

		- 0
2-6) S(t-to) and S(t+to)	
nt rima		6.1) TMod
	Using Fourier we get	2) TI VIE
	8 (+-to) * 8 (++to) = [8(T-to)8(++to-T)	2) , Alt
	100 4 0 (c/co) 2 Jo(t-to) 0 (++ to-1)	3) Tim
DIR 0	is the section of the section of the	3
394	The fourier transform 8(t) of impulse is 1 if t=0.	3 7.1) Tus
10 319	-: , t+to-7=0 gung us 7=t+to	(· 1) /\vs
		= 2) R=
	Subshing the value of I in the 1st equation:	
		S= 7
	> J 8(t+to-to)8(t+to-t-to)dZ	Ta'
	= \(\int \delta(t) \delta(0) d\(\tau \)	
1/1-	- 0	Re
	= 8(+) \ \ 8(0) \ d \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
7	= 8 (t)	3) R=
	Th(T-+1)2(1)811 =	Res
	u-	
f + O + d	1 000 man that 100 11 on for 10 8(6) 11 1	1
	the fire to be to be to the	
315000	Sibility to the off a test of the	4) R
		S
	(1) / (d-1 d-1) & (d-4) & (-1-4) / (-1-4)	0
	II.	0 9
	16 (16 f.) [3(0) d?	9.0
		A A
	(a) +) B (4-6)	

Thodal, price (Grame = 4ston Martin, (Gr. M. Manufacturer) Trun (Grame = 5ame kond) (Car M. Customer)) Trundel (Grice < 100000 Any year > 2016 AND Nova = 'Ford' (Gr. M. Manufacturer))	R = Auchion M Sole) S= Thepter Jeanname (Judien . A	1 3 6	Action M I tem ((RM (Phex) - (T) I tem (D) sell Them item Name
6.1) Thoday, 2) Tyling 3) Tho	7.1) The		

Axiv Ti		
5) Butterworth filter can be defined as:	a)	BON
$H(u,v) = \frac{1}{1 + \left[\frac{D_0}{D(u,v)}\right]^{2n}}$) V(U)	111
Using this we can construct the homophoric filter as:	ь)	MN
$H(u,v) = (y_H - y_L) \left[\frac{1}{1 + [D(u,v)]^{2\eta}} \right] + y_L$		<u> </u>
BOALS	c)	Q-1 X
) 1
		AB
e	9	

	BONUS 1 a) $\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} 8(x-y)e^{-j2\pi} \left(\frac{xu}{M} + \frac{yv}{N}\right)$ $e^{0} = 1$
horic filter a:	b) $\int \frac{M-1}{N} \frac{N-1}{N} \frac{N-1}{N} \frac{N}{N} \frac$
1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	d) $\frac{1}{A} = \frac{1}{B} = \frac{1}{AB} = \frac{1}{AB}$
	$= e^{i2\pi} \left(\frac{\pi u_0}{A} + \frac{yv_0}{B} \right)$ $\Rightarrow e^{i2\pi} \left(\frac{\pi u_0}{M} + \frac{yv_0}{N} \right)$

