Learning to Assemble Geometric Shapes

Jinhwi Lee*1,2

Jungtaek Kim*1

Hyunsoo Chung¹

Jaesik Park¹

Minsu Cho¹

¹POSTECH

²POSCO

* Equal contribution

Introduction

- Human can assemble a geometric shape with fragments after analyzing the shapes and structures of them
- Assembling the fragments into the target shape is a *combinatorial problem*.
- Previous work focuses on tackling limited cases such as primitive fragments of identical shapes or jigsaw-style fragments of textured shapes.
- We introduce a challenging problem of shape assembly with textureless fragments of arbitrary shapes and also propose a learning-based approach.

Geometric Shape Assembly

- The goal is to reconstruct the target object using all the fragments.
- In this work, we create a dataset by partitioning a shape into multiple fragments using binary space partitioning (BSP) algorithm.

Figure 1: Textureless fragmentation examples

Figure 2: Fragmentation examples on Square by partitions.

Figure 3: Our architecture overview

Fragment Assembly Networks

- FAN contains two branches for the selection and the placement.
- Both operations are determined by the probability of \mathbf{x} with the remaining shape $S \mathbf{c}$, which is the result of assembled fragments at the previous steps.
- The fragment selection network and placement network share many learnable parameters that are parts of encoders, fragment relation attention module (FRAM), fragment-wise MLP.
- We assemble all the fragments by iteratively running our model until no candidate remains.

Experimental Results

• We compare our approach to other baseline methods.

Table 1: Quantitative results on three shapes.

		Cov	loU
Square	SimAnneal	0.720	0.655
	BayesOpt	0.730	0.664
	V-GAN	0.720	0.562
	Ours	0.914	0.882
Pentagon	SimAnneal	0.697	0.581
	BayesOpt	0.710	0.660
	Ours	0.922	0.884
Hexagon	SimAnneal	0.711	0.608
	BayesOpt	0.727	0.674
	Ours	0.916	0.882

Figure 4: Assembly scenario

Figure 5: Shape assembly results for Square, Pentagon and Hexagon shape. The results of simulated annealing (SA), Bayesian optimization (BO), V-GAN (only for Square), and ours are compared.

Conclusion

- We solve a two-dimensional geometric shape assembly problem with our proposed neural network FAN.
- It predicts the next fragment and its pose where fragements to assemble are given, with an attention-based module, FRAM.

Available on the code below

Contact Information

• Email: jinhwi@postech.ac.kr