Helechos a mansalva

Luis Daniel Fernández Montesinos

2025-01-09

Preliminares

• Cargar paquetes.

```
library(vegan)
library(sf)
library(tidyverse)
library(tmap)
library(kableExtra)
library(broom)
library(cluster)
library(gclus)
library(pvclust)
library(foreach)
library(leaps)
library(caret)
library(RColorBrewer)
library(indicspecies)
library(dendextend)
library(adespatial)
library(SpadeR)
library(iNEXT)
library(GGally)
library(vegetarian)
gh_content <- 'https://raw.githubusercontent.com/'</pre>
gh_zonal_stats <- paste0(gh_content,</pre>
                          'geofis/zonal-statistics/0b2e95aaee87bf326cf132d28f4bd15220bb4ec7/out/')
repo_analisis <- 'biogeografia-master/scripts-de-analisis-BCI/master'
repo_sem202202 <- 'biogeografia-202202/material-de-apoyo/master/practicas/'
devtools::source_url(paste0(gh_content, repo_analisis, '/biodata/funciones.R'))
devtools::source_url(paste0(gh_content, repo_sem202202, 'train.R'))
devtools::source_url(paste0(gh_content, repo_sem202202, 'funciones.R'))
source('R/funciones.R')
umbral_alfa <- 0.05
```

Análisis exploratorio de datos (AED)

• Cargar datos.

```
datos_orig <- read_csv('RCEV.csv')
grupos_seleccionados <- rep(sort(unique(datos_orig$Localidad)), each = 3)
datos <- datos_orig %>%
    # mutate(id = pasteO(Localidad, '-', Transecto)) %>%
    mutate(id = pasteO(Localidad, '_', Transecto)) %>%
```

```
select(-Localidad, -Transecto) %>%
  group_by(Especies, Abundancia, id) %>%
  distinct() # Para eliminar registros redundantes
transect_coords <- read_csv('transect_coordinates.csv') %>%
  mutate(id = pasteO(Location, '_', `Transect number`)) %>%
  select(-Location, -`Transect number`, -Elevation) %>%
 pivot_longer(-id, names_to = 'Coordinate type') %>%
  separate(col = value, into = c('Latitude', 'Longitude'), convert = T, sep = ',')
transect coords sf <- transect coords %>%
  st_as_sf(coords = c('Longitude', 'Latitude'), crs = 4326, remove = F)
# transect_coords_sf %>% st_write('transect_coordinates.kml', delete_dsn = T)
```

• Generar matriz de comunidad.

```
mc <- datos %>%
  pivot_wider(names_from = Especies, values_from = Abundancia, values_fill = 0) %>%
  column to rownames('id')
mc_pooled <- mc %>%
    rownames_to_column('sitio') %>%
    mutate(sitio = gsub('_.*', '', sitio)) %>%
    group_by(sitio) %>%
    summarise(across(is.numeric, ~ sum(.x))) %>%
    column_to_rownames('sitio')
```

Gráfico de mosaico

```
crear_grafico_mosaico_de_mc(mc)
```

Melpomene moniliformis – Microgramma picoselloides – Nephrolepis brownii – Niphidium crassifolium – Odontosoria scandens – Elaphoglossum apodum – Elaphoglossum crinitum – Elaphoglossum peltatum – Enterosora trifurcata – Cyathea sp diplazium centripetale Diplazium centripetale ophosoria quadripinnata Campyloneurum angustifolium Cochlidium rostratum Cochlidium serrulatum Gleichenella pectinata **Hymenophyllum hirsutum**

Especie

Preferencia

```
set.seed(9999)
indval <- multipatt(</pre>
  grupos_seleccionados,
```

```
func = "IndVal.g",
  max.order = 1,
  control = how(nperm = 999))
summary(indval)
##
##
   Multilevel pattern analysis
##
    _____
##
##
  Association function: IndVal.g
   Significance level (alpha): 0.05
##
## Total number of species: 43
## Selected number of species: 4
\#\# Number of species associated to 1 group: 4
## Number of species associated to 2 groups: 0
##
## List of species associated to each combination:
##
## Group Arroyazo #sps. 2
##
                            stat p.value
## Elaphoglossum apodum
                           0.974 0.026 *
## Microgramma piloselloides 0.933 0.026 *
##
## Group Casabito #sps.
                          stat p.value
## Hymenophyllum hirsutum 1.000 0.028 *
## Cyathea furfuracea
                        0.741
                               0.028 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
phi <- multipatt(</pre>
  mc,
  grupos_seleccionados,
 func = "r.g",
 max.order = 1,
  control = how(nperm = 999))
summary(phi)
##
##
  Multilevel pattern analysis
   -----
##
##
##
   Association function: r.g
  Significance level (alpha): 0.05
##
##
## Total number of species: 43
## Selected number of species: 4
## Number of species associated to 1 group: 4
## Number of species associated to 2 groups: 0
##
## List of species associated to each combination:
##
## Group Arroyazo #sps. 2
```

```
##
                            stat p.value
## Elaphoglossum apodum
                           0.961 0.041 *
## Microgramma piloselloides 0.833
                                   0.041 *
##
##
  Group Casabito #sps.
##
                         stat p.value
## Hymenophyllum hirsutum 0.764
                                0.033 *
## Cyathea furfuracea
                        0.728
                                0.033 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Índices

```
indices <- alpha_div(mc) %>%
  mutate(sitio = rownames(.)) %>%
  relocate(sitio, .before = everything())
indices %>% estilo_kable()
```

Table 1:

sitio	N0	Н	Hb2	N1	N1b2	N2	J	E10	E20
Arroyazo_1	14	2.46	3.55	11.74	11.74	10.11	0.93	0.84	0.72
Arroyazo_2	9	1.86	2.68	6.43	6.43	5.29	0.85	0.71	0.59
Arroyazo_3	13	2.22	3.20	9.19	9.19	7.00	0.86	0.71	0.54
$Casabito_1$	11	2.19	3.16	8.96	8.96	7.83	0.91	0.81	0.71
${\bf Casabito_2}$	6	1.41	2.04	4.11	4.11	3.39	0.79	0.69	0.56
$Casabito_3$	6	1.72	2.48	5.60	5.60	5.30	0.96	0.93	0.88
$Manaclar_1$	14	2.52	3.63	12.37	12.37	10.88	0.95	0.88	0.78
$Manaclar_2$	8	1.91	2.75	6.73	6.73	5.83	0.92	0.84	0.73
${\rm Manaclar}_3$	14	2.52	3.64	12.46	12.46	11.21	0.96	0.89	0.80

```
indices_pooled <- alpha_div(mc_pooled) %>%
  mutate(sitio = rownames(.)) %>%
  relocate(sitio, .before = everything())
indices_pooled %>% estilo_kable()
```

Table 2:

sitio	N0	Η	Hb2	N1	N1b2	N2	J	E10	E20
Arroyazo	25	2.64	3.81	14.01	14.01	9.20	0.82	0.56	0.37
Casabito	15	2.25	3.25	9.48	9.48	7.25	0.83	0.63	0.48
Manaclar	28	3.06	4.42	21.43	21.43	16.35	0.92	0.77	0.58

"Completitud de muestra" y curva de acumulación

• "Completitud de muestra", estimadores tradicionales

```
riqueza_estimaciones <- data.frame(estimateR(mc)) %>%
  rownames_to_column('Estimador') %>%
  pivot_longer(-Estimador, names_to = 'Sitio', values_to = 'Estimado') %>%
```

Table 3:

Sitio	Riqueza observada	Estimación por Chao1	Estimación por ACE
Arroyazo_1	14	14	14
Arroyazo_2	9	9	9
Arroyazo_3	13	13	13
$Casabito_1$	11	11	11
$Casabito_2$	6	6	6
$Casabito_3$	6	6	6
$Manaclar_1$	14	14	14
$Manaclar_2$	8	8	8
$Manaclar_3$	14	14	14

Table 4:

Sitio	Riqueza observada	Estimación por Chao1	Estimación por ACE
Arroyazo	25	25	25
Casabito	15	15	15
Manaclar	28	28	28

• Estimador Chao mejorado

```
## Warning: In this case, it can't estimate the variance of 2nd-order-jackknife estimation
##
## (1) BASIC DATA INFORMATION:
##
##
Variable Value
```

```
##
       Sample size
                                                        617
                                                    n
##
                                                          43
       Number of observed species
                                                    D
##
       Coverage estimate for entire dataset
                                                    C
                                                           1
##
       CV for entire dataset
                                                   CV 1.217
##
       Cut-off point
                                                    k
##
##
                                                          Variable Value
##
       Number of observed individuals for rare group
                                                            n rare
##
       Number of observed species for rare group
                                                            D_rare
                                                                       10
##
       Estimate of the sample coverage for rare group
                                                            C_rare
                                                                        1
##
       Estimate of CV for rare group in ACE
                                                            CV_rare
                                                                        0
##
       Estimate of CV1 for rare group in ACE-1
                                                                        0
                                                          CV1_rare
##
       Number of observed individuals for abundant group
                                                            n_abun
                                                                      597
       Number of observed species for abundant group
                                                            D_abun
##
                                                                       33
##
## NULL
##
##
## (2) SPECIES RICHNESS ESTIMATORS TABLE:
##
##
                                 Estimate s.e. 95%Lower 95%Upper
##
                                                       43
                                                            46.963
       Homogeneous Model
                                        43 1.158
##
                                                            43.015
       Homogeneous (MLE)
                                        43 0.005
                                                       43
       Chao1 (Chao, 1984)
                                                            46.963
##
                                        43 1.158
                                                       43
##
       Chao1-bc
                                        43 1.158
                                                       43
                                                            46.963
##
       iChao1 (Chiu et al. 2014)
                                        43 1.158
                                                       43
                                                            46.963
##
       ACE (Chao & Lee, 1992)
                                        43 1.158
                                                       43
                                                            46.963
##
       ACE-1 (Chao & Lee, 1992)
                                        43 1.158
                                                       43
                                                            46.963
##
       1st order jackknife
                                                            46.963
                                        43 1.158
                                                       43
##
       2nd order jackknife
                                        43 1.158
                                                       43
                                                            46.963
##
##
  (3) DESCRIPTION OF ESTIMATORS/MODELS:
##
## Homogeneous Model: This model assumes that all species have the same incidence or detection probabil
##
## Chao2 (Chao, 1987): This approach uses the frequencies of uniques and duplicates to estimate the num
##
## Chao2-bc: A bias-corrected form for the Chao2 estimator; see Chao (2005).
##
## iChao2: An improved Chao2 estimator; see Chiu et al. (2014).
## ICE (Incidence-based Coverage Estimator): A non-parametric estimator originally proposed by Lee and
##
## ICE-1: A modified ICE for highly-heterogeneous cases.
## 1st order jackknife: It uses the frequency of uniques to estimate the number of undetected species;
##
## 2nd order jackknife: It uses the frequencies of uniques and duplicates to estimate the number of und
```

• Curva de acumulación

95% Confidence interval: A log-transformation is used for all estimators so that the lower bound of

```
mc_general <- mc %>%
  summarise_all(sum) %>%
  # mutate(N = nrow(mc)) %>%
  # relocate(N, .before = 1) %>%
  data.frame
nasin_raref <- iNEXT::iNEXT(</pre>
  x = t(mc\_general),
  q=0,
  knots = 2000,
  datatype = 'abundance')
acumulacion_especies <- iNEXT::ggiNEXT(nasin_raref, type=1) +</pre>
  theme_bw() +
  theme(
    text = element_text(size = 20),
    panel.background = element_rect(fill = 'white', colour = 'black'),
    panel.grid.major = element_line(colour = "grey", linetype = "dashed", size = 0.25)
  ylab('Species richness') +
  xlab('Abundance') +
  scale_y_continuous(breaks = seq(0, 80, length.out = 9)) +
  scale_color_manual(values = brewer.pal(8, 'Set2')) +
  scale_fill_manual(values = brewer.pal(8, 'Set2'))
acumulacion_especies
```


• Curva de acumulación por tipo de bosque

```
mc_grupos <- mc %>%
mutate(g = grupos_seleccionados) %>%
group_by(g) %>%
summarise_all(sum) %>%
column_to_rownames('g') %>%
data.frame
```

```
nasin_raref_general <- iNEXT::iNEXT(</pre>
  x = t(mc_grupos),
  q=0,
  knots = 400.
  datatype = 'abundance')
acumulacion_especies_grupos <- iNEXT::ggiNEXT(nasin_raref_general, type=1) +
  theme_bw() +
  theme(
    text = element_text(size = 20),
   panel.background = element_rect(fill = 'white', colour = 'black'),
   panel.grid.major = element_line(colour = "grey", linetype = "dashed", size = 0.25)
  ) +
  ylab('Species richness') +
  xlab('Abundance') +
  scale_y_continuous(breaks = seq(0, 80, length.out = 9)) +
  scale_color_manual(values = brewer.pal(8, 'Set2'), labels = unique(grupos_seleccionados)) +
  scale_fill_manual(values = brewer.pal(8, 'Set2'), labels = unique(grupos_seleccionados)) +
  scale_shape_manual(values = c(16, 17, 15), labels = unique(grupos_seleccionados))
acumulacion_especies_grupos
```


Asociación con variables ambientales

Retomando idea compartida por correo:

...se podría explorar, aun siendo pocos transectos (ya sé que en terreno tres transectos por formación es mucho, pero estadísticamente es poco), asociación con variables geomorfológicas, distancia a cursos fluviales, litología, cubierta y altura de dosel, elevación y variables climáticas. Lógicamente, para esto, sería necesario disponer de las coordenadas de los transectos.

• Estadística zonal

Scripts heredados

Hill.R

```
# Cargar los datos desde el archivo RCEV.csv
ruta_archivo <- "C:/Users/jazmi/OneDrive/Documents/tesis-daniel/RCEV.csv"
datos <- read.csv(ruta_archivo)</pre>
library(dplyr)
library(vegan)
library(tidyr)
library(ggplot2)
# Suponiendo que tus datos están en un data frame llamado 'datos'
# Aquí hay un ejemplo de cómo pueden verse tus datos
# datos <- data.frame(</pre>
# Localidad = c("Loc1", "Loc1", "Loc2", "Loc2"),
  Transecto = c("Tran1", "Tran1", "Tran2", "Tran2"),
# Especies = c("Especie1", "Especie2", "Especie1", "Especie2"),
   Abundancia = c(10, 15, 5, 20)
# )
# Calcular los Números de Hill
calcular_hill <- function(data) {</pre>
  # Crear una matriz de abundancias por especies
  matriz abundancias <- data %>%
    group_by(Localidad, Especies) %>%
    summarize(Abundancia = sum(Abundancia), .groups = 'drop') %>%
    spread(Especies, Abundancia, fill = 0)
  # Eliminar la columna de Localidad para la matriz de abundancia
  localidades <- matriz_abundancias$Localidad</pre>
  matriz_abundancias <- matriz_abundancias %>% select(-Localidad)
  # Calcular los índices de diversidad
  HO <- rowSums(matriz_abundancias > 0) # Riqueza de especies
  H1 <- exp(diversity(matriz_abundancias, index = "shannon")) # Exponencial del indice de Shannon
  H2 <- 1 / diversity(matriz_abundancias, index = "simpson") # Inverso del índice de Simpson
  return(data.frame(Localidad = localidades, H0 = H0, H1 = H1, H2 = H2))
# Calcular los números de Hill para tus datos
hill_results <- calcular_hill(datos)
# Imprimir resultados
print(hill results)
# Transformar los resultados para graficar
hill_df_long <- gather(hill_results, key = "Indice", value = "Valor", -Localidad)
# Graficar los resultados
ggplot(hill_df_long, aes(x = Localidad, y = Valor, fill = Indice)) +
  geom_bar(stat = "identity", position = "dodge") +
  theme_minimal() +
  labs(title = "Números de Hill", x = "Localidad", y = "Valor del Índice") +
```

```
scale_fill_manual(values = c("H0" = "blue", "H1" = "red", "H2" = "green")) +
theme(plot.title = element_text(hjust = 0.5))
```

similitud.R

```
# Cargar los datos desde el archivo RCEV.csv
ruta_archivo <- "C:/Users/jazmi/OneDrive/Documents/tesis-daniel/RCEV.csv"
datos <- read.csv(ruta_archivo)</pre>
# Instalar y cargar las librerías necesarias
library(heatmaply)
# Definir una función para calcular la similitud de Jaccard entre tres localidades específicas
calcular_similitud_jaccard_tres_localidades <- function(datos, localidad1, localidad2, localidad3) {</pre>
  # Obtener los datos de las tres localidades
  datos_localidades <- datos[datos$Localidad %in% c(localidad1, localidad2, localidad3), ]</pre>
  # Obtener las especies únicas en las tres localidades
  especies <- unique(datos_localidades$Especies)</pre>
  # Crear una matriz binaria de presencia/ausencia para las especies en las tres localidades
  datos_binarios <- matrix(0, nrow = 3, ncol = length(especies))</pre>
  rownames(datos_binarios) <- c(localidad1, localidad2, localidad3)</pre>
  colnames(datos_binarios) <- especies</pre>
  for (i in 1:nrow(datos localidades)) {
    localidad <- datos localidades[i, "Localidad"]</pre>
    especie <- datos_localidades[i, "Especies"]</pre>
    abundancia <- datos_localidades[i, "Abundancia"]
    datos_binarios[localidad, especie] <- ifelse(abundancia > 0, 1, 0)
  }
  # Calcular la similitud de Jaccard entre las tres localidades
  similitud_jaccard <- matrix(NA, nrow = 3, ncol = 3)</pre>
  for (i in 1:2) {
    for (j in (i+1):3) {
      numerador <- sum(datos_binarios[i,] & datos_binarios[j,])</pre>
      denominador <- sum(datos_binarios[i,] | datos_binarios[j,])</pre>
      similitud_jaccard[i,j] <- numerador / denominador</pre>
      similitud_jaccard[j,i] <- similitud_jaccard[i,j]</pre>
    }
  }
 return(similitud_jaccard)
}
# Calcular la similitud de Jaccard entre las tres localidades específicas
similitud_jaccard_tres_localidades <- calcular_similitud_jaccard_tres_localidades(datos, "Casabito", "M
# Crear el mapa de calor utilizando heatmaply
heatmaply(similitud_jaccard_tres_localidades,
          symmetric = TRUE,
          labRow = c("Casabito", "Manaclar", "Arroyazo"),
```

```
labCol = c("Casabito", "Manaclar", "Arroyazo"),
          main = "Mapa de Calor de Similitud de Jaccard entre Localidades",
          col = c("red", "orange", "green"))
######
# Cargar los datos desde el archivo RCEV.csv
ruta archivo <- "C:/Users/jazmi/OneDrive/Documents/tesis-daniel/RCEV.csv"
datos <- read.csv(ruta_archivo)</pre>
# Instalar y cargar las librerías necesarias
if (!requireNamespace("heatmaply", quietly = TRUE)) {
  install.packages("heatmaply")
library(heatmaply)
# Definir una función para calcular la similitud de Jaccard entre tres localidades específicas
calcular_similitud_jaccard_tres_localidades <- function(datos, localidad1, localidad2, localidad3) {</pre>
  # Obtener los datos de las tres localidades
  datos_localidades <- datos[datos$Localidad %in% c(localidad1, localidad2, localidad3), ]</pre>
  # Obtener las especies únicas en las tres localidades
  especies <- unique(datos_localidades$Especies)</pre>
  # Crear una matriz binaria de presencia/ausencia para las especies en las tres localidades
  datos_binarios <- matrix(0, nrow = 3, ncol = length(especies))</pre>
  rownames(datos_binarios) <- c(localidad1, localidad2, localidad3)</pre>
  colnames(datos_binarios) <- especies</pre>
  for (i in 1:nrow(datos_localidades)) {
    localidad <- datos_localidades[i, "Localidad"]</pre>
    especie <- datos_localidades[i, "Especies"]</pre>
    abundancia <- datos_localidades[i, "Abundancia"]</pre>
    datos_binarios[localidad, especie] <- ifelse(abundancia > 0, 1, 0)
  }
  # Calcular la similitud de Jaccard entre las tres localidades
  similitud_jaccard <- matrix(NA, nrow = 3, ncol = 3)</pre>
  for (i in 1:2) {
    for (j in (i+1):3) {
      numerador <- sum(datos_binarios[i,] & datos_binarios[j,])</pre>
      denominador <- sum(datos_binarios[i,] | datos_binarios[j,])</pre>
      similitud_jaccard[i,j] <- numerador / denominador</pre>
      similitud_jaccard[j,i] <- similitud_jaccard[i,j]</pre>
    }
  }
 return(similitud_jaccard)
# Calcular la similitud de Jaccard entre las tres localidades específicas
similitud_jaccard_tres_localidades <- calcular_similitud_jaccard_tres_localidades(datos, "Casabito", "M
```

Dominancia

```
# Cargar los datos desde el archivo RCEV.csv
ruta_archivo <- "C:/Users/jazmi/OneDrive/Documents/tesis-daniel/RCEV.csv"</pre>
datos <- read.csv(ruta_archivo)</pre>
# Definir función para calcular el Índice de Dominancia de Simpson
calcular_dominancia <- function(abundancia) {</pre>
  # Suma de cuadrados de los recuentos de especies
  suma_cuadrados <- sum(abundancia^2)</pre>
  # Total de individuos
  total individuos <- sum(abundancia)</pre>
  # Índice de Dominancia de Simpson
  dominancia <- suma_cuadrados / (total_individuos^2)</pre>
 return(dominancia)
}
# Calcular la dominancia para cada localidad
dominancia_por_localidad <- aggregate(datos$Abundancia, by=list(Localidad=datos$Localidad), FUN=calcula
# Renombrar columnas
colnames(dominancia_por_localidad) <- c("Localidad", "Indice_Dominancia")</pre>
# Mostrar el resultado
print(dominancia_por_localidad)
library(ggplot2)
## Graficar la dominancia por localidad
ggplot(dominancia_por_localidad, aes(x=Localidad, y=Indice_Dominancia, fill=Indice_Dominancia)) +
  geom_bar(stat="identity") +
  scale_fill_gradient(low = "lightblue", high = "darkblue") +
  labs(title="Dominancia de especies por localidad",
       x="Localidad", y="Índice de Dominancia") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  guides(fill = guide_legend(title = "Índice de Dominancia"))
```

```
ruta_archivo <- "C:/Users/jazmi/OneDrive/Documents/tesis-daniel/RCEV.csv"
datos <- read.csv(ruta_archivo)</pre>
library(heatmaply)
# Definir una función para calcular la distancia de Jaccard
calcular_distancia_jaccard <- function(matriz_binaria) {</pre>
 n <- nrow(matriz binaria)</pre>
  distancia_jaccard <- matrix(NA, n, n)</pre>
  for (i in 1:(n - 1)) {
    for (j in (i + 1):n) {
      # Calcular el numerador (número de especies compartidas)
      numerador <- sum(matriz_binaria[i, ] & matriz_binaria[j, ])</pre>
      # Calcular el denominador (número de especies presentes en al menos una de las localidades)
      denominador <- sum(matriz_binaria[i, ] | matriz_binaria[j, ])</pre>
      # Calcular la distancia de Jaccard
      distancia_jaccard[i, j] <- 1 - (numerador / denominador)</pre>
      distancia_jaccard[j, i] <- distancia_jaccard[i, j]</pre>
    }
  }
  # Llenar la diagonal con ceros
  diag(distancia_jaccard) <- 0</pre>
 return(distancia_jaccard)
# Agregar prefijo único a los nombres duplicados
rownames(datos_binarios) <- make.unique(as.character(datos$Localidad))</pre>
colnames(datos_binarios) <- make.unique(as.character(datos$Localidad))</pre>
# Calcular la matriz de distancia de Jaccard
matriz_similitud_jaccard <- calcular_distancia_jaccard(datos_binarios)</pre>
# Graficar el mapa de calor de la matriz de similitud de Jaccard
heatmaply(matriz_similitud_jaccard,
          symmetric = TRUE, # Indica si la matriz es simétrica (en este caso, sí)
          labRow = rownames(datos_binarios), # Etiquetas de las filas
          labCol = colnames(datos_binarios), # Etiquetas de las columnas
          main = "Mapa de Calor de Similitud (Distancia de Jaccard)")
```