Computational experiments in Science

Horse wrangling in the digital age

Mathieu Lagrange and Mathias Rossignol

September 19, 2016

- 1 Horses in Audio Content Analysis

- 1 Horses in Audio Content Analysis
- 2 SimScene

- 1 Horses in Audio Content Analysis
- 2 SimScene
- 3 ExpLanes

- 1 Horses in Audio Content Analysis
- 2 SimScene
- 3 ExpLanes
- 4 Reproducible Research

Horse taxidermy

Horse taxidermy

Horses in Audio Content Analysis

- ⊱ public horse

Horse taxidermy

- ⊱ public horse
- ⊱ hidden horses

Horse taxidermy

Horses in Audio Content Analysis

- ⊱ public horse
- ⊱ hidden horses
- ⊱ Potemkin Villages

Public horses for Source separation

classic NMF Source Separation scheme

NMF is an iterative scheme, do you set the number of iterations for balancing computational cost and performance?

Public horses for Source separation

Public horses for Source separation

Public horses for Source separation

- ← quality-of-fit optimized criterion
- target criteria (SDR, SAR, SIR)
- heavy use of "early stop" to ensure the non divergence of the target criteria

Public horses for Source separation

- quality-of-fit optimized criterion
- target criteria (SDR, SAR, SIR)

Public horses for Source separation

- quality-of-fit optimized criterion
- target criteria (SDR, SAR, SIR)
- heavy use of "early stop" to ensure the non divergence of the target criteria

Why hidden horses

Digital data analysis is still in infancy (less than half a century), so uncontrolled behaviors are

ExpLanes

Why hidden horses

Digital data analysis is still in infancy (less than half a century), so uncontrolled behaviors are

ExpLanes

- part of research

Why hidden horses

Digital data analysis is still in infancy (less than half a century), so uncontrolled behaviors are

- part of research
- E and everyone is more or less happy with it

Why hidden horses

That said, spurious correlations are a well known matters in MANY, MANY, MANY research fields and the fact that the engineering community put so few effort on addressing those matters is childish.

Why hidden horses

That said, spurious correlations are a well known matters in MANY, MANY, MANY research fields and the fact that the engineering community put so few effort on addressing those matters is childish.

- badly designed tasks

Why hidden horses

That said, spurious correlations are a well known matters in MANY, MANY, MANY research fields and the fact that the engineering community put so few effort on addressing those matters is childish.

- badly designed tasks
- too small and biased datasets.

Why hidden horses

That said, spurious correlations are a well known matters in MANY, MANY, MANY research fields and the fact that the engineering community put so few effort on addressing those matters is childish.

- badly designed tasks
- too small and biased datasets.
- unrealistic and non reproducible results

An example

An example

A Potemkin Village in ASSR

M. Lagrange & al The bag-of-frames approach: a not so sufficient model for urban soundscapes The Journal of the Acoustical Society of America, 2015, 138(5), EL487 - EL492

J.J. Aucouturier & al The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music The Journal of the Acoustical Society of America, 2007, vol. 122, no 2, p. 881-891

An example

A Potemkin Village in ASSR

- ≥ 2007: near perfect results, solved case

M. Lagrange & al The bag-of-frames approach: a not so sufficient model for urban soundscapes The Journal of the Acoustical Society of America, 2015, 138(5), EL487 - EL492

J.J. Aucouturier & al The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music The Journal of the Acoustical Society of America, 2007, vol. 122, no 2, p. 881-891

An example

A Potemkin Village in ASSR

- ≥ 2007: near perfect results, solved case
- but strong issue in database design, similar to the album effect in artist / genre recognition

M. Lagrange & al The bag-of-frames approach: a not so sufficient model for urban soundscapes The Journal of the Acoustical Society of America, 2015, 138(5), EL487 - EL492

J.J. Aucouturier & al The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music The Journal of the Acoustical Society of America, 2007, vol. 122, no 2, p. 881-891

An example

A Potemkin Village in ASSR

- ≥ 2007: near perfect results, solved case
- but strong issue in database design, similar to the album effect in artist / genre recognition

ExpLanes

≥ 2015: new figure, GMMs useless and performance only slightly over chance

J.J. Aucouturier & al The bag-of-frames approach to audio pattern recognition: A sufficient model for urban soundscapes but not for polyphonic music The Journal of the Acoustical Society of America, 2007, vol. 122, no 2, p. 881-891

M. Lagrange & al The bag-of-frames approach: a not so sufficient model for urban soundscapes The Journal of the Acoustical Society of America, 2015, 138(5), EL487 - EL492

One problem

DATA

Audio Scene Analysis

We need

- ⊱ lots of data
- ⊱ well annotated data
- ⊱ public domain data
- ⊱ controllable complexity

Audio Scene Analysis

We need

- ⊱ lots of data

Audio Scene Analysis

We need

Horses in Audio Content Analysis

- ⊱ lots of data
- ⊱ well annotated data

Audio Scene Analysis

We need

- ⊱ lots of data
- ⊱ well annotated data
- public domain data

Audio Scene Analysis

We need

Horses in Audio Content Analysis

- ⊱ lots of data
- ⊱ well annotated data
- public domain data
- controllable complexity

Data simulation

IMHO

Data simulation

IMHO

- E simulated data is ok.

Data simulation

IMHO

- ⊱ simulated data is ok,
- as long as the aim is to gain knowledge and not to go to production
- > simulation is not real data, but also not synthesized data
- ⊱ tricky part is to choose the right level of abstraction

Data simulation

IMHO

- ⊱ simulated data is ok,
- E as long as the aim is to gain knowledge and not to go to production
- simulation is not real data, but also not synthesized data

Data simulation

IMHO

- ⊱ simulated data is ok,
- E as long as the aim is to gain knowledge and not to go to production
- simulation is not real data, but also not synthesized data
- tricky part is to choose the right level of abstraction.

In a nutshell

- built as a sequencer
- with abstracted scheduling parameters
- ⊱ where events are defined as a set of recording samples
- the outcome follows the "skeleton of events on a bed of texture paradigm"

In a nutshell

- built as a sequencer

Nelken, I., & de Cheveigné An ear for statistics Nature neuroscience, 16(4), 381-382.

In a nutshell

- built as a sequencer
- with abstracted scheduling parameters

In a nutshell

- built as a sequencer
- with abstracted scheduling parameters
- where events are defined as a set of recording samples

Nelken, I., & de Cheveigné An ear for statistics Nature neuroscience, 16(4), 381-382.

In a nutshell

- ⊱ built as a sequencer
- with abstracted scheduling parameters
- the outcome follows the "skeleton of events on a bed of texture paradigm"

Nelken, I., & de Cheveigné An ear for statistics Nature neuroscience, 16(4), 381-382.

Use

Mathieu Lagrange, Grégoire Lafay, Mathias Rossignol, Emmanouil Benetos, Axel Roebel An evaluation framework for event detection using a morphological model of acoustic scenes IEEE TASLP v24-10, 1854-1864

Use

⊱ Matlab

Mathieu Lagrange, Grégoire Lafay, Mathias Rossignol, Emmanouil Benetos, Axel Roebel An evaluation framework for event detection using a morphological model of acoustic scenes IEEE TASLP v24-10, 1854-1864

Use

- ⊱ Matlab
- open source: https://bitbucket.org/mlagrange/simscene

Mathieu Lagrange, Grégoire Lafay, Mathias Rossignol, Emmanouil Benetos, Axel Roebel An evaluation framework for event detection using a morphological model of acoustic scenes IEEE TASLP v24-10, 1854-1864

Use

- ⊱ Matlab
- open source: https://bitbucket.org/mlagrange/simscene
- used in DCASE 2013 and 2016 editions

Mathieu Lagrange, Grégoire Lafay, Mathias Rossignol, Emmanouil Benetos, Axel Roebel An evaluation framework for event detection using a morphological model of acoustic scenes IEEE TASLP v24-10, 1854-1864

Use

- ⊱ Matlab
- open source: https://bitbucket.org/mlagrange/simscene
- used in DCASE 2013 and 2016 editions
- produced datasets on archive

Mathieu Lagrange, Grégoire Lafay, Mathias Rossignol, Emmanouil Benetos, Axel Roebel An evaluation framework for event detection using a morphological model of acoustic scenes IEEE TASLP v24-10, 1854-1864

Varying Event to Background Ratio (EBR)

Going deeper in performance analysis

Changing recording location for events and background

Another problem

Horses in Audio Content Analysis

PROCESSING

The scientific method

The scientific method

- Analysis: Describe problem

The scientific method

- Analysis: Describe problem
- ⊱ Hypothesis: Specify solution

The scientific method

- Analysis: Describe problem
- Hypothesis: Specify solution
- ⊱ Synthesis: Implement solution

The scientific method

- Analysis: Describe problem
- Hypothesis: Specify solution
- Synthesis: Implement solution
- Validation: Compute performance

- Design: follow strictly the Design of Experiments paradigm (DoE)

Design: follow strictly the Design of Experiments paradigm (DoE)

- Code: feed forward pipeline

Design: follow strictly the Design of Experiments paradigm (DoE)

- Code: feed forward pipeline
- Process: multi user, multi core, multi host

- Design: follow strictly the Design of Experiments paradigm (DoE)
- Code: feed forward pipeline
- Process: multi user, multi core, multi host
- Reduce: fast and convenient thanks to factor masking

- Design: follow strictly the Design of Experiments paradigm (DoE)
- Code: feed forward pipeline
- Process: multi user, multi core, multi host
- Reduce: fast and convenient thanks to factor masking
- Visualize: Matlab, LTFX, html

More

More

website:http://mathieulagrange.github.io/expLanes

More

- ⊱ website: http://mathieulagrange.github.io/expLanes
- demonstrations: clustering, source separation, ...

More

- ⊱ website: http://mathieulagrange.github.io/expLanes
- demonstrations: clustering, source separation, ...
- ⊱ feedback welcome!

The horse phenomenon is a reality

- The horse phenomenon is a reality
- Potemkin villages are very common also in emerging fields

- The horse phenomenon is a reality
- Potemkin villages are very common also in emerging fields

- Scientists as individuals are smart humans

- The horse phenomenon is a reality
- Potemkin villages are very common also in emerging fields

- Scientists as individuals are smart humans
- Yet, the social impact is very strong

- The horse phenomenon is a reality
- Potemkin villages are very common also in emerging fields

- Scientists as individuals are smart humans
- Yet, the social impact is very strong
- As a community, the scientific method must be enforced

Conclusions

- E The horse phenomenon is a reality
- ➢ Potemkin villages are very common also in emerging fields
- Scientists as individuals are smart humans
- Yet, the social impact is very strong
- ⊱ As a community, the scientific method must be enforced
- ⊱ Strict reproducible research is the way to go
- Need tools for that, not only languages

- The horse phenomenon is a reality
- Potemkin villages are very common also in emerging fields

- Scientists as individuals are smart humans
- Yet, the social impact is very strong
- As a community, the scientific method must be enforced
- Strict reproducible research is the way to go
- Need tools for that, not only languages

Cathy O'Neil

Lorena Barba

https://figshare.com/articles/Reproducibility_PI_ Manifesto/104539

Victoria Stodden

one of three "reproducibility editors" appointed to look over code and data sets submitted by authors to the Journal of the American Statistical Association (JASA)

