Data Structure - LLDs - (1 Week) <u>List of data structures</u>

	Lists	
		<u>Design Linked List</u>
		<u>Design Skiplist</u>
	Stacks	
		Implement Stack using Queues
		<u>Design a Stack With Increment Operation</u>
		<u>LRU Cache</u>
		<u>Min Stack</u>
		Max Stack
		<u>Dinner Plate Stacks</u>
		Implement Queue using Stacks
	Queue	
		<u>Design Circular Queue</u>
	Hashta	able
		<u>Design HashMap</u>
		<u>Design HashSet</u>
	BST	
		Binary Search Tree Iterator
		Serialize and Deserialize BST
	Red Bl	ack Tree
		<u>Find Median from Data Stream</u>
		Count of Range Sum
	Heaps	
		<u>Design Twitter</u>
		Kth Largest Element in a Stream
		cci Heaps
		<u>Fibonacci Heaps</u>
	Disjoin	
_		Review of two popular approaches, Disjoint Sets and DFS
Ш	•	PrefixTree, suffixTree)
		Implement Trie (Prefix Tree)
_		Add and Search Word - Data structure design
Ш		al Trees/Segment Tree
		Lazy Dynamic Segment Tree - A general template
_		A Recursive approach to Segment Trees, Range Sum Queries & Lazy Propagation
ш		Tree Data Structures(Graphs)
		Serialize and Deserialize N-ary Tree
	_	Encode N-ary Tree to Binary Tree
		Algorithms - Analysis Time and Space - (3 Weeks)
		ragoritania raidysis raine dad space (5 meets)
	Sorting	·
		Selection Sort - <u>Merge Sorted Array</u>
		Bubble Sort - <u>Sort Colors</u>
		Insertion Sort - <u>Insertion Sort List</u>
		Merge Sort - <u>Sort an Array</u>

		Quick Sort Kth Largest Element in an Array Kth Largest Element in an Array	
	_	□ K Closest Points to Origin	
		Counting Sort - Relative Sort Array Tree sort - Convert Sorted List to Binary Search Tree	
		Bucket Sort - Top K Frequent Elements	
		Radix Sort - Maximum Gap	
		Topological sort - Covered in Graphs	
	_	iopotogical sort Covered in Crapils	
	Divide	e-and-Conquer	- 2 Days
		The maximum-subarray problem - Maximum Subarray	-
		Strassen's algorithm for matrix multiplication - Divide and Conqu	<u>er Set 5</u>
		(Strassen's Matrix Multiplication)	
		The substitution method for solving recurrences	
		The recursion-tree method for solving recurrences	
		The master method for solving recurrences	
_	D	aia Danamanania a	2 Davis
_		nic Programming Rod cutting - Integer Break	- 2 Days
		Dynamic Programming for the confused : Rod cutting problem	
		Matrix-chain multiplication - <u>Burst Balloons</u>	
		Elements of dynamic programming	
		Longest common subsequence - Longest Common Subsequence	
		Optimal binary search trees	
		☐ Unique Binary Search Trees	
		☐ Unique Binary Search Trees II	
Ц		y Algorithms	- 2 Days
		An activity-selection problem - Minimum Number of Arrows to Bu	<u>rst Balloons</u>
		Elements of the greedy strategy	vara Farinaa
	_	Huffman codes - Construct Huffman Tree, Google Onsite Softy Huffman Coding Algorithm, Minimum Cost Tree From Leaf Value	_
	П	Matroids and greedy methods - Matroid intersection in simple wo	
		A task-scheduling problem as a matroid - <u>Task Scheduler</u>	103
	_		
	Graph	Algorithms	- 6 Days
	Leetco	ode Pattern 1 DFS + BFS == 25% of the problems	
		N-ary Tree Preorder Traversal	
		N-ary Tree Postorder Traversal	
		N-ary Tree Level Order Traversal	
		BFS	
		Binary Tree Level Order Traversal	
		Binary Tree Level Order Traversal II	
		Web Crawler Multithreaded	
		□ Web Crawler □ Cut Off Trace for Calf Front	
		Cut Off Trees for Golf Event	
		☐ Course Schedule DFS	
		ב וש	

			Binary free Postorder fraversal	
			Binary Tree Preorder Traversal	
			Binary Tree Inorder Traversal	
			<u>Is Graph Bipartite?</u>	
			Remove Invalid Parentheses	
			Construct Binary Tree from Preorder and Inorder Traversal	
		Topolo	gical Sort - Topological Sort	
		-	y Connected Components - SCC - Course Schedule, Facebook Minimu	m
			r of people to spread a message, Airbnb Cover all vertices with the	
			umber of vertices, Critical Connections in a Network	
			ım spanning Tree - Prim's Algorithm	
			Cheapest Flights Within K Stops	
			Minimum Height Trees	
			Number of Operations to Make Network Connected	
			Connecting Cities With Minimum Cost	
	П		st Path Algos -	
	_		Bellman-Ford - <u>Network Delay Time</u> ,	
		_	https://leetcode.com/problems/get-watched-videos-by-your-friends/	
			Dijkstra's algorithm	•
		_	Reachable Nodes In Subdivided Graph	
			□ Shortest Path Visiting All Nodes	
			Floyd-Warshall	
		_	☐ Find the City With the Smallest Number of Neighbors at a	
			Threshold Distance	
			□ Evaluate Division	
			Johnson's algorithm	
		_	-	
			□ All-pairs shortest paths - Johnson's algorithm for sparse graphs	÷
			GeeksforGeeks	
		_	☐ Johnson's algorithm The Ford-Fulkerson method	
		Ц		
			□ Google Onsite Network flow for the matrix with given row	
			and column sums	
			Ford-Fulkerson Algorithm for Maximum Flow Problem	
_				
_			retic Algorithms - 2 Days	
			ninese remainder theorem - Check If It Is a Good Array	
	–		st common divisor	
			Greatest Common Divisor of Strings	
			X of a Kind in a Deck of Cards	
	_		Google OA Summer Intern 2020 Greatest Common Divisor	
	_		of an element	
			$\frac{\text{Pow}(x, n)}{(x + 1)^n}$	
			Sort Integers by The Power Value	
			A public-key cryptosystem	
			Keys and Rooms	
	_		Shortest Path to Get All Keys	
	Ц	_	factorization	
			Largest Component Size by Common Factor	
			Minimum Factorization	

	Bulb Switcher	
String	Matching	- 2 Day
	The Rabin-Karp algorithm	
	□ Implement strStr()	
	■ Binary String With Substrings Representing 1 To N	
	□ Shortest Palindrome	
	☐ Find All Anagrams in a String	
	String matching with finite automata	
	The Knuth-Morris-Pratt algorithm	
	☐ Shortest Palindrome	
	□ Rotate String	
	☐ KMP Algorithm for Pattern Searching	
Approx	ximation Algorithms	- 3 Days
	The vertex-cover problem	,
	☐ Binary Tree Cameras	
	□ Vertex Cover Problem-2	
	□ Vertex Cover Problem	
	The traveling-salesman problem Find the Shortest Superstring	
	The set-covering problem	
	☐ Video Stitching	
	□ Set Intersection Size At Least Two	
	Non-overlapping Intervals	
	Randomization and linear programming	
	The subset-sum problem	
	☐ Partition Equal Subset Sum	
	Partition to K Equal Sum Subsets	
Rando	mized Algorithms	- 1 Day
	Quick Sort	-
	Min Cut Palindrome Partitioning II	
	Concepts Problems and Maths - (1 Week)	
Matrix	Operations	
Linear	Programming	
Polyno	mials - DFT, FFT	
Compu	itational Geometry	
	Line-segment properties	
	Determining whether any pair of segments intersects	
	Finding the convex hull - <u>Erect the Fence</u> , <u>The Skyline Problem</u>	
	Finding the closest pair of points - K Closest Points to Origin	
GCD a	nd LCM	
	X of a Kind in a Deck of Cards	
	Greatest Common Divisor of Strings	
	Nth Magical Number	
	Ugly Number III	

☐ 2 Keys Keyboard

	Prime	Factorization and Divisors
		Largest Component Size by Common Factor
		2 Keys Keyboard
	Fibona	cci Numbers
		Length of Longest Fibonacci Subsequence
		Split Array into Fibonacci Sequence
		Find the Minimum Number of Fibonacci Numbers Whose Sum Is K
	Catala	n Numbers - <u>Unique Binary Search Trees</u>
		ar Arithmetic
		otient Function
		mputations
	Set Th	•
	Factor	
		<u>Last Substring in Lexicographical Order</u>
		<u>Snakes and Ladders</u>
		<u>Factor Combinations</u>
		Path With Maximum Minimum Value
		Number of Closed Islands
		numbers and Primality Tests
		Prime Arrangements
_		K-th Smallest Prime Fraction
ч		Algorithms
_		Count Primes
		ility and Large Numbers
	Series	D. W.
	Numbe	-
	Triangl	
		Triangle Volid Triangle Number
		<u>Valid Triangle Number</u>
		Networks - (1 Week)
		Leetcode
	Netwo	rk Topology, OSI Architecture
		models
	TCP ar	
		ll, DNS, Domains, workgroups
		ols i.e ICMP
_	11000	ots ne remi
		OS - (1 week)
		Operating System Tutorial
		Shared Memory Systems
		<u></u>
	Cache	
		nreading
		Producers-consumers problem
		Dining philosophers problem
		Cigarette smokers problem
		Readers-writers problem

0 0 0	□ Web Crawler Multithreaded Scheduling algorithms Deadlock Virtual Memory Mutex and semaphore Kernels Paging Software Design Principles - (2 weeks) System Design Primer
Ctort l	
<u>Challe</u>	earning about Theory of Distributed Systems? nges with distributed systems ervices Design Guide . Platform Engineer
	design patterns - Azure Architecture Center patterns for microservices Azure Blog and Updates
Comm (CQS)	AD: n Driven Design (DDD) Bounded Context (BC) Polyglot Persistence (PP) and and Query Responsibility Segregation (CQRS) Command Query Separation Event-Sourcing (ES) CAP Theorem Eventual Consistency Twelve-Factor App Principles
Just so	ome things to focus on.
	Load balancer
	API gateway Microservices - Scale Cube Concept, MVC - READ Database Sharding
	SQL vs NoSQL - Cassandra, Postgres, Hadoop, Data lake, other algorithms related to data lake, CAP Theorem
	Leadership Principles - LPs - (1 Week)
	TO BE UPDATED
	Resume and Miscellaneous #ADD WHATEVER YOU HAVE PUT IN RESUME
	Algos you have mentioned
	Project work and related references to read Achievements and information about it
REFERE	NCES ction to Algorithms - Cormen

Leetcode