

Smart Mobile PlatformSyllabus

Prof. Joongheon Kim Korea University, School of Electrical Engineering https://joongheon.github.io joongheon@korea.ac.kr

Introduction

- Objectives: A.I. Techniques for Mobile Platforms
- Hours/Location: 9am-12pm @ Engineering Building 366
- Instructor: **Joongheon Kim**
 - https://joongheon.github.io
 - joongheon@korea.ac.kr
- Contents
 - Deep Neural Network
 - Deep Reinforcement Learning
 - Inverse Reinforcement Learning and Imitation Learning
 - Federated Learning
 - Lyapunov Optimization

Class Schedule

Week	In-Classroom	Paper ID	ETC
01	Syllabus and Introduction		
02	Deep Neural Network (Basics – Regression/Classification)		
03	Deep Neural Network (Basics – Softmax/Neural Network Intro)		
04	Deep Neural Network (Basics – Neural Network Implementation)		
05	Deep Neural Network (Basics – Keras, CNN Intro)		
06	No-Class		DNN paper list will be posted.
07	Deep Neural Network (Basics – CNN Implementation, GAN)		
08	No-Class [MIDTERM EXAM]		
09	Lyapunov Optimization		
10	Deep Neural Network (Paper Reading)		
11	Deep Reinforcement Learning (Basics)		DRL/IRL/IL paper list will be posted.
12	Inverse Reinforcement Learning and Imitation Learning (Basics)		
13	Deep Reinforcement Learning (Paper Reading)		
14	Federated Learning		
15	Final Project Presentations		
16	No-Class [FINAL EXAM]		
Professor Joo	ngheon Kim Smart Mobile Platform		

Grading Criteria

- Grading Criteria
 - Paper Summary Note Submission → 40%
 - Paper presentation volunteers will get additional credits.
 - Take-Home Exam (midterm) → 20%
 - Take-Home Exam (final) → 30%
 - Final Project → 10%
 - Final project slide submission is mandatory.
 - Final project slide presentation opportunities will be given to selected students.