12

EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 92119105.2

2 Anmeldetag: 07.11.92

(5) Int. Cl.5: C07D 213/82, C07D 231/14, C07D 277/56, C07D 263/34,

C07D 307/68, C07D 309/28, C07D 327/06, C07C 233/64.

A01N 37/22, A01N 43/00

Priorität: 22.11.91 DE 4138387

18.02.92 DE 4204764

18.02.92 DE 4204766

18.02.92 DE 4204767

18.02.92 DE 4204768

Veröffentlichungstag der Anmeldung: 09.06.93 Patentblatt 93/23

Benannte Vertragsstaaten:

AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

Anmelder: BASF Aktiengesellschaft

Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

Erfinder: Elcken, Karl, Dr.

Am Huettenwingert 12 W-6706 Wachenheim(DE)

Erfinder: Goetz, Norbert, Dr.

Schoefferstrasse 25 W-6520 Worms 1(DE)

Erfinder: Harreus, Albrecht, Dr.

Teichgasse 13

W-6700 Ludwigshafen(DE)

Erfinder: Ammermann, Eberhard, Dr.

Von Gagern-Strasse 2 W-6148 Heppenhelm(DE)

Erfinder: Lorenz, Gisela, Dr.

Erlenweg 13

W-6730 Neustadt(DE)

Erfinder: Rang, Harald, Dr.

Maximillianstrasse 30 W-6700 Ludwigshafen(DE)

Säureanilid-Derivate und ihre Verwendung zur Bekämpfung von Botrytis.

(57) Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel

I,

in der die Substituenten folgende Bedeutung haben:

Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl

gegebenenfalls durch Halogen substituiertes Alkyl, gegebenenfalls durch Halogen substituiertes Alkenyl, Alkinyl, gegebenenfalls durch Halogen substituiertes Alkoxi, gegebenenfalls durch Halogen substituiertes Alkenyloxi, Alkinyloxi, Cycloalkyl, Cycloalkenyl, Cycloalkyloxi, Cycloalkenyloxi zur Bekämpfung von Botrytis und Nicotinsäureanilide der Formel I.

Die vorliegende Erfindung betrifft die Verwendung von Säureanilid-Derivaten der allgemeinen Formel

10 in der A die folgenden Bedeutungen hat

5

Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,

Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, lod,

2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; Thiazol-4-yl, substituiert in 2- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 0-xazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und

R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxy, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alkinyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxy, gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Alkyl, C₁-C₄-Alkylthio, Halogen, substituiertes Phenyl,

zur Bekämpfung von Bortrytis.

Ferner betrifft die vorliegende Erfindung neue Ssäureanilid-Derivate.

Es ist bekannt, Nicotinsäureanilide, z.B. das 2-Chlornicotinsäure-2'-ethylanilid (US 4 001 416) oder das 2-Chlornicotinsäure-3'-isopropylanilid (DE 26 11 601) als Fungizide zu verwenden.

Es wurde nun gefunden, daß die eingangs definierten Säureanilid-Derivate eine gute Wirkung gegen Botrytis besitzen.

Im Hinblick auf ihre Wirksamkeit sind Verbindungen bevorzugt, in denen die Substituenten folgende Bedeutung haben:

5 Halogen z.B. Fluor, Chlor, Brom,

Alkyl wie insbesondere Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 1-

1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 1-Methylhexyl, 1-Ethylpentyl, 2-Ethylpentyl, 1-Propylbutyl, Octyl, Decyl, Dodecyl wobei das Alkyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,

Alkenyl, wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Pentenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 3-Methyl-3-butenyl, 3-Methyl-

Methyl-3-butenyl, 3-Methyl-3- butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 1,1-Dimethyl-3-butenyl, 1,1-Dimethyl-3-butenyl, 1,1-Dimethyl-3-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 1,3-Dimethyl-3-but

butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butenyl und 3-Methyl-2-pentenyl;

wobei das Alkenyl ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,

Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Alkinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-

nyl. 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,2-Dimethyl-2-butinyl, 1,1-Dimethyl-3butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl,

Alkoxi wie insbesondere Ethoxi, Propoxi, 1-Methylethoxi, Butoxi, 1-Methylpropoxi, 2-Methylpropoxi, 1,1-Dimethylethoxi, n-Pentyloxi, 1-Methylbutoxi, 2-Methylbutoxi, 3-Methylbutoxi, 1,2-Dimethylpropoxi, 1,1-Dimethylpropoxi, 2,2-Dimethylpropoxi, 1-Ethylpropoxi, n-Hexyloxi, 1-Methylpentyloxi, 2-Methylpentyloxi, 3-Methylpentyloxi, 4-Methylpentyloxi, 1,2-Dimethylbutoxi, 1,3-Dimethylbutoxi, 2,3-Dimethylbutoxi, 1,1-Dimethylbutoxi, 2,2-Dimethylbutoxi, 3,3-Dimethylbutoxi, 1,1,2-Trimethylpropoxi, 1,2,2-Trimethylpropoxi, 1-Ethylbutoxi, 2-Ethylbutoxi, 1-Ethyl-2-methylpropoxi, n-Heptyloxi, 1-Methylhexyloxi, 2-Methylhexyloxi, 3-Methylhexyloxi, 4-Methylhexyloxi, 5-Methylhexyloxi, 1-Ethylpentyloxi, 2-Ethylpentyloxi, 1-Propylbutoxi, Octyloxi, Decyloxi, Dodecyloxi, wobei das Alkoxy ein bis drei der vorstehend genannten Halogenatome, insbesondere Fluor und Chlor tragen kann,

Alkenyloxi wie 2-Propenyloxi, 2-Butenyloxi, 3-Butenyloxi, 1-Methyl-2-propenyloxi, 2-Methyl-2-propenyloxi, 2-Pentenyloxi, 3-Pentenyloxi, 4-Pentenyloxi, 1-Methyl-2-butenyloxi, 2-Methyl-2-butenyloxi, 3-Methyl-2-butenyloxi, yloxi, 1-Methyl-3-butenyloxi, 2-Methyl-3-butenyloxi, 3-Methyl-3-butenyloxi, 1,1-Dimethyl-2-propenyloxi, 1,2-Dimethyl-2-propenyloxi, 1-Ethyl-2-propenyloxi, 2-Hexenyloxi, 3-Hexenyloxi, 4-Hexenyloxi, 5-Hexenyloxi, 1-Methyl-2-pentenyloxi, 2-Methyl-2-pentenyloxi, 3-Methyl-2-pentenyloxi, 4-Methyl-2-pentenyloxi, 1-Methyl-3pentenyloxi, 2-Methyl-3-pentenyloxi, 3-Methyl-3-pentenyloxi, 4-Methyl-3-pentenyloxi, 1-Methyl-4-pentenyloxi, 2-Methyl-4-pentenyloxi, 3-Methyl-4-pentenyloxi, 4-Methyl-4-pentenyloxi, 1,1-Dimethyl-2-butenyloxi, 1,1-Dimethyl-3-butenyloxi, 1,2-Dimethyl-2-butenyloxi, 1,2-Dimethyl-3-butenyloxi, 1,3-Dimethyl-2-butenyloxi, 1,3-Dimethyl-2-butenyloxi, 1,3-Dimethyl-3-butenyloxi, 1,3-Dimethyl-3-butenyloxi Dimethyl-3-butenyloxi, 2,2-Dimethyl-3-butenyloxi, 2,3-Dimethyl-2-butenyloxi, 2,3-Dimethyl-3-butenyloxi, 1-Ethyl-2-butenyloxi, 1-Ethyl-3-butenyloxi, 2-Ethyl-2-butenyloxi, 2-Ethyl-3-butenyloxi, 1,1,2-Trimethyl-2-propenyloxi, 1-Ethyl-1-methyl-2-propenyloxi und 1-Ethyl-2-methyl-2-propenyloxi, insbesondere 2-Propenyloxi, 2-Butenyloxi, 3-Methyl-2-butenyloxi, und 3-Methyl-2-pentenyloxi;

wobei das Alkenyloxy ein bis drei der vorstehend genannte Halogenatome, insbesondere Fluor und Chlor tragen kann.

Alkinyloxi wie 2-Propinyloxi, 2-Butinyloxi, 3-Butinyloxi, 1-Methyl-2-propinyloxi, 2-Pentinyloxi, 3-Pentinyloxi. 4-Pentinyloxi, 1-Methyl-3-butinyloxi, 2-Methyl-3-butinyloxi, 1-Methyl-2-butinyloxi, 1,1-Dimethyl-2-propinyloxi, 1-Ethyl-2-propinyloxi, 2-Hexinyloxi, 3-Hexinyloxi, 4-Alkinyloxi, 5-Hexinyloxi, 1-Methyl-2-pentinyloxi, 1-Methyl-3-pentinyloxi, 1-Methyl-4-pentinyloxi, 2-Methyl-3-pentinyloxi, 2-Methyl-4-pentinyloxi, 3-Methyl-4-pentinyloxi, 3-Methyl tinyloxi, 4-Methyl-3-pentinyloxi, 1,1-Dimethyl-2-butinyloxi, 1,1-Dimethyl-3-butinyloxi, 1,2-Dimethyl-3-butinylox xi, 2,2-Dimethyl-3-butinyloxi, 1-Ethyl-2-butinyloxi, 1-Ethyl-3-butinyloxi, 2-Ethyl-3-butinyloxi und 1-Ethyl-1methyl-2-propinyloxi, vorzugsweise 2-Propinyloxi, 2-Butinyloxi, 1-Methyl-2-propinyloxi und 1-Methyl-2-buti-

C3-C6-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, wobei das Cycloalkyl gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist:

C4-C6-Cycloalkenyl, wie Cyclobutenyl, Cyclopentenyl, Cyclohexenyl, das gegebenenfalls durch ein bis drei C₁-C₄-Alkylreste substituiert ist.

C5-C6-Cycloalkoxi wie Cyclopentyloxi oder Cyclohexyloxi, das durch ein bis drei C1-C4-Alkylreste 40 substituiert sein kann.

C5-C6-Cycloalkenyloxi wie Cyclopentyloxi oder Cyclohexaryloxi, das durch ein bis drei C1-C4-Alkylreste substituiert sein kann.

Bevorzugt wird die Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

$$\begin{array}{c|c}
\hline
 & CO-NH \\
\hline
 & R^1 & R^2
\end{array}$$

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl R²

gegebenenfalls durch Halogen substituiertes C2-C12-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₅-Alkinyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

45

50

Die Verbindungen der Formel I erhält man beispielsweise, in dem man ein entsprechend substituiertes Nicotinsäurehalogenid der Formel 2

5
$$R^{2}$$
 R^{1} R^{2} R^{2} R^{2}

Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umsetzt. Die Nicotinsäuren bzw. derenHalogenide der Formel 2 sind bekannt. Die Aniline der Formel 3 sind bekannt oder können nach bekannten Verfahren hergestellt werden (Helv. Chim. Acta 60, 978 (1977); Zh. Org. Khim 26, 1527(1990); Heterocyclus 26, 1885 (1987); Izv. Akad. Nauk. SSSR Ser.Khim 1982, 2160).

Insbesondere bevorzugt sind Verbindungen, der Formel I in denen der Rest R^1 für Chlor steht und der Rest R^2 die eingangs erwähnte Bedeutung hat.

Tabelle 1 Verbindungen der Formel I

20

50

55

$$\begin{array}{c|c}
 & CO-NH \\
 & R^1 & R^2
\end{array}$$

30	Nr.	R1	R2	phys. Dat. FP [°C]	
30	1.1	F	n-C ₃ H ₇		
	1.2	F	i-C ₃ H ₇		
	1.3	F	secC ₄ H ₉	52 - 54	
35	1.4	F	i-C ₄ H ₉	87 - 89	
	1.5	Cl	n-C ₃ H ₇	103 - 104	
	1.6	Cl	n-C ₄ H ₉		
	1.7	Cl	secC ₄ H ₉	94 - 96	
40	1.8	Cl	i-C ₄ H ₉	99 - 101	

	Nr.	R1	R2	phys. Dat.
		L		FP [°C]
	1.9	C1	tertC ₄ H ₉	118 - 120
5	1.10	Cl	n-C ₅ H ₁₁	
	1.11	C1	secC ₅ H ₁₁	
	1.12	Cl	n-C ₆ H ₁₃	
	1.13	Cl	n-C ₇ H ₁₅	
10	1.14	Cl	secC7H15	
	1.15	Cl	n-C ₈ H ₁₇	
	1.16	C1	n-C ₁₀ H ₂₃	
15	1.17	Cl	n-C ₁₂ H ₂₅	
	1.18	C1	1-Methylvinyl	90 - 91
	1.19	Cl	2-Methylvinyl	
	1.20	Cl	Allyl	
20	1.21	Cl	2-Methylallyl	
	1.22	Cl	2-Ethylallyl	
	1.23	Cl	1-Methylallyl	
	1.24	Cl	1-Ethylallyl	
25	1.25	Cl	1-Methyl-2-butenyl	
	1.26	Cl	1-Ethyl-2-butenyl	
	1.27	Cl	1-Isopropyl-2-butenyl	
	1.28	Cl	1-n-Butyl-2-butenyl	
30	1.29	Cl	1-Methyl-2-pentenyl	
	1.30	Cl	1,4-Dimethyl-2-pentenyl	
	1.31	Cl	Propargyl	
35	1.32	Cl	2-Butinyl	
00	1.33	Cl	3-Butinyl	
	1.34	Cl	Ethoxi	131 - 132
	1.35	Cl	Propoxi	
40	1.36	Cl	1-Methylethoxi	65 - 67
	1.37	Cl	n-Butoxi	84 - 85
	1.38	Cl	1-Methylpropoxi	72 - 74
	1.39	Cl	2-Methylpropoxi	81 - 84
45	1.40	Cl	1,1-Dimethylethoxi	
	1.41	Cl	n-Pentyloxi	
	1.42	Cl	n-Hexyloxi	
	1.43	C1	n-Hepyloxi	
50				

	37	15:	Ino.	
	Nr.	R1	R2	phys. Dat. FP [°C]
5	1.44	Cl	n-Octyloxi	
	1.45	Cl	2-Ethylhexyloxi	
	1.46	Cl	n-Decyloxi	
	1.47	C1	2-Propenyloxi	86 - 88
10	1.48	Cl	2-Butentyloxi	92 - 95
	1.49	Cl	2-Methyl-2-propenyloxi	75 - 76
	1.50	C1	2-Pentenyloxi	
	1.51	C1	3-Pentenyloxi	
15	1.52	Cl	3-Chlor-2-propenyloxi	
	1.53	Cl	2,3-Dichlor-2-propenyloxi	
	1.54	Cl	2,3,3-Trichlor-propenyloxi	
	1.55	Cl	2-Propinyloxi	79 - 84
20	1.56	Cl	2-Butinyl-oxi	
	1.57	C1	3-Butinyl-oxi	
	1.58	Cl	1-Methyl-2-propinyloxi	
25	1.59	Cl	Cyclopropyl	144 - 145
	1.60	Cl	Cyclobutyl	
	1.61	Cl	Cyclopentyl	112 - 114
	1.62	Cl	Cyclohexyl	141 - 142
30	1.63	Cl	2-Cyclopentenyl	123 - 124
	1.64	Cl	1-Cyclopentenyl	
	1.65	Cl	2-Cyclohexenyl	92 - 93
	1.66	Cl	1-Cyclohexenyl	
35	1.67	Cl	Cyclopentyloxi	80 - 82
	1.68	Cl	Cyclohexyloxi	
	1.69	Cl	2-Cyclopentenyloxi	
	1.70	Cl	2-Cyclohexenyloxi	Ö1
40	1.71	Br	secButyl	
	1.72	Br	i-Butyl	
	1.73	CH ₃	secButyl	
45	1.74	CH ₃	i-Butyl	
45	1.75	CF3	i-Propyl	
	1.76	CF ₃	secButyl	
	1.77	CF ₃	i-Butyl	
50	1.78	OCH ₃	i-Propyl	
'				

Nr.	R1	R2	phys. Dat. FP [°C]
1.79	ОСН3	secButyl	Öl NMR 0,8t (3H); 1,2d (3H); 1,6m (2H); 3,0q (1H); 4,1s (3H); 7,2m (3H); 7,3m (1H); 8,3m (1H); 8,4m (1H), 9,8s (1H)
1.80	OCH ₃	i-Butyl	Ö1 NMR 0,8d (6H); 1,9m (1H); 2,5d (2H), 4,05s (3H), 7,2m (4H); 7,8d (1H); 8,3d (1H); 8,4m (1H); 9,8s (1H)
1.8	SCH ₃	i-Propyl	
1.82	SCH ₃	secButyl	89 - 91
1.83	SCH ₃	i-Butyl	140 - 141
1.84	SO ₂ CH ₃	secButyl	191 - 192
1.8	SO ₂ CH ₃	i-Butyl	150 - 153
0 1.80	C1	2-Ethylpropoxy	65 - 66
1.8	7 C1	3-Methyl-3-butenyloxy	83 - 84

25 Herstellungsbeispiele

Beispiel 1

Zu einer Lösung von 2,7 g 2-n-Propylanilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man 50 bei 0°C 3,5 g 2-Chlornicotinsäurechlorid und rührt noch 2 Stdn. bei 0°C. Nach Verdünnen mit 300 ml Wasser isoliert man 3,2 g 2-Chlornicotinsäure-2-n-propylanilid von Fp.: 103 - 104°C (Nr. 1.5).

Beispiel 2

4,4 g 2-Chlornicotinsäure-2-sec.-butylanilid (Tabelle 1, Nr. 7) werden in einer Lösung von 5,5 g 30 % Natriummethylat-Lösung in 20 ml Methanol 2 Stdn. am Rückfluß gekocht. Nach Verdünnen mit 250 ml Wasser wird zweimal mit je 100 ml Essigester extrahiert. Aus den vereinigten organ. Phasen isoliert man nach Trocknen und Verdampfen des Lösungsmittels 3,8 g 2-Methoxi-nicotinsäure-2-sec.-butylanilid als Öl. (Nr. 1.79).

Beispiel 3

Aus 5,7 g 2-Methylthionicotinsäurechlorid, 4,6 g 2-sec-Butylanilin und 3,1 g Triethylamin erhält man in analoger wie Beispiel 1 6,6 g 2-Methylthionicotinsäure-2-sec.-butylanilid vom Fp.: 89 - 91 °C (Nr. 1.82).

Beispiel 4

In eine Mischung aus 2,00 g des obigen Produkts (Beispiel 3) in 5 ml Eisessig und 0,13 g Natriumwolframat tropft man unter Rühren bei 35 °C 2,20 g 30 % Wasserstoffperoxid zu und rührt 3 Stdn. bei 35 °C nach. Nach Verdünnen mit 15 ml Wasser, Absaugen der Kristalle, Waschen mit Wasser und Trocknen erhält man 1,7 g 2-Methylsulfonylnicotinsäure-2-sec.-butylanilid vom FP.: 191 - 192 °C (Nr. 1.84). Die Erfindung betrifft ferner die Verwendung von Anilid-Derivaten der Formel II,

in der die Substituenten folgende Bedeutung haben:

76 $A \qquad \begin{array}{c} X \\ CH_3 \end{array} \qquad \begin{array}{c} X \\ CH_3 \end{array} \qquad \begin{array}{c} (A2) \end{array}$

X Methylen oder Schwefel

5

20

25

30

35

45

50

55

gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkyl, gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkenyl, C_3 - C_6 -Alkinyl gegebenenfalls durch Halogen substituiertes C_2 - C_{12} -Alkoxi, gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkenyloxi, C_3 - C_{12} -Alkinyloxi, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_3 - C_6 -Cycloalkyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_4 - C_6 -Cycloalkenyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyloxi

zur Bekämpfung von Botrytis.

Die Verbindungen der Formel 2 erhält man beispielsweise, in dem man ein entsprechend substituiertes Carbonsäurehalogenid der Formel 4 mit einem ortho-substituierten Anilin der Formel 3 in Gegenwart einer Base umsetzt.

A-CO-Hal + H_2N \longrightarrow II

40 Hal ist Chlor oder Brom.

Die Carbonsäuren bzw. deren Halogenid ACO₂H bzw. A-CO-Hal (4) sind bekannt.

Tabelle 2 Verbindungen der Formel II

A-CO-NH

Nr.	А	R	Х	phys. Dat. Fp [°C]
2.1	A ₁	i-C ₃ H ₇	_	108 - 109
2.2	A ₁	n-C ₃ H ₇	-	112 - 114
2.3	A ₁	n-C ₄ H ₉	-	
2.4	A ₁	secC ₄ H ₉	-	89 - 90
2.5	A ₁	1-C4H9	_	118 - 11
2.6	A ₁	tertC ₄ H ₉	_	

	Nr.	A	R	x	phys. Dat. Fp [°C]
5	2.7	A_1	n-C ₅ H ₁₁	-	
	2.8	A 1	secC ₅ H ₁₁	-	
	2.9	\mathbf{A}_1	n-C ₆ H ₁₃	-	
	2.10	\mathbf{A}_1	n-C ₇ H ₁₅	-	
10	2.11	\mathbf{A}_1	secC7H15	-	
	2.12	A_1	1-Methylvinyl	-	
	2.13	A ₁	2-Methylvinyl	-	
	2.14	A_1	Allyl	-	
15	2.15	A_1	2-Methylallyl	-	
	2.16	\mathbf{A}_1	2-Ethylallyl	-	
	2.17	A_1	1-Methylallyl	-	
20	2.18	A_1	1-Ethylallyl	-	
	2.19	A_1	1-Methyl-2-butenyl	-	
	2.20	A ₁	1-Ethyl-2-butenyl	-	
25	2.21	A ₁	1-Isopropyl-2-butenyl	_	
	2.22	A_1	1-n-Butyl-2-butenyl	-	
	2.23	A_1	1-Methyl-2-pentenyl	-	
	2.24	A_1	1,4-Dimethyl-2-pentenyl	-	
	2.25	A ₁	Propargyl	-	
30	2.26	A_1	2-Butinyl	-	
	2.27	A ₁	3-Butinyl	-	
	2.28	A ₁	Ethoxi	-	
35	2.29	A ₁	Propoxi	-	
00	2.30	A_1	1-Methylethoxi	-	
	2.31	\mathbf{A}_1	n-Butoxi	-	
	2.32	A ₁	1-Methylpropoxi	-	46 - 84
40	2.33	\mathtt{A}_1	2-Methylpropoxi	-	
	2.34	A_1	1,1-Dimethylethoxi	-	
	2.35	A ₁	n-Pentyloxi	-	
	2.36	A_1	n-Hexyloxi	-	
45	2.37	A ₁	2-Ethylhexyloxi	-	
	2.38	A 1	2-Propenyloxi	-	
	2.39	A_1	2-Butentyloxi	-	62 - 66
50	2.40	A ₁	2-Methyl-2-propenyloxi	-	Öl
30	2.41	A ₁	2-Pentenyloxi	-	

	Nr.	A	R	x	phys. Dat. Fp [°C]
5	2.42	A ₁	3-Pentenyloxi	- I-	
-	2.43	A ₁	3-Chlor-2-propenyloxi	-	
	2.44	A ₁	2,3-Dichlor-2-propenyloxi	-	
	2.45	A ₁	2,3,3-Trichlor-propenyloxi	<u> </u>	
10	2.46	Aı	2-Propinyloxi	-	
	2.47	A ₁	2-Butinyl-oxi	-	
	2.48	A ₁	3-Butinyl-oxi	-	
	2.49	A_1	1-Methyl-2-propinyloxi	T-	
15	2.50	\mathbf{A}_1	Cyclopropyl	-	
	2.51	A ₁	Cyclobutyl	-	
	2.52	A ₁	Cyclopentyl	-	112 - 113
20	2.53	A ₁	Cyclohexyl	-	120 - 121
	2.54	A ₁	2-Cyclopentenyl]-	128 - 129
	2.55	A_1	1-Cyclopentenyl	-	
	2.56	A ₁	2-Cyclohexenyl	-	95 - 96
25	2.57	A ₁	1-Cyclohexenyl	-	
	2.58	A_1	Cyclopentyloxi	-	
	2.59	Aı	Cyclohexyloxi	-	
	2.60	A_1	2-Cyclopentenyloxi	-	ł
30	2.61	A ₁	2-Cyclohexenyloxi	-	Öl
	2.62	A ₂	i-C ₃ H ₇	CH ₂	99 - 101
	2.63	A ₂	n-C ₃ H ₇	CH ₂	
35	2.64	A ₂	n-C ₄ H ₉	CH ₂	
	2.65	A ₂	secC ₄ H ₉	CH ₂	81 - 82
	2.66	A ₂	i-C ₄ H ₉	CH ₂	81 - 83
	2.67	A ₂	tertC ₄ H ₉	CH ₂	
40	2.68	A ₂	n-C ₅ H ₁₁	CH ₂	
	2.69	A ₂	secC ₅ H ₁₁	CH ₂	
	2.70	A ₂	n-C ₆ H ₁₃	CH ₂	
	2.71	A ₂	n-C ₇ H ₁₅	CH ₂	
45	2.72	A ₂	secC7H15	CH ₂	
	2.73	A ₂	1-Methylvinyl	CH ₂	
	2.74	A ₂	2-Methylvinyl	CH ₂	
50	2.75	A ₂	Allyl	CH ₂	
	2.76	A ₂	2-Methylallyl	CH ₂	

	Nr.	A	R .	х	phys. Dat. Fp [°C]
5	2.77	A ₂	2-Ethylallyl	CH ₂	
	2.78	A ₂	1-Methylallyl	CH ₂	
	2.79	A ₂	1-Ethylallyl	CH ₂	
	2.80	A ₂	1-Methyl-2-butenyl	CH ₂	
10	2.81	A ₂	1-Ethyl-2-butenyl	CH ₂	
	2.82	A ₂	1-Isopropyl-2-butenyl	CH ₂ ·	
	2.83	A ₂	1-n-Butyl-2-butenyl	CH ₂	
_	2.84	A ₂	1-Methyl-2-pentenyl	CH ₂	
15	2.85	A ₂	1,4-Dimethyl-2-pentenyl	CH ₂	
	2.86	A ₂	Propargyl	CH ₂	
	2.87	A ₂	2-Butinyl	CH ₂	
20	2.88	A ₂	3-Butinyl	CH ₂	
	2.89	A ₂	Ethoxi	CH ₂	
	2.90	A ₂	Propoxi	CH ₂	
25	2.91	A ₂	1-Methylethoxi	CH ₂	
	2.92	A ₂	n-Butoxi	CH ₂	
	2.93	A ₂	1-Methylpropoxi	CH ₂	
	2.94	A ₂	2-Methylpropoxi	CH ₂	
	2.95	A ₂	1,1-Dimethylethoxi	CH ₂	
30	2.96	A ₂	n-Pentyloxi	CH ₂	
	2.97	A ₂	n-Hexyloxi	CH ₂	
	2.98	A ₂	2-Ethylhexyloxi	CH ₂	
35	2.99	A ₂	2-Propenyloxi	CH ₂	
	2.100	A ₂	2-Butentyloxi	CH ₂	
	2.101	A ₂	1-Methyl-2-propenyloxi	CH ₂	67 - 69
	2.102	A ₂	2-Pentenyloxi	CH ₂	
40	2.103	A ₂	3-Pentenyloxi	CH ₂	
	2.104	A ₂	3-Chlor-2-propenyloxi	CH ₂	
	2.105	A ₂	2,3-Dichlor-2-propenyloxi	CH ₂	
	2.106	A ₂	2,3,3-Trichlor-propenyloxi	CH ₂	
45	2.107	A ₂	2-Propinyloxi	CH ₂	
	2.108	A ₂	2-Butinyl-oxi	CH ₂	
	2.109	A ₂	3-Butinyl-oxi	CH ₂	
50	2.110	A ₂	1-Methyl-2-propinyloxi	CH ₂	
50	2.111	A ₂	Cyclopropyl	CH ₂	

					
	Nr.	A	R	X	phys. Dat. Fp [°C]
5	2.112	A ₂	Cyclobutyl	CH ₂	
	2.113	A ₂	Cyclopentyl	CH ₂	109 - 111
	2.114	A ₂	Cyclohexyl	CH ₂	118 - 123
	2.115	A ₂	2-Cyclopentenyl	CH ₂	87 - 89
10	2.116	A ₂	1-Cyclopentenyl	CH ₂	
	2.117	A ₂	2-Cyclohexenyl	CH ₂	85 - 87
	2.118	A ₂	1-Cyclohexenyl	CH ₂	
15	2.119	A ₂	Cyclopentyloxi	CH ₂	60 - 91
13	2.120	A ₂	Cyclohexyloxi	CH ₂	
	2.121	A ₂	2-Cyclopentenyloxi	CH ₂	
	2.122	A ₂	2-Cyclohexenyloxi	CH ₂	Öl
20	2.123	A ₂	i-C ₃ H ₇	s	
	2.124	A ₂	n-C ₃ H ₇	s	
	2.125	A ₂	n-C ₄ H ₉	S	
25	2.126	A ₂	secC ₄ H ₉	s	Ö1
	2.127	A ₂	i-C ₄ H ₉	S	Öl
	2.128	A ₂	tertC ₄ H ₉	S	
	2.129	A ₂	n-C ₅ H ₁₁	S	
	2.130	A ₂	secC ₅ H ₁₁	S	
30	2.131	A ₂	n-C ₆ H ₁₃	S	
	2.132	A ₂	n-C7H15	s	
	2.133	A ₂	secC7H15	s	
35	2.134	A ₂	1-Methylvinyl	S	·
	2.135	A ₂	2-Methylvinyl	S	
	2.136	A ₂	Allyl	s	
	2.137	A ₂	2-Methylallyl	S	
40	2.138	A ₂	2-Ethylallyl	s	
	2.139	A ₂	1-Methylallyl	s	
	2.140	A ₂	1-Ethylallyl	s	
	2.141	A ₂	1-Methyl-2-butenyl	s	
45	2.142	A ₂	1-Ethyl-2-butenyl	S	
	2.143	A ₂	1-Isopropyl-2-butenyl	s	
	2.144	A ₂	1-n-Buty1-2-butenyl	S	
50	2.145	A ₂	1-Methyl-2-pentenyl	s	
	2.146	A ₂	1,4-Dimethyl-2-pentenyl	s	

	Nr.	A	R	х	phys. Dat. Fp [°C]
5	2.147	A ₂	Propargyl	S	
	2.148	A ₂	2-Butinyl	S	
	2.149	A ₂	3-Butinyl	S	
	2.150	A ₂	Ethoxi	S	
10	2.151	A ₂	Propoxi	S	
	2.152	A ₂	1-Methylethoxi	S	
	2.153	A ₂	n-Butoxi	S	
15	2.154	A ₂	1-Methylpropoxi	S	Öl
15	2.155	A ₂	2-Methylpropoxi	S	
	2.156	A ₂	1,1-Dimethylethoxi	S	
	2.157	A ₂	n-Pentyloxi	S	
20	2.158	A ₂	n-Hexyloxi	S	
	2.159	A ₂	2-Ethylhexyloxi	s	
	2.160	A ₂	2-Propenyloxi	s	
25	2.161	A ₂	2-Butentyloxi	S	
	2.162	A ₂	1-Methyl-2-propenyloxi	s	65 - 67
	2.163	A ₂	2-Pentenyloxi	s	
20	2.164	A ₂	3-Pentenyloxi	S	
	2.165	A ₂	3-Chlor-2-propenyloxi	S	
30	2.166	A ₂	2,3-Dichlor-2-propenyloxi	S	
	2.167	A ₂	2,3,3-Trichlor-propenyloxi	S	
	2.168	A ₂	2-Propinyloxi	s	
35	2.169	A ₂	2-Butinyl-oxi	S	
	2.170	A ₂	3-Butinyl-oxi	S	
	2.171	A ₂	1-Methyl-2-propinyloxi	S	
	2.172	A ₂	Cyclopropyl	S	
40	2.173	A ₂	Cyclobutyl	S	
	2.174	A ₂	Cyclopentyl	S	62 - 64
	2.175	A ₂	Cyclohexyl	S	120 - 122
	2.176	A ₂	2-Cyclopentenyl	S	76 - 78
45	2.177	A ₂	1-Cyclopentenyl	s	
	2.178	A ₂	2-Cyclohexenyl	s	70 - 72
	2.179	A ₂	1-Cyclohexenyl	s	
50	2.180	A ₂	Cyclopentyloxi	s	88 - 90
00	2.181	A ₂	Cyclohexyloxi	S	

Nr.	A	R	x	phys. Dat. Fp [°C]
2.182	A ₂	2-Cyclopentenyloxi	S	
2.183	A ₂	2-Cyclohexenyloxi	s	Ö1
2.184	\mathbf{A}_1	1-Ethylpropoxy	-	65 - 66
2.185	A_1	3-Methyl-2-butenyloxy	-	Ö1
2.186	A ₂	1-Ethylpropoxy	CH ₂	Ö1
2.187	A ₂	1-Ethylpropoxy	S	Ö1

15

5

10

Herstellungsbeispiele

Beispiel 5

Zu einer Lösung von 3,0 g sec.-Butyl-anilin und 2,0 g Triethylamin in 30 ml Tetrahydrofuran tropft man bei 0°C 3,1 g 2-Methylbenzoesäurechlorid und rührt noch 2 Stdn. bei 0°C. Nach Verdünnen mit 500 ml Wasser, Extraktion mit Essigester und Verdampfen des Lösungsmittels, isoliert man 2-Methylbenzoesäure-2-sec.-butylanilid vom Fp: 89 - 90°C (Verbindung Nr. 2.4).

25 Beispiel 6

Zu einer Lösung von 3,0 g 2-Methyl-5,6-dihydropyran-3-carbonsäure in 20 ml Pyridin tropft man bei 0 ° C 2,5 g Thionylchlorid, nach 1 Stunde Nachrühren setzt man 2,8 g 2-Isopropylanilin zu und rührt 12 Stunden bei Raumtemperatur (20 ° C) nach. Nach Verdampfen des Pyridins wird mit 50 ml Wasser aufgerührt mit verd. Salzsäure auf pH 3 eingestellt und mit Essigester extrahiert. Nach Verdampfen des Lösungsmittels und Mischen des Rückstandes mit Diisopropylether isoliert man 3,3 g 2-Methyl-5,6-dihydropyran-3-carbonsäure-2-isopropylanilid vom Fp: 99 - 101 ° C (Verbindung Nr. 2.62).

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel II,

35

40

in der die Substituenten folgende Bedeutung haben:

50

45

5

(A1)

(A2)

(A3)

(A3)

(A3)

(A4)

(A5)

(A6)

$$R^7$$

(A7)

(A8)

- X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO₂),
- R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod
- 30 R² Trifluormethyl, Chlor
 - R³ Wasserstoff oder Methyl
 - R⁴ Methyl, Trifluormethyl, Chlor
 - R⁵ Wasserstoff, Methyl, Chlor
 - R⁶ Methyl, Trifluormethyl
- 35 R7 Methyl, Chlor
 - R⁸ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen

zur Bekämpfung von Botrytis.

Die Verbindungen der Formel III erhält man beispielsweise, indem man ein entsprechend substituiertes Carbonsäurehalogenid der Formel 4

Hal ist Chlor oder Brom, mit einem ortho-substituierten Anilin der Formel 5 in Gegenwart einer Base umsetzt. Die Carbonsäuren bzw. deren Halogenide der Formel 4 sind bekannt. Die Aniline der Formel 5 sind z. Teil bekannt oder können nach bekannten Verfahren hergestellt werden (Tetra hedron Letters, Vol. 28 S. 5093 (1987); THL Vol 29 5463 (1988)).

55

40

EP 0 545 099 A2

5 phys. Daten [°C] 10 - 157 73 86 156 71 95 15 20 3-01C3H7 2-0CH₃ 3-CH₃ 3-0CH₃ 4-OCH₃ 4-C1 4-CH₃ 2-CH₃ 2-C1 3-Br 4-F 3-F 3-C1 4-F 2-F R8 25 R \mathbb{R}^6 30 R⁵ 35 ₽4 \mathbb{R}^3 40 0 0 0 0 0 0 0 0 0 CJ 5 5 5 5 5 \mathbb{R}^2 CH₃ CF3 45 Tabelle 3 A2 A2 A2 A2 A2 A2 A2 Ā A2 A2 A2 A2 Ą \mathbf{A}_1 ${\tt A}_1$ A2 A2 A2 3.16 3.10 3.11 3.12 3.13 3.14 3.17 3.6 3.8

55

50

3.9

3.3

3.2

3.5

3.4

1		_				_								\neg			_		-		_	_
5																						
10	phys. Daten [°C]																					
15	ųď	12	12	12	12	12						22	20	2	22	20						
	×	CH2	CH ₂	CH ₂	CH2	CH2	S	S	s	လ	S	SO ₂	SO ₂	SO ₂	SO_2	SO2	_	-	_	_	_	\vdash
20	R ⁸	2-F	3-F	4-F	3-c1	3-CH ₃	2-F	3-F	4-F	3-c1	3-CH ₃	2-F	3-F	4-F	3-c1	3-CH3	2-F	3-F	4-F	2-F	3-F	4-F
25	Ē		Ť															Г				Г
	\mathbb{R}^7	,	_	_	ı	-	_	1	<u>.</u>	1	<u>-</u>	Ŀ	1	_	_	-	1	-	_	C1	C1	C1
30	R ⁶	-	<u>, </u>	_	-	-	ı	. 1	1	,	1		i	1	-	-	1	_	_	CH3	СНЗ	CH3
	R ⁵	_	<u>.</u>	ı	-		1	,	<u>, </u>	_	i	<u>.</u>	ı	1	_	-	СН3	CH3	CH3	-	-	-
35	R4	-	_	<u> </u>	ŧ	ı	_	_	_	-	-	<u>.</u>	,	1	-	-	CF_3	CF_3	\mathbb{CF}_3	-	-	_
	R³	-	1	L	,	-	1	<u> </u>	_	ı	1	,	_	ı	-	-	-	_	,	-	-	1
40	R ²	_	_	-	_		_	_	_	-	_	1	-	_	1	t	1	1	t		_	_
45	\mathbb{R}^1			-	-	_	_			_		-	_	i	_	-	-	_		ı	-	-
		A3	A ₃	A3	A ₃	A ₃	A ₃	A ₃	A ₃	A ₃	A3	A ₃	A ₃	A ₃	A ₃	A3	As	As	As	A7	A7	71
50	Nr. A	3.20	3.21	3.22	3.23 ₼	3.24 A	3.25 A	3.26 A	3.27 A	3.28 A	3.29 A	3.30 A	3.31 A	3.32 A	3.33 A	3.34 A	3.35 A	3.36 A	3.37 A	3.38 A	₹ 68.8	3.40 A7

phys. Daten [°C]	
×	
R ⁸	2-F
R7	C]
R6	CF_3
RS	-
R4	-
<u>R</u> 3	,
R ²	,
\mathbb{R}^1	1
N.	Αη
Nr.	3.41

Die Erfindung betrifft ferner die Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

in der die Substituenten folgende Bedeutung haben:

5

X Methylen, Sulfinyl, Sulfonyl (SO₂),

R1 Methyl, Trifluormethyl, Chlor, Brom, Jod

R² Trifluormethyl, Chlor

R³ Wasserstoff oder Methyl

R⁴ Methyl, Trifluormethyl, Chlor

R⁵ Wasserstoff, Methyl, Chlor

R⁶ Methyl, Trifluormethyl

R7 Methyl, Chlor,

40

45

zur Bekämpfung von Botrytis.

Die Verbindung der Formel IV erhält man beispielsweise, indem man ein entsprechendes aromatisches oder heterocyclisches Säurehalogenid 4 mit 2-Aminobiphenyl 6 in Gegenwart einer Base umsetzt.

Hal ist Chlor oder Brom.

Die Säuren der Formel A-CO₂H bzw. deren Halogenide II sind bekannt.

EP 0 545 099 A2

phys. Daten [°C] 5 - 48 - 91 121 10 CH₂ 15 \mathbb{R}^7 20 R6 CH_3 25 R4 30 CH₃ \mathbb{R}^3 CI \mathbb{R}^2 35 CH3 Br \mathbb{R}^1 40 Tabelle 4 A2 A3 A ¥ ¥

50

45

55

4.2 4.3 4.4 4.5

EP 0 545 099 A2

		PS-Nr.												
5		1												
10		phys. Daten [°C]												
15		phys. Da	138-139	129-132				116-118			108-109			100-103
20		×	1	-	L	so	so ₂	-	-	-	-	_	-	-
		R7	ı	1		1	1	-	ı	ı	СI	CΙ	CH3	
25		R6	<u> </u>	1	-	-	1	_	-	_	CH3	\mathbb{CF}_3	CH3	1
30		RS	_	-	<u> </u>	1	_	CH3	СНЗ	17	-	-	_	_
		R4	-	_	_	1	1	CF_3	CH3	CI	-	-	_	-
35		R3	1	-	1	_	-	,	ı	_	_	-	-	1
40		R ²	_	-	CF_3	-	_	í	t	-	-	_	-	-
		R1	CF_3	J.	-	_	1	1	_	-	-	_		ເນ
45	e 2	A	A ₁	A ₁	A2	A ₃	A ₃	As	A6	A6	A7	A7	A7	A ₁
50	Tabelle 5	Nr.	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	5.10	5.11	5.11

Die Erfindung betrifft ferner die Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

55

$$A-CO-NH$$
 V ,

in der die Substituenten folgende Bedeutung haben:

n 1 oder 2

5

30

35

40

45

50

55

R1 Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R4 Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R⁶ Methyl, Chlor

R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

Tabelle 6 Verbindungen der Formel I mit A in der Bedeutung \mathtt{A}_1

Allyl

2-Methylallyl

A₁ CO-NH

10

5

	Nr.	R^1	R ⁷	phys.Dat. Fp [°C]
15	6.1	CF ₃	i-C ₃ H ₇	160-162
	6.2	CF ₃	n-C ₃ H ₇	151-152
	6.3	CF ₃	n-C ₄ H ₉	
20	6.4	CF ₃	secC ₄ H ₉	83- 84
	6.5	CF ₃	i-C ₄ H ₉	133-135
	6.6	CF ₃	tertC ₄ H ₉	
	6.7	CF ₃	n-C ₅ H ₁₁	
25	6.8	CF ₃	secC ₅ H ₁₁	
	6.9	CF ₃	n-C ₆ H ₁₃	
	6.10	CF ₃	n-C7H ₁₅	
30	6.11	CF ₃	secC ₇ H ₁₅	
	6.12	CF ₃	1-Methylvinyl	
	6.13	CF ₃	2-Methylvinyl	

40

6.14

6.15

CF₃

CF₃

45

50

	Nr.	R^1	R ⁷ .	phys.Dat. Fp [°C]
5	6.16	CF ₃	2-Ethylallyl	
	6.17	CF ₃	1-Methylallyl	
	6.18	CF ₃	1-Ethylallyl	
	6.19	CF ₃	1-Methyl-2-butenyl	
10	6.20	CF ₃	1-Ethyl-2-butenyl	
	6.21	CF ₃	1-Isopropyl-2-butenyl	
	6.22	CF ₃	1-n-Butyl-2-butenyl	
15	6.23	CF ₃	1-Methyl-2-pentenyl	
15	6.24	CF ₃	1,4-Dimethyl-2-pentenyl	
	6.25	CF ₃	Propargyl	
	6.26	CF ₃	2-Butinyl	
20	6.27	CF ₃	3-Butinyl	
	6.28	CF ₃	Ethoxi	
	6.29	CF ₃	Propoxi	
	6.30	CF ₃	1-Methylethoxi	
25	6.31	CF ₃	n-Butoxi	
	6.32	CF ₃	1-Methylpropoxi	
	6.33	CF ₃	2-Methylpropoxi	
	6.34	CF ₃	1,1-Dimethylethoxi	
30	6.35	CF ₃	n-Pentyloxi	
	6.36	CF ₃	n-Hexyloxi	
	6.37	CF ₃	2-Ethylhexyloxi	
35	6.38	CF ₃	2-Propenyloxi	
	6.39	CF ₃	2-Butentyloxi	
	6.40	CF ₃	2-Methyl-2-propenyloxi	
	6.41	CF ₃	2-Pentenyloxi	
40	6.42	CF ₃	3-Pentenyloxi	
	6.43	CF ₃	3-Chlor-2-propenyloxi	
	6.44	CF ₃	2,3-Dichlor-2-propenyloxi	
	6.45	CF ₃	2,3,3-Trichlor-propenyloxi	
45	6.46	CF ₃	2-Propinyloxi	
	6.47	CF ₃	2-Butinyl-oxi	
	6.48	CF ₃	3-Butinyl-oxi	
50	6.49	CF ₃	1-Methyl-2-propinyloxi	
	6.50	CF ₃	Cyclopropyl	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
6.51	CF ₃	Cyclobutyl	
6.52	CF ₃	Cyclopentyl	150-152
6.53	CF ₃	Cyclohexyl	130-132
6.54	CF ₃	2-Cyclopentenyl	160-161
6.55	CF ₃	1-Cyclopentenyl	
6.56	CF ₃	2-Cyclohexenyl	103-105
6.57	CF ₃	1-Cyclohexenyl	
6.58	CF ₃	Cyclopentyloxi	
6.59	CF ₃	Cyclohexyloxi	
6.60	CF ₃	2-Cyclopentenyloxi	
6.61	CF ₃	2-Cyclohexenyloxi	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
7.1	Cl	i-C ₃ H ₇	125-127
7.2	Cl	n-C ₃ H ₇	108-110
7.3	Cl	n-C ₄ H ₉	
7.4	Cl	secC ₄ H ₉	73- 74
7.5	Cl	i-C ₄ H ₉	90- 92
7.6	Cl	tertC4H9	
7.7	Cl	n-C ₅ H ₁₁	
7.8	Cl	secC ₅ H ₁₁	
7.9	Cl	n-C ₆ H ₁₃	
7.10	Cl	n-C ₇ H ₁₅	
7.11	Cl	secC7H15	
7.12	Cl	1-Methylvinyl	
7.13	Cl	2-Methylvinyl	

	Nr.	\mathbb{R}^1	R ⁷ .	phys.Dat. Fp [°C]
5	7.14	Cl	Allyl	
3	7.15	Cl	2-Methylallyl	
,	7.16	Cl	2-Ethylallyl	
	7,17	Cl	1-Methylallyl	
10	7.18	Cl	1-Ethylallyl	
	7.19	Cl	1-Methyl-2-butenyl	
	7.20	Cl	1-Ethyl-2-butenyl	
	7.21	Cl	1-Isopropyl-2-butenyl	
15	7.22	Cl	1-n-Butyl-2-butenyl	
	7.23	C1	1-Methyl-2-pentenyl	
	7.24	Cl	1,4-Dimethyl-2-pentenyl	
20	7.25	Cl	Propargyl	
20	7.26	Cl	2-Butinyl	
	7.27	Cl	3-Butinyl	
	7.28	Cl	Ethoxi	
25	7.29	C1	Ргорожі	
	7.30	C1	1-Methylethoxi	
	7.31	Cl	n-Butoxi	
	7.32	C1	1-Methylpropoxi	
30	7.33	C1	2-Methylpropoxi	
	7.34	Cl	1,1-Dimethylethoxi	
	7.35	Cl	n-Pentyloxi	
05	7.36	C1	n-Hexyloxi	
35	7.37	Cl	2-Ethylhexyloxi	
	7.38	Cl	2-Propenyloxi	
	7.39	Cl	2-Butentyloxi	
40	7.40	Cl	2-Methyl-2-propenyloxi	
	7.41	Cl	2-Pentenyloxi	
	7.42	Cl	3-Pentenyloxi	
4 5	7.43	Cl	3-Chlor-2-propenyloxi	
	7.44	Cl	2,3-Dichlor-2-propenyloxi	
	7.45	C1	2,3,3-Trichlor-propenyloxi	
	7.46	Cl	2-Propinyloxi	
50	7.47	Cl	2-Butinyl-oxi	
50	7.48	Cl	3-Butinyl-oxi	

	Nr.	\mathbb{R}^1	R ⁷	phys.Dat. Fp [°C]
5	7.49	Cl	1-Methyl-2-propinyloxi	
	7.50	C1	Cyclopropyl	
	7.51	Cl	Cyclobutyl	
	7.52	Cl	Cyclopentyl	110-111
10	7.53	Cl	Cyclohexyl	141-142
	7.54	Cl	2-Cyclopentenyl	110-112
	7.55	Cl	1-Cyclopentenyl	
	7.56	Cl	2-Cyclohexenyl	84- 86
15	7.57	Cl	1-Cyclohexenyl	
	7.58	Cl	Cyclopentyloxi	
20	7.59	Cl	Cyclohexyloxi	
	7.60	Cl	2-Cyclopentenyloxi	
	7.61	Cl	2-Cyclohexenyloxi	

Tabelle 8 Verbindungen der Formel V mit A in der Bedeutung \mathtt{A}_2

Nr.	n	R ⁷	phys.Dat. Fp [°C]
8.1	2	i-C ₃ H ₇	
8.2	2	n-C ₃ H ₇	
8.3	2	n-C ₄ H ₉	
8.4	2	secC ₄ H ₉	96-98
8.5	2	i-C ₄ H ₉	85-86
8.6	2	tertC4H9	
8.7	2	n-C ₅ H ₁₁	
8.8	2	secC ₅ H ₁₁	
8.9	2	n-C ₆ H ₁₃	
8.10	2	n-C ₇ H ₁₅	
8.11	2	secC7H15	

55

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
5	8.12	2	1-Methylvinyl	
	8.13	2	2-Methylvinyl	
	8.14	2	Allyl	
	8.15	2	2-Methylallyl	
10	8.16	2	2-Ethylallyl	
	8.17	2	1-Methylallyl	
	8.18	2	1-Ethylallyl	
	8.19	2	1-Methyl-2-butenyl	
15	8.20	2	1-Ethyl-2-butenyl	
	8.21	2	1-Isopropyl-2-butenyl	
	8.22	2	1-n-Butyl-2-butenyl	
20	8.23	2	1-Methyl-2-pentenyl	
	8.24	2	1,4-Dimethyl-2-pentenyl	
	8.25	2	Propargyl	
	8.26	2	2-Butinyl	
25	8.27	2	3-Butinyl	
	8.28	2	Ethoxi	
	8.29	2	Propoxi	
	8.30	2	1-Methylethoxi	
30	8.31	2	n-Butoxi	
	8.32	2	1-Methylpropoxi	100-102
	8.33	2	2-Methylpropoxi	
35	8.34	2	1,1-Dimethylethoxi	
	8.35	2	n-Pentyloxi	
	8.36	2	n-Hexyloxi	
	8.37	2	2-Ethylhexyloxi	
40	8.38	2	2-Propenyloxi	
	8.39	2	2-Butentyloxi	
	8.40	2	2-Methyl-2-propenyloxi	
	8.41	2	2-Pentenyloxi	
45	8.42	2	3-Pentenyloxi	
	8.43	2	3-Chlor-2-propenyloxi	
	8.44	2	2,3-Dichlor-2-propenyloxi	
50	8.45	2	2,3,3-Trichlor-propenyloxi	
	8.46	2	2-Propinyloxi	

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
_	8.47	2	2-Butinyl-oxi	
5	8.48	2	3-Butinyl-oxi	
	8.49	2	1-Methyl-2-propinyloxi	
	8.50	2	Cyclopropyl	
10	8.51	2	Cyclobutyl	
	8.52	2	Cyclopentyl	128-130
	8.53	2	Cyclohexyl	134-135
	8.54	2	2-Cyclopentenyl	
15	8.55	2	1-Cyclopentenyl	
	8.56	2	2-Cyclohexenyl	
	8.57	2	1-Cyclohexenyl	
20	8.58	2	Cyclopentyloxi	
20	8.59	2	Cyclohexyloxi	
	8.60	2	2-Cyclopentenyloxi	
	8.61	2	2-Cyclohexenyloxi	
25	8.62	1	i-C ₃ H ₇	
	8.63	1	n-C ₃ H ₇	
	8.64	1	n-C ₄ H ₉	
	8.65	1	secC ₄ H ₉	Öl
30	8.66	1	1-C ₄ H ₉	Ö1
	8.67	1	tertC ₄ H ₉	
	8.68	1	n-C ₅ H ₁₁	
35	8.69	1	secC ₅ H ₁₁	
	8.70	1	n-C ₆ H ₁₃	
	8.71	1	n-C ₇ H ₁₅	
	8.72	1	secC7H15	
40	8.73	1	Ethoxi	
	8.74	1	Propoxi	
	8.75	1	1-Methylethoxi	
45	8.76	1	n-Butoxi	
40	8.77	1	1-Methylpropoxi	
	8.78	1	2-Methylpropoxi	
	8.79	1	1,1-Dimethylethoxi	
50	8.80	1	n-Pentyloxi	

	Nr.	n	R ⁷	phys.Dat. Fp [°C]
5	8.81	1	n-Hexyloxi	
	8.82	1	Cyclopentyl	

Tabelle 9 Verbindungen der Formel V mit A in der Bedeutung $A_4\,$

A₄ CO-NH

phys.Dat. \mathbb{R}^3 R4 R^7 Nr. Fp [°C] 20 115-116 CF₃ CH₃ i-C₃H₇ 9.1 114-116 9.2 CF₃ CH₃ n-C₃H₇ 9.3 CF₃ CH₃ n-C4H9 73- 75 CF₃ CH₃ 25 9.4 sec.-C4H9 100-102 9.5 CF₃ CH₃ i-C4H9 9.6 CF₃ CH₃ tert.-C4H9 9.7 CF₃ CH₃ n-C5H11 30 9.8 CF₃ CH₃ sec.-C5H11 CH₃ 9.9 n-C₆H₁₃ CF₃ 9.10 CF₃ n-C7H15 CH₃ 9.11 CF₃ CH₃ sec.-C7H15 35 9.12 CF₃ CH₃ 1-Methylvinyl 9.13 2-Methylvinyl CF₃ CH₃ CH₃ 9.14 CF₃ Allyl 40 9.15 CH₃ 2-Methylallyl CF3 9.16 CF₃ CH₃ 2-Ethylallyl 9.17 CF₃ CH₃ 1-Methylallyl 9.18 CF₃ CH₃ 1-Ethylallyl 9.19 CF₃ CH₃ 1-Methyl-2-butenyl 9.20 CF₃ CH₃ 1-Ethyl-2-butenyl 9.21 CH₃ 1-Isopropyl-2-butenyl CF₃ 9.22 CF3 CH₃ 1-n-Butyl-2-butenyl 50 9.23 1-Methyl-2-pentenyl CF₃ CH₃

55

10

	Nr.	R ³	R ⁴	R ⁷	phys.Dat. Fp [°C]
5	9.24	CF ₃	CH ₃	1,4-Dimethyl-2-pentenyl	
	9.25	CF ₃	CH ₃	Propargyl	
	9.26	CF ₃	CH ₃	2-Butinyl	
	9.27	CF ₃	CH ₃	3-Butinyl	
10	9.28	CF ₃	CH ₃	Ethoxi	
	9.29	CF ₃	CH ₃	Propoxi	
	9.30	CF ₃	CH ₃	1-Methylethoxi	
	9.31	CF ₃	CH ₃	n-Butoxi	
15	9.32	CF ₃	CH ₃	1-Methylpropoxi	
	9.33	CF3	CH ₃	2-Methylpropoxi	
	9.34	CF ₃	CH ₃	1,1-Dimethylethoxi	
20	9.35	CF ₃	CH ₃	n-Pentyloxi	
20	9.36	CF3	CH ₃	n-Hexyloxi	
	9.37	CF ₃	CH ₃	2-Ethylhexyloxi	
	9.38	CF3	CH ₃	2-Propenyloxi	
25	9.39	CF ₃	CH ₃	2-Butentyloxi	
	9.40	CF ₃	CH ₃	2-Methyl-2-propenyloxi	
	9.41	CF ₃	CH ₃	2-Pentenyloxi	
	9.42	CF ₃	CH ₃	3-Pentenyloxi	
30	9.43	CF ₃	CH ₃	3-Chlor-2-propenyloxi	
	9.44	CF ₃	CH ₃	2,3-Dichlor-2-propenyloxi	
	9.45	CF ₃	CH ₃	2,3,3-Trichlor-propenyloxi	
	9.46	CF ₃	CH ₃	2-Propinyloxi	
35	9.47	CF ₃	CH ₃	2-Butinyl-oxi	
	9.48	CF ₃	CH ₃	3-Butinyl-oxi	
	9.49	CF ₃	CH ₃	1-Methyl-2-propinyloxi	
	9.50	CF ₃	CH ₃	Cyclopropyl	
40	9.51	CF ₃	CH ₃	Cyclobutyl	
	9.52	CF ₃	CH ₃	Cyclopentyl	114-118
	9.53	CF ₃	CH ₃	Cyclohexyl	100-104
45	9.54	CF ₃	CH ₃	2-Cyclopentenyl	116-120
	9.55	CF ₃	CH ₃	1-Cyclopentenyl	
	9.56	CF ₃	CH ₃	2-Cyclohexenyl	96-98
	9.57	CF ₃	CH ₃	1-Cyclohexenyl	
50	9.58	CF3	CH ₃	Cyclopentyloxi	

Nr.	R ³	R ⁴	R ⁷	phys.Dat Fp [°C]
9.59	CF ₃	CH ₃	Cyclohexyloxi	
9.60	CF ₃	CH ₃	2-Cyclopentenyloxi	
9.61	CF ₃	CH ₃	2-Cyclohexenyloxi	
9.62	CH ₃	CH ₃	i-C ₃ H ₇	
9.63	CH ₃	CH ₃	n-C ₃ H ₇	
9.64	CH ₃	CH ₃	n-C ₄ H ₉	
9.65	CH ₃	CH ₃	secC ₄ H ₉	136
9.66	CH ₃	CH ₃	i-C ₄ H ₉	96- 97
9.67	CH ₃	CH ₃	tertC ₄ H ₉	
9.68	CH ₃	CH ₃	n-C ₅ H ₁₁	
9.69	CH ₃	CH ₃	secC ₅ H ₁₁	
9.70	CH ₃	CH ₃	n-C ₆ H ₁₃	
9.71	CH ₃	CH ₃	n-C ₇ H ₁₅	
9.72	CH ₃	CH ₃	secC7H15	
9.73	CH ₃	CH ₃	Ethoxi	
9.74	CH ₃	CH ₃	Propoxi	
9.75	СН3	CH ₃	1-Methylethoxi	
9.76	CH ₃	CH ₃	n-Butoxi	
9.77	CH ₃	CH ₃	1-Methylpropoxi	
9.78 9.79	CH ₃	CH ₃	2-Methylpropoxi	
	CH ₃	CH ₃	1,1-Dimethylethoxi	
9.80	CH ₃	CH ₃	n-Pentyloxi	
9.81	CH ₃	CH ₃	n-Hexyloxi	
9.82	CH ₃	CH ₃	Cyclopentyl	128-130
9.83	СН3	CH ₃	Cyclopentenyl	128-129
9.84	CH ₃	CH ₃	Cyclohexyl	128-129
9.85	CH ₃	CH ₃	1-Ethyl-propoxy	45-47
9.86	CH ₃	CH ₃	Cyclopentyloxy	97-99
9.87	CH ₃	CH ₃	2-Cyclohexenyloxy	87-89
9.88	CH ₃	CH ₃	2-Methyl-2-propenyloxy	103-105

Tabelle 10 Verbindungen der Formel V mit A in der Bedeutung A_6

A₆ CO-NH

10

5

				<u> </u>	
	Nr.	R ⁵	R ⁶	R ⁷	phys.Dat.
		<u> </u>			Fp [°C]
15	10.1	CH ₃	Cl	i-C ₃ H ₇	108-110
	10.2	CH ₃	Cl	n-C ₃ H ₇	129-130
	10.3	CH ₃	Cl	n-C ₄ H ₉	
20	10.4	CH ₃	C1	secC ₄ H ₉	71- 73
20	10.5	CH ₃	Cl	i-C ₄ H ₉	119-120
	10.6	CH ₃	Cl	tertC ₄ H ₉	
	10.7	CH ₃	Cl	n-C ₅ H ₁₁	
25	10.8	CH ₃	Cl	secC ₅ H ₁₁	
	10.9	CH ₃	Cl	n-C ₆ H ₁₃	
	10.10	CH ₃	Cl	n-C7H15	
	10.11	CH ₃	C1	secC7H15	
30	10.12	CH ₃	C1	1-Methylvinyl	
	10.13	CH ₃	C1	2-Methylvinyl	
	10.14	CH ₃	C1	Allyl	
	10.15	CH ₃	Cl	2-Methylallyl	
35	10.16	CH ₃	Cl	2-Ethylallyl	
	10.17	CH ₃	Cl	1-Methylallyl	
	10.18	CH ₃	C1	1-Ethylallyl	
40	10.19	CH ₃	Cl	1-Methyl-2-butenyl	
	10.20	CH ₃	Cl	1-Ethyl-2-butenyl	
	10.21	СН3	Cl	1-Isopropyl-2-butenyl	
	10.22	CH ₃	Cl	1-n-Butyl-2-butenyl	
45	10.23	CH ₃	Cl	1-Methyl-2-pentenyl	
	10.24	CH ₃	Cl	1,4-Dimethyl-2-pentenyl	
	10.25	CH ₃	Cl	Propargyl	
	10.26	CH ₃	Cl	2-Butinyl	
50	10.27	CH ₃	Cl	3-Butinyl	

55

	Nr.	R ⁵	R6	R ⁷	phys.Dat. Fp [°C]
_	10.28	CH ₃	C1	Ethoxi	
5	10.29	CH ₃	Cl	Propoxi	
	10.30	CH ₃	Cl	1-Methylethoxi	
	10.31	CH ₃	Cl	n-Butoxi	
10	10.32	CH ₃	C1	1-Methylpropoxi	
	10.33	CH ₃	C1	2-Methylpropoxi	
	10.34	CH ₃	Cl	1,1-Dimethylethoxi	
	10.35	CH ₃	Cl	n-Pentyloxi	
15	10.36	CH ₃	Cl	n-Hexyloxi	
	10.37	CH ₃	Cl	2-Ethylhexyloxi	
	10.38	CH ₃	Cl	2-Propenyloxi	
	10.39	CH ₃	Cl	2-Butentyloxi	
20	10.40	CH ₃	Cl	2-Methyl-2-propenyloxi	
	10.41	CH ₃	Cl	2-Pentenyloxi	
	10.42	CH ₃	Cl	3-Pentenyloxi	
	10.43	CH ₃	Cl	3-Chlor-2-propenyloxi	`
25	10.44	CH ₃	Cl	2,3-Dichlor-2-propenyloxi	
	10.45	CH ₃	Cl	2,3,3-Trichlor-propenyloxi	
	10.46	CH ₃	Cl	2-Propinyloxi	
30	10.47	CH ₃	Cl	2-Butinyl-oxi	
	10.48	CH ₃	C1	3-Butinyl-oxi	
	10.49	CH ₃	Cl	1-Methyl-2-propinyloxi	
	10.50	CH ₃	Cl	Cyclopropyl	
35	10.51	CH ₃	Cl	Cyclobutyl	
	10.52	CH ₃	Cl	Cyclopentyl	122-123
	10.53	CH ₃	C1	Cyclohexyl	143-144
	10.54	CH ₃	C1	2-Cyclopentenyl	123-125
40	10.55	CH ₃	Cl	1-Cyclopentenyl	
	10.56	CH ₃	C1	2-Cyclohexenyl	114-116
	10.57	CH ₃	Cl	1-Cyclohexenyl	
45	10.58	CH ₃	Cl	Cyclopentyloxi	
45	10.59	CH ₃	C1	Cyclohexyloxi	1
	10.60	CH ₃	Cl	2-Cyclopentenyloxi	1
	10.61	CH ₃	Cl	2-Cyclohexenyloxi	
50	10.62	CF ₃	Cl	i-C ₃ H ₇	

	Nr.	R ⁵	R ⁶	R ⁷	phys.Dat. Fp [°C]
5	10.63	CF ₃	Cl	n-C ₃ H ₇	
	10.64	CF ₃	C1	n-C ₄ H ₉	
	10.65	CF ₃	Cl	secC ₄ H ₉	108-110
	10.66	CF ₃	Cl	i-C ₄ H ₉	122-124
10	10.67	CF ₃	Cl	tertC ₄ H ₉	
	10.68	CF ₃	C1	n-C ₅ H ₁₁	
	10.69	CF ₃	Cl	secC ₅ H ₁₁	
	10.70	CF ₃	Cl	n-C ₆ H ₁₃	
15	10.71	CF ₃	C1	n-C ₇ H ₁₅	
	10.72	CF ₃	C1	secC ₇ H ₁₅	
	10.73	CF ₃	Cl	Ethoxi	
20	10.74	CF3	Cl	Propoxi	
	10.75	CF ₃	C1	1-Methylethoxi	
	10.76	CF ₃	Cl	n-Butoxi	
	10.77	CF ₃	Cl	1-Methylpropoxi	
25	10.78	CF ₃	Cl	2-Methylpropoxi	
	10.79	CF ₃	Cl	1,1-Dimethylethoxi	
	10.80	CF ₃	Cl	n-Pentyloxi	
	10.81	CF ₃	Cl	n-Hexyloxi	
30	10.82	CF ₃	Cl	Cyclopentyl	113-115
	10.83	CF ₃	Cl	Cyclopentenyl	132-133

Tabelle 11 Verbindungen der Formel V mit A in der Bedeutung A_7

	Nr.	R ²	R ⁶	R ⁷	phys.Dat. Fp [°C]
	11.1	Н	CH ₃	i-C ₃ H ₇	
50	11.2	H	CH ₃	n-C ₃ H ₇	
-	11.3	Н	CH ₃	n-C ₄ H ₉	

55

Nr.	R ²	R6	R ⁷	phys.Dat. Fp [°C]
11.4	н	CH ₃	secC ₄ H ₉	Öl
11.5	Н	CH ₃	1-C ₄ H ₉	Ö1
11.6	Н	CH ₃	tertC ₄ H ₉	
11.7	н	CH ₃	n-C ₅ H ₁₁	
11.8	Н	CH ₃	secC ₅ H ₁₁	
11.9	н	CH ₃	n-C ₆ H ₁₃	
11.10	Н	CH ₃	n-C ₇ H ₁₅	
11.11	H	CH ₃	secC ₇ H ₁₅	
11.12	Н	CH ₃	Ethoxi	
11.13	H	CH ₃	Propoxi	
11.14	H	CH ₃	1-Methylethoxi	
11.15	Н	CH ₃	n-Butoxi	
11.16	Н	CH ₃	1-Methylpropoxi	
11.17	H	CH ₃	2-Methylpropoxi	
11.18	Н	CH ₃	1,1-Dimethylethoxi	
11.19	H	CH ₃	n-Pentyloxi	
11.20	Н	CH ₃	n-Hexyloxi	
11.21	H	CH ₃	Cyclopentyl	
11.22	Н	CH ₃	Cyclopentenyl	

Tabelle 12 $\begin{tabular}{lll} Verbindungen der Formel V mit A in der Bedeutung A_3 \\ \end{tabular}$

$$R^2$$
 CO-NH CH_3 R^7

Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
12.1	Н	i-C ₃ H ₇	147-148
12.2	н	n-C ₃ H ₇	
12.3	н	n-C ₄ H ₉	
12.4	н	secC ₄ H ₉	109-110
12.5	Н	i-C ₄ H ₉	114-115

	Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
	12.6	H	tertC ₄ H ₉	
5	12.7	Н	n-C ₅ H ₁₁	
	12.8	H	secC ₅ H ₁₁	
	12.9	H	n-C ₆ H ₁₃	
10	12.10	H	n-C ₇ H ₁₅	
10	12.11	H	secC7H15	
	12.12	Н	Ethoxi	
	12.13	Н	Propoxi	
15	12.14	Н	1-Methylethoxi	
	12.15	H	n-Butoxi	
	12.16	Н	1-Methylpropoxi	
	12.17	Н	2-Methylpropoxi	
20	12.18	H	1,1-Dimethylethoxi	
	12.19	н	n-Pentyloxi	
	12.20	Н	n-Hexyloxi	
	12.21	Н	Cyclopentyl	97- 98
25	12.22	Н	Cyclohexyl	125-127
	12.23	H	2-Cyclopentenyl	98- 99
	12.24	H	1-Cyclopentenyl	
30	12.25	Н	2-Cyclohexenyl	82- 84
	12.26	Н	1-Cyclohexenyl	
	12.27	Н	Cyclopentyloxi	73 - 75
	12.28	Н	Cyclohexyloxi	
35	12.29	н	2-Cyclopentenyloxi	
	12.30	CH ₃	i-C ₃ H ₇	
	12.31	CH ₃	n-C ₃ H ₇	
	12.32	CH ₃	n-C ₄ H ₉	
40	12.33	СН3	secC ₄ H ₉	80- 82
	12.34	CH ₃	i-C ₄ H ₉	114-116
	12.35	CH ₃	tertC ₄ H ₉	
45	12.36	CH ₃	n-C ₅ H ₁₁	
•	12.37	CH ₃	secC ₅ H ₁₁	
	12.38	СН3	n-C ₆ H ₁₃	
	12.39	CH ₃	n-C ₇ H ₁₅	
50	12.40	CH ₃	secC7H ₁₅	

Nr.	R ²	R ⁷	phys.Dat. Fp [°C]
12.41	CH ₃	Ethoxi	
12.42	CH ₃	Propoxi	
12.43	CH ₃	1-Methylethoxi	
12.44	CH ₃	n-Butoxi	
12.45	CH ₃	1-Methylpropoxi	
12.46	CH ₃	2-Methylpropoxi	
12.47	CH ₃	1,1-Dimethylethoxi	
12.48	CH ₃	n-Pentyloxi	
12.49	CH ₃	n-Hexyloxi	
12.50	CH ₃	Cyclopentyl	
12.51	Н	2-Methyl-2-propenyloxy	40 - 41
12.52	Н	1-Ethyl-propoxy	Öl
12.53	Н	2-Cyclohexenyloxy	51 - 53

25

30

5

10

15

20

Herstellbeispiele

Beispiel 7

Zu einer Lösung von 1,4 g 2-n-Propylanilin und 1,1 g Triethylamin in 15 ml Tetrahydrofuran tropft man bei 0 ° C 2,3 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäurechlorid und rührt noch 12 Stdn. bei 20 ° C.

Nach Verdünnen mit 300 ml Wasser, Extraktion mit Methyltert.-butylether (2x 70 ml), Verdampfen des Lösungsmittels und Mischen des Rückstandes mit wenig n-Pentan isoliert man 2,8 g 2-Methyl-4-trifluormethyl-thiazol-5-carbonsäure-2-n-propyl-anilid vom Fp.: 114-116 °C (Tabelle 9, Nr. 2).

35 Beispiel 8

Zu einer Lösung von 2,7 g 2-i-Propylanilin und 2,2 g Triethylamin in 40 ml Dichlormethan tropft man bei 0°C 3,8 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäurechlorid und rührt noch 2 Stdn. bei 0°C.

Nach Waschen mit 50 ml Wasser, Verdampfen des Lösungsmittels und Umkristallisieren aus Cyclohexan isoliert man 3,3 g 1,3-Dimethyl-5-chlor-pyrazol-4-carbonsäure-2-isopropylanilid vom Fp. 108 - 110 °C (Tabelle 10, Nr. 1).

45

50

Tabelle 13 Verbindungen der Formel V mit A in der Bedeutung ${\tt A}_1$

15	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
	13.1	Br	i-C ₃ H ₇	
	13.2	Br	n-C ₃ H ₇	
	13.3	Br	n-C ₄ H ₉	
20	13.4	Br	secC ₄ H ₉	74- 75
	13.5	Br	i-C ₄ H ₉	110 - 112
	13.6	Br	tertC ₄ H ₉	
25	13.7	Br	n-C ₅ H ₁₁	
	13.8	Br	secC ₅ H ₁₁	
	13.9	Br	n-C ₆ H ₁₃	
30	13.10	Br	n-C ₇ H ₁₅	
30	13.11	Br	secC7H ₁₅	
	13.12	Br	1-Methylvinyl	
	13.13	Br	2-Methylvinyl	
35	13.14	Br	Allyl	
	13.15	Br	2-Methylallyl	
	13.16	Br	2-Ethylallyl	
40	13.17	Br	1-Methylallyl	
	13.18	Br	1-Ethylallyl	
	13.19	Br	1-Methyl-2-butenyl	
	13.20	Br	1-Ethyl-2-butenyl	
45	13.21	Br	1-Isopropyl-2-butenyl	
	13.22	Br	1-n-Butyl-2-butenyl	
	13.23	Br	1-Methyl-2-pentenyl	

	Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
5	13.24	Br	1,4-Dimethyl-2-pentenyl	
3	13.25	Br	Propargyl	
	13.26	Br	2-Butinyl	
	13.27	Br	3-Butinyl	
10	13.28	Br	Ethoxi	
	13.29	Br	Propoxi	
	13.30	Br	1-Methylethoxi	
	13.31	Br	n-Butoxi	
15	13.32	Br	1-Methylpropoxi	
	13.33	Br	2-Methylpropoxi	
	13.34	Br	1,1-Dimethylethoxi	
	13.35	Br	n-Pentyloxi	
20	13.36	Br	n-Hexyloxi	
	13.37	Br	2-Ethylhexyloxi	
	13.38	Br	2-Propenyloxi	
25	13.39	Br	2-Butentyloxi	
	13.40	Br	2-Methyl-2-propenyloxi	
	13.41	Br	2-Pentenyloxi	
	13.42	Br	3-Pentenyloxi	
30	13.43	Br	3-Chlor-2-propenyloxi	
	13.44	Br	2,3-Dichlor-2-propenyloxi	
	13.45	Br	2,3,3-Trichlor-propenyloxi	
	13.46	Br	2-Propinyloxi	
35	13.47	Br	2-Butinyl-oxi	
	13.48	Br	3-Butinyl-oxi	
	13.49	Br	1-Methyl-2-propinyloxi	
40	13.50	Br	Cyclopropyl	
	13.51	Br	Cyclobutyl	
	13.52	Br	Cyclopentyl	
	13.53	Br	Cyclohexyl	
45	13.54	Br	2-Cyclopentenyl	
	13.55	Br	1-Cyclopentenyl	
	13.56	Br	2-Cyclohexenyl	
	13.57	Br	1-Cyclohexenyl	
50	13.58	Br	Cyclopentyloxi	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
13.59	Br	Cyclohexyloxi	
13.60	Br	2-Cyclopentenyloxi	
13.61	Br	2-Cyclohexenyloxi	

Tabelle 14 $\begin{tabular}{lll} Verbindungen der Formel V mit A in der Bedeutung A_1 \\ \end{tabular}$

A₁ CO-NH

20 \mathbb{R}^1 R^7 phys.Dat. Nr. Fp [°C] 14.1 J 1-C3H7 14.2 J n-C₃H₇ 25 n-C₄H₉ 14.3 J 14.4 J 97 - 98 sec.-C4H9 148 - 149 14.5 J i-C₄H₉ 14.6 J tert.-C4H9 30 n-C₅H₁₁ J 14.7 14.8 J $sec.-C_5H_{11}$ 14.9 J n-C₆H₁₃ 35 14.10 J $n-C_7H_{15}$ 14.11 J sec.-C7H15 14.12 J 1-Methylvinyl 14.13 J 2-Methylvinyl 40 14.14 J Allyl 14.15 2-Methylallyl J 14.16 J 2-Ethylallyl 14.17 J 1-Methylallyl 45 14.18 1-Ethylallyl J 14.19 J 1-Methyl-2-butenyl 14.20 J 1-Ethyl-2-butenyl 50 14.21 J 1-Isopropyl-2-butenyl

55

5

10

	Nr.	R1	R ⁷	phys.Dat. Fp [°C]
5	14.22	J	1-n-Butyl-2-butenyl	
	14.23	J	1-Methyl-2-pentenyl	
	14.24	J	1,4-Dimethyl-2-pentenyl	
	14.25	J	Propargyl	
10	14.26	J	2-Butinyl	
	14.27	J	3-Butinyl	· ·
	14.28	J	Ethoxi	
	14.29	J	Propoxi	
15	14.30	J	1-Methylethoxi	
	14.31	J	n-Butoxi	
	14.32	J	1-Methylpropoxi	
20	14.33	J	2-Methylpropoxi	
	14.34	J	1,1-Dimethylethoxi	
	14.35	J	n-Pentyloxi	
	14.36	J	n-Hexyloxi	
25	14.37	J	2-Ethylhexyloxi	
	14.38	J	2-Propenyloxi	
	14.39	J	2-Butentyloxi	
	14.40	J	2-Methyl-2-propenyloxi	
30	14.41	J	2-Pentenyloxi	
	14.42	J	3-Pentenyloxi	
	14.43	J	3-Chlor-2-propenyloxi	
35	14.44	J	2,3-Dichlor-2-propenyloxi	
	14.45	J	2,3,3-Trichlor-propenyloxi	
	14.46	J	2-Propinyloxi	
	14.47	J	2-Butinyl-oxi	
40	14.48	J	3-Butinyl-oxi	
	14.49	J	1-Methyl-2-propinyloxi	
	14.50	J	Cyclopropyl	
	14.51	J	Cyclobutyl	
45	14.52	J	Cyclopentyl	
	14.53	J	Cyclohexyl	
	14.54	J	2-Cyclopentenyl	
50	14.55	J	1-Cyclopentenyl	
	14.56	J	2-Cyclohexenyl	

Nr.	R ¹	R ⁷	phys.Dat. Fp [°C]
14.57	J	1-Cyclohexenyl	
14.58	J	Cyclopentyloxi	
14.59	J	Cyclohexyloxi	
14.60	J	2-Cyclopentenyloxi	
14.61	J	2-Cyclohexenyloxi	

Tabelle 15 $\begin{tabular}{lll} Verbindungen der Formel V mit A in der Bedeutung A_3 \\ \end{tabular}$

H CO-NH CH3 R⁷

Nr. R⁷ phys.Dat. Fp [°C] 15.1 $i-C_3H_7$ 15.2 n-C₃H₇ 15.3 n-C₄H₉ 78-80 15.4 sec.-C4H9 106-107 15.5 i-C₄H₉ 15.6 tert.-C4H9 15.7 $n-C_5H_{11}$ 15.8 $sec.-C_5H_{11}$ 15.9 $n-C_6H_{13}$ 15.10 n-C7H15 15.11 $sec.-C_7H_{15}$ 15.12 Ethoxi 15.13 Propoxi 15.14 1-Methylethoxi 15.15 n-Butoxi 15.16 1-Methylpropoxi 15.17 2-Methylpropoxi 15.18 1,1-Dimethylethoxi 15.19 n-Pentyloxi

55

5

10

15

20

25

30

35

40

45

	Nr.	R ⁷	phys.Dat. Fp [°C]
	15.20	n-Hexyloxi	
5	15.21	Cyclopentyl	
	15.22	Cyclohexyl	
	15.23	2-Cyclopentenyl	
	15.24	1-Cyclopentenyl	
0	15.25	2-Cyclohexenyl	
	15.26	1-Cyclohexenyl	
	15.27	Cyclopentyloxi	
;	15.28	Ethoxi	
	15.29	Ргорожі	,
	15.30	1-Methylethoxi	
	15.31	n-Butoxi	
)	15.32	1-Methylpropoxi	
	15.33	2-Methylpropoxi	
	15.34	1,1-Dimethylethoxi	
	15.35	n-Pentyloxi	•
i	15.36	n-Hexyloxi	
	15.37	2-Ethylhexyloxi	
	15.38	2-Propenyloxi	
)	15.39	2-Butentyloxi	
'	15.40	2-Methyl-2-propenyloxi	Öl
	15.41	2-Pentenyloxi	
	15.42	3-Pentenyloxi	
;	15.43	3-Chlor-2-propenyloxi	
	15.44	2,3-Dichlor-2-propenyloxi	
	15.45	2,3,3-Trichlor-propenyloxi	
	15.46	2-Propinyloxi	
)	15.47	2-Butinyl-oxi	
	15.48	3-Butinyl-oxi	
	15.49	1-Methyl-2-propinyloxi	
	15.50	Cyclopropyl	
i	15.51	Cyclobutyl	
	15.52	Cyclopentyl	
	15.53	Cyclohexyl	
)	15.54	2-Cyclopentenyl	

Nr.	R ⁷	phys.Dat. Fp [°C]
15.55	1-Cyclopentenyl	
15.56	2-Cyclohexenyl	
15.57	1-Cyclohexenyl	
15.58	Cyclopentyloxi	Ö1
15.59	Cyclohexyloxi	
15.60	2-Cyclopentenyloxi	
15.61	2-Cyclohexenyloxi	Öl
15.62	1-Ethylpropoxy	Ö1

Die Erfindung betrifft ferner die folgenden neuen Verbindungen. Nicotinsäureanilid-Derivate der allgemeinen Formel I

 \mathbb{N} \mathbb{R}^1 \mathbb{R}^2

in der die Substituenten folgende Bedeutung haben

5

10

15

20

25

30

35

40

45

55

R1 Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl,

R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.

Anilid-Derivate der allgemeinen Formel II,

A-CO-NH II,

in der die Substituenten folgende Bedeutung haben:

A CH_3 CH_3 C(A2)

X Methylen oder Schwefel

gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes

 C_4 - C_6 -Cycloalkenyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkyloxi, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyloxi

mit der Maßgabe, daß

10

15

45

50

- A nicht A₁ ist, wenn R Ethoxi, Isopropoxi oder Allyloxi ist
- A nicht A₂ mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi ist
 - A nicht A₂ mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.
 - 2-Aminobiphenyl-Derivate der allgemeinen Formel III,

in der die Substituenten folgende Bedeutung haben:

- X Methylen, Schwefel, Sulfinyl, Sulfonyl (SO₂),
 - R¹ Methyl, Trifluormethyl, Chlor, Brom, Jod
 - R² Trifluormethyl, Chlor
 - R³ Wasserstoff oder Methyl
 - R⁴ Methyl, Trifluormethyl, Chlor
 - R⁵ Wasserstoff, Methyl, Chlor
 - R⁶ Methyl, Trifluormethyl
 - R7 Methyl, Chlor
 - R⁸ C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Halogen.
- 55 Carbonsäureanilid-Derivate der allg. Formel V,

$$A-CO-NH$$
 V ,

in der die Substituenten folgende Bedeutung haben

A
$$R^{1}$$

$$(A1)$$

$$R^{2}$$

$$(A2)$$

$$R^{2}$$

$$(A3)$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$CH_{3}$$

$$R^{5}$$

$$R^{6}$$

$$CH_{3}$$

$$R^{7}$$

$$R^{6}$$

$$CH_{3}$$

$$R^{7}$$

$$R^{8}$$

$$CH_{3}$$

$$R^{9}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{6}$$

$$R^{7}$$

$$R^{6}$$

$$R^{7}$$

$$R^{6}$$

$$R^{7}$$

$$R^{6}$$

$$R^{7}$$

$$R^{7}$$

$$R^{7}$$

$$R^{6}$$

$$R^{7}$$

$$R^{7}$$

$$R^{7}$$

$$R^{7}$$

$$R^{8}$$

$$R^{9}$$

$$R$$

1 oder 2

n

30

35

40

50

5

R1 Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R4 Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R6 Methyl, Chlor

R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₆-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R⁷ verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R¹ Trifluormethyl ist.

Die neuen Verbindungen eignen sich als Fungizide.

Die erfindungsgemäßen fungiziden Verbindungen bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Normalerweise werden die Pflanzen mit den Wirkstoffen besprüht oder bestäubt oder die Samen der Pflanzen mit den Wirkstoffen behandelt.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexanon), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene

und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Ligninsulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkylund Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Beispiele für solche Zubereitungen sind:

20

25

35

40

I. eine Lösung aus 90 Gew.-Teilen der Verbindung Nr. 1.7 und 10 Gew.-Teilen N-Methyl-a-pyrrolidon, die zur Anwendung in Form kleinster Tropfen geeignet ist;

II. eine Mischung aus 20 Gew.-Teilen der Verbindung Nr. 1.8, 80 Gew.Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl; durch feines Verteilen der Lösung in Wasser erhält man eine Dispersion. III. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.3, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol

IV. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.4, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl;

V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Verbindung Nr. 1.5, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphtalin-a-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel; durch feines Verteilen der Mischung in Wasser erhält man eine Spritzbrühe;

VI. eine innige Mischung aus 3 Gew.-Teilen der Verbindung Nr. 1.7 und 97 Gew.-Teilen feinteiligem Kaolin; dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;

VII. eine innige Mischung aus 30 Gew.-Teilen der Verbindung Nr. 1.8, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde; diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;

VIII. eine stabile wäßrige Dispersion aus 40 Gew.-Teilen der Verbindung Nr. 1.9, 10 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;

IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 1.33, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoff-formaldehydkondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls.

Die neuen Verbindungen zeichnen sich durch eine hervorragende Wirksamkeit gegen ein breites o Spektrum von pflanzenpathogenen Pilzen, insbesondere gegen Botrytis aus. Sie sind zum Teil systemisch wirksam und können als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.

Die Verbindungen werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Saatgüter, Pflanzen, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt.

Die Anwendung erfolgt vor oder nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze.

Speziell eignen sich die Verbindungen zur Bekämpfung folgender Pflanzenkrankheiten:

Erysiphe graminis (echter Mehltau) in Getreide.

5 Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,

Podosphaera leucotricha an Äpfeln,

Uncinula necator an Reben,

Venturia inaequalis (Schorf) an Äpfeln,

Helminthosporium-Arten an Getreide,

10 Septoria nodorum an Weizen,

15

Botrytis cinerea (Grauschimmel) an Erdbeeren, Reben,

Cercospora arachidicola an Erdnüssen,

Pseudocercosporella herpotrichoides an Weizen, Gerste, Pyricularia oryzae an Reis,

Fusarium- und Verticillium-Arten an verschiedenen Pflanzen, Alternaria-Arten an Gemüse und Obst.

Die Anwendung gegen Botrytis wird bevorzugt.

Die neuen Verbindungen können auch im Materialschutz (Holzschutz) eingesetzt werden, z.B. gegen Paecilomyces variotii.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.% Wirkstoff.

Die Aufwandmengen liegen je nach Art des gewünschten Effektes zwischen 0,02 und 3 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g, vorzugsweise 0,01 bis 10 g je Kilogramm Saatgut benötigt.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln.

Beim Vermischen mit Fungiziden erhält man dabei in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken: Schwefel.

Dithiocarbamate und deren Derivate, wie

Ferridimethyldithiocarbamat,

Zinkdimethyldithiocarbamat,

25 Zinkethylenbisdithiocarbamat,

Manganethylenbisdithiocarbamat,

Mangan-Zink-ethylendiamin-bis-dithiocarbamat,

Tetramethylthiuramdisulfide,

Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat),

40 Ammoniak-Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat),

Zink-(N,N'-propylen-bis-dithiocarbamat),

N,N'-Polypropylen-bis-(thiocarbamoyl)-disulfid,;

Nitroderivate, wie

Dinitro-(1-methylheptyl)-phenylcrotonat,

2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,

2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat,

5-Nitro-isophthalsäure-di-isopropylester;

heterocyclische Substanzen, wie

2-Heptadecyl-2-imidazolin-acetat,

2,4-Dichlor-6-(o-chloranilino)-s-triazin,

O,O-Diethyl-phthalimidophosphonothioat, 5-Amino-1-βbis-(dimethylamino)-phosphinyl'-3-phenyl-1,2,4-triazol,

2,3-Dicyano-1,4-dithioanthrachinon,

2-Thio-1,3-dithiolo \$4,5-b'chinoxalin,

55 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester,

2-Methoxycarbonylamino-benzimidazol,

2-(Furyl-(2))-benzimidazol,

2-(Thiazolyl-(4))-benzimidazol,

N-(1,1,2,2-Tetrachlorethylthio)-tetrahydrophthalimid,

N-Trichlormethylthio-tetrahydrophthalimid,

N-Trichlormethylthio-phthalimid,

```
N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid,
   5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol,
    2-Rhodanmethylthiobenzthiazol,
    1,4-Dichlor-2,5-dimethoxybenzol,
    4-(2-Chlorphenylhydrazono)-3-methyl-5-isoxazolon,
    Pyridin-2-thio-1-oxid,
    8-Hydroxychinolin bzw. dessen Kupfersalz,
    2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
    2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid,
    2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilid,
    2-Methyl-furan-3-carbonsäureanilid,
15 2.5-Dimethyl-furan-3-carbonsäureanilid.
    2,4,5-Trimethyl-furan-3-carbonsäureanilid,
    2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid,
    N-Cyclohexyl-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid,
    2-Methyl-benzoesäure-anilid,
20 2-lod-benzoesäure-anilid,
    N-Formyl-N-morpholin-2,2,2-trichlorethylacetal,
    Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid,
    1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan,
    2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze,
25 2,6-Dimethyl-N-cyclododecyl-morpholin bzw. dessen Salze,
    N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin,
    N-[3-(p-tert.-Butylphenyl)-2-methylpropyl]-piperidin,
    1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
    1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol
30 N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff,
    1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon,
    1-(4-Chlorphenyl)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
    \alpha-(2-Chlorphenyl)-\alpha-(4-chlorphenyl)-5-pyrimidin-methanol,
    5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin,
    Bis-(p-chlorphenyl)-3-pyridinmethanol,
    1.2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol.
    1,2-Bis-83-methoxycarbonyl-2-thioureido)-benzol,
    sowie verschiedene Fungizide, wie
    Dodecylguanidinacetat,
    3-[3-(3,5-Dimethyl-2-oxycyclohexyl)-2-hydroxyethyl)]glutarimid,
    Hexachlorbenzol,
    DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl (2)-alaninat,
    DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methylester,
    N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton,
45 DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethylester,
    5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin,
    3-[3,5-Dichlorphenyl(-5-methyl-5-methoxymethyl]-1,3-oxazolidin-2,4-dion,
    3-(3,5-Dichlorhenyl)-1-isopropylcarbamoylhydantoin,
    N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid,
50 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximinol-acetamid.
    1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol,
    2,4-Difluor-α-(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol,
    N-(3-Chlor-2,6-dinitro-4-trifluormethyl-phenyl)-5-trifluormethyl-3-chlor-2-aminopyridin,
    1-((bis-(4-Fluorphenyl)-methylsilyl)-methyl)-1H-1,2,4-triazol.
55
```

Anwendungsbeispiele

Als Vergleichswirkstoffe wurden 2-Chlornicotinsäure-2'-ethylanilid (A) - bekannt aus US 4 001 416 - und 2-Chlornicotinsäure-3'-isopropylanilid (B) - bekannt aus DE 26 11 601 - benutzt.

Anwendungsbeispiel 1

5

10

30

35

40

45

50

55

Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten

Scheiben von grünen Paprikaschoten wurden mit wäßriger Wirkstoffaufbereitung, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, tropfnaß besprüht. 2 Stunden nach dem Antrocknen des Spritzbelages wurden die Fruchtscheiben mit einer Sporensuspension von Botrytis cinerea, die 1,7 x 10⁶ Sporen pro ml einer 2 %igen Biomalzlösung enthielt, behandelt. Die Fruchtscheiben wurden anschließend in feuchten Kammern bei 18°C für 4 Tage aufbewahrt. Danach erfolgte visuell die Auswertung der Botrytis-Entwicklung auf den befallenen Fruchtscheiben.

Das Ergebnis zeigt, daß die Wirkstoffe 1.5, 1.7 und 1.8 bei der Anwendung als 500 ppm haltige Spritzbrühe eine bessere fungizide Wirkung zeigen (95 %) als die bekannten Vergleichswirkstoffe A (10 %) und B (65 %).

20 Anwendungsbeispiel 2

Wirksamkeit gegen Botrytis cinerea auf Paprikaschoten

Die Innenfläche von aufgeschnittenen Paprikaschoten wurde mit einer wäßrigen Wirkstoffaufbereitung, die 80 % Wirkstoff und 20 % Emulgiermittel in der Trockensubstanz enthielt, bis zur Tropfnässe besprüht. Nach dem Antrocknen der wäßrigen Wirkstoffaufbereitung wurden die Fruchtstücke mit einer wäßrigen Sporensuspension von Botrytis cinerea, die 1,7 x 10⁶ Sporen/ml enthielt, inokuliert.

Anschließend wurden die Fruchtstücke für 4 Tage in Klimaschränke bei 20 - 22 °C gestellt. Dann wurde das Ausmaß des Pilzbewuchses visuell ausgewertet.

Das Ergebnis des Versuchs zeigt ferner, daß die Verbindungen Nr. 2.4, 4.4, 6.4, 7.4, 7.5, 9.1, 9.2, 9.4, 9.5, 10.1, 10.2, 10.4, 10.5, 12.4, 12.6, 2.65 und 2.66 bei der Anwendung als 1000 ppm Wirkstoff enthaltende wäßrige Spritzbrühen eine gute fungizide Wirkung (100 %) haben.

Patentansprüche

1. Verwendung von Anilid-derivaten der Formel

in der A die folgenden Bedeutungen hat

Pyridin-3-yl, substituiert in 2-Stellung durch Halogen, Methyl, Trifluormethyl, Methoxy, Methylthio, Methylsulfinyl, Methylsulfonyl,

Phenyl, substituiert in 2-Stellung durch Methyl, Trifluormethyl, Chlor, Brom, Iod,

2-Methyl-5,6-dihydropyran-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4-oxid, 2-Methyl-5,6-dihydro-1,4-oxathiin-3-yl-4,4-dioxid; 2-Methyl-furan-3-yl, substituiert in 4- und 5-Stellung durch Wasserstoff oder Methyl; Thiazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; Thiazol-4-yl, substituiert in 2- und 5-Stellung durch Wasserstoff, Methyl, Chlor, Trifluormethyl; 1-Methylpyrazol-4-yl, substituiert in 3- und 5-Stellung durch Methyl, Chlor, Trifluormethyl; Oxazol-5-yl, substituiert in 2- und 4-Stellung durch Wasserstoff, Methyl, Chlor und R die folgenden Bedeutungen hat, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alken

Alkinyloxy, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_3 - C_6 -Cycloalkyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_4 - C_6 -Cycloalkenyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkyloxy, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyloxy, gegebenenfalls durch C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Halogen, substituiertes Phenyl, zur Bekämpfung von Bortrytis.

2. Verwendung von Nicotinsäureanilid-Derivaten der allgemeinen Formel I,

$$\begin{array}{c|c}
 & CO-NH \\
 & R^1 & R^2
\end{array}$$

in der die Substituenten folgende Bedeutung haben:

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl
 R² gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkyl, gegebenenfalls durch Halogen

substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

3. Verwendung von Anilid-Derivaten der Formel II,

in der die Substituenten folgende Bedeutung haben:

A
$$CH_3$$
 CX CH_3 CO CH_3

X Methylen oder Schwefel

R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkenyl, C₃-C₅-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₅-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₅-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₅-Cycloalkenyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₅-Cycloalkenyloxi zur Bekämpfung von Botrytis.

4. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel III,

55

45

50

10

15

20

25

in der die Substituenten folgende Bedeutung haben:

5

50

55

5. Verwendung von 2-Aminobiphenyl-Derivaten der allgemeinen Formel IV,

in der die Substituenten folgende Bedeutung haben:

6. Verwendung von Carbonsäureanilid-Derivaten der allg. Formel V,

A-CO-NH
$$\stackrel{}{\longrightarrow}$$
 V,

in der die Substituenten folgende Bedeutung haben:

55

A
$$R^{4} \longrightarrow R^{3}$$

$$R^{4} \longrightarrow R^{4}$$

$$R^{5} \longrightarrow R^{5}$$

$$R^{6} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow R^{2} \longrightarrow R^{3}$$

$$R^{6} \longrightarrow R^{2} \longrightarrow R^$$

n 1 oder 2

R1 Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R⁴ Wasserstoff, Methyl, Chlor

R5 Methyl, Trifluormethyl

R⁶ Methyl, Chlor

R⁷ gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₅-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₄-C₆-Cycloalkenyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi

zur Bekämpfung von Botrytis.

7. Nicotinsäureanilid-Derivate der allgemeinen Formel I

35

20

25

30

$$\begin{array}{c|c}
\hline
\\
N
\end{array}$$
 $\begin{array}{c|c}
CO-NH \\
R^1 & R^2
\end{array}$

40

45

in der die Substituenten folgende Bedeutung haben

R¹ Halogen, Methyl, Trifluormethyl, Methoxi, Methylthio, Methylsulfinyl, Methylsulfonyl,

R² gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₆-Cycloalkyl, C₄-C₆-Cycloalkenyl, C₅-C₆-Cycloalkyloxi, C₅-C₆-Cycloalkenyloxi mit der Maßgabe, daß R² verschieden von Isopropyl ist, wenn R¹ Chlor bedeutet.

50 8. Anilid-Derivate der allg. Formel II,

in der die Substituenten folgende Bedeutung haben:

5 A CH₃ (A1) (A2)

- X Methylen oder Schwefel
 - R gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkyl, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyl, C₃-C₆-Alkinyl gegebenenfalls durch Halogen substituiertes C₂-C₁₂-Alkoxi, gegebenenfalls durch Halogen substituiertes C₃-C₁₂-Alkenyloxi, C₃-C₁₂-Alkinyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₃-C₅-Cycloalkyl, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkyloxi, gegebenenfalls durch C₁-C₄-Alkyl substituiertes C₅-C₆-Cycloalkenyloxi

mit der Maßgabe, daß

15

20

35

40

45

50

- A nicht A₁ ist, wenn R Ethoxi, Isopropoxi oder Allyloxi ist
- A nicht A₂ mit X in der Bedeutung Schwefel ist, wenn R Ethoxi, Propoxi, n-Butoxi, sec.-Butoxi, n-Pentyloxi ist
- A nicht A₂ mit X in der Bedeutung Methylen ist, wenn R Isopropyl ist.
- 5 9. 2-Aminobiphenyl-Derivate der allgemeinen Formel III,

R8 NH-CO-A

in der die Substituenten folgende Bedeutung haben:

10. 2-Aminobiphenyl-Derivate der allgemeinen Formel IV,

in der die Substituenten folgende Bedeutung haben:

45

50

55

11. Carbonsäureanilid-Derivate der allg. Formel V,

$$A-CO-NH \longrightarrow V$$
,

in der die Substituenten folgende Bedeutung haben

50

45

n 1 oder 2

20

25

30

35

40

45

50

55

R1 Trifluormethyl, Chlor, Brom, Jod

R² Wasserstoff oder Methyl

R³ Methyl, Trifluormethyl, Chlor

R⁴ Wasserstoff, Methyl, Chlor

R⁵ Methyl, Trifluormethyl

R⁶ Methyl, Chlor

R⁷ gegebenenfa

gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkyl, gegebenenfalls durch Halogen substituiertes C_2 - C_{12} -Alkenyl, C_3 - C_6 -Alkinyl gegebenenfalls durch Halogen substituiertes C_2 - C_{12} -Alkenyl, gegebenenfalls durch Halogen substituiertes C_3 - C_{12} -Alkenyloxi, C_3 - C_{12} -Alkinyloxi, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_3 - C_6 -Cycloalkyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_4 - C_6 -Cycloalkenyl, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkyloxi, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkyloxi, gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes C_5 - C_6 -Cycloalkenyloxi mit der Maßgabe, daß R^7 verschieden von 3-Methyl-but-2-en-1-yl oder 3-Methyl-but-3-en-1-yl ist, wenn R^1 Trifluormethyl ist.