265

• Sea $\mathbf{u} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ y $\mathbf{v} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$. Entonces el **producto cruz** o **producto vectorial** de \mathbf{u} y \mathbf{v} , denotado por $\mathbf{u} \times \mathbf{v}$, está dado por

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

- · Propiedades del producto cruz
 - i) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$.
 - ii) $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$.
 - iii) $(\alpha \mathbf{u}) \times \mathbf{v} = \alpha(\mathbf{u} \times \mathbf{v}).$
 - iv) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w}).$
 - v) $(\mathbf{u} \times \mathbf{v} \cdot \mathbf{w}) = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ (el triple producto escalar).
 - vi) $\mathbf{u} \times \mathbf{v}$ es ortogonal tanto a \mathbf{u} como a \mathbf{v} .
 - vii) Si tanto u como v no son el vector cero, entonces u y v son paralelos si y sólo si $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.
- Si φ es el ángulo entre \mathbf{u} y \mathbf{v} , entonces $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}|$ sen φ = área del paralelogramo con lados \mathbf{u} y \mathbf{v} .

AUTOEVALUACIÓN 4.4

- $\mathbf{I)} \quad \mathbf{i} \times \mathbf{k} \mathbf{k} \times \mathbf{i} = \underline{\hspace{1cm}}$
 - **a**) 0
- *b*) j
- c) 2j
- d) -2j

- II) $\mathbf{i} \cdot (\mathbf{j} \times \mathbf{k}) = \underline{\hspace{1cm}}$.
 - **a**) 0
- **b**) 0
- c) 1
- d) i-j+k

- III) $i \times j \times k$
 - **a**) 0
- **b**) 0
- c) 1
- d) no está definido

- IV) $(i+j) \times (j+k) = \underline{\hspace{1cm}}$
 - **a**) 0
- **b**) 0
- c) 1
- d) i-j+k
- V) El seno del ángulo entre los vectores **u** y **w** es _____.

 - a) $\frac{|\mathbf{u} \times \mathbf{w}|}{|\mathbf{u}||\mathbf{w}|}$ b) $\frac{|\mathbf{u} \times \mathbf{w}|}{|\mathbf{u} \cdot \mathbf{w}|}$

 - c) $\frac{|\mathbf{u} \cdot \mathbf{w}|}{|\mathbf{u}||\mathbf{w}|}$ d) $|\mathbf{u} \times \mathbf{w}| |\mathbf{u} \cdot \mathbf{w}|$
- VI) $u \times u = __$
 - a) $|\mathbf{u}|^2$ b) 1
- **c**) 0
- **d**) 0