Devoir Surveillé Nº1

Exercice 1

Les questions de cet exercice sont indépendantes

- 1. Calculer les limites suivantes : $\lim_{x\to 8} \frac{\sqrt[4]{2x} \sqrt[3]{x}}{x-8}$ et $\lim_{x\to +\infty} x \left(\pi 2\arctan(3x+1)\right)$. 2 pts
- 2. (a) Montrer que : $(\forall x > 1)$ $\arctan(\frac{x}{x+1}) \arctan(\frac{x-1}{x}) = \arctan(\frac{1}{2x^2})$. 1pt
 - (b) Calculer $\lim_{x \to +\infty} x^2 \left(\arctan\left(\frac{x}{x+1}\right) \arctan\left(\frac{x-1}{x}\right) \right)$. 0.5pt
- 3. (a) Calculer $\tan(2\arctan\sqrt{2})$ et $\tan(\arctan(2\sqrt{2}) + 2\arctan(\sqrt{2}))$. 1pt
 - (b) Montrer que $\frac{\pi}{4} < \arctan \sqrt{2} < \frac{\pi}{3}$ et $\frac{\pi}{3} < \arctan 2\sqrt{2} < \frac{\pi}{2}$.
 - (c) En déduire que $\arctan(2\sqrt{2}) + 2\arctan(\sqrt{2}) = \pi$. 0.5pt

Exercice 2

Soit φ la fonction définie sur $\left]0, \frac{\pi}{2}\right[\operatorname{par}: \varphi(x) = 1 + \sin(x) - \frac{1}{x}$.

- 1. Montrer que φ réalise une bijection de $\left]0,\frac{\pi}{2}\right[$ vers un intervalle que l'on déterminera . 1pt
- 2. En déduire que : $\exists!\alpha\in\left]0,\frac{\pi}{2}\right[$ tel que $\varphi(\alpha)=0$. 0.5 pt
- 3. Soit f la fonction définie sur $\left]0, \frac{\pi}{2}\right[$ par : $\begin{cases} f(x) = \frac{1}{1 + \sin(x)} & \text{si} \quad 0 < x < \alpha \\ f(x) = x & \text{si} \quad \alpha \leqslant x < \frac{\pi}{2} \end{cases}$ Montrer que f est continue sur $\left]0, \frac{\pi}{2}\right[$.

Exercice 3

Soit f la fonction définie sur \mathbb{R} par : $\begin{cases} f(x) = 2 \arctan\left(\frac{1+\sqrt{1+x^4}}{x^2}\right) \text{ si } x \neq 0 \\ f(0) = \pi \end{cases}$

- 1. Montrer que f est continue en 0.
- 2. Montrer que $(\forall x \in \mathbb{R})$ $f(x) = \pi \arctan(x^2)$. (En posant $\alpha = \arctan(x^2)$) 2pts
- 3. Soit g la restriction de f sur \mathbb{R}^+ .
 - (a) Montrer que g réalise une bijection de \mathbb{R}^+ vers un intervalle J à déterminer . 1pt
 - (b) Déterminer $g^{-1}(x)$ pour tout x de J.

Exercice 4

On considère l'équation (*) $\arctan(x) + \arctan(x^3) = \frac{3\pi}{4}$

- 1. Montrer que si x est une solution de (*) alors x est positif .
- 2. Soit f la fonction définie par $f(x) = \arctan(x) + \arctan(x^3)$
 - (a) Montrer que f réalise une bijection de $\mathbb R$ vers un intervalle que l'on déterminera . 1pt
 - (b) En déduire que (*) admet une solution unique c dans \mathbb{R} .
- 3. (a) Vérifier que $\frac{x+x^3}{1-x^4} = \frac{x}{1-x^2}$ pour tout $x \in \mathbb{R} \{-1, 1\}$.

(b) Déterminer la valeur exacte de c.

1pt

Exercice 5

Soit \overline{f} la fonction définie sur $\left]0, \frac{\pi}{2}\right]$ par $f(x) = \frac{1}{\sin(x)}$.

- 1. (a) Montrer que f est strictement décroissante sur $\left]0,\frac{\pi}{2}\right]$. 0.5pt
 - (b) Montrer que f réalise une bijection de \mathbb{R} vers $\left[1, +\infty\right[$.
 - (c) Dresser le tableau de variations de f^{-1} et calculer $\lim_{x \to +\infty} f^{-1}(x)$ 1pt

2. Question supplémentaire

(a) Montrer que
$$f(x) = \frac{1 + \tan^2(\frac{x}{2})}{2\tan(\frac{x}{2})}$$
 pour tout x de $\left]0, \frac{\pi}{2}\right]$.

(b) Montrer que
$$f^{-1}(x) = 2\arctan(x - \sqrt{x^2 - 1})$$
 pour tout x de $\left[1, +\infty\right[$.

(c) Vérifier que
$$f^{-1}(\sqrt{2}) = \frac{\pi}{4}$$
 et en déduire que $\tan(\frac{\pi}{8}) = \sqrt{2} - 1$.