高等代数 (II) 第七次习题课

李卓远 数学科学学院

zy.li@stu.pku.edu.cn

1 内容概要

• 正交空间与辛空间.

2 补充知识

2.1 线性函数与对偶空间

设 $V \in \mathbf{Vect}_{\mathbb{F}}$. 记 $V^* := \mathrm{Hom}(V,\mathbb{F})$ 为 V 的对偶空间, 而 $f \in \mathrm{Hom}(V,\mathbb{F})$ 则称为 V 上的线性函数. 例如

- $\operatorname{Tr}: A \in \mathbb{F}^{n \times n} \mapsto \operatorname{Tr}(A);$
- $\int_a^b -dx : f \in C[a,b] \mapsto \int_a^b f(x)dx$.

类似地可定义双重对偶空间 $V^{**} := \text{Hom}(V^*, \mathbb{F})$, 且我们有如下 "canonical embedding"

$$\varphi_V:V \to V^{**}$$

$$v \mapsto \langle (f \in V^*) \mapsto f(v) \rangle \quad (\text{ evaluation at } v)$$

对于有限维线性空间 ($\dim V < \infty$), 由维数公式易得 $\dim V = \dim V^* = \dim V^{**}$, 但对于一般的线性空间 V, φ_V 不一定为同构,而一般称满足 φ_V 为同构的线性空间 V 为自反空间 (reflexive space). 例如 Hilbert 空间, Lebesgue 空间 L^p ($p \in (1, +\infty)$).

Proposition 2.1.1. Hom(V, -) is a functor while Hom(-, V) is a contravariant functor on $\mathbf{Vect}_{\mathbb{F}}$, i.e., for any linear $f: U \to W$,

- $\operatorname{Hom}(V, -)$ give rise to a linear map $\operatorname{Hom}(V, f) = f \circ : \operatorname{Hom}(V, U) \to \operatorname{Hom}(V, W);$
- $\operatorname{Hom}(-,V)$ give rise to a linear map $\operatorname{Hom}(f,V) = -\circ f : \operatorname{Hom}(U,V) \leftarrow \operatorname{Hom}(W,V)$.

For $V = \mathbb{F}$, $f: U \to W$ induces a linear map between dual spaces $f^* := \operatorname{Hom}(f, \mathbb{F}) : W^* \to U^*$.

2.2 正交空间与辛空间

Definition 2.2.1 (bilinear forms). Let $V \in \mathbf{Vect}_{\mathbb{F}}$. $f: V \times V \to \mathbb{F}$ is called a bilinear form if both $f(-,v) \in V^*$ and $f(v,-) \in V^*$ for all $v \in V$. A bilinear form may have the following properties:

• symmetric: f(v, w) = f(w, v) for all $v, w \in V$;

- skew-symmetric: f(v, w) = -f(w, v) for all $v, w \in V$;
- alternate: f(v,v) = 0 for all $v \in V$;

事实上上述双线性函数诱导了两个 $V \rightarrow V^*$ 的线性映射, 分别记为

$$\psi_L : v \mapsto f(v, -);$$

 $\psi_R : v \mapsto f(-, v).$

而 ψ_L 和 ψ_R 的核空间恰好分别由 f 的左根和右根组成, 即 $\ker \psi_L = \operatorname{rad}_L V$, $\ker \psi_R = \operatorname{rad}_R V$. 称 f 为非退化 (non-degenerate) 的, 若 $\operatorname{rad}_L V = \operatorname{rad}_R V = 0$.

Definition 2.2.2. 设 f 为线性空间 $V \in \mathbf{Vect}_{\mathbb{F}}$ 上的双线性函数. 称 (V, f) 为一个正交空间 (orthogonal)/辛空间 (symplectic),若 f 为对称的/反对称的. 特别地,若 f 为非退化的,则称 (V, f) 为非退化的正交空间/辛空间.

对于有限维线性空间 V, 固定 V 上的一组基 $\alpha_1, \dots, \alpha_n$, 则对任意 $u = (\alpha_1, \dots, \alpha_n)X \in V$, $X = (x_1, \dots, x_n)^\mathsf{T} \in \mathbb{F}^n$, $v = (\alpha_1, \dots, \alpha_n)Y \in V$, $Y = (y_1, \dots, y_n) \in \mathbb{F}^n$, 有

$$f(u,v) = f\left(\sum_{j=1}^n x_j \alpha_j, \sum_{k=1}^n y_k \alpha_k\right) = \sum_{j,k=1}^n x_j y_k f(\alpha_j, \alpha_k) = X^\mathsf{T} A Y, A = (f(\alpha_j, \alpha_k))_{j,k}.$$

故而 f 的对称性, 反对称性, 非退化性等性质都可以用矩阵 A 的性质来刻画, 且容易验证这样的性质与基的选取无关.

2.3 正交变换与辛变换

设 (V, f) 为 \mathbb{F} 上的有限维非退化正交空间/辛空间. 称 $\mathscr{T} \in \operatorname{End}(V)$ 为 V 上的一个正交变换/辛变换, 若

$$f(\mathcal{T}(u), \mathcal{T}(v)) = f(u, v), \forall u, v \in V.$$

同样地固定 V 上的一组基 $\alpha_1, \dots, \alpha_n$, 记 f 对应的度量矩阵为 A, \mathcal{I} 在这组基下的矩阵表示为 T, 那么有

$$T^{\mathsf{T}}AT = A$$
,

且当 f 为非退化时 A 可逆, 这蕴含着 $det(T) = \pm 1$.

Lemma 2.3.1. 设 $V \in \mathbf{Vect}_{\mathbb{F}}$, $\mathrm{Char} \, \mathbb{F} \neq 2$, $\dim V = n$. f 为 V 上的斜对称双线性函数, 则存在 V 的一组基

$$\delta_1, \delta_{-1}, \cdots, \delta_r, \delta_{-r}, \eta_1, \cdots, \eta_s$$

满足

$$f(\delta_j, \delta_{-k}) = \delta_{jk}, \ j, k = 1, 2, \cdots, r,$$
$$f(\alpha, \eta_k) = 0, \ \forall \alpha \in V.$$

一般称满足这样条件的基为一组辛基.

证明. 利用数学归纳法, 对于 $f \neq 0$ 证明存在两个线性无关的向量满足上述部分条件, 过程参见教材 P171-172.

Lemma 2.3.2. 设 $A \in \mathbb{F}^{n \times n}$ 为斜对称矩阵, $\operatorname{Char} \mathbb{F} \neq 2$, 则存在 $c \in \mathbb{F}$ 使得 $\det(A) = c^2$.

证明. 不妨仅考虑 A 为非退化 (可逆) 的情形. 取定 V 上的一组基 $\alpha_1, \dots, \alpha_n$, 令

$$f((\alpha_1, \dots, \alpha_n)X, (\alpha_1, \dots, \alpha_n)Y) = X^{\mathsf{T}}AY, X, Y \in \mathbb{F}^n,$$

容易验证 f 为双线性斜对称函数, 由前述引理则存在 V 上的一组基 β_1, \cdots, β_n 使得 f 在这一组基下的表示为

$$B = \operatorname{diag} \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 0 \cdots, 0 \right\}.$$

记两组基之间的过度矩阵为P,即

$$(\beta_1, \cdots, \beta_n) = (\alpha_1, \cdots, \alpha_n)P,$$

那么

$$X^{\mathsf{T}}BY = f((\beta_1, \dots, \beta_n)X, (\beta_1, \dots, \beta_n)Y)$$

$$= f((\alpha_1, \dots, \alpha_n)PX, (\alpha_1, \dots, \alpha_n)PY)$$

$$= (PX)^{\mathsf{T}}A(PY) = X^{\mathsf{T}}(P^{\mathsf{T}}AP)Y, \forall X, Y \in \mathbb{F},$$

故 $B = P^{\mathsf{T}}AP$. 由 P 可逆可知

$$\det(A) = \det(P)^{-2} \det(B) = (\det(P) \det(B))^{2}.$$

Theorem 2.3.3. 令

$$A = \begin{pmatrix} 0 & I_m \\ -I_m & 0 \end{pmatrix},$$

称满足 $T^{\mathsf{T}}AT = A$ 的矩阵 $T \in \mathbb{F}^{2m \times 2m}$ 为辛矩阵. 则若 $\operatorname{Char} \mathbb{F} \neq 2$ 必有 $\det(T) = 1$.

证明. 对于多项式环 $R = \mathbb{F}[x_{11}, \cdots, x_{2m,2m}]$ 上的斜对称矩阵

$$G = \begin{pmatrix} 0 & x_{12} & \cdots & x_{1,2m} \\ -x_{12} & 0 & \cdots & x_{2,2m} \\ \vdots & \vdots & \ddots & \vdots \\ -x_{1,2m} & -x_{2,2m} & \cdots & 0 \end{pmatrix} \in M_{2m}(R),$$

可以看作分式域 $\operatorname{Frac}(R)$ 上的矩阵,且由 $\operatorname{Char}\mathbb{F}\neq 2$ 可知 $\operatorname{Char}\operatorname{Frac}(R)\neq 2$,那么根据前述引理存在 $f=g/h\in\operatorname{Frac}(R)$ 满足

$$\det(G) = f^2 = g^2/h^2, g, h \in R.$$

不妨令 (g,h)=1, 则由 $\det(G) \in R$ 可知 $h \mid g^2$, 因此 $h \mid g$, 从而 $f=f(x_{12},\cdots,x_{2m,2m-1}) \in R$, 即 $\det(G)$ 总可表示为 R 中某一元素的平方. 对任意 $S \in M_{2m}(R)$, 容易验证 $S^{\mathsf{T}}GS$ 也为斜对称矩阵. 记

$$f_S = f((S^\mathsf{T} G S)_{12}, \cdots, (S^\mathsf{T} G S)_{2m,2m-1}) \in R,$$

那么

$$f_S^2 = \det(S^\mathsf{T} G S) = (\det S)^2 \det(G) = (\det S)^2 f^2.$$

下证 $f_S = f \det S$. 若不然, 必有 $f_S = -f \det S$, 此时令 $S = I_{2m} \in M_{2m}(R)$ 可得 $f = f_I = -f$, 这与 Char $\mathbb{F} \neq 2$ 矛盾, 因此 $f_S = f \det S$. 特别地, 取 S = T 有 $f_T = f \det(T)$, 再令 G 中未知项取合适的值使得 G = A, 那么

$$f(A_{12}, \dots, A_{2m,2m-1}) = f_T = f(A_{12}, \dots, A_{2m,2m-1}) \det(T),$$

其中 $f(A_{12},\dots,A_{2m,2m-1})^2 = \det(A) \neq 0$, 因此 $\det(T) = 1$.

Theorem 2.3.4. 令

$$A = \begin{pmatrix} 0 & I_m \\ -I_m & 0 \end{pmatrix},$$

称满足 $T^{\mathsf{T}}AT = A$ 的矩阵 $T \in \mathbb{F}^{2m \times 2m}$ 为辛矩阵, 则必有 $\det(T) = 1$.

证明. 显然 T 和 A 都是可逆矩阵. 由 $T^\mathsf{T}AT = A$ 可知 $T^\mathsf{T} = AT^{-1}A^{-1}$, 那么 $T \sim T^\mathsf{T} \sim T^{-1}$, 于是 $\lambda(T) = \lambda(T^{-1})$, 即 T 有代数重数为 n_s 的特征值 $\lambda_s \in \mathbb{F}'$ 等价于 T 有代数重数为 n_s 的特征值 $\lambda_s^{-1} \in \mathbb{F}'$, 其中 \mathbb{F}' 为 \mathbb{F} 的代数扩张 (包含所有关于 \mathbb{F} 的代数数). 由归纳法不难得到 $\det(T) = (-1)^q$, 其中 $q \geq 0$ 为 T 关于特征值 (-1) 的代数重数 (约定 (T+I) 可逆时 q=0). 我们只需判断 $\dim\ker(T+I)^{2m}$ 的奇偶性即 可.

$$\begin{aligned} \dim \ker (T+I)^{2m} &= 2m - \operatorname{rank}(T+I)^{2m} \\ &= 2m - \operatorname{rank} A T^{-m} (T+I)^m (T+I)^m \\ &= 2m - \operatorname{rank} A (T^{-1}+I)^m (T+I)^m \\ &= 2m - \operatorname{rank}(T^\mathsf{T}+I)^m A (T^{-1}+I)^m \end{aligned}$$

为偶数, 因此 det(T) = 1.

3 典型例题

Problem 3.1. 在 \mathbb{R}^2 中定义双线性函数

$$f((x_1, x_2)^\mathsf{T}, (y_1, y_2)^\mathsf{T}) = x_1 y_1 - x_2 y_2.$$

证明

- (\mathbb{R}^2, f) 为非退化的正交空间, 并求出 f 在基 $e_1 = (1, 0)^\mathsf{T}$, $e_2 = (0, 1)^\mathsf{T}$ 下的度量矩阵.
- 若变换 ⑦ 在基 e1, e2 下的矩阵表示为

$$T = \begin{pmatrix} \sqrt{2} & 1\\ 1 & \sqrt{2} \end{pmatrix},$$

则 罗 为正交变换.

• 若 \mathcal{T} 为正交变换, 给出矩阵表示 T 的具体形式.

证明.由

$$f((x_1, x_2)^\mathsf{T}, (y_1, y_2)^\mathsf{T}) = (x_1, x_2) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

易知 f 为非退化双线性函数, 且由

$$f(e_1, e_1) = 1$$
, $f(e_1, e_2) = f(e_2, e_1) = 0$, $f(e_2, e_2) = -1$

可知度量矩阵为 diag(1,-1). 再证 \mathcal{I} 为正交变换, 记 A 为 f 关于基 e_1, e_2 的度量矩阵. 直接验证

$$T^{\mathsf{T}}AT = \begin{pmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = A.$$

反之若 \mathcal{T} 为正交变换,则 $T^{\mathsf{T}}AT = A$,即

$$\begin{pmatrix} T_{11} & T_{21} \\ T_{12} & T_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

展开可得

$$T_{11}^2 - T_{21}^2 = 1,$$

$$T_{12}^2 - T_{22}^2 = -1,$$

$$T_{11}T_{12} - T_{21}T_{22} = 0,$$

即

$$T_{11}^2 = T_{21}^2 + 1,$$

$$T_{12}^2 = T_{22}^2 - 1,$$

$$T_{11}T_{12} = T_{21}T_{22},$$

将前两个式子相乘,结合最后一个式子可得

$$T_{11}^2T_{12}^2 = T_{21}^2T_{22}^2 + T_{22}^2 - T_{21}^2 - 1 \Rightarrow T_{22}^2 = T_{21}^2 + 1.$$

再结合第二个式子有 $T_{21}^2 = T_{12}^2$, 于是 $T_{11}^2 = T_{22}^2$. 故满足条件的 T 形如下列几种形式之一:

$$\begin{pmatrix} t & \sqrt{t^2 - 1} \\ \sqrt{t^2 - 1} & t \end{pmatrix}, \quad \begin{pmatrix} -t & -\sqrt{t^2 - 1} \\ \sqrt{t^2 - 1} & t \end{pmatrix}, \quad \begin{pmatrix} t & \sqrt{t^2 - 1} \\ -\sqrt{t^2 - 1} & -t \end{pmatrix}, \quad \begin{pmatrix} -t & -\sqrt{t^2 - 1} \\ -\sqrt{t^2 - 1} & -t \end{pmatrix},$$

$$\begin{pmatrix} t & -\sqrt{t^2 - 1} \\ \sqrt{t^2 - 1} & -t \end{pmatrix}, \quad \begin{pmatrix} t & -\sqrt{t^2 - 1} \\ -\sqrt{t^2 - 1} & t \end{pmatrix}, \quad \begin{pmatrix} -t & \sqrt{t^2 - 1} \\ \sqrt{t^2 - 1} & -t \end{pmatrix}, \quad \begin{pmatrix} -t & \sqrt{t^2 - 1} \\ -\sqrt{t^2 - 1} & t \end{pmatrix}.$$

但实际上第一个和第七个是同一类,第二个和第五个是同一类,第三个和第八个是同一类,第四个和第六个是同一类,因此只有如下四种形式:

$$\begin{pmatrix} t & \sqrt{t^2 - 1} \\ \sqrt{t^2 - 1} & t \end{pmatrix}, \quad \begin{pmatrix} t & -\sqrt{t^2 - 1} \\ -\sqrt{t^2 - 1} & t \end{pmatrix}, \quad \begin{pmatrix} t & -\sqrt{t^2 - 1} \\ \sqrt{t^2 - 1} & -t \end{pmatrix}, \quad \begin{pmatrix} t & \sqrt{t^2 - 1} \\ -\sqrt{t^2 - 1} & -t \end{pmatrix}.$$

Problem 3.2. 在 \mathbb{R}^2 中定义双线性函数

$$f((x_1, x_2)^\mathsf{T}, (y_1, y_2)^\mathsf{T}) = x_1 y_2 - x_2 y_1.$$

证明

- (\mathbb{R}^2, f) 为非退化的辛空间, 并求出 f 在基 $e_1 = (1, 0)^\mathsf{T}$, $e_2 = (0, 1)^\mathsf{T}$ 下的度量矩阵.
- 若变换 \mathcal{T} 在基 e_1 , e_2 下的矩阵表示为 T, 则 \mathcal{T} 为辛变换当且仅当 $\det(T)=1$.

证明.由

$$f((x_1, x_2)^\mathsf{T}, (y_1, y_2)^\mathsf{T}) = (x_1, x_2) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

易知 f 为非退化双线性函数, 且由

$$f(e_1, e_1) = 0, f(e_1, e_2) = 1, f(e_2, e_2) = 0$$

可知 e_1 , e_2 恰好构成一组辛基, 度量矩阵为 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. 若 $\mathscr T$ 为正交变换, 则

$$\begin{pmatrix} T_{11} & T_{21} \\ T_{12} & T_{22} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

展开可得

$$T_{11}T_{22} = T_{12}T_{21} + 1,$$

这等价于 det(T) = 1.

Problem 3.3. 设 \mathbb{F} 为数域, 辛空间 (\mathbb{F}^5 , f) 在 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 下的度量矩阵为

$$A = \begin{pmatrix} 0 & 1 & -1 & 2 & 4 \\ -1 & 0 & -2 & 1 & -3 \\ 1 & 2 & 0 & -1 & 0 \\ -2 & -1 & 1 & 0 & 1 \\ -4 & 3 & 0 & -1 & 0 \end{pmatrix}.$$

求一组辛基.

证明. 取 $\delta_1=\alpha_1,\,\xi_1=\alpha_2,\,$ 那么有 $f(\delta_1,\xi_1)=1\neq 0.$ 下面求适当的 δ_{-1} 使得 $f(\delta_1,\delta_{-1})=1.$ 这可通过直接变形

$$1 = f(\delta_1, \xi_1)^{-1} f(\delta_1, \xi_1) = f(\delta_1, f(\delta_1, \xi_1)^{-1} \xi_1),$$

令 $\delta_{-1} = f(\delta_1, \xi_1)^{-1} \xi_1 = \alpha_2$ 即可. 将 δ_1, δ_{-1} 扩充为 F^5 的一组基:

$$\delta_1, \delta_{-1}, \alpha_3, \alpha_4, \alpha_5.$$

现在需要找适当的 β_3 , β_4 , β_5 使得他们与 $\delta_{\pm 1}$ 正交且

$$\delta_1, \delta_{-1}, \beta_3, \beta_4, \beta_5$$

仍然为 \mathbb{F}^5 的一组基. 直接取

$$\beta_{3} = \alpha_{3} - \frac{f(\alpha_{3}, \delta_{1})}{f(\delta_{-1}, \delta_{1})} \delta_{-1} - \frac{f(\alpha_{3}, \delta_{-1})}{f(\delta_{1}, \delta_{-1})} \delta_{1}$$

$$= \alpha_{3} - \frac{1}{-1} \alpha_{2} - \frac{2}{1} \alpha_{1} = -2\alpha_{1} + \alpha_{2} + \alpha_{3};$$

$$\beta_{4} = \alpha_{4} - \frac{f(\alpha_{4}, \delta_{1})}{f(\delta_{-1}, \delta_{1})} \delta_{-1} - \frac{f(\alpha_{4}, \delta_{-1})}{f(\delta_{1}, \delta_{-1})} \delta_{1}$$

$$= \alpha_{4} - \frac{-2}{-1} \alpha_{2} - \frac{-1}{1} \alpha_{1} = \alpha_{1} - 2\alpha_{2} + \alpha_{4};$$

$$\beta_{5} = \alpha_{5} - \frac{f(\alpha_{5}, \delta_{1})}{f(\delta_{-1}, \delta_{1})} \delta_{-1} - \frac{f(\alpha_{5}, \delta_{-1})}{f(\delta_{1}, \delta_{-1})} \delta_{1}$$

$$= \alpha_{5} - \frac{-4}{-1} \alpha_{2} - \frac{3}{1} \alpha_{1} = -3\alpha_{1} - 4\alpha_{2} + \alpha_{5}.$$

在子空间 $\operatorname{span}(\beta_3, \beta_4, \beta_5)$ 寻求一合适的 δ_2 和 ξ_2 使得 $f(\delta_2, \xi_2) \neq 0$. 例如可取 $\delta_2 = \beta_3, \xi_2 = \beta_4,$ 有

$$f(\delta_2, \xi_2) = (-2, 1, 1, 0, 0) A(1, -2, 0, 1, 0)^{\mathsf{T}} = -4 \neq 0.$$

类似前述构造, 可令

$$\delta_{-2} = f(\delta_2, \xi_2)^{-1} \xi_2 = -\frac{1}{4} \beta_4 = -\frac{1}{4} \alpha_1 + \frac{1}{2} \alpha_2 - \frac{1}{4} \alpha_4.$$

最后取

$$\begin{split} \eta_1 &= \gamma_5 = \beta_5 - \frac{f(\beta_5, \delta_1)}{f(\delta_{-1}, \delta_1)} \delta_{-1} - \frac{f(\beta_5, \delta_{-1})}{f(\delta_1, \delta_{-1})} \delta_1 - \frac{f(\beta_5, \delta_2)}{f(\delta_{-2}, \delta_2)} \delta_{-2} - \frac{f(\beta_5, \delta_{-2})}{f(\delta_2, \delta_{-2})} \delta_2 \\ &= \beta_5 - \frac{f(\beta_5, \delta_2)}{f(\delta_{-2}, \delta_2)} \delta_{-2} - \frac{f(\beta_5, \delta_{-2})}{f(\delta_2, \delta_{-2})} \delta_2 \\ &= \beta_5 - \frac{11}{-1} \delta_{-2} - \frac{11/4}{1} \delta_2 = -\frac{1}{4} \alpha_1 - \frac{5}{4} \alpha_2 - \frac{11}{4} \alpha_3 - \frac{11}{4} \alpha_4 + \alpha_5. \end{split}$$

另法: 观察 A 的形式可设

$$P_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 0 & 1 \end{pmatrix},$$

则有

$$P_1AP_1^\mathsf{T} = \begin{pmatrix} 0 & 1 & -1 & 2 & 4 \\ -1 & 0 & -2 & 1 & -3 \\ 1 & 0 & 2 & -5 & -8 \\ -2 & 0 & 0 & 2 & 5 \\ -4 & 0 & 3 & -7 & -12 \end{pmatrix} P_1^\mathsf{T} = \begin{pmatrix} 0 & 1 & -1 & 2 & 4 \\ -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -4 & -11 \\ -2 & 0 & 4 & 0 & 11 \\ -4 & 0 & 11 & -11 & 0 \end{pmatrix}.$$

记 $A_1 = P_1 A P_1^\mathsf{T}$,再令

$$P_{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 0 \\ 0 & -4 & 0 & 0 & 1 \end{pmatrix},$$

则有

$$P_{-1}A_1P_{-1}^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & -11 \\ 0 & 0 & 4 & 0 & 11 \\ 0 & 0 & 11 & -11 & 0 \end{pmatrix}.$$

接下来设 $A_{-1} = P_{-1}A_1P_{-1}^\mathsf{T}$, 并取

$$P_2 = egin{pmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & -11/4 & 0 & 1 \end{pmatrix},$$

那么有

$$P_2 A_{-1} P_2^\mathsf{T} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & -11 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 11 & 0 & 0 \end{pmatrix}.$$

最后令 $A_2 = P_2 A_{-1} P_2^\mathsf{T}$,

$$P_{-2} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -11/4 & 1 \end{pmatrix},$$

有

$$P_{-2}A_2P_{-2}^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

归一化: 取 Q = diag(1, 1, 1, -1/4, 1). 综上所述,

$$QP_{-2}P_{2}P_{-1}P_{1}AP_{1}^{\mathsf{T}}P_{-1}^{\mathsf{T}}P_{2}^{\mathsf{T}}P_{-2}^{\mathsf{T}}Q^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

只需令

$$(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)P_1^\mathsf{T}P_{-1}^\mathsf{T}P_2^\mathsf{T}P_{-2}^\mathsf{T}Q^\mathsf{T} = (\delta_1,\delta_{-1},\delta_2,\delta_{-2},\eta_1)$$

则 $\delta_1, \delta_{-1}, \delta_2, \delta_{-2}, \eta_1$ 构成一组辛基. 而

$$QP_{-2}P_{2}P_{-1}P_{1} = Q \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 1 & 1 & 0 & 0 \\ 1 & -2 & 0 & 1 & 0 \\ -1/4 & -5/4 & -11/4 & -11/4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 1 & 1 & 0 & 0 \\ -1/4 & 1/2 & 0 & -1/4 & 0 \\ -1/4 & -5/4 & -11/4 & 1 \end{pmatrix},$$

得一组辛基为

$$\begin{split} \delta_1 &= \alpha_1 \\ \delta_{-1} &= \alpha_2 \\ \delta_2 &= -2\alpha_1 + \alpha_2 + \alpha_3 \\ \delta_{-2} &= -\frac{1}{4}\alpha_1 + \frac{1}{2}\alpha_2 - \frac{1}{4}\alpha_4 \\ \eta_1 &= -\frac{1}{4}\alpha_1 - \frac{5}{4}\alpha_2 - \frac{11}{4}\alpha_3 - \frac{11}{4}\alpha_4 + \alpha_5. \end{split}$$