

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/835,867	04/17/2001	Jussi Lopponen	P 280236 2010374US/A/kop	5584
909	7590	03/20/2007	EXAMINER	
PILLSBURY WINTHROP SHAW PITTMAN, LLP P.O. BOX 10500 MCLEAN, VA 22102			MAIS, MARK A	
			ART UNIT	PAPER NUMBER
			2616	
SHORTENED STATUTORY PERIOD OF RESPONSE		MAIL DATE	DELIVERY MODE	
3 MONTHS		03/20/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

Office Action Summary	Application No.	Applicant(s)	
	09/835,867	LOPPONEN ET AL.	
	Examiner	Art Unit	
	Mark A. Mais	2616	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 24 October 2006.

2a) This action is FINAL. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-48 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1-48 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on 13 June 2001 is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date _____	5) <input type="checkbox"/> Notice of Informal Patent Application
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

Claim Rejections - 35 USC § 101

1. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

2. Claims 11-35 and 39-48 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.

3. Claim 11 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

4. Claim 14 recites “a mechanism” for performing two separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer

program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

5. Claim 15 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

6. Claim 20 recites “a mechanism” for performing four separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer

processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

7. Claim 21 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

8. Claim 23 recites “a mechanism” for performing four separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

Art Unit: 2616

9. Claim 25 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

10. Claim 26 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

11. Claim 31 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If the server does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a

computer program"). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

12. Claim 32 recites "a mechanism" for performing three separate functions. It is unclear if these functions are performed in software in the management device (server). If the software does perform these functions, the claimed mechanism is not an apparatus-type mechanism but instead a computer program. As a computer program, there is no claim as such (e.g., "computer-readable medium being encoded with a computer program"). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

13. Claim 33 recites "a first mechanism" and "a second mechanism" for performing two separate functions. It is unclear if these functions are performed in software in the management device (server). If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., "computer-readable medium being encoded with a computer program"). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing

Art Unit: 2616

encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

14. Claim 34 recites “a mechanism” for performing two separate functions. It is unclear if these functions are performed in software in the management device (server). If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

15. Claim 35 recites “a mechanism” for performing a separate function. It is unclear if this function is performed in software in the management device (server). If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

16. Claim 39 recites “mechanisms” and “a mechanism” for performing three separate functions. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

17. Claim 40 recites “a mechanism” for performing three separate functions. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

18. Claim 41 recites “a mechanism” for performing a separate function. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these

Art Unit: 2616

functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

19. Claim 44 recites “a mechanism” for performing a separate function. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

20. Claim 45 recites “said mechanism” for performing a separate function. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there

Art Unit: 2616

is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

Claim 46 recites “a mechanism” for performing a separate function. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

21. Claim 47 recites “said indication mechanism” for performing a separate function. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

Art Unit: 2616

22. Claim 48 recites “said indication mechanism” for performing a separate function. It is unclear if these functions are performed in software in the subscriber device. If the software does perform these functions, the claimed mechanisms are not an apparatus-type mechanisms but instead a computer program. As a computer program, there is no claim as such (e.g., “computer-readable medium being encoded with a computer program”). Moreover, there is no claim to a physical transformation or practical application resulting in a transformation to a different state (i.e., there is no computer processor/element performing encoded instructions to transform the functional computer instructions into useful, concrete, and/or tangible results). Correction is required.

23. With regard to claims 12, 13, and 16-19, they are rejected as being dependent from rejected base claims (claim 11).

24. With regard to claim 22, 28, and 29, they are rejected as being dependent from rejected base claims (claim 21).

25. With regard to claims 24, 27, and 30, they are rejected as being dependent from rejected base claims (claim 23).

26. With regard to claims 42 and 43, they are rejected as being dependent from rejected base claims (claim 46).

Claim Rejections - 35 USC § 112

27. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

28. Claims 11-35 and 39-48 are also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement.

29. Claim 11 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 11 recites "a mechanism" for performing three separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are three separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant's specification.

30. Claim 14 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which

Art Unit: 2616

it is most nearly connected, to make and/or use the invention. Claim 14 recites "a mechanism" for performing two separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are two separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant's specification.

31. Claim 15 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 15 recites "a mechanism" for performing three separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are three separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant's specification.

33. Claim 20 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 20 recites "a mechanism" for performing four separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are four separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant's specification.

Art Unit: 2616

34. Claim 21 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 21 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are three separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant’s specification.

35. Claim 23 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 23 recites “a mechanism” for performing four separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are four separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant’s specification.

36. Claim 25 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 25 recites “a mechanism” for performing three separate functions. It is unclear if the server performs these functions. If

Art Unit: 2616

the server does not perform all these functions and there are three separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant's specification.

37. Claim 26 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 26 recites "a mechanism" for performing three separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are three separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant's specification.

38. Claim 31 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 31 recites "a mechanism" for performing three separate functions. It is unclear if the server performs these functions. If the server does not perform all these functions and there are three separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant's specification.

Art Unit: 2616

39. Claim 32 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 32 recites “a mechanism” for performing three separate functions. It is unclear if these functions are performed in software in the management device (server). If the management device (server) does not perform all these functions and there are three separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant’s specification.

40. Claim 33 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 33 recites “a first mechanism” and “a second mechanism” for performing two separate functions. It is unclear if these functions are performed in software in the management device (server). If the management device (server) does not perform all these functions and there are two separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant’s specification.

41. Claim 34 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which

Art Unit: 2616

it is most nearly connected, to make and/or use the invention. Claim 34 recites “a mechanism” for performing two separate functions. It is unclear if these functions are performed in software in the management device (server). If the management device (server) does not perform all these functions and there are two separate physical apparatus-type mechanisms that perform these functions, they are not disclosed in Applicant’s specification.

42. Claim 35 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 35 recites “a mechanism” for performing a separate function. It is unclear if this function is performed in software in the management device (server). If the management device (server) does not perform this function and there is a separate physical apparatus-type mechanism that performs this function, it is not disclosed in Applicant’s specification.

43. Claim 39 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 39 recites “mechanisms” and “a mechanism” for performing three separate functions. It is unclear if these functions are performed in software in the subscriber device. If the software does not perform these functions,

Art Unit: 2616

and there are two or three separate physical apparatus-type mechanism(s) that perform(s) this/these function(s), it is/they are not disclosed in Applicant's specification

44. Claim 40 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 40 recites "a mechanism" and "said mechanism" for performing three separate functions. It is unclear if these functions are performed in software in the subscriber device. If the software does not perform these functions, and there are one, two, or three separate physical apparatus-type mechanism(s) that perform(s) this/these function(s), it is/they are not disclosed in Applicant's specification.

45. Claim 41 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 41 recites "said mechanism" for performing a separate function. It is unclear if this function is performed in software in the subscriber device. If the software does not perform this function, and there is a separate physical apparatus-type mechanism that performs this function, it is not disclosed in Applicant's specification.

Art Unit: 2616

46. Claim 44 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 44 recites “a mechanism” for performing a separate function. It is unclear if this function is performed in software in the subscriber device. If the software does not perform this function, and there is a separate physical apparatus-type mechanism that performs this function, it is not disclosed in Applicant’s specification.

47. Claim 45 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 45 recites “said mechanism” for performing a separate function. It is unclear if this function is performed in software in the subscriber device. If the software does not perform this function, and there is a separate physical apparatus-type mechanism that performs this function, it is not disclosed in Applicant’s specification.

48. Claim 46 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 46 recites “a mechanism”

Art Unit: 2616

for performing a separate function. It is unclear if this function is performed in software in the subscriber device. If the software does not perform this function, and there is a separate physical apparatus-type mechanism that performs this function, it is not disclosed in Applicant's specification.

49. Claim 47 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 47 recites "said indication mechanism" for performing a separate function. It is unclear if this function is performed in software in the subscriber device. If the software does not perform this function, and there is a separate physical apparatus-type mechanism that performs this function, it is not disclosed in Applicant's specification.

50. Claim 48 is also rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the enablement requirement. The claim contains subject matter which was not described in the specification in such a way as to enable one skilled in the art to which it pertains, or with which it is most nearly connected, to make and/or use the invention. Claim 48 recites "said indication mechanism" for performing a separate function. It is unclear if this function is performed in software in the subscriber device. If the software does not perform this function, and there is a separate physical apparatus-type mechanism that performs this function, it is not disclosed in Applicant's specification.

51. With regard to claims 12, 13, and 16-19, they are rejected as being dependent from rejected base claims (claim 11).

52. With regard to claim 22, 28, and 29, they are rejected as being dependent from rejected base claims (claim 21).

53. With regard to claims 24, 27, and 30, they are rejected as being dependent from rejected base claims (claim 23).

54. With regard to claims 42 and 43, they are rejected as being dependent from rejected base claims (claim 46).

Claim Rejections - 35 USC § 112

55. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

56. Claim 11 recites the limitation "a mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an

Art Unit: 2616

indicator suggesting, for example, a first mechanism, a second mechanism, and a third mechanism.

57. Claim 14 recites the limitation "a mechanism" two times in the claim for two different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs both functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, and a second mechanism.

58. Claim 15 recites the limitation "a mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, a second mechanism, and a third mechanism.

59. Claim 20 recites the limitation "a mechanism" four times in the claim for four different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all four functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, a second mechanism, a third mechanism, and a fourth mechanism.

60. Claim 21 recites the limitation "a mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, a second mechanism, and a third mechanism.

61. Claim 23 recites the limitation "a mechanism" four times in the claim for four different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all four functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, a second mechanism, a third mechanism, and a fourth mechanism.

62. Claim 25 recites the limitation "mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, said fourth mechanism (i.e., from the previous claim), a fifth mechanism, and a sixth mechanism.

Art Unit: 2616

63. Claim 26 recites the limitation "a mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a fifth mechanism, a sixth mechanism, and a seventh mechanism.

64. Claim 31 recites the limitation "a mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, a second mechanism, and a third mechanism.

65. Claim 32 recites the limitation "a mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, a second mechanism, and a third mechanism.

66. Claim 34 recites the limitation "mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, said second mechanism (i.e., from the previous claim), a third mechanism, and a fourth mechanism.

67. Claim 35 recites the limitation "a mechanism" one time in the claim for a separate function. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs this function, there must be a first instance claiming "a mechanism" (in the previous claim) and subsequent instances claiming "said mechanism" (in this claim). Otherwise, there must an indicator suggesting, for example, a fourth mechanism.

68. Claim 39 recites the limitation "mechanisms" and "a mechanism" three times in the claim for three different functions. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs all three functions, there must be a first instance claiming "a mechanism" and subsequent instances claiming "said mechanism." Otherwise, there must an indicator suggesting, for example, a first mechanism, a second mechanism, and a third mechanism.

69. Claim 44 recites the limitation "a mechanism" one time in the claim for a separate function. There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same

Art Unit: 2616

mechanism performs this function, there must be a first instance claiming "a mechanism" (in the previous claim) and subsequent instances claiming "said mechanism" (in this claim). Otherwise, there must be an indicator suggesting, for example, a second mechanism.

70. Claim 46 recites the limitation "a mechanism" one time in the claim for a separate function.

There must be sufficient antecedent basis for this limitation in the claim (e.g., if the same mechanism performs this function, there must be a first instance claiming "a mechanism" (in the previous claim) and subsequent instances claiming "said mechanism" (in this claim). Otherwise, there must be an indicator suggesting, for example, a second mechanism.

Claim Rejections - 35 USC § 102

71. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

72. Claims 1-48 are rejected under 35 U.S.C. 102(b) as being anticipated by Sigler et al. (USP 5,717,830).

73. With regard to claim 1, Sigler et al. discloses a method for a packet mode group voice communication in a communications system [**group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25]**] comprising

providing a group server on top of the said communications system [**this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64**]

providing said group server with individual addresses of group members in at least one group communication group [**this is interpreted as providing the addresses of each member in the Closed User Group (col. 6, lines 56-60), after it is set up, col. 16, lines 37-39**]

sending voice packets from one of said group members to said group server, each voice packet being addressed to said at least one group, forwarding said voice packets individually to each receiving one of said group members on the basis of said individual addresses [**col. 15, lines 57-62; each member can hear one member in the group**].

74. With regard to claim 2, Sigler et al. discloses forwarding said voice packets individually via user servers provided on top of the said mobile communications system, said user servers managing user specific voice packet streams to and from users [**interpreted as Base FECs, col. 4, lines 12-20**].

Art Unit: 2616

75. With regard to claim 3, Sigler et al. discloses a method for packet mode group voice communication in a communications system [**group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25]**], comprising

providing a group server [**the NOC (col. 3, line 9-21) works with the Group Controller, col. 5, lines 49-64**],

providing said group server with individual addresses of group members of a group communication group [**this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64**],

creating an individual logical connection from each group member to said group server by means of outband signaling [**NET IDs are established for each group, col. 16, lines 52-55; GC-S and FEC-S channels are signaling channels, col. 18, lines 43-45, col. col. 22, lines 37-39**]

starting a speech item in said group by sending a leader packet from one of said group members to said group server over said individual logical connection, each leader packet containing the identifier of the respective group member [**col. 23, lines 54-60; push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65**]

Art Unit: 2616

said group server either i) rejecting said started speech item, or ii) granting the started speech item to said one group member and forwarding said leader packet and subsequent voice packets individually to each receiving one of said group members in said group on the basis of said individual addresses [**the mobile's ID from the SU is sent to the other CUG members, Fig. 25; col. 17, lines 38-45**].

76. With regard to claim 4, Sigler et al. discloses allocating an uplink bearer for said one group member in an air interface of said communications system prior to said one group member sends said leader packet and prior to said granting of said speech item, and allocating a downlink bearer in an air interface for each receiving group member in response to receiving a leader packet forwarded by said group server and addressed to said respective group member [**mobile receives inbound and outbound channel assignments for the each group, col. 16, lines 62-65**].

77. With regard to claim 5, Sigler et al. discloses a method of managing speech items in a communications system having a packet mode group voice communication feature [**group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25**], comprising

providing a group server for serving a group communication group [**this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64**],

granting a speech item to one group member of said group communication group [**push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65**],

setting a first timer to measure a predetermined idle period in response to said granting [**setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22**],

resetting said first timer each time a voice packet is received from said one of said group members to said group server [**if voice packets are received, the loss of speaker status timer is reset, col. 23, lines 19-22**],

ending said granted speech item if said first timer expires indicating that said predetermined idle period has elapsed from said granting or from last reception of a voice packet from said one group member [**setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22**].

78. With regard to claim 6, Sigler et al. discloses ending said granted speech item if a maximum allowed period of time has elapsed from the granting [**while transmitting, if the mobile does not receive voice packets, and the loss of speaker status timer times out, causing the mobile to stop transmitting, col. 23, lines 39-41**].

Art Unit: 2616

79. With regard to claim 7, Sigler et al. discloses that one group member sends a trailer packet having a predetermined payload in order to indicate the end of sending, the group server ends said speech item in response to receiving said trailer packet [sends a PTT release, col. 24, lines 18-24].

80. With regard to claim 8, Sigler et al. discloses a method of managing traffic streams in a communications system having a packet mode group voice communication feature [group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25], comprising

providing a server for managing traffic streams addressed to a user who is active in at least one group communication group or in a one-to-one communication [this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14],

receiving at said user specific server a first voice packet stream related to a first group or one-to-one communication and forwarding said first voice packet stream to said respective user [this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20],

Art Unit: 2616

monitoring at said user specific server continuity of said first voice packet stream [**the FEC manages contention, col. 16, lines 65-67; the MET monitors the FEC control channel, col. 22, lines 52-53**],

receiving at said user specific server at least one further voice packet stream related to at least one further group or one-to-one communication [**the voice calls to and from members of the CUG are collected at the FES, col. 21, lines 48-50**],

forwarding no one of said at least one further voice packet streams to said user if said first voice packet data stream is continuous [**no voice is transferred after the lost speaker status timer times out—meaning a continuous voice packet stream, col. 24, lines 12-16**],

forwarding one of said at least one further voice packet streams to said user if said first voice traffic stream has been discontinued for a predetermined period of time [**lost speaker status timer will not time out as long as it receives a voice packet (meaning no continuous stream), thus, resetting the timer (col. 23, 19-22), interpreted as having at least one break in PTT, e.g., 3.5 sec, col. 24, lines 12-14**].

81. With regard to claim 9, Sigler et al. discloses setting a timer to measure said predetermined period of time when a first packet of said first voice packet stream is forwarded to said user [**setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22**];

resetting said timer each time a new packet of said first voice packet stream is forwarded to said user [**if voice packets are received, the loss of speaker status timer is reset, col. 23, lines 19-22**],

determining said first voice packet stream to be discontinued if said timer expires [**lost speaker status timer will not time out as long as it receives a voice packet (meaning no continuous stream), thus, resetting the timer (col. 23, 19-22), interpreted as having at least one break in PTT, e.g., 3.5 sec, col. 24, lines 12-14]**].

82. With regard to claim 10, Sigler et al. discloses the method according to claim 8 or 9, said method *further* comprising interrupting said first voice packet stream immediately when a voice packet stream having higher priority is received at said server [**priority contention, col. 9, lines 46-51, col. 36, lines 45-49**].

83. With regard to claim 11, Sigler et al. discloses a server system for providing a packet mode group communication service for a communications system [**group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25**], said server system comprising a group server provided on top of said communications system [**this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64**], said group server further comprising

a data memory storing individual addresses of group members in at least one group communication group [**Fig. 3, data hub**],

Art Unit: 2616

a mechanism receiving voice packets from said group members, each received voice packet containing information identifying the communication group which the respective packet is addressed to [the voice calls to and from members of the CUG are collected at the FES, col. 21, lines 48-50; col. 23, lines 54-60, push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

a mechanism for granting a speech item to one group member per a communication group in turn [push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

a mechanism unicasting each voice packet received from said group member having a speech item in a group communication group separately to each receiving member in said respective group communication group on the basis of said individual addresses [this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14].

84. With regard to claim 12, Sigler et al. discloses that the information identifying the communication group identify a port assigned to said group in said group server [NET IDs are established for each group, col. 16, lines 52-55; thus, this is interpreted as part of identifying the CUG group's NET ID].

Art Unit: 2616

85. With regard to claim 13, Sigler et al. discloses a call processing server provided on top of said mobile communications system, said call processing server being responsible for control plane management of the group communications in said group server [NCC, col. 1, lines 27-34].

86. With regard to claim 14, Sigler et al. discloses a first timer responsive to said granting the start of the measurement of a predetermined idle period from said granting [setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22],

a mechanism resetting said first timer each time a voice packet is received from said one group member having said granted speech item [if voice packets are received, the loss of speaker status timer is reset, col. 23, lines 19-22],

a mechanism ending said granted speech item if said first timer expires indicating that said predetermined idle period has elapsed from said granting or from the last reception of a voice packet from said one group member [setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22].

87. With regard to claim 15, Sigler et al. discloses a mechanism establishing an individual logical connection from each group member to said group server by means of outband signaling carried out between said call processing server and each group member [NET IDs are established for each group, col. 16, lines 52-55; GC-S and FEC-S channels are signaling channels, col. 18, lines 43-45, col. col. 22, lines 37-39], and

wherein said mechanism granting a speech item further comprises a mechanism receiving a leader packet starting a speech item in said group from one of said group members to said group server over respective said individual logical connection , said leader packet containing identifier of the respective group member [**push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65,**

a mechanism that either i) rejects said started speech item, or ii) grants said started speech item to said one group member and forwards said leader packet and subsequent voice packets individually to each receiving one of said other members in said group on the basis of said individual addresses [**the mobile's ID from the SU is sent to the other CUG members, Fig. 25; col. 17, lines 38-45].**

88. With regard to claim 16, Sigler et al. discloses that the voice packets are VOIP packets [**it is inherent that the packets being sent would VOIP packets, if the packets were, in fact, IP or TCP/IP packets].**

89. With regard to claim 17, Sigler et al. discloses a group management server providing a user interface for a remote creation and management of group communications group in said server system [**NCC, col. 1, lines 27-34].**

Art Unit: 2616

90. With regard to claim 18, Sigler et al. discloses a user interface is based on one of the World Wide Web and Wireless Application Protocol (WAP) technologies [is inherent that the user interface would have been a wireless protocol, *see also* col. 35-40].

91. With regard to claim 19, Sigler et al. discloses that the group server is interconnected to said mobile communications network by an Internet Protocol (IP) based network [communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25].

92. With regard to claim 20, Sigler et al. discloses a server system for providing a packet mode group communication service for a communications system [group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25], said server system comprising a group server provided on top of said communications system [the NOC (col. 3, line 9-21) works with the Group Controller, col. 5, lines 49-64], said group server further comprising

a mechanism which identifies and authenticates a source of group communication [col. 26, lines 54-67],

a mechanism which controls that only one group member in a group talks at a time [col. 19, lines 65-67, only one mobile can talk at a time; col. 19, lines 60-65],

Art Unit: 2616

a mechanism which checks active group members in a group to which voice packets from a currently talking group member are destined to and generates from an incoming voice packet an outgoing packet to be forwarded separately to each of said active group members [col. 19, lines 60-65, the PTT SU request packet allows voice packets to be forwarded to the CUG] , and

a mechanism which selects from possible multiple incoming traffic streams destined to one group member the one which is to be forwarded to said one group member [one mobile can be the recipient of a priority message while in the midst of receiving “regular” voice traffic, thereby receiving the priority stream over the “regular” stream, priority contention, col. 9, lines 46-51, col. 36, lines 45-49].

93. With regard to claim 21, Sigler et al. discloses a server system for providing a packet mode group communication service for a communications system, said server system comprising at least one first server providing group specific communications functions [group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25], said first server further comprising

a data memory storing individual addresses of group members in at least one group communication group [Fig. 3, data hub],

a mechanism receiving voice packets from said group members, each received voice packet containing information identifying the communication group which the respective packet is addressed to [the voice calls to and from members of the CUG are collected at the FES, col. 21, lines 48-50; col. 23, lines 54-60, push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

a mechanism for granting a speech item to one group member per communication group in turn [push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

a mechanism unicasting each voice packet received from said group member having a speech item in a group communication group separately to each receiving member in said respective group communication on the basis of said individual addresses [this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14],

a second server providing user-specific communications functions, any group related communication from a user managed by said second server being routed first to said second server and then forwarded to an appropriate first server, and any unicast voice packet from said at least one first server being routed first to said second server prior to sending the voice packet to the respective user [this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14].

94. With regard to claim 22, Sigler et al. discloses that the information identifying the communication group identifies a port assigned to said group in said group server **[NET IDs are established for each group, col. 16, lines 52-55; thus, this is interpreted as part of identifying the CUG group's NET ID].**

95. With regard to claim 23, Sigler et al. discloses a server system for providing a packet mode group communication service for a communications system, said server system comprising at least one group server providing group specific communications functions **[group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25],** said group server further comprising
a mechanism which controls that only one group member in a group talks at a time **[col. 19, lines 65-67, only one mobile can talk at a time; col. 19, lines 60-65],**
a mechanism which checks active group members in a group to which voice packets from a currently talking group member is destined to and generates from an incoming voice packet an outgoing packet to be forwarded separately to each of said active group members **[col. 19, lines 60-65, the PTT SU request packet allows voice packets to be forwarded to the CUG],**

a user server providing user-specific communications functions on a user plane
[this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14],

said user server further comprising a mechanism which identifies and authenticates a source of group communication **[col. 26, lines 54-67]**,

a mechanism which selects from possible multiple incoming traffic streams destined to one group member the one which is to be forwarded to said one group member **[one mobile can be the recipient of a priority message while in the midst of receiving “regular” voice traffic, thereby receiving the priority stream over the “regular” stream, priority contention, col. 9, lines 46-51, col. 36, lines 45-49].**

96. With regard to claim 24, Sigler et al. discloses a group call processing server provided on top of the said communications system, said group call processing server being responsible for control plane management of the group communications in said group server **[NCC, col. 1, lines 27-34]**, and

a user call processing server provided on top of said communications system, said user call processing server being responsible for control plane management of the communications in said user server **[this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14].**

Art Unit: 2616

97. With regard to claim 25, Sigler et al. discloses a first timer responsive to said granting the start of the measurement of a predetermined idle period from said granting [setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22],

a mechanism resetting said first timer each time a voice packet is received from one group member having said granted speech item [if voice packets are received, the loss of speaker status timer is reset, col. 23, lines 19-22],

a mechanism ending said granted speech item if said first timer expires indicating that said predetermined idle period has elapsed from said granting or from the last reception of a voice packet from said one group member [setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22].

98. With regard to claim 26, Sigler et al. discloses a mechanism establishing an individual logical connection between each group member and said user server by means of outband signaling carried out between said user call processing server and each group member [NET IDs are established for each group, col. 16, lines 52-55; GC-S and FEC-S channels are signaling channels, col. 18, lines 43-45, col. col. 22, lines 37-39], and wherein said mechanism which manages that only one group member in a group talks at a time further comprises

Art Unit: 2616

a mechanism receiving a request for a speech item in said group from one of said group members to said group server over respective said individual logical connection, said request being in form of a leader packet containing identifier of the respective group member [**push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65**, a mechanism that either i) rejects said request for a speech item, or ii) grants the speech item to said one group member and forwards said leader packet and subsequent voice packets individually to each receiving one of said other members in said group [**the mobile's ID from the SU is sent to the other CUG members, Fig. 25; col. 17, lines 38-45**]..

99. With regard to claim 27, Sigler et al. discloses that the voice packets are VOIP packets [**it is inherent that the packets being sent would VOIP packets, if the packets were, in fact, IP or TCP/IP packets**].

100. With regard to claim 28, Sigler et al. discloses a group management server providing a user interface for a remote creation and management of group communications group in said server system [**NCC, col. 1, lines 27-34**].

101. With regard to claim 29, Sigler et al. discloses that the user interface is based on one of the World Wide Web and Wireless Application Protocol (WAP) technologies [**is inherent that the user interface would have been a wireless protocol, see also col. 35-40**].

102. With regard to claim 30, Sigler et al. discloses that the group server is interconnected to said mobile communications network by an Internet Protocol (IP) based network
[communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25].

103. With regard to claim 31, Sigler et al. discloses a server system for providing a packet mode group communication service for a communications system, said server system comprising at least one group server providing group specific communications functions in a user plane
[group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25], said group server further comprising a data memory storing individual addresses of group members in at least one group communication group
[Fig. 3, data hub], a mechanism receiving voice packets from said group members, each received voice packet containing information identifying the communication group which the respective packet is addressed to
[the voice calls to and from members of the CUG are collected at the FES, col. 21, lines 48-50; col. 23, lines 54-60, push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

a mechanism for granting a speech item to one group member per communication group in turn [push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

a mechanism unicasting each voice packet received from said group member having a speech item in a group communication group separately to each receiving member in said respective group communication on the basis of said individual addresses

[this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14],

a user server providing user-specific communications functions on a user plane, any group related communication from a user managed by said user server being routed first to said user server and then forwarded to an appropriate group server, and any unicast voice packet from said at least one group server being routed first to said user server prior to sending the voice packet to the respective user [this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; private point-to-point communications, col. 7, lines 11-14],

a group call processing server responsible for control plane management of the group communications in said group server [NCC, col. 1, lines 27-34], and

a user call processing server responsible for control plane management of the communications in said user server [this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14].

104. With regard to claim 32, Sigler et al. discloses a device of managing speech items in a communications system having a packet mode group voice communication feature [group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25], comprising

a mechanism granting a speech item to one group member in group communication group at time [push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

a first timer responsive to said granting for starting to measure a predetermined idle period from said granting [setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22],

a mechanism resetting said first timer each time a voice packet is received from said one of said group members [if voice packets are received, the loss of speaker status timer is reset, col. 23, lines 19-22],

a mechanism ending said granted speech item, if said first timer expires indicating that said predetermined idle period has elapsed from said granting or from last reception of a voice packet from said one group member [**setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22**].

105. With regard to claim 33, Sigler et al. discloses a device for managing traffic streams addressed to a user who is active in at least one group communication group or in one-to-one communication in a mobile communications system having a packet mode group voice communication feature [**group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25**], said device comprising

a first mechanism capable of receiving at least two voice packet streams related to at least two group or one-to-one communications [**one mobile can be the recipient of a priority message while in the midst of receiving “regular” voice traffic, thereby receiving the priority stream over the “regular” stream, priority contention, col. 9, lines 46-51, col. 36, lines 45-49**],

Art Unit: 2616

a second mechanism monitoring continuity of said forwarded voice packet streams, said first mechanism forwarding no other one of said received voice packet streams related to at least one further group or one-to-one communication, if said first voice packet stream is continuous [no voice is transferred after the lost speaker status timer times out—meaning a continuous voice packet stream, col. 24, lines 12-16], and selecting and forwarding other one of said voice packet streams to said user if said previous selected and forwarded voice traffic stream has been discontinued for a predetermined period of time [lost speaker status timer will not time out as long as it receives a voice packet (meaning no continuous stream), thus, resetting the timer (col. 23, 19-22), interpreted as having at least one break in PTT, e.g., 3.5 sec, col. 24, lines 12-14].

106. With regard to claim 34, Sigler et al. discloses a device according to claim 33, wherein said monitoring mechanism further comprises

a timer which is set to measure said predetermined period of time when a first packet of said selected voice packet stream is forwarded to said user [setting the loss of status timer where the loss of speaker status timeout occurs if no voice packets are sent (idle), col. 23, lines 19-22],

a mechanism resetting said timer each time a new packet of said selected voice packet stream is forwarded to said user [if voice packets are received, the loss of speaker status timer is reset, col. 23, lines 19-22],

Art Unit: 2616

a mechanism determining said selected voice packet stream to be discontinued if said timer expires [lost speaker status timer will not time out as long as it receives a voice packet (meaning no continuous stream), thus, resetting the timer (col. 23, 19-22), interpreted as having at least one break in PTT, e.g., 3.5 sec, col. 24, lines 12-14].

107. With regard to claim 35, Sigler et al. discloses a device according to claim 33, said device further comprising a mechanism interrupting said first voice packet stream immediately when a voice packet stream having higher priority is received [priority contention, col. 9, lines 46-51, col. 36, lines 45-49].

108. With regard to claim 36, Sigler et al. discloses a method for establishing a one-to-one voice communication in a communications system, comprising

providing a communications server on top of a mobile communications system [group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25; this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14],

creating an individual logical connection between said communication server and each user having an active communication service in said communication server [NET IDs are established for each group, col. 16, lines 52-55; GC-S and FEC-S channels are signaling channels, col. 18, lines 43-45, col. col. 22, lines 37-39],

starting a communication by sending a leader packet from a *sending* user to said communication server over respective said individual logical connection, each leader packet containing *an* identifier of said sending user [**push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65]**] and

 said communication server either i) rejects said started speech item, or ii) grants the started speech item to said sending user and forwards said leader packet and subsequent voice packets to said receiving user on the basis of said received identifier of said receiving user [**the mobile's ID from the SU is sent to the other CUG members, Fig. 25; col. 17, lines 38-45**].

109. With regard to claim 37, Sigler et al. discloses inquiring an IP address of said receiving user, from a communication control server on the basis of said received identity of said receiving user, forwarding said leader packet and subsequent voice packets to said IP address of said receiving user [**col. 23, lines 54-60; push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65; it is inherent that the packet could be an IP packet (therefore including the IP address)**].

110. With regard to claim 38, Sigler et al. discloses that the sending user sends the leader packet and the subsequent packets to a specific port assigned for one-to-one communication in said communication server [**NET IDs are established for each group, col. 16, lines 52-55; thus, this is interpreted as part of identifying the NET ID**].

Art Unit: 2616

111. With regard to claim 39, Sigler et al. discloses a subscriber equipment for communications system having a packet mode group voice communication service, said subscriber equipment comprising mechanisms for packet data communication over said mobile a communications system, a group communication application on top of said mechanisms [group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25; this is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64; the user-server is further interpreted as a Base FEC, col. 4, lines 12-20; private point-to-point communications, col. 7, lines 11-14], said application having a mechanism establishing a logical packet connection to a group communication server , said application having a mechanism sending and receiving voice packets to and from said group communications server [NET IDs are established for each group, col. 16, lines 52-55; GC-S and FEC-S channels are signaling channels, col. 18, lines 43-45, col. col. 22, lines 37-39; mobile receives inbound and outbound channel assignments for the each group, col. 16, lines 62-65].

112. With regard to claim 40, Sigler et al. discloses

a push-to-talk switch [col. 19, line 52],
a mechanism which, reactive to activation of said push-to-talk switch by a user, sends a leader packet followed by voice packets to said logical connection and thereby starts a speech item [col. 23, lines 54-60; push-to-talk occurs and the group NET ID (as well as the mobile's ID) is sent along with the signaling unit (SU) packet, Fig. 25, col. 19, lines 43-65],

said mechanism, reactive to receiving an indication that a speech item is not granted to the user is received from said group communication server after sending said leader packet, stops sending further packets and stops the speech item although the push-to-talk switch is still activated [**the mobile's ID from the SU is sent to the other CUG members, Fig. 25; col. 17, lines 38-45**],

· said mechanism, reactive to deactivation of said push-to-talk switch by the user, stops the speech item and stops sending further voice packets [**sends a PTT release, col. 24, lines 18-24**].

113. With regard to claim 41, Sigler et al. discloses that the mechanism, reactive to deactivation of said push-to-talk switch by the user, sends a trailer packet to said group communication server over said logical connection and thereby stops the speech item [**sends a PTT release, col. 24, lines 18-24**].

114. With regard to claim 42, Sigler et al. discloses that the indication is a reception of a voice or leader packet originating from another user in a group communication group after sending said leader packet [**priority contention, col. 9, lines 46-51, col. 36, lines 45-49**].

115. With regard to claim 43, Sigler et al. discloses that the indication is the reception of a voice packet having predetermined payload type after sending said leader packet [**priority contention, col. 9, lines 46-51, col. 36, lines 45-49**].

Art Unit: 2616

116. With regard to claim 44, Sigler et al. discloses that the mechanism, which in response to the reception of said indication, alerts the user of the fact the speech item was not granted [indicates call failure to user, col. 24, line 58].

117. With regard to claim 45, Sigler et al. discloses that the mechanism, reactive to deactivation of said push-to-talk switch by the user, sends a trailer packet to said group communication server over said logical connection and thereby stops the speech item [sends a PTT release, col. 24, lines 18-24].

118. With regard to claim 46, Sigler et al. discloses that the equipment further comprising a mechanism giving an audible indication to the user start speaking after the activation of said push-to-talk switch [tone, col. 16, line 65-67].

119. With regard to claim 47, Sigler et al. discloses that the indication mechanism comprises a timer enabling said audible indication after a predetermined period of time has expired from said activation of said push-to-talk switch [indicates stop of transmission, col. 23, line 39-41].

120. With regard to claim 48, Sigler et al. discloses that the indication mechanism gives said audible indication after one of the connection setup phases has been reached: 1) after an uplink bearer has been allocated, 2) after said leader packet has been sent, 3) after said group communication server has processed said leader packet and granted a speech item, 4) after a

receiving party has acknowledged said leader packet [is inherent that audible indications occur for a trunking system; *see also* claims 46 and 47 above].

Response to Arguments

121. Applicant's arguments filed October 24, 2006 have been fully considered but they are not persuasive.

122. Applicant's representative states that, although the claims do not claim the features associated with a packet-switched network, that each claim defines a packet mode group voice communication, and apparently, that this means a packet-switched network [Pre-Appeal Conference Request dated October 24, 2006, page 1, paragraph 3]. Applicant's representative further states that since the packets have an identifier [address], this must apparently mean that the system is packet-switched [Pre-Appeal Conference Request dated October 24, 2006, page 1, paragraph 3]. The examiner respectfully disagrees.

123. As a recap [as stated in the rejection for claim 1], the Sigler et al. discloses a communications system, which discloses voice *packets*. Vocoded voice over transmission frames is interpreted as *packets*. Examples of other packets used in/with the network disclosed in Sigler et al. are the LAN/WAN that the NOC communicates with (col. 3, line 64 to col.4, line 3) as well as IP and TCP/IP listed in the glossary (col. 44, line 54 and col. 49, line 25). Moreover, Sigler et al. discloses that the background technical art provides for *packet-switched*

data transfer which could be used by those of ordinary skill in the art for Voice over IP packets over the public switched packet network (**col. 2, lines 10-15**). The system provides for call-monitoring of packets over the FES-C and conditions for timeout for non-receipt of voice *packets*, as well (**col. 22, line 55 to col. 23, line 22**).

124. Moreover, the examiner interprets applicant's representative's arguments to mean that Sigler does not disclose a packet-switched network which transports voice packets such as Voice over IP. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., a packet-switched network, packet-switched voice packets, VOIP, etc.) are not recited in the rejected claims. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

125. Applicant's representative argues that voice over transmission frames are not packets and that considering them packets is contrary to the common terminology in the art of data communications [**Pre-Appeal Conference Request dated October 24, 2006, page 2, paragraph 2**]. Applicant's representative further asserts that Sigler et al. discloses TDMA frames and that such frames are incapable of being considered packets [**Pre-Appeal Conference Request dated October 24, 2006, page 2, paragraph 3**]. Applicant's representative also asserts that Sigler et al.'s voice packets have nothing to do with packet switching [**Pre-Appeal**

Art Unit: 2616

Conference Request dated October 24, 2006, page 2, paragraph 4]. The examiner respectfully disagrees.

126. Data packets are well known to those of ordinary skill in the art. Moreover, as stated above, Sigler et al. is interpreted to contain voice packets. Those of ordinary skill in the art also consider cells, packets, and frames as synonymous terms for data sent in packet-like formats in CDMA, TDMA, and OFDMA, as well as via IP or ATM networks. They are distinguished when making specific definitions [how many cells in a frame, how many packets in a frame, how many frames in a superframe, etc.]. And, as stated above for claim 1, Sigler et al. discloses that the background technical art provides for *packet-switched* data transfer which could be used by those of ordinary skill in the art for Voice over IP packets over the public switched packet network (**col. 2, lines 10-15**).

127. Applicant's representative states that Sigler's WAN/LAN uses packets to communicate with the NOC but argues that such packet communication is not the same as "packet mode voice" communication [and, apparently, applicant's representative means that the claimed system is a packet-switched system without *claiming* a packet-switched system] **[Pre-Appeal Conference Request dated October 24, 2006, page 2, paragraph 3].** The examiner respectfully disagrees.

128. The examiner interprets applicant's representative's arguments to again argue that Sigler does not disclose a packet-switched network which transports voice packets such as Voice over

Art Unit: 2616

IP. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., a packet-switched network, packet-switched voice packets, VOIP, etc.) are not recited in the rejected claims. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

129. Applicant's representative acknowledges that Sigler teaches a mobile data service which provides a packet-switched connection between a data terminal equipment and a mobile terminal wherein the mobile data supports integrated voice/data operation [Pre-Appeal Conference Request dated October 24, 2006, page 2, paragraph 6 to page 3, paragraph 1]. Applicant's representative argues that Sigler et al. fails to teach or suggest packet-switching as a solution for providing group communication [Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 1]. The examiner respectfully disagrees.

130. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., packet-switching as a solution to group communication) are not recited in rejected claim 1. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

Art Unit: 2616

131. Applicant's representative argues that Sigler et al. fails to teach or suggest call monitoring of packets [Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 2].

Specifically, that Sigler et al. relates to TDM transmissions and not packet-switched transmissions [Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 2].

2]. The examiner respectfully disagrees.

132. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., call-monitoring of packet-switched voice packets) are not recited in rejected claim 1. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

Additionally, as stated above, Sigler et al. discloses that the background technical art provides for *packet-switched* data transfer which could be used by those of ordinary skill in the art for Voice over IP packets over the public switched packet network (col. 2, lines 10-15).

133. Applicant's representative argues that the group controller of Sigler et al. only allocates/de-allocates connections for calls and, also, is only a controlling element, but not a party in the voice communication [and, apparently, that the claimed invention provides this feature] [Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 3].

134. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., group

Art Unit: 2616

controller which is a party to the voice communication) are not recited in rejected claim 1.

Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

135. Applicant's representative further argues that the NOC and GC are not on top of the communication system but are elementary parts of the communication system [**Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 3**]. Moreover, applicant's representative argues that the NOC and GC do not provide the functionality of the claimed invention [**Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 4**].

The examiner respectfully disagrees.

Art Unit: 2616

136. First, in response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., NOC and GC being physically "on top" or the NOC and GC providing other functionalities than what is currently claimed) are not recited in rejected claim 1. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Second, the terminology "on top", was not interpreted by the examiner as a physical limitation. The examiner, with reference to Sigler et al., interpreted it as a group server [the combination of the NOC (col. 3, line 9-21) and the Group Controller, col. 5, lines 49-64] on top of a communications system [group communication (trunking, col. 16, lines 4-6) in a network over multiple networks, e.g. LAN/WAN, e.g., col. 3, line 64 to col. 4, line 3; which include IP and TCP/IP, col. 44, line 54 and col. 49, line 25] as stated in the rejection of claim 1. Third, Sigler et al. discloses the claimed functionality *as claimed* in claim 1. Fourth, As stated for rejected claim 3 above, the group server is interpreted as the combination of the NOC (col. 3, line 9-21) and the Group Controller (col. 5, lines 49-64) which provides the function of providing the addresses of each member in the Closed User Group to each member (col. 6, lines 56-60), after it is set up, (col. 16, lines 37-39). The NOC manages and controls the resources of the satellite network system (thus, on top of the network) and carries out the administrative functions of the total satellite network system [col. 3, lines 64-67]. The Group Server, situated under the NOC (via the NCC), provides the control functionality of the CG database received from the NOC [col. 5, lines 49-52].

Art Unit: 2616

137. Applicant's representative argues that no PTT message is sent from the mobile terminal to the NOC and that a channel request is sent to the GC via a signaling message instead [Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 4]. The examiner found no corresponding limitation in claim 1. Therefore, the examiner will assume that applicant's representative means to address rejected claim 3. The examiner respectfully disagrees.

138. The cited passage in Sigler et al. discloses that a signaling unit (SU) [to get access] is transmitted (along with the mobile's ID) with the intent of requesting the assignment of a channel to the selected NET ID, subject to availability of resources [col. 19, lines 43-65]. IF the NET ID is active and the active speaker ID is vacant, then the PTT signaling unit (SU) is sequenced by the mobile terminal, followed by voice frames using the MET Call Supervision Procedure [*See Id.*]. The MET call supervision procedure discloses that the MET-C channel is accessed using the PTT signaling unit (SU) wherein the PTT signaling unit (SU) includes the user's DN and NET ID [col. 23, lines 54-60].

139. Applicant's representative asserts that the characterization that the NOC and GC provide stream management is erroneous [Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 5 to page 4, paragraph 2]. Specifically, applicant's representative states that the NOC and GC are not user-specific servers, but rather general control elements, which receive no voice packet streams, or forward packet streams to users [Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 5 to page 4, paragraph 2]. Applicant's

representative then states that Sigler et al. discloses, apparently, that the GC is not involved in the requesting or granting of channels/slots for voice communication [since the FES provides a circuit-switched gateway] **[Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 5 to page 4, paragraph 1]**. Finally, Applicant's representative states, apparently, that the GC is not involved in actual packet-switched voice communications **[Pre-Appeal Conference Request dated October 24, 2006, page 3, paragraph 5 to page 4, paragraph 1]**.

The examiner found no corresponding limitation in claim 1. Therefore, the examiner will assume that applicant's representative means to address rejected claim 3. The examiner respectfully disagrees.

140. First, in response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., stream management or user-specific servers) are not recited in rejected claim 3. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). Second, rather than use one entire switch per individual connection, Sigler et al. does, in fact, disclose consolidating different connections *at the satellite switch* in order to obtain cost-savings **[col. 7, lines 2-10]**. However, as stated in the rejection for claim 3, Sigler et al. discloses that Group Server, situated under the NOC (via the NCC), provides the control functionality of the CG database received from the NOC **[col. 5, lines 49-52]**. There must *necessarily* be a logical connection between each individual mobile and the Group server in the satellite communications system [e.g., when each mobile is situated at different physical locations].

141. More importantly, the examiner interprets that Applicant's representative means to again argue that Sigler et al. fails to provide either a virtual circuit/path (VC/VP using ATM packets) or a high priority connection using DiffServ IP packet priority (although this is *not* a virtual connection/path) between each mobile and the group server in a *packet-switched network*. In response to applicant's previous argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., VCs/VPs or, for example, DiffServ packet priority for each mobile-to-group server connection in a *packet-switched network*) are not recited in the rejected claims. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

142. Applicant's representative argues that outband signaling is used for creating individual logical connections from each group member to the group server, and, more importantly, that that there are no logical connections between the group controller and the group members in Sigler et al. [Pre-Appeal Conference Request dated October 24, 2006, page 4, paragraph 3]. Specifically, Applicant's representative argues that the logical connections in Sigler et al. are used for sending a leader packet, and not for creating a logical connection [Pre-Appeal Conference Request dated October 24, 2006, page 4, paragraph 3]. Applicant's representative restates a previous argument [about being packet-switched] by arguing the alternative for Sigler et al. [that it is circuit-switched] [Pre-Appeal Conference Request dated October 24, 2006, page 4, paragraph 3]. The Examiner respectfully disagrees.

143. As stated in the rejection for rejected claim 3, Sigler et al. discloses that Group Server, situated under the NOC (via the NCC), provides the control functionality of the CG database received from the NOC [col. 5, lines 49-52]. There must *necessarily* be a logical connection between each individual mobile and the Group server in the satellite communications system [e.g., when each mobile is situated at different physical locations].

144. Sigler et al. discloses that a signaling unit (SU) [to get access] is transmitted (along with the mobile's ID) with the intent of requesting the assignment of a channel to the selected NET ID, subject to availability of resources [col. 19, lines 43-65]. IF the NET ID is active and the active speaker ID is vacant, then the PTT signaling unit (SU) is sequenced by the mobile terminal, followed by voice frames using the MET Call Supervision Procedure [*See Id.*]. The MET call supervision procedure discloses that the MET-C channel is accessed using the PTT signaling unit (SU) wherein the PTT signaling unit (SU) includes the user's DN and NET ID [col. 23, lines 54-60]. Getting access is *necessarily* a part of establishing a logical connection.

145. The examiner interprets that Applicant's representative means that Sigler et al. fails to provide either a virtual circuit/path (VC/VP using ATM packets) or a high priority connection using DiffServ IP packet priority (although this is *not* a virtual connection/path) between each mobile and the group server in a *packet-switched network*. In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., VCs/VPs or, for example, DiffServ packet priority for

each mobile-to-group server connection in a *packet-switched network*) are not recited in the rejected claims. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

146. Applicant's representative argues that claim 8 discloses a user-specific server that receives at least one further voice packet stream related to at least one further group or one-to-one communication and does not forward [filters off] the at least one further voice packet stream to the user of the first voice packet data stream [**Pre-Appeal Conference Request dated October 24, 2006, page 4, paragraph 4 to page 5, paragraph 1**].

147. The examiner has not interpreted *not forwarding* a packet as *filtering off* a packet. The filtering function has a causal relationship with the forwarding function such that the filtering function ultimately ends up with either forwarding or not forwarding a packet. Thus, in response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., providing filtering off packets to *two or more groups*) are not recited in the rejected claims. Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

Art Unit: 2616

148. In the alternative, as stated above [claim 3], Sigler et al. discloses not forwarding another packet stream when no voice is transferred, after the lost speaker status timer times out—wherein the first conversation is interpreted as a continuous voice packet stream, [col. 24, lines 12-16]. Otherwise, Sigler et al. forwards the second packet stream to the user if the first stream has been discontinued for a predetermined period of time because the lost speaker status timer will not time out as long as it receives a voice packet (meaning no continuous stream), resetting the timer [col. 23, 19-22]—this is interpreted as having at least one break in PTT [e.g., 3.5 sec, col. 24, lines 12-14].

Conclusion

149. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mark A. Mais whose telephone number is 572-272-3138. The examiner can normally be reached on M-Th 5am-4pm.

150. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Seema Rao can be reached on 571-272-3174. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2616

151. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

MAM

February 18, 2007

WELLINGTON CHIN
EXAMINER