QBUS 6840: Lecture 12

Hierarchical and Group Time Series

Professor Junbin Gao

The University of Sydney Business School

Outlines

- Hierarchical time series
- Grouped time series
- Modeling approaches
- Mapping matrices

Readings:

Online textbook Chapter 10

https://otexts.com/fpp2/hierarchical.html; and Slides

Overview

- Time series can often be naturally disaggregated by various attributes of interest.
- These categories are nested within the larger group categories, and so the collection of time series follow a hierarchical aggregation structure. We refer to these as "hierarchical time series"
- Sometimes we have a more complicated aggregation structure where the product hierarchy and the geographic hierarchy can both be used together. We usually refer to these as "grouped time series"

Hierarchical Time Series: Structure

2-level hierarchical structure

- Total series is denoted by y_t for $t=1,\ldots,T$. The Total is disaggregated into two series at level 1, which in turn are divided into three and two series respectively at the bottom-level of the hierarchy.

Relations

- In total there are eight time series
- We have

$$y_t = y_{A,t} + y_{B,t}$$

and

$$y_{A,t} = y_{AA,t} + y_{AB,t} + y_{AC,t}, \quad y_{B,t} = y_{BA,t} + y_{BB,t}$$

Hence

$$y_t = y_{AA,t} + y_{AB,t} + y_{AC,t} + y_{BA,t} + y_{BB,t}$$

- These equations can be thought of as aggregation constraints or summing equalities
- At each level, the sum gives the total

Matrix Representation

 We will use the time series at bottom level as building blocks, then the relations can be summarized in the following matrix representation

$$\begin{bmatrix} y_t \\ y_{A,t} \\ y_{B,t} \\ y_{AA,t} \\ y_{AB,t} \\ y_{AC,t} \\ y_{BA,t} \\ y_{BB,t} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_{AA,t} \\ y_{AB,t} \\ y_{AC,t} \\ y_{BA,t} \\ y_{BB,t} \end{bmatrix}$$

In compact notation

$$y_t = Sb_t$$

Grouped Time Series

- Grouped time series involve more general aggregation structures than hierarchical time series
- With grouped time series, the structure does not naturally disaggregate in a unique hierarchical manner
- Often the disaggregating factors are both nested and crossed
- For example, we could further disaggregate all geographic levels of the Australian tourism data by purpose of travel (such as holidays, business, etc.)
- So we could consider visitors nights split by purpose of travel for the whole of Australia, and for each state, and for each zone.
- Then we describe the structure as involving the purpose of travel "crossed" with the geographic hierarchy

Grouped Time Series: Structure

2-level grouped structure

- ullet Total, the most aggregate level of the data, again represented by y_t .
- The Total can be disaggregated by attributes (A, B) forming series $y_{A,t}$ and $y_{B,t}$, or by attributes (X, Y) forming series $y_{X,t}$ and $y_{Y,t}$.
- At the bottom level, the data are disaggregated by both attributes.

Relations

 The previous example shows that there are alternative aggregation paths for grouped structures

•
$$y_t = y_{AX,t} + y_{AY,t} + y_{BX,t} + y_{BY,t}$$
.

• At level 1

$$y_{A,t} = y_{AX,t} + y_{AY,t}, \quad y_{B,t} = y_{BX,t} + y_{BY,t}$$

Or at second level 1

$$y_{X,t} = y_{AX,t} + y_{BX,t}, \quad y_{Y,t} = y_{AY,t} + y_{BY,t}$$

• There are in total 9 different time series. At both bottom levels, all the times series are the same.

Matrix Representation

 We can use the time series at bottom level as building blocks, then the relations can be summarized in the following matrix representation

$$\begin{bmatrix} y_t \\ y_A t \\ y_B t \\ y_X t \\ y_Y t \\ y_A x t \\ y_{AY} t \\ y_{BX} t \\ y_{BY} t \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_{AX} t \\ y_{AY} t \\ y_{BX} t \\ y_{BY} t \end{bmatrix}$$

Or

$$\mathbf{y}_t = \mathbf{S}\mathbf{b}_t,$$

The bottom-up approach

- A simple method for generating coherent forecasts is the bottom-up approach
 - first generating forecasts for each series at the bottom-level, and
 - then summing these to produce forecasts for all the series in the structure.
- For example, for the hierarchy we discussed, we first do h-step-ahead forecasts for each of the bottom-level series:

$$\widehat{y}_{AA,h}$$
, $\widehat{y}_{AB,h}$, $\widehat{y}_{AC,h}$, $\widehat{y}_{BA,h}$ and $\widehat{y}_{BB,h}$.

 Summing these, we get h-step-ahead coherent forecasts for the rest of the series:

$$\begin{split} \widetilde{y}_h &= \widehat{y}_{AA,h} + \widehat{y}_{AB,h} + \widehat{y}_{AC,h} + \widehat{y}_{BA,h} + \widehat{y}_{BB,h}, \\ \widetilde{y}_{A,h} &= \widehat{y}_{AA,h} + \widehat{y}_{AB,h} + \widehat{y}_{AC,h}, \\ \text{and} \quad \widetilde{y}_{B,h} &= \widehat{y}_{BA,h} + \widehat{y}_{BB,h}. \end{split}$$

where the "tilde" notation indicates coherent forecasts

The bottom-up approach

• Or the structure matrix equation can be written for forecasts

$$\begin{bmatrix} \tilde{y}_h \\ \tilde{y}_{A,h} \\ \tilde{y}_{B,h} \\ \tilde{y}_{AA,h} \\ \tilde{y}_{AB,h} \\ \tilde{y}_{BA,h} \\ \tilde{y}_{BB,h} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{y}_{AA,h} \\ \hat{y}_{AB,h} \\ \hat{y}_{AC,h} \\ \hat{y}_{BA,h} \\ \hat{y}_{BB,h} \end{bmatrix}$$

• Can you write out the forecast for the grouped time series?

Top-down approaches

- Top-down approaches only work with strictly hierarchical aggregation structures, and not with grouped structures.
- They involve first generating forecasts for the Total series y_t , and then disaggregating these down the hierarchy.
- Assume there are m disaggregated time series at the bottom level. We use $\{p_1, \ldots, p_m\}$ to denote the disaggregation proportions dictating how the forecasts of the Total series are to be distributed to obtain forecasts for each series at the bottom-level of the structure.

Top-down approaches: Example

 For example, in the previous two level hierarchical aggregation structures, we have

$$ilde{y}_{AA,t}=p_1\hat{y}_t, \quad ilde{y}_{AB,t}=p_2\hat{y}_t, \quad ilde{y}_{AC,t}=p_3\hat{y}_t, \quad ilde{y}_{BA,t}=p_4\hat{y}_t$$
 and $ilde{y}_{BB,t}=p_5\hat{y}_t.$

• Using matrix notation we can stack the set of proportions in a m-dimensional vector $\boldsymbol{p}=(p_1,\ldots,p_m)^T$ and write

$$ilde{m{b}}_t = m{p} \hat{y}_t$$

 Once the bottom-level h-step-ahead forecasts have been generated, these are aggregated to generate coherent forecasts for the rest of the series. In general, for a specified set of proportions, top-down approaches can be represented as

$$\tilde{\pmb{y}}_h = \pmb{S} \pmb{p} \hat{y}_t.$$

Top-down approaches: How to get p

Average historical proportions

$$p_j = \frac{1}{T} \sum_{t=1}^{T} \frac{y_{j,t}}{y_t}, \text{ for } j = 1, ..., m$$

where $y_{j,t}$ is the historical values at the bottom level time series

Proportions of the historical averages

$$p_j = \sum_{t=1}^{T} \frac{y_{j,t}}{T} / \sum_{t=1}^{T} \frac{y_t}{T}, \text{ for } j = 1, ..., m$$

• Other strategies, see the online text.

Mapping matrices

- Suppose we forecast all series independently, ignoring the aggregation constraints.
- We call these the base forecasts and denote them by \hat{y}_h where h is the forecast horizon. They are stacked in the same order as the data y_t .
- Then all forecasting approaches for either hierarchical or grouped structures can be represented as

$$\tilde{\pmb{y}}_h = \pmb{S} \pmb{G} \hat{\pmb{y}}_h$$

where G is a matrix that maps the base forecasts into the bottom-level, and the summing matrix S sums these up using the aggregation structure to produce a set of coherent forecasts \tilde{y}_h .

Designing **G**

 Bottom-up Approach: As each bottom series comes from itself, so for previous 2-level hierarchical structure

$$\boldsymbol{G} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 The top-down approaches: the bottom series is portion of the total series forecast, so

$$m{G} = egin{bmatrix} p_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ p_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ p_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ p_4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ p_5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Forecast reconciliation

- The key requirement for the hierarchical or grouped forecasts is to satisfy the coherent constraint conditions
- ullet We write $ilde{m{y}}_h = m{S}m{G}\hat{m{y}}_h$ as

$$\tilde{\mathbf{y}}_h = \mathbf{P}\hat{\mathbf{y}}_h$$

where P = SG is a "projection" or a "reconciliation matrix".

• It takes the incoherent base forecasts $hat y_h$, and reconciles them to produce coherent forecasts \tilde{y}_h .

The Best **G**

- We shall find the optimal G matrix to give the most accurate reconciled forecasts
- Optimal forecast reconciliation will occur if we can find the G matrix which minimises the forecast error of the set of coherent forecasts.
- Suppose we generate coherent forecasts using

$$\tilde{\mathbf{y}}_h = \mathbf{S}\mathbf{G}\hat{\mathbf{y}}_h$$

- Theory has proved that, to have unbiased forecasts coherent forecasts, we shall have SGS = S.
- Interestingly, no top-down method satisfies this constraint, so all top-down methods are biased.

The Best *G*

 Wickramasuriya et al. show that the variance-covariance matrix of the h-step-ahead coherent forecast errors is given by

$$oldsymbol{V}_h = extsf{Var}[oldsymbol{y}_{T+h} - ilde{oldsymbol{y}}_h] = oldsymbol{S} oldsymbol{G} oldsymbol{W}_h oldsymbol{G}^T oldsymbol{S}^T$$

where $W_h = \text{Var}[(y_{T+h} - \hat{y}_h)]$ is the variance-covariance matrix of the corresponding base forecast errors.

- The objective is to find a matrix G that minimises the error variances of the coherent forecasts.
- Under certain conditions, we can find

$$\boldsymbol{G} = (\boldsymbol{S}^T \boldsymbol{W}_h^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^T \boldsymbol{W}_h^{-1}.$$

Practical Estimate of W_h

There are couple of suggested estimate for W_h

- $W_h = k_h I$ for all h, where $k_h > 0$ is a constant.
- $\mathbf{W}_h = k_h \operatorname{diag}(\hat{\mathbf{W}}_1)$, for all h, where $k_h > 0$ is a constant

$$\hat{\mathbf{W}}_1 = \frac{1}{T} \sum_{t=1}^T \mathbf{e}_t \mathbf{e}_t^T,$$

and e_t is an *n*-dimensional vector of residuals of the models that generated the base forecasts stacked in the same order as the data.

• $W_h = k_h \Lambda$ for all h, where $k_h > 0$ is a constant. $\Lambda = \text{diag}(S1)$ and 1 is a unit vector of dimension n.