Haoran Yu (presenter) and Fan Li

School of Computer Science & Technology Beijing Institute of Technology

May 2024 @ IEEE INFOCOM

### Bargaining for Incentivizing Resource Sharing

- Bargaining is widely used to incentivize sharing of resources:
  - Internet access among mobile users: [G. losifidis et al. TON'17], [Y. Liu et al. TNSE'19]
  - Spectrum access among service providers: [H. Xu and B. Li TMC'12], [Q. Ni and C. Zarakovitis JSAC'11]
  - Network infrastructure among service providers: [L. Gao et al. ISAC'14], [H. Yu et al. TMC'16]

# **Bargaining for Incentivizing Resource Sharing**

#### Example of sharing Internet access



# **Bargaining for Incentivizing Resource Sharing**

Example of sharing Internet access



- Seller and buyer make decisions alternatively
- Decisions can be discrete ("A" or "D") or continuous (payment)
- An offer can be multi-dimensional (payment + speed)



- How to model bargaining behavior and predict the outcome?
- Most existing studies conducted game-theoretic analysis
  - Required strong informational and rationality assumptions
    - Assume the seller knows the buyer's gain from file downloading
    - Assume the buyer knows the seller's cost of sharing network
    - Assume their decisions maximize payoffs given information
  - Did not utilize real bargaining behavior data



- How to model bargaining behavior and predict the outcome?
- Most existing studies conducted game-theoretic analysis
  - Required strong informational and rationality assumptions
    - Assume the seller knows the buyer's gain from file downloading
    - Assume the buyer knows the seller's cost of sharing network
    - Assume their decisions maximize payoffs given information
  - Did not utilize real bargaining behavior data

- Q1: How to utilize data to predict bounded-rational bargaining behavior (including discrete and continuous decisions)?
- Q2: How to achieve a personalized behavior prediction that
- We focus on predicting seller behavior in bilateral bargaining

- Q1: How to utilize data to predict bounded-rational bargaining behavior (including discrete and continuous decisions)?
- Q2: How to achieve a personalized behavior prediction that accounts for the heterogeneity of bargainers?
- We focus on predicting seller behavior in bilateral bargaining

- Q1: How to utilize data to predict bounded-rational bargaining behavior (including discrete and continuous decisions)?
- Q2: How to achieve a personalized behavior prediction that accounts for the heterogeneity of bargainers?
- We focus on predicting seller behavior in bilateral bargaining

# Model

- Denote available training data as  $\{(x_i, y_i)\}_{i \in \mathcal{I}}$ 
  - $x_i$ : history of the bargaining (between a seller and a buyer)
  - $y_i = (y_i^d, y_i^c)$ : the seller's decision
    - Discrete decision  $y_i^d$ : "Accept", "Decline", or "Counter"
    - Continuous decision  $y_i^c$ : offer details (e.g., payment and speed)
  - i: data point index

- Denote available training data as  $\{(x_i, y_i)\}_{i \in T}$ 
  - $x_i$ : history of the bargaining (between a seller and a buyer)
  - $\mathbf{y}_i = (\mathbf{y}_i^d, \mathbf{y}_i^c)$ : the seller's decision
    - Discrete decision  $y_i^d$ : "Accept", "Decline", or "Counter"
    - Continuous decision  $y_i^c$ : offer details (e.g., payment and speed)
  - i: data point index

- Denote available training data as  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{T}}$ 
  - $x_i$ : history of the bargaining (between a seller and a buyer)
  - $\mathbf{y}_i = (\mathbf{y}_i^d, \mathbf{y}_i^c)$ : the seller's decision
    - Discrete decision  $y_i^d$ : "Accept", "Decline", or "Counter"
    - Continuous decision  $y_i^c$ : offer details (e.g., payment and speed)
  - i: data point index



$$\begin{cases} x_1 = (5,2) \\ y_1^d = D \end{cases}$$

- Denote available training data as  $\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i \in \mathcal{I}}$ 
  - $x_i$ : history of the bargaining (between a seller and a buyer)
  - $\mathbf{y}_i = (\mathbf{y}_i^d, \mathbf{y}_i^c)$ : the seller's decision
    - Discrete decision  $y_i^d$ : "Accept", "Decline", or "Counter"
    - Continuous decision  $y_i^c$ : offer details (e.g., payment and speed)
  - i: data point index



#### **Personalized Behavior Prediction Problem**

- Denote available training data as  $\{(x_i, y_i)\}_{i \in T}$
- We can split  $\mathcal{I}$  into  $\mathcal{I}_1, \dots, \mathcal{I}_N$  according to the N sellers

Given  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{I}}$  and the information of  $\mathcal{I}_1, \dots, \mathcal{I}_N$ , how to

#### **Personalized Behavior Prediction Problem**

- Denote available training data as  $\{(x_i, y_i)\}_{i \in \mathcal{I}}$ .
- We can split  $\mathcal{I}$  into  $\mathcal{I}_1, \dots, \mathcal{I}_N$  according to the N sellers

#### **Personalized Behavior Prediction Problem**

Given  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{I}}$  and the information of  $\mathcal{I}_1, \dots, \mathcal{I}_N$ , how to predict each seller n's future bargaining behavior?

# Solution

SOLUTION

#### **Behavior Prediction via Machine Learning**

• We use a sequence model to learn the underlying pattern in seller behavior (which does not rely on rationality assumption)



Sequence model can handle inputs with varying lengths

- We can train the LSTM to optimize W on data  $\{(x_i, y_i)\}_{i \in T}$
- How to utilize the information of  $\mathcal{I}_1, \dots, \mathcal{I}_N$ ?

# **Behavior Prediction via Machine Learning**

• We use a sequence model to learn the underlying pattern in seller behavior (which does not rely on rationality assumption)



Sequence model can handle inputs with varying lengths

- ullet We can train the LSTM to optimize  $oldsymbol{W}$  on data  $\{(oldsymbol{x}_i,oldsymbol{y}_i)\}_{i\in\mathcal{I}}$
- How to utilize the information of  $\mathcal{I}_1, \ldots, \mathcal{I}_N$ ?

# Behavior Prediction via Machine Learning

• We use a sequence model to learn the underlying pattern in seller behavior (which does not rely on rationality assumption)



Sequence model can handle inputs with varying lengths

- We can train the LSTM to optimize **W** on data  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{T}}$
- How to utilize the information of  $\mathcal{I}_1, \ldots, \mathcal{I}_N$ ?



Standard behavior learning and prediction



Personalized behavior learning and prediction



Define a latent vector  $I_n$  for each seller n to encode its decision-making preference



Use the trained LSTM and  $I_n$  to achieve a personalized prediction



- How to learn both  $I_n$  and LSTM parameters W?
- Solution: Iteratively update I<sub>n</sub> and
   W by maximizing data likelihood



- How to learn both  $I_n$  and LSTM parameters W?
- Solution: Iteratively update *I<sub>n</sub>* and
   W by maximizing data likelihood



- This talk assumes prior distribution of  $I_n$  is a fixed uniform distribution
- In iteration k, we first update the posterior distribution of  $I_n$ :

$$\begin{aligned} & \operatorname{Pr}_{\operatorname{post}}^{k}\left(\boldsymbol{I}_{n}=\boldsymbol{j}\right) \\ & = \operatorname{Pr}\left(\boldsymbol{I}_{n}=\boldsymbol{j}|\left\{\left(\boldsymbol{x}_{i},\boldsymbol{y}_{i}\right)\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right) \\ & = \frac{\operatorname{Pr}\left(\left\{\boldsymbol{y}_{i}\right\}_{i\in\mathcal{I}_{n}}|\boldsymbol{I}_{n}=\boldsymbol{j},\left\{\boldsymbol{x}_{i}\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right)}{\sum_{\hat{\boldsymbol{j}}\in\mathcal{L}}\operatorname{Pr}\left(\left\{\boldsymbol{y}_{i}\right\}_{i\in\mathcal{I}_{n}}|\boldsymbol{I}_{n}=\hat{\boldsymbol{j}},\left\{\boldsymbol{x}_{i}\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right) \end{aligned}$$



- This talk assumes prior distribution of  $I_n$  is a fixed uniform distribution
- In iteration k, we first update the posterior distribution of  $I_n$ :

$$\begin{aligned} & \operatorname{Pr}_{\operatorname{post}}^{k}\left(\boldsymbol{I}_{n}=\boldsymbol{j}\right) \\ & = \operatorname{Pr}\left(\boldsymbol{I}_{n}=\boldsymbol{j}|\left\{\left(\boldsymbol{x}_{i},\boldsymbol{y}_{i}\right)\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right) \\ & = \frac{\operatorname{Pr}\left(\left\{\boldsymbol{y}_{i}\right\}_{i\in\mathcal{I}_{n}}|\boldsymbol{I}_{n}=\boldsymbol{j},\left\{\boldsymbol{x}_{i}\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right)}{\sum_{\hat{\boldsymbol{j}}\in\mathcal{L}}\operatorname{Pr}\left(\left\{\boldsymbol{y}_{i}\right\}_{i\in\mathcal{I}_{n}}|\boldsymbol{I}_{n}=\hat{\boldsymbol{j}},\left\{\boldsymbol{x}_{i}\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right)} \end{aligned}$$

#### training phase



- This talk assumes prior distribution of  $I_n$  is a fixed uniform distribution
- In iteration k, we first update the posterior distribution of  $I_n$ :

$$\begin{aligned} & \operatorname{Pr}_{\operatorname{post}}^{k}\left(\boldsymbol{I}_{n}=\boldsymbol{j}\right) \\ & = \operatorname{Pr}\left(\boldsymbol{I}_{n}=\boldsymbol{j}|\left\{\left(\boldsymbol{x}_{i},\boldsymbol{y}_{i}\right)\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right) \\ & = \frac{\operatorname{Pr}\left(\left\{\boldsymbol{y}_{i}\right\}_{i\in\mathcal{I}_{n}}|\boldsymbol{I}_{n}=\boldsymbol{j},\left\{\boldsymbol{x}_{i}\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right)}{\sum_{\hat{\boldsymbol{J}}\in\mathcal{L}}\operatorname{Pr}\left(\left\{\boldsymbol{y}_{i}\right\}_{i\in\mathcal{I}_{n}}|\boldsymbol{I}_{n}=\hat{\boldsymbol{j}},\left\{\boldsymbol{x}_{i}\right\}_{i\in\mathcal{I}_{n}};\boldsymbol{W}^{k-1}\right)} \end{aligned}$$

#### training phase



• In iteration k, we then update  $\mathbf{W}^k$ :

$$\max_{W} \sum_{n} \mathbb{E}_{\boldsymbol{I}_{n}} \left[ \log \Pr \left( \left\{ y_{i} \right\}_{i \in \mathcal{I}_{n}} | \left\{ \boldsymbol{x}_{i} \right\}_{i \in \mathcal{I}_{n}}, \boldsymbol{I}_{n}; \boldsymbol{W} \right) \right]$$

- We can approximately solve it by
  - sampling  $I_n$  according to posterior
  - training LSTM using data and  $I_n$

#### training phase



• In iteration k, we then update  $\mathbf{W}^k$ :

$$\max_{\boldsymbol{W}} \sum_{n} \mathbb{E}_{\boldsymbol{I}_{n}} \left[ \log \Pr \left( \left\{ \boldsymbol{y}_{i} \right\}_{i \in \mathcal{I}_{n}} | \left\{ \boldsymbol{x}_{i} \right\}_{i \in \mathcal{I}_{n}}, \boldsymbol{I}_{n}; \boldsymbol{W} \right) \right]$$

- We can approximately solve it by
  - sampling  $I_n$  according to posterio
  - training LSTM using data and  $I_n$

#### training phase



• In iteration k, we then update  $\mathbf{W}^k$ :

$$\max_{\boldsymbol{W}} \sum_{n} \mathbb{E}_{\boldsymbol{I}_{n}} \left[ \log \Pr \left( \left\{ \boldsymbol{y}_{i} \right\}_{i \in \mathcal{I}_{n}} | \left\{ \boldsymbol{x}_{i} \right\}_{i \in \mathcal{I}_{n}}, \boldsymbol{I}_{n}; \boldsymbol{W} \right) \right]$$

- We can approximately solve it by
  - sampling  $I_n$  according to posterior
  - training LSTM using data and  $I_n$

• Can this iterative updating process converge?

$$\nabla \log \Pr\left(\left\{y_i\right\}_{i\in\mathcal{I}} \middle| \left\{\mathbf{x}_i\right\}_{i\in\mathcal{I}}; \mathbf{W}^*\right) = \mathbf{0}.$$

• Can this iterative updating process converge?

#### **Main Proposition**

BACKGROUND

If we optimally solve the expected log-likelihood maximization problem over W for each iteration, the iterative updating converges to a stationary point  $W^*$  of the data log-likelihood function, i.e.,

$$\nabla \log \Pr\left(\left\{oldsymbol{y}_i\right\}_{i\in\mathcal{I}} \,\middle|\, \left\{oldsymbol{x}_i
ight\}_{i\in\mathcal{I}}; oldsymbol{W}^*
ight) = oldsymbol{0}.$$

#### testing phase

 $x_{\text{test}}$  belongs to seller 2



• Predict  $y_{\text{test}}$  using the learned posterior distribution of  $I_n$  and W:

$$\mathbb{E}_{\boldsymbol{I}_n}\left[\Pr\left(\boldsymbol{y}_{\text{test}}|\boldsymbol{x}_{\text{test}},\boldsymbol{I}_n;\boldsymbol{W}\right)\right]$$

# **Experiments**

- eBay dataset: 240,000+ data points covering 6,000 sellers
- Our Methods
  - Personalized Behavior Prediction (PBP)
  - Fast Personalized Behavior Prediction (FastPBP)
- Baselines
  - LSTM+FineTuning
    - Use all  $\{(x_i, y_i)\}_{i \in \mathcal{I}}$  to train an LSTM
    - Fine-tune LSTM on  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{T}}$  to predict seller n's behavior
  - Clustering+LSTM
    - Partition sellers into different clusters based on their similarities
    - Train the LSTM for each cluster separately

- eBay dataset: 240,000+ data points covering 6,000 sellers
- Our Methods
  - Personalized Behavior Prediction (PBP)
  - Fast Personalized Behavior Prediction (FastPBP)
- Baselines
  - LSTM+FineTuning
    - Use all  $\{(x_i, y_i)\}_{i \in T}$  to train an LSTM
    - Fine-tune LSTM on  $\{(x_i, y_i)\}_{i \in \mathcal{T}}$  to predict seller n's behavior
  - Clustering+LSTM
    - Partition sellers into different clusters based on their similarities
    - Train the LSTM for each cluster separately

- eBay dataset: 240,000+ data points covering 6,000 sellers
- Our Methods
  - Personalized Behavior Prediction (PBP)
  - Fast Personalized Behavior Prediction (FastPBP)
- Baselines
  - LSTM+FineTuning
    - Use all  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{I}}$  to train an LSTM
    - Fine-tune LSTM on  $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i \in \mathcal{I}_n}$  to predict seller n's behavior
  - Clustering+LSTM

    - Train the LSTM for each cluster separately

- eBay dataset: 240,000+ data points covering 6,000 sellers
- Our Methods
  - Personalized Behavior Prediction (PBP)
  - Fast Personalized Behavior Prediction (FastPBP)
- Baselines
  - LSTM+FineTuning
    - Use all  $\{(x_i, y_i)\}_{i \in \mathcal{I}}$  to train an LSTM
    - Fine-tune LSTM on  $\{(x_i, y_i)\}_{i \in \mathcal{I}_n}$  to predict seller n's behavior
  - Clustering+LSTM
    - Partition sellers into different clusters based on their similarities
    - Train the LSTM for each cluster separately

# **Experimental Results**

• Comparison in predicting  $y^d$ 



# **Experimental Results**

#### • Comparison in predicting $y^c$



### **Experimental Results**

#### • Comparison in training time



#### Conclusion

- We proposed methods for personalized prediction of bounded rational bargaining behavior in network resource sharing
- Some contents are not covered:
  - Iteratively learn prior distribution of latent vector  $I_n$
  - Accelerate the iterations via sampling and early termination
  - Consider continuous latent vector In

#### Conclusion

- We proposed methods for personalized prediction of bounded rational bargaining behavior in network resource sharing
- Some contents are not covered:
  - Iteratively learn prior distribution of latent vector  $I_n$
  - Accelerate the iterations via sampling and early termination
  - Consider continuous latent vector  $I_n$

