Вебинар 3

Основы теории вероятностей

План

- 1. Разбор ДЗ3 и ДЗ4.
- 2. Задачи по теории вероятностей:
 - теоремы сложения и умножения;
 - геометрическая вероятность;
 - несколько задач на размещения и сочетания.
 - 3. МНК (метод наименьших квадратов)

Видеоразбор Д3_3:

- Тема: аналитическая геометрия:
 https://uploads.hb.cldmail.ru/chaptervideo/1
 267355/attachment/c22ef8e791234988b59f4
 cd3d2eabcdf.mp4
- Тема: графики на плоскости:

https://uploads.hb.cldmail.ru/chaptervideo/12 67367/attachment/cfeb1c789c342a0c4d09afd9 9c50d7a7.mp4

К ДЗ_3 №5 2) Общий вид уравнения поверхности 2-го порядка

$$Ax^{2} + By^{2} + Cz^{2} + Dx + Ey + Fz + G = 0$$

 $Ax^{2} + By^{2} + Cz^{2}$ - квадратичная часть
 $Dx + Ey + Fz + G$ - линейная часть

Примеры поверхностей 2-го порядка

1.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Уравнение эллипсоида	ý 2.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ Уравнение мнимого эллипсоида	3.	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 0$ Уравнение мнимого конуса
4.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Уравнение однополостного гиперболоида	5.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ Уравнение двуполостного гиперболоида	6.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ Уравнение конуса
7.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$ Уравнение эллиптического параболоида	9 8.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$ Уравнение гиперболического параболоида	9.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Уравнение эллиптического цилиндра
10.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ Уравнение мнимого эллиптического цилиндра	11.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ Уравнение пары мнимых пересекающихся плоскостей x	12.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Уравнение гиперболического цилиндра
13.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ Уравнение пары пересекающихся плоскостей	y 14.	$y^2 = 2px$ Уравнение параболического цилиндра	15.	$y^2 - b^2 = 0$ Уравнение пары параллельных плоскостей
16.	$y^2 + b^2 = 0$ Уравнение пары мнимых параллельных плоскостей	17.	у ² = 0 Уравнение пары совпадающих плоскостей	277	Для всех уравнений $a>0,\ b>0,\ c>0,\ p>0$ Для уравнений 1 и 2 $a\geq b\geq c$ ля уравнений $3,4,5,6,7,9,10$ $a\geq b$

Изобразим параболоид

Out[224]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x1f0ead6ab00>

Изобразим эллипсоид

Фрагмент работы Максима Аласкарова

ДЗ№3 #4.1)

Решите систему уравнений:

- $y = x^2 1(1)$
- $\exp(x) + x \cdot (1 y) = 1$ (2)

!Область допустимых значений исследуется по исходной задаче.

Д3Nº3 #4.2)

Решите систему уравнений и неравенств:

- $y = x^2 1$ (1)
- $\exp(x) + x \cdot (1 y) > 1$ (2)

• Подставить (1) в (2), получить функцию одной переменной.

1) Система уравнений plt.figure(figsize=(10,10)) x = np.linspace(-6, 6, 1001) ind = np.where(x == 0.) x = np.delete(x, ind) y1 = x**2 - 1 y2 = (np.exp(x) - 1) / x + 1 plt.plot(x, y1, label='x^2-1', c='g') plt.plot(x, y2, label='(e^x-1)/x+1', c='b') plt.axis([-6, 6, -3, 30]) plt.legend(loc='upper left') plt.grid() plt.show()

По графикам видно, что система имеет 3 решения:

```
1. x \in (-2, -1)
2. x \in (2, 3)
```

3.
$$x \in (4, 5)$$


```
def equations(p):
    x, y = p
    return (y - x**2 + 1, np.exp(x) + x * (1 - y) - 1)

x_1, y_1 = fsolve(equations, (-2, 5))
    x_2, y_2 = fsolve(equations, (3, 6))
    x_3, y_3 = fsolve(equations, (5, 20))

print(x_1, y_1)
print(x_2, y_2)
print(x_3, y_3)
```

- -1.5818353528958997 1.5022030836712943 2.618145573086073 5.8546862418707315
- 4.200105840743156 16.640889073515883

$$\begin{cases} y = x^2 - 1 \\ e^x + x(1 - y) > 1 \end{cases} \iff \begin{cases} y = x^2 - 1 \\ y < \frac{e^x - 1}{x} + 1 \end{cases}$$

x>0 => при делении на x знак неравенства не меняется, т.е. парабола ниже.

$$\begin{cases} y = x^2 - 1 \\ e^x + x(1 - y) > 1 \end{cases} \iff \begin{cases} y = x^2 - 1 \\ y \ge \frac{e^x - 1}{x} + 1 \end{cases}$$

X<0 => при делении на x знак неравенства меняется, т.е. парабола выше.

.

4.2 Решите систему уравнений и неравенств: $y = x2 - 1 \exp(x) + x \cdot (1 - y) > 1$

```
np.exp(x)+x*(2-x**2)-1>0
```

```
from scipy.optimize import fsolve

x = np.linspace(-4,6,201)
plt.plot(x, np.exp(x)+x*(2-x**2)-1)
plt.xlabel('x')
plt.ylabel('y')
plt.grid(True)
plt.show()
```


Д3Nº4, #1

• sinx=0

- $x\neq 0 <=> \pi n \neq 0 => n\neq 0$
- Otbet: x= πn, n≠0.

По мотивам проверки ДЗ № 3-4: тригонометрическая окружность

Градусы и радианы

По мотивам проверки ДЗ № 3-4: тригонометрическая окружность и

Даны три прямые $y=k_1x+b_1$, $y=k_2x+b_2$, $y=k_3x+b_3$. Как узнать, пересекаются они в одной точке или нет?

Решение:

Чтобы все три прямые пересекались в одной точке, все они должны удовлетворять одному уравнению пучка прямых: $y - y_0 = k(x - x_0)$, где (x_0, y_0) -координаты точки пересечения.

Также, чтобы узнать, пересекаются ли все три прямые в одной точке, можно решить систему уравнений:

$$\begin{cases} y = k_1 x + b_1 \\ y = k_2 x + b_2 \\ y = k_3 x + b_3 \end{cases}$$

Если система имеет единственное решение - то все три прямые пересекаются в одной точке.

Из данной системы уравнений можно вывести следующую закономерность:

$$k_1x + b_1 = k_2x + b_2 = k_3x + b_3 \Rightarrow x = \frac{b_2 - b_1}{k_1 - k_2} = \frac{b_1 - b_3}{k_3 - k_1} = \frac{b_3 - b_2}{k_2 - k_3} \Rightarrow$$

$$\Rightarrow \frac{b_1 - b_2}{b_1 - b_3} = \frac{k_1 - k_2}{k_1 - k_3}$$

Ответ: если параметры прямых удовлетворяют выражению $\frac{b_1-b_2}{b_1-b_3}=\frac{k_1-k_2}{k_1-k_3}$, то прямые пересекаются в одной точке.

Д3№4, #3 Задача Бюффона о бросании иглы

- Статья в википедии
- Краткий видеоразбор:
 https://www.youtube.com/watch?v=qhJbSOn
 Impg
- Разбор без двойного интеграла (школьный вариант):
 http://www.e-osnova.ru/PDF/osnova_3_47_9
 914.pdf

ДЗ№4, #4* (алгоритм)

Решите аналитически и потом численно (в программе) уравнение, зависящее от параметра а:

sin(a*x)=0 при условии: 0.01<a<0.02, 100<x<500.

- 1. Решить уравнения;
- 2. Учесть ограничения по x и, таким образом, найти допустимые значения n.
- 3. Для допустимых n найти возможные значения a.

•
$$n = 3 \Rightarrow x = \frac{3\pi}{4}$$

• $n = 3 \Rightarrow x = \frac{3\pi}{4}$

• $n = 3 \Rightarrow x = \frac{$

$$n = 4 - x = 4\pi$$

$$200\pi^{2} \frac{4\pi}{0.02} < \frac{4\pi}{2} < \frac{4\pi}{0.01}$$

$$500 = n \leq 3$$

$$0\pi 6 = x = 2\pi$$

$$x = 2\pi \text{ npu } d \in (2\pi); 0.02$$

$$x = 2\pi \text{ npu } d \in (2\pi); 0.02$$

```
: # Построим график функции х=х(а)
  plt.figure(figsize=(10,10))
  a = np.linspace(0.001,0.1, 1001)
  for k in range(-10,11):
      plt.plot(a, k*np.pi / a, label=f'k={k}')
  # расснатриваеный диапазон
  plt.plot([0.01, 0.01], [100, 500], color='DarkRed', linestyle='--', alpha=1)
  plt.plot([0.02, 0.02], [100, 500], color='DarkRed', linestyle='--', alpha=1)
  plt.plot([0.01, 0.02], [100, 100], color='DarkRed', linestyle='--', alpha=1)
  plt.plot([0.01, 0.02], [500, 500], color='DarkRed', linestyle='--', alpha=1)
  plt.axis([-0.01, 0.1, -1, 1000])
  plt.legend(loc='upper left')
  plt.xlabel('a')
  plt.ylabel('x')
  plt.grid()
  plt.show()
    1000
          - k=-10
          - k--9
          - k=-8
          - k=-7
          - k--6
          - t--5
           - 5-4
     800 -
          - ke-3
          - k=-2
          - k=-1
          - k-D
          __ k=1
          - k=2
          - k-3
     600 -
          - k=5
             1-6
           - k=5
          - k-9
          - k=10
     400 -
     200
       0-
```

0.04

0.05

0.08

0.00

Переходим к теории вероятностей

Формула вероятности (реализация данного события в одном испытании)

Предположим, что проводится испытание, которое имеет N равновозможных исходов. Пусть n из них благоприятствуют некоторому событию A (событие реализуется), а N-n исходов не благоприятствуют ему (событие не реализуется). Тогда **вероятностью** P(A) события A называется отношение

$$P(A) = \frac{n}{N}.\tag{16.2.1}$$

Это определение называется классическим определением вероятности.

Пример

- Есть урна со 100 разноцветными шарами, среди них 7 оранжевых.
- Вероятность (вслепую) извлечь оранжевый шар:
- P=n/N=7/100
- Где n число способов извлечь оранжевый шар; N – число способов извлечь любой шар.

Теорема сложения:
$$P(A+B) = P(B+A) = P(A)+P(B)-P(AB) - \frac{1}{1} \frac{1}{$$

Для независимых событий

- N -

16.7.1. Найти вероятность извлечения дамы или короля из колоды, содержащей 36 карт.

#2

16.7.8. Найти вероятность извлечения дамы и короля из колоды, содержащей 36 карт, если первая извлеченная карта возвращается на место, колода тасуется, а затем извлекается вторая карта.

$$P(A+B) = P(B+A) = P(A) + P(B) - P(AB) - ИЛИ - Теорема сложения $P(AB) = P(BA) = P(B)P(A|B)$ - И -Теорема умножения$$

16.7.1. Найти вероятность извлечения дамы или короля из колоды, содержащей 36 карт. В колоде по 4 дамы и короля =>

P=4/36+4/36=2/9

16.7.8. Найти вероятность извлечения дамы и короля из колоды, содержащей 36 карт, если первая извлеченная карта возвращается на место, колода тасуется, а затем извлекается вторая карта.

А если не вернули?

P=(4/36)*(4/36)

16.7.2. Найти вероятность извлечения синего или зеленого шара из ящика, содержащего 20 красных, 30 синих и 50 зеленых шаров.

16.7.4. Найти вероятность извлечения синего и зеленого шаров из ящика, содержащего 20 красных, 30 синих и 50 зеленых шаров, если сначала извлекается один шар, выясняется его цвет, затем шар кладется на место, шары перемешиваются, а затем извлекается второй шар.

16.7.2. Найти вероятность извлечения синего или зеленого шара из ящика, содержащего 20 красных, 30 синих и 50 зеленых шаров.

16.7.4. Найти вероятность извлечения синего и зеленого шаров из ящика, содержащего 20 красных, 30 синих и 50 зеленых шаров, если сначала извлекается один шар, выясняется его цвет, затем шар кладется на место, шары перемешиваются, а затем извлекается второй шар.

P=(30/100)*(50/100)

Геометрическая вероятность

В квадрат со стороной, равной а, вписан круг. Найти вероятность того, что произвольно взятая в квадрате точка попадёт и в круг.

В квадрат со стороной, равной а, вписан круг. Найти вероятность того, что произвольно взятая в квадрате точка попадёт и

•
$$P(\text{круг}) = \frac{S(\text{круг})}{S(\text{квадрат})} = \frac{\pi r^2}{a^2} = \frac{\pi (\frac{a}{2})^2}{a^2} = \frac{\pi}{4}$$
 ≈ 0.7854

Два человека условились встретиться в определённом месте между 12 и 13 часами. Пришедший первым ждёт другого 20 минут, после чего уходит. Чему равна вероятность встречи, если каждый из них может прийти наудачу независимо от другого в течение указанного часа?

Два человека условились встретиться в определённом месте между 12 и 13 часами. Пришедший первым ждёт другого 20 минут, после чего уходит. Чему равна вероятность встречи, если каждый из них может прийти наудачу независимо от другого в течение указанного часа?

- Пусть х момент, когда пришёл 1-й человек; у 2-й.
- $|x y| \le 20 \Leftrightarrow \begin{cases} y \ge x 20 \\ y \le x + 20 \end{cases}$
- Изображаем на графике 2 прямые: y=x-20; y=x+20.
- Заштриховываем область, обозначенную неравенствами. Это S', соответствующая встрече. S показывает все возможные ситуации (всреча+невстреча)
- $P(\text{встречи}) = \frac{S'}{S} = \frac{3600 2 \cdot \frac{1}{2} \cdot 40 \cdot 40}{3600} = \frac{5}{9}$

Телефонный номер состоит из 7 цифр, он не может начинаться с 0. Найти вероятность того, что все цифры в телефоне а) одинаковые б) разные.

Телефонный номер состоит из 7 цифр, он не может начинаться с 0. Найти вероятность того, что все цифры в телефоне а) одинаковые б) разные.

Всего способов составить номер: 9*(10)^6

- А) Способов составить номер из одинаковых цифр: 9
- Б) Способов составить номер из разных цифр: 9*9*8*7*6*5*4

Р(одинаковые) = **9/9*(10)^6 Р** (разные) = 9*9*8*7*6*5*4/9*(10)^6 В ящике 10 красных и 5 синих пуговиц. Наугад вынуты 2 пуговицы. Какова вероятность того, что пуговицы окажутся одноцветными?

В ящике 10 красных и 5 синих пуговиц. Наугад вынуты 2 пуговицы. Какова вероятность того, что пуговицы окажутся одноцветными?

$$P$$
(одного цвета) = $\frac{C_{10}^2 + C_5^2}{C_{15}^2} = \frac{11}{21}$

C(n,k)=n! /((n-k)!k!) – число сочетаний из n элементов по k (порядок не важен – (0;1;2) и (1;2;0) – один и тот же набор: C(10;2)=10!/((10-2)!2!)=10!/8!2!=45.

A(n,k)=n!/(n-k)! – число размещений из n элементов по k (0;1;2) и (1;2;0) – разные наборы: A(10;2)=10!/((10-2)!)=10!/8!=9*10=90

$$N!=1*2*3*...*(N-1)!*N$$

 $5!=1*2*3*4*5=120.$

Сколько раз надо бросить игральную кость, чтобы на 95% быть уверенным в том, чтобы хотя бы в одном бросании появится 3-ка?

Сколько раз надо бросить игральную кость, чтобы на 95% быть уверенным в том, чтобы хотя бы в одном бросании появится 3-ка?

Вероятность «не 3» = 5/6.

Пусть мы бросаем кубик n раз и «3» не появляется:

$$\left(\frac{5}{6}\right)^n \le 0,05$$

$$n \ge \log_{\frac{5}{6}} 0,05 = \frac{\ln 0,05}{\ln \frac{5}{6}} = \frac{-1,3010}{-0,0798} = 16,3$$

$$=>n=17$$

Фирма участвует в 4-х проектах, каждый из которых может окончиться неудачей с вероятностью 0,1. В случае неудачи в одном проекте, вероятность разорения фирмы равна 20%, двух – 50%, трёх – 70%, четырёх – 90%. Определите вероятность разорения фирмы.

Формула Бернулли

Вероятность того что в **n** независимых испытаниях, в каждом из которых вероятность появления события равна **P**, событие наступит ровно **K** раз, вычисляется по формуле Бернулли

$$\boldsymbol{P}_{n}(K) = \boldsymbol{C}_{n}^{\kappa} \cdot \boldsymbol{p}^{\kappa} \cdot \boldsymbol{q}^{n-\kappa}$$

где q- вероятность противоположного события q=1-p

Фирма участвует в 4-х проектах, каждый из которых может окончиться неудачей с вероятностью 0,1. В случае неудачи в одном проекте, вероятность разорения фирмы равна 20%, двух – 50%, трёх – 70%, четырёх – 90%. Определите вероятность разорения фирмы.

	1	2	3	4
Вероятность	0,2	0,5	0,7	0,9
разорения фирмы				

P = 0.2916*0.2+0.0686*0.5+0.0036*0.7+0.0001*0.9=0.0860

Пусть А, В, С – три произвольных события. Их вероятности А, В, С. Найти выражение для событий, состоящих в том, что произошли: а) все три события, б) хотя бы одно из событий, в) хотя бы два из событий, г) два и только два события; д) ровно одно событие, е) ни одно событие не произошло, ж) не более двух событий.

Пусть A, B, C – три произвольных события. Их вероятности A, B, C. Найти выражение для событий, состоящих в том, что произошли: а) все три события, б) хотя бы одно из событий, в) хотя бы два из событий, г) два и только два события; д) ровно одно событие, е) ни одно событие не произошло, ж) не более двух событий.

- Б) a+b+c-ab-bc-ac+abc или 1-(1-a)(1-b)(1-c)
- B) ab+ac+bc-2abc
- Γ) ab(1-c) + bc(1-a) + ac(1-b)

Пусть А, В, С – три произвольных события. Их вероятности А, В, С. Найти выражение для событий, состоящих в том, что произошли: а) все три события, б) хотя бы одно из событий, в) хотя бы два из событий, г) два и только два события; д) ровно одно событие, е) ни одно событие не произошло, ж) не более двух событий.

Алгебра событий

Бросают две игральные кости. Чему равна вероятность того, что сумма очков, выпавших на обеих костях, не превзойдёт 5?

1	2	3	4
1	1	1	1
2	2	2	
3	3		
4			

Бросают две игральные кости. Чему равна вероятность того, что сумма очков, выпавших на обеих костях, не превзойдёт 5? 36 — всего. P=10/36

1	2	3	4
1	1	1	1
2	2	2	
3	3		
4			

Парадокс Монти Холла

Три двери: за одной машина, за двумя – козы. Ведущий знает, где кто.

- 1. Игрок выбирает любую дверь (но не открывает)
- 2. Ведущий открывает дверь, за которой коза.
 - 3. Остаются 2 двери. Игрок решает, менять свой выбор или нет.

Автомобиль	Выбор игрока	Победа, если не менять выбор	Победа, если менять выбор
	1	1	0
1	2	0	1
	3	менять выбор 1 0 0 0 1 0 0 1 0 1 0 1 1	1
	1	0	1
2	2		0
	3	0	1
	1	0	1
3	2	0	1
	3	1 0	0
		3/9	6/9

1 – машина; 0 – коза.

Про дискретный закон распределения

Пусть в денежной лотерее продано 1000 билетов, из которых на 10 билетов падает выигрыш 1000 руб., на 20 билетов — 100 руб., на 100 билетов — 10 руб., а 870 билетов — без выигрыша. Здесь случайная величина x представляет собой выигрыш, приходящийся на один билет. Ее закон распределения имеет вид

x_k	1000 руб.	100 руб.	10 руб.	0 руб.
10	20	100	870	
p_k	1000	1000	1000	1000

x_k	1000 руб.	100 руб.	10 руб.	0 руб.
	10	20	100	870
p_k	1000	1000	1000	1000

$$Mx = \frac{10}{1000} \cdot 1000 + \frac{20}{1000} \cdot 100 + \frac{100}{1000} \cdot 10 + \frac{870}{1000} \cdot 0 = 13$$
 py6.

-

Средний выигрыш = 13 руб. Самый вероятный выигрыш = 0 руб. Гистограмма!!

Распределение числа выигрышных билетов

Метод наименьших квадратов (МНК), линейная регрессия

- Жизнь: Ү, Х (наблюдаемая величина, собрали данные).
- Хотим оценить, как Y зависит от X (например, почасовой доход от числа лет обучения) Y = a + bX
- Задача найти коэффициенты а, b.
- Ү в модели и «в жизни» будут различаться.

Коэффициент детерминации – для оценки качества модели

Для оценки качества подбора регрессионной модели, адекватности ее экспериментальным данным рассчитывается характеристика прогностической силы анализируемой регрессионной модели — коэффициент детерминации (R^2 — статистика).

Коэффициент детерминации характеризует долю дисперсии результативной переменной Y, объясненную регрессией, в общей дисперсии результативной переменной Y, рассчитывается по формуле:

$$R^2 = 1 - \frac{ESS}{TSS} = \frac{RSS}{TSS} = \frac{S_{\phi a \kappa \tau}}{S_{o 6 m}} = \frac{\sum (\tilde{y}_i - \bar{y})^2}{\sum (y_i - \bar{y})^2}$$
 (2.20)

Соответственно величина I- R^2 характеризует долю дисперсии переменной Y, вызванную влиянием остальных, не учтенных в модели, факторов.

Свойства коэффициента детерминации (R2 - статистики)

$$0 \le R^2 \le 1 \tag{2.21}$$

- Если R² = 1, между Y и X существует функциональная зависимость, эмпирические значения переменных лежат на линии регрессии;
- Если R² = 0, то вариация зависимой переменной полностью обусловлена воздействием неучтенных в модели переменных, линия регрессии параллельна оси абсцисс.

СПАСИБО ЗА ВНИМАНИЕ!