Exercises in Foundations in Representation Theory

Exercise Sheet 8

Jendrik Stelzner

Exercise 1.

(i)

Lemma 1. Let \mathcal{A} be an abelian category.

1) Let

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} Y \\ \varphi \Big| & & & \downarrow \varphi' \\ X' & \stackrel{f'}{\longrightarrow} Y' \end{array}$$

be a commutative square in \mathcal{A}^{1} Let $k \colon \ker(f) \to X$ and $k' \colon \ker(f') \to X'$ be kernels of f and f'. Then there exist a unique morphism $\varphi'' \colon \ker(f) \to \ker(f'')$ that makes the following diagram commute:

$$\ker(f) \xrightarrow{k} X \xrightarrow{f} Y$$

$$\varphi' \downarrow \qquad \qquad \varphi \downarrow \qquad \qquad \downarrow \varphi'$$

$$\ker(f') \xrightarrow{k'} X' \xrightarrow{f'} Y'$$

¹We may think about this commutative square a morphism (φ, φ') : $f \to f'$ in the morphism category of A.

2) This induced morphism is functorial in the following sense: Let

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} Y \\ \varphi \Big| & & & \downarrow \varphi' \\ X' & \stackrel{f'}{\longrightarrow} Y' \\ \psi \Big| & & & \downarrow \psi'' \\ X'' & \stackrel{f''}{\longrightarrow} Y'' \end{array}$$

be a commutative diagram in \mathcal{A} and let

$$k \colon \ker(f) \to X$$
, $k' \colon \ker(f') \to X'$, $k'' \colon \ker(f'') \to X''$

be kernels of f, f' and f''. Let φ'' : $\ker(f) \to \ker(f')$ be the morphism induced by (φ, φ') and let ψ'' : $\ker(f') \to \ker(f'')$ be the morphism induced by (ψ, ψ') . Then the composition $\psi''\varphi''$: $\ker(f) \to \ker(f'')$ is the morphism induced by $(\psi\varphi, \psi'\varphi')$.

Proof.

1) This follows from the universal property of the kernel k': $\ker(f') \to X'$ of f' because

$$f'\varphi k = \varphi' f k = \varphi' \circ 0 = 0$$
.

2) We have the following commutative diagram:

The commutativity of the subdiagram

$$\begin{array}{ccc} \ker(f) & \stackrel{k}{\longrightarrow} X & \stackrel{f}{\longrightarrow} Y \\ \psi''\varphi'' & \psi\varphi & & \psi\varphi' \\ \ker(f'') & \stackrel{k''}{\longrightarrow} X'' & \stackrel{f''}{\longrightarrow} Y' \end{array}$$

shows that $\psi''\varphi''$ satisfies the defining property of the morphisms $\ker(f) \to \ker(f'')$ induced by $(\psi\varphi, \psi'\varphi')$.

For every $n \in \mathbb{N}$ let $k_n \colon \ker(f_n) \to C_n$ be a kernel of $f_n \colon C_n \to D_n$. It follows by Lemma 1 from the commutativity of the square

$$C_n \xrightarrow{d_n} C_{n-1}$$

$$f_n \downarrow \qquad \qquad \downarrow f_{n-1}$$

$$D_n \xrightarrow{d_n} D_{n-1}$$

that there exists a unique morphism d'_n : $\ker(f_n) \to \ker(f_{n-1})$ that makes the following square commute:

$$\ker(f_n) \xrightarrow{-d'_n} \ker(f_{n-1})$$

$$\downarrow k_n \qquad \qquad \downarrow k_{n-1}$$

$$C_n \xrightarrow{d_n} C_{n-1}$$
(1)

The composition $d'_{n-1}d'_n$ is by Lemma 1 the unique morphism $\ker(f_n) \to \ker(f_{n-2})$ that makes the following diagram commute:

The zero morphism also makes this diagram commute, hence $d'_{n-1}d'_n = 0$. This shows that $\ker(f) = ((\ker(f_n))_{n \in \mathbb{Z}}, (d'_n)_{n \in \mathbb{Z}})$ is a chain complex. The commutativity of the square (1) tells us furtheromer that $k := (k_n)_{n \in \mathbb{Z}}$ is a morphism of chain complexes $k \colon \ker(f) \to C_{\bullet}$.

The composition fk vanishes because $(fk)_n = f_n k_n = 0$ for every $n \in \mathbb{Z}$. Suppose that $g \colon B_{\bullet} \to C_{\bullet}$ is another morphism of chain complexs for which fg = 0. Then $0 = (fg)_n = f_n g_n$ for every $n \in \mathbb{Z}$, and it follows from the universal property of the kernel $k_n \colon \ker(f_n) \to C_n$ that there exist a unique morphism $h_n \colon B_n \to \ker(f_n)$ that makes the following diagram commute:

$$\ker(f_n) \xrightarrow{k_n} C_n$$

$$\downarrow h_n \mid g_n$$

$$B_n$$
(2)

Then $h := (h_n)_{n \in \mathbb{Z}}$ is a morphism of chain complexes: We have for every $n \in \mathbb{Z}$ the

following diagram:

The right square commutes because k is a morphism of chain complexes, the outer square commutes because g is a morphism of chain complexes and the upper and lower triangles commute by choice of h_n and h_{n-1} . It follows that the left square commutes, because

$$k_{n-1}d'_nh_n = d_nk_nh_n = d_ng_n = g_{n-1}d_n = k_{n-1}h_{n-1}d_n$$

and hence $d'_n h_n = h_{n-1} d_n$ since k_{n-1} is a monomorphism.

That the morphism h_n makes for every $n \in \mathbb{Z}$ the triangle (2) commute gives altogether that the morphism of chain complexes $h \colon B_{\bullet} \to \ker(f)$ makes the following diagram commute:

$$\ker(f) \xrightarrow{k} C_{\bullet}$$

$$\downarrow h \downarrow g$$

$$B_{\bullet}$$

The morphism h is unique with this property: If $h': B_{\bullet} \to \ker(f)$ is another morphim of chain complexes with kh' = g then $k_n h'_n = g_n$ for every $n \in \mathbb{Z}$, and hence the triangle

$$\ker(f_n) \xrightarrow{k_n} C_n$$

$$\downarrow h'_n \downarrow g_n$$

$$B_n$$

commutes for every $n \in \mathbb{Z}$. It then follows for every $n \in \mathbb{Z}$ from the uniqueness of h_n that $h'_n = h_n$, and hence overall h' = h.

This shows altogether that the morphism of chain complexes $k \colon \ker(f) \to C_{\bullet}$ is a kernel of f. This explicit construction of the kernel also shows that kernels in $\mathbf{Ch}_{\bullet}(\mathcal{A})$ can be computed degree-wise.

Remark 2. We similarly find that the cokernel of f is given by a chain complex

$$\operatorname{coker}(f) = ((\operatorname{coker}(f_n))_{n \in \mathbb{Z}}, (d''_n)_{n \in \mathbb{Z}})$$

together with a morphism of chain complexes $c: D_{\bullet} \to \operatorname{coker}(f)$ such that

• the morphism $c_n: D_n \to \operatorname{coker}(f_n)$ is for every $n \in \mathbb{Z}$ a cokernel of the morphism $f_n: C_n \to D_n$, and

• the differential d''_n : $\operatorname{coker}(f_n) \to \operatorname{coker}(f_{n-1})$ is for every $n \in \mathbb{Z}$ the unique morphism $\operatorname{coker}(f_n) \to \operatorname{coker}(f_{n-1})$ that makes the following square commute:

$$D_n \xrightarrow{d_n} D_{n-1}$$

$$\downarrow^{c_n} \downarrow \qquad \downarrow^{c_{n-1}}$$

$$\operatorname{coker}(f_n) \xrightarrow{-d''_n} \operatorname{coker}(f_{n-1})$$

• If $g: D_{\bullet} \to E_{\bullet}$ is another morphism of chain complexes with gf = 0, then the unique morphism of chain complexes $h: \operatorname{coker}(f) \to E_{\bullet}$ that makes the triangle

$$D_{\bullet} \xrightarrow{c} \operatorname{coker}(f)$$

$$\downarrow^{h}_{E_{\bullet}}$$

commute can be computed degree-wise, i.e. the component h_n : $\operatorname{coker}(f_n) \to E_n$ is for every $n \in \mathbb{Z}$ the unique morphism $\operatorname{coker}(f_n) \to E_n$ that makes the following triangle commute:

$$D_n \xrightarrow{c} \operatorname{coker}(f_n)$$

$$\downarrow^{h_n}$$

$$E_n$$

We can similarly calculate the image and coimage of f degree-wise

(ii)

Consider the case $\mathcal{A} = \mathbb{Z}\text{-}\mathbf{Mod}$ and the acylic chain complexes

$$C_{\bullet} = (\cdots \to 0 \to 2\mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{p} \mathbb{Z}/2 \to 0 \to \cdots),$$

$$D_{\bullet} = (\cdots \to 0 \to \mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z} \to 0 \to 0 \cdots),$$

where i denotes the inclusion and p the canonical projection. We have0a morphism of chain complexes $f: C_{\bullet} \to D_{\bullet}$ that is given by the following commutative ladder:

We can compute the kernel, cokernel and image of f degree-wise, and hence find that

$$\begin{aligned} \ker(f) &= (\cdots \to 0 \to 0 \to 0 \to \mathbb{Z}/2 \to 0 \to \cdots),\\ \operatorname{coker}(f) &= (\cdots \to 0 \to \mathbb{Z}/2 \to 0 \to 0 \to 0 \to \cdots),\\ \operatorname{im}(f) &= (\cdots \to 0 \to 2\mathbb{Z} \xrightarrow{i} \mathbb{Z} \to 0 \to 0 \to \cdots). \end{aligned}$$

None of those three chain complexes is acyclic.

Exercise 2.

Lemma 3. Let $0 \to C'_{\bullet} \xrightarrow{f} C_{\bullet} \xrightarrow{g} C''_{\bullet} \to \text{be a short exact sequence of chain complexes in <math>\mathcal{A}$.

- 1) If C'_{\bullet} is acyclic then g is a quasi-isomorphism.
- 2) If $C_{\bullet}^{"}$ is acyclic then f is a quasi-isomorphism.

Proof. This follows from the long exact sequence in homology.

(i)

If C''_{\bullet} is acyclic then $H_n(C'_{\bullet}) \cong H_n(C_{\bullet})$ for every $n \in \mathbb{Z}$ by Lemma 3, and hence C'_{\bullet} is acyclic if and only if C_{\bullet} is acyclic. Similarly, if C'_{\bullet} is acyclic then C_{\bullet} is acyclic if and only if C''_{\bullet} is acyclic. This shows together that if any two of the chain complexes C'_{\bullet} , C_{\bullet} , C''_{\bullet} are acyclic, then so is the third one.

(ii)

The canonical morphism $p \colon C_{\bullet} \to \text{coim}(f)$ fits into the short exact sequence

$$0 \to \ker(f) \to C_{\bullet} \xrightarrow{p} \operatorname{im}(f) \to 0$$
.

It follows by Lemma 3 from $\ker(f)$ being acylic that the canonical morphism p is a quasi-isomorphism. We similarly find that the canonical morphism $i\colon \operatorname{im}(f)\to D_\bullet$ is a quasi-isomorphism because $\operatorname{coker}(f)$ is acyclic. The canonical induced morphism $\tilde{f}\colon \operatorname{coim}(f)\to\operatorname{im}(f)$ is an isomorphism because $\operatorname{\mathbf{Ch}}_\bullet(\mathcal{A})$ is abelian, and hence also a quasi-isomorphism. We find that

$$f = i\tilde{f}p$$

is a composition of three quasi-isomorphism and hence a quasi-isomorphism itself.

Exercise 3.

We assume that all vector spaces V_i are finite-dimensional to ensure that the expression $\sum_{n\in\mathbb{Z}}(-1)^n\dim V_n$ is well-defined.

We abbreviate $H_n := H_n(V_{\bullet})$, $Z_n := Z_n(V_{\bullet})$ and $B_n := B_n(V_{\bullet})$ for every $n \in \mathbb{Z}$. We have for every $n \in \mathbb{Z}$ that

$$\dim H_n = \dim Z_n / B_n = \dim Z_n - \dim B_n ,$$

and also that

$$\dim V_n = \dim Z_n + \dim B_{n-1}.$$

We hence find that

$$\sum_{n} (-1)^{n} \dim V_{n} = \sum_{n} (-1)^{n} (\dim Z_{n} + \dim B_{n-1})$$

$$= \sum_{n} (-1)^{n} \dim Z_{n} + \sum_{n} (-1)^{n} \dim B_{n-1}$$

$$= \sum_{n} (-1)^{n} \dim Z_{n} - \sum_{n} (-1)^{n} \dim B_{n}$$

$$= \sum_{n} (-1)^{n} (\dim Z_{n} - \dim B_{n}) = \sum_{n} (-1)^{n} \dim H_{n}.$$

Exercise 4.

We have for all i = 0, ..., n and j = 0, ..., n + 1 that

- $f_j^{n+1}f_i^n=f_i^{n+1}f_{j-1}^n$ if j>i as both compositions are the unique order-preserving map $\{0,\ldots,n-1\}\to\{0,\ldots,n+1\}$ whose image doesn't contain i and j, and
- $f_j^{n+1}f_i^n=f_{i+1}^{n+1}f_j^n$ if $j\leq i$ as both compositions are the unique order-presvering map $\{0,\ldots,n-1\}\to\{0,\ldots,n+1\}$ whose image doesn't contain i+1 and j.

(i)

We assume that $C_n(A) = 0$ for all n < 0, and accordingly $d_n = 0$ for all $n \le 0$. We then have that $d_n d_{n+1} = 0$ for all $n \le 0$. For n > 0 we have that

$$d_n d_{n+1} = \left(\sum_{i=0}^n (-1)^i A(f_i^n)\right) \left(\sum_{j=0}^{n+1} (-1)^j A(f_j^{n+1})\right) = \sum_{i=0}^n \sum_{j=0}^{n+1} (-1)^{i+j} A(f_j^{n+1} f_i^n)$$

$$= \sum_{0 \le i < j \le n+1} (-1)^{i+j} A(f_j^{n+1} f_i^n) + \sum_{0 \le j \le i \le n} (-1)^{i+j} A(f_j^{n+1} f_i^n).$$

By using that $f_j^{n+1}f_i^n=f_{i+1}^{n+1}f_j^n$ for $j\leq i$, we can rearrange the second sum as

$$\begin{split} & \sum_{0 \leq j \leq i \leq n} (-1)^{i+j} A(f_j^{n+1} f_i^n) \\ &= \sum_{0 \leq j \leq i \leq n} (-1)^{i+j} A(f_{i+1}^{n+1} f_j^n) \\ &= \sum_{0 \leq j < i \leq n+1} (-1)^{i-1+j} A(f_i^{n+1} f_j^n) \\ &= - \sum_{0 \leq j < i \leq n+1} (-1)^{i+j} A(f_i^{n+1} f_j^n) \\ &= - \sum_{0 \leq i < j \leq n+1} (-1)^{i+j} A(f_j^{n+1} f_i^n) \,. \end{split}$$

We hence find that $d_n d_{n+1} = 0$.

We start by defining a cosimplical object $\Sigma \colon \Delta \to \mathbf{Top}$ and then define the desired simplicial set as $\mathbf{Top}(-,Y) \circ \Sigma \colon \Delta^{\mathrm{op}} \to \mathbf{Set}$.

For every $n \geq 0$ let e_0, \ldots, e_n be the standard basis of \mathbb{R}^{n+1} and let

$$\Sigma(n) := \operatorname{conv}(e_0, \dots, e_n) \subseteq \mathbb{R}^{n+1}$$

be the standard *n*-simplex, where conv denotes the convex hull operator.² For all $0 \le m \le n$ and every $f \in \Delta(m,n)$ let $\Sigma(f) \colon \Sigma(m) \to \Sigma(n)$ be the unique affine map with

$$\Sigma(f)(e_i) = e_{f(i)}$$

for every i = 0, ..., m. It then holds that $\Sigma(\mathrm{id}_n) = \mathrm{id}_{\Sigma(n)}$ for every $n \geq 0$, and that $\Sigma(gf) = \Sigma(g)\Sigma(f)$ for all composable morphisms $f : k \to m$ and $g : m \to n$ in Δ . We have hence constructed a covariant functor $\Sigma : \Delta \to \mathbf{Top}$, i.e. a cosimplical object in the category \mathbf{Top} .

We set $S := \mathbf{Top}(-,Y) \circ \Sigma \colon \Delta \to \mathbf{Set}$. The elements of the set S(n) are then precisely the continuous map $s \colon \Delta^n \to Y$, i.e. the *n*-simplices in Y.

Let $C^{\text{sing}}_{\bullet}(Y)$ be the singular chain complex of Y. We have just seen for $n \geq 0$ that

$$C_n^{\text{sing}}(Y) = FS(n) = C_n(FS)$$
.

Note that for every $n \geq 0$ and i = 0, ..., n, the map $\Sigma(f_i^n) \colon \Sigma(n-1) \to \Sigma(n)$ is precisely the inclusion of $\Sigma(n-1)$ into $\Sigma(n)$ as the *i*-th face. The differential of the singular chain complex $C_n^{\text{sing}}(Y)$ is therefore given by

$$d_n^{\operatorname{sing}}(s) = \sum_{i=0}^n (-1)^i s \circ \Sigma(f_i^n)$$

for every simplex $s \in S(n)$. The differential of the chain complex $C_{\bullet}(FS)$ is given by

$$d_n(s) = \sum_{i=0}^n (-1)^i (FS)(f_i^n)(s) = \sum_{i=0}^n (-1)^i (F \circ \mathbf{Top}(-,Y) \circ \Sigma)(f_i^n)(s)$$
$$= \sum_{i=0}^n (-1)^i F(\Sigma(f_i^n)^*)(s) = \sum_{i=0}^n (-1)^i \Sigma(f_i^n)^*(s) = \sum_{i=0}^n (-1)^i s \circ \Sigma(f_i^n).$$

This shows that the two chain complexes $C^{\text{sing}}_{\bullet}$ and $C_{\bullet}(FS)$ do have not only the same components but also the same differential, hence that they are the same.

 $^{^2 \}mbox{We}$ avoid the usual notation Δ^n for the standard $n\mbox{-simplex}$ because enough things are named Δ already.