Machine Learning 4771

Instructor: Itsik Pe'er

Reminder: Decision Trees

Objective: Certainty

Choose leaf and split to minimize a measure of uncertainty X, $Pr(X = i) = p_i$

Objective: Certainty

Choose leaf and split to minimize a measure of uncertainty of X, $Pr(X = i) = p_i$

- lacktriangle Classification error: $1 \max p_i$
- Gini index: $Pr(x_1 \neq x_2) = 1 \sum p_i^2$
- lacktriangle Entropy: $E[I(X)] = \sum p_i \log_2 \frac{1}{p_i}$

Objective: Certainty

Choose leaf and split to minimize a measure of uncertainty of X, $Pr(X = i) = p_i$

- lacktriangle Classification error: $1 \max p_i$
- Gini index: $Pr(x_1 \neq x_2) = 1 \sum p_i^2$
- \bullet Entropy: $E[I(X)] = \sum p_i \log \frac{1}{p_i}$

Stopping Criteria

Example: No split reduces uncertainty

Stopping Criteria

No improvement?

Certain tree size

When leaves are pure

Example: Clear split if clean data

Example: Overfit if noisy data

Stopping Criteria

No improvement?

Certain tree size

- When leaves are pure
 - Overfitting. Requires pruning
 - Address by validation set.
 - Prune the pure-training tree

Summary – Decision Trees

Decision trees grow greedily

Effective when "dominant" dimensions

Summary – Decision Trees

Decision trees grow greedily

Effective when "dominant" dimensions

Is there an RBF analog?
Based on proximity, not axis

Nearest Neighbor

• Idea: Small $||x - \tilde{x}||$ implies $y = \tilde{y}$

Example: OCR

7210414959 0690159734 9665407401 3134727121 1742351244

Nearest Neighbor

• Idea: Small $||x - \tilde{x}||$ implies $y = \tilde{y}$

Example: OCR

 $x \in \mathbb{R}^{28 \times 28}$ $y \in \{0, \dots, 9\}$

```
7210414959
0690159734
9665407401
3134727121
1742351244
```

Nearest Neighbor

 \bullet Idea: Small $||x - \tilde{x}||$ implies $y = \tilde{y}$

Example: OCR

 \bullet Training $\{(x_i, y_i)\}$

Nearest Neighbor(s)

Problem: sensitivity to class outliers this 9

Nearest Neighbor(s)

Problem: sensitivity to class outliers this 9

Nearest Neighbor(s)

Problem: sensitivity to class outliers this 9

will cause this

to be labeled 9

Solution: rely on k>1 neighbors Idea: 1NN of 0.1 error worse than Maj(9 NN) each 0.3 error

k Nearest Neighbors

k Nearest Neighbors

```
Classify(x):while |J| < kJ \leftarrow J \cup \{argmin_{i \notin J} || x - x_i || \}return Plurality(\{y_j | j \in J\})
```

- \bullet What is k?
- Distance?

k Nearest Neighbors

```
Classify(x):while |J| < kJ \leftarrow J \cup \{argmin_{i \notin J} || x - x_i || \}return Plurality(\{y_j | j \in J\})
```

- lacktriangle What is k ? Determine by validation set
- Distance? Domain dependent

Distance Functions

Euclidean

 \bullet Images, audio: How much warping need to turn x to \tilde{x} ?

Strings: edit distance

Known issues: Bad Features

Known issues: Bad Features

Need distance to prioritize "good" features

Complexity

How complex is FindClosest(X,x) ?

Complexity

How complex is FindClosest(X,x) ?

◆ Naively, O(N) distance evaluations

◆1D:

Preprocessing: O(logN)

Complexity

How complex is FindClosest(X,x) ?

◆ Naively, O(N) distance evaluations

◆1D:

Preprocessing: O(logN)

Preprocessing Higher D

Voronoi Diagrams

Preprocessing Higher D

Voronoi Diagrams

k-d tree

k-d Tree Construction

- Repeat
 - Pick dimension

Split by median

k-d Tree Search

- Repeat
 - Compare to median
 - Choose side
 - Recurse

k-d Tree Search (training x)

- Repeat
 - Compare to median
 - Choose side
 - Recurse

Does not find closest!

k-d Tree Search (any x)

- Repeat
 - Compare to median
 - Choose side
 - Recurse(side)
 - If needed
 - Recurse(other)

k-d Tree Search (any x)

- Repeat
 - Compare to median
 - Choose side
 - Recurse(side)
 - If needed
 - Recurse(other)

No O(log n) quarantee

Summary+notes

- kNN : distance-based effective classification
 - Non-parametric
- Data structures for preprocessing

Consistency guarantee