

Ácidos Nucleicos

- São macromoléculas constituídas por nucleotídeos e que formam dois importantes componentes das células: o DNA e o RNA;
- Apresentam caráter ácido;
- São encontrados no núcleo da célula;
- A partir das moléculas de DNA e RNA que são sintetizadas as proteínas, as células se multiplicam e ainda ocorre o mecanismo de transmissão das características hereditárias;
- Também é importante na síntese de alguns carboidratos e lipídios e na regulação do metabolismo intermediário, ativando ou inibindo enzimas.

Ácidos Nucleicos

São substâncias orgânicas ácidas descobertas inicialmente no núcleo celular. Essas moléculas podem ser de dois tipos: **DNA** ou **RNA**.

O DNA carrega toda a informação genética dos seres vivos. Presente no núcleo.

O RNA é responsável pela síntese de proteínas das células do corpo. É encontrado no núcleo e no citoplasma celular.

Os ácidos nucleicos são formados por nucleotídeos, que são compostos por um ácido fosfórico (fosfato), um açúcar (pentose) e uma base nitrogenada.

Ácidos Nucleicos - estrutura

Nucleotídeo:

DNA – Ácido Desoxirribonucleico

- > Fita dupla ou dupla hélice;
- Pentose (açúcar): Desoxirribose;
- Bases nitrogenadas: Adenina (A) e Guanina (G) (<u>Púricas</u>); Timina (T) e Citosina (C) (<u>Pirimídicas</u>); <u>Púricas</u> = <u>Pirimídicas</u>;
- ➤ Ambas pareiam da seguinte forma: A T;C G.

Nucleotídeo de DNA

BASES PIRIMÍDICAS

1 ANEL

Citosina (C)

Timina (T)

Uracila (U)

2 ANÉIS

Adenina (A)

 NH_2

Guanina (G)

DNA

DNA em inglês ou **ADN** em português é a sigla de **Á**cido **D**esoxirribonucleico

- > Fita dupla ou dupla hélice;
- > Seu açúcar (pentose) é a desoxirribose;
- Bases nitrogenadas: as bases púricas (Adenina A e Guanina G) e as pirimídicas (Citosina C e Timina T); A-T e C-G;
- ➤ O DNA se destaca pela sua capacidade de autoduplicação. Esse processo é conhecido como replicação do DNA e se caracteriza por ser semiconservativo, pois o DNA formado nesse processo é composto por uma fita recém-formada e outra pertencente à molécula-mãe usada no processo.
- DNA Helicase: separa as duas fitas;
- ➤ DNA Polimerase: enzima que catalisa a formação de cadeias de DNA usando as cadeias separadas como molde. Atuam no terminal 3' da cadeia molde e só replicam na direção 5'-3';
- ➤ DNA ligase é uma enzima de adesão de DNA. Se dois pedaços de DNA tiverem terminações complementares, a ligase pode ligá-las para formar uma molécula de DNA única e continua.

RNA – Ácido Ribonucleico

- > Fita simples;
- Pentose (açúcar): Ribose;
- Bases nitrogenadas: Adenina (A) e Guanina (G) (Púricas); Uracila (U) e Citosina (C) (Pirimídicas);
 Púricas Pirimídicas;
- ➤ Ambas pareiam da seguinte forma: A U; T A; C – G;
- ➤ No RNA não existe Timina (T).

RNA

RNA em inglês ou ARN em português é a sigla de Ácido Ribonucleico

- ✓ Fita simples ou única;
- ✓ Seu açúcar (pentose) é a ribose;
- ✓ Bases nitrogenadas: as bases púricas (Adenina - A e Guanina - G) e as pirimídicas (Citosina – C e Uracila - U); A-U, C-G e T-A, pois não existe Timina – T no RNA;
- A síntese de RNA também ocorre a partir de uma molécula de DNA, que é usada como Transcription molde em um processo conhecido como transcrição. Nesse processo, a principal enzima responsável por desencadear a reação é a chamada RNA-polimerase.

Ligações

- Ligações entre as <u>bases nitrogenadas</u>:
 Pontes de hidrogênio → A T (2 ligações) e C G (3 ligações);
- Ligações entre o Fosfato (P) e a Pentose: Fosfodiéster (covalente);
- Fitas são antiparalelas 5′- 3`e 3`- 5`.

Tipos de RNA

- RNA Ribossômico (RNAr): recebe esse nome pois é o principal constituinte dos <u>ribossomos</u>. Ele possui o maior peso, sendo o <u>principal responsável pela</u> <u>síntese de proteínas</u>;
- RNA Mensageiro (RNAm): junto ao RNA ribossômico, ele auxilia na síntese de proteínas, orientando a ordem dos aminoácidos para a formação da proteína. Ele é responsável por levar do núcleo celular até o citoplasma as informações genéticas recebidas do DNA. Seu peso é menor que o RNA ribossômico;
- RNA Transportador (RNAt): seu nome já indica que sua função é <u>transportar as</u> moléculas de <u>aminoácidos que serão utilizados na síntese de proteínas. Ele transporta essas moléculas até os ribossomos</u>, local em que se unem e formam as proteínas. Comparado com os outros, este possui o menor peso.

RNAr: montagem e composição dos ribossomos; RNAm: define a sequência de aminoácidos na proteína; RNAt: transporte de aminoácidos aos ribossomos.

Transcrição e Tradução

DNA

Transcrição e Tradução

Código Genético

Primeira	Segunda base				Terceira
base	U	C	A	G	base
U	UUU Fen UUA Leu	UCU UCC UCA UCG	UAU TIR UAC Fim	UGU UGC Cis UGAFim UGGTrp	U C A G
С	CUC CUA CUG	CCU CCA CCG	CAU CAC His CAA GIn	CGU CGC CGA CGG	U C A G
A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lis	AGU AGC AGA AGG	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG Glu	GGU GGC GGA GGG	U C A G

Met: Metionina – códon inicial da transcrição

LEGENDA

Ala = alanina

Arg = arginina

Ans = asparagina

Asp = ácido aspártico

Glu = ácido glutâmico

Cis = cisteína

Fen = fenilalanina

Gli = glicina

GIn = glutamina

His = histidina

lle = isoleucina

Leu = leucina

Lis = lisina

Met = metionina

Pro = prolina

Ser = serina

Tir = tirosina

Tre = treonina

Trp = triptofano

Val = valina

Código genético

Exercícios em dupla

1-) Os itens abaixo referem-se à estrutura, composição e função dos ácidos nucleicos.

Estrutura: I) Dupla hélice; II) Cadeia simples.

Composição: 1) Presença de uracila; 2) Presença de timina.

Função: a) síntese de proteínas; b) transcrição gênica.

São características do ácido ribonucleico:

- a) II 2 b
- b) II 1 a
- c) 1 2 b
- d) 1 1 a
- e) II 1 b

2-) No esquema abaixo sobre a estrutura do DNA, os números 1, 2 e 3 representam, respectivamente:

- a) Base nitrogenada, desoxirribose e fosfato;
- b) Base nitrogenada, fosfato e desoxirribose;
- c) Desoxirribose, fosfato e base nitrogenada;
- d) Fosfato, base nitrogenada e desoxirribose;
- e) Fosfato, desoxirribose e base nitrogenada.

3-) Assinale a alternativa que contém as palavras que completam a frase abaixo:
Existem cinco tipos principais de bases nitrogenadas: adenina,, citosina, e uracila. As duas primeiras possuem um duplo anel de átomos de carbono e derivam de uma substância chamada, sendo, por isso denominadas bases
a) Timina, guanina, púricas, pirimídicas.
b) Timina, guanina, pirimidina, púricas.
c) Timina, guanina, pirimidina, púricas.
d) Guanina, timina, purina, púricas.
e) Guanina, timina, purina, pirimidina.

- **4-)** Assinale a alternativa incorreta:
- a) O nome ácido nucleico indica que as moléculas de DNA e RNA são ácidas e foram identificadas, a princípio, no núcleo das células.
- b) O DNA é encontrado no núcleo, formando os cromossomos e parte dos nucléolos, e também em pequena quantidade na mitocôndria e no cloroplasto.
- c) O ácido ribonucleico é encontrado no nucléolo, nos ribossomos, no citosol, nas mitocôndrias e nos cloroplastos.
- d) As bases existentes na molécula de DNA são a adenina, guanina, citosina e uracila.
- e) Tanto DNA como o RNA são formados pelo encadeamento de grande número de moléculas menores, os nucleotídeos.

- **5-)** Os códons UGC, UAU, GCC e AGC codificam, respectivamente, os aminoácidos cisteína, tirosina, alanina e serina; o códon UAG é terminal, ou seja, indica a interrupção da tradução. Um fragmento de DNA, que codifica a sequência serina cisteína tirosina alanina, sofreu a perda da 9ª base nitrogenada. Assinale a alternativa que descreve o que acontecerá com a sequência de aminoácidos.
- a) O aminoácido tirosina será substituído por outro aminoácido.
- b) O aminoácido tirosina não será traduzido, resultando numa molécula com 3 aminoácidos.
- c) A tradução será interrompida no 2º aminoácido.
- d) A sequência não será traduzida, pois essa molécula de DNA alterada não é capaz de comandar esse processo.
- e) A sequência não sofrerá prejuízo, pois qualquer modificação na fita de DNA é imediatamente corrigida.

- **6-)** O RNA mensageiro é produzido no ____I__ e, ao nível ____II___, associa-se a ____III___ participando das síntese de ____IV___." Para completar corretamente essa frase, I, II, III e IV devem ser substituídos, respectivamente, por:
- a) ribossomo citoplasmático mitocôndrias energia.
- b) ribossomo citoplasmático mitocôndrias DNA.
- c) núcleo citoplasmático mitocôndrias proteínas.
- d) núcleo citoplasmático ribossomos proteínas.
- e) citoplasma nuclear ribossomos DNA.

- **7-)** O código genético é um sistema de informações bioquímicas que permite a produção de proteínas, as quais determinam a estrutura das células e controlam todos os processos metabólicos. Marque a alternativa correta em que se encontra a estrutura do código genético.
- a) Uma sequência de trincas de bases do DNA indica uma sequência de aminoácidos que devem se unir para formar uma proteína.
- b) Uma sequência de trincas de bases do DNA indica uma sequência de nucleotídeos que devem se unir para formar uma proteína.
- c) Uma sequência de trincas de bases do RNA indica uma sequência de aminoácidos que devem se unir para formar uma proteína.
- d) Uma sequência aleatória de bases nitrogenadas A, C, U, G.
- e) Uma sequência aleatória de bases nitrogenadas A, C, T, G.

8-) Um trecho de uma das cadeias da molécula de DNA tem a seguinte sequência de bases nitrogenadas:

• ACATAGCCAAAA

Abaixo, temos os códons correspondentes a quatro aminoácidos:

Aminoácido	<u>Códons</u>	
Cisteina	UGU , UGC	
Fenilalanina	UUU , UUC	
Glicina	GGU, GGC, CGA, GGG	
Isoleucina	AUU, AUC	

Suponha que, em um caso de mutação, a terceira base daquele trecho de DNA, que se encontra sublinhada (A), seja substituída pela base Guanina. Essa nova situação:

- a-) acarretaria modificação em parte da sequência de aminoácidos da proteína a ser sintetizada.
- b-) acarretaria modificação em todos os códons subsequentes no trecho do RNA mensageiro correspondente.
- c-) não acarretaria modificação na sequência de aminoácidos da proteína a ser sintetizada.
- d-) não acarretaria modificação na sequência de nucleotídeos do RNA mensageiro correspondente.