Hypocycloïde

On considère deux nombres réels strictement positifs R et α avec $\alpha < 1$ auxquels on associe le réel $r = \alpha R$. Dans toute la suite, on suppose le plan rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$ et on considère :

- le point A de coordonnées (R,0),
- le cercle C de centre O et de rayon R,
- le cercle γ centré sur la demi-droite $[0, \vec{i})$, de rayon r et tangent intérieurement à C en A.

De plus, pour tout nombre réel t, on considère :

- le cercle $\gamma(t)$ centré sur la demi-droite d'angle polaire t, rayon r, et tangent intérieurement à C,
- le point $\omega(t)$ centre du cercle $\gamma(t)$,
- le point C(t) en lequel les cercles $\gamma(t)$ et C sont tangents.

Il est recommandé aux candidats de construire une figure claire faisant apparaître ces différents éléments.

On fait rouler sans glisser le cercle γ à l'intérieur du cercle fixe C en supposant qu'il coïncide à l'instant t avec le cercle $\gamma(t)$ et on étudie la trajectoire $H(\alpha)$ du point lié au cercle γ situé en A à l'instant 0. On désigne par M(t) la position de ce point à l'instant t (au moment où γ coïncide avec le cercle $\gamma(t)$).

Dans la partie I, on détermine un paramétrage complexe de $H(\alpha)$.

Dans les parties II et III, on étudie cette trajectoire pour des valeurs particulières de α .

Partie I

- 1. L'hypothèse de roulement sans glissement se traduit, par définition, par l'égalité à tout instant t des deux longueurs des arc orientés M(t)C(t) et AC(t) des cercles $\gamma(t)$ et C.
- 1.a Préciser la longueur commune des longueurs de ces deux arcs orientés.
- 1.b En déduire des mesures des angles orientés $(\overline{\omega(t)M(t)}, \overline{\omega(t)C(t)})$ et $(\vec{i}, \overline{\omega(t)M(t)})$ en fonction de t.
- 2. Déterminer les affixes des points C(t) et $\omega(t)$.
- 3. En écrivant $\overrightarrow{OM(t)} = \overrightarrow{O\omega(t)} + \overrightarrow{\omega(t)M(t)}$, déterminer l'affixe z(t) du point M(t) en fonction de t, R, α . On vérifiera en particulier l'égalité suivante pour $\alpha = 1/3$:

$$z(t) = \frac{R}{3} (2e^{it} + e^{-2it})$$

Partie II : Cas $\alpha = 1/3$, *la deltoïde*

On suppose ici $\alpha = 1/3$.

- 1. Comparer $z(t+2\pi/3)$ et z(t) puis z(-t) et z(t). Que peut-on en conclure géométriquement et sur quel intervalle I suffit-il d'étudier H(1/3)?
- 2. Déterminer l'affixe z'(t) du vecteur dérivé, préciser son module et un argument pour t appartenant à I. En déduire les valeurs de t appartenant à I pour lesquelles le point M(t) est régulier.
- 3. Etudier les variations de x(t) = Re(z(t)) et y(t) = Im(z(t)) pour t appartenant à I.
- 4. Préciser les tangentes aux points de paramètre 0 et $\pi/3$.

 Observer que la tangente en $M(\pi/3)$ est orthogonal au vecteur $\overrightarrow{OM(\pi/3)}$.
- 5. Construire la trajectoire H(1/3) de M(t) lorsque t varie dans \mathbb{R} .

Partie III : Cas $\alpha = 1/4$, l'astroïde

On suppose ici $\alpha = 1/4$.

- 1. Justifier que $x(t) = \text{Re}(z(t)) = R\cos^3 t$ et $y(t) = \text{Im}(z(t)) = R\sin^3 t$.
- 2. Comparer $M(t+\pi)$ et M(t) d'une part puis M(-t) et M(t). Sur quel intervalle J suffit d'étudier H(1/4)?
- 3. Etudier les variations de x(t) et y(t) pour t appartenant à J.
- 4. Quelles sont les points singuliers M(t) avec t dans J. Quelles sont les tangentes en ces points ?
- 5. Construire la trajectoire H(1/4) de M(t) lorsque t varie dans \mathbb{R} .
- 6. Soit M(t) un point régulier de l'arc H(1/4). La tangente en ce point coupe les axes (Ox) et (Oy) en deux points A(t) et B(t). Calculer la distance A(t)B(t).