IIC2523 Sistemas Distribuidos

Hernán F. Valdivieso López (2025 - 2 / Clase 06)

Vectores Lógicos y Estados Globales

Temas de la clase

- 1. Relojes Vectoriales
- 2. Estados globales

Anteriormente.... vimos relojes Lógicos de Lamport

- Con la implementación anterior, si a → b entonces el contador al momento de ocurrir a será menor al momento de ocurrir b.
- Esta relación es solo en una dirección. No podemos usar el contador para confiar plenamente en la causalidad.

- Permiten establecer un orden parcial a los distintos sucesos o eventos.
 - Determinar el orden causal de eventos.
 - Identificar eventos concurrentes.
- Con eventos concurrentes nos referimos a que no sabemos si un evento ocurrió antes, después o al mismo tiempo que otro evento.
- Podemos usar el vector para inferir el orden parcial.

- Cada proceso $\mathbf{P_i}$ tiene su propio vector $\mathbf{V_i}$ en el que guarda tanto el estado de su reloj lógico como el de los demás procesos al momento de comunicarse.
 - V_i[i] es el estado del reloj lógico de P_i
 - $V_i[z]$ es la última actualización del reloj lógico de P_z del que tiene constancia P_i
 - $V_i = V_k$ si $V_i[x] = V_k[x]$ para x = 1, 2, ..., N
 - $V_i \le V_k$ si $V_i[x] \le V_k[x]$ para x = 1, 2, ..., N
 - $V_i < V_k$ si $V_i \le V_k$ y $V_i \ne V_k$

Relojes Vectoriales - Reglas

- igoplus Cuando pasa un evento en el proceso $\mathbf{P_i}$, se aumenta en una unidad el $\mathbf{V_i}[i]$.
- Un evento es algo ocurrido únicamente en el proceso, el envío de un mensaje a otro proceso o la recepción de un mensaje.
- Cuando el proceso P_i recibe un vector V_z, primero se aumenta en una unidad el V_i[i]. Luego, se actualiza el vector V_i del siguiente modo:
 - $V_{i}[x] = max(V_{i}[x], V_{i}[x])$ para x = 1, 2, ..., N

Relojes Vectoriales - Reglas

- igoplus Cuando pasa un evento en el proceso $\mathbf{P_i}$, se aumenta en una unidad el $\mathbf{V_i}[i]$.
- Un evento es algo ocurrido únicamente en el proceso, el envío de un mensaje a otro proceso o la recepción de un mensaje.
- Cuando el proceso P_i recibe un vector V_z , primero se aumenta en una unidad el $V_i[i]$. Luego, se actualiza el vector V_i del siguiente modo:
 - $V_{i}[x] = max(V_{i}[x], V_{i}[x])$ para x = 1, 2, ..., N

- Con esto, se puede comparar 2 eventos (a y b) según sus vectores.
 - $V_{i}^{a} < V_{k}^{b}$ El evento b en P_{k} ocurrió después que el evento a en P_{i}
 - En otro caso, el evento a y b son "concurrentes".

Estados Globales

¿Qué son?

Algoritmo Chandy-Lamport

Estados Globales

- También llamado "Global Snapshot".
- Consiste en los estados locales de cada nodo en el sistema distribuido, junto con los mensajes en tránsito en los canales de comunicación.
- En un computador, podemos definir un tiempo X para guardar todas las variables, y todos los procesos almacenan su estado en dicho tiempo X.

Estados Globales

- También llamado "Global Snapshot".
- Consiste en los estados locales de cada nodo en el sistema distribuido, junto con los mensajes en tránsito en los canales de comunicación.
- En un computador, podemos definir un tiempo X para guardar todas las variables, y todos los procesos almacenan su estado en dicho tiempo X.
- Su principal problema es determinar esta "instantánea" con las características de un sistema distribuido:
 - Casi siempre habrán mensajes en tránsito.
 - Es inevitable el retraso entre los mensajes.
 - Como ya vimos... es difícil mantener todos los nodos sincronizados en todo momento.
 - Es casi imposible "pausar" todos los nodos en un mismo instante.

Estados Globales - ¿Por qué es crucial? 🤔

- Recolección de basura distribuida: Saber si un objeto no tiene referencias en ningún lugar del sistema.
 - Nodo A referencia un dato está disponible en nodo B, pero el nodo B no tiene ese dato en su estado actual porque lo eliminó.
- **Detección de interbloqueos (***deadlocks***)**: Identificar situaciones donde los nodos esperan recursos indefinidamente.
- Depuración de sistemas distribuidos: Entender comportamientos inesperados o violaciones de seguridad transitorias.
- **Checkpoints**: Determinar puntos de seguridad para una base de datos distribuida.
- Término de algoritmo: Verificar si todos los nodos ya terminaron de ejecutar algún algoritmo distribuido.

Estados Globales - Corte Consistente

- Forma de definir un estado global, representándose como una "línea" a través de las historias de ejecución de los nodos.
- Un corte es consistente si:
 - Para cada evento, se contiene todos los eventos que lo "precedieron causalmente".
 - No muestra un "efecto sin una causa": Si un mensaje fue recibido antes del corte, debe aparecer también como enviado antes del corte.

Algoritmo de Chandy-Lamport

- Permite capturar un estado global consistente de un sistema distribuido sin necesidad de detener su ejecución normal.
- Su mecanismo central consiste en el envío de un mensaje marcador (marker):
 - Estos marcadores viajan a través de los canales de comunicación y no afectan los mensajes de aplicación.
 - Todo par de nodos tiene un canal de comunicación para conversar.
- Compuesto por 3 fases: inicialización, propagación y finalización.

Algoritmo de Chandy-Lamport - Fase 1 (Inicialización)

- Nodo P_x inicia el algoritmo
 - Nodo P_x guarda su estado local y envía un marker a todos los demás canales de comunicación
 - Nodo P_x comienza a grabar todos los mensajes entrantes en sus canales de comunicación

Algoritmo de Chandy-Lamport - Fase 2 (Propagación)

Caso 1: Nodo P_y recibe por primera vez un marcador de algún nodo (P_z)

- Nodo P_y guarda su estado local y envía un marcador por todos sus canales de comunicación.
- Sea C_{zy} el canal de comunicación entre aquel que le mandó el primer marcador y este nodo, C_{zy} queda vacío.
- Nodo P_y comienza a grabar todos los mensajes entrantes en todos los demás canales de comunicación.

Caso 2: Nodo P_y recibe un marcador de algún nodo P_k luego de ya haber visto uno.

- Guarda el estado del canal C_{ky} como los mensajes recibidos desde que empezó la grabación de dicho canal.
- Deja de escuchar el canal C_{ky} para fines de este algoritmo.

Algoritmo de Chandy-Lamport - Fase 3 (Finalización)

- El algoritmo termina cuando todos los nodos han:
 - Registrado su estado local.
 - Registrado el estado de todos sus canales de comunicación.
- Un nodo "líder" o central puede verificar que todos los nodos indiquen haber finalizado y solicitar los estados guardados para guardarlos en un solo lugar.

Algoritmo de Chandy-Lamport - Ejemplo Tiempo Actual $C_{YK} = [H \rightarrow D]$ $C_{SK} = []$ Nodo K C_{KY} = ...grabando... C_{SY} = [] Nodo Y Nodo S

36

— Tiempo Actual

— Tiempo Actual

Algoritmo de Chandy-Lamport - Supuestos

Algunas condiciones del algoritmo son bien realista

- Cualquier nodo puede iniciar el algoritmo.
- El algoritmo de snapshot no interfiere con la ejecución normal de los nodos.
- Cada nodo registra su estado local y el estado de sus canales de entrada.
- El estado global se recolecta de manera distribuida.

Algoritmo de Chandy-Lamport - Supuestos

Algunas condiciones del algoritmo son bien realista

- Cualquier nodo puede iniciar el algoritmo.
- El algoritmo de snapshot no interfiere con la ejecución normal de los nodos.
- Cada nodo registra su estado local y el estado de sus canales de entrada.
- El estado global se recolecta de manera distribuida.

Otras, no tanto...

- igoplus Comunicación es confiable o No hay fallas durante la ejecución del algoritmo.
- Existe un canal de comunicación entre cualquier par de nodos del sistema.
- Canales de comunicación unidireccionales y entregan mensajes en orden FIFO.

Algoritmo de Chandy-Lamport - Hoy en día

Apache Flink

- Herramienta para procesar datos en tiempo real o por lotes, que puede recordar estados, escalar a muchos computadores, y está hecha para trabajar con flujos de datos grandes, veloces y vivos.
- Utiliza un mecanismo de snapshots está descrito en el paper: <u>Lightweight</u> <u>Asynchronous Snapshots for Distributed</u> <u>Dataflows</u>
- Está inspirado en el algoritmo que vimos hoy.

Próximos eventos

Próxima clase

- Miércoles: será para presentar la tarea 1.
- Próximo Lunes: Consenso en Sistemas Distribuidos
 - ¿Cómo nos ponemos de acuerdo en una operación distribuida?
 - Algoritmo Paxos.
 - 🔸 ¿Qué pasa si tenemos un nodo traidor? 😵 🗡

Evaluaciones

El miércoles se libera la Tarea 1. No la pateen tanto al final.

IIC2523 Sistemas Distribuidos

Hernán F. Valdivieso López (2025 - 2 / Clase 06)

Créditos (animes utilizados)

Date a Live

Boku no Hero Academia

Hataraku Saibou

