使用 IoT.js 和 Raspberry Pi 开发物

联网应用

Phodal Huang

September 8, 2017

目录

目录

步骤	1: i	设置R	aspber	ry Pi		•	 •	•	•	 •	•	•		•	•	•	•	•		•	 •		3
步骤	允许	F I2C	接口.				 •		•			•			•						 •	y. .	3
			M 接口																				3
	允许	† UAF	T 接口				 •		•			•			•				7	•	 •		4
			1电脑上																				4
	Lin	ux 条何	牛准备														Ç	Y.	•		 •		5
	mad	cOS 条	件准备	·										^	5)				 •		5
	构建	ᡛ IoT.	js(交及	叉编译) .				•								•				 •		5
	在I	Raspb	erry Pi	2 上运	行				•		٠.	. (•		•				 •		5
步骤	2:	在 Ras	spberry	· Pi 上	构建	ŧ					?		7										6

原文链接: https://www.wandianshenme.com/play/jerryscript-iotjs-raspberry-pi-build-iot-application

IoT.js 是一个使用 JavaScript 语言编写的物联网应用平台; JerryScript 是一个适用于嵌入式设备的小型 JavaScript 引擎。本文将介绍如何在 Raspberry Pi 上,编译 IoT.js,并使用 JerryScript 来编写物联网应用。

IoT.js 平台使用 JerryScript 引擎来运行 JavaScript 代码,使用 libuv 库来实现异步 I/O。这样的结构让开发者能够创建物联网服务,让设备与设备、外界之间交互。IoT.js 目前运行在 Linux 和 NuttX(一个实时操作系统),目标设备为树莓派 2(Raspberry Pi 2)和意法半导体开发板(ST board),后续计划支持其他微控制器(MCU)和物联网设备。

IoT.js 当前支持两种构建类型:

- 在桌面操作系统上编译,支持 Linux (Ubuntu)和 macOS 上的交叉编译
- 在 Raspberry Pi 2 上构建

步骤 1: 设置 Raspberry Pi

IoT.js 官方支持 Raspbian。而为了编译、使用 IoT.js 我们需要先进行一些设置。

允许 I2C 接口

为了使用 I2C 模块,我们需要先允许 I2C 接口。从命令行运行:

1 sudo raspi-config

这将运行起 raspi-config 工具, 然后:

- 选择 "9 Advanced Options"
- 选择 "A6 I2C"

屏幕上将问你是否允许 I2C 接口,分别选择『YES』、『OK』、『Finish』来返回到命令行。

然后重启 Raspberry Pi。

允许 PWM 接口

Raspberry Pi 2 在以下引脚上有两个 PWM 输出:

PWM 号 GPIO 引脚 (功能)

PWMo GPIO12(4), GPIO18(2)

PWM1 GPIO13(4), GPIO19(2)

要使用 PWM 模块,必须在 /boot/config.txt 文件中添加 PWM 叠加。

例如,要在 GPIO 18 上获得单个 PWM,请添加如下所示的叠加 (overlays):

1 dtoverlay=pwm,pin=18,func=2

例如,要在 GPIO 18 和 GPIO 19 上获取多个 PWM,请添加如下所示的叠加 (overlays):

1 dtoverlay=pwm-2chan,pin=18,func=2,pin2=19,func2=2

有关叠加(overlays)的详细信息,请参考官方的README。

注意: 为了运行 PWM 模块,有必要拥有 root 权限。

允许 UART 接口

要使用 UART 模块,必须要使用 UART 接口。

在 /boot/config.txt 文件中, 将 enable wart 的值从 o 更改为 1。

1 enable uart=1

要禁用串行控制台,请编辑文件/boot/cmdline.txt。删除 console = serial0,115200或 console = ttyAMA0,115200。

要启用串行控制台,请编辑文件/boot/cmdline.txt。添加 console = serial0,115200或 console = ttyAMA0,115200。

再重启你的 Raspberry Pi。

注意: 在 Raspberry Pi 3 上, 你应该使用 /dev/ttyS0 替换 /dev/ttyAMA0。

步骤 2: 在你的电脑上构建 IoT.js

首先, 我们要行 clone 代码:

1 git clone https://github.com/Samsung/iotjs

Linux 条件准备

安装 arm linux 交叉编译器

1 sudo apt-get install gcc-arm-linux-gnueabihf

macOS 条件准备

通过以下博客了解如何安装 arm linux 交叉编译器: ARM Cross Compiling with Mac OS X

 arm linux 编译器工具链的默认位置是 /usr/local/linaro/arm-linux-gnueabihf-raspbian。

 然后,你需要锁定 C编译(c_compiler)器。在文件./cmake/config/arm-linux.cmake

 中:

- 1 SET (EXTERNAL CMAKE C COMPILER
- 2 /usr/local/linaro/arm-linux-gnueabihf-raspbian/bin/arm-linux-gnueabihf-gcc)

文件/deps/libtuv/cmake/config/config_arm-linux.cmake:

- 1 SET (CMAKE C COMPILER
- /usr/local/linaro/arm-linux-gnueabihf-raspbian/bin/arm-linux-gnueabihf-gcc)

构建 IoT.js(交叉编译)

在运行 build.py 文件时,设置 target-arch、target-os 和 target-board 选项,然后你就可以休息片刻了:

- 1 ./tools/build.py --buildtype=[release|debug] --target-arch=arm \
- 2 --target-os=linux --target-board=rpi2

在 Raspberry Pi 2 上运行

上述的脚本将会编译产生 build/arm-linux/release/bin/iotjs 也有可能是build/arm-linux/debug/bin/iotjs。使用 scp 命令或者你喜欢的工具,复制二进制文件到你的 Raspberry Pi 2 上:

1 scp build/arm-linux/release/bin/iotjs pi@(your RPi2 IP):/home/pi/.

再 SSH 到 RPi 上:

1 ssh pi@(your RPi2 IP)

然后,让我们编写一个 hello,world:

1 console.log('Hello, world!');

最后,运行我们的测试程序。

1 ./iotjs hello.js

步骤 2:在 Raspberry Pi 上构建

首先,安装编译工具:

- 1 sudo apt-get update
- 2 sudo apt-get install cmake

然后,执行构建命令:

1 ./tools/build.py --target-board=rpi2

原文链接:https://www.wandianshenme.com/play/jerryscript-iotjs-raspberry-pi-build-iot-application