GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

January 14, 2004, 10:28:18; Search time 32.5171 Seconds Run on:

(without alignments)

165.965 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score:

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLODVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 1107863 segs, 158726573 residues

Word size : 0

Total number of hits satisfying chosen parameters: 75810

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : A Geneseq 19Jun03:*

> 1: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1980.DAT:* /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1981.DAT:*

> /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1982.DAT:* 3:

> /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1983.DAT:* 4:

> /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1984.DAT:* .5 : /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1985.DAT:*

> 7: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1986.DAT:*

> 8: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1987.DAT:*

> 9: /SIDS1/qcqdata/qeneseq/qeneseqp-embl/AA1988.DAT:* 10: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1989.DAT:*

> 11: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1990.DAT:*

12: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1991.DAT:*

13: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1992.DAT: * 14: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1993.DAT:*

/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1994.DAT:* 15:

/SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1995.DAT:* 16:

17: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1996.DAT:*

18: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1997.DAT:*

/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1998.DAT:* 20:

/SIDS1/gcgdata/geneseq/geneseqp-embl/AA1999.DAT:*

21: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2000.DAT:*

22: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA2001.DAT:*

23: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:* /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2003.DAT:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

		ક				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
				. .		
1	34	100.0	34	13	AAR22296	Human parathyroid
2	34	100.0	34	23	AAU73030	Parathyroid hormon
3	30	88.2	30	23	AAU73053	Parathyroid hormon
4	30	88.2	35	23	AAU73174	Parathyroid hormon
5	24	70.6	34	18	AAW08108	Human parathyroid
6	23	67.6	28	13	AAR22064	Modified hPTH(7-34
7	23	67.6	28	21	ABJ10776	Human parathyroid
8	23	67.6	28	23	AAE23734	Human parathyroid
9	23	67.6	28	23	AAU73044	Parathyroid hormon
10	23	67.6	30	23	AAE23752	Human parathyroid
11	23	67.6	32	21	AAB07468	Antigenic peptide
12	23	67.6	32	23	AAE23735	Human parathyroid
13	23	67.6	34	4	AAP30022	Human parathyroid-
14	23	67.6	34	6	AAP50377	[Met(O)8,18]hPTH-(
15	23	67.6	34	7	AAP60031	Sequence of the fi
16	23	67.6	34	11	AAR07919	Human parathyroid
17	23	67.6	34	13	AAR22283	Parathyroid hormon
18	23	67.6	34	13	AAR22292	Human parathyroid
19	23	67.6	34	13	AAR22293	Human parathyroid
20	23	67.6	34	13	AAR22294	Human parathyroid
21	23	67.6	34	14	AAR41549	[D-Ser3]hPTH (1-34
22	23	67.6	34	14	AAR41550	[D-Ala3]hPTH (1-34
23	23	67.6	34	14	AAR41570	[Gln25]hPTH (1-34)
24	23	67.6	34	15	AAR49697	Sequence of varian
25	23	67.6	34	15	AAR49698	Sequence of varian
26	23	67.6	34	15	AAR58291	[Lys(For)26, Lys(F
27	23	67.6	34	15	AAR58228	[D-Asp30] -hPTH(1-3
28	23	67.6	34	15	AAR58016	N-alpha-Isopropyl-
29	23	67.6	34	15	AAR58017	[Lys(N-epsilon-Iso
30	23	67.6	34	15	AAR55724	Parathormone N-ter
31	23	67.6	34	16	AAR74521	Human parathyroid
32	23	67.6	34	17	AAW99449	Human parathyroid
33	23	67.6	34	17	AAW15812	[Trp(10)]-hPTH(1-3
34	23	67.6	34	17	AAR99978	Human parathyroid
35	23	67.6	34	17	AAR98951	Target peptide (PT
36	23	67.6	34	17	AAR98966	PTH(1-34). Not sp
37	23	67.6	34	17	AAR88835	Human parathyroid
38	23	67.6	34	18	AAW24273	Wild type parathyr
39	23	67.6	34	18	AAW08120	Human PTH derivati
40	23	67.6	34	18	AAW08109	Human parathyroid
41	23	67.6	34	18	AAW08113	Human PTH derivati
42	23	67.6	34	18	AAW08114	Human PTH derivati
43	23	67.6	34	18	AAW08117	Human PTH derivati
44	23	67.6	34	18	AAW08118	Human PTH derivati
45	23	67.6	34	18	AAW08119	Human PTH derivati
46	23	67.6	34	18	AAW19994	Cyclised human par
47	-23	67.6	34	18	AAW20000	Cyclised human par
48	23	67.6	34	18	AAW20006	Cyclised human par
49	23	67.6	34	18	AAW17941	Human parathyroid
50	23	67.6	34	18	AAW17943	Human parathyroid

51	23	67.6	34	18	AAW17939		Human parathyroid
52	23	67.6	34	18	AAW17957		Human parathyroid
53	23	67.6	34	18	AAW01609		Parathryoid hormon
54	23	67.6	34	19	AAW67274		Parathyroid hormon
55	23	67.6	34	19	AAW67276		Parathyroid hormon
56	23	67.6	34	19	AAW67278		Parathyroid hormon
57	23	67.6	34	19	AAW67290		Parathyroid hormon
58	23	67.6	34	19	AAW67291		Parathyroid hormon
59	23	67.6	34	19	AAW67299		Parathyroid hormon
60	23	67.6	34	19	AAW61658		Parathyroid hormon
61	23	67.6	34	19	AAW65975		Human parathyroid
62	23	67.6	34	20	AAY50593		Resin bound cyclic
63	23	67.6	34	20	AAY17752		Human parathyroid
6 4	23	67.6	34	20	AAY14151		Human parathyroid
65	23	67.6	34	20	AAY02579	~	N-terminal 34 resi
66	23	67.6		20			
67			34		AAW81871		Human PTH N-termin
	23	67.6	34	21	ABJ10706		Human parathyroid
68	23	67.6	34	21	ABJ10712		Human parathyroid
69	23	67.6	34	21	ABJ10713		Human parathyroid
70	23	67.6	34	21	ABJ10714		Human parathyroid
71	23	67.6	34	21	ABJ10717		Human parathyroid
72	23	67.6	34	21	ABJ10719		Human parathyroid
73	23	67.6	34	21	ABJ10722		Human parathyroid
74	23	67.6	34	21	ABJ10724		Human parathyroid
75	23	67.6	34	21	ABJ10727		Human parathyroid
76	23	67.6	34	21	ABJ10729		Human parathyroid
77	23	67.6	34	21	ABJ10730		Human parathyroid
78	23	67.6	34	21	ABJ10733		Human parathyroid
79	23	67.6	34	21	ABJ10736		Human parathyroid
80	23	67.6	34	21	ABJ10737		Human parathyroid
81	23	67.6	34	21	ABJ10769		Human parathyroid
82	23	67.6	34	21	AAB07454		Amino acids 1-34 o
83	23	67.6	34	21	AAY98010		Human amino-termin
84	23	67.6	34	21	AAY98011		Human amino-termin
85	23	67.6	34	21	AAY98014		Human amino-termin
86	23	67.6	34	21	AAY98017		Human amino-termin
87	23	67.6	34	21	AAY82631		Human parathyroid
88	23	67.6	34	21	AAY68763		Amino acids 1-34 o
89	23	67.6	34	22	AAB84778		Native rat parathy
90	23	67.6	34	22	AAB96898		Human parathyroid
91	23	67.6	34	22	AAB81079		Human parathyroid
92	23	67.6	34	22	AAB91098		Parathyroid hormon
93	23	67.6	34	22	AAB91113		Parathyroid hormon
94	23	67.6	34	22	AAB61638		Peptide #1 that ca
95	23	67.6	34	23	ABJ05328		Human PTH(1-34) pe
96	23	67.6	34	23	AAE23727		Human parathyroid
97	23	67.6	34	23	AAE23728	*	Human parathyroid
98	23	67.6	34	23	ABB06329		Human parathyroid
99	23	67.6	34	23	ABB08595		C-terminal truncat
100	23	67.6	34	23	AAE18395		
101	23	67.6	34				Human PTH peptide
101				23	AAE18399		Human PTH peptide
	23	67.6	34	23	ABB07147		Parathyroid hormon
103	23	67.6	34	23	AAU73028		Parathyroid hormon
104	23	67.6	34	23	AAU73029		Parathyroid hormon
105	23	67.6	34	23	AAU73032		Parathyroid hormon
106	23	67.6	34	24	ABP71500		Human parathyroid
107	23	67.6	34	24	ABG74235		Human parathyroid

165	23	67.6	36	15	AAR58197	[Ala3] -hPTH(1-36) -
166	23	67.6	36	15	AAR58198	[D-Ser3]-hPTH(1-36
167	23	67.6	36	15	AAR58199	[D-Glu4]-hPTH(1-36
168	23	67.6	36	15	AAR58200	[D-His9]-hPTH(1-36
169	23	67.6	36	15	AAR58201	[Ala10]-hPTH(1-36)
170	23	67.6	36	15	AAR58202	[D-Asn10] -hPTH(1-3
171	23	67.6	36	15	AAR58210	[D-His14] -hPTH(1-3
172	23	67.6	36	15	AAR58211	[D-Asn16] -hPTH(1-3
173	23	67.6	36	15	AAR58213	[D-Ser17] -hPTH(1-3
174	23	67.6	36	15		
175					AAR58215	[D-Glu19] -hPTH(1-3
	23	67.6	36	15	AAR58220	[D-Lys26] -hPTH(1-3
176	23	67.6	36	15	AAR58169	[D-Pro1] -hPTH(1-36
177	23	67.6	36	15	AAR58170	[Nva1] -hPTH(1-36) -
178	23	67.6	36	15	AAR58171	[N-Me-Ser1]-hPTH(1
179	23	67.6	36	15	AAR58172	[Indole-2-carboxyl
180	23	67.6	36	15	AAR58173	[Indole-3-carboxyl
181	23	67.6	36	15	AAR58174	[Pyridine-3-carbox
182	23	67.6	36	15	AAR58175	[Pyridine-2-carbox
183	23	67.6	36	15	AAR58176	[Hexahydropyridazi
184	23	67.6	36	15	AAR58177	[Morpholine-2-carb
185	23	67.6	36	15	AAR58178	[Pro1] -hPTH(1-36) -
186	23	67.6	36	15	AAR58179	[Leu1] -hPTH(1-36) -
187	23	67.6	36	15	AAR58180	[Ile1] -hPTH(1-36) -
188	23	67.6	36	15	AAR58182	[Nva8] -hPTH(1-36) -
189	23	67.6	36	15	AAR58026	
190	23	67.6	36	15		N-alpha-methyl[Ala
191	23				AAR58168	[1-amino-cyclopent
192	23 23	67.6	37	12	AAR11882	Parathyroid hormon
		67.6	37	13	AAR24778	hPTH(1-37)-amide/e
193	23	67.6	37	15	AAR58244	[Ala0]-hPTH(1-36)-
194	23	67.6	37	15	AAR58245	[Pro0] -hPTH(1-36) -
195	23	67.6	37	22	AAB86226	Human parathyroid
196	23	67.6	37	22	AAB86229	Human parathyroid
197	23	67.6	37	23	ABB82203	Human parathyroid
198	23	67.6	37	23	AAU73027	Parathyroid hormon
199	23	67.6	38	15	AAR58269	[Leu8]-hPTH(1-38)-
200	23	67.6	38	15	AAR58282	[Trp(SO2Pmc)23]-hP
201	23	67.6	38	15	AAR58283	[Trp(Pmc)23]-hPTH(
202	23	67.6	38	15	AAR58018	Isopropyl-[Lys(Iso
203	23	67.6	38	15	AAR58019	N-alpha-methyl [Ala
204	23	67.6	38	15	AAR58022	[Ile1]-hPTH(1-38)-
205	23	67.6	38	15	AAR58023	[Ala1, Abu2 or Nva2
206	23	67.6	38	15	AAR58024	[Ala1, Ile2] -hPTH(1
207	23	67.6	38	15	AAR58028	[Thr1] -hPTH(1-38) -
208	23	67.6	38	15	AAR58029	[Leu1] -hPTH(1-38) -
209	23	67.6	38	15		
210	23	67.6			AAR58030	[Abul or Gabal] -hP
			38	15	AAR54234	PTH N-terminal. S
211	23	67.6	38	17	AAR98958	Target peptide (PT
212	23	67.6	38	20	AAY02580	N-terminal 38 resi
213	23	67.6	38	22	AAB91101	Parathyroid hormon
214	23	67.6	38	23	AAE23729	Human parathyroid
215	23	67.6	38	23	AAE18400	Human PTH peptide
216	23	67.6	38	23	AAU73026	Parathyroid hormon
217	22	64.7	28	13	AAR22065	Modified [Tyr_34]h
218	22	64.7	31	5	AAP40760	Human parathyroid
219	22	64.7	32	5	AAP40427	Parathyroid antago
220	22	64.7	33	17	AAR88841	Human parathyroid
221	22	64.7	33	21	AAY98012	Human amino-termin

108	23	67.6	35	22	AAB91112	Paranta de A
109	23	67.6	35			Parathyroid hormon
110	23	67.6	35			Parathyroid hormon
111	23	67.6	36		-	Parathyroid hormon
112	23	67.6	36			Human parathyroid
113	23	67.6	36			Human paprthyroid
114	23	67.6	36		-	Ser-Val-(hPTH 3-35
115	23	67.6				[D-Leu24]-hPTH(1-3
116	23		36			[D-Lys27] -hPTH(1-3
117	23	67.6	36			[D-Leu28] -hPTH(1-3
118		67.6	36		AAR58294	[D-Phe34] -hPTH(1-3
119	23	67.6	36		AAR58295	[D-Val35] -hPTH(1-3
	23	67.6	36		AAR58296	[Ala35]-hPTH(1-36)
120	23	67.6	36	15	AAR58297	[Pro35]-hPTH(1-36)
121	23	67.6	36	15	AAR58298	[NMeVal35]-hPTH(1-
122	23	67.6	36	15	AAR58299	[Thr35,Ala36]-hPTH
123	23	67.6	36	15	AAR58300	[D-Ala36] -hPTH(1-3
124	23	67.6	36	15	AAR58301	[NMeAla36] -hPTH(1-
125	23	67.6	36	15	AAR58254	[4-aminosalicylic
126	23	67.6	36	15	AAR58255	[TMSA1] -hPTH(1-36)
127	23	67.6	36	15	AAR58256	[Phe1] -hPTH(1-36) -
128	23	67.6	36	15	AAR58257	[Propargylglycin1]
129	23	67.6	36	15	AAR58259	[aBU2] -hPTH(1-36) -
130	23	67.6	36	15	AAR58260	
131	23	67.6	36	15	AAR58261	[D-Val2] -hPTH(1-36
132	23		36	15	AAR58262	[Tert.Leu] -hPTH(1-
133	23	67.6	36	15	AAR58263	[Ala1] -hPTH(1-36) -
134	23	67.6	36	15	AAR58264	[D-Ile5]-hPTH(1-36
135	23	67.6	36	15	AAR58265	[D-Gln6]-hPTH(1-36
136	23	67.6	36	15	AAR58266	[D-Leu7] -hPTH(1-36
137	23	67.6	36	15	AAR58267	[Nle8] -hPTH(1-36) -
138	23	67.6	36	15		[Phe8] -hPTH(1-36) -
139	23	67.6	36	15	AAR58268	[Cha8] -hPTH(1-36) -
140	23	67.6	36		AAR58270	[D-Leull] -hPTH(1-3
141	23	67.6	36	15	AAR58271	[Ala11] -hPTH(1-36)
142	23	67.6		15	AAR58272	[D-Lys13]-hPTH(1-3
143	23	67.6	36	15	AAR58273	[D-Leu15] -hPTH(1-3
144	23		36	15	AAR58276	[Met (O2) 18] -hPTH(1
145		67.6	36	15	AAR58278	[D-Met18]-hPTH(1-3)
145	23	67.6	36	15	AAR58280	[D-Arg20]-hPTH(1-3
	23	67.6	36	15	AAR58281	[D-Val21]-hPTH(1-3
147	23	67.6	36	15	AAR58284	[D-Trp23]-hPTH(1-3
148	23	67.6	36	15	AAR58227	[D-Gln29]-hPTH(1-3
149	23	67.6	36	15	AAR58230	[D-Val31] -hPTH(1-3
150	23	67.6	36	15	AAR58233	[D-His32] -hPTH(1-3
151	23	67.6	36	15	AAR58235	[D-Asn33] -hPTH(1-3
152	23	67.6	36	15	AAR58237	[NMePhe34] -hPTH(1-
153	23	67.6	36	15	AAR58238	[D-Asp30] -hPTH(1-3
154	23	67.6	36	15	AAR58242	[Lys(Isopropyl)13]
155	23	67.6	36	15	AAR58243	Propargyl-[A1]-hPT
156	23	67.6	36	15	AAR58246	Acetyl-hPTH(1-36)-
157	23	67.6	36	15	AAR58247	[Hyp1] -hPTH(1-36)-
158	23	67.6	36	15	AAR58248	
159	23	67.6	36	15	AAR58249	N-Dimethyl-[Ala1]-
160	23	67.6	36	15	AAR58250	[D-Ser1] -hPTH(1-36
161	23	67.6	36	15	AAR58251	[Lys (For) 1] -hPTH(1
162	23	67.6	36	15	AAR58251	[D-glyceric acid1]
163	23	67.6	36	15 15	AAR58252 AAR58253	[Asn1] -hPTH(1-36) -
164	23	67.6	36	15		[4-aminobenzoic ac
	-3	37.0	20	1)	AAR58196	[D-Phe34, D-Ala36]

222	22	64.7	33	21	AAY98015	Human amino-termin
223	22	64.7	33	21	AAY98018	Human amino-termin
224	22	64.7	34	11	AAR07922	Human parathyroid
225	22	64.7	34	11	AAR08300	Human parathyroid
226	22	64.7	34	15	AAR58193	[L8,D10,K11,T33,A3
227	22	64.7	34	15	AAR58194	[A1, H5, L8, D10, K11,
228	22	64.7	34	18	AAW08121	Human PTH derivati
229	22	64.7	34	18	AAW08115	Human PTH derivati
230	22	64.7	34	18	AAW08116	Human PTH derivati
231	22	64.7	34	18	AAW17955	Human parathyroid
232	22	64.7	34	18	AAW17959	Human parathyroid
233	22	64.7	34	19	AAW48392	Human parathyroid
234	22	64.7	34	21	ABJ10772	Human parathyroid
235	22	64.7	34	21	ABJ10773	Human parathyroid
236	22	64.7	34	22	AAB96929	Human parathyroid
237	22	64.7	36	15	AAR58191	[Ala34] -hPTH(1-36)
238	22	64.7	36	15	AAR58203	[Ala12] -hPTH(1-36)
		64.7		3	AAP20248	
239	22		38			Parathyroid hormon
240	22	64.7	38	15	AAR58089	[Arg12] -hPTH(1-38)
241	22	64.7	38	15	AAR58090	[Ser12]-hPTH(1-38)
242	21	61.8	28	13	AAR22066	Modified [D-Trp_12
243	21	61.8	32	17	AAR88840	Human parathyroid
244	21	61.8	34	11	AAR08303	Human parathyroid
245	21	61.8	34	15	AAR58181	[Thr33, Ala34]-hPT
246	21	61.8	34	18	AAW08112	Human PTH derivati
247	21	61.8	34	19	ÂAW42614	Human parathyroid
248	21	61.8	34	22	AAB96893	Rat parathyroid ho
249	21	61.8	34	22	AAB96930	Rat parathyroid ho
250	21	61.8	36	15	AAR58236	[Ala33] -hPTH(1-36)
251	21	61.8	36	15	AAR58204	[Gln13] -hPTH(1-36)
252	21	61.8	36	15	AAR58205	[His13] -hPTH(1-36)
253	21	61.8	36	15	AAR58206	[Leu13] -hPTH(1-36)
254	21	61.8	36	15	AAR58207	[Ala13]-hPTH(1-36)
255	21	61.8	38	15	AAR58161	[Pro3,Thr33]-hPTH(
256	21	61.8	38	15	AAR58162	[Arg33] -hPTH(1-38)
257	21	61.8	38	15	AAR58163	[Pro33]-hPTH(1-38)
258	21	61.8	38	15	AAR58164	[Asp33] -hPTH(1-38)
259	21	61.8	38	15	AAR58165	[Ile33]-hPTH(1-38)
260	21	61.8	38	15	AAR58166	[Lys33] -hPTH(1-38)
261	21	61.8	38	15	AAR58075	[Ser33] -hPTH(1-38)
262	21	61.8	38	15	AAR58076	[Thr33] -hPTH(1-38)
263	21	61.8	38	15		[Leu33] -hPTH(1-38)
					AAR58077	
264	21	61.8	38	15	AAR58078	[Gly33] -hPTH(1-38)
265	21	61.8	38	15	AAR58084	[Gln33]-hPTH(1-38)
266	21	61.8	38	15	AAR58091	[Cys13] -hPTH(1-38)
267	21	61.8	38	15	AAR58092	[Ile13]-hPTH(1-38)
268	21	61.8	38	15	AAR58093	[Asn13] -hPTH(1-38)
269	21	61.8	38	15	AAR58094	[Trp13] -hPTH(1-38)
270	21	61.8	38	15	AAR58095	[Asp13] -hPTH(1-38)
271	21	61.8	38	15	AAR58096	[Val13]-hPTH(1-38)
272	21	61.8	38	15	AAR58097	[Thr13] -hPTH(1-38)
273	21	61.8	38	15	AAR58098	[Ser13] -hPTH(1-38)
274	21	61.8	38	15	AAR58099	[Tyr13] -hPTH(1-38)
275	21	61.8	38	15	AAR58100	[Met13] -hPTH(1-38)
						[Gln13] -hPTH(1-38)
276	21	61.8	38	15	AAR58101	
277	21	61.8	38	15	AAR58102	[Leu13] -hPTH(1-38)
278	21	61.8	38	15	AAR58103	[Ala13] -hPTH(1-38)
						•

						[al12] hpmi[/1 20]
279	21	61.8	38	15	AAR58104	[Gly13] -hPTH(1-38)
280	20	58.8	30	6	AAP50665	Human parathyroid
281	20	58.8	31	17	AAR88830	Human parathyroid
282	20	58.8	31	19	AAW42059	Human parathyroid
283	20	58.8	31	19	AAW42051	Human parathyroid
284	20	58.8	31	20	AAY02578	N-terminal 31 resi
285	20	58.8	31	22	AAB81080	Human parathyroid
286	20	58.8	31	22	AAB91097	Parathyroid hormon
287	20	58.8	31	23	AAE23720	Human parathyroid
288	20	58.8	31	23	AAU73039	Parathyroid hormon
289	20	58.8	32	23	AAU73176	Parathyroid hormon
		58.8	34	15	AAR58232	[Lys32] -hPTH(1-34)
290	20		34	18	AAW08129	Human PTH derivati
291	20	58.8				Parathyroid hormon
292	20	58.8	34	22	AAB84771	
293	20	58.8	34	22	AAB84826	Parathyroid hormon
294	20	58.8	34	22	AAB96916	Parathyroid hormon
295	20	58.8	34	22	AAB96919	Parathyroid hormon
296	20	58.8	36	15	AAR58234	[Ala32] -hPTH(1-36)
297	20	58.8	36	15	AAR58209	[Ala14] - hPTH(1-36)
298	20	58.8	38	15	AAR58037	[Ser14]-hPTH(1-38)
299	20	58.8	38	15	AAR58105	[Val14] -hPTH(1-38)
300	20	58.8	38	15	AAR58106	[Ala14] -hPTH(1-38)
301	20	58.8	38	15	AAR58107	[Lys14] - hPTH(1-38)
302	20	58.8	38	15	AAR58108	[Arg14] -hPTH(1-38)
303	20	58.8	38	15	AAR58109	[Thr14]-hPTH(1-38)
304	20	58.8	38	15	AAR58110	[Ile14]-hPTH(1-38)
305	20	58.8	38	15	AAR58111	[Tyr14] -hPTH(1-38)
			30	17	AAR88832	Human parathyroid
306	19	55.9		23	AAU73051	Parathyroid hormon
307	19	55.9	30			Parathyroid hormon
308	19	55.9	30	23	AAU73052	
309	19	55.9	30	23	AAU73055	Parathyroid hormon
310	19	55.9	31	23	AAU73177	Parathyroid hormon
311	19	55.9	34	18	AAW17942	Human parathyroid
312	19	55.9	34	18	AAW17948	Human parathyroid
313	19	55.9	34	18	AAW17968	Human parathyroid
314	19	55.9	34	18	AAW17952	Human parathyroid
315	19	55.9	34	19	AAW67277	Parathyroid hormon
316	19	55.9	34	19	AAW67283	Parathyroid hormon
317	19	55.9	34	19	AAW67287	Parathyroid hormon
318	19	55.9	34	19	AAW48394	Human PTH/PTHrP hy
319	19	55.9	36	15	AAR58274	[Ala15] -hPTH(1-36)
320	19	55.9	36	15		[Ala31] -hPTH(1-36)
321	19	55.9	38	15		[Ile15] -hPTH(1-38)
322	19	55.9	38	15	AAR58167	[Ile31,Arg33]-hPTH
		55.9	38	15		[Tyr15] -hPTH(1-38)
323	19					[Arg15] -hPTH(1-38)
324	19	55.9	38	15		
325	19	55.9	38	15		[Val15] -hPTH(1-38)
326	18	52.9	28	13		Modified bovine PT
327	18	52.9	28	23	AAU73046	Parathyroid hormon
328	18	52.9	29	17		Human parathyroid
329	18	52.9	29	23		Parathyroid hormon
330	18	52.9	30	23	AAU73178	Parathyroid hormon
331	18	52.9	32	22	AAB91096	Parathyroid hormon
332	18	52.9	32	23	AAE23739	Bovine parathyroid
333	18	52.9	32	23		Bovine PTH peptide
334	18	52.9	32	23		Parathyroid hormon
335	18	52.9	34	11		Bovine parathyroid

336	18	52.9	34	11	AAR08299	Bovine parathyroid
337	18	52.9	34	14	AAR41551	[Thr16]hPTH (1-34)
			34	14	AAR41552	[Glu16]hPTH (1-34)
338	18	52.9				
339	18	52.9	34	14	AAR41553	[Lys16]hPTH (1-34)
340	18	52.9	34	14	AAR41571	[D-Lys16]hPTH (1-3
341	18	52.9	34	14	AAR41573	[Gln16]hPTH (1-34)
342	18	52.9	34	14	AAR41574	[Ser16]hPTH (1-34)
343	18	52.9	34	14	AAR41575	[Gly16]hPTH (1-34)
344	18	52.9	34	14	AAR41576	[Lys16]hPTH (1-34)
345	18	52.9	134	17	AAR99979	Bovine parathyroid
346	18	52.9	34	18	AAW08124	Human PTH derivati
347	18	52.9	34	18	AAW08111	Human PTH derivati
348	18	52.9	34	18	AAW19995	Cyclised bovine pa
349	18	52.9	34	18	AAW20001	Cyclised bovine pa
350	18	52.9	34	18	AAW20007	Cyclised bovine pa
351	18	52.9	34	18	AAW17953	Human parathyroid
352	18	52.9	34	18	AAW17963	Human PTH analogue
353	18	52.9	34	19	AAW61659	Parathyroid hormon
					AAW65976	Bovine parathyroid
354	18	52.9	34	19		_ _
355	18	52.9	34	19	AAW42615	Bovine parathyroid
356	18	52.9	34	20	AAW81872	Bovine PTH N-termi
357	18	52.9	34	22	AAB84775	Parathyroid hormon
358	18	52.9	34	22	AAB96922	Parathyroid hormon
359	18	52.9	34	23	AAE23738	Bovine parathyroid
						Bovine PTH peptide
360	18	52.9	34	23	AAE18394	
361	18	52.9	34	23	AAU73034	Parathyroid hormon
362	18	52.9	36	15	AAR58275	[Ala16] -hPTH(1-36)
363	18	52.9	36	15	AAR58229	[Ala30] -hPTH(1-36)
364	18	52.9	37	22	AAB86230	Bovine parathyroid
365	18	52.9	37	22	AAB86233	Canine parathyroid
366	18	52.9	37	23	ABB82204	Bovine parathyroid
367		52.9	38			[Gln16] -hPTH(1-38)
	18			15	AAR58036	
368	18	52.9	38	15	AAR58115	[Lys16] -hPTH(1-38)
369	18	52.9	38	15	AAR58116	[Ser16] -hPTH(1-38)
370	18	52.9	38	15	AAR58117	[Leu16] -hPTH(1-38)
371	18	52.9	38	15	AAR58118	[Ala16]-hPTH(1-38)
372	18	52.9	38	15	AAR58119	[Gly16]-hPTH(1-38)
373	17	50.0	28	13	AAR22059	Modified [Tyr_34]b
374	17	50.0	28	13	AAR22060	Modified [D-Trp_12
375	17	50.0	28	17	AAR88837	Human parathyroid
376	17	50.0	28	21	AAY98048	Human parathyroid
377	17	50.0	28	21	AAY98050	Human parathyroid
378	17	50.0	28	21	AAY98052	Human parathyroid
379	17	50.0	28	22	AAB91115	Parathyroid hormon
				23		Bovine PTH peptide
380	17	50.0	28		AAE18405	_ _ _ _ _ _
381	17	50.0	28	23	AAU73047	Parathyroid hormon
382	17	50.0	28	23	AAU73050	Parathyroid hormon
383	17	50.0	28	23	AAU73064	Parathyroid hormon
384	17	50.0	29	12	AAR11731	Adenine-rich PTH-(
385	17	50.0	29	23	AAU73179	Parathyroid hormon
386	17	50.0	31	5	AAP40510	Bovine parathyroid
						Parathyroid hormon
387	17	50.0	31	21	AAY96973	
388	17	50.0	31	21	AAY96974	Parathyroid hormon
389	17	50.0	34	11	AAR07921	Bovine parathyroid
390	17	50.0	34	11	AAR08302	Bovine parathyroid
391	17	50.0	34	14	AAR41577	[Lys16, Asp17]hPTH
392	17	50.0	34	14	AAR41578	[Lys14,15,16,17]hP
			_	_		

393	17	50.0	34	14	AAR41579	[Lys15,15,17]hPTH
394	17	50.0	34	14	AAR41580	[Lys16,17]hPTH (1-
395	17	50.0	34	14	AAR41581	[Arg16,17]hPTH (1-
396	17	50.0	34	14	AAR41582	[Arg15,16,17]hPTH
397	17	50.0	34	17	AAW14308	Cyclic parathyroid
398	17	50.0	34	17	AAW14309	Cyclic parathyroid
399	17	50.0	34	17	AAW14310	Cyclic parathyroid
400	17	50.0	34	17	AAW14311	Cyclic parathyroid
401	17	50.0	34	17	AAW14312	Cyclic parathyroid
402	17	50.0	34	17	AAW14313	Cyclic parathyroid
403	17	50.0	34	17	AAW14314	Cyclic parathyroid
404	17	50.0	34	17	AAW14315	Cyclic parathyroid
405	17	50.0	34	18	AAW08122	Human PTH derivati
406	17	50.0	34	18	AAW08123	Human PTH derivati
407	17	50.0	34	18	AAW17958	Human parathyroid
408	17	50.0	34	18	AAW01610	Parathryoid hormon
409	17	50.0	34	19	AAW67293	Parathyroid hormon
410	17	50.0	36	15	AAR58190	[Ala29] -hPTH(1-36)
411	17	50.0	36	15	AAR58212	[Ala17] -hPTH(1-36)
412	17	50.0	38	15	AAR58120	[Ala17] -hPTH(1-38)
413	17	50.0	38	15	AAR58121	[Met17] -hPTH(1-38)
414	17	50.0	38	15	AAR58122	[Ile17] -hPTH(1-38)
415	16	47.1	28	21	ABJ10775	Human parathyroid
		47.1	34	13	AB010773 AAR22291	Human parathyroid
416	16			13		Human parathyroid
417	16	47.1	34		AAR22295	
418	16	47.1	34	15	AAR58239	Isopropyl-[Nle8,18
419	16	47.1	34	15	AAR58241	[Nle8,18,D-Asn33,D
420	16	47.1	34	17	AAW14316	Cyclic parathyroid
421	16	47.1	34	17	AAR99981	Porcine parathyroi
422	16	47.1	34	18	AAW17947	Human parathyroid
423	16	47.1	34	18	AAW17951	Human parathyroid
424	16	47.1	34	19	AAW67282	Parathyroid hormon
425	16	47.1	34	19	AAW67286	Parathyroid hormon
426	16	47.1	34	19	AAW67298	Parathyroid hormon
427	16	47.1	34	19	AAW61660	Parathyroid hormon
428	16	47.1	34	19	AAW65977	Porcine parathyroi
429	16	47.1	34	19	AAW42616	Porcine parathyroi
430	16	47.1	34	20	AAW92218	Analogue of parath
431	16	47.1	34	20	AAW92219	Analogue of parath
432	16	47.1	34	20	AAY03920	Analogue of parath
433	16	47.1	34	20	AAY03921	Analogue of parath
434	16	47.1	34	20	AAY03922	Analogue of parath
435	16	47.1	34	20	AAY03923	Analogue of parath
436	16	47.1	34	20	AAY03924	Analogue of parath
437	16	47.1	34	20	AAY03925	Analogue of parath
438	16	47.1	34	20	AAY03926	Analogue of parath
439	16	47.1	34	20	AAY03927	Analogue of parath
440	16	47.1	34	20	AAY03928	Analogue of parath
441	16	47.1	34	20	AAY03929	Analogue of parath
442	16	47.1	34	20	AAY03930	Analogue of parath
443	16	47.1	34	20	AAY03931	Analogue of parath
444	16	47.1	34	20	AAY03932	Analogue of parath
445	16	47.1	34	20	AAY03933	Analogue of parath
446	16	47.1	34	20		Analogue of parath
447	16	47.1	34	20	AAW92237	Analogue of parath
448	16	47.1	34	20	AAW92238	Analogue of parath
449	16	47.1	34	20	AAW92239	Analogue of parath
	_ =					

450	1.0	47 1	2.4	20	AAW92240	Analogue	o∙F	narath
450 451	16 16	47.1 47.1	34 34	20	AAW92240 AAW92241	Analogue Analogue		
451	16	47.1	34	20	AAW92241	Analogue		-
453	16	47.1	34	20	AAW92243	Analogue		_
454	16	47.1	34	20	AAW92244	Analogue		-
455	16	47.1	34	20	AAW92245	Analogue		
456	16	47.1	34	20	AAW92246	Analogue		
457	16	47.1	34	20	AAW92247	Analogue		
458	16	47.1	34	20	AAW92248	Analogue	of	parath
459	16	47.1	34	20	AAW92249	Analogue	of.	parath
460	16	47.1	34	20	AAW92250	Analogue		
461	16	47.1	34	20	AAY03919	Analogue		
462	16	47.1	34	20	AAW92220	Analogue		_
463	16	47.1	34	20	AAW92221	Analogue		
464	16	47.1	34	20	AAW92222	Analogue		
465	16	47.1	34	20	AAW92223	Analogue		_
466	16	47.1	34	20	AAW92224	Analogue		
467	16	47.1	34	20	AAW92225	Analogue		
468	16	47.1	34	20	AAW92226	Analogue		
469	16	47.1	34	20	AAW92227	Analogue		
470	16	47.1	34	20	AAW92228	Analogue		
471	16	47.1	34	20	AAW92229	Analogue		
472	16	47.1	34	20	AAW92230	Analogue		_
473	16	47.1	34	20	AAW92231	Analogue		_
474 475	16 16	47.1	34 34	20 20	AAW92232	Analogue		_
475 476	16	47.1 47.1	34	20	AAW92233 AAW92234	Analogue Analogue		
477	16	47.1	34	20	AAW92234 AAW92235	Analogue		
478	16	47.1	34	20	AAY03947	Analogue		
479	16	47.1	34	20	AAY03948	Analogue		_
480	16	47.1	34	20	AAW92204	Analogue		
481	16	47.1	34	20	AAW92205	Analogue		
482	16	47.1	34	20	AAW92207	Analogue		
483	16	47.1	34	20	AAW92208	Analogue		
484	16	47.1	34	20	AAW92209	Analogue		
485	16	47.1	34	20	AAW92210	Analogue		
486	16	47.1	34	20	AAW92211	Analogue		
487	16	47.1	34	20	AAW92212	Analogue	of	parath
488	16	47.1	34	20	AAW92213	Analogue	of	parath
489	16	47.1	34	20	AAW92214	Analogue		
490	16	47.1	34	20	AAW92215	Analogue	of	parath
491	16	47.1	34	20	AAW92216	Analogue		
492	16	47.1	34	20	AAW92217	Analogue		
493	16	47.1	34	20	AAW92206	Analogue		
494	16	47.1	34	20	AAW92203	Analogue		
495	16	47.1	34	20	AAY03934	Analogue		-
496	16	47.1	34	20	AAY03935	Analogue		
497	16	47.1	34	20	AAY03936	Analogue		
498	16	47.1	34	20	AAY03937	Analogue		
499	16	47.1	34	20	AAY03938	Analogue		
500	16	47.1	34	20	AAY03939	Analogue		
501	16	47.1	34	20	AAY03940	Analogue		
502	16	47.1	34	20	AAY03941	Analogue		
503	16	47.1	34	20	AAY03942	Analogue		_
504 505	16 16	47.1	34	20	AAY03943	Analogue		
505 506	16 16	47.1	34	20 20	AAY03944	Analogue Analogue		
200	TO	47.1	34	20	AAY03945	Anarogue	υL	haracii

. !	507	16	47.1	34	20	AAY03946	Analogue of parath
	508	16	47.1	34	20	AAY03949	Analogue of parath
	509	16	47.1	34	20	AAY03950	Analogue of parath
	510	16	47.1	34	20	AAY03951	Analogue of parath
	511	16	47.1	34	20	AAY03952	
				34			Analogue of parath
	512	16	47.1		20	AAY03953	Analogue of parath
	513	16	47.1	34	20	AAY03954	Analogue of parath
	514	16	47.1	34	20	AAY03955	Analogue of parath
	515	16	47.1	34	20	AAY03956	Analogue of parath
	516	16	47.1	34	20	AAW92198	Analogue of parath
!	517	16	47.1	34	20	AAW92199	Analogue of parath
,	5 1 8	16	47.1	34	20	AAW92200	Analogue of parath
!	519	16	47.1	34	20	AAW92201	Analogue of parath
!	520	16	47.1	34	20	AAW92202	Analogue of parath
Į	521	16	47.1	34	20	AAW92183	Analogue of parath
	522	16	47.1	34	20	AAW92184	Analogue of parath
	523	16	47.1	34	20	AAW92185	Analogue of parath
	524	16	47.1	34	20	AAW92186	Analogue of parath
	525	16	47.1	34	20	AAW92187	Analogue of parath
			47.1				
	526	16		34	20	AAW92167	Analogue of parath
	527	16	47.1	34	20	AAW92188	Analogue of parath
	528	16	47.1	34	20	AAW92189	Analogue of parath
	529	16	47.1	34	20	AAW92190	Analogue of parath
	530	16	47.1	34	20	AAW92191	Analogue of parath
	531	16	47.1	34	20	AAW92192	Analogue of parath
	532	16	47.1	34	20	AAW92193	Analogue of parath
!	533	16	47.1	34	20	AAW92194	Analogue of parath
!	534	16	47.1	34	20	AAW92195	Analogue of parath
ļ	535	16	47.1	34	20	AAW92196	Analogue of parath
!	536	16	47.1	34	20	AAW92197	Analogue of parath
	537	16	47.1	34	20	AAW92166	Analogue of parath
	538	16	47.1	34	20	AAW92168	Analogue of parath
	539	16	47.1	34	20	AAW92169	Analogue of parath
	540	16	47.1	34	20	AAW92170	Analogue of parath
	541	16	47.1	34	20	AAW92171	Analogue of parath
	542	16	47.1	34	20	AAW92172	
	543	16	47.1	34	20		Analogue of parath
						AAW92173	Analogue of parath
	544	16	47.1	34	20	AAW92174	Analogue of parath
	545	16	47.1	34	20	AAW92175	Analogue of parath
	546		47.1	34	20	AAW92176	Analogue of parath
	547	16	47.1	34	20	AAW92177	Analogue of parath
	548	16	47.1	34	20	AAW92178	Analogue of parath
	549	16	47.1	34	20	AAW92179	Analogue of parath
!	550	16	47.1	34	20	AAW92180	Analogue of parath
!	551	16	47.1	34	20	AAW92181	Analogue of parath
!	552	16	47.1	34	20	AAW92182	Analogue of parath
!	553	16	47.1	34	20	AAW92152	Analogue of parath
!	554	16	47.1	34	20	AAW92150	Analogue of parath
	555	16	47.1	34	20	AAW92151	Analogue of parath
	556	16	47.1	34	20	AAW92153	Analogue of parath
	557	16	47.1	34	20	AAW92154	Analogue of parath
	558	16	47.1	34	20	AAW92155	Analogue of parath
	559	16	47.1	34	20	AAW92156	Analogue of parath
	560	16	47.1	34	20		
						AAW92157	Analogue of parath
	561 563	16	47.1	34	20	AAW92158	Analogue of parath
	562	16	47.1		20	AAW92159	Analogue of parath
ţ	563	16	47.1	34	20	AAW92160	Analogue of parath

564	16	47.1	34	20	AAW92161	Analogue of parath
565	16	47.1		20	AAW92162	Analogue of parath
566	16	47.1		20	AAW92163	Analogue of parath
567	16	47.1		20	AAW92164	Analogue of parath
568	16	47.1	34	20	AAW92165	Analogue of parath
569	16	47.1	34	20	AAW92148	Analogue of parath
570	16	47.1	34	20	AAW92149	Analogue of parath
571	16	47.1		20	AAW81873	Porcine PTH N-term
		47.1		21		Human parathyroid
572	16				ABJ10735	
573	16	47.1		21	ABJ10739	Human parathyroid
574	16	47.1		21	ABJ10740	Human parathyroid
575	16	47.1	34	21	ABJ10742	Human parathyroid
576	16	47.1	34	21	ABJ10743	Human parathyroid
577	16	47.1		22	AAB91084	Parathyroid hormon
578	16	47.1		22	AAB91085	Parathyroid hormon
579	16	47.1		22	AAB91087	Parathyroid hormon
580	16	47.1		23	AAU73036	Parathyroid hormon
581	16	47.1	35	2	AAP10140	h-PTH antigen. Sy
582	16	47.1	36	15	AAR58277	[Nle18] -hPTH(1-36)
583	16	47.1		15	AAR58183	[Gln18]-hPTH(1-36)
584	16	47.1		15	AAR58184	[Tyr18] -hPTH(1-36)
585	16	47.1		15	AAR58042	[L8,D10,K11,L18]-h
586	16	47.1		15	AAR58044	[L8,D10,K11,A17,L1
587	16	47.1	36	15	AAR58055	[L8,Q18]-hPTH(1-36
588	16	47.1	36	15	AAR58057	[L8,D10,A16,Q18]-h
589	16	47.1	36	15	AAR58071	[Aib3, Gln18]-hPTH
590	16	47.1		15	AAR55820	[L8,D10,K11,Q18]-h
591	16	47.1		15	AAR55824	[L8,D10,K11,A16,Q1
592	16	47.1		15	AAR58027	[A1, A3, L8, Q18] - hPT
593	16	47.1		15	AAR58031	[L8,K11,Q18]-hPTH(
594	16	47.1	36	15	AAR58072	Isopropyl-[L8,D10,
595	16	47.1	36	15	AAR58074	[L8,Y18]-hPTH(1-36
596	16	47.1	36	15	AAR58088	[1-amino-cyclopent
597	16	47.1		22	AAB86232	Porcine parathyroi
598	16	47.1		15	AAR58159	[Val28] -hPTH(1-38)
599	16	47.1		15	AAR58160	[Ile28] -hPTH(1-38)
600	15	44.1		13	AAR22061	Modified [Nle_8,18
601	15	44.1		13	AAR22062	Modified [Nle_8,18
602	15	44.1	28	13	AAR22067	Modified [Nle 8, 1
603	15	44.1	28	13	AAR22068	Modified [Nle_8,_1
604	15	44.1	28	17	AAR88838	Human parathyroid
605	15	44.1		21	ABJ10774	Human parathyroid
606	15	44.1		22	AAB81074	Human parathyroid
607	15	44.1		23	AAE18404	Bovine PTH peptide
608	15	44.1	28	23	AAU73045	Parathyroid hormon
609	15	44.1	28	23	AAU73048	Parathyroid hormon
610	15	44.1	28	23	AAU73049	Parathyroid hormon
611	15	44.1		17	AAR88839	Human parathyroid
612	15	44.1		22	AAB81075	Human parathyroid
613				22 17		Human parathyroid
	15	44.1			AAR88833	
614	15	44.1		19	AAW42052	Human parathyroid
615	15	44.1		22	AAB91089	Parathyroid hormon
616	15	44.1	30	22	AAB91092	Parathyroid hormon
617	15	44.1	30	23	AAU73062	Parathyroid hormon
618	15	44.1		5	AAP40511	Bovine parathyroid
619	15	44.1		5	AAP40761	Human parathyroid
620	15	44.1		17	AAR88831	Human parathyroid
020	10		ı	- /	1111100001	naman paracityrota

621	15	44.1	31	19	AAW42056	Human parathyroid
622	15	44.1	31	19	AAW42057	Human parathyroid
623	15	44.1	31	19	AAW42060	Human parathyroid
624	15	44.1	31	19	AAW42062	Human parathyroid
625	15	44.1		19	AAW42067	Human parathyroid
626	15	44.1		19	AAW42049	Human parathyroid
627	15	44.1		19	AAW42050	Human parathyroid
628	15	44.1		19	AAW42053	Human parathyroid
629	15	44.1		21	AAY96975	Parathyroid hormon
630	15	44.1		23	AAU73040	Parathyroid hormon
631	15	44.1		23	AAU82640	Analogue of human
632	15	44.1		22	AAB91088	Parathyroid hormon
633	15	44.1		22	AAB91090	Parathyroid hormon
634	15	44.1		22	AAB91091	Parathyroid hormon
635	15 15	44.1		23	AAE18403	Bovine PTH peptide
636	15 15	44.1		23 23	AAU73041	Parathyroid hormon
637 638	15 15	$44.1 \\ 44.1$		23 6	AAU73043 AAP50517	Parathyroid hormon Sequence of methio
639	15 15	44.1	34	11	AAR07924	Bovine parathyroid
640	15	44.1	34	11	AAR07925	Human parathyroid
641	15	44.1	34	11	AAR08305	Bovine parathyroid
642	15	44.1	34	11	AAR08306	Human parathyroid
643	15	44.1	34	13	AAR22298	Human parathyroid
644	15	44.1	34	13	AAR22299	Human parathyroid
645	15	44.1	34	14	AAR41554	[Thr27]hPTH (1-34)
646	15	44.1	34	14	AAR41555	[Asn27]hPTH (1-34)
647	15	44.1	34	14	AAR41558	[Ser27]hPTH (1-34)
648	15	44.1	34	14	AAR41559	[Gly27]hPTH (1-34)
649	15	44.1	34	14	AAR41560	[His27]hPTH (1-34)
650	15	44.1	34	15	AAR45528	Parathyroid hormon
651	15	44.1	34	16	AAR69055	PTH analogue with
652	15	44.1	34	17	AAR88829	Human parathyroid
653	15	44.1	34	17	AAR88834	Human parathyroid
654	15	44.1	34	18	AAW13352	Truncated parathyr
655	15	44.1	34	18	AAW12651	Parathyroid hormon
656	15	44.1	34	18	AAW08130	Human PTH derivati
657	15	44.1	34	18	AAW20004	Cyclised [Nle 8,18
658	15	44.1	34	18	AAW19997	Cyclised [Nle 8,18
659	15	44.1	34	18	AAW19998	Cyclised [Nle 8,18
660	15	44.1	34	18	AAW20003	Cyclised [Nle 8,18
661	15	44.1	34	18	AAW20009	Cyclised [Nle 8,18
662	15	44.1	34	18	AAW20010	Cyclised [Nle 8,18
663	15	44.1	34	18	AAW17940	Human PTH analogue
664	15	44.1	34	18	AAW17969	Human parathyroid
665 666	15 15	$44.1 \\ 44.1$	34 34	18	AAW17970	Human PTH analogue Human PTH analogue
667	15 15	44.1 44.1	34	18	AAW17964	Human parathyroid
668	15 1 5	44.1	34	18 18		Human parathyroid
669	15 15	44.1	34	18	AAW17962	Human PTH analoque
670	15	44.1	34	19		Parathyroid hormon
671	15	44.1	34	19		Parathyroid hormon
672	15	44.1	34	19		Parathyroid hormon
673	15	44.1	34	19		Parathyroid hormon
674	15	44.1	34	19		Parathyroid hormon
675	15	44.1	34	19		Parathyroid hormon
676	15	44.1	34	19		Human parathyroid
677	15	44.1	34	19		Human parathyroid

678	15	44.1	34	19	AAW48395	Human PTH/PTHrP hy
679	15	44.1	34	20	AAW74396	Modified parathyro
680	15	44.1	34	20	AAW81945	Synthetic PTH and
681	15	44.1	34	21	ABJ10705	Human parathyroid
682	15	44.1	34	21	ABJ10707	Human parathyroid
683	15	44.1	34	21	ABJ10708	Human parathyroid
684	15	44.1	34	21	ABJ10709	Human parathyroid
685	15	44.1	34	21	ABJ10710	Human parathyroid
			34	21	ABJ10711	Human parathyroid
686	15 15	44.1				
687	15	44.1	34	21	ABJ10715	Human parathyroid
688	15	44.1	34	21	ABJ10716	Human parathyroid
689	15	44.1	34	21	ABJ10718	Human parathyroid
690	15	44.1	34	21	ABJ10720	Human parathyroid
691	15	44.1	34	21	ABJ10721	Human parathyroid
692	15	44.1	34	21	ABJ10723	Human parathyroid
693	15	44.1	34	21	ABJ10725	Human parathyroid
694	15	44.1	34	21	ABJ10726	Human parathyroid
695	15	44.1	34	21	ABJ10728	Human parathyroid
696	15	44.1	34	21	ABJ10731	Human parathyroid
697	15	44.1	34	21	ABJ10732	Human parathyroid
698	15	44.1	34	21	ABJ10734	Human parathyroid
699	1 5	44.1	34	21	ABJ10738	Human parathyroid
700	15	44.1	34	21	ABJ10741	Human parathyroid
701	15	44.1	34	21	ABJ10744	Human parathyroid
702	15	44.1	34	21	ABJ10745	Human parathyroid
703	15	44.1	34	21	ABJ10746	Human parathyroid
704	15	44.1	34	21	ABJ10747	Human parathyroid
705	15	44.1	34	21	ABJ10748	Human parathyroid
706	15	44.1	. 34	21	ABJ10749	Human parathyroid
700	15	44.1	34	21	ABJ10750	Human parathyroid
	15	44.1	34	21	ABJ10751	Human parathyroid
708				21		
709	15	44.1	34		ABJ10752	Human parathyroid
710	15	44.1	34	21	ABJ10753	Human parathyroid
711	15	44.1	34	21	ABJ10754	Human parathyroid
712	15	44.1	34	21	ABJ10755	Human parathyroid
713	15	44.1	34	21	ABJ10756	Human parathyroid
714	15	44.1	34	21	ABJ10761	Human parathyroid
715	15	44.1	34	21	ABJ10762	Human parathyroid
716	15	44.1	34	21	ABJ10763	Human parathyroid
717	15	44.1	34	21	ABJ10764	Human parathyroid
718	15	44.1	- 34	21	ABJ10765	Human parathyroid
719	15	44.1	34	21	ABJ10766	Human parathyroid
720	15	44.1	34	21	ABJ10767	Human parathyroid
721	15	44.1	34	21	ABJ10768	Human parathyroid
722	15	44.1	34	21	ABJ10770	Human parathyroid
723	15	44.1	34	21	ABJ10771	Human parathyroid
724	15	44.1	34	21	ABJ10777	Human parathyroid
725	15	44.1	34	23	AAE18396	Bovine PTH peptide
726	15	44.1	34	23	AAE18397	Human PTH peptide
727	15	44.1	34	23	AAU73031	Parathyroid hormon
728	15	44.1	34	23	AAU73033	Parathyroid hormon
729	15	44.1	34	23	AAU73035	Parathyroid hormon
730	15	44.1	35	16	AAR74518	Parathyroid hormon
731	15	44.1	35	16	AAR74519	Parathyroid hormon
732	15	44.1	35	16	AAR74519 AAR74520	Parathyroid hormon
732	15	44.1	35 35	16	AAR74520 AAR74527	Human parathyroid
733 734	15 15	$44.1 \\ 44.1$	35 35	16	AAR74527 AAR74464	Parathyroid hormon
134	13	11.I	20	τ0	AAR/4404	ratachytoid noimon

735	15	44.1	35	16	AAR74465	Parathyroid	hormon
736	15	44.1	35	16	AAR74466	Parathyroid	hormon
737	15	44.1	35	16	AAR74467	Parathyroid	hormon
738	15	44.1	35	16	AAR74468	Parathyroid	hormon
739	15	44.1	35	16	AAR74469	Parathyroid	hormon
740	15	44.1	35	16	AAR74470	Parathyroid	hormon
741	15	44.1	35	16	AAR74471	Parathyroid	hormon
742	15	44.1	35	16	AAR74472	Parathyroid	hormon
743	15	44.1	35	16	AAR74473	Parathyroid	
744	15	44.1	35	16	AAR74474	Parathyroid	hormon
745	15	44.1	35	16	AAR74475	Parathyroid	
746	15	44.1	35	16	AAR74476	Parathyroid	hormon
747	15	44.1	35	16	AAR74477	Parathyroid	
748	15	44.1	35	16	AAR74478	Parathyroid	
749	15	44.1	35	16	AAR74479	Parathyroid	
750	15	44.1	35	16	AAR74448	Parathyroid	
751	15	44.1	35	16	AAR74449	Parathyroid	
752	15	44.1	35	16	AAR74450	Parathyroid	
753	15	44.1	35	16	AAR74451	Parathyroid	
754	15	44.1	35	16	AAR74452	Parathyroid	
755	15	44.1	35	16	AAR74453	Parathyroid	
756	15	44.1	35	16	AAR74454	Parathyroid	
757	15	44.1	35	16	AAR74455	Parathyroid	
758	15	44.1	35	16	AAR74456	Parathyroid	
758 759	15	44.1	35	16	AAR74457	Parathyroid	
760	15	44.1	35 35	16	AAR74457 AAR74458	Parathyroid	
	15	44.1	35	16	AAR74459	Parathyroid	
761 762	15	$44.1 \\ 44.1$	35 35	16	AAR74459 AAR74460	Parathyroid	
		$44.1 \\ 44.1$	35 35	16	AAR74460 AAR74461	Parathyroid	
763	15 15	$44.1 \\ 44.1$	35 35	16	AAR74461 AAR74462	Parathyroid	
764 765	15	44.1 44.1	35	16	AAR74462 AAR74463	Parathyroid	
				16		Parathyroid	
766 767	15	44.1	35	16	AAR74432 AAR74433	Parathyroid	
767	15	44.1	35 35			_	
768	15	44.1	35 35	16	AAR74434	Parathyroid	
769	15 15	44.1	35	16	AAR74435	Parathyroid	
770	15	44.1	35 35	16	AAR74436	Parathyroid	
771	15	44.1	35	16	AAR74437	Parathyroid	
772	15	44.1	35	16	AAR74438	Parathyroid	
773	15	44.1	35	16	AAR74439	Parathyroid	
774	15	44.1	35	16	AAR74440	Parathyroid	
775	15	44.1	35	16	AAR74441	Parathyroid	
776	15	44.1	35	16	AAR74442	Parathyroid	
777	15	44.1	35	16	AAR74443	Parathyroid	
778	15	44.1	35	16	AAR74444	Parathyroid	
779	15	44.1	35	16	AAR74445	Parathyroid	
780	15	44.1	35	16	AAR74446	Parathyroid	
781	15	44.1	35	16	AAR74447	Parathyroid	
782	15	44.1	35	16	AAR74429	Parathyroid	
783	15	44.1	35	16	AAR74430	Parathyroid	
784	15	44.1	35	16	AAR74431	Parathyroid	
785	15	44.1	35	16	AAR74398	Parathyroid	
786	15	44.1	35	16	AAR74399	Parathyroid	
787	15	44.1	35	16	AAR74400	Parathyroid	
788	15	44.1	35	16	AAR74394	Parathyroid	
789	15	44.1	35	16	AAR74395	Parathyroid	
790	15	44.1	35	16	AAR74396	Parathyroid	
791	15	44.1	35	16	AAR74397	Parathyroid	hormon

792	15	44.1	35	23	AAU73175	Parathyroid hormon
793	15	44.1	36	15	AAR58222	[His27]-hPTH(1-36)
794	15	44.1	36	15	AAR58223	[Phe27]-hPTH(1-36)
795	15	44.1	36	15	AAR58224	[Nle27]-hPTH(1-36)
796	15	44.1	36	15	AAR58225	[Asn27]-hPTH(1-36)
797	15	44.1	36	15	AAR58226	[Ala27]-hPTH(1-36)
798	15	44.1	36	15	AAR58214	[Ala19] -hPTH(1-36)
799	15	44.1	36	15	AAR58041	[L8,D10,K11,S14,I1
800	15	44.1	36	15	AAR58043	[L8,Q16,D17,L18,R1
801	15	44.1	36	15	AAR58046	[L8,A16,D17,L18,A1
802	15	44.1	36	15	AAR58047	[L8,D10,A16,D17,L1
803	15	44.1	36	15	AAR58050	[L8,A16,D17,Q18,A1
804	15	44.1	36	15	AAR58051	[L8,A16,A17,Q18,A1
805	15	44.1	36	15	AAR58052	[L8,A17,Q18,A19]-h
806	15	44.1	36	15	AAR58067	[L8,A16,A17,A18,A1
807	15	44.1	36	15	AAR58069	Isopropyl-[L8,K(Is
808	15	44.1	36	15	AAR58070	Isopropyl-[L8,K(Is
						[L8,D10,K11,A16,Q1
809	15	44.1	36	15	AAR55822	
810	15	44.1	36	15	AAR55825	[L8,A16,Q18,A19]-h
811	15	44.1	36	15	AAR58086	[1-amino-cyclopent
812	15	44.1	38	15	AAR58136	[Arg19] -hPTH(1-38)
813	15	44.1	38	15	AAR58154	[Val27]-hPTH(1-38)
814	15	44.1	38	15	AAR58155	[Ile27]-hPTH(1-38)
815	15	44.1	38	15	AAR58156	[Leu27] -hPTH(1-38)
816	15	44.1	38	15	AAR58157	[Arg27] - hPTH(1-38)
817	15	44.1	38	15	AAR58158	[Ala27] -hPTH(1-38)
818	15	44.1	38	15	AAR58123	[Ser19] -hPTH(1-38)
819	15	44.1	38	15	AAR58124	[Lys19] -hPTH(1-38)
			38			[Leu19] -hPTH(1-38)
820	15	44.1		15	AAR58125	
821	15	44.1	38	15	AAR58126	[Ala19] -hPTH(1-38)
822	15	44.1	38	15	AAR58127	[Tyr19] -hPTH(1-38)
823	15	44.1	38	15	AAR58128	[Met19] -hPTH(1-38)
824	15	44.1	38	15	AAR58129	[His19] - hPTH(1-38)
825	15	44.1	38	15	AAR58130	[Val19]-hPTH(1-38)
826	15	44.1	38	15	AAR58131	[Gly19] -hPTH(1-38)
827	15	44.1	38	15	AAR58132	[Pro19]-hPTH(1-38)
828	15	44.1	38	15	AAR58133	[Asp19] -hPTH(1-38)
829	15	44.1	38	15	AAR58134	[Ile19]-hPTH(1-38)
830	14	41.2	28	23	AAU73066	Parathyroid hormon
831	14	41.2	30	23	AAU73057	Parathyroid hormon
						[Leu(8),Trp(10),Al
832	14	41.2	33	17	AAW15814	
833	14	41.2	34	14	AAR41556	[Gln26,27]hPTH (1-
834	14	41.2	34	14	AAR41566	[Arg 26,27]hPTH (1
835	14	41.2	34	14	AAR41567	[Gln26]hPTH (1-34)
836	14	41.2	34	15	AAR55817	[L8,Q18,T33,A34]-h
837	14	41.2	34	15	AAR55819	[L8,A16,Q18,T33,A3
838	14	41.2	34	15	AAR55821	[L8,D10,K11,Q18,T3
839	14	41.2	34	15	AAR55823	[L8,D10,K11,A16,Q1
840	14	41.2	34	15	AAR58021	[L8,D10,A16,Q18,T3
841	14	41.2	34	15	AAR58034	Isopropyl-[L8,K(Is
842	14	41.2	34	17	AAW15813	[Leu(8),Trp(10),Al
843	14	41.2	34	17	AAW15815	[Leu(8),Trp(10),DL
844	14	41.2	34	17	AAW15828	N-alpha-acylated [
845	14	41.2	34	18	AAW08132	Human PTH derivati
846	14	41.2	34	18	AAW17960	Human PTH analogue
847	14	41.2	34	20	AAY02587	Parathyroid hormon
848	14	41.2	34	21	ABJ10757	Human parathyroid

849	14	41.2	35	16	AAR74515		Parathyroid hormon
850	14	41.2	35	16	AAR74516		Parathyroid hormon
851	14	41.2	35	16	AAR74517		Parathyroid hormon
852	14	41.2	35	16	AAR74480		Parathyroid hormon
853	14	41.2	35	16	AAR74401		Parathyroid hormon
854	14	41.2	35	16	AAR74409		Parathyroid hormon
855	14	41.2	35	16	AAR74412		Parathyroid hormon
856	14	41.2	36	15	AAR58290		[Ala26] -hPTH(1-36)
857	14	41.2	36	15	AAR58279		[Lys20] - hPTH(1-36)
858	14	41.2	36	15	AAR58218	*	[Gln26] -hPTH(1-36)
859	14	41.2	36	15	AAR58219		[Nle26]-hPTH(1-36)
860	14	41.2	38	15	AAR58137		[Phe20]-hPTH(1-38)
861	14	41.2	38	15	AAR58153		[Arg26] -hPTH(1-38)
862	13	38.2	32	22	AAB84835		Parathyroid hormon
863	13	38.2	32	22	AAB96906		Parathyroid hormon
864	13	38.2	34	13	AAR22297		Human parathyroid
865	13	38.2	34	14	AAR34456		Human parathyroid
866	13	38.2	34	14	AAR34457		Human parathyroid
867	13	38.2	34	14	AAR41557		[Gln25,26,27]hPTH
868	13	38.2	34	15	AAR58195		[S14,I15,Q16,D17,L
869	13	38.2	34	15	AAR58045		[L8,Q16,D17,L18,R1
870	13	38.2	34	15	AAR58049		[L8,D10,K11,Q16,D1
871	13	38.2	34	15	AAR58056		[L8,D10,K11,A16,Q1
872	13	38.2	34	15	AAR58058		[L8,D10,K11,A16,Q1
873	13	38.2	34	15	AAR55818		[L8,A16,Q18,A19,T3
874	13	38.2	34	18	AAW08131		Human PTH derivati
875	13	38.2	34	21	ABJ10758		Human parathyroid
876	13	38.2	34	22	AAB84828		Parathyroid hormon
877	13	38.2	34	22	AAB96921		Parathyroid hormon
878	13	38.2	35	16	AAR74512		Parathyroid hormon
879	13	38.2	35	16	AAR74513		Parathyroid hormon
880	13	38.2	35	16	AAR74514		Parathyroid hormon
881	13	38.2	35	16	AAR74511		Parathyroid hormon
882	13	38.2	35	16	AAR74481		Parathyroid hormon
883	13	38.2	35	16	AAR74482		Parathyroid hormon
884	13	38.2	35	16	AAR74483		Parathyroid hormon
885	13	38.2	35	16	AAR74408		Parathyroid hormon
886	13	38.2	36	15	AAR58287		[Phe25]-hPTH(1-36)
887	13	38.2	36	15	AAR58288		[Lys25] -hPTH(1-36)
888	13	38.2	36	15	AAR58289		[Ala25] -hPTH(1-36)
889	13	38.2	36	15	AAR58192		[Gln25] -hPTH(1-36)
890	13	38.2	36	15	AAR58216		[Ala21] -hPTH(1-36)
891	13	38.2	38	15	AAR58138		[Ala21] -hPTH(1-38)
892	13	38.2	38	15	AAR58139		[Gly21] -hPTH(1-38)
893	13	38.2	38	15	AAR58140		[Phe21] -hPTH(1-38)
894	13	38.2	38	15	AAR58141		[Leu21] -hPTH(1-38)
895	13	38.2	38	15	AAR58142		[Asn21] -hPTH(1-38)
896	13	38.2	38	15	AAR58143		[Gln21] -hPTH(1-38)
897	13	38.2	38	15	AAR58144		[Ser21] -hPTH(1-38)
898	12	35.3	28	23	AAU73065		Parathyroid hormon
899	12	35.3	28	23	AAU73067		Parathyroid hormon
900	12	35.3	29	13	AAR22070		Modified rPTH(7-34
901	12	35.3	30	23	AAU73056		Parathyroid hormon
902	12	35.3	30	23	AAU73058		Parathyroid hormon
903	12	35.3	30	23	AAU73059		Parathyroid hormon
904	12	35.3	34	11	AAR07917		Rat parathyroid ho
905	12	35.3	34	11	AAR08298		Rat parathyroid ho
-				- -			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

000	1.0	25 2	2.4	10	N N D C O 4 3 O	3 1 t
906	12	35.3	34	16	AAR62432	Accelerator peptid
907	12	35.3	34	17	AAR99980	Rat parathyroid ho
908	12	35.3	34	18	AAW19996	Cyclised rat parat
909	12	35.3	34	18	AAW20002	Cyclised rat parat
910	12	35.3	34	18	AAW20008	Cyclised rat parat
911	12	35.3	34	18	AAW17949	Human parathyroid
912	12	35.3	34	18	AAW17945	Human parathyroid
913	12	35.3	34	18	AAW17950	Human PTH analogue
914	12	35.3	34	19	AAW67280	Parathyroid hormon
915	12	35.3	34	19	AAW67284	Parathyroid hormon
916	12	35.3	34	19	AAW67285	Parathyroid hormon
	12	35.3	34	19		Parathyroid hormon
917					AAW67288	
918	12	35.3	34	19	AAW67289	Parathyroid hormon
919	12	35.3	34	19	AAW67294	Parathyroid hormon
920	12	35.3	34	19	AAW67295	Parathyroid hormon
921	12	35.3	34	19	AAW67296	Parathyroid hormon
922	12	35.3	34	19	AAW67303	Parathyroid hormon
923	12	35.3	34	19	AAW67304	Parathyroid hormon
924	12	35.3	34	19	AAW48396	Human PTH/PTHrP hy
925	12	35.3	34	21	ABJ10759	Human parathyroid
926	12	35.3	34	22	AAB84777	Native human parat
927	12	35.3	34	22	AAB96897	Rat parathyroid ho
928	12	35.3	34	22	AAB91100	Parathyroid hormon
						Parathyroid hormon
929	12	35.3	34	23	AAU73037	
930	12	35.3	34	24	ABP71499	Rat parathyroid ho
931	12	35.3	35	16	AAR74507	Parathyroid hormon
932	12	35.3	35	16	AAR74508	Parathyroid hormon
933	12	35.3	35	16	AAR74509	Parathyroid hormon
934	12	35.3	35	16	AAR74510	Parathyroid hormon
935	12	35.3	35	16	AAR74484	Parathyroid hormon
936	12	35.3	35	16	AAR74485	Parathyroid hormon
937	12	35.3	35	16	AAR74486	Parathyroid hormon
938	12	35.3	36	15	AAR58208	[A13,Q26,F27,D-F34
939	12	35.3	36	15	AAR58217	[Ala22] -hPTH(1-36)
940	12	35.3	36	15	AAR58053	[L8,A17,Q18,A19,R2
941	12	35.3	36	15	AAR58060	[L8,A16,Q18,A19,R2
942	12	35.3	36	15	AAR58064	[L8,S13,A16,Q18,A1
943	12	35.3	36	15	AAR58032	[L8,A16,D17,L18,R1
944	12	35.3	36	15	AAR58073	Isopropyl-[L8,S13,
945	12	35.3	37	22	AAB86231	Rat parathyroid ho
946	12	35.3	38	15	AAR58145	[Gly22]-hPTH(1-38)
947	12	35.3	38	15	AAR58146	[Leu22] -hPTH(1-38)
948	12	35.3	38	15	AAR58147	[His22] - hPTH(1-38)
949	12	35.3	38	15	AAR58148	[Ala22] -hPTH(1-38)
950	12	35.3	38	15	AAR58149	[Ile22]-hPTH(1-38)
951	12	35.3	38	15	AAR58150	[Val22]-hPTH(1-38)
952	12	35.3	38	15	AAR58151	[Ser22]-hPTH(1-38)
953	12	35.3	38	15	AAR58152	[Arg22]-hPTH(1-38)
954	11	32.4	28	9	AAP82184	Sequence of parath
955	11	32.4	28	13	AAR22071	Modified [Tyr 34]r
						Modified [D-Trp 12
956 957	11	32.4	28	13	AAR22072	
957	11	32.4	28	13	AAR22073	Modified [Nle_8,_1
958	11	32.4	28	13	AAR22074	Modified [Nle_8,_1
959	11	32.4	28	23	AAU73105	Parathyroid hormon
960	11	32.4	28	23	AAU73106	Parathyroid hormon
961	11	32.4	30	22	AAB84834	Parathyroid hormon
962	11	32.4	30	22	AAB96905	Parathyroid hormon

963	11	32.4	30	23	AAU73054	Parathyroid hormon
964	11	32.4	30	23	AAU73136	Parathyroid hormon
965	11	32.4	30	23	AAU73137	Parathyroid hormon
966	11	32.4	32	22	AAB91094	Parathyroid hormon
967	11	32.4	33	9	AAP82176	Sequence of parath
968	11	32.4	34	7	AAP61414	Peptide with parat
969	11	32.4	34	8	AAP71281	Parathyroid hormon
970	11	32.4	34	11	AAR07920	Rat parathyroid ho
971	11	32.4	34	11	AAR07923	Rat parathyroid ho
972	11	32.4	34	11	AAR08301	Rat parathyroid ho
973	11	32.4	34	11	AAR08304	Rat parathyroid ho
974	11	32.4	34	14	AAR34358	Human parathyroid
975	11	32.4	34	14	AAR34337	Bovine parathyroid
976	11	32.4	34	14	AAR34338	Bovine parathyroid
977	11	32.4	34	14	AAR34339	Bovine parathyroid
978	11	32.4	34	14	AAR34340	Bovine parathyroid
979	11	32.4	34	14	AAR34341	Bovine parathyroid
980	11	32.4	34	14	AAR34342	Bovine parathyroid
981	11	32.4	34	14	AAR34343	Bovine parathyroid
982	11	32.4	34	14	AAR34344	Bovine parathyroid
983	11	32.4	34	14	AAR34345	Bovine parathyroid
984	11	32.4	34	14	AAR34346	Bovine parathyroid
985	11	32.4	34	14	AAR34347	Bovine parathyroid
986	11	32.4	34	14	AAR34348	Bovine parathyroid
987	11	32.4	34	14	AAR34349	Bovine parathyroid
988	11	32.4	34	14	AAR34350	Bovine parathyroid
989	11	32.4	34	14	AAR34351	Bovine parathyroid
990	11	32.4	34	14	AAR34352	Bovine parathyroid
991	11	32.4	34	14	AAR34353	Human parathyroid
992	11	32.4	34	14	AAR34354	Human parathyroid
993	11	32.4	34	14	AAR34355	Human parathyroid
994	11	32.4	34	14	AAR34356	Human parathyroid
995	11	32.4	34	14	AAR34357	Human parathyroid
996	11	32.4	34	14	AAR34359	Human parathyroid
997	11	32.4	34	14	AAR34360	Human parathyroid
998	11	32.4	34	14	AAR34361	Human parathyroid
999	11	32.4	34	14	AAR34362	Human parathyroid
1000	11	32.4	34	14	AAR34363	Human parathyroid

ALIGNMENTS

```
RESULT 1
AAR22296
   AAR22296 standard; Peptide; 34 AA.
ID
XX
AC
   AAR22296;
XX
DT
    25-MAR-2003 (updated)
    03-AUG-1992 (first entry)
DT
XX
    Human parathyroid hormone 1-34 [Lys 11].
DE
XX
    hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
KW
    hypertension.
XX
```

```
Synthetic.
OS
XX
    EP477885-A.
PN
XX
     01-APR-1992.
PD
XX
                    91EP-0116303.
     25-SEP-1991;
PF
XX
                   91JP-0227232.
     06-SEP-1991;
PR
                   90JP-0257490.
     28-SEP-1990;
PR
XX
     (TAKE ) TAKEDA CHEM IND LTD.
PΑ
XX
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
PΙ
XX
     WPI; 1992-106285/14.
DR
XX
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
PT
XX
     Claim 9; Page 14; 14pp; English.
PS
XX
     The peptide is an analogue of human parathyroid hormone fragment
CC
     1-34. The peptide modification defined increase resistance to
CC
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
     The peptide may be synthesised by the Merrifield solid phase
CC
     method in an automatic apparatus.
CC
     See also AAR22290-99.
CC
      (Updated on 25-MAR-2003 to correct PA field.)
CC
XX
     Sequence
                34 AA;
SO
                          100.0%; Score 34; DB 13; Length 34;
   Query Match
                          100.0%; Pred. No. 6.4e-29;
  Best Local Similarity
                                                                             0;
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
           34; Conservative
             1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
 QУ
               1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
 Db
 RESULT 2
 AAU73030
      AAU73030 standard; Peptide; 34 AA.
 ID
 XX
 AC
      AAU73030;
 XX
      12-MAR-2002 (first entry)
 DT
 XX
      Parathyroid hormone PTH/PTHrP modulating domain #12.
 DΕ
 XX
      Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
 KW
      PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
 KW
      calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
 KW
      osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
 KW
```

```
breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
OS
     Homo sapiens.
XX
ΡN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
PR
     26-APR-2001; 2001US-0843221.
XX
PA
     (AMGE-) AMGEN INC.
XX
PI
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
PT
XX
     Claim 39; Page 26; 107pp; English.
PS
XX
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
CC
     particularly breast and prostate cancer, cachexia and anorexia,
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
                34 AA;
                           100.0%; Score 34; DB 23; Length 34;
  Query Match
```

100.0%; Pred. No. 6.4e-29;

0; Mismatches

0; Gaps

0; Indels

0;

Best Local Similarity

34; Conservative

```
1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 3
AAU73053
    AAU73053 standard; Peptide; 30 AA.
ID
XX
AC.
    AAU73053;
XX
DT.
     12-MAR-2002 (first entry)
XX
     Parathyroid hormone PTH/PTHrP modulating domain #35.
DE
XX
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
OS
     Homo sapiens.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
     (AMGE-) AMGEN INC.
PA
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
РΤ
     Composition, useful for treating osteopenia, comprises parathyroid
     hormone and parathyroid hormone-related protein receptor modulators -
PT
XX
PS
     Disclosure; Page 27; 107pp; English.
XX
     The invention relates to a composition (I) comprising modulators of
CC
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
```

```
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                30 AA;
  Query Match
                          88.2%;
                                 Score 30; DB 23; Length 30;
                          100.0%; Pred. No. 1e-24;
  Best Local Similarity
                                                  0; Indels
  Matches
           30; Conservative
                                 0; Mismatches
                                                                 0;
                                                                     Gaps
                                                                             0;
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
Qу
              Db
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
RESULT 4
AAU73174
     AAU73174 standard; Peptide; 35 AA.
XX
AC
    AAU73174;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #156.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
XX
OS
     Synthetic.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
     26-APR-2001; 2001US-0843221.
PR
XX
```

```
PΑ
     (AMGE-) AMGEN INC.
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
ХX
DR
     WPI; 2002-066435/09.
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PT
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 63; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
               35 AA;
  Query Match
                          88.2%; Score 30; DB 23; Length 35;
  Best Local Similarity
                         100.0%; Pred. No. 1.1e-24;
           30; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
              Db
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
RESULT 5
AAW08108
     AAW08108 standard; peptide; 34 AA.
XX
AC
    AAW08108;
XX
DT
     10-OCT-1997 (first entry)
XX
DE
    Human parathyroid hormone derivative, [Asp10,Lys11]hPTH(1-34).
XX
KW
     Human; parathyroid hormone; PTH; cAMP-producing activity;
KW
     bone formation; osteoporosis; hypoparathyroidism; hypertension;
KW
     climacteric disturbance.
XX
```

```
OS
     Synthetic.
XX
PN
     EP748817-A2.
ХX
PD
     18-DEC-1996.
XX
PF
     13-JUN-1996;
                    96EP-0109475.
XX
PR
     15-JUN-1995;
                    95JP-0148652.
XX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Habashita J, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1997-036114/04.
XX
PT
     New parathyroid hormone derivs. - useful in treatment of bone
PT
     diseases, hypoparathyroidism and hypertension
XX
PS
     Claim 27; Page 26; 42pp; English.
XX
CC
     The sequences given in AAW08108-32 represent derivatives of human
CC
     parathyroid hormone (PTH). These peptides are human PTH (1-34)
CC
     derivative peptides. They have potent cAMP-producing activity and
CC
     bone formation activity. They may be used in treatment of bone
CC
     diseases including osteoporosis, hypoparathyroidism, hypertension
CC
     and climacteric disturbance. The peptides are low in toxicity and
CC
     are safe.
XX
SO
     Sequence
               34 AA;
  Query Match
                         70.6%; Score 24; DB 18; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.5e-18;
  Matches
          24; Conservative 0; Mismatches
                                                 0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
           11 KGKHLNSMERVEWLRKKLODVHNF 34
              Db
           11 KGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
AAR22064
ID
    AAR22064 standard; Protein; 28 AA.
XX
AC
    AAR22064;
XX
DT
     14-JUL-1992 (first entry)
XX
DE
    Modified hPTH(7-34)NH2.
XX
KW
     Parathyroid hormone; analogue; osteoporosis; hyperthyroidism;
KW
     tumours; hypercalcaemia; renal failure; human.
XX
OS
     Synthetic.
XX
FH
     Key
                    Location/Qualifiers
FT
    Modified-site
                    7
```

```
/note= "OTHER = see comments"
FT
FT
     Modified-site
FT
                     /label= NH2
XX
     US5093233-A.
PN
XX
PD
     03-MAR-1992.
XX
PF
     25-APR-1990;
                    90US-0514394.
XX
PR
     25-APR-1990;
                    90US-0514394.
XX
     (MERI ) MERCK & CO INC.
PA
XX
PΙ
     Rosenblatt M, Roubini E, Chorev M, Nutt RF;
XX
DR
     WPI; 1992-096233/12.
XX
PT
     New parathyroid hormone analogues - useful for treatment and in
PT
     vitro diagnosis of PTH-dependent tumours, immune disorders,
PT
     osteoporosis and hyperparathyroidism.
XX
PS
     Claim 1; Column 10; 6pp; English.
XX
CC
     The peptide is modified at Lys13 (of the parent PTH) in the epsilon
CC
     amino acid gp. by N,N-diisobutyl or 3-phenylpropanoyl. The PTH
CC
     analogue binds with high affinity to the peptide hormone receptor
CC
     without activating the 2nd messenger mol. The modification of the
CC
     Lys residue stabilises the bioactive conformation of PTH to enhance
CC
     the activity. The peptide may be used in in vitro bioassays to
CC
     measure naturally occurring PTH and to diagnose the etiology of or
     to treat osteoporosis or hypercalcaemia. It may also be used to
CC
CC
     treat hyperthyroidism and diseases caused by abberrent prodn. of
CC
     hormone-like substances, such as tumours. It may also be used to
CC
     treat immune diseases such as inflammation. It is prepd. by solid
CC
     phase synthesis.
CC
     See also AAR22058-75.
XX
SO
     Sequence
                28 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 28;
  Best Local Similarity
                         100.0%; Pred. No. 2.5e-17;
           23; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
QУ
              Db
            6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 7
ABJ10776
ID
    ABJ10776 standard; Peptide; 28 AA.
XX
AC
    ABJ10776;
XX
DT
     02-DEC-2002 (first entry)
```

/label= OTHER

FT

```
DE
     Human parathyroid hormone analogue #72.
XX
KW
     Human; parathyroid hormone; parathyroid hormone-related protein;
KW
     PTH; PTHrP; analogue; abnormal CNS function; pancreatic function;
     mineral metabolism; male infertility; abnormal blood pressure;
KW
KW
     hypothalmic disease.
XX
OS
     Homo sapiens.
OS
     Synthetic.
XX
FΗ
     Kev
                     Location/Qualifiers
FT
     Misc-difference 2
FT
                     /note= "D-form residue"
FT
     Modified-site
                     /note= "C-terminal amide"
FT
XX
PN
     WO9957139-A2.
XX
PD
     11-NOV-1999.
XX
PF
     03-MAY-1999;
                    99WO-US09521.
XX
PR
     05-MAY-1998;
                    98US-0072956.
XX
PΑ
     (SCRC ) SOC CONSEILS RECH & APPL SCI.
XX
PI
     Chorev M, Dong ZX, Rosenblatt M;
XX
DR
     WPI; 2000-038790/03.
XX
PΤ
     New parathyroid hormone analogs, used for treating e.g. abnormal CNS or
     pancreatic functions, abnormal mineral metabolism and homeostasis, male
PT
PT
     infertility, abnormal blood pressure or hypothalmic disease -
XX
PS
     Claim 11; Page 40; 49pp; English.
XX
CC
     The present invention provides a number of parathyroid hormone (PTH) or
CC
     parathyroid hormone-related protein (PTHrP) analogues. These act as PTH2
CC
     receptor agonists or antagonists and can be used in the treatment of
CC
     disorders resulting from altered or excessive action of the PTH2
CC
     receptor, e.g. abnormal CNS functions, abnormal pancreatic functions,
     divergence from normal mineral metabolism and homeostasis, male
CC
CC
     infertility, abnormal blood pressure or a hypothalmic disease. The
CC
     present sequence is a peptide analogue of the invention.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          67.6%; Score 23; DB 21; Length 28;
 Best Local Similarity
                          100.0%; Pred. No. 2.5e-17;
           23; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            6 GKHLNSMERVEWLRKKLQDVHNF 28
```

```
RESULT 8
AAE23734
     AAE23734 standard; peptide; 28 AA.
XX
AC
     AAE23734;
XX
DT
     10-SEP-2002 (first entry)
XX
DE
     Human parathyroid hormone (hPTH) peptide (7-34).
XX
KW
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
KW
     acne; actinic keratosis; alopecia; gene therapy.
XX
OS
     Homo sapiens.
XX
PN
     WO200228420-A2.
XX
PD
     11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
XX
PA
     (HOLI/) HOLICK M F.
XX
PΙ
     Holick MF;
XX
DR
     WPI; 2002-452304/48.
DR
     N-PSDB; AAD37995.
XX
PT
     Regulating mammalian skin or hair cell proliferation and
PT
     differentiation by administering nucleic acids encoding peptides
PT
     derived from N-terminal region of human parathyroid hormone (hPTH) or
PT
     hPTH-related protein
XX
PS
     Claim 35; Fig 38; 56pp; English.
XX
CC
     The invention relates to a method for regulating proliferation or
CC
     enhancing differentiation of mammalian skin or hair cell. The method
     involves administering nucleic acids encoding peptides derived from
CC
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
CC
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
CC
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
CC .
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
     induced alopecia and also for stimulating epidermal cell growth or
CC
CC
     hair follicle cell growth. The method is also used in gene therapy.
CC
     The present sequence is hPTH peptide.
XX
SQ
     Sequence
                28 AA;
```

67.6%; Score 23; DB 23; Length 28;

Best Local Similarity 100.0%; Pred. No. 2.5e-17;

Query Match

```
Matches
                                 0; Mismatches 0; Indels
            23; Conservative
                                                                 0;
                                                                     Gaps
                                                                             0;
           12 GKHLNSMERVEWLRKKLODVHNF 34
Qу
              6 GKHLNSMERVEWLRKKLQDVHNF 28
Db
RESULT 9
AAU73044
     AAU73044 standard; Peptide; 28 AA.
XX
AC
     AAU73044;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #26.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
XX
OS
     Homo sapiens.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
ΧX
PA
     (AMGE-) AMGEN INC.
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
XX
DR
    WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
     Disclosure; Page 27; 107pp; English.
PS
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
    parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
    oestrogens, oestrogen receptor modulators and tibolone is useful for
```

```
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          67.6%; Score 23; DB 23; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 2.5e-17;
            23; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
            6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 10
AAE23752
     AAE23752 standard; peptide; 30 AA.
XX
AC
     AAE23752;
XX
DT
     10-SEP-2002 (first entry)
XX
DE
     Human parathyroid hormone (hPTH) peptide (5-34).
XX
KW
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
KW
     acne; actinic keratosis; alopecia; gene therapy.
XX
OS
     Homo sapiens.
XX
PN
     WO200228420-A2.
XX
PD
     11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
XX
PA
     (HOLI/) HOLICK M F.
XX
PΙ
     Holick MF;
XX
DR
     WPI; 2002-452304/48.
XX
PT
     Regulating mammalian skin or hair cell proliferation and
```

treating osteopenia. (I) is useful for therapeutic and prophylactic

CC

```
РΤ
     differentiation by administering nucleic acids encoding peptides
     derived from N-terminal region of human parathyroid hormone (hPTH) or
PТ
     hPTH-related protein -
PΤ
XX
PS
     Claim 35; Fig 42; 56pp; English.
XX
CC
     The invention relates to a method for regulating proliferation or
CC
     enhancing differentiation of mammalian skin or hair cell. The method
CC
     involves administering nucleic acids encoding peptides derived from
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
CC
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
CC
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
CC
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
CC
     induced alopecia and also for stimulating epidermal cell growth or
CC
     hair follicle cell growth. The method is also used in gene therapy.
CC
     The present sequence is hPTH peptide.
XX
SO
     Sequence
               30 AA;
  Query Match
                          67.6%; Score 23; DB 23; Length 30;
  Best Local Similarity
                         100.0%; Pred. No. 2.6e-17;
  Matches
           23; Conservative 0; Mismatches 0; Indels
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              Dh
            8 GKHLNSMERVEWLRKKLQDVHNF 30
RESULT 11
AAB07468
ID
    AAB07468 standard; protein; 32 AA.
XX
AC
    AAB07468;
XX
DT
     20-OCT-2000 (first entry)
XX
DE
    Antigenic peptide derived from human parathyroid hormone.
XX
KW
    Human; parathyroid hormone; PTH; hyperparathyroidism; bone disease.
XX
OS
     Homo sapiens.
XX
PN
    WO200042437-A1.
XX
PD
     20-JUL-2000.
XX
PF
     13-JAN-2000; 2000WO-US00855.
ХX
PR
     14-JAN-1999;
                    99US-0231422.
PR
     26-JUN-1999;
                   99US-0344639.
XX
PA
     (SCAN-) SCANTIBODIES LAB INC.
```

```
XX
PT
     Differentiating between normal parathyroid function and
PТ
     hyperparathyroidism comprises determining and comparing whole
PΤ
     parathyroid hormone, parathyroid hormone inhibitory peptide fragment
PT
     and/or total parathyroid hormone levels -
XX
PS
     Disclosure; Page 6; 46pp; English.
XX
CC
     The present sequence represents an antigenic fragment derived from
CC
     human parathyroid hormone (PTH). It was used to raise antibodies.
CC
     PTH peptide fragments can function as PTH antagonists. The
CC
     specification describes a method for differentiating between a
CC
     person having substantially normal parathyroid function and having
CC
     hyperparathyroidism. The method comprises determining and comparing
CC
     at least two of the following parameters: whole parathyroid
CC
     hormone level, parathyroid hormone inhibitory peptide fragment level
CC
     and total parathyroid hormone level. The method is used for monitoring
CC
     (treatments of) parathyroid related bone disease and the effects of
CC
     therapeutic treatment for hyperparathyroidism.
XX
SO
     Sequence
                32 AA;
  Query Match
                          67.6%; Score 23; DB 21; Length 32;
  Best Local Similarity
                         100.0%; Pred. No. 2.8e-17;
  Matches
                              0; Mismatches
           23; Conservative
                                                  0; Indels
           12 GKHLNSMERVEWLRKKLODVHNF 34
Qy
              Db
            6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 12
AAE23735
ID
    AAE23735 standard; peptide; 32 AA.
XX
AC
    AAE23735;
XX
DТ
     10-SEP-2002 (first entry)
XX
DE
     Human parathyroid hormone (hPTH) peptide (5-36).
XX
KW
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
KW
     acne; actinic keratosis; alopecia; gene therapy.
XX
OS
     Homo sapiens.
XX
PN
    WO200228420-A2.
XX
PD
    11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
XX
PΑ
     (HOLI/) HOLICK M F.
```

DR

WPI; 2000-476147/41.

```
ΡI
    Holick MF;
XX
     WPI: 2002-452304/48.
DR
DR
     N-PSDB; AAD37995.
XX
PT
     Regulating mammalian skin or hair cell proliferation and
PT
     differentiation by administering nucleic acids encoding peptides
PT
     derived from N-terminal region of human parathyroid hormone (hPTH) or
PТ
     hPTH-related protein -
XX
PS
     Claim 35; Fig 40; 56pp; English.
XX
CC
     The invention relates to a method for regulating proliferation or
CC
     enhancing differentiation of mammalian skin or hair cell. The method
CC
     involves administering nucleic acids encoding peptides derived from
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
CC
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
CC
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
CC
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
CC
     induced alopecia and also for stimulating epidermal cell growth or
CC
     hair follicle cell growth. The method is also used in gene therapy.
CC
     The present sequence is hPTH peptide.
XX
SO
     Sequence
                32 AA;
  Query Match
                          67.6%; Score 23; DB 23; Length 32;
                          100.0%; Pred. No. 2.8e-17;
  Best Local Similarity
           23; Conservative
                                0; Mismatches
                                                  0: Indels
                                                                 0: Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
            8 GKHLNSMERVEWLRKKLQDVHNF 30
RESULT 13
AAP30022
ID
    AAP30022 standard; peptide; 34 AA.
XX
AC
    AAP30022;
ХX
DТ
     25-MAR-2003
                  (updated)
DT
     01-SEP-1992
                  (first entry)
XX
DE
    Human parathyroid-(1-34) amide.
XX
KW
     PTH; parathyroid gland; antibodies.
XX
OS
    Synthetic.
XX
FΗ
    Key
                    Location/Qualifiers
FT
    Modified-site
FT
                    /note= "amidated"
```

```
PN
     JP58096052-A.
XX
PD
     07-JUN-1983.
XX
PF
     30-NOV-1983;
                    83JP-0193212.
XX
PR
     31-MAR-1981;
                    81JP-0048887.
ХX
     (TOXN ) TOYO JOZO KK.
PΑ
XX
DR
     WPI; 1983-709291/28.
XX
PT
     High activity human parathyroid hormone amide prodn. - by
PT
     condensing protected aminoacid(s) and/or peptide(s) useful for
PΤ
     lowering parathyroid gland function
XX
PS
     Claim 1; Page 1; 20pp; Japanese.
XX
CC
     The human parathyroid hormone, hPTH(1-34)-amide was prepd. by
CC
     the following steps: Firstly the carboxy gp. at the C-terminal
CC
     phenylalanine was converted into its amide form. The protected
CC
     individual amino acids were condensed, in order, by liquid phase
CC
     synthesis. The protecting groups were removed from the N-terminal
     amino gp. and other functional gps. by acidolysis, and the
CC
     resulting hPTH(1-34)-amide purified by gel filtration
CC
CC
     chromatography using a Sephadex G-25, G-50 or LH-20 column or by
CC
     column chromatography with carboxymethyl cellulose or ion exchange
CC
     resin. The peptide amide is useful in lowering the activity of the
     parathyroid gland and in the prepn. of antibodies for diagnosis of
CC
CC
     parathyroid gland function.
CC
     (Updated on 25-MAR-2003 to correct PR field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 4; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLODVHNF 34
RESULT 14
AAP50377
ID
    AAP50377 standard; peptide; 34 AA.
XX
AC
    AAP50377;
XX
DT
     25-MAR-2003
                  (updated)
DT
     08-MAR-1992
                 (first entry)
ХX
DE
     [Met(0)8,18]hPTH-(1-34).
XX
KW
    Human parathyroid hormone; calcium regulation.
XX
```

```
XX
FΗ
                     Location/Qualifiers
     Kev
FT
     Modified-site
FT
                     /label= oxidised methionine
FT
     Modified-site
FT
                     /label= oxidised methionine
XX
PN
     JP59204159-A.
XX
PD
     19-NOV-1984.
XX
PF
     28-APR-1983;
                    83JP-0075607.
XX
PR
     28-APR-1983;
                    83JP-0075607.
XX
PΑ
     (TOXN ) TOYO JOZO KK.
XX
DR
     WPI; 1985-003560/01.
XX
PT
     New (Met(0)8,18)hPTH-(1-34) peptide - increases calcium level in
PT
     blood and decreases level in urine.
XX
PS
     Claim 1; Page 1; 3pp; Japanese.
XX
CC
     Unmodified hPTH(1-34) increases Ca in blood, decreases P in blood,
CC
     decreases Ca in urine and increases P in urine by increasing cAMP in
CC
     urine and enhancing vitamin D hydroxylase activity in kidneys. The
CC
     modified derivative only has the effect of lowering Ca levels in
CC
     urine and can be used when only this particular effect is required.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
CC
     (Updated on 25-MAR-2003 to correct DR field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 6; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
AAP60031
ID
     AAP60031 standard; peptide; 34 AA.
XX
AC
     AAP60031;
XX
DT
     25-MAR-2003
                 (updated)
DT
     06-JUL-1991
                 (first entry)
XX
DE
     Sequence of the first 34 AA residues of a parathyroid hormone
DE
     obtainable from a human or animal.
XX
KW
     Osteoporosis therapy.
```

OS

Homo sapiens.

```
XX
OS
     Homo sapiens/animal.
XX
PΝ
     EP197514-A.
XX
PD
     15-OCT-1986.
XX
PF
     03-APR-1986;
                     86EP-0104562.
XX
PR
     04-APR-1985;
                     85US-0720018.
PR
     05-DEC-1986;
                     86US-0939308.
PR
     21-MAY-1987;
                     87US-0052383.
XX
PA
     (GEHO ) GEN HOSPITAL CORP.
XX
PΙ
     Potts JT, Neer RM, Slovik DM;
XX
     WPI; 1986-273437/42.
DR
XX
PT
     Compsn. and kits for increasing bone mass in osteoporosis -
     contg. parathyroid hormone or fragment with hydroxylated
РΤ
PΤ
     vitamin/D cpd. or calcium salt
XX
PS
     Claim 4; Page 24; 26pp; English.
XX
CC
     The peptide is used in a pharmaceutical compsn. together with a
CC
     hydroxylated vitamin D compound, or a non-toxic calcium salt, pref.
CC
     CaCO3. The compsn. pref. contains 100-700 (pref. 200-600, esp. 400-
CC
     500) units of the peptide. The vitamin D compound is pref. 1-alpha-
CC
     hydroxy vitamin D2 or 1-alpha, 25-dihydroxy vitamin D2.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
                34 AA;
                          67.6%; Score 23; DB 7; Length 34; 100.0%; Pred. No. 2.9e-17;
  Query Match
  Best Local Similarity
            23; Conservative 0; Mismatches 0; Indels
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              1111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 16
AAR07919
ID
     AAR07919 standard; protein; 34 AA.
XX
AC
     AAR07919;
XX
     18-FEB-1991 (first entry)
DT
XX
DE
     Human parathyroid hormone analogue, hPTH(7-34).
XX
KW
     Osteoporosis; hypercalcemia; hyperparathyroidism; hypertension.
XX
OS
     Homo sapiens.
XX
```

```
PN
     US4968669-A.
XX
PD
     06-NOV-1990.
XX
PF
     21-APR-1989;
                     89US-0341597.
XX
PR
     21-APR-1989;
                    89US-0341597.
PR
     09-MAY-1988;
                     88US-0191512.
XX
PΑ
     (MERI ) MERCK & CO INC.
XX
PΙ
     Rosenblatt M, Chorev M;
XX
DR
     WPI; 1990-354642/47.
XX
PT
     New para:thyroid hormone analogues - which inhibit hormone
PT
     activity by binding receptors while not producing second
PT
     messenger molecules
XX
PS
     Claim 1; Column 8; 6pp; English.
XX
CC
     Peptide analogues have high affinity for PTH cell surface receptors,
CC
     but do not stimulate production of secondary messenger molecules.
CC
     They may be used in inhibition of PTH action, and in diagnosis and
     treatment of osteoporosis, hypercalcemia and hyperparathyroidism.
CC
CC
     Analogues may also be used in treatment of tumours and other cells
CC
     overproducing peptide hormone-like substances, and immune diseases
     eg. allergic inflammation and hyperactive lymphocytes.
CC
CC
     Naturally occuring PTH levels may also be measured in vitro.
XX
SO
     Sequence
                34 AA;
  Query Match
                           67.6%; Score 23; DB 11; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
            23; Conservative
                                  0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                               0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              111111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
AAR22283
ID
     AAR22283 standard; peptide; 34 AA.
XX
AC
     AAR22283;
XX
DT
     29-JUL-1992 (first entry)
XX
DE
     Parathyroid hormone analogue N-terminus [1-34].
XX
KW
     Human; hPTH; wound healing; hair growth; hyperproliferation skin;
KW
     disorders; psoriasis; cancer; burns.
XX
OS
     Homo sapiens.
XX
PN
     WO9204039-A.
```

```
XX
PD
     19-MAR-1992.
XX
PF
     30-AUG-1991;
                    91WO-US06218.
XX
PR
     30-AUG-1990;
                    90US-0575219.
XX
PA
     (HOLI/) HOLICK M F.
XX
PI
     Holick MF;
XX
DR
     WPI; 1992-114063/14.
XX
PT
     Use of peptide having homology with parathyroid hormone - for
PT
     enhancement of cell proliferation for wound healing
XX
PS
     Disclosure; Fig 1; 34pp; English.
XX
     The peptide can be easily synthesised by recombinant DNA or solid
CC
CC
     phase peptide synthesis techniques. The peptide has > 50 percent
CC
     homology with the N-terminal 1-34 amino acids of human parathyriod
CC
     hormone or hypercalcaemic region. It is esp. PTH (7-34). The
CC
     peptide may be used in a method for the treatment of hyperprolifer-
CC
     ation skin disorders e.g. psoriasis, cancers, burns or skin
CC
     ulcerations by inhibition of cell proliferation and enhancement of
CC
     cell differentiation (agonist activity). They are also used to
CC
     enhance cell proliferation (antagonist activity) for wound healing.
CC
     They are also applicable in the promotion of new hair growth or
CC
     stimulation of the rate of hair growth e.g. following chemotherapy
CC
     or for treating alopecia e.g. male pattern baldness.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                                0; Mismatches
                                                  0;
                                                      Indels
                                                                 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 18
AAR22292
ΙD
     AAR22292 standard; Peptide; 34 AA.
XX
AC
    AAR22292;
XX
DT
     25-MAR-2003
                  (updated)
DT
     03-AUG-1992
                  (first entry)
XX
DE
     Human parathyroid hormone 1-34 [Phe 11].
XX
KW
    hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
    hypertension.
XX
OS
    Synthetic.
```

```
XX
PN
     EP477885-A.
XX
PD
     01-APR-1992.
XX
PF
     25-SEP-1991;
                    91EP-0116303.
XX
PR
     06-SEP-1991;
                    91JP-0227232.
PR
     28-SEP-1990;
                   90JP-0257490.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PI
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
XX
DR
     WPI; 1992-106285/14.
XX
PT
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
XX
PS
     Claim 9; Page 14; 14pp; English.
XX
CC
     The peptide is an analogue of human parathyroid hormone fragment
CC
     1-34. The peptide modification defined increase resistance to
CC
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
     The peptide may be synthesised by the Merrifield solid phase
CC
     method in an automatic apparatus.
CC
     See also AAR22290-99.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                              0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0:
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
AAR22293
ID
    AAR22293 standard; Peptide; 34 AA.
XX
AC
    AAR22293;
XX
DT
     25-MAR-2003
                  (updated)
DT
     03-AUG-1992
                 (first entry)
XX
DE
     Human parathyroid hormone 1-34 [Leu 8].
XX
KW
     hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
     hypertension.
XX
OS
     Synthetic.
```

```
XX
PN
     EP477885-A.
XX
PD ·
     01-APR-1992.
XX
PF
     25-SEP-1991;
                    91EP-0116303.
XX
PR
     06-SEP-1991;
                    91JP-0227232.
PR
     28-SEP-1990;
                    90JP-0257490.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
ΡI
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
XX
DR
    WPI; 1992-106285/14.
XX
PT
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
XX
PS
     Claim 9; Page 14; 14pp; English.
XX
CC
     The peptide is an analogue of human parathyroid hormone fragment
CC
           The peptide modification defined increase resistance to
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
CC
     The peptide may be synthesised by the Merrifield solid phase
     method in an automatic apparatus.
CC
CC
     See also AAR22290-99.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
               34 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
            23; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                 0;
                                                                    Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 20
AAR22294
ID
    AAR22294 standard; Peptide; 34 AA.
XX
AC
    AAR22294;
XX
DT
     25-MAR-2003
                  (updated)
DΤ̈́
     03-AUG-1992
                 (first entry)
XX
DΕ
     Human parathyroid hormone 1-34 [Ser 11].
XX
KW
    hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
    hypertension.
XX
OS
     Synthetic.
```

```
XX
PN
     EP477885-A.
XX
PD
     01-APR-1992.
XX
     25-SEP-1991;
ΡF
                    91EP-0116303.
XX
PR
     06-SEP-1991;
                    91JP-0227232.
PR
     28-SEP-1990;
                    90JP-0257490.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
XX
DR
     WPI; 1992-106285/14.
XX
PT
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
XX
PS
     Claim 9; Page 14; 14pp; English.
XX
CC
     The peptide is an analogue of human parathyroid hormone fragment
CC
     1-34. The peptide modification defined increase resistance to
CC
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
     The peptide may be synthesised by the Merrifield solid phase
CC
     method in an automatic apparatus.
CC
     See also AAR22290-99.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
               34 AA;
                          67.6%; Score 23; DB 13; Length 34;
  Query Match
                          100.0%; Pred. No. 2.9e-17;
  Best Local Similarity
  Matches
           23; Conservative
                                0; Mismatches
                                                 0; Indels
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 21
AAR41549
ID
    AAR41549 standard; protein; 34 AA.
XX
AC
    AAR41549;
XX
DT
     25-MAR-2003
                  (updated)
DT
     11-APR-1994
                 (first entry)
XX
DE
     [D-Ser3]hPTH (1-34)NH2.
XX
KW
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
    hypoparathyroidism; hypertension.
XX
OS
    Homo sapiens.
```

```
FH
                    Location/Qualifiers
     Key
FT
    Misc-difference 3
                    /note = "D-form residue"
FT
FT
    Modified-site
FT
                    /note = "C terminal is amidated"
XX
PN
    EP561412-A1.
XX
     22-SEP-1993.
PD
XX
                  93EP-0104500.
PF
     18-MAR-1993;
XX
PR
     19-MAR-1992; 92JP-0063517.
PR
     18-FEB-1993; 93JP-0029283.
XX
     (TAKE ) TAKEDA CHEM IND LTD.
PΑ
XX
     Fukuda T, Nakagawa S, Taketomi S;
PΙ
XX
     WPI; 1993-296712/38.
DR
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
PT
XX
PS
     Example 1; Page 17; 37pp; English.
XX
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
     disorders. This analogue was used as a test compound.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
CC
XX
SO
     Sequence
               34 AA;
                          67.6%; Score 23; DB 14; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 2.9e-17;
          23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 22
AAR41550
ID
     AAR41550 standard; protein; 34 AA.
XX
AC
     AAR41550;
XX
DT
     25-MAR-2003 (updated)
DT
     11-APR-1994 (first entry)
XX
DE
     [D-Ala3]hPTH (1-34).
XX
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
```

XX

```
KW
     hypoparathyroidism; hypertension.
XX
OS
     Homo sapiens.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Misc-difference 3
FT
                     /note = "D-form residue"
XX
PN
     EP561412-A1.
XX
PD
     22-SEP-1993.
XX
PF
     18-MAR-1993;
                    93EP-0104500.
XX
PR
     19-MAR-1992;
                   92JP-0063517.
PR
     18-FEB-1993; 93JP-0029283.
XX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Nakagawa S, Taketomi S;
XX
     WPI; 1993-296712/38.
DR
XX
PТ
     New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 17; 37pp; English.
XX
CC
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
     disorders. This analogue has a relative biological activity to hPTH(1-34)
CC
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence 34 AA;
  Query Match
                         67.6%; Score 23; DB 14; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
          23; Conservative 0; Mismatches 0; Indels
                                                                    Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 23
AAR41570
ID
     AAR41570 standard; protein; 34 AA.
XX
AC
     AAR41570;
XX
DT
     25-MAR-2003
                 (updated)
DT
     11-APR-1994 (first entry)
XX
DE
     [Gln25]hPTH (1-34).
```

```
XX
KW
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
     hypoparathyroidism; hypertension.
XX
     Homo sapiens.
OS
XX
PΝ
     EP561412-A1.
ХХ
PD
     22-SEP-1993.
XX
PF
     18-MAR-1993;
                   93EP-0104500.
XX
PR
     19-MAR-1992;
                   92JP-0063517.
PR
     18-FEB-1993;
                   93JP-0029283.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1993-296712/38.
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
PT
     osteoporosis hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 27; 37pp; English.
XX
CC
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
     obtained. The proteins can be used to treat a number of bone and blood
CC
CC
     disorders. This analogue was used as a test compound.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
               34 AA;
                         67.6%; Score 23; DB 14; Length 34;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
  Matches 23; Conservative 0; Mismatches
                                                 0; Indels 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
AAR49697
ΙD
     AAR49697 standard; Protein; 34 AA.
XX
AC
    AAR49697;
XX
DT
     14-SEP-1994 (first entry)
XX
DE
     Sequence of variant of human parathyroid hormone [Ala8]hPTH(1-34).
XX
KW
     Parathyroid hormone; bone-stimulating; non-vasoactive compound;
KW
     osteoporosis; therapy.
XX
```

```
OS
     Synthetic.
XX
PN
     CA2098639-A.
XX
PD
     20-DEC-1993.
XX
PF
     17-JUN-1993;
                    93CA-2098639.
XX
PR
     19-JUN-1992;
                    92US-0900680.
XX
PΑ
     (ALLX ) ALLELIX BIOPHARMACEUTICALS INC.
PA
     (GLAX ) GLAXO CANADA INC.
XX
PΙ
     Bozzato RP, Kronis KA;
XX
DR
     WPI; 1994-074853/10.
XX
PT
     New Met8-substd. variants of parathyroid hormone - stimulate bone
PT
     and are non-vasoactive, useful for treating, e.g. osteoporosis
XX
PS
     Claim 13; Fig 2; 31pp; English.
XX
CC
     AAQ58564 is the sequence of wild-type human parathyroid hormone. In
CC
     the cpds of the invention, Met 8 is replaced with Cys, Val or Ala.
     In addition, Met 18 may be replaced with Leu. Moreover truncated
CC
     variants of 34 AAs with Ala or Cys substituted for Met 8 are also
CC
     claimed. The variants have reduced vasoactivity relative to Met 8-
CC
CC
     contg. hPTH and are useful for the treatment of bone disorders, such
CC
     as oteoporosis. Dosage is 1 microgram - 100 milligram (pref. 1-
CC
     microgram - 1000 microgram)/kg.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                                0; Mismatches
                                                  0;
                                                                     Gaps
                                                      Indels
                                                                 0:
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 25
AAR49698
ID
     AAR49698 standard; Protein; 34 AA.
XX
AC
     AAR49698;
XX
DT
     14-SEP-1994 (first entry)
XX
DE
     Sequence of variant of human parathyroid hormone [Cys8]hPTH(1-34).
XX
     Parathyroid hormone; bone-stimulating; non-vasoactive compound;
KW
KW
     osteoporosis; therapy.
XX
OS
     Synthetic.
XX
```

```
PN
     CA2098639-A.
XX
PD
     20-DEC-1993.
XX
PF
     17-JUN-1993;
                    93CA-2098639.
XX
PR
     19-JUN-1992;
                    92US-0900680.
XX
PΑ
     (ALLX ) ALLELIX BIOPHARMACEUTICALS INC.
PA
     (GLAX ) GLAXO CANADA INC.
XX
PΙ
     Bozzato RP, Kronis KA;
XX
DR
     WPI; 1994-074853/10.
XX
PT
     New Met8-substd. variants of parathyroid hormone - stimulate bone
PT
     and are non-vasoactive, useful for treating, e.g. osteoporosis
XX
PS
     Claim 14; Fig 2; 31pp; English.
XX
CC
     AAQ58564 is the sequence of wild-type human parathyroid hormone. In
CC
     the cpds of the invention, Met 8 is replaced with Cys, Val or Ala.
CC
     In addition, Met 18 may be replaced with Leu. Moreover truncated
CC
     variants of 34 AAs with Ala or Cys substituted for Met 8 are also
CC
     claimed. The variants have reduced vasoactivity relative to Met 8-
CC
     contg. hPTH and are useful for the treatment of bone disorders, such
CC
     as oteoporosis. Dosage is 1 microgram - 100 milligram (pref. 1-
CC
     microgram - 1000 microgram)/kg.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity 100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              111111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
AAR58291
ID
    AAR58291 standard; peptide; 34 AA.
XX
AC
    AAR58291;
XX
DT
     20-SEP-1994 (first entry)
XX
     [Lys (For) 26, Lys (For) 27] -hPTH (1-34) -NH2.
DE
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
    hypoparathyroidism.
XX
OS
    Synthetic.
XX
FΗ
     Key
                    Location/Qualifiers
```

```
FT
     Modified-site
FT
                     /label= Other
FT
                     /note= "Formyl-Lys."
FT
     Modified-site
FT
                     /label= Other
FT
                     /note= "Formyl-Lys."
     Modified-site
FT
FΤ
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
     23-DEC-1992;
PR
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PA
     (BAUE/) BAUER W.
PA
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PΙ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 289; Page 47; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
CC
    parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
    hypoparathyroidism.
XX
SO
    Sequence
               34 AA;
  Query Match
                         67.6%; Score 23; DB 15; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
          23; Conservative
 Matches
                              0; Mismatches
                                                 0; Indels
                                                                0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              12 GKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 27
AAR58228
     AAR58228 standard; peptide; 34 AA.
XX
AC
     AAR58228;
XX
DT
     20-SEP-1994
                   (first entry)
XX
DΕ
      [D-Asp30]-hPTH(1-34)-NH2.
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FH
     Key
                      Location/Qualifiers
FT
     Misc-difference 30
FT
                      /note= "D-form residue."
FT
     Modified-site
FT
                      /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                     92GB-0015009.
PR
     18-DEC-1992;
                     92GB-0026415.
PR
     23-DEC-1992;
                     92GB-0026859.
PR
     23-DEC-1992;
                     92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                     93GB-0001692.
PR
     14-APR-1993;
                     93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PA
     (BAUE/) BAUER W.
PA
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
ΡI
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
ΡI
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PΤ
     preventing osteoporosis etc.
XX
PS
     Example 226; Page 45; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
```

```
CC
      hypoparathyroidism.
 XX
 SQ
      Sequence
                 34 AA;
   Query Match
                           67.6%; Score 23; DB 15; Length 34;
   Best Local Similarity
                           100.0%; Pred. No. 2.9e-17;
            23; Conservative 0; Mismatches
                                                   0; Indels
                                                                   0; Gaps
                                                                               0;
            12 GKHLNSMERVEWLRKKLQDVHNF 34
 Qу
               111111111111111111111
 Db
            12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 28
AAR58016
ID
     AAR58016 standard; peptide; 34 AA.
XX
AC
     AAR58016;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     N-alpha-Isopropyl-hPTH(1-34)-NH2 parathyroid hormone variant.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FH
     Key
                     Location/Qualifiers
FT
     Modified-site
                     1
FT
                     /note= "N-alpha-isopropyl-Ser"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
                    92GB-0026859.
     23-DEC-1992;
PR
     23-DEC-1992;
                    92GB-0026861.
     28-JAN-1993;
PR
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
PΙ
    Albert R, Bauer W, Breckenridge R, Cardinaux F;
ΡI
    Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
```

```
XX
DR
     WPI; 1994-018352/03.
XX
     New active para-thyroid hormone variants - used for treating or
PT
PT
     preventing osteoporosis etc.
XX
PS
     Example 1; Page 30; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative 0; Mismatches
                                                  0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 29
AAR58017
ID
     AAR58017 standard; peptide; 34 AA.
XX
AC
     AAR58017;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [Lys(N-epsilon-Isopropyl)26,27]-human parathyroid hormone(1-34)-NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
FT
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
    GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                   92GB-0015009.
```

PΙ

Waelchli R, Rainer A;

```
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
ΡĪ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PТ
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 2; Page 32; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
          23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 30
AAR55724
     AAR55724 standard; peptide; 34 AA.
XX
AC
    AAR55724;
XX
DT
     25-MAR-2003
                  (updated)
DT
     16-NOV-1994 (first entry)
XX
DE
     Parathormone N-terminal sequence.
XX
KW
     Parathormone; parathyroid hormone; fatty acyl-peptide; conjugate;
KW
    antiproliferative; tumor; psoriasis; docosahexaenoic acid; DHA;
KW
    eicosapentaenoic acid; EPA; antitumor.
XX
OS
    Synthetic.
```

```
XX
PN
     WO9412530-A1.
XX
PD
     09-JUN-1994.
XX
PF
     29-NOV-1993;
                    93WO-HU00065.
XX
PR
     30-NOV-1992; 92US-0984293.
XX
     (BIOS-) BIOSIGNAL KUTATO FEJLESZTO KFT.
PA
PΑ
     (SYNT-) SYNTHETIC PEPTIDES INC.
XX
PΙ
     Balogh A, Cachia PJ, Hodges RS, Horvath A, Keri G;
PΙ
     Szederkenyi F, Vadasz Z;
XX
DR
     WPI; 1994-200194/24.
XX
     New fatty acyl-peptide conjugates for inhibiting cell
PT
PT
     proliferation - more active than free peptide, partic. for
PT
     treating tumours, virus-infected cells, psoriasis, etc.
XX
PS
     Disclosure; Fig. 1; 45pp; English.
XX
CC
     The peptides given in AAR55718-48 can each be conjugated through an
CC
     amide linkage with a polyunsaturated fatty acid moiety, such as
CC
     docosahexaenoic acid (DHA) or eicosapentanoic acid, to improve
CC
     antiproliferative activity. The parathormone N-terminal fragment
CC
     inhibits osteoblast proliferation.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                         67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
  Matches 23; Conservative 0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 31
AAR74521
ID
     AAR74521 standard; Peptide; 34 AA.
XX
AC
    AAR74521;
XX
DT
     25-MAR-2003 (updated)
DT
     04-DEC-1995 (first entry)
XX
DΕ
    Human parathyroid hormone (1-34).
XX
KW
    Analogue; truncated human parathyroid hormone; PTH; hPTH; substitution;
KW
    osteoporosis; hypercalcaemia; hyperparathroidism;
    metabolic bone disease; human; veterinary medicine;
KW
KW
     iontophoretic transdermal transport; recombinant E.coli.
XX
```

```
OS
     Homo sapiens.
XX
PN
     WO9511988-A1.
XX
PD
     04-MAY-1995.
XX
PF
     25-OCT-1994;
                    94WO-US12205.
XX
PR
     25-OCT-1993;
                    93US-0142551.
XX
PΑ
     (AFFY-) AFFYMAX TECHNOLOGIES NV.
XX
     Oldenburg KR, Selick HE;
PΙ
XX
DR
     WPI; 1995-178880/23.
XX
PT
     New active analogues of parathyroid hormone - with increased
PT
     activity, stability in serum etc., esp. for treating
PT
     osteoporosis, also related DNA and vectors
XX
PS
     Disclosure; Page 1; 109pp; English.
XX
CC
     This sequence represents residues 1-34 of human parathyroid hormone
CC
     (RPTH). This sequence was used in the production of analogues of the
CC
     truncated form of PTH. These analogues have increased activity and
     longer serum half life than native PTH due to eg. substitution of Met
CC
     residues with Leu residues and replacing the carboxy Phe with Tyr. The
CC
CC
     carboxy terminal may also be modified by the addition of a homoserine
CC
     residue or analogue, or by the addition of residues 35-84 of wild type
CC
     PTH (see AAR74410). These PTH analogues may be used in the treatment of
CC
     osteoporosis or hypercalcaemia, hyperparathroidism or other metabolic
CC
     bone diseases in human or veterinary medicine. These peptides may also
CC
     have increased iontophoretic transdermal transport compared to wild type
CC
     PTH and can be produced in high yield in recombinant E.coli.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 16; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                              0; Mismatches
                                                0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 32
AAW99449
ID
    AAW99449 standard; peptide; 34 AA.
XX
AC
    AAW99449;
XX
DT
    08-JUN-1999 (first entry)
XX
DE
    Human parathyroid hormone aal-34.
XX
```

```
Parathyroid hormone; PTH; parathormone; premature birth; pregnancy;
KW
     spontaneous abortion; uterine contraction; human.
XX
OS
     Homo sapiens.
XX
PN
     US5880093-A.
XX
PD
     09-MAR-1999.
XX
     05-APR-1995;
PF
                    95US-0411726.
XX
PR
     28-SEP-1992;
                    92IT-MI02331.
XX
PΑ
     (BAGN/) BAGNOLI F.
XX
PΙ
     Bagnoli F;
XX
     WPI; 1996-162392/17.
DR
XX
РΤ
     Use of composition containing parathormone or fragments - for
     preventing premature birth or spontaneous abortion or for treating
PT
PT
     unwanted uterine contractions
XX
PS
     Disclosure; Column 7-8; 11pp; English.
XX
     Peptides AAW99448-W99452 represent all or part of the parathyroid
CC
CC
     hormone (PTH; parathormone) sequence or related peptide. The peptides
CC
     are used for preventing premature birth, spontaneous abortion or unwanted
CC
     uterine contractions in a pregnant human patient.
     (Note: this patent is the first Major Country Equivalent to Italian
CC
CC
     Patent IT1255388).
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
          23; Conservative
                                0; Mismatches 0; Indels
                                                                     Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 33
AAW15812
ID
     AAW15812 standard; peptide; 34 AA.
XX
AC
    AAW15812;
XX
DT
     25-MAR-2003
                  (updated)
DT
     05-JUN-1997 (first entry)
XX
DE
     [Trp(10)] - hPTH(1-34) - OH.
XX
KW
    human parathyroid hormone; human parathyroid hormone related peptide;
KW
    hPTH; hPTHrP; antagonist; hyperparathyroidism; hypercalcaemia;
KW
     tumour; dermatological disorders; hair growth promoter.
```

KW

```
XX
OS
     Synthetic.
XX
PN
     WO9603437-A1.
XX
PD
     08-FEB-1996.
XX
ΡF
     27-JUL-1995;
                    95WO-EP02993.
XX
PR
     28-JUL-1994;
                    94GB-0015255.
PR
                    94GB-0015254.
     28-JUL-1994;
XX
PA
     (SANO ) SANDOZ LTD.
PA
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PΙ
     Cardinaux F, Feyen JHM, Gamse R, Gombert FO;
XX
DR
     WPI; 1996-117003/12.
XX
PT
     New parathyroid hormone or parathyroid hormone related peptide cpds.
PT
     - useful for preventing or treating conditions associated with
PT
     increased plasma calcium, tumour growth and dermatological disorders
XX
PS
     Example 9; Page 9; 32pp; English.
XX
CC
     New parathyroid hormone (PTH) or parathyroid hormone related peptide
     (PTHrP) compounds are claimed in which (i) at least one of the amino
CC
CC
     acid residues naturally occurring in positions 2 and 10 is replaced
CC
     by tryptophan or another amino acid residue bearing an aromatic or
CC
     heteroaromatic group on its side chain, and (ii) optionally at least
CC
     one of the amino acid residues naturally occurring in positions 3 and 6
CC
     is further replaced by tryptophan or another amino acid residue bearing
CC
     an aromatic or heteroaromatic group on its side chain. The peptides are
     PTH or PTHrP antagonists useful for preventing or treating conditions
CC
CC
     associated with increased plasma calcium caused by excessive release of
CC
     PTH or PTHrP (e.g. hyperparathyroidism, or hypercalcemia associated with
CC
     malignancy); for preventing or treating tumour growth stimulated by
CC
     PTHrP; for treating dermatological disorders; and for promoting hair
CC
     growth. They may be used in combination with a further active agent,
CC
     e.g. a bone resorption inhibitor or cytostatic agent.
CC
     The present sequence is a specific example of the new peptides.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
               34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
  Best Local Similarity 100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                              0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
```

```
ID
     AAR99978 standard; peptide; 34 AA.
XX
AC
     AAR99978;
XX
     30-APR-1997 (first entry)
DT
XX
DE
     Human parathyroid hormone peptide fragment (1-34).
XX
     cyclic parathyroid hormone fragment; calcium-regulating activity;
KW
KW
     osteoporosis; inhibit proliferation; epidermal cell; psoriasis;
KW
     improved half life; calcium retention; bone.
XX
OS
     Synthetic.
XX
     DE19508672-A1.
PN
XX
PD
     12-SEP-1996.
XX
PF
     10-MAR-1995;
                    95DE-1008672.
XX
PR
     10-MAR-1995;
                    95DE-1008672.
XX
PΑ
     (BOEF ) BOEHRINGER MANNHEIM GMBH.
ХX
ΡI
     Dony C, Esswein A, Hoffmann E, Honold K, Schaefer W;
XX
DR
     WPI; 1996-413519/42.
XX
PT
     Cyclic parathyroid hormone fragments with lactam bridge - have good
PT
     in vivo half life and are useful for treating osteoporosis and
PT
     preventing epidermal cell proliferation
XX
PS
     Disclosure; Page 9; 14pp; German.
XX
CC
     New cyclic parathyroid hormone fragments (CPTH) have the amino acid
CC
     sequence of h, b, p, r or cPTH(1-34), opt. extended by up to 4 amino
CC
     acids (aa) at the C-terminus and opt. shortened by up to 3 amino acids at
CC
     the N-terminus, and are cyclised between positions 13 and 17. One of
CC
     these positions is occupied by L- or D- Orn or Lys, and the other by L-
CC
     or D- Glu or Asp. CPTH have calcium-regulating activity (esp. for
CC
     treating osteoporosis and inhibit proliferation of epidermal cells (for
CC
     treating psoriasis). The CPTH have an improved half life in vivo than
CC
    known PTH fragments, increased mitogenicity and DNA-synthesising
CC
     capacity, reduced catabolic, calcium-mobilising activity and increased
CC
     activity for calcium retention and incorporation into bone. The
CC
    present sequence is that of human PTH peptide fragment (1-34).
XX
SQ
     Sequence
               34 AA;
 Query Match
                         67.6%; Score 23; DB 17; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
          23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLODVHNF 34
```

```
RESULT 35
AAR98951
ID
     AAR98951 standard; peptide; 34 AA.
XX
AC
     AAR98951;
XX
DT
     15-JAN-1997 (first entry)
XX
DE
     Target peptide (PTH(1-34)) used in fusion protein construct.
XX
KW
     Fusion protein construct; isolation; purification;
KW
     growth hormone releasing factor; glucagon-like peptide 1;
     parathyroid hormone; inclusion body; carbonic anhydrase.
KW
XX
OS
     Synthetic.
XX
PN
     WO9617942-A1.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                    95WO-US15800.
XX
PR
     07-DEC-1994;
                    94US-0350530.
XX
PΑ
     (BION-) BIONEBRASKA INC.
XX
PΙ
     De LA MOTTE RS, Henriksen DB, Holmquist B, Manning SD;
PΙ
     Partridge BE, Stout JS, Wagner FW;
XX
DR
     WPI; 1996-287186/29.
XX
PT
     Isolation and purificn of peptide(s) from fusion protein constructs
PT
     - which include a carbonic anhydrase and a variable fused
PT
     polypeptide
XX
PS
     Claim 18; Page 48; 67pp; English.
XX
CC
     A new method for the isolation and/or purification of a recombinant
CC
     peptide employs a fusion protein construct (FPC) comprising a
CC
     carbonic anhydrase and a variable fused polypeptide containing a
CC
     target peptide. The method comprises precipitating either the FPC or
CC
     a fragment of the FPC including the carbonic anhydrase. An
CC
     alternative method of producing the peptide comprises expressing the
CC
     FPC as part of an inclusion body. The target peptides of the FPC are
CC
     derived from growth hormone releasing factor (GRF), glucagon-like
CC
    peptide 1 (GLP1) or parathyroid hormone (PTH). This sequence
CC
    corresponds to amino acids 1-34 of PTH.
XX
SO
    Sequence
                34 AA;
 Query Match
                          67.6%; Score 23; DB 17; Length 34;
 Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                             0;
```

```
RESULT 36
AAR98966
ID
     AAR98966 standard; Peptide; 34 AA.
ХX
AC
     AAR98966;
XX
DT
     02-DEC-1996 (first entry)
XX
DE
     PTH(1-34).
XX
KW
     PTH; parathyroid hormone; parathormone; C-amide;
KW
     C-amidated peptide; alpha-carboxamide; recombinant protein;
KW
     fusion protein; transpeptidation.
XX
OS
     Not specified.
XX
     WO9617941-A2.
ΡN
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                    95WO-US15799.
XX
     07-DEC-1994;
PR
                    94US-0350528.
XX
PΑ
     (BION-) BIONEBRASKA INC.
ХX
PΙ
     Heriksen DB,
                   Holmquist B, Patridge BE, Stout JS;
PΙ
     Wagner FW;
XX
DR
     WPI; 1996-287185/29.
XX
PT
     Production of C-terminal alpha-carboxamidated peptide(s) - by
PT
     cleavage and transpeptidation of recombinant multicopy peptide(s) or
PT
     fusion constructs
XX
PS
     Claim 12; Page 70; 93pp; English.
XX
CC
     GLP1(7-35), GRF(1-44) and PTH(1-34) peptides (AAR98964-66) can be
CC
     produced as C-terminal amidated peptides utilising novel recombinant
CC
     protein constructs (see also AAR98967-72) in which single or multiple
CC
     copies of the peptide are linked by intraconnecting peptides that
CC
     permit the construct to be selectively reacted to produce product
CC
     peptides having a C-terminal alpha-carboxamide. Expression cassettes
CC
     (see also AAT34865-70) can be incorporated into vectors allowing prodn.
     of the recombinant proteins in transformed E. coli host cells.
CC
XX
SO
     Sequence
                34 AA;
 Query Match
                          67.6%; Score 23; DB 17; Length 34;
 Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
 Matches
            23; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 37
AAR88835
     AAR88835 standard; peptide; 34 AA.
ID
ХX
AC
     AAR88835;
XX
DT
     07-OCT-1996 (first entry)
XX
DE
     Human parathyroid hormone analogue, cyclo-PTH(1-34)-NH2.
XX
KW
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
     calcium regulation; reduced PKC activity; protein kinase C;
KW
KW
     increased adenylyl cyclase activity; cAMPase; cyclic; bone loss.
XX
OS
     Synthetic.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                      /note= "forms peptide bond with Lys at posn. 26"
FT
     Modified-site
FT
                     /note= "forms peptide bond with Asp at posn. 30"
FT
     Modified-site
FT
                     /note= "forms peptide bond with Asn at posn. 10"
FT
     Modified-site
FT
                     /note= "forms peptide bond with His at posn. 14"
FT
     Modified-site
FT
                     /note= "amidated"
XX
PN
     CA2126299-A.
XX
PD
     21-DEC-1995.
XX
PF
     20-JUN-1994;
                    94CA-2126299.
XX
PR
     20-JUN-1994;
                    94CA-2126299.
XX
PΑ
     (WILL/) WILLICK G E.
XX
ΡI
     Neugebauer W, Sung WL, Surewicz W, Whitfield JF;
PΙ
     Willick GE;
XX
DR
     WPI; 1996-151754/16.
XX
PT
     New human parathyroid hormone analogues - which have increased
PT
     adenylyl cyclase activating activity, used for treating osteoporosis
XX
PS
     Claim 3; Fig 8; 21pp; English.
XX
CC
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
CC
CC
     activity and reduce protein kinase C (PKC) activity. The analogues
CC
     can reverse the loss of bone and increase bone mass and density
CC
     without undesirable effects. They are useful for the treatment of
CC
     osteoporosis and other bone related disorders and disorders
```

```
CC
     involving bone cell calcium regulation.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
            23; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 38
AAW24273
ID
     AAW24273 standard; protein; 34 AA.
XX
AC
     AAW24273;
XX
DT
     17-OCT-1997 (first entry)
XX
DE
     Wild type parathyroid hormone.
XX
KW
     Analogue; parathyroid hormone; PTH; hirudin; hirulog;
KW
     electrotransportability; alpha-helix; beta-sheet.
XX
OS
     Homo sapiens.
XX
ΡN
     W09639423-A2.
XX
PD
     12-DEC-1996.
XX
PF
     06-JUN-1996;
                    96WO-US09647.
XX
PR
     06-JUN-1995;
                    95US-0468275.
XX
PA
     (ALZA ) ALZA CORP.
XX
PΙ
     Holladay LA, Oldenburg KR;
XX
DR
     WPI; 1997-043058/04.
XX
PT
     Prepn. of analogues of parent poly-peptide(s), esp. parathyroid
     hormone and hirulog - which exhibit better or enhanced
PT
PΤ
     electro-transportability through a body surface
XX
PS
     Claim 7; Fig 1A; 55pp; English.
XX
CC
     The sequences given in AAW24273-76 represent wildtype and analogues of
CC
     parathyroid hormone (PTH). The analogues exhibit better/enhanced
CC
     electrotransportability through a body surface, and are characterised
    by substituting one or more amino acid residues of the parent
CC
CC
    polypeptide to disrupt one or more alpha-helical and/or beta-sheet
CC
    segments of the parent polypeptide. An electrotransport device can
CC
    deliver the polypeptide analogue through a body surface by electro-
CC
    transport by including providing a therapeutically effective amount
CC
    of the polypeptide analogue in a donor reservoir of the electrotransport
```

```
device. The electrotransport flux of a polypeptide is increased by
 CC
      reducing the potential of the polypeptide for forming alpha-helix or
CC
     beta-sheet segment.
XX
SO
     Sequence
                34 AA;
  Query Match
                           67.6%; Score 23; DB 18; Length 34;
  Best Local Similarity
                           100.0%; Pred. No. 2.9e-17;
            23; Conservative
                                0; Mismatches
                                                                              0;
                                                  0; Indels
                                                                  0; Gaps
Qу
            12 GKHLNSMERVEWLRKKLQDVHNF 34
               11111111111111111111111
Db
            12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 39
AAW08120
     AAW08120 standard; peptide; 34 AA.
XX
AC
     AAW08120;
XX
     10-OCT-1997 (first entry)
ĎΤ
XX
DE
     Human PTH derivative, [Aad10]hPTH(1-34).
XX
KW
     Human; parathyroid hormone; PTH; cAMP-producing activity;
     bone formation; osteoporosis; hypoparathyroidism; hypertension;
KW
     climacteric disturbance.
KW
XX
OS
     Synthetic.
XX
FH
     Key
                     Location/Qualifiers
FT
     Modified-site
                     10
FT
                     /label= Aad
XX
PN
     EP748817-A2.
XX
PD
     18-DEC-1996.
XX
PF
     13-JUN-1996;
                    96EP-0109475.
XX
PR
     15-JUN-1995;
                    95JP-0148652.
ХX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Habashita J, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1997-036114/04.
XX
PT
     New parathyroid hormone derivs. - useful in treatment of bone
PT
     diseases, hypoparathyroidism and hypertension
XX
     Example 1; Page 29; 42pp; English.
PS
XX
CC
     The sequences given in AAW08108-32 represent derivatives of human
CC
     parathyroid hormone (PTH). These peptides are human PTH (1-34)
CC
     derivative peptides. They have potent cAMP-producing activity and
```

CC

```
bone formation activity. They may be used in treatment of bone
CC
     diseases including osteoporosis, hypoparathyroidism, hypertension
CC
     and climacteric disturbance. The peptides are low in toxicity and
CC
     are safe.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 18; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
            23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLODVHNF 34
RESULT 40
AAW08109
ID
     AAW08109 standard; peptide; 34 AA.
XX
AC
     AAW08109;
XX
DT
     10-OCT-1997
                  (first entry)
XX
     Human parathyroid hormone derivative, [Glu10]hPTH(1-34).
DE
XX
KW
     Human; parathyroid hormone; PTH; cAMP-producing activity;
     bone formation; osteoporosis; hypoparathyroidism; hypertension;
KW
KW
     climacteric disturbance.
XX
OS
     Synthetic.
XX
PN
     EP748817-A2.
XX
PD
     18-DEC-1996.
XX
PF
     13-JUN-1996;
                    96EP-0109475.
XX
PR
     15-JUN-1995;
                   95JP-0148652.
XX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Habashita J, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1997-036114/04.
XX
PT
     New parathyroid hormone derivs. - useful in treatment of bone
PT
     diseases, hypoparathyroidism and hypertension
XX
PS
     Claim 28; Page 26; 42pp; English.
XX
     The sequences given in AAW08108-32 represent derivatives of human
CC
     parathyroid hormone (PTH). These peptides are human PTH (1-34)
CC
CC
     derivative peptides. They have potent cAMP-producing activity and
CC
     bone formation activity. They may be used in treatment of bone
CC
     diseases including osteoporosis, hypoparathyroidism, hypertension
     and climacteric disturbance. The peptides are low in toxicity and
CC
```

CC

CC are safe.

XX

SQ Sequence 34 AA;

Query Match 67.6%; Score 23; DB 18; Length 34; Best Local Similarity 100.0%; Pred. No. 2.9e-17; Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps

12 GKHLNSMERVEWLRKKLQDVHNF 34 Qу

11111111111111111111111111

Db 12 GKHLNSMERVEWLRKKLQDVHNF 34

Search completed: January 14, 2004, 10:34:21

Job time : 34.5171 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:59; Search time 11.5452 Seconds

(without alignments)

124.604 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score: 34

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 328717 seqs, 42310858 residues

Word size : 0

Total number of hits satisfying chosen parameters: 25778

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : Issued_Patents AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*
4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*

5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*

6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	ક				
	Query				
Score	Match	Length	DB	ID	Description
24	70.6	34	3	US-09-044-536A-8	Sequence 8, Appli
23	67.6	33	1	US-08-256-363-1	Sequence 1, Appli
23	67.6	34	1	US-07-765-373-1	Sequence 1, Appli
23	67.6	34	1	US-08-033-099 - 1	Sequence 1, Appli
23	67.6	34	1	US-08-262-495C-1	Sequence 1, Appli
23	67.6	34	1	US-07-915-247A-1	Sequence 1, Appli
23	67.6	34	1	US-08-443-863-1	Sequence 1, Appli
23	67.6	34	1	US-08-448-070-1	Sequence 1, Appli
23	67.6	34	-1	US-08-488-105-7	Sequence 7, Appli
23	67.6	34	1	US-08-468-275-6	Sequence 6, Appli
23	67.6	34	1	US-08-256-363-2	Sequence 2, Appli
	24 23 23 23 23 23 23 23 23 23 23	Query Score Match 24 70.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6	Query Score Match Length 24 70.6 34 23 67.6 33 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34	Query Score Match Length DB 24 70.6 34 3 23 67.6 33 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1	Query Score Match Length DB ID 24 70.6 34 3 US-09-044-536A-8 23 67.6 33 1 US-08-256-363-1 23 67.6 34 1 US-08-033-099-1 23 67.6 34 1 US-08-262-495C-1 23 67.6 34 1 US-08-262-495C-1 23 67.6 34 1 US-08-443-863-1 23 67.6 34 1 US-08-443-863-1 23 67.6 34 1 US-08-448-070-1 23 67.6 34 1 US-08-488-105-7 23 67.6 34 1 US-08-468-275-6

```
12
        23
              67.6
                       34
                              US-08-449-500-1
                                                           Sequence 1, Appli
              67.6
13
        23
                       34
                           1
                              US-08-449-317A-1
                                                           Sequence 1, Appli
14
        23
              67.6
                       34
                           2
                              US-08-142-551B-2
                                                           Sequence 2, Appli
15
        23
              67.6
                       34
                              US-08-477-022-1
                                                           Sequence 1, Appli
16
        23
                           2
              67.6
                       34
                              US-08-449-447-1
                                                           Sequence 1, Appli
17
        23
              67.6
                       34
                           2
                              US-08-835-231-13
                                                           Sequence 13, Appl
        23
18
              67.6
                       34
                           2
                              US-08-184-328-1
                                                           Sequence 1, Appli
19
              67.6
        23
                       34
                           2
                              US-08-411-726-2
                                                           Sequence 2, Appli
20
        23
              67.6
                       34
                           2
                              US-08-691-647C-5
                                                           Sequence 5, Appli
                       34
21
        23
              67.6
                           2
                              US-08-521-097-1
                                                           Sequence 1, Appli
22
        23
              67.6
                       34 3
                              US-09-044-536A-1
                                                           Sequence 1, Appli
23
        23
              67.6
                       34
                           3
                              US-09-044-536A-9
                                                           Sequence 9, Appli
24
        23
              67.6
                       34
                           3
                              US-09-044-536A-10
                                                           Sequence 10, Appl
25
        23
              67.6
                       34
                           3
                              US-09-044-536A-11
                                                           Sequence 11, Appl
26
        23
              67.6
                       34
                           3
                              US-09-044-536A-12
                                                           Sequence 12, Appl
27
        23
              67.6
                       34 3
                              US-09-044-536A-13
                                                           Sequence 13, Appl
28
        23
              67.6
                       34
                              US-09-044-536A-14
                                                           Sequence 14, Appl
29
        23
              67.6
                       34
                              US-09-044-536A-15
                                                           Sequence 15, Appl
30
        23
              67.6
                       34
                          3
                              US-08-904-760B-22
                                                           Sequence 22, Appl
31
        23
              67.6
                       34
                           3
                              US-09-108-661-13
                                                           Sequence 13, Appl
32
        23
              67.6
                       34
                           4
                              US-09-007-466-6
                                                           Sequence 6, Appli
                              US-09-406-813-1
33
        23
              67.6
                       34
                                                           Sequence 1, Appli
34
        23
              67.6
                       34
                           4
                              US-08-952-980B-6
                                                           Sequence 6, Appli
35
        23
              67.6
                       34
                              US-09-228-990-1
                                                          Sequence 1, Appli
36
        23
              67.6
                       34
                          4
                              US-09-447-800-1
                                                          Sequence 1, Appli
37
        23
              67.6
                       34
                          4
                              US-09-447-800-2
                                                          Sequence 2, Appli
38
        23
              67.6
                       34 4
                              US-09-447-800-5
                                                          Sequence 5, Appli
39
        23
              67.6
                       34 4
                              US-09-447-800-8
                                                          Sequence 8, Appli
40
        23
              67.6
                       34
                          4
                              US-09-536-785A-22
                                                          Sequence 22, Appl
41
        23
              67.6
                       34
                           4
                              US-09-442-989-26
                                                          Sequence 26, Appl
42
        23
              67.6
                       34
                           5
                              PCT-US95-15800-22
                                                          Sequence 22, Appl
43
        23
              67.6
                       35
                           1
                              US-08-256-363-3
                                                          Sequence 3, Appli
44
        23
              67.6
                       36
                           1
                              US-08-112-024-2
                                                          Sequence 2, Appli
45
        23
              67.6
                       36
                           1
                              US-08-256-363-4
                                                          Sequence 4, Appli
46
        23
              67.6
                       37
                           1
                              US-08-440-117-1
                                                          Sequence 1, Appli
47
        23
             67.6
                       37
                           3
                              US-09-068-738A-16
                                                          Sequence 16, Appl
48
        23
             67.6
                       38
                          1
                              US-08-112-024-1
                                                          Sequence 1, Appli
49
        23
             67.6
                       38
                          1
                              US-08-232-849-1
                                                          Sequence 1, Appli
50
        23
             67.6
                       38
                          2
                              US-08-625-586-1
                                                          Sequence 1, Appli
51
        23
             67.6
                       38
                          3
                              US-09-128-401-1
                                                          Sequence 1, Appli
52
        23
             67.6
                       38 5
                              PCT-US95-15800-29
                                                          Sequence 29, Appl
53
        22
             64.7
                       33
                          4
                              US-09-447-800-3
                                                          Sequence 3, Appli
54
        22
             64.7
                       33
                              US-09-447-800-6
                                                          Sequence 6, Appli
55
        22
             64.7
                       33
                          4
                              US-09-447-800-9
                                                          Sequence 9, Appli
56
        22
             64.7
                       34
                          3
                              US-08-903-497A-1
                                                          Sequence 1, Appli
57
        22
             64.7
                       34
                          4
                              US-09-635-076-1
                                                          Sequence 1, Appli
58
        21
             61.8
                       34
                           3
                              US-09-044-536A-26
                                                          Sequence 26, Appl
59
        21
             61.8
                       34
                           4
                              US-09-449-632-24
                                                          Sequence 24, Appl
60
        20
             58.8
                       31 1
                              US-08-262-495C-3
                                                          Sequence 3, Appli
61
        20
             58.8
                       31 2
                              US-08-691-647C-1
                                                          Sequence 1, Appli
62
        20
             58.8
                       31 2
                              US-08-691-647C-6
                                                          Sequence 6, Appli
63
        20
             58.8
                       31
                              US-08-904-760B-1
                                                          Sequence 1, Appli
64
        20
             58.8
                      31
                          3
                              US-08-904-760B-6
                                                          Sequence 6, Appli
65
             58.8
        20
                      31
                          3
                              US-08-904-760B-14
                                                          Sequence 14, Appl
66
        20
             58.8
                      31
                          3
                              US-08-904-760B-32
                                                          Sequence 32, Appl
67
        20
             58.8
                       31
                           4
                              US-09-406-813-2
                                                          Sequence 2, Appli
68
                              US-09-536-785A-1
        20
             58.8
                      31
                           4
                                                          Sequence 1, Appli
```

```
69
                               US-09-536-785A-6
         20
               58.8
                        31
                                                            Sequence 6, Appli
 70
         20
               58.8
                        31 4
                               US-09-536-785A-14
                                                            Sequence 14, Appl
 71
         20
               58.8
                        31
                           4
                               US-09-536-785A-32
                                                            Sequence 32, Appl
 72
         20
               58.8
                        34
                            3
                               US-09-044-536A-25
                                                            Sequence 25, Appl
 73
         19
               55.9
                        30
                            1
                               US-08-262-495C-5
                                                            Sequence 5, Appli
 74
         19
               55.9
                        34 3
                               US-08-903-497A-3
                                                            Sequence 3, Appli
 75
         19
               55.9
                        34 4
                               US-09-635-076-3
                                                            Sequence 3, Appli
 76
         18
               52.9
                        34 1
                               US-07-915-247A-2
                                                            Sequence 2, Appli
 77
         18
               52.9
                        34 1
                               US-08-443-863-2
                                                            Sequence 2, Appli
 78
         18
               52.9
                        34 1
                               US-08-448-070-2
                                                            Sequence 2, Appli
 79
         18
               52.9
                        34 1
                               US-08-488-105-2
                                                            Sequence 2, Appli
 80
         18
               52.9
                        34
                            1
                               US-08-488-105-8
                                                            Sequence 8, Appli
 81
         18
               52.9
                        34
                            1
                               US-08-449-500-2
                                                            Sequence 2, Appli
 82
         18
               52.9
                        34
                            1
                               US-08-449-317A-2
                                                            Sequence 2, Appli
 83
         18
               52.9
                        34
                            2
                               US-08-477-022-2
                                                            Sequence 2, Appli
 84
         18
               52.9
                        34 2
                               US-08-449-447-2
                                                            Sequence 2, Appli
 85
         18
               52.9
                        34
                               US-08-184-328-2
                                                            Sequence 2, Appli
 86
         18
               52.9
                        34
                            2
                               US-08-521-097-2
                                                            Sequence 2, Appli
 87
               52.9
         18
                                                            Sequence 18, Appl
                        34
                           3
                               US-09-044-536A-18
 88
         18
               52.9
                        34
                            3
                               US-09-044-536A-19
                                                            Sequence 19, Appl
 89
         17
               50.0
                        28
                               US-09-448-867-8
                                                            Sequence 8, Appli
 90
         17
               50.0
                        28
                            4
                               US-09-448-867-10
                                                            Sequence 10, Appl
 91
         17
               50.0
                        28
                           4
                               US-09-448-867-12
                                                            Sequence 12, Appl
 92
         17
               50.0
                        34 1
                               US-08-488-105-1
                                                            Sequence 1, Appli
 93
         17
               50.0
                        34
                           1
                               US-08-488-105-13
                                                            Sequence 13, Appl
 94
         17
               50.0
                        34
                           1
                               US-08-488-105-14
                                                            Sequence 14, Appl
 95
         17
               50.0
                        34
                           3
                                                            Sequence 16, Appl
                               US-09-044-536A-16
 96
         17
               50.0
                           3
                        34
                               US-09-044-536A-17
                                                            Sequence 17, Appl
 97
         16
               47.1
                        34
                            1
                               US-07-915-247A-3
                                                            Sequence 3, Appli
 98
         16
               47.1
                        34
                            1
                               US-08-443-863-3
                                                            Sequence 3, Appli
 99
         16
               47.1
                        34
                            1
                               US-08-448-070-3
                                                            Sequence 3, Appli
100
         16
               47.1
                        34
                           1
                               US-08-449-500-3
                                                            Sequence 3, Appli
101
         16
               47.1
                        34
                            1
                               US-08-449-317A-3
                                                           Sequence 3, Appli
102
         16
              47.1
                        34
                            2
                               US-08-477-022-3
                                                           Sequence 3, Appli
103
         16
               47.1
                        34
                               US-08-449-447-3
                            2
                                                           Sequence 3, Appli
104
         16
              47.1
                        34
                            2
                               US-08-184-328-3
                                                           Sequence 3, Appli
105
         16
              47.1
                        34
                            2
                               US-08-521-097-3
                                                            Sequence 3, Appli
106
         15
              44.1
                        28
                           4
                               US-09-406-813-3
                                                           Sequence 3, Appli
107
         15
              44.1
                               US-09-406-813-4
                        29
                           4
                                                           Sequence 4, Appli
108
         15
              44.1
                        30
                           1
                               US-08-262-495C-6
                                                           Sequence 6, Appli
109
         15
              44.1
                        30
                           3
                               US-08-904-760B-7
                                                           Sequence 7, Appli
110
         15
              44.1
                        30
                           4
                               US-09-536-785A-7
                                                           Sequence 7, Appli
111
         15
              44.1
                        31
                           1
                               US-08-262-495C-4
                                                           Sequence 4, Appli
112
         15
              44.1
                        31 2
                               US-08-691-647C-2
                                                           Sequence 2, Appli
113
         15
              44.1
                        31
                           2
                               US-08-691-647C-3
                                                           Sequence 3, Appli
114
         15
              44.1
                           2
                               US-08-691-647C-4
                        31
                                                           Sequence 4, Appli
115
         15
              44.1
                        31
                            3
                               US-08-904-760B-2
                                                           Sequence 2, Appli
116
         15
              44.1
                        31
                           3
                               US-08-904-760B-3
                                                           Sequence 3, Appli
117
         15
              44.1
                        31
                           3
                               US-08-904-760B-4
                                                           Sequence 4, Appli
118
         15
              44.1
                        31
                           3
                               US-08-904-760B-5
                                                           Sequence 5, Appli
119
         15
              44.1
                        31
                           3
                               US-08-904-760B-8
                                                           Sequence 8, Appli
120
         15
              44.1
                        31
                           3
                               US-08-904-760B-11
                                                           Sequence 11, Appl
121
         15
              44.1
                        31
                           3
                               US-08-904-760B-12
                                                           Sequence 12, Appl
122
         15
              44.1
                        31
                           3
                               US-08-904-760B-15
                                                           Sequence 15, Appl
123
         15
              44.1
                        31
                           3
                               US-08-904-760B-16
                                                           Sequence 16, Appl
124
         15
              44.1
                        31
                           3
                               US-08-904-760B-17
                                                           Sequence 17, Appl
125
         15
              44.1
                        31
                           4
                               US-09-536-785A-2
                                                           Sequence 2, Appli
```

```
126
          15
               44.1
                         31
                                US-09-536-785A-3
                                                             Sequence 3, Appli
127
          15
               44.1
                         31 4
                                US-09<sup>1</sup>536-785A-4
                                                             Sequence 4, Appli
128
          15
               44.1
                         31 4
                                US-09-536-785A-5
                                                             Sequence 5, Appli
129
          15
               44.1
                         31 4
                                US-09-536-785A-8
                                                             Sequence 8, Appli
130
          15
                         31
               44.1
                             4
                                US-09-536-785A-11
                                                             Sequence 11, Appl
131
          15
               44.1
                         31
                             4
                                US-09-536-785A-12
                                                             Sequence 12, Appl
132
          15
               44.1
                         31
                             4
                                US-09-536-785A-15
                                                             Sequence 15, Appl
133
          15
               44.1
                         31
                             4
                                US-09-536-785A-16
                                                             Sequence 16, Appl
134
          15
               44.1
                         31
                             4
                                US-09-536-785A-17
                                                             Sequence 17, Appl
135
          15
               44.1
                         34
                             1
                                US-08-262-495C-2
                                                             Sequence 2, Appli
136
          15
               44.1
                         34
                             1
                                US-08-488-105-4
                                                             Sequence 4, Appli
137
          15
               44.1
                         34
                             1
                                US-08-488-105-6
                                                             Sequence 6, Appli
138
          15
               44.1
                         34
                             1
                                US-08-488-105-10
                                                             Sequence 10, Appl
139
          15
               44.1
                         34
                             1
                                US-08-488-105-11
                                                             Sequence 11, Appl
140
          15
               44.1
                         34
                             1
                                US-08-488-105-16
                                                             Sequence 16, Appl
141
          15
               44.1
                         34
                             1
                                US-08-488-105-18
                                                             Sequence 18, Appl
142
          15
               44.1
                         34
                             1
                                US-08-449-500-79
                                                             Sequence 79, Appl
143
          15
               44.1
                         34
                                US-08-449-317A-79
                                                             Sequence 79, Appl
144
               44.1
          15
                         34
                             2
                                US-08-142-551B-3
                                                             Sequence 3, Appli
145
          15
               44.1
                         34
                             2
                                                             Sequence 79, Appl
                                US-08-477-022-79
146
          15
               44.1
                         34
                             2
                                US-08-449-447-79
                                                             Sequence 79, Appl
147
          15
               44.1
                         34
                                US-08-184-328-79
                                                             Sequence 79, Appl
148
          15
               44.1
                         34
                             2
                                US-08-521-097-79
                                                             Sequence 79, Appl
149
          15
               44.1
                         34
                             3
                                US-09-044-536A-27
                                                             Sequence 27, Appl
150
          15
               44.1
                         34
                             3
                                US-08-904-760B-9
                                                             Sequence 9, Appli
151
          15
                                US-08-904-760B-10
               44.1
                         34
                            3
                                                             Sequence 10, Appl
152
          15
               44.1
                        34
                            3
                                US-08-903-497A-4
                                                             Sequence 4, Appli
153
          15
               44.1
                        34
                            4
                                US-09-635-076-4
                                                             Sequence 4, Appli
154
         15
               44.1
                         34
                             4
                                US-09-536-785A-9
                                                             Sequence 9, Appli
155
         15
               44.1
                         34
                             4
                                US-09-536-785A-10
                                                             Sequence 10, Appl
156
         15
               44.1
                         35
                             2
                                US-08-142-551B-4
                                                             Sequence 4, Appli
157
          15
               44.1
                        35
                             2
                                US-08-142-551B-5
                                                             Sequence 5, Appli
158
         15
               44.1
                        35
                             2
                                US-08-142-551B-7
                                                             Sequence 7, Appli
159
         15
               44.1
                        35
                                US-08-142-551B-11
                                                             Sequence 11, Appl
160
         15
               44.1
                        35
                             2
                                US-08-142-551B-12
                                                             Sequence 12, Appl
161
         15
               44.1
                        35
                             2
                                US-08-142-551B-13
                                                             Sequence 13, Appl
162
         15
               44.1
                        35
                             2
                                US-08-142-551B-14
                                                             Sequence 14, Appl
163
         15
               44.1
                        35
                             2
                                US-08-142-551B-15
                                                             Sequence 15, Appl
164
         15
               44.1
                        35
                             2
                                US-08-142-551B-16
                                                             Sequence 16, Appl
165
         15
               44.1
                        35
                            2
                                US-08-142-551B-17
                                                             Sequence 17, Appl
166
                        35
         15
               44.1
                            2
                                US-08-142-551B-18
                                                             Sequence 18, Appl
167
         15
               44.1
                        35
                            2
                                US-08-142-551B-19
                                                             Sequence 19, Appl
168
         15
               44.1
                        35
                            2
                                US-08-142-551B-20
                                                             Sequence 20, Appl
169
         15
               44.1
                        35
                            2
                                US-08-142-551B-21
                                                             Sequence 21, Appl
170
         15
               44.1
                        35
                            2
                                                             Sequence 22, Appl
                                US-08-142-551B-22
171
         15
               44.1
                        35
                            2
                                US-08-142-551B-23
                                                             Sequence 23, Appl
172
         15
               44.1
                        35
                            2
                                US-08-142-551B-24
                                                             Sequence 24, Appl
173
         15
               44.1
                        35
                            2
                                US-08-142-551B-25
                                                             Sequence 25, Appl
174
         15
               44.1
                        35
                            2
                                US-08-142-551B-26
                                                             Sequence 26, Appl
175
         15
               44.1
                        35
                            2
                                US-08-142-551B-27
                                                             Sequence 27, Appl
176
         15
               44.1
                        35
                            2
                                US-08-142-551B-28
                                                             Sequence 28, Appl
177
         15
              44.1
                        35
                            2
                                US-08-142-551B-29
                                                             Sequence 29, Appl
178
         15
              44.1
                        35
                            2
                                US-08-142-551B-30
                                                             Sequence 30, Appl
179
         15
              44.1
                        35
                            2
                                US-08-142-551B-31
                                                             Sequence 31, Appl
180
         15
              44.1
                        35
                            2
                                US-08-142-551B-32
                                                             Sequence 32, Appl
181
         15
              44.1
                        35
                            2
                                US-08-142-551B-33
                                                             Sequence 33, Appl
182
         15
              44.1
                        35
                               US-08-142-551B-34
                                                             Sequence 34, Appl
```

183	15	44.1	35	2	US-08-142-551B-35	Sequence 35, Appl
184	15	44.1	35	2	US-08-142-551B-36	Sequence 36, Appl
185	15	44.1	35	2	US-08-142-551B-37	Sequence 37, Appl
186	15	44.1	35	2	US-08-142-551B-38	Sequence 38, Appl
187	15	44.1	35	2	US-08-142-551B-39	Sequence 39, Appl
188	15	44.1	35	2	US-08-142-551B-40	Sequence 40, Appl
189	15	44.1	35	2	US-08-142-551B-41	Sequence 41, Appl
190	15	44.1	35	2	US-08-142-551B-42	Sequence 42, Appl
191	15	44.1	35	2	US-08-142-551B-43	Sequence 43, Appl
192	15	44.1	35	2	US-08-142-551B-44	Sequence 44, Appl
193	15	44.1	35	2	US-08-142-551B-45	Sequence 45, Appl
194	15	44.1	35	2	US-08-142-551B-46	Sequence 46, Appl
195	15	44.1	35	2	US-08-142-551B-47	Sequence 47, Appl
196	15	44.1	35	2	US-08-142-551B-48	Sequence 48, Appl
197	15	44.1	35	2	US-08-142-551B-49	Sequence 49, Appl
198	15	44.1	35	2	US-08-142-551B-50	_
				2		Sequence 50, Appl
199	15	44.1	35		US-08-142-551B-51	Sequence 51, Appl
200	15	44.1	35	2	US-08-142-551B-52	Sequence 52, Appl
201	15	44.1	35	2	US-08-142-551B-53	Sequence 53, Appl
202	15	44.1	35	2	US-08-142-551B-54	Sequence 54, Appl
203	15	44.1	35	2	US-08-142-551B-55	Sequence 55, Appl
204	15	44.1	35	2	US-08-142-551B-56	Sequence 56, Appl
205	15	44.1	35	2	US-08-142-551B-57	Sequence 57, Appl
206	15	44.1	35	2	US-08-142-551B-58	Sequence 58, Appl
207	15	44.1	35	2	US-08-142-551B-59	Sequence 59, Appl
208	15	44.1	35	2	US-08-142-551B-60	Sequence 60, Appl
209	15	44.1	35	2	US-08-142-551B-61	Sequence 61, Appl
210	15	44.1	35	2	US-08-142-551B-62	Sequence 62, Appl
211	15	44.1	35	2	US-08-142-551B-63	Sequence 63, Appl
212	15	44.1	35	2	US-08-142-551B-64	Sequence 64, Appl
213	15	44.1	35	2	US-08-142-551B-65	Sequence 65, Appl
214	15	44.1	35	2	US-08-142-551B-66	Sequence 66, Appl
215	15	44.1	35	2	US-08-142-551B-67	Sequence 67, Appl
216	15	44.1	35	2	US-08-142-551B-68	Sequence 68, Appl
217	15	44.1	35	2	US-08-142-551B-70	Sequence 70, Appl
218	15	44.1	35	2	US-08-142-551B-70	Sequence 73, Appl
219	15	44.1	35	2	US-08-142-551B-73	
						Sequence 80, Appl
220	15	44.1	35	2	US-08-142-551B-90	Sequence 90, Appl
221	15	44.1	35	2	US-08-142-551B-94	Sequence 94, Appl
222	14	41.2	31	3	US-08-904-760B-21	Sequence 21, Appl
223	14	41.2	31	4	US-09-536-785A-21	Sequence 21, Appl
224	14	41.2	34	3	US-09-044-536A-29	Sequence 29, Appl
225	14	41.2	35	2	US-08-142-551B-69	Sequence 69, Appl
226	14	41.2	35	2	US-08-142-551B-71	Sequence 71, Appl
227	14	41.2	35	2	US-08-142-551B-115	Sequence 115, App
228	14	41.2	35	2	US-08-142-551B-116	Sequence 116, App
229	14	41.2	35	2	US-08-142-551B-117	Sequence 117, App
230	14	41.2	35	2	US-08-142-551B-118	Sequence 118, App
231	13	38.2	34	1	US-07-773-098-5	Sequence 5, Appli
232	13	38.2	34	1	US-07-773-098-6	Sequence 6, Appli
233	13	38.2	34	3	US-09-044-536A-28	Sequence 28, Appl
234	13	38.2	35	2	US-08-142-551B-72	Sequence 72, Appl
235	13	38.2	35	2	US-08-142-551B-74	Sequence 74, Appl
236	13	38.2	35	2	US-08-142-551B-75	Sequence 75, Appl
237	13	38.2	35	2	US-08-142-551B-111	Sequence 111, App
238	13	38.2	35	2	US-08-142-551B-111	Sequence 111, App
239	13			2		
437	12	38.2	35	2	US-08-142-551B-113	Sequence 113, App

```
US-08-142-551B-114
240
         13
               38.2
                        35
                                                             Sequence 114, App
241
         12
               35.3
                        34
                            1
                                US-08-488-105-3
                                                             Sequence 3, Appli
242
         12
               35.3
                        34
                             1
                                US-08-488-105-9
                                                             Sequence 9, Appli
243
         12
               35.3
                        34
                             1
                                US-08-488-105-15
                                                             Sequence 15, Appl
244
         12
               35.3
                        34
                             3
                                US-08-903-497A-5
                                                             Sequence 5, Appli
245
         12
               35.3
                        34
                            4
                                US-09-635-076-5
                                                             Sequence 5, Appli
                             2
246
         12
               35.3
                        35
                                US-08-142-551B-76
                                                             Sequence 76, Appl
247
         12
               35.3
                        35
                             2
                                US-08-142-551B-77
                                                             Sequence 77, Appl
                                US-08-142-551B-78
248
         12
               35.3
                        35
                             2
                                                             Sequence 78, Appl
249
               35.3
                                US-08-142-551B-107
         12
                        35
                             2
                                                             Sequence 107, App
250
         12
               35.3
                             2
                        35
                                US-08-142-551B-108
                                                             Sequence 108, App
               35.3
         12
                             2
251
                        35
                                US-08-142-551B-109
                                                             Sequence 109, App
252
         12
               35.3
                        35
                                US-08-142-551B-110
                                                             Sequence 110, App
253
         11
               32.4
                        34
                             1
                                US-08-488-105-5
                                                             Sequence 5, Appli
254
         11
               32.4
                        34
                             1
                                US-08-488-105-12
                                                             Sequence 12, Appl
255
         11
               32.4
                        34
                             1
                                US-08-488-105-17
                                                             Sequence 17, Appl
256
         11
               32.4
                        34
                                US-08-449-500-61
                                                             Sequence 61, Appl
257
         11
               32.4
                        34
                                US-08-449-317A-61
                             1
                                                             Sequence 61, Appl
258
         11
               32.4
                        34
                             2
                                US-08-477-022-61
                                                             Sequence 61, Appl
259
         11
               32.4
                        34
                             2
                                US-08-449-447-61
                                                             Sequence 61, Appl
260
         11
               32.4
                        34
                                US-08-184-328-61
                                                             Sequence 61, Appl
261
         11
               32.4
                        34
                             2
                                US-08-521-097-61
                                                             Sequence 61, Appl
262
         11
               32.4
                        34
                            4
                                US-09-449-632-22
                                                             Sequence 22, Appl
263
         11
               32.4
                        35
                             2
                                US-08-142-551B-79
                                                             Sequence 79, Appl
264
         11
               32.4
                        35
                                US-08-142-551B-81
                                                             Sequence 81, Appl
265
         11
               32.4
                        35
                             2
                                US-08-142-551B-104
                                                             Sequence 104, App
266
         11
               32.4
                        35
                             2
                                US-08-142-551B-105
                                                             Sequence 105, App
267
         11
               32.4
                        35
                             2
                                                             Sequence 106, App
                                US-08-142-551B-106
268
         11
               32.4
                        35
                             2
                                US-08-142-551B-121
                                                             Sequence 121, App
269
         11
               32.4
                        35
                                US-08-142-551B-122
                                                             Sequence 122, App
270
         11
               32.4
                        35
                             2
                                                             Sequence 123, App
                                US-08-142-551B-123
271
         10
               29.4
                        28
                             4
                                US-09-406-813-6
                                                             Sequence 6, Appli
272
         10
                        28
               29.4
                             4
                                US-09-448-867-6
                                                             Sequence 6, Appli
273
         10
               29.4
                        30
                             3
                                US-08-904-760B-33
                                                             Sequence 33, Appl
274
         10
               29.4
                        30
                             3
                                US-08-904-760B-34
                                                             Sequence 34, Appl
275
         10
               29.4
                        30
                             3
                                US-08-904-760B-35
                                                             Sequence 35, Appl
276
         10
               29.4
                        30
                             4
                                US-09-536-785A-33
                                                             Sequence 33, Appl
277
         10
               29.4
                        30
                             4
                                US-09-536-785A-34
                                                             Sequence 34, Appl
278
                                US-09-536-785A-35
         10
               29.4
                        30
                            4
                                                             Sequence 35, Appl
279
         10
               29.4
                        31
                            3
                                US-08-904-760B-18
                                                             Sequence 18, Appl
280
         10
               29.4
                        31
                             3
                                US-08-904-760B-19
                                                             Sequence 19, Appl
281
         10
               29.4
                        31
                            3
                                US-08-904-760B-20
                                                             Sequence 20, Appl
282
         10
               29.4
                                US-09-406-813-5
                        31
                             4
                                                             Sequence 5, Appli
283
         10
               29.4
                        31
                             4
                                US-09-536-785A-18
                                                             Sequence 18, Appl
284
               29.4
         10
                        31
                             4
                                                             Sequence 19, Appl
                                US-09-536-785A-19
285
                                                             Sequence 20, Appl
         10
               29.4
                        31
                             4
                                US-09-536-785A-20
286
         10
               29.4
                             3
                        34
                                US-09-044-536A-20
                                                             Sequence 20, Appl
287
         10
               29.4
                        34
                             3
                                US-09-044-536A-21
                                                             Sequence 21, Appl
288
         10
               29.4
                            3
                        34
                                US-09-044-536A-22
                                                             Sequence 22, Appl
289
         10
               29.4
                        34
                            3
                                US-09-044-536A-24
                                                             Sequence 24, Appl
290
         10
               29.4
                        34
                             3
                                US-08-903-497A-6
                                                             Sequence 6, Appli
291
         10
               29.4
                        34
                            3
                                US-08-903-497A-7
                                                             Sequence 7, Appli
292
         10
               29.4
                        34
                            4
                                US-08-952-980B-9
                                                             Sequence 9, Appli
293
         10
               29.4
                        34
                             4
                                US-09-635-076-6
                                                             Sequence 6, Appli
                                                             Sequence 7, Appli
294
         10
               29.4
                        34
                            4
                                US-09-635-076-7
295
         10
               29.4
                        35
                             2
                                US-08-142-551B-82
                                                             Sequence 82, Appl
296
         10
               29.4
                        35
                             2
                                US-08-142-551B-83
                                                             Sequence 83, Appl
```

```
297
          10
               29.4
                        35
                                US-08-142-551B-84
                                                             Sequence 84, Appl
298
         10
               29.4
                        35 2
                                US-08-142-551B-101
                                                             Sequence 101, App
299
         10
               29.4
                        35
                                US-08-142-551B-102
                            2
                                                            Sequence 102, App
300
          10
               29.4
                        35
                            2
                                US-08-142-551B-103
                                                            Sequence 103, App
301
          10
               29.4
                        35
                                                            Sequence 120, App
                                US-08-142-551B-120
302
          9
               26.5
                        28
                            4
                                US-09-448-867-1
                                                            Sequence 1, Appli
303
           9
               26.5
                        28
                            4
                                US-09-448-867-2
                                                            Sequence 2, Appli
304
           9
               26.5
                        28
                            4
                                US-09-448-867-4
                                                            Sequence 4, Appli
305
           9
               26.5
                        34
                            3
                                US-09-044-536A-2
                                                            Sequence 2, Appli
           9
306
               26.5
                        34
                                US-09-044-536A-23
                                                            Sequence 23, Appl
307
           9
               26.5
                        35
                            2
                                US-08-142-551B-85
                                                            Sequence 85, Appl
308
           9
               26.5
                        35
                            2
                                                            Sequence 86, Appl
                                US-08-142-551B-86
309
           9
               26.5
                        35
                            2
                                                            Sequence 87, Appl
                                US-08-142-551B-87
           9
310
               26.5
                        35
                             2
                                US-08-142-551B-98
                                                            Sequence 98, Appl
311
           9
               26.5
                        35
                            2
                                US-08-142-551B-99
                                                            Sequence 99, Appl
312
           9
               26.5
                        35
                            2
                                US-08-142-551B-100
                                                            Sequence 100, App
           9
313
               26.5
                        35
                            3
                                US-09-044-536A-30
                                                            Sequence 30, Appl
           9
314
               26.5
                        36
                                US-09-044-536A-31
                                                            Sequence 31, Appl
315
           9
               26.5
                        37
                            3
                                US-09-044-536A-32
                                                            Sequence 32, Appl
316
           9
               26.5
                        38
                            3
                                US-09-044-536A-33
                                                            Sequence 33, Appl
317
           9
               26.5
                        39
                            3
                                US-09-044-536A-34
                                                            Sequence 34, Appl
318
           9
               26.5
                        40
                            3
                                US-09-044-536A-35
                                                            Sequence 35, Appl
319
          8
               23.5
                            3
                        31
                                US-08-904-760B-13
                                                            Sequence 13, Appl
320
          8
               23.5
                        31
                            4
                                US-09-228-990-50
                                                            Sequence 50, Appl
321
          8
               23.5
                        31
                            4
                                US-09-228-990-51
                                                            Sequence 51, Appl
          8
322
               23.5
                                                            Sequence 66, Appl
                        31
                            4
                                US-09-228-990-66
323
          8
               23.5
                        31
                            4
                                US-09-228-990-67
                                                            Sequence 67, Appl
324
          8
               23.5
                        31
                            4
                                US-09-228-990-76
                                                            Sequence 76, Appl
325
          8
               23.5
                        31
                            4
                                                            Sequence 13, Appl
                                US-09-536-785A-13
               23.5
326
          8
                        34
                            1
                                US-07-773-098-3
                                                            Sequence 3, Appli
327
          8
               23.5
                        34
                            1
                                US-07-773-098-4
                                                            Sequence 4, Appli
328
          8
               23.5
                        34
                            1
                                US-08-049-402-2
                                                            Sequence 2, Appli
329
          8
               23.5
                        34
                            1
                                US-08-526-987-2
                                                            Sequence 2, Appli
330
          8
               23.5
                        35
                            2
                                US-08-142-551B-88
                                                            Sequence 88, Appl
331
          8
               23.5
                        35
                            2
                                US-08-142-551B-89
                                                            Sequence 89, Appl
332
          8
               23.5
                        35
                            2
                                US-08-142-551B-95
                                                            Sequence 95, Appl
333
          8
               23.5
                        35
                            2
                                US-08-142-551B-96
                                                            Sequence 96, Appl
334
          8
              23.5
                        35
                            2
                                US-08-142-551B-97
                                                            Sequence 97, Appl
335
          7
               20.6
                        28
                            4
                                US-09-228-990-65
                                                            Sequence 65, Appl
          7
336
               20.6
                        28
                            4
                                US-09-228-990-78
                                                            Sequence 78, Appl
337
          7
              20.6
                        28
                            4
                               US-09-228-990-79
                                                            Sequence 79, Appl
          7
338
              20.6
                        28
                            4
                                US-09-442-989-22
                                                            Sequence 22, Appl
          7
339
              20.6
                        28
                            4
                                US-09-442-989-24
                                                            Sequence 24, Appl
          7
340
              20.6
                        28
                            4
                                US-09-442-989-25
                                                            Sequence 25, Appl
          7
341
              20.6
                        29
                            4
                               US-09-406-813-8
                                                            Sequence 8, Appli
          7
342
              20.6
                        31
                            4
                               US-09-406-813-9
                                                            Sequence 9, Appli
343
          7
              20.6
                        32
                            1
                               US-08-305-799A-1
                                                            Sequence 1, Appli
          7
344
              20.6
                        32
                            1
                               US-08-305-799A-2
                                                            Sequence 2, Appli
          7
345
              20.6
                        34
                            1
                               US-08-033-099-2
                                                            Sequence 2, Appli
          7
346
              20.6
                        34
                           1
                               US-08-468-275-7
                                                            Sequence 7, Appli
347
          7
              20.6
                        34
                           1
                               US-08-468-275-8
                                                            Sequence 8, Appli
348
          7
              20.6
                        34
                            1
                               US-08-449-500-37
                                                            Sequence 37, Appl
349
          7
              20.6
                        34
                               US-08-449-317A-37
                            1
                                                            Sequence 37, Appl
350
          7
              20.6
                        34
                            2
                               US-08-477-022-37
                                                            Sequence 37, Appl
              20.6
351
          7
                        34
                           2
                               US-08-449-447-37
                                                            Sequence 37, Appl
352
          7
              20.6
                            2
                        34
                               US-08-184-328-37
                                                            Sequence 37, Appl
          7
353
              20.6
                        34
                            2
                               US-08-521-097-37
                                                            Sequence 37, Appl
```

```
354
              20.6
                        34 4
                               US-09-007-466-7
                                                           Sequence 7, Appli
355
              20.6
                        34 4
                               US-09-007-466-8
                                                           Sequence 8, Appli
356
          7
              20.6
                        34 4
                               US-09-228-990-46
                                                           Sequence 46, Appl
357
          7
                        34 4
              20.6
                               US-09-228-990-75
                                                           Sequence 75, Appl
358
          7
              20.6
                        34 4
                               US-09-442-989-18
                                                           Sequence 18, Appl
359
          7
              20.6
                        34 4
                               US-09-442-989-19
                                                           Sequence 19, Appl
360
          7
              20.6
                        34 4
                               US-09-442-989-46
                                                           Sequence 46, Appl
          7
361
              20.6
                        35 2
                               US-08-142-551B-10
                                                           Sequence 10, Appl
          7
362
              20.6
                        35 2
                               US-08-142-551B-91
                                                           Sequence 91, Appl
363
          7
              20.6
                        35
                            2
                               US-08-142-551B-92
                                                           Sequence 92, Appl
          7
364
              20.6
                        35
                            2
                               US-08-142-551B-93
                                                           Sequence 93, Appl
365
          7
              20.6
                        35
                            2
                               US-08-142-551B-124
                                                           Sequence 124, App
          7
366
              20.6
                        35
                           4
                               US-08-952-980B-7
                                                           Sequence 7, Appli
          7
367
              20.6
                        35
                           4
                               US-08-952-980B-8
                                                           Sequence 8, Appli
368
          6
              17.6
                        28
                           4
                               US-09-228-990-54
                                                           Sequence 54, Appl
369
          6
              17.6
                        28
                               US-09-228-990-62
                                                           Sequence 62, Appl
370
          6
              17.6
                        29
                               US-09-228-990-53
                                                           Sequence 53, Appl
371
          6
              17.6
                        29 4
                               US-09-228-990-63
                                                           Sequence 63, Appl
372
          6
              17.6
                        30 4
                               US-09-228-990-52
                                                           Sequence 52, Appl
373
          6
              17.6
                        30
                           4
                               US-09-228-990-64
                                                           Sequence 64, Appl
374
          6
              17.6
                        30
                           4
                               US-09-536-785A-23
                                                           Sequence 23, Appl
375
          6
              17.6
                        31
                               US-08-904-760B-23
                                                           Sequence 23, Appl
376
          6
              17.6
                        31
                           4
                               US-09-406-813-7
                                                           Sequence 7, Appli
377
              17.6
          6
                        31 4
                               US-09-228-990-3
                                                           Sequence 3, Appli
378
          6
              17.6
                        31 4
                               US-09-228-990-4
                                                          Sequence 4, Appli
379
          6
              17.6
                       31 4
                               US-09-228-990-5
                                                          Sequence 5, Appli
380
          6
              17.6
                       31 4
                               US-09-228-990-6
                                                          Sequence 6, Appli
381
          6
              17.6
                       31
                            4
                               US-09-228-990-7
                                                          Sequence 7, Appli
382
          6
              17.6
                       31
                            4
                               US-09-228-990-8
                                                          Sequence 8, Appli
383
          6
              17.6
                       31
                           4
                               US-09-228-990-9
                                                          Sequence 9, Appli
384
          6
              17.6
                       31
                           4
                               US-09-228-990-10
                                                          Sequence 10, Appl
385
          б
              17.6
                       31
                           4
                               US-09-228-990-11
                                                          Sequence 11, Appl
386
          6
              17.6
                       31
                            4
                               US-09-228-990-12
                                                          Sequence 12, Appl
387
          6
              17.6
                       31
                               US-09-228-990-13
                                                          Sequence 13, Appl
388
          6
              17.6
                       31
                            4
                               US-09-228-990-14
                                                          Sequence 14, Appl
389
          6
              17.6
                       31
                            4
                                                          Sequence 15, Appl
                               US-09-228-990-15
390
          6
              17.6
                       31
                           4
                               US-09-228-990-16
                                                          Sequence 16, Appl
391
          6
              17.6
                       31
                           4
                               US-09-228-990-17
                                                          Sequence 17, Appl
392
          6
              17.6
                       31
                           4
                               US-09-228-990-18
                                                          Sequence 18, Appl
393
          6
              17.6
                       31 4
                               US-09-228-990-19
                                                          Sequence 19, Appl
394
          6
              17.6
                       31 4
                               US-09-228-990-20
                                                          Sequence 20, Appl
395
          6
              17.6
                       31 4
                               US-09-228-990-21
                                                          Sequence 21, Appl
396
          6
              17.6
                       31 4
                               US-09-228-990-22
                                                          Sequence 22, Appl
397
          6
              17.6
                       31 4
                               US-09-228-990-23
                                                          Sequence 23, Appl
398
          6
              17.6
                       31 4
                               US-09-228-990-24
                                                          Sequence 24, Appl
399
          6
              17.6
                       31 4
                               US-09-228-990-25
                                                          Sequence 25, Appl
400
          6
              17.6
                       31 4
                               US-09-228-990-26
                                                          Sequence 26, Appl
401
          6
              17.6
                       31
                               US-09-228-990-27
                                                          Sequence 27, Appl
402
          6
              17.6
                       31 4
                               US-09-228-990-28
                                                          Sequence 28, Appl
403
          6
              17.6
                       31 4
                              US-09-228-990-29
                                                          Sequence 29, Appl
404
          6
              17.6
                       31 4
                              US-09-228-990-30
                                                          Sequence 30, Appl
405
          6
              17.6
                       31 4
                              US-09-228-990-31
                                                          Sequence 31, Appl
406
          6
              17.6
                       31 4
                              US-09-228-990-32
                                                          Sequence 32, Appl
407
          6
              17.6
                       31 4
                              US-09-228-990-33
                                                          Sequence 33, Appl
408
          6
              17.6
                       31 4
                              US-09-228-990-34
                                                          Sequence 34, Appl
409
          6
              17.6
                       31
                           4
                              US-09-228-990-35
                                                          Sequence 35, Appl
410
          6
              17.6
                       31
                              US-09-228-990-36
                                                          Sequence 36, Appl
```

411	6	17.6	31	4	US-09-228-990-37	Sequence 37, Appl
412	. 6	17.6	31	4	US-09-228-990-38	Sequence 38, Appl
413	6	17.6	31	4	US-09-228-990-39	Sequence 39, Appl
414	6	17.6	31	4	US-09-228-990-40	Sequence 40, Appl
415	6	17.6	31	4	US-09-228-990-41	Sequence 41, Appl
416	6	17.6	31	4	US-09-228-990-42	Sequence 42, Appl
417	6	17.6	31	4	US-09-228-990-43	Sequence 43, Appl
418	6	17.6	31	4	US-09-228-990-44	Sequence 44, Appl
419	6	17.6	31	4	US-09-228-990-45	Sequence 45, Appl
420	6	17.6	31	4	US-09-228-990-47	Sequence 47, Appl
421	6	17.6	31	4	US-09-228-990-48	Sequence 48, Appl
422	6	17.6	31	4	US-09-228-990-49	Sequence 49, Appl
423	6	17.6	31	4	US-09-228-990-68	Sequence 68, Appl
424	6	17.6	31	4	US-09-228-990-69	Sequence 69, Appl
425	6	17.6	31	4	US-09-228-990-70	Sequence 70, Appl
426	6	17.6	31	4	US-09-228-990-73	Sequence 73, Appl
427	6	17.6	31	4	US-09-228-990-74	Sequence 74, Appl
428	6	17.6	31	4	US-09-228-990-80	Sequence 80, Appl
429	6	17.6	31	4	US-09-228-990-81	Sequence 81, Appl
			31	4		
430	6	17.6			US-09-228-990-82	Sequence 82, Appl
431	6	17.6	31	4	US-09-228-990-83	Sequence 83, Appl
432	6	17.6	31	4	US-09-228-990-84	Sequence 84, Appl
433	6	17.6	31	4	US-09-228-990-85	Sequence 85, Appl
434	6	17.6	31	4	US-09-228-990-86	Sequence 86, Appl
435	6	17.6	31	4	US-09-228-990-87	Sequence 87, Appl
436	6	17.6	31	4	US-09-228-990-88	Sequence 88, Appl
437	6	17.6	31	4	US-09-536-785A-36	Sequence 36, Appl
438	6	17.6	31	4	US-09-442-989-1	Sequence 1, Appli
439	6	17.6	31	4	US-09-442-989-2	Sequence 2, Appli
440	6	17.6	31	4	US-09-442-989-3	Sequence 3, Appli
441	6	17.6	31	4	US-09-442-989-4	Sequence 4, Appli
442	6	17.6	31	4	US-09-442-989-5	Sequence 5, Appli
443	6	17.6	31	4	US-09-442-989-6	Sequence 6, Appli
444	6	17.6	31	4	US-09-442-989-7	Sequence 7, Appli
445	6	17.6	31	4	US-09-442-989-8	Sequence 8, Appli
446	6	17.6	31	4	US-09-442-989-9	Sequence 9, Appli
447	6	17.6	31	4	US-09-442-989-10	Sequence 10, Appl
448	6	17.6	31	4	US-09-442-989-11	Sequence 11, Appl
449	6	17.6	31	4	US-09-442-989-12	Sequence 12, Appl
450	6		31	4		Sequence 13, Appl
451	6	17.6	31	4	US-09-442-989-14	Sequence 14, Appl
452	6	17.6	31	4	US-09-442-989-15	Sequence 15, Appl
453	6	17.6	31	4	US-09-442-989-16	Sequence 16, Appl
454	6	17.6	31	4	US-09-442-989-17	Sequence 17, Appl
455	6	17.6	31	4	US-09-442-989-32	Sequence 32, Appl
456	6	17.6	32	4	US-09-536-785A-37	Sequence 37, Appl
457	6	17.6	33	4	US-09-536-785A-38	Sequence 38, Appl
458	6	17.6		1		
			34		US-07-765-373-2	Sequence 2, Appli
459	6	17.6	34	1	US-08-049-402-1	Sequence 1, Appli
460	6	17.6	34	1	US-08-526-987-1	Sequence 1, Appli
461	6	17.6	34	4	US-09-536-785A-24	Sequence 24, Appl
462	6	17.6	35	4	US-09-536-785A-25	Sequence 25, Appl
463	6	17.6	36	4	US-09-536-785A-26	Sequence 26, Appl
464	6	17.6	37	4	US-09-536-785A-27	Sequence 27, Appl
465	5	14.7	29	1	US-07-778-926-6	Sequence 6, Appli
466	5	14.7	29	1	US-08-188-582-33	Sequence 33, Appl
467	5	14.7	29	1	US-08-646-715-33	Sequence 33, Appl

```
468
               14.7
                        30
                               US-07-778-926-10
                            1
                                                            Sequence 10, Appl
469
           5
               14.7
                        30
                            1
                               US-08-305-799A-7
                                                            Sequence 7, Appli
470
          5
               14.7
                        30
                            1
                               US-08-305-799A-9
                                                            Sequence 9, Appli
471
          5
               14.7
                        30
                            1
                               US-08-305-799A-10
                                                            Sequence 10, Appl
472
          5
               14.7
                        30
                            1
                               US-08-305-799A-11
                                                            Sequence 11, Appl
          5
473
                        30 1
               14.7
                               US-08-305-799A-12
                                                            Sequence 12, Appl
          5
474
               14.7
                        31
                            1
                               US-07-778-926-14
                                                            Sequence 14, Appl
          5
475
               14.7
                        32
                            1
                               US-07-778-926-18
                                                            Sequence 18, Appl
          5
476
               14.7
                        33
                            1
                               US-07-778-926-7
                                                            Sequence 7, Appli
          5
477
               14.7
                        34
                            1
                               US-07-778-926-11
                                                            Sequence 11, Appl
          5
               14.7
478
                        34
                            1
                               US-07-915-247A-23
                                                            Sequence 23, Appl
          5
479
               14.7
                        34
                            1
                               US-07-915-247A-24
                                                            Sequence 24, Appl
480
          5
               14.7
                        34
                            1
                               US-08-443-863-23
                                                            Sequence 23, Appl
481
          5
               14.7
                        34
                            1
                               US-08-443-863-24
                                                            Sequence 24, Appl
482
          5
               14.7
                        34
                            1
                               US-08-448-070-23
                                                            Sequence 23, Appl
          5
483
               14.7
                        34
                            1
                               US-08-448-070-24
                                                            Sequence 24, Appl
          5
484
               14.7
                        34
                            1
                               US-08-449-500-23
                                                            Sequence 23, Appl
485
          5
               14.7
                        34
                            1
                               US-08-449-500-24
                                                            Sequence 24, Appl
486
          5
               14.7
                        34
                                                            Sequence 35, Appl
                            1
                               US-08-449-500-35
          5
487
               14.7
                        34
                            1
                               US-08-449-500-36
                                                            Sequence 36, Appl
488
          5
               14.7
                        34
                            1
                               US-08-449-317A-23
                                                            Sequence 23, Appl
489
          5
              14.7
                        34
                            1
                               US-08-449-317A-24
                                                            Sequence 24, Appl
          5
490
              14.7
                        34
                           1
                               US-08-449-317A-35
                                                            Sequence 35, Appl
          5
491
              14.7
                        34
                           1
                               US-08-449-317A-36
                                                            Sequence 36, Appl
          5
492
              14.7
                        34 2
                               US-08-477-022-23
                                                            Sequence 23, Appl
          5
493
              14.7
                        34 2
                               US-08-477-022-24
                                                            Sequence 24, Appl
494
          5
                               US-08-477-022-35
              14.7
                        34 2
                                                            Sequence 35, Appl
          5
495
              14.7
                        34 2
                               US-08-477-022-36
                                                            Sequence 36, Appl
496
          5
              14.7
                           2
                        34
                               US-08-449-447-23
                                                            Sequence 23, Appl
497
          5
              14.7
                        34
                            2
                               US-08-449-447-24
                                                            Sequence 24, Appl
498
          5
              14.7
                        34
                            2
                               US-08-449-447-35
                                                            Sequence 35, Appl
499
          5
              14.7
                        34
                           2
                               US-08-449-447-36
                                                            Sequence 36, Appl
500
          5
              14.7
                           2
                        34
                               US-08-184-328-23
                                                            Sequence 23, Appl
501
          5
              14.7
                        34
                            2
                               US-08-184-328-24
                                                            Sequence 24, Appl
502
          5
              14.7
                        34
                            2
                               US-08-184-328-35
                                                            Sequence 35, Appl
503
          5
              14.7
                        34
                            2
                                                            Sequence 36, Appl
                               US-08-184-328-36
504
          5
              14.7
                        34
                            2
                               US-08-521-097-23
                                                            Sequence 23, Appl
505
          5
              14.7
                        34
                           2
                               US-08-521-097-24
                                                            Sequence 24, Appl
506
          5
              14.7
                               US-08-521-097-35
                        34
                           2
                                                            Sequence 35, Appl
507
          5
              14.7
                        34
                           2
                               US-08-521-097-36
                                                            Sequence 36, Appl
          5
508
              14.7
                        35
                           1
                               US-07-778-926-15
                                                            Sequence 15, Appl
          5
509
              14.7
                        36
                           1
                               US-07-778-926-19
                                                            Sequence 19, Appl
          5
510
              14.7
                        37
                            1
                               US-07-778-926-8
                                                            Sequence 8, Appli
511
          5
              14.7
                        38
                            1
                               US-07-778-926-12
                                                            Sequence 12, Appl
512
          5
              14.7
                        39
                            1
                               US-07-778-926-16
                                                            Sequence 16, Appl
513
          5
              14.7
                                                            Sequence 20, Appl
                        40
                            1
                               US-07-778-926-20
514
          4
              11.8
                        28
                            1
                               US-07-778-926-2
                                                            Sequence 2, Appli
515
          4
              11.8
                        28
                            1
                               US-07-899-535A-4
                                                            Sequence 4, Appli
516
          4
              11.8
                        28
                           1
                               US-08-191-866D-76
                                                            Sequence 76, Appl
517
          4
              11.8
                        28
                            2
                               US-08-185-949B-76
                                                            Sequence 76, Appl
518
          4
              11.8
                        28
                           2
                               US-08-620-151-126
                                                            Sequence 126, App
519
          4
              11.8
                        28
                           2
                               US-08-818-253-22
                                                            Sequence 22, Appl
520
          4
              11.8
                        28
                            3
                               US-08-641-873-8
                                                            Sequence 8, Appli
521
              11.8
          4
                        28
                           3
                               US-08-818-252-22
                                                            Sequence 22, Appl
522
          4
              11.8
                        28
                           4
                               US-08-842-322-16
                                                            Sequence 16, Appl
523
          4
              11.8
                        28
                            4
                               US-09-316-919-38
                                                            Sequence 38, Appl
524
          4
              11.8
                        28
                            4
                               US-09-323-867A-153
                                                            Sequence 153, App
```

525	4	11.8	29	4	US-09-227-357-386	Sequence 386, App
526	4	11.8	29	4	US-09-227-357-480	Sequence 480, App
527	4	11.8	29	4	US-09 - 695-458-8	Sequence 8, Appli
528	4	11.8	29	4	US-09-205-258-1006	Sequence 1006, Ap
529	4	11.8	30	1	US-08-305-799A-3	Sequence 3, Appli
530	4	11.8	30	1	US-08-305-799A-4	Sequence 4, Appli
531	4	11.8	30	4	US-09-205-258-821	Sequence 821, App
532	4	11.8	31	1	US-07-829-462-3	Sequence 3, Appli
533	4	11.8	31	1	US-08-340-812-3	Sequence 3, Appli
534	4	11.8	31	1	US-08-248-021A-5	Sequence 5, Appli
535	4	11.8	31	1	US-08-323-531-44	Sequence 44, Appl
536	4	11.8	31	1	US-08-323-531-50	Sequence 50, Appl
537	4	11.8	31	1	US-08-323-531-62	Sequence 62, Appl
538	4	11.8	31	1	US-08-198-094-44	Sequence 44, Appl
539	4	11.8	31	1	US-08-198-094-50	Sequence 50, Appl
540	4	11.8	31	1	US-08-198-094-62	Sequence 62, Appl
541	4	11.8	31	1	US-08-459-064B-3	Sequence 3, Appli
542	4	11.8	31	2	US-08-460-421A-3	Sequence 3, Appli
543	4	11.8	31	2	US-08-663-566A-32	Sequence 32, Appl
544	4	11.8	31	2	US-08-023-610-32	
545	4	11.8	31	2	US-08-288-065A-32	Sequence 32, Appl
546	4	11.8	31	2	US-08-362-240A-32	Sequence 32, Appl
547	4	11.8	31	3	US-08-107-794A-44	Sequence 32, Appl
548	4	11.8	31	3	US-08-107-794A-44 US-08-107-794A-50	Sequence 44, Appl
549	4	11.8	31	3	US-08-107-794A-62	Sequence 50, Appl
550	4	11.8	31	4		Sequence 62, Appl
551	4	11.8			US-09-205-258-1001	Sequence 1001, Ap
552	4	11.8	31	5	PCT-US93-00909-3	Sequence 3, Appli
553	4		31	5	PCT-US93-07424-44	Sequence 44, Appl
		11.8	31	5	PCT-US93-07424-50	Sequence 50, Appl
554 555	4	11.8	31	5	PCT-US93-07424-62	Sequence 62, Appl
	4	11.8	31	5	PCT-US95-02087-44	Sequence 44, Appl
556 557	4	11.8	31	5	PCT-US95-02087-50	Sequence 50, Appl
557	4	11.8	31	5	PCT-US95-02087-62	Sequence 62, Appl
558	4	11.8	31	5	PCT-US95-10245-32	Sequence 32, Appl
559	4	11.8	32	1	US-07-778-926-3	Sequence 3, Appli
560	4	11.8	32	1	US-08-190-802A-110	Sequence 110, App
561	4	11.8	32	1	US-08-190-802A-114	Sequence 114, App
562	4	11.8	32	1	US-08-190-802A-183	Sequence 183, App
563	4	11.8	32	1	US-08-190-802A-216	Sequence 216, App
564	4	11.8	32	3	US-08-477-346-110	Sequence 110, App
565	4	11.8	32	3	US-08-477-346-114	Sequence 114, App
566	4	11.8	32	3	US-08-477-346-183	Sequence 183, App
567	4	11.8	32	3	US-08-477-346 - 216	Sequence 216, App
568	4	11.8	32	4	US-08-473-089-110	Sequence 110, App
569	4	11.8	32	4	US-08-473-089-114	Sequence 114, App
570	4	11.8	32	4	US-08-473-089-183	Sequence 183, App
571	4	11.8	32	4	US-08-473-089-216	Sequence 216, App
572	4	11.8	32	4	US-09-149-476-442	Sequence 442, App
573	4	11.8	32	4	US-08-487-072A-110	Sequence 110, App
574	4	11.8	32	4	US-08-487-072A-114	Sequence 114, App
575	4	11.8	32	4	US-08-487-072A-183	Sequence 183, App
576	4	11.8	32	4	US-08-487-072A-216	Sequence 216, App
577	4	11.8	33	1	US-08-781-020-10	Sequence 10, Appl
578	4	11.8	33	3	US-09-038-935-10	Sequence 10, Appl
579	4	11.8	33	3	US-09-023-731-16	Sequence 16, Appl
580	4	11.8	33	4	US-09-149-476-660	Sequence 660, App
581	4	11.8	33	4	US-09-122-144-4	Sequence 4, Appli
	-	0		-	00 00 100 111-1	peddence 4, WbbII

{

```
582
                        33 4
              11.8
                               US-09-205-258-368
                                                           Sequence 368, App
583
              11.8
                        34
                                                           Sequence 1, Appli
                               US-08-007-775-1
584
          4
              11.8
                        34 1
                               US-07-956-700B-7
                                                           Sequence 7, Appli
585
          4
              11.8
                        34 1
                               US-08-476-537-7
                                                           Sequence 7, Appli
          4
586
              11.8
                        34 1
                               US-08-485-607-7
                                                           Sequence 7, Appli
          4
587
              11.8
                        34 2
                               US-08-475-879-7
                                                           Sequence 7, Appli
          4
                        34 4
588
              11.8
                               US-09-433-043B-7
                                                           Sequence 7, Appli
589
          4
              11.8
                        35 4
                               US-09-227-357-486
                                                           Sequence 486, App
590
          4
              11.8
                        35 4
                                                           Sequence 138, App
                               US-09-690-454-138
591
          4
              11.8
                        36
                           1
                               US-07-778-926-4
                                                           Sequence 4, Appli
592
              11.8
                        37
                            1
          4
                               US-07-961-724C-17
                                                           Sequence 17, Appl
593
          4
              11.8
                        37
                            1
                               US-08-231-730A-45
                                                           Sequence 45, Appl
594
          4
              11.8
                        37
                           1
                               US-08-237-418-16
                                                           Sequence 16, Appl
595
          4
              11.8
                        37 2
                               US-08-283-917-12
                                                           Sequence 12, Appl
596
              11.8
                        37
                               US-08-961-716-12
          4
                           2
                                                           Sequence 12, Appl
597
          4
              11.8
                        37
                           2
                               US-08-505-486-50
                                                           Sequence 50, Appl
598
          4
              11.8
                        37 3
                               US-08-689-489C-45
                                                           Sequence 45, Appl
599
          4
              11.8
                        37 3
                               US-08-801-028-50
                                                           Sequence 50, Appl
600
          4
              11.8
                        37
                           3
                               US-09-340-154-50
                                                           Sequence 50, Appl
601
          4
              11.8
                        37 3
                               US-09-232-802A-45
                                                           Sequence 45, Appl
602
          4
              11.8
                        37 3
                               US-08-468-337-16
                                                           Sequence 16, Appl
603
          4
              11.8
                        37 4
                               US-09-482-611B-50
                                                           Sequence 50, Appl
604
          4
              11.8
                        37 4
                               US-09-758-318-16
                                                           Sequence 16, Appl
605
          4
              11.8
                        37 5
                               PCT-US95-04718-45
                                                           Sequence 45, Appl
606
          4
              11.8
                        37 5
                                                           Sequence 50, Appl
                               PCT-US95-09338-50
607
                        37 5
          4
              11.8
                               PCT-US95-09339-50
                                                           Sequence 50, Appl
608
                        38 1
          4
              11.8
                               US-07-781-254A-18
                                                           Sequence 18, Appl
609
          4
              11.8
                        38
                           2
                               US-08-378-548-12
                                                           Sequence 12, Appl
610
          4
              11.8
                        39
                           4
                               US-09-227-357-384
                                                           Sequence 384, App
          4
611
              11.8
                        39 4
                               US-09-323-867A-25
                                                           Sequence 25, Appl
          3
612
               8.8
                        28
                           1
                               US-07-620-410-2
                                                           Sequence 2, Appli
          3
613
               8.8
                        28
                           1
                               US-07-690-300B-1
                                                           Sequence 1, Appli
614
          3
               8.8
                        28
                           1
                               US-07-690-300B-12
                                                           Sequence 12, Appl
615
          3
                                                           Sequence 23, Appl
               8.8
                        28
                           1
                               US-07-690-300B-23
          3
616
               8.8
                        28
                           1
                               US-07-690-300B-24
                                                           Sequence 24, Appl
          3
617
               8.8
                        28
                               US-07-690-300B-25
                                                           Sequence 25, Appl
618
          3
               8.8
                        28
                           1
                               US-07-690-300B-26
                                                           Sequence 26, Appl
619
          3
               8.8
                        28
                           1
                               US-07-690-300B-27
                                                           Sequence 27, Appl
620
          3
               8.8
                        28
                           1
                               US-07-690-300B-28
                                                           Sequence 28, Appl
          3
621
               8.8
                        28
                           1
                               US-07-690-300B-29
                                                           Sequence 29, Appl
          3
622
               8.8
                               US-07-690-300B-30
                        28
                           1
                                                           Sequence 30, Appl
623
          3
               8.8
                        28
                           1
                               US-07-690-300B-31
                                                           Sequence 31, Appl
624
          3
                                                           Sequence 32, Appl
               8.8
                        28
                           1
                               US-07-690-300B-32
          3
625
                                                           Sequence 33, Appl
               8.8
                        28
                           1
                               US-07-690-300B-33
          3
                               US-07-690-300B-34
626
               8.8
                        28
                           1
                                                           Sequence 34, Appl
627
          3
               8.8
                        28
                           1
                               US-07-690-300B-35
                                                           Sequence 35, Appl
628
          3
               8.8
                        28
                           1
                               US-07-690-300B-36
                                                           Sequence 36, Appl
629
          3
               8.8
                        28
                           1
                               US-07-690-300B-37
                                                           Sequence 37, Appl
630
          3
               8.8
                        28
                           1
                               US-07-690-300B-38
                                                           Sequence 38, Appl
631
          3
               8.8
                        28
                           1
                               US-07-690-300B-39
                                                           Sequence 39, Appl
632
          3
               8.8
                       28
                           1
                               US-07-690-300B-40
                                                           Sequence 40, Appl
633
          3
               8.8
                       28
                                                           Sequence 41, Appl
                           1
                               US-07-690-300B-41
634
          3
               8.8
                       28
                           1
                               US-07-690-300B-42
                                                           Sequence 42, Appl
635
          3
               8.8
                       28
                           1
                               US-07-690-300B-43
                                                           Sequence 43, Appl
636
          3
               8.8
                       28
                           1
                               US-07-690-300B-44
                                                           Sequence 44, Appl
637
          3
               8.8
                       28
                           1
                                                           Sequence 45, Appl
                               US-07-690-300B-45
638
          3
               8.8
                       28
                           1
                               US-07-690-300B-46
                                                           Sequence 46, Appl
```

639	3	8.8	28	1	US-07-690-300B-47	Sequence 47, Appl
640	3	8.8	28	1	US-07-690-300B-48	Sequence 48, Appl
641	3	8.8	28	1	US-07-690-300B-49	Sequence 49, Appl
642	3	8.8	28	1	US-07-690-300B-50	Sequence 50, Appl
						
643	3	8.8	28	1	US-07-690-300B-51	Sequence 51, Appl
644	3	8.8	28	1	US-07-690-300B-52	Sequence 52, Appl
645	3	8.8	28	1	US-07-690-300B-53	Sequence 53, Appl
646	3	8.8	28	1	US-07-690-300B-54	Sequence 54, Appl
647	3	8.8	28	-1	US-07-690-300B-55	Sequence 55, Appl
648	3	8.8	28	1	US-07-690-300B-56	Sequence 56, Appl
649	3		28			
		8.8		1	US-07-690-300B-63	Sequence 63, Appl
650	3	8.8	28	1	US-07-690-300B-64	Sequence 64, Appl
651	3	8.8	28	1	US-07-690-300B-68	Sequence 68, Appl
652	3	8.8	28	1	US-07-690-300B-71	Sequence 71, Appl
653	3	8.8	28	1	US-07-690-300B-78	Sequence 78, Appl
654	3	8.8	28	1	US-07-690-300B-79	Sequence 79, Appl
655	3	8.8	28	1	US-07-690-300B-82	Sequence 82, Appl
656	3	8.8	28	1	US-07-690-300B-88	
						Sequence 88, Appl
657	3	8.8	28	1	US-07-690-300B-91	Sequence 91, Appl
658	3	8.8	28	1	US-07-690-300B-93	Sequence 93, Appl
659	3	8.8	28	1	US-07-663-413-29	Sequence 29, Appl
660	3	8.8	28	1	US-07-676-987A-1	Sequence 1, Appli
661	3	8.8	28	1	US-07-676-987A-2	Sequence 2, Appli
662	3	8.8	28	1	US-07-833-468-1	Sequence 1, Appli
663	3	8.8	28	1	US-08-052-681-10	
						Sequence 10, Appl
664	3	8.8	28	1	US-07-789-344A-11	Sequence 11, Appl
665	3	8.8	28	1	US-07-868-906-1	Sequence 1, Appli
666	3	8.8	28	1	US-08-201-092-1	Sequence 1, Appli
667	3	8.8	28	1	US-08-201-092-2	Sequence 2, Appli
668	3	8.8	28	1	US-08-055-530-29	Sequence 29, Appl
669	3	8.8	28	1	US-08-122-578-1	Sequence 1, Appli
670	3	8.8	28	1	US-08-255-558B-6	Sequence 6, Appli
671	3	8.8	28	1		
					US-08-117-080-9	Sequence 9, Appli
672	3	8.8	28	1	US-07-924-054-11	Sequence 11, Appl
673	3	8.8	28	1	US-08-243-082-1	Sequence 1, Appli
674	3	8.8	28	1	US-08-246-572-4	Sequence 4, Appli
675	3	8.8	28	1	US-08-246-572-5	Sequence 5, Appli
676	3	8.8	28	1	US-08-190-802A-84	Sequence 84, Appl
677	3	8.8	28	1	US-08-361-443-1	Sequence 1, Appli
678	3	8.8	28		US-08-311-611A-12	
	_			1		Sequence 12, Appl
679	3	8.8	28	1	US-08-311-611A-56	Sequence 56, Appl
680	3	8.8	28	1	US-08-311-611A-193	Sequence 193, App
681	3	8.8	28	1	US-08-311-611A-194	Sequence 194, App
682	3	8.8	28	1	US-08-311-611A-195	Sequence 195, App
683	3	8.8	28	1	US-08-311-611A-196	Sequence 196, App
684	3	8.8	28	1	US-08-152-488-2	Sequence 2, Appli
685	3	8.8	28	1	US-07-949-797B-1	Sequence 1, Appli
686	3	8.8	28	1	US-08-194-591-1	Sequence 1, Appli
687	3	8.8	28	1	US-08-194-591-2	Sequence 2, Appli
688	3	8.8	28	1	US-08-257-446-6	Sequence 6, Appli
689	3	8.8	28	1	US-08-372-783-12	Sequence 12, Appl
690	3	8.8	28	1	US-08-372-783-56	Sequence 56, Appl
69 1	3	8.8	28	1	US-08-372-783-193	Sequence 193, App
692	3	8.8	28	1	US-08-372-783-194	Sequence 194, App
693	3	8.8	28	1	US-08-372-783-195	Sequence 195, App
694	3	8.8	28			
				1	US-08-372-783-196	Sequence 196, App
695	3	8.8	28	1	US-07-977-630-42	Sequence 42, Appl

						_
696	3	8.8	28	1	US-07-977-630-45	Sequence 45, Appl
697	3	8.8	28	1	US-07-977-630-47	Sequence 47, Appl
698	3	8.8	28	1	US-08-288-681A-1	Sequence 1, Appli
699	3	8.8	28	1	US-08-366-591-12	Sequence 12, Appl
700	3	8.8	28	1	US-07-776-272-26	Sequence 26, Appl
701	3	8.8	28	1	US-08-303-025 - 2	Sequence 2, Appli
702	3	8.8	28	1	US-08-372-105-12	Sequence 12, Appl
702	3	8.8	28	1	US-08-372-105-56	Sequence 56, Appl
704	3	8.8	28	1	US-08-372-105-193	Sequence 193, App
705	3	8.8	28	1	US-08-372-105-194	Sequence 194, App
706	3	8.8	28	1	US-08-372-105-195	Sequence 195, App
707	3	8.8	28	1	US-08-372-105 - 196	Sequence 196, App
708	3	8.8	28	1	US-08-306-473A-12	Sequence 12, Appl
709	3	8.8	28	1	US-08-306-473A-56	Sequence 56, Appl
710	3	8.8	28	1	US-08-306-473A-193	Sequence 193, App
711	3	8.8	28	1	US-08-306-473A-194	Sequence 194, App
712	3	8.8	28	1	US-08-306-473A-195	Sequence 195, App
713	3	8.8	28	1	US-08-306-473A-196	Sequence 196, App
714	3	8.8	28	1	US-08-331-394-19	
						Sequence 19, Appl
715	3	8.8	28	1	US-08-308-729-1	Sequence 1, Appli
716	3	8.8	28	1	US-08-308-729-2	Sequence 2, Appli
717	3	8.8	28	1	US-08-308-729-3	Sequence 3, Appli
718	3	8.8	28	1	US-08-308-729-4	Sequence 4, Appli
719	3	8.8	28	1	US-08-308-729-5	Sequence 5, Appli
720	3	8.8	28	1	US-08-308-729-6	Sequence 6, Appli
721	3	8.8	28	1	US-08-308-729-7	Sequence 7, Appli
722	3	8.8	28	1	US-08-308-729-8	Sequence 8, Appli
723	3	8.8	28	1	US-08-308-729-9	Sequence 9, Appli
724	3	8.8	28	1	US-08-308-729-10	Sequence 10, Appl
725	3	8.8	28	1	US-08-308-729-11	Sequence 11, Appl
			28			
726	3	8.8		1	US-08-308-729-12	Sequence 12, Appl
727	3	8.8	28	1	US-08-308-729-13	Sequence 13, Appl
728	3	8.8	28	1	US-08-308-729-14	Sequence 14, Appl
729	3	8.8	28	1	US-08-308-729-15	Sequence 15, Appl
730	3	8.8	28	1	US-08-308-729 - 16	Sequence 16, Appl
731	3	8.8	28	1	US-08-308-729-17	Sequence 17, Appl
732	3	8.8	28	1	US-08-308-729-18	Sequence 18, Appl
733	3	8.8	28	1	US-08-308-729-19	Sequence 19, Appl
734	3	8.8	28	1	US-08-308-729-20	Sequence 20, Appl
735	3	8.8	28	1	US-08-308-729-21	Sequence 21, Appl
736	3	8.8	28	1	US-08-308-729-22	Sequence 22, Appl
737	3	8.8	28	1	US-08-308-729-23	Sequence 23, Appl
738	3	8.8	28	1	US-08-308-729-24	Sequence 24, Appl
739	3	8.8	28	1	US-08-308-729-25	Sequence 25, Appl
740	3	8.8	28	1	US-08-308-729-26	Sequence 26, Appl
741	3	8.8	28	1	US-08-308-729-27	Sequence 27, Appl
742	3	8.8	28	1	US-08-308-729-28	Sequence 28, Appl
743	3	8.8	28	1	US-08-308-729-29	Sequence 29, Appl
744	3	8.8	28	1	US-08-308-729-31	Sequence 31, Appl
745	3	8.8	28	1	US-08-308-729-33	Sequence 33, Appl
746	3	8.8	28	1	US-08-308-729-34	Sequence 34, Appl
747	3	8.8	28	1	US-08-308-729-35	Sequence 35, Appl
748	3	8.8	28	1	US-08-308-729-36	Sequence 36, Appl
749	3					
		8.8	28	1	US-08-308-729-37	Sequence 37, Appl
750 751	3	8.8	28	1	US-08-308-729-38	Sequence 38, Appl
751	3	8.8	28	1	US-08-308-729-39	Sequence 39, Appl
752	3	8.8	28	1	US-08-308-729-40	Sequence 40, Appl

753	3	8.8	28	1	US-08-308-729-41	Sequence 41, Appl
754	3	8.8	28	1	US-08-308-729-44	Sequence 44, Appl
755	3	8.8	28	1	US-08-308-729-45	Sequence 45, Appl
756	3	8.8	28	1	US-08-308-729-46	Sequence 46, Appl
757	3	8.8	28	1	US-08-308-729-47	Sequence 47, Appl
758	3	8.8	28	1	US-08-308-729-48	Sequence 48, Appl
759	3	8.8	28	1	US-08-308-729-49	Sequence 49, Appl
760	3	8.8	28	1	US-08-308-729-50	Sequence 50, Appl
761	3	8.8	28	1	US-08-308-729-53	Sequence 53, Appl
	3		28	1	US-08-308-729-54	Sequence 54, Appl
762		8.8		1		Sequence 54, Appl
763	3	8.8	28		US-08-308-729-55	
764	3	8.8	28	1	US-08-308-729-56	Sequence 56, Appl
765	3	8.8	28	1	US-08-308-729-57	Sequence 57, Appl
766	3	8.8	28	1	US-08-308-729-58	Sequence 58, Appl
767	3	8.8	28	1	US-08-308-729-59	Sequence 59, Appl
768	3	8.8	28	1	US-08-308-729-60	Sequence 60, Appl
769	3	8.8	28	1	US-08-308-729 - 61	Sequence 61, Appl
770	3	8.8	28	1	US-08-308-729-62	Sequence 62, Appl
771	3	8.8	28	1	US-08-308 - 729-63	Sequence 63, Appl
772	3	8.8	28	1	US-08-308-729-64	Sequence 64, Appl
773	3	8.8	28	1	US-08-308-729-70	Sequence 70, Appl
774	3	8.8	28	1	US-08-308-729-71	Sequence 71, Appl
775	3	8.8	28	1	US-08-308-729-72	Sequence 72, Appl
776	3	8.8	28	1	US-08-308-729-73	Sequence 73, Appl
777	3	8.8	28	1	US-08-475-989-19	Sequence 19, Appl
778	3	8.8	28	1	US-08-471-329-9	Sequence 9, Appli
779	3	8.8	28	1	US-08-062-472B-40	Sequence 40, Appl
			28			
780	3	8.8		1	US-08-250-858-19	Sequence 19, Appl
781	3	8.8	28	1	US-08-171-701A-1	Sequence 1, Appli
782	3	8.8	28	1	US-08-171-701A-2	Sequence 2, Appli
783	3	8.8	28	1	US-08-677-304-2	Sequence 2, Appli
784	3	8.8	28	1	US-08-261-660A-19	Sequence 19, Appl
785	3	8.8	28	1	US-08-74 1- 678-1	Sequence 1, Appli
786	3	8.8	28	1	US-08-209-762 - 12	Sequence 12, Appl
787	3	8.8	28	1	US-08-209-762-56	Sequence 56, Appl
788	3	8.8	28	1	US-08-446-915-19	Sequence 19, Appl
789	3	8.8	28	1	US-08-404-731A-8	Sequence 8, Appli
790	3	8.8	28	1	US-08-442-029 - 9	Sequence 9, Appli
791	3	8.8	28	1	US-08-446-692-3	Sequence 3, Appli
792	3	8.8	28	1	US-08-473-344-12	Sequence 12, Appl
793	3	8.8	28	1	US-08-473-344-56	Sequence 56, Appl
794	3	8.8	28	1	US-08-519-180-2	Sequence 2, Appli
795	3	8.8	28	1	US-08-427-072-11	Sequence 11, Appl
796	3	8.8	28	1	US-08-944-133-4	Sequence 4, Appli
797	3	8.8	28	1	US-08-944-133-8	Sequence 8, Appli
798	3	8.8	28	1	US-08-944-133-22	Sequence 22, Appl
799	3	8.8	28	1	US-08-944-133-27	Sequence 27, Appl
800	. 3	8.8	28	1	US-08-944-133-39	Sequence 39, Appl
	3					
801		8.8	28	1	US-08-944-133-43	Sequence 43, Appl
802	3	8.8	28	1	US-08-449-500-81	Sequence 81, Appl
803	3	8.8	28	1	US-08-615-279-16	Sequence 16, Appl
804	3	8.8	28	1	US-08-615-279-39	Sequence 39, Appl
805	3	8.8	28	1	US-08-449-317A-81	Sequence 81, Appl
806	3	8.8	28	2	US-08-477-022-81	Sequence 81, Appl
807	3	8.8	28	2	US-08-449-447-81	Sequence 81, Appl
				-		a
808 809	3	8.8	28 28	2	US-08-488-351A-3 US-08-414-424-1	Sequence 3, Appli Sequence 1, Appli

```
810
          3
                8.8
                        28
                            2
                                US-08-621-803-30
                                                             Sequence 30, Appl
811
          3
                8.8
                        28
                            2
                                US-08-621-803-139
                                                             Sequence 139, App
812
          3
                8.8
                        28
                            2
                                US-08-621-803-140
                                                             Sequence 140, App
813
          3
                8.8
                        28
                            2
                                US-08-621-803-142
                                                            Sequence 142, App
814
          3
                8.8
                        28
                            2
                                US-08-621-803-143
                                                            Sequence 143, App
815
          3
                8.8
                        28
                            2
                                US-08-485-445A-12
                                                            Sequence 12, Appl
816
          3
                8.8
                        28
                            2
                               US-08-485-445A-56
                                                             Sequence 56, Appl
817
          3
                8.8
                        28
                            2
                                US-08-485-445A-193
                                                            Sequence 193, App
818
          3
                8.8
                        28
                            2
                                US-08-485-445A-194
                                                            Sequence 194, App
819
          3
                8.8
                        28
                            2
                                US-08-485-445A-195
                                                            Sequence 195, App
820
          3
                8.8
                        28
                            2
                                US-08-485-445A-196
                                                             Sequence 196, App
821
          3
                8.8
                        28
                            2
                                US-08-621-259A-5
                                                            Sequence 5, Appli
822
          3
                            2
                8.8
                        28
                                US-08-621-259A-110
                                                            Sequence 110, App
823
          3
                8.8
                        28
                            2
                                US-08-621-259A-111
                                                            Sequence 111, App
824
          3
                8.8
                        28
                            2
                                US-08-621-259A-113
                                                            Sequence 113, App
825
          3
                8.8
                        28
                            2
                                US-08-621-259A-114
                                                            Sequence 114, App
826
          3
                8.8
                        28
                            2
                                US-08-449-933-9
                                                            Sequence 9, Appli
                8.8
827
          3
                        28
                            2
                                US-08-744-139-19
                                                            Sequence 19, Appl
828
          3
                8.8
                        28
                            2
                                US-08-503-226B-8
                                                            Sequence 8, Appli
829
          3
                8.8
                        28
                            2
                                US-08-184-328-81
                                                            Sequence 81, Appl
                                US-08-488-161-49
830
          3
                        28
                8.8
                            2
                                                            Sequence 49, Appl
831
          3
                8.8
                        28
                            2
                                US-08-436-703B-7
                                                            Sequence 7, Appli
832
          3
                8.8
                        28
                            2
                               US-08-598-873-43
                                                            Sequence 43, Appl
833
          3
                8.8
                        28
                            2
                                US-08-620-151-66
                                                            Sequence 66, Appl
834
          3
                8.8
                        28
                            2
                                US-08-620-151-129
                                                            Sequence 129, App
835
          3
                8.8
                        28
                            2
                                US-08-398-590A-43
                                                            Sequence 43, Appl
836
          3
                8.8
                        28
                            2
                                US-08-915-142-9
                                                            Sequence 9, Appli
837
          3
                            2
                8.8
                        28
                                                            Sequence 10, Appl
                                US-08-821-619-10
838
          3
                8.8
                        28
                            2
                                US-08-635-007-8
                                                            Sequence 8, Appli
839
          3
                8.8
                        28
                            2
                                US-08-859-106A-8
                                                            Sequence 8, Appli
840
          3
                            2
                8.8
                        28
                                US-08-833-377-11
                                                            Sequence 11, Appl
          3
841
                8.8
                        28
                            2
                               US-08-031-538-48
                                                            Sequence 48, Appl
842
          3
                8.8
                        28
                               US-08-475-985-19
                                                            Sequence 19, Appl
843
          3
                8.8
                        28
                            2
                               US-08-413-708B-1
                                                            Sequence 1, Appli
844
          3
                8.8
                        28
                            2
                               US-08-413-708B-2
                                                            Sequence 2, Appli
845
          3
                8.8
                        28
                            2
                                                            Sequence 8, Appli
                                US-08-413-708B-8
846
          3
                        28
                            2
                8.8
                                US-08-563-892A-4
                                                            Sequence 4, Appli
847
          3
                8.8
                        28
                            2
                                US-08-521-097-81
                                                            Sequence 81, Appl
848
          3
                8.8
                        28
                            2
                               US-08-691-814B-73
                                                            Sequence 73, Appl
849
          3
                8.8
                        28
                            2
                               US-08-818-253-37
                                                            Sequence 37, Appl
850
          3
                8.8
                            2
                        28
                               US-08-897-624-1
                                                            Sequence 1, Appli
851
          3
                8.8
                        28
                            2
                                US-08-897-624-2
                                                            Sequence 2, Appli
852
          3
                8.8
                        28
                            3
                               US-09-110-953-8
                                                            Sequence 8, Appli
853
          3
                8.8
                        28
                            3
                                                            Sequence 1, Appli
                               US-08-930-845-1
854
          3
                8.8
                        28
                            3
                                                            Sequence 84, Appl
                               US-08-486-099-84
855
          3
                8.8
                        28
                            3
                                US-08-486-099-136
                                                            Sequence 136, App
856
          3
                8.8
                        28
                               US-09-273-685-49
                            3
                                                            Sequence 49, Appl
857
          3
               8.8
                        28
                            3
                               US-08-360-107A-94
                                                            Sequence 94, Appl
858
          3
               8.8
                        28
                            3
                                                            Sequence 19, Appl
                               US-08-256-839-19
859
          3
               8.8
                        28
                               US-08-788-231A-18
                            3
                                                            Sequence 18, Appl
860
          3
               8.8
                        28
                               US-08-484-223B-84
                                                            Sequence 84, Appl
861
          3
               8.8
                        28
                            3
                               US-08-484-223B-136
                                                            Sequence 136, App
862
          3
               8.8
                        28
                            3
                               US-09-100-414B-38
                                                            Sequence 38, Appl
863
          3
               8.8
                        28
                            3
                               US-08-921-887-23
                                                            Sequence 23, Appl
864
          3
               8.8
                        28
                            3
                               US-08-921-887-24
                                                            Sequence 24, Appl
865
          3
               8.8
                        28
                            3
                               US-08-921-887-25
                                                            Sequence 25, Appl
866
          3
               8.8
                        28
                            3
                               US-08-921-887-26
                                                            Sequence 26, Appl
```

						-
867	3	8.8	28	3	US-08-921-887-27	Sequence 27, Appl
868	3	8.8	28	3	US-08-921-887-28	Sequence 28, Appl
869	3	8.8	28	3	US-08-921-887-29	Sequence 29, Appl
						_
870	3	8.8	28	3	US-08-921-887-30	Sequence 30, Appl
871	3	8.8	28	3	US-08-921-887-31	Sequence 31, Appl
872	3	8.8	28	3	US-08-921-887-33	Sequence 33, Appl
873	3	8.8	28	3	US-08-952-568-1	Sequence 1, Appli
874	3	8.8	28	3	US-08-952-568-3	-
						Sequence 3, Appli
875	3	8.8	28	3	US-08-952-568-4	Sequence 4, Appli
876	3	8.8	28	3	US-08-952 - 568-5	Sequence 5, Appli
877	3	8.8	28	3	US-08-952-568-6	Sequence 6, Appli
878	3	8.8	28	3	US-08-952-568-10	Sequence 10, Appl
879	3	8.8	28	3		
					US-08-952-568-11	Sequence 11, Appl
880	3	8.8	28	3	US-08-952-568-12	Sequence 12, Appl
881	3	8.8	28	3	US-08-952-568-13	Sequence 13, Appl
882	3	8.8	28	3	US-08-952-568-14	Sequence 14, Appl
883	3	8.8	28	3	US-08-919-597-84	Sequence 84, Appl
884	3		28	3	US-08-919-597-136	
		8.8				Sequence 136, App
885	3	8.8	28	3	US-09-119-263-12	Sequence 12, Appl
886	3	8.8	28	3	US-09-119-263-56	Sequence 56, Appl
887	3	8.8	28	3	US-09-119-263-193	Sequence 193, App
888	3	8.8	28	3	US-09-119-263-194	Sequence 194, App
889	3	8.8	28	3	US-09-119-263 - 195	Sequence 195, App
890	3	8.8	28	3	US-09-119-263-196	Sequence 196, App
891	3	8.8	28	3	US-08-475-668A-84	Sequence 84, Appl
892	3	8.8	28	3	US-08-475-668A-136	Sequence 136, App
893	3	8.8	28	3	US-09-192-048-21	Sequence 21, Appl
894	3	8.8	28	3		
					US-08-485-551A-84	Sequence 84, Appl
895	3	8.8	28	3	US-08-485-551A-136	Sequence 136, App
896	3	8.8	28	3	US-08-838-413A-6	Sequence 6, Appli
897	3	8.8	28	3	US-08-471-913A-84	Sequence 84, Appl
898	3	8.8	28	3	US-08-471-913A-136	Sequence 136, App
899	3	8.8	28	3		
					US-08-721-458B-8	Sequence 8, Appli
900	3	8.8	28	3	US-08-908-643C-43	Sequence 43, Appl
901	3	8.8	28	3	US-08-405-647B-39	Sequence 39, Appl
902	3	8.8	28	3	US-08-893-749-2	Sequence 2, Appli
903	3	8.8	28	3	US-08-893-749-3	Sequence 3, Appli
904	3	8.8	28	3		
					US-08-893-749-32	Sequence 32, Appl
905	3	8.8	28	3	US-09-388-890-12	Sequence 12, Appl
906	3	8.8	28	3	US-08-657-162-12	Sequence 12, Appl
907	3	8.8	28	3	US-08-657-162-56	Sequence 56, Appl
908	3	8.8	28	3	US-08-657-162-193	Sequence 193, App
909	3	8.8	28	3	US-08-657-162-194	
						Sequence 194, App
910	3	8.8	28	3	US-08-657-162-195	Sequence 195, App
911	3	8.8	28	3	US-08-657-162-196	Sequence 196, App
912	3	8.8	28	3	US-09-433-428D-62	Sequence 62, Appl
913	3	8.8	28	3	US-08-679-006-15	Sequence 15, Appl
914	3	8.8	28	3	US-09-224-480-12	
						Sequence 12, Appl
915	3	8.8	28	3	US-09-224-480-56	Sequence 56, Appl
916	3	8.8	28	3	US-09-224-480-193	Sequence 193, App
917	3	8.8	28	3	US-09-224-480-194	Sequence 194, App
918	3	8.8	28	3	US-09-224-480-195	Sequence 195, App
919	3	8.8	28	3	US-09-224-480-196	
						Sequence 196, App
920	3	8.8	28	3	US-08-796-899-30	Sequence 30, Appl
921	3	8.8	28	3	US-08-974-549A-166	Sequence 166, App
922	3	8.8	28	3	US-08-392-542-22	Sequence 22, Appl
923	3	8.8	28	3	US-08-819-286-29	Sequence 29, Appl
					-	

924	3	8.8	28	3	US-08-817-811-13	Sequence 13, Appl
925	3	8.8	28	3	US-08-817-811-14	Sequence 14, Appl
926	3	8.8	28	3	US-08-817-811-15	Sequence 15, Appl
927	3	8.8	28	3	US-08-817-811-66	Sequence 66, Appl
928	3	8.8	28	3	US-08-817-811-67	Sequence 67, Appl
929	3	8.8	28	3	US-08-379-580-7	Sequence 7, Appli
930	3	8.8	28	3	US-09-058-459-8	Sequence 8, Appli
931	3	8.8	28	3	US-09-058-459-17	Sequence 17, Appl
932	3	8.8	28	3	US-09-058-459-18	Sequence 18, Appl
933	3	8.8	28	3	US-09-058-459-19	Sequence 19, Appl
934	3	8.8	28	3	US-08-985-499-39	Sequence 39, Appl
935	3	8.8	28	3	US-08-818-252-37	Sequence 37, Appl
936	3	8.8	28	3	US-08-363-558-1	Sequence 1, Appli
937	3	8.8	28	3	US-09-066-046-19	Sequence 19, Appl
938	3	8.8	28	3	US-09-253-396A-223	Sequence 223, App
939	3	8.8	28	3	US-09-107-991-12	Sequence 12, Appl
940	3	8.8	28	3	US-09-093-539-12	Sequence 12, Appl
941	3	8.8	28	3	US-09-093-539-56	Sequence 56, Appl
942	3	8.8	28	3	US-08-485-264A-84	Sequence 84, Appl
943	3	8.8	28	3	US-08-485-264A-136	Sequence 136, App
944	3	8.8	28	3	US-09-303-323-38	Sequence 38, Appl
945	3	8.8	28	3	US-09-248-588-42	
946	3	8.8	28	3	US-09-248-388-42 US-09-041-886-36	Sequence 42, Appl Sequence 36, Appl
947	3	8.8	28	3	US-09-041-886-36	_
948	3	8.8	28	3	US-09-041-886-37 US-09-041-886-38	Sequence 37, Appl
949	3	8.8	28	3		Sequence 38, Appl
950	3		28		US-09-041-886-39	Sequence 39, Appl
951	3	8.8		3	US-09-041-886-40	Sequence 40, Appl
		8.8	28	3	US-09-041-886-42	Sequence 42, Appl
952	3	8.8	28	3	US-09-041-886-47	Sequence 47, Appl
953	3	8.8	28	3	US-09-041-886-50	Sequence 50, Appl
954	3	8.8	28	3	US-09-041-886-53	Sequence 53, Appl
955	3	8.8	28	3	US-09-041-886-54	Sequence 54, Appl
956	3	8.8	28	3	US-09-041-886-56	Sequence 56, Appl
957	3	8.8	28	3	US-09-127-680-2	Sequence 2, Appli
958	3	8.8	28	3	US-07-966-049A-9	Sequence 9, Appli
959	3	8.8	28	3	US-08-995-369-1	Sequence 1, Appli
960	3	8.8	28	3	US-09-171-654-1	Sequence 1, Appli
961	3	8.8	28	3	US-08-605-430 - 43	Sequence 43, Appl
962	3	8.8	28	3	US-08-894-327-22	Sequence 22, Appl
963	3	8.8	28	3	US-09-082-279B-54	Sequence 54, Appl
964	3	8.8	28	3	US-09-082-279B-62	Sequence 62, Appl
965	3	8.8	28	3	US-09-082-279B-982	Sequence 982, App
966	3	8.8	28	3	US-09-082-279B-1279	Sequence 1279, Ap
967	3	8.8	28	3	US-09-082-279B-1280	Sequence 1280, Ap
968	3	8.8	28	3	US-09-082-279B-1314	Sequence 1314, Ap
969	3	8.8	28	3	US-09-082-279B-1315	Sequence 1315, Ap
970	3	8.8	28	3	US-08-477-346-84	Sequence 84, Appl
971	3	8.8	28	3	US-09-127-926-8	Sequence 8, Appli
972	3	8.8	28	3	US-09-127 - 926-17	Sequence 17, Appl
973	3	8.8	28	3	US-09-127-926-18	Sequence 18, Appl
974	3	8.8	28	3	US-09-127-926-19	Sequence 19, Appl
975	3	8.8	28	3	US-09-127-926-21	Sequence 21, Appl
976	3	8.8	28	3	US-09-127-926-22	Sequence 22, Appl
977	3	8.8	28	3	US-08-894-997-43	Sequence 43, Appl
978	3	8.8	28	3	US-09-217-352-30	Sequence 30, Appl
979	3	8.8	28	3	US-09-217-352-139	Sequence 139, App
980	3 ,	8.8	28	3	US-09-217-352-140	Sequence 140, App
		•	-	-		

981	3	8.8	28	3	US-09-217-352-142	Sequence 142, App
982	3	8.8	28	3	US-09-217-352-143	Sequence 143, App
983	3	8.8	28	3	US-09-019-095A-34	Sequence 34, Appl
984	3	8.8	28	4	US-09-406-781-10	Sequence 10, Appl
985	3	8.8	28	4	US-09-406-781-11	Sequence 11, Appl
986	3	8.8	28	4	US-09-260-846-16	Sequence 16, Appl
987	3	8.8	28	4	US-08-474-349A-84	Sequence 84, Appl
988	3	8.8	28	4	US-08-474-349A-136	Sequence 136, App
989	3	8.8	28	4	US-09-099-041A-23	Sequence 23, Appl
990	3	8.8	28	4	US-09-187-789-23	Sequence 23, Appl
991	3	8.8	28	4	US-08-473-089-84	Sequence 84, Appl
992	3	8.8	28	4	US-09-227-357-481	Sequence 481, App
993	3	8.8	28	4	US-09-227-357-531	Sequence 531, App
994	3	8.8	28	4	US-09-315-304B-54	Sequence 54, Appl
995	3	8.8	28	4	US-09-315-304B-62	Sequence 62, Appl
996	3	8.8	28	4	US-09-315-304B-982	Sequence 982, App
997	3	8.8	28	4	US-09-315-304B-1279	Sequence 1279, Ap
998	3	8.8	28	4	US-09-315-304B-1280	Sequence 1280, Ap
999	3	8.8	28	4	US-09-315-304B-1314	Sequence 1314, Ap
1000	3	8.8	28	4	US-09-315-304B-1315	Sequence 1315, Ap

ALIGNMENTS

```
RESULT 1
US-09-044-536A-8
; Sequence 8, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
```

```
REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
ï
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 8:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-8
 Query Match
                         70.6%; Score 24; DB 3; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.5e-17;
 Matches
          24; Conservative
                              0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                          0;
QУ
          11 KGKHLNSMERVEWLRKKLODVHNF 34
             Db
          11 KGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 2
US-08-256-363-1
; Sequence 1, Application US/08256363
 Patent No. 5783558
  GENERAL INFORMATION:
    APPLICANT: DUVOS, CHRISTIAN
    APPLICANT: MAYER, HUBERT
    APPLICANT: MUELLER-BECKMANN, BERND
    APPLICANT: STREIN, KLAUS
    APPLICANT: WINGENDER, EDGAR
    TITLE OF INVENTION: PARATHYROID HORMONE FRAGMENTS, THEIR
    TITLE OF INVENTION: PREPARATION AND MEDICAMENTS CONTAINING THE SAME
    NUMBER OF SEQUENCES: 4
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIKAIDO, MARMELSTEIN, MURRAY, AND ORAM
      STREET: 655 15th ST. N.W. SUITE 330- G ST. LOBBY
      CITY: WASHINGTON
      STATE: D.C.
      COUNTRY: U.S.A.
      ZIP: 2005 5701
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/256,363
      FILING DATE:
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: DE P 42 03 040.4
      FILING DATE: 04-FEB-1992
```

```
PRIOR APPLICATION DATA:
     APPLICATION NUMBER: PCT/EP93/00259
      FILING DATE: 04-FEB-1993
    ATTORNEY/AGENT INFORMATION:
     NAME: KLESNER, SHARON N.
      REGISTRATION NUMBER: 36,335
      REFERENCE/DOCKET NUMBER: P1614-4025
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (202) 638-5000
      TELEFAX: (202) 638-4810
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 33 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-256-363-1
 Query Match 67.6%; Score 23; DB 1; Length 33; Best Local Similarity 100.0%; Pred. No. 3.3e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             10 GKHLNSMERVEWLRKKLQDVHNF 32
RESULT 3
US-07-765-373-1
; Sequence 1, Application US/07765373
; Patent No. 5393869
  GENERAL INFORMATION:
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: KAWASE, Masahiro
    APPLICANT: YAMAZAKI, Iwao
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
    NUMBER OF SEQUENCES: 2
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: DAVID G. CONLIN; DIKE, BRONSTEIN, ROBERTS &
     ADDRESSEE: CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/07/765,373
      FILING DATE: 19910925
      CLASSIFICATION: 530
   ATTORNEY/AGENT INFORMATION:
```

```
NAME: WILLIAMS, Gregory D.
      REGISTRATION NUMBER: 30901
      REFERENCE/DOCKET NUMBER: 41289
;
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617) 523-3400
      TELEFAX: (617)523-6440
      TELEX: 20091 STRE UR
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: AMINO ACID
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
     FRAGMENT TYPE: N-terminal
US-07-765-373-1
 Query Match
                         67.6%; Score 23; DB 1; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative 0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             111111111111
Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 4
US-08-033-099-1
; Sequence 1, Application US/08033099
 Patent No. 5434246
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
    NUMBER OF SEQUENCES: 2
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DAVID G.CONLIN; DIKE, BRONSTEIN, ROBERTS &
      ADDRESSEE: CUSHMAN
;
      STREET: 130 Water Street
ï
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/033,099
      FILING DATE: 19930316
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: WILLIAMS, Gregory D
      REGISTRATION NUMBER: 30901
      REFERENCE/DOCKET NUMBER: 42528
    TELECOMMUNICATION INFORMATION:
```

```
TELEPHONE: (617)523-3400
;
       TELEFAX: (613)523-6440
       TELEX: 200291 STRE UR
   INFORMATION FOR SEQ ID NO:
ï
     SEQUENCE CHARACTERISTICS:
ï
       LENGTH: 34 amino acids
       TYPE: AMINO ACID
       TOPOLOGY: linear
     MOLECULE TYPE: protein
     FRAGMENT TYPE: N-terminal
US-08-033-099-1
  Query Match
                          67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLODVHNF 34
Qу
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 5
US-08-262-495C-1
; Sequence 1, Application US/08262495C
; Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT: SUREWICZ, Witold
    APPLICANT: SUNG, Wing L. APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kirby, Eades, Gale, Baker
      STREET: 112 Kent Street, Suite 770,
      CITY: Ottawa
      COUNTRY: Canada
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC Compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: Wordperfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/262,495C
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: EADES, No. 5556940ris M.
;
      REGISTRATION NUMBER: 5,263
      REFERENCE/DOCKET NUMBER: 36210
    TELECOMMUNICATION INFORMATION:
```

```
TELEPHONE: (613) -237-6900
;
       TELEFAX: (613)-237-0045
   INFORMATION FOR SEQ ID NO:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-262-495C-1
  Query Match 67.6%; Score 23; DB 1; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Query Match
  Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              11111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
US-07-915-247A-1
; Sequence 1, Application US/07915247A
; Patent No. 5589452
; GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
     STREET: 3401 Hillview Ave.
     CITY: Palo Alto
     STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/07/915,247A
     FILING DATE: 19920714
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
     NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
 INFORMATION FOR SEQ ID NO: 1:
```

```
SEQUENCE CHARACTERISTICS:
;
      LENGTH: 34 amino acids
       TYPE: amino acid
      TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-07-915-247A-1
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative 0; Mismatches
                                               0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 7
US-08-443-863-1
; Sequence 1, Application US/08443863
; Patent No. 5693616
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/443,863
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
```

```
LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-443-863-1
  Query Match 67.6%; Score 23; DB 1; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Query Match
          23; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              11:11:11:11:11:11
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 8
US-08-448-070-1
; Sequence 1, Application US/08448070
; Patent No. 5695955
; GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/448,070
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
 INFORMATION FOR SEQ ID NO:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-448-070-1
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              11111111111
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 9
US-08-488-105-7
; Sequence 7, Application US/08488105
; Patent No. 5717062
  GENERAL INFORMATION:
    APPLICANT: Chorev, Michael APPLICANT: Rosenblatt, Michael
    TITLE OF INVENTION: CYCLIC ANALOGS OF PTH AND PTHrP
    NUMBER OF SEQUENCES: 22
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Fish & Richardson P.C.
      STREET: 225 Franklin Street
      CITY: Boston
      STATE: MA
      COUNTRY: USA
      ZIP: 02110-2804
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/488,105
      FILING DATE: 07-JUN-1995
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Tsao, Y. Rocky
      REGISTRATION NUMBER: 34,053
      REFERENCE/DOCKET NUMBER: 00537/112001
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617/542-5070
      TELEFAX: 617/542-8906
      TELEX: 200154
  INFORMATION FOR SEQ ID NO: 7:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: not relevant
     TOPOLOGY: linear
   MOLECULE TYPE: protein
   FEATURE:
```

```
OTHER INFORMATION: The side chains of Lys at
      OTHER INFORMATION: position 26 and Asp at position 30 are linked by an
amide bond,
      OTHER INFORMATION: and this sequence has an amide C-terminus (i.e.,
CONH2), rather
      OTHER INFORMATION: than a carboxy C-terminus (i.e., COOH).
US-08-488-105-7
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative
                             0; Mismatches 0; Indels
                                                              0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLODVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 10
US-08-468-275-6
; Sequence 6, Application US/08468275
; Patent No. 5747453
  GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 10
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/468,275
      FILING DATE: 06-JUN-1995
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 496-8150
      TELEFAX: (415) 496-8048
  INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
     TOPOLOGY: linear
   MOLECULE TYPE: protein
```

TYPE: amino acid

```
Query Match
                        67.6%; Score 23; DB 1; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                           0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 11
US-08-256-363-2
; Sequence 2, Application US/08256363
; Patent No. 5783558
  GENERAL INFORMATION:
    APPLICANT: DUVOS, CHRISTIAN
    APPLICANT: MAYER, HUBERT
    APPLICANT: MUELLER-BECKMANN, BERND
    APPLICANT: STREIN, KLAUS
;
    APPLICANT: WINGENDER, EDGAR
;
    TITLE OF INVENTION: PARATHYROID HORMONE FRAGMENTS, THEIR
    TITLE OF INVENTION: PREPARATION AND MEDICAMENTS CONTAINING THE SAME
  NUMBER OF SEQUENCES: 4
   CORRESPONDENCE ADDRESS:
     ADDRESSEE: NIKAIDO, MARMELSTEIN, MURRAY, AND ORAM
      STREET: 655 15th ST. N.W. SUITE 330- G ST. LOBBY
     CITY: WASHINGTON
     STATE: D.C.
     COUNTRY: U.S.A.
     ZIP: 2005 5701
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
   CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/256,363
      FILING DATE:
      CLASSIFICATION: 514
   PRIOR APPLICATION DATA:
     APPLICATION NUMBER: DE P 42 03 040.4
      FILING DATE: 04-FEB-1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/EP93/00259
      FILING DATE: 04-FEB-1993
    ATTORNEY/AGENT INFORMATION:
     NAME: KLESNER, SHARON N.
      REGISTRATION NUMBER: 36,335
      REFERENCE/DOCKET NUMBER: P1614-4025
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (202) 638-5000
      TELEFAX: (202) 638-4810
  INFORMATION FOR SEQ ID NO: 2:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
US-08-256-363-2
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative 0; Mismatches
                                                 0; Indels
                                                                0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              1111111111111111111111
Db
          10 GKHLNSMERVEWLRKKLQDVHNF 32
RESULT 12
US-08-449-500-1
; Sequence 1, Application US/08449500
; Patent No. 5798225
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
;
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,500
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
   MOLECULE TYPE: peptide
```

```
HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
 US-08-449-500-1
  Query Match
                          67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
           23; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                           0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Dh
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 13
US-08-449-317A-1
; Sequence 1, Application US/08449317A
; Patent No. 5807823
   GENERAL INFORMATION:
     APPLICANT: Vickery, Brian H.
     TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
;
     TITLE OF INVENTION: INDUCED OSTEOPENIA
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,317A
       FILING DATE: 07-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-317A-1
 Query Match
                        67.6%; Score 23; DB 1; Length 34;
```

Best Local Similarity 100.0%; Pred. No. 3.4e-16;

```
23; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              111111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 14
US-08-142-551B-2
; Sequence 2, Application US/08142551B
; Patent No. 5814603
  GENERAL INFORMATION:
    APPLICANT: Oldenburg, Kevin R.
    APPLICANT: Selick, Harold E.
    TITLE OF INVENTION: COMPOUNDS WITH PTH ACTIVITY AND TITLE OF INVENTION: RECOMBINANT DNA VECTORS ENCODING SAME
    NUMBER OF SEQUENCES: 132
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Burns, Doane, Swecker & Mathis
      STREET: 699 Prince Street
      CITY: Alexandria
      STATE: Virginia
      COUNTRY: US
      ZIP: 22313
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/142,551B
      FILING DATE: 25-OCT-1993
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/077,296
      FILING DATE: 14-JUN-1993
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/898,219
      FILING DATE: 12-JUN-1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/965,677
      FILING DATE: 22-OCT-1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Swiss, Gerald F.
      REGISTRATION NUMBER: 30,113
      REFERENCE/DOCKET NUMBER: 000324-010
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 854-7400
      TELEFAX: (415) 854-8275
  INFORMATION FOR SEQ ID NO: 2:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: unknown
    MOLECULE TYPE: protein
    FEATURE:
```

NAME/KEY: Peptide

0;

```
LOCATION: 1..34
       OTHER INFORMATION: /note= "The sequence of the 34
       OTHER INFORMATION: amino acid truncated human PTH peptide,
       OTHER INFORMATION: designated: Human PTH."
US-08-142-551B-2
  Query Match
                          67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3.4e-16;
  Matches
           23; Conservative
                                0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                             0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
US-08-477-022-1
; Sequence 1, Application US/08477022
; Patent No. 5821225
   GENERAL INFORMATION:
     APPLICANT: Vickery, Brian H.
     TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
     TITLE OF INVENTION: INDUCED OSTEOPENIA
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/477,022
       FILING DATE: 07-JUN-1995
       CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
       NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-477-022-1
```

```
Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
           23; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                          0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 16
US-08-449-447-1
; Sequence 1, Application US/08449447
; Patent No. 5840837
  GENERAL INFORMATION:
     APPLICANT: Krstenansky, John L.
     APPLICANT: Nestor Jr., John J.
     APPLICANT: Ho, Teresa H.
     APPLICANT: Vickery, Brian H.
     APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/449,447
     FILING DATE: 18-JAN-1994
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
     NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-447-1
```

67.6%; Score 23; DB 2; Length 34;

Query Match

```
Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels 0; Gaps
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
US-08-835-231-13
; Sequence 13, Application US/08835231
; Patent No. 5861284
  GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
APPLICANT: KURIYAMA, Masato
APPLICANT: KOYAMA, No. 5861284uyuki
    APPLICANT: FUKUDA, Tsunehiko
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
  CORRESPONDENCE ADDRESS:
     ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
     SOFTWARE: FastSEQ Version 1.5
    CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/08/835,231
     FILING DATE:
     CLASSIFICATION: 435
  PRIOR APPLICATION DATA:
    APPLICATION NUMBER: 08/350,709
     FILING DATE: 07-DEC-1994
    APPLICATION NUMBER: 07/838,857
     FILING DATE: 18-FEB-1992
     APPLICATION NUMBER: JP 024841
    FILING DATE: 19-FEB-1991
     APPLICATION NUMBER: JP 0271438
     FILING DATE: 18-OCT-1991
   ATTORNEY/AGENT INFORMATION:
     NAME: DAVID, RESNICK S
      REGISTRATION NUMBER: 34,235
      REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
      TELEX: 200291 STRE
  INFORMATION FOR SEQ ID NO: 13:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

TYPE: amino acid

```
STRANDEDNESS: single
       TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: N-terminal
    ORIGINAL SOURCE:
US-08-835-231-13
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative
                              0; Mismatches 0; Indels
                                                               0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 18
US-08-184-328-1
; Sequence 1, Application US/08184328
; Patent No. 5874086
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/184,328
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
```

```
LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-184-328-1
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative
                              0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             1111111111111111111111111
Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
US-08-411-726-2
; Sequence 2, Application US/08411726
; Patent No. 5880093
  GENERAL INFORMATION:
    APPLICANT: BAGNOLI, Franco
    TITLE OF INVENTION: Use of Parathormone, Its Biologically
    TITLE OF INVENTION: Active Fragments and Correlated Peptides, for The
Preparation of
    TITLE OF INVENTION: Pharmaceutical Compositions Useful for The Treatment
of Pregnanc
    NUMBER OF SEQUENCES: 5
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kenyon & Kenyon
      STREET: 1 Broadway
      CITY: New York
      STATE: NY
      COUNTRY: US
      ZIP: 10004
    COMPUTER READABLE FORM:
      MEDIUM TYPE: 3.5 Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS 6.2
      SOFTWARE: WordPerfect 6.1 for Windows
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/411,726
      FILING DATE: 05-APR-1995
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/EP93/02755
      FILING DATE: 08-OCT-1993
      APPLICATION NUMBER: MI-92A002331
      FILING DATE: 09-OCT-1992
    ATTORNEY/AGENT INFORMATION:
     NAME: PALMESE, Maria Luisa
      REGISTRATION NUMBER: 34,402
     REFERENCE/DOCKET NUMBER: 2111/1300
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 212-425-7200
      TELEFAX: 212-425-5288
```

```
INFORMATION FOR SEQ ID NO: 2:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-411-726-2
  Query Match
                          67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
           23; Conservative
                               0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 20
US-08-691-647C-5
; Sequence 5, Application US/08691647C
; Patent No. 5955425
  GENERAL INFORMATION:
    APPLICANT: Barbier, Jean-Rene
    APPLICANT: Morley, Paul
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE, P.C.
      STREET: 1100 New York Avenue, 8th Floor
      CITY: Arlington
      STATE: Virginia
      COUNTRY: U.S.A.
      ZIP: 22201-4714
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: ASCII Text
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
      FILING DATE: August 2, 1996
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-5
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 816-4005
      TELEFAX: (703) 816-4100
      TELEX: N/A
  INFORMATION FOR SEQ ID NO: 5:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-691-647C-5
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative
                              0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 21
US-08-521-097-1
; Sequence 1, Application US/08521097
; Patent No. 5977070
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/521,097
      FILING DATE: 29-AUG-1995
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/184,328
      FILING DATE: 18-JAN-1994
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-521-097-1
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative
                              0; Mismatches 0; Indels
                                                               0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 22
US-09-044-536A-1
; Sequence 1, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-1
  Query Match
                         67.6%; Score 23; DB 3; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
 Matches
                                                             0; Gaps
                                                                          0:
Qу
          12 GKHLNSMERVEWLRKKLODVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 23
US-09-044-536A-9
; Sequence 9, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
;
      TOPOLOGY: linear
;
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-9
 Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative 0; Mismatches 0; Indels
                                                                            0;
                                                              0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
US-09-044-536A-10
; Sequence 10, Application US/09044536A
; Patent No. 6025467
; GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 10:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-10
  Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative 0; Mismatches
                                               0; Indels
                                                                0: Gaps
                                                                            0:
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 25
US-09-044-536A-11
; Sequence 11, Application US/09044536A
; Patent No. 6025467
; GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
     APPLICANT: NAKAGAWA, Shizue
     APPLICANT: HABASHITA, Junko
     APPLICANT: TAKETOMI, Shigehisa
     TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
     CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 11:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-11
 Query Match
                         67.6%; Score 23; DB 3; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative
                             0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLODVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
US-09-044-536A-12
; Sequence 12, Application US/09044536A
; Patent No. 6025467
 GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 12:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
    FEATURE:
      NAME/KEY: Modified-site
      LOCATION: 11
      OTHER INFORMATION: /product= "Xaa=Ala(2-Naph)"
US-09-044-536A-12
 Query Match
                         67.6%; Score 23; DB 3; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative 0; Mismatches
                                                0: Indels
                                                              0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Οv
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 27
US-09-044-536A-13
; Sequence 13, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: (617)523-3400
```

```
TELEFAX: (617)523-6440
   INFORMATION FOR SEQ ID NO: 13:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
ï
      TYPE: amino acid
ï
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
    FEATURE:
      NAME/KEY: Modified-site
      LOCATION: 10
      OTHER INFORMATION: /product= "Xaa=4-carboxyglutamic
      OTHER INFORMATION: acid"
US-09-044-536A-13
  Query Match
                         67.6%; Score 23; DB 3; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches
                                               0; Indels 0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
QУ
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 28
US-09-044-536A-14
; Sequence 14, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
```

```
NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 14:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
    FEATURE:
      NAME/KEY: Modified-site
      LOCATION:
      OTHER INFORMATION: /product= "Xaa=2-aminosuberic acid"
US-09-044-536A-14
                         67.6%; Score 23; DB 3; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative
                              0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qy
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 29
US-09-044-536A-15
; Sequence 15, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
```

```
APPLICATION NUMBER: 08/662,871
       FILING DATE: 12-JUN-1996
     ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
       REGISTRATION NUMBER: 27,026
       REFERENCE/DOCKET NUMBER: 46509-DIV
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (617)523-3400
       TELEFAX: (617)523-6440
   INFORMATION FOR SEQ ID NO: 15:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
     FEATURE:
      NAME/KEY: Modified-site
      LOCATION: 10
      OTHER INFORMATION: /product= "2-aminoadipic acid"
US-09-044-536A-15
  Query Match
                          67.6%; Score 23; DB 3; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative
                               0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 30
US-08-904-760B-22
; Sequence 22, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
```

PRIOR APPLICATION DATA:

```
COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
       FILING DATE: 01-AUG-1997
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-6
     TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
       TELEFAX: 703-816-4100
   INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-904-760B-22
  Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative
                              0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 31
US-09-108-661-13
; Sequence 13, Application US/09108661
; Patent No. 6287806
; GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 6287806uyuki
    APPLICANT: FUKUDA, Tsunehiko
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
```

```
OPERATING SYSTEM: DOS
       SOFTWARE: FastSEQ Version 1.5
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/108,661
       FILING DATE:
      CLASSIFICATION: 435
   PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 08/350,709
     FILING DATE: 07-DEC-1994
     APPLICATION NUMBER: 07/838,857
     FILING DATE: 18-FEB-1992
     APPLICATION NUMBER: JP 024841 FILING DATE: 19-FEB-1991
     APPLICATION NUMBER: JP 0271438
     FILING DATE: 18-OCT-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: DAVID, RESNICK S
       REGISTRATION NUMBER: 34,235
     REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
       TELEPHONE: 617-523-3400
       TELEFAX: 617-523-6440
      TELEX: 200291 STRE
   INFORMATION FOR SEO ID NO: 13:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
     FRAGMENT TYPE: N-terminal
     ORIGINAL SOURCE:
US-09-108-661-13
  Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Dh
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 32
US-09-007-466-6
; Sequence 6, Application US/09007466
; Patent No. 6313092
; GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
ï
   NUMBER OF SEQUENCES: 10
   CORRESPONDENCE ADDRESS:
     ADDRESSEE: ALZA CORPORATION
```

```
CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/09/007,466
      FILING DATE:
     CLASSIFICATION:
   PRIOR APPLICATION DATA:
    APPLICATION NUMBER: US 08/468,275
     FILING DATE: 06-JUN-1995
   ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 496-8150
      TELEFAX: (415) 496-8048
  INFORMATION FOR SEQ ID NO: 6:
    SEOUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-09-007-466-6
 Query Match
                        67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches
                                               0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 33
US-09-406-813-1
; Sequence 1, Application US/09406813
; Patent No. 6316410
; GENERAL INFORMATION:
; APPLICANT: Barbier, Jean-Rene
; APPLICANT: Morley, Paul
; APPLICANT: Whitfield, James
  APPLICANT: Willick, Gordon E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
; FILE REFERENCE: 10688-1B
; CURRENT APPLICATION NUMBER: US/09/406,813
; CURRENT FILING DATE: 1999-09-22
; PRIOR APPLICATION NUMBER: 08/904,760
```

STREET: 950 PAGE MILL ROAD

```
; PRIOR FILING DATE: 1997-08-01
; NUMBER OF SEQ ID NOS: 9
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 1
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-406-813-1
 Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                            0; Gaps
                                                                          0:
          12 GKHLNSMERVEWLRKKLODVHNF 34
QУ
             Db
          12 GKHLNSMERVEWLRKKLODVHNF 34
RESULT 34
US-08-952-980B-6
; Sequence 6, Application US/08952980B
; Patent No. 6333189
; GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 12
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
     COUNTRY: USA
     ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/952,980B
      FILING DATE: 20-NOV-1997
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 2349 CIP 1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (650) 496-8150
      TELEFAX: (650) 496-8048
  INFORMATION FOR SEQ ID NO: 6:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
      TYPE: amino acid
     STRANDEDNESS: single
     TOPOLOGY: linear
```

```
MOLECULE TYPE: protein
US-08-952-980B-6
 Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches
                                                0; Indels
                                                             0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 35
US-09-228-990-1
; Sequence 1, Application US/09228990
; Patent No. 6472505
  GENERAL INFORMATION:
    APPLICANT: Condon, Stephen M.
    APPLICANT: Morize, Isabelle
    TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
    NUMBER OF SEQUENCES: 88
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Rhone-Poulenc Rorer Inc.
      STREET: 500 Arcola Road, Mailstop 3C43
      CITY: Collegeville
      STATE: PA
      COUNTRY: USA
      ZIP: 19426
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/228,990
      FILING DATE:
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 60/046,472
      FILING DATE: 14-MAY-1997
    ATTORNEY/AGENT INFORMATION:
      NAME: Martin Esq., Michael B.
      REGISTRATION NUMBER: 37,521
      REFERENCE/DOCKET NUMBER: A2678B-WO
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (610) 454-2793
      TELEFAX: (610) 454-3808
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: not relevant
    MOLECULE TYPE: peptide
    FRAGMENT TYPE: N-terminal
```

US-09-228-990-1

```
Query Match
                        67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
         23; Conservative 0; Mismatches
                                               0;
                                                   Indels
                                                              0; Gaps
                                                                         0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 36
US-09-447-800-1
; Sequence 1, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
; APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
; CURRENT FILING DATE: 1999-11-23
; EARLIER APPLICATION NUMBER: 60/110,152
; EARLIER FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: UNSURE
   LOCATION: (1)
   OTHER INFORMATION: Can be desamino Ser, desamino Ala, or desamino Gly
US-09-447-800-1
 Query Match
                        67.6%; .Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
         23; Conservative
                              0; Mismatches
                                               0; Indels
                                                                         0;
                                                              0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 37
US-09-447-800-2
; Sequence 2, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
; TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630001
; CURRENT APPLICATION NUMBER: US/09/447,800
```

```
CURRENT FILING DATE: 1999-11-23
  EARLIER APPLICATION NUMBER: 60/110,152
  EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 2
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-09-447-800-2
  Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
                                                              0: Gaps
                                                                           0:
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 38
US-09-447-800-5
; Sequence 5, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
  CURRENT FILING DATE: 1999-11-23
  EARLIER APPLICATION NUMBER: 60/110,152
  EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 5
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-09-447-800-5
 Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             1111111111111111111111111
```

```
RESULT 39
US-09-447-800-8
; Sequence 8, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
; CURRENT APPLICATION NUMBER: US/09/447,800
; CURRENT FILING DATE: 1999-11-23
; EARLIER APPLICATION NUMBER: 60/110,152
; EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 8
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-09-447-800-8
  Query Match
                         67.6%; Score 23; DB 4; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 40
US-09-536-785A-22
; Sequence 22, Application US/09536785A
; Patent No. 6541450
; GENERAL INFORMATION:
; APPLICANT: BARBIER, JEAN-RENE
; APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT: ROSS, VIRGINIA J.S.
  APPLICANT: WHITFIELD, JAMES F.
  APPLICANT: WILLICK, GORDON E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
; PRIOR APPLICATION NUMBER: 08/904,760
; PRIOR FILING DATE: 1997-08-01
```

```
; PRIOR APPLICATION NUMBER: 08/691,647
; PRIOR FILING DATE: 1996-08-02
; PRIOR APPLICATION NUMBER: 08/262,495
; PRIOR FILING DATE: 1994-06-20
; PRIOR APPLICATION NUMBER: 60/040,560
; PRIOR FILING DATE: 1997-03-14
; NUMBER OF SEQ ID NOS: 39
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 22
  LENGTH: 34
   TYPE: PRT
  ORGANISM: Homo sapiens
US-09-536-785A-22
                      67.6%; Score 23; DB 4; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
       12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
            12 GKHLNSMERVEWLRKKLQDVHNF 34
```

Search completed: January 14, 2004, 10:43:31

Job time : 13.5452 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 10.0623 Seconds

(without alignments)

324.949 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score: 34

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 283308 seqs, 96168682 residues

Word size : (

Total number of hits satisfying chosen parameters: 3709

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database: PIR 76:*

1: pir1:*
2: pir2:*

3: pir3:*

J. P11J.

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	5	14.7	34	2	A84241	hypothetical prote
2	5	14.7	34	2	B97032	transcription regu
3	5	14.7	35	2	E95098	hypothetical prote
4	4	11.8	28	2	T09594	gene LFY protein -
5	4	11.8	29	1	A55527	pyrroloquinoline q
6	4	11.8	29	2	S01614	dystrophin - rat (
7	4	11.8	29	2	178537	copper transportin
8	4	11.8	29	2	S78412	ribosomal protein
9	4	11.8	30	2	S63531	hypothetical prote
10	4	11.8	31	2	S44471	glucagon G1 - Nort
11	4	11.8	31	2	S44472	glucagon G2 - Nort
12	4	11.8	31	2	D70236	hypothetical prote
13	4	11.8	32	2	F23454	ovalbumin phosphos
	_			_		-

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 40 41 42 43 44 45 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3	11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 8.8 8	32 32 33 35 35 36 36 36 37 37 39 28 28 28 28 28 28 28 28 28 28 28 28 28	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D31461 G84161 E81714 D23454 G23454 D82125 S70806 F95057 A84774 S46227 S71912 T12635 A43933 CKFHCS S71913 S77164 A42272 C32416 B60071 A60304 S58386 S10052 A60752 S56121 S70894 S22469 C60683 S06668 S26254 159477 F46522 H85908 GCCB S39968 S17147
	-					
40			8.8			
						S06668
49		3	8.8	29	2	JH0699
50		3	8.8	29	2	T44245
51		3	8.8	29	2	A05272
52		3	8.8	29	2	B44101
53		3	8.8	29	2	S42642
54 55		3	8.8	29	2	A00774
56		3 3	8.8 8.8	29 29	2	I84189
57		3	8.8	29	2	S65747 S65748
58		3	8.8	29	2	B41476
59		3	8.8	29	2	T31443
60		3	8.8	29	2	F85570
61		3	8.8	29	2	I49732
62		3	8.8	30	2	S40309
63		3	8.8	30	2	C21897
64 . 65		3 3	8.8 8.8	30	2	A05315
66		3	8.8	30 30	2 2	A61333 S21815
67		3	8.8	30	2	A44912
68		3	8.8	30	2	B61125
69		3	8.8	30	2	C61125
70		3	8.8	30	2	F32502

T-cell receptor de hypothetical prote hypothetical prote ovalbumin phosphos ovalbumin phosphos hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hemoglobin, extrac homeotic protein H antigen 5 epitope sarcotoxin IC - fl hemoglobin, extrac ycf32 protein - Sy brain-type creatin phospholipase A2 (vasoactive intesti vasoactive intesti T-cell receptor be ribosomal protein outer membrane pro type I DNA methylt hypothetical prote hypothetical prote malate dehydrogena toxin-like protein rel protein - chic antigen, T-cell re T-cell receptor et hypothetical prote glucagon - Chinchi probable hydro-lya galanin - chicken omega-conotoxin MV ribosomal protein gelsolin, cytosoli calmodulin, vasoac probable rhicadhes 3-oxoadipate enolcyclic AMP recepto CDP-paratose synth CDP-paratose synth probable antigen 2 cytochrome bc chai hypothetical prote NADH2 dehydrogenas tyrosine 3-monooxy ornithine carbamoy pancreatic ribonuc trypsin (EC 3.4.21 H+-exporting ATPas cysteine proteinas glucagon-like pept glucagon-like pept T-cell receptor de

71	3	8.8	30	2	PD0013
72	3	8.8	30	2	S11617
73	3	8.8	30	2	S21195
74	3	8.8	30	2	PC4172
75	3	8.8	30	2	A34461
76	3	8.8	30	2	A22977
77	3	8.8	30	2	S08565
78	3	8.8	30	2	S30333
79	3	8.8	30	2	PQ0444
80	3	8.8	30	2	B95020
81	3	8.8	30	2	Н95021
82	3	8.8	30	2	D72276
83	3	8.8	30	2	D70253
84	3	8.8	30	2	B70165
85	3	8.8	30	2	C81791
86	3	8.8	30	2	E82294
87	3	8.8	30	2	D82251
88	3	8.8	30	2	F82209
89	3	8.8	30	2	S72626
90	3	8.8	30	2	A35687
91	3	8.8	30	2	A32946
92	3	8.8	30	2	S65519
93	3	8.8	30	2	S34765
94	3	8.8	30	2	D81532
95	3	8.8	30	2	A48923
96	3	8.8	30	2	B56586
97	3 3	8.8	30	2 2	F81360
98	3	8.8	30	2	S15650 H97596
99	3	8.8 8.8	30 30	4	I52605
100 101	3	8.8	31	2	T44925
102	3	8.8	31	2	S39019
102	3	8.8	31	2	A58793
103	3	8.8	31	2	A58586
104	3	8.8	31	2	F30608
105	3	8.8	31	2	D30608
107	3	8.8	31	2	F31461
108	3	8.8	31	2	S03295
109	. 3	8.8	31	2	S03297
110	3	8.8	31	2	152232
111	3	8.8	31	2	A36162
112	3	8.8	31	2	S04980
113	3	8.8	31	2	S32610
114	3	8.8	31	2	S38881
115	3	8.8	31	2	G95018
116	3	8.8	31	2	G95022
117	3	8.8	31	2	A95085
118	3	8.8	31	2	H95093
119	3	8.8	31	2	E95151
120	3	8.8	31	2	E70202
121	3	8.8	31	2	E70223
122	3	8.8	31	2	H70225
123	3	8.8	31	2	C70240
124	3	8.8	31	2	H70252
125	3	8.8	31	2	S49191
126	3	8.8	31	2	H82353
127	3	8.8	31	2	B82151

cAMP response elem ribosomal protein spectrin beta chai profilin - rat (fr heat shock protein delta-endotoxin ribulose-bisphosph N-carbamoyl-D-amin hypothetical prote hypothetical prote hypothetical prote hypothetical prote conserved hypothet hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote small-cell-variant probable 39K inorg trypsin-like serin carcinoembryonic a 4-hydroxybutyryl-C hypothetical prote retrovirus-related storage hexamer 2 very hypothetical NADH2 dehydrogenas hypothetical prote hypothetical MLL/E hypothetical prote glucagon-like pept relaxin chain B conotoxin MrVIA -Ig kappa chain V-I Iq kappa chain V-I T-cell receptor de Ig alpha chain C r Ig alpha chain C r tau protein - huma neutrophil-activat ferritin heavy cha antiviral protein inner membrane pro hypothetical prote hypothetical prote

128	3	8.8	31	2	A05051	hypothetical prote
129	3	8.8	31	2	B23605	histone H1.3 - whe
130	3	8.8	31	2	S78738	protein YOL038c-a
131	3	8.8	31	2	A36221	cecropin P1 - pig
132	3	8.8	31	2	S27112	sarcolipin - rabbi
	3					
133		8.8	31	2	C84082	hypothetical prote
134	3	8.8	31	2	D81591	hypothetical prote
135	3	8.8	31	2	G81558	hypothetical prote
136	3	8.8	31	2	G82816	hypothetical prote
137	3	8.8	31	2	F82565	hypothetical prote
138	3	8.8	31	2	C97398	hypothetical prote
139	3	8.8	32	1	TCEE	calcitonin - Japan
140	3	8.8	32	1	TCON2	calcitonin 2 - soc
141	3	8.8	32	1	TCON2C	
						calcitonin 2 - chu
142	3	8.8	32	1	TCON2P	calcitonin 2 - pin
143	3	8.8	32	1	TCON3	calcitonin 3 - coh
144	3	8.8	32	2	S20719	alcohol dehydrogen
145	3	8.8	32	2	A61143	trypsin (EC 3.4.21
146	3	8.8	32	2	D32502	T-cell receptor de
147	3	8.8	32	2	A32502	T-cell receptor de
148	3	8.8	32	2	B40186	ubiquitin / riboso
149	. 3	8.8	32	2	S57780	histone H3 - rice
150	3	8.8	32	2		
					A02687	DNA-binding protei
151	3	8.8	32	2	S51524	anchorin CII - bov
152	3	8.8	32	2	S36809	GTP-binding regula
153	3	8.8	32	2	A29743	translation initia
154	3	8.8	32	2	A03367	lectin - Macrotylo
155	3	8.8	32	2	A44900	fimbrin, SEF 21 -
156	3	8.8	32	2	S14300	zona pellucida-bin
157	3	8.8	32	2	S03273	photosystem II oxy
158	3	8.8	32	2	S08482	regulatory protein
159	3	8.8	32	2	E87694	hypothetical prote
160	3	8.8	32	2	D70222	
161						hypothetical prote
	3	8.8	32	2	E70225	hypothetical prote
162	3	8.8	32	2	B70241	hypothetical prote
163	3	8.8	32	2	B70257	hypothetical prote
164	3	8.8	32	2	D82353	hypothetical prote
165	3	8.8	32	2	E82279	hypothetical prote
166	3	8.8	32	2	E82089	hypothetical prote
167	3	8.8	32	2	H82416	hypothetical prote
168	3	8.8	32	2	T17394	vrlN protein - Dic
169	3	8.8	32	2	S23476	hypothetical prote
170	3	8.8	32	2	S22304	
						hypothetical prote
171	3	8.8	32	2	S78323	photosystem II pro
172	3	8.8	32	2	138619	zinc finger protei
173	3	8.8	32	2	S28398	t-complex protein
174	3	8.8	32	2	T14569	hypothetical prote
175	3	8.8	32	2	H84081	hypothetical prote
176	3	8.8	32	2	F82833	hypothetical prote
177	3	8.8	32	2	JC5802	ovulation stimulat
178	3	8.8	32	2	E85588	hypothetical prote
179	3	8.8	33	2	S43312	
180	3	8.8	33	2		2',3'-cyclic-nucle
					S26859	chitinase (EC 3.2.
181	3	8.8	33	2	I52219	c-ras-Ki-2 protein
182	3	8.8	33	2	I53221	K-ras protein - hu
183	3	8.8	33	2	E32502	T-cell receptor de
184	3	8.8	33	2	A31461	T-cell receptor de

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	33 33 33 33 33 33 33 33 33 33 33 33	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B31461 S22604 A03150 C46027 PQ0150 B44906 PQ0418 S34505 G95006 C95200 F84163 H82475 S68096 E82526 G85600 H85651
201	3	8.8	33	2	AC1012
202 203	3 3	8.8 8.8	33 34	2 2	C97406 S57282
204	3	8.8	34	2	A40298
205	3	8.8	34	2	JS0426
206	3	8.8	34	2	148887
207	3	8.8	34	2	132502
208 209	3 3	8.8 8.8	34 34	2	H31461
210	3	8.8	34	2 2	A19197 D48147
211	3	8.8	34	2	A43564
212	3	8.8	34	2	H95047
213	3	8.8	34	2	D95189
214	3	8.8	34	2	C90973
215	3	8.8	34	2	F70242
216 217	3 3	8.8 8.8	34 34	2 2	B70252
218	3	8.8	34	2	F81919 F81044
219	3	8.8	34	2	F82163
220	3	8.8	34	2	E82100
221	3	8.8	34	2	B82449
222	3	8.8	34	2	S13662
223	3 3	8.8	34	2	A60110
224 225	3	8.8 8.8	34 34	2	S44828 S40662
226	3	8.8	34	2 2	F84079
227	3	8.8	34	2	H81600
228	3	8.8	34	2	H82820
229	3	8.8	34	2	C82819
230	3	8.8	34	2	C82764
231 232	3 3	8.8	34	2	B82679
232	3	8.8 8.8	34 34	2 2	G85820 S12554
234	3	8.8	35	2	JH0639
235	3	8.8	35	2	S06667
236	3	8.8	35	2	E38601
237	3	8.8	35	2	A05302
238	3	8.8	35	2	S27154
239 240	3 3	8.8	35	2	S13435
240	3	8.8 8.8	35 35	2	S18224 S18226
	,	J.0	رر	4.1	210220

T-cell receptor de ribosomal protein retinoic acid-bind neurotransmitter t dnaK-type molecula L1 protein - human matrix protein M1 hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote lactate dehydrogen hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote phospholipase A2 (dermaseptin - Sauv big gastrin - goat cryptdin-4 - mouse T-cell receptor de T-cell receptor de class II histocomp troponin I (altern neurogenic protein hypothetical prote cellulase (EC 3.2. repetitive protein F54F2.3 protein -P-cadherin - mouse hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote unknown protein en hydroxymethylgluta GTP-binding protei toxin-like protein Ig kappa chain V r hemoglobin beta ch ribosomal protein lectin III - furze filamentous hemagg opacity protein op

242 243	3 3	8.8 8.8	35 35	2	T07870 B33770
244	3	8.8	35	2	PS0439
245	3	8.8	35	2	I48925
246	3	8.8	35	2	G95014
247	3	8.8	35	2	F87622
248	3	8.8	35	2	C96619
249	3	8.8	35	2	B84674
250	3	8.8	35	2	F84395
251	3	8.8	35	2	B82012
252	3 3	8.8	35	2	H81948
253 254	3	8.8 8.8	35	2	A82151
255	3	8.8	35 35	2 2	F82051 I64003
256	3	8.8	35 35	2	F69827
257	3	8.8	35	2	C69977
258	3	8.8	35	2	A05057
259	3	8.8	35	2	S65772
260	3	8.8	35	2	G60529
261	3	8.8	35	2	S49309
262	3	8.8	35	2	C81560
263	3	8.8	35	2	B85708
264	3	8.8	36	2	H32502
265	3	8.8	36	2	C32502
266	3	8.8	36	2	S08552
267	3	8.8	36	2	S72299
268	3	8.8	36	2	I46593
269	3	8.8	36	2	B31872
270	3	8.8	36	2	S35572
271	3	8.8	36	2	B41481
272	3	8.8	36	2	A38659
273 274	3 3	8.8	36	2	E84416
275	3	8.8 8.8	36 36	2 2	S17834
276	3	8.8	36	2	E70220 F70237
277	3	8.8	36	2	E70237
278	3	8.8	36	2	F64604
279	3	8.8	36	2	G81853
280	3	8.8	36	2	S16552
281	3	8.8	36	2	G82281
282	3	8.8	36	2	A82163
283	3	8.8	36	2	C82111
284	3	8.8	36	2	A82092
285	3	8.8	36	2	B82093
286	3	8.8	36	2	A82437
287	3	8.8	36	2	A69326
288	3 3	8.8	36	2	S67795
289 290	3	8.8	36	2	T22263
291	3	8.8 8.8	36 36	2	A57443
292	3	8.8	36	2 2	D83682 F84074
293	3	8.8	36	2	A56634
294	3	8.8	36	2	S77071
295	3	8.8	36	2	AF1015
296	3	8.8	36	2	AI1841
297	3	8.8	37	1	S32792
298	3	8.8	37	1	HSWT93

major latex protei hypothetical prote potassium channel homeobox protein hypothetical prote hypothetical prote protein T30E16.7 [hypothetical prote early nodulin 40 hemocyanin M3' - c oncofetal protein hypothetical prote unknown protein en T-cell receptor de T-cell receptor de ribosomal protein ribosomal protein myosin - pig (frag retinoic acid-bind zona pellucida pro virulence-associat methanol dehydroge hypothetical prote acetyl-CoA carboxy hypothetical prote probable membrane hypothetical prote guanylate cyclase hypothetical prote hypothetical prote neuropeptide F - A probable plastoqui hypothetical prote hypothetical prote iberiotoxin - east histone H2A.3 - wh

299	3	8.8	37	1	ZJBPF4
300	3	8.8	37	2	S48656
301	3	8.8	37	2	S03570
302	3	8.8	37	2	S39367
303	3	8.8	37	2	S06217
304	3	8.8	37	2	JH0735
305	3	8.8	37	2	A30607
306	3	8.8	37	2	I48405
307	3	8.8	37	2	B32307
308	3	8.8	37	2	S78257
309	3	8.8	37	2	AH1776
310	3	8.8	37	2	AI1400
311	3	8.8	37	2	E97282
312	3	8.8	37	2	F90019
313	3	8.8	37	2	PC1121
314	3	8.8	37	2	G01887
315	3	8.8	37	2	S41509
316	3	8.8	37	2	S07517
317	3	8.8	37	2	E70241
318	3	8.8	37	2	D83199
319	3	8.8	37	2	H82304
320	3	8.8	37	2	S21132
321	3	8.8	37	2	F59103
322	3	8.8	37	2	T36662
323	3	8.8	37	2	T11815
	3				
324		8.8	37	2	A57127
325	3	8.8	37	2	C32112
326	3	8.8	37	2	G49050
327	3	8.8	37	2	
					S68261
328	3	8.8	37	2	S49982
329	3	8.8	37	2	B39030
330	3	8.8	37	2	PN0550
331	3	8.8	37	2	S70931
332	3	8.8	37	2	F81403
333	3	8.8	38	1	R5EC36
334	3	8.8	38	2	C34047
335	3	8.8	38	2	T11763
336	3	8.8	38	2	S39034
337	3	8.8	38	2	PS0129
338	3				
	_	8.8	38	2	S50764
339	3	8.8	38	2	E72247
340	3	8.8	38	2	H83113
341	3	8.8	38	2	
					AG0028
342	3	8.8	38	2	D91149
343	3	8.8	38	2	AF1008
344	3	8.8	38	2	PH1920
345					
	3	8.8	38	2	S72344
346	3	8.8	38	2	JS0456
347	3	8.8	38	2	A60216
348	3	8.8	38	2	S65416
349	3	8.8	38	2	Н91111
350	3	8.8	38	2	D90631
351	3	8.8	38	2	E72306
352	3	8.8	38	2	E81873
353	3	8.8	38	2	T14885
354	3	8.8	38	2	A82478
355	3	8.8	38	2	E82463
		5.0	50	۷	202103

gene J protein - p fusicoccin recepto trypsin (EC 3.4.21 proteinase omega transforming prote Ig heavy chain V r Ig kappa chain V-I histone H2a - mous ribosomal protein ribosomal protein ribosomal protein ribosomal protein ribosomal protein 50S ribosomal prot antifungal 25K pro MEK kinase - human probable antimutat gene 6.3 protein hypothetical prote hypothetical prote hypothetical prote photosystem II cyt hypothetical prote small hypothetical hypothetical prote diuretic hormone 1 R15 gamma peptide T-cell surface gly hypothetical prote Tcell receptor alp androgen-binding p metabotropic gluta histone-like prote hypothetical prote ribosomal protein stylar glycoprotei acetyl-CoA carboxy lipid transfer pro H-2 class I histoc ribosomal protein ribosomal protein 50S ribosomal prot 50S ribosomal prot 50S ribosomal subu 50S ribosomal chai annexin-like 40K p pilE protein - Nei gene J protein - p hyperglycemic horm pyruvate synthase hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote

356 357 358 359 360 361	3 3 3 3 3	8.8 8.8 8.8 8.8	38 38 38 38	2 2 2 2 2	A82450 G64001 D37842 B69492 S23173
362 363 364	3 3 3	8.8 8.8 8.8	38 38 38 38	2 2 2 2	S58601 T01741 B39888 B49012
365	3	8.8	38	2 2 2	A83863
366	3	8.8	38		H81603
367	3	8.8	38		H81579
368	3	8.8	38	2	E82858
369	3	8.8	38	2	S71381
370	3	8.8	38	2	G71305
371	3	8.8	38	2	B97327
372	3		38	2	H85994
373	3		38	2	T08652
374 375 376 377	3 3 3 3	8.8 8.8 8.8	38 38 39 39	2 2 1 1	T14226 AH0774 CTDFAS HWGH3Z
378	3	8.8	39	1 2 2	HWGH4G
379	3	8.8	39		B45946
380	3	8.8	39		S09645
381	3	8.8	39	2	A01458
382	3	8.8	39	2	PN0127
383	3	8.8	39	2	A61127
384 385 386	3 3	8.8 8.8 8.8	39 39 39	2 2 2	A01459 A01457 C55995
387 388 389 390	3 3 3 3	8.8 8.8 8.8	39 39 39	2 2 2 2	PH0878 S72459 PQ0011
391 392 393	3 3 - 3	8.8 8.8 8.8	39 39 39 39	2 2 2	S63482 A45793 AH2286 G64944
394	3	8.8	39	2 2 2	A85795
395	3	8.8	39		S78008
396	3	8.8	39		H95146
397	3	8.8	39	2	D70239
398	3	8.8	39	2	C70254
399	3	8.8	39	2	G81899
400 401 402 403	3 3 3 3	8.8 8.8 8.8	39 39 39	2 2	B81912 B81954 F82329
404 405 406	3 3 3	8.8 8.8 8.8	39 39 39 39	2 2 2 2	A44918 S73118 PC4294 T15158
407	3	8.8	39	2 2 2	I46466
408	3	8.8	39		B40984
409	3	8.8	39		T03365
410	3	8.8	39	2	F81587
411	3	8.8	39	2	E81540
412	3	8.8	39	2	C81745

hypothetical prote hypothetical prote hypothetical prote hypothetical prote photosystem I chai hypothetical prote hypothetical prote synapsin I - bovin orf 5' of meg1 - m hypothetical prote hypothetical prote hypothetical prote hypothetical prote lebetin 2 isoform probable ribosomal hypothetical prote 50S ribosomal subu hypothetical prote NADH2 dehydrogenas hypothetical prote corticotropin - sp exendin-3 - Mexica exendin-4 - Gila m gamma-glutamyltran hygromycin-B kinas corticotropin - fi corticotropin - se adrenocorticotropi corticotropin - os corticotropin - ra prostaglandin E2 r Ig kappa chain V r ribosomal protein tubulin beta chain tubulin beta chain actin - nematode (photosystem II pro yebJ protein - Esc hypothetical prote fucosyltransferase hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote very hypothetical hypothetical prote lactococcin G pept photosystem II pro high mobility grou hypothetical prote luteinizing hormon finger protein zfe gene e2 protein hypothetical prote hypothetical prote hypothetical prote

413	3	8.8	39	2	T12905
414	3	8.8	39	2	D85739
415	3	8.8	39	2	AD0162
416	3	8.8	39	2	AE3109
417	3	8.8	40	1	SWFGS
418	3	8.8	40	2	B61320
419	3	8.8			
	3		40	2	S52343
420		8.8	40	2	S00264
421	3	8.8	40	2	S34407
422	3	8.8	40	2	S03688
423	3	8.8	40	2	PQ0202
424	3	8.8	40	2	S50021
425	3	8.8	40	2	B60908
426	3	8.8	40	2	B41440
427	3	8.8	40	2	A19940
428	3	8.8	40	2	B59005
429	3	8.8	40	2	A59005
430	3	8.8	40	2	B31791
431	3	8.8	40	2	S07969
432	3	8.8	40	2	I50012
433	3	8.8	40	2	I50012
434	3	8.8	40	2	
435	3				S61539
	3	8.8	40	2	A60171
436		8.8	40	2	A60645
437	3	8.8	40	2	A29184
438	3	8.8	40	2	S65907
439	3	8.8	40	2	<i>\$</i> 08656
440	3	8.8	40	2	A53708
441	3	8.8	40	2	T08107
442	3	8.8	40	2	S71917
443	3	8.8	40	2	S58853
444	3	8.8	40	2	H95063
445	3	8.8	40	2	H91281
446	3	8.8	40	2	A87642
447	3	8.8	40	2	F87419
448	3	8.8	40	2	C32338
449	3	8.8	40	2	C72398
450	3	8.8	40	2	S44935
451	3	8.8	40	2	PC4218
452	3	8.8			
453			40	2	A82203
454	3 3	8.8	40	2	G82484
		8.8	40	2	A82382
455	3	8.8	40	2	I39944
456	3	8.8	40	2	F69677
457	3	8.8	40	2	I41476
458	3	8.8	40	2	S27709
459	3	8.8	40	2	T11811
460	3	8.8	40	2	T07472
461	3	8.8	40	2	T07516
462	3	8.8	40	2	T07523
463	3	8.8	40	2	T07560
464	3	8.8	40	2	T48629
465	3	8.8	40	2	S53001
466	3	8.8	40	2	T03831
467	3	8.8	40	2	S56768
468	3	8.8	40	2	T07206
469	3	8.8	40	2	H81592
		-	- •	_	

hypothetical prote hypothetical prote hypothetical prote hypothetical prote sauvagine - Sauvag plastocyanin - Aqu hypothetical prote creatine kinase (E adenylate kinase (type II site-speci endo-1,4-beta-xyla trypsin-like prote beta-lactamase (EC protein disulfideantithrombin III thymosin beta - sc thymosin beta - se sarcotoxin ID - fl T-cell receptor al MHC class I protei MHC class I protei ribosomal protein proteoglycan core tubulin beta chain vitellogenin - tur conglutin gamma protein VI - human indolepyruvate syn nonenzymatic prote hemoglobin, extrac homeotic protein u hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical 4K pr hypothetical prote hypothetical prote hypothetical 40 pr hypothetical prote hypothetical prote hypothetical prote regulatory extrace phosphatase (RapK) probable antigen 9 hypothetical prote mitotic-specific c hypothetical prote capsid protein - L hypothetical prote hypothetical prote

hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote trp operon leader leu operon leader leu operon leader gene 9 protein - s ubiquinol-cytochro cytochrome P450 HP cytochrome P450 PB cytochrome P450 te allophycocyanin al D-aspartate oxidas NADH2 dehydrogenas NADH2 dehydrogenas NADH2 dehydrogenas cytochrome-c oxida glutathione transf glutathione transf hexokinase (EC 2.7 protein kinase 4 (epidermal growth f deoxycytidine kina deoxynucleoside ki lysosomal acid lip phospholipase A2 (hypothetical prote lysozyme homolog A chymotrypsin (EC 3 24K proteinase (EC proteasome beta ch orotidine-5'-monop trpE protein - Bac deoxyribodipyrimid glutamate-tRNA lig serine proteinase trypsin inhibitor trypsin inhibitor trypsin inhibitor trypsin inhibitor 2S seed storage pr RAS protein [impor somatostatin-28 glycoprotein hormo vasoactive intesti vasoactive intesti bombyxin-IV chain intestinal trefoil alpha-neurotoxin-l long neurotoxin -Ig lambda chain V Ig light chain V r T-cell receptor al T-cell receptor al T-cell receptor be

527	2	5.9	28	2	PH0250	T-cell receptor Vb
528	2	5.9	28	2	PH0247	T-cell receptor Vb
529	2	5.9	28	2	A49829	T-cell receptor va
530	2	5.9	28	2	D49829	T-cell receptor va
531	2	5.9	28	2		T-cell receptor al
532	2	5.9	28	2		T-cell receptor be
533	2	5.9	28	2	G47719	house-dust-mite-re
534	2	5.9	28	2	E49533	T-cell receptor be
535	2	5.9	28	2	I46921	
536	2	5.9	28	2	S11618	gene Bota protein
537	2	5.9	28	2	S51060	ribosomal protein
538	2	5.9	28	2	S51067	ribosomal protein
539	2	5.9	28	2	S72460	ribosomal protein
540	2	5.9	28	2	S08569	ribosomal protein
541	2	5.9	28	2	S55442	ribosomal protein
542	. 2	5.9	28	2	A45626	beta A2 crystallin
543	2	5.9	28	2		beta 2-tubulin - n
544	2	5.9	28	2	S21231 A23691	calcium-binding pr
545	2	5.9	28			apolipoprotein C-I
546	2	5.9		2	A05296	fibrinogen alpha c
547	2		28	2	A61113	cellular retinol-b
548	2	5.9	28	2	B35577	cell adhesion rece
549	2	5.9	28	2	I48349	fibronectin - mous
550		5.9	28	2	A61233	retinol-binding pr
	2	5.9	28	2	I45911	dnaK-type molecula
551 552	2	5.9	28	2	PQ0263	dnaK-type molecula
552 553	2	5.9	28	2	A03356	omega-gliadin - ei
553 554	2	5.9	28	2	A60359	pollen allergen DG
555	2 2	5.9	28	2	PQ0691	photosystem I 5.6K
556		5.9	28	2	G32351	34K class B flagel
557	2	5.9	28	2	S47614	zinc finger protei
557 558	2	5.9	28	2	S49924	stp protein (Baker
559	2	5.9	28	2	PN0047	signal transductio
560	2	5.9	28	2	B39227	calcium channel pr
	2	5.9	28	2	A36153	major allergen Ole
561	2	5.9	28	2	B54127	dolichyl-diphospho
562	2	5.9	28	2	S56746	alpha-synuclein, N
563	2	5.9	28	2	I48178	orphan receptor -
564	2	5.9	28	2	S29135	aminopyrine N-deme
565	2	5.9	28	2	S29136	aminopyrine N-deme
566	2	5.9	28	2	PN0625	homeobox JRX prote
567	2	5.9	28	2	B56779	tetM 5'-region lea
568	2	5.9	28	2	JU0297	fruR-shl operon le
569	2	5.9	28	2	G90638	leu operon leader
570	2	5.9	28	2	C90639	fruR leader peptid
571	2	5.9	28	2	B47310	MHVS28AA - murine
572	2	5.9	28	2	E64656	hypothetical prote
573	2	5.9	28	2	B64669	hypothetical prote
574	2	5.9	28	2	S15235	hypothetical prote
575	2	5.9	28	2	C56262	uvrB 3'-region hyp
576	2	5.9	28	2	E81239	hypothetical prote
577	2	5.9	28	2	I60364	phosphorybosylpyro
578	2	5.9	28	2	B39191	hypothetical prote
579	2	5.9	28	2	T17391	hypothetical prote
580	2	5.9	28	2	A56499	brevicin-27 - Lact
581	2	5.9	28	2	A41476	probable antigen 1
582	2	5.9	28	2	S16228	aryl acylamidase -
583	2	5.9	28	2	T37143	hypothetical prote
						Tr

584 585 586 587 588 5991 5993 5995 5996 6001 6002 6003 6004 6005 6007 6008 6009 6101 6112 6123 6134 6145 6156 6176 6189 6190 6190 6190 6190 6190 6190 6190 619	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99999999999999999999999999999999999999	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	222222222222222222222222222222222222222	G69384 A69259 T06925 S38524 S21742 PQ0800
--	---	--	---	---	--

2-phosphinomethylm conserved hypothet hypothetical prote hypothetical prote rRNA N-glycosidase 3-oxoacyl-[acyl-ca calmodulin antagon ribosomal protein hypothetical prote peroxidase (EC 1.1 hypothetical 3K pr fatty-acid-binding carboxypeptidase 3 hypothetical prote similarity to yeas trichocyst protein proteinase inhibit bdellin B-3 - medi venom protein - Am omega-agatoxin IIA cell surface prote mast cell degranul interleukin-1 - st nicotinic acetylch angiotensin II rec cell adhesion regu cytochrome P450 CY erythrocyte chemok hypothetical 3.2K Ig heavy chain DJ Ig heavy chain DJ protein IEF SSP 91 protein IEF SSP 92 T-cell receptor al ZF3 domain - human pepsin A (EC 3.4.2 proline-rich prote heat shock protein T-cell receptor be cystic fibrosis tr sialic acid-specif hypothetical prote hypothetical prote myrB protein - Mic fruR leader peptid hypothetical prote hypothetical prote leu operon leader hypothetical prote probable ribuloseleu operon leader frame shifted FMR1 GABA(A) receptor a trypsin inhibitor trypsin inhibitor trypsin inhibitor glucagon - North A

641	2	5.9	29	1 CODY	
642	2	5.9	29	1 GCDK 1 A61583	glucagon - duck
643	2	5.9	29	1 A61583 1 GCFLE	glucagon - ostrich
644	2	5.9	29	1 GCDF	glucagon - Europea
645	2	5.9	29	1 GCEN	glucagon - smaller
646	2	5.9	29	1 GCTTS	glucagon - elephan
647	2	5.9	29	1 TNLJBR	glucagon - slider
648	2	5.9	29	1 Q1BP57	trans-activating t
649	2	5.9	29	2 A60558	gene 1.5 protein -
650	2	5.9	29	2 T17079	cytochrome P450 HL
651	2	5.9	29	2 A48427	NADH2 dehydrogenas
652	2	5.9	29	2 A54234	flavohemoglobin hm
653	2	5.9	29	2 S08201	cytochrome-c oxida
654	2	5.9	29	2 A26208	peroxidase (EC 1.1
655	2	5.9		2 A22018	acetyl-CoA C-acety
656	2	5.9		2 S46211	phosphotransferase
657	2	5.9		2 S28174	kallikrein rK8 (pK
658	2	5.9		2 A32414	heat-shock protein
659	2	5.9		2 S17432	bothrolysin (EC 3.
660	2	5.9		2 S02578	H+-transporting tw
661	2	5.9		2 S23122	H+-transporting tw
662	2	5.9		2 JU0211	peptidylprolyl iso
663	2	5.9		2 T03653	squash-type trypsi
664	2	5.9		2 C24536	phospholipid trans
665	2	5.9		2 C25310	alpha-amylase/tryp
666	2	5.9		2 D55998	alpha-amylase/tryp
667	2	5.9		2 D53578	brevinin-2Ed - edi
668	2	5.9		2 A61509	brevinin-2Ee - edi
669	2	5.9		2 A91740	islet amyloid poly
670	2	5.9		A91741	glucagon - turkey
671	2	5.9	29		glucagon - rabbit
672	2	5.9	29		glucagon - Arabian
673	2	5.9	29 2		glucagon - marbled
674	2	5.9	29 2		glucagon - bigeye
675	2	5.9	29 2		glucagon - common
676	2	5.9	29 2		glucagon I - Europ
677	2	5.9	29 2		glucagon - bowfin
678	2	5.9	29 2		cholestokinin - do
679	2	5.9	29 2		toxin II.9 - scorp
680	2	5.9		B43620	omega-conotoxin GV
681	2	5.9	29 2		omega-conotoxin GV
682	2	5.9	29 2		omega-conotoxin MV
683	2	5.9	29 2		low affinity nerve
684	2	5.9	29 2		conceptus protein
685	2	5.9	29 2		Ig heavy chain (cl
686	2	5.9	29 2		Ig heavy chain DJ
687	2	5.9	29 2	PH0251	T-cell receptor Vb
688	2	5.9	29 2	PH0254	T-cell receptor Vb T-cell receptor Vb
689	2	5.9	29 2	PH0233	T-cell receptor VD
690	2	5.9	29 2	E31485	T-cell receptor Vb Ig heavy chain V r
691	2	5.9	29 2	H31485	Ig kappa chain V r
692	2	5.9	29 2	G31461	Ig kappa chain V r T-cell receptor de
693	2	5.9	29 2	C47719	T-cell receptor de T-cell receptor al
694	2	5.9	29 2	E47719	house-dust-mite-re
695	2	5.9	29 2	PS0134	H-2 class I histoc
696	2	5.9	29 2	PS0132	H-2 class I histoc
697	2	5.9	29 2	D32533	class II histocomp
					deann ii iitacocomb

29 2 S51070 29 2 S08555 29 2 PC4231

gene HLA-DRB prote gene HLA-DRB prote MHC class II histo MHC class II histo HLA-DR beta - huma HLA-DR beta - huma protein-tyrosine-p histone H2B.2, spe histone H3 - barle ribosomal protein ribosomal protein ribosomal protein ribosomal protein ribosomal protein ribosomal protein Meth A tumor-speci calmodulin-binding calreticulin, uter calreticulin, slow calreticulin, brai thrombospondin 2 neural cell adhesi endometrial proges alpha-fetoprotein enamel protein - r homeotic protein s auxin-binding prot proline-rich prote gamma35 secalin avenin gamma-3 - o photosystem I prot photosystem II pro gene VII protein finger protein (cl probable precorrin high conductance c hypothetical prote photosystem II 5K glycine reductase delta-conotoxin Gm homeotic protein labial protein (cl homeotic protein homeotic protein homeotic protein gene 5.1 protein hypothetical prote hypothetical prote hypothetical prote KdpF protein PA163 alcohol dehydrogen hypothetical prote hypothetical prote hypothetical prote repY protein - Esc aadB protein - Kle S-layer protein va

755 756 757 758 759 761 762 763 764 765 767 773 774 775 777 778 780 781 782 783 784 785 787 789 791 792 793 801 802 803 804 805 807 809 811	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99999999999999999999999999999999999999	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99 29 29 29 29 29 29 29 29 29 29 29 29 2	2 B48363 C40638 S05224 B56817 S74572 C60743 S67989 S14099 S77569 S21222 S03947 T34643
---	---	--	---------------------------------------	--	--

hypothetical prote 2-hydroxyglutarylorf 3' of cycl - R photosystem I 4.8K photosystem I chai hypothetical prote putrescine carbamo HA-19/HA-52 protei 12-alpha-hydroxyst plantaricin SA6 -48K protein - Euba hydrogen dehydroge hypothetical prote hypothetical prote probable small mem endo-1,4-beta-xyla hypothetical prote hypothetical prote hypothetical prote conserved hypothet hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote rRNA N-glycosidase translation elonga allantoinase (EC 3 globulin 2a - taro prolamin alpha-1 malate dehydrogena hypothetical 3K pr hypothetical prote alanine transamina protein YDR524w-a 2,3-dihydroxybenzo variant surface ql repetitive protein cuticle protein 36 E75 steroid recept ceratotoxin A - Me ceratotoxin B - Me lectin - namazu (f biotin-binding pro c-mil protein - ch non-collagenous al 70k thyroid autoan carcinoembryonic a CD44SP - human diazepam binding i hyaluronate recept splicing regulator T-cell receptor ga glutathione peroxi mammary-derived gr oviduct-specific s antigen WC1 [impor

812 813 814 815 816 817 818 820 821 822 823 824 825 827 828 829 831 832 833 834 835 837 838 839 841 842 843 844 845 851 852 853 854 855 856 857 858 858 857 858 858 857 858 858 858	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99999999999999999999999999999999999999	30 30 30 30 30 30 30 30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A49410 PS0125 S46929 S38749 S42764 A49708 H83777 C83833 F83870 B84144 PC4421 B85840 C85840 G86058 E89904 H89949 S17496 PQ0782 S34762 AB0717 AH2338 I58970 AIBSAF TIPU1W OEON2K IRTRC2 IRTRC3 IRTRC2 IRTR78 IRTR4 CLHRY2 CLHR2A SNUMP I57689 I52254 B56859 A27375 S11131 S14214 PQ0723 S08204 S08203 A39089 I38066 I39799 A18780 S03283 A2955 S68640 S155427 A49955 S68640 S15678 A05004
---	---	--	--	---	--

t-complex polypept H-2 class I histoc teg169 protein - m vimentin homolog -Ca2+/calmodulin-de synaptosomal-assoc hypothetical prote hypothetical prote hypothetical prote hypothetical prote multactivase (EC 3 hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote inorganic diphosph NADH2 dehydrogenas L-serine ammonia-l hypothetical prote hypothetical prote PetN protein [impo hypothetical prote thermophilic amino trypsin inhibitor beta-endorphin II protamine CIII, ma protamine la - rai protamine CIII, mi protamine pTP4 - r protamine YII - Pa protamine YII - At sillucin - Rhizomu ubiquinol-cytochro gene CYP11B2 prote fatty acid omega-h photosystem I iron NADH2 dehydrogenas NADH2 dehydrogenas parvalbumin [impor peroxidase (EC 1.1 peroxidase (EC 1.1 peroxidase (EC 1.1 hydrogenase (EC 1. nitric-oxide synth CAT-66 - Bacillus dimethylallyltrans methionine adenosy glutathione transf aspartate transami aspartate transami aspartate transami protein-tyrosine k nigroxin A - black nigroxin B - black acetylcholinestera pancreatic ribonuc

869	2	5.9	30	2	A44598	
870	2	5.9	30	2	PC2361	
871	2	5.9	30	2	PX0073	
872	2	5.9	30	2	B60291	
873	2	5.9	30	2	A27634	
874	2	5.9	30	2	B27634	
875	2	5.9				
876			30	2	I77411	
	2	5.9	30	2	PC2328	
877	2	5.9	30	2	A34486	
878	2	5.9	30	2	S21816	
879	2	5.9	30	2	S21814	
880	2	5.9	30	2	S74121	
881	2	5.9	30	2	S25666	
882	2	5.9	30	2	S69600	
883	2	5.9	30	2	A60517	
884	2	5.9	30	2	S24979	
885	2	5.9	30	2	JX0057	
886	2	5.9	30	2	JS0579	
887	2	5.9	30	2	JQ1958	
888	2	5.9	30	2	PC1113	
889	2	5.9	30	2	C42842	
890	2	5.9	30	2	S70341	
891	2	5.9				
892	2		30	2	S70343	
		5.9	30	2	A33308	
893	2	5.9	30	2	S01657	
894	2	5.9	30	2	A61130	
895	2	5.9	30	2	S44473	
896	2	5.9	30	2	A59076	
897	2	5.9	30	2	B59076	
898	2	5.9	30	2	C59076	
899	2	5.9	30	2	B60791	
900	2	5.9	30	2	A31187	
901	2	5.9	30	2	168109	
902	2	5.9	30	2	C49533	
903	2	5.9	30	2	S20778	
904	2	5.9	30	2	PL0092	
905	2	5.9	30	2	PH0245	
906	2	5.9	30	2	PH0228	
907	2	5.9	30	2	PH0252	
908	2	5.9	30	2	PH0882	
909	2	5.9	30			
910	2	5.9		2	E31461	
911	2		30	2	PH0235	
		5.9	30	2	A49533	
912	2	5.9	30	2	C27579	
913	2	5.9	30	2	I37626	
914	2	5.9	30	2	PS0121	
915	2	5.9	30	2	S74192	
916	2	5.9	30	2	A05253	
917	2	5.9	30	2	A21680	
918	2	5.9	30	2	A05254	
919	2	5.9	30	2	S68618	
920	2	5.9	30	2	PD0014	
921	2	5.9	30	2	PN0651	
922	2	5.9	30	2	S11613	
923	2	5.9	30	2	B29164	
924	2	5.9	30	2	A60511	
925	2	5.9	30	2	I49412	
	-	3.7	50	4	177412	

endo-1,4-beta-xyla alpha-glucosidase epoxide hydrolase 30K serine protein major fecal allerg major fecal allerg renin-2 - mouse (f proteasome endopep inorganic diphosph H+-exporting ATPas H+-exporting ATPas fructose-bisphosph phosphopyruvate hy peptidylprolyl iso alpha-1-antitrypsi proteinase inhibit trypsin inhibitor squash-type trypsi trypsin inhibitor proteinase inhibit antifungal 2S stor napin large chain napin large chain thrombomodulin - r atrial natriuretic somatotropin - Ame glucagon-like pept defensin alpha-1 defensin alpha-2 defensin alpha-3 toxin II.6 - scorp neurotoxin II.22.5 interferon alpha-W T-cell receptor al Ig heavy chain V r Ig heavy chain V r T-cell receptor Vb T-cell receptor Vb T-cell receptor Vb Ig kappa chain V r T-cell receptor de T-cell receptor Vb T-cell receptor al T-cell receptor be Fc gamma (IgG) rec H-2 class I histoc crotoxin inhibitor hemoglobin epsilon hemoglobin epsilon hemoglobin epsilon histone H2B - sea cAMP response elem restriction endonu ribosomal protein cartilage proteogl gamma-crystallin gamma-crystallin-3

926	2	5.9	30	2	S12965
	2		30	2 .	S69269
927		5.9			
928	2	5.9	30	2	A61189
929	2	5.9	30	2	I52806
930	2	5.9	30	2	S21153
931	2	5.9	30	2	A26188
	2	5.9	30	2	A56790
932					
933	2	5.9	30	2	A34622
934	2	5.9	30	2	A03148
935	2	5.9	30	2	A48299
936	2	5.9	30	2	B61511
937	2	5.9	30	2	B39819
938	- 2	5.9	30	2	A38933
939	2	5.9	30	2	S57234
940	2	5.9	30	2	S69124
941	2	5.9	30	2	S69125
942	2	5.9	30	2	S07065
943	2	5.9	30	2	A31836
944	2	5.9	30	2	PQ0669
945	2	5.9	30	2	E45095
946	2	5.9	30	2	B45095
947	2	5.9	30	2	A44913
	2				
948		5.9	30	2	B24987
949	2	5.9	30	2	S30757
950	2	5.9	30	2	S30760
951	2	5.9	30	2	S30759
952	2	5.9	30	2	B44314
953	2	5.9	30	2	S13753
	2				
954		5.9	30	2	S26175
955	2	5.9	30	2	S69352
956	2	5.9	30	2	S68312
957	2	5.9	30	2	PH1228
	2				
958	2	5.9	30	2	S42364
959	2	5.9	30	2	S05223
960	2	5.9	30	2	S28991
961	2	5.9	30	2	PC2307
962	2	5.9	30	2	PQ0484
963	2	5.9	30	2	C43591
964	2	5.9	30	2	B43591
965	2	5.9	30	-2	S06411
966	2	5.9	30	2	B49292
967	2	5.9	30	2	A60914
968	2	5.9	30	2	PS0437
969	2	5.9	30	2	PS0438
970	2	5.9	30	2	A47607
971	2	5.9	30	2	S02088
972	2	5.9	30	2	S29138
973	2	5.9	30	2	S57227
974	2	5.9	30	2	H95008
975	2	5.9	30	2	C95030
976	2	5.9	30	2	G95031
977	2	5.9	30	2	E95079
978	2	5.9	30	2	F95118
979	2	5.9	30	2	E95145
980	2	5.9	30	2	F89406
981	2	5.9	30	2	F87254
982	2	5.9	30	2	E84786
704	4	٥.۶	3 U	4	004/00

gamma-crystallin ezrin homolog - bo tubulin beta chain Duchenne muscular calcium-binding pr lipocortin I - pig annexin, isoform P fibrinogen beta ch retinol-binding pr taurine transporte serum albumin, mil neutrophil chemota vitronectin - bovi fushi tarazu segme rRNA N-glycosidase rRNA N-glycosidase rRNA N-glycosidase 17K antigen - Rick photosystem I 17.5 photosystem I ligh photosystem I ligh 34K core flagella regulatory protein genome polyprotein genome polyprotein genome polyprotein intracisternal A p replication initia tail tubular prote N-methylhydantoin glucuronosyltransf D-aminoacylase (EC aromatic-amino-aci photosystem I 6.5K antifungal protein X-Pro aminopeptida globulin 1b - taro 51K outer membrane 45K outer membrane killer plasmid 28K GDP dissociation i pheromone-binding potassium channel potassium channel immunogenic protei blood group Rh-rel aniline monooxygen proboscipedia prot hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote protein R10E8.7 [i hypothetical prote hypothetical prote

983 984 985	2 2 2	5.9 5.9 5.9	30 30 30	2 2 2	C84481 B47483 S15141	hypothetical prote cysteine-rich para hypothetical prote
986	2	5.9	30	2	S13985	hypothetical prote
987	2	5.9	30	2	S14038	hypothetical prote
988	2	5.9	30	2	S13994	hypothetical prote
989	2	5.9	30	2	A72205	hypothetical prote
990	2	5.9	30	2	E72356	hypothetical prote
991	2	5.9	30	2	H72312	hypothetical prote
992	2	5.9	30	2	S66448	trimethylamine deh
993	2	5.9	30	2	A70105	conserved hypothet
994	2	5.9	30	2	F70118	hypothetical prote
995	2	5.9	30	2	D70144	hypothetical prote
996	2	5.9	30	2	H70152	hypothetical prote
997	2	5.9	30	2	A70209	hypothetical prote
998	2	5.9	30	2	E70246	hypothetical prote
999	2	5.9	30	2	F70253	hypothetical prote
1000	2	5.9	30	2	F70254	hypothetical prote

ALIGNMENTS

```
RESULT 1
A84241
hypothetical protein Vng0840h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C;Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
C; Accession: A84241
R; Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: A84241
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 <STO>
A; Cross-references: GB: AE004437; NID: g10580410; PIDN: AAG19293.1; GSPDB: GN00138
C; Genetics:
A; Gene: VNG0840H
  Query Match
                          14.7%; Score 5; DB 2; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 97;
 Matches
             5; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
Qу
           24 LRKKL 28
```

1111

26 LRKKL 30

Db

```
RESULT 2
B97032
transcription regulator, AcrR family [imported] - Clostridium acetobutylicum
C; Species: Clostridium acetobutylicum
C;Date: 14-Sep-2001 #sequence_revision 14-Sep-2001 #text change 14-Sep-2001
C; Accession: B97032
R; Nolling, J.; Breton, G.; Omelchenko, M.V.; Markarova, K.S.; Zeng, Q.; Gibson,
R.; Lee, H.M.; Dubois, J.; Qiu, D.; Hitti, J.; Wolf, Y.I.; Tatusov, R.L.;
Sabathe, F.; Doucette-Stamm, L.; Soucaille, P.; Daly, M.J.; Bennett, G.N.;
Koonin, E.V.; Smith, D.R.
J. Bacteriol. 183, 4823-4838, 2001
A; Title: Genome Sequence and Comparative Analysis of the Solvent-Producing
Bacterium Clostridium acetobutylicum.
A; Reference number: A96900; MUID:21359325; PMID:21359325
A; Accession: B97032
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 < KUR>
A; Cross-references: GB: AE001437; PIDN: AAK79045.1; PID: g15023984; GSPDB: GN00168
A; Experimental source: Clostridium acetobutylicum ATCC824
C; Genetics:
A;Gene: CAC1071
  Query Match
                          14.7%; Score 5; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 97;
                                                    0; Indels
            5; Conservative 0; Mismatches
                                                                  0; Gaps
  Matches
            1 SVSEI 5
QУ
              30 SVSEI 34
Db
RESULT 3
hypothetical protein SP0853 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence revision 03-Aug-2001 #text_change 03-Aug-2001
C; Accession: E95098
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A: Accession: E95098
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 < KUR>
A; Cross-references: GB: AE005672; PIDN: AAK74982.1; PID: g14972326; GSPDB: GN00164;
TIGR:SP4SP0853
A; Experimental source: strain TIGR4
```

```
C; Genetics:
A;Gene: SP0853
  Query Match
                          14.7%; Score 5; DB 2; Length 35;
  Best Local Similarity 100.0%; Pred. No. 1e+02;
  Matches
             5; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                              0;
           26 KKLQD 30
Qу
              11111
Db
           30 KKLQD 34
RESULT 4
T09594
gene LFY protein - Monterey pine (fragment)
C; Species: Pinus radiata (Monterey pine)
C;Date: 16-Jul-1999 #sequence revision 16-Jul-1999 #text change 16-Jul-1999
C:Accession: T09594
R; Izquierdo, L.Y.; Vergara, R.F.; Alvarez-Buylla, E.R.
submitted to the EMBL Data Library, August 1996
A; Description: Partial characterization of Pinus radiata meristem identity
homolog gene (LFY).
A; Reference number: Z16756
A; Accession: T09594
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 < IZQ>
A; Cross-references: EMBL: U66725; NID: g1513305; PID: g1513306
C; Genetics:
A; Gene: LFY
C; Function:
A; Description: controls meristem identity
  Query Match
                          11.8%; Score 4; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+02;
  Matches
             4; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                              0;
           24 LRKK 27
Qу
              Db
           15 LRKK 18
RESULT 5
A55527
pyrroloquinoline quinone precursor pqqD - Methylobacterium extorquens
C; Species: Methylobacterium extorquens
C;Date: 18-Feb-2000 #sequence revision 18-Feb-2000 #text change 18-Feb-2000
C; Accession: A55527
R; Morris, C.J.; Biville, F.; Turlin, E.; Lee, E.; Ellermann, K.; Fan, W.H.;
Ramamoorthi, R.; Springer, A.L.; Lidstrom, M.E.
J. Bacteriol. 176, 1746-1755, 1994
A; Title: Isolation, phenotypic characterization, and complementation analysis of
mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline
quinone and sequences of pqqD, pqqG, and pqqC.
A; Reference number: A55527; MUID: 94179111; PMID: 8132470
A; Accession: A55527
```

A; Status: preliminary

```
A; Molecule type: DNA
 A; Residues: 1-29 < MOR>
 A;Cross-references: GB:L25889; NID:g414589; PIDN:AAA17878.1; PID:g414590
 C; Genetics:
A; Gene: pqqD
 C; Superfamily: pyrroloquinoline quinone precursor pqqA
 C; Keywords: quinoprotein
 F;16,20/Product: pyrroloquinoline quinone #status predicted <MAT>
 F;16-20/Cross-link: pyrroloquinoline quinone (Glu, Tyr) #status predicted
  Query Match
                           11.8%; Score 4; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
  Matches
            4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
Qу
            2 VSEI 5
              Db
            8 VSEI 11
RESULT 6
S01614
dystrophin - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 07-Sep-1990 #sequence revision 07-Sep-1990 #text change 20-Jun-2000
C; Accession: S01614
R; Nudel, U.; Robzyk, K.; Yaffe, D.
Nature 331, 635-638, 1988
A; Title: Expression of the putative Duchenne muscular dystrophy gene in
differentiated myogenic cell cultures and in the brain.
A; Reference number: S01614; MUID: 88122671; PMID: 3340214
A; Accession: S01614
A; Status: translation not shown
A; Molecule type: DNA
A; Residues: 1-29 < NUD>
A; Cross-references: EMBL:X07000; NID:g56137; PIDN:CAA30057.1; PID:g1334214
C; Genetics:
A; Map position: X
C; Superfamily: dystrophin; alpha-actinin actin-binding domain homology;
spectrin/dystrophin repeat homology; WW repeat homology
C; Keywords: actin binding; cytoskeleton
  Query Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
  Matches
           4; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                              0;
           27 KLOD 30
Qу
              1111
Dh
           12 KLQD 15
RESULT 7
I78537
copper transporting P-type ATPase - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 29-May-1998 #sequence_revision 29-May-1998 #text_change 21-Jul-2000
C; Accession: 178537
R; Thomas, G.R.; Forbes, J.R.; Roberts, E.A.; Walshe, J.M.; Cox, D.W.
```

```
Nature Genet. 9, 210-217, 1995
A; Title: The Wilson disease gene: spectrum of mutations and their consequences.
A; Reference number: I58128; MUID: 95235569; PMID: 7626145
A; Accession: I78537
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-29 < RES>
A; Cross-references: GB:S77450; NID:g957354; PIDN:AAB34087.1; PID:g957355
C; Genetics:
A; Gene: GDB: ATP7B
A; Cross-references: GDB:120494; OMIM:277900
A; Map position: 13q14.3-13q21.1
                          11.8%; Score 4; DB 2; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1e+03;
             4; Conservative
                                0; Mismatches
                                                       Indels
                                                                  0; Gaps
                                                   0;
                                                                              0;
            3 SEIQ 6
Qу
              Db
           14 SEIQ 17
RESULT 8
S78412
ribosomal protein RL22/RL24, mitochondrial [validated] - rat (tentative
sequence) (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 25-Feb-1998 #sequence revision 13-Mar-1998 #text change 21-Jul-2000
C; Accession: S78412; S78413
R; Goldschmidt-Reisin, S.; Graack, H.R.
submitted to the Protein Sequence Database, February 1998
A; Reference number: S78411
A; Accession: S78412
A; Molecule type: protein
A; Residues: 1-29 <GOL>
A; Note: the protein is designated as mitochondrial ribosomal protein L22
A; Accession: S78413
A; Molecule type: protein
A; Residues: 1-10, 'XXP', 14-15, 'X', 17-24 <GO2>
A; Note: the protein is designated as mitochondrial ribosomal protein L24
C; Keywords: mitochondrion; protein biosynthesis; ribosome
  Query Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
  Matches
             4; Conservative
                                0; Mismatches 0; Indels
Qу
           24 LRKK 27
              4 LRKK 7
Db
RESULT 9
S63531
hypothetical protein 1 - Sulfolobus solfataricus (fragment)
C; Species: Sulfolobus solfataricus
C;Date: 28-Oct-1996 #sequence revision 13-Mar-1997 #text change 17-Mar-1999
C; Accession: S63531
```

```
R; Jones, C.E.; Fleming, T.M.; Cowan, D.A.; Littlechild, J.A.; Piper, P.W.
Eur. J. Biochem. 233, 800-808, 1995
A; Title: The phosphoglycerate kinase and glyceraldehyde-3-phosphate
dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus
overlap by 8-bp: isolation, sequencing of the genes and expression in
Escherichia coli.
A; Reference number: S63528; MUID: 96085144; PMID: 8521845
A; Accession: S63531
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-30 < JON>
A; Cross-references: EMBL: X80178
  Query Match
                          11.8%; Score 4; DB 2; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
           4; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
           23 WLRK 26
Qy
              1111
Db
           11 WLRK 14
RESULT 10
S44471
glucagon G1 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C;Date: 18-Sep-1997 #sequence revision 18-Sep-1997 #text change 07-May-1999
C; Accession: S44471
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44471
A; Molecule type: protein
A; Residues: 1-31 < NGU>
A; Experimental source: pancreas
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F;1-31/Product: glucagon G1 #status predicted <MAT>
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
             4; Conservative
                               0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
           21 VEWL 24
Qу
           23 VEWL 26
Db
RESULT 11
S44472
glucagon G2 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C;Date: 19-Mar-1997 #sequence_revision 12-Dec-1997 #text_change 07-May-1999
C; Accession: S44472
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
```

```
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44472
A; Molecule type: protein
A; Residues: 1-31 < NGU>
A; Note: the sequence from Fig. 3 is inconsistent with that from Fig. 5 in having
29-Glu
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F;1-31/Product: glucagon G2 #status predicted <GCN>
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
             4; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           21 VEWL 24
Qу
              1111
Db
           23 VEWL 26
RESULT 12
D70236
hypothetical protein BBH11 - Lyme disease spirochete plasmid H/lp28-3
C; Species: Borrelia burgdorferi (Lyme disease spirochete)
C;Date: 13-Feb-1998 #sequence revision 13-Feb-1998 #text change 08-Oct-1999
C; Accession: D70236
R; Fraser, C.M.; Casjens, S.; Huang, W.M.; Sutton, G.G.; Clayton, R.; Lathigra,
R.; White, O.; Ketchum, K.A.; Dodson, R.; Hickey, E.K.; Gwinn, M.; Dougherty,
B.; Tomb, J.F.; Fleischmann, R.D.; Richardson, D.; Peterson, J.; Kerlavage,
A.R.; Quackenbush, J.; Salzberg, S.; Hanson, M.; Vugt, R.V.; Palmer, N.; Adams,
M.D.; Gocayne, J.; Weidman, J.; Utterback, T.; Watthey, L.; McDonald, L.;
Artiach, P.; Bowman, C.; Garland, S.; Fujii, C.; Cotton, M.D.; Horst, K.;
Roberts, K.; Hatch, B.
Nature 390, 580-586, 1997
A; Authors: Smith, H.O.; Venter, J.C.
A; Title: Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.
A; Reference number: A70100; MUID: 98065943; PMID: 9403685
A; Accession: D70236
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-31 < KLE>
A; Cross-references: GB: AE000784; NID: q2690041; PIDN: AAC66002.1; PID: q2690058;
TIGR:BBH11
A; Experimental source: strain B31
C; Genetics:
A; Genome: plasmid
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
  Matches
             4; Conservative 0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKLQ 29
              Db
           26 KKLQ 29
```

```
RESULT 13
F23454
ovalbumin phosphoserine peptide - fulvous whistling-duck (fragments)
C; Species: Dendrocygna bicolor (fulvous whistling-duck)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C; Accession: F23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: F23454
A; Molecule type: protein
A; Residues: 1-32 < HEN>
C; Superfamily: antithrombin III
  Ouery Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
           4; Conservative
                                0; Mismatches 0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
            1 SVSE 4
Qу
              1111
           26 SVSE 29
Db
RESULT 14
D31461
T-cell receptor delta chain BDN7, thymus - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 30-May-1997
C; Accession: D31461
R; Lacy, M.J.; McNeil, L.K.; Roth, M.E.; Kranz, D.M.
Proc. Natl. Acad. Sci. U.S.A. 86, 1023-1026, 1989
A; Title: T-cell receptor delta-chain diversity in peripheral lymphocytes.
A; Reference number: A31461; MUID: 89128840; PMID: 2783779
A; Accession: D31461
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 1-32 < LAC>
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
  Query Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
             4; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0;
           18 MERV 21
QУ
              | | | | |
Db
            8 MERV 11
RESULT 15
G84161
hypothetical protein Vng0019h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C;Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
```

```
C; Accession: G84161
R;Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: G84161
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-32 <STO>
A; Cross-references: GB: AE004437; NID: g10579667; PIDN: AAG18659.1; GSPDB: GN00138
C; Genetics:
A; Gene: VNG0019H
  Query Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0;
           27 KLQD 30
Qу
              1111
Db
           13 KLQD 16
RESULT 16
E81714
hypothetical protein TC0337 [imported] - Chlamydia muridarum (strain Nigg)
C; Species: Chlamydia muridarum, Chlamydia trachomatis MoPn
C;Date: 31-Mar-2000 #sequence revision 31-Mar-2000 #text change 11-May-2000
C; Accession: E81714
R; Read, T.D.; Brunham, R.C.; Shen, C.; Gill, S.R.; Heidelberg, J.F.; White, O.;
Hickey, E.K.; Peterson, J.; Utterback, T.; Berry, K.; Bass, S.; Linher, K.;
Weidman, J.; Khouri, H.; Craven, B.; Bowman, C.; Dodson, R.; Gwinn, M.; Nelson,
W.; DeBoy, R.; Kolonay, J.; McClarty, G.; Salzberg, S.L.; Eisen, J.; Fraser,
C.M.
Nucleic Acids Res. 28, 1397-1406, 2000
A; Title: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae
A; Reference number: A81500; MUID: 20150255; PMID: 10684935
A; Accession: E81714
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-33 <TET>
A; Cross-references: GB: AE002301; GB: AE002160; NID: g7190372; PIDN: AAF39200.1;
PID:g7190379; GSPDB:GN00121; TIGR:TC0337
A; Experimental source: strain Nigg (MoPn)
C; Genetics:
A;Gene: TC0337
                          11.8%; Score 4; DB 2; Length 33;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
                                                                              0;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
```

```
24 LRKK 27
Qу
              26 LRKK 29
Db
RESULT 17
D23454
ovalbumin phosphoserine peptide - golden pheasant (fragments)
C; Species: Chrysolophus pictus (golden pheasant)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C; Accession: D23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: D23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
                          11.8%; Score 4; DB 2; Length 35;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
           4; Conservative
  Matches
                              0; Mismatches 0; Indels
                                                                 0;
                                                                     Gaps
            1 SVSE 4
QУ
              1111
           29 SVSE 32
Dh
RESULT 18
G23454
ovalbumin phosphoserine peptide - magpie goose (fragments)
C; Species: Anseranas semipalmata (magpie goose)
C;Date: 05-Jun-1987 #sequence_revision 05-Jun-1987 #text_change 13-Mar-1998
C; Accession: G23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: G23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
  Query Match
                          11.8%; Score 4; DB 2; Length 35;
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
           4; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSE 4
QУ
              29 SVSE 32
```

```
D82125
hypothetical protein VC2034 [imported] - Vibrio cholerae (strain N16961
serogroup 01)
C; Species: Vibrio cholerae
C;Date: 18-Aug-2000 #sequence_revision 20-Aug-2000 #text change 02-Feb-2001
C; Accession: D82125
R; Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.;
Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L.A.; Gill,
S.R.; Nelson, K.E.; Read, T.D.; Tettelin, H.; Richardson, D.; Ermolaeva, M.D.;
Vamathevan, J.; Bass, S.; Qin, H.; Dragoi, I.; Sellers, P.; McDonald, L.;
Utterback, T.; Fleishmann, R.D.; Nierman, W.C.; White, O.; Salzberg, S.L.;
Smith, H.O.; Colwell, R.R.; Mekalanos, J.J.; Venter, J.C.; Fraser, C.M.
Nature 406, 477-483, 2000
A; Title: DNA Sequence of both chromosomes of the cholera pathogen Vibrio
cholerae.
A; Reference number: A82035; MUID: 20406833; PMID: 10952301
A; Accession: D82125
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 <HEI>
A; Cross-references: GB: AE004278; GB: AE003852; NID: g9656579; PIDN: AAF95182.1;
GSPDB:GN00126; TIGR:VC2034
A; Experimental source: serogroup O1; strain N16961; biotype El Tor
C; Genetics:
A; Gene: VC2034
A; Map position: 1
                          11.8%; Score 4; DB 2; Length 35;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
           4; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
  Matches
           26 KKLQ 29
Qу
              24 KKLQ 27
Db
RESULT 20
S70806
hypothetical protein 5 - Vibrio cholerae (fragment)
N; Alternate names: flagellar protein flaA homolog
C; Species: Vibrio cholerae
C;Date: 12-Feb-1998 #sequence revision 20-Feb-1998 #text change 26-Aug-1999
C; Accession: S70806
R; Camilli, A.; Mekalanos, J.J.
Mol. Microbiol. 18, 671-683, 1995
A; Title: Use of recombinase gene fusions to identify Vibrio cholerae genes
induced during infection.
A; Reference number: S70798; MUID: 96414469; PMID: 8817490
A; Accession: S70806
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: DNA
A; Residues: 1-36 < CAM>
A;Cross-references: EMBL:U25820; NID:g1165195; PIDN:AAC43560.1; PID:g1165196
C; Superfamily: flagellin
  Query Match
                          11.8%; Score 4; DB 2; Length 36;
```

Best Local Similarity 100.0%; Pred. No. 1.2e+03;

```
Matches
             4; Conservative
                                                                  0; Gaps
                                 0; Mismatches
                                                   0; Indels
                                                                              0;
           17 SMER 20
Qу
              Db
           14 SMER 17
RESULT 21
F95057
hypothetical protein SP0497 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence revision 03-Aug-2001 #text change 03-Aug-2001
C; Accession: F95057
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: F95057
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-36 < KUR>
A; Cross-references: GB: AE005672; PIDN: AAK74655.1; PID: q14971969; GSPDB: GN00164;
TIGR:SP4SP0497
A; Experimental source: strain TIGR4
C; Genetics:
A;Gene: SP0497
                          11.8%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
                                0; Mismatches
  Matches
             4; Conservative
                                                   0; Indels
                                                                  0; Gaps
Qу
           26 KKLQ 29
              1111
Db
           10 KKLQ 13
RESULT 22
A84774
hypothetical protein At2g35870 [imported] - Arabidopsis thaliana
C; Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
C; Accession: A84774
R; Lin, X.; Kaul, S.; Rounsley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.;
Fujii, C.Y.; Mason, T.M.; Bowman, C.L.; Barnstead, M.E.; Feldblyum, T.V.; Buell,
C.R.; Ketchum, K.A.; Lee, J.J.; Ronning, C.M.; Koo, H.; Moffat, K.S.; Cronin,
L.A.; Shen, M.; VanAken, S.E.; Umayam, L.; Tallon, L.J.; Gill, J.E.; Adams,
M.D.; Carrera, A.J.; Creasy, T.H.; Goodman, H.M.; Somerville, C.R.; Copenhaver,
G.P.; Preuss, D.; Nierman, W.C.; White, O.; Eisen, J.A.; Salzberg, S.L.; Fraser,
C.M.; Venter, J.C.
```

```
A; Title: Sequence and analysis of chromosome 2 of the plant Arabidopsis
thaliana.
A; Reference number: A84420; MUID: 20083487; PMID: 10617197
A; Accession: A84774
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-36 <STO>
A; Cross-references: GB:AE002093; NID:g4510382; PIDN:AAD21470.1; GSPDB:GN00139
C:Genetics:
A; Gene: At2q35870
A; Map position: 2
                          11.8%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                 0; Gaps
Qу
           26 KKLQ 29
              1111
Db
            4 KKLQ 7
RESULT 23
S46227
hypothetical protein - Streptomyces chrysomallus (fragment)
C; Species: Streptomyces chrysomallus
C;Date: 19-Mar-1997 #sequence_revision 29-Aug-1997 #text_change 28-May-1999
C; Accession: S46227
R; Pahl, A.; Keller, U.
EMBO J. 13, 3472-3480, 1994
A; Title: Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of
two FK506 binding domains; its gene is transcriptionally coupled to the FKBP-12
gene.
A; Reference number: S46227; MUID: 94341259; PMID: 8062824
A; Accession: S46227
A; Molecule type: DNA
A; Residues: 1-36 < PAH>
A; Cross-references: GB:Z34523; NID:g535270; PIDN:CAA84281.1; PID:g633645
A; Experimental source: strain ATCC 11523
                          11.8%; Score 4; DB 2; Length 36;
  Ouerv Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           19 ERVE 22
Qу
              1111
           27 ERVE 30
Db
RESULT 24
S71912
hemoglobin, extracellular, chain A1 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence_revision 08-May-1998 #text_change 02-Jul-1998
C; Accession: S71912
```

Nature 402, 761-768, 1999

```
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71912
A; Molecule type: protein
A; Residues: 1-37 < MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
                          11.8%; Score 4; DB 2; Length 37;
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
  Matches
             4; Conservative
                               0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0:
           19 ERVE 22
Qу
              Db
           25 ERVE 28
RESULT 25
T12635
homeotic protein HAHB-2 - common sunflower (fragment)
C; Species: Helianthus annuus (common sunflower)
C;Date: 13-Aug-1999 #sequence revision 13-Aug-1999 #text change 21-Jul-2000
C; Accession: T12635
R; Chan, R.L.; Gonzalez, D.H.
Plant Physiol. 106, 1687-1688, 1994
A; Title: A cDNA encoding an HD-zip protein from sunflower.
A; Reference number: Z17563; MUID: 95148747; PMID: 7846169
A; Accession: T12635
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-37 < CHA>
A; Cross-references: EMBL: L22849; NID: q349258; PIDN: AAA63766.1; PID: q349259
C; Keywords: DNA binding; homeobox; transcription regulation
  Query Match
                          11.8%; Score 4; DB 2; Length 37;
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
                                                    0; Indels
  Matches
             4; Conservative 0; Mismatches
                                                                  0; Gaps
                                                                              0;
           25 RKKL 28
Qу
              | | | | |
Db
            6 RKKL 9
RESULT 26
antigen 5 epitope - tapeworm (Echinococcus granulosus) (fragment)
C; Species: Echinococcus granulosus
C;Date: 10-Mar-1993 #sequence revision 18-Nov-1994 #text change 18-Nov-1994
C; Accession: A43933
R; Chamekh, M.; Gras-Masse, H.; Bossus, M.; Facon, B.; Dissous, C.; Tartar, A.;
Capron, A.
J. Clin. Invest. 89, 458-464, 1992
```

R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;

```
granulosus recombinant protein.
A; Reference number: A43933; MUID: 92147859; PMID: 1737836
A; Accession: A43933
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: mRNA
A: Residues: 1-37 < CHA>
A; Cross-references: GB:M74034
A; Note: sequence extracted from NCBI backbone (NCBIP:81239)
                          11.8%; Score 4; DB 2; Length 37;
  Query Match
                          100.0%; Pred. No. 1.2e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
           10 NKGK 13
Qу
              1111
           10 NKGK 13
Db
RESULT 27
CKFHCS
sarcotoxin IC - flesh fly (Sarcophaga peregrina)
C; Species: Sarcophaga peregrina
C;Date: 31-Mar-1988 #sequence revision 31-Mar-1988 #text change 08-Dec-1995
C; Accession: C22625
R;Okada, M.; Natori, S.
J. Biol. Chem. 260, 7174-7177, 1985
A; Title: Primary structure of sarcotoxin I, an antibacterial protein induced in
the hemolymph of Sarcophaga peregrina (flesh fly) larvae.
A; Reference number: A92536; MUID: 85207747; PMID: 3888997
A; Accession: C22625
A; Molecule type: protein
A; Residues: 1-39 < OKA>
C; Comment: Sarcotoxins, which are potent bactericidal proteins, are produced in
response to injury. They are cytotoxic to both Gram positive and Gram negative
bacteria.
C; Superfamily: cecropin
C; Keywords: amidated carboxyl end; antibacterial; hemolymph
F;39/Modified site: amidated carboxyl end (Arg) #status predicted
                          11.8%; Score 4; DB 1; Length 39;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           23 WLRK 26
Qу
              1111
Db
            2 WLRK 5
RESULT 28
S71913
hemoglobin, extracellular, chain A2 - polychaete (Perinereis aibuhitensis)
 (fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence_revision 08-May-1998 #text_change 02-Jul-1998
C; Accession: S71913
```

A; Title: Diagnostic value of a synthetic peptide derived from Echinococcus

```
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71913
A; Molecule type: protein
A; Residues: 1-39 <MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
                          11.8%; Score 4; DB 2; Length 39;
                          100.0%; Pred. No. 1.3e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
  Matches
           19 ERVE 22
Qу
              Db
           27 ERVE 30
RESULT 29
S77164
ycf32 protein - Synechocystis sp. (strain PCC 6803)
N; Alternate names: protein sml0007
C; Species: Synechocystis sp.
A; Variety: PCC 6803
C;Date: 25-Apr-1997 #sequence_revision 25-Apr-1997 #text_change 20-Jun-2000
C; Accession: S77164
R; Kaneko, T.; Sato, S.; Kotani, H.; Tanaka, A.; Asamizu, E.; Nakamura, Y.;
Miyajima, N.; Hirosawa, M.; Sugiura, M.; Sasamoto, S.; Kimura, T.; Hosouchi, T.;
Matsuno, A.; Muraki, A.; Nakazaki, N.; Naruo, K.; Okumura, S.; Shimpo, S.;
Takeuchi, C.; Wada, T.; Watanabe, A.; Yamada, M.; Yasuda, M.; Tabata, S.
DNA Res. 3, 109-136, 1996
A:Title: Sequence analysis of the genome of the unicellular cyanobacterium
Synechocystis sp. PCC6803. II. Sequence determination of the entire genome and
assignment of potential protein-coding regions.
A; Reference number: S74322; MUID: 97061201; PMID: 8905231
A; Accession: S77164
A; Status: nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-39 < KAN>
A;Cross-references: EMBL:D90908; GB:AB001339; NID:g1652725; PIDN:BAA17722.1;
PID:q1652803
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, June
1996
C; Genetics:
A;Gene: ycf32
C; Superfamily: hypothetical protein ycf32
                          11.8%; Score 4; DB 2; Length 39;
  Query Match
                          100.0%; Pred. No. 1.3e+03;
  Best Local Similarity
                                0; Mismatches 0; Indels
                                                                  0; Gaps
             4; Conservative
           28 LQDV 31
Qу
              Db
           31 LQDV 34
```

R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;

```
A42272
brain-type creatine kinase, peptide, B - spiny dogfish (fragment)
C: Species: Squalus acanthias (spiny dogfish)
C;Date: 04-Mar-1993 #sequence revision 18-Nov-1994 #text change 11-Apr-1997
C; Accession: A42272
R; Friedman, D.L.; Roberts, R.
J. Biol. Chem. 267, 4270-4276, 1992
A; Title: Purification and localization of brain-type creatine kinase in sodium
chloride transporting epithelia of the spiny dogfish, Squalus acanthias.
A; Reference number: A42272; MUID: 92156175; PMID: 1310991
A; Accession: A42272
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <FRI>
A; Note: sequence extracted from NCBI backbone (NCBIP:82919)
C; Superfamily: creatine kinase; creatine kinase repeat homology
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                              0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                             0;
             3; Conservative
           26 KKL 28
Qу
              10 KKL 12
Db
RESULT 31
C32416
phospholipase A2 (EC 3.1.1.4) pseudexin chain C - red-bellied black snake
(fragment)
C; Species: Pseudechis porphyriacus (red-bellied black snake)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 23-Jun-1993
C; Accession: C32416
R; Schmidt, J.J.; Middlebrook, J.L.
Toxicon 27, 805-818, 1989
A; Title: Purification, sequencing and characterization of pseudexin
phospholipases A-2 from Pseudechis porphyriacus (Australian red-bellied black
A; Reference number: A32416; MUID: 89388835; PMID: 2675391
A; Accession: C32416
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 < SCH>
C; Superfamily: phospholipase A2
C; Keywords: carboxylic ester hydrolase
                           8.8%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
  Matches
             3; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            5 IQL 7
Qу
              Db
            3 IQL 5
```

RESULT 30

```
RESULT 32
B60071
vasoactive intestinal peptide - rhesus macaque
C; Species: Macaca mulatta (rhesus macaque)
C;Date: 28-Apr-1993 #sequence_revision 28-Apr-1993 #text change 20-Mar-1998
C; Accession: B60071
R; Yu, J.; Xin, Y.; Eng, J.; Yalow, R.S.
Regul. Pept. 32, 39-45, 1991
A; Title: Rhesus monkey gastroenteropancreatic hormones: relationship to human
A; Reference number: A60071; MUID: 91164506; PMID: 2003150
A; Accession: B60071
A; Status: protein sequence not shown
A; Molecule type: protein
A; Residues: 1-28 < YUA>
A; Note: the sequence is identical with the human sequence
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
                           8.8%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
                               0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            3; Conservative
  Matches
           15 LNS 17
QУ
              23 LNS 25
Db
RESULT 33
A60304
vasoactive intestinal peptide - dog
N; Alternate names: VIP
C; Species: Canis lupus familiaris (dog)
C;Date: 15-Jan-1993 #sequence revision 15-Jan-1993 #text change 20-Mar-1998
C; Accession: A60304
R; Eng, J.; Pan, Y.C.E.; Raufman, J.P.; Yalow, R.S.
Regul. Pept. Suppl. 3, S14, 1985
A; Title: Purification and sequencing of dog and guinea pig VIP's.
A; Reference number: A60304
A; Accession: A60304
A; Molecule type: protein
A; Residues: 1-28 < ENG>
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
                           8.8%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                  0; Gaps
  Matches
           15 LNS 17
Qу
               Db
           23 LNS 25
```

RESULT 34 S58386

```
T-cell receptor beta-chain Vb11-Jb2.4 - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 29-Nov-1995 #sequence revision 01-Mar-1996 #text change 23-Jul-1999
C: Accession: S58386
R; Johnston, S.L.; Strausbauch, M.; Sarkar, G.; Wettstein, P.J.
Nucleic Acids Res. 23, 3074-3075, 1995
A:Title: A novel method for sequencing members of multi-gene families.
A; Reference number: S58384; MUID: 95388532; PMID: 7659534
A: Accession: S58386
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: mRNA
A; Residues: 1-28 < JOH>
A; Cross-references: EMBL: U20300; NID: g663123; PIDN: AAA62247.1; PID: g663124
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, January
A; Note: only a part of the coding sequence is given
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                                                                  0; Gaps
                                                                              0;
  Matches
           3; Conservative 0; Mismatches 0;
                                                       Indels
           19 ERV 21
Qу
              111
           12 ERV 14
Db
RESULT 35
S10052
ribosomal protein L37.e - fission yeast (Schizosaccharomyces pombe) (fragment)
N; Alternate names: ribosomal protein SP-L27
C; Species: Schizosaccharomyces pombe
C;Date: 31-Dec-1990 #sequence revision 31-Dec-1990 #text change 30-Sep-1993
C; Accession: S10052
R;Otaka, E.; Higo, K.I.; Itoh, T.
Mol. Gen. Genet. 191, 519-524, 1983
A; Title: Yeast ribosomal proteins: VII. Cytoplasmic ribosomal proteins from
Schizosaccharomyces pombe.
A; Reference number: S07293; MUID: 84038947; PMID: 6355773
A; Accession: S10052
A; Molecule type: protein
A; Residues: 1-28 <OTA>
C; Superfamily: rat ribosomal protein L37
C; Keywords: protein biosynthesis; ribosome
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
             3; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
           11 KGK 13
Qу
              | | | |
           21 KGK 23
Db
```

RESULT 36 A60752

```
outer membrane protein A - Yersinia pseudotuberculosis (fragment)
N; Alternate names: heat-modifiable protein; outer membrane protein II
C; Species: Yersinia pseudotuberculosis
C;Date: 14-May-1993 #sequence revision 14-May-1993 #text_change 17-Mar-1999
C; Accession: A60752
R; Zhang, J.J.; Hamachi, M.; Hamachi, T.; Zhao, Y.P.; Yu, D.T.Y.
J. Immunol. 143, 2955-2960, 1989
A; Title: The bacterial outer membrane protein that reacts with anti-HLA-B27
antibodies is the OmpA protein.
A; Reference number: A60752; MUID: 90038529; PMID: 2478630
A; Accession: A60752
A; Molecule type: protein
A; Residues: 1-28 < ZHA>
C; Genetics:
A; Gene: ompA
C; Superfamily: outer membrane protein A
C; Keywords: membrane protein
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
            3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                0; Gaps
Qу
           10 NKG 12
              Db
           26 NKG 28
RESULT 37
S56121
type I DNA methyltransferase M. EcoR124I chain HsdS - Escherichia coli
(fragments)
C; Species: Escherichia coli
C;Date: 27-Oct-1995 #sequence_revision 03-Nov-1995 #text change 03-Nov-1995
C; Accession: S56121
R; Webb, M.; Taylor, I.A.; Firman, K.; Kneale, G.G.
J. Mol. Biol. 250, 181-190, 1995
A; Title: Probing the domain structure of the type IC DNA methyltransferase
M.EcoR124I by limited proteolysis.
A; Reference number: S56121; MUID: 95333175; PMID: 7608969
A; Accession: S56121
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <WEB>
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
  Matches
           3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           30 DVH 32
              Db
            8 DVH 10
RESULT 38
S70894
hypothetical protein 1 - Vibrio anguillarum (fragment)
C; Species: Vibrio anguillarum
```

```
C;Date: 19-Mar-1997 #sequence revision 25-Apr-1997 #text_change 08-Oct-1999
C; Accession: S70894
R;O'Toole, R.; Milton, D.L.; Wolf-Watz, H.
Mol. Microbiol. 19, 625-637, 1996
A; Title: Chemotactic motility is required for invasion of the host by the fish
pathogen Vibrio anguillarum.
A; Reference number: S70894; MUID: 96228710; PMID: 8830252
A; Accession: S70894
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <OTO>
A; Cross-references: GB: U36378; EMBL: L47344; NID: g1020321; PIDN: AAB38488.1;
PID:g1723992
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
           3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
           15 LNS 17
Qу
              Db
           18 LNS 20
RESULT 39
S22469
hypothetical protein 1 - Prochlorothrix hollandica
C; Species: Prochlorothrix hollandica
C;Date: 13-Jan-1995 #sequence_revision 13-Jan-1995 #text_change 15-Oct-1999
C; Accession: S22469; S16850
R; Greer, K.L.; Golden, S.S.
Plant Mol. Biol. 19, 355-365, 1992
A; Title: Conserved relationship between psbH and petBD genes: presence of a
shared upstream element in Prochlorothrix hollandica.
A; Reference number: S22469; MUID: 92322967; PMID: 1623188
A; Accession: S22469
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <GRE>
A; Cross-references: EMBL:X60313; NID:g45528; PIDN:CAA42858.1; PID:g45529
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
  Matches
          3; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
Qу
            1 SVS 3
              111
Db
            4 SVS 6
RESULT 40
malate dehydrogenase (decarboxylating) (EC 1.1.1.39) - tampala (fragment)
N; Alternate names: NAD-malic enzyme
C; Species: Amaranthus tricolor (tampala)
C;Date: 30-Sep-1993 #sequence_revision 30-Sep-1993 #text_change 07-Feb-1997
C; Accession: C60683
R; Murata, T.; Ikeda, J.; Takano, M.; Ohsuqi, R.
```

Plant Cell Physiol. 30, 429-437, 1989

A; Title: Comparative studies of NAD-malic enzyme from leaves of various C-4

plants.

Db

A; Reference number: A60683

A; Accession: C60683

A; Molecule type: protein

A; Residues: 1-28 < MUR>

C; Keywords: NAD; oxidoreductase; photosynthesis

Query Match 8.8%; Score 3; DB 2; Length 28; Best Local Similarity 100.0%; Pred. No. 1.1e+04;

3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

10 NKG 12 Qу | | | |

Search completed: January 14, 2004, 10:37:23

Job time : 11.0623 secs

25 NKG 27

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:37:44; Search time 22.8785 Seconds

(without alignments)

303.882 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score: 34

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 762491 seqs, 204481190 residues

Word size : (

Total number of hits satisfying chosen parameters: 28045

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : Published_Applications_AA:*

1: /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*

2: /cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:*

4: /cgn2_6/ptodata/1/pubpaa/US06_PUBCOMB.pep:*

5: /cgn2_6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*
6: /cgn2_6/ptodata/1/pubpaa/PCTUS_PUBCOMB.pep:*

7: /cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*

8: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

9: /cgn2_6/ptodata/1/pubpaa/US09A_PUBCOMB.pep:*

10: /cgn2_6/ptodata/1/pubpaa/US09B_PUBCOMB.pep:*

11: /cgn2_6/ptodata/1/pubpaa/US09C_PUBCOMB.pep:*

12: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*

13: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*

14: /cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*

15: /cgn2_6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:*
16: /cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*

17: /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*

18: /cgn2_6/ptodata/1/pubpaa/US60_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID

Description

```
______
                34 100.0 34 11 US-09-843-221A-18
34 100.0 34 11 US-09-843-221A-163
30 88.2 30 11 US-09-843-221A-41
23 67.6 28 11 US-09-843-221A-32
23 67.6 34 9 US-09-169-786-3
23 67.6 34 10 US-09-928-047B-6
23 67.6 34 11 US-09-843-221A-16
23 67.6 34 11 US-09-843-221A-17
23 67.6 34 11 US-09-843-221A-17
23 67.6 34 11 US-09-843-221A-161
23 67.6 34 11 US-09-843-221A-161
23 67.6 34 11 US-09-843-221A-161
23 67.6 34 11 US-09-843-221A-162
23 67.6 34 12 US-09-928-048A-6
23 67.6 34 12 US-09-928-048A-6

      34
      11
      US-09-843-221A-18
      Sequence 18, Appl

      34
      11
      US-09-843-221A-163
      Sequence 163, Appl

      30
      11
      US-09-843-221A-41
      Sequence 41, Appl

      28
      11
      US-09-843-221A-32
      Sequence 32, Appl

      1
      2
      3
                                                                                              Sequence 32, Appli
Sequence 3, Appli
      4
                                                                                          Sequence 3, Appli
Sequence 6, Appli
Sequence 16, Appl
Sequence 17, Appl
Sequence 20, Appl
Sequence 161, App
Sequence 162, App
Sequence 6, Appli
Sequence 1, Appli
Sequence 2, Appli
Sequence 5, Appli
Sequence 8, Appli
Sequence 15, Appl
Sequence 16, Appl
Sequence 5, Appli
      5
      6
      7
      8
      9
     10
     11
     12
                                       34 12 US-10-361-928-1
                  23
                          67.6
     13
                                       34 12 US-10-361-928-2
     14
                  23
                          67.6
                                        34 12 US-10-361-928-5
                          67.6
     15
                  23
                                        34 12 US-10-361-928-8
     16
                  23
                          67.6
                                         34 12
                                                      US-10-340-484-15
     17
                  23
                           67.6
                                                                                           Sequence 16, Appli
Sequence 5, Appli
Sequence 6, Appli
Sequence 1, Appli
Sequence 15, Appl
Sequence 9, Appli
Sequence 4, Appli
Sequence 14, Appli
Sequence 1, Appli
Sequence 3, Appli
Sequence 6, Appli
Sequence 9, Appli
Sequence 24, Appl
Sequence 27, Appl
Sequence 27, Appl
Sequence 165, App
Sequence 39, Appl
                                         34 12
                                                      US-10-340-484-16
     18
                  23
                           67.6
                                         34 14
                                                       US-10-016-403-5
     19
                  23
                           67.6
                                                       US-10-016-403-6
                                         34 14
     20
                  23
                           67.6
                                         34 14
                                                      US-10-097-079-1
     21
                  23
                           67.6
                                         37 11 US-09-843-221A-15
                  23
                           67.6
     22
                                        37 12 US-10-168-185-9
                  23
                           67.6
     23
                                        38 9 US-09-169-786-4
                           67.6
     24
                  23
                                        38 11 US-09-843-221A-14
                           67.6
     25
                  23
                                        38 12
                                                       US-10-245-707-1
                  23
                           67.6
     26
                                          33 12
                                                       US-10-361-928-3
     27
                  22
                           64.7
                                        33 12
                                                      US-10-361-928-6
                           64.7
                  22
     28
                                        33 12
                                                      US-10-361-928-9
                  22
                           64.7
     29
                                        34 12 US-10-372-095-24
     30
                   21
                           61.8
                                        31 9 US-09-169-786-2
                   20
                           58.8
     31
                                        31 11 US-09-843-221A-27
                   20
                           58.8
     32
                                        31 11 US-09-843-221A-165
                           58.8
                   20
     33
                                                                                                 Sequence 39, Appl
Sequence 40, Appl
                                        30 11 US-09-843-221A-39
     34
                   19
                           55.9
                                         30 11 US-09-843-221A-40
                  19
                           55.9
     35
                                        30 11 US-09-843-221A-43
30 11 US-09-843-221A-166
                                                                                                 Sequence 43, Appl
                  19
                           55.9
      36
                                                                                               Sequence 166, App
Sequence 34, Appl
Sequence 51, Appl
Sequence 167, App
Sequence 30, Appl
Sequence 22, Appl
Sequence 18, Appl
Sequence 20, Appl
Sequence 311, App
Sequence 35, Appl
                                                                                                 Sequence 166, App
                  19
                           55.9
      37
                                    28 11 US-09-843-221A-34
                           52.9
      38
                   18
                                        29 11 US-09-843-221A-51
                   18
                           52.9
      39
                                        29 11 US-09-843-221A-167
                           52.9
                   18
      40
                                        32 11 US-09-843-221A-30
                           52.9
                   18
      41
                                        34 11 US-09-843-221A-22
                           52.9
                   18
      42
                                        34 12 US-10-340-484-18
                           52.9
      43
                   18
                                         34 12
                                                       US-10-340-484-20
                           52.9
      44
                   18
                                        40 15
                                                       US-10-014-162-111
                           52.9
      45
                   18
                                                                                                    Sequence 35, Appl
                                        28 11 US-09-843-221A-35
                           50.0
      46
                   17
                                                                                                     Sequence 52, Appl
                                        28 11 US-09-843-221A-52
                           50.0
      47
                   17
                                                                                                     Sequence 168, App
                                        28 11 US-09-843-221A-168
      48
                   17
                            50.0
                                                                                                     Sequence 7, Appli
                                        34 14 US-10-016-403-7
      49
                   17
                           50.0
                                                                                                     Sequence 24, Appl
                                        34 11 US-09-843-221A-24
      50
                   16
                           47.1
                                                                                                     Sequence 17, Appl
                                        34 12 US-10-340-484-17
                            47.1
      51
                   16
                                    34 12 US-10-340-484-19
28 11 US-09-843-221A-33
28 11 US-09-843-221A-36
30 11 US-09-843-221A-50
31 11 US-09-843-221A-28
                                                                                                     Sequence 19, Appl
      52
                   16
                            47.1
                                                                                                     Sequence 33, Appl
      53
                   15
                            44.1
                                                                                                     Sequence 36, Appl
      54
                   15
                            44.1
                                                                                                     Sequence 50, Appl
      55
                   15
                            44.1
                                                                                                     Sequence 28, Appl
      56
                   15
                            44.1
```

```
US-10-031-874A-206
                                                              Sequence 206, App
57
              44.1
                        31
                            12
        15
                                US-09-843-221A-29
                                                              Sequence 29, Appl
58
        15
              44.1
                        32
                            11
                                US-09-843-221A-31
                                                              Sequence 31, Appl
59
        15
              44.1
                        32
                            11
                                                              Sequence 19, Appl
                                US-09-843-221A-19
        15
              44.1
                        34
                            11
60
                                                              Sequence 21, Appl
                        34
                            11
                                US-09-843-221A-21
         15
              44.1
61
                                                              Sequence 23, Appl
                                US-09-843-221A-23
                            11
62
         15
              44.1
                        34
                                                              Sequence 164, App
                                US-09-843-221A-164
63
         15
              44.1
                        34
                            11
                                                              Sequence 54, Appl
                        28
                            11
                                US-09-843-221A-54
64
         14
              41.2
                                                              Sequence 45, Appl
                                US-09-843-221A-45
                        30
                            11
65
         14
              41.2
                                                             Sequence 11, Appl
                               US-09-169-786-11
                            9
66
         14
              41.2
                        34
                                                              Sequence 53, Appl
                                US-09-843-221A-53
                            11
67
         12
              35.3
                        28
                                                              Sequence 55, Appl
                                US-09-843-221A-55
                        28
                            11
68
         12
              35.3
                                                              Sequence 44, Appl
                                US-09-843-221A-44
                        30
                            11
69
         12
              35.3
                                                              Sequence 46, Appl
                            11
                                US-09-843-221A-46
                        30
70
         12
              35.3
                                                              Sequence 47, Appl
                                US-09-843-221A-47
                        30
                            11
71
         12
              35.3
                                                              Sequence 25, Appl
                                US-09-843-221A-25
                        34
                            11
72
         12
              35.3
                                                              Sequence 22, Appl
                                US-10-340-484-22
                        34
                            12
73
         12
              35.3
                                                              Sequence 93, Appl
                                US-09-843-221A-93
                        28
                            11
74
         11
              32.4
                                                              Sequence 94, Appl
                                 US-09-843-221A-94
                        28
75
         11
              32.4
                            11
                                                              Sequence 42, Appl
                                 US-09-843-221A-42
                        30
                            11
76
         11
              32.4
                                                              Sequence 124, App
         11
                        30
                            11
                                 US-09-843-221A-124
77
              32.4
                                                              Sequence 125, App
                                 US-09-843-221A-125
                        30
                            11
78
         11
              32.4
                                                              Sequence 26, Appl
                                 US-09-843-221A-26
                        34
                            11
79
         11
              32.4
                                                              Sequence 88, Appl
              32.4
                        34
                            11
                                 US-09-843-221A-88
80
         11
                                                              Sequence 89, Appl
              32.4
                        34
                            11
                                 US-09-843-221A-89
81
         11
                                                              Sequence 22, Appl
                                 US-10-372-095-22
              32.4
                        34
                            12
82
         11
                                 US-09-843-221A-95
                                                              Sequence 95, Appl
                        28
                            11
83
         10
              29.4
                                                              Sequence 96, Appl
                        28
                            11
                                 US-09-843-221A-96
84
         10
              29.4
                                                              Sequence 97, Appl
                        28
                            11
                                 US-09-843-221A-97
85
         10
              29.4
                                 US-09-843-221A-126
                                                              Sequence 126, App
                        30
                            11
86
         10
              29.4
                                                              Sequence 127, App
                            11
                                 US-09-843-221A-127
                        30
87
         10
              29.4
                                US-09-169-786-9
                                                             Sequence 9, Appli
                        31
                            9
88
         10
              29.4
                                 US-09-843-221A-90
                                                              Sequence 90, Appl
89
              29.4
                        34
                            11
         10
                                 US-09-843-221A-91
                                                              Sequence 91, Appl
90
              29.4
                        34
                            11
         10
                                                              Sequence 92, Appl
              29.4
                                 US-09-843-221A-92
                        34
                            11
91
         10
                                                              Sequence 128, App
                                 US-09-843-221A-128
                        34
92
         10
               29.4
                            11
                                                              Sequence 48, Appl
                                 US-09-843-221A-48
93
          9
               26.5
                        30
                             11
                                                              Sequence 23, Appl
                            12
                                 US-10-340-484-23
94
          9
               26.5
                        34
                        30
                             11
                                 US-09-843-221A-49
                                                              Sequence 49, Appl
          8
               23.5
95
                                                             Sequence 10, Appl
                        31
                            9
                                US-09-169-786-10
          8
96
               23.5
                                                               Sequence 50, Appl
                            14
                                 US-10-097-079-50
97
          8
               23.5
                        31
                                                               Sequence 51, Appl
                        31
                            14
                                 US-10-097-079-51
98
          8
               23.5
                                                               Sequence 66, Appl
               23.5
                        31
                             14
                                 US-10-097-079-66
99
          8
                                                               Sequence 67, Appl
                        31
                             14
                                 US-10-097-079-67
          8
               23.5
100
                                                               Sequence 76, Appl
                                 US-10-097-079-76
101
          8
               23.5
                         31
                             14
                                                               Sequence 65, Appl
          7
               20.6
                         28
                             14
                                 US-10-097-079-65
102
                                                               Sequence 78, Appl
          7
               20.6
                         28
                             14
                                 US-10-097-079-78
103
                                                               Sequence 79, Appl
          7
               20.6
                         28
                             14
                                 US-10-097-079-79
104
                                                               Sequence 46, Appl
                         34
                            14
                                 US-10-097-079-46
105
          7
               20.6
                                                               Sequence 75, Appl
          7
               20.6
                         34
                            14
                                 US-10-097-079-75
106
                                                               Sequence 54, Appl
          6
               17.6
                         28
                                 US-10-097-079-54
107
                                                               Sequence 62, Appl
108
          б
               17.6
                         28
                             14
                                 US-10-097-079-62
                                                               Sequence 53, Appl
                                 US-10-097-079-53
109
          6
               17.6
                         29
                             14
                                 US-10-097-079-63
                                                               Sequence 63, Appl
110
          6
               17.6
                         29
                             14
                                                               Sequence 77, Appl
111
          6
               17.6
                         30
                             11
                                 US-09-843-221A-77
                                                               Sequence 158, App
                                 US-09-843-221A-158
112
          6
               17.6
                         30
                             11
                                 US-10-097-079-52
                                                               Sequence 52, Appl
                         30
                             14
113
               17.6
```

```
Sequence 64, Appl
                            14
                                US-10-097-079-64
114
          6
              17.6
                        30
                                                             Sequence 3, Appli
              17.6
                        31
                            14
                                 US-10-097-079-3
115
          6
                                                             Sequence 4, Appli
                                 US-10-097-079-4
              17.6
                        31
                           14
116
          6
                                 US-10-097-079-5
                                                              Sequence 5, Appli
               17.6
                        31 14
117
          6
                                 US-10-097-079-6
                                                              Sequence 6, Appli
                            14
          6
               17.6
                        31
118
                                                              Sequence 7, Appli
                        31
                            14
                                 US-10-097-079-7
          6
               17.6
119
                                                              Sequence 8, Appli
                        31
                            14
                                 US-10-097-079-8
          6
               17.6
120
                            14
                                 US-10-097-079-9
                                                              Sequence 9, Appli
                        31
          6
               17.6
121
                                 US-10-097-079-10
                                                              Sequence 10, Appl
                        31
                            14
122
          6
               17.6
                                                              Sequence 11, Appl
               17.6
                        31
                            14
                                 US-10-097-079-11
123
          6
                                 US-10-097-079-12
                                                              Sequence 12, Appl
               17.6
                        31
                            14
124
          6
                        31
                            14
                                 US-10-097-079-13
                                                              Sequence 13, Appl
               17.6
125
          6
                                                              Sequence 14, Appl
                            14
                                 US-10-097-079-14
               17.6
                        31
126
          6
                                                              Sequence 15, Appl
               17.6
                        31
                            14
                                 US-10-097-079-15
127
          6
                                                              Sequence 16, Appl
                        31
                            14
                                 US-10-097-079-16
          6
               17.6
128
                        31
                            14
                                 US-10-097-079-17
                                                              Sequence 17, Appl
          6
               17.6
129
                                                              Sequence 18, Appl
                        31
                            14
                                 US-10-097-079-18
           6
               17.6
130
                                                              Sequence 19, Appl
                                 US-10-097-079-19
           6
               17.6
                        31
                            14
131
                                                              Sequence 20, Appl
               17.6
                        31
                            14
                                 US-10-097-079-20
          6
132
               17.6
                        31
                            14
                                 US-10-097-079-21
                                                              Sequence 21, Appl
133
           6
                                 US-10-097-079-22
                                                              Sequence 22, Appl
               17.6
                            14
                        31
134
           6
                                 US-10-097-079-23
                                                              Sequence 23, Appl
               17.6
                            14
135
           6
                        31
                                                              Sequence 24, Appl
                        31
                            14
                                 US-10-097-079-24
136
           6
               17.6
                                                              Sequence 25, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-25
137
                                                              Sequence 26, Appl
                         31
                            14
                                 US-10-097-079-26
           6
               17.6
138
                                 US-10-097-079-27
                                                              Sequence 27, Appl
                         31
                            14
139
           6
               17.6
                                                              Sequence 28, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-28
140
                                                              Sequence 29, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-29
141
                                                              Sequence 30, Appl
               17.6
                         31
                            14
                                 US-10-097-079-30
142
           6
                                 US-10-097-079-31
                                                              Sequence 31, Appl
143
           6
               17.6
                         31
                             14
                                                              Sequence 32, Appl
144
           6
               17.6
                         31
                             14
                                 US-10-097-079-32
                                                              Sequence 33, Appl
145
           6
               17.6
                         31
                             14
                                 US-10-097-079-33
                                                              Sequence 34, Appl
146
           6
               17.6
                         31
                            14
                                 US-10-097-079-34
                                                              Sequence 35, Appl
                            14
147
           6
               17.6
                         31
                                 US-10-097-079-35
                                                              Sequence 36, Appl
148
           6
               17.6
                         31
                            14
                                 US-10-097-079-36
                         31
                            14
                                 US-10-097-079-37
                                                              Sequence 37, Appl
149
           6
               17.6
               17.6
                         31
                             14
                                 US-10-097-079-38
                                                              Sequence 38, Appl
150
           6
                                 US-10-097-079-39
               17.6
                         31
                             14
                                                              Sequence 39, Appl
151
           6
                                                              Sequence 40, Appl
                                 US-10-097-079-40
152
           6
               17.6
                         31
                             14
                                                              Sequence 41, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-41
153
                                 US-10-097-079-42
                                                              Sequence 42, Appl
154
           6
               17.6
                         31
                             14
                                                              Sequence 43, Appl
           6
                            14
                                 US-10-097-079-43
155
               17.6
                         31
                                                              Sequence 44, Appl
           6
                            14
                                 US-10-097-079-44
               17.6
                         31
156
                                                              Sequence 45, Appl
157
           6
               17.6
                         31
                            14
                                 US-10-097-079-45
                                                              Sequence 47, Appl
           6
                         31
                                 US-10-097-079-47
158
               17.6
                                                              Sequence 48, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-48
159
                                                              Sequence 49, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-49
160
                                                              Sequence 68, Appl
                                 US-10-097-079-68
161
           6
               17.6
                         31
                            14
                                                              Sequence 69, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-69
162
                                                              Sequence 70, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-70
163
                                                              Sequence 73, Appl
                         31
                            14
                                 US-10-097-079-73
           б
164
               17.6
                                                              Sequence 74, Appl
                                 US-10-097-079-74
           6
                         31
                            14
165
               17.6
                                                              Sequence 80, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-80
166
                                                              Sequence 81, Appl
                         31
                                 US-10-097-079-81
167
           6
               17.6
                             14
                                                              Sequence 82, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-82
168
               17.6
                                                              Sequence 83, Appl
                         31
                             14
                                 US-10-097-079-83
           6
169
                                                              Sequence 84, Appl
                                 US-10-097-079-84
                             14
170
           6
               17.6
                         31
```

```
Sequence 85, Appl
171
          6
              17.6
                        31
                            14
                                US-10-097-079-85
172
              17.6
                        31
                                US-10-097-079-86
                                                             Sequence 86, Appl
          6
                                                             Sequence 87, Appl
173
              17.6
                        31
                           14
                                US-10-097-079-87
          6
                                                             Sequence 88, Appl
              17.6
                        31
                                US-10-097-079-88
174
          6
                            14
                                                             Sequence 122, App
              17.6
                        34
                            11
                                US-09-843-221A-122
175
          6
                                US-10-340-484-24
                                                             Sequence 24, Appl
          6
              17.6
                        34
176
                        36
                            11
                                US-09-843-221A-65
                                                             Sequence 65, Appl
          6
              17.6
177
                                                             Sequence 191, App
          5
                        28
                            12
                                US-10-105-232-191
              14.7
178
                            12
                                                             Sequence 178, App
          5
              14.7
                        28
                                US-10-189-437-178
179
          5
                        30
                            11
                                US-09-843-221A-159
                                                             Sequence 159, App
180
              14.7
                                                            Sequence 38558, A
          5
              14.7
                        34
                            9
                               US-09-864-761-38558
181
                                                             Sequence 123, App
          5
              14.7
                        34
                            11
                                US-09-843-221A-123
182
                                                             Sequence 178, App
          5
                        34
                            12
                                US-10-317-832-178
183
              14.7
          5
              14.7
                        38
                            9
                               US-09-864-761-49110
                                                            Sequence 49110, A
184
                            9
                                                            Sequence 37690, A
          4
              11.8
                        28
                               US-09-864-761-37690
185
                        28
                           9
                                                            Sequence 21, Appl
          4
              11.8
                               US-09-815-248-21
186
                           9
                                                            Sequence 122, App
                        28
                               US-09-929-818-122
187
          4
              11.8
188
              11.8
                        28
                            9
                               US-09-929-818-200
                                                            Sequence 200, App
          4
                                                             Sequence 153, App
189
              11.8
                        28
                            10
                                US-09-003-869-153
          4
                                                             Sequence 38, Appl
              11.8
                        28
                            10
                                US-09-999-745-38
190
          4
                                                             Sequence 22, Appl
              11.8
                        28
                                US-09-554-000-22
191
          4
                            10
                                                             Sequence 153, App
192
          4
              11.8
                        28
                            11
                                US-09-756-690A-153
                        28
                                US-09-899-495-104
                                                             Sequence 104, App
193
          4
              11.8
                            11
          4
              11.8
                        28
                            12
                                US-10-029-386-28289
                                                             Sequence 28289, A
194
                                                             Sequence 153, App
              11.8
                        28
                           15
                                US-10-157-224A-153
195
          4
                           15
                                                             Sequence 153, App
196
          4
              11.8
                        28
                                US-10-187-051-153
              11.8
                        29
                            9
                               US-09-730-379B-5
                                                            Sequence 5, Appli
197
          4
198
              11.8
                        29
                            9
                               US-09-815-248-18
                                                            Sequence 18, Appl
          4
              11.8
                        29
                                                             Sequence 386, App
199
          4
                            11
                                US-09-983-802-386
200
          4
               11.8
                        29
                            11
                                US-09-983-802-480
                                                             Sequence 480, App
201
          4
               11.8
                        29
                            11
                                US-09-969-730-133
                                                             Sequence 133, App
                                                             Sequence 24, Appl
202
          4
              11.8
                        29
                            11
                                US-09-095-478-24
                                                             Sequence 4, Appli
203
          4
              11.8
                        29
                            12
                                US-10-131-909A-4
204
          4
              11.8
                        29
                           12
                                US-09-933-767-1006
                                                             Sequence 1006, Ap
205
               11.8
                        29
                            15
                                US-10-018-103A-4
                                                             Sequence 4, Appli
                        29
                                                             Sequence 1006, Ap
206
          4
               11.8
                            15
                                US-10-023-282-1006
207
                        29
                                US-10-106-698-5404
                                                             Sequence 5404, Ap
          4
               11.8
                            15
                        29
                                                             Sequence 111, App
208
          4
              11.8
                            15
                                US-10-197-954-111
209
          4
               11.8
                        30
                            9
                               US-09-864-761-41441
                                                            Sequence 41441, A
                        30
                            9
                                                            Sequence 46868, A
210
          4
               11.8
                               US-09-864-761-46868
211
          4
               11.8
                        30
                            10
                                US-09-756-983-20
                                                             Sequence 20, Appl
          4
               11.8
                        30
                           11
                                                             Sequence 191, App
212
                                US-09-774-639-191
                           12
          4
                        30
                                                             Sequence 20, Appl
213
              11.8
                                US-09-911-261A-20
214
          4
               11.8
                        30 12
                                                             Sequence 19, Appl
                                US-10-310-113-19
215
          4
               11.8
                        30
                           12
                                US-09-933-767-821
                                                             Sequence 821, App
216
                                                             Sequence 40, Appl
          4
               11.8
                        30
                           12
                                US-10-173-551-40
               11.8
                                                             Sequence 11, Appl
          4
                        30
                            15
                                US-10-188-947-11
217
218
          4
               11.8
                        30
                            15
                                US-10-057-408-20
                                                             Sequence 20, Appl
               11.8
                        30
                            15
                                                             Sequence 821, App
219
          4
                                 US-10-023-282-821
          4
               11.8
                        30
                            15
                                                             Sequence 3, Appli
220
                                US-10-267-209-3
          4
                        31
                                                            Sequence 38725, A
221
               11.8
                            9
                               US-09-864-761-38725
                            9
                                                            Sequence 40464, A
222
          4
               11.8
                        31
                               US-09-864-761-40464
223
               11.8
                        31
                            9
                               US-09-864-761-44182
                                                            Sequence 44182, A
224
          4
               11.8
                        31
                            9
                               US-09-815-248-33
                                                            Sequence 33, Appl
225
          4
               11.8
                        31
                            12
                                US-10-360-053-20
                                                             Sequence 20, Appl
226
          4
               11.8
                        31
                            12
                                US-09-933-767-1001
                                                             Sequence 1001, Ap
                                                            Sequence 32285, A
227
               11.8
                        31
                            12
                                US-10-029-386-32285
```

```
Sequence 3767, Ap
                                US-10-264-049-3767
228
              11.8
                        31
                            12
                                                             Sequence 1001, Ap
                                US-10-023-282-1001
              11.8
                            15
229
          4
                                                             Sequence 7956, Ap
                                US-10-106-698-7956
              11.8
                        31
                            15
          4
230
                                                            Sequence 48632, A
                               US-09-864-761-48632
                        32
                            9
231
              11.8
          4
                                                            Sequence 16, Appl
                               US-09-281-717-16
              11.8
                        32
                            9
232
          4
                                                             Sequence 442, App
                        32
                            11
                                US-09-809-391-442
          4
              11.8
233
                                                             Sequence 442, App
                        32
                            12
                                US-09-882-171-442
          4
              11.8
234
                            12
                                US-10-310-113-23
                                                             Sequence 23, Appl
                        32
235
          4
              11.8
                                                             Sequence 134, App
                        32
                            12
                                US-10-310-113-134
              11.8
236
          4
                                                             Sequence 135, App
                        32
                            12
                                US-10-310-113-135
              11.8
237
          4
                                US-10-310-113-136
                                                             Sequence 136, App
                        32
                            12
              11.8
238
          4
                        32
                            12
                                US-10-164-279-39
                                                             Sequence 39, Appl
               11.8
239
          4
                                                             Sequence 43, Appl
                        32
                                US-10-164-279-43
                            12
240
          4
               11.8
                                                             Sequence 212, App
                        32
                            15
                                US-10-174-410-212
241
          4
               11.8
                                                            Sequence 35714, A
                            9
                               US-09-864-761-35714
               11.8
                        33
          4
242
                                                            Sequence 37722, A
                        33
                            9
                               US-09-864-761-37722
          4
               11.8
243
                                                            Sequence 38816, A
                            9
                               US-09-864-761-38816
                        33
               11.8
244
                                                            Sequence 48253, A
                            9
               11.8
                        33
                               US-09-864-761-48253
          4
245
                                                            Sequence 1526, Ap
                        33
                               US-09-925-299-1526
               11.8
                            9
246
          4
                               US-09-815-248-30
                                                            Sequence 30, Appl
                        33
                            9
               11.8
247
          4
                                                             Sequence 16, Appl
                                US-09-911-969-16
                        33
                            10
          4
               11.8
248
                                                             Sequence 1526, Ap
                                 US-09-925-299-1526
               11.8
                        33
                            11
249
          4
                                                             Sequence 660, App
                        33
                            11
                                 US-09-809-391-660
          4
               11.8
250
                                                             Sequence 660, App
                        33
                            12
                                US-09-882-171-660
               11.8
251
          4
                                                             Sequence 368, App
                        33
                            12
                                US-09-933-767-368
               11.8
252
          4
                                                             Sequence 63, Appl
                        33
                            12
                                 US-10-164-279-63
               11.8
253
                                                             Sequence 4, Appli
                        33
                            14
                                 US-10-215-297-4
254
           4
               11.8
                                                             Sequence 4, Appli
               11.8
                        33
                                 US-10-215-298-4
255
           4
                                                             Sequence 110, App
                        33
                            15
                                 US-10-081-816-110
256
           4
               11.8
                                                             Sequence 368, App
           4
               11.8
                        33
                            15
                                 US-10-023-282-368
257
                                                            Sequence 44185, A
258
           4
               11.8
                        34
                            9
                                US-09-864-761-44185
                                                            Sequence 45430, A
           4
               11.8
                        34
                            9
                                US-09-864-761-45430
259
                                                            Sequence 48511, A
           4
               11.8
                        34
                            9
                                US-09-864-761-48511
260
                                                             Sequence 538, App
261
               11.8
                        34
                            12
                                US-10-231-417-538
                                                             Sequence 27795, A
262
           4
               11.8
                        34
                            12
                                 US-10-029-386-27795
                                                             Sequence 8037, Ap
                        34
                                 US-10-106-698-8037
263
           4
               11.8
                        35
                            9
                                US-09-925-299-1258
                                                             Sequence 1258, Ap
264
           4
               11.8
                                                              Sequence 7, Appli
                        35
                                 US-09-811-824-7
265
           4
               11.8
                            10
                                                              Sequence 486, App
                                 US-09-983-802-486
266
           4
               11.8
                        35
                            11
                                                              Sequence 106, App
                         35
                                 US-09-820-843A-106
267
           4
               11.8
                            11
                                                              Sequence 1258, Ap
               11.8
                         35
                            11
                                 US-09-925-299-1258
268
           4
                                                              Sequence 75, Appl
                            12
                         35
                                 US-10-289-660-75
269
           4
               11.8
                                                              Sequence 13, Appl
                         35
                            12
                                 US-10-340-484-13
270
               11.8
                                                              Sequence 138, App
               11.8
                         35 . 12
                                 US-10-062-599-138
271
           4
                                                              Sequence 75, Appl
               11.8
                         35
                            15
                                 US-10-133-128-75
272
           4
                                                              Sequence 138, App
                                 US-10-062-831-138
               11.8
                         35
                            15
273
           4
                                                              Sequence 8307, Ap
                            15
                                 US-10-106-698-8307
               11.8
                         35
274
           4
                                                             Sequence 34257, A
                                US-09-864-761-34257
           4
               11.8
                         36
                            9
275
                                                             Sequence 36302, A
                         36
                             9
                                US-09-864-761-36302
           4
               11.8
276
                                                             Sequence 39771, A
                         36
                            9
                                US-09-864-761-39771
           4
               11.8
277
                                                             Sequence 46707, A
                            9
                         36
                                US-09-864-761-46707
           4
               11.8
278
                                                             Sequence 48628, A
                                US-09-864-761-48628
                             9
279
               11.8
                         36
                                                             Sequence 37, Appl
                         36
                             9
                                US-09-815-248-37
280
           4
               11.8
                                                              Sequence 12, Appl
                         36
                            12
                                 US-10-340-484-12
           4
               11.8
281
                                                              Sequence 205, App
                                 US-10-002-344A-205
                         36
                             14
           4
               11.8
282
                                                              Sequence 192, App
                                 US-10-050-704-192
                         36
                             15
283
           4
               11.8
                                                             Sequence 16, Appl
                         37
                             9 US-09-758-318-16
               11.8
284
```

```
Sequence 38287, A
285
          4
              11.8
                        37
                               US-09-864-761-38287
                       37
                               US-09-864-761-41884
                                                            Sequence 41884, A
286
              11.8
          4
                       37 9
                               US-09-864-761-42087
                                                            Sequence 42087, A
287
          4
              11.8
                                                           Sequence 17, Appl
                               US-09-815-248-17
                       37 9
288
          4
              11.8
                        37
                                                             Sequence 347, App
                            11
                                US-09-764-872-347
289
          4
              11.8
                        37
                                US-10-340-783-16
                                                             Sequence 16, Appl
290
          4
              11.8
                            12
                        37
                            12
                                US-10-012-952A-209
                                                             Sequence 209, App
291
          4
              11.8
                        37
                           12
                                                             Sequence 265, App
                                US-10-339-740-265
292
          4
              11.8
              11.8
                        37
                            12
                                US-10-283-403-9
                                                             Sequence 9, Appli
293
          4
                        37
                           12
                                                             Sequence 10, Appl
              11.8
                                US-10-370-570-10
294
          4
                        37
                            15
                                                             Sequence 161, App
                                US-10-082-830-161
295
              11.8
          4
                                                             Sequence 6085, Ap
                        37
                            15
                                US-10-106-698-6085
296
          4
              11.8
                                                            Sequence 21, Appl
                            9
297
              11.8
                        38
                               US-09-250-883-21
          4
                        38
                            9
                               US-09-864-761-34617
                                                            Sequence 34617, A
298
          4
              11.8
                                                            Sequence 38489, A
                        38
                            9
                               US-09-864-761-38489
299
          4
              11.8
                        38 9
                                                            Sequence 42372, A
                               US-09-864-761-42372
300
          4
              11.8
                        38
                           9
                               US-09-864-761-44123
                                                            Sequence 44123, A
301
              11.8
              11.8
                        38
                               US-09-864-761-44436
                                                            Sequence 44436, A
302
          4
                        39
                               US-09-864-761-41089
                                                            Sequence 41089, A
303
              11.8
                           9
          4
                                                            Sequence 41410, A
                        39
                               US-09-864-761-41410
              11.8
                            9
304
          4
                                                             Sequence 25, Appl
                        39
305
          4
              11.8
                            10
                                US-09-003-869-25
                        39
                            11
                                US-09-983-802-384
                                                             Sequence 384, App
306
          4
              11.8
307
                                                             Sequence 25, Appl
          4
              11.8
                        39
                            11
                                US-09-756-690A-25
                        39
                            15
                                                             Sequence 25, Appl
308
              11.8
                                US-10-157-224A-25
          4
                        39 15
                                                             Sequence 25, Appl
                                US-10-187-051-25
309
          4
              11.8
                                                             Sequence 7822, Ap
310
          4
              11.8
                        39 15
                                US-10-106-698-7822
                        40
                                US-09-764-891-2762
                                                             Sequence 2762, Ap
311
          4
              11.8
                        40 12
                                US-10-058-053A-81
                                                             Sequence 81, Appl
312
          4
              11.8
                                                             Sequence 264, App
                            12
313
          4
              11.8
                        40
                                US-10-058-053A-264
314
          4
               11.8
                        40
                            12
                                US-10-029-386-31868
                                                             Sequence 31868, A
315
          4
               11.8
                        40
                            15
                                US-10-091-572-223
                                                             Sequence 223, App
316
          3
                8.8
                        28
                            8
                               US-08-908-884-7
                                                            Sequence 7, Appli
317
          3
                8.8
                        28 9
                               US-09-799-983-16
                                                            Sequence 16, Appl
318
          3
                8.8
                        28 9
                               US-09-799-983-18
                                                            Sequence 18, Appl
319
          3
                8.8
                        28 9
                               US-09-730-379B-10
                                                            Sequence 10, Appl
320
          3
                8.8
                        28 9
                               US-09-765-527-30
                                                            Sequence 30, Appl
                        28
                                                            Sequence 139, App
321
          3
                8.8
                            9
                               US-09-765-527-139
                                                            Sequence 140, App
322
          3
                8.8
                        28
                            9
                               US-09-765-527-140
323
          3
                8.8
                        28
                            9
                               US-09-765-527-142
                                                            Sequence 142, App
                            9
                                                            Sequence 143, App
324
          3
                8.8
                        28
                                US-09-765-527-143
325
          3
                        28
                            9
                                                            Sequence 27, Appl
                8.8
                               US-09-895-072-27
          3
                        28 9
                                                            Sequence 33837, A
326
                8.8
                               US-09-864-761-33837
          3
                        28 9
                                                            Sequence 34933, A
327
                8.8
                               US-09-864-761-34933
          3
                        28 9
                                                            Sequence 34971, A
328
                8.8
                                US-09-864-761-34971
                               US-09-864-761-35640
          3
                        28 9
                                                            Sequence 35640, A
329
                8.8
                                                            Sequence 35827, A
          3
                            9
                                US-09-864-761-35827
330
                8.8
                        28
                                                            Sequence 36085, A
          3
                            9
331
                8.8
                        28
                                US-09-864-761-36085
           3
332
                8.8
                        28
                            9
                                US-09-864-761-36728
                                                            Sequence 36728, A
                            9
                                                            Sequence 37296, A
333
          3
                8.8
                        28
                                US-09-864-761-37296
          3
                        28
                            9
                                                            Sequence 37297, A
334
                8.8
                                US-09-864-761-37297
          3
                        28
                            9
                                                            Sequence 37848, A
335
                8.8
                                US-09-864-761-37848
                            9
                                                            Sequence 37919, A
336
          3
                8.8
                        28
                                US-09-864-761-37919
337
          3
                        28
                            9
                                                            Sequence 37927, A
                8.8
                                US-09-864-761-37927
338
          3
                        28
                            9
                                US-09-864-761-39084
                                                            Sequence 39084, A
                8.8
          3
                        28
                            9
                                US-09-864-761-39493
                                                            Sequence 39493, A
339
                8.8
           3
                        28
                                                            Sequence 39762, A
340
                8.8
                            9
                                US-09-864-761-39762
341
                8.8
                        28
                            9
                                US-09-864-761-39984
                                                            Sequence 39984, A
```

```
Sequence 40300, A
                        28
                           9
                               US-09-864-761-40300
               8.8
          3
342
                                                            Sequence 40325, A
                        28
                           9
                               US-09-864-761-40325
          3
               8.8
343
                               US-09-864-761-41015
                                                            Sequence 41015, A
                        28
                           9
               8.8
344
                                                            Sequence 42022, A
                        28
                               US-09-864-761-42022
          3
               8.8
345
                                                            Sequence 42177, A
                        28
                            9
                               US-09-864-761-42177
          3
               8.8
346
                                                            Sequence 42253, A
                        28
                            9
                               US-09-864-761-42253
347
          3
               8.8
                                                            Sequence 43275, A
                        28
                            9
                               US-09-864-761-43275
348
          3
               8.8
                                                            Sequence 43290, A
          3
               8.8
                        28
                            9
                               US-09-864-761-43290
349
                                                            Sequence 43834, A
          3
               8.8
                        28
                            9
                               US-09-864-761-43834
350
                                                            Sequence 43979, A
          3
               8.8
                        28
                           9
                               US-09-864-761-43979
351
                                                            Sequence 44041, A
          3
               8.8
                        28
                           9
                               US-09-864-761-44041
352
                                                            Sequence 44733, A
          3
               8.8
                        28
                            9
                               US-09-864-761-44733
353
                                                            Sequence 45427, A
          3
               8.8
                        28
                            9
                               US-09-864-761-45427
354
                            9
                               US-09-864-761-46128
                                                            Sequence 46128, A
          3
               8.8
                        28
355
                            9
                               US-09-864-761-47465
                                                            Sequence 47465, A
356
          3
               8.8
                        28
                                                            Sequence 47968, A
                            9
                               US-09-864-761-47968
357
          3
               8.8
                        28
                                                            Sequence 48171, A
                        28
                            9
                               US-09-864-761-48171
358
          3
                8.8
                                                            Sequence 48316, A
                            9
                        28
                               US-09-864-761-48316
359
          3
                8.8
                                                            Sequence 49082, A
                            9
                        28
                               US-09-864-761-49082
360
          3
                8.8
                                                            Sequence 26, Appl
                        28
                            9
361
          3
                8.8
                               US-09-962-055-26
                                                            Sequence 1524, Ap
                        28
                               US-09-925-301-1524
362
          3
                8.8
                                                            Sequence 1173, Ap
                        28
                            9
                               US-09-925-299-1173
          3
                8.8
363
                                                            Sequence 23, Appl
                               US-09-728-721-23
                        28
                            9
364
          3
                8.8
                                                            Sequence 7, Appli
                            9
                               US-09-908-323-7
365
          3
                8.8
                        28
                                                            Sequence 5, Appli
                        28
                            9
                               US-09-881-490-5
366
          3
                8.8
                            9
                                                            Sequence 110, App
          3
                8.8
                        28
                               US-09-881-490-110
367
                                                            Sequence 111, App
                        28
                            9
                               US-09-881-490-111
          3
368
                8.8
                                                            Sequence 113, App
          3
                        28 9
                               US-09-881-490-113
369
                8.8
                                                            Sequence 114, App
                            9
          3
                8.8
                        28
                               US-09-881-490-114
370
                                                            Sequence 4, Appli
                        28
                               US-09-879-666-4
          3
                8.8
371
                                                            Sequence 1, Appli
                        28
                            9
                               US-09-929-818-1
          3
                8.8
372
                                                            Sequence 2, Appli
                            9
                               US-09-929-818-2
          3
                        28
373
                8.8
                                                            Sequence 3, Appli
                            9
          3
                8.8
                        28
                               US-09-929-818-3
374
                                                            Sequence 4, Appli
          3
                        28
                            9
                                US-09-929-818-4
                8.8
375
                                                            Sequence 5, Appli
          3
                        28
                            9
                                US-09-929-818-5
                8.8
376
                            9
                                                            Sequence 6, Appli
          3
                        28
                                US-09-929-818-6
377
                8.8
                        28 9
                                                            Sequence 7, Appli
          3
                                US-09-929-818-7
378
                8.8
                                                            Sequence 8, Appli
          3
                        28
                            9
                                US-09-929-818-8
379
                8.8
                                US-09-929-818-9
                                                            Sequence 9, Appli
380
          3
                8.8
                        28
                            9
                                                            Sequence 10, Appl
                                US-09-929-818-10
           3
                        28
                            9
381
                8.8
                                                            Sequence 11, Appl
382
           3
                8.8
                        28
                            9
                                US-09-929-818-11
                                                            Sequence 12, Appl
           3
                        28
                            9
                                US-09-929-818-12
383
                8.8
                                                            Sequence 13, Appl
           3
                8.8
                        28
                            9
                                US-09-929-818-13
384
                        28
                            9
                                                            Sequence 14, Appl
           3
                                US-09-929-818-14
                8.8
385
           3
                        28 9
                                                            Sequence 15, Appl
                                US-09-929-818-15
386
                8.8
           3
                        28 9
                                                            Sequence 16, Appl
                8.8
                                US-09-929-818-16
387
           3
                        28 9
                                US-09-929-818-17
                                                            Sequence 17, Appl
                8.8
388
           3
                        28 9
                                US-09-929-818-18
                                                            Sequence 18, Appl
                8.8
389
                                                            Sequence 19, Appl
           3
                        28 9
                                US-09-929-818-19
390
                8.8
           3
                        28
                            9
                                US-09-929-818-20
                                                            Sequence 20, Appl
391
                8.8
                                                            Sequence 21, Appl
           3
                        28
                            9
                                US-09-929-818-21
392
                8.8
                                                            Sequence 22, Appl
393
           3
                8.8
                        28
                             9
                                US-09-929-818-22
                                                            Sequence 23, Appl
           3
                8.8
                        28
                            9
                                US-09-929-818-23
394
                                                            Sequence 24, Appl
           3
                        28
                            9
                                US-09-929-818-24
395
                8.8
                            9
                                                            Sequence 25, Appl
396
           3
                8.8
                         28
                                US-09-929-818-25
                                                            Sequence 26, Appl
397
           3
                8.8
                         28
                            9
                                US-09-929-818-26
                         28
                                                            Sequence 27, Appl
398
           3
                8.8
                                US-09-929-818-27
```

399	3	8.8	28	9	US-09-929-818-28	Sequence 28, Appl
400	3	8.8	28	9	US-09-929-818-29	Sequence 29, Appl
401	3	8.8	28	9	US-09-929-818-30	Sequence 30, Appl
402	3	8.8		9	US-09-929-818-31	Sequence 31, Appl
403	3	8.8		9	US-09-929-818-32	Sequence 32, Appl
404	3	8.8		9	US-09-929-818-33	Sequence 33, Appl
405	3	8.8		9	US-09-929-818-34	Sequence 34, Appl
406	3	8.8		9	US-09-929-818-35	Sequence 35, Appl
407	3	8.8		9	US-09-929-818-36	Sequence 36, Appl
408	3	8.8		9	US-09-929-818-37	Sequence 37, Appl
409	3	8.8		9	US-09-929-818-38	Sequence 38, Appl
410	3	8.8		9	US-09-929-818-39	Sequence 39, Appl
411	. 3	8.8		9	US-09-929-818-40	Sequence 40, Appl
412	3	8.8		9	US-09-929-818-41	Sequence 41, Appl
413	3	8.8		9	US-09-929-818-42	Sequence 42, Appl
414	3	8.8		9	US-09-929-818-43	Sequence 43, Appl
415	3	8.8		9	US-09-929-818-44	Sequence 44, Appl
416	3	8.8		9	US-09-929-818-45	Sequence 45, Appl
417	3	8.8		9	US-09-929-818-46	Sequence 46, Appl
418	3	8.8		9	US-09-929-818-47	Sequence 47, Appl
419	3	8.8		9	US-09-929-818-48	
420	3	8.8		9	US-09-929-818-49	Sequence 48, Appl
421	3	8.8		9	US-09-929-818-50	Sequence 49, Appl
422	3	8.8		9	US-09-929-818-51	Sequence 50, Appl
423	3	8.8		9		Sequence 51, Appl
424	3				US-09-929-818-52	Sequence 52, Appl
425	3	8.8 8.8		9 9	US-09-929-818-53	Sequence 53, Appl
426	3	8.8			US-09-929-818-54	Sequence 54, Appl
427	3			9	US-09-929-818-61	Sequence 61, Appl
	3	8.8		9	US-09-929-818-62	Sequence 62, Appl
428		8.8		9	US-09-929-818-66	Sequence 66, Appl
429	3	8.8		9	US-09-929-818-69	Sequence 69, Appl
430	3	8.8		9	US-09-929-818-76	Sequence 76, Appl
431	3	8.8		9	US-09-929-818-77	Sequence 77, Appl
432	3	8.8		9	US-09-929-818-80	Sequence 80, Appl
433	3	8.8		9	US-09-929-818-87	Sequence 87, Appl
434	3	8.8		9	US-09-929-818-94	Sequence 94, Appl
435	3	8.8		9	US-09-929-818-95	Sequence 95, Appl
436	3	8.8		9	US-09-929-818-97	Sequence 97, Appl
437	3	8.8		9	US-09-929-818-99	Sequence 99, Appl
438	3	8.8		9	US-09-929-818-100	Sequence 100, App
439	3	8.8		9	US-09-929-818-101	Sequence 101, App
440	3	8.8		9	US-09-929-818-102	Sequence 102, App
441	3	8.8		9	US-09-929-818-103	Sequence 103, App
442	3	8.8		9	US-09-929-818-104	Sequence 104, App
443	3	8.8		9	US-09-929-818-105	Sequence 105, App
444	3	8.8		9	US-09-929-818-106	Sequence 106, App
445	3	8.8	28	9	US-09-929-818-107	Sequence 107, App
446	3	8.8	28	9	US-09-929-818-108	Sequence 108, App
447	3	8.8	28	9	US-09-929-818-109	Sequence 109, App
448	3	8.8		9	US-09-929-818-110	Sequence 110, App
449	3	8.8		9	US-09-929-818-111	Sequence 111, App
450	3	8.8	28	9	US-09-929-818-112	Sequence 112, App
451	3	8.8	28	9	US-09-929-818-113	Sequence 113, App
452	3	8.8	28	9	US-09-929-818-114	Sequence 114, App
453	3	8.8	28	9	US-09-929-818-115	Sequence 115, App
454	3	8.8	28	9	US-09-929-818-116	Sequence 116, App
455	3	8.8	28	9	US-09-929-818-117	Sequence 117, App

456	3	8.8	28	9	US-09-929-818-118	Sequence 118, App
457	3	8.8	28	9	US-09-929-818-119	Sequence 119, App
458	3	8.8	28	9	US-09-929-818-120	Sequence 120, App
459	3	8.8	28	9	US-09-929-818 - 121	Sequence 121, App
460	3	8.8	28	9	US-09-929-818-123	Sequence 123, App
461	3	8.8	28	9	US-09-929-818-124	Sequence 124, App
462	3	8.8	28	9	US-09-929-818-125	Sequence 125, App
463	3	8.8	28	9	US-09-929-818 - 126	Sequence 126, App
464	3	8.8	28	9	US-09-929-818-127	Sequence 127, App
465	3	8.8	28	9	US-09-929-818 - 128	Sequence 128, App
466	3	8.8	28	9	US-09-929-818-129	Sequence 129, App
467	3	8.8	28	9	US-09-929-818-130	Sequence 130, App
468	3	8.8	28	9	US-09-929-818-131	Sequence 131, App
469	3	8.8	28	9	US-09-929-818-132	Sequence 132, App
470	3	8.8	28	9	US-09-929-818-133	Sequence 133, App
471	3	8.8	28	9	US-09-929-818-134	Sequence 134, App
472	3	8.8	28	9	US-09-929-818-135	Sequence 135, App
473	3	8.8	28	9	US-09-929-818-136	Sequence 136, App
474	3	8.8	28	9	US-09-929-818-137	Sequence 137, App
475	3	8.8	28	9	US-09-929 - 818-138	Sequence 138, App
476	3	8.8	28	9	US-09-929-818-139	Sequence 139, App
477	3	8.8	28	9	US-09-929-818-140	Sequence 140, App
478	3	8.8	28	9	US-09-929-818-141	Sequence 141, App
479	3	8.8	28	9	US-09-929-818-142	Sequence 142, App
480	3	8.8	28	9	US-09-929-818-143	Sequence 143, App
481	3	8.8	28	9	US-09-929 - 818-144	Sequence 144, App
482	3	8.8	28	9	US-09-929-818-145	Sequence 145, App
483	3	8.8	28	9	US-09-929-818-146	Sequence 146, App
484	3	8.8	28	9	US-09-929-818-147	Sequence 147, App
485	3	8.8	28	9	US-09-929-818-148	Sequence 148, App
486	3	8.8	28	9	US-09-929-818-149	Sequence 149, App
487	3	8.8	28	9	US-09-929-818-150	Sequence 150, App
488	3	8.8	28	9	US-09-929-818-151	Sequence 151, App
489	3	8.8	28	9	US-09-929-818-152	Sequence 152, App
490	3	8.8	28	9	US-09-929-818-153	Sequence 153, App
491	3	8.8	28	9	US-09-929-818-154	Sequence 154, App
492	3	8.8	28	9	US-09-929-818-155	Sequence 155, App
493	3	8.8	28	9	US-09-929-818-156	Sequence 156, App
494	3	8.8	28	9	US-09-929-818-157	Sequence 157, App
495	3	8.8	28	9		Sequence 158, App
496	3	8.8	28	9	US-09-929 - 818-159	Sequence 159, App
497	3	8.8	28	9	US-09-929-818-160	Sequence 160, App
498	3	8.8	28	9	US-09-929-818-161	Sequence 161, App
499	3	8.8	28	9	US-09-929-818-162	Sequence 162, App
500	3	8.8	28	9	US-09-929-818-163	Sequence 163, App
501	3	8.8	28	9	US-09-929-818-164	Sequence 164, App
502	3	8.8	28	9	US-09-929-818 - 165	Sequence 165, App
503	3	8.8	28	9	US-09-929-818-166	Sequence 166, App
504	3	8.8	28	9	US-09-929-818-167	Sequence 167, App
505	3	8.8	28	9	US-09-929-818-168	Sequence 168, App
506	3	8.8	28	9	US-09-929-818-169	Sequence 169, App
507	3	8.8	28	9	US-09-929-818-170	Sequence 170, App
508	3	8.8	28	9	US-09-929-818-171	Sequence 171, App
509	3	8.8	28	9	US-09-929-818-172	Sequence 172, App
510	3	8.8	28	9	US-09-929-818-173	Sequence 173, App
511	3	8.8	28	9	US-09-929-818-174	Sequence 174, App
512	3	8.8	28	9	US-09-929-818-175	Sequence 175, App

513	3	8.8	28	9	US-09-929-818-176	Sequence 176, App
514	3	8.8		9	US-09-929-818-177	Sequence 177, App
515	3	8.8	28	9	US-09-929 - 818-178	Sequence 178, App
516	3	8.8	28	9	US-09-929-818 -1 79	Sequence 179, App
517	3	8.8	28	9	US-09-929-818-180	Sequence 180, App
518	3	8.8	28	9	US-09-929-818-181	Sequence 181, App
519	3	8.8	28	9	US-09-929-818-182	Sequence 182, App
520	3	8.8	28	9	US-09-929-818-183	Sequence 183, App
521	3	8.8	28	9	US-09-929-818-184	Sequence 184, App
522	3	8.8	28	9	US-09-929-818 - 185	Sequence 185, App
523	3	8.8	28	9	US-09-929-818-186	Sequence 186, App
524	3	8.8	28	9	US-09-929-818-187	Sequence 187, App
525	3	8.8	28	9	US-09-929-818-188	Sequence 188, App
526	3	8.8	28	9	US-09-929-818-189	Sequence 189, App
527	3	8.8	28	9	US-09-929-818-190	Sequence 190, App
528	3	8.8	28	9	US-09-929-818-191	Sequence 191, App
529	3	8.8	28	9	US-09-929-818-192	Sequence 192, App
530	3	8.8	28	9	US-09-929-818-193	Sequence 193, App
531	3	8.8	28	9	US-09-929-818-194	Sequence 194, App
532	3	8.8	28	9	US-09-929-818-195	Sequence 195, App
533	3	8.8	28	9	US-09-929-818-196	Sequence 196, App
534	3	8.8	28	9	US-09-929-818-197	Sequence 197, App
535	3	8.8	28	9	US-09-929-818-198	Sequence 198, App
				9		Sequence 190, App
536	3	8.8	28		US-09-929-818-199	-
537	3	8.8	28	9	US-09-929-818-201	Sequence 201, App
538	3	8.8	28	9	US-09-929-818-202	Sequence 202, App
539	3	8.8	28	9	US-09-929-818-207	Sequence 207, App
540	3	8.8	28	10	US-09-117-380B-4	Sequence 4, Appli
541	3	8.8	28	10	US-09-003-869-40	Sequence 40, Appl
542	3	8.8	28	10	US-09-003-869-90	Sequence 90, Appl
543	3	8.8	28	10	US-09-003-869-91	Sequence 91, Appl
544	3	8.8	28	10		Sequence 92, Appl
545	3	8.8	28	10		Sequence 95, Appl
546	3	8.8	28	10	US-09-003-869-104	Sequence 104, App
547	3	8.8	28	10	US-09-003-869-105	Sequence 105, App
548	3	8.8	28	10	US-09-003-869-106	Sequence 106, App
549	3	8.8	28	10	US-09-003-869 - 107	Sequence 107, App
550	3	8.8	28	10	US-09-003-869-108	Sequence 108, App
551	3	8.8	28	10	US-09-003-869-109	Sequence 109, App
552	3	8.8	28	10	US-09-003-869-111	Sequence 111, App
553	3	8.8	28	10	US-09-003-869-113	Sequence 113, App
554	3	8.8	28	10	US-09-003-869-115	Sequence 115, App
555	3	8.8	28	10	US-09-003-869-117	Sequence 117, App
556	3	8.8	28	10		Sequence 119, App
557	3	8.8	28	10		Sequence 121, App
558	3	8.8	28	10		Sequence 123, App
559	3	8.8	28	10		Sequence 125, App
560	3	8.8	28	10		Sequence 127, App
561	3	8.8	28	10		Sequence 129, App
562	3	8.8	28	10		Sequence 131, App
563	3	8.8	28	10		Sequence 131, App
564	3	8.8	28	10		Sequence 135, App
565	3	8.8	28	10		Sequence 133, App Sequence 137, App
566	3	8.8	28	10		Sequence 137, App
567	3	8.8	28 28	10		Sequence 141, App
						Sequence 141, App Sequence 143, App
568 560	3	8.8	28	10		
569	3	8.8	28	10	US-09-003-869-145	Sequence 145, App

```
Sequence 147, App
                             10
                                 US-09-003-869-147
570
          3
                8.8
                         28
                                 US-09-003-869-149
                                                               Sequence 149, App
571
          3
                8.8
                         28
                             10
572
          3
                8.8
                         28
                                 US-09-003-869-151
                                                               Sequence 151, App
573
          3
                8.8
                         28
                             10
                                 US-09-003-869-155
                                                               Sequence 155, App
574
          3
                         28
                             10
                                 US-09-003-869-163
                                                               Sequence 163, App
                8.8
                                                               Sequence 165, App
575
           3
                8.8
                         28
                             10
                                 US-09-003-869-165
           3
                         28
                             10
                                 US-09-903-456-116
                                                               Sequence 116, App
576
                8.8
           3
                8.8
                         28
                             10
                                 US-09-989-903-23
                                                               Sequence 23, Appl
577
           3
                                                               Sequence 10, Appl
                         28
                             10
                                 US-09-880-149-10
578
                8.8
                             10
           3
                                                               Sequence 11, Appl
579
                8.8
                         28
                                 US-09-880-149-11
           3
                8.8
                         28
                             10
                                 US-09-986-552-27
                                                               Sequence 27, Appl
580
                                                               Sequence 53, Appl
581
           3
                8.8
                         28
                             10
                                 US-09-999-745-53
           3
                         28
                                                               Sequence 241, App
                8.8
                             10
                                 US-09-981-876-241
582
                                                               Sequence 1, Appli
           3
                         28
                             10
583
                8.8
                                 US-09-880-498-1
                                                               Sequence 37, Appl
           3
                8.8
                         28
                             10
                                 US-09-554-000-37
584
                                                               Sequence 10, Appl
585
           3
                8.8
                         28
                             10
                                 US-09-880-132-10
           3
                         28
                             10
                                                               Sequence 11, Appl
586
                8.8
                                 US-09-880-132-11
           3
                                                               Sequence 3, Appli
                         28
                             10
587
                8.8
                                 US-09-848-967-3
588
           3
                8.8
                         28
                             10
                                 US-09-848-967-4
                                                               Sequence 4, Appli
                         28
                                                               Sequence 26, Appl
589
           3
                8.8
                             10
                                 US-09-976-740-26
           3
                         28
                             11
                                 US-09-983-802-481
                                                               Sequence 481, App
590
                8.8
           3
                                 US-09-983-802-531
                                                               Sequence 531, App
591
                8.8
                         28
                             11
           3
                                                               Sequence 28, Appl
592
                8.8
                         28
                             11
                                 US-09-999-724-28
           3
                         28
                             11
                                 US-09-148-545-241
                                                               Sequence 241, App
593
                8.8
594
           3
                8.8
                         28
                             11
                                 US-09-974-879-269
                                                               Sequence 269, App
                                                               Sequence 520, App
           3
                8.8
                         28
                             11
                                 US-09-974-879-520
595
           3
                         28
                             11
                                 US-09-974-879-546
                                                               Sequence 546, App
596
                8.8
597
           3
                8.8
                         28
                             11
                                 US-09-756-690A-40
                                                               Sequence 40, Appl
598
           3
                8.8
                         28
                             11
                                 US-09-756-690A-90
                                                               Sequence 90, Appl
599
           3
                8.8
                         28
                             11
                                 US-09-756-690A-91
                                                               Sequence 91, Appl
600
           3
                8.8
                         28
                             11
                                 US-09-756-690A-92
                                                               Sequence 92, Appl
                                                               Sequence 95, Appl
601
           3
                8.8
                         28
                             11
                                  US-09-756-690A-95
602
           3
                8.8
                         28
                             11
                                  US-09-756-690A-104
                                                               Sequence 104, App
603
           3
                8.8
                         28
                             11
                                  US-09-756-690A-105
                                                               Sequence 105, App
           3
604
                8.8
                         28
                             11
                                 US-09-756-690A-106
                                                               Sequence 106, App
605
           3
                8.8
                         28
                             11
                                 US-09-756-690A-107
                                                               Sequence 107, App
606
           3
                         28
                             11
                                  US-09-756-690A-108
                                                               Sequence 108, App
                8.8
                                                               Sequence 109, App
607
           3
                8.8
                         28
                             11
                                  US-09-756-690A-109
608
           3
                8.8
                         28
                             11
                                  US-09-756-690A-111
                                                               Sequence 111, App
           3
609
                8.8
                         28
                             11
                                  US-09-756-690A-113
                                                               Sequence 113, App
           3
610
                         28
                                  US-09-756-690A-115
                                                               Sequence 115, App
                8.8
                             11
           3
611
                8.8
                         28
                             11
                                  US-09-756-690A-117
                                                               Sequence 117, App
           3
612
                8.8
                         28
                             11
                                  US-09-756-690A-119
                                                               Sequence 119, App
           3
                         28
                             11
                                                               Sequence 121, App
613
                8.8
                                  US-09-756-690A-121
           3
614
                8.8
                         28
                             11
                                  US-09-756-690A-123
                                                               Sequence 123, App
           3
                             11
                                                               Sequence 125, App
615
                8.8
                         28
                                  US-09-756-690A-125
           3
                                  US-09-756-690A-127
                                                               Sequence 127, App
616
                         28
                             11
                8.8
           3
                                  US-09-756-690A-129
                                                               Sequence 129, App
617
                8.8
                         28
                             11
           3
618
                8.8
                         28
                             11
                                  US-09-756-690A-131
                                                               Sequence 131, App
           3
                         28
                             11
                                                               Sequence 133, App
619
                8.8
                                  US-09-756-690A-133
           3
620
                8.8
                         28
                             11
                                  US-09-756-690A-135
                                                               Sequence 135, App
           3
621
                8.8
                         28
                             11
                                  US-09-756-690A-137
                                                               Sequence 137, App
           3
                                                               Sequence 139, App
622
                         28
                             11
                8.8
                                  US-09-756-690A-139
           3
623
                8.8
                         28
                             11
                                  US-09-756-690A-141
                                                               Sequence 141, App
           3
624
                8.8
                         28
                             11
                                  US-09-756-690A-143
                                                               Sequence 143, App
625
           3
                         28
                                  US-09-756-690A-145
                                                               Sequence 145, App
                8.8
                             11
           3
626
                                  US-09-756-690A-147
                                                               Sequence 147, App
                8.8
                         28
                             11
```

```
627
           3
                8.8
                         28
                             11
                                  US-09-756-690A-149
                                                               Sequence 149, App
628
           3
                8.8
                         28
                             11
                                  US-09-756-690A-151
                                                               Sequence 151, App
629
           3
                8.8
                         28
                             11
                                  US-09-756-690A-155
                                                               Sequence 155, App
630
           3
                8.8
                         28
                             11
                                  US-09-756-690A-163
                                                               Sequence 163, App
631
           3
                8.8
                         28
                             11
                                  US-09-756-690A-165
                                                               Sequence 165, App
632
           3
                8.8
                         28
                             11
                                  US-09-843-221A-68
                                                               Sequence 68, Appl
633
           3
                8.8
                         28
                             11
                                  US-09-843-221A-70
                                                               Sequence 70, Appl
                8.8
634
           3
                         28
                             11
                                  US-09-843-221A-103
                                                               Sequence 103, App
635
           3
                8.8
                         28
                             11
                                  US-09-843-221A-104
                                                               Sequence 104, App
636
           3
                8.8
                             11
                         28
                                  US-09-843-221A-105
                                                               Sequence 105, App
637
           3
                8.8
                             11
                         28
                                  US-09-843-221A-106
                                                               Sequence 106, App
638
           3
                8.8
                         28
                             11
                                  US-09-843-221A-107
                                                               Sequence 107, App
639
           3
                8.8
                         28
                             11
                                  US-09-925-299-1173
                                                               Sequence 1173, Ap
640
           3
                8.8
                         28
                             11
                                  US-09-945-917-23
                                                               Sequence 23, Appl
           3
641
                8.8
                                                               Sequence 220, App
                         28
                             11
                                  US-09-813-153-220
642
           3
                8.8
                         28
                             11
                                  US-09-776-724A-198
                                                               Sequence 198, App
643
           3
                8.8
                         28
                             11
                                  US-09-876-904A-230
                                                               Sequence 230, App
644
           3
                8.8
                         28
                             11
                                  US-09-892-877-335
                                                               Sequence 335, App
645
           3
                8.8
                         28
                             11
                                  US-09-910-180-19
                                                               Sequence 19, Appl
646
           3
                8.8
                         28
                             11
                                  US-09-305-736-285
                                                               Sequence 285, App
647
           3
                8.8
                         28
                             11
                                  US-09-305-736-522
                                                               Sequence 522, App
648
           3
                8.8
                         28
                             11
                                  US-09-305-736-548
                                                               Sequence 548, App
649
           3
                8.8
                         28
                             11
                                  US-09-948-783-348
                                                               Sequence 348, App
650
           3
                8.8
                         28
                             11
                                  US-09-866-066-31
                                                               Sequence 31, Appl
651
           3
                8.8
                         28
                             12
                                  US-10-195-730-307
                                                               Sequence 307, App
652
           3
                                  US-10-195-730-354
                8.8
                         28
                             12
                                                               Sequence 354, App
653
           3
                8.8
                         28
                             12
                                                               Sequence 57, Appl
                                  US-10-293-086-57
654
           3
                8.8
                         28
                             12
                                  US-10-309-422-4
                                                               Sequence 4, Appli
655
           3
                8.8
                         28
                             12
                                  US-10-334-405-4
                                                               Sequence 4, Appli
656
           3
                8.8
                         28
                             12
                                  US-10-251-703-21
                                                               Sequence 21, Appl
                8.8
657
           3
                         28
                             12
                                  US-10-306-686-27
                                                               Sequence 27, Appl
658
           3
                8.8
                         28
                             12
                                  US-09-991-225-35
                                                               Sequence 35, Appl
659
           3
                8.8
                         28
                             12
                                  US-10-100-256B-1
                                                               Sequence 1, Appli
660
           3
                8.8
                                  US-10-345-281-10
                         28
                             12
                                                               Sequence 10, Appl
661
           3
                8.8
                         28
                             12
                                  US-10-345-281-11
                                                               Sequence 11, Appl
662
           3
                8.8
                         28
                             12
                                  US-10-254-569A-1
                                                               Sequence 1, Appli
663
           3
                8.8
                         28
                             12
                                  US-10-254-569A-2
                                                               Sequence 2, Appli
664
                                  US-10-254-569A-3
           3
                8.8
                         28
                             12
                                                               Sequence 3, Appli
665
           3
                8.8
                         28
                             12
                                 US-10-254-569A-4
                                                               Sequence 4, Appli
666
           3
                8.8
                         28
                             12
                                 US-10-254-569A-5
                                                               Sequence 5, Appli
667
           3
                8.8
                         28
                             12
                                  US-10-254-569A-6
                                                               Sequence 6, Appli
668
           3
                8.8
                         28
                             12
                                  US-10-254-569A-7
                                                               Sequence 7, Appli
669
           3
                8.8
                         28
                             12
                                 US-10-254-569A-8
                                                               Sequence 8, Appli
670
           3
                8.8
                         28
                             12
                                 US-10-254-569A-9
                                                               Sequence 9, Appli
671
           3
                8.8
                         28
                             12
                                 US-10-254-569A-10
                                                               Sequence 10, Appl
672
           3
                8.8
                         28
                             12
                                 US-10-254-569A-11
                                                               Sequence 11, Appl
673
           3
                8.8
                         28
                             12
                                 US-10-254-569A-12
                                                               Sequence 12, Appl
674
           3
                8.8
                         28
                             12
                                 US-10-156-911-116
                                                               Sequence 116, App
675
          3
                8.8
                         28
                             12
                                 US-09-845-917A-23
                                                               Sequence 23, Appl
676
          3
                8.8
                         28
                             12
                                 US-10-322-746-7
                                                               Sequence 7, Appli
677
          3
                8.8
                         28
                             12
                                 US-10-411-224-108
                                                               Sequence 108, App
678
          3
                8.8
                         28
                             12
                                 US-09-829-922-22
                                                               Sequence 22, Appl
679
          3
                8.8
                         28
                             12
                                                               Sequence 591, App
                                 US-10-231-417-591
680
          3
                8.8
                         28
                                                               Sequence 2, Appli
                             12
                                 US-10-312-691-2
681
          3
                8.8
                         28
                             12
                                 US-10-314-506-16
                                                               Sequence 16, Appl
682
          3
                8.8
                         28
                             12
                                 US-10-314-506-17
                                                               Sequence 17, Appl
683
          3
                8.8
                         28
                             12
                                 US-10-408-736-81
                                                               Sequence 81, Appl
```

```
684
                        28
          3
                8.8
                            12
                                 US-09-933-767-626
                                                              Sequence 626, App
                            12
685
          3
                8.8
                        28
                                 US-09-933-767-638
                                                              Sequence 638, App
          3
686
                8.8
                        28
                            12
                                 US-09-933-767-1089
                                                              Sequence 1089, Ap
687
          3
                8.8
                        28
                            12
                                 US-10-105-232-329
                                                              Sequence 329, App
688
          3
                8.8
                        28
                            12
                                 US-10-131-686A-19
                                                              Sequence 19, Appl
689
          3
                        28
                            12
                                 US-10-289-135A-36
                8.8
                                                              Sequence 36, Appl
690
          3
                8.8
                        28
                            12
                                 US-10-082-014-39
                                                              Sequence 39, Appl
691
          3
                8.8
                        28
                            12
                                 US-10-276-392-1
                                                              Sequence 1, Appli
692
          3
                8.8
                        28
                            12
                                 US-10-276-392-7
                                                              Sequence 7, Appli
693
          3
                            12
                8.8
                        28
                                 US-10-276-392-8
                                                              Sequence 8, Appli
694
          3
                8.8
                        28
                            12
                                 US-10-276-392-9
                                                              Sequence 9, Appli
695
          3
                8.8
                        28
                            12
                                 US-10-276-392-10
                                                              Sequence 10, Appl
696
          3
                8.8
                        28
                            12
                                 US-10-276-392-11
                                                              Sequence 11, Appl
697
          3
                8.8
                        28
                            12
                                 US-10-276-392-12
                                                              Sequence 12, Appl
698
          3
                        28
                            12
                8.8
                                 US-10-276-392-13
                                                              Sequence 13, Appl
699
          3
                8.8
                        28
                            12
                                 US-10-276-392-14
                                                              Sequence 14, Appl
700
          3
                8.8
                        28
                            12
                                 US-10-276-392-15
                                                              Sequence 15, Appl
701
          3
                8.8
                        28
                            12
                                 US-10-276-392-16
                                                              Sequence 16, Appl
          3
702
                8.8
                        28
                            12
                                 US-10-276-392-17
                                                              Sequence 17, Appl
703
          3
                8.8
                        28
                            12
                                 US-10-276-392-18
                                                              Sequence 18, Appl
704
          3
                8.8
                        28
                            12
                                 US-10-276-392-19
                                                              Sequence 19, Appl
705
          3
                8.8
                        28
                            12
                                 US-10-276-392-20
                                                              Sequence 20, Appl
706
          3
                        28
                            12
                                 US-10-276-392-21
                8.8
                                                              Sequence 21, Appl
707
          3
                8.8
                        28
                            12
                                 US-10-330-872-9
                                                              Sequence 9, Appli
708
          3
                8.8
                        28
                            12
                                 US-10-351-641-54
                                                              Sequence 54, Appl
          3
709
                8.8
                        28
                            12
                                 US-10-351-641-62
                                                              Sequence 62, Appl
          3
710
                8.8
                        28
                            12
                                 US-10-351-641-982
                                                              Sequence 982, App
          3
711
                8.8
                        28
                            12
                                 US-10-351-641-1279
                                                              Sequence 1279, Ap
          3
712
                8.8
                        28
                            12
                                 US-10-351-641-1280
                                                              Sequence 1280, Ap
          3
713
                8.8
                        28
                            12
                                 US-10-351-641-1314
                                                              Sequence 1314, Ap
714
          3
                8.8
                        28
                            12
                                 US-10-351-641-1315
                                                              Sequence 1315, Ap
          3
715
                8.8
                        28
                            12
                                 US-10-351-641-1689
                                                              Sequence 1689, Ap
          3
716
                8.8
                        28
                            12
                                 US-10-029-386-27629
                                                              Sequence 27629, A
          3
717
                8.8
                        28
                            12
                                 US-10-029-386-27986
                                                              Sequence 27986, A
                8.8
718
          3
                        28
                            12
                                 US-10-029-386-28154
                                                              Sequence 28154, A
          3
719
                8.8
                        28
                            12
                                 US-10-029-386-28548
                                                              Sequence 28548, A
          3
720
                8.8
                        28
                            12
                                 US-10-029-386-31090
                                                              Sequence 31090, A
721
          3
                8.8
                        28
                                 US-10-029-386-31267
                                                              Sequence 31267, A
722
          3
                8.8
                        28
                            12
                                 US-10-029-386-31429
                                                              Sequence 31429, A
723
          3
                        28
                            12
                8.8
                                 US-10-029-386-33289
                                                              Sequence 33289, A
724
          3
                8.8
                        28
                            12
                                 US-10-029-386-33582
                                                              Sequence 33582, A
725
          3
                        28
                            12
                8.8
                                 US-10-189-437-316
                                                              Sequence 316, App
          3
726
                8.8
                        28
                            12
                                 US-10-189-437-669
                                                              Sequence 669, App
727
          3
                8.8
                        28
                            12
                                 US-10-080-254-100
                                                              Sequence 100, App
          3
728
                            12
                8.8
                        28
                                 US-10-080-608A-1
                                                              Sequence 1, Appli
          3
729
                8.8
                        28
                            12
                                 US-10-372-076-40
                                                              Sequence 40, Appl
730
          3
                                 US-09-818-683-285
                8.8
                        28
                            12
                                                              Sequence 285, App
          3
731
                            12
                8.8
                        28
                                 US-09-818-683-522
                                                              Sequence 522, App
          3
732
                8.8
                        28
                            12
                                 US-09-818-683-548
                                                              Sequence 548, App
          3
733
                            12
                                                              Sequence 90, Appl
                8.8
                        28
                                 US-10-370-685-90
          3
734
                        28
                            12
                8.8
                                 US-09-873-155-43
                                                              Sequence 43, Appl
          3
735
                8.8
                        28
                            12
                                 US-10-366-493-24
                                                              Sequence 24, Appl
736
          3
                8.8
                        28
                            12
                                                              Sequence 86, Appl
                                 US-10-391-399-86
          3
737
                8.8
                        28
                            12
                                 US-10-211-689-8
                                                              Sequence 8, Appli
          3
738
                8.8
                        28
                            12
                                 US-10-324-143-148
                                                              Sequence 148, App
739
          3
                8.8
                        28
                            12
                                 US-10-397-160-30
                                                              Sequence 30, Appl
740
          3
                8.8
                        28
                            12
                                 US-10-242-355-646
                                                              Sequence 646, App
```

741	3	8.8	28	12	US-10-245-871-32	Sequence 32, Appl
742	3	8.8	28	12	US-10-264-049-2573	Sequence 2573, Ap
743	3	8.8	28	14	US-10-014-269-16	Sequence 16, Appl
744	3	8.8	28	14	US-10-014-269-17	Sequence 17, Appl
745	3	8.8	28	14	US-10-023-529-26	Sequence 26, Appl
746	3	8.8	28	14	US-10-097-079-77	Sequence 77, Appl
747	3	8.8	28	14	US-10-105-931-23	Sequence 23, Appl
748	3	8.8	28	14	US-10-090-109A-1	Sequence 1, Appli
749	3	8.8	28	14	US-10-023-523-26	Sequence 26, Appl
750	3	8.8	28	14	US-10-044-359-23	Sequence 23, Appl
751	3	8.8	28	14	US-10-044-722-8	Sequence 8, Appli
752	3	8.8	28	14	US-10-002-974-16	Sequence 16, Appl
753	3	8.8	28	14	US-10-002-974-17	Sequence 17, Appl
754	3	8.8	28	14	US-10-118-984-23	Sequence 23, Appl
755	3	8.8	28	15	US-10-014-162-48	Sequence 48, Appl
756	3	8.8	28	15	US-10-000-256A-219	Sequence 219, App
757	3	8.8	28	15	US-10-068-564-23	Sequence 23, Appl
758	3	8.8	28	15	US-10-078-090-126	Sequence 126, App
759	3	8.8	28	15	US-10-004-530A-17	Sequence 17, Appl
760	3	8.8	28	15	US-10-101-433-6	Sequence 6, Appli
761	3	8.8	28	15	US-10-131-433-0 US-10-097-065-486	Sequence 486, App
761 762	3	8.8	28	15	US-10-097-065-466	
763	3	8.8	28	15		Sequence 598, App
					US-10-059-261-324	Sequence 324, App
764	3	8.8	28	15	US-10-150-111-131	Sequence 131, App
765	3	8.8	28	15	US-10-211-994-1	Sequence 1, Appli
766	3	8.8	28	15	US-10-157-224A-40	Sequence 40, Appl
767	3	8.8	28	15	US-10-157-224A-90	Sequence 90, Appl
768	3	8.8	28	15	US-10-157-224A-91	Sequence 91, Appl
769	3	8.8	28	15	US-10-157-224A-92	Sequence 92, Appl
770	3	8.8	28	15	US-10-157-224A-95	Sequence 95, Appl
771	3	8.8	28	15	US-10-157-224A-104	Sequence 104, App
772	3	8.8	28	15	US-10-157-224A-105	Sequence 105, App
773	3	8.8	28	15	US-10-157-224A-106	Sequence 106, App
774	3	8.8	28	15	US-10-157-224A-107	Sequence 107, App
775	3	8.8	28	15	US-10-157-224A-108	Sequence 108, App
776	3	8.8	28	15	US-10-157-224A-109	Sequence 109, App
777	3	8.8	28	15	US-10-157-224A-111	Sequence 111, App
778	3	8.8	28	15	US-10-157-224A-113	Sequence 113, App
779	3	8.8	28	15	US-10-157-224A-115	Sequence 115, App
780	3	8.8	28	15	US-10-157-224A-117	Sequence 117, App
781	3	8.8	28	15	US-10-157-224A-119	Sequence 119, App
782	3	8.8	28	15	US-10-157-224A-121	Sequence 121, App
783	3	8.8	28	15	US-10-157-224A-123	Sequence 123, App
784	3	8.8	28	15	US-10-157-224A-125	Sequence 125, App
785	3	8.8	28	15	US-10-157-224A-127	Sequence 127, App
786	3	8.8	28	15	US-10-157-224A-129	Sequence 129, App
787	3	8.8	28	15	US-10-157-224A-131	Sequence 131, App
788	3	8.8	28	15	US-10-157-224A-133	Sequence 133, App
789	3	8.8	28	15	US-10-157-224A-135	Sequence 135, App
790	3	8.8	28	15	US-10-157-224A-137	Sequence 137, App
791	3	8.8	28	15	US-10-157-224A-139	Sequence 139, App
792	3	8.8	28	15	US-10-157-224A-139	Sequence 133, App Sequence 141, App
793	3	8.8	28	15	US-10-157-224A-141	Sequence 141, App Sequence 143, App
793 794	3	8.8	28	15		
	3				US-10-157-224A-145	Sequence 145, App
795 796	3	8.8	28	15	US-10-157-224A-147	Sequence 147, App
796		8.8	28	15	US-10-157-224A-149	Sequence 149, App
797	3	8.8	28	15	US-10-157-224A-151	Sequence 151, App

798	3	8.8	28	15	US-10-157-224A-155	Sequence 155, App
799	3	8.8	28	15	US-10-157-224A - 163	Sequence 163, App
800	3	8.8	~28	15	US-10-157-224A-165	Sequence 165, App
801	3	8.8	28	15	US-10-187-051-40	Sequence 40, Appl
802	3	8.8	28	15	US-10-187-051-90	Sequence 90, Appl
803	3	8.8	28	15	US-10-187-051-91	Sequence 91, Appl
804	3	8.8	28	15	US-10-187-051-92	Sequence 92, Appl
805	3	8.8	28	15	US-10-187-051 - 95	Sequence 95, Appl
806	3	8.8	28	15	US-10-187-051-104	Sequence 104, App
807	3	8.8	28	15	US-10-187-051-105	Sequence 105, App
808	3	8.8	28	15	US-10-187-051-106	Sequence 106, App
809	3	8.8	28	15	US-10-187-051-107	Sequence 107, App
810	3	8.8	28	15	US-10-187-051-108	Sequence 108, App
811	3	8.8	28	15	US-10-187-051-109	Sequence 109, App
812	3	8.8	28	15	US-10-187-051-111	Sequence 111, App
813	3	8.8	28	15	US-10-187-051-113	Sequence 113, App
814	3	8.8	28	15	US-10-187-051-115	Sequence 115, App
815	3	8.8	28	15	US-10-187-051-117	Sequence 117, App
				15	US-10-187-051-117	Sequence 119, App
816	3	8.8	28			-
817	3	8.8	28	15	US-10-187-051-121	Sequence 121, App
818	3	8.8	28	15	US-10-187-051-123	Sequence 123, App
819	3	8.8	28	15	US-10-187-051-125	Sequence 125, App
820	3	8.8	28	15	US-10-187-051-127	Sequence 127, App
821	3	8.8	28	15	US-10-187-051-129	Sequence 129, App
822	3	8.8	28	15	US-10-187-051-131	Sequence 131, App
823	3	8.8	28	15	US-10-187-051-133	Sequence 133, App
824	3	8.8	28	15	US-10-187-051-135	Sequence 135, App
825	3	8.8	28	15	US-10-187-051-137	Sequence 137, App
826	3	8.8	28	15	US-10-187-051-139	Sequence 139, App
827	3	8.8	28	15	US-10-187-051-141	Sequence 141, App
828	3	8.8	28	15	US-10-187-051-143	Sequence 143, App
829	3	8.8	28	15	US-10-187-051 - 145	Sequence 145, App
830	3	8.8	28	15	US-10-187-051-147	Sequence 147, App
831	3	8.8	28	15	US-10-187-051-149	Sequence 149, App
832	3	8.8	28	15	US-10-187-051-151	Sequence 151, App
833	3	8.8	28	15	US-10-187-051-155	Sequence 155, App
834	3	8.8	28	15	US-10-187-051-163	Sequence 163, App
835	3	8.8	28	15	US-10-187-051-165	Sequence 165, App
836	3	8.8	28	15	US-10-023-282-626	Sequence 626, App
837	3	8.8	28	15		Sequence 638, App
838	3	8.8	28	15	US-10-023-282-1089	Sequence 1089, Ap
839	3	8.8	28	15	US-10-255-532-6	Sequence 6, Appli
840	3	8.8	28	15	US-10-075-869-24	Sequence 24, Appl
841	3	8.8	28	15	US-10-202-724-3	Sequence 3, Appli
842	3	8.8	28	15	US-10-262-017-3	Sequence 3, Appli
843	3	8.8	28	15	US-10-106-698-5608	Sequence 5608, Ap
844	3	8.8	28	15	US-10-106-698-6764	Sequence 6764, Ap
845	3	8.8	28	15	US-10-106-698-7736	Sequence 7736, Ap
	3			15	US-10-106-698-7875	Sequence 7875, Ap
846		8.8	28		US-10-106-698-8447	
847	3	8.8	28	15		Sequence 8447, Ap
848	3	8.8	28	15	US-10-295-809-20	Sequence 20, Appli
849	3	8.8	28	15	US-10-322-579-2	Sequence 2, Appli
850	3	8.8	28	15	US-10-192-283A-12	Sequence 12, Appl
851	3	8.8	28	15	US-10-197-954-62	Sequence 62, Appl
852	3	8.8	28	15	US-10-197-954-145	Sequence 145, App
853	3	8.8	28	15	US-10-283-500-19	Sequence 19, Appl
854	3	8.8	28	15	US-10-295-981-23	Sequence 23, Appl

```
855
          3
                8.8
                         28
                             15
                                US-10-160-290-22
                                                               Sequence 22, Appl
856
           3
                8.8
                         29
                             9
                                                              Sequence 4, Appli
                                US-09-730-379B-4
857
           3
                8.8
                         29
                             9
                                US-09-765-527-13
                                                              Sequence 13, Appl
          3
858
                8.8
                         29
                                US-09-765-527-64
                                                              Sequence 64, Appl
          3
                         29
                                US-09-005-243-73
859
                8.8
                             9
                                                              Sequence 73, Appl
860
           3
                         29
                             9
                8.8
                                US-09-904-380-23
                                                              Sequence 23, Appl
861
           3
                8.8
                         29
                             9
                                US-09-224-683-73
                                                              Sequence 73, Appl
                                                              Sequence 1, Appli
862
           3
                8.8
                         29
                             9
                                US-09-932-161-1
863
          3
                8.8
                         29
                             9
                                US-09-864-761-33834
                                                              Sequence 33834, A
864
           3
                         29
                             9
                8.8
                                US-09-864-761-34011
                                                              Sequence 34011, A
865
          3
                             9
                8.8
                         29
                                US-09-864-761-34337
                                                              Sequence 34337, A
866
          3
                8.8
                         29
                             9
                                US-09-864-761-35314
                                                              Sequence 35314, A
867
          3
                8.8
                         29
                             9
                                US-09-864-761-36235
                                                              Sequence 36235, A
868
          3
                         29
                             9
                8.8
                                US-09-864-761-37068
                                                              Sequence 37068, A
869
          3
                8.8
                         29
                             9
                                US-09-864-761-37579
                                                              Sequence 37579, A
870
           3
                8.8
                         29
                             9
                                US-09-864-761-37814
                                                              Sequence 37814, A
871
          3
                8.8
                         29
                             9
                                US-09-864-761-37955
                                                              Sequence 37955, A
872
          3
                8.8
                         29
                             9
                                US-09-864-761-38222
                                                              Sequence 38222, A
873
          3
                8.8
                         29
                             9
                                US-09-864-761-38638
                                                              Sequence 38638, A
874
          3
                8.8
                         29
                                US-09-864-761-38968
                                                              Sequence 38968, A
875
          3
                8.8
                         29
                                US-09-864-761-40067
                                                              Sequence 40067, A
876
          3
                8.8
                         29
                             9
                                US-09-864-761-40393
                                                              Sequence 40393, A
877
          3
                8.8
                         29
                             9
                                US-09-864-761-40727
                                                              Sequence 40727, A
878
          3
                8.8
                         29
                             9
                                US-09-864-761-40944
                                                              Sequence 40944, A
879
          3
                8.8
                         29
                             9
                                US-09-864-761-41199
                                                              Sequence 41199, A
880
          3
                8.8
                         29
                             9
                                US-09-864-761-41596
                                                              Sequence 41596, A
881
          3
                8.8
                         29
                             9
                                US-09-864-761-42035
                                                              Sequence 42035, A
          3
882
                8.8
                         29
                             9
                                US-09-864-761-42321
                                                              Sequence 42321, A
883
          3
                8.8
                         29
                             9
                                US-09-864-761-42342
                                                              Sequence 42342, A
          3
884
                8.8
                         29
                                US-09-864-761-42467
                                                              Sequence 42467, A
885
          3
                8.8
                         29
                             9
                                US-09-864-761-42832
                                                              Sequence 42832, A
          3
                8.8
886
                         29
                             9
                                US-09-864-761-42924
                                                              Sequence 42924, A
          3
887
                8.8
                         29
                             9
                                US-09-864-761-43064
                                                              Sequence 43064, A
888
          3
                8.8
                         29
                             9
                                US-09-864-761-43487
                                                              Sequence 43487, A
889
          3
                         29
                             9
                8.8
                                US-09-864-761-43635
                                                              Sequence 43635, A
890
          3
                8.8
                         29
                             9
                                US-09-864-761-44716
                                                              Sequence 44716, A
891
          3
                8.8
                         29
                                US-09-864-761-44947
                                                              Sequence 44947, A
892
          3
                8.8
                         29
                                US-09-864-761-45036
                                                              Sequence 45036, A
                8.8
893
          3
                         29
                             9
                                US-09-864-761-45207
                                                              Sequence 45207, A
894
          3
                         29
                8.8
                             9
                                US-09-864-761-45777
                                                              Sequence 45777, A
895
          3
                         29
                8.8
                             9
                                US-09-864-761-45815
                                                              Sequence 45815, A
896
          3
                8.8
                         29
                             9
                                US-09-864-761-46618
                                                              Sequence 46618, A
897
          3
                8.8
                         29
                             9
                                US-09-864-761-47028
                                                              Sequence 47028, A
898
          3
                8.8
                         29
                             9
                                US-09-864-761-47383
                                                              Sequence 47383, A
          3
899
                         29
                             9
                8.8
                                US-09-864-761-47524
                                                              Sequence 47524, A
          3
900
                8.8
                         29
                             9
                                US-09-864-761-48176
                                                              Sequence 48176, A
901
          3
                8.8
                         29
                             9
                                US-09-864-761-48505
                                                              Sequence 48505, A
902
          3
                8.8
                         29
                             9
                                US-09-864-761-48518
                                                              Sequence 48518, A
903
          3
                8.8
                         29
                             9
                                US-09-864-761-48746
                                                              Sequence 48746, A
904
          3
                8.8
                        29
                             9
                                US-09-876-388-22
                                                              Sequence 22, Appl
905
          3
                8.8
                        29
                             9
                                US-09-925-299-1270
                                                              Sequence 1270, Ap
906
          3
                8.8
                        29
                             9
                                US-09-764-869-638
                                                              Sequence 638, App
907
          3
                8.8
                        29
                             9
                                US-09-881-490-3
                                                              Sequence 3, Appli
908
          3
                8.8
                        29
                             9
                                US-09-789-836-13
                                                              Sequence 13, Appl
          3
909
                8.8
                        29
                             10
                                 US-09-927-112-5
                                                              Sequence 5, Appli
910
          3
                8.8
                        29
                             10
                                                              Sequence 6, Appli
                                 US-09-927-112-6
911
          3
                8.8
                        29
                             10
                                 US-09-872-864-17
                                                              Sequence 17, Appl
```

```
912
                8.8
                         29
                             10
                                 US-09-872-864-18
                                                              Sequence 18, Appl
913
                8.8
                         29
                             10
                                 US-09-872-864-19
                                                              Sequence 19, Appl
914
           3
                8.8
                         29
                             10
                                 US-09-872-864-20
                                                              Sequence 20, Appl
915
           3
                         29
                8.8
                             10
                                 US-09-922-261-258
                                                              Sequence 258, App
916
           3
                                                              Sequence 8, Appli
                8.8
                         29
                             10
                                 US-09-908-664-8
           3
917
                8.8
                         29
                             10
                                 US-09-908-664-9
                                                              Sequence 9, Appli
918
           3
                                 US-09-908-664-18
                8.8
                         29
                             10
                                                              Sequence 18, Appl
919
           3
                8.8
                         29
                             10
                                 US-09-905-831-12
                                                              Sequence 12, Appl
           3
920
                8.8
                         29
                            10
                                 US-09-905-831-15
                                                              Sequence 15, Appl
           3
921
                8.8
                         29
                             10
                                                              Sequence 79, Appl
                                 US-09-003-869-79
           3
922
                8.8
                         29
                             10
                                 US-09-003-869-98
                                                              Sequence 98, Appl
           3
923
                8.8
                         29
                             10
                                 US-09-911-969-7
                                                              Sequence 7, Appli
           3
924
                8.8
                         29
                             10
                                                              Sequence 52, Appl
                                 US-09-880-149-52
           3
925
                8.8
                         29
                             10
                                 US-09-880-149-55
                                                              Sequence 55, Appl
           3
926
                         29
                8.8
                             10
                                 US-09-764-877-1395
                                                              Sequence 1395, Ap
           3
927
                8.8
                         29
                             10
                                 US-09-071-838-189
                                                              Sequence 189, App
928
           3
                         29
                            10
                8.8
                                 US-09-071-838-242
                                                              Sequence 242, App
929
           3
                8.8
                         29
                            10
                                 US-09-956-206A-1
                                                              Sequence 1, Appli
           3
930
                8.8
                         29
                            10
                                 US-09-984-245-227
                                                              Sequence 227, App
931
           3
                8.8
                         29
                                 US-09-880-132-52
                            10
                                                              Sequence 52, Appl
932
           3
                         29
                8.8
                            10
                                 US-09-880-132-55
                                                              Sequence 55, Appl
           3
933
                8.8
                         29
                             11
                                 US-09-983-802-620
                                                              Sequence 620, App
934
           3
                8.8
                         29
                            11
                                 US-09-956-940-38
                                                              Sequence 38, Appl
935
           3
                8.8
                         29
                            11
                                 US-09-974-879-406
                                                              Sequence 406, App
936
          3
                        29
                8.8
                            11
                                 US-09-974-879-511
                                                              Sequence 511, App
937
          3
                8.8
                         29
                            11
                                                              Sequence 527, App
                                 US-09-974-879-527
938
           3
                                                              Sequence 15, Appl
                8.8
                         29
                            11
                                 US-09-259-658-15
939
           3
                8.8
                                 US-09-756-690A-79
                         29
                            11
                                                              Sequence 79, Appl
940
           3
                         29
                8.8
                            11
                                 US-09-756-690A-98
                                                              Sequence 98, Appl
941
          3
                                                              Sequence 152, App
                8.8
                         29
                            11
                                 US-09-843-221A-152
942
          3
                8.8
                         29
                             11
                                 US-09-925-299-1270
                                                              Sequence 1270, Ap
943
          3
                8.8
                         29
                             11
                                 US-09-847-102A-80
                                                              Sequence 80, Appl
944
          3
                8.8
                         29
                            11
                                 US-09-813-153-218
                                                              Sequence 218, App
945
          3
                8.8
                         29
                            11
                                 US-09-966-262-227
                                                              Sequence 227, App
946
          3
                8.8
                         29
                            11
                                 US-09-969-730-196
                                                              Sequence 196, App
947
          3
                8.8
                         29
                            11
                                 US-09-281-495-51
                                                              Sequence 51, Appl
948
          3
                8.8
                         29
                            11
                                 US-09-983-966-227
                                                              Sequence 227, App
949
          3
                8.8
                        29
                             11
                                 US-09-876-904A-28
                                                              Sequence 28, Appl
950
          3
                8.8
                         29
                             11
                                 US-09-764-891-4191
                                                              Sequence 4191, Ap
951
          3
                8.8
                         29
                             11
                                 US-09-764-891-4851
                                                              Sequence 4851, Ap
952
          3
                                 US-09-892-877-436
                8.8
                         29
                            11
                                                              Sequence 436, App
953
          3
                8.8
                        29
                            11
                                 US-09-847-208-125
                                                              Sequence 125, App
954
          3
                        29
                8.8
                            11
                                 US-09-305-736-406
                                                              Sequence 406, App
955
          3
                8.8
                        29
                            11
                                 US-09-305-736-512
                                                              Sequence 512, App
          3
956
                8.8
                        29
                            11
                                 US-09-305-736-529
                                                              Sequence 529, App
957
          3
                8.8
                        29
                            11
                                 US-09-095-478-25
                                                              Sequence 25, Appl
958
          3
                8.8
                        29
                            11
                                 US-09-908-139-19
                                                              Sequence 19, Appl
959
          3
                                                              Sequence 21, Appl
                8.8
                        29
                            11
                                 US-09-908-139-21
960
          3
                8.8
                        29
                             11
                                 US-09-491-614-14
                                                              Sequence 14, Appl
961
          3
                8.8
                        29
                            11
                                 US-09-491-614-15
                                                              Sequence 15, Appl
          3
962
                8.8
                        29
                            11
                                 US-09-948-783-438
                                                              Sequence 438, App
963
          3
                8.8
                        29
                            11
                                 US-09-910-082A-158
                                                              Sequence 158, App
964
          3
                8.8
                        29
                            11
                                 US-09-910-082A-368
                                                              Sequence 368, App
          3
965
                8.8
                        29
                            12
                                 US-10-153-604A-72
                                                              Sequence 72, Appl
966
          3
                8.8
                        29
                            12
                                                              Sequence 44, Appl
                                 US-10-231-894-44
967
          3
                8.8
                        29
                            12
                                                              Sequence 52, Appl
                                 US-10-345-281-52
968
          3
                        29
                8.8
                            12
                                 US-10-345-281-55
                                                              Sequence 55, Appl
```

3 ,	8.8	29	12	US-10-234-816-95	Sequence 95, Appl
3	8.8	29	12	US-09-789-831-13	Sequence 13, Appl
3	8.8	29	12	US-09-935-384-757	Sequence 757, App
3	8.8	29	12	US-09-935-384-758	Sequence 758, App
3	8.8	29	12	US-10-131-909A-7	Sequence 7, Appli
	8.8	29	12	US-10-160-162-232	Sequence 232, App
3	8.8	29	12	US-10-096-777-1	Sequence 1, Appli
3	8.8	29	12	US-10-008-524A-123	Sequence 123, App
	8.8	29	12	US-10-340-458-4	Sequence 4, Appli
	8.8	29	12	US-10-340-458-21	Sequence 21, Appl
	8.8	29	12	US-09-933-767-660	Sequence 660, App
	8.8	29	12	US-09-933-767-1182	Sequence 1182, Ap
	8.8	29	12	US-10-105-232-304	Sequence 304, App
	8.8	29	12	US-10-105-232-319	Sequence 319, App
	8.8	29	12	US-10-105-232-343	Sequence 343, App
	8.8	29	12	US-10-105-232-512	Sequence 512, App
	8.8	29	12	US-10-280-066-334	Sequence 334, App
	8.8	29	12	US-10-289-135A-25	Sequence 25, Appl
	8.8	29	12	US-10-029-386-27545	Sequence 27545, A
	8.8	29	12	US-10-029-386-27995	Sequence 27995, A
	8.8	29	12	US-10-029-386-29238	Sequence 29238, A
	8.8	29	12	US-10-029-386-30063	Sequence 30063, A
	8.8	29	12	US-10-029-386-31071	Sequence 31071, A
	8.8	29	12	US-10-029-386-31232	Sequence 31232, A
	8.8	29	12	US-10-029-386-31577	Sequence 31577, A
	8.8	29	12	US-10-029-386-32473	Sequence 32473, A
	8.8	29	12	US-10-029-386-32650	Sequence 32650, A
	8.8	29	12	US-10-029-386-33620	Sequence 33620, A
	8.8	29	12	US-10-189-437-291	Sequence 291, App
	8.8	29	12	US-10-189-437-306	Sequence 306, App
3	8.8	29	12	US-10-189-437-330	Sequence 330, App
3	8.8	29	12	US-10-189-437-499	Sequence 499, App
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 8.8 3 8.8	3 8.8 29 3 8.8 29	3 8.8 29 12 3	3 8.8 29 12 US-09-789-831-13 3 8.8 29 12 US-09-935-384-757 3 8.8 29 12 US-09-935-384-758 3 8.8 29 12 US-10-131-909A-7 3 8.8 29 12 US-10-096-777-1 3 8.8 29 12 US-10-008-524A-123 3 8.8 29 12 US-10-340-458-4 3 8.8 29 12 US-09-933-767-660 3 8.8 29 12 US-09-933-767-1182 3 8.8 29 12 US-09-933-767-1182 3 8.8 29 12 US-10-105-232-304 3 8.8 29 12 US-10-105-232-319 3 8.8 29 12 US-10-105-232-319 3 8.8 29 12 US-10-105-232-319 3 8.8 29 12 US-10-289-386-2512 3 8.8 29 12 US-10-299-386-27545 3 8.8

ALIGNMENTS

RESULT 1

US-09-843-221A-18

- ; Sequence 18, Application US/09843221A
- ; Publication No. US20030039654A1
- ; GENERAL INFORMATION:
- ; APPLICANT: KOSTENUIK, PAUL
- ; APPLICANT: LIU, CHUAN-FA
- ; APPLICANT: LACEY, DAVID LEE
- ; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND PARATHYROID HORMONE-
- ; TITLE OF INVENTION: RELATED PROTEIN
- ; FILE REFERENCE: A-665B
- ; CURRENT APPLICATION NUMBER: US/09/843,221A
- ; CURRENT FILING DATE: 2001-04-26
- ; PRIOR APPLICATION NUMBER: 60/266,673
- ; PRIOR FILING DATE: 2001-02-06
- ; PRIOR APPLICATION NUMBER: 60/214,860
- ; PRIOR FILING DATE: 2000-06-28
- ; PRIOR APPLICATION NUMBER: 60/200,053
- ; PRIOR FILING DATE: 2000-04-27

```
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 18
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-18
 Query Match
                        100.0%; Score 34; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 6e-28;
          34; Conservative 0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                         0;
           1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
           1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 2
US-09-843-221A-163
; Sequence 163, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
 TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 163
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-163
 Query Match
                        100.0%; Score 34; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 6e-28;
 Matches 34; Conservative
                             0; Mismatches 0; Indels 0; Gaps
                                                                         0;
```

```
RESULT 3
US-09-843-221A-41
; Sequence 41, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 41
   LENGTH: 30
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-41
  Query Match
                         88.2%; Score 30; DB 11; Length 30;
  Best Local Similarity 100.0%; Pred. No. 6.9e-24;
  Matches
           30; Conservative 0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                            0;
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
QУ
              1111111111111
Db
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
RESULT 4
US-09-843-221A-32
; Sequence 32, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
; CURRENT FILING DATE: 2001-04-26
```

```
; PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 32
   LENGTH: 28
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-32
  Query Match 67.6%; Score 23; DB 11; Length 28; Best Local Similarity 100.0%; Pred. No. 9.8e-17;
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
           6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 5
US-09-169-786-3
; Sequence 3, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
; APPLICANT: Sato, Masahiko
; TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
; FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
   EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
; NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 3
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-169-786-3
  Query Match
                         67.6%; Score 23; DB 9; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.1e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Dh
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
US-09-928-047B-6
; Sequence 6, Application US/09928047B
; Patent No. US20020160945A1
; GENERAL INFORMATION:
```

```
; APPLICANT: Cantor, Thomas
  TITLE OF INVENTION: CYCLASE INHIBITING PARATHYROID HORMONE
  TITLE OF INVENTION: ANTAGONIST OR MODULATORS AND OSTEOPOROSIS
; FILE REFERENCE: 53221-20002.00
; CURRENT APPLICATION NUMBER: US/09/928,047B
; CURRENT FILING DATE: 2001-08-10
; PRIOR APPLICATION NUMBER: US 60/224,446
; PRIOR FILING DATE: 2000-08-10
; NUMBER OF SEQ ID NOS: 8
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 6
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-047B-6
 Query Match 67.6%; Score 23; DB 10; Length 34; Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qy
         12 GKHLNSMERVEWLRKKLQDVHNF 34
           Db
         12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 7
US-09-843-221A-16
; Sequence 16, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 16
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-16
 Query Match
                        67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 8
US-09-843-221A-17
; Sequence 17, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
; CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
 PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEO ID NO 17
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-17
  Query Match
                         67.6%; Score 23; DB 11; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.1e-16;
          23; Conservative
                              0; Mismatches 0; Indels
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 9
US-09-843-221A-20
; Sequence 20, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
```

```
CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 20
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-20
 Query Match
                         67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 10
US-09-843-221A-161
; Sequence 161, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 161
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
```

```
Query Match
                       67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                        0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 11
US-09-843-221A-162
; Sequence 162, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
; CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 162
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-162
 Query Match
                        67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
```

RESULT 12

US-09-928-048A-6

; Sequence 6, Application US/09928048A

; Publication No. US20030138858A1

```
; GENERAL INFORMATION:
; APPLICANT: Scantibodies Laboratory, Inc.
  APPLICANT: Cantor, Thomas L.
  TITLE OF INVENTION: METHODS AND DEVICES FOR DIRECT
  TITLE OF INVENTION: DETERMINATION OF CYCLASE INHIBITING PARATHYROID HORMONE
; FILE REFERENCE: 53221-20015.00
  CURRENT APPLICATION NUMBER: US/09/928,048A
; CURRENT FILING DATE: 2000-08-10
; NUMBER OF SEQ ID NOS: 8
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 6
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-048A-6
  Query Match
                       67.6%; Score 23; DB 12; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 13
US-10-361-928-1
; Sequence 1, Application US/10361928
; Publication No. US20030144209A1
: GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
; PRIOR APPLICATION NUMBER: 09/447,800
; PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: UNSURE
   LOCATION: (1)
   OTHER INFORMATION: Can be desamino Ser, desamino Ala, or desamino Gly
US-10-361-928-1
 Query Match
                        67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 14
US-10-361-928-2
; Sequence 2, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
 APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
; CURRENT APPLICATION NUMBER: US/10/361,928
; CURRENT FILING DATE: 2003-02-11
; PRIOR APPLICATION NUMBER: 09/447,800
; PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
; PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 2
; LENGTH: 34
  TYPE: PRT
  ORGANISM: Homo sapiens
  FEATURE:
  NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-2
 Query Match
                       67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
           Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
US-10-361-928-5
; Sequence 5, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
; APPLICANT: GARDELLA, THOMAS J.
; TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
; TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
; CURRENT APPLICATION NUMBER: US/10/361,928
; CURRENT FILING DATE: 2003-02-11
```

```
; PRIOR APPLICATION NUMBER: 09/447,800
; PRIOR FILING DATE: 1999-11-23
; PRIOR APPLICATION NUMBER: 60/110,152
; PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 5
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
    OTHER INFORMATION: Desamino Ala
US-10-361-928-5
  Query Match 67.6%; Score 23; DB 12; Length 34; Best Local Similarity 100.0%; Pred. No. 1.1e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 16
US-10-361-928-8
; Sequence 8, Application US/10361928
; Publication No. US20030144209A1
: GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
; PRIOR APPLICATION NUMBER: 09/447,800
; PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 8
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-8
  Query Match
                         67.6%; Score 23; DB 12; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
12 GKHLNSMERVEWLRKKLQDVHNF 34
QУ
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
US-10-340-484-15
; Sequence 15, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
; PRIOR FILING DATE: 2002-05-08
; NUMBER OF SEQ ID NOS: 27
; SOFTWARE: PatentIn Ver. 2.1
; SEO ID NO 15
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-340-484-15
 Query Match
                        67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLODVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 18
US-10-340-484-16
; Sequence 16, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
; APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
; PRIOR FILING DATE: 2002-01-10
; PRIOR APPLICATION NUMBER: 60/353,296
```

; PRIOR FILING DATE: 2002-02-01

```
; PRIOR APPLICATION NUMBER: 60/368,955
 PRIOR FILING DATE: 2002-03-28
; PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
; NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 16
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Macaca fascicularis
US-10-340-484-16
  Query Match
                         67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
US-10-016-403-5
; Sequence 5, Application US/10016403
; Publication No. US20020107505A1
   GENERAL INFORMATION:
        APPLICANT: Holladay, Leslie A.
        TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                            INCREASE ELECTROTRANSPORT FLUX
        NUMBER OF SEQUENCES: 10
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
             STREET: 25 West Main Street
             CITY: Madison
             STATE: WI
             COUNTRY: USA
             ZIP: 53701-2236
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.25
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
             FILING DATE: 10-Dec-2001
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
             FILING DATE: 1995-JUN-06
        ATTORNEY/AGENT INFORMATION:
             NAME: Frenchick, Grady J.
             REGISTRATION NUMBER: 29,018
             REFERENCE/DOCKET NUMBER: 8734.28
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: 608-257-2281
             TELEFAX: 608-257-7643
   INFORMATION FOR SEQ ID NO: 5:
```

```
SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             TOPOLOGY: linear
        FEATURE:
             NAME/KEY: Peptide
             LOCATION: 1..34
             OTHER INFORMATION: /note= "parathyroid hormone"
        SEQUENCE DESCRIPTION: SEQ ID NO: 5:
US-10-016-403-5
                         67.6%; Score 23; DB 14; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
           23; Conservative 0; Mismatches
                                                0; Indels 0; Gaps
 Matches
                                                                            0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 20
US-10-016-403-6
; Sequence 6, Application US/10016403
; Publication No. US20020107505A1
   GENERAL INFORMATION:
        APPLICANT: Holladay, Leslie A.
        TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                            INCREASE ELECTROTRANSPORT FLUX
        NUMBER OF SEQUENCES: 10
         CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
              STREET: 25 West Main Street
             CITY: Madison
             STATE: WI
             COUNTRY: USA
             ZIP: 53701-2236
         COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25
         CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
              FILING DATE: 10-Dec-2001
              CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
              FILING DATE: 1995-JUN-06
         ATTORNEY/AGENT INFORMATION:
             NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
             REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATION:
             TELEPHONE: 608-257-2281
             TELEFAX: 608-257-7643
   INFORMATION FOR SEQ ID NO: 6:
        SEQUENCE CHARACTERISTICS:
```

```
LENGTH: 34 amino acids
              TYPE: amino acid
              TOPOLOGY: linear
        FEATURE:
              NAME/KEY: Peptide
              LOCATION:
                        1..34
              OTHER INFORMATION: /note= "modified parathyroid
              hormone"
         SEQUENCE DESCRIPTION: SEQ ID NO: 6:
US-10-016-403-6
  Query Match
                          67.6%; Score 23; DB 14; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
                              0; Mismatches
 Matches
           23; Conservative
                                                 0; Indels
                                                                 0; Gaps
           12 GKHLNSMERVEWLRKKLODVHNF 34
Qу
              1111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 21
US-10-097-079-1
; Sequence 1, Application US/10097079
; Publication No. US20020132973A1
   GENERAL INFORMATION:
        APPLICANT: Condon, Stephen M.
                    Morize, Isabelle
         TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
         NUMBER OF SEQUENCES: 88
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Rhone-Poulenc Rorer Inc.
              STREET: 500 Arcola Road, Mailstop 3C43
              CITY: Collegeville
              STATE: PA
              COUNTRY: USA
              ZIP: 19426
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.30
         CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/097,079
              FILING DATE: 13-Mar-2002
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 09/228,990
              FILING DATE: <Unknown>
              APPLICATION NUMBER: US 60/046,472
              FILING DATE: 14-MAY-1997
         ATTORNEY/AGENT INFORMATION:
              NAME: Martin Esq., Michael B.
              REGISTRATION NUMBER: 37,521
              REFERENCE/DOCKET NUMBER: A2678B-WO
        TELECOMMUNICATION INFORMATION:
              TELEPHONE: (610) 454-2793
              TELEFAX: (610) 454-3808
```

```
INFORMATION FOR SEQ ID NO: 1:
        SEOUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             STRANDEDNESS: <Unknown>
             TOPOLOGY: No. US20020132973A1 Relevant
        MOLECULE TYPE: peptide
        FRAGMENT TYPE: N-terminal
        SEQUENCE DESCRIPTION: SEQ ID NO: 1:
US-10-097-079-1
                         67.6%; Score 23; DB 14; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
QУ
             12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 22
US-09-843-221A-15
; Sequence 15, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 15
  LENGTH: 37
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-15
 Query Match 67.6%; Score 23; DB 11; Length 37; Best Local Similarity 100.0%; Pred. No. 1.2e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             11 GKHLNSMERVEWLRKKLODVHNF 33
Db
```

```
RESULT 23
US-10-168-185-9
; Sequence 9, Application US/10168185
; Publication No. US20030175802A1
; GENERAL INFORMATION:
   APPLICANT: Armbruster, Franz Paul
   APPLICANT: Missbichler, Albert
; APPLICANT: Schmidt-Gayk, Heinrich
  APPLICANT: Roth, Heinz-Jurgen
   TITLE OF INVENTION: Method for Determining Parathormone
   TITLE OF INVENTION: Activity in a Human Sample
   FILE REFERENCE: HLZ-004US
   CURRENT APPLICATION NUMBER: US/10/168,185
   CURRENT FILING DATE: 2002-06-17
   PRIOR APPLICATION NUMBER: PCT/EP00/12911
   PRIOR FILING DATE: 2000-12-18
   PRIOR APPLICATION NUMBER: DE 19961350
   PRIOR FILING DATE: 1999-12-17
 NUMBER OF SEQ ID NOS: 11
   SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 9
   LENGTH: 37
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-168-185-9
                          67.6%; Score 23; DB 12; Length 37;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-16;
  Matches
          23; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
QУ
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              1111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
US-09-169-786-4
; Sequence 4, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
; FILE REFERENCE: X-11480
; CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
; EARLIER APPLICATION NUMBER: US 60/061,800
 EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 4
   LENGTH: 38
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-4
 Query Match
                         67.6%; Score 23; DB 9; Length 38;
 Best Local Similarity 100.0%; Pred. No. 1.2e-16;
```

```
Matches 23; Conservative 0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              1111111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 25
US-09-843-221A-14
; Sequence 14, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 14
  LENGTH: 38
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-14
  Query Match
                         67.6%; Score 23; DB 11; Length 38;
  Best Local Similarity 100.0%; Pred. No. 1.2e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
US-10-245-707-1
; Sequence 1, Application US/10245707
; Publication No. US20030171282A1
; GENERAL INFORMATION:
; APPLICANT: Patton, John S.
; TITLE OF INVENTION: Pulmonary Delivery of Active Fragments of Parathyroid
Hormone
; FILE REFERENCE: 032055-047
; CURRENT APPLICATION NUMBER: US/10/245,707
; CURRENT FILING DATE: 2003-03-11
; PRIOR APPLICATION NUMBER: US 09/577,264
; PRIOR FILING DATE: 2000-05-22
```

```
PRIOR APPLICATION NUMBER: US 09/128,401
  PRIOR FILING DATE: 1998-08-03
  PRIOR APPLICATION NUMBER: US 08/625,586
  PRIOR FILING DATE: 1996-03-28
  PRIOR APPLICATION NUMBER: US 08/232,849
  PRIOR FILING DATE: 1994-04-25
  PRIOR APPLICATION NUMBER: US 07/953,397
  PRIOR FILING DATE: 1992-09-29
  NUMBER OF SEQ ID NOS: 1
  SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 1
   LENGTH: 38
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: parathyroid hormone (PTH) fragment molecues
US-10-245-707-1
                         67.6%; Score 23; DB 12; Length 38;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-16;
 Matches 23; Conservative 0; Mismatches
                                               0; Indels 0; Gaps
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Dh
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 27
US-10-361-928-3
; Sequence 3, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
; APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
; CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 3
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-3
                        64.7%; Score 22; DB 12; Length 33;
  Query Match
```

```
Best Local Similarity 100.0%; Pred. No. 1.2e-15;
          22; Conservative 0; Mismatches 0; Indels 0; Gaps
          12 GKHLNSMERVEWLRKKLQDVHN 33
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHN 33
RESULT 28
US-10-361-928-6
; Sequence 6, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
; PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 6
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-10-361-928-6
                        64.7%; Score 22; DB 12; Length 33;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-15;
          22; Conservative 0; Mismatches 0; Indels 0; Gaps
 Matches
                                                                         0:
          12 GKHLNSMERVEWLRKKLQDVHN 33
Qу
             Dh
          12 GKHLNSMERVEWLRKKLQDVHN 33
RESULT 29
US-10-361-928-9
; Sequence 9, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
 APPLICANT: TAKASU, HISASHI
 APPLICANT: GARDELLA, THOMAS J.
; TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
; TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
```

```
CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-9
                        64.7%; Score 22; DB 12; Length 33;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-15;
          22: Conservative 0: Mismatches 0: Indels
                                                              0; Gaps
          12 GKHLNSMERVEWLRKKLQDVHN 33
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHN 33
RESULT 30
US-10-372-095-24
; Sequence 24, Application US/10372095
; Publication No. US20030162256A1
; GENERAL INFORMATION:
; APPLICANT: Juppner, Harald
  APPLICANT: Rubin, David A.
  TITLE OF INVENTION: PTH1R and PTH3R Receptors, Methods and Uses Thereof
  FILE REFERENCE: 0609.4740002
  CURRENT APPLICATION NUMBER: US/10/372,095
  CURRENT FILING DATE: 2003-02-25
  PRIOR APPLICATION NUMBER: 09/449,632
  PRIOR FILING DATE: 1999-11-30
  PRIOR APPLICATION NUMBER: US 60/110,467
; PRIOR FILING DATE: 1998-11-30
  NUMBER OF SEQ ID NOS: 25
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 24
   LENGTH: 34
   TYPE: PRT
    ORGANISM: Homo sapiens
US-10-372-095-24
                         61.8%; Score 21; DB 12; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-14;
  Matches
           21; Conservative 0; Mismatches
                                               0; Indels 0; Gaps
QУ
          12 GKHLNSMERVEWLRKKLQDVH 32
             12 GKHLNSMERVEWLRKKLQDVH 32
```

```
RESULT 31
US-09-169-786-2
; Sequence 2, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
; APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 2
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-2
                         58.8%; Score 20; DB 9; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-13;
  Matches 20; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
          12 GKHLNSMERVEWLRKKLQDV 31
QУ
             12 GKHLNSMERVEWLRKKLQDV 31
RESULT 32
US-09-843-221A-27
; Sequence 27, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
 APPLICANT: KOSTENUIK, PAUL
 APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 27
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
```

; Publication No. US20030039654A1

```
Query Match
                        58.8%; Score 20; DB 11; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1.3e-13;
 Matches 20; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDV 31
             Db
          12 GKHLNSMERVEWLRKKLQDV 31
RESULT 33
US-09-843-221A-165
; Sequence 165, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 165
  LENGTH: 31
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (31)..(31)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-165
 Query Match
                         58.8%; Score 20; DB 11; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1.3e-13;
 Matches 20; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDV 31
             11111111111111111
Db
          12 GKHLNSMERVEWLRKKLQDV 31
RESULT 34
US-09-843-221A-39
; Sequence 39, Application US/09843221A
```

```
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
 APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
 PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 39
   LENGTH: 30
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-39
                         55.9%; Score 19; DB 11; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-12;
          19; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                           0;
          12 GKHLNSMERVEWLRKKLQD 30
Qу
              Db
          12 GKHLNSMERVEWLRKKLQD 30
RESULT 35
US-09-843-221A-40
; Sequence 40, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
                                                                  )
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 40
  LENGTH: 30
```

```
TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: modified human PTH
US-09-843-221A-40
 Query Match
                        55.9%; Score 19; DB 11; Length 30;
 Best Local Similarity 100.0%; Pred. No. 1.3e-12;
 Matches 19; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                         0;
          12 GKHLNSMERVEWLRKKLQD 30
Qу
             Db
          12 GKHLNSMERVEWLRKKLQD 30
RESULT 36
US-09-843-221A-43
; Sequence 43, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 43
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-43
 Query Match
                        55.9%; Score 19; DB 11; Length 30;
 Best Local Similarity 100.0%; Pred. No. 1.3e-12;
 Matches 19; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
          12 GKHLNSMERVEWLRKKLQD 30
Qу
             Db
          12 GKHLNSMERVEWLRKKLQD 30
RESULT 37
```

US-09-843-221A-166

; Sequence 166, Application US/09843221A

```
; Publication No. US20030039654A1
; GENERAL INFORMATION:
 APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
 NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 166
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
    OTHER INFORMATION: Preferred embodiments - PTH
    NAME/KEY: misc feature
    LOCATION: (30)..(30)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-166
  Query Match 55.9%; Score 19; DB 11; Length 30; Best Local Similarity 100.0%; Pred. No. 1.3e-12;
  Matches 19; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                              0;
           12 GKHLNSMERVEWLRKKLQD 30
Qу
              1111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQD 30
RESULT 38
US-09-843-221A-34
; Sequence 34, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
```

```
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 34
; LENGTH: 28
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: bovine PTH
US-09-843-221A-34
                         52.9%; Score 18; DB 11; Length 28;
  Query Match
 Best Local Similarity 100.0%; Pred. No. 1.3e-11;
 Matches 18; Conservative 0; Mismatches 0; Indels
          17 SMERVEWLRKKLODVHNF 34
Qу
             11 SMERVEWLRKKLODVHNF 28
RESULT 39
US-09-843-221A-51
; Sequence 51, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 51
    LENGTH: 29
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-51
  Query Match 52.9%; Score 18; DB 11; Length 29; Best Local Similarity 100.0%; Pred. No. 1.3e-11;
  Matches 18; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                           0;
          12 GKHLNSMERVEWLRKKLO 29
Qу
             Db
           12 GKHLNSMERVEWLRKKLQ 29
```

```
RESULT 40
US-09-843-221A-167
; Sequence 167, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 167
  LENGTH: 29
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc_feature
   LOCATION: (1)..(1)
    OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-167
  Query Match
                         52.9%; Score 18; DB 11; Length 29;
  Best Local Similarity 100.0%; Pred. No. 1.3e-11;
  Matches 18; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQ 29
             Db
           12 GKHLNSMERVEWLRKKLQ 29
```

Search completed: January 14, 2004, 11:15:04 Job time: 23.8785 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 25.4206 Seconds

(without alignments)

345.145 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score: 34

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 830525 segs, 258052604 residues

Word size :

Total number of hits satisfying chosen parameters: 13497

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : SPTREMBL 23:*

1: sp_archea:*
2: sp_bacteria:*
3: sp_fungi:*

4: sp human:*

5: sp invertebrate:*

6: sp_mammal:*

7: sp_mhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rodent:*

12: sp virus:*

13: sp_vertebrate:*

14: sp unclassified:*

15: sp rvirus:*

16: sp bacteriap:*

17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

왕

No. Score Match Length DB ID Description

1	9	26.5	31 11 Q91Y90	Q91y90 peromyscus
2	9	26.5	31 11 Q91Y91	Q91y91 peromyscus
3	5	14.7	34 5 O17148	017148 echinococcu
4	5	14.7	34 16 Q97K50	Q97k50 clostridium
5	5	14.7	34 17 Q9HR65	Q9hr65 halobacteri
6	5	14.7	35 11 Q8BTB9	Q8btb9 mus musculu
7	5	14.7	35 16 Q97RG6	Q97rg6 streptococc
8	4	11.8	28 10 O24285	024285 pinus radia
9	4	11.8	29 2 Q49148	Q49148 methylobact
. 10	4	11.8	29 4 Q9UCL2	Q9ucl2 homo sapien
11	4	11.8	29 5 Q25603	Q25603 onchocerca
12	4	11.8	29 8 Q9TI61	Q9ti61 allosyncarp
13	4	11.8	29 13 013043	013043 scyliorhinu
14	4	11.8	30 4 Q9UBV5	Q9ubv5 homo sapien
15	4	11.8	30 16 Q8DZP7	Q8dzp7 streptococc
16	4	11.8	31 1 Q55314	Q55314 sulfolobus
17	4	11.8	31 4 Q8NEI8	Q8nei8 homo sapien
18	4	11.8	31 16 050669	050669 borrelia bu
19	4	11.8	31 16 Q8EIW8	Q8eiw8 shewanella
20	4	11.8	32 11 Q9QZQ2	Q9qzq2 mus musculu
21	4	11.8	32 17 Q9HSZ0	Q9hsz0 halobacteri
22	4	11.8	33 5 Q95SD4	Q95sd4 drosophila
23	4	11.8	33 16 Q9PKX3	Q9pkx3 chlamydia m
24	4	11.8	34 2 Q9ZG81	Q9zg81 chlamydia t
25	4	11.8	34 2 Q8GFK2	Q8gfk2 staphylococ
26	4	11.8	34 11 Q8C4P4	Q8c4p4 mus musculu
27	4	11.8	34 13 Q90ZJ4	Q90zj4 gallus gall
28	4	11.8	34 16 Q98FK5	Q98fk5 rhizobium l
29	4	11.8	35 4 Q15421	Q15421 homo sapien
30	4	11.8	35 12 Q8V6J8	Q8v6j8 halovirus h
31	4	11.8	35 16 Q9KQG4	Q9kqg4 vibrio chol
32	4	11.8	35 16 Q8F102	Q8f102 leptospira
33	4	11.8	36 2 Q53920	Q53920 streptomyce
34	4	11.8	36 2 068941	068941 rhodospiril
35	4	11.8	36 4 Q8WXW8	Q8wxw8 homo sapien
36	4	11.8	36 10 Q9SJ63	Q9sj63 arabidopsis
37	4	11.8	36 12 Q9PXD1	Q9pxd1 hepatitis c
38	4	11.8	36 12 Q91D77	Q91d77 ttv-like mi
39	4	11.8	36 13 Q9YHT9	Q9yht9 brachydanio
40	4	11.8	36 16 Q97S91	Q97s91 streptococc
41	4	11.8	37 2 Q8KYJ0	Q8kyj0 bacillus an
42	4	11.8	37 5 Q9N2L2	Q9n2l2 caenorhabdi
43	4	11.8	37 10 Q39942	Q39942 helianthus
44	4	11.8	37 13 Q8AWW8	Q8aww8 oncorhynchu
45	4	11.8	37 16 Q8F6U2	Q8f6u2 leptospira
46	4	11.8	37 16 Q8F5H3	Q8f5h3 leptospira
47	4	11.8	37 16 Q8F419	Q8f419 leptospira
48	4	11.8	37 16 Q8EXV9	Q8exv9 leptospira
49	4	11.8	38 2 Q8KWH7	Q8kwh7 lactobacill
50 51	4 4	11.8	38 5 Q9NBE3	Q9nbe3 chironomus
51 52	4	11.8 11.8	38 5 Q9NBE5 38 5 Q9NBE8	Q9nbe5 chironomus
53	4	11.8	7 =	Q9nbe8 chironomus
54	4		***	Q9nbe4 chironomus
5 4 55	4	11.8 11.8	38 5 Q9NBE7	Q9nbe7 chironomus
56	4	11.8	38 11 035918 38 11 Q91VC8	035918 rattus norv
57	4	11.8		Q91vc8 mus musculu
٠,	**	TT.0	38 13 Q8AWW9	Q8aww9 oncorhynchu
			-	

58	4	11.8	38	16	Q8E0D2	Q8e0d2 streptococc
59	4	11.8	39	2	Q8GPQ8	Q8gpq8 pseudomonas
60	4	11.8	39	12	Q68847	Q68847 hepatitis c
61	4	11.8	39	12	Q68845	Q68845 hepatitis c
62	4	11.8	39	12	Q68846	Q68846 hepatitis c
63	4	11.8	39	13	Q90776	Q90776 gallus gall
64	4	11.8	39	16	Q9KYH4	Q9kyh4 streptomyce
65	4	11.8	39	16	Q8F0C7	Q8f0c7 leptospira
66	4	11.8	40	2	Q8GCS7	Q8gcs7 eubacterium
67	4	11.8	40	4	Q9UE56	Q9ue56 homo sapien
68	4	11.8	40	5	Q9NFH5	Q9nfh5 plasmodium
69	4	11.8	40	6	Q9N1X0	Q9n1x0 equus cabal
70	4	11.8	40	6	Q29283	Q29283 sus scrofa
71	4	11.8	40	12	Q91JZ7	Q91jz7 hepatitis c
72	3	8.8	28	2	Q01303	Q01303 treponema p
73	3	8.8	28	2	Q05574	Q05574 prochloroth
74	3	8.8	28	2	Q9ZB83	Q9zb83 vibrio angu
75	3	8.8	28	3	Q8TGN3	Q8tgn3 saccharomyc
76	3	8.8	28	3	Q8TGT8	Q8tqt8 saccharomyc
77	3	8.8	28	4	Q96SD9	Q96sd9 homo sapien
78	3	8.8	28	4	Q16326	Q16326 homo sapien
79	3	8.8	28	4	Q96EU0	Q96eu0 homo sapien
80	3	8.8	28	4	075980	075980 homo sapien
81	3	8.8	28	4	095737	O95737 homo sapien
82	3	8.8	28	5	Q8MUW0	Q8muw0 schistosoma
83	3	8.8	28	5	Q8MPY2	Q8mpy2 caenorhabdi
84	3	8.8	28	5	Q9BJE4	Q9bje4 pauropus sp
85	. 3	8.8	28	6	062821	062821 bubalus bub
86	3	8.8	28	6	Q9XS89	Q9xs89 equus cabal
87	3	8.8	28	8	Q8WBC8	Q8wbc8 cucurbita e
88	3	8.8	28	8	Q9TIE9	Q9tie9 centella er
89	3	8.8	28	8	Q9TIE8	Q9tie8 centella as
90	3	8.8	28	8	Q9MR96	Q9mr96 crocodylus
91	3	8.8	28	8	Q9TIE6	Q9tie6 centella hi
92	3	8.8	28	.8	Q9ZYS4	Q9zys4 leishmania
93	3	8.8	28	8	Q9MR94	Q9mr94 chelonia my
94	3	8.8	28	8	Q9TIE7	Q9tie7 centella tr
95	3	8.8	28	8	Q8HS23	Q8hs23 pisum sativ
96	3	8.8	28	8	Q8HS11	Q8hs11 spathiphyll
97	3	8.8	28	8	Q8HS07	Q8hs07 welwitschia
98	3	8.8	28	8	Q8HKF0	Q8hkf0 rhipicephal
99	3	8.8	28	9	Q9AZJ9	Q9azj9 bacteriopha
100	3	8.8	28	9	Q38269	Q38269 bacteriopha
101	3	8.8	28	10	Q8S526	Q8s526 ipomoea bat
102	3	8.8	28	10	Q8W232	Q8w232 zea mays (m
103	3	8.8	28	10	Q9LMD6	Q91md6 arabidopsis
104	3	8.8	28	11	Q9ESI4	Q9esi4 petromus ty
105	3	8.8	28	11	Q9ESI5	Q9esi5 thryonomys
106	3	8.8	28	11	Q9ESI6	Q9esi6 hystrix afr
107 108	3 3	8.8 8.8	28 28	11	Q99PL9	Q99pl9 mus musculu
108	3	8.8 8.8		11 11	Q9ESI2	Q9esi2 cryptomys h
110	3	8.8	28 28	11	Q9EP60	Q9ep60 heliophobiu
111	3	8.8	28 28	11	Q9ESI0 Q91XP0	Q9esi0 cryptomys s
112	3	8.8	28 28	11	P70651	Q91xp0 rattus norv P70651 mus sp. bet
113	3 3	8.8	28 28	11	Q9EP59	Q9ep59 georychus c
114	3	8.8	28	11	Q9EF59 Q9ESI1	Q9eps9 georychus c Q9esi1 cryptomys d
	3	0.0	40	T T	TICALL	Asesti ciahromas a

115	3	8.8	28	11	P97914	P97914 rattus norv
116	3	8.8	28	11	Q9EP61	Q9ep61 heterocepha
117	3	8.8	28	11	Q9ESH8	Q9esh8 bathyergus
118	3	8.8	28	11	Q9ESH9	Q9esh9 bathyergus
119	3	8.8	28	11	Q9QXB4	Q9qxb4 mus musculu
120	3	8.8	28	11	Q9ESI3	Q9esi3 cryptomys h
121	3	8.8	28	12	Q68087	Q68087 hepatitis c
122	3	8.8	28	12	Q67786	Q67786 human adeno
123	3	8.8	28	12	Q68095	Q68095 hepatitis c
124	3	8.8	28	12	Q68097	Q68097 hepatitis c
125	3	8.8	28	12	Q68092	Q68092 hepatitis c
126	3	8.8	28	12	Q68091	Q68091 hepatitis c
127	3	8.8	28	12	Q68093	Q68093 hepatitis c
128	3	8.8	28	12	Q68099	Q68099 hepatitis c
129	3	8.8	28	12	Q68096	Q68096 hepatitis c
130	3	8.8	28	12	Q68098	Q68098 hepatitis c
131	3	8.8	28	12	Q83181	Q83181 cauliflower
132	3	8.8	28	12	Q68086	Q68086 hepatitis c
133	3	8.8	28	12	Q68552	Q68552 hepatitis c
134	3	8.8	28	12	Q68094	Q68094 hepatitis c
135	3	8.8	28	12	Q9WNI4	Q9wni4 tt virus. o
136	3	8.8	28	13	Q9PRE8	Q9pre8 oryzias lat
137	3	8.8	28	13	Q9PRI9	Q9pri9 amia calva
138	3	8.8	28	13	Q9PRN8	Q9prn8 carassius a
139	3	8.8	28	15	071346	071346 human endog
140	3	8.8	28	15	Q9QEY3	Q9qey3 human immun
141	3	8.8	28	16	Q8X415	Q8x415 escherichia
142	3	8.8	28	16	Q8NVB8	Q8nvb8 staphylococ
143	3	8.8	28	16	Q8ENT7	Q8ent7 oceanobacil
144	3	8.8	28	16	Q8CK95	Q8ck95 yersinia pe
145	3	8.8	29	2	Q9ZGG4	Q9zgg4 heliobacill
146	3	8.8	29	2	Q54200	Q54200 streptomyce
147	3	8.8	29	2	Q9X3E3	Q9x3e3 prochloroco
148	3	8.8	29	2	Q9X3J9	Q9x3j9 prochloroco
149	3	8.8	29	2	Q47650	Q47650 escherichia
150	3	8.8	29	2	Q9AKV1	Q9akv1 neisseria g
151	3	8.8	29		Q9R511	Q9r511 bacillus su
152	3	8.8	29	2	Q8GL27	Q8gl27 borrelia bu
153	3	8.8	29	3	P78747	P78747 saccharomyc
154	3	8.8	29	3	Q8TGQ5	Q8tgq5 saccharomyc
155	3	8.8	29	4	Q9Y3G1	Q9y3g1 homo sapien
156 157	3	8.8	29		Q9H2A1	Q9h2a1 homo sapien
157	3	8.8	29		Q9UN87	Q9un87 homo sapien
158	3	8.8	29		Q9UDJ9	Q9udj9 homo sapien
159	3	8.8	29		Q9H465	Q9h465 homo sapien
160	3	8.8	29		Q8NEF6	Q8nef6 homo sapien
161	3	8.8	29		Q8TDW8	Q8tdw8 homo sapien
162	3	8.8	29		Q96IR5	Q96ir5 homo sapien
163	3	8.8	29		Q9BSQ3	Q9bsq3 homo sapien
164 165	3	8.8	29		Q95VB2	Q95vb2 spirometra
	3	8.8	29		Q95NF4	Q95nf4 drosophila
166 167	3	8.8	29		Q24683	Q24683 dugesia tig
168	3 3	8.8	29		Q95MD3	Q95md3 bos taurus
169		8.8	29		Q9TRG5	Q9trg5 sus scrofa
170	3 3	8.8 8.8	29		Q8WBB9	Q8wbb9 cucurbita f
171	3		29 29		Q9TI57	Q9ti57 corymbia pa
1/1	ے	8.8	29	8	Q8W7W7	Q8w7w7 cucurbita p

172	3	8.8	29	8	Q9GF70	Q9gf70 trochodendr
173	3	8.8	29	8	Q8W7W4	Q8w7w4 cucurbita a
174	3	8.8	29	8	Q8W7W6	Q8w7w6 cucurbita p
175	3	8.8	29	8	Q8WBC1	Q8wbcl cucurbita o
176	3	8.8	29	8	Q9B5Z6	Q9b5z6 pseudostylo
177	3	8.8	29	8	Q8W7W5	Q8w7w5 cucurbita p
178	3	8.8	29	8		
					Q9B938	Q9b938 eupristina
179	3	8.8	29	8	Q9G370	Q9g370 draco blanf
180	3	8.8	29	8	Q8WBD0	Q8wbd0 cucurbita a
181	3	8.8	29	8	Q8WBB6	Q8wbb6 citrullus l
182	3	8.8	29	8	Q8W7W9	Q8w7w9 cucurbita f
183	3	8.8	29	8	Q8W7W8	Q8w7w8 cucurbita m
184	3	8.8	29	8	Q8HS21	Q8hs21 rheum x cul
185	3	8.8	29	9	Q9FZX6	Q9fzx6 bacteriopha
186	3	8.8	29	10	Q9SC62	Q9sc62 picea abies
187	3	8.8	29	10	Q9SC58	Q9sc58 picea abies
188	3	8.8	29	10	Q9FUS3	Q9fus3 physcomitre
189	3	8.8	29	10	Q9SC57	Q9sc57 picea abies
190	3	8.8	29	10	P82196	P82196 spinacia ol
191	3	8.8	29	11	Q9JK05	Q9jk05 mus musculu
192	3	8.8	29	11		· · ·
193	3				Q9Z2C0	Q9z2c0 mus musculu
		8.8	29	11	Q921Z6	Q921z6 mus musculu
194	3	8.8	29	11	Q9Z2C1	Q9z2c1 mus musculu
195	3	8.8	29	11	070564	070564 mus musculu
196	3	8.8	29	11	Q9QY65	Q9qy65 mus musculu
197	3	8.8	29	11	Q62300	Q62300 mus musculu
198	3	8.8	29	11	008980	008980 mus musculu
199	3	8.8	29	11	Q8CGM8	Q8cgm8 mus musculu
200	3	8.8	29	12	Q91HB1	Q91hbl porcine cir
201	3	8.8	29	12	092646	092646 hepatitis e
202	3	8.8	29	12	Q919A5	Q919a5 porcine rep
203	3	8.8	29	12	Q919A7	Q919a7 porcine rep
204	3	8.8	29	12	Q86872	Q86872 cauliflower
205	3	8.8	29	12	092648	092648 hepatitis e
206	3	8.8	29	12	056835	056835 vibrio chol
207	3	8.8	29	13	Q8AYR0	
208	3	8.8	29	13		Q8ayr0 oryzias lat
209	3				Q8AWC2	Q8awc2 gallus gall
		8.8	29	15	072001	072001 human endog
210	3	8.8	29	15	071342	071342 human endog
211	3	8.8	29	15		071339 human endog
212	3	8.8	29	15	071347	071347 human endog
213	3	8.8	29	15	071340	071340 human endog
214	3	8.8	29	15	071343	071343 human endog
215	3	8.8	29	15	Q9IQJ8	Q9iqj8 human immun
216	3	8.8	29	15	071991	071991 human endog
217	3	8.8	29	15	Q9IQJ1	Q9iqj1 human immun
218	3	8.8	29	15	071994	071994 human endog
219	3	8.8	29	15	071341	071341 human endog
220	3	8.8	29	15	071345	071345 human endog
221	3	8.8	29	15	071336	071336 human endog
222	3	8.8	29	15	071344	071344 human endog
223	3	8.8	29	15	071334	071344 Human endog
224	3	8.8	29	15	071338	
225	3					071992 human endog
		8.8	29	15	071337	071337 human endog
226	3	8.8	29	15	Q9IQJ9	Q9iqj9 human immun
227	3	8.8	29	15	071997	071997 human endog
228	3	8.8	29	15	071335	071335 human endog

Q93My2 oryza saciv	BTHCCX	ο.τ	0.6	0:0	-	C0.7
m) sysm ses lbried Wites 65770 Syw890	Q93WY2 Q8RUD1	10 10	30 30	8.8 8.8	£ 5	587 78 ₹
Obfusl physcomitre	TSU460	0 T	30	8.8	5	283
O23933 flaveria tr	023933	0 T	30	8.8	ε	282
Q988L2 cicer ariet	ZT826Q	OI	30	8.8	ε	182
Q8w674 enterobacte	₽73W8Q	6	30	8.8	ε	280
барукат крибісерра	Овнкет	8	3.0	8.8	ε	672
Q9ti56 eucalyptus	981 T 60	8	30	8.8	ε	872
Q8w7l0 cucurbita p	Ğ8M7L0	8	30	8.8	ε	LL Z
Q8wbc0 cucurbita f	Õ8MBG0	8	30	8.8	3	972
д8м7ћ7 сисихЪіта е	Q8M7H7	8	30	8.8	ε	275
enypobiolem 828999	825660	8	30	8.8	ε	₽८८
g8wppy sechium edu	Ŏ8MBBЛ	8	3.0	8.8	ε	273
Q8wbc6 cucurbita a	Ŏ8MBG6	8	3.0	8.8	ε	272
Q8w7l2 cucurbita a	ZULM8Q	8	30	8.8	ε	ZZZ
Q8wbc4 cucurbita p	Õ8MBC₹	8	3.0	8.8	٤	270
Д8м7ћ6 сисихЪіtа т	9H7W8Q	8	30	8.8	3	697
Q8w7k8 cucurbita p	<u> </u> Овмлкв	8	30	8.8	3	268
Q8wbc2 cucurbita o	Ŏ8MBCS	8	30	8.8	3	۷97 ـ
Q8w7h8 cucurbita a	SH7W8Q	8	30	8.8	3	997
g stidrucus exrw8Q	О 8М7К9 ∞	8	30	8.8	3	265
Q8w7ll cucurbita m	TUTW8Q	8	3.0	8.8	3	₹97
zled selete 91160	64TT6 <u>0</u>	9	3.0	8.8	3	263
Q9bdkl bos taurus	бавркт	9	30	8.8	3	797
P82214 bombyx mori	P82214	S	30	8.8	3	761
Q968nl tritrichomo	TN8960	S	3.0	8.8	ε	790
Q9twh7 ancylostoma	CHWT6Q	9	3.0	8.8	3	726
P78542 homo aspien	P78542	₹	3.0	8.8	3	S28
roades omor agains	ÕABZNS	₽	3.0	8.8	3	752
Q9hbg2 homo sapien Q9hbg2 homo sapien	Ŏ9НВСЗ О́8И2€3	₽	30 30	8.8	£ 5	726 722
nəiqss omod 034874	P78460	₽ ₽	30	8.8 8.8	5	32¢
naiges omod 862860	969960	Ð	30	8.8	5	253
naigss omod 202200	Q9UCA9	Ð	3.0	8.8	5	252
geiges omod 056330 Acmed deputed	Ŏ11210 Ŏ12330	Đ.	3.0	8.8	5	221
Q8jl7l hypocrea li	171189	٤	3.0	8.8	٤	250
Q8jl72 trichoderma	Q8J172	ε	3.0	8.8	3	5₹6
Q9urbo candida alb	дэлхво	ε	3.0	8.8	3	842
Q9p817 candida alb	Q9P817	3	3.0	8.8	ε	747
балето бале бале бале бале бале бале бале бале	бэвеве бэвеве	2	3.0	8.8	ε	546
Q9r4a8 clostridium	Q9R4A8	7	30	8.8	٤	245
Q9r4i6 mycoplasma	Õ∂BØ1e	2	30	8.8	ε	7₹₹
Q9s014 borrelia bu	₱T0S6Õ	7	30	8.8	ε	243
бырст соматопая.	бәвес₹	Z	30	8.8	ε	242
Ŏ₹2∂66 coxiella bu	9965₹Ŏ	Z	3.0	8.8	ε	747
δ∂κ2d3 jencouoatoc	бэвгбз	7	30	8.8	ε	240
Q9r4a9 clostridium	ба ғ 489	7	30	8.8	ε	
Q9r4i5 mycoplasma	Õ∂K∉I2	7	3.0	8.8	3	238
Q8vuw9 staphylococ	Q8VVW9	Z	30	8.8	ε	752
9756dopiləd Sţ¥r4Q	Ω9 <i>¥</i> 4ΩS	Z	30	8.8	ε	236
Q9rei5 acidiphiliu	бавет 2	Z	3.0	8.8	٤ -	235
muibirjaolo as476Q	9Z₹¥6Õ	2	3.0	8.8	3	234
Q918x1 streptomyce	ĞƏF8XI	Z	3.0	8.8	3	233
Q918w9 streptomyce	6M8J6Q	Z	3.0	8.8	3	232
slienomiss 27qteQ	2790eg	2	3.0	8.8	3	231
⊼8d0µ2 шегµзиоавхс	бабонг	LΤ	52	8.8	3	230
Q8x419 escherichia	614X8Q	91	62	8.8	3	229

nəiqss omod 2əbu9Q	ÕƏNDE2	₽	ŢΕ	8.8	3	342
nəiqss omod £mxdeQ	ŏ∂вхи¢	₽	τε	8.8	ε	7 1 5 5
Q8n5x3 homo sapien	бвигхз	Þ	3.1	8.8	ε	3₹0
Q8wyf5 homo sapien	Õ8MXE2	₽	ŢΕ	8.8	ε	988
naigsa omod esaug	ÕƏNE Y Ə	ħ	ŢΈ	8.8	ε	338
naigas omod 246360	2\$A36Q	₽	ŢΕ	8.8	ε	755
094120 saccharomyc	021460	3	3.1	8.8	ε	336
Q93pel yersinia ps	бэзьет	2	3.1	8.8	ε	335
Q813d3 colwellia m	бвгзрз		τε	8.8	ε	334
Q8rts5 uncultured	Q8RTS5	7	τε	8.8	ε	555
Q8kyi9 bacillus an	б 8кл19		3.1	8.8	ε	332
бырть бырть	бавньа		3.7	8.8	ε	331
Q47323 escherichia	გგნებე		ŢΕ	8.8	ε	330
бакров сублия sdn	б жнов		3.1	8.8	ε	379
senomonasa 228820	28890		3.1	8.8	ε	328
бахзсз блосујолосо	бэхзсз		3.1	8.8	ε	725
Q9jmv2 escherichia	ZVML6Q		3.1	8.8	ε	326
Q8kyk0 bacillus an	ОВКАКО		3.1	8.8	ε	325
Q98619 prochloroco	619560		3.1	8.8	ε	324
Q8zvl0 pyrobaculum	OBZAL0	LΙ	30	8.8	5	323
Q8zzf0 pyrobaculum	Q8ZZF0	<u> </u>	30	8.8	٤	322
Q8cn88 staphylococ	Q8CU88	9 T	30	8.8	ε	321
Q8fzx9 brucella su	Q8FZX9	9 T	3.0	8.8	٤	320
Q8Glrl brucella su	басткт	9T	3.0	8.8	ε	3.19
Q8ke55 chlorobium	Ö8KE22	9T	30	8.8	ε	318
Q8u566 agrobacteri	995080	91	3.0	8.8	ε	212
Q9klw7 chlamydia p	б 3ктмл	91	30	8.8	5	918
Q97sx5 streptococc	SXSL6Ŏ	91	30	8.8	٤	312
Q97sy9 streptococc	6XS76Q	9 T	30	8.8	ε	₹1£
m sirəssiən əps[9Q	9 <u>0</u> 2260	9 T	30	8.8	3	313
Q9kaa7 vibrio chol	О ВКЗУ	91	30	8.8	ε	312
Q9kt75 vibrio chol	Ø9KT75	9T	30	8.8	ε	311
Q9ku55 vibrio chol	Ookase Ookase	9T	30	8.8	3	310
Q9pp53 campylobact	бэььез	91	30	8.8	ε	608
Q9x0w9 thermotoga	Q9X0W9	9 T	30	8.8	ε	80£
O50822 borrelia bu	020822	91	3.0	8.8	ε	705
nummi namud 201990 ud silaaaad 558030	Ø86152	SI	30	8.8	3	908
gobne nemud 865980	665980	ST	30	8.8	ε	305
Оверва ришен барос	Q9PT00	13	30	8.8	ε	30€
	Оовио	13	30	8.8	5	303
Ö∂brw∩ агллгуго сэ Ö∂8л6\ хеиоbла ∣зе	Q98UE7	ET	30	8.8	ε	302
O42551 brachydanio	042551	13	30	8.8	ε	301
Q91hc0 tt virus. o	О О З Е Е В О В Т Н С О	7.5	30	8.8	ε	300
	ODINGO ODMPK3	ZI	30	8.8	ε	562
Q91hc3 tt virus. o Q9wlk3 hepatitis e	Овмгкз Обтисз	72	30	8.8	ε	862
	08980	72	30	8.8	ε	26Z
Ø86870 cauliflower	29175 078380	72	9.5	8.8	5	967
Q9ijv5 norwalk vir			30	8.8	ε	562
Q91hc4 tt virus. o	Õõjiict	7T	30		5	56₹
Q91hb7 tt virus. o	бавкзऽ батнв∨	75 T.T	30	8.8 8.8	5	263
Q8br32 mus musculu	Q10753	II	30	8.8 8.8	5	767
Q10753 rattus norv		II		8.8 g g		292
Q9qv19 rattus sp.	δ3δΛ13 57ΛΑΣ	II	30		3	290
Q9qv14 mus sp. col	\$1AŎ6Ŏ	II	30	8.8 8.8	E E	289
Q9qv18 rattus sp.	81VQ9Q	II.	30	8.8 8.8	5	288
Ogadj mas mascaja	Õ8ADPJ	II TT	30 30	8.8 8.8	£	782 288
088249 mesocricetu	0882 4 6	II			5	285
Q63885 mus sp. cys	Õe3882	ŢŢ	3.0	8.8	c	200

Lideg namud 116190	Ø919F1	75	Ţξ	8.8	3	668
Liqeq namud S1919Q	Ø919F2	15	3.1	8.8	3	868
o sijiyeqə hepatitis c	689950	TS	3.1	8.8	3	L6E
Q919f4 human papil	Ŏ∂1∂£∉	75	3.1	8.8	3	968
osijijag9h 907820	604950	77	T.ε.	8.8	3	368
Liqaq namud 01919Q	Й ЭТЭЬО	75	3.1	8.8	3	₹68
osijijedev 76660	L69950	12	3.1	8.8	ε	565
osijijagen 807820	E07920	75	3.1	8.8	3	392
o sijiseqən 207620	Z0L9SO	IS	3.1	8.8	3	168
osijijaged 869920	869950	IS	3.1	8.8	3	068
osijijeday 269950	S699SO	IS	3.1	8.8	ε	389
osijijedeų 969990	969990	12	3.1	8.8	ε	88€
osijijaged 889950	889950	ΙS	3.1	8.8	ε	78£
OS6710 hepatitis c	014990	12	3.1	8.8	ε	38£
Liqaq namud 89819Q	б әтәев	IS	3.1	8.8	3	385
osititaeqeA 217820	026712	IS	3.1	8.8	ε	384
Liqaq namuh 29819Q	б әтәез	IS	3.1	8.8	ε	283
Liqaq namud Ə1916Q	Q919F6	IS	3.1	8.8	ε	382
Liqaq namud 9beleQ	б әтәрә	IS	3.1	8.8	3	381
osijijedet 146990	₹699 S O	12	3.1	8.8	3	380
osijijag9d 107820	104990	12	3.1	8.8	ε	675
Liqaq namud 19919Q	бэтэет	IS	3.1	8.8	ε	378
o sititaeqen 166620	169950	IS	3.1	8.8	ε	LLE
Liqaq namud 81919Q	бэтэв8	IS	3.1	8.8	ε	948
o sititaqen 786870	4899SO	12	3.1	8.8	ε	375
o sijiseqen 707820	L0L9SO	IS	3.7	8.8	ε	₽7£
Liqaq namud E1919Q	<u> </u> батава	75	3.1	8.8	ε	ELE
o aijiaeqəd 266620	7699SO	12	3.1	8.8	3	372
Liqaq namud Ə9019Q	б атаее	12	3.1	8.8	ε	TLE
Liqsq nsmud 71919Q	О ЭТЭЬЛ	IS	3.1	8.8	3	370
oseititaeqea 817380	8 T L990	IS	3.7	8.8	ε	698
Liqaq namud 49919Q	Õ∂1∂E4	IS	3.7	8.8	ε	89£
Liqaq namud 29919Q	Õ∂13Е2	JΣ	3.1	8.8	ε	49٤
ຽ8ເຊີພິງ ໝາຂຸ ພາຂເກງກ	Q8 CGM7	π	3.1	8.8	ε	998
Q92226 mus musculu	Ø355Se	ττ	3.1	8.8	ε	398
Q99kk6 mus musculu	б аакке	ΤŢ	3.1	8.8	ε	₹98
Maculu amm 9dxb6	бэбхве	ΤŢ	3.1	8.8	ε	898
Q9xit0 glycine max	QYIX6Q	OΤ	3.7	8.8	3	362
Q38499 bacteriopha	667860		3.7	8.8	3	198
Q9mnl3 torrentophr	5димед		3.1	8.8	3	098
Monaya phacus acum	8 <i>L</i> SW6Č		31	8.8	3	328
Momuls torrentophr	ÕƏWNI'S		3.1	8.8	3	358
бешьда суверовруве	28M9Y3		3.1	8.8	3	75£
Q8wej4 gnetum gnem	∑8ME14		3.1	8.8	5	326
Q34922 Limulus pol	226452		3.1	8.8	3	355
080011 enallagma a	110080		33	8.8	3	32₹
Q9mmm2 bufo americ	ZMNM2		3.7	8.8	3	366
neiges omod 888820	898670		3.7	8.8	3	325
007800 bos taurus	008760		33	8.8	3	321
Qyxsb9 ateles belz	68SX6Č		3.1	8.8	3	320
Q9nlc8 ovis aries	SOUTC8		31	8.8	3	346
Q951c0 sus scrofa	02796Ö		33	8.8 8.8	3	348 746
Volleys Carris Tallian	SZ977C		37		3	LFE 97E
Q8mih5 canis famil	SHIM8C		31	8.8	5	978 578
Q9Gld6 sus scrota	50GPDe		31	8.8	5	57E 57E
Qeidys drobophita Qeieys trypanosoma	581EX3		3.1	8.8	£ 5	77E
Q8iqv3 drosophila	581QV3	ב י	3.T	8.8	٤	cve

Q8kyn3 bacillus an	S Ő8KAN3		8.8	ε	99₺
баесы баесы баесы	679S6Ö 7		8.8	ε	99£
ev anabdana 994499	S	32	8.8	ε	₹S₹
Q49249 mycoplasma	S	32	8.8	ε	₹23
Q00491 streptomyce	Z Ğ00∉3J	32	8.8	3	₹ 25
Q9aj4l buchnera ap	IACA6Q S	32	8.8	ε	ŢS₽
Q8cta2 staphylococ	16 Q8CTA2		8.8	ε	0Sħ
Q8ctw3 staphylococ	TE Ğ8CLM3		8.8	3	6 † †
Q8e8gl shewanella	TC ÖBEBGI		8.8	٤	855
Q8e9y5 shewanella	16 Q8E9Y5		8.8	ε	LÞÞ
Q8eg38 shewanella	76 Q8EG38		8.8	5	911
Seilanswaha 77198Q	16 Q8EI77		8.8	5	SPP
	16 Q8KBJ8		8.8	5	5 b b
Q8kbj8 chlorobium					
Ŏ8Kcd4 cµloxopinm	I € Ö8KCD 4		8.8	3	443
Ğ8қcd0 сµјохорілш	Te ÖBKCÖ0		8.8	3	442
бакеля сујокорілш	10 Õ8KEA8		8.8	ε	155
genomortnex Iweq8Q	16 Q8P9W1		8.8	ε	0 5 5
Q8n5m9 agrobacteri	IE ÖBNEMƏ		8.8	3	6€₽
бакзае срјашлаја b	16 Ø9K236		8.8	ε	438
ŏ∂kSa0 сhlamydia p	Je ÖƏKS¥0	3.1	8.8	ε	7£4
Sococataerae avoreQ	76 Q97CV6	Ţξ	8.8	3	9€₹
Q97qb7 streptococc	TE ÕƏLÕBL	3.1	8.8	3	98₽
Q97aw8 streptococc	8MSL6Õ 9T	3.1	8.8	3	\$E\$
Opococasta exerçõ	6ZSL6Ö 9T	33	8.8	3	₹33
Q9k7a8 bacillus ha	16 Q9K7 A 8		8.8	٤	432
Q9krl7 vibrio chol	16 Q9KR17		8.8	٤	₹3J
Q9kvf3 vibrio chol	16 Q9KVF3		8.8	ε	0€₹
Q9paw4 xylella fas	16 Q9PAW4		8.8	٤	6Zħ
geg cliolux Augeo	16 Q9PGF2		8.8	5	428
			8.8	٤	457
O21007 borrelia bu					927
O20828 porrelia bu	79 O20828		8.8	5	
OS0818 borrelia bu	8T80SO 9T		8.8	3	45E
OS0709 borrelia bu	604090 91		8.8	3	424
gel sugores 618160	918160 EI		8.8	3	423
esi suqonex LusqeQ	tusaeğ et		8.8	5	422
Q91763 xenopus lae	£9716 <u>Q</u> £1		8.8	3	421
O42540 brachydanio	13 042540		8.8	3	450
o aijisaqəd 666820	75 O26699		8.8	ε	6 ⊺ ₹
sudolołius emaleQ	IS ÕƏT¢WƏ	3.7	8.8	ε	8T₽
Liqaq namud YətleQ	IS	3.1	8.8	ε	LT₽
O26705 hepatitis c	12 026705	3.1	8.8	ε	91₺
Liqaq namuh 09919Q	1S ÕƏ1ƏE0	3.7	8.8	ε	SIÐ
O20708 yebstita c	12 O26708	3.7	8.8	ε	ÐΤÐ
O26685 hepatitis c	JZ 026685	3.1	8.8	٤.	₹ T 3
OS6693 hepatitis c	12 026693	3.1	8.8	ε	₹ I S
Q919f5 human papil	15 Ø313E2		8.8	ε.	TIB
liqeq namud 750100	12 Q919D7		8.8	ε	OTĐ
o sijisepa hepatita c	12 OS6704		8.8	ε	60₹
OS6700 hepatitas	12 OS6700		8.8	ε	80₹
o sifiteded 005330	904950 21		8.8	ε	L0₹
	15 OP6706		8.8	5	90₺
Liqeq namud 090100	069950 ZI		8.8	5	90 <i>v</i>
OS6690 hepatitis c			8.8 g g	£	50 <i>V</i>
бамих уливи всуол	IS ĞƏMWX2				₽0₽
O26686 hepatitis	72 O26686		8.8	3	
Liqeq nemud 8beleg	15 Õ919D8		8.8	3	₹05
Liqeq nemun S919Q	TS Õ313ES		8.8	3	TO#
OS671 1 hepatitis c	117 056711	3.1	8.8	3	00₺

om-bar-1001 #2898Q	ŏee82₹	IS	32	8.8	ε	213
V8qyt7 grapevine v	Q8QYT7	15	32	8.8	ε	212
V 9nivəqere 4JYp8Q	₽TYΩ8Ω	IS	32	8.8	ε	TTS
sudololius 91419Q	Q914F9	IS	32	8.8	ε	OTS
Q9wnis tt virus. o	бэмигг	IS	32	8.8	ε	605
Q9pxv2 hepatitis b	Q9PXV2	IS	32	8.8	ε	805
Q8cZn8 mus musculu	О 8СЅИ8	ŢŢ	32	8.8	ε	۷05
Q9dxxl mus musculu	TXXÕ6Õ	ŢŢ	32	8.8	ε	905
.gs sutter CQwpQ	бабмвs	ττ	32	8.8	ε	202
Q9dwm2 mus musculu	690mms	ττ	32	8.8	ε	₽09
Q9r0e3 mus musculu	бэковз	II	32	8.8	ε	203
Q9jiul rattus norv	TUIL6Q	ŢŢ	32	8.8	ε	205
vijas szyzo 7270AQ	abla 40151	OI	32	8.8	ε	109
Q8rxq5 arabidopsis	бвихбг	OΙ	32	8.8	3	200
tad seomoqi 72228Q	082277	OΙ	32	8.8	ε	66₹
Q9mbus chlamydia p	รถยพ60	6	32	8.8	ε	86₽
õ∂dĮjs zeninis ce	ÕƏGEJS	8	32	8.8	ε	46 ₽
Q951q4 renilla ren	₩955204	8	32	8.8	ε	96₺
edanab olud 01nmeQ	ОЭМИГ О	8	32	8.8	ε	96₹
Q9mmm0 bufo andrew	ОЭМИМО	8	32	8.8	ε	₹6¥
Q31735 beta vulgar	GSTL3 B	8	32	8.8	ε	€6₹
Q8sl87 euglena vir	Ğ82F87	8	32	8.8	ε	76₹
Ø31130 pera vulgar	987189	8	32	8.8	ε	16₺
Ŏ∂∂Į∂2 cercidiphyl	Ø∂GŁ∂2	8	32	8.8	ε	06₺
Q8s189 euglena ste	68758 ð	8	32	8.8	ε	68₹
Q36494 farfantepen	£649£Q	8	32	8.8	٤	88 1
naigss omod S27910	019722	L	32	8.8	ε	∠8 ₹
m openilleg linago	Ŏ82NŁI	L	32	8.8	ε	98₺
Q8mj9l macaca mula	T6LM8Q	9	32	8.8	3	98£
Ø9tse6 oryctolagus	Ø9TSE6	9	32	8.8	3	₽8₽
Q9tr69 sus scrofa	Q9TR69	9	32	8 8	٤	€8₹
Q9tr67 sus scrofa	Q9TR67	9	32	8.8	٤	482
Q8t757 branchiosto	Q8T757	Ś	32	8.8	ε	184
Ol8606 branchiosto	909810	5	32	8.8	3	087
Q9twr8 procambarus	Q9TWR8	5	32	8.8	٤	6 L F
096634 trypanosoma	₹£9960	5	32	8.8	3	87£
Q8t382 leishmania	Q8T382	S	32	8.8	ε	<i>LL</i> ₹
Q9gpd9 drosophila	бэсьрэ бэсьрэ	S	32	8.8	ε	9∠₹
Q9uqvl homo sapien	TVQUEQ	₽	25	8.8	3	SLF
Qean omod 6anue	69NN6Ö	₽	32	8.8	3	ÐΔÐ
neigas omod 02i3e0	021960 096120	Đ	32	8.8	ε	£7£
Q8tbq3 homo sapien	Q8TBQ3	₽	32	8.8	٤	27£
Q96gm7 homo sapien	ZWD960	₽	22	8.8	3	ILΦ
Q8tc25 homo sapien	Q8TC25	₽	32	8.8	3	0 L D
rapigas omod 0dau90	б алево	Đ	22	8.8	3	69ħ
Gleen Applea	ŎISƏ00	₽	32	8.8	3	89ħ
Q8rdr3 saccharomyc	Q8TGT3	ε	32	8.8	3	49 ₽
Q01058 kluyveromyc	Q01058	5	25	8.8	3	99 1
m senomonas S2f58 Zymononas m	Q8GF58	2	32	8.8	3	S9₹
I muidosida E7819Q	Q9L373	2	32	8.8	3	₹9₹
Q8vnt6 enterobacte	9 TNV 8Q	2	32	8.8	ξ	E9#
O32493 bacteroides	032493	2	32	8.8	5	79 <i>t</i>
Q8kym4 bacillus an	OSSVØS Ö8KXW¢	2	32	8.8	5	T9#
Q9r5q7 aeromonas h	Q9RVWA	2	32	8.8	5	09ħ
Q8vn2l kluyvera ci	Q8VN21	2	32	8.8	5	69Þ
us sullias 4.5534 Q	081M131	2	32	8.8	£ ,	8S 1
Q44509 azotobacter	044206	2	32	8.8	5	49₽ 29₽
TOTEGOTORE BURNED	003110	C	CC	U U	C	<i>∨</i> ⊢ <i>∪</i>

naiqsa omod etanag	6₽₩8Q	₽	33	8.8	3	072
nəiqsa omod LibuQQ	ğəndi t	Þ	33	8.8	3	695
Q15285 homo aapien	ÕT2S82	₽	εε	8.8	ε	899
naiqss omod asqueQ	g9up36	₽	εε	8.8	ε	L9S
Mardes omod Espueg	Q9UC33		εε	8.8	ε	999
nəiqsa omod 02696Q	096660	₽	£ E	8.8	ε	S9S
Қағды, авссуякош <i></i> ус	Q8TGR1	ε	εε	8.8	ε	₹ 95
Q8gll5 borrelia bu	Õ8GFI2	7	εε	8.8	ε	299
P82583 streptococc	P82583	2	εε	8.8	ε	295
Q9flf4 enterococcu	õəete t	Z	εε	8.8	ε	T95
Ğəksvi rhizobium l	бак5л1	Z	33	8.8	ε	095
Øaegs brochloroco	ZZ9S6Ŏ	7	EΕ	8.8	ε	655
Q56414 escherichia	ð2 0 414	Z	εε	8.8	ε	899
Q8kq80 vibrio chol	О 8КОВО	7	εε	8.8	ε	LSS
Q9f2c4 salmonella	Õðesc4	7	εε	8.8	ε	999
Q9k370 rhizobium l	б акз10	Z	εε	8.8	ε	999
Q9k533 listeria mo	<u> </u> бакгзз	7	33	8 - 8	ε	₹ 99
Q9s651 streptococc	ТS9S6Õ	Z	33	8.8	ε	223
бахзшг Бхосујохосо	бахзиг	7	33	8.8	ε	222
бакушз ргостогосо	бакгиз	7	εε	8.8	ε	τςς
Ğəreşə brochloroco	₹29S6Õ		33	8.8	3	099
gskh96 pseudomonas	б8кнәе		εε	8.8	ε	6₹9
Q8zzf7 pyrobaculum	Q8ZZF7	LΙ	32	8.8	ε	8₹9
Q8cre7 staphylococ	О 8СКЕЈ	9τ	32	8.8	ε	∠ ₹9
Q8ctr7 staphylococ	О ВСТВ7	91	32	8.8	ε	9₹9
Q8cne0 staphylococ	Ø8CNe0	9 T	32	8.8	3	9#9
Q8ead5 shewanella	Ö 8EYD2	9T	32	8.8	3	₽₽₽
Q8ee22 shewanella	Õ8EESS	91	32	8.8	ε	243
Q8ej44 shewanella	08E144	9 T	32	8.8	ε	242
Q9k4g0 streptomyce	Õ∂K ⊄ G0	91	32	8.8	3	T #S
Q8kcv3 chlorobium	ОВКСЛЗ	9 T	32	8.8	3	040
Q8kez9 chlorobium	Õ8KEZ3	9 T	32	8.8	ε	683
Q8kg49 chlorobium	Ŏ8KG₹6	9T	32	8.8	ε	828
Q8p382 xanthomonas	Q8F382	9 T	32	8.8	٤	LES
Q8x3v6 escherichia	9VEX8Q	9T	32	8.8	٤	989
I muidozifir ədas8QQ	98A86Q	91	32	8.8	ε	232
Q9a2h0 caulobacter	Q9A2H0	91	32	8.8	ε	₽£2
Q9k7b0 bacillus ha	баклво	9T	32	8.8	ε	233
Q9klf0 vibrio chol	ÖƏKTE0	91	32	8.8	3	282
Q9kpn9 vibrio chol	ОЭКБИЭ ОЭКБИЭ	91	32	8.8	ε	189
Q9ktv2 vibrio chol	ÕƏKLAS	9T	32	8.8	٤	089
Q9kvf7 vibrio chol	оокшио Оокльл	91	32	8.8	ε	279
Q9pgt0 xylella fas	Q9PGT0	91	32	8.8	ε	828
O21003 porrelia bu	OZIOO3	9T	32	8.8	٤	LZS
O50865 borrelia bu	98050	9T	32	8.8	ε	279
OS0851 borrelia bu	TS80SO	9T	32	8.8	3	225
OS0706 borrelia bu	904050	9 T	32	8.8	٤	₽25
sunifavis 07040	Q8QG70	13	32	8.8	3	523
Q8dg82 oucorhynchu	080G30	13	32	8.8	5	222
Овадву опсохуулсы	Q8QG83	13	32	8.8	ε	125
Овасву овсохрушери	Ŏ8ŎĊ8₹	13	32	8.8	ε	220
Q9ps2l carassius a	Ø90684	E I	32	8.8	5	615
Q8dg71 oncorhynchu	Q8QG71	13 13	32	8.8	5	815
	Z15080	13	32	8.8	5	. LTS
Vedgy 2 calmo salar	080673	2 T	32	8.8	5	915
бадал вись бадал	£25080	IS	32	8.8	5	STS
% of the street		7.2	. S.E.	8.8	5	919 7TS
v ənivəqere	Ŏ8ĞXN0	C١	ሪኒ	8 8	c	V 13

0.0000000000000000000000000000000000000						
Q8v5g8 hepatitis c	Õ8Λ2G8	ΙS	33	8.8	ε	479
Q91j13 tt virus. o	ĞƏTTI3	IS	3.3	8.8	3	979
Seitits of 08v5h0 hepatitis c	б8лено	12	33	8.8	ε	972
O72994 hepatitis c	₽66270	12	33	8.8	3	₽29
Q91j11 tt virus. o	TTLTEQ	IS	33	8.8	ε	623
o sititaged 860270	866270	12	33	8.8	3	622
Q91jl6 tt virus. o	911160	12	33	8.8	3	129
O72999 hepatitis c	072999	ZI	33	8.8	ξ	029
O91106 tt virus. o	90LI6Q	12	33	8.8	ε	619
ullni naiva 888989	£96£8Q	12	33	8.8	ε	819
o silideqe700	766270	72	5.5	8.8		
Q91j08 tt virus. o	80L16Q	ZI	5.5		3	LT9
Sv5g7 hepatitis c				8.8	3	919
sititaged S1898Q	Δ99Λ8 δ	75	33	8.8	3	ST9
Q91j09 tt virus. o	71698Ŏ	75	33	8.8	3	₽ Т9
	60L16Q	IS	33	8.8	3	613
O72995 hepatitis c	O72995	12	5.5	8.8	ε	213
Q91j07 tt virus. o	70L16Q	12	33	8, 8	ε	T T9
O SIJIS EE Virus. O	SILIQ	12	33	8.8	ε	019
Q91j12 tt virus. o	Z1L16Q	77	5.5	8.8	3	609
Q91jl4 tt virus. o	g91J14	IS	εε	8.8	3	809
o sijiseqən 600000	966740	IS	33	8.8	3	۷09
Q91j04 tt virus. o	₹91104	12	εε	8.8	ε	909
Liqaq mamud 280099	Ğ8006Ö	12	33	8.8	ε	902
m) aysm sea Zv8seQ	GN8S6 0	OΤ	εε	8.8	3	₹09
siaqobidara 277940	5 <i>LL</i> 6 † 0	OΤ	εε	8.8	ε	£09
Q38551 bacceriopha	Ğ3822T	6	55	8.8	3	209
бзя288 ряссектория	Ø38288	6	33	8.8	ε	109
Q8hs33 hydraetis c	08H233	8	33	8.8	3	009
бариру сружну	банинз	8	5.5	8.8	5	669
Q8wej5 ginkgo bilo	OSMIMS OSME12	8	5.5	8.8		
Q9bac4 euglena mut		_			3	869
Cyclana transcription to the true care form the true form	Õ3BYC†	8	33	8.8	3	L6 5
	Q9T2N1	8	33	8.8	3	969
OV8857 Phytophthor	728870	8	33	8.8	ε	969
m sulidood EqnxeQ	<u>о</u> бахирз	8	5.5	8.8	ε	₹ 69
баруст сидгения вес	Q9BAC1	8	εε	8.8	ε	869
Q8w9g0 meloidogyne	Õ8MAG0	8	5.5	8.8	ε	269
Øapsce endrens dra	ÕƏBYG6	8	33	8.8	ε	165
m opsnillsp 01na80	Õ8ZИĿ0	L	33	8.8	3	069
Q8mgu2 bos taurus	Q8MGU2	L	£ £	8.8	ε	685
Q95m05 bos taurus	баемое	9	33	8.8	3	889
Q9tsx7 sus scrofa	ZXST6Q	9	εε	8.8	ε	282
Ol8916 sus scrofa	916810	9	33	8.8	ε	989
gyvhd7 drosophila	ТОНИР У	9	33	8.8	3	282
V99ta2 babesia bov	SAT Đ6Q	5	33	8.8	ε	₽85
699555 cryptospori	Q9GT95	S	33	8.8	ε	583
Q9gta9 sarcocystis	QATDQ	5	33	8.8	ε	282
Q27310 paramecium	Q27310	S	33	8.8	ε	T85
Q17293 cancer ante	01779 017293	5	55	8.8	ε	085
Q9gtal babeaia bov	IATDQ 200510	9	55	8.8	5	649
Q9gta6 sarcocystis	Q9GTA6	5	33	8.8	3	
Q9gtb3 eimeria ten						878
	Q9GTB3	S	33	8.8	3	<i>LL</i> S
Q99tc2 plasmodium	ZOTDEQ	S	33	8.8	3	978
Q26672 tethya aura	Z76672	5	33	8.8	3	S78
бхов серух воли	£79920	2	5.5	8.8	ε	∌∠S
Q99t93 cryptospori	£6TĐ6Q	9	εε	8.8	ε	573
Q9gtb2 eimeria ten	Q9GTB2	9	5.5	8.8	ε	272
nəiqse omod 83626Q	899760	₽	εE	8.8	ε	TLS
•						

nəiqas omod 12221Q	ÕI2S2T	₽	₽€	8.8	ε	₹89
neigas omod Epenag	О́8ИЕО́3	₽	₽€	8.8	ε	889
nəiqss omod 81446Q	Õ∂H∉L8	₹	₽£	8.8	ε	289
neigse omod 7qsdeQ	Z4S86Q	₹	₹5	8.8	ε	T89
ghtpdl homo sapien	ОЭНВС Т	₽	₹8	8.8	3	089
naiqsa omod 12ww8Q	TSMM87	₽	₹	8.8	ε	649
naiqsa omod 40iu9Q	₹9IN6Õ	₹	₽€	8.8	ε	878
Termous 81640	бэнзвв	Þ	₽€	8.8	3	<i>LL</i> 9
nəiqss omod enpueQ	бидиед	₽	₽€	8.8	3	949
nəiqss omod 01eeeg	016660	₽	₽£	8.8	ε	S <i>L</i> 9
Q00377 coccidioide	Z00377	ε	₽€	8.8	ε	₹49
58d8c9 pseudomonas	08G8C9	2	₽€	8.8	ε	٤٢9
Q89jc8 campylobact	08G1C8	2	₹8	8.8	ε	ZL9
Q9r8a2 chlamydia t	Q9R8A2	Z	₽€	8.8	3	T <i>L</i> 9
O3I00I pnclinipri	190150	7	₽€	8.8	ε	049
Q9x716 pseudomonas	<u> მ</u> ՐХ60	2	₽£	8.8	ε	699
Ø44208 pseudomonas	Õ44508	7	₽€	8.8	3	899
026234 thermus adu	Õ2 0 53₹	7	₽€	8.8	ε	499
б∂кглј счшbУlорас¢	ชื่อ <i>ห</i> อกว	Z	₹8	8.8	ε	999
Øax3Je brocpjoroco	бэхзге	7	₹8	8.8	ε	999
Q54427 spiroplasma	Ŏ2 4 451	7	₹8	8.8	ε	₹99
Q8u2x8 pyrococcus	Q8U2X8	LΤ	33	8.8	ε	899
Q9hsx6 halobacteri	9XSH6Õ	LT	εε	8.8	3	799
δεσάλι ερερμίτος ος		9 T	33	8.8	3	τ99
Oggmm3 atreprococc	Õ8DMM3	9 T	εε	8.8	ε	099
Q8ely5 streptococc	Õ8ETA2	9 T	£ £	8.8	3	69
Q8e8w4 shewanella	бвевм∢	91	٤٤	8.8	3	89
Q8ee42 shewanella	Õ8EE¶S	91	33	8.8	3	LS9
Ø8ee29 ahewanella	бяеег	9 T	33	8.8	ε	959
Q8ega9 shewanella	Õ8ECF3	9 T	33	8.8	ε	99
Q8ej76 shewanella	Ö8E1 10	9 T	33	8.8	3	₹ 9
Q8ejh6 shewanella	бяелне	91	εε	8.8	3	£ 5 9
Q8fy86 brucella su	Ö 8£X8 <i>e</i>	9 T	33	8.8	ε	759
Watyre brucella su	Овьлие	9 T	33	8.8	ε	τς9
Q8fz67 brucella su	Q8FZ67	9 T	5.5	8.8	ε	09
Д8Кеј7 сћ1охортим	Овкелл	9 T	33	8.8	3	6₹9
Жана сутот бана бана бана бана бана бана бана бан	б 8ксээ	9 T	£ E	8.8	3	8₹9
Qsnull staphylococ	ОВИЛГ Ј	91	33	8.8	ε	∠ ₹9
Q8u5m4 agrobacteri	Q8U5M4	91	33	8.8	ε	9179
Q8xaj9 escherichia	elax8Q	9 T	33	8.8	ε	S#9
slienomiss Pviz8Q	₽VIZ8Ω	9T	33	8.8	ε	##9
Q8zkl2 salmonella	Õ8 ZKT'S	91	33	8.8	3	€₽9
Q932n2 staphylococ	Q932N2	91	33	8.8	ε	242
Q97pcl streptococc	Q97PC1	9 T	33	8.8	3	τ # 9
Q97t91 streptococc	16T76Q	9 T	33	8.8	ε	0₹9
Q9kmll vibrio chol	бэкигт	91	33	8.8	ε	689
Q9pa23 xylella fas	Q9PA23	91	33	8.8	ε	889
Osez asimis 7018Q	L01980	Sī	33	8.8	3	۲٤9
P82236 rana tempor	P82236	13	33	8.8	ε	989
P82740 rana tempor	P82740	13	5.5	8.8	ε	989
ulini naiva 82199Q	861660	ZI	33	8.8	ε	₽£9
o sititagen 400870	₽00£70	72	5.5	8.8	ε	559
Sv5g9 hepatitis c	08A2G	21	55	8.8	ε	289
94114 maman herpe	197690	72	55	8.8	ε	189
o .suriv tt 715190	711160	12	33	8.8	ε	0.69
o .suriv tt 515180	011160	72	33	8.8	ε	629
O73007 hepatitis c	700570	21	55	8.8	ε	829
n bititemed TAASTA	200620	υ ι		3 0	C	553

Q8kde4 chlorobium	€ Õ8KDE₫	34 I	8.8	3	ΤΦL
Ő8kel2 chlorobium	e		8.8	3	0 1
Дакеда срјохорілш	e		8.8	3	6£7
бвилто всябруу осос	9 08NATO		8.8	ε	857
бвимів вгаруулосос	е баимьв		8.8	ε	LEL
бвимхз всябух осос	е бвимхз		8.8	ε	9E <i>L</i>
Q8ric7 fusobacteri	6 Q8RIC7		8.8	ε	S87
Q8viyl mycobacteri	6 Q8VIY1		8.8	ε	₹£7
Q8n5v2 agrobacteri	6 Q8USV2		8.8	ε	££7
∑8х4v1 евсрегісріа	ΤΛ † Χ8Ŏ 9	_	8.8	3	287
бакура срјешлоте Б	е бэкзвэ		8.8	ε	TEL,
Q97pi6 streptococc	9I476 <u>Q</u> 9.		8.8	٤	0.87
Q97sf7 streptococc	74276Q 3.		8.8	٤	627
M sirsetis m	.6 Q9JV3		8.8	5	82 <i>L</i>
M Sirseisa m	427L6Q 9.		8.8	5	
Ğəklce pacillus ha	.6 Q9K7C6		8.8	٤	72 <i>T</i> 727
Q9km63 vibrio chol	.6 Q9KM63		8.8	5	92 <i>L</i>
Ğəkbmə niprio chol	6 Q9KPW9		8.8		
Q9kra8 vibrio chol	.6 Q9КRA8			3	₽ Z <i>L</i>
Q9pdd0 xylella fas			8.8	3	723
Q9pfd5 xylella fas	.6 Q9PDD0	_	8.8	3	727
Q9pgf8 xylella fas	.6 Q9PPA5		8.8	3	727
Q9pgh3 xylella fas	.6 Q9PGF8		8.8	3	720
O50877 borrelia bu	.6 д9рсн3		8.8	3	6T <i>L</i>
	LL8090 9°		8.8	ε	8TL
O50812 Portelia bu	7 O208TS		8.8	ε	LTL
Q9w8yl chimpanzee	IX8W6Q S		8.8	ε	917
nummi namud 287weQ	S Q9WR32		8.8	3	STL
nummi namud 244040	S##0#0 S		8.8	ε	₽IL
бейді оисохудисул	CBQGF7		8.8	ε	713
буван опсохуулсь	13		8.8	ε	ZIL
Q9pre7 oryzias lat	гз баькел		8.8	ε	TTL
O42526 scyliorhinu	13 042526	3₫ 1	8.8	ε	OTL
бабша оисохухисул	13 Ğ8ĞEM9	3₫ 1	8.8	ε	60 <i>L</i>
Ğ8ddds oucoxyXucyn	13	3₫ ፲	8.8	ε	807
m smojstoms 101810	TOTETO ET	34 1	8.8	ε	L0L
O42521 scyliorhinu	13 042521	3₫]	8.8	ε	90 <i>L</i>
Қәдмев ка г сусошед	is Gədmes	3₫ 1	8.8	3	S0L .
Q8vhl4 rattus norv	IJ Ö8AHP4	3₫ 1	8.8	ε	₹ 0∠
7-d .qs sum 07149Q	07143Q II	34 1	8.8	3	£0 <i>L</i>
Macanja maganja	II Õõõkkl	34]	8.8	3	Z0 <i>L</i>
баруша шиз шизсији	II ÕƏƏKWƏ	3₫ 1	8.8	3	TOL
Q9et72 mus musculu	II ÕƏELJS	34]	8.8	ε	00 <i>L</i>
Q8x227 mus musculu	II Ğ8K22A	3₫ 1	8.8	3	669
Q923zl mus musculu	tzezeğ ti		8.8	ε	869
басяз тусорекатсо	10		8.8	ε	<i>L</i> 69
on mulaqsaq Olwv8Q	ΓΟ Θ΄8ΛΜΓΌ		8.8	ε	969
on mulaqaaq OASw8Q	го бемѕно		8.8	ε	969
Q8hkel rhipicephal	3 бенкет		8.8	٤	1 69
Q8mca2 phaseolus a	~	3 17 8	8 .8	ε	٤69
O79025 enallagma v		3 4 8	8.8	ε	769
P82908 bos taurus		34 6	8.8	ε	169
P79429 capra hircu) FE	8.8	3	069
Q8itd9 schistosoma		3 4 6	8.8	٤	689
Q8n063 plasmodium		3 PE	8.8	ε	889
Q9gqe5 branchiosto	e Obroes Cogoes		8.8	5	689 489
Q9bip7 cooperia pu	2 ÕƏBIBJ		8.8	3	289 989
Q9nqy9 home ciacaes Zaid00		9 VE	8.8	ξ.	S89
== ; == 0 mod 0. ma00	OVOMOO I	, ,,	0 0	Č	303

Q95n74 equus cabal	₹LNS6Ŏ	9	38	8.8	3	86 <i>L</i>
Q8if2l trypanosoma	Õ8IESI	9	32	8.8	ε	L6L
m sulidqood 187ueQ	187Ս60	S	35	8.8	ε	964
m sulindood 487u6Q	£87U6Q	S	35	8.8	3	S6 <i>L</i>
m sulinqood £87u6Q	£87U6Q	S	35	8.8	ε	₽ 6 <i>L</i>
m sulidood 7[vJ6Q	7LVT6Q	9	35	8.8	ε	86 <i>L</i>
m sulidqood 287uQQ	287U6Q	S	35	8.8	ε	Z6 <i>L</i>
Q9bnll mesobuthus	ÖƏBNII	5	35	8.8	ε	167
Q26372 tribolium c	Z7£3ZQ	9	35	8.8	ε	06 <i>L</i>
s sulidood 087µ6Q	087U6Q	S	35	8.8	ε	68 <i>L</i>
naiges omod 77ui8Q	77UI8Q	₽	35	8.8	ε	887
	Q9BU09	₽	35	8.8	ε	787
Gabuna comes	\$611 4 60	Đ	35	8.8	ε	98 <i>L</i>
Q9y634 homo aspien		₽	35	8.8	3	98 <i>L</i>
majdsa omod #3254	Ŏ13564					
nəiqsa omod 828210	Õ13858	Þ	35	8.8	3	₹87
naides omod 7g13eQ	79496 <u>0</u>	₽	35	8.8	3	887
nəiqsa omod 231£IQ	9181Q	₽	35	8.8	ε	787
nəiqsa omod 08881Q	Q13380	₽	35	8.8	3	187
Q9bvr9 homo aapien	бувал	Ð	32	8.8	ε	087
баеле вассрахошус	£TU36Q	ε	35	8.8	3	6 <i>LL</i>
Q8gkz7 borrelia bu	Õ8GKZJ	7	35	8.8	ε	8 <i>LL</i>
Ilisedotsal 729189	P81927	2	35	8.8	ε	LLL
us sullibad 626z6 bacillus su	б98626	Z	35	8.8	3	9 <i>LL</i>
Q8riw2 clostridium	Õ8KIMS	Z	35	8.8	ε	SLL
Q8rkg3 clostridium	О ́8 <i>В</i> КСЗ	2	32	8.8	ε	₹LL
Õ∂r4al klebsie ll a	Д9 <i>К</i> 4₽1	Z	35	8.8	3	ELL
Q9rhg5 bacillus ce	бәвнсг	2	35	8.8	ε	ZLL
Q9zg35 chlamydia t	ĞƏZG32	Z	32	8.8	3	TLL
Q46537 bacteroides	Z£29₽Q	7	35	8.8	ε	077
Q53564 neisseria g	ŏ23264	7	32	8.8	ε	69 <i>L</i>
ŏ∂хрко расі]∫ла се	бәхвко	Z	32	8.8	ε	89 <i>L</i>
Q9fcx4 clostridium	ŐƏECK4	2	35	8.8	ε	L9 <i>L</i>
бакгіз срекшовивек	бэкгіз	Ż	36	8.8	3	99 <i>L</i>
ŏ∂х3qe brocµjoroco	бәхзре	2	32	8.8	ε	S9 <i>L</i>
Ø3r625 bacillus su	бэвегг	7	3 5	8.8	ε	₹ 9᠘
Ø9jpg9 neisseria m	бэльсэ	Z	35	8.8	3	£9 <i>L</i>
Mares pacillus su	бакеѕ•	7	35	8.8	3	79 <i>L</i>
Q8ulil pyrococcus	Q8U111	LΤ	₹8	8.8	3	19 L
бяскіз агэруіјосос	б вскхз	91	₽€	8.8	3	094
Q8el73 streptococc	б 8ЕТ 13	91	₹8	8.8	ε	69 <i>L</i>
Q8e8w3 shewanella	б вевмз	9T	₽€	8.8	ε	8S <i>L</i>
баевуз влемалетта	О ́8Е8ХЗ	9 T	₽£	8.8	ε	LSL
баериг зуналь Туба	бя ен∩г	9 T	₹8	8.8	3	95 <i>L</i>
Q8ei45 shewanella	Õ8EI ₹2	9 T	₹8	8.8	€ .	SSL
д8еј65 вћемале11а	б велег	9 T	₹8	8.8	ε	₱S८
Q8exa8 leptospira	Õ8EX¥8	9 T	₹8	8.8	ε	£5 <i>L</i>
Q8exh6 leptospira	б 8ехне	9 T	3₹	8.8	ε	75 <i>L</i>
Q8eyg6 leptospira	Õ8ELGe	9 T	₽€	8.8	ε	TSL
Q8eyw8 leptospira	б велмв	9T	₹8	8.8	ε	0 <i>5L</i>
Q8ez37 leptospira	Õ8EZ31	9T	₽€	8.8	ε	6 <i>₹L</i>
Q8ezr6 leptospira	Õ8EZKe	9 T	₹	8.8	3	8 ₽ L
Q8f0v9 leptospira	Q8F0V9	9 T	₹	8.8	3	$L \Phi L$
Q8f5y7 leptospira	Q8F5Y7	9T	₹8	8.8	٤	9 <i> t L</i>
Q8f827 leptospira	Q8F827	9 T	₹8	8.8	3	StL
08f830 leptospira	Q8F830	9 T	₹8	8.8	ε	₽₽L
Q8f897 leptospira	Q8F897	9 T	₹	8.8	3	8₽7
08g2q2 brucella su	Ő8GSŐS	9T	₹8	8.8	ε	Z₹L

nummi nemud 029170	056TLO	SI	35	8.8	3	928
nummi namud SatieQ	TSEL6Q	Sī	32	8.8	3	₽ ⊆8
nummi nsmud 18927Q	T8691Õ	Sτ	35	8.8	ε	823
P83226 oxyuranus s	P83226	ετ	32	8.8	ε	228
P83229 oxyuranus s	P83229	13	32	8.8	ε	TS8
P83228 oxyuranus s	P83228	εī	35	8.8	ε	058
P83227 oxyuranus m	P83227	13	35	8.8	ε	648
P83225 oxyuranus s	D83332	13	35	8.8	ε	848
P83224 Oxyuranus m	P83224	13	32	8.8	3	∠ ₹8
Q90xb5 xenopus lae	Ğ30XB2	13	35	8.8	3	978
Liqsq namud 02dd8Q	Õ8BB20	12	3.5	8.8	ε	9₹8
O55549 measles vir	679990	15	35	8.8	ε	844
Q83333 murine hepa	0 83333	12	35	8.8	ε	843
Q65380 banana bunc	Ŏe2380	IS	35	8.8	3	845
Ğəoləj pombyx mori	баотет	75	32	8.8	3	T₽8
Ospks mus musculu	О 8ВК8Э	ττ	35	8.8	ε	0₽8
ກໄນວຣນຕາ ຂຸນຕາ ວິງເປີດ	SIL66Q	ΤŢ	35	8.8	ε	628
Q922h5 mus musculu	SHZZ6Õ	ττ	35	8.8	ε	858
Q9quuz mus sp. rho	ZUUQ9QU	ττ	35	8.8	3	758
. Qs stim Stum90	Q9QV30	ΤŢ	35	8.8	3	988
ກໄນວຣນຫ ຂນຫ 809090	809090	TT	35	8.8	3	988
Q9jla4 mus musculu	₽AJU€Q	ΤŢ	35	8.8	ε	₽£8
Valla rattus norv	Ğ633 <i>3</i> 7	ΤŢ	35	8.8	3	833
Q8gux4 picea maria	∑8GUX4	OΤ	32	8.8	ε	832
Q9fj84 arabidopsis	Ğ9FJ8₫	OΤ	35	8.8	ε	158
رهدماً۲ populus eur	Q8RVJ7	OΤ	32	8.8	3	0.58
Q39297 brassica na	<u> </u>	OΤ	32	8.8	ε	628
siaqobidara 491qQ	₱9 ॅ ७७७	OΤ	32	8.8	3	828
Q91v08 arabidopais	Q9LV08	OΤ	35	8.8	ε	728
P92971 arabidopsis	1792991	OT	35	8.8	3	928
Q9s9g9 lycopersico	696S6Ŏ	01	35	8.8	ε	S28
	ZWUZ6Q	01	35	8.8	5	824
sisqobidera SwuseQ						823
graphids arabidopsis	Q9MAB1	JΟ	35	8.8	3	
ziaqobidara SuqaeQ	ZU426Q	οτ	35	8.8	ε	822
g muillanoo Gr126Q	баетве		35	8.8	ε	821
Q921s4 paragorgia	₹STS6Ŏ		35	8.8	ε	820
Q951q9 narella sp.	баетба Т	8	36	8.8	3	618
Q8wiil scytosiphon	08MIIT	8	35	8.8	3	818
ĞƏ218Ə brotoqenqro	681960	8	35	8.8	3	LI8
бамірг рудгосіасьг	Ğ8MIH2	8	35	8.8	ε	918
Ŏ8wih9 scytosiphon	6HIM8Õ		35	8.8	ε	ST8
Q951r3 anthomurice	бэгтгэ		32	8.8	ε	₽18
Q8wii3 colpomenia	Q8WII3		35	8.8	ε	813
Q951s1 corallium k	ISTS6Ŏ		35	8.8	ε	812
						118
Ø951rl narella nut	баеты.		35	8.8	ε	
Q951s7 anthothela	LSTS60		3.5	8.8	3	810
Q8wej7 cycaa circi	<u> </u> О́8МЕЛЈ		35	8.8	3	608
Q94p82 corallium r	Ğ94₽82		35	8.8	3	808
Q9gf98 ceratophyll	Q9GF98		35	8.8	ε	۷08
Q8w7a7 scytosiphon	LSLM8D	8	35	8.8	ε	908
Q8we70 miliaria ca	Õ8ME 10	8	32	8.8	ε	908
1 sinofateq 887w8Q	8SLM8Õ		35	8.8	3	₽ 08
Q sincipec Devalonia b	QT7W8Q		35	8.8	ε	803
Q99f85 ginkgo bilo	Q9GF85		35	8.8	ε	802
Q8w7s9 colpomenia	65LM8Ö		35	8.8	ε	108
Meinemonios escuso	901560		35	8.8	ε	008
	7.AZMQQ		35	8.8	٤	66 <i>L</i>
Q9mza7 sus scrofa	LKZMOU	9	36	0 0	C	002

бахзду ргосріогосо	Ő9X3GS	7	98	8.8	ε	216
Q9r4x9 azotobacter	бэв∉хә	7	98	8.8	3	116
Q56028 salmonella	Ŏ2 0 058	7	98	8.8	ε	016
ŏ8kγwl nπcultured	õbkamt	2	98	8.8	ε	606
Q8vts0 listeria mo	Q8VTS0	Z	98	8.8	ε	806
Vavtr8 listeria iv	Q8VTR8		98	8.8	ε	۷06
Ğəae35 prochloroco	SE956Ö		98	8.8	ε	906
£119nom1ss 46096Q	₹60660		98	8.8	ε	906
Q48507 lactococcus			9٤	8.8	ξ	₹06
Q91b55 helicobacte	ĞƏLBSS		9٤	8.8	3	506
Ø44437 agrobacteri	754437		98	8.8	٤	805
Q8vts5 listeria we	Q8VTS5		98	8.8	ε	τ06
Øarhes pediococcus	бэвнез		98	8.8	3	006
Ø3zdJ3 cyjswigts c	6 <i>L</i> ĐZ6Ŏ		98	8.8	3	668
Q8vts7 listeria in	ZSIV8Q		98	8.8	3	868
silanomiss #26900	₱ 5 6900		98	8.8	3	468
Qəhmpl halobacteri Q8zxx9 pyrobaculum	6XXZ8Õ	LΙ	35	8.8	3	968
Q8duyl streptococc	Q9HMP1	LI	35	8.8	3	968
Q8e9zl shewanella	Õ8DOKI	9T	35	8.8	5	₽ 68
Q8eep3 shewanella	б вееьз бееьз	9T	36	8.8	3	863
Q8eg97 shewanella	OSEC61	9I 9I	32 32	8.8 8.8	3	892
Q8egc0 shewanella	OSECC0	9T	35	8.8	£ E	168
Q8egt2 shewanella	Q8EGT2	9T	35	8.8	5	688 688
Q8eyh6 leptospira	ОВЕСИ: ОВЕХНО	9T	35	8.8	5	888
Q8flw8 leptospira	Q8F1W8	9T	35	8.8	5	788 788
Q8f8d4 leptospira	Q8F8D4	9T	35	8.8	5	988
Q8f9h5 leptospira	Q8F9H5	9T	35	8.8	5	S88
Q8g2d4 brucella su	Q8G2D4	9 T	35	8.8	3	₽88
Двиса спора	Q8KCA6	9 T	35	8.8	3	883
Q8x4f4 escherichia	Q8X4F4	9T	35	8.8	ε	288
Qxzb7 ralstonia s	Q8XZB7	9 T	35	8.8	5	188
Ŏəkstı cyjemkqie b	Õ∂K5¶J	9 T	35	8.8	ξ.	088
Ø97t30 streptococc	Q97T30	9 T	35	8.8	3	648
Q9a427 caulobacter	7S4A6Q	9 T	35	8.8	3	878
Meisseria m	85VL6 <u>0</u>	9 T	35	8.8	3	<i>LL</i> 8
Meisseria m	G9JMX5	9T	32	8.8	3	948
Q9knul vibrio chol	бэкипт	9 T	35	8.8	3	9 78
Q9kr18 vibrio chol	б әккт8	91	35	8.8	ε	₽ ∠8
us sullised £62700	865700	9 T	35	8.8	ε	873
aummi asmud AyqieQ	ĞƏIBK∉	SI	35	8.8	ε	872
ռստա <u>դ</u> ռետսત 20мү00	бәхмәг	SI	35	8.8	ε	IL8
aummi asmud 22927Q	<u> წ</u> აგმე	ST	35	8.8	ε	078
aummi asmud OZSTTQ	Q77250	SI	35	8.8	ε	698
nummi nemud 7əmyeQ	C9XM67	SI	35	8.8	ε	898
nummi namud 08927Q	<u> </u> Ø12989	SI	35	8.8	ε	۷98
nummi nemud 00027Q	066SLÖ	SI	35	8.8	ε	998
nummi nemud SSmYeQ	Q9YM22	SI	35	8.8	3	98
nummi nemud ðemyeg	96WX6Q	SI	35	8.8	ε	₹98
nummi namud 07627Q	07627 <u>0</u>	SI	35	8.8	3	863
nummi namud 04b98	Õ8ÕDX0	SI	32	8.8	3	862
nummi nemuń 08m7eQ	09YM80	SI	32	8.8	3	198
nummi namud Oslpeg	Q9QFA0	ST	35	8.8	3	098
nummi namun axbg&	Ŏ8ŎDX9	SI	35	8.8	3	698
nummi nemud 10008Q	T0908Õ	SI	36	8.8	3	828
nummi namun 472080	₹4508Õ	ST	35	8.8	3	728 728
nummi nsmuń SyqieQ	Q91PY2	ST	35	8.8	ε	958

Q60937 mus musculu	7609Q	ŢŢ	98	8.8	ε	696
Q9jmcO rattus norv	Q9JMC0	ΙI	98	8.8	٤	896
eiaqobidsas 7609A	0 ₹2097	OΤ	98	8.8	3	L96
giaqobidsra LTyv8Q	Q8VY71	OΤ	98	8.8	3	996
Q38977 arabidopsis	Q38977	0Τ	98	8.8	ε	S 96
баруксе раешаруугад	ОВНКС 6	8	98	8.8	٤	₹96
Q8hkf5 rhipicephal	Ö8HKE2	8	98	8.8	5	£96
Q8hs18 sagittaria	81SH8Ŏ	8	98	8.8	5	Z96
Sheiforgam 728A9Q	Q8HS27	_				
Q8ha31 lilium supe		8	98	8.8	3	196
	TESH8Ŏ	8	98	8.8	3	096
бврая сујска су ба	Z₽SH8Õ	8	98	8.8	3.	696
Q8hs46 austrobaile	9 ₹ SH8Õ	8	98	8.8	3	856
Q8ha50 ascarina lu	Ŏ8H220	8	98	8.8	ε	LS6
Q99fa9 acorus cala	Q9GFA9	8	9٤	8.8	ε	956
Q9tie5 xanthosia a	ÕƏLIES	8	98	8.8	ε	996
Ø6fie3 pydrocotyle	бэтіез	8	98	8.8	ε	₹ 96
O63650 emberiza sc	09890	8	98	8.8	ξ	823
ulaul eimes OasmeQ	Q9MSR0	8	98	8.8	ξ	796
Q99f89 drimys wint	Q9GF89	8	98	8.8	ε	156
Q9tif2 azorella tr	Q9TIF2	_				
		8	36	8.8	3	096
Q9tie2 aralia chin	ÕƏLIES	8	98	8.8	3	6₹6
Q99f74 liriodendro	Ž9GF74	8	98	8.8	ε	8₽6
Q9tif3 eremocharis	Q9TIF3	8	98	8.8	ε	L₹6
po səsiqmyn eqemeQ	баѕмбб	8	98	8.8	3	9₹6
999f76 lactoria fe	бэсьле	8	98	8.8	3	9₹6
Q94ny5 salmo salar	Ğ∂∉N⊼2	8	98	8.8	ε	##6
Q9tif0 klotzschia	Q9TIF0	8	98	8.8	3	6₹3
Q36303 musa schizo	Ö 3 9 303	8	98	8.8	ξ	242
Q94V14 salmo trutt	Q94VL4	8	98	8.8	ε	176
Q99197 ceratophyll	Q9GF97	8	98	8.8	5	076
Q99fa3 cabomba car		_				
	Q9GFA3	8	98	8.8	3	686
Q9tifl bolax gummi	ZQ	8	98	8.8	3	886
Q95ie4 hydrocotyle	Ğ9TIE4	8	98	8.8	ε	LE6
Made mudang 18199	Q9GF81	8	98	8.8	ε	986
uq azirədmə 373630	SL9890	8	36	8.8	ε	935
P79428 capra hircu	₽79428	9	98	8.8	ε	₽86
097890 pan troglod	068760	9	98	8.8	ε	933
Gaulca pos taurus	б әитсә	9	98	8.8	ε	932
Q9xt44 pongo pygma	Q9XT44	9	98	8.8	ε	1.56
Q29059 sus scrofa	Ø29029	_	98	8.8	ε	930
smgyq oproq 888760	688760	9	9.5	8.8	3	626
Q8isr7 spodoptera	Q81SR7	9	9E	8.8	5	826
muibomasIq 18722Q			98		5	
	Q25781	2		8.8		726
001333 caenorhabdi	001333	S	98	8.8	3	926
Q9gnp3 caenorhabdi	бэсиьз	S	98	8.8	ε	926
muibomasiq 08772Q	0 27730	9	98	8.8	3	₽26
Q9ngnl strongyloce	бәиеит	5	9٤	8.8	ε	923
A99sy9 carcinus ma	ĞƏGZXƏ	5	98	8.8	ε	825
Q8ne47 homo sapien	О́8ИЕ ₹Ј	₽	98	8.8	3	126
naigs omod #1mu9Q	₽JMU€Q	₽	98	8.8	٤	920
nəiqss omod 7dqueQ	Q9UPB7	₽	98	8.8	ε	616
Q9ple9 homo sapien	баьтеа	₽	98	8.8	ε	816
naiges omod TvnueQ	CONNUQ Q9UNV7	₽.	98	8.8	5	LI6
smotsoingo 35wa9Q	98M96Q		9£	8.8		916
		3			3	
780 April Decropacter	О 8СВИТ	2	98	8.8	ε	516
Q9r536 aphingomona	Q9R536	2	98	8.8	3	₹ 16
O86086 shewanella	980980	Z	98	8.8	ε	E1 6

as j monella	\$3128Q	₽TIZ8Q	9 T	98	8.8	3	000τ
meisseria m	69j £w3	EWTL EQ	9 T	98	8.8	ε	666
pscillus ha	б9к7 д 3	бэклаз	9 T	9£	8.8	ε	866
vibrio chol	бэктмә	бәкгмә	9 T	98	8.8	ε	466
vibrio chol	б9kpd3	бәкьбз	9T	98	8.8	3	966
vibrio chol		бэкьвс	9 T	98	8.8	ε	966
Aiprio chol		б∂кб3 <i>ŧ</i> ғ	9 T	98	8.8	3	7 66
vibrio chol	бэкгрз	бәкввз	9 T	98	8.8	ε	566
vibrio chol	бэксле	бэктлг	9 T	98	8.8	ε	266
porrelia bu	696090	696090	9 T	36	8.8	3	166
porrelia bu	989090	989050	9 T	36	8.8	ε	066
porrelia bu	649090	649090	9 T	98	8.8	3	686
helicobacte	025389	688380	9 T	98	8.8	ε	886
nummi nemuh	₹99 <i>LL</i> Ŏ	₱99 <i>LL</i> Õ	S T	98	8.8	ε	786
nummi nemuh	852040	040258	9 T	9ε	8.8	ε	986
питат петип	Ŏ80223	Õ80223	SI	9ε	8.8	ε	286
nummi nemuh	09908Ö	Õ80220	91	38	8.8	3	₽ 86
unwwi uewny	бэүлжэ	бэхихэ	SI	36	8.8	3	883
nummi nemuh	TSS08Ŏ	б 80227	SI	36	8.8	ε	286
питат тытип	L859LÖ	Z8597Q	SI	38	8.8	3	186
dallus gal l	0s6p8Q	085G30	13	36	8.8	3	086
dallus gall	G69M6Ö	G9M6Q	13	98	8.8	5	646
xevobna jse	042264	042264	13	.98	8.8	3	876
uriv naimis	Zzpp8Q	ZZŎŎ8Ŏ	75	98	8.8	ε	LL6
o .suriv tt	<u> </u> батсхз	бәтскз	12	36	8.8	3	916
myxoma viru	609880	609E8Õ	12	98	8.8	ε	S76
calicivirus	ZZL06O	227060	IS	98	8.8	ε	₽ ∠6
hepatitis b	28xi9Q	Q91X82	IS	98	8.8	3	573
tanapox vir	9sbb60	950060	12	98	8.8	3	272
yebatitis p	08xi9Q	Q91X80	12	98	8.8	ε	176
rattus norv	869769	86276 4	ττ	98	8.8	ε	076

YPIGNMENTS

```
DK
                                      InterPro; IPR003625; Pthyrhorm_sub.
                                      InterPro; IPR001415; Parathyrd_hrm.
                                                                                    DK
                                            EMBL; AF382953; AAK63072.1; -.
                                                                                    DК
             Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
                                                   Prince K.L., Dewey M.J.;
                                                           SEQUENCE FROM N.A.
                                                                                    _{
m Bb}
                                                                                    КИ
                                                                             [T]
                                                            NCBI_TaxID=10042;
                                                                                    XO
                                                                   Peromyscus.
                                                                                    OG
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
                                                                                    OC
  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                                    OG
                                     Peromyscus maniculatus (Deer mouse).
                                                                                    SO
                                           Parathyroid hormone (Fragment).
                                                                                    DE
                   01-OCT-2002 (Tremblrel. 19, Last annotation update) 01-DEC-2001 (Tremblrel. 19, Last annotation update) 01-DEC-2001 (Tremblrel. 22, Last annotation update)
                                                                                    DL
                                                                                    DL
                                                                                    DL
                                                                        631X90
                                                                                    DΑ
                                                                         06XI6Ŏ
                                                   PRELIMINARY;
                                                                                    ΙD
                            .AA IE
                                       PRT;
                                                                                06XI6Ō
                                                                             RESULT 1
```

```
:87ILIO
                                                                              ЭA
                                                                     8†ILTO
                                                                              ΙD
                              .AA ₽£
                                        ;TA9
                                                  PRELIMINARY;
                                                                          811710
                                                                        RESULT 3
                                                                              ВΡ
                                                      J₹ Λ≳ΕΙΘ̈́Γ₩ΗΝ SS
                                                         11111111
                                                                              ζX
                                                      S AZEIĞIWHM 10
                                0; Mismatches
                                                  9; Conservative
                                                                       Матсћев
:0
     Gsps
           :0
                 sləbni
                         :0
                            100.0%; Pred. No. 0.013;
                                                       Beat Local Similarity
                 rendry 31:
                            Score 9; DB 11;
                                              :%5.92
                                                                              ŎS
                      A208B0E772B9B55B CRC64;
                                               3461 MM;
                                                         ; AA IE
                                                                   ZEĞNENCE
                                                     3.1
                                                            3.1
                                                                    NON LEK
                                                                              FT
                                                                    NON LEK
                                                            τ
                                                                              ĿТ
                                          PROSITE; PS00335; PARATHYROID; 1.
                                                                             DB 🕚
                                        ProDom; PD010687; Pthyrhorm_sub; 1.
                                                                              DK
                                             Pfam; PF01279; Parathyroid; 1.
                                                                              DВ
                                        InterPro; IPR003625; Pthyrhorm_sub.
                                                                              DВ
                                        InterPro; IPR001415; Parathyrd_hrm.
                                                                              DK
                                             EWBL; AF382952; AAK63071.1; -.
                                                                              DВ
                  Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
                                                                              ВГ
                                                   Prince K.L., Dewey M.J.;
                                                                              ΑЯ
                                                         SEQUENCE FROM N.A.
                                                                              КЪ
                                                                              КИ
                                                                        []]
                                                          NCBI TaxID=42413;
                                                                              XO
                                                                Peromyscus.
                                                                              OC
       Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
                                                                              OC
        Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                              OC
                                    Peromyscus polionotus (Oldfield mouse).
                                                                              SO
                                                                              СИ
                                            Parathyroid hormone (Fragment).
                                                                              DE
                       01-OCT-2002 (TremBLrel. 22, Last annotation update)
                                                                              DL
                         01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
                                                                               DL
                                       01-DEC-S001 (TremBLrel. 19, Created)
                                                                               DL
                                                                               ЭA
                                                                     :t6xt60
                                                   PRELIMINARY;
                                                                     T6X16Õ
                                                                               ID
                               .AA IE
                                         PRT;
                                                                           T6X160
                                                                         RESULT 2
                                                      J∉ AZEIÕTWHN SS
                                                                               DР
                                                         ζX
                                                      S AZEIĞIWHN 10
                                                  9; Conservative
                          :0
                                0; Mismatches
! 0
      gsba
           :0
                  slabnī
                             100.0%; Pred. No. 0.013;
                                                        Best Local Similarity
                                               :%S:9Z
                                                                   Query Match
                 Score 9; DB 11; Length 31;
                                               3461 MW;
                                                          ; AA IE
                                                                   ZEŐNENGE
                                                                               ÕS
                      A208B0E772B9B55B CRC64;
                                                            3.1
                                                                     NON LEK
                                                                               FT
                                                     37
                                                            τ
                                                                    NON_TER
                                                                               ĿТ
                                                     τ
                                          PROSITE; PS00335; PARATHYROID; 1.
                                                                               DВ
                                        ProDom; PD010687; Pthyrorm_sub; 1.
                                                                               DВ
                                             Pfam; PF01279; Parathyroid; 1.
                                                                               DВ
```

```
bacterium Clostridium acetobutylicum.";
                                                                               TA
       "Genome sequence and comparative analysis of the solvent-producing
                                     Bennett G.N., Koonin E.V., Smith D.R.;
                                                                               AЯ
     Tatusov R.L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M.J.,
                                                                               AЯ
              Gibson R., Lee H.M., Dubois J., Qiu D., Hitti J., Wolf Y.I.,
                                                                               AЯ
          Noelling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q.,
                                                                               AЯ
                                         WEDFINE=51328352: bnpWeq=11466286;
                                    STRAIN=ATCC 824 / DSM 792 / VKM B-1787;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               ВИ
                                                            NCBI_TaxID=1488;
                                                                               XO
                                                                Clostridium.
                                                                               20
          Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
                                                                               OG
                                                Clostridium acetobutylicum.
                                                                               SO
                                                                               СИ
                                    Transcriptional regulator, AcrR family.
                                                                               DE
                       01-OCT-2001 (TrEMBLrel. 18, Last annotation update)
                                                                               DL
                          01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
                                                                               DL
                                       01-OCT-2001 (TrEMBLrel. 18, Created)
                                                                               DL
                                                                     ĞƏJK20;
                                                                               ЭA
                               .AA AE
                                                   PRELIMINARY;
                                                                      балкео
                                                                               ID
                                         PRT;
                                                                           бэлкго
                                                                         RESULT 4
                                                           12 PEKKT 13
                                                                               DΡ
                                                              | | | | | |
                                                                               ζX
                                                           S4 PEKKT S8
:0
      esps
           :0
                  stabai
                         :0
                              0; Mismatches
                                                  5; Conservative
                                                                        Matches
                           100.0%; Pred. No. 2.9e+02;
                                                        Best Local Similarity
                  14.7%; Score 5; DB 5; Length 34;
                                                                    Query Match
                                                          ; AA ₽£
                      3BE894E179CF84F3 CRC64;
                                                :MM #968
                                                                    ZEÕNENGE
                                                                               ÕS
                                                      ₹
                                                             ₽€
                                                                     NON LEK
                                                                               ЪЪ
                                                     τ
                                                            τ
                                                                     NON LEE
                                                                               \mathbf{L}\mathbf{H}
                                             EMBL; AF024665; AAB81611.1; -.
                  Submitted (SEP-1997) to the EMBL/GenBank/DDBJ databases.
                                        "E. vogeli AgB/l coding sequence.";
                                                                               RT
                                         Haag K.L., Zaha A., Gottstein B.;
                                                                               AЯ
                                                          SEQUENCE FROM N.A.
                                                                               ЧЯ
                                                                          [2]
                                                                               ВИ
                                 Mol. Biochem. Parasitol. 64:171-175(1994).
                                                                               ИL
                  "Sequence heterogeneity of the echinococcal antigen B.";
                                                                               TA
                       Frosch P., Hartmann M., Muhlschlegel F., Frosch M.;
                                                                               AЯ
                                          WEDFINE=04320233: bnpWeg=8018250:
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                                          [I]
                                                            NCBI_TaxID=6213;
                                                                               XO
                                   Cyclophyllidea; Taeniidae; Echinococcus.
                                                                               OC
                  Eukaryota; Metazoa; Platyhelminthes; Cestoda; Eucestoda;
                                                                               OC
                                                        Echinococcus vogeli.
                                                                               SO
                                                                       YGB\I:
                                                                               СИ
                                                    Antigen B/l (Fragment).
                                                                               DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                          01-14M-1898 (Tremblrel. 05, Last sequence update)
                                                                               DL
                                       01-JAN-1998 (TremBLrel. 05, Created)
                                                                               DL
```

```
PRELIMINARY;
                                                                      Q8BTB9
                                                                                ID
                               .AA ZE
                                         PRT;
                                                                            Q8BTB9
                                                                          RESULT 6
                                                           30 PEKKT 30
                                                                                DΡ
                                                               ζX
                                                           St PKKKT S8
                          :0
                                0; Mismatches
                                                  5; Conservative
                                                                        Matches
:0
      Gsps
            :0
                 sləbni
                           Best Local Similarity 100.0%; Pred. No. 2.9e+02;
                 14.7%; Score 5; DB 17; Length 34;
                                                                    ДлехX матср
                       34 PY: 3131 WM: BF921904338DCD42 GEC64;
                                                                    ZEÕNENCE
                                                                                ŎS
                                                          Complete proteome.
                                                                                KM
                                              EWBI': PE002022; PAG19293:1; -:
                                                                                DК
                        Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).
                                                                                ВГ
                         "Genome sequence of Halobacterium species NRC-1.";
                                                                                RT
          Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
                                                                                AЯ
        Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D.,
                                                                                AЯ
    Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
                                                                                AЯ
        Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
                                                                                ĄЯ
                Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
                                                                                AЯ
            Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J., Gwartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
                                                                                AЯ
                                                                                AЯ
                 Mg W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.,
                                                                                AЯ
                                         WEDFINE=50204483: bnpWeg=11016950:
                                                                                КX
                                                          SEĞNENCE FROM N.A.
                                                                                ВЪ
                                                                                ВИ
                                                           NCBI_TaxID=64091;
                                                                                XO
                                           Halobacteriaceae; Halobacterium.
                                                                                20
                     Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
                                                                                OG
                                          Halobacterium sp. (strain NRC-1).
                                                                                SO
                                                                    VNG0840H.
                                                                                СN
                                                                    .40480gaV
                                                                                DE
                        01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
                                                                                DL
                          01-WAR-2001 (TrembLrel. 16, Last sequence update)
                                                                                DL
                                                                                DL
                                        01-MAR-2001 (TremBLrel. 16, Created)
                                                                      бэнкег:
                                                                                DΑ
                                                                       бэнкег
                                                                                ID
                                                    PRELIMINARY;
                               . AA ₽£
                                          PRT;
                                                                            ОЭНКБ5
                                                                          RESULT 5
                                                            30 RAZEI 34
                                                                                DР
                                                               11111
                                                                                ζX
                                                             I RAREI P
                                0; Mismatches
                                                  5; Conservative
                  o; Indels
      o: eaps
:0
                           100.0%; Pred. No. 2.9e+02;
                                                         Best Local Similarity
                                                                     Greth Watch
                  14.7%; Score 5; DB 16; Length 34;
                                                 ;WM IEO₽ ;AA ₽E
                                                                                 ŎS
                                                                     ZEĞNENCE
                       38DIA2A7C2F86E90 CRC64;
                                                           Complete proteome.
                                                                                 KM
                                              EMBL; AE007622; AAK79045.1; -.
                                                                                 DK
                                          J. Bacteriol. 183:4823-4838(2001).
                                                                                 ИГ
```

Q8BTB9;

DΑ

```
Science 293:498-506(2001).
                                                                               ИГ
                                                               fuermoniae.";
                                                                               ΤЯ
          "Complete genome sequence of a virulent isolate of Streptococcus
                                                                               RT
            Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M.;
                                                                               AЯ
                 Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C.,
                                                                               AЯ
    McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K.,
                                                                               AЯ
         Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L.,
                                                                               AЯ
              Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D.,
                                                                               AЯ
          Durkin A.S., Gwinn M., Kolonay J.F., Melson W.C., Peterson J.D.,
                                                                               AЯ
           Peterson S., Heidelberg J., DeBoy R.T., Haft D.H., Dodson R.J.,
                                                                               AЯ
            Tettelin H., Melson K.E., Paulsen I.T., Eisen J.A., Read T.D.,
                                                                               AЯ
                                         WEDFINE=51321506: bnpW6q=11463616:
                                                                               КX
                                                               STRAIN=TIGR4;
                                                                               ВG
                                                          SEQUENCE FROM N.A.
                                                                               КЪ
                                                                         [ T ]
                                                                               КИ
                                                            NCBI LaxID=1313;
                                                                               XO
                                                              Streptococcus.
                                                                               OG
                  pacceria; Firmicutes; Lactobacillales; Streptococcaceae;
                                                                               OC
                                                  Streptococcus pneumoniae.
                                                                               SO
                                                                     .£2804S
                                                                               СИ
                                               Hypothetical protein SP0853.
                                                                               DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                         01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
                                                                               DL
                                       01-OCT-2001 (TrEMBLrel. 18, Created)
                                                                               DL
                                                                     697RG6;
                                                                               DΑ
                               .AA 2E
                                         PRT;
                                                   PRELIMINARY;
                                                                      Ø97RG6
                                                                               ID
                                                                           097RG6
                                                                         RESULT 7
                                                           S ZAZEI e
                                                                               DР
                                                              | | | | | | |
                                                                               δλ
                                                           I ZAZEI 2
                               0; Mismatches
:0
      gsba
           :0
                                                5; Conservative
                  Indels
                         :0
                             Best Local Similarity 100.0%; Pred. No. 3e+02;
                 14.7%; Score 5; DB 11; Length 35;
                                                                   Query Match
                      32 AA; 3967 MW; F81156686390ECD8 CRC64;
                                                                   ZEÕNENGE
                                                                               ŎS
                                              EMBL; AKOII220; BAC25325.1; -.
                                                                               DK
                                                  Nature 420:563-573(2002).
                                                                               КГ
                                                60,770 full-length cDNAs.";
                                                                               \mathbf{RT}
    "Analysis of the mouse transcriptome based on functional annotation of
                                                                               ТЯ
            Che RIKEN Genome Exploration Research Group Phase I & II Team;
                                                                               AЯ
                                                     The FANTOM Consortium,
                                                                               AЯ
                                         WEDFINE=55324683; bnpWed=15466851;
                                                                               КX
                                              STRAIN=C57BL/61; TISSUE=Body;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               КЪ
                                                                               КИ
                                                                         [1]
                                                          NCBI_TaxID=10090;
                                                                               XO
        Mammalia, Eutheria, Rodentia, Sciurognathi, Muridae, Murinae, Mus.
                                                                               20
         Enkaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               OG
                                                       Mus musculus (Mouse).
                                                                               SO
                                                                   Translin.
                                                                               DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                               DL
                         01-MAR-2003 (TremBLrel. 23, Last sequence update)
                                                                               DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                               DL
```

```
PÕÕD.
                                                                              СИ
                                              PQQ biosynthesis polypeptide.
                                                                               DE
                       01-NOV-1998 (TrEMBLrel. 08, Last annotation update)
                                                                               DL
                         01-NOV-1996 (TrembLrel. 01, Last sequence update)
                                       01-NOV-1996 (Tremblrel. 01, Created)
                                                                               DL
                                                                    . 491649
                                                                              DΑ
                               .AA es
                                         PRT;
                                                   PRELIMINARY;
                                                                     841649
                                                                              ID
                                                                           8#16#0
                                                                        RESULT 9
                                                           12 PEKK 18
                                                                              DР
                                                              1111
                                                           S₹ PKKK S1
                                                                              ζX
:0
      ot caps
                  sləbni
                                4; Conservative 0; Mismatches
                             Best Local Similarity 100.0%; Pred. No. 3e+03;
                 11.8%; Score 4; DB 10; Length 28;
                                                                   Query Match
                      S8 PA; 3376 MW; 1736738622B4EE74 CRC64;
                                                                   ZEÕNENCE
                                                                              ŎS
                                                     82
                                                           82
                                                                    NON LEK
                                                                              FT
                                                     τ
                                                            τ
                                                                    NON LEK
                                                                              FT
                                               EMBL; U66725; AAB06792.1; -.
                                                                              DK
                  Submitted (AUG-1996) to the EMBL/GenBank/DDBJ databases.
                                                                              Иľ
                                                              gene (LFY).";
                                                                              FT
      "Partial characterization of Pinus radiata meristem identity homolog
                                                                              FT
                        Izquierdo L.Y., Vergara R.F., Alvarez-Buylla E.R.;
                                                                              AЯ
                                                         TISSUE=Vegetative;
                                                                              \mathsf{FC}
                                                         SEQUENCE FROM N.A.
                                                                              ВЪ
                                                                              КИ
                                                           NCBI_TaxID=3347;
                                                                              XO
               Spermatophyta; Coniferopaida; Coniferales; Pinaceae; Pinus.
                                                                              OC
       Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
                                                                              OG
                                             Pinus radiata (Monterey pine).
                                                                              SO
                                                                              СN
                                                    LFY protein (Fragment).
                                                                              DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                              DL
                         01-JAM-1998 (TrEMBLrel. 05, Last sequence update)
                                                                              DL
                                       O1-JAN-1998 (TrembLrel. 05, Created)
                                                                              DL
                                                                    .282420
                                                                              DΑ
                              .AA 8S
                                         PRT;
                                                   PRELIMINARY;
                                                                     024285
                                                                              ID
                                                                          024285
                                                                        RESULT 8
                                                          30 KKTÕD 34
                                                                              рρ
                                                             1111
                                                                              ζX
                                                          SE KKTÖD 30
10
      o; Gaps
                  Indels
                               5; Conservative 0; Mismatches
                            Best Local Similarity 100.0%; Pred. No. 3e+02;
                 14.7%; Score 5; DB 16; Length 35;
                                                                   Gnety Match
                      32 AA; 4276 MW; 6B8813CC028D6C7B CRC64;
                                                                   ZEÕNENCE
                                                                              ÕS
                                  Hypothetical protein; Complete proteome.
                                                                              KM
                                                           TICK; SP0853; -.
                                                                              DВ
                                             EMBL; AE007391; AAK74982.1; -.
                                                                              DВ
```

```
Λŏ
                                                           56 KKTŐ 29
:0
      gsba
                          :0
                                0; Mismatches
            :0
                  sləbul
                                                  4; Conservative
                          100.0%; Pred. No. 3.1e+03;
                                                       Beat Local Similarity
                  11.8%; Score 4; DB 4; Length 29;
                                                                   Query Match
                      SO AA; 3250 MW; 30501BB7BEEAD8D0 CRC64;
                                                                   ZEÕNENCE
                                                                               ÕS
                                        ProDom; PD001868; Alk_phosphtse; 1.
                                                                               DВ
                                        InterPro; IPR001952; Alk_phosphtse.
                                                                               DK
                                            Clin. Chem. 38:2539-2542(1992).
                                                                               B\Gamma
                                                                  kidney.";
                                                                               _{\rm LL}
        "Chemical nature of intestinal-type alkaline phosphatase in human
                                                                               ТЯ
                                                                 Hirano K.;
                                                                               AЯ
             Wishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.,
                                                                               AЯ
                                          WEDPINE=83085312: bnpW6q=1428282:
                                                                               КX
                                                                   ZEĞNENCE:
                                                                               ВЪ
                                                                         [I]
                                                                               КИ
                                                           NCBI_TaxID=9606;
                                                                               XO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                               OC
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               OG
                                                      .(namuH) ansigas omoH
                                                                               SO
                    Renal intestinal-type alkaline phosphatase (Fragment).
                                                                               DE
                       01-MAY-2000 (TrembLrel. 13, Last sequence update)
                                                                               DL
                                                                               DL
                                       01-MAY-2000 (TrEMBLrel. 13, Created)
                                                                               DL
                                                                     GOUCLS;
                                                                               DΑ
                                         ;TA9
                                                   PRELIMINARY;
                                                                      GOUCLL2
                               .AA es
                                                                               ID
                                                                           TONGO
                                                                        RESULT 10
                                                           8 AREI II
                                                                               DР
                                                              |||||
                                                                               ζŊ
                                                            S AREI 2
:0
      o, Gaps
                          :0
                                0; Mismatches
                                                  4; Conservative
                  sləbni
                          100.0%; Pred. No. 3.1e+03;
                                                       Best Local Similarity
                  11.8%; Score 4; DB 2; Length 29;
                                                                   Query Match
                      S9 AA; 3222 MW; B4831562CF76973C CRC64;
                                                                   SEÕNENCE
                                                                               ŎS
                                               EMBL; L25889; AAA17878.1; -.
                                                                               DВ
                                         J. Bacteriol. 176:1746-1755(1994).
                                                                               ВГ
         pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC.";
                                                                               ТЯ
        of mutants of Methylobacterium extorquens AMl unable to synthesize
                                                                               RT
     "Isolation, phenotypic characterization, and complementation analysis
                                                                               RT
                              Ramamoorthi R., Springer A.L., Lidstrom M.E.;
                                                                               AЯ
       Morris C.J., Biville F., Turlin E., Lee E., Ellermann K., Fan W.H.,
                                                                               AЯ
                                          WEDFINE=841\8111' bnpWGq=81354\0'
                                                                               КX
                                                                 :IMA=NIAATZ
                                                                               ВC
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                                         [T]
                                                            NCBI_TaxID=408;
                                                                               XO
                                     Methylobacteriaceae; Methylobacterium.
                                                                               OC
               Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
                                                                               OC
                                               Methylobacterium extorquens.
                                                                               SO
```

33 KKTŐ 56

| | | |

DΡ

```
; AA 62
                                                                    SEĞNENCE
                                                                                ŎS
                      3JJD8ECECJEID833 CKCC4:
                                                 SEOT MM:
                                                                     NON LEK
                                                                                FT
                                                      τ
                                                             T.
                                                                 Chloroplast.
                                                                                ΚM
                                              EMBL; AF190370; AAF15265.1; -.
                                                                                DВ
                  Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
                                                                                _{\rm K\Gamma}
              phylogeny of the eucalypts and related genera (Myrtaceae).";
                                                                                ТЯ
           "Informativeness of nuclear and chloroplast DNA regions and the
                                                                                ТЯ
                                                  Udovicic F., Ladiges P.Y.;
                                                                                AЯ
                                                          SEQUENCE FROM N.A.
                                                                                ВЪ
                                                                                КИ
                                                           NCBI_TaxID=34307;
                                                                                XO
                           eurosids II; Myrtales; Myrtaceae; Allosyncarpia.
                                                                                OC
    Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
                                                                                OC
        Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
                                                                                OC
                                                                 Chloroplast.
                                                                                DO.
                                                      Allosyncarpia ternata.
                                                                                SO
                                                                         . AB24
                                                                                СИ
                                       Photosystem Q(B) protein (Fragment).
                                                                                DE
                        01-MAY-2000 (TrEMBLrel. 13, Last annotation update)
                                                                                DL
                          01-WAY-2000 (TremBLrel. 13, Last sequence update)
                                                                                DL
                                       01-MAY-2000 (TrEMBLrel. 13, Created)
                                                                                DL
                                                                      :19ITeg
                                                                                ЭA
                                          PRT;
                                                    PRELIMINARY;
                                                                       191T6<u>0</u>
                                                                                ID
                               .AA 6S
                                                                            191T6Q
                                                                         RESULT 12
                                                             4 AREI J
                                                                                DР
                                                                | | | |

abla \lambda

                                                             S AREI 2
           :0
                                 0; Mismatches
                                                   4; Conservative
:0
      eaps
                  slabal
                           :0
                                                         Best Local Similarity
                           100.0%; Pred. No. 3.1e+03;
                                                                     Query Match
                  11.8%; Score 4; DB 5; Length 29;
                       S9 AA; 3539 MW; B917126A923EF884 CRC64;
                                                                     ZEÕNENCE
                                                                                ÕS
                                                - :[.49503AA :2095; - :
                                                                                DВ
                  Submitted (SEP-1994) to the EMBL/GenBank/DDBJ databases.
                                                                                ИL
                                          "Onchocerca volvulus cDNA clone.";
                                                                                RT
                                  Chandrashekar R., Curtis K.C., Weil G.J.;
                                                                                AЯ
                                                           SEQUENCE FROM N.A.
                                                                                 КЪ
                                                                                ВИ
                                                                          []
                                                            NCBI_TaxID=6282;
                                                                                XO
                                                  Onchocercidae; Onchocerca.
                                                                                OG
        Enkaryota; Metazoa; Nematoda; Chromadorea; Spirurida; Filarioidea;
                                                                                OG
                                                        Onchocerca volvulus.
                                                                                SO
                                                                     .utluduT
                                                                                DE
                        01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                                 DL
                          01-NOV-1996 (Tremblrel. 01, Last sequence update)
                                                                                 DL
                                        01-NOV-1996 (TrembLrel. 01, Created)
                                                                                 DL
                                                                      ÖS2603;
                                                                                 DΑ
                                                                       ØS2803
                                                                                ID
                                                    PRELIMINARY;
                               .AA 6S
                                          PRT;
                                                                             ØS2603
                                                                         RESULT 11
```

```
Enkaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                             20
                                                     . (namuH) snaiges omoH
                                                                             SO
                               Intestinal alkaline phosphatase (Fragment).
                                                                             DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                         01-WAY-2000 (TrEMBLrel. 13, Last sequence update)
                                      01-MAY-2000 (TrembLrel. 13, Created)
                                                                             DL
                                                                   SVAU69
                                                                             ЭA
                                                  PRELIMINARY;
                                                                    GOUBVS
                                                                             ID
                              .AA 0E
                                                                         GOUBVS
                                                                      RESULT 14
                                                          JA AREI 50
                                                                             DΡ
                                                             ζŏ
                                                           S AREI 2
                                               4; Conservative
:0
      o: Gaps
                 o: Indels
                              0; Mismatches
                          100.0%; Pred. No. 3.1e+03;
                                                      Best Local Similarity
                 11.8%; Score 4; DB 13; Length 29;
                                                                  Query Match
                                                         AA es
                                                                             ŎS
                      CSAESIFZBE7311E2 CRC64;
                                               3243 MM;
                                                                  ZEÕNENCE
                                                                   NON LEK
                                                                             FT
                                                    57
                                                           62
                                                                   NON LEK
                                                                             ĿТ
                                                    τ
                                                           Τ
                                        ProDom; PD000425; TF_Fork_head; 1.
                                                                             DK
                                              Pfam; PF00250; Fork_head; 1.
                                                                             DБ
                                        InterPro; IPR001766; TF_Fork_head.
                                               EMBL; Y11539; CAA72302.1; -.
                                                                             DВ
                         Proc. Natl. Acad. Sci. U.S.A. 94:3842-3847(1997).
                                                                             ВГ
          homologs in organisms that lack an anticipatory immune system.";
                                                                             RT
       "The nude gene encodes a sequence-specific DNA binding protein with
                                                                             RT
                               Schlake T., Schorpp M., Nehls M., Boehm T.;
                                                                             AЯ
                                         WEDFINE=3726865; Pubmed=9108066;
                                                                             КX
                                                         SEQUENCE FROM N.A.
                                                                              ВЪ
                                                                             КИ
                                                           NCBI_TaxID=7830;
                                                                              XO
                                             Scyliorhinidae; Scyliorhinus.
                                                                              OG
               Elasmobranchii; Galeomorphii; Galeoidea; Carcharhiniformes;
                                                                              OG
       Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Chondrichthyes;
                                                                              20
                Scyliorhinus canicula (Spotted dogfish) (Spotted catshark).
                                                                              SO
                                                                              СИ
                                      Whn transcription factor (Fragment).
                                                                              DE
                       01-JUN-2002 (TremBLrel. 21, Last annotation update)
                                                                              DL
                         01-JUL-1997 (Tremblrel. 04, Last sequence update)
                                                                              DL
                                       01-107 (Tremblrel: 04, Created)
                                                                              DL
                                                                    . £₽0£IO
                                                                              DΑ
                                                                     013043
                                                                              ID
                                                   DKELIMINARY;
                                         PRT;
                               .AA 6S
                                                                          013043
                                                                       RESULT 13
                                                           J AHME IO
                                                                              DР
                                                              ζX
                                                           31 NHNE 34
                                                 4; Conservative
           :0
                                0; Mismatches
                  Indels
:0
      gaba
                                                        Best Local Similarity
                          100.0%; Pred. No. 3.1e+03;
                  11.8%; Score 4; DB 8; Length 29;
                                                                  ўлехх матср
```

```
SEQUENCE 30 AA; 3492 MW; 8BC8F7525007AE91 CRC64;
                                                                               ŎS
                                   Hypothetical protein; Complete proteome.
                                                                               KM
                                                           .- ;£2015A2 ; 45IT
                                                                               DВ
                                              EMBL; AE014240; AAM99934.1; -.
                                                                               DВ
                        Proc. Watl. Acad. Sci. U.S.A. 99:12391-12396(2002).
                                                                               ВГ
           emerging human pathogen, serotype V Streptococcus agalactiae.";
                                                                                RT
          "Complete genome sequence and comparative genomic analysis of an
                                                                                RT
                                                                Fraser C.M.;
                                                                                AЯ
             Rinaudo D., Rappuoli R., Telford J.L., Kasper D.L., Grandi G.,
                                                                                AЯ
    lacobini E.T., Brettoni C., Galli G., Mariani M., Vegni F., Maione D.,
                                                                                AЯ
    Carty H.A., Cline R.T., Van Aken S.E., Gill J., Scarselli M., Mora M.,
                                                                                AЯ
             Radune D., Fedorova M.B., Scanlan D., Khouri H., Mulligan S.,
                                                                                AЯ
             DeBoy R.T., Durkin A.S., Kolonay J.F., Madupu R., Lewis M.R.,
                                                                                AЯ
        Madoff L.C., Wolf A.M., Beanan M.J., Brinkac L.M., Daugherty S.C.,
                                                                                AЯ
          Wessels M.R., Paulsen I.T., Welson K.E., Margarit I., Read T.D.,
                                                                                ΑЯ
      Tettelin H., Masignani V., Cieslewicz M.J., Eisen J.A., Peterson S.,
                                                                                AЯ
                                         WEDFINE=ZZZZZZ88; Pubmed=12200547;
                                                                                КX
                                               STRAIN=2603 V/R / Serotype V;
                                                                                \mathbb{F}^{\mathsf{C}}
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         []
                                                                               КИ
                                                          NCBI LaxID=216466;
                                                                               ΧO
                                                              Streptococcus.
                                                                                OC
                  Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
                                                                                OC
                                     Streptococcus agalactiae (serotype V).
                                                                               SO
                                                                    :820I9AS
                                                                               СИ
                                                       Hypothetical protein.
                                                                               DE
                        01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                               DL
                          01-MAR-2003 (TremBLrel. 23, Last sequence update)
                                                                               DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                               DL
                                                                     Q8DZP7;
                                                                                DA
                               .AA 0£
                                         PRT;
                                                    PRELIMINARY;
                                                                      Q8DZP7
                                                                               ID
                                                                            Q8DZP7
                                                                        RESULT 15
                                                            S₫ KKTŐ SJ
                                                                                DР
                                                               | | | | |
                                                            52 KKTÖ 53
                                                                               ζX
:0
      sdep :0
                  o; Indels
                                0; Mismatches
                                                  4; Conservative
                           Best Local Similarity 100.0%; Pred. No. 3.1e+03;
                  11.8%; Score 4; DB 4; Length 30;
                                                                    Query Match
                      30 PF: 3349 WM: 3020IBBJBEBBBDEC CKCC4;
                                                                    ZEÕNENCE
                                                                               ŎS
                                        ProDom; PD001868; Alk_phosphtse; 1.
                                                                               DВ
                                        InterPro; IPR001952; Alk_phosphtse.
                                                                               DВ
                                             Clin. Chem. 38:2539-2542(1992).
                                                                               R\Gamma
                                                                   kidney.";
                                                                               ΤЯ
         "Chemical nature of intestinal-type alkaline phosphatase in human
                                                                                ТЯ
                                                                  Hirano K.;
                                                                               AЯ
              "Ishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.
                                                                               AЯ
                                          WEDFINE=83085312: bnpW6q=1428282:
                                                                               КX
                                                                   ZEÕNENCE:
                                                                               КЪ
                                                                          [1]
                                                                               КИ
                                                            NCBI TaxID=9606;
                                                                               XO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                                OC
```

```
01-OCT-2002 (TrEMBLrel. 22, Created)
                                                                               DL
                                                                               DΑ
                                                                     Õ8NEI8:
                                                                     Ö8NEI8
                              .AA IE
                                                   PRELIMINARY;
                                                                               ID
                                        ;TA9
                                                                           Ö8NEI8
                                                                        RESULT 17
                                                           II MUKK IT
                                                                               DР
                                                              1111
                                                           33 MPKK 36
                                                                               ζŊ
     o: Gaps
                  slabal
                               0; Mismatches
                                                 4; Conservative
                          100.0%; Pred. No. 3.2e+03;
                                                       Best Local Similarity
                  II.8%; Score 4; DB I; Length 31;
                                               ; WM #23E ; AA IE
                                                                   ZEĞNENCE
                                                                               ÕS
                      9A2538F911C7309A CRC64;
                                                                               Τ٦
                                                            3.7
                                                                    NON LEK
                                               EMBL; X80178; CAA56461.1; -.
                                                                               DK
                                          Biochem. Genet. 31:241-251(1993).
                                                                               КГ
                                archaebacterium Sulfolobus solfataricus.";
                                                                               TA
        Alyceraldehyde-3-phosphate dehydrogenase in the thermoacidophilic
                                                                               TA
      "Nucleotide sequence and molecular evolution of the gene coding for
                                                                               ΤЯ
            Arcari P., Russo A.D., Ianniciello G., Gallo M., Bocchini V.;
                                                                               AЯ
                                          WEDFINE=84085161; PubMed=8259927;
                                                                               КX
                                                         SEĞNENCE EROM N.A.
                                                                               ďЯ
                                                                         [7]
                                                                               ΕИ
                                        Eur. J. Biochem. 233:800-808(1995).
                                                                               \mathsf{K}\mathsf{\Gamma}
                                          exbression on Escherichia coli.";
                                                                               ТЯ
      solfataricus overlap by 8bp. Isolation, sequencing of the genes and
                                                                               RT
            qeplqrodeusse deues trom the thermophilic archaeon sulfolobus
                                                                               RT
               "The phosphoglycerate kinase and glyceraldehyde-3-phosphate
                                                                               RT
       Jones C.E., Fleming T.M., Cowan D.A., Littlechild J.A., Piper P.W.;
                                                                               AЯ
                                          WEDFINE=80082744: bnpWed=8251842:
                                                                               КX
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                                         []]
                                                           NCBI L9XID=2287;
                                                                               XO
                                                                 .sudoloilu2
                                                                               OC
       Archaea; Crenarchaeota; Thermoprotei; Sulfolobales; Sulfolobaceae;
                                                                               OC
                                                   Sulfolobus solfataricus.
                                                                               SO
                                                                       URF2.
                                                                               СИ
                                                   Urfl protein (Fragment).
                                                                               DE
                       01-DEC-2001 (TremBLrel. 19, Last annotation update)
                                                                               DL
                         01-NOV-1996 (TremBLrel. 01, Last sequence update)
                                                                               DL
                                                                               DL
                                                                     ₹£8950
                                                                               DA
                                                                      ₹£55ŏ
                                                                               ID
                                                   PRELIMINARY;
                               .AA IE
                                         PRT;
                                                                           ₹ESSŎ
                                                                        RESULT 16
                                                           33 KKTŐ 56
                                                                               DР
                                                               ζŊ
                                                           50 KKTŐ 53
                                                  4; Conservative
                                0; Mismatches
:0
      gaps
           : 0
                  Iuqeja
                                                         Best Local Similarity
                           100.0%; Pred. No. 3.1e+03;
                 11.8%; Score 4; DB 16; Length 30;
                                                                   Диеху Матср
```

```
Hypothetical protein; Plasmid; Complete proteome.
                                                                               ΚM
                                                             TIGE: BBHIT: -:
                                                                               DВ
                                             EMBL; AE000784; AAC66002.1; -.
                                                                               DK
                                                   Nature 390:580-586(1997).
                                                                               ИL
                                                              pnrgdorferi.";
                                                                               RT
                 "Genomic sequence of a Lyme disease spirochaete, Borrelia
                                                                               RT
                                                   Smith H.O., Venter J.C.;
                                                                               AЯ
        Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
                                                                               AЯ
             Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
                                                                               ĄЯ
             van Yugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
                                                                               AЯ
      Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
                                                                               AЯ
                Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
                                                                               AЯ
    Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
                                                                               ΑЯ
           Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
                                                                               AЯ
                                          WEDFINE=88065943; PubMed=9403685;
                                                                               КX
                                                   STRAIN=ATCC 35210 / B31;
                                                                               _{\rm FC}
                                                          SEQUENCE FROM N.A.
                                                                               ďЯ
                                                                               КИ
                                                                         [I]
                                                             NCBI_TaxID=139;
                                                                               XO
        Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
                                                                               OC
                                                             Plasmid lp28-3.
                                                                               DO
                            Borrelia burgdorferi (Lyme disease spirochete).
                                                                               SO
                                                                      BBHII:
                                                                               СИ
                                                Hypothetical protein BBHll.
                                                                               DE
                        01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
                                                                               DL
                         01-JUN-1998 (TrembLrel. 06, Last sequence update)
                                                                               DL
                                       01-JUN-1998 (Tremblrel. 06, Created)
                                                                               DL
                                                                     :699050
                                                                               DΥ
                               .AA IE
                                         :TA4
                                                   PRELIMINARY;
                                                                      699050
                                                                               ΙD
                                                                           699050
                                                                        RESULT 18
                                                            IS AREI SI
                                                                               DΡ
                                                               Őλ
                                                            S AREI P
:0
                          :0
      ot gaba
                                0; Mismatches
                  sləbal
                                                  4; Conservative
                                                        Best Local Similarity
                           100.0%; Pred. No. 3.2e+03;
                  II.8%; Score 4; DB 4; Length 31;
                                                                   блекх массу
                      12DCD0161839F7F7 CRC64;
                                                WM TEPE ; AA IE
                                                                    SEĞNENCE
                                                                               ŎS
                                                            Т
                                                                    NON LEE
                                                                               ĿТ
                                                      Hypothetical protein.
                                                                               KM
                                             EMBL; BC030993; AAH30993.1; -.
                                                                               DK
                  Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
                                                                               ВГ
                                                              Strausberg R.;
                                                                               AЯ
                                                              LISSNE=KiqueX;
                                                                               _{\rm KC}
                                                          ZEĞNENCE EKOW N.A.
                                                                               ЧЯ
                                                                               КИ
                                                                         [I]
                                                            NCBI_TaxID=9606;
                                                                               XO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                               20
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               20
                                                       . (namuH) ansigas omoH
                                                                               SO
                                           Hypothetical protein (Fragment).
                                                                               DE
                        01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
                                                                               DL
                          01-OCT-2002 (TrembLrel. 22, Last sequence update)
                                                                               DL
```

```
1202060
                                                                              ЭA
                               AA SE
                                         ;TA9
                                                   PRELIMINARY;
                                                                     ZŎZŎ6Ŏ
                                                                              ΠI
                                                                           ZŎZŎ6Ŏ
                                                                       RESULT 20
                                                            J WHNK ₹
                                                                              DР
                                                              8 WHNK II
                                                                              ζX
:0
                               0; Mismatches
                                                 4; Conservative
      Gaps
           :0
                 stəbni
                          : 0
                          Best Local Similarity 100.0%; Pred. No. 3.2e+03;
                 11.8%; Score 4; DB 16; Length 31;
                      7C6C5D55CFF9 CRC64;
                                               ; WM 7628 ; AA IE
                                                                              ŎS
                                                                   ZEÕNENCE
                                   Hypothetical protein; Complete proteome.
                                                                              ΚM
                                                           TIGE: SOULT: -:
                                                                              DВ
                                             EMBL; AE015517; AAN53789.1; -.
                                                                              DВ
                                       Nat. Biotechnol. 20:1118-1123(2002).
                                                                              _{\rm K\Gamma}
                                                   Shewanella oneidensis.";
                                                                              RT
       "Genome sequence of the dissimilatory metal ion-reducing bacterium
                                                                              RT
       Feldblyum T.V., Smith H.O., Venter J.C., Mealson K.H., Fraser C.M.;
                                                                              AЯ
            Mueller J., Khouri H., Gill J., Utterback T.R., McDonald L.A.,
                                                                              AЯ
          Vamathevan J., Weidman J., Impraim M., Lee K., Berry K., Lee C.,
                                                                              AЯ
               Madupu R., Peterson J.D., Umayam L.A., White O., Wolf A.M.,
                                                                              AЯ
            DeBoy R.T., Dodson R.J., Durkin A.S., Haft D.H., Kolonay J.F.,
                                                                              ΑЯ
      Meyer T., Tsapin A., Scott J., Beanan M., Brinkac L., Daugherty S.,
                                                                              AЯ
      Read T.D., Eisen J.A., Seshadri R., Ward W., Methe B., Clayton R.A.,
                                                                              AЯ
     Heidelberg J.F., Paulsen I.T., Welson K.E., Gaidos E.J., Melson W.C.,
                                                                              ΑЯ
                                         WEDFINE=55534686; brpWed=12368813;
                                                                              КX
                                                                STRAIN=MR-1;
                                                                              _{\rm FC}
                                                         SEQUENCE FROM N.A.
                                                                              КЪ
                                                                              КИ
                                                                         [[]
                                                          NCBI_TaxID=70863;
                                                                              XO
                                              Alteromonadaceae; Shewanella.
                                                                              20
           Bacteria; Proteobacteria; Gammaproteobacteria; Alteromonadales;
                                                                              20
                                                     Shewanella oneidensis.
                                                                              SO
                                                                     .II7002
                                                                              СИ
                                                      Hypothetical protein.
                                                                              DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                              DL
                         01-MAR-2003 (TremBLrel. 23, Last sequence update)
                                                                              DL
                                       01-WAR-2003 (TremBLrel. 23, Created)
                                                                              DL
                                                                    Ö8EIM8:
                                                                              DΑ
                               .AA IE
                                         PRT;
                                                   PRELIMINARY;
                                                                     Ö8EIM8
                                                                              ID
                                                                           Ö8EIM8
                                                                       RESULT 19
                                                           56 KKTQ 29
                                                                              DР
                                                              1111
                                                           38 KKTŐ 38
                                                                              ζX
:0
      gsba
           :0
                  Indels
                          :0
                               0; Mismatches
                                                  4; Conservative
                          100.0%; Pred. No. 3.2e+03;
                                                        Best Local Similarity
                                                                   Query Match
                 11.8%; Score 4; DB 16; Length 31;
                      31 AA; 3892 MW; 8C9F6B9E72D10FBA CRC64;
                                                                   SEĞNENCE
                                                                              ŎS
```

```
Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
                                                                               AЯ
        Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D.,
                                                                               ΑЯ
    Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
                                                                               AЯ
        Waddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
                                                                               AЯ
               Deithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
                                                                               AЯ
            Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
                                                                               AЯ
            Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J.,
                                                                               AЯ
                Mg W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.,
                                                                               AЯ
                                         WEDFINE=50204483: bnpW6q=11016920:
                                                                               КX
                                                          SEQUENCE FROM N.A.
                                                                               _{\rm Kb}
                                                                         [1]
                                                                               КИ
                                                           NCBI_TaxID=64091;
                                                                               XO
                                           Halobacteriaceae; Halobacterium.
                                                                               20
                    Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
                                                                               20
                                          Halobacterium sp. (strain NRC-1).
                                                                               SO
                                                                   VNG0019H.
                                                                               СИ
                                                                   .46100paV
                                                                               DE
                        01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
                                                                               DL
                          01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
                                                                               DL
                                       01-MAR-2001 (TrEMBLrel. 16, Created)
                                                                               DL
                                                                     '0ZSH6Ö
                                                                               DΑ
                               .AA SE
                                         ;TA9
                                                    PRELIMINARY;
                                                                      0ZSH6Õ
                                                                               ID
                                                                           0ZSH6Õ
                                                                        RESULT 21
                                                             S HINZ 2
                                                                               Qα
                                                               1111
                                                                               ζŊ
                                                            LI SNTH VI
:0
           :0
                                0; Mismatches
                                                  4; Conservative
      Gaps
                  sləbni
                           100.0%; Pred. No. 3.3e+03;
                                                        Beat Local Similarity
                                               :88.II
                 Score 4; DB 11; Length 32;
                                                                    блеку Матсh
                                                ; WM TAAE ; AA SE
                      JEJEP4FA2CCF2EFB CRC64;
                                                                    ZEÕNENCE
                                                                               ÕS
                                                                     NON LEK
                                                                               LJ
                                                            32
                                                                   Receptor.
                                                                               KM
                                                       MGD; MGI:97386; Ntsr.
                                                                               DB
                                             EMBL; AF172326; AAD51806.1; -.
                                                                               DВ
                                      J. Biol. Chem. 274:30066-30079(1999).
                                                                               ИL
                                                                    cells.";
                                                                               TA
       expression during neuronal differentiation of NIE-115 neuroblastoma
                                                                               ТЯ
            "Sequences required for induction of neurotensin receptor gene
                                                                                RT
                                         Tavares D., Tully K., Dobner P.R.;
                                                                                AЯ
                                         WEDFINE=88442267; PubMed=10514493;
                                                                               КX
                                                                 :621=NIAAT2
                                                                                BC
                                                          SEQUENCE FROM N.A.
                                                                                КЪ
                                                                               ВИ
                                                                          [T]
                                                           NCBI L9xID=10090;
                                                                               XO
        Mammalia, Eutheria, Rodentia, Sciurognathi, Muridae, Murinae, Mus.
                                                                                OG
         Enkaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                                OG
                                                       Mus musculus (Mouse).
                                                                                SO
                                                                NTSR OR NTRI.
                                                                                СИ
                                           Meurotensin receptor (Fragment).
                                                                                DE
                        01-OCT-2002 (TremBLrel. 22, Last annotation update)
                                                                                DL
                          01-MAY-2000 (TremBLrel. 13, Last sequence update)
                                                                                DL
                                       01-MAY-2000 (TrEMBLrel. 13, Created)
                                                                                DL
```

```
01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                                 DL
                          01-OCT-2000 (TremBLrel. 15, Last sequence update)
                                                                                 DL
                                        01-OCT-2000 (TremBLrel. 15, Created)
                                                                                 DL
                                                                      бэькхз:
                                                                                 DΑ
                                AA EE
                                                    PRELIMINARY;
                                          ;TA9
                                                                       бэькхз
                                                                                 ID
                                                                             бэькхз
                                                                          KEZULT 23
                                                             SI KKTŐ SŦ
                                                                                 DΡ
                                                                1111
                                                             58 KKTŐ 59
                                                                                ζX
:0
      Gøba
           :0
                   Indels
                           :0
                                 0; Mismatches
                                                   4; Conservative
                           100.0%; Pred. No. 3.4e+03;
                                                         Best Local Similarity
                   11.8%; Score 4; DB 5; Length 33;
                                                                     блекх матср
                       9C3FC1AEC9FBE4A7 CRC64;
                                                ; WM OSYE ; AA EE
                                                                     SEĞNENCE
                                                                                 ŎS
                                        LIYBase; FBgn0047288; BcDNA:GM02640.
                                                                                 DK
                                              EMBL; AY060847; AAL28395.1; -.
                                                                                 DВ
                   Submitted (OCT-2001) to the EMBL/GenBank/DDBJ databases.
                                                                                _{\rm KP}
       Nunoo J., Pacleb J., Paragas V., Park S., Phouanenavong S., Wan K., Yu C., Lewis S.E., Rubin G.M., Celniker S.;
                                                                                 AЯ
                                                                                 AЯ
         Gonzalez M., Guarin H., Li P., Liao G., Miranda A., Mungall C.J.,
                                                                                 AЯ
         Champe M., Chavez C., Dorsett V., Farfan D., Frise E., George R.,
                                                                                 AЯ
             Stapleton M., Brokstein P., Hong L., Agbayani A., Carlson J.,
                                                                                 AЯ
                                                           SEQUENCE FROM N.A.
                                                                                 ВЪ
                                                                                КИ
                                                             NCBI_TaxID=7227;
                                                                                 XO
                                     Ephydroidea; Drosophilidae; Drosophila.
                                                                                 OC
                Meoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
                                                                                 OG
             Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
                                                                                 OG
                                        Drosophila melanogaster (Fruit fly).
                                                                                 SO
                                                               BCDNA: GM02640.
                                                                                СИ
                                                                    GM02640p.
                                                                                DE
                        01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
                                                                                DL
                          01-DEC-2001 (TremBLrel. 19, Last sequence update)
                                                                                 DL
                                        01-DEC-2001 (TremBLrel. 19, Created)
                                                                                 DL
                                                                      ₹asseð
                                                                                 DΑ
                               .AA EE
                                          PRT;
                                                    PRELIMINARY;
                                                                       ₹0328₽₹
                                                                                ID
                                                                             ŏ∂22D4
                                                                         KEZULT 22
                                                            13 KTŐD 16
                                                                                DΡ
                                                                1111
                                                                                ζX
                                                            SL KTÕD 30
:0
      o: gaba
                  sləbni
                          :0
                                0; Mismatches
                                                    4; Conservative
                           100.0%; Pred. No. 3.3e+03;
                                                         Best Local Similarity
                  Score 4; DB 17; Length 32;
                                                ;88.II
                                                                     Query Match
                       SSD669246C97A817 CRC64;
                                                WM 827E ; AA SE
                                                                    ZEÕNENCE
                                                                                ŎS
                                                           Complete proteome.
                                                                                KM
                                              EWBL: AE004971; AAG18659.1; -.
                                                                                DK
                        Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).
                                                                                ВГ
                         "Genome sequence of Halobacterium species NRC-1.";
                                                                                RT
```

```
:0
      o: gaba
                  Indels
                          :0
                                0; Mismatches
                                                  4; Conservative
                           Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                  2coxe 4: DB 7: rendry 34:
                                               :88.II
                                                                    Query Match
                                                          ;AA ₽£
                      3B38196393258A53 CRC64;
                                                4186 MM;
                                                                    ZEĞNENGE
                                                                               ÕS
                                                     ₹
                                                            ₽€
                                                                     NON LEK
                                                                               ΤŦ
                                                     Τ
                                                            Τ
                                                                     NON LEK
                                                                               FT
                                             EMBL; AF087260; AAD04038.1; -.
                                                                               DK
                  Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.
                                                                               _{\rm KP}
                                                               sedneucrud: ":
                                                                               RT
               "Gene identification of Chlamydia trachomatis by random DNA
                                                                               TA
                            Wang L., Steenburg S.D., Zheng Y., Larsen S.H.;
                                                                               ₩Я
                                                             STRAIN=L2 434B;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               КЪ
                                                                         [[]
                                                                               КИ
                                                             NCBI_TaxID=813;
                                                                               XO
             Bacceria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
                                                                               20
                                                     Chlamydia trachomatis.
                                                                               SO
                                         .(Jragmers) essamraq Jrabraqeb-9TA
                                                                               DE
                        01-MAY-1999 (TrEMBLrel. 10, Last annotation update)
                                                                               DL
                          01-MAY-1999 (TrEMBLrel. 10, Last sequence update)
                                                                               DL
                                       01-MAY-1999 (TremBLrel. 10, Created)
                                                                               DL
                                                                     785Z69
                                                                               DA
                                                   PRELIMINARY;
                                                                      Õ9ZG8I
                               .AA ₽£
                                         PRT;
                                                                               ID
                                                                           T85Z60
                                                                        KEROLL 24
                                                            SE LRKK 29
                                                                               DР
                                                               | | | |
                                                                               ζX
                                                            S# PKKK SJ
                                0; Міятаматсьея
                                                  4; Conservative
:0
      Gsps
           :0
                  sləbni
                           100.0%; Pred. No. 3.4e+03;
                                                        Best Local Similarity
                 11.8%; Score 4; DB 16; Length 33;
                                                                   Query Match
                      JEJC2PD3BF23JJEC CKC04;
                                               WM 2701 ; AA EE
                                                                   SEĞNENCE
                                                                               ŎS
                                   Hypothetical protein; Complete proteome.
                                                                               KM
                                                            TIGE; TC0337; -.
                                                                               DK
                                             EMBL; AE002301; AAF39200.1; -.
                                                                               DK
                                     Mucleic Acids Res. 28:1397-1406(2000).
                                                                               ИL
                                                          ;".eEAA asinomuanq
                                                                               ΤЯ
             "Genome sequences of Chlamydia trachomatis MoPn and Chlamydia
                                                                               ТЯ
                                                      Eisen J., Fraser C.M.;
                                                                               AЯ
    Gwinn M., Welson W., DeBoy R., Kolonay J., McClarty G., Salzberg S.L.,
                                                                               ΑЯ
        Linher K., Weidman J., Khouri H., Craven B., Bowman C., Dodson R.,
                                                                               AЯ
      White O., Hickey E.K., Peterson J., Utterback T., Berry K., Bass S.,
                                                                               AЯ
             Read T.D., Brunham R.C., Shen C., Gill S.R., Heidelberg J.F.,
                                                                               AЯ
                                         WEDFINE=50120522: bnpW6q=10684932:
                                                                               КX
                                                         STRAIN=MOPn / Nigg;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               ВИ
                                                                         [I]
                                                           NCBI_TaxID=83260;
                                                                               ΧO
             Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
                                                                               OG
                                                        Chlamydia muridarum.
                                                                               SO
                                                                      TC0337
                                                                               СИ
                                               Hypothetical protein TC0337.
                                                                               DE
```

```
"Analysis of the mouse transcriptome based on functional annotation of
                                                                               RT
            the RIKEN Genome Exploration Research Group Phase I & II Team;
                                                                               AЯ
                                                     The FANTOM Consortium,
                                                                               AЯ
                                         WEDFINE=55324683; PubMed=12466851;
                                                                               КX
                                              STRAIN-C57BL/6J; TISSUE=Head;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         []
                                                                               КИ
                                                          NCBI_L9xID=10090;
                                                                               XO
        Mammalia, Eutheria, Rodentia, Sciurognathi, Muridae, Murinae, Mus.
                                                                               OG
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               OC
                                                       .(9suoM) suluseum suM
                                                                               SO
                                      Zinc finger homeodomain 4 (Fragment).
                                                                               DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                               DL
                         01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
                                                                               DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                               DL
                                                                     Ŏ8C₹Ŀ₹:
                                                                               DΑ
                               .AA ₽E
                                         ;TA9
                                                   PRELIMINARY;
                                                                      Ŏ8C¢Ŀ₫
                                                                               ID
                                                                           Õ8C4b4
                                                                        RESULT 26
                                                            6 KKTŐ 3
                                                                               DР
                                                               I \cup I
                                                                               ζX
                                                           52 KKTŐ 53
:0
      Gaps
           indels ~ 0;
                         :0
                               0; Mismatches
                                                  4; Conservative
                          Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                  11.8%; Score 4; DB 2; Length 34;
                                                                   блекх марсу
                      88EBD113828BCCEE CKCC4;
                                                ;WM 8514 ;AA 45
                                                                               ŎS
                                                                    ZEÖNENCE
                                                                    Plasmid.
                                                                               KM
                                             EMBL; AP003089; BAC54529.1; -.
                                                                               DK
                  Submitted (JAN-2001) to the EMBL/GenBank/DDBJ databases.
                                                                               ИL
                                                                  ;".bimasiq
                                                                               RT
          "Complete nucleotide sequence of Staphylococcus aureus E-1 EDINA
                                                                               RT
               Sugai M., Yamaguchi T., Hayashi T., Nakasone K., Takami H.;
                                                                               AЯ
                                                                 STRAIN=E-1;
                                                                               ВG
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [T]
                                                                               КИ
                                                           NCBI_TaxID=1280;
                                                                               XO
                         Bacteria; Firmicutes; Bacillales; Staphylococcus.
                                                                               OC
                                                     Plasmid EDINA plasmid.
                                                                               OG
                                                      Staphylococcus aureus.
                                                                               SO
                                                                      ORF37.
                                                                               DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                               DL
                         01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
                                                                               DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                               DL
                                                                     Ö8GEKS;
                                                                               Э¥
                                                                      Ö8GEKS
                               .AA 4E
                                         PRT;
                                                   PRELIMINARY;
                                                                               ID
                                                                           Ö8GEKS
                                                                        RESULT 25
                                                           SP LRKK 28
                                                                               Дα
                                                               1111
                                                           ST PEKK SJ
                                                                               ζŊ
```

```
Hypothetical protein mar3733.
                                                                              DE
                       01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
                                                                              DL
                         01-OCT-2001 (TrembLrel. 18, Last sequence update)
                                                                              DL
                                      01-OCT-2001 (TremBLrel. 18, Created)
                                                                              DI
                                                                    Q98FK5;
                                                                              DΑ
                              .AA A£
                                        PRT;
                                                  PRELIMINARY;
                                                                     Q98FK5
                                                                              ID
                                                                          Õ38EK2
                                                                       RESULT 28
                                                          28 KKKT 31
                                                                              DΡ
                                                              S2 KKKT S8
                                                                              ζŊ
:0
      ot gaba
                  0; Mismatches 0; Indels
                                                4; Conservative
                                                                       Watches
                          Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                 11.8%; Score 4; DB 13; Length 34;
                                                                  Query Match
                      FEF02F8A45B27DA5 CRC64;
                                              ;WM £86£ ;AA ₽£
                                                                  ZEÕNENCE
                                                                              ŎS
                                                    Ţ
                                                                   NON LEK
                                                           T
                                                                              TA
                                            EMBL; AB031024; BAB62544.1; -.
                                                                              DВ
                                                    Gene 272:181-190(2001).
                                                                              _{\rm K\Gamma}
                         chicken platelet-derived growth factor-A chain.";
                                                                              RT
         "Characterization and expression of three forms of cDNA encoding
                                                                              RТ
                           Horiuchi H., Inoue T., Furusawa S., Matsuda H.;
                                                                              AЯ
                                        WEDFINE=S1363436; PubMed=11470524;
                                                                              КX
                                                         SEQUENCE FROM N.A.
                                                                              КЪ
                                                                       [T]
                                                                              КИ
                                                           NCBI TaxID=8031;
                                                                              XO
                                                                    Gallus.
                                                                              OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
                                                                              OG
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                              OC
                                                   Gallus gallus (Chicken).
                                                                              SO
                                                                              СИ
              Platelet-derived growth factor A chain long form (Fragment).
                                                                              DE
                       01-DEC-2001 (TremBLrel. 19, Last annotation update)
                                                                              DL
                         01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
                                                                              DL
                                      01-DEC-2001 (TremBLrel. 19, Created)
                                                                              DL
                                                                    '₱₽Z06Ŏ
                                                                              DΑ
                              .AA AE
                                        PRT;
                                                  PRELIMINARY;
                                                                     ₱rz06ŏ
                                                                             ID
                                                                          ₽UZ06Ŏ
                                                                       RESULT 27
                                                           S KTŐD 2
                                                                              DР
                                                              1111
                                                                              ζX
                                                          SJ KTŐD 30
:0
      o! gaba
                         0; Mismatches 0;
                 Indels
                                                 4; Conservative
                          Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                 11.8%; Score 4; DB 11; Length 34;
                                                                  Query Match
                                              WM BBYE AA AE
                                                                             ŎS
                      EL4IDCYE348467B0 CRC64;
                                                                  ZEĞNENCE
                                                                             TA
                                            EMBL; AK081561; BAC38260.1; -.
                                                                             DK
                                                 Nature 420:563-573(2002).
                                                                              КГ
                                               ":" or Tull-length cDNAs.";
                                                                              RT
```

```
0; Mismatches
:0
      eaba
           :0
                          : 0
                  Indels
                                                  4; Conservative
                                                                       Матслев
                           100.0%; Pred. No. 3.6e+03;
                                                         Best Local Similarity
                  11.8%; Score 4; DB 4; Length 35;
                                                                   блеку Матср
                      SETOBOZEEOBC86DF CRC64;
                                               3742 MM;
                                                          ; AA ZE
                                                                   SEĞNENCE
                                                                               ÕS
                                                     32
                                                            32
                                                                    NON LEK
                                                                               EL
                                                                     NON_LEK
                                                                               EI
                                               EMBL; M14911; AAA36592.1; -.
                                                                               DK
                                                Virology 155:666-677(1986).
                                                                               КГ
       "Isolation of an SSAV-related endogenous sequence from Human DNA.";
                                                                               RT
                Leib-Mosch C., Brack R., Werner T., Erfle V., Hehlmann R.;
                                                                               AЯ
                                          WEDFINE=87071681; PubMed=2431542;
                                                                               ВX
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                                         [T]
                                                           NCBI_TaxID=9606;
                                                                               XO
                Mammalia; Eucheria; Primates; Catarrhini; Hominidae; Homo.
                                                                               OG
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               20
                                                       .(nsmuH) ansiges omoH
                                                                               SO
                                                                 (Fragment).
                                                                               DE
             Simian sarcoma associated virus (SSAV) -related pol region DNA
                                                                               DE
                       01-NOV-1998 (TremBLrel. 08, Last annotation update)
                                                                               DL
                         01-NOV-1996 (Tremblrel. 01, Last sequence update)
                                                                               DL
                                       01-NOV-1996 (Tremblrel. 01, Created)
                                                                               DT
                                                                     CI2#SIÕ
                                                                               ŊΨ
                               .AA 25
                                         PRT;
                                                   PRELIMINARY;
                                                                      ŎI2₹SI
                                                                               ID
                                                                           ŎI2#SI
                                                                        RESULT 29
                                                           S8 KTŐD 3I
                                                                               DΡ
                                                               1111
                                                                               ζX
                                                           57 KLQD 30
:0
      gaba
           :0
                  stəbni
                         0; Mismatches 0;
                                                  4; Conservative
                           100.0%; Pred. No. 3.5e+03;
                                                        Best Local Similarity
                 11.8%; Score 4; DB 16; Length 34;
                                                                   блеку масср
                      ZEOnence 34 AA; 3804 MM; Deaph8ZecB590413 CRC64;
                                                                               ÕS
                                   Hypothetical protein; Complete proteome.
                                                                               KM
                                             EMBL; AP003002; BAB50562.1; -.
                                                                               DВ
                                                   DNA Res. 7:331-338(2000)
                                                                               BL
                                                      Mesorhizobium loti.";
                                                                               RT
     "Complete genome structure of the nitrogen-fixing symbiotic bacterium
                                                                               RT
                                         Takeuchi C., Yamada M., Tabata S.;
                                                                               AЯ
           Mochizuki Y., Nakayama S., Nakazaki N., Shimpo S., Sugimoto M.,
                                                                               AЯ
              Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A.,
                                                                               AЯ
            Watanabe A., Idesawa K., Ishikawa A., Kawashima K., Kimura T.,
                                                                               ΑЯ
        Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S.,
                                                                               AЯ
                                         WEDFINE=51085330; bnpWeg=11514368;
                                                                               ВX
                                                          STRAIN=MAFF30309;
                                                                               \mathsf{E}\mathsf{C}
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                                         [I]
                                                             NCBI_TaxID=381;
                                                                               XO
                                         Phyllobacteriaceae; Mesorhizobium.
                                                                               OC
               Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
                                                                               OG
                                       Rhizobium loti (Mesorhizobium loti).
                                                                               SO
                                                                    MSR3733.
                                                                               СИ
```

```
STRAIN=El Tor N16961 / Serotype Ol;
                                                                                ВG
                                                          SEQUENCE FROM N.A.
                                                                                КЪ
                                                                                ВИ
                                                                         [T]
                                                             NCBI_TaxID=666;
                                                                                XO
                                                       Vibrionaceae; Vibrio.
                                                                                OG
               Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales;
                                                                                20
                                                            Vibrio cholerae.
                                                                                SO
                                                                      VC2034.
                                                                                СИ
                                                Hypothetical protein VC2034.
                                                                                DE
                        01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
                                                                                DL
                                                                                DL
                                        01-OCT-2000 (TremBLrel. 15, Created)
                                                                                DL
                                                                      Ő∂KÕG₹:
                                                                                DΑ
                               .AA 28
                                                    PRELIMINARY;
                                          PRT;
                                                                      Ő∂KŐG₹
                                                                                ID
                                                                            Õ∂КÕС₹
                                                                         RESULT 31
                                                            IO RARE I3
                                                                                DΡ
                                                               | | | | |
                                                                                ζλ
                                                             I SASE 4
           :0
:0
      gsba
                           :0
                                0; Mismatches
                  sləbni
                                                  4; Conservative
                           100.0%; Pred. No. 3.6e+03;
                                                        Best Local Similarity
                 11.8%; Score 4; DB 12; Length 35;
                                                                    Query Match
                       SezsG3T9622E9CE4 CRC64;
                                                :WM SIIP :AA SE
                                                                                ŎS
                                                       Hypothetical protein.
                                                                                KM
                                              EWBL; AF222060; AAL55025.1; -.
                                                                                DВ
                   Submitted (JAM-2000) to the EMBL/GenBank/DDBJ databases.
                                                                                ИL
                            "Sequence and transcription of halovirus HF2.";
                                                                                RT
           Tang S.-L., Fisher C., Ngui K., Nuttall S.D., Dyall-Smith M.L.;
                                                                                AЯ
                                                          SEÕNENCE EKOW N.A.
                                                                                ВЪ
                                                                                ВИ
                                                                          [I]
                                                           NCBI_TaxID=33771;
                                                                                XO
           Viruses; dsDNA viruses, no RNA stage; Caudovirales; Myoviridae.
                                                                                OG
                                                              Halovirus HF2.
                                                                                SO
                                              Hypothetical 4.1 kDa protein.
                                                                               DE
                        01-MAR-2002 (TrembLrel. 20, Last annotation update)
                                                                                DL
                          01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
                                                                                DL
                                       01-MAR-2002 (TrEMBLrel. 20, Created)
                                                                               DL
                                                                     $19089
                                                                                ЭA
                               .AA ZE
                                         PRT;
                                                    PRELIMINARY;
                                                                      8L9V8Q
                                                                               ID
                                                                            8L9V8Q
                                                                        RESULT 30
                                                             6 VQQ1 9
                                                                                DΡ
                                                               | | | | |
                                                            28 LQDV 31
                                                                                ζX
```

McDonald L., Utterback T., Fleischmann R.D., Nierman W.C., White O.,

Gill S.R., Welson K.E., Read T.D., Tettelin H., Richardson D.,

WEDFINE=50406833; PubMed=10952301;

Dodson R.J., Haft D.H., Hickey E.K., Peterson J.D., Umayam L.A.,

Heidelberg J.F., Eisen J.A., Melson W.C., Clayton R.A., Gwinn M.L.,

Ermolaeva M.D., Vamathevan J., Bass S., Qin H., Dragoi I., Sellers P.,

AЯ

AЯ

AЯ

AЯ

AЯ

КX

```
OrfA protein (Fragment).
                                                                                DE
                        01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
                                                                                DL
                          01-NOV-1996 (Tremblrel. 01, Last sequence update)
                                                                                DL
                                        01-MOV-1996 (Tremblred. 01, Created)
                                                                                DL
                                                                      Ö23330:
                                                                                ЭA
                               .AA 3£
                                          PRT;
                                                    PRELIMINARY;
                                                                       026ESÕ
                                                                                ID
                                                                            026850
                                                                         RESULT 33
                                                             9 SNTH E
                                                                                DР
                                                                1111
                                                            LT SNTH TT
                                                                                ζX
           :0
:0
      gaba
                  4; Conservative 0; Mismatches 0; Indels
                           Best Local Similarity 100.0%; Pred. No. 3.6e+03;
                 11.8%; Score 4; DB 16; Length 35;
                                                                    Query Match
                       ZEĞNENCE 32 YY: 4523 WM: ODDEEDELB35E380B CKC64:
                                                                                ŎS
                                    Hypothetical protein; Complete proteome.
                                                                                KM
                                              EMBL; AE011494; AAN50536.1; -.
                                                                                DВ
                  Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
                                                                                _{
m FL}
                                                                     Ken S.;
                                                                                AЯ
               STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
                                                                                ВG
                                                          SEQUENCE FROM N.A.
                                                                                КЪ
                                                                         [I]
                                                                                КИ
                                                             NCBI TaxID=173;
                                                                                XO
       Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
                                                                                20
                                                     Leptospira interrogans.
                                                                                SO
                                                                      . 4£5££A.1
                                                                                СИ
                                                       Hypothetical protein.
                                                                                DE
                        01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                                DL
                          01-MAR-2003 (TrEMBLrel. 23, Created)
01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
                                                                                DL
                                                                                DТ
                                                                      Q8F102;
                                                                                DΑ
                               .AA ZE
                                                    PRELIMINARY;
                                         PRT;
                                                                      Õ8EI0S
                                                                                ID
                                                                            Ö8ŁT0S
                                                                         RESULT 32
                                                            S# KKTŐ SL
                                                                                DP
                                                               | | | | |
                                                                                ζX
                                                            52 KKTŐ 53
      0: Gaps
:0
                  sləbni
                          : 0
                                0; Mismatches
                                                  4; Conservative
                           Best Local Similarity 100.0%; Pred. No. 3.6e+03;
                 11.8%; Score 4; DB 16; Length 35;
                                                                    блекл масср
                      32 PF: 4181 WM: DI82Be333PJJJD24 CECe4:
                                                                                ŎS
                                                                    ZEĞNENGE
                                   Hypothetical protein; Complete proteome.
                                                                                KM
                                                            TIGE; VC2034; -.
                                                                                DВ
                                              EMBL; AE004278; AAF95182.1; -.
                                                                                DK
                                                   Mature 406:477-483(2000).
                                                                                ЧY
                                                                 cholerae.";
                                                                                RT
          "DNA sequence of both chromosomes of the cholera pathogen Vibrio
                                                                                ТЯ
                                                                Fraser C.M.;
                                                                                AЯ
     Salzberg S.L., Smith H.O., Colwell R.R., Mekalanos J.J., Venter J.C.,
                                                                                AЯ
```

```
:0
      gsba
           :0
                  o: Indels
                               0; Mismatches
                                                  4; Conservative
                           100.0%; Préd. No. 3.7e+03;
                                                          Best Local Similarity
                   11.8%; Score 4; DB 2; Length 36;
                                                                     Grery Match
                       36 AA; 3957 MW; D94F46BCFD437D97 CRC64;
                                                                     ZEĞNENCE
                                                                                ÕS
                                                      36
                                                             36
                                                                      NON LEK
                                                                                ĿL
                                           Pfam; PF00148; oxidored_nitro; 1.
                                                                                DВ
                                      InterPro; IPR000510; Oxred_nitrognsel.
                                                                                DB
                                              EMBL; AF058778; AAC14327.1; -.
                                                                                DK
                   Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
                                                                                R\Gamma
                                                   in Diverse Diazotrophs.";
                                                                                \mathbf{R}\mathbf{T}
     "Identification of Genes Unique to Mo-Independent Nitrogenase Systems
                                                                                RT
                                                 Loveless T.M., Bishop P.E.;
                                                                                AЯ
                                                           REQUENCE FROM N.A.
                                                                                ďИ
                                                                                \mathbf{K}\mathbf{N}
                                                                          [T]
                                                             NCBI_TaxID=1085;
                                                                                XO
                                          Rhodospirillaceae; Rhodospirillum.
                                                                                OG
          Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales;
                                                                                OC
                                                      Rhodospirillum rubrum.
                                                                                SO
                                                                        ANFK.
                                                                                GN
                                    Dinitrogenase 3 beta subunit (Fragment).
                                                                                DE
                        01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
                                                                                DL
                          01-AUG-1998 (TremBLrel. 07, Last sequence update)
                                        01-AUG-1998 (TrEMBLrel. 07, Created)
                                                                                DL
                                                                      : I#6890
                                                                                ЭA
                               .AA 9E
                                          PRT;
                                                    PRELIMINARY;
                                                                       T#6890
                                                                                ID
                                                                            T#6890
                                                                         RESULT 34
                                                            51 EKAE 30
                                                                                DР
                                                                | | | |
                                                                                őλ
                                                            10 EKAE SS
                                0; Мівтастев
:0
      o: gaba
                  sləbni
                          : 0
                                                   4; Conservative
                           100.0%; Pred. No. 3.7e+03;
                                                          Best Local Similarity
                  11.8%; Score 4; DB 2; Length 36;
                                                                    Олеку Масср
                      EBD470AAF99A728E CRC64;
                                                36 AA; 4121 MW;
                                                                                ŎS
                                                                    ZEĞNENCE
                                                             Τ
                                                                     NON LEK
                                                                                TA
                                                   Pfam; PF03136; DUF245; 1.
                                                                                DК
                                                InterPro; IPR004347; DUF245.
                                                                                DК
                                                EMBL; Z34523; CAA84281.1; -.
                                                                                DВ
                                                 EMBO J. 13:3472-3480(1994).
                                                                                ВГ
                                                      to the FKBP-12 gene.";
                                                                                RT
      of two PK506-binding domains with its gene transcriptionally coupled
                                                                                TA
     "Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting
                                                                                RT
                                                         Pahl A., Keller U.;
                                                                                AЯ
                                          WEDFINE=84341528: bnpWeq=8062824:
                                                                                КX
                                                          SEQUENCE FROM N.A.
                                                                                ВЪ
                                                                                КИ
                                                                          [T]
                                                            NCBI_TaxID=1899;
                                                                                XO
                          Streptomycineae; Streptomycetaceae; Streptomyces.
                                                                                OG
              Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
                                                                                OG
                                                  Streptomyces chrysomallus.
                                                                                SQ
                                                                        ORFA.
                                                                                CN
```

```
WEDFINE=50083481; bnpWed=10617197;
                                                                               КX
                                                       STRAIM=cv. Columbia;
                                                                               ВG
                                                          SEQUENCE FROM N.A.
                                                                               КЪ
                                                                         [T]
                                                                               КИ
                                                            NCBI L9XID=3702;
                                                                               XO
                      entosids II; Brassicales; Brassicaceae; Arabidopsis.
                                                                               OG
     Sbermacobyyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
                                                                               OC
        Enkaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
                                                                               20
                                    Arabidopsis thaliana (Mouse-ear cress).
                                                                               SO
                                                                  AT2G35870.
                                                                               СN
                                                         At2g35870 protein.
                                                                               DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                         01-MAY-2000 (TremBLrel. 13, Last sequence update)
                                                                               DL
                                       01-MAY-2000 (TrEMBLrel. 13, Created)
                                                                               DL
                                                                     : £91560
                                                                               DA
                                                   PRELIMINARY;
                               .AA 3£
                                                                      £9L26Q
                                         PRT;
                                                                              ID
                                                                           E9L26Q
                                                                        RESULT 36
                                                           OI WSNI L
                                                                               DΡ
                                                               1111
                                                                               ζŊ
                                                           12 PRZW 18
: 0
      0; Gaps
                          :0
                               0; Mismatches
                                                  4; Conservative
                  sləbni
                           Best Local Similarity 100.0%; Pred. No. 3.7e+03;
                  11.8%; Score 4; DB 4; Length 36;
                                                                   Query Match
                                               ;WM 686E ;AA 9E
                      C3A6A964C2F41007 CRC64;
                                                                   ZEÕNENCE
                                                                               ÕS
                                                                    NON LEK
                                                                               FT
                                                      Pfam; PF03253; UT; 1.
                                                                               DВ
                                     InterPro; IPR004937; Urea_transporter.
                                                                               DK
                                             EMBL; AF328890; AAL37474.1; -.
                                                                               DВ
                                              Br. J. Haematol. 0:0-0(2001).
                                                                               ИL
                                                                Pedigrees.";
                                                                               ΤЯ
        "Molecular Basis of the Jk (a-b-) Phenotype in Non-Finnish European
                                                                               RT
             Olsson M.L., Irshaid M.M., Eicher W.I., Poole J., Hustinx H.;
                                                                               AЯ
                                                         SEQUENCE FROM N.A.
                                                                               КЪ
                                                                         [1]
                                                                               ВИ
                                                            NCBI_TaxID=9606;
                                                                               ΧO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                               OC
         Enkaryota; Metazoa; Chordata; Craniata; Verrebrata; Enteleostomi;
                                                                               OC
                                                       .(namuH) ansigas omoH
                                                                               SO
                                                                               СИ
                               Urea transporter JK glycoprotein (Fragment).
                                                                               DE
                       01-JUN-2002 (TremBLrel. 21, Last annotation update)
                                                                               DL
                         01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
                                                                               DL
                                       01-MAR-2002 (TrEMBLrel. 20, Created)
                                                                               DL
                                                                     Q8WXW8;
                                                                               DΑ
                               .AA 9E
                                         PRT;
                                                   PRELIMINARY;
                                                                      Q8WXW8
                                                                               ΙD
                                                                           Ø8MXM8
                                                                        RESULT 35
                                                             2 PEKK 8
                                                                               DР
```

1111

54 PKKK 51

δλ

```
ŎS
                      2BB1935A55048D34 CRC64;
                                                 ; WM 342E ; AA 3E
                                                                    ZEÕNENCE
                                                 Polyprotein; Transmembrane.
                                                                                KM
      Cost brotein; Envelope protein; Glycoprotein; Nonstructural protein;
                                                                                KM
                                                  Pfam; PF01560; HCV_NS1; 1.
                                                                                DБ
                                               IUFGEPEO; IPRO02531; HCV_NS1.
                                                                                DВ
                                               .(2661)£29-849:£2 .fodaq9H .t
                                                                                _{\rm K\Gamma}
                                                 chronic hepatitis type C.";
                                                                                RT
      indicative of poor response to interferon treatment in patients with
                                                                                RT
      and high degree of sequence variability of hypervariable region are
                                                                                ТЯ
      "Genotype, slow decrease in virus titer during interferon treatment
                                                                                TA
                        Hashimoto M., Kobayashi M., Kanda M., Morinaga T.;
                                                                                AЯ
      Chayama K., Tsubota A., Arase Y., Saitoh S., Ikeda K., Matsumoto T.,
                                                                                AЯ
                                           WEDFINE=86343151; bnpw6q=8120165;
                                                                                КX
                                                           SEQUENCE FROM N.A.
                                                                                ЯΡ
                                                                                ВИ
                                                            NCBI_TaxID=11103;
                                                                                XO
                                                                 Hepacivirus.
                                                                                OG
       Viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae;
                                                                                OC
                                                           Hepatitis C virus.
                                                                                SO
                                                                  .(Tragment).
                                                                                DE
        Genome polyprotein [Contains: envelope glycoprotein E2/NS1 (GP68)]
                                                                                DE
                        01-DEC-2001 (TremBLrel. 19, Last annotation update)
                                                                                DL
                          01-MAY-2000 (TremBLrel. 13, Created)
01-MAY-2000 (TremBLrel. 13, Last sequence update)
                                                                                DL
                                                                                DL
                                                                      ÕðbxDJ:
                                                                                DА
                                                    PRELIMINARY;
                                                                       Õ B K D J
                                                                                ID
                               .AA 3£
                                          ; TA9
                                                                            G9PXD1
                                                                         RESULT 37
                                                              ₹ KKTŐ J
                                                                                DР
                                                                | | | |
                                                                                őλ
                                                            SE KKTŐ S6
      0 t gsba
                          :0
                                                   4; Conservative
:0
                  Indels
                                 0; Mismatches
                           Best Local Similarity 100.0%; Pred. No. 3.7e+03;
                  11.8%; Score 4; DB 10; Length 36;
                                                                     ўлеку Масср
                       36 AA; 4358 MW; DC966779BBD6B834 CRC64;
                                                                    ZEĞNENCE
                                                                                ŎS
                                              EMBL; AC007017; AAD21470.1; -.
                                                                                DВ
                  Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.
                                                                                ВГ
                                                                      .X nid
                                                                                 AЯ
                                                        STRAIN=cv. Columbia;
                                                                                 BC
                                                           SEQUENCE FROM N.A.
                                                                                 ВЪ
                                                                                 КИ
                                                   . (9991)837-167:50₽ 97utaN
                                                                                 ВГ
                                                                  ;".ensiladt
                                                                                 TA
           "Sequence and analysis of chromosome 2 of the plant Arabidopsis
                                                                                 ТЯ
                                    Salzberg S.L., Fraser C.M., Venter J.C.;
                                                                                 AЯ
           Copenhaver G.P., Preuss D., Nierman W.C., White O., Eisen J.A.,
                                                                                 AЯ
     Adams M.D., Carrera A.J., Creasy T.H., Goodman H.M., Somerville C.R.,
                                                                                 AЯ
    Cronin L.A., Shen M., VanAken S.E., Umayam L., Tallon L.J., Gill J.E.,
                                                                                 AЯ
    Buell C.R., Ketchum K.A., Lee J.J., Ronning C.M., Koo H., Moffat K.S.,
                                                                                 AЯ
      Fujii C.Y., Mason T.M., Bowman C.L., Barnstead M.E., Feldblyum T.V.,
                                                                                 AЯ
       Lin X., Kaul S., Rounsley S.D., Shea T.P., Benito M.-I., Town C.D.,
                                                                                 AЯ
```

Score 4; DB 12; Length 36;

: %8:II

Диеху масси

```
NCBI TaxID=7955;
                                                                              XO
                                                         Cyprinidae; Danio.
                                                                              OG
      Ycrinopterygii; Neopterygii; Teleostei; Ostariophysi; Cypriniformes;
                                                                              OG
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                              20
                              Brachydanio rerio (Zebrafish) (Danio rerio).
                                                                              SO
                                                           . GANZ GO GESTANS
                                                                              CN
                           Synaptosome-associated protein 25.2 (Fragment).
                                                                              DE
                       01-OCT-2002 (Tremblrel. 10, Last sequence update)
                                                                              DL
                                                                              DL
                                      01-MAY-1999 (TrEMBLrel. 10, Created)
                                                                              DL
                                                                    Q9YHT9;
                                                                              ЭA
                              .AA 3E
                                                   PRELIMINARY;
                                                                     Q9YHT9
                                                                              ID
                                                                          СРИТР
                                                                       RESULT 39
                                                           T₹ KKTÖ IL
                                                                              DΡ
                                                              SE KKTŐ SB
                                                                              ζX
                                                 4; Conservative
:0
      o: caps
                  Indels
                          :0
                               0; Mismatches
                          Best Local Similarity 100.0%; Pred. No. 3.7e+03;
                 11.8%; Score 4; DB 12; Length 36;
                                                                   биеху Матср
                                               ;WM IES# ;AA 8E
                                                                              ŎS
                      92145F475EA841F1 CRC64;
                                                                   ZEÕNENGE
                                                            9ε
                                                                    NON LEK
                                                                              _{\rm LL}
                                                      Hypothetical protein.
                                                                              KM
                                                 Pfam; PF02957; TT_ORF2; 1.
                                                                              DК
                                              InterPro; IPR004118; TT ORF2.
                                                                              DK
                                            EMBL; AB059561; BAB69654.1; -.
                                                                              DK
                  Submitted (APR-2001) to the EMBL/GenBank/DDBJ databases.
                                                                              _{\rm BP}
                                                                   ;".boold
                                                                              RT
    "Existence of TT virus DNA and TTV-like mini virus DNA in infant cord
                                                                              RT
                                                                   ; .M iţnO
                                                                              AЯ
      Michitaka K., Matsubara H., Horiike N., Kihana T., Yano M., Mori T.,
                                                                              AЯ
                                                             :01E0MH=NIAATZ
                                                                              ВG
                                                         SEQUENCE FROM N.A.
                                                                              ВЪ
                                                                        []]
                                                                              КИ
                                                          NCBI L9XID=83678;
                                                                              XO
                                      Viruses; saDNA viruses; Circoviridae.
                                                                              OG
                                                       TTV-like mini virus.
                                                                              SO
                     ORF2 hypothetical protein, isolate:HM0319 (Fragment).
                                                                              DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                              DL
                         01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
                                                                              DL
                                       01-DEC-7001 (TremBLrel. 19, Created)
                                                                              DL
                                                                              DA
                                                                    ĞƏJDJ1:
                                                   PRELIMINARY;
                                                                     Q91D77
                                                                              ID
                              .AA 3E
                                         PRT;
                                                                           Õ91D77
                                                                       KEZULT 38
                                                           33 IQLM 36
                                                                              DΡ
                                                              P IOLM 8
                                                                              őλ
:0
           :0
                              0; Мівтасрев
                                                  4; Conservative
                  o: Indels
      gsba
                          Best Local Similarity 100.0%; Pred. No. 3.7e+03;
```

```
SEQUENCE 36 AA; 4282 MW; 749D427D078ACA76 CRC64;
                                                                               ÕS
                                   Hypothetical protein; Complete proteome.
                                                                               KM
                                                            TIGE; SP0497; -.
                                                                               DВ
                                             EMBL; AE007361; AAK74655.1; -.
                                                                               DВ
                                                 Science 293:498-506(2001).
                                                                               _{\rm FL}
                                                               pneumoniae.";
                                                                               RT
          "Complete genome sequence of a virulent isolate of Streptococcus
                                                                               RT
            Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M.;
                                                                               AЯ
                 Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C.,
                                                                               ΑЯ
    McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K.,
                                                                               AЯ
         Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L.,
                                                                               AЯ
              Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D.,
                                                                               AЯ
          Durkin A.S., Gwinn M., Kolonay J.F., Nelson W.C., Peterson J.D.,
                                                                               AЯ
           Peterson S., Heidelberg J., DeBoy R.T., Haft D.H., Dodson R.J.,
                                                                               AЯ
            Tettelin H., Nelson K.E., Paulsen I.T., Eisen J.A., Read T.D.,
                                                                               AЯ
                                         WEDFINE=51321506: bnpWeq=11463616:
                                                                               KX
                                                               STRAIN=TIGR4;
                                                                               ВG
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [1]
                                                                               КИ
                                                            NCBI_TaxID=1313;
                                                                               XO
                                                              streptococcus.
                                                                               OG
                  Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
                                                                               OC
                                                  grreptococcus pneumoniae.
                                                                               SO
                                                                      . 76 £042
                                                                               СИ
                                               Hypothetical protein SP0497.
                                                                               DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                          01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
                                                                               DL
                                       01-OCT-2001 (TremBLrel: 18, Created)
                                                                               DL
                                                                     '165460
                                                                               ЭA
                               .AA 9£
                                         PRT;
                                                   PRELIMINARY;
                                                                      T6SL6Õ
                                                                               ID
                                                                           T65160
                                                                        RESULT 40
                                                             S EKAE 2
                                                                               DР
                                                               ζX
                                                            10 EKAE 35
:0
      Gaps
           : 0
                  stabri
                          : 0
                                0; Мівтаслев
                                                  4; Conservative
                          100.0%; Pred. No. 3.7e+03;
                                                        Best Local Similarity
                 11.8%; Score 4; DB 13; Length 36;
                                                                    Query Match
                      E3434822EJEECOSE CKC94;
                                                'MW 9707
                                                          ; AA 9E
                                                                    ZEĞNENCE
                                                                               ÕS
                                                     9٤
                                                            9ε
                                                                     NON_TER
                                                                               \mathbf{EL}
                                                                     NON LEE
                                                                               T\mathfrak{A}
                                        ZEIN: ZDB-GENE-980276-392; susp22p.
                                                                               DK
                                             EMBL; AF091596; AAC73006.1; -.
                                                                               DK
                                        J. Meurosci. Res. 54:563-573(1998).
                                                                               ВГ
                                                    the mammalian lineage.";
                                                                               TA
     comparison of paralogous linkage groups suggests loss of one locus in
                                                                               RT
             "Cloning of two loci for synapse protein Snap25 in zebrafish:
                                                                               ΤЯ
                                                               Larhammar D.;
                                                                               AЯ
      Risinger C., Salaneck E., Soderberg C., Gates M., Postlethwait J.H.,
                                                                               AЯ
                                          WEDFINE=88021581; PubMed=9843147;
                                                                               КX
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                          [I]
                                                                               ВИ
```

Query Match 21.8%; Score 4; DB 16; Length 36; Best Local Similarity 100.0%; Pred. No. 3.7e+03; Matches 4; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

.

Search completed: January 14, 2004, 10:41:52 Job time : 27.4206 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 5.61371 Seconds (without alignments)

284.822 Million cell updates/sec

Title: US-09-843-221A-163

Seanence: 3 CASEIOFWHUKGKHFUSWEBAEMFBKKH

berlect acore: 34

Sedneuce: I SASEIÕTWHNKGKHTNSWEKAEMTKKKTÕDAHNE 34

Scoring table: OLIGO 60.0, Gapext 60.0

7 7

Searched: 127863 seqs, 47026705 residues

Word size : 0

Total number of hits satisfying chosen parameters: 1319

Minimum DB seq length: 28

Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : SwissProt_41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SJIAMMMUS

alligator m	D ₹ 1312	IMJJA_AJAĐ	τ	52	8.8	٤	LT
couns wadna		CXOC_CONMA	τ	52	8.8	ε	91
ovis aries	504565	Λ Ib $^-$ ZHEEB	τ	28	8.8	ε	ST
rana ridibu	P81016	IANAA_qIV	τ	28	8.8	ε	ÐΤ
alligator m	P48142	IMLLA_qIV	τ	28	8.8	3	13
leiurus qui	69908đ	Srbī reiõh	τ	28	8.8	ε	IS
buis sundud	P15230	SCX2_BUTSI	τ	28	8.8	ε	ττ
psendechis	P20260	bysc_bsedo	τ	28	8.8	3	OΤ
yersinia ps	P38399	OMPA_XERPS	τ	28	8.8	ε	6
acyizobyλJJ	D8TT30	GNN_SCHCO	Ţ	28	8.8	ε	8
solanum tub	₽80499	COXB_SOLTU	τ	28	8.8	3	L
mycobacteri		CH00 WXCSW	τ	28	8.8	3	9
asrcophaga		SKIC SYKBE	τ	36	8.11	₽	S
akuecyockar		PSBY_SYNY3	τ	36	8.11	₽	₽
bscylcondyl	P82416	PCG3_PACGO	τ	3.0	8.11	₽	3
rattus norv	D11230	TAA_GMG	τ	52	8.11	₽	7
rhamdia sap	D8II12	FABI_RHASA	τ	33	Z.₽I	9	τ
	.						
noite	Descrip	ID	DB	геидср		Score	. ОИ
					Query		Result
					용 .		

stiopha			Y160_BPT4	τ	32	8.8	ε	₽L	
sus vir			PSBZ_EUGVI	Ţ	32	8.8	3	٤٤	
ena ste	endŢ	68128Q	PSBZ EUGST	τ	32	8.8	ε	7.5	
ella s	ogou.	5 46216	PSBT_ODOSI	Ţ	32	8.8	3	TΔ	
n sativ	nsțđ	L19589	b≳BÕ_bE∀	Τ	32	8.8		07	
Levibr			LHZZ DEZBN	Τ	32	8.8		69	
		664870	PETM_GUITH	ī	32	8.8		89	
зуов эх			LEC DOLAX	ī	32	8.8		L9	
m stida			ITR4 CUCMA	ī	32	8.8		99	
g stida			ITR3_CUCPE	ī	32	8.8			
			_					S9	
		P55224	FF21_SALEN	Ţ	32	8.8		₹9 	
суослар			DBH ZXNXI	Ţ	32	8.8		89	
r in como			CX31_DE2AC	τ	32	8.8		29	
eriopha			COAZ_BPIF1	τ	32	8.8		19	
st sīli			ALDMA_JAD	τ	32	8.8		09	
сулисул			CAL3_ONCKI	Ţ	32	8.8	ε	69	
суХисул	ouco	₽01264	CAL2 ONCKE	Ţ	32	8.8	3	89	
obyila	gcos	P28487	ADHR_DROYA	τ	35	8.8	ε	LS	
ud sile	porr	Z9LTSO	Y822_BORBU	τ	3.1	8.8		99	
coredna			TIBAR_LRAB	Τ	3.1	8.8		99	
ກຸກຂວາງກ			SARL MOUSE	ī	3.1	8.8		₽ 9	
zozejwi			BELT NEPOL	ī	18	8.8		53	
		₽unmeQ	BELT WESAI	ī	15	8.8		22	
		PIZI79	PETL MARPO	Ī	ŢΕ			TS	
noqsį s				-		8.8			
			PETL_LOTJA	T -	TΕ	8.8		09	
nəiqsa			NAMUH_PAAN	Ţ	3.1	8.8		6₽	
окрарди			MALIK PHOLU	τ	3.1	8.8		8₽	
ıera ap			гьг вискь	I	3.1	8.8		LΦ	
ouostoc			CCE $CCME$	τ	3.1	8.8		9₺	
ຸດການ ອອ			HI3 WHEAT	τ	3.1	8.8	ε	S₽	
obreta	dipl	P82372	DIOX DIBBO	Ţ	31	8.8	3	₽₽	
e marmo	กน๐๖	P56708	CXMA_COUMR	Ţ	3.1	8.8	3	43	
scrofa	ธกร	Б Т₫99Т	CECT LIG	τ	3.1	8.8		42	
ppila	gros	046201	A98A_DROME	τ	3.7	8.8		ΤĐ	
nd sile			Y523_BORBU	τ	30	8.8		01	
setum a			VAA2_EQUAR	ī	30	8.8		68	
jeia i			UP62 UPEIN	ī	30	8.8		38	
i sielo			UP62 UPEIN	ī	30	8.8		75	
copelma			TX2 THRPR	ī	30	8.8		98	
		52728d	PCG2 PACGO	-	30			35	
	-			Ţ		8.8	-		
d senon			OTCC_AERPU	Ţ	3.0	8.8		34	
illa an			MADNA MUJD	I	30	8.8		33	
stoides			FTN_BACFR	τ	30	8.8		32	
snpəwo			A2YHq_E2MQ	τ	30	8.8		3.7	
omozuli			CX32_DESYC	Ţ	30	8.8		30	
scia ol			TL16_SPIOL	τ	52	8.8	3	52	
enxobs	ојез	₽80740	2ODC OPEEN	τ	52	8.8	ε	28	
nosarc	шегр	689860	RS7_METTE	τ	62	8.8	ε	LZ	
соидХј			PCG4_PACGO	τ	52	8.8		97	
ວຸກ ວ ພກນ			UTJOS_10UN	Ţ	62	8.8		25	
τολτρκ			IBAK DEZAH	Ţ	62	8.8		24	
		P31297	GLUC CHIBR	Ī	62	8.8		23	
		P31234	CALLA SHEEP	T	62	8.8		22	
ridibu			GALA RAURI	T.	62	8.8		21	
суллисул			GALA ONCMY	_	6Z	8.8		51	
ra dall			_	T T		8.8 g g			
			GALA_CHICK	-	67			6T	
calva	eima	₽47214	GALIA_AMICA	τ	62	8.8	ε	18	

escherichia	P21194	EL36_ECOLI	τ	8.5	8.8	3	131
cyloxopinm		RL36_CHLTE	τ	38	8.8	ε	130
methanosarc	P8052	PYSA_METBA	τ	3.8	8.8	ε	159
hystrix cri		OBP2_HYSCR	τ	3.8	8.8	ε	128
vitis ap. (NLT2_VITSX	τ	38	8.8	3	ISY
vitis sp. (NLT1_VITSX	τ	38	8.8	ε	156
csucer pagu	P81033	CPRP_CANPG	τ	8£	8.8	ε	ISE
pscteriophs	P20328	X63_BPT3	Ţ	15	8.8	3	124
растетіорћа		AGT_BPPHX	Ţ	4 E	8.8	ε	123
wesopntyna	₽24663	SCKI WESTA	τ	4 E	8.8	ε	155
arsphylococ	Z\$\$600	MAATZ_3EJЯ	τ	45	8.8	ε	121
basteurella	Z\$21942	UMSA9_3ELIA	Ţ	75	8.8	3	150
listeria mo		KL36_LISMO	τ	7.5	8.8	ε	6TT
${\tt clostridium}$	ZX 9 76Q	RL36_CLOAB	τ	7.5	8.8	ε	118
bacillus su		RL36_BACSU	τ	7.5	8.8	ε	LTT
oqoutella s		KK36_ODOSI	τ	7.5	8.8	ε	9TT
bos taurus	PZ1671	PIP7_BOVIN	τ	75	8.8	3	SIT
Jactococcus	P83002	LCMM_LACLA	τ	7.5	8.8	ε	₽II
tenebrio mo		DINT LENWO	τ	7.5	8.8	ε	113
grchaeoglob		Y609_ARCFU	τ	98	8.8	ε	IIS
bacillus ha	б ака23	XSe0_BACHD	τ	98	8.8	ε	TTT
halobacteri		RL6_HALCU	Ţ	36	8.8	ε	OII
dallus gall		KET4_CHICK	τ	9٤	8.8	ε	60T
pos taurus		RISA_BOVIN	Ţ	98	8.8	ε	80T
akuecyockar		belm Sana3	τ	9٤	8.8	ε	LOT
asccparomyc		OZIZ KEYZI	τ	98	8.8	ε	90 T
artioposthi		ATTAA_44U	τ	98	8.8	3	10 2
ryeromyzon		ETH THETS	τ	36	8.8	ε	₽OI
bacillus su		YRKM_BACSU	τ	35	8.8	ε	103
sulidqoməsd		XS10_HYEIN	τ	35	8.8	ε	102
methanobact		VORB METTM	τ	35	8.8	ε	τοτ
grammostola		42AAD_SXT	τ	35	8.8	3	100
thrixopelma		TX1_THRPR	τ	35	8.8	ε	66
grammostola		TXI GRASP	Ţ	32	8.8	ε	86
mesopntyns		TMTX_MESTA	τ	35	8.8	3	L6
buta sundud		SCX1_BUTSI	Ţ	35	8.8	ε	96
tityus serr		SCKK_TITSE	τ	35	8.8	3	96
aynechococc		RL15_SYNP7	τ	35	8.8	ε	₹ 6
marchantia		O4AAM_TAS4	τ	35	8.8	ε	٤6
cyanidium c		PETG_CYACA	Ţ	35	8.8	ε	26
orgyia pseu		PBP_ORGPS	Ţ	35	8.8	5	16
ulex europe		rec3_ureeu	τ	35	8.8	3	06
cytisus ses		rect_cxtse	τ	35	8.8	3	68
субках деаг		HCXA_CHEDE	τ	35	8.8	3	88
pscteriopha		GP58_BPSP1	τ	35	8.8	ε	۲8
sus scrofa		CPI2_PIG	τ	35	8.8	3	98
Canis famil		COPA_CANFA	τ	35	8.8	3	8 2
aedes albop		CECA AEDAL	τ	35	8.8	3	₽8
acodra gris		TX1 SCOGE	τ	₽Ε	8.8	ε	83
sclerotinia		GNN J_SCPSC	τ	₹5	8.8	5	85
capra hircu		GAST_CAPHI	T	₹E	8.8	3	18
byllomedus		ASYH4_S2MQ	Ţ	₹8	8.8	3	08
byllomedus		ASYHG ISMO	Ţ	34	8.8	3	6 <i>L</i>
endjeus dis		XCIS ENGGE	T -	33	8.8	3	87
рахаместим		TIF PARTE	Ţ	33	8.8	3	LL
oreochromis		GLUZ_ORENI	I	33	8.8	3	9 <i>L</i>
mastigoclad	75792q	YCPG_MASLA	Ţ	32	8.8	ε	9 <i>L</i>

тісісит ае	5806E4	TZ_WHEAT	IN T	82	6.8	Z	881
едзрошрла		ED_MEGEE			6.2	2	781 781
actus norv		TA9_IA			6.8	2	981
erratia ma		W_SERMA			6.2	2	981 182
almonella		YTJAS_J			6.2		78T
almonella		ITJAS J			6.8	Z Z	183
scherichia		or ECOPI			6.8	2	182
всрекісрів		HECOLI PES ECOLI			6.2		
ris hollan		OHIRI ADI				7	181
omordica c		RA MOMCH			6.8	7	180
uffa cylin		BA_MOMCH		-	6.8	7	6 <i>L</i> I
omordica c		IBS_TIECA IBS_WOWCH			6.8	7	8/I
егрэпорасг		_			6.8	7	LLT
		DEB_METTM			6.2	7	9 <i>L</i> T
ipera lebe omordica c		rr_wowch			6.8	7	SLT
ordeum spo		SPP_VIPLE			6.8	7	₽LT
		DEC_HORSE			6.8	7	173
scillatori		PS_CATCA			6.8	7	172
allus gall		SZZ GHICK			6.8	7	171
lligator m		IMILA_9			6.8	Z	0 L T
riticum mo		OMIAT_O			6.8	2	691
reponema p		A1_TREPH			6.8	2	891
fimel sine		EA_CANFA			6.8	7	L9T
acillus ce		XS_BACCE			6.2	7	991
attus norv		TAR_DQ.			6.8	2	S9T
ocardia gl		KAC_NOCGT			6.8	7	₱9T
andida alb ryctolagus		CI_RABIT			6.8	7	£91
rreptomyce	o ilaced	CPN_CANFI CON_CANFI			6.8	2	162
eleagris g		T MELGA			8.8 8.8	5 5	191
ој озахја с вксођував		SID_SARPE			8.8		09T 6ST
plylomedus		ASYHQ VU			8.8	ε . ε	
ily sympto		MO PRACT			8.8	£ .	LSI
isum sativ		33 PEA			8.8	5	9ST
il aullisa isten musi		SE BYCLI			8.8	5	SST
acillus su		IBK BYCEN			8.8	5	∌ST
raphylococ		ADATS O			8.8	5	123
ryctolagus ryctolagus		TIBAR_A68			8.8	5	122
кэсрешув в		B1_TRASC			8.8	5	TST
anis famil		SS_CANFA			8.8	ε	120
oxbyXxs bn		BX_PORPU			8.8	ξ	6 † I
actococcus		AD ADCLA			8.8	٤	148
p olud olu		BATUA AS			8.8	٤	4. T
pirulina s		DS SPICE			8.8	٤	971
αττης ποτν		TAR_EDI			8.8	٤	STI
eloderma h		ез негно			8.8	٤	7 T
схисріо св		LI STRCA			8.8	٤	143
dnslus aca		DAUQE_TIC			8.8	٤	742
.Xccojadna		TIBAA_IJC			8.8	٤	ŢŦŢ
gggenobrer		LI BALPH			8.8	٤	071
om snissol		C CLOMR			8.8	٤	681
тсла еод гор		PRCFU			8.8	ε	138
aemophilus		14 HAEIN			8.8	ε	13 <i>1</i>
tup suruie		x8 reiőn			8.8	٤	981
inus conto		SIS_PINCO	I BE		8.8	£	SET
ersinia pe		зе_хекье	I BI		8.8	3	73₹
рехшогодз		36_THEMA			8.8	ε	133
sengowouss	g əlwdeg	'3 <i>e</i> ¯ь≳ E ∀E	I BI	3.8	8.8	ε	132

	_			_			
189	2	5 . 9	28	1	NXL1_BOUAN		boulengerin
190	2	5.9	28	1	OBP1_HYSCR	P81647	hystrix cri
191	2	5.9	28	1	ORND_PLAOR	P25513	placobdella
192	2	5.9	28	1	OST1 CHICK	P80896	gallus gall
193	2	5.9	28	1	PA22 MICNI		micrurus ni
194	2	5.9	28	1	PA23 TRIST		trimeresuru
195	2	5.9	28	1	PETL CYAPA		cyanophora
	2						
196		5.9	28	1	PHR_METTM		methanobact
197	2	5.9	28	1	PHYB_ASPFI		aspergillus
198	2	5.9	28	1	PP71_HCMVT		human cytom
199	2	5.9	28	1	PPOX_BOVIN	P56602	bos taurus
200	2	5.9	28	1	RL5_HALCU	P05972	halobacteri
201	2	5.9	28	1	RS19_PHYS1	066093	phytoplasma
202	2	5.9	28	1	SCK2_ORTSC		orthochirus
203	2	5.9	28	1	SMS2 ORENI		oreochromis
204	2	5.9	28	1	TXO2 AGEAP		agelenopsis
205	2	5.9	28	1	_		
					VG9_SPV4		spiroplasma
206	2	5.9	28	1	VIP_DIDMA		didelphis m
207	2	5.9	28	1	VIP_SCYCA		scyliorhinu
208	2	5.9	28	1	Y073_ARCFU	030163	archaeoglob
209	2	5.9	28	1	Y16P_BPT4	P39248	bacteriopha
210	2	5.9	28	1	YA79 ARCFU	029184	archaeoglob
211	2	5.9	29	1	12AH CLOS4	P21215	clostridium
212	2	5.9	29	1	AL21 HORSE		equus cabal
213	2	5.9	29	1	AMEL RABIT		oryctolagus
214	2	5.9	29	1	ATP9 PICPJ		pichia pijp
215	2	5.9	29	1			
	2				ATPA_BRYMA		bryopsis ma
216		5.9	29	1	BR2D_RANES		rana escule
217	2	5.9	29	1	BREE_RANES		rana escule
218	2	5.9	29	1	CERB_CERCA		ceratitis c
219	2	5.9	29	1	COA1_BPI22		bacteriopha
220	2	5.9	29	1	COXJ_CANFA	Q9tr29	canis famil
221	2	5.9	29	1	COXK_SHEEP	Q9tr28	ovis aries
222	2	5.9	29	1	CU36 LOCMI	P11737	locusta mig
223	2	5.9	29	1	CXD6 CONGL		conus glori
224	2	5.9	29	1	CXO7 CONGE		conus geogr
225	2	5.9	29	1	CXOD CONMA		conus magus
226	2	5.9	29	1	CXST CONGE		conus geogr
227	2	5.9	29	1			
	2				CYO4_VIOOD		viola odora
228	_	5.9	29	1	DMS5_PHYSA		phyllomedus
229	2	5.9	29	1	GLUC_ANAPL		anas platyr
230	2	5.9	29	1	GLUC_CALMI		callorhynch
231	2	5.9	29	1	GLUC_DIDMA	P18108	didelphis m
232	2	5.9	29	1	GLUC LAMFL	Q9prq9	lampetra fl
233	2	5.9	29	1	GLUC PLAFE		platichthys
234	2	5.9	29	1	GLUC RABIT		oryctolagus
235	2	5.9	29	1	GLUC TORMA		torpedo mar
236	2	5.9	29	1	H2B2 ECHES		echinus esc
237	2	5.9	29	1	HOXY RHOOP		rhodococcus
238	2	5.9	29	1	HRJ BOTJA		
							bothrops ja
239	2	5.9	29	1	HS98_NEUCR		neurospora
240	2	5.9	29	1	ITH3_BOVIN		bos taurus
241	2	5.9	29	1	ITR1_CUCMA		cucurbita m
242	2	5.9	29	1	ITR1_LUFCY	P25849	luffa cylin
243	2	5.9	29	1	ITR1_MOMRE	P17680	momordica r
244	2	5.9	29	1	ITR2_BRYDI	P11968	bryonia dio
245	2	5.9	29	1	ITR3_CYCPE	P83394	cyclanthera

246	2	5.9	29	1	ITR4_CYCPE	P83395	cyclanthera
247	2	5.9	29	1	ITR5_CYCPE	P83396	cyclanthera
248	2	5.9	29	1	MDH_BURPS	P80536	burkholderi
249	2	5.9	29	1	MULR_ECHML	P81798	echis multi
250	2	5.9	29	1	PETN_ANASP	Q913p6	anabaena sp
251	2	5.9	29	1	PETN ARATH	P12178	arabidopsis
252	2	5.9	29	1	PETN CHAGL	Q8ma13	chaetosphae
253	2	5.9	29	1	PETN CYAPA	P48258	cyanophora
254	2	5.9	29	1	PETN GUITH	078498	guillardia
255	2	5.9	29	1	PETN MAIZE		zea mays (m
256	2	5.9	29	1	PETN MARPO	P12177	marchantia
257	2	5.9	29	1	PETN MESVI		mesostigma
258	2	5.9	29	1	PETN ODOSI		odontella s
259	2	5.9	29	1	PETN PINTH		pinus thunb
260	2	5.9	29	1	PETN PORPU		porphyra pu
261	2	5.9	29	1	PETN PSINU		psilotum nu
262	2	5.9	29	1	PETN SYNEL		synechococc
263	2	5.9	29	1	PETN SYNY3		synechocyst
264	2	5.9	29	1	PK4 DICDI		dictyosteli
265	2	5.9	29	1	PRO1 DACGL		dactylis gl
266	2	5.9	29	1	PSAF SYNP6		synechococc
267	2	5.9	29	1	PSAK SPIOL		spinacia ol
268	2	5.9	29	1	PSAX SYNVU		synechococc
269	2	5.9	29	1	PSBI SYNVU		
270	2	5.9	29	1	_		synechococc halobacteri
270	2	5.9	29	1	RL15_HALCU		
	2				RL15_STRLI		streptomyce
272		5.9	29	1	RP54_CLOKL		clostridium
273	2	5.9	29	1	SCX1_ANDMA		androctonus
274	2	5.9	29	1	SDHB_CLOPR		clostridium
275	2	5.9	29	1	SLP2_LEIQH		leiurus qui
276	2	5.9	29	1	SLP3_LEIQH		leiurus qui
277	2	5.9	29	1	TAT_HV1Z3		human immun
278	2	5.9	29	1	TLP_ACTDE		actinidia d
279	2	5.9	29	1	UN23_CLOPA		clostridium
280	2	5.9	29	1	Y15_BPT7		bacteriopha
281	2	5.9	29	1	Y51_BPT3		bacteriopha
282	2	5.9	29	1	YCX4_ODOSI		odontella s
283	2	5.9	29	1	YCXC_ODOSI		odontella s
284	2	5.9	30	1	2ENR_CLOTY		clostridium
285	2	5.9	30	1	A1AT_CHIVI		chinchilla
286	2	5.9	30	1	AATC_RABIT		oryctolagus
287	2	5.9	30	1	AATM_RABIT		oryctolagus
288	2	5.9	30	1	ACB1_DIGLA	P81624	digitalis l
289	, 2	5.9	30	1	AMPT_BACST	P00728	bacillus st
290	2	5.9	30	1	ANF_RANRI	P09196	rana ridibu
291	2	5.9	30	1	CALM_LYTPI	P05935	lytechinus
292	2	5.9	30	1	CBAL_BACST	P13722	bacillus st
293	2	5.9	30	1	CH60_CLOPA	P81339	clostridium
294	2	5.9	30	1	CIRA_CHAPA	P56871	chassalia p
295	2	5.9	30	1	CLPA_PINPS		pinus pinas
296	2	5.9	30	1	COAE_CORAM	P58101	corynebacte
297	2	5.9	30	1	COXC_SOLTU		solanum tub
298	2	5.9	30	1	CRG2_SCOWA	P19865	scoliodon w
299	2	5.9	30	1	CX2A_CONBE		conus betul
300	2	5.9	30	1	CX7A_CONTU		conus tulip
301	2	5.9	30	1	CXEX_CONCN		conus conso
302	2	5.9	30	1	CXK4_CONST		conus stria

303	2	5.9	30	1	CXOB CONPE	P567	13 conus penna
304	2	5.9	30	1	CXVB CONER		83 conus ermin
305	2	5.9	30	1	CYO1 VIOOD		30 viola odora
306	2	5.9	30	1	CYO5 VIOOD		37 viola odora
307	2	5.9	30	1	CAO8 AIOOD		40 viola odora
308	2	5.9	30	1	DEF2 MACMU		17 macaca mula
309	2	5.9	30	1	DIDH COMTE		02 comamonas t
310	2	5.9	30	1	DIU2 HYLLI		15 hyles linea
311	2	5.9	30	1	DIU2 MANSE		58 manduca sex
312	2	5.9	30	1	END2 ONCKE		05 oncorhynchu
313	2	5.9	30	1	FIBR PANIN		75 panulirus i
314	2	5.9	30	1	FMBB BACNO		29 bacteroides
314	2	5.9	30	1	HCY2 HOMAM		97 homarus ame
				1			45 hybanthus p
316	2	5.9	30		HYPA_HYBPA		06 rhizobium l
317	2	5.9	30	1	IHFB_RHILE		
318	2	5.9	30	1	ITI1_LAGLE		71 lagenaria l
319	2	5.9	30	1	ITR1_CITLA		69 citrullus l
320	2	5.9	30	1	ITR1_MOMCH		94 momordica c
321	2	5.9	30	1	ITR2_ECBEL		71 ecballium e
322	2	5.9	30	1	ITR2_LUFCY		50 luffa cylin
323	2	5.9	30	1	ITR3_CUCMC		41 cucumis mel
324	2	5.9	30	1	ITR3_MOMCO		10 momordica c
325	2	5.9	30	1	ITR4_CUCSA		92 cucumis sat
326	2	5.9	30	1	ITR6_CYCPE		97 cyclanthera
327	2	5.9	30	1	ITR7_CYCPE		98 cyclanthera
328	2	5.9	30	1	KAB5_OLDAF	P584	56 oldenlandia
329	2	5.9	30	1	LAS1_PIG	P801	71 sus scrofa
330	2	5.9	30	1	LEAH_PHAVU	P818	70 phaseolus v
331	2	5.9	30	1	MDH HELGE	P800	37 heliobacter
332	2	5.9	30	1	MMAL DERMI	P163	12 dermatophag
333	2	5.9	30	1	NU5M PISOC	P249	99 pisaster oc
334	2	5.9	30	1	NUO2 SOLTU	P802	68 solanum tub
335	2	5.9	30	1	P2CO_ARTSP	P373	65 arthrobacte
336	2	5.9	30	1	PCCA MYXXA	P811	.85 myxococcus
337	2	5.9	30	1	PCG1 PACGO	P824	14 pachycondyl
338	2	5.9	30	1	PCG5 PACGO	P824	18 pachycondyl
339	2	5.9	30	1	PETN NEPOL	Q9t1	.01 nephroselmi
340	2	5.9	30	1	PLF4 RABIT		70 oryctolagus
341	2	5.9	30	1	PLMS SQUAC		42 squalus aca
342	2	5.9	30	1	PMGY_CANAL		12 candida alb
343	2	5.9	30	1	PRT1 CLUPA		35 clupea pall
344	2	5.9	30	1	PRT2 ONCMY		31 oncorhynchu
345	2	5.9	30	1	PRT3_ONCMY		32 oncorhynchu
346	2	5.9	30	1	PRT4 ONCMY		33 oncorhynchu
347	2	5.9	30	1	PRTH_ONCMY		119 oncorhynchu
	2	5.9		1	_		x5 cyanidium c
348	2		30	1	PSAM_CYACA PSAM MESVI		s2 mesostigma
349		5.9	30		_		87 odontella s
350	2	5.9	30	1	PSAM_ODOSI		
351	2	5.9	30	1	PSAM_PINTH		501 pinus thunb
352	2	5.9	30	1	PSAM_PORPU		195 porphyra pu
353	2	5.9	30	1	PYSD_METBA		524 methanosarc
354	2	5.9	30	1	RIPS_MOMCO		555 momordica c
355	2	5.9	30	1	RKGG_LEPKE		87 lepidochely
356	2	5.9	30	1	RNP_ODOVI		340 odocoileus
357	2	· 5 · · 9	30	1	SCK2_TITSE		116 tityus serr
358	2	5.9	30	1	SCX2_CENLI		27 centruroide
359	2	5.9	30	1	SILU_RHIPU	P028	885 rhizomucor

360	2	5.9	30	1	TAT HV1ZH	P12512 hum	an immun
361	2	5.9	30	1	TL1X_SPIOL	P82537 spi	nacia ol
362	2	5.9	30	1	TL29_SPIOL	P81833 spi	
363	2	5.9	30	1	TX2 HETVE	P58426 het	
364	2	5.9	30	1	UC35 MAIZE	P80641 zea	_
365	2	5.9	30	1	UDDP SULAC	P80143 sul	
366	2	5.9	30	1	URE1 ECOLI	Q03284 esc	
367	2	5.9	30	1	VAA1 EQUAR	Q04236 equ	
368	2	5.9	30	1	VAA1 PSINU	Q04237 psi	
369	2	5.9	30	1	VAA2 PSINU	Q04239 psi	
370	2	5.9	30	1	VATN BOVIN	P81134 bos	
371	2	5.9	30	1	VG03 BPPF1	P25137 bac	
372	2	5.9	30	1	VPU HV1SC	P05948 hum	_
373	2	5.9	30	1	VTTA BPT3	P20837 bac	
374	2	5.9	30	1	Y161 TREPA	083196 tre	
375	2	5.9	30	1	Y357 BORBU	051332 bor	
376	2	5.9	30	1	Y425 BORBU	051386 bor	
377	2	5.9	30	1	Y573 TREPA	083583 tre	
378	2	5.9	30	1	Y932 TREPA	083902 tre	
379	2	5.9	30	1	YCCB ECOLI	P24244 esc	_
380	2	5.9	31	1	BCAM PIG	019098 sus	
381	2	5.9	31	1	CIRB CHAPA	P56879 cha	
382	. 2	5.9	31	1	COG5 BOVIN	P83437 bos	-
383	2	5.9	31	1	COX4 NEUCR	P06809 neu	
384	2	5.9	31	1	CTRP PENMO	P35002 per	=
385	2	5.9	31	1	CXD6 CONNI	P56710 con	
386	2	5.9	31	1	CXG6 CONTE	P58922 con	. –
387	2	5.9	31	1	DEJP DROME	P81160 dro	
388	2	5.9	31	1	EFTU STRLU	P52390 str	-
389	2	5.9	31	1	ENDB CAMDR	P01203 cam	
390	2	5.9	31	1	ER29 BOVIN	P81623 bos	
391	2	5.9	31	1	ETFD PARDE	P55932 par	
392	2	5.9	31	1	FIBB CANFA	P02677 can	
393	2	5.9	31	1	GP37 BPSP1	048393 bac	
394	2	5.9	31	1	GT SERMA	P22416 ser	-
395	2	5.9	31	1	HBA MACEU	P81043 mag	
396	2	5.9	31	1	HCY1 HOMAM	P82296 hom	
397	2	5.9	31	1	HCY2 MAISQ	P82303 mai	
398	2	5.9	31	1	HEM2 PHAGO	P27687 pha	
399	2	5.9	31	1	LC70 LACPA	P80959 lac	-
400	2	5.9	31	1	LPRM ECOLI	P10739 esc	
401	2	5.9	31	1	MDH_STRAR	P19982 str	
402	2	5.9	31	1	PETL ANASP	Q8yvq2 ana	
403	2	5.9	31	1	PETL ARATH	P56776 ara	_
404	2	5.9	31	1	PETL_BETVU	P46612 bet	_
405	2	5.9	31	1	PETL_BETVU	P56306 chl	_
406	2	5.9	31	1	PETL_CHLVO	078468 gui	
407	2	5.9	31	1	PETL_GOTTA	P19445 zea	
408	2	5.9	31	1	PETL ODOSI	P49524 odo	
409	2	5.9	31	1	PETL_ODOSI	Q9mtk4 oer	
410	2	5.9	31	1	PETL_OENHO	P12180 ory	
411	2	5.9	31	1	PETL_ORISA PETL PORPU	P51221 por	
412	2	5.9	31	1	PETL_PORPU	Q8wi03 psi	
413	2	5.9	31	1	PETL_PSING PETL SPIOL		
413	2	5.9	31	1		Q9m310 spi	
414	2	5.9	31	1	PETL_WHEAT	P58247 tri	
415	2		31		PETM_CYACA	Q9tlr5 cya	
410	2	5.9	31	1	PETN_CYACA	Q9tlr6 cya	maium c

417	2	5.9	31	1	PRT2_CLUPA		clupea pall
418	2	5.9	31	1	PSAK_ANAVA		anabaena va
419	2	5.9	31	1	PSAM_CYAPA		cyanophora
420	2	5.9	31	1	PSAM_EUGGR		euglena gra
421	2	5.9	31	1	PSBK_SYNVU		synechococc
422	2	5.9	31	1	PSBM MESVI	Q9muq7	mesostigma
423	2	5.9	31	1	PSBT_CHLRE	P37256	chlamydomon
424	2	5.9	31	1	PSBT CHLVU	P56327	chlorella v
425	2	5.9	31	1	PSBT CYAPA	P48109	cyanophora
426	2	5.9	31	1	PSBT EUGGR	P20176	euglena gra
427	2	5.9	31	1	PSBT MESVI	Q9muv6	mesostigma
428	2	5.9	31	1	PSBT PORPU		porphyra pu
429	2	5.9	31	1	PYSG METBA		methanosarc
430	2	5.9	31	1	RECX METCL		methylomona
431	2	5.9	31	1	RL21_STRTR		streptococc
432	2	5.9	31	1	SARL HUMAN		homo sapien
433	2	5.9	31	1	SC37 MESMA		mesobuthus
	2	5.9	31	1	SCK5 ANDMA		androctonus
434	2		31	1	SCKL LEIQH		leiurus qui
435		5.9			_		striga herm
436	2	5.9	31	1	SODC_STRHE		_
437	2	5.9	31	1	TX3_HETVE		heteropoda
438	2	5.9	31	1	TXA3_PARAC		parasicyoni
439	2	5.9	31	1	Y191_BORBU		borrelia bu
440	2	5.9	31	1	Y3KD_BPCHP		bacteriopha
441	2	5.9	31	1	Y603_ARCFU		archaeoglob
442	2	5.9	32	1	A2M_PACLE		pacifastacu
443	2	5.9	32	1	APL3_DIAGR		diatraea gr
444	2	5.9	32	1	ATPO_PIG		sus scrofa
445	2	5.9	32	1	ATP7_SPIOL		spinacia ol
446	2	5.9	32	1	ATPO_SPIOL		spinacia ol
447	2	5.9	32	1	B4G1_RAT	P80225	r beta-1,4-
448	2	5.9	32	1	CAAP_MICEC	P21162	micromonosp
449	. 2	5.9	32	1	CALO BOVIN	P01260	bos taurus
450	2	5.9	32	1	CALO PIG	P01259	sus scrofa
451	2	5.9	32	1	CAR1 ECHCA	Q9prp9	echis carin
452	2	5.9	32	1	CEC ÖIKKI	P83420	oiketicus k
453	2	5.9	32	1	COAT BPIF1	080295	bacteriopha
454	2	5.9	32	1	COA1 BPIKE		bacteriopha
455	2	5.9	32	1	COA2 BPFD		bacteriopha
456	2	5.9	32		CRP PLEPL		pleuronecte
457	2	5.9	32	1	CXG7 CONPE		conus penna
458	2	5.9	32	1	CYBL RHOGR		rhodotorula
459	2	5.9	32	1	ER29_CHICK		gallus gall
460	2	5.9	32	1	ER29_TRIVU		trichosurus
	2	5.9	32	1	ERE PIG		sus scrofa
461	2	5.9	32	1	FER PORCR		porphyridiu
462							anas platyr
463	2	5.9	32	1	FRIH_ANAPL		
464	2	5.9	32	1	GHR4_RAT		rattus norv
465	2	5.9	32	1	GLB4_LAMSP		lamellibrac
466	2	5.9	32	1	GT82_DICLA		dicentrarch
467	2	5.9	32	1	H2AZ_ONCMY		oncorhynchu
468	2	5.9	32	1	HCYC_CHEDE		cherax dest
469	2	5.9	32	1	IAPP_BOVIN		bos taurus
470	2	5.9	32	1	IAPP_PIG		sus scrofa
471	2	5.9	32	1	IAPP_SAGOE		saguinus oe
472	2	5.9	32	1	IAPP_SHEEP		ovis aries
473	2	5.9	32	1	ILVB_ENTAE	Q09129	enterobacte

	_	_		_			
474	2	5.9	32	1	ITR2_CUCSA		cucumis sat
475	2	5.9	32	1	LPID_ECOLI	P03060	escherichia
476	2	5.9	32	1	LPID_EDWTA	P08140	edwardsiell
477	2	5.9	32	1	LPIV_ECOLI	P03061	escherichia
478	2	5.9	32	1	MDH NITAL	P10887	nitzschia a
479	2	5.9	32	1	MIFH TRITR	P81748	trichuris t
480	2	5.9	32	1	NEUB_PIG	P01297	sus scrofa
481	2	5.9	32	1	OVOS ANAPL		anas platyr
482	2	5.9	32	1	P1SM LOXIN		loxosceles
483	2	5.9	32	1	PA22 AGKHP		agkistrodon
484	2	5.9	32	1	PA2 RHONO		rhopilema n
485	2	5.9	32	1	PETL CHLRE		chlamydomon
	2		32	1	—		
486		5.9			PETM_PORPU		porphyra pu
487	2	5.9	32	1	PHNS_DESMU		desulfovibr
488	2	5.9	32	1	PRI3_ONCMY		oncorhynchu
489	2	5.9	32	1	PRT1_ONCKE		oncorhynchu
490	2	5.9	32	1	PRT4_SCYCA		scyliorhinu
491	2	5.9	32	1	PRT5_ONCMY	P02334	oncorhynchu
492	2	5.9	32	1	PRT6_ONCMY	P08145	oncorhynchu
493	2	5.9	32	1	PRT7_ONCMY	P08146	oncorhynchu
494	2	5.9	32	1	PRT8 ONCMY	P12817	oncorhynchu
495	2	5.9	32	1	PRT9_ONCMY		oncorhynchu
496	2	5.9	32	1	PRTA ONCMY		oncorhynchu
497	2	5.9	32	1	PRTE HALME		halobacteri
498	2	5.9	32	1	PRT ORYLA		oryzias lat
499	2	5.9	32	1	PSAM MARPO	· -	marchantia
500	2	5.9	32	1	PSBT CYACA		cyanidium c
501	2	5.9	32	1	PSBT GUITH		guillardia
502	2	5.9	32	1			
503	2	5.9	32	1	PSBZ_EUGAN		euglena ana
					PSBZ_EUGGA		euglena gra
504	2	5.9	32	1	PSBZ_EUGMY		euglena myx
505	2	5.9	32	1	RIP2_PHYDI		phytolacca
506	2	5.9	32	1	RK1_RABIT		oryctolagus
507	2	5.9	32	1	RS19_YEREN		yersinia en
508	2	5.9	32	1	SCK2_CENNO		centruroide
509	2	5.9	32	1	TAT_SIVM2		simian immu
510	2	5.9	32	1	TRYP_PENMO		penaeus mon
511	2	5.9	32	1	TX29_PHONI	P29426	phoneutria
512	2	5.9	32	1	TXP7_APTSC	P49271	aptostichus
513	2	5.9	32	1	UC09 MAIZE	P80615	zea mays (m
514	2	5.9	32	1	Y169 TREPA		treponema p
515	2	5.9	32	1	Y433 BORBU		borrelia bu
516	2	5.9	32	1	YH17_HAEIN		haemophilus
517	2	5.9	32	1	YSCA_YEREN		yersinia en
518	2	5.9	32	1	YTK3 ILTVT		infectious
519	2	5.9	33	1	ACT DICVI		dictyocaulu
520	2	5.9	33	1	ANP3 MYOSC		myoxocephal
521	2	5.9	33	1	ANP5 MYOAE		myoxocephal
522	2	5.9	33	1	ATP7 SOLTU		solanum tub
523	2	5.9	33	1	BR2A RANES		
524	2				_		rana escule
525	2	5.9	33	1	BR2B_RANES		rana escule
		5.9	33	1	BR2E_RANES		rana escule
526	2	5.9	33	1	BR2_RANBP		rana brevip
527	2	5.9	33	1	CECB_HELVI		heliothis v
528	2	5.9	33	1	CECC_HELVI		heliothis v
529	2	5.9	33	1	COA1_BPFD		bacteriopha
530	2	5.9	33	1	COA2_BPI22	P15414	bacteriopha

531	2	5.9	33 1	COXL ONCMY	P80330 or	ncorhynchu
532	2	5.9	33 1	CU89 HUMAN		omo sapien
533	2	5.9	33 1	_		onus radia
534	2	5.9	33 1			onus ventr
535	2	5.9	33 1	DBB2 DOLAU		olabella a
536	2	5.9	33 1	DEF1 MESAU		esocricetu
537	2	5.9	33 1			esocricetu
	2	5.9	33 1	DEF3_MESAU		
538				DHE3_PIG		us scrofa
539	2	5.9	33 1	FER_PORAE		orphyridiu
540	2	5.9	33 1	GAST_CAVPO		avia porce
541	2	5.9	33 1	GAST_CHIBR		hinchilla
542	2	5.9	33 1	GAST_DIDMA		idelphis m
543	2	5.9	33 1	GGN1_RANRU		ana rugosa
544	2	5.9	33 1	GGN2_RANRU		ana rugosa
545	2	5.9	33 1	GGN3_RANRU		ana rugosa
546	2	5.9	33 1	HF40_MAIZE	P82865 ze	ea mays (m
547	2	5.9	33 1	HOXU_RHOOP	P22659 rl	hodococcus
548	2	5.9	33 1	LPPY_SALTY	P08522 sa	almonella
549	2	5.9	33 1	LPRH ECOLI	P37324 es	scherichia
550	2	5.9	33 1	LYC2 HORSE	P81710 ed	quus cabal
551	2	5.9	33 1	MBP1 MAIZE		ea mays (m
552	2	5.9	33 1	MHAA STRCH		treptomyce
553	2	5.9	33 1	MYMY MYTED		ytilus edu
554	2	5.9	33 1	OTCC PSEPU		seudomonas
555	2	5.9	33 1	PBAN LYMDI	-	ymantria d
556	2	5.9	33 1	PEN3 ADECU		anine aden
557	2	5.9	33 1	PETM CYAPA		yanophora
	2	5.9		PETM_CTAFA PETM SYNEL		ynechococc
558		5.9				ictyosteli
559	2			PK1_DICDI		
560	2	5.9	33 1	PK5_DICDI		ictyosteli
561	2	5.9	33 1	PRI1_ONCMY		ncorhynchu
562	2	5.9	33 1	PRI2_ONCMY		ncorhynchu
563	2	5.9	33 1	PRTB_MUGCE		ugil cepha
564	2	5.9	33 1	PRTL_ECOLI		scherichia
565	2	5.9	33 1	PSAI_SPIOL		pinacia ol
566	2	5.9	33 1	PSAK_CUCSA		ucumis sat
567	2	5.9	33 1	PSBT_ARATH		rabidopsis
568	2	5.9	33 1	PSBT_MAIZE		ea mays (m
569	2	5.9	33 1	RL21_XENLA		enopus lae
570	2	5.9	33 1	RL26_XENLA	P49629 x	enopus lae
571	2	5.9	33 1	RL28_XENLA	P46780 x	enopus lae
572	2	5.9	33 1	RL4 HALCU	P05967 h	alobacteri
573	2	5.9	33 1	RPOC HETCA	P36441 h	eterosigma
574	2	5.9	33 1	RRPO BPBZ1	P09674 ba	acteriopha
575	2	5.9	33 1	RS4 XENLA	P49401 x	enopus lae
576	2	5.9	33 1	RT25 BOVIN		os taurus
577	2	5.9	33 1	RUGA RANRU		ana rugosa
578	2	5.9	33 1	RUGB RANRU		ana rugosa
579	2	5.9	33 1	SCX9 BUTOC		uthus occi
580	2	5.9	33 1	THIO CLOST		lostridium
581	2	5.9	33 1	TX1 HETVE		eteropoda
582	2	5.9	33 1	TXH1 SELHU		elenocosmi
583	2	5.9	33 1	TXN3 SELHA		elenocosmi
584 505	2	5.9	33 1	VT1B_RAT		attus norv
585	2	5.9	33 1	Y474_BORBU		orrelia bu
586	2	5.9	33 1	Y50A_MYCTU		ycobacteri
587	2	5.9	33 1	Y656_TREPA	U83662 E	reponema p

588	2	5.9	33	1	Y849_BORBU		borrelia bu
589	2	5.9	33	1	YC12_CHLRE	P50370	chlamydomon
590	2	5.9	33	1	YC12 MARPO	P31560	marchantia
591	2	5.9	33	1	YC12 MESVI	O9mus3	mesostigma
592	2	5.9	33	1	YC12 NEPOL		nephroselmi
593	2	5.9	33	1	YC12 PINTH		pinus thunb
	2		33	1			archaeoglob
594		5.9			YL74_ARCFU		-
595	2	5.9	33	1	YLCH_BP82		bacteriopha
596	2	5.9	33	1	YLCH_ECOLI		escherichia
597	2	5.9	34	1	AMP2_CHICK		gallus gall
598	2	5.9	34	1	ASPG_PIG	P30918	sus scrofa
599	2	5.9	34	1	BR2C RANES	P40839	rana escule
600	2	5.9	34	1	COL CHICK	P11148	gallus gall
601	2	5.9	34	1	COXA THETH		thermus the
602	2	5.9	34	1	COXG THUOB		thunnus obe
603	2	5.9	34	1	CXGS CONGE		conus geogr
	2						
604		5.9	34	1	DEF2_RABIT		oryctolagus
605	2	5.9	34	1	DEF7_RABIT		oryctolagus
606	2	5.9	34	1	ECAB_ECTTU		ectatomma t
607	2	5.9	34	1	EF2_RABIT		oryctolagus
608	2	5.9	34	1	EGGR_APLCA	P01363	aplysia cal
609	2	5.9	34	1	H1S STRPU	P19376	strongyloce
610	2	5.9	34	1	HS7S CUCMA		cucurbita m
611	2	5.9	34	1	ITR1 MOMCO		momordica c
612	2	5.9	34	1	ITR2 MOMCO		momordica c
613	2	5.9	34	1	LPTN PROVU		proteus vul
					-		_
614	2	5.9	34	1	M44E_HUMAN		homo sapien
615	2	5.9	34	1	MYTA_MYTED		mytilus edu
616	2	5.9	34	1	MYTB_MYTED		mytilus edu
617	2	5.9	34	1	PETM_ANASP		anabaena sp
618	2	5.9	34	1	PRT1_SAROR	P25327	sarda orien
619	2	5.9	34	1	PRT1_SCOSC	P83264	scomber sco
620	2	5.9	34	1	PRT1 THUTH	P02321	thunnus thy
621	2	5.9	34	1	PRT2 SCOSC		scomber sco
622	2	5.9	34	1	PRT2 THUTH	P02322	thunnus thy
623	2	5.9	34	1	PRT DICLA		dicentrarch
624	2	5.9	34	1	PRT PERFV		perca flave
625	2	5.9	34	1	PSAI LOTJA		lotus japon
							
626	2	5.9	34	1	PSAI_OENHO		oenothera h
627	2	5.9	34	1	PSAI_SOYBN		glycine max
628	2	5.9	34	1	PSBM_ARATH		arabidopsis
629	2	5.9	34	1	PSBM_CHAGL	Q8ma15	chaetosphae
630	2	5.9	34	1	PSBM_CHLRE	P92277	chlamydomon
631	2	5.9	34	1	PSBM MAIZE	P48189	zea mays (m
632	2	5.9	34	1	PSBM MARPO		marchantia
633	2	5.9	34	1	PSBM NEPOL		nephroselmi
634	2	5.9	34	1	PSBM OENHO		oenothera h
63 5	2				_		
		5.9	34	1	PSBM_PEA		pisum sativ
636	2	5.9	34	1	PSBM_PSINU		psilotum nu
637	2	5.9	34	1	PSBM_WHEAT		triticum ae
638	2	5.9	34	1	PSBT_TOBAC		nicotiana t
639	2	5.9	34	1	PSPC_BOVIN	P15783	bos taurus
640	2	5.9	34	1	PSPC_CANFA	P22397	canis famil
641	2	5.9	34	1	PTU1_PEITU	P58606	peirates tu
642	2	5.9	34	1	PYSB METBA		methanosarc
643	2	5.9	3 4	1	RNL1 PIG		sus scrofa
644	2	5.9	34	1	RR2 OCHNE		ochrosphaer
				_	_	~	

6.4.5	^	- 0	2.4		agus agoss	D00810
645	2	5.9	34	1	SCXM_SCOMA	P80719 scorpio mau
646	2	5.9	34	1	SMS_MYXGL	P19209 myxine glut
647	2	5.9	34	1	THEM MALSU	P13858 malbranchea
648	2	5.9	34	1	TX33 PHONI	P81789 phoneutria
649	2	5.9	34	1	TXP5 BRASM	P49266 brachypelma
650	2	5.9	34	1	VLYS BPM1	P08229 bacteriopha
	2			1		
651		5.9	34		VPU_HV1W2	P08808 human immun
652	2	5.9	34	1	Y05J_BPT4	P39239 bacteriopha
653	2	5.9	34	1	Y224_TREPA	083253 treponema p
654	2	5.9	34	1	Y848_BORBU	O51788 borrelia bu
655	2	5.9	34	1	Y870 HAEIN	P44065 haemophilus
656	2	5.9	34	1	Y967_HAEIN	P44086 haemophilus
657	2	5.9	34	1	YC12 GUITH	078460 guillardia
658	2	5.9	34	1	YC12 ODOSI	P49529 odontella s
659	2	5.9	34	1	YC12_PORPU	P51385 porphyra pu
660	2	5.9	34	1	YC12_SKECO	096797 skeletonema
661	2	5.9	34	1	YMIA_AGRTU	P38437 agrobacteri
662	2	5.9	34	1	Z33B_HUMAN	Q06731 homo sapien
663	2	5.9	35	1	ADO1 AGRDO	P58608 agriosphodr
664	2	5.9	35	1	C550 BACHA	P80091 bacillus ha
665	2	5.9	35	1	CEC4 BOMMO	P14666 bombyx mori
666	2	5.9	35	1	CECA HELVI	P83413 heliothis v
						
667	2	5.9	35	1	CECB_ANTPE	P01509 antheraea p
668	2	5.9	35	1	CHI1_CASSA	P29137 castanea sa
669	2	5.9	35	1	D3HI_RABIT	P32185 oryctolagus
670	2	5.9	35	1	DEFB_MYTED	P81611 mytilus edu
671	2	5.9	35	1	END4 YEREN	P42691 yersinia en
672	2	5.9	35	1	ERFK KLEAE	Q08599 klebsiella
673	2	5.9	35	1	EXE2 HELSU	P04204 heloderma s
674	2	5.9	35	1	FAS CAPHI	P08757 capra hircu
						_
675	2	5.9	35	1	FLAV_NOSSM	P35707 nostoc sp.
676	2	5.9	35	1	GBGU_MOUSE	Q61017 mus musculu
677	2	5.9	35	1	GRDB_CLOPU	P55793 clostridium
678	2	5.9	35	1	GUR_GYMSY	P25810 gymnema syl
679	2	5.9	35	1	HMWC DESGI	P38588 desulfovibr
680	2	5.9	35	1	IAAC HORVU	P34951 hordeum vul
681	2	5.9	35	1	KPPR PINPS	P81664 pinus pinas
682	2	5.9	35	1	LCGB LACLA	P36962 lactococcus
683	2	5.9			NEF HV1H3	P05854 human immun
			35	1		
684	2	5.9	35	1	PBP1_LYMDI	P34176 lymantria d
685	2	5.9	35	1	PBP2_LYMDI	P34177 lymantria d
686	2	5.9	35	1	PBP_HYACE	P34175 hyalophora
687	2	5.9	35	1	PHI1 MYTCA	P35422 mytilus cal
688	2	5.9	35	1	PSAI CYAPA	P48116 cyanophora
689	2	5.9	35	1	PSBM SYNY3	P72701 synechocyst
690	2	5.9	35	1	PSBT OENHO	P37258 oenothera h
691	2	5.9	35	1		P12183 oryza sativ
					PSBT_ORYSA	
692	2	5.9	35	1	PSBT_PINTH	P41625 pinus thunb
693	2	5.9	35	1	PSPC_PIG	P15785 sus scrofa
694	2	5.9	35	1	RL32_HALCU	P05965 halobacteri
695	2	5.9	35	1	SCKB_PANIM	P55928 pandinus im
696	2	5.9	35	1	SCKG PANIM	Q10726 pandinus im
697	2	5.9	35	1	SCX5 BUTEU	P15222 buthus eupe
698	2	5.9	35	1	SCXP ANDMA	P01498 androctonus
699	2	5.9	35	1	SMS LAMFL	Q9prr0 lampetra fl
700	2	5.9	35	1	SPRC PIG	P20112 sus scrofa
						
701	2	5.9	35	1	THPA_THADA	P21381 thaumatococ

702	2	5.9	35	1	TXAG_AGEOP	P31328	agelena opu
703	2	5.9	35	1	TXH4_SELHU	P83303	selenocosmi
704	2	5.9	35	1	TXKS_STOHE	P29187	stoichactis
705	2	5.9	35	1	TXN4 SELHA	P83471	selenocosmi
706	2	5.9	35	1	VL3 PAPVD	P06919	deer papill
707	2	5.9	35	1	VSPA CERVI	P18692	cerastes vi
708	2	5.9	35	1	WSP7 PINPS	P81086	pinus pinas
709	2	5.9	35	1	Y320 BORBU		borrelia bu
710	2	5.9	35	1	Y37 BPT3		bacteriopha
711	2	5.9	35	1	Y644 ARCFU		archaeoglob
712	2	5.9	35	1	Y845 BORBU		borrelia bu
713	2	5.9	35	1	Y847 BORBU		borrelia bu
714	2	5.9	35	1	YC12 CYACA		cyanidium c
715	2	5.9	35	1	YC69 ARCFU		archaeoglob
716	2	5.9	35	1	YQB5 CAEEL		caenorhabdi
717	2	5.9	36	1	AMPL PIG	· ·	sus scrofa
					_		
718	2	5.9	36	1	ANFV_ANGJA		anguilla ja
719	2	5.9	36	1	C3L1_BOVIN		bos taurus
720	2	5.9	36	1	CBBA_NITVU		nitrobacter
721	2	5.9	36	1	CECD_ANTPE		antheraea p
722	2	5.9	36	1	CYC7_GEOME		geobacter m
723	2	5.9	36	1	DESR_DESGI		desulfovibr
724	2	5.9	36	1	F4RE_METOG		methanogeni
725	2	5.9	36	1	GLU1_ORENI		oreochromis
726	2	5.9	36	1	GLUC_HYDCO	P09682	hydrolagus
727	2	5.9	36	1	H1L5_ENSMI	P27203	ensis minor
728	2	5.9	36	1	HBB_PONPY	Q9tt34	pongo pygma
729	2	5.9	36	1	IAA_STRAU	P04082	streptomyce
730	2	5.9	36	1	IOB1 ISYOB	P58609	isyndus obs
731	2	5.9	36	1	KAD STRGR	P53398	streptomyce
732	2	5.9	36	1	LHG RHOVI	P04126	rhodopseudo
733	2	5.9	36	1	LYOX PIG		sus scrofa
734	2	5.9	36	1	MFA1 YEAST	P34165	saccharomyc
735	2	5.9	36	1	MPG2 DACGL		dactylis gl
736	2	5.9	36	1	MYPC RAT		rattus norv
737	2	5.9	36	1	NEUH_CARCA	P11975	cardisoma c
738	2	5.9	36	1	NEUY GADMO		gadus morhu
739	2	5.9	36	1	NEUY ONCMY		oncorhynchu
740	2	5.9	36	1	NEUY RABIT		oryctolagus
741	2	5.9	36	1	NEUY_RANRI		rana ridibu
742	2	5.9	36	1	NIFH ENTAG		enterobacte
743	2	5.9	36	1	NLTP PINPI		pinus pinea
744	2	5.9	36	1	NUCM SOLTU		solanum tub
745	2	5.9	36	1	OST2 CHICK		gallus gall
746	2	5.9	36	1	PAHO ALLMI		alligator m
747	2	5.9	36	1	PAHO ANSAN		anser anser
748	2	5.9	36	1	PAHO CERSI		ceratotheri
749	2	5.9	36		PAHO_CERSI		didelphis m
7 4 9 750				1	-		
750 751	2 2	5.9	36 36	1	PAHO_EQUZE		equus zebra
		5.9	36 36	1	PAHO_ERIEU		erinaceus e
752	2	5.9	36	1	PAHO_LARAR		larus argen
753	2	5.9	36 36	1	PAHO_MACMU		macaca mula
754 755	2	5.9	36 36	1	PAHO_RABIT		oryctolagus
755 756	2	5.9	36	1	PAHO_RANCA		rana catesb
756	2	5.9	36	1	PAHO_RANTE		rana tempor
757	2	5.9	36	1	PAHO_STRCA		struthio ca
758	2	5.9	36	1	PAHO_TAPPI	P39659	tapirus pin

759	2	5.9	36	1	PGKH_CHLFU	P36232	chlorella f
760	2	5.9	36	1	PSAD_PEA	P20117	pisum sativ
761	2	5.9	36	1	PSAH PEA	P20121	pisum sativ
762	2	5.9	36	1	PSAI ANGLY	P28251	angiopteris
763	2	5.9	36	1	PSAI BRAOL		brassica ol
764	2	5.9	36	1	PSAI CARCL		carpobrotus
765	2	5.9	36	1	PSAI CHAGL		chaetosphae
766	2	5.9	36	1	PSAI CHLVU		chlorella v
767	2	5.9	36	1	PSAI_CYACA		cyanidium c
768	2	5.9	36	1	PSAI_GUITH		guillardia
769	2	5.9	36	1	PSAI_HORVU		hordeum vul
770	2	5.9	36	1	PSAI_MAIZE		zea mays (m
771	2	5.9	36	1	PSAI_MARPO	P12185	marchantia
772	2	5.9	36	1	PSAI_MESVI	Q9muq4	mesostigma
773	2	5.9	36	1	PSAI NEPOL	Q9tl12	nephroselmi
774	2	5.9	36	1	PSAI ORYSA	P12186	oryza sativ
775	2 .	5.9	36	1	PSAI PICAB		picea abies
776	2	5.9	36	1	PSAI PORPU		porphyra pu
777	2	5.9	36	1	PSAI PSINU		psilotum nu
778	2	5.9	36	1	PSAI SKECO		skeletonema
778 779	2		36				nicotiana t
		5.9		1	PSAI_TOBAC		
780	2	5.9	36	1	PSAI_WHEAT		triticum ae
781	2	5.9	36	1	PSBI_ARATH		arabidopsis
782	2	5.9	36	1	PSBI_HORVU		hordeum vul
783	2	5.9	36	1	PSBI_MARPO	P09969	marchantia
784	2	5.9	36	1	PSBI_ORYSA		oryza sativ
785	2	5.9	36	1	PSBI_PINTH	P41599	pinus thunb
786	2	5.9	36	1	PSBI PSEMZ	P29796	pseudotsuga
787	2	5.9	36	1	PSBM CHLVU	P56325	chlorella v
788	2	5.9	36	1	PSBM SYNEL		synechococc
789	2	5.9	36	1	PSBY ODOSI		odontella s
790	2	5.9	36	1	PSBY PORPU		porphyra pu
791	2	5.9	36	1	PYY AMICA		amia calva
792	2	5.9	36	1	_		lepisosteus
	2				PYY_LEPSP		
793		5.9	36	1	PYY_ONCKI		oncorhynchu
794	2	5.9	36	1	PYY_PIG		sus scrofa
795	2	5.9	36	1	PYY_RAJRH		raja rhina
796	2	5.9	36	1	PYY_RANRI		rana ridibu
797	2	5.9	36	1	SCK2_CENLL		centruroide
798	2	5.9	36	1	SCK3_LEIQH	P45660	leiurus qui
799	2	5.9	36	1	SCX1_BUTEU	P15220	buthus eupe
800	2	5.9	36	1	SCXL LEIQU	P45639	leiurus qui
801	2	5.9	36	1	SPYY PHYBI	P80952	phyllomedus
802	2	5.9	36	1	TAEK ACTEQ		actinia equ
803	2	5.9	36	1	TERN PSEUS		pseudacanth
804	2	5.9	36	1	TLN1 CHICK		gallus gall
805	2	5.9	36	1	TX1B AGEAP		agelenopsis
806	2	5.9	36	1			phoneutria
					TX35_PHONI		
807	2	5.9	36	1	TXAM_METSE		metridium s
808	2	5.9	36	1	TXD3_PARLU		paracoelote
809	2	5.9	36	1	TXJA_HADVE		hadronyche
810	2	5.9	36	1	TXJB_HADVE		hadronyche
811	2	5.9	36	1	Y16L_BPT4		bacteriopha
812	2	5.9	36	1	Y297_ARCFU	029945	archaeoglob
813	2	5.9	36	1	Y4KD_BPCHP	P19188	bacteriopha
814	2	5.9	36	1	Y609_BORBU	051554	borrelia bu
815	2	5.9	36	1	Y619 ARCFU		archaeoglob
							· - 3

816	2	5.9	36	1	Y699_TREPA		treponema p
817	2	5.9	36	1	YC12_CYAPA		cyanophora
818	2	5.9	36	1	YG50_HAEIN	P44281	haemophilus
819	2	5.9	36	1	YRKG BACSU	P54434	bacillus su
820	2	5.9	37	1	24KD PLACH	P14592	plasmodium
821	2	5.9	37	1	AFP4 MALPA		malva parvi
822	2	5.9	37	1	ANP3_PSEAM		pseudopleur
823	2	5.9	37	1	ATPO SOLTU		solanum tub
824	2	5.9	37	1	B2MG ORENI		oreochromis
	2	5.9				· -	
825			37	1	CAL1_PIG		sus scrofa
826	2	5.9	37	1	CAL1_SHEEP		ovis aries
827	2	5.9	37	1	CALR_RANRI		rana ridibu
828	2	5.9	37	1	CEC2_MANSE		manduca sex
829	2	5.9	37	1	CEC3_MANSE		manduca sex
830	2	5.9	37	1	CEC4_MANSE	P14664	manduca sex
831	2	5.9	37	1	CG2S_LUPAN	P09930	lupinus ang
832	2	5.9	37	1	CHCD ANTPO	P08931	antheraea p
833	2	5.9	37	1	CS40 STAAU		staphylococ
834	2	5.9	37	1	CUP4 SARBU		sarcophaga
835	2	5.9	37	1	DEFA MYTED		mytilus edu
836	2	5.9	37	1	ECAA ECTTU		ectatomma t
	2						
837		5.9	37	1	ES2A_RANES		rana escule
838	2	5.9	37	1	ES2B_RANES		rana escule
839	2	5.9	37	1	F13A_BOVIN		bos taurus
840	2	5.9	37	1	GHR3_RAT		rattus norv
841	2	5.9	37	1	HCYB_CANPG		cancer pagu
842	2	5.9	37	1	HOXF_RHOOP	P22658	rhodococcus
843	2	5.9	37	1	IAPP_CRIGR	P19890	cricetulus
844	2	5.9	37	1	LPPY SERMA	P19937	serratia ma
845	2	5.9	37	1	MAUR PARVE	Q56462	paracoccus
846	2	5.9	37	1	ME20 EUPRA		euplotes ra
847	2	5.9	37	1	ME22 EUPRA		euplotes ra
848	2	5.9	37	1	MIBP PSESP		pseudomonas
849	2	5.9	37	1	NLT3 VITSX		vitis sp. (
850	2	5.9	37	1	NLT4 VITSX		vitis sp. (
851	2	5.9	37		_		
				1	NUFM_SOLTU		solanum tub
852	2	5.9	37	1	OGT1_RABIT		oryctolagus
853	2	5.9	37	1	OP2A_OXYKI		oxyopes kit
854	2	5.9	37	1	OP2B_OXYKI		oxyopes kit
855	2	5.9	37	1	OP2C_OXYKI		oxyopes kit
856	2	5.9	37	1	OP2D_OXYKI		oxyopes kit
857	2	5.9	37	1	PETG_ANASP	P58246	anabaena sp
858	2	5.9	37	1	PETG_ANAVA	Q913p7	anabaena va
859	2	5.9	37	1	PETG ARATH	P56775	arabidopsis
860	2	5.9	37	1	PETG CHAGL		chaetosphae
861	2	5.9	37	1	PETG CHLEU		chlamydomon
862	2	5.9	37	1	PETG CHLRE		chlamydomon
863	2	5.9	37	1	PETG CHLVU		chlorella v
864	2	5.9	37	1	PETG CUSRE		cuscuta ref
865	2	5.9			_		
	2		37 37	1	PETG_CYAPA		cyanophora
866		5.9	37	1	PETG_EUGGR		euglena gra
867	2	5.9	37	1	PETG_GUITH		guillardia
868	2	5.9	37	1	PETG_MARPO		marchantia
869	2	5.9	37	1	PETG_MESVI		mesostigma
870	2	5.9	37	1	PETG_NEPOL	Q9tky8	nephroselmi
871	2	5.9	37	1	PETG_ODOSI	P49470	odontella s
872	2	5.9	37	1	PETG_ORYSA	P12121	oryza sativ
					_		

073	2	F 0	27	7	השתר הואתה	D4161	A ninua thumb
873	2	5.9	37	1	PETG_PINTH		4 pinus thunb
874	2	5.9	37	1	PETG_PORPU		8 porphyra pu
875	2	5.9	37	1	PETG_PSINU		2 psilotum nu
876	2	5.9	37	1	PETG_SKECO		l skeletonema
877	2	5.9	37	1	PETG_SYNEL		2 synechococc
878	2	5.9	37	1	PETG_SYNP7	Q9z3g	1 synechococc
879	2	5.9	37	1	PIIL ACHLY	P8172	0 achromobact
880	2	5.9	37	1	POLN WEEV	P1389	6 western equ
881	2	5.9	37	1	PRF1 RAT	P1888	9 rattus norv
882	2	5.9	37	1	PSAI ARATH	P5676	8 arabidopsis
883	2	5.9	37	1	PSAJ EUGGR		4 euglena gra
884	2	5.9	37	1	PSBL ARATH		1 arabidopsis
885	2	5.9	37	1	PSBL ORYSA		6 oryza sativ
886	2	5.9	37	1	PSBM PINTH		8 pinus thunb
	2			1	_		3 cyanidium c
887		5.9	37		PSBY_CYACA		
888	2	5.9	37	1	PSBY_GUITH		3 guillardia
889	2	5.9	37	1	PYY_CHICK		3 gallus gall
890	2	5.9	37	1	REV_SIVM2		9 simian immu
891	2	5.9	37	1	RK36_ARATH		4 arabidopsis
892	2	5.9	37	1	RK36_ASTLO		5 astasia lon
893	2	5.9	37	1	RK36_CHAGL		5 chaetosphae
894	2	5.9	37	1	RK36_CHLVU	P5636	0 chlorella v
895	2	5.9	37	1	RK36 CYACA	Q9tlu	9 cyanidium c
896	2	5.9	37	1	RK36 CYAPA	P4813	1 cyanophora
897	2	5.9	37	1	RK36 EPIVI		9 epifagus vi
898	2	5.9	37	1	RK36 EUGGR		2 euglena gra
899	2	5.9	37	1	RK36 LOTJA		2 lotus japon
900	2	5.9	37	1	RK36 MARPO		2 marchantia
901	2	5.9	37	1	RK36 NEPOL		6 nephroselmi
902	2	5.9	37	1	RK36 OENHO		1 oenothera h
903	2		37	1	RK36_OENHO	_	3 oryza sativ
		5.9			_		_
904	2	5.9	37	1	RK36_PEA		5 pisum sativ
905	2	5.9	37	1	RK36_PINTH		1 pinus thunb
906	2	5.9	37	1	RK36_PORPU		6 porphyra pu
907	2	5.9	37	1	RK36_PSINU		9 psilotum nu
908	2	5.9	37	1	RK36_SPIOL		0 spinacia ol
909	2	5.9	37	1	RL36_ANASP		0 anabaena sp
910	2	5.9	37	1	RL36_AQUAE		7 aquifex aeo
911	2	5.9	37	1	RL36_BACHD		1 bacillus ha
912	2	5.9	37	1	RL36_BACST	P0784	1 bacillus st
913	2	5.9	37	1	RL36_BORBU	05145	2 borrelia bu
914	2	5.9	37	1	RL36 CAMJE	Q9pm8	4 campylobact
915	2	5.9	37	1	RL36 CLOPE	Q8xhu	7 clostridium
916	2	5.9	37	1	RL36 DEIRA		0 deinococcus
917	2	5.9	37	1	RL36 HAEIN	~	1 haemophilus
918	2	5.9	37	1	RL36 HELPJ		1 helicobacte
919	2	5.9	37	1	RL36 HELPY	-	8 helicobacte
920	2	5.9	37	1	RL36 LEPIN		3 leptospira
	2		37	1	RL36 MYCGA		9 mycoplasma
921	2	5.9		1			0 mycoplasma
922		5.9	37 37		RL36_MYCGE		
923	2	5.9	37	1	RL36_MYCLE		2 mycobacteri
924	2	5.9	37	1	RL36_MYCPN		4 mycoplasma
925	2	5.9	37	1	RL36_MYCPU		5 mycoplasma
926	2	5.9	37	1	RL36_MYCSP		5 mycoplasma
927	2	5.9	37	1	RL36_MYCTU		0 mycobacteri
928	2	5.9	37	1	RL36_NEIMA		2 neisseria m
929	2	5.9	37	1	RL36_STRCO	08677	2 streptomyce

							_
930	2	5.9	37	1	RL36_SYNP6	024707	synechococc
931	2	5.9	37	1	RL36 THETH	P80256	thermus the
932	2	5.9	37	1	RL36 THETN		thermoanaer
						~	
933	2	5.9	37	1	RL36_TREPA		treponema p
934	2	5.9	37	1	RL36_UREPA	Q9pqn7	ureaplasma
935	2	5.9	37	1	RL36 VIBCH	P78001	vibrio chol
936	2	5.9	37	1	RL7 CLOPA		clostridium
937	2	5.9	37	1	RS15_HELLU		helix lucor
938	2	5.9	37	1	RUGC RANRU	P80956	rana rugosa
939	2	5.9	37	1	SCIT MESTA	P81761	mesobuthus
940	2	5.9	37	1	SCK2 LEIQH		leiurus qui
							_
941	2	5.9	37	1	SCK3_BUTOC		buthus occi
942	2	5.9	37	1	SCK3_PARTR		parabuthus
943	2	5.9	37	1	SCKA TITSE	P46114	tityus serr
944	2	5.9	37	1	SCKC LEIQH		leiurus qui
945	2	5.9	37	1	SMS PETMA		petromyzon
					_		-
946	2	5.9	37	1	TCTP_TRYBB		trypanosoma
947	2	5.9	37	1	THHS_HORVU	P33045	hordeum vul
948	2	5.9	37	1	TX21 SELHU	P82959	selenocosmi
949	2	5.9	37	1	TX22 SELHU		selenocosmi
	2			1			
950		5.9	37		TXD1_PARLU		paracoelote
951	2	5.9	37	1	TXD2_PARLU		paracoelote
952	2	5.9	37	1	TXD4 PARLU	P83259	paracoelote
953	2	5.9	37	1	TXJC HADVE	P82228	hadronyche
954	2	5.9	37	1	TXM2 AGEAP		agelenopsis
					_		
955	2	5.9	37	1	TXM5_AGEAP		agelenopsis
956	2	5.9	37	1	TXOF_HADVE	P81599	hadronyche
957	2	5.9	37	1	TXP3 APTSC	P49268	aptostichus
958	2	5.9	37	1	VA1 BPBF2		bacteriopha
959	2	5.9	37	1	VG40 BPML5		mycobacteri
							
960	2	5.9	37	1	VG65_BPPH2		bacteriopha
961	2	5.9	37	1	VG65_BPPZA	P08384	bacteriopha
962	2	5.9	37	1	VP64 NPVBM	P41722	bombyx mori
963	2	5.9	37	1	VPU HV1Z8		human immun
964	2	5.9	37	1	Y268 ARCFU		
					_		archaeoglob
965	2	5.9	37	1	Y63_BPT7		bacteriopha
966	2	5.9	37	1	Y692 BORBU	051635	borrelia bu
967	2	5.9	37	1	Y700 BORBU	051643	borrelia bu
968	2	5.9	37	1	Y762 BORBU	051703	borrelia bu
							
969	2	5.9	37	1	Y846_BORBU		borrelia bu
970	2	5.9	37	1	YBGT_ECOLI	P56100	escherichia
971	2	5.9	37	1	YC12 CHLVU	P56328	chlorella v
972	2	5.9	37	1	YDA3 SCHPO	010345	schizosacch
973	2	5.9	37	1	YIM4 BPPH1		bacteriopha
							
974	2	5.9	37	1	YQGE_BACCA		bacillus ca
975	2	5.9	37	1	YRYL_CAEEL	Q19177	caenorhabdi
976	2	5.9	38	1	A2M HOMAM	P20737	homarus ame
977	2	5.9	38	1	AFP5 MALPA		malva parvi
	2	5.9					bos taurus
978			38	1	BD01_BOVIN		
979	2	5.9	38	1	BD08_BOVIN		bos taurus
980	2	5.9	38	1	COA3_XANCP	Q07484	xanthomonas
98 1	2	5.9	38	1	CRS3 NOTGO	P15534	nototodarus
982	2	5.9	38	1	CU47 LACCU		lactobacill
983	2	5.9	38	1	DCHS MICSP		micrococcus
					_		
984	2	5.9	38	1	DEF4_LEIQH		leiurus qui
985	2	5.9	38	1	DEF7_SPIOL		spinacia ol
986	2	5.9	38	1	DEFI AESCY	P80154	aeschna cya
					_		•

987	2	5.9	38	1	DEFI MYTGA	P80571 mytilus gal
988	2	5.9	38	1	DLP3 ORNAN	P82141 ornithorhyn
989	2	5.9	38	1	DNP_DENAN	P28374 dendroaspis
990	2	5.9	38	1	DPOB_BOVIN	Q27958 bos taurus
991	2	5.9	38	1	E2F1_RAT	009139 rattus norv
992	2	5.9	38	1	EST5_DROMO	P10095 drosophila
993	2	5.9	38	1	EXE1_HELSU	P04203 heloderma s
994	2	5.9	` 38	1	FER_METPR	P81542 metallospha
995	2	5.9	38	1	GLUM_HYDCO	P23063 hydrolagus
996	2	5.9	38	1	GME1_RAT	Q9quz8 rattus norv
997	2	5.9	38	1	H5_COLLI	P02260 columba liv
998	2	5.9	38	1	HIS1_MACFA	P34084 macaca fasc
999	2	5.9	38	1	HMG2_BOVIN	P40673 bos taurus
1000	2	5.9	38	1	HOXH RHOOP	P22661 rhodococcus

ALIGNMENTS

RESULT 1

```
FABI RHASA
     FABI RHASA
                    STANDARD;
                                   PRT;
                                           33 AA.
AC
     P81175;
DT
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     15-JUL-1998 (Rel. 36, Last annotation update)
DE
     Fatty acid-binding protein, intestinal (I-FABP) (FABPI) (Fragments).
OS
     Rhamdia sapo.
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Siluriformes;
OC.
OC
     Pimelodidae; Rhamdia.
OX
     NCBI TaxID=55673;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Intestine;
RX
     MEDLINE=98036128; PubMed=9370361;
RA
     Di Pietro S.M., Dell'Angelica E.C., Veerkamp J.H., Sterin-Speziale N.,
RA
     Santome J.A.;
     "Amino acid sequence, binding properties and evolutionary
RT
RT
     relationships of the basic liver fatty-acid-binding protein from the
RT
     catfish Rhamdia sapo.";
RL
     Eur. J. Biochem. 249:510-517(1997).
CC
     -!- FUNCTION: FABP ARE THOUGHT TO PLAY A ROLE IN THE INTRACELLULAR
CC
         TRANSPORT OF LONG-CHAIN FATTY ACIDS AND THEIR ACYL-COA ESTERS.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- TISSUE SPECIFICITY: INTESTINE.
CC
     -!- SIMILARITY: BELONGS TO THE FABP/P2/CRBP/CRABP FAMILY OF
CC
         TRANSPORTERS.
DR
     InterPro; IPR000463; Fatty acid BP.
DR
     PROSITE; PS00214; FABP; PARTIAL.
KW
     Transport; Lipid-binding.
FT
     NON TER
                  1
                         1
FT
     NON CONS
                  12
                         13
FT
     NON CONS
                  20
                         21
FT
     NON CONS
                  28
                         29
    NON TER
FT
                  33
                         33
     SEQUENCE
                33 AA; 3660 MW; 5BA16CC2880B7819 CRC64;
SQ
```

```
Query Match
                         14.7%; Score 5; DB 1; Length 33;
  Best Local Similarity 100.0%; Pred. No. 40;
           5; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
           1 SVSEI 5
Qу
             13 SVSEI 17
Db
RESULT 2
DMD RAT
    DMD RAT
                   STANDARD;
                                  PRT;
                                        29 AA.
AC
     P11530;
DT
     01-OCT-1989 (Rel. 12, Created)
    01-OCT-1989 (Rel. 12, Last sequence update) 28-FEB-2003 (Rel. 41, Last annotation update)
DT
DT
DE
    Dystrophin (Fragment).
GN
    DMD.
OS
    Rattus norvegicus (Rat).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
OX
    NCBI TaxID=10116;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
    MEDLINE=88122671; PubMed=3340214;
RX
RA
    Nudel U., Robzyk K., Yaffe D.;
RT
    "Expression of the putative Duchenne muscular dystrophy gene in
RT
    differentiated myogenic cell cultures and in the brain.";
    Nature 331:635-638(1988).
RL
CC
     -!- FUNCTION: May play a role in anchoring the cytoskeleton to the
CC
        plasma membrane.
CC
     -!- SUBUNIT: Interacts with the syntrophins SNTA1, SNTB1, SNTB2, SNTG1
CC
        and SNTG2 (By similarity).
     _____
CC
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
     the European Bioinformatics Institute. There are no restrictions on its
CC
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
DR
     EMBL; X07000; CAA30057.1; -.
DR
    PIR; S01614; S01614.
DR
     InterPro; IPR001589; Actbind actnin.
DR
     InterPro; IPR001202; WW Rsp5 WWP.
     PROSITE; PS00019; ACTININ 1; PARTIAL.
    PROSITE; PS00020; ACTININ_2; PARTIAL.
DR
     PROSITE; PS01159; WW DOMAIN 1; PARTIAL.
DR
     PROSITE; PS50020; WW DOMAIN 2; PARTIAL.
DR
KW
    Structural protein; Actin-binding; Calcium-binding; Cytoskeleton;
KW
    Repeat.
FT
    NON TER
                 1
                         1
FT
    NON TER
                 29
                        29
SO
     SEQUENCE
               29 AA; 3289 MW; 8ECFB28A1A7ACAF0 CRC64;
```

```
11.8%; Score 4; DB 1; Length 29;
 Query Match
  Best Local Similarity 100.0%; Pred. No. 4.2e+02;
                              0; Mismatches 0; Indels
          4; Conservative
                                                               0; Gaps
                                                                          0;
          27 KLOD 30
Qу
              Db
          12 KLQD 15
RESULT 3
PCG3 PACGO
     PCG3 PACGO
                   STANDARD;
                                  PRT;
                                          30 AA.
AC
     P82416;
DT
     16-OCT-2001 (Rel. 40, Created)
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Ponericin G3.
OS
     Pachycondyla goeldii (Ponerine ant).
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
     Ponerinae; Pachycondyla.
OX
     NCBI_TaxID=118888;
RN
     [1]
     SEQUENCE, AND FUNCTION.
RΡ
RC
     TISSUE=Venom;
RX
    MEDLINE=21264562; PubMed=11279030;
RA
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
    venom of the ant Pachycondyla goeldii.";
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- MASS SPECTROMETRY: MW=3381.36; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
SO
     SEQUENCE 30 AA; 3383 MW; BC0463D0AF140B53 CRC64;
  Query Match
                         11.8%; Score 4; DB 1; Length 30;
                         100.0%; Pred. No. 4.3e+02;
  Best Local Similarity
  Matches
            4; Conservative
                               0; Mismatches
                                                 0; Indels 0; Gaps
          10 NKGK 13
Qу
              1111
           7 NKGK 10
Dh
RESULT 4
PSBY SYNY3
     PSBY SYNY3
                                  PRT;
ΙD
                   STANDARD;
                                          39 AA.
     P73676;
AC
DT
     15-DEC-1998 (Rel. 37, Created)
DT
     15-DEC-1998 (Rel. 37, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DE
     Photosystem II protein Y.
GN
    PSBY OR SML0007.
```

```
Synechocystis sp. (strain PCC 6803).
OS
    Bacteria; Cyanobacteria; Chroococcales; Synechocystis.
OC.
OX
    NCBI TaxID=1148;
RN
    [1]
    SEQUENCE FROM N.A.
RΡ
    MEDLINE=97061201; PubMed=8905231;
RX
RA
    Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y.,
RA
    Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T.,
    Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S.,
RA
    Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M.,
RA
RA
    Tabata S.;
RT
    "Sequence analysis of the genome of the unicellular cyanobacterium
RT
    Synechocystis sp. strain PCC6803. II. Sequence determination of the
RT
    entire genome and assignment of potential protein-coding regions.";
RL
    DNA Res. 3:109-136(1996).
CC
    -!- FUNCTION: MANGANESE-BINDING POLYPEPTIDE WITH L-ARGININE
CC
        METABOLIZING ENZYME ACTIVITY. COMPONENT OF THE CORE OF PHOTOSYSTEM
CC
        II (BY SIMILARITY).
CC
    -!- SUBCELLULAR LOCATION: CELLULAR THYLAKOID MEMBRANE.
CC
    -!- SIMILARITY: BELONGS TO THE PSBY FAMILY.
CC
    ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    ______
DR
    EMBL; D90908; BAA17722.1; -.
DR
    PIR; S77164; S77164.
KW
    Photosystem II; Transmembrane; Thylakoid; Complete proteome.
FT
    TRANSMEM
             5 25 POTENTIAL.
SO
    SEQUENCE 39 AA; 4202 MW; 3EA176ABAA79F6DF CRC64;
 Query Match
                        11.8%; Score 4; DB 1; Length 39;
 Best Local Similarity 100.0%; Pred. No. 5.5e+02;
           4; Conservative 0; Mismatches 0; Indels 0; Gaps
          28 LQDV 31
Qу
             1111
Db
          31 LQDV 34
RESULT 5
SR1C SARPE
    SR1C SARPE
                  STANDARD;
                                PRT;
                                       39 AA.
AC
    P08377;
    01-AUG-1988 (Rel. 08, Created)
DT
    01-AUG-1988 (Rel. 08, Last sequence update)
DT
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DE
    Sarcotoxin IC.
OS
    Sarcophaga peregrina (Flesh fly) (Boettcherisca peregrina).
OC
    Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
    Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Oestroidea;
OC
    Sarcophagidae; Sarcophaga.
OX
    NCBI TaxID=7386;
```

```
RP
     SEOUENCE.
     MEDLINE=85207747; PubMed=3888997;
RX
     Okada M., Natori S.;
RA
     "Primary structure of sarcotoxin I, an antibacterial protein induced
RT
     in the hemolymph of Sarcophaga peregrina (flesh fly) larvae.";
RT
RL
     J. Biol. Chem. 260:7174-7177(1985).
     -!- FUNCTION: SARCOTOXINS, WHICH ARE POTENT BACTERICIDAL PROTEINS,
CC
CC
        ARE PRODUCED IN RESPONSE TO INJURY. THEY ARE CYTOTOXIC TO BOTH
CC
        GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
DR
     PIR; C22625; CKFHCS.
DR
     InterPro; IPR000875; Cecropin.
DR
     InterPro; IPR003253; Sarctxn cecrpn.
DR
     Pfam; PF00272; cecropin; 1.
DR
     ProDom; PD001670; Sarctxn_cecrpn; 1.
DR
     PROSITE; PS00268; CECROPIN; 1.
KW
     Insect immunity; Antibiotic; Hemolymph; Amidation; Multigene family.
FT
     MOD RES
                  39
                        39
                                 AMIDATION.
SQ
     SEQUENCE
              39 AA; 4227 MW; 11E79F4F405E855A CRC64;
                          11.8%; Score 4; DB 1; Length 39;
 Query Match
                          100.0%; Pred. No. 5.5e+02;
  Best Local Similarity
 Matches
             4; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                             0;
           23 WLRK 26
Qу
              1111
            2 WLRK 5
Db
RESULT 6
CH60 MYCSM
     CH60 MYCSM
                                   PRT:
                    STANDARD;
                                           28 AA.
AC
     P80673;
DT
     01-OCT-1996 (Rel. 34, Created)
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     60 kDa chaperonin (Protein Cpn60) (groEL protein) (Fragment).
DE
GN
     GROL OR GROEL OR MOPA.
OS
     Mycobacterium smeqmatis.
     Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
OC
     Corynebacterineae; Mycobacteriaceae; Mycobacterium.
OX
     NCBI TaxID=1772;
RN
     [1]
RР
     SEQUENCE.
RC
     STRAIN=ATCC 607 / mc(2)6 / NRRL B-692;
RX
     MEDLINE=97387814; PubMed=9243799;
     Lundrigan M.D., Arceneaux J.E.L., Zhu W., Byers B.R.;
RA
RT
     "Enhanced hydrogen peroxide sensitivity and altered stress protein
RT
     expression in iron-starved Mycobacterium smegmatis.";
RL
     BioMetals 10:215-225(1997).
CC
     -!- FUNCTION: Prevents misfolding and promotes the refolding and
CC
         proper assembly of unfolded polypeptides generated under stress
CC
         conditions.
CC
     -!- SUBUNIT: Oligomer of 14 subunits composed of two stacked rings of
CC
       7 subunits (By similarity).
```

RN

[1]

```
-!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: Belongs to the chaperonin (HSP60) family.
CC
DR
     HAMAP; MF 00600; -; 1.
DR
     InterPro; IPR001844; Chaprnin_Cpn60.
     PROSITE; PS00296; CHAPERONINS CPN60; PARTIAL.
DR
     Chaperone; ATP-binding.
KW
FT
     NON TER
                 28
SO
     SEQUENCE
                28 AA; 3047 MW; 2F40F27B94EF8720 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
 Best Local Similarity
                         100.0%; Pred. No. 4.8e+03;
 Matches
            3; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
           15 LNS 17
Qу
              Db
           18 LNS 20
RESULT 7
COXB SOLTU
     COXB SOLTU
                    STANDARD;
                                   PRT;
                                           28 AA.
ID
AC
     P80499;
DT
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     15-JUL-1999 (Rel. 38, Last annotation update)
DE
     Cytochrome c oxidase polypeptide Vb (EC 1.9.3.1) (Fragment).
OS
     Solanum tuberosum (Potato).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OX
     NCBI TaxID=4113;
RN
     [1]
RP
     SEOUENCE.
RC
     TISSUE=Tuber;
RX
     MEDLINE=97077345; PubMed=8919912;
RA
     Jansch L., Kruft V., Schmitz U.K., Braun H.P.;
RT
     "New insights into the composition, molecular mass and stoichiometry
RT
     of the protein complexes of plant mitochondria.";
     Plant J. 9:357-368(1996).
RL
CC
     -!- CATALYTIC ACTIVITY: 4 ferrocytochrome c + O(2) = 4 ferricytochrome
CC
         c + 2 H(2)0.
CC
     -!- SUBCELLULAR LOCATION: Mitochondrial inner membrane.
CC
     -!- SIMILARITY: BELONGS TO THE CYTOCHROME C OXIDASE VB FAMILY.
DR
     InterPro; IPR002124; COX5B.
DR
     PROSITE; PS00848; COX5B; PARTIAL.
KW
     Oxidoreductase; Inner membrane; Mitochondrion.
FT
     NON TER
                  28
                         28
                28 AA; 3101 MW; 1EAFA79E2682849C CRC64;
SQ
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
  Matches
            3; Conservative
                               0; Mismatches
                                                   0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
            2 VSE 4
QУ
              111
Db
            2 VSE 4
```

```
RESULT 8
GUN SCHCO
     GUN SCHCO
                    STANDARD;
                                   PRT:
                                           28 AA.
ID
AC
     P81190;
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Endoglucanase (EC 3.2.1.4) (Endo-1,4-beta-glucanase) (Cellulase)
DE
DΕ
     (Fragment).
     Schizophyllum commune (Bracket fungus).
OS
     Eukaryota; Fungi; Basidiomycota; Hymenomycetes; Homobasidiomycetes;
OC
     Agaricales; Schizophyllaceae; Schizophyllum.
OC
     NCBI TaxID=5334;
OX
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=97459758; PubMed=9315718;
RA
     Clarke A.J., Drummelsmith J., Yaguchi M.;
     "Identification of the catalytic nucleophile in the cellulase from
RT
     Schizophyllum commune and assignment of the enzyme to Family 5,
RT
RT
     subtype 5 of the glycosidases.";
RL
     FEBS Lett. 414:359-361(1997).
     -!- CATALYTIC ACTIVITY: Endohydrolysis of 1,4-beta-D-glucosidic
CC
CC
         linkages in cellulose, lichenin and cereal beta-D-glucans.
CC
     -!- SUBCELLULAR LOCATION: Attached to the membrane by a lipid anchor
CC
         (Probable).
     -!- SIMILARITY: BELONGS TO CELLULASE FAMILY A (FAMILY 5 OF GLYCOSYL
CC
CC
         HYDROLASES).
     InterPro; IPR001547; Glyco hydro 5.
DR
DR
     PROSITE; PS00659; GLYCOSYL HYDROL F5; PARTIAL.
KW
     Cellulose degradation; Hydrolase; Glycosidase; Zymogen; Membrane;
KW
     Lipoprotein.
FT
     ACT_SITE
                  20
                         20
                                  NUCLEOPHILE.
FТ
     NON TER
                  28
                         28
SQ
     SEQUENCE
                28 AA; 2937 MW; B3F1C0C99C9950BE CRC64;
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
  Matches
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                               0;
             3; Conservative
           22 EWL 24
Qу
              | | |
Dh
            7 EWL 9
RESULT 9
OMPA YERPS
                    STANDARD;
     OMPA YERPS
                                   PRT;
                                            28 AA.
ID
AC
     P38399;
DT
     01-OCT-1994 (Rel. 30, Created)
DT
     01-OCT-1994 (Rel. 30, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Outer membrane protein A (Outer membrane protein II) (Fragment).
DE
GN
     OMPA.
     Yersinia pseudotuberculosis.
OS
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
OC
     Enterobacteriaceae; Yersinia.
```

```
OX
     NCBI TaxID=633;
RN
     [1]
RΡ
     SEQUENCE.
RX
     MEDLINE=90038529; PubMed=2478630;
     Zhang J.J., Hamachi M., Hamachi T., Zhao Y.P., Yu D.T.Y.;
RA
     "The bacterial outer membrane protein that reacts with anti-HLA-B27
RT
RT
     antibodies is the OmpA protein.";
RL
     J. Immunol. 143:2955-2960(1989).
CC
     -!- FUNCTION: REQUIRED FOR THE ACTION OF COLICINS K AND L AND FOR THE
         STABILIZATION OF MATING AGGREGATES IN CONJUGATION. SERVES AS A
CC
         RECEPTOR FOR A NUMBER OF T-EVEN LIKE PHAGES. ALSO ACTS AS A PORIN
CC
CC
         WITH LOW PERMEABILITY THAT ALLOWS SLOW PENETRATION OF SMALL
CC
         SOLUTES (BY SIMILARITY).
CC
     -!- SUBUNIT: Monomer (Probable).
     -!- SUBCELLULAR LOCATION: Integral membrane protein. Outer membrane.
CC
CC
     -!- SIMILARITY: BELONGS TO THE OMPA FAMILY.
DR
     PIR; A60752; A60752.
DR
     HSSP; P02934; 1QJP.
     InterPro; IPR006690; OMPA LIKE.
DR
DR
     InterPro; IPR000498; OmpA tmem.
DR
     Pfam; PF01389; OmpA membrane; 1.
DR
     PROSITE; PS01068; OMPA; PARTIAL.
     Conjugation; Outer membrane; Transmembrane; Phage recognition; Porin.
KW
FT
     NON TER
                  28
                         28
SO
     SEQUENCE
                28 AA; 3281 MW; E89F7526254B1E0E CRC64;
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 4.8e+03;
             3: Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0:
                                                                      Gaps
           10 NKG 12
Qу
              Db
           26 NKG 28
RESULT 10
PA2C PSEPO
ID
     PA2C PSEPO
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P20260;
DT
     01-FEB-1991 (Rel. 17, Created)
     01-FEB-1991 (Rel. 17, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Phospholipase A2 (EC 3.1.1.4) (Pseudexin C chain) (Phosphatidylcholine
DE
DE
     2-acylhydrolase) (Fragment).
OS
     Pseudechis porphyriacus (Red-bellied black snake).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
OC
     Elapidae; Acanthophiinae; Pseudechis.
OC
     NCBI TaxID=8671;
OX
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Venom;
     MEDLINE=89388835; PubMed=2675391;
RX
     Schmidt J.J., Middlebrook J.L.;
RA
     "Purification, sequencing and characterization of pseudexin
RT
     phospholipases A2 from Pseudechis porphyriacus (Australian
RT
RT
     red-bellied black snake).";
```

```
RL
     Toxicon 27:805-818(1989).
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
         acyl groups in 3-sn-phosphoglycerides.
CC
CC
     -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
        acylqlycerophosphocholine + a fatty acid anion.
CC
CC
     -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP I
CC
CC
         SUBFAMILY.
DR
     PIR; C32416; C32416.
     HSSP; P00592; 2PHI.
DR
     InterPro; IPR001211; PhospholipaseA2.
DR
DR
     Pfam; PF00068; phoslip; 1.
DR
     ProDom; PD000303; PhospholipaseA2; 1.
     PROSITE; PS00119; PA2_ASP; PARTIAL.
DR
DR
     PROSITE; PS00118; PA2 HIS; PARTIAL.
KW
     Hydrolase; Lipid degradation; Calcium; Multigene family.
FT
     NON TER
                  28
                         28
SQ
     SEQUENCE
                28 AA; 3210 MW; 5089A7E85CAAE0D5 CRC64;
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
           3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
            5 IQL 7
Qу
             3 IQL 5
Db
RESULT 11
SCX2 BUTSI
ID
     SCX2 BUTSI
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P15230;
DT
     01-APR-1990 (Rel. 14, Created)
     01-APR-1990 (Rel. 14, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DΕ
     Peptide II.
OS
     Buthus sindicus (Scorpion).
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Scorpiones;
OC
OC
     Buthoidea; Buthidae; Mesobuthus.
     NCBI TaxID=42519;
OX
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Venom;
     MEDLINE=90060332; PubMed=2583272;
RA
     Fazal A., Beg O.U., Shafqat J., Zaidi Z.H., Joernvall H.;
     "Characterization of two different peptides from the venom of the
RT
     scorpion Buthus sindicus.";
RT
     FEBS Lett. 257:260-262(1989).
RL
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
DR
     PIR; S06668; S06668.
DR
     HSSP; Q9NJP7; 1DU9.
SO
     SEOUENCE
               28 AA; 2968 MW; 2EA9AD78BD39A3B8 CRC64;
  Query Match
                          8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
```

```
3; Conservative 0; Mismatches
                                                                             0;
 Matches
                                                   0; Indels
                                                                 0; Gaps
           11 KGK 13
QУ
           11 KGK 13
Db
RESULT 12
SLP1 LEIQH
     SLP1 LEIQH
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P80669;
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Leiuropeptide I.
     Leiurus quinquestriatus hebraeus (Yellow scorpion).
OS
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Scorpiones;
OC
     Buthoidea; Buthidae; Leiurus.
OC
     NCBI TaxID=6884;
OX
RN
     [1]
     SEQUENCE, AND STRUCTURE BY NMR.
RP
RC
     TISSUE=Venom;
RX
     MEDLINE=97411504; PubMed=9266482;
     Buisine E., Wieruszeski J.-M., Lippens G., Wouters D., Tartar A.,
RA
     Sautiere P.;
RA
     "Characterization of a new family of toxin-like peptides from the
RT
RT
     venom of the scorpion Leiurus quinquestriatus hebraeus. 1H-NMR
     structure of leiuropeptide II.";
RT
     J. Pept. Res. 49:545-555(1997).
RL
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
     -!- SIMILARITY: BELONGS TO THE SCORPION LEIUROTOXIN FAMILY.
DR
     HSSP; Q9NJP7; 1DU9.
KW
     Toxin.
FT
     DISULFID
                   3
                         19
FT
     DISULFID
                  6
                         24
FT
     DISULFID
                  10
                         26
                28 AA; 2954 MW; 5F72AD78BD39BE1B CRC64;
SQ
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                             0;
  Matches
Qу
           11 KGK 13
              111
Db
           11 KGK 13
RESULT 13
VIP ALLMI
     VIP ALLMI
                    STANDARD;
                                   PRT;
                                           28 AA.
ID
     P48142; P01285;
AC
DT
     21-JUL-1986 (Rel. 01, Created)
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DE
GN
     VIP.
```

```
Alligator mississippiensis (American alligator).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Archosauria; Crocodylidae; Alligatorinae; Alligator.
OX
     NCBI TaxID=8496;
RN
     [1]
RP
     SEOUENCE.
     TISSUE=Stomach;
RC
RX
     MEDLINE=93324451; PubMed=8101369;
RA
     Wang Y., Conlon J.M.;
     "Neuroendocrine peptides (NPY, GRP, VIP, somatostatin) from the brain
RT
RT
     and stomach of the alligator.";
RL
     Peptides 14:573-579(1993).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
KW
FT
     MOD RES
               28
                       28
                                 AMIDATION.
              28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
SO
     SEOUENCE
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
           15 LNS 17
Qу
              Db
           23 LNS 25
RESULT 14
VIP RANRI
ID
     VIP RANRI
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P81016;
DT
     01-NOV-1997 (Rel. 35, Created)
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     01-NOV-1997 (Rel. 35, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DE
     Rana ridibunda (Laughing frog) (Marsh frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OX
     NCBI TaxID=8406;
RN
     [1]
RP
     SEQUENCE.
     MEDLINE=95309202; PubMed=7540547;
RX
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RT
RL
     Endocrinology 136:3079-3086(1995).
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
```

```
CC
         AND GALL BLADDER.
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
     PRINTS; PR00275; GLUCAGON.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
ΚW
FT
     MOD RES
                 28
                         28
                                  AMIDATION.
     SEQUENCE
                28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
SQ
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
 Best Local Similarity 100.0%; Pred. No. 4.8e+03;
            3; Conservative 0; Mismatches
                                                  0; Indels
                                                                       Gaps
                                                                               0;
 Matches
                                                                   0:
           15 LNS 17
Qу
              | | |
Db
           23 LNS 25
RESULT 15
VIP SHEEP
     VIP SHEEP
                                    PRT;
                                            28 AA.
ID
                    STANDARD;
AC
     P04565;
     13-AUG-1987 (Rel. 05, Created)
13-AUG-1987 (Rel. 05, Last sequence update)
DT
DT
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DE
     Vasoactive intestinal peptide (VIP).
GN
OS
     Ovis aries (Sheep),
OS
     Capra hircus (Goat), and
OS
     Canis familiaris (Dog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
OC
     Bovidae; Caprinae; Ovis.
     NCBI TaxID=9940, 9925, 9615;
OX
RN
     [1]
RP
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Brain;
RX
     MEDLINE=91045331; PubMed=2235680;
RA
     Gafvelin G.;
RT
     "Isolation and primary structure of VIP from sheep brain.";
RL
     Peptides 11:703-706(1990).
RN
     [2]
RP
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Small intestine;
RX
     MEDLINE=91239834; PubMed=2034821;
RA
     Bounjoua Y., Vandermeers A., Robberecht P., Vandermeers-Piret M.C.,
RA
     Christophe J.;
RT
     "Purification and amino acid sequence of vasoactive intestinal
RT
     peptide, peptide histidine isoleucinamide and secretin from the ovine
RT
     small intestine.";
RL
     Regul. Pept. 32:169-179(1991).
RN
     [3]
RΡ
     SEQUENCE.
     SPECIES=C.hircus, and C.familiaris;
RC
RX
     MEDLINE=86313167; PubMed=3748846;
     Eng J., Du B.-H., Raufman J.-P., Yalow R.S.;
RA
```

```
"Purification and amino acid sequences of dog, goat and guinea pig
RT
RT
     Peptides 7 Suppl. 1:17-20(1986).
RL
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
     PIR; A60304; A60304.
     PIR; B60072; VRSH.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
KW
                                  AMIDATION.
FT
                  28
                         28
     MOD RES
                28 AA; 3327 MW; EF313FB573FF6F3F CRC64;
     SEQUENCE
SQ
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
                         100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
                                0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
           3; Conservative
  Matches
           15 LNS 17
QУ
              111
Db
           23 LNS 25
RESULT 16
CXOC CONMA
ID
     CXOC CONMA
                    STANDARD;
                                   PRT;
                                            29 AA.
AC
     P37300;
DT
     01-OCT-1994 (Rel. 30, Created)
DT
     01-OCT-1994 (Rel. 30, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Omega-conotoxin MVIIc precursor (SNX-230) (Fragment).
     Conus magus (Magus cone).
OS
OC
     Eukaryota; Metazoa; Mollusca; Gastropoda; Orthogastropoda;
OC
     Apogastropoda; Caenogastropoda; Sorbeoconcha; Hypsogastropoda;
     Neogastropoda; Conoidea; Conidae; Conus.
OC
OX
     NCBI TaxID=6492;
RN
     [1]
RP
     SEQUENCE FROM N.A., AND SYNTHESIS.
     MEDLINE=92337922; PubMed=1352986;
RX
     Hillyard D.R., Monje V.D., Mintz I.M., Bean B.P., Nadasdi L.,
RA
     Ramachandran J., Miljanich G.P., Azimi-Zoonooz A., McIntosh J.M.,
RA
     Cruz L.J., Imperial J.S., Olivera B.M.;
RΑ
     "A new Conus peptide ligand for mammalian presynaptic Ca2+ channels.";
RT
RL
     Neuron 9:69-77(1992).
RN
     [2]
RP
     STRUCTURE BY NMR.
RX
     MEDLINE=95248539; PubMed=7731037;
     Farr-Jones S., Miljanich G.P., Nadasdi L., Ramachandran J.,
RA
RA
     Basus V.J.;
     "Solution structure of omega-conotoxin MVIIC, a high affinity ligand
RT
     of P-type calcium channels, using 1H NMR spectroscopy and complete
RT
RT
     relaxation matrix analysis.";
```

```
RL
    J. Mol. Biol. 248:106-124(1995).
RN
RP
    STRUCTURE BY NMR.
RX
    MEDLINE=99303703; PubMed=10373375;
    Nielsen K.J., Adams D., Thomas L., Bond T., Alewood P.F., Craik D.J.,
RA
RA
    Lewis R.J.;
RT
    "Structure-activity relationships of omega-conotoxins MVIIA, MVIIC and
RT
    14 loop splice hybrids at N and P/Q-type calcium channels.";
    J. Mol. Biol. 289:1405-1421(1999).
RL
RN
    [4]
RP
    MUTAGENESIS OF TYR-15.
    MEDLINE=95408251; PubMed=7677735;
    Kim J.I., Takahashi M., Martin-Moutot N., Seagar M.J., Ohtake A.,
RA
RA
    Sato K.;
    "Tyr13 is essential for the binding of omega-conotoxin MVIIC to the
RT
RT
    P/Q-type calcium channel.";
RL
    Biochem. Biophys. Res. Commun. 214:305-309(1995).
CC
    -!- FUNCTION: Omega-conotoxins act at presynaptic membranes, they bind
CC
        and block voltage-sensitive calcium channels (VSCC). This toxin
CC
        blocks N-type calcium channels as well as types of high-threshold
CC
        voltage-gated calcium channels resistant to both dihydropyridines
CC
        and omega-conotoxin GVIA.
CC
    -!- SUBCELLULAR LOCATION: Secreted.
CC
    -!- TISSUE SPECIFICITY: Expressed by the venom duct.
CC
    -!- SIMILARITY: BELONGS TO THE O-SUPERFAMILY OF CONOTOXINS. OMEGA-TYPE
CC
       FAMILY.
CC
    _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
    modified and this statement is not removed. Usage by and for commercial
CC
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    _____
DR
    EMBL; S40826; AAB22674.1; -.
DR
    PIR; JH0699; JH0699.
DR
    PDB; 10MN; 01-DEC-95.
    PDB; 1CNN; 31-MAY-00.
DR
KW
    Toxin; Neurotoxin; Presynaptic neurotoxin; Ionic channel inhibitor;
KW
    Calcium channel inhibitor; Hydroxylation; Amidation; 3D-structure.
FT
    NON_TER
                1
                       1
FT
    PROPEP
                <1
                       2
FT
    PEPTIDE
                3
                       28
                               OMEGA-CONOTOXIN MVIIC.
FT
    BINDING
                15
                      15
                               ESSENTIAL FOR CALCIUM CHANNEL BINDING.
FT
    DISULFID
                3
FT
    DISULFID
               10
                      22
FT
    DISULFID
               17
                       28
FT
    MOD RES
                9
                      9
                              HYDROXYLATION (PROBABLE).
               28
                     28
FT
    MOD RES
                               AMIDATION (G-29 PROVIDE AMIDE GROUP).
FT
    MUTAGEN
               15
                       15
                              Y->A: HIGH DECREASE IN BINDING.
               6
                       7
FT
    TURN
FT
    STRAND
                9
                       9
FT
    \texttt{HELIX}
               12
                      14
FT
    TURN
               24
                      25
    STRAND
               27
FT
                      27
```

SEQUENCE 29 AA; 3071 MW; AC7A68948474728A CRC64;

SQ

```
8.8%; Score 3; DB 1; Length 29;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                           0;
 Matches
          11 KGK 13
Qу
             4 KGK 6
Db
RESULT 17
GALA ALLMI
                              PRT;
                   STANDARD;
                                          29 AA.
    GALA ALLMI
ID
     P47215;
AC
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
\mathsf{D}\mathbf{T}
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
    Alligator mississippiensis (American alligator).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Crocodylidae; Alligatorinae; Alligator.
OC
OX
     NCBI TaxID=8496;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Stomach;
     MEDLINE=95023390; PubMed=7524049;
RX
     Wang Y., Conlon J.M.;
RA
     "Purification and primary structure of galanin from the alligator
RT
     stomach.";
RT
     Peptides 15:603-606(1994).
RL
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
               29
FT
     MOD RES
                       29
                              AMIDATION.
     SEQUENCE 29 AA; 3216 MW; E02F019B2D3E0529 CRC64;
SQ
                          8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
          3; Conservative 0; Mismatches 0; Indels
                                                                    Gaps
                                                                            0;
  Matches
           15 LNS 17
Qу
             111
Db
           4 LNS 6
RESULT 18
GALA AMICA
                                 PRT;
ID GALA AMICA
                   STANDARD;
                                          29 AA.
AC
    P47214;
```

```
DT
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
OS
     Amia calva (Bowfin).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Amiiformes; Amiidae; Amia.
OC
OX
     NCBI TaxID=7924;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Stomach;
     MEDLINE=95083480; PubMed=7527531;
RX
     Wang Y., Conlon J.M.;
RA
     "Purification and characterization of galanin from the
RT
     phylogenetically ancient fish, the bowfin (Amia calva) and dogfish
RT
RT
     (Scyliorhinus canicula).";
RL
     Peptides 15:981-986(1994).
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
     Hormone; Neuropeptide; Amidation.
KW
FT
                  29
                         29
                                  AMIDATION.
     MOD RES
                29 AA; 3114 MW; 7518719B2D271627 CRC64;
SO
     SEQUENCE
  Ouery Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0;
Qу
           15 LNS 17
              4 LNS 6
Db
RESULT 19
GALA CHICK
     GALA CHICK
                                   PRT;
                                            29 AA.
ID
                    STANDARD;
AC
     P30802;
     01-JUL-1993 (Rel. 26, Created)
     01-JUL-1993 (Rel. 26, Last sequence update)
DТ
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
     GAL OR GALN.
GN
     Gallus gallus (Chicken).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neoqnathae; Galliformes; Phasianidae; Phasianinae;
OC
OC
     Gallus.
OX
     NCBI TaxID=9031;
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Intestine;
```

```
MEDLINE=91348254; PubMed=1715289;
RX
     Norberg A., Sillard R., Carlquist M., Joernvall H., Mutt V.;
RA
     "Chemical detection of natural peptides by specific structures.
RT
RT
     Isolation of chicken galanin by monitoring for its N-terminal
     dipeptide, and determination of the amino acid sequence.";
RT
     FEBS Lett. 288:151-153(1991).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     PIR; S17147; S17147.
DR
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
     PRINTS; PR00273; GALANIN.
DR
     ProDom; PD005962; Galanin; 1.
DR
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
     MOD RES
                  29
FT
                        29
                                 AMIDATION.
SQ
     SEQUENCE
                29 AA; 3212 MW; EB66919B2D271629 CRC64;
                           8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 4.9e+03;
  Matches
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                              0;
           15 LNS 17
QУ
              111
Db
            4 LNS 6
RESULT 20
GALA ONCMY
TΠ
     GALA ONCMY
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P47213;
DT
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OC
     NCBI TaxID=8022;
OX
RN
     SEQUENCE.
RP
RC
     TISSUE=Stomach;
RX
     MEDLINE=95164756; PubMed=7532194;
     Anglade I., Wang Y., Jensen J., Tramu G., Kah O., Conlon J.M.;
RA
RT
     "Characterization of trout galanin and its distribution in trout
RT
     brain and pituitary.";
RL
     J. Comp. Neurol. 350:63-74(1994).
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
```

```
-!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
     PROSITE; PS00861; GALANIN; 1.
DR
     Hormone; Neuropeptide; Amidation.
KW
FT
     MOD RES
              29
                        29
                                 AMIDATION.
SO
     SEOUENCE
                29 AA; 3044 MW; 73C37190403FA349 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
 Best Local Similarity
                          100.0%; Pred. No. 4.9e+03;
            3; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
           15 LNS 17
Qу
              Db
            4 LNS 6
RESULT 21
GALA RANRI
ID
     GALA RANRI
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P47216;
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
OS
     Rana ridibunda (Laughing frog) (Marsh frog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OX
     NCBI TaxID=8406;
RN
     [1]
     SEQUENCE.
RP
     MEDLINE=95309202; PubMed=7540547;
RX
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
RT
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RL
     Endocrinology 136:3079-3086(1995).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                  AMIDATION.
                29 AA; 3162 MW; F718719B2D3FB529 CRC64;
SQ
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
  Matches
             3; Conservative 0; Mismatches 0; Indels
           15 LNS 17
Qу
```

 $\parallel \parallel \parallel$

```
RESULT 22
GALA SHEEP
     GALA SHEEP
                    STANDARD;
                                   PRT;
                                           29 AA.
ID
AC
     P31234;
     01-JUL-1993 (Rel. 26, Created)
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     GAL OR GALN OR GLNN.
GN
     Ovis aries (Sheep).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
OC
     Bovidae; Caprinae; Ovis.
     NCBI TaxID=9940;
OX
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Brain;
     MEDLINE=92158824; PubMed=1724081;
RX
     Sillard R., Langel U., Joernvall H.;
RA
     "Isolation and characterization of galanin from sheep brain.";
RT
     Peptides 12:855-859(1991).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     PRINTS; PR00273; GALANIN.
DR
     ProDom; PD005962; Galanin; 1.
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                 AMIDATION.
                29 AA; 3185 MW; F718719B2D3FB089 CRC64;
SO
     SEQUENCE
                           8.8%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.9e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
           15 LNS 17
Qу
              4 LNS 6
RESULT 23
GLUC CHIBR
     GLUC CHIBR
                                   PRT;
ID
                    STANDARD;
                                           29 AA.
     P31297;
AC
DT
     01-JUL-1993 (Rel. 26, Created)
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Glucagon.
GN
     GCG.
```

```
OS
     Chinchilla brevicaudata (Chinchilla).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Chinchillidae;
OC
OC
     Chinchilla.
     NCBI TaxID=10152;
OX
RN
     [1]
RΡ
     SEQUENCE.
RX
     MEDLINE=91045327; PubMed=2235678;
RA
     Eng J., Kleinman W.A., Chu L.S.;
RT
     "Purification of peptide hormones from chinchilla pancreas by
RT
     chemical assay.";
RL
     Peptides 11:683-685(1990).
CC
     -!- FUNCTION: PROMOTES HYDROLYSIS OF GLYCOGEN AND LIPIDS, AND RAISES
CC
         THE BLOOD SUGAR LEVEL.
CC
     -!- INDUCTION: PRODUCED IN THE A CELLS OF THE ISLETS OF LANGERHANS
CC
         IN RESPONSE TO A DROP IN BLOOD SUGAR CONCENTRATION.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     PIR; A60413; GCCB.
DR
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
KW
     Glucagon family; Hormone.
SQ
     SEQUENCE 29 AA; 3478 MW; 19ECF4DABB752B27 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                                 0: Gaps
                                                                              0:
           13 KHL 15
Qу
              Db
           12 KHL 14
RESULT 24
IPYR DESVH
     IPYR DESVH
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P19371;
     01-NOV-1990 (Rel. 16, Created)
DT
     01-NOV-1990 (Rel. 16, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-
DE
     hydrolase) (PPase) (Fragment).
OS
     Desulfovibrio vulgaris (strain Hildenborough).
OC
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfovibrionales;
     Desulfovibrionaceae; Desulfovibrio.
OX
     NCBI_TaxID=882;
RN
     [1]
RΡ
     SEQUENCE.
RX
     MEDLINE=90365722; PubMed=2168174;
RA
     Liu M.-Y., le Gall J.;
RT
     "Purification and characterization of two proteins with inorganic
RT
     pyrophosphatase activity from Desulfovibrio vulgaris: rubrerythrin
RT
     and a new, highly active, enzyme.";
\mathtt{RL}
     Biochem. Biophys. Res. Commun. 171:313-318(1990).
```

```
ACTIVATION OF SULFATE BY SULFATE REDUCING BACTERIA. THIS IS A HIGH
CC
CC
        ACTIVITY PYROPHOSPHATASE.
     -!- CATALYTIC ACTIVITY: Diphosphate + H(2)0 = 2 phosphate.
CC
     -!- SUBCELLULAR LOCATION: Periplasmic (Potential).
CC
     PIR; A35687; A35687.
DR
    HAMAP; MF_00209; -; 1.
DR
     InterPro; IPR001596; Pyrophosphatase.
DR
DR
     PROSITE; PS00387; PPASE; PARTIAL.
    Hydrolase; Periplasmic.
KW
FT
    NON TER
                  29
                29 AA; 3201 MW; 3FC5792360F2227B CRC64;
SO
     SEQUENCE
                           8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
            3; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            3 SEI 5
Qу
              111
Db
           15 SEI 17
RESULT 25
NUO1 SOLTU
ID
     NUO1 SOLTU
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P80267;
     01-FEB-1994 (Rel. 28, Created)
DT
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     NADH-ubiquinone oxidoreductase 14 kDa subunit (EC 1.6.5.3)
     (EC 1.6.99.3) (Complex I-14KD) (CI-14KD) (Fragment).
DE
OS
     Solanum tuberosum (Potato).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OC
OX
     NCBI TaxID=4113;
RN
     [1]
RP
     SEOUENCE.
RC
     STRAIN=cv. Bintje; TISSUE=Tuber;
     MEDLINE=94124587; PubMed=8294484;
RX
     Herz U., Schroeder W., Liddell A., Leaver C.J., Brennicke A.,
RA
RA
     Grohmann L.;
RT
     "Purification of the NADH: ubiquinone oxidoreductase (complex I) of
RT
     the respiratory chain from the inner mitochondrial membrane of
RT
     Solanum tuberosum.";
RL
     J. Biol. Chem. 269:2263-2269(1994).
CC
     -!- FUNCTION: TRANSFER OF ELECTRONS FROM NADH TO THE RESPIRATORY
CC
         CHAIN. THE IMMEDIATE ELECTRON ACCEPTOR FOR THE ENZYME IS BELIEVED
CC
         TO BE UBIQUINONE.
CC
     -!- CATALYTIC ACTIVITY: NADH + ubiquinone = NAD(+) + ubiquinol.
CC
     -!- CATALYTIC ACTIVITY: NADH + acceptor = NAD(+) + reduced acceptor.
CC
     -!- SUBUNIT: COMPLEX I IS COMPOSED OF ABOUT 30 DIFFERENT SUBUNITS.
     -!- SUBCELLULAR LOCATION: MATRIX SIDE OF THE MITOCHONDRIAL INNER
CC
CC
         MEMBRANE.
DR
     PIR; I49732; I49732.
KW
     Oxidoreductase; NAD; Ubiquinone; Mitochondrion.
FT
    NON TER
                         29
                29
```

-!- FUNCTION: INORGANIC PYROPHOSPHATASE IS AN ESSENTIAL ENZYME FOR THE

CC

```
SQ
    SEQUENCE 29 AA; 3269 MW; E2B4DFB558D423D4 CRC64;
                          8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                            0;
          25 RKK 27
Qу
             Db
           2 RKK 4
RESULT 26
PCG4 PACGO
ID
     PCG4 PACGO
                   STANDARD;
                              PRT;
                                          29 AA.
AC
     P82417;
DT
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DÈ
     Ponericin G4.
OS
    Pachycondyla goeldii (Ponerine ant).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
    Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
    NCBI TaxID=118888;
RN
     [1]
RP
     SEQUENCE, AND FUNCTION.
RC
    TISSUE=Venom;
    MEDLINE=21264562; PubMed=11279030;
RX
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: HAS ACTIVITY AGAINST SOME GRAM-POSITIVE BACTERIA
CC
        AND S.CEREVISIAE. HAS A NON-HEMOLYTIC ACTIVITY.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3163.87; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
     SEQUENCE 29 AA; 3165 MW; 7037D0B855072AF8 CRC64;
SQ
  Query Match
                          8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
  Matches
           3; Conservative 0; Mismatches 0;
                                                     Indels
                                                                0;
                                                                    Gaps
                                                                            0;
           22 EWL 24
Qу
              11 EWL 13
Db
RESULT 27
RS7 METTE
    RS7 METTE
ID
                   STANDARD;
                                  PRT;
                                          29 AA.
AC
     093639;
     30-MAY-2000 (Rel. 39, Created)
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     30S ribosomal protein S7P (Fragment).
DE
```

```
GN
     RPS7P OR S7.
OS
     Methanosarcina thermophila.
     Archaea; Euryarchaeota; Euryarchaeota orders incertae sedis;
OC
OC
     Methanosarcinales; Methanosarcinaceae; Methanosarcina.
OX
     NCBI TaxID=2210;
RN
     SEQUENCE FROM N.A.
RР
RC
     STRAIN=DSM 1825 / TM-1;
     MEDLINE=99059471; PubMed=9845338;
RX
RA
     Thomas T., Cavicchioli R.;
RT
     "Archaeal cold-adapted proteins: structural and evolutionary analysis
RT
     of the elongation factor 2 proteins from psychrophilic, mesophilic and
RT
     thermophilic methanogens.";
     FEBS Lett. 439:281-287(1998).
RL
CC
     -!- FUNCTION: One of the primary rRNA binding proteins, it binds
CC
         directly to 16S rRNA where it nucleates assembly of the head
CC
         domain of the 30S subunit. Is located at the subunit interface
CC
         close to the decoding center (By similarity).
CC
     -!- SUBUNIT: Part of the 30S ribosomal subunit.
CC
     -!- SIMILARITY: BELONGS TO THE S7P FAMILY OF RIBOSOMAL PROTEINS.
CC
     CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     EMBL; AF026165; AAC79199.1; -.
DR
DR
     PIR; T44245; T44245.
DR
     HAMAP; MF 00480; -; 1.
DR
     InterPro; IPR000235; Ribosomal S7.
DR
     PROSITE; PS00052; RIBOSOMAL S7; PARTIAL.
     Ribosomal protein; RNA-binding; rRNA-binding.
KW
FT
     NON TER
              29 AA; 3217 MW; 1602B8A2E6C50C2B CRC64;
SQ
     SEQUENCE
  Query Match
                         8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
          19 ERV 21
Qу
              111
Db
          22 ERV 24
RESULT 28
SODC OLEEU
ID
     SODC OLEEU
                   STANDARD;
                                  PRT;
                                         29 AA.
AC
     P80740;
     01-NOV-1997 (Rel. 35, Created)
DT
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
     Superoxide dismutase [Cu-Zn] (EC 1.15.1.1) (Allergen Ole e 5) (Ole e
DE
     V) (Fragment).
OS
    Olea europaea (Common olive).
```

```
Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots:
OC
     Asteridae; lamiids; Lamiales; Oleaceae; Olea.
OX
     NCBI TaxID=4146;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Pollen;
ВX
     MEDLINE=98160390; PubMed=9500754;
RA
     Boluda L., Alonso C., Fernandez-Caldas E.;
RT
     "Purification, characterization, and partial sequencing of two new
RT
     allergens of Olea europaea.";
RL
     J. Allergy Clin. Immunol. 101:210-216(1998).
CC
     -!- FUNCTION: Destroys radicals which are normally produced within the
CC
         cells and which are toxic to biological systems (By similarity).
CC
     -!- CATALYTIC ACTIVITY: 2 superoxide + 2 H(+) = O(2) + H(2)O(2).
CC
     -!- COFACTOR: Binds 1 copper ion and 1 zinc ion per subunit (By
CC
         similarity).
CC
     -!- SIMILARITY: BELONGS TO THE CU-ZN SUPEROXIDE DISMUTASE FAMILY.
DR
     InterPro; IPR001424; SOD CU ZN.
DR
     Pfam; PF00080; sodcu; 1.
DR
     PROSITE; PS00087; SOD CU ZN 1; PARTIAL.
DR
     PROSITE; PS00332; SOD CU ZN 2; PARTIAL.
KW
     Antioxidant; Oxidoreductase; Metal-binding; Copper; Zinc; Allergen.
FT
     NON TER
                  29
                         29
SQ
     SEQUENCE
                29 AA; 2973 MW; 836C7A193EDAD71E CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
             3; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           15 LNS 17
Qу
Db
            7 LNS 9
RESULT 29
TL16 SPIOL
     TL16 SPIOL
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P81834;
DT
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DE
     Thylakoid lumenal 16.5 kDa protein (P16.5) (Fragment).
OS
     Spinacia oleracea (Spinach).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
OC
     Caryophyllidae; Caryophyllales; Chenopodiaceae; Spinacia.
     NCBI TaxID=3562;
OX
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Leaf;
RX
     MEDLINE=98175931; PubMed=9506969;
RA
     Kieselbach T., Hagman A., Andersson B., Schroeder W.P.;
RT
     "The thylakoid lumen of chloroplasts. Isolation and
RT
     characterization.";
RL
     J. Biol. Chem. 273:6710-6716(1998).
CC
     -!- SUBCELLULAR LOCATION: Chloroplast; within the thylakoid lumen.
```

OC

```
KW
     Chloroplast; Thylakoid.
FT
     NON TER
                  29
                         2.9
     SEOUENCE
SO
                29 AA; 3464 MW; 58B785764E2623E3 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
           25 RKK 27
Qу
              Db
           19 RKK 21
RESULT 30
CY35 DESAC
ID
     CY35 DESAC
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P81079;
     01-NOV-1997 (Rel. 35, Created)
DT
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
     Cytochrome c3, 50 kDa (Fragment).
DE
OS
     Desulfuromonas acetoxidans (Chloropseudomonas ethylica).
OC
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfuromonadales;
OC
     Desulfuromonadaceae; Desulfuromonas.
OX
     NCBI TaxID=891;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=97419123; PubMed=9271490;
     Bruschi M., Woudstra M., Guigliarelli B., Asso M., Lojou E.,
RA
RA
     Petillot Y., Abergel C.;
     "Biochemical and spectroscopic characterization of two new
RT
RT
     cytochromes isolated from Desulfuromonas acetoxidans.";
RL
     Biochemistry 36:10601-10608(1997).
     -!- FUNCTION: PARTICIPATES IN SULFATE RESPIRATION COUPLED WITH
CC
CC
         PHOSPHORYLATION BY TRANSFERRING ELECTRONS FROM THE ENZYME
CC
         DEHYDROGENASE TO FERREDOXIN. THE REDOX POTENTIALS OF THIS
CC
         CYTOCHROME ARE -140 MV, -210 MV AND -240 MV.
CC
     -!- SUBUNIT: Monomer.
CC
     -!- SUBCELLULAR LOCATION: Periplasmic.
CC
     -!- PTM: BINDS 4 HEMES.
CC
     -!- SIMILARITY: TO OTHER C3-TYPE CYTOCHROMES.
DR
     InterPro; IPR000345; CytC heme bind.
DR
     PROSITE; PS00190; CYTOCHROME_C; PARTIAL.
KW
     Electron transport; Sulfate respiration; Heme; Periplasmic.
FT
     NON TER
                  30
                         30
SQ
     SEQUENCE
                30 AA; 3018 MW; B0D52603DD5069B8 CRC64;
 Query Match
                           8.8%; Score 3; DB 1; Length 30;
 Best Local Similarity 100.0%; Pred. No. 5.1e+03;
 Matches
            3; Conservative
                              0; Mismatches
                                                0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           11 KGK 13
```

15 KGK 17

Db

```
DMS3 PHYSA
     DMS3 PHYSA
ID
                    STANDARD;
                                    PRT;
                                            30 AA.
AC
     P80279:
DT
     01-FEB-1994 (Rel. 28, Created)
DТ
     01-FEB-1994 (Rel. 28, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Dermaseptin 3 (DS III).
     Phyllomedusa sauvagei (Sauvage's leaf frog).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Hylidae;
OC
     Phyllomedusinae; Phyllomedusa.
OX
     NCBI TaxID=8395;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Skin secretion;
RX
     MEDLINE=94139686; PubMed=8306981;
RA
     Mor A., Nicolas P.;
RT
     "Isolation and structure of novel defensive peptides from frog skin.";
RL
     Eur. J. Biochem. 219:145-154(1994).
CC
     -!- FUNCTION: POSSESSES A POTENT ANTIMICROBIAL ACTIVITY AGAINST
CC
         BACTERIA FUNGI AND PROTOZOA. PROBABLY ACTS BY DISTURBING MEMBRANE
CC
         FUNCTIONS WITH ITS AMPHIPATIC STRUCTURE.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Skin.
     -!- SIMILARITY: Belongs to the frog skin active peptide (FSAP) family.
CC
CC
         Dermaseptin subfamily.
KW
     Amphibian defense peptide; Antibiotic; Fungicide; Multigene family.
SO
     SEQUENCE 30 AA; 3024 MW; FD5F190C3DCBB0D7 CRC64;
  Ouery Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
  Matches
            3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKL 28
              | | | |
Dh
           23 KKL 25
RESULT 32
FTN BACFR
     FTN BACFR
ID
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P28733;
DT
     01-DEC-1992 (Rel. 24, Created)
     01-DEC-1992 (Rel. 24, Last sequence update)
DТ
DΨ
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Ferritin like protein (Fragment).
OS
     Bacteroides fragilis.
     Bacteria; Bacteroidetes; Bacteroides (class); Bacteroidales;
OC
OC
     Bacteroidaceae; Bacteroides.
OX
     NCBI_TaxID=817;
RN
     [1]
RP
     SEQUENCE.
RC
     STRAIN=20656-2-1;
RX
     MEDLINE=92406001; PubMed=1526453;
     Rocha E.R., Andrews S.C., Keen J.N., Brock J.H.;
RA
RT
     "Isolation of a ferritin from Bacteroides fragilis.";
RL
     FEMS Microbiol. Lett. 74:207-212(1992).
```

```
-!- FUNCTION: MAY ALLEVIATE IRON TOXICITY IN THE PRESENCE OF
CC
CC
     -!- COFACTOR: BINDS ABOUT THREE IRON ATOMS PER MOLECULE.
CC
     -!- SUBUNIT: FORMS OLIGOMERS OF ABOUT 400 kDa (THE MONOMER IS ABOUT
CC
        17 kDa).
CC
     -!- SIMILARITY: BELONGS TO THE FERRITIN FAMILY. PROKARYOTIC SUBFAMILY.
CC
     -!- SIMILARITY: Contains 1 ferritin-like diiron domain.
CC
     InterPro; IPR001519; Ferritin.
DR
     Pfam; PF00210; ferritin; 1.
DR
     PROSITE; PS50905; FERRITIN LIKE; 1.
DR
     Iron storage; Iron; Metal-binding.
KW
                        >30
                                  FERRITIN-LIKE DIIRON.
FT
     DOMAIN
                   1
                                  IRON (BY SIMILARITY).
                  17
                         17
FT
    METAL
FT
    NON TER
                  30
                         30
                30 AA; 3529 MW; C70505B5696EFC4F CRC64;
SO
     SEQUENCE
                           8.8%; Score 3; DB 1; Length 30;
 Query Match
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
                                0; Mismatches 0; Indels
                                                                0; Gaps
            3; Conservative
  Matches
           27 KLO 29
Qу
              111
            5 KLQ 7
Db
RESULT 33
GLUM ANGAN
ID
     GLUM ANGAN
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P41521;
     01-NOV-1995 (Rel. 32, Created)
DT
     01-NOV-1995 (Rel. 32, Last sequence update)
DT
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Glucagon-like peptide (GLP).
     Anguilla anguilla (European freshwater eel), and
OS
OS
     Anquilla rostrata (American eel).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Anguilliformes; Anguillidae;
OC
     Anguilla.
OX
     NCBI TaxID=7936, 7938;
RN
     [1]
RΡ
     SEQUENCE.
RC
     SPECIES=A.anguilla, and A.rostrata;
RC
     TISSUE=Pancreas;
RX
     MEDLINE=91340068; PubMed=1874385;
RA
     Conlon J.M., Andrews P.C., Thim L., Moon T.W.;
     "The primary structure of glucagon-like peptide but not insulin has
RT
     been conserved between the American eel, Anguilla rostrata and the
RT
RT
     European eel, Anquilla anquilla.";
     Gen. Comp. Endocrinol. 82:23-32(1991).
RL
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
     PIR; B61125; B61125.
DR
DR
     PIR; C61125; C61125.
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     SMART; SM00070; GLUCA; 1.
DR
DR
     PROSITE; PS00260; GLUCAGON; 1.
```

```
KW
    Glucagon family; Amidation.
FT
    MOD RES
                 30
                        30
                                 AMIDATION.
               30 AA; 3376 MW; 592DA5EABD6E49D0 CRC64;
SO
    SEQUENCE
                          8.8%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                    Gaps
                                                                             0;
          28 LQD 30
Qу
              111
           14 LQD 16
Db
RESULT 34
OTCC AERPU
                                   PRT;
ID
     OTCC AERPU
                    STANDARD;
                                           30 AA.
AC
     P11726;
     01-OCT-1989 (Rel. 12, Created)
DT
DT
     01-OCT-1989 (Rel. 12, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Ornithine carbamoyltransferase, catabolic (EC 2.1.3.3) (OTCase)
DE
DE
     (Fragment).
OS
    Aeromonas punctata (Aeromonas caviae).
     Bacteria; Proteobacteria; Gammaproteobacteria; Aeromonadales;
OC
OC
    Aeromonadaceae; Aeromonas.
OX
    NCBI TaxID=648;
RN
     [1]
RP
     SEOUENCE.
RC
     STRAIN=NCIB 9232;
     MEDLINE=85104799; PubMed=3968036;
RX
RA
     Falmagne P., Portetelle D., Stalon V.;
RT
     "Immunological and structural relatedness of catabolic ornithine
RT
     carbamoyltransferases and the anabolic enzymes of enterobacteria.";
RL
     J. Bacteriol. 161:714-719(1985).
CC
     -!- CATALYTIC ACTIVITY: Carbamoyl phosphate + L-ornithine = phosphate
CC
         + L-citrulline.
     -!- PATHWAY: Arginine degradation via arginine deiminase; second step.
CC
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: BELONGS TO THE ATCASES/OTCASES FAMILY.
DR
     InterPro; IPR006130; Asp/Orn COtranf.
DR
     InterPro; IPR006132; OTCace P.
DR
     Pfam; PF02729; OTCace_N; 1.
DR
     PROSITE; PS00097; CARBAMOYLTRANSFERASE; PARTIAL.
KW
     Transferase; Arginine metabolism.
FT
     NON TER
                  30
                        30
               30 AA; 3654 MW; 673CB989FE72F9C1 CRC64;
SO
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
             3; Conservative
                              0; Mismatches
                                                                0; Gaps
                                                                             0;
                                                0;
                                                      Indels
            4 EIQ 6
QУ
              19 EIO 21
```

```
PCG2 PACGO
     PCG2 PACGO
                                   PRT;
                    STANDARD;
                                           30 AA.
AC
     P82415;
DΤ
     16-OCT-2001 (Rel. 40, Created)
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Ponericin G2.
DE
     Pachycondyla goeldii (Ponerine ant).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
     NCBI TaxID=118888;
RN
     [1]
     SEQUENCE, AND FUNCTION.
RP
RC
     TISSUE=Venom;
RX
     MEDLINE=21264562; PubMed=11279030;
RA
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3306.56; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
SO
     SEQUENCE 30 AA; 3308 MW; A12CD4D0BAF40B5D CRC64;
                           8.8%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
  Matches
           3; Conservative 0; Mismatches 0; Indels
Qу
           11 KGK 13
              Db
            8 KGK 10
RESULT 36
TX2 THRPR
     TX2 THRPR
ID
                    STANDARD;
                                   PRT;
                                           30 AA.
     P83476;
AC
DT
     28-FEB-2003 (Rel. 41, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     Toxin ProTx-II.
OS
     Thrixopelma pruriens (Green velvet).
OC
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Mygalomorphae; Theraphosidae; Thrixopelma.
OX
     NCBI_TaxID=213387;
RN
RP
     SEQUENCE, FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, MASS
RP
     SPECTROMETRY, AND DISULFIDE BONDS.
RC
     TISSUE=Venom;
     MEDLINE=22363233; PubMed=12475222;
RX
RA
     Middleton R.E., Warren V.A., Kraus R.L., Hwang J.C., Liu C.J., Dai G.,
RA
     Brochu R.M., Kohler M.G., Gao Y.-D., Garsky V.M., Boqusky M.J.,
```

```
Mehl J.T., Cohen C.J., Smith M.M.;
RΑ
     "Two tarantula peptides inhibit activation of multiple sodium
RT
RT
     channels.";
     Biochemistry 41:14734-14747(2002).
RL
     -!- FUNCTION: Inhibits voltage-gated calcium and sodium channels.
CC
CC
         Shifts the voltage-dependence of channel activation to more
CC
         positive potentials.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=Electrospray.
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=MALDI.
CC
     -!- SIMILARITY: BELONGS TO THE SPIDER POTASSIUM CHANNEL INHIBITORY
CC
         TOXIN FAMILY.
KW
     Toxin; Neurotoxin; Ionic channel inhibitor; Calcium channel inhibitor;
KW
     Sodium channel inhibitor.
FT
     DISULFID
FT
    DISULFID
                   9
                         21
FT
    DISULFID
                  15
                         25
SQ
               30 AA; 3833 MW; 5B8CF4C6338C1B9B CRC64;
    SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 30;
                         100.0%; Pred. No. 5.1e+03;
  Best Local Similarity
  Matches
                               0; Mismatches 0; Indels
           3; Conservative
                                                               0; Gaps
                                                                             0;
Qу
           26 KKL 28
              27 KKL 29
Db
RESULT 37
UP61 UPEIN
TD
    UP61 UPEIN
                    STANDARD;
                                   PRT;
AC
     P82037;
DT
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
    15-SEP-2003 (Rel. 42, Last annotation update)
DE
    Uperin 6.1.
    Uperoleia inundata (Floodplain toadlet).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
    Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
    Myobatrachinae; Uperoleia.
OX
    NCBI_TaxID=104953;
RN
     [1]
RР
    SEQUENCE, AND MASS SPECTROMETRY.
RC
    TISSUE=Skin secretion;
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
RA
    Adams G.W., Severini C.;
RT
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
RL
    Aust. J. Chem. 49:475-484(1996).
     -!- FUNCTION: UNKNOWN.
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
CC
    -!- MASS SPECTROMETRY: MW=3233.85; METHOD=MALDI.
KW
    Amphibian defense peptide.
SO
    SEQUENCE
              30 AA; 3233 MW; 4EE15B9EB110F68E CRC64;
```

```
Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
           26 KKL 28
Qу
              \|\cdot\|
           24 KKL 26
RESULT 38
UP62 UPEIN
     UP62 UPEIN
TD
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P82038;
     30-MAY-2000 (Rel. 39, Created)
DT
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Uperin 6.2.
OS
     Uperoleia inundata (Floodplain toadlet).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
     Myobatrachinae; Uperoleia.
     NCBI TaxID=104953;
OX
RN
RP
     SEQUENCE, AND MASS SPECTROMETRY.
RC
     TISSUE=Skin secretion;
RA
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
     Adams G.W., Severini C.;
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
RL
     Aust. J. Chem. 49:475-484(1996).
CC
     -!- FUNCTION: UNKNOWN.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
     -!- MASS SPECTROMETRY: MW=3261.85; METHOD=MALDI.
CC
KW
     Amphibian defense peptide.
               30 AA; 3261 MW; 4EE15B9EB10841DE CRC64;
SO
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
            3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
                                                                              0;
           26 KKL 28
Qу
              \parallel \parallel \parallel
Db
           24 KKL 26
RESULT 39
VAA2 EQUAR
                                   PRT;
ID
     VAA2 EQUAR
                    STANDARD;
                                           30 AA.
AC
     Q04238;
     01-OCT-1996 (Rel. 34, Created)
DT
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Vacuolar ATP synthase catalytic subunit A, isoform 2 (EC 3.6.3.14)
DE
     (Fragment).
OS
     Equisetum arvense (Field horsetail) (Common horsetail).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
```

```
OC
     Equisetophyta; Sphenopsida; Equisetales; Equisetaceae; Equisetum.
 OX
     NCBI TaxID=3258;
 RN
     [1]
 RP
     SEQUENCE FROM N.A.
     MEDLINE=93138084; PubMed=8422915;
 RX
 RA
     Starke T., Gogarten J.P.;
 RТ
     "A conserved intron in the V-ATPase A subunit genes of plants and
 RT
     algae.";
 RL
     FEBS Lett. 315:252-258(1993).
 CC
     -!- FUNCTION: CATALYTIC SUBUNIT OF THE PERIPHERAL V1 COMPLEX OF
 CC
         VACUOLAR ATPASE. V-ATPASE VACUOLAR ATPASE IS RESPONSIBLE FOR
         ACIDIFYING A VARIETY OF INTRACELLULAR COMPARTMENTS IN EUKARYOTIC
 CC
CC
CC
     -!- CATALYTIC ACTIVITY: ATP + H(2)O + H(+)(In) = ADP + phosphate +
CC
        H(+)(Out).
     -!- SUBUNIT: V-ATPASE IS AN HETEROMULTIMERIC ENZYME COMPOSED OF A
CC
CC
         PERIPHERAL CATALYTIC V1 COMPLEX (MAIN COMPONENTS: SUBUNITS A, B,
CC
         C, D, E, AND F) ATTACHED TO AN INTEGRAL MEMBRANE VO PROTON PORE
CC
         COMPLEX (MAIN COMPONENT: THE PROTEOLIPID PROTEIN).
CC
     -!- MISCELLANEOUS: TWO SEPARATE GENES ENCODE THE CATALYTIC 70 kDa
CC
         V-ATPASE SUBUNIT IN PSILOTUM AND EQUISETUM.
CC
     -!- SIMILARITY: Belongs to the ATPase alpha/beta chains family.
CC
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
CC-
     or send an email to license@isb-sib.ch).
     ______
CC
     EMBL; X56984; CAA40302.1; -.
DR
     PIR; S21815; S21815.
     InterPro; IPR000194; ATPase_a/bcentre.
DR
DR
     PROSITE; PS00152; ATPASE ALPHA BETA; PARTIAL.
     ATP synthesis; Hydrogen ion transport; Hydrolase; ATP-binding;
KW
KW
     Multigene family.
FT
     NON TER
                 1
FT
     NON TER
                 30
                       30
     SEQUENCE 30 AA; 3372 MW; 51CCA4A3DA9E5D84 CRC64;
SO
  Query Match
                         8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          18 MER 20
             111
Db
          23 MER 25
RESULT 40
Y523_BORBU
ID
    Y523 BORBU
                  STANDARD;
                               PRT; 30 AA.
    051473;
AC
DT
    15-DEC-1998 (Rel. 37, Created)
DT
    15-DEC-1998 (Rel. 37, Last sequence update)
DT
    16-OCT-2001 (Rel. 40, Last annotation update)
```

```
Hypothetical protein BB0523.
DΕ
    BB0523.
GN
    Borrelia burgdorferi (Lyme disease spirochete).
OS
    Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
OC
    NCBI TaxID=139;
OX
RN
    [1]
    SEQUENCE FROM N.A.
RP
    STRAIN=ATCC 35210 / B31;
RC
    MEDLINE=98065943; PubMed=9403685;
RX
    Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
RA
    Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
RA
    Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
RA
     Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
RA
    van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
RA
    Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
RA
    Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
RA
     Smith H.O., Venter J.C.;
RA
     "Genomic sequence of a Lyme disease spirochaete, Borrelia
RT
RT
     burgdorferi.";
     Nature 390:580-586(1997).
RL
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     CC
     EMBL; AE001154; AAC66894.1; -.
DR
     PIR; B70165; B70165.
DR
DR
     TIGR; BB0523; -.
     Hypothetical protein; Complete proteome.
KW
     SEQUENCE 30 AA; 3431 MW; DE437B15D2A48AA8 CRC64;
SO
                         8.8%; Score 3; DB 1; Length 30;
  Query Match
                        100.0%; Pred. No. 5.1e+03;
  Best Local Similarity
          3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                       0;
  Matches
          19 ERV 21
Qу
             26 ERV 28
Db
```

Search completed: January 14, 2004, 10:35:33 Job time: 7.61371 secs