Caminho de dados – Datapath

Busca de Instruções

4

Banco de Registradores

- Dupla porta: leitura de dois registradores ao mesmo tempo
- Sinal de controle para escrita leitura n\u00e3o necessita controle

Instruções Tipo R — unid. operativa

Memória

- Memória com um barramento de entrada independente do de saída
- Controle de escrita (write)
 e leitura (read)
- Barramento de endereços
- Um acesso de cada vez

-

Extensão de Sinal do Deslocamento

- Deslocamento na instrução deve ser estendido de 16 para 32 bits, mantendo-se o sinal
 - se for negativo, 16 bits superiores = 1
 - se for positivo, 16 bits superiores = 0

Combinando as Unidades

Acrescentando a Busca

Cálculo do Endereço de Desvio

Circuito Cálculo Endereço Desvio

Sinais de controle

MIPS Uniciclo

Exercício

- Estender a organização do MIPS para dar suporte a execução de JUMP, desvio incondicional
- O endereço de desvio é obtido por:
 - PC[31 28] # Instrução[25 0] # 00
 - onde # indica concatenação de bits

Problemas com MIPS Uniciclo

- Período do relógio determinado pelo caminho mais longo
 - instrução lw:
 - leitura da instrução
 - leitura do registrador de base, extensão de sinal
 - cálculo do endereço
 - leitura do dado da memória
 - escrita em registrador
- TODAS as instruções levam o mesmo tempo para executar

Exemplo

- Supondo os seguintes tempos de execução das unidades do MIPS:
 - Acesso a memória: 10 ns
 - ULA e somadores: 10 ns
 - Acesso ao banco de registradores: 5 ns
 - outros: 0 ns
 - Quais os tempos de execução das instruções supondo uma implementação uniciclo e outra com ciclo variável, ou seja, duração do ciclo igual a duração da instrução?

- Acesso a memória: 10 ns
- ULA e somadores: 10 ns
- Acesso ao banco de registradores: 5 ns
- outros: 0 ns
- Quais os tempos de execução das instruções supondo uma implementação uniciclo e outra com ciclo variável, ou seja, duração do ciclo igual a duração da instrução?

Determinar o tempo de execução de cada instrução

$$i =$$

- Acesso a memória: 10 ns
- ULA e somadores: 10 ns
- Acesso ao banco de registradores: 5 ns
- outros: 0 ns
- Quais os tempos de execução das instruções supondo uma implementação uniciclo e outra com ciclo variável, ou seja, duração do ciclo igual a duração da instrução?

Determinar o tempo de execução de cada instrução

$$Iw = 10 + 5 + 10 + 10 + 5 = 40$$

$$sw = 10 + 5 + 10 + 10 = 35$$

tipo-R =
$$10 + 5 + 10 + 5 = 30$$

beq =
$$10 + 5 + 10 = 25$$

Exemplo ...

- Considerando a distribuição de instruções do benchmark gcc, a diferença de velocidade entre as implementações seria:
 - GCC: 22% lw, 11% sw, 49% tipo-R, 16% beq, 2% jump
 - Período uniciclo: 40 ns
 - Período ciclo variável:

$$40*0.22 + 35*0.11 + 30*0.49 + 25*0.16 + 10*0.2 = 31.6 \text{ ns}$$

Ganho: 40/31.6 = 1,27

MIPS Multiciclo

- Ciclo dimensionado de acordo com a fase mais demorada
- Unidades funcionais podem ser utilizadas para realizar mais de uma operação durante a execução de uma instrução
- A organização da parte operativa pode ser reestruturada em função destas características

Vetor com 100 elementos, achar o maior elemento, armazenar na última posição

- % (lw, sw, add, beq (ou bne), j)
- CPU time em us (f = 200 MHz)

lw	
SW	
add	
beq	
j	