AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

1. (Currently Amended): <u>A method Method</u> for the continuous manufacture of wood material boards having a textured surface on at least one side, comprising the steps of:

forming a mat of a wood or lignocellulose-containing material, treated with a binding agent, onto a continuously moving conveyor belt;

introducing the mat between steel belts each circulating around one of an upper and lower frame part of a continuously operating press; and

after the step of introducing the mat, curing the mat in the continuously operating press to form one of a strand of boards and an endless wood material board by applying pressure and heat to the mat,

wherein the continuously operating press comprises at least one endless metal mesh belt configured to circulate with a corresponding one of said steel belts-and with the mat,

wherein the metal mesh belt comprises a material having a thermal conductivity considerably higher than that of the corresponding steel belt and having a thermal expansion coefficient approximately equal to that of the corresponding steel belt,

wherein the metal mesh belt and the corresponding steel belt are configured to pass through an insulating tunnel, in a return run, to reduce heat loss by thermal radiation,

wherein the metal mesh belt is configured to pass through a heating tunnel, which is separated from the corresponding steel belt,

wherein the heating tunnel is configured to heat the metal mesh belt to a temperature that is higher than a temperature of the corresponding steel belt by at least 40°C, and

wherein curing the mat comprises applying a specific pressure to the mat of at least 0.3 N/mm² during a first at least 80% of a pressing time.

2. (Currently Amended): <u>The method Method</u>-according to claim 1, further comprising the step of step of:

measuring a density profile of the formed one of the strand of boards and the endless wood material board, after the step of curing the mat,

wherein the heating tunnel is configured to heat the metal mesh belt to a temperature profile that directly depends on said density profile.

3. (Currently Amended): <u>The method_Method_according to claim 1, further comprising the step of:</u>

adjusting a symmetrical or asymmetrical raw density profile in the formed one of the strand of boards and the endless wood material board, by adjusting a heat input into the side of the mat which is to be textured.

- 4. (Currently Amended): The method Method according to claim 1, wherein the heating tunnel is configured to heat the metal mesh belt to a temperature that is higher than said temperature of the corresponding steel belt by at least 80°C.
- 5. (Currently Amended): <u>The method Method</u>-according to claim 1, wherein said step of introducing the mat-comprises comprises:

introducing the mat with a moisture content of less than or equal to approximately 9 weight-percent.

6. (Currently Amended): <u>The method_Method_according to claim 1, further comprising the step of step of:</u>

spraying one or both face strata of the mat with water.

7. (Currently Amended): <u>The method_Method_according to claim 1, further comprising the-step of step of:</u>

preheating one or both face strata of the mat with steam.

- 8. 16. (Canceled).
- 17. (New): The method according to claim 1, wherein the metal mesh belt comprises at least two materials.
 - 18. (New): The method according to claim 1, further comprising the step of: cleaning the metal mesh belt.

19. (New): A method for the continuous manufacture of wood material boards having a textured surface on at least one side, comprising the steps of:

forming a mat of a wood or lignocellulose-containing material, treated with a binding agent, onto a continuously moving conveyor belt;

introducing the mat between steel belts each circulating around one of an upper and lower frame part of a continuously operating press; and

curing the mat in the continuously operating press to form one of a strand of boards and an endless wood material board by applying pressure and heat to the mat,

wherein the continuously operating press comprises at least one endless metal mesh belt configured to circulate with a corresponding one of said steel belts and to travel with the mat,

wherein the metal mesh belt and the corresponding steel belt are configured to pass simultaneously through an insulating tunnel, in a return run, to reduce heat loss by thermal radiation, and

wherein the metal mesh belt comprises a material having a thermal conductivity considerably higher than that of the corresponding steel belt.

- 20. (New): The method according to claim 19, wherein the material of the metal mesh belt has a thermal expansion coefficient approximately equal to that of the corresponding steel belt.
- 21. (New): The method according to claim 19, wherein the metal mesh belt is configured to pass through a heating tunnel, which is separated from the corresponding steel belt.
- 22. (New): The method according to claim 21, wherein the heating tunnel is configured to heat the metal mesh belt to a temperature that is higher than a temperature of the corresponding steel belt by at least 40°C.
- 23. (New): The method according to claim 22, wherein the heating tunnel is configured to heat the metal mesh belt to a temperature that is higher than said temperature of the corresponding steel belt by at least 80°C.

- 24. (New): The method according to claim 21, further comprising the step of: measuring a density profile of the formed one of the strand of boards and the endless wood material board.
- 25 (New): The method according to claim 24, wherein the heating tunnel is configured to heat the metal mesh belt to a temperature profile that directly depends on said density profile.
- 26. (New): The method according to claim 19, wherein the step of curing the mat comprises:
 - applying a specific pressure to the mat of at least 0.3 N/mm² during a first at least 80% of a pressing time.
 - 27. (New): The method according to claim 19, further comprising the step of: adjusting a symmetrical or asymmetrical raw density profile in the formed one of the strand of boards and the endless wood material board, by adjusting a heat input into the side of the mat which is to be textured.
- 28. (New): The method according to claim 19, wherein said step of introducing the mat comprises:

introducing the mat with a moisture content of less than or equal to approximately 9 weight-percent.

- 29. (New): The method according to claim 19, wherein the metal mesh belt comprises at least two materials.
 - 30. (New): The method according to claim 19, further comprising the step of: cleaning the metal mesh belt.

31. (New): A method for the continuous manufacture of wood material boards having a textured surface on at least one side, comprising the steps of:

forming a mat of a wood or lignocellulose-containing material, treated with a binding agent, onto a continuously moving conveyor belt;

introducing the mat between steel belts each circulating around one of an upper and lower frame part of a continuously operating press; and

curing the mat in the continuously operating press to form one of a strand of boards and an endless wood material board by applying pressure and heat to the mat,

wherein the continuously operating press comprises at least one endless metal mesh belt configured to circulate with a corresponding one of said steel belts and to travel with the mat,

wherein the metal mesh belt comprises a material having a thermal conductivity considerably higher than that of the corresponding steel belt,

wherein the metal mesh belt has a thermal expansion coefficient within the range of steel, and

wherein the metal mesh belt texturizes a surface of the mat.

- 32. (New): The method according to claim 31, wherein the thermal expansion coefficient of the metal mesh belt is within 5×10^{-6} /°C of 16×10^{-6} /°C.
- 33. (New): The method according to claim 31, wherein the metal mesh belt and the corresponding steel belt are configured to pass through an insulating tunnel, in a return run, to reduce heat loss by thermal radiation.
- 34. (New): The method according to claim 31, wherein the metal mesh belt is configured to pass through a heating tunnel, which is separated from the corresponding steel belt.
- 35. (New): The method according to claim 34, wherein the heating tunnel is configured to heat the metal mesh belt to a temperature that is higher than a temperature of the corresponding steel belt by at least 40°C.

- 36. (New): The method according to claim 35, wherein the heating tunnel is configured to heat the metal mesh belt to a temperature that is higher than said temperature of the corresponding steel belt by at least 80°C.
 - 37. (New): The method according to claim 34, further comprising the step of: measuring a density profile of the formed one of the strand of boards and the endless wood material board.
- 38. (New): The method according to claim 37, wherein the heating tunnel is configured to heat the metal mesh belt to a temperature profile that directly depends on said density profile.
- 39. (New): The method according to claim 31, wherein the step of curing the mat comprises:
 - applying a specific pressure to the mat of at least 0.3 N/mm² during a first at least 80% of a pressing time.
 - 40. (New): The method according to claim 31, further comprising the step of: adjusting a symmetrical or asymmetrical raw density profile in the formed one of the strand of boards and the endless wood material board, by adjusting a heat input into the side of the mat which is to be textured.
- 41. (New): The method according to claim 31, wherein said step of introducing the mat comprises:

introducing the mat with a moisture content of less than or equal to approximately 9 weight-percent.

- 42. (New): The method according to claim 31, wherein the metal mesh belt comprises at least two materials.
 - 43. (New): The method according to claim 31, further comprising the step of: cleaning the metal mesh belt.