Linear regression through Optimization

Chris Cornwell
September 11, 2025

Generalizing Linear regression to multiple variables

Measuring the fitness of linear models

Generalizing Linear regression to multiple variables

Measuring the fitness of linear models

Extending the linear regression procedure

If you have data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_P, y_P)$ where, for some N > 1 the input \mathbf{x}_P is a vector in \mathbb{R}^N , can you still do linear regression?

For each
$$p$$
 with $1 \le p \le P$, say that $\mathbf{x}_p = \begin{bmatrix} x_1, p \\ x_2, p \\ \vdots \\ x_{N,p} \end{bmatrix}$ and define a $P \times (N+1)$

matrix A so that the p^{th} row is $[1, x_{1,p}, x_{2,p}, \ldots, x_{N,p}]$. In other words, if we define $\tilde{\mathbf{x}}_p$ to be the vector in \mathbb{R}^{N+1} which has 1 as its first component and \mathbf{x}_p as the remaining N components, then

$$A = \begin{bmatrix} -- & \tilde{\mathbf{x}}_1^T & -- \\ -- & \tilde{\mathbf{x}}_2^T & -- \\ & \vdots & \\ -- & \tilde{\mathbf{x}}_2^T & -- \end{bmatrix}.$$

Extending the linear regression procedure

With the matrix A from the previous slide, a solution

 $\tilde{\mathbf{w}}^* = [b^*, w_1^*, \dots, w_N^*]^T$ to the normal equations $A^T A \tilde{\mathbf{w}} = A^T \mathbf{y}$ provides the coefficients for a linear regression model for this data.

That is, the (affine) linear function

 $f_{\tilde{\mathbf{w}}^{\star}}(\mathbf{x}) = b^{\star} + w_1^{\star} x_1 + \ldots + w_N^{\star} x_N = b^{\star} + \mathbf{x}^{\mathsf{T}} \mathbf{w}^{\star}$ is the best fit linear function to model the given data.

Generalizing Linear regression to multiple variables

Measuring the fitness of linear models

Least Squares loss function

On given data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_P, y_P)$, the measure that is commonly used for how well a linear regression model, $f_{b,\mathbf{w}}(\mathbf{x}) = b + \mathbf{x}^T \mathbf{w}$, fits the data is the Least Squares loss (cost) function.

This is P times the Mean Squared Error.

Following notation from textbook, this loss function is

$$g(b,\mathbf{w}) = \sum_{p=1}^{p} \left(f_{b,\mathbf{w}}(\mathbf{x}_p) - y_p \right)^2.$$

Meaning of Least Squares loss

For $1 \le p \le P$, since $f_{b,\mathbf{w}}(\mathbf{x}_p) = \hat{y}_p$, the quantity $|f_{b,\mathbf{w}}(\mathbf{x}_p) - y_p|$ is the vertical distance from (x_p, y_p) to the point predicted by the linear model, (x_p, \hat{y}_p) .

Additionally, the length of the vector $\mathbf{y} - \hat{\mathbf{y}}$ (which is the distance from \mathbf{y} to the point determined by $\tilde{\mathbf{w}}$, in the column space of our feature matrix) is equal to

$$\sqrt{(\hat{y}_1 - y_1)^2 + (\hat{y}_2 - y_2)^2 + \ldots + (\hat{y}_P - y_P)^2} = \sqrt{g(b, \mathbf{w})}.$$

We see that minimizing $g(b, \mathbf{w})$ is the same as minimizing that distance, which will give us the $\hat{\mathbf{y}}$ in the column space that makes $\mathbf{y} - \hat{\mathbf{y}}$ be orthogonal to the column space.

Minimizing the Least Squares loss

The data $\{(\mathbf{x}_p, y_p)\}_{p=1}^p$ is fixed. How do we solve the problem

$$b, \mathbf{w} \ g(b, \mathbf{w})$$
?

We can use methods from calculus, specifically the first order condition – that we want all partial derivatives equal to zero.

• Note, what are the variables of the function g? They are the parameters b, w_1, w_2, \ldots, w_N .

Minimizing the Least Squares loss

The data $\{(\mathbf{x}_p, y_p)\}_{p=1}^P$ is fixed. How do we solve the problem

$$b, \mathbf{w} \ g(b, \mathbf{w})$$
?

We can use methods from calculus, specifically the first order condition – that we want all partial derivatives equal to zero.

• Note, what are the variables of the function g? They are the parameters b, w_1, w_2, \ldots, w_N .

Next: a review of calculus minimization techniques.