How to Change the World with Donald Knuth

Abraham Xiao

Masdar Institute of Science and Technology

Information Security Project Presentation

1 Discrete Logarithm

2 ElGamal Cryptosystem

Discrete Logarithm in a Nutshell

The security of many cryptographic techniques depends on the intractability of discrete logarithm problem.

A partial list of these include:

- DiffieHellman key agreement and its derivatives.
- ElGamal encryption.
- ElGamal signature scheme and its variants.

General setting for algorithms in this section are:

- A (multiplicatively written) finite cyclic group G
- *n* is the order of group *G*
- ullet α is a generator of group G^1

¹For more math background, refer to [Ros12].

Relevant Definitions

Cyclic group and its generator.

Definition

A group is *cyclic* if there is an element $\alpha \in G$ such that for each $b \in G$ there is an integer i with $b = \alpha^i$. Such an element α is called a generator of G.

Discrete logarithm.

Definition

Let G be a finite cyclic group of order n. Let α be a generator of G, and let $\beta \in G$. The discrete logarithm of β to the base α , denoted $\log_{\alpha} \beta$, is the unique integer x, $0 \le x \le n-1$, such that $\beta = \alpha^x[\mathsf{MVO96}]$.

A Discrete Logarithm Example

Example

Let p=97. Then \mathbb{Z}_{97}^* is a cyclic group of order n=96. A generator of \mathbb{Z}_{97}^* is $\alpha=5$. Since $5^{32}\equiv 35\mod 97$, $\log_5 35=32$ in \mathbb{Z}_{97}^* .

The DiffieHellman Problem

The DiffieHellman problem is closely related to the well-studied discrete logarithm problem.

Definition

The DiffieHellman problem is the following: given a prime p, a generator α of \mathbb{Z}_p^* , and elements $\alpha^a \mod p$ and $\alpha^b \mod p$, find $\alpha^{ab} \mod p$.

Wait! Could we just possibly do

$$\alpha^{a} \times \alpha^{b} \to \alpha^{ab} \tag{1}$$

Well, life is not as easy as it looks like...

$$\alpha^{a} \times \alpha^{b} = \alpha^{a+b} \tag{2}$$

Links between Discrete Logarithm and DiffieHellman Problem

Suppose that the discrete logarithm problem in \mathbb{Z}_p^* could be efficiently solved². Then given α , p, $\alpha^a \mod p$ and $\alpha^b \mod p$, one could first find a from α , p and $\alpha^a \mod p$ by what?!

Solving a discrete logarithm problem, and then compute $(\alpha^b)^a = \alpha^{ab} \mod p$.

²In math, the assumption is as important as,

ElGamal public-key encryption

The ElGamal public-key encryption scheme can be viewed as DiffieHellman key agreement³ in key transfer mode.

Its security is based on the intractability of the discrete logarithm problem (Section 1) and the DiffieHellman problem (Section 2).

³Yet another fancy nickname for key exchange

Ensure: A public key and its corresponding private key is created for every entity.

Steps to generate key pairs are described as follows:

- Generate a prime p that is large enough and cannot be predicted, i.e. it should be generated randomly. Find a generator α of the multiplicative group \mathbb{Z}_p^* of integers modulo p.
- ② Randomly select an integer a satisfying $1 \le a \le p-2$. Then calculate $\alpha^a \mod p$.
- **3** The public key is returned as (p, α, α^a) ; The private key is returned as a.

Figure: Algorithm Key generation for ElGamal public-key encryption

References I

