

Privacy Preservation

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

Data, ML & AI (Ideally)

Data, ML & AI (Reality)

Data is the "New Oil"

Challenge: Data Privacy Protection

French regulator fines Google \$57 million for GDPR violations

- More than 50 million people involved
- UK fined Facebook for £500,000
- The worst single-day market value drop for a publicly listed company in the US, dropping \$120 billion, or 19%

GDPR

Why Federated Learning?

- Traditional machine learning methods need all data to be gathered in a central entity
- In many real-world applications data are isolated across different organizations and data privacy is being emphasized
- Federated learning (FL) is well suited for these scenarios due to its distributed and privacypreserving nature

What is Federated Learning?

- A new approach for models trained from user interaction with distributed devices.
 - distributes the machine learning process over to the edge.
 - enables devices to collaboratively learn a shared model using the training data on the device and keeping the data on device
 - decouples the need for doing machine learning with the need to store the data in the cloud

Text Book

https://ntusp.primo.exlibrisgroup.com/discove ry/search?vid=65NTU INST:65NTU INST&lang=en

Additional Resources can be found at:

http://federated-learning.org/

Synthesis Lectures on Artificial Intelligence and Machine Learning

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

Horizontal Federated Learning (HFL)

Horizontal Federated Learning (HFL)

- HFL assumes that datasets from different participants share the same feature space, but may not share the same sample ID space
- Existing FL approaches mostly focus on HFL

Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T. & Yu, H. (2019) *Federated Learning*. Morgan & Claypool Publishers, San Rafael, CA, USA, p. 207.

HFL Architecture

Figure 1: The general architecture of an HFL system

Federated Learning

Federated Learning (Google)

Federated Learning (Google)

How to Send Gradients to Server?

Federated Stochastic Gradient Descent (FedSGD)

Federated Averaging (FedAvg)

FedSGD

Devices send gradients/parameters to server

 Server averages these gradients/parameters to obtain a new model

Server sends the new model back to devices

High communication overhead

FedSGD, C=1

Version 1:

- Sending gradients
- The gradient descent operation happens on the FL server
- We set C=1, meaning 100% of the devices participate in FedSGD

FedSGD, C=0.75

Version 1:

- Sending gradients
- The gradient descent operation happens on the FL server
- We set C=0.75, meaning 75% of the devices participate in FedSGD

FedSGD, C=1

Version 2:

- Sending parameters

 (i.e. weights)
- The gradient descent operation happens on the devices
- We set C=1, meaning 100% of the devices participate in FedSGD

FedAvg

 Devices perform mini-batch training locally, and update their local parameters using gradient descent

- Devices send parameters to server
- Server averages these parameters to obtain a new model
- Server sends the new model back to devices

Less communication than FedSGD

FedAvg, C=1, E=1, B= ∞

- We set C=1, meaning 100% of the devices participate in FedAvg
- E=1, meaning the local SGD epoch=1
- B=∞, meaning all local data are used for training. Setting it to a smaller means we have mini-batch training locally.

Under this setting, FedAvg = FedSGD

FedAvg

 You can increase E and reduce B to make more use of local device computing power to train the model and reduce communication overhead.

- FedAvg provides you with more flexibility to adjust local computing power utilization and communication overhead during FL model training compared to FedSGD.
 - H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. *CoRR*, arXiv:1602.05629, 2016.

Federated Learning (Google)

Video Demo: https://youtu.be/gbRJPa9d-VU

Vertical Federated Learning (VFL)

Features

Vertical Federated Learning (VFL)

- VFL assumes that datasets from different participants share the same sample ID space but may not share the same feature space
- VFL assumes that label information is held by one participant
- VFL is less well explored at the moment

Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T. & Yu, H. (2019) *Federated Learning*. Morgan & Claypool Publishers, San Rafael, CA, USA, p. 207.

A Practical Scenario for VFL

Practical Scenarios for VFL

An example of VFL in practice:

- An e-commerce company and a bank that both serve users from the same city can train a model to recommend personalized loans for users based on their online shopping behaviors through VFL.
- In this case, only the bank holds label information for the intended VFL task.
- Due to the fact that both the e-commerce company and the bank are located in the same city, it is reasonable to assume that the data from both entities have large overlap of users.
- The challenge is to train a model collaboratively without exchanging the data and label information.

- A Brief Introduction of Multi-View Learning (MVL)
 - MVL approaches aim to learn one function to model each view and jointly optimize all the functions to improve performance

An illustration of MVL in a 3D shape recognition research work. In this work, a 3D shape is rendered from multiple different views and finally a compact shape descriptor is obtained.

Similarity and Difference between MVL and VFL

Similarity

- Both MVL and VFL assume that data from different views/nodes share the same sample ID space but different feature space.
- Both MVL and VFL assume that data from different views/nodes share the same label space

Difference

- MVL requires data from different views to interact
- VFL forbids data exchange due to privacy concerns

- Advantage of MVL compared with existing VFL methods
 - Existing MVL approaches can handle multi-view-multi-class problems, instead of the binary-participant-binary-class problems that most existing VFL methods tackle with

Goal

To build a VFL framework based on the methodology of MVL with data privacy preserved

Chang Xu, Dacheng Tao & Chao Xu. A survey on multi-view learning. CoRR arXiv:1304.5634, 2013

By design, only the **locally predicted labels** z_i cross the privacy barriers to reach the VFL Server. The global FL model can be trained without raw data, labels or local models leaving their owners' machine.

Feature Importance Evaluation

- Two advantages of feature importance evaluation:
 - It can quantify the contribution of different features from each participant to the FL model.
 - By discarding redundant and harmful features in initial training periods, the communication, computation and storage costs of a VFL system can be reduced for subsequent training under incremental learning settings.

An illustration of feature selection

Siwei Feng & Han Yu, "Multi-Participant Multi-Class Vertical Federated Learning," *CoRR*, arXiv:2001.11154, 2020.

Video Explanation

https://www.youtube.com/watch?v=NPGf OJrzOg&feature=youtu.be

Hands-on Practice

https://colab.research.google.com/drive/1dRG3yNAIDar3tll4VOkmoU-aLslhUS8d

Video Guide: https://www.youtube.com/watch?v=NPGf OJrzOg&feature=youtu.be

Privacy Preservation

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

