

Fully Dynamic Bin Packing Revisited

Sebastian Berndt ¹ Klaus Jansen ² Kim-Manuel Klein ²

¹Institute of Theoretical Computer Science, Universität zu Lübeck

²Department of Computer Science, Christian-Albrechts-University to Kiel

INSERT: *a*/0.2, **INSERT:** *b*/0.7, **INSERT:** *c*/0.4

INSERT: *a*/0.2, **INSERT:** *b*/0.7, **INSERT:** *c*/0.4

INSERT: *a*/0.2, **INSERT:** *b*/0.7, **INSERT:** *c*/0.4, **INSERT:** *d*/0.4

MF of $\Omega(1/\varepsilon)$ is necessary for rate $1 + \varepsilon$ a = 1/2 - b/3, b = 1/MF

INSERT: a^+

MF of $\Omega(1/\varepsilon)$ is necessary for rate $1 + \varepsilon$ a = 1/2 - b/3, b = 1/MF

INSERT: a⁺

MF of $\Omega(1/\varepsilon)$ is necessary for rate $1 + \varepsilon$ a = 1/2 - b/3, b = 1/MF INSERT: a^+ ,

 ${\bf INSERT:}\,b^+$

MF of $\Omega(1/\varepsilon)$ is necessary for rate $1 + \varepsilon$ a = 1/2 - b/3, b = 1/MF INSERT: a^+ ,

INSERT: b+

Fully Dynamic Bin Packing

Known Results

Rate	Shifting Moves	Migration Factor	Authors
			•

Fully Dynamic Bin Packing

Known Results

Rate	Shifting Moves	Migration Factor	Authors
5/4	7 (amortized)	∞	Ivković, Lloyd (1998)

Fully Dynamic Bin Packing

Known Results

	Rate	Shifting Moves	Migration Factor	Authors
Ī		7 (amortized)	∞	lvković, Lloyd (1998)
	$1 + \varepsilon$	$\mathcal{O}(1/\varepsilon^4 \cdot \log(1/\varepsilon))$	$\mathcal{O}(1/\varepsilon^4 \cdot \log(1/\varepsilon))$	B., Jansen, Klein (2015)

$$|(\ell, A, \cdot)| = 2^{\ell} \cdot \mathsf{SIZE}, \quad |(\ell, B, \cdot)| = 2^{\ell} \cdot (\mathsf{SIZE} - 1)$$

- $| (\ell, A, \cdot) | = 2^{\ell} \cdot \text{SIZE}, \quad | (\ell, B, \cdot) | = 2^{\ell} \cdot (\text{SIZE} 1)$
- Pack rounded items via LP

- $|(\ell, A, \cdot)| = 2^{\ell} \cdot \text{SIZE}, \quad |(\ell, B, \cdot)| = 2^{\ell} \cdot (\text{SIZE} 1)$
- Pack rounded items via LP
- Value of SIZE may increase or decrease

- $| (\ell, A, \cdot) | = 2^{\ell} \cdot \mathsf{SIZE}, \quad | (\ell, B, \cdot) | = 2^{\ell} \cdot (\mathsf{SIZE} 1)$
- Pack rounded items via LP
- Value of SIZE may increase or decrease

- $\qquad |(\ell,\textit{A},\cdot)| = 2^{\ell} \cdot \mathsf{SIZE}, \quad |(\ell,\textit{B},\cdot)| = 2^{\ell} \cdot (\mathsf{SIZE}-1)$
- Pack rounded items via LP
- Value of SIZE may increase or decrease

- $\qquad |(\ell,\textit{A},\cdot)| = 2^{\ell} \cdot \mathsf{SIZE}, \quad |(\ell,\textit{B},\cdot)| = 2^{\ell} \cdot (\mathsf{SIZE}-1)$
- Pack rounded items via LP
- Value of SIZE may increase or decrease

- $| (\ell, A, \cdot) | = 2^{\ell} \cdot \text{SIZE}, \quad | (\ell, B, \cdot) | = 2^{\ell} \cdot (\text{SIZE} 1)$
- Pack rounded items via LP
- Value of SIZE may increase or decrease

Idea: Shifting Items to the left complies with the packing!

Greedy fails: $\varepsilon \gg b \gg a$

(INSERT: b, INSERT: a,..., INSERT: a)⁺

Idea: "Sort" small items from left to right

Idea: "Sort" small items from left to right

Idea: "Sort" small items from left to right

INSERT: b, **INSERT:** a,..., **INSERT:** a,

Idea: "Sort" small items from left to right

INSERT: b, **INSERT:** a, . . . , **INSERT:** a, **INSERT:** b

Idea: "Sort" small items from left to right

INSERT: b, **INSERT:** a,..., **INSERT:** a,

Idea: "Sort" small items from left to right

Idea: "Sort" small items from left to right

INSERT: b, INSERT: a, ..., INSERT: a, INSERT: b

Idea: "Sort" small items from left to right

Stop at every 1/ε-th bin (buffer bin) to bound MF

Large

Large

■ Pack via LP

- Pack via LP
- Pack via "Sorting"

- Pack via LP
- Pack via "Sorting"
- Small bins \Rightarrow little free space in other bins

- Pack via LP
- Pack via "Sorting"
- \blacksquare Small bins \Rightarrow little free space in other bins
- Relate nearly full / nearly empty bins via potential function

■ Improve lower bound on MF from $\Omega(1/\epsilon)$ (**REMOVE**, $\omega(1)$ sizes)

- Improve lower bound on MF from $\Omega(1/\varepsilon)$ (**REMOVE**, $\omega(1)$ sizes)
- Improve running time from $\mathcal{O}(1/\epsilon^6 \cdot \log^4(1/\epsilon) \cdot n)$ (Plotkin, Shachnai and Yehezkely, Jansen and Kraft)

- Improve lower bound on MF from $\Omega(1/\varepsilon)$ (**REMOVE**, $\omega(1)$ sizes)
- Improve running time from $\mathcal{O}(1/\varepsilon^6 \cdot \log^4(1/\varepsilon) \cdot n)$ (Plotkin, Shachnai and Yehezkely, Jansen and Kraft)
- Simplify handling of small items

- Improve lower bound on MF from $\Omega(1/\epsilon)$ (**REMOVE**, $\omega(1)$ sizes)
- Improve running time from $\mathcal{O}(1/\varepsilon^6 \cdot \log^4(1/\varepsilon) \cdot n)$ (Plotkin, Shachnai and Yehezkely, Jansen and Kraft)
- Simplify handling of small items
- Adapt techniques to other problems