Exponentielle de Matrice

On munit \mathbb{C}^n de la norme 2 usuelle.

On lui associe la norme d'opérateur sur $\mathcal{M}_n(\mathbb{C})$

$$|||A||| = \sup_{X \neq 0} \frac{||AX||}{||X||}$$

On admet que l'espace $\mathcal{M}_n(\mathbb{C})$ est complet : c'est à dire que pour toute suite de matrices (A_n) , si la série $\sum ||A_n||$ est convergente, alors la série $\sum A_n$ l'est aussi.

1. Montrer que pour toute matrice A la série $\sum \frac{1}{n!} A^n$ est convergente. On note expA sa somme.

$$\exp(A) = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

- 2. Comparer $\||\exp A\||$ et $\exp ||A||$.
- 3. Montrer que si P est une matrice on a

$$P\exp A = \sum_{0}^{\infty} \frac{1}{n!} PA^{n}$$

4. En déduire que pour toute matrice P inversible,

$$P\exp AP^{-1} = \exp(PAP^{-1})$$

- 5. On suppose que A est triangulaire, montrer que $\exp A$ est triangulaire et déterminer les coefficients diagonaux.
- 6. En déduire les faits suivants :
 - (a) Si A est diagonalisable, alors $\exp A$ l'est aussi.
 - (b) $\exp(A)$ est toujours inversible et $\det(\exp A) = e^{trA}$.
- 7. Soient A, B deux matrices qui commutent.
 - (a) Montrer que la famille $\left(\frac{A^nB^m}{n!m!}\right)_{n,m\in\mathbb{N}}$ est sommable.
 - (b) En déduire que dans ce cas $\exp(A + B) = \exp A \exp B$.
 - (c) retrouver que $\exp A$ est inversible et préciser son inverse.
- 8. Soient D, E et F les matrices suivantes :

$$D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, E = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, F = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Calculer les exponentielles de ces trois matrices et comparer $\exp(D+F)$ et $\exp D \exp F$

Pour le calcul de $\exp E$ on pourra trouver d'abord un polynôme annulateur pour calculer les puissances de E.

9. On pose $f_A(x) = \exp(xA) = \sum_{n=0}^{\infty} \frac{x^n}{n!} A^n$.

Démontrer que cette série de fonction converge normalement sur les segments de \mathbb{R} . En déduire que f_A est dérivable et calculer sa dérivée en fonction de A et f_A .