Автономная навигация мобильных роботов

A. Matveev

 $almat\,1712@yahoo.com$

Department of Mathematics and Mechanics, Saint Petersburg state University,

Scientific and Technological University "Sirius"

- Constant speed v>0Control by a rudder: sets up the angular velocity of rotation ω Constraints on this velocity $|\omega|\leq \overline{\omega}$

- Constant speed v > 0
- Ontrol by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{y} = v \sin \theta, \ \dot{\theta} = \omega$

Primary constraints

- Constant speed v > 0
- lacktriangle Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{y} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

• Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)

Primary constraints

- Constant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{y} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\frac{d \theta_T(s)}{ds} = \varkappa(s)$ signed curvature

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\frac{d \theta_T(s)}{ds} = \varkappa(s)$ signed curvature

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{y} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path $p = (x, y); p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)]$$

Primary constraints

- \bigcirc Constant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{y} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)]$$

$$\dot{s}(t)\equiv \pm v$$

Primary constraints

- \bigcirc Constant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{y} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path $p = (x, y); p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \ge 0 \quad \dot{s}(t) \equiv \pm v$$

Primary constraints

- \bigcirc Constant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path $p = (x, y); p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- \bullet $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \ge 0 \quad \dot{s}(t) \equiv \pm v$$

$$\dot{r}(t) = \begin{bmatrix} \dot{s}(t) \\ \dot{y}(t) \end{bmatrix} = v \begin{bmatrix} \cos \theta(t) \\ \sin \theta(t) \end{bmatrix} \qquad = \frac{dp}{ds} \dot{s} = \pm \vec{\tau} v = \pm v \begin{bmatrix} \cos \theta_{\tau}[s(t)] \\ \sin \theta_{\tau}[s(t)] \end{bmatrix}$$

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path $p = (x, y); p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- \bullet $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \ge 0 \quad \dot{s}(t) \equiv \pm v$$

$$\dot{r}(t) = \begin{bmatrix} \dot{s}(t) \\ \dot{y}(t) \end{bmatrix} = v \begin{bmatrix} \cos\theta(t) \\ \sin\theta(t) \end{bmatrix} \quad \frac{d}{dt} p[s(t)] = \frac{d\theta}{ds} \dot{s} = \pm \vec{\tau} v = \pm v \begin{bmatrix} \cos\theta_{\tau}[s(t)] \\ \sin\theta_{\tau}[s(t)] \end{bmatrix}$$

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path $p = (x, y); p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- \bullet $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \ge 0 \quad \dot{s}(t) \equiv \pm v$$

$$\dot{r}(t) = \begin{bmatrix} \dot{s}(t) \\ \dot{y}(t) \end{bmatrix} = v \begin{bmatrix} \cos \theta(t) \\ \sin \theta(t) \end{bmatrix} \quad \frac{d}{dt} p[s(t)] = \frac{dp}{ds} \dot{s} = \pm \vec{\tau} v = \pm v \begin{bmatrix} \cos \theta_{\tau}[s(t)] \\ \sin \theta_{\tau}[s(t)] \end{bmatrix}$$
trackability $\Leftrightarrow \exists s(\cdot) \text{ s.t. } \theta(t) := \pm \theta_{\tau}[s(t)] \text{ meets the limits on the angular velocity}$

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path $p = (x, y); p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{ au}(s) = rac{d \, p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v$$

$$\dot{r}(t) = \begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix} = v \begin{bmatrix} \cos \theta(t) \\ \sin \theta(t) \end{bmatrix} \quad \frac{d}{dt} p[s(t)] = \frac{dp}{ds} \dot{s} = \pm \vec{\tau} v = \pm v \begin{bmatrix} \cos \theta_{\tau}[s(t)] \\ \sin \theta_{\tau}[s(t)] \end{bmatrix}$$

$$\text{trackability} \Leftrightarrow \exists s(\cdot) \text{ s.t. } \theta(t) := \pm \theta_{\tau}[s(t)] \text{ meets the limits on the angular velocity}$$

$$\Leftrightarrow |\dot{\theta}(t)| = \begin{vmatrix} d\theta_{\tau}(s) \\ \overline{ds} \end{vmatrix} |\dot{s}| = |\varkappa| v \leq \overline{\omega}$$

Primary constraints

- Onstant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \le \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path $p = (x, y); p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{ au}(s) = rac{d \, p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_T(s)}{ds} = \varkappa(s) \text{signed curvature}$

Paths trackable by the robot

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v$$

$$\dot{r}(t) = \begin{bmatrix} \dot{s}(t) \\ \dot{y}(t) \end{bmatrix} = v \begin{bmatrix} \cos \theta(t) \\ \sin \theta(t) \end{bmatrix} \quad \frac{d}{dt} p[s(t)] = \frac{dp}{ds} \dot{s} = \pm \vec{\tau} v = \pm v \begin{bmatrix} \cos \theta_{\tau}[s(t)] \\ \sin \theta_{\tau}[s(t)] \end{bmatrix}$$
trackability $\Leftrightarrow \exists s(\cdot) \text{ s.t. } \theta(t) := \pm \theta_{\tau}[s(t)] \text{ meets the limits on the angular velocity}$

$$\Leftrightarrow |\dot{\theta}(t)| = \left| \frac{d \theta_{\tau}(s)}{ds} \right| |\dot{s}| = |\varkappa| v \leq \overline{\omega}$$

 $\Leftrightarrow |\varkappa| < \frac{\overline{\omega}}{\overline{\omega}} \Leftrightarrow \varkappa|^{-1} > R_{\min} := \frac{\nu}{\overline{\omega}}$ curvature radius

ADD A FED A

Primary constraints

- \bigcirc Constant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Onstraints on this velocity $|\omega| \leq \overline{\omega}$ $\dot{x} = v \cos \theta, \ \dot{v} = v \sin \theta, \ \dot{\theta} = \omega$

Description of the path

- Path p = (x, y); $p = p(s) \in \mathbb{R}^2$, where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\bigcirc \frac{d \theta_{\tau}(s)}{ds} = \varkappa(s) \text{signed curvature}$

Paths trackable by the robot

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \ge 0 \quad \dot{s}(t) \equiv \pm v$$
$$\dot{r}(t) = \begin{bmatrix} \dot{s}(t) \\ \dot{s}(t) \end{bmatrix} = v \begin{bmatrix} \cos \theta(t) \\ \sin \theta(t) \end{bmatrix} \quad \frac{d}{dt} p[s(t)] = \frac{dp}{ds} \dot{s} = \pm \vec{\tau} v = \pm v \begin{bmatrix} \cos \theta_{\tau}[s(t)] \\ \sin \theta_{\tau}[s(t)] \end{bmatrix}$$

rackability
$$\Leftrightarrow \exists s(\cdot) \text{ s.t. } \theta(t) := \pm \theta_{\tau}[s(t)]$$
 meets the limits on the angular velocity

$$\Leftrightarrow |\dot{ heta}(t)| = \left|rac{d\ heta_{ au}(extsf{s})}{d extsf{s}}
ight| |\dot{ extsf{s}}| = |arkappa| v \leq \overline{\omega}$$

$$\Leftrightarrow |\varkappa| \leq \frac{\overline{\omega}}{\nu} \Leftrightarrow \varkappa|^{-1} \geq R_{\min} := \frac{\nu}{\overline{\omega}}$$
 curvature radius

NO MARKET A EN OR

Primary constraints

- \bigcirc Constant speed v > 0
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| < \overline{\omega}$

$$\dot{x} = v \cos \theta, \ \dot{y} = v \sin \theta, \ \dot{\theta} = \omega$$

Description of the path

- where s is the natural parameter (arc length)
- $\vec{\tau}(s) = \frac{d p(s)}{ds}$ unit tangent vector
- $\frac{d \theta_{\tau}(s)}{ds} = \varkappa(s)$ signed curvature

NO A PART OF A P

$$r(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = p[s(t)] \Leftrightarrow r(0) = p[s(0)] \text{ and } \dot{r}(t) = \frac{d}{dt} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v$$

$$\dot{r}(t) = \begin{bmatrix} \dot{s}(t) \\ \dot{y}(t) \end{bmatrix} = v \begin{bmatrix} \cos \theta(t) \\ \sin \theta(t) \end{bmatrix} \quad \frac{d}{dt} p[s(t)] = \frac{dp}{ds} \dot{s} = \pm \vec{\tau} v = \pm v \begin{bmatrix} \cos \theta_{\tau}[s(t)] \\ \sin \theta_{\tau}[s(t)] \end{bmatrix}$$

$$\dot{s}(t) = \frac{dp}{ds} \dot{s}(t) = \frac{dp}{ds} \dot{s}(t)$$

$$\Leftrightarrow |\dot{\theta}(t)| = \left| \frac{d \theta_{\tau}(s)}{ds} \right| |\dot{s}| = |\varkappa| v \le \overline{\omega}$$

$$\Leftrightarrow |\varkappa| < \overline{\omega} \Leftrightarrow \varkappa|^{-1} > R_{\min} := \frac{\nu}{\omega} \quad \text{curvature rate}$$

Path planning for Dubins-car-like robot

Given two points S and G in the plane, along with the attached orientations θ_S and θ_g . Find a smooth path between them such its curvature radius at any point is no less than a given constant $R_{\min} > 0$

Path planning for Dubins-car-like robot

Given two points S and G in the plane, along with the attached orientations θ_S and θ_g . Find a smooth path between them such its curvature radius at any point is no less than a given constant $R_{\min} > 0$

Path planning for Dubins-car-like robot

Given two points S and G in the plane, along with the attached orientations θ_S and θ_g . Find a smooth path between them such its curvature radius at any point is no less than a given constant $R_{\min} > 0$

Path planning for Dubins-car-like robot

Given two points S and G in the plane, along with the attached orientations θ_S and θ_g . Find a smooth path between them such its curvature radius at any point is no less than a given constant $R_{\min} > 0$

Find the shortest path The fastest transition

Path planning for Dubins-car-like robot

Given two points S and G in the plane, along with the attached orientations θ_s and θ_g . Find a smooth path between them such its curvature radius at any point is no less than a given constant $R_{\min} > 0$

Find the shortest path The fastest transition

Optimization problem

 $J(\text{option}) \to \min \text{ subject to } | \text{option} \in X$

Path planning for Dubins-car-like robot

Given two points S and G in the plane, along with the attached orientations θ_s and θ_g . Find a smooth path between them such its curvature radius at any point is no less than a given constant $R_{\min} > 0$

Find the shortest path The fastest transition

Optimization problem

 $J(\text{option}) \to \min \text{ subject to } | \text{option } \in X$

Example

$$\begin{array}{ll} \text{option} \leftrightarrow x \in \mathbb{R}^n, & X = \mathbb{R}^n \\ x \text{ is optimal} \Rightarrow \nabla J(x) = 0 & \text{Fermat equation} \end{array}$$

Parameters and variables

- *t*, time
- $t \in [0, T]$, where T > 0 is given
- $x = \{x_i\}_{i=1}^n = x(t) \in \mathbb{R}^n$, state at time t
- $u = u(t) \in \mathbb{R}^m$, control at time t

Parameters and variables

- t, time
- $t \in [0, T]$, where T > 0 is not given
- $x = \{x_i\}_{i=1}^n = x(t) \in \mathbb{R}^n$, state at time t
- $u = u(t) \in \mathbb{R}^m$, control at time t

Problem statement

$$\dot{x}(t) = f[x(t), u(t)], \quad u(t) \in \Omega \qquad \forall t \in [0, T], \tag{1}$$

$$x(0)=x_0, \quad x(T)=x_1, \qquad x_0, x_1 \in \mathbb{R}^m \text{ are given } \qquad (2)$$

$$J := \int_0^T \varphi[x(t), u(t)] dt \to \min_{T > 0, u(\cdot) \mapsto x(\cdot)}.$$
 (3)

Parameters and variables

- t, time
- $t \in [0, T]$, where T > 0 is not given
- $X = \{x_i\}_{i=1}^n = X(t) \in \mathbb{R}^n$, state at time t
- $u = u(t) \in \mathbb{R}^m$, control at time t

Problem statement

$$\dot{x}(t) = f[x(t), u(t)], \quad u(t) \in \Omega \qquad \forall t \in [0, T], \tag{1}$$

$$x(0) = x_0, \quad x(T) = x_1, \qquad x_0, x_1 \in \mathbb{R}^m \text{ are given}$$
 (2)

$$J := \int_0^T \varphi[x(t), u(t)] dt \to \min_{T > 0, u(\cdot) \mapsto x(\cdot)}.$$
 (3)

Conjugate variable $\psi = \psi(t) \in \mathbb{R}^n$

$$\psi \sim \dot{x} = f[x, u, t] \leftrightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \psi = \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{bmatrix}, \psi_1 \sim \dot{x}_1 = f_1(\dots)$$

$$\psi_2 \sim \dot{x}_2 = f_2(\dots)$$

$$\vdots$$

$$\psi_n \sim \dot{x}_n = f_n(\dots)$$

Parameters and variables

- t, time
- $t \in [0, T]$, where T > 0 is not given
- $x = \{x_i\}_{i=1}^n = x(t) \in \mathbb{R}^n$, state at time t
- $u = u(t) \in \mathbb{R}^m$, control at time t

Problem statement

$$\dot{x}(t) = f[x(t), u(t)], \quad u(t) \in \Omega \qquad \forall t \in [0, T], \tag{1}$$

$$x(0) = x_0, \quad x(T) = x_1, \qquad x_0, x_1 \in \mathbb{R}^m \text{ are given}$$
 (2)

$$J := \int_0^T \varphi[x(t), u(t)] dt \to \min_{T > 0, u(\cdot) \mapsto x(\cdot)}.$$
 (3)

Hamiltonian function

$$H[\psi, x, u, t] := \psi^{\top} f[x, u] - \lambda_0 \varphi[x, u]$$
$$= \sum_{i=1}^{n} \psi_i f_i[x, u] - \lambda_0 \varphi[x, u]$$

Conjugate variable $\psi = \psi(t) \in \mathbb{R}^n$

$$\psi \sim \dot{x} = f[x, u, t] \leftrightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \psi = \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_n \end{bmatrix}, \begin{array}{l} \psi_1 \sim \dot{x}_1 = f_1(\ldots) \\ \psi_2 \sim \dot{x}_2 = f_2(\ldots) \\ \vdots \\ \psi_n \sim \dot{x}_n = f_n(\ldots) \end{array}$$

Принцип максимума

Theorem (Pontryagin's maximum principle)

Let $[T^0, x^0(\cdot), U^0(\cdot)]$ be an optimal process. Then there exist a Lagrange multipliers λ_0 and smooth conjugate function $\psi(\cdot): [0, T^0] \to \mathbb{R}^n$ such that

$$\dot{\psi}_i(t)^{\top} = -\frac{\partial H}{\partial x_i} [\psi(t), x^0(t), u^0(t)] \quad \forall i = 1, \dots, n,$$
 (4)

$$u^{0}(t\pm) = \underset{v \in \overline{\Omega}}{\operatorname{arg\,max}} H[\psi(t), x^{0}(t), v] \qquad \forall t \in [0, T^{0}], \quad (5)$$

$$\lambda_0 \ge 0, \qquad H[\psi(t), x^0(t), u^0(t)] = 0 \qquad \forall t,$$
 (6)

either
$$\lambda_0 > 0$$
 or $\psi(\cdot) \not\equiv 0$. (7)

Принцип максимума

Theorem (Pontryagin's maximum principle)

Let $[T^0, x^0(\cdot), u^0(\cdot)]$ be an optimal process. Then there exist a Lagrange multipliers λ_0 and smooth conjugate function $\psi(\cdot): [0, T^0] \to \mathbb{R}^n$ such that

$$\dot{\psi}_i(t)^{\top} = -\frac{\partial H}{\partial x_i} [\psi(t), x^0(t), u^0(t)] \quad \forall i = 1, \dots, n,$$
 (4)

$$u^{0}(t\pm) = \underset{v \in \overline{\Omega}}{\operatorname{arg\,max}} H[\psi(t), x^{0}(t), v] \qquad \forall t \in [0, T^{0}], \quad (5)$$

$$\lambda_0 \ge 0, \qquad H[\psi(t), x^0(t), u^0(t)] = 0 \qquad \forall t, \qquad (6)$$

either $\lambda_0 > 0$ or $\psi(\cdot) \not\equiv 0.$ (7)

Instructive particular case

 Ω is a polygon the functions f(x,u) and $\varphi(x,u)$ are linear in the control u

Принцип максимума

Theorem (Pontryagin's maximum principle)

Let $[T^0, x^0(\cdot), u^0(\cdot)]$ be an optimal process. Then there exist a Lagrange multipliers λ_0 and smooth conjugate function $\psi(\cdot): [0, T^0] \to \mathbb{R}^n$ such that

$$\dot{\psi}_i(t)^{\top} = -\frac{\partial H}{\partial x_i} [\psi(t), x^0(t), u^0(t)] \quad \forall i = 1, \dots, n,$$
 (4)

$$u^{0}(t\pm) = \underset{v \in \overline{\Omega}}{\operatorname{arg\,max}} H[\psi(t), x^{0}(t), v] \qquad \forall t \in [0, T^{0}], \quad (5)$$

$$\lambda_0 \ge 0, \qquad H[\psi(t), x^0(t), u^0(t)] = 0 \qquad \forall t,$$
 (6)

either
$$\lambda_0 > 0$$
 or $\psi(\cdot) \not\equiv 0$. (7)

Instructive particular case

 Ω is a polygon the functions f(x,u) and $\varphi(x,u)$ are linear in the control u

What is up then?

 $H(\psi, x, u) = \psi^{\top} f(x, u) - \lambda_0 \varphi(x, u)$ is linear in u as well Any linear function attains maximum on a polygon in the set of its vertices $Vert(\Omega)$

Принцип максимума

Theorem (Pontryagin's maximum principle)

Let $[T^0, x^0(\cdot), u^0(\cdot)]$ be an optimal process. Then there exist a Lagrange multipliers λ_0 and smooth conjugate function $\psi(\cdot): [0, T^0] \to \mathbb{R}^n$ such that

$$\dot{\psi}_i(t)^{\top} = -\frac{\partial H}{\partial x_i} [\psi(t), x^0(t), u^0(t)] \quad \forall i = 1, \dots, n, \quad (4)$$

$$u^{0}(t\pm) = \underset{v \in \overline{\Omega}}{\operatorname{arg\,max}} H[\psi(t), x^{0}(t), v] \qquad \forall t \in [0, T^{0}], \quad (5)$$

$$\lambda_0 \ge 0, \qquad H[\psi(t), x^0(t), u^0(t)] = 0 \qquad \forall t,$$
 (6)

either
$$\lambda_0 > 0$$
 or $\psi(\cdot) \not\equiv 0$. (7)

Instructive particular case

 Ω is a polygon the functions f(x,u) and $\varphi(x,u)$ are linear in the control u

What is up then?

 $H(\psi, x, u) = \psi^{\top} f(x, u) - \lambda_0 \varphi(x, u)$ is linear in u as well Any linear function attains maximum on a polygon in the set of its vertices $\text{Vert}(\Omega)$ At-first-sight-conclusion $u^0(t) \in \text{Vert}(\Omega)$

Принцип максимума

Theorem (Pontryagin's maximum principle)

Let $[T^0, x^0(\cdot), U^0(\cdot)]$ be an optimal process. Then there exist a Lagrange multipliers λ_0 and smooth conjugate function $\psi(\cdot): [0, T^0] \to \mathbb{R}^n$ such that

$$\dot{\psi}_i(t)^{\top} = -\frac{\partial H}{\partial x_i} [\psi(t), x^0(t), u^0(t)] \quad \forall i = 1, \dots, n,$$
 (4)

$$u^{0}(t\pm) = \underset{v \in \overline{\Omega}}{\operatorname{arg\,max}} H[\psi(t), x^{0}(t), v] \qquad \forall t \in [0, T^{0}], \quad (5)$$

$$\lambda_0 \ge 0, \qquad H[\psi(t), x^0(t), u^0(t)] = 0 \qquad \forall t,$$
 (6)

either
$$\lambda_0 > 0$$
 or $\psi(\cdot) \not\equiv 0$. (7)

Instructive particular case

 Ω is a polygon the functions f(x,u) and $\varphi(x,u)$ are linear in the control u

What is up then?

 $H(\psi, x, u) = \psi^{\top} f(x, u) - \lambda_0 \varphi(x, u)$ is linear in u as well Any linear function attains maximum on a polygon in the set of its vertices $\text{Vert}(\Omega)$ At-first-sight-conclusion $u^0(t) \in \text{Vert}(\Omega)$ Bang-bang principle

Принцип максимума

Theorem (Pontryagin's maximum principle)

Let $[T^0, x^0(\cdot), U^0(\cdot)]$ be an optimal process. Then there exist a Lagrange multipliers λ_0 and smooth conjugate function $\psi(\cdot): [0, T^0] \to \mathbb{R}^n$ such that

$$\dot{\psi}_i(t)^{\top} = -\frac{\partial H}{\partial x_i} [\psi(t), x^0(t), u^0(t)] \quad \forall i = 1, \dots, n,$$
 (4)

$$u^{0}(t\pm) = \underset{v \in \overline{\Omega}}{\operatorname{arg\,max}} H[\psi(t), x^{0}(t), v] \qquad \forall t \in [0, T^{0}], \quad (5)$$

$$\lambda_0 \ge 0, \qquad H[\psi(t), x^0(t), u^0(t)] = 0 \qquad \forall t,$$
 (6)

either
$$\lambda_0 > 0$$
 or $\psi(\cdot) \not\equiv 0$. (7)

Instructive particular case

 Ω is a polygon the functions f(x,u) and $\varphi(x,u)$ are linear in the control u

What is up then?

 $H(\psi, x, u) = \psi^{\top} f(x, u) - \lambda_0 \varphi(x, u)$ is linear in u as well Any linear function attains maximum on a polygon in the set of its vertices $\text{Vert}(\Omega)$ At-first-sight-conclusion $u^0(t) \in \text{Vert}(\Omega)$ Bang-bang principle

$$\begin{array}{lll} \dot{x} = v\cos\theta, \\ \dot{y} = v\sin\theta, & u \in [-\overline{\omega}, \overline{\omega}], & y(0) = y_0, & x(T) = x_1, \\ \dot{\theta} = u & \theta(0) = \theta_0 & \theta(T) = \theta_1 \end{array} \qquad \begin{array}{ll} T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \\ T = \int_0^T \underbrace{1}_$$

Problem statement

$$\begin{array}{lll} \psi_{\mathbf{x}} \sim & \dot{\mathbf{x}} = \mathbf{v} \cos \theta, \\ \psi_{\mathbf{y}} \sim & \dot{\mathbf{y}} = \mathbf{v} \sin \theta, & u \in [-\overline{\omega}, \overline{\omega}], & \mathbf{y}(0) = \mathbf{y}_0, & \mathbf{y}(T) = \mathbf{y}_1, \\ \psi_{\theta} \sim & \dot{\theta} = \mathbf{u} & \theta(0) = \theta_0 & \theta(T) = \theta_1 \end{array} \\ \begin{array}{ll} \chi(0) = \mathbf{x}_0, & \chi(T) = \mathbf{x}_1, \\ \chi(0) = \mathbf{y}_0, & \chi(T) = \mathbf{y}_1, \\ \chi(0) = \mathbf{y}_1, & \chi(T) = \mathbf{y}_1, \\ \chi(0) = \mathbf{y}_$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos\theta + v\psi_y \sin\theta + \psi_\theta u - \lambda_0$

$$\dot{\psi}_{x} = -\frac{\partial H}{\partial x} = 0, \quad \dot{\psi}_{y} = -\frac{\partial H}{\partial y} = 0, \quad \dot{\psi}_{\theta} = -\frac{\partial H}{\partial \theta} = v(\psi_{y}\cos\theta - \psi_{x}\sin\theta)$$

$$u(t\pm) = \arg\max_{\mathfrak{u}\in[-\overline{\omega},\overline{\omega}]} \left[v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \psi_\theta(t)\mathfrak{u} - \lambda_0 \right]$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \psi_\theta(t)u(t) - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{x} \sim & \dot{x} = v\cos\theta, \\ \psi_{y} \sim & \dot{y} = v\sin\theta, \\ \psi_{\theta} \sim & \dot{\theta} = u \end{array} \quad \begin{array}{ll} x(0) = x_{0}, & x(T) = x_{1}, \\ y(0) = y_{0}, & y(T) = y_{1}, \\ \theta(0) = \theta_{0} & \theta(T) = \theta_{1} \end{array} \quad \begin{array}{ll} \lambda_{0} \sim T = \int_{0}^{T} \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \frac{1}{\varphi} dt \rightarrow \min_{T, u(\cdot)} \frac{1}{\varphi} dt \end{array}$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\begin{aligned} \psi_{x} &= \mathrm{const}, \ \psi_{y} &= \mathrm{const}, \ \dot{\psi}_{\theta} &= v(\psi_{y} \cos \theta - \psi_{x} \sin \theta) \\ u(t\pm) &= \arg \max_{\mathfrak{u} \in [-\overline{\omega}, \overline{\omega}]} \left[v\psi_{x} \cos \theta(t) + v\psi_{y} \sin \theta(t) + \psi_{\theta}(t)\mathfrak{u} - \lambda_{0} \right] \\ v\psi_{x} \cos \theta(t) + v\psi_{y} \sin \theta(t) + \psi_{\theta}(t)u(t) - \lambda_{0} &\equiv 0 \quad \forall t \end{aligned}$$

Problem statement

$$\begin{array}{lll} \psi_{\mathbf{x}} \sim & \dot{\mathbf{x}} = \mathbf{v}\cos\theta, \\ \psi_{\mathbf{y}} \sim & \dot{\mathbf{y}} = \mathbf{v}\sin\theta, & u \in [-\overline{\omega}, \overline{\omega}], & \mathbf{y}(0) = \mathbf{y}_0, & \mathbf{y}(T) = \mathbf{y}_1, \\ \psi_{\theta} \sim & \dot{\theta} = \mathbf{u} & \theta(0) = \theta_0 & \theta(T) = \theta_1 \end{array} \\ \lambda_0 \sim T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \mathbf{y}(T) = \mathbf{y}_1, \quad \lambda_0 \sim T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \mathbf{y}(T) = \mathbf{y}_1, \quad \mathbf{y}(T) = \mathbf{y}$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = v(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = \begin{cases} \overline{\omega} & \text{if } \psi_{\theta}(t) > 0 \\ -\overline{\omega} & \text{if } \psi_{\theta}(t) < 0 \\ ? & \text{if } \psi_{\theta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \psi_\theta(t)u(t) - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{\mathbf{x}} \sim & \dot{\mathbf{x}} = \mathbf{v}\cos\theta, \\ \psi_{\mathbf{y}} \sim & \dot{\mathbf{y}} = \mathbf{v}\sin\theta, & u \in [-\overline{\omega}, \overline{\omega}], & \mathbf{y}(0) = \mathbf{y}_0, & \mathbf{y}(T) = \mathbf{y}_1, \\ \psi_{\theta} \sim & \dot{\theta} = \mathbf{u} & \theta(0) = \theta_0 & \theta(T) = \theta_1 \end{array} \quad \lambda_0 \sim T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \mathbf{y}(0) = \mathbf{y}_0 = \mathbf{y}_0$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = v(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = \begin{cases} \overline{\omega} & \text{if } \psi_{\theta}(t) > 0 \\ -\overline{\omega} & \text{if } \psi_{\theta}(t) < 0 \\ ? & \text{if } \psi_{\theta}(t) = 0 \end{cases}$$

$$v\psi_x\cos\theta(t)+v\psi_y\sin\theta(t)+\overline{\omega}|\psi_\theta(t)|-\lambda_0\equiv0\quad\forall t$$

Problem statement

$$\begin{array}{lll} \psi_{\mathbf{x}} \sim & \dot{\mathbf{x}} = \mathbf{v}\cos\theta, \\ \psi_{\mathbf{y}} \sim & \dot{\mathbf{y}} = \mathbf{v}\sin\theta, & u \in [-\overline{\omega}, \overline{\omega}], & \mathbf{y}(0) = \mathbf{y}_0, & \mathbf{y}(T) = \mathbf{y}_1, \\ \psi_{\theta} \sim & \dot{\theta} = \mathbf{u} & \theta(0) = \theta_0 & \theta(T) = \theta_1 \end{array} \\ \lambda_0 \sim T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \mathbf{y}(T) = \mathbf{y}_1, \quad \lambda_0 \sim T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \mathbf{y}(T) = \mathbf{y}_1, \quad \mathbf{y}(T) = \mathbf{y}$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = V(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = egin{cases} \overline{\omega} & ext{if } \psi_{ heta}(t) > 0 \ -\overline{\omega} & ext{if } \psi_{ heta}(t) < 0 \ ? & ext{if } \psi_{ heta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{x} \sim & \dot{x} = v\cos\theta, \\ \psi_{y} \sim & \dot{y} = v\sin\theta, & u \in [-\overline{\omega}, \overline{\omega}], & y(0) = y_{0}, & y(T) = y_{1}, \\ \psi_{\theta} \sim & \dot{\theta} = u & \theta(0) = \theta_{0} & \theta(T) = \theta_{1} \end{array} , \quad \lambda_{0} \sim T = \int_{0}^{T} \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} t \in T_{0}(T)$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = V(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = egin{cases} \overline{\omega} & ext{if } \psi_{ heta}(t) > 0 \ -\overline{\omega} & ext{if } \psi_{ heta}(t) < 0 \ ? & ext{if } \psi_{ heta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{\mathbf{x}} \sim & \dot{\mathbf{x}} = \mathbf{v} \cos \theta, \\ \psi_{\mathbf{y}} \sim & \dot{\mathbf{y}} = \mathbf{v} \sin \theta, & u \in [-\overline{\omega}, \overline{\omega}], & \mathbf{y}(0) = \mathbf{y}_0, & \mathbf{y}(T) = \mathbf{y}_1, \\ \psi_{\theta} \sim & \dot{\theta} = \mathbf{u} & \theta(0) = \theta_0 & \theta(T) = \theta_1 \end{array} \\ \lambda_0 \sim T = \int_0^T \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} \mathbf{y}(0) = \mathbf{y}_0 + \mathbf{$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = V(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = \begin{cases} \overline{\omega} & \text{if } \psi_{\theta}(t) > 0 \\ -\overline{\omega} & \text{if } \psi_{\theta}(t) < 0 \\ ? & \text{if } \psi_{\theta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{x} \sim & \dot{x} = v \cos \theta, \\ \psi_{y} \sim & \dot{y} = v \sin \theta, & u \in [-\overline{\omega}, \overline{\omega}], & y(0) = y_{0}, & y(T) = y_{1}, \\ \psi_{\theta} \sim & \dot{\theta} = u & \theta(0) = \theta_{0} & \theta(T) = \theta_{1} \end{array} \lambda_{0} \sim T = \int_{0}^{T} \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} t \in T_{0}(T)$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{\mathsf{x}} = \mathrm{const}, \ \psi_{\mathsf{y}} = \mathrm{const}, \ \dot{\psi}_{\theta} = \mathsf{v}(\psi_{\mathsf{y}} \cos \theta - \psi_{\mathsf{x}} \sin \theta)$$

$$u(t\pm) = egin{cases} \overline{\omega} & ext{if } \psi_{ heta}(t) > 0 \ -\overline{\omega} & ext{if } \psi_{ heta}(t) < 0 \ ? & ext{if } \psi_{ heta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{x} \sim & \dot{x} = v \cos \theta, \\ \psi_{y} \sim & \dot{y} = v \sin \theta, & u \in [-\overline{\omega}, \overline{\omega}], & y(0) = y_{0}, & y(T) = y_{1}, \\ \psi_{\theta} \sim & \dot{\theta} = u & \theta(0) = \theta_{0} & \theta(T) = \theta_{1} \end{array} \lambda_{0} \sim T = \int_{0}^{T} \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} t \in T.$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = V(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = egin{cases} \overline{\omega} & ext{if } \psi_{ heta}(t) > 0 \ -\overline{\omega} & ext{if } \psi_{ heta}(t) < 0 \ ? & ext{if } \psi_{ heta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{x} \sim & \dot{x} = v\cos\theta, \\ \psi_{y} \sim & \dot{y} = v\sin\theta, & u \in [-\overline{\omega}, \overline{\omega}], & y(0) = y_{0}, & y(T) = y_{1}, \\ \psi_{\theta} \sim & \dot{\theta} = u & \theta(0) = \theta_{0} & \theta(T) = \theta_{1} \end{array} \lambda_{0} \sim T = \int_{0}^{T} \underbrace{1}_{\varphi} dt \rightarrow \min_{T, u(\cdot)} t \in T.$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos \theta + v\psi_y \sin \theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = V(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = egin{cases} \overline{\omega} & ext{if } \psi_{ heta}(t) > 0 \ -\overline{\omega} & ext{if } \psi_{ heta}(t) < 0 \ ? & ext{if } \psi_{ heta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

$$\begin{array}{lll} \psi_{x} \sim & \dot{x} = v\cos\theta, \\ \psi_{y} \sim & \dot{y} = v\sin\theta, & u \in [-\overline{\omega}, \overline{\omega}], & x(0) = x_{0}, & x(T) = x_{1}, \\ \psi_{\theta} \sim & \dot{\theta} = u & \theta(0) = \theta_{0} & \theta(T) = \theta_{1} \end{array}$$

Maximum principle

Hamiltonian function: $H = v\psi_x \cos\theta + v\psi_y \sin\theta + \psi_\theta u - \lambda_0$

$$\psi_x = \text{const}, \ \psi_y = \text{const}, \ \dot{\psi}_\theta = v(\psi_y \cos \theta - \psi_x \sin \theta)$$

$$u(t\pm) = egin{cases} \overline{\omega} & ext{if } \psi_{\theta}(t) > 0 \\ -\overline{\omega} & ext{if } \psi_{\theta}(t) < 0 \\ ? & ext{if } \psi_{\theta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

 $\lambda_0 \geq 0$ and either $\lambda_0 > 0$ or some of the functions $\psi_x, \psi_y, \psi_\theta$ is not identically zero

Theorem

(Dubins) Any optimal path between two locations and orientations is either of type CSC, or of type CCC with the arc of the middle circle $> \pi$, or a degenerate of these.

Problem statement

$$\begin{array}{lll} \psi_{x} \sim & \dot{x} = v \cos \theta, \\ \psi_{y} \sim & \dot{y} = v \sin \theta, & u \in [-\overline{\omega}, \overline{\omega}], & y(0) = y_{0}, & y(T) = y_{1}, \\ \psi_{\theta} \sim & \dot{\theta} = u & \theta(0) = \theta_{0} & \theta(T) = \theta_{1} \end{array}$$

(Dubins) Any optimal path between two locations and

orientations is either of

type CSC, or of type CCC with the arc of the middle circle $> \pi$, or a degenerate of these.

Theorem

Maximum principle

Hamiltonian function: $H = v\psi_x \cos\theta + v\psi_y \sin\theta + \psi_\theta u - \lambda_0$

$$\psi_{x} = \text{const}, \ \psi_{y} = \text{const}, \ \dot{\psi}_{\theta} = v(\psi_{y} \cos \theta - \psi_{x} \sin \theta)$$

$$u(t\pm) = egin{cases} \overline{\omega} & ext{if } \psi_{\theta}(t) > 0 \ -\overline{\omega} & ext{if } \psi_{\theta}(t) < 0 \ ? & ext{if } \psi_{\theta}(t) = 0 \end{cases}$$

$$v\psi_x \cos\theta(t) + v\psi_y \sin\theta(t) + \overline{\omega}|\psi_\theta(t)| - \lambda_0 \equiv 0 \quad \forall t$$

Problem statement

• Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \le \overline{v}$, $||u|| \le \overline{u}$

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \leq \overline{v}$, $||u|| \leq \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| < \overline{v}$, $||u|| < \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \leq \overline{v}$, $||u|| \leq \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.
- Optimal transition: do the same in the minimal possible time

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \le \overline{v}$, $||u|| \le \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.
- Optimal transition: do the same in the minimal possible time
- Working zone: square with the side length I

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \leq \overline{v}$, $||u|| \leq \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.
- Optimal transition: do the same in the minimal possible time
- Working zone: square with the side length I

Problem statement

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \leq \overline{v}$, $||u|| \leq \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.
- Optimal transition: do the same in the minimal possible time
- Working zone: square with the side length I

Problem statement: enhancement

Problem statement

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \le \overline{v}$, $||u|| \le \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.
- Optimal transition: do the same in the minimal possible time
- Working zone: square with the side length I

Problem statement: enhancement

• Safe trajectory: distance to the obstacles $\geq c_0 + c_1 ||v(t)|| \forall t$

Problem statement

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \le \overline{v}$, $||u|| \le \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.
- Optimal transition: do the same in the minimal possible time
- Working zone: square with the side length I

Problem statement: enhancement

- Safe trajectory: distance to the obstacles $\geq c_0 + c_1 ||v(t)|| \forall t$
- Find a time-optimal safe trajectory $p^0(t), t \in [0, T^0]$

Problem statement

- Planar robot modelled as a "dynamical particle" $\dot{p} = v$, $\dot{v} = u$, the acceleration u is the control input $p \sim (x, y)$ is the robot's location
- Constraints on the speed and acceleration $||v|| \le \overline{v}$, $||u|| \le \overline{u}$
- Static obstacles O_1, \ldots, O_N , possibly overlapping. Each of them is a convex polygon. The complexity of the scene is assessed via the total number n of the faces of all obstacles
- Goal: pass from the given initial configuration $p(0) = p_0, v(0) = v_0$ to the given desired configuration $p(T) = p_+, v(T) = v_+$ through the obstacle-free part of the plane. The time T of transition is not pre-specified.
- Optimal transition: do the same in the minimal possible time
- Working zone: square with the side length /

Problem statement: enhancement

- Safe trajectory: distance to the obstacles $\geq c_0 + c_1 ||v(t)|| \forall t$
- lacktriangle Find a time-optimal safe trajectory $oldsymbol{
 ho}^0(t), t \in [0, T^0]$

Problem statement: relaxation

 \bullet ε -suboptimal safe trajectory

distance
$$\geq (1 - \varepsilon)[c_0 + c_1 || v(t) ||] \forall t$$
,
 $T \leq (1 + \varepsilon)T^0$.

$$\|p(0)-p_0\| \leq C_1 \varepsilon, \left\|\frac{v(0)}{1+\varepsilon}-v_0\right\| \leq C_2 \varepsilon$$

$$\|p(T)-p_+\| \leq C_3\varepsilon, \left\|\frac{v(T)}{1+\varepsilon}-v_+\right\| \leq C_3\varepsilon$$

Auxiliaries

• The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$

Auxiliaries

• The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum $\overline{\mathcal U}$, or minus maximum $-\overline{\mathcal U}$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau>0$ of any run; the maximal speed $\overline{\nu}$ should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{\nu}}{\overline{a}}$ and the choice of the natural number k is yours

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum $\overline{\mathbf u}$, or minus maximum $-\overline{\mathbf u}$
- The duration $\tau>0$ of any run; the maximal speed $\overline{\nu}$ should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{\nu}}{\overline{a}}$ and the choice of the natural number k is yours
- τ -grid grid in the four-dimensional space of pairs "location-velocity" p, v

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum $\overline{\mathcal U}$, or minus maximum $-\overline{\mathcal U}$
- The duration $\tau>0$ of any run; the maximal speed $\overline{\nu}$ should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{\nu}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" ρ, ν
 - With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $||v|| \leq \overline{v}$

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum $\overline{\mathbf u}$, or minus maximum $-\overline{\mathbf u}$
- The duration $\tau>0$ of any run; the maximal speed \overline{v} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{v}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" p, ν
 - With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $||v|| \leq \overline{v}$

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum $\overline{\mathbf u}$, or minus maximum $-\overline{\mathbf u}$
- The duration $\tau>0$ of any run; the maximal speed \overline{v} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{v}}{\overline{a}}$ and the choice of the natural number k is yours
- T-grid grid in the four-dimensional space of pairs
 - "location-velocity" p, v• With respect v: square grip with spacing of $\overline{u}\tau$ centered
 - at the origin, the grid is considered inside the ball $||v|| \le \overline{v}$. With respect p: square grip with spacing of $\frac{\overline{y}}{2}\tau^2$ considered in the working zone

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum $\overline{\mathcal U}$, or minus maximum $-\overline{\mathcal U}$
- The duration $\tau>0$ of any run; the maximal speed \overline{v} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{v}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" p, ν
 - With respect ν : square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|\nu\| \leq \overline{\nu}$
 - With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum $\overline{\mathcal U}$, or minus maximum $-\overline{\mathcal U}$
- The duration $\tau>0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" ρ, ν
 - With respect ν : square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|\nu\| \leq \overline{\nu}$
 - With respect ρ : square grip with spacing of $\frac{\overline{y}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau>0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" p, V
 - With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $||v|| \leq \overline{v}$.
 With respect ρ : square grip with spacing of $\frac{\overline{u}}{\overline{u}}\tau^2$ considered
 - in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid: $p_x = p_x^* + n_x \frac{\overline{y}}{2} \tau^2, \quad p_y = p_y^* + n_y \frac{\overline{y}}{2} \tau^2$ $v_x = \tau m_x \overline{u}, \quad v_v = \tau m_v \overline{u}$

where n_x, n_y, m_x, m_y are integers

Auxiliaries

- The set \mathcal{U} of eight employed acceleration vectors: every coordinate is either 0, or maximum $\overline{\mu}$, or minus maximum $-\overline{\mu}$
- The duration $\tau > 0$ of any run; the maximal speed $\overline{\nu}$ should be an integer multiple of $\overline{U}\tau$, i.e., $\tau = \frac{1}{L}\frac{\overline{V}}{3}$ and the choice of the natural number k is yours
- \(\tau\)-grid grid in the four-dimensional space of pairs "location-velocity" p, v
 - With respect V: square grip with spacing of $\overline{U}\tau$ centered at the origin, the grid is considered inside the ball $||v|| < \overline{v}$
 - With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered
 - in the working zone
- **Bun** motion with a constant acceleration $\mu \in \mathcal{U}$ for time τ

 $p_{x} = p_{x}^{*} + n_{x} \frac{\overline{u}}{2} \tau^{2}, \quad p_{y} = p_{y}^{*} + n_{y} \frac{\overline{u}}{2} \tau^{2}$ $v_x = \tau m_x \overline{u}, \quad v_y = \tau m_y \overline{u}$ where n_x, n_y, m_x, m_y are integers Let $(p_x, p_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \mathcal{U}} (p_x^+, p_y^+, v_x^+, v_y^+)$

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$(\rho_x, \rho_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \Omega} (\rho_x^+, \rho_y^+, v_x^+, v_y^+)$$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau>0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- au-grid grid in the four-dimensional space of pairs "location-velocity" p, v• With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$ With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $\mu \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_{x} = p_{x}^{*} + n_{x} \frac{\overline{u}}{2} \tau^{2}, \quad p_{y} = p_{y}^{*} + n_{y} \frac{\overline{u}}{2} \tau^{2}$$

 $v_{x} = \tau m_{x} \overline{u}, \quad v_{y} = \tau m_{y} \overline{u}$

where n_x, n_y, m_x, m_y are integers Let

$$(p_x, p_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \mathcal{U}} (p_x^+, p_y^+, v_x^+, v_y^+)$$

$$\begin{split} v^{+} &= v + \tau u \Leftrightarrow & v_{x}^{+} = v_{x} + \tau u_{x} \\ v_{y}^{+} &= v_{y} + \tau u_{y} \end{split}$$

$$p^{+} &= p + v\tau + u \frac{\tau^{2}}{2} \Leftrightarrow & p_{x}^{+} = p_{x} + v_{x}\tau + u_{x} \frac{\tau^{2}}{2} \\ p_{y}^{+} &= p_{y} + v_{x}\tau + u_{y} \frac{\tau^{2}}{2} \end{split}$$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau > 0$ of any run; the maximal speed \overline{v} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau = \frac{1}{k}\frac{\overline{v}}{\overline{a}}$ and the choice of the natural number k is yours
- au-grid grid in the four-dimensional space of pairs "location-velocity" p, v• With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$ With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_{x} = p_{x}^{*} + n_{x} \frac{\overline{u}}{2} \tau^{2}, \quad p_{y} = p_{y}^{*} + n_{y} \frac{\overline{u}}{2} \tau^{2}$$

$$v_{x} = \tau m_{x} \overline{u}, \quad v_{y} = \tau m_{y} \overline{u}$$

where n_x, n_y, m_x, m_y are integers Let

$$(p_x, p_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \mathcal{U}} (p_x^+, p_y^+, v_x^+, v_y^+)$$

$$\begin{split} v^{+} &= v + \tau u \Leftrightarrow & \begin{array}{c} v_{x}^{+} &= v_{x} + \tau u_{x} \\ v_{y}^{+} &= v_{y} + \tau u_{y} \\ \\ p^{+} &= p + v\tau + u \frac{\tau^{2}}{2} \Leftrightarrow & \begin{array}{c} p_{x}^{+} &= p_{x} + v_{x}\tau + u_{x} \frac{\tau^{2}}{2} \\ p_{y}^{+} &= p_{y} + v_{x}\tau + u_{y} \frac{\tau^{2}}{2} \\ \\ u &\in \mathfrak{U} \Leftrightarrow u_{x} &= k_{x}\overline{u}, u_{y} &= k_{y}\overline{u}, \quad k_{x}, k_{y} \in \{-1, 0, 1\} \end{split}$$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau > 0$ of any run; the maximal speed \overline{v} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau = \frac{1}{k}\frac{\overline{v}}{\overline{a}}$ and the choice of the natural number k is yours
- au-grid grid in the four-dimensional space of pairs "location-velocity" p, v• With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$ With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_x = p_x^* + n_x \frac{\overline{u}}{2} \tau^2, \quad p_y = p_y^* + n_y \frac{\overline{u}}{2} \tau^2$$

 $v_x = \tau m_x \overline{u}, \quad v_y = \tau m_y \overline{u}$

where n_x, n_y, m_x, m_y are integers Let

$$(p_x,p_y,v_x,v_y)\xrightarrow{u=(u_x,u_y)\in\mathcal{U}}(p_x^+,p_y^+,v_x^+,v_y^+)$$

$$v_{x}^{+} = v_{x} + \tau u_{x}$$

$$v_{y}^{+} = v_{y} + \tau u_{y}$$

$$p_{x}^{+} = p_{x} + v_{x}\tau + u_{x}\frac{\tau^{2}}{2}$$

$$p_{y}^{+} = p_{y} + v_{x}\tau + u_{y}\frac{\tau^{2}}{2}$$

$$u\in \mathfrak{U} \Leftrightarrow u_x=k_x\overline{u}, u_y=k_y\overline{u}, \quad k_x,k_y\in\{-1,0,1\}$$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau>0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- au-grid grid in the four-dimensional space of pairs "location-velocity" p, v• With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$ With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_x = p_x^* + n_x \frac{\overline{u}}{2} \tau^2, \quad p_y = p_y^* + n_y \frac{\overline{u}}{2} \tau^2$$

$$v_x = \tau m_x \overline{u}, \quad v_y = \tau m_y \overline{u}$$

where n_x, n_y, m_x, m_y are integers Let

$$(p_x, p_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \mathcal{U}} (p_x^+, p_y^+, v_x^+, v_y^+)$$

$$v_x^+ = v_x + \tau k_x \overline{u}$$

$$v_y^+ = v_y + \tau k_y \overline{u}$$

$$p_x^+ = p_x + v_x \tau + k_x \overline{u} \frac{\tau^2}{2}$$

$$p_y^+ = p_y + v_x \tau + k_y \overline{u} \frac{\tau^2}{2}$$

$$u\in \mathfrak{U} \Leftrightarrow u_x=k_x\overline{u}, u_y=k_y\overline{u}, \quad k_x,k_y\in\{-1,0,1\}$$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau > 0$ of any run; the maximal speed \overline{v} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau = \frac{1}{k}\frac{\overline{v}}{\overline{a}}$ and the choice of the natural number k is yours
- au-grid grid in the four-dimensional space of pairs "location-velocity" p, v• With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$ With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- **Run** motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_x = p_x^* + n_x \frac{\overline{y}}{2} \tau^2, \quad p_y = p_y^* + n_y \frac{\overline{y}}{2} \tau^2$$
$$v_x = \tau m_x \overline{u}, \quad v_y = \tau m_y \overline{u}$$

where n_x , n_y , m_x , m_y are integers Let

$$(\rho_x,\rho_y,v_x,v_y)\xrightarrow{u=(u_x,u_y)\in\mathcal{U}}(\rho_x^+,\rho_y^+,v_x^+,v_y^+)$$

$$egin{aligned} \mathbf{v}_{\mathbf{x}}^{+} &= au m_{\mathbf{x}} \overline{u} + au k_{\mathbf{x}} \overline{u} \ \mathbf{v}_{\mathbf{y}}^{+} &= au m_{\mathbf{y}} \overline{u} + au k_{\mathbf{y}} \overline{u} \end{aligned}$$

$$p_x^+ = p_x + \tau m_x \overline{u}\tau + k_x \overline{u}\frac{\tau^2}{2}$$

$$p_y^+ = p_y + \tau m_y \overline{u}\tau + k_y \overline{u}\frac{\tau^2}{2}$$

$$u\in \mathfrak{U} \Leftrightarrow u_x=k_x\overline{u}, u_y=k_y\overline{u}, \quad k_x,k_y\in\{-1,0,1\}$$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau > 0$ of any run; the maximal speed \overline{v} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau = \frac{1}{k}\frac{\overline{v}}{\overline{a}}$ and the choice of the natural number k is yours
- au-grid grid in the four-dimensional space of pairs "location-velocity" p, v• With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$ With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_{x} = p_{x}^{*} + n_{x} \frac{\bar{u}}{2} \tau^{2}, \quad p_{y} = p_{y}^{*} + n_{y} \frac{\bar{u}}{2} \tau^{2}$$

 $v_{x} = \tau m_{x} \bar{u}, \quad v_{y} = \tau m_{y} \bar{u}$

where n_x, n_y, m_x, m_y are integers Let

$$(p_x, p_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \mathcal{U}} (p_x^+, p_y^+, v_x^+, v_y^+)$$

$$egin{aligned} \mathbf{v}_{\mathbf{x}}^{+} &= au m_{\mathbf{x}} \overline{\mathbf{u}} + au \mathbf{k}_{\mathbf{x}} \overline{\mathbf{u}} \ \mathbf{v}_{\mathbf{y}}^{+} &= au m_{\mathbf{y}} \overline{\mathbf{u}} + au \mathbf{k}_{\mathbf{y}} \overline{\mathbf{u}} \end{aligned}$$

$$p_{x}^{+} = p_{x}^{*} + n_{x} \frac{\overline{y}}{2} \tau^{2} + \tau m_{x} \overline{u} \tau + k_{x} \overline{u} \frac{\tau^{2}}{2}$$

$$p_{y}^{+} = p_{y}^{*} + n_{y} \frac{\overline{y}}{2} \tau^{2} + \tau m_{y} \overline{u} \tau + k_{y} \overline{u} \frac{\tau^{2}}{2}$$

 $u \in \mathfrak{U} \Leftrightarrow u_x = k_x \overline{u}, u_y = k_y \overline{u}, \quad k_x, k_y \in \{-1, 0, 1\}$

Auxiliaries

- The set \mathcal{U} of eight employed acceleration vectors: every coordinate is either 0, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau > 0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau = \frac{1}{k}\frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ -grid grid in the four-dimensional space of pairs "location-velocity" p, V
 - With respect V: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $||v|| \leq \overline{v}$.
 With respect p: square grip with spacing of $\frac{\overline{v}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_{x} = p_{x}^{*} + n_{x} \frac{\bar{u}}{2} \tau^{2}, \quad p_{y} = p_{y}^{*} + n_{y} \frac{\bar{u}}{2} \tau^{2}
 v_{x} = \tau m_{x} \bar{u}, \quad v_{y} = \tau m_{y} \bar{u}$$

where n_x, n_y, m_x, m_y are integers Let

$$(p_x, p_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \mathcal{U}} (p_x^+, p_y^+, v_x^+, v_y^+)$$

$$v_{x}^{+} = \tau m_{x} \overline{u} + \tau k_{x} \overline{u} = \tau (m_{x} + k_{x}) \overline{u}$$

$$v_{y}^{+} = \tau m_{y} \overline{u} + \tau k_{y} \overline{u} = \tau (m_{y} + k_{y}) \overline{u}$$

$$\begin{aligned} p_x^+ &= p_x^* + n_x \frac{\overline{y}}{2} \tau^2 + \tau m_x \overline{u} \tau + k_x \overline{u} \frac{\tau^2}{2} \\ &= p_x^* + (n_x + 2m_x + k_x) \frac{\overline{y}}{2} \tau^2 \\ p_y^+ &= p_y^* + n_y \frac{\overline{y}}{2} \tau^2 + \tau m_y \overline{u} \tau + k_y \overline{u} \frac{\tau^2}{2} \\ &= p_y^* + (n_y + 2m_y + k_y) \frac{\overline{y}}{8} \tau^2 \end{aligned}$$

$$u \in \mathcal{U} \Leftrightarrow u_x = k_x \overline{u}, u_y = k_y \overline{u}, \quad k_x, k_y \in \{-1, 0, 1\}$$

Auxiliaries

- The set \mathcal{U} of eight employed acceleration vectors: every coordinate is either 0, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau>0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ -grid grid in the four-dimensional space of pairs "location-velocity" p, v
 - With respect V: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$ With respect p: square grip with spacing of $\frac{\overline{v}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ

The vertices (p_x, p_y, v_x, v_y) of the grid:

$$p_{x} = p_{x}^{*} + n_{x} \frac{\overline{2}}{2} \tau^{2}, \quad p_{y} = p_{y}^{*} + n_{y} \frac{\overline{2}}{2} \tau^{2}$$

 $v_{x} = \tau m_{x} \overline{u}, \quad v_{y} = \tau m_{y} \overline{u}$

where n_x, n_y, m_x, m_y are integers Let

$$(p_x, p_y, v_x, v_y) \xrightarrow{u=(u_x, u_y) \in \mathcal{U}} (p_x^+, p_y^+, v_x^+, v_y^+)$$

$$v_y^+ = \tau m_x \overline{u} + \tau k_x \overline{u} = \tau (m_x + k_x) \overline{u} v_y^+ = \tau m_y \overline{u} + \tau k_y \overline{u} = \tau (m_y + k_y) \overline{u}$$

$$\begin{array}{l} p_{x}^{+} = p_{x}^{+} + n_{x} \overline{\underline{y}} \tau^{2} + \tau m_{x} \overline{u} \tau + k_{x} \overline{u} \frac{\tau^{2}}{2} \\ = p_{x}^{+} + (n_{x} + 2m_{x} + k_{x}) \overline{\underline{y}} \tau^{2} \\ p_{y}^{+} = p_{y}^{+} + n_{y} \overline{\underline{y}} \tau^{2} + \tau m_{y} \overline{u} \tau + k_{y} \overline{u} \frac{\tau^{2}}{2} \\ = p_{x}^{+} + (n_{y} + 2m_{y} + k_{y}) \overline{\underline{y}} \tau^{2} \end{array}$$

$$u \in \mathcal{U} \Leftrightarrow u_x = k_x \overline{u}, u_y = k_y \overline{u}, \quad k_x, k_y \in \{-1, 0, 1\}$$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau>0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{u}\tau$, i.e., $\tau=\frac{1}{k}\frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" p, ν
 - With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $||v|| \leq \overline{v}$.
 With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ
- Safe run on the associated trajectory, the distance to the obstacles $\geq (1 \varepsilon)[c_0 + c_1||v(t)||] \forall t$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either 0, or maximum $\overline u$, or minus maximum $-\overline u$
- The duration $\tau > 0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau = \frac{1}{k} \frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" D. V
 - With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the hall $\|v\| \leq \overline{v}$
 - With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ
- Safe run on the associated trajectory, the distance to the obstacles $\geq (1 \varepsilon)[c_0 + c_1 ||v(t)||] \forall t$
- (τ, ε)-graph Γ directed graph (N, E)
 The set N of the nodes: the grid vertices lying in the considered zones
 - The set E of the edges: an edge goes from node n_- to n_+ if and only if there if a safe run between them

Algorithm

• Take $\tau = O(\varepsilon^{3/2})$ (explicit formula)

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau > 0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau = \frac{1}{k} \frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" D. V
 - With respect V: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$
 - With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ
- Safe run on the associated trajectory, the distance to the obstacles $\geq (1 \varepsilon)[c_0 + c_1 ||v(t)||] \forall t$
- (τ, ε) -graph Γ directed graph (N, E)• The set N of the nodes: the grid vertices lying in the considered zones
 - The set E of the edges: an edge goes from node n_- to n_+ if and only if there if a safe run between them

Algorithm

- Take $\tau = O(\varepsilon^{3/2})$ (explicit formula)
- Onsider the node of the graph closest to $[p_0, \frac{v_0}{1+\varepsilon}]$
- Oby using the breath-first method, find a shortest path in the graph Γ from this node to a node that is within $(\overline{u}\tau^2/2, \overline{u}\tau/2)$ of $[p_1, \frac{V_1}{1+\varepsilon}]$

Auxiliaries

- The set $\mathcal U$ of eight employed acceleration vectors: every coordinate is either $\mathbf 0$, or maximum \overline{u} , or minus maximum $-\overline{u}$
- The duration $\tau > 0$ of any run; the maximal speed \overline{V} should be an integer multiple of $\overline{U}\tau$, i.e., $\tau = \frac{1}{k} \frac{\overline{V}}{\overline{a}}$ and the choice of the natural number k is yours
- τ-grid grid in the four-dimensional space of pairs "location-velocity" D. V
 - With respect v: square grip with spacing of $\overline{u}\tau$ centered at the origin, the grid is considered inside the ball $\|v\| \leq \overline{v}$
 - With respect p: square grip with spacing of $\frac{\overline{u}}{2}\tau^2$ considered in the working zone
- Run motion with a constant acceleration $u \in \mathcal{U}$ for time τ
- Safe run on the associated trajectory, the distance to the obstacles $\geq (1 \varepsilon)[c_0 + c_1 ||v(t)||] \forall t$
- (τ, ε) -graph Γ directed graph (N, E)• The set N of the nodes: the grid vertices lying in the considered zones
 - The set E of the edges: an edge goes from node n_- to n_+ if and only if there if a safe run between them

Algorithm

- Take $\tau = O(\varepsilon^{3/2})$ (explicit formula)
- Consider the node of the graph closest to $[p_0, \frac{v_0}{1+\varepsilon}]$
- Oby using the breath-first method, find a shortest path in the graph Γ from this node to a node that is within $(\overline{u}\tau^2/2, \overline{u}\tau/2)$ of $[\rho_1, \frac{V_1}{1+\epsilon}]$

If there is a safe trajectory, the algorithm finds an ε -suboptimal trajectory. Its complexity (the number of operations) =

 $O\left(\frac{n}{\varepsilon^{12}}\right)$, where *n* is the number of the faces in the totality of all obstacles

