Exercice 1 - (Fonction coercive)

On dit qu'une fonction $g: \mathbb{R}^n \to \mathbb{R}$ est coercive si elle est continue et que $\lim_{||x|| \to +\infty} g(x) = +\infty$.

Soit f une fonction coercive.

- 1. Montrer qu'il existe M>0 tel que si ||x||>M alors $f(x)\geq |f(0)|+1$
- 2. En déduire qu'il existe $x^* \in \mathbb{R}^n$ tel que $\forall x \in \mathbb{R}^n, f(x^*) \leq f(x)$
- 3. Si on ajoute que f est de classe C^1 , que dire de $\nabla f(x^*)$?

Exercice 2 – (Différentielles)

On admet qu'on peut appliquer toutes les définitions du chapitre à $M_n(\mathbb{R})$ à la place de \mathbb{R}^p .

Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $f(M) = M^2$ Soit $\phi: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ définie par $M \mapsto M^{-1}$

- 1. Justifier que f est de classe C^1 puis déterminer la différentielle de f.
- 2. Pourquoi est-il possible de calculer la différentielle de ϕ en I_n ?
- 3. Le faire (indication : inverser $(I_n + H)$).

Exercice 3 - (D'Alembert 1D)

Soit $c \neq 0$. On cherche les solutions de classe C^2 de l'équation

$$c^2 \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial t^2}$$

Pour celà, utiliser le changement de variables : u = x + at et v = x + bt.

Exercice 4 – (Déterminant)

Soit $n \in \mathbb{N}$. On définit la fonction D_n telle que $\forall x \in \mathbb{R}$,

$$D_n(x) = \begin{vmatrix} x & 1 & 0 & \dots & 0 \\ \frac{x^2}{2!} & x & 1 & \ddots & \vdots \\ \frac{x^3}{3!} & \frac{x^2}{2!} & x & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ \frac{x^n}{n!} & \frac{x^{n-1}}{(n-1)!} & \dots & \frac{x^2}{2!} & x \end{vmatrix}$$

- 1. Montrer que D_n est une fonction dérivable et calculer D_n
- 2. En déduire une expression de D_n et de la série de fonction $\sum_{n=0}^{+\infty} D_n(x)$

Exercice 5 - (Déterminant 2)

Soit u, v, w trois functions de classe $C^2([a, b]) \mapsto \mathbb{R}$ (avec a < b).

On suppose que
$$\begin{vmatrix} u(a) & v(a) & w(a) \\ u(b) & v(b) & w(b) \\ u'(a) & v'(a) & w'(a) \end{vmatrix} = 0$$

1. Démontrer qu'il existe $c \in]a,b[$ $\begin{vmatrix} u(a) & v(a) & w(a) \\ u(b) & v(b) & w(b) \\ u''(c) & v''(c) & w''(c) \end{vmatrix} = 0$

Exercice 6 - (Dériver la norme)

Soit I un intervalle, E un espace euclidien et $f:I\mapsto\mathbb{E}$ dérivable. On suppose que f ne s'annule pas et on pose g=||f||

- 1. Démontrer que g est dérivable
- 2. Calculer q'

Exercice 7 – (Fonction vectorielle linéaire)

Soit $f: \mathbb{R}^n \to \mathbb{R}^m$ une application dérivable sur \mathbb{R}^n . On suppose que $\forall \lambda \in \mathbb{R}$ et $\forall x \in \mathbb{R}^n$, $f(\lambda x) = \lambda f(x)$

- 1. Démontrer que f(0) = 0 en précisant les "0".
- 2. Démontrer que f est linéaire (i.e. de la forme f(x) = Ax)

Questions de cours

— Expression du laplacien en coordonnées polaires.

Soit E un espace vectoriel normée de dimension finie et $u \in \mathcal{L}(E)$. On appelle norme subordonnée de u et on note

$$|||u||| = \sup \{||u(x)||, ||x|| = 1\}$$

- Montrer que l'application $\|\|.\|\|$ est bien définie et que le sup est un max
- Montrer que l'application $\| \| \cdot \|$ est une norme et qu'elle est sous-multiplicative.