ROBEM I Prove that solution of equation

$$x^{2} + y^{2} = z^{4}, \gcd(x, y) = 1, x > 0, y > 0, z > 0, 2 \mid x$$
 (1)

is

$$\begin{cases} x = 4ab(a^2 - b^2) \\ y = |a^4 + b^4 - 6a^2b^2| \\ z = a^2 + b^2 \end{cases}$$
 (2)

where $a > 0, b > 0, \gcd(a, b) = 1, a \not\equiv b \mod 2$.

SOUTION. 1. Obviously, (x, y, z) satisfying 2 satisfies 1.

2. Next, we proof the solution of 1 satisfies 2. Since (m,n), gcd(n,m)=1 satisfies

$$\begin{cases} x = 2nm \\ y = m^2 - n^2 \\ z = m^2 + n^2 \end{cases}$$

Since y > 0 and $\gcd(x,y) = 1,2 \mid x$, then $m \ge n,2 \nmid x-y$, then $2 \nmid n-m$. So we just let $y = |m^2 - n^2|, 2 \nmid m, 2 \mid n$. Since $m^2 + n^2 = i^2, \exists i > 0$, then $(u,v) \in \mathbb{N}^2$, $\gcd(u,v) = 1$, $2 \nmid u-v$ satisfies

$$\begin{cases} m = u^2 - v^2 \\ n = 2uv \end{cases}$$

So

$$\begin{cases} x = 2uv \\ y = |6u^2v^2 - u^2 - v^2| \\ z = u^2 + v^2 \end{cases}$$

ROBEM II Find a method to judge whether a number can be divided by 37, 101.

SOLTION. 1. Since $37 \equiv 1 \mod 1000$, then $\forall \sum_{k=0}^{n} a_k 10^k = \sum_{s=0}^{m} (a_{3s} + a_{3s+1} 10 + a_{3s+2} 100) 1000^s$, $m = \left[\frac{n}{3}\right] + 1$, $a_{3m+i} = 0$, if 3m+i > n, i = 1, 2. So $\sum_{k=0}^{n} a_k 10^k \equiv \sum_{s=0}^{m} (a_{3s} + a_{3s+1} 10 + a_{3s+2} 100) 1000^s$ mod 37. Thus $37 \mid \sum_{k=0}^{n} a_k 10^k \iff 37 \mid \sum_{s=0}^{m} a_{3s} + a_{3s+1} 10 + a_{3s+2} 100$.

2. Since $101 \equiv -1 \mod 100$, then $\forall \sum_{k=0}^{n} a_k 10^k = \sum_{s=0}^{m} (a_{2s} + a_{s+1} 10) 100^s$, $m = \left[\frac{n}{2}\right] + 1$, $a_{2m+1} = 0$, if 2m + 1 > n. So $\sum_{k=0}^{n} a_k 10^k \equiv \sum_{s=0}^{m} (a_{2s} + a_{2s+1} 10) 100^s \mod 101$. Thus $101 \mid \sum_{k=0}^{n} a_k 10^k \iff 101 \mid \sum_{s=0}^{m} (a_{2s} + a_{2s+1} 10) (-1)^s$.

ROBEM III Assume $2 \nmid a$, then $a^{2^n} \equiv 1 \mod 2^{n+2}$.

SOLTION. First, we prove $a^{2^n} - 1 = (a^2 - 1) \prod_{k=1}^{n-1} (a^{2^k} + 1)$. Obviously, when n = 1, the equation is right. If n the equation is right, so $a^{2^{n+1}} - 1 = (a^{2^n} - 1)(a^{2^n} + 1) = (a^2 - 1) \prod_{k=1}^{n-1} (a^{2^k} + 1)(a^{2^n} + 1) = (a^2 - 1) \prod_{k=1}^{n} (a^{2^k} + 1)$.

Second, since $2 \nmid a$, then a is odd, then a = 2b + 1. So $8 \mid a^2 - 1 = (a - 1)(a + 1) = 4b(b + 1)$ and $a^{2^k} + 1 = (2b + 1)^{2^k} + 1 = \sum_{i=1}^{2^k} (2b)^i + 2 = 2(\sum_{i=1}^{2^k} 2^{i-1}b^i + 1)$, so $2 \mid a^{2^k} + 1$, then $8 \times \prod_{k=1}^{n-1} 2 = 2^{n+2} \mid (a^2 - 1) \prod_{k=1}^{n-1} (a^{2^k} + 1)$.

ROBEM IV Let p be a prime and s,t be integers and $t \leq s$. Prove that $(u+p^{s-t}v:0 \leq u \leq p^{s-t}-1,0 \leq v \leq p^t-1)$ is a Complete residue system of p^s .

SOUTION. Since there are p^s elements in $(u + p^{s-t}v : 0 \ge u \ge p^{s-t} - 1, 0 \le v \le p^t - 1)$, we only need to prove any two of them Congruence modulo to p^s . Besides, $\forall (u_1 + p^{s-t}v_1), (u_2 + p^{s-t}v_2) \in \{u + p^{s-t}v : 0 \le u \le p^{s-t} - 1, 0 \le v \le p^t - 1\}, |(u_1 - u_2) + p^{s-t}(v_1 - v_2)| \le p^{s-t} - 1 + p^{s-t}(p^t - 1) = p^s - 1 < p^s$, so $p^s \mid (u_1 + p^{s-t}v_1) - (u_2 + p^{s-t}v_2)$, we can get $(u_1 + p^{s-t}v_1) - (u_2 + p^{s-t}v_2) = 0$, that is $u_1 - u_2 = p^{s-t}(v_2 - v_1)$, so $p^{s-t} \mid u_1 - u_2$. Since $|u_1 - u_2| < p^{s-t}$, then $u_1 - u_2 = 0$. Then $v_2 - v_1 = 0$.

ROBEM V Assume m_1, \dots, m_k is k integers coprime to each other. Assume A_1, A_2, \dots, A_k is Complete residue of m_1, \dots, m_k respectively. Let $m = \prod_{t=1}^k m_t$ and $M_t := \frac{m}{m_t}, t = 1, \dots, k$. Prove that $A := \{\sum_{t=1}^k M_t x_t : x_t \in A_t, t = 1, \dots, k\}$ is a Complete residue of m.

SOUTION. First, we prove there are m elements in A. $\forall \sum_{t=1}^k M_t x_t, \sum_{k=0}^k M_t y_t \in A$, if $\sum_{t=1}^k M_t (x_t - y_t) = 0$, then $\sum_{1 \leq t \leq k, t \neq i} M_t (x_t - y_t) = M_i (y_i - x_i), \forall 1 \leq i \leq k$. So $m_i (\sum_{1 \leq t \leq k, t \neq i} \frac{M_t}{m_i} (x_t - y_t)) = M_i (y_i - x_i)$. Since m_1, \dots, m_k are coprime to each other, then $\gcd(m_i, M_i) = 1$, then $m_i \mid (y_i - x_i)$. Since $y_i, x_i \in A_i, m_i \nmid x_i - y_i$, then $y_i - x_i = 0$. Thus $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$.

Since $y_i, x_i \in A_i$, $m_i \nmid x_i - y_i$, then $y_i - x_i = 0$. Thus $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$. Second, we prove if $m \mid \sum_{t=1}^k M_t (x_t - y_t)$, then $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$. Suppose $\sum_{t=1}^k M_t (x_t - y_t) = am$, $a \in \mathbb{N}$, then $\sum_{1 \le t \le k, t \ne i} M_t (x_t - y_t) = am - M_i (y_i - x_i) = M_i (am_i - y_i + x_i)$, $\forall 1 \le i \le k$, so $m_i(\sum_{1 \le t \le k, t \ne i} \frac{M_t}{m_i} (x_t - y_t)) = M_i (am_i - y_i + x_i)$. Since m_1, \dots, m_k are coprime to each other, then $\gcd(m_i, M_i) = 1$, then $m_i \mid (am_i - y_i + x_i)$, then $m_i \mid y_i - x_i$. Since $y_i, x_i \in A_i$, $m_i \nmid x_i - y_i$, then $y_i - x_i = 0$. Thus $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$.

ROBEM VI Let $H = \frac{3^{n+1}-1}{2}$. Let $I = \{(x_0, \dots, x_n) : x_k \in \{-1, 0, 1\}, k = 0, \dots, n\}$. Let $f : I \to N := [-H, H] \cap \mathbb{Z}$, and $f(x_0, \dots, x_n) = \sum_{k=0}^n x_k 3^k$. Prove that f is bijection. Thus, we can use n+1 weights and a balance to weigh all integer weights between 1 and H.

SOLION. Since $|I| = 3^{n+1} = |N| = 2H + 1$, so we only need to prove f is injective. If $\sum_{k=0}^{n} x_k 3^k - \sum_{k=0}^{n} y_k 3^k = \sum_{k=0}^{n} (x_k - y_k) 3^k = 0$, then we will prove $x_k = y_k, k = 0, \dots, n$. Obviously, $\sum_{k=1}^{n} (x_k - y_k) 3^k = y_0 - x_0$, then $3(\sum_{k=1}^{n} (x_k - y_k) 3^{k-1}) = y_0 - x_0$, so $3 \mid y_0 - x_0$. But, $y_0, x_0 \in \{-1, 0, 1\}$, then $|y_0 - x_0| < 3$. Then $y_0 - x_0 = 0$, that is $y_0 = x_0$. If $\forall k \leq m < n, x_k = y_k$. Then, $\sum_{k=m+2}^{n} (x_k - y_k) 3^k = y_{m+1} - x_{m+1}$, then $3(\sum_{k=m+2}^{n} (x_k - y_k) 3^{k-1}) = y_{m+1} - x_{m+1}$, then by the same reason, $y_{m+1} = x_{m+1}$. So f is injection.

And suppose we have n+1 weights, and their weight are different, noted A. Let $A:=\{3^k: k=1,\cdots,n\}$. $\forall n\in[1,H]\cap\mathbb{Z}$, and put n on right side of the balance. We have $n=\sum_{k=0}^n x_k 3^k$, we put weights of weight in set $\{3^k: x_k=1,\cdots,n\}$ on the left side, and we put weights of

weight in set $\{3^k : x_k = -1, \dots, n\}$ on the right side, and we don't put weights of weight in set $\{3^k : x_k = 0, \dots, n\}$ on each side. Therefore, we can weight integer n.

ROBEM VII Assume m_1, \dots, m_k is k integers coprime to each other. Assume A_1, A_2, \dots, A_k is Complete residue of m_1, \dots, m_k respectively. Let $m = \prod_{t=1}^k m_t$ and $M_t := \prod_{i=1}^{t-1} m_i, t = 1, \dots, k$. Prove that $A := \{\sum_{t=1}^k M_t x_t : x_t \in A_t, t = 1, \dots, k\}$ is a Complete residue of m.

SOUTION. First, we prove there are m elements in A. $\forall \sum_{t=1}^k M_t x_t, \sum_{k=0}^k M_t y_t \in A$, $\sum_{1 \leq t \leq k, t \neq i} M_t (x_t - y_t) = M_i (y_i - x_i)$, $\forall 1 \leq i \leq k$, so $m_1 (\sum_{1 \leq t \leq k, t \neq i} \frac{M_t}{m_1} (x_t - y_t)) = M_1 (y_1 - x_1)$. Since m_1, \dots, m_k are coprime to each other, then $\gcd(m_1, M_1) = 1$, then $m_1 \mid (y_1 - x_1)$. Since $y_1, x_1 \in A_1, m_1 \nmid x_1 - y_1$, then $y_1 - x_1 = 0$. If $\forall i \leq n - 1 < k$, $y_i = x_i$, then $m_n (\sum_{n+1 \leq t \leq k} \frac{M_t}{m_n} (x_t - y_t)) = M_n (y_n - x_n)$. Since m_1, \dots, m_k are coprime to each other, then $\gcd(m_n, M_n) = 1$, then $m_n \mid (y_n - x_n)$. Since $y_n, x_n \in A_n, m_n \nmid x_n - y_n$, then $y_n - x_n = 0$. Thus $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$. Suppose $\sum_{t=1}^k M_t (x_t - y_t)$, then $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$. Suppose $\sum_{t=1}^k M_t (x_t - y_t)$.

Second, we prove if $m \mid \sum_{t=1}^k M_t(x_t - y_t)$, then $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$. Suppose $\sum_{t=1}^k M_t (x_t - y_t) = am$, $a \in \mathbb{N}$, then $\sum_{1 \le t \le k, t \ne i} M_t (x_t - y_t) = am - M_i (y_i - x_i)$, $\forall 1 \le i \le k$, so $m_1 (\sum_{1 \le t \le k, t \ne i} \frac{M_t}{m_1} (x_t - y_t)) = am - (y_1 - x_1)$. Since m_1, \dots, m_k are coprime to each other, then $\gcd(m_1, M_1) = 1$, then $m_1 \mid am - (y_1 - x_1)$, then $m_1 \mid y_1 - x_1$. Since $y_1, x_1 \in A_1$, $m_1 \nmid x_1 - y_1$, then $y_1 - x_1 = 0$. If $\forall i \le n - 1 < k$, $y_i = x_i$, then $m_n (\sum_{n+1 \le t \le k} \frac{M_t}{m_n} (x_t - y_t)) = M_n (a \prod_{t=n}^k m_t - y_n + x_n)$. Since m_1, \dots, m_k are coprime to each other, then $\gcd(m_n, M_n) = 1$, then $m_n \mid a \prod_{t=n}^k m_t - y_n + x_n$. Thus $m_n \mid y_n - x_n$. Since $y_n, x_n \in A_n$, $m_n \nmid x_n - y_n$, then $y_n - x_n = 0$. Thus $\sum_{t=1}^k M_t x_t = \sum_{t=1}^k M_t y_t$. \square