

MODEL ASSESSMENT AND IMPROVEMENT

MODEL ASSESSMENT AND IMPROVEMENT

- O How good is the fitted linear model?
- o Can we improve quality of linear model?
 - Are assumptions made about errors reasonable?
 - Normality: Errors are normality distributed
 - Feature/Model selection
 - Which coefficients of the linear model are significant (Identify important variables)
 - o Is the fitted model adequate or can we reduce model complexity?

MODEL ASSESSMENT AND IMPROVEMENT

- Validation of assumptions
 - Residual analysis, Q-Q plots, Residual plots, Outlier detection

MODEL VALIDATION

- Testing the predictive ability of the model by testing the model on new data
- Given dataset is split into two: training set and test set
 - Model is built using a training set
 - Test set is used to test the model

- Other approaches
 - K-fold validation
 - Leave one out cross validation

TESTING GOODNESS OF FIT

• Coefficient of determination - R² is a measure of variability in output variable explained by input variable

$$R^2=1-rac{\sum (y_i-\hat{y}_i)^2}{\sum (y_i-\bar{y})^2}$$
 Variability explained by linear model Total variability in y

- R^2 values: Between 0 and 1 if we evaluate R^2 on the same data we used for fitted the model
 - Values close to 0 indicates poor fit
 - Values close to 1 indicates a good fit

Both models are the same and have similar R^2 . But are they both good?

Trade off between SSE values and model complexity

Available Variables (other than y)

Input feature set / possible models

Linear relation

How do we find the best model?
Should we fit all possible models?

Non-linear relation

Fit models and compare using some metric!

May be. Or use some smarter way of subset selection!

- 2 components:
 - A metric for deciding best model
 - A smart selection of subsets for fitting
- Commonly used metrics

With Cross-validation

MSE of test set R^2 of test set

Without Cross-validation

 R_{adj}^2 of training set t-test on fitted parameters F-test and p-values AIC (Akaike Information Criterion) of training set BIC (Bayesian Information Criterion) of training set

• Adjusted \bar{R}^2

$$R_{adj}^{2} = 1 - \frac{\sum (y^{i} - \hat{y}^{i})^{2} / (n - p - 1)}{\sum (y^{i} - \bar{y})^{2} / (n - 1)}, \ n > p + 1$$
$$R_{adj}^{2} = R^{2} - (1 - R^{2}) \frac{p}{n - p - 1}$$

• Example: Consider a dataset of 20 samples with $\sum (y^i - \bar{y})^2 = 2$. A linear model for this data gives SSE = 0.3 and a 9th order polynomial gives SSE = 0.1, which model is better?

$$R_{linear}^2 = 1 - \frac{0.3}{2} = 0.85$$
 and $R_{poly}^2 = 1 - \frac{0.1}{2} = 0.95$

From R^2 value, it may seem like the 9^{th} order polynomial model to be better than the linear model. But it is using a large number of parameters.

$$R_{adj,linear}^2 = 1 - \frac{\frac{0.3}{20-2}}{\frac{2}{20-1}} = 0.84 \text{ and } R_{adj,poly}^2 = 1 - \frac{\frac{0.3}{20-10}}{\frac{2}{20-1}} = 0.71$$

Linear model is better

• t-test on fitted parameters

$$H_0: \beta_i = 0$$
; $H_1: \beta_i = 0$

- Perform t-test or
- Find the confidence interval for each parameter using t-values. If '0' is part of the confidence interval for parameter β_i , then the term with that parameter $(\beta_i x_i)$ could be considered insignificant and can be removed

$$T = \frac{\beta - 0}{\sigma_{\beta}}$$

F-test

 H_0 : Reduced model (without $\beta_i x_i$) is adequate, $\sigma_{FM}^2 = \sigma_{RM}^2$ H_1 : Full model (with $\beta_i x_i$) is adequate, $\sigma_{FM}^2 < \sigma_{RM}^2$ where σ^2 is error variance

• Compare the ratio
$$F = \frac{\left(\frac{SSE_{FM}}{df_{FM}}\right)}{\left(\frac{SSE_{RM}}{df_{RM}}\right)}$$
 with $f_{\alpha}(df_{FM}, df_{RM})$

• If $F \ll f_{\alpha}(df_{FM},df_{RM})$, reject null hypothesis implying that the term $\beta_i x_i$ is significant

df is degrees of freedom, RM is reduced model, FM is full model

• F-test 2 and p-value

 H_0 : Reduced model (without $\beta_i x_i$) is adequate, $\sigma_{FM}^2 = \sigma_{RM}^2$ H_1 : Full model (with $\beta_i x_i$) is adequate, $\sigma_{FM}^2 < \sigma_{RM}^2$ where σ^2 is error variance

- Compare the ratio $F = \frac{(SSE_{RM} SSE_{FM})}{\frac{SSE_{FM}}{n-p-1}}$ with $f_{\alpha}(1, df_{FM})$
- If F $\gg f_{1-\alpha}(1,df_{FM})$, reject null hypothesis implying that the term $\beta_i x_i$ is significant

df is degrees of freedom, RM is reduced model, FM is full model

• p-value - smallest value of α that would have resulted in rejection of null hypothesis: $p-value=(\alpha \ such \ that \ F_{1-\alpha}(1,n-p-1)=F)$

AIC (Akaike information criterion)

$$AIC = 2k - 2 \ln L$$

Where n is the number of samples, k is the number of parameters in the model and L is the likelihood function. AIC penalizes for additional parameters used in reducing SSE.

For Gaussian error,

$$L = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{e_i^2}{2\sigma^2}\right)$$

$$\ln L = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{\sum_{i=1}^{n} e_i^2}{2\sigma^2}$$

If MLE estimate $\sigma^2 = \frac{SSE}{n} = \frac{\sum_{i=1}^n e_i^2}{n}$ is used to find unknown σ^2

$$AIC = 2k + n\ln(2\pi) + n\ln\left(\frac{SSE}{n}\right) + n$$

AIC (Akaike information criterion)

For Gaussian error,

$$AIC = 2k + n\ln(2\pi) + n\ln\left(\frac{SSE}{n}\right) + n$$

As k increases, initially SSE will decrease considerably reducing AIC. However, after a while, increase in k may only result in slight reduction in SSE values. Then, the impact of the term 2k will be more significant that $n \ln \left(\frac{SSE}{n} \right)$ and AIC may increase.

Model with lowest AIC value can be chosen to be the best model

• BIC (Bayesian information criterion)

$$BIC = k \ln n - 2 \ln L$$

Where n is the number of samples, k is the number of parameters in the model and k is the likelihood function.

Similar to AIC, BIC also penalizes for additional parameters used in reducing SSE.

For Gaussian error,

$$BIC = k \ln n + n \ln(2\pi) + n \ln\left(\frac{SSE}{n}\right) + n$$

Similar behavior as AIC

Model with lowest BIC value can be chosen to be the best model

• Example: AIC and BIC

For the following data, find the best polynomial model to predict y given x

Average $Temperature(x)$	6.6	26.1	6.3	27.6	14.7	18.3	23.1	15.6	9	5.7
$Electricity$ $Bill\ (y)$	118.2	5607	105.3	6616.8	1043.7	1971.6	3907.8	1239	264	83.4

Model order	Optimal model parameters	SSE	AIC	BIC
1	[-2143.18, 277.05]	5078172	163.76	164.36
2	[897.23, -219.13, 15.34]	39949.94	117.31	118.21
3	[5.07, 3.52, 0.03, 0.31]	0.2135	-2.08	-0.87
4	$[7.86, 2.63, 0.12, 0.3 5.9 \times 10^{-5}]$	0.151851	-3.5	-1.98
5	$[7.88, 2.62, 0.12, 0.3, 6.25 \times 10^{-5}, -3.95 \times 10^{-5}]$	0.15185	-1.5	0.32
6	$[7.74, 2.68, 0.11, 0.31, 7.3 \times 10^{-6}, 1.33 \times 10^{-6}, -1.35 \times 10^{-8}]$	0.151848	0.5	2.62

Best model is of order 4

- Subset selection strategies
 - Best subset
 - Fit all possible subsets and choose the best among them based on some metric like AIC or BIC
 - Forward selection
 - Start with the most significant feature and keep adding features till no improvement
 - Backward elimination
 - Start with full feature set and keep removing features till no improvement

- Forward selection
 - Start with the most significant feature and keep adding features till no improvement
 - Various metrics can be chosen to decide the priority list of features
 - Correlation coefficient
 - AIC
 - Various metrics can be used to comment on the desired performance of the model (stopping criteria)
 - Example: We break the search when a desired value of $R^2=0.99$ is achieved or when there is no significant improvement in R^2 or AIC starts to increase

- Forward selection based on correlation coefficient
 - Find the correlation coefficient between each of the independent variables and the dependent variable $(\rho_{x_i,y})$
 - Sort the independent variables based on the correlation coefficient values from highest to lowest
 - Pick the independent variable with highest $\rho_{x_i,y}$ and build a model
 - If performance satisfied, stop. Else, add the next variable and proceed until stopping criteria is met
 - $^{\circ}$ Stopping criteria: We break the search when a desired value of $R^2=0.99$ is achieved or when there is no significant improvement in R^2

- Forward selection based on AIC
 - Find AIC values for each univariate model relating x_i to y
 - Pick the variable with lowest AIC, say x_k
 - $^{\circ}$ For the next iteration, find AIC values of all bi-variate models with one of the features being x_k
 - For example, if x_2 was selected in the first step where m=3, in the second iterations, AIC for models with input features (x_2,x_1) and (x_2,x_3) would be compared
 - Stopping criteria: Break the search when AIC starts to increase with iteration

Forward selection based on AIC

Features	x_1	x_2	x_3	x_4	x_5
AIC	129.92	130.8	125.51	130.72	125.96

Features	x_1, x_3	x_2, x_3	x_3, x_4	x_5, x_3
AIC	103.36	127.34	126.76	118.46

Features	x_1, x_2, x_3	x_1, x_3, x_4	x_1, x_3, x_5
AIC	104.73	104.66	100.73

Features	x_1, x_2, x_3, x_5	x_1, x_3, x_4, x_5
AIC	101.32	102.72

$$y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \beta_5 x_5$$

- Backward selection
 - Start with the full model and remove the most insignificant features one by one
 - Various metrics can be chosen to decide the feature to be removed
 - p-value
 - AIC

- Backward selection based on p-value
 - Build the full model
 - Find p-value of each input feature
 - If the highest p-value is greater than 0.05, we remove the corresponding variable for the remaining iterations
 - Once we remove one variable, we repeat the same procedure and keep removing variables until we find that the performance is not improved
 - Stopping criteria: All p-values are less than 0.05

- Backward selection based on AIC
 - If m input features are available, build model with m-1 features (removing I variable at a time)
 - Find AIC values for each of the models
 - The independent variable whose removal leads to the minimum AIC is found (say x_k) and that variable is removed from the later steps
 - $^{\circ}$ For the next iteration, find AIC values of all models with m-2 features with one of the missing features being x_k
 - For example, if x_2 was removed in the first step where m=4, in the second iterations, AIC for models with input features $(x_3, x_4), (x_1, x_4)$ and (x_1, x_3) would be compared
 - Stopping criteria: Break the search when AIC starts to increase with iteration

Backward selection based on AIC

Feature	x_1, x_2, x_3, x_4	x_1, x_2, x_3, x_5	x_1, x_2, x_4, x_5	x_1, x_3, x_4, x_5	x_2, x_3, x_4, x_5
AIC	103.84	101.32	128.66	102.72	122.12

Features	x_1, x_2, x_3	x_1, x_2, x_5	x_1, x_3, x_5	x_2, x_3, x_5
AIC	104.73	129.18	100.73	120.44

Feature	x_1, x_3	x_1, x_5	x_3, x_5
AIC	103.36	127.93	118.46

$$y = \beta_0 + \beta_1 x_1 + \beta_3 x_3 + \beta_5 x_5$$

LINEARLY DEPENDENT FEATURES

- If some of the input features are dependent, the matrix X will be rank deficient
- The matrix X^TX will be singular or close to singular (ill conditioned)
- Condition number: Ratio of the largest to lowest eigenvalue
 - A high value indicates that the matrix is ill conditioned
- How do we find the linear model parameters in such cases?
 - Ridge regression

RIDGE REGRESSION

• Linear regression with L_2 regularization

$$\min_{\beta} \quad ||y - X\beta||^2 + \lambda ||\beta||^2$$

where ||.|| is the 2-norm and λ is the tuning parameter

• Equivalent to

$$\min_{\beta} \quad ||y - X\beta||^2$$
Subject to
$$||\beta||^2 < k$$

- Helps to avoid overfitting
- Always results in a unique solution and works well with ill-conditioned data

$$\begin{split} \frac{dJ}{d\beta} &= 0 \Rightarrow -2X^T(y - X\hat{\beta}) + 2\lambda\hat{\beta} = 0 \\ \Rightarrow X^Ty &= \left(X^Tx + \lambda I\right)\hat{\beta} \Rightarrow \hat{\beta} = \left(X^TX + \lambda I\right)^{-1}X^Ty \end{split}$$

LASSO REGRESSION

- Least Absolute Shrinkage and Selection Operation
- Linear regression with L_1 regularization

$$\min_{\beta} \quad ||y - X\beta||^2 + \lambda |\beta|_1$$

where ||.|| is the 2-norm, $|\beta|_1$ is the 1-norm of β and λ is the tuning parameter

• Equivalent to

$$\min_{\beta} \quad ||y - X\beta||^2$$
 Subject to
$$|\beta|_1 < k$$

- Helps in getting sparse β and so, helps in feature selection
- No closed form solution, need to find β by solving the optimization problem


```
peration == "MIRROR_X":
             object ___
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
lrror_mod.use_y = True
mirror_mod.use_z = False
  operation == "MIRROR_Z":
  rror_mod.use_x = False
  rror mod.use y = False
  Irror mod.use z = True
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.active
  "Selected" + str(modifie
   ata.objects[one.name].sel
  Int("please select exactle
```

THANKYOU