Союз Советских Социалистических Республик

Комитет по делам изобретений и открытий при Совете Министров CCCP

И С А Н И E | 281435 изобретения

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Зависимое от авт. свидетельства №

Заявлено 01.Х11.1967 (№ 1200635/23-26)

с присоединением заявки № --

Приоритет

Опубликовано 14.1Х.1970. Бюллетень № 29

Дата опубликования описания 18.XII.1970

Кл. 12і, 11/14

MΠΚ C 01b 11/14

УДК 661.445(088.8)

Авторы изобретения

В. И. Скрипченко, Е. П. Дроздецкая и К. Г. И В ТЕХЕЩЧЕС

BCECHOSHAN

Заявитель

Новочеркасский политехнический институт им. С. Орджоники зе

СПОСОБ ПОЛУЧЕНИЯ ХЛОРАТА НАТРИЯ

Данное изобретение относится к области электрохимических производств, в частности

к получению хлората натрия.

Известен способ получения хлората натрия путем электролиза хлорида с применением платинового или графитового анода при 40-45,60°С, анодной плотности тока 0,1 а/см2, или 0,3 а/см², концентрации NaClO в электролите 0,01—0,05 моль/л и хлората 4,2— 4,3 моль/л. Электролиз осуществляют без вво- 1 да бихромата. Выход по току — 83—87%. Недостатком этого способа является применение дорогостоящей платины, технико-экономические же показатели на графите значительно ниже.

Таблица 1

	Состав электолита, моль/л		
Компоненты	анод-pbo ₂	анод- платина	анод- графит
NaCI	0,60,9	2,2-2,4	1,8-2,0
NaClo	0,05	0,02	0,02
NaClo ₃	4,5—5,2	3,63,9	4,2-4,3

	Таб	лица 2
	Опыт	
Показатели	1	2
Продолжительность, час	1077,4	497,7
Сила тока, а	3,0	1,8
Напряжение, в	4,20	3,95
Температура, ℃	40	40
Плотность	1	
анодная, <i>а/см</i> ²	0,34	0,20
катодная, <i>а/см</i> ²	0,25	0,15
√√ объемная, а/л	1510	96
Выход по веществу, %	98,5	100,0
Результаты газового апализа окисление	87,7	86,3
восстановление	1,0	3,4
выход по току	86,7	82,9
Выход по току по анализу электролита, %	86,6	83,6
Расходный коэффициент электроэнергии, квтч	7337	7133

С целью повышения выхода продукта с одновременной экономией анодной платины 30 в предлагаемом способе электролиз осуществляют на аноде из двуокиси свинца и на катоде из стали, легированной хромом, никелем, молибденом и титаном. По предложенному способу в электролизер без диафрагмы загружают электролит постоянного состава, который в процессе электролиза поддерживают вводом питающего раствора, содержащего 4,8—5,0 моль/л NaCl и 0,2—0,3 моль/л HCl. Такое содержание соляной кислоты в растворе для ввода позволяло поддерживать рН старионарного электролита в пределах 6,2—6,7.

Применение анодов из двуокиси свинца позволило выбрать оптимальный состав электролита с значительно более низким содержанием хлорида натрия по сравнению с составом для 15 анодов из графита и платины. Стационарный состав электролита представлен в табл. 1.

При использовании анодов из платины и графита оптимальное содержание хлорида в электролите •составляет 2,2—2,4 и 1,8— 20 2,0 моль/л соответственно. Снижение концентрации хлорида натрия для платинового анода ведет к нарушению хлоратного режима и по-

явлению в электролите ионов ClO₄. Для графита снижение концентрации хлорида вызывает разрушение анода. Возможность работать с низкими концентрациями хлорида на аподах из двуокиси свинца представляет интерес как для дальнейшей переработки хлората в высшие кислородные соединения хлора, так и для получения твердого хлората.

4.

В качестве катода может быть применена сталь X18H12M2T, которая обладает высокой коррозионной устойчивостью и уменьшает катодное восстановление. Основные показатели и режим электролиза приведены в табл. 2.

Предмет изобретения

Способ получения хлората натрия путем электролиза, отличающийся тем, что, с целью повышения выхода продукта с одновременной экономией анодной платины, электролиз осуществляют на аноде из двуожиси свинца и на катоде из стали, легированной хромом, никелем, молибденом и титаном.

Составитель Н. Н. Грехнева

Редактор В. П. Новоселова

Корректор Г. С. Мухина

Заказ 3654/1 Тираж 480 Подписное UНИИПИ Комитета по делам изобретений и открытий при Совете Министров СССР Москва, Ж-35, Раушская наб., д. 4/5