

Fr. Conceicao Rodrigues College of Engineering Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400050

Department of Computer Engineering Academic Term II: 23-24

Class: B.E (Computer), Sem – VI Subject Name: Artificial Intelligence Student

Name: Sumit Sanjay Rai Roll No: 9570

Practical No:	8
Title:	Programming in PROLOG
Date of Performance:	25/03/2024
Date of Submission:	01/04/2024

Rubrics for Evaluation:

Sr. N o	Performance Indicator	Excellent	Good	Below Average	Marks
1	On time Completion & Submission (01)	01 (On Time)	NA	00 (Not on Time)	
2	Logic/Algorithm Complexity analysis (03)	03(Corr ect)	02(Partial)	01 (Tried)	
3	Coding Standards (03): Comments/indention/Nam ing conventions Test Cases /Output	03(All used)	02 (Partial)	01 (rarely followed)	
4	Post Lab Assignment (03)	03(done well)	2 (Partially Correct)	1(submitte d)	
Tot	al				

Signature of the Teacher:

A) Tower of Hanoi

Source code:

```
SWISH
                  File▼
                          Edit▼
                                  Examples •
                                               Help▼
Program 
  1 % Define predicate hanoi/3 for solving Tower of Hanoi problem
  2 hanoi(1, Source, Destination, _) :-
       write('Move top disk from '),
      write(Source),
  4
      write(' to '),
  5
  6
        write(Destination),
  7
        nl.
  8
  9 hanoi(N, Source, Destination, Aux) :-
        N > 1,
 10
        M is N - 1,
 11
 12
        hanoi(M, Source, Aux, Destination),
        hanoi(1, Source, Destination, _),
 13
 14
        hanoi(M, Aux, Destination, Source).
 15
 16 % Example usage:
 17 % To solve Tower of Hanoi problem with 3 disks
 18 ?- hanoi(3, 'Source', 'Destination', 'Aux').
 19
 20
```

Output:

B) N-queen

Source code:

```
SWISH
                   File+
                           Edit +
                                   Examples +
                                                Help+
                 Program 
Program 
 1 :- use_module(<u>library(clpfd)</u>).
  3 % Step 1: Initialize N queens and insert in Qs
  4 n_queens(N, Qs) :-
 5
       length(Qs, N),
  6
       Qs ins 1..N,
  7
        safe_queens(Qs).
 8
 9 % Step 2: Set safe_queens to null
 10 safe_queens([]).
 11
 12 % Step 3: Verify if attack is possible
 13 safe_queens([Q|Qs]) :-
 14
        safe_queens(Qs, Q, 1),
 15
        safe_queens(Qs).
 16
 17 % Step 4: Continue till Qs id matches N
 18 safe_queens([], _, _).
 20 % Step 5: If Q meets no attack, declare Q as safe and add to safe_queens
 21 safe_queens([Q|Qs], Q0, D0) :-
 22
       Q0 #\= Q,
 23
        abs(Q0 - Q) \#= D0,
        D1 #= D0 + 1,
 24
 25
        safe_queens(Qs, Q0, D1).
 26
 27 % Example usage:
 28 % To solve N-Queens problem for N = 8
 29 % Query: ?- n_queens(8, Qs), label(Qs), write(Qs), nl, fail.
 30 % This will find all solutions for placing 8 queens on an 8x8 chessboard.
```

Output:

```
\oplus = \otimes
 m_queens(8, Qs), label(Qs), write(Qs), nl, fail.
[1, 5, 8, 6, 3, 7, 2, 4]
[1, 6, 8, 3, 7, 4, 2, 5]
[1, 7, 4, 6, 8, 2, 5, 3]
[1, 7, 5, 8, 2, 4, 6, 3]
[2, 4, 6, 8, 3, 1, 7, 5]
[2, 5, 7, 1, 3, 8, 6, 4]
[2, 5, 7, 4, 1, 8, 6, 3]
[2, 6, 1, 7, 4, 8, 3, 5]
[2, 6, 8, 3, 1, 4, 7, 5]
[2, 7, 3, 6, 8, 5, 1, 4]
[2, 7, 5, 8, 1, 4, 6, 3]
[2, 8, 6, 1, 3, 5, 7, 4]
[3, 1, 7, 5, 8, 2, 4, 6]
[3, 5, 2, 8, 1, 7, 4, 6]
[3, 5, 2, 8, 6, 4, 7, 1]
[3, 5, 7, 1, 4, 2, 8, 6]
[3, 5, 8, 4, 1, 7, 2, 6]
[3, 6, 2, 5, 8, 1, 7, 4]
[3, 6, 2, 7, 1, 4, 8, 5]
[3, 6, 2, 7, 5, 1, 8, 4]
[3, 6, 4, 1, 8, 5, 7, 2]
?- n_queens(8, Qs), label(Qs), write(Qs), nl, fail.
                                                                                                                 □ table results Run!
      Examples History Solutions
[3, 7, 2, 8, 6, 4, 1, 5]
[3, 8, 4, 7, 1, 6, 2, 5]
[4, 1, 5, 8, 2, 7, 3, 6]
[4, 1, 5, 8, 6, 3, 7, 2]
[4, 2, 5, 8, 6, 1, 3, 7]
[4, 2, 7, 3, 6, 8, 1, 5]
[4, 2, 7, 3, 6, 8, 5, 1]
[4, 2, 7, 5, 1, 8, 6, 3]
[4, 2, 8, 5, 7, 1, 3, 6]
[4, 2, 8, 6, 1, 3, 5, 7]
[4, 6, 1, 5, 2, 8, 3, 7]
[4, 6, 8, 2, 7, 1, 3, 5]
[4, 6, 8, 3, 1, 7, 5, 2]
[4, 7, 1, 8, 5, 2, 6, 3]
[4, 7, 3, 8, 2, 5, 1, 6]
[4, 7, 5, 2, 6, 1, 3, 8]
[4, 7, 5, 3, 1, 6, 8, 2]
[4, 8, 1, 3, 6, 2, 7, 5]
[4, 8, 1, 5, 7, 2, 6, 3]
[4, 8, 5, 3, 1, 7, 2, 6]
[5, 1, 4, 6, 8, 2, 7, 3]
[5, 1, 8, 4, 2, 7, 3, 6]
```

[6, 3, 5, 8, 1, 4, 2, 7]	\equiv
[6, 3, 7, 2, 4, 8, 1, 5]	
[6, 3, 7, 2, 8, 5, 1, 4]	
[6, 3, 7, 4, 1, 8, 2, 5]	
[6, 4, 1, 5, 8, 2, 7, 3]	
[6, 4, 2, 8, 5, 7, 1, 3]	
[6, 4, 7, 1, 3, 5, 2, 8]	
[6, 4, 7, 1, 8, 2, 5, 3]	
[6, 8, 2, 4, 1, 7, 5, 3]	
[7, 1, 3, 8, 6, 4, 2, 5]	
[7, 2, 4, 1, 8, 5, 3, 6]	
[7, 2, 6, 3, 1, 4, 8, 5]	
[7, 3, 1, 6, 8, 5, 2, 4]	
[7, 3, 8, 2, 5, 1, 6, 4]	
[7, 4, 2, 5, 8, 1, 3, 6]	
[7, 4, 2, 8, 6, 1, 3, 5]	
[7, 5, 3, 1, 6, 8, 2, 4]	
[8, 2, 4, 1, 7, 5, 3, 6]	
[8, 2, 5, 3, 1, 7, 4, 6]	
[8, 3, 1, 6, 2, 5, 7, 4]	
[8, 4, 1, 3, 6, 2, 7, 5]	
false	-