Lezione 1

Alessandro Ardizzoni

Calcolo proposizionale

Una proposizione é un'affermazione a cui è possibile attribuire un unico valore di verità:

Vero
$$(V)$$
 oppure Falso (F) .

Affermare una proposizione significa dichiarare che è vera.

Negarla vuol dire dichiarare che è falsa.

Non considereremo affermazioni del linguaggio comune che non siano trattabili attraverso dimostrazioni matematiche, come quelle di carattere estetico.

Esempio

- A: "7 è un numero dispari" (proposizione vera).
- B: "7 è un numero pari" (proposizione falsa).
- C: "7 è un" (non è una proposizione).
- *D*: "7 è un numero bello" (è una proposizione nel linguaggio comune ma non in quello matematico).

Connettivi Logici

I connettivi logici sono simboli che servono per costruire delle nuove proposizioni a partire da proposizioni date ed il cui valore di verità dipende esclusivamente da quello delle proposizioni di partenza.
I più usati sono

$$\land, \lor, \lnot, \Rightarrow, \Leftrightarrow.$$

Più precisamente, date due proposizioni A e B, definiamo le seguenti proposizioni composte:

Simbolo	Nome	Si legge
$A \wedge B$	congiunzione	A e B
$A \lor B$	disgiunzione	A o B
$\neg A$	negazione	non A
$A \Rightarrow B$	implicazione	A implica B
$A \Leftrightarrow B$	doppia implicazione (o bi-implicazione)	A se e solo se B

Un modo meccanico per descrivere i possibili valori di verità di una proposizione composta è attraverso la sua tavola di verità.

Ad esempio $A \wedge B$ è definita come quella proposizione che

è vera esclusivamente quando A e B sono entrambe vere.

La sua tavola di verità si ottiene considerando tutti i valori di verità di A e B ed il conseguente valore di verità di $A \wedge B$.

Α	В	$A \wedge B$
V	V	V
V	F	F
F	V	F
F	F	F

In modo analogo le altre tabelle definiscono le altre proposizioni composte.

Α	В	$A \vee B$
V	V	V
V	F	V
F	V	V
		_

Α	$\neg A$
V	F
F	V
	'

Α	В	$A \Rightarrow B$
V	V	V
V	F	F
F	V	V
_	_	

Α	В	$A \Leftrightarrow B$
V	V	V
V	F	F
F	V	F
F	F	\ \/

Dalle tabelle di sopra che qui riportiamo,

Α	В	$A \vee B$			Α	В	$A \Rightarrow B$	Α	В	$A \Leftrightarrow B$
V	V	V	Α	$\neg A$	V	V	V	V	V	V
V	F	V	V	F	V	F	F	V	F	F
F	V	V	F	V	F	V	V	F	V	F
F	F	F	'		F	F	V	F	F	V

deduciamo che

- $A \lor B$ è vera solo quando A è vera oppure B è vera (basta che sia vera una delle due).
- $\neg A$ è vera soltanto quando A è falsa.
- $A \Rightarrow B$ è falsa solo quando A è vera e B è falsa.
- $A \Leftrightarrow B$ è vera solo se A e B hanno lo stesso valore di verità (entrambe vere o entrambe false).

Nella proposizione $A \Rightarrow B$ a volte A è detto l'antecedente mentre B è detto il conseguente.

La tavola di verità ci dice che per dichiarare che $A \Rightarrow B$ sia vera basta supporre vera A e controllare che in tal caso sia vera anche B: infatti quando A è falsa allora $A \Rightarrow B$ è automaticamente vera. Cerchiamo di capirlo meglio con un esempio.

Esempio

Consideriamo la frase

se
$$\underbrace{n \text{ è pari}}_{A}$$
 allora $\underbrace{3n \text{ è pari}}_{B}$.

In simboli, questa frase diventa $A \Rightarrow B$ che è ovviamente vera. Non controlliamo cosa succede se n non è pari (cioé se A è falsa): la frase non richiede nulla in tale circostanza e quindi resta vera.

Esempio

Nell'esempio precedente, allora $\neg A$ significa "n non è pari" cioè "n è dispari".

La frage A=DB non dice injente de quando A é falso, non violuède nulla, e pertanto vesta vela.

(come per l'Eovemi, si parte dal pusupposto de le ipotesi siano vere, se le ipotesi sono folse il teoremo pende di qualsissi volore)

Due proposizioni A e B che abbiano gli stessi valori di verità in tutti i casi si dicono logicamente equivalenti e scriveremo in tal caso $A \equiv B$.

Osservazione

Allora $A \equiv B$ esattamente quando $A \Leftrightarrow B$ è vera.

Esercizio

Scrivere la tavola di verità di $(\neg A) \lor B$ e stabilire $(\neg A) \lor B \equiv A \Rightarrow B$.

Soluzione

Scriviamo le colonne di A e B, poi quella di $\neg A$ ed infine quella di $(\neg A) \lor B$ sfruttando le due colonne precedenti:

Α	В	$\neg A$	$(\neg A) \lor B$	Α	В	$A \Rightarrow B$
			V			V
			F	V	F	F
F	V	V	V	F	V	V
F	F	V	V	F	F	V

Confrontando le tavole di verità, è chiaro che $(\neg A) \lor B \equiv A \Rightarrow B$.

Osservazione

Per l'esercizio precedente le proposizioni $(\neg A) \lor B$ e $A \Rightarrow B$ sono logicamente equivalenti. Pertanto \Rightarrow si poteva definire usando \neg e \lor .

Osservazione

Notiamo che abbiamo usato delle parentesi per non confondere $(\neg A) \lor B$ con $\neg (A \lor B)$. In realtà esistono regole di precedenza tra gli operatori in base alle quali $\neg A \lor B$ significa $(\neg A) \lor B$: l'operatore \neg ha la precedenza su \land e \lor cioé si applica per primo.

Esempio

Una frase come "ho studiato ma non ho superato l'esame" può essere espressa attraverso i connettivi che abbiamo introdotto. Ad esempio indicando con A l'affermazione "ho studiato" e con B l'affermazione "ho superato l'esame", potremmo scrivere $A \land (\neg B)$. Chiaro però che abbiamo perso completamente la delusione espressa da quel "ma" dell'affermazione originale. Un discorso analogo si può fare per altre congiunzioni come "eppure" o "sebbene".

Se A, B e C sono proposizioni, dimostrare le seguenti equivalenze.

- $\neg(\neg A) \equiv A$ (legge della doppia negazione);
- $(A \Rightarrow B) \land (B \Rightarrow A) \equiv (A \Leftrightarrow B);$
- **3** $(A \Rightarrow B) \equiv (\neg B \Rightarrow \neg A)$ (legge di contrapposizione);
- **4** $A \wedge B \equiv B \wedge A$ (proprietà commutativa);
- **5** $A \lor B \equiv B \lor A$ (proprietà commutativa);
- **1** $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ (proprietà associativa);
- **②** $A \lor (B \lor C) \equiv (A \lor B) \lor C$ (proprietà associativa);
- $\bullet A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \text{ (proprietà distributiva)};$

Dimostrazione per contrapposizione: l'equivalenza 3 mostra che dimostrare che vale $A \Rightarrow B$ è come dimostrare che vale $\neg B \Rightarrow \neg A$.

Quantificatori.

Le proposizioni possono contenere variabili. Consideriamo le seguenti frasi.

- P(x): x è un numero dispari. (sottinteso: x è un numero naturale)
- P(x,y): $x \le y$. (sottinteso: $x \in y$ sono numero reali)

Queste frasi non sono vere oppure false: dipende dal valore assunto dalle variabili. Non sono quindi proposizioni. Definiamo i quantificatori \forall , \exists .

Simbolo	Nome	Si legge
A	quantificatore universale	per ogni
3	quantificatore esistenziale	esiste (almeno un)

Mostriamo l'uso dei quantificatori sui due esempi di sopra.

Proprietà	Si legge	valore di verità
$\forall x P(x)$	per ogni x si ha che x è un numero dispari	F
$\exists x P(x)$	esiste x tale che x è un numero dispari	V
$\forall x \exists y P(x,y)$	per ogni x , esiste y tale che $x \le y$	V
$\exists y \ \forall x \ P(x,y)$	esiste y tale che per ogni x si abbia $x \leq y$	F

La prima affermazione significa che "tutti i numeri sono dispari" e la seconda che "almeno un numero è dispari". Le ultime dicono che il significato può cambiare se si cambia l'ordine dei quantificatori.

A. Ardizzoni Algebra 1 10 / 19

Spesso si usa anche il simbolo $\exists !$ per dire "esiste un unico".

Esercizio (per casa)

Stabilire il significato e, se possibile, il valore di verità delle espressioni

$$\forall x \exists y \ P(x,y) \quad e \quad \exists y \ \forall x \ P(x,y)$$

nei casi seguenti.

- P(x,y): x-y=3.
- P(x,y): $x \in I$ padre di y. (sottinteso: $x \in y$ sono persone)
- P(x,y): $x ext{ è figlio di } y$.
- P(x,y): x ha votato y alle elezioni.

La seguente osservazione mostra come \neg scambi i quantificatori \forall ed \exists .

Osservazione

Data una proprietà P(x), valgono le seguenti equivalenze.

Infatti:

1 Negare $\forall x P(x)$ significa dire che

non tutti gli x rendono vera la proprietà P(x),

cioé

c'è almeno un x per cui non vale P(x),

in simboli $\exists x \ (\neg P(x))$. Pertanto $\neg (\forall x \ P(x)) \equiv \exists x \ (\neg P(x))$.

2 Si ha che

$$\forall x \; (\neg P(x)) \; \equiv \; \neg \neg (\forall x \; (\neg P(x))) \; \equiv \; \neg (\exists x \; \neg (\neg P(x))) \; \equiv \; \neg (\exists x \; P(x)).$$

Consideriamo la frase

• P(x): x ha superato l'esame. (sottinteso: x è uno studente)

Allora $\forall x P(x)$ si legge

"tutti hanno superato l'esame".

Invece $\neg (\forall x P(x))$ si legge

"non è vero che tutti hanno superato l'esame"

cioé

"esiste qualcuno che non ha superato l'esame"

vale a dire $\exists x (\neg P(x))$.

Insiemi

I concetti di insieme, elemento di un insieme ed appartenenza di un elemento ad un insieme saranno da noi considerati come primitivi, acquisiti. Diciamo solo intuitivamente che un insieme è una collezione di oggetti che chiameremo elementi dell'insieme.

Esempio

La collezione di tutti i numeri interi divisibili per 3 è un esempio di insieme.

Ci occuperemo solo di insiemi definibili con il linguaggio matematico.

Esempio

La collezione di tutti i film belli non è un insieme matematico.

Notazione per gli insiemi: A, B, C,... (lettere maiuscole).

Notazione per gli elementi: a, b, c... (lettere minuscole).

Se $a \in B$ e elemento dell'insieme S, scriveremo $a \in S$ e diremo "a appartiene ad S" In luogo di $\neg(a \in S)$ scriveremo $a \notin S$ e diremo "a non appartiene ad S".

Alcuni esempi noti (che per ora prendiamo per aquisiti):

- $\mathbb{N} = \text{insieme dei numeri naturali,}$
- \mathbb{Z} = insieme dei numeri interi,
- \mathbb{Q} = insieme dei numeri razionali,
- \mathbb{R} = insieme dei numeri reali.

Un insieme può essere dato elencando i suoi elementi tra parentesi graffe.

Esempio

Ad esempio $A = \{0,1\}$ oppure $B = \{\mathbb{Z}, \emptyset, 1, \pi, \{a,b\}, \infty\}$.

Oppure si può formare un insieme scegliendo elementi di un altro insieme (a volte sottinteso, se chiaro dal contesto) che soddisfano certe proprietà.

Esempio

 $P = \{n \in \mathbb{N} \mid n \text{ è multiplo di due}\} = \text{numeri pari. La barra verticale si legge "tale che". Sta ad indicare che si suppone vera l'affermazione seguente. A volte viene sostituita con i due punti.$

Scriveremo A = B se gli insiemi A e B contengono gli stessi elementi. Diremo in tal caso che "A è uguale a B". In simboli

$$\forall x (x \in A \Leftrightarrow x \in B).$$

In luogo di $\neg (A = B)$ scriveremo $A \neq B$ e diremo "A è diverso da B".

Esempio

Valgono le seguenti uguaglianze

$$\{1,1,2\} = \{1,2\} = \{2,1\}.$$

Quindi in un insieme non contano le ripetizioni (possiamo eliminare i doppioni e l'insieme resta lo stesso) e non conta l'ordine dei suoi elementi.

Diremo che un *"insieme è vuoto"* se non contiene elementi. C'è un unico insieme vuoto. Infatti se A e B sono insiemi vuoti allora hanno entrambi gli stessi elementi, cioé nessuno, e quindi A=B. L'unico insieme vuoto si indica con \emptyset oppure con $\{\ \}$. L'affermazione $\exists x,x\in\emptyset$ è falsa.

Equivalentemente $\forall x, x \notin \emptyset$ è vera. In effetti

$$\neg(\exists x, x \in \emptyset) \equiv (\forall x, \neg(x \in \emptyset)) \equiv (\forall x, x \notin \emptyset).$$

A. Ardizzoni Algebra 1 16 / 19

L'insieme $\{n \in \mathbb{N} \mid n+1=0\}$ è vuoto.

Scriveremo $A \subseteq B$ se tutti gli elementi di A stanno anche in B, in simboli

$$\forall x (x \in A \Rightarrow x \in B).$$

Diremo in tal caso che "A è sottoinsieme di B" oppure che "A è contenuto in B" o ancora che "B contiene A".

Il simbolo \subseteq prende il nome di inclusione.

Invece di $\neg(A \subseteq B)$ scriveremo $A \nsubseteq B$ e diremo "A non è contenuto in B".

Esempio

Si ha che $\{1,5,7\} \subseteq \{1,2,5,7,8\}$.

Esempio

Notiamo la differenza tra i simboli di appartenenza ed inclusione:

$$1 \in \{1,2\}, \ 1 \nsubseteq \{1,2\}, \ \{1\} \subseteq \{1,2\}, \ \{1\} \notin \{1,2\}, \ \{1\} \in \{1,\frac{11}{3}\}, \ \{1\} \subseteq \{\frac{1}{3},\frac{1}{3}\}.$$

Notiamo che $\emptyset \subseteq A$ per ogni insieme A. Infatti ciò significa $\forall x (x \in \emptyset \Rightarrow x \in A)$. Siccome l'antecedente $x \in \emptyset$ è sempre falsa, allora l'implicazione è vera a prescindere dalla veridicità del conseguente $x \in A$.

Esempio

Per ogni insieme A si ha $A \subseteq A$.

Quindi ogni insieme A ha almeno due sottoinsiemi, cioé \emptyset e A.

Lemma

Si ha che

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$
 (criterio della doppia inclusione).

Proof.

$$A = B$$
 significa che vale $\forall x (x \in A \Leftrightarrow x \in B)$ cioé

$$\forall x((x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)), \text{ cioé } (A \subseteq B) \land (B \subseteq A).$$

Diremo che "A è un sottoinsieme proprio di B" se $A \subseteq B$ e $A \ne B$. In questo caso scriveremo $A \subsetneq B$ oppure $A \subset B$. ESEMPI: $\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$.

Definiamo l'insieme delle parti di un insieme A come l'insieme

$$P(A) := \{ S \mid S \subseteq A \}.$$

Quindi è l'insieme formato da tutti i sottoinsiemi di A.

Osservazione

Siccome $\emptyset \subseteq A$ e $A \subseteq A$, abbiamo $\emptyset \in P(A)$ e $A \in P(A)$.

Ecco alcuni esempi di un insieme A e del suo insieme delle parti P(A).

Α	P(A)
Ø	{Ø}
{1}	{∅,{1}}
{1,2}	$\{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
{1,2,3}	$\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

In tutti questi casi, se A contiene n elementi distinti allora P(A) ne contiene 2^n . Vedremo che è un fatto generale.