Philips Oral Healthcare, Inc.

TEST REPORT FOR

Rechargeable Power Toothbrush with BLE and NFC 13.56 Model: HX99

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 99020-10

Date of issue: December 16, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.247(a)(2) 6dB Bandwidth	7
15.247(b)(3) Output Power	11
15.247(e) Power Spectral Density	16
15.247(d) RF Conducted Emissions & Band Edge	21
15.247(d) Radiated Emissions & Band Edge	27
15.207 AC Conducted Emissions	42
Supplemental Information	51
Measurement Uncertainty	51
Emissians Tost Datails	F1

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Philips Oral Healthcare, Inc.

22100 Bothell-Everett Hwy

Bothell, WA 98021

Terri Rayle

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

REPRESENTATIVE: Timothy Rand Project Number: 99020

Customer Reference Number: US13-2100640728

DATE OF EQUIPMENT RECEIPT: October 27, 2016, 2016

DATE(S) OF TESTING: October 27 - November 7, 2016

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 2 Be

Page 3 of 52 Report No.: 99020-10

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Bothell	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148

Page 4 of 52 Report No.: 99020-10

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions	
No modifications were made during testing.	

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

The actual testing date is stated in each section, the date/time on the plot data screen captured is incorrect.

Page 5 of 52 Report No.: 99020-10

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Rechargeable Power Toothbrush	Philips Oral Healthcare, Inc.	HX99	NA
with BLE and NFC 13.56			

Support Equipment:

Device	Manufacturer	Model #	S/N
None			

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
Rechargeable Power Toothbrush	Philips Oral Healthcare, Inc.	HX99	NA
with BLE and NFC 13.56			

Support Equipment:

Device	Manufacturer	Model #	S/N
Inductive Charger	Philips Oral Healthcare, Inc.	CBA2001	NA

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.15.1
Operating Frequency Range:	2402-2480MHz
Modulation Type(s):	GFSK 305kb/s
Maximum Duty Cycle:	100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Inverted F antenna OdBi gain
Beamforming Type:	NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	Battery Li-Ion or 115V/60Hz
Firmware / Software used for Test:	Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Page 6 of 52 Report No.: 99020-10

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

	Test Setup/Conditions					
Test Location:	Bothell Lab C2	Test Engineer:	S. Pittsford			
Test Method:	ANSI C63.10 (2013), KDB	Test Date(s):	10/31/2016			
	558074v03r05 (April 8, 2016)					
Configuration:	1					
Test Setup:	Frequency Range: 2402-2480MHz					
	Frequency tested: 2402, 2440, 248	30MHz				
	Firmware power setting: Max Pow	/er				
	Firmware UUID:00002A26-0000-1	000-8000-00805F9B64	1FB			
	Protocol /MCS/Modulation: GFSK					
	Antenna type: Integral Inverted F antenna					
	Antenna Gain: 0.0 dBi.					
	Duty Cycle: Continuously Transmitting (100%)					
	Test Mode: Continuously transmitting on low, mid, and high channels					
	Test Setup: EUT is transmitting through a temporary antenna connector and is attached					
	directly to the spectrum analyzer.					
	The EUT has a fresh battery installed.					
	Modifications Added: None					

Environmental Conditions				
Temperature (°C) 22 Relative Humidity (%): 39				

	Test Equipment									
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due					
02673	Spectrum Analyzer	Agilent	E4446A	10/12/2015	10/12/2017					
P06503	Cable	Astrolab	32026-29801- 29801-36	4/28/2016	4/28/2018					

Page 7 of 52 Report No.: 99020-10

	Test Data Summary									
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results					
2402	1	GFSK	722.4	≥500	Pass					
2440	1	GFSK	742.5	≥500	Pass					
2480	1	GFSK	743.9	≥500	Pass					

Plots

Low Channel

Page 8 of 52 Report No.: 99020-10

Middle Channel

High Channel

Test Setup Photo

Page 10 of 52 Report No.: 99020-10

15.247(b)(3) Output Power

Test Data Summary - Voltage Variations

This equipment is battery powered and manufacturer declares the equipment cannot operate while charging. Power output tests were performed using a fresh battery.

	Power Output Test Data Summary - RF Conducted Measurement									
Measurement Option: RBW > DTS Bandwidth										
Frequency (MHz)	INITIALIZATION ANT IVNE / (JAIN (ARI)				Results					
2402	GFSK	Inverted F antenna / OdBi gain	-4.8	≤30	Pass					
2440	GFSK	Inverted F antenna / OdBi gain	-5.8	≤30	Pass					
2480	GFSK	Inverted F antenna / OdBi gain	-5.9	≤30	Pass					

Note: The conducted measurements were recorded in dBuV and converted into dBm using a conversion factor for known system impedance of 50 ohms.

Plots

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

 Work Order #:
 99020
 Date:
 10/31/2016

 Test Type:
 Conducted Emissions
 Time:
 10:56:36

Tested By: Steven Pittsford Sequence#: 1

Software: EMITest 5.03.02 3.7V Battery

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Frequency Range: 2402-2480MHz Frequency tested: 2402, 2440, 2480MHz Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: Continuously Transmitting (100%)

Test Mode: Continuously transmitting on low, mid, and high channels

The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum analyzer.

Modifications Added: None

Temperature: 22°C Relative Humidity: 39%

Test Method: ANSI C63.10 (2013), KDB 558074 v03r05 (April 8, 2016)

Page 13 of 52 Report No.: 99020-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06503	Cable	32026-29801- 29801-36	4/28/2016	4/28/2018
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017

Measu	rement Data:	Re	eading lis	ted by r	nargin.			Test Lead	l: Ant		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2402.090M	101.5	+0.7				+0.0	102.2	137.0	-34.8	Ant
2	2440.030M	100.5	+0.7				+0.0	101.2	137.0	-35.8	Ant
3	2480.040M	100.4	+0.7				+0.0	101.1	137.0	-35.9	Ant

Page 14 of 52 Report No.: 99020-10

Test Setup Photo

Page 15 of 52 Report No.: 99020-10

15.247(e) Power Spectral Density

PSD Test Data Summary - RF Conducted Measurement								
Measurement M	Measurement Method: PKPSD							
Frequency (MHz) Modulation Measured Limit Results								
2402	GFSK	-19.6	≤8	Pass				
2440	GFSK	-20.8	≤8	Pass				
2480	GFSK	-20.7	≤8	Pass				

Plots

Low Channel

Page 16 of 52 Report No.: 99020-10

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Philips Oral Healthcare, Inc.

Specification:15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)Work Order #:99020Date: 10/31/2016Test Type:Conducted EmissionsTime: 11:19:16

Tested By: Steven Pittsford Sequence#: 2

Software: EMITest 5.03.02 3.7V Battery

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Frequency Range: 2402-2480MHz Frequency tested: 2402, 2440, 2480MHz Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: Continuously Transmitting (100%)

Test Mode: Continuously transmitting on low, mid, and high channels

The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum analyzer.

The EUT has a fresh battery installed.

Modifications Added: None

Temperature: 22°C Relative Humidity: 39%

Test Method: ANSI C63.10 (2013), KDB 558074 v03r05 (April 8, 2016)

Page 18 of 52 Report No.: 99020-10

Test Equipment:

I	ID	Asset #	Description	Model	Calibration Date	Cal Due Date
٦	T1	ANP06503	Cable	32026-29801- 29801-36	4/28/2016	4/28/2018
		AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017

Meast	urement Data:	Re	eading lis	ted by n	nargin.						
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2402.018M	86.7	+0.7				+0.0	87.4	115.0	-27.6	Ant
2	2 2480.005M	85.6	+0.7				+0.0	86.3	115.0	-28.7	Ant
3	3 2440.010M	85.5	+0.7				+0.0	86.2	115.0	-28.8	Ant

Page 19 of 52 Report No.: 99020-10

Test Setup Photo

Page 20 of 52 Report No.: 99020-10

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 99020 Date: 10/31/2016
Test Type: Conducted Emissions Time: 12:39:51
Tested By: Steven Pittsford Sequence#: 4

Software: EMITest 5.03.02 3.7V Battery

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Frequency Range: 9kHz-25GHz Frequency tested: 2402, 2440 2480MHz Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: Continuously Transmitting (100%)

Test Mode: Continuously transmitting on low, mid, and high channels

The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum analyzer.

The EUT has a fresh battery installed.

Modifications Added: None

Temperature: 22°C Relative Humidity: 39%

Test Method: ANSI C63.10 (2013), KDB 558074 v03r05 (April 8, 2016)

Page 21 of 52 Report No.: 99020-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06503	Cable	32026-29801- 29801-36	4/28/2016	4/28/2018
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017

Meast	Measurement Data:		Reading listed by margin.		nargin.	gin. Test Lead: Ant					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	4975.000M	-50.2	+1.1				+0.0	-49.1	-24.8	-24.3	Ant
2	2 4800.000M	-52.2	+1.1				+0.0	-51.1	-24.8	-26.3	Ant
3	4875.000M	-56.0	+1.1				+0.0	-54.9	-24.8	-30.1	Ant

Page 22 of 52 Report No.: 99020-10

Band Edge

	Band Edge Summary							
Limit applied:	Limit applied: Max Power/100kHz - 20dB.							
Frequency (MHz) Modulation (Measured Limit Results								
2400.0	GFSK	-42.7	<-24.8	Pass				
2483.5	GFSK	-50.3	<-24.8	Pass				

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(d) Conducted Spurious Emissions

 Work Order #:
 99020
 Date: 10/31/2016

 Test Type:
 Conducted Emissions
 Time: 12:30:50

Tested By: Steven Pittsford Sequence#: 4

Software: EMITest 5.03.02 3.7V Battery

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: 2402-2480MHz

Frequency tested: 2402, 2480MHz Band Edge

Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: Continuously Transmitting (100%)

Test Mode: Continuously transmitting on low, mid, and high channels

The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum analyzer.

The EUT has a fresh battery installed.

Modifications Added: None

Page 23 of 52 Report No.: 99020-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06503	Cable	32026-29801- 29801-36	4/28/2016	4/28/2018
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017

Measi	urement Data:	Re	eading lis	ted by 1	nargin.			Test Lead	d: Ant		
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	2400.000M	-43.4	+0.7				+0.0	-42.7	-24.8	-17.9	Ant
2	2483.500M	-51.0	+0.7				+0.0	-50.3	-24.8	-25.5	Ant

Page 24 of 52 Report No.: 99020-10

Band Edge Plots

Test Setup Photo

Page 26 of 52 Report No.: 99020-10

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 99020 Date: 11/8/2016
Test Type: Maximized Emissions Time: 13:52:32
Test of Party Michael Addisons

Tested By: Michael Atkinson Sequence#: 4

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Frequency Range: 9kHz-25GHz
Frequency tested: 2402, 2440, 2480MHz
Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: Continuously Transmitting (100%)

Test Mode: Continuously transmitting on low, mid, and high channels

The EUT is transmitting through integral antenna. EUT X, Y, Z axis investigated, horizontal and vertical antenna polarities (above 30MHz) + 3 orthogonal polarities (below 30MHz), only worst case reported.

The EUT has a fresh battery installed.

Modifications Added: None

Temperature: 24°C Relative Humidity: 39%

Test Method: ANSI C63.10 (2013), KDB 558074 v03r05 (April 8, 2016)

Page 27 of 52 Report No.: 99020-10

Philips Oral Healthcare, Inc. WO#: 99020 Sequence#: 4 Date: 11/8/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters H+V

- Readings
 QP Readings
- ▼ Ambient
 - 1 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings
- Average Readings Software Version: 5.03.02

Page 28 of 52 Report No.: 99020-10

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
T4	ANP05360	Cable	RG214	12/1/2014	12/1/2016
T5	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T6	AN01991	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T7	ANP05657	Attenuator	PE7004-6	12/22/2015	12/22/2017
T8	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T9	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T10	AN01467	Horn Antenna-	3115	8/12/2015	8/12/2017
		ANSI C63.5			
		Calibration			
T11	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T12	AN02742	Active Horn	AMFW-5F-	1/14/2015	1/14/2017
		Antenna	18002650-20-		
			10P		
T13	ANP06678	Cable	32026-29801-	9/19/2016	9/19/2018
			29801-144		
T14	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018

Measu	rement Data:	R	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	7320.580M	35.6	+0.0	+1.2	+0.0	+0.0	+0.0	43.6	54.0	-10.4	H+V
			+0.0	+0.0	+0.0	+4.7			Mid		
			-34.6	+36.1	+0.6	+0.0					
			+0.0	+0.0							
2	7439.800M	34.2	+0.0	+1.3	+0.0	+0.0	+0.0	42.8	54.0	-11.2	H+V
			+0.0	+0.0	+0.0	+4.8			High		
			-34.7	+36.6	+0.6	+0.0					
			+0.0	+0.0							
3	12399.800	26.1	+0.0	+1.6	+0.0	+0.0	+0.0	39.8	54.0	-14.2	H+V
	M		+0.0	+0.0	+0.0	+6.4					
	Ave		-34.7	+39.5	+0.9	+0.0			High		
			+0.0	+0.0							
^	12399.800	32.9	+0.0	+1.6	+0.0	+0.0	+0.0	46.6	54.0	-7.4	H+V
	M		+0.0	+0.0	+0.0	+6.4					
			-34.7	+39.5	+0.9	+0.0			High		
			+0.0	+0.0							

Page 29 of 52 Report No.: 99020-10

	1.5000.010										
5	12009.860	25.2	+0.0	+1.5	+0.0	+0.0	+0.0	38.1	54.0	-15.9	H+V
	M		+0.0	+0.0	+0.0	+6.4			T		
	Ave		-35.0 +0.0	+39.2 +0.0	+0.8	+0.0			Low		
	12009.860	30.3	+0.0	+1.5	+0.0	+0.0	+0.0	43.2	54.0	-10.8	H+V
	M	30.3	+0.0	+0.0	+0.0	+6.4	+0.0	43.2	34.0	-10.6	11⊤ V
	171		-35.0	+39.2	+0.8	+0.0			Low		
			+0.0	+0.0	10.0	10.0			2011		
7	4880.000M	32.4	+0.0	+0.9	+0.0	+0.0	+0.0	36.7	54.0	-17.3	H+V
	Ave		+0.0	+0.0	+0.0	+4.4			Mid		
			-34.2	+32.7	+0.5	+0.0					
			+0.0	+0.0							
^	4880.010M	43.6	+0.0	+0.9	+0.0	+0.0	+0.0	47.9		-6.1	H+V
			+0.0	+0.0	+0.0	+4.4			Mid		
			-34.2	+32.7	+0.5	+0.0					
			+0.0	+0.0							
	4804.200M	31.1	+0.0	+0.9	+0.0	+0.0	+0.0	35.3	54.0	-18.7	H+V
	Ave		+0.0	+0.0	+0.0	+4.3			Low		
			-34.2	+32.7	+0.5	+0.0					
	4804.200M	42.2	+0.0	+0.0	+0.0			47.4	5 4.0	6.6	11.37
Α.	4804.200M	43.2	+0.0 +0.0	+0.9	+0.0	+0.0	+0.0	47.4	54.0 Low	-6.6	H+V
			+0.0 -34.2	$+0.0 \\ +32.7$	$+0.0 \\ +0.5$	+4.3 +0.0			Low		
			+0.0	+0.0	+0.5	+0.0					
11	4959.878M	30.9	+0.0	+0.9	+0.0	+0.0	+0.0	35.3	54.0	-18.7	H+V
	Ave	30.7	+0.0	+0.0	+0.0	+4.4	10.0	33.3	High	10.7	111 4
			-34.2	+32.8	+0.5	+0.0			8		
			+0.0	+0.0							
^	4959.800M	43.3	+0.0	+0.9	+0.0	+0.0	+0.0	47.7	54.0	-6.3	H+V
			+0.0	+0.0	+0.0	+4.4			High		
			-34.2	+32.8	+0.5	+0.0					
			+0.0	+0.0							
13	12198.670	21.5	+0.0	+1.5	+0.0	+0.0	+0.0	35.0	54.0	-19.0	H+V
	M		+0.0	+0.0	+0.0	+6.6					
	Ave		-34.8	+39.4	+0.8	+0.0			Mid		
	10100 550	212	+0.0	+0.0			0.0	45.5	F. 1. 0		** **
^	12198.670	34.2	+0.0	+1.5	+0.0	+0.0	+0.0	47.7	54.0	-6.3	H+V
	M		+0.0	+0.0	+0.0	+6.6			Mid		
			-34.8 +0.0	+39.4 +0.0	+0.8	+0.0			Mid		
15	22317.250	43.1	+0.0	+0.0	+0.0	+0.0	+0.0	34.8	54.0	-19.2	H+V
13	M	+3.1	+0.0 +0.0	+0.0 +0.0	+0.0	+0.0 +0.0	±0.0	34.0	54.0	-17.2	11± V
	141		+0.0	+0.0	+0.0	-16.7					
			+8.4	+0.0	. 5.0	20.7					
16	1324.000M	43.1	+0.0	+0.4	+0.0	+0.0	+0.0	34.3	54.0	-19.7	H+V
			+0.0	+0.0	+0.0	+2.1					
			-36.1	+24.5	+0.3	+0.0					
			+0.0	+0.0							
17	115.400M	29.3	+0.0	+0.1	+1.2	+0.6	+0.0	20.7	43.5	-22.8	H+V
			-27.7	+11.2	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							

Page 30 of 52 Report No.: 99020-10

18 17359.800	26.7	+0.0	+2.0	+0.0	+0.0	+0.0	46.3	71.6	-25.3	H+V
M		+0.0	+0.0	+0.0	+8.8					
Ave		-34.5	+42.3	+1.0	+0.0			High		
		+0.0	+0.0							
^ 17359.800	29.3	+0.0	+2.0	+0.0	+0.0	+0.0	48.9	71.6	-22.7	H+V
M		+0.0	+0.0	+0.0	+8.8					
		-34.5	+42.3	+1.0	+0.0			High		
		+0.0	+0.0							
20 16813.860	27.3	+0.0	+2.1	+0.0	+0.0	+0.0	45.4	71.6	-26.2	H+V
M		+0.0	+0.0	+0.0	+8.6					
Ave		-34.5	+40.9	+1.0	+0.0			Low		
		+0.0	+0.0							
^ 16813.860	31.9	+0.0	+2.1	+0.0	+0.0	+0.0	50.0	71.6	-21.6	H+V
M		+0.0	+0.0	+0.0	+8.6					
		-34.5	+40.9	+1.0	+0.0			Low		
		+0.0	+0.0							
22 9607.860M	33.9	+0.0	+1.5	+0.0	+0.0	+0.0	44.7	71.6	-26.9	H+V
, , , , , , , , , , , , , , , , , ,		+0.0	+0.0	+0.0	+6.1			Low	_0.,	
		-35.0	+37.4	+0.8	+0.0			2011		
		+0.0	+0.0	10.0	10.0					
23 14411.860	27.4	+0.0	+1.8	+0.0	+0.0	+0.0	43.6	71.6	-28.0	H+V
M	27.4	+0.0	+0.0	+0.0	+7.7	10.0	₹3.0	71.0	-20.0	11 V
Ave		-35.0	+40.7	+1.0	+0.0			Low		
Ave		+0.0	+0.0	11.0	10.0			Low		
^ 14411.860	32.3	+0.0	+1.8	+0.0	+0.0	+0.0	48.5	71.6	-23.1	H+V
M	32.3	+0.0 +0.0	+0.0	+0.0	+0.0 +7.7	+0.0	40.5	71.0	-23.1	11± V
1V1		-35.0	+40.7	+0.0	+0.0			Low		
				+1.0	+0.0			LOW		
25 0760 590M	22.7	+0.0	+0.0	+0.0	+ O O	+ O O	12.1	71.6	20.5	11.37
25 9760.580M	32.7	+0.0	+1.4	+0.0	+0.0	+0.0	43.1		-28.5	H+V
		+0.0	+0.0	+0.0	+6.1			Mid		
		-35.1	+37.3	+0.7	+0.0					
26 0010 00015	22.0	+0.0	+0.0	.0.0	.0.0	. 0. 0	42.2	71.	20.4	TT 77
26 9919.800M	32.0	+0.0	+1.3	+0.0	+0.0	+0.0	42.2	71.6	-29.4	H+V
		+0.0	+0.0	+0.0	+6.1			High		
		-35.2	+37.2	+0.8	+0.0					
		+0.0	+0.0							
27 14879.800	27.5	+0.0	+1.8	+0.0	+0.0	+0.0	42.0	71.6	-29.6	H+V
M		+0.0	+0.0	+0.0	+7.7					
Ave		-34.9	+39.0	+0.9	+0.0			High		
		+0.0	+0.0							
^ 14879.800	33.7	+0.0	+1.8	+0.0	+0.0	+0.0	48.2	71.6	-23.4	H+V
M		+0.0	+0.0	+0.0	+7.7					
		-34.9	+39.0	+0.9	+0.0			High		
		+0.0	+0.0							
29 3457.000M	41.8	+0.0	+0.8	+0.0	+0.0	+0.0	41.6	71.6	-30.0	H+V
		+0.0	+0.0	+0.0	+3.5					
		-34.3	+29.4	+0.4	+0.0					
		+0.0	+0.0							

30	17078.670	21.5	+0.0	+2.1	+0.0	+0.0	+0.0	40.5	71.6	-31.1	H+V
	M		+0.0	+0.0	+0.0	+8.6			3.61.1		
	Ave		-34.4	+41.7	+1.0	+0.0			Mid		
	17070 (70	21.2	+0.0	+0.0	. 0. 0	. 0. 0	. 0. 0	50.2	71.6	21.2	TT . T7
	17078.670	31.3	+0.0	+2.1	+0.0	+0.0	+0.0	50.3	71.6	-21.3	H+V
	M		+0.0	+0.0	+0.0	+8.6			M: 4		
			-34.4 +0.0	$+41.7 \\ +0.0$	+1.0	+0.0			Mid		
22	3313.000M	40.8	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	71.6	-31.1	H+V
32	3313.000M	40.8	+0.0	+0.7	+0.0	+3.4	+0.0	40.3	/1.0	-31.1	Π±V
			-34.3	+29.5	+0.0	+0.0					
			+0.0	+0.0	10.4	10.0					
33	14638.670	21.9	+0.0	+1.8	+0.0	+0.0	+0.0	37.4	71.6	-34.2	H+V
33	M	21.7	+0.0	+0.0	+0.0	+7.8	10.0	37.4	71.0	34.2	11 1 4
	Ave		-34.9	+39.9	+0.9	+0.0			Mid		
			+0.0	+0.0		. 0.0			1.110		
^	14638.670	32.6	+0.0	+1.8	+0.0	+0.0	+0.0	48.1	71.6	-23.5	H+V
	M		+0.0	+0.0	+0.0	+7.8					•
			-34.9	+39.9	+0.9	+0.0			Mid		
			+0.0	+0.0							
35	955.400M	28.1	+0.0	+0.4	+2.5	+2.1	+0.0	37.4	71.6	-34.2	H+V
			-27.2	+25.4	+6.1	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
36	21.900k	62.0	+0.0	+0.0	+0.0	+0.0	-40.0	35.4	71.6	-36.2	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+13.4							
	7205.860M	27.1	+0.0	+1.2	+0.0	+0.0	+0.0	34.6		-37.0	H+V
	Ave		+0.0	+0.0	+0.0	+4.5			Low		
			-34.5	+35.7	+0.6	+0.0					
	7205.06014	40.0	+0.0	+0.0	.00	. 0. 0	. 0. 0	40.2	71.6	22.2	11.37
	7205.860M	40.8	+0.0	+1.2	+0.0	+0.0	+0.0	48.3		-23.3	H+V
			+0.0 -34.5	+0.0 +35.7	+0.0 +0.6	+4.5 +0.0			Low		
			-34.3 +0.0	+33.7	+0.0	+0.0					
30	21619.080	42.2	+0.0	+0.0	+0.0	+0.0	+0.0	34.6	71.6	-37.0	H+V
39	M	74.4	+0.0 +0.0	+0.0		+0.0 +0.0	10.0	J4.0	/1.0	-51.0	11 L A
	171		+0.0	+0.0	+0.0	-15.8					
			+8.2	+0.0	. 0.0	15.0					
40	21963.670	42.6	+0.0	+0.0	+0.0	+0.0	+0.0	34.5	71.6	-37.1	H+V
	M	0	+0.0	+0.0	+0.0	+0.0	. 0.0	2	, 2.0		•
			+0.0	+0.0	+0.0	-16.4					
			+8.3	+0.0							
41	641.100M	31.6	+0.0	+0.3	+2.1	+1.7	+0.0	34.2	71.6	-37.4	H+V
			-28.1	+20.6	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
42	715.800M	30.1	+0.0	+0.3	+2.2	+1.7	+0.0	34.2	71.6	-37.4	H+V
			-27.9	+21.8	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							

Page 32 of 52 Report No.: 99020-10

	542.265M	30.6	+0.0	+0.3	+2.0	+1.5	+0.0	31.1	71.6	-40.5	H+V
	QP		-28.2	+18.9	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
^	542.200M	33.2	+0.0	+0.3	+2.0	+1.5	+0.0	33.7	71.6	-37.9	H+V
			-28.2	+18.9	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
45	13.570M	38.7	+0.0	+0.0	+0.0	+0.0	-20.0	27.4	71.6	-44.2	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+8.7							
46	839.500k	34.1	+0.0	+0.0	+0.0	+0.0	-20.0	23.9	71.6	-47.7	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.8							
47	217.200M	31.5	+0.0	+0.2	+1.4	+0.9	+0.0	23.0	71.6	-48.6	H+V
			-27.2	+10.2	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
48	203.600M	31.7	+0.0	+0.2	+1.4	+0.8	+0.0	22.1	71.6	-49.5	H+V
			-27.2	+9.2	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
49	40.700M	29.1	+0.0	+0.1	+0.5	+0.3	+0.0	22.1	71.6	-49.5	H+V
			-27.9	+14.0	+6.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
50	127.300k	49.0	+0.0	+0.0	+0.0	+0.0	-40.0	18.8	71.6	-52.8	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.8							
51	2.550M	23.2	+0.0	+0.0	+0.0	+0.0	-20.0	12.7	71.6	-58.9	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.5							
52	28.600M	15.1	+0.0	+0.0	+0.0	+0.0	-20.0	1.2	71.6	-70.4	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+6.1							
L											

Band Edge

		Band Edge	Summary		
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
2390.0 (PEAK)	GFSK	Inverted F antenna / OdBi gain	55.0	<74	Pass
2400.0 (PEAK)	GFSK	Inverted F antenna / OdBi gain	72.7	<91.6	Pass
2483.5 (PEAK)	GFSK	Inverted F antenna / OdBi gain	60.+	<74	Pass
2390.0 (AVG)	GFSK	Inverted F antenna / OdBi gain	24.9	<54	Pass
2400.0 (AVG)	GFSK	Inverted F antenna / OdBi gain	35.6	<71.6	Pass
2483.5 (AVG)	GFSK	Inverted F antenna / OdBi gain	25.7	<54	Pass

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: Philips Oral Healthcare, Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions (AVG)

Work Order #: 99020 Date: 11/8/2016
Test Type: Maximized Emissions Time: 08:12:58
Tested By: Michael Atkinson Sequence#: 5

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: 2402-2480MHz

Frequency tested: 2402, 2480MHz Band Edge

Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Duty Cycle: Continuously Transmitting (100%)

Test Mode: Continuously transmitting on low, mid, and high channels

The EUT is transmitting through integral antenna. EUT X, Y, Z axis investigated, horizontal and vertical antenna

polarities investigated, only worst case reported.

The EUT has a fresh battery installed.

Modifications Added: None

Page 34 of 52 Report No.: 99020-10

Philips Oral Healthcare, Inc. WO#: 99020 Sequence#: 5 Date: 11/8/2016 15.247(d) / 15.209 Radiated Spurious Emissions (AVG) Test Distance: 3 Meters H+V

Readings

- Peak Readings QP Readings
- Average Readings
- Ambient

Software Version: 5.03.02

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions (AVG)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
T1	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017	
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017	
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018	
T4	AN03540	Preamp	83017A	4/30/2015	4/30/2017	
T5	AN01467	Horn Antenna- ANSI C63.5 Calibration	3115	8/12/2015	8/12/2017	
T6	ANP06935	Cable	32026-29801- 29801-18	3/11/2016	3/11/2018	

Measurement Data:		Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m \\$	dB	Ant
1	2483.500M	28.6	+0.0	+0.6	+2.9	-34.5	+0.0	25.7	54.0	-28.3	H+V
	Ave		+27.7	+0.4							
^	2483.500M	63.8	+0.0	+0.6	+2.9	-34.5	+0.0	60.9	74.0	-13.1	H+V
			+27.7	+0.4							
3	2390.000M	28.0	+0.0	+0.6	+2.8	-34.6	+0.0	24.9	54.0	-29.1	H+V
	Ave		+27.7	+0.4							
^	2390.000M	58.3	+0.0	+0.6	+2.8	-34.6	+0.0	55.2	74.0	-18.8	H+V
			+27.7	+0.4							
5	2400.000M	38.7	+0.0	+0.6	+2.8	-34.6	+0.0	35.6	71.6	-36.0	H+V
	Ave		+27.7	+0.4							
^	2400.000M	75.8	+0.0	+0.6	+2.8	-34.6	+0.0	72.7	91.6	-18.9	H+V
			+27.7	+0.4							

Page 36 of 52 Report No.: 99020-10

Band Edge Plots

Page 37 of 52 Report No.: 99020-10

Test Setup Photos

< 1GHz

> 1GHz

X Axis

Y Axis

Z Axis

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: Philips Oral Healthcare, Inc. Specification: 15.207 AC Mains - Average

 Work Order #:
 99020
 Date:
 10/27/2016

 Test Type:
 Conducted Emissions
 Time:
 15:36:54

Tested By: Michael Atkinson Sequence#: 1

Software: EMITest 5.03.02 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Frequency Range: 0.15-30MHz Frequency tested: 2402-2480MHz Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Test Mode: EUT is on charging cradle in normal discovery mode.

Test Setup: EUT is charging on charging cradle, EUT is transmitting through internal antenna.

Modifications Added: None

Temperature: 24°C Relative Humidity: 40%

Test Method: ANSI C63.10 (2013)

Page 42 of 52 Report No.: 99020-10

Philips Oral Healthcare, Inc. WO#: 99020 Sequence#: 1 Date: 10/27/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017
T1	AN02611	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T5	AN01492	50uH LISN-Line	3816/2NM	8/5/2015	8/5/2017
	AN01492	50uH LISN-Neutral	3816/2NM	8/5/2015	8/5/2017

Measu	irement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1		23.0	+0.1	+0.0	+0.1	+9.1	+0.0	32.7	46.0	-13.3	Line
	Ave		+0.4								
^	2.696M	37.8	+0.1	+0.0	+0.1	+9.1	+0.0	47.5	46.0	+1.5	Line
			+0.4								
3		21.6	+0.1	+0.0	+0.1	+9.1	+0.0	31.3	46.0	-14.7	Line
	Ave		+0.4								
٨	2.564M	38.2	+0.1	+0.0	+0.1	+9.1	+0.0	47.9	46.0	+1.9	Line
	116 2001	20.7	+0.4	0.0	0.0	0.1	0.0	20.6	46.0	160	T ·
5		20.7	+0.2	+0.0	+0.0	+9.1	+0.0	30.6	46.9	-16.3	Line
٨	Ave 446.200k	36.2	+0.6	+0.0	+0.0	+9.1	+0.0	46.1	46.9	-0.8	Line
	446.200K	30.2	+0.2	+0.0	+0.0	+9.1	+0.0	40.1	46.9	-0.8	Line
7	2.495M	19.4	+0.6	+0.0	+0.1	+9.1	+0.0	29.1	46.0	-16.9	Line
/	Ave	17.4	+0.1	+0.0	+0.1	+7.1	+0.0	29.1	40.0	-10.9	Line
^		35.3	+0.4	+0.0	+0.1	+9.1	+0.0	45.0	46.0	-1.0	Line
	2.4/3111	33.3	+0.4	10.0	10.1	17.1	10.0	75.0	40.0	-1.0	Line
9	173.684k	23.1	+0.4	+0.0	+0.0	+9.1	+0.0	34.2	54.8	-20.6	Line
	Ave		+1.6			.,,,					
10		23.4	+0.6	+0.0	+0.0	+9.1	+0.0	34.9	55.6	-20.7	Line
	Ave		+1.8								
٨	158.020k	49.4	+0.6	+0.0	+0.0	+9.1	+0.0	60.9	55.6	+5.3	Line
			+1.8								
12	175.990k	23.0	+0.3	+0.0	+0.0	+9.1	+0.0	34.0	54.7	-20.7	Line
	Ave		+1.6								
٨	175.989k	50.2	+0.3	+0.0	+0.0	+9.1	+0.0	61.2	54.7	+6.5	Line
			+1.6								
^	173.684k	50.0	+0.4	+0.0	+0.0	+9.1	+0.0	61.1	54.8	+6.3	Line
			+1.6								
15		22.4	+0.2	+0.0	+0.0	+9.1	+0.0	33.0	53.9	-20.9	Line
	Ave		+1.3								
٨	194.100k	47.7	+0.2	+0.0	+0.0	+9.1	+0.0	58.3	53.9	+4.4	Line
1.5	0140001	20.2	+1.3	.0.0	.00	.0.1	.00	20.0	50.0	22.2	T :
17		20.3	+0.2	+0.0	+0.0	+9.1	+0.0	30.8	53.0	-22.2	Line
٨	Ave	46.0	+1.2	.0.0	.0.0	.0.1	.00	E (E	<i>52.</i> 0	12 F	T :
	214.960k	46.0	+0.2	+0.0	+0.0	+9.1	+0.0	56.5	53.0	+3.5	Line
			+1.2								

19		20.4	+0.2	+0.0	+0.0	+9.1	+0.0	31.0	53.5	-22.5	Line
	Ave		+1.3								
^	203.761k	48.7	+0.2	+0.0	+0.0	+9.1	+0.0	59.3	53.5	+5.8	Line
			+1.3								
21	234.330k	18.6	+0.2	+0.0	+0.0	+9.1	+0.0	29.0	52.3	-23.3	Line
	Ave		+1.1								
٨	234.330k	47.5	+0.2	+0.0	+0.0	+9.1	+0.0	57.9	52.3	+5.6	Line
			+1.1								
23	243.120k	18.3	+0.2	+0.0	+0.0	+9.1	+0.0	28.6	52.0	-23.4	Line
	Ave		+1.0								
^	243.120k	45.1	+0.2	+0.0	+0.0	+9.1	+0.0	55.4	52.0	+3.4	Line
			+1.0								
25	291.550k	16.7	+0.1	+0.0	+0.0	+9.1	+0.0	26.7	50.5	-23.8	Line
	Ave		+0.8								
٨	291.550k	41.5	+0.1	+0.0	+0.0	+9.1	+0.0	51.5	50.5	+1.0	Line
			+0.8								
27	264.460k	17.1	+0.2	+0.0	+0.0	+9.1	+0.0	27.3	51.3	-24.0	Line
	Ave		+0.9								
٨	264.460k	42.7	+0.2	+0.0	+0.0	+9.1	+0.0	52.9	51.3	+1.6	Line
			+0.9								
29	306.330k	16.0	+0.1	+0.0	+0.0	+9.1	+0.0	26.0	50.1	-24.1	Line
	Ave		+0.8								
^	306.330k	39.9	+0.1	+0.0	+0.0	+9.1	+0.0	49.9	50.1	-0.2	Line
			+0.8								

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: Philips Oral Healthcare, Inc. Specification: 15.207 AC Mains - Average

 Work Order #:
 99020
 Date:
 10/27/2016

 Test Type:
 Conducted Emissions
 Time:
 15:46:04

Tested By: Michael Atkinson Sequence#: 2

Software: EMITest 5.03.02 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Frequency Range: 0.15-30MHz Frequency tested: 2402-2480MHz Firmware power setting: Max Power

Firmware UUID:00002A26-0000-1000-8000-00805F9B64FB

Protocol /MCS/Modulation: GFSK

Antenna type: Integral Inverted F antenna

Antenna Gain: 0.0 dBi.

Test Mode: EUT is on charging cradle in normal discovery mode.

Test Setup: EUT is charging on charging cradle, EUT is transmitting through internal antenna.

Modifications Added: None

Temperature: 24°C Relative Humidity: 40%

Test Method: ANSI C63.10 (2013)

Page 46 of 52 Report No.: 99020-10

Philips Oral Healthcare, Inc. WO#: 99020 Sequence#: 2 Date: 10/27/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz Return

× QP Readings Software Version: 5.03.02 Readings

Average Readings

1 - 15.207 AC Mains - Average

O Peak Readings

▼ Ambient

2 - 15.207 AC Mains - Quasi-peak

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017
T1	AN02611	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
	AN01492	50uH LISN-Line	3816/2NM	8/5/2015	8/5/2017
T5	AN01492	50uH LISN-Neutral	3816/2NM	8/5/2015	8/5/2017

Measi	irement Data:		eading lis	ted by ma	ırgin.			Test Lea	d: Return		
#	Freq	Rdng	T1 T5	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2.669M	22.5	+0.1	+0.0	+0.1	+9.1	+0.0	32.2	46.0	-13.8	Retur
	Ave		+0.4								
^	2.669M	34.8	+0.1	+0.0	+0.1	+9.1	+0.0	44.5	46.0	-1.5	Retur
			+0.4								
3	2.567M	21.2	+0.1	+0.0	+0.1	+9.1	+0.0	30.9	46.0	-15.1	Retur
	Ave		+0.4								
^	2.567M	35.1	+0.1	+0.0	+0.1	+9.1	+0.0	44.8	46.0	-1.2	Retur
			+0.4								
5		22.5	+0.4	+0.0	+0.0	+9.1	+0.0	33.6	55.0	-21.4	Retur
	Ave		+1.6								
6		22.1	+0.3	+0.0	+0.0	+9.1	+0.0	33.0	54.4	-21.4	Retur
	Ave		+1.5								
^	181.020k	47.5	+0.3	+0.0	+0.0	+9.1	+0.0	58.4	54.4	+4.0	Retur
			+1.5								
8		22.2	+0.4	+0.0	+0.0	+9.1	+0.0	33.3	54.8	-21.5	Retur
	Ave		+1.6								
^	173.579k	47.7	+0.4	+0.0	+0.0	+9.1	+0.0	58.8	54.8	+4.0	Retur
	1.50.1021	47.0	+1.6	0.0		0.1		~ 0.4		2.4	
^	169.492k	47.3	+0.4	+0.0	+0.0	+9.1	+0.0	58.4	55.0	+3.4	Retur
1.1	150 5001	22.2	+1.6	0.0	0.0	0.1	0.0	22.0		21.7	D :
11		22.3	+0.6	+0.0	+0.0	+9.1	+0.0	33.8	55.5	-21.7	Retur
^	Ave	46.8	+1.8	+ O O	.00	+0.1	.00	58.3	<i>EE E</i>	12.0	Datas
	158.700k	40.8	+0.6	+0.0	+0.0	+9.1	+0.0	38.3	55.5	+2.8	Retur
13	198.020k	20.9	+1.8	+0.0	+0.0	+9.1	+0.0	31.5	53.7	-22.2	Retur
13	198.020k Ave	20.9	+0.2	+0.0	+0.0	+9.1	+0.0	31.3	33.7	-22.2	Retur
^		46.2	+0.2	+0.0	+0.0	+9.1	+0.0	56.8	53.7	+3.1	Retur
	190.020K	40.2	+1.3	+0.0	+0.0	⊤ 2.1	+0.0	50.0	33.1	⊤3.1	Retui
15	216.410k	19.4	+0.2	+0.0	+0.0	+9.1	+0.0	29.9	53.0	-23.1	Retur
13	Ave	17.7	+1.2	10.0	10.0	17.1	10.0	<i>□J</i> • <i>J</i>	55.0	23.1	Retui
٨		44.3	+0.2	+0.0	+0.0	+9.1	+0.0	54.8	53.0	+1.8	Retur
	210.110R	11.5	+1.2	. 0.0	10.0	1	1 3.0	21.0	23.0	. 1.0	Tetai
17	342.220k	16.1	+0.1	+0.0	+0.0	+9.1	+0.0	26.0	49.1	-23.1	Retur
•	Ave		+0.7	. 0.0	. 0.0			_0.0	.,,,	20.1	
^		35.4	+0.1	+0.0	+0.0	+9.1	+0.0	45.3	49.1	-3.8	Retur
			+0.7								

19 240.440k	17.5	+0.2	+0.0	+0.0	+9.1	+0.0	27.8	52.1	-24.3	Retur
Ave		+1.0								
^ 240.440k	44.2	+0.2	+0.0	+0.0	+9.1	+0.0	54.5	52.1	+2.4	Retur
		+1.0								
21 289.810k	16.1	+0.1	+0.0	+0.0	+9.1	+0.0	26.1	50.5	-24.4	Retur
Ave		+0.8								
^ 289.810k	39.3	+0.1	+0.0	+0.0	+9.1	+0.0	49.3	50.5	-1.2	Retur
		+0.8								
23 275.010k	15.7	+0.1	+0.0	+0.0	+9.1	+0.0	25.8	51.0	-25.2	Retur
Ave		+0.9								
^ 275.010k	40.5	+0.1	+0.0	+0.0	+9.1	+0.0	50.6	51.0	-0.4	Retur
		+0.9								

Page 49 of 52 Report No.: 99020-10

Test Setup Photo

Page 50 of 52 Report No.: 99020-10

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
	Meter reading	(dBμV)					
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBμV/m)					

Page 51 of 52 Report No.: 99020-10

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 52 of 52 Report No.: 99020-10