

# CAUSAL INFERENCE FOR BUSINESS DECISIONS: UNDERSTANDING CAUSE & EFFECT

Date: 11 - 14 November 2024



# Instructor at Algoritma Data Science School Since 2021

Python, SQL, R Machine Learning, Data Analytics

**Computer Science, Universitas Indonesia** 



#### Wulan





## **Teaching Assistant**







Irfan



<u>VictorNugraha</u>

**Victor** 



Victor nugraha



<u>IrfanChairurrachman</u>



<u>Irfan Chairur Rachman</u>

Visualization & Dashboarding

Machine Learning, Data Engineering



# Introduction



# What is Causality?







# Causality

the study of how things influence one other, the relationship between cause and effect.

#### **Motivation:**

- We rely on causation to make it happen
- A/B Testing doesn't always works

#### **Example problem:**









#### **Causality vs Correlation**

- (+) Kausalitas dan (+) Korelasi: penjualan jaket meningkat ketika suhu juga meningkat
- (+) Kausalitas dan (-) Korelasi: TIngkat pertumbuhan tanaman dengan banyak air yang diberikan
- (-) Kausalitas dan (+) Korelasi: tingkat konsumsi margarin dengan tingkat perceraian di Maine
- (-) Kausalitas dan (-) Korelasi: tinggi badan dan warna mata

Another spurious correlation: <a href="https://www.tylervigen.com/spurious-correlations">https://www.tylervigen.com/spurious-correlations</a>

# Causality Causal Inference

the process of determining whether an observed association truly reflects a cause-and-effect relationship.

#### Causal Inference

RCT
a.ka Randomized Control Trial

#### Randomized Controlled Trial





## **Mindmap**





# Introduction for Programming in Python



# **Tools Analogy**



Data Analyst



Painter







Studio







# Package / Library





#### Virtual Environment





Virtual Environment 2



Virtual Environment 3



Project 1

Project 2

Project 3



#### Why do we need Python environments?

You might ask: shouldn't I just install the latest Python version?







Isolate package versions to avoid breaking changes

Sharing virtual environment to enable project collaboration

Publishing or deploying an application requires setting up an environment



# Package / Library







# **Open VS Code**





#### **How to Create a Virtual Environment**

- 1. Open VS Code
- 2. Open terminal in VS Code
- Create new virtual environment with:
   conda create --name dss\_causality python=3.8
- Activate the new virtual environment:
   conda activate dss\_causality
- 5. Download requirements.txt from installation post in google classroom
- Install required libraries
   pip install r requirements.txt

conda env list: check environment list

#### Workflow Causal Inference untuk data observasional

- 1. Definisikan tujuan dan asumsi
  - a. Tentukan treatment, outcome, confounder
- 2. Membuat diagram causal
- 3. Preprocessing data
  - a. Missing value, nilai outlier, dll
- 4. Pilih metode causal inference yang cocok dengan kasus dan karakteristik datanya
  - a. Regresi
  - b. Distance matching
  - c. Propensity matching
  - d. DiD
  - e. Instrumental Variabel
    - f. .....
- 5. Evaluasi dan Asumsi
  - a. Statistically significantl
- 6. Estimasi Efek Kausal
- 7. Kesimpulan



# Matching



#### **Matching Tree Methods**



Propensity score matching

- 1. Cari peluang tiap observasi mendapatkan perlakukan
  - Lakukan matching dengan propensity score tsb



### Differences in Differences





DiD





### Instrumental Variable

#### **Spotify Case**



#### Causal Inference

Frequentist

- 1. Regresi
  - 2. Matching
    - DiD
- 4. IV
- 5. RDD
- 6. ...

Bayesian

- . SEM
- 2. Bayesian approach
- 3. ..