2022-July-27 Shift-2

AI24BTECH11005 - Prajwal Naik

16) Let X have a binomial distribution B(n, p) such that the sum and product of the mean

17) A six faced die is biased such that $3 \times P(a \text{ prime number}) = 2 \times P(1) = 6 \times P(1)$ P (a composite number). Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then

c) 629

[July2022]

[July2022]

d) 630

and variance of X are 24 and 128 respectively. If $P(X > n - 3) = \frac{k}{2^n}$

b) 529

a) 528

the mean of X is :

a) $\frac{3}{11}$ b) $\frac{5}{11}$	c) $\frac{7}{11}$ d) $\frac{8}{11}$	
18) The angle of elevation of the top P of a vertical tower PQ of height 10 from point A on the horizontal ground is 45°. Let R be a point on AQ and from a point B, the angle of elevation of P is 60°. If $\angle BAQ=30^\circ$, $AB=d$ and the area of the trapezium PQRB is α , then the ordered pair (d,α) is : [July2022]		
a) $(10(\sqrt{3}-1), 25)$ b) $(10(\sqrt{3}-1), \frac{25}{2})$	c) $(10(\sqrt{3}+1), 25)$ d) $(10(\sqrt{3}+1), \frac{25}{2})$	
19) Let $S = \{\theta \in (0, \frac{\pi}{2}) : \sum_{m=1}^{9} \sec(\theta + (m-1)) \}$	$\left(\frac{\pi}{6}\right)\sec\left(\theta+\frac{m\pi}{6}\right)$	[July2022]
a) $\{\frac{\pi}{6}\}$ b) $\{\frac{2\pi}{3}\}$	c) $\sum_{\theta \in S} \theta = \frac{\pi}{2}$ d) $\sum_{\theta \in S} \theta = \frac{3\pi}{4}$	
20) If the truth value of the statement $(P \land (\neg F))$ which is of the following is F?	$(\neg R) \land Q$ is F, then the tr	ruth value of [July2022]
a) $P \lor Q \to \neg R$ b) $R \lor Q \to \neg P$	c) $\neg (P \lor Q) \rightarrow \neg R$ d) $\neg (R \lor Q) \rightarrow \neg P$	
21) $A = \begin{pmatrix} 4 & -2 \\ \alpha & \beta \end{pmatrix}$. If $A^2 + \gamma A + 18I = 0$, then $det(A)$ is equal to : [July2022]		
 22) The number of functions f, from the set A = {x ∈ N : x² - 10x + 9 ≤ 0} to the set B = {n² : n ∈ N} such that f(x) ≤ (x - 3)² + 1, for every x ∈ A, is [July2022] 23) Let for the 9th term in the binomial expansion of (3 + 6x)ⁿ, in the increasing powers of 6x, to be the greatest for x = 3/2, the least value of n is n₀. If K is the ratio of the coefficient of x³ to the coefficient of x³, then k + n₀ is equal to: [July2022] 24) 2³-1³/1×7 + 4³-3³+2³-1³/2×11 + + 6³-5³+4³-3³+2³-1³/3×15 + 30³-29³+28³-27³++2³-1³/15×63 is equal to . [July2022] 		

- 25) A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semi-vertical angle is $\tan^{-1} \frac{3}{4}$. Water is poured in at a constant rate of 6 cubic meter per hour. The rate, at which wet curved surface area of the tank is increasing, when the depth of the tank is 4 meters, is:

 [July2022]
- 26) For the curve $C: (x^2 + y^2 3) + (x^2 y^2 1)^5 = 0$, the value of $3y' y^3y''$, at the point $(\alpha, \alpha), \alpha \ge 0$, on C, is equal to: [July2022]
- 27) Let $f(x) = min\{[x-1], [x-2],, [x-10]\}$ where [t] denotes the greatest integer $\leq t$. Then $\int_0^{10} f(x) dx + \int_0^{10} (f(x))^2 dx + \int_0^{10} |f(x)| dx$ is equal to : [July2022]
- 28) Let f be a differentiable function satisfying $f(x) = \frac{2}{\sqrt{3}} \int_0^{\sqrt{3}} f\left(\frac{\lambda^2 x}{3}\right) d\lambda$, $x \ge 0$ and $f(1) = \sqrt{3}$. If y = f(x) passes through the point $(\alpha, 6)$, then α is equal to : [July2022]
- 29) A common tangent T to the curves $C_1: \frac{x^2}{4} + \frac{y^2}{9} = 1$ and $C_2: \frac{x^2}{42} \frac{y^2}{143} = 1$ does not pass through the fourth quadrant. If T touches C_1 at (x_1, y_1) and C_2 at (x_2, y_2) , then $|2x_1 + x_2|$ is equal to:

 [July2022]
- 30) Let, $\overrightarrow{a}, \overrightarrow{b}$, \overrightarrow{c} be three non-coplanar vectors such that $\overrightarrow{a} \times \overrightarrow{b} = 4\overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = 9\overrightarrow{a}$, and $\overrightarrow{c} \times \overrightarrow{a} = \alpha \overrightarrow{b}$, $\alpha > 0$ If $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| = \frac{1}{36}$, then the α is equal to : [July2022]