

Lecture Unit 06

Beam Processing Tools Electron Beam

Electron Beam Processing Technologies within DIN 8580

Primary Shaping	Forming	Cutting	Joining	Coating	Change of mat. prop
PBF-EB/M	Laser Bending	Water Jet Cutting	Electron Beam Welding	DED-LB/M	Hardening
PBF-LB/M		Laser Beam Cutting	Laser Beam Welding		VPP
DED-LB/M		Laser Beam Drilling			
		Electron Beam Drilling			

Atoms

Structure of an Atom

- Basic elements of matter
- Smallest parts into which matter can be decomposed with chemical agents or mechanical forces
- Structure:
 - Atomic shell: consisting of electrons on orbits
 - Nucleus: consisting of protons and neutrons
- Various models: e. g. Bohr model

Nucleus (protons and neutrons)

Electron Beam

Basics

Electrons travel straight in one direction

- Flow of electric charges (→ electric current)
- Identical charges → repulsion leads to divergence of the electron beam
- Compensation via electrostatic or magnetic focusing
- Guidance of electron beams via a deflection system

© arcamgroup.com

Live-Survey

What can be reduced by the vacuum in the process chamber?

- a) spreading of the beam (divergence)
- b) generation of X-Rays (bremsstrahlung)
- c) direct evaporation of the workpiece (sublimation)

Result

Generation of Electron Beams

- Heating-up of cathode material
- → Emission of electrons (extraction from atomic shell)
- > Formation of an electron cloud
- Applying of a high voltage between cathode and anode (acceleration voltage)
- → Acceleration of the electrons
- → Kinetic energy
- In ambient air: collisions of the electrons with air molecules
- → Divergence of electron beam
- → Vacuum in the electron generation chamber necessary, and usually also in the working chamber where the workpiece is located

© infogr.ch

Electron Beam: Interaction with Matter

Energy Transfer into the Workpiece

Electron Beam: Grounding of Workpiece

no grounding/conductivity:

- Electrons accumulate at surface
 - → redirection of incoming electrons
- no efficient energy input possible

with grounding:

- Electrons are dissipated into ground
- High energy input possible

Generation of Electron Beams

Schematics of a Diode Beam Generator

- Acceleration of the electrons due to voltage between anode and cathode
- Boundary electrode without electric field → beam shaping
- Very thin electron beam waist
- Cathode current → Controlling of beam current

Focused electron beam

© Pro-Beam, Verlag Moderne Industrie

Generation of Electron Beams

Schematics of a Triode Beam Generator

- Applying a voltage at the boundary electrode (Wehnelt cylinder)
- Controlling the electron cloud
- First focus of the electron beam between cathode and anode (crossover)
- Application: e. g. if high accuracy beam controlling is required

© Pro-Beam, Verlag Moderne Industrie

Live-Survey

By what can an electron beam be deflected?

- a) electric field
- b) magnetic field
- c) both

Result

Electron Beam Generator

Schematics of an Electron Beam System High voltage supply **Beam generator** Deflector Stigmator Window Beam guidance and shaping Magnet current CNC Magnetic lens supply x-y-deflector Sensor plate Workpiece Working chamber Manipulator © Pro-Beam, Verlag Moderne Industrie © LPT PT 1 SS 24 12

Focusing and Deflection of the Electron Beam

Focusing and Deflection of the Electron Beam

Fields of Application for the Electron Beam

Intensity W/cm²	Field of Application	Class of Material
10 ² - 10 ³	Polymerization	Plastics
$10^4 - 10^5$	Annealing	Metals
$10^5 - 10^6$	Welding, Remelting	Metals
$10^5 - 10^7$	Perforating	Metals
10 ⁷ – 10 ⁹	Drilling, Milling	Metals
108	Engraving	Metals
>108	Sublimation	Metals

After Klocke, F. Fertigungsverfahren

Advantages and Disadvantages of the Electron Beam

Advantages

- Low energy input into the workpiece due to high intensity
- Vacuum in the working chamber
 - → No reactions with the atmosphere (no oxidation)
 - → Protection of the melt from contamination
- Higher efficiency ~70% than laser based processes
- Large aspect ratio of the melt pool (deep penetration welding)

Disadvantages

- Processing of electrically conducting materials only
- Working distance depending on the quality of the vacuum
- High investment and operational costs (e. g. due to the permanent usage of vacuum pumps)
- Limited flexibility
 - → Selection of the vacuum chamber size according to the part geometry
- Generation of X-rays → Shielding necessary

© TU Dresden

Live-Survey

Which threshold intensity is necessary to evaporate metallic materials?

- a) $\sim 10^6 \text{ W/cm}^2$
- b) $\sim 10^5 \text{ W/cm}^2$
- c) $\sim 10^3 \text{ W/cm}^2$

Result

Electron Beam Welding

Classification of Electron Beam Welding according to DIN 8580 and 1910

Electron Beam Welding

Deep Penetration Welding

- Absorption of electron beam
- Melting of the material and rapid vaporization in the center of the beam
- Pressure of the vaporizing material displaces molten material and compensates the ambient pressure
 - → Keyhole evolves with high aspect ratio (depth to width) and surrounded by molten material
 - → Electron beam can further penetrate into the material
- Intensity > 10⁶ W/cm² (Evaporation of metallic materials)
- Full penetration of the workpiece for sufficient energy input

Applications of Electron Beam Welding (1)

Hollow drive shaft Sports airplane

Gearbox components

Membrane reservoir

Bearing housing of a wheel set of electric locomotive, welded casting steel

Applications of Electron Beam Welding (2)

Copper mold for the steel industry

Cross section of the welding seam

Copper pot

Copper and stainless-steel welded joint

© pro-beam.de

Applications of Electron Beam Welding (3)

Part of a SEM

Oxygen free welding seam seam width approx. 288 µm

Part of wristwatch

Width of welding seam < 150 µm

Advantages and Disadvantages of Electron Beam Welding

Advantages

- Very slim weld seams due to very high intensity compared to TIG or laser welding
 - → Small heat-affected zone, minimum distortion
- Corrosion protection due to welding in vacuum
- High welding feed rates, up to 60 m/min (Laser welding: ~10 m/min)
- Welding of dissimilar materials
- Penetration depths of 0.03 mm to 300 mm possible
- Complex workpiece geometries with different wall thicknesses are weldable

Disadvantages

- High investment and operating costs due to vacuum pump
- Only electrically conducting materials weldable
- Gap-free clamping and cleaning of the joint partners necessary
- Generation of X-rays -> shielding necessary
- Adaption of working chamber and manipulator depending on the welding jobs

Electron beam welding seam

Electron Beam Drilling

Classification of Electron Beam Drilling according to DIN 8580 and 2310

© KÖNIG,KLOCKE

Electron Beam Drilling

Basics

- Electron beam generation
- Focusing of the beam to intensities > 10⁸ W/cm²
 by electromagnetic lenses
- Absorption of electron beam by workpiece
- I > 10⁸ W/cm²: generation of a vapor capillary surrounded by a film of molten material in almost any material
- Characteristic: Usage of an evaporating material (backing material) for driving out the molten material

© ebopuls

Principles of Electron Beam Drilling

- Absorption of the pulsed electron beam at workpiece surface
- Melting and evaporation of the material -> melt ejection partially realized by evaporation
- Penetration of the vapor capillary into the workpiece
- Evaporation of backing material when irradiated by the electron beam
- Melt ejection from the capillary by the explosion-like expansion of the gas generated by the backing material
- → Narrow heat-affected zone (HAZ) along the drill hole
- → Precise and burr-free edges at the exit side

entrance side

Applications of Electron Beam Drilling

Spinning head for production of optical fibers

Detail of bore holes generated by electron beam drilling

© ptr-gmbh.de

Combustion chamber

Part of gas turbine

© steigerwald-eb.de

Advantages and Disadvantages of Electron Beam Drilling

Advantages

- Drill hole diameter and taper ratio can be varied continuously in contrast to mechanical drilling
- Fast processing speed as a consequence of high intensities and feed rates
 - -> more rapid deflection of the electron beam possible compared to the laser beam
- Very small heat affected zone along entire bore hole
- Precise and burr-free edges on the back side
- Electron beam as a wear-less tool
- Variation of processing parameters without changing the tool
- Drilling without special preparations, drill holes under a very low angle of incidence with respect to the workpiece surface can be achieved;
 - -> with mechanical drilling the drill will break when drilling under a low angle

Disadvantages

- High investment costs due to vacuum chamber and pumps
- Shielding necessary due to the generation of X-rays
- Drill hole diameter limited to rather small geometries

© ProBeam