,		
Δ1	LGEBRA	I
Δ		

Ciencia de la Computación

Trabajo de control. 2022

BAT B.

Nombres y Apellidos:__

Grupo:_____

- 1. Sean $z = \rho cis\alpha$ tal que $\Re e(z) > 0$, $\Im m(z) > 0$; $\theta \in \mathbb{R}$ tal que $0 \le \theta \le \frac{\pi}{2}$. Entonces $\frac{1}{2} + z = 2\cos\theta$. Demuestre que $\frac{1}{z_m} + z^m = 2\cos m\theta$.
- 2. Sea $q(x) = x^3 + 3x^2 4$. Halle el polinomio de menor grado $p(x) \in \mathbb{R}[X]$, mónico, que satisface simultáneamente las siguientes condiciones:
 - a) -i es raíz de p(x).

- c) Al dividir p(x) entre (x+1) queda resto 2.
- b) Tiene una raíz real de multiplicidad 2.
- d) p(x) y q(x) no son primos relativos.
- 3. Sea el siguiente sistema de ecuaciones lineales con coeficientes reales.

$$\begin{cases} x + y + kz = k^2 \\ x + ky + z = k \\ kx + y + z = 1 \end{cases}$$

Utilizando el Método de Gauss, halle las soluciones del sistema y clasifíquelo según la existencia y unicidad de sus soluciones para los valores del parámetro.

4. (Opcional) Sea $p(x) = x^2 + px + q$ y sean $\alpha, \beta \in \mathbb{R}$ raíces de p(x). Halle $p, q \in \mathbb{R}$ sabiendo que $\alpha^3 + \beta^3 = 0$. Justifique todas sus respuestas.

Éxitos.

ÁLGEBRA I Ciencia de la Computación 2022 Trabajo de control. Bat C Nombres y Apellidos: Grupo:___

- 1. Sean z_1 y z_2 números complejos no nulos tal que $|z_1 + z_2| = |z_1 z_2|$. Pruebe que $\frac{z_1}{z_2}$ es imaginario puro.
- 2. Halle el polinomio de menor grado $p(x) \in \mathbb{R}[X]$, mónico, que satisface simultáneamente las siguientes condiciones:
 - a) i es raíz de p(x).

- c) Al dividir p(x) entre (x-1) queda resto 18.
- b) Tiene una raíz real de multiplicidad 2.
- d) Sea $q(x) = x^3 + 5x^2 + 8x + 4$ entonces el $mcd(p(x), q(x)) \neq 1$.
- 3. Sea el siguiente sistema de ecuaciones lineales con coeficientes reales.

$$\begin{cases} \lambda x + y + z = 1\\ x + \lambda y + z = \lambda\\ x + y + \lambda z = \lambda^2 \end{cases}$$

Utilizando el Método de Gauss:

- a) Halle las soluciones del sistema.
- b) Clasifique el SEL según la existencia y unicidad de sus soluciones para los valores del parámetro.
- 4. (Opcional) Sea $p(x) = x^2 + px + q$ y sean $\alpha, \beta \in \mathbb{R}$ raíces de p(x). Halle $p, q \in \mathbb{R}$ sabiendo que $\alpha^3 + \beta^3 = 0$.

Justifique todas sus respuestas

Éxitos.

Bat A

Nombres y Apellidos:_

Grupo:_____

- 1. Resuelva uno de los dos incisos siguientes:
- a) Sean z_1 y z_2 números complejos no nulos tal que $|z_1 + z_2| = |z_1 z_2|$. Pruebe que $\frac{z_1}{z_2}$ es imaginario puro.
- b) Sean $z = \rho cis\alpha \in \mathbb{C}$ tal que $\Re e(z) > 0$, $\Im m(z) > 0$; $\theta \in \mathbb{R}$ tal que $0 \le \theta \le \frac{\pi}{2}$. Entonces $\frac{1}{z} + z = 2\cos\theta$. Demuestre que $\frac{1}{z^m} + z^m = 2\cos m\theta$.
- 2. Halle el polinomio de menor grado $p(x) \in \mathbb{R}[X]$, mónico, que satisface simultáneamente las siguientes condiciones:
 - a) i es raíz de p(x).

- c) Al dividir p(x) entre (x-1) queda resto 18.
- b) Tiene una raíz real de multiplicidad 2.
- d) Sea $q(x) = x^3 + 3x^2 4$ entonces el mcd(p(x), q(x)) = 1.
- 3. Sea el siguiente sistema de ecuaciones lineales con coeficientes reales.

$$\begin{cases} ax + y + z = 1\\ x + ay + z = a\\ x + y + az = a^2 \end{cases}$$

Utilizando el Método de Gauss:

- a) Halle las soluciones del sistema.
- b) Clasifique el SEL según la existencia y unicidad de sus soluciones para los valores del parámetro.
- 4. (Opcional) Sea $p(x) = x^2 + px + q$ y sean $\alpha, \beta \in \mathbb{R}$ raíces de p(x). Halle $p, q \in \mathbb{R}$ sabiendo que $\alpha^3 + \beta^3 = 0$.

 Listifique todas sus respuestas

 \(\begin{align*} \begin{align*} \text{Exitos.} \end{align*} \]