

Monte Carlo Localization

Project by- Sarthak Mishra (18388) and Siddhant Sekhar (18395)

Contents

- Monte Carlo Method
- Robot Localization
- Monte Carlo Localization
- Results and Discussions
 - Limitations
- Bibliography

1.

Monte Carlo Method

What did we learn in the course

Monte Carlo Methods

- Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.
- use randomness to solve problems that might be deterministic in principle.
- Can be used to solve any problem having a probabilistic interpretation.

2. Robot Localization

The problem

Robot Localization

Estimate the state of the robot at the current time-step k, given knowledge about the initial state and all measurements up to the current time.

$$Z^k = \{ z_k, i = 1 k \}$$

- Three-dimensional state vector: Position and Orientation of Robot $\mathbf{x} = [x, y, \theta]^T$
- Interested in constructing the posterior density $p(\mathbf{x}_k \mid Z^k)$ of the current state conditioned on all measurements.
- This PDF is taken to represent all the knowledge we possess about the state x_{k} , and from it we can estimate the current position.

Prediction Phase

- to localize the robot we need to recursively compute the density $p(\mathbf{x}_k \mid Z^k)$ at each time-step. This is done in two phases:
 - a. Prediction Phase and
 - **b.** Update Phase
- We use a motion model to predict the current position of the robot in the form of a predictive PDF $p(\mathbf{x}_k \mid Z^k)$, taking only motion into account.
- We assume that the current state \mathbf{x}_k is only dependent on the previous state \mathbf{x}_{k-1} and that the motion model is specified as a conditional density $p(\mathbf{x}_k \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1})$ where \mathbf{u}_{k-1} is a control input.
- Predictive density over x_k is obtained by integration:

$$p(\mathbf{x}_{k} \mid Z^{k-1}) = \int p(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{u}_{k-1}) * p(\mathbf{x}_{k-1} \mid Z^{k-1}) * d\mathbf{x}_{k-1}$$

Update Phase

- We use a measurement model to incorporate information from the sensors to obtain the posterior PDF $p(\mathbf{x}_k \mid Z^k)$
- We assume that the measurement \mathbf{z}_k is conditionally independent of earlier measurements Z^{k-1} given \mathbf{x}_k , and that the measurement model is given in terms of a likelihood $p(\mathbf{z}_k / \mathbf{x}_k)$.
- This term expresses the likelihood that the robot is at location \mathbf{x}_k given that \mathbf{z}_k was observed.
- The posterior density over \mathbf{x}_{k} is obtained using Bayes theorem:

$$p(\mathbf{x}_k|Z^k) = \frac{p(\mathbf{z}_k|\mathbf{x}_k)p(\mathbf{x}_k|Z^{k-1})}{p(\mathbf{z}_k|Z^{k-1})}$$

• After the update phase, the process is repeated recursively.

3.

Monte Carlo Localization

The solution

Monte Carlo Localization

- In sampling-based methods one represents the density $p(\mathbf{x}_k \mid Z^k)$ by a set of **N** random samples or particles $S_k = \{s^i_k; i = 1 \dots N\}$ drawn from it.
- The goal is then to recursively compute at each time step k the set of samples S_k that is drawn from $p(\mathbf{x}_k \mid Z^k)$.
- These class of algorithms known as Particle Filters or Monte Carlo Filter or Monte Carlo Localization. The algorithm proceeds as follows:
 - Prediction Phase:-
 - we start from the set of particles S_{k-1} computed in the previous iteration
 - apply the motion model to each particle s_{k-1}^i , by sampling from the density $p(\mathbf{x}_k \mid s_{k-1}^i, \mathbf{u}_{k-1})$:

MCL (Prediction and Update Phase)

- Monte Carlo Prediction Phase:
 - (I) for each particle s_{k-1}^{i} : draw one sample s_{k}^{i} from $p(x_{k} | s_{k-1}^{i}, u_{k-1})$
- The prime in $\mathbf{s''}_{\mathbf{k}}$ indicates that we have not yet incorporated any sensor measurement at time k.

Update Phase:-

- we take into account the measurement z₁
- Weight each sample S'_k by the weight $m_k^{in} = p(\mathbf{z}_k | s'_k)$, i.e. the likelihood of s'_k given \mathbf{z}_k .
- We then obtain S_k by resampling from this weighted set:
 - (II) for j = 1..N: draw one S_k sample s_k^j from $\{s_k^i, m_k^i\}$

MCL (Prediction and Update Phase)

- The resampling selects higher probability samples s'_k that have a high likelihood associated with them.
- In doing so a new set S_k is obtained that approximates a random sample from $p(\mathbf{x}_k \mid Z^k)$.

After the update phase, the steps (I) and (II) are repeated recursively. To initialize the filter, we start at time k = 0 with a random sample $S_0 = \{ s_0^i \}$.

MCL - Graphical Interpretation

Fig. 1: The probability densities and particle sets for one iteration of the algorithm.

4.

Results and Discussions

What we obtained after hours of tedious effort:P

Result output from our code.

Limitations of MCL

works best for 10% to 20% perpetual noise

performs poorly when the noise level is too small

MCL with accurate sensors may perform worse than MCL with inaccurate sensor!!

Bibliography

- Monte Carlo Localization for Mobile Robots
- Monte Carlo Localization (Wiki)
- Particle Filter (Wiki)
- Particle Filter and Monte Carlo Localization (Lecture by Prof. Cyrill Stachniss)
- Robust Monte Carlo Localization for Mobile Robots