

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface

Capítulo 6

Processadores Paralelos do Cliente à Nuvem

Introdução

- Objetivo: conectar vários computadores para obter melhor desempenho
 - Multiprocessadores
 - Escalabilidade, disponibilidade, eficiência energética
- Paralelismo nível de tarefa (nível de processo)
 - Utilizar vários processadores executando programas independentes simultaneamente
- Programa de processamento paralelo
 - Um único programa que é executado em vários processadores simultaneamente

Introdução

- Cluster
 - Um conjunto de computadores conectados por uma rede local (LAN) que funciona como um único e grande multiprocessador
- Microprocessador multicore
 - Chips com múltiplos processadores (cores)
- Processador de memória compartilhada (SMP)
 - SMP Shared Memory Processors
 - Um processador paralelo com um único espaço de endereços

- Hardware
 - Serial: ex., Pentium 4
 - Paralelo: ex., Intel Core 7
- Software
 - Sequencial: ex., multiplicação de matriz
 - Concorrente: ex., Sistema operacional
- Software sequencial/concorrente pode ser executado no hardware serial/paralelo
 - Desafio: criar programas eficientes para processamento paralelo

		Software		
		Sequential	Concurrent	
Hardware	Serial	Matrix Multiply written in MatLab running on an Intel Pentium 4	Windows Vista Operating System running on an Intel Pentium 4	
	Parallel	Matrix Multiply written in MATLAB running on an Intel Core i7	Windows Vista Operating System running on an Intel Core i7	

FIGURE 6.1 Hardware/software categorization and examples of application perspective on concurrency versus hardware perspective on parallelism.

Copyright © 2013 Elsevier Inc. All rights reserved

Exemplo de Software

- Os programadores de compiladores pensam neles como programas sequenciais: as etapas são análise léxica, geração de código, otimização e assim por diante
- Ao contrário, os programadores de sistemas operacionais normalmente pensam neles como programas concorrentes: processos em cooperação tratando de eventos de E/S devido as tarefas independentes executando em um computador

		Software		
		Sequential	Concurrent	
Hardware	Serial	Matrix Multiply written in MatLab running on an Intel Pentium 4	Windows Vista Operating System running on an Intel Pentium 4	
	Parallel	Matrix Multiply written in MATLAB running on an Intel Core i7	Windows Vista Operating System running on an Intel Core i7	

FIGURE 6.1 Hardware/software categorization and examples of application perspective on concurrency versus hardware perspective on parallelism.

Copyright © 2013 Elsevier Inc. All rights reserved

Programação Paralela

- O software paralelo é o problema
 - É difícil escrever software que usa processadores múltiplos para completar uma tarefa mais rápido
 - O problema fica pior à medida que o número de processadores aumenta
- Dificuldades
 - Particionamento
 - Coordenação
 - Sobrecarga de comunicações

Programação Paralela

- Como uma analogia, suponha que a tarefa fosse escrever um artigo de jornal
 - Oito repórteres trabalhando no mesmo artigo poderiam potencialmente escrever um artigo oito vezes mais rápido
 - Para conseguir essa velocidade aumentada, seria preciso desmembrar a tarefa de modo que cada repórter tivesse algo para fazer ao mesmo tempo
 - Assim, temos de escalonar as subtarefas
 - Se algo saísse errado e apenas um repórter levasse mais tempo do que os sete outros levaram, então o benefício de ter oito escritores seria diminuído

Programação Paralela

- Outro perigo seria se os repórteres tivessem de gastar muito tempo falando uns com os outros para escrever suas seções
- Você também se atrasaria se uma parte do artigo, como a conclusão, não pudesse ser escrita até que todas as outras partes fossem concluídas
 - Assim, deve-se ter o cuidado para reduzir o overhead de comunicação e sincronização
- Para essa analogia e para a programação paralela, os desafios incluem
 - Escalonamento
 - Balanceamento de carga
 - Tempo para sincronismo e overhead para comunicação entre as partes

Fluxos de Instrução e Dados

- Uma categorização do hardware paralelo proposta na década de 1960 ainda está em uso atualmente
 - Ela foi baseada no número de fluxos de instruções e no número de fluxos de dados
 - SISD: Um processador converncional tem um único fluxo de instruções e um único fluxo de dados
 - MIMD: Um multiprocessador possui fluxos de instruções e dados múltiplos

Fluxos de Instrução e Dados

Uma classificação alternativa

		Fluxo de Dados		
		Único	Multiplo	
Fluxo de instruções	Único	SISD: Intel Pentium 4	SIMD: SSE instructions of x86	
	Múltiplo	MISD: Não há exemplos atuais	MIMD: Intel Core i7	

- SISD: Single Instruction stream, Single Data stream
 - Um processador único
- MIMD: Multiple Instruction streams, Multiple Data streams
 - Um multiprocessador

Fluxos de Instrução e Dados

Uma classificação alternativa

		Fluxo de Dados		
		Único	Multiplo	
Fluxo de instruções	Único	SISD: Intel Pentium 4	SIMD: SSE instructions of x86	
	Múltiplo	MISD: Não há exemplos atuais	MIMD: Intel Core i7	

- SPMD: Single Program Multiple Data
 - Modelo de programação MIMD convencional, um único programa é executado em todos os processadores
- SIMD: Single Instruction stream, Multiple Data streams
 - A mesma instrução é aplicada a muitos fluxos de dados, assim como em um processador de vetor

Processadores Vetoriais

- Mais antiga e mais elegante do SIMD é a chamada arquitetura de vetor
- Também é uma grande combinação de problemas com muito paralelismo em nível de dados
- Unidades de função altamente pipeline
- Transmita dados de/para registradores de vetor para unidades
 - Dados coletados da memória em registradores
 - Resultados armazenados dos registradores na memória

Precessadores Vetoriais

SIMD

- Opera elemento a elemento em vetores de dados
 - Ex., instruções MMX e SSE em x86
 - Vários elementos de dados em registros de 128 bits
- Todos os processadores executam a mesma instrução ao mesmo tempo
 - Cada um com diferentes endereços de dados, etc.
- Simplifica a sincronização
- Hardware de controle de instrução reduzido
- unciona melhor para aplicativos altamente paralelos de dados

Multithreading

- Multithreading do hardware
 - Aumentar a utilização de um processador trocando para outra thread quando uma thread é suspensa
- Threading
 - Uma thread inclui o contador de programa, o estado do registrador e a pilha
 - Ela é um processo simplificado
 - Enquanto as threads normalmente compartilham um único espaço de endereços
 - O processo não faz isso
- Processo
 - Um processo inclui uma ou mais threads, o espaço de endereços e o estado do SO

Multithreading

- Executando vários threads de execução em paralelo
 - Replicar registradores, PC, etc.
 - Troca rápida entre trheads
- Multithreading fine-grained
 - Trocar tópicos após cada ciclo
 - Execução da instrução intercalar
 - Se um thread travar, outros serão executados
- Multithreading coarse-grained
 - Apenas comuta threads em stall onerosos (por exemplo, falha cache L2)
 - Simplifica o hardware, mas não esconde stall mais curtos (por exemplo, hazards de dados)

Simultaneous Multithreading (SMT)

- Em processador de despacho múltiplo, escalonado dinamicamente
 - Despacha instruções de várias threads
 - As instruções de threads independentes são executadas quando as unidades de função estão disponíveis
 - Dentro de threads, dependências tratadas pelo escalonamento dinâmico e renomeação de registradores
- Exemplo: Intel Pentium-4 HT
 - Duas threads: registradores duplicados, unidades funcionais compartilhadas e caches

Exemplo Multithreading

As quatro threads mostram como cada uma seria executada em um processador superescalar padrão sem suporte a multithreading

Os três exemplos mostram como elas seriam executadas juntas em três opções de multithreading

A dimensão vertical representa uma sequência dos ciclos de clock.

Uma caixa vazia (branca) indica que o slot de despacho correspondente está vago nesse ciclo de clock.

Os tons de cinza e preto correspondem a quatro threads diferentes nos processadores multithreading.

Futuro do Multithreading

- Ele vai sobreviver? De que forma?
- Considerações de energia ⇒ microarquitetura simplificada
 - Formas mais simples de multithreading
- Tolerando a latência de falha de cache
 - A troca de thread pode ser mais eficaz
- Vários núcleos simples podem compartilhar recursos de forma mais eficaz

Memoria Compartilhada

- SMP: multiprocessador de memória compartilhada
 - SMP Shared Memory Multiprocessor
 - O hardware fornece espaço de endereço físico único para todos os processadores
 - Sincronizar variáveis compartilhadas usando lock
 - É o que quase sempre acontece para os chips multicore

Memoria Compartilhada

- Acesso uniforme à memória (UMA)
 - Um multiprocessador em que a latência a qualquer palavra na memória é aproximadamente a mesma, não importa qual processador solicita o acesso
 - Acesso não uniforme à memória (NUMA)
 - Um tipo de multiprocessador com espaço de endereços único em que alguns acessos à memória são muito mais rápidos do que outros, dependendo de qual processador solicita qual palavra

Referências

- Seção 6.1 a 6.5 Hennessy, J. *Organização e Projeto de Computadores*. [Digite o Local da Editora]: Grupo GEN, 2017. 9788595152908. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788595152908/. Acesso em: 22 Oct 2020
- Seção 6.1 a 6.5 Computer organization and design: the hardware/software interface/David A. Patterson, John L. Hennessy, Elsevier, 5th ed, 2013.