Analysis 2 Lecture Notes - Upendra Kulkarni

Soham Chatterjee

Chapter 1

Maximum and Minimum of Multivariable Functions

For a C^3 function (in a neighborhood of a in \mathbb{R}), by Taylor's Theorem

$$f(a+h) = f(a) + f'(a)h + \frac{1}{2}f''(a)h^2 + \underbrace{\frac{1}{6}f'''\left(\begin{array}{c} \text{some point} \\ \text{between} \\ a \text{ and } a+h \end{array} \right)h^3}_{\substack{\text{Remainder term } r(h) \\ \frac{r(h)}{h^2} \to 0 \text{ as } h \to 0}}$$

Suppose f'(a) = 0 "a is a critical point of f". Then

$$\frac{f(a+h) - f(a)}{h^2} = \frac{1}{2}f''(a) + \frac{r(h)}{h^2}$$

If f''(a) > 0 then f has a local minimum at a because choose $\delta > 0$ such that $|h| < \delta$, $\left| \frac{r(h)}{h^2} \right| < \frac{1}{2}f''(a)$. Then $RHS > 0 \ \forall \ h$ such that $|h| < \delta$ and so for $h \in (-\delta, \delta)$, f(a+h) > f(a) i.e. f(a) is minimum value of f in the neighborhood $(a - \delta, a + \delta)$. Similarly f''(a) < 0 then f has a local maximum at a.

We want to find an analogy of this for multivariable case

 $f: (\text{open } U \text{ in } \mathbb{R}^n) \to \mathbb{R} \text{ a } C^3 \text{ function. Then for } h \in \text{some open neighborhood } W \text{ of origin, } a+h \in U$

$$f(a+h) = f(a) + f'(a)h + \frac{1}{2}f''(a)(h,h) + \underbrace{\frac{1}{6}f'''\left(\begin{array}{c} \text{some point} \\ \text{between} \\ a \text{ and } a+h \end{array} \right)(h,h,h)}_{\text{Remainder term } r(h)}$$

$$= f(a) + \begin{bmatrix} D_1 & \cdots & D_n \end{bmatrix} \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} + \underbrace{\frac{1}{2}\sum_{i,j}D_iD_jf(a)h_ih_j + r(h)}_{\text{hu}}$$

$$= f(a) + \begin{bmatrix} D_1 & \cdots & D_n \end{bmatrix} \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} + \underbrace{\frac{1}{2}\left[h_1 & \cdots & h_n\right]\left[D_iD_jf(a)\right]}_{\text{Hessian Matrix of } f \text{ at } a}$$

$$= f(a) + \nabla f(a) \cdot h + \underbrace{\frac{1}{2}h^t}_{\text{Hessian Matrix of } f \text{ at } a} \begin{bmatrix} D_iD_jf(a) \end{bmatrix} + r(h)$$

$$= f(a) + \nabla f(a) \cdot h + \underbrace{\frac{1}{2}h^t}_{\text{Hessian Matrix of } f \text{ at } a} \begin{bmatrix} D_iD_jf(a) \end{bmatrix} + r(h)$$

Definition 1.1: Hessian Matrix of f

Let $f: (\text{open } U \text{ in } \mathbb{R}^n) \to \mathbb{R}$ such that $\begin{cases} f \text{ is } C^1 \iff \frac{\partial f}{\partial x_i} \text{ are not continuous on } U \\ f'' \text{ exists at } a \end{cases}$ So components of f'' are $D_i D_j f(a)$. Hessian of f at $a = \text{Square matrix } [D_i D_j f(a)]$

When f is \mathbb{C}^2 , Hessian matrix is Symmetric Matrix

Definition 1.2: Critical Point

Let f be a C^1 function, Open U in $\mathbb{R}^n \xrightarrow{f} \mathbb{R}$. $a \in U$ is called critical point if $f'(a) = 0 \iff \nabla f(a) = 0$

If f has local maximum at a, then along any line through a the same must be hold, so all directional derivative =0 at a.

Definition 1.3: Non-degenerate Point

If f is C^2 then a critical point a is called non-degenerate if the Hessian, Hf(a) is non-singular i.e. $\det(Hf(a)) \neq 0$

Claim 1.0.1

Symmetric Matrix A is positive (semi)definite $\iff \forall$ nonzero vector $x \in \mathbb{R}^n$, $x^t A x > 0$ (resp. ≥ 0)

Proof. If Part:

 $x = \sum_{i} c_i v_i$. Where v_i is the eigen-basis. Then

$$x^{t}Ax = \left(\sum_{i} c_{i}v_{i}\right)^{t}A\left(\sum_{j} c_{j}v_{j}\right) = \left(\sum_{i} c_{i}v_{i}\right)^{t}\left(\sum_{j} \lambda_{j}c_{j}v_{j}\right) = \sum_{i} \lambda_{i}c_{i}^{2} > 0 \qquad [v_{i}^{t}v_{j} = \delta_{ij}]$$

Only If Part:

Use $x^t Ax > 0$ for $x = v_i$ eigenvector $< 0v_i^t Av_i = v_i \lambda_i v_i = \lambda_i$

Note:-

Determinant of positive definite matrix > 0 and Determinant of negative definite matrix has sign $(-1)^n$

Theorem 1.1

Let $f:(\text{open }U\text{ in }\mathbb{R}^n)\to\mathbb{R}$. Suppose f has a local maximum or minimum at a then

- (1) If f'(a) exists then f'(a) = 0 i.e. a is a critical point.
- ② Suppose in addition to that f''(a) exists then if f has local maximum at a, then $f''(a) \le 0$ and if f has local minimum at a, then $f''(a) \ge 0$

Proof. (1) For n=1 let we have local minimum at a. Then for small |h|

$$\frac{\frac{f(a+h)-f(a)}{h} \geq 0 \quad \text{ for } h > 0}{\frac{f(a+h)-f(a)}{h} \leq 0 \quad \text{ for } h < 0}$$
Thus imply respectively that $1f'(a)$ must be ≥ 0 and ≤ 0

For n > 1 use n = 1 in every direction i.e. for function $f|_{a+tv}$ for $t \in \text{open interval to conclude } D_v f(a) = 0$ \forall directions. So f'(a) = 0

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h} = \lim_{h \to 0} \frac{f'(a+h)}{h}$$

Observation: If f has local maximum at a then for $0 < |h| < \delta$, $f(a+h) \ge f(a)$. So by MVT there is k between 0 and h such that

$$\frac{f(a+h) - f(a)}{h} = f'(a+k)$$

Using the observation $f''(a) = \lim_{h \to 0} \frac{f'(a+k)}{h} \ge 0$

For n>1 applying this to each $f|_{a+tv}$ \forall direction vectors v we get all $D_v^2f(a)\geq 0$. In terms of Hessian let $v=\sum c_ie_i \implies D_vf=\sum c_iD_if \implies D^2f(a)=\sum_{i,j}c_jc_iD_jD_if(a)$ in a neighborhood of a.

$$D_v^2 f(a) = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix} H f(a) \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Theorem 1.2

If $f: (\text{open } U \text{ in } \mathbb{R}^n) \to \mathbb{R}$ is a C^3 function and a is a non-generate critical point of f then

f has a local minimum at $a \iff H$ is positive definite

 \iff All eigenvalues of H are positive

f has a local maximum at $a \iff H$ is negative definite

 \iff All eigenvalues of H are negative

f has saddle-point otherwise H is indefinite

Proof. If Part:

We already proved the if direction in Theorem 1.1

Only If Part: