Projeto de Bases de Dados Parte 2

Turno Prático BD L13, Prof. Gonçalo Babo Freire

Grupo 186			
Nome	Nº	Esforço (Horas)	Contribuição (%)
Guilherme Lima	99077	12	41,3%
André Morgado	92737	12	41,3%
João Sousa	90736	5	17,4%

Modelo Relacional

Point_of_retail(adress, name)

IVM(serial number,manuf)

installed-at(<u>serial_number</u>, <u>manuf</u>, adress, nr)

adress: FK(Point_of_retail)

• serial_number, manuf: FK(IVM)

Category(name)

RI - 1 : name tem de existir em Simple_category ou Super_category

RI - 2 : Uma Category não pode ser Super_category e Simple_category simultaneamente

Simple_category(name)

name: FK(Category.name)

Super_category(name)

name: FK(Category.name)

has-other(Category name, Super_category_name)

- Category_name: FK(Category.name)
- Super_category_name: FK(Super_category.name)
- RI-3 : Category_name != Super_category_name
- RI-4: ao percorrer as Super_category's de uma Category, nenhum Super_category_name pode ser igual a Category_name
- RI-5 : Todas as Super_category devem participar na associação has-other

Shelve(nr, serial_number, manuf, height, name)

- serial_number, manuf_: FK(IVM)
- name: FK(Category)
- RI-6 : O cojunto nr, serial_number e manuf tem de existir ou em Ambient_temp_shelf or em Warm_shelf ou em Cold_shelf, logo nenhuma shelf terá o mesmo conjunto ao mesmo tempo

Cold shelf(serial number, manuf, nr)

serial_number, manuf, nr: FK(Shelve)

Warm_shelf(serial_number, manuf, nr)

• serial_number, manuf, nr: FK(Shelve)

Ambient_temp_shelf(serial_number, manuf, nr)

• serial_number, manuf, nr: FK(Shelve)

Retailer(TIN, name)

unique(name)

responsible_for(serial_number, manuf, TIN, name)

- serial number, manuf: FK(IVM)
- TIN: FK(Retailer)
- name: FK(Category)

Replenishment_event(instant, ean, serial_number, manuf, nr, units, TIN)

- ean: FK(Product)
- nr, serial_number, manuf: FK(Shelve)
- TIN: FK(Retailer)

- RI-7 : O Replenishment_event.units n\u00e3o pode ser maior que as units da associa\u00e7\u00e3o planograma associado ao Replenishment_event.ean.
- RI-8: Um Product.ean tem de estar associado a uma Shelve onde a Shelve e o ean estejam associados ao mesmo Category.name nas associações displayed e has respetivamente
- RI-9: O Product.ean está associado ao mesmo Category.name, pela associação has, que o Retailer.TIN pela associação responsible_for

Product(ean, descr)

has(ean, name)

ean: FK(Product)

name: FK(Category)

• RI-10 : todos os produtos participam na associação has

planogram(ean, nr, serial number, manuf, faces, units, loc)

• ean: FK(Product)

• nr, manuf, serial_number: FK(Shelve)

Algebra Relacional

- 1. $\Pi_{ean,descr}\left(\sigma_{units>10 \land instant>2021/12/31 \land name=Barras\ Energéticas}(Replenishmentevent \bowtie Product \bowtie has)\right)$
- 2. $\Pi_{serial number} (\sigma_{ean=9002490100070}(planogram))$
- 3. $G_{count()} \left(\sigma_{Super_{category.name} = Sopas Take-Away}(has_other) \right)$
- 4. $H \leftarrow_{ean} G_{\text{sum(units)} \rightarrow S}(Replenishment_event)$ $\Pi_{ean,descr} \left(\sigma_{S=M} \left(G_{max() \rightarrow M}(H) X H \bowtie Products \right) \right)$

SQL

```
1.
SELECT ean, descr
FROM Replenishment event
      NATURAL JOIN Product
      NATURAL JOIN has
WHERE units > 10
      AND instant > 2021/12/31
      AND name = "Barras Energéticas";
2.
SELECT serial number
FROM planogram
WHERE ean = 9002490100070;
3.
SELECT COUNT(*)
FROM has_other
WHERE Super_category.name = "Sopas Take-away";
4.
SELECT ean, descr
FROM (
      SELECT ean, SUM(units)
      FROM Replenishment_event
      GROUP BY ean
      ) AS H
      NATURAL JOIN Product
WHERE units = (
      SELECT MAX(units)
      FROM H
      );
```