



# **Hands-on Session**

PRESENTED BY:

Jerome Vienne

2/15/18

\$ ssh -X username@stampede2.tacc.utexas.edu

```
$ tar -xvf ~train00/lab_knl_tools_SC17.tgz
$ cd lab_knl_tools
$ ls -l
advisor_c advisor_f APS gprof_c timer_c vtune_c vtune_f
```



#### **Timers: Command Line**

Step 1. Start Interactive Sessions with idev

To launch a thirty-minute session on a single node in the development queue, simply execute:

\$ idev -m 30

To launch a two-hour session on a single node using a specific reservation, execute:

\$ idev -m 120 -r <reservation\_name>

More info on how to use idev can be found using the following command:

\$idev -help



#### **Timers: Command Line**

\$ cd timer\_c

```
Step 2. Compile timer.c using the following commands
$ icc timer.c -o timer

&
$ icc -xMIC-AVX512 timer.c -o timer_AVX512
```

Step 3. Run experiment using the following commands and compare the results

```
$ ./timer
$ time ./timer
&
$ ./timer_AVX512
$ time ./timer_AVX512
```

### **Gprof**

#### cd gprof\_c

```
Step 1. Enable profiling during compilation (use -pg option)
```

\$ icc -g -pg -o gprof\_test gprof\_test.c

or

\$ gcc -pg -o gprof\_test gprof\_test.c

Step 2. Execute the binary so that profiling data is generated

\$ ./gprof\_test

If the profiling is enabled then on executing the program, file gmon.out will be generated.

\$ Is

gmon.out gprof\_test gprof\_test.c

### **Gprof**

Step 3. Run gprof on profiling data

\$ gprof -b gprof\_test gmon.out > analysis.out

This will give an human readable file. This file contains two tables: flat profile: overview of the timing information of the functions call graph: focuses on each function

-b option will suppress lot of verbose information which would be otherwise included in analysis file.

Check the contents of analysis.out for more details.

### **Gprof**

Step 4. Below are few more examples of gprof options

Suppress printing statically declared functions with -a option

\$ gprof -b -a gprof\_test gmon.out > analysis.out

Print only flat profile using -p option

\$ gprof -b -p gprof\_test

Print info related to specific function

\$ gprof -b -pStaticFunc gprof\_test

Suppress printing of flat profile using -P option

\$ gprof -b -P gprof\_test

Print only call graph using -q option

\$ gprof -b -q gprof\_test

Suppress printing of call graph using -Q option

\$ gprof -b -Q gprof\_test

## **Application Performance Snapshot**

\$cd APS

\$module load vtune

\$idev -n 32 -N 1

\$ibrun aps cg.C.32

It will generate a folder with different files, You will have to run a command line to generate the text and the html file.

Ex: "aps --report=/work/01538/viennej/stampede2/lab\_knl\_tools/APS/aps\_result\_20171110"

You can copy the generated html file to look at it.

Ex: scp stampede2.tacc.utexas.edu:\$PATH/lab\_knl\_tools/APS/aps\_report\_45654 .



\$cd vtune\_c

or

\$cd vtune\_f

Step 1. Set up Virtual Network Computing (VNC) or Vis portal Sessions

Please follow instructions at,

https://portal.tacc.utexas.edu/user-guides/stampede2#visualization-and-virtual-network-computing-vnc-sessions

or

https://vis.tacc.utexas.edu/



Step 2. Hotspot analysis

2.1) Compile with debug symbols

```
$ icc -g -O2 -xMIC-AVX512 vtune_hotspot.c
or
$ ifort -g -O2 -xMIC-AVX512 vtune hotspot.f90
```

2.2) Run collection on KNL deferring finalization to host (make sure <result\_dir> does NOT exist)

\$module load vtune

\$amplxe-cl -c hotspots -r <result\_dir> -search-dir ./ ./a.out

2.3) Generate reports, work with GUI

\$amplxe-cl -report hotspots -r <result\_dir>
or
\$amplxe-gui <result\_dir>

Step 3. Memory access analyis

3.1) Compile with debug symbols

\$ icc -qopenmp -g -O2 -xMIC-AVX512 ./omp\_mm\_knl.c -lmemkind or

\$ ifort -qopenmp -g -O2 -xMIC-AVX512 ./omp\_mm\_knl.f90 -lmemkind

3.2) Run collection on KNL deferring finalization to host (make sure <result\_dir> does NOT exist)

\$ export OMP\_NUM\_THREADS=64 \$ amplxe-cl -c memory-access -knob analyze-mem-objects=true -r <result\_dir> -search-dir ./ ./a.out

3.3) Using GUI to check results

\$ amplxe-gui < result\_dir>

Step 4. HPC Performance Characterization

4.1) Compile with debug symbols

\$ icc -qopenmp -g -O2 -xMIC-AVX512 ./omp\_mm\_knl.c -lmemkind or

\$ ifort -qopenmp -g -O2 -xMIC-AVX512 ./omp\_mm\_knl.f90 -lmemkind

4.2) Run collection on KNL deferring finalization to host (make sure <result\_dir> does NOT exist)

export OMP NUM THREADS=64

\$ amplxe-cl -c hpc-performance -r <result\_dir> -search-dir ./ ./a.out

4.3) Using GUI to check results

\$ amplxe-gui < result\_dir>

### **Advisor**

**Advisor Lab** 

Step 1. Set up Virtual Network Computing (VNC) or Vis portal Sessions

Please follow instructions at,

https://portal.tacc.utexas.edu/user-guides/stampede2#visualization-and-virtual-network-computing-vnc-sessions

or

https://vis.tacc.utexas.edu/

#### **Advisor**

```
Step 2. Survey
```

2.1) Compile with debug symbols

```
$ icc -g -qopenmp -O2 -xMIC-AVX512 -qopt-report=5 vector_omp.c
or
$ ifort -g -qopenmp -O2 -xMIC-AVX512 -qopt-report=5 vector_omp.f90
```

2.2) Run survey analysis

```
$ export OMP_NUM_THREADS=1
```

\$source /opt/intel/advisor\_2018.1.0.523188/advixe-vars.sh

```
$ advixe-cl -c survey --search-dir src:=./ -- ./a.out
```

2.3) Generate reports, work with GUI

```
$ advixe-cl -report hotspots --search-dir src:=./
or
$ advixe-gui "Open Result" (or "File" -> "Open" -> "Result")
```

### **Advisor**

Step 3. Trip count

- 3.1) After finish survey analysis,
- \$ advixe-cl -c tripcounts --search-dir src:=./ -- ./a.out
- 3.2) Generate reports, work with GUI
- \$ advixe-gui "Open Result" (or "File" -> "Open" -> "Result")