Lista de Exercícios

1ª. Considere o triângulo apresentado na figura (a) abaixo, construa uma matriz de transformação para gerar cada triângulo da figura (b) utilizando as matrizes de translação, rotação e escala, para cada item abaixo.

2ª (PosComp 2014). Considere as matrizes de transformações geométricas A e B e as coordenadas homogêneas a seguir para pontos bidimensionais representados por vetores-linha.

$$[x' \quad y' \quad 1] = [x \quad y \quad 1] \cdot M_R$$

$$A = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} E_x & 0 & 0 \\ 0 & E_y & 0 \\ T_x & T_y & 1 \end{bmatrix}$$

Considere que Ex e Ey são, respectivamente, fatores de escala em x e y, que Tx e Ty são, respectivamente, fatores de translação em x e y e que θ representa um ângulo de rotação.

Em relação a essas matrizes, considere as afirmativas a şeguir.

I. (F) A matriz de rotação A rotaciona um objeto ao redor do seu centro de massa.

II. (F) A matriz B primeiro translada e depois escala o ponto.

III. (F) Rotacionar objetos em 180º não é o mesmo que espelhar nos eixos x e y.

IV. (γ) A matriz mudança de base de coordenada em 2D pode ser construída a partir da composição das matrizes homogêneas de translação, rotação e escala.

Assinale cada afirmativa acima como Falso ou Verdadeiro, justificando o erro nas alternativas falsas.

3ª. Para a figura abaixo, desenhe a casinha na posição correta (encontre os pontos matematicamente) após um deslocamento de +2 unidades no eixo x e -1 unidade no eixo y, e seguido de uma rotação de +30º no eixo z:

Informações: $cos(30^{\circ}) = 0.866 e sen(30^{\circ}) = 0.500$

- 4^a . Considerando os valores do plano de projeção como sendo $x_{min} = -100$, $x_{máx} = +100$, $y_{min} = -100$ e $y_{máx} = +100$, $y_{min} = -100$ e $y_{máx} = +100$, $y_{min} = -100$ e $y_{max} = +100$, $y_{min} = -100$ e $y_{max} = +100$, $y_{min} = -100$ e $y_{max} = +100$, $y_{max} = -100$, $y_{max} = +100$, $y_{max} = -100$, $y_{max} = -100$
- 5^a . Considerando os pontos P_1 = (-50, 100), P_2 = (100, 150), P_3 = (150, 50), encontre os pontos sobre a curva cúbica de Bézier para t valendo: 0,0; 0,4; 0,5; 0,6 e 1,0.
- 6ª. (PosComp 2011) Em cenas de computação gráfica, para aumentar o realismo visual, é comum aplicar-se um modelo de iluminação local que calcula as cores nos vértices dos triângulos a partir das propriedades de reflexão do objeto, propriedades geométricas do objeto e propriedades da(s) fonte(s) de luz.

Sobre os modelos de iluminação locais, indique as sentenças verdadeiras abaixo:

I. (F) A parcela de reflexão difusa depende da posição do observador.

- II. (V) A parcela difusa ideal de iluminação pode ser aproximada pela lei de Lambert, que estabelece que a reflexão difusa de uma superfície é proporcional ao ângulo entre o vetor normal à superfície e o vetor direção da fonte de luz.
- III. (F) A parcela especular pode ser aproximada pelo modelo de Phong, que estabelece que a reflexão especular de uma superfície é proporcional ao cosseno do ângulo entre o vetor direção do observador e o vetor que estabelece a direção da normal à superfície. INVELSO do fonte de los.
- IV. (V) A parcela de luz ambiente aproxima as múltiplas reflexões de luz das inúmeras superfícies presentes na cena.
- 7^a. (PosComp 2010) Considere as afirmativas a seguir:
- √ I. O modelo de iluminação de Phong obtém as cores internas aos polígonos por interpolação das normais nos vértices.
- الا A técnica de z-buffer utiliza ordenação de primitivas para determinação das faces visíveis.
- FIII. O ponto (2,1,3,2), expresso em coordenadas homogêneas, equivale ao ponto (1.0, 0.5, 25) em coordenadas cartesianas tridimensionais.
- √ IV. Uma das principais vantagens da representação de objetos como malhas poligonais triangulares é a garantia de que todas as faces são planares.

Assinale a alternativa correta.

- a) Somente as afirmativas I e II são corretas.
- (b) Somente as afirmativas I e IV são corretas.
 - c) Somente as afirmativas III e IV são corretas.
 - d) Somente as afirmativas I, II e III são corretas.
 - e) Somente as afirmativas II, III e IV são corretas.

8ª. Relacione a coluna da esquerda com a da direita:

a. algoritmo de Perlin	(η) armazena, para cada pixel, a profundidade do objeto mais próximo.
b. modelo de Phong	(b) descreve o comportamento dos raios de luz sobre superfícies especulares.
c. algoritmo A-buffer	 (∤) remove faces ocultas através da subdivisão de área.
d. algoritmo de Bresenham	(c) armazena, para cada pixel, uma máscara de subpixel.
e. modelo de Lambert	(α) cria textura sólida para representar objetos reais.
f. algoritmo de Warnock	(g) constrói curvas através da subdivisão de segmentos.
g. algoritmo de De Casteljau	(e) descreve o comportamento dos raios de luz sobre superfícies difusas.
h. algoritmo Z-buffer	(d) define os pixels que serão acessos no traçado de retas, círculos e elipses.

(1)
$$P' = P.MR$$
 $MRI = R_{30}. T_{4,1} = \begin{bmatrix} cos 50 \\ sept 50 \\ cos 50 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} cos 50 \\ cos 150 \\ cos 150 \\ cos 150 \\ cos 11 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -0.7 & 0.7 & 0 \\ -0.7 & -0.7 & 1 \end{bmatrix}$
 $MRI = \begin{bmatrix} 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0.5 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0.5 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0.5 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & -1 & 1 \end{bmatrix}$

2)
$$M_{R1} = R_{-30}$$
, $S_{1,05}$, $T_{-2,115} = \begin{bmatrix} a_{15}S_{0}^{2}, & A_{14}S_{0}^{2} & O \\ A_{15}S_{0}^{2}, & A_{14}S_{0}^{2} & O \\ A_{15}S_{0}^{2}, & A_{15}S_{0}^{2} & O \\ A_{15}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2} & O \\ A_{15}S_{0}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2} & O \\ A_{15}S_{0}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2} & O \\ A_{15}S_{0}S_{0}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2}, & A_{15}S_{0}^{2} & O \\ A_{15}S_{0}S_{0}S_{0}S_{0}S_{0}^{2}, & A_{15}S_{0}S_{0}^{2}, & A_{15}S_{0}^{2}, &$

$$P_{0} = \begin{bmatrix} -3 & 2 \\ -95 & 3 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} -95 & 3 \\ 2 \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} 2 & 2 \\ 4 \end{bmatrix}$$

$$P_{3} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$P_{5} = \begin{bmatrix} -2 & 2 \end{bmatrix}$$

$$P_{6} = \begin{bmatrix} -2 & 2 \end{bmatrix}$$

$$M_{R} = T_{Z_{1}-1} \cdot R_{30}^{20}$$

$$M_{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \cos 30^{8} & \sin 30^{8} & 0 \\ -\sin 30^{8} & \cos 50^{8} & 0 \\ -\sin 30^{8} & \cos 50^{8} & 1 \end{bmatrix}$$

$$M_{R} = \begin{bmatrix} 0.87 & 0.5 & 0\\ -0.5 & 0.87 & 0\\ 2.24 & 0.13 & 1 \end{bmatrix}$$

$$P_{0}^{\prime} = \begin{bmatrix} -321 \end{bmatrix} \begin{bmatrix} 0.87 & 0.5 & 0 \\ -0.5 & 0.87 & 0 \\ 2.24 & 0.13 & 1 \end{bmatrix} = \begin{bmatrix} -1.37 & 0.37 & 1 \end{bmatrix}$$

$$P'_{1} = [-0.5 \ 3 \ 1], M_{R} = [0.30 \ 2.43 \ 1]$$

 $P'_{2} = [2 \ 2 \ 1], M_{R} = [2.38 \ 2.87 \ 1]$

$$P'_3 = [1 2 1]. M_R = [2,11 2,41 1]$$

$$P'_4 = [1 \ 0 \ 1]. M_R = [3,11 \ 9,63 \ 1]$$