

1 1. A lithographic method, comprising the steps of:
2 illuminating a spatial light modulator, said spatial light modulator comprising at
3 least one area array of individually switchable elements;
4 projecting an image of said spatial light modulator on a photosensitive surface
5 of a substrate;
6 moving said image across said surface of said substrate;
7 while said image is moving, switching said elements of said spatial light
8 modulator, whereby a pixel on said photosensitive surface receives, in serial,
9 doses of energy from multiple elements of said spatial light modulator, thus
10 forming a latent image on said surface; and
11 blurring said image, where said blurring enables sub-pixel resolution feature
12 edge placement.

1 2. A lithographic method as in claim 1, wherein said blurring comprises
2 defocusing said image.

1 3. A lithographic method as in claim 1, wherein said blurring is implemented
2 by a diffuser positioned between said spatial light modulator and said substrate.

1 4. A lithographic method as in claim 1, wherein said blurring comprises
2 adjusting the numerical aperture of projection optics positioned between said
3 spatial light modulator and said substrate.

1 5. A lithographic method as in claim 1, wherein said blurring is implemented
2 by a microlens array positioned between said spatial light modulator and said

- 3 substrate.
- 1 6. A lithographic method as in claim 1, wherein said illuminating step
2 comprises continuously illuminating said spatial light modulator.
- 1 7. A lithographic method as in claim 1, wherein said illuminating step is
2 implemented by a lamp system comprising an arc lamp.
- 1 8. A lithographic method as in claim 1, wherein said illuminating step is
2 implemented by a laser.
- 1 9. A lithographic method as in claim 8, wherein said laser is a continuous
2 laser.
- 1 10. A lithographic method as in claim 8, wherein said laser is a quasi-
2 continuous laser.
- 1 11. A lithographic method as in claim 1, wherein, during formation of said latent
2 image, said projecting step comprises continuously projecting said image of said
3 spatial light modulator on said photosensitive surface of said substrate.
- 1 12. A lithographic method as in claim 1, wherein said projecting step is
2 implemented by a telecentric projection lens system.
- 1 13. A lithographic method as in claim 1, wherein said spatial light modulator

- 2 comprises at least one digital micro-mirror device.
- 1 14. A lithographic method as in claim 1, wherein said moving step is
 - 2 implemented by a stage.
- 1 15. A lithographic method as in claim 14, wherein said spatial light modulator is
 - 2 carried on said stage.
- 1 16. A lithographic method as in claim 15, wherein projection optics is carried on
 - 2 said stage.
- 1 17. A lithographic method as in claim 14, wherein said substrate is carried on
 - 2 said stage.
- 1 18. A lithographic method as in claim 1, wherein said substrate is a flexible film
 - 2 substrate.
- 1 19. A lithographic method as in claim 18, wherein said moving step is
 - 2 implemented by rotatable, spaced apart, axially parallel film drums, said flexible
 - 3 film substrate being wrapped around and tensioned between said drums.
- 1 20. A lithographic method as in claim 18, wherein said moving step is further
 - 2 implemented by a stage, said spatial light modulator being carried on said stage.
- 1 21. A lithographic method as in claim 20, wherein projection optics is carried on

- 2 said stage.
- 1 22. A lithographic method as in claim 20, wherein said stage and said substrate
2 move in orthogonal directions to each other.
- 1 23. A lithographic tool for patterning a substrate, comprising:
2 a spatial light modulator, said spatial light modulator comprising at least one
3 area array of individually switchable elements;
4 a light source configured to illuminate said spatial light modulator;
5 imaging optics configured to project a blurred image of said spatial light
6 modulator on said substrate; and
7 an image movement mechanism for moving said image across the surface of
8 said substrate.
- 1 24. A lithographic tool as in claim 23, wherein said spatial light modulator
2 comprises at least one digital micro-mirror device.
- 1 25. A lithographic tool as in claim 23, wherein said light source is a continuous
2 light source.
- 1 26. A lithographic tool as in claim 23, wherein said light source is an arc lamp.
- 1 27. A lithographic tool as in claim 23, wherein said light source is a laser.
- 1 28. A lithographic tool as in claim 27, wherein said laser is a continuous laser.

1 29. A lithographic tool as in claim 27, wherein said laser is a quasi-continuous
2 laser.

1 30. A lithographic tool as in claim 23, wherein said imaging optics is a
2 telecentric projection lens system.

1 31. A lithographic tool as in claim 23, wherein said imaging optics is configured
2 to form a defocused image of said spatial light modulator.

1 32. A lithographic tool as in claim 23, wherein said imaging optics comprises a
2 diffuser configured to blur said image of said spatial light modulator.

1 33. A lithographic tool as in claim 23, wherein said imaging optics has a
2 numerical aperture adjusted such that said image of said spatial light modulator is
3 blurred.

1 34. A lithographic tool as in claim 23, wherein said imaging optics comprises a
2 microlens array configured to blur said image of said spatial light modulator.

1 35. A lithographic tool as in claim 23, wherein said imaging optics comprises a
2 single projection lens system.

1 36. A lithographic tool as in claim 23, wherein said imaging optics comprises a
2 projection lens system for each said area array.

1 37. A lithographic tool as in claim 23, wherein said image movement
2 mechanism comprises a stage on which said substrate is carried.

1 38. A lithographic tool as in claim 23, wherein said image movement
2 mechanism comprises a stage on which said spatial light modulator is carried.

1 39. A lithographic tool as in claim 38, wherein said imaging optics is carried on
2 said stage.

1 40. A lithographic tool as in claim 23, wherein said image movement
2 mechanism comprises rotatable, spaced apart, axially parallel film drums, said
3 substrate being wrapped around and tensioned between said drums.

1 41. A lithographic tool as in claim 23, further comprising a control computer
2 configured to control switching said elements of said spatial light modulator while
3 said image is moving across the surface of said substrate.

1 42. A lithographic tool as in claim 23, further comprising a substrate height
2 measuring system.

1 43. A lithographic tool for patterning a substrate, comprising:
2 a spatial light modulator, said spatial light modulator comprising a multiplicity of
3 area arrays of individually switchable elements;
4 a light source configured to illuminate said spatial light modulator;

5 a multiplicity of projection lens systems configured to project a blurred image of
6 said spatial light modulator on said substrate; and
7 an image movement mechanism for moving said image across the surface of
8 said substrate;
9 wherein the number of said area arrays is greater than the number of said
10 projection lens systems.

1 44. A lithographic tool as in claim 43, wherein said number of projection lens
2 systems is a submultiple of said number of area arrays.

1 45. A lithographic method for a substrate, comprising the steps of:
2 positioning a substrate below a spatial light modulator;
3 illuminating said spatial light modulator, said spatial light modulator being
4 positioned on a stage, said stage being controlled to move in a patterning
5 direction during exposure of said substrate, said spatial light modulator comprising
6 at least one area array of individually switchable elements, said elements having
7 pitch p , as measured in said patterning direction;
8 moving said spatial light modulator in said patterning direction at speed v over
9 said substrate;
10 while said spatial light modulator is moving, projecting an image of said spatial
11 light modulator on said substrate; and
12 while said image is being projected, switching said spatial light modulator at
13 times separated by a time interval
14 $T=p/v$
15 such that a pixel on a photosensitive surface of said substrate receives, in serial,

- 16 doses of energy from multiple elements of said spatial light modulator.
- 1 46. A lithographic method as in claim 45, wherein said image of said
2 continuously illuminated spatial light modulator is blurred.
- 1 47. A lithographic method for a flexible film substrate, comprising the steps of:
2 moving said flexible film substrate in a patterning direction at speed v ;
3 continuously illuminating a spatial light modulator, said spatial light modulator
4 comprising at least one area array of individually switchable elements, said
5 elements having pitch p , as measured in said patterning direction;
6 while said spatial light modulator is moving, illuminating said substrate with an
7 image, at magnification M , of said continuously illuminated spatial light modulator;
8 and
9 while said substrate is being illuminated, switching said spatial light modulator
10 at times separated by a time interval
11 $T=pM/v$
12 such that a pixel on a photosensitive surface of said substrate receives, in serial,
13 doses of energy from multiple elements of said spatial light modulator;
14 wherein said moving of said substrate is implemented by rotatable, spaced
15 apart, axially parallel film drums, said substrate being wound around and
16 tensioned between said drums.
- 1 48. A lithographic method as in claim 47, wherein said image, at magnification
2 M , of said continuously illuminated spatial light modulator is blurred.

1 49. A lithographic method, comprising the steps of:

2 (a) positioning a substrate below a spatial light modulator;

3 (b) illuminating said spatial light modulator, said spatial light modulator

4 comprising at least one area array of individually switchable elements;

5 (c) projecting a blurred image, at magnification M , of said spatial light

6 modulator on a photosensitive surface of said substrate;

7 (d) moving said image in a patterning direction at speed v across said

8 photosensitive surface;

9 (e) while said image is moving, switching said spatial light modulator after a

10 time interval of

11 $T=pM/v$

12 where p is the pitch of said elements, as measured in said patterning direction;

13 and

14 (f) repeating step (e), such that pixels on said substrate receive, in serial,

15 doses of energy from multiple elements of said spatial light modulator, until a

16 desired latent image is formed on said photosensitive surface.

1 50. A lithographic method, comprising the steps of:

2 illuminating a spatial light modulator using a light source, said spatial light

3 modulator comprising at least one area array of individually switchable elements;

4 projecting an image of said spatial light modulator on a photosensitive surface

5 of a substrate;

6 moving said image across said surface of said substrate;

7 while said image is moving, switching said elements of said spatial light

8 modulator at times separated by a time interval;
9 controlling passage of light along a light path, said light path going from said
10 light source to said spatial light modulator and ending at said substrate; and
11 blurring said image, where said blurring enables sub-pixel resolution feature
12 edge placement.

1 51. A lithographic method as in claim 50, wherein passage of light is controlled
2 by a light switching mechanism, said mechanism being operated at the same
3 frequency as, and out of phase with, said elements of said spatial light modulator.

1 52. A lithographic method as in claim 51, wherein all of said elements of said
2 spatial light modulator are in an off state every other time interval and said
3 switching mechanism is in an off state every other time interval.

1 53. A lithographic method as in claim 50, wherein passage of light is allowed
2 for a time span which is a fraction of said switching time interval, said image
3 moving a single pixel's length on said substrate surface during said time span.

1 54. A lithographic method as in claim 53, wherein said time span is a
2 submultiple of said switching time interval.

1 55. A lithographic method, comprising the steps of:
2 illuminating a spatial light modulator using a light source, said spatial light
3 modulator comprising at least one area array of individually switchable elements;

4 projecting an image of said spatial light modulator on a photosensitive surface
5 of a substrate;
6 moving said image across said surface of said substrate;
7 while said image is moving, switching said elements of said spatial light
8 modulator at times separated by a time interval; and
9 controlling passage of light along a light path, said light path going from said
10 light source to said spatial light modulator and ending at said substrate;
11 wherein passage of light is controlled by a light switching mechanism, said
12 mechanism being operated at the same frequency as, and out of phase with, said
13 elements of said spatial light modulator.

1 56. A lithographic method as in claim 55, wherein all of said elements of said
2 spatial light modulator are in an off state every other time interval and said
3 switching mechanism is in an off state every other time interval.

1 57. A lithographic method, comprising the steps of:
2 illuminating a spatial light modulator using a light source, said spatial light
3 modulator comprising at least one area array of individually switchable elements;
4 projecting an image of said spatial light modulator on a photosensitive surface
5 of a substrate;
6 moving said image across said surface of said substrate;
7 while said image is moving, switching said elements of said spatial light
8 modulator at times separated by a time interval; and
9 controlling passage of light along a light path, said light path going from said
10 light source to said spatial light modulator and ending at said substrate;

11 wherein passage of light is allowed for a time span which is a fraction of said
12 switching time interval, said image moving a single pixel's length on said substrate
13 surface during said time span.

1 58. A lithographic method as in claim 57, wherein said time span is a
2 submultiple of said switching time interval.

1 59. A lithographic method, comprising the steps of:
2 illuminating a spatial light modulator using a light source, said spatial light
3 modulator comprising at least two area arrays of individually switchable elements;
4 projecting images of said area arrays on a photosensitive surface of a
5 substrate;
6 moving said images across said surface of said substrate; and
7 while said images are moving, switching said elements of said area arrays,
8 whereby a pixel on said photosensitive surface receives, in serial, doses of energy
9 from multiple elements of said spatial light modulator, thus forming a latent image
10 on said surface;
11 wherein at least two of said projected images of said area arrays overlap on
12 said substrate.

1 60. A lithographic method as in claim 59, wherein said area arrays with
2 overlapping projected images on said substrate are switched with the same
3 frequency and are switched out of phase with each other.

1 61. A lithographic method as in claim 59 further comprising blurring said

2 images, where said blurring enables sub-pixel resolution feature edge placement.

1 62. A lithographic method as in claim 59, wherein said overlapping projected
2 images are in register.

1 63. A lithographic tool for patterning a substrate, comprising:
2 a spatial light modulator, said spatial light modulator comprising at least one
3 area array of individually switchable elements;
4 a light source configured to illuminate said spatial light modulator;
5 imaging optics configured to project a blurred image of said spatial light
6 modulator on said substrate;
7 a light switching mechanism positioned on a light path, said light path going
8 from said light source to said spatial light modulator and ending at said substrate,
9 said light switching mechanism being configured to control passage of light along
10 said light path; and
11 an image movement mechanism for moving said image across the surface of
12 said substrate.

1 64. A lithographic tool as in claim 63, wherein said light switching mechanism is
2 a second spatial light modulator.

1 65. A lithographic tool as in claim 63, wherein said light switching mechanism is
2 a shutter.

1 66. A lithographic tool as in claim 63, wherein said light switching mechanism is

- 2 integrated with said light source.
- 1 67. A lithographic tool for patterning a substrate, comprising:
2 a first spatial light modulator, said first spatial light modulator comprising at
3 least one area array of individually switchable elements;
4 a light source configured to illuminate said first spatial light modulator;
5 imaging optics configured to project an image of said first spatial light
6 modulator on said substrate;
7 a second spatial light modulator positioned on a light path, said light path going
8 from said light source to said first spatial light modulator and ending at said
9 substrate, said second spatial light modulator being configured to control passage
10 of light along said light path; and
11 an image movement mechanism for moving said image across the surface of
12 said substrate.
- 1 68. A lithographic tool for patterning a substrate, comprising:
2 a spatial light modulator, said spatial light modulator comprising at least two
3 area arrays of individually switchable elements;
4 a light source configured to illuminate said area arrays;
5 imaging optics configured to project images of said area arrays on said
6 substrate, at least two of said images of said area arrays overlapping in register;
7 and
8 an image movement mechanism for moving said images across the surface of
9 said substrate.

- 1 69. A lithographic method, comprising the steps of:
- 2 (a) positioning a substrate below a spatial light modulator;
- 3 (b) illuminating said spatial light modulator, said spatial light modulator
- 4 comprising at least one area array of individually switchable elements;
- 5 (c) projecting an image, at magnification M , of said spatial light modulator on a
- 6 photosensitive surface of said substrate;
- 7 (d) switching said elements of said spatial light modulator at times separated
- 8 by a time interval T ;
- 9 (e) while said elements are switching, moving said image in a patterning
- 10 direction across said photosensitive surface at speed
- 11 $v=npM/T$
- 12 where p is the pitch of said elements, as measured in said patterning direction,
- 13 and n is an integer; and
- 14 (f) controlling passage of light along a light path, said light path going from said
- 15 light source to said spatial light modulator and ending at said substrate, where
- 16 passage of light is controlled by a light switching mechanism, said mechanism
- 17 being operated at the same frequency as said elements of said spatial light
- 18 modulator and shifted out of phase with said elements of said spatial light
- 19 modulator by a time shift $T(1-1/n)$.

20

- 1 70. A lithographic method as in claim 69, whereby pixels on said substrate
- 2 receive, in serial, doses of energy from multiple elements of said spatial light
- 3 modulator, until a desired latent image is formed on said photosensitive surface.

1 71. A lithographic method as in claim 69, further comprising blurring said image
2 of said spatial light modulator.

1 72. A lithographic method as in claim 69, wherein all of said elements of said
2 spatial light modulator are in an off state every other time interval and said
3 switching mechanism is in an off state every other time interval.

1 73. A lithographic method, comprising the steps of:
2 (a) positioning a substrate below a spatial light modulator;
3 (b) illuminating said spatial light modulator, said spatial light modulator
4 comprising at least one area array of individually switchable elements;
5 (c) projecting an image, at magnification M , of said spatial light modulator on a
6 photosensitive surface of said substrate;
7 (d) switching said elements of said spatial light modulator at times separated
8 by a time interval T ;
9 (e) while said elements are switching, moving said image in a patterning
10 direction across said photosensitive surface at speed
11 $v = npM/T$
12 where p is the pitch of said elements, as measured in said patterning direction,
13 and n is a constant; and
14 (f) controlling passage of light along a light path, said light path going from said
15 light source to said spatial light modulator and ending at said substrate, where
16 passage of light is controlled by a light switching mechanism, said mechanism
17 being operated to allow the passage of light for a time span T/n .

18

1 74. A lithographic method as in claim 73, further comprising repeating step (f),
2 whereby pixels on said substrate receive, in serial, doses of energy from multiple
3 elements of said spatial light modulator, until a desired latent image is formed on
4 said photosensitive surface.

1 75. A lithographic method as in claim 73, further comprising blurring said image
2 of said spatial light modulator.

1 76. A lithographic method as in claim 73, wherein said light switching
2 mechanism is operated to allow the passage of light for one time span T/n per
3 time interval T .

1 77. A lithographic method as in claim 73, wherein n is an integer.

1 78. A lithographic method, comprising the steps of:
2 illuminating a spatial light modulator using a light source, said spatial light
3 modulator comprising at least one area array of individually switchable elements;
4 projecting an image of said spatial light modulator on a photosensitive surface
5 of a substrate;
6 moving said image across said surface of said substrate; and
7 while said image is moving, switching said elements of said spatial light
8 modulator;
9 wherein the direction of movement of said image is not parallel to columns of
10 pixels in said projected image of said spatial light modulator.

1 79. A lithographic method as in claim 78 wherein said elements of said spatial
2 light modulator are switched at times separated by a time interval, whereby pixels
3 on said substrate receive, in serial, doses of energy from multiple elements of said
4 spatial light modulator, until a desired latent image is formed on said
5 photosensitive surface.