RNN & LSTM

Nguyen Van Vinh QAI, Fsoft

Content

- Recurrent Neural Network
- The vanishing/exploding gradient problem
- LSTM
- Applications for LSTM

Sequence Data

- Time Series Data
- Natural Language

Data Source: https://dl.acm.org/doi/10.1145/2370216.2370438

Why not standard NN?

Problems:

- Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.

What is RNN?

A recurrent neural network (RNN) is a type of artificial neural network which used for sequential data or time series data.

Application:

- + Language translation.
- + Natural language processing (NLP).
- + Speech recognition.
- + Image captioning.

Types of RNN

$$h_1 = \tanh(W_{hh}h_0 + W_{hx}x_1)$$

(Unrolled) Recurrent Neural Network

(Unrolled) Recurrent Neural Network

(Unrolled) Recurrent Neural Network

positive / negative sentiment rating

Bidirectional Recurrent Neural Network

Stacked Recurrent Neural Network

Backpropagation for RNNs

Question: What's the derivative of $J^{(t)}(\theta)$ w.r.t. the repeated weight matrix W_h ?

Answer:
$$\frac{\partial J^{(t)}}{\partial W_h} = \sum_{i=1}^t \frac{\partial J^{(t)}}{\partial W_h} \Big|_{(i)}$$

"The gradient w.r.t. a repeated weight is the sum of the gradient w.r.t. each time it appears"

Qui tắc chuỗi đa biến

ullet Given a multivariable function f(x,y), and two single variable functions x(t) and y(t), here's what the multivariable chain rule says:

$$\left(rac{d}{dt} \, f(oldsymbol{x}(t), oldsymbol{y}(t))
ight) = rac{\partial f}{\partial oldsymbol{x}} \, rac{doldsymbol{x}}{dt} + rac{\partial f}{\partial oldsymbol{y}} \, rac{doldsymbol{y}}{dt}
ight)$$

Derivative of composition function

Nguồn: https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

ullet Given a multivariable function f(x,y), and two single variable functions x(t) and y(t), here's what the multivariable chain rule says:

$$\underbrace{\frac{d}{dt}f(\pmb{x}(t),\pmb{y}(t))}_{}= \frac{\partial f}{\partial \pmb{x}}\,\frac{d\pmb{x}}{dt} + \frac{\partial f}{\partial \pmb{y}}\,\frac{d\pmb{y}}{dt}$$

Derivative of composition function

Bài tập thực hành

- RNN for sentiment
- Data set: IMDB

The vanishing/exploding gradient problem

Multiply the same matrix at each time step during backprop

The vanishing gradient problem

Similar but simpler RNN formulation:

$$h_t = Wf(h_{t-1}) + W^{(hx)}x_{[t]}$$
$$\hat{y}_t = W^{(S)}f(h_t)$$

Total error is the sum of each error at time steps t

$$\frac{\partial E}{\partial W} = \sum_{t=1}^{T} \frac{\partial E_t}{\partial W}$$

• Hardcore chain rule application:

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

The vanishing gradient problem

Useful for analysis we will look at:

Remember

$$\frac{\partial E_t}{\partial W} = \sum_{k=1}^t \frac{\partial E_t}{\partial y_t} \frac{\partial y_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial W}$$

$$h_t = Wf(h_{t-1}) + W^{(hx)}x_{[t]}$$

• More chain rule, remember:

$$\frac{\partial h_t}{\partial h_k} = \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}}$$

 The gradient is a product of Jacobian matrices, each associated with a step in the forward computation.

$$\left\| \frac{\partial h_t}{\partial h_k} \right\| = \left\| \prod_{j=k+1}^t \frac{\partial h_j}{\partial h_{j-1}} \right\| \le (\beta_W \beta_h)^{t-k}$$

The vanishing gradient problem for language models

- In the case of language modeling or question answering words from time steps far away are not taken into consideration when training to predict the next word
- Example:

Jane walked into the room. John walked in too. It was late in the day. Jane said hi to

Vanishing/Exploding Solutions

- Vanishing Gradient:
 - Gating mechanism (LSTM, GRU)
 - Attention mechanism (Transformer)
 - Adding skip connection through time
 - Better Initialization

Long-Short Term Memory (LSTM)

- Forget information:
 - Decide what information throw away from the cell state
 - Forget gate layer:
 - Output a number between 0 and 1

- Add new information:
 - Decide what new information store in the cell state
 - Input gate layer:
 - Decides which values we'll update
 - Tanh layer:
 - creates a vector of new candidate values, \widetilde{C}_t

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Update cell state:

- Forgetting the things we decided to forget earlier: $f_{\scriptscriptstyle t}*C_{\scriptscriptstyle t-1}$
- Adding information we decide to add: $i_t * \tilde{C}_t$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Create output:

- Decide what we're going to output
- Output gate layer:
 - Decides what parts of the cell state we're going to output
- Tanh layer:
 - Push the values between -1 and +1

• Conclusion:

- Step 1: Forget gate layer.
- Step 2: Input gate layer.
- Step 3: Combine step 1 & 2.
- Step 4: Output the cell state.

How does LSTM can solve vanishing gradient

- The LSTM architecture makes it **easier** for the RNN to **preserve** information **over many timesteps**.
- LSTM *doesn't guarantee* that there is **no vanishing/ exploding** gradient.
- LSTM provides an **easier way** for the model to learn **long-distance dependencies**.

LSTM Variations (GRU)

- Gated Recurrent Unit (GRU)
 - Combine the forget and input layer into a single "update gate"
 - Merge the cell state and the hidden state
 - Simpler.

Compare LSTM vs. GRU

- **GRUs train faster** and perform better than LSTMs on **less training** data if you are doing language modeling (not sure about other tasks).
- **GRUs are simpler** and thus easier to modify, for example adding new gates in case of additional input to the network. It's just less code in general.
- **LSTMs** should in theory **remember longer sequences** than GRUs and outperform them in tasks requiring modeling long-distance relations.

Successful Applications of LSTMs

- Speech recognition: Language and acoustic modeling
- Sequence labeling
 - POS Tagging
 https://www.aclweb.org/aclwiki/index.php?title=POS Tagging (State of the art)
 - NER
 - Phrase Chunking
- Neural syntactic and semantic parsing
- Image captioning: CNN output vector to sequence
- Sequence to Sequence
 - Machine Translation (Sustkever, Vinyals, & Le, 2014)
 - Video Captioning (input sequence of CNN frame outputs)

Bài tập thực hành

- LSTM for sentiment
- Data set: IMDB

Summary

- Recurrent Neural Network is one of the best deep NLP model families
- Most important and powerful RNN extensions with LSTMs and GRUs

Question and Discussion!