Chapter 8: Norms

Outline

Introduction
Other Norms
•Matrix Norm
Properties of Norm
Norm of Sum
Orthogonal Decomposition
Inequalities
mequanties
•Cauchy Schwarz •Triangle Inequality •Angle between vectors
Cauchy Schwarz Triangle Inequality
Cauchy Schwarz Triangle Inequality Angle between vectors

Introduction

Euclidean Norm or 2-norm

$$||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

- Measure of "size," "length," or "magnitude"
- Example: $\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ then, $\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$
- Distance from origin to the coordinates represented by v

Other Norms: 1- and ∞-norms

• 1-norm, Manhattan, or taxicab norm

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|$$

• ∞-norm, Chebyshev, or maximum norm

$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, ..., |x_n|)$$

Matrix Norm

• Frobenius Norm

$$\|\mathbf{A}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |A_{ij}|^{2}}$$

Recall: reshaping matrix as vector using vec()

$$\|\mathbf{A}\|_F = \|\operatorname{vec}(\mathbf{A})\|_2$$

Frobenius norm-squared

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$

$$\|\mathbf{A}\|_F^2 = \|\mathbf{a}_1\|^2 + \|\mathbf{a}_2\|^2 + \cdots \|\mathbf{a}_n\|^2$$

$$= \|\mathbf{a}_{1}^{T}.\|^{2} + \|\mathbf{a}_{2}^{T}.\|^{2} + \dots + \|\mathbf{a}_{m}^{T}.\|^{2}$$

Norms over inner-product spaces

- Norms may or may not be defined using inner products
- When norm is defined using an inner product

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

• Examples: Euclidean norm, Frobenius norm

$$\|\mathbf{v}\|_2 = \sqrt{\mathbf{v}^T \mathbf{v}}$$
 $\|\mathbf{A}\|_F = \sqrt{\operatorname{tr}(\mathbf{A}^T \mathbf{A})}$

 But Manhattan and Chebyshev norms cannot be defined like this

Properties of Norm

Norm is any real-valued function that satisfies:

- 1. Non-negativity: $\|\mathbf{x}\| \ge 0$
- 2. Homogeneity: for any scalar $c : ||c\mathbf{x}|| = |c|||\mathbf{x}||$
- 3. Definiteness: $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$
- 4. Triangle inequality: $||x + y|| \le ||x|| + ||y||$

Aside: "if and only if" or "iff"

Notation: $A \Leftrightarrow B$

Meaning: EITHER both statements (A and B) are true OR both

statements are false

Example: x = 1 if and only if x + 1 = 2

To prove: Two key steps:

- 1. Assume A, prove B
- 2. Assume B, prove A

Proof for Euclidean Norm $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T\mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

- 1. Non-negativity: since $x_1^2+x_2^2+\cdots+x_n^2\geq 0$, its square root is also non-negative
- 2. Homogeneity: $\|\alpha \mathbf{v}\| = \sqrt{(\alpha \mathbf{v})^T (\alpha \mathbf{v})} = \sqrt{\alpha^2 \mathbf{v}^T \mathbf{v}}$ $= |\alpha| \sqrt{\mathbf{v}^T \mathbf{v}} = |\alpha| \|\mathbf{v}\|$
- 3a. If $x_1^2 + x_2^2 + \dots + x_n^2 = 0$, then each term must be 0 $(\|\mathbf{x}\|_2 = 0 \Rightarrow \mathbf{x} = \mathbf{0})$
- 3b. If $\mathbf{x} = \mathbf{0}$, then $\|\mathbf{x}\|_2 = 0$: $\mathbf{x} = \mathbf{0} \Rightarrow \|\mathbf{x}\|_2 = 0$

$$\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$$

Norm of sum

$$\|\mathbf{u} + \mathbf{v}\| = \sqrt{\langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle}$$

$$= \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle}$$

$$= \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle}$$

$$= \sqrt{\|\mathbf{u}\|^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2}$$

Definition of norm

Distributivity

Commutativity

Definition of norm

Pythagorean Theorem

If u and v are orthogonal, then

$$\|\mathbf{u}\|_{2}^{2} + \|\mathbf{v}\|_{2}^{2} = \|\mathbf{u} + \mathbf{v}\|_{2}^{2}$$

since $\mathbf{u}^T \mathbf{v} = 0$

Orthogonal Decomposition

- Write **u** as a sum of
 - scalar multiple of $\mathbf{v} \neq \mathbf{0}$, and
 - Another vector \mathbf{w} such that $\mathbf{w} \perp \mathbf{v}$
- Let

$$\mathbf{u} = \alpha \mathbf{v} + (\mathbf{u} - \alpha \mathbf{v})$$

• Since
$$\mathbf{w} \perp \mathbf{v}$$
: $\mathbf{v}^T \mathbf{w} = \mathbf{v}^T (\mathbf{u} - \alpha \mathbf{v}) = 0$

•
$$\Rightarrow \alpha = \frac{\mathbf{u}^T \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{v}\|^2}$$

$$\mathbf{u} = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} + \left(\mathbf{u} - \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v}\right)$$

Example: Orthogonal Decomposition

$$\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 1 \\ 1/3 \end{bmatrix}$$

$$\alpha = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{v}\|^2} = 2.7$$

$$\mathbf{u} = 2.7\mathbf{v} + (\mathbf{u} - 2.7\mathbf{v}) = \begin{bmatrix} 2.7 \\ 0.9 \end{bmatrix} + \begin{bmatrix} -0.7 \\ 2.1 \end{bmatrix}$$

- Proof: suppose $\mathbf{v} \neq \mathbf{0}$ (otherwise inequality is trivially true)
- Apply orthogonal decomposition: $\mathbf{u} = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} + \mathbf{w}$
- Since **u** and **v** are orthogonal, from Pythagorean:

$$\|\mathbf{u}\|^{2} = \left\| \frac{\mathbf{u}^{T} \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v} \right\|^{2} + \|\mathbf{w}\|^{2}$$

$$= \frac{|\mathbf{u}^{T} \mathbf{v}|^{2}}{\|\mathbf{v}\|^{2}} + \|\mathbf{w}\|^{2}$$

$$\geq \frac{|\mathbf{u}^{T} \mathbf{v}|^{2}}{\|\mathbf{v}\|^{2}} \geq 0$$

$$\geq \frac{|\mathbf{u}^{T} \mathbf{v}|^{2}}{\|\mathbf{v}\|^{2}}$$

Becomes equality when $\mathbf{w} = \mathbf{0}$ $\mathbf{w} = 0 \Leftrightarrow \mathbf{u} = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v}$

Triangle Inequality

• Recall
$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u}^T\mathbf{v}$$
 Norm of Sum Expression
$$\leq \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\|\mathbf{u}\|\|\mathbf{v}\|$$
 Cauchy-Schwarz Inequality
$$= (\|\mathbf{u}\| + \|\mathbf{v}\|)^2$$
 Collect into square

$$\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$$

- Becomes equality when $\mathbf{u}^T \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\|$
- ullet i.e., when old u is scalar multiple of old v

Angle Between Vectors

• We define

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

• Recall Cauchy-Schwarz inequality $-\|\mathbf{u}\|\|\mathbf{v}\| \leq \mathbf{u}^T\mathbf{v} \leq \|\mathbf{u}\|\|\mathbf{v}\|$

•
$$\theta = 0$$
 parallel vectors

•
$$\theta = \frac{\pi}{2}, \frac{3\pi}{2}$$
 orthogonal vectors

Norm of stacked vectors

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{bmatrix}$$

$$\|\mathbf{x}\| = \sqrt{\|\mathbf{x}_1\|^2 + \|\mathbf{x}_2\|^2 + \dots + \|\mathbf{x}_m\|^2}$$

$$\mathbb{R}^{m_1} \|\mathbf{x}_1\| = \|[\|\mathbf{x}_1\|]\|$$

$$\mathbb{R}^{m_2} \|\mathbf{x}_2\| = \|[\|\mathbf{x}_1\|]\|$$
vector with 2 entries

Orthonormal Vectors

$$\mathbf{v}_i^T \mathbf{v}_j = 0 \qquad i \neq j$$
$$\|\mathbf{v}_i\| = 1 \qquad 1 \leq i \leq m$$

or

$$\mathbf{v}_i^T \mathbf{v}_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Complexity of calculating norm

- To calculate $||\mathbf{x}|| = \sqrt{\mathbf{x}_1^2 + \mathbf{x}_2^2 + \dots + \mathbf{x}_n^2}$
 - n-1 additions
 - *n* multiplications
 - 1 square root (≈ 6 flops)
- Total 2n flops
- Matrix norm requires $2n^2$ flops

Thank You

Next: Linear Functions