Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001403

International filing date: 01 February 2005 (01.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-055351

Filing date: 27 February 2004 (27.02.2004)

Date of receipt at the International Bureau: 31 March 2005 (31.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

03.2.2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 2月27日

出 願 番 号 Application Number: 特願2004-055351

[ST. 10/C]:

[JP2004-055351]

出 願 人
Applicant(s):

東京濾器株式会社

日産ディーゼル工業株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月18日

特許願 【書類名】 TR031072 【整理番号】 平成16年 2月27日 【提出日】 特許庁長官殿 【あて先】 【発明者】 神奈川県横浜市都筑区仲町台3丁目12番3号 東京濾器株式会 【住所又は居所】 社内 森 高行 【氏名】 【発明者】 神奈川県横浜市都筑区仲町台3丁目12番3号 東京濾器株式会 【住所又は居所】 社内 岩見 暢也 【氏名】 【発明者】 【住所又は居所】 社内 隆幸 熊谷 【氏名】 【発明者】 埼玉県上尾市大字1丁目1番地 【住所又は居所】 金谷 勇 【氏名】 【発明者】 埼玉県上尾市大字1丁目1番地 【住所又は居所】 上野 弘樹 【氏名】 【発明者】 埼玉県上尾市大字1丁目1番地 【住所又は居所】 平田 公信 【氏名】 【特許出願人】 000220804 【識別番号】 東京濾器株式会社 【氏名又は名称】 【特許出願人】 000003908 【識別番号】 日産ディーゼル工業株式会社 【氏名又は名称】 【代理人】 110000176 【識別番号】 一色国際特許業務法人 【氏名又は名称】 一色 健輔 【代表者】 【手数料の表示】 【予納台帳番号】 211868 21,000円 【納付金額】

【提出物件の目録】

【物件名】

【物件名】

【物件名】

【物件名】

神奈川県横浜市都筑区仲町台3丁目12番3号 東京濾器株式会 日産ディーゼル工業株式会社内 日産ディーゼル工業株式会社内 日産ディーゼル工業株式会社内 特許請求の範囲 1 明細書 1 図面 1 要約書 1

【請求項1】

窒素酸化物とアンモニアとを反応させて脱硝する第一の反応部と、前記第一の反応部か ら漏出したアンモニアを酸化分解する第二の反応部とを備える触媒システムであって、

前記第一の反応部は、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸 化タングステンから選ばれる2以上の酸化物からなる複合酸化物と、希土類金属又は遷移 金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、を有効成分として含有する第一の触 媒を備え、

前記第二の反応部は、少なくとも、貴金属と、シリカーアルミナ型複合酸化物と、を有 効成分として含有する第二の触媒を備えていることを特徴とする窒素酸化物浄化用触媒シ ステム。

【請求項2】

請求項1に記載の窒素酸化物浄化用触媒システムにおいて、

前記第一の触媒は、さらに硫黄又は隣を含むことを特徴とする窒素酸化物浄化用触媒シ ステム。

【請求項3】

請求項2に記載の窒素酸化物浄化用触媒システムにおいて、

前記第一の触媒は、少なくとも、チタニアージルコニア型複合酸化物と、希土類金属又 は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、硫黄又は隣と、を有効成分と して含有することを特徴とする窒素酸化物浄化用触媒システム。

【請求項4】

請求項2に記載の窒素酸化物浄化用触媒システムにおいて、

前記第一の触媒は、少なくとも、酸化タングステンージルコニア型複合酸化物と、希土 類金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、硫黄又は隣と、を有 効成分として含有することを特徴とする窒素酸化物浄化用触媒システム。

【請求項5】

請求項1に記載の窒素酸化物浄化用触媒システムにおいて、

前記第一の触媒は、少なくとも、シリカーアルミナ型複合酸化物と、希土類金属と、を 有効成分として含有することを特徴とする窒素酸化物浄化用触媒システム。

【請求項6】

請求項1に記載の窒素酸化物浄化用触媒システムにおいて、

前記第一の触媒は、シリカーアルミナ型複合酸化物と、遷移金属(ただし、Cu, Co, Ni , Mn, Cr, Vを除く) のみからなることを特徴とする窒素酸化物浄化用触媒システム。

【請求項7】

請求項 $1\sim6$ のいずれかに記載の窒素酸化物浄化用触媒システムにおいて、

前記第一の触媒に、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸化 タングステンから選ばれる酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn , Cr, Vを除く)と、を有効成分として含有する複合体が担持されていることを特徴とす る窒素酸化物浄化用触媒システム。

【請求項8】

請求項1~7のいずれかに記載の窒素酸化物浄化用触媒システムにおいて、

前記第二の触媒に、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸化 タングステンから選ばれる酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn , Cr, Vを除く)と、を有効成分として含有する複合体が担持されていることを特徴とす る窒素酸化物浄化用触媒システム。

【請求項9】

請求項1~8のいずれかに記載の窒素酸化物浄化用触媒システムにおいて、 前記触媒が、担体基材に担持されていることを特徴とする窒素酸化物浄化用触媒システ

【請求項10】

請求項1~9のいずれかに記載の窒素酸化物浄化用触媒システムにおいて、 前記第一の反応部の上流側に、窒素化合物と酸素とを反応させて酸化する第三の反応部 を備えることを特徴とする窒素酸化物浄化用触媒システム。

【請求項11】

窒素酸化物をアンモニアの存在下で第一の触媒と接触させて還元脱硝し、未反応の前記 アンモニアを第二の触媒と接触させて酸化分解する方法であって、

前記第一の触媒は、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸化 タングステンから選ばれる2以上の酸化物からなる複合酸化物と、希土類金属又は遷移金 属 (ただし、Cu, Co, Ni, Mn, Cr, Vを除く) と、を有効成分として含有し、

前記第二の触媒は、少なくとも、貴金属と、シリカーアルミナ型複合酸化物と、を有効 成分として含有することを特徴とする窒素酸化物浄化方法。

【書類名】明細書

【発明の名称】窒素酸化物浄化用触媒システム及び窒素酸化物浄化方法

【技術分野】

[0001]

本発明は、窒素酸化物浄化用触媒システム及び窒素酸化物浄化方法に関する。

【背景技術】

[0002]

従来、窒素酸化物を浄化(除去)させるために、窒素酸化物をアンモニアの存在下で酸化チタン及び酸化バナジウムを主成分とする触媒と接触させて還元脱硝する技術(下式(1)及び(2)などを参照)が用いられている(例えば、特許文献1参照)。しかしながら、アンモニアの使用量が多い場合や、還元脱硝させる反応条件(例えば、空間速度や温度など)が適していない場合などには、未反応のアンモニアが漏出(スリップ)し、環境汚染などの問題を引き起こす可能性があると指摘されている。そのため、アンモニアのスリップを防止するために、プラチナを担持したアルミナ触媒にアンモニアを接触させて酸化分解する方法が知られている。

式 (1) · · · NO+NH₃ + 1/4O₂ = N₂ + 3/2H₂O

式 (2) · · · NO₂ + 2 NH₃ + 1/2 O₂ = 3/2 N₂ + 3 H₂ O

【特許文献1】特開平7-275656号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

ところで、窒素酸化物を還元脱硝させる触媒に含まれているバナジウムはその有害性が 指摘されており、触媒成分の排出による環境問題が懸念されている。そのため、有害成分 を含む触媒の使用には問題があるとされている。

[0004]

また、アンモニアを窒素と水に酸化分解させる(式(3)参照)触媒においては、アンモニアの酸化の際に窒素酸化物(特に、 N_2 O)が高濃度で生成され(式(4) \sim (6)を参照)、地球温暖化や環境汚染などの問題を引き起こす可能性があると指摘されている

式(3) · · · 2 NH₃ + 3 / 2 O₂ \rightarrow N₂ + 3 H₂ O

式 (4) · · · 2 N H 3 + 5 / 2 O 2 \rightarrow 2 N O + 3 H 2 O

式 (5) · · · 2 N H 3 + 7 / 2 O 2 \rightarrow 2 N O 2 + 3 H 2 O

式 $(6) \cdot \cdot \cdot 2 \text{ NH}_3 + 2 \text{ O}_2 \rightarrow \text{N}_2 \text{ O} + 3 \text{ H}_2 \text{ O}$

[0005]

本発明は、上記課題を解決するためになされたものであり、有害性の指摘されている金属が含有されておらず、窒素酸化物の浄化を効率よく行うことができる触媒と、窒素酸化物の生成を低減させ、スリップアンモニアを窒素と水に効率よく酸化分解することができる触媒とを用いた、窒素酸化物浄化用触媒システム及び窒素酸化物の浄化方法を提供することを目的とする。

【課題を解決するための手段】

[0006]

本発明者らは、酸化タングステンージルコニア型複合酸化物にセリウムを添加することにより得られた触媒(以下、「Ce-W-Zr酸化物系触媒」と称する。)、シリカーアルミナ型複合酸化物に鉄を添加することにより得られた触媒(以下、「Fe-Si-Al酸化物系触媒」と称する。)、並びに、チタニアージルコニア型複合酸化物にセリウム及び硫黄を添加することにより得られた触媒(以下、「 $Ce-Ti-SO_4-Zr$ 系触媒」と称する。)を用いて尿素による窒素酸化物の還元脱硝を行ったところ、窒素酸化物を効率よく浄化できることを見出した。

[0007]

また、本発明者らは、Ce-Ti-SO₄-Zr系触媒とFe-Si-Al酸化物系触媒との混合触媒を用い 出証特2005-3024255

[0008]

さらに、本発明者らは、シリカーアルミナ型複合酸化物にプラチナを添加することによ り得られた触媒(以下、「Pt-Al-Si酸化物系触媒と称する。」を用いてアンモニアの熱酸 化分解を行ったところ、窒素酸化物の生成を低減させ、効率よくアンモニアを窒素と水に 酸化分解することができることを見出した。

[0009]

また、本発明者らは、Pt-Al-Si酸化物系触媒にCe-Ti-SO4-Zr系触媒とFe-Si-Al酸化物系 触媒との混合触媒を担持させることにより得られた触媒を用いてアンモニアの酸化分解を 行ったところ、Pt-Al-Si酸化物系触媒を用いた場合に比べて、窒素酸化物の生成をより低 減させ、より効率よくアンモニアを窒素と水に酸化分解することができることを見出した 。このようにして、本発明者らは本発明を完成するに至った。

[0010]

すなわち、本発明に係る窒素酸化物浄化用触媒システムは、窒素酸化物とアンモニアと を反応させて脱硝する第一の反応部と、前記第一の反応部から漏出したアンモニアを酸化 分解する第二の反応部とを備える触媒システムであって、前記第一の反応部は、シリカ、 アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる2以上の酸化物か らなる複合酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、を少なくとも有効成分として含有する第一の触媒を備え、前記第二の反応部は、貴 金属と、シリカーアルミナ型複合酸化物と、を少なくとも有効成分として含有する第二の 触媒を備えている。なお、前記第一の触媒は、さらに硫黄又は隣を含むこととしてもよい

$[0\ 0\ 1\ 1]$

前記第一の触媒は、チタニアージルコニア型複合酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、硫黄又は隣と、を少なくとも有効成分とし て含有することとしてもよいし、酸化タングステンージルコニア型複合酸化物と、希土類 金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、硫黄又は隣と、を少な くとも有効成分として含有することとしてもよい。また、前記第一の触媒は、シリカーア ルミナ型複合酸化物と、希土類金属と、を少なくとも有効成分として含有することとして もよいし、シリカーアルミナ型複合酸化物と、遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)のみからなることとしてもよい。

[0012]

なお、前記第一の触媒に、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タング ステンから選ばれる酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、を少なくとも有効成分として含有する複合体が担持されていることとして もよい。なお、第一の触媒と複合体との成分(組成)は異なるものであってもよい。また 、前記第二の触媒に、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステン から選ばれる酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除 く)と、を少なくとも有効成分として含有する複合体が担持されていることとしてもよい 。なお、第二の触媒と複合体との成分(組成)は異なるものであってもよい。

また、前記第一の触媒や前記第二の触媒は、担体基材に担持されていることとしてもよ ofy

$[0\ 0\ 1\ 4]$

本発明に係る窒素酸化物浄化用触媒システムは、前記第一の反応部の上流側に、窒素化 合物と酸素とを反応させて酸化する第三の反応部を備えることとしてもよい。

本発明に係る窒素酸化物浄化方法は、窒素酸化物をアンモニアの存在下で第一の触媒と

接触させて還元脱硝し、未反応の前記アンモニアを第二の触媒と接触させて酸化分解する 方法であって、前記第一の触媒は、シリカ、アルミナ、チタニア、ジルコニア、及び酸化 タングステンから選ばれる2以上の酸化物からなる複合酸化物と、希土類金属又は遷移金 属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、を少なくとも有効成分として含有し、 前記第二の触媒は、貴金属と、シリカーアルミナ型複合酸化物と、を少なくとも有効成分 として含有する。

【発明の効果】

[0016]

本発明によれば、有害性の指摘されている金属が含有されておらず、窒素酸化物の浄化 を効率よく行うことができる触媒と、窒素酸化物の生成を低減させ、スリップアンモニア を窒素と水に効率よく酸化分解することができる触媒とを用いた、窒素酸化物浄化用触媒 システム及び窒素酸化物の浄化方法を提供することができる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 7\]$

上記知見に基づき完成した本発明を実施するための形態を、実施例を挙げながら詳細に 説明する。

[0018]

===触媒システムの全体構成===

本発明に係る窒素酸化物浄化用触媒システム(以下、単に「触媒システム」と称する。)は、例えば、ディーゼル、ガソリン、石炭などの燃料を燃焼させた際に発生する排ガス 中の窒素酸化物を処理するために用いられる。以下、本実施の形態に係る触媒システムの 一例として排ガス浄化マフラーを挙げて説明する。図1は本実施の形態に係る排ガス浄化 マフラーの全体構成の一例を示す。図1に示すように、触媒システム100は、窒素化合 物酸化処理部10、窒素酸化物浄化処理部20、脱硝還元剤注入部50などを備えている

[0019]

窒素化合物酸化処理部10は、窒素化合物を酸素と反応させて酸化するためのものであ り、窒素化合物を効率よく酸化することができる窒素化合物酸化触媒を備えている。

[0020]

窒素酸化物浄化処理部20は、窒素化合物酸化処理部10から排出された窒素酸化物を 浄化するためのものである。窒素酸化物浄化処理部20は、窒素酸化物とアンモニアとを 反応させて脱硝する第一の反応部30と、第一の反応部から漏出したアンモニアを酸化分 解する第二の反応部40とを備えている。第一の反応部30はアンモニアによる窒素酸化 物を効率よく還元脱硝することができるアンモニア還元触媒を備えており、第二の反応部 40はアンモニアを効率よく酸化分解することができるアンモニアスリップ浄化用触媒を 備えている。

脱硝還元剤注入部50は、窒素酸化物浄化処理部20に脱硝還元剤を注入するためのも のである。

[0021]

なお、本実施の形態においては、第一の反応部30と第二の反応部40とを1つの処理 部20に備えさせることとしたが、それぞれ別の処理部に備えさせることとしてもよい。

[0022]

===脱硝還元剤について===

脱硝還元剤注入部50によって窒素酸化物浄化処理部20に注入される脱硝還元剤とし ては、アンモニア、アンモニア水(安水)、液化アンモニアなどのアンモニア源を用いる こととしてもよいが、窒素酸化物浄化処理部20においてアンモニアを生成することがで きるアンモニア前駆体を用いることとしてもよい。アンモニア前駆体は、例えば、熱分解 によりアンモニアを生成することができる尿素、尿素水などである。なお、環境などの面 から尿素や尿素水を脱硝還元剤として用いることが好ましい。

[0023]

[0024]

===アンモニア還元触媒について===

次に、第一の反応部30が備えているアンモニア還元触媒について説明する。アンモニ ア還元触媒は、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タング ステンから選ばれる2以上の酸化物からなる複合酸化物と、希土類金属又は遷移金属(た だし、Cu, Co, Ni, Mn, Cr, Vを除く)と、を有効成分として含有する。なお、アンモニ ア還元触媒は、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タング ステンから選ばれる2以上の酸化物からなる複合酸化物と、希土類金属又は遷移金属(た だし、Cu, Co, Ni, Mn, Cr, Vを除く)のみからなることとしてもよい。複合酸化物の組 み合わせは、シリカーアルミナ、シリカーチタニア、シリカージルコニア、シリカー酸化 タングステン、アルミナーチタニア、アルミナージルコニア、アルミナー酸化タングステ ン、チタニアージルコニア、チタニア-酸化タングステン、酸化タングステン-ジルコニ アなどである。ここでは、2つの酸化物からなる複合酸化物について例示することとした が、3つ以上の酸化物からなる複合酸化物であってもよい。

[0025]

複合酸化物の好ましい形態は、チタニアージルコニア、シリカーアルミナ、酸化タング ステンージルコニアなどである。チタニアージルコニア型複合酸化物は、尿素を熱分解さ せる際に、副生成物 (例えば、シアン酸など) の生成を抑制することができ、また、23 0~500℃の反応条件下で窒素酸化物を効率よく還元分解することができる点で好まし い。また、シリカーアルミナ型複合酸化物は、アンモニアの吸着性がよく、特に200~ 400℃の反応条件下においてもアンモニアを保持することができる点で好ましい。従っ て、シリカーアルミナ型複合酸化物を用いることにより、触媒活性性能を向上させること ができる。酸化タングステンージルコニア型複合酸化物は、耐久性に優れている点で好ま しい。

[0026]

なお、チタニアージルコニア型複合酸化物の場合、チタンとジルコニウムとのモル組成 比(Ti:Zr)が8:2~2:8の範囲内であることが特に好ましい。シリカーアルミナ型 複合酸化物の場合、珪素とアルミニウムとのモル組成比(Si:Al)が5:1~500:1 の範囲内であることが好ましい。また、酸化タングステンージルコニア型複合酸化物の場 合、酸化タングステンとジルコニウムとのモル組成比(W:Zr)が1:20~1:5の範 囲内であることが好ましい。

[0027]

希土類金属は、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム (Ce) 、プラセオジム (Pr) 、ネオジム (Nd) 、プロメチウム (Pm) 、サマリウム (Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy) 、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテ チウム (Lu) などである。

[0028]

遷移金属としては、第一遷移金属元素(2 1 $Sc\sim^2$ 9 Cu)、第二遷移金属元素(3 9 Y \sim^{4} Ag)、及び第三遷移金属元素(7 2 Hf \sim^{7} 9 Au)がつくる単体のうち、銅(Cu)、 コバルト (Co)、ニッケル (Ni)、マンガン (Mn)、クロム (Cr)、バナジウム (V) な どの有害性金属を除くものであればどのようなものでもよい。

[0029]

なお、アンモニア還元触媒はさらに硫黄又は隣を含むこととしてもよい。このようにア ンモニア還元触媒に硫黄又は燐を含ませることにより、窒素酸化物を効率よく還元分解す ることが可能となる。また、アンモニア還元触媒はさらに窒素酸化物を効率よく還元分解 するための他の酸化物や、他の希土類金属又は遷移金属や、酸化物と希土類金属又は遷移 金属とを有効成分として含有する複合体を含むこととしてもよい。酸化物としては、耐熱 性酸化物であれば特に制限されるものではないが、好ましくは、少なくとも、シリカ、ア ルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる酸化物や、少なくと も、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる2以 上の酸化物からなる複合酸化物などを挙げることができる。なお、アンモニア還元触媒は 、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる2以上 の酸化物からなる複合酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr , Vを除く)と、を有効成分として含有する触媒に、酸化物と希土類金属又は遷移金属と を有効成分として含有する複合体を担持させたものであってもよいし、前記触媒と前記複 合体とを単に混合させたものであってもよい。なお、触媒と複合体との重量比は、0.2:0 .8~0.8:0.2の範囲内であることが好ましい。

[0030]

アンモニア還元触媒における希土類金属又は遷移金属の含有量は、2wt%~50wt%の 範囲内であることが好ましい。また、アンモニア還元触媒における硫黄又は燐の含有量は 、10wt%以下であることが好ましく、チタニアージルコニア型複合酸化物の場合には0. 5wt%~10wt%の範囲内であることが好ましい。

[0031]

以上のようなアンモニア還元触媒を本発明に係る触媒システムに適用することにより、 窒素酸化物の浄化が効率よく行われることとなる。なお、アンモニア還元触媒はそのまま 用いることとしてもよいが、窒素酸化物の浄化をより効率よく行うために担体基材に担持 させることとしてもよい。担体基材としては、例えば、ハニカム状の基材、多孔状の基材 などを用いることが好ましい。

[0032]

===アンモニアスリップ浄化用触媒について===

次に、第二の反応部40が備えているアンモニアスリップ浄化用触媒について説明する 。アンモニアスリップ浄化用触媒は、少なくとも、貴金属及びシリカーアルミナ型複合酸 化物と、を有効成分として含有する。貴金属は、例えば、金(Au)、銀(Ag)、白金族(ルテニウム (Ru) 、ロジウム (Rh) 、パラジウム (Pd) 、オスミウム (Os) 、イリジウム (Ir)、プラチナ(Pt))などである。アンモニアスリップ浄化用触媒における貴金属の 含有量は、0.1wt%~5wt%の範囲内であることが好ましく、0.3wt%~3wt%の範囲内で あることが特に好ましい。また、シリカーアルミナ型複合酸化物における珪素とアルミニ ウムとのモル組成比(Si:Al)は10:1~100:1の範囲内であることが特に好まし

[0033]

アンモニアスリップ浄化用触媒は、窒素酸化物の生成を抑制し、スリップアンモニアを 効率よく酸化分解するための酸化物や、他の希土類金属又は遷移金属や、酸化物と希土類 金属又は遷移金属とを有効成分として含有する複合体を含むこととしてもよい。複合体は さらに硫黄や燐を含むこととしてもよい。

[0034]

酸化物としては、耐熱性酸化物であれば特に制限されるものではないが、少なくとも、 シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる酸化物や 、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選 ばれる2以上の酸化物からなる複合酸化物であることが好ましく、チタニアージルコニア 型複合酸化物、シリカーアルミナ型複合酸化物、又はこれらの混合物であることが特に好 ましい。

[0035]

なお、アンモニアスリップ浄化用触媒は、少なくとも、貴金属及びシリカーアルミナ型 複合酸化物と、を有効成分として含有する触媒に、酸化物と希土類金属又は遷移金属とを

有効成分として含有する複合体を担持させたものであってもよいし、前記触媒と前記複合 体とを単に混合させたものであってもよい。触媒と複合体との重量比は、1:1~1:1 0 の範囲内であることが好ましい。なお、この場合においては、触媒のシリカーアルミナ 型複合酸化物における珪素とアルミニウムとのモル組成比(Si:Al)は5:1~500: 1の範囲内であることが特に好ましい。

[0036]

複合体における希土類金属又は遷移金属の含有量は、2 wt%~50 wt%の範囲内である ことが好ましい。また、複合体における硫黄又は燐の含有量は、10wt%以下であること が好ましく、チタニアージルコニア型複合酸化物の場合には0.5wt%~10wt%の範囲内 であることが好ましい。

[0037]

以上のようなアンモニアスリップ浄化用触媒を本発明に係る触媒システムに適用するこ とにより、窒素酸化物の生成が抑制され、スリップアンモニアの酸化分解が効率よく行わ れることとなる。なお、アンモニアスリップ浄化用触媒は、そのまま用いることとしても よいが、窒素酸化物の生成やスリップアンモニアの酸化分解を効率よく行うために担体基 材に担持させることとしてもよい。担体基材としては、例えば、ハニカム状の基材、多孔 状の基材などを用いることが好ましい。

[0038]

なお、アンモニア還元触媒及びアンモニアスリップ浄化用触媒は、含浸法、混練法、共 沈法、ゾルゲル法などの方法により製造することができる。

[0039]

===窒素酸化物の浄化方法===

本発明に係る窒素酸化物の浄化方法には、窒素酸化物をアンモニアの存在下でアンモニ ア還元触媒と接触させて還元脱硝する工程と、未反応のアンモニアをアンモニアスリップ 浄化用触媒と接触させて酸化分解する工程とが含まれる。これらの工程により、窒素酸化 物及びアンモニアを効率よく浄化することが可能となる。

[0040]

なお、ディーゼルや石炭などの燃料を燃焼させた際に発生する排ガス中の窒素酸化物を 浄化する場合には、排ガスの空間速度が5,000/h~200,000/hの範囲内で あることが好ましく、10, 000/ $h\sim50$, 000/hの範囲内であることが特に好 ましい。また、アンモニアの物質量は、窒素酸化物1mο1に対して0.6mο1~1. $0 \, \text{mol}$ の範囲内であることが好ましく、窒素酸化物 $1 \, \text{mol}$ に対して 0 . $7 \, \text{mol} \sim 0$. 9 m o 1 の範囲内であることが特に好ましい。

[0041]

還元脱硝する際の反応温度としては、150℃~500℃の範囲内であることが好まし く、アンモニア還元触媒がアンモニアを効率よく吸着させる点で185℃~500℃の範 囲内であることが特に好ましく、窒素酸化物を効率よく浄化することができる点で220 ℃~500℃の範囲内であることが最も好ましい。なお、尿素を添加してアンモニアを生 成させる場合には、還元脱硝する際の反応温度はアンモニアを効率よく生成できる点で1 70℃~250℃の範囲内であることが好ましい。また、酸化分解する際の反応温度とし ては、150℃~500℃の範囲内であることが好ましい。

[0042]

以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を 説明するためのものであって、本発明の範囲を限定するものではない。

[0043]

[実施例1]

<Ce-Ti-SO4-Zr系触媒の製造>

100gのZrの塩(硫酸ジルコニウム)、50gのTiの塩(塩化チタン)、及び50g のCeの塩(硝酸セリウム)を1Lの水に溶解した混合水溶液を調製後、アルカリ溶液(ア ンモニア水)を加え中和し濾取した。その後、400℃以上で焼成し粉砕することにより

[0044]

[実施例2]

<Fe-Si-Al酸化物系触媒の製造>

シリカーアルミナからなる多孔質酸化物(モル組成比=40/1) 1,000 g に硝酸 鉄水溶液(500Lの水に1,000gの硝酸鉄を溶解)を攪拌しながら徐々に滴下した 。得られたパウダーを120℃で乾燥後、450℃で2時間焼成し、粉末を得た。その後 、この粉末がFe-Si-Al酸化物系触媒であるかどうかを確認した(図3参照)。

[0045]

「実施例3]

<Ce-W-Zr酸化物系触媒の製造>

100gのZrの塩(硫酸ジルコニウム)、及び50gのCeの塩(硝酸セリウム)を1L の水に溶解した混合水溶液を調製し、アルカリ溶液(アンモニア水)を加え中和し濾取し た。その後、15gのタングステン酸アンモニウムを含浸し、400℃以上で焼成し粉砕 することにより、粉末を得た。その後、この粉末がCe-W-Zr酸化物系触媒であるかどうか を確認した(図4参照)。

[0046]

「実施例4]

<Pt-Al-Si酸化物系触媒の製造>

アルミナーシリカからなる複合酸化物1,000gに濃度5%の有機白金化合物水溶液 (本実施例ではビスエタノールアンモニウム水酸化白金溶液を使用) を攪拌しながら徐々 に滴下した。得られたパウダーを120℃で乾燥後、450℃で2時間焼成し、粉末を得 た。その後、この粉末がPt-Al-Si酸化物系触媒であるかどうかを確認した(図5参照)。

[0047]

「実施例5]

<尿素の熱分解反応テスト>

従来のV₂O₅-TiO₂系触媒雰囲気下で尿素(還元脱硝剤)を熱分解(加水分解)させると アンモニア以外に副生成物を生成することが知られている。そこで、尿素の熱分解にお いてアンモニア還元触媒を用いると副生成物が生成されるかどうかを調べてみた。

[0048]

実施例1により得られたCe-Ti-SO₄-Zr系触媒粉末0.1gを尿素水溶液(2.5Wt%) 0. 2 m l に含浸後、乾燥したものを用意し、TPD(昇温脱離法:Temperature Progra mmed Desorption) - Massにより、昇温時に熱分解で生じるガス成分を測定した。な お、昇温条件は+10 \mathbb{C} / 分とした。また、 $\mathrm{TPD-Mass}$ 分析は大気条件下で100℃~300℃の範囲で行った。

[0049]

その結果を図6に示す。図6に示すように、従来のV2O5-TiO2系触媒は、150℃~2 50℃の反応温度条件下において、尿素を熱分解させてアンモニア(△)を生成させると ともに、副生成物(▲)を生成した。しかしながら、Ce-Ti-SO₄-Zr系触媒は、どの反応温 度条件下においても、副生成物 (●) を生成すること無しにアンモニア (○) のみを生成 することがわかった。このことから、アンモニア還元触媒は、触媒活性性能の向上に有用 であることが明らかとなった。

[0050]

[実施例6]

<脱硝反応テスト1>

実施例1により得られた $Ce-Ti-SO_4-Zr$ 系触媒について、脱硝反応テストを以下の条件に より行った。直径 $2.5\,\mathrm{mm}\,\phi$ 、長さ $5.0\,\mathrm{mm}\,\phi$ のハニカム担体に触媒担持し、反応ガスとし て、 O_2 が10%、NOと NO_2 はそれぞれ150 ppm、 H_2 Oは5%、残りは窒素から なるガスを用い、空間速度(SV)が50000/hの条件で導入した。触媒入口温度は 、150 \mathbb{C} \sim 400 \mathbb{C} の範囲で行った。また、比較対照として、 V_2O_5 $-TiO_2$ 系触媒を用いて同様の実験を行った。それらの結果を図7に示す。図7に示すように、 $Ce-Ti-SO_4-Zr$ 系触媒(〇)は、 $V_2O_5-TiO_2$ 系触媒(●)に比べて窒素酸化物を浄化できることがわかった

[0051]

[実施例7]

<脱硝反応テスト2>

SCR入口温度に対する窒素酸化物の浄化率を調べるために、 ϕ 7. 5" × 7" (5 L) のSCR触媒サイズのCe-Ti-SO4-Zr系触媒を 5 L - N A エンジンの排気マフラーに装着し、SCR触媒前段部にPt系酸化触媒(Pt-アルミナ触媒;東濾社製)を装着して実機定常評価試験を行った。その結果を図 8 に示す。図 8 に示すように、Ce-Ti-SO4-Zr系触媒はSCR入口温度がおよそ 2 2 0 ℃以上において 8 0 %以上の窒素酸化物を浄化できることがわかった。

[0052]

[実施例8]

<アンモニア吸着テスト>

実施例 2 により得られたFe-Si-Al酸化物系触媒及び比較品(V_2O_5 -Ti O_2 系触媒)を用いたT PD-Mass分析により、アンモニア昇温脱離スペクトルを測定した。なお、昇温速度は+10 \mathbb{C}/\mathcal{G} とした。また、T PD-Mass分析はヘリウム雰囲気下で100 \mathbb{C} ~ 500 \mathbb{C} の範囲で行った。その結果を図9に示す。図9に示すように、Fe-Si-Al酸化物系触媒(\mathbb{O})は、比較品(\mathbb{O})に比べ、低温から高温においてアンモニアを保持できることがわかった。このことから、Fe-Si-Al酸化物系触媒は触媒活性性能向上に寄与するものと考えられる。

[0053]

[実施例9]

<脱硝反応テスト3>

実施例 2 により得られたFe-Si-Al酸化物系触媒について、実施例 6 に記載の方法と同様に脱硝反応テストを行った。なお、触媒入口温度は150 \mathbb{C} ~ 400 \mathbb{C} の範囲で触媒評価をした。それらの結果を図 10 に示す。図 10 に示すように、Fe-Si-Al酸化物系触媒(\bigcirc)は、 V_2 V_3 V_4 V_5 V_5 V_6 V_8 V_8

[0054]

[実施例10]

<脱硝反応テスト4>

 ϕ 7. 5"×7"(5 L)のS C R 触媒サイズのFe-Si-Al 酸化物系触媒を用いる他は実施例 7 に記載の方法と同様に実機定常評価試験を行った。その結果を図 1 1 に示すように、Fe-Si-Al 酸化物系触媒は S C R 入口温度がおよそ 1 9 0 ℃以上において 7 0 %以上の窒素酸化物を浄化できることがわかった。

[0055]

[実施例11]

<脱硝反応テスト5>

実施例 3 により得られたCe-W-Zr酸化物系触媒について、実施例 6 に記載の方法と同様に脱硝反応テストを行った。なお、触媒入口温度は150 $C\sim 400$ Cの範囲で触媒評価をした。それらの結果を図 12 に示す。図 12 に示すように、Ce-W-Zr酸化物系触媒(\bigcirc)は、 $V_2O_5-TiO_2$ 系触媒(\bigcirc)と同様に窒素酸化物を浄化できることがわかった。

[0056]

「実施例12]

<脱硝反応テスト6>

φ 7.5 "×7" (5 L) の S C R 触媒サイズのCe-Ti-SO₄-Zr系触媒及びFe-Si-Al酸化物系触媒の混合触媒(材料担持比率 (Ce-Ti-SO₄-Zr系触媒/Fe-Si-Al酸化物系触媒)は 1/2) を用いる他は実施例 7 に記載の方法と同様に実機定常評価試験を行った。その結果

出証特2005-3024255

 $[0\ 0\ 5\ 7]$

[実施例13]

<アンモニア酸化分解反応テスト1>

実施例4により得られたPt-Al-Si酸化物系触媒について、アンモニアの酸化分解反応テ ストを以下の条件により行った。直径25mmt、長さ25mmのハニカム担体に触媒担 持し、反応ガスとして、NH3が500ppm、O2が10%、H2Oが5%、残りは窒素 からなるガスを用い、空間速度(SV)が100,000の条件で導入した。触媒入口温 度は、200℃~450℃の範囲で触媒評価をした。また、比較例としてPt-アルミナ系 触媒(プラチナを担持したアルミナ触媒)を用いた。それらの結果を図14に示す。図1 4に示すように、Pt-Al-Si酸化物系触媒(●)は、Pt-アルミナ系触媒(○)に比べてア ンモニアを浄化できることがわかった。

[0058]

また、窒素酸化物の生成濃度も調べてみたところ、図15に示すように、Pt-Al-Si酸化 物系触媒(●)は、Pt-アルミナ系触媒(○)に比べて窒素酸化物の生成を抑制できるこ とがわかった。

[0059]

[実施例14]

<アンモニア吸着テスト2>

実施例4により得られたPt-Al-Si酸化物系触媒及び比較品(Pt-アルミナ系触媒)を用 いたTPD-Mass分析により、アンモニア昇温脱離スペクトルを測定した。なお、昇 温速度は+10℃/分とした。また、TPD-Mass分析はヘリウム雰囲気下で100 ℃~400℃の範囲で行った。その結果を図16に示す。図16に示すように、Pt-A1-Si 酸化物系触媒(●)は、比較品(×)に比べ、低温から高温においてアンモニアを保持で きることがわかった。このことから、Pt-Al-Si酸化物系触媒はアンモニア浄化性能向上に 寄与するものと考えられる。

[0060]

「実施例15]

<アンモニア酸化分解反応テスト2>

実施例4により得られたPt-Al-Si酸化物系触媒90gにアルミナゾル10gと適量の水 とを混合し、ハニカム担体基材(コージーライト製;400セル/inch²)に塗布してハ ニカム構造体を得た。次に実施例1により得られたCe-Ti-SO4-Zr系触媒と実施例2により 得られたFe-Si-Al酸化物系触媒との混合触媒(Ce-Ti-SO4-Zr系触媒とFe-Si-Al酸化物系触 媒との重量比=1:1)90gにアルミナゾル10gと適量の水とを混合し、ハニカム構 造体に塗布してハニカム担体触媒を得た。

[0061]

ハニカム担体触媒(スリップーC Fresh;ベースコート:Pt-Al-Si酸化物系触媒、オー バコート:Ce-Ti-S04-Zr系触媒及びFe-Si-Al酸化物系触媒)と、ハニカム構造体(スリッ プーB Fresh; Pt-AI-Si酸化物系触媒)と、比較品(Pt-アルミナ系触媒をハニカム担体 基材に担持させたもの;スリップーA Fresh)を用いて、直径25mmφ、長さ12.5 mmのステンレス製反応管にそれぞれの触媒を充填し、反応ガスとして、NH3が50pp m、O2が10%、H2Oが5%、残りは窒素からなるガスを用い、空間速度(SV)が 20000/hの条件で導入した。触媒入口温度は、150℃~450℃の範囲で評価 した。なお、昇温速度は−5℃/分とした。それらの結果を図17に示す。図17に示す ように、スリップーA Fresh (○) は250℃から450℃においてアンモニアを効率よ く浄化することができるが、スリップ-B Fresh (●) 及びスリップ-C Fresh (△) は 、低温(150℃から250℃)においてもアンモニアを効率よく浄化することができる ことがわかった。

[0062]

また、上記と同様の方法で、N2 Oや他の窒素酸化物の生成濃度も調べてみた。その結 果を図18及び図19に示す。図18や図19に示すように、スリップーB Fresh(●) 及びスリップーC Fresh (△) は、スリップーA Fresh (○) に比べてN2 Oや他の窒素 酸化物(NOx)の生成を抑制することがわかった。

[0063]

以上のことから、スリップーB Fresh及びスリップーC Freshは、低温から高温(15 0℃から450℃) においてアンモニアを効率よく浄化できるだけでなく、N2 Oなどの 窒素酸化物の生成を抑制するのに有用な触媒であると言える。

[0064]

「実施例16]

<エンジン排気量13L TI 触媒装着 排ガス浄化性能>

Pt系触媒(Pt-アルミナ触媒)90gにアルミナゾル10gと適量の水とを混合し、ハ ニカム担体基材(コージーライト製;400セル/inch²)に塗布してハニカム構造体を 得た。また、同様にCe-Ti-SO4-Zr系触媒及びFe-Si-Al酸化物系触媒の混合物(混合比1/ 1) 90gにアルミナゾル10gと適量の水とを混合し、ハニカム担体基材(コージーラ イト製;400セル/inch²)に塗布してハニカム構造体を得た。

[0065]

エンジン排気量13Lの排ガス浄化マフラー(東濾社製)の窒素化合物酸化処理部10 にPt系触媒が担持されたハニカム構造体(触媒容積8.5L,触媒容量3.5g/L)を 、第一の反応部30にCe-Ti-SO4-Zr系触媒及びFe-Si-Al酸化物系触媒が担持されたハニカ ム構造体(触媒容積 8.5 L,触媒容量 600 g/L)を、第二の反応部 40 にスリップ - C Fresh (触媒容積 5.7 L, 触媒容量 500 g/L) をそれぞれ装着し、簡易D-1 3モード(定常走行モード)条件において尿素を添加して脱硝反応テストを行った。なお 、尿素は第一の反応部30においてアンモニアと窒素酸化物とのモル比が1になるように 添加した。その結果を図20に示す。図20に示すように、どのモード(7~13モード)においても窒素酸化物を効率よく浄化できることが確認できた。

[0066]

また、上記の排ガス浄化マフラー (◆) を用いて、JE05モード(過度走行モード: 代表走行モード)条件における窒素酸化物とアンモニアのスリップ濃度との関係を調べた 。なお、尿素は第一の反応部30においてアンモニアと窒素酸化物とのモル比が0.75 ~0.8になるように添加した。その結果を図21に示す。図21に示すように、本発明 の排ガス浄化マフラー(◆)は、窒素酸化物の浄化率を高めることにより生じるアンモニ アのスリップを効率よく抑制できることが確認できた。

【図面の簡単な説明】

[0067]

- 【図1】本実施の形態に係る排ガス浄化マフラーの全体構成例を示す図である。
- 【図2】実施例1により製造されたCe-Ti-SO4-Zr系触媒のX線回析結果を示す図であ
- 【図3】実施例2により製造されたFe-Si-Al酸化物系触媒のX線回析結果を示す図で
- 【図4】実施例3により製造されたCe-W-Zr酸化物系触媒のX線回析結果を示す図で
- 【図5】実施例4により製造されたPt-Al-Si酸化物系触媒のX線回析結果を示す図で ある。
- 【図6】実施例1により製造されたCe-Ti-SO4-Zr系触媒が尿素の熱分解に与える影響 を調べた結果を示す図である。
- 【図7】実施例1により得られたCe-Ti-SO4-Zr系触媒(○)についてNOx浄化特性 出証特2005-3024255

をV₂ O₅ - Ti O₂ 系触媒 (●) と比較した結果を示す図である。

【図8】実施例1により得られたCe-Ti-SO4-Zr系触媒を用いた実機定常評価試験により、NOx浄化特性を調べた結果を示す図である。

【図9】実施例2により得られたFe-Si-Al酸化物系触媒(〇)についてアンモニア吸着特性を V_2O_5 -Ti O_2 系触媒(lacksquare)と比較した結果を示す図である。

【図10】実施例2により得られたFe-Si-Al酸化物系触媒(〇)についてNOx浄化特性を V_2O_5 -Ti O_2 系触媒(\blacksquare)と比較した結果を示す図である。

【図11】実施例2により得られたFe-Si-Al酸化物系触媒を用いた実機定常評価試験により、NOx浄化特性を調べた結果を示す図である。

【図 1 2 】 実施例 3 により得られたCe-W-Zr酸化物系触媒(〇)についてN O x 浄化特性を V_2 O_5 -Ti O_2 系触媒(\bullet)と比較した結果を示す図である。

【図13】Ce-Ti-SO₄-Zr系触媒とFe-Si-Al酸化物系触媒との混合触媒を用いた実機定常評価試験により、NOx浄化特性を調べた結果を示す図である。

【図14】実施例4により得られたPt-Al-Si酸化物系触媒(●)についてアンモニア 低減特性をPt-アルミナ系触媒(○)と比較した結果を示す図である。

【図15】実施例4により得られたPt-Al-Si酸化物系触媒(lacktriangle)について $NH_3 \rightarrow N$ 2 〇生成特性をPt-アルミナ系触媒(\bigcirc)と比較した結果を示す図である。

【図16】実施例4により得られたPt-Al-Si酸化物系触媒(●)についてアンモニア 吸着特性をPt-アルミナ系触媒(×)と比較した結果を示す図である。

【図17】スリップーA Fresh(〇)、スリップーB Fresh(lacktriangle)、及びスリップー C Fresh(Δ)に対するアンモニア浄化特性をそれぞれ比較した結果を示す図である

【図18】スリップ-A Fresh(○)、スリップ-B Fresh(●)、及びスリップ-C Fresh(△)に対するN2O生成特性をそれぞれ比較した結果を示す図である。

【図19】スリップーA Fresh(〇)、スリップーB Fresh(ullet)、及びスリップーC Fresh(Δ)に対する窒素酸化物(NOx)生成特性をそれぞれ比較した結果を示す図である。

【図20】本発明の触媒システムを用いた場合の簡易D13モード評価排ガス評価結果を示す図である。

【図21】本発明の触媒システムを用いた場合のJE05モード評価排ガス評価結果を示す図である。

【符号の説明】

[0068]

- 10 第一の情報処理装置
- 20 窒素酸化物净化処理部
- 30 第一の反応部
- 40 第二の反応部
- 50 脱硝還元剤注入部
- 100 触媒システム

【図2】

【図3】

【図4】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【要約】

【課題】 有害性の指摘されている金属が含有されておらず、窒素酸化物の浄化を効率よく行うことができる触媒と、窒素酸化物の生成を抑制し、スリップアンモニアの酸化分解を効率よく行うことができる触媒を用いた、窒素酸化物浄化用触媒システム及び窒素酸化物の浄化方法を提供すること。

【解決手段】 触媒システムに、少なくとも、シリカ、アルミナ、チタニア、ジルコニア、及び酸化タングステンから選ばれる2以上の酸化物からなる複合酸化物と、希土類金属又は遷移金属(ただし、Cu, Co, Ni, Mn, Cr, Vを除く)と、を有効成分として含有する第一の触媒を装着した第一の反応部と、少なくとも、貴金属と、シリカーアルミナ型複合酸化物と、を有効成分として含有する第二の触媒を装着した第二の反応部とを備えることとする。

【選択図】 図1

特願2004-055351

出願人履歴情報

識別番号

[000220804]

1. 変更年月日 [変更理由] 住 所

氏 名

1995年 9月14日

理由] 住所変更

神奈川県横浜市都筑区仲町台3丁目12番3号

東京濾器株式会社

特願2004-055351

出願人履歴情報

識別番号

[000003908]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月20日 新規登録 埼玉県上尾市大字壱丁目1番地 日産ディーゼル工業株式会社