

Técnicas de análisis cuantitativas y cualitativas Sesión 3

Eduardo Corbelle Rico

Máster Universitario en Xestión Sustentable da Terra e o Territorio Universidade de Santiago de Compostela

Curso 2015-2016

Contenidos

1 Análisis de varianza

ANOVA

- Variable numérica
- Variables categóricas
 - Tratamiento
 - Fuente(s) de variación

Hipótesis

• H_0 : Igualdad de efectos entre niveles del tratamiento

Hipótesis

H₀: Igualdad de efectos entre niveles del tratamiento

Supuestos

- Normalidad
- 2 Igual varianza (homocedasticidad)
- 3 Independencia entre observaciones

Análisis para un factor

$$F = \frac{\frac{SST_i}{r-1}}{\frac{SSE}{n-r}}$$

- *F* Estadístico de contraste (F de Snedecor)
- SST_i Suma de cuadrados debida al tratamiento
- SSE Suma de cuadrados residual
 - r Número de niveles del tratamiento
 - n Número de observaciones por nivel

Análisis para un factor

$$F = \frac{\frac{SST_i}{r-1}}{\frac{SSE}{n-r}}$$

- *F* Estadístico de contraste (F de Snedecor)
- SST_i Suma de cuadrados debida al tratamiento
- SSE Suma de cuadrados residual
 - r Número de niveles del tratamiento
 - Número de observaciones por nivel

Rechazamos H_0 si $F \geq F_{r-1,n-r,\alpha}$

Diseño de experimentos para un factor

Fuentes de variación

Diseño...

- 0 completamente aleatorizado
- 1 por bloques aleatorizados
- 2 en cuadrado latino
- 3 en cuadrado greco-latino

Ejemplo

2 variedades de maíz (Var1, Var2), 12 parcelas

Completamente aleatorizado

12 parcelas, repartidas al azar (6 para Var1, 6 para Var2)

Ejemplo

2 variedades de maíz (Var1, Var2), 12 parcelas

Completamente aleatorizado

12 parcelas, repartidas al azar (6 para Var1, 6 para Var2)

Por bloques aleatorizados

Costa	Interior
3 parcelas Var1	3 parcelas Var1
3 parcelas Var2	3 parcelas Var2

Ejemplo

2 variedades de maíz (Var1, Var2), 12 parcelas

Completamente aleatorizado

12 parcelas, repartidas al azar (6 para Var1, 6 para Var2)

Por bloques aleatorizados

Costa	Interior
3 parcelas Var1	3 parcelas Var1
3 parcelas Var2	3 parcelas Var2

Cuadrado latino

	Costa	Interior
Regadío	3 parcelas Var1	3 parcelas Var2
Secano	3 parcelas Var2	3 parcelas Var1

ANOVA de dos factores

Tres contrastes simultáneos

- H₀: Igualdad de efectos entre niveles del factor A
- H₀: Igualdad de efectos entre niveles del factor B
- H_0'' : Inexistencia de interacción entre A y B

Análisis de varianza en R

Funciones disponibles

- anova
- aov
- Anova {car}
- (Medidas repetidas: Anova {car})

Variantes robustas

(en caso de heterocedasticidad)

• Generalización robusta del test de Welch (oneway.test)

Práctica 5

Análisis de varianza

Contidos

Análisis de varianza

Modelos lineales generalizados

(Generalized Linear Models, GLM)

Ejemplos

- Regresión logística: var. dependiente de tipo lógico (T/F)
- Regresión multinomial: var. dependiente factor n > 2 niveles
- Regresión Poisson: var. dependiente es un conteo (1,2,3,...)

Regresión logística

Ajuste

$$\log\left(\frac{p}{1-p}\right) = \operatorname{logit}(p) = \beta_0 + \beta_i x_i$$

Regresión logística

Ajuste

$$\log\left(\frac{p}{1-p}\right) = \operatorname{logit}(p) = \beta_0 + \beta_i x_i$$

Probabilidad

$$p(x_i) = \frac{\exp(\beta_0 + \beta_i x_i)}{1 + \exp(\beta_0 + \beta_i x_i)}$$