Soluções para problemas selecionados da apostila Otimização Matemática e Pesquisa Operacional de André R. Fioravanti e Matheus Souza

Plínio Santini Dester (p103806@dac.unicamp.br)

18 de janeiro de 2022

6 Problemas

6.2. Resolva o seguinte PLI com branch-and-bound.

Solução:

(a) O problema relaxado P_0 é um PL, cuja solução é $x^{(0)} = [9/2, 5/2]^{\top}$ e função objetivo $f^{\top}x^{(0)} = 29/2$. Escolhendo ramificar em x_1 . Temos os novos problemas P_1 com a nova restrição $x_1 \leq 4$ e P_2 com a nova restrição $x_1 \geq 5$. Resolvendo esses novos PL's temos:

$$P_1: x^{(1)} = [4, 7/3]^{\top}, f^{\top}x^{(1)} = 40/3,$$

 $P_2: x^{(2)} = [5, 2]^{\top}, f^{\top}x^{(2)} = 13.$

Note que a folha P_2 resultou em solução inteira, logo não faz sentido ramificála. Por outro lado, a folha P_1 resultou em uma função objetivo, que quando aproximada pelo menor inteiro mais próximo resulta na da folha P_2 , ou seja, ramificar essa folha só levará, na melhor das hipóteses, a um resultado inteiro tão bom quanto à da folha P_1 e, portanto, podemos concluir que a solução ótima é $f^{\top}x^* = 13$. Uma solução inteira que atinge isso é $x^* = x^{(2)} = [5, 2]^{\top}$.

^{*}Em caso de dúvidas, sugestões ou correções, não hesite em mandar um e-mail.

	D_1	D_2	D_3	D_4
O_1	45	17	21	30
O_2	14	18	19	31

Tabela 1: Custos de transporte por carro.

6.6. Determine se as seguintes matrizes são totalmente unimodulares:

$$A_1 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -1 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

Solução:

(a) Para a matriz A_1 , não é possível satisfazer a condição (iii) da proposição que garante unimodularidade total. De fato, a matriz A_1 não é totalmente unimodular, pois o determinante de uma das submatrizes é igual a 2.

$$\det \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 2.$$

(b) A matriz A_2 é totalmente unimodular, pois satisfaz as condições da proposição que garante isso. As condições (i) e (ii) são facilmente verificadas e para a (iii) podemos dividir as linhas em dois conjuntos:

$$L_1: \{\ell_1, \ell_2\}, \qquad L_2: \{\ell_3, \ell_4, \ell_5\}.$$

6.9. Uma companhia de aluguel de carros enfrenta um problema resultante de contratos que permitem entrega de carros em localidades diferentes daquelas nas quais os carros foram retirados. Num dado dia, existem duas localidades (O_1 e O_2) com 15 e 13 carros a mais, respectivamente, e quatro localidades (D_1 , D_2 , D_3 e D_4) solicitando 9, 6, 7 e 9 carros, respectivamente. Os custos unitários (em R\$) de transporte entre as localidades estão indicados na Tabela 1.

2

Solução: Note que o total da demanda supera em 3 a oferta, logo devemos criar um nó fantasma com custos nulos para fornecer essa demanda adicional. O PL fica:

$$\begin{array}{ll} & \min & \sum_{i,j} \, f_{i,j} x_{i,j} \\ & \text{sujeito a:} & \sum_{j} x_{i,j} = a_i, \quad i \in \{1,2,3\} \\ & \sum_{i} x_{i,j} = b_j, \quad j \in \{1,2,3,4\} \\ & x_{i,j} \geq 0, \quad i \in \{1,2,3\}, j \in \{1,2,3,4\} \end{array},$$

onde $f_{i,j}$ é o custo de transporte do nó i para o nó j, a_i é a oferta do nó i e b_j é a demanda do nó j. Colocando no MatLab, obtemos a seguinte solução

$$x = \begin{bmatrix} 0 & 6 & 3 & 6 \\ 9 & 0 & 4 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

6.11. Uma fábrica de fertilizantes pode produzir um composto usando qualquer um de três processos. Se x_i representar a quantidade de um fertilizante produzida usando o processo i, o seguinte PL fornece a maneira mais barata de se produzir 150 unidades deste composto com os materiais disponíveis:

$$\begin{array}{ll} & \min & 15x_1+11x_2+18x_3\\ \text{sujeito a} & x_1+x_2+x_3=150,\\ & 2x_1+4x_2+2x_3\leq 310,\\ & 4x_1+3x_2+x_3\leq 450,\\ & x_1,x_2,x_3>0. \end{array}$$

- (a) Explique por que este PL implicitamente assume que os coeficientes da função objetivo são custos variáveis.
- (b) Resolva o PL usando o MATLAB.
- (c) Reformule este problema como um PLI, impondo que apenas um dos três processos pode ser usado. Resolva este PLI com o MATLAB.
- (d) Reformule o problema original adicionando um custo de preparo de \$400 por processo a ser utilizado. Resolva este PLI usando o MATLAB.
- (e) Reformule o problema original com a imposição de que um processo será usado apenas se uma quantidade mínima de 50 unidades forem produzidas.

Solução:

(a) Os custos crescem linearmente com a quantidade produzida de cada fertilizante.

(b) Colocando as seguintes matrizes no linprog $(f, A, b, A_{eq}, b_{eq}, lb, ub)$, onde

$$f = \begin{bmatrix} 15 & 11 & 18 \end{bmatrix}^{\top},$$

$$A = \begin{bmatrix} 2 & 4 & 2 \\ 4 & 3 & 1 \end{bmatrix}, b = \begin{bmatrix} 310 & 450 \end{bmatrix},$$

$$A_{eq} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, b_{eq} = 150,$$

$$lb = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{\top}, ub = \begin{bmatrix} 150 & 150 & 150 \end{bmatrix}^{\top}.$$

Obtemos como resultado $x = [96.67, 5, 48.33]^{\mathsf{T}}$.

(c) $\min \quad 15x_1 + 11x_2 + 18x_3$ sujeito a $x_i = 150y_i, \quad i \in \{1, 2, 3\},$ $y_1 + y_2 + y_3 = 1,$ $2x_1 + 4x_2 + 2x_3 \leq 310,$ $4x_1 + 3x_2 + x_3 \leq 450,$ $x_1, x_2, x_3 \geq 0,$ $y_1, y_2, y_3 \in \mathbb{B}.$

Obtemos como resultado $x = [0, 0, 150]^{\top}$ e $y = [0, 0, 1]^{\top}$.

(d) $\min \quad 400y_1 + 400y_2 + 400y_3 + 15x_1 + 11x_2 + 18x_3$ sujeito a $x_1 + x_2 + x_3 = 150,$ $y_1 + y_2 + y_3 = 1,$ $2x_1 + 4x_2 + 2x_3 \le 310,$ $4x_1 + 3x_2 + x_3 \le 450,$ $0 \le x_i \le 150y_i, \quad i \in \{1, 2, 3\}$ $y_1, y_2, y_3 \in \mathbb{B}.$

Obtemos como resultado $x = [0, 0, 150]^{\top}$ e $y = [0, 0, 1]^{\top}$.

(e) $\min \quad 400y_1 + 400y_2 + 400y_3 + 15x_1 + 11x_2 + 18x_3$ sujeito a $x_1 + x_2 + x_3 = 150,$ $y_1 + y_2 + y_3 = 1,$ $2x_1 + 4x_2 + 2x_3 \le 310,$ $4x_1 + 3x_2 + x_3 \le 450,$ $50y_i \le x_i \le 150y_i, \quad i \in \{1, 2, 3\}$ $y_1, y_2, y_3 \in \mathbb{B}.$

Obtemos como resultado $x = [100, 0, 50]^{\top}$ e $y = [1, 0, 1]^{\top}$.