II Algebraic Geometry

Ishan Nath, Lent 2024

Based on Lectures by Prof. Mark Gross

March 1, 2024

Page 1 CONTENTS

Contents

1	Affine Varieties		
	1.1	Algebraic Sets	2
	1.2	Irreducible Subsets	5
	1.3	Regular and Rational Functions	8
	1.4	Morphisms	9
2	Hilbert's Nullstellensatz		13
	2.1	Integrality	15
3	Projective Varieties		22
	3.1	Rational Maps	30
4	Tangent Spaces, Singularities and Dimension		32
	4.1	Intrinsic Characterization of the Tangent Space	33
5	Cur	eves	39
Index			46

1 Affine Varieties

1.1 Algebraic Sets

Our basic setup is as follows: we begin by fixing a field \mathbb{K} .

Definition 1.1. The affine n-space over \mathbb{K} is

$$\mathbb{A}^n = \mathbb{K}^n$$
.

Let $A = \mathbb{K}[x_1, \dots, x_n]$, and $S \subseteq A$. Set

$$Z(S) = \{(a_1, \dots, a_n) \in \mathbb{A}^n \mid f(a_1, \dots, a_n) = 0 \quad \forall f \in S\}.$$

Proposition 1.1.

- (a) $Z(\{0\}) = \mathbb{A}^n$.
- (b) $Z(A) = \emptyset$.
- (c) $Z(S_1 \cdot S_2) = Z(S_1) \cup Z(S_2)$, where $S_1 \cdot \cdot \cdot S_2 = \{ f \cdot g \mid f \in S_1, g \in S_2 \}$.
- (d) Let I be an indexing set, and suppose for each $i \in I$, we are given $S_i \subseteq A$.

 Then

$$\bigcap_{i \in I} Z(S_i) = Z\left(\bigcup_{i \in I} S_i\right).$$

Proof:

- (a) and (b) are obvious.
- (c) If $p \in Z(S_1) \cup Z(S_2)$, then either f(p) = 0 for all $f \in S_1$, or g(p) = 0 for all $g \in S_2$. Thus $(f \cdot g)(p) = 0$ for all $f \in S_1$, $g \in S_2$, hence $p \in Z(S_1 \cdot S_2)$.

Conversely, suppose $p \in Z(S_1 \cdot S_2)$, and $p \notin Z(S_1)$. So there exists $f \in S_1$ with $f(p) \neq 0$. But $(f \cdot g)(p) = 0$ for all $g \in S_2$, and $f(p) \neq 0$. So g(p) = 0 for all $g \in S_2$, thus $p \in Z(S_2)$.

(d) If $p \in Z(S_i)$ for all i, then $p \in Z(\bigcup S_i)$.

Conversely, if $p \in Z(\bigcup S_i)$, then $p \in Z(S_i)$ for all i.

This says that the sets of the form Z(S) form the closed sets of a topology on \mathbb{A}^n .

Definition 1.2. A subset of \mathbb{A}^n is algebraic if it is of the form Z(S) for some $S \subseteq A$.

A Zariski open subset of \mathbb{A}^n is a set of the form

$$\mathbb{A}^n \setminus Z(S)$$
,

for some $S \subseteq A$. This forms the Zariski topology on \mathbb{A}^n .

Example 1.1.

- 1. If $\mathbb{K} = \mathbb{C}$, the Zariski open or closed subsets are also open or closed in the "usual" topology.
- 2. For any \mathbb{K} , consider \mathbb{A}^1 , and $S \subseteq K[x]$ containing a non-zero element. Then Z(S) is finite.

So the Zariski closed sets are \mathbb{A}' and all finite sets, so this is equivalent to the cofinite topology.

Recall that if A is a commutative ring and $S \subseteq A$ is a subset, the ideal generated by S is the ideal $\langle S \rangle \subseteq A$ given by

$$\langle S \rangle = \left\{ \sum_{i=1}^{q} f_i g_i \mid q \ge 0, f_i \in S, g_i \in A \right\}.$$

This is the smallest ideal of A containing S.

Lemma 1.1. Let $S \subseteq \mathbb{K}[x_1, \dots, x_n]$ and $I = \langle S \rangle$. Then

$$Z(S) = Z(I)$$
.

Proof: If $p \in Z(S)$, let $f_1, \ldots, f_q \in S$ and $g_1, \ldots, g_q \in A$. Then

$$\sum_{i=1}^{q} (f_i g_i)(p) = \sum_{i=1}^{q} f_i(p) g_i(p) = 0.$$

Thus $Z(S) \subseteq Z(I)$.

But conversely, since $S \subseteq I$, $Z(I) \subseteq Z(S)$. So Z(S) = Z(I).

Definition 1.3. Let $X \subseteq \mathbb{A}^n$ be a subset. Define

$$I(X) = \{ f \in A = \mathbb{K}[x_1, \dots, x_n] \mid f(p) = 0 \quad \forall p \in X \}.$$

Remark. I(X) is an ideal: if $f, g \in I(X)$, then $f + g \in I(X)$, and if $f \in A$, $g \in I(X)$, then $f \cdot g \in I(X)$.

Moreover, if $S_1 \subseteq S_2 \subseteq A$, then $Z(S_2) \subseteq Z(S_1)$, and if $X_1 \subseteq X_2 \subseteq \mathbb{A}^n$, then $I(X_2) \subseteq I(X_1)$.

An intuitive thing to consider is the relationship between an ideal I and I(Z(I)).

Example 1.2.

Take $I = \langle x^2 \rangle \subseteq \mathbb{K}[x]$.

Then $Z(I) = \{0\} \subseteq \mathbb{A}^1$, but $I(Z(I)) = I(\{0\}) = \langle x \rangle \neq I$.

Definition 1.4. Let $I \subseteq A$ be an ideal in the commutative ring A. The *radical* of I is

$$\sqrt{I} = \{ f \in A \mid f^n \in I \text{ for some } n > 0 \}.$$

Lemma 1.2. \sqrt{I} is an ideal.

Proof: Suppose $f, g \in \sqrt{I}$, say $f^{n_1}, g^{n_2} \in I$. Then,

$$(f+g)^{n_1+n_2} = \sum_{i=1}^{n_1+n_2} {n_1+n_2 \choose i} f^i g^{n_1+n_2-i}$$

For each i, either $i \geq n_1$ or $n_1 + n_2 - i \geq n_2$. Therefore each term lies in I, hence $(f+g)^{n_1+n_2} \in I$. Hence $f+g \in \sqrt{I}$.

Now if $f \in \sqrt{I}$ and $g \in A$, then $f^n \in I$ for some n. So $(fg)^n = f^n g^n \in I$, so $fg \in \sqrt{I}$.

Proposition 1.2.

(a) If $X \subseteq \mathbb{A}^n$ is algebraic, then

$$Z(I(X)) = X.$$

(b) If $I \subseteq A$ is an ideal, then

$$\sqrt{I} \subseteq I(Z(I)).$$

Proof:

(a) Since X is algebraic, X = Z(I) for some ideal I. Certainly, $I \subseteq I(X)$,

by definition of Z and I(X). Thus $Z(I(X)) \subseteq Z(I) = X$. But we clearly have $X \subseteq Z(I(X))$.

(b) If $f^n \in I$, then f^n vanishes in Z(I), and hence f vanishes on Z(I) also. So $f \in I(Z(I))$, hence $\sqrt{I} \subseteq I(Z(I))$.

Theorem 1.1 (Hilbert's Nullstellensatz). Let \mathbb{K} be an algebraically closed field. Then

$$\sqrt{I} = I(Z(I)).$$

Example 1.3.

Take $\mathbb{K} = \mathbb{R}$, and $I = \langle x^2 + y^2 + 1 \rangle \subseteq \mathbb{R}[x, y]$.

But now $Z(I) = \emptyset$, however $I(Z(I)) = \mathbb{R}[x, y] \neq \sqrt{I}$.

This shows why we need an algebraically closed field: sometimes the zero set cannot properly capture the detail of the algebra, for example if the variety has no solutions.

1.2 Irreducible Subsets

Definition 1.5. Let X be a topological space, and $Z \subseteq X$ a closed subset. We say Z is *irreducible* if Z is non-empty, and whenever $Z = Z_1 \cup Z_2$ with Z_1, Z_2 closed, then either $Z = Z_1$ or $Z = Z_2$.

Remark. This is a bad notion in the Euclidean topology in \mathbb{C}^n . The only irreducible sets are points.

Example 1.4.

 \mathbb{A}^1 is irreducible as long as \mathbb{K} is infinite.

Definition 1.6. An (affine, algebraic) variety in \mathbb{A}^n is an irreducible algebraic set.

We are now interesting in recognizing irreducible algebraic sets algebraically.

Proposition 1.3. If $X_1, X_2 \subseteq \mathbb{A}^n$, then $I(X_1 \cup X_2) = I(X_1) \cap I(X_2)$.

Proof: Since $X_1, X_2 \subseteq X_1 \cup X_2$, we have $I(X_1 \cup X_2) \subseteq I(X_1), I(X_2)$. So $I(X_1 \cup X_2) \subseteq I(X_1) \cap I(X_2)$.

Conversely, if $f \in I(X_1) \cap I(X_2)$, then $f \in I(X_1 \cup X_2)$.

Recall that an ideal $P \subseteq A$ is *prime* if $P \neq A$, and whenever $f \cdot g \in P$, then either $f \in P$ or $g \in P$.

Lemma 1.3. Let $P \subseteq A$ be prime, and $I_1, \ldots, I_n \subseteq A$ be ideals. Suppose that $P \supseteq \bigcap I_i$. Then $P \supseteq I_i$ for some i. Moreover, if $P = \bigcap I_i$, then $P = I_i$ for some i.

Example 1.5.

Take $A = \mathbb{Z}$, and $P = \langle p \rangle$ for p a prime number, and $I_i = \langle n_i \rangle$. Then,

$$\bigcap_{i} I_{i} = \langle \operatorname{lcm}(n_{1}, \dots, n_{s}) \rangle.$$

Now note that

$$P \supseteq \bigcap_{i} I_{i} \iff p \mid \operatorname{lcm}(n_{1}, \dots, n_{s}) \iff p \mid n_{i} \text{ for some } i.$$

Proof: Suppose $P \not\supseteq I_i$ for any i. Then we can find $x_i \in I_i$ such that $x_i \notin P$. But now

$$\prod_{i=1}^{n} x_i \in \bigcap_{i=1}^{n} I_i \subseteq P,$$

so there exists $x_i \in P$, which gives a contradiction.

If $P = \bigcap I_i$, then $P \subseteq I_i$ for each i. We know that $I_i \subseteq P$ for some i, hence $P = I_i$ for some i.

Here's the main point.

Proposition 1.4. Let K be algebraically closed. Then an algebraic set $X \subseteq \mathbb{A}^n$ is irreducible if and only if $I(X) \subseteq A = \mathbb{K}[x_1, \ldots, x_n]$ is prime.

Proof:

$$\implies$$
 If $f \cdot g \in I(X)$, then $X \subseteq Z(f \cdot g) = Z(f) \cup Z(g)$. Thus

$$X=(X\cap Z(f))\cup (X\cap Z(g)),$$

so if X is irreducible, then without loss of generality, we can assume $X = X \cap Z(f)$, so $X \subseteq Z(f)$. Hence $f \in I(X)$.

 \longleftarrow If $P \subseteq A = \mathbb{K}[x_1, \dots, x_n]$ is prime, suppose $Z(P) = X_1 \cup X_2$ where

 X_1, X_2 are closed. Then

$$I(x_1) \cap I(X_2) = I(X_1 \cup X_2) = I(Z(P)) = \sqrt{P}$$

by Hilbert's Nullstellensatz. But note $\sqrt{P} = P$: if $f^n \in P$, then $f \in P$ by the primality of P. Therefore, $I(X_1) \cap I(X_2) = P$. So by our lemma, either $P = I(X_1)$ or $P = I(X_2)$, so $Z(P) = X_1$ or $Z(P) = X_2$.

We now have a one-to-one correspondence between prime ideals of A, and varieties in \mathbb{A}^n , given by our maps Z and I.

Proposition 1.5. Any algebraic set in \mathbb{A}^n can be written as a finite union of varieties.

Proof: Let S be the set of all algebraic sets in \mathbb{A}^n which cannot be written as a finite union of varieties. If $S \neq \emptyset$, then I claim it has a minimal element with respect to inclusion. Otherwise, there exists $X_1, X_2, X_3, \ldots \in S$ with

$$X_1 \supset X_2 \supset X_3 \supset \cdots$$

and $X_i \neq X_{i+1}$. Now note that

$$I(X_1) \subset I(X_2) \subset I(X_3) \subset \cdots \subseteq A.$$

But note that $A = \mathbb{K}[x_1, \dots, x_n]$ is Noetherian by Hilbert's basis theorem, so this is a contradiction.

Let $X \in \mathcal{S}$ be minimal. Now X is not minimal, as otherwise X is itself a variety. Otherwise, we can write $X = X_1 \cup X_2$ with $X_1 \subset X, X_2 \subset X$ with X_1, X_2 algebraic. Thus $X_1, X_2 \notin \mathcal{S}$, hence they can be written as a union of irreducible sets, so X can also be written as a finite union of irreducibles, so $X \notin \mathcal{S}$, contradiction.

Definition 1.7. If $X = X_1 \cup \cdots \cup X_n$ with X, X_i algebraic, X_i irreducible and $X_i \not\subseteq X_j$ for any $i \neq j$, then we say X_1, \ldots, X_n are the *irreducible components* of X.

Example 1.6.

1. In \mathbb{A}^2 , $A = \mathbb{K}[x_1, x_2]$. Then

$$X = Z(x_1x_2) = Z(x_1) \cup Z(x_2).$$

2. More generally, $A = \mathbb{K}[x_1, \dots, x_n]$ is a UFD. So for $0 \neq f \in A$, we write $f = \prod f_i^{a_i}$, with f_i irreducible. Since A is a UFD, $\langle f_i \rangle$ is prime. Hence $Z(f_i)$ is irreducible, so

$$Z(f) = Z(f_1) \cup \cdots \cup Z(f_n)$$

is the irreducible decomposition of Z(f).

3. $Z(x_2^2 - x_1^3 + x_1)$ is irreducible.

1.3 Regular and Rational Functions

In algebraic geometry, polynomial functions are natural. Let $X \subseteq \mathbb{A}^n$ be an algebraic set, and $f \in A = \mathbb{K}[x_1, \dots, x_n]$. This gives a function $f : \mathbb{A}^n \to K$.

This naturally gives $f|_X : X \to \mathbb{K}$. Hence if $f, g \in A$ with $f|_X = g|_X$, then f - g vanishes on X. So $f - g \in I(X)$. So it is natural to think of A/I(X) as being the set of polynomial functions on X.

Definition 1.8. Let $X \subseteq \mathbb{A}^n$ be an algebraic set. The *coordinate ring* of X is

$$A(X) = A/I(X).$$

Definition 1.9. Let $X \subseteq \mathbb{A}^n$ be an algebraic set, and $I \subseteq X$ an open subset. A function $f: U \to \mathbb{K}$ is regular if for all $p \in U$ there exists an open neighbourhood $V \subseteq U$ of p and functions $g, h \in A(X)$ with $h(q) \neq 0$ for any $q \in V$, and f = g/h on V.

A regular function is locally a rational function, but different points may require different representations.

Example 1.7.

Any $f \in A(X)$ defines a regular function on X.

Definition 1.10. We write

$$\mathcal{O}_X(U) = \{ f : U \to \mathbb{K} \mid f \text{ regular} \}.$$

Note that $\mathcal{O}_X(U)$ is a ring, and it is also a vector space over \mathbb{K} . This makes it a \mathbb{K} -algebra.

Definition 1.11. If A, B are rings, then an A-algebra structure on B is the data of a ring homomorphism $\phi: A \to B$. This turn B into an A-module via

$$a \cdot b = \phi(a) \cdot b$$
.

Hence $\mathbb{K} \to \mathcal{O}_X(u)$ is given by $a \in \mathbb{K} \mapsto$ the constant function with value a.

We have the following lemma:

Lemma 1.4. For all X algebraic, if \mathbb{K} is algebraically closed, then

$$\mathcal{O}_X(X) = A(X).$$

The proof will be given after Hilbert's Nullstellensatz.

Recall that, if A is an integral domain, then the field of fractions of A is

$$\{f/g \mid f, g \in A, g \neq 0\}/\sim$$

where we have

$$\frac{f}{g} \sim \frac{f'}{g'} \iff fg' = f'g.$$

This is a field, as can be checked:

$$\frac{f}{g} + \frac{f'}{g'} = \frac{fg' + f'g}{gg'}, \qquad \qquad \frac{f}{g}\frac{f'}{g'} = \frac{ff'}{gg'}, \qquad \qquad \left(\frac{f}{g}\right)^{-1} = \frac{g}{f}.$$

If $X \subseteq \mathbb{A}^n$ is an affine variety, then A(X) = A/I(X) is an integral domain, since I(X) is a prime ideal.

Definition 1.12. If $X \subseteq \mathbb{A}^n$ is a variety, its fraction field is K(X), the fraction field of A(X). Elements of K(X) are called rational functions.

Note that $g/h \in K(X)$ induces a regular function on $X \setminus Z(h)$.

1.4 Morphisms

Definition 1.13. A map $f: X \to Y$ between affine varieties is called a *morphism* if:

- 1. f is continuous in the induced Zariski topologies on X and Y (recall $Z \subseteq X \subseteq \mathbb{A}^n$ is closed in X if and only if it is closed in \mathbb{A}^n).
- 2. For all $V \subseteq Y$ open and $\phi: V \to \mathbb{K}$ a regular function,

$$\phi \circ f: f^{-1}(V) \to \mathbb{K}$$

is a regular function on $f^{-1}(V)$.

Let $f: X \to Y$ be a morphism. Then for any $\phi \in A(Y)$, we get that $\phi \circ f: X \to \mathbb{K}$ is a regular function. Assuming that \mathbb{K} is algebraically closed, $\mathcal{O}_X(X) = A(X)$, so $\phi \circ f \in A(Y)$. This gives a map $f^\#: A(Y) \to A(X)$. This is a \mathbb{K} -algebra homomorphism, and we can check it is a ring homomorphism.

Moreover, we have

$$f^{\#}(a \cdot \phi) = a \cdot f^{\#}(\phi),$$

which gives a K-algebra homomorphism.

From now on, we look only at \mathbb{K} algebraically closed. Assuming this, we get the following.

Theorem 1.2. There is a one-to-one correspondence between morphisms $f: X \to Y$ and \mathbb{K} -algebra homomorphisms $f^{\#}: A(Y) \to A(X)$.

Proof: We have already constructed $f^{\#}$ from f. Suppose $X \subseteq \mathbb{A}^n$, $Y \subseteq \mathbb{A}^m$. Then

$$A(X) = \frac{\mathbb{K}[x_1, \dots, x_n]}{I(X)}, \qquad A(Y) = \frac{\mathbb{K}[y_1, \dots, y_m]}{I(Y)}.$$

Suppose we are given $f^{\#}: A(Y) \to A(X)$. Set $f_i = f^{\#}(\bar{y}_i)$, where \bar{y}_i is the image of y_i in A(X). Then we define $f: X \to \mathbb{A}^m$ by

$$f(p) = (f_1(p), \dots, f_m(p)).$$

We claim that $f(X) \subseteq Y$. Indeed, let $g \in I(Y)$, and $p \in X$. We need to show that g(f(p)) = 0. Consider the map

$$\mathbb{K}[y_1,\ldots,y_m]\to A(Y)\to A(X).$$

Then we have

$$g(y_1,\ldots,y_m)\mapsto g(\bar{y}_1,\ldots,\bar{y}_m)\mapsto g(f_1,\ldots,f_m).$$

Here it is important for $f^{\#}$ to be a \mathbb{K} -algebra homomorphism. Since $g \in I(Y)$, we get that $g(f_1, \ldots, f_m)(p) = 0$, i.e. g(f(p)) = 0. So $f(p) \in Y$.

Note that, if $\phi \in A(Y)$, we can write $\phi = g(\bar{y}_1, \dots, \bar{y}_m)$ and $f^{\#}(\phi) = g(f_1, \dots, f_m) = \phi \circ f$. Now we claim that f is a morphism.

First, we show f is continuous, by showing $f^{-1}(Z)$ is closed for $Z \subseteq Y$ closed. Note that $I(Z) \supseteq I(Y)$, so

$$\overline{I(Z)} = \frac{I(Z)}{I(Y)} \subseteq A(Y)$$

is an ideal in A(Y). Then we can define

$$Z(f^{\#}(\overline{I(Z)})) = \{ p \in X \mid \phi(p) = 0 \quad \forall p \in f^{\#}(\overline{I(Z)}) \}.$$

This is a closed subset of X, since it coincides with

$$Z(\pi_X^{-1}(f^\#(\overline{I(Z)}))),$$

where $\pi_X : \mathbb{K}[x_1, \dots, x_n] \to A(X)$. But,

$$Z(f^{\#}(\overline{I(Z)})) = \{ p \in X \mid \psi \circ f = 0 \quad \forall \psi \in \overline{I(Z)} \} = \{ p \in X \mid f(p) \in Z \}$$
$$= f^{-1}(Z).$$

So $f^{-1}(Z)$ is closed. Finally we show that f takes regular functions to regular functions. Let $U \subseteq Y$ be an open subset, $\phi \in \mathcal{O}_Y(U)$. then we need to show that $\phi \circ f : f^{-1}(U) \to \mathbb{K}$ is regular.

Let $p \in f^{-1}(U)$, and let $V \subseteq U$ be an open neighbourhood of f(p) for which we can write $\phi = g/h$, for $g, h \in A(Y)$. Then

$$\phi \circ f|_{f^{-1}(V)} = \frac{g \circ f}{h \circ f} = \frac{f^{\#}(g)}{f^{\#}(h)}.$$

Now $f^{\#}(g)$, $f^{\#}(h)$ lie in A(X), and $f^{\#}(h) = h \circ f$ does not vanish on $f^{-1}(V)$, as h does not vanish on V.

We can check this gives a one-to-one correspondence. We know that $f^{\#} \mapsto f \mapsto f^{\#}$, and we can check that $f \mapsto f^{\#} \mapsto f$.

The moral is that a morphism $f: X \to Y$ is given by choosing polynomial functions $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$ and defining f by

$$f(p) = (f_1(p), \dots, f_m(p)).$$

Example 1.8.

Take $f: \mathbb{A}^1 \to \mathbb{A}^2$ by $t \mapsto (t, t^2)$. The image of this map is $Y = Z(x_1^2 - x_2)$, and this define a morphism $f: \mathbb{A}^1 \to Y$.

Now the inverse map is

$$f^{\#}: \frac{\mathbb{K}[x_1, x_2]}{(x_2 - x_1)^2} \to \mathbb{K}[t]$$

by $f^{\#}(x) = t$, $f^{\#}(y) = t^2$. Then this is an isomorphism.

Definition 1.14. Two affine varieties X, Y are isomorphic if there exist morphisms $f: X \to Y, g: Y \to X$ such that $g \circ f = \mathrm{id}_X, f \circ g = \mathrm{id}_Y$.

Theorem 1.3. If X, Y are affine varieties, then X is isomorphic to Y if and only if $A(X) \cong A(Y)$ as \mathbb{K} -algebras.

As seen above, $\mathbb{A}^1 \cong Z(X^2 - 1) \subseteq \mathbb{A}^2$.

Remark. A \mathbb{K} -algebra A is finitely generated if there exists a surjective \mathbb{K} -algebra homomorphism $\mathbb{K}[x_1,\ldots,x_n]\to A$ with $x_i\mapsto a_i$. Hence every element of A can be written as a polynomial in a_1,\ldots,a_n with coefficients in \mathbb{K} .

If I is the kernel of this map, then

$$A \cong \frac{\mathbb{K}[x_1, \dots, x_n]}{I}.$$

Suppose further that A is an integral domain. Then I is a prime ideal of $\mathbb{K}[x_1,\ldots,x_n]$, so A=A(X) where X=Z(I).

2 Hilbert's Nullstellensatz

Our goal in this section is to prove, if $\mathbb{K} = \overline{\mathbb{K}}$, then

$$I(Z(I)) = \sqrt{I}$$
.

Definition 2.1. Let F/\mathbb{K} be a field extension. We say an element $z \in F$ is transcendental over \mathbb{K} if it is not algebraic, i.e. there is no $f \in K[x]$ with $f \neq 0$, f(z) = 0.

Similarly, $z_1, \ldots, z_d \in F$ are algebraically independent over \mathbb{K} if there is no $f \in \mathbb{K}[x_1, \ldots, x_d]$ such that $f \neq 0, f(z_1, \ldots, z_d) = 0$.

A transcendence basis for F/\mathbb{K} is a set $z_1, \ldots, z_d \in F$, which are algebraically independent over \mathbb{K} , and such that F is algebraic over $\mathbb{K}[z_1, \ldots, z_d]$.

Example 2.1.

If X is a variety, then K(X) is a field over \mathbb{K} , and it usually has many transcendentals. For example,

$$K(\mathbb{A}^n) = \{ f/g \mid f, g \in \mathbb{K}[x_1, \dots, x_n], g \neq 0 \} = \mathbb{K}(x_1, \dots, x_n).$$

Then x_1, \ldots, x_n form a transcendence basis.

Definition 2.2. If F/\mathbb{K} is a field extension, we say F is *finitely generated* over \mathbb{K} if $F = \mathbb{K}(z_1, \ldots, z_n)$ for some $z_1, \ldots, z_n \in F$.

Example 2.2.

 $K(X)/\mathbb{K}$ is finitely generated. If $X \subseteq \mathbb{A}^n$, then K(X) is the fraction field of $A(X) = \mathbb{K}[x_1, \dots, x_n]/I$, and hence K(X) is generated by the images of x_1, \dots, x_n .

Proposition 2.1. Every finitely generated field extension F/\mathbb{K} has a transcendence basis, and any two transcendence bases have the same cardinality.

Moreover, if $F = \mathbb{K}(z_1, \ldots, z_N)$, then there is a transcendence basis $\{y_1, \ldots, y_n\} \subseteq \{z_1, \ldots, z_N\}$.

Proof: Write $F = \mathbb{K}(z_1, \ldots, z_N)$. If these are algebraically independent, then z_1, \ldots, z_N is a transcendence basis. Also if they are algebraic over \mathbb{K} , then the transcendence basis can be taken to be empty.

After reordering, assume $\{z_1, \ldots, z_d\}$ is a maximal subset of algebraically independent elements of $\{z_1, \ldots, z_n\}$. Then we will show $\{z_1, \ldots, z_d\}$ is a transcendence basis, i.e F is algebraic over $\mathbb{K}(z_1, \ldots, z_d)$.

It is enough to show z_j is algebraic over $\mathbb{K}(z_1,\ldots,z_d)$ for any j>d. By assumption, z_1,\ldots,z_d,z_j are not algebraically independent, so there exists $f_j \in \mathbb{K}[x_1,\ldots,x_d,x_j]$ such that $f_j(z_1,\ldots,z_d,z_j)=0$.

Then consider the polynomial $F_j(x) = f_j(z_1, \ldots, z_d, x)$. This is a polynomial in $\mathbb{K}(z_1, \ldots, z_d)[x]$. Plugging in $x = z_j$, $F_j(z_j) = f_j(z_1, \ldots, z_d, z_j) = 0$. Also $F \neq 0$, as otherwise $F_j(z) = f_j(z_1, \ldots, z_d, z)$ would be an algebraic relation for $\{z_1, \ldots, z_d\}$, for all $z \in \mathbb{K}(z_1, \ldots, z_d)$. Hence $\{z_1, \ldots, z_d\}$ is indeed a transcendence basis.

Now suppose z_1, \ldots, z_d and w_1, \ldots, w_e are both transcendence bases. Suppose $d \leq e$. We will use the same idea as the Steinitz exchange lemma. First, as w_1 is algebraic over $\mathbb{K}(z_1, \ldots, z_d)$, there is a polynomial $f \in \mathbb{K}[x_1, \ldots, x_d, x_{d+1}]$ such that $f(z_1, \ldots, z_d, w_1) = 0$. This is obtained by clearing the denominators.

Since w_1 is not algebraic, f must involve at least some of x_1, \ldots, x_d . Thus we can suppose z_1 is algebraic over $\mathbb{K}(w_1, z_2, \ldots, z_d)$, hence F is algebraic over $\mathbb{K}(w_1, z_2, \ldots, z_d)$.

We now repeat this process. As w_2 is algebraic over $\mathbb{K}(w_1, z_2, \ldots, z_d)$, and not algebraic over $\mathbb{K}(w_1)$, we can find $0 \neq g \in \mathbb{K}[x_1, \ldots, x_{d+1}]$ such that $g(w_1, z_2, \ldots, z_d, w_2) = 0$, and furthermore g involves one of x_2, \ldots, x_d . Suppose it involves x_2 , then z_2 is algebraic over $\mathbb{K}(w_1, w_2, z_3, \ldots, z_d)$, and hence F is algebraic over $\mathbb{K}(w_1, w_2, z_3, \ldots, z_d)$.

Continuing, eventually we find F is algebraic over $\mathbb{K}(w_1, \ldots, w_d)$. If e > d, this means w_e is algebraic over $\mathbb{K}(w_1, \ldots, w_d)$, contradicting the fact $\{w_1, \ldots, w_e\}$ is a transcendence basis.

Lemma 2.1. Let M be a finitely generated A-module, for A a commutative ring. Let $I \subseteq A$ and $f: M \to M$ be an A-module homomorphism such that

$$\phi(M) \subseteq I \cdot M = \{a \cdot m \mid a \in I, m \in M\}.$$

Then there exists an equation

$$\phi^n + a_1 \phi^{n-1} + \dots + a_n = 0,$$

with $a_i \in I$.

Proof: Let $x_1, \ldots, x_n \in M$ be a set of generators for M. Then each $\phi(x_i) \in I \cdot M$, so we can write

$$\phi(x_i) = \sum_{j=1}^n a_{ij} \cdot x_j,$$

with $a_{ij} \in I$. Hence we have

$$\sum_{j=1}^{n} (\delta_{ij}\phi - a_{ij})x_j = 0,$$

where δ_{ij} is the usual Kronecker delta. Writing this out as a matrix,

$$\begin{pmatrix} \phi - a_{11} & -a_{12} & \cdots \\ -a_{21} & \phi - a_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix} = 0.$$

Multiplying by the adjoint matrix, we get

$$\det((\delta_{ij}\phi - a_{ij}))x_j = 0,$$

for all j. But $\det((\delta_{ij}\phi - a_{ij}))$ is a degree n polynomial in ϕ annihilating each x_j , hence it annihilated every element in M. Moreover the leading term in ϕ is ϕ^n , and all the other coefficients are elements in I.

2.1 Integrality

Definition 2.3. Let $A \subseteq B$ be integral domain. An element $b \in B$ is *integral* over A if f(b) = 0 for a monic polynomial $f(x) \in A[x]$

Proposition 2.2. $b \in B$ is integral over A if and only if there is a subring $C \subseteq B$ containing A[b], with C a finitely generated A-module.

Proof: Suppose $b^n + a_1b^{n-1} + \cdots + a_n = 0$. Then since A[b] is generated as an A-module by $1, b, b^2, \ldots$, it is also generated by $1, b, \ldots, b^{n-1}$. In particular, it is finitely generated. Then we can just take C = A[b].

On the other hand, if C is finitely generated, let $\phi: C \to C$ be the module homomorphism given by $\phi(x) = b \cdot x$. Applying the previous lemma to the finitely generated A-module C with I = A, we get $\phi^n + a_1\phi^{n-1} + \cdots + a_n \equiv 0$,

or $b^n + a_1 b^{n-1} + \cdots + a_n = 0$, by plugging in 1.

Lemma 2.2. Let $A \subseteq B$ be an inclusion of integral domains, and assume the fraction field K of A is contained in B. If $b \in B$ is algebraic over K, then there exists $p \in A$ non-zero such that pb is integral over A.

Proof: Suppose $g \in K[X]$ with g(b) = 0, $g \neq 0$. By clearing denominators, we can assume that $g \in A[X]$. Suppose that

$$g(x) = a_N x^N + \dots + a_0,$$

for $a_N \neq 0$, $a_i \in A$. Then

$$a_N^{N-1}g = (a_Nx)^N + a_{N-1}(a_Nx)^{n-1} + a_{N-2}a_N(a_Nx)^{N-2} + \dots + a_0a_N^{N-1}.$$

This is a monic polynomial in $a_N x$. Substituting x = b, this gives a monic polynomial killing $a_N b$. So $a_N b$ is integral over A, and we take $p = a_N$.

Lemma 2.3. Let A be a UFD with fraction field K. If $\alpha \in K$ is integral over A, we have $\alpha \in A$.

Proof: If $\alpha \in K$ is integral over A, write $\alpha = a/b$, with a, b having no common factor. Say $g(\alpha) = 0$ for some monic polynomial α , with

$$g(x) = x^n + a_1 x^{n-1} + \dots + a_n.$$

Then we have

$$\frac{a^n}{b^n} + a_1 \frac{a^{n-1}}{b^{n-1}} + \dots + a_n = 0.$$

Multiplying out,

$$a^{n} + a_{1}ba^{n-1} + \dots + a_{n}b^{n} = 0$$

in A. So $b \mid a$, showing that b must be a unit in A. Thus $\alpha = a/b \in A$.

Lemma 2.4. Let $A \subseteq B$ be integral domains, and $S \subseteq B$ the set of all elements in B integral over A. Then S is a subring of B.

Proof: If $b_1, b_2 \in S$, then $A[b_1]$ is a finitely generated A-module. Also, b_2 is integral over A, hence over $A[b_1]$. So $A[b_1][b_2] = A[b_1, b_2]$ is a finitely generated $A[b_1]$ -module.

From this, we can conclude that $A[b_1, b_2]$ is a finitely generated A-module. Since $A[b_1 \pm b_2]$, $A[b_1 \cdot b_2] \subseteq A[b_1, b_2]$, we have $b_1 \pm b_2$, $b_1 \cdot b_2 \in S$.

Lemma 2.5 (Hilbert's Nullstellensatz, Version 0). Let \mathbb{K} be an algebraically closed field, and F/\mathbb{K} be a field extension which is finitely generated as a \mathbb{K} -module.

Then $F = \mathbb{K}$.

Proof: Suppose $\alpha \in F$ is algebraic over \mathbb{K} , with irreducible polynomial $f(x) \in \mathbb{K}[x]$. Then f factors into linear factors over \mathbb{K} , as \mathbb{K} is algebraic. So f is linear, and hence is of the form $c(x - \alpha)$. Thus $\alpha \in \mathbb{K}$.

Suppose we are given surjective map $\mathbb{K}[x_1,\ldots,x_d]\to F$ surjective, where $x_i\mapsto z_i\in F$. Then z_1,\ldots,z_d generate F as a field extension of \mathbb{K} . Assume z_1,\ldots,z_e form a transcendence basis for F/\mathbb{K} .

Note if $F \neq \mathbb{K}$, then we must have $e \geq 1$. Let $R = \mathbb{K}[z_1, \ldots, z_e] \subseteq F$. This is a polynomial ring, as z_1, \ldots, z_e are algebraically independent. Then $w_1 = z_{e+1}, \ldots, w_{d-e} = z_d$ are algebraic over $L = \mathbb{K}(z_1, \ldots, z_e)$.

Let $S \subseteq F$ be the set of elements of F integral over R. Then S is a subring of F. But now there exists $p_1, \ldots, p_{d-e} \in R$, with $t_i = p_i w_i$ integral over R. In particular, $t_i \in S$.

Choose $f/g \in \mathbb{K}(z_1, \ldots, z_e) = L$, with $f, g \in R$, f, g relatively prime, and g is relatively prime to p_1, \ldots, p_{d-e} . Then $p_1^{n_1} \cdots p_{d-e}^{n_{d-e}} \cdot \frac{f}{g} \notin \mathbb{K}[z_1, \ldots, z_e]$ for any $n_1, \ldots, n_{d-e} \geq 0$.

But since z_1, \ldots, z_d generate F as a \mathbb{K} -algebra, there exists $q \in \mathbb{K}[x_1, \ldots, x_d]$ such that

$$\frac{f}{g} = q(z_1, \dots, z_d) = q\left(z_1, \dots, z_e, \frac{t_1}{p_1}, \dots, \frac{t_{d-e}}{p_{d-e}}\right).$$

Let n_j be the highest power of x_{e+j} appearing in q. Multiplying by $\prod p_j^{n_j}$ clears the denominators of the right hand side, so we have

$$p_1^{n_1} \cdots p_{d-e}^{n_{d-e}} \frac{f}{g} = q'(z_1, \dots, z_e, t_1, \dots, t_{d-e}).$$

The right hand side lies in S as $z_1, \ldots, z_e \in S$, $t_1, \ldots, t_{d-e} \in S$, so the left hand side lies in S. But the left hand side lies in $\mathbb{K}(z_1, \ldots, z_e)$, and thus lies in $\mathbb{K}[z_1, \ldots, z_e]$, a contradiction.

Hence e = 0, so F is algebraic over \mathbb{K} , hence $F = \mathbb{K}$.

Now we can prove the "actual" Nullstellensatz.

Theorem 2.1 (Nullstellensatz I). Let \mathbb{K} be algebraically closed. Then any maximal ideal $m \subseteq \mathbb{K}[x_1, \ldots, x_n]$ is of the form

$$b = \langle x_1 - a_1, \dots, x_n - a_n \rangle$$

for some $a_1, \ldots, a_n \in \mathbb{K}$.

Proof: Note we have an isomorphism

$$\frac{\mathbb{K}[x_1,\ldots,x_n]}{\langle x_1-a_1,\ldots,x_n-a_n\rangle} \to \mathbb{K},$$

by $x_i \mapsto a_i$. Note $m \subseteq A$ is a maximal ideal if and only if A/m is a field. This shows that $m = \langle x_1 - a_1, \dots, x_n - a_n \rangle$ is a maximal ideal.

Conversely, let $m \subseteq \mathbb{K}[x_1, \dots, x_n]$ be maximal. Then $\mathbb{K}[x_1, \dots, x_n]/m = F$ is a field, which is generated as a \mathbb{K} -algebra by x_1, \dots, x_n . Thus $F = \mathbb{K}$ by our previous lemma.

We thus have an isomorphism

$$\frac{\mathbb{K}[x_1,\ldots,x_n]}{m} \stackrel{\phi}{\to} \mathbb{K}.$$

Let $a_i = \varphi(x_i)$. Then $\phi(x_i - a_i) = \phi(x_i) - a_i = 0$, so $x_i - a_i \in m$. Hence $\langle x_1 - a_1, \dots, x_n - a_n \rangle \subseteq m$. Since the left hand ideal is maximal, we have equality.

Example 2.3.

This is false if our field is not algebraically closed. For example, $\langle x^2 + 1 \rangle$ is a maximal ideal in $\mathbb{R}[x]$, but of course $\langle x^2 + 1 \rangle \neq \langle x - a \rangle$ for any $a \in \mathbb{R}$.

Here is another form.

Theorem 2.2 (Nullstellensatz II). Let \mathbb{K} be algebraically closed, and $I = \langle f_1, \dots, f_r \rangle \subseteq \mathbb{K}[x_1, \dots, x_n]$. Then either:

- 1. $I = \mathbb{K}[x_1, \dots, x_n]$, or
- 2. $Z(I) \neq \emptyset$.

Proof: Suppose $1 \notin I$, i.e. we are not in the first case. Then there exists a maximal ideal $m \subseteq \mathbb{K}[x_1, \ldots, x_n]$, with $I \subseteq m$.

But then $Z(m) \subseteq Z(I)$, and since $m = \langle x_1 - a_1, \dots, x_n - a_n \rangle$, we have $Z(m) = \{(a_1, \dots, a_n)\}$. So $Z(m) \neq \emptyset$, hence $Z(I) \neq \emptyset$.

Here we actually go.

Theorem 2.3 (Nullstellensatz III). Let \mathbb{K} be algebraically closed, $I \subseteq \mathbb{K}[x_1, \dots, x_n]$ an ideal. Then

$$I(Z(I)) = \sqrt{I}.$$

Proof: One direction we have already seen: $\sqrt{I} \subseteq I(Z(I))$.

Let $g \in \mathbb{K}[x_1, \dots, x_n]$. Define

$$V_g = Z(zg(x_1,\ldots,x_n)-1) \subseteq \mathbb{A}^{n+1},$$

with coordinates x_1, \ldots, x_n, z . If we project V_g via $(x_1, \ldots, x_n, z) \mapsto (x_1, \ldots, x_n)$ we get the sat $D(G) = \mathbb{A}^n \setminus Z(g)$.

Now suppose $g \in I(Z(I))$. Then $D(g) \cap Z(I) = \emptyset$. If $I = \langle f_1, \ldots, f_r \rangle$, consider $J = \langle f_1, \ldots, f_r, zg - 1 \rangle \subseteq \mathbb{K}[x_1, \ldots, x_n, z]$. Then $Z(J) = \emptyset$, so $J = \mathbb{K}[x_1, \ldots, x_n, z]$ by our previous version of the Nullstellensatz. So we can write

$$1 = \sum_{i=1}^{n} k_i f_i + h(gz - 1),$$

with $h_i, h \in \mathbb{K}[x_1, \dots, x_n, z]$. Substitute z = 1/g, to get

$$1 = \sum_{i=1}^{n} h_i(x_1, \dots, x_n, 1/g) f_i(x_1, \dots, x_n).$$

Multiplying by a high power of g clears the denominators, giving

$$g^{N} = \sum_{i=1}^{n} h'_{i}(x_{1}, \dots, x_{n}) f_{i} \in I.$$

Thus $g^N \in I$, so $g \in \sqrt{I}$.

Recall we need the proof of the lemma 1.4. For this, we need the following.

Lemma 2.6. Let $f, g: X \to \mathbb{K}$ be regular functions on X an affine variety, and suppose there exists $U \subseteq X$ non-empty with $f|_{U} = g|_{U}$.

Then f = g.

Proof: , Consider the map $\phi=(f,g):X\to\mathbb{A}^2$. This is a morphism. Let $\Delta=\{(a,a)\in\mathbb{A}^2\mid a\in\mathbb{K}\}$. Then $\Delta=Z(x-y)$.

Since ϕ is continuous, $\phi^{-1}(\Delta)$ is closed. But $U \leq \phi^{-1}(0)$, and U is a dense subset of X, otherwise $X = \overline{U} \cup (X \setminus U)$ is a union of two proper closed subsets, violating irreducibility of X. Hence $U \subseteq \overline{U} = X \subseteq \phi^{-1}(0)$, so $\phi^{-1}(0) = X$.

We are now ready to prove the proposition.

Proof: We know $A(X) \subseteq \mathcal{O}_X(X)$. So let $f: X \to \mathbb{K}$ be a regular function, i.e. there exists an open cover $\{U_i\}$ of X with f given on U_i by

$$f|_{U_i} = \frac{g_i}{h_i},$$

with $g_i, h_i \in A(X)$, and h_i nowhere-vanishing in U_i . Then

$$Z(\{h_i \mid i \in I\}) = \bigcap_i Z(h_i) \subseteq \bigcap_i (X \setminus U_i) = X \setminus \left(\bigcup_i U_i\right) = \emptyset.$$

Thus $Z(\{h_i\}) = \emptyset$. We can now pull back to $\mathbb{K}[x_1, \dots, x_n]$ and use Hilbert's second Nullstellensatz to get

$$1 = \sum_{i} e_i h_i.$$

Note on $U_i \cap U_j$, $\frac{g_i}{h_i} = \frac{g_j}{h_j}$, so $g_i h_j = g_j h_i$ on $U_i \cap U_j$, so by our previous lemma, $g_i h_j = g_j h_i$ on X. Hence $\frac{g_i}{h_i} = \frac{g_j}{h_j}$ on K(X). Thus we have the equality in K(X)

$$f = \sum_{i} (e_i h_i) \frac{g_i}{h_i} = \sum_{i} e_i g_i \in A(X).$$

Remark. U_i and U_j always intersect, as they are dense sets: if not, $\overline{U_i}$ and $X \setminus U_i$ form a proper closed union of X.

In essence open subsets of affine varieties are always dense, and this makes the

Zariski topology interesting!

3 Projective Varieties

Definition 3.1. Let \mathbb{K} be a field. We define

$$\mathbb{P}^n = (\mathbb{K}^{n+1} \setminus \{(0, \dots, 0\}) / \sim,$$

where $(x_0, \ldots, x_n) \sim (\lambda x_0, \ldots, \lambda x_n)$ for any $\lambda \in \mathbb{K}^{\times}$. Alternatively, this is the set of one-dimensional sub-vector spaces of \mathbb{K}^{n+1} .

Remark. If $\mathbb{K} = \mathbb{R}$, then $\mathbb{P}^n = S^n / \sim$, where $x \sim -x$.

For arbitrary \mathbb{K} , we look at \mathbb{P}^1 . For an arbitrary element $(x_0: x_1) \in \mathbb{P}^1$, if $x_1 \neq 0$, then we have

$$(x_0:x_1)\sim\left(\frac{x_0}{x_1},1\right)\in\mathbb{A}^1,$$

since there is a unique representative with the second coordinate 1. The missing points are of the form $(x_0:0) \sim (1:0)$. Thus we view $\mathbb{P}^1 = \mathbb{A}^1 \cup \{(1,0)\}$, where we can view the point (1,0) as ∞ . This is the Riemann sphere if $\mathbb{K} = \mathbb{C}$.

Now \mathbb{P}^2 consists of elements of the form $(x_0:x_1:x_2)\in\mathbb{P}^2$. If $x_2\neq 0$, then

$$(x_0: x_1: x_2) \sim \left(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1\right) \in \mathbb{A}^2.$$

If $x_2 = 0$, we get a point $(x_0 : x_1 : 0) \in \mathbb{P}^1$. So $\mathbb{P}^2 = \mathbb{A}^2 \cup \mathbb{P}^1$, where we view \mathbb{P}^1 as the line at infinity.

As we did for \mathbb{A}^n , we now look to define a topology via algebraic subsets of \mathbb{P}^n . But we cannot just define it as the zeros of a polynomial $f(x_0, \ldots, x_n)$, as then we may have two equivalent points not being in the same algebraic set.

Definition 3.2. $f \in S = \mathbb{K}[x_0, \dots, x_n]$ is homogeneous if every term of f is the same degree, or equivalently

$$f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n),$$

for some $d \geq 0$, where d is the degree.

Example 3.1.

 $x_0^3 + x_1 x_2^2$ is homogeneous of degree 3, whereas $x_0^3 + x_1^2$ is not homogeneous.

Definition 3.3. If $T \subseteq S$ is a set of homogeneous polynomials, define

$$Z(T) = \{(a_0 : \ldots : a_n) \in \mathbb{P}^n \mid f(a_0 : \ldots : a_n) = 0 \quad \forall f \in T\}.$$

An ideal $I \subseteq S$ is homogeneous if I is generated by homogeneous polynomials. For I a homogeneous ideal, we define

$$Z(I) = \{(a_0 : \ldots : a_n) \in \mathbb{P}^n \mid f(a_0, \ldots, a_n) = 0 \quad \forall f \in I \text{ homogeneous}\}.$$

A subset \mathbb{P}^n is algebraic if it is of the form Z(T) for some T.

Example 3.2.

Take $Z(a_0x_0 + a_1x_1 + a_2x_2) \subseteq \mathbb{P}^2$, for $a_0, a_1, a_2 \in \mathbb{K}$. In $\mathbb{A}^2 \subset \mathbb{P}^2$ where $x_2 = 1$, we get the equation $a_0x_0 + a_1x_1 + a_2 = 0$.

If $x_2 = 0$, we get the equation $a_0x_0 + a_1x_1 = 0$, which has the solution $(a_1 : -a_0) \in \mathbb{P}^1$, assuming not both $a_0 = a_1 = 0$, as then we just have $x_2 = 0$, the line at infinity.

We can check that the algebraic set in \mathbb{P}^n form the closed sets of a topology on \mathbb{P}^n . This is again the *Zariski topology* on \mathbb{P}^n .

Definition 3.4. A projective variety is an irreducible closed subset of \mathbb{P}^n .

Define $U_i \subseteq P^n$ to be $U_i = \mathbb{P}^n \setminus Z(x_i)$. This is an open subset of \mathbb{P}^n , and moreover

$$\bigcup_{i=0}^{n} U_i = \mathbb{P}^n.$$

We have a bijection $\phi_i: U_i \to \mathbb{A}^n$ by

$$\phi_i(x_0:\ldots:x_n) = \left(\frac{x_0}{x_i},\ldots,\frac{\widehat{x_i}}{x_i},\ldots,\frac{x_n}{x_i}\right).$$

This is the standard open affine cover of \mathbb{P}^n .

Proposition 3.1. With U_i carrying the topology induced from \mathbb{P}^n and \mathbb{A}^n the Zariski topology, ϕ_i is a homeomorphism.

Proof: Since ϕ_i is a bijection, it suffices to show ϕ_i identifies closed sets of U_i with closed sets of \mathbb{A}^n . We take i = 0, $\phi = \phi_0$ and $U = U_0$.

Then let $S = \mathbb{K}[x_0, \dots, x_n]$, S^h the set of homogeneous polynomials in S, and $A = \mathbb{K}[x_1, \dots, x_n]$. Define maps $\alpha : S^h \to A$ and $\beta : A \to S^h$ by $\alpha(f(x_0, \dots, x_n)) = f(1, x_1, \dots, x_n)$, and if $g \in A$ is of degree e, define

$$\beta(g) = x_0^e g\left(\frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}\right).$$

This is a process known as homogenisation, for example if we take $x_2^2 - x_1^3 - x_1 + x_1x_2$, the homogenisation is

$$x_0^3 \left(\frac{x_2^2}{x_0^2} - \frac{x_1^3}{x_0^3} - \frac{x_1}{x_0} + \frac{x_1 x_2}{x_0^2} \right) = x_0 x_2^2 - x_1^3 - x_0^2 x_1 + x_0 x_1 x_2.$$

If $Y \subseteq U$ is closed, Y is the intersection $\bar{Y} \cap U$, where $\bar{Y} \subseteq \mathbb{P}^n$ is a closed subset, which we can take to be the closure of Y. Now $\bar{Y} = Z(T)$ for some $T \subseteq S^h$, and let $T' = \alpha(T)$. Then

$$\phi(Y) = Z(\alpha(T)).$$

We can check that

$$f(a_0: \dots: a_n) = 0 \iff f\left(1, \frac{a_1}{a_0}, \dots, \frac{a_n}{a_0}\right) = 0$$
$$\iff \alpha(f)\left(\frac{a_1}{a_0}, \dots, \frac{a_n}{a_0}\right) = 0$$
$$\iff \alpha(f)\phi(a_0: \dots: a_n).$$

We need to prove that if $W \subseteq \mathbb{A}^n$ is closed, then $\phi^{-1}(W) \subseteq U = U_0$ is closed. We have W = Z(T') for some set $T' \subseteq A = \mathbb{K}[Y_1, \dots, Y_n]$. Then

$$\phi^{-1}(W) = Z(\beta(T')) \cap U.$$

Indeed, if $g \in T'$,

$$g(b_1, \dots, b_n) = 0 \iff \beta(g)(1, b_1, \dots, b_n) = 0$$
$$\iff \beta(g)(\phi^{-1}(b_1, \dots, b_n)) = 0.$$

Example 3.3.

Take $f: \mathbb{P}^1 \to \mathbb{P}^3$, by

$$f(u:t) = (u^3: u^2t: ut^2: t^3).$$

The image of this map is called the twisted cubic. Now we claim that this is a projective variety.

Indeed, consider the homomorphism

$$\phi: \mathbb{K}[x_0,\ldots,x_3] \to \mathbb{K}[u,t],$$

by $x_0 \mapsto u^3$, $x_1 \mapsto u^2 t$, $x_2 \mapsto u t^2$ and $x_3 \mapsto t^3$. Let $I = \ker \phi$. If $g \in I$, then g vanishes on the image of the map f. Thus $\text{Im}(f) \leq Z(I)$.

Conversely, note that $x_0x_3 - x_1x_2$, $x_1^2 - x_0x_2$, $x_2^2 - x_1x_3 \in I$. Let $p = (a_0 : a_1 : a_2 : a_3) \in Z(I)$. Then we have four cases.

If $a_0 \neq 0$, we can take $a_0 = 1$. Then $a_3 - a_1 a_2 = 0$, $a_1^2 - a_2 = 0$ and $a_2^2 - a_1 a_3 = 0$. Then $p = (1, a_1, a_2^2, a_3^3) = f(1 : a_1)$. So $p \in \text{Im}(f)$.

Similarly, we can check the cases when $a_1 \neq 0$, $a_2 \neq 0$ and $a_3 \neq 0$. The conclusion is that $p \in \text{Im}(f)$ for all four cases, so $\text{Im } f \supseteq Z(I)$. Hence Z(I) = Im f. Thus the twisted cubic is an algebraic set.

Given $X \subseteq \mathbb{P}^n$ an algebraic set, define its *ideal* I(X) to be the ideal in $S = \mathbb{K}[x_0, \dots, x_n]$, generated by homogeneous polynomials which vanish on X.

Then X is irreducible if and only if I(X) is prime. For the twisted cubic X = Im(f), we indeed have $I(X) = I = \text{Ker } \phi$. But $\mathbb{K}[x_0, \dots, x_3]/\text{Ker } \phi$ is a subring of the integral domain $\mathbb{K}[u, t]$, hence is an integral domain, so $\text{Ker } \phi$ is prime. Therefore X is a projective variety.

Definition 3.5. Let $X \subseteq \mathbb{P}^n$ be an affine variety. A regular function on $U \subseteq X$ open is a function $f: U \to \mathbb{K}$ such that, for every $p \in U$, there exists an open neighbourhood $V \subseteq U$ of p and $g, h \in S$ homogeneous of the same degree with h nowhere-vanishing on V, and with $f|_{V} = g/h$.

Definition 3.6. A quasi-affine variety is an open subset of an affine variety.

A quasi-projective variety is an open subset of a projective variety.

These types of varieties also have the same action of regular functions. A variety will henceforth refer to any of an affine, quasi-affine, projective or quasi-projective variety.

Definition 3.7. A morphism $\phi: X \to Y$ between varieties is a continuous function ϕ such that, for all $V \subseteq Y$ open, $f: V \to \mathbb{K}$ regular,

$$f \circ \phi : \phi^{-1}(V) \to \mathbb{K}$$

is regular.

Remark. If X is projective, then in fact $\mathcal{O}_X(X) = \{X \to \mathbb{K} \text{ regular}\}$ is \mathbb{K} . Thus finding morphism from a projective variety becomes harder, and this is a lot of what algebraic geometry is about.

Example 3.4.

Let $Q \subseteq \mathbb{P}^3$ be given by Z(xy - zw). This is a quadric surface.

For $(a:b) \in \mathbb{P}^1$, Q contains the line

$$ax = bz, \qquad by = aw.$$

Indeed if $a \neq 0$, we can take a = 1, and the xy - zw = (bz)y - z(by) = 0. If a = 0, then y = z = 0 so xy - zw = 0. This gives a family of lines in Q parametrized by $(a : b) \in \mathbb{P}^1$.

We also have ax = bw, by = az another family of lines.

If we take a line from one family and a line from the other, they meet at one point. Indeed, ax = bz, by = aw, cx = dw and dy = cz has a unique solution up to scaling: (bd : ac : ad : bc).

This suggests we define a map $\Sigma : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ given by

$$\Sigma((a:b),(c:d)) = (bd:ac:ad:bc).$$

We claim that Σ is a bijection with Q = Z(xy - zw). First note that $(bd) \cdot (ac) - (ad)(bc) = 0$, so indeed Im $\Sigma \subseteq Q$.

Now we show that it is an injection. First suppose that $a, c \neq 0$. Then

$$\Sigma((1:b),(1:d)) = (bd:1:d:b),$$

which is injective on the set where $a, c \neq 0$. If a = 0, then

$$\Sigma((0:b),(c:d)) = (bd:0:0:bc) = (d:0:0:c),$$

which does not coincide with the previous point and recovers (c:d). If a=c=0, then

$$\Sigma((0:1),(0:1)) = (1:0:0:0).$$

If $a \neq 0, c = 0$, then we get

$$\Sigma((a:b)(0:1)) = (b:0:a:0).$$

So Σ is injective. To prove it is surjective, suppose that $(a_0 : a_1 : a_2 : a_3) \in Q$, i.e. $a_0a_1 - a - 2a_3 = 0$. If $a_0 \neq 0$, we can take $a_0 \neq 1$, so $a_1 = a_2a_3$. Hence

$$(a_0: a_1: a_2: a_3) = (1: a_2a_3: a_2: a_3) = \Sigma((a_2: 1), (a_3: 1)).$$

A similar thing works in the case when a_2, a_3 or $a_4 \neq 0$.

Remark. $\mathbb{P}^1 \times \mathbb{P}^1$ is not a priori a variety, but it can be given a variety structure by identifying it with Q, i.e. closed sets of $\mathbb{P}^1 \times \mathbb{P}^1$ are of the form $\Sigma^{-1}(Z)$ for $Z \subseteq Q$ closed. We can check that this is not the product topology on $\mathbb{P}^1 \times \mathbb{P}^1$.

Regular functions on $U = \Sigma^{-1}(V)$ for $V \subseteq Q$ open are functions on U of the form $\phi \circ \Sigma$ with $\phi : V \to \mathbb{K}$ regular.

We can generalise this notion. The Segre embedding is the map

$$\Sigma: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{(n+1)(m+1)-1}$$
.

where

$$\Sigma((x_0:\cdots:x_n),(y_0:\cdots:y_n))=(x_iy_j)_{0\le i\le n,0\le j\le n}.$$

Then we have the following:

Theorem 3.1. Σ is injective and its image is an algebraic variety.

Thus $\mathbb{P}^n \times \mathbb{P}^m$ acquires the structure of an algebraic variety. Another thing we can show is:

Theorem 3.2. If $X \subseteq \mathbb{P}^n$, $Y \subseteq \mathbb{P}^n$ are projective varieties, then $\Sigma(X \times Y)$ is a projective variety.

The proofs are given in the attached handout. This allows us to think of $X \times Y$ as a projective variety.

We can also think of the geometry of $\mathbb{P}^n \times \mathbb{P}^m$ by thinking about bihomogeneous polynomials in

$$\mathbb{K}[x_0,\ldots,x_n,y_0,\ldots,y_m],$$

i.e. polynomials f satisfying

$$f(\lambda x_0, \dots, \lambda x_n, \mu y_0, \dots, \mu y_n) = \lambda^d \mu^e f(x_0, \dots, x_n, y_0, \dots, y_m).$$

We say that f has bidegree (d, e). Now f = 0 makes sense as an equation in $\mathbb{P}^n \times \mathbb{P}^m$.

If X and Y are quasi-projective, i.e. $X \subseteq \bar{X} \subseteq \mathbb{P}^n$, $Y \subseteq \bar{Y} \subseteq \mathbb{P}^n$, then $X \times Y \subseteq \bar{X} \times \bar{Y}$ defines an open subset of $\bar{X} \times \bar{Y}$. This allows us to view $X \times Y$ as a quasi-projective variety.

Example 3.5. (Blowup of \mathbb{A}^n)

By the above, $\mathbb{A}^n \times \mathbb{P}^{n-1}$ is a quasi-projective variety, as \mathbb{A}^n is an open subset of \mathbb{P}^n . Take coordinates x_1, \ldots, x_n for \mathbb{A}^n , and y_1, \ldots, y_n for \mathbb{P}^{n-1} . Then let

$$X = Z(\{x_i y_j - x_j y_i \mid 1 \le i < j \le n\}) \subseteq \mathbb{A}^n \times \mathbb{P}^{n-1}.$$

Let $\phi: X \to \mathbb{A}^n$ be given by

$$\phi((x_1,\ldots,x_n)(y_1:\ldots:y_n))=(x_1,\ldots,x_n),$$

the projection onto \mathbb{A}^n . This is a morphism. We make a couple of observations:

1. If $p \in \mathbb{A}^n \setminus \{0\}$, then $\phi^{-1}(p)$ consists of one point. Indeed, let $p = (a_1, \ldots, a_n)$ with, say, $a_1 \neq 0$. If

$$((a_1,\ldots,a_n)(b_1:\ldots:b_n)) \in \phi^{-1}(p),$$

then for $j \neq i$, $a_ib_j - a_jb_i = 0$, so $b_j = a_jb_i/a_i$. So b_1, \ldots, b_n are completely determined up to scaling. If we take $b_i = a_i$ for all i, then we see that

$$\phi^{-1}(p) = \{((a_1, \dots, a_n)(a_1 : \dots : a_n))\}.$$

Defining $\psi : \mathbb{A}^n \setminus \{0\} \to X \setminus \phi^{-1}(0)$ by $\psi(a_1, \dots, a_n) = ((a_1, \dots, a_n)(a_1 : \dots : a_n))$, this map is an inverse to $\phi|_{X \setminus \phi^{-1}(0)} : X \setminus \phi^{-1}(0) \to \mathbb{A}^n \setminus \{0\}$.

- 2. $\phi^{-1}(0) = \{0\} \times \mathbb{P}^{n-1}$.
- 3. The points of $\phi^{-1}(0)$ are in one-to-one correspondence with lines through the origin in \mathbb{A}^n .

For n=2 we have the following picture: instead of taking \mathbb{A}^2 , we somehow replace the origin with a copy of \mathbb{P}^1 .

We prove the third statement. A line L through the origin can be parametrized by $\ell: \mathbb{A}^1 \to \mathbb{A}^n$, such that $\ell(t) = (a_1t, \dots, a_nt)$ for some a_1, \dots, a_n not all 0. For $t \neq 0$,

$$\phi^{-1}(a_1t, \dots, a_nt) = ((a_1t, \dots, a_nt)(a_1t : \dots : a_nt))$$

= $((a_1t, \dots, a_nt)(a_1 : \dots : a_n)).$

This is the lift of $L \setminus \{0\}$, which is given parametrically by

$$t \mapsto ((a_1t, \dots, a_nt)(a_1: \dots: a_n)).$$

This takes $\mathbb{A}^1 \setminus \{0\}$ to $\phi^{-1}(\mathbb{A}^0 \setminus \{0\}) \subseteq X$. This extends to all of \mathbb{A}^1 , and also $\overline{\phi^{-1}(L \setminus \{0\})}$ is the image of this parametrisation.

Finally, we can show that X is irreducible. Indeed $X = (X \setminus \phi^{-1}(0)) \cup \phi^{-1}(0)$. The first set we showed is homeomorphic to $\mathbb{A}^n \setminus \{0\}$, and hence is irreducible

(an open subset of an irreducible space is irreducible). But every point in $\phi^{-1}(0)$ is in the closure of $X \setminus \phi^{-1}(0)$ by the proof of property 3, so $X \setminus \phi^{-1}(0)$ is dense in X.

Now I claim if $U \subseteq X$ is a dense open set and U is irreducible, then X is irreducible. Indeed if $X = Z_1 \cup Z_2$ for Z_1, Z_2 closed, then $U = (Z_1 \cap U) \cup (Z_2 \cap U)$. These are closed in U under the induced topology, so as U is irreducible, we may assume $U = Z_1 \cap U$. So $U \subseteq Z_1$, hence $\bar{U} \subseteq Z_1$. But since $\bar{U} = X$, by the density of U we have $X = Z_1$.

Thus the blow-up of X is irreducible.

The blow-up is a useful tool.

Definition 3.8. If $Y \subseteq \mathbb{A}^n$ is a closed subvariety with $0 \in Y$, we define the *blowing* up of Y at 0 to be $\hat{Y} = \overline{\phi^{-1}(Y \setminus \{0\})} \subseteq X$.

$\overline{\text{Example }}$ 3.6.

Let $Y \subseteq \mathbb{A}^2$ be given by

$$Y = Z(x_2^2 - (x_1^3 - x_1^2)).$$

This has something interesting going on at the origin: it intersects it twice. The blow up lives in $X \subseteq \mathbb{A}^2 \times \mathbb{P}^1$, and is the zero set of $x_1y_2 - x_2y_1 = 0$.

We work in two coordinate patches: $U_1 = \{y_1 \neq 0\}$, and $U_2 = \{y_2 \neq 0\}$. In U_2 , we can set $y_2 = 1$ and the equation for X becomes $x_1 = x_2y_1$. Then

$$\phi^{-1}(Y) \cap U_2 = Z(x_2^2 - (x_1^3 + x_2^2), x_1 - x_2 y_1) \subseteq \mathbb{A}^2 \times \mathbb{A}1.$$

This is isomorphic to $Z(x_2^2 - (x_2^3y_1^3 + x_2^2y_1^2)) \subseteq \mathbb{A}^2$. Indeed, in terms of coordinate rings

$$\frac{\mathbb{K}[x_1, x_2, y_1]}{\langle x_2^2 - (x_1^3 - x_1^2), x_1 - y_1 x_2 \rangle} \cong \frac{\mathbb{K}[x_2, y_1]}{\langle x_2^2 - (x_2^3 y_1^3 + x_2^2 y_1^2) \rangle}.$$

But note that the latter polynomial is $x_2^2(1-x_2y_1^3-y_1^2)$. Note that $\phi^{-1}(0) \cap U_2 = Z(x_2)$. The blow up $\hat{Y} \cap U_2 = \phi^{-1}(Y \setminus \{0\}) \cap U_2$ is now given by the equation $1-x_2y_1^2-y_1^2$ in \mathbb{A}^2 . In particular, we gain two new points $(x_2,y_1)=(0,\pm 1)$.

For thoroughness, we also consider $\hat{Y} \cap U_1$, where $y_1 = 1$. Then $x_2 = x_1y_2$, so we can eliminate x_2 from the equation to get $x_1^2y_2^2 - (x_1^3 + x_1^2) = x_1^2(y_2^2 - x_1 - 1)$. So $\hat{Y} \cap U_1$ has equation $y_2^2 - x_1 - 1 = 0$. This is the same as in the previous blow-up.

3.1 Rational Maps

Let X, Y be varieties. Consider the equivalence relation on pairs (U, f) where $U \subseteq X$ is open, and $f: U \to Y$ is a morphism. Then

$$(U, f) \sim (V, g) \text{ if } f|_{U \cap V} = g|_{U \cap V}.$$

We can check that this is an equivalence relation.

Definition 3.9. A rational map $f: X \dashrightarrow Y$ is an equivalence relation of a pair.

Example 3.7.

If X is affine and $q = f/g \in K(X)$, then we have a morphism $\phi : X \setminus Z(g) \to \mathbb{A}^1$. This defines a rational map to \mathbb{A}^1 .

Definition 3.10. A birational map is a rational map $f: X \dashrightarrow Y$ with a rational inverse $g: Y \to X$, such that $f \circ g = \mathrm{id}_Y$ and $g \circ f = \mathrm{id}_X$ as rational maps.

Remark. We cannot always compose rational maps. Suppose we are given $f: X \dashrightarrow Y$, $g: Y \dashrightarrow Z$ with $f: U \to Y$ and $g: V \to Z$.

If $f(U) \subseteq X \setminus V$, then we cannot compose. If this is not the case, then $f^{-1}(Y \setminus V) \subset U$ is a proper subset of U, and then $g \circ f : U \setminus f^{-1}(Y \setminus V) \to Z$ defines a rational map $g \circ f : X \dashrightarrow Z$.

Note that the ability to compose may depend on the representative for f, g. One can show that if $f: X \dashrightarrow Y$ is a birational map, then there exists $U \subseteq X$, $V \subseteq Y$ such that f is defined on U, $f(U) \subseteq V$, and $f: U \to V$ is an isomorphism.

Definition 3.11. We say varieties X, Y are birationally equivalent if there exists a birational map $f: X \dashrightarrow Y$. Equivalent, there exists $U \subseteq X, V \subseteq Y$ are open subset with $U \cong V$.

Example 3.8.

Take $\varphi: X \to \mathbb{A}^n$, the blow-up of \mathbb{A}^n at $0 \in \mathbb{A}^n$. This is a birational map since it induces an isomorphism $\varphi: \varphi^{-1}(\mathbb{A}^n \setminus \{0\}) \to \mathbb{A}^n\{0\}$.

However $\varphi^{-1}: \mathbb{A}^n \to X$ is not a morphism, and is only defined on $\mathbb{A}^n \setminus \{0\}$.

Remark. Let $f: X \dashrightarrow Y$ is a dominant rational map, i.e. if $U \xrightarrow{f} Y$ is a representative for f, then f(U) is dense in Y.

Definition 3.12. The function field of a variety X is

$$K(X) = \{(U, f) \mid f : U \to \mathbb{K} \text{ is a regular function}\}/\sim$$

where $(U, f) \sim (V, g)$ if $f|_{U \cap V} = g|_{U \cap V}$. This is the field of fractions of A(X) if X is affine.

If f is dominant, we obtain a map $f^{\#}: K(Y) \to K(X)$ by $(V, \varphi) \mapsto (f^{-1}(V) \cap U, \varphi \circ f)$. Note that $f^{-1}(V) \cap U$ is non-empty, since $V \cap f(U) \neq \emptyset$ by density of f(U).

If $f: X \dashrightarrow Y$ is a birational map with birational inverse $g: Y \dashrightarrow X$, each are dominant since they induce isomorphisms between open subsets. Thus we get

$$f^{\#}: K(Y) \to K(X), \qquad g^{\#}: K(X) \to K(Y)$$

are inverse maps, so $K(X) \cong K(Y)$. In fact the converse is true: if $K(X) \cong K(Y)$, then X and Y are birational to each other.

Example 3.9.

Look at $0 \in Y \subseteq \mathbb{A}^n$, then $\hat{Y} \to Y$, the blow-up of Y at 0, is a birational morphism.

4 Tangent Spaces, Singularities and Dimension

Recall that given an equation $f(x_1, ..., x_n) = 0$ in \mathbb{R}^n , where X is the solution set and $p \in X$, the tangent space to X is the orthogonal complement to $(\nabla f)(p)$, i.e. the tangent space to X at p is

$$T_p X = \left\{ (v_1, \dots, v_n) \in \mathbb{R}^n \mid \sum_{i=1}^n v_i \frac{\partial E}{\partial x_i}(p) = 0 \right\}.$$

This is a vector subspace of \mathbb{R}^n .

Definition 4.1. If $X \subseteq \mathbb{A}^n$ is an affine variety with $I = I(X) = \langle f_1, \dots, f_r \rangle$, $f_1, \dots, f_r \in \mathbb{K}[x_1, \dots, x_n]$ we define for $p \in X$, the tangent space to X at p by

$$T_p X = \left\{ (v_1, \dots, v_n) \in \mathbb{K}^n \mid \sum_{i=1}^n v_i \frac{\partial f_j}{\partial x_i}(p) = 0, 1 \le j \le r \right\}.$$

The description is defined using the standard differentiation rules for polynomials.

Example 4.1.

Set
$$I = \langle x_2^2 - x_1^3 \rangle \subset \mathbb{K}[x_1, x_2]$$
, and $X = Z(I)$. Let $p = (a_1, a_2)$. Then
$$T_p X = \{(v_1, v_2) \in \mathbb{K}^2 \mid v_1(-3a_1^2) + v_2(2a_2) = 0\}.$$

Then we see that $\dim_{\mathbb{K}} T_p X = 1$, unless p = (0,0) in which case it is 2.

Definition 4.2. Let $X \subseteq \mathbb{A}^n$ be an affine variety. Then the dimension of X is

$$\dim X = \min \{ \dim_{\mathbb{K}} T_p X \mid p \in X \}.$$

We say X is singular at p if $\dim_{\mathbb{K}} T_pX > d$ in X.

Lemma 4.1. The set $\{p \in X \mid \dim_{\mathbb{K}} T_p X \geq k\}$ is a closed subset of X, for all k.

Proof: The key property is rank-nullity. Note that T_pX is the null space of

$$\begin{pmatrix} \partial f_1/\partial x_1 & \cdots & \partial f_1/\partial x_n \\ \vdots & \ddots & \vdots \\ \partial f_r/\partial x_1 & \cdots & \partial f_r/\partial x_n \end{pmatrix},$$

where $I(X) = \langle f_1, \dots, f_r \rangle$. But the dimension of the null space plus the rank

of the matrix is n, so

$$\dim T_p X \ge k \iff n - \operatorname{rank} \ge k \iff \operatorname{rank} \le n - k.$$

If A is an $r \times n$ matrix, then $\operatorname{rank}(A) \geq k+1$ if and only if there is a $(k+1) \times (k+1)$ submatrix of A whose determinant is non-zero. So $\operatorname{rank} J \leq n-k$ if and only if all $(n-k+1) \times (n-k+1)$ minors vanish.

But these minors are simply polynomial equations. Thus the set

$$\{p \in X \mid \dim T_p X \ge k\} = Z(f_1, \dots, f_r \mid f_i \text{ a } (n-k+1) \times (n-k+1) \text{ minor of } J).$$

Hence this set is closed.

Recall that $p \in X$ is singular if $\dim_K T_p X \ge \dim X$, which is the infimum of $\dim T_p X$. This lemma tells us that the set of singular points is a proper closed subset.

Example 4.2.

Look at $y^2 - x^3 = 0$. Then the Jacobian matrix is $(2y, -3x^2)$, which vanishes when (x, y) = (0, 0).

Now consider the cone $x^2 + y^2 - z^2 = 0$. Then J = (2x, 2y, -2z), vanishing at the origin.

Note we only care about where the Jacobian vanishes on the variety, not in the general space.

4.1 Intrinsic Characterization of the Tangent Space

Let X be an affine variety. For $p \in X$, define $\phi_p : A(X) \to \mathbb{K}$ to be the K-algebra homomorphism given by $\phi_p(f) = f(p)$.

Definition 4.3. A derivation centred at p is a map $D: A(X) \to \mathbb{K}$ such that:

- (i) D(f+g) = D(f) + D(g).
- (ii) $D(f \cdot g) = \phi_p(f)D(g) + D(f)\phi_p(g)$.
- (iii) D(a) = 0 for $a \in \mathbb{K}$.

Denote by Der(A(X), p) to be the set of derivations centred at p. Note that Der(A(X), p) is a \mathbb{K} -vector space.

Theorem 4.1. $T_pX \cong \text{Der}(A(X), p)$ as \mathbb{K} -vector spaces.

Proof: Suppose $(v_1, \ldots, v_n) \in T_p X$, so if $I(X) = \langle f_1, \ldots, f_r \rangle$, then

$$\sum_{i=1}^{n} v_i \frac{\partial f_j}{\partial x_i}(p) = 0,$$

for all j. Define $\mathbb{K}[x_1,\ldots,x_n]\to\mathbb{K}$ by

$$f \mapsto \sum_{i=1}^{n} v_i \frac{\partial f}{\partial x_i}(p).$$

This vanishes on elements of I(X), which are of the form $f = \sum g_j f_j$ for $g_j \in \mathbb{K}[x_1, \dots, x_n]$. Then

$$f \mapsto \sum_{i=1}^{n} v_i \left(\sum_{j=1}^{r} \left(\frac{\partial f_j}{\partial x_i} g_j + \frac{\partial g_j}{\partial x_i} f_j \right) (p) \right)$$
$$= \sum_{i,j} \left(v_i \frac{\partial f_j}{\partial x_i} g_j(p) \right) = \sum_j g_j(p) \left(\sum_i v_i \frac{\partial f_j}{\partial x_i} (p) \right) = 0,$$

since $f_j(p) = 0$ as $p \in X$. Thus we get a well-defined K-linear map

$$D_v: \frac{\mathbb{K}[x_1,\ldots,x_n]}{I(X)} = A(X) \to \mathbb{K}.$$

We can check that this is a derivation. Now we want to generate tangent vectors from derivations.

Given $D \in \text{Der}(A(X), p)$, define $v_i = D(x_i)$. By repeated use of the Leibniz rule,

$$D(f) = \sum_{i=1}^{n} v_i \frac{\partial}{\partial x_i}(p).$$

For example, for n=2,

$$D(x_1x_2) = D(x_1) \cdot x_2(p) + x_1(p) \cdot D(x_2) = v_1x_2(p) + v_2x_1(p)$$
$$= v_1 \frac{\partial(x_1x_2)}{\partial x_1}(p) + v_2 \frac{\partial(x_1x_2)}{\partial x_2}(p).$$

Therefore we find

$$D(f_j) = \sum_{i=1}^{n} v_i \frac{\partial f_j}{\partial x_i}(p),$$

but $f_j \in I(X)$, so $D(f_j) = 0$. Hence

$$\sum_{i=1}^{n} v_i \frac{\partial f_j}{\partial x_i}(p) = 0$$

for all j, so $(v_1, \ldots, v_n) \in T_p X$.

Remark. Singular points and tangent spaces are intrinsic to affine varieties.

Definition 4.4. Let X be a variety, and $p \in X$. We define the *local ring* to X at p to be

 $\mathcal{O}_{X,p} = \{(U,f) \mid U \text{ is an open neighbourhood of } p, f: U \to \mathbb{K} \text{ regular}\}/\sim,$

where $(U, f) \sim (V, g)$ if $f|_{U \cap V} = g|_{U \cap V} \subseteq K(X)$, the field of functions.

Example 4.3.

1. If $X \subseteq \mathbb{A}^n$ is an affine variety,

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} \in K(X) \mid g(p) \neq 0, f, g \in A(X) \right\}.$$

2. If $X \subseteq \mathbb{P}^n$ is projective, then

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} \mid f, g \in \frac{\mathbb{K}[x_1, \dots, x_n]}{I(X)}, g(p) \neq 0, f, g \text{ hom, same degree} \right\},$$

as a subset of K(X).

Remark. The definition of $\mathcal{O}_{X,p}$ makes it intrinsic, i.e. not dependent on the embedding. Moreover, $\mathcal{O}_{X,p}$ is a ring:

$$(U, f) + (V, q) = (U \cap V, f|_{U \cap V} + q|_{U \cap V}),$$

and multiplication defined similarly. We can define

$$m_p = \{(U, f) \in \mathcal{O}_{X,p} \mid f(p) = 0\}.$$

This is an ideal, and every element of $\mathcal{O}_{X,p} \setminus m_p$ is invertible. Thus m_p is the unique maximal ideal of $\mathcal{O}_{X,p}$.

Definition 4.5. A ring A with a unique maximal ideal is called a *local ring*.

Theorem 4.2. If $X \subseteq \mathbb{A}^n$ is an affine variety, then $T_pX \cong (m_p/m_p^2)^*$, where V^* is the dual of the \mathbb{K} -vector space V.

Proof: Note that there is an isomorphism

$$\mathcal{O}_{X,p}/m_p \to \mathbb{K},$$

 $f \mapsto f(p).$

This is surjective since constants are regular functions, and injective by the definition of m_p . Then we can define the \mathbb{K} -vector space structure on m_p/m_p^2 by identifying \mathbb{K} with $\mathcal{O}_{X,p}/m_p$, and

$$(f + m_p) \cdot (g + m_p^2) = (f \cdot g + m_p^2).$$

We will show that $\operatorname{Der}(A(X), p) \subseteq (m_p/m_p^2)^*$. Given $D \in \operatorname{Der}(A(X), p)$, we define $\phi_D : m_p/m_p^2 \to \mathbb{K}$ defined as follows: for $f, g \in A(X), g(p) \neq 0$ and f(p) = 0, with

$$\left(X \setminus Z(g), \frac{f}{g}\right) \in m_p \subseteq \mathcal{O}_{X,p},$$

we set

$$\phi_D\left(\frac{f}{g}\right) = D\left(\frac{f}{g}\right) = \frac{g(p)D(f) - f(p)D(g)}{g(p)^2} = \frac{D(f)}{g(p)},$$

since f(p) = 0. Note that if $f_1/g_1, f_2/g_2 \in m_p$, then

$$\phi_D\left(\frac{f_1 f_2}{g_1 g_2}\right) = \frac{f_1(p)}{g_1(p)} \cdot \phi_D\left(\frac{f_1}{g_1}\right) + \frac{f_1(p)}{g_1(p)} \phi_D\left(\frac{f_2}{g_2}\right) = 0.$$

Thus $\phi_D(m_p^2) = 0$, so we obtain a well defined map $\phi_D : m_p/m_p^2 \to \mathbb{K}$. Conversely, if we are given $\phi : m_p/m_p^2 \to \mathbb{K}$, for $p = (a_1, \dots, a_n) \in X \subseteq \mathbb{A}^n$, note that $x_i - a_i \in m_p$ for all i. Then define

$$D_{\phi}(x_i - a_i) = \phi(x_i - a_i).$$

This is sufficient to determine D_{ϕ} as before.

Example 4.4.

Suppose that $X = \mathbb{A}^n$, and p = 0. Then

$$\frac{m_p}{m_p^2} = \frac{(X_1, \dots, X_n)}{(X_1, \dots, X_n)^2}.$$

Definition 4.6. If X is any variety, the Zariski tangent space to X at p is

$$T_p X = (m_p/m_p^2)^*,$$

where $m_p \subseteq \mathcal{O}_{X,p}$ is the maximal ideal.

Theorem 4.3. Any variety has an open cover by affine varieties.

Note if $X \subseteq \mathbb{P}^n$ is projective, then $\{U_i \cap X \mid 0 \le i \le n\}$ is a cover of X by affine varieties.

Proof: Consider the most general case, where X is quasi-projective. Then each $U_i \cap X$ is quasi-affine, so it is enough to show that each quasi-affine variety is covered by affine varieties.

Let $p \in X$. We will find an affine neighbourhood of p in X. Then $\bar{X} \subseteq \mathbb{A}^n$, the closure, is an affine variety, and $Z = \bar{X} \setminus X$ is closed in \bar{X} . Choose $f \in I(Z)$ with $f(p) \neq 0$. Then $\langle f \rangle \subseteq I(X)$, so

$$Z(f) \subseteq Z(I(Z)) = Z,$$

so
$$p \in \bar{X} \setminus Z(f) \subseteq \bar{X} \setminus Z = X$$
.

But $\bar{X} \setminus Z(f)$ can be identified with the closed subset of \mathbb{A}^{n+1} given by $Z(I(\bar{X}), yf - 1)$, as in the first example sheet.

Remark. The definition of dimension and singular points goes through unchanged with the Zariski tangent space:

$$\dim X = \inf \{\dim T_p X \mid p \in X\},\$$

and $p \in X$ is singular if dim $X < \dim T_p X$. By applying the above theorem, in fact the set of singular points of an arbitrary variety X is closed in X. This also shows that the dimension, and singularity is intrinsic to X.

We can alternatively define dimension in the Zariski tangent space as follows.

Definition 4.7. if F/\mathbb{K} is a finitely generated field extension, then the *transcendence degree* of F/\mathbb{K} , written as $\operatorname{trdeg}_K F$, is the cardinality of a transcendence basis.

Definition 4.8. If A is a ring, the *Krull dimension* of A is the largest n such that there exists a chain of prime ideals

$$P_0 \subset P_1 \subset \cdots \subset P_n \subseteq A$$
.

Definition 4.9. If X is a topological space, the *Krull dimension* of X is the largest n such that there exists a chain of irreducible subsets

$$Z_0 \subset Z_1 \subset \cdots \subset Z_n \subseteq X$$
.

Remark. If \mathbb{K} is algebraically closed, then dim $\mathbb{K}[x_1,\ldots,x_n]$ agrees with the Krull dimension of \mathbb{A}^n .

If $X \subseteq \mathbb{A}^n$ is an affine variety, then $\dim A(X)$ is equal to the Krull dimension of X. We can check there is a one-to-one correspondence between prime ideals of A(X) and irreducible closed subsets of X.

Theorem 4.4. If X is a variety, then

 $\dim X = \operatorname{trdeg}_{\mathbb{K}} K(X) = Krull \ dimension \ of \ X = Krull \ dimension \ of \ \mathcal{O}_{X,p},$

for any $p \in X$.

Proof: This is by dimension theory. It is non-examinable.

Example 4.5.

In the first example sheet, we showed that if

$$X = Z(f) \subseteq \mathbb{A}^2$$
,

then the closed subsets of X are X, and the finite subsets of X. Thus the Krull dimension of X is 1.

Page 39 5 CURVES

5 Curves

Definition 5.1. An (algebraic) curve is a variety C with dim C = 1.

Definition 5.2. Let $C \subseteq \mathbb{P}^n$ be a projective non-singular curve. We define DivC to be the free abelian group generated by points of C. This is called the group of divisors of C.

An element of Div C is of the form $\sum_{i=1}^{n} a_i p_i$, for $a_i \in \mathbb{Z}$, $p_i \in C$.

The point of this definition is as follows. Consider $C = \mathbb{P}^1$. An element of K(C) is a ratio

$$\frac{f(x_0, x_1)}{g(x_0, x_1)}$$

where f,g are homogeneous polynomials of the same degree. We can factor

$$\frac{f}{g} = \frac{\prod_{i} (b_i x_0 - a_i x_1)^{m_i}}{\prod_{j} (d_j x_0 - c_j x_1)^{n_j}},$$

where $\sum m_i = \sum n_j = d$. Let $p_i = (a_i : b_i)$, and $q_j = (c_j : d_j)$. Then f/g has a zero of order m_i at p_i , and a pole of order n_j at q_j . The divisors of zeroes and poles of f/g is

$$\left(\frac{f}{g}\right) = \sum_{i} m_i p_i - \sum_{j} n_j q_j.$$

We call a divisor $D \in \text{Div } C$ principal if it is of the form (f/g). Let $\text{Prin } C \subseteq \text{Div } C$ be the subgroup of principal divisors, and define the class group of C, to be

$$\operatorname{Cl} C = \frac{\operatorname{Div} C}{\operatorname{Prin} C}.$$

we can see that $Cl \mathbb{P}^1 = \mathbb{Z}$.

In order for this definition to be sensible, for any non-singular curve $f \in K(X)$, we want to define the order of 0 of a pole at $p \in X$.

Lemma 5.1. Let A be a ring, M a finitely generated A-module and $I \subset A$ an ideal such that IM = M. Then there exists $x \in A$ such that $x \equiv 1 \mod I$, and xM = 0.

Proof: Recall if we have $\phi: M \to M$ an A-module homomorphism with $\phi(M) \subseteq IM$, then there exists $a_1, \ldots, a_n \in I$ such that

$$\phi^{n} + a_{1}\phi^{n-1} + \dots + a_{n} = 0.$$

Take ϕ to be the identity map. This means multiplication by $1 + a_1 + a_2 + a_3 + a_4 + a_4 + a_5 + a_4 + a_5 + a_5$

Page 40 5 CURVES

 $\cdots + a_n$ is the zero homomorphism of M. Then taking this to be $x, x \equiv 1 \mod I$ and xM = 0.

Theorem 5.1 (Nakayama's Lemma). Let A be a local ring with maximal ideal m. Let $I \subseteq m$ be an ideal. Then for finitely generated M, IM = M implies M = 0.

Proof: As before, there exists $x \in A$ with xM = 0 and $x \equiv 1 \mod I$, so $x \equiv 1 \mod m$. Thus $x \notin m$. But this implies x is invertible, otherwise $\langle x \rangle \neq A$, and hence $\langle x \rangle \subseteq m$.

But then $M = x^{-1}(xM) = 0$.

Corollary 5.1. Let A be a local ring with maximal ideal m, M a finitely generated A-module, and $I \subseteq m$ an ideal. Then if M = IM + N for a submodule $N \subseteq M$, we have M = N.

Proof: Note that M/N satisfies

$$I\left(\frac{M}{N}\right) = \frac{IM + N}{N}.$$

If M = IM + N, we get

$$I\left(\frac{M}{N}\right) = \frac{M}{N} \implies \frac{M}{N} = 0.$$

Corollary 5.2. A is local ring with m its maximal ideal. Let $x_1, \ldots, x_n \in M$ be a set of elements of a finitely generated module M, such that the images $\bar{x}_1, \ldots, \bar{x}_n \in M/mM$ form a basis for M/mM as an A/m-vector space. Then x_1, \ldots, x_n generate M as an A-module.

Remark. A/m is a field since m is maximal. Further M/mM is a vector space over A/m, since

$$(a+m) \cdot (\alpha + mM) = a\alpha + mM,$$

is well-defined.

Proof: Let $N \subseteq M$ be the submodule of M generated by x_1, \ldots, x_n . Then the composition

$$N \hookrightarrow M \to M/mM$$

is surjective, so M = N + mM. By the previous corollary, M = N.

Page 41 5 CURVES

Corollary 5.3. Let $C \subseteq \mathbb{P}^n$ be a non-singular projective curve. Then

$$\{(U, f) \mid f(p) = 0\} = m_p \subseteq \mathcal{O}_{C,p}$$

is a principal ideal.

Proof: We begin by proving $\mathcal{O}_{C,p}$ is Noetherian. Replace C by an open affine neighbourhood of p in C, say C'. This does not change $\mathcal{O}_{C,p}$. Then

$$\mathcal{O}_{C',p} = \left\{ \frac{f}{g} \mid f, g \in A(C') = \frac{\mathbb{K}[x_1, \dots, x_n]}{I(C')}, g(p) \neq 0 \right\} \subseteq K(C').$$

If $J \subseteq \mathcal{O}_{C',p}$ is a ideal, then

$$J = \left\{ \frac{f}{g} \mid f \in A(C') \cap J, g \in A(C'), g(p) \neq 0 \right\} \subseteq \mathcal{O}_{C',p}. \tag{*}$$

Indeed, one way is because if $f/g \in J$, then $g(f/g) = f \in J$, so $f \in A(C') \cap J$. Conversely, if $f \in A(C') \cap J$, then $f/g = 1/g \cdot f \in J$.

Now $\mathbb{K}[x_1,\ldots,x_n]$ is Noetherian by Hilbert's basis theorem, hence

$$A(C') = \mathbb{K}[x_1, \dots, x_n]/I(C')$$

is Noetherian. Hence $A(C') \cap J$ is finitely generated, and by (*), the set of generators of $A(C') \cap J$ generate J as an ideal in $\mathcal{O}_{C',p}$. Since C is non-singular of dimension 1,

$$1 = \dim T_p C = \dim(m_p/m_{p^2})^*.$$

Also the map $\mathcal{O}_{C,p}/m_p \to \mathbb{K}$ by $f + m_p \mapsto f(p)$. Thus m_p/m_p^2 is a one-dimensional vector space over $\mathcal{O}_{C,p}/m_p$, hence by the previous corollary to Nakayama's lemma, m_p is generated by the lift of a 1-element basis of m_p/m_p^2 . Thus m_p is principal (we need m_p finitely generated here!).

Remark. Let $t \in m_p$ be a generator. Then we get a chain of ideals

$$\mathcal{O}_{C,p} \supseteq m_p = (t) \supseteq (t^2) \supseteq (t^3) \supseteq \cdots$$

Note that if $(t^{k+1}) = (t^k)$, then $m_p \cdot (t^k) = (t^k)$. But then Nakayama's lemma tells us $(t^k) = 0$, but it cannot since $\mathcal{O}_{C,p}$ is an integral domain and $t \neq 0$.

Also, consider

$$I = \bigcap_{k=1}^{\infty} (t^k).$$

Then clearly $t \cdot I = I$, so $m_p \cdot I = I$, hence I = 0.

Page 42 5 CURVES

Corollary 5.4. If $f \in \mathcal{O}_{C,p} \setminus \{0\}$, there exists a unique $\nu \geq 0$ such that $f \in (t^{\nu})$, $f \notin (t^{\nu+1})$.

Definition 5.3. Define $\nu : \mathcal{O}_{C,p} \setminus \{0\} \to \mathbb{Z}$ by $\nu(f) = \nu$, as above.

We can show that ν satisfies the following:

- $\nu(f \cdot g) = \nu(f) + \nu(g)$.
- $\nu(f+g) \ge \min{\{\nu(f), \nu(g)\}}$ with equality if $\nu(f) \ne \nu(g)$.

We can extend ν to a map

$$\nu: K(C) \setminus \{0\} = K(C)^* \to \mathbb{Z},$$

by $\nu(f/g) = \nu(f) = \nu(g)$. ν is an example of a discrete valuation. It essentially tells us the order of the zero of f/g at p.

Definition 5.4. Let K be a field. A discrete valuation on K is a function $\nu: K^{\times} \to \mathbb{Z}$ such that:

- (i) $\nu(f \cdot q) = \nu(f) + \nu(q)$.
- (ii) $\nu(f+g) \ge \min{\{\nu(f), \nu(g)\}}$ with equality if $\nu(f) \ne \nu(g)$.

Given a discrete valuation, we define the corresponding discrete valuation ring (DVR) by

$$R = \{ f \in K^{\times} \mid \nu(f) \ge 0 \} \cup \{ 0 \},\$$

a subring of K. Moreover, we can take $m = \{f \in K^{\times} \mid \nu(f) \geq 1\} \cup \{0\}$, which is the unique maximal ideal of R. If $f \in R \setminus m$, then $\nu(f) = 0$, so $\nu(f^{-1}) = 0$, and so $f^{-1} \in R$.

Example 5.1.

- 1. Take $R = \mathcal{O}_{C,p} \subseteq K = K(C)$. Then ν is the discrete valuation we defined.
- 2. Let $p \in \mathbb{Z}$ be prime, and $K = \mathbb{Q}$. Then any rational number can be written as $\frac{a}{b}p^{\nu}$, with (a, p) = (b, p) = 1. Then define

$$\nu_p\left(\frac{a}{b}p^\nu\right) = \nu.$$

This is a discrete valuation, with discrete valuation ring

$$\mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \in \mathbb{Q} \mid p \nmid b \right\}.$$

These are the p-adic valuation and p-adic integers, respectively.

Page 43 5 CURVES

3. Take $K = \mathbb{K}(x)$, and $a \in \mathbb{K}$. Then

$$\nu_a \left(\frac{f}{g} (x - a)^{\nu} \right) = \nu,$$

where f, g are relatively prime to x - a. Here the DVR is $\mathcal{O}_{\mathbb{A}^1,0}$.

4. Let $K = \mathbb{K}(X)$, and define

$$\nu(f/q) = \deg q - \deg f.$$

This is the "order" of the zero at ∞ .

The setup is follows: let $C \subseteq \mathbb{P}^n$ be a projective non-singular curve. Then each point $p \in C$ gives a valuation $\nu_p : K(C)^{\times} \to \mathbb{Z}$, with DVR $\mathcal{O}_{C,p}$. For $f \in K(C)^{\times}$, we define the divisor of zeros and poles of f to be

$$(f) = \sum_{p \in C} \nu_p(f) p.$$

We need to check this is finite.

Note f is represented on some open subset $U \subseteq C$ be g/h, for homogeneous polynomials g,h. We shrink U be removing Z(g), Z(h). Now if $p \in U$, $f = g/h \in \mathcal{O}_{C,p}$ is a regular function with $f(p) \neq 0$, so $\nu_p(f) = 0$. Thus the sum defining (f) is a sum over points of $C \setminus U$, which is a finite set.

Here, we use the fact that $\dim C = 1$, so the irreducible sets are C and singleton sets.

Definition 5.5. The group of principal divisors on C is

$$PrinC = \{(f) \mid f \in K(C) \setminus \{0\}\}.$$

This is a subgroup, as (fg) = (f) + (g), and $(f^{-1}) = (-f)$.

The (divisor) class group is

$$ClC = \frac{DivC}{PrinC}.$$

If $D, D' \in \text{Div}C$ satisfy D - D' = (f) for some $f \in K(C)^{\times}$, then we say D is linearly equivalent to D', and we write $D \sim D'$.

Extending morphisms to projective space: let C is a projective non-singular curve, and $\emptyset \neq U \subseteq C$ is an open subset, and f_0, \ldots, f_n being regular functions on U without a common zero.

Then we obtain a morphism $f: U \to \mathbb{P}^n$ by $p \mapsto (f_0(p): \ldots: f_n(p))$.

Page 44 5 CURVES

Theorem 5.2. $f: U \to \mathbb{P}^n$ extends to a morphism $f: C \to \mathbb{P}^n$.

Proof: Suppose either f_i has a pole at $p \in C$, i.e. $\nu_p(f_i) < 0$, or all f_i 's are zero at p. Let

$$m = \min\{\nu_p(f_i) \mid 0 \le i \le n\}.$$

Let t be a local parameter at p, i.e. a generator of the maximal ideal $m_p \subseteq \mathcal{O}_{C,p}$. So $\nu_p(t) = 1$. Then $\nu_p(t^{-m}f_i) = \nu_p(f_i) - m$, so $\nu_p(t^{-m}f_i) = 0$ for some i, and $\nu_p(t^{-m}f_j) \geq 0$. Thus $t^{-m}f_0, \ldots, t^{-m}f_p \in \mathcal{O}_{C,p}$ are regular functions which do not simultaneously vanish at p.

Hence in some neighbourhood V of p, we obtain a morphism $f_p: V \to \mathbb{P}^n$ by $q \mapsto ((t^{-m}f_0)(q), \dots, (t^{-m}f_n)(q))$. This agrees with f on the intersection by rescaling, so gluing gives a morphism.

Proposition 5.1. Let $f: X \to Y$ be a non-constant morphism between projective non-singular curves. Then:

- (i) $f^{-1}(q)$ is a finite set, for all $q \in Y$.
- (ii) f induces an inclusion $K(Y) \hookrightarrow K(X)$ such that [K(X) : K(Y)] is finite. We call [K(X) : K(Y)] the degree of f.

Proof:

- (i) $f^{-1}(q) \subseteq X$ is closed, and since dim X = 1, either $f^{-1}(q)$ is finite, or $f^{-1}(q) = X$. The latter contradicts f non-constant.
- (ii) If $\phi \in K(Y)$, ϕ defines a regular function on some open $U \subseteq Y$, i.e. $\phi: U \to \mathbb{K}$.

Then $\phi \circ f$ makes sense, provided $K(X) \not\subseteq Y \setminus U$. But f(X) is irreducible, so f is constant if $f(X) \subseteq Y \setminus U$. Thus $\phi \circ f$ makes sense as a rational function on X. Thus $K(Y) \to K(X)$ exists, and is automatically an injection since both are fields.

We omit the proof of finiteness (the idea is to look at the transcendence degrees; both are 1).

Definition 5.6. Suppose $f: X \to Y$ is a non-constant morphism between projective non-singular curves. Let $p \in Y$, $m_p = (t) \subseteq \mathcal{O}_{Y,p}$, where t is a local parameter.

Page 45 5 CURVES

Let $q \in f^{-1}(p)$. Then $t \circ f \in \mathcal{O}_{X,q}$. Define

$$e_a = \nu_a(t \circ f),$$

the degree of ramification of f at q.

Theorem 5.3. Let $f: X \to Y$ be as above. Then for $p \in Y$,

$$\sum_{q \in f^{-1}(p)} e_q = \deg f$$

is the degree of f.

The proof is omitted, however the theorem is crucial.

Example 5.2.

1. Suppose char $\mathbb{K} \neq 2$, and take $f: \mathbb{P}^1 \to \mathbb{P}^1$ by $(u:v) \mapsto (u^2:v^2)$. Setting v=1, this gives a morphism $\mathbb{A}^1 \to \mathbb{A}^1$ by $u \mapsto u^2$.

If $p \in \mathbb{A}^1$, then t = u - p is a local parameter at p, and $t \circ f = u^2 - p = (u - q)(u + q)$ where $q^2 = p$, so $e_q = e_{-q} = 1$, hence $\deg f = e_q + e_{-q} = 2$.

If p = 0, then $f^{-1}(p) = \{0\}$, and $e_0 = \nu_0(u^2) = 2$.

Looking as function fields, letting $K(\mathbb{P}^1) = \mathbb{K}(u)$, then this map is $\mathbb{K}(u) \to \mathbb{K}(u)$ by $u \mapsto u^2$.

2. Look at char $\mathbb{K} = 2$, and $f : \mathbb{P}^1 \to \mathbb{P}^1$ by $(u : v) \mapsto (u^p : v^p)$. Setting v = 1, this is $u \mapsto u^p$.

Here $f^{-1}(q)=\{r\}$, where $r^p=q$ is unique. Then t=u-q, and $t\circ f=u^p-q=(u-r)^p$.

Let X be a projective non-singular curve, and $f \in K(X)^{\times}$. This gives a morphism $X \supseteq U \stackrel{(f,1)}{\to} \mathbb{P}^1$, where U is the open set on which f is regular.

This extends to $f: C \to \mathbb{P}^1$, non-constant as long as $f \notin \mathbb{K}$.

Index

affine *n*-space, 2 affine variety, 5 algebraic, 2, 23 algebraic variety, 5 algebraically independent, 13

bidegree, 27 birational map, 30 birationally equivalent, 30 blow-up, 29

class group, 39, 43 coordinate ring, 8 curve, 39

degree, 44 degree of ramification, 45 derivation, 33 dimension, 32 discrete valuation, 42 discrete valuation ring, 42 divisor, 39

field of fractions, 9 finitely generated, 13 fraction field, 9 function field, 30

homogeneous ideal, 23 homogeneous polynomial, 22 homogenisation, 24

ideal of an algebraic set, 25 integral, 15 irreducible components, 7

irreducible subset, 5

Krull dimension, 37

linearly equivalent, 43 local ring, 35

morphism, 9

prime ideal, 6 principal divisor, 39, 43 projective variety, 23

quadric surface, 26 quasi-affine variety, 25 quasi-projective variety, 25

radical, 4 rational function, 9 rational map, 30 regular, 8 regular function, 25

Segre embedding, 27 singular, 32

tangent space, 32 transcendence basis, 13 transcendence degree, 37 transcendental, 13

variety, 5, 25

Zariski open subset, 3 Zariski tangent space, 37 Zariski topology, 3, 23