Homework 4 for Topological Data Analysis

Winter 2024/25

Prof. Dr. Sönke Rollenske

Dr. Matthias Paulsen

Exercise 13 — Let $V = \mathbb{R}^3$ and $U = \{(\lambda, \lambda, \lambda) \mid \lambda \in \mathbb{R}\}$. Let $\pi \colon V \to V/U$ be the canonical projection. We consider the vectors

$$v_1 = (1, 2, 3), v_2 = (0, 1, 1), v_3 = (1, 3, 5) \in V$$

and their images $[v_i] = \pi(v_i) = v_i + U \in V/U$.

- (a) Are $[v_1]$ and $[v_2]$ linearly independent? Are $[v_1]$ and $[v_3]$ linearly independent?
- (b) Compute a basis for $W = \text{span}([v_1], [v_2], [v_3])$.

Exercise 14 — In this exercise we take all coefficients in the field \mathbb{F}_2 . We consider the following abstract simplicial complex K:

We also define the following 1-chains in *K*:

$$\sigma_{0} = \{p_{0}, p_{1}\} + \{p_{1}, p_{5}\} + \{p_{5}, p_{0}\}$$

$$\sigma_{1} = \{p_{2}, p_{3}\} + \{p_{3}, p_{7}\} + \{p_{7}, p_{2}\}$$

$$\sigma_{2} = \{p_{3}, p_{4}\} + \{p_{4}, p_{9}\} + \{p_{9}, p_{8}\} + \{p_{8}, p_{3}\}$$

$$\sigma_{3} = \{p_{2}, p_{3}\} + \{p_{3}, p_{4}\} + \{p_{4}, p_{9}\} + \{p_{9}, p_{8}\} + \{p_{8}, p_{7}\} + \{p_{7}, p_{2}\}$$

- (a) Verify that the σ_i are cycles and thus define homology classes $[\sigma_i] \in H_1(K, \mathbb{F}_2)$.
- (b) Which of the following equations are true in $H_0(K, \mathbb{F}_2)$? If possible, provide a 1-chain whose boundary explains why the equation is true in homology.

$$[p_7] = [p_8]$$
 $[p_1] = [p_3]$ $[p_2] = [p_9]$

(c) Which of the following equations are true in $H_1(K, \mathbb{F}_2)$? If possible, provide a 2-chain whose boundary explains why the equation is true in homology.

$$[\sigma_0] = 0$$
 $[\sigma_1] = [\sigma_2]$ $[\sigma_1] + [\sigma_2] = [\sigma_3]$

Exercise 15 — Let *K* and *L* be abstract simplicial complexes on a finite set *P*.

- (a) Prove that $K \cup L$ and $K \cap L$ are abstract simplicial complexes as well.
- (b) Show that we have $\chi(K \cup L) = \chi(K) + \chi(L) \chi(K \cap L)$.
- (c) Give an example where $\beta_n(K \cup L) \neq \beta_n(K) + \beta_n(L) \beta_n(K \cap L)$.
- (d) Show that if $K \cap L = \emptyset$, then we have $\beta_n(K \cup L) = \beta_n(K) + \beta_n(L)$.

Programming Challenge (10 bonus points) In this challenge, you analyse a big data set with the help of a computer. All persons who send the correct solution via email to matthias.paulsen@uni-marburg.de, along with a short description how they obtained their answer (e. g. source code of a program), receive 10 bonus points. Furthermore, the first person who submits the correct solution is rewarded with a small prize. You can use whatever software or programming language you like, as long as you are able to obtain the correct answer with it.

On Ilias, you can download a data set $P \subset \mathbb{R}^3$ of 1000 points. Your task is the following:

- (a) Find the smallest value r such that $VR_r(P)$ is connected.
- (b) For this r, determine all Betti numbers of $VR_r(P)$.

Hand in: Wednesday, November 13, 12:15, online in Ilias