4. Aufgabenblatt

(Besprechung in den Tutorien 13.11.2023–17.11.2023)

Aufgabe 1. Primitiv-rekursive Funktionen

Zeigen Sie, dass folgende Funktionen primitiv-rekursiv sind.

- 1. $g_1: \mathbb{N}^2 \to \mathbb{N}$ mit $g_1(x,y) := y^x$.
- 2. $g_2: \mathbb{N} \to \mathbb{N}$ mit $g_2(n) := \max\{i \in \mathbb{N} \mid i^2 \le n\}$.

1. Sei mult die primitiv-rekursive Multiplikationsfunktion (siehe VL). Dann lässt sich g_1 wie folgt primitiv-rekursiv definieren.

$$g_1(0,y) = c_1^1(y),$$

$$g_1(x+1,y) = \text{mult} \circ (\pi_2^3, \pi_3^3)(x, g_1(x,y), y)$$

$$= \text{mult}(g_1(x,y), y).$$

2. Wir beobachten, dass $g_2(0)=0$ ist. Nehmen wir nun an, dass $g_2(n)=\max\{i\in\mathbb{N}\mid$ $i^2 \le n$ = j. Wenn nun gilt, dass $(j+1)^2 \le n+1$, dann ist $g_2(n+1) = j+1 = g_2(n)+1$. Andernfalls ist $g_2(n+1) = j = g_2(n)$. Also gilt:

$$g_2(n+1) = \begin{cases} g_2(n) + 1, & \text{falls } (g_2(n) + 1)^2 \le n+1 \\ g_2(n), & \text{sonst.} \end{cases}$$

Wir definieren g_2 primitiv-rekursiv wie folgt:

$$g_2(0) = c_0^0 := 0,$$

 $g_2(n+1) = h(n, g_2(n)),$

wobei $h: \mathbb{N}^2 \to \mathbb{N}$ eine Hilfsfunktion ist mit

$$h(n,m) = \begin{cases} m+1, & \text{falls } (m+1)^2 \le n+1 \\ m, & \text{sonst} \end{cases}.$$

Die Funktion h lässt sich primitiv-rekursiv (als Komposition) wie folgt definieren

$$h(n,m) = \operatorname{add} \circ (\operatorname{le} \circ (g_1 \circ (c_2^2, \operatorname{succ} \circ \pi_2^2), \operatorname{succ} \circ \pi_1^2), \pi_2^2)(n,m)$$
$$= \operatorname{add}(\operatorname{le}(g_1(2, \operatorname{succ}(m)), \operatorname{succ}(n)), m)$$

Die Funktion add ist primitiv-rekursiv (siehe VL). Die lower-equal Funktion le : $\mathbb{N}^2 \to$ $\{0,1\}$ ist hierbei definiert als

$$le(x,y) = \begin{cases} 1, & \text{falls } x \le y \\ 0, & \text{sonst} \end{cases}$$

und kann durch folgende Hilfsfunktionen primitiv-rekursiv definiert werden:

• Ist Null?

$$N(0) = c_1^0 := 1$$

 $N(n+1) = c_0^2(n, N(n))$

• (modifizierte) Vorgängerfunktion

$$pred(0) = c_0^0$$
$$pred(n+1) = \pi_1^2(n, pred(n))$$

• (modifizierte) Subtraktion, d.h. $modsub(x, y) = max\{0, y - x\}$.

$$\begin{aligned} \operatorname{modsub}(0, y) &= \pi_1^1(y) \\ \operatorname{modsub}(x+1, y) &= \operatorname{pred} \circ \pi_2^3(x, \operatorname{modsub}(x, y), y) \\ &= \operatorname{pred}(\operatorname{modsub}(x, y)) \end{aligned}$$

Nun gilt $x \leq y$ genau dann, wenn modsub(y, x) = 0, also

$$le(x,y) = N \circ (\text{modsub} \circ (\pi_2^2, \pi_1^2))(x,y) = N(\text{modsub}(y,x)).$$

Aufgabe 2. μ -Rekursion und LOOP-Programme

Sei sub: $\mathbb{N}^2 \to \mathbb{N}$ mit sub $(x,y) \coloneqq \max(0,x-y)$ die modifizierte Subtraktionsfunktion und mult: $\mathbb{N}^2 \to \mathbb{N}$ mit mult $(x,y) \coloneqq x \cdot y$ die Multiplikationsfunktion. Außerdem sei $g \colon \mathbb{N}^3 \to \mathbb{N}$ definiert als $g(x,y,z) \coloneqq \text{sub}(\text{mult}(y,z),x)$.

- 1. Wieviele Argumente hat die Funktion $\mu(q)$?
- 2. Zeigen Sie, dass $\mu(g)$ primitiv-rekursiv ist.

——Lösungsskizze———

- 1. g ist vom Typ $\mathbb{N}^3 \to \mathbb{N}$, daher hat $\mu(g)$ den Typ $\mathbb{N}^2 \to \mathbb{N}$, also genau 2 Argumente.
- 2. Es gilt $\mu(g)(y,z) = yz$, weil für alle $y,z \in \mathbb{N}$ gilt:

$$g(yz, y, z) = \operatorname{sub}(\operatorname{mult}(y, z), yz) = \operatorname{sub}(yz, yz) = \operatorname{max}(0, yz - yz) = 0$$

und für alle n' < yz gilt:

$$g(n', y, z) = \text{sub}(\text{mult}(y, z), n') = \max(0, yz - n') > 0.$$

Diese Funktion können wir mit folgendem LOOP-Programm (mit Eingabewerten $x_1 = y$ und $x_2 = z$) berechnen:

LOOP
$$x_1$$
 DO
LOOP x_2 DO
 $x_0 := x_0 + 1$
END
END

Zeigen Sie, dass folgende Funktion $f: \mathbb{N} \to \mathbb{N}$ μ -rekursiv ist:

$$f(n) \coloneqq \begin{cases} n - 10, & \text{falls } n > 100 \\ f(f(n+11)), & \text{falls } n \le 100 \end{cases}.$$

Sie können hierbei verwenden, dass WHILE-berechenbare Funktionen μ -rekursiv sind.

Zusatzinformationen: McCarthy 91 Funktion (Wikipedia)

```
———Lösungsskizze———
```

Folgendes WHILE-Programm berechnet f, wobei die Eingabe n in x_1 steht:

```
1: x_2 := x_2 + 1;
2: WHILE x_2 \neq 0 DO
       IF x_1 > 100 THEN
3:
           x_1 := x_1 - 10;
4:
5:
           x_2 := x_2 - 1
6:
7:
           x_1 := x_1 + 11;
           x_2 := x_2 + 1
8:
       END
9:
10: END
11: x_0 := x_1
```

Daraus folgt, dass f WHILE-berechenbar und damit auch μ -rekursiv ist. Die Idee hinter dem Programm ist, dass f wie in der Definition berechnet wird. Dabei wird ein Ausdruck der Form $f(f(\ldots(f(n))\ldots))$ aufgebaut. In der Variable x_2 wird die Verschachtelungstiefe der Funktionsaufrufe gespeichert. In x_1 wird n gespeichert. Die Korrektheit dieses Programms zu beweisen, ist jedoch etwas umständlich (Induktion über x_2). Deswegen analysieren wir die Funktion f genauer.

Bei genauerer Betrachtung stellt sich heraus, dass Folgendes gilt:

$$f(n) = \begin{cases} n - 10, & \text{falls } n > 100\\ 91, & \text{sonst} \end{cases}$$
 (1)

Dies impliziert, dass f WHILE-berechenbar und somit μ -rekursiv ist, denn diese Funktion wird von folgendem einfachen WHILE-Programm berechnet:

```
IF x_1 > 100 THEN

x_0 := x_1 - 10

ELSE

x_0 := x_0 + 91

END
```

Es ist also zu zeigen, dass (1) gilt.

Falls $n \ge 101$, gilt die Behauptung. Wir müssen zeigen, dass f(n) = 91, wenn $n \le 101$. Wir zeigen dies per Induktion über k(n) := 101 - n. Falls k(n) = 0, folgt die Behauptung aus dem Obigen. Sei also k(n) > 0. Sei zunächst $90 \le n \le 100$. Dann gilt

$$f(n) = f(f(n+11)) = f(n+11-10) = f(n+1).$$

Da k(n+1) < k(n), folgt f(n+1) = 91 aus der Induktionsvoraussetzung. Sei nun n < 90. Dann gilt f(n) = f(f(n+11)) = f(91) = 91, wobei die letzten beiden Gleichheiten aus der Induktionsvoraussetzung folgen. Damit ist (1) bewiesen.