OMS ronda final 2009

primero examen - 13 de marzo, 2009

Tiempo: 4 horas

Cada problema vale 7 puntos.

- 1. Se considera un hexágono regular P. Por und punto A sean $d_1 \leq d_2 \leq \ldots \leq d_6$ las distancias entre A y las seis esquinas de P, en orden de sus valores. Encontrar el lugar geométrico de todos los puntos A al interior o en el borde de P, donde
 - (a) d_3 toma el valor más pequeo possible.
 - (b) d_4 toma el valor más grande possible.
- **2.** Un palíndromo es un número natural, de forma que en el sistema decimal su valor es lo mismo, independiente de que si es leido de delante ó de atras. (por ejemplo 1129211 o 7337). Determinar todas las parejas (m, n) de numéros naturales tales que

$$(\underbrace{11\dots 11}_m)\cdot (\underbrace{11\dots 11}_n)$$

es und palíndromo.

3. Sean a, b, c, d números reales positivos. Demonstrar la desigualdad siguiente y determinar los casos de igualdad:

$$\frac{a-b}{b+c} + \frac{b-c}{c+d} + \frac{c-d}{d+a} + \frac{d-a}{a+b} \ge 0.$$

- **4.** Sea n un número natural. Cada una de las casillas de un quadrado de $n \times n$ contiene uno de n símbolos diferentes, de forma que cada símbolo está en precisamente n casillas. Demonstrar que existe una línea o una columna que contiene al menos \sqrt{n} símbolos diferentes.
- **5.** Sea ABC un triángulo con $AB \neq AC$ y incentro I. La circunferencia inscrita toca BC en D. Sea M el punto medio de BC. Demonstrar que la recta IM biseca el trazo AD.

OSM Tour final 2009

secondo esame - 14 marzo 2009

Durata: 4 ore

Ogni esercizio vale 7 punti.

6. Trovare tutte le funzioni $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ che per ogni x>y>z>0 soddisfano la condizione seguente:

$$f(x - y + z) = f(x) + f(y) + f(z) - xy - yz + xz.$$

- 7. I punti A, M_1 , M_2 et C si trovano in questo ordine su una retta. Sia k_1 il cerchio con centro M_1 passante per A, et k_2 il cerchio con centro M_2 passante per C. I due cerchi si intersecano ai punti E e F. Una tangente comune di k_1 e k_2 tangente a k_1 in B e a k_2 in D. Mostra che les rette AB, CD e EF si intersecano in un solo punto.
- 8. Considera un terreno qualsiasi composto da n quadrati unit. Alberto et Berta vorrebbero coprire questo terreno con delle piastrelle che hanno sia la forma di un domino 1×2 , sia di un T-Tetromino. Alberto ha a disposizione delle piastrelle di un solo colore mentre Berta ha dei domino di due colori e dei T-Tetromino di quattro colori. Alberto pu coprire il terreno in a modi differenti, Berta in b modi. Supponendo che $a \neq 0$, trova il rapporto b/a.
- 9. Trova tutte le funzioni iniettive $f:\mathbb{N}\to\mathbb{N}$ tali che per ogni numero naturale n si ha che

$$f(f(n)) \le \frac{f(n) + n}{2}.$$

10. Sia n > 3 un numero naturale. Mostra che $4^n + 1$ ammette un divisore primo > 20.