11/2/2020 Nom i cognoms:

Examen Fisica 2a Avaluació 2n Batxillerat

1. (2 pts)

Orcus (2004 DW), un objecte del Sistema Solar descobert el febrer del 2004, és un dels cossos celestes més grans del cinturó de Kuiper i un dels candidats a ser considerat, en el futur, planeta nan per la Unió Astronòmica Internacional (UAI). Orcus té, aproximadament, una massa de 6,41 × 10²⁰ kg, un radi de 459 km i un període orbital de 248 anys.

 a) Calculeu la distància mitjana entre Orcus i el Sol en unitats astronòmiques (UA).
 [1 punt]

b) Determineu la velocitat d'escapament (deduïu la fórmula tenint en compte l'energia del cos que s'escapa) i la intensitat del camp gravitatori a la seva superfície.
[1 punt]

Dades: Radi orbital mitjà de la Terra = 1,00 UA. Període orbital de la Terra = 1,00 any. $G = 6,67 \times 10^{-11} \,\mathrm{N\,m^2\,kg^{-2}}.$

2. (2 pts)

Introduïm una espira metàl·lica rectangular de 5 Ω de resistència elèctrica en una regió de l'espai delimitada per un camp magnètic uniforme de 0,2 T perpendicular a la superfície de l'espira. Les dimensions de l'espira són a=3 cm i b=6 cm, i es mou a una velocitat de 2 m s⁻¹.

- a) Digueu si circula corrent elèctric per l'espira en les tres situacions següents: en entrar al camp, quan hi està totalment immersa i en sortir-ne, i determineu en cada cas el sentit de circulació de la intensitat corresponent. Justifiqueu les respostes.
 [1 punt]
- b) Calculeu la força electromotriu i la intensitat del corrent elèctric que es genera en cada cas.
 [1 punt]

3. (2 pts)

En un transformador que consta de dues bobines, la bobina primària té $N_{\rm p}$ espires i la secundària té $N_{\rm e}$ espires.

a) Deduïu, a partir de la conservació del flux magnètic, la fórmula per a obtenir la tensió del circuit secundari quan connectem la bobina primària d'un transformador a una tensió alterna ε.

Si $N_{\rm p}=1~200$ espires i $N_{\rm s}=300$ espires, calculeu la tensió eficaç a la bobina secundària quan connectem la bobina primària a una tensió eficaç de 230 V.

b) Calculeu la intensitat eficaç en el circuit primari si pel circuit secundari circulen 2,0 A d'intensitat eficaç. Feu un esquema i indiqueu-hi cada element del transformador, sabent que les dues bobines estan enrotllades sobre un nucli de ferro comú.
[1 punt]

Nota: Considereu un transformador ideal.

4. (2 pts)

El sincrotró Alba és una instal·lació de recerca que utilitza llum generada per electrons accelerats per a analitzar les propietats i l'estructura de la matèria. Les principals qualitats d'aquesta radiació són un ampli espectre, una intensitat elevada i una brillantor extraordinària. Per a accelerar els electrons s'utilitzen camps elèctrics i magnètics. L'esquema mostra un model

molt simplificat de funcionament: al començament del procés es generen electrons que s'acceleren en un accelerador lineal mitjançant un camp elèctric que suposarem uniforme al llarg de la zona d'acceleració, la qual té una longitud $d=1,00\,\mathrm{m}$.

L'energia cinètica inicial dels electrons és zero, però quan surten de l'accelerador és d'1,00 keV.

- a) Calculeu la intensitat del camp elèctric dins de l'accelerador i dibuixeu com són les línies de camp en aquesta regió.
- b) Un cop els electrons han estat accelerats, se'ls condueix a l'anell de propulsió. Per a guiar els electrons al llarg de l'anell s'utilitzen camps magnètics. En l'esquema es mostra el primer camp magnètic que troben els electrons quan surten de l'accelerador lineal i entren a l'anell de propulsió. Si en aquesta regió no hi ha camp elèctric i el camp magnètic és de 0,15 T, calculeu la magnitud de la força que actuarà sobre l'electró. Quin tipus de trajectòria descriurà l'electró en aquesta regió? Justifiqueu la resposta.

[1 punt]

DADES:
$$m = 9,11 \times 10^{-31} \text{ kg.}$$

 $|e| = 1,602 \times 10^{-19} \text{ C.}$
 $1 \text{ eV} = 1,602 \times 10^{-19} \text{ J.}$

5. (2 pts)

Quatre càrregues estan situades en els vèrtexs d'un quadrat de 4,00 m de costat, tal com s'indica en la figura. Els valors de les càrregues són $Q_1=1,00\,\mu\text{C},$ $Q_2=-2,00\,\mu\text{C},$ $Q_3=2,00\,\mu\text{C}$ i $Q_4=-1,00\,\mu\text{C}$. El punt C és a la intersecció de les dues diagonals. El punt A està situat a la meitat del segment que va des de la càrrega Q_1 fins a la càrrega Q_2 .

 b) Calculeu la diferència de potencial entre els punts A i C.
 [1 punt]

DADA:
$$k = \frac{1}{4\pi\epsilon_0} = 8,99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$
.

6. (3 pts)

Un satèl·lit meteorològic, de massa 300 kg, descriu una òrbita circular geostacionària, de manera que es troba permanentment sobre el mateix punt de l'equador terrestre. Calculeu:

- a) L'altura del satèl·lit mesurada des de la superfície de la Terra. [1 punt]
- b) L'energia potencial i l'energia mecànica del satèl·lit en la seva òrbita geostacionària. [1 punt]
- c) L'energia cinètica total que es va comunicar al satèl·lit en el moment del seu llançament des de la superfície terrestre per posar-lo en òrbita. [1 punt]

Dades: $G = 6.67 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$; $R_T = 6.370 \text{ km}$; $M_T = 6 \cdot 10^{24} \text{ kg}$