### Causal Mechanisms

Teppei Yamamoto

Keio University

Introduction to Causal Inference Spring 2016

- Introduction
- 2 Definitions
- 3 Identification & Estimation
- 4 Sensitivity Analysis
- Designs
- Summary

### Motivation

- Randomized experiments and well-designed observational studies allow us to make inferences about whether X causes Y
- However, they normally don't tell us how and why X causes Y
- But this is often what political scientists are really interested in!

### Motivation

- Randomized experiments and well-designed observational studies allow us to make inferences about whether X causes Y
- However, they normally don't tell us how and why X causes Y
- But this is often what political scientists are really interested in!
- Criticisms against the "experimental paradigm" are often about its black-box nature

- Randomized experiments and well-designed observational studies allow us to make inferences about whether X causes Y
- However, they normally don't tell us how and why X causes Y
- But this is often what political scientists are really interested in!
- Criticisms against the "experimental paradigm" are often about its black-box nature
- Can we learn about causal mechanisms from quantitative data?
- Researchers typically do ad-hoc data analysis to justify their interpretation, or just give up and go qualitative
- Causal mediation analysis is a more consistent framework to think about causal mechanisms quantitatively

In this lecture, we will cover (as time permits):

- A quantitative definition of causal mechanisms
- Assumptions needed to identify a causal mechanism from data
- A general procedure to estimate a causal mechanism (given the assumptions)
- Methods for analyzing sensitivity to the violation of the assumptions
- Experimental designs to identify mechanisms with weaker assumptions

All the methods can be implemented in the R package mediation

- Introduction
- 2 Definitions
- Identification & Estimation
- Sensitivity Analysis
- Designs
- 6 Summary

### What Is a Causal Mechanism?

Mechanisms as causal pathways

### What Is a Causal Mechanism?

- Mechanisms as causal pathways
- Causal mediation analysis



- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature in the past 10–20 years

3/26

## Causal Mediation Analysis in American Politics

- The political psychology literature on media framing.
- Nelson et al. (APSR, 1998)



## Causal Mediation Analysis in Comparative Politics

Resource curse thesis



• Causes of civil war: Fearon and Laitin (APSR, 2003)

5/26

# Causal Mediation Analysis in International Relations

- The literature on international regimes and institutions
- Krasner (IO, 1982)



Power and interests are mediated by regimes

- Binary treatment:  $T_i \in \{0, 1\}$
- Mediator:  $M_i \in \mathcal{M}$
- Outcome:  $Y_i \in \mathcal{Y}$
- Observed pre-treatment covariates:  $X_i \in \mathcal{X}$

- Binary treatment:  $T_i \in \{0, 1\}$
- Mediator:  $M_i \in \mathcal{M}$
- Outcome:  $Y_i \in \mathcal{Y}$
- Observed pre-treatment covariates:  $X_i \in \mathcal{X}$
- Potential mediators:  $M_i(t)$ , where  $M_i = M_i(T_i)$  observed
- Potential outcomes:  $Y_i(t, m)$ , where  $Y_i = Y_i(T_i, M_i(T_i))$  observed

- Binary treatment:  $T_i \in \{0, 1\}$
- Mediator:  $M_i \in \mathcal{M}$
- Outcome:  $Y_i \in \mathcal{Y}$
- Observed pre-treatment covariates:  $X_i \in \mathcal{X}$
- Potential mediators:  $M_i(t)$ , where  $M_i = M_i(T_i)$  observed
- Potential outcomes:  $Y_i(t, m)$ , where  $Y_i = Y_i(T_i, M_i(T_i))$  observed
- In a standard experiment, only one potential outcome can be observed for each i

- Binary treatment:  $T_i \in \{0, 1\}$
- Mediator:  $M_i \in \mathcal{M}$
- Outcome:  $Y_i \in \mathcal{Y}$
- Observed pre-treatment covariates:  $X_i \in \mathcal{X}$
- Potential mediators:  $M_i(t)$ , where  $M_i = M_i(T_i)$  observed
- Potential outcomes:  $Y_i(t, m)$ , where  $Y_i = Y_i(T_i, M_i(T_i))$  observed
- In a standard experiment, only one potential outcome can be observed for each i
- Moreover, some potential outcomes can never be observed:  $Y_i(t, M_i(t'))$  where  $t \neq t'$

### Causal Mediation Effects

Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

8/26

### Causal Mediation Effects

Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

• Causal mediation effects (a.k.a. natural indirect effects):

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

### Causal Mediation Effects

Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

• Causal mediation effects (a.k.a. natural indirect effects):

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Causal effect of the change in M<sub>i</sub> on Y<sub>i</sub> that would be induced by treatment
- Intuition: Change the mediator from  $M_i(0)$  to  $M_i(1)$  while holding the treatment constant at t
- Represents the mechanism through Mi

Natural direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

9/26

Natural direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of  $T_i$  on  $Y_i$ , holding mediator constant at its *potential* value that would realize when  $T_i = t$
- Intuition: Change the treatment from 0 to 1 while holding the mediator constant at its natural value given t for each i, M<sub>i</sub>(t)
- Represents all mechanisms other than through M<sub>i</sub>

Teppei Yamamoto Mediation Causal Inference 9 / 26

Natural direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of  $T_i$  on  $Y_i$ , holding mediator constant at its *potential* value that would realize when  $T_i = t$
- Intuition: Change the treatment from 0 to 1 while holding the mediator constant at its natural value given t for each i, M<sub>i</sub>(t)
- ullet Represents all mechanisms other than through  $M_i$

#### Cf. Controlled direct effect:

$$\xi_i(m) \equiv Y_i(1,m) - Y_i(0,m)$$

 Causal effect of T<sub>i</sub> on Y<sub>i</sub> when mediator is manipulated at a fixed value m (regardless of unit i's natural response to T<sub>i</sub>)

Natural direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of  $T_i$  on  $Y_i$ , holding mediator constant at its *potential* value that would realize when  $T_i = t$
- Intuition: Change the treatment from 0 to 1 while holding the mediator constant at its natural value given t for each i, M<sub>i</sub>(t)
- Represents all mechanisms other than through M<sub>i</sub>

#### Cf. Controlled direct effect:

$$\xi_i(m) \equiv Y_i(1,m) - Y_i(0,m)$$

- Causal effect of T<sub>i</sub> on Y<sub>i</sub> when mediator is manipulated at a fixed value m (regardless of unit i's natural response to T<sub>i</sub>)
- Total effect = mediation (indirect) effect + direct effect:

$$\tau_i = \delta_i(t) + \zeta_i(1-t) = \frac{1}{2} \{\delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1)\}$$

Teppei Yamamoto Mediation Causal Inference 9

- Introduction
- 2 Definitions
- Identification & Estimation
- 4 Sensitivity Analysis
- Designs
- 6 Summary

Quantity of Interest: Average causal mediation effects

$$\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

Quantity of Interest: Average causal mediation effects

$$\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

• Average direct effects  $(\bar{\zeta}(t))$  are defined similarly

Quantity of Interest: Average causal mediation effects

$$\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}\$$

- ullet Average direct effects  $(\bar{\zeta}(t))$  are defined similarly
- Problem:  $Y_i(t, M_i(t))$  is observed but  $Y_i(t, M_i(t'))$  can never be observed
- We have an identification problem

Quantity of Interest: Average causal mediation effects

$$\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

- ullet Average direct effects  $(\bar{\zeta}(t))$  are defined similarly
- Problem:  $Y_i(t, M_i(t))$  is observed but  $Y_i(t, M_i(t'))$  can never be observed
- We have an identification problem

⇒ Need additional assumptions to make progress

## Identification under Standard Research Design

- Standard experiment: Randomize  $T_i$  and measure  $M_i$  and  $Y_i$
- An identification assumption: Sequential Ignorability (SI)

$$\{Y_i(t',m), M_i(t)\} \perp T_i \mid X_i = x$$
 (1)

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$
 (2)

## Identification under Standard Research Design

- Standard experiment: Randomize  $T_i$  and measure  $M_i$  and  $Y_i$
- An identification assumption: Sequential Ignorability (SI)

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = x$$
 (1)

$$Y_i(t', m) \perp M_i(t) \mid T_i = t, X_i = x$$
 (2)

- (1) is guaranteed to hold in standard experiments
- (2) does **not** hold if there exist:
  - unobserved pre-treatment M-Y confounders, or
  - any post-treatment *M*–*Y* confounding, *even if observed*
- In observational studies, neither (1) nor (2) is guaranteed

## Identification under Standard Research Design

- Standard experiment: Randomize T<sub>i</sub> and measure M<sub>i</sub> and Y<sub>i</sub>
- An identification assumption: Sequential Ignorability (SI)

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = x$$
 (1)

$$Y_i(t', m) \perp M_i(t) \mid T_i = t, X_i = x$$
 (2)

- (1) is guaranteed to hold in standard experiments
- (2) does **not** hold if there exist:
  - unobserved pre-treatment M-Y confounders, or
  - any post-treatment *M*–*Y* confounding, *even if observed*
- In observational studies, neither (1) nor (2) is guaranteed

**Theorem** (Imai et al. 2010): Under sequential ignorability, ACME and average direct effects are nonparametrically identified

- Model outcome and mediator
  - Outcome model:  $p(Y_i | T_i, M_i, X_i)$
  - Mediator model:  $p(M_i \mid T_i, X_i)$
  - These models can be of any form (linear or nonlinear, semi- or nonparametric, with or without interactions)

- Model outcome and mediator
  - Outcome model:  $p(Y_i | T_i, M_i, X_i)$
  - Mediator model:  $p(M_i \mid T_i, X_i)$
  - These models can be of any form (linear or nonlinear, semi- or nonparametric, with or without interactions)
- ② Predict mediator for both treatment values  $(M_i(1), M_i(0))$
- **3** Predict outcome by first setting  $T_i = 1$  and  $M_i = M_i(0)$ , and then  $T_i = 1$  and  $M_i = M_i(1)$
- Compute the average difference between two outcomes to obtain a consistent estimate of ACME

- Model outcome and mediator
  - Outcome model:  $p(Y_i | T_i, M_i, X_i)$
  - Mediator model:  $p(M_i | T_i, X_i)$
  - These models can be of any form (linear or nonlinear, semi- or nonparametric, with or without interactions)
- 2 Predict mediator for both treatment values  $(M_i(1), M_i(0))$
- **3** Predict outcome by first setting  $T_i = 1$  and  $M_i = M_i(0)$ , and then  $T_i = 1$  and  $M_i = M_i(1)$
- Compute the average difference between two outcomes to obtain a consistent estimate of ACME
- Monte-Carlo (Clarify) or bootstrapping to estimate uncertainty

## Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

• How and why do ethnic cues affect immigration attitudes?

## Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

- How and why do ethnic cues affect immigration attitudes?
- Theory: Anxiety transmits the effect of cues on attitudes



## Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

- How and why do ethnic cues affect immigration attitudes?
- Theory: Anxiety transmits the effect of cues on attitudes



 ACME = Average difference in immigration attitudes due to the change in anxiety induced by the media cue treatment

## Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

- How and why do ethnic cues affect immigration attitudes?
- Theory: Anxiety transmits the effect of cues on attitudes



- ACME = Average difference in immigration attitudes due to the change in anxiety induced by the media cue treatment
- Sequential ignorability = No unobserved covariate affecting both anxiety and immigration attitudes

Original method: Product of coefficients with the Sobel test

- Original method: Product of coefficients with the Sobel test
  - Valid only when both models are linear w/o T-M interaction (which they are not)

- Original method: Product of coefficients with the Sobel test
  - Valid only when both models are linear w/o T-M interaction (which they are not)
- This method: Calculate ACME using the general algorithm

- Original method: Product of coefficients with the Sobel test
  - Valid only when both models are linear w/o T-M interaction (which they are not)
- This method: Calculate ACME using the general algorithm

| Product of<br>Coefficients | Average Causal Mediation Effect $(\delta)$                                    |
|----------------------------|-------------------------------------------------------------------------------|
| .347                       | .105                                                                          |
| [0.146, 0.548]             | [0.048, 0.170]                                                                |
| .204                       | .074                                                                          |
| [0.069, 0.339]             | [0.027, 0.132]                                                                |
| .277                       | .029                                                                          |
| [0.084, 0.469]             | [0.007, 0.063]                                                                |
| .276                       | .086                                                                          |
| $[0.102, \ 0.450]$         | [0.035, 0.144]                                                                |
|                            | Coefficients .347 [0.146, 0.548] .204 [0.069, 0.339] .277 [0.084, 0.469] .276 |

Teppei Yamamoto Mediation Causal Inference 14 / 26

- Introduction
- 2 Definitions
- 3 Identification & Estimation
- Sensitivity Analysis
- Designs
- Summary

# Beyond Sequential Ignorability

- Assumption (2) is too strong in most scenarios
- Can we go beyond just making this assumption?

# Beyond Sequential Ignorability

- Assumption (2) is too strong in most scenarios
- Can we go beyond just making this assumption?
- Sensitivity analysis: Assess the robustness of the estimates to the violation of sequential ignorability
- How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Parametric sensitivity analysis by assuming

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = X$$

but not

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$

# Beyond Sequential Ignorability

- Assumption (2) is too strong in most scenarios
- Can we go beyond just making this assumption?
- Sensitivity analysis: Assess the robustness of the estimates to the violation of sequential ignorability
- How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Parametric sensitivity analysis by assuming

$$\{Y_i(t', m), M_i(t)\} \perp T_i \mid X_i = X$$

but not

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$

- Addresses the possible existence of unobserved pre-treatment confounders
- But not post-treatment confounders

Assume a linear structural equations model:

$$M_i = \alpha_2 + \beta_2 T_i + \xi_2^\top X_i + \varepsilon_{i2},$$
  

$$Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \xi_3^\top X_i + \varepsilon_{i3}.$$

Assume a linear structural equations model:

$$M_i = \alpha_2 + \beta_2 T_i + \xi_2^\top X_i + \varepsilon_{i2},$$
  

$$Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \xi_3^\top X_i + \varepsilon_{i3}.$$

• Sensitivity parameter:  $\rho \equiv \operatorname{Corr}(\varepsilon_{i2}, \varepsilon_{i3})$ 

Assume a linear structural equations model:

$$M_i = \alpha_2 + \beta_2 T_i + \xi_2^\top X_i + \varepsilon_{i2},$$
  

$$Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \xi_3^\top X_i + \varepsilon_{i3}.$$

• Sensitivity parameter:  $\rho \equiv \operatorname{Corr}(\varepsilon_{i2}, \varepsilon_{i3})$ 

Result: ACME is identified given  $\rho$  as

$$\bar{\delta}(0) = \bar{\delta}(1) = \frac{\beta_2 \sigma_1}{\sigma_2} \left\{ \tilde{\rho} - \rho \sqrt{(1-\tilde{\rho}^2)/(1-\rho^2)} \right\},$$

where  $\sigma_j^2 \equiv \mathbb{V}(\varepsilon_{ij})$  for j=1,2 and  $\tilde{\rho} \equiv \operatorname{Corr}(\varepsilon_{i1},\varepsilon_{i2})$  such that

$$Y_i = \alpha_1 + \beta_1 T_i + \varepsilon_{i1}$$

16 / 26

Assume a linear structural equations model:

$$M_i = \alpha_2 + \beta_2 T_i + \xi_2^\top X_i + \varepsilon_{i2},$$
  

$$Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \xi_3^\top X_i + \varepsilon_{i3}.$$

• Sensitivity parameter:  $\rho \equiv \operatorname{Corr}(\varepsilon_{i2}, \varepsilon_{i3})$ 

Result: ACME is identified given  $\rho$  as

$$\bar{\delta}(0) = \bar{\delta}(1) = \frac{\beta_2 \sigma_1}{\sigma_2} \left\{ \tilde{\rho} - \rho \sqrt{(1 - \tilde{\rho}^2)/(1 - \rho^2)} \right\},\,$$

where  $\sigma_j^2 \equiv \mathbb{V}(\varepsilon_{ij})$  for j=1,2 and  $\tilde{\rho} \equiv \operatorname{Corr}(\varepsilon_{i1},\varepsilon_{i2})$  such that

$$Y_i = \alpha_1 + \beta_1 T_i + \varepsilon_{i1}$$

- ullet Set ho to different values and see how ACME changes
- Sequential ignorability implies  $\rho = 0$

16 / 26

## Anxiety Example: Sensitivity Analysis w.r.t. $\rho$



 ACME > 0 as long as the error correlation is less than 0.39 (0.30 with 95% CI)

• Interpreting  $\rho$ : how small is too small?

- Interpreting  $\rho$ : how small is too small?
- An unobserved (pre-treatment) confounder formulation:

$$\varepsilon_{i2} = \lambda_2 U_i + \varepsilon'_{i2}$$
 and  $\varepsilon_{i3} = \lambda_3 U_i + \varepsilon'_{i3}$ 

• How much does  $U_i$  have to explain the variances of  $M_i$  and  $Y_i$  for our results to go away?

- Interpreting  $\rho$ : how small is too small?
- An unobserved (pre-treatment) confounder formulation:

$$\varepsilon_{i2} = \lambda_2 U_i + \varepsilon'_{i2}$$
 and  $\varepsilon_{i3} = \lambda_3 U_i + \varepsilon'_{i3}$ 

- How much does  $U_i$  have to explain the variances of  $M_i$  and  $Y_i$  for our results to go away?
- R squares as sensitivity parameters:
  - lacktriangledown Proportion of previously unexplained variance explained by  $U_i$

$$R_M^{2*} \equiv 1 - rac{\mathbb{V}(\varepsilon_{i2}')}{\mathbb{V}(\varepsilon_{i2})}$$
 and  $R_Y^{2*} \equiv 1 - rac{\mathbb{V}(\varepsilon_{i3}')}{\mathbb{V}(\varepsilon_{i3})}$ 

2 Proportion of original variance explained by  $U_i$ 

$$\widetilde{R}_{M}^{2} \equiv \frac{\mathbb{V}(\varepsilon_{i2}) - \mathbb{V}(\varepsilon_{i2}')}{\mathbb{V}(M_{i})}$$
 and  $\widetilde{R}_{Y}^{2} \equiv \frac{\mathbb{V}(\varepsilon_{i3}) - \mathbb{V}(\varepsilon_{i3}')}{\mathbb{V}(Y_{i})}$ 

• Then ACME can be written in terms of these R squares as:

$$\rho = \operatorname{sgn}(\lambda_2 \lambda_3) R_M^* R_Y^* = \frac{\operatorname{sgn}(\lambda_2 \lambda_3) \widetilde{R}_M \widetilde{R}_Y}{\sqrt{(1 - R_M^2)(1 - R_Y^2)}},$$

where  $R_M^2$  and  $R_Y^2$  are from the original mediator and outcome models

• Then ACME can be written in terms of these R squares as:

$$\rho = \operatorname{sgn}(\lambda_2 \lambda_3) R_M^* R_Y^* = \frac{\operatorname{sgn}(\lambda_2 \lambda_3) \widetilde{R}_M \widetilde{R}_Y}{\sqrt{(1 - R_M^2)(1 - R_Y^2)}},$$

where  $R_M^2$  and  $R_Y^2$  are from the original mediator and outcome models

•  $sgn(\lambda_2\lambda_3)$  indicates the direction of the effects of  $U_i$  on  $Y_i$  and  $M_i$ 

• Then ACME can be written in terms of these R squares as:

$$\rho = \operatorname{sgn}(\lambda_2 \lambda_3) R_M^* R_Y^* = \frac{\operatorname{sgn}(\lambda_2 \lambda_3) \widetilde{R}_M \widetilde{R}_Y}{\sqrt{(1 - R_M^2)(1 - R_Y^2)}},$$

where  $R_M^2$  and  $R_Y^2$  are from the original mediator and outcome models

- $sgn(\lambda_2\lambda_3)$  indicates the direction of the effects of  $U_i$  on  $Y_i$  and  $M_i$
- Set  $(R_M^{2*}, R_Y^{2*})$  (or  $(\widetilde{R}_M^2, \widetilde{R}_Y^2)$ ) to different values and see how mediation effects change

Teppei Yamamoto Mediation Causal Inference 19 / 26

# Anxiety Example: Sensitivity Analysis w.r.t. $\tilde{R}_M^2$ and $\tilde{R}_Y^2$



 An unobserved confounder can account for up to 26.5% of the variation in both Y<sub>i</sub> and M<sub>i</sub> before ACME becomes zero

- Introduction
- 2 Definitions
- 3 Identification & Estimation
- 4 Sensitivity Analysis
- Designs
- Summary

Sensitivity analysis may be unsatisfactory

- Sensitivity analysis may be unsatisfactory
- What if we get rid of the assumption altogether?
- Under a standard design, even the sign of ACME is unidentified

- Sensitivity analysis may be unsatisfactory
- What if we get rid of the assumption altogether?
- Under a standard design, even the sign of ACME is unidentified
- Can we do any better?

- Sensitivity analysis may be unsatisfactory
- What if we get rid of the assumption altogether?
- Under a standard design, even the sign of ACME is unidentified
- Can we do any better?
- Use alternative experimental designs for more credible yet powerful inference
- Designs feasible when the mediator can be directly or indirectly manipulated
- Experiments also serve as templates for observational studies

Randomly split sample

#### **Experiment 1**

- 1) Randomize treatment
- 2) Measure mediator
- 3) Measure outcome

### **Experiment 2**

- 1) Randomize treatment
- 2) Randomize mediator
- 3) Measure outcome



 Must assume consistency (i.e. no direct effect of manipulation on outcome)

Teppei Yamamoto Mediation Causal Inference 22 / 26



- Must assume consistency (i.e. no direct effect of manipulation on outcome)
- More informative than standard single experiment



- Must assume consistency (i.e. no direct effect of manipulation on outcome)
- More informative than standard single experiment
- If we assume no T-M interaction, ACME is point identified
- Otherwise, we get bounds

## Parallel Encouragement Design

- Direct manipulation of the mediator is often infeasible
- Even if feasible, more subtle form of intervention may be preferred to assure consistency

## Parallel Encouragement Design

- Direct manipulation of the mediator is often infeasible
- Even if feasible, more subtle form of intervention may be preferred to assure consistency



- Parallel encouragement design: Randomly encourage subjects to take particular values of the mediator
- Standard instrumental variable assumptions (Angrist et al.)

## Numerical Examples of the Bounds



- Recall ACME can be identified if we observe  $Y_i(t', M_i(t))$
- Get  $M_i(t)$ , then switch  $T_i$  to t' while holding  $M_i = M_i(t)$

- Recall ACME can be identified if we observe  $Y_i(t', M_i(t))$
- Get  $M_i(t)$ , then switch  $T_i$  to t' while holding  $M_i = M_i(t)$
- Crossover design:
  - Round 1: Conduct a standard experiment
  - Round 2: Change the treatment to the opposite status but fix the mediator to the value observed in the first round

- Recall ACME can be identified if we observe  $Y_i(t', M_i(t))$
- Get  $M_i(t)$ , then switch  $T_i$  to t' while holding  $M_i = M_i(t)$
- Crossover design:
  - Round 1: Conduct a standard experiment
  - Round 2: Change the treatment to the opposite status but fix the mediator to the value observed in the first round
- Crossover encouragement design:
  - Round 1: Conduct a standard experiment
  - Round 2: Same as crossover, except encourage subjects to take the mediator values

- Recall ACME can be identified if we observe  $Y_i(t', M_i(t))$
- Get  $M_i(t)$ , then switch  $T_i$  to t' while holding  $M_i = M_i(t)$
- Crossover design:
  - Round 1: Conduct a standard experiment
  - Round 2: Change the treatment to the opposite status but fix the mediator to the value observed in the first round
- Crossover encouragement design:
  - Round 1: Conduct a standard experiment
  - Round 2: Same as crossover, except encourage subjects to take the mediator values
- Both must assume no carryover effect

- Introduction
- 2 Definitions
- 3 Identification & Estimation
- 4 Sensitivity Analysis
- Designs
- 6 Summary

### Summary

- Even in a randomized experiment, a strong assumption is needed to identify causal mechanisms
- Analyzing mechanisms is, therefore, not so easy!
- Under the identification assumption, a general estimation procedure is available for various types of statistical models
- The violation of the assumption can be addressed by:
  - Analyzing sensitivity with respect to key assumptions
  - Creative research designs to avoid strong assumptions
- Therefore, progress can still be made!
- Extension to multiple mediators: Imai and Yamamoto (2013)
- Extension to instrumental variables: Yamamoto (2014)