EE 538 Spring 2020 Analog Circuits for Sensor Systems University of Washington Electrical & Computer Engineering

Instructor: Jason Silver Homework #1 (40 points) Due Wednesday, April 8, Submit on Canvas

Please show your work.

Problem 1: Circuit loading, filtering

Design the bandpass RC filter to achieve >20dB attenuation at 1MHz and less than 0.1dB attenuation from 1 Hz to 10 kHz.

- a) First, ignoring loading effects, determine 3dB frequencies ($f_{3dB,HP}$ and $f_{3db,LP}$) that meet the specifications.
- b) With $R_s = 100\Omega$ and $R_L = 10M\Omega$, choose R_1 , R_2 , C_1 , and C_2 to minimize loading effects.
- c) Simulate the frequency response (V_o/V_s) in Ltspice and plot it together with the ideal response in MATLAB/Python.

Problem 2: Current sources, frequency response, loading

Use the circuit and variables (no values) for the following.

- a) Sketch the frequency response (magnitude and phase) V_{out}/I_s for $Z_L \rightarrow \infty$.
- b) Sketch the frequency response (magnitude and phase) V_{out}/I_s together with the unloaded response (part a) for the two conditions
 - 1. $Z_L = C_L$
 - 2. $Z_L = R_L$
- c) Sketch the transient response of V_{out} for I_s as a current step from 0 to I_{max} ($Z_L \rightarrow \infty$).

Problem 3: Sampling, settling, power dissipation

The clock waveform shown above is used to drive the switch open and closed ($clk = 1 \rightarrow$ switch closed, $clk = 0 \rightarrow$ switch open). T_{clk} is the clock period (50% duty cycle), where $T_{clk} = 1/f_{clk}$. $V_{in} = 1$ V, $R = 100~\Omega$, and $C = 10~\mathrm{pF}$

- a) What is the maximum clock frequency, f_{clk} , that allows 0.1% settling precision of V_{cap} each period?
- b) Given this clock frequency, what is the average current delivered to the capacitor?
- c) Verify your answers to a) and b) using Ltspice. To do this using a DC source fo V_{in} , you need to use an initial condition (OV) on V_{cap} . Include any relevant plots in your submission.
- d) Perform an AC simulation on the circuit in Ltspice (switch closed). Relate the frequency response to the settling time and include any relevant plots.