PDK/PDK TDA Datasheet

PDK Drivers

This section provides brief overview of the device drivers supported in PDK release.

PDK Driver Features

For details on features, refer to PDK_Requirement_to_Test_Traceability_Report.xlsx under <PDK_INSTALL>/docs/traceability folder.

VPS Driver VPDMA List Usage

In TDA2xx/TDA2Ex/TDA3xx, each VIP and VPE has a separate VPDMA instance. And each VPDMA in turn has 8 lists:

VPDMA usage

Driver	DMA usage
VIP Capture	One list per port. Hence max 4 list per VIP (Slice0/1 x PortA/B)
M2M VPE (only for TDA2xx/TDA2Ex/TDA2Px)	Only one list for VPE1

Setup Details

Setup Details

	Details	TDA2xx/TDA2Ex/TDA2Px	TDA3xx
SoC Details	Core	IPU1 (M4) core 0	IPU1 (M4) core 0
	Operating speed of Core	212.5 MHz	212.5 MHz
	Operating speed of VPE	266 Mpixels/sec	NA
	EVM Configuration	TDA2xx: 2 EMIFs Non-Interleaved, DDR3 @ 532MHz TDA2Ex/TDA2Px: 1 EMIFs Non-Interleaved, DDR3 @ 666MHz	1 EMIFs Non-Interleaved, DDR3 @ 532MHz

Optimization Details	Is the Ducati cache enabled?	Yes	Yes
	Profile	release	release
	M4 compile options (release build)	-g -ms -c -qq -pdsw225endian=little -mv7M4float_support=vfplibabi=eabi -eo.oem4 -ea.sem4symdebug:dwarfembed_inline_assemblyemit_warnings_as_errors	Same as TDA2xx
	M4 Linker options (release build)	emit_warnings_as_errors -w -q -u _c_int00silicon_version=7M4 -c -xzero_init=on	Same as TDA2xx
	DSP Compile options (release build)	-mv6600abi=eabi -q -mi10 -mo -pden -pds=238 -pds=880 -pds1110program_level_compile -gendian=little -eo.oe66 -ea.se66emit_warnings_as_errors	Same as TDA2xx
	DSP Linker options (release build)	emit_warnings_as_errorswarn_sections -q -e=_c_int00silicon_version=6600 -c	Same as TDA2xx
	Is the code and data placed in L2/L3 memory?	No	No
	Is the L3 interconnect optimized?	No	No

Resources Details

Resource usage

Details	TDA2xx/TDA2Ex/TDA2Px	TDA3xx
Timers	M4 Internal timer	M4 Internal timer
HWI	IPU1_23 (DSS DISPC), IPU1_26 (HDMI_IRQ) IPU1_27 (VIP1), IPU1_28 (VIP2), IPU1_29 (VIP3) IPU1_30 (VPE1) IPU1_41 (I2C1), IPU1_42 (I2C2 on TDA2xx, I2C5 on TDA2xx), IPU1_43 (I2C3), IPU1_48 (I2C4 on TDA2xx/TDA2Ex, I2C5 - only on TDA2xx-MC) IPU1_57 (MCSPI1), IPU1_58 (MCSPI2) IPU1_59 (MCSPI3), IPU1_60 (MCSPI4) IPU1_44 (UART1), IPU1_60 (UART2), IPU1_45 (UART3), IPU1_61 (UART4), IPU1_62 (UART5), IPU1_63 (UART6), IPU1_64 (UART7), IPU1_65 (UART8), IPU1_69 (UART9), IPU1_70 (UART10)	IPU1_23 (DSS DISPC), IPU1_27 (VIP1), IPU1_41 (I2C1), IPU1_48 (I2C4), IPU1_42 (I2C5) IPU1_64 (MCSPI1), IPU1_65 (MCSPI2), IPU1_48 (MCSPI3), IPU1_49 (MCSPI4) IPU1_44 (UART1), IPU1_43 (UART2), IPU1_45 (UART3)
Low Latency HWI (This cant be preempted or disabled using Hwi_disable() BIOS API)	NA	NA
I2C Instances (Starting from 1)	I2C1, I2C2, I2C5(for TDA2Ex) (Usage can be controlled from App)	I2C1, I2C2 (Usage can be controlled from App)

EDMA Channels	UART1 (TX-48, RX-49), UART2 (TX-50, RX-51), UART3 (TX-52, RX-53), UART4 (TX-54, RX-55), UART5 (TX-62, RX-63), UART6 (TX-50, RX-51), UART7 (TX-50, RX-51), UART8 (TX-50, RX-51), UART9 (TX-50, RX-51), UART10 (TX-50, RX-51) MCSPI1TX - 34, MCSPI1RX - 35, MCSPI2TX - 42, MCSPI2RX - 43, MCSPI3TX - 14, MCSPI3RX - 15, MCSPI4TX - 22, MCSPI4RX - 23 (TDA2XX Instance starting from 1)	UART1 (TX-48, RX-49), UART2 (TX-50, RX-51), UART3 (TX-52, RX-53) MCSPI1TX - 34, MCSPI1RX - 35, MCSPI2TX - 42, MCSPI2RX - 43, MCSPI3TX - 14, MCSPI3RX - 15, MCSPI4TX - 22, MCSPI4RX - 23 (TDA3XX Instance starting from 1)
PLLs Used	Video1_PLL and HDMI_PLL (All video PLLs configured according to display resolution selected)	DSP_EVE_VID_PLL (configured according to display resolution selected)
PRCM Done	PRCM Done	None (all through GEL file/SBL)
GPIO	GPIO4_13, GPIO4_14, GPIO4_15, GPIO4_16 and GPIO6_17 to control video mux select and sensor power on vision application card GPIO2_29, GPIO1_4, GPIO6_7 acts as Demux_FPD_A/B/C control signals in LVDS multi-deserializer board.	None
PinMuxing Details (Usage can be controlled from App)	See TDA2xx pdk/packages/ti/drv/vps/src/boards file for details	See TDA3xx pdk/packages/ti/drv/vps/src/boards file for details
Memory Requirements (Cache able)	See pdk/docs/memstat/tda2xx file for details	See pdk/docs/memstat/tda3xx file for details
Memory Requirements (Non Cache able)	VIP/VPE Descriptor memory, see Memory Footprint table below	VIP Descriptor memory, see Memory Footprint table below
SWI	1 per UART instance in case of DMA or Interrupt mode to handle UART RX/TX ISR	1 per UART instance in case of DMA or Interrupt mode to handle UART RX/TX ISR
Tasks	1 (highest priority)	1 (highest priority)

Memory Footprint

For details on library code and data section, refer to PDK memstat under <PDK_INSTALL>/docs/memstat folder. Below lists the dynamic memory requirement.

TDA2xx Memory Footprint in bytes (Dynamic Heap memories)

Use Case or Example	System Stack (Cached section)	Task Stack (Cached section)	OSAL Objects (Cached section)	VPDMA Descriptor Heap (Non-cached section)
Loopback Example (VIP-DSS)	1316	1764	61 Semaphore, 9 HWI	722880 (Static)
M2M VPE Example	404	1344	33 Semaphore, 5 HWI	722880 (Static)

TDA2Px Memory Footprint in bytes (Dynamic Heap memories)

Use Case or Example	System Stack (Cached section)	Task Stack (Cached section)	OSAL Objects (Cached section)	VPDMA Descriptor Heap (Non-cached section)
Loopback Example (VIP-DSS)	1236	1988	69 Semaphore, 11 HWI	722880 (Static)
M2M VPE Example	756	2574	68 Semaphore, 11 HWI	722880 (Static)

TDA2Ex Memory Footprint in bytes (Dynamic Heap memories)

Use Case or Example	System Stack (Cached section)	Task Stack (Cached section)	OSAL Objects (Cached section)	VPDMA Descriptor Heap (Non-cached section)
Loopback Example (VIP-DSS)	1220	2012	59 Semaphore, 7 HWI	182208 (Static)
M2M VPE Example	404	2104	59 Semaphore, 7 HWI	182208 (Static)

TDA3xx Memory Footprint in bytes (Dynamic Heap memories)

Use Case or Example	System Stack (Cached section)	Task Stack (Cached section)	OSAL Objects (Cached section)	VPDMA Descriptor Heap (Non-cached section)
Loopback Example (VIP-DSS)	1328	1764	52 Semaphore, 5 HWI	108544 (Static)

Software Performance Numbers

SETUP				
Profile Clock (MHz) - CTM	425			
Platform	TDA2XX ES1.0/ES1.1			
M4 Clock (MHz)	212.5			
Cache	Enabled			
Build	Release			
DDR3 (MHz)	532			

Summary

Summary		Load	Mhz
VIP Capture Driver Load (1 Channel 720p60 capture)	60	0.25%	0.53
VPE M2M Driver (1 Channel 720x240 YUV420SP to 360x240 YUV422I, DEI ON)	30	0.32%	0.68
DSS Display Driver (1 Video Pipe @720p60 display)	60	0.11%	0.23

VIP Capture Driver Performance

VIP Capture Driver	Average		Max	
(1 Channel 720p60 capture)	Ticks	Duration (in us)	Ticks	Duration (in us)
M3 Load per frame (Including App Q/DQ)	16664	41.66	32020	80.05
Queue	2637	6.59	6038	15.10
DeQueue	2441	6.10	5646	14.12

VPE M2M Driver Performance

VPE M2M Driver	Av	erage	Max		
(1 Channel 720x240 YUV420SP to 360x240 YUV422I, DEI ON)	Ticks	Duration (in us)	Ticks	Duration (in us)	
M3 Load per frame (Including App Q/DQ)	42831	107.08	73072	182.68	
Queue	32046	80.12	48642	121.61	
DeQueue	2416	5.37	12708	31.77	

DSS Display Driver Performance

DSS Display Driver	Av	erage	Max		
(1 Video Pipe @720p60 display)	Ticks	Duration (in us)	Ticks	Duration (in us)	
M3 Load per frame (Including App Q/DQ)	47339	18.35	14942	37.36	
Queue	1528	3.82	2800	7.00	
DeQueue	1341	3.35	3692	9.23	

VIP Capture to DSS Display Glass-to-Glass Latency Numbers

Setup Details

- TDA2xx EVM running the default video loopback application from OV Sensor->VIP->DSS->LCD
- OV Sensor is pointing to another monitor displaying millisecond counter running at 60 Hz
- Both the LCD image and original monitor are captured at the same time side by side using another digital still camera
- Glass to glass latency is then calculated by taking the difference in time in the LCD and monitor

With this method, it is observed that the glass to glass VIP to DSS latency is measured to vary from 44ms to 66ms.

The explanation and the split-up for the above observation is as below

- Capture is happening at 30 FPS. This will have a 33.33 ms latency because of end of frame callback is used to trigger the display
- Display is running at 60 FPS. Since capture VSYNC and display VSYNCs are not synchronized, the latency can
 vary from 0 16.66 ms. Also since the display FPS is more than capture, the display will repeat the frame
 resulting in another possible 0 16.66 ms latency difference
- Also since this measurement is done by capturing PC monitor which is also running at 60 FPS, that could also
 introduce some more latency from 0 16.66 ms because of quantization error (i.e. counter can't display any time
 granular than 16.66 ms)

 Also the sensor and LCD latency should be considered, which looks like is negligible from the measured and theoretical calculations as above

Video Display Driver

This section describes the display drivers performance numbers - throughput and CPU load. Display drivers takes the video buffers from the application and display the videos on HDMI/LCD at specified frame rate and resolution. Display drivers follows the FVID2 interface.

Video 1,2,3 and Graphics 1 Display Driver

Setup Details

- TDA2xx/TDA2Ex/TDA2Px EVM & TFC-S9700RTWV35TR-01 800x480 LCD from ThreeFive Corp
- TDA3xx EVM & LG LP101WX2 1280x800 LCD

Video Display performance values

Output Display	TDA2xx/TDA2Ex/TDA	A2Px (IPU1 Core0)	TDA3xx (IPU1 Core0)			
(Resolution)	Frame Rate (in Frames/sec)	CPU Load (in %)	Frame Rate (in Frames/sec)	CPU Load (in %)		
On/Off-Chip HDMI	60 FPS (on-Chip HDMI)	1%	60 FPS (Off-Chip HDMI)	1%		
LCD	60 FPS	1%	60 FPS	1%		

Buffer Queue Latency

Driver latency to program the buffer to DSS = code execution time from APP queue to programming (T1) + 5 line of display rate (T2). With TDA2XX EVM, T1 is measured to be around 20 micro seconds.

Value of T2 for different resolution

Display Resolution	T2 in micro seconds
800x480@60fps	158.25
1280X720@60fps	107.74
1920X1080@60fps	74.07

The total latency comes around 180 us for 800x480 @ 60 FPS display. So if any buffer is queued 180 us before the Vsync then the buffer will be displayed in the next frame period.

Note: This measurement is done with the stand alone display application. In fully loaded system the interrupt latency will add to it

Reason for 5 lines check: This check is required so that the driver won't program the buffer address around the display VSYNC period. Doing so would result in DSS HW not accepting the programmed buffer resulting in frame drop.

DSS M2M Writeback Driver

This section describes the DSS M2M writeback driver performance numbers - throughput and CPU load. DSS M2M writeback driver takes input video buffers from the application and writes the scaled/color converted output to memory via the writeback path. Below table shows the DSS M2M driver performance @ the DSS functional clock of 192 MHz

DSS M2M Writeback performance values

Resolution	TDA2xx (IPU1 Core0))	TDA2Px (IPU1 Core0)			TDA2Ex (IPU1 Core0)				TDA3xx (IPU1 Core0)				
	Max Frames per Sec	Mega Pixels per Sec	Hardware Utilization	CPU Load (in %)	Max Frames per Sec	Mega Pixels per Sec	Hardware Utilization	CPU Load (in %)	Max Frames per Sec	Mega Pixels per Sec		CPU Load (in %)	Max Frames per Sec	Mega Pixels per Sec	Hardware Utilization	CPU Load (in %)
VID1 1280x720 RGB888 to YUV422I 480P	205	188 MP/s	98%	3%	205	188 MP/s	98%	3%	205	188 MP/s	98%	2%	206	190 MP/s	99%	2%
VID2 1280x720 RGB565 to 1280x720 YUYV422I	205	188 MP/s	98%	7%	205	188 MP/s	98%	9%	205	188 MP/s	98%	2%	206	189 MP/s	98%	2%
VID1 1280x720 YUV422I to 1920X1080 RGB888	91	188 MP/s	98%	1%	91	188 MP/s	98%	5%	91	188 MP/s	98%	1%	91	188 MP/s	98%	5%
VID1 1920X1080 YUV422I to 1920X1080 RGB565	91	188 MP/s	98%	1%	91	188 MP/s	98%	5%	91	188 MP/s	98%	5%	91	188 MP/s	98%	4%
VID1 1920X1080 YUV420SP to 1280x720 YUV422I	91	188 MP/s	98%	2%	91	188 MP/s	98%	4%	91	188 MP/s	98%	4%	91	188 MP/s	98%	1%
VID3 1920X1080 RGB888 to 1920X1080 YUV422I	91	188 MP/s	98%	1%	91	188 MP/s	98%	4%	91	188 MP/s	98%	1%	NA	NA	NA	NA

Calculating Performance for DSS M2M Writeback Driver

This section explains how to calculate the theoretical performance when more than one pipeline (with scaling) is used to overlay and then written back as shown in below picture. Below are few main rules or points

- Count the clock cycles required based on Overlay output rather than any input pipeline fetch. For that effect, split the overlay into various sections and count the pixels separately. Note that, if any upscale is done inside the WB, then the WB output needs to be used for the calculations (as it will be bigger than the overlay output)
- In TDA3xx, the use-case shown is then just a 720p without any additional overhead (There are minor overheads related to VID DMA pre-fetch and WB DMA flush, which is captured in the performance table)
- In TDA2xx, TDA2Px and TDA2Ex, there is a horizontal downscaling limitation, whereby when downscaling by N, the VID pipe output (or the overlay input gets) 1 pixel only every N clock cycles. This causes performance difference between TDA2xx and TDA3xx as shown in table. If downscaling is not done in the VID pipelines, then the results would be same between TDA2xx and TDA3xx

DSS M2M Performance Setup/Input Information

Inputs	Value
Overlay Width	1280
Overlay Height	720
VID1 Input Width	1280
VID1 Input Height	720
VID2 Input Width	1280
VID2 Input Height	720
VID1 Output Width	640
VID1 Output Height	480
VID2 Output Width	640
VID2 Output Height	480

DSS M2M Performance Calculation - TDA2xx

Performance Section Split	Width in Pixels (W)	Height in Lines (H)	Downscaling Factor (S)	Required DSS Cycles (W x H x S)
VID DMA Prefetch (worst-case)	2048	8	1	16,384
OVR: Section 1 - Top Blank	1280	120	1	153,600
OVR: Section 2 - Bottom Blank	1280	120	1	153,600
OVR: Section 3 - VID1	640	480	2	614,400
OVR: Section 4 - VID2	640	480	2	614,400
WB DMA Flush (worst-case)	2048	8	1	16,384
Total Cycles per Frame	-	-	-	1,568,768
Theoretical FPS (DSS Functional Clock 192MHz/Total Cycles)	-	-	-	122 FPS

DSS M2M Performance Calculation - TDA3xx

Performance Section Split	Width in Pixels (W)	Height in Lines (H)	Downscaling Factor (S)	Required DSS Cycles (W x H x S)
VID DMA Prefetch (worst-case)	2048	8	1	16,384
OVR: Section 1 - Top Blank	1280	120	1	153,600
OVR: Section 2 - Bottom Blank	1280	120	1	153,600
OVR: Section 3 - VID1	640	480	1	607,200
OVR: Section 4 - VID2	640	480	1	607,200
WB DMA Flush (worst-case)	2048	8	1	16,384
Total Cycles per Frame	-	-	-	954,368
Theoretical FPS (DSS Functional Clock 192MHz/Total Cycles)	-	-	-	201 FPS

DSS M2M Performance

Platform	Theoretical FPS (Worst case)	Measured FPS
TDA2xx	122 FPS	123 FPS
TDA3xx	201 FPS	203 FPS

Video Capture Driver

This section describes the video capture driver performance numbers - throughput and CPU load. VIP capture driver makes use of VIP hardware block to capture data from external video source like sensors and video decoders. The video data is captured from the external video source by the VIP Parser sub-block in the VIP block. The VIP Parser then sends the captured data for further processing in the VIP block which can include color space conversion, scaling, chroma down sampling and finally writes the video data to external DDR memory.

Setup Details

- TDA2xx/TDA2Ex/TDA2Px Base EVM + Vision App board or TDA3xx Base EVM
- Sensor Omnivision OV10635

Video Capture (OV10635 Vi	eo Sensor)	performance values
---------------------------	------------	--------------------

	Video	TDA2xx/TDA2Ex/TD	A2Px (IPU1 Core0)	TDA3xx (IPU1 Core0)			
	(Resolution)	Field Rate per Channel (in Frames/sec)	CPU Load (in %)	Field Rate per Channel (in Frames/sec)	CPU Load (in %)		
1	CH 720P resolution	30	1%	30	1%		

VPE Memory to Memory Drivers

This section describes the memory-to-memory drivers' performance numbers - throughput and CPU load. VPE M2M drivers takes the video buffer from the memory, optionally process the buffer, (processing done on the buffer depends on the specific M2M driver) and puts it back to memory. M2M driver follows the FVID2 interface for the applications. This driver takes YUYV422/YUV420 interlaced/progressive input via the DEI path and provide a scaled version of the deinterlaced/bypassed with optional conversion to YUV422/YUV420/RGB output.

The performance is calculated based on below:

- Width to consider = MAX(In Width, Out Width)
- Height to consider = MAX(In Height, Out Height)

Setup Details

- · CPU Idle Disabled
- Calculate time required for single scaler operation and for CPU load, issue scaler operation in contiguous loop with queuing buffer for each scaling.

VPE Driver Performance values

Scaling Factor	TDA2xx (IPU1 Core0)				Т	TDA2Ex (IPU1 Core0)				TDA2Px (IPU1 Core0)			
(Resolution)	Max Frames per Sec	Mega Pixels per Sec	Hardware Utilization	CPU Load (in %)	Max Frames per Sec	Mega Pixels per Sec	Hardware Utilization	CPU Load (in %)	Max Frames per Sec	Mega Pixels per Sec	Hardware Utilization	CPU Load (in %)	
1 CH D1 (720x480) YUYV422I to CIF (360x240) YUYV422I with DEI OFF (TC0001)	707	243 MP/s	91%	9%	714	244 MP/s	91%	8%	706	244 MP/s	91%	10%	
1 CH D1 (720x480) YUYV422I to 1080P YUYV422I with DEI OFF (TC0004)	126	261 MP/s	98%	4%	126	261 MP/s	98%	4%	126	261 MP/s	98%	4%	
1 CH D1 (720x480) YUYV422I to CIF (360x240) YUYV422I with DEI ON (TC0021)	692	238 MP/s	89%	11%	700	239 MP/s	89%	11%	691	239 MP/s	89%	12%	
4 CH D1 (720x480) YUYV422I to CIF (360x240) YUYV422I with DEI OFF (TC2001)	730	252 MP/s	94%	5%	733	252 MP/s	94%	5%	733	252 MP/s	93%	4%	

8 CH D1 (720x480) YUYV422I to D1 (720x480) YUYV422I with DEI OFF (TC2002)	736	254 MP/s	95%	3%	738	254 MP/s	95%	5%	738	255 MP/s	95%	3%
4 CH WXGA (1280x800) YUV420SP_UV to 640x400 YUYV422I with DEI OFF (TC2007)	252	258 MP/s	96%	2%	253	258 MP/s	96%	4%	252	258 MP/s	96%	3%
6 CH WXGA (1280x800) YUYV422I to 640x400 YUYV422I with DEI OFF (TC2008)	254	260 MP/s	97%	2%	254	260 MP/s	97%	2%	254	260 MP/s	97%	2%

VPE Driver Performance values with 304MHz from Video PLL1

Scaling Factor	TDA2xx (IPU1 Core0)						
(Resolution)	Max Frames per Sec	Mega Pixels per Sec	Hardware Utilization	CPU Load			
				(in %)			
1 CH D1 (720x480) YUYV422I to CIF (360x240) YUYV422I with DEI OFF (TC0001)	802	277 MP/s	91%	8%			
1 CH D1 (720x480) YUYV422I to 1080P YUYV422I with DEI OFF (TC0004)	142	295 MP/s	97%	4%			
1 CH D1 (720x480) YUYV422I to CIF (360x240) YUYV422I with DEI ON (TC0021)	782	270 MP/s	88%	8%			
4 CH D1 (720x480) YUYV422I to CIF (360x240) YUYV422I with DEI OFF (TC2001)	825	285 MP/s	93%	6%			
8 CH D1 (720x480) YUYV422I to D1 (720x480) YUYV422I with DEI OFF (TC2002)	830	287 MP/s	94%	8%			
4 CH WXGA (1280x800) YUV420SP_UV to 640x400 YUYV422I with DEI OFF (TC2007)	285	292 MP/s	96%	6%			
6 CH WXGA (1280x800) YUYV422I to 640x400 YUYV422I with DEI OFF (TC2008)	286	293 MP/s	96%	2%			

Calculating Performance for VPE drivers

The description below is based on actual performance seen with SW drivers on actual Si.

Performance of Scalar (SC) with DEI OFF

This is applicable for TDA2xx VPE & TI814x (DEI-WB path).

Here DEI, whereever applicable, is assumed to be in bypass mode.

When DEI is not in bypass mode the performance description is given in subsequent section.

Each SC operates at 266 Mhz clock (in TDA2xx) and 200Mhz (in TI814x).

In theory it can process 1 pixel per clock, i.e

- about 266 mega pixel per second (MP/s) in TDA2xx.
- about 200 mega pixel per second (MP/s) in TI814x.

But due to inherent overheads due to overlapping needed for various filtering operations, the practical standalone (i.e only SC running in system) speed would be

- about 240-250 MP/s (mega pixels/sec) in TDA2xx
- about 180-190 MP/s (mega pixels/sec) in TI814x

When SC is run with other modules like other driver, or codecs the performance may drop further due to DDR BW.

SW overheads will also reduce SC performance, but with TI BSP driver we see very little impact of SW overheads.

Taking typical use-case, each SC can safely do

- about 186MP/s processing (in TDA2xx).
- about 130MP/s processing (in TI814x).

Number of pixel processed when doing SC for a 1 D1 CH of 720x480 @ 30frames per second, is 720x480x30(frames per second) = 10.3MP/s

Here Output from SC is $\leq 720x480$

Thus SC can safely do about 16CHs of D1 (in TDA2xx) and about 12CH D1 (in TI814x) when its output size is <= 720x480, i.e only downscaling is done in the scaler.

In practice with BSP only applications we found that measured SC performance is

- about 22 D1 CHs (about 236MP/s) in TDA2xx
- about 13 D1 CHs (about 140MP/s) in TI814x

With other activity like codec, performance should drop but we know each SC will safely give

- 20CH D1 performance (200MP/s) in TDA2xx
- 12CH D1 performance (130MP/s) in TI814x

When scalar upsampling is used the results would be bit different.

For use-case of scaling 720x480 to 960x540 output size, the performance for 1CH would be,

960x540(since 960x540 > 720x480) x30(frames per second) = 15.5MP/s

In TDA2xx, assuming SC performance is 200MP/s, thats about 12 CHs

In TI814x, assuming SC performance is 130MP/s, thats about 8 CHs

Performance of Scalar (SC) with DEI ON

This is applicable for TDA2xx VPE & TI814x (DEI-WB path).

Each DEI operates at 266Mhz clock (in TDA2xx) and 200Mhz (in TI814x).

In theory it can process 1 pixel per clock, i.e

- about 266 mega pixel per second. (MP/s) in TDA2xx
- about 200 mega pixel per second. (MP/s) in TI814x

But due to inherent overheads due to overlapping needed for various filtering operations, the practical standalone (only DEI running in system) speed would be

- about 200-210 MP/s (mega pixels/sec) in TDA2xx
- about 150-160 MP/s (mega pixels/sec) in TI814x

When DEI is run with other modules like other driver, or codecs the performance may drop further due to DDR BW.

SW overheads will also reduce DEI performance, but with TI BSP drivers we see very little impact of SW overheads.

Taking DVR kind of use-case, each DEI can safely do

- about 170MP/s processing in TDA2xx
- about 130MP/s processing in TI814x

Number of pixel processed when doing DEI for a 1 D1 CH of 720x240 @ 60fields per second, is

720x240x2(since DEI results in 1 line becoming two lines)x60(frames per second) = 20.7MP/s

Here Output from DEI is $\leq 720x480$

Thus DEI can safely do,

- about 8CHs of D1 in TDA2xx
- about 6CHs of D1 in TI814x

when its output size is \leftarrow = 720x480, i.e only downscaling is done in the scaler after DEI.

In practice with BSP only applications we found that measured DEI performance is

- about 9-10 D1 CHs (about 200MP/s) in TDA2xx
- about 6-7 D1 CHs (about 140MP/s) in TI814x

With other activity like codec, performance should drop but we know each DEI will safely give

- 8CH D1 performance in TDA2xx.
- 6CH D1 performance in TI814x.

Above is when scalar downsampling is used after DEI.

When scalar upsampling is used the results would be bit different.

For use-case of 960x540 output size, the performance for 1CH would be,

960x540(since 960x540 > 720x480) x60(fields per second) = 31.1MP/s

In TDA2xx, assuming DEI performance is 170MP/s, thats about 5-6 CHs

In TDA2xx, assuming DEI performance is 130MP/s, thats about 4 CHs

ISS Drivers

ISS Capture Driver (CAL)

ISS captures video streams via CAL sub-block of the ISS. It provides interfaces to capture via mipi CSI2 and Parallel. Typically used to capture streams from sensors such as Omnivision 10640, Aptina Ar0132 & Aptina AR0140. To measure the performance, RAW 12 video stream @ 30 FPS is captured from OV10640 and written into memory.

Setup Details

- TDA3xx/TDA2Px EVM
- Sensor Omnivision OV10640, Data Format as RAW 12

Video Capture (OV10635 Video Sensor) performance values

Video	TDA3xx/TDA2Px (IPU1 Core0)						
(Resolution)	Field Rate per Channel (in Frames/sec)	CPU Load (in %)					
1 CH 720P resolution	30	< 1%					

ISS M2M ISP WDR Driver

This driver takes RAW 12 video frame, companded and performs 2 pass processing. In pass 1, low exposure is processed and in pass 2 high exposure is processed and merged with low exposure. Writes the processed frame to memory in YUV420 SP (NV12) datafomat.

Setup Details

- Input frame RAW12
- Output YUV420 SP (NV12)

WDR Driver Performance values

	Image Width/Height	TDA3xx FPS for 212 MHz	TDA2Px (OPP Norm) FPS for 355 MHz	TDA2Px (OPP OD) FPS for 450 MHz	TDA2Px (OPP High) FPS for 550 MHz
ISP 2 Pass WDR Flow: Pass 1	1280X960	143	249	296	366
ISP 2 Pass WDR Flow: Pass 1	1280X960	140	243	290	360
LDC Bi Cubic	1920X1080	52	83	101	125
LDC Bi Linear	1280X960	100	164	195	227

ISS CALB M2M Driver

This driver takes a video frame in MIPI format 12 bit packed and converts it to 12 bit unpacked Linear format which can be used for further processing.

Setup Details

- TDA2Px EVM
- Input Mipi format 12 bit packed
- Output Linear format 12 bit unpacked

ISS CALB M2M Driver Performance values

image resolution	OPP (ISS Clk)	fps	byte rate	
1280X720	Nom (355MHz)	642	1.1 GBps	
1280X720	High (550MHz)	844	1.44 GBps	

UART Driver

This section describes the UART drivers' performance numbers - throughput and CPU load. The UART drivers in used to transfer data to and from the UART terminal. The UART driver follows the BIOS GIO/IOM driver model.

Setup Details

• Calculate time and CPU load required for UART transfer operation - issue GIO_submit operation in contiguous loop. Below are the test parameters

Instance : UART1Baudrate : 115200Stop Bits : 1Parity : None

Character Length: 8 bitsBytes per GIO Submit: 138

UART Driver Performance values

Test Case	TDA2xx (IPU1 Core0)			TDA	2Px (IPU1 Co	ore0)	TDA2Ex (IPU1 Core0)			TDA3xx (IPU1 Core0)		
	TX Bytes per Second	Hardware Utilization	CPU Load (in %)									
Polled Mode, FIFO Enable (TC_00102)	11416 BP/s	99%	71%	11416 BP/s	99%	71%	11416 BP/s	99%	70%	11416 BP/s	99%	80%
Polled Mode, FIFO Disable (TC_00132)	1000 BP/s	8%	2%									
Interrupt Mode, FIFO Enable, TX Trigger Level 56 bytes (TC_00202)	11450 BP/s	99%	4%	11450 BP/s	99%	4%	11450 BP/s	99%	4%	11451 BP/s	99%	4%

Interrupt Mode, FIFO Disable (TC_00232)	11451 BP/s	99%	13%	11451 BP/s	99%	13%	11451 BP/s	96%	11%	11449 BP/s	96%	12%
Interrupt Mode, FIFO Enable, TX Trigger Level 8 bytes (TC_00241)	11450 BP/s	99%	3%									
Interrupt Mode, FIFO Enable, TX Trigger Level 16 bytes (TC_00242)	11451 BP/s	99%	2%									
Interrupt Mode, FIFO Enable, TX Trigger Level 32 bytes (TC_00243)	11451 BP/s	99%	2%									
DMA Mode, FIFO Enable, TX Trigger Level 56 bytes (TC_00302)	11450 BP/s	99%	2%	11450 BP/s	99%	2%	11450 BP/s	99%	1%	11450 BP/s	99%	2%
DMA Mode, FIFO Disable (TC_00332)	11450 BP/s	99%	1%	11450 BP/s	99%	1%	11449 BP/s	99%	1%	11450 BP/s	99%	1%
DMA Mode, FIFO Enable, TX Trigger Level 8 bytes (TC_00341)	11450 BP/s	99%	1%	11450 BP/s	99%	1%	11450 BP/s	99%	1%	11451 BP/s	99%	1%
DMA Mode, FIFO Enable, TX Trigger Level 16 bytes (TC_00342)	11450 BP/s	99%	1%									
DMA Mode, FIFO Enable, TX Trigger Level 32 bytes (TC_00343)	11450 BP/s	99%	1%	11450 BP/s	99%	1%	11450 BP/s	99%	1%	11450 BP/s	99%	2%

CRC CSL-FL

This section describes the CRC CSL-FL performance numbers - throughput. CRC CSL-FL is used to generate the CRC Signature, which can be used to perform memory checks to verify the integrity of memory system.

CRC Performance for TDA3xx (IPU)

CONFIGURATION	PROCESSOR	TRANSFER SIZE	THROUGHPUT
EDMA used, pattern/ EDMA ACnt = 8bytes, cache enabled	M4	1800 KB	486 MB/s
EDMA used, pattern/ EDMA ACnt = 8bytes, cache enabled	DSP	1800 KB	489 MB/s

DCAN CSL-FL

This section describes the DCAN CSL-FL performance numbers - throughput. DCAN driver is used to transfer data between CAN nodes. It also configures ECC for message RAM.

DCAN Performance

PROCESSOR	CONFIGURATION	PROCESSOR	BAUDRATE	MESSAGES TRANSMITTED PER SEC	MESSAGE SIZE	HW UTILIZATION
TDA3xx	Cache - Enabled	M4	1Mbit/sec	7237	128 bits	92%
TDA2xx	Cache - Enabled	M4	1Mbit/sec	7237	128 bits	92%
TDA2xx	Cache - Enabled	A15	1Mbit/sec	7237	128 bits	92%
TDA2Ex	Cache - Enabled	M4	1Mbit/sec	7237	128 bits	92%
TDA2Ex	Cache - Enabled	A15	1Mbit/sec	7237	128 bits	92%
TDA2Px	Cache - Enabled	M4	1Mbit/sec	7237	128 bits	92%
TDA2Px	Cache - Enabled	A15	1Mbit/sec	7237	128 bits	92%

MCAN CSL-FL

This section describes the MCAN CSL-FL performance numbers - throughput. MCAN driver is used to transfer data between CAN-FD nodes. It also configures ECC for message RAM.

Setup

• Platform: TDA3xx/TDA2Px EVM

• Frame Type: Standard (11bit) ID CAN FD Frame

• Payload: 64 bytes

Nominal Baud rate: 1 MbpsData Phase Baud rate: 5 Mbps

· Cache: Enabled

• Test Type: Both Tx and Rx

Performance Details

Number of message per second: 5658

HW utilization: 76%

MMCSD CSL-FL

This section describes the MMCSD CSL-FL performance numbers - throughput. MMCSD driver is used to read or write data to the mmc/sd card. This is tested with fatlib. Tested as part of the file iio use case of Processor SDK Vision. The file io use case reads the AppImage file from the SD card and writes it back to SD card. Performance is measured using the timestamp and the size of the AppImage.

Setup

Platform: TDA2xxCPU: Cortex M4D-Cache: DisabledI-cache: Enabled

Performance Details

- The speed of the transfer depends on the class of the SD card used.
- With class 10 SD card the read speed is 4.5 MBps and write speed is 1.5 MBps.

PCIe CSL-FL

This section describes the PCIe CSL-FL performance numbers - throughput. PCIe driver is used for board to board communication using single lane. PCIe Gen1 supports 2.5 Gbps and Gen2 supports 5.0 Gbps.

Setup

• Platform: Both TDA2xx ES2.0 EVM

• Lane: Single

• Data Buffer Transferred: 16 MB

CPU: Cortex A15 D-Cache: Disabled I-cache: Enabled

• EDMA Params: A-count=0x4000, B-count=0x400, C-count=1

Polling Method

Performance Details

- Gen1 speed is 184 MBps.
- Gen2 speed is 370 MBps.

Archived

- PDK TDA Datasheet 1.07.00 [1]
- PDK TDA Datasheet 1.08.00 [2]
- PDK TDA Datasheet 1.08.01 [3]
- PDK TDA Datasheet 1.09.00 [4]
- PDK TDA Datasheet 1.10.00 ^[5]
- PDK TDA Datasheet 1.10.01 ^[6]

References

- $[1] \ http://processors.wiki.ti.com/index.php?title=PDK/PDK_TDA_Datasheet\&oldid=229251$
- $[2] \ http://processors.wiki.ti.com/index.php?title=PDK/PDK_TDA_Datasheet\&oldid=231161$
- $[3] \ http://processors.wiki.ti.com/index.php?title=PDK/PDK_TDA_Datasheet\&oldid=232404$
- $[4] \ http://processors.wiki.ti.com/index.php?title=PDK/PDK_TDA_Datasheet\&oldid=233773$
- $[5] \ http://processors.wiki.ti.com/index.php?title=PDK/PDK_TDA_Datasheet\&oldid=234008$
- [6] http://processors.wiki.ti.com/index.php?title=PDK/PDK_TDA_Datasheet&oldid=234975

Article Sources and Contributors

 $\textbf{PDK/PDK TDA Datasheet} \ \textit{Source}: \ \texttt{http://processors.wiki.ti.com/index.php?oldid=236015} \ \textit{Contributors}: \ A0132173, \ A0132235, \ A0393606, \ Piyali \ g, \ X0153534 \ Poldid=236015 \ \textit{Contributors}: \ A0132173, \ A0132235, \ A0393606, \ Piyali \ g, \ X0153534 \ Poldid=236015 \ Poldid=236$

Image Sources, Licenses and Contributors

Image:PDK_DSS_M2M_Performance_With_Overlay.jpg Source: http://processors.wiki.ti.com/index.php?title=File:PDK_DSS_M2M_Performance_With_Overlay.jpg License: unknown Contributors: A0393606