Task 7: Disaster Recovery & High Availability

This task focuses on implementing backup and disaster recovery (DR) strategies to ensure high availability of the deployed application on Azure App Service.

Overview

Disaster recovery and high availability are crucial for:

- Minimizing downtime during failures.
- Protecting data from accidental loss or cyberattacks.
- Ensuring business continuity with automated failover mechanisms.

This document covers:

- Disaster Recovery Strategy (Including RTO & RPO)
- Automated Backups in Azure
- High Availability Implementation

1. Disaster Recovery (DR) Strategy

What is Disaster Recovery?

A Disaster Recovery Plan (DRP) ensures that the system can recover quickly from failures such as:

- Server crashes
- Data loss
- Cyberattacks
- Network failures

Key Metrics for Disaster Recovery

Metric	Definition	Target
RTO (Recovery Time	Maximum time to restore service after	≤ 15
Objective)	failure	minutes

Lower RTO and RPO ensure faster recovery with minimal data loss.

2. Backup & Disaster Recovery Implementation in Azure

- Step 1: Enable Automated Backups in Azure App Service
 - 1. Go to Azure Portal → App Services.
 - 2. Click on devops-pythonwebapp → Backups.
 - 3. Click Configure Backup.
 - 4. Choose a Storage Account to store backups.
 - 5. Set Backup Frequency (e.g., every 6 hours).
 - 6. Enable Retention Policy (e.g., keep backups for 30 days).
 - 7. Click Save.
- Azure will now automatically back up the application at regular intervals.
- Step 2: Implement Database Backups in Azure
 - Go to Azure Portal → Azure Database for PostgreSQL (or MongoDB).
 - 2. Enable Point-in-Time Restore:
 - Set backup retention period (e.g., 7 days).
 - Configure geo-redundant backups (replication across regions).

Enable Read Replicas:

sh

CopyEdit

az postgres server replica create --name replica-db --source-server devops-db

3.

Test Recovery Process:

sh

CopyEdit

```
az postgres server restore --name devops-db-restore
--restore-point-in-time "2025-02-10T12:00:00Z"
```

4.

Database backups ensure data recovery with minimal loss (RPO ≤ 5 minutes).

3. High Availability Implementation

- Step 3: Deploy Application in Multiple Regions (Geo-Redundancy)
 - 1. Go to Azure Portal → Traffic Manager.
 - 2. Click Create Profile → Select Routing Method:
 - Priority (Failover to backup region).
 - Performance (Route users to nearest region).
 - 3. Add Endpoints:
 - Primary Region (e.g., East US).
 - Secondary Region (e.g., West US).
 - 4. Click Save.
- If the primary region fails, traffic is automatically redirected to the secondary region.
- Step 4: Set Up Auto-Scaling for High Availability
 - 1. Go to Azure Portal → App Services → Scaling.
 - 2. Enable **Autoscale** → Configure:
 - Minimum Instances: 2
 - Maximum Instances: 5
 - o CPU Threshold: 70%
 - 3. Click Apply Changes.
- Auto-scaling ensures the application can handle traffic spikes automatically.

4. Screenshots & Proof of **Implementation**

Azure Backups

Traffic Manager.

Auto-Scaling

5. Conclusion

- Azure Backups ensure disaster recovery with minimal data loss (RPO ≤ 5 min).
- **☑** Geo-Redundancy & Auto-Scaling ensure high availability (RTO ≤ 15 min).
- **▼** Traffic Manager enables automatic failover in case of failure.
- 🚀 Now, the application is fully resilient to disasters and system failures! 🎉