Exercise 6

陈志杰 524531910034

In this text, a class means the collection of all sets that satisfy a given property (first-order formula); V is the universe $\{x: x=x\}$; n^+ means $n \cup \{n\}$.

Problem 1.

Proof. (a) $\forall y (y \notin \emptyset)$. Thus $\forall x \forall y ((x \in y \land y \in \emptyset) \rightarrow x \in \emptyset)$ holds.

(b) Suppose n is \in -transitive. Let x, y be such that $x \in y$ and $y \in n \cup \{n\}$. If $y \in n$, then $x \in n \subseteq n \cup \{n\}$ by the \in -transitivity of n. If $y \in \{n\}$, then $x \in y$ implies x = n. Thus $x \in n \cup \{n\}$ trivially. By proof by cases, $n \cup \{n\}$ is \in -transitive.

Problem 2.

Proof. (a) $0 = \emptyset$ has no nonempty subsets. Thus 0 is \in -well-ordered by definition.

(b) Suppose n is \in -well-ordered. Let $x \subseteq n \cup \{n\}$. Let $z = x \setminus \{n\} \subseteq n$. Let s be an \in -least element of z. For each $a \in x$, if $a \in z$ then s = a or $s \in a$ by definition; if a = n then $s \in z \subseteq n = a$. Hence s is an \in -least element of x, completing the proof.

Problem 3.

Proof. Suppose x, y are such that x, y are inductive; $x \subseteq z$ for every inductive set z; $y \subseteq z$ for every inductive set z. Then taking z = y leads to $x \subseteq y$, and taking z = x leads to $y \subseteq x$. Thus x = y, as desired.

Problem 4.

Proof. $\emptyset \in u$ and $\emptyset \in v$ leads to $\emptyset \in u \cap v$. For every $x \in u \cap v$, we have $x \in u$ and $x \in v$, which implies that $x \cup \{x\} \in u$ and $x \cup \{x\} \in v$, which imply that $x \cup \{x\} \in u \cap v$. Thus $u \cap v$ is inductive.

Problem 5.

- *Proof.* (a) For each inductive set $w \subseteq u$, $\emptyset \in w$. Thus $\emptyset \in v$. For each $x \in v$, $x \in w$ for all inductive set $w \subseteq u$, which implies that $x \cup \{x\} \in w$ for all inductive set $w \subseteq u$, which implies that $x \cup \{x\} \in v$. Hence v is inductive.
 - (b) For any inductive set $w \subseteq u$, $v \subseteq w$ by the definition of v. The desired result follows from that v is inductive.

Problem 6.

¹Note that we do not need to distinguish whether $n \in x$ or not.

Proof. Suppose there exists an inductive set u. Let²

$$N = \bigcap_{X \text{ is inductive}} X.$$

N is indeed a set because $N \subseteq u$. We prove that N is the smallest inductive set.

For each inductive set X, $\emptyset \in X$. Thus $\emptyset \in N$. For each $x \in N$, $x \in X$ for all inductive set X, which implies that $x \cup \{x\} \in X$ for all inductive set X, which implies that $x \cup \{x\} \in N$. Hence N is inductive. For any inductive set X, $X \subseteq N$ by definition. Hence N is the smallest inductive set.

Problem 7.

Proof. (a) \mathbb{N} and X are both inductive by definition. Then by Problem 4, $\mathbb{N} \cap X$ is inductive.

(b) By definition of \mathbb{N} (the smallest inductive set), $\mathbb{N} \subseteq \mathbb{N} \cap X \subseteq \mathbb{N}$, which implies that $\mathbb{N} \subseteq X$, completing the proof.

Problem 8. ³

Lemma 1. We define that a set T is transitive if $\forall x (x \in T \to x \subseteq T)$. Every $n \in \mathbb{N}$ is transitive.

Proof. Let $E = \{n \in \mathbb{N} : n \text{ is transitive}\}$. We prove by induction that $E = \mathbb{N}$. $\forall x (x \in 0 \to x \subseteq 0)$ follows from $0 = \emptyset$. Assume that $n \in \mathbb{N}$ is transitive. For each $x \in n^+ = n \cup \{n\}$, either $x \in n$ or x = n. If $x \in n$ then $x \subseteq n \subseteq n^+$ by induction hypothesis; if x = n then $x \subseteq n^+$ trivially. That closes the induction and completes the proof.

Lemma 2. Suppose $n, m \in \mathbb{N}$. If $n^+ = m^+$ then n = m.

Proof. Suppose $n \cup \{n\} = m \cup \{m\}$. Then $n \in m \cup \{m\}$. Thus n = m or $n \in m$. Similarly m = n or $m \in n$. If $n \neq m$ then $n \in m$ and $m \in n$. By Lemma 1, $n \subseteq m$ and $m \subseteq n$, which implies that n = m.

Proof of the Problem. Fix x. Let R be the property defined by

$$R(A) = ((0, x) \in A \land \forall n \forall y ((n, y) \in A \to (n^+, y \times x) \in A)).$$

Let class $F = \{(u, v) : P(u, v)\}$, which is equivalent to

$$F = (\mathbb{N} \times V) \cap \bigcap_{R(A)} A.$$

First we prove that R(F). For every A such that R(A), $(0, x) \in A$. Thus $(0, x) \in F$. For any $(n, y) \in F$, $(n, y) \in A$ for each A with property R, which implies that $(n^+, y \times x) \in A$ for each A with property R, which implies that $(n^+, y \times x) \in F$. Hence R(F).

Let

$$X = \{(n, y) \in F : ((n, y) = (0, x) \lor \exists n' \exists y' ((n', y') \in F \land n = n'^+ \land y = y' \times x))\}.$$

²Note that we have not claimed that $N = \mathbb{N}$.

 $^{^3}$ Erratum: the seemingly fancy proof below is actually false. I applied a property P to a class F, whereas quantifying classes is not permitted. None have found a proper solution to this problem yet. I have proved the problem with the Transfinite Recursion Theorem (involving axiomatic definitions of ordinal numbers).

Now we prove that R(X). $(0,x) \in X$ trivially. For every $(n,y) \in X$, $(n,y) \in F$. Thus $(n^+, y \times x)$ satisfies the second condition in the definition of X, which implies that $(n^+, y \times x) \in X$. Hence R(X).

By definition of $F, F \subseteq X$. Let $E = \{n \in \mathbb{N} : \forall y \forall z (((n,y) \in F \land (n,z) \in F) \to y = z)\}$. We prove by induction that $E = \mathbb{N}$.

First we prove that $0 \in E$. Suppose $(0, y), (0, z) \in F$. Because $\forall n \in \mathbb{N}, n^+ \neq \emptyset$, (0, y), (0, z) must satisfy the first condition in the definition of X, which implies that y = z = x.

Assume $n \in E$ for some $n \in \mathbb{N}$. Suppose $(n^+, y), (n^+, z) \in F$. Because $n^+ \neq \emptyset$, then $(n^+, y), (n^+, z)$ must satisfy the second condition in the definition of X. Thus $\exists (m_1, y'), (m_2, z') \in F$ such that $n^+ = m_1^+ = m_2^+$ and $y = y' \times x$ and $z = z' \times x$. By Lemma 1, $m_1 = m_2 = n$. Furthermore, by induction hypothesis, y' = z', which implies that y = z. That closes the induction, proving that $E = \mathbb{N}$, completing the proof.