Chapter 3 - Fluid Statics

Lecture 3 Section 3.3

Introduction to Fluid Mechanics

Mechanical Engineering and Materials Science University of Pittsburgh Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

Variation in Static

Student Learning Objectives

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

earning Objectives

Students should be able to:

- ► Understand Pascal's Paradox
- ▶ Understand how to apply the variation of pressure as a function of depth to manometers

Pascal's Paradox

 $\begin{array}{c} {\rm Chapter} \ 3 \ \hbox{-} \ {\rm Fluid} \\ {\rm Statics} \end{array}$

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Learning Objectives

Consider three containers, each with the same fluid (ρ =c), filled to the same height H, each with the same base diameter D,

Manometer

- Chapter 3 Fluid Statics
 - MEMS 0071
- Learning Objectives
- 3.3 Pressure Variation in Static Fluid

- ▶ A manometer is a pressure measurement device that operates upon a pressure differential.
- ▶ Often times one end of the manometer is exposed to atmosphere

Example #1

Assuming the blue fluid is water, ρ =998 [kg/m³], the remaining fluids are air, ρ =1.225 [kg/m³], and h=20 [cm] create and solve an expression for the pressure difference ΔP = P_A - P_B :

 $\begin{array}{c} {\rm Chapter} \ 3 \ \hbox{-} \ {\rm Fluid} \\ {\rm Statics} \end{array}$

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Example #1 Solution

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Differential Manometer

▶ A differential manometer is a pressure measurement device that operates upon a pressure differential between two points (both ends are connected to a pressure source/sink)

▶ Used quite commonly to determine pressure difference in flow to back out flow rate

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Example #2

With the white fluid representing air and the blue fluid representing water, given h_1 =90 [cm], h_2 =32 [cm], h_3 =19 [cm], h_4 =54 [cm] and h_5 =36 [cm],

 $\begin{array}{c} {\rm Chapter} \ 3 \ \hbox{-} \ {\rm Fluid} \\ {\rm Statics} \end{array}$

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Example #2 Solution

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Example #2 Solution

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Example #3

▶ Given the manometer, with the blue fluid representing water, the red fluid representing mercury (SG=13.62), the green fluid representing antifreeze (γ =11,067 [N/m³]), and the white fluid as air, and the heights measured as h_1 =86 [cm], h_2 = h_3 =35 [cm], h_4 =51 [cm], h_5 =48 [cm] and

 $h_6=19$ [cm], determine the pressure difference

 $\Delta P = P_A - P_B$.

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Example #3 Solution

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

Example #3 Solution

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

The Barometer

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

3.3 Pressure Variation in Static Fluid

- ▶ A barometer is used to measure atmospheric pressure. Developed by Torricelli (1608-1647) showed atmospheric pressure can be measured by using an inverted tube filled with Hg that is open to atmosphere
- ► Standard atmosphere produces a height of 760 mm Hg, 10.3 m H₂O. In honor, the unit mmHg is called a **torr**: 1 atm = 760 torr, 1 torr = 133.3 Pa

Student Learning Objectives - Completed

Students should be able to:

- Understand Pascal's Paradox
 - ▶ Pressure is only a function of depth, not the quantity of fluid above the surface
- ▶ Understand how to apply the variation of pressure as a function of depth to manometers
 - ► As you decrease in the fluid, you add the hydrostatic pressure; as you increase in the fluid, you subtract the hydrostatic pressure

Chapter 3 - Fluid Statics

MEMS 0071

Learning Objectives

Variation in Static Fluid

