

M2177.003100 Deep Learning

[3: Deep Feedforward Networks]

Electrical and Computer Engineering Seoul National University

© 2018 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 10:44:00 on 2018/09/12)

Introduction Deep Feedforward Networks

Feedfoward Networks Summary

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - ► Chapter 6
- online resources:
 - ► Deep Learning Specialization (coursera) ► Link

 - ► Machine Learning Yearning Link

Introduction

Feedfoward Networks

Deep Feedforward Networks

Summary

Deep feedforward net

- quintessential deep learning model
 - aka feedforward neural net, multilayer perceptron (MLP)
- goal: approximate some function f^*
 - e.g. a classifier: $y = f^*(x)$ maps input x to category y
- how it works: parameter + learn
 - define a mapping $y = f(x; \theta)$ and
 - ightharpoonup learn parameters heta that give the best approximation
- extremely important
 - basis of many important commercial applications
 - e.g. convolutional nets, recurrent nets

Architecture

- e.g. a feedforward neural net with two hidden layers
 - ightharpoonup parameters heta: weight W and bias b

- called feed-forward because
 - lacktriangleright information flows $m{x} o m{f} o m{y}$

- no feedback connections
 - no output is fed back into the model
 - c.f. recurrent neural nets (ch 10)
- ex) RNN은 feedback이 있음

- called networks because
 - represented by composing many different functions

• associated with a directed acyclic graph

describes how component functions are composed together

e.g. functions $f^{[1]}$, $f^{[2]}$, and $f^{[3]}$ connected in a chain:

$$f(\mathbf{x}) = f^{[3]}(f^{[2]}(f^{[1]}(\mathbf{x})))$$

- $f^{[l]}$: called l-th layer
- ▶ final layer: called output layer
- ▶ chain length ⇒ model depth ("deep learning")

Training neural nets

- ullet training: we drive $f(oldsymbol{x})$ to match $f^*(oldsymbol{x})$
- ullet training data: noisy/approximate examples of $f^*(oldsymbol{x})$
 - \blacktriangleright each example: $(\underbrace{x}_{\text{input}},\underbrace{y}_{\text{label}})$ with $y\approx f^*(x)$
 - \Rightarrow directly specifies what output layer must do at each x
- · behavior of the other layers: not directly specified by training data
 - ▶ these layers: called hidden layers
 - features are distributed over hidden layers
- instead, the learning algorithm must decide
 - lacktriangle how to use hidden layers to best approximate f^*

Understanding feedforward nets

- begin with linear models and
 - consider how to overcome their limitations
- linear models:
 - efficient/reliable (closed form or convex)
 - e cannot understand interaction between any two input variables
- ullet to extend linear models to represent non-linear functions of x
 - lacktriangle apply the linear model not to $m{x}$ itself but to transformed input $\phi(m{x})$

equivalently: kernel trick (sec 5.7.2)

- how to choose ϕ ?
 - 1. use a very generic ϕ (e.g. ∞ -dim ϕ as in RBF kernel)
 - "generic" but often poor "generalization"
 - 2. manually engineer ϕ (e.g. traditional ML)
 - specialized but laborious
 - 3. learn ϕ (e.g. deep learning)
 - we have a model

$$y = f(x; \boldsymbol{\theta}, \boldsymbol{w}) = \phi(x; \boldsymbol{\theta})^{\top} \boldsymbol{w}$$

- ightharpoonup parameters $oldsymbol{ heta}$: used to learn ϕ from a broad class of functions
- \triangleright parameters w: map from $\phi(x)$ to desired output
- (deep) feedforward nets:
 - \triangleright learn deterministic mappings from x to y (no feedback connections)
 - \blacktriangleright ϕ defines a hidden layer

To deploy a DNN

should make design decisions:

- just as linear model
 - choose optimizer/cost function/output units
 - gradient-based learning (sec 6.2)
- unique to feedforward nets
 - ▶ hidden layers ⇒ choosing activation functions (sec 6.3)
 - network architecture (sec 6.4)
 - how many layers
 - how to connect these layers
 - how many units in each layer
- training:
 - back-propagation and its modern generalizations (sec 6.5)

Introduction

Feedfoward Networks

Gradient-Based Learning Architecture Vectorized Representation Hidden Units
Forward/Backward Function

Deep Feedforward Networks

Summary

Recall: logistic regression as a neuron model

signal:
$$z = \boldsymbol{w}^{\top} \boldsymbol{x} + b$$

activation: $a = \sigma(z)$

Feedforward neural net

• composed of logistic regression units

Concept of training & testing a neural net

Modern neural nets

- core ideas: no change since 80s
 - ▶ the same backprop/gradient descent: still in use
- recent improvement due to:
 - ► larger data sets ⇒ better generalization
 - ▶ larger neural nets ← better hw/sw infrastructure
 - better algorithms, in particular:
 - 1. $MSE \longrightarrow cross-entrophy loss$
 - 2. sigmoid \longrightarrow ReLU

Introduction

Feedfoward Networks Gradient-Based Learning

Architecture
Vectorized Representation

Hidden Units
Forward/Backward Function

Deep Feedforward Networks

Summary

Training a neural network

- nonlinearity of a neural net ⇒ non-convex loss function
 - ▶ largest difference from linear models
- · neural nets: thus usually trained by
 - iterative, gradient-based optimizers (ch 8)
- sgd applied to non-convex loss functions
 - no convergence guarantee
 - sensitive to initial parameters
- feedforward neural nets
 - ▶ often initialize all weights to <u>small random</u> values (sec 8.4)

Gradient-based learning

- gradient descent can train learning models
 - e.g. linear regression and SVM
- · computing gradient for a neural net: slightly more complicated
 - ▶ but can still be done efficiently by back-prop (sec 6.5)
- for gradient-based learning we must choose:
 - 1. cost function
 - 2. model output representation

Cost function for neural nets

- total cost function
 - primary cost function + regularization term (ch 7)
- most modern neural nets: trained using maximum likelihood
 - i.e. cost function = negative log-likelihood (NLL)
 - = cross-entropy between training data and model distribution

$$\begin{split} J(\boldsymbol{\theta}) &= -\mathbb{E}_{\mathbf{x},\mathbf{y} \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(\boldsymbol{y} \,|\, \boldsymbol{x}) \\ &= \frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{y}^{(i)}, \hat{\boldsymbol{y}}^{(i)}) \\ \text{(for binary output)} &= -\frac{1}{m} \sum_{i=1}^{m} \left[\boldsymbol{y}^{(i)} \log \hat{\boldsymbol{y}}^{(i)} + (1-\boldsymbol{y}^{(i)}) \log(1-\hat{\boldsymbol{y}}^{(i)}) \right] \end{split}$$

- a recurring theme: gradient of cost function must be large /predictable
 - ▶ NLL: more popular than MSE in this sense (see textbook)¹

¹e.g. using log undoes exp of sigmoid/softmax

Output units

- suppose: a feedforward net provides hidden features ${m h} = f({m x}; {m heta})$
- output layer:
 - provides additional transformation from features to output

- most common: linear/sigmoid/<u>softmax</u> output units
- ullet softmax 2 units: represent probability distribution over K classes
 - bernoulli : sigmoid = multinoulli : softmax

²better name: "softargmax"

Multinoulli (or categorical) distribution

- ullet a distribution over a single discrete variable with k finite states
 - ▶ parameterized by vector $p \in [0,1]^{k-1}$ (p_i : probability of i-th state)
 - ▶ $1 \mathbf{1}^{\top} p$: the final, k-th state's probability $(\mathbf{1}^{\top} p \leq 1)$
- " multinoulli ": recently coined term³
 - ▶ as a special case (i.e. single trial) of multinomial distribution
 - ▶ multinomial distribution: a distribution over vectors in $\{0, ..., n\}^k$
 - ▷ represents how many times each of k categories is visited when n samples are drawn from a multinoulli distribution

distribution	# classes	# trials (samples)
Bernoulli	2	1
multinoulli	k	1
binomial	2	n
multinomial	k	$m{n}$

 $^{^3}$ many texts use"multinomial" to refer to multinoulli without clarifying they refer only to n=1 case

Types of output units

type	output	formula	output distribution
linear	vector	$\hat{y} = \mathbf{W}^{\top} \mathbf{h} + \mathbf{b}$ $\hat{y} = \sigma(\mathbf{w}^{\top} \mathbf{h} + \mathbf{b})$ $\hat{y} = \operatorname{softmax}(\mathbf{W}^{\top} \mathbf{h} + \mathbf{b})$	Gaussian
sigmoid	scalar		Bernoulli
softmax	vector		multinoulli

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

Introduction

Feedfoward Networks

Gradient-Based Learning

Architecture

Vectorized Representation

Hidden Units
Forward/Backward Function

Deep Feedforward Networks

Summary

Notation

- notes:
 - ▶ J: cost function
 - ▶ ★ and d★ = $\frac{\partial J}{\partial \bullet}$ have the same size

layer/node indices

$$\begin{array}{c|c} a^{[l]}_j & \leftarrow \text{layer} \\ \leftarrow \text{node index} \end{array}$$

- parameters
 - lacktriangle weight: $oldsymbol{W}^{[l]}$
 - ightharpoonup bias: $m{b}^{[l]}$
- gradient: $d \bigstar \triangleq \frac{\partial J}{\partial \bigstar}$

e.g.

$$\mathrm{d}z = rac{\partial J}{\partial z} \ \mathrm{d}a = rac{\partial J}{\partial a} \ \mathrm{d}W = rac{\partial J}{\partial W} \ \mathrm{d}b = rac{\partial J}{\partial b}$$

Operations for each layer

layer l

lacktriangle parameters: $oldsymbol{W}^{[l]}, oldsymbol{b}^{[l]}$

ightharpoonup activation function: $g^{[l]}$

• forward function

▶ input: $a^{[l-1]}$

 $\qquad \qquad \mathbf{output} \colon \, \boldsymbol{a}^{[l]} = g^{[l]}(\boldsymbol{z}^{[l]}) \\$

ightharpoonup cache: $oldsymbol{z}^{[l]}$

backward function

lacktriangle input: $\mathtt{d} m{a}^{[l]}$, cached $m{z}^{[l]}$

lacksquare output: $\mathtt{d}oldsymbol{a}^{[l-1]},\mathtt{d}oldsymbol{W}^{[l]},\mathtt{d}oldsymbol{b}^{[l]}$

• parameter update

$$oldsymbol{W}^{[l]} \leftarrow oldsymbol{W}^{[l]} - \epsilon \mathtt{d} oldsymbol{W}^{[l]} \ oldsymbol{b}^{[l]} \leftarrow oldsymbol{b}^{[l]} - \epsilon \mathtt{d} oldsymbol{b}^{[l]}$$

Overall architecture

parameter update (ϵ : learning rate)

$$oldsymbol{W}^{[l]} \leftarrow oldsymbol{W}^{[l]} - \epsilon_{\underline{}}^{\underline{} \mathsf{dW} \wedge l} \ oldsymbol{b}^{[l]} \leftarrow oldsymbol{b}^{[l]} - \epsilon_{\underline{}} oldsymbol{b}^{[l]}$$

Introduction

Feedfoward Networks

Gradient-Based Learning
Architecture

Vectorized Representation

Hidden Units
Forward/Backward Function

Deep Feedforward Networks

Summary

A running example

• hidden layer

$$\begin{split} a_1^{[1]} &= g(\boldsymbol{w}_1^{[1]\top} \boldsymbol{x} + b_1^{[1]}) \\ a_2^{[1]} &= g(\boldsymbol{w}_2^{[1]\top} \boldsymbol{x} + b_2^{[1]}) \\ a_3^{[1]} &= g(\boldsymbol{w}_3^{[1]\top} \boldsymbol{x} + b_3^{[1]}) \end{split}$$

output layer

$$a^{[2]} = g(\boldsymbol{w}^{[2] \top} \boldsymbol{a}^{[1]} + b^{[2]})$$

Vectorized representation

• separate equations

$$\begin{split} a_1^{[1]} &= g(\boldsymbol{w}_1^{[1]\top}\boldsymbol{x} + b_1^{[1]}) = g(z_1^{[1]}) \\ a_2^{[1]} &= g(\boldsymbol{w}_2^{[1]\top}\boldsymbol{x} + b_2^{[1]}) = g(z_2^{[1]}) \\ a_3^{[1]} &= g(\boldsymbol{w}_3^{[1]\top}\boldsymbol{x} + b_3^{[1]}) = g(z_3^{[1]}) \end{split}$$

vectorized equations

$$\mathbf{z}^{[1]} = \begin{bmatrix} z_1^{[1]} \\ z_2^{[1]} \\ z_3^{[1]} \end{bmatrix} = \underbrace{\begin{bmatrix} -----\mathbf{w}_1^{[1]\top} & ---- \\ -----\mathbf{w}_2^{[1]\top} & ---- \\ ------\mathbf{w}_3^{[1]\top} & ---- \end{bmatrix}}_{\text{matrix? TWO choices}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ b_3^{[1]} \end{bmatrix}, \quad \mathbf{a}^{[1]} = \begin{bmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \end{bmatrix} = g\left(\mathbf{z}^{[1]}\right)$$

Weight matrix conventions

- RL (right-left) convention
 - ightharpoonup weight for $i
 ightharpoonup j: w_{ji}$

$$\mathbf{\bar{W}} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{12} \\ \mathbf{w}_{21} & \mathbf{w}_{22} \\ w_{31} & w_{32} \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

then

$$\begin{bmatrix} --- & \mathbf{w}_1^\top & --- \\ --- & \mathbf{w}_2^\top & --- \\ --- & \mathbf{w}_3^\top & --- \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{12} \\ \mathbf{w}_{21} & \mathbf{w}_{22} \\ \mathbf{w}_{31} & \mathbf{w}_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \mathbf{w}_2$$

- LR (left-right) convention
 - ightharpoonup weight for $i o j: w_{ij}$

$$ec{oldsymbol{W}} = egin{bmatrix} oldsymbol{w}_{11} & oldsymbol{w}_{12} & oldsymbol{w}_{13} \ oldsymbol{w}_{21} & oldsymbol{w}_{22} & oldsymbol{w}_{23} \end{bmatrix} \in \mathbb{R}^{2 imes 3}$$

• then

$$\begin{bmatrix} --- & \mathbf{w}_1^\top & --- \\ --- & \mathbf{w}_2^\top & --- \\ --- & \mathbf{w}_3^\top & --- \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{11} & \mathbf{w}_{21} \\ \mathbf{w}_{12} & \mathbf{w}_{22} \\ \mathbf{w}_{13} & \mathbf{w}_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \quad \text{WAT * X}$$

Vectorized representation

two flavors

$$m{a}^{[1]} = egin{bmatrix} a_1^{[1]} \\ a_2^{[1]} \\ a_3^{[1]} \end{bmatrix} = g\left(m{z}^{[1]}
ight)$$

Introduction

Feedfoward Networks

Gradient-Based Learning Architecture Vectorized Representation

Hidden Units

Forward/Backward Functions

Deep Feedforward Networks

Summary

Hidden units

- what they do:
 - 1. accept a vector of inputs x
 - 2. compute an affine transformation $z = \textbf{\textit{W}}^{ op} x + b$
 - 3. apply an element-wise nonlinear function g to z
 - 4. return <u>activation</u> a = g(z)

- hidden units differ only in activation function g(z)
- Rectified linear units (ReLU): excellent default choice
 - non-differentiability: can be disregarded in practice
 - many other types also available
- hidden unit design remains an active area of research
 - e.g. $g(z) = \cos(z)$ gives < 1% error on MNIST
 - ▶ new types: published only if clearly show significant improvement
- notation
 - $ightharpoonup q^{[l]}$: activation function for layer l
 - mixing activation function types in a layer: uncommon

Activation functions

Rectified linear units (ReLU)

- activation function: $g(z) = \max\{0, z\}$
- pros
 - ▶ no saturation in (+) region
 - computationally very efficient
 - converges faster than sigmoid
 - biologically more plausible than sigmoid

- cons
 - not zero-centered output
 - \rightarrow zero gradient in (-) region
- => gradient가 0이므로 train이 아에 안될 수 있

ReLU Initialization

- ReLU:
 - typically used on top of an affine transformation:

$$h = g(\mathbf{W}^{\top} \mathbf{x} + \mathbf{b}) \tag{1}$$

- good practice:
 - ▶ set all elements of b to a small positive number (e.g. 0.1 or 0.01)
 - ⇒ ReLU initially active for most inputs in training set
 - ⇒ derivatives can pass through

ReLU optimization

- easy to optimize (:: so similar to linear units)
 - half zero, half linear
- derivatives through ReLU
 - remain large whenever the unit is active
 - not only large but also consistent
 - ▷ derivative: 1 everywhere unit is active
 - second derivative: 0 almost everywhere
- ⇒ gradient direction is far more useful for learning
 - than activation functions with second-order effects

ReLU Generalization

- overcome ReLU limitation (zero gradient in (-) region)
 - guaranteed to receive gradient everywhere
 - 1. absolute value rectification: g(z) = |z|
 - 2. leaky ReLU: $g(z) = \max\{\alpha z, z\}$
 - 3. parametric ReLU: $g(z) = \max\{\alpha z, z\}$ (learnable α)
 - 4. exponential ReLU:

$$g(z) = \begin{cases} z & z \ge 0\\ \alpha(e^z - 1) & z < 0 \end{cases}$$

(fixed α)

Further generalization: maxout units

- learn the activation function itself
 - ightharpoonup learn a piecewise linear, convex function with up to k pieces
 - ▶ approximate any convex function with arbitrary fidelity (with large k)
- cons: more parameters/neurons required

Prior to ReLU

- popular: sigmoid activations
 - ▶ logistic sigmoid: $q(z) = \sigma(z)$

▶ tanh: $g(z) = \tanh(z)$

- ▶ closely related: $tanh(z) = 2\sigma(2z) 1$
- tanh: typically performs better than logistic sigmoid
 - zero centered (but still kills gradient when saturated)
 - resembles y = x more closely at (near) zero \Rightarrow easier training
 - ▶ use tanh when a sigmoidal activation function must be used

일반적으로 tanh보다 ReLU가 더 좋음

Logistic sigmoid activation

- · historically popular
 - ightharpoonup outputs to range [0,1]
 - nice interpretation
 - saturating "firing rate" of a neuron

cons

- ▶ saturation ⇒ killed gradient
- not zero-centered output
- ▶ exp(·) computation
- use logistic sigmoid as hidden units in feedfoward nets: now discouraged
 - ▶ use as output unit: acceptable (e.g. probability estimation)

Saturation kills gradient

- widespread __saturation_ of sigmoidal units
 - ⇒ can make gradient-based learning very difficult

• vanishing gradient problem: errors 'vanish' with backprop

One-sided input slows down training

 $\bullet \ \operatorname{recall:} \ \tfrac{\partial}{\partial w}(wx) = x$

- ullet gradient of cost function wrt w
 - ightharpoonup directly depends on x

- all positive/negative inputs
 - cause zig-zag updates
 - ⇒ slow convergence

(source: cs231n)

normalization matters!

Practical advice

- feedforward nets
 - ▶ use ReLU (carefully tune learning rates)
 - try out leaky ReLU, maxout, ELU
 - try out tanh (but don't expect too much)
 - do not use sigmoid
- other than feedforward nets
 - sigmoidal activations: more common
 - e.g. RNN/probabilistic models/some autoencoders

Exploiting linearity

- principle of ReLU (and its generalizations):
 - models are easier to optimize if their behavior is closer to linear
- this principle also applies to recurrent networks
 - ▶ training becomes much easier when some linear computations are involved
 - e.g. LSTM propagates information through time via summation
- linear boundary: sometimes susceptible to <u>adversarial</u> examples

Outline

Introduction

Feedfoward Networks

Gradient-Based Learning Architecture Vectorized Representation Hidden Units
Forward/Backward Functions

Deep Feedforward Networks

Summary

Forward function

- interface
 - ▶ input: $a^{[l-1]}$
 - ightharpoonup output: $a^{[l]}$
 - ightharpoonup cache: $oldsymbol{z}^{[l]}$
- assumptions

$$\mathbf{W} = \mathbf{\dot{W}} \in \mathbb{R}^{(k \times n)}$$

- column-arranged minibatch
- action: 1 example

$$\underbrace{\mathbf{z}^{[l]}}_{(k \times 1)} = \underbrace{\mathbf{a}^{[l-1]}}_{(k \times n)} + \mathbf{b}^{[l]}$$
$$\underbrace{\mathbf{a}^{[l]}}_{(k \times 1)} = g^{[l]}(\mathbf{z}^{[l]})$$

• action: minibatch (size m)

$$\underbrace{ \mathbf{Z}^{[l]}_{(k \times m)} = \underbrace{\mathbf{W}^{[l]}_{(k \times m)}}_{(k \times m)} \underbrace{\mathbf{A}^{[l-1]}_{(n \times m)}}_{+ \mathbf{b}^{[l]}} + \mathbf{b}^{[l]}$$

$$\underbrace{\mathbf{A}^{[l]}_{(k \times m)} = g^{[l]}(\mathbf{Z}^{[l]})}_{(k \times m)}$$

Backward function

- interface
 - ightharpoonup input: $da^{[l]}$, cached $z^{[l]}$
 - ightharpoonup output: $da^{[l-1]}, dW^{[l]}, db^{[l]}$
- action: 1 example

$$\frac{\mathrm{d}z^{[l]}}{(k\times 1)} = \frac{\mathrm{d}a^{[l]}}{(k\times 1)} \underbrace{\odot g^{\wedge[l]}(z^{[l]})}_{(k\times 1)}$$

$$\frac{\mathrm{d}W^{[l]}}{(k\times n)} = \frac{\mathrm{d}z^{[l]}}{(k\times 1)} \underbrace{a^{[l-1]\top}}_{(1\times n)}$$

$$\frac{\mathrm{d}b^{[l]}}{(k\times 1)} = \underbrace{dz^{[l]}}_{(k\times 1)}$$

$$\frac{\mathrm{d}a^{[l-1]}}{(n\times 1)} = \underbrace{W^{[l]\top}}_{(n\times k)} \underbrace{dz^{[l]}}_{(k\times 1)}$$

• post-action (update): $m{W}^{[l]} \leftarrow m{W}^{[l]} - \epsilon \mathtt{d} m{W}^{[l]}$ $m{b}^{[l]} \leftarrow m{b}^{[l]} - \epsilon \mathtt{d} m{b}^{[l]}$

action: minibatch (size m)

$$\begin{array}{l} \underbrace{\frac{\mathrm{d}\boldsymbol{Z}^{[l]}}{(k\times m)}} = \underbrace{\frac{\mathrm{d}\boldsymbol{A}^{[l]}}{(k\times m)}} \underbrace{\underbrace{\boldsymbol{g}^{[l]'}(\boldsymbol{Z}^{[l]})}_{(k\times m)}} \\ \underbrace{\frac{\mathrm{d}\boldsymbol{W}^{[l]}}{(k\times n)}} = \underbrace{\frac{1}{m}}_{k\times m} \underbrace{\frac{\mathrm{d}\boldsymbol{Z}^{[l]}}{(m\times n)}} \underbrace{\frac{\boldsymbol{A}^{[l-1]\top}}{(m\times n)}} \\ \underbrace{\frac{\mathrm{d}\boldsymbol{b}^{[l]}}{(k\times 1)}} = \underbrace{\frac{1}{m}}_{k\times m} \underbrace{\frac{\mathrm{d}\boldsymbol{Z}^{[l]}}{(m\times n)}} \underbrace{\frac{\mathrm{d}\boldsymbol{Z}^{[l]}}{(m\times n)}} \\ \underbrace{\frac{\mathrm{d}\boldsymbol{A}^{[l-1]}}{(n\times m)}} = \underbrace{\boldsymbol{W}^{[l]\top}}_{(n\times k)} \underbrace{\frac{\mathrm{d}\boldsymbol{Z}^{[l]}}{(k\times m)}} \end{array}$$

$$m{b}^{[l]} \leftarrow m{b}^{[l]} - \epsilon \mathtt{d} m{b}^{[l]}$$

Exhaustive summary

(notation: $d \bigstar \triangleq \frac{\partial J}{\partial \bigstar}$)

• RL-convention weight matrix: $\boldsymbol{\dot{W}}_{(k \times n)}$

input	signal (z,Z)	output	δ -error (d z , d Z)	d $oldsymbol{W}$	$\mathtt{d}b$	$\mathrm{d}\boldsymbol{x},\mathrm{d}\boldsymbol{X}$	opt
x $(n \times 1)$	$egin{aligned} Wx+b \ (k imes 1) \end{aligned}$	$a = g(z)$ $(k \times 1)$	$\mathtt{d} a \odot g'(z) \triangleq \pmb{\delta} \ (k imes 1)$	$\frac{\boldsymbol{\delta x}^\top}{(k\times n)}$	δ $(k \times 1)$	$W^{ op} \delta$ $(n \times 1)$	1
$X_{ } \ (n \times m)$	$WX + b$ $(k \times m)$	$A = g(Z)$ $(k \times m)$	$\mathrm{d} A\odot g'(Z) riangleq \mathbf{\Delta} \ (k imes m)$	$\frac{1}{m} \Delta X^{\top}$ $(k \times n)$	$\frac{\frac{1}{m}\Delta 1_{m\times 1}}{(k\times 1)}$	$W^{ op}\Delta$ $(n \times m)$	2
$X_{\equiv} \ (m \times n)$	$XW^{\top} + b$ $(m \times k)$	$A = (m \times k)$	$oldsymbol{\Delta} (m imes k)$	$\frac{\frac{1}{m}\boldsymbol{\Delta}^{\top}\boldsymbol{X}}{(k\times n)}$	$\frac{\frac{1}{m}\mathbf{\Delta}^{\top}1_{m\times 1}}{(k\times 1)}$	ΔW $(m \times n)$	3

ullet LR-convention weight matrix: $ec{m{W}}$ (n imes k)

input	signal (z,Z)	output	δ -error (d z , d Z)	d $oldsymbol{W}$	$\mathrm{d}b$	$\mathrm{d}x,\mathrm{d}X$	opt
$x \ (n \times 1)$	$egin{aligned} oldsymbol{W}^{ op} x + oldsymbol{b} \ (k imes 1) \end{aligned}$	$a \ (k \times 1)$	$rac{oldsymbol{\delta}}{(k imes1)}$	$oldsymbol{x}oldsymbol{\delta}^{ op} \ (n imes k)$	$oldsymbol{\delta} (k imes 1)$	$W\delta \ (n imes 1)$	4
$X_{ } \ (n imes m)$	$W^{\top}X + b$ $(k \times m)$	$egin{array}{c} m{A} \ (k imes m) \end{array}$	$oldsymbol{\Delta} (k imes m)$	$\frac{1}{m}X\Delta^{\top} \ (n \times k)$	$\frac{\frac{1}{m}\Delta 1_{m\times 1}}{(k\times 1)}$	$W\Delta \ (n imes m)$	5
$X_{\equiv} \ (m imes n)$	$egin{aligned} XW + b \ (m imes k) \end{aligned}$	$egin{aligned} m{A} \ (m imes k) \end{aligned}$	$oldsymbol{\Delta} (m imes k)$	$rac{1}{m} X^{ op} \Delta \ (n imes k)$	$\frac{\frac{1}{m}\boldsymbol{\Delta}^{\top}1_{m\times 1}}{(k\times 1)}$	$oldsymbol{\Delta} oldsymbol{W}^{ op} \ (m imes n)$	6

ullet option 1: single example, RL-convention $ar{W}$

- * use in textbook
 - algorithm 6.2
 - algorithm 6.3
- ★ coursera⁴

• option 6: size-m minibatch (row-wise), LR-convention \hat{W}

* use in textbook

▶ sec 6.5.7

⁴uses option 1 for single example and option 3 for minibatch

algorithms using textbook notation (option 1, single example)

algorithm 1 forward computation

1:
$$a^{[0]} = x$$

2: **for**
$$l = 1, ..., L$$
 do

3:
$$z^{[l]} = \dot{m{W}}^{[l]} a^{[l-1]} + b^{[l]}$$

4:
$$a^{[l]} = f(z^{[l]})$$

5: end for

6:
$$\hat{\boldsymbol{y}} = \boldsymbol{a}^{[L]}$$

7:
$$J = L(\boldsymbol{y}, \hat{\boldsymbol{y}}) + \lambda \Omega(\theta)$$

algorithm 2 backward computation

1:
$$g \leftarrow \nabla_{\hat{y}} J = \nabla_{\hat{y}} L(\hat{y}, y)$$

2: for
$$l = L, L - 1, ..., 1$$
 do

3:
$$oldsymbol{g} \leftarrow
abla_{\mathbf{z}^{[l]}} J = oldsymbol{g} \odot f'(oldsymbol{z}^{[l]})$$

4:
$$\nabla_{\boldsymbol{h}^{[l]}} J = \boldsymbol{g} + \lambda \nabla_{\boldsymbol{h}^{[l]}} \Omega(\boldsymbol{\theta})$$

5:
$$\nabla_{\vec{w}^{[l]}} J = g a^{[l-1]\top} + \lambda \nabla_{\vec{w}^{[l]}} \Omega(\theta)$$

6:
$$oldsymbol{g} \leftarrow
abla_{oldsymbol{a}^{[l-1]}} J = oldsymbol{ar{W}}^{[l] op} oldsymbol{g}$$

7: end for

algorithms using textbook notation (option 6, minibatch)

algorithm 3 forward computation

1:
$$A^{[0]} = X_{=}$$

2: **for**
$$l = 1, ..., L$$
 do

з:
$$Z^{[l]} = A^{[l-1]} \vec{W}^{[l]} + b^{[l]}$$

4:
$$A^{[l]} = f(Z^{[l]})$$

5: end for

6:
$$\hat{\pmb{Y}} = \pmb{A}^{[L]}$$

7:
$$J = L(\mathbf{Y}, \hat{\mathbf{Y}}) + \lambda \Omega(\boldsymbol{\theta})$$

algorithm 4 backward computation

1:
$$\mathbf{G} \leftarrow \nabla_{\hat{\mathbf{Y}}} J = \nabla_{\hat{\mathbf{Y}}} L(\hat{\mathbf{Y}}, \mathbf{Y})$$

2: **for**
$$l = L, L - 1, \dots, 1$$
 do

3:
$$G \leftarrow \nabla_{\mathbf{Z}^{[l]}} J = G \odot f'(\mathbf{Z}^{[l]})$$

4:
$$\nabla_{\boldsymbol{b}^{[l]}} J = \frac{1}{m} \boldsymbol{G}^{\top} \mathbf{1} + \lambda \nabla_{\boldsymbol{b}^{[l]}} \Omega(\boldsymbol{\theta})$$

5:
$$\nabla_{\vec{\mathbf{r}}_{l}[l]} J = \frac{1}{m}$$
 $G + \lambda \nabla_{\vec{\mathbf{r}}_{l}[l]} \Omega(\theta)$

6:
$$oldsymbol{G} \leftarrow
abla_{oldsymbol{A}^{[l-1]}} J = oldsymbol{G} oldsymbol{ec{W}}^{[l] op}$$

7: end for

algorithm 5 back propagation (minibatch of size m; learning rate ϵ)

- 1: initialize all parameters $oldsymbol{W}, oldsymbol{b}$
- 2: repeat
- 3: pick a minibatch \mathbb{X}_m from \mathbb{X}
- 4: forward: compute all activations A
- 5: compute cost $J = \frac{1}{m} \sum L(\boldsymbol{Y}^{(i)}, \hat{\boldsymbol{Y}}^{(i)}) + \lambda \Omega(\boldsymbol{\theta})$
- 6: backward: compute all gradients
- 7: update parameters:

$$egin{array}{lll} W \leftarrow W & - & \epsilon \mathrm{d} \, W & ext{(weights)} \ b \leftarrow & b & - & \epsilon \mathrm{d} b & ext{(bias)} \end{array}$$

- 8: until it is time to stop
- 9: return final parameters

$$\boldsymbol{W}^*, \boldsymbol{b}^*$$

Remarks

- complications of backprop in practice
 - multi-output operation
 - memory considerations
 - supporting diverse data types
 - handling undefined gradients
- field of _automatic _differentiation:
 - concerned with how to compute derivatives algorithmically
 - backprop: a special case of reverse mode accumulation
 - c.f. real-time recurrent learning (RTRL): forward mode accumulation
- implementations such as theano and TensorFlow
 - use heuristics to iteratively simplify backprop graph for efficiency

Outline

Deep => hidden layer가 2개 이상인 것

Introduction

Deep Feedforward Networks

Feedfoward Networks

Summary

Architecture exploration

- main architectural considerations in chain-based architectures
 - network depth and layer width
- a feedforward net with a single layer
 - sufficient to represent any function
 - but may have infeasibly large layer and
 - may fail to learn and generalize correctly
- deeper networks
 - use far fewer units per layer and far fewer parameters
 - generalize better to test set
 - but harder to optimize (e.g. vanishing/exploding gradient)
- ideal architecture for a task
 - must be found via experimentation (guided by validation error)

Universal approximation theorem (Hornik et al., '89; Cybenko, '89)

- a feedforward net with linear output layer + hidden layer(s)
 - ► can approximate any⁵ function (given enough <u>hidden</u> units)

(source: Abu-Mostafa)

• but the ability to learn that function: not guaranteed

⁵should be Borel measurable: see textbook

Network size

- universal approximation theorem
 - says there exists a network large enough to achieve any accuracy
 - but does not say how large this network will be
- unfortunately
 - ▶ an exponential number of hidden units may be required in the worse case
 - e.g. binary case
 - 2^{2^n} : the number of possible binary functions on vectors ${m v} \in \{0,1\}^n$
 - 2^n bits required to select one such function
 - \Rightarrow which will in general require $O(2^n)$ degrees of freedom

Exponential advantage of deeper networks

- some families of functions
 - lacktriangle can be approximated efficiently with depth >d
 - \blacktriangleright but require a much larger model if depth is restricted to < d
- Montufar et al. (2014) showed: piecewise linear networks
 - > can represent functions with a number of regions exponential in net depth
 - e.g. two hidden units \Rightarrow four regions

Statistical interpretation

- ullet choosing a specific ML algorithm = encoding our prior beliefs
 - about what kind of function the algorithm should learn
- ullet choosing a deep model = encoding a very $\underbrace{ ext{general belief}}$

the function to learn should involve composition of simpler functions

- empirically: greater depth ⇒ better generalization
 - two examples on next page

test set accuracy consistently increases with increasing depth

- other increases to model size
 - do not yield the same effect
- task: from photos of addresses
 - transcribe multi-digit numbers
- increasing # of _____ without increasing depth: not effective

- shallow models overfit
 - ▶ at \sim 20 million parameters
- deep ones can benefit
 - from having over 60 million

Other architectural considerations

- so far: neural nets as simple chains of layers
 - main considerations: depth of network and width of each layer
- in practice: neural nets show considerably more diversity
 - many net architectures: task specific
 - ▷ CNNs: computer vision (ch 9)
 - ▶ RNNs: sequence processing (ch 10)
 - these have their own architectural considerations

Chaining

- layers need not be connected in a chain
 - even though this is the most common practice
- many architectures build a main chain
 - but then add extra architectural features to it
- e.g. skip connections:
 - go from layer i to layer i+2 or higher
 - make gradient flow more easily from output layers to layers nearer input
 - ▶ ResNet, HighwayNet, DenseNet (shown) ▶ Link

Layer-wise connection

- another key consideration of architecture design:
 - how to connect a pair of layers to each other
- ullet in default neural net layer $egin{array}{c} ({\sf described}\ {\sf by}\ {\sf linear}\ {\sf transformation}\ {\sf via}\ {\sf matrix}\ {\it W}) \end{array}$
 - every input unit: connected to every output unit
- many specialized networks have fewer connections
 - each input unit: connected to only a small <u>subset</u> of output units
- these strategies for reducing # of connections
 - lacktriangleright reduce # of parameters/amount of computation to evaluate the net
 - but are highly problem-dependent → see later chapters
 - e.g. CNNs (ch 9): sparse connection patterns effective for vision problems

Outline

Introduction

Feedfoward Networks

Deep Feedforward Networks

Summary

Summary

- deep feed forward net: quintessential deep model
 - lacktriangle universal function approximator parameterized by $oldsymbol{ heta}=(oldsymbol{W},oldsymbol{b})$
 - ightharpoonup learn heta by gradient-based backprop algorithm
- building blocks of deep feedforward nets
 - neuron: modeled by logistic regression
 - lacktriangleright forward function: propagates $m{x}$ to output, giving loss $L(m{y},\hat{m{y}})$
 - $lacksymbol{ iny}$ backward function: propagates ${ iny d}a$ to input, giving ${ iny d}W, { iny d}b$
 - lacktriangle update: $\mathtt{d} oldsymbol{W} \leftarrow \mathtt{d} oldsymbol{W} \epsilon \mathtt{d} oldsymbol{W}$, $\mathtt{d} oldsymbol{b} \leftarrow \mathtt{d} oldsymbol{b} \epsilon \mathtt{d} oldsymbol{b}$
 - activation function: ReLU/variants are popular for deep feedforward nets
 - output units: linear, sigmoid, softmax units
- deep feedforward neural nets
 - more depth gives better generalization, but training is challenging
 - ⇒ architectural modifications in convolutional nets/recurrent nets