Spektralscharen

(Absch. 8.1 und 8.2 aus Lineare Operatoren in Hilberträumen, Teil I Grundlagen von J. Weidmann, 2000)

Spektralschar. Eine *Spektralschar* in einem Hilbertraum X ist eine Funktion $E:\mathbb{R}\to B(X)$ mit den Eigenschaften

- (S1) E(t) ist orthogonale Projektion $\forall t \in \mathbb{R}$.
- (S2) $E(s) \leq E(t)$ falls $s \leq t$.
- (S3) $\lim_{\delta \to 0+} E(t+\delta)x = E(t)x \ \forall t \in \mathbb{R}.$
- (S4) $\lim_{t\to-\infty} E(t)x = 0.$
- (S5) $\lim_{t\to\infty} E(t)x = x$.

Beispiel 8.1. Sei T ein Operator mit reinem Punktspektrum in einem Hilbertraum X, $\{\mu_{\alpha} | \alpha \in \mathcal{A}\}$ die paarweise verschiedenen Eigenwerte, P_{α} die orthogonalen Projektionen auf die zug. Eigenräume und $\Omega_t := \{\alpha \in \mathbb{A} | \mu_{\alpha} \leqslant t\}$. Dann wird durch $E: \mathbb{R} \to B(X), t \mapsto \sum_{\Omega_t} P_{\alpha}$ eine Spektralschar in X definiert.

Beispiel 8.2. In $L^2(\mathbb{R}, \varrho)$ ist durch $E(t)f := \chi_{(-\infty, t]f} \ (\forall t \in \mathbb{R})$ eine Spektralschar definiert.

Beispiel 8.3. Ist (X, μ) ein Maßraum, $g: X \to \mathbb{R}$ μ -messbar, so wird durch $E(t)f := \chi_{\{x \in X \mid g(x) \leqslant t\}} f$ eine Spektralschar in $L^2(X, \mu)$ definiert.

Spektralmaß. Die rechtsstetige nichtfallende Funktion $\varrho_x: \mathbb{R} \to \mathbb{R}, t \mapsto \|E(t)x\|^2 = \langle x, E(t)x \rangle$ erzeugt durch $\mu((a,b)) := \varrho_x(b-) - \varrho_x(a)$ und $\mu(\{a\}) := \varrho_x(a) - \varrho_x(a-)$ ein Lebesgue-Stieltjessches Prämaß μ . Man schreibt $\mu =: \varrho_x$ und nennt ϱ_x Spektralmaß.

Beispiel 8.4. Seien $X,T,P_{\alpha},\mu_{\alpha}$ und die Spektralschar E wie in Beispiel 8.1 definiert. Dann gilt $\varrho_x(\{\mu_{\alpha}\}) = \|P_{\alpha}x\|^2$, $D(T) = \{x \in X | \mathbbm{1} \in L^2(\mathbb{R},\varrho_x)\}$ und $Tx = \sum_{\alpha} \mu_{\alpha}(E(\mu_{\alpha}) - E(\mu_{\alpha}-))x$.

E-messbare Funktion. $u: \mathbb{R} \to \mathbb{C}$ E-messbar $:\Leftrightarrow u$ ρ_x -messbar $\forall x \in X$.

Von x erzeugter Teilraum. Sei E Spektralschar im HR $X, x \in X$ und $\mathcal{G}_x := L\{E(t)x|t \in \mathbb{R}\}$. $\mathcal{H}_x := \overline{\mathcal{G}}_x$ heißt durch x erzeugter Teilraum.

Satz 8.5. Sei E Spektralschar im HR $X, x \in X$, so gilt (a) $V: \mathcal{G}_x \to L^2(\mathbb{R}, \varrho_x), \sum_{1}^{n} c_j E(t_j) x \mapsto \sum_{1}^{n} c_j \chi_{(-\infty, t_j]}$ ist isometrisch.

- (b) $U := \overline{V} : \mathcal{H}_x \to L^2(\mathbb{R}, \varrho_x)$ ist unitär.
- (c) $UE(t)|_{\mathcal{H}_x}U^{-1} = \chi_{(-\infty,t]}.$

Lemma 8.6. Es gilt

- (a) $x \in X \Rightarrow x \in \mathcal{H}_x$.
- (b) Für alle $y \in \mathcal{H}_x$ und $t \in \mathbb{R}$ gilt $E(t)y \in \mathcal{H}_x$.
- (c) $y \perp \mathcal{H}_x \Rightarrow E(t)y \perp \mathcal{H}_x \ (\forall t \in \mathbb{R}).$
- (d) Für alle $y \in \mathcal{H}_x$ ist ϱ_y absolut stetig bezüglich ϱ_x .

Satz 8.7. Sei E eine Spektralschar in einem separablen HR X, dann gibt es beschränkte Borelmaße ϱ_j $(j \in \mathcal{A} \subset \mathbb{N})$ auf \mathbb{R} und eine unitäre Abbildung U von X nach $\bigoplus_{j \in \mathcal{A}} L^2(\mathbb{R}, \varrho_j)$ so, dass $UE(t)U^{-1} = \chi_{(-\infty, t]}$.

Integral bzgl. einer Spektralschar für Elementarfunktionen. Sei $u: \mathbb{R} \to \mathbb{C}, t \mapsto \sum_j c_j \chi_{I_j}(t)$ (mit disjunkten $I_j \subset \mathbb{R}$), dann wird definiert

$$\int_{\mathbb{R}} u(t)dE(t) := \sum_{j} c_{j}E(I_{j}), \qquad (1)$$

wobei $E((a,b)) := E(b-) - E(a), E(\{a\}) = E(a) - E(a-)$ und $E(A \cup B) := E(A) + E(B)$.

Be obachtungen.

- (B1) $\|\int u(t)dE(t)x\|^2 = \sup |u|^2 \|x\|^2 \text{ d.h. } \int u(t)dE(t) \in B(X).$
- (B2) Ist $x \in X$ und $u \in L^2(\mathbb{R}, \varrho_x)$, so gibt es eine Folge (u_n) von Treppenfunktionen mit $u = L^2 \lim_{n \to \infty} u_n$ und die Elemente $y_n := \int u_n(t) dE(t)x$ bilden eine Cauchy-Folge in X, d.h. (y_n) konvergiert in X.

Integral bzgl. einer Spektralschar. Sei $u \in L^2(\mathbb{R}, \varrho_x)$ für $x \in X$, (u_n) eine Folge von Elementarfunktionen mit $u = L^2$ - $\lim_{n \to \infty} u$, dann wird definiert

$$\int_{\mathbb{R}} u(t)dE(t)x := \lim_{n \to \infty} \int u_n(t)dE(t)x.$$
 (2)

Eigenschaften.

- (E1) Die Abbildung $L^2(\mathbb{R}, \varrho_x) \to X, u \mapsto \int u(t) dE(t) x$ ist isometrisch.
- (E2) $\int u(t)dE(t)x$ ist linear in u.

Satz 8.8. Sei E Spektralschar im HR X, $u: \mathbb{R} \to \mathbb{C}$ E-messbar, dann wird durch $D(u_E) := \{x \in X | u \in L^2(\varrho_x)\}$, $u_E x := \int u(t) dE(t) x$ ein normaler Operator auf X definiert. Ist u reellwertig, so ist u_E selbstadjungiert. Sind nun $u, v: \mathbb{R} \to \mathbb{C}$ E-messbar, so gilt außerdem

- (a) Seien $x \in D(u_E), y \in D(v_E), \varrho_{y,x} := \langle y, E(\cdot)x \rangle$, so ist $\langle v_E y, u_E x \rangle = \lim_{n \to \infty} \int \overline{\varphi_n(v(t))} \varphi_n(u(t)) d\varrho_{y,x}(t)$ wobei $\varphi_n : \mathbb{C} \to \mathbb{C}, z \mapsto z \chi_{[-n,n]}(|z|)$.
- (b) $x \in D(u_E) \Rightarrow ||u_E x||^2 = ||u||_{L^2(\mathbb{R}, \varrho_x)}^2$
- (c) u beschränkt $\Rightarrow u_E \in B(X)$ mit $||u_E|| \leqslant \sup |u|$.
- (d) Ist 1 die Einsfunktion und I der Identitätsoperator in X, dann gilt $\mathbb{1}_E = I$.
- (e) $x \in D(u_E) \Rightarrow \forall y \in X: \langle y, u_E x \rangle = \int u(t) d\varrho_{y,x}(t)$.
- (f) $u(t) \geqslant c \ \forall t \in \mathbb{R} \Rightarrow u_E \geqslant c$.
- (g) $u_E + v_E \subset (u + v)_E$ und $D(u_E + v_E) = D((|u| + |v|)_E)$.
- (h) $u_E v_E \subset (uv)_E$ und $D(u_E v_E) = D(v_E) \cap D((uv)_E)$.
- (i) $D(u_E)$ ist dicht in X, $D(u_E) = D(\overline{u}_E)$ und $u_E^* = \overline{u}_E$.
- (j) Sei $S \subset \mathbb{R}$, sodass χ_S E-messbar $\Rightarrow (\chi_S)_E \stackrel{-}{=}: E(S)$ ist orthogonale Projektion.

E-maximales Element. $h \in X$ heißt *E*-maximal, wenn ϱ_x für alle $x \in X$ absolut stetig bzgl. ϱ_h ist.

Satz 8.9. Sei E Spektralschar im separablen HR X.

- (a) Es gibt ein E-maximales Element.
- (b) $u: \mathbb{R} \to \mathbb{C}$ E-messbar \Leftrightarrow es gibt eine Folge (u_n) von Elementarfunktionen mit $u_n(t) \to u(t) \varrho_x$ -f.ü. $\forall x \in X$.
- (c) $\forall x \in X \exists h_x \text{ E-maximal mit } x \in H_{h_x}.$

Satz 8.10. In Satz 8.7 können die Maße ϱ_{j+1} für alle j < N absolut stetig bzgl. ϱ_j gewählt werden.