Computer- and robot-assisted Surgery

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Lecture 4
Segmentation 1

Process chain computer-assisted surgery

Content

How do you group single pixels that belong to one object?

- What does segmentation mean?
- Methods are based on:
 - Color/Grey value
 - Form/Contour
 - ...

What does segmentation mean?

- Assigning a label to each pixel, pixels with the same label belong to the same object
- Partitioning the image in multiple semantic segments
 - Complete: every pixel is assigned to a segment
 - No overlap: a pixel is part of only one segment
 - Connected: every segment is a connected area

Goal of segmentation

- Identification and Characterization of Tissue
- Semantic Information
 - Object (Vessels, Organs, Tumors,...)
- Quantitative Analysis
 - Volume
 - Form
- Detection of boundaries (e.g.: Tumor yes/no)

Human Perception

Machine Perception

Important Criteria

- Accuracy
 - Comparison with ground truth
- Performance
 - Real-time, Seconds, Minutes, Hours...
- Level of Interaction
 - User effort
- Robustness
 - Patient movement, Reconstruction artefacts...

Classification

- Point-based
 - Operations only on grey values
 - No global considerations
 - e.g.: Threshold methods
- Region-based
 - Every area of a region fulfills a certain homogeneity critera
 - e.g.: region growing

Classification

- Edge- and contour-based
 - Object has a clear edge
 - Goal: extraction und merging of edges
 - e.g.: Active Contours, Snakes
- Knowledge-/ model-based
 - Integration of problem specific a-priori-knowledge
 - Goal: Enhancement of segmentation by only considering "plausible" results
 - z.B.: Point Distribution Models...

POINT-BASED SEGMENTATION

Threshold operations

- Point-based (no global features)
- Generation of a binary image
- Operator with threshold Θ

$$f \to h$$

$$h_{jk} = \begin{cases} 1 & \text{für } f_{jk} > \Theta \\ 0 & \text{sonst} \end{cases}$$

$$h_{jk} = \begin{cases} 1 & \text{für } \Theta_{\min} < f_{jk} < \Theta_{\max} \\ 0 & \text{sonst} \end{cases}$$

Threshold

Θ=400

Threshold

- Determination of the threshold
 - Manually, experience-based
 - Consideration of the histogram

- Automatic multimodal threshold approach
- Optimal thresholds are calculated based on the grey value distribution
- Number of k thresholds means distribution in k+1 classes
- Partition is based on discrimination criteria

- Inter-class variance σ²_b: Measure of variance between classes
- Intra-class variance σ_{w}^{2} : Measure of variance in class
- Goal: minimizing intra-class variance and maximizing inter-class variance (for partitioning the image)

Small Interclass variance

Big Inter-class variance

Small Intraclass variance

Big Intra-class variance

Discrimination criteria:

$$\lambda(t_1,\ldots,t_k) = \frac{\sigma_b^2(t_1,\ldots,t_k)}{\sigma_w^2(t_1,\ldots,t_k)}$$

• Norm:

$$\eta(t_1,\ldots,t_k) = \frac{\sigma_b^2(t_1,\ldots,t_k)}{\sigma^2}$$

- Because σ^2 is independent of the threshold maximizing σ^2_b is sufficient
- Multilevel-Otsu Method calculates k optimal thresholds that maximize inter-class variance

• Result (4 classes)

REGION-BASED SEGMENTATION

Regions

- Goal
 - Extraction of connected areas
 - Areas are defined regarding specific homgeneity criteria
- Definition of a region:

Partitioning an image f in regions fv

mit
$$f \rightarrow \{f_v \mid v = 1,..., N\}$$
 so dass

$$\bigcup_{\nu=1}^{N} f_{\nu} = f \text{ mit } f_{\nu} \cap f_{\mu} = 0 \qquad \mu \neq \nu$$

Homogeneity criteria

- In general simple grey value criteria $H(f_{\nu})$
- Other criteria:
 - Defined threshold interval
 - Distance to average grey value of a region
 - Grey value distance to neighboring voxel
 - Texture

- Connected regions regarding $H(f_{\nu})$
- Based on seeds
 - Manually defined from the user
 - Seeds are in a region
 - $H(f_{\nu})$ can be defined through the neighbors of the seeds
 - Depending on the criteria the results depends on the position of the seeds

Workflow

Define seed as starting value

- Consider neighbors (not seen before)
 - Mark pixel as seen
- If pixel fulfills criteria H
 - Yes: Use this pixel as new seed point
 - No: End

Regiongrowing

Regiongrowing

Regiongrowing vs. Threshold

Regiongrowing - Evaluation

- Easy to implement
- Complexity and runtime depend on criteria H
- Prone to artefacts
- Hierarchical combination=> Split & Merge

RANDOM WALKER SEGMENTATION

Random Walker Segmentation

- A random walk is a mathematical object, known as a random process, that describes a path that consists of a succession of random steps
- 1D Random walker = Bernoulli Process
- "Random Walker" is the fictitious person that executes the steps

Simulation of 1D-Random-Walks

"random walk" on graphs

- Graphically:
 - Random Walker: drunk person in a city
 - Crossroads of streets: nodes
 - Streets: edges
 - Probability of crossing: weight of the edge
- Question:
 - Let S be the starting node, with which probability reaches a "Random Walker" a specific node?

Random Walker and Segmentation

Random Walker

- Input
 - Image: Pixels/Voxels with a specific grey value and position
 - Several seeds are defined by the user
- Question:
 - With which probability reaches a random walker which starts at pixel a a defined seed first?
 - Pixel a is assigned to the seed where the probility is the highest
 - Path is influenced by the grey values

Random Walker Definitions

- Graph: G(V,E) (V: nodes, E: edges)
- if v_i and v_j are connected the edge e_{ij} exists
- Every edge has a weight $w(e_{ij}) = w_{ij}$
- $w_{ij} > 0$ is assumed

Random Walker: from image to graph

- Every pixel is a node (v_i)
- If v_i and v_j are neighbors insert edge e_{ij}
- Let g_k be the grey value of pixel v_k then the edge weight is:

$$w_{ij} = e^{-b(g_i - g_j)^2}$$

- Goal of the weight: Define probability of a random walker transition:
 - Meaningful: big grey value differences have low edge weight
 - Other weight functions possible

Random Walker: Segmentation

- (1) Define Seed s
- (2) Determine for every node v_i the probability x_i^s that a random walker reaches a seed s first
- (3) If all nodes are processed choose the next seed
- (4) If all seeds are processed
 - Assign node to the seed with the highes probability

Seed L3 is processed

Result

Random Walker – Analogies of electric circuits

- Choosen Seed = Voltage source
- Other seeds = mass
- Consider Kirchhoff rules and Ohm laws

Random Walk does not have to be simulated, direct solution via equation system

Random Walker: Weak Boundaries

- Weak Boundaries: edges are not clear
- Often in medical images
- Detection of weak boundaries is critical regarding segmentation quality

Two seeds and weak boundaries

Result: Detection of weak boundaries is "build in"

Original

Seeds

Results

Probability L1

Probability L2

Probability L3

Probability L4

Random Walker: Conclusion

- Application of graph-theoretical approaches for segmentation
- Robust regarding "weak boundaries"
- Semi-automatic method, uses knowledge of the user
- Solution via Dirichlet problem. Seeds Saatpunkte correspond to boundary conditions
- Calculation: sparse linear equation system has to be solved
- No simulation of Random Walker necessary!

CONTOUR BASED SEGMENTATION

Active Contours - Snakes

- Idea:
 - User defines initial segmentation (Contour, close to an edge), computer calculates the results (on the edge)

Active Contours – Example

- 1. User defines contour
- 2. Computer calculates solution
- 3. Solution

Active Contours - Snakes

- What is a snake?
 - Perception of a contour (via a curve) as enery minimzation problem
 - Combination of internal and external energy
 - Internal energy limits the form of the contour (e.g. smoothness of the contour)
 - External energy defines the image features that attract the contour (e.g. gradient)
 - Graphical: Rubber bands that gradually adapts to image content

Active Contours

- Definition:
 - Representation of a curve through n points

$$v: [0,1] \to \mathcal{R}^2$$
 $v(s) = \begin{pmatrix} x(s) \\ y(s) \end{pmatrix}$

Closed Curve

$$v(0) = v(1)$$

Active Contours

Energy minimization problem

$$E = \int_{0}^{1} (E_{int}(v(s)) + E_{image}(v(s))ds$$

Internal Energy

Describes the form of a curve

External Energy

Adaption to the edge

- Internal engery describes the form of the contour
- Weighted sum of 1. and 2. derivation

$$E_{\text{int}}(v(s)) = \frac{1}{2} \left(\alpha(s) \cdot \left| v_s(s) \right|^2 + \beta(s) \cdot \left| v_{ss}(s) \right|^2 \right)$$

- α (s) and β (s) are weight factors
 - Often constant
 - Definition of stiffness and strain of the curve
- 1. derivation:

$$v_s(s) = \left(\frac{\partial}{\partial s}x(s), \frac{\partial}{\partial s}y(s)\right)$$

• 2. derivation

$$v_{ss}(s) = \left(\frac{\partial^2}{\partial s^2}x(s), \frac{\partial^2}{\partial s^2}y(s)\right)$$

Active Contours: Energy dependencies

- External energy Image energy
 - The curve has to adapt to the image
 - Possible features:
 - Grey values
 - Edges
 - Definition of the components as function:

$$E_{image} = \omega_{grayvalue} \cdot E_{grayvalue} + \omega_{gradient} \cdot E_{gradient}$$

- External Energy Image energy
 - Grey values:

$$E_{grayvalue}(x,y) = I(x,y)$$

- But: curve adapts only to bright or dark regions drückt
- Gradient:

$$E_{gradient}(x,y) = ||\nabla I(x,y)||$$

Gradient is sensitive to noise

Smoothing of the image

Active Contours - Problems

Energy functional: local minima

Minima is not global

Solution

- Control forces
- Gradient Vector Flow

Active Contours – Control Energy

$$E = \int_{0}^{1} (E_{int}(v(s)) + E_{image}(v(s)) ds E_{con}(v(s)) ds$$

- Optional third energy
 - Defined by the user
 - Volcano forces:
 - High Energy: contour is pusehd
 - Spring forces
 - Low Energy: attract contour

Active Contours – Gradient Vector Flow

Active Contours – Gradient Vector Flow

 For every pixel direction, force and distance of the next gradient is calculated

Quelle: Xu et al.

Active Contours – Gradient Vector Flow

Quelle: Xu et al.

Active Contours example

Active Contours - Conclusion

- Combination of image features and implicit form knowledge
- User has to define weight functions
- Active contours can bridge gaps
- Robust against noise
- Not possible solutions have to checked:

Active Contours - Conclusion

Definition of energies is very complex

Every problem has ist own requirements

Advantage:

- Combination of user interaction and computer assistance
- Solution is close to user definition
 Vgl. Region Growing
- Solution also if image information is missing

Literature

- N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. Sys., Man., Cyber., vol. 9, pp. 62–66, 1979
- M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active Contour Models, First International Conference on Computer Vision, 1987, pp. 259-268.
- Leo Grady: Random Walks for Image Segmentation, IEEE Transactions on Patern Analysis and Machine Intelligence, Vol 28, 2006

