Numerical Simulation Methods in Geophysics, Part 7: Finite Elements

1. MGPY+MGIN

thomas.guenther@geophysik.tu-freiberg.de

Recap Finite Elements

- weak form of PDE: integral over product with test function w
- ullet approximate u with shape functions $u=\sum u_i \mathbf{v}_i$
- Galerkin's method: same function space for w and v

Difference of FE to FD

Solution u is described on the whole space and approximates the solution, not the PDE!

Any source function f(x) can be integrated on the whole space!

Recap (cont)

Generality of FE

Arbitrary base functions v_i can be used to describe u

- started with piece-wise linear (hat) functions
- ullet system identical to FD for $\Delta x=$ const and a=const

Method of weighted residuals

PDE $\mathfrak{L}(u)=f\Rightarrow$ approximated by u_h

residual $R=L_h(u)-f$ to be minimized, integrating over modelling domain

$$\int_{\Omega} w R \mathrm{d}\Omega = \int_{\Omega} w \mathfrak{L}(u_h) \mathrm{d}\Omega - \int_{\Omega} w f \mathrm{d}\Omega = 0$$

with approximation $u_h(\mathbf{r}) = \sum_j^M u_j \mathbf{v}_j(\mathbf{r})$

(v basis / shape functions, w test / trial functions)

Bilinear form for Poisson equation

Solve $\mathbf{A}\mathbf{x}=\mathbf{b}$ with $A_{ij}=(oldsymbol{
abla}v_i,oldsymbol{
abla}v_j)$ and $b_i=(\mathbf{v}_i,f)$, where

$$\mathbf{a}(\mathbf{a},\mathbf{b}) = \int_{\Omega} \mathbf{a} \cdot \mathbf{b} \, \mathrm{d}\Omega = \sum_{c=i}^{M} \int_{\Omega_c} \mathbf{a} \cdot \mathbf{b} \, \mathrm{d}\Omega_c$$

Solve the integrals either analytically or numerically

The general solution

Solving any integral using (Gaussian) quadrature

$$\int g(x) \mathrm{d}x pprox \sum_q g(x_q) w_q$$

$$f_i^c = \int_{\Omega_c} v_i f \mathrm{d}x pprox \sum_q v(x_q^c) f(x_q^c) w_q^c$$

$$a_{ij}^c = \int_c a_c oldsymbol{
a} v_i \cdot oldsymbol{
a} v_j = \sum a_c oldsymbol{
a} v_i(x_q^c) \cdot oldsymbol{
a} v_j(x_q^c) w_q^c$$

Gaussian quadrature

quadratureRules(c.shape(), 5)

 optimum quadrature on reference triangle for a given order (5)

Quadrature points

Gaussian quadrature

quadratureRules(c, 2)

 optimum quadrature on arbitrary triangle for order 2

Quadrature points

Coordinate transformation

1D: local coordinate
$$\xi = \frac{x - x_i}{x_{i+1} - x_i}$$
 (0..1)

$$u(\xi)=c_1+c_2\xi$$

$$u_0=u(0)=c_1$$
, $u_1=u(1)=c_1+c_2\ c_2=u_1-u_0$

$$\Rightarrow u(\xi) = u_0 + \xi(u_1 - u_0) = u_0(1 - \xi) + u_1 \xi = u_i v_i + u_1 v_1$$

Quadratic elements

$$u(\xi) = c_1 + c_2 \xi + c_3 \xi^2$$

nodes at x_0 , $x_{1/2}$, x_1

$$u_i=u(0)=c_1$$
 , $u_1=c_1+c_2+c_3$

$$u_{1/2} = c_1 + c_2/2 + c_3/4$$

$$u(\xi) = u_0(3\xi + 2\xi^2) + u_{1/2}(4\xi - 4\xi^2) + u_1(-\xi + 2\xi^2)$$

Quadratic elements

$$u(\xi) = u_0(3\xi + 2\xi^2) + u_{1/2}(4\xi - 4\xi^2) + u_1(-\xi + 2\xi^2)$$

```
import numpy as np
 2 import matplotlib.pyplot as plt
 3 x = np.linspace(0, 1, 101)
 5 # Plot velocity distribution.
 6 plt.plot(x, 1-3*x+2*x**2)
7 plt.plot(x, 4*x-4*x**2)
 8 plt.plot(x, -x+2*x**2)
 9 plt.plot(0, 0, "o", color="C0", ms=8)
10 plt.plot(0.5, 0, "o", color="C1", ms=8)
11 plt.plot(1, 0, "o", color="C2", ms=8)
12 plt.grid()
```


Cubic elements

```
1 import numpy as np
 2 import matplotlib.pyplot as plt
 3 \text{ x=np.linspace}(0, 1, 101)
 5 # Plot velocity distribution.
 6 plt.plot(x, 1-3*x**2+2*x**3)
 7 plt.plot(x, x-2*x**2+x**3)
 8 plt.plot(x, 3*x**2-2*x**3)
 9 plt.plot(x, -x^{**}2+x^{**}3)
10 for i in range(4):
11 plt.plot(i/(3), 0, "o",
12
               color=f"C{i}", ms=8
13 plt.grid()
```


Triangles with linear shape functions

$$x = x_1 + (x_2 - x_1)\xi + (x_3 - x_1)\eta$$

$$y = y_1 + (y_2 - y_1)\xi + (y_3 - y_1)\eta$$

Triangle

$$u(\xi) = u_1(1 - \xi - \eta) + u_2\xi + u_3\eta$$

```
import pygimli as pg
import pygimli.meshtools as mt

shape = mt.createPolygon(
       [[0, 0], [1, 0], [0, 1]],
       isClosed=True)

mesh = mt.createMesh(shape, area=0.01)

mx = pg.x(mesh)

my = pg.y(mesh)

# Plot velocity distribution.

fig, ax = plt.subplots()

pg.show(mesh, 1-mx-my, ax=ax, nLevs=11);
```


Triangle linear shape functions

$$u(\xi) = u_1(1 - \xi - \eta) + u_2\xi + u_3\eta$$

Verification

- 1. Method of Manufactured Solutions (MMS)
- manufacture a smooth u
- ullet generate f matching approximation of u
- 2. Method of Exact Solutions (MES)
- find parameters for which an analytic solution exists
- 3. Perform convergence tests for increasingly smaller h
- ullet approximation error $E(h) < Ch^n$ test for some h

Green's functions

The Green's function G is the solution for a Dirac source δ

$$\mathfrak{L}G = \delta$$

The solution can then be obtained by convolution

$$u = G * f$$