, finite element, displacement method,

Figure 4. Computer Drawing of the Complete Quad Based Structure Model 1.

Figure 5. Computer Drawing of the Base and Vertical Station 1 Illustrating the Fully Connected Composition of the Structure.

Figure 6. Computer Drawing of Base, Vertical Station 1 and 2
Illustrating Complete Substructure Connections.

TABLE 2
Different Weight Cases of First Design

<u>Design</u>	<u>O.D.</u>	<u>Thickness</u>	<u>Weight</u>
Interior Diagonals	3.81 cm (1 1/2")	.159 cm (1/16")	46.27 kg
Outer Members	3.81 cm (1 1/2")	.0795 cm (1/32")	(102 lbs)
All Members	3.81 cm (1 1/2")	.159 cm (1/16")	63.73 kg (140.5 lbs)
Interior Diagonals	4.45 cm (1 3/4")	.159 cm (1/16")	66.22 kg
Outer Members	3.81 cm (1 1/2")	.159 cm (1/16")	(146 lbs)
Interior Diagonals	4.45 cm (1 3/4")	.159 cm (1/16")	66.68 kg
Outer Members	4.45 cm (1 3/4")	.079 cm (1/32")	(147 lbs)
All Members	4.45 cm (1 3/4")	.159 cm (1/16")	74.66 kg (164.6 lbs)
All Members	5.04 (2")	.159 cm (1/16")	85.73 kg (189 lbs)

computer program. NASA, other government agencies, and aerospace industries have been using it for a number of years now for design and analysis of all forms of airframes.

The NASTRAN rigid format 3, Normal Modes and Frequencies, is a dynamic analysis providing the mode shapes and resonant frequencies of complete models. Analysis of flight loads on the models is performed by NASTRAN rigid format 4, Static Analysis with Differential Stiffness. This method was chosen over rigid format 1, Static Analysis, because design operating stresses are more accurately calculated for analysis of buckling failure of individual members¹⁰. The NASTRAN mathematical model in the design of the truss structure is straight forward. The joints are grid points and the connections made are with the standard line element CTUBE².

2.2 Weight Reduction by Changing Geometry Layout

The initial model truly achieves a high degree of redundancy and populates the structure with many members. This configuration, however, is not a low weight design. To obtain a geometric configuration conducive to a low weight design without doing a geometry optimization analysis, this study utilizes only the joint locations described in reference 11 for the second and third design cases.

2.3 Second Design Case

The second design is a "simple" open truss. The longeron elements are again following the longeron locations of the AH-1 series type helicopter. The configuration consists of 28 joints, 114 members, and 72 degrees of freedom. The same tube dimensions that are in the first design are used here. This configuration (see figure 7) weighs approximately 40.82 kg (90 lbs). This design case is included as a comparison to the third design case.

2.4 The Third Design Case

The third design has the same geometry as the second design except that the interior diagonals are introduced to generate complete sub-structures. This design has 138 members with 28 joints and 72 degrees of freedom. This highly redundant truss design weighs approximately 52.16 kg (115 lbs) (see figure 8), using the same 3.81 cm (1 1/2") outside diameter tubes with .159 cm (1/16") thickness.

¹⁰Robert B. Bennett, NASTRAN Differential Stiffness, Analysis of an Aircraft Canopy, NASA TMX 2378 p 85-105, September 1971.

¹¹J. S. Arora, E. J. Haug, A. K. Govil, Fail-Safe Design of an Open Truss Helicopter Tail Boom, Technical Report #32, April 1977, College of Engineering, University of Iowa.

Figure 7. Computer Drawing of Model 2.

Figure 8. Computer Drawing of Model 3.

2.5 Analyses

The NASTRAN program allows six degrees of freedom for each grid point, three translational and three rotational. The translational displacements are sufficient in this study; rotational displacements are constrained using a GRDSET² card in the NASTRAN bulk data. The NASTRAN bulk data deck contains the structure design, the loading conditions, and boundary conditions to be used. The grid points (GRIDPT card)² simulate the geometric locations of joints. The CTUBE² card specifies the element (tube) connections between grid points and also points to a PTUBE² card. The PTUBE card specifies the properties of the tube, such as outside diameter and thickness, and points to the MAT1² card. The MAT1 card contains the material properties, Young's modulus, shear modulus and the compressive, and tensile stress limits.

Four loading conditions are simulated in rigid format 4 Static Analysis with Differential Stiffness by Force² cards which apply a 30% loading condition to the appropriate grid points used in the linear first case static displacement computation. The other three loading conditions are generated by a DSFACT² card which scales the applied load incrementing stiffness higher to 50%, 75%, and 100% of the 130 knot aerodynamic flight load. The structural models are simply supported at the base by single point constraints (SPC² cards). (Listings of the structural models are found in Appendices A, B, and C.)

The loading conditions are applied to the complete structure models. The output of interest is the displacements of grid points, the applied stress and margin of safety of each individual member. The margin of safety indicates the closeness of failure. For each individual member the compressive and tensile stress limits were calculated, as indicated in Table 1, and put on the MAT1 NASTRAN material card for that individual element. This scheme allows NASTRAN to compute the margins of safety directly after stresses are calculated (Table 1). A conservative calculation of compressive stress limit is found in Table 1. Then the imposition of the damage criterion is simulated by the removal of a grid point and all the elements connecting that grid point. The damaged structure is then reanalyzed with the same loading conditions as the complete models.

For each model three vertical stations were chosen to have their joints deleted -- a vertical station in front, middle and rear of the structure. For example, each model had front vertical joints 5, 6, 7, and 8 deleted one at a time and then analyzed with the flight loads. The middle vertical station of each model also supports the elevator of the tail boom. On model 1 this is vertical station #5 with joints 21, 22, 23, and 24. On model 2 and model 3 the middle is vertical station #3 with joints 13, 14, 15, and 16. The rear vertical station of model 1 contains joints 37, 38, 39, and 40. Model 2 and model 3 rear vertical contains joints 21, 22, 23, and 24. A total of twelve damage cases per model were simulated.

Extraction of a structure's natural frequencies can be performed by rigid format 3 of NASTRAN Normal Modes and Frequencies. These natural frequencies of structures are important in the analyses of aircraft structures. The natural frequencies are found only for the complete structures in this study.

2.6 Procedural Assumption

The existing semimonocoque tail boom at the base is canted at a small angle upward. Assuming a vertical base in our models is believed to be acceptable. Realistically, portions of members that enter a joint may remain affixed to the truss structure after loss of a joint. The effects of these members (or portions thereof) remaining are considered minor, and therefore are neglected in this study.

III. RESULTS

The appendices A, B, and C are listings of each complete model plus the results of displacements of each joint, stresses and margins of safety for each element for the applied loads. Resultant geometry framework is given in Appendices D, E, and F. Appendix D specifies the element connections between joints. The connection scheme is a replication and is valid for all the truss models. The only exceptions are: models 2 and 3 end at element number 138 and model 2 does not contain interior diagonals. Appendix E lists the joint locations of model 1 and Appendix F lists the joint locations of models 2 and 3.

3.1 Displacements

Maximum deflections at the end of the boom are limited because the maximum angle of the driveshaft couplings is 1°. Figure 9 shows where the couplings are located in reference to the end of the boom and provides the maximum deflection constraint to be 8.13 cm (3.2 in). Table 3 shows the maximum displacements of the truss models with and without damage imposed. These displacements lie comfortably within this maximum deflection constraint.

Table 4 lists the ratio of damage conditions displacements to the undamaged condition displacements of the complete longeron diagonally opposite a deleted node for damage to model 1. Each loading condition is presented. Translations of the X direction displacement are insignificant and not presented.

Table 5 lists the same results for model 2 and the results for model 3 are listed in Table 6.

3.2 Margins of Safety

The margin of safety of an individual element indicates its closeness to failure. Buckling failure determined by margin of safety

DRIVESHAFT COUPLINGS

$$\begin{aligned}\ell_1 &= 159.72\text{cm} \quad (62.88 \text{ in.}) \\ \ell_2 &= 155.04\text{cm} \quad (60.04 \text{ in.})\end{aligned}$$

$$d_1 = \ell_1 \tan 1^\circ \quad I=1,2$$

$$d_1 = \ell_1 \tan 1^\circ = 2.79\text{cm} \quad (1.10 \text{ in.})$$

$$d_2 = \ell_2 \tan 2^\circ = 5.33\text{cm} \quad (2.10 \text{ in.})$$

$$d_T = d_1 + d_2$$

$$d_T = 8.12\text{cm} \quad (3.2 \text{ in.})$$

Figure 9. Maximum Deflection Constraint Due to Drive Shaft Couplings.

TABLE 3
Maximum Displacement at End of Boom Due to 100% Flight Load
With Joints Deleted

Damage	MODEL 1			MODEL 2			MODEL 3		
	y	z	Damage	y	z	Damage	y	z	Damage
None	1.17cm	.797cm	None	1.09cm	.797cm		1.10cm	.784cm	
-5	1.97cm	1.55cm	-5	1.91cm	1.55cm		1.89cm	1.53cm	
-6	1.08cm	.950cm	-6	1.10cm	.955cm		1.10cm	.935cm	
-7	1.91cm	1.55cm	-7	1.83cm	1.60cm		1.84cm	1.53cm	
-8	1.11cm	.965cm	-8	1.17cm	1.01cm		1.13cm	.950cm	
-21	1.45cm	1.02cm	-13	1.55cm	1.04cm		1.50cm	1.04cm	
-22	1.37cm	.635cm	-14	1.32cm	.630cm		1.33cm	.635cm	
-23	1.35cm	1.04cm	-15	1.34cm	1.22cm		1.37cm	1.14cm	
-24	1.42cm	.650cm	-16	1.53cm	.81cm		1.46cm	.726cm	
-37	1.30cm	.866cm	-21	1.43cm	.889cm		1.36cm	.899cm	
-38	1.21cm	.772cm	-22	1.15cm	.726cm		1.19cm	.741cm	
-39	1.24cm	.901cm	-23	1.17cm	1.10cm		1.21cm	1.01cm	
-40	1.27cm	.795cm	-24	1.39cm	.924cm		1.33cm	.843cm	

TABLE 4a. Ratio of Damage Displacements to Undamage Displacements
on Longeron Opposite Damage Criterion

MODEL 1 $r_i = \frac{DD}{UD}$, $i = y, z.$

Damage - Joint 5

Lower Right Longeron	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
(view from rear)	7	-.522	1.42	-.541	1.40	-.244	1.41	-.430	1.40
	11	-37.9	1.92	-40.1	1.91	-41.5	1.92	-43.1	1.93
	15	8.02	2.03	8.19	3.01	8.16	2.05	8.17	2.05
	19	4.73	2.00	4.81	2.09	4.74	2.03	4.77	2.04
	23	3.51	1.98	3.59	2.01	3.48	1.98	3.52	1.99
	27	2.90	1.97	2.90	1.98	2.92	1.96	2.93	1.97
	31	2.57	1.96	2.55	1.95	2.54	1.95	2.56	1.96
	35	2.24	1.95	2.23	1.94	2.21	1.94	2.23	1.94
	39	2.01	1.94	2.01	1.93	2.02	1.93	2.10	1.93
	43	1.97	1.93	1.98	1.92	1.96	1.91	1.97	1.92

Damage - Joint 21

7	1.00	1.00	.99	1.00	.992	1.00	.989	1.00
11	1.02	1.00	.94	1.00	.898	1.00	.857	1.00
15	1.00	1.00	1.00	1.00	1.0	1.00	1.00	1.00
19	.99	1.00	.990	1.00	.990	1.00	1.00	1.00
23	1.05	1.02	1.06	1.02	1.07	1.02	1.08	1.02
27	1.20	1.10	1.21	1.10	1.21	1.10	1.22	1.10
31	1.27	1.17	1.28	1.18	1.28	1.18	1.29	1.19
35	1.29	1.21	1.31	1.22	1.31	1.22	1.31	1.23
39	1.30	1.25	1.31	1.25	1.31	1.26	1.32	1.27
43	1.29	1.27	1.29	1.28	1.30	1.28	1.31	1.29

Damage - Joint 37

7	1.00	1.00	.99	1.00	1.0	1.00	.985	1.00
11	1.00	1.00	.87	1.00	.801	1.00	.722	1.00
15	1.00	1.00	1.00	1.00	1.03	1.00	1.05	1.00
19	1.00	1.00	1.01	1.00	1.02	1.00	1.03	1.00
23	1.00	1.00	1.01	1.00	1.02	1.00	1.02	1.00
27	1.00	1.00	1.01	1.00	1.02	1.00	1.02	1.00
31	1.00	1.00	1.01	1.00	1.02	1.00	1.02	1.00
35	1.00	1.00	1.01	1.00	1.02	1.00	1.02	1.00
39	1.01	1.02	1.02	1.02	1.03	1.02	1.04	1.02
43	1.07	1.07	1.08	1.07	1.09	1.07	1.09	1.08

TABLE 4b. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criterion

MODEL 1 $r_i = \frac{DD}{UD}$, $i = y, z$.

Damage - Joint 6

Upper Right Longeron (viewed from rear)	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
8	.899	1.11	.896	1.11	.892	1.12	.889	1.12	
12	.848	1.21	.843	1.21	.837	1.22	.831	1.22	
16	.857	1.22	.852	1.22	.848	1.23	.841	1.23	
20	.867	1.20	.860	1.21	.857	1.22	.854	1.22	
24	.880	1.19	.879	1.20	.879	1.20	.868	1.20	
28	.893	1.19	.889	1.20	.885	1.20	.883	1.20	
32	.903	1.19	.901	1.19	.895	1.19	.894	1.19	
36	.913	1.18	.908	1.18	.906	1.19	.905	1.19	
40	.915	1.18	.915	1.18	.915	1.19	.913	1.18	
44	.927	1.18	.925	1.18	.922	1.19	.919	1.19	

Damage - Joint 22

8	.999	.999	1.0	1.0	1.0	1.0	1.0	1.0
12	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
16	.998	1.0	.998	1.0	.999	1.0	1.0	1.0
20	1.0	1.0	1.0	1.0	.999	1.0	.998	1.0
24	1.02	.986	1.02	.989	1.02	.991	1.02	.992
28	1.10	.901	1.10	.916	1.09	.929	1.09	.932
32	1.15	.858	1.15	.864	1.14	.875	1.13	.880
36	1.17	.815	1.17	.826	1.16	.837	1.15	.843
40	1.18	.785	1.18	.788	1.17	.810	1.16	.818
44	1.18	.758	1.18	.773	1.17	.788	1.17	.797

Damage - Joint 38

8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
12	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
16	1.0	1.0	1.0	1.0	.996	1.0	1.0	1.0
20	1.0	1.0	1.0	1.0	.995	1.0	.995	1.0
24	1.0	1.0	1.0	1.0	.995	1.0	.994	1.0
28	1.0	1.0	1.0	1.0	.995	1.0	.993	1.0
32	1.0	1.0	1.0	1.0	.994	1.01	.992	1.0
36	1.0	1.0	1.0	1.01	.995	1.01	.994	1.01
40	1.01	.991	1.01	.997	1.0	1.0	1.0	1.0
44	1.04	.947	1.04	.954	1.04	.960	1.03	.964

TABLE 4c. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criterion

Model 1 $r_i = \frac{DD}{UD}$, i = y, z

Damage - Joint 7

Upper Left	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
Longeron (viewed from rear)									
5	1.5	-5.63		1.51	-6.56	1.53	-7.13	1.54	-7.77
9	2.13	5.05		2.14	4.99	2.16	4.94	2.17	4.89
13	2.20	3.69		2.22	3.68	2.24	3.66	2.26	3.64
17	2.11	3.18		2.13	3.16	2.15	3.15	2.16	3.14
21	2.0	2.90		2.01	2.89	2.03	2.88	2.04	2.87
25	1.89	2.79		1.9	2.78	1.92	2.77	1.93	2.75
29	1.80	2.72		1.82	2.70	1.83	2.68	1.84	2.67
33	1.72	2.67		1.73	2.65	1.75	2.64	1.76	2.62
37	1.66	2.69		1.67	2.66	1.68	2.62	1.69	2.58
41	1.60	2.60		1.61	2.58	1.62	2.55	1.63	2.53

Damage - Joint 23

5	1.0	1.0	1.0	1.0	1.0	.992	1.0	.983
9	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
13	1.0	1.0	1.0	1.0	1.0	1.01	1.0	1.01
17	1.0	.987	1.0	.990	1.01	.973	1.01	.995
21	1.03	1.03	1.03	1.03	1.04	1.04	1.04	1.04
25	1.10	1.17	1.10	1.17	1.11	1.18	1.12	1.18
29	1.15	1.28	1.15	1.29	1.16	1.30	1.17	1.30
33	1.17	1.36	1.17	1.36	1.18	1.36	1.19	1.36
37	1.18	1.41	1.18	1.41	1.19	1.41	1.20	1.41
41	1.18	1.44	1.19	1.44	1.19	1.44	1.20	1.44

Damage - Joint 39

5	1.0	1.0	1.0	1.0	1.0	.990	1.0	.928
9	1.0	1.0	1.0	1.0	1.0	1.01	1.0	1.02
13	1.0	1.0	1.0	1.01	1.0	1.01	1.01	1.01
17	1.0	1.0	1.0	1.01	1.0	1.01	1.01	1.01
21	1.0	1.0	1.0	1.0	1.01	1.0	1.01	1.01
25	1.0	1.0	1.01	1.0	1.01	1.01	1.01	1.01
29	1.0	1.0	1.01	1.01	1.01	1.01	1.01	1.01
33	1.0	1.0	1.01	1.01	1.01	1.01	1.01	1.01
37	1.01	1.02	1.02	1.02	1.02	1.03	1.02	1.03
41	1.04	1.10	1.04	1.10	1.05	1.11	1.05	1.11

TABLE 4d. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criterion

Model 1 $r_i = \frac{DD}{UD}$, $i = y, z$.

Damage - Joint 8

Lower Left Longeron (viewed from rear)	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
6	1.29	.670		1.30	.651	1.31	.627	1.31	.593
10	3.06	1.0		3.14	1.33	3.24	1.72	3.32	1.98
14	.013	1.54		-.040	1.55	-.064	1.56	-.087	1.56
18	.567	1.42		.555	1.43	.538	1.44	.519	1.44
22	.722	1.36		.710	1.36	.701	1.37	.689	1.38
26	.795	1.34		.787	1.34	.779	1.35	.771	1.35
30	.838	1.32		.330	1.32	.324	1.33	.818	1.33
34	.865	1.31		.859	1.31	.853	1.32	.848	1.32
38	.887	1.31		.882	1.31	.877	1.31	.872	1.31
42	.901	1.30		.90	1.30	.889	1.30	.888	1.30

Damage - Joint 24

6	1.0	.996		1.0	.991	1.0	.985	1.0	.981
10	.998	1.0		1.04	1.01	1.07	1.01	1.09	1.01
14	1.0	1.0		.995	1.0	.989	1.01	.985	1.01
18	.981	.996		.977	.998	.973	1.0	.969	1.0
22	1.03	.952		1.03	.956	1.02	.960	1.02	.965
26	1.19	.810		1.18	.822	1.17	.834	1.17	.844
30	1.27	.690		1.26	.707	1.25	.725	1.24	.743
34	1.29	.617		1.28	.639	1.27	.660	1.27	.683
38	1.29	.563		1.29	.594	1.28	.623	1.27	.641
42	1.29	.532		1.28	.560	1.27	.691	1.26	.618

Damage - Joint 40

6	1.0	1.0		1.0	.994	1.0	.990	1.0	.986
10	1.0	1.0		1.02	1.01	1.06	1.01	1.08	1.01
14	1.0	1.0		.983	1.01	.967	1.01	.950	1.01
18	1.0	1.0		.989	1.0	.982	1.01	.971	1.01
22	1.0	1.0		.993	1.0	.985	1.01	.977	1.01
26	1.0	1.0		.994	1.0	.987	1.01	.979	1.01
30	1.0	.991		.996	.997	.988	1.0	.981	1.01
34	.996	.999		.990	1.0	.984	1.0	.978	1.01
38	1.01	.970		1.0	.976	1.0	.981	.996	.987
42	1.07	.868		1.06	.879	1.05	.891	1.05	.902

TABLE 5a. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criterion

Model 2 $r_k = \frac{DD}{UD}$, i - y, z.

Damage - Joint 5

Lower Right Longeron	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
	7	-.144	1.15	-.150	1.16	-.153	1.17	-.158	1.17
	11	-9.47	1.69	-9.83	1.70	-10.02	1.71	-10.21	1.71
	15	10.80	1.82	10.82	1.83	10.77	1.84	10.76	1.84
	19	4.47	1.89	4.53	1.90	4.55	1.90	4.59	1.90
	23	3.11	1.92	3.15	1.91	3.18	1.92	3.20	1.92
	27	2.52	1.95	2.56	1.94	2.57	1.94	2.59	1.94

Damage - Joint 13

7	1.0	1.0	.998	1.0	.997	1.0	.996	1.0
11	1.14	1.0	1.11	1.0	1.10	1.0	1.09	1.0
15	1.82	.988	1.84	.995	1.87	1.0	1.88	1.0
19	1.94	1.10	1.97	1.12	2.00	1.12	2.02	1.13
23	1.76	1.21	1.79	1.22	1.80	1.23	1.82	1.24
27	1.63	1.27	1.66	1.29	1.68	1.31	1.69	1.31

Damage - Joint 21

7	1.0	1.0	.994	1.0	.990	1.0	.985	1.0
11	.998	1.0	.960	1.0	.940	1.0	.918	1.01
15	.998	1.0	1.04	1.0	1.06	1.0	1.08	1.01
19	.977	1.0	.996	1.0	1.0	1.01	1.01	1.01
23	1.09	.988	1.11	1.0	1.11	1.0	1.12	1.01
27	1.30	1.07	1.32	1.09	1.33	1.10	1.34	1.11

TABLE 5b. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criterion

Model 2 $r_i = \frac{DD}{UD}$, $i = y, z$.

Upper Right Longeron (view from rear)	Load Joint	Damage - Joint 6							
		30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
8	.860	.973	.855	.977	.852	.981	.849	.986	
12	.919	1.07	.906	1.08	.899	1.09	.893	1.10	
16	1.0	1.13	.989	1.14	.980	1.15	.978	1.16	
20	1.02	1.15	1.01	1.16	1.0	1.17	1.0	1.18	
24	1.02	1.16	1.01	1.17	1.01	1.18	1.0	1.19	
28	1.02	1.17	1.02	1.18	1.01	1.19	1.01	1.19	
Damage - Joint 14									
8	.996	1.0	.996	1.0	.995	1.0	.995	1.0	
12	.997	1.01	.997	1.01	.996	1.01	.996	1.01	
16	.984	.950	.982	.959	.981	.964	.980	.967	
20	1.12	.814	1.11	.834	1.11	.842	1.10	.853	
24	1.20	.760	1.19	.788	1.18	.799	1.18	.814	
28	1.23	.724	1.22	.757	1.21	.769	1.21	.788	
Damage - Joint 22									
8	1.0	1.0	1.0	1.0	.997	1.0	.997	1.0	
12	1.0	1.0	.998	1.0	.997	1.01	.997	1.01	
16	1.0	1.0	.997	1.0	.996	1.01	.996	1.01	
20	1.0	1.0	1.0	1.01	.997	1.02	.997	1.02	
24	.996	.963	.994	.978	.993	.985	.992	.992	
28	1.06	.866	1.05	.890	1.05	.901	1.05	.912	

TABLE 5c. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criterion

Model 2 $r_i = \frac{DD}{UD}$, $i = y, z$.

Damage - Joint 7

Upper Left Longeron (view from rear)	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
5	1.13	-5.89	1.12	-7.54	1.15	-8.66	1.15	-10.0	
9	1.77	6.73	1.80	6.32	1.81	6.16	1.83	5.99	
13	1.86	4.75	1.89	4.54	1.91	4.46	1.93	4.38	
17	1.80	4.50	1.82	4.29	1.84	4.20	1.85	4.10	
21	1.71	4.38	1.74	4.11	1.75	4.01	1.76	3.91	
25	1.63	4.24	1.65	4.00	1.66	3.92	1.67	3.78	

Damage - Joint 15

5	.994	1.03	.996	.987	.997	.952	.998	.918
9	1.0	.925	1.0	.959	1.0	.968	1.0	.987
13	.986	1.34	.988	1.34	.990	1.34	.992	1.34
17	1.10	1.93	1.11	1.90	1.12	1.88	1.12	1.86
21	1.18	2.11	1.19	2.05	1.20	2.03	1.20	2.00
25	1.21	2.23	1.21	2.15	1.22	2.12	1.22	2.09

Damage - Joint 23

5	1.0	1.0	1.0	.960	1.0	.888	1.0	.800
9	1.0	1.0	1.0	1.03	1.0	1.05	1.0	1.06
13	1.0	1.0	1.0	1.04	1.0	1.06	1.0	1.06
17	1.0	.982	1.0	1.01	1.0	1.03	1.0	1.05
21	.996	1.13	1.0	1.15	1.0	1.17	1.0	1.19
25	1.06	1.49	1.06	1.49	1.07	1.49	1.07	1.49

TABLE 5d. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criterion

Model 2 $r_i = \frac{DD}{UD}$, $i = y, z$.

Damage - Joint 8

Lower Left Joint	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
Longeron									
(view from rear)	6	.637	-.760	.656	-.978	.666	-1.09	.675	-1.23
	10	-.136	2.86	.011	2.79	.082	2.77	.153	2.74
	14	1.66	1.81	1.48	1.82	1.40	1.83	1.31	1.84
	18	1.17	1.66	1.11	1.67	1.09	1.69	1.06	1.69
	22	1.09	1.59	1.06	1.60	1.04	1.60	1.02	1.61
	26	1.05	1.54	1.03	1.54	1.02	1.55	1.0	1.55

Damage - Joint 16

6	.996	.978	.997	.954	.998	.941	1.0	.927
10	1.16	.995	1.18	1.02	1.18	1.03	1.19	1.04
14	1.81	1.18	1.75	1.20	1.72	1.21	1.70	1.21
18	2.00	.735	1.95	.833	1.93	.875	1.91	.911
22	1.82	.381	1.78	.541	1.76	.602	1.74	.666
26	1.68	.200	1.65	.397	1.63	.474	1.62	.549

Damage - Joint 24

6	1.0	1.0	1.0	.950	1.0	.960	1.01	.945
10	1.0	.998	1.02	1.02	1.04	1.04	1.05	1.06
14	.998	1.0	.960	1.02	.943	1.04	.928	1.05
18	.977	1.0	.960	1.03	.953	1.04	.946	1.05
22	1.09	1.04	1.07	1.08	1.07	1.09	1.06	1.11
26	1.30	.713	1.28	.815	1.27	.857	1.26	.895

TABLE 6a. Ratio of Damage Displacements to Undamaged Displacements
on Longeron Opposite Damage Criteria

MODEL 3

$$r_i = \frac{DD}{UD}, i = y, z.$$

Damage - Joint 5

Lower Right Longeron (view from rear)	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
	7	.129	1.29	.118	1.30	.112	1.30	.106	1.30
	11	-9.28	1.80	-9.67	1.81	-9.90	1.82	-10.13	1.82
	15	9.53	1.89	9.55	1.89	9.57	1.90	9.58	1.90
	19	4.22	1.92	4.27	1.92	4.30	1.93	4.33	1.93
	23	3.00	1.94	3.03	1.94	3.05	1.94	3.07	1.94
	27	2.45	1.96	2.48	1.95	2.50	1.95	2.51	1.95

Damage - Joint 13

7	.996	.998	.991	1.0	.988	1.0	.985	1.0
11	1.14	1.0	1.12	1.02	1.10	1.01	1.09	1.0
15	1.34	1.04	1.38	1.04	1.40	1.04	1.41	1.04
19	1.70	1.16	1.73	1.17	1.75	1.18	1.76	1.18
23	1.64	1.25	1.67	1.26	1.68	1.27	1.70	1.27
27	1.56	1.30	1.59	1.31	1.60	1.32	1.61	1.32

Damage - Joint 21

7	1.0	1.0	.993	1.0	.990	1.0	.987	1.0
11	1.0	1.0	.962	1.0	.941	1.0	.920	1.0
15	1.0	1.0	1.03	1.0	1.05	1.01	1.07	1.01
19	.983	1.0	1.0	1.01	1.01	1.01	1.01	1.01
23	1.03	1.02	1.05	1.02	1.06	1.03	1.06	1.03
27	1.22	1.11	1.23	1.12	1.24	1.13	1.25	1.14

TABLE 6b. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criteria

MODEL 3 $r_i = \frac{DD}{UD}$, $i = y, z$.

Damage - Joint 6

Upper Right Longeron (view from rear)	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
	8	.945	1.06	.937	1.06	.934	1.07	.930	1.07
	12	1.0	1.16	.990	1.17	.983	1.18	.976	1.18
	16	1.02	1.16	1.01	1.17	1.0	1.18	1.0	1.19
	20	1.02	1.16	1.01	1.17	1.01	1.18	1.0	1.19
	24	1.02	1.16	1.01	1.17	1.01	1.18	1.0	1.19
	28	1.02	1.16	1.01	1.17	1.0	1.18	1.0	1.19

Damage - Joint 14

8	.997	.933	.997	1.0	.997	1.0	.997	1.0
12	1.0	1.0	1.0	1.01	1.0	1.01	1.0	1.01
16	1.02	.980	1.02	.987	1.02	.990	1.02	.994
20	1.16	.869	1.15	.887	1.15	.895	1.14	.903
24	1.22	.797	1.21	.822	1.21	.834	1.20	.846
28	1.23	.749	1.22	.780	1.22	.795	1.21	.810

Damage - Joint 22

8	1.0	1.0	.998	1.0	.997	1.0	.997	1.0
12	1.0	1.0	.998	1.0	.997	1.0	.997	1.0
16	1.0	1.0	.997	1.0	.996	1.01	.996	1.01
20	1.0	1.0	1.0	1.01	1.0	1.01	1.0	1.02
24	1.01	.985	1.01	.996	1.01	1.0	1.01	1.0
28	1.09	.905	1.08	.925	1.08	.934	1.07	.943

TABLE 6c. Ratio of Damaged Displacements to Undamaged Displacements
on Longeron Opposite Damage Criteria

MODEL 3 $r_i = \frac{DD}{UD}$, i = y, z.

Damage - Joint 7

Upper Left Longeron (view from rear)	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
5	1.35	- .971		1.37	- 1.20	1.38	- 1.34	1.38	- 1.49
9	1.90	8.10		1.93	7.31	1.95	7.01	1.97	6.72
13	1.91	5.19		1.93	4.89	1.95	4.77	1.97	4.65
17	1.81	4.74		1.84	4.44	1.86	4.33	1.87	4.22
21	1.72	4.51		1.74	4.20	1.76	4.09	1.77	3.96
25	1.62	4.37		1.65	4.05	1.66	3.92	1.67	3.80

Damage - Joint 15

5	.998	.991	1.0	.977	1.0	.969	1.0	.961
9	1.0	.890	1.0	.933	1.0	.949	1.01	.965
13	1.04	1.16	1.04	1.17	1.04	1.18	1.05	1.18
17	1.16	1.42	1.17	1.67	1.18	1.66	1.18	1.65
21	1.21	1.96	1.22	1.91	1.23	1.89	1.24	1.87
25	1.22	2.11	1.23	2.04	1.24	2.01	1.24	1.98

Damage - Joint 23

5	1.0	1.0	1.0	.976	1.0	.961	1.0	.946
9	1.0	1.0	1.0	1.03	1.0	1.05	1.0	1.07
13	1.0	1.0	1.0	1.03	1.0	1.04	1.0	1.05
17	1.0	.982	1.0	1.01	1.0	1.02	1.0	1.04
21	1.01	1.06	1.01	1.09	1.02	1.10	1.02	1.11
25	1.09	1.36	1.09	1.37	1.10	1.37	1.10	1.37

TABLE 6d. Ratio of Damaged Displacement to Undamaged Displacements
on Longeron Opposite Damage Criteria

MODEL 3 $r_i = \frac{DD}{UD}$, i = y, z.

Damage - Joint 8

Lower Left Longeron (view from rear)	Load Joint	30%		50%		75%		100%	
		Y	Z	Y	Z	Y	Z	Y	Z
6	1.15	.847		1.17	.806	1.18	.785	1.18	.761
10	1.30	2.32		1.46	2.29	1.53	2.27	1.62	2.26
14	.865	1.57		.724	1.60	.659	1.61	.594	1.63
18	.975	1.48		.921	1.51	.895	1.52	.869	1.53
22	.991	1.44		.958	1.46	.941	1.47	.925	1.48
26	.997	1.41		.973	1.43	.962	1.44	.949	1.44

Damage - Joint 16

6	.994	.987		.996	.973	.997	.966	.997	.958
10	1.12	.914		1.13	.961	1.14	.977	1.14	.994
14	1.19	.857		1.16	.904	1.14	.929	1.12	.941
18	1.68	.374		1.64	.508	1.62	.561	1.60	.614
22	1.65	.100		1.61	.289	1.59	.362	1.58	.435
26	1.57	.017		1.55	.201	1.53	.284	1.52	.367

Damage - Joint 24

6	1.0	1.0		1.0	.987	1.0	.980	1.0	.973
10	1.0	1.0		1.02	1.04	1.04	1.06	1.05	1.07
14	1.0	1.0		.970	1.02	.956	1.04	.942	1.05
18	.983	.989		.968	1.02	.961	1.03	.955	1.04
22	1.03	.916		1.02	.963	1.01	.981	1.01	1.0
26	1.21	.549		1.20	.665	1.19	.797	1.18	.753

for each individual element is calculated in NASTRAN according to the relations given in Table 1. Buckling due to compressive stress occurs before failure of an element due to tension. An additional 20% safety factor is included for compressive stress limits. A margin of safety less than zero indicates failure. A margin of safety between zero and one indicates structural integrity and is acceptable. Margin of safety greater than one is preferred for the purposes of this study.

Members in tension have been found to have margins of safety (M.S.) greater than one for all the models. Since the major changes in M.S. only occur locally, only the neighborhood of the damage criterion joint in question is presented in the tables for the models.

Key for Tables 7 through 12

I.D. = interior diagonal; O.D. = outside diagonal
T.H. = transverse horizontal; T.V. = transverse vertical
T.D. = transverse diagonal; Long. = longeron
J-J = joint-to-joint connection
D = deleted member; T = member in tension
- = Nonexistant member; Blank space = compressive

Margin of Safety greater than 10.0.

The highly redundant and densely populated model 1 results give the highest margins of safety. The number of elements that have M.S. under ten are few. Tables 7, 8, and 9 present a list of compressive margins of safety under 10.0 for model 1 with damage conditions giving member number, type, and damage condition for the 100% loading condition. Model 1 does not have any margin of safety of less than 1.0.

Models 2 and 3, as explained before, are identical except model 3 has the interior diagonals included. In modeling these structures, elements have a one to one correspondence for ease in comparison (see Appendix D). Therefore, results of models 2 and 3 will be shown together for their margins of safety under 10.0 in Tables 10 through 12. Model 2 produces four cases where the margin of safety drops under 1.0 when damage is imposed. Model 3 has two cases where margin of safety is under 1.0. These cases are displayed in Table 13 where the two structures are presented together with their respective M.S. for different loading conditions. Figures 10 through 15 locate the members in the truss models whose M.S. falls under 1.0

Figure 10. Computer Drawing of Model 2 with Damage of - Joint 7

Figure 11. Computer Drawing of Model 3 with Damage of - Joint 7

Figure 12. Computer Drawing of Model 2 with Damage of - Joint 8

Figure 13. Computer Drawing of Model 2 with Damage of - Joint 15

Figure 14. Computer Drawing of Model 3 with Damage of - Joint 15

Figure 15. Computer Drawing of Model 2 with Damage of - Joint 16

TABLE 7
 Compressive Margins of Safety Under 10.0 Due to 130 knot
 Flight Load on Forward Vertical Sta with 100% Loading

DAMAGE MODEL 1		None	Joint 5	Joint 6	Joint 7	Joint 8
MEMBER	J-J No#					
Long.	1-5	7	T	D	T	T
"	2-6	8		T	D	4.3
"	3-7	9	6.7	2.7	6.4	
"	4-8	10	T	T	T	D
O.D.	1-6	11			D	4.8
"	2-5	12	T	D	T	T
"	1-8	13	T	T	T	D
"	4-5	14		D		6.6
"	4-7	15	T	T	T	T
"	3-8	16	5.1	6.9	5.1	2.2
"	2-7	17	4.5	3.2	3.3	D
"	3-6	18	T	T	D	T
I.D.	1-7	19	T	T		D
"	2-8	20		T		D
"	3-5	21		D	T	6.9
"	4-6	22	T		T	T
T.V.	5-6	23		D	D	
T.H.	5-8	24		D		D
T.V.	7-8	25	T	T	T	D
T.H.	6-7	26	T	T	D	T
T.D.	5-7	27		D	T	D
"	6-8	28		3.7	D	T
Long.	5-9	29	T	D	T	T
"	6-10	30	T	T	D	
"	7-11	31	8.1	3.7	5.3	D
"	8-12	32	T	T	T	8.4
O.D.	5-10	33		D	5.6	
"	6-9	34	T	T	D	T
"	5-12	35	T	D	T	T
"	8-9	36				5.1
"	8-11	37	T	T	T	D
"	7-12	38	5.3	3.3	3.8	D
"	6-11	39	6.2	9.3	D	2.6
"	7-10	40	T	T	T	D
I.D.	5-11	41	T	D	10.	T
"	6-12	42		T	D	9.7
"	8-10	44	T		T	D

TABLE 8
 Compressive Margins of Safety Under 10.0 Due to 130 knot
 Flight Load on Middle Vertical Sta with 100% Loading

DAMAGE MODEL 1		None	Joint 21	Joint 22	Joint 23	Joint 24
MEMBER	J-J No#					
Long.	17-21	95	T	D	T	T
"	18-22	96	T	T	D	T
"	19-23	97		10.		D
"	20-24	98				8.6
O.D.	17-22	99			D	D
"	18-21	100	T	D	T	T
"	17-24	101	T	T	T	D
"	20-21	102		D		5.5
"	20-23	103	T	T	T	T
"	19-24	104	7.1	7.3	5.6	3.8
"	18-23	105		7.5	8.6	D
"	19-22	106	T	T	D	6.0
I.D.	17-23	107	T			T
"	18-24	108		T		D
"	19-21	109	T	D	T	T
"	20-22	110	T		D	T
T.V.	21-22	111		D	D	
T.H.	21-24	112		D	T	D
T.V.	23-24	113	T	T	T	D
T.H.	22-23	114		T	D	D
T.D.	21-23	115		D		T
"	22-24	116			D	D
Long.	21-25	117	T	D	T	T
"	22-26	118	T	T	D	T
"	23-27	119			D	
"	24-28	120		T		D
O.D.	21-26	121		D	9.9	9.2
"	22-25	122	T	T	D	T
"	21-28	123	T	D	T	T
"	24-25	124			9.6	D
"	24-27	125	T	T	T	D
"	23-28	126	8.8	6.6	8.3	D
"	22-27	127			D	5.5
"	23-26	128	T	T	D	T
I.D.	21-27	129		D		T
"	22-28	1-0	T	T	D	
"	23-25	131		T	T	D
"	24-26	132	T		T	D

TABLE 9
 Compressive Margins of Safety Under 10.0 Due to 130 knot
 Flight Load on End Vertical Sta with 100% Loading

DAMAGE MODEL 1		None	Joint 37	Joint 38	Joint 39	Joint 40
MEMBER	J-J	No#				
Long.	33-37	183	T	D	T	T
"		184	T	T	D	T
"		185			T	D
"		186				D
O.D.		187			D	
"		188	T	D	T	T
"		189	T	T	T	D
"		190		D		8.0
"		191	T	T	T	T
"		192	7.2	7.8	5.6	4.0
"		193			D	8.9
"		194	T	T	D	T
I.D.		195		T		T
"		196		T	T	D
"		197	T	D	T	
"		198	T		D	T
T.V.		199		D	D	
T.H.		200		D	T	D
T.V.		201	T	T	T	D
T.H.		202	T	T	D	T
T.V.		203	T	D		T
T.H.		204			D	D
Long.		205	T	D	T	T
"		206	T	T	D	T
"		207			D	
"		208		T		D
O.D.		209		D		
"		210	T	T	D	T
"		211	T	D	T	T
"		212				9.4
"		213	T	T	T	D
"		214		8.1		5.9
"		215			D	7.3
"		216	T	T	D	T
I.D.		217		D		T
"		218	T	T	D	
"		219		T	D	
"		220	T		T	D

TABLE 10
 Compressive Margins of Safety Under 10.0 Due to 130 knot
 Flight Load on Forward Vertical Sta with 100% Loading
 for Models 2 and 3

DAMAGE MODEL MEMBER	J-J	No. #	None		Joint 5		Joint 6		Joint 7		Joint 8	
			2	3	2	3	2	3	2	3	2	3
Long.	1-5	7	T	T	D	D	T	T	T	T	T	T
"	2-6	8			T	T	D	D	2.0	2.3		
"	3-7	9	3.6	3.6	1.4	1.3	4.1	4.1	D	D	1.9	2.2
"	4-8	10	T	T	T	T	T	T			D	D
O.D.	1-6	11		8.0	8.4	10.	D	D	2.8	2.2		7.1
"	2-5	12	T	T	D	D	T	T	T	T	T	T
"	1-8	13	T	T	T	T	T	T	T	T	D	D
"	4-5	14			D	D	8.7	7.6	T	T	1.6	3.0
"	4-7	15	T	T	T	T	T	T	D	D	T	T
"	3-8	16	2.0	2.2	2.8	2.6	2.3	2.3	.36	.71	D	D
"	2-7	17	2.0	2.0	1.5	1.3	1.2	1.4	D	D	1.5	1.2
"	3-6	18	T	T	T	T	D	D	T	T	T	T
I.D.	1-7	19	-	T	-	T	-	-	-	D	-	T
"	2-8	20	-		-	T	-	-	-	3.2	-	D
"	3-5	21	-		-	D	-	T	-	-	-	3.7
"	4-6	22	-	T	-	-	-	D	-	T	-	T
T.V.	5-6	23			D	D	D					
T.H.	5-8	24			D	D				D	D	
T.V.	7-8	25	T	T	T	T	T	T	D	D	D	D
T.H.	6-7	26	T	T	T	T	D	D	D	D	T	T
T.D.	5-7	27	T		D	D	T	T	D	D		
"	6-8	28			4.0	3.5	D	D	T	T	D	D
Long.	5-9	29	T	T	D	D	T	T	T	T	T	T
"	6-10	30	T	T	T	T	D	D				T
"	7-11	31	4.4	4.4	1.8	1.8	1.9	2.2	D	D		8.5
"	8-12	32			T	T	T		2.5	3.1	D	D
O.D.	5-10	33	8.6	7.0	D	D	1.6	2.4	T		6.9	4.9
"	6-9	34	T	T	T	T	D	D	T	T		T
"	5-12	35	T	T	D	D	T	T	T	T	T	T
"	8-9	36	6.0	5.7	3.7	5.6		5.7	2.2	1.9	D	D
"	8-11	37	T	T	T	T	T	T	T	T	D	D
"	7-12	38	1.7	1.9	1.3	1.1	1.2	1.1	D	D	.81	1.2
"	6-11	39	2.3	2.3	3.1	2.6	D	D	.44	.79	2.6	2.1
"	7-10	40	T	T	T	T	T	T	D	D	T	T
I.D.	5-11	41	-	T	-	D	-	5.1	-	T	-	T
"	6-12	42	-		-	T	-	D	-	3.0	-	
"	7-9	43	-		-	-	-	T	-	D	-	7.5
"	8-10	44	-	T	-	-	-	T	-	T	-	D

TABLE 11
 Compressive Margins of Safety Under 10.0 Due to 130 knot
 Flight Load on Middle Vertical Sta with 100% Loading
 for Models 2 and 3

DAMAGE MODEL MEMBER	J-J No.#	None		Joint 13		Joint 14		Joint 15		Joint 16	
		2	3	2	3	2	3	2	3	2	3
Long.	9-13	51	T	T	D	D	T	T	T	T	T
"	10-14	52	T	T	T	T	D	D	5.1	7.5	T
"	11-15	53	6.2	6.2	3.0	3.0	T	T	D	D	1.5
"	12-16	54			7.6	8.5	5.6	6.1			D
O.D.	9-14	55	7.0	5.6	2.5	3.7	D	D	2.9	2.2	T
"	10-13	56	T	T	D	D	T	T	T	T	T
"	9-16	57	T	T	T	T	T	T	T	D	D
"	12-13	58	3.5	3.4	D	D	3.8	3.0	10.	4.7	.62
"	12-15	59	T	T	T	T	T	T	D	T	T
"	11-16	60	1.3	1.5	1.3	1.2	1.3	1.2	.24	.56	D
"	10-15	61	2.3	2.3	2.2	1.7	1.2	1.7	D	D	1.2
"	11-14	62	T	T	T	T	D	D	T	T	T
I.D.	9-15	63	-	T	-	T	-	-	D	-	T
"	10-16	64	-	-	-	T	-	-	3.2	-	D
"	11-13	65	-	-	D	-	T	-	-	-	2.9
"	12-14	66	-	T	-	-	D	-	T	-	T
T.V.	13-14	67			D	D	D				
T.H.	13-16	68			D	D	T	T		D	D
T.V.	15-16	69	T	T	T	T	T	T	D	D	D
T.H.	14-15	70	T	T	T	T	D	D	D	D	
T.D.	13-15	71			D	D			D	D	T
"	14-16	72					D	D	T	T	D
Long.	13-17	73	T	T	D	D	T	T	T	T	
"	14-18	74	T	T	T	T	D	D	T	T	T
"	15-19	75	9.8	9.9	4.8	4.9	4.7	5.7	D	D	
"	16-20	76			T	T	5.9	5.8	2.6	3.1	D
O.D.	13-18	77	5.4	5.4	D	D	1.7	2.9		7.2	3.2
"	14-17	78	T	T	T	T	D	D	T	T	T
"	13-20	79	T	T	D	D	T	T	T	T	T
"	16-17	80	4.0	3.9	2.1	2.9	4.8	3.0	2.2	1.9	D
"	16-19	81	T	T	T	T	T	T	T	D	D
"	15-20	82	2.3	2.3	2.3	1.8	2.1	1.7	D	D	.87
"	14-19	83	3.3	3.4	3.3	2.8	D	D	.82	1.3	5.5
"	15-18	84	T	T	T	T	T	D	D	T	T
T.D.	13-19	85	-	-	D	-	5.9	-	-	-	T
"	14-20	86	-	-	T	-	D	-	4.2	-	
"	15-17	87	-	T	-	T	-	T	-	D	-
"	16-18	88	-	T	-	-	T	-	T	-	D

TABLE 12
 Compressive Margins of Safety Under 10.0 Due to 130 knot
 Flight Load on End Vertical Sta with 100% Loading for Models 2 and 3

MODEL	DAMAGE	J-J	No#	None		Joint 21		Joint 22		Joint 23		Joint 24	
				2	3	2	3	2	3	2	3	2	3
Long.	17-21	95	T	T	D	D	T	T	T	T	T	T	T
"	18-22	96	T	T	T	T	D	D	-	-	T	T	T
"	19-23	97	-	-	5.4	5.6	T	T	D	D	3.2	3.7	-
"	20-24	98	-	-	7.8	9.1	6.6	6.8	-	-	D	D	-
O.D.	17-22	99	6.5	6.5	2.6	4.1	D	D	3.6	3.2	-	-	9.1
"	18-21	100	T	T	D	D	T	T	T	T	T	T	T
"	17-24	101	T	T	T	T	T	T	T	T	D	D	-
"	20-21	102	5.1	4.9	D	D	5.0	4.1	6.5	6.5	1.4	2.0	-
"	20-23	103	T	T	T	T	T	T	D	D	T	T	-
"	19-24	104	2.9	2.9	2.9	2.4	3.0	2.4	1.1	1.5	D	D	-
"	18-23	105	4.2	4.3	4.1	3.1	2.3	3.3	D	D	2.5	2.2	-
"	19-22	106	T	T	T	T	D	D	T	T	T	T	-
I.D.	17-23	107	-	-	-	-	-	10.	-	D	-	T	-
"	18-24	108	-	-	-	T	-	-	-	6.7	-	D	-
"	19-21	109	-	T	-	D	-	T	-	T	-	6.1	-
"	20-22	110	-	T	-	9.6	-	D	-	T	-	T	-
T.V.	21-22	111	-	-	D	D	D	-	-	-	-	-	-
T.H.	21-24	112	-	-	D	D	T	T	-	-	D	D	-
T.V.	23-24	113	T	T	T	T	T	T	D	D	D	D	-
T.H.	22-23	114	-	-	T	T	D	D	D	D	-	-	-
T.D.	21-23	115	-	T	D	D	-	-	D	D	T	T	-
T.D.	22-24	116	T	-	-	-	-	D	D	T	T	D	D
Long.	21-25	117	T	T	D	D	T	T	T	T	-	-	-
"	22-26	118	T	T	T	T	D	D	T	T	T	T	-
"	23-27	119	-	-	6.7	7.1	5.6	7.4	D	D	-	-	-
"	24-28	120	-	-	T	T	7.8	7.3	3.4	3.9	D	D	-
O.D.	21-26	121	7.3	7.2	D	D	2.4	4.0	-	-	4.1	3.7	-
"	22-25	122	T	T	T	T	D	D	T	T	T	T	-
"	21-28	123	T	T	D	D	T	T	T	T	T	T	-
"	24-25	124	5.0	4.8	2.9	4.0	6.0	3.7	2.9	2.4	D	D	-
"	24-27	125	T	T	T	T	T	T	T	T	D	D	-
"	23-28	126	3.1	3.1	2.9	2.3	2.8	2.3	D	D	1.2	1.6	-
"	22-27	127	4.2	4.4	4.3	3.7	D	D	1.2	1.9	7.4	5.6	-
"	23-26	128	T	T	T	T	T	T	D	D	T	T	-
I.D.	21-27	129	-	-	-	D	-	6.2	-	-	-	T	-
"	22-28	130	-	T	-	T	-	D	-	6.3	-	-	-
"	23-25	131	-	-	-	T	-	T	-	D	-	8.0	-
"	24-26	132	-	T	-	-	-	T	-	T	-	D	-

TABLE 13

Cases of Models 2 and 3 Where M.S. Less Than 1.0

<u>Case Where Damage is - Joint 7</u>				
Loading	Element #	J-J	Model 2 M.S.	Model 3 M.S.
100%	16	3-8	.36	.71
	39	6-11	.44	.79
75%	16	3-8	.82	1.3
	39	6-11	.94	1.4

<u>Case Where Damage is - Joint 8</u>				
100%	38	7-12	.81	1.2

<u>Case Where Damage is - Joint 15</u>				
100%	60	11-16	.24	.56
	83	14-19	.82	1.3
75%	60	11-16	.66	1.1

<u>Case Where Damage is - Joint 16</u>				
100%	58	12-13	.62	1.1
	82	15-20	.87	1.2

3.3 Natural Frequencies

All structures have resonant frequencies. It is important to know these natural frequencies. To find these frequencies NASTRAN has an eigenvalue method, known as rigid format 3 Normal Modes and Frequencies, for extracting a model's natural frequencies. The first three natural frequencies of each complete structure are found with direction. Table 14 lists the frequencies of each model plus the figure that shows the mode shape.

TABLE 14
NATURAL FREQUENCIES

Model 1

15.67 Hz	FUNDAMENTAL Y	Figure 16 First Mode Shape
16.63 Hz	FUNDAMENTAL Z	Figure 17 Second Mode Shape
76.41 Hz	1st HARMONIC Y	Figure 18 Third Mode Shape

Model 2

21.62 Hz	FUNDAMENTAL Y	Figure 19 First Mode Shape
22.92 Hz	FUNDAMENTAL Z	Figure 20 Second Mode Shape
88.44 Hz	1st HARMONIC Y	Figure 21 Third Mode Shape

Model 3

19.30 Hz	FUNDAMENTAL Y	Figure 22 First Mode Shape
20.48 Hz	FUNDAMENTAL Z	Figure 23 Second Mode Shape
77.70 Hz	1st HARMONIC Y	Figure 24 Third Mode Shape

Figure 16. Computer Drawing of First Mode Shape Superimposed Over Undeformed Shape Model 1

Figure 17. Computer Drawing of Second Mode Shape Superimposed Over Undeformed Shape Model 1

Figure 18. Computer Drawing of Third Mode Shape Superimposed Over Undeformed Shape Model 1

Figure 19. Computer Drawing of the First Mode Shape Superimposed Over Undeformed Shape Model 2

Figure 20. Computer Drawing of Second Mode Shape
Superimposed Over Undeformed Shape Model 2

Figure 21. Computer Drawing of the Third Mode Shape Superimposed Over the Undeformed Shape Model 2

Figure 22. Computer Drawing of the First Mode Shape
Superimposed Over Undeformed Shape Model 3

Figure 23. Computer Drawing of Second Mode Shape
Superimposed Over Undeformed Shape Model 3

Figure 24. Computer Drawing of the Third Mode Shape
Superimposed Over Undeformed Shape Model 3

3.4 Observable Surface Area

The semimonocoque surface area observed can be considered flat and can be easily calculated by the area of the quadrilateral that presents itself. For the AH-1G the maximum area presented is observed from the side. The minimum area observable is the bottom side directly underneath. The truss structure's maximum observable area can be estimated by multiplying the total length of tubing by 3.81 cm (1 1/2 in). The minimums are observed directly from the side or underneath. The minimum observable surface area can be estimated by using 25% of the maximum. The orientations of the truss in three space would present varying noncontinuous surface areas between the maximum and minimum. Table 15 presents the maximum and minimum presented areas of AH-1G semimonocoque and the truss models of this study.

TABLE 15

Observable Presented Area

	<u>Maximum Orientation</u>	<u>Minimum Orientation</u>
AH-1G Semimonocoque	$58,655\text{cm}^2 (4546 \text{ in}^2)$ Side	$39,233\text{cm}^2 (3506 \text{ in}^2)$ Bottom
Truss Model 1	$49,470\text{cm}^2 (3834 \text{ in}^2)$ Oblique	$12,367\text{cm}^2 (959 \text{ in}^2)$ Side
Truss Model 2	$31,354\text{cm}^2 (2430 \text{ in}^2)$ Oblique	$7,838\text{cm}^2 (608 \text{ in}^2)$ Side
Truss Model 3	$39,019\text{cm}^2 (3024 \text{ in}^2)$ Oblique	$9,754\text{cm}^2 (756 \text{ in}^2)$ Side

IV. DISCUSSION

The complete semimonocoque tail boom structure weighs approximately 90.72 kg (200 lbs), reference 4, and its deflections due to 130 knot level flight load are 1.37 cm (.539 in) in y direction and .37 cm (.146 in) in the z direction, reference 12. As indicated in Table 3, the maximum displacements for each maximum loading case of the truss models show only a slight difference between the models. Comparing the complete truss models with the complete semimonocoque structure shows the stiffness of the truss models to be 12% greater in the y direction, and 46% less in the z direction. Considering the weight difference between the truss models and the semimonocoque structure, the stiffness of the truss models is reasonably competitive. Table 3 shows that the maximum increase in displacement for the y direction is .82 cm which occurs for unsubstructured model 2 when joint 5 is deleted. Table 3 also shows the maximum increase in z direction displacement to be .803 cm more than the undamaged case occurring when joint 7 is deleted in model 2. Damage criteria imposed on the models show model 2 to be the least stiff of the three models.

The displacement results of the three truss models show a truss design to be particularly stiff even when damage conditions are imposed. The "simple" open truss of model 2 shows itself to be light and strong in the undamaged condition. Model 3 with inclusion of interior structural diagonals is more massive, and more stiff than model 2. Model 1 is obviously very dense and stiffer than either model 2 or model 3. Table 14 reveals the stiffness of the undamaged three models. The lower the fundamental frequencies the closer the model approximates a stiff bar.

The goal of retaining structural integrity after imposition of a massive damage criterion is conceptually assured by the incorporation of complete substructures. The "simple" open truss exhibits the response of a geometrical instability when a joint is deleted. The weight optimizing program does not find supporting structure to transfer the loads that were carried by the missing members of the deleted joint. With the substructure models there is additional structural support for transfer of the load that the missing members carried. The interior diagonals carry bigger loads and redistribute the load path to the remaining structure. The distribution of loads into the interior diagonals raises the confidence of stability of the structure. The structural integrity can be assured in the design stage.

¹²D. A. Reisdorfer, Tail Boom Vulnerability Reduction Test Program, Report No. 699-099-004, August 1975, Bell Helicopter Company, Fort Worth, Texas 76101.

Application of the flight loads to damage simulated models results in margins of safety that indicate no failure of individual elements. Our assumption of an inherently strong truss structure simulated by model 1 is borne out by Tables 7, 8, and 9 which show not a single margin of safety (M.S.) under 1.0 for model 1 and very few M.S. under 10.0. Since models 2 and 3 are similar except that model 3 is substructured, a direct comparison is made. Note in Tables 10, 11, and 12 the substructured model 3 consistently has the interior diagonals taking on tensile and compressive loads. This shows that the interior diagonals are working. Tables 10, 11, and 12 also indicate how the interior diagonals are redistributing the load path and how much of the load they share. Though no members of model 2 or model 3 failed, Table 13 shows that model 2 has four cases where the M.S. falls under 1.0 and model 3 has 2 cases. To show bending a complete longeron diagonally opposite the damage criteria is chosen. The amount of bending is compared by a ratio of the damage displacements to the displacement of the undamaged model in Tables 6, 7, and 8. From Tables 6, 7, and 8 noted is the response of a large amount of displacement to all models where the loss of joint 5 is encountered, yet from the stress analysis of this damage criterion all the models have M.S. greater than 1.0.

Table 15 shows the maximum and minimum presented areas and orientations. The semimonocoque presents a continuous surface whereas the truss models present noncontinuous surface area. For the maximum, model 1 shows a 16% reduction, model 2 shows a 47% reduction, and model 3 shows a 33% reduction in presented area compared to the semimonocoque. Comparison of the minimum present areas shows model 1 with a 69% reduction, model 2 with a 87% reduction, and model 3 with a 75% reduction. These reductions show a clear reduction in visibility of the truss tail boom relative to the semimonocoque type tail boom.

V. CONCLUSIONS

This study presents two ideas for alternative construction of Army helicopter tail booms. The idea of truss structures for tail booms is not new but conceptualizing a high degree of redundancy for greater damage tolerance is preferable for design of combat aircraft. The idea of imbedded substructures is specifically included for increased confidence in the capability to absorb damage and yet retain structural integrity.

The truss type tail boom models of this study provide a reduction in weight over the present semimonocoque tail boom structure of the AH-1G. The truss models are reasonably stiff structures compared to the semimonocoque structure.

Analyses of the highly redundant truss models under the aerodynamic loads of flight and with imposition of a massive damage

criterion show:

- o Substantial retention of stiffness
- o Change of load path that is localized to the neighborhood of damage
- o No failure of elements due to tension or compression
- o Retention of structural integrity

The substructured truss models have more supporting structural elements to redistribute the load and consistently have margins of safety higher than the non-substructured truss model. The substructuring concept has vulnerability reduction built-in. The substructure concept assures a higher degree of confidence in the truss concept to retain structural integrity after imposition of the loss of a joint. The substructured truss models have at least a 16% reduction in presented area compared to the semimonocoque structure. The highly redundant substructured truss type tail boom is a highly survivable structure.

ACKNOWLEDGEMENT

I wish to gratefully acknowledge Dr. Donald F. Haskell for initiating the idea of a truss structure for helicopter tail booms and for his continuing confidence shown and demonstrated in my carrying on the analysis.

A note of appreciation is also extended to Dr. V. B. Venkayya and Dr. Harry S. Schaeffer for my recent instruction in use and understanding of the complex NASTRAN program.

REFERENCES

1. D. F. Haskell, Damage Tolerance of Semimonocoque Aircraft, Paper at 41st Meeting of NATO-AGARD Impact Damage Tolerance of Structures Conference, Ankara, Turkey, October 1975.
2. Caleb, W. McCormick, Editor, The NASTRAN User's Manual, NASA SP 222(03), March 1976, Washington, D. C.
3. J. D. Cronkite, V. L. Berry, J. E. Brunlsen, A. NASTRAN Vibration Model of AH-1G Helicopter Airframe, June 1974, AD A009482.
4. Private Communication between D. F. Haskell of BRL and D. Reisdorfer, Bell Helicopter Company.
5. ALCOA STRUCTURAL HANDBOOK, A Design Manual for Aluminum Company of America, Pittsburg, PA, 1958.
6. NASTRAN Programmer's Manual, NASA SP-221(03), July, 1976, Washington, D. C.
7. S. Timoshenko, Strength of Materials, Part I. D. VanNostrand Company, Inc., New York, N.Y., 1940, pp 244-254.
8. Keith Applin, Gary Kuehl; "Geometry Programs to Aid in Producing COMGEOM Target Descriptions," BRL Memorandum Report No. 2712 Dec. 1976.
9. V. B. Venkayya, Design of Optimum Structures-Computers and Structures, Vol. 1, pp 285-309, Pergamon Press, 1971.
10. Robert B. Bennett, NASTRAN Differential Stiffness, Analysis of an Aircraft Canopy, NASA TMX 2378 p 85-105, September 1971.
11. J. S. Arora, E. J. Haug, A. K. Govil, Fail-Safe Design of an Open Truss Helicopter Tail Boom, Technical Report #32, April 1977, College of Engineering, University of Iowa.
12. D. A. Reisdorfer, Tail Boom Vulnerability Reduction Test Program, Report No. 699-099-004, August 1975, Bell Helicopter Company, Fort Worth, Texas 76101.

PRECEDING PAGE NOT FILMED
BLANK

APPENDIX A

NASTRAN MATHEMATICAL MODEL OF THE UNDAMAGED
TRUSS MODEL 1 PLUS OUTPUT OF DISPLACEMENTS, STRESSES
AND MARGINS OF SAFETY DUE TO FLIGHT LOADS.

PRECEDING PAGE NOT FILMED
BLANK

UNIVAC 1100 SERIES
MODEL 1108

RIGID FORMAT SERIES M3

LEVEL 77.1.0

DATE - 7/15/77

SYSTEM GENERATED BY SPERRY SUPPORT SERVICES

73 PRECEDING PAGE NOT FILLED
BLANK

1

OCTOBER 28, 1977

NASTRAN 7/15/77

PAGE

NASTRAN EXECUTIVE CONTROL DECK ECHO

```
ID ERLINE-MODEL1
APP DISP
$ STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS RF 4
SOL 4.0
TIME 1U
CEND
```

TRUSS TAIL BUOM MODEL1 ***A 226 ELEMENT VERSION
DAMAGE CRITERION = 0.01F

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 2

C A S E C O N T R O L D E C K E C H O

CARD COUNT
1 TITLE = TRUSS TAIL BUOM MODEL1 ***A 226 ELEMENT VERSION
2 SUBTITLE = DAMAGE CRITERION = NONE
3 LOAD = ALL
4 SPC = 10
5 LISP = ALL
6 SPFORCES = ALL
7 SET 5 = 1 THRU 226
8 SUBCASE 1
9 LABEL = LINEAR CASE
10 LOAD = 11
11 SUBCASE 2
12 LABEL = INCREMENTAL STIFFNESS
13 DSCEFFICIENT = 200
14 STRESS = 5
15 \$ METHOD = 15
16 WNLINES = 10000
17 BEGIN BULK

*** USER INFORMATION MESSAGE 267, BULK DATA NOT SORTED, XSOR WILL RE-ORDER DECK.

TRUSS TAIL BOOM AUCILL *** 226 ELEMENT VERSION
DAMAGE CRITERIUM = NONE

OCTOBER 28, 1977

PAGE 3

MASTRAN 7/15/77

CARD COUNT	1	2	3	4	5	6	7	8	9	10
1-	CTUBE	1	1	2	1	2	1	4	1	4
2-	CTUBE	2	2	1	1	2	1	3	1	4
3-	CTUBE	3	3	3	3	4	2	3	3	4
4-	CTUBE	4	4	2	2	1	1	1	1	4
5-	CTUBE	5	5	1	1	4	1	1	1	3
6-	CTUBE	6	6	2	2	1	1	1	1	4
7-	CTUBE	7	7	1	1	5	1	1	1	5
8-	CTUBE	8	8	2	2	6	6	6	6	6
9-	CTUBE	9	9	3	3	7	7	7	7	7
10-	CTUBE	10	10	4	4	8	8	8	8	8
11-	CTUBE	11	11	1	1	6	6	6	6	6
12-	CTUBE	12	12	2	2	5	5	5	5	5
13-	CTUBE	13	13	1	1	6	6	6	6	6
14-	CTUBE	14	14	4	4	5	5	5	5	5
15-	CTUBE	15	15	3	3	8	8	8	8	8
16-	CTUBE	16	16	3	3	7	7	7	7	7
17-	CTUBE	17	17	2	2	7	7	7	7	7
18-	CTUBE	18	18	3	3	6	6	6	6	6
19-	CTUBE	19	19	1	1	7	7	7	7	7
20-	CTUBE	20	20	2	2	6	6	6	6	6
21-	CTUBE	21	21	3	3	5	5	5	5	5
22-	CTUBE	22	22	4	4	6	6	6	6	6
23-	CTUBE	23	23	5	5	6	6	6	6	6
24-	CTUBE	24	24	5	5	6	6	6	6	6
25-	CTUBE	25	25	7	7	8	8	8	8	8
26-	CTUBE	26	26	6	6	7	7	7	7	7
27-	CTUBE	27	27	5	5	7	7	7	7	7
28-	CTUBE	28	28	6	6	8	8	8	8	8
29-	CTUBE	29	29	5	5	9	9	9	9	9
30-	CTUBE	30	30	6	6	10	10	10	10	10
31-	CTUBE	31	31	7	7	11	11	11	11	11
32-	CTUBE	32	32	8	8	12	12	12	12	12
33-	CTUBE	33	33	5	5	10	10	10	10	10
34-	CTUBE	34	34	6	6	9	9	9	9	9
35-	CTUBE	35	35	5	5	12	12	12	12	12
36-	CTUBE	36	36	6	6	9	9	9	9	9
37-	CTUBE	37	37	6	6	11	11	11	11	11
38-	CTUBE	38	38	7	7	12	12	12	12	12
39-	CTUBE	39	39	6	6	11	11	11	11	11
40-	CTUBE	40	40	7	7	10	10	10	10	10
41-	CTUBE	41	41	5	5	11	11	11	11	11
42-	CTUBE	42	42	6	6	12	12	12	12	12
43-	CTUBE	43	43	7	7	9	9	9	9	9
44-	CTUBE	44	44	8	8	10	10	10	10	10
45-	CTUBE	45	45	9	9	10	10	10	10	10

TRUSS TAIL BUOM MODELL ***A 226 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 4

CARD COUNT	SORTED	BULK DATA ECHO
46-	1 ..	1 ..
47-	CTURE 46	CTURE 46
48-	CTUBT 47	CTUBT 47
49-	CTURE 48	CTURE 48
50-	CTURE 49	CTURE 49
51-	CTUBT 50	CTUBT 50
52-	CTUBT 51	CTUBT 51
53-	CTURE 52	CTURE 52
54-	CTURE 53	CTURE 53
55-	CTURE 54	CTURE 54
56-	CTURE 55	CTURE 55
57-	CTURE 56	CTURE 56
58-	CTURE 57	CTURE 57
59-	CTURE 58	CTURE 58
60-	CTURE 59	CTURE 59
61-	CTURE 60	CTURE 60
62-	CTURE 61	CTURE 61
63-	CTURE 62	CTURE 62
64-	CTURE 63	CTURE 63
65-	CTURE 64	CTURE 64
66-	CTURE 65	CTURE 65
67-	CTURE 66	CTURE 66
68-	CTURE 67	CTURE 67
69-	CTURE 68	CTURE 68
70-	CTURE 69	CTURE 69
71-	CTUBT 70	CTUBT 70
72-	CTURE 71	CTURE 71
73-	CTURE 72	CTURE 72
74-	CTURE 73	CTURE 73
75-	CTURE 74	CTURE 74
76-	CTURE 75	CTURE 75
77-	CTURE 76	CTURE 76
78-	CTURE 77	CTURE 77
79-	CTURE 78	CTURE 78
80-	CTUBT 79	CTUBT 79
81-	CTURE 80	CTURE 80
82-	CTURE 81	CTURE 81
83-	CTURE 82	CTURE 82
84-	CTURE 83	CTURE 83
85-	CTURE 84	CTURE 84
86-	CTURE 85	CTURE 85
87-	CTURE 86	CTURE 86
88-	CTURE 87	CTURE 87
89-	CTURE 88	CTURE 88
90-	CTURE 89	CTURE 89
91-	CTURE 90	CTURE 90

TRUSS TAII BOUN 402LLI ***A 226 ELEMENT VERSION
DAMAGE CRITERION = 0.01E

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 5

CARD COUNT	SORTED	BULK	DATA	ECHO
91-	• 1	• 2	• 3	• 4
92-	CTUBE	91	91	19 • 20
93-	CTUBE	92	92	18 19
94-	CTUBE	93	93	17 19
95-	LTUBE	94	94	18 20
96-	LTUBE	95	95	17 21
97-	CTUBE	96	96	18 22
98-	CTUBE	97	97	19 23
99-	CTUBE	98	98	20 24
100-	CTUBE	99	99	17 22
101-	CTUBE	100	100	18 21
102-	CTUBE	101	101	17 24
103-	CTUBE	102	102	20 21
104-	CTUBE	103	103	20 23
105-	CTUBE	104	104	19 24
106-	CTUBE	105	105	18 23
107-	CTUBE	106	106	19 22
108-	CTUBE	107	107	17 23
109-	CTUBE	108	108	18 24
110-	CTUBE	109	109	19 21
111-	CTUBE	110	110	20 22
112-	CTUBE	111	111	21 22
113-	CTUBE	112	112	21 24
114-	CTUBE	113	113	23 24
115-	CTUBE	114	114	22 23
116-	CTUBE	115	115	21 23
117-	LTORT	116	116	22 24
118-	CTUBE	117	117	21 25
119-	CTUBE	118	118	22 26
120-	CTUBE	119	119	23 27
121-	CTUBE	120	120	24 28
122-	CTUBE	121	121	21 26
123-	CTUBE	122	122	22 25
124-	CTUBE	123	123	21 28
125-	CTUBE	124	124	24 25
126-	CTUBE	125	125	24 27
127-	CTUBE	126	126	23 28
128-	CTUBE	127	127	22 27
129-	CTUBE	128	128	23 26
130-	CTUBE	129	129	21 27
131-	CTUBE	130	130	22 26
132-	CTUBE	131	131	23 25
133-	CTUBE	132	132	24 26
134-	CTUBE	133	133	25 25
135-	CTUBE	134	134	23 24
		135	135	27 26

TRUSS TAIL BUIN
MUEELI ***A 226 ELEMENT VERSION
DAMAGE CRITERION = NURE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 6

S O R T E D B U L K D A T A E C H O									
CARD COUNT	*	1	*	2	*	3	*	4	*
136-	CTUB	136		136		26		27	
137-	CTUE	137		137		25		27	
138-	CTUE	138		138		26		28	
139-	CTUE	139		139		25		29	
140-	CTUB	140		140		26		30	
141-	CTUE	141		141		27		31	
142-	CTUE	142		142		28		32	
143-	CTUE	143		143		25		30	
144-	CTUE	144		144		26		29	
145-	CTUB	145		145		25		32	
146-	CTUE	146		146		28		29	
147-	CTUE	147		147		28		31	
148-	CTUE	148		148		27		32	
149-	CTUE	149		149		26		31	
150-	CTUE	150		150		27		30	
151-	CTUE	151		151		25		31	
152-	CTUE	152		152		26		32	
153-	CTUE	153		153		27		29	
154-	CTUE	154		154		28		30	
155-	CTUB	155		155		29		30	
156-	CTUE	156		156		29		32	
157-	CTUB	157		157		31		32	
158-	CTUB	158		158		30		31	
159-	CTUB	159		159		29		31	
160-	CTUE	160		160		30		32	
161-	CTUE	161		161		29		33	
162-	CTUE	162		162		30		34	
163-	CTUE	163		163		31		35	
164-	CTUE	164		164		32		36	
165-	CTUE	165		165		29		34	
166-	CTUE	166		166		30		33	
167-	CTUE	167		167		29		36	
168-	CTUE	168		168		32		35	
169-	CTUB	169		169		32		35	
170-	CTUE	170		170		31		36	
171-	CTUB	171		171		30		35	
172-	CTUE	172		172		31		34	
173-	CTUE	173		173		29		35	
174-	CTUE	174		174		31		36	
175-	CTUE	175		175		31		35	
176-	CTUE	176		176		32		34	
177-	CTUE	177		177		32		34	
178-	CTUE	178		178		33		36	
179-	CTUE	179		179		33		35	
180-	CTUE	180		180		34		35	

TRUSS TAIL BUMPER MULTIPLE ELEMENT VEHICLE
DAMAGE CRITERION = right

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 7

CARD	SORTED	BULK	DATA	ECHO
CUD	1	2	3	4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..
CUD,T	CUD,T	181	161	33 .. 35
181-	CTUBE	182	182	34 .. 36
182-	CTUBE	183	183	35 .. 37
183-	CTUB	183	183	35 .. 38
184-	CTUB	184	184	35 .. 39
185-	CTUB	185	185	35 .. 39
186-	CTUBE	186	186	36 .. 40
187-	CTUBE	187	187	35 .. 38
188-	CTUB	188	188	34 .. 37
189-	CTUBE	189	189	33 .. 40
190-	CTUBE	190	190	36 .. 37
191-	CTUBE	191	191	36 .. 39
192-	CTUBE	192	192	35 .. 40
193-	CTUBE	193	193	34 .. 39
194-	CTUBE	194	194	35 .. 36
195-	CTUBE	195	195	33 .. 39
196-	CTUB	196	196	34 .. 40
197-	CTUB	197	197	35 .. 37
198-	CTUBE	198	198	36 .. 38
199-	CTUBE	199	199	37 .. 38
200-	CTUBE	200	200	37 .. 40
201-	CTUBE	201	201	39 .. 40
202-	CTUBE	202	202	38 .. 39
203-	CTUB	203	203	37 .. 39
204-	CTUB	204	204	38 .. 40
205-	CTUBE	205	205	37 .. 41
206-	CTUB	206	206	38 .. 42
207-	CTUB	207	207	39 .. 43
208-	CTUB	208	208	40 .. 44
209-	CTUBE	209	209	37 .. 42
210-	CTUB	210	210	38 .. 41
211-	CTUBE	211	211	37 .. 44
212-	CTUB	212	212	40 .. 41
213-	CTUB	213	213	40 .. 42
214-	CTUBE	214	214	39 .. 44
215-	CTUB	215	215	38 .. 45
216-	CTUBE	216	216	39 .. 42
217-	CTUB	217	217	37 .. 43
218-	CTUB	218	218	38 .. 44
219-	CTUBE	219	219	39 .. 41
220-	CTUB	220	220	40 .. 42
221-	CTUB	221	221	41 .. 42
222-	CTUBE	222	222	41 .. 44
223-	CTUBE	223	223	43 .. 44
224-	CTUB	224	224	42 .. 45
225-	CTUBE	225	225	41 .. 45

TRUSS TAIL BOOM MODEL1 *226 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 6

CARD	COUNT	SORTED	BULK	DATA	ECHO
• 1	• 2	• 2	• 3	• 4	• 4
226-	CTUBE	226	226	42	44
227-	USFACT	206	1,604422	2,40632	3,20843
228-	FORCE	11	21	0	44,2200
229-	FORCE	11	22	0	44,2200
230-	FORCE	11	23	0	44,2200
231-	FORCE	11	24	0	44,2200
232-	FORCE	11	41	0	464,5
233-	FORCE	11	41	0	527,3
234-	FORCE	11	42	0	464,5
235-	FORCE	11	42	0	527,3
236-	FORCE	11	43	0	464,5
237-	FORCE	11	43	0	527,5
238-	FORCE	11	44	0	464,5
239-	FORCE	11	44	0	527,3
240-	GRUSET	1	• 006	12,300	13,300
241-	GRILU	2	• 000	12,100	-11,500
242-	GRILU	3	• 000	-11,400	-11,500
243-	GRILU	4	• 000	-11,600	13,300
244-	GRILU	5	23,700	11,300	12,300
245-	GRILU	6	23,900	11,100	-10,700
246-	GRILU	7	23,900	-10,600	-10,700
247-	GRILU	8	23,750	-10,800	12,300
248-	GRILU	9	45,950	10,400	11,300
249-	GRILU	10	45,950	10,200	-9,900
250-	GRILU	11	45,950	-9,800	-9,900
251-	GRILU	12	45,950	-10,000	11,300
252-	GRILU	13	66,400	9,500	10,500
253-	GRILU	14	66,500	9,300	-9,200
254-	GRILU	15	66,500	-9,100	-9,200
255-	GRILU	16	66,400	-9,300	10,500
256-	GRILU	17	85,400	8,800	9,700
257-	GRILU	18	85,400	8,600	-8,600
258-	GRILU	19	65,400	-8,400	-8,600
259-	GRILU	20	65,400	-8,600	9,700
260-	GRILU	21	103,000	8,000	8,900
261-	GRILU	22	103,000	7,900	-8,000
262-	GRILU	23	103,000	-7,900	-8,000
263-	GRILU	24	103,000	-8,000	8,900
264-	GRILU	25	114,300	7,400	8,500
265-	GRILU	26	115,500	7,200	-7,400
266-	GRILU	27	119,300	-7,300	-7,400
267-	GRILU	28	119,300	-7,300	8,400
268-	GRILU	29	134,400	6,700	7,400
269-	GRILU	30	134,500	6,800	-6,700
270-	GRILU	31	134,500	6,800	-6,700

S O R T E D B U L K D A T A E C H O									
CARD									
COUNT	*	1	••	2	••	3	••	4	••
GR1U	31								
GR1U	32								
GR1U	33								
GR1U	34								
GR1U	35								
GR1U	36								
GR1U	37								
GR1U	38								
GR1U	39								
GR1U	40								
GR1U	41								
GR1U	42								
GR1U	43								
GR1U	44								
MAT1	1								
+MAT001	4•36+04								
MAT1	2								
+MAT002	4•70+04								
MAT1	3								
+MAT003	4•36+04								
MAT1	4								
+MAT004	4•86+04								
MAT1	5								
+MAT005	2•28+04								
MAT1	6								
+MAT006	2•28+04								
MAT1	7								
+MAT007	4•76+04								
MAT1	8								
+MAT008	4•69+04								
MAT1	9								
+MAT009	4•69+04								
MAT1	10								
+MAT010	4•75+04								
MAT1	11								
+MAT011	2•34+04								
MAT1	12								
+MAT012	2•38+04								
MAT1	13								
+MAT013	2•44+04								
MAT1	14								
+MAT014	2•47+04								
MAT1	15								
+MAT015	2•34+04								
MAT1	16								

CARD	SORTED	BULK	DATA	ECHO
COU1	* 1 •• 2+• 0• 3 •• 4 •• 5 •• 6 •• 7 •• 8 •• 9 •• 10 ••			
316-	+MATU16 2.37+04 1.90+04			
317-	%AT1 17 10.5E6 3.8E6 .33 .1			+MAT017
318-	+MAT017 2.47+04 1.98+04			
319-	%AT1 18 10.5E6 3.8E6 .33 .1			+MAT018
320-	+MATU14 2.49+04 1.99+04			
321-	%AT1 19 10.5E6 3.8E6 .33 .1			+MAT019
322-	+MATU19 1.61+04 1.28+04			
323-	%AT1 20 10.5E6 3.8E6 .33 .1			+MAT020
324-	+MATU20 1.62+04 1.30+04			
325-	%AT1 21 10.5E6 3.8E6 .33 .1			+MAT021
326-	+MATU21 1.63+04 1.31+04			
327-	%AT1 22 10.5E6 3.8E6 .33 .1			+MAT022
328-	+MATU22 1.64+04 1.29+04			
329-	%AT1 23 10.5E6 3.8E6 .33 .1			+MAT023
330-	+MATU23 5.07+04 4.06+04			
331-	%AT1 24 10.5E6 3.8E6 .33 .1			+MAT024
332-	+MATU24 5.05+04 4.40+04			
333-	%AT1 25 10.5E6 3.8E6 .33 .1			+MAT025
334-	+MATU25 5.07+04 4.06+04			
335-	%AT1 26 10.5E6 3.8E6 .33 .1			+MAT026
336-	+MATU26 5.07+04 4.56+04			
337-	%AT1 27 10.5E6 3.8E6 .33 .1			+MAT027
338-	+MATU27 2.66+04 2.13+04			
339-	%AT1 28 10.5E6 3.8E6 .33 .1			+MAT028
340-	+MATU28 2.66+04 2.13+04			
341-	%AT1 29 10.5E6 3.8E6 .33 .1			+MAT029
342-	+MATU29 5.40+04 4.52+04			
343-	%AT1 30 10.5E6 3.8E6 .33 .1			+MAT030
344-	+MATU30 5.51+04 4.0+04			
345-	%AT1 31 10.5E6 3.8E6 .33 .1			+MAT031
346-	+MATU31 5.51+04 4.40+04			
347-	%AT1 32 10.5E6 3.8E6 .33 .1			+MAT032
348-	+MATU32 5.43+04 4.54+04			
349-	%AT1 33 10.5E6 3.8E6 .33 .1			+MAT033
350-	+MATU33 2.71+04 2.17+04			
351-	%AT1 34 10.5E6 3.8E6 .33 .1			+MAT034
352-	+MATU34 2.76+04 2.21+04			
353-	%AT1 35 10.5E6 3.8E6 .33 .1			+MAT035
354-	+MATU35 2.63+04 2.26+04			
355-	%AT1 36 10.5E6 3.8E6 .33 .1			+MAT036
356-	+MATU36 2.65+04 2.20+04			
357-	%AT1 37 10.5E6 3.8E6 .33 .1			+MATU37
358-	+MATU37 2.72+04 2.18+04			
359-	%AT1 38 10.5E6 3.8E6 .33 .1			+MATU38
360-	+MATU39 2.77+04 2.21+04			

CARD	COUNT	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
*		MAT1 .59	10.5E6	3.8E6	.33	.1					+MAT039
361-		+MAT039	2.91+04	2.33+04							+MAT040
362-		MAT1 .40	10.2E6	3.8E6	.33	.1					+MAT041
363-		+MAT041	2.92+04	2.34+04							+MAT042
364-		MAT1 .41	10.5E6	3.8F6	.33	.1					+MAT043
365-		+MAT041	1.67+04	1.50+04							+MAT044
366-		MAT1 .42	10.3E6	3.8E6	.33	.1					+MAT045
367-		+MAT042	1.90+04	1.52+04							+MAT046
368-		MAT1 .43	10.5E6	3.8E6	.33	.1					+MAT047
369-		+MAT043	1.90+04	1.52+04							+MAT048
370-		MAT1 .44	10.5E6	3.8E6	.33	.1					+MAT049
371-		+MAT044	1.68+04	1.51+04							+MAT050
372-		MAT1 .45	10.5L6	3.8E6	.33	.1					+MAT051
373-		+MAT045	5.97+04	4.78+04							+MAT052
374-		MAT1 .46	10.5L6	3.8E6	.33	.1					+MAT053
375-		+MAT046	6.45+04	5.16+04							+MAT054
376-		MAT1 .47	10.5E6	3.8E6	.33	.1					+MAT055
377-		+MAT047	5.97+04	4.76+04							+MAT056
378-		MAT1 .48	10.5E6	3.8E6	.33	.1					+MAT057
379-		+MAT048	6.71+04	5.37+04							+MAT058
380-		MAT1 .49	10.5E6	3.8E6	.33	.1					+MAT059
381-		+MAT049	5.13+04	2.50+04							+MAT060
382-		MAT1 .50	10.5E6	3.8E6	.33	.1					+MAT061
383-		+MAT050	5.13+04	2.50+04							
384-		MAT1 .51	10.5E6	3.8E6	.33	.1					
385-		+MAT051	6.39+04	5.11+04							
386-		MAT1 .52	10.5E6	3.8E6	.33	.1					
387-		+MAT052	6.34+04	5.07+04							
388-		MAT1 .53	10.5E6	3.8E6	.33	.1					
389-		+MAT053	6.34+04	5.08+04							
390-		MAT1 .54	10.5E6	3.8E6	.33	.1					
391-		+MAT054	6.40+04	5.12+04							
392-		MAT1 .55	10.5E6	3.8E6	.33	.1					
393-		+MAT055	3.18+04	2.54+04							
394-		MAT1 .56	10.5E6	3.8E6	.33	.1					
395-		+MAT056	3.22+04	2.57+04							
396-		MAT1 .57	10.5E6	3.8E6	.33	.1					
397-		+MAT057	3.33+04	2.66+04							
398-		MAT1 .58	10.5E6	3.8E6	.33	.1					
399-		+MAT058	3.36+04	2.69+04							
400-		MAT1 .59	10.5L6	3.8E6	.33	.1					
401-		+MAT059	3.18+04	2.55+04							
402-		MAT1 .60	10.5E6	3.8E6	.33	.1					
403-		+MAT060	3.22+04	2.57+04							
404-		MAT1 .61	10.5E6	3.8E6	.33	.1					
405-		+MAT061									

TRUSS TAIL BUOM 400LLI ***A 226 ELEMENT VERSION
DAMAGE CRITERION = NODLT

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 12

CARD	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
COUNT										
406-	+MAT061	3.36+04	2.70+04							
407-	MAT1	62	10.5E6	3.8E6	.33	.1				+MAT062
408-	+MAT062	3.41+04	2.73+04							
409-	MAT1	65	10.5E6	3.8E6	.33	.1				+MAT063
410-	+MAT063	2.19+04	1.76+04							
411-	MAT1	64	10.5E6	3.8E6	.33	.1				+MAT064
412-	+MAT064	2.21+04	1.77+04							
413-	MAT1	65	10.5E6	3.8E6	.33	.1				+MAT065
414-	+MAT065	2.22+04	1.78+04							
415-	MAT1	66	10.5E6	3.8E6	.33	.1				+MAT066
416-	+MAT066	2.21+04	1.77+04							
417-	MAT1	67	10.5E6	3.8E6	.33	.1				+MAT067
418-	+MAT067	6.92+04	5.53+04							
419-	MAT1	68	10.5E6	3.8E6	.33	.1				+MAT068
420-	+MAT068	7.59+04	6.05+04							
421-	MAT1	69	10.5E6	3.8E6	.33	.1				+MAT069
422-	+MAT069	6.92+04	5.53+04							
423-	MAT1	70	10.5E6	3.8E6	.33	.1				+MAT070
424-	+MAT070	7.93+04	6.34+04							
425-	MAT1	71	10.5E6	3.8E6	.33	.1				+MAT071
426-	+MAT071	3.66+04	2.93+04							
427-	MAT1	72	10.5E6	3.8E6	.33	.1				+MAT072
428-	+MAT072	3.66+04	2.93+04							
429-	MAT1	73	10.5E6	3.8E6	.33	.1				+MAT073
430-	+MAT073	7.41+04	5.93+04							
431-	MAT1	74	10.5E6	3.8E6	.33	.1				+MAT074
432-	+MAT074	7.50+04	6.00+04							
433-	MAT1	75	10.5E6	3.8E6	.33	.1				+MAT075
434-	+MAT075	7.50+04	6.00+04							
435-	MAT1	76	10.5E6	3.8E6	.33	.1				+MAT076
436-	+MAT076	7.41+04	5.93+04							
437-	MAT1	77	10.5E6	3.8E6	.33	.1				+MAT077
438-	+MAT077	3.69+04	2.95+04							
439-	MAT1	78	10.5E6	3.8E6	.33	.1				+MAT078
440-	+MAT078	3.76+04	3.01+04							
441-	MAT1	79	10.5E6	3.8E6	.33	.1				+MAT079
442-	+MAT079	3.90+04	3.12+04							
443-	MAT1	80	10.5E6	3.8E6	.33	.1				+MAT080
444-	+MAT080	3.90+04	3.12+04							
445-	MAT1	81	10.5E6	3.8E6	.33	.1				+MAT081
446-	+MAT081	3.64+04	2.95+04							
447-	MAT1	82	10.5E6	3.8E6	.33	.1				+MAT082
448-	+MAT082	3.67+04	3.01+04							
449-	MAT1	83	10.5E6	3.8E6	.33	.1				+MAT083
450-	+MAT083	4.01+04	3.20+04							

SORTED

CARD	COUNT	2	3	4	5	6	7	8	9	10
	*	•	•	•	•	•	•	•	•	•
451-	MAT1	84	10.5E6	3.8E6	.33	.1				+MAT084
452-	+MAT064	4.00+04	3.20+04							+MAT085
453-	MAT1	85	10.5E6	3.8E6	.33	.1				
454-	+MAT065	2.56+04	2.05+04							+MAT086
455-	MAT1	86	10.5E6	3.8E6	.33	.1				
456-	+MAT066	2.59+04	2.07+04							+MAT087
457-	MAT1	67	10.5E6	3.8E6	.33	.1				
458-	+MAT067	2.59+04	2.07+04							+MAT088
459-	MAT1	88	10.5E6	3.8E6	.33	.1				
460-	+MAT068	2.56+04	2.05+04							+MAT089
461-	MAT1	89	10.5E6	3.8E6	.33	.1				
462-	+MAT069	8.02+04	6.41+04							+MAT090
463-	MAT1	90	10.5E6	3.8E6	.33	.1				
464-	+MAT090	8.37+04	7.09+04							+MAT091
465-	MAT1	91	10.5E6	3.8E6	.33	.1				
466-	+MAT091	8.02+04	6.41+04							+MAT092
467-	MAT1	92	10.5E6	3.8E6	.33	.1				
468-	+MAT092	9.29+04	7.43+04							+MAT093
469-	MAT1	93	10.5E6	3.8E6	.33	.1				
470-	+MAT093	4.26+04	3.41+04							+MAT094
471-	MAT1	94	10.5E6	3.8E6	.33	.1				
472-	+MAT094	4.26+04	3.41+04							+MAT095
473-	MAT1	95	10.5E6	3.8E6	.33	.1				
474-	+MAT095	8.63+04	6.90+04							+MAT096
475-	MAT1	96	10.5E6	3.8E6	.33	.1				
476-	+MAT096	8.65+04	6.92+04							+MAT097
477-	MAT1	97	10.5E6	3.8E6	.33	.1				
478-	+MAT097	8.65+04	6.92+04							+MAT098
479-	MAT1	98	10.5E6	3.8E6	.33	.1				
480-	+MAT098	8.64+04	6.91+04							+MAT099
481-	MAT1	99	10.5E6	3.8E6	.33	.1				
482-	+MAT099	4.30+04	3.44+04							+MAT100
483-	MAT1	100	10.5E6	3.8E6	.33	.1				
484-	+MAT100	4.35+04	3.49+04							+MAT101
485-	MAT1	101	10.5E6	3.8E6	.33	.1				
486-	+MAT101	4.53+04	3.62+04							+MAT102
487-	MAT1	102	10.5E6	3.8E6	.33	.1				
488-	+MAT102	4.58+04	3.68+04							+MAT103
489-	MAT1	103	10.5E6	3.8E6	.33	.1				
490-	+MAT103	4.31+04	3.44+04							+MAT104
491-	MAT1	104	10.5E6	3.8E6	.33	.1				
492-	+MAT104	4.36+04	3.49+04							+MAT105
493-	MAT1	105	10.5E6	3.8E6	.33	.1				
494-	+MAT105	4.64+04	3.71+04							+MAT106
495-	MAT1	106	10.5E6	3.8E6	.33	.1				

TRUSS TAIL BOOM AC2011 *MA226 ELEMENT VERSION
DAMAGE CRITERION = slight

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 14

	S C R I E D	B U L K	D A T A	E C H O
CARD COUNT	* 1 . . . 2 . . . 3 . . . 4 . . . 5 . . . 6 . . . 7 . . . 8 . . . 9 . . . 10 . . .			
496-	+MAT106 4.66+04 3.73+04			
497-	MAT1 107 10.5E6 3.8E6	*33	*1	+MAT107
498-	+MAT107 2.99+04 2.39+04			
499-	MAT1 108 10.5E6 3.8E6	*33	*1	+MAT108
500-	+MAT108 3.01+04 2.41+04			
501-	MAT1 109 10.5E6 3.8E6	*33	*1	+MAT109
502-	+MAT109 3.03+04 2.43+04			
503-	MAT1 110 10.5E6 3.8E6	*33	*1	+MAT110
504-	+MAT110 3.00+04 2.40+04			
505-	MAT1 111 10.5E6 3.8E6	*33	*1	+MAT111
506-	+MAT111 9.40+04 7.52+04			
507-	MAT1 112 10.5E6 3.8E6	*33	*1	+MAT112
508-	+MAT112 1.05+05 8.39+04			
509-	MAT1 113 10.5E6 3.8E6	*33	*1	+MAT113
510-	+MAT113 9.40+04 7.52+04			
511-	MAT1 114 10.5E6 3.8E6	*33	*1	+MAT114
512-	+MAT114 1.09+05 8.71+04			
513-	MAT1 115 10.5E6 3.8E6	*33	*1	+MAT115
514-	+MAT115 5.61+04 4.31+04			
515-	MAT1 116 10.5E6 3.8E6	*33	*1	+MAT116
516-	+MAT116 4.99+04 3.99+04			
517-	MAT1 117 10.5E6 3.8E6	*33	*1	+MAT117
518-	+MAT117 1.01+05 8.06+04			
519-	MAT1 118 10.5E6 3.8E6	*33	*1	+MAT118
520-	+MAT118 1.01+05 8.05+04			
521-	MAT1 119 10.5E6 3.8E6	*33	*1	+MAT119
522-	+MAT119 1.01+05 8.06+04			
523-	MAT1 120 10.5E6 3.8E6	*33	*1	+MAT120
524-	+MAT120 1.01+05 8.06+04			
525-	MAT1 121 10.5E6 3.8E6	*33	*1	+MAT121
526-	+MAT121 2.04+04 4.03+04			
527-	MAT1 122 10.5E6 3.8E6	*33	*1	+MAT122
528-	+MAT122 2.05+04 4.04+04			
529-	MAT1 123 10.5E6 3.8E6	*33	*1	+MAT123
530-	+MAT123 5.36+04 4.24+04			
531-	MAT1 124 10.5E6 3.8E6	*33	*1	+MAT124
532-	+MAT124 5.34+04 4.27+04			
533-	MAT1 125 10.5E6 3.8E6	*33	*1	+MAT125
534-	+MAT125 5.35+04 4.14+04			
535-	MAT1 126 10.5E6 3.8E6	*33	*1	+MAT126
536-	+MAT126 5.165+04 4.04+04			
537-	MAT1 127 10.5E6 3.8E6	*33	*1	+MAT127
538-	+MAT127 5.146+04 4.32+04			
539-	MAT1 128 10.5E6 3.8E6	*33	*1	+MAT128
540-	+MAT128 5.147+04 4.37+04			

SORTED BULK DATA ECHO

CARD	1	2	3	4	5	6	7	8	9	10
COUNT										
541-	MAT1	129	10.5E6	3.8E6	.33	.1				+MAT129
542-	+MAT129	3.51+04	2.80+04							
543-	MAT1	130	10.5E6	3.8E6	.33	.1				+MAT130
544-	+MAT130	3.49+04	2.79+04							
545-	MAT1	131	10.5E6	3.8E6	.33	.1				+MAT131
546-	+MAT131	3.52+04	2.82+04							
547-	MAT1	132	10.5E6	3.8E6	.33	.1				+MAT132
548-	+MAT132	3.52+04	2.82+04							
549-	MAT1	133	10.5E6	3.8E6	.33	.1				+MAT133
550-	+MAT133	1.09+05	8.71+04							
551-	MAT1	134	10.5E6	3.8E6	.33	.1				+MAT134
552-	+MAT134	1.21+05	9.67+04							
553-	MAT1	135	10.5E6	3.8E6	.33	.1				+MAT135
554-	+MAT135	1.09+05	8.71+04							
555-	MAT1	136	10.5E6	3.8E6	.33	.1				+MAT136
556-	+MAT136	1.28+05	1.02+05							
557-	MAT1	137	10.5E6	3.8E6	.33	.1				+MAT137
558-	+MAT137	5.80+04	4.64+04							
559-	MAT1	138	10.5E6	3.8E6	.33	.1				+MAT138
560-	+MAT138	5.80+04	4.64+04							
561-	MAT1	139	10.5E6	3.8E6	.33	.1				+MAT139
562-	+MAT139	1.17+05	9.38+04							
563-	MAT1	140	10.5E6	3.8E6	.33	.1				+MAT140
564-	+MAT140	1.16+05	9.27+04							
565-	MAT1	141	10.5E6	3.8E6	.33	.1				+MAT141
566-	+MAT141	1.16+05	9.27+04							
567-	MAT1	142	10.5E6	3.8E6	.33	.1				+MAT142
568-	+MAT142	1.17+05	9.38+04							
569-	MAT1	143	10.5E6	3.8E6	.33	.1				+MAT143
570-	+MAT143	5.80+04	4.64+04							
571-	MAT1	144	10.5E6	3.8E6	.33	.1				+MAT144
572-	+MAT144	5.92+04	4.74+04							
573-	MAT1	145	10.5E6	3.8E6	.33	.1				+MAT145
574-	+MAT145	6.20+04	4.66+04							
575-	MAT1	146	10.5E6	3.8E6	.33	.1				+MAT146
576-	+MAT146	6.24+04	4.69+04							
577-	MAT1	147	10.5E6	3.8E6	.33	.1				+MAT147
578-	+MAT147	5.80+04	4.64+04							
579-	MAT1	148	10.5E6	3.8E6	.33	.1				+MAT148
580-	+MAT148	5.92+04	4.74+04							
581-	MAT1	149	10.5E6	3.8E6	.33	.1				+MAT149
582-	+MAT149	6.28+04	5.03+04							
583-	MAT1	150	10.5E6	3.8E6	.33	.1				+MAT150
584-	+MAT150	6.33+04	5.06+04							
585-	MAT1	151	10.5E6	3.8E6	.33	.1				+MAT151

TRUSS TAIL BUOM MODULE *** 226 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 16

CARD COUNT	SORTED	BULK	DATA	ECHO
586-	* 1 ..	2 ..	3 ..	4 ..
	+ MAT151	4.05+04	3.24+04	
587-	MAT1 152	10.5E6	3.8E6	.33 .1
588-	+ MAT152	4.12+04	3.29+04	
589-	MAT1 153	10.5E6	3.8E6	.33 .1
590-	+ MAT153	4.13+04	3.31+04	
591-	MAT1 154	10.5E6	3.8E6	.33 .1
592-	+ MAT154	4.06+04	3.25+04	
593-	MAT1 155	10.5E6	3.8E6	.33 .1
594-	+ MAT155	1.28+05	1.92+05	
595-	MAT1 156	10.5E6	3.8E6	.33 .1
596-	+ MAT156	1.45+05	1.16+05	
597-	MAT1 157	10.5E6	3.8E6	.33 .1
598-	+ MAT157	1.28+05	1.02+05	
599-	MAT1 158	10.5E6	3.8E6	.33 .1
600-	+ MAT158	1.49+05	1.20+05	
601-	MAT1 159	10.5E6	3.8E6	.33 .1
602-	+ MAT159	6.84+04	5.47+04	
603-	MAT1 160	10.5E6	3.8E6	.33 .1
604-	+ MAT160	6.84+04	5.47+04	
605-	MAT1 161	10.5E6	3.8E6	.33 .1
606-	+ MAT161	1.34+05	1.08+05	
607-	MAT1 162	10.5E6	3.8E6	.33 .1
608-	+ MAT162	1.37+05	1.09+05	
609-	MAT1 163	10.5E6	3.8E6	.33 .1
610-	+ MAT163	1.37+05	1.09+05	
611-	MAT1 164	10.5E6	3.8E6	.33 .1
612-	+ MAT164	1.35+05	1.08+05	
613-	MAT1 165	10.5E6	3.8E6	.33 .1
614-	+ MAT165	6.74+04	5.40+04	
615-	MAT1 166	10.5E6	3.8E6	.33 .1
616-	+ MAT166	6.90+04	5.32+04	
617-	MAT1 167	10.5E6	3.8E6	.33 .1
618-	+ MAT167	7.24+04	5.79+04	
619-	MAT1 168	10.5E6	3.8E6	.33 .1
620-	+ MAT168	7.29+04	5.83+04	
621-	MAT1 169	10.5E6	3.8E6	.33 .1
622-	+ MAT169	6.74+04	5.46+04	
623-	MAT1 170	10.5E6	3.8E6	.33 .1
624-	+ MAT170	6.79+04	5.52+04	
625-	MAT1 171	10.5E6	3.8E6	.33 .1
626-	+ MAT171	7.49+04	5.92+04	
627-	MAT1 172	10.5E6	3.8E6	.33 .1
628-	+ MAT172	7.46+04	5.97+04	
629-	MAT1 173	10.5E6	3.8E6	.33 .1
630-	+ MAT173	4.74+04	3.79+04	

TRUSS TAIL BOOM AUDITI **A 226 ELEMENT VERSION
DAMAGE CRITERION = NUMBER

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 17

S C R E T E D B U L K D A T A E C H O

CARD	1	2	3	4	5	6	7	8	9	10
COUNT	MAT1	174	10.5E6	3.8E6	.33	.1				+MAT14
631-	+MAT174	4.81+04	3.85+04							
632-	MAT1	175	10.5E6	3.8E6	.33	.1				+MAT15
633-	+MAT175	4.83+04	3.87+04							+MAT16
634-	MAT1	176	10.5E6	3.8E6	.33	.1				+MAT17
635-	+MAT176	4.76+04	3.81+04							+MAT177
636-	MAT1	177	10.5E6	3.8E6	.33	.1				+MAT178
637-	+MAT177	4.47+05	1.16+05							+MAT179
638-	MAT1	178	10.5E6	3.8E6	.33	.1				+MAT180
639-	+MAT178	1.72+05	1.37+05							+MAT181
640-	MAT1	179	10.5E6	3.8E6	.33	.1				+MAT182
641-	+MAT179	1.47+05	1.18+05							+MAT183
642-	MAT1	180	10.5E6	3.8E6	.33	.1				+MAT184
643-	+MAT180	1.77+05	1.42+05							+MAT185
644-	MAT1	181	10.5E6	3.8E6	.33	.1				+MAT186
645-	+MAT181	7.99+04	6.39+04							+MAT187
646-	MAT1	182	10.5E6	3.8E6	.33	.1				+MAT188
647-	+MAT182	7.99+04	6.39+04							+MAT189
648-	MAT1	183	10.5E6	3.8E6	.33	.1				+MAT190
649-	+MAT183	1.61+05	1.29+05							+MAT191
650-	MAT1	184	10.5E6	3.8E6	.33	.1				+MAT192
651-	+MAT184	1.58+05	1.27+05							+MAT193
652-	MAT1	185	10.5E6	3.8E6	.33	.1				+MAT194
653-	+MAT185	1.58+05	1.27+05							+MAT195
654-	MAT1	186	10.5E6	3.8E6	.33	.1				+MAT196
655-	+MAT186	1.61+05	1.29+05							
656-	MAT1	187	10.5E6	3.8E6	.33	.1				
657-	+MAT187	7.94+04	6.35+04							
658-	MAT1	188	10.5E6	3.8E6	.33	.1				
659-	+MAT188	8.00+04	6.40+04							
660-	MAT1	189	10.5E6	3.8E6	.33	.1				
661-	+MAT189	8.58+04	6.86+04							
662-	MAT1	190	10.5E6	3.8E6	.33	.1				
663-	+MAT190	8.64+04	6.91+04							
664-	MAT1	191	10.5E6	3.8E6	.33	.1				
665-	+MAT191	7.94+04	6.35+04							
666-	MAT1	192	10.5E6	3.8E6	.33	.1				
667-	+MAT192	5.60+04	4.48+04							
668-	MAT1	193	10.5E6	3.8E6	.33	.1				
669-	+MAT193	8.71+04	6.96+04							
670-	MAT1	194	10.5E6	3.8E6	.33	.1				
671-	+MAT194	8.71+04	6.96+04							
672-	MAT1	195	10.5E6	3.8E6	.33	.1				
673-	+MAT195	5.60+04	4.48+04							
674-	MAT1	196	10.5E6	3.8E6	.33	.1				
675-	+MAT196									

TRUSS TAIL BOOM
WULELLI ***A 2-DO ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 18

SORTED BULK DATA ECHO

CARD COUNT	1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..
676-	+MAT196 5.60+04 4.46+04
677-	MAT1 197 10.5E6 3.8E6 .33 .1
678-	+MAT197 5.63+04 4.50+04
679-	MAT1 198 10.5E6 3.8E6 .33 .1
680-	+MAT198 5.60+04 4.48+04
681-	MAT1 199 10.5E6 3.8E6 .33 .1
682-	+MAT199 5.61+04 4.49+04
683-	MAT1 200 10.5E6 3.8E6 .33 .1
684-	+MAT200 5.62+04 4.50+04
685-	MAT1 201 10.5E6 3.8E6 .33 .1
686-	+MAT201 5.63+04 4.51+04
687-	MAT1 202 10.5E6 3.8E6 .33 .1
688-	+MAT202 5.64+04 4.52+04
689-	MAT1 203 10.5E6 3.8E6 .33 .1
690-	+MAT203 5.65+04 4.53+04
691-	MAT1 204 10.5E6 3.8E6 .33 .1
692-	+MAT204 5.66+04 4.54+04
693-	MAT1 205 10.5E6 3.8E6 .33 .1
694-	+MAT205 5.67+04 4.55+04
695-	MAT1 206 10.5E6 3.8E6 .33 .1
696-	+MAT206 5.68+04 4.56+04
697-	MAT1 207 10.5E6 3.8E6 .33 .1
698-	+MAT207 5.69+04 4.57+04
699-	MAT1 208 10.5E6 3.8E6 .33 .1
700-	+MAT208 5.70+04 4.58+04
701-	MAT1 209 10.5E6 3.8E6 .33 .1
702-	+MAT209 5.71+04 4.59+04
703-	MAT1 210 10.5E6 3.8E6 .33 .1
704-	+MAT210 5.72+04 4.60+04
705-	MAT1 211 10.5E6 3.8E6 .33 .1
706-	+MAT211 5.73+04 4.61+04
707-	MAT1 212 10.5E6 3.8E6 .33 .1
708-	+MAT212 5.74+04 4.62+04
709-	MAT1 213 10.5E6 3.8E6 .33 .1
710-	+MAT213 5.75+04 4.63+04
711-	MAT1 214 10.5E6 3.8E6 .33 .1
712-	+MAT214 5.76+04 4.64+04
713-	MAT1 215 10.5E6 3.8E6 .33 .1
714-	+MAT215 5.77+04 4.65+04
715-	MAT1 216 10.5E6 3.8E6 .33 .1
716-	+MAT216 5.78+04 4.66+04
717-	MAT1 217 10.5E6 3.8E6 .33 .1
718-	+MAT217 5.79+04 4.67+04
719-	MAT1 218 10.5E6 3.8E6 .33 .1
720-	+MAT218 5.80+04 4.68+04

TRUSS TAII BOOM MODEL1 **A 226 ELEMENT VERSION
DAMAGE CRITERIUN = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 19

SORTED BULK DATA ECHO

CARD COUNT	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
721-	MAT1	219	10.5E6	3.8E6	.33	.1				+MAT219
722-	+MAT219	6.60+04	5.28+04							
723-	MAT1	220	10.5E6	3.8E6	.33	.1				+MAT220
724-	+MAT220	6.49+04	5.19+04							
725-	MAT1	221	10.5E6	3.8E6	.33	.1				+MAT221
726-	+MAT221	1.99+05	1.60+05							
727-	MAT1	222	10.5E6	3.8E6	.33	.1				+MAT222
728-	+MAT222	2.39+05	1.91+05							
729-	MAT1	223	10.5E6	3.8E6	.33	.1				+MAT223
730-	+MAT223	1.99+05	1.60+05							
731-	MAT1	224	10.5E6	3.8E6	.33	.1				+MAT224
732-	+MAT224	2.46+05	1.99+05							
733-	MAT1	225	10.5E6	3.8E6	.33	.1				+MAT225
734-	+MAT225	1.10+05	8.77+04							
735-	MAT1	226	10.5E6	3.8E6	.33	.1				+MAT226
736-	+MAT226	1.10+05	8.77+04							
737-	PARAM	GRLPNT	0							
738-	PTUBE	1		1.5						.0625
739-	PTUBE	2		1.5						.0625
740-	PTUBE	3		1.5						.0625
741-	PTUBE	4		1.5						.0625
742-	PTUBE	5		1.5						.0625
743-	PTUBE	6		1.5						.0625
744-	PTUBE	7		1.5						.0625
745-	PTUBE	8		1.5						.0625
746-	PTUBE	9		1.5						.0625
747-	PTUBE	10		1.5						.0625
748-	PTUBE	11		1.5						.0625
749-	PTUBE	12		1.5						.0625
750-	PTUBE	13		1.5						.0625
751-	PTUBE	14		1.5						.0625
752-	PTUBE	15		1.5						.0625
753-	PTUBE	16		1.5						.0625
754-	PTUBE	17		1.5						.0625
755-	PTUBE	18		1.5						.0625
756-	PTUBE	19		1.5						.0625
757-	PTUBE	20		1.5						.0625
758-	PTUBE	21		1.5						.0625
759-	PTUBE	22		1.5						.0625
760-	PTUBE	23		1.5						.0625
761-	PTUBE	24		1.5						.0625
762-	PTUBE	25		1.5						.0625
763-	PTUBE	26		1.5						.0625
764-	PTUBE	27		1.5						.0625
765-	PTUBE	28		1.5						.0625

TRUSS TAIL BOOM MODEL **A 226 ELEMENT VERSION
DAMAGE CRITERION = NUNI

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 20

CARD	COUNT	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
	PTUBE	29	29	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
766-	PTUBE	30	30	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
767-	PTUBE	31	31	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
768-	PTUBE	32	32	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
769-	PTUBE	33	33	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
770-	PTUBE	34	34	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
771-	PTUBE	35	35	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
772-	PTUBE	36	36	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
773-	PTUBE	37	37	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
774-	PTUBE	38	38	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
775-	PTUBE	39	39	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
776-	PTUBE	40	40	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
777-	PTUBE	41	41	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
778-	PTUBE	42	42	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
779-	PTUBE	43	43	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
780-	PTUBE	44	44	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
781-	PTUBE	45	45	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
782-	PTUBE	46	46	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
783-	PTUBE	47	47	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
784-	PTUBE	48	48	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
785-	PTUBE	49	49	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
786-	PTUBE	50	50	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
787-	PTUBE	51	51	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
788-	PTUBE	52	52	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
789-	PTUBE	53	53	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
790-	PTUBE	54	54	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
791-	PTUBE	55	55	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
792-	PTUBE	56	56	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
793-	PTUBE	57	57	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
794-	PTUBE	58	58	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
795-	PTUBE	59	59	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
796-	PTUBE	60	60	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
797-	PTUBE	61	61	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
798-	PTUBE	62	62	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
799-	PTUBE	63	63	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
800-	PTUBE	64	64	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
801-	PTUBE	65	65	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
802-	PTUBE	66	66	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
803-	PTUBE	67	67	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
804-	PTUBE	68	68	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
805-	PTUBE	69	69	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
806-	PTUBE	70	70	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
807-	PTUBE	71	71	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
808-	PTUBE	72	72	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
809-	PTUBE	73	73	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

TRUSS TAIL BOOM 400UL1 ***A 226 ELEMENT VERSION
Damage Criterion = Right

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 21

		SORTED	BULK	DATA	ECHO
*	C4NU1	1	**	2	**
*	811-	P1uct	74	74	1.5
	812-	P1ULL	75	75	1.5
	813-	P1UNE	76	76	1.5
	814-	P1UNT	77	77	1.5
	815-	P1Ust	78	78	1.5
	816-	P1UUE	79	79	1.5
	817-	P1UUE	80	80	1.5
	818-	P1UUL	81	81	1.5
	819-	P1URE	82	82	1.5
	820-	P1Ust	83	83	1.5
	821-	P1UUE	84	84	1.5
	822-	P1UUE	85	85	1.5
	823-	P1UDL	86	86	1.5
	824-	P1UBE	87	87	1.5
	825-	P1UUE	88	88	1.5
	826-	P1UUE	89	89	1.5
	827-	P1UUE	90	90	1.5
	828-	P1UBE	91	91	1.5
	829-	P1UBE	92	92	1.5
	830-	P1UBE	93	93	1.5
	831-	P1ULL	94	94	1.5
	832-	P1UBE	95	95	1.5
	833-	P1UBL	96	96	1.5
	834-	P1UBE	97	97	1.5
	835-	P1UBE	98	98	1.5
	836-	P1UBE	99	99	1.5
	837-	P1UBE	100	100	1.5
	838-	P1UBE	101	101	1.5
	839-	P1UBE	102	102	1.5
	840-	P1UBE	103	103	1.5
	841-	P1UBE	104	104	1.5
	842-	P1UBE	105	105	1.5
	843-	P1UBE	106	106	1.5
	844-	P1UBE	107	107	1.5
	845-	P1UBE	108	108	1.5
	846-	P1UBE	109	109	1.5
	847-	P1UBE	110	110	1.5
	848-	P1UBE	111	111	1.5
	849-	P1UBE	112	112	1.5
	850-	P1UBE	113	113	1.5
	851-	P1UBE	114	114	1.5
	852-	P1UBE	115	115	1.5
	853-	P1UBE	116	116	1.5
	854-	P1UBE	117	117	1.5
	855-	P1UBE	118	118	1.5

TRUSS TAIL BOOM MODEL *A 22 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 22

CARD		SORTED	BULK	DATA	ECHO
COUNT	*	1	** 2	** 3	** 4
856-	PTUBE	119	119	1.5	.0625
857-	PTUBE	120	120	1.5	.0625
858-	PTUBE	121	121	1.5	.0625
859-	PTUBE	122	122	1.5	.0625
860-	PTUBE	123	123	1.5	.0625
861-	PTUBE	124	124	1.5	.0625
862-	PTUBE	125	125	1.5	.0625
863-	PTUBE	126	126	1.5	.0625
864-	PTUBE	127	127	1.5	.0625
865-	PTUBE	128	128	1.5	.0625
866-	PTUBE	129	129	1.5	.0625
867-	PTUBE	130	130	1.5	.0625
868-	PTUBE	131	131	1.5	.0625
869-	PTUBE	132	132	1.5	.0625
870-	PTUBE	133	133	1.5	.0625
871-	PTUBE	134	134	1.5	.0625
872-	PTUBE	135	135	1.5	.0625
873-	PTUBE	136	136	1.5	.0625
874-	PTUBE	137	137	1.5	.0625
875-	PTUBE	138	138	1.5	.0625
876-	PTUBE	139	139	1.5	.0625
877-	PTUBE	140	140	1.5	.0625
878-	PTUBE	141	141	1.5	.0625
879-	PTUBE	142	142	1.5	.0625
880-	PTUBE	143	143	1.5	.0625
881-	PTUBE	144	144	1.5	.0625
882-	PTUBE	145	145	1.5	.0625
883-	PTUBE	146	146	1.5	.0625
884-	PTUBE	147	147	1.5	.0625
885-	PTUBE	148	148	1.5	.0625
886-	PTUBE	149	149	1.5	.0625
887-	PTUBE	150	150	1.5	.0625
888-	PTUBE	151	151	1.5	.0625
889-	PTUBE	152	152	1.5	.0625
890-	PTUBE	153	153	1.5	.0625
891-	PTUBE	154	154	1.5	.0625
892-	PTUBE	155	155	1.5	.0625
893-	PTUBE	156	156	1.5	.0625
894-	PTUBE	157	157	1.5	.0625
895-	PTUBE	158	158	1.5	.0625
896-	PTUBE	159	159	1.5	.0625
897-	PTUBE	160	160	1.5	.0625
898-	PTUBE	161	161	1.5	.0625
899-	PTUBE	162	162	1.5	.0625
900-	PTUBE	163	163	1.5	.0625

TRUSS TAIL 800M 400ELL ***A 226 ELEMENT VERSION
DAMAGE CRITERION = .001it

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 23

CARD	COUNT	1	2	3	4	5	6	7	8	9	10
	*	PTUBE	164	164	1.5	.0625					
	901-	PTUBE	165	165	1.5	.0625					
	902-	PTUBE	166	166	1.5	.0625					
	903-	PTUBE	167	167	1.5	.0625					
	904-	PTUBE	168	168	1.5	.0625					
	905-	PTUBE	169	169	1.5	.0625					
	906-	PTUBE	170	170	1.5	.0625					
	907-	PTUBE	171	171	1.5	.0625					
	908-	PTUBE	172	172	1.5	.0625					
	909-	PTUBE	173	173	1.5	.0625					
	910-	PTUBE	174	174	1.5	.0625					
	911-	PTUBE	175	175	1.5	.0625					
	912-	PTUBE	176	176	1.5	.0625					
	913-	PTUBE	177	177	1.5	.0625					
	914-	PTUBE	178	178	1.5	.0625					
	915-	PTUBE	179	179	1.5	.0625					
	916-	PTUBE	180	180	1.5	.0625					
	917-	PTUBE	181	181	1.5	.0625					
	918-	PTUBE	182	182	1.5	.0625					
	919-	PTUBE	183	183	1.5	.0625					
	920-	PTUBE	184	184	1.5	.0625					
	921-	PTUBE	185	185	1.5	.0625					
	922-	PTUBE	186	186	1.5	.0625					
	923-	PTUBE	187	187	1.5	.0625					
	924-	PTUBE	188	188	1.5	.0625					
	925-	PTUBE	189	189	1.5	.0625					
	926-	PTUBE	190	190	1.5	.0625					
	927-	PTUBE	191	191	1.5	.0625					
	928-	PTUBE	192	192	1.5	.0625					
	929-	PTUBE	193	193	1.5	.0625					
	930-	PTUBE	194	194	1.5	.0625					
	931-	PTUBE	195	195	1.5	.0625					
	932-	PTUBE	196	196	1.5	.0625					
	933-	PTUBE	197	197	1.5	.0625					
	934-	PTUBE	198	198	1.5	.0625					
	935-	PTUBE	199	199	1.5	.0625					
	936-	PTUBE	200	200	1.5	.0625					
	937-	PTUBE	201	201	1.5	.0625					
	938-	PTUBE	202	202	1.5	.0625					
	939-	PTUBE	203	203	1.5	.0625					
	940-	PTUBE	204	204	1.5	.0625					
	941-	PTUBE	205	205	1.5	.0625					
	942-	PTUBE	206	206	1.5	.0625					
	943-	PTUBE	207	207	1.5	.0625					
	944-	PTUBE	208	208	1.5	.0625					
	945-	PTUB									

TRUSS TAIL BUOM MODEL *MA 226 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 24

CARD	COUNT	1	2	3	4	5	6	7	8	9	10
946-	PTUBE	209	209	1.5	••	0.625					
947-	PTUBE	210	210	1.5	••	0.625					
94d-	PTUBE	211	211	1.5	••	0.625					
949-	PTUBE	212	212	1.5	••	0.625					
950-	PTUBE	213	213	1.5	••	0.625					
951-	PTUBE	214	214	1.5	••	0.625					
952-	PTUBE	215	215	1.5	••	0.625					
953-	PTUBE	216	216	1.5	••	0.625					
954-	PTUBE	217	217	1.5	••	0.625					
955-	PTUBE	218	218	1.5	••	0.625					
956-	PTUBE	219	219	1.5	••	0.625					
957-	PTUBE	220	220	1.5	••	0.625					
958-	PTUBE	221	221	1.5	••	0.625					
959-	PTUBE	222	222	1.5	••	0.625					
960-	PTUBE	223	223	1.5	••	0.625					
961-	PTUBE	224	224	1.5	••	0.625					
962-	PTUBE	225	225	1.5	••	0.625					
963-	PTUBE	226	226	1.5	••	0.625					
964-	SPC	1	1	123456	2	123456					
965-	SPC	3	3	123456	4	123456					
	EQUILDATA										

* 19.6 CPU-S 71.0 COR-S 119 LPS-S XGPI

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

* 23.1 CPU-S 75.3 COR-S 131 LPS-S SEMI END
* 23.1 CPU-S 75.3 COR-S 131 LPS-S ---- LINK END ----

AD-A064 181

ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERD--ETC F/G 1/3
HIGHLY SURVIVABLE TRUSS TYPE TAIL BOOM. (U)
NOV 78 T F ERLINE

UNCLASSIFIED

ARBRL-TR-02123

SBIE-AD-E430 172

NL

2 OF 2
AD
A064181

END
DATE
FILED
4-79
DDC

TRUSS TAIL BOOM ADELIA *MA 226 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 24

CARD	1	2	3	4	5	6	7	8	9	10
COUNT										
946-	PTUBE	209	209	1.5	.0625					
947-	PTUBE	210	210	1.5	.0625					
948-	PTUBE	211	211	1.5	.0625					
949-	PTUBE	212	212	1.5	.0625					
950-	PTUBE	213	213	1.5	.0625					
951-	PTUBE	214	214	1.5	.0625					
952-	PTUBE	215	215	1.5	.0625					
953-	PTUBE	216	216	1.5	.0625					
954-	PTUBE	217	217	1.5	.0625					
955-	PTUBE	218	218	1.5	.0625					
956-	PTUBE	219	219	1.5	.0625					
957-	PTUBE	220	220	1.5	.0625					
958-	PTUBE	221	221	1.5	.0625					
959-	PTUBE	222	222	1.5	.0625					
960-	PTUBE	223	223	1.5	.0625					
961-	PTUBE	224	224	1.5	.0625					
962-	PTUBE	225	225	1.5	.0625					
963-	PTUBE	226	226	1.5	.0625					
964-	SPC	16	1	123456	2					
965-	ENDATA	10	3	123456	4					

* 19.6 CPU-S 71.0 COR-S 119 ELP-S. XGP1

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

* 23.1 CPU-S 75.3 COR-S 131 ELP-S. SEM1 END

----- LINK END ---

TRUSS TAIL BOOM 40ELL1 ***A 226 ELEMENT VERSION
DAMAGE CRITERIUM = 0.01E

LINEAR CASE 30 X LOADING

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 28

SUBCASE 1

D I S P L A C E M E N T V E C T O R

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1.	6	0.0	0.0	0.0	0.0	0.0	0.0
2	6	0.0	0.0	0.0	0.0	0.0	0.0
3	6	0.0	0.0	0.0	0.0	0.0	0.0
4	6	0.0	0.0	0.0	0.0	0.0	0.0
5	6	3.317836-0.3	-4.525320-0.3	2.740695-0.4	0.0	0.0	0.0
6	6	-7.179699-0.4	2.263182-0.3	8.276372-0.4	0.0	0.0	0.0
7	6	-3.250243-0.3	1.422724-0.3	-5.456768-0.3	0.0	0.0	0.0
8	6	5.966247-0.4	-3.688162-0.3	-4.836820-0.3	0.0	0.0	0.0
9	6	6.047826-0.3	-1.120283-0.2	-2.542591-0.3	0.0	0.0	0.0
10	6	-8.974457-0.4	9.010426-0.4	-2.458876-0.3	0.0	0.0	0.0
11	6	-5.959460-0.3	3.353342-0.4	-1.394383-0.2	0.0	0.0	0.0
12	6	6.588768-0.4	-1.062861-0.2	-1.344618-0.2	0.0	0.0	0.0
13	6	8.030114-0.3	-2.034622-0.2	-8.613496-0.3	0.0	0.0	0.0
14	6	5.977556-0.4	-3.228983-0.3	-8.271170-0.3	0.0	0.0	0.0
15	6	-6.014410-0.3	-3.596346-0.3	-2.457499-0.2	0.0	0.0	0.0
16	6	2.322426-0.4	-1.998783-0.2	-2.408044-0.2	0.0	0.0	0.0
17	6	9.446627-0.3	-3.179771-0.2	-1.560709-0.2	0.0	0.0	0.0
18	6	1.477443-0.4	-9.917407-0.3	-1.523586-0.2	0.0	0.0	0.0
19	6	-9.460949-0.5	-1.008557-0.2	-3.600965-0.2	0.0	0.0	0.0
20	6	-6.210936-0.4	-3.161392-0.2	-3.562558-0.2	0.0	0.0	0.0
21	6	1.018451-0.2	-4.528521-0.2	-2.304737-0.2	0.0	0.0	0.0
22	6	1.214143-0.3	-1.915144-0.2	-2.259622-0.2	0.0	0.0	0.0
23	6	-1.039438-0.2	-1.912108-0.2	-4.751317-0.2	0.0	0.0	0.0
24	6	-1.976220-0.3	-4.531158-0.2	-4.721712-0.2	0.0	0.0	0.0
25	6	1.084307-0.2	-6.111844-0.2	-2.947164-0.2	0.0	0.0	0.0
26	6	2.441448-0.3	-3.066077-0.2	-2.944022-0.2	0.0	0.0	0.0
27	6	-1.109875-0.2	-3.065947-0.2	-5.797527-0.2	0.0	0.0	0.0
28	6	-3.362920-0.3	-6.112354-0.2	-5.775036-0.2	0.0	0.0	0.0
29	6	1.124946-0.2	-7.844521-0.2	-3.567908-0.2	0.0	0.0	0.0
30	6	3.547208-0.3	-4.429395-0.2	-3.534126-0.2	0.0	0.0	0.0
31	6	-2.177890-0.2	-4.428613-0.2	-6.770101-0.2	0.0	0.0	0.0
32	6	-4.606679-0.3	-7.850119-0.2	-6.126075-0.2	0.0	0.0	0.0
33	6	1.171436-0.2	-9.796644-0.2	-4.140473-0.2	0.0	0.0	0.0
34	6	4.472547-0.3	-5.969817-0.2	-4.05748-0.2	0.0	0.0	0.0
35	6	-1.2440374-0.2	-5.969371-0.2	-7.659027-0.2	0.0	0.0	0.0
36	6	-5.628729-0.3	-9.796801-0.2	-7.623815-0.2	0.0	0.0	0.0
37	6	1.230858-0.2	-1.190330-0.1	-4.650517-0.2	0.0	0.0	0.0
38	6	5.372231-0.3	-7.750216-0.2	-4.624579-0.2	0.0	0.0	0.0
39	6	-1.278492-0.2	-7.749536-0.2	-8.468287-0.2	0.0	0.0	0.0
40	6	-7.096900-0.3	-1.190386-0.1	-8.465546-0.2	0.0	0.0	0.0
41	6	1.287949-0.2	-1.425476-0.1	-5.188111-0.2	0.0	0.0	0.0
42	6	5.943539-0.3	-9.621248-0.2	-5.194198-0.2	0.0	0.0	0.0
43	6	-1.310663-0.2	-9.621593-0.2	-9.160534-0.2	0.0	0.0	0.0
44	6	-8.188774-0.3	-1.425316-0.1	-9.167417-0.2	0.0	0.0	0.0

TRUSS TAIL BOOM ADJEL.1 ***n 226 ELEMENT VERSION
DAMAGE CRITERION = NUNE

INCREMENTAL STIFFNESS 75 % LOADING

DISPLACEMENT VECTOR

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	0	0	0	0	0	0
2	6	0	0	0	0	0	0
3	6	0	0	0	0	0	0
4	6	0	0	0	0	0	0
5	6	0.161912-03	-1.098737-02	5.57979-04	-0	0	0
6	6	-1.231652-03	5.506268-03	1.917068-03	0	0	0
7	6	-7.990130-03	3.424577-03	-1.329790-02	0	0	0
8	6	1.547047-u3	-8.698859-03	-1.179971-02	0	0	0
9	6	1.490926-u2	-2.702790-02	-7.559873-03	0	0	0
10	6	-2.355201-03	2.166223-03	-6.371371-03	0	0	0
11	6	-1.467079-02	7.538492-04	-3.417505-02	0	0	0
12	6	-1.803218-03	-2.573578-02	-3.296987-02	0	0	0
13	6	1.983715-02	-4.940244-02	-2.198889-02	0	0	0
14	6	-1.719038-03	-7.911662-03	-2.100394-02	0	0	0
15	6	-1.775753-02	-8.845339-03	-6.046798-02	0	0	0
16	6	-8.159450-04	-5.928762-02	-3.953892-02	0	0	0
17	6	2.537619-02	-7.722830-02	-3.863130-02	0	0	0
18	6	-7.62373-06	-2.421004-02	-8.890931-02	0	0	0
19	6	-2.357501-02	-2.465777-02	-7.521807-02	0	0	0
20	6	-1.154399-03	-7.670873-02	-8.798461-02	0	0	0
21	6	2.529629-02	-1.099700-01	-5.951043-02	0	0	0
22	6	2.588679-03	-4.666657-02	-5.742018-02	0	0	0
23	6	-2.563953-02	-4.663388-02	-1.177156-01	0	0	0
24	6	-4.249945-03	-1.099780-01	-1.170125-01	0	0	0
25	6	2.69477-u2	-1.483379-01	-7.521807-02	0	0	0
26	6	5.342085-03	-7.457530-02	-7.4666317-02	0	0	0
27	6	-7.744944-02	-7.440983-02	-1.441914-01	0	0	0
28	6	-7.489356-03	-1.482817-01	-1.436619-01	0	0	0
29	6	2.792548-02	-1.904040-01	-9.155695-02	0	0	0
30	6	7.936446-03	-1.075783-01	-9.074915-02	0	0	0
31	6	-2.914447-u2	-2.374274-01	-1.911783-01	0	0	0
32	6	-1.040869-02	-1.903497-01	-1.690522-01	0	0	0
33	6	2.512245-02	-2.374692-01	-1.068737-01	0	0	0
34	6	-1.0796445-u2	-1.446328-01	-1.060561-01	0	0	0
35	6	-3.0710355-u2	-1.448355-01	-1.920171-01	0	0	0
36	6	-1.03286380-u2	-2.374274-01	-1.911783-01	0	0	0
37	6	5.66175-u2	-2.684089-01	-1.207733-01	0	0	0
38	6	1.222305-u2	-1.878536-01	-1.201455-01	0	0	0
39	6	-3.164105-02	-1.878536-01	-2.131544-01	0	0	0
40	6	-1.827245-u2	-2.683468-01	-2.131645-01	0	0	0
41	6	3.198125-u2	-3.451012-u1	-1.3533498-01	0	0	0
42	6	1.354642-u2	-2.536376-u1	-1.356319-01	0	0	0
43	6	-3.246165-u2	-2.530793-01	-2.516474-01	0	0	0
44	6	-1.087229-u2	-3.451223-01	-2.311757-01	0	0	0

THUS TAIL BUDDY MODEL1 ***A 226 ELEMENT VERSION
DAMAGE CRITERION = NONE

INCREMENTAL STIFFNESS 50 % LOADING

DISPLACEMENT VECTOR

POINT ID#	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	.0	.0	.0	.0	.0	.0
2	6	.0	.0	.0	.0	.0	.0
3	6	.0	.0	.0	.0	.0	.0
4	6	.0	.0	.0	.0	.0	.0
5	6	5.401103-03	-7.302572-03	3.946496-04	.0	.0	.0
6	6	-1.194328-03	3.657666-03	1.294459-03	.0	.0	.0
7	6	-5.288627-03	2.283098-03	-8.827812-03	.0	.0	.0
8	6	1.006944-03	-5.926726-03	-7.83610-03	.0	.0	.0
9	6	9.659174-03	-1.808461-02	-4.93366-03	.0	.0	.0
10	6	-1.527266-03	1.446033-03	-4.146449-03	.0	.0	.0
11	6	-9.70600-03	5.158317-04	-2.264438-02	.0	.0	.0
12	6	1.154376-03	-1.711960-02	-2.184279-02	.0	.0	.0
13	6	1.310690-02	-3.283236-02	-1.449982-02	.0	.0	.0
14	6	-1.064516-03	-5.239063-03	-1.375706-02	.0	.0	.0
15	6	-1.306519-02	-5.850910-03	-4.001381-02	.0	.0	.0
16	6	5.143550-04	-3.224438-02	-3.922230-02	.0	.0	.0
17	6	1.545648-02	-5.132059-02	-2.591715-02	.0	.0	.0
18	6	7.447933-05	-1.605720-02	-2.531559-02	.0	.0	.0
19	6	-1.545644-02	-1.634617-02	-5.876828-02	.0	.0	.0
20	6	-8.602542-04	-5.099040-02	-5.815204-02	.0	.0	.0
21	6	1.666514-02	-7.308003-02	-3.83288-02	.0	.0	.0
22	6	1.823047-03	-3.097260-02	-3.761114-02	.0	.0	.0
23	6	-1.697971-02	-3.094176-02	-7.772112-02	.0	.0	.0
24	6	-2.944162-03	-7.310096-02	-7.725040-02	.0	.0	.0
25	6	1.775880-02	-9.559499-02	-4.918683-02	.0	.0	.0
26	6	3.680367-03	-4.952760-02	-4.887479-02	.0	.0	.0
27	6	-1.813233-02	-4.954203-02	-9.508106-02	.0	.0	.0
28	6	-5.125786-03	-9.857303-02	-9.472551-02	.0	.0	.0
29	6	1.843620-02	-1.265778-01	-5.976665-02	.0	.0	.0
30	6	5.422151-03	-7.148031-02	-5.922723-02	.0	.0	.0
31	6	-1.924920-02	-7.148564-02	-1.13392-01	.0	.0	.0
32	6	-7.068307-03	-1.265547-01	-1.10230-01	.0	.0	.0
33	6	1.920476-02	-1.57913-01	-7.96389-02	.0	.0	.0
34	6	6.877025-03	-9.627356-02	-6.907696-02	.0	.0	.0
35	6	-2.027487-02	-9.628187-02	-1.262873-01	.0	.0	.0
36	6	-9.019688-03	-1.578865-01	-1.257263-01	.0	.0	.0
37	6	2.018002-02	-1.918048-01	-7.853878-02	.0	.0	.0
38	6	0.305113-03	-1.249110-01	-7.812101-02	.0	.0	.0
39	6	-2.089675-02	-1.249092-01	-1.400071-01	.0	.0	.0
40	6	-1.102624-02	-1.97804-01	-1.399702-01	.0	.0	.0
41	6	2.109892-02	-2.295606-01	-8.788695-02	.0	.0	.0
42	6	9.198828-03	-1.549945-01	-8.804872-02	.0	.0	.0
43	6	-2.143307-02	-1.550151-01	-1.512558-01	.0	.0	.0
44	6	-1.276571-02	-2.295722-01	-1.519764-01	.0	.0	.0

TRUSS TAII BOUN 40UTL1 ***, 226 ELEMENT VERSION
DAMAGE CRITERION = NUNI

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 40

INCREMENTAL STIFFNESS 100% LOADING

DISPLACEMENT VECTOR

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	.0	.0	.0	.0	.0	.0
2	6	.0	.0	.0	.0	.0	.0
3	6	.0	.0	.0	.0	.0	.0
4	6	.0	.0	.0	.0	.0	.0
5	6	1.056420-02	-1.449579-02	6.944184-04	.0	.0	.0
6	6	-2.45121-03	7.367751-03	2.523532-03	.0	.0	.0
7	6	-1.075104-02	4.555444-03	-1.780627-02	.0	.0	.0
8	6	2.110931-L3	-1.187631-02	-1.580512-02	.0	.0	.0
9	6	2.04217-02	-3.669861-02	-1.029409-02	.0	.0	.0
10	6	-3.224963-03	2.881837-03	-9.697616-03	.0	.0	.0
11	6	-1.5712255-02	9.76505-04	-4.584491-02	.0	.0	.0
12	6	2.496844-03	-3.43940-02	-4.425597-02	.0	.0	.0
13	6	6.668495-02	-6.684486-02	-2.981716-02	.0	.0	.0
14	6	-2.413424-03	-1.062667-02	-2.849532-02	.0	.0	.0
15	6	-2.055941-02	-1.192280-1.2	-8.122248-02	.0	.0	.0
16	6	1.3510252-03	-6.4804412-02	-7.964410-02	.0	.0	.0
17	6	3.446380-02	-1.035173-01	-5.360532-02	.0	.0	.0
18	6	-1.679465-04	-3.245814-02	-5.238903-02	.0	.0	.0
19	6	-5.493651-02	-3.307490-02	-1.195619-01	.0	.0	.0
20	6	-21.459775-03	-1.02525220-01	-1.183235-01	.0	.0	.0
21	6	3.403441-02	-1.471174-01	-7.937973-02	.0	.0	.0
22	6	3.235197-03	-6.251793-02	-7.792355-02	.0	.0	.0
23	6	-3.457429-02	-6.249245-02	-1.584763-01	.0	.0	.0
24	6	-5.044455-03	-1.470966-01	-1.575426-01	.0	.0	.0
25	6	3.626049-02	-1.984105-01	-1.022158-01	.0	.0	.0
26	6	6.097176-03	-9.983833-02	-1.014746-01	.0	.0	.0
27	6	-3.059594-02	-9.990059-02	-1.943624-01	.0	.0	.0
28	6	-9.762338-03	-9.83445-01	-1.936614-01	.0	.0	.0
29	6	3.761535-02	-2.546222-01	-1.246287-01	.0	.0	.0
30	6	1.031651-02	-1.439430-01	-1.235558-01	.0	.0	.0
31	6	-3.92579-L4	-1.435834-01	-2.261558-01	.0	.0	.0
32	6	-1.350183-02	-2.545136-01	-1.457429-01	.0	.0	.0
33	6	3.252623-L2	-3.172297-01	-1.457402-01	.0	.0	.0
34	6	1.031665-02	-1.937447-01	-4.46224-01	.0	.0	.0
35	6	-4.132415-02	-1.937561-01	-5949358-01	.0	.0	.0
36	6	-1.736e20-04	-3.17446-01	-2.563791-01	.0	.0	.0
37	6	4.132049-02	-3.855519-01	-1.650010-01	.0	.0	.0
38	6	1.599105-L2	-2.511657-01	-1.641632-01	.0	.0	.0
39	6	-4.255614-02	-2.511627-01	-2.84451-01	.0	.0	.0
40	6	-2.1594271-02	-3.654521-01	-2.083669-01	.0	.0	.0
41	6	4.35722-7-L2	-4.612186-01	-1.611539-01	.0	.0	.0
42	6	1.772295-02	-3.112510-01	-1.058670-01	.0	.0	.0
43	6	-4.370124-02	-3.112525-01	-3.139087-01	.0	.0	.0
44	6	-2.472055-02	-3.139096-01	-3.139096-01	.0	.0	.0

INCREMENTAL STIFFNESS 50 % LOADING

ELEMENT ID.		STRENGTHS IN SAFETY STRESS		ROD ELEMENT SAFETY MARGIN		ELEMENTS (C T U B E) (LBS/SQ.IN.) TORSIONAL STRESS		SAFETY MARGIN		SUBCASE 2	
1.	J	0	0	0	0	2	0	0	0	0	
3	5	0	0	0	0	4	0	0	0	0	
5	7	2.513079+03	1.8+01	0	0	6	0	-5.730164+02	6.4+01	0	
9	11	-2.414269+03	1.5+01	0	0	10	0	5.012258+02	9.4+01	0	
13	15	1.611815+03	1.4+01	0	0	12	0	1.332449+03	1.7+01	0	
15	17	8.024666+02	2.8+01	0	0	14	0	-3.886537+02	5.1+01	0	
17	19	-1.789568+03	1.0+01	0	0	16	0	-1.541390+03	1.1+01	0	
19	21	2.084545+02	7.6+01	0	0	18	0	5.326748+02	4.6+01	0	
21	23	-1.012566+02	7.1+01	0	0	20	0	-1.698044+02	7.6+01	0	
23	25	-4.804175+02	8.4+01	0	0	22	0	1.472966+02	1.1+02	0	
25	27	4.690359+02	1.1+02	0	0	24	0	-6.584026+02	6.6+01	0	
27	29	5.463867+01	4.9+04	0	0	26	0	6.651136+02	8.5+01	0	
29	31	2.413797+03	2.1+01	0	0	28	0	-3.248697+00	6.6+03	0	
31	33	-2.366522+03	1.6+01	0	0	30	0	-2.070356+02	2.1+02	0	
33	35	-6.684247+02	3.1+01	0	0	32	0	1.769000+02	3.1+02	0	
35	37	1.512953+03	1.6+01	0	0	34	0	1.319998+03	2.0+01	0	
37	39	1.037365+03	2.5+01	0	0	36	0	-7.138011+02	3.1+01	0	
39	41	-1.603794+03	1.4+01	0	0	38	0	-1.686630+03	1.2+01	0	
41	43	7.594144+01	2.5+02	0	0	40	0	7.90505+02	3.6+01	0	
43	45	-5.975171+01	2.5+02	0	0	42	0	-1.390335+02	1.1+02	0	
45	47	-4.808416+02	9.3+01	0	0	44	0	1.23029+02	1.5+02	0	
47	49	4.793735+02	1.2+02	0	0	46	0	-4.966935+02	1.0+02	0	
49	51	-3.075134+00	8.1+03	0	0	48	0	4.885556+02	1.4+02	0	
51	53	2.184587+03	2.8+01	0	0	50	0	-1.665591+00	1.5+04	0	
53	55	-2.124558+03	2.5+01	0	0	52	0	2.07078+02	3.0+02	0	
55	57	-7.234236+02	3.4+01	0	0	54	0	-2.442354+02	2.1+02	0	
57	59	1.494955+03	2.1+01	0	0	56	0	1.439337+03	2.1+01	0	
59	61	1.125944+03	2.7+01	0	0	58	0	-8.91735+02	2.9+01	0	
61	63	-1.602566+03	1.6+01	0	0	60	0	-1.832963+03	1.3+01	0	
63	65	0.157794+01	2.7+02	0	0	62	0	9.79283+02	3.4+01	0	
65	67	-7.891406+01	2.2+02	0	0	64	0	-1.50217+02	1.2+02	0	
67	69	-5.355593+02	1.0+02	0	0	66	0	1.439337+03	1.4+02	0	
69	71	5.243415+02	1.3+02	0	0	68	0	-3.395662+02	1.8+02	0	
71	73	-1.054932+04	2.8+04	0	0	70	0	3.495151+02	2.3+02	0	
73	75	1.925554+03	3.7+01	0	0	72	0	-5.17612-01	5.7+04	0	
75	77	-1.867392+03	3.1+01	0	0	74	0	6.61580+02	1.1+02	0	
77	79	-7.868762+02	3.6+01	0	0	76	0	-6.992236+02	8.4+01	0	
79	81	1.496589+03	2.5+01	0	0	78	0	1.550012+03	2.3+01	0	
81	83	1.216079+03	2.9+01	0	0	80	0	-1.108003+03	2.7+01	0	
83	85	-1.595301+03	1.9+01	0	0	82	0	-1.97158+03	1.4+01	0	
85	87	9.551575+01	2.7+02	0	0	84	0	1.197457+03	3.2+01	0	
87	89	-8.889575+01	2.3+02	0	0	86	0	-1.61026+02	1.3+02	0	
89		-5.6662751+02	1.1+02	0	0	90	0	-1.9252517+02	3.5+02	0	

TRUSS TAIL DOME AERULLI 600 226 LLWHT VERSION
DAMAGE CRITERION = INFINITE

INCREMENTAL STIFFNESS 50 X LOADING

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 45

ELEMENT ID.	AXIAL STRESS	STRUCTURE IN ROOT ELEMENT			SUBCASE 2	
		SIMPLIFIED SAFETY MARGIN	TORSIONAL STRESS	SAFETY MARGIN	AXIAL STRESS	TORSIONAL STRESS
91	5.707593+02	1.0+02	0	92	1.784789+02	5.2+02
93	-6.397949+02	5.3+03	0	94	-9.631348-01	3.5+04
95	1.651554+02	2.0+01	0	96	1.144083+03	7.5+01
97	-1.590996+03	4.6+02	0	98	-1.171246+03	5.8+01
99	-6.886906+02	3.4+01	0	100	1.678153+03	2.5+01
101	1.479373+03	3.6+01	0	102	-1.327839+03	2.7+01
103	1.325091+03	3.6+01	0	104	-2.147634+03	1.5+01
105	-1.586388+03	2.0+01	0	106	1.427854+03	3.2+01
107	9.443364+01	3.2+02	0	108	-1.773944+02	1.3+02
109	-8.871654+01	2.0+02	0	110	1.614818+02	1.0+02
111	-6.056536+02	1.2+02	0	112	1.373535+01	7.6+03
113	6.023553+02	1.0+02	0	114	-2.060889+01	4.0+03
115	-4.101563+01	9.8+04	0	116	-4.515991+00	8.8+03
117	1.562786+03	6.4+01	0	118	1.439171+03	6.9+01
119	-1.5210171+03	5.2+01	0	120	-1.490877+03	5.3+01
121	-1.174221+03	3.4+01	0	122	2.068227+03	2.3+01
123	1.530281+03	3.4+01	0	124	-1.502105+03	2.7+01
125	1.175089+03	4.2+01	0	126	-2.059461+03	1.9+01
127	-1.637135+03	2.5+01	0	128	1.610426+03	3.3+01
129	-3.067355+01	9.6+02	0	130	-4.572046+01	6.1+02
131	4.156123+01	6.0+02	0	132	3.908972+01	9.0+02
133	-6.649380+02	1.3+02	0	134	-1.547363+01	6.2+03
135	6.554028+02	1.0+02	0	136	1.045361+01	1.2+04
137	-1.226633+01	3.6+03	0	138	4.810547+00	1.2+04
139	1.706793+03	6.0+01	0	140	1.561146+03	7.0+01
141	-1.6355831+03	5.6+01	0	142	-1.619312+03	5.7+01
143	-1.894241+03	3.0+01	0	144	2.249318+03	2.5+01
145	1.640251+03	3.7+01	0	146	-1.619726+03	3.0+01
147	-1.286183+03	4.0+01	0	148	-2.251420+03	2.0+01
149	-1.773448+03	2.0+01	0	150	1.756503+03	3.5+01
151	-4.603125+01	7.0+02	0	152	-5.809705+01	5.7+02
153	5.495215+01	7.4+02	0	154	4.388464+01	9.2+02
155	-7.303437+02	1.0+02	0	156	-1.782715+01	6.5+03
157	7.255484+02	1.0+02	0	158	4.179199+00	3.0+04
159	3.785156+00	1.4+04	0	160	-1.290527+01	4.2+03
161	1.871223+03	7.0+01	0	162	1.672579+03	8.0+01
163	-1.750303+03	6.1+01	0	164	-1.781577+03	6.0+01
165	-1.595871+03	5.6+01	0	166	2.467049+03	2.0+01
167	1.772514+03	4.5+01	0	168	-1.754500+03	3.2+01
169	1.040972+03	4.0+01	0	170	-2.466727+03	2.0+01
171	-1.3237952+02	0.0+01	0	172	1.906597+03	3.0+01
173	-3.214160+01	1.2+03	0	174	-6.097119+01	6.0+02
175	5.655217+01	6.0+02	0	176	5.238525+01	1.5+03
177	-7.493295+02	1.0+02	0	178	-2.232424+01	0.0+03
179	7.212764+02	1.0+02	0	180	7.094635+00	2.0+04

TRUSS TAIL BUOM 4.0ULLI *A 226 ELEMENT VERSION
DAMAGE CRITERION = RINTL

INCREMENTAL STIFFNESS 50 % LOADING

ELEMENT NO.	STIFFNESS IN		LOADING		ELEMENTS (C T U B E) (LBS/SQ.IN.)	
	AXIAL STRESS	TORSIONAL STRESS	Safety Margin	Element ID.	Axial Stress	Torsional Safety Margin
1-1	1.44941+J1	4.9+J3	0	162	-2.369746+01	2.7+03
1-3	2.137536+J3	7.4+J1	0	184	1.756927+03	8.9+01
1-5	-1.612459+J5	6.9+J1	0	186	-2.034296+03	6.2+01
1-7	-1.589139+J5	5.7+J1	0	188	2.716524+03	2.8+01
1-9	1.344613+J3	4.6+J1	0	190	-1.823012+03	3.7+01
1-11	1.2883730+J0	4.+J01	0	192	-2.729661+03	1.5+01
1-13	-1.9953530+J3	3.4+J1	0	194	1.967314+03	4.3+01
1-15	1.691612+J1	3.3+J3	0	196	-1.419800+02	3.1+02
1-17	1.2335425+J2	4.3+J2	0	198	-2.707178+01	1.7+03
1-19	-8.601346+J2	1.4+J2	0	200	-2.213672+01	7.2+03
2-1	8.631416+J2	2.0+J2	0	202	-1.625900+00	1.0+05
2-3	6.005320+J1	1.6+J3	0	204	-7.946729+01	9.4+02
2-5	2.4775946+J3	7.5+J1	0	206	1.584727+03	1.2+02
2-7	-1.6912359+J3	4.7+J1	0	208	-2.425800+03	5.9+01
2-9	-1.428569+J3	5.6+J1	0	210	2.849251+03	3.2+01
2-11	2.229135+J3	4.4+J1	0	212	-2.205611+03	3.5+01
2-13	1.461166+J3	5.2+J1	0	214	-2.823113+03	2.5+01
2-15	-2.325636+J3	3.4+J1	0	216	2.295219+03	4.4+01
2-17	-5.131152+J2	1.0+J2	0	218	3.121401+02	2.1+02
2-19	-2.919414+J2	1.6+J2	0	220	5.358247+02	1.2+02
2-21	-4.353975+J2	3.7+J2	0	222	1.140394+01	2.1+04
2-23	5.359141+J2	3.7+J2	0	224	2.076758+01	1.2+04
2-25	-1.710366+J3	5.0+J1	0	226	1.780122+03	6.1+01

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 46

SUBCASE 2

TRUSS TAIL BUOM MOULLI ***A 226 ELEMENT VERSION
DAMAGE CRITERION = NONE

INCREMENTAL STIFFNESS 75 % LOADING

ELEMENT ID.	STRESSSES IN ROU			ELEMENTS (CTUBE) (LBS/SQ.IN.)		
	AXIAL STRESS	TORSIONAL STRESS	SAFETY MARGIN	ELEMENT ID.	AXIAL STRESS	SAFETY MARGIN
91	8.563584+02	9.3+01	0	92	2.766646+02	3.3+02
93	-1.211914+01	2.6+03	0	94	-3.129639+00	1.1+04
95	2.503874+03	3.3+01	0	96	1.693946+03	5.0+01
97	-2.413265+03	2.8+01	0	98	-1.730121+03	3.9+01
99	-1.296235+03	2.6+01	0	100	2.525539+03	1.6+01
101	2.231884+03	1.9+01	0	102	-1.988594+03	1.7+01
103	1.992042+03	2.1+01	0	104	-3.226106+03	9.8+00
105	-2.390769+03	1.5+01	0	106	2.134958+03	2.1+01
107	1.422098+02	2.1+02	0	108	-2.657606+02	9.0+01
109	-1.348865+02	1.6+02	0	110	2.409902+02	1.2+02
111	-9.106669+02	8.2+01	0	112	5.246094+00	2.0+04
113	9.024551+02	1.4+02	0	114	-2.187427+01	4.0+03
115	-2.619824+00	1.4+04	0	116	-8.960918+00	4.5+03
117	2.374544+03	4.2+01	0	118	2.133775+03	4.6+01
119	-2.303374+03	3.4+01	0	120	-2.207244+03	3.6+01
121	-1.765076+03	2.2+01	0	122	3.107073+03	1.5+01
123	2.308205+03	2.2+01	0	124	-2.295567+03	1.8+01
125	1.768982+03	2.8+01	0	126	-3.094152+03	1.2+01
127	-2.469725+03	1.6+01	0	128	2.410490+03	2.2+01
129	-4.649414+01	6.0+02	0	130	-6.978052+01	4.0+02
131	6.114600+01	5.7+02	0	132	5.817676+01	6.0+02
133	-9.993750+02	8.6+01	0	134	-3.957324+01	2.4+03
135	9.816182+02	1.1+02	0	136	2.472119+01	5.2+03
137	-2.102051+01	2.2+03	0	138	4.619629+00	1.3+04
139	2.591447+03	4.6+01	0	140	2.316407+03	4.9+01
141	-2.47947+03	3.5+01	0	142	-2.398841+03	3.8+01
143	-1.910448+03	2.3+01	0	144	3.379048+03	1.7+01
145	2.473710+03	2.4+01	0	146	-2.426299+03	2.0+01
147	1.945244+03	2.9+01	0	148	-3.389723+03	1.3+01
149	2.882609+03	1.6+01	0	150	2.629794+03	2.3+01
151	-6.955961+01	4.6+02	0	152	-8.861548+01	3.7+02
153	8.033730+01	5.1+02	0	154	6.531671+01	6.2+02
155	-1.094455+03	3.2+01	0	156	-4.48750+01	2.6+03
157	1.086801+03	1.2+02	0	158	1.495410+01	1.0+04
159	2.578125+00	2.7+04	0	160	-2.23502+01	2.4+03
161	2.838501+03	4.6+01	0	162	2.483339+03	5.4+01
163	-2.651632+03	4.0+01	0	164	-2.641626+03	4.0+01
165	-2.097825+03	2.5+01	0	166	5.705879+03	1.8+01
167	2.072952+13	2.6+01	0	168	-2.628764+03	2.1+01
169	2.136574+03	3.1+01	0	170	-3.705688+03	1.4+01
171	2.310171+03	1.9+01	0	172	2.855780+03	2.5+01
173	-4.852663+03	7.7+02	0	174	-9.324605+01	4.1+02
175	8.292444+01	3.1+02	0	176	4.483275+01	9.8+02
177	-1.133227+03	4.1+01	0	178	-5.171465+01	2.6+03
179	1.153564+03	1.6+02	0	180	1.055564+01	9.5+03

INCREMENTAL STIFFNESS 75 X LOADING

SUBCASE 2

ELEMENT ID.	AXIAL STRESS	NODAL STRESSES IN			ELEMENT ID.	ELEMENT STRESS	ELEMENT (C T U B E) (LBS/SQ.IN.)			SAFETY MARGIN
		SAFETY STRESS	TORSIONAL STRESS	ROD SAFETY MARGIN			AXIAL STRESS	SAFETY MARGIN	TORSIONAL STRESS	
1.	0	0	0	0	2	0	0	0	0	0
3	0	0	0	0	4	0	0	0	0	0
5	0	0	0	0	6	0	0	0	0	0
7	3.797478e+5	1.2e+01	0	0	8	-8.752129e+02	4.2e+01	0	0	0
9	-3.647329e+5	9.5e+00	0	0	10	7.688577e+02	6.1e+01	0	0	0
11	-9.811505e+02	2.5e+01	0	0	12	2.000681e+03	1.1e+01	0	0	0
13	2.424547e+03	9.6e+00	0	0	14	-5.672701e+02	3.4e+01	0	0	0
15	1.203531e+03	1.5e+01	0	0	16	-2.315942e+03	7.2e+00	0	0	0
17	-2.697792e+03	6.5e+00	0	0	18	7.952054e+02	3.0e+01	0	0	0
19	3.125762e+02	1.1e+01	0	0	20	-2.557945e+02	5.0e+01	0	0	0
21	-2.727964e+02	4.7e+01	0	0	22	2.225576e+02	7.1e+01	0	0	0
23	7.254938e+02	2.5e+01	0	0	24	-9.995728e+02	4.3e+01	0	0	0
25	7.043945e+02	7.1e+01	0	0	26	1.00280e+03	5.6e+01	0	0	0
27	-1.736428e+00	1.2e+04	0	0	28	-5.50354ue+00	3.9e+03	0	0	0
29	3.652574e+03	1.4e+01	0	0	30	-3.266145e+02	1.3e+02	0	0	0
31	-3.573677e+03	1.1e+01	0	0	32	2.842179e+02	1.9e+02	0	0	0
33	-1.004646e+03	2.1e+01	0	0	34	1.983396e+03	1.3e+01	0	0	0
35	2.279516e+03	1.1e+01	0	0	36	-1.065935e+03	2.0e+01	0	0	0
37	1.557409e+03	1.6e+01	0	0	38	-2.535160e+03	7.7e+00	0	0	0
39	-2.417395e+03	6.8e+00	0	0	40	1.183210e+03	2.4e+01	0	0	0
41	1.121424e+02	1.7e+02	0	0	42	-2.08716e+02	7.2e+01	0	0	0
43	-9.013721e+01	1.7e+02	0	0	44	1.856157e+02	1.0e+02	0	0	0
45	-7.258307e+02	6.5e+01	0	0	46	-7.577074e+02	6.7e+01	0	0	0
47	7.206125e+02	8.2e+01	0	0	48	7.415224e+02	6.9e+01	0	0	0
49	-7.169678e+00	3.5e+03	0	0	50	-3.266418e+00	7.7e+03	0	0	0
51	3.319092e+03	1.8e+01	0	0	52	2.949982e+02	2.1e+02	0	0	0
53	-3.216269e+03	1.5e+01	0	0	54	-3.465682e+02	1.5e+02	0	0	0
55	-1.1. J870294e+03	2.2e+01	0	0	56	-2.1505097e+03	1.4e+01	0	0	0
57	2.253595e+03	1.4e+01	0	0	58	-1.335581e+03	1.9e+01	0	0	0
59	1.690990e+03	1.6e+01	0	0	60	-2.75711e+03	8.3e+00	0	0	0
61	-2.415609e+03	1.0e+01	0	0	62	1.464707e+03	2.2e+01	0	0	0
63	1.212932e+02	1.8e+02	0	0	64	-2.255537e+02	7.8e+01	0	0	0
65	-1.1. 193195e+02	1.5e+02	0	0	66	-2.272993e+02	9.6e+01	0	0	0
67	-8.077521e+02	6.7e+01	0	0	68	-5.227784e+02	1.2e+02	0	0	0
69	7.874292e+02	8.7e+01	0	0	70	5.327816e+02	1.5e+02	0	0	0
71	-4.089111e+00	7.2e+03	0	0	72	-1.988929e+00	1.5e+04	0	0	0
73	2.921486e+03	2.4e+01	0	0	74	9.727913e+02	7.6e+01	0	0	0
75	-2.829970e+03	2.0e+01	0	0	76	-1.020866e+03	5.7e+01	0	0	0
77	-1.1. 182678e+03	2.4e+01	0	0	78	2.336353e+03	1.5e+01	0	0	0
79	2.257688e+03	1.6e+01	0	0	80	-1.658812e+03	1.8e+01	0	0	0
81	1.827187e+03	1.9e+01	0	0	82	-2.973885e+03	9.1e+00	0	0	0
83	-2.404586e+03	1.2e+01	0	0	84	1.797767e+03	2.1e+01	0	0	0
85	1.428903e+02	1.8e+02	0	0	86	-2.415179e+02	6.5e+01	0	0	0
87	-1.347888e+02	1.5e+02	0	0	88	2.29203e+02	1.1e+02	0	0	0
89	-8.530154e+02	7.4e+01	0	0	90	-3.135308e+02	2.3e+02	0	0	0

TRUSS TAIL BOOM MODEL *41 226 ELEMENT VERSION
DAMAGE CRITERION = NONE

INCREMENTAL STIFFNESS 100% LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 50

SUBCASE 2

ELEMENT ID.	AXIAL STRESS	STRESSES IN			ELEMENTS (CTUBE) (LBS/SQ.IN.)			SAFETY MARGIN
		SAFETY MARGIN	TORSIONAL STRESS	SAFETY MARGIN	ELEMENT ID.	AXIAL STRESS	TORSIONAL STRESS	
1	*U	0	0	0	2	0	0	0
3	*U	0	0	0	4	0	0	0
5	*U	0	0	0	6	0	0	0
7	5.101056+03	0.5+00-	0	0	8	-1.187582+03	3.1+01	0
9	-4.898210+03	6.1+00-	0	0	10	1.047549+03	4.4+01	0
11	-1.177830+03	1.5+01	0	0	12	2.681167+03	7.9+00	0
13	3.252208+03	6.5+00	0	0	14	-7.473961+02	2.1+01	0
15	1.604378+03	1.4+01	0	0	16	-3.093311+03	5.1+00	0
17	-3.615643+03	4.5+00-	0	0	18	1.055270+03	2.3+01	0
19	4.1666331+02	3.1+01	0	0	20	-3.429081+02	3.7+01	0
21	-3.649494+02	3.5+01	0	0	22	2.983596+02	5.3+01	0
23	-9.740558+02	4.1+01	0	0	24	-1.348798+03	3.2+01	0
25	9.404948+02	5.3+01	0	0	26	1.355931+03	4.1+01	0
27	-5.761383+03	3.*+03	0	0	28	-8.237411+00	2.6+03	0
29	4.913271+03	1.6+01	0	0	30	-4.565922+02	9.5+01	0
31	-8.810716+02	6.1+00-	0	0	32	4.039727+02	1.1+02	0
33	-1.342313+03	1.5+01	0	0	34	2.654633+03	9.4+00	0
35	3.052952+03	8.*+10-	0	0	36	-1.414922+03	1.1+01	0
37	2.078323+03	1.2+01	0	0	38	-3.387421+03	5.5+00	0
39	-3.233969+03	6.2+00-	0	0	40	1.573366+03	1.6+01	0
41	1.471295+02	1.3+02	0	0	42	-2.789336+02	5.3+01	0
43	-1.203662+02	1.2+02	0	0	44	2.479878+02	7.5+01	0
45	-9.740884+02	4.8+01	0	0	46	-1.027256+03	4.9+01	0
47	9.630522+02	6.1+01	0	0	48	1.000748+03	6.6+01	0
49	-1.301123+01	1.*+03	0	0	50	-5.386261+00	4.6+03	0
51	4.458414+03	1.5+01	0	0	52	3.711416+02	1.7+02	0
53	-4.523220+03	1.*+01	0	0	54	-4.346582+02	1.1+02	0
55	-1.451903+03	1.6+01	0	0	56	2.881327+03	1.0+01	0
57	3.019864+03	1.*+01	0	0	58	-1.772530+03	1.4+01	0
59	2.257431+03	1.*+01	0	0	60	-3.680252+03	6.0+00	0
61	-3.235694+03	7.2+00-	0	0	62	1.946927+03	1.7+01	0
63	1.602610+02	1.4+02	0	0	64	-3.007039+02	5.8+01	0
65	-1.603645+02	1.*+01	0	0	66	3.032131+02	7.2+01	0
67	-1.083310+03	2.1+01	0	0	68	-7.153066+02	8.4+01	0
69	1.051654+03	6.8+01	0	0	70	7.225172+02	1.1+02	0
71	-8.835670+03	5.*+03	0	0	72	-4.268860+00	6.9+03	0
73	3.941152+03	1.4+01	0	0	74	1.272265+03	5.8+01	0
75	-3.522399+03	1.7+01	0	0	76	-1.358010+03	4.3+01	0
77	-1.530104+03	1.8+01	0	0	78	3.115316+03	1.1+01	0
79	3.027587+03	1.*+01	0	0	80	-2.207601+03	1.5+01	0
81	2.440461+03	1.*+01	0	0	82	-3.972358+03	6.6+00	0
83	-3.221572+03	3.*+01	0	0	84	6.360565+03	1.7+01	0
85	1.899873+02	1.*+02	0	0	86	-3.221067+02	5.3+01	0
87	-1.415555+02	1.*+02	0	0	88	5.054046+02	8.1+01	0
89	-1.142353+03	3.*+01	0	0	90	-6.376841+02	1.6+02	0

TRUSS FAIR BOOM 40UJL1 ***A 226 ELEMENT VERSION
DAMAGE CRITERIUM = NONE

INCREMENTAL STIFFNESS 75 X LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 49

ELEMENT ID.	STRESSES IN AXIAL STRESS			ELEMENTS IN ROAD SAFETY MARGIN			(C T U B E) (LBS/SQ.IN.)		
	Safety Factor	Torsional Stress	Margin	ID.	AXIAL STRESS	SAFETY MARGIN	TORSIONAL STRESS	SAFETY MARGIN	MARGIN
161	2.033504+01	3.03+03	0	162	-3.897070+01	1.6+03	0	2.611281+03	0.0+01
163	3.023331+03	4.9+01	0	184	-3.897070+01	6.0+01	0	2.611281+03	0.0+01
185	-2.744052+03	4.2+01	0	186	-3.016602+03	4.2+01	0	4.07921+03	1.9+01
187	-2.348501+03	2.6+01	0	188	-2.732912+03	2.4+01	0	2.732912+03	0.0+01
189	2.7603331+03	5.0+01	0	190	-4.101756+03	9.9+00	0	-4.101756+03	0.0+01
191	2.382833+03	3.2+01	0	192	2.946871+03	2.9+01	0	2.946871+03	0.0+01
193	-3.002996e+03	2.2+01	0	194	-2.158149+02	2.1+02	0	-2.158149+02	0.0+01
195	2.414355+01	2.5+03	0	196	-4.125477+01	1.1+03	0	-4.125477+01	0.0+01
197	1.203701+02	2.9+02	0	198	-5.622070+01	2.8+03	0	-5.622070+01	0.0+01
199	-1.325468+05	1.0+02	0	200	3.316406+00	6.3+04	0	3.316406+00	0.0+01
201	1.2838807+05	1.3+02	0	202	-1.261562+02	5.9+02	0	-1.261562+02	0.0+01
203	8.250741+01	1.1+03	0	204	2.346828+03	7.8+01	0	2.346828+03	0.0+01
205	3.740170+03	4.3+01	0	206	-3.613542+03	3.9+01	0	-3.613542+03	0.0+01
207	-2.559198+03	5.7+01	0	208	4.286477+03	2.1+01	0	4.286477+03	0.0+01
209	-2.140976+03	5.5+01	0	210	-3.306258+03	2.3+01	0	-3.306258+03	0.0+01
211	3.359109+03	2.9+01	0	212	-4.236790+03	1.7+01	0	-4.236790+03	0.0+01
213	2.203187+03	4.0+01	0	214	3.435506+03	2.9+01	0	3.435506+03	0.0+01
215	-3.503229+03	2.2+01	0	216	4.720903+02	1.4+02	0	4.720903+02	0.0+01
217	-7.655712+02	6.7+01	0	218	8.071997+02	7.9+01	0	8.071997+02	0.0+01
219	-4.315557+02	1.2+02	0	220	2.096875+01	1.1+04	0	2.096875+01	0.0+01
221	-6.103160+02	2.6+02	0	222	4.253906+01	5.6+03	0	4.253906+01	0.0+01
223	8.462617+02	2.3+02	0	224	2.691182+03	4.0+01	0	2.691182+03	0.0+01
225	-2.533213+03	5.4+01	0						

TRUSS TAIL BOOM MODEL * ELEMENT VERSION
DAMAGE CRITERION = NONE

INCREMENTAL STIFFNESS 10

OCTOBER 28, 1977 NASTRAN 7/15/77 PAGE 52

SUBCASE 2

ELEMENT ID.	AXIAL STRESS	STRESSES IN			ROD ELEMENT ID.	ELEMENTS (C T U B E) (LBS/SQ-IN.)		
		SAFETY MARGIN	TORSIONAL STRESS	SAFETY MARGIN		AXIAL STRESS	SAFETY MARGIN	TORSIONAL STRESS
181	2.753320+J1	2.9+03	0	182	-5.611230+01	1.1+03	0	
183	4.363463+03	3.6+01	0	184	3.449622+03	4.+01	0	
185	-3.692930+03	3.+01	0	186	-3.980987+03	3.1+01	0	
187	-3.189072+03	1.+01	0	188	5.447357+03	1.+01	0	
189	3.726840+03	2.+01	0	190	-3.642287+03	1.8+01	0	
191	3.187260+03	2.+01	0	192	-5.079344+03	7.2+00	-	
193	-4.036521+03	1.6+01	0	194	3.924226+03	2.1+01	0	
195	3.050977+01	1.8+03	0	196	-2.915430+02	1.5+02	0	
197	2.502441+02	2.2+02	0	198	-5.584814+01	8.0+02	0	
199	-1.777078+03	7.6+01	0	200	-1.057500+02	1.5+03	0	
201	1.710539+03	1.0+02	0	202	1.213281+01	1.7+04	0	
203	9.987693+01	9.4+02	0	204	-1.774834+02	4.2+02	0	
205	5.017898+03	3.5+01	0	206	3.088778+03	5.9+01	0	
207	-3.470639+03	4.2+01	0	208	-4.784399+03	3.0+01	0	
209	-2.852751+03	2.7+01	0	210	5.732853+03	1.5+01	0	
211	4.500035+03	2.1+01	0	212	-4.406020+03	1.7+01	0	
213	2.956884+03	3.5+01	0	214	-5.6522594+03	1.2+01	0	
215	-4.704664+03	1.9+01	0	216	4.571439+03	2.2+01	0	
217	-1.009607+03	5.5+01	0	218	6.345557+02	1.0+02	0	
219	-5.663201+02	7.2+01	0	220	1.080805+03	5.9+01	0	
221	-7.581074+02	2.1+02	0	222	3.311719+01	7.2+03	0	
223	1.185168+03	1.7+02	0	224	7.192578+01	3.4+03	0	
225	-3.335385+03	2.5+01	0	226	3.615910+03	2.9+01	0	
*	85.1 CPL-S 320.6 COR-S	577	L1P-S.	158	OFF	LND		
*	85.2 CPL-S 320.6 COR-S	577	L1P-S.	179	EXIT	BEGN		

* * * END OF JOR * * *

INCREMENTAL STIFFNESS 100% LOADING

SUBCASE 2

ELEMENT ID.	STRUCTURES IN			ROAD ELEMENTS (CTUBE) (LBS/SQ.IN.)			SAFETY STRESS	SAFETY MARGIN
	AXIAL STRESS	TORSIONAL STRESS	MARGIN	ELEMENT ID.	AXIAL STRESS	TORSIONAL STRESS		
91	1.45596+03	6.9+01	0	92	3.808765+02	2.4+02	0	
93	-1.956730+01	1.7+03	0	94	-6.420288+00	5.3+03	0	
95	5.387807+03	2.4+01	0	96	-2.229254+03	3.8+01	0	
97	-3.255991+03	2.0+01	0	98	-2.271342+03	2.9+01	0	
99	-1.750027+03	1.9+01	0	100	3.370831+03	1.2+01	0	
101	2.993250+03	1.4+01	0	102	-2.650071+03	1.3+01	0	
103	2.662065+03	1.3+01	0	104	-4.308036+03	7.1+00	0	
105	-3.202899+03	1.1+01	0	106	2.837690+03	1.5+01	0	
107	1.690551+02	1.6+02	0	108	-3.539541+02	6.7+01	0	
109	-1.823925+02	1.3+02	0	110	3.196942+02	9.3+01	0	
111	-1.215702+03	6.1+01	0	112	-1.357617+01	6.2+03	0	
113	1.201986+03	7.7+01	0	114	-1.704443+01	5.1+03	0	
115	-6.734375+00	6.0+03	0	116	-1.480127+01	2.7+03	0	
117	3.207114+03	5.6+01	0	118	2.811887+03	3.5+01	0	
119	-3.106521+03	2.5+01	0	120	-2.904386+03	2.7+01	0	
121	-2.353623+03	1.6+01	0	122	4.149485+03	1.1+01	0	
123	3.095068+03	1.6+01	0	124	-2.994922+03	1.3+01	0	
125	2.367134+03	2.0+01	0	126	-4.132564+03	6.8+00	0	
127	-3.312031+03	1.2+01	0	128	3.207362+03	1.6+01	0	
129	-6.256064+01	4.5+02	0	130	-9.464111+01	2.9+02	0	
131	7.992256+01	4.4+02	0	132	7.697778+01	4.6+02	0	
133	-1.355275+03	6.4+01	0	134	-7.468359+01	1.3+03	0	
135	1.305964+03	8.2+01	0	136	4.508789+01	2.8+03	0	
137	-3.162012+03	1.5+03	0	138	2.710937+00	2.1+04	0	
139	3.497457+03	3.2+01	0	140	3.054913+03	3.7+01	0	
141	-3.342004+03	2.7+01	0	142	-3.158396+03	2.9+01	0	
143	-2.579676+03	1.7+01	0	144	4.512638+03	1.2+01	0	
145	3.316531+03	1.9+01	0	146	-3.230994+03	1.4+01	0	
147	2.589586+03	2.1+01	0	148	-4.518240+03	9.5+00	0	
149	-3.597171+03	1.3+01	0	150	3.500107+03	1.7+01	0	
151	-9.355957+01	3.5+02	0	152	-1.201167+02	2.7+02	0	
153	1.060498+02	3.9+02	0	154	8.658984+01	4.7+02	0	
155	-1.467660+03	6.8+01	0	156	-8.228125+01	1.4+03	0	
157	1.446694+03	6.7+01	0	158	3.158301+01	4.7+03	0	
159	-7.363281+01	7.4+04	0	160	-3.369844+01	1.6+03	0	
161	3.827354+03	5.4+01	0	162	3.277151+03	4.1+01	0	
163	-3.570811+03	3.0+01	0	164	-3.461243+03	3.0+01	0	
165	-2.802859+03	1.4+01	0	166	4.948802+03	1.3+01	0	
167	3.583319+03	1.9+01	0	168	-3.501463+03	1.6+01	0	
169	2.821336+03	2.3+01	0	170	-4.950678+03	1.0+01	0	
171	-3.902544+03	1.4+01	0	172	3.801829+03	1.9+01	0	
173	-6.538867+01	5.8+02	0	174	-1.267148+02	3.0+02	0	
175	1.080088+02	4.5+02	0	176	6.411182+01	7.4+02	0	
177	-1.562652+03	7.4+01	0	178	-9.389062+01	1.5+03	0	
179	1.579355+03	9.2+01	0	180	3.534180+01	5.0+03	0	

APPENDIX B

NASTRAN MATHEMATICAL MODEL OF THE UNDAMAGED
TRUSS MODEL 2 PLUS OUTPUT OF DISPLACEMENTS, STRESSES
AND MARGINS OF SAFETY DUE TO FLIGHT LOADS.

UNIVAC 1100 SERIES
MODEL 1108

RIGID FORMAT SERIES M3

LEVEL 77.1.0

DATE - 7/15/77

SYSTEM GENERATED BY SPERRY SUPPORT SERVICES

NASTRAN EXECUTIVE CONTROL DECK ECHO

```
ID ERLINE,MODEL2
APP DISP
$ STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS RF 4
SOL 4,0
TIME 10
CEND
```

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 1

TRUSS TAIL BOOM
MODULE 2 **A 114 ELEMENT VERSION
DAMAGE CRITIUN = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 2

C A S E C O N T R O L D E C K E C H O

```
CARD COUNT
* 1 TITLE = TRUSS TAIL BOOM MODEL2 **A 114 ELEMENT VERSION
  2 SUBTITLE = DAMAGE CRITIUN = NONE
  3 OLOAD = ALL
  4 SPL = 10
  5 SPCFURLS = ALL
  6 DISP = ALL
SET 5 = 1 THRU 138
  8 SUBCASE 1
  9 LABEL = LINEAR CASE
 10 LUAU = 11
 11 SUBCASE 2
 12 LABEL = INCREMENTAL STIFFNESS
 13 DSCEFFICIENT = 200
 14 STRESS = 5
 15 MAXLINES = 100000
 16 BEGIN BULK
```

*** USER INFORMATION MESSAGE 207. BULK DATA NOT SORTED. XSOR T WILL RE-ORDER DECK.

TRUSS TAIL BOOM MODEL2 **A 114 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 3

CARD COUNT	1	2	3	4	5	6	7	8	9	10
1-	CTUBE	1	1	2	1	2	1	4	4	4
2-	CTUBE	2	2	2	1	1	1	1	1	1
3-	CTUBE	3	3	3	3	3	3	3	3	3
4-	CTUBE	4	4	4	4	4	4	4	4	4
5-	CTUBE	5	5	5	5	5	5	5	5	5
6-	CTUBE	6	6	6	6	6	6	6	6	6
7-	CTUBE	7	7	7	7	7	7	7	7	7
8-	CTUBE	8	8	8	8	8	8	8	8	8
9-	CTUBE	9	9	9	9	9	9	9	9	9
10-	CTUBE	10	10	10	10	10	10	10	10	10
11-	CTUBE	11	11	11	11	11	11	11	11	11
12-	CTUBE	12	12	12	12	12	12	12	12	12
13-	CTUBE	13	13	13	13	13	13	13	13	13
14-	CTUBE	14	14	14	14	14	14	14	14	14
15-	CTUBE	15	15	15	15	15	15	15	15	15
16-	CTUBE	16	16	16	16	16	16	16	16	16
17-	CTUBE	17	17	17	17	17	17	17	17	17
18-	CTUBE	18	18	18	18	18	18	18	18	18
19-	CTUBE	19	19	19	19	19	19	19	19	19
20-	CTUBE	20	20	20	20	20	20	20	20	20
21-	CTUBE	21	21	21	21	21	21	21	21	21
22-	CTUBE	22	22	22	22	22	22	22	22	22
23-	CTUBE	23	23	23	23	23	23	23	23	23
24-	CTUBE	24	24	24	24	24	24	24	24	24
25-	CTUBE	25	25	25	25	25	25	25	25	25
26-	CTUBE	26	26	26	26	26	26	26	26	26
27-	CTUBE	27	27	27	27	27	27	27	27	27
28-	CTUBE	28	28	28	28	28	28	28	28	28
29-	CTUBE	29	29	29	29	29	29	29	29	29
30-	CTUBE	30	30	30	30	30	30	30	30	30
31-	CTUBE	31	31	31	31	31	31	31	31	31
32-	CTUBE	32	32	32	32	32	32	32	32	32
33-	CTUBE	33	33	33	33	33	33	33	33	33
34-	CTUBE	34	34	34	34	34	34	34	34	34
35-	CTUBE	35	35	35	35	35	35	35	35	35
36-	CTUBE	36	36	36	36	36	36	36	36	36
37-	CTUBE	37	37	37	37	37	37	37	37	37
38-	CTUBE	38	38	38	38	38	38	38	38	38
39-	CTUBE	39	39	39	39	39	39	39	39	39
40-	CTUBE	40	40	40	40	40	40	40	40	40
41-	CTUBE	41	41	41	41	41	41	41	41	41
42-	CTUBE	42	42	42	42	42	42	42	42	42
43-	CTUBE	43	43	43	43	43	43	43	43	43
44-	L TUBE	44	44	44	44	44	44	44	44	44
45-	CTUBE	45	45	45	45	45	45	45	45	45

TRUSS TAIL BOOM 400EL2 **A 114 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77

PAGE 4

CARD COUNT	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
46-	CTUBE	54	54	12	16					
47-	CTUBE	55	55	9	14					
48-	CTUBE	56	56	10	13					
49-	CTUBE	57	57	9	16					
50-	CTUBE	58	58	12	13					
51-	CTUBE	59	59	12	15					
52-	CTUBE	60	60	11	16					
53-	CTUBE	61	61	10	15					
54-	CTUBE	62	62	11	14					
55-	CTUBE	67	67	13	14					
56-	CTUBE	68	68	13	16					
57-	CTUBE	69	69	15	16					
58-	CTUBE	70	70	14	15					
59-	CTUBE	71	71	13	15					
60-	CTUBE	72	72	14	16					
61-	CTUBE	73	73	13	17					
62-	CTUBE	74	74	14	16					
63-	CTUBE	75	75	15	19					
64-	CTUBE	76	76	16	20					
65-	CTUBE	77	77	13	18					
66-	CTUBE	78	78	14	17					
67-	CTUBE	79	79	13	20					
68-	CTUBE	80	80	16	17					
69-	CTUBE	81	81	16	19					
70-	CTUBE	82	82	15	20					
71-	CTUBE	83	83	14	19					
72-	CTUBE	84	84	15	18					
73-	CTUBE	89	89	17	16					
74-	CTUBE	90	90	17	20					
75-	CTUBE	91	91	19	20					
76-	CTUBE	92	92	18	19					
77-	CTUBE	93	93	17	19					
78-	CTUBE	94	94	18	20					
79-	CTUBE	95	95	17	21					
80-	CTUBE	96	96	18	22					
81-	CTUBE	97	97	19	23					
82-	CTUBE	98	98	20	24					
83-	CTUBE	99	99	17	22					
84-	CTUBE	100	100	18	21					
85-	CTUBE	101	101	17	24					
86-	CTUBE	102	102	20	21					
87-	CTUBE	103	103	20	23					
88-	CTUBE	104	104	19	24					
89-	CTUBE	105	105	18	23					
90-	CTUBE	106	106	19	22					

TRUSS TAIL BOOM MODEL 2 ***A 114 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 5

CARD	COUNT	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
		CTUBE	111	111	21	22					
91-		CTUBE	112	112	21	24					
92-		CTUBE	113	113	23	24					
93-		CTUBE	114	114	22	23					
94-		CTUBE	115	115	21	23					
95-		CTUBE	116	116	22	24					
96-		CTUBE	117	117	21	25					
97-		CTUBE	118	118	22	26					
98-		CTUBE	119	119	23	27					
99-		CTUBL	120	120	24	28					
100-		CTUBE	121	121	21	26					
101-		CTUBE	122	122	22	25					
102-		CTUBE	123	123	21	28					
103-		CTUBE	124	124	24	25					
104-		CTUBE	125	125	24	25					
105-		CTUBE	126	126	23	28					
106-		CTUBE	127	127	22	27					
107-		CTUBE	128	128	23	26					
108-		CTUBE	133	133	25	26					
109-		CTUBE	134	134	25	28					
110-		CTUBE	135	135	27	28					
111-		CTUBE	136	136	26	27					
112-		CTUBE	137	137	25	27					
113-		CTUBE	138	138	26	28					
114-		USFACT	200	1.60422	2.40632	3.20843					
115-		FORCE	11	13	0	44.2200	0				
116-		FORCE	11	14	0	44.2200	0	0.0	-1.		
117-		FORCE	11	15	0	44.2200	0	0.0	-1.		
118-		FORCE	11	16	0	44.2200	0	0.0	-1.		
119-		FORCE	11	25	0	464.5	1*	0.0	-1.		
120-		FORCE	11	25	0	527.3	0	-1.0	0		
121-		FORCE	11	26	0	464.5	1.0	0.0	0.0		
122-		FORCE	11	26	0	527.3	0	1.*	0		
123-		FORCE	11	27	0	464.5	-1.*	0.0	0.0		
124-		FORCE	11	27	0	527.5	0	1.*	0		
125-		FORCE	11	28	0	464.5	-1.*	0.0	0.0		
126-		FORCE	11	28	0	527.3	0	-1.0	0		
127-		GRUSET	1		0.00	11.95	12.375				
128-		GRID	2		0.00	11.75	-12.375				
129-		GRID	3		0.00	-11.75	-12.375				
130-		GRID	4		0.00	-11.95	12.375				
131-		GRID	5		33.5	10.656	11.105				
132-		GRID	6		33.5	10.495	-11.105				
133-		GRID	7		33.5	-10.485	-11.105				

TRUSS TAIL BUOM MODEL2 **A 114 ELEMENT VERSION
DAMAGE CRITIION = VONE

OCTOBER 26, 1977

PAGE

NASTRAN 7/15/77

PAGE

CARD	COUNT	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
136-	GRID	8			33.5	-10.666	11.105				
137-	GRID	9			66.5	9.401	9.855				
138-	GRID	10			66.5	9.239	-9.855				
139-	GRID	11			66.5	-9.239	-9.855				
140-	GRID	12			66.5	-9.401	9.855				
141-	GRID	13			99.5	8.136	8.604				
142-	GRID	14			99.5	7.994	-8.604				
143-	GRID	15			99.5	-7.994	-8.604				
144-	GRID	16			99.5	-8.136	8.604				
145-	GRID	17			127.5	7.063	7.543				
146-	GRID	18			127.5	6.937	-7.543				
147-	GRID	19			127.5	-6.937	-7.543				
148-	GRID	20			127.5	-7.063	7.543				
149-	GRID	21			151.5	6.143	6.634				
150-	GRID	22			151.5	6.031	-6.634				
151-	GRID	23			151.5	-6.031	-6.634				
152-	GRID	24			151.5	-6.143	6.634				
153-	GRID	25			173.5	5.3	5.8				
154-	GRID	26			173.5	5.2	-5.8				
155-	GRID	27			173.5	-5.2	-5.8				
156-	GRID	28			173.5	-5.3	5.800				
157-	MAT1	1	10.5E6	3.8E6	.33	.1					
158-	+MAT001	4..38+04	3.51+04								
159-	MAT1	2	10.5E6	3.8E6	.33	.1					
160-	+MAT002	4..70+04	3..76+04								
161-	MAT1	3	10..5E6	3..8E6	.33	.1					
162-	+MAT003	4..38+04	3..51+04								
163-	MAT1	4	10..5E6	3..8E6	.33	.1					
164-	+MAT004	4..86+04	3..89+04								
165-	MAT1	5	10..5E6	3..8E6	.33	.1					
166-	+MAT005	2..29+04	1..83+04								
167-	MAT1	6	10..5E6	3..8E6	.33	.1					
168-	+MAT006	2..29+04	1..83+04								
169-	MAT1	7	10..5E6	3..8E6	.33	.1					
170-	+MAT007	2..38+04	1..91+04								
171-	MAT1	8	10..5E6	3..8E6	.33	.1					
172-	+MAT008	2..38+04	1..91+04								
173-	MAT1	9	10..5E6	3..8E6	.33	.1					
174-	+MAT009	2..38+04	1..91+04								
175-	MAT1	10	10..5E6	3..8E6	.33	.1					
176-	+MAT010	2..38+04	1..91+04								
177-	MAT1	11	10..5E6	3..8E6	.33	.1					
178-	+MAT011	1..60+04	1..28+04								
179-	MAT1	12	10..5E6	3..8E6	.33	.1					
180-	+MAT012	1..60+04	1..28+04								

TRUSS TAIL BOOM MODEL2 **A 114 ELEMENT VERSION
DAMAGE CRITON = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 7

CARD	COUNT	1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..
181-	MAT1	13 10.5E6 3.8E6 .33 .1
	+MATU13	1.64+04 1.31+04 .33 .1
182-	MAT1	14 10.5E6 3.8E6 .33 .1
	+MATU14	1.64+04 1.31+04 .33 .1
183-	MAT1	15 10.5E6 3.8E6 .33 .1
	+MATU15	1.60+04 1.28+04 .33 .1
184-	MAT1	16 10.5E6 3.8E6 .33 .1
	+MATU16	1.60+04 1.28+04 .33 .1
185-	MAT1	17 10.5E6 3.8E6 .33 .1
	+MATU17	1.66+04 1.33+04 .33 .1
186-	MAT1	18 10.5E6 3.8E6 .33 .1
	+MATU18	1.66+04 1.33+04 .33 .1
187-	MAT1	19 10.5E6 3.8E6 .33 .1
	+MATU19	1.23+04 9.86+03 .33 .1
188-	MAT1	20 10.5E6 3.8E6 .33 .1
	+MAT020	1.23+04 9.87+03 .33 .1
189-	MAT1	21 10.5E6 3.8E6 .33 .1
	+MATU21	1.23+04 9.87+03 .33 .1
190-	MAT1	22 10.5E6 3.8E6 .33 .1
	+MAT022	1.23+04 9.86+03 .33 .1
191-	MAT1	23 10.5E6 3.8E6 .33 .1
	+MATU23	5.44+04 4.35+04 .33 .1
192-	MAT1	24 10.5E6 3.8E6 .33 .1
	+MATU24	5.90+04 4.72+04 .33 .1
193-	MAT1	25 10.5E6 3.8E6 .33 .1
	+MAT025	5.44+04 4.35+04 .33 .1
194-	MAT1	26 10.5E6 3.8E6 .33 .1
	+MAT026	6.10+04 4.88+04 .33 .1
195-	MAT1	27 10.5E6 3.8E6 .33 .1
	+MATU27	2.85+04 2.28+04 .33 .1
196-	MAT1	28 10.5E6 3.8E6 .33 .1
	+MATU28	2.85+04 2.28+04 .33 .1
197-	MAT1	29 10.5E6 3.8E6 .33 .1
	+MATU29	2.46+04 1.97+04 .33 .1
198-	MAT1	30 10.5E6 3.8E6 .33 .1
	+MATU30	2.46+04 1.97+04 .33 .1
199-	MAT1	31 10.5E6 3.8E6 .33 .1
	+MATU31	2.46+04 1.97+04 .33 .1
200-	MAT1	32 10.5E6 3.8E6 .33 .1
	+MATU32	2.46+04 1.97+04 .33 .1
201-	MAT1	33 10.5E6 3.8E6 .33 .1
	+MATU33	1.75+04 1.40+04 .33 .1
202-	MAT1	34 10.5E6 3.8E6 .33 .1
	+MATU34	1.75+04 1.40+04 .33 .1
203-	MAT1	35 10.5E6 3.8E6 .33 .1
	+MATU35	

TRUSS TAIL BOOM MOUL2 **A 114 ELEMENT VERSION
DAMAGE CRITION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77

PAGE 8

CARD	SORTED	BULK	DATA	ECHO
COUNT	1 ..	2 ..	3 ..	4 ..
226-	+MAT055 1.00+04 1.44+04			
227-	MAT1 36 10.5E6 3.8E6	.33	.1	+MAT036
228-	+MAT056 1.80+04 1.44+04			
229-	MAT1 37 10.5E6 3.8E6	.33	.1	+MAT037
230-	+MATU57 1.75+04 1.40+04			
231-	MAT1 38 10.5E6 3.8E6	.33	.1	+MAT038
232-	+MATU38 1.75+04 1.+0+04			
233-	MAT1 39 10.5E6 3.8E6	.33	.1	+MAT039
234-	+MATU39 1.81+04 1.45+04			
235-	MAT1 40 10.5E6 3.8E6	.33	.1	+MAT040
236-	+MAT040 1.61+04 1.45+04			
237-	MAT1 41 10.5E6 3.8E6	.33	.1	+MAT041
238-	+MATU41 1.39+04 1.42+04			
239-	MAT1 42 10.5E6 3.8E6	.33	.1	+MAT042
240-	+MAT042 1.40+04 1.12+04			
241-	MAT1 43 10.5E6 3.8E6	.33	.1	+MAT043
242-	+MATU43 1.40+04 1.12+04			
243-	MAT1 44 10.5E6 3.8E6	.33	.1	+MAT044
244-	+MAT044 1.39+04 1.12+04			
245-	MAT1 45 10.5E6 3.8E6	.33	.1	+MAT045
246-	+MAT045 6.91+04 5.53+04			
247-	MAT1 46 10.5E6 3.8E6	.33	.1	+MAT046
248-	+MAT046 7.59+04 6.08+04			
249-	MAT1 47 10.5E6 3.8E6	.33	.1	+MAT047
250-	+MATU47 6.31+04 5.53+04			
251-	MAT1 48 10.5E6 3.8E6	.33	.1	+MAT048
252-	+MATU48 7.86+04 6.29+04			
253-	MAT1 49 10.5E6 3.8E6	.33	.1	+MAT049
254-	+MAT049 3.65+04 2.92+04			
255-	MAT1 50 10.5E6 3.8E6	.33	.1	+MAT050
256-	+MAT050 3.65+04 2.92+04			
257-	MAT1 51 10.5E6 3.8E6	.33	.1	+MAT051
258-	+MAT051 2.46+04 1.97+04			
259-	MAT1 52 10.5E6 3.8E6	.33	.1	+MAT052
260-	+MAT052 2.46+04 1.97+04			
261-	MAT1 53 10.5E6 3.8E6	.33	.1	+MAT053
262-	+MAT053 2.46+04 1.97+04			
263-	MAT1 54 10.5E6 3.8E6	.33	.1	+MAT054
264-	+MAT054 2.46+04 1.97+04			
265-	MAT1 55 10.5E6 3.8E6	.33	.1	+MAT055
266-	+MAT055 1.87+04 1.50+04			
267-	MAT1 56 10.5E6 3.8E6	.33	.1	+MAT056
268-	+MAT056 1.88+04 1.50+04			
269-	MAT1 57 10.5E6 3.8E6	.33	.1	+MAT057
270-	+MAT057 1.92+04 1.54+04			

TRUSS TAIL BOOM MODEL 2 **A 114 ELEMENT VERSION
DAMAGE CRITION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 9

CARD COUNT	SORTED	BULK DATA	ECHO
271-	* 1 .. 2 .. 3 .. 4 .. 5 ..	.3 .5 .33 .1	* 1 .. 2 .. 3 .. 4 .. 5 ..
272-	MAT1 58 +MATU58 1.92+04 1.54+04	.33 .1	+MAT058
273-	MAT1 59 +MATU59 1.5E6 3.8E6	.33 .1	+MAT059
274-	+MAT059 1.87+04 1.50+04	.33 .1	
275-	MAT1 60 +MATU60 1.05E6 3.8E6	.33 .1	+MAT060
276-	+MATU60 1.88+04 1.50+04	.33 .1	
277-	MAT1 61 +MATU61 1.05E6 3.8E6	.33 .1	+MAT061
278-	+MATU61 1.93+04 1.55+04	.33 .1	
279-	MAT1 62 +MATU62 1.05E6 3.8E6	.33 .1	+MAT062
280-	+MATU62 1.93+04 1.55+04	.33 .1	
281-	MAT1 63 +MATU63 1.05E6 3.8E6	.33 .1	+MAT063
282-	+MATU63 1.55+04 1.24+04	.33 .1	
283-	MAT1 64 +MATU64 1.05E6 3.8E6	.33 .1	+MAT064
284-	+MATU64 1.55+04 1.24+04	.33 .1	
285-	MAT1 65 +MATU65 1.05E6 3.8E6	.33 .1	+MAT065
286-	+MATU65 1.55+04 1.24+04	.33 .1	
287-	MAT1 66 +MATU66 1.05E6 3.8E6	.33 .1	+MAT066
288-	+MATU66 1.55+04 1.24+04	.33 .1	
289-	MAT1 67 +MATU67 1.05E6 3.8E6	.33 .1	+MAT067
290-	+MATU67 9.06+04 7.25+04	.33 .1	
291-	MAT1 68 +MATU68 1.05E6 3.8E6	.33 .1	+MAT068
292-	+MATU68 1.01+05 8.11+04	.33 .1	
293-	MAT1 69 +MATU69 1.05E6 3.8E6	.33 .1	+MAT069
294-	+MATU69 9.06+04 7.25+04	.33 .1	
295-	MAT1 70 +MATU70 1.05E6 3.8E6	.33 .1	+MAT070
296-	+MATU70 1.05+05 8.40+04	.33 .1	
297-	MAT1 71 +MATU71 1.05E6 3.8E6	.33 .1	+MAT071
298-	+MATU71 4.82+04 3.86+04	.33 .1	
299-	MAT1 72 +MATU72 1.05E6 3.8E6	.33 .1	+MAT072
300-	+MATU72 4.82+04 3.86+04	.33 .1	
301-	MAT1 73 +MATU73 1.05E6 3.8E6	.33 .1	+MAT073
302-	+MATU73 3.41+04 2.73+04	.33 .1	
303-	MAT1 74 +MATU74 3.41+04 2.73+04	.33 .1	+MAT074
304-	+MATU74 3.41+04 2.73+04	.33 .1	
305-	MAT1 75 +MATU75 3.41+04 2.73+04	.33 .1	+MAT075
306-	+MATU75 3.41+04 2.73+04	.33 .1	
307-	MAT1 76 +MATU76 3.41+04 2.73+04	.33 .1	+MAT076
308-	+MATU76 3.41+04 2.73+04	.33 .1	
309-	MAT1 77 +MATU77 2.57+04 2.05+04	.33 .1	+MAT077
310-	+MATU77 2.57+04 2.05+04	.33 .1	
311-	MAT1 78 +MATU78 1.05E6 3.8E6	.33 .1	+MAT078
312-	+MATU78 2.57+04 2.05+04	.33 .1	
313-	MAT1 79 +MATU79 2.64+04 2.11+04	.33 .1	+MAT079
314-	+MATU79 2.64+04 2.11+04	.33 .1	
315-	MAT1 80 +MATU80 1.05E6 3.8E6	.33 .1	+MAT080

TRUSS TAIL BOOM MODEL2 **A 114 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77

PAGE 10

CARD	SORTED	BULK	DATA	ECHO
COUNT	1 ..	2 ..	3 ..	4 ..
316-	+MATU00	2.64+04	2.11+04	
317-	MAT1	81	10.5E6	3.8E6
318-	+MAT0K1	2.5 ..	04	2.05+04
319-	MAT1	82	10.5E6	3.8E6
320-	+MATUD2	2.57+04	2.05+04	
321-	MAT1	83	10.5E6	3.8E6
322-	+MATOK3	2.66+04	2.13+04	
323-	MAT1	84	10.5E6	3.8E6
324-	+MATU04	2.66+04	2.13+04	
325-	MAT1	65	10.5E6	3.8E6
326-	+MAT085	2.11+04	1.69+04	
327-	MAT1	86	10.5E6	3.8E6
328-	+MATU086	2.11+04	1.69+04	
329-	MAT1	87	10.5E6	3.8E6
330-	+MATU087	2.11+04	1.69+04	
331-	MAT1	88	10.5E6	3.8E6
332-	+MATUR6	2.11+04	1.69+04	
333-	MAT1	69	10.5E6	3.8E6
334-	+MATU089	1.18+05	9.43+04	
335-	MAT1	90	10.5E6	3.8E6
336-	+MATU090	1.34+05	1.08+05	
337-	MAT1	91	10.5E6	3.8E6
338-	+MATU091	1.18+05	9.43+04	
339-	MAT1	92	10.5E6	3.8E6
340-	+MATU092	1.40+05	1.12+05	
341-	MAT1	93	10.5E6	3.8E6
342-	+MATU093	6.34+04	5.07+04	
343-	MAT1	94	10.5E6	3.8E6
344-	+MATU094	6.34+04	5.07+04	
345-	MAT1	95	10.5E6	3.8E6
346-	+MAT095	4.65+04	3.72+04	
347-	MAT1	96	10.5E6	3.8E6
348-	+MATU096	4.65+04	3.72+04	
349-	MAT1	97	10.5E6	3.8E6
350-	+MATU097	4.65+04	3.72+04	
351-	MAT1	98	10.5E6	3.8E6
352-	+MAT098	4.65+04	3.72+04	
353-	MAT1	99	10.5E6	3.8E6
354-	+MAT099	3.45+04	2.6+04	
355-	MAT1	100	10.5E6	3.8E6
356-	+MAT100	3.45+04	2.6+04	
357-	MAT1	101	10.5E6	3.8E6
358-	+MAT101	3.57+04	2.86+04	
359-	MAT1	102	10.5E6	3.8E6
360-	+MAT102	3.57+04	2.86+04	

TRUSS TAIL BOOM MODEL 2 ***A 114 ELEMENT VERSION
DAMAGE CRITION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 11

CARD	SORTED	BULK	DATA	ECHO
COUNT	* 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..			
361-	MAT1 103 1.0E6 3.8E6 .33 .1			+MAT103
362-	+MAT1U3 3.45+04 2.76+04			
363-	MAT1 104 1.0E6 3.8E6 .33 .1			+MAT104
364-	+MAT1U4 3.45+04 2.76+04			
365-	MAT1 105 1.0E6 3.8E6 .33 .1			+MAT105
366-	+MAT1U5 3.60+04 2.88+04			
367-	MAT1 106 1.0E6 3.8E6 .33 .1			+MAT106
368-	+MAT1U6 3.60+04 2.88+04			
369-	MAT1 107 1.0E6 3.8E6 .33 .1			+MAT107
370-	+MAT1U7 2.83+04 2.26+04			
371-	MAT1 108 1.0E6 3.8E6 .33 .1			+MAT108
372-	+MAT1U8 2.83+04 2.27+04			
373-	MAT1 109 1.0E6 3.8E6 .33 .1			+MAT109
374-	+MAT1U9 2.83+04 2.27+04			
375-	MAT1 110 1.0E6 3.8E6 .33 .1			+MAT110
376-	+MAT1U0 2.83+04 2.26+04			
377-	MAT1 111 1.0E6 3.8E6 .33 .1			+MAT111
378-	+MAT1U1 1.52+05 1.22+05			
379-	MAT1 112 1.0E6 3.8E6 .33 .1			+MAT112
380-	+MAT1U2 1.78+05 1.42+05			
381-	MAT1 113 1.0E6 3.8E6 .33 .1			+MAT113
382-	+MAT1U3 1.52+05 1.22+05			
383-	MAT1 114 1.0E6 3.8E6 .33 .1			+MAT114
384-	+MAT1U4 1.85+05 1.48+05			
385-	MAT1 115 1.0E6 3.8E6 .33 .1			+MAT115
386-	+MAT1U5 8.28+04 6.62+04			
387-	MAT1 116 1.0E6 3.8E6 .33 .1			+MAT116
388-	+MAT1U6 8.28+04 6.62+04			
389-	MAT1 117 1.0E6 3.8E6 .33 .1			+MAT117
390-	+MAT1U7 5.53+04 4.42+04			
391-	MAT1 118 1.0E6 3.8E6 .33 .1			+MAT118
392-	+MAT1U8 5.53+04 4.42+04			
393-	MAT1 119 1.0E6 3.8E6 .33 .1			+MAT119
394-	+MAT1U9 5.53+04 4.42+04			
395-	MAT1 120 1.0E6 3.8E6 .33 .1			+MAT120
396-	+MAT1U0 5.53+04 4.42+04			
397-	MAT1 121 1.0E6 3.8E6 .33 .1			+MAT121
398-	+MAT1U1 4.20+04 3.36+04			
399-	MAT1 122 1.0E6 3.8E6 .33 .1			+MAT122
400-	+MAT1U2 4.20+04 3.36+04			
401-	MAT1 123 1.0E6 3.8E6 .33 .1			+MAT123
402-	+MAT1U3 4.36+04 3.49+04			
403-	MAT1 124 1.0E6 3.8E6 .33 .1			+MAT124
404-	+MAT1U4 4.36+04 3.49+04			
405-	MAT1 125 1.0E6 3.8E6 .33 .1			+MAT125

CARD	COUNT	1 .. .	2 .. .	3 .. .	4 .. .	5 .. .	6 .. .	7 .. .	8 .. .	9 .. .	10 .. .
406-		+4AT125	4.20+04	3.36+04							
407-	MAT1	126	10.2E6	3.8E6	.33	.1					+MAT126
408-	+MAT126		4.20+04	3.36+04							
409-	MAT1	127	10.5E6	3.8E6	.33	.1					+MAT127
410-	+MAT127		4.40+04	3.52+04							
411-	MAT1	128	10.5E6	3.8E6	.33	.1					+MAT128
412-	+MAT128		4.40+04	3.52+04							
413-	MAT1	129	10.5E6	3.8E6	.33	.1					+MAT129
414-	+MAT129		3.50+04	2.80+04							
415-	MAT1	130	10.5E6	3.8E6	.33	.1					+MAT130
416-	+MAT130		3.50+04	2.80+04							
417-	MAT1	131	10.5E6	3.8E6	.33	.1					+MAT131
418-	+MAT131		3.50+04	2.80+04							
419-	MAT1	132	10.5E6	3.8E6	.33	.1					+MAT132
420-	+MAT132		3.50+04	2.80+04							
421-	MAT1	133	10.5E6	3.8E6	.33	.1					+MAT133
422-	+MAT133		1.99+05	1.60+05							
423-	MAT1	134	10.5E6	3.8E6	.33	.1					+MAT134
424-	+MAT134		2.39+05	1.91+05							
425-	MAT1	135	10.5E6	3.8E6	.33	.1					+MAT135
426-	+MAT135		1.99+05	1.60+05							
427-	MAT1	136	10.5E6	3.8E6	.33	.1					+MAT136
428-	+MAT136		2.48+05	1.99+05							
429-	MAT1	137	10.5E6	3.8E6	.33	.1					+MAT137
430-	+MAT137		1.10+05	8.77+04							
431-	MAT1	138	10.5E6	3.8E6	.33	.1					+MAT138
432-	+MAT138		1.10+05	8.77+04							
433-	PAKAM	GRDPNT	0								
434-	PTUBE	1	1	1.5							
435-	PTUBE	2	2	1.5							
436-	PTUBE	3	3	1.5							
437-	PTUBE	4	4	1.5							
438-	PTUBE	5	5	1.5							
439-	PTUBE	6	6	1.5							
440-	PTUBE	7	7	1.5							
441-	PTUBE	8	8	1.5							
442-	PTUBE	9	9	1.5							
443-	PTUBE	10	10	1.5							
444-	PTUBE	11	11	1.5							
445-	PTUBE	12	12	1.5							
446-	PTUBE	13	13	1.5							
447-	PTUBE	14	14	1.5							
448-	PTUBE	15	15	1.5							
449-	PTUBE	16	16	1.5							
450-	PTUBE	17	17	1.5							

TRUSS TAIL BOOM MODEL2 ***A 114 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 13

CARD COUNT	SORTED	BULK	DATA ECHO
1	• 2	• 3	• 5 ..
451-	PTUBE 18	18	1.5 .0625
452-	PTUBE 19	19	1.5 .0625
453-	PTUBE 20	20	1.5 .0625
454-	PTUBE 21	21	1.5 .0625
455-	PTUBE 22	22	1.5 .0625
456-	PTUBE 23	23	1.5 .0625
457-	PTUBE 24	24	1.5 .0625
458-	PTUBE 25	25	1.5 .0625
459-	PTUBE 26	26	1.5 .0625
460-	PTUBE 27	27	1.5 .0625
461-	PTUBE 28	28	1.5 .0625
462-	PTUBE 29	29	1.5 .0625
463-	PTUBE 30	30	1.5 .0625
464-	PTUBE 31	31	1.5 .0625
465-	PTUBE 32	32	1.5 .0625
466-	PTUBE 33	33	1.5 .0625
467-	PTUBE 34	34	1.5 .0625
468-	PTUBE 35	35	1.5 .0625
469-	PTUBE 36	36	1.5 .0625
470-	PTUBE 37	37	1.5 .0625
471-	PTUBE 38	38	1.5 .0625
472-	PTUBE 39	39	1.5 .0625
473-	PTUBE 40	40	1.5 .0625
474-	PTUBE 41	41	1.5 .0625
475-	PTUBE 42	42	1.5 .0625
476-	PTUBE 43	43	1.5 .0625
477-	PTUBE 44	44	1.5 .0625
478-	PTUBE 45	45	1.5 .0625
479-	PTUBE 46	46	1.5 .0625
480-	PTUBE 47	47	1.5 .0625
481-	PTUBE 48	48	1.5 .0625
482-	PTUBE 49	49	1.5 .0625
483-	PTUBE 50	50	1.5 .0625
484-	PTUBE 51	51	1.5 .0625
485-	PTUBE 52	52	1.5 .0625
486-	PTUBE 53	53	1.5 .0625
487-	PTUBE 54	54	1.5 .0625
488-	PTUBE 55	55	1.5 .0625
489-	PTUBE 56	56	1.5 .0625
490-	PTUBE 57	57	1.5 .0625
491-	PTUBE 58	58	1.5 .0625
492-	PTUBE 59	59	1.5 .0625
493-	PTUBE 60	60	1.5 .0625
494-	PTUBE 61	61	1.5 .0625
495-	PTUBE 62	62	1.5 .0625

TRUSS TAIL BOOM MODEL2 SEA 114 ELEMENT VERSION
DAMAGE CRITIION = NOne

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 14

S O R T E D B U L K D A T A E C H O									
CARD	COUNT	1	2	3	4	5	6	7	8
496-	PTUBE	63	63	63	63	63	63	63	63
497-	PTUBE	64	64	64	64	64	64	64	64
498-	PTUBE	65	65	65	65	65	65	65	65
499-	PTUBE	66	66	66	66	66	66	66	66
500-	PTUBE	67	67	67	67	67	67	67	67
501-	PTUBE	68	68	68	68	68	68	68	68
502-	PTUBE	69	69	69	69	69	69	69	69
503-	PTUBE	70	70	70	70	70	70	70	70
504-	PTUBE	71	71	71	71	71	71	71	71
505-	PTUBE	72	72	72	72	72	72	72	72
506-	PTUBE	73	73	73	73	73	73	73	73
507-	PTUBE	74	74	74	74	74	74	74	74
508-	PTUBE	75	75	75	75	75	75	75	75
509-	PTUBE	76	76	76	76	76	76	76	76
510-	PTUBE	77	77	77	77	77	77	77	77
511-	PTUBE	78	78	78	78	78	78	78	78
512-	PTUBE	79	79	79	79	79	79	79	79
513-	PTUBE	80	80	80	80	80	80	80	80
514-	PTUBE	81	81	81	81	81	81	81	81
515-	PTUBE	82	82	82	82	82	82	82	82
516-	PTUBE	83	83	83	83	83	83	83	83
517-	PTUBE	84	84	84	84	84	84	84	84
518-	PTUBE	85	85	85	85	85	85	85	85
519-	PTUBE	86	86	86	86	86	86	86	86
520-	PTUBE	87	87	87	87	87	87	87	87
521-	PTUBE	88	88	88	88	88	88	88	88
522-	PTUBE	89	89	89	89	89	89	89	89
523-	PTUBE	90	90	90	90	90	90	90	90
524-	PTUBE	91	91	91	91	91	91	91	91
525-	PTUBE	92	92	92	92	92	92	92	92
526-	PTUBE	93	93	93	93	93	93	93	93
527-	PTUBE	94	94	94	94	94	94	94	94
528-	PTUBE	95	95	95	95	95	95	95	95
529-	PTUBE	96	96	96	96	96	96	96	96
530-	PTUBE	97	97	97	97	97	97	97	97
531-	PTUBE	98	98	98	98	98	98	98	98
532-	PTUBE	99	99	99	99	99	99	99	99
533-	PTUBE	100	100	100	100	100	100	100	100
534-	PTUBE	101	101	101	101	101	101	101	101
535-	PTUBE	102	102	102	102	102	102	102	102
536-	PTUBE	103	103	103	103	103	103	103	103
537-	PTUBE	104	104	104	104	104	104	104	104
538-	PTUBE	105	105	105	105	105	105	105	105
539-	PTUBE	106	106	106	106	106	106	106	106
540-	PTUBE	107	107	107	107	107	107	107	107

TRUSS TAIL BOOM MODEL2 **A 114 ELEMENT VERSION
DAMAGE CRITION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 15

CARD	1	2	3	4	5	6 ..	7 ..	8 ..	9 ..	10 ..
COUNT	• PTUBE	108	108	1.5	.0625					
541-	PTUBE	109	109	1.5	.0625					
542-	PTUBE	110	110	1.5	.0625					
543-	PTUBE	111	111	1.5	.0625					
544-	PTUBE	112	112	1.5	.0625					
545-	PTUBE	113	113	1.5	.0625					
546-	PTUBE	114	114	1.5	.0625					
547-	PTUBE	115	115	1.5	.0625					
548-	PTUBE	116	116	1.5	.0625					
549-	PTUBE	117	117	1.5	.0625					
550-	PTUBE	118	118	1.5	.0625					
551-	PTUBE	119	119	1.5	.0625					
552-	PTUBE	120	120	1.5	.0625					
553-	PTUBE	121	121	1.5	.0625					
554-	PTUBE	122	122	1.5	.0625					
555-	PTUBE	123	123	1.5	.0625					
556-	PTUBE	124	124	1.5	.0625					
557-	PTUBE	125	125	1.5	.0625					
558-	PTUBE	126	126	1.5	.0625					
559-	PTUBE	127	127	1.5	.0625					
560-	PTUBE	128	128	1.5	.0625					
561-	PTUBE	129	129	1.5	.0625					
562-	PTUBE	130	130	1.5	.0625					
563-	PTUBE	131	131	1.5	.0625					
564-	PTUBE	132	132	1.5	.0625					
565-	PTUBE	133	133	1.5	.0625					
566-	PTUBE	134	134	1.5	.0625					
567-	PTUBE	135	135	1.5	.0625					
568-	PTUBE	136	136	1.5	.0625					
570-	PTUBE	137	137	1.5	.0625					
571-	PTUBE	138	138	1.5	.0625					
572-	SPC	10	1	123456	2					
573-	SPC	10	3	123456	4					
	ENDATA									

* 11.4 CPU-S 60.4 CUR-S 20 ELP-S. XGP1

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

* 14.6 CPU-S 64.6 CUR-S 25 ELP-S. SEMI ENC

* 14.6 CPU-S 64.6 CUR-S 25 ELP-S. ---- LINK END ---

TRUSS TAIL BUOM 40ULL2 **A 114 ELEMENT VERSION
 DAMAGE CRITERIUM = NINE

LINEAR CASE 30 X LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 19

SUBCASE 1

DISPLACEMENT VECTOR

POINT ID	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	.0	.0	.0	.0	.0	.0
2	6	.0	.0	.0	.0	.0	.0
3	6	.0	.0	.0	.0	.0	.0
4	6	.0	.0	.0	.0	.0	.0
5	6	3.4008960-03	-8.003385-03	5.592414-04			
6	6	-6.060912-04	5.930867-03	1.190927-03			
7	6	-5.676454-u3	3.140641-03	-1.009343-02			
8	6	4.968146-04	-7.199159-03	-9.451740-03			
9	6	6.587249-03	-2.157185-02	-3.772064-03			
10	6	-1.483186-04	2.479580-03	-3.280151-03			
11	6	-6.407516-03	2.128899-03	-2.620921-02			
12	6	4.528371-05	-2.121480-02	-2.571272-02			
13	6	9.108101-03	-4.351039-02	-1.062160-02			
14	6	1.290961-03	-4.270602-03	-1.025311-02			
15	6	-7.890126-03	-4.350141-03	-4.736535-02			
16	6	-1.462164-03	-4.344037-02	-4.699647-02			
17	6	9.022530-03	-6.5066972-02	-1.564162-02			
18	6	2.960545-03	-1.722768-02	-1.537139-02			
19	6	-8.76307-03	-1.722553-02	-6.383362-02			
20	6	-3.176044-03	-6.907189-02	-6.356338-02			
21	6	9.934591-03	-9.789615-02	-2.028055-02			
22	6	4.301572-03	-3.529501-02	-2.008361-02			
23	6	-9.399123-03	-3.529508-02	-7.764830-02			
24	6	-4.790531-03	-9.789609-02	-7.745137-02			
25	6	1.061690-02	-1.330094-01	-2.446695-02			
26	6	5.5448152-03	-5.775276-02	-2.483351-02			
27	6	-1.000189-02	-5.775245-02	-8.988068-02			
28	6	-6.116372-03	-1.330094-01	-9.022717-02			

TRUSS TAIL BOOM MODEL2 **A 114 ELEMENT VERSION
 DAMAGE CRITERION = NCHE

INCREMENTAL STIFFNESS 50 % LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 29
 SUBCASE 2

DISPLACEMENT VECTOR

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	.0	.0	.0	.0	.0	.0
2	6	.0	.0	.0	.0	.0	.0
3	6	.0	.0	.0	.0	.0	.0
4	6	.0	.0	.0	.0	.0	.0
5	6	6.255592-03	-1.290247-02	7.447220-04	.0	.0	.0
6	6	-1.076665-03	6.356675-03	1.775538-03	.0	.0	.0
7	6	-6.03014-03	5.046218-03	-1.638115-02	.0	.0	.0
8	6	9.087669-04	-1.154819-02	-1.535603-02	.0	.0	.0
9	6	1.085260-02	-3.477493-02	-6.742884-03	.0	.0	.0
10	6	-4.975443-04	3.973119-03	-5.937379-03	.0	.0	.0
11	6	-1.053797-02	3.388438-03	-4.283017-02	.0	.0	.0
12	6	2.900520-04	-3.413987-02	-4.204186-02	.0	.0	.0
13	6	1.339756-02	-7.019109-02	-1.872231-02	.0	.0	.0
14	6	1.802321-03	-7.002152-03	-1.81170-02	.0	.0	.0
15	6	-1.299832-02	-7.145423-03	-7.783044-02	.0	.0	.0
16	6	-2.029264-03	-7.000571-02	-7.725344-02	.0	.0	.0
17	6	1.493055-02	-1.113559-01	-2.801512-02	.0	.0	.0
18	6	4.429339-03	-2.769172-02	-2.756683-02	.0	.0	.0
19	6	-1.443700-02	-2.783467-02	-1.055339-01	.0	.0	.0
20	6	-4.704782-03	-1.112835-01	-1.051230-01	.0	.0	.0
21	6	1.84331-02	-1.577144-01	-3.683409-02	.0	.0	.0
22	6	6.559625-03	-5.696797-02	-3.649950-02	.0	.0	.0
23	6	-1.547599-02	-5.696326-02	-1.291162-01	.0	.0	.0
24	6	-7.246980-03	-1.576620-01	-1.288238-01	.0	.0	.0
25	6	1.753051-02	-2.141573-01	-4.502055-02	.0	.0	.0
26	6	8.560392-03	-9.308611-02	-4.569347-02	.0	.0	.0
27	6	-1.643499-02	-9.308449-02	-1.503633-01	.0	.0	.0
28	6	-9.362262-03	-2.141506-01	-1.508050-01	.0	.0	.0

TRUSS TAIL BOOM MOUL2 ***A 114 ELEMENT VERSION
DAMAGE CRITERION = NONE

INCREMENTAL STIFFNESS 75 % LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 30

SUBCASE 2

DISPLACEMENT VECTOR

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	*U	*C	*0	*0	*0	*0
2	6	*U	*0	*0	*0	*0	*0
3	6	*U	*0	*0	*0	*0	*0
4	6	*U	*0	*0	*0	*0	*0
5	6	9.494484-U3	-1.940388-U2	1.002610-U3	-1.940388-U2	1.002610-U3	-1.940388-U2
6	6	-1.692481-U3	9.572472-U3	2.562577-U3	9.572472-U3	2.562577-U3	9.572472-U3
7	6	-9.152816-U3	7.575165-U3	-2.471574-U2	7.575165-U3	-2.471574-U2	7.575165-U3
8	6	1.446179-U3	-1.732417-U2	-2.318028-U2	-1.732417-U2	-2.318028-U2	-1.732417-U2
9	6	1.649621-U2	-5.229925-U2	-1.063383-U2	-5.229925-U2	-1.063383-U2	-5.229925-U2
10	6	-8.737777-U4	5.951338-U3	-9.412849-U3	5.951338-U3	-9.412849-U3	5.951338-U3
11	6	-1.604451-U2	5.046569-U3	-6.403904-U2	5.046569-U3	-6.403904-U2	5.046569-U3
12	6	5.968894-U4	-5.129968-U2	-6.366249-U2	-5.129968-U2	-6.366249-U2	-5.129968-U2
13	6	2.639370-U2	-1.055932-U1	-2.934786-U2	-1.055932-U1	-2.934786-U2	-1.055932-U1
14	6	2.503719-U3	-2.062286-U2	-2.842971-U2	-2.062286-U2	-2.842971-U2	-2.062286-U2
15	6	-1.973715-U2	-1.085544-U2	-1.181421-U1	-1.085544-U2	-1.181421-U1	-1.085544-U2
16	6	-2.8086120-U3	-1.052697-U1	-1.172873-U1	-1.052697-U1	-1.172873-U1	-1.052697-U1
17	6	2.274316-U2	-1.674411-U1	-4.421894-U2	-1.674411-U1	-4.421894-U2	-1.674411-U1
18	6	6.405707-U3	-4.204674-U2	-4.353985-U2	-4.204674-U2	-4.353985-U2	-4.204674-U2
19	6	-2.194762-U2	-4.205800-U2	-1.606827-U1	-4.205800-U2	-1.606827-U1	-4.205800-U2
20	6	-6.763711-U3	-1.673204-U1	-1.60697-U1	-1.673204-U1	-1.60697-U1	-1.673204-U1
21	6	2.502630-U2	-2.371250-U1	-5.848265-U2	-2.371250-U1	-5.848265-U2	-2.371250-U1
22	6	9.585229-U3	-8.574011-U2	-5.796680-U2	-8.574011-U2	-5.796680-U2	-8.574011-U2
23	6	-2.351677-U2	-6.52942-U2	-1.971170-U1	-6.52942-U2	-1.971170-U1	-6.52942-U2
24	6	-1.052266-U2	-2.370068-U1	-1.966963-U1	-2.370068-U1	-1.966963-U1	-2.370068-U1
25	6	2.067450-U2	-3.288895-U1	-7.184347-U2	-3.288895-U1	-7.184347-U2	-3.288895-U1
26	6	1.258687-U2	-1.399797-U1	-7.294101-U2	-1.399797-U1	-7.294101-U2	-1.399797-U1
27	6	-2.494869-U2	-1.999448-U1	-2.302184-U1	-1.999448-U1	-2.302184-U1	-1.999448-U1
28	6	-1.370677-U2	-3.218294-U1	-2.308019-U1	-3.218294-U1	-2.308019-U1	-3.218294-U1

TRUSS TAIL BOOM M00EL2 **A 114 ELEMENT VERSION
 DAMAGE CRITERION = NCNE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 31

INCREMENTAL STIFFNESS 100X LOADING

D I S P L A C E M E N T V E C T O R

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	.0	.0	.0	.0	.0	.0
2	6	.0	.0	.0	.0	.0	.0
3	6	.0	.0	.0	.0	.0	.0
4	6	.0	.0	.0	.0	.0	.0
5	6	1.2860517-02	-2.594144-02	1.183984-03	.0	.0	.0
6	6	-2.359331-03	1.281287-02	3.282948-03	.0	.0	.0
7	6	-1.235264-02	1.010585-02	-3.314748-02	.0	.0	.0
8	6	2.038312-03	-2.310383-02	-3.110345-02	.0	.0	.0
9	6	2.226897-02	-6.992449-02	-1.487235-02	.0	.0	.0
10	6	-1.353839-03	7.919747-03	-1.322693-02	.0	.0	.0
11	6	-2.168599-02	6.685727-03	-8.724951-02	.0	.0	.0
12	6	1.014985-03	-6.852884-02	-8.568846-02	.0	.0	.0
13	6	2.752259-02	-1.412244-01	-4.081963-02	.0	.0	.0
14	6	3.075342-03	-1.434981-02	-3.958100-02	.0	.0	.0
15	6	-2.69315-02	-1.466885-02	-1.593978-01	.0	.0	.0
16	6	-3.43614-03	-1.407294-01	-1.582725-01	.0	.0	.0
17	6	3.079236-02	-2.23675-01	-6.189306-02	.0	.0	.0
18	6	8.224935-03	-5.636504-02	-6.097465-02	.0	.0	.0
19	6	-2.96547-02	-5.638389-02	-2.174229-01	.0	.0	.0
20	6	-5.63497-03	-2.236561-01	-2.166283-01	.0	.0	.0
21	6	3.387570-02	-3.169543-01	-8.22948-02	.0	.0	.0
22	6	1.244271-02	-1.147303-01	-8.158848-02	.0	.0	.0
23	6	-3.176352-02	-1.147113-01	-2.674441-01	.0	.0	.0
24	6	-1.362208-02	-3.167440-01	-2.669072-01	.0	.0	.0
25	6	3.607581-02	-4.301218-01	-1.015535-01	.0	.0	.0
26	6	1.644532-02	-1.871523-01	-1.031353-01	.0	.0	.0
27	6	-3.366455-02	-1.870945-01	-3.132290-01	.0	.0	.0
28	6	-1.782735-02	-4.300346-01	-3.136955-01	.0	.0	.0

INCREMENTAL STIFFNESS		S U X LOADING		S T R E S S E S I N		R O D		E L E M E N T S (C T U B E) (L B S / S Q . I N .)		S A F E T Y M A R G I N	
ELEMENT ID.	1.	U	V	SAFETY MARGIN	TORSIONAL STRESS	SAFETY MARGIN	STRESS	AXIAL STRESS	S A F E T Y M A R G I N	TORSIONAL STRESS	S A F E T Y M A R G I N
3	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0
7	-2.420053+03	2.100756+03	1.0+01	0.5+00	0.5+00	0	0	0	0	0	0
9	-5.4558154+02	-2.420053+03	2.2+01	0	0	0	0	0	0	0	0
11	1.997594+03	1.997594+03	7.2+00	0	0	0	0	0	0	0	0
13	1.190064+03	1.190064+03	1.2+01	0	0	0	0	0	0	0	0
15	-2.174410+03	5.1+00	5.1+00	0	0	0	0	0	0	0	0
17	-5.614824+02	-5.614824+02	7.6+01	0	0	0	0	0	0	0	0
23	5.486782+02	9.8+01	9.8+01	0	0	0	0	0	0	0	0
25	8.185547+02	3.5+03	3.5+03	0	0	0	0	0	0	0	0
27	1.814436+03	1.3+01	1.3+01	0	0	0	0	0	0	0	0
29	-1.767048+03	1.6+01	1.6+01	0	0	0	0	0	0	0	0
31	-7.310417+02	1.6+01	1.6+01	0	0	0	0	0	0	0	0
33	1.988491+03	8.1+00	8.1+00	0	0	0	0	0	0	0	0
35	1.505494+03	1.1+01	1.1+01	0	0	0	0	0	0	0	0
37	-2.195208+03	5.6+00	5.6+00	0	0	0	0	0	0	0	0
39	-5.987239+02	9.1+01	9.1+01	0	0	0	0	0	0	0	0
45	5.842102+02	1.2+02	1.2+02	0	0	0	0	0	0	0	0
47	1.237793+01	2.9+05	2.9+05	0	0	0	0	0	0	0	0
49	1.3822209+03	1.7+01	1.7+01	0	0	0	0	0	0	0	0
51	-1.527605+03	1.4+01	1.4+01	0	0	0	0	0	0	0	0
53	-9.370841+02	1.5+01	1.5+01	0	0	0	0	0	0	0	0
55	2.109965+03	6.1+00	6.1+00	0	0	0	0	0	0	0	0
57	2.1907438+03	6.6+00	6.6+00	0	0	0	0	0	0	0	0
59	1.2354866+03	5.6+00	5.6+00	0	0	0	0	0	0	0	0
61	-2.354866+03	2.1+01	2.1+01	0	0	0	0	0	0	0	0
67	-6.872863+02	1.0+02	1.0+02	0	0	0	0	0	0	0	0
69	6.686064+02	1.3+02	1.3+02	0	0	0	0	0	0	0	0
71	3.891846+00	1.2+04	1.2+04	0	0	0	0	0	0	0	0
73	1.294451+03	2.5+01	2.5+01	0	0	0	0	0	0	0	0
75	-1.223482+03	1.2+02	1.2+02	0	0	0	0	0	0	0	0
77	-1.595655+03	1.2+01	1.2+01	0	0	0	0	0	0	0	0
79	2.163459+03	1.1+01	1.1+01	0	0	0	0	0	0	0	0
81	1.604046+03	1.5+01	1.5+01	0	0	0	0	0	0	0	0
83	-2.453084+03	7.7+00	7.7+00	0	0	0	0	0	0	0	0
89	-7.956382+02	1.4+02	1.4+02	0	0	0	0	0	0	0	0
91	7.749082+02	1.5+02	1.5+02	0	0	0	0	0	0	0	0
93	3.378076+01	1.9+03	1.9+03	0	0	0	0	0	0	0	0
95	1.576733+03	2.8+01	2.8+01	0	0	0	0	0	0	0	0
97	-1.321531+03	2.7+01	2.7+01	0	0	0	0	0	0	0	0
99	-1.845161+03	1.4+01	1.4+01	0	0	0	0	0	0	0	0
101	2.392293+03	1.4+01	1.4+01	0	0	0	0	0	0	0	0
103	1.858308+03	1.6+01	1.6+01	0	0	0	0	0	0	0	0
105	-2.720641+03	9.6+00	9.6+00	0	0	0	0	0	0	0	0

TRUSS TAIL BOOM 40EL2 * A 114 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 36

INCREMENTAL STIFFNESS 50 % LOADING

ELEMENT ID.	S T R E S S E S I N			R O D E L E M E N T S (C T U B E) (L B S / S Q . I N .)		
	AXIAL STRESS	TORSIONAL STRESS	SAFETY MARGIN	SAFETY ELEMENT ID.	AXIAL STRESS	TORSIONAL STRESS
11.1	-9.377385+02	1.3+02	0	112	-4.484180+01	3.2+03
11.3	9.040322+02	1.7+02	0	114	-4.105469+00	3.6+04
11.5	-6.950195+01	9.5+02	0	116	2.683008+01	2.9+03
11.7	1.6993178+03	3.2+01	0	118	1.435480+03	3.8+01
11.9	-1.488711+03	2.9+01	0	120	-1.639735+03	2.6+01
12.1	-2.035861+03	1.6+01	0	122	4.112227+03	9.2+00
12.3	2.952771+03	1.4+01	0	124	-2.920976+03	1.1+01
12.5	2.078911+03	1.9+01	0	126	-4.109003+03	7.2+00
12.7	-3.559635+03	9.5+00	0	128	3.313254+03	1.2+01
13.3	-3.357431+02	4.8+02	0	134	-2.641211+01	7.2+03
13.5	5.421074+02	3.7+02	0	136	-1.577051+01	1.3+04
13.7	-2.122560+03	4.0+01	0	138	2.217000+03	4.9+01

卷之三

SUBCASE 2

TRUSS TAIL BOOM 40UEL2 **A 114 ELEMENT VERSION
DAMAGE CRITERION = NONE

TRUSS TAIL BOOM 400ULL2 ***A 114 ELEMENT VERSION
DAMAGE CRITERION = INDUE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 37

INCREMENTAL STIFFNESS 75 X LOADING

S T R E S S E S I N R O D E L E M E N T S (C T U B E) (L B S / S Q . I N .)

ELEMENT ID.	AXIAL STRESS	SAFETY MARGIN	TORSIONAL STRESS	ROD SAFETY MARGIN	ELEMENT ID.	SUBCASE 2	
						AXIAL STRESS	SAFETY MARGIN
1	0	0	0	0	2	0	0
3	0	0	0	0	4	0	0
5	0	0	0	0	6	0	0
7	3.187686+03	6.5+00	0	0	8	-6.115744+02	3.0+01
9	3.063984+03	5.2+00	0	0	10	5.190866+02	4.5+01
11	-8.201654+02	1.5+01	0	0	12	2.273543+03	6.0+00
13	3.015715+03	4.4+00	0	0	14	-7.837040+02	1.6+01
15	1.794462+03	8.0+00	0	0	16	-3.0226393+03	3.0+00
17	-3.2855985+03	3.0+00	0	0	18	1.034262+03	1.5+01
23	-8.490722+02	5.0+01	0	0	24	-1.023673+03	4.5+01
25	8.217820+02	6.5+01	0	0	26	1.000072+03	6.0+01
27	6.365447+00	4.5+03	0	0	28	-3.190888+01	7.1+02
29	2.761400+03	7.9+00	0	0	30	1.592125+02	1.5+02
31	-2.686445+03	6.3+00	0	0	32	-1.961643+02	9.9+01
33	-1.097874+03	1.2+01	0	0	34	2.682151+03	5.5+00
35	3.004455+03	5.0+00	0	0	36	-1.553130+03	8.3+00
37	2.258808+03	6.7+00	0	0	38	-3.835500+03	2.7+00
39	-3.316035+03	3.4+00	0	0	40	1.847235+03	8.8+00
45	-9.054391+02	6.0+01	0	0	46	-5.582087+02	1.1+02
47	8.734356+02	7.0+01	0	0	48	5.142426+02	1.5+02
49	-7.670366+00	3.8+03	0	0	50	-2.598175+01	9.7+02
51	2.109731+03	1.1+01	0	0	52	1.041327+03	2.3+01
53	-2.022066+03	6.7+00	0	0	54	-1.091643+03	1.7+01
55	-1.407226+03	9.7+00	0	0	56	3.352463+03	4.6+00
57	3.194263+03	5.4+00	0	0	58	-2.566785+03	5.0+00
59	2.866532+03	5.5+00	0	0	60	-4.801363+03	2.1+00
61	-3.55314+03	3.4+00	0	0	62	2.022444+03	5.6+00
67	-1.0388355+03	6.9+01	0	0	68	-2.087119+02	3.9+02
69	9.968916+02	9.0+01	0	0	70	1.489202+02	7.0+02
71	-2.793954+02	1.4+04	0	0	72	-4.722998+01	6.2+02
73	1.975443+03	1.6+01	0	0	74	1.688493+03	1.9+01
75	-1.862303+03	1.4+01	0	0	76	-1.762807+03	1.4+01
77	-2.395710+03	7.6+00	0	0	78	4.596776+03	4.6+00
79	3.269676+03	7.1+00	0	0	80	-3.172676+03	5.7+00
81	2.414694+03	9.6+00	0	0	82	-4.608497+03	3.4+00
83	-3.704889+03	1.6+01	0	0	84	3.603595+03	6.4+00
89	-1.201922+03	7.7+01	0	0	90	-8.974121+01	1.2+03
91	1.154734+03	1.0+02	0	0	92	7.005859+00	2.0+04
93	3.989160+01	1.6+03	0	0	94	-1.032948+02	4.9+02
95	2.396922+03	1.8+01	0	0	96	1.868239+03	2.4+01
97	-2.00574+03	1.6+01	0	0	98	-2.207851+03	1.6+01
99	-2.769227+03	9.0+00	0	0	100	5.265283+03	5.6+00
101	3.612022+03	8.9+00	0	0	102	-3.510689+03	7.1+00
103	2.7988679+03	1.0+01	0	0	104	-5.288227+03	4.2+00
105	-4.105455+03	6.0+00	0	0	106	3.998314+03	8.0+00

TRUSS TAIL BOOM MODEL? ***^ 114 ELEMENT VERSION
DAMAGE CRITON = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 38

INCREMENTAL STIFFNESS 75 % LOADING

ELEMENT ID.	AXIAL STRESS	STRESSES IN			ELEMENTS (C T U B E) (LBS/SQ.IN.)		
		SAFETY MARGIN	TORSIONAL STRESS	SAFETY MARGIN	ROD ELEMENT ID.	AXIAL STRESS	SAFETY MARGIN
111	-1.419422+0.3	8.5+0.1	0	0	112	-1.005668+0.2	1.4+0.3
113	1.363426+0.3	1.1+0.2	0	0	114	-9.303711+0.0	1.6+0.4
115	-1.194492+0.2	5.5+0.2	0	0	116	2.776809+0.1	3.0+0.3
117	2.571103+0.3	2.1+0.1	0	0	118	2.133381+0.3	2.5+0.1
119	-2.253350+0.3	1.9+0.1	0	0	120	-2.437149+0.3	1.7+0.1
121	-3.045770+0.3	1.0+0.1	0	0	122	6.177823+0.3	5.8+0.0
123	4.449080+0.3	8.8+0.0	0	0	124	-4.377426+0.3	7.0+0.0
125	3.1e2815+0.3	1.2+0.1	0	0	126	-6.170614+0.3	4.4+0.0
127	-5.064699+0.3	6.0+0.0	0	0	128	4.960231+0.3	7.9+0.0
133	-4.259863+0.2	3.7+0.2	0	0	134	-5.988594+0.1	3.2+0.3
135	8.910059+0.2	2.2+0.2	0	0	136	-3.518750+0.1	5.7+0.3
137	-3.1e2594+0.3	2.7+0.1	0	0	138	3.355533+0.3	3.2+0.1

TRUSS TAIL BOOM AUELL2 ***A 114 ELEMENT VERSION
DAMAGE CRITERION = INGIE

INCREMENTAL STIFFNESS 100X LOADING

ELEMENT ID.	AXIAL STRESS	STRUCTURES IN KOD ELEMENTS (CTUBE) (LBS/SQ.IN.)			SUBCASE 2
		Safety Margin	Torsional Stress	KOD Safety Margin	
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0	0
7	4.299580+03	4.3+00	0	8	-8.496977+02
8	-4.131011+03	3.6+00	0	10	7.287840+02
9	-1.095876+03	1.1+01	0	12	3.040742+03
11	-1.095876+03	1.1+01	0	14	-1.021666+03
13	4.046948+03	3.1+00	0	16	-4.307687+03
15	2.379773+03	5.7+00	0	18	1.362744+03
17	-4.441068+03	2.0+00	0	24	-1.396721+03
23	-1.141541+03	5.7+01	0	26	1.354944+03
25	1.094213+03	4.9+01	0	28	4.4+01
27	4.954224+01	5.0+04	0	30	-4.51335+01
29	3.755461+03	5.6+00	0	32	1.792187+02
31	-3.630174+03	4.4+00	0	34	-2.225599+02
33	-1.456632+03	6.6+00	0	36	3.587078+03
35	4.035245+03	5.5+00	0	38	-2.050409+03
37	3.012535+03	4.8+00	0	40	5.120242+03
39	-4.452714+03	2.3+00	0	46	-7.794019+02
45	-1.217320+03	4.4+01	0	48	7.7+01
47	1.150861+03	5.9+01	0	50	-7.01236+02
49	-2.084058+01	1.4+03	0	52	-4.587115+01
51	2.886205+03	7.6+00	0	54	1.354219+03
53	-2.737424+03	6.2+00	0	56	-1.414088+03
55	-1.217320+03	7.0+00	0	58	4.478988+03
57	4.299674+03	3.5+00	0	60	-3.407583+03
59	3.823468+03	3.9+00	0	62	-6.411950+03
61	-4.765922+03	2.3+00	0	64	3.871020+03
67	-1.394518+03	5.1+01	0	68	-3.1747795+02
69	1.321283+03	6.8+01	0	70	2.090032+02
71	-1.536084+03	2.5+03	0	72	-7.435474+01
73	2.679344+03	1.2+01	0	74	2.216158+03
75	-2.519567+03	9.8+00	0	76	-2.306856+03
77	-3.197721+03	5.4+00	0	78	1.350222+03
79	4.392954+03	5.0+00	0	80	-4.213091+03
81	3.231589+03	7.0+00	0	82	-6.155830+03
83	-4.974166+03	3.3+00	0	84	4.786650+03
89	-1.612864+03	5.7+01	0	90	-1.615684+02
91	1.529549+03	7.6+01	0	92	1.426807+01
93	3.867090+01	1.6+03	0	94	-1.515894+02
95	3.238653+03	1.3+01	0	96	2.460750+03
97	-2.705912+03	1.3+01	0	98	-2.901663+03
99	-3.695076+03	6.5+00	0	100	7.025193+03
101	4.848444+03	6.4+00	0	102	-4.668152+03
103	3.747856+03	8.2+00	0	104	-7.066084+03
105	-5.507550+03	4.2+00	0	106	5.316936+03

TRUSS TAIL BUIN MODULE 2 *** A 114 ELEMENT VERSION
DAMAGE CRITERION = *ONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 40

INCREMENTAL STIFFNESS 100% LOADING

ELEMENT ID.	STRENGTHS IN SAFETY STRESS		ROD ELEMENTS (C T U B E) (LBS/SQ.IN.)	
	AXIAL STRESS	MARGIN	AXIAL STRESS	TORSIONAL STRESS
111	-1.909793+U3	6.5+U1	0	112 -1.797109+U2
113	1.774394+U3	3.5+U1	0	114 -1.659277+U1
115	-1.796172+U2	5.7+U2	0	116 1.637744+U1
117	3.458034+U3	1.5+U1	0	2.818036+U3
119	-3.931671+U3	1.4+U1	0	120 -3.219544+U3
121	-4.051315+U3	7.3+U0	0	122 8.250880+U3
123	5.959820+U3	6.3+U0	0	124 -5.832223+U3
125	4.224214+U3	8.9+U0	0	126 -8.238140+U3
127	-6.787770+U3	4.2+U0	0	128 6.601729+U3
133	-4.641445+U2	3.4+U2	0	134 -1.0611953+U2
135	1.292225+U3	1.5+U2	0	136 -6.237305+U1
137	-4.134330+U3	2.0+U1	0	138 4.513634+U3
* 53.2 CPU-S 262.5 COR-S	182	FLP-S.	158 OFF	END
* 53.2 CPU-S 263.4 COR-S	182	FLP-S.	179 EXIT	BEGIN

APPENDIX C

NASTRAN MATHEMATICAL MODEL OF THE UNDAMAGED
TRUSS MODEL 3 PLUS OUTPUT OF DISPLACEMENTS, STRESSES
AND MARGINS OF SAFETY DUE TO FLIGHT LOADS

PRECEDING PAGE NOT FILMED
BLANK

UNIVAC 1100 SERIES
MODEL 1108

RIGID FORMAT SERIES M3

LEVEL 77.1.0

DATE = 7/15/77

SYSTEM GENERATED BY SPERBY SUPPORT SERVICES

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID ERLINE,MODEL3
APP DISP
\$ STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS RF 4
SOL 4,0
TIME 10
CEND

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 1

TRUSS TAIL ROOM 400FL5 **/n 150 ELEMENT VERSION
DAMAGE CRITIUN = NONE

OCTOBER 26, 1977

NASTRAN 7/15/77

PAGE 2

C A S T C O N T R O L D E C K E C H O

CARD
COUNT
1 TITLE = TRUSS TAIL ROOM MODEL3 **A 138 ELEMENT VERSION
2 SURTITLE = DAMAGE CRITIUN = NONE
3 ULOAD = ALL
4 SPC = 1
5 DISP = ALL
6 SPCFORCES = ALL
7 SET 5 = 1 THRU 138
8 SUBCASE 1
9 LABEL = LINEAR CASE
10 LUAU = 11
11 SUBCASE 2
12 LABEL = INCREMENTAL STIFFNESS
13 USCOEFFICIENT = 200
14 STRESS = 5
15 MAXLINES = 100000
16 BEGIN BULK

142 *** USER INFORMATION MESSAGE 207. BULK DATA NOT SORTED.XSORT WILL RE-ORDER DECK.

TRUSS TAIL BOOM MODEL3 **A 138 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 3

CARD COUNT	1	2	3	4	5	6	7	8	9	10
1-	CTUBE	1	1	1	2	2	1	1	4	4
2-	CTUBE	2	2	2	1	1	1	1	3	3
3-	CTUBE	3	3	3	3	3	3	2	3	3
4-	CTUBE	4	4	4	4	4	4	2	3	3
5-	CTUBE	5	5	5	5	5	5	2	4	4
6-	CTUBE	6	6	6	6	6	6	2	5	5
7-	CTUBE	7	7	7	7	7	7	1	5	5
8-	CTUBE	8	8	8	8	8	8	2	6	6
9-	CTUBE	9	9	9	9	9	9	3	7	7
10-	CTUBE	10	10	10	10	10	10	4	8	8
11-	CTUBE	11	11	11	11	11	11	1	6	6
12-	CTUBE	12	12	12	12	12	12	2	5	5
13-	CTUBE	13	13	13	13	13	13	1	8	8
14-	CTUBE	14	14	14	14	14	14	4	5	5
15-	CTUBE	15	15	15	15	15	15	7	7	7
16-	CTUBE	16	16	16	16	16	16	3	8	8
17-	CTUBE	17	17	17	17	17	17	2	7	7
18-	CTUBE	18	18	18	18	18	18	3	6	6
19-	CTUBE	19	19	19	19	19	19	1	7	7
20-	CTUBE	20	20	20	20	20	20	2	8	8
21-	CTUBE	21	21	21	21	21	21	3	5	5
22-	CTUBE	22	22	22	22	22	22	4	6	6
23-	CTUBE	23	23	23	23	23	23	5	6	6
24-	CTUBE	24	24	24	24	24	24	5	8	8
25-	CTUBE	25	25	25	25	25	25	7	8	8
26-	CTUBE	26	26	26	26	26	26	6	7	7
27-	CTUBE	27	27	27	27	27	27	5	7	7
28-	CTUBE	28	28	28	28	28	28	6	8	8
29-	CTUBE	29	29	29	29	29	29	5	9	9
30-	CTUBE	30	30	30	30	30	30	6	10	10
31-	CTUBE	31	31	31	31	31	31	7	11	11
32-	CTUBE	32	32	32	32	32	32	8	12	12
33-	CTUBE	33	33	33	33	33	33	5	10	10
34-	CTUBE	34	34	34	34	34	34	6	9	9
35-	CTUBE	35	35	35	35	35	35	5	12	12
36-	CTUBE	36	36	36	36	36	36	8	9	9
37-	CTUBE	37	37	37	37	37	37	8	11	11
38-	CTUBE	38	38	38	38	38	38	7	12	12
39-	CTUBE	39	39	39	39	39	39	6	11	11
40-	CTUBE	40	40	40	40	40	40	7	10	10
41-	CTUBE	41	41	41	41	41	41	5	11	11
42-	CTUBE	42	42	42	42	42	42	6	12	12
43-	CLINT	43	43	43	43	43	43	7	9	9
44-	CLINT	44	44	44	44	44	44	8	10	10
45-	CLINT	45	45	45	45	45	45	9	11	11

TRUSS TAIL BUMPER MODEL 3 ***A 133 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 4

CARD COUNT	1	2	3	4	5	6	7	8	9	10
46-	CTUBE	46	46	9	12					
47-	CTUBE	47	47	11	12					
48-	CTUBE	48	48	10	11					
49-	CTUBE	49	49	9	11					
50-	CTUBE	50	50	10	12					
51-	CTUBE	51	51	9	13					
52-	CTUBE	52	52	10	14					
53-	CTUBE	53	53	11	15					
54-	CTUBE	54	54	12	16					
55-	CTUBE	55	55	9	14					
56-	CTUBE	56	56	10	13					
57-	CTUBE	57	57	9	16					
58-	CTUBE	58	58	12	13					
59-	CTUBE	59	59	12	15					
60-	CTUBE	60	60	11	16					
61-	CTUBE	61	61	10	15					
62-	CTUBE	62	62	11	14					
63-	CTUBE	63	63	9	15					
64-	CTUBE	64	64	10	16					
65-	CTUBL	65	65	11	13					
66-	CTUBE	66	66	12	14					
67-	CTUBE	67	67	13	14					
68-	CTUBE	68	68	13	16					
69-	CTUBE	69	69	15	16					
70-	CTUBL	70	70	14	15					
71-	CTUBE	71	71	13	15					
72-	CTUBE	72	72	14	16					
73-	CTUBE	73	73	13	17					
74-	CTUBE	74	74	14	18					
75-	CTUBE	75	75	15	19					
76-	CTUBE	76	76	16	20					
77-	CTUBE	77	77	13	18					
78-	CTUBE	78	78	14	17					
79-	CTUBE	79	79	13	20					
80-	CTUBE	80	80	16	17					
81-	CTUBE	81	81	16	19					
82-	CTUBE	82	82	15	20					
83-	CTUBE	83	83	14	19					
84-	CTUBE	84	84	15	18					
85-	CTUBE	85	85	15	19					
86-	CTUBE	86	86	14	20					
87-	CTUBE	87	87	15	17					
88-	CTUBE	88	88	16	18					
89-	CTUBE	89	89	17	18					
90-	CTUBE	90	90	17	20					

TRUSS TAIL BOOM MODEL3 **A 138 ELEMENT VERSION
DAMAGE CRITIION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 5

CARD COUNT	SORTED DATA ECHO
91-	1 . 2 . 3 . 4 . 5 .. 6 .. 7 .. 8 .. 9 .. 10 .
92-	CTUBE 91 . 91 . 91 . 91 . 91 . 91 . 91 . 91 . 91 . 91 .
93-	CTUBE 92 . 92 . 92 . 92 . 92 . 92 . 92 . 92 . 92 . 92 .
94-	CTUBE 93 . 93 . 93 . 93 . 93 . 93 . 93 . 93 . 93 . 93 .
95-	CTUBE 94 . 94 . 94 . 94 . 94 . 94 . 94 . 94 . 94 . 94 .
96-	LTUBE 95 . 95 . 95 . 95 . 95 . 95 . 95 . 95 . 95 . 95 .
97-	CTUBE 96 . 96 . 96 . 96 . 96 . 96 . 96 . 96 . 96 . 96 .
98-	CTUBE 97 . 97 . 97 . 97 . 97 . 97 . 97 . 97 . 97 . 97 .
99-	CTUBL 98 . 98 . 98 . 98 . 98 . 98 . 98 . 98 . 98 . 98 .
100-	CTUBL 99 . 99 . 99 . 99 . 99 . 99 . 99 . 99 . 99 . 99 .
101-	CTUBL 100 . 100 . 100 . 100 . 100 . 100 . 100 . 100 . 100 . 100 .
102-	CTUBL 101 . 101 . 101 . 101 . 101 . 101 . 101 . 101 . 101 . 101 .
103-	CTUBL 102 . 102 . 102 . 102 . 102 . 102 . 102 . 102 . 102 . 102 .
104-	CTUBE 103 . 103 . 103 . 103 . 103 . 103 . 103 . 103 . 103 . 103 .
105-	CTUBE 104 . 104 . 104 . 104 . 104 . 104 . 104 . 104 . 104 . 104 .
106-	CTUBE 105 . 105 . 105 . 105 . 105 . 105 . 105 . 105 . 105 . 105 .
107-	CTUBE 106 . 106 . 106 . 106 . 106 . 106 . 106 . 106 . 106 . 106 .
108-	CTUBE 107 . 107 . 107 . 107 . 107 . 107 . 107 . 107 . 107 . 107 .
109-	CTUBE 108 . 108 . 108 . 108 . 108 . 108 . 108 . 108 . 108 . 108 .
110-	CTUBE 109 . 109 . 109 . 109 . 109 . 109 . 109 . 109 . 109 . 109 .
111-	CTUBE 110 . 110 . 110 . 110 . 110 . 110 . 110 . 110 . 110 . 110 .
112-	CTUBE 111 . 111 . 111 . 111 . 111 . 111 . 111 . 111 . 111 . 111 .
113-	CTUBE 112 . 112 . 112 . 112 . 112 . 112 . 112 . 112 . 112 . 112 .
114-	CTUBE 113 . 113 . 113 . 113 . 113 . 113 . 113 . 113 . 113 . 113 .
115-	CTUBE 114 . 114 . 114 . 114 . 114 . 114 . 114 . 114 . 114 . 114 .
116-	CTUBE 115 . 115 . 115 . 115 . 115 . 115 . 115 . 115 . 115 . 115 .
117-	CTUBE 116 . 116 . 116 . 116 . 116 . 116 . 116 . 116 . 116 . 116 .
118-	CTUBE 117 . 117 . 117 . 117 . 117 . 117 . 117 . 117 . 117 . 117 .
119-	CTUBE 118 . 118 . 118 . 118 . 118 . 118 . 118 . 118 . 118 . 118 .
120-	CTUBE 119 . 119 . 119 . 119 . 119 . 119 . 119 . 119 . 119 . 119 .
121-	CTUBE 120 . 120 . 120 . 120 . 120 . 120 . 120 . 120 . 120 . 120 .
122-	CTUBE 121 . 121 . 121 . 121 . 121 . 121 . 121 . 121 . 121 . 121 .
123-	CTUBE 122 . 122 . 122 . 122 . 122 . 122 . 122 . 122 . 122 . 122 .
124-	CTUBE 123 . 123 . 123 . 123 . 123 . 123 . 123 . 123 . 123 . 123 .
125-	CTUBE 124 . 124 . 124 . 124 . 124 . 124 . 124 . 124 . 124 . 124 .
126-	CTUBE 125 . 125 . 125 . 125 . 125 . 125 . 125 . 125 . 125 . 125 .
127-	CTUBE 126 . 126 . 126 . 126 . 126 . 126 . 126 . 126 . 126 . 126 .
128-	CTUBE 127 . 127 . 127 . 127 . 127 . 127 . 127 . 127 . 127 . 127 .
129-	CTUBE 128 . 128 . 128 . 128 . 128 . 128 . 128 . 128 . 128 . 128 .
130-	LTUBT 129 . 129 . 129 . 129 . 129 . 129 . 129 . 129 . 129 . 129 .
131-	CTUBT 130 . 130 . 130 . 130 . 130 . 130 . 130 . 130 . 130 . 130 .
132-	CTUBT 131 . 131 . 131 . 131 . 131 . 131 . 131 . 131 . 131 . 131 .
133-	CTUBT 132 . 132 . 132 . 132 . 132 . 132 . 132 . 132 . 132 . 132 .
134-	CTUBT 133 . 133 . 133 . 133 . 133 . 133 . 133 . 133 . 133 . 133 .
135-	CTUBT 134 . 134 . 134 . 134 . 134 . 134 . 134 . 134 . 134 . 134 .

TRUSS TAIL BOUND 40CTL3 **A 138 ELEMENT VERSION
DAMAGE CRITION = NONE

OCTOBER 26, 1977

MASTRAN

7/15/77

PAGE

6

S O R T E D B U L K D A T A E C H O											
CARD	COUNT	1	2	3	4	5	6	7	8	9	10
	CTUBE	136	136	26	27						
	CTUEL	137	137	25	27						
	CTUBL	138	138	26	28						
	DSFACT	200	1.60422	2.40632	3.20843						
	FORCE	11	13	0	44.2200	0	0.0	-1.			
	FORCE	11	14	0	44.2200	0	0.0	-1.			
	FORCE	11	15	0	44.2200	0	0.0	-1.			
	FORCE	11	16	0	44.2200	0	0.0	-1.			
	FORCE	11	25	0	464.5	1.	0.0	0.0			
	FORCE	11	25	0	527.3	0	-1.0	0.0			
	FORCE	11	26	0	464.5	1.0	0.0	0.0			
	FORCE	11	26	0	527.3	0	1.	0.0			
	FORCE	11	27	0	464.5	-1.	0.0	0.0			
	FORCE	11	27	0	527.5	0	1.	0.0			
	FORCE	11	28	0	464.5	-1.	0.0	0.0			
	FORCE	11	28	0	527.3	0	-1.	0.0			
	GRSET										456
	GRIU	1		*000	11.95	12.375					
	GRIU	2		*000	11.75	-12.375					
	GRID	3		*000	-11.75	-12.375					
	GRID	4		*000	-11.95	12.375					
	GRIU	5		33.5	10.666	11.105					
	GRID	6		33.5	10.485	-11.105					
	GRID	7		33.5	-10.485	11.105					
	GRIU	8		33.5	-10.666	11.105					
	GRID	9		66.5	9.401	9.855					
	GRIU	10		66.5	9.239	-9.855					
	GRIU	11		66.5	-9.239	-9.855					
	GRID	12		66.5	-9.401	9.855					
	GRID	13		99.5	8.136	8.614					
	GRID	14		99.5	7.994	-8.604					
	GRIU	15		99.5	-7.994	-8.604					
	GRID	16		99.5	-8.136	8.604					
	GRID	17		127.5	7.063	7.543					
	GRID	18		127.5	6.937	-7.543					
	GRIU	19		127.5	-6.937	-7.543					
	GRID	20		127.5	-7.063	7.543					
	GRID	21		151.5	6.143	6.634					
	GRID	22		151.5	6.031	-6.634					
	GRIU	23		151.5	-6.031	-6.34					
	GRID	24		151.5	-6.143	6.634					
	GRID	25		173.5	5.3	5.8					
	GRID	26		173.5	5.2	-5.8					
	GRIU	27		173.5	-5.2	-5.8					
	GRID	28		173.5	-5.3	5.800					

TRUSS TAIL BOOM MODEL 5 * A 138 ELEMENT VERSION
DAMAGE CRITON = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 7

CARD	SCRTED	BULK	DATA	ECHO
COUNT	*	1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..		
181-	MAT1 1 1.0*5E6 3.8E6	*.33 .1		
182-	+MATU01 4.38+04 3.51+04			+MAT001
183-	MAT1 2 1.0*5E6 3.8E6	.33 .1		+MAT002
184-	+MATU02 4.70+04 3.76+04			
185-	MAT1 3 1.0*5E6 3.8E6	.33 .1		+MAT003
186-	+MATU03 4.38+04 3.51+04			+MAT004
187-	MAT1 4 1.0*5E6 3.8E6	.33 .1		+MAT005
188-	+MATU04 4.86+04 3.89+04			
189-	MAT1 5 1.0*5E6 3.8E6	.33 .1		+MAT006
190-	+MATU05 2.29+04 1.83+04			
191-	MAT1 6 1.0*5E6 3.8E6	.33 .1		+MAT007
192-	+MATU06 2.29+04 1.83+04			
193-	MAT1 7 1.0*5E6 3.8E6	.33 .1		+MAT008
194-	+MATU07 2.38+04 1.91+04			
195-	MAT1 8 1.0*5E6 3.8E6	.33 .1		+MAT009
196-	+MATU08 2.38+04 1.91+04			
197-	MAT1 9 1.0*5E6 3.8E6	.33 .1		+MAT010
198-	+MATU09 2.38+04 1.91+04			
199-	MAT1 10 1.0*5E6 3.8E6	.33 .1		+MAT011
200-	+MATU10 2.38+04 1.91+04			
201-	MAT1 11 1.0*5E6 3.8E6	.33 .1		+MAT012
202-	+MATU11 1.60+04 1.28+04			
203-	MAT1 12 1.0*5E6 3.8E6	.33 .1		+MAT013
204-	+MATU12 1.60+04 1.28+04			
205-	MAT1 13 1.0*5E6 3.8E6	.33 .1		+MAT014
206-	+MATU13 1.64+04 1.31+04			
207-	MAT1 14 1.0*5E6 3.8E6	.33 .1		+MAT015
208-	+MATU14 1.64+04 1.31+04			
209-	MAT1 15 1.0*5E6 3.8E6	.33 .1		+MAT016
210-	+MATU15 1.60+04 1.28+04			
211-	MAT1 16 1.0*5E6 3.8E6	.33 .1		+MAT017
212-	+MATU16 1.60+04 1.28+04			
213-	MAT1 17 1.0*5E6 3.8E6	.33 .1		+MAT018
214-	+MATU17 1.006+04 1.33+04			
215-	MAT1 18 1.0*5E6 3.8E6	.33 .1		+MAT019
216-	+MATU18 1.66+04 1.35+04			
217-	MAT1 19 1.0*5E6 3.8E6	.33 .1		+MAT020
218-	+MATU19 1.23+04 9.86+03			
219-	MAT1 20 1.0*5E6 3.8E6	.33 .1		+MAT021
220-	+MATU20 1.23+04 9.87+03			
221-	MAT1 21 1.0*5E6 3.8E6	.33 .1		+MATU22
222-	+MATU21 1.23+04 9.87+03			
223-	MAT1 22 1.0*5E6 3.8E6	.33 .1		+MATU23
224-	+MATU22 1.23+04 9.86+03			
225-	MAT1 23 1.0*5E6 3.8E6	.33 .1		

S C R E T E D B U L K D A T A E C H O

CARD	1 ..	2 ..	3 ..	4 ..	5 ..	6 ..	7 ..	8 ..	9 ..	10 ..
COUNT	+MAT023	5.44+04	4.35+04							
226-	MAT1	24	10.3E6	3.8E6	.33					+MAT024
227-	+MAT024	5.90+04	4.72+04							+MAT025
228-	MAT1	25	10.3E6	3.8E6	.33					+MAT026
229-	+MAT025	5.44+04	4.35+04							+MAT027
230-	MAT1	26	10.5E6	3.8E6	.33					+MAT028
231-	+MAT026	6.10+04	4.68+04							+MAT029
232-	MAT1	27	10.5E6	3.8E6	.33					+MAT030
233-	+MAT027	2.85+04	2.28+04							+MAT031
234-	MAT1	28	10.5E6	3.8E6	.33					+MAT032
235-	+MAT028	2.85+04	2.28+04							+MAT033
236-	MAT1	29	10.5E6	3.8E6	.33					+MAT034
237-	+MAT029	2.46+04	1.97+04							+MAT035
238-	MAT1	30	10.5E6	3.8E6	.33					+MAT036
239-	+MAT030	2.46+04	1.97+04							+MAT037
240-	MAT1	31	10.5E6	3.8E6	.33					+MAT038
241-	+MAT031	2.46+04	1.97+04							+MAT039
242-	MAT1	32	10.5E6	3.8E6	.33					+MAT040
243-	+MAT032	2.46+04	1.97+04							+MAT041
244-	MAT1	33	10.5E6	3.8E6	.33					+MAT042
245-	+MAT033	1.75+04	1.40+04							+MAT043
246-	MAT1	34	10.5E6	3.8E6	.33					+MAT044
247-	+MAT034	1.75+04	1.40+04							+MAT045
248-	MAT1	35	10.5E6	3.8E6	.33					+MAT046
249-	+MAT035	1.80+04	1.44+04							+MAT047
250-	MAT1	36	10.5E6	3.8E6	.33					+MAT048
251-	+MAT036	1.80+04	1.44+04							+MAT049
252-	MAT1	37	10.5E6	3.8E6	.33					+MAT050
253-	+MAT037	1.75+04	1.40+04							+MAT051
254-	MAT1	38	10.5E6	3.8E6	.33					+MAT052
255-	+MAT038	1.75+04	1.40+04							+MAT053
256-	MAT1	39	10.5E6	3.8E6	.33					+MAT054
257-	+MAT039	1.d1+04	1.45+04							+MAT055
258-	MAT1	40	10.5E6	3.8E6	.33					+MAT056
259-	+MAT040	1.d1+04	1.45+04							+MAT057
260-	MAT1	41	10.5E6	3.8E6	.33					+MAT058
261-	+MAT041	1.39+04	1.12+04							+MAT059
262-	MAT1	42	10.5E6	3.8E6	.33					+MAT060
263-	+MAT042	1.4C+04	1.12+04							+MAT061
264-	MAT1	43	10.5E6	3.8E6	.33					+MAT062
265-	+MAT043	1.40+04	1.12+04							+MAT063
266-	MAT1	44	10.5E6	3.8E6	.33					+MAT064
267-	+MAT044	1.39+04	1.12+04							+MAT065
268-	MAT1	45	10.5E6	3.8E6	.33					+MAT066
269-	+MAT045	6.91+04	5.53+04							+MAT067
270-										

TRUSS TAIL BOOM MODEL 3 ***A 138 ELEMENT VERSION
DAMAGE CRITION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 9

CARD COUNT	SORTED BULK DATA ECHO
1	.. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..
271-	MAT1 46 10.5E6 3.8E6 .33 .1
272-	+MAT1U46 7.59+04 6.08+04 .33 .1
273-	MAT1 47 10.5E6 3.8E6 .33 .1
274-	+MAT1U47 6.91+04 5.53+04 .33 .1
275-	MAT1 48 10.5E6 3.8E6 .33 .1
276-	+MAT1U48 7.86+04 6.29+04 .33 .1
277-	MAT1 49 10.5E6 3.8E6 .33 .1
278-	+*AT049 3.65+04 2.92+04 .33 .1
279-	MAT1 50 10.5E6 3.8E6 .33 .1
280-	+MAT050 3.65+04 2.92+04 .33 .1
281-	MAT1 51 10.5E6 3.8E6 .33 .1
282-	+MAT051 2.46+04 1.97+04 .33 .1
283-	MAT1 52 10.5E6 3.8E6 .33 .1
284-	+MAT052 2.46+04 1.97+04 .33 .1
285-	MAT1 53 10.5E6 3.8E6 .33 .1
286-	+MAT053 2.46+04 1.97+04 .33 .1
287-	MAT1 54 10.5E6 3.8E6 .33 .1
288-	+MAT054 2.46+04 1.97+04 .33 .1
289-	MAT1 55 10.5E6 3.8E6 .33 .1
290-	+MAT055 1.87+04 1.50+04 .33 .1
291-	MAT1 56 10.5E6 3.8E6 .33 .1
292-	+MAT056 1.88+04 1.50+04 .33 .1
293-	MAT1 57 10.5E6 3.8E6 .33 .1
294-	+MAT057 1.92+04 1.54+04 .33 .1
295-	MAT1 58 10.5E6 3.8E6 .33 .1
296-	+MAT058 1.92+04 1.54+04 .33 .1
297-	MAT1 59 10.5E6 3.8E6 .33 .1
298-	+MAT059 1.87+04 1.50+04 .33 .1
299-	MAT1 60 10.5E6 3.8E6 .33 .1
300-	+MAT060 1.88+04 1.50+04 .33 .1
301-	MAT1 61 10.5E6 3.8E6 .33 .1
302-	+MAT061 1.93+04 1.55+04 .33 .1
303-	MAT1 62 10.5E6 3.8E6 .33 .1
304-	+MAT062 1.93+04 1.55+04 .33 .1
305-	MAT1 63 10.5E6 3.8E6 .33 .1
306-	+MAT063 1.55+04 1.24+04 .33 .1
307-	MAT1 64 10.5E6 3.8E6 .33 .1
308-	+MAT064 1.55+04 1.24+04 .33 .1
309-	MAT1 65 10.5E6 3.8E6 .33 .1
310-	+MAT065 1.55+04 1.24+04 .33 .1
311-	MAT1 66 10.5E6 3.8E6 .33 .1
312-	+MAT066 1.55+04 1.24+04 .33 .1
313-	MAT1 67 10.5E6 3.8E6 .33 .1
314-	+MAT067 9.06+04 7.25+04 .33 .1
315-	MAT1 68 10.5E6 3.8E6 .33 .1

TRUSS TAIL BUOM MODELS #WA 138 ELEMENT VERSION
DAMAGE CRITON = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE

10

CARD

S C R E T E D B U L K D A T A E C H O

* COUNT 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 *

* +MAT068 1.01+05 8.11+04 .33 .1

* MAT1 69 10.5E6 3.8E6 .33 .1

* +MAT069 9.06+C4 7.25+04 .33 .1

* MAT1 70 10.5E6 3.8E6 .33 .1

* +MAT070 1.05+05 8.40+04 .33 .1

* MAT1 71 10.5E6 3.8E6 .33 .1

* +MAT071 4.92+04 3.86+04 .33 .1

* MAT1 72 10.5E6 3.8E6 .33 .1

* +MAT072 4.82+04 3.86+04 .33 .1

* MAT1 73 10.5E6 3.8E6 .33 .1

* +MAT073 3.41+04 2.73+04 .33 .1

* MAT1 74 10.5E6 3.8E6 .33 .1

* +MAT074 3.41+04 2.73+04 .33 .1

* MAT1 75 10.5E6 3.8E6 .33 .1

* +MAT075 3.41+C4 2.73+04 .33 .1

* MAT1 76 10.5E6 3.8E6 .33 .1

* +MAT076 3.41+04 2.73+04 .33 .1

* MAT1 77 10.5E6 3.8E6 .33 .1

* +MAT077 2.57+04 2.05+04 .33 .1

* MAT1 78 10.5E6 3.8E6 .33 .1

* +MAT078 2.57+04 2.05+04 .33 .1

* MAT1 79 10.5E6 3.8E6 .33 .1

* +MAT079 2.64+04 2.11+04 .33 .1

* MAT1 80 10.5E6 3.8E6 .33 .1

* +MAT080 2.64+04 2.11+04 .33 .1

* MAT1 81 10.5E6 3.8E6 .33 .1

* +MAT081 2.57+04 2.05+04 .33 .1

* MAT1 82 10.5E6 3.8E6 .33 .1

* +MAT082 2.57+04 2.05+04 .33 .1

* MAT1 83 10.5E6 3.8E6 .33 .1

* +MAT083 2.66+04 2.13+04 .33 .1

* MAT1 84 10.5E6 3.8E6 .33 .1

* +MAT084 2.66+04 2.13+04 .33 .1

* MAT1 85 10.5E6 3.8E6 .33 .1

* +MAT085 2.11+04 1.69+04 .33 .1

* MAT1 86 10.5E6 3.8E6 .33 .1

* +MAT086 2.11+04 1.69+04 .33 .1

* MAT1 87 10.5E6 3.8E6 .33 .1

* +MAT087 2.11+04 1.69+04 .33 .1

* MAT1 88 10.5E6 3.8E6 .33 .1

* +MAT088 2.11+04 1.69+04 .33 .1

* MAT1 89 10.5E6 3.8E6 .33 .1

* +MAT089 1.18+05 9.43+04 .33 .1

* MAT1 90 10.5E6 3.8E6 .33 .1

* +MAT090 1.34+05 1.08+05

TRUSS TAIL BOOM MODEL 3 ***A 13B ELEMENT VERSION
DAMAGE CRITION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 11

CARD	SORTED	BULK	DATA ECHO
COUNT	1	2	3
361-	MAT1 91	10.5E6	3.8E6
	+MAT091	1.18+05	9.43+04
362-	MAT1 92	10.5E6	3.8E6
	+MAT092	1.40+05	1.12+05
363-	MAT1 93	10.5E6	3.8E6
	+MAT093	6.34+04	5.07+04
364-	MAT1 94	10.5E6	3.8E6
	+MAT094	6.34+04	5.07+04
365-	MAT1 95	10.5E6	3.8E6
	+MAT095	4.65+04	3.72+04
366-	MAT1 96	10.5E6	3.8E6
	+MAT096	4.65+04	3.72+04
367-	MAT1 97	10.5E6	3.8E6
	+MAT097	4.65+04	3.72+04
368-	MAT1 98	10.5E6	3.8E6
	+MAT098	4.65+04	3.72+04
369-	MAT1 99	10.5E6	3.8E6
	+MAT099	3.45+04	2.76+04
370-	MAT1 100	10.5E6	3.8E6
	+MAT100	3.45+04	2.76+04
371-	MAT1 101	10.5E6	3.8E6
	+MAT101	3.57+04	2.86+04
372-	MAT1 102	10.5E6	3.8E6
	+MAT102	3.57+04	2.86+04
373-	MAT1 103	10.5E6	3.8E6
	+MAT103	3.45+04	2.76+04
374-	MAT1 104	10.5E6	3.8E6
	+MAT104	3.45+04	2.76+04
375-	MAT1 105	10.5E6	3.8E6
	+MAT105	3.00+04	2.88+04
376-	MAT1 106	10.5E6	3.8E6
	+MAT106	3.00+04	2.88+04
377-	MAT1 107	10.5E6	3.8E6
	+MAT107	2.83+04	2.26+04
378-	MAT1 108	10.5E6	3.8E6
	+MAT108	2.83+04	2.27+04
379-	MAT1 109	10.5E6	3.8E6
	+MAT109	2.53+04	2.27+04
380-	MAT1 110	10.5E6	3.8E6
	+MAT110	1.32+05	1.22+05
381-	MAT1 111	10.5E6	3.8E6
	+MAT111	1.32+05	1.22+05
382-	MAT1 112	10.5E6	3.8E6
	+MAT112	1.78+05	1.42+05
383-	MAT1 113	10.5E6	3.8E6
	+MAT113		

TRUSS TAIL BUM MODEL3 **A 130 ELEMENT VERSION
DAMAGE CRITIUN = NINE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 12

SORTED BULK DATA ECHO

CARD COUNT	1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10 ..
406-	+MAT115 1.52+05 1.22+05
407-	MAT1 114 10.5E6 3.8E6 .33 .1
408-	+MAT114 1.85+05 1.48+05
409-	MAT1 115 10.5E6 3.8E6 .33 .1
410-	+MAT115 8.28+C4 6.62+04
411-	MAT1 116 H.28+04 6.62+04
412-	+MAT116 117 10.5E6 3.8E6 .33 .1
413-	MAT1 118 10.5E6 3.8E6 .33 .1
414-	+MAT117 5.53+04 4.42+04
415-	MAT1 119 10.5E6 3.8E6 .33 .1
416-	+MAT119 5.53+04 4.42+04
417-	MAT1 119 10.5E6 3.8E6 .33 .1
418-	+MAT119 5.53+04 4.42+04
419-	MAT1 120 10.5E6 3.8E6 .33 .1
420-	+MAT120 5.53+04 4.42+04
421-	MAT1 121 10.5E6 3.8E6 .33 .1
422-	+MAT121 4.20+04 3.36+04
423-	MAT1 122 10.5E6 3.8E6 .33 .1
424-	+MAT122 4.20+04 3.36+04
425-	MAT1 123 10.5E6 3.8E6 .33 .1
426-	+MAT123 4.36+04 3.39+04
427-	MAT1 124 10.5E6 3.8E6 .33 .1
428-	+MAT124 4.36+04 3.39+04
429-	MAT1 125 10.5E6 3.8E6 .33 .1
430-	+MAT125 4.20+04 3.36+04
431-	MAT1 126 10.5E6 3.8E6 .33 .1
432-	+MAT126 4.20+04 3.36+04
433-	MAT1 127 10.5E6 3.8E6 .33 .1
434-	+MAT127 4.40+04 3.52+04
435-	MAT1 128 10.5E6 3.8E6 .33 .1
436-	+MAT128 4.40+04 3.52+04
437-	MAT1 129 10.5E6 3.8E6 .33 .1
438-	+MAT129 3.50+04 2.80+04
439-	MAT1 130 10.5E6 3.8E6 .33 .1
440-	+MAT130 3.50+04 2.80+04
441-	MAT1 131 10.5E6 3.8E6 .33 .1
442-	+MAT131 3.50+04 2.80+04
443-	MAT1 132 10.5E6 3.8E6 .33 .1
444-	+MAT132 3.50+04 2.80+04
445-	MAT1 133 10.5E6 3.8E6 .33 .1
446-	+MAT133 1.99+05 1.60+05
447-	MAT1 134 10.5E6 3.8E6 .33 .1
448-	+MAT134 2.39+05 1.91+05
449-	MAT1 135 10.5E6 3.8E6 .33 .1
450-	+MAT135 1.99+05 1.60+05

TRUSS TAIL BOOM MODEL 3 **A 138 ELEMENT VERSION
DAMAGE CRITIUN = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 13

CARD		SORTED	BULK	DATA	ECHO
COUNT		1 .. 2 ..	3 .. 4 ..	5 .. .1	.. 10 ..
451-	MAT1	136	10.5E6	3.8E6	
452-	+MAT136	2.48+05	1.99+05		+MAT136
453-	MAT1	137	10.5E6	3.8E6	
454-	+MAT137	1.10+05	8.77+04		+MAT137
455-	MAT1	138	10.5E6	3.8E6	
456-	+MAT138	1.10+05	8.77+04		+MAT138
457-	PARAM	GROPN1	0		
458-	PTUBE	1	1	1.5	.0625
459-	PTUBE	2	2	1.5	.0625
460-	PTUBE	3	3	1.5	.0625
461-	PTUBE	4	4	1.5	.0625
462-	PTUBE	5	5	1.5	.0625
463-	PTUBE	6	6	1.5	.0625
464-	PTUBE	7	7	1.5	.0625
465-	PTUBE	8	8	1.5	.0625
466-	PTUBE	9	9	1.5	.0625
467-	PTUBE	10	10	1.5	.0625
468-	PTUBE	11	11	1.5	.0625
469-	PTUBE	12	12	1.5	.0625
470-	PTUBE	13	13	1.5	.0625
471-	PTUBE	14	14	1.5	.0625
472-	PTUBE	15	15	1.5	.0625
473-	PTUBE	16	16	1.5	.0625
474-	PTUBE	17	17	1.5	.0625
475-	PTUBE	18	18	1.5	.0625
476-	PTUBE	19	19	1.5	.0625
477-	PTUBE	20	20	1.5	.0625
478-	PTUBE	21	21	1.5	.0625
479-	PTUBE	22	22	1.5	.0625
480-	PTUBE	23	23	1.5	.0625
481-	PTUBE	24	24	1.5	.0625
482-	PTUBE	25	25	1.5	.0625
483-	PTUBE	26	26	1.5	.0625
484-	PTUBE	27	27	1.5	.0625
485-	PTUBE	28	28	1.5	.0625
486-	PTUBE	29	29	1.5	.0625
487-	PTUBE	30	30	1.5	.0625
488-	PTUBE	31	31	1.5	.0625
489-	PTUBE	32	32	1.5	.0625
490-	PTUBE	33	33	1.5	.0625
491-	PTUBE	34	34	1.5	.0625
492-	PTUBE	35	35	1.5	.0625
493-	PTUBE	36	36	1.5	.0625
494-	PTUBE	37	37	1.5	.0625
495-	PTUBE	38	38	1.5	.0625

TRUSS TAIL HORN MODEL 3 *** 136 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 14

CAKD COUNT	PTUBE	39	1.5	.0625
496-	PTUBE	40	1.5	.0625
497-	PTUBE	41	1.5	.0625
498-	PTUBE	42	1.5	.0625
499-	PTUBE	43	1.5	.0625
500-	PTUBE	44	1.5	.0625
501-	PTUBE	45	1.5	.0625
502-	PTUBE	46	1.5	.0625
503-	PTUBE	47	1.5	.0625
504-	PTUBE	48	1.5	.0625
505-	PTUBE	49	1.5	.0625
506-	PTUBE	50	1.5	.0625
507-	PTUBE	51	1.5	.0625
508-	PTUBE	52	1.5	.0625
509-	PTUBE	53	1.5	.0625
510-	PTUBE	54	1.5	.0625
511-	PTUBE	55	1.5	.0625
512-	PTUBE	56	1.5	.0625
513-	PTUBE	57	1.5	.0625
514-	PTUBE	58	1.5	.0625
515-	PTUBE	59	1.5	.0625
516-	PTUBE	60	1.5	.0625
517-	PTUBE	61	1.5	.0625
518-	PTUBE	62	1.5	.0625
519-	PTUBE	63	1.5	.0625
520-	PTUBE	64	1.5	.0625
521-	PTUBE	65	1.5	.0625
522-	PTUBE	66	1.5	.0625
523-	PTUBE	67	1.5	.0625
524-	PTUBE	68	1.5	.0625
525-	PTUBE	69	1.5	.0625
526-	PTUBE	70	1.5	.0625
527-	PTUBE	71	1.5	.0625
528-	PTUBE	72	1.5	.0625
529-	PTUBE	73	1.5	.0625
530-	PTUBE	74	1.5	.0625
531-	PTUBE	75	1.5	.0625
532-	PTUBE	76	1.5	.0625
533-	PTUBE	77	1.5	.0625
534-	PTUBE	78	1.5	.0625
535-	PTUBE	79	1.5	.0625
536-	PTUBE	80	1.5	.0625
537-	PTUBE	81	1.5	.0625
538-	PTUBE	82	1.5	.0625
539-	PTUBE	83	1.5	.0625

TRUSS TAIL BOOM MODEL 3 ***A 13E ELEMENT VERSION
DAMAGE CRITIUN = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 15

CARD COUNT	1	2	3	4	5	6	7	8	9	10
541-	PTUBE	84	84	1.5	.0625					
542-	PTUBE	85	85	1.5	.0625					
543-	PTUBE	86	86	1.5	.0625					
544-	PTUBE	87	87	1.5	.0625					
545-	PTUBE	88	88	1.5	.0625					
546-	PTUBE	89	89	1.5	.0625					
547-	PTUBE	90	90	1.5	.0625					
548-	PTUBE	91	91	1.5	.0625					
549-	PTUBE	92	92	1.5	.0625					
550-	PTUBE	93	93	1.5	.0625					
551-	PTUBE	94	94	1.5	.0625					
552-	PTUBE	95	95	1.5	.0625					
553-	PTUBE	96	96	1.5	.0625					
554-	PTUBE	97	97	1.5	.0625					
555-	PTUBE	98	98	1.5	.0625					
556-	PTUBE	99	99	1.5	.0625					
557-	PTUBE	100	100	1.5	.0625					
558-	PTUBE	101	101	1.5	.0625					
559-	PTUBE	102	102	1.5	.0625					
560-	PTUBE	103	103	1.5	.0625					
561-	PTUBE	104	104	1.5	.0625					
562-	PTUBE	105	105	1.5	.0625					
563-	PTUBE	106	106	1.5	.0625					
564-	PTUBE	107	107	1.5	.0625					
565-	PTUBE	108	108	1.5	.0625					
566-	PTUBE	109	109	1.5	.0625					
567-	PTUBE	110	110	1.5	.0625					
568-	PTUBE	111	111	1.5	.0625					
569-	PTUBE	112	112	1.5	.0625					
570-	PTUBE	113	113	1.5	.0625					
571-	PTUBE	114	114	1.5	.0625					
572-	PJIST	115	115	1.5	.0625					
573-	PTUBE	116	116	1.5	.0625					
574-	PTUBE	117	117	1.5	.0625					
575-	PJIST	118	118	1.5	.0625					
576-	PTUBE	119	119	1.5	.0625					
577-	PJIST	120	120	1.5	.0625					
578-	PJIST	121	121	1.5	.0625					
579-	PJIST	122	122	1.5	.0625					
580-	PJIST	123	123	1.5	.0625					
581-	PJIST	124	124	1.5	.0625					
582-	PTUBE	125	125	1.5	.0625					
583-	PTUBE	126	126	1.5	.0625					
584-	PTUBE	127	127	1.5	.0625					
585-	PTUBE	128	128	1.5	.0625					

TRUSS TAIL BOOM
MODEL 3 ***A 138 ELEMENT VERSION
DAMAGE CRITIUN = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 16

CARD	COUNT	SORTED	BULK	DATA	ECHO
586-	1	1 ..	2 ..	3 ..	4 ..
587-		PTUBE	129	129	1.5 ..
588-		PTUBL	130	130	1.5 ..
589-		PTUBE	131	131	1.5 ..
590-		PTUBL	132	132	1.5 ..
591-		PTUBE	133	133	1.5 ..
592-		PTUBE	134	134	1.5 ..
593-		PTUBE	135	135	1.5 ..
594-		PTUBL	136	136	1.5 ..
595-		PTUBE	137	137	1.5 ..
596-		PTUBL	138	138	1.5 ..
597-		SPL	10	123456	2 ..
		SPC	10	123456	4 ..
		ENDATA	3	123456	

* 12.0 CPU-S 61.0 COR-S 83 ELP-S XGP1

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

* 15.3 CPU-S 65.3 COR-S 87 ELP-S. SEM1 END
* 15.3 CPU-S 65.6 COR-S 87 ELP-S. ---- LINK END ---

TRUSS TAIL BOOM MODEL 3 ***A 136 ELEMENT VERSION
DAMAGE CRITERION = NONE

LINEAR CASE - 30 % LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 20

SUBCASE 1

D I S P L A C E M E N T V E C T O R

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	.0	.0	.0	.0	.0	.0
2	6	.0	.0	.0	.0	.0	.0
3	6	.0	.0	.0	.0	.0	.0
4	6	.0	.0	.0	.0	.0	.0
5	6	3.8244586-03	-8.002697-03	1.239147-03	.0	.0	.0
6	6	-6.296042-04	3.914462-03	1.846044-03	.0	.0	.0
7	6	-3.696554-03	3.156076-03	-9.398228-03	.0	.0	.0
8	6	5.239937-04	-7.229598-03	-8.782766-03	.0	.0	.0
9	6	6.610921-03	-2.17839-02	-2.567162-03	.0	.0	.0
10	6	-2.368843-04	2.303234-03	-2.075979-03	.0	.0	.0
11	6	-6.4435060-03	1.946567-03	-2.499642-02	.0	.0	.0
12	6	9.741511-05	-2.139398-02	-2.450107-02	.0	.0	.0
13	6	8.146073-03	-4.387943-02	-8.707119-03	.0	.0	.0
14	6	1.206440-03	-4.716482-03	-8.338110-03	.0	.0	.0
15	6	-7.925483-03	-4.710570-03	-4.543954-02	.0	.0	.0
16	6	-1.385640-03	-4.388621-02	-4.507126-02	.0	.0	.0
17	6	9.036664-03	-6.966624-02	-1.391069-02	.0	.0	.0
18	6	2.886190-03	-1.779398-02	-1.364049-02	.0	.0	.0
19	6	-8.772825-03	-1.779401-02	-6.206533-02	.0	.0	.0
20	6	-3.109049-03	-6.966215-02	-6.179538-02	.0	.0	.0
21	6	9.657641-03	-9.855769-02	-1.861497-02	.0	.0	.0
22	6	4.303520-03	-3.607603-02	-1.843069-02	.0	.0	.0
23	6	-9.480291-03	-3.607603-02	-7.607050-02	.0	.0	.0
24	6	-4.646086-03	-9.85570-02	-7.588623-02	.0	.0	.0
25	6	1.072468-02	-1.359295-01	-2.298322-02	.0	.0	.0
26	6	5.351045-03	-5.876662-02	-2.328369-02	.0	.0	.0
27	6	-9.875625-03	-5.876632-02	-8.8444667-02	.0	.0	.0
28	6	-6.161680-03	-1.359296-01	-8.874705-02	.0	.0	.0

TRUSS TAII BOOM MODEL 3 **A 138 ELEMENT VERSION
 DAMAGE CRITERION = NONE
 INCREMENTAL STIFFNESS 50 % LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 30

SUBCASE 2

DISPLACEMENT VECTOR

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	G	.0	.0	.0	.0	.0	.0
2	G	.0	.0	.0	.0	.0	.0
3	G	.0	.0	.0	.0	.0	.0
4	G	.0	.0	.0	.0	.0	.0
5	G	6.281367-03	-1.290758-02	1.840769-03	.0	.0	.0
6	G	-1.113551-03	6.320952-03	2.833394-03	.0	.0	.0
7	G	-6.069280-03	5.062479-03	-1.526184-02	.0	.0	.0
8	G	9.525196-04	-1.160466-02	-1.427592-02	.0	.0	.0
9	G	1.099392-02	-3.508677-02	-4.808997-03	.0	.0	.0
10	G	-5.700253-04	3.676014-03	-4.001624-03	.0	.0	.0
11	G	-1.058286-02	3.073215-03	-4.088399-02	.0	.0	.0
12	G	5.735591-04	-3.443918-02	-4.009303-02	.0	.0	.0
13	G	1.346646-02	-7.077503-02	-1.564776-02	.0	.0	.0
14	G	1.670186-03	-7.724496-03	-1.504323-02	.0	.0	.0
15	G	-1.305655-02	-7.732561-03	-7.473497-02	.0	.0	.0
16	G	-1.906340-03	-7.072629-02	-7.415868-02	.0	.0	.0
17	G	1.496602-02	-1.023012-01	-2.523106-02	.0	.0	.0
18	G	4.313699-03	-2.881596-02	-2.478546-02	.0	.0	.0
19	G	-1.445685-02	-2.882510-02	-1.026948-01	.0	.0	.0
20	G	-4.594457-03	-1.122454-01	-1.022772-01	.0	.0	.0
21	G	1.631966-02	-1.568013-01	-3.414978-02	.0	.0	.0
22	G	6.570183-03	-5.8826551-02	-3.383663-02	.0	.0	.0
23	G	-1.560526-02	-5.882407-02	-1.265726-01	.0	.0	.0
24	G	-7.403248-03	-1.587456-01	-1.262994-01	.0	.0	.0
25	G	1.770963-02	-2.156645-01	-4.258951-02	.0	.0	.0
26	G	8.250160-03	-9.476994-02	-4.316600-02	.0	.0	.0
27	G	-1.623571-02	-9.475413-02	-1.480426-01	.0	.0	.0
28	G	-9.431555-03	-2.156395-01	-1.484158-01	.0	.0	.0

TRUSS TAIL BOOM MODEL 3 ***A 15 ELEMENT VERSION
DAMAGE CRITERION = NONE

INCREMENTAL STIFFNESS 75 X LOADING

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 31

SUBCASE: 2

D I S P L A C E M E N T V E C T O R

POINT ID.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	6	.0	.0	.0	.0	.0	.0
2	6	.0	.0	.0	.0	.0	.0
3	6	.0	.0	.0	.0	.0	.0
4	6	.0	.0	.0	.0	.0	.0
5	6	9.333282-03	-1.941616-02	2.650673-03	.0	.0	.0
6	6	-1.747135-03	9.511817-03	4.154578-03	.0	.0	.0
7	6	-9.267624-03	7.592465-03	-2.303395-02	.0	.0	.0
8	6	1.512604-03	-1.71457-02	-2.155452-02	.0	.0	.0
9	6	1.686074-U2	-5.277652-02	-7.732349-03	.0	.0	.0
10	6	-9.960997-U4	5.494815-03	-6.506225-03	.0	.0	.0
11	6	-1.697215-U2	4.566615-03	-6.191937-02	.0	.0	.0
12	6	7.220153-U4	-5.175763-02	-6.073556-02	.0	.0	.0
13	6	2.049857-U2	-1.064728-01	-2.473355-02	.0	.0	.0
14	6	2.308141-U3	-1.171781-02	-2.38176-02	.0	.0	.0
15	6	-1.981633-U2	-1.173116-02	-1.134944-01	.0	.0	.0
16	6	-2.625525-U3	-1.063539-01	-1.126407-01	.0	.0	.0
17	6	2.279416-U2	-1.689405-01	-4.003750-02	.0	.0	.0
18	6	6.235000-U3	-4.344740-02	-3.935592-02	.0	.0	.0
19	6	-2.197997-U2	-4.346799-02	-1.56407-01	.0	.0	.0
20	6	-6.598385-U3	-1.687749-01	-1.557932-01	.0	.0	.0
21	6	2.446342-U2	-2.387751-01	-5.444707-02	.0	.0	.0
22	6	9.6104-U35-U3	-8.767448-02	-5.396444-02	.0	.0	.0
23	6	-2.370997-U2	-8.766325-02	-1.932955-01	.0	.0	.0
24	6	-1.017334-U2	-2.388695-01	-1.928997-01	.0	.0	.0
25	6	2.689789-U2	-3.241742-01	-6.81826-02	.0	.0	.0
26	6	1.212250-U2	-1.422386-01	-6.91640-U2	.0	.0	.0
27	6	-2.465255-U2	-1.425334-U1	-2.26720-U1	.0	.0	.0
28	6	-1.380776-U2	-3.241178-U1	-2.271980-U1	.0	.0	.0

TRUSS TAII E004 MOUTL, ***A 136 ELEMENT VERSION
DAMPL CRITERIUM = NONE

INCREMENTAL STIFFNESS 100X LUAD1.JB

DISPLACEMENT VECTOR

POINT NO.	TYPE	X (IN)	Y (IN)	Z (IN)	R1	R2	R3
1	G	0	0	0	0	0	0
2	G	0	0	0	0	0	0
3	G	0	0	0	0	0	0
4	G	0	0	0	0	0	0
5	G	1.286113E-02	-2.596397E-02	3.386742E-03	0	0	0
6	G	-2.431297E-03	1.272251E-02	5.412542E-03	0	0	0
7	G	-1.241681E-02	1.012095E-02	-3.089950E-02	0	0	0
8	G	2.127347E-03	-2.323194E-02	-2.892935E-02	0	0	0
9	G	2.237734E-02	-7.057362E-02	-1.100286E-02	0	0	0
10	G	-1.515039E-03	7.296367E-03	-9.347485E-03	0	0	0
11	G	-2.169848E-02	6.031951E-03	-6.335608E-02	0	0	0
12	G	1.177256E-03	-6.915148E-02	-8.178067E-02	0	0	0
13	G	2.773650E-02	-1.423995E-01	-3.466389E-02	0	0	0
14	G	2.816091E-03	-1.580074E-02	-3.342902E-02	0	0	0
15	G	-2.681393E-02	-1.586134E-02	-1.531947E-01	0	0	0
16	G	-3.184492E-03	-1.422796E-01	-1.520707E-01	0	0	0
17	G	3.086740E-02	-2.258348E-01	-5.631068E-02	0	0	0
18	G	A.0000676E-03	-5.824678E-02	-5.539491E-02	0	0	0
19	G	-2.970165E-02	-5.828346E-02	-2.117218E-01	0	0	0
20	G	-8.407594E-03	-2.256143E-01	-2.103185E-01	0	0	0
21	G	3.366480E-02	-3.191812E-01	-7.690203E-02	0	0	0
22	G	1.247221E-02	-1.173368E-01	-7.624062E-02	0	0	0
23	G	-3.202059E-02	-1.173151E-01	-2.023322E-01	0	0	0
24	G	-1.312326E-02	-3.189375E-01	-2.618314E-01	0	0	0
25	G	3.644662E-02	-4.332005E-01	-9.665431E-02	0	0	0
26	G	1.582748E-02	-1.903973E-01	-9.807861E-02	0	0	0
27	G	-3.327300E-02	-1.905448E-01	-3.085431E-01	0	0	0
28	G	-1.795811E-02	-4.330399E-01	-3.090712E-01	0	0	0

TRUSS TAIL BOOM MODEL: ***N 150 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 36

INCREMENTAL STIFFNESS 50 X LOADS

ELEMENT ID.	AXIAL STRESS	SAFETY MARGIN	TORSIONAL STRESS	SAFETY MARGIN	ROD ELEMENT ID.	ELEMENT ID.	ELEMENTS (C TUBE) (LBS/SQ IN.)			SAFETY MARGIN
							ROD ELEMENT ID.	AXIAL STRESS	TORSIONAL STRESS	
1	*0	*0	*0	*0	2	4	6	*0	*0	*0
3	*0	*0	*0	*0	6	6	6	*0	*0	*0
5	*0	*0	*0	*0	8	8	8	-3.890512+02	4.8+01	*0
7	2.095866+03	1.0+01	*0	*0	10	10	10	3.279128+02	7.2+01	*0
9	-2.017964+03	8.5+00	*0	*0	12	12	12	1.678001+03	8.5+00	*0
11	-7.086355+02	1.7+01	*0	*0	14	14	14	-5.382429+02	2.3+01	*0
13	2.006461+03	7.2+00	*0	*0	16	16	16	-1.983224+03	5.5+00	*0
15	1.078741+03	1.5+01	*0	*0	18	18	18	6.932344+02	2.3+01	*0
17	-2.175371+03	5.1+00	*0	*0	20	20	20	-2.082070+02	4.6+01	*0
19	1.999312+02	6.1+01	*0	*0	22	22	22	-1.631870+02	6.6+01	*0
21	-1.722111+02	5.6+01	*0	*0	24	24	24	-6.413224+02	7.3+01	*0
23	-5.433204+02	7.9+01	*0	*0	26	26	26	6.501366+02	9.6+01	*0
25	5.302805+02	1.0+02	*0	*0	28	28	28	-9.525177+00	2.4+03	*0
27	-2.633028+00	6.7+03	*0	*0	30	30	30	1.219843+02	2.3+02	*0
29	1.813031+03	1.3+01	*0	*0	32	32	32	-1.512231+02	1.3+02	*0
31	-1.763800+03	1.0+01	*0	*0	34	34	34	1.528708+03	8.1+00	*0
33	-6.734526+02	1.5+01	*0	*0	36	36	36	-1.089855+03	1.2+01	*0
35	2.035997+03	7.8+00	*0	*0	38	38	38	-2.407334+03	4.8+00	*0
37	1.358321+03	1.2+01	*0	*0	40	40	40	1.193662+03	1.4+01	*0
39	-2.150784+03	5.7+00	*0	*0	42	42	42	-2.189064+02	5.5+01	*0
41	1.139936+02	1.2+02	*0	*0	44	44	44	2.103704+02	6.5+01	*0
43	-1.065987+02	1.6+02	*0	*0	46	46	46	-3.616479+02	1.7+02	*0
45	-5.997916+02	9.1+01	*0	*0	48	48	48	3.425364+02	2.3+02	*0
47	5.855759+02	1.2+02	*0	*0	50	50	50	-1.276120+01	2.3+03	*0
49	-3.765503+00	7.8+03	*0	*0	52	52	52	7.144226+02	3.3+01	*0
51	1.379911+03	1.7+01	*0	*0	54	54	54	-7.549249+02	2.5+01	*0
53	-1.321422+03	1.4+01	*0	*0	56	56	56	2.023532+03	6.8+00	*0
55	-1.129163+03	1.2+01	*0	*0	58	58	58	-1.770916+03	7.7+00	*0
57	2.173116+03	7.8+00	*0	*0	60	60	60	-3.003300+03	4.0+00	*0
59	1.714486+03	9.+00	*0	*0	62	62	62	1.896380+03	9.2+00	*0
61	-2.300082+02	5.7+00	*0	*0	64	64	64	-2.812774+02	4.3+01	*0
63	1.488735+02	1.0+02	*0	*0	66	66	66	2.733373+02	5.6+01	*0
65	-1.438065+02	8.5+01	*0	*0	68	68	68	-3.145312+01	2.6+03	*0
67	-6.862996+02	1.0+02	*0	*0	70	70	70	5.296387+00	2.0+04	*0
69	6.687827+02	1.3+02	*0	*0	72	72	72	-1.962646+01	2.0+03	*0
71	-1.930988+00	2.0+04	*0	*0	74	74	74	1.148172+03	2.9+01	*0
73	1.290318+03	2.5+01	*0	*0	76	76	76	-1.201685+03	2.2+01	*0
75	-1.217862+03	2.1+01	*0	*0	78	78	78	3.062812+03	7.4+00	*0
77	-1.595667+03	1.2+01	*0	*0	80	80	80	-2.185781+03	8.7+00	*0
79	2.257876+03	1.1+01	*0	*0	82	82	82	-3.063670+03	5.7+00	*0
81	1.601493+03	1.5+01	*0	*0	84	84	84	2.339188+03	1.0+01	*0
83	-2.590856+03	7.9+00	*0	*0	86	86	86	-6.029602+03	2.0+02	*0
85	-7.093945+01	2.4+02	*0	*0	88	88	88	7.137585+01	2.9+02	*0
87	7.717099+01	2.7+02	*0	*0	90	90	90	-4.143457+01	2.6+03	*0

TRUSS TAIL BOOM AQUEL3 ***A 138 ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 37

INCREMENTAL STIFFNESS SU & LUAVING

ELEMENT ID.	AXIAL STRESS	STRESSES IN			ROD ELEMENTS (C T U B E) (LBS/SQ.IN.)		
		SAFETY STRESS	TORSIONAL STRESS	MARGIN	AXIAL STRESS	TORSIONAL STRESS	SAFETY MARGIN
91	7.755576+02	1.5+02	.0	.0	92	6.912109+00	2.0+04
93	-1.174805+00	4.3+04	.0	.0	94	-2.545911+01	2.0+03
95	1.517651+03	3.0+01	.0	.0	96	1.319505+03	3.4+01
97	-1.379430+03	2.6+01	.0	.0	98	-1.431422+03	2.5+01
99	-1.824011+03	1.4+01	.0	.0	100	3.491667+03	8.9+00
101	2.089045+03	1.3+01	.0	.0	102	-2.443332+03	1.1+01
103	1.834190+03	1.6+01	.0	.0	104	-3.495652+03	6.9+00
105	-2.6638E5+03	9.8+00	.0	.0	106	2.617911+03	1.3+01
107	-5.250098+01	4.3+02	.0	.0	108	-1.250378+02	1.8+02
109	1.144460+02	2.5+02	.0	.0	110	5.255762+01	5.4+02
111	-9.194983+02	1.3+02	.0	.0	112	-4.764453+01	3.0+03
113	6.875625+02	1.7+02	.0	.0	114	-4.732910+00	3.1+04
115	6.586035+01	1.3+03	.0	.0	116	-1.071396+02	6.2+02
117	1.850741+03	2.9+01	.0	.0	118	1.287430+03	4.2+01
119	-1.343775+03	3.2+01	.0	.0	120	-1.794080+03	2.4+01
121	-2.061425+03	1.5+01	.0	.0	122	4.128576+03	9.2+00
123	3.055926+03	1.3+01	.0	.0	124	-3.026574+03	1.1+01
125	2.094637+03	1.9+01	.0	.0	126	-4.120793+03	7.2+00
127	-3.23598+03	1.0+01	.0	.0	128	3.164576+03	1.3+01
129	-3.634321+02	7.6+01	.0	.0	130	9.194763+01	3.8+02
131	-9.38428+02	3.1+02	.0	.0	132	3.806885+02	9.1+01
133	-4.034072+02	4.0+02	.0	.0	134	-2.479297+01	7.7+03
135	6.054766+02	3.3+02	.0	.0	136	-1.595508+01	1.2+04
137	-1.985935+03	4.3+01	.0	.0	138	2.076661+03	5.2+01

TRUSS TAIL BOOM MODEL 3 **/ 15b ELEMENT VERSION
DAMAGE CRITERION = NONE

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 38

INCREMENTAL STIFFNESS 75 % LOADING

ELEMENT ID.	AXIAL STRESS	STRUCTURE			ROD ELEMENTS			(C T U B E) (LBS/SQ.IN.)			SAFETY MARGIN
		Safety Margin	Torsional Stress	IN	Element ID.	Axial Stress	Torsional Stress	SAFETY MARGIN	SAFETY MARGIN	SAFETY MARGIN	
1	0	0	0	0	2	0	0	0	0	0	0
3	0	0	0	0	4	0	0	0	0	0	0
5	3.180557+03	6.5+00	0	0	6	0	-6.090774+02	3.0+01	0	0	0
7	-3.061054+03	5.2+00	0	0	8	0	5.195056+02	4.5+01	0	0	0
9	-1.065306+03	1.1+01	0	0	10	0	2.524474+03	5.3+00	0	0	0
11	3.029875+03	4.4+00	0	0	12	0	-7.904977+02	1.6+01	0	0	0
13	1.525671+03	9.5+00	0	0	14	0	-2.973785+03	3.3+00	0	0	0
15	-3.286572+03	3.0+00	0	0	16	0	1.026758+03	1.5+01	0	0	0
17	2.991644+02	4.6+01	0	0	18	0	-3.139922+02	3.0+01	0	0	0
19	-2.587822+02	3.7+01	0	0	20	0	2.764727+02	4.3+01	0	0	0
21	-8.223587+02	5.2+01	0	0	22	0	-9.852322+02	4.7+01	0	0	0
23	7.950940+02	6.7+01	0	0	24	0	9.610486+02	6.2+01	0	0	0
25	-9.202881+02	2.5+03	0	0	26	0	-1.660988+01	1.4+03	0	0	0
27	2.760029+03	7.9+00	0	0	28	0	1.582844+02	1.5+02	0	0	0
29	-2.681196+03	6.3+00	0	0	30	0	-1.976355+02	9.9+01	0	0	0
31	-1.311085+03	5.7+00	0	0	32	0	2.900671+03	5.0+00	0	0	0
33	3.076449+03	4.9+00	0	0	34	0	-1.619374+03	7.9+00	0	0	0
35	-2.038528+03	7.6+00	0	0	36	0	-3.617165+03	2.9+00	0	0	0
37	-3.248916+03	3.5+00	0	0	38	0	1.776004+03	9.2+00	0	0	0
39	1.690561+02	8.1+01	0	0	40	0	-3.286188+02	3.3+01	0	0	0
41	-1.605795+02	6.9+01	0	0	42	0	3.153705+02	4.3+01	0	0	0
43	-9.082664+02	6.0+01	0	0	44	0	-5.690024+02	1.1+02	0	0	0
45	8.772100+02	7.8+01	0	0	46	0	5.263073+02	1.5+02	0	0	0
47	-1.266028+01	2.3+03	0	0	48	0	-2.385867+01	1.2+03	0	0	0
49	2.106622+03	1.1+02	0	0	50	0	1.046115+03	2.3+01	0	0	0
51	-2.245047+03	6.8+02	0	0	52	0	-1.101124+03	1.7+01	0	0	0
53	-2.013024+03	7.8+00	0	0	54	0	3.644222+03	4.2+00	0	0	0
55	-1.695562+03	7.8+00	0	0	56	0	-2.643214+03	4.8+00	0	0	0
57	3.287532+03	4.8+00	0	0	58	0	-4.511325+03	2.3+00	0	0	0
59	2.577258+03	6.3+00	0	0	60	0	2.826779+03	5.8+00	0	0	0
61	-3.472183+03	3.5+00	0	0	62	0	-4.212401+02	2.8+01	0	0	0
63	2.245047+02	6.6+01	0	0	64	0	-1.769254+03	1.4+01	0	0	0
65	-2.189875+02	5.6+01	0	0	66	0	4.082813+02	3.7+01	0	0	0
67	-1.036244+03	6.9+01	0	0	68	0	-7.672949+01	1.1+03	0	0	0
69	9.972138+02	9.0+01	0	0	70	0	1.665448+01	6.3+03	0	0	0
71	-1.113915+03	3.4+03	0	0	72	0	-3.766003+01	1.0+03	0	0	0
73	1.969708+03	1.6+01	0	0	74	0	1.696034+03	1.9+01	0	0	0
75	-1.853718+03	1.4+01	0	0	76	0	-1.769254+03	1.4+01	0	0	0
77	-2.386512+03	7.6+00	0	0	78	0	4.599664+03	4.6+00	0	0	0
79	3.381771+02	6.5+00	0	0	80	0	-3.265124+03	5.5+00	0	0	0
81	2.410217+03	9.7+00	0	0	82	0	-4.602004+03	3.5+00	0	0	0
83	-3.611061+03	4.4+00	0	0	84	0	3.495148+03	6.6+00	0	0	0
85	-1.065921+02	1.6+02	0	0	86	0	-1.288851+02	1.3+02	0	0	0
87	1.133459+02	1.4+02	0	0	88	0	1.070154+02	2.0+02	0	0	0
89	-1.200725+03	7.8+01	0	0	90	0	-9.330469+01	1.2+03	0	0	0

TRUSS TAIL BOOM MODEL 3 **A 138 ELEMENT VERSION
DAMAGE CRITERION = IN/UT

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 39

INCREMENTAL STIFFNESS 75 * LOADING

ELEMENT ID.	AXIAL STRESS	STRESSES IN			ROD ELEMENT ID.	(C T U B E) (LBS/SQ.IN.)		
		SAFETY FACTOR	TORSIONAL STRESS	SAFETY MARGIN		AXIAL STRESS	SAFETY MARGIN	TORSIONAL STRESS
91	1.156034+0.0	1.0+02	0	0	92	1.558154+01	9.0+03	0
93	-1.186911+0.1	4.3+03	0	0	94	-4.814172+01	1.1+03	0
95	2.309223+0.3	1.9+01	0	0	96	1.956901+03	2.3+01	0
97	-2.091982+0.3	1.7+01	0	0	98	-2.114908+03	1.7+01	0
99	-2.733761+0.5	9.1+00	0	0	100	5.242883+03	5.6+00	0
101	3.757562+0.5	8.5+00	0	0	102	-3.654515+03	6.8+00	0
103	2.761693+0.3	1.1+01	0	0	104	-5.251874+03	4.3+00	0
105	-4.019845+0.5	6.2+00	0	0	106	3.916175+03	8.2+00	0
107	-7.846620+0.1	2.5+02	0	0	108	-1.914911+02	1.2+02	0
109	1.676151+0.2	1.0+02	0	0	110	7.899951+01	3.6+02	0
111	-1.391391+0.5	6.7+01	0	0	112	-1.073594+02	1.3+03	0
113	1.319359+0.5	1.1+02	0	0	114	-1.064844+01	1.4+04	0
115	8.306836+0.1	4.0+03	0	0	116	-1.760957+02	3.7+02	0
117	2.797051+0.3	1.9+01	0	0	118	1.910486+03	2.8+01	0
119	-2.037488+0.3	2.1+01	0	0	120	-2.669357+03	1.6+01	0
121	-3.087775+0.3	9.9+00	0	0	122	6.20114+03	5.8+00	0
123	4.603016+0.5	8.5+00	0	0	124	-4.538874+03	6.7+00	0
125	3.165085+0.5	1.2+01	0	0	126	-6.186600+03	4.4+00	0
127	-4.846732+0.5	6.3+00	0	0	128	4.736312+03	6.3+00	0
129	-5.380937+0.2	5.1+01	0	0	130	1.373533+02	2.5+02	0
131	-1.344390+0.2	2.1+02	0	0	132	5.770344+02	6.0+01	0
133	-5.291074+0.2	3.0+02	0	0	134	-5.592969+01	3.4+03	0
135	9.844441+0.2	2.0+02	0	0	136	-3.56937+01	5.6+03	0
137	-2.938574+0.5	2.9+01	0	0	138	3.147651+03	3.4+01	0

TRUSS TAIL BOUND ANALYSIS
DAMAGE CRITERIA = 0.01

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 40

INCREMENTAL STIFFNESS, LINEAR LOADINGS

ELEMENT ID.	INCREMENTAL STIFFNESS		STRUCTURAL STRESS		STRUCTURAL STRESS		KNUDSEN SAFETY MARGIN		ELEMENTS (CUTUBE) (LSS/SL)		SAFETY MARGIN	
	AXIAL STRESS	Safety Margin	Safety Margin	Torsional Stress	Safety Margin	Element ID.	Axial Stress	Margin	SAFETY	TORSIONAL	MARGIN	MARGIN
1	*.0	0	0	0	0	2	*.0	0	0	0	0	0
3	*.0	0	0	0	0	4	*.0	0	0	0	0	0
5	*.0	0	0	0	0	6	*.0	0	0	0	0	0
7	4.291310+03	4.291310+03	4.291310+03	0	0	8	-8.458912+02	2.2+01	0	0	0	0
9	-4.121390+03	3.07+00	3.07+00	0	0	10	7.293166+02	3.2+01	0	0	0	0
11	-1.4234972+03	0.1+00	0.1+00	0	0	12	3.376294+03	3.7+00	0	0	0	0
13	4.065972+03	5.0+00	5.0+00	0	0	14	-1.031514+03	1.2+01	0	0	0	0
15	2.032596+03	6.0+00	6.0+00	0	0	16	-3.969805+03	2.2+00	0	0	0	0
17	-4.15740+03	2.0+00	2.0+00	0	0	18	1.351614+03	1.1+01	0	0	0	0
19	3.2779035+12	2.0+01	2.0+01	0	0	20	-4.208998+02	2.2+01	0	0	0	0
21	-3.455797+02	2.0+01	2.0+01	0	0	22	3.70930+02	3.2+01	0	0	0	0
23	-1.1056643+03	2.0+01	2.0+01	0	0	24	-1.344760+03	3.4+01	0	0	0	0
25	1.053840+03	5.0+01	5.0+01	0	0	26	1.302649+03	4.6+01	0	0	0	0
27	-1.355426+01	1.2+03	1.2+03	0	0	28	-2.522804+01	9.0+02	0	0	0	0
29	3.734626+03	5.6+00	5.6+00	0	0	30	1.783222+02	1.4+02	0	0	0	0
31	-3.2235605+03	4.4+01	4.4+01	0	0	32	-2.247124+02	8.7+01	0	0	0	0
33	-1.7433674+03	7.0+00	7.0+00	0	0	34	3.878163+03	3.5+00	0	0	0	0
35	4.111343+02	3.4+00	3.4+00	0	0	36	-2.138730+03	5.7+00	0	0	0	0
37	2.713465+02	2.4+00	2.4+00	0	0	38	-4.831562+03	1.9+00	0	0	0	0
39	-4.363564+03	2.0+01	2.0+01	0	0	40	2.348050+03	6.7+00	0	0	0	0
41	2.2255667+32	6.1+01	6.1+01	0	0	42	-4.385030+02	2.5+01	0	0	0	0
43	-2.152926+02	5.1+01	5.1+01	0	0	44	4.202727+02	3.2+01	0	0	0	0
45	-1.222733+02	4.0+01	4.0+01	0	0	46	-7.941973+02	7.6+01	0	0	0	0
47	1.168376+03	2.0+01	2.0+01	0	0	48	7.184955+02	1.1+02	0	0	0	0
49	-2.6353715+01	1.1+03	1.1+03	0	0	50	-3.809613+01	7.7+02	0	0	0	0
51	2.855905+03	7.0+00	7.0+00	0	0	52	1.361091+03	1.7+01	0	0	0	0
53	-2.7725667+32	6.2+00	6.2+00	0	0	54	-1.426371+03	1.3+01	0	0	0	0
55	-2.283539+03	5.0+00	5.0+00	0	0	56	4.866162+03	2.9+00	0	0	0	0
57	4.421091+03	3.5+00	3.5+00	0	0	58	-3.507026+03	3.4+00	0	0	0	0
59	3.4432653+03	4.0+00	4.0+00	0	0	60	-6.024208+03	1.5+00	0	0	0	0
61	-4.0554512+02	2.0+01	2.0+01	0	0	62	3.745650+03	4.2+00	0	0	0	0
63	3.9112399+02	5.0+01	5.0+01	0	0	64	-5.607356+02	2.1+01	0	0	0	0
65	-2.561052+02	4.1+01	4.1+01	0	0	66	5.421022+02	2.8+01	0	0	0	0
67	-1.391804+03	2.1+01	2.1+01	0	0	68	-1.418672+02	5.7+02	0	0	0	0
69	1.321798+02	6.0+01	6.0+01	0	0	70	3.38843+01	3.1+03	0	0	0	0
71	-2.607666+01	1.0+03	1.0+03	0	0	72	-6.115771+01	6.3+02	0	0	0	0
73	2.612370+03	1.2+01	1.2+01	0	0	74	2.22668+03	1.4+01	0	0	0	0
75	-2.297915+02	7.0+01	7.0+01	0	0	76	-2.314643+03	1.1+01	0	0	0	0
77	-3.199857+02	5.0+00	5.0+00	0	0	78	6.141916+03	3.2+00	0	0	0	0
79	4.315040+02	4.0+01	4.0+01	0	0	80	-4.335358+03	3.9+00	0	0	0	0
81	3.227751+02	7.0+01	7.0+01	0	0	82	-6.145446+03	2.3+00	0	0	0	0
83	-4.344555+02	3.0+01	3.0+01	0	0	84	4.645612+03	4.7+00	0	0	0	0
85	-1.474152+02	1.7+01	1.7+01	0	0	86	-1.751951+02	4.6+01	0	0	0	0
87	1.451870+02	1.0+01	1.0+01	0	0	88	1.426525+02	1.5+02	0	0	0	0
89	-1.611414+02	0.5+01	0.5+01	0	0	90	-1.661044+02	6.5+02	0	0	0	0

TRUSS TAIL BOOM MULLS *** A 136 ELEMENT VERSION
DAMAGE CRITERION = No 14t

OCTOBER 26, 1977 NASTRAN 7/15/77 PAGE 41

INCREMENTAL STIFFNESS 100K LOAD

ELEMENT ID.	AXIAL STRESS	STRUCTURE IN		ROD ELEMENT ID.	ELEMENTS (CTUBE) (LBS/SQ.IN.)	
		SAFETY MARGIN	TORSIONAL STRESS		SAFETY MARGIN	TORSIONAL STRESS
91	1.531721+05	7.6+01	0	92	2.777783+01	5.0+03
93	-2.941113+01	1.7+03	0	94	-7.744897+01	6.5+02
95	3.123028+03	1.4+01	0	96	2.379405+03	1.7+01
97	-2.820045+03	1.2+01	0	98	-2.776889+03	1.2+01
99	-3.656008+03	6.5+00	0	100	6.598632+03	3.9+00
101	5.043096+03	6.1+00	0	102	-4.659465+03	4.9+00
103	3.696921+03	8.3+00	0	104	-7.014665+03	2.9+00
105	-5.392645+03	4.3+00	0	106	5.208050+03	5.9+00
107	-1.053252+02	2.1+02	0	108	-2.605734+02	8.6+01
109	2.180469+02	1.3+02	0	110	1.055802+02	2.7+02
111	-1.871523+03	6.4+01	0	112	-1.911719+02	7.4+02
113	1.745234+03	8.6+01	0	114	-1.892187+01	7.8+03
115	8.967303+91	9.2+02	0	116	-2.553506+02	2.6+02
117	3.757449+03	1.4+01	0	118	2.519782+03	2.1+01
119	-2.745965+03	1.5+01	0	120	-3.530040+03	1.2+01
121	-4.112268+03	7.2+00	0	122	8.288303+03	4.1+00
123	6.163986+03	6.1+00	0	124	-6.046208+03	4.8+00
125	4.246366+02	8.9+00	0	126	-8.251161+03	3.1+00
127	-6.498541+03	4.4+00	0	128	6.301957+03	6.0+00
129	-7.079434+02	3.9+01	0	130	1.833745+02	1.9+02
131	-1.776914+02	1.6+02	0	132	7.775601+02	4.4+01
133	-6.038027+02	2.6+02	0	134	-9.966016+01	1.9+03
135	1.414676+03	1.4+02	0	136	-6.313672+01	3.2+03
137	-3.863580+03	2.2+01	0	138	4.233999+03	2.5+01

* 57.8 CPU-S 266.3 COR-S 1345 ELP-S.
* 57.9 CPU-S 266.3 COR-S 1345 ELP-S.

END
BEGIN

APPENDIX D
Element Identification Table for All Models

<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>	<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>
Vertical	1	1-2	Vertical	25	7-8
Horizontal	2	1-4	Horizontal	26	6-7
Vertical	3	3-4	Transverse	27	5-7
Horizontal	4	2-3	Diagonals	28	6-8
Transverse	5	1-3	Longerons	29	5-9
Diagonals	6	2-4	"	30	6-10
Longerons	7	1-5	"	31	7-11
"	8	2-6	"	32	8-12
"	9	3-7	Outside	33	5-10
"	10	4-8	Diagonals	34	6-9
Outside	11	1-6	"	35	5-12
Diagonals	12	2-5	"	36	8-9
"	13	1-8	"	37	8-11
"	14	4-5	"	38	7-12
"	15	4-7	"	39	6-11
"	16	3-8	"	40	7-10
"	17	2-7	Interior	41	5-11
"	18	3-6	Diagonals	42	6-12
Interior	19	1-7	"	43	7-9
Diagonals	20	2-8	"	44	8-10
"	21	3-5	Vertical	45	9-10
"	22	4-6	Horizontal	46	9-12
Vertical	23	5-6	Vertical	47	11-12
Horizontal	24	5-8	Horizontal	48	10-11

<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>	<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>
Transverse	49	9-11	Diagonals	80	16-17
Diagonals	50	10-12	"	81	16-19
Longerons	51	9-13	"	82	15-20
"	52	10-14	"	83	14-19
"	53	11-13	"	84	15-18
"	54	12-16	Interior	85	13-19
Outside	55	9-14	Diagonals	86	14-20
Diagonals	56	10-13	"	87	15-17
"	57	9-16	"	88	16-18
"	58	12-13	Vertical	89	17-18
"	59	12-15	Horizontal	90	17-20
"	60	11-16	Vertical	91	19-20
"	61	10-15	Horizontal	92	18-19
"	62	11-14	Transverse	93	17-19
Interior	63	9-15	Diagonals	94	18-20
Diagonals	64	10-16	Longerons	95	17-21
"	65	11-13	"	96	18-22
"	66	12-14	"	97	19-23
Vertical	67	13-14	"	98	20-24
Horizontal	68	13-16	Outside	99	17-22
Vertical	69	15-16	Diagonals	100	18-21
Horizontal	70	14-15	"	101	17-24
Transverse	71	13-15	"	102	20-21
Diagonals	72	14-16	"	103	20-23
Longerons	73	13-17	"	104	19-24
Longerons	74	14-18	"	105	18-23
"	75	15-19	"	106	19-22
"	76	16-20	Interior	107	17-23
Outside	77	13-18	Diagonals	108	18-24
Diagonals	78	14-17	"	109	19-21
"	79	13-20	"	110	20-22

<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>	<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>
Vertical	111	21-22	Longerons	142	28-32
Horizontal	112	21-24	Outside	143	25-30
Vertical	113	23-24	Diagonals	144	26-29
Horizontal	114	22-23	"	145	25-32
Transverse	115	21-23	"	146	28-29
Diagonals	116	22-24	"	147	28-31
Longerons	117	21-25	"	148	27-32
"	118	22-26	"	149	26-31
"	119	23-27	"	150	27-30
"	120	24-28	Interior	151	25-31
Outside	121	21-26	Diagonals	152	26-32
Diagonals	122	22-25	"	153	27-29
"	123	21-28	"	154	28-30
Diagonals	124	24-25	Vertical	155	29-30
"	125	24-27	Horizontal	156	29-32
"	126	23-28	Vertical	157	31-32
"	127	22-27	Horizontal	158	30-31
"	128	23-26	Transverse	159	29-31
Interior	129	21-27	Diagonals	160	30-32
Diagonals	130	22-28	Longerons	161	29-33
"	131	23-25	"	162	30-34
"	132	24-26	"	163	31-35
Vertical	133	25-26	"	164	32-36
Horizontal	134	25-28	Outside	165	29-34
Vertical	135	27-28	Diagonals	166	30-33
Horizontal	136	26-27	"	167	29-36
Transverse	137	25-27	"	168	32-33
Diagonals	138	26-28*	"	169	32-35
*Note models 2 & 3 end 138					
Longerons	139	25-29	"	170	31-36
"	140	26-30	"	171	3-35
"	141	27-31	Interior	172	31-34
				173	29-35

<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>	<u>Type</u>	<u>Element ID</u>	<u>Node-Node</u>
Diagonals	174	30-36	Longerons	206	38-42
"	175	31-33	"	207	39-43
"	176	32-34	"	208	40-44
Vertical	177	33-34	Outside	209	37-42
Horizontal	178	33-36	Diagonals	210	38-41
Vertical	179	35-36	"	211	37-44
Horizontal	180	34-35	"	212	40-41
Transverse	181	33-35	"	213	40-43
Diagonals	182	34-36	"	214	39-44
Longerons	183	33-37	"	215	38-43
"	184	34-38	"	216	39-42
"	185	35-39	Interior	217	37-43
"	186	36-40	Diagonals	218	38-44
Outside	187	33-38	"	219	39-41
Diagonals	188	34-37	"	220	40-42
"	189	33-40	Vertical	221	41-42
"	190	36-37	Horizontal	222	41-44
"	191	36-39	Vertical	223	43-44
"	192	35-40	Horizontal	225	42-43
"	193	34-39	Transverse	225	41-43
"	194	35-38	Diagonals	226	42-44
Interior	195	33-39			
Diagonals	196	34-40			
"	197	35-37			
"	198	36-38			
Vertical	199	37-38			
Horizontal	200	37-40			
Vertical	201	39-40			
Horizontal	202	38-39			
Transverse	203	37-39			
Diagonals	204	38-40			
Longerons	205	37-41			

Appendix E
Grid Point Locations Model 1

<u>Point #</u>	<u>X</u>	<u>Y</u>	<u>Z</u>
1	.000	12.300	13.300
2	.000	12.100	-11.500
3	.000	-11.400	-11.500
4	.000	-11.600	13.300
5	23.700	11.300	12.300
6	23.900	11.100	-10.700
7	23.900	-10.600	-10.700
8	23.750	-10.800	12.300
9	45.950	10.400	11.300
10	45.950	10.200	-9.900
11	45.950	-9.800	-9.900
12	45.950	-10.000	11.300
13	66.400	9.500	10.500
14	66.500	9.300	-9.200
15	66.500	-9.100	-9.200
16	66.400	-9.300	10.500
17	85.400	8.800	9.700
18	85.400	8.600	-8.600
19	85.400	-8.400	-8.600
20	85.400	-8.600	9.700
21	103.000	8.000	8.900
22	103.000	7.900	-8.000
23	103.000	-7.800	-8.000
24	103.000	-8.000	8.900
25	119.300	7.400	8.300
26	119.300	7.200	-7.400
27	119.300	-7.300	-7.400
28	119.300	-7.500	8.300
29	134.400	6.700	7.600

Appendix E (continued)

<u>Point #</u>	<u>X</u>	<u>Y</u>	<u>Z</u>
30	134.500	6.600	-6.900
31	134.500	-6.800	-6.900
32	134.400	-6.900	7.600
33	148.500	6.100	7.000
34	148.500	6.000	-6.500
35	148.500	-6.300	-6.500
36	148.500	-6.400	7.000
37	161.400	5.600	6.500
38	161.500	5.500	-6.000
39	161.500	-5.800	-6.000
40	161.400	-6.000	6.500
41	173.500	5.100	6.000
42	173.500	5.000	-5.600
43	173.500	-5.400	-5.600
44	173.500	-5.500	6.000

Appendix F
Grid Point Locations Models 2 and 3

<u>Point #</u>	<u>X</u>	<u>Y</u>	<u>Z</u>
1	.000	11.95	12.375
2	.000	11.75	-12.375
3	.000	-11.75	-12.375
4	.000	-11.95	12.375
5	33.5	10.666	11.105
6	33.5	10.485	-11.105
7	33.5	-10.485	-11.105
8	33.5	-10.666	11.105
9	66.5	9.401	9.855
10	66.5	9.239	-9.855
11	66.5	-9.239	-9.855
12	66.5	-9.401	9.855
13	99.5	8.136	8.604
14	99.5	7.994	-8.604
15	99.5	-7.994	-8.604
16	99.5	-8.136	8.604
17	127.5	7.063	7.543
18	127.5	6.937	-7.543
19	127.5	-6.937	-7.543
20	127.5	-7.063	7.543
21	151.5	6.143	6.634
22	151.5	6.031	-6.634
23	151.5	-6.031	-6.634
24	151.5	-6.143	6.634
25	173.5	5.3	5.8
26	173.5	5.2	-5.8
27	173.5	-5.2	-5.8
28	173.5	-5.3	5.800

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	3	Commander US Army Research and Technology Laboratories ATTN: DAVDL, Dr. R. Carlson COL J. Fitch Mr. T. Coleman Moffett Field, CA 94035
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCMD-ST, N. Klein 5001 Eisenhower Avenue Alexandria, VA 22333	3	Commander US Army Boeing-Vertol Plant Activity ATTN: DAVBV, COL A. Luster LTC J. Weaver Mr. P. Kambies Philadelphia, PA 19105
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDE-DH, E. Shore 5001 Eisenhower Avenue Alexandria, VA 22333	2	Commander US Army Bell Plant Activity ATTN: DAVBE, COL F. Goode Mr. T. Hall Fort Worth, TX 76101
4	Commander US Army Aviation Research and Development Command ATTN: DRDAV-E, COL Ratcliff Mr. R. Long Mr. R. Wolfe Mr. D. Schrage P. O. Box 209 St. Louis, MO 63166	3	Commander US Army Hughes Plant Activity ATTN: DAVHU, COL E. Newport LTC M. Nakajo Mr. J. Hatcher Culver City, CA 90230
4	Commander US Army Aviation Research and Development Command ATTN: DRDAV-N, Mr. D. Borgman COL Feaster Mr. H. Law DRDAV-GT, Mr. R.B. Lewis P. O. Box 209 St. Louis, MO 63166	1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035
2	Commander US Army Aviation Engineer Flight Activity ATTN: DAVTE, LTC W. Griffith Mr. J. Hayden Edwards AFB, CA 93523	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703	1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299
1	Commander US Army Missile Research and Development Command ATTN: DRDMI-R Redstone Arsenal, AL 35809	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002
1	Commander US Army Missile Materiel Readiness Command ATTN: DRSMI-AOM Redstone Arsenal, AL 35809	6	Commander US Army Training and Doctrine Command ATTN: ATCD-AN ATCD-D ATCD-ALPO ATCD-M ATCD-AM, COL Godwin Recon & Surv1 Br. Fort Monroe, VA 23651
1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-UL Warren, MI 48090	1	Commander US Army Training and Doctrine Command Liaison Office P. O. Box 209 St. Louis, MO 63166
6	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) DRDAR-LC, Dr. J. Frasier DRDAR-LCA DRDAR-LCS DRDAR-LCW Dover, NJ 07801	2	Project Manager Aircraft Survivability Equipment ATTN: DRCPM-ASE, COL J. Keaton Mr. J. Katechis St. Louis, MO 63166
7	Commander US Army Armament Research and Development Command ATTN: DRDAR-SC, COL Williamson Dr. Gyorog DRDAR-SCW DRDAR-SCS DRDAR-SCN DRDAR-AC DRDAR-SE Dover, NJ 07801	3	Project Manager CH-47 Modernization Program ATTN: DRCPM-CH47M, COL J. Hesson Mr. J. Clarke Mr. J. Koch St. Louis, MO 63166

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>
2	Project Manager Black Hawk ATTN: DRCPM-BH, COL R. Kenyon Mr. C. Busse St. Louis, MO 63166
3	Project Manager Advanced Attack Helicopter ATTN: DRCPM-AAH, BG E.M. Browne Mr. W. Brabson Mr. F. Murphy St. Louis, MO 63166
1	Project Manager Division Air Defense Gun ATTN: DRCPM-ADG Dover, NJ 07801

Aberdeen Proving Ground

Dir, USAMSAA
Cdr, USATECOM
ATTN: DRSTE-SG-H
Dir, USAHEL
ATTN: Dr. Hofman