Conformational Analysis

Conformational analysis

- The different arrangements of the atoms in space that result from rotations of groups about single bonds are called *conformations* of the molecule.
- •An analysis of the energy changes that a molecule undergoes as groups rotate about single bonds is called *conformational analysis*.

Different conformations

Different configurations

Potential energy of ethane as function of torsion angles

- *staggered conformation has potential energy minimum
- •eclipsed conformation has potential energy maximum
- staggered conformation is lower in energy than the eclipsed by
- 2.9 kcal/mole (12 kJ/mole)

Why is the eclipsed conformation higher in energy than the staggered conformation?

•The H-atoms are too small to get in each other's way-steric factors make up < 10% of the rotational barrier in ethane

Torsional strain

Caused by repulsion of the bonding electrons of one substituent with the bonding electrons of a nearby substituent

filled orbitals repel

The real picture is probably a mixture of all 3 effects

• The rotational barrier is (12 kJ/mol) small enough to allow the conformational isomers to interconvert million of times per second

Potential energy of butane as a function of torsion angle

- A → "synclinal" or "gauche"
- B → "anticlinal"
- C → "anti-periplanar" or "anti"
- D

 "syn-periplanar" or "fully eclipsed"

C → "anti-periplanar" or "anti"

No torsional strain as the groups are staggered and ${\rm CH_3}$ groups are far away from each other

A → "synclinal" or "gauche"

van der Waals forces between two CH₃ groups are repulsive: the electron clouds repel each other which accounts for 0.9 Kcal/mole more energy compared to anti conformer

 Calculations reveal that at room temperature ~72% of the molecules of butane are in the "anti" conformation, 28% are in "gauche" conformation

B → "anticlinal"

torsional strain and large van der waals repulsive forces between the H and CH_{3} groups

D "syn-periplanar" or "fully eclipsed"

Highest energy due to torsional strain and large van der waals repulsive force between the CH₃ groups

Conformations and Conformers

Butane can exit in an infinite number of conformations (6 most important have been considered), but has only 3 conformers (potential energy minima)-the two "gauche" conformations and the "anti" conformations

• The preference for a staggered conformation causes carbon chains to orient themselves in a zig zag fashion, see structure of decane

CH ₃ (CH ₂) _n CH ₃				
Straight chain alkanes	n	-ΔHcombustion kJ mol ⁻¹	Difference kJ mol ⁻¹	
ethane	0	1560		• the difference between
propane	1	2220	660	
butane	2	2877	657	any two in series very
pentane	3	3536	659	nearly constant at arou –660 kJ/mole (energy p CH ₂)
hexane	4	4194	658	
heptane	5	4853	659	
octane	6	5511	658	
nonane	7	6171	660	
decane	8	6829	658	
undecane	9	7487	658	
dodecane	10	8148	661	

Twist boat lactone

Lactonization of 3-hydroxy cyclohexane carboxylic acid

Cyclic anhydride formation from 1,3-cyclohexanedicarboxylic acid

Intramolecular H-bonding in 1,3cyclohexanediol

Conformational preferences can be modulated under forced reaction condition

Cis-4hydroxycyclohexanecarboxylic acid