Wireless Network

Dr Maciej ZAWODNIOK

Wireless

MISSOURI

Maciej Zawodniok

ROUTING PROTOCOL FOR AD HOC, MESH NETWORKS

Outline

- Relevance to Ns3 lab
- Routing in ad hoc networks
 - Routing basics (AODV, DSR, DSDV)

Lab B - relevance

- Ad hoc network with multiple devices placed in the given service area
 - Lab B utilizes grid topology
 - Hint: identify the maximum range of direct communication
- Routing scheme (protocol) needs to setup path of forwarding nodes
- HOW THE FORWARDING AFFECTS CAPACITY OF WIRELESS LINK??

Ad Hoc, Mesh Networks

Visual Ad Hoc/Mesh Network

Ad Hoc, Mesh Networks

- Randomly placed set of nodes
 - Random set of sourcedestination pairs
 - Route/forward the data from the source nodes to the destination node
 - Note: Peer-to-peer network ignores intermediate nodes
 - Or assume there are only direct links

Sensor Networks

- Large number of simpler devices
 - Typically, route the data from the sensor nodes to the common base station
- Sensor data: smaller, fewer chunks of information
 - Redundancy of information
- Different topologies possible

ROUTING IN AD HOC/MESH NETWORKS

Routing Protocol

- Existing protocols are based on 'number of hops'
 - Minimum hops doesn't mean optimal QoS route
- Channel variations affect delays, energy and bit-error rates
- Consideration for QoS in routing protocol
- Proactive vs. reactive protocols

Related Work

- Reactive protocols
 - AODV, DSR, TORA, CEDAR
- Proactive protocols
 - DSDV, STAR, OLSR
- These protocols are based on 'number of hops'
- OLSR_R3 based on 'max bandwidth bottleneck'
 - Increases end-to-end delay
 - Channel conditions are not considered

Ad hoc On-Demand Distance Vector (AODV)

- Distributed routing table
 - Each nodes knows only its next hop neighbors
 - Flooding distribution of routing request
- Three (3) basic messages:
 - RREQ Route Request
 - Bcast, src., and dest. IDs
 - Src. request sequence and Time-To-Live (TTL)
 - Dest. response sequence (optional?)
 - RREP Route Reply
 - RERR Route Error
- Implementation improvement:
 - Snooping
 - Local route repair

AODV Example

DSR

- Dynamic Source Routing (DSR)
 - Similar to AODV but each node knows entire path to destination
 - No routing table needed unless source
 - Drawbacks
 - Scalability when snooping
 - Routing table overhead
 - Message overhead
 - Response to topology changes

DSR Example

DSDV

- Destination-Sequence Distance Vector (DSDV) routing
 - Shortest path based on a distributed Bellman-Ford algorithm
 - Periodic discovery of neighbors and broadcasting routing table updates
 - Issue with
 - Slow response
 - Overhead
 - Loops and count-to-infinity problem
 - Solutions
 - Destination sequence number
 - Dumping
 - Full-dump vs Incremental updates

DSDV Example

Multi-hop Capacity

- Challenge in identifying the maximum possible capacity
 - Imagine telephone game with people continuously passing words, sentences...

QUESTIONS?