Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Cimulations

Construction de noyau fondé sur la distance de Wasserstein et utilisation pour la prédiction d'un code à entrée fonctionnelle

Nil Venet

CEA Tech Occitanie, IMT

25 avril 2017

Plan de la présentation

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Vene

Noyaux sur Wassersteir

Résultats sur les estimateurs

Simulations

- Noyaux sur Wasserstein
- 2 Résultats sur les estimateurs
- Simulations

Données dont les entrées sont des distributions

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Dans la suite on s'intéresse à des données

$$(\mu_i, y_i)_{i=1}^n$$

où les μ_i sont des distributions de probabilités sur \mathbb{R} .

Données dont les entrées sont des distributions

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Dans la suite on s'intéresse à des données

$$(\mu_i, y_i)_{i=1}^n,$$

où les μ_i sont des distributions de probabilités sur \mathbb{R} .

Motivations

- Entrées fonctionnelles.
- Entrées aléatoires pour un code.

Données dont les entrées sont des distributions

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Dans la suite on s'intéresse à des données

$$(\mu_i, y_i)_{i=1}^n,$$

où les μ_i sont des distributions de probabilités sur \mathbb{R} .

Motivations

- Entrées fonctionnelles.
- Entrées aléatoires pour un code.
- Il reste à choisir une distance sur l'espace des entrées.

Distance de Wasserstein

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateur

Simulations

• On suppose que les mesures considérées possèdent un moment d'ordre deux.

Distance de Wasserstein

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

- On suppose que les mesures considérées possèdent un moment d'ordre deux.
- ullet La distance de Wasserstein quadratique entre μ et u est définie par

$$W_2(\mu,\nu) := \left(\inf_{\pi \in \Pi(\mu,\nu)} \int |x-y|^2 d\pi(x,y)\right)^{1/2}, \quad (1)$$

avec $\Pi(\mu, \nu)$ l'ensemble des mesures de probabilités sur \mathbb{R}^2 dont les lois marginales sont μ et ν .

Distance de Wasserstein

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

C: 1 ...

- On suppose que les mesures considérées possèdent un moment d'ordre deux.
- La distance de Wasserstein quadratique entre μ et ν est définie par

$$W_2(\mu,\nu) := \left(\inf_{\pi \in \Pi(\mu,\nu)} \int |x-y|^2 d\pi(x,y)\right)^{1/2},$$
 (1)

avec $\Pi(\mu, \nu)$ l'ensemble des mesures de probabilités sur \mathbb{R}^2 dont les lois marginales sont μ et ν .

• On cherche des *noyaux définis-positifs stationnaires* sur l'espace $\mathcal{W}_2(\mathbb{R})$ obtenu.

Noyaux défini-négatifs

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Théorème

Pour tout $H \in [0,1]$,

$$(\mu,\nu)\mapsto W_2(\mu,\nu))^{2H} \tag{2}$$

est un noyau défini-négatif : $\forall \mu_1, \dots, \mu_n \in \mathcal{W}_2(\mathbb{R})$, $\forall c_1, \dots, c_n \in \mathbb{R}$ t.q. $\sum_{i=1}^n c_i = 0$,

$$\sum_{i,j=1}^{n} c_i c_j W_2(\mu_i, \mu_j))^{2H} \le 0.$$
 (3)

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Théorème (Champs browniens fractionnaires)

Pour tout $0 \le H \le 1$ et $\sigma \in \mathcal{W}_2(\mathbb{R})$,

$$K^{H,\sigma}(\mu,\nu) = \frac{1}{2} \left(W_2^{2H}(\sigma,\mu) + W_2^{2H}(\sigma,\nu) - W_2^{2H}(\mu,\nu) \right) \tag{4}$$

est une fonction de covariance sur $W_2(\mathbb{R})$. De plus cette fonction est non-dégénérée si et seulement si 0 < H < 1.

• On a un champ brownien fractionnaire indexé par $\mathcal{W}_2(\mathbb{R})$. Il est à accroissements stationnaires.

Conséquences, 2

Novaux sur Wasserstein et prédiction fonctionnelle

Novaux sur Wasserstein

Théorème (Processus stationnaires)

Pour $F : \mathbb{R}^+ \to \mathbb{R}^+$ complètement monotone et 0 < H < 1,

$$(\mu,\nu) \mapsto F\left(W_2^{2H}(\mu,\nu)\right) \tag{5}$$

est la fonction de covariance d'un processus gaussien stationnaire indexé par $W_2(\mathbb{R})$.

• Rappelons gu'une fonction $F: \mathbb{R}^+ \to \mathbb{R}^+$ complètement monotone est une fonction infiniment dérivable telle que $(-1)^n F^{(n)}$ est à valeurs positives pour tout $n \in \mathbb{N}$.

Modèle paramétrique Gaussien stationnaire

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

En particulier

$$K_{\sigma^2,\ell,H}(\nu_1,\nu_2) = \sigma^2 \exp\left(-\frac{W_2(\nu_1,\nu_2)^{2H}}{\ell}\right),$$
 (6)
 $H \in [0,1], \sigma > 0, l > 0,$

est un modèle paramétrique de processus gaussiens stationnaires indexés par $W_2(\mathbb{R})$.

Plan de la présentation

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Vene

Noyaux sur Wasserstein

Résultats sur les estimateurs

C:.....

Noyaux sur Wasserstein

2 Résultats sur les estimateurs

Simulations

Hypothèses pour nos résultats

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Condition (1)

On considère une matrice triangulaire de points d'observations de $\mathcal{W}_2(\mathbb{R})$ $\{\mu_1,...,\mu_n\} = \{\mu_1^{(n)},...,\mu_n^{(n)}\}$ tels que pour tout $n \in \mathbb{N}$ et $1 \le i \le n$, μ_i est de support inclus dans [i,i+K], où $K < \infty$ est fixe.

Condition (2)

Le modèle de fonctions de covariance $\{K_{\theta}, \theta \in \Theta \subset \mathbb{R}^p\}$ est tel que

$$orall heta \in \Theta, \; \mathcal{K}_{ heta}(\mu,
u) = F_{ heta}\left(W_2(\mu,
u)
ight) \; ext{et} \; \; \sup_{ heta \in \Theta} |F_{ heta}(t)| \leq rac{A}{1 + |t|^{1 + au}}$$

avec $A < \infty$ et $\tau > 1$ des constantes.

les estimateurs

Résultats sur

Condition (3)

Nous disposons d'observations $y_i = Y(\mu_i)$, $i = 1, \dots, n$ du processus aléatoire gaussien Y, centré et de covariance K_{θ_0} pour un $\theta_0 \in \Theta$.

Condition (4)

La suite de matrices $R_{\theta} = (K_{\theta}(\mu_i, \mu_j))_{1 \leq i,j \leq n}$ est telle que $\lambda_{\inf}(R_{\theta}) \geq c$ pour une constante c > 0, $\tilde{ou} \lambda_{\inf}(R_{\theta})$ désigne la plus petite valeur propre de Ra.

Condition (5)

$$\forall \alpha > 0, \liminf_{n \to \infty} \inf_{\|\theta - \theta_0\| \ge \alpha} \frac{1}{n} \sum_{i,j=1}^n \left[K_{\theta}(\mu_i, \mu_j) - K_{\theta_0}(\mu_i, \mu_j) \right]^2 > 0.$$

Résultats sur les estimateurs

Condition (6)

$$\begin{split} \forall t \geq 0, \ F_{\theta}(t) \ \textit{est} \ \mathcal{C}^1 \ \textit{en} \ \theta \ \textit{et v\'erifie} \\ \sup_{\theta \in \Theta} \max_{i=1,\cdots,p} \left| \frac{\partial}{\partial \theta_i} F_{\theta}(t) \right| \leq \frac{A}{1+t^{1+\tau}}, \ \textit{où} \ \textit{A}, \tau \ \textit{sont d\'efinis dans la} \end{split}$$
Condition 2.

Condition (7)

Pour tout $t \geq 0$, $F_{\theta}(t)$ est C^3 en θ et $\forall q \in \{2,3\}$, $\forall i_1 \cdots i_a \in \{1, \cdots p\},$

$$\sup_{\theta \in \Theta} \max_{i=1,\cdots,p} \left| \frac{\partial}{\partial \theta_{i_1}} \cdots \frac{\partial}{\partial \theta_{i_q}} F_{\theta}(t) \right| \leq \frac{A}{1 + |t|^{1+\tau}}.$$

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Condition (8)

$$\forall (\lambda_1 \cdots, \lambda_p) \neq (0, \cdots, 0),$$

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{i,i=1}^{n}\left(\sum_{k=1}^{p}\lambda_{k}\frac{\partial}{\partial_{\theta_{k}}}K_{\theta_{0}}\left(\mu_{i},\mu_{j}\right)\right)^{2}>0.$$

Consistance de l'EMV

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Vene

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Théorème

Sous les conditions 1 à 5 l'estimateur par maximum de vraisemblance est consistant, c'est-à dire :

$$\hat{\theta}_{ML} \xrightarrow[n \to \infty]{\mathbb{P}} \theta_0.$$

Normalité asymptotique de l'EMV

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Vene

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Théorème

Soit M_{ML} la matrice de taille p \times p définie par

$$(M_{ML})_{i,j} = \frac{1}{2n} Tr \left(K_{\theta_0}^{-1} \frac{\partial K_{\theta_0}}{\partial \theta_i} K_{\theta_0}^{-1} \frac{\partial K_{\theta_0}}{\partial \theta_j} \right).$$

Sous les conditions 1 à 8, l'estimateur par maximum de vraisemblance est asympotiquement normal. Plus précisément :

$$\sqrt{n}M_{ML}^{1/2}\left(\hat{\theta}_{ML}-\theta_0\right) \xrightarrow[n\to\infty]{\mathcal{L}} \mathcal{N}(0,I_p).$$

De plus

$$0 < \liminf_{n \to \infty} \lambda_{min}(M_{ML}) \le \limsup_{n \to \infty} \lambda_{max}(M_{ML}) < +\infty.$$

Krigeage sous le modèle estimé par EMV

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

Théorème

Sous les conditions 1 à 8, l'estimateur par Krigeage sous $\hat{\theta}_{ML}$ est asymptotiquement optimal :

$$orall \mu \in \mathcal{W}_2(\mathbb{R}), \ \left| \hat{Y}_{\hat{ heta}_{MI}}(\mu) - \hat{Y}_{ heta_0}(\mu)
ight| = o_{\mathbb{P}}(1).$$

Plan de la présentation

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Vene

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

- Noyaux sur Wasserstein
- 2 Résultats sur les estimateurs

Simulations

Performances sur des données simulées

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wasserstein

Résultats sur les estimateurs

Simulations

• On note $m_k(\nu)$ le k-ième moment de ν et considère la fonction $F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$ telle que

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},$$
 (7)

qu'on va chercher à interpoler.

Performances sur des données simulées

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wassersteir

Résultats sur les estimateurs

Simulations

• On note $m_k(\nu)$ le k-ième moment de ν et considère la fonction $F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$ telle que

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},$$
 (7)

qu'on va chercher à interpoler.

• On génère ν_1, \cdots, ν_{100} qui sont des gaussiennes de moyennes et de variances tirées uniformément, perturbées aléatoirement afin d'exhiber des irrégularités

Performances sur des données simulées

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wassersteir

Résultats sur les estimateurs

Simulations

• On note $m_k(\nu)$ le k-ième moment de ν et considère la fonction $F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$ telle que

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},\tag{7}$$

qu'on va chercher à interpoler.

- On génère ν_1, \dots, ν_{100} qui sont des gaussiennes de moyennes et de variances tirées uniformément, perturbées aléatoirement afin d'exhiber des irrégularités
- Maximum de vraisemblance sur $\hat{\sigma}^2, \hat{\ell}, \hat{H}$ pour le modèle gaussien paramétrique

$$K_{\sigma^2,\ell,H}(\nu_1,\nu_2) = \sigma^2 \exp\left(-\frac{W_2(\nu_1,\nu_2)^{2H}}{\ell}\right).$$
 (8)

Performances sur données simulées

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Vana

Noyaux sui Wasserstei

Résultats sur

Simulations

• On évalue la méthode sur un dataset de test $(\nu_{t,i})_{i=500}$ généré de la même manière que les ν_i ,

Performances sur données simulées

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wassersteir

Résultats sur les estimateurs

Simulations

• On évalue la méthode sur un dataset de test $(\nu_{t,i})_{i=500}$ généré de la même manière que les ν_i , pour les critères :

$$RMSE^2 = \frac{1}{500} \sum_{i=1}^{500} \left(F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right)^2,$$

$$CIR_{\alpha} = \frac{1}{500} \sum_{i=1}^{n_t} \mathbf{1} \left\{ \left| F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right| \leq q_{\alpha} \hat{\sigma}(\nu_{t,i}) \right\},$$

Performances sur données simulées

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Venet

Noyaux sur Wassersteir

Résultats sur les estimateurs

Simulations

• On évalue la méthode sur un dataset de test $(\nu_{t,i})_{i=500}$ généré de la même manière que les ν_i , pour les critères :

$$RMSE^2 = \frac{1}{500} \sum_{i=1}^{500} \left(F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right)^2,$$

$$CIR_{\alpha} = \frac{1}{500} \sum_{i=1}^{m_t} \mathbf{1} \left\{ \left| F(\nu_{t,i}) - \hat{F}(\nu_{t,i}) \right| \leq q_{\alpha} \hat{\sigma}(\nu_{t,i}) \right\},$$

modèle	RMSE	CIR _{0.9}
"distribution"	0.094	0.92
"Legendre" ordre 5	0.49	0.92
"Legendre" ordre 10	0.34	0.89
"Legendre" ordre 15	0.29	0.91
"PCA" ordre 5	0.63	0.82
"PCA" ordre 10	0.52	0.87
"PCA" ordre 15	0.47	0.93

Travail sur des données météo avec un noyau sur le cylindre

Noyaux sur Wasserstein et prédiction fonctionnelle

Nil Vanat

Noyaux sur

Résultats sur

Simulations

