Bindungstheorie

Elektronenoktett durch Übertragung von Elektronen: lonenbindung

NaCl: (Elektronegativität: Na 0.9 Cl 3.1)

Na
$$(1s^2, 2s^2, 2p^6, 3s^1)$$
 — Na⁺ $(1s^2, 2s^2, 2p^6)$ + e⁻

Neon-Konfiguration

$$Cl(1s^2, 2s^2, 2p^6, 3s^2, 3p^5) + e^- \longrightarrow Cl^-(1s^2, 2s^2, 2p^6, 3s^2, 3p^6)$$

Argon-Konfiguration

Na₂O (EN: Na 0.9 O 3.5)

2 Na
$$(1s^2, 2s^2, 2p^6, 3s^1)$$
 \longrightarrow 2 Na⁺ $(1s^2, 2s^2, 2p^6)$ + 2 e⁻

$$O(1s^2, 2s^2, 2p^4) + 2e^- \longrightarrow O^{2-}(1s^2, 2s^2, 2p^6)$$

MgO (EN: Mg 1.2 O 3.5)

$$Mg (1s^2, 2s^2, 2p^6, 3s^2) \longrightarrow Mg^{2+} (1s^2, 2s^2, 2p^6) + 2e^{-}$$

$$O(1s^2, 2s^2, 2p^4) + 2e^- \longrightarrow O^{2-}(1s^2, 2s^2, 2p^6)$$

Ionische Verbindungen erfordern eine EN-Differenz > 1.5

Kristallgitter der Salze des AB-Typs

CsCI - Gitter KZ: 8 Radienverhältnis > 0.732

NaCI - Gitter KZ: 6 Radienverhältnis: 0.414 < x < 0.732

ZnS - Gitter KZ: 4 Radienverhältnis: 0.225 < x < 0.414

Elektronenoktett durch "gemeinsame" Elektronen: Die kovalente Bindung

$$C^{4-} (1s^2, 2s^2, 2p^6) \qquad + 4e^- \qquad - 4e^- \\ C (1s^2, 2s^2, 2p^2) \qquad \longrightarrow \qquad C^{4+} (1s^2)$$

$$Ne-Konfiguration \qquad EN: 2.5 \qquad He-Konfiguration$$

C⁴⁺ (1s²): Ionisierungsenergie ≈ 14280 kJ/mol

Unter normalen Bedingungen existieren keine C⁴⁺ - Ionen. C⁴⁻ - Ionen werden nur mit sehr elektropositiven Kationen gebildet (z.B. Alkalimetalle).

Kovalente Bindung

Bindung, die durch gemeinsame Elektronen zwischen zwei Atomen bewirkt wird. Bei einer Einfachbindung ist ein gemeinsames Elektronenpaar vorhanden.

Bei einer Doppel- oder Dreifachbindung sind es zwei bzw. drei gemeinsame Elektronenpaare.

Oktettregel

Nichtmetalle (ausser Wasserstoff) gehen so viele kovalente Bindungen ein, bis sie die acht Elektronen (Oktett) der folgenden Edelgaskonfiguration um sich haben. Das sind in der Regel 8-N kovalente Bindungen (N = Hauptgruppennummer). Elemente der zweiten Periode können das Oktett in keinem Fall überschreiten, da sie nur s- und p-Valenzorbitale besitzen. Bei Elementen höherer Perioden ist hingegen eine Oktettaufweitung möglich.

5 H·

8 Valenzelektronen

verboten!

8 Valenzelektronen

10 Valenzelektronen

- : N · N · N · N · N · 10 Valenzelektronen
- : N· : O: :N=O 11 Valenzelektronen Radikal
 - :N≡O:[⊕] 10 Valenzelektronen
- 4 H· 2·C· 12 Valenzelektronen
- 2 H· 2·C· H—C=C—H 10 Valenzelektronen

Die kovalente Bindung im Wasserstoffmolekül

σ-Bindungen entstehen durch Überlappung von s- bzw. p-Orbitalen rotationssymmetrisch zur Kernverbindungslinie

Mesomerie

Formulierungsmethode für Bindungsverhältnisse in Molekülen, die durch eine einzige Lewisformel nicht richtig wiedergegeben werden können.

Die tatsächlichen Bindungsverhältnisse sind als Mittel zwischen mehreren Grenzformeln anzusehen (Delokalisation von Elektronen).

<u>Formalladungen</u>

Eine willkürlich dem Atom zugewiesene elektrische Ladung, die sich ergibt, wenn die Bindungselektronen gleichmässig auf die beteiligten Atome aufgeteilt werden. Formalladungen dienen zur Bewertung und Interpretation von Formeln, Struktur und Eigenschaften von Molekülen.

Sie geben nicht in jedem Fall die tatsächliche Ladungsverteilung wieder.

Äquivalente Resonanzstrukturen

Carbonat CO₃²⁻:

24 Valenzelektronen

mesomere Grenzstrukturen

Resonanzhybrid

Das Carbonat-Ion ist ein Resonanzhybrid der drei mesomeren Grenzstrukturen.

Acetat-Ion

$$H \longrightarrow C \longrightarrow C \xrightarrow{\frac{1}{2}} \Theta$$

Allyl-Ion

$$\begin{array}{c} H \xrightarrow{\frac{1}{2}} \Theta \\ H \\ C \xrightarrow{\frac{1}{2}} \Theta \\ H \\ H \end{array}$$

Nicht-äquivalente Resonanzstrukturen des Enolat-Ions

nicht-äquivalente Resonanzstrukturen

zum Vergleich:

Allyl-lon
$$H$$
 C
 C
 H
 C
 H
 C
 H
 C
 H
 C
 H
 C
 C
 H
 H

äquivalente Resonanzstrukturen

Regeln zur Formulierung mesomerer Grenzformeln

Für alle mesomeren Grenzformeln muss die räumliche Anordnung der Atomkerne gleich sein. Grenzformeln unterscheiden sich nur in der Verteilung der Elektronen.

Regel 1:Strukturen mit der grösstmöglichen Anzahl von Elektronenoktetts sind bevorzugt.

Regel 2:Negative Ladungen sollten bevorzugt am Atom mit der grössten, positive Ladungen am Atom mit der geringsten Elektronegativität lokalisiert sein.

Regel 1 dominiert gegenüber Regel 2!

Regel 3: Strukturen mit geringerer Ladungstrennung sind bevorzugt.

Neutrale Strukturen sind gegenüber dipolaren begünstigt.

Regel 4: Trennung von Ladungen kann durch die Oktettregel erzwungen werden.

Regel 1 besitzt höhere Priorität als Regel 3. Bei mehreren ladungsgetrennten Resonanzstrukturen dominiert Regel 2.

Mesomere Grenzstrukturen von Säuren und ihren konjugierten Basen

Salpetersäure HNO₃: 24 Valenzelektronen Oktettregel streng gültig Nitrat NO₃-: 24 Valenzelektronen Schwefelsäure H₂SO₄: 32 Valenzelektronen Sulfat SO_4^{2-} : 32 Valenzelektronen

Struktur der Verbindungen EO₂

Struktur von NO₂ sowie der vom Oxid abgeleiteten Ionen

Struktur-Reaktivitätsbeziehung am Beispiel der Stickstoffwasserstoffsäure HN₃

Mittlere Bindungslängen: N—N 140 pm N≡N 120 pm N≡N 110 pm