

FAULT DATA ASSOCIATION WITH GRAPH IN MINING CONTEXT

Amandine Fratani, Romain Baville, Chiara-Luna Prest, Guillaume Caumon, Jeremie Giraud and Radu Stoica

Fault = mineralization ?

[Rabeau et al., 2013, Minerallium Deposita]

Where are the faults?

Modified from Richard et al., European Geothermal Congress (2016)

Where are the faults?

[Salaun et al., 2020, The Leading Edge]

Fault association using graph theory [Godefroy et al., MG, 2019]

➤ Expert rules defined only for fault traces from 2D seismic images

> Expert rules limited to pair association

Fratani et al.

Theoretical Elliptical shape of a fault [Walsh et Watterson, JSG, 1989]

Theoretical Elliptical shape of a fault [Walsh et Watterson, JSG, 1989]

Theoretical Elliptical shape of a fault [Walsh et Watterson, JSG, 1989]

Theoretical Elliptical shape of a fault [Walsh et Watterson, JSG, 1989]

Mean of pair potential [Godefroy et al., JGR, 2021]

How to adapt the graph formalism to mining context?

New expert rules for borehole imaging interpretation

How to take into account multiple-point information during the association?

Multiple-point potential using Balanced Random Forest

Fault observation on seismic and on borehole images

The distance rule

The plane rule

Application on synthetic marker:

Colors of marker corresponding to true association

- > Best potential between the true association
- Worst potential between the opposite orientation

13/26

How to adapt the graph formalism to mining context?

New expert rules for borehole imaging interpretation

How to take into account multiple-point information during the association?

Multiple-point potential using Balanced Random Forest

Multiple point association using Balanced Random Forest

Generating training database Synthetic fault traces

3D model courtesy of TotalEnergies

Modified from [Fratani et al., in review, 2025]

id	Centroid x	Centroid y	Centroid z	length	Slope	Max throw	Num section
1001	403788	90745,61	-3376,92	7710,20	179	0,0	0
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
1002	404553	91160,33	-2785,94	9685,60	172	59,3	17

16/26

Generating training database

Create pair & triplet features and class:

- Points belong to the same fault → associated
- Else → disjoint

3D Geological Modelling Conference

Random Forest

Balanced Random Forest

Methodology with Random Forest

19/26

Metrics

Brier Score

Test

$$BS = \frac{1}{N} \sum_{i=1}^{N} (p_i - c_i)^2$$
 true value (associated or disjoint)

probability of associating

Triplet potential association

Comparison of the potentials of triplets with the mean of pairs potentials

Model	Random Forest	Mean of pair potential
Model 1	0.003	0.033
Model 2	0.070	0.131

Connection of pair and triplet potentials

Model	Pair potential	Triplet potential	Mean	Product	Weighted mean
Model 1	0.020	0.018	0.017	0.016	0.018
Model 2	0.188	0.154	0.159	0.133	0.138

[Fratani et al., in review, 2025]

Conclusions

Expert Rules

- 2 expert rules for borehole interpretation
- Needs to join the potential from several rules
- Limited to pair potential
- Rule taking into account of the aperture knowledge

Balanced Random Forest

- Take into account multi-point information
- Good results on two realistic dataset
- Limited for case with analog data
- Foundation ML model trained with a high number of data
- > Efficient stochastic sampling algorithm to finally generate 3D models

Thank you!

Managed by A.S.G.A.

+ 88 Universities and surveys for support

www.ring-team.org

- AspenTech for software and API
- TotalEnergies for 3D model
- BHP for the support of the master project
- All my team for discussion

References

- Fratani, A., Stoica, R.S., Caumon, G., Giraud, J., 2025. Multiple point fault observation association using random forest from analog structural models. In review.
- Godefroy, G., Caumon, G., Laurent, G., Bonneau, F., 2021. Multi-scenario Interpretations From Sparse Fault Evidence Using Graph Theory and Geological Rules. J Geophys Res Solid Earth 126. https://doi.org/10.1029/2020JB020022
- Godefroy, G., Caumon, G., Laurent, G., Bonneau, F., 2019. Structural Interpretation of Sparse Fault Data Using Graph Theory and Geological Rules: Fault Data Interpretation. Math Geosci 51, 1091–1107. https://doi.org/10.1007/s11004-019-09800-0
- Rabeau, O., Royer, J.-J., Jébrak, M., Cheilletz, A., 2013. Log-uniform distribution of gold deposits along major Archean fault zones. Miner Deposita 48, 817–824. https://doi.org/10.1007/s00126-013-0470-7
- Richard, A., Maurer, V., Edel, J.-B., Genter, A., Baujard, C., Dalmais, E., 2016. Towards targeting geothermal reservoir: exploration program for a new EGS project in urban context in Alsace, in: European Geothermal Congress.
- Walsh, J.J., Watterson, J., 1989. Displacement gradients on fault surfaces. Journal of Structural Geology 11, 307–316. https://doi.org/10.1016/0191-8141(89)90070-9