PCT/US97/18631

What is claimed is:

WO 98/16268 PCT/US97/18631

1. A self-hardening bioceramic composition, comprising:

a hydrated precursor of a calcium phosphate and an aqueous-based liquid in an amount sufficient to hydrate the calcium phosphate to form a paste or putty, characterized in that hardening of the hydrated precursor is associated with an endothermic reaction.

o 4 101 1 :

2. A self-hardening bioceramic composition, comprising:

a hydrated precursor of an amorphous calcium phosphate and an aqueousbased liquid in an amount sufficient to hydrate the calcium phosphate to form a paste or putty, characterized in that hardening of the hydrated precursor occurs in more than ten minutes.

1213

3. The composition of claim 2, wherein hardening occurs in more than 30 minutes.

1516

17

18

14

4. The composition of claim 1 wherein the aqueous-based fluid is selected from the group consisting of water, a physiologically acceptable pH-buffered solution, saline solution, serum and tissue culture medium.

19 20

5. The composition of claim 1, wherein the calcium phosphate comprises an amorphous calcium phosphate.

22

21

23

6. The composition of claim 1, further comprising a promoter, said promoter capable of promoting the hardening of the hydrated precursor.

242526

27

28

7. The composition of clarm 1, wherein the hardening of the hydrated precursor is further associated with the conversion of the calcium phosphate into a poorly crystalline apatitic calcium phosphate.

29 30

3132

8. The composition of claim 7, further comprising a promoter, said promoter further capable of promoting the conversion of calcium phosphate into a poorly crystalline apatitic calcium phosphate.

WO 9	8/16268	PCT/US97/18631
1	9.	The composition of claim 6 or 8, wherein the promoter is selected
2	from the gro	up consisting of passive promoters and participant promoters.
3		1
4	10.	The composition of claim 9, wherein the promoter is a passive
5	promoter sele	ected from the group consisting of metals, metal oxides, ceramics,
6	silicates, suga	rs, salts, and polymeric particulates
7		
8	11.	The composition of claim 9, wherein the promoter is a passive
9	promoter and	I said passive promoter is present in the range of about 1:1 to about
10	5:1 calcium p	hosphate:promoter.
11		
12	12.	The composition of claim 9, wherein the promoter is a passive
13	promoter sele	ected from the group consisting of SiO ₂ , mica, Al ₂ O ₃ , poly(L-lactide)
14	(PLLA), poly	glycolide (PGA), and poly(lactide-co-glycolide (PLGA) copolymers.
15		/ /
16	13.	The composition of claims, wherein the promoter is a participant
17 18	promoter sele	ected from the group consisting of calcium and phosphorus sources.
19	14.	The composition of claim 9, wherein the promoter is a participant
20	promoter sele	ected from the group consisting of calcium metaphosphate,
21	dicalcium ph	osphate dihydrate, heptadalcium decaphosphate, tricalcium
2 2	phosphates, o	calcium pyrophosphate dhydrate, crystalline hydroxyapatite, PCA
23	calcium phos	phate, calcium pyrophophate, monetite, octacalcium phosphate,
24	CaO, CaCO	,, calcium acetate, and H ₃ PO ₄ , and ACP.
25		
26	15.	The composition of flaim 9, wherein the promoter comprises
27	DCPD.	
28		· /
29	16.	The composition of claim 9, wherein the promoter comprises
30	DCPD havin	g an average grain size less than about 200μm.
31		
32		
		/

wo 9	98/16268		٨	PCT/US97/18631
1	17.	The composition of claim	9, wherein the	e promoter comprises
2	DCPD havin	g an average grain size of	ess than about	95μm.
3				
4	18.	The composition of claim	n 9, wherein the	e promoter comprises
5	DCPD havin	g an average grain size of	about β5 - 45μπ	n and a grain size
6	maximum of	less than about 110 μ m.	<i>'</i>	
7		1		
8	19.	The composition of claim	ı 1, further cha	racterized in that
9	hardening oc	curs in less than one hour	at about 37 °C	
10				
11	20.	The composition of clain	ı 1, further cha	racterized in that
12	hardening oc	curs in more than 24 hour	s at about 4 °C	
13				
14	21.	The composition of clain	1) wherein the	e amount of liquid is in
15	the range of	about 0.5 to about/2.0 mI/	liquid/g calciu	m phosphate.
16		/ / //		
17	22./	A bioceramic compositio	comprising:	
18	(a poo	rly crystalline calcium pho	sphate prepared	l by,
19	promo	oting the hardening/of a h	drated precurs	or comprising an
20	amorphous c	alcium phosphate and an a	queous-based li	quid in an amount
21	sufficient to	hydrate the amorphous cal	cium phosphat	e to form a paste or putty,
22	where	by hardening is associated	with an endoth	nermic reaction and the
23	conversion o	f the amorphous/calcium p	hosphate into	the poorly crystalline
24	calcium phos	phate.		
25				
26	23.	A bioceramie compositio	n, comprising:	
27	a stro	ngly bioresorbable, poorly	crystalline apar	titic calcium phosphate.
28				
29	24.	The composition of clain	n 22 or 23, whe	erein said poorly crystalline
30	apatitic calci	um phosphate has an X-ray	diffraction sul	ostantially as shown in
31	Figure 18.	1		
32		/		
		/		

WO 98/16268 PCT/US97/18631

25. The composition of claim 23, wherein the strongly resorbable, poorly crystalline apatitic calcium phosphare has an X-ray diffraction pattern comprising broad peaks at 2θ values of 26%, 28.5° , 32° and 33° .

26. The composition of claim 23, wherein the X-ray diffractions pattern is characterized by an absence of peaks associated with the 210 Miller Index.

27. The composition of claim 23, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within one year when the composite is placed in a rat intramuscular site.

28. The composition of claim 23, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within nine months when the composite is placed in a rat intramuscular site.

29. The composition of claim 23, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within six months when the composite is placed in a rat intramuscular site.

30. The composition of claim 23, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within three months when the composite is placed in a rat intramuscular site.

1	31. The composition of claim 23, wherein the poorly crystalline
2	apatitic calcium phosphate is formulated so that when the composite
3	compromises at least 1 g of poorly crystalline apartic calcium phosphate, at least
4	about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within
5	one month when the composite is placed in a rat intramuscular site.
4	

32. The composition of claim 23, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when implanted in vivo in a bone site, new bone substantially replaces the composite within six months.

33. The composition of claim 33, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when implanted in vivo in a bone site, new bone substantially replaced the composite within six weeks.

- 34. A method of preparing a bioceramic composition, comprising: mixing in any order,
- (a) an amorphous calcium phosphate,
- (b) a promoter, and
- (c) an aqueous-based liquid in an amount sufficient to form a paste or putty, whereby the paste or putty is converted into a poorly crystalline apatitic . calcium phosphate and said conversion is associated with hardening of the paste in an endothermic reaction.

35. The method of claim 34, wherein the promoter is selected from the group consisting of SiO_2 , $Al_2\phi_3$, sand, mica and glass.

36. The method of claim 34, wherein the promoter is a calcium or a phosphorus source.

37. The method of claim 34, wherein the calcium phosphate is selected from the group consisting of calcium metaphosphate, dicalcium phosphate dihydrate, heptacalcium decaphosphate, tricalcium phosphates, calcium

WO 98/16268

- 1 pyrophosphate dihydrate, crystalline hydroxyapatite, PCA calcium phosphate,
- 2 calcium pyrophosphate, monetite, octacalcium phosphate, CaO, CaCO₃, calcium

3 acetate, and H₃PO₄, and ACP.

4 5

38. The method of claim 34, wherein the reaction is carried out at no greater than about 37 °C.

7

6

39. The method of claim 34, wherein the fluid is selected from the group consisting of water, a physiologically acceptable pH-buffered solution, saline solution, serum and tissue culture medium.

9

10

8

40. A composite material comprising:

14

(a) a poorly crystalline apatitic calcium phosphate made by the process comprising:

15

providing an amorphous calcium phosphate in the presence of a sufficient quantity of water to produce a passe; and

16 17

18

promoting the hardening of the paste, wherein said hardening is associated with the conversion of the amorphous calcium phosphate to a poorly crystalline apatitic calcium phosphate; and

19 20

21

(b) a supplemental material in intimate contact with the poorly crystalline apatitic calcium phosphate, said supplemental material present in an amount effective to impart a selected characteristic to the composite.

22 23

24

25

2627

41. The material of claim 40-sharacterized in that, said paste, when prepared from a reaction of amorphous calcium phosphate and a second phosphate in a fluid, the reaction mixture is injectable and formable for a time greater than about 10 minutes at about 25 °C, and hardens within about 10 to 60 minutes at about 37 °C.

29

32

28

42. A composite material, comprising:

a strongly bioresorbable, poorly crystalline apatitic calcium phosphate in intimate contact with a biocompatible supplemental material, said supplemental

Jul Jag

MAGA

material present in an amount effect	tive to	impart a sele	ected characte	eristic to the
composite.				

- 43. The composite of claim 42, wherein said poorly crystalline apatitic calcium phosphate has x-ray diffraction substantially as shown in Figure 18.
- 44. The composite of claim 42, wherein the strongly resorbable, poorly crystalline apatitic calcium phosphate has an X-ray diffraction pattern comprising broad peaks at 2θ values of 26° , 28.5° , 32° and 33° .
- 45. The composite of claim 42, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within one year when the composite is placed in a rat intramuscular sile.
- 46. The composite of claim 42, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within nine months when the composite is placed in a rat intramuscular site.
- 47. The composite of claim 42, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within six months when the composite is placed in a rat intramuscular site.
- 48. The composite of claim 42, wherein the poorly crystalline apatitic calcium phosphate is formulated so that when the composite compromises at least 1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the poorly crystalline apatitic calcium phosphate is resorbed within three months when

WU	98/10208 FC1/US7//18031
1	the composite is placed in a rat intramuscular site.
2	
3	49. The composite of claim 42, wherein the poorly crystalline apatitic
4	calcium phosphate is formulated so that when the composite compromises at least
5	1 g of poorly crystalline apatitic calcium phosphate, at least about 80% of the
6	poorly crystalline apatitic calcium phosphate is resorbed within one month when
7	the composite is placed in a rat intramuscular site.
8	
9	50. The composite of claim 42, wherein the supplementary material is
10	bioresorbable.
11	
12	51. The composite of claim 50, wherein the resorbable supplementary
13	material is selected from the group consisting of collagen, demineralized bone
14	matrix, derivativized hyaluronic acid, polyanhydrides, polyorthoesters,
15	polyglycolic acid, polylactic acid, and copolymers thereof, polyesters of α -
16	hydroxycarboxylic acids, poly(L-lactide) (PLLA), poly(D,L-lactide) (PDLLA),
17	polyglycolide (PGA), poly(lactide-co-glycolide (PLGA), poly(D,L-lactide-co-
18	trimethylene carbonate), and polyhydroxybutyrate (PHB), polyanhydrides,
19	poly(anhydride-co-imide) and co-polymers thereof, and bioactive glass
20	compositions.
21	
22	52. The composite of claim 42 wherein supplementary material is non-
23	bioresorbable.
24	
25	53. The composite of claim 52, wherein the non-bioresorbable
26	supplementary material is selected from the group consisting of dextrans,
27	polyethylene, polymethylmethacrylate PMMA), carbon fibers, polyvinyl alcohol
28	(PVA), poly(ethylene terephthalate)polyamide, bioglasses, calcium sulfate and
29	calcium phosphates
30	
31	54. The composite of claim 42, wherein the supplementary material is a
32	lubricant.

WO 98/16268 PCT/US97/18631 55. The composite of claim 54, wherein the lubricant is selected from 1 2 the group consisting of silicone oil, polymer waxes, lipids, surfactants and fatty 3 acids. 4 The composite of claim 42, wherein the supplementary material is 5 56. in the form selected from the group consisting df foam, sponge, mesh, particles, 6 7 fibers, gels and filaments. 8 A method of preparing a ceramic composite material, comprising: 9 mixing in any order, 10 11 (a) an amorphous calcium phosphate, 12 (b) a promoter, and 13 (c) a supplementary material, the supplementary material present in an amount effective to impart a selected characteristic to the composite; and 14 initiating conversion of the amorphous calcium phosphate into a poorly 15 crystalline apatitic calcium phosphate, said conversion accompanied with hardening 16 17 at about 37 °C of the composite within 10 to 60 minutes. 18 19 58. The method of claim 57, wherein the promoter is selected from the 20 group consisting of Al₂O₃, sand, mica and glass. 21 The method of claim 57, wherein the promoter is a calcium or a 22 59. phosphorus source. 23 24 The method of claim 59, wherein the promoter is selected from the 25 60. group consisting of calcium metaphosphate, dicalcium phosphate dihydrate, 26 27 heptacalcium decaphosphate, tricalcium phosphates, calcium pyrophosphate 28 dihydrate, crystalline HA, PCA calcium phosphate, calcium pyrophosphate, 29 monetite, octacalcium phosphate, CaO, CaCO₃, calcium acetate, and H₃PO₄, and 30 ACP. 31

WO 9	08/16268		PCT/US97/18631
1	61.	The method of claim	57, wherein the reaction is carried out at no
2	greater than	about 37 °C.	
3			
4	62.	The method of claim	57, wherein the reaction to form a poorly
5	crystalline a	patitic calcium phospha	te is initiated before addition of the
6	supplementa	ry material.	
7			
8	63.	The method of claim	57, wherein the reaction to form a poorly
9	crystalline a	patitic calcium phospha	te is initiated after addition of the
10	supplementa	ry material.	}
11			
12	64.	The method of claim	57, wherein the reaction is initiated by
13	addition of	a fluid, the fluid selecte	from the group consisting of water, a
14	physiologica	ally acceptable pH-buffe	red solution, saline solution, serum and tissue
15	culture med	ium.	
16			
17	65.	An orthopedic device	comprising the composite of claim 42.
18			
19	66.	A bone cement comp	rising the composite of claim 42.
20			
21	(67)	A method for embed	ding an object at a bone site, comprising:
22	prepa	aring a composite comp	rising a fully resorbable, poorly crystalline
23	apatitic calc	ium phosphate in intima	te contact with a non-resorbable or weakly
24	resorbable s	upplementary material;	
25	intro	ducing the composite to	a bone site, whereby the fully resorbable
26	poorly crys	stalline apatitic calcium	phosphate is resorbed and ossified and the non-
27	resorbable s	supplementary material	remains at the bone site.
28			
29	63.	A method for treating	g a bone defect, comprising:
30	ident	tifying a bone site suital	ble for receiving an implant; and
31	intro	ducing a strongly resor	bable, poorly crystalline apatitic calcium
32	nhosnhate a	t the implant site where	ehy hone is formed at the implant site

WO:	98/16268		PCT/US97/18631
1	69.	A method for treating a	bone defect, comprising:
2	identif	ying a bone site suitable	for receiving an implant; and
3	introdu	icing a hydrated precurs	or to a strongly resorbable, poorly crystalline
4	apatitic calciu	m phosphate at the imple	ant site, whereby the hydrated precursor is
5	converted in	vivo to a poorly crystalling	ne apatitic calcium phosphate and whereby
6	bone is forme	ed at the implant site.	
7			
8	70.	The method of claim 68	3, wherein the poorly crystalline apatitic
9	calcium phosp	phate is introduced in the	form selected from the group consisting of
10	paste, putty a	nd preshaped object.	
l 1			
12	71.	The method of claim 69	, wherein the hydrated precursor is
13	introduced in	the form selected from	the group consisting of paste and putty.
14			
15	72.	The method of claim 70	or 71 eharacterized in that, said paste is
16	injectable for	a time greater than abou	nt 0 minutes at about 25 °C, hardens within
17	about 10 to 6	0 minutes at about 37	
18			
19	73.	The method of claim 68	wherein said poorly crystalline apatitic
20	calcium phosp	ohate has x-ray diffraction	substantially as shown in Figure 18.
21			
22	74.	The method of claim 68	, wherein the strongly bioresorbable, poorly
23	crystalline ap	atitic calcium phosphate	has an X-ray diffraction pattern comprising
24	broad peaks a	at 2θ values of 26° , 28.5°	*, 32* and 33*.
25			
26	75.	The method of claim 68	3, wherein the strongly bioresorbable, poorly
27	crystalline ap	atitic calcium phosphate	is characterized in that, when placed in a rat
28	intramuscular	site, resorption of at lea	ast 1 g of the material is at least 80%
29	resorbed with	in one year.	
30			
31	76.	The method of claim 68	3, wherein the strongly bioresorbable, poorly
32	crystalline an	atitic calcium phosphale	is characterized in that, when placed in a rat

WU:	y5/10208 \
1	intramuscular site, resorption of at least 1 g of the material is at least 80%
2	resorbed within one month.
3	
4	77. The method of claim 68 or 69, wherein the implant site comprises a
5	tooth socket.
6	
7	78. The method of claim 68 or 69, wherein the implant site comprises a
8	non-union bone.
9	
10	79. The method of claim 68 or 69, wherein the implant site comprises a
11	bone prosthesis.
12	
13	80. The method of claim 68 or 69, wherein the implant site comprises
14	an osteoporotic bone.
15	
16	81. The method of claim 68 or 69, wherein the implant site comprises
17	an intervertebral space.
18	
19	82. The method of claim 68 or 69, wherein the implant site comprises a
20	alveolar ridge.
21	
22	83. The method of claim 68 or 69, wherein the implant site comprises a
23	bone fracture.
24 25	
25 26	A method of preparing a ceramic implant, comprising:
26 27	mixing in any order,
27 28	(a) a reactive amorphous calcium phosphate,
20 29	(b) a second calcium phosphate the second calcium phosphate and the reactive amorphous calcium phosphate in a proportion to form an apatitic calcium
30	phosphate, and
31	(c) a physiological liquid, said liquid in the amount to provide a paste or
32	putty; and
	, man
	\int 113

WO 9	98/16268	PCT/US97/18631
1	introducing the paste or putty into an implant site.	
2		
3	85. The method of claim 84, wherein the reaction is	carried out at no
4	greater than about 37 °C.	
5		
6	86. The method of claim 84, wherein the fluid select	ed from the group
7	consisting of water, a physiologically acceptable pH-buffered so	olution, saline
8	solution, serum and tissue culture medium.	
9		
10	87. The method of claim 84, wherein the paste or pu	tty is injected into
11	the implant site.	
12		
13	88) A method for embedding a prosthetic device int	o a bone,
14	comprising:	
15	introducing an implant device at a bone site;	
16	applying a strongly resorbable, poorly crystalline apatit	cic calcium
17	phosphate in the form of a powder, paste or putty to the imp	lant device,
18	whereby the poorly crystalline apatitic calcium phosphate is re	esorbed at the
19	implant site and replaced thereby with new bone growth.	
20		
21	A method for treating a bone defect comprising	:
22	identifying a bone site suitable for receiving an implant	;
23	introducing pressed powder compact at the bone site, s	aid pressed powder
24	compact having approximately the shape required for repair o	f the bone defect
25	and comprising an amorphous calcium phosphate and a prome	oter for promoting
26	the conversion of the amorphous calcium phosphate into a str	rongly resorbable,
27	poorly crystalline apatitic calcium phosphate, whereby the pre	essed powder
28	compact is converted in vivo into the strongly resorbable poo	rly crystalline
29	apatitic calcium phosphate.	
30		