2018~2019 学年第二学期

《微积分学(一)下》课程期末考试试卷(A卷)(闭卷)

考试日期: 2019-06-16

考试时间: 8:30 - 11:00

题号	1		111	四	五	总分
满分	28	8	12	28	24	100
得 分						

得 分	
评卷人	

一、填空题(每空4分,共28分)

- 2、设z = z(x, y) 是由 f(x + z, yz) = 0 所确定的函数,其中 f 具有连续且不为零的一阶偏导数,

- 3、函数 $f(x,y) = x^2 y^2$ 在点 (1,-1) 处沿方向 $\vec{l} = \{1,1\}$ 的方向导数 $\left. \frac{\partial f}{\partial l} \right|_{(1,-1)} = \underline{\hspace{1cm}}$
- 4、设f(x) 是周期为 2π 的函数,且 $f(x) = \begin{cases} -1, -\pi \le x < 0, \\ e^x, 0 \le x < \pi \end{cases}$,S(x) 是f(x) 的 Fourier 展开式的和函数,

- 6、通过原点且与两平面 x-y+z-1=0 和 x+y-z+2=0 的交线平行的直线方程是______
- 7、设 $du = (y + 2xz)dx + (x + z^2)dy + (x^2 + 2yz)dz$,则 u(x, y, z) =_______.

得 分	
评卷人	

二、判断题(每小题 2 分, 共 8 分). 请在正确说法相应的括号中画" √", 在错误说法的括号中画"×".

8. 若无穷级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛,则 $\sum_{n=1}^{\infty} a_n^2$ 也必收敛. ()

9. 设
$$|u_n(x)| \le v_n(x)$$
 $(n \in N_+, x \in [a,b])$,且 $\sum_{n=1}^{\infty} v_n(x)$ 一致收敛,则 $\sum_{n=1}^{\infty} u_n(x)$ 也一致收敛.

10. 二元函数
$$f(x,y)$$
 在点 (x_0,y_0) 处不连续,则偏导数 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$ 在 (x_0,y_0) 处必定不存在.

11. 设
$$S: x^2 + y^2 + z^2 = 1$$
($z \ge 0$), S_1 是 S 在第一卦限部分,则 $\iint_S xy^2 z^3 dS = 4 \iint_{S_1} xy^2 z^3 dS$. ()

得 分	
评卷人	

三、解答题(每小题6分,共12分)

12. 判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \tan(\sqrt{n^2+1}\pi)$ 的敛散性,是绝对收敛还是条件收敛?

13. 讨论含参变量积分 $I(x) = \int_0^{+\infty} \frac{\arctan(xy)}{x^2 + y^2} dy$ 关于 x 在 $[\delta, +\infty)(\delta > 0)$ 上的一致收敛性.

得 分	
评卷人	

四、计算题(每小题7分,共28分)

14. 计算二重积分 $I = \iint_D (x^2 + y^2) dxdy$, 其中 $D:|x| + |y| \le 1$.

15. 计算曲面积分 $I = \iint_S x^2 y dz dx + (1+y^2z) dx dy$, 其中 S 为下半球面 $z = -\sqrt{1-x^2-y^2}$ 的上侧.

16. 设 f(x) 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 内有连续的导函数,曲线积分 $\int_L f^2(x) \sin y dx + (f(x) - x) \cos y dy$ 与路径无关,且 f(0) = 0,求 f(x) 及 $I = \int_{(0,0)}^{(1,1)} f^2(x) \sin y dx + (f(x) - x) \cos y dy$.

17. 求幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n+1)} x^{2n}$$
 的收敛域与和函数.

得 分	
评卷人	

五、证明题 (每小题 6 分, 共 24 分)

18. 证明函数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{e^x + n}$ 在 $x \in (-\infty, +\infty)$ 上一致收敛.

19. 证明:在 yOz 面上,由 z=a , z=b , y=f(z) (f 为连续的正值函数)以及 z 轴所围成的平面图形绕 z 轴旋转一周所成的立体对 z 轴的转动惯量(密度为 μ =1)为 $I_z=\frac{\pi}{2}\int_a^b f^4(z)\mathrm{d}z$.

20. 设 f(x, y) 在 $\mathbf{R}^2 - \{(0,0)\}$ 可微,在 (0,0) 处连续,且 $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\partial f}{\partial x} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{\partial f}{\partial y} = 0$. 证明: f(x, y) 在 (0,0) 处也可微.

21. 设连续函数列 $\{f_n(x,y)\}$ 在有界闭区域D上一致收敛于f(x,y),证明:

$$\iint_D f(x, y) dxdy = \lim_{n \to \infty} \iint_D f_n(x, y) dxdy.$$