Quiz Week 6

April 2, 2013

1. Find the nim sum of 1, 5, and 11

Proof. First write out each number in binary and take the sum without carry:

$$\begin{array}{rcl}
1 & = & 0001 \\
5 & = & 0101 \\
11 & = & \underline{1011} \\
1111
\end{array}$$

Converting back from binary we have $1111 = 1 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1 = 15$ so the nimsum of 1, 5, and 11 is 15.

2. Find the mex of $\{0, 1, 2, 3, 8, 4, 11, 5\}$

Proof. By reordering the set we get $\{0,1,2,3,4,5,8,11\}$ and we see that the first excluded number is 6 so $mex\{0,1,2,3,8,4,11,5\}=6$

3. For the subtraction game $\{1, 2, 5\}$, find G(7)

Proof. We know G(0) = 0, $G(1) = mex\{G(0)\} = mex0 = 1$, $G(2) = mex\{G(1), G(0)\} = mex1, 0 = 2$, and continuing this we get

0	1	2	3	4	5	6	7
0	1	2	0	1	2	0	1

so
$$G(7) = 1$$
.

4. Find G(4) for the subtraction game $\{1, 2, 3\}$

Proof. We know G(0) = 0, $G(1) = mex\{G(0)\} = mex0 = 1$, and continuing this we get

0	1	2	3	4
0	1	2	3	0

so
$$G(4) = 0$$
.