MetidaNCA validation report

Vladimir Arnautov

2021-08-07

1 Introduction and package description

Non-compartment anlysis software.

See documentation: https://pharmcat.github.io/MetidaNCA.jl/dev/

1.1 Validation purpose

The main validation purpose is confirmation by examination and provision of objective evidence that software specifications conform to user needs and intended uses, and that the particular requirements implemented through software can be consistently fulfilled.

1.2 Requirements

- Julia 1.5.* (or higher) installed
- Julia packages from dependence list installed (see Project.toml)

1.3 Developer software life cycle

- Development stage
- Testing procedures development
- Performing testing procedures on local machine
- Push to master branch
- Performing testing procedures with GitHub Actions
- Make pull request to the official registry of general Julia packages (if nessesary)
- Make release (if previous completed)

1.3.1 Versions

- X.Y.Z patch release (no breaking changes)
- X.Y.# minor release (may include breaking changes)
- X.#.# major release (breaking changes, changes in public API)
- 0.#.# no stable public API
- $\geq 1.\#.\#$ stable public API

1.4 Build support

1.4.1 Tier 1

• julia-version: 1.5, 1.6

• julia-arch: x64

• os: ubuntu-18.04, macos-10.15, windows-2019

2 Installation

2.1 System information

• Julia version: v"1.4.2"

• Current machine: "x86_64-pc-linux-gnu"

2.2 Installation method

MetidaNCA.jl can be installed by executing the following command in REPL.

```
import Pkg; Pkg.add("MetidaNCA")
```

2.3 Version check

The installation process is checking within each testing job via GitHub Actions. Also GitHub Action chek performed before merging into JuliaRegistries/General repository (see Automatic merging of pull requests).

Current package version:

"0.1.6"

3 Operation qualification

This part of validation based on testing procedures entails running software products under known conditions with defined inputs and documented outcomes that can be compared to their predefined expectations. All documented public API included in testing procedures and part of critical internal methods.

3.1 Coverage

Code coverage report available on Codecov.io. Test procedures include all public API methods check.

• Coverage goal: $\geq 90.0\%$

3.2 Data

Validation data available in the repository and included in the package. See Appendix 1.

3.3 Testing results

Pkg.test("MetidaNCA")

Test Summary:	Pass	Total
Simple test	8	8
Test Summary:	Pass	Total
#1 Linear trapezoidal, Dose 100, Dosetime 0, no tau	l 18	18
Test Summary:	Pass	Total
#2 Linear up Log down, Dose 100, Dosetime 0.25, tau 9	17	17
Test Summary:	Pass	Total
Linear up Log down, Dose 120, Dosetime 0, tau 12	17	17
Test Summary:	Pass	Total
Log trapezoidal ATM, Dose 120, Dosetime 0, tau 12	J 5	5
Test Summary:	Pass	Total
Linear up Log down ATM, Dose 120, Dosetime 0, tau 12	4	4
Test Summary:	Pass	Total
Linear trapezoidal, Dose 100, Dosetime 2.0, tau 10	15	15
Test Summary:	Pass	Total
Linear trapezoidal, Dose 100, Dosetime 0.0, tau 100	15	15
Test Summary:	Pass	Total
Linear trapezoidal, Dose 120, Dosetime 0.0, tau 12	l 4	4
Test Summary:	Pass	Total
Linear up Log down, Dose 100, Dosetime 0.25, tau 9 IV	1	1
Test Summary:	Pass	Total
Linear trapezoidal, Dose 100, Dosetime 0, no tau AUCall	1	1
Test Summary:	Pass	Total
set-get*! tests	l 6	6
Test Summary:	Pass	Total
applylimitrule!	11	11
Test Summary:		
kel	No te	sts
Test Summary:	ļ	
Output	No te	sts

4 Performance qualification

Purpose of this testing procedures to demonstrate performance for some critical tasks. Results from MetidaNCA compared with Phoenix WinNonlin 8.0 results, see Appendix 2.

4.1 Parameter's names description

·	
Descrip	otion
St	ring
+	:
Maximum concentra	
Time at	
Concentration at dose	time
Last non-zero concentra	ation
AUC to C	Clast
AUMC to C	Clast
AUC with all va	alues
r sq	quare
Adjusted r so	quare
Terminal elimination cons	stant
Half live or	T1/2
Inter	cept
Predicted C	Clast
AUC extrapolated to infi	nity
Percentage AUClast from AU	JCinf
Mean Residence Time (1	Last)
Mean Residence Time ((inf)
Clear	rence
Volume of distribu	ution
AUC in Tau r	range
AUMC in Tau r	range
MRT based on	ı Tau
Clearence in Tau r	range
Volume of distribution in Tau r	range
١	

4.2 Results

4.2.1 Linear-trapezoidal rule; Extravascular

Cmax

Subject	Value	Reference	Difference
1.0	190.869	190.869	0.0
2.0	261.177	261.177	0.0
3.0	105.345	105.345	0.0
4.0	208.542	208.542	0.0
5.0	169.334	169.334	0.0
6.0	154.648	154.648	0.0
7.0	153.254	153.254	0.0
8.0	138.327	138.327	0.0
9.0	167.347	167.347	0.0
10.0	125.482	125.482	0.0

Tmax

Subject	Value	Reference	Difference
1.0	1.0	1.0	0.0
2.0	1.0	1.0	0.0
3.0	1.5	1.5	0.0
4.0	1.0	1.0	0.0
5.0	4.0	4.0	0.0
6.0	2.5	2.5	0.0
7.0	2.5	2.5	0.0
8.0	4.0	4.0	0.0
9.0	3.0	3.0	0.0
10.0	2.0	2.0	0.0

Cdose

Subject	Value	Reference	Difference
1.0 2.0 3.0 4.0 5.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6.0 7.0 8.0 9.0 10.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0

Clast

Subject	Value	Reference	Difference
1.0	112.846	112.846	0.0
2.0	85.241	85.241	0.0
3.0	67.901	67.901	0.0
4.0	97.625	97.625	0.0
5.0	110.778	110.778	0.0
6.0	69.501	69.501	0.0
7.0	58.051	58.051	0.0
8.0	74.437	74.437	0.0
9.0	93.44	93.44	0.0
10.0	42.191	42.191	0.0

AUClast

Subject	Value	Reference	Difference
1.0	9585.42	9585.42	0.0
2.0	10112.2	10112.2	0.0
3.0	5396.55	5396.55	0.0
4.0	9317.84	9317.84	0.0
5.0	9561.26	9561.26	0.0

6.0	6966.6	6966.6	0.0
7.0	7029.57	7029.57	0.0
8.0	7110.67	7110.67	0.0
9.0	8315.08	8315.08	0.0
10.0	5620.89	5620.89	0.0

AUMClast

Subject	Value	Reference	Difference
1.0	333582.0	333582.0	0.0
2.0	298701.0	298701.0	0.0
3.0	186032.0	186032.0	0.0
4.0	313956.0	313956.0	0.0
5.0	315182.0	315182.0	0.0
6.0	226977.0	226977.0	0.0
7.0	219798.0	219798.0	0.0
8.0	240526.0	240526.0	0.0
9.0	277614.0	277614.0	0.0
10.0	154893.0	154893.0	0.0

AUCall

Value	Reference	Difference
9585.42	9585.42	0.0
10112.2	10112.2	0.0
5396.55	5396.55	0.0
9317.84	9317.84	0.0
9561.26	9561.26	0.0
6966.6	6966.6	0.0
7029.57	7029.57	0.0
7110.67	7110.67	0.0
8315.08	8315.08	0.0
5620.89	5620.89	0.0
	9585.42 10112.2 5396.55 9317.84 9561.26 6966.6 7029.57 7110.67 8315.08	9585.42 9585.42 10112.2 10112.2 5396.55 5396.55 9317.84 9317.84 9561.26 9561.26 6966.6 6966.6 7029.57 7029.57 7110.67 7110.67 8315.08 8315.08

Rsq

Subject	Value	Reference	Difference
1.0	0.786077	0.786077	0.0
2.0	0.992764	0.992764	0.0
3.0	0.813589	0.813589	0.0
4.0	0.918859	0.918859	0.0
5.0	0.85336	0.85336	0.0
6.0	0.950119	0.950119	0.0
7.0	0.970312	0.970312	0.0
8.0	0.947969	0.947969	0.0
9.0	0.947538	0.947538	0.0
10.0	0.880923	0.880923	0.0

ARsq

Subject Value Reference Difference

1.0	0.714769	0.714769	0.0
2.0	0.990351	0.990351	0.0
3.0	0.776307	0.776307	0.0
4.0	0.837717	0.837717	0.0
5.0	0.82892	0.82892	0.0
6.0	0.925179	0.925179	0.0
7.0	0.960416	0.960416	0.0
8.0	0.921954	0.921954	0.0
9.0	0.921307	0.921307	0.0
10.0	0.863912	0.863912	0.0

Kel

Subject	Value	Reference	Difference
1.0	0.00338474	0.00338474	0.0
3.0	0.00329143	0.00329143	0.0
4.0	0.00769534	0.00769534	0.0
5.0	0.00681333	0.00681333	0.0
6.0	0.00769228	0.00769228	0.0
7.0	0.012459	0.012459	0.0
8.0	0.00893008	0.00893008	0.0
9.0	0.00564586	0.00564586	0.0
10.0	0.0171897	0.0171897	0.0

HL

Subject	Value	Reference	Difference
1.0	204.786	204.786	0.0
2.0	49.1374	49.1374	0.0
3.0	210.591	210.591	0.0
4.0	90.0736	90.0736	0.0
5.0	101.734	101.734	0.0
6.0	90.1095	90.1094	0.0001
7.0	55.6345	55.6345	0.0
8.0	77.6194	77.6194	0.0
9.0	122.771	122.771	0.0
10.0	40.3233	40.3233	0.0

Clast_pred

Subject	Value	Reference	Difference
1.0	117.306	117.306	0.0
2.0	82.5367	82.5367	0.0
3.0	66.9311	66.9311	0.0
4.0	100.768	100.768	0.0
5.0	105.298	105.298	0.0
6.0	71.9399	71.9399	0.0
7.0	61.1727	61.1727	0.0
8.0	75.6043	75.6043	0.0
9.0	93.7618	93.7618	0.0
10.0	38.8109	38.8109	0.0

AUCinf

Subject	Value	Reference	Difference
1.0	42925.0	42925.0	0.0
2.0	16154.9	16154.9	0.0
3.0	26026.2	26026.2	0.0
4.0	22004.1	22004.1	0.0
5.0	25820.3	25820.3	0.0
6.0	16001.8	16001.8	0.0
7.0	11689.0	11689.0	0.0
8.0	15446.2	15446.2	0.0
9.0	24865.2	24865.2	0.0
10.0	8075.32	8075.32	0.0

AUCpct

Subject	Value	Reference	Difference
1.0	77.6694	77.6694	0.0
2.0	37.405	37.405	0.0
3.0	79.2649	79.2649	0.0
4.0	57.6541	57.6541	0.0
5.0	62.97	62.97	0.0
6.0	56.4636	56.4636	0.0
7.0	39.8614	39.8614	0.0
8.0	53.9649	53.9649	0.0
9.0	66.5594	66.5594	0.0
10.0	30.3942	30.3942	0.0

MRTlast

Subject	Value	Reference	Difference
1.0	34.801	34.801	0.0
2.0	29.5388	29.5388	0.0
3.0	34.4724	34.4724	0.0
4.0	33.6941	33.6941	0.0
5.0	32.9644	32.9644	0.0
6.0	32.5808	32.5808	0.0
7.0	31.2676	31.2676	0.0
8.0	33.8261	33.8261	0.0
9.0	33.3868	33.3868	0.0
10.0	27.5567	27.5567	0.0

MRTinf

Subject	Value	Reference	Difference
1.0	293.162	293.162	0.0
2.0	71.9379	71.9379	0.0
3.0	305.041	305.041	0.0
4.0	130.7	130.7	0.0
5.0	149.967	149.967	0.0
6.0	128.241	128.241	0.0

7.0	79.4983	79.4983	0.0
8.0	114.857	114.857	0.0
9.0	176.978	176.978	0.0
10.0	58.7464	58.7464	0.0

Clinf

Subject	Value	Reference	Difference
4.0	0.00000004	0.0000004	0.0
1.0	0.00232964	0.00232964	0.0
2.0	0.00619006	0.00619006	0.0
3.0	0.00384228	0.00384228	0.0
4.0	0.00454461	0.00454461	0.0
5.0	0.00387293	0.00387293	0.0
6.0	0.00624931	0.00624931	0.0
7.0	0.00855509	0.00855509	0.0
8.0	0.00647408	0.00647408	0.0
9.0	0.00402168	0.00402168	0.0
10.0	0.0123834	0.0123834	0.0

Vzinf

Subject	Value	Reference	Difference
1.0	0.688278	0.688278	0.0
2.0	0.438815	0.438815	0.0
3.0	1.16736	1.16736	0.0
4.0	0.590566	0.590566	0.0
5.0	0.568434	0.568434	0.0
6.0	0.812414	0.812414	0.0
7.0	0.686662	0.686662	0.0
8.0	0.724974	0.724974	0.0
9.0	0.712323	0.712323	0.0
10.0	0.720395	0.720395	0.0

4.2.2 Linear-Up Log-Down; Extravascular; Dosetime $0.25; \, \mathrm{Tau} \,\, 9$

Cmax

Subject	Value	Reference	Difference
1.0	190.869	190.869	0.0
2.0	261.177	261.177	0.0
3.0	105.345	105.345	0.0
4.0	208.542	208.542	0.0
5.0	169.334	169.334	0.0
6.0	154.648	154.648	0.0
7.0	153.254	153.254	0.0
8.0	138.327	138.327	0.0
9.0	167.347	167.347	0.0
10.0	125.482	125.482	0.0

Tmax

Subject Value Reference Difference

1.0	1.0	1.0	0.0
2.0	1.0	1.0	0.0
3.0	1.5	1.5	0.0
4.0	1.0	1.0	0.0
5.0	4.0	4.0	0.0
6.0	2.5	2.5	0.0
7.0	2.5	2.5	0.0
8.0	4.0	4.0	0.0
9.0	3.0	3.0	0.0
10.0	2.0	2.0	0.0

Cdose

Subject	Value	Reference	Difference
1.0 2.0 3.0	121.239 62.222 49.849	121.239 62.222 49.849	0.0 0.0 0.0
4.0	52.421	52.421	0.0
5.0	0.0	0.0	0.0
6.0	57.882	57.882	0.0
7.0	19.95	19.95	0.0
8.0	22.724	22.724	0.0
9.0	105.438	105.438	0.0
10.0	13.634	13.634	0.0

Clast

Subject	Value	Reference	Difference
1.0	112.846	112.846	0.0
2.0	85.241	85.241	0.0
3.0	67.901	67.901	0.0
4.0	97.625	97.625	0.0
5.0	110.778	110.778	0.0
6.0	69.501	69.501	0.0
7.0	58.051	58.051	0.0
8.0	74.437	74.437	0.0
9.0	93.44	93.44	0.0
10.0	42.191	42.191	0.0

AUClast

Subject	Value	Reference	Difference
1.0	9566.6	9566.6	0.0
2.0	10054.3	10054.3	0.0
3.0	5392.46	5392.46	0.0
4.0	9297.1	9297.1	0.0
5.0	9519.18	9519.18	0.0
6.0	6948.99	6948.99	0.0
7.0	6988.77	6988.77	0.0
8.0	7058.82	7058.82	0.0
9.0	8302.37	8302.37	0.0
10.0	5486.84	5486.84	0.0

AUCtau

Subject	Value	Reference	Difference
1.0	1268.28	1268.28	0.0
2.0	1831.82	1831.82	0.0
3.0	754.649	754.649	0.0
4.0	1336.48	1336.48	0.0
5.0	1310.9	1310.9	0.0
6.0	1114.24	1114.24	0.0
7.0	1079.37	1079.37	0.0
8.0	766.62	766.62	0.0
9.0	1219.63	1219.63	0.0
10.0	970.306	970.306	0.0

AUMCtau

Subject	Value	Reference	Difference
1.0	5477.2	5477.2	0.0
2.0	8367.57	8367.57	0.0
3.0	3455.35	3455.35	0.0
4.0	6014.65	6014.65	0.0
5.0	6609.79	6609.79	0.0
6.0	5064.72	5064.72	0.0
7.0	4976.96	4976.96	0.0
8.0	2863.01	2863.01	0.0
9.0	5386.88	5386.88	0.0
10.0	4713.48	4713.48	0.0

AUCall

Subject	Value	Reference	Difference
1.0	9566.6	9566.6	0.0
2.0	10054.3	10054.3	0.0
3.0	5392.46	5392.46	0.0
4.0	9297.1	9297.1	0.0
5.0	9519.18	9519.18	0.0
6.0	6948.99	6948.99	0.0
7.0	6988.77	6988.77	0.0
8.0	7058.82	7058.82	0.0
9.0	8302.37	8302.37	0.0
10.0	5486.84	5486.84	0.0

Rsq

Subject	Value	Reference	Difference
1.0	0.786077	0.786077	0.0
2.0	0.992764	0.992764	0.0
3.0	0.813589	0.813589	0.0
4.0	0.918859	0.918859	0.0
5.0	0.85336	0.85336	0.0

6.0	0.950119	0.950119	0.0
7.0	0.970312	0.970312	0.0
8.0	0.947969	0.947969	0.0
9.0	0.947538	0.947538	0.0
10 0	0.880923	0 880923	0.0

ARsq

Subject	Value	Reference	Difference
1.0	0.714769	0.714769	0.0
2.0	0.990351	0.990351	0.0
3.0	0.776307	0.776307	0.0
4.0	0.837717	0.837717	0.0
5.0	0.82892	0.82892	0.0
6.0	0.925179	0.925179	0.0
7.0	0.960416	0.960416	0.0
8.0	0.921954	0.921954	0.0
9.0	0.921307	0.921307	0.0
10.0	0.863912	0.863912	0.0

Kel

Subject	Value	Reference	Difference
1.0	0.00338474	0.00338474	0.0
2.0	0.0141063	0.0141063	0.0
3.0	0.00329143	0.00329143	0.0
4.0	0.00769534	0.00769534	0.0
5.0	0.00681333	0.00681333	0.0
6.0	0.00769228	0.00769228	0.0
7.0	0.012459	0.012459	0.0
8.0	0.00893008	0.00893008	0.0
9.0	0.00564586	0.00564586	0.0
10.0	0.0171897	0.0171897	0.0

HL

Subject	Value	Reference	Difference
1.0	204.786	204.786	0.0
2.0	49.1374	49.1374	0.0
3.0	210.591	210.591	0.0
4.0	90.0736	90.0736	0.0
5.0	101.734	101.734	0.0
6.0	90.1095	90.1095	0.0
7.0	55.6345	55.6345	0.0
8.0	77.6194	77.6194	0.0
9.0	122.771	122.771	0.0
10.0	40.3233	40.3233	0.0

Clast_pred

Subject Value Reference Difference

1.0	117.306	117.306	0.0
2.0	82.5367	82.5367	0.0
3.0	66.9311	66.9311	0.0
4.0	100.768	100.768	0.0
5.0	105.298	105.298	0.0
6.0	71.9399	71.9399	0.0
7.0	61.1727	61.1727	0.0
8.0	75.6043	75.6043	0.0
9.0	93.7618	93.7618	0.0
10.0	38.8109	38.8109	0.0

AUCinf

Subject	Value	Reference	Difference
1.0	42906.2	42906.2	0.0
2.0	16097.0	16097.0	0.0
3.0	26022.1	26022.1	0.0
4.0	21983.3	21983.3	0.0
5.0	25778.2	25778.2	0.0
6.0	15984.1	15984.1	0.0
7.0	11648.2	11648.2	0.0
8.0	15394.4	15394.4	0.0
9.0	24852.5	24852.5	0.0
10.0	7941.27	7941.27	0.0

AUCpct

Subject	Value	Reference	Difference
1.0	77.7035	77.7035	0.0
2.0	37.5395	37.5395	0.0
3.0	79.2774	79.2774	0.0
4.0	57.7084	57.7084	0.0
5.0	63.0727	63.0727	0.0
6.0	56.5258	56.5258	0.0
7.0	40.001	40.001	0.0
8.0	54.1467	54.1467	0.0
9.0	66.5935	66.5935	0.0
10.0	30.9073	30.9073	0.0

MRTtauinf

Subject	Value	Reference	Difference
1.0	299.792	299.792	0.0
2.0	74.655	74.655	0.0
3.0	305.92	305.92	0.0
4.0	143.538	143.538	0.0
5.0	173.022	173.022	0.0
6.0	124.653	124.653	0.0
7.0	92.7359	92.7359	0.0
8.0	175.462	175.462	0.0
9.0	178.811	178.811	0.0
10.0	69.5163	69.5163	0.0

Cltau

Subject	Value	Reference	Difference
1.0	0.0788472	0.0788472	0.0
2.0	0.0545905	0.0545905	0.0
3.0	0.132512	0.132512	0.0
4.0	0.0748234	0.0748234	0.0
5.0	0.0762832	0.0762832	0.0
6.0	0.0897472	0.0897472	0.0
7.0	0.0926469	0.0926469	0.0
8.0	0.130443	0.130443	0.0
9.0	0.081992	0.081992	0.0
10.0	0.10306	0.10306	0.0

Vztau

Subject	Value	Reference	Difference
1.0	23.2949	23.2949	0.0
2.0	3.86993	3.86993	0.0
3.0	40.2597	40.2597	0.0
4.0	9.7232	9.7232	0.0
5.0	11.1962	11.1962	0.0
6.0	11.6672	11.6672	0.0
7.0	7.43617	7.43617	0.0
8.0	14.6071	14.6071	0.0
9.0	14.5225	14.5225	0.0
10.0	5.99545	5.99545	0.0

5 Glossary

- Installation qualification (IQ) Establishing confidence that process equipment and ancillary systems are compliant with appropriate codes and approved design intentions, and that manufacturer's recommendations are suitably considered.
- Operational qualification (OQ) Establishing confidence that process equipment and sub-systems are capable of consistently operating within established limits and tolerances.
- Product performance qualification (PQ) Establishing confidence through appropriate testing that the finished product produced by a specified process meets all release requirements for functionality and safety.
- Repository GitHub repository: https://github.com/PharmCat/MetidaNCA.jl
- Master branch main branch on GitHub (link).
- Current machine pc that used for validation report generating.

6 Reference

• General Principles of Software Validation; Final Guidance for Industry and FDA Staff

- Guidance for Industry Process Validation: General Principles and Practices
- Glossary of Computer System Software Development Terminology

7 Appendix 1

Subject	Formulation	Time	Concentration
l Int64		Float64	Float64
:	+		·:
1	T	0.0	•
1	T	0.5	178.949
1	T	1.0	190.869
1	T	1.5	164.927
1	T	2.0	139.962
1	T	2.5	129.59
1	T	3.0	131.369
1	T	4.0	150.854
1	T	5.0	121.239
1	T	6.0	139.229
1	Т	8.0	128.52
1	T	10.0	143.243
1	Т	12.0	144.964
1	Т	24.0	133.16
1	T	48.0	
1	I T	72.0	
. 2	l R	0.0	
. 2	l R		
. 2	l R		
1 2	l R		
1 2	l R		
1 2	l R		
2	l R		
2	l R		
1 2	l R		
1 2	l R		
1 2	l R		
2		10.0	
2	l R	12.0	
1 2	l R	24.0	
1 2	l R	48.0	110.28
1 2	l R	72.0	85.241
1 3	l R	0.0	0.0
3	R I		49.849
3 3			
	_	1.5 2.0	
		3.0	
•		4.0	
•		5.0	
•		6.0	
-		8.0	
-		10.0	
-		12.0	
		24.0	
1 3	l R	48.0	70.107

3	l R	72.0	67.901
1 4	l R	0.0	0.0
4	l R	0.5	52.421
4	l R	1.0	208.542
4	l R		188.923
1 4	l R		165.177
i 4	l R	2.5	146.996
I 4	l R		152.701
1 4	l R	4.0	154.345
1 4	l R		128.398
1 4	l R		149.807
1 4	l R	8.0	151.066
1 4	l R	1 10.0	136.819
1 4	l R	12.0	132.257
1 4	l R	24.0	141.247
1 4	l R		129.138
1 4	l R	72.0	97.625
5	T T		0.0
1 5	T		0.0
5			•
5			153.964
5	I T		152.34
5	I T		151.452
5	I T		161.312
5	I T	4.0	169.334
5	I T	5.0	162.907
5	I T	6.0	166.651
5	I T	8.0	168.668
5	I T	10.0	155.103
5	l T	12.0	154.066
5	l T	24.0	162.974
5	l T	48.0	109.814
5	l T	72.0	110.778
6	l T	0.0	0.0
1 6	l T	0.5	57.882
1 6	l T	1.0	100.498
1 6	l T	1.5	138.651
1 6	l T		147.287
1 6	l T		154.648
1 6	l T		122.316
1 6	l T	•	132.857
1 6	l T	-	126.067
1 6	l T	-	140.466
1 6	l T	8.0	115.542
1 6	l T	10.0	102.16
1 6	l T	12.0	113.751
1 6	l T	24.0	101.049
1 6	l T	48.0	92.55
1 6	T	72.0	69.501
1 7	l R	0.0	0.0
7	l R	0.5	19.95
7	l R	1.0	128.405
7	l R	1.5	136.807
1 7	l R	1 2.0	113.109
1 7	l R	1 2.5	153.254
1 7	l R	3.0	123.606
7	l R	4.0	142.655
7	l R	5.0	112.347
7	l R	6.0	139.919

1 7	l R	8.0	105.513
•			
	R		134.408
	l R		123.37
7	l R	24.0	110.511
7	l R	48.0	90.291
7	l R	72.0	58.051
l 8	l R	0.0	0.0
	l R		136.91
	l R		126.646
	R R	•	118.5
	R		134.926
	R R		113.213
	l R		130.896
8	l R	4.0	138.327
8	l R	5.0	22.724
8	l R	6.0	53.774
l 8	l R	8.0	55.107
l 8	l R	10.0	102.871
	l R		134.133
	l R		108.021
	R R		98.466
	R I		74.437
	T -		0.0
	T		113.362
	I T		128.273
9	T	1.5	125.395
9	T	2.0	146.933
9	T	2.5	140.559
J 9	T	3.0	167.347
J 9	T	4.0	157.504
J 9	T	5.0	141.35
J 9	T		140.282
•	I T		105.438
•	T		164.843
•	T		135.58
:			
9	T T	•	117.125
•	T T	48.0	•
	T .		93.44
	l R		0.0
	l R		13.634
10	l R		62.561
10	l R	1.5	112.655
10	l R	2.0	125.482
10	l R	2.5	116.255
10	l R		112.674
	l R		116.986
	l R		119.81
	R R		107.557
	R R		120.479
	R		124.171
	R		106.476
	R		116.508
	l R		45.204
10	R .	72.0	42.191
'	' '		''

8 Appendix 2

See Appendix 2.1.pdf, Appendix 2.2.pdf.