

Gauntlet

What is Gauntlet?

• Gauntlet is the Heart of Lead Acid Batteries which determinants it's superior life.

Basic functions of Gauntlet

- *Container of active material & spine.
- Act as a filter in case of wet filling (slurry & paste)
- Prevent active mass shedding
- *Retain PAM close to the spine during "battery breathing"

Main Characteristics of Woven & Non-Woven Gauntlet

Woven Gauntlet

- 1. Mainly suitable for Dry Powder Filling Process
- 2. Fabric impregnated with special Acrylic resin
- 3. Porosity is excellent which gives lesser ER
- 4. Bursting Strength: > 36 kgf /cm²
- 5. Weight loss after 24 hrs. in dichromate solution < 0.5%

Non-Woven Gauntlet

- 1. Mainly suitable for Slurry filling and Paste Filling Process
- 2. Very fine Pore structure and as such high & uniform absorbency.
- 3. Micro-pores throughout the gauntlets which gives better Electrical Resistance.
- 4. Lower active mass loss.
- 5. Bursting Strength : $> 15 \text{ kgf/cm}^2$

Properties of Different types of Woven Gauntlet

Factors	Properties		EV	DV	MV
Rigidity	i)	Bursting strength (kgf/cm ²)	48 - 52	42 - 46	38 - 40
	ii)	Stiffness (N)	210 - 230	240 - 280	> 300
Backup	i)	Electrical Resistance (Ω -cm ²)	< 0.35	< 0.30	< 0.70
	ii)	Avg. Pore Size (mm ²)	0.093	0.0126	0.0064
	iii)	No. of Pores /cm ²	220 - 240	240 - 260	220 - 240
Robustness	i)	Oxidation Wt. Loss after 24 hrs Soaking into 1.3 sp. gr. H2SO4 + 50g K2Cr2O7/L. at 25°C (%)	0.10 - 0.30	0.20 - 0.40	< 0.60
	ii)	Oxidation Wt. Loss after 10 Days (240 hrs) Soaking into 1.3 sp. gr. H ₂ SO ₄ + 50g K ₂ Cr ₂ O ₇ /L. at 80°C (%)	4.0 – 6.0	5.0 – 8.0	7.0 – 9.0

Properties of Different types of Non-Woven Gauntlet

Factors	Properties		Imported	Indigenous
Rigidity	i)	Bursting strength (kgf/cm ²)	22 - 26	28 - 30
Rigidity	ii)	Stiffness (N)	150 - 180	250 - 280
	i)	Electrical Resistance (Ω-cm ²)	0.10 - 0.15	0.10 - 0.15
Backup	ii)	Volume Porosity (%)	72 - 74	62 - 64
	i)	Oxidation Wt. Loss after 24 hrs Soaking into 1.3 sp. gr. H2SO4 + 50g K2Cr2O7/L. at 25°C (%)	0.00 - 0.20	0.00 - 0.20
Robustness	ii)	Oxidation Wt. Loss after 10 Days (240 hrs) Soaking into 1.3 sp. gr. H ₂ SO ₄ + 50g K ₂ Cr ₂ O ₇ /L. at 80°C (%)	6.0 – 9.0	5.0 - 8.0

Key Features of our Gauntlet

- I. Low Electrical Resistance.
- II. Excellent Bursting Strength.
- III. Outstanding Elastic Recovery.
- IV. Uniform Pore Size.
- V. Excellent stiffness.
- VI.Good Oxidative Stability.
- VII.Good Acid Resistant property.

Pores of AS-KETEX Gauntlets

Uniformity of Pores Sizes

MICROSTRUCTURE TEST REPORT

No.	Range From	Range To	Count	Percentge
1	0	0.019341056	154	96.86
2	0.019341056	0.038682113	2	1.26
3	0.038682113	0.058023169	2	1.26
4	0.058023169	1.077364226	1	0.63

Why we get low electrical Resistance?

We have developed this type of polyester yarn Which have too many micro-pores, resulting low electrical Resistance.

Regular Polyester yarn

Polyester yarn after modification by KETEX

Resin

Basic functions of Resin in Gauntlet:

- I. To increase resistance property of Polyester towards acid.
- II. To increase Oxidation resistance property of Polyester.
- III. To impart adequate stiffness.

Amer-Sil Ketex resin versus others

GAUNTLET TYPE	Wt. Loss after 24 hrs into 1300 sp.gr. H ₂ SO ₄ + 50 g K ₂ Cr ₂ O ₇ / ltr at Room Temp (%)	Wt. Loss after 7 days into 1300 sp.gr. H ₂ SO ₄ + 30 g K ₂ Cr ₂ O ₇ / ltr at 70°C (%)	Wt. Loss after 7 days into 1300 sp.gr. H ₂ SO ₄ + 30 g K ₂ Cr ₂ O ₇ / ltr at 85°C (%)	Wt. Loss after 2 hrs reflux into 1300 sp.gr. $H_2SO_4 + 50$ g $K_2Cr_2O_7/ltr$ (%)
Chinese gauntlet with Phenolic Resin	4.42	Gauntlet Deformed	Gauntlet Detoriated	Data Not Available
Indian Gauntlet with Indian Resin	0.88	< 6.00	> 12.00	< 4.00
KETEX Gauntlet with Imported Resin	0.18	< 0.50	< 5.0	< 0.50
KETEX Gauntlet with Modified Indian Resin	0.27	< 0.50	< 5.0	< 0.50