11. PLC 실전 예제 및 프로젝트

11.1 엘리베이터 제어 시퀀스

(PLC를 활용한 대표적인 시퀀스 제어 실전 사례 — 엘리베이터 시스템 전체 흐름 구조 정리)

☑ 개요

엘리베이터 제어 시스템은 PLC 시퀀스 제어에서 가장 전형적이고 실습·교육·실무에서도 많이 다루는 복합 시퀀스 모델이다. 엘리베이터는 **다단계 상태 전이, 복수 입력 감지, 안전 장치, 호출 우선순위, 동기화 제어**가 동시에 요구된다.

☑ 1. 엘리베이터 기본 제어 흐름

1 대기 → 호출 → 승강 → 정지 → 문열림 → 승하차 → 문닫힘 → 다음 호출 처리

• 상태(State) 기반 상태 전이 시스템이 필수

☑ 2. 주요 입력 요소 (센서 및 신호)

입력	설명
층별 호출 스위치	각 층 외부에서 승강기 호출
내부 목적지 스위치	탑승자가 층 지정
도어 개폐 감지 센서	문 열림/닫힘 상태 확인
층 위치 센서	현재 층 위치 감지 (리미트 스위치, 엔코더 등)
과부하 센서	최대 적재 중량 초과 여부
비상정지 스위치	긴급 상황 수동 정지

☑ 3. 주요 출력 요소 (제어 대상)

출력	설명
모터 제어	상승/하강 제어
도어 모터	문 열림/닫힘
층 도착 표시	디스플레이 및 음성 출력
경보 장치	경고음, 점멸등
속도 조절	인버터 제어 통한 감속/가속

☑ 4. 상태 전이(State Machine) 설계 예시

상태	설명	전이 조건
IDLE	대기 상태	호출 발생 시 → MOVE
MOVE	상승 또는 하강 이동	도착층 도달 시 → STOP
STOP	층 정지 상태	완전 정지 확인 → DOOR_OPEN
DOOR_OPEN	문 열기	문 개방 완료 → LOADING
LOADING	승하차 시간 대기	대기 시간 종료 → DOOR_CLOSE
DOOR_CLOSE	문 닫기	문 닫힘 완료 → IDLE or 다음 호출

% 상태 전이 중 언제든 **Emergency** \rightarrow 강제 STOP 전환

☑ 5. 호출 큐 관리 (Call Queue)

- 다층 엘리베이터는 호출 우선순위 관리가 필요
- FIFO, LIFO, 방향 우선순위 알고리즘 적용 가능

전략	설명
상향 우선	상승 중일 때 위쪽 호출 먼저 수행
하향 우선	하강 중일 때 아래쪽 호출 먼저 수행
목적지 버퍼	현재 방향 유지 후 반대방향 호출 대기

☑ 6. 래더 다이어그램 기본 논리 예시

▶ 상승/하강 모터 제어

```
1 | 호출 층 > 현재 층 |---[]---( 상승 ON )
2 | 호출 층 < 현재 층 |---[]---( 하강 ON )
```

▶ 도착 시 정지

▶ 도어 자동 닫힘

1 | 타이머 완료 |---[]---(도어 CLOSE)

☑ 7. 안전 설계 요소

기능	설명
과속 감시	엔코더 속도 비교
과부하 방지	중량 초과 감지시 정지
문 닫힘 감지	문 미닫힘 시 재개방
비상 정지	수동 또는 센서 이상시 즉시 정지
2중 브레이크 시스템	기계적·전기적 이중 안전 확보

☑ 8. 고급 제어 기능

기능	설명
층간 정밀 정위치	엔코더 피드백 기반 정밀 정지
도어 개방 제한	특정 층, 무게 제한 시 개방 제한
자동 절전 운전	일정 대기 시간 후 자동 절전모드
그룹 엘리베이터 연동	다수 엘리베이터 협조 배차 알고리즘

☑ 9. 시각적 흐름도

```
1 [대기]
2 ↓ (호출 발생)
3 [이동] → (도착층 감지) → [정지]
4 ↓ (속도 조정)
5 [문 열림] → [승하차 대기] → [문 닫힘] → [다음 호출]
```

• 각 블록은 **PLC 상태 변수(State 변수)**로 정의됨

☑ 10. 실무 PLC 구현 포인트

항목	설계 방법
상태 변수 관리	INT ENUM 상태 변수 사용
호출 큐 관리	배열 또는 Shift Register 활용

항목	설계 방법
안전 인터록	릴레이+PLC 이중 인터록 병행
모터 속도 제어	인버터 제어 연동
유지보수 모드	수동 운전 모드 별도 구현

✓ 정리

- 엘리베이터 제어는 상태 기반 시퀀스 제어의 대표적 실전 사례
- 상태 전이 제어 + 호출 우선순위 알고리즘 + 안전 인터록이 핵심 설계 포인트
- 실습/프로젝트/시험 대비에도 가장 많이 다뤄지는 시퀀스 모델

11.2 컨베이어 시스템 제어

(PLC 실전 시퀀스 제어에서 가장 기초적이면서 응용도가 높은 컨베이어 시스템의 제어 설계)

☑ 개요

컨베이어 시스템은 물류, 생산, 가공, 검사 라인 등 모든 산업 자동화 시스템에서 필수적인 핵심 장비다. 컨베이어 제어는:

- 단순 연속동작부터
- 센서 기반 자동 분기,
- 타이밍 연동,
- 다중 라인 동기화까지

다양한 시퀀스 제어 설계가 필요하다.

☑ 1. 컨베이어 제어 기본 흐름

- 1 | 준비 → 시작 → 가동 → 감지 → 분기 → 정지 → 대기
- 흐름에 따라 여러 센서와 액추에이터가 순차 동작

☑ 2. 주요 제어 요소

요소	설명
Start 버튼	시스템 시작 신호
Stop 버튼	수동 정지 신호
비상 정지	긴급 상황 수동 차단

요소	설명
포토센서	물체 감지 (입출입 확인)
인덕티브 센서	금속 감지
Limit 스위치	위치 감지
분기 장치	방향 전환 (실린더, 암 등)
모터 인버터	속도 제어 (VFD 제어 가능)
타이머	시간 기반 분기

☑ 3. 기본 컨베이어 시퀀스 예시

상태	동작
IDLE	대기, 모든 모터 정지
RUN	모터 구동, 물체 이동 시작
SENSOR DETECT	물체 감지, 분기 준비
SORTING	분기 장치 동작
STOP	작업 종료

☑ 4. 래더 다이어그램 기본 제어 예시

▶ 컨베이어 시작-정지 회로 (자기 유지 회로)

```
1 | Start 버튼 |---[]----( SET Run_Flag )
2 | Stop 버튼 |---[]---( 컨베이어 모터 ON )
```

- 자기 유지 회로 (Self-Holding Circuit)
- Start 누르면 유지, Stop 누르면 해제

🔼 물체 감지 후 분기 동작

```
1 | 포토센서 |---[]---( 타이머 T1 ON )
2
3 | T1 완료 |---[]---( Sorting Arm ON )
```

• 감지 후 일정 시간 지연 후 분기 동작

☑ 5. 안전 설계 요소

항목	설명
비상 정지	하드와이어 릴레이 차단 우선
양방향 회전 제한	방향 오류 방지 인터록
과부하 감지	전류 감지 통한 모터 보호
라인 충돌 방지	각 컨베이어 구간 연동 인터록

☑ 6. 다중 컨베이어 연동 (Multi-Zone Synchronization)

구간	연동 방식
구간 A → 구간 B	A의 센서 감지 → B 구동 시작
분기 시스템	센서 신호에 따라 선택적 라인 전환
적재 대기	B 가득 찼을 경우 A 자동 대기

📌 래더 연동 예시

```
1 | ZoneB_Full |---[/]----( ZoneA_Run 허용 )
2 | ZoneB_Full |---[]----
```

• ZoneB가 가득 차면 ZoneA는 자동 정지 (연속 충돌 방지)

☑ 7. 고급 제어 응용

기능	설명
속도 조정	인버터 제어, 속도 프로파일 변경
분기 최적화	RFID, 바코드 읽어 목적지 선택
AGV 연동	이동형 컨베이어 자동 연동
품질 검사 연계	검출 이상품 자동 분리
SCADA 연동	전체 라인 실시간 감시 및 통계 기록

☑ 8. 시각적 흐름도 예

```
1 [대기]
2 ↓ (Start)
3 [이동 중]
4 ↓ (센서 감지)
5 [분기 준비]
6 ↓ (분류 동작)
7 [다음 제품 대기]
```

• 각 상태는 **PLC State 변수**로 구성

☑ 9. 실무 PLC 구현 시 핵심 포인트

항목	설계 원칙
센서 노이즈 필터링	디바운싱 적용 (짧은 순간 신호 무시)
타이밍 정합	분기 장치 구동 지연시간 정확히 설정
충돌 방지	분기 완료 후 다음 제품 투입 허용
유지보수	모든 구간 수동 운전 모드 구현
알람 시스템	센서 이상, 모터 오류 즉시 알람 출력

☑ 10. 실전 적용 사례

산업 현장	적용 형태
전자 제조	SMT 라인 자동 피더
물류센터	자동 분류기, 스캐너 연동
식음료 생산	병입 라인, 충진, 라벨링 동기화
자동차 조립	부품 이동 자동 라인
택배 허브	바코드 기반 자동 분류기

✓ 정리

- 컨베이어 시스템은 PLC 시퀀스 제어의 기초부터 심화까지 모두 실습 가능한 교과서적 모델
- 자기유지 회로, 센서 감지, 타이밍 분기, 다중 구간 동기화, 안전 인터록이 설계의 핵심
- 현장에 따라 다양한 분기 알고리즘, 품질검사 연동, 데이터 로깅까지 확장 가능

11.3 혼합 탱크 자동제어 (온도, 유량)

(PLC 기반 복합 제어 시스템의 실전 사례 — 프로세스 제어형 시퀀스의 핵심 구조 정리)

✓ 개요

혼합 탱크(Mixing Tank) 제어 시스템은 단순한 시퀀스가 아니라 **연속 공정 제어 (Continuous Process Control)**와 **피드백 루프 (Feedback Control: 온도, 유량 등)**를 복합적으로 포함하는 고급 PLC 제어 사례다.

특히:

- 이중/다중 입력 (온도, 유량, 압력)
- 연속 제어 (PID, 레벨 유지)
- 안전 인터록
- 레시피 기반 제어

등이 통합적으로 요구된다.

☑ 1. 시스템 전체 흐름 개요

1 준비 \rightarrow 원료 주입 \rightarrow 혼합 \rightarrow 가열 \rightarrow 품질 검사 \rightarrow 배출 \rightarrow 세척 \rightarrow 대기

• 시퀀스 기반 상태 전이 + 피드백 기반 연속제어 동시 구성

☑ 2. 주요 입력 신호

입력	설명
Start 버튼	공정 시작 신호
유량 센서 (Flow Meter)	원료 주입 속도 감지
온도 센서 (RTD, Thermocouple)	가열 제어용
레벨 센서	액체 높이 감지
압력 센서	내부 압력 감시
비상 정지 스위치	전체 공정 정지
품질 검사 신호	혼합 균질도 확인 (외부 검사기 연계 가능)

☑ 3. 주요 출력 제어 대상

출력	설명
원료 주입 밸브	재료 유입 제어
교반기 모터	혼합 회전 제어
히터	온도 유지
배출 밸브	완성액 배출
세척 노즐	세척수 분사

☑ 4. 시퀀스 상태 전이 설계 예시

상태	동작	전이 조건
IDLE	준비 대기	Start 버튼
FILLING	원료 주입	목표 레벨 도달
MIXING	교반 가동	유량 정상 유지
HEATING	PID 온도 제어	목표 온도 도달
QUALITY_CHECK	샘플 검사	합격 시 → DISCHARGE
DISCHARGE	배출 밸브 ON	배출 완료 시 종료
CLEANING	세척 과정	세척 완료
ERROR	안전 이상 발생	수동 리셋 후 복귀

▼ 5. 온도 제어 — PID 루프 구성

📌 제어 변수 구성

요소	설명
Setpoint (SP)	목표 온도
Process Variable (PV)	현재 탱크 온도
Control Output (MV)	히터 출력 비율

★ PID 래더 블록 예시 (ST 언어)

• 대부분 PLC에 PID Function Block 내장

☑ 6. 유량 제어 — 실시간 피드백 루프

- Flow Meter → 유입량 실시간 감지
- 목표 유량 유지하도록 밸브 조절 가능 (유량 PID 제어 가능)

```
PID_Flow(SP := Target_FlowRate,

PV := Current_Flow,

MV => Inlet_Valve_Position);
```

☑ 7. 전체 제어 흐름 시각도

```
1 [대기]
    1
  [원료 주입 (유량 제어)]
   1
  [혼합 교반]
7
   [가열 (온도 PID)]
   1
9
  [품질 검사]
10
    1
  [완성 배출]
   1
13
  [탱크 세척]
    1
15 [다음 생산 준비]
```

☑ 8. 알람 및 안전 설계

항목	설명
과압력 감지	즉시 히터 OFF, 밸브 개방
유량 이상	재료 공급 차단
온도 과열	히터 자동 차단

항목	설명
교반기 과부하	모터 보호 정지
이중 안전	하드와이어 인터록 + 소프트웨어 보호 병행

☑ 9. 레시피 기반 자동제어 설계

📌 레시피 테이블 예시

제품	온도	교반속도	유량	혼합시간
제품 A	70°C	200 rpm	500 L/h	15분
제품 B	90°C	250 rpm	600 L/h	10분

• HMI/SCADA 레시피 화면 ightarrow PLC 변수 자동 적용 ightarrow 무오류 운전 가능

☑ 10. 실무 PLC 시퀀스 설계 포인트

항목	구현 방법
상태관리	상태 전이 변수 (State ENUM) 사용
병렬제어	교반기, 히터, 유량 각각 독립 제어
알람 인터록	모든 PID 루프에 상한/하한 제한 삽입
유지보수	수동운전 모드 별도 구현
이력 기록	유량·온도 트렌드 이력 저장 → SCADA 연동

☑ 11. 실전 적용 산업 예시

산업	적용 예시
식품	소스 제조, 음료 혼합
화학	반응조 온도/유량 동시 제어
제약	멸균 배양조, 정밀 농도 유지
화장품	로션, 샴푸 혼합 공정
반도체	슬러리 혼합, 도금액 제조

✓ 정리

- 혼합탱크 제어는 시퀀스 제어 + PID 연속제어가 결합된 전형적 복합 공정
- 상태전이 제어(State Machine)와 연속 피드백 제어(PID)가 정확히 협력하도록 설계
- 레시피 기반 자동제어 도입 시 품질 일관성 극대화 가능
- PLC, HMI, SCADA, 데이터로깅 시스템 통합 설계의 훌륭한 실습 모델

11.4 자동문, 조명 제어 시스템

(PLC 시퀀스 제어의 기초적이면서 산업·건물 자동화에서 매우 실용적인 실전 제어 사례)

✓ 개요

자동문과 조명 제어는 단순한 ON/OFF 제어 같아 보이지만 현장에서는 반드시 **센서 기반 논리, 시퀀스 흐름, 안전 보호, 에너지 절감**이 결합되어야 하는 **고전적인 PLC 입문 실전 예제이자 실무 시스템 핵심**이다.

이들은 제조공장, 물류센터, 건물 자동화, 무인 시스템 등에서 매우 폭넓게 활용된다.

☑ 1. 자동문 기본 시퀀스 흐름

1 대기 → 접근 감지 → 문 열림 → 출입 감지 → 문 닫힘 → 대기 복귀

• 주요 핵심: **센서 동기화 + 타이밍 제어 + 비상 인터록**

☑ 2. 자동문 제어 구성 요소

구성 요소	설명
근접 센서 (PIR, 초음파)	접근자 감지
출입 감지 센서 (Beam Sensor)	통과 감지
도어 모터	슬라이딩/스윙 도어 개폐
도어 개폐 감지 스위치	열림/닫힘 위치 확인
안전 센서	끼임 방지, 장애물 감지
비상 정지 스위치	긴급 차단
문 닫힘 타이머	자동 닫힘 대기시간 설정

☑ 3. 자동문 기본 래더 시퀀스 예시

▶ 문 열기 조건

```
1 | 접근 센서 감지 |---[]----( 도어 개방 )
2 | 출입 감지 |-----[]---
```

▶ 닫힘 타이머 제어

```
1 | 도어 개방 완료 |---[]---( T1 ON )
2
3 | T1 완료 |---[]---( 도어 닫힘 )
```

▶ 안전 끼임 방지

```
1 | 닫힘 중 AND 안전센서 감지 |---[]---(즉시 재개방 )
```

• 센서 조합이 단순할수록 현장 신뢰성 높아짐

☑ 4. 자동문 시퀀스 상태 전이 모델

상태	설명	전이조건
(IDLE)	대기	접근 감지
OPENING	문 열림	열림 완료 감지
HOLDING	대기	닫힘 타이머
CLOSING	문 닫힘	닫힘 완료
REOPENING	안전센서 감지시 즉시 재개방	

☑ 5. 조명 제어 시스템 기본 흐름

```
1 | 대기 → 접근 감지 → 점등 → 무인감지 → 소등
```

• **에너지 절감 + 안전성** 중심 제어

☑ 6. 조명 제어 구성 요소

구성 요소	설명
PIR 인체 감지 센서	인원 감지
타이머	점등 유지시간 설정

구성 요소	설명
광센서 (조도센서)	외부 밝기 감지 (주간 자동 소등)
수동 스위치	수동 조작 허용
조명등 릴레이	부하 ON/OFF 제어

☑ 7. 조명 래더 제어 예시

▶ 점등 논리

1 | 인체 감지 AND (야간 조건) |---[]---(조명 ON)

▶ 소등 타이머

```
1 | 인체 감지 해제 |---[↑]---( T1 ON )
2
3 | T1 완료 |---[ ]---( 조명 OFF )
```

▶ 수동 스위치 우선

```
1 | 수동 스위치 ON |---[]---( 조명 항상 ON )
```

• 수동-자동 논리 우선순위 반드시 설정

☑ 8. 통합 제어 예시 (복합 시스템)

- 자동문 + 조명 시스템 연계 가능
- 출입 감지 → 문 열림 → 실내 조명 자동 점등
- ∇ 조명 유지 \rightarrow 출입 종료 후 자동 소등

📌 통합 흐름도 예

```
1 접근 감지 → 문 개방 → 조명 점등
2 ↓ (퇴실 감지 후 대기시간 경과)
3 문 닫힘 → 조명 소등
```

☑ 9. 실무 고급 적용 요소

기능	설명
절전모드	일정 시간 무작동 시 전체 소등
스케줄제어	시간대별 자동 점등 (조명스케줄)

기능	설명
통합 BMS 연동	건물 전체 중앙 통제 통합
장애감지	센서 이상 시 경고 알람
원격 제어	SCADA/HMI 상에서 상태 모니터링 가능

☑ 10. 실전 적용 현장 예시

산업현장	적용 사례
물류센터	출입문 + 구역별 자동 조명
병원, 공항	접근 기반 자동문 + 경보시스템
자동화 공장	안전 구역 자동 게이트
대형 쇼핑몰	복합 동작: 출입/조명/환기 자동 통합
반도체 공정실	에어샤워 자동문 동기화 제어

✓ 정리

- 자동문, 조명 시스템은 센서 기반 시퀀스 제어의 기초 완성형 예제
- 단순 ON/OFF 제어가 아니라 **센서, 타이머, 안전, 다단계 논리**가 결합되어야 실무 시스템 가능
- 현대 PLC 실습 과정에서 반드시 완전 구현 가능한 가장 실용적인 시퀀스 연습 모델

11.5 포장/배출 자동화 설계

(PLC 시퀀스 제어의 공정 자동화 대표 사례 — 생산라인 말단 자동 포장 및 배출 시스템의 제어 설계)

☑ 개요

포장/배출 자동화 시스템은 생산라인의 최종단에서 완제품을:

- 포장(봉함, 밀봉, 라벨 부착 등)
- 적재(박스, 팔레트)
- 배출(물류 시스템 연동)

까지 자동으로 처리하는 공정이다.

이 시스템은 PLC **시퀀스 제어, 센서 피드백, 위치검사, 안전 인터록, 타이밍 정합**의 종합설계가 요구된다.

☑ 1. 전체 시퀀스 흐름 개요

- 1 제품 도착 → 위치 감지 → 포장 준비 → 포장 동작 → 검사 → 배출 → 다음 사이클
- 기본적으로 이벤트 기반 상태전이(State Machine) 설계가 필수

☑ 2. 주요 제어 대상 및 구성요소

제어 요소	설명
센서	포토센서, 리미트 스위치, 라벨 인식, 무게센서
포장기	봉함기, 라벨부착기, 밀봉기
이송 모터	컨베이어, 롤러, 로봇암
팔레타이저	완성품 적재 장치
배출 장치	적재 완료 후 다음 라인 송출
비전검사기	포장 불량, 라벨 누락 검출
안전장치	방호문 스위치, 비상정지

☑ 3. 시퀀스 상태 전이 설계 예시

상태	동작	전이 조건
[IDLE]	대기	제품 감지
POSITIONING	포장 위치 이동	위치 완료
PACKAGING	봉함, 라벨링	완료 감지
INSPECTION	검사기 통과	합격 여부
PALLETIZING	적재 장치 이동	위치확인
DISCHARGE	배출라인 이동	종료 확인
ERROR	장애 발생	수동 리셋 후 복귀

☑ 4. 기본 래더 제어 예시

▶ 제품 감지 후 포장 준비

```
1 | 포토센서 감지 |---[]---( 컨베이어 정지 )
2 | 위치센서 완료 |---[]---( 포장기 스타트 )
```

▶ 포장 완료 후 검사로 전이

```
1 | 포장기 완료신호 |---[]---( 검사기 스타트 )
```

▶ 불량 분기 (비전 검사 포함)

```
1 | 검사기 불량감지 |---[]---( 불량품 배출 장치 ON )
2 | 검사기 합격 |---[]---( 팔레타이저 이동 )
```

☑ 5. 팔레타이징 제어 흐름 예시

- 적재 패턴 계산 알고리즘 필요
- 예: 박스당 5×5 적재 → 팔레트 높이계산 포함

▶ 적재 카운터 예시

```
1 | 적재 완료시 |---[]---( 카운터 증가 )
2
3 | 카운터 = 목표 |---[]---( 팔레트 교환 신호 )
```

• 팔레트 교체 \rightarrow 이송기 자동 재설정

☑ 6. 동기화 제어 핵심 요소

제어 동기화	설명
속도 정합	제품 공급 → 포장기 동작 속도 일치
다중 인터록	포장 미완료 시 배출 금지
타이밍 제어	동작 간 간격 최적 설정
장비간 동작 중첩	다음 공정이 선행 공정 완료 신호 대기

🔽 7. 안전 설계 요소

위험	대응 방안
손 끼임	방호 커버 스위치
장비 과부하	모터 토크 감지
비상정지	전체 시스템 하드 차단
정위치 실패	이중 센서 감지 구조
팔레트 넘침	레벨센서 이중 확인

☑ 8. 알람 및 이력 로깅

- 장비 별 동작 실패 → 알람코드 부여
- 불량 이력 → 품질 분석용 DB 기록
- 팔레트 교환 기록 \rightarrow 물류 관리 통합

🔽 9. 고급 연동 설계

연계 시스템	활용
ERP/MES 연동	실시간 생산량 데이터 전송
물류 AGV 연계	팔레트 자동 운반
SCADA 연동	전체 공정 통합 모니터링
클라우드 원격 모니터링	생산이력 분석, OEE 관리

☑ 10. 실전 적용 산업 예시

산업 분야	적용 사례
식음료	병입 포장, 라벨링, 박스 적재
전자부품	PCB 봉함, 정전기포장, 라벨부착
제약	의약품 블리스터 포장, 밀봉
화학	분말·액체 드럼 포장
물류센터	자동 소형 박스 분류·적재

✓ 정리

- 포장/배출 자동화는 PLC 시퀀스 제어의 고급 종합형 실전 과제
- 상태전이 흐름 + 센서 피드백 + 알람 인터록 + 다중 장비 동기화가 핵심
- 실무에서는 로봇/AGV/물류 시스템까지 통합 자동화 설계로 확장

11.6 제조 설비에서의 생산 관리 연동

(PLC 기반 생산 설비를 상위 생산관리 시스템(MES, ERP)와 통합하는 구조 설계)

✓ 개요

PLC로 제어되는 제조설비는 단순히 장비 동작만 담당하지 않는다.

현대 공장에서는 **상위 생산관리 시스템(MES: Manufacturing Execution System)** 과 연동되어야 한다. 이 연동을 통해:

- 실시간 생산량 집계
- 품질 데이터 수집
- 설비 가동률(OEE) 관리
- 작업 지시 자동화
- 추적성(Traceability) 확보

가 가능해진다.

☑ 1. 전체 시스템 계층 구조

```
1 ERP (Enterprise Resource Planning)
2 ↓
3 MES (Manufacturing Execution System)
4 ↓
5 SCADA (Supervisory Control)
6 ↓
7 PLC (제어 및 현장 I/O)
```

- PLC는 실시간 제어,
- MES는 생산관리·지시·이력통합 담당

✓ 2. MES ↔ PLC 연동 필요 이유

목적	설명
생산지시	작업자 수동 입력 없이 PLC가 작업 파라미터 수신
실시간 생산량 수집	생산수량, 불량수량, 속도 실시간 보고
품질 이력 확보	검사 결과, 공정변수 저장

목적	설명	
추적성	제품별 이력 데이터 (LOT, Serial No 등)	

☑ 3. 주요 통신 방식

방식	설명
OPC UA	표준화된 실시간 태그 교환 (가장 많이 사용됨)
MQTT	lloT 기반 경량 메시지 송수신
DB 연동	PLC가 SCADA/MES 연동 서버의 DB 직접 갱신
REST API	웹 기반 연동 (클라우드 MES 연동 시 활용)

☑ 4. 통신 흐름 예시

★ 생산지시 흐름

1 MES → (작업오더 전송) → SCADA → PLC 레시피 세팅 → 생산개시

★ 생산실적 보고 흐름

1 PLC 생산량 카운터 → SCADA → MES 실시간 생산 실적 DB 기록

★ 품질이력 수집 흐름

1 검사결과, 센서 데이터 → PLC → SCADA 이력 기록 → MES 품질분석 DB

☑ 5. 데이터 항목 구성 예시

데이터 항목	설명
생산오더번호	작업지시 고유번호
제품모델	현재 생산 제품 코드
작업자	작업자 식별 정보
생산수량	누적 생산량
불량수량	검사 불량 수량
온도/압력 이력	공정 주요 품질 변수
시작/종료 시간	공정 단위 시간 기록

☑ 6. 연동 설계 실전 구성 예시

- MES가 SCADA를 통해 PLC 데이터를 직접 수집하거나
- MES가 OPC UA 게이트웨이를 통해 PLC 태그에 직접 접근

☑ 7. 작업지시 레시피 자동 세팅 예시

• MES가 다음 작업지시 송신 → SCADA → PLC 레시피 설정:

파라미터	내용
목표 속도	120 m/min
압력 설정	3.2 bar
온도 설정	95°C
혼합비율	70:30

```
1 PLC:
2 Speed_Set := MES_Speed;
3 Pressure_Set := MES_Pressure;
4 Temp_Set := MES_Temperature;
5 Mix_Ratio := MES_Ratio;
```

☑ 8. 실시간 모니터링 화면 예시

• SCADA 및 MES 화면에 다음과 같은 정보가 실시간 표시

항목	예시 표시
생산라인 상태	RUNNING / IDLE / ALARM
현재 생산량	12,300개
불량율	1.2%
가동률 (OEE)	92%
공정 온도	94.8°C
라인 작업자	ID: OP567

☑ 9. 안전 및 보안 고려사항

항목	설계 원칙	
네트워크 구분	제어망과 IT망 분리 (Firewall, VLAN)	
접근 인증	MES → PLC 통신에 인증서 기반 접근 제한	
데이터 이중화	생산이력 실시간 백업	
장애 복구	서버 이중화, 이력 재처리 기능 확보	

☑ 10. 실전 적용 산업 예시

산업분야	적용 사례
자동차	조립라인 생산이력 통합관리
식음료	레시피 기반 생산지시 자동 설정
전자	실시간 양품/불량율 모니터링
반도체	정밀 공정 변수 이력 기록
제약	전공정 제조이력 추적 시스템

☑ 정리

- PLC ↔ MES 연동은 제조자동화 시스템의 핵심 상위통합 단계
- 생산지시 수신, 생산실적 보고, 품질이력 수집, 가동률 관리까지 전 과정을 통합
- OPC UA 기반 통합 설계가 현재 가장 표준적이고 안정적인 방식
- 이 설계가 성공해야 **스마트팩토리의 핵심 데이터 흐름 기반이 완성**된다.

11.7 에러코드 및 로그 처리

(PLC 제어 시스템에서 고장 진단, 유지보수, 이력분석을 위한 핵심 장애 처리 구조 설계)

☑ 개요

PLC 시스템은 실시간으로 장비를 제어하지만, 에러코드 관리 및 로그 이력 기록 시스템이 제대로 설계되지 않으면 장비 이상 발생 시 정확한 원인 파악과 복구가 어려워진다.

따라서 **에러코드 체계화 + 상세 이력 로깅 + 실시간 알람 출력**은 모든 산업용 제어 시스템의 **핵심 유지보수 설계 요소**다.

☑ 1. 에러코드 관리의 필요성

목적	설명
고장 원인 명확화	진단 속도 향상
반복 장애 예방	패턴 분석 가능
유지보수 효율화	수리 시간 단축
상위 시스템 통합	SCADA, MES 알람 시스템 연계 가능

☑ 2. 에러코드 체계 설계 원칙

📌 코드 구조 예시

코드 번호	분류	상세 설명
01xx	센서 오류	위치 센서 이상, 감지 실패
02xx	모터 이상	과전류, 과부하, 인버터 이상
03xx	통신 장애	PLC ↔ I/O 단절, 통신 타임아웃
04xx	공정 오버플로우	탱크 레벨 초과, 유량 이상
05xx	안전장치 트립	방호문 열림, 비상정지
99xx	시스템 오류	프로그램 이상, 메모리 오류

📌 코드 구성 원칙

- 에러 그룹화 (대분류 → 상세분류)
- **숫자 범위 예약** (나중 확장 고려)
- 중복 코드 방지
- 단일 에러는 단일 코드에만 대응

☑ 3. 래더 기반 에러코드 생성 예시

▶ 단일 센서 이상 감지

1 | 위치센서 미감지 |---[]---(Error_Code := 0101)

▶ 다중 우선순위 평가

```
1 | 비상정지 |---[]---(Error_Code := 0501 )
2 | 센서이상 |---[]---(Error_Code := 0101 )
```

• 상위 위험도가 높은 에러코드 우선 설정

☑ 4. 에러코드 이력 로깅 설계

기록 항목	설명
발생 시간	정확한 Timestamp
에러 코드	고유 번호 기록
원인 설명	코드별 자동 메시지 연결
발생 위치	장비 번호, 라인 번호 포함
조치자 기록	확인·해제 담당자

★ SCADA 연동 이력 테이블 예시

시간	장비	코드	원인	확인자
2025-06-17 10:32	Line1	0203	인버터 과열	O.정석
2025-06-17 10:35	Line1	0501	비상정지	관리자

☑ 5. 실시간 알람 시스템 연계

- PLC \rightarrow SCADA 알람 시스템 자동 연동
- 발생 즉시 화면 표시, 점멸, 음향 경보 출력

★ 알람 출력 흐름

```
1 PLC Error Code ON
2 ↓
3 SCADA 알람 서버
4 ↓
5 운영자 알림 / SMS / 이메일 / 모바일 알림
```

☑ 6. 에러코드 해제(Reset) 논리 설계

단계	조건
① 장애 원인 제거 확인	센서 정상, 모터 복귀 등
② 수동 확인 버튼	운영자 승인 입력
③ 에러코드 클리어	Error_Code := 0000

※ 위험장애일수록 **이중 확인 로직** 적용

☑ 7. 고급 로그 시스템 설계 요소

요소	설명
이력 검색 기능	기간, 장비, 코드별 조회
통계 분석	반복 장애 패턴 도출
예방정비 연계	고장 전조 탐지 가능
클라우드 연계	중앙 원격 장애 모니터링
유지보수 리포트 자동생성	관리자 보고 자동화

☑ 8. 현장 유지보수 실전 활용

적용 사례	설명
비상정지 이력 분석	작업자 실수 vs 기계오작동 구분
센서 반복불량 패턴	센서 교체 시기 판단 근거 제공
통신장애 카운트	PLC ↔ I/O 단선 위험 조기 대응
설비노후 예지	모터 과부하 발생 패턴으로 예방정비 계획 수립

☑ 9. 실전 적용 산업 예시

산업	적용 사례
자동차 조립	조립공정 세부 고장코드 로깅
물류센터	컨베이어, 리프터 장애 발생 이력 기록
식음료	충진, 라벨링 반복 장애 분석
반도체	미세 센서 불량 빈도 통계

☑ 정리

- 에러코드 체계 설계는 안정적인 유지보수의 핵심 출발점
- 단순히 경고만 출력하는 수준이 아니라
 원인 → 이력 기록 → 분석 → 예방정비 → 품질 개선으로 이어지는 전체 고장관리 흐름이 완성되어야 한다.
- 초기 설계시 **번호체계, 메시지 일관성, SCADA 연동구조**를 체계적으로 잡아두면 **확장성·분석 가능성·장기 통합 운용 품질이 크게 향상**된다.