기계합品等等 CU HW#2 2015-15284 是千号

I Hough Transform Line Parameterization

1.
$$P = x \cos \theta + y \sin \theta = \sqrt{x^2 y^2} \sin (\theta + \phi)$$

where $\cos \phi = y / \sqrt{x^2 y^2}$
 $\sin \phi = x / \sqrt{x^2 y^2}$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \theta r \, d\omega r \leq \int_{-\infty}^{\infty} \int_{-\infty$$

In
$$\int_{-\pi}^{\pi} \cos\theta r \, d\omega r \leq 1$$
 (" conservation of energy)

hemisphere

LHS= $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} \int_{\pi}^{2\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \int_{0}^{2\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, \sin\theta_{r} \, d\phi_{r} \, d\theta_{r} = \int_{0}^{\pi} \frac{1}{\pi} \cdot \cos\theta_{r} \, d\phi_{r} \, d\phi$

$$\frac{2}{Ef} = L \frac{d^{2} p_{r}}{(dA \cos \theta_{r}) d\omega_{r}} \Rightarrow Ef \cos \theta_{r} = \frac{d^{2} p_{r}}{dA d\omega_{r}}$$
it chould be uniform

it should be uniform

$$=) f = \frac{k}{\cos \theta_r} \left(k = const \right)$$

Conservation of E

$$\int \frac{K}{\cos \theta r} \cdot \cos \theta r \cdot d\theta r = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} k \sin \theta r \, d\theta r \, d\theta r$$

where is phore
$$= 2\pi k = P$$

$$- \cdot k = \frac{P}{2\pi} \qquad f = \frac{P}{2\pi \cos \theta r}$$

$$P = \frac{\cos \theta i}{\cos \theta r} \left(\text{surface normally incident direction} \right)$$

$$\cos \theta r = 1/\sqrt{1+p^{2}q^{2}} \qquad \cos \theta i = 1/\sqrt{1+p$$

3. Carnera (althration)

Very column \leq of R^n of orthonormal basts $\Rightarrow f = a_1 v_1 + \cdots + a_n v_n$ where $a_1^2 + \cdots + a_n^2 = 1$, v_1, v_2, \cdots, v_n are

column of V. $Ap = a_1 \sigma_1 v_1 + \cdots + a_n \sigma_n v_n$ $\|Ap\|^2 = a_1^2 \sigma_1^2 + \cdots + a_n^2 \sigma_n^2 = \sigma_n^2$ $\Rightarrow a_1^2 \sigma_n^2 + \cdots + a_n^2 \sigma_n^2 = \sigma_n^2$ $\Rightarrow a_1^2 \sigma_n^2 + \cdots + a_n^2 \sigma_n^2 = \sigma_n^2$ $\Rightarrow a_1^2 \sigma_n^2 + \cdots + a_n^2 \sigma_n^2 = \sigma_n^2$ $\Rightarrow a_1^2 \sigma_n^2 + \cdots + a_n^2 \sigma_n^2 = \sigma_n^2$ $\Rightarrow a_1^2 \sigma_n^2 + \cdots + a_n^2 \sigma_n^2 = \sigma_n^2$ $\Rightarrow a_1^2 \sigma_n^2 + \cdots + a_n^2 \sigma_n^2 = \sigma_n^2$

1 1 Tuck for for 1700 Deposition
4. Mough Transform for line belection
2. non maximum suppression?
non Maximum Suppression 35501 725101 21Ct.
Im, Lo是 input c3 Sort
Ing 对型键 Io 智 发码 对型设计
비교하어 (의상을 통해) 된 중 하나라고
제상 적선 값보다 크다면 제상 직설 값을 0.03
비골CV,
4874 22
Im = non Maximum Suppression (Im, Io)
Ing Hough Transform oil In put으로 ライゼッ/
Edge Detection of My Im, Iozi & &M
NMS 豈智哉.
3, sigma = 2
threshold=0-1
rho Res = 2
theta Res = 7/180 maximum 2
n Lines = 20
4. H에서의 직찍의 같이 성하가 27124 문기
4. H에서의 픽렉의 같이 성하각의 2개24 문기 탄밀, 2경거 않다면 0으로 값비용, Soptimal

img02

img03

img04

img01

img02

img03

img04

HoughLines

img02

img04

HoughLineSegments

img02

img04

