Calcolo Scientifico, A.A. 2016/17 Appello del 27 gennaio 2017

Tutte le function sono scaricabili dalla pagina paola-gervasio.unibs.it/CS/matlab.

Esercizio 1 Si consideri l'equazione non lineare f(x) = 0 sull'intervallo [-3, 3] con

$$f(x) = x^3 + 3x^2 - 8.$$

- 1.1) Dopo aver localizzato graficamente la radice reale α dell'equazione f(x) = 0, determinare (in base al grafico della funzione) un intervallo $I(\alpha) \subset [-3,3]$ per cui il metodo di Newton converga per ogni punto iniziale $x_0 \in I(\alpha)$. Calcolare la radice di f con Newton partendo da x_0 nell'intervallo $I(\alpha)$ appena determinato e tolleranza tol=1.e-8 per il test d'arresto. La convergenza del metodo di Newton riflette quanto atteso dalla teoria? Giustificare la risposta.
- 1.2) Si considerino le funzioni

$$\phi_1(x) = \frac{2x^3 + 3x^2 + 8}{3x^2 + 6x}, \qquad \phi_2(x) = \frac{-x^2 + 4x + 8}{x^2 + 2x + 4}.$$

Dopo aver verificato graficamente che il punto fisso di queste funzioni coincide con la radice dell'equazione f(x) = 0, richiamare una funzione che implementi il metodo di punto fisso e, prendendo dato iniziale $x_0 = 1$, tolleranza $\varepsilon = 10^{-8}$ per il test d'arresto e numero massimo di iterazioni pari a 100, calcolare la radice dell'equazione f(x) = 0 con la function fixedpoint.m.

1.3) Che tipo di convergenza mostrano le due funzioni di punto fisso? Senza necessariamente calcolare l'espressione delle derivate prime, ma solo analizzando i grafici di $\phi_1(x)$ e $\phi_2(x)$, dire se i risultati numerici confermano la teoria e perché.

Quale delle due funzioni di punto fisso è da preferirsi dal punto di vista dell'accuratezza? Perché?

Esiste un qualche legame tra le funzioni di punto fisso date e il metodo di Newton applicato all'equazione f(x) = 0?

Esercizio 2 Si vuole risolvere il sistema lineare A**x** = **b** dove la matrice A e il termine noto **b** sono

$$A = \begin{bmatrix} 324 & -45 & 246 & -162 & -9 \\ -45 & 1048 & 442 & 96 & 113 \\ 246 & 442 & 435 & -183 & 30 \\ -162 & 96 & -183 & 387 & 60 \\ -9 & 113 & 30 & 60 & 20 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 615 \\ 2736 \\ 1838 \\ -360 \\ 247 \end{bmatrix}. \tag{1}$$

2.1) Verificare che la matrice A è simmetrica definita positiva.

- **2.2)** Dire quale tra i metodi diretti conosciuti risulterà essere il più efficiente nella risoluzione del sistema $A\mathbf{x} = \mathbf{b}$ e giustificare la risposta.
- **2.3)** Scrivere un M-file in cui si risolve il sistema $A\mathbf{x} = \mathbf{b}$ con i metodi del gradiente e del gradiente coniugato (richiamare gradiente.m e cg.m), prendendo un vettore iniziale di numeri casuali, ponendo tolleranza per il test d'arresto $\varepsilon = 10^{-8}$ e numero massimo di iterazioni pari a 500.
- **2.4)** Rappresentare su uno stesso grafico le storie di convergenza dei due metodi. I risultati numerici ottenuti concordano con quanto dice la teoria? Giustificare la risposta. Quale dei due metodi è da preferirsi e perché?
- **2.5)** Si calcoli il condizionamento K(A) della matrice A. Siano \mathbf{x} la soluzione esatta del sistema e $\hat{\mathbf{x}}$ la soluzione numerica calcolata. Sapendo che gli unici errori commessi sui dati sono quelli di arrotondamento dovuti all'aritmetica finita del calcolatore, stimare l'errore $\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{x}\|}$.

Possiamo dire che il sistema è ben condizionato? Commentare i risultati ottenuti.

Esercizio 3 Si consideri il seguente metodo multistep

$$\begin{cases} u_{n+1} = u_n + \frac{h}{12}(23f_n - 16f_{n-1} + 5f_{n-2}), & n \ge 2 \\ u_0, u_1, u_2 \text{ assegnati} \end{cases}$$
 (2)

- 3.1) Caratterizzare il metodo: dire se è esplicito/implicito, e a quanti passi è.
- **3.2)** Utilizzando la function multiste2.m, si applichi il metodo (2) per la risoluzione del problema di Cauchy

$$\begin{cases} y'(t) = \frac{1}{1+t^2} - 2y^2 & t \in [0,5] \\ y(0) = 0, \end{cases}$$
 (3)

la cui soluzione esatta è $y(t) = \frac{t}{1+t^2}$.

Si tenga presente che il programma multiste2.m vuole in ingresso solo uno dato iniziale, mentre i valori u_1 e u_2 vengono calcolati all'interno della function.

Si determini sperimentalmente l'ordine di convergenza del metodo.

3.3) Si determini sperimentalmente il valore $h_0 > 0$ (con due cifre decimali) tale che, per ogni $0 < h < h_0$, il metodo (2) risulti assolutamente stabile per la risoluzione del problema di Cauchy seguente:

$$\begin{cases} y'(t) = -4y(t) & t \in [0, 100] \\ y(0) = 1. \end{cases}$$
 (4)