R

Jeff Lin

2020-09-12

Contents

			5
1	\mathbf{R}		7
	1.1	R	7
	1.2	RSudio	7
	1.3		8
	1.4	Object	9
	1.5		9
	1.6		11
	1.7		11
	1.8		11
	1.9	RStudio	12
	1.10	Function	13
	1.11	Packages	14
	1.12		14
	1.13		15
2	Vec		17
	2.1	Vector	17
	2.2		17
	2.3		20
	2.4		21
	2.5		23
	2.6		25
	2.7	Inxex	26
	2.8	() Missing Values	27
	2.9	Factor	28
3			33
J	3.1	Matrix	33
	3.2	Matrix Index	36
	3.3	List	41
	3.4		45
	0.4	Data Frame	40

4	CONTENTS

45	•	•	•	•	•	•	٠	•	•	•	•	•	•	 •	•	•	•	•	٠	•	•	•	•	•	•	•	•		()	e(ne	ar	ra	.t	ta	lat	d					.5	3.			
49																																												4	,	
49																																										.1	4.			
50																												:	į,	R				Ι	CI	SC	15	A				.2	4.			
52																												:	į,	R				Ι	CI	SC	15	A				.3	4.			
53																																							,	R]	.4	4.			
54																																					{}	R	{			.5	4.			
54																																					₹}	R	{			.6	4.			
55																																												5	ļ	
55																																										.1	5.			
55																																	2 .	t2	lot	pl	g	g				.2	5.			
57																																				•		_				.3	5.			
70																																										.4	5.			
88																																										.5	5.			
109																																										.6	5.			

 6 CONTENTS

Chapter 1

\mathbf{R}

```
R Ross Ihaka Robert Gentleman S , . . R , R , , , , . . S 1980 , AT&T , Rick Becker, John Chambers, Allan
Wilks , 1990 , Insightful S , , Splus. R S ( Splus) , R S , , , S , SAS, SPSS .
R (open-source, GNU General Public License), R {R}
(R core-development team) , , , {R}
1.1
           \mathbf{R}
R , Microsoft Window, Unix/Linux, Apple Mac OS , windows
. windows , , " '', (User), , . R ,
R (Reproducible Research, Dynamic Documentation),
Rtools, RStudio, Tex System, Pandoc, Git . (PATH) , PATH
. R ,
R , R Rtools : 1. http://www.r-project.org 2.
Download CRAN. 3. CRAN Mirrors (CRAN Mirrors), https://cloud.r-project.org/ 4. Download R for Windows. 5. R for Windows base. 6. , Download R X.Y.Z for Windows, X.Y.Z R ,
Linux , google Youtube , .
1.2
           RSudio
  \{R\} \{R\} . , , , , \{R\} . \{R\} , RStudio \{R\} , RStudio \{R\} , http://www.rstudio.com/, Product
```

8 CHAPTER 1. R

```
, R premier IDE for R, Rstudio Desktop, RStudio. Rstudio , . . , (User Name), , . RSudio , , , . Tex/LaTeX, Rstudio PDF , Tex system, Pandoc, Git, TeX/LaTeX/XeLaTex , https://www.latex-project.org/get/, MikTeX: http://miktex.org/. Pandoc, http://pandoc.org/, http://pandoc.org/installing.html. Git, https://git-scm.com/. GitHub , . , (Xie, 2015), Xie (2020) https://bookdown.org/yihui/rmarkdown/, https://rmarkdown.rstudio.com/ .
```

1.3

 $\{R\}$ $\{R\}$, google R Introduction, R Tutorial , YouTube .

```
factorial(4)
sin(pi)
x.vec <- c(2:5)
exp(x.vec)
matrix(c(1:6), nrows=2, ncols=3)
weight = c(50, 45, 67, 53)
mean(weight)
sd(weight)</pre>
```

 $\{R\}$, , , , , , . . $\{R\}$.

```
## demo
demo(graphics)
demo(image)
example(contour)
demo(persp)
example(persp3d)
demo(plotmath)
demo(Hershey)
install.packages("lattice") # install package
library("lattice") # load package
demo(lattice)
```

1.4. OBJECT 9

```
example(wireframe)
install.packages("rgl")
library("rgl")
demo(rgl)
                       # Interact using your mouse.
\{R\}
                \{R\} , , 0.5$ $1.0 ,
\{R\}
                                     . {R} :
                          google,
      , Big5 utf-8 .
      : / , , $, }, ], ).
     , , , , , . . .
       Object
1.4
          , (Object-Oriented Programming Language), \ \{R\} ,
   (object). {R} (vector), (matrix), (array), (Lists), (data
frames)
          (function) .
        \{R\}
                                (A-Z a-z), (0-9), /,
name)
\cdot, _ (underscore) -, .
{R}
      , , c, s, C, T, F , (reserved names). :
FALSE Inf NA NaN NULL TRUE
break else for function if in next repeat while
FΤ
cqstCDI
diff mean pi range rank var
  , , , , , , . .
1.5
       , 2, (expression), ,
\{R\}
1+2
log(x)
mean(x)
       (assignment), ,
```

10 CHAPTER 1. R

```
x <- 1+2
x = 4-5
options(prompt = "R>")
           > R>.
, \qquad , \qquad \mathtt{print()}, \qquad ,
## asign
x \leftarrow 1 # assign object x
x # show x
## [1] 1
print(x) # print()
## [1] 1
msg <- "hello"
msg # show x
## [1] "hello"
             , \{R\} , \{R
## input at the same line, use ;
x < -1 + 2; y < -3 + 4
## input 2 lines separately
x < -1 + 2
y < -3 + 4
                 , \{ \ \ \},  (compound expression),
                                                                           (\mathbf{commands}), \qquad \# \ (\ ) \quad , \qquad \qquad , \quad \{\mathrm{R}\} \ \ ,
      \{R\} , , ,
                                                            , ##,      #.
 ## This is my R code
log(pi)
 ## [1] 1.14473
 ## simple calculation
3+4 # calculator: two plus one
 ## [1] 7
     \begin{cases} R \} & Console \ , & , & , & \uparrow ( \ ) & , & , & , \\ & . & , & \{R\} & . & , \\ \end{cases} 
                                                                                                                                                                                                             <DEL>
```

1.6.

```
# This is my R code
x = 1 + 2 # one plus two
## [1] 3
x + 4
## [1] 7
x - 1
## [1] 2
1.6
            (\mathbf{object}), \qquad , \quad , \quad , \quad \  \  \, . \, \left\{ R \right\} \quad \, \mathsf{object()} \quad \, \mathsf{ls()} \qquad \qquad \left\{ R \right\}
 \{R\}
## show objects
object() # shiow all objects
ls() # show all obkects
ls(x, y) # show x and y object
  rm(), , ,
## delete objects: x.vec and y.vec
rm(x.vec, y.vec)
   x.vec y.vec.
1.7
   , \{R\} . , \langle Esc \rangle . ,
for (i in 1:1000000) print (i) # press <Esc>
 <Esc>
1.8
                     (working directory). {R} (PATH) //
. .
getwd() # show your current working directory
setwd("C:/RData/")
getwd()
## [1] "C:/RData"
```

12 CHAPTER 1. R

```
setwd("C:/RData")
getwd()
setwd("C:/RData/")
getwd()
   \{R\}
                                                               age, gender,
{\tt m1.lm}, \ {\tt m2.lm} \ ,
     RStudio (project),
                    (version control), (Xie, 2015), Xie (2020)
GitHub .
https://bookdown.org/yihui/rmarkdown/, https://rmarkdown.rstudio.com/,
https://happygitwithr.com/ .
                  RStudio
1.9
            , . RStudio:
                                   Tools, Global Options.....
   • General, Restore .RData, Save workspace to .RData on exit:
       Never.
    Default text encoding: UTF-8.
       Appearance, , , Zoom: 140\%, Font size: 14,
         Sweave, Waeve Rnw file using:
                                               knitr, Typest LaTeX into
     PDF using: XeLaTeX'.
         Apply OK.
   \{RStudio\} R.
       {RStudio}, {RStudio}
       \mathtt{File} \to \mathtt{New} \ \mathtt{File} \to \mathtt{R} \ \mathtt{Script}, \qquad R \quad .
        ,\quad \mathtt{File}, \rightarrow \quad \mathtt{Save \ as}, \quad \  \mathrm{C:} \backslash \mathrm{RData},
                                                      Rlab00.r .
      .r .R , \{\mathrm{R}\} .
     \verb"source", \qquad .
      , File, Save.
     R ,
## Rlab00.r
x <- 1
print(x)
х
msg <- "hello"
msg
y <- 1:20
У
rm(x, msg, y)
R , , , , (copy) {RSudio} Console , 
 <code>control>+<Enter></code> , . {R} , {R} , .
                             (copy) \{RSudio\} Console ,
                                                              {RStudio}
```

1.10. FUNCTION 13

```
{\tt Rlab00.r} \quad . \qquad , \quad , \quad \{{\rm RSudio}\} \ {\rm Consol}
   • {RStudio}, {RStudio}
    File \rightarrow New File, \rightarrow R Notebook R Markdown, {RStudio}
                 (chunk) \qquad \qquad \vdots \qquad \vdots \qquad \qquad R \quad . \quad ,
    (template).
```{r}
2.4*3.8
x.vec = rnorm(50)
v.vec = rnorm(50)
plot(x.vec, y.vec)
 , , copy \rightarrow
 R Notebook R Markdown
 knit,
paste word . ,
 . R Notebook R
Markdown , knit .
1.10
 Function
 (\textbf{function}), \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad \{R\}
{R}
 (argument).
\{R\} (base)
 \{R\} (contribution), \{R\} .,
 mean(), var(), sd(), log(). R.
function
function c() = concatenate elements, return a vector x.vec
x.vec = c(1:5)
x.vec # show x.vec
[1] 1 2 3 4 5
mean(x = x.vec) # function mean() calculate mean, return a scalar
[1] 3
var(x = x.vec) # function mean() calculate variance
[1] 2.5
log(x = x.vec) # take log for all elements in vector x.vec
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
 (argument) , , (formals).
 (required
 , , (required (ellipsis argument)
 (optional argument),
argument), ,
 \{R\} . \{R\} . \{S\} . \{S\}
log(x, base = exp(1))
. base = exp(1) ,
log function
x.vec \leftarrow c(1, 2, 3, 4, 5)
log(x = x.vec)
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
```

14 CHAPTER 1. R

install.packages("PackageName", dependencies = TRUE)

PackageName` . , `Console . install.packages("survival") library(survival)

 $\{R\}$  , , , ,

•

• library() require() .

library(package.name) , package.name function.name().
, , , {::} package.name function.name() :

package.name::function.name()

package.name function.name().

ggplot2::ggplot()

ggplot2 ggplot().

#### 1.12

 $\{R\}$  , Google  $\{R\}$  .  $\{R\}$  help.start(). Console help.start()

1.13.

```
\label{eq:funName} \texttt{funName} \ , \ \{R\} \\ \hspace*{0.5cm} , \texttt{help(funName)}, \texttt{?funName}, \texttt{help.search("funName")}, \\
{\tt apropos("funName")} \quad . \quad , \qquad {\tt mean()} \quad . \quad \{R\}
help(mean)
?mean
help.search("mean")
apropos("mean")
 args("funName").
1.13
\{R\}
 \{R\}
 \{R\}
 \{R\}
 {R}
 sessionInfo()
sessionInfo()
 version()
 {R} version[['version.string']], Sys.getlocale()
 LC_COLLATE=Chinese (Traditional)_Taiwan.950;LC_CTYPE=Chinese
(Traditional)_Taiwan.950;LC_MONETARY=Chinese (Traditional)_Taiwan.950;LC_NUMERIC=C;LC_TIME=C
(Traditional) Taiwan.950.
 cp950 (big5).
 . Sys.timezone()
 \{R\}
 Asia/Taipei. {R}
 (local time)
 NA.
 Sys.setlocale("LC_TIME", "C"),
(Universal Time, Coordinated).
 ISO
Sys.setlocale("LC_CTYPE", "en_US.UTF-8")
system("defaults write org.R-project.R force.LANG en_US.UTF-8") # linux/mac
Sys.setlocale(category = "LC_ALL", locale = "cht")
system("defaults write orq.R-project.R force.LANG zh_TW.UTF-8") # linux/mac
 \{R\}
```

16 CHAPTER 1. R

# Chapter 2

## Vector

#### 2.1 Vector

 $\{R\}$  ,  $(\mbox{mode})$  .  $\{R\}$   $(\mbox{basic mode})$  numeric, integer, logical, complex, character.

- $\label{eq:conde} \begin{array}{lll} \{R\} & , & (\textbf{mode}) & . & \{R\} & & (\textbf{basic mode}) & \textbf{numeric}, \\ \textbf{integer}, \textbf{logical}, \textbf{complex}, \textbf{character}, & \textbf{class()} & . \end{array}$ 
  - numeric, ( ), single double .

```
numeric
x1 <- 10.1
x1
[1] 10.1
class(x1)
[1] "numeric"
x2 <- 10
x2
[1] 10</pre>
```

```
class(x2)
[1] "numeric"
is.numeric(x2)
[1] TRUE
 (1L, 2L, ...).
 • integer,
integer
y1 <- 1L
у1
[1] 1
class(y1)
[1] "integer"
is.integer(y1)
[1] TRUE
is.numeric(y1)
[1] TRUE
 (true or false), \mathbf{TRUE}(\mathbf{T}) \mathbf{FALSE}(\mathbf{F}) , 1 0
 • logical,
 \mathbf{T} \mathbf{F}.
logic
yes_id <- TRUE</pre>
yes_id
[1] TRUE
no_id <- FALSE</pre>
no_id
[1] FALSE
class(no_id)
[1] "logical"
is.logical(no_id)
[1] TRUE
2 == 3
[1] FALSE
2 != 3
[1] TRUE
2 > 3
[1] FALSE
2 <= 3
[1] TRUE
4 >= 1
[1] TRUE
TRUE + 5
[1] 6
TRUE * 5
[1] 5
FALSE * 5
```

2.2.

```
[1] 0
TRUE + FALSE
[1] 1
TRUE * FALSE
[1] 0
 • complex, .
x = 3+5i
X
[1] 3+5i
class(x)
[1] "complex"
 ('').
 • character,
character
ca <- "yes"
ca
[1] "yes"
cb <- "this is a book."
[1] "this is a book."
class(cb)
[1] "character"
is.character(cb)
[1] TRUE
"abc" > "abd"
[1] FALSE
"date" < "dates"
[1] TRUE
 'Date, POSIXct POSIXt , , Sys.Date()'
Sys.Date()
[1] "2020-09-12"
date1 <- as.Date("2020-09-17")</pre>
[1] "2020-09-17"
class(date1)
[1] "Date"
as.numeric(date1)
[1] 18522
date2 <- as.POSIXct("2020-09-17 18:30")</pre>
class(date2)
[1] "POSIXct" "POSIXt"
as.numeric(date2)
```

```
[1] 1600338600
2.2.1
 c()
 c() . c() concatenate (),
c()
numerical
x.vec \leftarrow c(1/1, 1/2, 1/3, 1/4, 1/5)
x.vec
[1] 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000
integer
x.vec \leftarrow c(1L, 2L, 3L)
x.vec
[1] 1 2 3
character
flavors.vec <- c("chocolate", "vanilla", "strawberry") # character</pre>
flavors.vec
[1] "chocolate" "vanilla" "strawberry"
y.vec <- c("Hello", "What's your name?", "Your email?")</pre>
y.vec
 "What's your name?" "Your email?"
[1] "Hello"
logical
z.vec \leftarrow c(F, T, T, F, F)
z.vec
[1] FALSE TRUE TRUE FALSE FALSE
complex
x.complex.vec \leftarrow c(8+3i, 9+0i, 2+4i)
x.complex.vec
[1] 8+3i 9+0i 2+4i
numerical
x.vec \leftarrow c(1/1, 1/2, 1/3, 1/4, 1/5)
y.vec \leftarrow c(1, 2, 3, 4, 5)
z.vec <- c(x.vec, 11, 12, y.vec)
z.vec
[1] 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000 11.0000000
[7] 12.0000000 1.0000000 2.0000000 3.0000000 4.0000000 5.0000000
```

2.4. 21

. .

Table 2.1:

```
(Substraction, can be unary or binary)
+
 (Addition, can be unary or binary)
!
 (Unary not)
 (Multiplication, binary)
 (Division, binary)
 (Exponentiation, binary)
%%
 (Modulus, binary)
%/%
 (Integer divide, binary)
%*%
 (Matrix product, binary)
%o%
 (Outer product, binary)
%x\%
 Kronecker (Kronecker product, binary)
\%in\%
 (Matching operator, binary, in model formulae: nesting)
<
 Less than, binary
>
 Greater than, binary
==
 Equal to, binary
 Not equal to
! =
>=
 Greater than or equal to, binary
 Less than or equal to, binary
<=
&
 (Logical AND, binary, vectorized)
 (Logical AND, binary, not vectorized)
&&
 (Logical OR, binary, vectorized)
(Logical OR, binary, not vectorized)
 , 1 TRUE
xor
```

```
\{R\}
 (arithmetic operator)
 , +, -, !, *, /, \^, %%, %/%, %*%, %o%,
%x%, %in%
 : , , , , ,
Arithmetic Operator
1 + 2
[1] 3
1 + 2 + 3
[1] 6
3 * 7 * 2
[1] 42
4/2
[1] 2
4/3
[1] 1.333333
```

```
2 * 3 + 4
[1] 10
2 * (3 + 4)
[1] 14
(3 + 11 * 2)/4
[1] 6.25
x.complex <- (8+3i)+(1+2i)
x.complex
[1] 9+5i
x.vec <- 1:5
y.vec \leftarrow c(-1, -2, 0, 2, 4)
z.vec \leftarrow c(2, 2, 3, 3, 4)
x.vec + y.vec
[1] 0 0 3 6 9
x.vec - y.vec
[1] 2 4 3 2 1
x.vec * 2
[1] 2 4 6 8 10
x.vec * y.vec
[1] -1 -4 0 8 20
x.vec/2
[1] 0.5 1.0 1.5 2.0 2.5
x.vec/y.vec
x.vec²
[1] 1 4 9 16 25
x.vec^z.vec
[1] 1 4 27 64 625
y.vec/2
[1] -0.5 -1.0 0.0 1.0 2.0
y.vec/x.vec
[1] -1.0 -1.0 0.0 0.5 0.8
y.vec %% 3 # modular arithmetic remainder
[1] 2 1 0 2 1
y.vec %/% 3 # integer division
[1] -1 -1 0 0 1
y.vec %/% x.vec
[1] -1 -1 0 0 0
```

2.5.

```
(logic vector)
 TRUE, FALSE. T F. \{R\}
(relation/comparison operator)
 <, <=, >, >=, &, &&
(AND), | , | | (OR),
 ==
 != .
Relation/Comparison Operator
x.vec <- 1:5
y.vec \leftarrow (x.vec > 2)
y.vec
[1] FALSE FALSE TRUE TRUE TRUE
any(x.vec > 2)
[1] TRUE
all(x.vec > 2)
[1] FALSE
x.vec <- 1:5
y.vec <- c(0, 2, 4, 6, 8)
#
x.vec < 2
[1] TRUE FALSE FALSE FALSE
x.vec<= 2
[1] TRUE TRUE FALSE FALSE FALSE
x.vec == 2
[1] FALSE TRUE FALSE FALSE FALSE
x.vec != 2
[1] TRUE FALSE TRUE TRUE TRUE
x.vec < y.vec
[1] FALSE FALSE TRUE TRUE TRUE
x.vec < (y.vec - 2)
[1] FALSE FALSE FALSE FALSE TRUE
x.vec <= y.vec</pre>
[1] FALSE TRUE TRUE TRUE TRUE
x.vec \leftarrow (y.vec - 2)
[1] FALSE FALSE FALSE TRUE TRUE
x.vec == y.vec
[1] FALSE TRUE FALSE FALSE
x.vec == (y.vec - 2)
[1] FALSE FALSE FALSE TRUE FALSE
x.vec != y.vec
[1] TRUE FALSE TRUE TRUE TRUE
x.vec != (y.vec - 2)
[1] TRUE TRUE TRUE FALSE TRUE
```

```
Logical Operator: AND OR XOR
x.vec <- 1:5
y.vec \leftarrow c(0, 2, 4, 6, 8)
(x.vec > 0) & (y.vec > 0) # return vector AND
[1] FALSE TRUE TRUE TRUE TRUE
(x.vec > 0) && (y.vec > 0) # return scalar AND
[1] FALSE
(x.vec > 0) & ((y.vec - 3) > 0)
 # return vector AND
[1] FALSE FALSE TRUE TRUE TRUE
((x.vec-2) > 0) && ((y.vec - 3) > 0) # return scalar AND
[1] FALSE
(x.vec > 0) & ((y.vec + 3) > 0)
 # return vector AND
[1] TRUE TRUE TRUE TRUE TRUE
((x.vec-2) > 0) && ((y.vec + 3) > 0) # return scalar AND
[1] FALSE
(x.vec > 0) | (y.vec > 0) # return vector OR
[1] TRUE TRUE TRUE TRUE TRUE
((x.vec-2) > 0) | ((y.vec-3) > 0)
[1] FALSE FALSE TRUE TRUE TRUE
(x.vec > 0) \mid \mid (y.vec > 0) # return scalar OR
[1] TRUE
((x.vec-2) > 0) | | ((y.vec - 3) > 0)
[1] FALSE
(x.vec > 0) \mid \mid ((y.vec + 3) > 0) # return scalar OR
[1] TRUE
((x.vec-2) > 0) | | ((y.vec + 3) > 0)
[1] TRUE
xor((x.vec > 0), (y.vec > 0)) # return vector exclusive OR
[1] TRUE FALSE FALSE FALSE FALSE
xor(((x.vec - 2) > 0), ((y.vec - 3) > 0))
[1] FALSE FALSE FALSE FALSE
xor(((x.vec - 2) > 0), ((y.vec + 3) > 0))
[1] TRUE TRUE FALSE FALSE
xx.vec \leftarrow (x.vec \leftarrow 3)
yy.vec \leftarrow (y.vec >= 4)
xx.vec
[1] TRUE TRUE TRUE FALSE FALSE
yy.vec
```

2.6.

```
[1] FALSE FALSE TRUE TRUE TRUE

#

xx.vec && yy.vec
[1] FALSE
xx.vec & yy.vec
[1] FALSE FALSE TRUE FALSE FALSE
xx.vec || yy.vec
[1] TRUE
xx.vec | yy.vec
[1] TRUE TRUE TRUE TRUE
xor(xx.vec, yy.vec)
[1] TRUE TRUE FALSE TRUE TRUE
```

```
names() . , unname()
names(x.vec) <- NULL</pre>
vector names
x.vec <- c(
 age = 50,
 chol = 220,
dbp = 84,
sbp = 132
) # directly
x.vec
age chol dbp sbp
50 220 84 132
names(x.vec)
[1] "age" "chol" "dbp" "sbp"
x.vec \leftarrow c(55, 236, 80, 140)
names(x.vec) <- c("age", "chol", "sbp", "dbp")</pre>
y.vec.name <- names(x.vec)</pre>
y.vec <- c(60, 214, 90, 144)
names(y.vec) <- y.vec.name</pre>
y.vec
age chol sbp dbp
60 214 90 144
```

#### 2.7 Inxex

```
(length)
 (index) ,
 (index)
 [i],
() .
Vector Indexing
positive integer
x.vec <- 1:50
x.vec[7]
[1] 7
x.vec[11:15]
[1] 11 12 13 14 15
y.vec <- x.vec[11:15]
y.vec
[1] 11 12 13 14 15
negative integer
z.vec <- 6:10
z.vec[-c(2, 4)]
[1] 6 8 10
character string
fruit.vec \leftarrow c(5, 10, 1, 20)
fruit.vec
[1] 5 10 1 20
names(fruit.vec) <- c("orange", "banana", "apple", "peach")</pre>
fruit.vec
orange banana apple peach
5 10
 1
lunch.vec <- fruit.vec[c("apple", "orange")]</pre>
lunch.vec
apple orange
1
logical index
x.vec \leftarrow c(NA, -2, -1, NA, 1, 2, NA) # NA = missing value
[1] NA -2 -1 NA 1 2 NA
y.vec <- x.vec[!is.na(x.vec)] # !is.na() = check missing value
y.vec
[1] -2 -1 1 2
z.vec <- x.vec[x.vec > 0 & !is.na(x.vec)]
z.vec
[1] 1 2
x.vec[x.vec < 0] # Note: NA
[1] NA -2 -1 NA NA
y.vec[y.vec < 0]</pre>
[1] -2 -1
z.vec[z.vec < 0]</pre>
```

## numeric(0)

### 2.8 ( ) Missing Values

```
(missing value, incomplete data**), R , , \mathbb{N}A , (\mathbb{N}A = \mathbb{N}A)
Not Available), R NaN = Not \ a \ Number , NULL , (NA) . is.nan() . . .
na.omit(), na.fail(), na.exclude(), na.action() . complete.cases()
 , R
missing value
z.vec \leftarrow c(1:2, NA)
is.na(z.vec)
[1] FALSE FALSE TRUE
log(z.vec)
[1] 0.0000000 0.6931472
z.vec / 0
[1] Inf Inf NA
0 / 0
[1] NaN
Inf - Inf
[1] NaN
is.na(z.vec)
[1] FALSE FALSE TRUE
is.nan(z.vec)
[1] FALSE FALSE FALSE
is.nan(0 / 0)
[1] TRUE
x.vec \leftarrow c(1, 2, NA, 4, NA, 5, 6)
bad <- is.na(x.vec)</pre>
x.vec[!bad]
[1] 1 2 4 5 6
x.vec \leftarrow c(1, 2, NA, 4, NA, 5, 6)
y.vec <- c("a", "b", NA, "d", NA, "f", "g")
good <- complete.cases(x.vec, y.vec)</pre>
good
[1] TRUE TRUE FALSE TRUE FALSE TRUE TRUE
x.vec[good]
[1] 1 2 4 5 6
y.vec[good]
[1] "a" "b" "d" "f" "g"
```

```
data(airquality)
airquality[1:6,]
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2
 36
 118 8.0
 72
 2
 12 149 12.6
3
 74
 5
 3
4
 18
 313 11.5
 5
 62
5 NA NA 14.3
6 28 NA 14.9
 5
 66
good <- complete.cases(airquality)</pre>
airquality[good,][1:6,]
Ozone Solar.R Wind Temp Month Day
1
 41 190 7.4
 67
 1
 118 8.0
2
 36
 72
3
 12 149 12.6
 5 3
 74
4
 18 313 11.5
 62
 5 4
7
 23
 299 8.6
 65
 5
 7
8 19 99 13.8
```

#### 2.9 Factor

```
(categorical data), .
 (nominal variable) (ordinal variable),
. \quad , \qquad 4 \quad : \quad , \quad , \quad , \quad \quad I, \; II, \; III, \; IV \quad 4 \; \; . \qquad \qquad 1,2,3,4,...
 , \{R\} .
 , \{R\}
 \{R\} ,
 factor()
factor(x = character(), levels, labels = levels,
 exclude = NA, ordered = is.ordered(x), nmax = NA)
 \bullet \quad \mathtt{x} \qquad , \qquad , \qquad , \quad \left\{ \mathbf{R} \right\} \qquad .
 levels
 labels
 • exclude = NA
 ordered = is.ordered(x)
 • nmax = NA .
```

2.9. FACTOR 29

```
factor()
sex <- c("male", "female", "male", "male", "female")</pre>
[1] "male" "female" "male" "female"
class(sex)
[1] "character"
sex <- factor(sex)</pre>
sex
[1] male female male female
Levels: female male
class(sex)
[1] "factor"
factor() + levels
sex <- c("male", "female", "male", "male", "female")</pre>
sex <- factor(sex, levels = c("female", "male"))</pre>
[1] male female male female
Levels: female male
factor() + levels + labels
x.chr = c("male", "male", "female", "female")
factor(x.chr, levels = c("male", "female", "bisex"))
[1] male male female female
Levels: male female bisex
factor(x.chr, levels = c("male", "female", "bisex"),
 labels = c("m", "f", "b"))
[1] m m f f
Levels: m f b
factor() + exclude
factor() + exclude
pain <- c("none", "mild", "moderate", "severe", NA)</pre>
factor(pain) # NA is NOT a level.
[1] none
 mild
 moderate severe
Levels: mild moderate none severe
factor(pain, exclude = NA) # NA is NOT a level.
[1] none
 mild
 moderate severe
Levels: mild moderate none severe
factor(pain, exclude = c(NA)) # NA is NOT a level.
[1] none
 mild
 moderate severe <NA>
Levels: mild moderate none severe
factor(pain, exclude = NULL) # NA is a level.
[1] none
 mild
 moderate severe
Levels: mild moderate none severe <NA>
factor(pain, exclude = "mild") # NA is a level.
[1] none
 <NA>
 moderate severe <NA>
Levels: moderate none severe <NA>
```

```
pain <- factor(pain, exclude = c("mild", NA))</pre>
pain # mild and NA are NOT levels.
[1] none \langle NA \rangle moderate severe \langle NA \rangle
Levels: moderate none severe
 (unordered factor),
 (nominal variable),
{R} factor()
 (level),
 levels()
 , \qquad . \qquad \{R\}
 levels()
 , \{R\}
 levels() ,
 (reference level),
(contrast comparison). relevel(),
unorder
level()
gender <- c("M", "F", "M", "M", "F")</pre>
gender <- factor(gender)</pre>
gender
[1] M F M M F
Levels: F M
levels(gender)
[1] "F" "M"
levels(gender) <- c("Female", "Male")</pre>
gender
[1] Male Female Male Female
Levels: Female Male
hypertension <- c("Lo", "Mod", "Hi", "Mod", "Lo", "Hi", "Lo")
hypertension <- factor(hypertension)</pre>
hypertension
[1] Lo Mod Hi Mod Lo Hi Lo
Levels: Hi Lo Mod
relevel()
relevel(hypertension, ref = "Lo") # reset a reference level
[1] Lo Mod Hi Mod Lo Hi Lo
Levels: Lo Hi Mod
 as.integer()
 1
convert to numerical values
hypertension <- c("Lo", "Mod", "Hi", "Mod", "Lo", "Hi", "Lo")
hypertension <- factor(hypertension)</pre>
levels(hypertension)
[1] "Hi" "Lo" "Mod"
hypertension
[1] Lo Mod Hi Mod Lo Hi Lo
Levels: Hi Lo Mod
as.integer(hypertension)
[1] 2 3 1 3 2 1 2
```

2.9. FACTOR 31

```
levels(hypertension) <- list("Low" = "Lo",</pre>
 "Moderate" = "Mod",
 "High" = "Hi")
hypertension
[1] Low
 Moderate High
 Moderate Low
 High
 Low
Levels: Low Moderate High
as.integer(hypertension)
[1] 1 2 3 2 1 3 1
convert to numerical values
pain \leftarrow c(7, 8, 6, 6, 8, 7)
pain <- factor(pain)</pre>
pain
[1] 786687
Levels: 6 7 8
as.integer(pain)
[1] 2 3 1 1 3 2
pain.chr = as.character(pain)
pain.chr
-
[1] "7" "8" "6" "6" "8" "7"
pain.num = as.integer(pain.chr)
pain.num
[1] 7 8 6 6 8 7
```

### Chapter 3

```
3.1 Matrix
 , 2- (array).
 dim() .
3.1.1 matrix()
 , \times (\times), matrix().
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
 • nrow = r , (row numbers).
 • ncol = c , (column number).
 • byrow = FALSE: \{R\} , () (column) . , byrow = TRUE. • dimnames = obj.list .
 dim()
numeric
x.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), nrow = 2) # one row first
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

34 CHAPTER 3.

```
dim(x.mat)
[1] 2 3
y.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
y.mat
 [,1] [,2]
##
[1,] 1 4
 2 5
[2,]
[3,] 3 6
z.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, byrow = T)
z.mat
 [,1] [,2] [,3]
##
[1,] 1 2 3
[2,] 4 5 6
p.mat \leftarrow matrix(c(1, 2, 3, 4, 5, 6), ncol = 2, byrow = T)
p.mat
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
w.mat \leftarrow matrix(c(1:18), nrow = 3)
w.mat
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 4 7 10 13 16
[2,] 2 5 8 11 14 17
 3 6 9 12
 15
[3,]
 18
dim(y.mat)
[1] 3 2
character
x.vec <- c("a", "b", "c", "d", "e", "f")
x.vec
[1] "a" "b" "c" "d" "e" "f"
y.mat <- matrix(x.vec, nrow = 2, ncol = 3) # byrow = F
y.mat
##
 [,1] [,2] [,3]
[1,] "a" "c" "e"
[2,] "b" "d" "f"
y.mat <- matrix(x.vec,
 nrow = 2,
 ncol = 3,
 byrow = T)
y.mat
##
 [,1] [,2] [,3]
[1,] "a" "b" "c"
[2,] "d" "e" "f"
dim(y.mat)
```

3.1. MATRIX 35

```
[1] 2 3
dim
m.vec.mat <- 1:10
dim(m.vec.mat) <- c(2, 5)
m.vec.mat
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
dim(m.vec.mat)
[1] 2 5</pre>
```

#### 3.1.2 dimnames()

```
, (column name) (row name), dimnames() . dimnames() matrix . (row name) (column name), rownames() colnames().
```

```
dimnames
x.mat \leftarrow matrix(1:6, nrow = 2, ncol = 3)
dimnames(x.mat) <- list(c("A1", "A2"),</pre>
 c("B1", "B2", "B3"))
x.mat
B1 B2 B3
A1 1 3 5
A2 2 4 6
dim(x.mat)
[1] 2 3
dimnames(x.mat)
[[1]]
[1] "A1" "A2"
##
[[2]]
[1] "B1" "B2" "B3"
rownames(x.mat)
[1] "A1" "A2"
colnames(x.mat)
[1] "B1" "B2" "B3"
m.mat <- matrix(</pre>
 c(1, 2, 3, 11, 12, 13),
 nrow = 2,
 ncol = 3,
 byrow = TRUE,
 dimnames = list(c("row1", "row2"),
 c("C1", "C2", "C3"))
```

36 CHAPTER 3.

### 3.2 Matrix Index

```
matrix index
x.mat <- matrix(c(1:12), 3, 4)
x.mat
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
x.mat[2, 3] \leftarrow 30
x.mat
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 30 11
[3,] 3 6 9 12
x.mat[2,]
[1] 2 5 30 11
x.mat[, 3]
[1] 7 30 9
x.mat[c(1, 3), c(2, 4)]
[,1] [,2]
[1,] 4 10
[2,] 6 12
```

```
m.mat <- matrix(</pre>
 c(1, 2, 3, 11, 12, 13),
 nrow = 2,
 ncol = 3,
 byrow = TRUE,
 dimnames = list(c("row1", "row2"),
 c("C1", "C2", "C3"))
)
m.mat
C1 C2 C3
row1 1 2 3
row2 11 12 13
m.mat[, c("C1", "C2")]
C1 C2
row1 1 2
row2 11 12
m.mat[c("row2"),]
C1 C2 C3
11 12 13
m.mat[c("row1"), c("C1", "C3")]
C1 C3
1 3
 , , drop = FALSE.
 1 \quad 1 \quad ,
dimension reduction
x.mat <- matrix(1:8, 2, 4)
x.mat[1,] # reduces to a vector
[1] 1 3 5 7
x.mat[1, , drop = FALSE] # remains as a matrix
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
3.2.1
 : rbind() cbind()
 (no dimension), , 1 \times k / , k \times 1 / , ,
 \{R\}
 ({\rm row\ number}) \qquad ({\rm column\ number}) \qquad , \qquad {\rm recycle}
matrix cbind() and rbind()
x.vec <- c(1, 2, 3)
y.vec <- c(8, 9, 10)
rbind(x.vec, y.vec) # vector as row vector
[,1] [,2] [,3]
```

38 CHAPTER 3.

```
x.vec 1 2 3
y.vec 8 9 10
cbind(x.vec, y.vec) # vector as col vector
x.vec y.vec
[1,] 1 8
[2,] 2 9
[3,] 3 10
x.mat <- matrix(c(11:16), 2, 3)</pre>
rbind(x.mat, x.vec) # vector as row vector
[,1] [,2] [,3]
 11 13 15
##
##
 12 14 16
x.vec 1 2 3
cbind(x.mat, y.vec) # warning
Warning in cbind(x.mat, y.vec): number of rows of result is not a multiple of
vector length (arg 2)
y.vec
[1,] 11 13 15 8
[2,] 12 14 16 9
x.vec <- c(1, 2)
y.vec <-c(8, 9)
rbind(x.vec, y.vec) # vector as row vector
[,1] [,2]
x.vec 1 2
y.vec 8 9
cbind(x.vec, y.vec) # vector as col vector
x.vec y.vec
[1,] 1 8
[2,]
 2 9
x.mat <- matrix(c(11:14), 2, 2)
z.mat <- rbind(x.mat, x.vec) # vector as row vector</pre>
z.mat
##
 [,1] [,2]
10
x.vec 1 2
cbind(x.mat, y.vec) # vector as col vector
y.vec
[1,] 11 13 8
[2,] 12 14 9
rbind(z.mat, y.vec) # vector as row vector
[,1] [,2]
```

```
##
 11 13
 12 14
x.vec 1 2
y.vec 8 9
cbind(z.mat, y.vec) # warning
Warning in cbind(z.mat, y.vec): number of rows of result is not a multiple of
vector length (arg 2)
y.vec
 11 13 8
12 14 9
##
##
x.vec 1 2 8
3.2.2
 Array
 (mode) p- , p- . array() .
 (array)
dimnames()
 . dimnames() array
array()
a.vec <- 1:24
a.vec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
b.array \leftarrow array(a.vec, dim = c(4, 3, 2),
 dimnames = list(c("x1", "x2", "x3", "x4"),
 c("y1", "y2", "y3"),
 c("z1", "z2")))
b.array
, , z1
##
y1 y2 y3
x1 1 5 9
x2 2 6 10
x3 3 7 11
x4 4 8 12
##
, , z2
##
y1 y2 y3
x1 13 17 21
x2 14 18 22
x3 15 19 23
x4 16 20 24
```

40 CHAPTER 3.

```
mode(b.array)
[1] "numeric"
dim(b.array)
[1] 4 3 2
length(b.array)
[1] 24
dimnames(b.array)
[[1]]
[1] "x1" "x2" "x3" "x4"
##
[[2]]
[1] "y1" "y2" "y3"
##
[[3]]
[1] "z1" "z2"
rownames(b.array)
[1] "x1" "x2" "x3" "x4"
colnames(b.array)
[1] "y1" "y2" "y3"
array index
a.vec
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
b.array \leftarrow array(a.vec, dim = c(4, 3, 2),
 dimnames = list(c("x1", "x2", "x3", "x4"),
 c("y1", "y2", "y3"),
 c("z1", "z2")))
b.array
, , z1
##
y1 y2 y3
x1 1 5 9
x2 2 6 10
x3 3 7 11
x4 4 8 12
##
, , z2
##
y1 y2 y3
x1 13 17 21
x2 14 18 22
x3 15 19 23
x4 16 20 24
b.array[3, 2, 1]
[1] 7
b.array[4, 3, 2]
```

3.3. LIST 41

```
[1] 24
b.array[2, c(1, 3), 1]
y1 y3
2 10
b.array[3, c(2, 3), 1]
y2 y3
7 11
b.array[2, ,]
z1 z2
y1 2 14
y2 6 18
y3 10 22
b.array[, 2,]
z1 z2
x1 5 17
x2 6 18
x3 7 19
x4 8 20
b.array[, , 2]
y1 y2 y3
x1 13 17 21
x2 14 18 22
x3 15 19 23
x4 16 20 24
3.3
 List
(order sequence), , ,
3.3.1
 list()
 list()
 . {R}
 , , , , , ,
list()
list w/o component names
x.vec <- 1:4
y.vec <- c("Male", "Female")</pre>
```

z.mat <- matrix(1:9, nrow = 3, ncol = 3)
xyz.list <- list(x.vec, y.vec, z.mat)</pre>

xyz.list ## [[1]] ## [1] 1 2 3 4 42 CHAPTER 3.

```
[[2]]
[1] "Male" "Female"
[[3]]
 [,1] [,2] [,3]
[1,] 1 4 7
 2 5
[2,]
 8
[3,] 3 6 9
mode(xyz.list)
[1] "list"
length(xyz.list)
[1] 3
dim(xyz.list)
NULL
names(xyz.list)
NULL
class(xyz.list)
[1] "list"
list w/ component names
x.num \leftarrow c(1, 3, 6)
y.str <- c("chocolate", "vanilla", "strawberry")</pre>
xy.list <- list(x.num.var = x.num, y.str.var = y.str)</pre>
xy.list
$x.num.var
[1] 1 3 6
$y.str.var
[1] "chocolate" "vanilla" "strawberry"
list = data matrix
id.vec \leftarrow c(1, 2, 3, 4)
age.vec <-c(35, 55, 45, 25)
sex.vec <- c("Male", "Male", "Female", "Female")</pre>
disease.vec <- c("Yes", "No", "No", "Yes")</pre>
x.list <- list(</pre>
 id = id.vec,
 age = age.vec,
 sex = sex.vec,
 disease = disease.vec
)
x.list
$id
[1] 1 2 3 4
##
$age
[1] 35 55 45 25
```

3.3. LIST 43

#### 3.3.2 List Index

```
List.Name , list i.number ,
, , List.Name , list : List.Name[[3]]. , , [[i.number]] [i.number] .
list index
list w/o component names
x.vec <- 1:4
y.vec <- c("Male", "Female")</pre>
z.mat <- matrix(1:9, nrow = 3, ncol = 3)
xyz.list <- list(x.vec, y.vec, z.mat)</pre>
xyz.list
[[1]]
[1] 1 2 3 4
##
[[2]]
[1] "Male" "Female"
##
[[3]]
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
xyz.list[1]
[[1]]
[1] 1 2 3 4
xyz.list[[1]]
[1] 1 2 3 4
xyz.list[2]
[[1]]
[1] "Male" "Female"
xyz.list[[3]]
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,]
 3 6 9
xyz.list[3]
[[1]]
[,1] [,2] [,3]
```

44 CHAPTER 3.

## [1,] 1

```
[2,]
 2
 5 8
[3,] 3 6 9
 (component) comp.name,
 List.Name\$comp.name
List.Name[[comp.name]] . List.Name\$comp.name List.Name[[comp.name]]
 , List.Name\$comp.name . [[i.number]]
list w/ component names
x.vec <- 1:4
y.vec <- c("Male", "Female")</pre>
z.mat <- matrix(1:9, nrow = 3, ncol = 3)
xyz.list <- list(class = x.vec,</pre>
 gender = y.vec,
 score = z.mat)
xyz.list
$class
[1] 1 2 3 4
##
$qender
[1] "Male" "Female"
$score
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3
 6 9
xyz.list$class
[1] 1 2 3 4
xyz.list[["class"]]
[1] 1 2 3 4
xyz.list[["class"]][2]
[1] 2
xyz.list$gender
[1] "Male" "Female"
xyz.list[["gender"]][1]
[1] "Male"
xyz.list$score
[,1] [,2] [,3]
[1,] 1 4 7
[2,]
 2 5 8
[3,] 3
 6 9
xyz.list[["score"]][2, 3]
```

```
[1] 8
```

### 3.4 Data Frame

```
, \quad \{R\} \qquad , \qquad , \qquad , \quad \{R\} \qquad (\textbf{list}) \qquad \texttt{list()}, . \qquad (\textbf{data frame}) \qquad . \qquad (\quad) \quad , \quad , \qquad , \quad , \\ (\textbf{data matrix}), \qquad . \quad . \quad : \{R\} \qquad \{R\} \quad , \quad \{R\} \qquad \{R\} \quad .
```

### 3.5 data.frame()

```
\{R\}
 data.frame()
 () , ,
data frame
id.vec \leftarrow c(1, 2, 3, 4)
age.vec <-c(35, 55, 45, 25)
sex.vec <- c("Male", "Male", "Female", "Female")</pre>
disease.vec <- c("Yes", "No", "No", "Yes")</pre>
x.df <- data.frame(</pre>
 id = id.vec,
 age = age.vec,
sex = sex.vec,
 disease = disease.vec
)
mode(x.df)
[1] "list"
class(x.df)
[1] "data.frame"
x.df
id age sex disease
1 1 35 Male Yes
2 2 55 Male
 No
3 3 45 Female
 No
4 4 25 Female
x.df$age
[1] 35 55 45 25
x.df$disease
[1] "Yes" "No" "No" "Yes"
```

#### 3.5.1 Data Frame Index

46 CHAPTER 3.

```
, (index) , . data.Name , 'i.num' (), data.Name[[3]]. , , , [[i.number]] [i.number] .
 variable.name,
 dataframe.Name[variable.name] dataframe.Name[variable.name]
 . dataframe.Name\$variable.name dataframe.Name[[variable.name]]
 [i] , dataframe.Name\$variable.name . [[i.number]]
data frame index
data(Puromycin)
Puromycin
conc rate
 state
1 0.02 76
 treated
2 0.02 47 treated
3 0.06 97 treated
4 0.06 107 treated
5 0.11 123
 treated
6 0.11 139 treated
7 0.22 159 treated
8 0.22 152 treated
9 0.56 191 treated
10 0.56 201 treated
11 1.10 207 treated
12 1.10 200 treated
13 0.02 67 untreated
14 0.02 51 untreated
15 0.06 84 untreated
16 0.06 86 untreated
17 0.11 98 untreated
18 0.11 115 untreated
19 0.22 131 untreated
20 0.22 124 untreated
21 0.56 144 untreated
22 0.56 158 untreated
23 1.10 160 untreated
Puromycin$rate
[1] 76 47 97 107 123 139 159 152 191 201 207 200 67 51 84 86 98 115 131
[20] 124 144 158 160
Puromycin\state
[1] treated treated treated
 treated treated treated treated
[8] treated treated treated treated untreated untreated
[15] untreated untreated untreated untreated untreated untreated
[22] untreated untreated
Levels: treated untreated
Puromycin[1]
conc
1 0.02
```

'i.number''

```
2 0.02
3 0.06
4 0.06
5 0.11
6 0.11
7 0.22
8 0.22
9 0.56
10 0.56
11 1.10
12 1.10
13 0.02
14 0.02
15 0.06
16 0.06
17 0.11
18 0.11
19 0.22
20 0.22
21 0.56
22 0.56
23 1.10
Puromycin[1][[1]]
[1] 0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10 1.10 0.02 0.02 0.06
[16] 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10
Puromycin$state[1:3]
[1] treated treated treated
Levels: treated untreated
Puromycin[1:3, 1:2]
conc rate
1 0.02 76
2 0.02 47
3 0.06 97
```

48 CHAPTER 3.

# Chapter 4

Table 4.1: DMTKRtabsep.txt DMTKRblanksep.txt:

No	age	sex	DM	DMyr	preAC	prePC	postAC	postPC	Med	SIDE	PREKS	POSKS	ABS	I
1	67	0	0	10	120	160	140	180	0	0	56	92	1	(
2	67	0	0	11	100	150	150	220	0	1	62	62	0	1
3	72	1	0	4	150	200	120	150	2	0	60	94	1	(
4	82	1	0	8	150	200	160	250	0	1	47	90	1	(
5	73	1	0	3	85	110	140	200	0	0	44	88	0	(

, .

50 CHAPTER 4.

```
• 1 (, row), (variable names)
 1 \text{ (row)}, \text{ (column label)}, 2 \text{ (row)}.
 1 (, row).
 1 (, column) (label, identification), (row label).
 () , , .
 (column) (row label).
 , \hspace{1cm} , \hspace{1cm} underscore \hspace{1cm} \underline{\hspace{1cm}}.
 , , , , , , , ,
 , \{R\}
4.2
 ASCII R :
 ASCII . (raw data) ,
 , ASCII , \{R\} ,
 ASCII
 ASCII
\{R\}
 ASCII
 ,\{R\} read.table() read.csv()
\{R\}
 (data frame)
 \{R\} \{R\} , ASCII
 , , scan()
 (variable names) , (column name)
 (the first row)
 (column label).
 (the first column) (row label) (row name).
 (row), .
 () (blank space) , 'Tab' .
 ASCII , comma-separated-variable format CSV
 , ()
 format,
 .csv
 \mbox{(variable name)} \qquad , \quad , \quad \ \ . \ \ (\; , \; \mbox{dot}), \quad \ \ _ \; \mbox{(underscore)}. \quad , \qquad .
 (observed value).
 2 ASCII . , CSV format.
DMTKRblanksep.txt = " " single space separate
Rblanksep.df = read.table("C:/RData/DMTKRblanksep.txt",
```

```
header = TRUE,
 row.names = NULL,
 dec = ".")
head(Rblanksep.df)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67
 0 0 10
 0
 120
 160
 140
 180
 0
 56
 92
 1
2 2 67
 0 0
 11
 100
 150
 150
 220
 0
 1
 62
 62
 0
3 3 72 1 0
 150
 200
 120
 150 2
 0
 60
 94
 1
 0
 4
4 4 82 1 0
 150
 200
 160
 250
 0 1
 47
 90
 1
 0
 8
5 5 73 1 0
 200
 0
 3
 85
 140
 0 0
 88
 0
 110
 44
 0 1
6 6 76
 0 0
 1
 120
 150
 120
 200
 94
 1
str(Rblanksep.df)
 78 obs. of 15 variables:
'data.frame':
$ No
 : int 12345678910...
$ age
 : int 67 67 72 82 73 76 76 77 64 64 ...
$ sex : int 0 0 1 1 1 0 0 0 0 0 ...
 : int 0000000100...
$ DM
$ DMyr : int 10 11 4 8 3 1 1 35 5 5 ...
$ preAC : int 120 100 150 150 85 120 120 200 130 130 ...
$ prePC : int 160 150 200 200 110 150 150 250 180 180 ...
$ postAC: int 140 150 120 160 140 120 120 230 100 100 ...
$ postPC: int 180 220 150 250 200 200 200 300 150 150 ...
$ Med
 : int 002000100...
$ SIDE : int 0 1 0 1 0 1 0 1 0 1 ...
$ PREKS : int 56 62 60 47 44 52 48 42 40 45 ...
$ POSKS : int 92 62 94 90 88 94 96 90 94 96 ...
 : int 1011010110...
$ ABS
$ INFECT: int 0 1 0 0 0 0 0 0 0 0 ...
complete read.table
DMTKRblanksep.txt = " " single space separate
Rblanksep.df = read.table("C:/RData/DMTKRblanksep.txt",
 header = TRUE,
 sep = " ",
 quote = "\"'",
 dec = ".",
 row.names = NULL,
 # col.names,
 as.is = TRUE,
 # as.is = !stringsAsFactors,
 na.strings = c(".", "NA"))
head(Rblanksep.df)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67 0 0 10
 120
 160
 140
 180 0 0
 56
 92
 1
2 2 67
 0 0
 11
 100
 150
 150
 220
 0
 1
 62
 62
 0
 1
3 3 72
 1 0
 150
 200
 120
 150
 2
 0
 60
 94
 1
```

52 CHAPTER 4.

```
4 4 82
 1 0
 150
 200
 160
 250
 90
5 5 73
 1 0
 3
 85
 110
 140
 200
 88
 0
 0
 44
6 6 76
 0 0
 1
 120
 150
 120
 200
 0
 1
 52
 94
 1
 0
str(Rblanksep.df)
'data.frame':
 78 obs. of 15 variables:
 : int 12345678910...
##
 $ No
 $ age
 : int 67 67 72 82 73 76 76 77 64 64 ...
 : int 0011100000...
$ sex
$ DM
 : int 0000000100...
$ DMyr : int 10 11 4 8 3 1 1 35 5 5 ...
$ preAC : int 120 100 150 150 85 120 120 200 130 130 ...
$ prePC : int 160 150 200 200 110 150 150 250 180 180 ...
 $ postAC: int 140 150 120 160 140 120 120 230 100 100 ...
$ postPC: int 180 220 150 250 200 200 200 300 150 150 ...
$ Med : int 002000100...
$ SIDE : int 0 1 0 1 0 1 0 1 0 1 ...
$ PREKS : int 56 62 60 47 44 52 48 42 40 45 ...
$ POSKS : int 92 62 94 90 88 94 96 90 94 96 ...
 : int 101101010...
$ ABS
 $ INFECT: int 0 1 0 0 0 0 0 0 0 0 ...
```

#### 4.3 ASCII R

```
, (comma) ASCII ,
 csv format (comma-
separated-variable format),
 .csv. read.table()
 read.csv()
read data file: DMTKRcsv.csv
read_table.df <- read.table("C:/RData/DMTKRcsv.csv",</pre>
 header = TRUE,
 row.names = NULL,
 sep = ", ",
 dec = ".")
head(read_table.df, n = 3)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
 92
 56
1 1 67 0 0
 10
 120
 160
 140
 180
 0
 0
 1
 0
 100
2 2 67
 0 0
 11
 150
 150
 220
 0
 1
 62
 62
 0
 1
3 3 72
 1 0
 94
 0
 4
 150
 200
 120
 150
 2
 60
 1
simple one
read_csv.df <- read.csv("C:/RData/DMTKRcsv.csv")</pre>
head(read_csv.df, n = 3)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67
 0 0
 10
 120
 160
 140
 180
 0
 0
 56
 92
 1
 0
2 2 67
 0 0
 11
 100
 150
 150
 220
 0
 1
 62
 62
 0
 1
 150
 0
3 3 72
 1 0
 4
 200
 120
 150
 2
 0
 60
 94
 1
```

4.4. R 53

```
read_csv.df <- read.csv("C:/RData/DMTKRcsv.csv",</pre>
 header = TRUE,
 row.names = NULL,
 sep = ",",
 dec = ".")
head(read csv.df, n = 3)
No age sex DM DMyr preAC prePC postAC postPC Med SIDE PREKS POSKS ABS INFECT
1 1 67 0 0 10
 120 160
 140 180 0 0
 56
 0
2 2 67 0 0 11
 100
 150
 220
 62
 1
 150
 1
 62
 0
3 3 72 1 0 4
 150
 200
 120
 150
 2 0 60 94
```

#### 4.4 R

```
, (contributed packages)
 , data() \{\mathrm{R}\}
library(help = "datasets") {R}
 package.name
 data(package = "package.name")
{\tt data(data.name)} \qquad \{R\} \qquad {\tt data.name} \qquad , \quad {\tt data(package.data.name,}
data() # check names of datasets
data(Orange) # use {R} build-in dataset = Orange
help(Orange)
head(Orange)
Grouped Data: circumference ~ age / Tree
Tree age circumference
1 1 118
2 1 484
 58
3 1 664
 87
 1 1004
4
 115
5
 1 1231
 120
6 1 1372
 142
#
library(MASS)
help(package = MASS)
data(package = "MASS") # check MASS package data set
data(VA, package = "MASS") # use MASS package dataset = VA
help(VA)
head(VA)
stime status treat age Karn diag.time cell prior
 1 1 69
 7 1
1 72
 60
 1
2 411
 1
 1 64
 70
 5
 10
3 228
 1
 1 38
 60
 3
 1
 0
 1 1 63
4 126
 60
 10
```

54 CHAPTER 4.

```
5 118 1 1 65
 70
 11 1
6 10
 1 49
 20
 {R}
4.5
 \{R\}
 , . write.table() write.csv(). .
 \bullet \quad x = \{R\}
 • file =
 • append = FALSE
 • quote = "\""
 • sep = " "
 • eol = "n"
 • na = NA NA
 • dec = '.'
 • row.names = TRUE row names
 • col.names = TRUE
 (column names)
 • qmethod = c("escape", "double")
 • fileEncoding = ""
 write.csv()
 write.table() , sep = ",".
 \{R\}
4.6
 \texttt{saveRDS()} \qquad \{R\} \qquad . \qquad \texttt{readRDS()} \qquad \{R\}
 \{R\} . readRDS() , . \{R\} save()
 data frame
 load()
saveRDS() and save()
x < -c(1:5)
saveRDS(x, file = "C:/RData/x.Rds")
save(x, file = "C:/RData/x.Rda") # working directory
readRDS()
new_x <- readRDS(file = "C:/RData/x.Rds")</pre>
new_x
[1] 1 2 3 4 5
load() -- note the result
new_x <- load(file = "C:/RData/x.Rda")</pre>
new_x
[1] "x"
Х
```

## [1] 1 2 3 4 5

## Chapter 5

```
. \ Leland Wilkinson (1999), The Grammar of Graphics.
{R}
 . {R}
 (interactive) \{R\} ,
\{R\}
 ,\,\{\mathrm{R}\}
 graphic device),
 , pdf,
ps, jpg, png .
 , \, {\tt grid} \ \, , \quad {\tt Splus} \quad {\tt Trellis} \quad . \quad {\tt grid} \quad , \qquad \qquad {\tt lattice},
\{R\}
5.1
Edward Tufte (2006) Beautiful Evidence
 ggplot2
5.2
 , \qquad \mathsf{ggplot2} \qquad , \qquad , \qquad \mathsf{ggplot2}
 ggplot2
 R base .
```

, , https://www.r-graph-gallery.com/index.html.

```
ggplot2
 . ggplot2
 (layers),
 • data:
 • mapping (aes):
 - x- \, , y- \, , treat, fill, shape, size, etc.
 • geoms: geometric object
 - point, line, bar, shapes, ribbon, polygon, smooth, text etc.
 • stat: / , statistics
 • position:
 position adjustments.
Table: ggplot2
 ggplot()
ggplot(data = data_name,
 aes(x = variable_name,
 y = variable_name,
 ... <other variable_name mappings>)) +
 geom_<type}() +</pre>
 , %
Prentice (1973)
 Veteran's Administration
 survVATrial.csv.
 treat (therapy)
 : 0 = : 1 =
 cellcode
 ; 1 = ; 2 = ; 3 = ; 4 =
 time
 : 0 = : 1 =
 \operatorname{censor}
 diagtime
 Karnofsky performance score,
 diagtime
 age
 ()
 ; 0 = ; 1 =
 prior
dd <- read.table("./Data/survVATrial.csv",</pre>
 header = TRUE,
 sep = ",",
 quote = "\""",
 dec = ".",
 row.names = NULL,
 # col.names,
 as.is = TRUE,
 # as.is = !stringsAsFactors,
 na.strings = c(".", "NA"))
head(dd)
treat cellcode time censor diagtime kps age prior
```

```
1
 72
 60
 7 69
 0
 0
 411
 1
 70
 5
 64
 10
 1
3
 0
 1
 228
 1
 60
 3
 38
 0
4
 0
 1 126
 60
 9
 63
 10
 1
5
 0
 1 118
 1
 70
 11
 65
 10
6
 0
 10
 5
 1
 1
 20
 49
 0
str(dd)
'data.frame':
 137 obs. of 8 variables:
$ treat : int 0000000000...
$ cellcode: int 1 1 1 1 1 1 1 1 1 ...
$ time : int 72 411 228 126 118 10 82 110 314 100 ...
$ censor : int 1 1 1 1 1 1 1 1 0 ...
$ diagtime: int 60 70 60 60 70 20 40 80 50 70 ...
 : int 75391151029186...
$ kps
$ age
 : int 69 64 38 63 65 49 69 68 43 70 ...
$ prior : int 0 10 0 10 10 0 10 0 0 ...
dd$treat <- factor(dd$treat, labels = c("placebo", "test"))</pre>
dd$cellcode <- factor(dd$cellcode,
 labels = c("squamous", "small", "adeno", "large"))
dd$censor <- factor(dd$censor, labels = c("survival", "dead"))</pre>
dd$prior <- factor(dd$prior, labels = c("no", "yes"))</pre>
head(dd)
 treat cellcode time censor diagtime kps age prior
1 placebo squamous
 72 dead
 60
 7 69
 70
2 placebo squamous 411
 dead
 5 64
 yes
3 placebo squamous
 228
 dead
 60
 3 38
 no
 9 63
4 placebo squamous 126
 dead
 60
 yes
5 placebo squamous 118
 dead
 70 11 65
 yes
6 placebo squamous
 dead
 5 49
 10
 20
 no
str(dd)
 137 obs. of 8 variables:
'data.frame':
$ treat : Factor w/ 2 levels "placebo", "test": 1 1 1 1 1 1 1 1 1 1 ...
$ cellcode: Factor w/ 4 levels "squamous", "small",..: 1 1 1 1 1 1 1 1 1 1 1 ...
$ time : int 72 411 228 126 118 10 82 110 314 100 ...
$ censor : Factor w/ 2 levels "survival", "dead": 2 2 2 2 2 2 2 2 1 ...
$ diagtime: int 60 70 60 60 70 20 40 80 50 70 ...
$ kps
 : int 75391151029186...
$ age
 : int 69 64 38 63 65 49 69 68 43 70 ...
$ prior : Factor w/ 2 levels "no","yes": 1 2 1 2 2 1 2 1 1 1 ...
```

#### 5.3

```
(distribution), . (frequency table), (bar plot) (pie chart).
```

, , (Table) .

### 5.3.1

• : .

```
pie chart: ggplot2 do not have a simple geom_pie()
use R base pie()
cellcode.tab <- table(dd$cellcode)</pre>
cellcode.tab
##
squamous small
 adeno large
35 48 27
 27
prop.table(cellcode.tab)
squamous small
 adeno
 large
0.2554745 0.3503650 0.1970803 0.1970803
barplot(cellcode.tab)
round(barplot(cellcode.tab), 4)
```



```
[,1]
[1,] 0.7
[2,] 1.9
[3,] 3.1
[4,] 4.3
```

pie(cellcode.tab)



```
library(ggplot2)
bar chart
ggplot(data = dd, aes(x = cellcode)) +
 geom_bar(treat = "blue")
Warning: Ignoring unknown parameters: treat
```



```
ggplot(data = dd, aes(x = cellcode)) +
 geom_bar(treat = "blue") +
 coord_flip()
Warning: Ignoring unknown parameters: treat
```



```
ggplot(data = dd, aes(y = cellcode)) +
 geom_bar(treat = "blue")
Warning: Ignoring unknown parameters: treat
```



```
pie chart: no simple solution
clar.freq <- data.frame(cellcode.tab)</pre>
names(clar.freq)[1] <- "cellcode"</pre>
clar.freq
 cellcode Freq
##
1 squamous
2
 small
 48
3
 adeno
 27
 large 27
ggplot(data = clar.freq, aes(x = "", y = Freq, fill = cellcode)) +
 geom_bar(width = 1, stat = "identity") +
 coord_polar("y", start = 0)
```



Freq

```
ggplot(data = clar.freq, aes(x = "", y = Freq, fill = cellcode)) +
 geom_bar(stat = "identity", width = 1, treat = "white") +
 coord_polar(theta = "y", start = 0) +
 theme_void() # remove background
Warning: Ignoring unknown parameters: treat
```



#### 5.3.2

• : , .

```
two categorical vtriables
table(dd$treat)
##
placebo test
69 68
table(dd$cellcode)
##
squamous small adeno large
35 48 27 27
twoway.tab <- table(dd$treat, dd$cellcode)</pre>
twoway.tab
##
squamous small adeno large
placebo 15 30 9 15
test 20 18 18 12
cell proportion
cell.prop <- prop.table(twoway.tab, margin=NULL)</pre>
round(cell.prop, 3)
##
##
 squamous small adeno large
```

```
placebo 0.109 0.219 0.066 0.109
test 0.146 0.131 0.131 0.088
conditional on row sum to 1
cond_row_prop <- prop.table(twoway.tab, margin = 1)</pre>
round(cond_row_prop, 3)
##
##
 squamous small adeno large
placebo 0.217 0.435 0.130 0.217
test 0.294 0.265 0.265 0.176
apply(cond_row_prop, 1, sum) # rows sum to 1
placebo test
1 1
conditional on column sum to 1
cond_col_prop <- prop.table(twoway.tab, margin = 2)</pre>
round(cond_col_prop, 3)
##
##
 squamous small adeno large
placebo 0.429 0.625 0.333 0.556
test 0.571 0.375 0.667 0.444
apply(cond_col_prop, 2, sum) # cols sum to 1
squamous small adeno large
1 1
 1 1
side-by-side bar plot
barplot(twoway.tab,
 beside = TRUE,
 main = "treat By cellcode",
 xlab = "clarty")
```

## treat By cellcode



```
Stacked Bar Plot
barplot(twoway.tab,
 beside = FALSE,
 main = "treat By cellcode",
 xlab = "treat")
```

## treat By cellcode



```
ggplot2
Automatically stack
library(ggplot2)
ggplot(data = dd, aes(x = cellcode, fill = treat)) +
 geom_bar()
```







```
side-by-side
ggplot(data = dd, aes(x = cellcode, fill = treat)) +
 geom_bar(position = "dodge")
```



ggplot(data = dd, aes(x = cellcode, fill = treat)) +
 geom\_bar(position = "fill")



### **5.4**

### 5.4.1

```
use R base pie()
histogram
hist(dd$time,
 freq = TRUE,
 main = "time histogram",
 xlab = "time")
```

5.4.

# time histogram



```
hist(dd$time,
 freq = FALSE,
 main = "time histogram",
 xlab = "time")
```

# time histogram



5.4. 73



time

# **Normal QQ Plot: time**



**Theoretical Quantiles** 

```
density plot
plot(density(dd$time),
 pch = 16,
 main = "Density Plot",
 xlab = "time",
 ylab = "density")
```

5.4. 75

# **Density Plot**



```
ggplot2
histogram
ggplot(data = dd, aes(x = time)) +
 geom_histogram()
```



```
box plot
ggplot(dd, aes(x = "", y = time)) +
 geom_boxplot()
```

5.4.



```
violin plot
ggplot(dd, aes(x = "", y = time)) +
 geom_violin()
```



```
density plot
ggplot(data = dd, aes(x = time)) +
 geom_freqpoly()
```

5.4.



ggplot(data = dd, aes(x = time)) +
stat\_bin(geom = "area")



```
ggplot(data = dd, aes(x = time)) +
stat_bin(geom = "line")
```



#### 5.4.2

```
\bullet \quad \ \, \mathbf{scatter} \,\, \mathbf{plot} = \mathbf{X} \,\, \& \,\, \mathbf{Y} =
```

```
R base
scatter plot
basic
plot(x = dd$diagtime, y = dd$time)
```

5.4. 81



## formulat y ~ x, data = data\_name)
plot(time ~ diagtime, data = dd)



```
ggplot
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_point()
```



geom\_point(size = 5)

5.4. 83







```
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_jitter(size = 5, alpha = 1/2)
```



```
ggplot(data = dd, aes(x = diagtime, y = time)) +
 geom_jitter(size = 5, alpha = 0.3) +
 geom_rug(col = "steelblue", alpha = 0.1, size = 1.5)
```

5.4. 85



```
add linear line or smoothing line
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_point() +
geom_smooth(method = "lm")
```



```
ggplot(data = dd, aes(x = diagtime, y = time)) +
geom_point() +
geom_smooth(se = FALSE)
```

5.4.



```
ggplot(data = dd, aes(x = diagtime, y = time)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 geom_smooth(se = FALSE)
\textit{## scatter plot + marginal distribution}
library(ggExtra)
classical
p <- ggplot(dd, aes(x = diagtime, y = time)) +</pre>
 geom_point() +
 theme(legend.position = "none")
scatter plot + marginal histogram
ggMarginal(p, type = "histogram", color = "purple")
scatter plot + marginal density
ggMarginal(p, type = "density")
scatter plot + marginal boxplot
ggMarginal(p, type = "boxplot")
```



# 5.5

```
• +
• +
• + = +
```

```
one continuous + one categorical
ggplot(data = dd, aes(x = time)) +
 geom_histogram(aes(fill = treat))
```









```
#
ggplot(data = dd, aes(x = treat, y = time, fill = treat)) +
 geom_boxplot()
```



```
ggplot(data = dd, aes(x = treat, y = time, fill = treat)) +
 geom_boxplot() +
 geom_jitter(color = "purple", size = 2, alpha = 0.8)
```



geom\_violin()



```
ggplot(data = dd, aes(x = treat, y = time, fill = treat)) +
 geom_violin() +
 geom_jitter(color = "purple", size = 2, alpha = 0.8) +
 ggtitle("Violin chart by treatment") +
 xlab("treatment")
```





```
ggplot2
two continuous + one categorical
ggplot(data = dd, aes(x = diagtime, y = time, color = treat)) +
 geom_point(size = 4)
5.5.2 +
```

















#### 5.5.3

, , , .



## ggplot2
library(GGally)
GGally::ggpairs(data = con.df)







## 1. VA Lung Cancer Trial



# 2. VA Lung Cancer Trial



## 3. VA Lung Cancer Trial



• Try by yourself!

```
more advanced
my_fn <- function(data, mapping, ...){
 p <- ggplot(data = data, mapping = mapping) +
 geom_point() +
 geom_smooth(method = loess, se = FALSE, fill = "red", treat = "red", ...) +
 geom_smooth(method = lm, se = FALSE, fill = "blue", treat = "blue", ...)
 p
}
GGally::ggpairs(data = con.df,
 lower = list(continuous = my_fn))</pre>
```



```
Bubble plot
ggplot(data = dd, aes(x = diagtime, y = time, size = age)) +
 geom_point(alpha = 0.3) +
 scale_size(range = c(.1, 15), name="Age Bubbles")
```



```
ggplot(data = dd, aes(x = diagtime, y = time, size = age)) +
 geom_point(alpha = 0.3) +
 scale_size(range = c(.1, 15), name="Age Bubbles")
```



```
ggplot(data = dd, aes(x = diagtime, y = time, size = age, color = treat)) +
 geom_point(alpha = 0.3) +
scale_size(range = c(.1, 24), name = "")
```

5.6.



# 5.6

```
plot by treat
ggplot(data = dd, aes(x = diagtime, y = time)) + geom_jitter() +
facet_grid(. ~ treat)
```







5.6.

```
plot by cellcode
ggplot(data = dd, aes(x = diagtime, y = time)) + geom_jitter() +
facet_grid(. ~ cellcode)
```



```
two factors
ggplot(data = dd, aes(x = diagtime, y = time)) + geom_jitter() +
facet_grid(treat ~ cellcode)
```



# **Bibliography**

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.20.