

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Aula de Álgebra

Renan Wenzel - 11169472

Roberto Carlos - alvarago@icmc.usp.br

3 de abril de 2023

Conteúdo

1	Aula 01 - 14/03/2023					
	1.1	Motivações				
	1.2	Introdução ao Curso				
	1.3	Grupos e Operações				
2	Aul	la 02 - 16/03/2023				
	2.1	Motivações				
	2.2	Usos de Grupos				
	2.3	Subgrupos				
3	Aul	la 03 - 21/03/2023				
		Motivações				
	3.2	Subgrupos - Outras Propriedades				
4	Aul	la 04 - 23/03/2023				
		Ciclos e Grupos de Permutação				
		Morfismos de Grupos				
5	Aul	la 05 - 30/03/2023				
	5.1	Motivações				
		Subgrupos Normais				

1 Aula 01 - 14/03/2023

1.1 Motivações

• Compreender o que será estudado ao longo do curso;

1.2 Introdução ao Curso

Este curso é sobre teoria de grupos, a qual possui origem no estudo de simetrias, sejam elas de figuras ou de objetos algébricos. Um exemplo de grupo seria o seguinte:

Considere um triângulo equilátero. Existem algumas formas de olharmos para as simetrias do triângulo, como rotacionando-o, refletindo-o com relação a um ponto médio e um vértice fixo. Contabilizando todas as possíveis formas delas acontecerem, há seis simetrias deste retângulo. Ademais, compondo simetrias resulta em outra, i.e., rotacionar e refletir um certo vértice continuará sendo uma simetria do triângulo. Além disto, é um fato (futuramente visto) que essas seis simetrias totalizam todas as possíveis simetrias de um triângulo equilátero. De fato, dado um polígono regular de n lados, ele possui n! simetrias.

1.3 Grupos e Operações

Definição. Seja S um conjunto não-vazio. Uma operação em S é um mapa

$$\mu: S \times S \to S$$
$$(a,b) \mapsto \mu(a,b)$$

Exemplo 1. A operação soma em \mathbb{Z} , $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(a,b) \mapsto a+b$ é uma operação.

Exemplo 2. Uma operação em \mathbb{R} é a multiplicação $: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (a, b) \mapsto ab.$

Exemplo 3. Um exemplo do que não é operação seria a subtração dos naturais, $-: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $(a, b) \mapsto a - b$. (Consegue responder por que não é?)

Exemplo 4. Se S é o conjunto de simetrias de um triângulo equilátero, então a composição

$$\circ : S \times S \to S$$
$$(\sigma, \tau) \mapsto \sigma \circ \tau$$

é uma operação binária.

Faremos a convenção de denotar $\mu(a,b)$ por a.b ou a+b, com base no contexto.

$$(a.b).c = a.(b.c), \quad \Big(\mu(a, \mu(b, c)) = \mu(\mu(a, b), c)\Big).$$

Por outro lado, será dita comutativa se

$$a.b = b.a, \quad \left(\mu(a,b) = \mu(b,a)\right).$$

Diremos, também, que ela tem elemento neutro (ou identidade) se existe um elemento e em S tal que

$$a.e = e.a = a, \forall a \in S.$$

Neste caso, diremos que e é o elemento neutro, ou a identidade, para μ .

Utilizaremos a notação 1 para a identidade no caso em que μ é denotada por um produto e 0 pro caso em que é denotada por adição.

Exemplo 5. A multiplicação de matrizes é associativa, não é comutativa e possui identidade.

Exemplo 6. A soma de números inteiros é associativa, comutativa e possui identidade.

Exemplo 7. A potência nos números reais é não associativa, nem comutativa, mas possui identidade: $a^{(b^c)} \neq (a^b)^c = a^{bc}$

Proposição. Seja S um conjunto não-vazio e μ uma operação em S denotada pelo produto. Então, existe um único jeito de definir o produto (denotado temporariamente por $[a_1, \cdots, a_n]$) de n elementos em S tal que

- (i) $[a_1] = a_1;$
- (ii) $[a_1, a_2] = \mu(a_1, a_2) = a_1 a_2;$
- (iii) $\forall 1 \le i < n, [a_1, \dots, a_n] = [a_1, \dots, a_i][a_{i+1}, \dots, a_n].$

<u>Prova.</u> $(iii) \Rightarrow Para \ o \ caso \ n \leq 2 \ \'e \ ok.$ Agora, suponha o produto bem-definido de r elementos em S, $r \leq n = 1$. Então, defina $[a_1, \cdots, a_n] \coloneqq [a_1, \cdots, a_{n-1}][a_n]$. Como a definição acima satisfaz a condição (iii) para i=n-1, se ela estiver bem-definida, ela será única. Com efeito, seja $1 \leq i < n-1$, tal que

$$[a_1, \cdots, a_n] = [a_1, \cdots, a_{n-1}][a_n] = [a_1, \cdots, a_i][a_{i+1}, \cdots, a_{n-1}][a_n]$$
$$= \left([a_1, \cdots, a_i] \right) \left([a_{i+1}, \cdots, a_{n-1}][a_n] \right)$$
$$= [a_1, \cdots, a_i][a_{i+1}, \cdots, a_n]. \blacksquare$$

<u>Definição</u>. Seja S não-vazio e μ uma operação em S com identidade 1. Um elemento a de S \acute{e} dito inversível se existe \acute{b} em S tal que ab=ba=1. Neste caso, \acute{b} \acute{e} o inverso de \acute{a} , denotado por $\acute{b}:=a^{-1}$.

Note que tanto o elemento inverso quanto o elemento neutro, se existirem, são únicos (c.f. Lema abaixo). Além disso, o inverso da adição é denotad por -a.

Lema. Seja S não-vazio, μ uma operação associativa denotada pelo produto. Então,

- i) Existe no máximo um elemento neutro para S e μ;
- ii) Se o elemento neutro existe, então para cada elemento de S, existe no máximo um inverso;
- iii) Se um elemento a de S tem inverso à esquerda l e à direita r, i.e. l.a = 1 e a.r = 1, então a é inversível com inverso l = r.
- iv) Se a, b em S são inversíveis, então o produto ab é inversível, com inverso $b^{-1}a^{-1}$.

Antes de provar, observe que a existência de um elemento inverso à esquerda ou à direita não garante que um elemento seja inversível (exercício), eles devem coincidir.

Prova. $(i) \Rightarrow$) Suponha que existem 1, 1' em S como seus elementos neutros. Basta mostramos que eles coincidem. Com efeito,

$$1 = 1.1' = 1'.1 = 1'.$$

Portanto, o elemento neutro é único.

 $(ii) \Rightarrow$) Assuma a existência de dois elementos inversos em S para um elemento a, denotados por b, b'. Então, como ab = ba = 1, temos

$$b = b1 = b(ab') = (ba)b' = 1b' = b'.$$

Portanto, o elemento inverso é único. Os itens (iii) e (iv) são exercícios.

<u>Definição</u>. Um monoide é um par (G, μ) , em que G é um conjunto não-vazio e μ uma operação associativa e com elemento neutro em G. Se, ainda por cima, μ for comutativa, (G, μ) é um monoide abeliano (ou comutativo).

Definição. Um grupo é um par (G, μ) é um monoide (G, μ) com a condição extra que todo elemento de G possui inverso. Caso μ seja comutativa, chamamos G de grupo abeliano.

Exemplo 8. Os inteiros com a soma, $(\mathbb{Z}, +)$, é um grupo comutativo, enquanto $(\mathbb{Z}, .)$ não é um grupo, mas sim um monoide.

Exemplo 9. O grupo das matrizes com entradas reais e sua multiplicação, $(\mathbb{M}_n(\mathbb{R}),.)$, é um grupo nãoabeliano.

2 Aula 02 - 16/03/2023

2.1 Motivações

- Outras estruturas algébricas e exemplos;
- Tamanho de um grupo;
- Subgrupos

2.2 Usos de Grupos

Podemos usar grupos para definir outras construções algébricas, como segue.

Definição. Um anel é uma terna (A, μ, ϕ) , em que (A, μ) é um grupo abeliano e (A, ϕ) é um monoide. Além disso, vale a distributiva.

$$\phi(a, \mu(c, d)) = \phi(\mu(a, c), \mu(a, d)), \quad (a(b+c) = ab + ac).$$

Usualmente, escrevemos $(A, \mu, \phi) = (A, +, \cdot).\square$

Definição. Um corpo é um anel $(A, +, \cdot)$ tal que $(A - \{0\}, \cdot)$ é um grupo abeliano. \square

Deste ponto em diante, abandonaremos as letras gregas para usar apenas os símbolos "+" ou "." para um grupo com adição ou com multiplicação. Vejamos alguns exemplos.

Exemplo 10.

Conjunto	Monoide	Monoide Comutativo	Grupo	Grupo Comutativo
(GL_n,\cdot)	Sim	Não	Sim	Não
(SL_n,\cdot)	Sim	$N \widetilde{a} o$	Sim	$N\~ao$
$(\mathbb{Z},+)$	Sim	Sim	Sim	Sim
(\mathbb{Z},\cdot)	Sim	Sim	$N \widetilde{a} o$	$N\~ao$
$(\mathbb{Q},+)$	Sim	Sim	Sim	Sim
(\mathbb{Q},\cdot)	Sim	Sim	$N \widetilde{a} o$	Não
$S = \{z \in \mathbb{C} : z = 1\}, \cdot)$	Sim	Sim	Sim	Sim
$(\mathbb{M}_n(\mathbb{R}),+)$	Sim	Sim	Sim	Sim
$(\mathbb{M}_n(\mathbb{R}),.)$	Sim	$N \widetilde{a} o$	$N\~ao$	Não

Exemplo 11. Seja T um conjunto qualquer e

$$G = \{f: T \to T: f \ bijetora.\}$$

Então, (G, \circ) é um grupo, chamado grupo das permutações ou simetrias de T. Se T é um conjunto finito, e.g. $T = \{1, \dots, n\}$, então denotamos (G, \circ) por (S_n, \circ) .

<u>Definição.</u> A ordem de um grupo (G, \cdot) é a cardinalidade de G: |G|. Caso $|G| < \infty$, dizemos que (G, +) é um grupo finito. \square

Exemplo 12. A ordem de $|\mathbb{Z}| = \infty$ e $|S_n| = n!$

Proposição. Se (G, \cdot) é um grupo e a, b, c são elementos de G tais que ab = ac ou ba = ca, então b = c. Além disso, se ab = a ou ba = a, então b = 1.

<u>Prova</u>. Seja a^{-1} o inverso de a, então $a^{-1}(ab) = a^{-1}(ac)$. Mais ainda, se ab = a, então $b = (a^{-1}a)b = a^{-1}(ab) = a^{-1}a = 1$.

Fica de exercício mostrar que só existe um grupo de ordem 2 e que S_3 é um grupo não-comutativo.

2.3 Subgrupos

Definição. Um subgrupo H de um grupo (G,\cdot) é um subconjunto H de contido em G tal que

1)1
$$\in H$$
;
2) $a, b \in H \Rightarrow ab \in H$;
3) $a \in H \Rightarrow a^{-1} \in H$.

Denotaremos subrupos por $H \leq G$ ou $(H, \cdot) \leq (G, \cdot)$. \square

Proposição. Com operação induzida pela multiplicação de G restrita a H, (H, \cdot) é um grupo.

Prova. Como H está contido em G, podemos restringir o produto de G a H para

$$._H: H \times H \to H.$$

Afirmamos que (H,\cdot) é um grupo. Com efeito, a restrição de . a H está bem-definida pelo segundo item da definição de subgrupo. Mais ainda, ela é associativa em H por ser em G e todo elemento em H tem inverso pela condição 3. Por fim, ela tem elemento neutro pela primeira requisição ao definir subgrupo. Portanto, (H,\cdot) é um grupo.

Observe que todo grupo tem ao menos dois subgrupos, chamados triviais, sendo eles {1} e ele mesmo. Qualquer outro leva o nome de subgrupo próprio.

Exemplo 13.
$$(SL_n, \cdot) \leq (GL_n, \cdot) \ e \ (\mathbb{Z}, +) \leq (\mathbb{Q}, +)$$
.

Exemplo 14. Seja n um inteiro, então $n\mathbb{Z} := \{nk : k \in \mathbb{Z}\}$ é um subgrupo dos inteiros. De fato, 0 = n0 pertence a $n\mathbb{Z}$. Além disso, se nk e nk' pertencem a $n\mathbb{Z}$, então

$$nk + nk' = n(k + k') \in n\mathbb{Z}.$$

Por fim, se nk pertence a n \mathbb{Z} , então n(-k) também pertence a n \mathbb{Z} e nk + n(-k) = 0.

Proposição. Todo subgrupo de $(\mathbb{Z}, +)$ é da forma $n\mathbb{Z}$ para algum n inteiro.

<u>Prova</u>. Caso n seja 1, $n\mathbb{Z} = \mathbb{Z}$ e, se n = 0, então $n\mathbb{Z} = \{0\}$. Agora, seja H um subgrupo próprio dos inteiros e n o menor inteiro positivo em H. Afirmamos que $n\mathbb{Z} = H$.

De fato, $n\mathbb{Z} \leq H$, pois n é um elemento de H, então $nk = \underbrace{n + \ldots + n}_{k\text{-}vezes} \in H$. Além disso, $-n \in H$, de

forma que
$$-nk = \underbrace{(-n) + \ldots + (-n)}_{k\text{-vezes}} \in H$$
. Portanto, $n\mathbb{Z} \in H$.

Por outro lado, seja m um inteiro de H e considere $m = nq + r, 0 \le r < n, q \in \mathbb{Z}$. Pelo algoritmo de divisão de Euclides,

$$m - nq = r \Rightarrow r \in H \Rightarrow r = 0.$$

e, assim, m = nq pertence a $n\mathbb{Z}$. Portanto, $H = n\mathbb{Z}$.

Proposição. 1) $n\mathbb{Z} + m\mathbb{Z}$ é subgrupo de \mathbb{Z} ;

2) $n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$, em que d é tal que

- 2.1) $d|n \ e \ d|m;$
- 2.2) Se l|n e l|m, então l|d;
- 2.3) Existem r, s inteiros tais que rn + sm = d. Definimos $d = \gcd(n, m)$ como o máximo divisor comum de m e n.

Prova. A prova do item 1 fica como exercício.

- $(2.1) \Rightarrow n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$. Em particular, se n, m pertencem a $d\mathbb{Z}$, então d|n e d|m.
- $(2.2) \Rightarrow Suponha \ que \ n = lq_1, m = lq_2. \ Se \ x \ pertence \ a \ n\mathbb{Z} + m\mathbb{Z}, \ então$

$$x = nk_1 + mk_2 = lq_1k_1 + lk_2q_2 \in l\mathbb{Z}$$

$$\Rightarrow n\mathbb{Z} + m\mathbb{Z} \subseteq l\mathbb{Z} \Rightarrow l|d.$$

também é possível mostrar isso usando o item 3 da proposição.

 $(2.3) \Rightarrow imediato. \blacksquare$

Proposição. 1) $m\mathbb{Z} \cap n\mathbb{Z}$ é subgrupo dos inteiros;

- 2) $m\mathbb{Z} \cap n\mathbb{Z} = l\mathbb{Z}$, em que l é tal que
- (2.1) m|l, n|l;
- 2.2) Se m|l' e n|l', então l|l'. Definimos l=mmc(m,n) o mínimo múltiplo comum de m e n.

Prova. Fica como exercício.

Corolário. Se m, n são inteiros, então $mn = mmc(m, n) \gcd(m, n)$.

3 Aula 03 - 21/03/2023

3.1 Motivações

- Outros exemplos de subgrupos;
- Subgrupos gerado por subconjuntos;
- Grupo cíclico e ordem de elementos.

3.2 Subgrupos - Outras Propriedades

Quando o conjunto candidato a subgrupo é não-vazio, não é necessario exigir que a identidade seja parte dele. De fato,

Proposição. Se G é um grupo e $H \subseteq G, H \neq \emptyset$, então $H \subseteq G$ se, e somente se,

1)
$$ab \in H$$
, $a, b \in H$
2) $a^{-1} \in H$, $a \in H$.

Prova. \Rightarrow Segue da definição de subgrupo (ab e a^{-1} pertencem a H por definição);

 \Leftarrow Sendo H não-vazio, existe $a \in H$. Através de (2), $a^{-1} \in H$ e, por (1), $aa^{-1} = 1 \in H$. Portanto, H é subgrupo de G.

Outra formulação de subgrupo requer apenas uma condição:

Proposição. Se G é um grupo e $H \subseteq G, H \neq \emptyset$, então $H \subseteq G$ se, e só se, $ab^{-1} \in H$ para todos $a, b \in H$.

<u>Prova.</u> \Rightarrow Suponha que H é um subgrupo de G e sejam $a, b \in H$. Então, por definição, $a^{-1}, b^{-1} \in H$. Assim, segue da definição de subgrupo que $ab^{-1} \in H$.

 \Leftarrow Se $H \neq \emptyset$, existe ao menos um a em H. Por hipótese, $1 = aa^{-1} \in H$. Assim, $a^{-1} = 1a^{-1} \in H$. Por fim, se a, b são membros de H, então $b^{-1} \in H$, tal que $ab = a(b^{-1})^{-1} \in H$. Portanto, H é subgrupo de G.

<u>Definição.</u> Se G é um grupo, então $Z(G) = \{g \in G : ga = ag \forall a \in G\}$ é um subgrupo de G chamado centro de G.

Provemos que Z(G) é de fato um subgrupo. De fato, $1 \in Z(G)$ pela definição de elemento neutro. Além disso, se $g,h \in Z(G)$, então gha = gah = agh, tal que $gh \in Z(G)$. Além disso, $g^{-1} \in Z(G)$, pois $g^{-1}a = (a^{-1}g)^{-1} = (ga^{-1})^{-1} = ag^{-1}$. Uma propriedade interessante é que G será um grupo abeliano se, e somente se, Z(G) = G.

Exemplo 15. Exercício: Dados G_1, G_2 grupo, defina o grupo produto como $G_1 \times G_2 = \{(g_1, g_2) : g_i \in G_i\}$. Encontre uma operação que torne este conjunto um grupo de fato.

Exemplo 16. 1) Se V é um subespaço vetorial de um corpo qualquer \mathbb{K} , então $V \leq \mathbb{K}$.

2) O conjunto

$$SU_2(\mathbb{C}) = \left\{ \begin{bmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{bmatrix} : \alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1 \right\}$$

 \acute{e} um subgrupo de $GL_2(\mathbb{C})$.

3) O conjunto

$$SO_2(\mathbb{R}) = \left\{ \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} : \theta \in \mathbb{R} \right\} \le GL_2(\mathbb{R})$$

Proposição. Se G é um grupo abeliano, então todo subgrupo de G é também abeliano

Prova. Se $H < G, a, b \in H$, em particular a, b também pertencem a G, tal que ab = ba.

Observe que a recíproca e falsa. Com efeito, o subgrupo

$$\left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{R}) : a \in \mathbb{R} \right\}$$

é subgrupo abeliano de $GL_2(\mathbb{R})$. Além disso, a recíproca não vale nem mesmo se todo subgrupo próprio de um grupo for abeliano, visto que todo subgrupo de S_3 é abeliano, mas o próprio S_3 não é.

Definição. Seja G um grupo e $S \subseteq G$ um subconjunto não-vazio. Definimos o conjunto gerado por S como

$$\langle S \rangle := \left\{ a_1 \cdots a_n : a_i \in S \text{ ou } a_i^{-1} \in S \right\}, \quad n \in \mathbb{N}\square.$$

Proposição. $\langle S \rangle$ é um subgrupo de G.

Prova. É claro que $\langle S \rangle \neq \emptyset$. Agora, se $a_1 \cdots a_n (=x), b_1 \cdots b_m (=y) \in \langle S \rangle$, então

$$xy^{-1} = a_1 \cdots a_n (b_1 \cdots b_m)^{-1} = a_1 \cdots a_n b_m^{-1} \cdots b_1^{-1} \in \langle S \rangle.$$

Portanto, pela segunda definição equivalente de subgrupo, $\langle S \rangle \leq G$.

<u>Definição.</u> Nas condições da propsição, $\langle S \rangle$ é o subgrupo gerado por S. Caso S seja finito, digamos $S = \{g_1, \cdots, g_n\}$, denotamos $\langle S \rangle$ por $\langle g_1, \cdots, g_n \rangle$. \square

Definição. Sejam G um grupo e g um elemento seu. Se $G = \langle g \rangle$, diremos que G \acute{e} um grupo cíclico. \square

<u>Definição.</u> Se G é um grupo e g seu elemento, definimos a ordem de g (notação: |g| ou ord(g)) como a ordem de q q q.

Exemplo 17. $\mathbb{Z} = (1)$ é um grupo cíclico infinito, S_2 é um grupo cíclico finito e S_3 não é cíclico.

Atente-se ao fato de que $\langle g \rangle := \{ \cdots, g^{-2}, g^{-1}, g^0 = 1, g, g^2, \cdots \} = \{ g^{\mathbb{Z}} \}$

Exemplo 18. Exercício: Calcule as ordens dos elementos de S_2, S_3 .

Note que todo subgrupo de \mathbb{Z} é cíclico. Além disso, se $|G| < \infty$, segue que $|g| < \infty$. Em particular, $|g| \le |G|$. Vale mencionar também que mesmo se o grupo tem ordem infinita, o grupo cíclico pode ter ordem finita. De fato, se $(G,\cdot) = (\mathbb{R}^{\times},\cdot)$, tome g = 1. Então, $\langle g \rangle = \{-1,1\}$, que é finito de ordem 2.

Proposição. Sejam G um grupo e g um elemento seu. Denotemos por S o conjunto dos inteiros n tais que $q^n = 1$. Então.

- i) $S \leq \mathbb{Z}$;
- ii) As potências $g^m, g^n, m \ge n$ são iguais se, e somente se, $g^{m-n} = 1(i.e.m n \in S)$;
- iii) Se $S \neq 0\mathbb{Z}$, então $S = n\mathbb{Z}$ e as potências $1, g, g^2, \dots, g^{n-1}$ são distintas e são todos os elementos em $\langle g \rangle$. Em particular, |g| = n.

<u>Prova.</u> $(i) \Rightarrow Se \ m, \ n \ pertence \ a \ S, \ então \ g^{m-n} = g^m(g^n)^{-1} = 1, \ logo \ m-n \ pertence \ a \ S. \ \acute{E} \ claro \ que \ S \ \acute{e} \ n\~ao-vazio, \ pois \ 0 \ sempre \ \acute{e} \ um \ elemento \ seu.$

- $(ii) \Rightarrow \acute{E} \ a \ lei \ do \ cancelamento.$
- $(iii) \Rightarrow Se \ S = \{0\}, \ \acute{e} \ autom\acute{a}tico. \ Como \ S \leq \mathbb{Z}, \ pela \ classificaç\~{a}o \ dos \ subgrupos \ de \ \mathbb{Z}, \ existe \ n \ em \ \mathbb{Z}$ tal que $S = n\mathbb{Z}$. Agora, seja k um inteiro qualquer. Segue da divis\~{a}o Euclidiana que $k = nq + r, 0 \leq r < n$. Assim, $g^k = g^{nq}g^r = 1g^r$, tal que $\langle g \rangle \subseteq \{g^0 = 1, \cdots, g^{n-1}\}$. Finalmente, pelo item (ii) e da minimalidade de n. \blacksquare

Corolário. $\langle q \rangle = \{1, q, q^2, \cdots, q^{n-1}\}\$

<u>Corolário</u>. Se a ordem de g é diferente de zero, então ela é o menor inteiro positivo n tal que $g^n = 1$.

Corolário. Se a ordem de $g \notin n > 0$, então $g^k = 1$, se, e somente se, n|k.

Corolário. Se a ordem de $g \notin n > 0, k \in \mathbb{Z}$, então $|g^k| = \frac{n}{mdc(n,k)}$.

4 Aula 04 - 23/03/2023

- Ciclos e Grupo de Permutações
- Morfismo de Grupos
- Classes laterais

4.1 Ciclos e Grupos de Permutação

Introduzimos a seguir o grupo das permutações, denotado S_n .

Definição. Uma permutação $\sigma \in S_n$ é um r-ciclo se existem $a_1, \dots, a_r \in \{1, \dots, n\}$ tais que $\sigma(a_1) = a_2, \sigma(a_2) = a_3, \dots, \sigma(a_{r-1}) = a_r, \sigma(a_r) = a_1$ e, além disso, $\sigma(j) = j$ para todo j em $\{1, \dots, n\}/\{a_1, \dots, a_r\}$. Dizemos que r é o comprimento de r, e denotamos σ por $\sigma = (a_1 \dots a_r)$. \square

Definição. Um 2-ciclo é chamado transposição. □

Exemplo 19. Seja $\sigma \in S_5$. Um 5-ciclo \acute{e} , por exemplo, $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 4$, $\sigma(4) = 5$, $\sigma(5) = 1$, ou $\sigma = (12345) = (34512)$. Um 3-ciclo seria $\sigma(1) = 4$, $\sigma(2) = 2$, $\sigma(3) = 1$, $\sigma(4) = 3$, $\sigma(5) = 5$ e uma transposição seria $\sigma(1) = 2$, $\sigma(2) = 1$, $\sigma(3) = 3$, $\sigma(4) = 4$, $\sigma(5) = 5$.

Definição. Duas permutações $\sigma, \tau \in S_n$ são disjuntas se para todo $j \in \{1, \dots, n\}, \sigma(j) = j$ ou $\tau(j) = j$.

Exemplo 20. $\tau \in S_5, \tau = (34), \sigma(12) \Rightarrow \tau, \sigma \text{ são disjuntas.}$

Observe que nem toda permutação é um r-ciclo. De fato, $\sigma \in S_5$ dada por $\sigma(1) = 3$, $\sigma(2) = 4$, $\sigma(3) = 5$, $\sigma(4) = 2$ e $\sigma(5) = 1$ não é um r-ciclo. O fato é que toda permutação é o produto de ciclos disjuntos de comprimento maior ou igual a 2. Assim, $\sigma = (135)(24)$ descreve a permutação enviando 1 pra 3, 2 pra 4, 3 pra 5, 4 pra 2 e 5 pra 1.

Exemplo 21. Seja $\sigma \in S_5$, $\sigma = (12)(13)(15) = (1532)$. Note que lê-se o produto de permutações como a composição de funções, isto é, começa-se pela direita e termina na esquerda (afinal, é a composição de permutações, que são, particularmente, funções!). Deste produtório, vimos que o número 1 é o único que será alterado, i.e., uma permutação após o 1 demarca o fim da ação. Assim, este exemplo indica que 1 se torna 5 e permanece assim (a primeira ação torna 1 no elemento 5). 5 se torna 1, depois 3 e permanece assim (1->5->3->3), 2 se torna 1 no final (2->2->2->1), 3 se torna eventualmente 2 (3->2->1->2) e 4 permanece constante. (P.S. Se essa parte ficar confusa, me chamem no celular pra eu explicar melhor).

Proposição. Toda permutação em S_n é um produto de transposições (2-ciclos). Isto é, $S_n = \langle transposições \rangle$. $Além disso, se <math>\sigma \in S_n, \sigma = \tau_1 \cdots \tau_r = \rho_1 \cdots \rho_s$ fatorações em transposições, então 2|r-s.

<u>Prova.</u> Observe que $Id = (12)(21) \in \langle transposições \rangle$. Se $\sigma \in S_n$ é uma permutação qualquer, então σ é o produto de ciclos. Logo, basta verificar a proposição para um r-ciclo σ . Suponha, assim, que $\sigma = (a_1 \cdots a_r)$ é um r-ciclo. Com isso, $\sigma = (a_1 a_2)(a_1 a_3) \cdots (a_1 a_r)$.

Proposição. Exercício: Mostre que qualquer fatoração de um r-ciclo em transposições tem mesma paridade.

Definição. Seja $\sigma \in S_n$. Então, a matriz de permutação σ é

$$U(\sigma) := \begin{pmatrix} e_{\sigma(1)} \\ \vdots \\ e_{\sigma(n)} \end{pmatrix}$$

em que e_i é o i-ésimo vetor canônico de \mathbb{R}^n .

Exemplo 22. Seja $\sigma = (135)(24) \in S_5$. Para esta permutação, a matriz é

$$U(\sigma) = \begin{pmatrix} e_3 \\ e_4 \\ e_5 \\ e_2 \\ e_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Note que

$$U(\sigma) = \begin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix} = \begin{pmatrix} 5\\4\\3\\2\\1 \end{pmatrix}$$

Proposição. Sejam $\sigma, \tau \in S_n$ e $U(\sigma), U(\tau)$ as matrizes associadas respectivas. Então,

- 1) $U(\sigma)(12\cdots n)^T = a_1e_1 + \cdots + a_ne_n \iff \sigma(j) = a_j, \quad j = 1, \cdots, n.$
- 2) $U(\sigma)$ sempre tem um único 1 em cada linha e em cada coluna. Reciprocamente, toda matriz desse tipo é uma matriz de alguma permutação.
- 3) $\det U(\sigma) \in \{-1, 1\}.$
- 4) A matriz de permutação de $\tau \sigma$ é $U(\tau) \cdot U(\sigma)$.

Prova. Exercício.

Definição. Se $\sigma \in S_n$ e $U(\sigma)$ é a matriz associada, definimos o sinal de $\sigma(sgn(\sigma))$ como sendo o det $(U(\sigma).Além disso, diremos que <math>\sigma$ é uma permutação par quando $sgn(\sigma) = 1$ e impar quando $sgn(\sigma) = -1$. \square

Observe que é possível demonstrar que $sgn(\sigma)=(-1)^r$, em que r é o número de transposições que aparecem na decomposição de σ .

4.2 Morfismos de Grupos

Morfismos de grupos funcionam como funções entre conjuntos, mas que levam em conta a operação existente nos grupos.

Definição. Sejam G, G' dois grupos. Um morfismo de grupos é um mapa $\phi: G \to G'$ tal que $\phi(gh) = \overline{\phi(g)\phi(h)}$ para todo g, h em G. \square

Exemplo 23. São morfismos:

$$1)sgn: S_n \to \{+1, -1\}, \sigma \mapsto sgn(\sigma),$$

$$sgn(\sigma\tau) = 0$$

2)
$$\det: GL_n \to \mathbb{R}^{\times}, A \mapsto \det(A)$$

3)
$$\exp: (\mathbb{R}, +) \to (\mathbb{R}, \cdot), x \mapsto e^x$$

$$3)\phi: G \to G', g \mapsto 1',$$

em que 1'

3) Se $H \leq G$, então a inclusãoi : $H \rightarrow G, h \mapsto h$ é um morfismo.

3.1) Em particular, $U: S_n \to GL_n, \sigma \mapsto U(\sigma)$

 $3)\mathbb{Z} \to G, n \mapsto g^n, g \in G$ fixo.

Proposição. Seja $\phi: G \to G'$ um morfismo. Então,

$$1)g_1 \cdots g_n \in G, \phi(g_1 \cdots g_n) = \phi(g_1) \cdots \phi(g_n).$$

2) Se 1 é o elemento neutro de G e 1' o elemento neutro de G', $\phi(1) = 1'$.

$$3)\phi(q^{-1}) = \phi(q)^{-1}$$
.

Prova. 1.) Os casos 1 e 2 são ok. Assim, vamos mostrar por indução. Suponha que vale para n-1. Então,

$$\phi(g_1 \cdots \phi_n) = \phi((g_1 \cdots g_{n-1})g_n) = \phi(g_1 \cdots g_{n-1})\phi(g_n) = \phi(g_1) \cdots \phi(g_{n-1})\phi(g_n).$$

2.)
$$\phi(1) = \phi(1.1) := \phi(1)\phi(1) \Rightarrow 1' = \phi(1)\phi(1)^{-1} = \phi(1)$$

2.)
$$\phi(1) = \phi(1.1) := \phi(1)\phi(1) \Rightarrow 1' = \phi(1)\phi(1)^{-1} = \phi(1)$$

3.) $1' = \phi(1) = \phi(gg^{-1}) = \phi(g)\phi(g^{-1}) \Rightarrow \phi(g)^{-1} = \phi(g^{-1})$.

Definição. Se $\phi: G \to G'$ é um morfismo, defina a imagem de ϕ por $Im\phi := \{u \in G': \exists x \in G, \phi(x) = y\}$ e $\overline{o\ n\acute{u}cleo\ (ou\ kernel)}\ de\ \phi\ por\ \ker(\phi)\coloneqq\{x\in G:\phi(x)=1'\},\ em\ que\ 1'\ \acute{e}\ o\ elemento\ neutro\ de\ G'.$

Proposição. A imagem de um morfismo $\phi: G \to G'$ é um subgrupo de G' e o kernel de ϕ é um de G.

Prova. Se y, y' pertencem a Im ϕ , então existem x, x' em G tais que $\phi(x) = y$, $\phi(x') = y'$. Assim,

$$yy' = \phi(x)\phi(x') = \phi(xx') \Rightarrow yy' \in Im\phi.$$

Além disso, é claro que $\phi(1) = 1' \in Im\phi$. Finalmente, se y pertence a $Im\phi$, então $\phi(x^{-1}) = \phi(x)^{-1} = y^{-1} \Rightarrow 0$ $y^{-1} \in Im\phi$. A prova de que $\ker \phi \leq G$ fica como exercício.

Definição. Seja $sgn: S_n \to \{+1, -1\}$. Definimos $A_n = \ker(sgn)$ como o grupo alternado.

Definição. Se H é um subgrupo de G e q um elemento de G, defina a classe lateral à esquerda de G em H como

$$gH \coloneqq \{gh : h \in H\}. \quad \Box$$

Proposição. Seja $\phi: G \to G'$ um morfismo $e K = \ker(\phi)$. Se a, b são elementos de G, são equivalentes:

$$1)\phi(a) = \phi(b)$$

$$2)a^{-1}b \in K$$

$$3)b \in aH$$

$$4)aK = bK.$$

Prova.

1)
$$\Rightarrow$$
 2) : $\phi(a) = \phi(b) \Rightarrow \phi(a^{-1}b) = 1' \Rightarrow a^{-1}b \in K;$

$$2) \Rightarrow 1): a^{-1}b \in K \Rightarrow \phi(a^{-1}b) = 1' \Rightarrow \phi(a) = \phi(b);$$

1)
$$\Rightarrow$$
 3) : $a^{-1}b \in K$ se $\exists h \in K$ tais que $a^{-1}h = bh \Rightarrow b \in aK$;

3)
$$\Rightarrow$$
 1): Suponha que $b \in aH, b = ah \Rightarrow \phi(b) = \phi(a)\phi(h) = \phi(a);$

$$(1) \iff (4) : Exercício. \blacksquare$$

5 Aula 05 - 30/03/2023

5.1 Motivações

- Subgrupos Normais;
- Isomorfismos e Automorfismos;
- Partições e relações de equivalência.

Errata Última Aula

Seja $P_{ij} \in \mathbb{M}_n(\mathbb{R})$ tal que se $P_{ij} = (a_{kl})$, então $a_{kl} = 1$ se k = i, l = j e 0 caso contrário. Assim, se $\sigma \in S_n$,

$$U(\sigma) = (e_{\sigma(1)} \cdots e_{\sigma(n)}) = \sum P_{\sigma(i),i},$$

em que e_j é o vetor em \mathbb{R}^n com 1 na j-ésima entrada e zero nos demais. De fato, $U(\sigma)$ é a matriz da tansformação linear $\mathbb{R}^n \to \mathbb{R}^n, e_i \mapsto e_{\sigma(i)}$.

5.2 Subgrupos Normais

Começamos com um corolário à última aula:

Corolário. Uma ϕ é injetora se, e somente se, $\ker(\phi) = \{0\}.$

Prova. \Rightarrow) Seja a um elemento do kernel de ϕ . Então,

$$\phi(a) = 1' = \phi(1).$$

Mas, como ϕ é injetora, segue que a = 1 é o único elemento no kernel.

 \Leftarrow) Suponha que ϕ tem kernel trivial, i.e., $\ker(\phi) = \{0\}$. Então,

$$\phi(a)\phi(b)^{-1} = 1' \Rightarrow 1 = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}) \Rightarrow ab^{-1} \in \ker \phi = 1.$$

Portanto, $ab^{-1} = 1$ e, assim, a = b.

<u>Definição.</u> Se G é um gurpo e a, g seus elementos, dizemos que $gag^{-1} \in G$ é um conjugado de a com respeito a g. Dois elementos a, b de G são conjugados se existe um g no grupo tal que $a = gbg^{-1}$. \square

<u>Definição.</u> Sejam G um grupo e $H \leq G$. Dizemos que H \acute{e} um subgrupo normal a G $(H \leq G)$ se para todos $h \in H$ e $g \in G$, $ghg^{-1} \in H$, i.e., H absorve os conjugados de seus elementos. \square

Em outras palavras, um subgroup é normal se ele é fechado pela conjugação, o que pode ser denotado por $gHg^{-1} \subseteq H$, para todo g de G.

Proposição. Se $H \leq g$, são equivalente

- i) $H \leq G$
- ii) $gHg^{-1} = H$
- iii) gH = Hg.

Prova. (1) \Rightarrow (2): Obviamente, $gHg^{-1} \leq H$ por definição. Sejam h em H e g em G. Então, $ghg^{-1} \in gHg^{-1} \subseteq H$, tal que existe x em H que satisfaz $ghg^{-1} = x \Rightarrow h = \underbrace{(g^{-1})x(g^{-1})^{-1}}_{\in gHg^{-1}}$

- $(2) \Rightarrow (1)$: Ok.
- (1) \Rightarrow (3): Se x pertence a gH, x = gh para algum h de H. Por hipótese, $gHg^{-1} \subseteq H$, de maneira que $ghg^{-1} = y \in H$, ou seja, gh = yg. Como x = gh, $x = yg \in Hg$. Portanto, $gH \subseteq Hg$. O outro lado da inclusão fica como exercício.
- (3) ⇒ (1): Se $x \in gHg^{-1}$, $x = ghg^{-1}$, $h \in H$, segue da hipótese que gh = h'g para algum h' em H. Assim, $x = h' \in H$. \blacksquare

Exemplo 24. 1) Se $G \not\in um$ grupo, são subgrupos normais: G, $\{e\}$, Z(g).

2) Se G é um grupo abeliano, todo subgrupo é normal, mas não vale a volta.

Exemplo 25. Exercício: Seja $Q = \{\pm 1, \pm i, \pm j, \pm k : -1^2 = 1, i^2 = j^2 = k^2 = -1\}$. Mostre que Q é um grupo não abeliano, mas que todo subgrupo é normal.

Exemplo 26. $<(12)>=< id, (12)> \not \le S_3$, visto que

$$(123)(12)(123)^{-1} = (32) \notin < (12) >$$

Portanto, $\langle (12) \rangle$ não é um subgrupo normal de S_3 .

Proposição. Se $\phi: G \to G'$ é um morfismo, então $\ker \phi \subseteq G$.

Prova. Sejam g um elemento de G e h um elemento de $\ker \phi$. Então,

$$\phi(ghg^{-1}) = \phi(g)\phi(h)\phi(g^{-1}) = \phi(g)1'\phi(g)^{-1} = \phi(g)\phi(g)^{-1} = 1'.$$

Portanto, $ghg^{-1} \in \ker \phi \ e$, portanto, $\ker \phi \subseteq G$.

Exemplo 27. 1) $SL_n \subseteq GL_n$, $SL_n = \ker \det det$.

2) $A_n = \ker sqn \triangleleft S_n$, $sqn: S_n \rightarrow \{\pm 1\}, \sigma \mapsto \det U(\sigma)$.

Lembre-se que, dado $\sigma \in S_n, \sigma = \tau_1 \cdots \tau_r$ são 2-ciclos, então $sgn(\sigma) = (-1)^r$.

Definição. Sejam G, G' grupos. Um isomorfismo ϕ é um morfismo $\sigma: G \to G'$ bijetor. Se G = G', ϕ é chamado automorfismo. Por fim, se existe um isomorfismo entre dois grupos, dizemos que eles são isomorfos, escrevendo $G \cong G'$

(Nota ao leitor) Mas o que há de útil em isomorfismo? Por que nos importamos?

Em Álgebra linear, estudamos os isomorfismos entre espaços vetoriais, e como eles preservavam algumas propriedades. Essencialmente, o mesmo ocorrerá aqui, ou seja, se há um isomorfismo entre dois grupos, essencialmente estamos estudando o mesmo grupo, mas sob uma ótica diferente. Os elementos de um grupo podem ser escritos utilizando os do outro, eles terão os mesmos tamanhos, a propriedade abeliana será preservada, etc. Com isso, caso encontre um grupo aparentemente muito difícil de trabalhar, é possível simplificar o problema encontrando um outro grupo isomorfo e que facilitará seu serviço. Veremos exemplos a seguir.

Exemplo 28. 1) Todo subgrupo de ordem 2 é isomorfo a S_2 .

- 2) Há um isomorfismo entre o grupo aditivo dos reais e o multiplicativo positivo dado por $exp:(\mathbb{R},+) \to (\mathbb{R}_{>0},\cdot), x \mapsto e^x$.
- 3) Se q é um elemento de G de ordem infinita, então $\mathbb{Z} \to < q > \le G, n \mapsto q^n$ é um isomorfismo.
- 4) Seja $P \leq GL_n$ o conjunto das matrizes com somente um 1 em cada linha e cada coluna, tendo entrada 0 nos demais. Então, $P \leq GL_n$ e $S_n \to P, \sigma \mapsto U(\sigma)$ é isomorfismo.
- 5) $id: G \to G' \ \'e \ um \ isomorfismo.$
- 6) Se g pertence a $G, \phi_q: G \to G, x \mapsto gxg^{-1}$ é isomorfismo.

Proposição. Se ϕ é isomorfismo, então $|g| = |\phi(g)|$. Em partícular, $|g| = |aga^{-1}|$ para todo a de G.

Prova. No caso em que $|g| = \infty$, se $|\phi(g)| = g < \infty$. Assim,

$$1' = \phi(q)^m = \phi(q^m) \Rightarrow q^m \in \ker \phi = \{1\} \Rightarrow q^m = 1.$$

Agora, se $|g| = n < \infty$. Seja $m = |\phi(g)|$, então

$$1' = \phi(g)^m = \phi(g^m) \Rightarrow g^m = 1 \Rightarrow n|m.$$

Por outro lado, como $g^n = 1$,

$$1' = \phi(g^n) = \phi(g)^n \Rightarrow m|n.$$

Portanto, m = n.

<u>Lema.</u> Se $\phi: G \to G'$ é um isomorfismo, então $\phi^{-1}: G' \to G$ também é isomorfismo.

<u>Prova</u>. Segue que ϕ^{-1} está bem-definida e é uma bijeção pois ϕ é bijeção. Sejam x, y elementos de G'. Sendo ϕ uma bijeção, existem a, b em G tais que

$$x = \phi(a)$$
 e $y = \phi(b)$.

Desta forma,
$$\phi^{-1}(xy) = \phi^{-1}(\phi(a)\phi(b)) = \phi^{-1}(\phi(ab)) = ab = \phi^{-1}(x)\phi^{-1}(y)$$
.

<u>Definição.</u> Dado S um conjunto, uma partição para S é uma cobertura por subconjuntos não-vazios e disjuntos. Em outras palavras, existe $U_j \subseteq S, U_j \neq \emptyset$ e $U_j \cap U_i = \emptyset$ se $i \neq j$ tal que

$$S = \bigsqcup_{j \in I} U_j.$$

Definição. Uma relação de equivalência em um conjunto S é um subconjunto R de $S \times S$ tal que

- $-\overbrace{(a,a)}^{a} \in R, \forall a \in S \ (Reflexiva);$
- $(a,b) \in R \Rightarrow (b,a) \in R(a \ b \Rightarrow b \ a)$ (Simétrica);
- $(a,b)(b,c) \in R \Rightarrow (a,c) \in R(a\ b,b\ c \Rightarrow a\ c)$ (Transitiva).

Denotamos $(a,b) \in R$ por a b, e lê-se "a está relacionado com b". \square

<u>Definição.</u> Se R é uma relação de equivalência em S, denotamos por [a], $a \in S$ o conjunto dos elementos de S que se relacionam com a. Em outras palavras,

$$[a] := \{b \in S : a \ b\} = \{b \in S : (a, b) \in R\}$$

e chamamos [a] de classe de equivalência de a. □

Exemplo 29. 1) A ordem em um grupo define uma relação de equivalência;

2) A conjugação define uma relação de equivalência em um grupo G. (a $b \iff \exists g \in G : a = gbg^{-1}$) Neste caso, denotamos [a] = Cl(a) como a classe de conjugação de a.

Teorema. Uma partição em um conjunto S define uma relação de equivalência em S. Reciprocamente, uma relação de equivalência define uma partição em S.