Glasgow College, UESTC

Physics I —Semester 2, 2018 - 2019

Final Exam

19:00-21:00, 25th June, 2019

Notice: Please make sure that both your UESTC and UoG Student IDs are written on the top of every sheet. This examination is closed-book. The use of a calculator is allowed, but the use of a cell phone is not permitted. All scratch paper must be adequately labeled. Unless indicated otherwise, answers must be derived or explained clearly. Please write

within the space given below on the answer sheets.

All questions are compulsory. There are 7 pages, 7 questions and a maximum of 100 marks in total.

The following table is for grader only:

Question	1	2	3	4	5	6	7	Total	grader
Score									

Score

Question 1 Multiple-choice Questions ($3 \times 6 = 18$ points)

Choose the **ONE** alternative that best complete the statement or answer the questions.

) 1. A bullet strikes into the edge of a hanging uniform rod as shown in figure. The rod begins to rotate after the collision, what is the angular velocity?

$$\mathbf{B)} \ \omega = \frac{v}{2l}$$

C)
$$\omega = \frac{2v}{3l}$$
;

D)
$$\omega = \frac{3v}{4l}$$
;

E)
$$\omega = \frac{v}{l}$$
;

-) 2. Which of the following statements is **NOT correct** about inertial forces?
 - A) They are not real forces.
 - B) Newton's second law can be modified in a noninertial frame if we consider the inertial forces.
 - C) In reference frame of a space station, the spaceman cannot feel gravity because it is balanced by inertial force.
 - D) Because of the inertial force, gravity of objects is slightly different from the gravitational force acted by the Earth.
 - E) In a rotational noninertial frame, there is only one inertial force acting on moving objects: Coriolis force.
- () 3. A block-spring system vibrating on a frictionless, horizontal surface with amplitude of 6.0 cm has energy of 12 J. If the block is replaced by one who's mass is twice the mass of the original block and the amplitude of the motion is again 6.0 cm, what is the energy of the system?
 - A) 48J.
- B) 24J.
- C) 12J.
- D) 6J.
- E) 3J.
-) 4. The intensity of an earthquake wave is measured to be $4.0 \times 10^5 \text{W/m}^2$ at a distance of 30km from the source. Then what is the (intensity measured 10km from the source?
 - A) $4.4 \times 10^4 \text{W/m}^2$.
- B) $1.3 \times 10^5 \text{W/m}^2$.
- C) $4.0 \times 10^5 \text{W/m}^2 \text{J}$.
- D) $1.2 \times 10^6 \text{W/m}^2 \text{J}$.
- E) $3.6 \times 10^6 \text{W/m}^2 \text{J}$.

UESTC Student ID		UOG Student ID	Course Tit	ile	Lecturer_
		······Within·····the·····answer····	·····invalid······sea	ling·····line·····	
() 5. In the double-sl	it interferen	ce experiment, the distance be	etween two slits	s is d, and the screen is h	L away from the slits. We can
change the experin	nent conditio	n to see what happens to the ir	nterference patt	ern. Which of the followi	ing statements is <u>NOT correct?</u>
A) When the dista	ance d increa	ses, the interference fringes on	screen are gett	ing far away from each o	other.
B) When the dista	ance d increa	ses, the interference fringes on	screen are gett	ing brighter.	
C) When the dista	ance L increa	ses, the interference fringes or	screen are get	ting far away from each o	other.
D) Remaining oth	er condition	s, do the experiment under wa	ter; the interfer	ence fringes on screen wi	ill be closer to each other.
E) Colorful fringe	es can be seei	if sunlight is used as the incid	lent light.		
() 6. 600-nm light fall	s on a single-	-slit (width a=0.3mm), the scre	en is 2.0m away	. At diffraction angle $oldsymbol{ heta}$:	= 0.005rad , which fringe can
be observed?					
A) The first brigh	t fringe.	B) The second bright fring	ge.		
C) The first dark	fringe.	D) The second dark fringe	. E) Th	e third dark fringe.	
					1:
Score Question 2 Fil	l in Questier	ns (4×4=16 points)			
Question 2 Fi	n-m Question	is (4/4-10 points)			2
1. A uniform cone (mass M)	rotates abou	t its symmetric axis 1, the rota	tional inertia I_1	=	
If it rotates about axis 2 (2	2ot1 , and pas	sses the top of cone) the rotatio	onal inertia $I_2 =$	<u> </u>	·
2.6	,		11 (14	1	
2. Consider a massive spring	g (mass <i>m</i> , sp	ring constant k), attached by a	n object M.	m_{s}, k	;
Determine the period of S	HM. T=	·		m _s , k	- M
				7111111	11111
3. The original frequency of	e a mitar stri	ing is 200Hz. If the length of a	mitar string is d	docrossed to 90% and the	e tension in the guitar string is
increased to 110%, what wil	_		uitai stiing is t	icercascu to 70 /0 and the	t tension in the guitar string is
,					
$f = \underline{\hspace{1cm}}$ Hz.					
4. The mixture of natural lig	oht and linea	rly polarized light falls on a Po	olaroid. If the a	xis of Polaroid rotates, th	ne transmission intensity varies
between I_0 and $5I_0$.	9	Formation agree that we have			
200, 2011 20 01100 2200					
Then the incoming intensity	of natural li	ght is;			
The incoming intensity of li	nearly polariz	zed light is			
C v	- 1	-			

UESTC Student ID_	UOG Student ID	Course Title	Lecturer_		
·····Within·····the·····answer····invalid·····sealing·····line·····					

Question 3 (12+3=15 points)

A uniform disk (mass M, radius R) rotates at angular velocity ω_0 about its center axis. Then it is carefully placed on a rough ground (coefficient of friction μ). (a) When would it stop after contacting the ground? (b) How much work is done by friction?

UESTC Student ID	UOG Student ID	Course Title	Lecturer_		
<u> </u>					
Within the answer invalid sealing line					

Question4 (9+3+3=15 points)

A mass-spring system (m=4kg) vibrates as a simple harmonic motion describing by the following figure. Determine: (a) the motional function x(t); (b) the spring constant k; (c) total mechanical energy E of the system.

UESTC Student ID	UOG Student ID	Course Title	Lecturer
	······Within·····the·····answer·····invali	d······sealing······line·····	

Question5 (10+6=16 points)

Two plane harmonic waves travel through different mediums (wave speed $v_1 = 400 \text{m/s}$, $v_2 = 500 \text{m/s}$) and meet at point P on the interface ($r_1 = 4 \text{m}$, $r_2 = 3.75 \text{m}$). As the wave passes, particle A moves as $y_A = 0.04 \cos(200\pi t + \pi)$, and particle B moves as $y_B = 0.03 \cos(200\pi t + \frac{\pi}{2})$. (a) What is the motional equation for point P? (b) If particle B moves as $y_B = 0.03 \cos(200\pi t)$, how much is the amplitude A at point P? (All quantities are in SI units)

UESTC Student ID	UOG Student ID	Course Title	Lecturer_		
<u> </u>					
Within the answer invalid sealing line					

Question6 (4+6=10 points)

A film coating of MgF₂ (n_2 =1.38) is designed to provide a reflection coating (strengthen the reflection light) for a glass optical component (n_3 =1.50). As shown in the diagram, white light (400nm-700nm) is incident from air to glass (n_1 =1). (a) What is the minimum thickness to strengthen reflection light at the wavelength of 600nm? (b) If the film coating is made of another material (n_2 '=1.60), with the same thickness as obtained in case (a), which wavelength of light can be strengthened if white light falls on it?

UESTC Student ID	UOG Student ID	Course Title	Lecturer
	·····Within·····the·····answer····inval	id······sealing······line······	

Question7 (5+5=10 points)

6500Å light falls on a grating. 2-nd lines can be seen at angle θ =30°, and 3-rd lines are missing.

(a) How much is grating constant d? (b) How many lines can be seen in total?

