Q3. Calculate the transfer function of the following op-amp circuit and discuss applications

Real Vs. Ideal Op-amp

Parameter	Ideal	Real
$R_{ m in}$	∞	$10^6 - 10^{12}\Omega$
$R_{ m out}$	0	$100-1000\Omega$
$A_d(OL)$	∞	$10^5 - 10^9$
$A_c(\mathrm{OL})$	0	10^{-5}
Slew rate	∞	0.5 V/microsecond
Gain-BW product	∞	$1-20\mathrm{MHz}$

Golden Rules

- Voltage Rule: $v^+ = v^-$
- Rationale: $v_o = A_d v_i$ is limited; but $A_d \uparrow \infty \Rightarrow v_i \downarrow 0$.
- Current Rule: $i_{in} = 0$
- Rationale: $R_i = \infty$.

Why Negative Feedback?

Figure 1: Typical negative feedback

- An op-amp with negative feedback provides the following benefits:
 - Allows to control the voltage gain. For the above circuit, the gain is $\frac{1}{B}$ when $A \approx \infty$.
 - No need to know about the internal characteristics.
 - Extends the useful frequency range.
 - Improves stability (against temperature variations)

The Differential Op-amp: Analysis

Figure 2: Example

• Compute voltage at the non-inverting terminal

$$v_1 = \frac{R_4}{R_3 + R_4} v_B \tag{1}$$

• From the voltage rule: $v_2 = v_1$.

• Recall the current rule; apply the KCL at node 2 to get

$$\frac{v_A - v_2}{R_1} = \frac{v_2 - v_o}{R_2} \tag{2}$$

• Substituting (1) into (2) yields

$$v_o = \frac{(R_1 + R_2)R_4}{(R_3 + R_4)R_1}v_B - \frac{R_2}{R_1}v_A$$

Key Features

• Set all resistors to be equal \Rightarrow difference op-amp:

$$v_o = (v_B - v_A)$$

• Set $R_1 = R_3$ and $R_2 = R_4 \Rightarrow$ amplified difference:

$$v_o = \frac{R_2}{R_1}(v_B - v_A)$$

Differential signaling

Figure 3: A differential receiver setup

- Input signals can be either analog or digital.
- – Desired input: differential-mode signal
 - Noise: common-mode signal

Differential signaling (cont'd)

- Two basic operations:
 - Amplifying desired small-signal
 - Filtering out noise
- Benefits:
 - Tolerance of ground offsets
 - Suitability for use with low-voltage (<5 volts) electronics
 - Resistance to noise interference(e.g., AC power line, circuit noise).
- Applications:
 - Data transmission (e.g., USB)
 - ECG
 - Thermocouple
 - as a stable comparator module

Comparator

Figure 4: Differential Op-Amp as a Comparator

References

• T. Floyd, *Electronic Devices*, 6th ed., 2002.

• G. Rizzoni, Principles and applications of electrical engineering, McGraw Hill, 2004.

Thank you!