CS 258: Quantum Cryptography (Fall 2025) Homework 3 (100 points)

1 Problem 1 (30 points)

In class, for a matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, m > n, we defined the lattices

$$\Lambda_q^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{A} \cdot \mathbf{x} \bmod q = 0 \}$$
$$\Lambda_q(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^n : \exists \mathbf{r} \in \mathbb{Z}^n : \mathbf{x} = \mathbf{A} \cdot \mathbf{r} \bmod q \}$$

We said that $\Lambda_q^{\perp}(\mathbf{A})$ is spanned by the integer vectors in the kernel of \mathbf{A} as well as $q\mathbf{I}$. However, this is not a basis. Likewise, $\Lambda_q(\mathbf{A})$ is spanned by the rows of \mathbf{A} and $q\mathbf{I}$, but this is not a basis. Here, you will find explicit bases for these lattices.

Assume for simplicity that the first n columns of \mathbf{A} are linearly independent mod q. In general, we will always work in a regime where the some set of n columns are linearly independent with overwhelming probability. If they are not the first n columns, we can adjust the derivation below, but you are not required to do so.

Part (a). 10 points. Write $\mathbf{A} = (\mathbf{A}_0 | \mathbf{A}_1)$ where $\mathbf{A}_0 \in \mathbb{Z}_q^{n \times n}$ is full rank mod q. Define $\mathbf{A}' = \mathbf{A}_0^{-1} \mathbf{A}$ mod $q = (\mathbf{I}, \mathbf{A}_1')$ where $\mathbf{A}_1' = \mathbf{A}_0^{-1} \mathbf{A}_1$ mod q. Here, the inverse is taking mod q, so that $\mathbf{A}_0^{-1} \in \mathbb{Z}_q^{n \times n}$; this inverse exists by assumption that \mathbf{A}_0 is full rank mod q. Show that $\Lambda_q(\mathbf{A}') = \Lambda_q(\mathbf{A})$ and $\Lambda_q^{\perp}(\mathbf{A}') = \Lambda_q^{\perp}(\mathbf{A})$.

Part (b). 10 points. Show that the columns of

$$\begin{pmatrix} q\mathbf{I}_n & -\mathbf{A}_1' \\ 0 & \mathbf{I}_{m-n} \end{pmatrix}$$

form a basis for $\Lambda_q^{\perp}(\mathbf{A})$, where \mathbf{I}_k is the $k \times k$ identity matrix. To do so, show that the columns of this matrix are each in $\Lambda_q^{\perp}(\mathbf{A})$, and that any vector $\mathbf{x} \in \Lambda_q^{\perp}(\mathbf{A})$ can be written as an integer linear combination of the columns.

Part (c). 10 points. Show that the columns of

$$\left(\begin{array}{cc} \mathbf{I}_n & 0 \\ (\mathbf{A}_1')^T & q\mathbf{I}_{m-n} \end{array}\right)$$

form a basis for $\Lambda_q(\mathbf{A})$.

2 Problem 2 (30 points)

Let $\mathcal{L} \subseteq \mathbb{R}^n$ be a lattice, which we will assume to be full rank. The dual lattice, denoted \mathcal{L}^* , is defined as:

$$\mathcal{L}^* = \{ \mathbf{x} \in \mathbb{R}^n : \forall \mathbf{y} \in \mathcal{L}, \mathbf{x} \cdot \mathbf{y} \in \mathbb{Z} \}$$

That is, the inner product of any vector $\mathbf{x} \in \mathcal{L}^*$ with any vector $\mathbf{y} \in \mathcal{L}$ is an integer.

Part (a). 10 points Suppose $\mathcal{L} = \mathcal{L}(\mathbf{B})$ for some basis $\mathbf{B} \in \mathbb{R}^{n \times n}$ (\mathbf{B} is square since \mathcal{L} is assumed to be full rank). Show that $\mathcal{L}^* = \mathcal{L}(\mathbf{B}^{-T})$, where $\mathbf{B}^{-T} = (\mathbf{B}^{-1})^T = (\mathbf{B}^T)^{-1}$. [Hint: write any vector $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = \mathbf{B}^{-T} \cdot \mathbf{r}$ for a unique \mathbf{r} , which is possible since \mathbf{B} and hence \mathbf{B}^{-T} is full rank. If $\mathbf{r} \in \mathbb{Z}^n$ (meaning that $\mathbf{x} \in \mathcal{L}(\mathbf{B}^{-1})$, what is the inner product of \mathbf{x} with the elements of \mathcal{L} ? If $\mathbf{r} \notin \mathbb{Z}^n$, what is the inner product of \mathbf{x} with the elements of \mathcal{L} ?

Part (b). 10 points Show that $(\mathcal{L}^*)^* = \mathcal{L}$.

Part (c). 10 points Suppose you have a basis **B** for \mathcal{L} that is "short", in the sense that each column of **B** has norm at most σ . Here, you will see how to solve (approximate) CVP in \mathcal{L}^* .

Let \mathbf{y} be a vector that is "close" to \mathcal{L}^* , in the sense that there exist a short vector \mathbf{e} such that $\mathbf{u} = \mathbf{y} - \mathbf{e} \in \mathcal{L}^*$. In particular, assume that $|\mathbf{e}| < 1/2n\sigma$. Your goal is to compute \mathbf{u} , or equivalently \mathbf{e} .

To do so, compute $\mathbf{B}^T \mathbf{y}$, and use that $\mathbf{y} = \mathbf{u} + \mathbf{e}$. What happens if you round to the nearest integer? What happens if instead you remove the integer part (this is the same as reducing mod 1)? [Hint: recall that $|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| \times |\mathbf{b}|$]

3 Problem 3 (40 points)

The $S|LWE\rangle$ problem (S for "state") problem asks to compute s from the state

$$| au_{\mathbf{s}}\rangle := \sum_{\mathbf{e}} \sqrt{\Pr[\mathbf{e} \leftarrow D_{\sigma}^{m}]} |\mathbf{A}^{T} \cdot \mathbf{s} + \mathbf{e} \bmod q\rangle$$

Part (a). 10 points. Assume that **e** in the support of D_{σ}^{m} has support constrained to σm . Also, assume that there are no vectors of norm at most $2\sigma m$ in $\Lambda_{q}(\mathbf{A})$. Then show that the states $|\tau_{\mathbf{s}}\rangle$ for different $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ are orthogonal. Thus, the task of finding **s** from $|\tau_{\mathbf{s}}\rangle$ is at least information-theoretically possible.

Part (b). 10 points Show how to construct $|\tau_{\mathbf{s}}\rangle$ from \mathbf{s} efficiently. You may assume the ability to create Gaussian-weighted superpositions $\sum_{e} \sqrt{\Pr[e \leftarrow D_{\sigma}]} |e\rangle$, that D_{σ} has support only on integers of absolute value at most $\sigma\sqrt{m}$, and that $\sigma\sqrt{m} < q/2$.

Part (c). 10 points. Explain that if search LWE is easy, then $S|LWE\rangle$ is easy, for the same parameters q, n, m, σ .

Part (d). 10 points. Show that if it is possible to solve $S|LWE\rangle$ perfectly with parameter $\sigma = q/2\gamma$, then it is possible to solve SIS with parameter $\beta = \gamma m$ (these are the same parameters we saw in class for Regev's reduction). Concretely, you may assume that the the $S|LWE\rangle$ solver is a unitary mapping $|\tau_{\mathbf{s}}\rangle|\mathbf{y}\rangle$ to $|\tau_{\mathbf{s}}\rangle|\mathbf{y}+\mathbf{s} \bmod q\rangle$.

For this problem, you may assume the ability to construct Gaussian-weighted superpositions of arbitrary parameter γ such that $1 \ll \gamma \ll q$, that the support of such distributions constrained to "small" vectors as described above, and also the ability to construct the uniform superpositions over linear subspaces.

Remark 1. The above shows that $S|LWE\rangle$ is at least as hard as SIS, and that LWE is at least has hard as $S|LWE\rangle$. But it could be that $S|LWE\rangle$ is actually an easier problem than ordinary LWE. We know, under some loss in the parameters n, m, q, σ that $S|LWE\rangle$ and LWE are equivalent, but we do not know if they are equivalent for the exact same parameters.