实验二 死锁避免的模拟

实验目的

- 1) 深入了解死锁的原因和必要条件。
- 2) 掌握死锁的处理方式。
- 3) 实现死锁避免的模拟

实验预备知识

- 1) 系统安全状态
- 2) 银行家算法

实验内容

验证银行家算法避免系统死锁。

假设系统中有三类资源 A、B、C 和五个进程 P1、P2、P3、P4、P5。然后设定每种资源的数量。之后设定每个进程对各类资源的最大需求,最后假定在某一时刻,系统已经给各个进程分配多少资源。要求检查该时刻系统是否处于安全状态。

实验要求

- 1) 给出程序流程和源程序(附有详细注释)
- 2) 程序运行截图
- 3) 收获、体会及对该实验的改进意见和见解

实验提示

由于是实验,没有真正的避免死锁。所以在实验中首先假定一种系统状态,假设 TO 时刻资源的分配情况如下所示:

资源情况	Max			Allocation			Need			Available		
进程	Α	В	С	Α	В	С	Α	В	С	Α	В	С
P ₀	7	5	3	0	1	0	7	4	3	3	3	2
P ₁	3	2	2	2	0	0	1	2	2			
P ₂	9	0	2	3	0	2	6	0	0			
P ₃	2	2	2	2	1	1	0	1	1			
P ₄	4	3	3	0	0	2	4	3	1			

要求实现:

- (1) 确定系统在 TO 时刻的安全性。
- (2) P1 发出资源请求向量 Request1(1,0,2), 按照银行家算法确定能否将资源分配给 P1。
- (3) 在(2) 的基础上, P4 发出请求向量 Request4(3,3,0), 按照银行家算法确定能否将资源分配给 P1。
- (4) 再(3) 的基础上,P0 发出请求向量 Request0(0,2,0),按照银行家算法确定能否将资源分配给 P1。