Számítógépes Grafika

Hajder Levente és Baráth Dániel

hajder@inf.elte.hu

Eötvös Loránd Tudományegyetem Informatikai Kar

2019/2020. I. félév

- Bevezetés
- Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

Geometriai modellezés

- Görbéket, felületeket számatalan módszerrel le tudunk írni
 - Explicit egyenlet
 - Implicit egyenlet
 - Parametrikus megadás
- A leírható görbék felületek köre korlátos, leírás sokszor nehézkes.
- Cél: általános görbét felületet matematikailag leírni.

Törtvonal

- 1 Bevezetés
- 2 Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

Törtvonal

Törtvonal (polyline)

- Az elv egyszerű:
 - Adottak a görbe pontjai
 - Egyenes szakaszokkal összekötjük
- Meglehetősen "szögletes" érzést kelt

Törtvonal (polyline)

- A görbe matematikai összefüggésekkel is megadható.
- t paraméter [0, 1] intervallumba esik.
- Pontok számát N-nel jelöljük.

$$\mathbf{poly(t)} = \sum_{i=1}^{N-1} a_i \mathbf{p_i} + b_i \mathbf{p_{i+1}}$$

$$a_i = \frac{t - t_i}{t_{i+1} - t_i} \quad ha \quad t_i < t < t_{i+1}$$

$$b_i = \frac{t_{i+1} - t}{t_{i+1} - t_i} \quad ha \quad t_i < t < t_{i+1}$$

• ahol például $t_i = i/N$

Felületi folytonosságok

- 1 Bevezetés
- 2 Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

Felületi folytonosságok

- Törtvonal szögletes, esztétikai érzékünket bántja a sok törés.
- A görbékre különböző folytonossági kategóriákat definiálhatunk:
 - C⁰: folytonos a görbe, a pontjai kapcsolódnak egymáshoz
 - C¹: folytonos az első deriváltja a görbének: nincsen ugrás a deriváltakban
 - C²: folytonos a második deriváltja a görbének: nincsen ugrás a deriváltakban
 - Emberi szem számára kellemes látványt nyújt.
 - Meghajlított ág C²-folytonos.

- Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

- Pierre Bézier (Renault-mérnök) találta ki.
- Folytonos felületet ad
- Bezier görbe alapja a Bernstein polinom.

$$(t+(1-t))^m = \sum_{i=0}^m {m \choose i} t^i (1-t)^{m-i}$$

Ennek pedig a binomiális tétel:

$$(a+b)^m = \sum_{i=0}^m \binom{m}{i} a^i b^{m-i}$$

- A Bernstein polinomok adják az egyes kontrollpontokhoz tartozó súlyokat
- Mintha baricentrikus koordináták lennének
- Teljes görbe (parametrikus)

$$\mathbf{p}(t) = \sum_{i=0}^{m} B_{i,m}^{Bezier} \mathbf{p_i}$$

ahol

$$B_{i,m}^{\text{Bezier}} = {m \choose i} t^i (1-t)^{(m-i)}$$

Bezier-görbe tulajdonságai

- "Végtelenül" folytonos
 - Hiszen polinomokból áll, → bárhányszor differenciálható
- Mindegyik kontrollpont súlya pozitív $t \in (0, 1)$ tartományban
 - Végpontot leszámítva mindegyik kontrollpont "beleszól" a görbe alakulásába

Bezier-görbe tulajdonságai

Végponton átmegy a görbe

Bezier-görbe tulajdonságai

Bázisfüggvény fontos tulajdonsága

$$B_{i+1,m}^{Bezier} = tB_{i,m-1}^{Bezier} + (1-t)B_{i+1,m-1}^{Bezier}$$

- Tehát az m-edfokú polinom a két szomszédos (m – 1)-edfokú polinomból kiszámítható.
- Mindez a de Casteljau algoritmus alapja.
 - Adott t paraméternél a Bezier-görbe pontja megszerkeszthető
 - Fokszámnak megfelelő iterációt használunk
 - Első lépés: kontollpontokból törtvonalat készítve, t / (1 t) aránynak megfelelően a törtvonal éleit osztjuk.
 - Iteráció: Előző szakaszpontokból újra törtvonalat készítve, az új törtvonalakat újra arányosan felosztjuk.
 - Utolsó lépés: ha a törtvonal már csak egy szakaszból áll, megkapjuk a Bezier-görbe adott pontját.

B-spline

- Bevezetés
- 2 Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

B-spline

- A spline C² folytonos felület
- Előállítása: törtvonalból kiindulva, súlyozással
- Bezier-görbéhez hasonlóan a kontrollpontok súlyozásával állítjuk elő
- Súlyok előállítás rekurzióval:

• t_1, \ldots, t_m a kontrollpontokhoz tartozó paraméterek.

B-spline

B-spline

A rekurzió alatt a súlyok "lekerekednek"

Spline variánsok

- 1 Bevezetés
- 2 Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

Spline variánsok

- Ha a t_i paraméterek egymástól azonos távolságra vannak: uniform B-Spline
- Ha a t_i paraméterek változó távolságban vannak: non-uniform B-Spline (NUBS)
- Ha két súlyhoz tartozó paraméter megegyezik , azaz $t_i = t_{i+1}$ non-uniform rational B-Spline (NURBS)
 - Két kontrollpont egymásra helyezésével a ponthoz közelebb lehet húzni a spline-t.

Spline variánsok

- A spline pontjai nem mennek át a kontrollpontokon.
- Megoldás: válasszuk úgy ki a vezérlő pontokat, hogy a megadott pontokon átmenjen a spline.
- Lineáris egyenlet, ismeretlenek a pi vezérlő pontok.

$$\mathbf{q_j} = \sum_i a_i(t) \mathbf{p_i}$$

- 2D-ben két egyenlet pontonként.
 - Végpontra irányt (első derivált *t* szerint) is megköthetünk.
 - Irány meghatározása egyszerű: $\mathbf{v}(t) = \sum_i a_i'(t) \mathbf{p_i}$
 - Több független spline is összeköthető, ha a végpontoknál az irány megegyezik.

- 1 Bevezetés
- 2 Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

Felosztott (subdivision) görbék

- Cél: Törtvonalas közelítésből szép "sima" görbe előállítása
- Ötlet: iteratív algoritmus
 - Törtvonalból kiindulva, új pontokat adjunk hozzá
 - Pontok helyét finomítsuk

Felosztott (subdivision) görbe: algoritmus

- Bementet: N pontot tartalmazó törtvonal pi koordinátákkal
- Subdivision algoritmus két lépésből áll
 - Felezőpontok hozzáadása. Új pont: $\mathbf{q_i} = (\mathbf{p_i} + \mathbf{p_{i+1}})/2$
 - 2 Pontok finomítása: $\mathbf{p_i} = \mathbf{p_i}/2 + (\mathbf{q_{i-1}} + \mathbf{q_i})/4$

Felosztott (subdivision) felületek

- 1 Bevezetés
- 2 Görbék
 - Törtvonal
 - Felületi folytonosságok
 - Bezier-görbe
 - B-spline
 - Spline variánsok
 - Felosztott (subdivision) görbék
 - Felosztott (subdivision) felületek

Felosztott (subdivision) felületek

Felosztott (subdivision) felületek

- Elve megegyezik a felosztott görbék előállításával.
- Iteratív az algoritmus
 - Térbeli pontokat sokszorozza
 - Pontokat helyét finomítja

- Pontokat négyzetrácsként képzeljük el (dupla index)
- Algoritmus lépései:
 - Térbeli pontokat sokszorozza
 - Új pontok kiszámítása
 - Határpontok
 - Belső pontok #1
 - Belső pontok #2
 - Régi pontok pontosítása

- $N \times N$ rácsból $(2N-1) \times (2N-1)$ rácsot készítünk.
- Oszlopokat/sorokat kell beszúrni.

- Beszúrt pontoknak még nincsen értéke.
- Új szélső (határ) pontok: szomszéd határpontok átlaga

- Belső beszúrt pontoknak még nincsen értéke
- Interpoláljuk a négy (előző iteráció óta meglévő) szomszédos pont átlagával, ahol az átlóban vannak az ismert pontok

Felosztott (subdivision) felületek

- Pontoknak még mindig nincsen értéke
- Interpoláljuk a négy szomszédos pont átlagával
 - Kettő szomszédot előző iterációban számoltuk.
 - Másik két szomszédot a jelenlegi iterációban.

- Régi pont: nem ebben az iterációban szúrtuk be.
- Új érték itt is két szám átlaga
 - Első szám: A pontban meglevő (régi) érték
 - Második szám: nyolc szomszédjának átlaga

