1) I-type:

Used to store
Immediate number
Destination register
Operand
Opcode

15 12 11 9 8 6 5 O

Opcode	Operand	Dest. register	Immediate Number

2) R-type:

	Bits range		U	sed to store	
0-2		0-2 Funct code			
	3-5		Destination register		
	6-8	6-8 Second Operand		ond Operand	
	9-11		First Operand		
12-15			Opcode		
15	12 11	9 8	6 5	3	0

Opcode	1 st operand	2 nd Operand	Dest. Register	Func code
-				

3) J-type:

Bits range	Used to store
0-11	Immediate number
12-15	Opcode

	Opcode	Immediate Number	
15	12	11	0

	11.4.4.1
li	li \$r1, i
	15-12 bits are for opcode (0010)
	11-9 bits are empty.
	8-6 bits are for \$r1.
	5-0 bits are for immediate i
add	add \$r1, \$r2, \$r3
	15-12 bits are for opcode (0000)
	11-9 bits are for \$r2.
	8-6 bits are for \$r3.
	5-3 bits are for \$r1.
	2-0 bits are for funct code (001).
and	and \$r1, \$r2, \$r3
	15-12 bits are for opcode (0000)
	11-9 bits are for \$r2.
	8-6 bits are for \$r3.
	5-3 bits are for \$r1.
	2-0 bits are for funct code (010).
or	or \$r1, \$r2, \$r3
	15-12 bits are for opcode (0000)
	11-9 bits are for \$r2.
	8-6 bits are for \$r3.
	5-3 bits are for \$13.
	2-0 bits are for funct code (000).
neg	neg \$r1, \$r2
licg	15-12 bits are for opcode (0011)
	11-9 bits are for \$r2.
	8-6 bits are for \$12.
	5-0 bits are empty.
	3-0 bits are empty.
load	load \$r1, \$r2
	15-12 bits are for opcode (0100)
	11-9 bits are for \$r2.
	8-6 bits are for \$r1.
	5-0 bits are empty.
	1 ,
store	store \$r1, \$r2
	15-12 bits are for opcode (0101)
	11-9 bits are for \$r2.
	8-6 bits are for \$r1.
	5-0 bits are empty.
move	move \$r1, \$r2
11.000	15-12 bits are for opcode (0110)
	11-9 bits are for \$r2.
	8-6 bits are for \$12.
	5-0 bits are empty.
addi	addi \$r1, \$r2, i
auui	15-12 bits are for opcode (0111)
	11-9 bits are for \$r2.
	8-6 bits are for \$r1.
	5-0 bits are for immediate i

d:	
andi	andi \$r1, \$r2, i
	15-12 bits are for opcode (1001)
	11-9 bits are for \$r2.
	8-6 bits are for \$r1.
	5-0 bits are for immediate i
ori	ori \$r1, \$r2, i
	15-12 bits are for opcode (1000)
	11-9 bits are for \$r2.
	8-6 bits are for \$1.
	5-0 bits are for immediate i.
	5 6 bits the for infinediate i.
ble	ble \$r1, \$r2, i
	15-12 bits are for opcode (1010)
	11-9 bits are for \$r2.
	8-6 bits are for \$r1.
	5-0 bits are for immediate i.
slt	slt \$r1, \$r2, \$r3
310	15-12 bits are for opcode (0001)
	11-9 bits are for \$r2.
	8-6 bits are for \$r3.
	5-3 bits are for \$r1.
	2-0 bits are for funct code (110).
Isl	
131	15-12 bits are for opcode (0000)
	11-9 bits are for \$r2.
	8-6 bits are for \$r3.
	5-3 bits are for \$r1.
	2-0 bits are for funct code (100).
Isr	lsr \$r1, \$r2, \$r3
	15-12 bits are for opcode (0000)
	11-9 bits are for \$r2.
	8-6 bits are for \$r3.
	5-3 bits are for \$r1.
	2-0 bits are for funct code (101).
jump	
, ,	jump i
	15-12 bits are for opcode (1011)
	11-0 are for immediate i.
	11-0 are for illilliediate i.
call	call i
'	15-12 bits are for opcode (1100)
	11-0 are for immediate i.
	11 o are for infinediate i.
rtn	rtn
	15-12 bits are for opcode (1101)
	11-0 are empty.
	<u> </u>

reboot	reboot 15-12 bits are for opcode (1110)
	11-0 are empty.
halt	halt 15-12 bits are for opcode (1111) 11-0 are empty.

Test program 1:

instruction	machine code (binary)	machine code (hex)
li \$r1, 1	0010 000 000 000001	2001
li \$r2, 2	0010 000 001 000010	2042
li \$r3, 10	0010 000 010 001010	208A
add \$r2, \$r1, \$r2	0000 000 001 001 001	0049
ble \$r2, \$r3, -1	1010 001 010 111111	A2BF
slt \$r4, \$r3, \$r2	0001 010 001 011 110	145E
halt	1111 00000000000	F000

Test program 2:

instruction	machine code (binary)	machine code (hex)
li \$r1, 3	0010 000 000 000011	2003
li \$r2, 5	0010 000 001 000101	2045
andi \$r3, \$r1, 3	1001 000 010 000011	9083
ori \$r4, \$r3, 8	1000 010 011 001000	84C8
neg \$r5, \$r4	0011 100 011 000000	38C0
lsl \$r6, \$r5, \$r1	0000 100 000 101 100	082C
lsr \$r7, \$r5, \$r2	0000 101 001 110 101	0A75
halt	1111 00000000000	F000

Test program 3:

instruction	machine code (binary)	machine code (hex)
li \$r1, 6	0010 000 000 000110	2006
li \$r2, 5	0010 000 001 000101	2045
and \$r3, \$r1, \$r2	0000 000 001 010 010	0052
li \$r8, 0	0010 000 111 000000	21C0
store \$r3, \$r8	0101 111 010 000000	5E80
or \$r4, \$r1, \$r2	0000 000 001 011 000	0058
li \$r8, 1	0010 000 111 000001	21C1
store \$r4, \$r8	0101 111 011 000000	5EC0
li \$r8, 1	0010 000 111 000001	21C1
load \$r7, \$r8	0100 111 110 000000	4F80
reboot	1110 000000000000	E000
halt	1111 00000000000	F000

Test program 4:

instruction	machine code (binary)	machine code (hex)
li \$r1, 6	0010 000 000 000110	2006
li \$r2, 4	0010 000 001 000100	2044
call 7	1100 00000000111	C007
move \$r4, \$r3	0110 010 011 000000	64C0
li \$r1, 7	0010 000 000 000111	2007
li \$r2, 8	0010 000 001 001000	2048
call 3	1100 00000000011	C003

move \$r5, \$r3	0110 010 100 000000	6500
jump 3	1011 00000000011	B003
add \$r3, \$r1, \$r2	0000 000 001 010 001	0051
rtn	1101 00000000000	D000
halt	1111 00000000000	F000