

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

WHAT IS CLAIMED IS:

1. A planar light source device, comprising:
a plurality of light sources emitting different
5 colors of light; and

a light guide plate receiving light from the
plurality of light sources at a side face to
distribute the light over a surface thereof;
wherein a light emission angle differs among the
10 plurality of light sources.

2. A planar light source device according to
Claim 1, comprising a refractor mounted on an
emission surface of each of the plurality of light
15 sources for changing a direction of light, the
refractor having a different shape for the different
light sources.

3. A planar light source device according to
Claim 1, wherein a light emission angle of a light
source of the plurality of light sources emitting
longer wavelength light is smaller than a light
emission angle of a light source of the plurality of
light sources emitting shorter wavelength light.
25

4. A planar light source according to Claim 1,

wherein the plurality of light sources are red, green, and blue light emitting diodes.

5. A liquid crystal display device,
comprising:

a planar light source device according to Claim 1; and

10 a liquid crystal panel placed above an emission surface of the planar light source, the liquid crystal panel having two substrates with a liquid crystal layer interposed therebetween.

15 6. A liquid crystal display device according to Claim 5, wherein the different light sources have different light emission angles in order that wavelength dependence of transmittance at a viewing direction in the liquid crystal panel is canceled out by wavelength dependence of luminance at the viewing direction in the planar light source device.

20

7. A planar light source device, comprising:
a plurality of light sources emitting different colors of light;

25 a light guide plate receiving light from the plurality of light sources at side face to distribute the light over a surface thereof; and

a refractor refracting light from the plurality of light sources with different refraction angles for different colors.

5 8. A planar light source device according to Claim 7, wherein the refractor is formed on a side face of the light guide plate facing the plurality of light sources, the refractor having a different shape for the different light sources.

10

9. A planar light source device according to Claim 7, further comprising a prism plate mounted between the plurality of light sources and the light guide plate, wherein the refractor is formed on a side face of the prism plate facing the plurality of light sources, the refractor having a different shape for the different light sources.

15

10. A planar light source device according to Claim 7, wherein a refraction angle of longer wavelength light is smaller than a refraction angle of shorter wavelength light.

20

11. A planar light source according to Claim 7, wherein the plurality of light sources are red, green, and blue light emitting diodes.

12. A liquid crystal display device,
comprising:

5 a planar light source device according to Claim
7; and

a liquid crystal panel placed above an emission
surface of the planar light source, the liquid
crystal panel having two substrates with a liquid
crystal layer interposed therebetween.

10

13. A liquid crystal display device according
to Claim 12, wherein the different light sources have
different light emission angles in order that
wavelength dependence of transmittance at a viewing
15 direction in the liquid crystal panel is canceled out
by wavelength dependence of luminance at the viewing
direction in the planar light source device.

20 14. A planar light source device, comprising:
a light source;
a light guide plate receiving light from the
plurality of light sources at a side face to
distribute the light over a surface thereof; and
a hologram diffracting different light at
25 different angles.

15. A planar light source device according to
Claim 14, wherein the hologram is placed between the
light source and the light guide plate.

5 16. A planar light source device according to
Claim 14, wherein the hologram is placed above an
emission surface of the light guide plate.

10 17. A planar light source device according to
Claim 14, wherein the hologram diffracts longer
wavelength light at an angle while diffracts shorter
wavelength light at a larger angle than the angle of
the longer wavelength light.

15 18. A liquid crystal display device,
comprising:

 a planar light source device according to Claim
14; and

20 a liquid crystal panel placed above an emission
surface of the planar light source, the liquid
crystal panel having two substrates with a liquid
crystal layer interposed therebetween.

25 19. A liquid crystal display device according
to Claim 18, wherein the hologram is arranged in order
that wavelength dependence of transmittance at a

viewing direction in the liquid crystal panel is canceled out by wavelength dependence of luminance at the viewing direction in the planar light source device.

5