assignment_1

March 27, 2024

Data Mining and Machine Learning - Assignment 1

1 Question 1 - NOx Study

Modelling of LNOx concentration as function of other variables

```
[25]: # Import of used libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
import statsmodels.api as sm
[2]: # Import of the dataset
```

```
[2]: # Import of the dataset
q1_pd = pd.read_csv('NOxEmissions.csv')
q1_pd
```

[2]:		rownames	julday	LNOx	${\tt LNOxEm}$	sqrtWS
	0	193	373	4.457250	5.536489	0.856446
	1	194	373	4.151827	5.513000	1.016612
	2	195	373	3.834061	4.886994	1.095445
	3	196	373	4.172848	5.138912	1.354068
	4	197	373	4.322807	5.666518	1.204159
	•••	•••	•••		•••	
	8083	8779	730	5.000585	6.730993	1.396424
	8084	8780	730	4.669552	6.165086	1.466288
	8085	8781	730	4.380776	5.855493	1.559808
	8086	8782	730	4.284276	5.691445	1.449138
	8087	8783	730	4.143928	5.505866	1.466288

[8088 rows x 5 columns]

1.1 (a) - Data Pre-processing

In the pre-processing we want to address data quality problems like Incorrect Data, Missing Values, duplicate data, outliers...

• Missing data: No missing data found in the dataset

• Duplicates: No duplicates were found.

```
[15]: # (a) - Pre-processing
      # Check if missing/duplicated/Invalid data is present in the dataset
      ## Missing data
      print(f"Number of missing data: {q1_pd.isnull().sum().sum()}")
      ## Duplicated data
      print(f"Number of duplicated data: {q1_pd.duplicated().sum()}")
      ## Statistical Summary
      print(f"===Statistical Summary===\n{q1 pd.describe()}")
     Number of missing data: 0
     Number of duplicated data: 0
     ===Statistical Summary===
                                             LNOx
               rownames
                              julday
                                                        LNOxEm
                                                                     sqrtWS
     count 8088.000000 8088.000000
                                      8088.000000 8088.000000 8088.000000
     mean
            4597.584570
                          556.078882
                                         4.378691
                                                      7.338244
                                                                   1.365253
     std
            2464.686179
                          102.706509
                                         0.937389
                                                      1.016658
                                                                   0.466280
     min
            193.000000
                          373.000000
                                        -0.105361
                                                      4.157866
                                                                   0.316228
                                         3.891820
     25%
            2507.750000
                          469.000000
                                                      6.514982
                                                                   1.016612
            4681.500000
     50%
                          560.000000
                                         4.497028
                                                      7.692495
                                                                   1.284523
     75%
            6709.250000
                          644.000000
                                         5.012134
                                                      8.239159
                                                                   1.648181
            8783.000000
     max
                          730.000000
                                         6.576121
                                                      8.600040
                                                                   3.624017
[18]: # Check for outliers
      melted_data = pd.melt(q1_pd, value_vars=['LNOx', 'LNOxEm', 'sqrtWS'],_
       →var_name='Variable', value_name='Value')
      sns.set_style("whitegrid")
      plt.figure(figsize=(10, 6))
      boxplot = sns.boxplot(x='Variable', y='Value', data=melted data)
      boxplot.set_title('Distribution and Outliers of Data Variables')
      boxplot.set_ylabel('Value')
      boxplot.set_xlabel('Variable')
      plt.show()
```


1.2 (b) - Distribution of LNOx variable

To describe the distribution of the LNOx variable we are going to use descriptive statistics indicators along with diagrams for visualization.

LNOx appears to have a normal distribution with a negative (left) skewness

```
# Q-Q plot
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
stats.probplot(q1_pd['LNOx'], dist="norm", plot=ax)
ax.set_title("Q-Q Plot for LNOx Variable")
plt.show()
```

Mean: 4.378690810185019 Median: 4.49702802736839

Standard Deviation: 0.937388582502527

Variance: 0.8786973546060968 Range: 6.681481834658996 Skewness: -0.8244320335510329

1.3 (c) - Linear Model of LNOx

the LNOx linear model is fitted below using a multiple linear regression, LNOx is the dependent variable, LNOxEm and sqrtWS are the indipendent variables as requested by the question.

```
[27]: # (c) - LNOx linear model

X = q1_pd[['LN0xEm', 'sqrtWS']]
X = sm.add_constant(X)
y = q1_pd['LN0x']
model = sm.OLS(y, X).fit()

# Print model summary
model.summary()
[27]:
```

5

Dep. Variable:	LNOx	\mathbf{R}	-squared	l :	0.663	}	
Model:		OLS		dj. R-sq	0.663	3	
Method:		Least Squares		-statistic	7952.		
Date: We		ed, 27 Mar 2024		rob (F-s	0.00		
Time:		12:29:35		og-Likeli	-6554.	7	
No. Observation	8088	\mathbf{A}	AIC:			-04	
Df Residuals:	8085	В	BIC:			-04	
Df Model:		2					
Covariance Type:		nonrobust	,				
	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]	
const	1.0619	0.046	23.097	0.000	0.972	1.152	
LNOxEm	0.6414	0.006	107.092	0.000	0.630	0.653	
\mathbf{sqrtWS}	-1.0182	0.013	-77.969	0.000	-1.044	-0.993	
Omnibu	Omnibus:		Durbin-Watson: 0.497 Jarque-Bera (JB): 30.943 Prob(JB): 1.91e-0 Cond. No. 58.3			497	
Prob(Or	0.000	.943					
Skew:	-0.115	1e-07					
Kurtosis	3.198	8.3					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2 Question 2 - Airbag study