Ali Hajiabadi

Postdoctoral Researcher and Lecturer ETH Zürich

CONTACT INFORMATION

ADDRESS: ETZ G 78.2, Gloriastr. 35, 8092 Zürich, Switzerland

EMAIL: ahajiabadi@ethz.ch HOMEPAGE: ahajiabadi.github.io

RESEARCH INTERESTS

Systems Security, Hardware/Software Co-design, Computer Architecture, Optimizing Compilers, Formal Methods, Secure Architectures and Software, Microarchitectural Side Channels, Trusted Execution Environments

EDUCATION

2019 - 2024 Doctor of Philosophy in Computer Science

National University of Singapore (NUS), Singapore

Thesis: "Building Efficient and Secure Processors thorugh Hardware/Software Co-design"

Advisor: Prof. Trevor E. CARLSON

2014 - 2019 Bachelor of Science in Computer Engineering

Sharif University of Technology, Tehran, Iran

Thesis: "High Concurrency Latency Tolerant Register Files for GPUs"

Advisor: Prof. Hamid SARBAZI-AZAD

2009 - 2013 Diploma in Physics and Mathematics Discipline

Shahid Beheshti High School, Birjand, Iran

Affiliated with the National Organization for the Development of Exceptional Talents (NODET)

HONORS & AWARDS

AUG. 2024	Dean's Graduate Research Excellence Award.
Jul. 2024	SCHOOL OF COMPUTING CS PHD THESIS AWARD (Honorable Mention), selected as top five theses.
Jun. 2024	BEST PAPER AWARD nomination at DAC '24.
Ост. 2023	NUSGS RESEARCH INCENTIVE AWARD from School of Computing, NUS (\$\$ 2,500 award).
JAN. 2022	STUDENT TRAVEL AWARD from ASPLOS'22 conference.
AUG. 2021	RESEARCH ACHIEVEMENT AWARD from School of Computing, NUS.
Mar. 2020	Invited talk and travel grant for the 2^{nd} Young Architect Workshop at ASPLOS'20, Switzerland.
FEB. 2019	President's Graduate Fellowship, the most prestigious doctoral fellowship in Singapore.
SEP. 2014	Ranked 164^{th} in Iranian National University Entrance Exam among more than 250,000 students.
2006/2009	Recognized as talented student in entry exam of NODET for middle school and high school.

PROFESSIONAL EXPERIENCE

Jul. 2024 - Present	Postdoctoral Researcher at ETH ZÜRICH, Switzerland Computer Security (COMSEC) Group Group Lead: Prof. Kaveh RAZAVI Research: CPU and DRAM security, novel attacks and defenses for computing systems
Aug. 2019 - Jun. 2024	Graduate Research Assistant at NATIONAL UNIVERSITY OF SINGAPORE, Singapore NUS Computer Architecture (CompArch) Group Group Lead: Prof. Trevor E. CARLSON Research: hardware/software co-design for efficient and secure modern processors
Jul. 2016 - Jun. 2019	Research Assistant at Sharif University of Technology, Tehran, Iran High Performance Computer Architectures and Networks (HPCAN) Lab Group Lead: Prof. Hamid Sarbazi-Azad Research: GPU register prefetching via HW/SW co-design and compiler optimizations
SUMMER 2018	Research Intern at National University of Singapore, Singapore Group Lead: Prof. Trevor E. Carlson

Research: exploring new implementations for out-of-order commit processors

PEER-REVIEWED PUBLICATIONS

MICRO'25

Silvan Niederer, Sandro Rüegge, Ali Hajiabadi, Kaveh Razavi

One Flew over the Stack Engine's Nest: Practical Microarchitectural Attacks on the Stack Engine. Proceedings of 58^{th} IEEE/ACM International Conference on Microarchitecture (MICRO 2025), October 2025. Acceptance rate: 124/597 = 20.8%

▶ Providing an extensive reverse engineering of the stack engine in modern AMD and Intel CPUs, and proposing novel and practical stack engine side channel attacks, leaking sensitive information.

ISCA'25

Ali Hajiabadi, Trevor E. Carlson

CASSANDRA: Efficient Enforcement of Sequential Execution for Cryptographic Programs.

Proceedings of 52^{nd} ACM/IEEE International Symposium on Computer Architecture (ISCA 2025), June 2025. Acceptance rate: 132/570 = 23.1%

► A hardware/software mechanism to protect constant-time cryptographic programs against Spectre via disabling the branch predictor and redirecting fetch based on a sequential control-flow contract.

TACO'25

Yun Chen*, **Ali Hajiabadi***, Romain Poussier, Yaswanth Tavva, Andreas Diavastos, Shivam Bhasin, Trevor E. Carlson

PARADISE: Criticality-Aware Instruction Reordering for Power Attack Resistance.

*Joint first-authors with equal contribution.

In ACM Transactions on Architecture and Code Generation (TACO), 2024

▶ Proposing a novel criticality-aware and non-deterministic instruction scheduling for out-of-order processors to resist power analysis attacks.

Paper

DAC'24

Ali Hajiabadi, Trevor E. Carlson

Conjuring: Leaking Control Flow via Speculative Fetch Attacks.

Proceedings of 61^{st} ACM/IEEE Design Automation Conference (DAC 2024), June 2024. Acceptance rate: 337/1465 = 23.0%

★ Best Paper Award Nominee (5/337 = 1.5%)

▶ Proposing a new and practical variant of speculative fetch attacks that enables unprivileged attackers to leak control flow information of victims, without requiring priming a side channel.

Paper | Talk

DAC'24

Ali Hajiabadi, Archit Agarwal, Andreas Diavastos, Trevor E. Carlson

LEVIOSO: Efficient Compiler-Informed Secure Speculation.

Proceedings of 61^{st} ACM/IEEE Design Automation Conference (DAC 2024), June 2024. Acceptance rate: 337/1465 = 23.0%

► Efficient and comprehensive mitigation for speculative execution attacks through compiler-informed hints about true branch dependencies to restrict execution of speculative instructions only if necessary. Paper | Github | Talk

HPCA'24

Yun Chen*, Ali Hajiabadi*, Trevor E. Carlson

GADGETSPINNER: A New Transient Execution Primitive using the Loop Stream Detector.

Proceedings of 30^{th} IEEE International Symposium on High-Performance Computer Architecture (HPCA 2024), March 2024. Acceptance rate: 75/410 = 18.3%

*Joint first-authors with equal contribution.

► Analyzing and discovering vulnerabilities of the Loop Stream Detector (LSD) in Intel CPUs that enables cross-core transient execution attacks without requiring branch mistraining/poisoning.

Paper | Artifact

HPCA'24

Yun Chen, Ali Hajiabadi, Lingfeng Pei, Trevor E. Carlson

PREFETCHX: Cross-Core Cache-Agnostic Prefetcher-Based Side-Channel Attacks.

Proceedings of 30^{th} IEEE International Symposium on High-Performance Computer Architecture (HPCA 2024), March 2024. Acceptance rate: 75/410 = 18.3%

► Extensive reverse-engineering of an undocumented Intel prefetcher, called XPT (an LLC miss predictor) that enables cross-core cache-agnostic side and covert channels.

Paper | Artifact

ICCAD'23

Arash Pashrashid, Ali Hajiabadi, Trevor E. Carlson

HIDFIX: Efficient Mitigation of Cache-based Spectre Attacks through Hidden Rollbacks.

Proceedings of 42^{nd} IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2023), November 2023. Acceptance rate: 172/768 = 22.4%

► Co-designing detection and mitigation to defend cache-based Spectre with no performance overhead; extensive study of existing detection/mitigation combinations and proposing attacks to bypass them.

ICCAD'22

Arash Pashrashid, Ali Hajiabadi, Trevor E. Carlson

Fast, Robust and Accurate Detection of Cache-based Spectre Attack Phases.

Proceedings of 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2022), November 2022. Acceptance rate: 132/586 = 22.5%

▶ (1) Demonstrating different attacks bypassing ML-based detectors for Spectre attacks; (2) proposing an efficient, accurate, robust, and timely mechanism to detect cache-based Spectre attack phases.

Paper | Github

ASPLOS'21

Ali Hajiabadi, Andreas Diavastos, Trevor E. Carlson

NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor.

Proceedings of 26^{th} ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2021). April 2021. Acceptance rate: 75/398 = 18.8%

► A hardware/software co-design that compiler informs the hardware about true branch dependencies enabling safe and non-speculative out-of-order commit of instructions improving efficiency.

Paper | Extended Abstract | Short Slides | Short Talk | Slides | Full Talk

TOCS'21

Mohammad Sadrosadati, Amirhossein Mirhosseini, **Ali Hajiabadi**, Seyed Borna Ehsani, Hajar Falahati, Hamid Sarbazi-Azad, Mario Drumond, Babak Falsafi, Rachata Ausavarungnirun, Onur Mutlu *Highly Concurrent Latency-tolerant Register Files for GPUs*.

In ACM Transactions on Computer Systems (TOCS), 2021.

 \blacktriangleright A hardware/software co-operative design for register prefetching in GPUs. The compiler constructs the prefetch sets and ensures minimal register bank conflicts via register renumbering.

arXiv Paper

CGO'21

Harish Patil, Alexander Isaev, Wim Heirman, Alen Sabu, **Ali Hajiabadi**, Trevor E. Carlson *ELFies: Executable Region Checkpoints for Performance Analysis and Simulation*.

Proceedings of 19^{th} IEEE International Symposium on Code Generation and Optimization (CGO 2021), March 2021. Acceptance rate: 31/89 = 34.8%

► Proposing a set of tools to generate checkpoint executables of the regions of interest of applications, called ELFies. ELFies run natively and can be used for detailed analysis in other tools and simulators.

Paper | Github

TEACHING EXPERIENCE

► ETH Zürich, Switzerland

FALL 2025 Lecturer

Course: Computer Security (BSc)

Spring 2025 Lecturer

Course: Capture the Flag - Introduction to Cybersecurity (P&S BSc)

Spring 2025 Co-lecturer

Course: Computer Engineering (BSc) Co-lecturer: Prof. Kaveh Razavi

► National University of Singapore, Singapore

Spring 2020 **Teaching Assistant**, Tutorial Instructor

& Spring 2021 Course: CS2106 Introduction to Operating Systems

Lecturer: Prof. Djordje Jevdjic

► Sharif University of Technology, Tehran, Iran

SPRING 2017 Teaching Assistant, Assignments/Projects Assistant

Course: CE323 Computer Architecture Lecturer: Prof. Hamid Sarbazi-Azad

FALL 2017 Teaching Assistant, Tutorial Instructor, Assignments/Projects Assistant

& FALL 2018 Course: CE453 Real-Time Systems

Lecturer: Prof. Amirhossein Jahangir

PROFESSIONAL SERVICES

Program Committee HPCA 2026, MICRO 2025, EuroS&P 2026, AsiaCCS 2026

Sub-reviewer USENIX Security 2025

Reviewer (journals) IEEE CAL, ACM TACO, ACM TRETS Shadow PC EuroSys 2024, EuroSys 2023

Student Volunteer PLDI 2021

RESEARCH MENTORING

-		
MAR. 2025 - PRESENT	Maximilian Mosler	Master thesis at ETH Zürich
Mar. 2025 - Jun. 2025	Jonas Buchholz	Master semester project at ETH Zürich
DEC. 2024 - JUN. 2025	Chenfei Liu	Master thesis at ETH Zürich
SEP. 2024 - FEB. 2025	Mounir Raki	Master semester project at ETH Zürich
Aug. 2020 - Mar. 2024	Yun Chen	PhD thesis at NUS CompArch
JAN. 2021 - DEC. 2023	Arash Pashrashid	PhD thesis at NUS CompArch
Jul. 2021 - Jul. 2023	Archit Agarwal	Research assistant at NUS CompArch
SEP. 2020 - SEP. 2021	Vernon Pang	BSc final-year project at NUS

TALKS

Jun. 2025	CASSANDRA: Efficient Enforcement of Sequential Execution for Cryptographic Programs
	Int. Symposium on Computer Architecture (ISCA 2025), Tokyo, Japan.
Mar. 2024	Will CPUs Be Free of Spectre? Dark Side and Light Side of the Battle
	ETH Zürich, COMSEC Group, Zürich, Switzerland.
Mar. 2024	GADGETSPINNER: A New Transient Execution Primitive using the Loop Stream Detector
	Int. Symposium on High-Performance Computer Architecture (HPCA 2024), Edinburgh, Scotland.
Aug. 2021	NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor
	Computing Research Week, School of Computing (NUS), Virtual.
Apr. 2021	NOREBA: A Compiler-Informed Non-speculative Out-of-Order Commit Processor
	Int. Conference on Architectural Support for Programming Languages and Operating Systems (AS-
	PLOS 2021), Virtual.
FEB. 2021	Accelerating HPC applications with Out-of-Order Commit Processors
	Free and Open source Software Developers' European Meeting (FOSDEM 2021), HPC, Big Data, and
	Data Science track, Virtual.
MAR. 2020	Speculation-Free Out-of-Order Commit
	2^{nd} Young Architect Workshop at the 25^{th} International Conference on Architectural Support for
	Programming Languages and Operating Systems (ASPLOS 2020), Virtual.

SKILLS

PROGRAMMING LANGUAGES: C, C++, Python, bash, and familiar with Java, Matlab, Scala

INSTRUCTION SET ARCHITECTURES: x86, Arm, RISC-V

SCIENTIFIC TOOLS: LLVM Compiler Infrastructure, gem5 Simulator, Sniper Simulator, Ra-

mulator, Intel Pin, DynamoRIO

TYPESETTING: LTFX, Microsoft Word