Wettbewerb künstliche Intelligenz in der Medizin ECG-DualNet

Attention Is All You Need Christoph Reich

Supervisors

Prof. Dr.-Ing. Christoph Hoog Antink Maurice Rohr, M. Sc.

Content

- 1. Introduction
 - Problem Setting
 - Motivation
 - Related Work
- 2. Method
 - ECG-DualNet
 - Augmentation Pipeline
 - Training & Validation
- 3. Experiments
 - Datasets
 - ECG-DualNet Results
 - Ablation Study
- 4. Conclusion & Discussion

Content

- 1. Introduction
 - Problem Setting
 - Motivation
 - Related Work
- 2. Method
 - ECG-DualNet
 - Augmentation Pipeline
 - Training & Validation
- 3. Experiments
 - Datasets
 - ECG-DualNet Results
 - Ablation Study
- 4. Conclusion & Discussion

Classify single-lead ECG signals with variable length.

Figure: ECG signal of the 2017 PhysioNet/CinC Challenge dataset [Clifford et al., 2017] labeled as AF.

Introduction

Motivation

- Atrial fibrillation (AF) dangerous and often undetected
- AF one of the most common heart arrhythmia's
- AF can lead to strokes, dementia, and heart failure
- Increasing amount of single-lead ECG edge devices available
 - No expert knowledge typically available
 - Need for automated classification of AF

[Becker, 2006] [Herold, 2019]

Introduction

Motivation

- Atrial fibrillation (AF) dangerous and often undetected
- AF one of the most common heart arrhythmia's
- AF can lead to strokes, dementia, and heart failure
- Increasing amount of single-lead ECG edge devices available
 - No expert knowledge typically available
 - Need for automated classification of AF

[Becker, 2006] [Herold, 2019]

Figure: Regular heart beat left and atrial fibrillation on the right.

Introduction Related Work

Transitional ML approaches

Deep learning approaches

Introduction

Related Work

Transitional ML approaches

- Preprocessing & Feature extraction
 - Data augmentation
 - ECG timing features
 - Robust interval features
 - Waveform features
- Learnable classifier
 - Random forest
 - Support vector machines
 - XGBoost
- [Hoog Antink et al., 2017, Smíšek et al., 2017]

Deep learning approaches

Introduction

Related Work

Transitional ML approaches

- Preprocessing & Feature extraction
 - Data augmentation
 - ECG timing features
 - Robust interval features
 - Waveform features
- Learnable classifier
 - Random forest
 - Support vector machines
 - XGBoost
- [Hoog Antink et al., 2017, Smíšek et al., 2017]

Deep learning approaches

- Preprocessing
 - Data augmentation
 - Data conversion (Spectrogram)
- Deep learning classifier
- [Zihlmann et al., 2017, Mousavi et al., 2019, Mashrur et al., 2019, Khriji et al., 2020, Nonaka and Seita, 2020]

Content

- 1. Introduction
 - Problem Setting
 - Motivation
 - Related Work

2. Method

- ECG-DualNet
- Augmentation Pipeline
- Training & Validation

Experiments

- Datasets
- ECG-DualNet Results
- Ablation Study
- 4. Conclusion & Discussion

Method ECG-DualNet(++)

Figure: ECG-DualNet++ architecture with signal and spectrogram encoder

Augmentation Pipeline

Figure: Different augmentations applied to ECG signal of the 2017 PhysioNet/CinC Challenge dataset [Clifford et al., 2017].

Augmentation Pipeline

Figure: Different augmentations applied to ECG signal of the 2017 PhysioNet/CinC Challenge dataset [Clifford et al., 2017].

Augmentation Pipeline

Figure: Different augmentations applied to ECG signal of the 2017 PhysioNet/CinC Challenge dataset [Clifford et al., 2017]. Random reasmple aug. inspired by 2D random elastic aug. [Simard et al., 2003].

Training loss (weighted cross entropy loss)

$$\mathcal{L} = -\frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{4} \alpha_{i} y_{ji} \log(\hat{y}_{ji})$$

Training & Validation

Training loss (weighted cross entropy loss)

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{4} \alpha_{i} y_{ji} \log(\hat{y}_{ji})$$

Validation metrics (accuracy & F1)

$$ACC = \frac{1}{n} \sum_{j=1}^{n} \delta\left(\arg\max(\mathbf{y}_{j}), \arg\max(\hat{\mathbf{y}}_{j})\right), \quad F1 = \frac{1}{4} \sum_{i=1}^{4} \frac{2\mathsf{TP}_{i}}{2\mathsf{TP}_{i} + \mathsf{FP}_{i} + \mathsf{FN}_{i}}$$

Content

- 1. Introduction
 - Problem Setting
 - Motivation
 - Related Work

2. Method

- ECG-DualNet
- Augmentation Pipeline
- Training & Validation

3. Experiments

- Datasets
- ECG-DualNet Results
- Ablation Study
- 4. Conclusion & Discussion

Experiments

Datasets

2017 PhysioNet/CinC Challenge dataset [Clifford et al., 2017]

- Single-lead ECG signals with variable length (2714 18286 samples)
- 8529 publicaly available data samples (7000 train & 1528 val.)
- Labels include four classes (normal, AF, other & noisy)

Experiments

Datasets

2017 PhysioNet/CinC Challenge dataset [Clifford et al., 2017]

- Single-lead ECG signals with variable length (2714 18286 samples)
- 8529 publicaly available data samples (7000 train & 1528 val.)
- Labels include four classes (normal, AF, other & noisy)

Icentia11k [Tan et al., 2019]

- Single-lead ECG signals of 11k patients.
- 550k data samples with a length of 1h
- Sparse six class rhythm labels including AF
- Cropped and resampled to match target dataset

Results

ECG-DualNet Results

Table: Classification results of our proposed approaches and baselines on the 2017 PhysioNet validation set.

Model	ACC ↑	F1 ↑	# Parameters
CNN baseline* [Zihlmann et al., 2017]	0.812	0.790^{\dagger}	$\sim 3.5 \mathrm{M}$
CRNN baseline* [Zihlmann et al., 2017]	0.823	0.792^{\dagger}	$\sim 3.5 \mathrm{M}$
ECG-DualNet S	0.8527	0.8049	1.8 M
ECG-DualNet M	0.8560	0.7938	4.3M
ECG-DualNet L	0.8514	0.8038	6.2M
ECG-DualNet XL	0.8612	0.8164	20.7M
ECG-DualNet++ S	0.8174	0.7291	1.8 M
ECG-DualNet++ M	0.8259	0.7730	2.6M
ECG-DualNet++ L	0.8449	0.7859	3.7M
ECG-DualNet++ XL	0.8593	0.8051	8.2M
ECG-DualNet++ 130M	0.8534	0.7963	128 M

^{*} Reported literature values (private PhysioNet test set utilized).

[†] F1 score computed over three classes, thus not directly comparable.

Results

ECG-DualNet Results Pre-Training

Table: Classification results of our proposed approaches on the Icentia11k validation set. Only a single training for each model run was conducted.

Model	ACC ↑	F1 ↑
ECG-DualNet XL	0.8989	0.5135
ECG-DualNet++ XL	0.8899	0.5017

Results

ECG-DualNet Results Pre-Training

Table: Classification results of our proposed approaches on the Icentia11k validation set. Only a single training for each model run was conducted.

Model	ACC ↑	F1 ↑
ECG-DualNet XL	0.8989	0.5135
ECG-DualNet++ XL	0.8899	0.5017

Table: Classification results of our proposed approaches on the 2017 PhysioNet validation set and pre-trained on the Icentia11k dataset. Differences to values of no pre-training results in red.

Model	ACC ↑	F1 ↑
ECG-DualNet XL	0.8468 (\$\psi\$ 0.0144)	0.8014 (\psi 0.0150)
ECG-DualNet++ XL	$0.8481 (\downarrow 0.0112)$	$0.7817 \ (\downarrow 0.0234)$

Results Ablation Study

Table: Classification results on the 2017 PhysioNet validation for different ablations. ECG-DualNet L configuration utilized.

Data aug. & dropout	Signal encoder	Spectrogram encoder	ACC ↑	F1 ↑
×	✓	✓	0.8272	0.7493
✓	×	✓	0.8440	0.7855
✓	✓	X	0.7264	0.5813
✓	✓	✓	0.8560	0.7938

Content

- 1. Introduction
 - Problem Setting
 - Motivation
 - Related Work
- 2. Method
 - ECG-DualNet
 - Augmentation Pipeline
 - Training & Validation
- 3. Experiments
 - Datasets
 - ECG-DualNet Results
 - Ablation Study
- 4. Conclusion & Discussion

Conclusion & Discussion

Achievements

- Presented the novel ECG-DualNet for ECG classification
- Proposed an advanced augmentation pipeline
- Performed extensive experiments including pre-training

Conclusion & Discussion

Achievements

- Presented the novel ECG-DualNet for ECG classification
- Proposed an advanced augmentation pipeline
- Performed extensive experiments including pre-training

Observations

- Highly overparameterized models (ECG-DualNet++ 130M) does not overfit in the classical sense → Deep Double Descent [Nakkiran et al., 2020]?
- Spectrogram encoder is the most crucial part of ECG-DualNet
- Extensive pre-training on the Icentia11k does not lead to performance benefits on the target 2017 PhysioNet dataset

References I

Becker, D. E. (2006).

Fundamentals of electrocardiography interpretation. *Anesthesia progress*, 53(2):53–64.

Clifford, G. D., Liu, C., Moody, B., Li-wei, H. L., Silva, I., Li, Q., Johnson, A., and Mark, R. G. (2017). AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017.

In 2017 Computing in Cardiology (CinC), pages 1-4. IEEE.

de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., and Courville, A. (2017). Modulating early visual processing by language.

In Advances in Neural Information Processing Systems, pages 6597–6607.

References II

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020).

An image is worth 16x16 words: Transformers for image recognition at scale. *preprint arXiv:2010.11929*.

Herold, G. (2019).

Innere Medizin.

Walter de Gruyter GmbH & Co KG.

Hoog Antink, C., Leonhardt, S., and Walter, M. (2017).

Fusing QRS Detection and Robust Interval Estimation with a Random Forest to Classify Atrial Fibrillation.

In 2017 Computing in Cardiology (CinC), pages 1–4. IEEE.

References III

Khriji, L., Fradi, M., Machhout, M., and Hossen, A. (2020).

Deep Learning-based Approach for Atrial Fibrillation Detection.

In International Conference on Smart Homes and Health Telematics, pages 100–113. Springer.

Mashrur, F. R., Roy, A. D., and Saha, D. K. (2019).

Automatic identification of arrhythmia from ecg using alexnet convolutional neural network. In 2019 4th International Conference on Electrical Information and Communication Technology (EICT), pages 1–5. IEEE.

References IV

Mousavi, S., Afghah, F., Razi, A., and Acharya, U. R. (2019).

ECGNET: Learning Where to Attend for Detection of Atrial Fibrillation with Deep Visual Attention.

In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pages 1–4. IEEE.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020). Deep double descent: Where bigger models and more data hurt.

In International Conference on Learning Representations

In International Conference on Learning Representations.

Nonaka, N. and Seita, J. (2020).

Data Augmentation for Electrocardiogram Classification with Deep Neural Network. *preprint arXiv:2009.04398*.

References V

Simard, P. Y., Steinkraus, D., Platt, J. C., et al. (2003).

Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. In *Icdar*, volume 3.

Smíšek, R., Hejč, J., Ronzhina, M., Němcová, A., Maršánová, L., Chmelík, J., Kolářová, J., Provazník, I., Smital, L., and Vítek, M. (2017).

Svm based ecg classification using rhythm and morphology features, cluster analysis and multilevel noise estimation.

In 2017 Computing in Cardiology (CinC), pages 1–4.

References VI

Tan, S., Androz, G., Chamseddine, A., Fecteau, P., Courville, A., Bengio, Y., and Cohen, J. P. (2019).

Icentia11k: An unsupervised representation learning dataset for arrhythmia subtype discovery. *preprint arXiv:1910.09570*.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017).

Attention is all you need.

In Advances in Neural Information Processing Systems, volume 30.

Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., and Chen, L.-C. (2020).

Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation. In European Conference on Computer Vision, pages 108–126.

References VII

Zihlmann, M., Perekrestenko, D., and Tschannen, M. (2017).
Convolutional Recurrent Neural Networks for Electrocardiogram Classification.

In 2017 Computing in Cardiology (CinC), pages 1–4. IEEE.

Code availability & Questions

Code, weights, and paper are available at: github.com/ChristophReich1996/ECG_Classification

Atrial Fibrillation Classification in Electrocardiography using Deep Learning

the most common approach to diagnose and moster cardiac articlasia such as atrial Shelliston. The electrocordingram articidants such as airial fibrillation. The electrocordingram realisation typically requires expert knowledge, which is not always available. We present a novel approach for the automated classification of airial fibrillation in electrocardingram recordings with cardible housest. Due does bearing amount acidios below approaches in terms of classification accuracy. Code and trained models are available at https://withols.com/Yhristock/Baich/1996/ Index Terms-afron learning, attention, aerbethmia classification, strict Shriftston classification, electrocordingraphs.

1. INTRODUCTION

Electrocardiography (ECG) is the most important tool for the discressis and the remittering of cardiac perhythmia [1], [3]. certary Di. Tular 12-had ECGs are the common standard reconfines can be clustered into two stones. First classical [3] The analysis of ECO recordings, especially the detection machine learning approaches that typically curied healines of cardiac arrhythmia [1]. However, in recent years edge first and classify them in a section learnable step [4], [8] devices like americanishes became remain. These devices must. Here Article et al. 10 recovered in americanish first extract often include a single-led ECG sensor. Analyzing such signals ECG timing features, robust interval features, and waveform require expert knowledge, which is trained out available in frances III. All extracted features are fed into a feature an edge device settings. Since a fast and accurate diagnosis - random ferror for classification 141. Other approaches nor affect a majority drawn of serviced, as increasing interest in classification methods, such as assessed worker marchine (SC) the automated detection of cardiac arrhydratia occurs [11, 14]. These approaches, however, regains a lot of domain knowledge

The most common human cardiac arrhythmia is atrial extraction approaches are often complicated and error-more The most common human cardiac arrhythma is almat extraction app fibrillation (AF) (Fig. 1) [7]. AF mostly affects patients at an to implement.

proposed ECG-Dua/Net sumasses the classification accuracy which only utilize input data from the frequency domain [5]

II. DELETED WORK

Recent approaches for the task of AF classification in ECC

Challenge Submission

Backup

- FCG-DualNet XI utilized
- Pre-training on Icentia11k
- \blacksquare Optimized training (8000 samples) and validation (528 samples) split used

Table: Classification results of ECG-DualNet XL pre-trained on the Icentia11k dataset and fine-tuned on the PhysioNet dataset with optimized submission split. Metric computed on the small validation set. Four class results on the top and two class results below.

Model	ACC ↑	F1 ↑
ECG-DualNet XL (4 class)	0.8840	0.8549
Model	ACC ↑	F1 ↑
ECG-DualNet XL (2 class)	0.9800	0.9288

Deep Double Decent

Backup

Figure: Illustration of the deep double decent phenomenon in image classification (CIFAR-10 & 15% label noise). Image taken from [Nakkiran et al., 2020].