三、初损后损法

2、平均后损率的确定

【例题】已知某流域面积F=400km², 1975年7月5日发生一次暴雨洪水过程, 见下表, 该次洪水的终止点是7.20, 试确定该次降雨的平均后损率及净雨过程。

	日期(日.时)	5.2 0	6.2	6.8	6.14	6.20	7.2	7.8	7.14	7.2 0	8.2
	Q实(m³/s)	10	9	30	100	300	180	90	30	9	10
Į.	降雨量 (mm) 18. 40 14.2										

三、初损后损法

解题步骤:

首先,分割地面及地下径流(按<u>直线划分</u>),计 算地面径流深;

其次, 地面净雨的计算。

- 1)由降雨与流量过程对比,流量起涨点之前的降雨量为初损;
 - 2) 试算后损率;
 - 3) 地面净雨过程计算。

$$\mathbf{R}_{\mathrm{s},i} = P_i - \bar{f} \Delta t$$

起源点	平均后损率计算									1水点
日期(日.时)	0.5	6.2	6.8	6.14	6.20	7.2	7.8	7.14	7.2/5	8.2
Q _实 (m³/s)	10	9	30	100	300	180	90	30	9	10
降雨量(mm)) 18	4	0 14	4.2						
			1 =	= 18 5n	ım					

$$\sum_{s,i} Q_{s,i} = (30-9) + (100-9) + (300-9) + (180-9) + (90-9) + (30-9) = 676m^3 / s$$

$$\sum_{s,i} Q_{s,i} = (30-9) + (100-9) + (300-9$$

$$R = \frac{\sum Q_{si} \Delta t}{1000F} = \frac{676 \times 6 \times 3600}{1000 \times 400} = 36.5 mm$$

假设没有后期不产流的降雨,即 $P_o=0$

$$\bar{f} = \frac{P - R_s - I_0 - P_0}{t_R} = \frac{72.7 - 36.5 - 18.5 - 0}{12} = 1.48 mm/h$$

 $f\Delta t = 1.48 \times 6 = 8.88 mm < 14.2 mm < 40 mm$

所以假设成立。

三、初损后损法

3、产流量的确定

有了初损和后损的关系图后,根据已知的降雨过程就可以推求产流量过程。

【例 题】已知湟水西宁~民和区间的初损和后损关系曲线、实测降雨过程。降雨开始时的土壤蓄水量为18.1mm, 计算时段为1h。试推求产流量过程。

湟水西宁~民和区间实测降雨过程表

时段Δt	1	2	3	4	5	6	7	8	9
P (mm)	2. 5	3.8	4.6	11. 2	7.8	4.6	4	3. 1	0

三、初损后损法

初损量的计算

后损量及其产流量计算

时段Δt	1	2	3	4	5	6	7	8	9	合计
P (mm)	2.5	3.8	4.6	11.2	7.8	4.6	4	3.1	0	41.6
I_0 (mm)	2.5	3.8	4.6			•				10.9
$\bar{f}\Delta t$ (mm)				1.3	1.3	°1.3	1.3	1.3	0	6.5
R (mm)				9.9	6.5	3.3	2.7	1.8	0	24.2

$$t_R = 4h$$
, $\bar{i}_0 = 3.63$ 与1.75比较 $\rightarrow \bar{f} = 1.75$ mm / h

因为 $i = 3.1 mm/h > \bar{f} = 1.75 mm/h$

所以第8时段可以产流。

$$t_R = 5h, \bar{i}_0 = 3.63 \rightarrow \bar{f} = 1.3 \text{mm}/h$$

 $R = P - I_0 - \bar{f}\Delta t - P_0$

