Question 39 Exercise(8.5)

Srihari S

Abstract—A question based on intersection of equal chords.

Download all python codes from

svn co https://github.com/Srihari123456/Summer -2020/tree/master/geometry/circle/codes

Download all LATEX-Tikz codes from

svn co https://github.com/Srihari123456/Summer -2020/tree/master/geometry/circle/figs

1 Question

1.1. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the center makes equal angles with the chords.

2 Construction

- 2.1. The figure for a circle obtained in the question looks like Fig. 1, with radius **r**, center **O** and equal chords **AB** and **CD** whose point of intersection is **X**.
- 2.2. Two chords \mathbf{AB} and \mathbf{CD} are said to be equal if their lengths are the same. Hence we need to show that $\|\mathbf{B} \mathbf{A}\| = \|\mathbf{D} \mathbf{C}\|$ to say the two chords are equal.
- 2.3. Let θ_1 , θ_2 , θ_3 and θ_4 are the angles between x-axis and points **B**,**A**,**D** and **C** respectively. The values used for constructing the circle in both Python and LaTeX-Tikz is in Table I:
- 2.4. Finding the coordinates of various points of Fig. 1, let $\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\mathbf{B} = \begin{pmatrix} r \cos \theta_1 \\ r \sin \theta_1 \end{pmatrix} \quad \mathbf{A} = \begin{pmatrix} r \cos \theta_2 \\ r \sin \theta_2 \end{pmatrix}$$

$$\mathbf{D} = \begin{pmatrix} r \cos \theta_3 \\ r \sin \theta_3 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} r \cos \theta_4 \\ r \sin \theta_4 \end{pmatrix}$$

2.5. As **OM** and **ON** are the perpendiculars from the center of the circle to the chord, which are the midpoints of **AB** and **CD**, and are hence

Fig. 1: Circle by Latex-Tikz

Initial Input Values	
Parameters	Values
r	2
θ_1	-120°
$ heta_2$	-30°
θ_3	210°
$ heta_4$	300°

TABLE I: To construct circle O

represented as:

$$\mathbf{M} = \frac{\mathbf{A} + \mathbf{B}}{2} \tag{2.5.1}$$

$$\mathbf{N} = \frac{\mathbf{C} + \mathbf{D}}{2} \tag{2.5.2}$$

2.6. To find the point of intersection **X** of the two chords:

Equations of AB and CD is represented as

$$\begin{pmatrix} 0.74 & -2.72 \\ 0.74 & 2.72 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3.97 \\ -3.97 \end{pmatrix}$$
 On solving we get
$$\mathbf{x} = \begin{pmatrix} 0 \\ -1.45 \end{pmatrix}$$

Thus the coordinates of $\mathbf{X} = \begin{pmatrix} 0 \\ -1.45 \end{pmatrix}$ The derived values used is in Table II:

Derived Values	
Parameter	Value
ChordLength	2.82
A	$\begin{pmatrix} 1.73 \\ -0.99 \end{pmatrix}$
В	$\begin{pmatrix} -0.99 \\ -1.73 \end{pmatrix}$
C	$\begin{pmatrix} 0.99 \\ -1.73 \end{pmatrix}$
D	$\begin{pmatrix} -1.73 \\ -0.99 \end{pmatrix}$
M	$\begin{pmatrix} 0.36 \\ -1.36 \end{pmatrix}$
N	$\begin{pmatrix} -0.36 \\ -1.36 \end{pmatrix}$
X	$\begin{pmatrix} 0 \\ -1.45 \end{pmatrix}$

TABLE II: To construct circle O

To Show: We need to prove that $\angle OXD = \angle AXO$.

3 Solution

3.1. First we need to show that **M** and **N** are the midpoints of **AB** and **CD** respectively. In the given circle of center **O**, let **AB** be an arbitrary chord such that $\mathbf{OX} \perp \mathbf{AB}$. We need to show that $\mathbf{AX} = \mathbf{BX}$. Since $\mathbf{OX} \perp \mathbf{AB}$: $(\mathbf{O} - \mathbf{X})^{\mathsf{T}} (\mathbf{A} - \mathbf{X}) = 0$

$$\implies \left(-\mathbf{X}[\mathbf{0}] \quad -\mathbf{X}[\mathbf{1}]\right) \begin{pmatrix} \mathbf{A}[\mathbf{0}] - \mathbf{X}[\mathbf{0}] \\ \mathbf{A}[\mathbf{1}] - \mathbf{X}[\mathbf{1}] \end{pmatrix} = 0$$
(3.1.1)

This condition is satisfied only when $\mathbf{X} = \frac{\mathbf{A} + \mathbf{B}}{2}$ i.e. \mathbf{X} must be the midpoint of \mathbf{AB} .

$$\therefore \mathbf{AX} = \mathbf{BX} \tag{3.1.2}$$

Hence Perpendicular from the center of a circle to a chord bisects the chord.

Fig. 2: Perpendicular from the center of a circle to a chord bisects the chord

3.2. Next we need to show that equal chords of a circle are equidistant from the center.

In the circle given in Fig:3 whose center is O, let AB and CD be two arbitrary chords such that $OX \perp AB$ and $OY \perp CD$. We need to show that OX = OY.

a) Since $\mathbf{OX} \perp \mathbf{AB}$, $\mathbf{AX} = \mathbf{BX} = \frac{\mathbf{AB}}{2}$ {From:(3.1.2) } Similarly $\mathbf{CY} = \mathbf{DY} = \frac{\mathbf{CY}}{2}$

b) As
$$AB = CD$$

$$\frac{AB}{2} = \frac{CD}{2}$$
Hence

$$\mathbf{AX} = \mathbf{CY} \tag{3.2.1}$$

c) In $\triangle AOX$ and $\triangle COY$ as shown in Fig.3 using baudhayana theorem

$$\|\mathbf{O} - \mathbf{Y}\|^2 + \|\mathbf{Y} - \mathbf{C}\|^2 = \|\mathbf{O} - \mathbf{X}\|^2 + \|\mathbf{X} - \mathbf{A}\|^2$$
(3.2.2)

Using (3.2.1),

$$\|\mathbf{O} - \mathbf{Y}\|^2 = \|\mathbf{O} - \mathbf{X}\|^2$$
 (3.2.3)

$$\implies \|\mathbf{O} - \mathbf{Y}\| = \|\mathbf{O} - \mathbf{X}\| \tag{3.2.4}$$

Therefore,
$$OX = OY$$
 (3.2.5)

Hence the equal chords of a circle are equidistant from the center.

Fig. 3: Equal chords of a circle are equidistant from the center

The following Python code generates Fig. 4

Fig. 4: Circle generated using python

The equivalent L^AT_EX- tikz code generating Fig. 1 is

The above LATEX code can be compiled as a standalone document as

3.3. In the circle given in Fig.1 we need to show that $\angle OXA = \angle OXD$. We draw **OM** \perp **AB** and $ON \perp CD$.

In $\triangle OMX$ and $\triangle ONX$, using baudhayana theo-

$$\|\mathbf{N} - \mathbf{O}\|^2 + \|\mathbf{X} - \mathbf{N}\|^2 = \|\mathbf{M} - \mathbf{O}\|^2 + \|\mathbf{X} - \mathbf{M}\|^2$$
(3.3.1)

Using (3.2.5), $\|\mathbf{X} - \mathbf{N}\|^2 = \|\mathbf{X} - \mathbf{M}\|^2$

$$\implies ||\mathbf{NX}|| = ||\mathbf{MX}|| \qquad (3.3.2)$$

In $\triangle OMX$ and $\triangle ONX$, using cosine formula

$$\cos \angle OXN = \frac{\|\mathbf{NX}\|^2 + \|\mathbf{OX}\|^2 - \|\mathbf{ON}\|^2}{2\|\mathbf{NX}\|\|\mathbf{OX}\|}$$
(3.3.3)

$$\cos \angle OXM = \frac{\|\mathbf{MX}\|^2 + \|\mathbf{OX}\|^2 - \|\mathbf{OM}\|^2}{2\|\mathbf{MX}\|\|\mathbf{OX}\|}$$
(3.3.4)

Using (3.3.2) and (3.2.5)

$$\cos/OXN = \cos\angle OXM \qquad (3.3.5)$$

Therefore,
$$\angle OXM = \angle OXN$$
 (3.3.6)

$$\implies \angle OXA = \angle OXD$$
Hence Proved

Hence Proved.