Network Working Group Request for Comments: 900 J. Reynolds
J. Postel
ISI
June 1984

Obsoletes RFCs: 870, 820, 790, 776, 770, 762, 758, 755, 750, 739, 604, 503, 433, 349 Obsoletes IENs: 127, 117, 93

ASSIGNED NUMBERS

Status of this Memo

This memo is an official status report on the numbers used in protocols in the ARPA-Internet community.

Introduction

This Network Working Group Request for Comments documents the currently assigned values from several series of numbers used in network protocol implementations. This RFC will be updated periodically, and in any case current information can be obtained from Joyce Reynolds. The assignment of numbers is also handled by Joyce. If you are developing a protocol or application that will require the use of a link, socket, port, protocol, network number, etc., please contact Joyce to receive a number assignment.

Joyce Reynolds
USC - Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292-6695

Phone: (213) 822-1511

ARPA mail: JKREYNOLDS@USC-ISIF.ARPA

Most of the protocols mentioned here are documented in the RFC series of notes. The more prominent and more generally used are documented in the "Internet Protocol Transition Workbook" [31] or in the old "ARPANET Protocol Handbook" [32] prepared by the NIC. Some of the items listed are undocumented. Further information on protocols can be found in the memo "Official Protocols" [83].

In all cases the name and mailbox of the responsible individual is indicated. In the lists that follow, a bracketed entry, e.g., [31,iii], at the right hand margin of the page indicates a reference for the listed protocol, where the number cites the document and the "iii" cites the person. Whenever possible, this "iii" is a NIC Ident.

ASSIGNED NETWORK NUMBERS

The network numbers listed here are used as internet addresses by the Internet Protocol (IP) [31,71]. The IP uses a 32-bit address field and divides that address into a network part and a "rest" or local address part. The division takes 3 forms or classes.

The first type of address, or class A, has a 7-bit network number and a 24-bit local address. The highest-order bit is set to 0. This allows 128 class A networks.

										1										2										3	
0	1	2	3	4	5	б	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+	⊢ – +	+	- - +	+-+		⊢ – +	+-+	+		+-+	- - +	 -	+ - -	+-+	 -	+	⊢ – +		-	- - +		+	-	- - +	⊢ – +	-	- - +	⊢ – +	⊢ – +	+	+
0	0 NETWORK Local Address																														
+	+-																														

Class A Address

The second type of address, class B, has a 14-bit network number and a 16-bit local address. The two highest-order bits are set to 1-0. This allows 16,384 class B networks.

Class B Address

The third type of address, class C, has a 21-bit network number and a 8-bit local address. The three highest-order bits are set to 1-1-0. This allows 2,097,152 class C networks.

Class C Address

Note: No addresses are allowed with the three highest-order bits set to 1-1-1. These addresses (sometimes called "class D") are reserved.

One commonly used notation for internet host addresses divides the 32-bit address into four 8-bit fields and specifies the value of each field as a decimal number with the fields separated by periods. This is called the "dotted decimal" notation. For example, the internet address of USC-ISIF.ARPA in dotted decimal is 010.002.000.052, or 10.2.0.52.

The dotted decimal notation will be used in the listing of assigned network numbers. The class A networks will have nnn.rrr.rrr, the class B networks will have nnn.nnn.rrr, and the class C networks will have nnn.nnn.rrr, where nnn represents part or all of a network number and rrr represents part or all of a local address.

There are four catagories of users of Internet Addresses: Research, Defense, Government (Non-Defense), and Commercial. To reflect the allocation of network identifiers among the categories, a one-character code is placed to the left of the network number: R for Research, D for Defense, G for Government, and C for Commercial (see Appendix A for further details on this division of the network identification).

Network numbers are assigned for networks that are connected to the ARPA-Internet and DDN-Internet, and for independent networks that use the IP family protocols (these are usually commercial). These independent networks are marked with an asterisk preceeding the number.

The administrators of independent networks must apply separately for permission to interconnect their network with either the ARPA-Internet of the DDN-Internet. Independent networks need not be listed in the working tables of either the ARPA-Internet or DDN-Internet hosts or gateways.

For various reasons, the assigned numbers of networks are sometimes changed. To ease the transition the old number will be listed for a transition period as well. These "old number" entries will be marked with a "T" following the number and preceding the name, and the network name will be suffixed "-TEMP".

Assigned Network Numbers

Class A Networks

*	Internet Address	Name	Network	References
-				
	000.rrr.rrr.rrr		Reserved	[JBP]
R	004.rrr.rrr.rrr	SATNET	Atlantic Satellite Ne	twork[DM11]
D	006.rrr.rrr.rrr T	YPG-NET-TEMP	Yuma Proving Grounds	[7,BXA]
D	007.rrr.rrr.rrr T	EDN-TEMP	DCEC EDN	[EC5]
R	008.rrr.rrr.rrr T	BBN-NET-TEMP	BBN Network	[JSG5]
R	010.rrr.rrr.rrr	ARPANET	ARPANET	[7,32,REK2]
D	011.rrr.rrr.rrr	DODIIS	DOD INTEL INFO SYS	[AY7]
С	012.rrr.rrr.rrr	ATT	ATT, Bell Labs	[MH13]
С	014.rrr.rrr.rrr	PDN	Public Data Network	[REK4]
R	018.rrr.rrr.rrr T	MIT-TEMP	MIT Network [15,82,DDC2]
D	023.rrr.rrr.rrr	DDN-TC-NET	DDN-TestCell-Network	[DXH]
D	024.rrr.rrr.rrr	MINET	MINET	[7,DHH]
R	025.rrr.rrr.rrr	RSRE-EXP	RSRE Experimental	[NM]
D	026.rrr.rrr.rrr	MILNET	MILNET	[FLM2]
	027.rrr.rrr.rr T	NOSC-LCCN-TEM	PNOSC / LCCN	[RH6]
	028.rrr.rrr.rrr	WIDEBAND	Wide Band Satellite N	et [CJW2]
	032.rrr.rrr.rrr	UCL-TAC	UCL TAC	[PK]
R	036.rrr.rrr.rrr T	SU-NET-TEMP	Stanford University N	etwork[JCM]
R	039.rrr.rrr.rrr T	SRINET-TEMP	SRI Local Network	[GEOF]
R	041.rrr.rrr.rrr	BBN-TEST-A	BBN-GATE-TEST-A	[RH6]
R	044.rrr.rrr.rrr	AMPRNET	Amateur Radio Experim	ent Net[HM]
	001.rrr.rrr.rrr-00	03.rrr.rrr.rrr	Unassigned	[JBP]
	005.rrr.rrr.rrr		Unassigned	[JBP]
	009.rrr.rrr.rrr		Unassigned	[JBP]
	013.rrr.rrr.rrr		Unassigned	[JBP]
	015.rrr.rrr.rrr-01			[JBP]
	019.rrr.rrr.rrr-02	22.rrr.rrr.rrr	Unassigned	[JBP]
	029.rrr.rrr.rrr-03	31.rrr.rrr.rrr	Unassigned	[JBP]
	033.rrr.rrr.rrr-03	35.rrr.rrr.rrr	Unassigned	[JBP]
	037.rrr.rrr.rrr-03	38.rrr.rrr.rrr	Unassigned	[JBP]
	040.rrr.rrr.rrr		Unassigned	[JBP]
	042.rrr.rrr.rrr-04			[JBP]
	045.rrr.rrr.rrr-12	26.rrr.rrr.rrr	Unassigned	[JBP]
	127.rrr.rrr.rrr		Reserved	[JBP]

Class B Networks

*	Internet Address	Name	Network	References
_			_	
Ъ	128.000.rrr.rrr	DDM TECT D	Reserved	[JBP]
	128.001.rrr.rrr	BBN-TEST-B	BBN-GATE-TEST-B	[RH6]
	128.002.rrr.rrr	CMU-NET	CMU-Ethernet	[HDW2]
	128.003.rrr.rrr	LBL-CSAM	LBL-CSAM-RESEARCH	[JS38]
	128.004.rrr.rrr	DCNET	LINKABIT DCNET	[52,DLM1]
	128.005.rrr.rrr	FORDNET	FORD DCNET	[52,DLM1]
	128.006.rrr.rrr	RUTGERS	RUTGERS	[CLH3]
	128.007.rrr.rrr	DFVLR	DFVLR DCNET Network	[HDC1]
	128.008.rrr.rrr	UMDNET	Univ of Maryland DCNE	
	128.009.rrr.rrr	ISI-NET	USC-ISI Local Network	
	128.010.rrr.rrr	PURDUE-CS	Purdue Computer Scien	
	128.011.rrr.rrr	BBN-CRONUS	BBN DOS Project	
R	128.012.rrr.rrr	SU-NET	Stanford University N	et [JCM]
	128.013.rrr.rrr	MATNET	Mobile Access Termina	l Net[DM11]
R	128.014.rrr.rrr	BBN-SAT-TEST	BBN SATNET Test Net	[DM11]
R	128.015.rrr.rrr	SINET	LLL-S1-NET	[EAK1]
R	128.016.rrr.rrr	UCLNET	University College Los	ndon [PK]
D	128.017.rrr.rrr	MATNET-ALT	Mobile Access Termina	l Alt[DM11]
R	128.018.rrr.rrr	SRINET	SRI Local Network	[GEOF]
D	128.019.rrr.rrr	EDN	DCEC EDN	[EC5]
D	128.020.rrr.rrr	BRLNET	BRLNET	[7,MJM2]
R	128.021.rrr.rrr	SF-PR-1	SF-1 Packet Radio Net	work [JEM]
R	128.022.rrr.rrr	SF-PR-2	SF-2 Packet Radio Net	work [JEM]
R	128.023.rrr.rrr	BBN-PR	BBN Packet Radio Netwo	ork [JAW3]
R	128.024.rrr.rrr	ROCKWELL-PR	Rockwell Packet Radio	Net [EHP]
D	128.025.rrr.rrr	BRAGG-PR	Ft. Bragg Packet Radio	o Net [JEM]
D	128.026.rrr.rrr	SAC-PR	SAC Packet Radio Netwo	
D	128.027.rrr.rrr	DEMO-PR-1	Demo-1 Packet Radio N	
	128.028.rrr.rrr	C3-PR	Testbed Development Pl	
R	128.029.rrr.rrr	MITRE	MITRE Cablenet	
R	128.030.rrr.rrr	MIT-NET	MIT Local Network	[DDC2]
R	128.031.rrr.rrr	MIT-RES	MIT Research Network	
	128.032.rrr.rrr	UCB-ETHER	UC Berkeley Ethernet	
	128.033.rrr.rrr	BBN-NET	BBN Network	[JSG5]
	128.034.rrr.rrr	NOSC-LCCN	NOSC / LCCN	[RH6]
	128.035.rrr.rrr	CISLTESTNET1	•	[43,44,RK1]
	128.036.rrr.rrr	YALE-NET	YALE NET	[96,J05]
	128.037.rrr.rrr	YPG-NET	Yuma Proving Grounds	
	128.038.rrr.rrr	NSWC-NET	NSWC Local Host Net	[RLH2]
	128.039.rrr.rrr	NTANET	NDRE-TIU	[PS3]
	128.040.rrr.rrr	UCL-NET-A	UCL	[RC7]
	128.040.111.111 128.041.rrr.rrr	UCL-NET-B	UCL	[RC7]
	128.042.rrr.rrr	RICE-NET		[52,96,PGM]
	128.043.rrr.rrr	CRANET	CANADA REF ARPANET	[7,JR17]
Т	T70.013.111.111	CIVAINET	CHIMDA KET AKPANEI	[/,UKI/]

D	128.044.rrr.rrr	WSMR-NET	White Sands Network	[TBS]
D	128.045.rrr.rrr	DODIIS-S1	DOD INTEL INFO SYS	[AY5]
D	128.046.rrr.rrr	DODIIS-S2	DOD INTEL INFO SYS	[AY5]
D	128.047.rrr.rrr	TACTNET	Tactical Packet Net	[6,KTP]
C,	128.048.rrr.rrr	UCDLA-NET	UCDLA MELVYL Network	[7,CXL]
R	128.049.rrr.rrr	NOSC-ETHER	NOSC Ethernet	[96,RLB3]
G	128.050.rrr.rrr	COINS Network	COINS On-Line Intel Net	[RXS]
G	128.051.rrr.rrr	COINSTNET	COINS TEST NETWORK	[RXS]
R	128.052.rrr.rrr	MIT-AI-NET	MIT AI NET	[96,MDC]
R	128.053.rrr.rrr	SAC-PR-2	SAC PRNET Number 2	[BG5]
	128.054.rrr.rrr-19	91.254.rrr.rrr	Unassigned	[JBP]
	191.255.rrr.rrr		Reserved	[JBP]

Class C Networks

*	Internet Address	Name	Network	References
_	192.000.000.rrr		Reserved	[JBP]
R	192.000.001.rrr	BBN-TEST-C	BBN-GATE-TEST-C	[RH6]
	192.000.002.rrr-19	92.000.255.rrr	Unassigned	[JBP]
R	192.001.000.rrr-19	92.003.255.rrr	BBN local networks	[SGC]
	192.004.000.rrr-19	92.004.255.rrr	Unassigned	[JBP]
R	192.005.001.rrr	CISLHYPERNET	Honeywell	[RK1]
R	192.005.002.rrr	WISC	Univ of Wisconsin Mad:	ison [RS23]
С	192.005.003.rrr	HP-DESIGN-AIDS	S HP Design Aids	[NXK]
С	192.005.004.rrr	HP-TCG-UNIX	Hewlett Packard TCG Un	nix [NXK]
R	192.005.005.rrr	DEC-MRNET	DEC Marlboro Ethernet	[92,KWP]
R	192.005.006.rrr	DEC-MRRAD	DEC Marlboro Developm	[92,KWP]
R	192.005.007.rrr	CIT-CS-NET	Caltech-CS-Net	[95,DSW]
R	192.005.008.rrr	WASHINGTON	University of Washing	con [JAR4]
R	192.005.009.rrr	AERONET	Aerospace Labnet	[2,LCN]
R	192.005.010.rrr	ECLNET	USC-ECL-CAMPUS-NET	[MXB]
R	192.005.011.rrr	CSS-RING	SEISMIC-RESEARCH-NET	[RR2]
R	192.005.012.rrr	UTAH-NET	UTAH-COMPUTER-SCIENCE	-NET [RF1]
R	192.005.013.rrr	CCNET	Compion Network	[96,FAS]
R	192.005.014.rrr	RAND-NET	RAND Network	[96,JDG]
R	192.005.015.rrr	NYU-NET	NYU Network	[EF5]
R	192.005.016.rrr	LANL-LAND	Los Alamos Dev LAN	[96,JC11]
R	192.005.017.rrr	NRL-NET	Naval Research Lab	
R	192.005.018.rrr	IPTO-NET	ARPA-IPTO Office Net	
R	192.005.019.rrr	UCIICS	UCI-ICS Res Net	[MXR]
R	192.005.020.rrr	CISLTTYNET	Honeywell	[RK1]
D	192.005.021.rrr	BRLNET1	BRLNET1	[7,MJM2]
D	192.005.022.rrr	BRLNET2	BRLNET2	[7,MJM2]
D	192.005.023.rrr	BRLNET3	BRLNET3	[7,MJM2]
	192.005.024.rrr	BRLNET4	BRLNET4	[7,MJM2]
	192.005.025.rrr	BRLNET5	BRLNET5	[7,MJM2]
D	192.005.026.rrr	NSRDCOA-NET	NSRDC Office Auto Net	[TC4]

D	192.005.027.rrr	DTNSRDC-NET	DTNSRDC-NET	[TC4]
R	192.005.028.rrr	RSRE-NULL	RSRE-NULL	[NM]
R	192.005.029.rrr	RSRE-ACC	RSRE-ACC	[NM]
R	192.005.030.rrr	RSRE-PR	RSRE-PR	[NM]
R*	192.005.031.rrr	SIEMENS-NET	Siemens Research Netwo	ork [PXN]
R	192.005.032.rrr	CISLTESTNET2	Honeywell [43,44,RK1]
R	192.005.033.rrr	CISLTESTNET3	-	27,28,RK1]
R	192.005.034.rrr	CISLTESTNET4		27,28,RK1]
R	192.005.035.rrr	RIACS	USRA	[96,RLB1]
R	192.005.036.rrr	CORNELL-CS	CORNELL CS Research	[96,DK2]
R	192.005.037.rrr	UR-CS-NET	U of R CS 3Mb Net	[51,LB1]
R	192.005.038.rrr	SRI-C3ETHER	SRI-AITAD C3ETHERNET	[96,BG5]
R	192.005.039.rrr	UDEL-EECIS	Udel EECIS LAN	[93,CC2]
R	192.005.040.rrr	PUCC-NET-A	PURDUE Comp Cntr Net	[JXS]
D	192.005.041.rrr	WISLAN	WIS Research LAN	[86,JRM1]
	192.005.042.rrr	AFDSC-HYPER	AFDSC Hypernet	[MCSJ]
	192.005.043.rrr	CUCSNET	Columbia CS Net	[96,LH2]
R	192.005.044.rrr	Farber-PC-Net	Farber PC Network	[DJF]
R	192.005.045.rrr	AIDS-NET	AI&DS Network	[96,HA]
	192.005.046.rrr	NTA-RING	NDRE-RING	[PS3]
	192.005.047.rrr	NSRDC	NSRDC	[PXM]
R	192.005.048.rrr	PURDUE-CS-IL	Purdue CS IL Ethernet	[96,CAK]
R	192.005.049.rrr	UCSF	Univ of Calif, San Fra	
	192.005.050.rrr	CTH-CS-NET	Chalmers CSN Local Net	
R	192.005.051.rrr	Theorynet	Cornell Theory Center	[96,AB13]
	192.005.052.rrr	NLM-ETHER	NLM-LHNCBC-ETHERNET	[71,JA1]
R	192.005.053.rrr	UR-CS-ETHER	U of R CS 10Mb Net	[51,LB1]
	192.005.054.rrr	AERO-A6	Aerospace	[2,LCN]
	192.005.055.rrr	UCLA-CECS	UCLA-CECS Network	[96,RBW]
	192.005.056.rrr	TARTAN-NET	Tartan Labs	[SXB]
	192.005.057.rrr	UDEL-CC	UDEL Comp Center	[93,RXR]
	192.005.058.rrr	CSNET-PDN	CSNET X.25 Network	[47,RDR4]
	192.005.059.rrr	Inria SM90	Inria GIP SM-90	[MXS]
	192.005.060.rrr	SM90 X1	Inria SM-90 exp. 1	[MXS]
	192.005.061.rrr	SM90 X2	Inria SM-90 exp. 2	[MXS]
	192.005.062.rrr	LITP SM90	LITP SM-90	[MXS]
R	192.005.064.rrr	AMES-NAS-NET	NASA ARC NAS LAN	[92, MXF]
R	192.005.065.rrr	NPRDC-Ether	NPRDC TRCF Ethernet	[LRB]
	192.005.066.rrr	HARV-NET	Harvard Comp Sci Net	[SXB1]
	192.005.067.rrr	CECOM-ETHER	CECOM ADDCOMPE ETHER	[93,GXH]
	192.005.068.rrr	AERO-130	AEROSPACE-130	[LCN]
	192.005.069.rrr	UIUC-NET	Univ of IL at Urbana	[96,AXC]
	192.005.070.rrr	CELAN	COINS Exper. LAN	[MXM]
	192.005.071.rrr	SAC-ETHER	SAC C3 Ethernet	[96,BG5]
	192.005.072.rrr-19			[TXN]
	192.005.088.rrr	YALE-EE-NET	YALE-EE-NET	[96,AXG1]
	192.005.089.rrr	UTEXAS	U. Texas Austin Net	[96,JSQ1]
-	192.005.090.rrr-19			[JBP]
			J	1

C*192.006.000.rrr-192.006.255.rrr	Hewlett Packard [AXG]
C*192.007.000.rrr-192.007.255.rrr	
C*192.008.000.rrr-192.008.255.rrr	<u> </u>
C*192.009.000.rrr-192.009.255.rrr	-
C"192.009.000.111-192.009.255.111	SUN Microsystem, Inc. [WNJ]
C*192.010.000.rrr-192.010.040.rrr	Symbolics, Inc. [CH2]
R 192.010.041.rrr SCRC-ETHERNET	SCRC ETHERNET [96,CH2]
C*192.010.042.rrr-192.010.255.rrr	Symbolics, Inc. [CH2]
C*192.011.000.rrr-192.011.255.rrr	ATT, Bell Labs [MH12]
C*192.012.000.rrr CADMUS	CADMUS-NET [MS9]
C*192.012.001.rrr CADMUS-EXP-1	CADMUS-NET-EXP-1 [MS9]
C*192.012.002.rrr CADMUS-EXP-2	CADMUS-NET-EXP-2 [MS9]
C*192.012.003.rrr FLAIR	Fairchild AI Lab Net [96,AMS1]
C*192.012.004.rrr SCG-NET	Hughes SCG Net [96,MXP]
192.012.005.rrr-223.255.254.rrr	Unassigned [JBP]
223.255.255.rrr	Reserved [JBP]

Other Reserved Internet Addresses

*	Internet Address	Name	Network	References
-				
	224.000.000.000-2	55.255.255.255	Reserved	[JBP]

Network Totals

Assigned for the ARPA-Internet and the DDN-Internet

Class	A	В	С	Total
Research	7	36	824	867
Defense	4	14	9	27
Government	0	2	1	3
Commercial	2	0	3	5
Total	13	52	837	902

Allocated for	Internet	and Ind	lependent	Uses
Class	A	В	С	Total
Research	7	36	845	888
Defense	4	14	9	27
Government	0	2	1	3
Commercial	2	1	1543	1546
Total	13	53	2398	2464
Maximum Allowe	ed			
Class	A	В	С	Total
Research	8	1024	65536	66568
Defense	24	3072	458752	461848
Government	24	3072	458752	461848
Commercial	74	9214	1114137	1123394

Total 126 16382 2097150 2113658

ASSIGNED VERSION NUMBERS

In the Internet Protocol (IP) [31,71] there is a field to identify the version of the internetwork general protocol. This field is 4 bits in size.

Assigned Internet Version Numbers

Decimal	Keyword	Version	References
0		Reserved	[JBP]
1-3		Unassigned	[JBP]
4	IP	Internet Protocol	[31,71,JBP]
5	ST	ST Datagram Mode	[34,JWF]
6-14		Unassigned	[JBP]
15		Reserved	[JBP]

ASSIGNED PROTOCOL NUMBERS

In the Internet Protocol (IP) [31,71] there is a field, called Protocol, to identify the the next level protocol. This is an 8 bit field.

Assigned Internet Protocol Numbers

Decimal	Keyword	Protocol	References
0		Reserved	[JBP]
1	ICMP	Internet Control Message	[63,JBP]
2		Unassigned	[JBP]
3	GGP	Gateway-to-Gateway	[42,MB]
4		Unassigned	[JBP]
5	ST	Stream	[34,JWF]
6	TCP	Transmission Control	[31,72,JBP]
7		UCL	[PK]
8	EGP	Exterior Gateway Protocol	[85,DLM1]
9	IGP	any private interior gateway	[JBP]
10		BBN RCC Monitoring	[SGC]
11	NVP-II	Network Voice Protocol	[16,SC3]
12		PUP	[11,HGM]
13		ARGUS	[RWS4]
14		Unassigned	[JBP]
15	XNET	Cross Net Debugger	[40,JFH2]
16		Chaos Stream	[NC3]
17	UDP	User Datagram	[31,70,JBP]
18	MUX	Multiplexing	[17,JBP]
19		DCN Measurement Subsystems	[DLM1]
20	HMP	Host Monitoring	[41,RH6]
21		Packet Radio Measurement	[ZSU]
22		XEROX NS IDP	[97,LLG]
23		Trunk-1	[BML]
24		Trunk-2	[BML]
25		Leaf-1	[BML]
26		Leaf-2	[BML]
27-60		Unassigned	[JBP]
61		any host internal protocol	[JBP]
62		CFTP	[35,HCF2]
63		any local network	[JBP]
64		SATNET and Backroom EXPAK	[DM11]
65		MIT Subnet Support	[NC3]
66	RVD	MIT Remote Virtual Disk Protocol	[MBG]
67		Internet Pluribus Packet Core	[DM11]
68		Unassigned	[JBP]
69		SATNET Monitoring	[DM11]
70		Unassigned	[JBP]

Assigned Numbers Protocol Numbers		RFC 900
71	Internet Packet Core Utility	[DM11]
72-75	Unassigned	[JBP]
76	Backroom SATNET Monitoring	[DM11]
77	Unassigned	[JBP]
78	WIDEBAND Monitoring	[DM11]
79	WIDEBAND EXPAK	[DM11]
80-254	Unassigned	[JBP]
255	Reserved	[JBP]

ASSIGNED PORT NUMBERS

Ports are used in the TCP [31,72] to name the ends of logical connections which carry long term conversations. For the purpose of providing services to unknown callers, a service contact port is defined. This list specifies the port used by the server process as its contact port. The contact port is sometimes called the "well-known port".

To the extent possible, these same port assignments are used with the UDP [31,70].

The assigned ports use a small portion of the possible port numbers. The assigned ports have all except the low order eight bits cleared to zero. The low order eight bits are specified here.

Port Assignments:

Decimal	Keyword	Description	References
0		Reserved	[JBP]
1-4		Unassigned	[JBP]
5	RJE	Remote Job Entry	[13,32,JBP]
7	ECHO	Echo	[61,JBP]
9	DISCARD	Discard	[60,JBP]
11	USERS	Active Users	[56,JBP]
13	DAYTIME	Daytime	[59,JBP]
15	NETSTAT	Who is up or NETSTAT	[JBP]
17	QUOTE	Quote of the Day	[66,JBP]
19	CHARGEN	Character Generator	[58,JBP]
20	FTP	File Transfer [Default Data]	[31,62,JBP]
21	FTP	File Transfer [Control]	[31,62,JBP]
23	TELNET	Telnet	[78,JBP]
25	SMTP	Simple Mail Transfer	[31,68,JBP]
27		NSW User System FE	[18,RHT]
29		MSG ICP	[54,RHT]
31		MSG Authentication	[54,RHT]
33		Unassigned	[JBP]
35		Any Printer Server	[JBP]
37	TIME	Time	[74,JBP]
39	RLP	Resource Location Protocol	[1,MA]
41	GRAPHICS	Graphics	[32,90,JBP]
42	NAMESERVER	Host Name Server	[31,65,JBP]
43	NICNAME	Who Is	[31,39,JAKE]
44		MPM FLAGS Protocol	[JBP]
45	MPM	Message Processing Module [recv]	[64,JBP]
46	MPM	MPM [default send]	[64,JBP]
47		NI FTP	[94,SK]

49		Login Host Protocol	[PXD]
51		IMP Logical Address Maintenance	
53	DOMAIN	Domain Name Server	[PM1]
55		ISI Graphics Language	[10,RB6]
57		Any Private Terminal Access	[JBP]
59		Any Private File Service	[JBP]
61		NI MAIL	[8,SK]
63		VIA Systems - FTP	[DXD]
65		Unassigned	[JBP]
67		Unassigned	[JBP]
69	TFTP	Trivial File Transfer	[31,87,KRS]
71	NETRJS	Remote Job Service	[12,32,RTB]
72	NETRJS	Remote Job Service	[12,32,RTB]
73	NETRJS	Remote Job Service	[12,32,RTB]
74	NETRJS	Remote Job Service	[12,32,RTB]
75		Any Private Dial Out Service	[JBP]
77		Any Private RJE Service	[JBP]
79	FINGER	Finger	[32,37,KLH]
81		HOSTS2 Name Server	[EAK1]
83		MIT ML Device	[DPR]
85		MIT ML Device	[DPR]
87		Any Private Terminal Link	[JBP]
89		SU/MIT Telnet Gateway	[MRC]
91		MIT Dover Spooler	[EBM]
93		Device Control Protocol	[DCT]
95	SUPDUP	SUPDUP	[21,MRC]
97	201201	Unassigned	[JBP]
99		Metagram Relay	[GEOF]
101	HOSTNAME	NIC Host Name Server	[31,38,JAKE]
103	HODIWHIL	Unassigned	[JBP]
105	CCMET_NC	Mailbox Name Nameserver	[88,MHS1]
107	RTELNET	Remote Telnet Service	[67,JBP]
109	POP	Post Office Protocol	[JBP]
110-129	POP	Unassigned	[JBP]
131		Unassigned	[JBP]
132-223		Reserved	[JBP]
224-241			
		Unassigned	[JBP]
243		Survey Measurement	[9,AV]
245		LINK	[14,RDB2]
247-255		Unassigned	[JBP]

ASSIGNED AUTONOMOUS SYSTEM NUMBERS

The Exterior Gateway Protocol (EGP) [85,84] specifies that groups of gateways may form autonomous systems. The EGP provides a 16-bit field for identifying such systems. The values of this field are registered here.

Autonomous System Numbers:

Decimal	Name	References
0	Reserved	[JBP]
1	The BBN Gateways	[MB]
2	DCN-AS	[DLM1]
3	The MIT Gateways	[LM8]
4	ISI-AS	[PXK]
5	Symbolics	[CH2]
6	HIS-Multics	[BIM,RK1]
7	UK-MOD	[RNM1]
8	RICE-AS	[PGM]
9	CMU-ROUTER	[MA]
10-65534	Unassigned	[JBP]
65535	Reserved	[JBP]

ASSIGNED ARPANET LOGICAL ADDRESSES

The ARPANET facility for "logical addressing" is described in RFC 878 [49]. A portion of the possible logical addresses are reseved for standard uses.

There are 49,152 possible logical host addresses. Of these, 256 are reserved for assignment to well-known functions. Assignments for well-known functions are made by Joyce Reynolds. Assignments for other logical host addresses are made by the NIC.

Logical Address Assignments:

Decimal	Description	References
0	Reserved	[JBP]
1	The BBN Gateways	[MB]
2-255	Unassigned	[JBP]
256	Reserved	[JBP]

ASSIGNED ARPANET LINK NUMBERS

The word "link" here refers to a field in the original ARPANET Host/IMP interface leader. The link was originally defined as an 8-bit field. Later specifications defined this field as the "message-id" with a length of 12 bits. The name link now refers to the high order 8 bits of this 12-bit message-id field. The Host/IMP interface is defined in BBN Report 1822 [7].

The low-order 4 bits of the message-id field are called the sub-link. Unless explicitly specified otherwise for a particular protocol, there is no sender to receiver significance to the sub-link. The sender may use the sub-link in any way he chooses (it is returned in the RFNM by the destination IMP), the receiver should ignore the sub-link.

Link Assignments:

Decimal	Description	References
0	Reserved	[JBP]
1-149	Unassigned	[JBP]
150	Xerox NS IDP	[97,LLG]
151	Unassigned	[JBP]
152	PARC Universal Protocol	[11,HGM]
153	TIP Status Reporting	[JGH]
154	TIP Accounting	[JGH]
155	Internet Protocol [regular]	[31,71,JBP]
156-158	<pre>Internet Protocol [experimental]</pre>	[31,71,JBP]
159	Figleaf Link	[JBW1]
160-195	Unassigned	[JBP]
196-247	Experimental Protocols	[JBP]
248-255	Network Maintenance	[JGH]

IEEE 802 SAP NUMBERS OF INTEREST

Many of the networks of all classes are IEEE 802 Networks. These systems use a Service Access Point field in much the same way the ARPANET uses the "link" field.

Assignments:

Service Access Point	Description	References
decimal binary		
96 01100000	DOD IP	[31,70,JBP]

ETHERNET NUMBERS OF INTEREST

Many of the networks of all classes are Ethernets (10Mb) or Experimental Ethernets (3Mb). These systems use a message "type" field in much the same way the ARPANET uses the "link" field.

Assignments:

Ethernet		Exp.	Eth	ernet	Description	References
decimal	Hex	deci	mal	octal		
512	0200	5	12	1000	XEROX PUP	[1,HGM]
1536	0600	15	36	3000	XEROX NS IDP	[97,LLG]
2048	0800	5	13	1001	DOD IP	[131,71,JBP]
2049	0801	_		-	X.75 Internet	[LLG]
2050	0802	-			NBS Internet	[LLG]
2051	0803	_		-	ECMA Internet	[LLG]
2052	0804	_		-	Chaosnet	[LLG]
2053	0805	-			X.25 Level 3	[LLG]
2054	0806	-			Address Res	[55,DCP1]
2076	081C	-			Symbolics Priva	te [DCP1]
32771	8003	_		-	Cronus VLN	[91,DCT]
32772	8004	-			Cronus Direct	[91,DCT]
32774	8006	-			Nestar	[LLG]
36864	9000	-		-	Loopback	[LLG]

The standard for transmission of IP datagrams over Ethernets and Experimental Ethernets is specified in RFC 894 [41] and RFC 895 [57] respectively.

ASSIGNED ADDRESS RESOLUTION PROTOCOL PARAMETERS

The Address Resolution Protocol (ARP) specified in RFC 826 [55] has several parameters. The assigned values for these parameters are listed here.

Assignments:

Operation Code (op)

- 1 REQUEST
- 2 REPLY

Hardware Type (hrd)

- 1 ETHERNET (10Mb)
- 2 EXPERIMENTAL ETHERNET (3Mb)

Protocol Type (pro)

Use the same codes as listed in the section called "Ethernet Numbers of Interest".

ASSIGNED PUBLIC DATA NETWORK NUMBERS

One of the Internet Class A Networks is the international system of Public Data Networks. This section lists the mapping between the Internet Addresses and the Public Data Network Addresses (X.121).

Assignments:

Internet	Public Data Ne	et	Description	References
014.000.000.000			Reserved	[JBP]
014.000.000.001	3110-317-00035	00	PURDUE-TN	[CAK]
014.000.000.002	3110-608-00027	00	UWISC-TN	[CAK]
014.000.000.003	3110-302-00024	00	UDEL-TN	[CAK]
014.000.000.004	2342-192-00149	23	UCL-VTEST	[PK]
014.000.000.005	2342-192-00300	23	UCL-TG	[PK]
014.000.000.006	2342-192-00300	25	UK-SATNET	[PK]
014.000.000.007	3110-608-00024	00	UWISC-IBM	[MHS1]
014.000.000.008	3110-213-00045	00	RAND-TN	[MO2]
014.000.000.009	2342-192-00300	23	UCL-CS	[PK]
014.000.000.010	3110-617-00025	00	BBN-VAN-GW	[JD21]
014.000.000.011	2405-015-50300	00	CHALMERS	[UXB]
014.000.000.012	3110-713-00165	00	RICE	[PAM6]
014.000.000.013	3110-415-00261	00	DECWRL	[PAM6]
014.000.000.014	3110-408-00051	00	IBM-SJ	[SA1]
014.000.000.015	2041-117-01000	00	SHAPE	[PG3]
014.000.000.016	2628-153-90075	00	DFVLR	[HDC1]
014.000.000.017-0	14.255.255.254		Unassigned	[JBP]
014.255.255.255			Reserved	[JBP]

The standard for transmission of IP datagrams over the Public Data Network is specified in RFC 877 [47].

ASSIGNED TELNET OPTIONS

The Telnet Protocol has a number of options that may be negotiated. These options are listed here. The "Official Protocols" document [83] provides more detailed information.

Options	Name	References
0	Binary Transmission	 [76,JBP]
1	Echo	[77,JBP]
2	Reconnection	[5,JBP]
3	Suppress Go Ahead	[80,JBP]
4	Approx Message Size Negotiation	[32,JBP]
5	Status	[79,JBP]
6	Timing Mark	[81,JBP]
7	Remote Controlled Trans and Echo	[73,JBP]
8	Output Line Width	[3,JBP]
9	Output Page Size	[4,JBP]
10	Output Carriage-Return Disposition	[22,JBP]
11	Output Horizontal Tab Stops	[26,JBP]
12	Output Horizontal Tab Disposition	[25,JBP]
13	Output Formfeed Disposition	[23,JBP]
14	Output Vertical Tabstops	[28,JBP]
15	Output Vertical Tab Disposition	[27,JBP]
16	Output Linefeed Disposition	[24,JBP]
17	Extended ASCII	[53,JBP]
18	Logout	[19,MRC]
19	Byte Macro	[29,JBP]
20	Data Entry Terminal	[30,JBP]
22	SUPDUP	[21,20,MRC]
22	SUPDUP Output	[36,MRC]
23	Send Location	[46,EAK1]
24	Terminal Type	[89,MHS1]
25	End of Record	[69,JBP]
255	Extended-Options-List	[75,JBP]

OFFICIAL MACHINE NAMES

These are the Official Machine Names as they appear in the NIC Host Table. Their use is described in RFC 810 [33].

```
ALTO
AMDAHL-V7
BURROUGHS-B/29
C/30
C/70
CADLINC
CADR
CDC-173
DEC-10
DEC-1050
DEC-1080
DEC-1090
DEC-1090B
DEC-1090T
DEC-2020T
DEC-2040
DEC-2040T
DEC-2050T
DEC-2060
DEC-2060T
DEC-FALCON
DPS8/70M
FOONLY-F2
FOONLY-F3
FOONLY-F4
H-316
H-60/68
H-68
H-68/80
H-89
HONEYWELL-DPS-8/70M
IBM-158
IBM-360/67
IBM-370/3033
IBM-4341
IBM-PC
IMSAI
K102
LSI-11
LSI-11/23
M6800
MAXC
MLC
```

NAS-AS/5 ONYX-09001 ONYX-28000 PDP-11 PDP-11/34 PDP-11/40 PDP-11/44 PDP-11/45 PDP-11/50 PDP-11/70 PERQ PLURIBUS ROLM-1666 SMI SUN-150 SYMBOLICS-3600 UNIVAC-1100 VAX-11/730 VAX-11/750 VAX-11/780

XEROX-8010

OFFICIAL SYSTEM NAMES

These are the Official System Names as they appear in the NIC Host Table. Their use is described in RFC 810 [33].

ASP

AUGUST

BKY

CCP

DOS/360

ELF

EPOS

EXEC-8

GCOS

GPOS

ITS

INTERCOM

INTERLISP

KRONOS

MCP

MOS

MPX-RT

MULTICS

MVT

NOS

NOS/BE

OS/MVS

OS/MVT

RIG

RSX-11M

RT11

SCOPE

SIGNAL SINTRAN

TENEX

TOPS-10

TOPS-20

TSS

UNIX

VM/370

VM/CMS

VMS

WAITS

XDE

OFFICIAL PROTOCOL AND SERVICE NAMES

These are the Official Protocol Names. Their use is described in greater detail in RFC 810 [33].

CHARGEN - Character Generator Protocol
CLOCK - DCNET Time Server Protocol

CSNET-NS - CSNET Mailbox Nameserver Protocol

DAYTIME - Daytime Protocol
DISCARD - Discard Protocol

DOMAIN - Domain Name Server Protocol

ECHO - Echo Protocol

EGP - Exterior Gateway Protocol

FINGER - Finger Protocol

FTP - File Transfer Protocol
GGP - Gateway Gateway Protocol

GRAPHICS - Graphics Protocol

HMP - Host Monitoring Protocol

HOSTNAME - Hostname Protocol

ICMP - Internet Control Message Protocol

IGP - Interior Gateway Protocol

IP - Internet Protocol

MPM - Internet Message Protocol
MUX - Multiplexing Protocol
NAMESERVER - Host Name Server Protocol
NETED - Network Standard Text Editor

NETRJS - Remote Job Service NICNAME - Who Is Protocol

NVP-II - Network Voice Protocol
POP - Post Office Protocol
QUOTE - Quote of the Day Protocol
RVD - Remote Virtual Disk Protocol

RVD - Remote Virtual Disk Protoc
RLP - Resource Location Protocol
RJE - Remote Job Entry Protocol
RTELNET - Remote Telnet Service

SMTP - Simple Mail Transfer Protocol
ST - Stream Protocol
SUPPUP - SUPPUP Protocol

SUPDUP - SUPDUP Protocol
TELNET - Telnet Protocol

TCP - Transmission Control Protocol
TFTP - Trivial File Transfer Protocol

TIME - Time Server Protocol

UDP - User Datagram Protocol

USERS - Active Users Protocol

XNET - Cross Net Debugger

OFFICIAL TERMINAL TYPE NAMES

These are the Official Terminal Type Names. Their use is described in RFC 884 [89].

ADDS-CONSUL-980

ADDS-REGENT-100

ADDS-REGENT-20

ADDS-REGENT-200

ADDS-REGENT-25

ADDS-REGENT-40

ADDS-REGENT-60

AMPEX-DIALOGUE-80

ANDERSON-JACOBSON-630

ANDERSON-JACOBSON-832

ANDERSON-JACOBSON-841

ANN-ARBOR-AMBASSADOR

ARDS

BITGRAPH

BUSSIPLEXER

CALCOMP-565

CDC-456

CDI-1030

CDI-1203

COMPUCOLOR-II

CONCEPT-100

DATA-100

DATA-GENERAL-6053

DATAGRAPHIX-132A

DATAMEDIA-1520

DATAMEDIA-1521

DATAMEDIA-2500

DATAMEDIA-3025

DATAMEDIA-3025A

DATAMEDIA-3045

DATAMEDIA-3045A

DATAMEDIA-DT80/1 DATAPOINT-2200

DATAPOINT-3000

DATAPOINT-3300

DATAPOINT-3300 DATAPOINT-3360

DEC-DECWRITER-I

DEC-DECWRITER-II

DEC-GT40

DEC-GT40A

DEC-GT42

DEC-LA120

DEC-LA30

```
DEC-LA36
DEC-LA38
DEC-VT05
DEC-VT100
DEC-VT132
DEC-VT50
DEC-VT50H
DEC-VT52
DELTA-DATA-5000
DELTA-TELTERM-2
DIABLO-1620
DIABLO-1640
DIGILOG-333
DTC-300S
EDT-1200
EXECUPORT-4000
EXECUPORT-4080
GENERAL-TERMINAL-100A
HAZELTINE-1500
HAZELTINE-1510
HAZELTINE-1520
HAZELTINE-2000
HP-2621
HP-2621A
HP-2621P
HP-2626
HP-2626A
HP-2626P
HP-2640
HP-2640A
HP-2640B
HP-2645
HP-2645A
HP-2648
HP-2648A
HP-2649
HP-2649A
IBM-3101
IBM-3101-10
IBM-3275-2
IBM-3276-2
IBM-3276-3
IBM-3276-4
IBM-3277-2
IBM-3278-2
IBM-3278-3
```

IBM-3278-4

```
IBM-3278-5
IBM-3279-2
IBM-3279-3
IMLAC
INFOTON-100
INFOTONKAS
ISC-8001
LSI-ADM-3
LSI-ADM-31
LSI-ADM-3A
LSI-ADM-42
MEMOREX-1240
MICROBEE
MICROTERM-ACT-IV
MICROTERM-ACT-V
MICROTERM-MIME-1
MICROTERM-MIME-2
NETRONICS
NETWORK-VIRTUAL-TERMINAL
OMRON-8025AG
PERKIN-ELMER-1100
PERKIN-ELMER-1200
PLASMA-PANEL
QUME-SPRINT-5
SOROC
SOROC-120
SOUTHWEST-TECHNICAL-PRODUCTS-CT82
SUPERBEE
SUPERBEE-III-M
TEC
TEKTRONIX-4010
TEKTRONIX-4012
TEKTRONIX-4013
TEKTRONIX-4014
TEKTRONIX-4023
TEKTRONIX-4024
TEKTRONIX-4025
TEKTRONIX-4027
TELERAY-1061
TELERAY-3700
TELERAY-3800
TELETEC-DATASCREEN
TELETERM-1030
TELETYPE-33
TELETYPE-35
TELETYPE-37
TELETYPE-38
```

TELETYPE-43

TELEVIDEO-912 TELEVIDEO-920 TELEVIDEO-920B TELEVIDEO-920C TELEVIDEO-950 TERMINET-1200 TERMINET-300 TI-700 TI-733 TI-735 TI-743 TI-745 TYCOM UNIVAC-DCT-500 VIDEO-SYSTEMS-1200 VIDEO-SYSTEMS-5000 VISUAL-200

XEROX-1720 ZENITH-H19 ZENTEC-30

DOCUMENTS

- [1] Accetta, Mike, "Resource Location Protocol", RFC 887, Carnegie-Mellon University, December 1983.
- [2] Aerospace, Internal Report, ATM-83(3920-01)-3, 1982.
- [3] ARPANET Protocol Handbook, "Telnet Output Line Width Option", NIC 20196, 13-November-1973.
- [4] ARPANET Protocol Handbook, "Telnet Output Page Size Option", NIC 20197, 13-November-1973.
- [5] ARPANET Protocol Handbook, "Telnet Reconnection Option", NIC 15391, August 1973.
- [6] BBN Proposal No. P83-COM-40, "Packet Switched Overlay to Tactical Multichannel/Satellite Systems".
- [7] BBN, "Specifications for the Interconnection of a Host and an IMP", Report 1822, Bolt Beranek and Newman, Cambridge, Massachusetts, revised, December 1981.
- [8] Bennett, C., "A Simple NIFTP-Based Mail System", IEN 169, University College, London, January 1981.
- [9] Bhushan, A., "A Report on the Survey Project", RFC 530, NIC 17375, 22 June 1973.
- [10] Bisbey, R., D. Hollingworth, and B. Britt, "Graphics Language (version 2.1)", ISI/TM-80-18, USC/Information Sciences Institute, July 1980.
- [11] Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "PUP: An Internetwork Architecture", XEROX Palo Alto Research Center, CSL-79-10, July 1979; also in IEEE Transactions on Communication, Volume COM-28, Number 4, April 1980.
- [13] Bressler, B., "Remote Job Entry Protocol", RFC 407, NIC 12112, 16 October 72. Also in [32].
- [14] Bressler, R., "Inter-Entity Communication -- An Experiment", RFC 441, NIC 13773, 19 January 1973.

- [15] Clark, D., "Revision of DSP Specification", Local Network Note 9, Laboratory for Computer Science, MIT, 17 June 1977.
- [16] Cohen, D., "Specifications for the Network Voice Protocol", RFC 741, ISI/RR 7539, USC/Information Sciences Institute, March 1976.
- [17] Cohen, D. and J. Postel, "Multiplexing Protocol", IEN 90, USC/Information Sciences Institute, May 1979.
- [18] COMPASS, "Semi-Annual Technical Report", CADD-7603-0411, Massachusetts Computer Associates, 4 March 1976. Also as, "National Software Works, Status Report No. 1," RADC-TR-76-276, Volume 1, September 1976. And COMPASS. "Second Semi-Annual Report," CADD-7608-1611, Massachusetts Computer Associates, 16 August 1976.
- [19] Crispin, Mark, "Telnet Logout Option", Stanford University-AI, RFC 727, 27 April 1977.
- [21] Crispin, M., "SUPDUP Protocol", RFC 734, NIC 41953,
 7 October 1977. Also in [32].
- [22] Crocker, D., "Telnet Output Carriage-Return Disposition Option", RFC 652, 25-October-1974.
- [23] Crocker, D., "Telnet Output Formfeed Disposition Option", RFC 655, 25-October-1974.
- [24] Crocker, D., "Telnet Output Linefeed Disposition", RFC 658, 25-October-1974.
- [25] Crocker, D., "Telnet Output Horizontal Tab Disposition Option", RFC 654, 25-October-1974.
- [26] Crocker, D., "Telnet Output Horizontal Tabstops Option", RFC 653, 25-October-1974.
- [27] Crocker, D., "Telnet Output Vertical Tab Disposition Option", RFC 657, 25-October-1974.
- [28] Crocker, D., "Telnet Output Vertical Tabstops Option", RFC 656, 25-October-1974.

- [29] Crocker, D.H. and R.H. Gumpertz, "Revised Telnet Byte Marco Option", RFC 735, 3-November-1977...
- [30] Day, John, "Telnet Data Entry Terminal Option", RFC 732, 13-September-1977.
- [31] Feinler, E., "Internet Protocol Transition Workbook", Network Information Center, SRI International, March 1982.
- [32] Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the Defense Communications Agency by SRI International, Menlo Park, California, Revised January 1978.
- [33] Feinler, E., K. Harrenstien, and Z. Su, "DoD Internet Host Table Specification", RFC 810, SRI International, 1 March 1982.
- [34] Forgie, J., "ST A Proposed Internet Stream Protocol", IEN 119, M.I.T. Lincoln Laboratory, September 1979.
- [35] Forsdick, H., "CFTP", Network Message, Bolt Berenak and Newman, January 1982.
- [36] Greenberg, B., "Telnet SUPDUP-OUTPUT Option", RFC 749, MIT-Multics, 26-September-1978.
- [37] Harrenstien, K., "Name/Finger", RFC 742, NIC 42758, 30 December 1977. Also in [32].
- [38] Harrenstien, K., V. White, and E. Feinler, "Hostnames Server", RFC 811, SRI International, March 1982.
- [39] Harrenstien, K., and V. White, "Nicname/Whois", RFC 812, SRI International, March 1982.
- [40] Haverty, J., "XNET Formats for Internet Protocol Version 4", IEN 158, October 1980.
- [41] Hinden, Robert M., "A Host Monitoring Protocol", RFC 869, Bolt Berenak and Newman, December 1983.
- [42] Hinden, R., A. Sheltzer, "The DARPA Internet Gateway", RFC 823, September 1982.
- [43] Honeywell CISL, Internal Document, "AFSDSC Hyperchannel RPQ Project Plan".
- [44] Honeywell CISL, Internal Document, "Multics MR11 PFS".

- [45] Hornig, C., "A Standard for the Transmission of IP Datagrams over Ethernet Networks, RFC 894, Symbolics, April 1984.
- [46] Killian, E., "Telnet Send-Location Option", RFC 779, April 1981.
- [47] Korb, John T., "A Standard for the Transmission of IP Datagrams Over Public Data Networks", RFC 877, Purdue University, September 1983.
- [48] Macgregor, W., and D. Tappan, "The CRONUS Virtual Local Network", RFC 824, Bolt Beranek and Newman, 22 August 1982.
- [49] Malis, Andrew G. "The ARPANET 1822L Host Access Protocol", RFC 878, BBN Communications Corp., Cambridge, Mass, December 1983.
- [50] Malis, A., "Logical Addressing Implementation Specification", BBN Report 5256, pp 31-36, May 1983.
- [51] Metcalfe, R.M. and D.R. Boggs, "Ethernet: Distributed Packet Switching for Local Computer Networks", Communications of the ACM, 19 (7), pp 395-402, July 1976.
- [52] Mills, D.L., "DCN Local-Network Protocols", RFC 891, December 1983.
- [53] Tovar, "Telnet Extended ASCII Option", RFC 698, Stanford University-AI, 23-July-1975.
- [54] NSW Protocol Committee, "MSG: The Interprocess Communication Facility for the National Software Works", CADD-7612-2411, Massachusetts Computer Associates, BBN 3237, Bolt Beranek and Newman, Revised 24 December 1976.
- [55] Plummer, D., "An Ethernet Address Resolution Protocol or Converting Network Protocol Addresses to 48-bit Ethernet Addresses for Transmission on Ethernet Hardware", RFC 826, MIT LCS, November 1982.
- [56] Postel, J., "Active Users", RFC 866, USC/Information Sciences Institute, May 1983.
- [57] Postel, J., "A Standard for the Transmission of IP Datagrams over Experimental Ethernet Networks, RFC 895, USC/Information Sciences Institute, April 1984.

- [58] Postel, J., "Character Generator Protocol", RFC 864, USC/Information Sciences Institute, May 1983.
- [59] Postel, J., "Daytime Protocol", RFC 867, USC/Information Sciences Institute, May 1983.
- [60] Postel, J., "Discard Protocol", RFC 863, USC/Information Sciences Institute, May 1983.
- [61] Postel, J., "Echo Protocol", RFC 862, USC/Information Sciences Institute, May 1983.
- [62] Postel, J., "File Transfer Protocol", RFC 765, IEN 149, USC/Information Sciences Institute, June 1980.
- [63] Postel, J., "Internet Control Message Protocol DARPA
 Internet Program Protocol Specification", RFC 792,
 USC/Information Sciences Institute, September 1981.
- [64] Postel, J., "Internet Message Protocol", RFC 759, IEN 113, USC/Information Sciences Institute, August 1980.
- [65] Postel, J., "Name Server", IEN 116, USC/Information Sciences Institute, August 1979.
- [66] Postel, J., "Quote of the Day Protocol", RFC 865, USC/Information Sciences Institute, May 1983.
- [67] Postel, J., "Remote Telnet Service", RFC 818, USC/Information Sciences Institute, November 1982.
- [68] Postel, J., "Simple Mail Transfer Protocol", RFC 821, USC/Information Sciences Institute, August 1982.
- [69] Postel, J., "Telnet End of Record Option", RFC 885, USC/Information Sciences Institute, December 1983.
- [70] Postel, J., "User Datagram Protocol", RFC 768 USC/Information Sciences Institute, August 1980.
- [71] Postel, J., ed., "Internet Protocol DARPA Internet Program Protocol Specification", RFC 791, USC/Information Sciences Institute, September 1981.
- [72] Postel, J., ed., "Transmission Control Protocol DARPA Internet Program Protocol Specification", RFC 793, USC/Information Sciences Institute, September 1981.

- [73] Postel, J. and D. Crocker, "Remote Controlled Transmission and Echoing Telnet Option", RFC 726, 8-March-1977.
- [74] Postel, J., and K. Harrenstien, "Time Protocol", RFC 868, USC/Information Sciences Institute, May 1983.
- [75] Postel, J. and J. Reynolds, "Telnet Extended Options List Option", RFC 861, USC/Information Sciences Institute, May 1983.
- [76] Postel, J. and J. Reynolds, "Telnet Binary Transmission", RFC 856, USC/Information Sciences Institute, May 1983.
- [77] Postel, J. and J. Reynolds, "Telnet Echo Option", RFC 857, USC/Information Sciences Institute, May 1983.
- [78] Postel, J., and J. Reynolds, "Telnet Protocol Specification", RFC 854, USC/Information Sciences Institute, May 1983.
- [79] Postel, J. and J. Reynolds, "Telnet Status Option", RFC 859, USC/Information Sciences Institute, May 1983.
- [80] Postel, J. and J. Reynolds, "Telnet Suppress Go Ahead Option", RFC 858, USC/Information Sciences Institute, May 1983.
- [81] Postel, J. and J. Reynolds, "Telnet Timing Mark Option", RFC 860, USC/Information Sciences Institute, May 1983.
- [82] Reed, D., "Protocols for the LCS Network", Local Network Note 3, Laboratory for Computer Science, MIT, 29 November 1976.
- [83] Reynolds, J. and J. Postel, "Official Protocols", RFC 901, USC/Information Sciences Institute, June 1984.
- [84] Rosen, E., "Exterior Gateway Protocol" RFC 827, Bolt Berenak and Newman, October 1982.
- [85] Seamonson, L.J., and E.C. Rosen, "STUB" Exterior Gateway Protocol", RFC 888, BBN Communications Corporation, January 1984.
- [86] Skelton, A., S. Holmgren, and D. Wood, "The MITRE Cablenet Project", IEN 96, April 1979.
- [87] Sollins, K., "The TFTP Protocol (Revision 2)", RFC 783, MIT/LCS, June 1981.

- [88] Solomon, M., L. Landweber, and D, Neuhengen, "The CSNET Name Server", Computer Networks, v.6, n.3, pp. 161-172, July 1982.
- [89] Solomon, M., and E. Wimmers, "Telnet Terminal Type Option", RFC 884, University of Wisconsin, Madison, December 1983.
- [90] Sproull, R., and E. Thomas, "A Networks Graphics Protocol", NIC 24308, 16 August 1974. Also in [33].
- [91] Tappan, D.C., "The CRONUS Virtual Local Network", RFC 824, Bolt Beranek and Newman, Inc., 26 August 1982.
- [92] "The Ethernet, a Local Area Network: Data Link Layer and Physical Layer Specification", AA-K759B-TK, Digital Equipment Corporation, Maynard, VA.
- [93] "The Ethernet A Local Area Network", Version 1.0, Digital Equipment Corporation, Intel Corporation, Xerox Corporation, September 1980.
- [94] The High Level Protocol Group, "A Network Independent File Transfer Protocol", INWG Protocol Note 86, December 1977.
- [95] Whelan, D., "The Caltech Computer Science Department Network", 5052:DF:82, Caltech Computer Science Department, 1982.
- [96] XEROX, "The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specification", X3T51/80-50, Xerox Corporation, Stamford, CT., October 1980.
- [97] XEROX, "Internet Transport Protocols", XSIS 028112, Xerox Corporation, Stamford, Connecticut, December 1981.

PEOPLE

[AB13]	Alison Brown	CORNELL	alison@Cornell.ARPA
[AGM]	Andy Malis	BBN	Malis@BBN-UNIX.ARPA
[AGM]	Anita Skelton	MITRE	skelton@MITRE.ARPA
[APS]	Alan Parker	NRL	parker@NRL-CSS.ARPA
[AV]	Al Vezza	MIT	AV@MIT-XX.ARPA
	Albert Cheng		
[AXC]	-	UIUC	acheng.uiuc@csnet-relay.ARPA
[AXG]	Atul Garg Alfred Ganz	HP	none
[AXG1]	Alired Ganz Akiharu Yasuda	YALE	GANZ@YALE
[AY5]		DODIIS	dia@PAXRV-NES.ARPA
[BG5]	Bob Gilligan	SRI	Gilligan@SRI-KL.ARPA
[BIM]			Margulies@CISL.ARPA
[BML]	Barry Leiner	ARPA	Leiner@USC-ISIA.ARPA
[BXA]	Bobby W. Allen	YPG	WYMER@OFFICE.ARPA
[CAK]	Chris Kent	PURDUE	Kent@PURDUE.ARPA
[CC2]	Chase Cotton	UDEL	Cotton@Udel-EE.ARPA
[CH2]	Charles Hornig		Hornig@MIT-MC.ARPA
[CJW2]	Cliff Weinstein	LL	cjw@LL-11.ARPA
[CLH3]	Charles Hedrick	RUTGERS	Hedrick@RUTGERS.ARPA
[CMR]	Craig Rogers	ISI	Rogers@USC-ISIB.ARPA
[CXL]	Clifford A. Lynch	UCB	UCDLA@BBNCCY.ARPA
[DAM1]	David A. Mosher	UCB	Mosher@BERKELEY.ARPA
[DCP1]	David Plummer	MIT	DCP@MIT-MC.ARPA
[DCT]	Dan Tappan	BBN	Tappan@BBNG.ARPA
[DDC2]	Dave Clark	MIT-LCS	Clark@MIT-Multics.ARPA
[DHH]	Doug Hunt	BBN	DHunt@BBN-Unix.ARPA
[DJF]	David J. Farber	U of Del.	Farber@Udel-ee.ARPA
[DK2]	Dean B. Krafft	CORNELL	Dean@CORNELL.ARPA
[DLM1]	David Mills	LINKABIT	Mills@USC-ISID.ARPA
[DM11]	Dale McNeill	BBN	mcneill@BBN-Unix.ARPA
[DPR]	David Reed	MIT-LCS	DPR@MIT-XX.ARPA
[DSW]	Dan Whelan	Caltech	Dan@CIT-20.ARPA
[DXD]	Dennis J.W. Dube	VIA System	msnone
[DXH]	Douglas Hirsch	BBN	hirsch@bbn-unix.ARPA
[EAK1]	Earl Killian	LLL	EAK@MIT-MC.ARPA
[EBM]	Eliot Moss	MIT	EBM@MIT-XX.ARPA
[EC5]	Ed Cain	DCEC	cain@EDN-Unix.ARPA
[EF5]	Ed Franceschini	NYU	Franceschini@NYU.ARPA
[EHP]	Ed Perry	SRI	Perry@SRI-KL.ARPA
[FAS]	Fred Segovich	Compion	fred@COMPION-VMS.ARPA
[FLM2]	F. Lee Maybaum	MILNET	Maybaum@DDN1
[GEOF]	Geoff Goodfellow	SRI	Geoff@DARCOM-KA.ARPA
[GXH]	Glenn I. Hastie II	SRI	Hastie@SRI-SPAM.ARPA
[HA]	Howard Alt	AIDS	alt@aids-unix.ARPA
[HCF2]	Harry Forsdick	BBN	Forsdick@BBNG.ARPA
[HDC1]	Horst Clausen	DFVLR	Clausen@USC-ISID.ARPA
[HDW2]	Howard Wactlar	CMU	Wactlar@CMU-CS-A.ARPA

[HGM]	Hallam Murray	PARC	Murray.PA@PARC-MAXC.ARPA
[HM]	Hank Magnuski		JOSE@PARC-MAXC.ARPA
[JA1]	Jules P. Aronson	NLM	Aronson@nlm-mcs.ARPA
[JAKE]	Jake Feinler	SRI	Feinler@SRI-KL.ARPA
[JAR4]	Jim Rees		N JIM@WASHINGTON.ARPA
[JAW3]	Jil Westcott	BBN	Westcott@BBNF.ARPA
[JBP]	Jon Postel	ISI	Postel@USC-ISIF.ARPA
[JBW1]	Joseph Walters, Jr.		JWalters@BBN-UNIX.ARPA
[JC11]	Jim Clifford	LANL	jrc@LANL.ARPA
[JCM]	Jeff Mogul	STANFORD	Mogul@SU-SCORE.ARPA
[JD21]	Jonathan Dreyer	BBN	JDreyer@BBN-Unix.ARPA
[JDG]	Jim Guyton	RAND	guyton@RAND-Unix.ARPA
[JEM]	Jim Mathis	SRI	Mathis@SRI-KL.ARPA
[JFH2]	Jack Haverty	BBN	Haverty@BBN-Unix.ARPA
[JGH]	Jim Herman	BBN	Herman@BBN-Unix.ARPA
[JKR1]	Joyce K. Reynolds	ISI	JKREYNOLDS@USC-ISIF.ARPA
[JO5]	John O'Donnell	YALE	ODonnell@YALE.ARPA
	John L. Robinson		DREO-CRC@USC-ISID.ARPA
[JR17]	John Mullen	CANADA MITRE	Mullen@MITRE.ARPA
[JRM1] [JS38]		LBL	
	Joseph Sventek		j@LBL-CSAM.ARPA
[JSG5]	Jon Goodridge	BBN	jsg@BBN-UNIX.ARPA
[JSQ1]	John S. Quarterman	UT	jsq@ut-sally.ARPA
[JWF]	Jim Forgie	LL	Forgie@BBNC.ARPA
[JXS]	Jeffrey R. Schwab	PURDUE	jrs@PURDUE.ARPA
[KLH]	Ken Harrenstien	SRI	KLH@NIC.ARPA
[KRS]	Karen Sollins	MIT	Sollins@MIT-XX.ARPA
[KTP]	Kenneth T. Pogran	BBN	Pogran@BBN-UNIX.ARPA
[KWP]	Kevin W. Paetzold	DEC	Paetzold@DEC-MARLBORO.ARPA
[LB1]	Liudvikas Bukys		Bukys@ROCHESTER.ARPA
[LCN]	Lou Nelson		Lou@AEROSPACE.ARPA
[LCS]	Lou Schreier	SRI	Schreier@USC-ISID.ARPA
[LH2]	Lincoln Hu	COLUMBIA	Hu@Columbia-20.ARPA
[LLG]	Larry Garlick	XEROX	Garlick@PARC-MAXC.ARPA
[LM8]	Liza Martin	MIT-LCS	Martin@MIT-XX.ARPA
[LRB]	Larry Bierma	NPRDC	Bierma@NPRDC.ARPA
[MA]	Mike Accetta	CMU	Accetta@CMU-CS-A.ARPA
[MBG]	Michael Greenwald	MIT-LCS	Greenwald@MIT-Multics.ARPA
[MB]	Michael Brescia	BBN	Brescia@BBN-Unix.ARPA
[MCSJ]	Mike StJohns	AFDSC	StJohns@MIT-MULTICS.ARPA
[MDC]	Martin D. Connor	MIT AI	Marty@MIT-MC.ARPA
[MH12]	Mark Horton	ATT	mark@BERKELEY.ARPA
[MHS1]	Marvin Solomon	WISC	Solomon@UWISC.ARPA
[MJM2]	Mike Muuss	BRL	Mike@BRL.ARPA
[MO2]	Michael O'Brien	RAND	OBrien@RAND-Unix.ARPA
[MRC]	Mark Crispin	Stanford	Admin.MRC@SU-SCORE.ARPA
[MS9]	Martin Schoffstall	CADMUS	decvax!yvax!marty@Berkeley
[MXB]	Mark Brown	USC	Mark@USC-ECLB.ARPA
[MXF]	Martin J. Fouts	NASA-Ames	nep.fouts@ames-amelia.ARPA

[MXP]	Michael K. Peterson	HUGHES	scgvaxd!mkp@cit-vax.ARPA
[MXR]	Marshall Rose	Irvine	MRose.UCI@RAND-Relay.ARPA
[MXM]	Marc M. Meilleur	COINS	COINS@USC-ISI.ARPA
[MXS]	Marc Shapiro	INRIA	Shapiro@CMU-CS-C.ARPA
[NC3]	J. Noel Chiappa	MIT	JNC@MIT-XX.ARPA
[NXK]	Neil Katin	HP	hpda.neil@BERKELEY.ARPA
[PAM6]	Paul McNabb	RICE	pam@PURDUE.ARPA
[PG3]	Phill Gross	LINKABIT	gross@dcn7.ARPA
[PGM]	Paul G. Milazzo	RICE	Milazzo@RICE.ARPA
[PK]	Peter Kirstein	UCL	Kirstein@USC-ISIA.ARPA
[PM1]	Paul Mockapetris	ISI	Mockapetris@USC-ISIF.ARPA
[PS3]	Paal Spilling	NDRE	Paal@NTA-VAX.ARPA
[PXD]	Pieter Ditmars	BBN	pditmars@BBN-UNIX.ARPA
[PXK]	Paul Kirton	ISI	Kirton@USC-ISIF.ARPA
[PXM]	Pat Marques	NSRDC	marques@dtrc.ARPA
[PXN]	Peter Nellessen	SIEMENS	crtvax!pn@CMU-CS-SPICE.ARPA
[RA11]	Rick Adams	CCI	rlgvax!ra@SEISMO.ARPA
[RB6]	Richard Bisbey	ISI	Bisbey@USC-ISIB.ARPA
[RBW]	Richard B. Wales	UCLA	wales@UCLA-LOCUS.ARPA
[RC7]	Robert Cole	UCL	robert@ucl-cs.ARPA
[RDB2]	Robert Bressler	BBN	Bressler@BBN-Unix.ARPA
[RDR4]	Dennis Rockwell	BBN	DRockwell@BBN-UNIX.ARPA
[REK2]	Robert Kahn	ARPA	Kahn@USC-ISIA.ARPA
[RF1]	Randy Frank	UTAH	Frank@UTAH-20.ARPA
[RH6]	Robert Hinden	BBN	Hinden@BBN-Unix.ARPA
[RHT]	Robert Thomas	BBN	BThomas@BBNG.ARPA
[RK1]	Richard Kovalcik	Honeywell	Kovalcik@MIT-MULTICS.ARPA
[RLB1]	Bob Brown	USRA	rlb@ames-vmsb.ARPA
[RLB3]	Ronald L. Broersma	NOSC	Ron@NOSC.ARPA
[RLH2]	Ronald L. Hartung	NSWC	ron@nswc-wo.ARPA
[RNM1]	Neil MacKenzie	RSRE	T45@USC-ISID.ARPA
[RR2]	Raleigh Romine	Teledyne	romine@SEISMO.ARPA
[RS23]	Russel Sandberg	WISC	root@UWISC.ARPA
[RTB]	Bob Braden	UCLA	Braden@USC-ISIA.ARPA
[RWS4]	Robert W. Scheifler	ARGUS	RWS@MIT-XX.ARPA
[RXR]	Ron Reisor	UDEL	ron.udel-cc-relay@udel.ARPA
[RXS]	Ronald L. Smith	COINS	COINS@USC-ISIA.ARPA
[SA1]	Sten Andler	ARPA a	andler.ibm-sj@csnet-relay.ARPA
[SC3]	Steve Casner	ISI	Casner@USC-ISIB.ARPA
[SGC]	Steve Chipman	BBN	Chipman@BBNA.ARPA
[SK]	Steve Kille	UCL	UKSAT@USC-ISID.ARPA
[SXB]	Steve Byrne	TARTAN	Byrne@CMU-CS-C.ARPA
[SXB1]	Scott Bradner	HARVARD	bradner@HARV.10.ARPA
[SXM]	Scott Marcus	Spartacus	none
[TBS]	Claude S. Steffey	WSMR	csteffey@wsmr70a.ARPA
[TC4]	Tony Cincotta	DTNSRDC	tony@NALCON.ARPA
[TXF]	Thomas Ferrin	UCSF	ucsfcgl!tef@Berkeley.ARPA
[TXN]	Todd Nugent	U Chicago	Nugent@ANL-MCS.ARPA

[UXB]	Ulf Bilting	CHALMERS	bilting@purdue.ARPA
[MIM]	William Macgregor	BBN	macg@BBN.ARPA
[UNW]	Bill Joy	SMI	sun!wnj@BERKELEY.ARPA
[ZSU]	Zaw-Sing Su	SRI	ZSu@SRI-TSC.ARPA

APPENDIX A

Network Numbers

The network numbers in class A, B, and C network addresses are allocated among Research, Defense, Government (Non-Defense) and Commercial uses.

Class A (highest-order bit 0)

Research allocation:	8
Defense allocation:	24
Government allocation:	24
Commercial allocation:	94
Reserved Addresses: (0, 127)	
Total	128

Class B (highest-order bits 1-0)

Research allocation:	1024
Defense allocation:	3072
Government allocation:	3072
Commercial allocation:	12286
Reserved Addresses: (0,	16383)
Total	16384

Class C (highest-order bits 1-1-0)

Research allocation:	65536
Defense allocation:	458725
Government allocation:	458725
Commercial allocation:	1572862
Reserved Addresses: (0,	2097151)
Total	2097152

Class D (highest-order bits 1-1-1)

All addresses in this class are reserved for future use.

Within the Research community, network identifiers will only be granted to applicants who show evidence that they are acquiring standard Bolt Beranek and Newman gateway software or have implemented or are acquiring a gateway meeting the Exterior Gateway Protocol requirements. Acquisition of the Berkeley BSD 4.2 UNIX software might be considered evidence of the latter.

Experimental networks which later become operational need not be renumbered. Rather, the identifiers could be moved from Research to Defense, Government or Commercial status. Thus, network identifiers may change state among Research, Defense, Government and Commercial, but the number of identifiers allocated to each use must remain within the limits indicated above. To make possible this fluid assignment, the network identifier spaces are not allocated by simple partition, but rather by specific assignment.

Protocol Identifiers

These assignments are shared by the four communities.

Port Numbers

These assignments are shared by the four communities.

ARPANET Link Numbers

These assignments are shared by the four communities.

IP Version Numbers

These assignments are shared by the four communities.

TCP, IP and Telnet Option Identifiers

These assignments are shared by the four communities.

Implementation:

Joyce Reynolds is the coordinator for all number assignments.