ENR 325 Assignment #8

Due: 11/7/25 10:00 pm

Welcome back to CMOS! To refresh your memory:

FIGURE 1-4 - TYPICAL COMPLEMENTARY

Why CMOS is good: low power consumption. This is a NOT gate, or inverter.

With one more step, we can do a NAND gate:

I vide-coded a html page on the github, so you can actually make these: Go to link: https://xlicoe.github.io/CMOS-demo/

And you can build an inverter and check its truth table in real-time:

For detailed step by step tutorial, go to https://github.com/xlicoe/CMOS-demo and check the read me file.

Task 1: Try to build all the rest of the logic gate with CMOS in this webpage. As a proveof-work, send me a screen capture of the finished gates. You can also save and load all the design file. Notes: the answers are just one google away. But I am asking you guys to make those gates on your own. Here're all the hints you need:

Inverter truth table			
Input	Output		
Α	NOT A		
0	1		
1	0		

NAND gate truth table			
Input		Output	
Α	В	A NAND B	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOR gate truth table			
Inp	out	Output	
Α	В	A NOR B	
0	0	1	
0	1	0	
1	0		
1	1	0	

AND gate truth table			
Input		Output	
Α	В	A AND B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR gate truth table				
Input		Output		
Α	В	A OR B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Input		Output		
Α	В	A XOR B		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

XOR gate truth table

See if you can build everything ONLY with the help of truth table.

XOR might be tricky, so here's some additional help:

Or maybe this?

