Pumping Lemma CSCI 338

Pumping Lemma

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0$.
- 2. |y| > 0.
- 3. $|xy| \le p$.

Pumping Lemma Proof Blueprint

<u>Claim</u>: Some language L is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?. 1 – Select s that will work with $s \in L$ and $|s| \ge p$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $\mathbf{?}$ 2 – Find some conditions that y must meet

3 -Select an i (number of times to repeat y)

Consider the string $s' = xy^{?}z = ?$ 4 – Show what s' equals

 $|\mathbf{r}|$ 5 – Show s' is not in L

 \Rightarrow $s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s =?.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^?z = ?$

?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

?

Consider the string $s' = xy^?z = ?$

<mark>?</mark>

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

For us to violate the pumping lemma, we must violate a condition for *every* xyz partition.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- $3. \quad |xy| \le p.$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Let y = 00

For us to violate the pumping lemma, we must violate a condition for *every* xyz partition.

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Let
$$y = 00$$

 $\Rightarrow xy^0z = ?$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Let
$$y = 00$$

$$\Rightarrow xy^0z = 0^{p-2}1^{p+1}$$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Let
$$y = 00$$

$$\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Let
$$y = 00$$

$$\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$$

$$xy^2z = ?$$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- $3. \quad |xy| \le p.$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Let
$$y = 00$$

 $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$
 $xy^2z = 0^{p+2}1^{p+1} \in L$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- $3. \quad |xy| \le p.$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Clearly, y is all 0's.

Let
$$y = 00$$

 $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$
 $xy^2z = 0^{p+2}1^{p+1} \in L$
 $xy^3z = 0^{p+4}1^{p+1} \in L$

Pumping Lemma: Given a regular language L, \exists a number p such that any string $s \in L$, with $|s| \ge p$, can be divided into three pieces, s = xyz satisfying:

- 1. $xy^iz \in L, \forall i \geq 0.$
- 2. |y| > 0.
- 3. $|xy| \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+1}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. Clearly, y is all 0's.

Let
$$y = 00$$

 $\Rightarrow xy^0z = 0^{p-2}1^{p+1} \in L$
 $xy^2z = 0^{p+2}1^{p+1} \in L$
 $xy^3z = 0^{p+4}1^{p+1} \in L$

Goal: Pick an s such that repeating y (no matter what y is) is guaranteed (at some point) to make #0's equal #1's

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider s = ?

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

Goal: Pick an s such that repeating y (no matter what y is) is guaranteed (at some point) to make #0's equal #1's

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some k > 0

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string $s' = xy^iz$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string $s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$ i = ?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string $s'=xy^iz=0^{p-k}0^{ik}1^{p+\alpha}$ i=? If #0's = #1's, then...

If we can find an *i* such that #0's = #1's, we have contradicted the pumping lemma.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string
$$s'=xy^iz=0^{p-k}0^{ik}1^{p+\alpha}$$
 $i=?$ If #0's = #1's, then $p+(i-1)k=p+\alpha$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string
$$s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$$
 $i=?$ If #0's = #1's, then $p+(i-1)k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0< k \leq p$.

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string $s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$.
So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = ?$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+\alpha}$. $\alpha = ?$

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string $s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$.
So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+\alpha}$

Consider the string $s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$.
So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+p!}$

Consider the string $s'=xy^iz=0^{p-k}0^{ik}1^{p+\alpha}$ i=? If #0's = #1's, then $p+(i-1)k=p+\alpha \Rightarrow i=\frac{\alpha}{k}+1$, for $0< k \leq p$. So, α needs to be evenly divisible by k for all possible $0< k \leq p$. Let $\alpha=p!$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string $s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$.
So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string $s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$ i = ?If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = \frac{\alpha}{k} + 1$, for $0 < k \le p$.
So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \Longrightarrow s = 0^{p-k}0^k1^{p+p!}$

Consider the string $s' = xy^iz = 0^{p-k}0^{ik}1^{p+\alpha}$ $i = {p!}/{k} + 1$ If #0's = #1's, then $p + (i-1)k = p + \alpha \Rightarrow i = {\alpha \over k} + 1$, for $0 < k \le p$. So, α needs to be evenly divisible by k for all possible $0 < k \le p$. Let $\alpha = p!$ $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string $s' = xy^{p!}/_{k+1}z$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string $s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string
$$s' = xy^{p!}/_{k+1}z = 0^{p-k}0^{\binom{p!}{_k+1}k}1^{p+p!}$$

#0's = ?

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string
$$s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$$

#0's = $p - k + p! + k = ?$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string
$$s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$$

#0's = $p - k + p! + k = p + p! = ?$

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.

<u>Claim</u>: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

<u>Proof</u>: Suppose L is regular. Let p be the number from the pumping lemma.

Consider $s = 0^p 1^{p+p!}$.

Since $s \in L$ and $|s| \ge p$, the conditions of the pumping lemma must hold for s = xyz. $y = 0^k$ for some $k > 0 \implies s = 0^{p-k}0^k1^{p+p!}$

Consider the string
$$s' = xy^{p!/k+1}z = 0^{p-k}0^{\binom{p!/k+1}{k}}1^{p+p!}$$

#0's = $p - k + p! + k = p + p! = #1$'s

 $\Rightarrow s' \notin L$, which is a contradiction of the pumping lemma.

Therefore, the language is not regular.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

$$0^*1^* = ?$$

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} =?
```

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

 $\overline{L} = \text{Everything that is not in } L.$

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's.
```

 \overline{L} = Everything that is not in L.

$$\bar{L} \cap 0^*1^* = ?$$

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's.
```

 \overline{L} = Everything that is not in L.

$$\bar{L} \cap 0^* 1^* = \{0^n 1^n : n \ge 0\}$$

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. \overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}
```

 0^*1^* - Regular or not?

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. \overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}
```

 0^*1^* - Regular.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. \overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}
```

 0^*1^* - Regular.

 $\{0^n 1^n : n \ge 0\}$ - Regular or not?

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. \overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}
```

```
0^*1^* - Regular.
```

 $\{0^n1^n: n \ge 0\}$ - Not Regular.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. \overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}
```

 0^*1^* - Regular. $\{0^n1^n : n \ge 0\}$ - Not Regular.

 \overline{L} - Regular or not?

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

 $\overline{L} =$ Everything that is not in L.

$$\bar{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$$

 0^*1^* - Regular.

 $\{0^n 1^n : n \ge 0\}$ - Not Regular.

 \overline{L} - Regular or not?

$$A \cap B = \overline{\overline{A} \cup \overline{B}}$$

(De Morgan's Laws)

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

 $\overline{L} =$ Everything that is not in L.

$$\bar{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$$

 0^*1^* - Regular.

$$\{0^n 1^n : n \ge 0\}$$
 - Not Regular.

 \overline{L} - Regular or not?

$$A \cap B = \overline{A} \cup \overline{B}$$

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

 $\overline{L} = \text{Everything that is not in } L.$

$$\bar{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$$

 0^*1^* - Regular.

 $\{0^n 1^n : n \ge 0\}$ - Not Regular.

 \overline{L} - Regular or not?

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

 $\overline{L} =$ Everything that is not in L.

$$\bar{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$$

 0^*1^* - Regular.

 $\{0^n1^n: n \ge 0\}$ - Not Regular.

 \overline{L} - Regular or not?

$$A \cap B = \overline{\bar{A} \cup \bar{B}}$$

⇒ Intersection of regular languages is regular.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

 0^*1^* = Bunch of 0's followed by a bunch of 1's.

 $\overline{L} =$ Everything that is not in L.

$$\bar{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}$$

 0^*1^* - Regular.

 $\{0^n 1^n : n \ge 0\}$ - Not Regular.

\overline{L} - Not Regular.

If \overline{L} was regular, so would $0^n 1^n$ (regular \cap regular = regular)

$$A \cap B = \overline{\bar{A} \cup \bar{B}}$$

⇒ Intersection of regular languages is regular.

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \overline{L} = Everything that is not in L. \overline{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}
```

 0^*1^* - Regular.

 $\{0^n1^n: n \ge 0\}$ - Not Regular.

 \overline{L} - Not Regular.

L - Regular or not?

Claim: The language $L = \{0^m 1^n : m \neq n\}$ is not regular.

Proof:

```
0^*1^* = Bunch of 0's followed by a bunch of 1's. \bar{L} = Everything that is not in L. \bar{L} \cap 0^*1^* = \{0^n1^n : n \ge 0\}
```

 0^*1^* - Regular. $\{0^n1^n : n \ge 0\}$ - Not Regular.

 \overline{L} - Not Regular.

L - Not Regular. If L was regular, so would \overline{L} (complement of regular = regular)

<u>Claim:</u> L satisfies the pumping lemma.

Claim: L is not regular.

Claim: L satisfies the pumping lemma.

Claim: L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

Claim: L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

<u>Claim:</u> L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

I.e. $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ satisfies the pumping lemma.

Claim: L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

I.e. $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ satisfies the pumping lemma.

Let p > 0 be any number and let s be any string from $\{a0^n1^n : n \ge 1\}$ where $|s| \ge p$.

<u>Claim:</u> L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

I.e. $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ satisfies the pumping lemma.

Let p > 0 be any number and let s be any string from $\{a0^n1^n : n \ge 1\}$ where $|s| \ge p$. Let s = xyz where $x = \varepsilon$, y = a, and z is everything else.

Claim: L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

I.e. $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ satisfies the pumping lemma.

Let p>0 be any number and let s be any string from $\{a0^n1^n: n\geq 1\}$ where $|s|\geq p$. Let s=xyz where $x=\varepsilon, y=a$, and z is everything else. If y is pumped up or down, $s'\in\{a^k\omega: k\neq 1, \omega\in(0\cup1)^*\}$ (0 or >1 a).

Claim: L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

I.e. $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ satisfies the pumping lemma.

Let p > 0 be any number and let s be any string from $\{a0^n1^n : n \ge 1\}$ where $|s| \ge p$. Let s = xyz where $x = \varepsilon$, y = a, and z is everything else.

If y is pumped up or down, $s' \in \{a^k \omega : k \neq 1, \omega \in (0 \cup 1)^*\}$ (0 or > 1 a).

Thus, every string \underline{can} be split into xyz that satisfy the pumping lemma conditions.

Claim: L satisfies the pumping lemma.

Proof: $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ is regular.

I.e. $\{a^k\omega: k \neq 1, \omega \in (0 \cup 1)^*\}$ satisfies the pumping lemma.

Let p > 0 be any number and let s be any string from $\{a0^n1^n : n \ge 1\}$ where $|s| \ge p$. Let s = xyz where $x = \varepsilon$, y = a, and z is everything else.

If y is pumped up or down, $s' \in \{a^k \omega : k \neq 1, \omega \in (0 \cup 1)^*\}$ (0 or > 1 a).

Thus, every string \underline{can} be split into xyz that satisfy the pumping lemma conditions.

So L satisfies the pumping lemma.

Claim: L is not regular.

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

Suppose $L \cap M$ is regular and let p be the number from the pumping lemma.

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

Suppose $L \cap M$ is regular and let p be the number from the pumping lemma. Consider $s = a0^p1^p$. For any s = xyz partition,

$$y = a$$
 or $00 \dots 00$ or $a00 \dots 00$

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

Suppose $L \cap M$ is regular and let p be the number from the pumping lemma.

Consider $s = a0^p1^p$. For any s = xyz partition,

$$y = a$$
 or $00 \dots 00$ or $a00 \dots 00$

Consider $s' = xy^0z$. Then, s' either:

- has no a (and $s' \notin L$)
- and/or now has more 1s than 0s (and $s' \notin L$).

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

$$L \cap M = \{a0^n1^n : n \ge 1\}$$
 - Not regular

Suppose $L \cap M$ is regular and let p be the number from the pumping lemma.

Consider $s = a0^p1^p$. For any s = xyz partition,

$$y = a$$
 or $00 \dots 00$ or $a00 \dots 00$

Consider $s' = xy^0z$. Then, s' either:

- has no a (and $s' \notin L$)
- and/or now has more 1s than 0s (and $s' \notin L$).

This contradicts the pumping lemma, so $L \cap M$ is not regular.

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

So, M is regular and $L \cap M$ is not regular. What about L?

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

So, M is regular and $L \cap M$ is not regular. What about L?

What if L were regular? \Rightarrow Regular \cap Regular = Non-regular.

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

So, M is regular and $L \cap M$ is not regular. What about L?

What if L were regular? \Rightarrow Regular \cap Regular = Non-regular.

Claim: L is not regular.

Proof: $M = a(0 \cup 1)^*$ is regular.

 $L \cap M = \{a0^n1^n : n \ge 1\}$ - Not regular

So, M is regular and $L \cap M$ is not regular. What about L?

What if L were regular? \Rightarrow Regular \cap Regular = Non-regular.

Thus, L cannot be regular.

<u>Claim:</u> L satisfies the pumping lemma.

Claim: L is not regular.