Сведения Теории Вероятностей и Матетатической Статистики

Сюй Минчуань

20 ноября 2020 г.

1. Относительная частота появления события

Относительной частотой появления события A в N испытаниях называется число

$$h_N(A) = \frac{N(A)}{N} \tag{1}$$

2. Статистическая устойчивость частот

Для некоторого эксперимента выполнено свойство статистической устойчивости частот, если выполнены:

- (a) Относительная частота $h_N(A)$ события A в длинной серии испытаний "тяготеет" к некоторому постоянному неслучайному числу.
- (b) В разных сериях испытаний, но проводимых в одинаковых условиях, относительные частоты приблизительно равны.
- (c) Если мы из данной серии испытаний выберем некоторую подсерию, не используя информацию о результатах эксперимента, то новая относительная частота тяготеет к тому же числу.

3. Определение дискретного вероятностного пространства

Дискретным вероятностным пространством называется пара (Ω, P) , где Ω - конечное или счетное множество, P - вещественная функция, заданная на Ω такая, что

- (a) $P(\omega) > 0$, $\forall \omega \in \Omega$.
- (b) $\sum_{\omega \in \Omega} P(\omega) = 1$.

 Ω - Пространство элементарных исходов

 ω - Элементарные исходы

 $P(\omega)$ - Вероятность появления ω

4. Задача на классическое определение вероятности

Говорят, что мы имеем задачу на классическое определение вероятности, если $\Omega = \{\omega_1, \dots, \omega_n\}$ - конечное множество и для всех $\omega_i, P(\omega_i) = 1/n$, т.е. все исходы равновозможны.

5. Определение события в дискретном вероятностном пространстве

Случайным событием назовем произвольное подмножество A пространства элементарных исходов Ω .

6. Благоприятный элементарный исход

Те ω , которые приводят к появления события A.

7. Что значит, что событие произошло (формально)?

Событие произошло, если появился благоприятный ему элементарный исход.

8. Операции над событиями (формально и не формально)

(а) Достоверное и невозможное события

Достоверное - происходит всегда, невозможный - никогда не происходит. Формально: Ω, \emptyset .

(b) **Объединение**

Происходит хотя бы одно из этих двух событий. Формально: $C=A\cup B.$

(с) Пересечение

Происходит оба эти события одновременно. Формально: $C=A\cap B$ или C=AB.

(d) **Несовместные события**

Не могут происходить одновременно. Формально: $AB = \emptyset$.

(е) Сумма

Объеденение в случае они совместны. Формально: A + B.

(f) **Противоположное**

Не происходит событие A. Формально: \bar{A} .

(g) Разность

Происходит A и не происходит B. Формально: $C = A \setminus B$.

(h) Одно событие влечет другое

При появлении событии A обязательно происходит и событие B. Формально: $A \subset B$.

9. Алгебра событий

Некоторый класс \mathcal{A} событий называется алгеброй событий, если

- (a) $\Omega \in \mathcal{A}$,
- (b) если $A \in \mathcal{A}$, то $\bar{A} \in \mathcal{A}$,
- (c) если $A, B \in \mathcal{A}$, то $A \cup B \in \mathcal{A}$.

10. Определение вероятности события

$$P(A) = \sum_{\omega \in A} P(\omega). \tag{2}$$

11. Основные свойства вероятностей (1-3)

Пусть выделены некоторая алгебра \mathcal{A} событий, для которых определены вероятности по формуле (2). Тогда справедливы:

- (a) $P(A) \ge 0$.
- (b) $P(\Omega) = 1$.
- (c) Если A_1, A_2, \ldots, A_n попарно несовместны, то

$$P(\sum_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k).$$
 (3)

12. Геометрическое определение вероятности

Говорят, что мы имеем задачу на геометрическое определение вероятности, если Ω есть ограниченное борелевское подмножество в \mathbb{R}^d , \mathcal{A} - алгебра всех его борелевских подмножеств, а вероятность событий задается по правилу.

$$P(A) = \frac{L(A)}{L(\Omega)},\tag{4}$$

где L(A) - мера Лебега множества A.

13. Условная вероятность

Условная вероятность события A при условии, что произошло событие $B(P(B) \neq 0)$, называется число

$$P(A|B) = \frac{P(AB)}{P(B)} \tag{5}$$

14. Теорема умножения

Пусть A и B - два события и P(B) > 0, тогда

$$P(AB) = P(B)P(A|B) \tag{6}$$

15. Независимость событий

События A и B называются независимыми, если

$$P(AB) = P(A)P(B) \tag{7}$$

16. Полная группа событий

События H_1, \ldots, H_n образуют полную группу событий, если

- (a) $H_iH_i = \emptyset$, $i \neq j$,
- (b) $H_1 + \ldots + H_n = \Omega$

17. Формула полной вероятности

Пусть события H_1, \ldots, H_n образуют полную группу событий, $P(H_k) > 0$ для всех k и A - произвольное событие. Тогда

$$P(A) = \sum_{k=1}^{n} P(H_k) P(A|H_k)$$
 (8)

18. Формула Байеса

Если H_1, \ldots, H_n образуют полную группу событий, A - произвольное событие и $P(H_k) > 0, k = 1, \ldots, n, P(A) > 0$, то

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{P(A)} = \frac{P(H_k)P(A|H_k)}{\sum_{j=1}^{n} P(H_j)P(A|H_j)}$$
(9)

19. Схема Бернулли (формально и неформально)

Формально: Схемой Бернулли с параметрами n и p называется дискретное вероятностное пространство (Ω, P) , где Ω состоит из элементарных исходов вида $\omega = (\omega_1, \ldots, \omega_n), \omega_k = 0, 1, k = 1, \ldots, n$, а вероятности элементарных исходов ω задаются по правилу.

$$P(\omega) = p^m (1-p)^{n-m},\tag{10}$$

где m - число единиц в исходе ω .

Неформально: Схемой Бернулли или последовательностью n незавысимых одинаковых испытаний с двумя исходами называется случайный эксперимент, в котором:

- (a) проводится n независимых испытаний,
- (b) каждое испытание кончается одним из двух исходов (один исход называется успех и обозначается 1, а второй неуспех и обозначается 0),
- (c) вероятность появления успеха одна и та же в каждом испытании и равна p.

20. Биномиальное распределение (где возникает и формула)

Нас интересует число успехов.

Биномиальный модель с параметрами n и p называется вероятностное пространство (Ω, P) , где $\Omega = \{\omega_0, \dots, \omega_n\}$, и

$$P(\omega_m) = b(n, p, m) = C_n^m p^m (1 - p)^{n - m}, m = 0, \dots, n, 0 (11)$$

21. Интегральная теорема Муавра-Лапласа

Пусть мы имеем схему Бернулли с параметрами n и p. Если $n \to \infty$ p - фиксировано, то равномерно по всем $m_1 < m_2$

$$P(m_1 \le S_n < m_2) \equiv \Phi(x_{n,m_2}) - \Phi(x_{n,m_1}), \tag{12}$$

где S_n - число успехов в n испытаниях, а

$$\Phi(x) = \int_{-\infty}^{x} \varphi(y)dy \tag{13}$$

Более того, для любых $m_1 < m_2$ имеем место оценка

$$|P(m_1 \le S_n < m_2) - \Phi(x_{n,m_2}) + \Phi(x_{n,m_1})| \le \frac{p^2 + (1-p)^2}{\sqrt{np(1-p)}}$$
(14)

22. Теорема Пуассона

Пусть мы имеем схему Бернулли с параметрами n и p. Пусть $n\to\infty, p\to 0$, так, что $np\to\lambda, 0<\lambda<\infty.$ Тогда для любого фиксированного m

$$b(n, p, m) \to \pi_m(\lambda) = \frac{\lambda^m}{m!} e^{-\lambda}.$$
 (15)

Более того, имеем место оценка

$$\sum_{m=0}^{\infty} |b(n, p, m) - \pi_m(\lambda)| \le np^2 \tag{16}$$

23. Определение вероятностного пространства в общем случае

Вероятностным пространством называется тройка (Ω, \mathcal{A}, P) , где Ω - произвольное множество, \mathcal{A} - некоторая σ -алгебра его подмножеств, P - вещественная функция на \mathcal{A} :

- (a) $P(A) \geq 0, \forall A \in \mathcal{A}$,
- (b) $P(\Omega)$,
- (c) если A_1, A_2, \ldots попарно несовместны, то

$$P(\sum_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$$
(17)

24. Порожденная σ -алгебра

Пусть \mathcal{M} - некоторая система подмножеств пространства Ω . Класс $\mathcal{A} = \sigma(\mathcal{M})$ подмножеств пространствв Ω называется σ -алгебра, порожденной системой \mathcal{M} , если выполнены следующие свойства:

- (a) $\mathcal{M} \in \mathcal{A}$,
- (b) σ -алгебра
- (c) если \mathcal{A}_1 некоторая σ -алгебра, содержащая \mathcal{M} , то $\mathcal{A} \subset \mathcal{A}_1$

25. Борелевская σ -алгебра

Пусть $\Omega = \mathbb{R}^1$, \mathcal{M} - класс всех интервалов. $\mathcal{A} = \sigma(\mathcal{M})$ называется борелевской σ -алгебра, а элементы A из \mathcal{A} называются борелевскими множествами.

26. Определение случайной величины

Пусть (Ω, \mathcal{A}, P) - вероятностное пространство, а $(\mathbb{R}^1, \mathcal{B})$ - вещественная прямая с выделенной на ней борелевской σ -алгеброй подмножеств. Случайной величиной называется функция $\xi: \Omega \to \mathbb{R}^1$, которая обладает следующим свойством: $\forall B \in \mathcal{B}$

$$\xi^{-1}(B) = \{\omega \in \Omega : \xi(\omega) \in B\} \in \mathcal{A}$$
 (18)

27. Распределение случайной величины

Распределение случайной величины ξ называется функция P_{ξ} , заданная на борелевской σ -алгебре $\mathcal B$ по правилу: $\forall B \in \mathcal B$

$$P_{\xi}(B) = P(\xi \in B) \tag{19}$$

28. Определение функции распределения и ее основые свойства (1-5)

Функции распределения $F_{\xi}(x)$ случайной величины ξ определяется по правилу: $\forall x \in \mathbb{R}^1$

$$F_{\xi}(x) = P(\xi < x) \tag{20}$$

Если $F_{\xi}(x)$ - функция распределения случайной величины ξ , то

- (a) $\forall x \in \mathbb{R}^1, 0 \le F_{\varepsilon}(x) \le 1$
- (b) если $x_1 \le x_2$, то $F_{\xi}(x_1) \le F_{\xi}(x_2)$
- (c) $F_{\xi}(x)$ непрерывна слева
- (d) $\lim_{x \to -\infty} F_{\xi}(x) = 0, \lim_{x \to \infty} F_{\xi}(x) = 1$
- (e) $P(a \le x < b) = F_{\xi}(b) F_{\xi}(a)$

29. Дикретное распределение и его свойства (1-3)

Случайная величина ξ имеет дискретное распределение, если существует такое конечное или счетное множество $X=\{x_1,x_2,\ldots\}$, что $P(\xi\in X)=1$. Числа x_1,x_2,\ldots называются значениями случайной величины ξ , а - p_k вероятностями этих значений.

Пусть случайная величина ξ имеет дискретное распределение с множеством значений $X=\{x_1,x_2,\ldots\}$ и вероятностями этих значений $\{p_k\}$. Тогда

- (a) $p_k \ge 0$
- (b) $\sum_{k} p_{k} = 1$
- (c) $\forall B \in \mathcal{B}, P_{\xi}(B) = \sum_{x_k \in B} p_k$
- (d) $\forall x \in \mathbb{R}^1, F_{\xi}(x) = \sum_{x_k < x} p_k$
- (e) $\forall x \in X, p_n = P(\xi = x_n) = F_{\xi}(x_n + 0) F_{\xi}(x_n)$
- (f) $P(a < x < b) = \sum_{a < x_k < b} p_k$

30. Непрерывное распределение и его свойства (1-7)

Распределение с.в. ρ называется абсолютно непрерывным, если существует такая вещественная функция $\rho_{\xi}(x)$ что $\forall B \in \mathcal{B}$

$$P_{\xi}(B) = P(\xi \in B) = \int_{B} \rho_{\xi}(x) dx \tag{21}$$

Функция $\rho_{\xi}(x)$ называется плотностью распределения с.в. ξ . Справедливы следующие свойства

- (a) $\forall x \in \mathbb{R}^1, \rho_{\xi}(x) \geq 0$
- (b) $\int_{-\infty}^{\infty} \rho_{\xi}(x) dx = 1$
- (c) $\forall B \in \mathcal{B}, P(\xi \in B) = \int_{B} \rho_{\xi}(x) dx$
- (d) $\forall x \in \mathbb{R}^1, F_{\xi}(x) = \int_{-\infty}^x \rho(x) dx$
- (e) $P(a \le \xi < b) = F_{\xi}(b) F_{\xi}(a) = \int_{a}^{b} \rho_{\xi}(x) dx$
- (f) $\forall x \in \mathbb{R}^1$ где $\rho_\xi(x)$ непрерывна, $\rho_\xi(x) = \frac{d}{dx} F_\xi(x)$
- (g) $\forall x \in \mathbb{R}^1, P(\xi = x) = 0$

31. Примеры стандартных распределений

- (a) **Берну**лли $P(\xi = 1) = p, \quad P(\xi = 0) = 1 p$
- (b) **Биномиальное** $P(\xi=m) = C_n^m p^m (1-p)^{n-m}, \quad m=0,1,\dots$
- (c) Геометрическое $P(\xi=m) = p(1-p)^{m-1}, \quad m=1,2,\dots$
- (d) Пуассоновское $P(\xi=m)=\tfrac{\lambda^m}{m!}e^{-\lambda}, \quad m=0,1,\dots$
- (е) Равномерное

$$\rho_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & x \in (a,b), \\ 0, & x \notin (a,b). \end{cases}$$
(22)

(f) Показательное

$$\rho_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
 (23)

(g) **Нормальное**

$$\rho_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad x \in \mathbb{R}^1$$

32. Определение случайного вектора

n-мерным слу. вектором ξ называется набор $\xi = (\xi_1, \dots, \xi_n)$ случайных величин, заданных на одном и том же вероятностном пространстве (Ω, \mathcal{A}, P) .

33. Распределение случайного вектора

Распределением сл. вектора ξ называется функция P_{ξ} , заданная на σ -алгебра \mathcal{B}_n по правилу

$$P_{\xi}(B) = P(\xi \in B) \tag{24}$$

34. Дискретный случайный вектор, таблица его распределения Случайный вектор $\xi=(\xi_1,\dots,\xi_n)$ имеет дискретное распределение, если существует конечное или счетное множество $X\subset\mathbb{R}^n$, такое что $P(\xi\in X)=1.$

Для n=2 распределение дискретного слу. вектора обычно задают в виде таблицы, называемой таблицей распределения.

35. Случайный вектор с непрерывным распределением. Плотность распределения случайного вектора и ее свойства Случайный вектор $\xi = (\xi_1, \dots, \xi_n)$ имеет абсолютно непрерывное распределение, если существует вещественная функция $\rho_{\xi}(x), x \in \mathbb{R}^n$, такая что $\forall B \in \mathcal{B}_n$

$$P_{\xi}(B) = P(\xi \in B) = \int_{B} \rho_{\xi}(x)dx \tag{25}$$

Функция $\rho_{\xi}(x)$ называется плотностью распределения с.в. ξ . Справедливы следующие свойства

- (a) $\forall x \in \mathbb{R}^n, \rho_{\xi}(x) \geq 0$
- (b) $\int_{\mathbb{R}^n} \rho_{\xi}(x) dx = 1$
- (c) $\forall B \in \mathcal{B}_n, P(\xi \in B) = \int_B \rho_{\xi}(x) dx$
- (d) $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$

$$F_{\xi}(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} \rho_{\xi}(y_1, \dots, y_n) dy_n \dots dy_1$$
 (26)

(е) Если (x_1,\ldots,x_n) - точка нерерывности плотности $ho_\xi(x),$ то

$$\rho_{\xi}(x_1, \dots, x_n) = \frac{\partial^n F_{\xi}(x_1, \dots, x_n)}{(\partial x_1, \dots, \partial x_n)}$$
(27)

(f) Плотность с.ветктора $\tilde{\xi}=(\xi_1,\dots,\xi_{k-1},\xi_{k+1},\dots,\xi_n)$ можно вычислить по формуле

$$\rho_{\xi}(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n) = \int_{-\infty}^{+\infty} \rho_{\xi}(x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots, x_n) dx_k$$
(28)

36. Маргинальные (одномерные) распределения и их вычисление

Распределение отдельно взятой координаты ξ_i вектора ξ называется одномерным или маргинальным.

37. Независимость случайных величин (в общем случае и для непрерывных и дискретных с.в.)

Случайные величины ξ_1, \dots, ξ_n называются независимыми, если для любых борелевских $B_1, \dots, B_n \in \mathcal{B}_1$

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = P(\xi_1 \in B_1) \dots P(\xi_n \in B_n)$$
 (29)

38. **Формула свертки в дискретном и непрерывном случаях** Дискретный случай:

$$P(\xi_1 + \xi_2 = z) = \sum_x P_1(x)P_2(z - x)$$
(30)

Непрерывный случай:

$$\rho_{\xi_1 + \xi_2}(y) = \int_{-\infty}^{\infty} \rho_{\xi_1}(y - x)\rho_{\xi_2}(x)dx \tag{31}$$

- 39. Математичекое ожидание дискретной случайной величины $M\xi = \sum_n x_n p_n$
- 40. Математичекое ожидание непрерывной случайной величины Пусть ξ неотрицательная с.в., $\{\xi_n\}$ последовательность дискретных с.в., обладающих свойствами:
 - (a) $\xi_n(\omega) \ge 0$, $\forall n$
 - (b) $\xi_n(\omega) \leq \xi_{n+1}(\omega)$
 - (c) $\xi_n(\omega) \to \xi_1(\omega)$ равномерно по $\omega \in \Omega$ при $n \to \infty$

Математическим ожиданием с.в. ξ называется число

$$M\xi = \lim_{\xi} M\xi_n \tag{32}$$

Математическим ожиданием произвольной случайной величины ξ называется число

$$M\xi = M\xi^{+} - M\xi^{-} \tag{33}$$

если хотя бы одно из чисел в правой части этого равенства конечно.

- 41. Основные свойства математического ожидания (1-5)
 - (a) Если $P(\xi = C) = 1$, то $M\xi = C$
 - (b) $M(C\xi) = C \cdot M\xi$
 - (c) $M(\xi_1 + \xi_2) = M\xi_1 + M\xi_2$
 - (d) Если $\xi \geq 0$, то $M\xi \geq 0$, причем $M\xi = 0$ тогда и только тогда, когда $P(\xi = 0) = 1$
 - (e) Если $\xi_1 \ge \xi_2$, то $M\xi_1 \ge M\xi_2$
- 42. Дисперсия и ее основные свойства

Дисперсией с.в. ξ называется число

$$D(\xi) = M[(\xi - M\xi)^2] \tag{34}$$

(a) $D(\xi) \ge 0, D(\xi) = 0$ тогда и только тогда, когда $\xi = C$.

- (b) $D(\xi + C) = D(\xi)$
- (c) $D(C\xi) = C^2 D(\xi)$
- (d) $D(\xi) = M(\xi^2) (M\xi)^2$

43. Ковариация. Некоррелированные случайные величины

Ковариацией с.в. ξ_1 и ξ_2 называется число

$$cov(\xi_1, \xi_2) = M[(\xi_1 - M\xi_1)(\xi_2 - M\xi_2)]$$
(35)

С.в. ξ_1 и ξ_2 называются некоррелированными, если

$$cov(\xi_1, \xi_2) = M[(\xi_1 - M\xi_1)(\xi_2 - M\xi_2)] = 0$$
(36)

44. Определение коэффициента корреляции

Коэффициентом корреляции с.в. ξ_1 и ξ_2 называется число

$$\rho(\xi_1, \xi_2) = \frac{\text{cov}(\xi_1, \xi_2)}{\sqrt{D(\xi_1)D(\xi_2)}}$$
(37)

45. Определение момента случайной величины

Моментом порядка k относительно точки a с.в. ξ называется число

$$M(\xi - a)^k \tag{38}$$

Если a = 0 - начальный момент

Если $a=M\xi$ - центральный момент

 $\beta_k = M(|\xi|^k)$ - абсолютные моменты

46. Квантиль порядка р для с.в.. Медиана

Квантиль порядка $p,\ 0 (или ее распределения) называется число <math>x_p \in \mathbb{R}^1$:

$$P(\xi \le x_p) \ge p, \quad P(\xi \ge x_p) \ge 1 - p \tag{39}$$

Число $x_{1/2}$ - медиана. Оно определяет центр распределения.

47. Сходимость в среднем квадратическом

Будем говорить, что последовательность с.в. $\{\xi_n\}$ сходится в среднем квадратическомк к с.в., если

$$\|\xi_n - \xi\|^2 = M(|\xi_n - \xi|^2) \to 0, \quad n \to \infty$$
 (40)

48. Постановка задачи о наилучшей линейной оценке

Пусть $\mathcal{L} \subset L_2$ - некоторое линейное подпространство, которое замкнуто относительно сходимости в среднем квадратическом, а η - произвольный элемент из L_2 .

С.в. $\hat{\eta} \in L_2$ называется наилучшим приближением с.в. η в пространстве $\mathcal{L},$ если

(a) $\hat{\eta} \in \mathcal{L}$

(b)
$$\|\eta - \hat{\eta}\|^2 = M|\eta - \hat{\eta}|^2 \le M|\eta - \xi|^2 = \|\eta - \xi\|^2$$
, $\forall \xi \in \mathcal{L}$.

49. Лемма о перпендикуляре

С.в. $\hat{\eta}$ является наилучшим риюлижением с.в. η в линейном пространстве \mathcal{L} тогда и только тогда, когда

- (a) $\hat{\eta} \in \mathcal{L}$
- (b) $(\eta \hat{\eta}, \xi) = M[(\eta \hat{\eta})\xi] = 0, \quad \forall \xi \in \mathcal{L}.$
- 50. Условное распределение и условное математическое ожидание в дискретном случае

Условное распределение

$$P(x_{m+1}, \dots, x_{m+n} | x_1, \dots, x_m) = \frac{P(\xi_1 = x_1, \dots, \xi_m = x_m, \xi_{m+1} = x_{m+1}, \dots, \xi_{m+n} = x_{m+n})}{P(\xi_1 = x_1, \dots, \xi_m = x_m)}$$
(41)

Условное математическое ожидание

$$M(\xi_{m+1}|\xi_1 = x_1, \dots, \xi_m = x_m) = \sum_{y} P(\xi_{m+1} = y|\xi_1 = x_1, \dots, \xi_m = x_m)$$
(42)

51. Условное распределение и условное математическое ожидание в непрервном случае

Условное распределение

$$\rho_{\xi''|\xi'}(x_{m+1},\dots,x_{m+n}|x_1,\dots,x_m) = \frac{\rho_{\xi}(x_1,\dots,x_m,x_{m+1},\dots,x_{m+n})}{\rho_{\xi'}(x_1,\dots,x_m)}$$
(43)

Условное математическое ожидание

$$M[\xi_{m+1}|\xi'=x'] = \int_{-\infty}^{\infty} y \rho_{\xi_{m+1}|\xi'}(y|x') dy = g(x')$$
 (44)

52. Функция регрессии и ее экстремальное свойство

 $g=(\xi_1,\dots,\xi_m)=M(\xi_{m+1}|\xi_1,\dots,\xi_m)$ - Функция регрессии с.в. ξ_{m+1} на с.в. ξ_1,\dots,ξ_m .

 $y=g(x')=M[\xi_{m+1}|\xi_1,\ldots,\xi_m]$ - Функция регрессии с.в. ξ_{m+1} на с.вектор ξ' .

Экстремальное свойство:

Пусть ξ и η - две с.в., y=f(x) - некоторая борелевская функция, причем $M(\eta^2)<\infty$ и $M([f(\xi)]^2)<\infty$. Если $y=g(x)=M[\eta|\xi=x]$ есть функция регрессии с.в. η на с.в. ξ , то

$$M|\eta - g(\xi)|^2 \le M|\eta - f(\xi)|^2$$
 (45)

53. Сходимость по вероятности

Последовательность с.в. $\{\xi_n\}$ сходится по вероятности к с.в. ξ , если $\forall \varepsilon>0$

$$P(|\xi_n - \xi| > \varepsilon) \to 0 \tag{46}$$

или

$$P(|\xi_n - \xi| \le \varepsilon) \to 1 \tag{47}$$

при $n\to\infty.$ Обозначение: $\xi_n\stackrel{P}{\to}\xi, n\to\infty$

54. Что такое закон больших чисел?

Говорят, что к последовательности с.в. $\{\xi_n\}$ применим закон больших чисел (ЗБЧ), если

$$\frac{\xi_1 + \ldots + \xi_n}{n} - \frac{M\xi_1 + \ldots + M\xi_n}{n} \stackrel{P}{\to} 0, \quad n \to \infty$$
 (48)

55. Неравенство Чебышева

$$P(|\xi - M\xi| > \varepsilon) \le \frac{D(\varepsilon)}{\varepsilon^2}$$
 (49)

56. З.Б.Ч. для н.о.р.с.в

Пусть $\{\xi_n\}$ - последовательность с.в.:

- (a) $\{\xi_n\}$ независимы
- (b) $\{\xi_n\}$ одинаково распределены
- (c) $\exists M \xi_n = a, D(\xi_n) = \sigma^2 < \infty$

Тогда применим ЗБЧ, т.е.

$$\frac{\xi_1 + \ldots + \xi_n}{n} \stackrel{P}{\to} a, \quad n \to \infty$$
 (50)

57. Определение характеристической функции и ее вычисление в дискретном и непрерывном случае

Характеристической функции с.в. ξ называется комплекснозначная функция $\varphi_{\xi}(t), t \in \mathbb{R}^1$, определяемая по правилу

$$\varphi_{\xi}(t) = M(e^{it\xi}) = \int_{-\infty}^{\infty} e^{itx} dF(x)$$
 (51)

Для дискретной с.в. имеем формулу

$$\varphi_{\xi}(t) = \sum_{n} e^{itx_n} \cdot p_n \tag{52}$$

Для непрерывной с.в. имеем формулу

$$\varphi_{\xi}(t) = \int_{-\infty}^{\infty} e^{itx_n} \rho_{\xi}(x) dx \tag{53}$$

58. Вычисление характеристической функции для суммы независимых с.в.

$$\varphi_{\xi_1+\xi_2}(t) = \varphi_{\xi_1}(t) \cdot \varphi_{\xi_2}(t)$$

59. Теорема единственности

Соответствие между функциями распределения F и характеристическими функциями φ является взаимно однозначным. Более того, если x_1 и x_2 - точки непрерывности ф.р. F, то

$$F(x_2) - F(x_1) = \lim_{A \to \infty} \frac{1}{2\pi} \int_{-A}^{A} \frac{e^{-itx_2} - e^{-itx_1}}{-it} \varphi(t) dt$$
 (54)

В частности, если существует плотность $\rho(x)$, то

$$\rho(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) dt$$
 (55)

60. Теорема непрерывности

Пусть F_0, F_1, \ldots - последовательность ф.р., а $\varphi_0, \varphi_1, \varphi_2, \ldots$ - соответствующая ей последовательность х.ф. Тогда следующие утверждения эквивалентны:

- (a) F_n слабо сходится к F_0
- (b) $\varphi_n(t) o \varphi_0(t)$ при $n o \infty$ для любого $t \in R^1$

61. Характеристическая функция для стандартного нормального распределения

$$\varphi_{\varepsilon}(t) = e^{-\frac{1}{2}t^2}$$

62. Слабая сходимость функций распределений

Последовательность функций распределения $\{F_n\}$ слабо сходится к функции распределения F_0 , если

$$F_n(x) \to F_0(x) \tag{56}$$

при $n\to\infty$ для всех точек, где предельная ф.р. F_0 непрерывна. Для соответствующих с.в. ξ_n будем говорить, что они сходятся к с.в. ξ_0 по распределению. Обозначение: $\xi_n \stackrel{d}{\to} \xi_0$

63. Что такое Центральная предельная теорема?

Говорят, что к последовательности с.в. $\{\xi_n\}$ применима центральная предельная теорема (ЦПТ), если для любого $n \geq N_0$ существуют центрирующие и нормирующие константы $A_n \in \mathbb{R}^1$ и $B_n > 0$ такие, что для

$$S_n^* = \frac{\xi_1 + \dots + \xi_n - A_n}{B_n} \tag{57}$$

имеем место сходимость

$$P(S_n^* < x) = F_{S_n^*}(x) \to \Phi(x)$$
 (58)

при $n \to \infty$ для любого $x \in \mathbb{R}^1$.

64. Ц.П.Т. для н.о.р.с.в.

Пусть $\{\xi_n\}$ - последовательность с.в.:

- (a) $\{\xi_n\}$ независимы
- (b) $\{\xi_n\}$ одинаково распределены
- (c) $\exists M\xi_n = a, D(\xi_n) = \sigma^2$

Тогда к этой последовательности применима ЦПТ, т.е., если

$$S_n^* = \frac{\xi_1 + \ldots + \xi_n - na}{\sigma \sqrt{n}},\tag{59}$$

то

$$F_{S_x^*}(x) \to \Phi(x), \quad n \to \infty$$
 (60)

65. Основная задача математической статистики

На основе экспериментальных данных сузить класс ${\mathcal P}$ априорно заданных вероятностных мер до некоторого более узкого подкласса $\mathcal{P}_0 \subset$ \mathcal{P} (в идеале выбрать одно распределение)

66. Определение статистической структуры

Статистической структурой называется тройка $(\Omega, \mathcal{A}, \mathcal{P})$, где

- (a) Ω произвольное множество = пространство элементарных исхо-
- (b) A σ -алгебра подмножеств Ω = события, доступных наблюдению.
- (c) ${\mathcal P}$ некоторый набор вероятностных мер на $(\Omega, {\mathcal A}).$

67. Параметрические и непараметрические структуры

Если существует конечное число числовых параметров $(\theta_1, \dots, \theta_m) =$ $\theta, \theta \in \Theta \subset \mathbb{R}^m$, с помощью которых удается занумеровать все распределения P из класса \mathcal{P} , то статистическая структура называется параметрической. В противном случае мы имеем непараметрическую структуру.

68. Примеры параметрических структур

(а) Биноминальная

$$P(\xi=m)=C_n^mp^m(1-p)^{n-m}.\ n\geq 0$$
 и $p\in (0,1)$ - параметры.

(b) Пуассоновская
$$P(\xi=m)=\tfrac{\lambda^m}{m!}e^{-\lambda}.\ \lambda>0\ \text{-}\ \text{параметр}.$$

(с) Показательное

$$\rho_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
 (61)

 $\lambda > 0$ - параметр.

(d) **Нормальное**

$$ho_{\xi}(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-a)^2}{2\sigma^2}},\quad x\in\mathbb{R}^1.\ a\in\mathbb{R}^1$$
 и $b>0$ - параметры.

69. Выборка, повторная выборка

Набор чисел $x=(x_1,\ldots,x_n)$, получаемый из экспреимента - выборка. С.в. X_1,\ldots,X_N одинаковы распределены (однородная выборка) и независимы, тогда X - повторная выборка.

70. Вариационный ряд, порядковые статистики

Вариационный ряд: $x_{(1)} \le x_{(2)} \le \ldots \le x_{(N)}$. $x_{(k)}$ - k-ой порядковая статистика

71. Эмпирическое распределение, эмпирическая функция распределения, гистограмма

Эмпирическое распределение:

Имеем выборку $x=(x_1,\ldots,x_N)$. Рассмотрим новую с.в. ξ^* , множеством значений которой являются числа x_1,\ldots,x_N , каждому из которых приписывается вероятность 1/N (если некоторое значение появляется несколько раз, то его вероятность увеличивается в то же число раз). С.в. ξ^* является дискретной и ее распределение P_N^* называется эмпирическим распределением, построенным по выборке x.

$$P_N^*(B) = \frac{v_N(B)}{N} \tag{62}$$

где $v_N(B)$ - число элементов выборки, которые попали во множество B. Эмпирическая функция распределения:

$$F_N^*(y) = \frac{N(y)}{N} \tag{63}$$

где N(y) - число элементов x_k выборки x, для которых $x_k < y$. Гистограмма:

Пусть мы сгруппировали все элементы x_i выборки x в r интервалов, длина -го интервала равна Δ_k , а N_k есть число элементов выборки, попавших в k-ый интервал. Гистограмма есть функция $\rho_N^*(y)$, определяемая по правилу

$$\rho_N^*(y) = \frac{N_k}{N \cdot \Delta_k} \tag{64}$$

если принадлежит k-му интервалу, и равная нулю в противном случае.

72. Выборочное среднее, выборочная дисперсия и выборочные моменты

$$\bar{x} = \frac{1}{N} \sum_{k=1}^{N} x_k,$$

$$S^2 = \frac{1}{N} \sum_{k=1}^{N} x_k^2 - \bar{x}^2 = \frac{1}{N} \sum_{k=1}^{N} (x_k - \bar{x})^2,$$

$$\hat{v}_m = \frac{1}{N} \sum_{k=1}^{N} x_k^m.$$
(65)

73. Определение точечной оценки

Оценкой параметра θ называется произвольная функция $\hat{\theta}$ из выборочного пространства X в пространство параметров $\Theta \subset \mathbb{R}^m$.

74. Свойства оценок

(а) Несмещенность

Оценка $\hat{\theta} = \hat{\theta}_N(X_1,\dots,X_N)$ параметра θ называется несмещенной, если

$$M_{\theta}(\hat{\theta}_N(X)) = \theta, \quad \theta \in \Theta$$
 (66)

(b) **Состоятельность**

Последовательность оценок $\{\hat{\theta}_N(X), N \geq N_0\}$ параметра θ называется состоятельной, если

$$\hat{\theta}_N(X) \stackrel{P_{\theta}}{\to} \theta, \quad \theta \in \Theta$$
 (67)

(с) Оптимальность в среднем квадратическом

Эффективная оценка является оптимальной в среднем квадратическом оценкой в классе несмещенных оценок. Оптимальная оценка необязательно является эффективной.

(d) **А**симптотическая нормальность

Посоедовательность оценок $\{\hat{\theta}_N, N \geq N_0\}$ называется асимптотически нормальной, если $\forall N \geq N_0$ существуют константы $A_N(\theta) \in \mathbb{R}^1$ и $B_N(\theta) > 0$ такие что, с.в.

$$\frac{\hat{\theta}_N - A_N(\theta)}{B_N(\theta)} \tag{68}$$

имеет асимптотически стандартное нормальное распределение, т.е. ее функция распределения сходится к функции распределения стандартного нормального закона.

75. Неравенство Рао-Крамера. Эффективная оценка

 $\hat{\theta}_N=\hat{\theta}(X)$ является эффективной, если она несмещенная и для любой другой несмещенной оценки $\tilde{\theta}_N=\tilde{\theta}_N(X)$ мы имеем

$$D_{\theta}(\hat{\theta}_N) \le D_{\theta}(\tilde{\theta}_N) \tag{69}$$

Неравенство Рао-Крамера:

Пусть $\hat{g}_N = \hat{g}_N(x)$ - некоторая несмещенная оценка для вещественной функции $g(\theta)$ от параметра θ , построенный по повторной выборке $X = (X_1, \dots, X_N)$ из генеральной совокупности с функцией распределения $F(y,\theta)$, удовлетворяющей условиям регулярности. Тогда имеет место неравенство

$$D_{\theta}(\hat{g}_N) \ge \frac{[g'(\theta)]^2}{N \cdot I(\theta)}.$$
 (70)

В частности, если $g(\theta) \equiv \theta$, то

$$D_{\theta} \ge \frac{1}{I_N(\theta)}, \quad \forall \theta$$
 (71)

76. Определение доверительного интервала. Точность и надежность интервальной оценки

Пусть чы имеем повторную выборку $X=(X_1,\dots,X_N)$ из генеральной совокупности с функцией распределения $F(y,\theta)$, где $\theta\in\Theta\subset\mathbb{R}^1$ - скалярный параметр. Доверительный интервал уровня γ для параметра θ называется интервал $(\hat{\theta}^{(1)}(X),\hat{\theta}^{(2)}(X))$ со случайными концами такой, что

$$P_{\theta}(\hat{\theta}^{(1)}(X) < \theta < \hat{\theta}^{(2)}(X)), \quad \theta \in \Theta \tag{72}$$

Число γ называется доверительным уровнем интервала.

Число γ характеризует надежность этого интервала.

Число $l = M_{\theta}(\hat{\theta}^{(2)} - \hat{\theta}^{(1)})$ характеризует точность интервала.

77. Гипотеза о согласии (однородности и независимости)

Пусть \mathcal{F} - некоторое семейство функций распределения. ξ - случайная величина с неизвестной функцией распределения $F_{\xi}(y)$. Гипотеза о виде распределения называется предположение:

$$H: F_{\xi} \in \mathcal{F}$$
 (73)

Пусть имеем повторные выборки $X=(X_1,\dots,X_{N_1}),Y=(Y_1,\dots,Y_{N_2}).$ Пусть F_1 и F_2 есть функции распределения, отвечающие выборкам X и Y соответственно.

Гипотеза однородности имеет вид:

$$H: \quad F_1(y) \equiv F_2(y) \tag{74}$$

где F_1 и F_2 неизвестны.

Пусть $\xi=(\xi_1,\xi_2)$ - двумерный слу. вектор с функцией распределения $F(z_1,z_2),F_1(z_1)$ - функция распределения для $\xi_1,F_2(z_2)$ - функция распределения для ξ_2 .

Гипотеза о независимости имеет вид:

$$H: F(z_1, z_2) = F_1(z_1) \cdot F_2(z_2)$$
 (75)

78. Основные понятия теории проверки статистических гипотез

(а) Статистическая гипотеза

Статистической гипотезой называется подкласс $\mathcal{P}_0 \in \mathcal{P}$. Условно это записывается в виде

$$H: P \in \mathcal{P}_0 \tag{76}$$

Статистические гипотезы будут обозначаться H, H_0, H_1, \dots

(b) **Простая и сложная гипотезы**

Если \mathcal{P}_0 содержит только один элемент, то гипотеза H называется простой. В противном случае называется сложной.

(с) Основная (нулевая) гипотеза и альтернатива

Обычно формулируют несколько гипотез. Одну из них выделяют в качестве основной и называют ее нулевой, обозначаемой H_0 . Остальные гипотезы называют альтернативами и обозначают H_1, H_2, \ldots

(d) Критерий, критическая зона, статистика критерия, критическая константа

Статистическим критерием (тестом, решающим правилом) для проверки гипотезы H_0 против альтернативы H_1 называется произвольное отображение $\varphi:\chi\to\{0,1\}$. Если $\phi(x)=0$, то принимаем гипотезу H_0 . Если $\varphi(x)=1$, то принимаем гипотезу H_1 . Обозначим

$$K = \{ x \in \mathcal{X} : \quad \varphi(x) = 1 \} \tag{77}$$

Множество K - критическая зона теста ϕ .

Очень часто критическая зона теста задается по правилу

$$K = \{x \in \mathcal{X}: \quad T(x) > c\} \tag{78}$$

или

$$K = \{ x \in \mathcal{X} : \quad T(x) < c \} \tag{79}$$

T(x) - статистика критерия φ , c - критическая константа.

(е) Ошибки первого и второго рода

Ошибки первого рода: Принимаем гипотезу H_1 , когда верна H_0 . Ошибки второго рода: Принимаем гипотезу H_0 , когда верна H_1 . Вероятность ошибки первого рода: $\alpha(\theta) = P_{\theta}(X \in K|H_0)$. Вероятность ошибки второго рода: $1 - \beta(\theta) = P_{\theta}(X \notin K|H_1)$.

(f) Уровень значимости и мощность критерия

Мы выбираем некоторое малое α и рассматриваем только такие критерии φ , для которых

$$\sup_{\theta \in \Theta_0} \alpha(\theta) \le \alpha, \text{или} \quad P_0(X \in K) = \alpha \tag{80}$$

Значение α - уровень значимости. Функция мощности:

$$\beta(\theta) = \beta(\theta = P_{\theta}(X \in K)), \quad \theta \in \Theta_1$$
 (81)

(g) Равномерно наиболее мощный критерий

Критерий φ_0 уровня α называется равномерно наиболее мощным критерием уровня α , если для любого другого критерия φ уровня α имеет место

$$\beta_{\varphi_0}(\theta) \ge \beta_{\varphi}(\theta), \quad \forall \theta \in \Theta_1$$
 (82)

(h) Лемма Неймана-Пирсона

Пусть с.в. ξ имеет дискретное распределение и проверяется простая гипотеза H_0 против простой альтернативы H_1 . Тогда среди всех тестов φ уровня α существует наиболее мощный тест φ_0 , и он имеет следующий вид:

$$\varphi_0(x) = \begin{cases} 1, & P_1(x) > c \cdot P_0(x); \\ 0, & P_1(x) < c \cdot P_0(x); \\ \gamma, & P_1(x) = c \cdot P_0(x); \end{cases}$$
(83)

где константа c>0 и $0\leq\gamma\leq1$ определяется из условия:

$$P_0(X \in K) = \alpha \tag{84}$$

(i) Критерий отношения правдоподобия

Пусть с.в. ξ имеет функцию распределения $F(y,\theta)$, где $\theta \in \Theta$ - неизвестный параметр. Пусть Θ_0 и Θ_1 - подмножества Θ , для которых $\Theta_0 \cap \Theta_1 = \emptyset, \Theta_0 \cup \Theta_1 = \Theta$. Проверяется гипотеза

$$H_0: \quad \theta \in \Theta_0$$
 (85)

против альтернативы

$$H_1: \quad \theta \in \Theta_1$$
 (86)

Для проверки таких гипотез предлагается использовать статистику

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_1} \mathcal{L}(x, \theta)}{\sup_{\theta \in \Theta_0} \mathcal{L}(x, \theta)}$$
(87)

или эквивалентно

$$\lambda_1(x) = \lambda(x) = \frac{\sup_{\theta \in \Theta} \mathcal{L}(x, \theta)}{\sup_{\theta \in \Theta_0} \mathcal{L}(x, \theta)} = \max(\lambda(x), 1)$$
 (88)

где \mathcal{L} есть функция правдоподобия, т.е. распределение вероятности (плотность) повторной выборки $X=(X_1,\ldots,X_N)$. Если удается найти распределение этих статистик, то соответствующий

критерий, называемый критерием отношения правдоподобия, задается с помощью критической области следующего вида:

$$K = \{x: \quad \lambda_1(x) > c\} \tag{89}$$

где критическая константа c находится из условия

$$P_{\theta}(\lambda_1(x) > c) \le \alpha, \quad \theta \in \Theta$$
 (90)