PLSC 503: "Multivariate Analysis for Political Research"

Introduction

January 12, 2016

- Welcome!
- Course logistics.
 - Roughly 15 weeks of regression models, minus a few cancelled classes.
 - Course meets every Tuesday & Thursday, from 11:15-12:30, in Mateer 110.
 - Syllabus, notes, readings, homeworks, etc. on the github repo.
 - Books: Weisberg and Kennedy (buy them), plus other materials.
 - Mostly articles from political science theory + recommended applications.
 - Grading: Ten homework assignments (@ 50 points), plus a final project (500 points); more on the latter, later.
 - Nick Dietrich is the teaching preceptor.
 - ∘ No office hours per se e-mail me.
 - I don't care if you miss class.
 - I don't care what software you use (R, Stata are supported; R is very strongly preferred).
 - You better know some math, or at least not be afraid of it.
- About me.
 - What to call me.
 - Where I come from / background / history.
 - Personal stuff...
- About you all.
 - \circ Field(s)?
 - Year / cohort?
 - Interests?
 - Previous training?
 - Personal stuff?

Notation

Arabic letters:

- \bullet Letters a, b, c, d are usually constants
- f, g, h are usually functions
- \bullet i, j, k, t are usually indices/term identifiers
- \bullet p, q are usually probabilities
- e and u are often used for error terms (e is also a specific value, $\approx 2.71828...$)
- \bullet x, y, z, are usually variables or scalars

Greek letters:

- $\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta, \kappa, \lambda, \rho, \tau, \phi, \chi, \psi$, and ω are usually parameters/coefficients
- ϵ is often (usually) an error term
- μ almost always represents a mean
- σ almost always represents variation in some form
- π is a specific value ($\pi = 3.14159265...$), but can also be a probability

Typically we will use lower-case for scalars or vectors and upper-case for sets and matrices.

Logical and Relational Operators and Set Notation

Ways of writing simple and not-so-simple logical statements regarding groups of items or terms.

- {...} list the contents (elements) of a set
- (...) indicate open intervals; define a set which does not include the endpoints e.g. if U = (1,3), then 3 is not an element of U
- [...] indicate closed intervals, defining a set which does contain the endpoints
- \in : "is an element of"; \notin : "is not an element of"
- \bullet \ni : "such that"
- ∃: "there exists" or "there is"; ∄: "there does not exist"
- \forall : "for all"

- \therefore : "therefore"
- :: "because"
- (): "between"
- \bullet \to or \Rightarrow : "implies" or "implies that" (also, "to" or "then")
- \iff : "if and only iff" (also, "iff")
- $\bullet \subseteq :$ "is a subset of"; $\subset :$ "is a proper subset of"
- \cup : "the union of"; \cap : "the intersection of"
- \emptyset : "the null/empty set" (a set with no elements)

Operations

Symbols indicating transformations and relationships between terms...

- = (everybody knows this one): equals, or "consists of"
- \neq (not equal to)
- \approx (approximately equal to)
- \equiv (equivalent to, same/defined as)
- \sim (is distributed as)
- \propto (is proportional to)
- \doteq (approaches; is equal to in the limit)

Likewise, every body is familiar with $+, -, \times$ (also * and ·), and \div .

You also need to know the *order of operations* (i.e., the order you do these calculations in...)

- 1. Parentheses
- 2. Exponents
- 3. Multiplication/division
- 4. Addition/subtraction

Please get the order of operations right!!! (E.g., $3X^2 \neq (3X)^2$, generally; X = 0 being the obvious exception).

Summation Notation

- \sum (...) generally indicates summing inside the parentheses,
- $\sum_{i=1}^{N} X_i$ indicates summing the N values of X ...
- ...this can also be written $\sum_{N} X_{i}$.

Likewise, product notation indicates multiplication...

• $\prod_{i=1}^{T} X_i^2$ indicates successively multiplying the T values of X^2

Factorials

- $x! = x \times (x-1) \times (x-2) \times ... \times (2) \times (1)$
- So: $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Exponents

- Indicate repeated self-multiplication (i.e., $X^2 = X \cdot X$).
- Negative exponents: $X^{-1} = \frac{1}{X}$, $X^{-2} = \frac{1}{X^2}$, etc.
- Fractional exponents: $X^{\frac{1}{2}} = \sqrt{X}$, $X^{\frac{1}{3}} = \sqrt[3]{X}$, etc.
- So: $X^{3/4} \equiv X^3 \times \sqrt[4]{X} = \sqrt[4]{X^3}$; $X^{-7/3} = \frac{1}{\sqrt[3]{X^7}}$, etc.

Linear Algebra

- Per normal conventions, I will generally denote matrices in **boldface**. So, X generally denotes something different from X.
- This will be clear in the slides. Since there's no good way of making such distinctions on a chalkboard, you'll just have to pay attention.

Regression: A Conceptual Overview

Since this is a course about regression, it behooves us to think a bit about what regression is, at a general level. To do that, today we'll spend a bit of time talking about what regression is not – that is, other things one might do with (multivariate) data, and the statistical / quantitative methods and approaches one uses to do them.

"Multivariate" Regression

It's easiest to think of regression as mapping a vector of responses (Y) to a matrix of predictors / covariates (\mathbf{X}) . We can extend this to the case where Y is matrix-valued (\mathbf{Y}) , where we get "true" multivariate regression. Multivariate linear regression might look like:

$$Y = X\beta + U$$

An example is *vector autoregression* (VARs), a time-series approach where all elements of \mathbf{Y} are also (generally) elements of \mathbf{X} .

Measurement

Exercises in data / dimensional reduction (going from multivariate to less-multivariate or even univariate).

An example are simple (additive, etc.) indices. For example, one could:

- Take each of five measures of "health" (IM, Fertility, LE, measles, and DPT percentages),
- "standardize" each (to put them all on the same "scale"), so that each is $\mu = 0$ and $\sigma = 1$, and then
- add (or subtract, as the case may be) them together.

Other, more complex methods include:

- Principal Components Analysis ($\mathbf{Y} = \mathbf{W}^{\mathrm{T}}\mathbf{X}...$)
- Factor Analysis (like PCA, but somewhat different...)
- Uni- and Multidimensional Scaling (e.g., Guttman & Mokken scaling, etc.).
- Structural Equation Modeling [used with continuous variables, where there is a strong a priori understanding that the variables measure the same underlying factor(s)]
- Item-Response (IRT) Models (a la the SATs... usually used with binary or ordinal-response data, rather than continuous indicators)

Classification

- Cluster Analysis (hierarchical or not; agglomerative or divisive, etc.).
- \bullet Classification and Regression "Trees" (akin to cluster analysis...) \rightarrow random forests.
- Pattern Recognition (gene sequencing, etc.)
- Machine learning, support vector machines, etc.