11.10 Taylor and Maclaurin Series

Theorem 117 (Taylor Series). If f has a power series representation at a (that is $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ for |x-a| < R) then its coefficients are of the form

$$c_n = \frac{f^{(n)}\left(a\right)}{n!}.$$

That is to say that if f has a power series representation then it can be written in the form

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

and has radius of convergence R.

Definition 118 (Maclaurin Series). A Taylor Series centered at a=0 is called a Maclaurin Series. That is to say that a Maclaurin Series can be written as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Problem 119. Find the Maclaurin Series of $f(x) = e^x$ and find its radius of convergence.

$$f^{(n)}(x) = e^{x}$$

 $f^{(n)}(x) = e^{x}$ $f^{(n)}(0) = e^{0} = 1$

$$e^{x} = f(x) = \sum_{n=0}^{\infty} \frac{f(n)(n)}{n!} x^{n}$$

$$= \left[\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \right] \left(= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots \right)$$

Problem 120. Find the Maclaurin Series for $\sin(x)$.

$$f^{(0)}(x) = \sin x \qquad f^{(0)}(0) = 0$$

$$f^{(1)}(x) = \cos x \qquad f^{(0)}(0) = 1$$

$$f^{(1)}(x) = -\sin x \qquad f^{(2)}(0) = 0$$

$$f^{(3)}(x) = -\cos x \qquad f^{(3)}(0) = -1$$

$$f^{(3)}(x) = -\cos x \qquad f^{(3)}(0) = 0$$

$$f^{(3)}(x) = -\cos x \qquad f^{(3)}(x) = 0$$

$$f^{(3)$$

Problem 121. Find the Maclaurin Series for $\cos(x)$.

$$f^{(0)}(x) = cos x
f^{(1)}(x) = -sin x
f^{(2)}(x) = -cos x
f^{(3)}(x) = sin x
f^{(3)}(x) = 0
f^{$$

Problem 122. Find a power series representing $f(x) = xe^x$.

Problem 123. Give a polynomial which approximates $\sin(x)$ near $x = \frac{\pi}{3}$ by finding the Taylor Series for $\sin(x)$ centered at $\frac{\pi}{3}$ and then writing out its first four non-zero terms. (This is sometimes called a Taylor Polynomial.)

$$\int_{1}^{\infty} \frac{f^{(n)}(\frac{\pi}{3})}{n!} (x - \frac{\pi}{3})^{n} = \int_{1}^{\infty} \frac{f^{(n)}(\frac{\pi}{3})}{n!} (x - \frac{\pi}{3})^{n} + \int_{1}^{\infty} \frac{f^{(n)}(\frac{\pi}{3})}{n!} (x - \frac{\pi}{3}$$