

Università degli Studi di Roma "La Sapienza" Ingegneria Informatica e Automatica Proff Massimo Petrarca e Marco Toppi FISICA 5.6.2024

Si ricorda di svolgere i conti tutti in forma analitica verificando lo studio dimensionale; solo alla fine inserire i numeri dove richiesto.

Esercizio 1

Un anello di massa m=0.5 kg e raggio R=20 cm, rotola senza strisciare su di un piano inclinato di un angolo β =30 gradi. Il corpo parte da fermo. Determinare l'accelerazione del corpo e la legge oraria in forma analitica. Determinare, usando il teorema di conservazione dell'energia meccanica, la velocità del centro di massa del corpo in fondo al piano inclinato sapendo che è partito da un'altezza del centro di massa pari a H=3 m. Determinare poi, il massimo angolo β di inclinazione oltre il quale il corpo comincia a scivolare (si trascuri l'attrito volvente), sapendo che il coefficiente di attrito è μ =0,3.

Esercizio 2

Un gas alla pressione atmosferica P_0 è contenuto in un cilindro con pistone termicamente isolato e di massa trascurabile, di volume V_i =5 L. Dentro il recipiente ci sono alcuni grammi di ghiaccio alla temperatura di 0 °C che lentamente si sciolgono. Si nota che il pistone si abbassa e il sistema raggiunge l'equilibrio quando si è sciolto m_s = 1 gr di ghiaccio e il volume del gas è diminuito trovandosi ora a V_i = 3.7 L. Quanto calore assorbe il ghiaccio? Quanto è il lavoro compiuto dall'esterno sul gas? Di quanto è variata l'energia interna del gas?

Esercizio 3

Uno strato piano indefinito di spessore 2D è uniformemente carico con densità di carica per unità di volume ρ . In un punto B esterno allo strato il campo elettrico è pari a E_B =100V/m. Ricavare il valore del campo elettrico nel punto A a distanza D/2 dal centro dello strato.

Esercizio 4

Si consideri un lungo conduttore cilindrico di raggio d=5 cm in cui scorra una corrente I, con direzione parallela all'asse del cilindro in ogni punto del conduttore. Supponendo che la corrente fluisca nel conduttore con densità di corrente eguale in modulo a $J=J_0(r/d)$, con $J_0=1kA/m^2$ e r distanza dall'asse del cilindro, ricavare il campo magnetico B in tutto lo spazio e calcolarne il valore massimo.

Un anello di massa m=0.5 kg e raggio R=20 cm, rotola senza strisciare su di un piano inclinato di un angolo β =30 gradi. Il corpo parte da fermo. Determinare l'accelerazione del corpo e la legge oraria in forma analitica. Determinare, usando il teorema di conservazione dell'energia meccanica, la velocità del centro di massa del corpo in fondo al piano inclinato sapendo che è partito da un'altezza del centro di massa pari a H=3 m. Determinare poi, il massimo angolo β di inclinazione oltre il quale il corpo comincia a scivolare (si trascuri l'attrito volvente), sapendo che il coefficiente di attrito è μ =0,3.

TRASLATORIO	ROTATORIO
m	
F	Н
V V	w
P: mv	L=Iw
F= ma K= 1 m v2	H=I d K=2Iw2
K= 1 mv2	K: & Iw2
7	

$$mgh - \frac{1}{2}mv^2 - \frac{1}{2}mv^2 - mgR = 0$$

 $v^2 = -gR + gh \rightarrow v = \sqrt{g(h-R)} = 16,4 m/s$

SCIVOLA QUANDO
$$F_{P,n} > F_A \Rightarrow mg sin \beta > \mu mg cos \beta$$

$$T_g \beta > \mu = 0.3$$

Un gas alla pressione atmosferica P_0 è contenuto in un cilindro con pistone termicamente isolato e di massa trascurabile, di volume V_i =5 L. Dentro il recipiente ci sono alcuni grammi di ghiaccio alla temperatura di 0 °C che lentamente si sciolgono. Si nota che il pistone si abbassa e il sistema raggiunge l'equilibrio quando si è sciolto m_s = 1 gr di ghiaccio e il volume del gas è diminuito trovandosi ora a V_f = 3.7 L. Quanto calore assorbe il ghiaccio? Quanto è il lavoro compiuto dall'esterno sul gas? Di quanto è variata l'energia interna del gas?

$$P_{0} = 1.013 \cdot 10^{5} P_{A}$$
 $Q_{ASS} = m_{S} \lambda = 1. 10^{-3} k_{g} \cdot 3.3 \cdot 10^{5} J/k_{g} = 3.3 \cdot 10^{2} J$
 $V_{i} = 5L = 5 dm^{3} = 5 \cdot 10^{-3} m^{3}$
 $V_{f} = 3, 7 L = 3, 7 \cdot 10^{-3} m^{3}$
 $W = 1,013 \cdot 10^{5} (-1,3 \cdot 10^{-3}) = -1.32 \cdot 10^{2} J = -132 J$
 $\Delta U = Q - W = -3.3 \cdot 10^{2} + 1,32 \cdot 10^{2} J = -200 J$

Uno strato piano indefinito di spessore 2D è uniformemente carico con densità di carica per unità di volume ρ . In un punto B esterno allo strato il campo elettrico è pari a E_B =100V/m. Ricavare il valore del campo elettrico nel punto A a distanza D/2 dal centro dello strato.

UTILIZZIAMO UN PARALLELEPIPEDO A FACLE PARALLELE:

$$\overline{\Phi}(\overline{e}) = \int \overline{e} d\xi = 2E_{R} \xi_{p} = \underline{q} \Rightarrow 2E_{R} \xi_{p} = \underline{P} \xi_{p} 2D \Rightarrow E_{R} = \underline{P} \xi_{p}$$

$$\overline{\Phi(E)} = \int_{P} \overline{E} dE = 2E_{A}E_{P} = \frac{q}{E_{0}} \rightarrow 2E_{A}E_{P} : \underbrace{P \Sigma_{P} 2P}_{E_{0}} \rightarrow E_{A} = \underbrace{PD}_{2E_{0}} = \underbrace{E_{8}}_{2} = 50 \text{ m}$$

ESERCIDIO 34

les simmetria il compo E Sore diretto come Ux fu X>0 e come - Ux pu x co e evre stimo velve su prem x = cost (perelleh of preso yt)

Uso Gans prendendo ad esempro un forellelepipe de cen focie Parellele at prone y t in =x & di siperfice Ep

φ(Ē) = JĒNM dŽ = 2EZP = 9 Ep 2D =)

PROMIBLER.

L [CONTRIBUTI NON NON PER NULLI SOLO PER PER

=) E3 = 8D E6

LE 2 FACCE IN XB & - XB

Focio lo steno per un parellepiped penonte in ± XA

 $\phi(E) = \int \vec{E} \cdot \hat{n}_{h} d\xi = 2E_{A} Z_{p} = \frac{g Z_{p}}{E} 2x_{A} = \frac{g Z_{p}}{E}$

2) EA = SD = EB = 100 V/m = 50 V M

Si consideri un lungo conduttore cilindrico di raggio d=5 cm in cui scorra una corrente I, con direzione parallela all'asse del cilindro in ogni punto del conduttore. Supponendo che la corrente fluisca nel conduttore con densità di corrente eguale in modulo a $J=J_0(r/d)$, con $J_0=1kA/m^2$ e r distanza dall'asse del cilindro, ricavare il campo magnetico B in tutto lo spazio e calcolarne il valore massimo.

ESERCIZIO 4 300 d= 5 cm Celcole 12 compo B Userolo le legge de Ampre denho e from ne conduttore: · 2 > d $P(\vec{B}) = \vec{\beta} \cdot \vec{\delta} \cdot \vec{\delta} = \mu_0 (\vec{J} \cdot \vec{u}_n) \delta \vec{\delta}$ $=) B_{2\pi r} = \mu_c \left(J_a \left(\frac{r}{d} \right) dz = \right)$ $= \frac{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} r^{2} dr}{r^{2} dr} = \frac{2\pi \int_{0}^{\infty} \int_{0}^{\infty} r^{2} dr}{r^{2} dr}{r^{2} dr} = \frac{2\pi \int_{0}^{\infty} \int_{0}^{\infty} r^{2} dr}{r^{2} dr}{r^{2} dr} = \frac{2\pi \int_{0}^{\infty} \int_{0}^{\infty} r^{2} dr}{r^{2} dr}{r^{2}$ ε 2π Me Je d³ => B = Me Je d² 3/2 => Benz = 100 [J. (211 x'dz') = $= \mu_0 J_0 2\pi \mu^3 \Rightarrow B = \mu_0 J_0 \mu^2$ $d = \frac{1}{3}$

BMAX = B(r=d) = 16 Jod