

Base de données relationnelles MySQL / MariaDB

Par Richard BONNAMY

Sommaire

- Introduction
- Types d'attributs
- Options d'attributs
- Jeux de caractères et interclassement
- PhpMyAdmin
- TP 02

Introduction

HISTORIQUE

INTRODUCTION

- ☐ Les bases de données relationnelles utilisent un langage appelé **SQL**
 - Structured Query Language
 - Exemple: SELECT * FROM pizzas

- ☐ IBM DB2 est un système de gestion de base de données relationnelle.
- ☐ Créée par IBM en 1983
- ☐ La base de données gros système, principalement sur système mainframe.

- ☐ Oracle est un système de gestion de base de données relationnelle (SGBDR).
- ☐ Créée par Larry Ellison en 1980
- ☐ La base de données la plus performante au monde actuellement. Peut gérer des centaines de millions de lignes

MySQL est un système de gestion de base de données relationnelle.
 Créée par Michael Wildenius
 Initialement open source, a été rachetée par la société Sun Microsystems (propriétaire du langage Java à cette époque) en 2008 pour 1 milliard de \$
 Oracle rachète Sun Microsystems en 2009.
 Particulièrement connu pour faire partie de la stack de développement WAMPP

- MariaDB est également un système de gestion de base de données relationnelle (SGBDR).
- ☐ Lors du rachat de Sun Microsystems par Oracle, Michael Wildenius créé MariaDB
- ☐ Particulièrement connu pour faire partie de la stack de développement XAMP
- ☐ Dans le cadre de cette formation on va utiliser MariaDB au travers de la stack XAMP.

Types d'attributs

TYPES D'ATTRIBUTS

- \Box Dans les tables il est possible de stocker des informations de tous types.
- ☐ Types de données:
 - Les tables peuvent contenir plusieurs types de données
 - Numériques
 - Alphanumériques
 - Temporel
- ☐ Numériques (les principaux):
 - Entiers: int
 - Décimaux: Decimal
 - O Decimal(5,2) stocke des nombres entre -999.99 et 999.99
 - O Decimal(5,4) stocke des nombres entre -9.9999 et 9.9999

TYPES D'ATTRIBUTS

☐ Alphanumériques

Varchar: pour les attributs de type String (max: 9000 octets)

□ Dates

- Date sans heure: Date
- Date avec heure: Datetime
- Date avec heure et fuseau horaire: Timestamp

Création d'une table

- ☐ CREATE TABLE NOM_TABLE (liste des colonnes avec nom et type)
- ☐ Exemple de script de création de table.

CREATE TABLE Utilisateur (

PRENOM VARCHAR(30), NOM VARCHAR(30), EMAIL VARCHAR(50), SOLDE DECIMAL(8,2) Prénom de 30 caractères max. Nom de 30 caractères max. Email de 50 caractères max. Solde avec 8 chiffres dont 2 après la virgule

☐ Option NULL / NOT NULL

• On peut imposer à un attribut de table de ne pas être NULL.

```
CREATE TABLE Utilisateur (

PRENOM VARCHAR(30) NOT NULL,
NOM VARCHAR(30) NOT NULL,
EMAIL VARCHAR(50) NOT NULL,
SOLDE DECIMAL(8,2)
```

Il s'agit d'une décision métier et non technique!

☐ PRIMARY KEY

- Attention à la syntaxe.
- Pour une seule colonne:

```
CREATE TABLE Utilisateur (
```

ID INT(6), PRENOM VARCHAR(30) NOT NULL, NOM VARCHAR(30) NOT NULL, EMAIL VARCHAR(50) PRIMARY KEY

)


```
PRIMARY KEY
Pour deux colonnes:

CREATE TABLE Utilisateur (

PRENOM VARCHAR(30) NOT NULL,
NOM VARCHAR(30) NOT NULL,
EMAIL VARCHAR(50),
CONSTRAINT PK_CLIENTS PRIMARY KEY (PRENOM, NOM)
);
```


☐ AUTOINCREMENT

On demande à MySQL d'incrémenter l'identifiant d'une table automatique.

```
CREATE TABLE Utilisateur (

ID INT(6) AUTO_INCREMENT PRIMARY KEY,
PRENOM VARCHAR(30) NOT NULL,
NOM VARCHAR(30) NOT NULL,
EMAIL VARCHAR(50)
```

Il s'agit d'une décision métier et non technique!

☐ UNIQUE

- Permet de déclarer une contrainte d'unicité sur une colonne
- Cette contrainte prévient l'insertion de 2 valeurs identiques dans la même colonne

```
CREATE TABLE Utilisateur (
```

```
ID INT(6) AUTO_INCREMENT PRIMARY KEY, PRENOM VARCHAR(30) NOT NULL, NOM VARCHAR(30) NOT NULL, EMAIL VARCHAR(50) UNIQUE
```

)

Jeux de caractères Et interclassement

JEUX DE CARACTÈRES (1/3)

- ☐ En informatique, les caractères n'existent pas, ils sont stockés sous forme de nombre: un caractère ♣un nombre (binaire)
- ☐ Historiquement
 - les caractères étaient codés sur 7 bits => 128 caractères appelés caractères ASCII
 - Le 8^{ème} bit était utilisé comme caractère de contrôle pour les communications.
 - Désormais ce caractère de contrôle est obsolète, mais l'ASCII est resté

ΔS	CII	ΤΔ	RI	F
AJ	CII		DL	. L

Decimal	Hex	Char	Decimal	Нех	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	,
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	i
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	ŕ
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	V
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ĺ
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
			•			•		_			

JEUX DE CARACTÈRES (2/3)

☐ Avec le 8ème bit: 128 caractères de plus

- A donné naissance aux jeux de caractères **ISO-8859**-x
 - O ISO-8859-1 pour l'alphabet occidental
 - O ISO-8859-15 pour l'alphabet occidental avec sigle €
 - o ISO-8859-8 pour l'hébreu
- Problème de ces jeux de caractères: ils sont incompatibles.

☐ Exemple:

- vous envoyez une facture au Moyen-Orient encodée en ISO-8859-15 (avec le caractère €).
- Si la facture est ouverte avec une autre norme ISO le caractère € n'apparait pas et la facture sera réglée en \$.
- Des problèmes juridiques ont eu lieu sur ce genre de problèmes.

JEUX DE CARACTÈRES (3/3)

□ UTF-8

- Universal Transformation Format
- Système d'encodage de caractères basé sur la table UNICODE qui contient tous les caractères du monde entier
 - Toutes les langues du monde entier
 - Icônes
 - émoticons
- Norme internationale ISO organisation internationale de normalisation située à Genève.
- En 2020 95,2% des sites web sont en UTF-8
- Cette table évolue régulièrement

INTERCLASSEMENT

- ☐ Répond à la question suivante: comment trier les caractères entre eux ?
 - Exemple de tri de données sans notion d'interclassement:
 - abricot
 - Cerise
 - Champignon
 - Choux
 - Céleri => le é va être placé après le z.
- ☐ L'interclassement fournit une notion d'équivalence entre caractères de chaque langue
 - Exemple de tri de données avec notion d'interclassement français:
 - abricot
 - Cerise
 - Céleri => le é va être placé après le e.
 - Champignon
 - Choux

INTERCLASSEMENT

- ☐ Les collations
 - Terme anglais pour interclassement
- ☐ Quelques éléments sur les collations

Type de collation	
_bin	La plus stricte, sensible à la casse (b différent de B)
_ci	Non sensible à la casse (b égal B)
_general	Ignore certaines différences (a égal à)

☐ Les collations

- Elles peuvent être cumulées
- Exemple: UTF8_general_ci

PHP MyAdmin

PHP MYADMIN

Nouvelle base de données

PHP MYADMIN

Nouvelle table

PHP MYADMIN

Attributs de la table

NORMALISATION

TP n°2: Création de tables

