# IvanovMG 29112024-140741

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида  $|nf_r + mf_{\Pi \Psi}|$  Какой комбинацией  $\{n; m\}$  можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)



Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{4;13\} \quad 2) \ \{2;3\} \quad 3) \ \{5;-32\} \quad 4) \ \{2;-7\} \quad 5) \ \{6;-12\} \quad 6) \ \{3;13\} \quad 7) \ \{3;-7\} \quad 8) \ \{2;18\}$$

 $9) \{6; 3\}$ 

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой  $3666~\mathrm{MF}$ ц с внутренним сопротивлением  $50~\mathrm{Om}$  и доступной мощностью плюс  $11~\mathrm{дБм}$ .

Колебание ПЧ формируется с помощью генератора меандра частотой 847 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 11900 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 4514 МГц до 4564 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -83 дБм 2) -86 дБм 3) -89 дБм 4) -92 дБм 5) -95 дБм 6) -98 дБм 7) -101 дБм 8) -104 дБм 9) -107 дБм

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что:  $s_{21} = s_{31}$ .

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 28 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 43 МГц?

#### Варианты ОТВЕТА:

1)  $44.5 \text{ n}\Phi$  2)  $123.2 \text{ n}\Phi$  3)  $65.4 \text{ n}\Phi$  4)  $83.8 \text{ n}\Phi$ 

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.41531 + 0.29779i, s_{31} = 0.29898 - 0.41698i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

#### Варианты ОТВЕТА:

1) -46 дБн 2) -48 дБн 3) -50 дБн 4) -52 дБн 5) -54 дБн 6) -56 дБн 7) -58 дБн 8) -60 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 1.9 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 18 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 11.4 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)



Рисунок 2 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 6.1 дБ 2) 6.7 дБ 3) 7.3 дБ 4) 7.9 дБ 5) 8.5 дБ 6) 9.1 дБ 7) 9.7 дБ 8) 10.3 дБ 9) 10.9 дБ

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление  $r_i$  - при положительном смещении. Известно, что  $r_1=r_4$  и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.



Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 431 МГц, частота ПЧ 28 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

#### Варианты ОТВЕТА:

- 431 MΓ
- 2) 1321 MΓ<sub>II</sub>
- 3) 375 МГц
- 4) 403 MΓ<sub>II</sub>.