# Towards a more competitive Europe: A merger policy approach

Revisiting Igami and Uetake (2020): Mergers, Innovation and Entry-Exit Dynamics

Luis Moyano García

Cornell University

December 2, 2024











































Literature

The model

Data

Estimation

Counterfactuals

#### Outline

#### Motivation

Literature

The model

Data

Estimation

Counterfactuals



Foreword of the Draghi Report (2024)

— A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets.



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets.



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets.
  - Only four of the top 50 tech companies are European.



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets.
  - Only four of the top 50 tech companies are European.
  - Cloud market. 65% is captured by three US "hyperscalers". The largest European cloud operators account for just 2% (of the EU market).



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets.
  - Only four of the top 50 tech companies are European.
  - Cloud market. 65% is captured by three US "hyperscalers". The largest European cloud operators account for just 2% (of the EU market).
  - Quantum computing. Top 10 firms: 5 in the US, 4 in China, 0 in Europe.



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets.
  - Only four of the top 50 tech companies are European.
  - Cloud market. 65% is captured by three US "hyperscalers". The largest European cloud operators account for just 2% (of the EU market).
  - Quantum computing. Top 10 firms: 5 in the US, 4 in China, 0 in Europe.
  - Chinese competition. clean tech and electric vehicels.



- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets.
  - Only four of the top 50 tech companies are European.
  - Cloud market. 65% is captured by three US "hyperscalers". The largest European cloud operators account for just 2% (of the EU market).
  - Quantum computing. Top 10 firms: 5 in the US, 4 in China, 0 in Europe.
  - Chinese competition. clean tech and electric vehicels.
- The EU has proportionally less SMEs than the US and more micro enterprises.

- A wide gap in GDP has opened up between the EU and the US, driven mainly by a more pronounced slowdown in productivity growth in Europe.
  - Largely explained by the tech sector. The EU is weak in emerging technologies that will drive future growth.
- The EU companies face greater competition from abroad, and lower access to overseas markets
  - Only four of the top 50 tech companies are European.
  - Cloud market. 65% is captured by three US "hyperscalers". The largest European cloud operators account for just 2% (of the EU market).
  - Quantum computing. Top 10 firms: 5 in the US, 4 in China, 0 in Europe.
  - Chinese competition, clean tech and electric vehicels.
- The EU has proportionally less SMEs than the US and more micro enterprises.
- → Technology adoption rises with firm size for all technologies. Big investments.



Protecting Competition in a Changing World (2024)

— Europe's aggregate markup has risen less than that of the US.



- Protecting Competition in a Changing World (2024)
  - Europe's aggregate markup has risen less than that of the US.
  - Markups appear to correlated with profits, they are not just to cover fixed costs.



- Protecting Competition in a Changing World (2024)
  - Europe's aggregate markup has risen less than that of the US.
  - Markups appear to correlated with profits, they are not just to cover fixed costs.
  - Enrico Letta (2024) report on the Single Market:
    - "Allowing EU companies to scale up within the Single Market is not just an economic imperative but also a strategic one".



#### Protecting Competition in a Changing World (2024)

- Europe's aggregate markup has risen less than that of the US.
- Markups appear to correlated with profits, they are not just to cover fixed costs.
- Enrico Letta (2024) report on the Single Market: "Allowing EU companies to scale up within the Single Market is not just an economic imperative but also a strategic one".



#### Research Question



— RQ1: Does a policy that boosts inter-state mergers of small and medium-size companies provide overall welfare gains?

### Research Question



- RQ1: Does a policy that boosts inter-state mergers of small and medium-size companies provide overall welfare gains?
- RQ2: Assess the following trade-offs
  - Optimal investments
  - Barriers to entry

#### Outline

Motivation

Literature

The model

Data

Estimation

Counterfactuals





#### Literature



 Merger efficiencies. Demirer and Karaduman (2024), Chen (2024), Miller and Weinberg (2017), Kulick (2017), Blonigen and Pierce (2016), Braguinsky et al. (2015), Ashenfelter et al. (2015)

#### Literature



- Merger efficiencies. Demirer and Karaduman (2024), Chen (2024), Miller and Weinberg (2017), Kulick (2017), Blonigen and Pierce (2016), Braguinsky et al. (2015), Ashenfelter et al. (2015)
- Market structure and innovation. Dynamic welfare trade-off. Igami and Uetake (2020), Mermelstein, Nocke, Satterthwaite and Whinston (2018), Marshall and Parra (2018), Scotchmer (2004), Farrell and Shapiro (1990).

#### Literature



- Merger efficiencies. Demirer and Karaduman (2024), Chen (2024), Miller and Weinberg (2017), Kulick (2017), Blonigen and Pierce (2016), Braguinsky et al. (2015), Ashenfelter et al. (2015)
- Market structure and innovation. Dynamic welfare trade-off. Igami and Uetake (2020), Mermelstein, Nocke, Satterthwaite and Whinston (2018), Marshall and Parra (2018), Scotchmer (2004), Farrell and Shapiro (1990).
- Dynamic games and mergers. Igami and Uetake (2020), Jeziorski (2014), Stahl (2011), Gowrisankaran (1995, 1999); Innovation: Benkard (2004), Goettler and Gordon (2011), Kim (2015), and Igami (2017, 2018); Entry and exit: Ryan (2012), Collard-Wexler (2013), Takashi (2015), Arcidiacono et al. (2016), and Igami and Yang (2016)

#### Outline

Motivation

Literature

The model

Data

Estimation

Counterfactuals

Model Setup



# $\mathsf{Model}$

Setup

— Time is discrete with a finite horizon  $t=0,1,2,\ldots,T$ .

#### 0

- Setup
- Time is discrete with a finite horizon  $t=0,1,2,\ldots,T$  .
- There is a finite number of incumbent firms  $i=1,2,\ldots,n_t$ , each with its own productivity  $\omega_{it} \in \{\omega^1,\omega^2,\ldots\}$ .

- Setup
- Time is discrete with a finite horizon  $t = 0, 1, 2, \dots, T$ .
- There is a finite number of incumbent firms  $i=1,2,\ldots,n_t$ , each with its own productivity  $\omega_{it} \in \{\omega^1,\omega^2,\ldots\}$ .
- These incumbents participate in the industry (HDD) spot market and earn profits  $\pi_{it}(\omega_t)$ . ( $\omega_t$  is the payoff-relevant state variable along with time period t, which subsumes time-varying demand.)

- Setup
- Time is discrete with a finite horizon  $t = 0, 1, 2, \dots, T$ .
- There is a finite number of incumbent firms  $i=1,2,\ldots,n_t$ , each with its own productivity  $\omega_{it} \in \{\omega^1,\omega^2,\ldots\}$ .
- These incumbents participate in the industry (HDD) spot market and earn profits  $\pi_{it}(\omega_t)$ . ( $\omega_t$  is the payoff-relevant state variable along with time period t, which subsumes time-varying demand.)
- Every period, there exists an entrant i=0, and state  $\omega^0$ ,  $a_{it}=\{enter,\ wait\}$ .

$$\omega_{i,t+1} = \omega^1$$
, and  $\kappa^{a^0=1} + \varepsilon(a^0_{it})$   
 $\omega_{i,t+1} = \omega^0$ , and  $\kappa^{a^0=0} + \varepsilon(a^0_{it})$ 

Setup

- Time is discrete with a finite horizon t = 0, 1, 2, ..., T.
- There is a finite number of incumbent firms  $i=1,2,\ldots,n_t$ , each with its own productivity  $\omega_{it} \in \{\omega^1,\omega^2,\ldots\}$ .
- These incumbents participate in the industry (HDD) spot market and earn profits  $\pi_{it}(\omega_t)$ . ( $\omega_t$  is the payoff-relevant state variable along with time period t, which subsumes time-varying demand.)
- Every period, there exists an entrant i = 0, and state  $\omega^0$ ,  $a_{it} = \{enter, wait\}$ .

$$\omega_{i,t+1} = \omega^1$$
, and  $\kappa^{a^0=1} + \varepsilon(a_{it}^0)$   
 $\omega_{i,t+1} = \omega^0$ , and  $\kappa^{a^0=0} + \varepsilon(a_{it}^0)$ 

— The <u>incumbent</u> chooses  $a_{it} \in \{exit, innovation, merger, innovation -and - merger, idle\}$ . Each action has a sunk cost  $(\kappa^x, \kappa^i, \kappa^m, \kappa^{i\&m}, \kappa^c)$ .

Model Setup



# $\mathsf{Model}$

Setup

—  $arepsilon(a_{it}^0)$  is iid Type-1 extreme value.

- Setup
  - $arepsilon(a_{it}^0)$  is iid Type-1 extreme value.
  - The three actions imply the following transitions:



- Setup
  - $\varepsilon(a_{it}^0)$  is iid Type-1 extreme value.
  - The three actions imply the following transitions:
    - 1. Exit is final and the exiter reaches an absorbing state  $\omega_{i,t+1}=\omega^{00}$

Setup



- $\varepsilon(a_{it}^0)$  is iid Type-1 extreme value.
  - The three actions imply the following transitions:
    - 1. Exit is final and the exiter reaches an absorbing state  $\omega_{i,t+1}=\omega^{00}$
    - 2. Innovation involves costly retooling to improve productivity  $\omega_{i,t+1} = \omega_{it} + 1$ .

- Setup
  - $\varepsilon(a_{it}^0)$  is iid Type-1 extreme value.
  - The three actions imply the following transitions:
    - 1. Exit is final and the exiter reaches an absorbing state  $\omega_{i,t+1}=\omega^{00}$
    - 2. Innovation involves costly retooling to improve productivity  $\omega_{i,t+1} = \omega_{it} + 1$ .
    - 3. An incumbent may propose *Merger* to one of the other incumbents by making a take-it-or-leave-it ("TIOLI") offer.

- Setup
  - $\varepsilon(a_{it}^0)$  is iid Type-1 extreme value.
  - The three actions imply the following transitions:
    - 1. Exit is final and the exiter reaches an absorbing state  $\omega_{i,t+1}=\omega^{00}$
    - 2. Innovation involves costly retooling to improve productivity  $\omega_{i,t+1} = \omega_{it} + 1$ .
    - 3. An incumbent may propose *Merger* to one of the other incumbents by making a take-it-or-leave-it ("TIOLI") offer.
  - Post-merger productivity as Farrell and Shapiro (1990)  $\omega_{i,t+1} = \max\{\omega_{it},\omega_{jt}\} + \Delta_{i,t+1}$ , where  $\Delta_{i,t+1}$  is the realization of stochastic improvement in productivity.

Setup

- $\varepsilon(a_{i:}^0)$  is iid Type-1 extreme value.
  - The three actions imply the following transitions:
    - 1. Exit is final and the exiter reaches an absorbing state  $\omega_{i,t+1}=\omega^{00}$
    - 2. Innovation involves costly retooling to improve productivity  $\omega_{i,t+1} = \omega_{it} + 1$ .
    - 3. An incumbent may propose *Merger* to one of the other incumbents by making a take-it-or-leave-it ("TIOLI") offer.
  - Post-merger productivity as Farrell and Shapiro (1990)  $\omega_{i,t+1} = \max\{\omega_{it}, \omega_{jt}\} + \Delta_{i,t+1}$ , where  $\Delta_{i,t+1}$  is the realization of stochastic improvement in productivity.
    - $\Delta_{i,t+1} \sim Poisson(\lambda)$  i.i.d., where  $\lambda$  is the expected value of synergy.

- Setup
  - $\varepsilon(a_{it}^0)$  is iid Type-1 extreme value.
  - The three actions imply the following transitions:
    - 1. Exit is final and the exiter reaches an absorbing state  $\omega_{i,t+1} = \omega^{00}$
    - 2. Innovation involves costly retooling to improve productivity  $\omega_{i,t+1} = \omega_{it} + 1$ .
    - 3. An incumbent may propose *Merger* to one of the other incumbents by making a take-it-or-leave-it ("TIOLI") offer.
  - Post-merger productivity as Farrell and Shapiro (1990)  $\omega_{i,t+1} = \max\{\omega_{it}, \omega_{jt}\} + \Delta_{i,t+1}$ , where  $\Delta_{i,t+1}$  is the realization of stochastic improvement in productivity.
    - $\Delta_{i,t+1} \sim Poisson(\lambda)$  i.i.d., where  $\lambda$  is the expected value of synergy.
  - They model the antitrust authority by making mergers infeasible when the number of firms  $n_t$  reaches a policy threshold,  $\underline{\bf N}$

Model Timing





### Timing

 Alternating-move game: only (up to) one firm has an opportunity to make a dvnamic discrete choice within a period.

- Alternating-move game: only (up to) one firm has an opportunity to make a dynamic discrete choice within a period.
- Stochastically alternating moves:



- Alternating-move game: only (up to) one firm has an opportunity to make a dynamic discrete choice within a period.
- Stochastically alternating moves:
  - 1. Nature chooses at most one firm, i, with probability  $\rho = \frac{1}{n_{\max}}$ .

- Alternating-move game: only (up to) one firm has an opportunity to make a dynamic discrete choice within a period.
- Stochastically alternating moves:
  - 1. Nature chooses at most one firm, i, with probability  $\rho = \frac{1}{n_{\max}}$ .
  - 2. Mover i observes the current industry state  $\omega_t$ , and forms rational expectations about its future evolution  $\{\omega_\tau\}_{\tau=t+1}^T$  and draws i.i.d. shocks  $\varepsilon(a_{it}) = \varepsilon_{it}^x, \varepsilon_{it}^c, \varepsilon_{it}^i, \{\varepsilon_{ijt}^m\}_i$  and  $\{\varepsilon_{ijt}^{i\&m}\}_i$

- Alternating-move game: only (up to) one firm has an opportunity to make a dynamic discrete choice within a period.
- Stochastically alternating moves:
  - 1. Nature chooses at most one firm, i, with probability  $\rho = \frac{1}{n_{max}}$ .
  - 2. Mover i observes the current industry state  $\omega_t$ , and forms rational expectations about its future evolution  $\{\omega_{\tau}\}_{\tau=t+1}^{T}$  and draws i.i.d. shocks  $\varepsilon(a_{it}) = \varepsilon_{it}^x, \varepsilon_{it}^c, \varepsilon_{it}^i, \left\{\varepsilon_{ijt}^m\right\}_i$  and  $\left\{\varepsilon_{ijt}^{i\&m}\right\}_i$
  - 3. Mover i makes the discrete choice  $a_{it} \in A_{it}$ , incurring a sunk cost. Then, it chooses to negotiate a potential merger with incumbent i and bargain over  $p_{ij}$ .

- Alternating-move game: only (up to) one firm has an opportunity to make a dynamic discrete choice within a period.
- Stochastically alternating moves:
  - 1. Nature chooses at most one firm, i, with probability  $\rho = \frac{1}{n_{\max}}$ .
  - 2. Mover i observes the current industry state  $\omega_t$ , and forms rational expectations about its future evolution  $\{\omega_\tau\}_{\tau=t+1}^T$  and draws i.i.d. shocks  $\varepsilon(a_{it}) = \varepsilon_{it}^x, \varepsilon_{it}^c, \varepsilon_{it}^i, \{\varepsilon_{ijt}^m\}_i$  and  $\{\varepsilon_{ijt}^{i\&m}\}_i$
  - 3. Mover i makes the discrete choice  $a_{it} \in A_{it}$ , incurring a sunk cost. Then, it chooses to negotiate a potential merger with incumbent j and bargain over  $p_{ij}$ .
  - 4. Spot-market competition. Firms earn period profits  $\pi_{it}(\omega_t)$  and pay the fixed cost of operation  $\phi_t = \phi_0 + \phi_t(\omega_{it})$ .

- Alternating-move game: only (up to) one firm has an opportunity to make a dynamic discrete choice within a period.
- Stochastically alternating moves:
  - 1. Nature chooses at most one firm, i, with probability  $\rho = \frac{1}{n_{\max}}$ .
  - 2. Mover i observes the current industry state  $\omega_t$ , and forms rational expectations about its future evolution  $\{\omega_{\tau}\}_{\tau=t+1}^{T}$  and draws i.i.d. shocks  $\varepsilon(a_{it}) = \varepsilon_{it}^{x}, \varepsilon_{it}^{e}, \varepsilon_{it}^{e}, \{\varepsilon_{itt}^{m}\}$  and  $\{\varepsilon_{ist}^{i\&m}\}$ .

$$\varepsilon(a_{it}) = \varepsilon_{it}^x, \varepsilon_{it}^c, \varepsilon_{it}^i, \left\{\varepsilon_{ijt}^m\right\}_j \text{ and } \left\{\varepsilon_{ijt}^{i\&m}\right\}_j$$

- 3. Mover i makes the discrete choice  $a_{it} \in A_{it}$ , incurring a sunk cost. Then, it chooses to negotiate a potential merger with incumbent j and bargain over  $p_{ij}$ .
- 4. Spot-market competition. Firms earn period profits  $\pi_{it}(\omega_t)$  and pay the fixed cost of operation  $\phi_t = \phi_0 + \phi_t(\omega_{it})$ .
- 5. Mover i implements a dynamic action, and its state evolves accordingly, drawing  $\Delta_{i,t+1}$  if it merges.



Dynamic optimization and equilibrium



#### Dynamic optimization and equilibrium

The Bellman equation:

$$V_{it}(\omega_t, \varepsilon_{it}) = \pi_{it}(\omega_t) - \phi_t(\omega_{it}) + \max\{V_{it}^x, V_{it}^c, V_{i}^i, \{V_{ijt}^m\}_j, \{V_{ijt}^{i\&m}\}_j\}$$

where  $V^a_{it}$  represents conditional (or "alternative-specific") values of exiting, idling, innovating, proposing merger to rival j, and both of the latter two, respectively.

$$V_{it}^{a}(\omega_{t}, \varepsilon_{it}^{a}) = -\kappa^{a} + \varepsilon_{it}^{a} + \beta E[\Lambda_{i,t+1}(\omega_{t+1})|\omega_{t}, a_{it} = a]$$

#### Dynamic optimization and equilibrium

The Bellman equation:

$$V_{it}(\omega_t, \varepsilon_{it}) = \pi_{it}(\omega_t) - \phi_t(\omega_{it}) + \max\{V_{it}^x, V_{it}^c, V_{i}^i, \{V_{ijt}^m\}_j, \{V_{ijt}^{i\&m}\}_j\}$$

where  $V_{it}^a$  represents conditional (or "alternative-specific") values of exiting, idling, innovating, proposing merger to rival j, and both of the latter two, respectively.

$$V_{it}^{a}(\omega_{t}, \varepsilon_{it}^{a}) = -\kappa^{a} + \varepsilon_{it}^{a} + \beta E[\Lambda_{i,t+1}(\omega_{t+1})|\omega_{t}, a_{it} = a]$$

Moreover, i's value before drawing  $\varepsilon_{it}$  is

$$EV_{it}(\omega_t) = E_{\varepsilon}[V_{it}(\omega_t, \varepsilon_{it})] = \pi_i(\omega_t) - \phi_t(\omega_{it}) + \sigma \left\{ \gamma + \ln \sum_{\sigma \in A} \exp\left(\frac{V_{it}^{\alpha}}{\sigma}\right) \right\}$$

#### Dynamic optimization and equilibrium

The Bellman equation:

$$V_{it}(\omega_t, \varepsilon_{it}) = \pi_{it}(\omega_t) - \phi_t(\omega_{it}) + \max\{V_{it}^x, V_{it}^c, V_i^i, \{V_{ijt}^m\}_j, \{V_{ijt}^{i\&m}\}_j\}$$

where  $V_{it}^a$  represents conditional (or "alternative-specific") values of exiting, idling, innovating, proposing merger to rival j, and both of the latter two, respectively.

$$V_{it}^{a}(\omega_{t}, \varepsilon_{it}^{a}) = -\kappa^{a} + \varepsilon_{it}^{a} + \beta E[\Lambda_{i,t+1}(\omega_{t+1})|\omega_{t}, a_{it} = a]$$

Moreover, i's value before drawing  $\varepsilon_{it}$  is

$$EV_{it}(\omega_t) = E_{\varepsilon}[V_{it}(\omega_t, \varepsilon_{it})] = \pi_i(\omega_t) - \phi_t(\omega_{it}) + \sigma \left\{ \gamma + \ln \sum_{i} \exp\left(\frac{V_{it}^a}{\sigma}\right) \right\}$$

- $\gamma$  is the Euler constant
- ullet  $\sigma$  is the logit scaling parameter
- $V_{it}^a = V_{it}^a(\omega_t, \epsilon_{it}^a) \varepsilon_{it}^a$  (the deterministic part)

#### Dynamic optimization and equilibrium

Ex-ante optimal choice probabilities:

$$\Pr(a_{it} = \mathit{action}) = \frac{\exp(\frac{V_{it}^{action}}{\sigma})}{\exp(\frac{V_{it}^{c}}{\sigma}) + \exp(\frac{V_{it}^{c}}{\sigma}) + \exp(\frac{V_{it}^{i}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{m}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{ikm}}{\sigma})}$$

#### Dynamic optimization and equilibrium

Ex-ante optimal choice probabilities:

$$\Pr(a_{it} = action) = \frac{\exp(\frac{V_{it}^{action}}{\sigma})}{\exp(\frac{V_{it}^{c}}{\sigma}) + \exp(\frac{V_{it}^{c}}{\sigma}) + \exp(\frac{V_{it}^{i}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{m}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{ikm}}{\sigma})}$$

— An equilibrium exists and is unique. Solved by backward induction.





#### Dynamic optimization and equilibrium

Ex-ante optimal choice probabilities:

$$\Pr(a_{it} = action) = \frac{\exp(\frac{V_{it}^{action}}{\sigma})}{\exp(\frac{V_{it}^{x}}{\sigma}) + \exp(\frac{V_{it}^{c}}{\sigma}) + \exp(\frac{V_{it}^{i}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{m}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{ikm}}{\sigma})}$$

- An equilibrium exists and is unique. Solved by backward induction.
- Mover t's choice completely determines the transition probability of  $\omega_t$  to  $\omega_{t+1}$ , but it cannot affect future movers' optimal CCPs at t+1 and beyond in any other way.



#### Dynamic optimization and equilibrium

Ex-ante optimal choice probabilities:

$$\Pr(a_{it} = action) = \frac{\exp(\frac{V_{it}^{action}}{\sigma})}{\exp(\frac{V_{it}^{x}}{\sigma}) + \exp(\frac{V_{it}^{c}}{\sigma}) + \exp(\frac{V_{it}^{i}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{m}}{\sigma}) + \sum_{j \neq i} \exp(\frac{V_{ijt}^{ikm}}{\sigma})}$$

- An equilibrium exists and is unique. Solved by backward induction.
- Mover t's choice completely determines the transition probability of  $\omega_t$  to  $\omega_{t+1}$ , but it cannot affect future movers' optimal CCPs at t+1 and beyond in any other way.
- Alternative modelling possibilities considered: (1) infinite horizon, (2) continuous time, (3) heterogeneous recognition probabilities, (4) alternative bargaining protocols, and (5) private information on synergies.





— There are two types of players  $\{European, National\}$ , and only national players can merge.

- There are two types of players  $\{European, National\}$ , and only national players can merge.
- There are M=27 geographical markets, where companies of European type play in all of them, and National type play only in one market m.

- There are two types of players  $\{European, National\}$ , and only national players can merge.
- There are M=27 geographical markets, where companies of European type play in all of them, and National type play only in one market m.
  - Perhaps consider as well the possibility of making firms active in different product markets.

- There are two types of players  $\{European, National\}$ , and only national players can merge.
- There are M=27 geographical markets, where companies of European type play in all of them, and National type play only in one market m.
  - Perhaps consider as well the possibility of making firms active in different product markets.
- Only one merger per market each period is possible (see if we could allow for multiple mergers across markets).

- There are two types of players  $\{European, National\}$ , and only national players can merge.
- There are M=27 geographical markets, where companies of European type play in all of them, and National type play only in one market m.
  - Perhaps consider as well the possibility of making firms active in different product markets.
- Only one merger per market each period is possible (see if we could allow for multiple mergers across markets).
- Information frictions between markets (for counterfactuals) (European fragmentation)...

### Model innovations

- There are two types of players  $\{European, National\}$ , and only national players can merge.
- There are M=27 geographical markets, where companies of European type play in all of them, and National type play only in one market m.
  - Perhaps consider as well the possibility of making firms active in different product markets.
- Only one merger per market each period is possible (see if we could allow for multiple mergers across markets).
- Information frictions between markets (for counterfactuals) (European fragmentation)...
- Barriers to entry as the number of players goes down: decreasing probability of entry as N decreases.

### Outline

Motivation

Literature

The model

Data

Estimation

Counterfactual





- 1. Company financials [Historical Orbis]:
  - Revenues and cost data
  - Firm choices: investment, entry and exit
  - Geographical activity



- 1. Company financials [Historical Orbis]:
  - Revenues and cost data
  - Firm choices: investment, entry and exit
  - Geographical activity
- 2. Market data [Euromonitor International]:
  - Market shares
  - Physical output
  - Product characteristics (company websites, market reports)



- 1. Company financials [Historical Orbis]:
  - Revenues and cost data
  - Firm choices: investment, entry and exit
  - Geographical activity
- 2. Market data [Euromonitor International]:
  - Market shares
  - Physical output
  - Product characteristics (company websites, market reports)
- 3. Merger deals:
  - S&P Capital IQ
  - Annual reports (Publicly listed entities)
  - Zephyr (Bureau Van Dijk)

### Outline

Motivation

Literature

The model

Data

Estimation

Counterfactual



- 1. Static estimates:
  - Consumer demand: BLP (Differentiated goods)



- 1. Static estimates:
  - Consumer demand: BLP (Differentiated goods)
  - ullet Marginal costs: implied by Cournot model  $(mc_{it})$ .



- 1. Static estimates:
  - Consumer demand: BLP (Differentiated goods)
  - ullet Marginal costs: implied by Cournot model  $(mc_{it}).$
  - Period profits  $\pi_{it}(\omega_{it})$



- 1. Static estimates:
  - Consumer demand: BLP (Differentiated goods)
  - Marginal costs: implied by Cournot model  $(mc_{it})$ .
  - Period profits  $\pi_{it}(\omega_{it})$
- 2. Dynamic estimates (sunk costs):
  - ullet Innovation, mergers, and entry: MLE  $(\kappa^i, \, \kappa^m, \, \kappa^e)$
  - ullet Logit scaling parameter: MLE  $(\sigma)$
  - ullet Base fixed costs of operation: MLE  $(\phi_0)$
  - ullet Time-varying fixed cost of operation: Accounting data  $(\phi_t(\omega_{it}))$

- 1. Static estimates:
  - Consumer demand: BLP (Differentiated goods)
  - ullet Marginal costs: implied by Cournot model  $(mc_{it})$ .
  - Period profits  $\pi_{it}(\omega_{it})$
- 2. Dynamic estimates (sunk costs):
  - ullet Innovation, mergers, and entry: MLE  $(\kappa^i, \, \kappa^m, \, \kappa^e)$
  - ullet Logit scaling parameter: MLE  $(\sigma)$
  - ullet Base fixed costs of operation: MLE  $(\phi_0)$
  - ullet Time-varying fixed cost of operation: Accounting data  $(\phi_t(\omega_{it}))$
- 3. Dynamics (transitions):
  - Annual discount factor: Calirated  $(\beta)$
  - Probability stochastic depreciation: Implied by  $mc_{it}$  ( $\delta$ )
  - Average synergy: Implied by  $mc_{it}$  ( $\lambda$ ).

- 1. Static estimates:
  - Consumer demand: BLP (Differentiated goods)
  - Marginal costs: implied by Cournot model  $(mc_{it})$ .
  - Period profits  $\pi_{it}(\omega_{it})$
  - 2. Dynamic estimates (sunk costs):
    - ullet Innovation, mergers, and entry: MLE  $(\kappa^i, \, \kappa^m, \, \kappa^e)$
    - Logit scaling parameter: MLE  $(\sigma)$
    - ullet Base fixed costs of operation: MLE  $(\phi_0)$
    - ullet Time-varying fixed cost of operation: Accounting data  $(\phi_t(\omega_{it}))$
  - 3. Dynamics (transitions):
    - Annual discount factor: Calirated (β)
    - Probability stochastic depreciation: Implied by  $mc_{it}$  ( $\delta$ )
    - Average synergy: Implied by  $mc_{it}$  ( $\lambda$ ).
  - 4. Other: Terminal period (T), bargaining power, (TIOLI:  $\chi$ ) and recognition probability ( $\rho = 1/n_{\rm max}$ ).

# Outline

Motivation

Literature

The model

Data

Estimation

Counterfactuals

# Counterfactuals



- Quantify welfare gains of reducing internal market frictions.
- Assess optimal investment levels.
- Assess the trade-off between consolidation and barriers to entry.