

Project Initialization and Planning Phase

Date	12 July 2024	
Team ID	SWTID1720157891	
Project Title	Rice type classification using CNN	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview	
Objective	Develop an automated system for rice grain classification using deep learning techniques.
Scope	Focus on developing a CNN model for accurate and efficient classification of various rice grain types.
Problem Statement	
Description	Manual rice grain classification is labor-intensive and error-prone, necessitating an automated solution.
Impact	Automating classification improves efficiency, accuracy, and consistency in agricultural processes.
Proposed Solution	
Approach	Utilize convolutional neural networks (CNNs) with transfer learning for image classification.
Key Features	Includes data augmentation, model optimization, and integration potential into existing agricultural systems.

Resource Requirements

Resource Type	Description	Specification/Allocation
---------------	-------------	--------------------------

Hardware			
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs	
Memory	RAM specifications	e.g., 8 GB	
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD	
Software			
Frameworks	Python frameworks	e.g., Flask	
Libraries	Additional libraries	e.g., tensorflow	
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git	
Data			
Data	Source, size, format	e.g., Kaggle dataset, 10,000 images	