

INSTITUT D'INGÉNIERIE ET DE MANAGEMENT

Calcul du Coût de Revient (CR)

Simulation d'entreprise : Winfirme

Jérémy Eydieux

Objectif de cette partie du jeu : éviter l'attitude "presse-boutons"

Structure générale du Coût de Revient (CR)

- L'entreprise à laquelle on s'intéresse peut enfin se lancer dans le produit B
- Elle met le paquet sur la communication et fixe un prix de vente élevé
- Pour autant, elle ne mise pas sur de grosses ventes et produit ce qu'elle peut

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Indirect de Production

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Indirect de Production

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct de Production de A

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct de Production de A

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct de Production de B

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct de Production de B

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Indirect d'Administration et de Vente

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Indirect d'Administration et de Vente

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct d'Administration et de Vente de A

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct d'Administration et de Vente de A

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements : 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct d'Administration et de Vente de B

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Calculons le Coût Direct d'Administration et de Vente de B

	Quant à prod	Prix	Qualité	Comm	Stock A-1
Produit A	140	10	200	100	100
Produit B	100	20	200	200	

- Ouvriers: 8 disponibles, 10 Um / mois, pas de prime
- Une machine classique
- Investissements: 500 R&D, 200 pour les études
- Hypothèses de ventes : 240 A et 100 B

Comparaison Prix/CR => Marge Unitaire de A Scénario pour se familiariser avec le calcul du CR

Comparaison Prix/CR => Marge Unitaire de B Scénario pour se familiariser avec le calcul du CR

Attention aux hypothèses de base

Dans notre scénario pour se familiariser, nous avons considéré que :

- Que les produits A et B sont produits dans les quantités prévues, or :
 - Les ouvriers n'ont pas toujours la même performance (XP)
 - Leur rendement est fonction de leur motivation
 - La machine peut devenir vieillissante, et sa remplaçante sera en rodage
- Que les produits A et B sont vendus dans les quantités prévues, or
 - Les hypothèses sur les ventes sont peut-être erronées (pensez à commander les études !)
 - Les concurrents ont peut-être une meilleure stratégie marketing
 - Le budget pub est peut-être surévalué => raboté par l'enseignant => conséquence marketing

D'où l'importance de se servir du CR comme d'un outil de pilotage

Induction:

• À partir des données, faire un calcul correct, reflet exact de la réalité

Abduction:

 Utiliser la méthode de calcul pour comprendre la situation et les erreurs d'interprétation

Logique du raisonnement : trouver l'aiguille dans la botte de foin

Une situation moins catastrophique (G2)

Exemples de cartographies du CR (ENSIMAG, 2020, 5e année jouée)

Prévision

Réel

La marge de A a fondu (G1)

Exemples de cartographies du CR (ENSIMAG, 2020, 5e année jouée)

Prévision

Coût Dir d'Adm & Vente Produit A Coût d'Adm & Vente Produit A Coût de Revient Produit A Coût de Revient Produit A Coût de Revient Produit A Coût d'Adm & Vente Prix de Vente Produit A Coût d'Adm & Vente Coût d'Adm & Vente Coût d'Adm & Vente Produit C Coût d'Adm & Vente Produit C Prix de Vente Produit C Alarge Unitaire Produit C Coût de Revient Produit Eoût de Revient Produit Sût Indir de Prod Coût Dir de Prod Produit A Coût de Prod Produit B Coût de Prod Produit C Coût Dir de Prod Produit C Prix de Vente Produit B Coût Dir de Prod Produit C

Réel

Pertes imprévues sur le produit A (G4)

Exemples de cartographies du CR (ENSIMAG, 2020, 5e année jouée)

Prévision

Réel

