

EP1000

Project-1-Planning

Planning

- Most important phase in your project
- Decides your route and what you have to do
 - Provides a plan for the next few weeks
 - Decide on what equipment to use
 - Allows for parallel work
- You will always NOT have enough time
 - Scope your project
 - Don't forget your documentation (25%)
 - Do what you can, move on.

Create an overview

Decidewhy?

- Affects your project
 - Complexity of the project
 - Components availability
 - Software development
 - Physical design of the project (25%)
- Decide, based on
 - Familiarity with components
 - Available software and examples
 - Available designs

Time planning

Week	Time allocation	Purpose	
1	4 hr	Get specifications, sizing Sketch project Draw design using Fusion 360 Documentation	Sketches, .F3D, specifications, measurements
2	4hr	Laser cut, 3D print design Start micro-controller testing Documentation	Lab work (closures?), start testing
3	4hr	Complete project test Start fitting Integration	Software development, testing, Integration
4	4hr	Integration of components Documentation Presentation slide, video	Integration, documentation, presentation

Specifications

- Get specification sheets on ALL items
 - Example:
 - Uno R3
 - Nano
- Get dimensions of ALL components
- Do a mock-up of your project
 - Use cardboard, paper, foam, scrap
 - Size up the items, do not physically oversize, undersize
- Sketch, measure proposed design

Physical design

- Sketch a design
- Dimension your design
- Decide what to
 - Laser cut (flat surfaces, stacking, enclosures)
 - 3D Print (irregular shapes, moving parts, holders)
- Make allowances
 - for redos, mistakes
 - lab closures, bookings, time/space allocation
 - Over-exactness

Physical Design

Test vs Implementation

All testing to be done with the UNO board

- Easy connections
- USB & Power
- Lots of examples
- Easy testing!

All implementation to be done with the Nano board

- Connections are there (same as UNO)
- Mini-USB, No Power (except 5V)
- Uses ATMega328 (same processor), so runs the same code
- Need to solder wires/pins

Other considerations

- Pins vs Wires
 - Pins need a mini-breadboard
 - Wires need soldering (another skill?)
 - May need multiple GND and Power
- How to transfer code from UNO to Nano
- Start, Stop, Pause buttons?
- Power considerations
 - 5V, GND
 - Voltage regulation
 - Power sockets (no USB connections)
 - Indicators

Implement a design

- Design drawn using Fusion 360
- Learn how to assemble parts for fittings
- Vector/Raster graphics for decals, labels, artwork
- Documentation
 - Include all RAW files (.f3d, .jpg, .png)
 - Record machine settings
 - Write up your work

EP1000

Project-1-Planning

End