

HEAT HEAT TRANSFER

(2)

(3)

(3)

()

(3)

()

9

()

(ii)

- ♣ To get all subject Notes: Just mail me at Adi.CrazyGate2015@gmail.com
- After mailing within 2 minute you will get all subject note's
- ♣ I have a polite request to you if you will forward these note's to all your friend I will very thankful of yours
- ♣ If you want to all subject notes regarding GATE Chemical Engineering Please you can Join this group on Face book: https://www.facebook.com/groups/GateChemicals/
- Very soon we will update you with well organized printed material & practice papers :

Thanks to all of You:

Oct 01,14

<u>(</u>

(3)

(4)

()

()

0

(1)

()

()

٩

a: 3)

HEAT TYPANSFER_

- () Conduction: 15 Mo
- 27 Convection: 20 Mz
- 3) Radiation

Heat Exchange J GAR Condensation } your

Conduction_:-

Founer's Law :-

 $\frac{Q}{A} \propto \frac{d'}{dn}$ Heat flux Temp-gradient.

Az Area normal to the direction of Heat transfer.

$$\frac{Q}{A} = k \frac{dT}{dn}$$

k = constant of propostionality. (Thermal conductivity of material) Qz-kAdTan

$$\frac{1}{s} = k m^{2} \frac{K}{m}$$

$$k = \frac{1}{smk} = \frac{w_{mk}}{smk}$$

More H. T -> Conduct

lus H.T. S Iraulahn

Assumption_:-

- 1.) Isothermal Surfaces.
- 2> Constant Theomal Conductivity in the given range of temp.
 - 3 what ever heat enters, nothing is octained, entire and of heat leaves the other side.
- 4> Steady state.
- One-dimensional heat transfer (x-direction)

(

()

()

 \odot

()

0

`O

0

0

()

()

()

()

()

()

(

0

()

9

ூ

Ohmis law

$$Q = \frac{T_1 - T_2}{\Delta x / RA}$$

Convection _: -

Newton - Rikhman's Law

Heat flux & Temp. diff.

Q x (Tw-To)

REJITION TO Ambient Ambient Two Gold

L> Constant of propositionality

La Convective heat toonsfor co-efficient./ film coeff.

1

ာ (၅)

۹

$$Q = \frac{T_W - T_W}{\frac{1}{hA}} \qquad P = \frac{V}{R}$$

()

3

(

(3)

()

(3)

()

(

_()

(

. ()

(3)

(3) 等)

٩

 $\dot{\epsilon}$

(4)

હો)

(3)

(1)

~

$$R_t = \frac{1}{hA}$$

A very thin stagnant layer of air is formed. I film of air)

h is funct of relocity 1 if velocity 1, h 1 more more velocity-monchastic

A of Fourth power of the abs-temp.

$$\frac{Q}{A} \propto T^{4}$$
, $\frac{Q}{A} = 6T^{4}$
Lystefan Boltzman's Constant.

HT is taking place ber of the viberational movement medium of source at the tours of heat is don't affected by surface or medium.

; shape factors

Oct 03,14

$$Q = \frac{T_1 - T_2}{\frac{\Delta x_1}{x_1 A}}$$

(3

(3)

0

()

0

0

0

()

() ()

 \odot

$$\alpha = \frac{T_4 - T_i}{h_i A_i}$$

$$T_1 - T_2 = \frac{\Delta \mathcal{H}_1}{k_1 \Delta} Q$$

$$\overline{K_2} - \overline{K_3} = \frac{\Delta N_2}{K_3 \Delta} Q$$

$$\frac{1}{13} - \frac{1}{14} = \frac{\Delta x_3}{k_3 A} Q$$

$$T_{ij} - T_{i} = \frac{1}{m_{i} A_{i}} Q$$

$$T_{0}-T_{1}=\left(\frac{1}{h_{0}A_{0}}+\frac{\Delta x_{1}}{k_{1}A}+\frac{\Delta x_{2}}{k_{2}A}+\frac{\Delta x_{3}}{k_{3}A}+\frac{1}{h_{1}A_{1}}\right)Q$$

$$Q = \frac{T_0 - T_i}{\left[\frac{1}{h_0 A_0} + \frac{\Delta x_1}{k_1 A} + \frac{\Delta y_2}{k_2 A} + \frac{\Delta y_3}{k_3 A} + \frac{1}{h_1 A_1}\right]}$$

U> overall heat transfer coefficient

$$Q = (To - Te)$$

$$\frac{1}{\log} = \frac{1}{\log A} + \frac{\Delta u_1}{\log A} + \frac{\Delta u_2}{\log A} + \frac{\Delta u_3}{\log A} + \frac{1}{\log A}$$

$$\frac{1}{U} = \frac{1}{h_0} + \frac{\Delta N_1}{k_1} + \frac{\Delta N_2}{k_2} + \frac{\Delta N_3}{k_3} + \frac{1}{h_1}$$

Hollow Cylinder or a Thick pipe:-

(E)

3

()

 (\cdot)

(3)

(3)

()

(:)

 (\cdot)

(:)

(j)

(ن

(3)

Ó

(;;)

(§)

(3)

(3)

Q= -KAdTar

2-k(2117L)dT/dr

$$Q = K \frac{2\pi L}{3\pi} \left(T_1 - T_2\right)$$

$$Q = \frac{T_1 - T_2}{\sum_{K \ge T_1} J_n^{K} \chi_1}$$

which one shuar

Rt = Land In 82%,

Should be used inside as to will out as good insulator So it Should be used 1st as ke has

Sphere: -

$$\int_{r_1}^{r_2} \frac{dr}{r^2} = -\frac{k 4 \pi}{Q} \int_{T_1}^{T_2} d\tau$$

$$-\frac{1}{2}\Big|_{Y_1}^{Y_2} = -\frac{kYT}{Q}\left(T_2-T_1\right)$$

$$\left[\frac{1}{8_1} - \frac{1}{8_2}\right] = \frac{\text{kurr}}{Q} \left(7_1 - 7_2\right)$$

$$Q = \frac{(T_1 - T_2)}{\frac{1}{K4\Pi} \left(\frac{1}{Y_1} - \frac{1}{Y_2} \right)}$$

$$Q = \frac{(T_1 - T_2)}{(T_2 - T_1)}$$

$$= \frac{(T_1 - T_2)}{(T_2 - T_1)}$$

Mean Area: -

} geometric mean.

Mean radius of hollow sphere

Rtz 1 (3, - 1)

0

()

() ()

()

0

0

0

€)

0

0

0

9

(2)

0

0

\$;*}*

9

0

()

ා සුබ

(C)

<u></u>

()

T, K=K(1+0x) T2

$$Z - K(2\pi \gamma_{mL})(T_2 - T_1)$$

$$Z - Y_1$$

$$Z - (T_1 - T_2)$$

$$Z - X_1$$

(3)

(1)

()

•

(3)

()

3

3

9

()

.)

(

(ي

**)

3

(a)

· 🧐

3

وثوث

$$\frac{(T_1-T_2)}{(k2\pi^2mL)}$$

$$\gamma_m = \frac{\gamma_2 - \gamma_1}{\ln \gamma_2 \beta_1}$$

Log mean Tadino (LMR)

Plane Wall with variable thermal conductivity;

$$z - \frac{k_0 A}{\alpha} \int_{T_1}^{T_2} (1 + \alpha T) dT$$

$$\mathcal{H}_2 - \mathcal{H}_1 = -\frac{k_0 A}{Q} \left[T + \alpha \frac{T^2}{2} \right]_{T_1}^{T_2}$$

$$\mathcal{H}_2 - \mathcal{H}_1 = -\frac{k_0 A}{Q} \left[\left(T_2 + Q \frac{T_2^2}{2} \right) - \left(T_1 + Q \frac{T_1^2}{2} \right) \right]$$

$$\frac{z}{a} - \frac{k_0 A}{a} \left[\left(T_2 - T_1 \right) + \frac{\alpha}{2} \left(T_2^2 - T_1^2 \right) \right]$$

$$=\frac{k_0A}{a}\left[\left(\frac{1}{2}-\frac{1}{1}\right)\left(1+\alpha\frac{1}{2}+\frac{1}{1}\right)\right]$$

$$Q = \frac{\text{koA} \left(1 + \text{dTm}\right) \left(T_1 - T_2\right)}{\mathcal{H}_2 - \mathcal{H}_1}$$

$$Q = \frac{T_1 - T_2}{\Delta x_{km} A}$$

$$kA\frac{d^2T}{dn^2} = hR(T-T_0)z0$$

km = to (1 tx Tm)

()

Unsteady State heat transfer in 3 dimensional wid variable thermal conductivity in 3 directions:

Qzz -kzdudydt/sz + 2 (-kzdudydt/sz)dz

Change in I.E = Idudydz C ot

(ژنهٔ

(1)

(a)

(3)

(2)

(

(4)

 (\cdot)

()

()

(E)

(3)

On + Oy + Oz + Ogenerated + Change in 2-6 of element

(-Kndydz ot)+(-kydrdz ot)+(-kzdydz ot) + (Q'dndydz)

2 [-Kudydzðtsk + & (-Kudydzðt)dn] +
[-Kydndzðtsy + & (-Kydndzðtsy)dy] +
[-Kzdydxðtsy + & (-kydndzðtsy)dy] +

(fidudydz) cottoz

Q'dudyar = (3 dudyde) c 27/12 1 30,000

Conduction Heat

fouriers condition

Isotropic material, knokyzkozk constant.

$$\left|\left\{\frac{\partial^2 T}{\partial n^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right\} + 0^\circ = \int C \frac{\partial T}{\partial z} Z$$

$$\frac{\partial^2 T}{\partial u^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{Q^{\bullet}}{1e} = \frac{\int \mathcal{L}}{1e} \cdot \frac{\partial T}{\partial z} = \frac{1}{Q} \cdot \frac{\partial T}{\partial z}$$

It = thermal diffusivity (x)

Oct 06,14 No heatgreth, Steady state

. Steady state, 0.75 No heat generation, 0.20

one dimensional T=TCn)

$$\frac{d^2T}{dn^2} = 0.$$

The governing eqn is $\frac{d^2T}{du^2} = 0$

integrating, dTan = C1

integrating again, T= Cxx + l2

Boundary Conditions are:

17, N20, T2T, ; T1262

il7 122, T= T2; T2 = C1L+C2

$$C_{1} = \frac{T_{2} - T_{1}}{L} = -\frac{T_{1} - T_{2}}{L}$$

(3) (3) (4)

0

0

0

() ()

x (9 (0 (0

9

() ()

)

9

(9

)

*** ****

$$T = -\frac{T_1 - T_2}{L} \times + T_1$$

The probability of the wall.

The shape = $-\frac{(T_1 - T_2)}{L}$

Also slope = $-\frac{(T_1 - T_2)}{L}$

$$T - T_1 = -\frac{(T_1 - T_2)}{L}$$

The probability in the state generation of temp. distribution the shape in the shape in

$$\frac{d^2T}{dn^2} = -96$$

at centre 120, Tz Tmax z To

$$T_0 = C_2$$

$$Tz-Q \cdot \frac{n^2}{2} + T_0$$

$$T_6 - T = \frac{Q}{k} \cdot \frac{n^2}{2}$$

nztl, To-Tw = Q 1/2

$$\frac{\overline{\int_{6}^{-}}\overline{\int_{6}^{-}}\overline{\int_{10}^{-}}=\frac{\varkappa^{2}}{L^{2}}$$

alimensional lus no.

Integrating, $K_0(1+\alpha T)\frac{dT}{dx} = C_1$

Integrating again, kolT+ at)= (1x+12

Boundary conditions are

$$K_0(T_2+\alpha T_{2/2}^2)=C_1L+R_0(T_1+\alpha T_{1/2}^2)$$

$$C_1 \geq \frac{K_0(T_2-T_1)}{L} \left[1+\alpha\left(\frac{T_1+T_2}{2}\right)\right]$$

$$\frac{1}{1} \left(\left(T_{1} + \alpha \frac{T_{1}^{2}}{2} \right) = -\frac{1}{1} \frac{1}{1} \left(T_{1} - T_{2} \right) \left(1 + \alpha \frac{T_{1} + T_{2}}{1} \right) - \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \right) \\
+ \frac{1}{1} \frac{1}{1} \left(T_{1} - T_{2} \right) \left(1 + \alpha \frac{T_{1} + T_{2}}{1} \right) - \left(T_{1} + \alpha \frac{T_{1}^{2}}{2} \right) = 0$$

$$\frac{1}{1} \frac{1}{1} \frac{$$

-1+(1+&T2) = T2

(3)

*

(3)

()

()

(8)

(<u>;</u>)

.0

()

. ()

()

()

()

(3)

6E)

 (\cdot)

ű

()

gastino e pag

()

()

()

0

(

Cylindrical Co-ordinates

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial 3^2} + \frac{\partial}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial Z}$$

$$\frac{\partial T}{\partial n} \ge \frac{1}{2} (n, 0)$$

$$\frac{\partial T}{\partial x} \ge \frac{\partial T}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial T}{\partial y} \cdot \frac{\partial y}{\partial x}$$

$$\frac{\partial Q}{\partial L} = \frac{\partial S}{\partial L} \cdot \frac{\partial Q}{\partial X} + \frac{\partial Q}{\partial L} \cdot \frac{\partial Q}{\partial A}$$

$$\frac{\partial T}{\partial r} = \cos \theta \frac{\partial T}{\partial x} + \sin \theta \frac{\partial T}{\partial y} \times \cos \theta / \sin \theta$$

$$\frac{\partial T}{\partial x} = \cos \theta \frac{\partial T}{\partial x} + \sin \theta \frac{\partial T}{\partial y} \times \cos \theta / \sin \theta$$
thus,

Oct 07,14

(

(3)

()

()

(3)

()

(1)

()

()

٩

€9 €4

()

()

()

$$(0.50 \frac{3}{37} - \frac{500}{7} \frac{30}{70} = \frac{30}{32}$$

$$\frac{\partial u}{\partial r} = \cos \theta \frac{\partial r}{\partial r} - \frac{\partial u}{\sin \theta} \frac{\partial \theta}{\partial r}$$

$$\frac{\partial^2 T}{\partial n^2} = \frac{\partial}{\partial n} \left(\frac{\partial T}{\partial x} \right) = 6000 \frac{\partial}{\partial n} \left(\frac{\partial T}{\partial n} \right) - \frac{\sin \theta}{\delta} \frac{\partial}{\partial \theta} \left(\frac{\partial T}{\partial k} \right)$$

$$\frac{\partial^2 T}{\partial n^2} = 650 \frac{\partial}{\partial x} \left(\cos 0 \frac{\partial T}{\partial x} - \frac{\sin 0}{x} \frac{\partial T}{\partial 0} \right) - \frac{\sin 0}{x} \left(\cos 0 \frac{\partial T}{\partial x} - \frac{\sin 0}{x} \frac{\partial T}{\partial 0} \right)$$

=
$$\cos \theta \left[\cos \theta \frac{\partial^2 T}{\partial \theta^2} + \frac{\sin \theta}{r^2} \frac{\partial T}{\partial \theta} - \frac{\sin \theta}{r} \frac{\partial^2 T}{\partial r \partial \theta}\right]$$

$$-\frac{\sin\theta}{2}\left[-\frac{\sin\theta}{\partial r} + \cos\theta\frac{\partial^2T}{\partial \theta\partial r} - \frac{\cos\theta}{2}\frac{\partial T}{\partial \theta} - \frac{\sin\theta}{2}\frac{\partial^2T}{\partial \theta^2}\right]$$

$$\frac{\partial^2 T}{\partial n^2} = \cos^2 \Theta \frac{\partial^2 T}{\partial r^2} + \frac{\sin \Theta \cos \Theta}{\delta r} \frac{\partial T}{\partial \theta} - \frac{\sin \Theta \cos \Theta}{2r} \frac{\partial^2 T}{\partial \theta} + \frac{\sin^2 \Theta}{2r} \frac{\partial T}{\partial \theta}$$

$$\frac{\partial T}{\partial y} = \sin \theta \frac{\partial T}{\partial x} + \frac{\cos \theta}{x} \frac{\partial T}{\partial \theta}$$

$$\frac{\partial^2 T}{\partial y^2} = \sin \theta \left(\sin \theta \frac{\partial^2 T}{\partial \theta^2} + -\frac{\cos \theta}{7^2} \frac{\partial T}{\partial \theta} + \frac{\cos \theta}{7} \frac{\partial T}{\partial 7 \partial \theta} \right)$$

$$+\frac{\cos\theta}{2}\left(\cos\theta\frac{\partial T}{\partial x}+\sin\theta\frac{\partial^2 T}{\partial \theta^2}-\frac{\sin\theta}{2}\frac{\partial T}{\partial \theta}+\frac{\cos\theta}{2}\frac{\partial^2 T}{\partial \theta^2}\right)$$

()

()

()

0

 \bigcirc

0

0

()

()

0

()

()

()

()

$$\frac{\partial^2 T}{\partial y^2} = \frac{\sin^2 \theta}{\partial x^2} - \frac{\sin \theta \cos \theta}{\partial x^2} + \frac{\cos^2 \theta}{\partial x^2} + \frac{$$

$$\left[\frac{\partial^2 T}{\partial \theta^2} + \frac{1}{7} \frac{\partial T}{\partial \theta} + \frac{1}{7^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2}{\partial \theta^2} + \frac{\partial^$$

$$\frac{\partial^2 T}{\partial r^2} + \frac{\partial T}{\partial r} = 0$$

$$\frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = 0$$

Integrating again, TzCIlnrtC2

Boundary conditions!
$$T_{z} = C_{1} \ln r_{1} + C_{2}$$

 $8z = 7z$, $T_{z} = T_{2}$; $T_{z} = C_{1} \ln r_{2} + C_{2}$
 $T_{1} - T_{2} = C_{1} (\ln r_{1} - \ln r_{2})$

$$T_{1} = -\frac{T_{1} - T_{2}}{\ln 32} \ln 31 + C_{2}$$

$$C_{2} = T_{1} + \frac{T_{1} - T_{2}}{\ln 32} \cdot \ln 3_{1}$$

()

(3)

٨

٩ (3)

(

3

3

)

(ز

٩

.)

)

•

$$\frac{T_1-T_2}{\ln \gamma_{\delta_1}^2}\cdot \ln \gamma_{\delta_1}^2=T_1-T$$

$$\frac{\ln \frac{7}{7}}{\ln \frac{82}{7}} = \frac{T_1 - T}{T_1 - T_2}$$
 Dimensionless no.

$$Q = -kA \frac{dT_{dY}}{s=v_1}$$

$$= -k\left(\frac{2\pi v_1}{l}\right)\left[\frac{-T_1-T_2}{ln^2 r_1}\right] \cdot \frac{y_1}{r} \cdot \frac{1}{r} \cdot \frac{1}{r} \cdot \frac{y_2}{r-v_2}$$

$$= \frac{T_1-T_2}{ln^2 r_1} \cdot \frac{1}{ln^2 r_1} \cdot \frac{y_1}{r} \cdot \frac{1}{r} \cdot \frac{y_2}{r-v_2}$$

Solid pipe wid heat generation:

Solid PIPE Wid heat generation:
$$\frac{\partial^2 f}{\partial v^2} + \frac{1}{r} \frac{\partial f}{\partial v} + \frac{\partial f}{\partial v} = 0$$

$$\frac{\partial^2 f}{\partial v^2} + \frac{\partial f}{\partial v} + \frac{\partial f}{\partial v} + \frac{\partial f}{\partial v} = 0$$

$$\frac{\partial^2 f}{\partial v} + \frac{\partial f}{\partial v} + \frac{\partial f}{\partial v} + \frac{\partial f}{\partial v} = 0$$

$$\frac{\partial^2 f}{\partial v} + \frac{\partial f}{\partial v} + \frac{\partial f}{\partial v} + \frac{\partial f}{\partial v} = 0$$

 $r\frac{dT}{dx} = -\frac{Q'}{R} \frac{\gamma^2}{2} + C_1$

 $\frac{dT}{dx} = \frac{Q}{Q} + \frac{C_1}{2}$

dgen = Q. L. ET

 \circ

0

0

$$\frac{\partial^2 T}{\partial \theta^2} + \frac{1}{3} \frac{\partial T}{\partial y} + \frac{1}{3^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z} + \frac{\partial^2$$

$$\frac{\partial T}{\partial y^2} + \frac{1}{y} \frac{\partial T}{\partial y} + \frac{Q^{\circ}}{k} = 0$$

$$\frac{\partial^2 T}{\partial y^2} + \frac{\partial T}{\partial y} + \frac{Q^{\circ}}{k} = 0$$

Octobily integrating
$$r d \overline{d} r = -\frac{Q^2}{K} \frac{V^2}{2} + C_1$$

$$T_{\omega} = -\frac{Q^{*}}{1} \cdot \frac{R^{2}}{4} + C_{2}$$

$$T = -\frac{Q}{K} \cdot \frac{R^2}{4} + T_6$$

$$T = -\frac{Q}{K} \cdot \frac{R^2}{4} + T_6$$

To-Tz 0° p² remp distribution egn along the reading of the cylinder.

a =-KAdJorfrze

84.19

1 Z-1<(2178L)

$$\left| \frac{T_0 - T}{T_0 - T_W} - \frac{\gamma^2}{R^2} \right|$$
 Dimensionless no.

١

(3)

(4)

(E)

(3)

(4)

(3)

€.)

()

(

()

(*) (ji)

(3)

S

ri ja

• 🍥

93

::t.,

٩

0

0

0

20m Insulation

thickness of insulation.

$$Q = \frac{T_i - T_o}{\left[\frac{1}{312177L} + \frac{1}{102172L} \ln \frac{\gamma_i}{\gamma_1} + \frac{1}{h_o 2172L}\right]}$$

For Q to be maxim, the Rt Ce Denominator should be minim. Ear Rt to be minim. 'ARt - a 1 12Rt

Ear Rt to be minm,
$$\frac{dRt}{dr_2} = 0.4 \frac{d^2Rt}{dr_2} = +ve$$

$$\frac{dk_{b}}{dv_{2}} = 0 + \frac{1}{k_{1}2\pi L} \frac{v_{1}}{v_{2}} \cdot \frac{1}{v_{1}} + \frac{1}{h_{0}x_{2}\pi L} \times \left(-\frac{1}{v_{2}^{2}}\right)^{2} = 0$$

$$\frac{1}{|K_{12}|TL} = \frac{1}{|Y_{1}|} = \frac{1}{|Y_{0}|} \times \frac{1}{|Y_{2}|} = \frac{|Y_{1}|}{|Y_{2}|} = \frac{|X_{1}|}{|Y_{1}|} = \frac{1}{|Y_{1}|} = \frac{|X_{1}|}{|X_{1}|} = \frac{1}{|X_{1}|} = \frac{1}{|X$$

$$\frac{dR_{t}}{ds^{2}} = \frac{1}{k_{1}^{2}m} \left(-\frac{1}{72^{2}}\right) + \frac{1}{h_{0}^{2}m} \cdot \frac{2}{\gamma_{0}^{3}} = \frac{1}{2\pi L} \left[\frac{1}{h_{1}} \cdot \frac{h_{0}^{2}}{h_{0}^{2}} + \frac{1}{h_{0}} \cdot \frac{2h_{0}^{3}}{h_{0}^{3}}\right]$$

$$= \left(\frac{h_0^2}{h_1^3} + \frac{2h_0^2}{k_1^3}\right) \frac{1}{2\pi L} = \frac{1}{2\pi L} \frac{h_0^2}{k_1^3} + ve$$

(B)

(4)

(?)

(1)

(3)

()

()

(3)

.()

()

()

()

(3)

 (\cdot)

્યું)

Đ)

Oct 10/14

Unsteady State

Thermophypical Proporties 1-

$$\frac{\partial^2 I}{\partial n^2} + \frac{\partial^2 J}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\partial^2 T}{\partial x} = \frac{1}{\alpha} \frac{\partial T}{\partial z}$$

Unsteady state, with heat generation, constant thermal conduction 3-dimensional conduction 29

o Thermal Resistance offered for Conduction is neglibly small so here we telk attempted in

Aconvection = Decroase in the Internal energy of the material.

Lumped heat Capacity Method: -

Integrating, In (T-To) = -hA - Z+C,

$$Bi = \frac{hL}{k} = \frac{\frac{L/kA}{L}}{\frac{1}{hA}}$$

Read CO-1 There Nu becons Bi.

MKKg . Ty. n2

Characteristic length, L.

1) Sheet
$$\frac{V}{A} = \frac{\text{cirthat}}{2/\text{arist}} = \frac{t}{2}$$

Sphere Y3HR = R3

(

(3)

(3)

()

:()

()

() ()

(3)

Ó

(3)

()

439

 \Rightarrow 57 Thick plate $\frac{v}{A} = \frac{axb \times t}{2(axb)+2bt+2ab}$

(1) for A composite wall shown below

Case - I - The steady state interface temp is 180°C. if the thickness of layer P is doubted into II) then the rate of hit. Assuming 1-D Heat conduction is reduce by 20

18201- 113401. 111.> 60%. 'NA 70%.

$$Q = \frac{77-72}{2 \times 10^{1} \times 10^{1}} \times \frac{10-71}{2 \times 10^{1} \times 10^{1}} \times \frac{373-453}{4 \times 10^{1}} + \frac{105}{10} \times \frac{320}{2 \times 10^{1} \times 10^{1}} \times \frac{100}{100} \times \frac{100-20}{100} \times \frac{$$

$$Q' = \frac{Sov - 20}{\frac{2t}{k_1} + \frac{2}{k_2}}$$

1. Heat Reduction

$$\frac{Q-Q'}{Q}$$
 x100

$$\frac{t}{|K|} = \frac{320}{Q}$$
, $\frac{\mathcal{H}}{|K_2|} = \frac{160}{Q}$

$$Q^{1} = \frac{500 - 20}{640 + \frac{160}{Q}}$$

Reduction is 40%.

Q7 Two plates of equal thickness t & crossectional Asea are juined together as shown in fig. If the thermal conductivity o

of the plates are k 22k and the effective thormal

()

0 0

0

()

0

0 ()

0

0 ()

()

0

()

()

)

()

()

(j)

(3)

(39

٤

(i)

O.) A slab of threlenns L wid one side nook insulated and the other side not maintained at a constant temp & To as shown. A uniform distributed be interal heat source produces in the slab at the rate of 3 m/m3. Assuming the heat conduction to be steady of J. Dim along the K-direction.

17 Tmax at 2120; 44; 42; L

27 Heat flux at NZL, O, ; SL; SL; SL

$$\frac{d^2T}{dn^2} + \frac{3}{K} = \frac{3}{K}$$

$$\frac{d^2T}{dn^2} + \frac{3}{K} = \frac{3}{K}$$

Integrating, $\frac{dT}{dn} = \frac{s}{1c} n + C_1$ Wall insulated at $n \ge 0$, $0 \ge \frac{\pi}{c} - \frac{KAOIT}{OH} \ge 0$ i.e. $\frac{dT}{dn} \ge 0$

$$-\frac{S}{K}x + C_1 = 0$$

dr = -su

()

0

0

0

0

0

0

()

for maxim temp,

$$\frac{dT}{dn} = 0$$
, $\frac{d^2T}{du^2} = -ve$

so max temp occurs at [120]

2>

0.) 3- him heat conduction is governed by one of the following diff equa

P z volumetric sate of heat generation

The composite wall of-oven is consist of 3 material A, B, LC. under Steady state oppositing elendition the outer 0 0 Surface Tso z 20°C 4 inner surface temp des Tsi =600°C and the 0

oven our temp is some To = 800°c for the following data.

KA = 20W/mk, Rez 300/mk, \$ = 03m, to 20.15m, te = 0.15m.

The inner wall near tounafer coeff is 25 Whish . A theomal Conductivity of KB of a meteral is calculated as

:50

-)

•

(3)

()

()

(8)

(3)

 $\stackrel{\cdot\cdot}{-})$

19

3

3

3

8

$$\frac{6.18}{207A} + \frac{6.18}{100} + \frac{6.18}{5000}$$

$$0 = \frac{200}{20A_1} + \frac{6.18}{80A_2}$$

$$Q = \frac{800 - 20}{\frac{1}{28} + \frac{0.3}{20} + \frac{0.13}{160} + \frac{0.13}{150}}$$

$$\frac{2}{15}$$

$$\frac{200 \times 25}{15} = \frac{780}{\frac{1}{25} + \frac{0.3}{20} + \frac{0.15}{100} + \frac{0.15}{50}}$$

18 = 1.53,

of the healt is 125°C. It is found to cool in air at 25°C. When the temp of the bell is 125°C. It is found to cool at the vate of 4°C/min. If the thermal gradient inside the batte way one neglected. The 1-19°C coeff is 2.034, 20.34, 81.36, 203.4) 1/12°C

hALT-TO) = - SVC dT

	(29)
of a hor cylinder by rate of heat loss. from the surface wo	Insulation !
of a hor cylinder by rate of heat loss. from the surface wo	Woldiercase
17 diereare	•
(ii) fost idecocase then increase	6
ili) Increase	•
iv > first increase then decrease.	
	1.
a) The heat flux from outside to inside across an insula	my wall
wid thermal conducting o'on Wing and mickness oron	MY Eluky
ovid thermal conductivity 0.04 W/mr and thickness 0.16m. The temp of inside wall is -3°C, the outside wall knp is 25°C, 30°C, 35°C, 40°C	e.
78.5 100 C 1 20 C) 10	•
% 10 m/m2	C C
$\frac{Q}{A} = \frac{16A}{A} \frac{T_1 - T_2}{A}$ $\frac{Q}{A} = \frac{Q}{A} \frac{1}{A} \frac{1}$	SE C
A An	
10 = 04 (-5- T2)	•
14.5	
O' 47	
110 0, 4	8
100 A metal ball of radius o-1m at uniform temp of	190°C W 6
When are had 30°C the density & sp. heat of the me	tolary o
he in he was the mark. The m	~ ·

temp gradient inside the wall occur The tym taken in his for the ball to cool at 60'C is S55, 55.5, 0.55, 10.15 M.

- 1) A 10cm dia seem pipe carrying steam at 180°C. cs concred wid an insulation, 1°C z 0.6 W/m²k. It looses heat to the surrounding at 30°C is losseme a h.T coeff of h 208 W/m²k or h.t from surface to surrounding. Neglect wall reststonee or cupy & film resistance of steam of the insulation thickness is 2cm. The rate of heat loss from this insulated pipe will be at
 - as > uninoulated. bs & uninoulated

٩

()

(

(3)(4)(5)(6)

(3)

3

:()

()

ું

6

(i)

()

()

√ું

٩

did < steam with sem insulations.

Oct 14, 14		'/ 'V' '	•	0
	CONVECTI	ON	•	0
	Q=hAD		·	0
		meetive ht coeff	garomatan oleh •••	- @
	· · •	Im coeff.		9
-	7 110	in welt.		0
	51 1 1 C	15- (044)		0
Free Convection	n or Natural Co	nvection (fdiff)	· · · · · · · · · · · · · · · · · · ·	0
Forced Convection	ov :—		•	8
			fluid flow = hydr	m. •
Tree	e specam	ىيەل.	y y um ()	450
Nel	locity. Us	Boundary	Agarbo	··· 8
awid ->	hydrody	namic Boundary laye)	89
-> Us	MY. Uno	1 & Tablest		8
->-	7 × ×	Transitude (William)	•	0
	/ / Lampar	105 Doubles		. 6
	poraldice	167, 2×104	a Velocity gradient	-
	4 = udu	Shear Stock	all kam	. O
	Tandy	7 =)	udy Mary x 8 m2	0
		•	1 squa	9
•	u dunamic	riscosity. In velocity in y		•
Α,	M209"-	in 4	-direction.	Ø
•	$\frac{dq}{dy}$ = change.	in velocity I		0
				8
>> Plow is lami	inar flow		. ,	0
1 . 21 -				0
	flow in	a roups/moving in	groups.	
LOI	ninas — Flow in	1	h	(A.)
Reynold's No.		_	Humiral	0
<u> </u>	Re = Inextia Viscous	forces Ro	$4y = 5 \times 10^3 - 10^6$	0
	Viscous	forces.	$^{6}10^{5}-2\times10^{5}$	0
÷	Enertia monox	10tcus	$10^6 - 2 \times 10^6$	
	moro x	Check Park 10.11		0
				0

Inertia force

(

(1)

(1)

(3)

(3)

(1)

9

()

£.)

(1)

:()

(3)

(원 (원)

(4.3)

(3)

333

(j)

z mars x Accleration.

Visions force

Train S. 35 Sc

Ocond
$$z - kAdT |_{y=0}$$

$$V = hA(Tw-Tw)$$

$$-kAdT|_{y=0} = hA(Tw-Tw)$$

$$-kAdT|_{y=0} = hA(Tw-Tw)$$

$$hz - k dT|_{y=0}$$

$$Tw-Tw)$$

$$\frac{1}{h^2} - \frac{dT}{dy} \frac{1}{y_{20}}$$

$$\frac{1}{(Tw-Tw)}$$

F274) dT1 420 =

0

0

0

0

0

6

0

0

()

0

(

svdzen+2 (svdzen)dy 7 gwdytog (Bwdrdw) Continuity Egn: > mx+ 2 (mx) dx o mn=Sudyd3 -durity z Judydz+ a (Sudyel3)die In ducky. svozdu

 \bigcirc

()

:()

9

Momentum Egn

34 + 34 = 0

as we have to study in n - dreating only n

Mementum Egnin 12-direction only.

Shear-force

Shear-force

Shear-force

S(v+84) u+3y du)dy-1

(u+3u du)

(u+3u du)

velouing

kg xm xm

mo xm xm

[P+3P de)dy-1

[P+3P de)dy-1

Mdy du 2 Thou Visconshian force the flow

[] juttudy du + udu du)dy - surdy]

+ [slux+vou dy+u ov dy)dn-suron]

+ [Slav + & dy dy + wov dy dy) dec

Z [u[ox+34 dy]du-uoy du]+[pdy-(p+op du)dy]

= 6 = Continuityeyn

Sdudy (u(du tow) + (uou + vo dy)]= udy dudy - or dudy

Simematic viscosty

prosure gradient is reflected in the state of the state o

Conservation of honorbum equ

2.5

0

$$\frac{1}{3} \int_{0}^{h} \sin^{3} \frac{1}{3} \ln \left[\int_{0}^{h} \sin^{3} \frac{1}{3} \right] du dy dy du = - \frac{1}{3} \frac{1$$

The Integrand becomes zero after, the hydrodynamic

Boundary layer.

Hence
$$\frac{\partial}{\partial n} \left[\int_0^{\delta} gu[u_{\infty} - u] dy \right] = \frac{\partial u}{\partial g} |_{y=0}$$

Mometum integral

LINS
$$\frac{\partial}{\partial u} \left[\int_0^{\delta} \frac{\partial u}{\partial u} \cdot u_0 \cdot u_0 \left(1 - \frac{u}{u_0} \right) dy \right] = M \frac{\partial u}{\partial u} |_{y=0}$$

$$\frac{\partial u^2}{\partial u} \left[\int_0^{\delta} \frac{u}{u_0} \left(1 - \frac{u}{u_0} \right) dy \right]$$

$$\frac{u}{u_0} = f\left(\frac{y}{s}\right) = G + b\left(\frac{y}{s}\right) + c\left(\frac{y}{s}\right)^2 + d\left(\frac{y}{s}\right)^3$$

Boundary Conditions

$$1) y=0 , u=0 ; iii) y=8, \frac{3u}{3y}=0$$

$$\ddot{u} \Rightarrow y = \delta \quad , \quad u = U_{\infty} \quad ; \quad \dot{v} \Rightarrow \dot{y} = 0 \quad , \quad \frac{\partial^2 u}{\partial u^2} = 0$$

1 from in B.C.

3

:)

(2)

(3)

(3)

(;)

(<u>)</u>.

€).

 (\cdot)

(-)

43

(3) (83)

(B)

(3)

• 🗐

٩

20

$$1 = a + b + c + d$$

$$\frac{\partial u}{\partial y} = u_{\infty} \left(b = \frac{1}{5} + c \cdot 2 \left(\frac{y}{5} \right) = \frac{1}{5} + d^{3} \cdot \left(\frac{4}{5} \right)^{\frac{7}{5}} \right)$$

$$= \frac{u_{\infty}}{5} \left[b + 2c \left(\frac{y}{5} \right) + 3d \left(\frac{y}{5} \right)^{\frac{7}{5}} \right] = 0$$

$$b+2c(\frac{4}{6})+3d(\frac{4}{6})^2=0$$
) co $\frac{4}{6}\neq 0$

(from(iii) B. (

$$\frac{\sqrt{2}4}{\delta y^2} = \frac{400}{\delta} \left[2c \frac{1}{\delta} + 3d \cdot 2(\frac{y}{\delta}) \frac{1}{\delta} \right]$$

$$3d = -b$$

Velocity =
$$\frac{3}{2} \left(\frac{4}{5}\right) - \frac{1}{2} \left(\frac{4}{5}\right)^3$$

Accepting the shape of t

velocity distribution equaling the hydrodynamic boundary layer.

U2049461

0

() ()

0

()

[3[3(1)-12(3)][1-3(3)+2(5)]dy

$$= \frac{3}{4}\delta - \frac{3}{4}\delta + \frac{3}{20}\delta - \frac{1}{8}\delta + \frac{3}{20}\delta - \frac{1}{28}\delta$$

$$\left(\frac{3}{20} - \frac{1}{8} + \frac{3}{20} - \frac{1}{28}\right) \delta = \frac{42 - 35 + 42 - 10}{280} \delta$$

$$z = \frac{39}{286} 8$$

$$\frac{8^2}{n^2} = \frac{280}{13} \frac{\mu \pi}{34.0 \, h^2}$$

$$\frac{8^2}{n^2} = \frac{280}{13} = \frac{1}{3 \ln x}$$

1:020

()

() ()

$$\frac{\delta}{\kappa} = \frac{5.0}{\sqrt{\text{Re}\kappa}}$$

8=Approximate sol of Boundary layer thickness.

Exact Solution.

(a) At flow over a flat plate wich a velocity of 3m/sec at a temp of 27°C. Determine the man flow introduced blueen 20 cm & 30 cm from the reading leading edge of the plate.

.)

;

}

(÷)

۹

(2)

()

()

()

$$- \int_{0}^{8} \int u_{\infty} \left[\frac{3}{2} \left(\frac{4}{8} \right) - \frac{1}{2} \left(\frac{4}{8} \right)^{3} \right] dy$$

$$= \int u_{\infty} \left[\frac{3}{2} \frac{4}{2} \frac{1}{8} - \frac{1}{2} \frac{1}{8} \frac{4}{9} \right] dy$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{8}{8} - \frac{1}{4} \frac{1}{8} \frac{4}{9} \right] dy$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{8}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{8}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{8}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{8}{8} - \frac{1}{4} \frac{1}{8} \right] dy$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right] dy$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} \right]$$

$$= \int u_{\infty} \left[\frac{3}{4} \frac{1}{8} - \frac{1}{4} \frac{1}{8} - \frac{1}$$

U vastiation with BL T vastiation

T vocamation wid in 18th in walty

Prandtl no -> Pr

[Prz1] >> HBL & TBL overlap each other.

Oct 28,14

(3)

(3)

(3)

(1)

(2)

(j.)

(2)

Ç.Ş

ઇ

(3)

• 🟐

Att.

ė

h, convective heat transfer coefficient:

h=f(K,W,L,M,Cp,D]

hzc(kq, uble ud cpest)

Jsm2k = C (Jmk) (mg) b (m) c (kg/ms) d (7/kgk) e (kg/ms) f

J & 1 zate

3 = -1 = -q-b-d

m = -2z - 9 + b + c - d - 3 + c

k > -1 = -a-e

kg 2 0 z d-e+f

4 egn & 6 variables

120+6

1 z a+6+d

2 = 9-b-c+d+3+

ozd-e+f

9 = 1-e ___ (i)

d z-1+e - (ii)

b = f - (ii)

C=-1+1-iv,

$$h = c(k)^{1-e} (u)^{f} (L)^{-1+f} (u)^{e-f} (c_{p})^{e} (c_{p})^{f}$$

$$h = c(k)^{1-e} (u)^{f} (u)^{e-f} (u)^{f}$$

$$\frac{hL}{k} = c(u)^{f} (u)^{f} (u)^{e}$$

$$\frac{hL}{k} = c(u)^{f} (u)^{f} (u)^{e}$$

$$Nu \Rightarrow cRe^{f} R^{e}$$

$$Nu \Rightarrow cRe^{f} R^{e}$$

$$Nu = f(Re, R_{r})$$

ht.C. Depends strongly on Cp & U so write other variables in the term of variable which are the power of Cp & U.

Thermal Boundary layor Thickness:

The sudy Tak

Marso in

Tolar

The sudy of the sudy of

E3, E1, E2 -> Energy enertering.

Applying energy balance:

 $^{\odot}$

(3)

♠

()

(1)

4

٩

()

()

()

()

(ز)

٩

above T.B.L >> T=To so Integral becomis zero after T.B.L

(11)
$$y = 24 \frac{\partial T}{\partial y} = 0$$
, $\frac{\partial T}{\partial y} = (T_w - T_w) \left[b \cdot \frac{1}{\delta_t} + c \frac{1}{\delta_t^2} +$

$$\sqrt{\frac{37}{5n}} + \sqrt{\frac{37}{5y}} = \sqrt{\frac{3^27}{5y^2}} \cdot 20 \cdot 50 \cdot \frac{0^27}{5y^2} = 0$$

$$|V| \quad y = 20 \quad \frac{\partial^2 T}{\partial y^2} = 0 \quad \frac{\partial^2 T}{\partial y^2} = \frac{T_{\infty} - T_{\infty}}{\delta_t} \left[\frac{2c}{\delta t} + \frac{6dy}{\delta t^2} \right]$$

$$0 = \frac{T_{\infty} - T_{\infty}}{\delta t} \left[\frac{2c}{\delta t} \right]$$

$$\left[\frac{2c}{\delta t} \right]$$

()

0

േ

()

⊕ ⊕

0

0

()

0

0

0

()

()

0

()

0

0

0

0

0

4

 \odot

()

0

$$b+d = 1$$

$$b+3d = 0$$

$$-2d = 1$$

$$d = -\frac{1}{2} - \frac{1}{2} = \frac{3}{2} \left(\frac{9}{8t} \right) - \frac{1}{2} \left(\frac{1}{2} \right)^{3}$$

$$\frac{1}{1} - \frac{1}{1} = 1 - \frac{1}{1} - \frac{1}{1} = 1 - \frac{3}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right)^{3}$$

$$\frac{1}{1} - \frac{1}{1} = 1 - \frac{1}{1} - \frac{1}{1} = 1 - \frac{3}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right)^{3}$$

$$\frac{1}{1} - \frac{1}{1} = 1 - \frac{1}{1} - \frac{1}{1} = 1 - \frac{3}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right)^{3}$$

$$\frac{1}{1} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{8t^{3}} \cdot \frac{3y^{2}}{2} \cdot \left(\frac{1}{1} - \frac{1}{10} \right)$$

$$\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$$

Now from egn

Joh [[32 4 - 12 (46)3) (1-32 (46) + 12 (1/4)] dy

$$\int_{0}^{54} \frac{3}{32} \frac{4}{5} - \frac{9}{4} \frac{4}{55} + \frac{3}{4} \frac{4}{55} + \frac{3}{4} \frac{4}{55} + \frac{3}{4} \frac{4}{55} - \frac{4}{55} \frac{4}{55} = \frac{4}{55} \frac{4}{55} = \frac{4}{5$$

$$D \left[\frac{3}{28} \frac{y^2}{2} - \frac{9}{4} \frac{1}{584} \frac{y^3}{3} + \frac{3}{4} \frac{1}{584^3} \frac{y^5}{6} - \frac{1}{2} \frac{1}{13} \frac{y^4}{4} + \frac{3}{4} \frac{1}{5^3 54^3} \frac{y^5}{7} \right]$$

٩

() **

(3)

0

()

(3)

(:)

(1)

(ii)

()

÷()

 (\exists)

() ()

(يَ

(المنتبع

(3)

٨

<u>(</u>

$$\left[\frac{3}{20}\gamma(88)+\left(\frac{1}{20}+\frac{3}{20}-\frac{1}{28}\right)\gamma^{3}(88)\right]$$

$$\frac{\partial}{\partial n} \left[\frac{3}{20} \chi^2 \delta \right] = \frac{3\alpha}{24064} = \frac{3\alpha}{24088}$$

$$8^2 = \frac{280}{13} \frac{n^2}{34n^2} \Rightarrow \frac{280}{13} \frac{4n}{3400}$$

$$\frac{2838}{\partial n}$$
 $=$ $\frac{280}{13} \frac{M}{340}$

Now eqn (c) becomes :-

$$\left| \gamma^3 + 4\gamma^2 \chi \frac{\partial \gamma}{\partial \kappa} - \frac{13}{14} P_{\gamma} \right| = 0$$

Cubical In' with differential.

$$\text{let} \quad \gamma^3 - \frac{13}{14R} = 0$$

; variable Separation. 1 = by 4ny

Czconstant

to find C.

if given in question, du consider it rest x020 (start form hore)

$$n=n_6$$
, $\delta_t = 0$, $\delta_z = \frac{8t}{8} = 0$

٩

- (Šģ

() (**)

(3)

(3)

(3)

(3)

(4)

(3)

(%)

- (*)*

(1)

 $(\hat{\cdot})$

(9) (3)

(3)

٩

(iii)

٨

Ō

٧

erio erio

*

$$y^3 - \frac{13}{14 \, Pr} z - \frac{13}{14 \, Pr} \, \chi_0^{3/4} - \chi_0^{3/4}$$

$$1\frac{1}{1}$$
 $N_0 = 0$, $\gamma^3 = \frac{13}{1487} = \frac{1}{1.676987}$

()

(3)

()

is
$$Pr > 1$$
, $r < 1$, means $S_t < 8$
ii) $Pr > 1$, $r > 1$, $S_t > 8$
iii) $Pr < 1$, $r > 1$, $S_t > 8$.

$$h = -k \frac{\partial T}{\partial y}|_{y=0}$$

$$T_{u} - T_{o}$$

$$\frac{T-T_{io}}{T_{io}-T_{io}} = \frac{3}{2} \left(\frac{y}{\delta t}\right) - \frac{1}{2} \left(\frac{y}{\delta t}\right)^{3}$$

$$\frac{\partial T}{\partial y} = (T_{\infty} - T_{\omega}) \left[\frac{3}{2} \frac{1}{\delta_{t}} - \frac{1}{2} \frac{1}{\delta_{t}^{3}} 3y^{2} \right]$$

$$\frac{\partial T}{\partial y} = \frac{3(T_{\infty} - T_{\omega})}{2 \, \delta t}$$

$$h = \frac{-k \frac{3}{2} \left(\frac{T_{\infty} - T_{\omega}}{\delta_{t}} \right)}{T_{\omega} - T_{\omega}}$$

$$h = \frac{3}{2} \cdot \frac{K}{8.8} = \frac{3K}{2 \cdot 1025} Pr^{1/3}.8$$

h = 0.331 K/x · Rex 1/2 . R//3

Nun = 0.331 Rex 1/2. Pr/3

local Nursell No.

٩

**)

Very fort Nun 2 0.332 Ren 1/2-Pr/3 Enact

at a given distance x to find out local he local k-at a given olistanæ x

hang over the entire length of plate.

Ang value of Nusselt No. i.e. Nur over the plate

Nu: 20-332 Re 88 Numy 20:614 Respons

hy= local convective h.t

Pressure forces - Viscous shear force

$$\pi \gamma^2 d\rho = 72\pi r du$$

$$du = \frac{Y}{2\mu} d\theta_{\mu}$$

$$\frac{U_0 = -\frac{R}{4\mu} dR}{\frac{U}{u_0} = 1 - \frac{8^2}{R^2}}$$

dez-ve of the of the structure gradien

C

0 0 0

0

9

()

by can't be -vo ()

velocity can't be -ve on here de in is -ve

Rz Pipedia rz Loculm dia

. **(**

(3)

٥

*

(A)

(1)

(3)

0

(*)

()

 \odot

(3)

(3)

(3)

(E)

() ()

()

.)

(ij)

3

æ)

=
$$32\pi U_0 \int_0^R \left\{ \frac{\chi^2}{2} - \frac{\chi^4}{4R^2} \right\}_0^R$$

$$= 32\pi u_0 \left\{ \frac{R^2}{2} - \frac{R^2}{4} \right\}$$

$$\frac{\delta}{\delta k} \left(\lambda \frac{\delta L}{\delta k} \right) = \frac{\delta C^b}{k} \cdot r \cdot \lambda \frac{\delta L}{\delta u}$$

$$\frac{1}{1} \frac{\partial}{\partial x} \left(x \frac{\partial x}{\partial x} \right) = \frac{1}{1} \frac{\partial x}{\partial x}$$

$$\frac{\delta}{\delta x} \left(x \frac{\delta I}{\delta x} \right) = \Omega_0 \left(1 - \frac{\lambda_3}{\lambda_3} \right) x \frac{1}{\alpha} \frac{\delta I}{\delta x}$$

Integrating,
$$\chi \frac{\partial T}{\partial x} = u_0 \left(\frac{\chi^2}{2} - \frac{\chi^4}{4R^2} \right) \frac{1}{\alpha} \frac{\partial T}{\partial \kappa} + C_1$$

Integrating again,

Parabay Cordino

$$\Upsilon = R$$
, $T = T_{W}$ $T_{W} = U_{0}\left(\frac{R^{2}}{4} - \frac{R^{2}}{16}\right)\frac{1}{24}\frac{\partial T}{\partial n} + C_{2}$

$$e_2 = T\omega - \frac{3}{16}k^2 \frac{1}{d} \frac{\partial T}{\partial n}$$

$$T = V_0 \left(\frac{N^2}{4} - \frac{\gamma^4}{16R^2} \right) \frac{1}{2} \frac{\partial T}{\partial x} + T_w - \frac{3}{16} U_0 R^2 \frac{1}{24} \frac{\partial T}{\partial x}$$

$$T = T_{\omega} + U_{0} \left(\frac{\chi^{2}}{4} - \frac{\chi^{4}}{16R^{2}} - \frac{3}{16}R^{2} \right) \frac{1}{\alpha} \frac{\partial T}{\partial k}$$

$$T = T_w + \frac{4 \log^2 \left(\frac{\gamma^2}{R^2} - \frac{\gamma^4}{4R^4} - \frac{3}{4}\right) \frac{1}{\alpha} \frac{\partial T}{\partial n}}{\log^2 n} + \log^2 n \frac{drdnihidon}{\log^2 n}$$

Mixing Cuplerp.

Bully Enthalpy

(E)

(3)

() ()

()

3

٨

*

3)

(4)

9

Bulla Enthalpy 2 Bulk mous x Sp. heat x Mean Bulk Temp.

Mean Bulk Pemp! -

Mean Bullstemp z Bulk Enthalpy Bulk mass x Sp heat

$$T_b = \frac{\int_0^R (8u2\pi r dr) G_R T}{\int_0^R (8u2\pi r dr) G_R} = \frac{\int_0^R U T_r dr}{\int_0^R u r dr}$$

$$\frac{1}{2} \int_{0}^{R} u r dr$$

$$= \int_{0}^{R} u_{0} \left(1 - \frac{8^{2}}{R^{2}}\right) r dr$$

$$= u_{0} \left[\frac{8^{2}}{2} - \frac{8^{4}}{4R^{2}}\right] R dr$$

$$= u_{0} \left[\frac{R^{2}}{2} - \frac{R^{2}}{4}\right] = u_{0} \frac{R^{2}}{4}$$

$$\int_{0}^{R} u T r dr = \int_{0}^{R} u_{0} (1 - 8 \frac{2}{R^{2}}) \left[T_{w} + \frac{u_{0} R^{2}}{4} \left(\frac{y^{2}}{R^{2}} - \frac{y^{4}}{4R^{4}} - \frac{3}{4} \right) \frac{1}{\alpha} \frac{\delta T}{\delta R} \right] dr$$

$$= u_{0} \int_{0}^{R} \left[8 - \frac{x^{3}}{R^{2}} \right] \left[T_{w} + \frac{u_{0} x R^{2}}{4} \left(\frac{x^{2}}{R^{2}} - \frac{y^{4}}{4R^{4}} - \frac{3}{4} \right) \frac{1}{\alpha} \frac{\delta T}{\delta R} \right] dr$$

$$= u_{0} \int_{0}^{R} \left[8 - \frac{x^{3}}{R^{2}} \right] \left[T_{w} + \frac{u_{0} x R^{2}}{4} \left(\frac{x^{2}}{R^{2}} - \frac{y^{4}}{4R^{4}} - \frac{3}{4} \right) \frac{1}{\alpha} \frac{\delta T}{\delta R} \right] dr$$

$$= U_0 \int_0^R \left[\left(\gamma - \frac{\gamma^3}{R^2} \right) T_{10} + \frac{U_0 R^2}{4} \left(\frac{\gamma^3}{R^2} - \frac{\gamma^5}{4R^4} - \frac{3}{4} \gamma - \frac{\gamma^5}{R^4} + \frac{3^3}{4R^6} + \frac{37^3}{4R^2} \right) \right] \frac{\delta T}{\delta x \ln R^2}$$

$$= U_0 \left[\left(\frac{\chi^2}{2} - \frac{\gamma^4}{4R^2} \right) T_{10} + \frac{U_0 R^2}{4} \left(\frac{\gamma^4}{4R^2} - \frac{\gamma^6}{24R^4} - \frac{3\gamma^2}{8} - \frac{\gamma^6}{6R^4} + \frac{\gamma^8}{32R^6} + \frac{3\gamma^4}{16R^2} \frac{|\Sigma|}{R^2} \right) \right]$$

$$= U_0 \left[\left(\frac{R^2}{2} - \frac{R^2}{4} \right) T_{10} + \frac{U_0 R^2}{4} \left(-\frac{R^2}{4} \right) \frac{1}{4} - \frac{3}{8} - \frac{1}{6} + \frac{1}{32} + \frac{3}{16} \right) \frac{1}{4} \frac{\delta T}{\delta R} \right]$$

$$= U_0 \left[\left(\frac{R^2}{4} \right) T_{10} + \frac{U_0 R^2}{4} \frac{R^2}{4} \left(-\frac{11}{96} \right) \frac{1}{4} \frac{\delta T}{\delta R} \right]$$

$$= \frac{U_0 R^2}{4} \left[T_{10} + \frac{U_0 R^2}{4} \left(-\frac{11}{96} \right) \frac{1}{6} \frac{\delta T}{\delta R} \right]$$

Heat flux remains constant

$$\frac{\text{K} \frac{\text{Yol}^2}{\text{Y}} \cdot \frac{1}{\text{R}} \cdot \frac{1}{\text{Q}} \frac{\text{J}}{\text{J}} = \frac{11}{3624} \frac{\text{Yok}^2}{\text{J}} \frac{1}{\text{J}} \frac{\text{J}}{\text{J}}$$

$$\frac{hD}{k} = \frac{48}{11} = 4.364$$

©

.... (3)

Ny = 4.364

How is Caminar, Heat flux cerossthe wall remains consto

laminer flow, Tube wall temp constant.

Nu = 3.66

Turbultent flow in a tube

Nu = 0.023Re 0.8 Bh

Dittus Boeller Egn

Nz 0.4 for heating n 203 fer cooling

Q7 for laminer flow in a tube for constant heat flyn condition hwalt no is approximately equal to 4.36, 3.66, 5.78, 2

Distaminer flow for constant wall trup. 4.36, 3:64, 5:20, 2

Q7A fluid of thermal conductivity the 21.0 W/mk flows in a fully developed from wid Re 21500 through a pipe of dia 1cm. A HT coeff (h) ou (uniform heat flux & uniform wall temp) boundary conditions one respectively 36.57, 43.64; 43.64, 36.57; 48.64 for both case; 36.57 for both the cases.

-> laminor flow.

2.) The nu no is related to Re no. in laminar and hunbulent flow Re^{-1/2}, Re⁰⁸; Re^{1/2}, Re^{0.8}; Re^{1/2}, Re^{1/2}, Re^{1/2}, Re^{1/2}, Re^{1/2}, Re^{1/2}

()

()

 (\cdot)

(i)

()

 \odot ...)

3

:3)

(3)

Nov03,14

Heat Enthanger

Hot fluid

Parallel flow ME & Co-currend Mb.

Counter flow HE or

Cross flow

Parallel flow thips of hubes both can be used)

QzmhCh(Thi-The) zmccc(Tc2-Tca)

Q = UA(AT) mean

Overall M.T.coeff 12/m2k.

()

S

(2)

0

(

C

C

9

0

.

6

()

.0

e s

ું

()

(D)

0

C

(°)

()

0

()

9

A

(

(1)

- 100

3

(3)

(3)

٩

(3)

(3)

3

3

3

•

()

•)

9

)

ં)

3

3)

)

$$dt_h = -\frac{80}{\text{meCh}}$$

$$\frac{1}{c \ln - d \cdot T_c} = 80 \left(\frac{1}{m_h c_h} - \frac{1}{m_e c_c} \right)$$

$$d \left(\frac{1}{m_h c_h} - \frac{1}{m_h c_h} \right) \left(\frac{1}{m_h c_h} + \frac{1}{m_h c_h} \right)$$

$$\int_{1}^{2} d\frac{(T_{n}-T_{c})}{(T_{n}-T_{c})} = \int_{1}^{2} -UdA\left(\frac{1}{m_{h}c_{h}} + \frac{1}{m_{c}c_{c}}\right)$$

$$\ln \frac{T_{h_2}-T_{c_2}}{T_{h_1}-T_{c_1}} = -U\left(\frac{1}{m_h c_h} + \frac{1}{m_c c_c}\right)A$$

= UA
$$(T_{n_1}-T_{c_1})-(T_{n_2}-T_{c_2})$$

$$\ln \frac{\Delta T_1}{\Delta T_2} = UA \frac{(\Delta T_1 - \Delta T_2)}{Q}$$

$$Q = UA \left(\Delta T_1 - \Delta T_2 \right) \frac{1}{4n \, \delta T_1 \Delta T_2}$$

$$(\Delta T)_{\text{mean}} = \frac{\Delta T_1 - \Delta T_2}{h \Delta T_1/\Delta T_2}$$

Logorithmic tempdett.

Counter flow

(only hukes one hubes)

Q = my(n (Tm-Tm) = melc (Tc, -Tc)

$$SQ = -m_h c_h dT_h$$
, $dT_h = -\frac{SQ}{m_h c_h}$

$$dT_h - dT_c = -SQ \left(\frac{1}{m_h e_h} - \frac{1}{m_c c_c} \right)$$

d(Th-Tc) = -UdA(Th-Tc) (Imnen - Image)

()

0

(2)

0

9

9

0

0

fines

Th1, Th2, Tc1, T122 Cost

(LMTD) countr is more (han(LMTD) paralled

for courter, (heate dette is some then that diff

6 LMTD,

0

•

0

•

8

0

6

0

8

0

$$\frac{\ln \frac{T_{h_1}-T_{c_1}}{T_{h_2}-T_{c_2}} = OA \left[\frac{T_{h_1}-T_{h_2}}{Q} - \frac{T_{c_1}-T_{c_2}}{Q} \right]$$

$$Q = UA \frac{\Delta T_1 - \Delta T_2}{\ln \Delta T_1 \Delta T_2}$$

Som in consister or possally

(3)

(3)

()

(

(3)

(<u>)</u>

(1)

()

(<u>)</u>

(<u>)</u>

3

...)

(3)

() ()

3

(3) (3)

(بير

Ð

٧

-)

mn = 10 159/s Cn = 4k3/19k DTn = 20k M = 300

80'C DEN 10'C

mc z 13) cg/s cc z 16/4 ha/hyk. pr z 30°C

of flow inchange.

30'

30'

30'

30'

40'

40'

Q?

40 50°C 40 20°C LMTD 2 7.

= UA (DT) mean

= UA (DT, -DT2)

In DT/AT2

40'c is mean temp diff.

Effectiveness of the H.E Pavallel flow

= Actual heat tounsfer Maximum heat tounsfer

Z mach (Thi-Thz) or mcc(Ez-Ter) Tu Tcz?

(mc) (Thi-Tci)

Cold fluid to the minm fluid $G_{c} = \frac{m_{c}C_{c}(T_{c_{1}}-T_{c_{1}})}{(m_{c})_{cold}(T_{h_{1}}-T_{c_{1}})}$

0

(i)

্

0

0

0

C

(2)

6.2

. .

0

0

0

()

0

0

8

0

0

. (3)

0

0

ව

0

٥

0

NTUZN,

$$Q = m_h c_h (T_{h_1} - T_{h_2}) = m_c (c (T_{c_2} - T_{c_1}))$$

 $T_{h_1} - T_{h_2} = C (T_{c_2} - T_{c_1})$

LHS

()

13)

3)

$$\frac{T_{h_{1}}-T_{c_{1}}}{+\left(T_{h_{1}}-T_{c_{1}}\right)-\left(T_{c_{2}}-T_{c_{1}}\right)-C\left(T_{c_{2}}-T_{c_{1}}\right)}{T_{h_{1}}-T_{c_{1}}}$$

0

0

0

()

1-Explanent E(1+c)

Hot water (0.01m3/min) tube side concurrent shell& Tube 4.6 80°C -> 50°C

cold oil (6.05 m3/min), \$ = 800 kg/m3, C = 2 k 1/kgk enters at 20°C. LMTP 32, 37, 45, 50°C

232°C

at 1 kg/sec from 40°C to 80°C (water). Oil is used for heating the water & ils temp changes from 10°C to 70°C. around heating the water & ils temp changes from 10°C to 70°C. around h.T coeff is U=300 W/m2°C. It is replaced by a 1-2 shell the Tube H. E wid counterflow configuration with water flowing in Shell & oil in tubes. What is the excess area was to doubt pipe 46. The correction factor for LMTD is about 0.5!

• 39

HT coeff remains unchanged and the same inlet & outlet conditions	0
are meintained. CPW = 4180 J/kg'c, CPG1 = 2000 J/kg'c	
the state of the s	0
$2>0$, $-20-18$, $22-6$, $9-69$ m^2	. (2)
	0
100 Los Doublapipe.	0
omby	0
100'L 20' 20' 10' MTB Z 34.7005, I fire Doublapipe chubya on you wan you LMED = (14,8802 Kur 1-2 Sell hibe.	0
	0
2 24.1 %	0
LMID -2 24.86.6	0
Q = UA (LMTD)	0
	· (0)
1 X4180 X 40 = 300 A 24.66 / : He new 2 MTD is I by 0.5 & the new Asen	0
1 by his the him then	0
A = 22-6 m ² (A) by 0 = 2, So change morea = Anew-A	0
	+0
	0
No. A 2 22-6 me	0
1 1 de Coupation Same of	0
Q) A counter flow hit, the poll of man flow rate & spi hoat is same of hot fluid & cold fluid. Determine the effectiveness.	0
hat third & cold fluid. Determine the effectiveness.	0
1W1 1	8
C + C + C + C + C	0
Ez 1- Emp[-N(1-C)]	(3)
1- C Emp[-N(1-C)]	0
	0
CZ Cmin_ mcce _ 1	0
CZ Cmin z McCe = 1	
\cdot	0
N z UA Z UA McCc	()
	○
1 so bant be solved	0
let S-NCroff 2n.	<u>~</u>
	~~·

$$\frac{fz - e^{x}}{1 - (e^{x})}$$

$$= \frac{1 - \left[1 + x + \frac{n^{2}}{4} + \cdots\right]}{1 - c \left[1 + x + \cdots\right]}$$

$$= \frac{-x}{1 - c - cx}$$

$$= \frac{N(1 - c)}{1 - c - cx} = \frac{N}{1 + cx}$$

Water enters a thin walled tube, length Im dia 3mm at an inlet kemp of 97°C 4 The mass flow sate of 0.015 kg/s. A tube nall is maintained at a constant temp of 27°C. Given thermal data.

321 worky 1/2, 129 78 W/2K The order temp of water in "C is 28°C, 37°C

62°C, 96°C

*

٩

(3)

٩

٩

٩

3

(3)

٩

(4)

 \odot

(

3

-)

(<u>)</u>

وفاية

369

353

Q=mcpu(Two-Toi) = UA(LMTD)

LMTD $\frac{2(97-27)(760-27)}{\ln \frac{97-27}{T_{mo}-27}}$ - 37

0

friction.

NOV07,14

H.T wid change in phase

, Filmuise condensation on a Plat Vertical plate for laminar flow, Numbel ! -

Tw < Toot.

$$M\frac{dy}{dy} = (S_2 - S_4) g(8-y)$$

Integration 9

$$U = (\beta_{L} - \beta_{V}) \frac{9}{9} (\delta_{y} - \frac{y^{2}}{2})$$

$$= \frac{s_{L}(s_{L}-s_{V})g(s_{Y}-\frac{y^{2}}{2})dy}{M} = \frac{s_{L}(s_{L}-s_{V})g(s_{Y}-\frac{y^{2}}{2})dy}{M} = \frac{s_{L}(s_{L}-s_{V})g(s_{Y}-\frac{y^{3}}{2})}{M} = \frac{s_{L}(s_{L}-s_{V})g(s_{Y}-\frac{y^{3}}{2})g(s_{Y}-\frac{y^{3}}{6})g(s_{Y}-\frac{y^{3}}{$$

$$n$$
 to $(n+dn)$, $\delta \rightarrow (\delta+d\delta)$

Additional Mars

(B)

(11)

(3)

(%)

(3)

()

(3)

٩

0

.()

6)

(3)

٨

(B) (C)

٩

()

()

(;)

(19)

(503)

ψ.,d

٩

(F)

$$= \frac{d}{dx} \left[\frac{3_1 \left(3_1 - 3_2 \right) g}{u} \cdot \frac{g^3}{3} \right] du$$

$$= \frac{d}{d\delta} \left[\frac{g_L(g_L - g_V)g}{M} \cdot \frac{g^3}{3} \right] \frac{d\delta}{dn} \cdot dn$$

$$\frac{3_{L}(3_{L}-3_{v})9}{M} = \frac{88^{2}}{3} d8$$

Additional ht due to this additional mars: -

Integrating,
$$\frac{3^4}{4} = \frac{K_{\mathcal{L}} L \left(T_g - T_{w}\right)}{s_{\mathcal{L}} \left(s_{\mathcal{L}} - s_{w}\right) g_{hfg}} + C_{l}$$

xzlocating

()

0

local heat tournofer welf. by connection during condensation.

Average h.t. coeff.

for norizontal tube

D

8

$$h = 20.725$$
 [$\frac{32(32-5v)ghgk^3}{urd(tg-Tw)}$] $n_2 n_0 of$ tubes

1.27 anda, In length:

$$\frac{h_{\text{horizontal}}}{h_{\text{Vertical}}} = \frac{0.725}{0.943} \left(\frac{L}{d}\right)^{\frac{1}{4}} = \left(\frac{1}{1.27 \times 10^{2}}\right)^{\frac{1}{4}}$$

to horizontal correngement is better corrangement than vertical.

1005) In film type conducation of liquid along a vertical tube the hickness of the condensate Caper increases towards the bottom. This implies the local hit coeff. Heat when

. C.) see decreases from top to bottom

b) demains constant from top to bottom

ci) first increases I then diexass from top to bottom.

di) incocases from top to bottom

Or Consider a lig-stored in a container exposed to its satisface of 1003 vapour at constant temp Test. The bottom surface of a contain is maintained at a temp Ts which Ts < Test. While the side walls are insulated. The theornal conductivity IXL for the liq. A latent of heat of vaporsization, & Sz are known. Assuming a of the liq layer s. A funds of the liq layer s. A funds of time is give by.

S(t)
$$z \left[\frac{4 \text{ Ke} \left(\text{Test-Ts}\right) t}{\text{Se}\lambda}\right]^{1/2}$$
 $z \left[\frac{\text{Ke} \left(\text{Test-Te}\right) t}{2 \text{ Se}\lambda}\right]^{1/2}$
 $z \left[\frac{2 \text{ Ke} \left(\text{Test-Te}\right) t}{2 \text{ Se}\lambda}\right]^{1/2}$
 $z \left[\frac{k_{L} \left(\text{Test-Te}\right) t}{3, \lambda}\right]^{1/2}$

Nov 11,14

$$\frac{(3A8)\lambda}{t} = \frac{RA(T_{Sat}-T)}{S}$$

$$S^{2} = \frac{R(T_{Sat}-T)}{S\lambda}$$

$$S = \frac{R(T_{Sat}-T)}{S\lambda}$$

$$S = \frac{R(T_{Sat}-T)}{S\lambda}$$

Steam conders has alm press when the tube wall is maintained at a temp of 98°C. A tube dia 1.27cm, l=1m, properlies at the film temp of 99°C or given S_L z 960 kg/em³, M_L z 2.82 ×10⁻⁴ kg/ms; K_L z 6.68 W/mk & hy z 2255 kJ/kg.

The rate of condersation when the tube is kept

"Vertical position"

1> Vertical position 2> Horizontal position.

(

9

ંૈ)

3

___)

•)

્રું)

()

 \cdot

(ز

-

3

<u>(j</u>)

1-1-27 cm

hverteal = 0.943 [S. (32-8,)ghy k3] >4

Q2 TA (Tg-Tw) Is = mhg tyx Try

m = -- 19 x 3600 = kg/m

dz 127cm Lz 1 m Tf z 99°C = <u>98+100</u> Sz z 960 kg/m3 ML z 2.82 ×10⁻¹ kg/mo RL z 0.68 W/mk hfg z 2255 ki J/kg,

0

Boiling (Change in phase)

Boiling & Change in phase

When a surface is exposed to a liquid To > Test of liquid.

is submerged in the liq. If Surface

ex - -Platinum

> heating surface. (submerged in water)

water temp is but corresponding to the Pressure Saturated boding or Bulk boding - it temps of water is That It temp of water - Trut "it "is called as local boiling or subwold Boiling

I when bubbles has been forming the perocess is called Nucleation or Nucleate Boiling

٨

ashort film (visuatione to HT)

In which regimes HT welfrient are high

An electrically heated element is submerged in a pool of water at its saturation temperature. of element inverses the max HT coefficient is observed.

(a) In the free convertion regume

5) Blw a muleate boiling and partial Nucleate boiling mixed with unstable telm boiling regimes

O in incipient Nucleate boiling regune

a) In the stable film to boiling regime without Ségnifi vant effects of vadiation

let 30 kg of cur

29.5 kg is dry aur

0.5 kg is of vapour - moisture water parlicles.

Corresponding

That = 22°C PT = 760 mof Hq $= 0.0267 \, ban$ Pv = 20 mm of Hg Pd= 740 mm of Hg.

€

Nov12,14

Padiation

velocity of home frequency.

All rays are responsible for hit, $\alpha, \beta, \sqrt{2}$ radio wants are not responsible for hit. Sound wones of cell phones are also not responsible for ht.

Wave length longer in Smaller

frequency small

light high we want frequency shad be high.

0.1 to 100 um

Sun core (wore leigh) = 0.1 to 4 lim.

2 20 reflected and abusticed.

Reflectivity, Sz Reflected Q Absorptivity, $\propto z$ Rabsorbed Q

Fransmissivity, Z = Qransmitted

(74)

Black Body:

- -> Dark Coloured Paint,
- -> Lamp Black:-X=0.95

-> Hohlraum

()

(3)

€_)

¢)

()

 $(\dot{\gamma})$

٩

Black Body is a non-reflecting 4 non-transmitting surface.

Gray Body! All the incident radiation is not fully absorbed at a given temp. and is independent of the wavelength.

Black blody depends on the nature of surface, Structure, 2,7, Gray Body is also an Ideal body.

Opaque Body! -

720, X+921

Transparent Body: Diathermanuous
T=1, X = 0,= \$

righty Polished 1 to 0 18

Absolute White Body

Achial surfa

Real white body

Eb z Energy emitted by black body at a given temp for all the wave length per unit area in all the directions.

(Ex) b = Monochromatio A 4 (A+dA)

Emissive power of a body = F/Ib

Plancks Law: -

; ③

(3)

 (\cdot)

for shorter wavelength
$$\frac{ch}{\lambda kT} = \frac{c_2}{\lambda T}$$

$$\frac{Ch}{R}$$
 = Constant = C_2

$$\frac{C_2}{\lambda \tau}$$
 is quite high.

$$E_{\lambda} = \frac{C_{1}\lambda^{-5}}{e^{C_{2}\lambda_{1}}}$$

Weins Law.

for longer wavelengths C2 become quite small.

$$E_{\lambda} = \frac{C_{1} \lambda^{-5}}{\frac{C_{2}}{\lambda T} - 1} = \frac{C_{1} \lambda^{5}}{e^{c_{2} \lambda T} - 1}$$

$$E_{\lambda^{z}} = \frac{C_{1}\lambda^{-5}}{\frac{C_{2}}{\lambda T}}$$

Jean & Rayleigh's law

Stefan Boltzmans Law:

Plancks
$$(E_{\lambda})_{b} = \int_{0}^{\infty} 2\pi c^{2}h \frac{\lambda^{-5}}{e^{\lambda kT_{1}}} d\lambda$$

$$dA = -\frac{C_2}{u^2t} dx$$

$$\frac{1}{2}\int_{0}^{\infty}\frac{\frac{C_{1}}{\left(\frac{C_{2}}{NT}\right)}s}{\left(\frac{C_{2}}{NT}\right)}\frac{\left(-\frac{C_{2}}{N^{2}T}\right)du}{e^{M}-1}$$

$$=\int_0^\infty \frac{C_1}{C_2^4} \cdot T^4 \frac{n^3}{e^{n-1}} dn$$

$$= \frac{C_1}{C_2^4} T^4 \int_0^\infty \frac{n^3}{e^{n-1}} dn$$

for optimised heat toansfer from a black body what should dot a given temp.

$$\frac{d}{d\lambda} \left[\left(E_{\lambda} \right) \right] = 0$$

$$e \frac{d}{d\lambda} \left(E_{\lambda} \right) = -re$$

AT) Z ---

Nov13,14

To determine the maxim value of A, So that (Ex) is maxim.

$$\frac{d}{d\lambda} \left[(E_{\lambda})_{b} \right] = \frac{d}{d\lambda} \left[C_{1} \frac{\lambda^{-S}}{e^{\frac{C_{1}}{2}}} \right]$$

$$= \frac{(e^{\frac{C_{1}}{\lambda^{-1}}}) \left(-5C_{1}\lambda^{-6} \right) - C_{1}\lambda^{-5} \left(-\frac{C_{1}}{\lambda^{2}T} \right) e^{\frac{C_{2}}{\lambda^{-1}}}}{(e^{\frac{C_{2}}{\lambda^{-1}}} - 1)^{-2}} = 0$$

$$(e^{\frac{C_2}{\lambda T_1}})(-5c_1\lambda^{-6})+c_1\lambda^{-\frac{C_2}{\lambda^2T}}\cdot e^{\frac{C_2}{\lambda T}} = 0$$

Divide by $e^{\frac{C_2}{\lambda T}}\cdot c_1\lambda^{-\frac{C_2}{\lambda^2}}$

$$-5 + \frac{5}{6\lambda} + \frac{C_2}{\lambda T} = 0$$

$$\frac{1}{5} \cdot \frac{C^2}{\lambda T} + \frac{c}{2} - 1 = 0$$
Let
$$\frac{c_2}{\lambda T} = \lambda , \frac{\kappa}{5} + \frac{c}{2} - 1 = 0$$

$$n_{2}$$
 n_{2} n_{3} n_{4} n_{5} n_{5

Con Ch

$$Q = 6T^4 = 5.67 \times 10^{-8} \times (5794)^4$$

= 6.389×10^7
= $63.9 \times 10^6 \text{ N}$
= $63.9 \times 10^6 \text{ N}$

 \bigcirc

(

a> A Hin metal plate of 5 cm dia is suspended in air at a temp of 25% Radiation energy of 3.25 W. falls from a furnance wall on one phe face of the plate. The hit coeff of the plate is estimated as 93 W/m² K . The plate attains a steady temp of 30°C. Find the reflectivity of . The plate attains a steady temp of 30°C. Find the reflectivity of . 1st.

the plate

۱

(

(3)

(

86

٩

()

()

()

وي

3

h = 93W/m2k

Reflectivity of he plate: !

FUTOTON DE SOUTO SOUTO DE SOUT

Kricheff's Law

Black

Real Surface Non-Blade Surface

Net Heat Exchange (E-XEb)

If both the senfaces are at the seine knp

E-4620

E ZOXED

 $\frac{E_1}{\alpha_1} = \frac{E_2}{\alpha_2} = \frac{E_3}{\alpha_3} = --- = E_6$

«z €

Pre same temp.

Knichoff's Law

	Disk Ostion Still 1988 TABE i Still 1989 telestrisk spragst som en men men still still still still propagagagag	(\mathbb{S})
į.	or (view factor) or (shape factor):	
Amit of	energy emitted from surface (1+ that	reachis Sunface (2)
	Q12 = A, F, 2 6 (T, 4)	\bigcirc τ_i
	Q21 = A2 F21 6 (T24)	· (5 T2)
Net Heat En	change = A1F120T14 - A2F210T24	
Energy	If the two bodies are at the same temp	
	Net Heat Exchange =0, T12T2=:	Tsery.
•	6T4 (AFI2 - AZFI)= 0	
	A,F12-A2F120 GIF40.	

A, F12 Z A2 F21 Perifrocity Theorem

Consider 2 black bodies with surfaces $S_1 L S_2$. Area $1m^2$, $4m^2$. They exchange heart only by radiation. 40% of the energy emitted by S_1 , is occurred by S_2 . The fraction of energy emitted by S_2 . i.e. is received by S_1 is $\frac{0.05}{0.1}$ $\frac{0.4}{0.6}$.

(a) A well insulated hemispherical surfaces readous z Im is shown below

The self new factor. of radiation of hucone Surface (3) is to, 1/2, 2/3, 3/4

· Solv

Free Connection

٩

(4)

(3)

(

(3

(1)

۹

(1)

()

<u>ි</u>

() ()

(..)

(ث)

(2)

3)

Flow is due to density diff. _

h.

S, Cp, U, K, L, B, DT, g

Buoyand force = (J1-J2) g

$$J_{1}-J_{2}=J_{1}-J_{1}\left(1+\beta\Delta T\right)$$

$$=-J_{1}\beta\Delta T$$

J2 BAT

$$J_{1}$$
 1z b+d
 S_{1} -1 z -c-d-2f
 m_{1} - 2 = -30 - C - d+e+f
 $1c_{1}$ -1 z-b-d
 Ky_{1} 0 = 0 - b+ C

0

0

0

0

0

()

()

(C2b-92b-27) (Cz3f-1) h= c[32+ Cb ubit kl-b, 23+1 (BATg)+)

 $\frac{hl}{k}$ 2 C $\int \left(\frac{p^2 L^3 b \Delta rg}{k}\right) \left(\frac{\mu c_p}{k}\right)^b$ Nuzc [ant Ab] 2 c [ampon]

$$\left(\frac{\text{leg}}{\text{m}^3}\right)^2 \text{m}^3 \frac{\text{m}}{\text{S2}} \times \frac{1}{(\frac{\text{leg}}{\text{ms}})^2}$$

Nuz f (cm, Pr)

Nuz ((Gr. Pr) m

Cm. Az Rayleigh No. (Ra)

'smirar flow

9 Plutos Tiles 9 - Nu = 0.54 Ra - Nu = 0.53 Ra

47 br. > 109 - NUZO14Ra33 NU = 0-13 Rq 033 Turbully

Condensation

-;)

(4)

(3)

()

(3)

(3)

٨

(3)

. •()

 (\cdot,\cdot)

()

(ii)

(3)

((()

(3)

(3)

It is defined as phys. process by which a gas or vap. changes into the liq. If the temp. of an object or surface falls below, what is known as down pt-temp. for a given relative humidity of suprounding air.

Dew pt. varies accordinly to the amt of water present in atm, which is known as humidity. That's y in humid condition, condensate

occurs at higher temp.

Evaporation
It is an operation used to condensate a solⁿ of a nem-volable solule & a volable solvent (water generally). A portion of solvent is vaparised to produce to concentrated solⁿ

Capacity

It can be defined as the no. of ky of water (solvent) vapourised or evaporated per hour.

Defined as a no. of kg of solvent evaporated per kg of steam fed to the evaporated. i.e also known as steam economy.