

Angles in Circles

Graham Middle School Math Olympiad Team

CENTRAL ANGLES

In a circle, a **central angle** is an angle whose vertex is the center of the circle, and the rays intersect at the center are both radii of the circle. The measure of the central angle is often denoted by the Greek letter theta (θ) .

There are 360° in a full circle, so the diameter of the circle is a central angle whose measure is 180° . A quarter of a circle corresponds to a central angle of 90° .

As shown in the diagram, a central angle θ is created by two radii.

It's easy to convert between the central angle and the corresponding arc length. In the diagram to the left, the length of the arc connecting points A and B can be found by considering the ratios:

$$\frac{\theta}{360} = \frac{\text{arclength}}{\text{circumference}}$$
$$\frac{\theta}{360} = \frac{\text{arclength}}{2\pi r}.$$

In other words, the ratio of the central angle to 360° is the same as the ratio of the arclength corresponding to that central angle divided by the circumference of the entire circle.

If the arclength AB is 3π and the radius of the circle is 6, what is the central angle created by the radii to points A and B?

$$\theta = \frac{3\pi}{12\pi} \cdot 360^{\circ} = 90^{\circ}.$$

CLOCKFACE PROBLEM

In a clock with 12 digits, the central angle corresponding to 1 hour equals \$360^{\circ}/12\$ which is 30°. So at 3 o'clock, for example, the hands of the clock form a central angle of 90°. Note that in clockface problems, you should assume that the hour hand moves continuously as the minute hand moves.

So at 3:30, the minute hand is pointing down at 6, while the hour hand is exactly midway between 3 and 4. What angle is formed by the hour and minute hands when a clock reads 3:30?

Each hour of separation between the hands is 30° , so at 3:30, the hands form an angle of 75° $(30^{\circ} + 30^{\circ} + 15^{\circ})$.

CLOCKFACE PROBLEMS TO THE MINUTE

In one minute, the minute hand moves 1/60 of the way around the circle, which is 6° . The hour hand moves 1/60 of 1/12 of the way around the circle in one minute, which is 0.5° .

Computing the position of the minute hand at a given time is straightforward. The angle formed by the minute hand and a line pointing straight up to 12 is 6° times the number of minutes past the hour. The angle formed by the hour hand and its position at the top of the hour (i.e. at zero minutes past the hour) is 30° times the fraction of the hour that has past, which is 0.5° for every minute past the hour.

What angle is formed by the hour and minute hands when a clock reads 3:42?

with respect to vertical, which is 111°. The angle formed by these two arms is simply the difference between these two angles, which is 141°.

INSCRIBED ANGLE THEOREM

An angle is said to be **inscribed** in a circle if the vertex of the angle lies on the circumference of the circle, and both rays extending from that vertex intersect the circle.

Theorem:

For any given arc on a circle, the measure of the central angle of that arc is **twice** the measure of any inscribed angle to that same arc, no matter where the vertex of that inscribed angle is.

For all three cases illustrated above, the central angle θ is twice the inscribed angle ψ .

To prove the theorem, we need to show the relation holds for all three cases shown at the left: one ray from the vertex to the arc passes through the circle's center (Case A); the two rays from the vertex to the arc pass on either side of the center (Case B), and the two rays from the vertex to the arc pass the center on the same side (Case C).

Below is the proof for Case A. Proving the other cases is left as an exercise. Since OA and OB are both radii, $\triangle AOB$ is isosceles, and its base angles are both equal to ψ . Since the sum of the angles in that triangle is 180° . $\angle AOB + 2\psi = 180^{\circ}$.

As they lie on the same line, $\angle AOB + \theta = 180^{\circ}$.

Hence $\theta = 2\psi$. Q.E.D.

Corollary: Any two angles inscribed to the same arc on a circle must be congruent. (Reason: Their measures are both equal to half the central angle to that arc.)

RIGHT TRIANGLES INSCRIBED IN CIRCLES

Triangle $\triangle ABC$ is inscribed inside a circle centered at point O with radius 6.5. Side AC passes through point O. If AB is 5, what is the length of side BC?

Side AC is a diameter, so arc AC is 180° and by the inscribed angle theorem, angle $\angle ABC$ is a right angle. They hypotenuse AC is 13, and leg AB is 5, so we immediately recognize the 5-12-13

Pythagorean Triple. Hence *BC* is 12. This problem illustrates that

any triangle inscribed in a circle with a side passing through the center of the circle must be a right triangle,

and the side that passes through the center is the hypotenuse of that right triangle.

In a triangle, a median from a vertex to the opposite side bisects (evenly divides) that side.

It is easy to prove that

the median to the hypotenuse of a right triangle is equal to half the length of the hypotenuse.

As we see illustrated above, we take advantage of the fact that any right triangle can be inscribed into a circle where the diameter is the hypotenuse. That median is also a radius of the circle, which is, of course, equal to half the length of the diameter of the circle, which is the hypotenuse of the triangle. So in the illustration on the left, *OB* is also 6.5.

THE POWER OF A POINT THEOREM

The following theorem is very useful in math contests, but usually shows up more in high school level contests. At the middle school level, the AlphaStar Fermat and Purple Comet contests often have questions based on this theorem.

Given a point P and a circle, pass two lines through P that intersect the circle in points A and D and, respectively B and C, then

$$AP \times DP = BP \times CP$$
.

Below we prove Case 1.

The proofs for the other cases are left as exercises for the reader.

 $\angle BAP = \angle DCP$ (both are inscribed into arc BD) $\angle APB = \angle CPD$ (they are vertical angles). Therefore $\triangle APB$ and $\triangle CPD$ are similar by **AA**. $\frac{AP}{CP} = \frac{BP}{PD}$, so $AP \times DP = BP \times CP$.

 $\angle ABC = \angle BCD$ (both are inscribed into arc AC)

DEB is a chord of a circle such that BE = 5 and ED = 3. If EC = 1, find the radius of the circle.

Using Case 1, $3 \times 5 = EC \times (EO + r)$, so EO + r = 15. EO + 1 = r. Hence.

$$EO + EO + 1 = 15$$
.
 $EO = 7, r = 8$

EXERCISES

- Point O is the center of the regular octagon ABCDEFGH, and X is the midpoint of the side AB. What fraction of the area of the octagon is shaded?
- The circumference of the circle with center O is divided into 12 equal arcs, marked the letters A through L as seen below. What is the number of degrees in the sum of the angles x and y?

3. What is the angle (less than 180°) formed by the hands of a clock when the time is 3:15?

- 4. Points A, B, C, and D are on a circle with center O in that order, and AC and BD meet at E. Given that $\angle AOB = 34^{\circ}$, $\angle COD = 102^{\circ}$, $\angle DOA = 109^{\circ}$, find $\angle BEC$.
- 5. Points A, B, C, and D are on a circle with center O in that order, and DA and CB meet at E. Given that $\angle AOB = 34^{\circ}$, $\angle COD = 102^{\circ}$, $\angle DOA = 109^{\circ}$, find $\angle AEB$.
- 6. Chords \overline{TY} and \overline{OP} meet at point K such that TK = 2, KY = 16, and $KP = 2 \cdot KO$. Find OP.
- 7. Points A, B, C, and D are on a circle in that order and AB intersects DC in point P outside the circle. We have BP = 8, AB = 10, CD = 7, and $\angle APC = 60^{\circ}$. Find the radius of the circle.
- 8. Diameter AB of a circle has length 25. Point C is chosen along the circumference such that AC has length 24. What is the length of BC?

CHALLENGE PROBLEMS

- 1. Let the incircle of triangle ABC be tangent to sides BC, AC, and AB at points D, E, and F, respectively. Given that $\angle A = 32^{\circ}$, find $\angle EDF$.
- 2. The areas of two adjacent squares are 256 square inches and 16 square inches, respectively, and their bases lie on the same line. What is the number of inches in the length of the segment that joins the centers of the two inscribed circles?
- We are given points A, B, C, and D in the plane such that AD = 13 while
 AB = BC = AC = CD = 10. Find ∠ADB.
- 4. In $\triangle ABC$, AB = 86, and AC = 97. A circle with center A and radius AB intersects \overline{BC} at points B and X. Moreover \overline{BX} and \overline{CX} have integer lengths. What is BC?