Ответы на вопросы билетов коллоквиума

Мангасарян Евгений

Октябрь 2021

1 Вопрос

Ограниченные множества. Верхняя и нижняя грани числовых множеств. Свойства граней.

Определение. Множество X называется ограниченным сверху, если

$$\exists M \in \mathbb{R} \ \forall x \leq M$$

 Πpu этом M называется мажорантой.

Определение. Mножество X называется ограниченным снизу, если

$$\exists m \in \mathbb{R} \ \forall x \leq m$$

 Πpu этом m называется минорантой.

Определение. Множество X называется ограниченным, если оно ограничено u сверху, u снизу.

Определение. Наименьшая из всех мажорант ограниченного сверху множества называется верхней гранью этого множества.

$$(\forall x \in X \ x \le a) \land (\forall a' \le a \ \exists x' \in X \ x' > a') \Rightarrow a = \sup X$$

Определение. Наибольшая из всех минорант ограниченного снизу множества называется нижней гранью этого множества $\inf X$.

$$(\forall x \in X \ x \ge a) \land (\forall a' \ge a \ \exists x' \in X \ x' < a') \Rightarrow a = \inf X$$

Признак того, что число a является верхней [нижней] гранью множества можно еще сформулировать так:

Определение. $a = \sup X$, если

1.
$$\forall x \in X \ x \leq a$$

2.
$$\forall \epsilon > 0 \ \exists x_{\epsilon} \in X \ x_{\epsilon} > a - \epsilon$$

Определение. $a = \inf X$, если

- 1. $\forall x \in X \ x \geq a$
- 2. $\forall \epsilon > 0 \; \exists x_{\epsilon} \in X \; x_{\epsilon} < a + \epsilon$

Свойства (некоторые свойства граней). Приведем полезные свойства граней.

1. Переход к грани в неравенстве.

$$\forall x \in X : x \le a \Rightarrow \sup X \le a$$

$$\forall x \in X : x \ge a \Rightarrow \inf X \ge a$$

2. Монотонность граней.

$$X \subset Y, \exists \sup Y \Rightarrow \sup X \leq \sup Y$$

$$X \subset Y, \exists \inf Y \Rightarrow \inf X \ge \inf Y$$

3. О максимальном и минимальном элементах органиченного множества.

$$x_0 = max(X) \Rightarrow \sup X = x_0$$

$$x_0 = min(X) \Rightarrow \inf X = x_0$$

2 Вопрос

Теорема 1 (о существовании верхней грани). У любого непустого ограниченного сверху множества существует верхняя грань.

Доказательство. Рассмотрим случай, когда $\exists x \in X \ x \geq 0$.

Рассмотрим $\forall x \in X \ [x]. \ \forall x \in X \ x \leq M \Rightarrow \forall x \in X \ [x] \leq M.$ Обозначим наибольшую $[x] \ a_0.$

Рассмотрим $\forall x \in X : [x] = a_0$ и их первые десятичные знаки после запятой. Наибольший элемент обозначим a_1 .

Рассмотрим $x \in X$ такие, что их целая часть равна a_0 , первая цифра после запятой a_1 . Обозначим наибольший второй десятичный знак после запятой среди этих чисел a_2 .

Продолжая, мы определим некоторое число

$$a = a_0, a_1 a_2 \dots a_n \dots$$

Докажем, что $a=\sup X$. Так как $a\geq 0$, то $\forall x\in X: x<0$ a>x. Докажем, что $\forall x\in X: x\geq 0$ $x\leq a$. Пойдем от противного. Пусть некоторый неотрицательный

 $x=x_0, x_1x_2\dots x_n\dots$ множества X не удовлетворяет неравенству $x\leq a$. Тогда x>a, и $\exists k\in\mathbb{N}\ x_0=a_0, x_1=a_1,\dots,x_{k-1}=a_{k-1}, x_k>a_k$. Но последние соотношения противоречат построению числа a. Итак, a—мажоранта.

Докажем, что a — наименьшая мажоранта. Пусть $a' = a'_0, a'_1 a'_2 \dots a'_n \dots$ — про-извольное число, a' < a.

- 1. $a' < 0 \Rightarrow \forall x \in X \ x > a'$.
- 2. a' > 0.

$$a' < a \Rightarrow \exists m \in \mathbb{N} \ a'_0 = a_0, a'_1 = a_1, \dots, a'_{m-1} = a_{m-1}, a'_m < a_m$$

Из построения числа $a: \forall m \in \mathbb{N} \exists x \in X \ x_0 = a_0, x_1 = a_1, \dots, x_m = a_m.$

Следовательно, x > a'.

Таким образом, a — наименьшая мажоранта. Получается, что $a = \sup X$. Аналогично доказывается теорема в том случае, когда $\forall x \in X \ x < 0$.

Теорема 2 (о существовании нижней грани). У любого непустого ограниченного снизу множества существует нижняя грань.

3 Вопрос

Счетные множества и их свойства.

Определение 1. $A \sim B$, если $\exists f : A \to B$ взаимнооднозначное.

Определение 2. Если $A \sim \mathbb{N} \Rightarrow A$ — счетное множество.

Теорема 1. Всякое бесконечное подмножество счетного множества является счетным.

Доказательство. Пусть множество A — счетное, B — его бесконечное подмножество.

 $A = \{a_1, a_2, \dots, a_n, \dots\}$. Последовательно переберем $\forall n \in \mathbb{N}$ a_n . Если очередной элемент принадлежит также подмножеству B, ставим ему в соответствие некоторый номер $k \in \mathbb{N}$. Получим $B = \{b_1, b_2, \dots, b_k, \dots\}$. Значит, множество B — счетно.

Teopema 2. Объединение последовательности счетных множеств является счетным множеством.

Доказательство. Пусть $A_1, A_2, \ldots, A_n, \ldots$ — последовательность счетных множеств.

$$A_1 = \{a_1^1, a_1^2, a_1^3, \dots\}$$

$$A_2 = \{a_2^1, a_2^2, a_2^3, \dots\}$$

$$A_3 = \{a_3^1, a_3^2, a_3^3, \dots\}$$

Пусть $A = \bigcup_{n=1}^{\infty} A_n$. Пронумеруем элементы нового множества следующим образом:

$$a_1 = a_1^1, a_2 = a_2^1, a_3 = a_1^2, a_4 = a_3^1, a_5 = a_2^2, a_6 = a_1^3, \dots$$

Элементы, которые уже были включены в множество A пропускаются. В конечном счете, все элементы множества A будут занумерованы. Значит, A—счетное множество.

4 Вопрос

Теорема о несчетности интервала. Множества мощности континуума.

Теорема 1 (теорема о несчетности интервала). *Множество всех точек интервала* (0,1) *несчетно*.

 \mathcal{L} оказательство. От противного. Пусть множество точек интервала (0,1)—счетное. Представляя каждое число этого интервала в виде бесконечной десятичной дроби, расположим их в виде последовательности

$$a_{1} = 0, a_{1}^{1} a_{1}^{2} \dots a_{1}^{n} \dots,$$

$$a_{2} = 0, a_{2}^{1} a_{2}^{2} \dots a_{2}^{n} \dots,$$

$$a_{n} = 0, a_{n}^{1} a_{n}^{2} \dots a_{n}^{n} \dots,$$

Рассмотрим бесконечную десятичную дробь $b=0,b_1b_2\dots b_n\dots$, где $\forall n\in\mathbb{N}$ $b_n\neq a_n^n,0,9$. Очевидно, что $b\in(0,1)$ и $\forall n\in\mathbb{N}$ $b\neq a_n$. Получено противоречие. Множество точек (0,1) несчетно.

Определение 1. Множество, эквивалентное множеству точек интервала (0,1), называется множеством мощности континуума.

$$A \sim (0,1) \Rightarrow A$$
— множество мощности континуума.

5 Вопрос

Ограниченные последовательности. Достаточное условие ограниченности последовательности.

Определение 1.

$$(x_n) \Leftrightarrow f: \mathbb{N} \to \mathbb{R}$$

Определение 2. Последовательность ограничена сверху \Leftrightarrow

$$\exists M \in \mathbb{R} \ \forall n \in \mathbb{N} \ x_n \leq M.$$

Определение 3. Последовательность ограничена снизу, если \Leftrightarrow

$$\exists m \in \mathbb{R} \ \forall n \in \mathbb{N} \ x_n \ge m.$$

Определение 4. $x_n = O(1) \Leftrightarrow$

$$\exists a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \forall n \in \mathbb{N} \ a \le x_n \le b$$

unu

$$\exists M \in \mathbb{R} \ \forall n \in \mathbb{N} \ |x_n| \leq M$$

Теорема 1 (достаточное условие ограниченности последовательности). *Если* $\exists M \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ |x_n| \leq M, \ mo \ x_n = O(1).$

Доказательство. Пусть $M' = \max\{|x_1|, \dots, |x_{n_0-1}|, M\}$. Тогда $\forall n \in \mathbb{N} |x_n| \le M'$, т.е. $x_n = O(1)$.

6 Вопрос

Определение 1. $x_n = o(1) \Leftrightarrow \forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \geq n_{\epsilon} \ |x_n| \leq \epsilon$

Теорема 1 (об арифметических действиях над бесконечно малыми последовательностями).

$$o(1) \cdot o(1) = o(1) \tag{1}$$

$$o(1) \cdot O(1) = o(1) \tag{2}$$

$$mem$$
 более $o(1) \cdot o(1) = o(1)$ (3)

Доказательство

Докажем равенство (1). $x_n = o(1), y_n = o(1), \epsilon$ — произвольное положительное число. Тогда

$$\exists n'_{\epsilon} \ \forall n \ge n'_{\epsilon} \ |x_n| < \frac{\epsilon}{2}$$
$$\exists n''_{\epsilon} \ \forall n \ge n''_{\epsilon} \ |y_n| < \frac{\epsilon}{2}$$

Следовательно, для $\forall n \geq n_{\epsilon} = \max\{n'_{\epsilon}, n''_{\epsilon}\}$ выполняется условие

$$|x_n + y_n| \le |x_n| + |y_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Значит, $|x_n \pm y_n| = o(1)$

Докажем равенство (2). $x_n = o(1), y_n = O(1), \epsilon$ — произвольное положительное число. Тогда

$$\exists M \in \mathbb{R} \ \forall n \in \mathbb{N} \ |y_n| \le M$$
$$\exists n_{\epsilon} \in \mathbb{N} \ \forall n \ge n_{\epsilon} \ |x_n| < \frac{\epsilon}{M}$$

Следовательно,

$$\forall n \ge n_{\epsilon} |x_n y_n| \le |x_n||y_n| < \frac{\epsilon}{M} M = \epsilon$$

Значит, $x_n y_n = o(1)$. А так как всякая бесконечно малая последовательность является ограниченной, $o(1) \cdot o(1) = o(1)$.

7 Вопрос

Бесконечно большие последовательности, их связь с бесконечно малыми.

Определение 1. (x_n) называется положительно бесконечно большой, если

$$\forall M > 0 \ \exists n_M \in \mathbb{N} \ \forall n \geq n_M \ x_n > M$$

Обозначение: $\lim_{n\to\infty} x_n = +\infty$.

Определение 2. (x_n) называется отрицательно бесконечно большой, если

$$\forall M > 0 \ \exists n_M \in \mathbb{N} \ \forall n \ge n_M \ x_n < -M$$

Обозначение: $\lim_{n\to\infty} x_n = -\infty$.

Определение 3. (x_n) называется бесконечно большой, если

$$\forall M > 0 \ \exists n_M \in \mathbb{N} \ \forall n \ge n_M \ |x_n| > M$$

Обозначение: $\lim_{n\to\infty} x_n = \infty$.

Теорема 1 (связь бесконечно больших и бесконечно малых). $\forall n \in \mathbb{N} \ (x_n \neq 0)$. $\lim_{n \to \infty} x_n = \infty \Leftrightarrow \frac{1}{x_n} = o(1)$.

Доказательство. Распишем $\lim_{n\to\infty}x_n=\infty\Leftrightarrow\exists M>0\ n_M\in\mathbb{N}\ \forall n\geq n_m\ |x_n|>M$.

$$|x_n| > M : |x_n|$$

$$1 > \frac{M}{|x_n|} : M$$

$$\frac{1}{M} > \frac{1}{|x_n|}$$

$$\frac{1}{|x_n|} < \frac{1}{M}$$

То есть $\frac{1}{M} > 0 \ \forall n \in \mathbb{N} \ \left| \frac{1}{x_n} \right| < \frac{1}{M}$. Значит, $\frac{1}{x_n} = o(1)$.

8 Вопрос

Предел последовательности. Теорема о единственности предела.

Определение 1. $(x_n) - cxod$ ящаяся, если $\exists a \in \mathbb{R} \ (x_n) - a = o(1)$. Число a в этом случае называют пределом последовательности. Записывается это так:

$$\lim_{n \to \infty} x_n = a$$

u n u

$$x_n \to a \ npu \ n \to \infty$$

Последовательности, не являющиеся сходящимися, называют расходящимися.

Определение 2. Число а называется пределом последовательности (x_n) , если

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \ge n_{\epsilon} \ |x_n - a| < \epsilon$$

Теорема 1 (о единственности предела). Если $(x_n) - a = o(1) \Rightarrow \exists ! a = \lim_{n \to \infty} x_n$.

Доказательство. От противного. Пусть это не так. Тогда $\exists a_1 \exists a_2 \ a_1 \neq a_2$: $(x_n) - a_1 = o(1), \ (x_n) - a_2 = o(1)$. Решая систему уравнений, вычтем из первого равенства второе:

$$(x_n) - (x_n) - a_1 + a_2 = o(1) - o(1) \Leftrightarrow a_2 - a_1 = o(1)$$

В силу того, что (a_2-a_1) — стационарная и бесконечно малая последовательность, делаем заключение, что $a_2-a_1=0 \Leftrightarrow a_2=a_1$. Противоречие. Значит, $\exists!a$.

9 Вопрос

Ограниченность сходящейся последовательности

Теорема 1 (об ограниченности сходящейся последовательности). *Если* $(x_n) - a = o(1) \Rightarrow (x_n) = O(1)$.

Доказательство. Пусть $(x_n) = a + o(1)$. Поскольку o(1) ограничена, и стационарная последовательность a также ограничена, то (a + o(1)), по теореме об арифметических действиях над органиченными последовательностями, ограничена.

10 Вопрос

Порядковые свойства предела. Переход к пределу в неравенствах

Теорема 1. Если $\lim_{n\to\infty} x_n = a \ u \ a > b$, то

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ x_n > b$$

Аналогично, если $\lim_{n\to\infty} x_n = a$ и a < b, то

$$\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ x_n < b$$

Доказательство. Докажем первое утверждение. Пусть $\epsilon = \frac{a-b}{2}$. По определению предела

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ |x_n - a| < \frac{a - b}{2}$$

В силу того, что $\frac{a-b}{2} > 0$, запишем неравенство в следующем виде:

$$x_n > a - \frac{a-b}{2} = \frac{a+b}{2} > b \Leftrightarrow \forall n \ge n_0 \ x_n > b$$

Докажем второе утверждение. Пусть $\epsilon = \frac{b-a}{2}$. По определению предела

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ |x_n - a| < \frac{b - a}{2}$$

Поскольку $\frac{b-a}{2} > 0$,

$$x_n < a + \frac{b-a}{2} = \frac{a+b}{2} < b \Leftrightarrow \forall n \ge n_0 \ x_n < b$$

Теорема 2. Если $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, $a < b \Rightarrow$

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ x_n < y_n$$

Доказательство. Возьмем число c такое, что a < c < b. Согласно предыдущей теореме,

$$\exists n_1 \in \mathbb{N} \ \forall n \geq n_1 \ x_n < c$$

И

$$\exists n_2 \in \mathbb{N} \ \forall n \geq n_2 \ y_n > c$$

Тогда $\forall n \geq n_0 = \max\{n_1, n_2\} \ x_n < c < y_n \Leftrightarrow x_n < y_n$

Теорема 3 (о переходе к пределу в неравенстве). *Если* $\lim_{n\to\infty} x_n = a,$ $\lim_{n\to\infty} y_n = b, \ \forall n \in \mathbb{N} \ x_n \leq y_n \Rightarrow a \leq b$

Доказательство. От противного. Пусть a>b. Тогда, по предыдущей теореме,

$$\exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ x_n > y_n,$$

что противоречит условию. Поэтому $a \le b$.

11 Вопрос

Порядковый признак существования предела последовательности.

Теорема 1 (порядковый признак существования предела). *Если* $\forall n \in \mathbb{N} \ x_n < z_n < y_n \ u \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a \Rightarrow \exists \lim_{n \to \infty} z_n = a.$

Доказательство. Пусть $\epsilon > 0$. По определению предела

$$\exists n'_{\epsilon} \in \mathbb{N} \ \forall n \geq n'_{\epsilon} \ a - \epsilon < x_n < a + \epsilon$$

$$\exists n''_{\epsilon} \in \mathbb{N} \ \forall n \geq n''_{\epsilon} \ a - \epsilon < y_n < a + \epsilon$$

Тогда $\forall n \geq n_{\epsilon} = \max\{n'_{\epsilon}, n''_{\epsilon}\}\ a - \epsilon < x_n \leq z_n \leq y_n < a + \epsilon \Leftrightarrow \lim_{n \to \infty} z_n = a.$

12 Вопрос

Арифметические свойства предела последовательности.

Теорема 1 (арифметические свойства предела последовательности). *Если* $\lim_{n\to\infty} x_n = a, \ \lim_{n\to\infty} y_n = b, \ cnpasedливо \ cлedyrougee:$

$$\lim_{n \to \infty} (x_n \pm y_n) = a \pm b,$$

$$\lim_{n \to \infty} x_n y_n = ab,$$

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}, \ b \neq 0.$$

- 1. $x_n \pm y_n = (a + o(1)) \pm (b + o(1)) = (a \pm b) + (o(1) + o(1)) = (a \pm b) + o(1)$. Значит, $\lim_{n \to \infty} (x_n \pm y_n) = a \pm b$.
- 2. $x_n y_n = (a + o(1))(b + o(1)) = ab + ao(1) + bo(1) + o(1)o(1) = ab + o(1)$. Следовательно, $\lim_{n \to \infty} (x_n y_n) = ab$.
- 3. Рассмотрим

$$\frac{x_n}{y_n} - \frac{a}{b} = \frac{1}{y_n b} (bx_n - ay_n) = \frac{1}{y_n b} (b(a + o(1)) - a(b + o(1))) =$$

$$= \frac{1}{y_n b} (bo(1) - ao(1)) = \frac{1}{y_n b} o(1)$$

 $\lim_{n\to\infty}(y_nb)=b^2>rac{b^2}{2}$. Согласно одной из теорем о порядковых свойствах предела, $\exists n_0\in\mathbb{N}\ \forall n\geq n_0\ y_n>rac{b^2}{2}$, т.е. $0<rac{1}{y_nb}<rac{2}{b^2}$. Следовательно, $rac{1}{y_nb}=O(1)$. Тогда $rac{1}{y_nb}o(1)=O(1)o(1)=o(1)$ и $rac{x_n}{y_n}-rac{a}{b}=o(1)$

По определению предела, $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{a}{b}$.

13 Вопрос

Монотонные последовательности. Теорема Вейерштрасса о монотонных последовательностях.

Определение 1

 (x_n) называется неубывающей, если $\forall n \in \mathbb{N} \ x_{n+1} \geq x_n \cdot x_n \uparrow$.

 (x_n) называется невозрастающей, если $\forall n \in \mathbb{N} \ x_{n+1} \leq x_n. \ x_n \downarrow.$

Неубывающие и невозрастающие еще называют монотонными последовательностями.

Теорема 1 (Вейерштрасса о монотонных последовательностях). (x_n) монотонная $u \ x_n = O(1)$. Тогда (x_n) сходится.

Причем
$$\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$$
, если $x_n \uparrow$, $u \lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n$, если $(x_n) \downarrow$.

Доказательство. Докажем случай, когда $x_n \uparrow$. Так как $x_n = O(1) \Rightarrow \exists \sup_{n \in \mathbb{N}} x_n = a$.

Тогда $\forall n \in \mathbb{N} \ x_n \leq a$ и $\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ x_{n_{\epsilon}} > a - \epsilon$.

Так как $x_n \uparrow, \forall n \geq n_{\epsilon} \ a - \epsilon < x_{n_{\epsilon}} \leq x_n$.

Следовательно, $\forall \epsilon > 0 \ \forall n \geq n_{\epsilon} \ a - \epsilon < x_{n_{\epsilon}} \leq x_n \leq a < a + \epsilon$ или

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \geq n_{\epsilon} \ a - \epsilon < x_n < a + \epsilon$$

Значит, $\lim_{n\to\infty} x_n = a = \sup_{n\in\mathbb{N}} x_n$.

Рассмотрим случай, когда $x_n \downarrow x_n = O(1) \Rightarrow \exists \inf_{n \in \mathbb{N}} x_n = a$.

Тогда $\forall n \in \mathbb{N} \ x_n \ge a$ и $\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ x_{n_{\epsilon}} < a + \epsilon$.

Так как $x_n \downarrow$, $\forall n \geq n_{\epsilon} \ x_n \leq x_{n_{\epsilon}} < a + \epsilon$.

Следовательно, $\forall \epsilon > 0 \ \forall n \geq n_{\epsilon} \ a - \epsilon < a \leq x_n \leq x_{n_{\epsilon}} < a + \epsilon$ или

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \geq n_{\epsilon} \ a - \epsilon < x_n < a + \epsilon$$

Значит, $\lim_{n\in\mathbb{N}} x_n = a = \inf_{n\in\mathbb{N}} x_n$.

Замечание 1. *Монотонная последовательность сходится* \Leftrightarrow *она ограничена.*

14 Вопрос

Лемма о вложенных отрезках.

Лемма 1 (о вложенных отрезках). У всякой стягивающейся последовательности отрезков существует, и притом единственная, точка, принадлежащая всем отрезкам последовательности.

$$[a_1,b_1],[a_2,b_2],\ldots,[a_n,b_n],\ldots$$
 стягивающаяся $\Rightarrow \exists!c \ \forall n \in \mathbb{N} \ c \in [a_n,b_n].$

Доказательство. Рассмотрим (a_n) . Очевидно, что $a_n \uparrow$ и $a_n = O(1)$, причем $\forall m \in \mathbb{N}$ $b_m = M_a$. Следовательно, по теореме Вейерштрасса, $\exists \lim_{n \to \infty} a_n = c$ и $\forall n \in \mathbb{N}$ $c \in [a_n, b_n]$.

Докажем единственность (от противного). Пусть $\exists d \ d \neq c \ \forall n \in \mathbb{N} \ d \in [a_n, b_n]$. Пусть тогда c < d. Тогда $\forall n \in \mathbb{N} \ [c, d] \subset [a_n, b_n] \Leftrightarrow b_n - a_n > d - c > 0$, что противоречит условию $b_n - a_n \to 0$ при $n \to \infty$ (определение стягивающейся последовательности отрезков).

15 Вопрос

Подпоследовательности и частичные пределы последовательности. Теорема о подпоследовательностях сходящейся последовательности.

Определение 1. Пусть x_n — числовая последовательность $u(k_n)$ — некоторая возрастающая последовательность натуральных чисел. Тогда последовательность ность $y_n = x_{k_n}$ называется подпоследовательностью последовательности (x_n) .

Теорема 1 (о подпоследовательностях сходящейся последовательности). Любая подпоследовательность сходящейся последовательности сходится, причем κ тому же числу, что и вся последовательность.

Доказательство. Пусть $\lim_{n\to\infty}=a$ и $\epsilon>0$. Тогда $\exists n_{\epsilon}\in\mathbb{N}\ \forall n\geq n_{\epsilon}$ $|x_n-a|<\epsilon$. Заметим, что k_n не может быть меньше n, а поэтому $k_n\geq n\geq n_{\epsilon}$. Значит, что для $y_n=x_{k_n}$ справедливо следующее: $\forall n\geq n_{\epsilon}\ |y_n-a|<\epsilon$. Это означает, что $\lim_{n\to\infty}y_n=a$.

16 Вопрос

Верхний и нижний пределы последовательности. Корректность определения.

Определение 1. Пусть $x_n = O(1)$.

Верхний предел последовательности определяется равенством

$$\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{k \ge n} x_k$$

Нижний предел последовательности определяется равенством

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{k > n} x_k$$

Докажем корректность этих определений, т.е. что они имеют смысл.

Для верхнего предела обозначим $y_n = \sup_{k \geq n} x_k$. Очевидно, что $y_n = O(1)$, и, по

свойству верхней грани, $y_n \downarrow$. Согласно теореме Вейерштрасса, (y_n) сходится.

Для нижнего предела обозначим $y_n = \inf_{k \geq n} x_k$. $y_n = O(1)$, и, по свойству нижней грани, $y_n \uparrow$. По теореме Вейерштрасса, (y_n) сходится.

17 Вопрос

Свойства верхнего и нижнего пределов.

Теорема 1 (неофиц. порядковое свойство верхнего <u>и</u> нижнего пределов). Для любой $x_n = O(1)$ справедливо неравенство $\lim_{n \to \infty} x_n \le \overline{\lim_{n \to \infty}} x_n$.

 \mathcal{A} оказательство. Пусть $z_n = \inf_{k \geq n} x_k$, $y_n = \sup_{k \geq n} x_k$. Очевидно, что

 $\forall n \in \mathbb{N} \ z_n \leq y_n$. Значит, по теореме о переходе к пределу в неравенстве, $\lim_{n \to \infty} z_n \leq \lim_{n \to \infty} y_n \Leftrightarrow \lim_{n \to \infty} x_n \leq \overline{\lim_{n \to \infty}} x_n$.

Теорема 2 (неофиц. признак сходимости ограниченной последовательности). У $x_n = O(1) \exists \lim_{n \to \infty} x_n = a \Leftrightarrow \overline{\lim_{n \to \infty}} x_n = \underline{\lim_{n \to \infty}} x_n$. Причем $\lim_{n \to \infty} x_n = \overline{\lim_{n \to \infty}} x_n = \underline{\lim_{n \to \infty}} x_n$.

Доказательство.

 \Rightarrow . Распишем $\lim_{n\to\infty} x_n = a$:

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \geq n_{\epsilon} \ a - \epsilon < x_n < a + \epsilon$$

Тогда справедливо следующее:

$$\forall k \ge n (\ge n_{\epsilon}) \ a - \epsilon < \inf_{k \ge n} x_k \le x_n \le \sup_{k \ge n} x_k < a + \epsilon$$

Или $\underline{\lim}_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n = a$.

 \Leftarrow . Пусть $\lim_{n\to\infty} x_n = \overline{\lim_{n\to\infty}} x_n = a$. Заметим, что $\forall n\in\mathbb{N}$ $\inf_{k\geq n} x_k \leq x_n \leq \sup_{k\geq n} x_k$. По теореме о порядковом признаке существования предела $\exists \lim_{n\to\infty} x_n = a$.

18 Вопрос

Теорема Больцано-Вейерштрасса.

Теорема 1 (Больцано-Вейерштрасса). У любой $x_n = O(1)$ существует сходящаяся подпоследовательность.

Доказательство. $x_n = O(1) \Leftrightarrow \exists M > 0 \ \forall n \in \mathbb{N} \ |x_n| \leq M$.

Разделим отрезок $I_0 = [-M, M]$ пополам. По крайней мере один из получившихся отрезков содержит бесконечное число членов (x_n) . Выберем его и обозначим I_1 . В качестве первого члена искомой посдпоследовательности выберем некоторый элемент $x_{n_1} \in I_1$.

Разделим отрезок I_1 пополам. Обозначим ту его часть, в которой содержится бесконечное число элементов (x_n) , I_2 . Из данного отрезка выберем такой член последовательности x_{n_2} , что $n_2 > n_1$.

Продолжая, мы в итоге получим последовательность вложенных отрезков (I_n) , и подпоследовательность $x_{n_1}, x_{n_2}, \ldots, x_{n_k}, \ldots$, причем $x_{n_k} \in I_k$.

Длина каждого отрезка I_k равна $\frac{2M}{2^k} = \frac{M}{2^{k-1}} \to 0$ при $k \to \infty \Rightarrow (I_k)$ является стягивающейся. По лемме о вложенных отрезках $\exists! c \ \forall k \in \mathbb{N} \ c \in I_k$. Обозначим $I_k = [a_k, b_k]$.

 $a_k \to c, \ b_k \to c \ \text{при} \ k \to \infty, \ \text{а} \ a_k \le x_{n_k} \le b_k \Rightarrow (\text{по теореме о порядковом признаке существования предела}) \ x_{n_k} \to c \ \text{при} \ k \to \infty.$

19 Вопрос

Фундаментальные последовательности. Теорема об ограниченности фундаментальных последовательностей.

Определение 1. (x_n) называется фундаментальной, если

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \ge n_{\epsilon} \ \forall m \ge n_{\epsilon} \ |x_n - x_m| < \epsilon$$

или если выполняется равносильное условие

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \geq n_{\epsilon} \ \forall p \in \mathbb{N} \ |x_{n+p} - x_n| < \epsilon$$

Теорема 1 (об ограниченности фундаментальной последовательности). *Если* (x_n) фундаментальная $\Rightarrow x_n = O(1)$.

Доказательство. Пусть в условии фундаментальности $\epsilon = 1$. Тогда

$$\exists n_1 \in \mathbb{N} \ \forall n \ge n_1 \ |x_n - x_{n_1}| < 1$$

т.е. $\forall n \geq n_1 \ x_{n_1} - 1 \leq x_n \leq x_{n_1} + 1$. По теореме о достаточном условии ограниченности последовательности, $x_n = O(1)$.

20 Вопрос

Критерий Коши сходимости последовательности.

Теорема 1 (критерий Коши сходимости последовательности). (x_n) сходится \Leftrightarrow (x_n) фундаментальна.

Доказательство.

 \Rightarrow . Пусть $(x_n) \to a$ при $n \to \infty$. Возьмем $\epsilon > 0$. Тогда $\exists n_{\epsilon} \in \mathbb{N}$, такой, что

$$\forall n \ge n_{\epsilon} |x_n - a| < \frac{\epsilon}{2}$$

 $\forall m \ge e_{\epsilon} |x_m - a| < \frac{\epsilon}{2}$

Следовательно,

$$|x_n - x_m| = |(x_n - a) + (a - x_m)| \le |x_n - a| + |x_m - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

To есть (x_n) фундаментальна.

 \Leftarrow . Пусть (x_n) фундаментальна $\Rightarrow x_n = O(1)$. Тогда, по теорема Больцана-Вейерштрасса, существует сходящаяся подпоследовательность $x_{k_1}, x_{k_2}, \ldots, x_{k_n}, \ldots$. Пусть $x_{k_n} \to a$ при $n \to \infty$. Поскольку $k_n \ge n$, то из условия фундаментальности следует, что $x_n - x_{k_n} \to 0$ при $n \to \infty$. Поэтому $x_n - a = (x_n - x_{k_n}) + (x_{k_n} - a) \to 0$, т.е. $x_n \to a$ при $n \to \infty$.

21 Вопрос

Определения Гейне и Коши предела функции в точке. Теорема об эквивалентности.

Определение 1. Пусть $X \subset \mathbb{R}$. Точка x_0 называется предельной точкой множества X, если в любой проколотой окресности точки x_0 есть точки множества X.

Определение 2 (предела функции по Коши). Пусть функция f определена на множестве X и точка x_0 является предельной точкой множества X.

Число A называют пределом функции в точке x_0 , если

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ (0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \epsilon)$$

Формулой записывается так:

$$\lim_{x \to x_0} f(x) = A$$

Данное определение можно переформулировать, пользуясь понятием окрестности точки:

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall O(A) \ \exists \mathring{O}(x_0) : \ f(\mathring{O}(x_0)) \subset O(A)$$

Определение 3 (предела функции по Гейне). Пусть функция f определена на множестве X и точка x_0 является предельной точкой множества X.

Число A называют пределом функции f в точке x_0 , если для любой последовательности (x_n) точек множества X такой, что $x_n \to x_0$ при $n \to \infty$ и $\forall n \in \mathbb{N}$ $x_n \neq x_0$, выполняется условие $f(x_n) \to A$ при $n \to \infty$.

Теорема 1 (эквивалентность определений предела по Коши и по Гейне). Определение предела функции в точке по Коши равносильно определению предела по Гейне.

Доказательство.

 $K \Rightarrow \Gamma$. Пусть число A является пределом функции f(x) в точке x_0 по Коши и (x_n) — последовательность точек множества $X, \forall n \in \mathbb{N} \ x_n \neq x_0, \ x_n \to x_0$ при $n \to \infty$.

Пусть $\epsilon > 0$. Согласно определению Коши, найдется число $\delta > 0$ такое, что $|f(x) - A| < \epsilon$, если $0 < |x - x_0| < \delta$. Поскольку $x_n \to x_0$, то $\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ |x_n - x_0| < \delta$, следовательно, $|f(x_n) - A| < \epsilon$. Это и означает, что $f(x_n) \to A$ при $n \to \infty$, т.е. функция f удовлетворяет определению Гейне.

 $\Gamma \Rightarrow$ К. Пусть число A является пределом функции f(x) в точке x_0 по Гейне. Докажем, что A является пределом функции f(x) в точке x_0 по Коши, от противного. Тогда

$$\forall \epsilon_0 > 0 \ \forall \delta > 0 \ \exists x_\delta \in X \ (0 < |x_\delta - x_0| < \delta \Rightarrow |f(x_\delta) - A| \ge \epsilon_0)$$

Рассмотрим последовательность $\delta_n = \frac{1}{n}, \ n \in \mathbb{N},$ и найдем x_n такие, что

$$0 < |x_n - x_0| < \frac{1}{n} \Rightarrow |f(x_n) - A| \ge \epsilon_0$$

Построенная последовательность $x_n \to x_0$ и $x_n \neq x_0$. Тогда согласно определению Гейне $f(x_n) \to A$, что противоречит условию $|f(x_n) - A| \ge \epsilon_0 > 0$. Получено противоречие. Значит, $\Gamma \Rightarrow K$.