

i-VisionGroup

文献分享

范博昊

Non-local Neural Networks

□ 非局部网络

Non-Local Networks [Wang et al, CVPR'2018]

non-local block

Non-local与全连接 的区别在于其权重 和特征值有关

归一化:将softmax 替换成了N,也就是 求解的总个体数

Local Relation Networks for Image Recognition

Local Relation Networks for Image Recognition

stage	output	ResNet-50	LR-Net-50 (7×7, m=8)			
res1	112×112	7×7 conv, 64, stride	1×1, 64 7×7 LR, 64, stride 2			
res2	56×56	3×3 max pool, stride	3×3 max pool, stride 2			
		1×1, 64		[1×1, 100]		
		3×3 conv, 64	$\times 3$	$ 7 \times 7 \text{ LR}, 100 \times 3$		
		1×1, 256		1×1, 256		
res3	28×28	1×1, 128		[1×1, 200]		
		3×3 conv, 128	$\times 4$	7×7 LR, 200 $\times4$		
		1×1,512		1×1,512		
res4	14×14	1×1, 256		[1×1, 400]		
		3×3 conv, 256	×6	7×7 LR, 400 $\times6$		
		1×1, 1024		1×1, 1024		
res5	7×7	1×1,512		[1×1, 800]		
		3×3 conv, 512	$\times 3$	$7 \times 7 LR, 800 \times 3$		
		1×1, 2048		1×1, 2048		
	1 v 1	global average pool		global average pool		
	1×1	1000-d fc, softmax	(1000-d fc, softmax		
# params		25.5×10^6	23.3 ×10 ⁶			
FLOPs		4.3 ×10 ⁹	4.3 $\times 10^9$			

Learning Region Features for Object Detection

$$w_k(b, p, \mathbf{x}) \propto \exp(G_k(b, p) + A_k(\mathbf{x}, p)).$$

End-to-End Object Detection with Transformers

C*H*W->d*H*W->d*HW

FFN->center+bbox+class

Relation Networks for Object Detection

Geometry feature f_G + Image feature f_A ->Relation feature f_R

$$\mathbf{f}_{R}(n) = \sum_{m} \omega^{mn} \cdot (W_{V} \cdot \mathbf{f}_{A}^{m}) \qquad \omega^{mn} = \frac{\omega_{G}^{mn} \cdot \exp(\omega_{A}^{mn})}{\sum_{k} \omega_{G}^{kn} \cdot \exp(\omega_{A}^{kn})}$$

$$\omega_A^{mn} = \frac{dot(W_K \mathbf{f}_A^m, W_Q \mathbf{f}_A^n)}{\sqrt{d_k}} \qquad \omega_G^{mn} = \max\{0, W_G \cdot \mathcal{E}_G(\mathbf{f}_G^m, \mathbf{f}_G^n)\}$$

Relation Networks for Object Detection

backbone	test set	mAP	mAP_{50}	mAP_{75}	#. params	FLOPS
faster RCNN [38]	minival	$32.2 \rightarrow 34.7 \rightarrow 35.2$	$52.9 \rightarrow 55.3 \rightarrow 55.8$	34.2→37.2→ 38.2 34.7→37.8→ 38.5	58 3M_\64 3M_\64 6M	$122.2B \rightarrow 124.6B \rightarrow 124.9B$
laster RCIVIV [56]	test-dev	$32.7 \rightarrow 35.2 \rightarrow 35.4$	$53.6 {\rightarrow} \textbf{56.2} {\rightarrow} 56.1$	$34.7 \rightarrow 37.8 \rightarrow 38.5$	36.3IVI 704.3IVI 704.0IVI	
FPN [32]	minival	$36.8 \rightarrow 38.1 \rightarrow 38.8$	$57.8 \rightarrow 59.5 \rightarrow 60.3$	$40.7{\rightarrow}41.8{\rightarrow}\textbf{42.9}$	56 4M→62 4M→62 8M	145.8B→157.8B→158.2B
111 [52]	test-dev	$37.2 \rightarrow 38.3 \rightarrow 38.9$	$58.2 \rightarrow 59.9 \rightarrow 60.5$	$41.4{\rightarrow}42.3{\rightarrow}\textbf{43.3}$	30.4W1~702.4W1~702.6W1	143.0D-7137.0D-7130.2D
DCN [10]				$41.0{\rightarrow}41.3{\rightarrow}\textbf{42.0}$		$125.0B \rightarrow 127.4B \rightarrow 127.7B$
DCN [10]	test-dev	$38.1 \rightarrow 38.8 \rightarrow 39.0$	$58.1{\rightarrow} \textbf{58.7} {\rightarrow} 58.6$	$41.6{\rightarrow}42.4{\rightarrow}\textbf{42.9}$	00.5101-700.5101-700.6101	123.0D-7127.4D-7127.7D

Table 5. Improvement (2fc head+SoftNMS [4], 2fc+RM head+SoftNMS and 2fc+RM head+e2e from left to right connected by \rightarrow) in state-of-the-art systems on COCO *minival* and *test-dev*. Online hard example mining (OHEM) [40] is adopted. Also note that the strong SoftNMS method ($\sigma = 0.6$) is used for duplicate removal in non-e2e approaches.

