UNIT-11

INTERPOLATION

Interpolation with Equal Intervals:

Forward Interpolation formula:

 $y(x) = y(x) = y_0 + P dy_0 + \frac{P(P-1)}{21} d^2y_0 +$

P(P-1)(P-2) 1340+...

where $p = \frac{\chi - \chi_0}{h}$, $h \rightarrow (constant)$ Constant

Clifferences)

Interval

Meuston's Backward Interpolation Formula;

y(x) = yp(x) = yn + P Tyn + P(P+1) = 2yn +

P(P+1) (P+2) 734,+...

 $P = \frac{2(-2)n}{L}$, h - 1 = 2n + ervalin 21-selies

inote:

These formula is also couled Newton's Gregory forward and Backward interpolation formula.

Problems 3

1 Using Mewton's interpolation tormula tind y (1.02) and y (1.35) from the following table:

× j	1.0 1.1	1. 2	1.3	1.4
y= fin)	0.8910.891	0.932	0.964	0.985

Form	the Di	Herence '	Table	
X (2/0)	y sy	12 y.	\23y	04 y
D. D. D. C.	0.841	Forward	Very	
0 1 1 2 6	0.891		70	-0002
	0. 985	251 - 0.0	11) - D.O.	
	yn)	Be	ackward	valenty

Meropon's forward interpolation 4(4) = 40+PAY0+ P(P-1) 124, + P(P-1)(P-2) 31 234+

From Table, consider forward varies Yo = 0.841 , No = 1.0 14° = 0.020 750 006 006 032°=0 $P = \frac{21-210}{h}, \quad h = 0.1$ p = 1.02-1.0 0.1 = 0.2 · · y(1-02)= 0.841+(0.2)(0.050) + (0.2)(0.2-1)(-0.009)Y(1.02) = 0.852 [10 find y(1:35): Mewton's Backward interpolation Formula 4p(x)=4(x)=4n+payn+P(++1) 22yn + P(P+1)(P+2) 31. ~3yn+... From Table, Consider Backward rainy Yn = 0.985 , 2n=1.4, 4=0.1 MAU = 0.051 ' MSAU = -0.011 2 = 1.35 734n=-0.002 744n=-0.002

$$P = \frac{2(-2)}{h} = \frac{1.35 - 1.4}{0.1} = -0.5$$

$$\frac{1}{2!} \left(-0.002) + \frac{3!}{(-0.5)(-0.5+1)(-0.5+1)(-0.5+1)} \right) + \frac{3!}{(-0.002)} + \frac{3!}{(-0.002)}$$

DESHimate exp(1.85) from the tollowing Jable wing Newton's tornand interpolation formula.

	A.	: 1.	. 귀/"	1.8	1.9	2.	D	ع. ا	\			2,3
	J=ex	: 5.	474	6.050	6.686	7.	387	8.1	66	9.00	5	5.974
	Form the			resie				-			1	
1.52	×	(1	14	127		N31	1	04	ey /	` >	150

	Horn H	no DITE	erene	JUSIE.	•		
Ì	K	y	14	DZA	134	Day	254
	1.8	6.050	0.636	, (0		V	0_
	1.9	6-686	0, 703	6,067	700.0	0.001	31
	2. 1	7.389	6.777		P.00B		- D.001
	2.2	8.166	0.857	0.082	0.008	D	
	2.3	9.994	0.949	0.090			

8

from Table 20=1.8 40=6.050, 2=1.85, h=0.1 140 = 0.676 1840 = 0.067 1340 = 0.007 14 yo = 10.001, 15 yo = - 10.001 By Newton's & forward interpolation tormula y (7) = yo + payo + P(p-1) 12yo + ... p= 2-20-5 9(1.85) = 0.050 + (0.5)(0.606) + (0.5)(-0.5)+ (b.5) (-b.5)(-1.5) (b.007)+... y (1.85) = 6.3601 3 from the tollowing date, wing newton's Backward interpolation tormula, Compute Log(58.75). 2.40 45 50 55 60 Logx: 1.6021 1.6532 1.6990 1.7403 1.7781 1.8/29 form the Difference Table y sy szy szy sty K 45 1.6532 6.0511 -6.0053 50 1.6890 6.0458 -0.0045 55 1.7403 0.0412 -0.0035 0.0060 60 1.7781 0.078 40 /166021 6

Here 2,=60, \$=5, 4n=1.7781 Let n = 58.75, $p = \frac{21-21}{1}$ = $\frac{58.75-60}{5}$ 13ack woord interpolation formula is

 $y(x) = y_n + p\nabla y_n + \frac{p(p+1)}{21} \pi^2 y_n + \dots$

from Jable

Tyn = 6.0378 TRYn = -0.0035 734n = 6.0010 744n = 6.0002

J(58,75)=1.7781-(0.0378)+ (-0.25)(0.75) (-0.0035/+ -0.25)(0.75)(1.75) + (-0.25/(0.75)(1.75)(2.75) (0-0002)

= 1.7781 - D.00945 +0.00033-0.00005-0.000

4158.75)= 1.7689

The value y(0)=1, y(1)=0, y(2)=1, and y(3)=10. Hence Obtain y(4).

Difference Table:

H	4	Vy	Try	234
0)			
1	D	-)	2	
2	1	1	2	6
3	10	9	8	

By Newton's forward interpolation formula
$$y(x) = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!}$$
 Dy, $+ \dots$
 $x_0 = 0$, $x_0 + x_0 = 1$
 $y = x_0 - x_0 = x_0$
 $y = x_0 - x_0 = x_0$
 $y = x_0 - x_0 = x_0$

$$y(x) = 1 + x(x-1) + \frac{x(x-1)}{2} (3)$$

$$+ \frac{x(x-1)}{5} (3)$$

$$\frac{21-\chi+\chi^2-\chi+\chi^3-3\chi^2+\varphi\chi}{y(\eta)=\chi^3-\chi^2+1}$$
 is the

A180 find 414).

$$y(4) = (4)^3 - 2(4)^2 + 1$$

 $y(4) = 64 + 1 - 32 = 33$

O From the tollowing table value of x

and tixt), determine of (0.23) & flo.29)

21 ' 0.20 0.22 0.24 0.26 0.28 0.30

Ha): 61.6596 1.6698 1.6804 1.6912 1.7024 1.7135

Ans: \$10.23) = 1.6751 \$(0.29) = 1.7081 Quing newton's Backward interpolation formula, find y, when x = 27 from the following data.

		•	term.			
1.7	•	(0	15	20		
					25	30
	`.	35.4	32.2	20		
0		,	34,5	28.1	26.0	23.1
		*				
	_					

Ans: y(27) ~ 24.7947

1 Find the polynomial which parter through the points (7,1)(8,1)(9,1)
and (10,9) wing newton's interpolation formula.

Ans: Y(x) = x2-23x2+174x-431

×----