

Lineare Algebra für Elektrotechnik Wintersemester 22/23 Prof. Dr. Volker Bach M.Sc. Jakob Geisler

Klausur 17.02.2023

Name, Vorname	
Matrikelnummer	
Studiengang	
TU E-Mail	

- Füllen Sie das Deckblatt aus und lesen Sie die weiteren Hinweise sorgfältig durch.
- Legen Sie Ihren Studierendenausweis und ggf. Ihren Lichtbildausweis sichtbar an Ihrem Platz bereit.
- Legen Sie Stifte bereit. Benutzen Sie zur Bearbeitung der Aufgaben keine radierbaren Stifte (Bleistifte, "Frixion"-Stifte, o.Ä.) und keine roten Stifte.
- Schalten Sie Ihr Smartphone, Tablet, Smartwatch, o.Ä. aus und packen Sie es in Ihre Tasche. Verstauen Sie Jacken und Taschen am Rand des Raumes.
- Es dürfen keine Hilfsmittel benutzt oder mitgeführt werden.
- Fangen Sie bitte jede Aufgabe auf einer neuen Seite an und lassen Sie einen ausreichenden Rand (ca. 5cm, d.h. ein Viertel der Breite) für die Korrektur.
- Achten Sie darauf, dass Ihr Lösungsweg nachvollziehbar ist und bewahren Sie Ruhe.
- Nach Allgemeiner Prüfungsordnung führt ein Täuschungsversuch, die Benutzung oder Mitführung nicht zugelassener Hilfsmittel zum Nichtbestehen der Klausur.
- Die Bearbeitungszeit beträgt 150 Minuten.

Aufgabe	1	2	3	4	5	6	*	Σ
Punkte	/6	/6	/6	/ 6	/6	/6	/6	/ 36
Kürzel								

Viel Erfolg!

Aufgabe 1 (1+1,5+1+1+1,5)

- (a) Formulieren Sie den Fundamentalsatz der Algebra.
- (b) Berechnen Sie folgende Terme und geben Sie das Ergebnis in der Darstellung a+ib an, wobei $a,b\in\mathbb{R}$ sein sollen:

(i)
$$z_1 = (1+i) \cdot (2-3i)$$
, (ii) $z_2 = \frac{i}{3+i}$, (iii) $z_3 = \sqrt{2} \cdot e^{i\frac{\pi}{4}}$.

(c) Geben Sie jeweils alle Lösungen der folgenden Gleichungen an:

(i)
$$z^4 = 1$$
, $z \in \mathbb{C}$, (ii) $(z - 1)^3 = i$, $z \in \mathbb{C}$.

(d) Geben Sie jeweils

(i)
$$z_4 = 2i$$
, (ii) $z_5 = -1 - i$

in der Polardarstellung $r\cdot e^{i\varphi}$ an, wobei $r\in [0,\infty)$ und $\varphi\in [0,2\pi)$ seien.

(e) Es sei $z=a+ib\in\mathbb{C}$ eine komplexe Zahl. Zeigen Sie

(i)
$$|z|^2 = \overline{z} \cdot z$$
, (ii) $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$, (iii) $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$.

X

Aufgabe 2 (1+2+2+1)

- (a) Definieren Sie den Begriff der linearen Unabhängigkeit.
- (b) Zeigen oder widerlegen Sie, dass $S:=\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}\subseteq\mathbb{R}^4$ linear unabhängig ist, wobei

$$ec{v}_1 = egin{pmatrix} 1 \ 0 \ 2 \ 1 \end{pmatrix}$$
 , $ec{v}_2 = egin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix}$, $ec{v}_3 = egin{pmatrix} -1 \ 1 \ 1 \ 1 \end{pmatrix} \in \mathbb{R}^4$.

(c) Sei

$$A = \mathcal{M}[\Phi] = egin{pmatrix} 1 & 1 & -1 \ 0 & 1 & 1 \ 2 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{4 imes 3}$$

die Matrixdarstellung einer linearen Abbildung $\Phi \in \mathcal{L}(\mathbb{R}^3; \mathbb{R}^4)$. Ist Φ injektiv? Begründen Sie Ihre Aussage.

(d) Für welche Werte $\alpha \in \mathbb{R}$ definiert $T = \{\vec{x}_1, \vec{x}_2, \vec{x}_3\} \subseteq \mathbb{R}^3$, gegeben durch

$$\vec{x}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\vec{x}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\vec{x}_3 = \begin{pmatrix} \alpha \\ \alpha \\ 9 \end{pmatrix}$

keine Basis?

Aufgabe 3 (1+2+1+2)

- (a) Formulieren Sie das Unterraumkriterium.
- (b) Sei

$$B = \mathcal{M}[\Psi] = \begin{pmatrix} 1 & -1 & 1 & 2 \\ -1 & -2 & 1 & -6 \\ 2 & 1 & 0 & 8 \\ 4 & -1 & 2 & 12 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

die Matrixdarstellung einer linearen Abbildung $\Psi \in \mathcal{L}(\mathbb{R}^4)$. Geben Sie jeweils eine Basis des Kerns und des Bildes dieser linearen Abbildung an.

(c) Geben Sie alle Lösungen $\vec{x} \in \mathbb{R}^4$ der Gleichung

$$B \cdot \vec{x} = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix} \in \mathbb{R}^4$$

an.

(d) Es seien X und Y \mathbb{K} -Vektorräume und $\Phi \in \mathcal{L}(X;Y)$ eine lineare Abbildung zwischen diesen Vektorräumen. Beweisen Sie, dass $\ker(\Phi) \subseteq X$ ein Unterraum ist.

Aufgabe 4 (1+1+3+1)

(a) Definieren Sie die Diagonalisierbarkeit einer Matrix $A \in \mathbb{C}^{N \times N}$.

Nun seien $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \subseteq \mathbb{C}^3$ die Standardbasis und $W = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\} \subseteq \mathbb{C}^3$ eine weitere Basis, definiert durch

$$\vec{w}_1 = \begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix}, \ \vec{w}_2 = \begin{pmatrix} -5 \\ -4 \\ -2 \end{pmatrix}, \ \vec{w}_3 = \begin{pmatrix} 3 \\ 4 \\ 4 \end{pmatrix} \in \mathbb{C}^3.$$

Außerdem sei $\Phi \in \mathcal{L}(\mathbb{C}^3)$ eine lineare Abbildung, die $\Phi(\vec{e}_i) = \vec{w}_i$ für alle $i \in \mathbb{Z}_1^3$ erfüllt.

- (b) Bestimmen Sie die Matrixdarstellung von Φ bezüglich \mathcal{E} .
- (c) Geben Sie die Matrixdarstellung von Φ bezüglich $Z=\{\vec{z}_1,\vec{z}_2,\vec{z}_3\}$ an, indem Sie eine Basistransformation ausführen, wobei

$$ec{z}_1=egin{pmatrix}1\\1\\0\end{pmatrix}$$
 , $ec{z}_2=egin{pmatrix}0\\1\\1\end{pmatrix}$, $ec{z}_3=egin{pmatrix}1\\1\\1\end{pmatrix}\in\mathbb{C}^3$.

(d) Begründen Sie, warum $\mathcal{M}_{\mathcal{E}}[\Phi]$ diagonalisierbar ist.

Aufgabe 5 (1+2,5+2,5)

- (a) Definieren Sie, was eine injektive, eine surjektive und eine bijektive Abbildung ist.
- (b) Es seien L, M, N drei nichtleere Mengen und $f: L \to M, g: M \to N$ zwei Abbildungen. Beweisen Sie: Sind f und g injektiv, so ist auch $g \circ f$ injektiv.
- (c) Beweisen Sie mittels vollständiger Induktion, dass

$$\sum_{k=1}^{n} (2k-1) = n^2, \quad \forall n \in \mathbb{N}$$

gilt.

Aufgabe 6 (1+2+3)

- (a) Definieren Sie, was ein Skalarprodukt auf einem \mathbb{R} bzw. auf einem \mathbb{C} -Vektorraum ist und geben Sie das euklidische Skalarprodukt auf \mathbb{R}^N an, wobei $N \in \mathbb{N}$ beliebig sei.
- (b) Es sei

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

eine Matrix und $\langle\cdot|\cdot\rangle_C:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ eine Abbildung, definiert durch

$$\langle \vec{x} | \vec{y} \rangle_C = \langle \vec{x} | C \cdot \vec{y} \rangle,$$

wobei $\langle\cdot|\cdot\rangle$ das euklidische Skalarprodukt auf \mathbb{R}^3 sei. Beweisen Sie, dass $\langle\cdot|\cdot\rangle_C$ ein Skalarprodukt ist.

(c) Es sei $S:=\{\vec{a}_1,\vec{a}_2,\vec{a}_3\}\subseteq \mathbb{R}^3$ eine Basis von \mathbb{R}^3 , gegeben durch

$$\vec{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{a}_2 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}, \ \vec{a}_3 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}.$$

Nutzen Sie das Schmidtsche Orthonormierungsverfahren, um aus S eine Orthonormalbasis bezüglich $\langle\cdot|\cdot\rangle_C$ zu formen.

Bonusaufgabe (Bonuspunkte: 1 + 3 + 2)

Gegeben sei

$$D = \begin{pmatrix} 3 & -2i \\ 2i & 0 \end{pmatrix} \in \mathbb{C}^{2 \times 2}.$$

- (a) Begründen Sie ohne Rechnung, dass D diagonalisierbar ist.
- (b) Berechnen Sie alle Eigenwerte und Eigenvektoren von D.
- (c) Geben Sie die Transformationsmatrizen an, die D in eine Diagonalmatrix überführen und führen Sie die Basistransformation aus.