Pembersihan Data

Pembersihan Data

1. Kenalpasti corak data-data lenyap library(mice)

```
MData = read.csv("G:/My Drive/Master-Data-Science/Semester_1/Data_Mining/Data/MData.csv", sep = ";")
head(MData)
##
         crim zn indus chas
                            nox
                                   rm age
                                             dis rad tax ptratio
                                                                    b 1stat
          NA 18 2.31 0 0.538 6.575 65.2 4.0900 1 296
                                                           15.3 396.90 4.98
## 2 2 0.02731 0 7.07
                        0 0.469 6.421 78.9 4.9671 2 242
                                                           17.8 396.90 9.14
## 3 3 0.02729 0 7.07
                       0 0.469 7.185 61.1 4.9671 2 242
                                                           17.8 392.83 4.03
## 4 4 0.03237 0
                      0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94
                 NA
## 5 5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33
           NA 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12 5.21
## 6 6
##
    medv
## 1 24.0
## 2 21.6
## 3 34.7
## 4 33.4
## 5 36.2
## 6 28.7
md.pattern(MData)
```



```
X zn chas nox age dis rad tax ptratio b lstat rm indus medv crim
##
## 408 1
               1
                        1
                            1
                                             1 1
## 53
          1
               1
                                             1 1
                            1
                                             1 1
## 30
       1
               1
                    1
                        1
                            1
                                    1
                                                     1
## 8
                                             1 1
## 2
                                1
                                             1 1
                                                      1 1
                                                               0
                                                                              2
       1
          1
               1
                    1
                        1
                            1
                                    1
                                                                    1
## 5
       1
               1
                            1
                                             1 1
                                                      1 0
                                                                    1
                                                                         1
                                                                              1
##
          0
               0
                                             0 0
                                                                   30
                                                                         55 100
```

2. Keluarkan cerapan yang mengandungi data lenyap MData2

```
MData2 = MData[complete.cases(MData),]
head(MData2)
```

```
##
                  zn indus chas
                                                    dis rad tax ptratio
           crim
                                  nox
                                         rm age
## 2
      2 0.02731
                 0.0 7.07
                              0 0.469 6.421 78.9 4.9671
                                                          2 242
                                                                   17.8 396.90
      3 0.02729
                 0.0 7.07
                              0 0.469 7.185 61.1 4.9671
                                                          2 242
                                                                   17.8 392.83
      5 0.06905 0.0 2.18
                              0 0.458 7.147 54.2 6.0622
                                                         3 222
                                                                   18.7 396.90
      7 0.08829 12.5 7.87
                              0 0.524 6.012 66.6 5.5605
                                                         5 311
                                                                   15.2 395.60
                              0 0.524 6.377 94.3 6.3467
## 11 11 0.22489 12.5 7.87
                                                          5 311
                                                                   15.2 392.52
## 12 12 0.11747 12.5 7.87
                              0 0.524 6.009 82.9 6.2267
                                                          5 311
                                                                   15.2 396.90
     1stat medv
     9.14 21.6
## 2
```

2.1 Lihat cerapan yang mempunyai data lenyap

MData[!complete.cases(MData),]

```
##
          Х
                        zn indus chas
                                                                 dis rad tax ptratio
                crim
                                           nox
                                                   rm
                                                        age
                            2.31
## 1
          1
                  NA 18.0
                                     0 0.5380 6.575
                                                       65.2
                                                              4.0900
                                                                        1 296
                                                                                  15.3
##
             0.03237
                       0.0
                                     0 0.4580 6.998
                                                       45.8
                                                              6.0622
                                                                        3 222
                                                                                  18.7
          4
                               NA
                       0.0
                                     0 0.4580 6.430
                                                       58.7
                                                              6.0622
                                                                        3 222
##
   6
          6
                  NA
                             2.18
                                                                                  18.7
##
   8
          8
             0.14455 12.5
                            7.87
                                     0 0.5240 6.172
                                                       96.1
                                                              5.9505
                                                                        5 311
                                                                                  15.2
                  NA 12.5
## 9
          9
                            7.87
                                     0 0.5240 5.631 100.0
                                                              6.0821
                                                                        5 311
                                                                                  15.2
## 10
                                     0 0.5240 6.004
                                                       85.9
        10
             0.17004 12.5
                             7.87
                                                              6.5921
                                                                        5 311
                                                                                  15.2
## 14
                       0.0
                            8.14
                                     0 0.5380 5.949
                                                       61.8
                                                              4.7075
                                                                        4 307
                                                                                  21.0
        14
                  NA
                                     0 0.5380 5.965
                                                              4.0123
##
  22
        22
                  NA
                       0.0
                            8.14
                                                       89.2
                                                                        4 307
                                                                                  21.0
##
  24
             0.98843
                       0.0
                            8.14
                                     0 0.5380 5.813 100.0
                                                              4.0952
                                                                        4 307
                                                                                  21.0
        24
##
   36
        36
                  NA
                       0.0
                            5.96
                                     0 0.4990 5.933
                                                       68.2
                                                              3.3603
                                                                        5 279
                                                                                  19.2
                                     0 0.4280 7.024
                                                                        3 252
                                                                                  18.3
##
   41
        41
             0.03359 75.0
                             2.95
                                                       15.8
                                                              5.4011
##
   47
        47
             0.18836
                       0.0
                             6.91
                                     0 0.4480 5.786
                                                       33.3
                                                              5.1004
                                                                        3 233
                                                                                  17.9
             0.22927
                             6.91
                                     0 0.4480
                                                       85.5
                                                              5.6894
##
   48
        48
                       0.0
                                                   NA
                                                                        3 233
                                                                                  17.9
                  NA 75.0
##
  55
        55
                             4.00
                                     0 0.4100 5.888
                                                       47.6
                                                              7.3197
                                                                        3 469
                                                                                  21.1
                                     0 0.4030 7.249
                                                       21.9
                                                                        5 226
## 56
        56
             0.01311 90.0
                             1.22
                                                              8.6966
                                                                                  17.9
##
  59
             0.15445 25.0
                                     0 0.4530 6.145
                                                       29.2
                                                             7.8148
                                                                        8 284
        59
                            5.13
                                                                                  19.7
##
   61
        61
                  NA 25.0
                             5.13
                                     0 0.4530 5.741
                                                       66.2
                                                              7.2254
                                                                        8 284
                                                                                  19.7
##
   66
        66
             0.03584 80.0
                               NA
                                     0 0.3980 6.290
                                                       17.8
                                                              6.6115
                                                                        4 337
                                                                                  16.1
##
   70
        70
                  NA 12.5
                             6.07
                                     0 0.4090 5.885
                                                       33.0
                                                              6.4980
                                                                        4 345
                                                                                  18.9
                                     0 0.4260 6.619
##
   82
        82
                  NA 25.0
                             4.86
                                                       70.4
                                                              5.4007
                                                                        4 281
                                                                                  19.0
##
   84
                  NA 25.0
                             4.86
                                     0 0.4260 6.167
                                                       46.7
                                                              5.4007
                                                                        4 281
                                                                                  19.0
        84
  87
             0.05188
                       0.0
                             4.49
                                     0 0.4490 6.015
                                                       45.1
                                                              4.4272
                                                                        3 247
                                                                                  18.5
##
        87
##
   88
        88
             0.07151
                       0.0
                            4.49
                                     0 0.4490 6.121
                                                       56.8
                                                              3.7476
                                                                        3 247
                                                                                  18.5
   94
                  NA 28.0 15.04
                                     0 0.4640 6.211
                                                       28.9
                                                              3.6659
##
        94
                                                                        4 270
                                                                                  18.2
   96
        96
                  NA
                       0.0
                             2.89
                                     0 0.4450 6.625
                                                       57.8
                                                              3.4952
                                                                        2 276
                                                                                  18.0
   102 102
                            8.56
                                     0 0.5200 6.781
                                                       71.3
                                                              2.8561
                                                                        5 384
                                                                                  20.9
##
             0.11432
                       0.0
##
  103 103
                  NA
                       0.0
                            8.56
                                     0 0.5200 6.405
                                                       85.4
                                                              2.7147
                                                                        5 384
                                                                                  20.9
## 104 104
                  NA
                       0.0
                            8.56
                                     0 0.5200 6.137
                                                       87.4
                                                              2.7147
                                                                        5 384
                                                                                  20.9
## 106 106
                  NA
                       0.0
                            8.56
                                     0 0.5200 5.851
                                                       96.7
                                                              2.1069
                                                                        5 384
                                                                                  20.9
## 107 107
                                     0 0.5200 5.836
                                                       91.9
                                                              2.2110
                                                                        5 384
                                                                                  20.9
             0.17120
                       0.0
                               NA
## 120 120
             0.14476
                       0.0 10.01
                                     0 0.5470 5.731
                                                       65.2
                                                              2.7592
                                                                        6 432
                                                                                  17.8
                                     0 0.5810 5.856
## 124 124
                  NA
                       0.0 25.65
                                                       97.0
                                                              1.9444
                                                                        2 188
                                                                                  19.1
                                                       98.8
## 129 129
                       0.0 21.89
                                     0 0.6240 6.431
                                                              1.8125
                                                                        4 437
                                                                                  21.2
                  NA
## 130 130
                  NA
                       0.0 21.89
                                     0 0.6240 5.637
                                                       94.7
                                                              1.9799
                                                                        4 437
                                                                                  21.2
## 133 133
                       0.0 21.89
                                     0 0.6240 6.372
                                                       97.9
                                                              2.3274
                                                                        4 437
                                                                                  21.2
                  NA
## 135 135
                       0.0 21.89
                                     0 0.6240 5.757
                                                       98.4
                                                              2.3460
                                                                        4 437
                                                                                  21.2
                  NA
                       0.0 19.58
                                     0 0.8710 5.597
## 150 150
                  NA
                                                       94.9
                                                              1.5257
                                                                        5 403
                                                                                  14.7
## 152 152
                  NA
                       0.0 19.58
                                     0 0.8710 5.404 100.0
                                                              1.5916
                                                                        5 403
                                                                                  14.7
                       0.0 19.58
                                     0 0.8710 5.272
## 157 157
                  NA
                                                       94.0
                                                              1.7364
                                                                        5 403
                                                                                  14.7
                                     0 0.6050
                                                   NA 100.0
                                                                        5 403
## 159 159
             1.34284
                       0.0 19.58
                                                              1.7573
                                                                                  14.7
                                     0 0.8710 6.510 100.0
## 160 160
                  NA
                       0.0 19.58
                                                              1.7659
                                                                        5 403
                                                                                  14.7
```

```
## 161 161 1.27346 0.0 19.58
                                  1 0.6050 6.250 92.6 1.7984
                                                                 5 403
                                                                          14.7
                   0.0 19.58
                                  1 0.6050 7.802 98.2 2.0407
                                                                 5 403
                                                                          14.7
## 163 163
                NA
## 164 164
           1.51902
                    0.0 19.58
                                  1 0.6050 8.375 93.9 2.1620
                                                                 5 403
                                                                          14.7
                                                                 5 403
## 171 171
                    0.0 19.58
                                  0 0.6050 5.875
                                                 94.6 2.4259
                                                                          14.7
                NA
## 174 174
                NA
                     0.0 4.05
                                 0 0.5100 6.416
                                                 84.1 2.6463
                                                                 5 296
                                                                          16.6
## 181 181
                    0.0 2.46
                                 0 0.4880 7.765 83.3 2.7410
                                                                 3 193
                NA
                                                                          17.8
                                                 62.2 2.5979
                                                                 3 193
## 182 182
           0.06888
                     0.0
                         2.46
                                  0 0.4880 6.144
                                                                          17.8
## 187 187
           0.05602
                    0.0
                            NA
                                  0 0.4880 7.831
                                                 53.6
                                                       3.1992
                                                                 3 193
                                                                          17.8
## 196 196
           0.01381 80.0
                         0.46
                                  0 0.4220 7.875
                                                  32.0 5.6484
                                                                 4 255
                                                                          14.4
                                                                 3 402
## 201 201
                NA 95.0 1.47
                                  0 0.4030 7.135
                                                 13.9 7.6534
                                                                          17.0
## 207 207
                NA 0.0 10.59
                                  0 0.4890 6.326
                                                 52.5 4.3549
                                                                 4 277
                                                                          18.6
## 224 224
           0.61470 0.0
                                  0 0.5070 6.618
                                                 80.8 3.2721
                                                                 8 307
                                                                          17.4
                            NA
## 225 225
                NA O.O
                         6.20
                                  0 0.5040 8.266
                                                 78.3 2.8944
                                                                 8 307
                                                                          17.4
           0.10290 30.0
                                  0 0.4280 6.358
                                                 52.9 7.0355
                                                                 6 300
## 243 243
                            NA
                                                                          16.6
## 250 250
           0.19073 22.0 5.86
                                  0 0.4310 6.718
                                                 17.5 7.8265
                                                                 7 330
                                                                          19.1
## 258 258
                NA 20.0
                         3.97
                                  0 0.6470 8.704
                                                  86.9
                                                       1.8010
                                                                 5 264
                                                                          13.0
## 266 266
           0.76162 20.0 3.97
                                  0 0.6470 5.560
                                                 62.8 1.9865
                                                                 5 264
                                                                          13.0
## 284 284
           0.01501 90.0 1.21
                                  1 0.4010 7.923
                                                 24.8 5.8850
                                                                 1 198
                                                                          13.6
## 289 289
           0.04590 52.5
                                 0 0.4050 6.315 45.6 7.3172
                                                                 6 293
                           NA
                                                                          16.6
## 292 292
           0.07886 80.0 4.95
                                 0 0.4110 7.148
                                                  27.7 5.1167
                                                                 4 245
                                                                          19.2
## 295 295
                NA 0.0 13.92
                                 0 0.4370 6.009
                                                 42.3 5.5027
                                                                 4 289
                                                                          16.0
## 305 305
           0.05515 33.0 2.18
                                  0 0.4720 7.236
                                                 41.1 4.0220
                                                                 7 222
                                                                          18.4
## 310 310
                    0.0 9.90
                                  0 0.5440 5.972
                                                  76.7 3.1025
                                                                 4 304
                                                                          18.4
                NA
## 311 311
                         9.90
                                  0 0.5440 4.973
                                                  37.8 2.5194
                                                                 4 304
                NA
                    0.0
                                                                          18.4
                                  0 0.5440 6.382 67.2 3.5325
                                                                 4 304
## 319 319
           0.40202 0.0 9.90
                                                                          18.4
## 331 331
           0.04544
                    0.0
                         3.24
                                  0 0.4600 6.144 32.2 5.8736
                                                                 4 430
                                                                          16.9
## 333 333
                NA 35.0
                            NA
                                  0 0.4379 6.031
                                                  23.3 6.6407
                                                                 1 304
                                                                          16.9
                                                                 5 224
## 334 334
                NA
                    0.0
                         5.19
                                  0 0.5150 6.316
                                                  38.1 6.4584
                                                                          20.2
                                                                 5 224
## 336 336
           0.03961
                    0.0 5.19
                                  0 0.5150 6.037
                                                 34.5 5.9853
                                                                          20.2
## 347 347
                NA
                    0.0 4.39
                                  0 0.4420 5.898 52.3 8.0136
                                                                 3 352
                                                                          18.8
## 349 349
                NA 80.0
                         2.01
                                 0 0.4350 6.635
                                                 29.7 8.3440
                                                                 4 280
                                                                          17.0
## 354 354
           0.01709 90.0 2.02
                                 0 0.4100 6.728
                                                 36.1 12.1265
                                                                 5 187
                                                                          17.0
## 364 364
                NA
                    0.0 18.10
                                  1 0.7700 5.803 89.0 1.9047
                                                                24 666
                                                                          20.2
## 365 365
                    0.0 18.10
                                  1 0.7180 8.780 82.9 1.9047
                                                                24 666
                                                                          20.2
                NA
## 366 366
                NA
                     0.0 18.10
                                 0 0.7180 3.561 87.9
                                                       1.6132
                                                                24 666
                                                                          20.2
                    0.0 18.10
                                                                          20.2
## 368 368 13.52220
                                 0 0.6310 3.863 100.0 1.5106
                                                                24 666
## 372 372
           9.23230
                     0.0 18.10
                                 0 0.6310
                                              NA 100.0 1.1691
                                                                24 666
                                                                          20.2
## 383 383
                    0.0 18.10
                                 0 0.7000 5.536 100.0 1.5804
                                                                24 666
                                                                          20.2
                NA
## 400 400
           9.91655
                     0.0 18.10
                                  0 0.6930
                                              NA 77.8
                                                       1.5004
                                                                24 666
                                                                          20.2
                    0.0 18.10
## 402 402
                                  0 0.6930 6.343 100.0 1.5741
                                                                24 666
                                                                          20.2
                NA
                                  0 0.5970 4.628 100.0 1.5539
## 413 413 18.81100
                    0.0
                           NA
                                                                24 666
                                                                          20.2
## 415 415
                    0.0 18.10
                                 0 0.6930 4.519 100.0 1.6582
                                                                24 666
                                                                          20.2
                NA
                                 0 0.6790 5.304 89.1 1.6475
## 418 418 25.94060
                     0.0 18.10
                                                                24 666
                                                                          20.2
## 421 421
                NA
                    0.0 18.10
                                 0 0.7180 6.411 100.0 1.8589
                                                                24 666
                                                                          20.2
## 423 423
                NA
                    0.0 18.10
                                  0 0.6140 5.648
                                                 87.6 1.9512
                                                                24 666
                                                                          20.2
                                                       2.0635
## 425 425
           8.79212
                     0.0 18.10
                                  0 0.5840
                                              NA
                                                 70.6
                                                                24 666
                                                                          20.2
## 435 435
                NA
                    0.0
                            NA
                                  0 0.7130 6.208
                                                 95.0 2.2222
                                                                24 666
                                                                          20.2
## 437 437
                                  0 0.7400 6.461
                                                 93.3 2.0026
                                                                24 666
                NA
                    0.0 18.10
                                                                          20.2
                    0.0 18.10
## 438 438
                NA
                                  0 0.7400 6.152 100.0 1.9142
                                                                24 666
                                                                          20.2
## 445 445
                NA
                     0.0 18.10
                                 0 0.7400 5.854 96.6
                                                       1.8956
                                                                24 666
                                                                          20.2
                                                                          20.2
## 453 453
                    0.0 18.10
                                 0 0.7130 6.297
                                                 91.8 2.3682
                                                                24 666
                NA
## 476 476
           6.39312
                    0.0 18.10
                                 0 0.5840 6.162 97.4 2.2060
                                                                24 666
                                                                          20.2
                NA 0.0 27.74
## 492 492
                                 0 0.6090 5.983 98.8 1.8681
                                                                 4 711
                                                                          20.1
## 496 496 0.17899 0.0 9.69
                                 0 0.5850 5.670 28.8 2.7986
                                                                 6 391
                                                                          19.2
```

```
## 497 497
             NA 0.0 9.69
                                 0 0.5850 5.390 72.9 2.7986
                                                                6 391
                                                                        19.2
## 499 499 0.23912 0.0 9.69
                                 0 0.5850 6.019 65.3 2.4091
                                                                6 391
                                                                        19.2
## 503 503 0.04527 0.0 11.93
                               0 0.5730 6.120 76.7 2.2875
                                                               1 273
                                                                        21.0
##
           b 1stat medv
## 1
      396.90 4.98 24.0
## 4
      394.63 2.94 33.4
## 6
      394.12 5.21 28.7
      396.90 19.15
## 8
                     NΑ
## 9
      386.63 29.93 16.5
## 10 386.71 17.10
                     NA
      396.90 8.26 20.4
## 14
## 22
      392.53 13.83 19.6
## 24
      394.54 19.88
                     NA
## 36
      396.90 9.68 18.9
## 41
      395.62 1.98
                     NΑ
## 47
      396.90 14.15
## 48
     392.74 18.80 16.6
## 55
      396.90 14.80 18.9
## 56
      395.93 4.81
                     NΑ
## 59
      390.68 6.86
## 61
      395.11 13.15 18.7
## 66
      396.90 4.67 23.5
## 70 396.90 8.79 20.9
## 82 395.63 7.22 23.9
## 84 390.64 7.51 22.9
## 87 395.99 12.86
## 88 395.15 8.44
                     NA
## 94 396.33 6.21 25.0
## 96 357.98 6.65 28.4
## 102 395.58 7.67
                     NA
## 103 70.80 10.63 18.6
## 104 394.47 13.44 19.3
## 106 394.05 16.47 19.5
## 107 395.67 18.66 19.5
## 120 391.50 13.61
## 124 370.31 25.41 17.3
## 129 396.90 15.39 18.0
## 130 396.90 18.34 14.3
## 133 385.76 11.12 23.0
## 135 262.76 17.31 15.6
## 150 351.85 21.45 15.4
## 152 341.60 13.28 19.6
## 157 88.63 16.14 13.1
## 159 353.89 6.43 24.3
## 160 364.31 7.39 23.3
## 161 338.92 5.50
                     NA
## 163 389.61 1.92 50.0
## 164 388.45 3.32
                     NA
## 171 292.29 14.43 17.4
## 174 395.50 9.04 23.6
## 181 395.56 7.56 39.8
## 182 396.90 9.45
## 187 392.63 4.45 50.0
## 196 394.23 2.97
```

```
## 201 384.30 4.45 32.9
## 207 394.87 10.97 24.4
## 224 396.90 7.60 30.1
## 225 385.05 4.14 44.8
## 243 372.75 11.22 22.2
## 250 393.74 6.56
## 258 389.70 5.12 50.0
## 266 392.40 10.45
## 284 395.52 3.16
                     NA
## 289 396.90 7.60 22.3
## 292 396.90 3.56
## 295 396.90 10.40 21.7
## 305 393.68 6.93
## 310 396.24 9.97 20.3
## 311 350.45 12.64 16.1
## 319 395.21 10.36
## 331 368.57 9.09
## 333 362.25 7.83 19.4
## 334 389.71 5.68 22.2
## 336 396.90 8.01
## 347 364.61 12.67 17.2
## 349 390.94 5.99 24.5
## 354 384.46 4.50
                     NA
## 364 353.04 14.64 16.8
## 365 354.55 5.29 21.9
## 366 354.70 7.12 27.5
## 368 131.42 13.33
## 372 366.15 9.53 50.0
## 383 396.90 23.60 11.3
## 400 338.16 29.97 6.3
## 402 396.90 20.32 7.2
## 413 28.79 34.37 17.9
## 415 88.27 36.98 7.0
## 418 127.36 26.64
                    NA
## 421 318.75 15.02 16.7
## 423 291.55 14.10 20.8
## 425
       3.65 17.16 11.7
## 435 100.63 15.17 11.7
## 437 27.49 18.05 9.6
## 438
       9.32 26.45 8.7
## 445 240.52 23.79 10.8
## 453 385.09 17.27 16.1
## 476 302.76 24.10
                     NA
## 492 390.11 18.07 13.6
## 496 393.29 17.60
## 497 396.90 21.14 19.7
## 499 396.90 12.92
                     NA
## 503 396.90 9.08
```

3. Lengkapkan data lenyap secara manual

```
# indus.fix = edit(MData$indus) # Tak tukar ori data
# head(indus.fix)
```

4. Gunakan sukatan memusat sebagai anggaran terhadap data lenyap

```
attach(MData)

par(mfrow =c(1,3))
hist(crim) #tak simetri
hist(indus) #tak simteri
hist(medv) # tak simetri
```


hist(rm) # simetri

Histogram of rm

4.2 Untuk data taburan bersifat pincang/bukan simetri: median boleh digunakan.

Kenal pasti median data

```
median.crim = median(crim, na.rm=T)
median.crim
```

 \mathbf{crim}

[1] 0.25199

```
crim.fix = ifelse(is.na(crim), median.crim, crim)

par(mfrow = c(1,2))
hist(crim, main="Bentuk taburan data asal")
hist(crim.fix, main="Bentuk taburan data dengan anggaran median")
```



```
median.indus = median(indus, na.rm=T)
median.crim
```

indus

```
## [1] 0.25199
```

```
indus.fix = ifelse(is.na(indus), median.indus, indus)

par(mfrow = c(1,2))
hist(indus, main="Bentuk taburan data asal")
hist(indus.fix, main="Bentuk taburan data dengan anggaran median")
```



```
median.medv = median(medv, na.rm=T)
median.medv
```

medv

[1] 20.95

```
medv.fix = ifelse(is.na(medv), median.medv, medv)

par(mfrow = c(1,2))
hist(medv, main="Bentuk taburan data asal")
hist(medv.fix, main="Bentuk taburan data dengan anggaran median")
```


4.3 Untuk data taburan normal/simetri dengan nilai berangka: nilai minboleh digunakan.

```
mean.rm = mean(rm, na.rm=T)
mean.rm

## [1] 6.288016

rm.fix = ifelse(is.na(rm),mean.rm, rm)

par(mfrow = c(1,2))
hist(rm, main="Bentuk taburan data asal")
hist(rm.fix, main="Bentuk taburan data dengan anggaran median")
```


Bentukkan set data lengkap

```
MData.lengkap = MData
MData.lengkap$crim = crim.fix
MData.lengkap$medv = medv.fix
MData.lengkap$indus = indus.fix
MData.lengkap$rm = rm.fix
md.pattern(MData.lengkap)
```



```
X crim zn indus chas nox rm age dis rad tax ptratio b lstat medv
## 506 1
                              1 1
                                      1
                     1
                          1
                                          1
                                                  1
                                                          1 1
##
               0
                     0
                          0
                              0 0
                                     0
                                          0
                                              0
                                                  0
                                                          0 0
```

```
MData.lengkap = MData.lengkap[-1]
head(MData.lengkap)
```

```
crim zn indus chas
                            nox
                                       age
                                              dis rad tax ptratio
                                                                      b 1stat
                                   rm
## 1 0.25199 18 2.31
                        0 0.538 6.575 65.2 4.0900
                                                    1 296
                                                             15.3 396.90 4.98
## 2 0.02731 0 7.07
                        0 0.469 6.421 78.9 4.9671
                                                    2 242
                                                             17.8 396.90 9.14
## 3 0.02729 0 7.07
                        0 0.469 7.185 61.1 4.9671
                                                   2 242
                                                             17.8 392.83 4.03
## 4 0.03237 0 9.69
                        0 0.458 6.998 45.8 6.0622
                                                    3 222
                                                             18.7 394.63
                                                                         2.94
## 5 0.06905 0 2.18
                        0 0.458 7.147 54.2 6.0622
                                                    3 222
                                                             18.7 396.90 5.33
## 6 0.25199 0 2.18
                        0 0.458 6.430 58.7 6.0622
                                                    3 222
                                                             18.7 394.12 5.21
##
    medv
```

1 24.0

2 21.6

2 21.0

3 34.7

4 33.4 ## 5 36.2

6 28.7

5. Gunakan maklumat k-jiran terdekat sebagai anggaran terhadap data lenyap

```
iris.mis1 = read.csv("G:/My Drive/Master-Data-Science/Semester_1/Data_Mining/Data/iris.mis1.csv")
iris.mis1 = iris.mis1[-1]
library(multiUS)
iris.mis1 = KNNimp(data=iris.mis1, k=10)
head(iris.mis1)
    Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1
         5.09944
                   3.500000
                                     1.4
                    3.000000
## 2
         4.90000
                                     1.4
                                                 0.2
## 3
         4.70000 3.100142
                                                 0.2
                                     1.3
## 4
       4.60000 3.100000
                                     1.5
                                                 0.2
     5.00000 3.600000
5.40000 0.5
## 5
                                     1.4
                                                 0.2
         5.40000
## 6
                                     1.7
                                                 0.4
```

6. Anggaran data lenyap menerusi pelbagai kaedah imputasi statistik: (pakej mice)

6.1 Data dengan p/ubah nilai berangka

```
model = predictive mean matching
```

```
airquality = read.table("G:/My Drive/Master-Data-Science/Semester_1/Data_Mining/Data/airquality.txt", h
par(mfrow = c(1,1))
md.pattern(airquality)
```



```
##
       Wind Temp Month Day Solar.R Ozone
                      1
## 111
          1
               1
                          1
## 35
          1
               1
                      1
                          1
                                  1
                                        0 1
## 5
               1
                                  0
                                        1 1
## 2
                                        0 2
          1
               1
                      1
                          1
                                  0
##
          0
               0
                      0
                          0
                                  7
                                        37 44
```

6.2 Data dengan p/ubah nilai berbeza

 ${\rm model} = {\rm Logistic} \ {\rm Regression}$

```
data2 = read.csv("G:/My Drive/Master-Data-Science/Semester_1/Data_Mining/Data/dat2.csv")
data2 = data2[-1]
md.pattern(data2)
```

GenSolestolic BARge BOTholes Steno Einlingcation

##		Gender	SystolicBP	Age	${\tt BMI}$	Cholesterol	Smoking	Education	
##	187	1	1	1	1	1	1	1	0
##	13	1	1	1	1	1	1	0	1
##	18	1	1	1	1	1	0	1	1
##	2	1	1	1	1	1	0	0	2
##	16	1	1	1	1	0	1	1	1
##	4	1	1	1	1	0	1	0	2
##	5	1	1	1	0	1	1	1	1
##	4	1	1	0	1	1	1	1	1
##	1	1	1	0	1	1	1	0	2
##		0	0	5	5	20	20	20	70

str(data2)

```
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##
## filter, lag

## The following objects are masked from 'package:base':

##
## intersect, setdiff, setequal, union

dat = data2%>%

mutate(Smoking = as.factor(Smoking)) %>%

mutate(Education = factor(Education, levels = c("Low", "Medium", "High"), ordered=T)) %>%

mutate(Gender = as.factor(Gender))
```

Imputasi data

```
init = mice(dat, maxit=0)
meth = init$method
predM = init$predictorMatrix
```

setkan kaedah imputasi yang digunakan

Setiap p/ubah akan mengambil kaedah yang berbeza mengikut jenis data

```
meth[c('Age')] = "pmm"
meth[c('Cholesterol')] = "pmm"
meth[c('SystolicBP')] = "pmm"
meth[c('BMI')] = "pmm"
meth[c('Gender')] = "logreg"
meth[c('Smoking')] = "logreg"
meth[c('Education')] = "polyreg"
ImputedData = mice(dat, method=meth, predictorMatrix = predM)
```

```
##
##
   iter imp variable
##
        1 Age Cholesterol BMI Smoking Education
##
        2 Age Cholesterol BMI Smoking Education
    1
##
        3 Age Cholesterol BMI Smoking Education
    1
        4 Age Cholesterol BMI Smoking Education
##
    1
        5 Age Cholesterol BMI Smoking Education
##
    1
##
    2
       1 Age Cholesterol BMI Smoking Education
##
    2
      2 Age Cholesterol BMI Smoking Education
    2
      3 Age Cholesterol BMI Smoking Education
       4 Age Cholesterol BMI Smoking Education
##
```

```
##
     2
            Age
                 Cholesterol BMI Smoking Education
##
     3
         1
                 Cholesterol BMI
                                   Smoking Education
            Age
                 Cholesterol
##
            Age
                              BMI
                                   Smoking Education
     3
                                   Smoking Education
##
         3
                 Cholesterol BMI
            Age
##
     3
            Age
                 Cholesterol
                              BMI
                                   Smoking Education
##
     3
         5
                 Cholesterol BMI
                                   Smoking Education
            Age
##
     4
                 Cholesterol
                              BMI
                                    Smoking Education
         1
            Age
         2
                                   Smoking
##
     4
            Age
                 Cholesterol
                              BMI
                                            Education
##
     4
         3
            Age
                 Cholesterol
                              BMI
                                    Smoking
                                            Education
##
                 Cholesterol
                                    Smoking
            Age
                              BMI
                                            Education
##
     4
            Age
                 Cholesterol
                              BMI
                                    Smoking Education
##
     5
                 Cholesterol
                              BMI
                                   Smoking
                                            Education
         1
            Age
     5
         2
                              BMI
##
            Age
                 Cholesterol
                                   Smoking
                                            Education
##
                 Cholesterol
                              {\tt BMI}
                                    Smoking
                                             Education
            Age
##
     5
                 {\tt Cholesterol}
                              BMI
                                    Smoking
                                             Education
            Age
     5
##
            Age
                 Cholesterol
                              BMI
                                   Smoking
                                             Education
```

```
CompletedData = complete(ImputedData)
md.pattern(CompletedData)
```



```
## Age Gender Cholesterol SystolicBP BMI Smoking Education
## 250 1 1 1 1 1 1 1 0
## 0 0 0 0 0 0 0 0 0
```

Mengurus Data Pencil

1. Pendekatan Univariat (satu p/ubah)

```
ozone3 = read.csv("G:/My Drive/Master-Data-Science/Semester_1/Data_Mining/Data/ozone3.csv", header=T)
ozone3 = ozone3[,-1]
attach(ozone3)
str(ozone3)
## 'data.frame':
                   366 obs. of 13 variables:
## $ Month
                        : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Day_of_month
                          : int 1 2 3 4 5 6 7 8 9 10 ...
                                4 5 6 7 1 2 3 4 5 6 ...
## $ Day of week
                          : int
## $ ozone_reading
                          : num 3.01 3.2 2.7 5.18 5.34 5.77 3.69 3.89 5.76 6.94 ...
## $ pressure_height
                         : int 5480 5660 5710 5700 5760 5720 5790 5790 5700 5700 ...
## $ Wind_speed
                          : int 8643346333...
## $ Humidity
                          : int 20 32 28 37 51 69 19 25 73 59 ...
## $ Temperature_Sandburg : int 30 38 40 45 54 35 45 55 41 44 ...
## $ Temperature_ElMonte : num 32.5 41.4 38.1 47.1 45.3 ...
## $ Inversion_base_height: int 5000 1601 2693 590 1450 1568 2631 554 2083 2654 ...
## $ Pressure_gradient
                         : int -15 -14 -25 -24 25 15 -33 -28 23 -2 ...
## $ Inversion_temperature: num 30.6 46.9 47.7 55 57 ...
## $ Visibility
                          : int 200 300 250 100 60 60 100 250 120 120 ...
par(mfrow = c(2,7))
for (col in names(ozone3)) {
 boxplot(ozone3[[col]], main = col)
}
```


1.1 Mengesan data pencil

Ozone Reading

```
outlier_ozone = boxplot.stats(ozone_reading)$out
out_ind = which(ozone_reading%in%outlier_ozone)
ozone3[c(out_ind),]
```

```
##
       Month Day_of_month Day_of_week ozone_reading pressure_height Wind_speed
## 188
                          6
                                                  34.39
                                                                     5900
                                                                                    6
## 189
            7
                          7
                                       3
                                                  33.40
                                                                     5890
                                                                                    5
                         30
## 243
            8
                                       1
                                                  37.98
                                                                     5950
                                                                                    5
       {\tt Humidity\ Temperature\_Sandburg\ Temperature\_ElMonte\ Inversion\_base\_height}
##
              86
## 188
                                     87
                                                        81.68
                                                                                  990
## 189
              65
                                     91
                                                        81.68
                                                                                  508
              62
                                     92
                                                        82.40
## 243
                                                                                  557
##
       Pressure_gradient Inversion_temperature Visibility
                        22
                                             85.10
## 188
                                                            40
                        29
                                             85.28
                                                           100
## 189
## 243
                         0
                                             90.68
                                                            70
```

Pressure height

```
outlier_PH = boxplot.stats(pressure_height)$out
out_ind = which(pressure_height%in%c(outlier_PH))
ozone3[c(out_ind),]
```

```
##
       Month Day_of_month Day_of_week ozone_reading pressure_height Wind_speed
## 1
                                                    3.01
                                                                      5480
## 36
            2
                          5
                                        4
                                                    2.94
                                                                      5410
                                                                                      6
## 37
            2
                                        5
                                                                                      7
                           6
                                                    2.74
                                                                      5350
## 38
            2
                          7
                                        6
                                                    2.21
                                                                      5480
                                                                                      9
            2
                           9
## 40
                                        1
                                                    2.92
                                                                      5490
                                                                                     11
## 62
            3
                           2
                                        2
                                                                                      7
                                                    3.22
                                                                      5470
## 63
            3
                           3
                                        3
                                                    2.79
                                                                      5320
                                                                                     11
## 64
            3
                                        4
                                                                      5420
                           4
                                                    5.20
                                                                                      8
## 95
            4
                           4
                                        7
                                                    3.82
                                                                      5420
                                                                                      7
## 104
            4
                         13
                                        2
                                                                      5440
                                                                                      5
                                                    3.65
## 105
            4
                         14
                                        3
                                                    6.76
                                                                      5480
                                                                                      7
            4
                                        5
                                                                      5450
## 107
                         16
                                                    4.34
                                                                                     11
## 317
           11
                         12
                                        5
                                                    2.90
                                                                      5500
                                                                                      9
##
       Humidity Temperature_Sandburg Temperature_ElMonte Inversion_base_height
                                                         32.54
## 1
                                      30
                                                                                   5000
## 36
              64
                                                         32.18
                                      31
                                                                                  5000
## 37
              62
                                      30
                                                         32.54
                                                                                  1341
              72
## 38
                                      36
                                                         37.58
                                                                                  5000
## 40
              72
                                      37
                                                         38.48
                                                                                  5000
## 62
              46
                                      30
                                                         29.66
                                                                                  5000
## 63
              45
                                      25
                                                         27.68
                                                                                  5000
## 64
              33
                                      39
                                                         30.20
                                                                                  5000
## 95
              69
                                                         33.08
                                                                                  5000
                                      35
## 104
              44
                                      35
                                                         33.08
                                                                                   5000
## 105
              51
                                      46
                                                         37.40
                                                                                  2490
              35
## 107
                                      32
                                                         33.26
                                                                                  5000
## 317
              56
                                                                                  5000
                                      39
                                                         41.36
##
       Pressure_gradient Inversion_temperature Visibility
## 1
                       -15
                                             30.56
                                                            200
## 36
                        28
                                             32.36
                                                            200
## 37
                        18
                                             45.86
                                                             60
## 38
                         0
                                             38.66
                                                            350
## 40
                        32
                                             38.12
                                                            350
## 62
                        44
                                             29.30
                                                            300
## 63
                        39
                                             27.50
                                                            200
                        15
                                             30.02
                                                            500
## 64
## 95
                                             30.92
                                                            200
                        41
## 104
                        24
                                             32.54
                                                             80
                        29
                                             47.48
                                                            300
## 105
## 107
                        36
                                             33.44
                                                            300
## 317
                        15
                                             41.72
                                                            120
```

Wind Speed

```
outlier_WS = boxplot.stats(Wind_speed)$out
out_ind = which(Wind_speed%in%outlier_WS)
```

ozone3[c(out_ind),]

```
##
       Month Day_of_month Day_of_week ozone_reading pressure_height Wind_speed
## 40
                         9
                                                  2.92
                                                                   5490
## 53
           2
                        22
                                      7
                                                  3.61
                                                                   5730
                                                                                 11
                                      3
## 63
           3
                         3
                                                  2.79
                                                                   5320
                                                                                 11
                        16
                                      5
                                                  4.34
                                                                   5450
## 107
                                                                                 11
##
       {\tt Humidity\ Temperature\_Sandburg\ Temperature\_ElMonte\ Inversion\_base\_height}
## 40
             72
                                    37
                                                      38.48
                                                                               5000
## 53
             19
                                    51
                                                      55.40
                                                                               5000
                                                                               5000
## 63
             45
                                    25
                                                      27.68
             35
                                    32
                                                                               5000
## 107
                                                      33.26
##
       Pressure_gradient Inversion_temperature Visibility
## 40
                                           38.12
                                                         350
                       32
## 53
                      -43
                                           49.10
                                                         300
## 63
                                           27.50
                       39
                                                         200
## 107
                       36
                                                         300
                                           33.44
```

Visibility

```
outlier_vis = boxplot.stats(Visibility)$out
out_ind = which(Visibility%in%outlier_vis)
ozone3[c(out_ind),]
```

##		Month	Day_of_month	Day_of_week	ozone_reading	pressure_height	Wind_speed
##	2	1	2	5	3.20	5660	6
##	38	2	7	6	2.21	5480	9
##	40	2	9	1	2.92	5490	11
##	41	2	10	2	4.08	5560	10
##	42	2	11	3	6.04	5700	3
##	43	2	12	4	8.32	5680	5
##	51	2	20	5	5.73	5690	8
##	52	2	21	6	4.85	5700	3
##	53	2	22	7	3.61	5730	11
##	54	2	23	1	4.04	5690	7
##	55	2	24	2	6.04	5640	5
##	62	3	2	2	3.22	5470	7
##	64	3	4	4	5.20	5420	8
##	72	3	12	5	7.63	5690	0
##	73	3	13	6	12.22	5760	4
##	81	3	21	7	8.07	5720	5
##	91	3	31	3	12.33	5710	3
##	97	4	6	2	9.32	5590	6
##	98	4	7	3	13.12	5690	6
##	105	4	14	3	6.76	5480	7
##	107	4	16	5	4.34	5450	11
##	232	8	19	4	8.97	5730	7
##	234	8	21	6	17.18	5790	4
##	236	8	23	1	20.24	5880	3
##	301	10	27	3	2.61	5760	5
##	310	11	5	5	4.91	5860	7

##	318	11	13	6	3	5.32	5660	3
	341	12	6	1		4.65	5780	4
	343	12	8	3		4.31	5760	0
	357	12	22	3		4.25	5710	4
##		-	Temperature_Sa	_	Temperatur			_
##		32		38		41.36		1601
##		72		36		37.58		5000
##		72		37		38.48		5000
##		72		41		40.46		5000
## ##		32 50		46 51		48.38		5000
##		21		41		47.12 43.88		5000 5000
##		19		45		48.02		5000
##		19		51		55.40		5000
##		19		53		50.18		5000
##		68		50		37.40		5000
##		46		30		29.66		5000
##		33		39		30.20		5000
##	72	60		49		46.04		613
##	73	31		56		51.80		334
##	81	19		59		59.72		377
##	91	46		62		52.52		472
##		51		48		38.12		5000
##	98	63		59		52.88		2014
	105	51		46		37.40		2490
	107	35		32		33.26		5000
	232	72		67		57.20		5000
	234	57		74		64.40		994
	236	73		77		66.38		636
	301	23		57		53.42		5000
	310	19 54		70 50		62.78 46.94		5000 5000
	318 341	54 19		48		54.14		2933
	343	32		62		56.12		826
	357	19		51		51.08		5000
##	001		gradient Inve		emperature			0000
##	2		-14	<u>-</u>	46.94	30	-	
##			0		38.66	35		
##	40		32		38.12	35	0	
##	41		-1		37.58	30	0	
##	42		-30		45.86	30	0	
##			-8		45.50	30	0	
##			-30		42.26	30		
##			-53		43.88	30		
##			-43		49.10	30		
##			7		49.10	30		
##			24		42.08	30		
##			44		29.30	30		
##			15 -27		30.02	50		
	72 73		-27 -9		59.72	30		
## ##			-9 -27		64.40 73.22	30 30		
##			-2 <i>1</i> 34		62.96	30		
##			44		42.08	30		
пπ	01		-17		-12.00	30	•	

```
## 98
                        31
                                             53.42
                                                            300
## 105
                        29
                                             47.48
                                                            300
## 107
                        36
                                             33.44
                                                            300
## 232
                        31
                                             57.38
                                                            300
## 234
                        44
                                             69.62
                                                            300
## 236
                        16
                                             73.94
                                                            300
## 301
                       -21
                                             50.90
                                                            300
                       -29
                                             61.70
                                                            300
## 310
## 318
                        27
                                             44.60
                                                            300
                                             59.90
## 341
                       -40
                                                            300
## 343
                       -16
                                             64.76
                                                            300
## 357
                       -25
                                             48.38
                                                            300
```

2. Pendekatan Bivariat (2 p/ubah (X dan Y)):

2.1 X ialah kategori dan y berangka

```
par(mfrow=c(1,2))
boxplot(ozone3$ozone_reading~ozone3$Month, main="Plot Kotak Bacaan Ozone Bulanan")
boxplot(ozone3$ozone_reading~ozone3$Day_of_week, main="Plot Kotak Bacaan Ozone Harian")
```

Plot Kotak Bacaan Ozone Bulana

Plot Kotak Bacaan Ozone Hariai

Kesan data pencil dari set bulanan

out_D = which(ozone3\$ozone_reading%in%outBiv)
ozone3[c(out_D),]

##		Month Da	y_of_month	Day_of_week	ozone_read	ding pres	sure_height	Wind_speed
##	30	1	30	5	1:	1.06	5790	3
##	31	1	31	6	9	9.93	5800	2
##	58	2	27	5	2:	2.89	5740	3
##	77	3	17	3	24	4.29	5760	3
##	280	10	6	3	29	9.79	5890	5
##		Humidity	Temperatur	re_Sandburg '	Temperatur	e_ElMonte	Inversion_b	base_height
##	30	28		63		57.38		793
##	31	32		63		60.98		531
##	58	47		53		58.82		885
##	77	60	1	70		58.64		508
##	280	80	1	75		71.06		1049
##		Pressure	_gradient I	inversion_ter	mperature '	Visibilit	у	
##	30		-15		65.84	12	0	
##	31		-38		75.92	4	0	
##	58		-4		67.10	8	0	
##	77		7		66.56	7	0	
##	280		-10		78.98	5	0	

Kesan data pencil dari set harian

out_H = which(ozone3\$ozone_reading%in%outBiv)
ozone3[c(out_H),]

##		Month I	Day_of_month	Day_of_week	ozone_readir	ng press	ure_height	Wind_speed
##	135	5	14	5	31.1	.5	5850	4
##	180	6	28	1	29.8	37	5870	7
##	240	8	27	5	32.2	28	5900	6
##	243	8	30	1	37.9	98	5950	5
##	257	9	13	1	29.2	22	5830	5
##		Humidit	ty Temperatur	re_Sandburg '	${\tt Temperature_F}$	ElMonte	Inversion_b	base_height
##	135	•	76	78		71.24		1181
##	180	į	55	93		81.68		646
##	240	•	71	87		76.46		869
##	243	(62	92		82.40		557
##	257	-	77	72		68.72		1853
##		Pressu	re_gradient [Inversion_te	mperature Vis	sibility	•	
##	135		50		79.88	17	•	
##	180		25		89.24	140	1	
##	240		19		78.98	17	•	
##	243		0		90.68	70)	
##	257		10		70.88	70	1	

$2.2~\mathrm{X}$ ialah berangka dan y
 berangka

head(ozone3,5)

##		Month Day	_of_month	Day_of_week	ozone_read:	ing press	sure_height	Wind_speed
##	1	1	1	4	3	.01	5480	8
##	2	1	2	5	3	.20	5660	6
##	3	1	3	6	2	.70	5710	4
##	4	1	4	7	5	.18	5700	3
##	5	1	5	1	5	.34	5760	3
##		${\tt Humidity}$	Temperatur	re_Sandburg '	Temperature	_ElMonte	Inversion_b	base_height
##	1	20		30		32.54		5000
##	2	32		38		41.36		1601
##	3	28		40		38.12		2693
##	4	37		45		47.12		590
##	5	51		54		45.32		1450
##		Pressure	gradient I	Inversion_te	mperature V	isibility	,	
##	1		-15		30.56	200)	
##	2		-14		46.94	300)	
##	3		-25		47.66	250)	
##	4		-24		55.04	100)	
##	5		25		57.02	60)	

boxplot(ozone3\$ozone_reading~ozone3\$pressure_height, main = "Plot Kotak ozone_reading vs pressure_height")

Plot Kotak ozone_reading vs pressure_height

Plot Serakan ozone_reading vs pressure_height


```
x_min = 5400
y_min = 5
```

Kenal pasti data pencil, setkan nilai ambang (threshold) bersesuaian nilai ambang bawah (low threshold)

```
x_max = 5900
y_max = 35
```

nilai ambang atas (high threshold)

```
outlier_MinT = ozone3[ozone3$pressure_height < x_min & ozone3$ozone_reading < y_min,]
outlier_MinT</pre>
```

kesan data pencil dari data asal

Humidity

Temperature_Sandburg

Temperature_ElMonte

```
Month Day_of_month Day_of_week ozone_reading pressure_height Wind_speed
##
## 37
                       6
                                   5
                                               2.74
                                                               5350
          2
## 63
                       3
                                   3
                                               2.79
                                                               5320
          3
                                                                             11
##
      Humidity Temperature_Sandburg Temperature_ElMonte Inversion_base_height
## 37
            62
                                 30
                                                   32.54
                                                                          1341
## 63
            45
                                 25
                                                   27.68
                                                                          5000
      Pressure_gradient Inversion_temperature Visibility
## 37
                                                       60
                     18
                                         45.86
## 63
                     39
                                         27.50
                                                      200
outlier_MaxT = ozone3[ozone3$pressure_height > x_max & ozone3$ozone_reading > y_max,]
outlier_MaxT
##
       Month Day_of_month Day_of_week ozone_reading pressure_height Wind_speed
## 243
           8
                       30
                                    1
                                               37.98
                                                                5950
                                                                               5
       Humidity Temperature_Sandburg Temperature_ElMonte Inversion_base_height
##
## 243
                                  92
##
       Pressure_gradient Inversion_temperature Visibility
## 243
                                         90.68
3. Pendekatan Multivariat
3.1 kes terselia
y = ozone reading
x = lain pemboleh ubah
model.Reg = lm(ozone_reading~.,data = ozone3)
summary(model.Reg)
##
## Call:
## lm(formula = ozone_reading ~ ., data = ozone3)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -12.078 -2.806 -0.095
                             2.466
                                    13.774
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         79.7301501 26.8208664
                                                 2.973 0.003155 **
## Month
                         -0.2912283 0.0772391
                                                -3.770 0.000191 ***
## Day_of_month
                          0.0117107 0.0260899
                                                 0.449 0.653809
## Day_of_week
                          0.0082434 0.1139942
                                                 0.072 0.942393
## pressure_height
                         -0.0168796 0.0050603
                                                -3.336 0.000941 ***
## Wind_speed
                         -0.1979789 0.1241713 -1.594 0.111741
```

0.5877651 0.0899720 6.533 2.26e-10 ***

3.377 0.000814 ***

3.093 0.002142 **

0.0592464 0.0175431

0.1595799 0.0516012

```
## Inversion_base_height -0.0010628 0.0002971 -3.577 0.000396 ***
## Pressure_gradient
                                   0.0106706
                                                1.108 0.268502
                         0.0118259
## Inversion_temperature -0.1990735
                                    0.0870369
                                               -2.287 0.022773 *
                                              -1.130 0.259370
## Visibility
                        -0.0039045
                                    0.0034562
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 4.285 on 353 degrees of freedom
## Multiple R-squared: 0.7161, Adjusted R-squared: 0.7064
## F-statistic: 74.18 on 12 and 353 DF, p-value: < 2.2e-16
```

```
cooksd = cooks.distance(model.Reg)
```

Jarak Cook kenal pasti data pencil

Data Pencil Berdasarkan Jarak Cook

ekstrak data outlier

##		Month	Day_of_month	Day_of_week	ozone_read	ling pres	sure_height	Wind_speed
	19	1	19			.07	5680	5
	23	1	23			.90	5700	5
##	58	2	27			2.89	5740	3
##	64	3	4			5.20	5420	8
	87	3	27			22	5600	6
##	133	5	12			3.04	5880	3
##	179	6	27			2.73	5880	5
	220	8	7			.94	5830	4
	243	8	30			7.98	5950	5
	249	9	5			0.12	5800	6
	253	9	9			3.36	5860	5
	254	9	10			2.07	5870	6
## ##	273280	9	29 6			.60).79	5640 5890	5 5
##	286	10 10	12			7.79	5830	8
##	287	10	13			3.15	5860	5
	307	11	2			71	5870	6
	332	11	27			3.13	5670	8
	333	11	28			3.05	5760	0
##	000		ty Temperatu:					
##	19		73	52	1	56.48	-	393
##	23		59	69		51.08		3044
##	58		47	53		58.82		885
##	64		33	39		30.20		5000
##	87		45	40		41.72		5000
	133		80	80		73.04		436
	179		43	90		73.22		580
	220		71	69		64.04		5000
	243		62	92		82.40		557
	249		74	78		73.22		2818
	253		73	69 50		66.92		774
	254273		74 93	59 63		61.88 54.32		134 5000
	280		80	75		71.06		1049
	286		77	73		67.10		337
	287		86	73		69.80		492
	307		58	68		68.90		1341
	332		19	34		41.00		5000
	333		19	36		38.12		5000
##		Pressu	re_gradient		nperature V		J.	
##	19		-68	_	69.80	10		
##	23		18		52.88	150)	
##	58		-4		67.10	80)	
##	64		15		30.02	500)	
##	87		38		46.94	150)	
	133		0		86.36	40		
	179		9		87.26	80		
	220		30		55.76	100		
##	243		0		90.68	70)	

```
72.68
                                                         70
## 249
                      26
## 253
                      -27
                                          75.56
                                                        100
                                          77.18
## 254
                       0
                                                         70
                      30
                                          52.70
                                                         70
## 273
## 280
                      -10
                                          78.98
                                                         50
## 286
                     -17
                                          81.14
                                                         20
## 287
                      -2
                                          82.22
                                                          7
                      -42
                                          73.58
## 307
                                                        150
## 332
                      -63
                                          37.04
                                                        150
## 333
                     -52
                                          41.00
                                                        100
```

3.2 kes tak terselia

```
dataMUS = read.csv("G:/My Drive/Master-Data-Science/Semester_1/Data_Mining/Data/dataMUS.csv", header=T
dataMUS = dataMUS[-1]
hitung jarak Mahalanobis
M_dist = mahalanobis(dataMUS, center = colMeans(dataMUS), cov = cov(dataMUS))
setkan nilai ambang untuk kesan data pencil, 97.5 persentil untuk taburan khi-kuasa dua.
ambang = qchisq(0.975, df=ncol(dataMUS))
outlier_MD = which(M_dist>ambang)
```

```
## x1 x2 x3
## 18 2.343545 15.40378 19.43036
## 101 15.000000 20.00000 25.00000
## 102 1.00000 1.00000 1.00000
## 103 1.000000 1.00000 1.00000
```

pengvisualan 3d

dataMUS[outlier_MD,]

```
library(scatterplot3d)
install.packages("scatterplot3d")

## Warning: package 'scatterplot3d' is in use and will not be installed

s3d = scatterplot3d(dataMUS, main="Pengecaman Data Pencil mengikut Jarak Mahalanobis")
s3d$points(dataMUS[outlier_MD,], col='red', pch = 16, cex = 1.5)
```

Pengecaman Data Pencil mengikut Jarak Mahalanobis

