Math textbook

 $phasetr^1$

2014-03-28

 $^{^{1}}phasetr@gmail.com\\$

Contents

Ι	Ma	athem	atical English	9
II	Se	et the	ory	11
1	Intr	oducti	on to cardinal number	12
II	I I	linear	Algebra	13
2	あと	で大幅	rewrite する: 学部 3 年のときに書いた「本」	14
_	2.1	はじめ		14
		2.1.1	数学「を」学ぶ	14
		2.1.2	数学「で」学ぶ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
		2.1.3	一年で物理の講義がほとんど無い理由	15
		2.1.4	物理で使う数学	17
		2.1.5	数学記号の記法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
		2.1.6	物理と近似: まだ書きかけ	19
	2.2	調和振		20
		2.2.1		20
		2.2.2	記法の確認と線形写像・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
		2.2.3		26
			物理法則とベクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
			抽象ベクトル	27
			回転の表現	29
			Galilei の相対性原理	30
			抽象ベクトルの微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
			定理の証明	34
		2.2.4	行列式	36
		2.2.5	内積と外積	43
		2.2.6	線形独立と基底、次元	45
		2.2.7	固有値、固有ベクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
		2.2.8	対称行列の対角化とスペクトル分解・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
		2.2.9	物理への適用	51
		2.2.10	無限次元の線形代数学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
			抽象ベクトル 2	52
				52
			線形独立と次元, 基底 2	55
			内積	56

		直交多項式と基底	58 59
3	App	olication to Google's pagerank	61
ΙV	7 C	Calculus	62
4	Is 0	area for a point, line segment, line?	63
5	ポテ	ンシャルの振る舞いと微分積分	64
	5.1	導入	64
	5.2	$arepsilon$ - δ 論法と収束	65
	-	$5.2.1$ ϵ - δ 論法	65
		5.2.2 Cauchy 列と実数の性質	67
		5.2.3 数列, 級数の収束	69
		5.2.4 開集合, 閉集合, 近傍	70
			70
		· · · · · · ·	
		5.2.6 連続と一様連続	71
		5.2.7 連結と弧状連結	71
		5.2.8 完備な空間	71
	5.3	1 変数の微分と Taylor 展開	71
	5.4	初等超越関数の Taylor 展開	74
	5.5	Euler の公式	75
	5.6	多変数の微分と Taylor 展開	76
	5.7	微分公式	80
	5.8	多変数の Taylor の定理と微分	82
		5.8.1 Taylor 展開の応用-波動方程式の導出	84
	5.9	最大最小,極値問題	86
	5.10	10 <u> </u>	89
	5.11	##### = 1847	91
	5.12	運動方程式と常微分方程式	92
		5.12.1 常微分方程式	92
		5.12.2 初期値問題の解の存在と一意性	93
		準備	93
		微分方程式の解の存在と一意性の証明 1	94
		微分方程式の解の存在と一意性の証明 2 の準備-局所 Lip-	
		schitz 条件	98
		解の延長	
		解の初期値および解に対する連続依存性	
		5.12.3 常微分方程式の解法の為の一般論	
	5 13	1 階線形方程式の解法	
		2 階線形方程式の解法	
			100
6	Max		112
	6.1	導入	112
	6.2	微分作用素ナブラ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
	6.3	諸公式の導出とテンソル	112
	6.4	Green の定理	112
		Stokesの定理	

	6.6 6.7	Gauss の定理		
\mathbf{V}	Complex Analysis			
7		x: Complex Analysis in One variable	114	
	7.1	Definition: complex differentiablity		
	7.2	Cauchy-Riemann equation		
	7.3	Complex line integral		
		7.3.1 Appendix: Green's theorem		
	7.4	Morela's theorem	. 117	
	7.5	Cauchy's integral representation formula and Taylor series expan-		
		sion	. 118	
	7.6	Simple application of fundamental theorems: convergence of holo-		
		morphic functions		
	7.7	Zero points for holomorphic functions and theorem of identity .		
	7.8	Theorem of residues		
		7.8.1 Laurent expansion		
		7.8.2 Theorem of residue		
	7.0	7.8.3 Argument principle		
	7.9	Convergence theorems		
		Representation of holomorphic functions		
		Riemann's mapping theorem		
		Appendix		
	1.13	7.13.1 Vector Analysis		
		7.13.2 Analytic continuation		
_	11	·		
8	Talk	c: Complex analysis for Ising model	127	
9	Seve	eral complex variables	128	
V	I F	unctional Analysis	129	
		·		
10		oduction to Lebesgue integral Why Lebesgue integral?	130	
	10.1	10.1.1 Area		
		10.1.2 Function space: approximation of functions		
		10.1.2 Pulletion space: approximation of functions		
		10.1.4 Comparison of these two distances		
		10.1.5 Limiting procedure		
	10.2	Definition and Properties of measure		
	10.2	10.2.1 Definition		
		10.2.2 Why countable?		
		10.2.3 Definition of Lebesgure measure		
		10.2.4 Null sets		
		10.2.5 Almost everywhere		
		10.2.6 Examples of other measures or measure spaces		

	10.3 Properties of measure	136
	10.4 Product measure and extension theorem	
	10.5 Measurable functions	
	10.6 Definition of Lebesgue integral and its properties	
	10.7 Famous theorems for exchanging orders of limits	
	10.8 Fubini's theorem	
	10.9 Function spaces L^p	
	10.10 Riesz-Markov-Kakutani's theorem	
	10.11Fourier Analysis	
	10.11.1 Hilbert space	
	10.11.2 Fourier series	
	10.11.3 Fourier transform	
	10.11.4 Functions of positive type: Bochner's theorem	
	10.12Miscellaneous results	. 145
11	Introduction to functional analysis	146
19	Introduction to operator theory	147
14	12.1 Functional calculus	
	12.2 Normed field	
	12.2 Normed neid	. 141
13	Introduction to Hilbert Space Theory And Operator Theory	
	13.1 Introduction	
	13.1.1 概要	
	13.1.2 線型代数からの代数的展開	
	13.1.3 標準的なコースで出てくる諸概念の重要性	
	13.1.4 線型代数と物理や工学への応用	
	13.1.5 線型代数と量子力学	. 149
	13.1.6 線型代数と Hilbert 空間	
	13.1.7 微分方程式	
	13.1.8 微分方程式を解くときに出てくる直交多項式	
	Legendre 多項式,球 Bessel 多項式	
	Fourier	
	13.1.9 変分	
	13.1.10 作用素のスペクトル	
	13.1.11 Taylor 展開と作用素論	. 151
	13.1.122 回目の概論	. 151
	13.1.133-4 回目の概論	. 152
	13.1.14 参考文献の紹介	. 152
14	Fourier Analysis	153
15	重ね合わせの原理と Fourier 解析	154
10	15.1 Fourier 級数 関数の大域近似	
	15.1 Fourier 級数 - 関数の入場近似	
	15.3 Dirac の 8 6 8 関数	
	10.3 Diffac の®の頃寅女	
	15.5 Green 関数	
	- 10.0 - ヘンスドルカ雁 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16)4

16	Talk	: Inve	erse analysis for heat equation–mathematics, physics	,
	engi	neerin	ng .	155
17	Talk [25]	: Ana	lysis for the Thomas-Fermi functional after Lieb-Los	$^{ m s}$
		Introd	uction	
	11.1		Comparison for the two problems	
			Variational problem and its mathematical background	
			Schrödinger equation	
			Connection to other mathematical branches	
		11.1.1	Mathematics for quautum mechanics	
			Geometric variational problem	
			Nonlinear analysis	
			Index theorem	
			Stochastic optimization	
			Other optimization problem	
			Singular analysis	
	17.2	Mathe	matical preliminaries	
		17.2.1	The important difference in integration and differentiation	163
		17.2.2	Important spaces	163
			L^p spaces	163
			$L^p + L^q$ spaces	
			the L^1_{loc} space	164
			Sobolev spaces H^k	
		17.2.3	Convolution	
			Definition	
			Convolutions of functions in dual L^p spaces are continuous	
		17.2.4	Various inequalities	
			Hölder's inequality	
			Young's inequality	
		1705	Sobolev's inequality	
		17.2.5	Topologies	
			Strong topology and weak topology in Hilbart spaces Example of weakly convergent sequence	
			Why we use the pointwise convergence instead of weak	100
			convergence?	167
		1726	Theorems in Lebesgue integral and functional analysis	
		11.2.0	Dominated convergence	
			Differentiality of norms, Gateaux derivative	167
			Uniform boundedness principle	167
			Banach-Alaoglu theorem	168
			Derivative of the absolute value	168
			Convexity inequality for gradients	168
			Fundamental theorem of variational method, du Bois-Reym	
			lemma	169
		17.2.7	Potential theory	169
			Positivity properties of the Coulomb energy	169
	17.3	Thoma	as-Fermi theory	169
			Thomas-Fermi problem	
			Outling	160

			Existence of an unconstrained Thomas-Fermi minimizer Thomas-Fermi equation	. 175
18			alysis for the Friedrichs model: perturbation theoroded eigenvalues	у 179
19	Mat	hemat	tical foundations for quantum statistical mechanics	180
20	Mat	hemat	tical foundations for quantum mechanics	181
\mathbf{V}	II :	Proba	ability and Statistics	182
21	Talk	: Law	of large number and central limit theorem in coi	n
	toss			183
	21.1	参考文	献	. 183
	21.2	数学的	」準備	. 183
			加法定理・倍角の公式	
			指数関数の微分積分	
			Rademacher 関数	
			Rademacher 関数の積分公式	
			Rademacher 関数の積分公式 2	
			Lebesgue 積分の定理	
	21.4		iげの数理と独立性	
			Viète の公式	
			Rademacher 関数	
			どういうことなの?	
			2 進展開の確率論ことはじめ	
			独立性ことはじめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	21.5	大数の		
			大数の弱法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
			大数の強法則	
	21.6		·限定理	
			正規分布	
			中心極限定理の正確な言明: Rademacher 関数版	
		21.6.3	Markov の方法とその厳密化	. 196
22	Talk	: Gau	ussian superprocess and its application to Quantum	\mathbf{n}
			ory: Sasakure Seminar	198
	22.1		uction	
			Application to quantum field theory [9, 8]	
			Application to geometry [9] chap. 6	
			Application to analytic number theory [4]	
	22.2		ian superprocess and its construction	
			Basics for probability	
		22.2.2	Gaussian superprocesses	
			Fundamental structures	. 202
			Uniqueness	. 202

Existence of a Gaussian superprocess for any separable	H 203
22.3 Concrete realization of the set Q	
22.4 Application to quantum field theory and relation to operator a	
gebraic formuration	
22.5 Appendix	
22.5.1 Stone-Weierstrass theorem	
22.5.2 Minlos' theorem	
	00
23 Statistics for idol management	207
VIII Algebra	208
24 対称性と群論	209
24.1 運動方程式を不変にする変換	
24.2 エネルギーを不変にする変換	
24.3 群	
24.4 Lorentz 群と Maxwell 方程式	
24.4 Lorentz 辞と Maxwell 万桂式	
24.0 解例1刀子小調	209
IX Geometry	210
X Interesting counter examples	211
25 Playing with interesting counter examples	212
XI Applied mathematics	213
26 Degital signal processing and algebraic geometry	214
27 Peano curve and its application to engineering	215
XII Quantum mechanics and Quantum field theory	216
XIII Statistical Mechanics and condensed matter ph	ysics
28 LASER: song by electrones	218
29 Analysis for Hubbard model	219
XIV Physical misc	220
30 Similarity for hydrodynamics and general relativity	991
oo Shimariy ior nyurouynamics and general relativity	221

XV Reference 222

Part I Mathematical English

数学に関する英語表現を色々書く.

Part II Set theory

Chapter 1

Introduction to cardinal number

動画から適当に切り出してくる.

Part III Linear Algebra

Chapter 2

あとで大幅 rewrite する: 学部 3 年のときに書いた「本」

2.1 はじめに

2.1.1 数学「を」学ぶ

これは基本的に数学の本です.物理現象を解析するのに,ある数学の理論が有用なので,実際の解析を視野に入れつつ,そうした数学を展開していこう,という趣旨です.物理学にとって,数学とは驚異的に役に立つもので,場合によっては数学的な考察から新たな物理を生み出すことさえあるほどです.しかし,物理を学び,研究する際に何故数学を用いるのでしょうか?

物理現象の解析に数学を用いたのは、Galilei によると言われています. 彼は「哲学は宇宙という大書物に書かれている」と考えていたようで、物理現象を数学的に定式化することに成功しました. 実際にどんな現象が起こっているのかを確かめるために、(再現可能な) 実験を行って、位置の時間変化などを数値として表し、その上でその数値を比較する、という方法は、確かに優れたものだと思います. うまく数値を扱うために、数値の扱いに関してすでに整った体系を持っていた数学を用いよう、というのは自然な発想でしょう.

しかしこれから私たちが学ぶ数学には、単なる数値の扱いを超えた、かなり高級なものも含まれています。何故こうした数学を学ばなければならないのか考えてみると、そうすると現象の解析に便利だから、というだけです。他にもっと楽な方法はないのか、と思わないでもありません。そもそも、物理を学ぶのに何故数学が必要なのか、役に立つのか。非常に不思議です。Feynman は、物理学を日常言語で表現できないうちはまだまだ(人類の)自然界への理解が足りないのだ、と考えていたようです。数学で表現された物理学の理論が(全てとはいわずとも)日常言語に翻訳可能である、という事実も、良く考えてみると驚くべきことです。

現在の物理学を見渡す限り、数学はなくてはならない重要な道具であることは間違いないでしょう。しかしそれだけでしょうか。Bohr は前期量子論において、その理論構築の中で、実験結果とあわせるために、振動数の量子条件を数学的な関係式として導入したようですが、後になって、この物理的な意味が、物質波の理論とともに de Broglie によって与えられました。このように、数学的な考察がはじめにあり、その後に数学に物理的な生命を吹き込むという作業を行う場合があります。こうした事例は数学が、物理を数学的・抽象的な舞台に持ち込むことで、逆に単なる直感を超えた議論が展開できるようになり、物理的直観を伴った深い理

解をもたらす可能性を示唆します.

何はともあれ、以下、本書では数学に対して

*何故だか分からないがとても役に立つ.**道具というよりもむしろ武器である*

というスタンスのもと、物理学を学ぶのに有用な数学の理論を展開していきます。とにかく実際に自然界で何が起こっているか良く分からないので、そうした化け物を人間のつつましい能力で扱うための武器である数学は、自然界の事物の本質に従うべきもので、すっきりきれいにまとまるものばかりというわけにはいかないでしょう。いきおい泥臭い話にならざるを得ない部分があります。そして、頼みの武器がなまくらでは困ります。物理学を埋め込むのに、時として抽象性が高く、難しい数学を用いなければならないことがありますが、これらは全て物理学のためです。頑張って食らいついてください。

また、単に理論を紹介するということなら、すでに世に良い本はたくさん出回っています。(筆者だけかもしれませんが、以前、特に数学の)本を読む際に一番退屈だったのは、定義がごちゃごちゃと出てくるところです。しかし、近い将来私達がそうした理論を作ろうというときがやってきます。このとき一番重要になるのは、先程「退屈」といった定義のところでしょう。何故かというと、一般的に何かを調べようというとき、そもそも何を調べるか、どう調べるかということが一番の問題になります。調べたい事柄に対し、それを良く反映した物理量を導入(定義)していくことになるでしょう 1.

こうした点を踏まえ (筆者の勉強もかねて), この本ではなるべくどのような定義を何故導入するかということに神経を使っていくことにします. これらは筆者が一番納得できると思った定義と論法であり, 他の人から見れば, 気に食わない定義・論法かもしれません. そういう場合, 自分で積極的に納得のいく定義を考えてください. 数学での例になりますが, L. Schwartz という人が超関数の理論を考え出しました ² しかし, 日本人数学者の佐藤幹夫は, この定義がひどく気に食わなかったようで, 今日「佐藤超関数」として知られる理論体系を組み上げ, 世界的に有名になりました. 納得のいかない定義を納得のいくものにすることで世界的な業績をあげてしまった, このような例があります. 定義は納得するまで考えてください. 定義こそが生命線です.

2.1.2 数学「で」学ぶ

作りかけ.

2.1.3 一年で物理の講義がほとんど無い理由

人によっては衝撃的なタイトルであるかもしれません. 応物・物理に来たというのに、一年生では物理をほとんどやらない、というのですから. しかしこれにはもっともな理由があります. まず物理の代わりに何をやるのかということですが、数学をやります. 先程述べたように、現在の枠組みの中では、物理学の理論を埋め込むべき数学を知らないと、物理学が理解出来ないからです.

例をあげます. 一年の授業で物理学 A という講義がありますが, これはいわゆる力学です. 一般に空間の点はベクトルで表されますが, この点の動きを力学的に追跡するのに速度・加速度という概念を必要とします. 数学的には, 速度は位置 (変位) を時間微分したもの, 加速度はもう一回位置 (変位) を時間微分した

¹後で具体例を加える

 $^{^2}$ これは物理学において Dirac が導入したデルタ関数を数学的に正当化する理論であり、 非常に重要な理論です.

ものです。運動方程式は加速度を含んだ式ですが、r=(x,y,z) を位置ベクトル、f(r,t) を力のベクトルとすると

$$m\frac{d^2\mathbf{r}}{dt^2} = \mathbf{f}(\mathbf{r}, t) \tag{2.1.1}$$

と書けます 3 . これは数学的には 2 階の常微分方程式となります. もちろん (物理学を学ぶのに必要になるレベルの) 微分方程式は高校で学んでいないはずです.

高校で力として重力、摩擦力、垂直抗力、電磁力など色々学んだと思いますが、 その中に Lorentz 力というのがありました. これをベクトルで書くと

$$f(r,t) = q\{E(r,t) + r \times B(r,t)\}$$
(2.1.2)

となります。右辺にある \times はベクトルとベクトルの外積を表す記号として使われます。 おそらく数学 A (線形代数) の講義で出て来る前に力学で出てくるでしょう。

また高校で位置エネルギーや電位というのを学んだでしょうが、これらはまとめてポテンシャルと呼ばれます。あまりいい加減なことをいうのも良くないのですが、ポテンシャルというのは空間微分すると力(の成分)が出てくるものだと思いましょう。実際に重力ポテンシャルから重力を出してみます:

$$\mathbf{f}\left(\mathbf{r},t\right) = -\frac{\partial\left(mgz\right)}{\partial z} = -mg. \tag{2.1.3}$$

ここでまた変な記号が出てきますが、一般式はポテンシャルを $U(\mathbf{r},t)$ として

$$f(r,t) = -\operatorname{grad} U(r,t) \tag{2.1.4}$$

$$\operatorname{grad} := e_1 \frac{\partial}{\partial x} + e_2 \frac{\partial}{\partial y} + e_3 \frac{\partial}{\partial z}$$
 (2.1.5)

$$\mathbf{e}_1 := \mathbf{e}_x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \mathbf{e}_y = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{e}_3 := \mathbf{e}_z = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (2.1.6)

のようになります.ここで「 \$:=\$」は「右辺を左辺で定義する」という意味です.ポテンシャルに限らず,物理に登場する関数は一般に空間と時間を変数に持ちますから,4 変数関数です,そこで 4 変数関数の微分が出来るようになる必要があります.多変数の微積分は後期の数学 B で学ぶことになっていますが,遅すぎます.慣れれば別にどうということもないですが,慣れるまでが大変なのです.そうかといって,詳しく数学を教えていたら物理の講義になりません.したがって数学の説明は必要最小限にして話がどんどん進みます.

以上, 簡単に物理学 A のはじめの部分を書いてみました. この時点で「数学が便利」というのはよく分からないと思いますが, 数学が必要ということは分かってもらえたと思います. そしてこんな講義についていけるのかと思う人が大半でしょう

例えていえば、数学が分からないということは実験するのに実験装置の使い方が分からない、ひどい場合は説明書すら読めない、ということです。しかし実験装置は説明書を読むだけでなく、実際に使いながら操作法を学んでいくものです。数学書を(1 人で)読み進めながら学んでいくことは非常に難しいことですが、物理がしたくて大学に来たのですから「何のために数学をするのか」というモチベーションが無いとどうしても途中で挫折してしまうでしょう。ここに生じる隙間を

 $^{^3}$ 高校で学んだ記法 \vec{r} の代わりにこのように肉太の文字で書きます。普通の文字, r (肉太のものはr) と区別して下さい。実際に手書きするときは $\mathbb A$ のように書きます。

埋めるには、実際にいろいろ物理で遊んでみて、どんな所でどのような数学を、どのように用いて、何をやるのかを自分で見てくることがよいでしょう.

本書ではその一例として、振動・波動現象の解析を実際に行ない、その中でどのような数学がどのように現れるかを示してみたいと思います。何故振動・波動を扱うのかというと、これが建築物の耐震性、共振の防止などの実用的な観点からも重要なだけでなく、物理でも振り子の連成振動がニュートリノに質量があることを証明したニュートリノ振動の力学モデルであること、電磁場が実は調和振動子の集合であることなど、初等的な所から最先端まで、物理学のいたるところに登場する重要なものだからです。そして、重要な数学もたくさん登場します。物理・数学共にそれ程詳しく論じるスペースはありませんが、この2年間の経験からこれだけあれば十分物理で遊べる、といえるぐらいの内容は盛り込んであります。

時にはかなり細かい注がついていることがあります。これらには (進んだ注) という, 見なくても分からなくても良い注だという印をつけておきます。 きちんと考えるとややこしいことがあるようだ、ということだけ把握してあれば十分です.

2.1.4 物理で使う数学

基本的に物理学で使う数学は、微分・積分と線形代数です。これらの計算と、多少の理論を (理解できずとも) 知ってさえいれば、物理学の中で遊びまわれます。 表題のとおり、各分野で使う数学を列挙してみます。 大体の説明もつけます。

(一般, 古典) 力学では行列式の計算や対角化, 各種計算の為に (多変数の) 微分積分, 現象を記述するための重要な道具である微分方程式が必要になります.

解析力学ではかなり込み入った偏微分の計算が出来なくてはなりません. 2 年の講義では電磁場の解析力学なども扱いますが、その為にベクトル解析が使えると便利です.

電磁気学では何よりもまずベクトル解析を使いこなせないといけません。これは電磁場の数学的取り扱いを非常に容易にしてくれます。数学的・形式的な面だけでなく、ベクトルによる物理法則の記述は相対論的共変性という観点からみて物理的に本質的な役割を果たします。また、Maxwell(マクスウェル)の方程式を実際に解くことがありますが、その際に Fourier(フーリエ)級数・ Fourier 変換が非常に便利な道具として活躍します。電磁気学から特殊相対性理論が生まれたわけですが、そこでは線形代数の理解が重要です。 = 重ね合わせ = の理解にも線形代数の理解が不可欠です。

熱力学では偏微分と凸関数の解析が出来ればどうにかなります.

回路理論は応物の皆さんは 2 年で必修になります. ここでは回路方程式をきちんと扱えるようにするために、複素数、(常) 微分方程式、Fourier 級数、Fourier 変換、Laplace 変換が必要になります.

量子力学の基礎数理は線形代数です。透徹とした線形代数の世界を見せられることになります。また具体的な問題を解こうと思うと微分方程式 (Schr{o}dinger方程式) を解くことになりますが、そこでは特殊関数などを自由自在に使いこなせると便利です。これまでと異なり、もはや厳密解を求めることが出来ないようなケースを扱うことになりますが、そこで「摂動」という手法が出てきます。要は近似の度合いを上げたいということなのですが、そこで微分積分の計算力を問われます。

統計力学では:書きかけ.

相対性理論の一番基本的なところは線形代数と Taylor 展開 (一次近似) さえ出来れば完璧に理解できます (100 年の記念で節目の年です. Einstein の論文を読みましょう). . もう少し細々としたところまで扱おうとするならば, テンソルや群論の力を借りて数学的な議論をなるべく簡単に済ませたいところです.

これだけでは実際にどういう数学をどこでどう使うのか、ということは良く分からないでしょうが、一年で学ぶ線形代数、微分積分、ベクトル解析を良く使うことは分かると思います.

見た方が早いです. 実際に振動現象の解析に入ってみましょう.

2.1.5 数学記号の記法

本書では記述を簡便にするために、数学の記法をいくつか導入します. その中で基本的な記法と概念をいくつかここで紹介します.

作りかけ.

本書では振動・波動現象の解析を通じて、数学を学んでいくことにします. 最終目標は、Fourier (フーリエ) 解析 4 に慣れ親しみ、きちんと使えるようになることです. 物理としては本末転倒ですが、本書では振動・波動を次の 2 つの (線形の微分) 方程式に支配される現象であると定義します 5 :

$$\frac{d^{2}u\left(t\right)}{dt^{2}} = -\omega^{2}u\left(t\right) - \gamma\frac{du\left(t\right)}{dt},\tag{2.1.7}$$

$$\frac{1}{v^2} \frac{\partial^2 u\left(\boldsymbol{x},t\right)}{\partial t^2} = \frac{\partial^2 u\left(\boldsymbol{x},t\right)}{\partial x^2} + \frac{\partial^2 u\left(\boldsymbol{x},t\right)}{\partial y^2} + \frac{\partial^2 u\left(\boldsymbol{x},t\right)}{\partial z^2}.$$
 (2.1.8)

余計な項が入っていますが、上の式 (で $\$\gamma = 0\$$ とした式) は、高校でも学んだ単振動の方程式です。下の式は、その名もずばり波動方程式です。

さて振動・波動を取り上げる理由ですが、これは 2 つあります。第一に、振動・波動は物理のなかでよく出てきます。単振動は一つの例ですが、これは電気回路の式とも数学的に等価です。2 つのおもりをバネでつないだモデルが、ニュートリノに質量があることを証明したニュートリノ振動の力学モデルであること 6、電磁場が空間の中を伝わるとき波動として伝わっていくことなど、初歩から最先端まで、いたるところに出てきます。実用的なところでは、建築物の耐震性、共振の防止をモデル化して考えたとき。この方程式が出てきます。

もう一つは、色々な数学が出てくることです。これに付いては以下の本書の構成の中で説明します。

第2章は線形代数です。高校でいうと、行列とベクトルの理論です。物理としては、たくさんの質点をバネでつなげ、この振動を調べたいと思います。特に一般の \$n\$個の質点があるとき (これは例えば、固体物理学で結晶の格子振動の模型として出てきます)。 に、これをスマートに調べようと思うと、線形代数の力を借りるのが便利であることが分かります。 また、あるポテンシャルが支配する質点系は、ポテンシャルの安定点近傍で微小振動することが分かっています。 これを微分積分の章で証明するとき、ここで使った議論の助けを借ります。

他にも、線形代数は量子力学を学ぶときに決定的に重要な役割を果たします。 ここで使われるのは、線形代数の抽象論 (線形空間論) です. 本書ではここに重点 を置いて議論を展開します.

最後に、無限次元の線形代数を扱います。これは本書の目標、Fourier 解析の舞台です。ここで Fourier 解析の「こころ」を学ぶことにしましょう。本書のエッ

 $^{^4}$ 簡単にいうと、三角関数で色々な関数を展開(近似)しよう、というものです。三角関数は周期を持っているので、特に周期関数の近似で威力を発揮します。

⁵誤解のないように言っておきますが、これらの式に従わない「波動」が存在します. 非線形波動 と呼ばれる現象群がその代表です. ソリトンだとか色々あるようです.

⁶² 年のときに筑波の高エネルギー加速研に行ったことがあるのですが、そこの先生からこのお話を聞いたので間違いありません。「一つのモデルでたくさんの現象が説明できるのが物理の面白いところなんだ!」と力説していました。

センスがここに詰まっていて、読むのも大変と思いますが、頑張ってついてきてください。

第3章は微分積分です。物理としては、ポテンシャルの安定点近傍での微小振動を証明します。まず復習をかねて1変数関数の微分を見直します。この1変数の微分をもとに、多変数関数の微分(偏微分)を考えます。次に積分ですが、物理でよく出てくる1変数の積分の計算結果と多変数の積分(重積分)の変数変換を中心に扱うことにします。

第4章は常微分方程式論(初期値問題)です.単振動の方程式は高校で学んだ, としてきましたが,これを考えなおします.物理としては,よく出てくる常微分方 程式の解の性質を調べてみます.これらに関しては,式を見ただけで解の様子が 把握できるようになってください.数学としては,常微分方程式の初期値問題の 解の存在と一意性の議論が中心です.簡単な解法にも触れます.

第 5 章はベクトル解析です. 物理としては, やはり電磁気学です. いくつかの実験式から Maxwell (マクスウェルの方程式) を導出し, これから電磁場が波として伝わることを見ます.

第 6 章は複素関数論です. 第 2 章で Fourier 解析を扱うときに Euler (オイラー) の公式

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{2.1.9}$$

を紹介します。これは指数関数の複素領域への拡張ですが、これが一意的であることを証明したいと思います。他にも留数解析などの重要な計算法を紹介します。物理として本質的なのはやはり量子力学なのでしょうが、本書の程度を超えます。この章は物理の色が少し薄いかもしれません。

第7章は偏微分方程式です.様々な物理法則は偏微分方程式で記述されます. 学部レベルの物理で出てくるのは、ほぼ線形の偏微分方程式です、波動方程式は もちろんこの中の1つです.これらを解法を中心に説明していきます.ここで Fourier 解析をガンガン使います.

第8章は群論です. 物理法則には共変性を要求するのが自然です. この共変性は群論という数学と深く関わっていることが知られています. これを電磁気学での Lorentz 変換と絡めて説明しようと思います.

2.1.6 物理と近似: まだ書きかけ

良い近似とは何か, みたいなことを書きたい. まだうまくまとまらない. 節のタイトルも問題か?

本書では、数学的に厳密な解を (主に三角関数を使って) 具体的に書き下せる物理現象しか扱いません. これは、物理現象を暴力的に単純化しているからです. 例を挙げましょう. 結晶を考えます. 結晶は規則正しく格子状に原子が並んでいる、というイメージを持っていると思います. そして原子は、格子点のまわりで熱振動しているでしょう. 温度が高くなると、原子の熱振動の振幅が大きくなり、最後には結合が切れて液体になると考えられます. ここから、結晶では原子はバネでつながっているというモデルが作れます. このとき、バネでつなげたのは、すぐ隣の原子どうしです.

ちょっと考えると、想像を絶する単純化をしていることが分かります。まず、原子を結び付けているのは Coulomb (クーロン) 力のはずですが、これは距離の 2 乗に反比例する力です。これをバネ(距離に比例)と近似しています。また、Coulomb 力は遠くの原子にもはたらきますが、この効果を切り捨てています。

しかし、実験と比較してみると、この乱暴なモデルでも定量的に精度良く説明できる現象があります. 格子振動とその量子化、フォノンといった概念を登場さ

せ, 物理を豊かにしてくれます. むしろ, Avogadro (アボガドロ) 数くらい原子が 集まる (多体系) と, 少数粒子の系とは全く違うふるまいを見せてくれることを教 えてくれます.

物理では、近似はただの単純化ではありません。色々な意味で、1 番強烈な例は熱力学でしょう。例えば気体の熱力学を考えます。気体は Avogadro 数個の原子からなります。しかし、熱力学では Avogadro 数個の原子を直接扱う (ミクロな取り扱いをする) ことはありません。体積、温度、圧力といったマクロな量だけを用いて、この大自由度の系を特徴づけできないかと考えます。1 つ 1 つの原子を全く考えない、というある意味では暴力的な近似とも考えられます。

しかし、熱力学は定量的にも厳密な結果が出せる、物理の中でも 1,2 を争うほど正確な理論です。それだけではなく、単純なミクロな系のあつまりではありえない不可逆過程や相転移といった現象や、いわゆる「熱」まで含めたエネルギー保存則の拡張など、新たな物理を見せ、説明してくれます。多体系での原子たちは、少数粒子のときとは全く別の論理に従っているようです。

2.2 調和振動子と線形代数

2.2.1 導入

高校で単振動を学んだことと思います。これは調和振動とも呼ばれます。以下では調和振動で統一します。調和振動の式 (運動方程式) を書くと 7 ,

$$m\ddot{x}(t) = -kx(t). \tag{2.2.1}$$

そしてこの方程式 (微分方程式) の解が

$$x(t) = A\sin(\omega t + \phi)$$
, $\omega := \sqrt{\frac{k}{m}}$ (2.2.2)

であることは知っているとします 8 . これから両端が壁につながった 3 本のばね 定数 k のばねの間に質量 m のおもりが 2 つつながれている系のを調べます.

受験問題でもよく見かけるような状況です。これは固体の格子振動の模型などで重要です。2 つのおもりの平衡点からのずれを $x_1(t),x_2(t)$ として、おもりの運動方程式を書くと 9 、

$$m\ddot{x}_1 = -kx_1 + k(x_2 - x_1) \tag{2.2.3}$$

$$m\ddot{x}_2 = -k(x_2 - x_1) - kx_2 \tag{2.2.4}$$

となります. あとできちんとやりますが, 天下りに,

$$X_1 := \frac{1}{\sqrt{2}} (x_1 - x_2) \tag{2.2.5}$$

$$X_2 := \frac{1}{\sqrt{2}} (x_1 + x_2) \tag{2.2.6}$$

として 10 上の式に代入して整理すると、

$$m\ddot{X}_1 = -3kX_1 \tag{2.2.7}$$

$$m\ddot{X}_2 = -kX_2\tag{2.2.8}$$

 $^{^7}$ 時間微分を $\dot{x}(t)$ のように上に点を打つことで表します. 2 階の時間微分は $\ddot{x}(t)$ です.

⁸微分方程式の章でもう少し詳しく触れます.

 $^{^9}$ 変数の時間 t を書くと煩雑であり、また明らかなものなので省略しました。よくこうした省略をします。慣れてください。

^{10:=} というのは右辺で左辺を定義するという意味でした.

となり実に綺麗に分解できてしまいました. こうすると高校でやってきたのと同 じように

$$X_1 = A_1 \sin\left(\sqrt{\frac{3k}{m}} t + \phi_1\right) \tag{2.2.9}$$

$$X_2 = A_2 \sin\left(\sqrt{\frac{k}{m}} t + \phi_2\right) \tag{2.2.10}$$

となり、 X_1, X_2 の定義式から x_1, x_2 が求まります.

今度は同じ状況ですが、ばねが 4 つで 3 つの質点がそのばねの間につなげられている系を考えます。 先程と同様に質点の平衡点からのずれを x_i , i=1,2,3 として運動方程式は

$$m\ddot{x}_1 = -kx_1 - k(x_1 - x_2) \tag{2.2.11}$$

$$m\ddot{x}_2 = +k(x_1 - x_2) - k(x_2 - x_3) \tag{2.2.12}$$

$$m\ddot{x}_3 = -kx_3 + k(x_2 - x_3) \tag{2.2.13}$$

となります. またもや天下りに

$$X_1 := \frac{1}{2} \left(\sqrt{2}x_1 + x_2 - x_3 \right) \tag{2.2.14}$$

$$X_2 := \frac{1}{2} \left(\sqrt{2}x_2 + \sqrt{2}x_3 \right) \tag{2.2.15}$$

$$X_3 := \frac{1}{2} \left(-\sqrt{2}x_1 + x_2 - x_3 \right) \tag{2.2.16}$$

として上の式に代入して整理すると

$$m\ddot{X}_1 = -2X_1 \tag{2.2.17}$$

$$m\ddot{X}_2 = -(2 - \sqrt{2})X_2 \tag{2.2.18}$$

$$m\ddot{X}_3 = -(2+\sqrt{2})X_3\tag{2.2.19}$$

となり、これ以降は2質点の時と同じです.

これをさらに n 質点系へと一般化しましょう。何故一般化するのかということは当然の疑問ですが,上述の格子振動などでも一般には多数の質点の集まりですから,一般の n での解析が必要です.また弾性体(例えば弦)の振動を扱おうとすると,これは $n \to \infty$ とした極限を考えることになります.この一般化を見通しよく行なう為に私たちは線形代数学の力を借りることになります.2 質点ぐらいなら適当にやっていてもどうにかなりそうですが,3 質点ではもう既になかなか直観的にいけそうな気配がありません.一般の n 質点では適当にやってどうにかするのはとても無理そうです.付記しておくと,2 質点系の場合の X は重心座標と相対座標になっています.つまりこれらは現象の見やすい座標系への座標系の変換であったとみなせます.しかし 3 質点系では一見して良く分かる,というわけにはいきません.こうした座標系の変換をどう見つけるかという考察をしたいというわけです 11

次章では一般のポテンシャルに対し、安定点が存在すればその近傍ではそのポテンシャルに支配された系の運動が微小振動になることを証明します。そこへの接続に十分な範囲での議論をしなければなりませんが、それ以外にも重要なことは補足しながらいくことにします。

¹¹他にも線形代数は建築などで巨大行列の行列式の計算をすることがよくあるらしく,その為の行列式の計算の効率の良いプログラミングの作成などは今でも研究対象となっているようです.

2.2.2 記法の確認と線形写像

いくつかの一般的な記法をまとめておきます。今この場で覚えようとしても無理なので、使いながら覚えていって下さい。つまらないですが少し我慢して下さい。

数学的対象となるものの集まりを集合といいます。 実数全体,自然数全体などはいずれも集合です. 1 つの集合 A があるとき,A を構成する個々のものを A の元 (ゲンと読む) といいます.x が A の元であることを記号 $x \in A$ あるいは $A \ni x$ で表します.集合 A と B があったとし,A の全ての元が B の元となっているとき,すなわち任意の A の元 a が $a \in B$ となるとき,A は B の部分集合であると言い, $A \subset B$ または $B \supset A$ と書きます.元が 1 つもない集合も特別な集合とみなし,これを空集合と呼び,A と書きます.これは任意の集合の部分集合です.

集合 A が元 $x_1, x_2, \ldots, x_n, \ldots$ からなるとき、記号

$$A = \{x_1, x_2, \dots, x_n, \dots\}$$
 (2.2.20)

$$= \{x \, ; \, x_n \, , \, n \in \mathbf{N}\} \tag{2.2.21}$$

で表すことがあります. すぐあとで述べますが N は自然数の集合です. 一般にある条件 C(x) を満たす元の集合を

$$\{x \, ; \, C(x)\}\$$
 (2.2.22)

と書きます. 具体的には

$$\{x \, ; \, x \le 3 \, , \, x \in \mathbf{N}\}$$
 (2.2.23)

などです.

集合 A,B があり、写像 12 f が A を定義域とし B を値域とするとします.これを

$$f: A \to B \tag{2.2.24}$$

$$f: A \ni a \mapsto b = f(a) \in B \tag{2.2.25}$$

などと書きます。自然数 13 、整数,有理数,実数,複素数 14 全体の集合を各々N,Z,Q,R,C と書きます 15 。また正の整数は $\mathbb{Z}^+:=\{1,2,\ldots,\}$,正の実数は $b_R^+:=[0,\infty)$ と書くことがあります。他にも n 次元空間を普通の数のように R の n 乗ということで R^n と書きます。あとで複素 n 次元空間 C^n も使います。さらに, $n\times m$ 複素行列全体の集合を M $(n,m\,;C^n)$ と書きます。

ここからは行列の記法の確認です。特に行列式のところで証明を含めて大体のことを 3 次正方行列について書きます 16 . 2 次だと単純すぎていろいろ簡単になってしまっていることがあり、4 次以上は書くのが面倒だからです。証明については一般の n 次でも成立するようなものをつけます。

 $^{^{12}}$ 数のことだと思って下さい。細かいことを言うと定義域,値域が一般の集合のとき主に写像といい、これら実数や複素数のときに主に関数というようです。

 $^{^{13}}$ ここでは自然数は 0 を入れます.

 $^{^{14}}$ 自然数, 整数, 有理数, 実数, 複素数は各々英語で natural number, integral number (integer), rational number, real number, complex number といいます. N, R, C はその頭文字です.

 $^{^{15}}$ それぞれ手書きするときは $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}$ と書きます.

 $^{^{16}}$ 正確には n 次元でも同じように出来るけれども,一般的に行なうのが非常に面倒な場合に 3 次でやります.次元による面倒が全く無いような場合がありますから,そういう場合に n 次で書くことがあります.

まず A を 3 次正方行列としその (i,j) 成分を a_{ij} としましょう. このとき, 行列 A を次のように書きます.

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{pmatrix}$$
(2.2.26)

ただし

$$a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, a_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}, a_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}.$$
 (2.2.27)

また、適当な場所もないようなので、この場で n 項単位ベクトルを導入しておきます. n=3 として書くと

$$e_1 := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$
 (2.2.28)

単位行列を I と書くことにしますが、ついでに Kronecker (クロネッカー) の δ と呼ばれるものを定義します.これは

$$\delta_{ij} := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \tag{2.2.29}$$

というもので、これを使うと単位行列は $I=(\delta_{ij})$ と書けます.零行列は O と書きます.

単位行列を定義したので次は逆行列を定義しておきましょう。 ある行列 A に対し X という行列が存在して AX=I となったとしましょう。 このとき X を右逆行列と呼びます。 左逆行列も同様に定義します。 有限次行列 17 の場合, 片方の逆行列が存在するともう片方の逆行列が存在して, この 2 つが一致します. 実際, X を A の右逆行列, Y を A の左逆行列とすると

$$X = IX = (YA)X = Y(AX) = YI = Y . \blacksquare$$
 (2.2.30)

また逆行列が存在する行列のことを正則行列といいます。

次に高校で学ばなかったと思いますが、転置行列 tA というものがあります。 これの定義は

$${}^{t}A := (a_{ji}) = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
 (2.2.31)

です. 元の行列の行と列をひっくり返したものです.

書き忘れていましたが一般にベクトルは全て列ベクトルとします。行ベクトルはあまり使わないのですが、スペースの関係もあって使いたいことがありますから、その為に今の転置の記法を流用します。またこれを用いて以下のように転置行列を書くことがあります。

$${}^{t}\boldsymbol{a}_{1} := (a_{11} \, a_{21} \, a_{31}) \, {}^{t}\boldsymbol{a}_{2} := (a_{12} \, a_{22} \, a_{32}) \, {}^{t}\boldsymbol{a}_{3} := (a_{13} \, a_{23} \, a_{33})$$
 (2.2.32)

$${}^{t}A = \begin{pmatrix} {}^{t}\boldsymbol{a}_{1} \\ {}^{t}\boldsymbol{a}_{2} \\ {}^{t}\boldsymbol{a}_{3} \end{pmatrix}. \tag{2.2.33}$$

¹⁷次元についてはあとできちんと述べます.

転置行列と元の行列が一致する行列,すなわち $^tA=A$ となる行列を対称行列といいます.一番初めに見せた運動方程式を行列でまとめたときに出てくるのは対称行列です.実際に書いてみると分かります.

$$m\ddot{x}_{1} = -kx_{1} - k(x_{1} - x_{2})$$

$$m\ddot{x}_{2} = +k(x_{1} - x_{2}) - k(x_{2} - x_{3})$$

$$m\ddot{x}_{3} = -kx_{3} + k(x_{2} - x_{3})$$

$$\iff m\begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{x}_{3} \end{pmatrix} = -k\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

あとで少し使うので対称行列の性質を 1 つ証明しておきます. それは $^t(AB)=^tB^tA$ という性質です. 具体的に両辺を計算するとすぐ分かります. やってみましょう.

(証明) $A=(a_{ij})$ という書き方を使います. 記述の便宜を図るため, $^tA=(a_{ii})=(^ta_{ij})$ という記法も一時的に使います.

$${}^{t}(AB) = {}^{t}\left(\sum_{k=1}^{3} a_{ik} b_{kj}\right) = \left(\sum_{k=1}^{3} a_{jk} b_{ki}\right) = \left(\sum_{k=1}^{3} {}^{t} b_{ik} {}^{t} a_{kj}\right) = {}^{t} B^{t} A \blacksquare \quad (2.2.34)$$

あともう 1 つ転置について重要なものとして直交行列というものがあります. これは ${}^tUU=I$ となるような行列のことです. すなわち ${}^tU=U^{-1}$ ということです.

複素行列 A の共役をとる操作を普通の複素数のとき同様に \overline{A} と上にバーを書くことで表します. これにより, 随伴行列 A^* を

$$A^* := {}^t \overline{A} \tag{2.2.35}$$

と定義します。ここで先程の対称行列・直交行列に対応するものがありますから、それを定義しておきましょう。 $A^*=A$ となる行列を $\operatorname{Hermite}\ ($ エルミート) 行列, $A^*A=I$ となる行列をユニタリ行列と呼びます。

また対角行列なるものがあります. 一般に a_{ii} の形の成分を対角成分といいます. 対角行列というのは対角成分しか持たない行列のことです. すなわち $A=(a_i\delta_{ij})$ という行列です.はじめに書いた運動方程式を X で書き直したものを行列で表現すると対角行列になります.

$$m\begin{pmatrix} \ddot{X}_1 \\ \ddot{X}_2 \\ \ddot{X}_3 \end{pmatrix} = -k \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 - \sqrt{2} & 0 \\ 0 & 0 & 2 + \sqrt{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

次に上三角行列を定義します。上三角行列というのは行列の対角成分より下, a_{ij} の j < i となるところが 0 となる行列です。具体的にこう書くと分かるでしょう。

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{pmatrix}$$
(2.2.36)

下三角行列も同様に定義します.

行列 A が正規行列であるということを次の式で定義します. これは対角化のところで用います.

$$AA^* = A^*A (2.2.37)$$

上の条件は A と A^* が交換可能であるということであり、Hermite 行列やユニタリ行列はこれを満たします。 行列が Hermite、ユニタリであるというのはそれぞれ $A^*=A$ 、 $A^*=A^{-1}$ が成立するということでした。 実数の範囲で考えれば、これは対称行列・直交行列のことです.

次は部分 (線形) 空間という概念です. W が C^n の部分空間とすると, 任意の W の元 x,y と任意の複素数 α,β に対し

$$\alpha \mathbf{x} + \beta \mathbf{y} \in W \tag{2.2.38}$$

が成立します.これだけ分かりづらいでしょうが,具体例としては \mathbb{R}^3 内の平面や直線などです.

重要な注意ですが、部分集合とは違います。例えば平面内の半径 1 の円板は部分集合ですが、部分空間ではありません。 x を円板内の任意のベクトルとしましょう。 $\alpha \geq 1/\|x\|$ としてみましょう。この α に対し αx は円板内にいません。平面内の線分などでも駄目です。円板内の場合と同じようにある程度大きい値に対してはみだしてしまいます。ここから考えて、部分空間というのはかなり大きい集合であることが分かります。

また部分空間 W_1,W_2 が直交するというのは任意の $x_1\in W_1,x_2\in W_2$ が直交することを言います。 さらに部分空間 W_1 の直交補空間を W^{\perp} 18 とすると、 W^{\perp} とは W_1 と直交する元全ての集合です。 さらに W が W_1 と W_2 の直和であるとは, $W=W_1\cup W_2$ であってかつ $W_1\cap W_2=\{\mathbf{0}\}$ となることをいいます。このとき $W=W_1\cap W_2=W_1\coprod W_2$ などと書きます。

以上でつまらない定義の羅列は一旦終わりです. ここから少し線形代数の説明 に入ります.

線形代数で重要な概念の 1 つに 線形写像 があります. それでは線形写像の説明を、と行きたいところですがその前に関数と関数値の区別をはっきりさせておきます.

$$1 \longrightarrow 1, \ 2 \longrightarrow 4, \ 3 \longrightarrow 9$$
 (2.2.39)

という対応関係があったとしましょう。矢印の左にある数字が右側では 2 乗されていますこのときの対応を関数の形で書くと当然 $y=f(x)=x^2$ となります。関数値というのは x に対して対応させられている値 y=f(x) のことです。それでは関数は、というと、この対応関係を与えるものであり、f が関数です。また、上の式を実数 x に関数 f が作用して実数 x^2 になったと読んでもいいでしょう。このとき関数 f に作用という視点が与えられます。ここからこのような対応 f を作用素と呼ぶことがあります。「作用」を与える「素」だから「作用素」ですあるものが何らかの作用を受けると当然何か他のものに変わります。つまり作用は変換ということもできます。こうした言い換えは良く使いますから、慣れ親しんでおいて下さい。

現時点で関数と関数値の区別の重要性を理解するのはなかなか難しいと思います。3 年で学ぶ (人もいる) Lebesgue 積分論や関数解析学において関数を元とする集合 (関数空間) を考えねばならなくなりますが、そのときにこの区別をきち

 $^{^{18}}$ 気軽に空間と書きましたが、これは本当に部分空間になっているでしょうか? $x,y\in W^{\perp},z\in W$ としましょう. $(\alpha x+\beta y,z)=\alpha(x,z)+\beta(y,z)=0$ で、確かに部分空間になっています.

んとする必要がでてきます.要するに量子力学の数理です.あとで関数と関数値の区別の為の具体例を出します.

さて、ここからやっと線形写像です. f を R^n から R^m への写像 (関数) であるとしましょう. この f が線形写像であるというのは次の 2 つの性質が成立することを言います.

$$f(x+y) = f(x) + f(y) (2.2.40)$$

$$f(\alpha x) = \alpha f(x), \ \alpha \in \mathbf{R} \tag{2.2.41}$$

またはこれらを一本にまとめて

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), \ \alpha, \beta \in \mathbf{R}. \tag{2.2.42}$$

ここで $\alpha\in R$ というのは α が実数であることを表すのでした。まず f を R^1 から R^1 への写像,すなわち高校で学んできた普通の関数である場合でこの定義が何を言っているのかを見てみましょう。線形写像の名が示すとおり,このとき α を適当な実数とすると f は $f(x)=\alpha x$ という対応を与える一次関数(直線!)です 19 . 線形写像の「線形」たる所以が分かったかと思います。一般の n,m に対しては適当な行列 A を選ぶと g=Ax と書けます。実数を 1 次正方行列とみなせば、自然な一般化になっていることが分かります。

すぐあとで使う一般の写像 (関数) に対する性質も述べておきます. f(x,y)=-f(y,x) という性質を満たす写像のことを交代性があるといいます. 例えば f(x,y)=x-y が一番分かりやすいでしょうか. 高校で学んだ二次の行列の行列式にもこの交代性があります.

線形写像と行列には密接な関連があることさえ把握しておけば、今は十分です. 細かいことは気にせず今は突っ走ってみましょう.

2.2.3 線形空間の導入

物理法則とベクトル

本章は主に行列に関することを述べるのですが、その前に線形代数で最も重要な概念である線形空間 (ベクトル空間) について議論することにします. 現段階では振動・波動との直接の関係は少し薄れますが、これは量子力学の数理の基礎となる非常に重要なものであり、そこまで行かずとも物理学にとって基本的で重要な概念です.

私達が物理学を学ぶ、研究するというとき中心となるのは、やはり物理法則に関する理解・考察を深めることでしょう。しかし物理法則というものは一体何のことを指すのでしょうか? 抽象的な言い方になってしまいますが、これは人間が何らかの形で自然を理解できたとき、それを言葉や数式 (方程式) で表現したものとでも表現できるでしょう。今考えたいのは、「数式で表現」という部分です。物理学に限らず自然科学の理論は実験結果との整合性がなければなりません。また実験結果というとき、例えば同じ日の同じ時間に日本で彗星の運動を観察した結果とアメリカで彗星の運動を観察した結果や、適当に条件を合わせたときにある日に実験した結果とその3ヵ月後に実験した結果などが一致するようなものでないと困ります。ある理論が自然現象を記述できているというならば、この実験結果

 $^{^{19}}$ (進んだ注) f が連続であるとき,上の条件を満たす関数が本当に一次関数しかないことが実数の連続性を用いて証明されます. f(1)=3 などという適当な条件をつけると,定数 α までが完全に決定できます.証明は島内剛一,「数学の基礎」,日本評論社,p445- を参照して下さい.大略を述べると,自然数に対して成立することを述べたのち,整数に拡大して,さらに有理数に拡大し,f の連続性から実数に拡大します.

が再現できなければなりません。つまり適当な条件が満たされている限り、任意の観測時間のずれと観測点のずれに対して、同じ実験結果を与えられるようなものでなくてはなりません。²⁰

これは物理法則と呼ばれるものの性質を規定する条件です。つまり物理法則は、現象を観測する時間と位置によらず成立するべきであるということです。物理法則は方程式で表現されることがありますが、当然この方程式自体も観測する位置と時間によらず成立するようなものでなければいけません。こうなると実際に我々が物理法則を方程式の形にするとき、方程式に対して何らかの制限を加えないといけません。その制限とは何かを考えます。私達は物理現象を調べる際に直交座標・極座標など様々な座標系(基底)を用いますが、物理法則そのものの意味が座標系によって変わってもらっては困ります。ここで「意味が変わらない」ということをきちんと考える必要があります。例えば運動方程式は言葉で書けば「運動量の時間変化は加わる力に比例し、この力の方向に起こる」ということであり、数式で書けば $m\ddot{r}=f$ と定式化されます。具体的な座標系で加速度 \ddot{r} を考えましょう。これを直交座標で表現するか極座標で表現するかで

$$\ddot{\mathbf{r}} = \left(\ddot{x}, \ddot{y}, \ddot{z}\right) = \left(\frac{dv}{dt}, \frac{v^2}{\rho}, 0\right) \tag{2.2.43}$$

のように加速度の「表現」の仕方が変わりますが、加速度であることそのものは変化しません。この例で重要なのは、運動方程式自体は具体的な座標表示によらずに書かれているということです。また一般に質量、加測度、力のような物理的に意味のある量を物理量と呼びますが、物理法則は何らかの形でこれら物理量の間の関係を述べたものとして定式化されるでしょう。上の例を見ればこれら物理量自体が具体的な座標によらずに書かれています。そうするとそもそも物理的に意味のある量(物理量)とは具体的な座標表示によらない意味を持つものである、ということまで要求しなければならないかもしれません。

以上のような考察を経て、物理法則に対して以下のような要請をします。

Request. 2.2.1. ある方程式がどの慣性系で見ても同じ形の方程式を満たすとき、その方程式は座標の変換に対し共変性を持つという. 全ての物理法則は共変性を持つ.

この要請に沿えば物理法則が物理量の間の関係である以上,物理量も共変性を持たねばなりません. 私達はこれら物理法則を実際に方程式にしなければならないのですが,その際自動的に共変性が満たされているような上手い数学的な表現法があれば非常に便利です. 答から言うならば,それはベクトル(一般にはテンソル)によって物理法則を表現すれば良いことが分かっています.

抽象ベクトル

ここでベクトルについて考察を深めます。上で「物理現象を調べる際に様々な座標系を用いる」と書きましたが、ベクトルによる物理法則の記述が座標系によらない意味を持つならば、ベクトルという概念自体座標系によらないものでなければいけません。 つまりベクトルは座標系とは関係なく存在するものであるべきです。ここで座標系の入っていない、ベクトルのみが存在する空間を (抽象) ベクトル空間と呼び、これを V と書きましょう。これは法則が成立するべき空間 (抽象ベクトル空間) と、私達が実際に現象の解析を行なう空間をはっきり区別した、ということです。ここまでは抽象ベクトルという言葉の意味 (抽象ベクトルの定義)

 $^{2^{0}}$ もっと上手い言い方を模索中、そしてこれは私自身指摘されて気づいたことですが、観測時間・観測点のずれに対して同じ結果を与えるということと、任意の時間と位置で成立するということは違います。

をはっきりさせていません。これから抽象ベクトルの持つべき性質を考え、矛盾のないような抽象ベクトルの理論を作ります。重要なのは抽象ベクトルとは何か、抽象ベクトルがどんな性質を持っていて欲しいのかは自分で考えて自分で決めるものであり、また決めてよいということです。

まず記述に必要な言葉を用意します。高校までは平面 (空間) 上の点を表すのに xy-平面というものを考えていました。これと対応する形で、現象を調べる際には適当に座標原点を取った上で x 軸や y 軸、z 軸を設定していました。このとき、空間内のある点 r の座標が (x,y,z) であるというのは、

$$e_1 = e_x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = e_y = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_3 = e_z = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (2.2.44)

としたとき.

$$\boldsymbol{r} = x\boldsymbol{e}_1 + y\boldsymbol{e}_2 + z\boldsymbol{e}_3 \tag{2.2.45}$$

と表せる,ということです.このとき, $\langle e_1,e_2,e_3 \rangle = \langle e_i \rangle_{i=1}^3$ を座標系(基底),x,y,z を(座標系に対する)座標(座標成分)といいます.このとき上の r が(抽象)ベクトル空間の元であるとすると,これを適当な座標系で表現した右辺は普通の空間ベクトルです.空間ベクトルには自然に備わった(高校で学んだ)和(差)とスカラー倍(定数培)という演算があります.右辺の空間ベクトルが和とスカラー倍のできるものである以上,左辺も和とスカラー倍ができないといけません.数学者が色々解析した結果,以下の 8 つの代数的な関係式が満たされていればいかなるベクトルの和とスカラー倍も普通の空間ベクトルと同じように成立することが分かりました.これが抽象ベクトルの代数です.

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 全ての x に対し, x+0=x を満たすベクトル 0 がただ 1 つ存在する.
- 4. 全ての x に対し, x + x' = 0 を満たすベクトル x' がただ 1 つ存在する.
- 5. 1x = x
- 6. $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$
- 7. $\alpha(\boldsymbol{x} + \boldsymbol{y}) = \alpha \boldsymbol{x} + \alpha \boldsymbol{y}$
- 8. $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$

これで抽象ベクトルの代数的な性質を確立しました。その他に現象の解析に必要なのは、ベクトルの長さと 2 つのベクトルのなす角度です 21 . 高校ではこれらが内積を用いて表現できることを学びました。ただし高校では $x=x_1e_1+x_2e_2+x_3e_3$, $y=y_1e_1+y_2e_2+y_3e_3$ としたときの

$$\mathbf{x} \cdot \mathbf{y} = (\mathbf{x}, \mathbf{y}) = x_1 y_1 + x_2 y_2 + x_3 y_3$$
 (2.2.46)

という形の内積しか考えていません。これを座標系(と原点)に依存しない形で書くことを考えなければいけません。このためには内積で表現すべき,長さと 2 つのベクトルのなす角度を基点にします。長さ・角度共にどの座標系を取るかに関わらず一定であってもらわないと困ります。特に長さは自分自身との内積 (x,x) で表現されますが,この値が必ず正になってもらわないと困ります。具体的な座標系を取ったときに内積に必要な演算が全て正当化されねばならないという要請をしたとき,内積の性質は次のように規定すればよいことが分かっています。

 $^{^{21}}$ 例えば万有引力は 2 点の距離の 2 乗に反比例します. 角度についてはフレミングの左手の法則など, 各種「向き」の関わる法則を記述する際に重要です.

```
1)(x,x) > 0
2)(\boldsymbol{x},\boldsymbol{x})=0 \Longleftrightarrow \boldsymbol{x}=\boldsymbol{0}
3)(\boldsymbol{x},\boldsymbol{y}) = (\boldsymbol{x},\boldsymbol{y})
4)(\alpha \boldsymbol{x}_1 + \beta \boldsymbol{x}_2, \boldsymbol{y}) = \alpha(\boldsymbol{x}_1, \boldsymbol{y}) + \beta(\boldsymbol{x}_2, \boldsymbol{y})
```

ただしこれで本当に抽象ベクトルの長さと2つの抽象ベクトルのなす角度が座標 系と原点によらず定まるのか、というのは当然の疑問です. そして単に変換という とき、数学的にはスカラー倍といった変換も含みますが、この変換に対して 2 つ のベクトルのなす角度が不変であっても長さは変わるというのは直観的に分かる でしょう. 長さ・2 つのベクトルのなす角度を同時に不変にする変換それ自体も 考察しないといけません.少し話が本筋からそれてしまいますが,先にこれを考 えます、まず変換というものは、何らかの作用を受けた結果であると考えること ができます. 作用は適当な写像 (関数) で表現できるということを前節で説明しま した. 長さ、角度を同時に不変にする変換は特殊な線形変換で表現できます. 線形 変換とは線形写像で表される変換です. また線形写像は行列で表現出来るという ことが証明できます、定理の証明前に予備考察を行ないます、まず長さを変えて はいけないので、いわゆる拡大・縮小に対応する変換ではいけません。そのほか角 度というところから回転という変換が思いつきます. 実際この回転が長さと 2 つ のベクトルのなす角度を変えない変換です. 拡大・縮小のない回転で長さは当然 不変であり、同時に同じだけ2つのベクトルを回転させれば角度も当然変換に対 して不変になります.

回転の表現

そこでこれから回転を数理的に定式化します. 下調べとして平面で考えましょう. 角度 heta だけ回す回転を表す写像を R とし, 適当に $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^2$ を考えます. 標準基 底に関して R を行列 \hat{R}_{θ} で表現すると

$$\hat{R}_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \tag{2.2.47}$$

となります. これから

$$\hat{R}_{\theta} \boldsymbol{x} = \begin{pmatrix} x_1 \cos \theta + x_2 \sin \theta \\ -x_1 \sin \theta + x_2 \cos \theta \end{pmatrix}, \quad \hat{R}_{\theta} \boldsymbol{y} = \begin{pmatrix} y_1 \cos \theta + y_2 \sin \theta \\ -y_1 \sin \theta + y_2 \cos \theta \end{pmatrix}$$
(2.2.48)
$$\hat{R}_{\theta} (\boldsymbol{x} + \boldsymbol{y}) = \begin{pmatrix} (x_1 + y_1) \cos \theta + (x_2 + y_2) \sin \theta \\ -(x_1 + y_1) \sin \theta + (x_2 + y_2) \cos \theta \end{pmatrix}$$
(2.2.49)

$$\hat{R}_{\theta}(\boldsymbol{x} + \boldsymbol{y}) = \begin{pmatrix} (x_1 + y_1)\cos\theta + (x_2 + y_2)\sin\theta \\ -(x_1 + y_1)\sin\theta + (x_2 + y_2)\cos\theta \end{pmatrix}$$
(2.2.49)

と書けます、これから平面の場合には回転が行列で表示でき、したがって線形写 像で表現できることが分かります.ここでは省略しますが,一般の次元でも同様 に示せます、そこで問題は回転がどのような行列で表現できるか、というところ です、結果からいうと、これは直交行列です、これを証明します、証明自体は一般 の (複素化した) ユニタリ行列に対して行ないます. ここで複素ベクトルを考えた ときの内積は $(x,y) := \sum_{i=1}^3 x_i \overline{y}_i$ で定義します.

 $\mathbf{Theorem.}$ 2.3.1. n 次正方行列 A に関する次の 4 条件は同値である.

- 1)A はユニタリ行列である.
- ②)任意の n 項 (複素) 列ベクトル x に対して |Ax| = |x| が成立する.
- 3)任意の n 項 (複素) 列ベクトル $oldsymbol{x},oldsymbol{y}$ に対して $(Aoldsymbol{x},Aoldsymbol{x})=(oldsymbol{x},oldsymbol{y})$ が成立
- $4A = (a_1, \dots, a_n)$ とすれば, $(a_i, a_j) = \delta_{ij}$ である.

(証明) 1) \Rightarrow 2) $|Ax|^2 = (Ax, Ax) = {}^tx^t A \overline{A} \overline{x} = {}^txx = |x|^2$.

1. ⇒ 3) 仮定より次の式が成立します.

$$|x + y| = |x|^2 + (x, y) + \overline{(x, y)} + |y|^2$$
 (2.2.50)

$$|A(x + y)| = |Ax|^2 + (Ax, Ay) + \overline{(Ax, Ay)} + |Ay|^2$$
 (2.2.51)

これと条件 2) から, $(x,y)+\overline{(x,y)}=(Ax,Ay)+\overline{(Ax,Ay)}$ が成立し,したがって (x,y) と (Ax,Ay) の実部が等しいことが分かります.一方,x の代わりに ix を代入すれば, $i\{(x,y)-\overline{(x,y)}\}=i\{(Ax,Ay)-\overline{(Ax,Ay)}\}$ によって (x,y) と (Ax,Ay) は虚部も等しいことが分かります.したがって (Ax,Ax)=(x,y) .

 $1. \Rightarrow 1$) 任意の x, y に対して

$$(x, (A^*A - I)y) = (x, A^*Ay) - (x, y) = (Ax, Ay) - (x, y) = 0.$$
 (2.2.52)

したがって A*A - I = O となります.

 $1. \Leftrightarrow 4)$

 $A^*A=(c_{ij})$ とすれば $c_{ij}=\overline{(a_i,a_j)}$ であり、これから同値はすぐ分かります。 ■ この定理によって長さと 2 つのベクトルのなす角度を変えない変換、すなわち回転は直交行列で表現できることが分かりました.上で述べたように行列の作用は線型写像に翻訳できます.線型写像は行列と異なり、座標系の取り方に依存しません.ここで一般に、内積を変えない、つまり $(T_O(x),T_O(y))=(x,y)$ となる線型変換 T_O を直交変換と呼びます.

Galilei の相対性原理

ここで物理法則の記述という問題に帰ります。現象の解析を行なう際には適当な座標系(と座標原点)を取ると書きました。さらにはじめにも例を挙げたように、現実には時間原点の設定もしないといけません。時間も含め座標系の選択にはかなりの自由度がありますから、これら異なる座標系の間の変換則が欲しいところです。抽象的に物理法則、といっていてもはじまらないので、ここでは力学の基本法則たる運動方程式とこれを不変にする変換を考えます。力学は大概のことが運動方程式から導かれるので、運動方程式の形不変性 (form invariance) が最も重要です。

考えるのが座標系と時間の変換ですから、まず Newton 力学の基礎にある時空間に関する概念を確認しなければなりません。1 つ言葉を定義しておきます。物理現象は常にある時にある場所で起こります。ある時刻に空間の 1 点で起こる出来事を事象と呼びます。

- 1)任意の2個の事象の時間間隔はどの座標系で見ても同一である.
- 2)任意の2個の同時刻の事象の間の距離はどの座標系で見ても同一である.

性質 1) は座標系 S と S' のそれぞれと共に動く時計で測定された任意の事象 A, B の時間間隔が $t_B-t_A=t_B'-t_A'$ であることを意味しています. これが常に成立する為には

$$\Delta t' = \Delta t \iff t' = t - \theta \ (\theta = \text{const.})$$
 (2.2.53)

でなければなりません. ここから $\Delta t'=0 \Leftrightarrow \Delta t=0$ となり, 2 つの事象の同時性は座標系の選択に依存しません. 後でも使いますが, このとき微分作用素 d/dt は

$$\frac{d}{dt} = \frac{dt'}{dt}\frac{d}{dt'} = \frac{d}{dt'} \tag{2.2.54}$$

という変換を受けます.

同様に性質 2)は事象 A,B が同時刻であるとき、その間の距離が $|r_A-r_B|=|T_O(r_A)-T_O(r_B')|(=|r_A'-r_B'|)$ であることを意味します.これが常に成り立つ為には、上で示したように直交変換 T_O を用いて

$$\Delta \mathbf{r} = T_O(\Delta \mathbf{r}) (= \Delta \mathbf{r}') \tag{2.2.55}$$

でなければなりません.

さて、Newton 力学の原理は運動方程式 (運動の第 2 法則)

$$m\ddot{\mathbf{r}} = \mathbf{F} \tag{2.2.56}$$

で与えられます。ここで $F=\sum f$ と表され,f は着目している物体に他から働く力で実体的な(物理的)な起源があり,F はその合力です.特に他の諸物体から十分遠くに離れた物体(孤立した物体)に対しては事実上 F=0 としてよく,このとき

$$m\ddot{\mathbf{r}} = \mathbf{0} \Longrightarrow \dot{\mathbf{r}} = \mathbf{v}_0$$
(定ベクトル) (2.2.57)

となります. すなわち, 外から力の働いていない物体は同一の運動状態 (等速度運動) にあり続けます. 通常このことを慣性の法則と呼んでいます. そして慣性の法則が成立する座標系を慣性座標系, または簡単に慣性系と呼びます. ここで慣性の法則の独立した論理的な意味は

Request. 2.2.2. 宇宙には、力を受けていない物体が等速度運動を続ける座標系 ℓ (慣性座標系) が少なくとも ℓ つ存在する.

という慣性系の存在要請と考えるべきです. そうしないと, 慣性の法則が運動 方程式の特別な場合として運動の第2法則に含まれてしまいます. 慣性の法則が 運動の第1法則である理由です. 運動の第3法則は作用・反作用の法則です.

ここで時間と空間の性質として上記の 2 つの仮定を認めた上での慣性系どうしの座標変換を Galilei 変換 (Galilean transformation) といいます. Galilei 変換 $r\mapsto r', t\mapsto t'$ では d/dt=d/dt' であることから

$$\ddot{\boldsymbol{r}} = \mathbf{0} \Longleftrightarrow \frac{d^2}{dt'^2} T_O(\boldsymbol{r}) = \mathbf{0}$$
 (2.2.58)

とならなければなりません. 座標系の変換で長さ, 2 つのベクトルのなす角度が変わってはならないので, \ddot{r} から \ddot{r}' への線型変換は直交変換になります. つまり直交変換 T_O を用いて

$$\ddot{\boldsymbol{r}} = T_O(\ddot{\boldsymbol{r}}) = \frac{d^2}{dt'^2} \left(T_O(\boldsymbol{r}) \right) = \ddot{\boldsymbol{r}}'$$
(2.2.59)

と書けます. 積分すれば

$$r = T_O(r) - ut - \alpha \tag{2.2.60}$$

となります. ここで u, α は定ベクトルです.

特に $T_O = I$ (恒等写像), $\alpha = 0, \theta = 0$ のとき

$$r \mapsto r' = r - ut, \quad t \mapsto t' = t$$
 (2.2.61)

となります。これはもとの座標系に対して速度 u で動いている座標系への変換であり、これを Galilei ブーストといいます。 Galilei ブーストに伴う速度の変換則は

$$\boldsymbol{v} = \dot{\boldsymbol{r}} \mapsto \boldsymbol{v}' = \dot{\boldsymbol{r}}' = \boldsymbol{v} - \boldsymbol{u} \tag{2.2.62}$$

で与えられます.この結果は当然,と思うかもしれませんが,Newton 力学での時空間に対する仮定と変換則に支えられて得られたものである,つまり相対論的な力学では破壊される変換則であることを注意しておきます.せっかくなので相対論的な速度の変換則を紹介しておきます.

$$\boldsymbol{v}' = \frac{d\boldsymbol{r}'}{dt'} = \frac{\sqrt{1 - \frac{\boldsymbol{v}^2}{c^2}} \boldsymbol{v}_{\perp} + \boldsymbol{v}_{\parallel} - \boldsymbol{u}}{1 - \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{c^2}}.$$
 (2.2.63)

ここで要請を 1 つおきましょう.

Request. 2.2.3. 全ての慣性系は対等であり、したがって力学法則はどの慣性系で見ても同じでなければならない、つまり Galilei 変換で形を変えてはならない、この性質を Galilei 共変性、そしてこの要請を Galilei の相対性原理という。

これが上で述べた物理法則の形不変性につながっています.

この要請を運動方程式に適用すれば、力は時間に t に陽によらずかつ力は変換則

$$\mathbf{F} = T_O(\mathbf{F}) \tag{2.2.64}$$

にしたがわなければなりません

最後に Galilei 変換 G を標準基底に関して行列表示してみましょう。まず 4 元ベクトル $\mathbf{R}:={}^t(x_0\ x_1\ x_2\ x_3)={}^t(ct\ x_1\ x_2\ x_3)$ と定義します。定数 c は速度の次元を持ってさえいれば良いのですが,一応光の速さとしておきます。ここで非斉次ベクトル $\tilde{\mathbf{R}}$ を $\tilde{\mathbf{R}}={}^t(\mathbf{R}\ 1)={}^t(x_0\ x_1\ x_2\ x_3\ 1)$ と定義します。この記法でGalilei 変換を書き直すと

$$G \begin{cases} x_0 \mapsto x_0' = x_0 - \delta \\ r \mapsto r' = Or - \alpha \beta x_0 \end{cases}$$
 (2.2.65)

となります。ただし $m{\beta}:=m{u}/c, \delta:=c heta$ です。さらに O は $m{r}$ が適当な座標系で表現されているものとして,直交変換 T_O が直交行列 O で表現しておきました。Galilei 変換を表す行列を \hat{G} とすると,

$$G: \tilde{\mathbf{R}} \mapsto \tilde{\mathbf{R}}' = \hat{G}\tilde{\mathbf{R}} = \begin{pmatrix} \frac{1}{-\beta_1} & 0 & 0 & 0 & -\delta \\ \frac{-\beta_1}{-\beta_2} & 0 & -\alpha_1 \\ -\beta_2 & 0 & -\alpha_2 \\ \frac{-\beta_3}{0} & 0 & 0 & -1 \end{pmatrix} \tilde{\mathbf{R}}$$
(2.2.66)

となります. この計算をした後, $ilde{R}'$ のはじめの 4 つの成分を取れば, めでたく座標変換が得られます.

抽象ベクトルの微分

さて、実はここまで曖昧にぼかしてきた部分があります。それは抽象ベクトルの微分とは何者かということです。まだきちんと議論していない偏微分を使ってしまうことになりますが、これで例を出します。 電場を E(r,t) とします。 Maxwell 方程式から $\nabla \cdot E(r,t) = \rho(r,t)/\varepsilon_0$ となりますが、これは r=(x,y,z) としたとき

$$\frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{E}}{\partial y} + \frac{\partial \mathbf{E}}{\partial z} = \frac{1}{\varepsilon_0} \rho(\mathbf{r}, t)$$
 (2.2.67)

と書くことになります。 $\partial/\partial x$ というのは、他の変数 y,z,t を定数とみなして (固定して)、x についてだけ微分を取るものです。 例えば、 $f(x,y,z,t)=x^2+xy^3+\log yz+\sin zt$ としたとき

$$\frac{\partial f}{\partial x} = 2x + y^3, \quad \frac{\partial f}{\partial y} = 3xy^2 + \frac{1}{y}, \quad \frac{\partial f}{\partial z} = \frac{1}{z} + t\cos zt, \quad \frac{\partial f}{\partial t} = z\cos zt$$
(2.2.68)

などとなります。ここで具体的に座標系 (基底) を取る前の $\nabla \cdot E(r,t) = \rho(r,t)/\varepsilon_0$ はどう考えるべきでしょうか? $\partial/\partial x$ という表記を見ても分かるように、微分というものは本質的に座標の取り方に深く関わるものです。 当然本節においては具体的な座標系 (基底) を選択する前の

$$\frac{d}{dt}\mathbf{r} \tag{2.2.69}$$

とは何者か、ということが問題です. さらに微分作用素それ自体も座標系の選択に深く依存しているので、微分作用素の表現自体もどうするか考えなければなりません.

この問題は、数学的には幾何学における多様体論で深く考察される問題です. 現在、そもそも(偏)微分自体が制御不可能なので、本小節では簡単に論じるにと どめます.

解決策はとりあえず二つほど考えられます。つは、まず適当な座標系 (基底) を選択し、そのもとで微分を計算します。ここで全ての座標系 (基底) に対して成立するような、つまり座標変換に対して不変な性質を見出し、それを抽象ベクトルの微分の性質とする、という方法です。 どういうことか説明しましょう。 まず適当な座標系 (基底) を取ったとき、微分の値 $\partial f(x,y,z)/\partial x, \partial f(r,\theta,\varphi)/\partial r$ などは一般には変化します。 例えば $f(x,y):=x+y=r\cos\theta+r\sin\theta=f(r,\theta)$ とします。

$$\frac{\partial f(x,y)}{\partial x} = 1, \quad \frac{\partial f(x,y)}{\partial y} = 1, \tag{2.2.70}$$

$$\frac{\partial f(r,\theta)}{\partial r} = \cos \theta + \sin \theta, \quad \frac{\partial f(r,\theta)}{\partial \theta} = -r \sin \theta + r \cos \theta \tag{2.2.71}$$

となります。そもそも微分する変数自体が変わっているので、当たり前といえば当たり前で、微分する変数を変えずに $\partial f(r,\theta)/\partial x$ を考えれば、これは当然 $\partial f(x,y)/\partial x$ に一致します。ここで、このときに変わらない(であろう)性質としては、ある座標系 (基底) を取ったときのある点において微分係数が 0 にならないとき、どんな座標系を取ろうともその同じ点においては微分係数が 0 にならない、ということです。もう少し何か書く、作りかけ、

2 つ目ははじめから座標系 (基底) の変換で不変な微分の形式を確立するというものです. これが多様体上で微分を行なう際に重要になる微分の形式で,(外) 微

分形式といいます。これは物理の方では解析力学 (の非常に高度な数学的定式化) で基本的かつ重要な役割を果たすほか、どうも素粒子理論の方でも良く使うようです。普通の微分ですらまともに論じていないので、ここであまり踏み込んだ議論はしません。ただこちらはベクトル解析のところで多少触れるかもしれません。

ところで肝心の抽象ベクトルの微分はどうするのか、ということですが、現時点では、結局のところ、詳細な解析をする際には(都合のよい、上手い)具体的な座標系(基底)を選んで現象の解析を行なう、ということがありますので、第一の方法に従うことにしましょう作りかけ、

定理の証明

最後に積み残した「有限次元の間の線形写像は行列で表現出来る」ということを証明します.まず1つ言葉を定義します.ある(m,n)型行列によって定まる線形写像とは(m,n)型行列 Aに対して

$$f_A(\mathbf{x}) = A\mathbf{x}, \quad \mathbf{x} \in \mathbb{C}^n$$
 (2.2.72)

として定まる \mathbb{C}^n から \mathbb{C}^m への写像 f_A のことをいいます. まずは標準基底 $\langle e_i \rangle_{i=1}^n, \langle e_i' \rangle_{i=1}^m$ に関して定式化します.

Theorem. 2.3.2. \mathbb{C}^n から \mathbb{C}^m への写像が線形写像であるための必要十分条件は、写像がある (m,n) 型行列 A によって定まることである。またこのとき A はただ 1 つに定まる.

(証明) 十分性の方は

$$f_A(a\mathbf{x} + b\mathbf{y}) = A(a\mathbf{x} + b\mathbf{y}) = a(A\mathbf{x}) + b(A\mathbf{y}) = aT_A\mathbf{x} + bT_A\mathbf{y}$$
 (2.2.73)

からすぐに分かります.

必要性を示しましょう。一般の n 次でも大した手間はないので,一般の状況で示します。 $f:\mathbb{C}^n\to\mathbb{C}^m$ が線形写像であるとしましょう。 \mathbb{C}^n の座標系を n 項単位ベクトルの組 $\langle e_i \rangle_{i=1}^n$ (標準基底) に取ります。これらが f で写される先を a_j とします。すなわち

$$fe_j = a_j, \quad (j = 1, 2, \cdots, n)$$
 (2.2.74)

とします. $a_j\in\mathbb{C}^m$ 、つまり a_j は m 項列ベクトルです. ここで (m,n) 型行列 A を $A:=(a_1,\cdots,a_n)$ として定義し、A によって定まる \mathbb{C}^n から \mathbb{C}^m への線形 写像を T_A とすれば、

$$f_A(\mathbf{e}_i) = A\mathbf{e}_i = \mathbf{a}_i = f\mathbf{e}_i. \tag{2.2.75}$$

 \mathbb{C}^n の任意のベクトル x は,

$$\boldsymbol{x} = \sum_{i=1}^{n} x_i \boldsymbol{e}_i \tag{2.2.76}$$

と表せますから、

$$f_A(\mathbf{x}) = f_A\left(\sum_{i=1}^n x_i \mathbf{e}_i\right) = \sum_{i=1}^n x_i f_A(\mathbf{e}_i)$$
 (2.2.77)

$$= \sum_{i=1}^{n} x_i f(\mathbf{e}_i) = f\left(\sum_{i=1}^{n} x_i \mathbf{e}_i\right) = f(\mathbf{x}).$$
 (2.2.78)

したがって $f = f_A$ です.

次に一意性を示します. (m,n) 行列 B が存在して任意の $m{x} \in \mathbb{R}^n$ に対し $f(m{x}) = Bm{x}$ となるとします. このとき

$$\mathbf{a}_{j} = A\mathbf{e}_{j} = f\mathbf{e}_{j} = B\mathbf{e}_{j} = \mathbf{b}_{j} (j = 1, \cdots, n) \Rightarrow B = A. \blacksquare$$
 (2.2.79)

上では標準基底で示しましたが、それ以外の適当な座標系を取ったときを考えます。まず予備定理を証明します。

Theorem. 2.3.3. $f:\mathbb{C}^n \to \mathbb{C}^m$ を線形写像, $\mathbb{C}^n,\mathbb{C}^m$ の新たな座標系をそれぞれ $\langle m{u}_i \rangle_{i=1}^n, \langle m{v}_j \rangle_{j=1}^m$ とする. さらに $\pmb{\xi} := {}^t(\xi_1 \cdots \xi_n)$, $\pmb{\eta} := {}^t(\eta_1 \cdots \eta_m)$ とする. このとき (m,n) 型行列 B がただ I つ存在し, 次の関係が成立する.

$$(f(\boldsymbol{u}_1)\cdots f(\boldsymbol{u}_n)) = (\boldsymbol{v}_1\cdots \boldsymbol{v}_m)B, \quad \boldsymbol{\eta} = B\boldsymbol{\xi}. \tag{2.2.80}$$

(証明) $x = \xi_1 u_1 + \dots + \xi_n u_n$ の f による像は $f(x) = \xi_1 f(u_1) + \dots + \xi_n f(u_n)$ となります。そこで $f(u_j)$ の $\langle v_j \rangle_{j=1}^m$ に関する座標成分を

$$\boldsymbol{b}_{j} = {}^{t}(b_{1j} \cdots b_{nj}) \iff f(\boldsymbol{u}_{j}) = (\boldsymbol{v}_{1} \cdots \boldsymbol{v}_{m})\boldsymbol{b}_{j} (j = 1, \cdots, n)$$
(2.2.81)

として $B := (u_1 \cdots u_n)$ とするとこれは (m, n) 行列で次が成立しています.

$$(f(\boldsymbol{u}_1)\cdots f(\boldsymbol{u}_n)) = (\boldsymbol{v}_1\cdots \boldsymbol{v}_m)B. \tag{2.2.82}$$

そして

$$f(x) = \xi_1 f(u_1) + \dots + \xi_n f(u_n) = (f(u_1) \dots f(u_n))\xi$$
 (2.2.83)

$$= (\boldsymbol{v}_1 \cdots \boldsymbol{v}_m) B \boldsymbol{\xi} \tag{2.2.84}$$

一方

$$f(\boldsymbol{x}) = \sum_{j=1}^{m} \eta_j \boldsymbol{v}_j = (\boldsymbol{v}_1 \cdots \boldsymbol{v}_m) \boldsymbol{\eta}$$
 (2.2.85)

でありこれが上の式と等しく, $\langle v_j \rangle_{j=1}^m$ が座標系であって, f(x) の座標成分は一意に決まっているので

$$\eta = B\xi. \tag{2.2.86}$$

これから B の一意性を証明します. (m,n) 型行列 C が存在し, $\eta=C\xi$ を満たすとします. このとき $x=u_j$ とすると $\xi=e_j(j=1,\cdots,n)$ となります. $f(u_j)=\eta_{1j}v_1+\cdots+\eta_{mj}v_j$ とすると,

$$\boldsymbol{b}_{j} = B\boldsymbol{e}_{j} = {}^{t}(\eta_{1j}\cdots\eta_{mj}) = C\boldsymbol{e}_{j} = \boldsymbol{c}_{j} \quad (j=1,\cdots,n)$$
(2.2.87)

$$\Rightarrow B = C. \quad \blacksquare \tag{2.2.88}$$

Remark. 2.3.4. 実は本定理で現れた B は座標系として $\langle u_i \rangle_{i=1}^n, \langle v_j \rangle_{j=1}^m$ を取ったときに線形写像 f を表現する行列になっています.

それでは本題に入りましょう.

Theorem. 2.3.5. \mathbb{C}^n から \mathbb{C}^m への写像 f が線形写像であるための必要十分条件は, 任意に座標系 f 基底 を定めたとき写像がある f 型行列によって定まることである. またこのとき f は各座標系に対しただ f つに定まる.

(証明) まず $\langle e_i \rangle_{i=1}^n \to \langle u_i \rangle_{i=1}^n$, $\langle e_j' \rangle_{j=1}^m \to \langle v_j \rangle_{j=1}^m$ の座標系の変換をあらわす行列をそれぞれ P,Q とすると, 両方共に座標系であることから変換したきり逆に戻せないということはなく, きちんと逆変換が存在することから, 対応してP,Q には逆行列が存在します. これは

$$(\boldsymbol{u}_1 \cdots \boldsymbol{u}_n) = (\boldsymbol{e}_1 \cdots \boldsymbol{e}_n) P, \quad (\boldsymbol{v}_1 \cdots \boldsymbol{v}_m) = (\boldsymbol{e}'_1 \cdots \boldsymbol{e}'_m) Q$$
 (2.2.89)

と書けます. さらに $X:={}^t(x_1\cdots x_n)$, $Y:={}^t(y_1\cdots y_m)$ を標準基底での x,y の 座標成分 (このようなベクトルを座標ベクトル) とします. すぐ上の注意から

$$Y = AX \tag{2.2.90}$$

となります. x, f(x) を各座標系で表現すると

$$\boldsymbol{x} = (\boldsymbol{e}_1 \cdots \boldsymbol{e}_n) \boldsymbol{X} = (\boldsymbol{u}_1 \cdots \boldsymbol{u}_n) \boldsymbol{\xi} \tag{2.2.91}$$

$$f(\mathbf{x}) = (\mathbf{e}_1' \cdots \mathbf{e}_m') \mathbf{Y} = (\mathbf{v}_1 \cdots \mathbf{v}_m) \boldsymbol{\eta}$$
 (2.2.92)

のようになります. 以上から

$$f(\mathbf{x}) = f((\mathbf{u}_1 \cdots \mathbf{u}_n)\boldsymbol{\xi}) = f((\mathbf{e}_1 \cdots \mathbf{e}_n)P\boldsymbol{\xi}) = AP\boldsymbol{\xi}, \tag{2.2.93}$$

$$f(\mathbf{x}) = (\mathbf{v}_1 \cdots \mathbf{v}_m) \boldsymbol{\eta} = (\mathbf{e}_1' \cdots \mathbf{e}_m') Q \boldsymbol{\eta} = Q \boldsymbol{\eta}$$
 (2.2.94)

定理の前の注意から $\eta = B\xi$ であり, P^{-1} が存在することから

$$AX = QBP^{-1}X \tag{2.2.95}$$

となります. ここで $x = e_i$ とすると $X = e_i$ ですから,

$$A$$
 の第 j 列 = $Ae_j = (QBP^{-1})e_j = QBP^{-1}$ の第 j 列 (2.2.96)

となります. これから

$$A = QBP^{-1} \Longleftrightarrow B = Q^{-1}AP \tag{2.2.97}$$

が成立します.これから任意の座標系で線形写像は行列で表現でき,その行列は標準基底で線形写像を表現した行列と座標系の変換 (基底変換の行列) で表されることが分かりました.■

2.2.4 行列式

前節で述べたように線形変換は座標系 (基底) を選んだ上で一意的に行列で表すことが出来ます. 物理法則の形不変性 (form invariance) の観点からみても, ある (線形の) 座標変換に逆変換が存在するかどうか調べることは重要なことです. これは行列で線形変換を具体的に表示して, その行列に逆行列があるか否かを調べれば良さそうです. というわけで, いくつかある逆行列の存在・非存在の判定法のうち, ここでは行列式を用いたものを紹介します.

高校でも 2 次正方行列の行列式を学びました. よく使う行列式の記法を確認しておきます. 行列 $A=(a_{ij})=(a_1\,a_2\,a_3)$ に対し

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \begin{vmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \boldsymbol{a}_3 \end{vmatrix}, \det(\boldsymbol{a}_1 \, \boldsymbol{a}_2 \, \boldsymbol{a}_3)$$
 (2.2.98)

などと書きます. 唐突ですが、2 次の行列式には以下のような性質がありました. 暗算でも確かめられるでしょう.

$$\det\left(\boldsymbol{a}_{1}\,\boldsymbol{a}_{2}\right) = -\det\left(\boldsymbol{a}_{2}\,\boldsymbol{a}_{1}\right) \tag{2.2.99}$$

$$\det \left(\alpha \boldsymbol{a}_{1} + \beta \boldsymbol{a}_{1}^{'} \; \boldsymbol{a}_{2}\right) = \alpha \det \left(\boldsymbol{a}_{1} \; \boldsymbol{a}_{2}\right) + \beta \det \left(\boldsymbol{a}_{1}^{'} \; \boldsymbol{a}_{2}\right)$$
(2.2.100)

$$\det \left(\boldsymbol{a}_{1} \ \alpha \boldsymbol{a}_{2} + \beta \boldsymbol{a}_{2}^{'} \right) = \alpha \det \left(\boldsymbol{a}_{1} \ \boldsymbol{a}_{2} \right) + \beta \det \left(\boldsymbol{a}_{1} \ \boldsymbol{a}_{2}^{'} \right)$$
(2.2.101)

$$\det(e_1 e_2) = |E| = 1 \tag{2.2.102}$$

この性質を一般の n 次行列式にも要求します. 3 次でいくつか具体的に書くと

$$\det (\boldsymbol{a}_1 \, \boldsymbol{a}_2 \, \boldsymbol{a}_3) = -\det (\boldsymbol{a}_2 \, \boldsymbol{a}_1 \, \boldsymbol{a}_3) \tag{2.2.103}$$

$$\det (\boldsymbol{a}_1 \, \boldsymbol{a}_2 \, \boldsymbol{a}_3) = -\det (\boldsymbol{a}_1 \, \boldsymbol{a}_3 \, \boldsymbol{a}_2) \tag{2.2.104}$$

$$\det \left(\alpha \boldsymbol{a}_{1} + \beta \boldsymbol{a}_{1}^{'} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right) = \alpha \det \left(\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right) + \beta \det \left(\boldsymbol{a}_{1}^{'} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right)$$
(2.2.105)

$$\det\left(\mathbf{e}_{1}\,\mathbf{e}_{2}\,\mathbf{e}_{3}\right) = \mid E \mid = 1 \tag{2.2.106}$$

などです. 前節で説明した言葉を使ってこの性質をまとめると以下のようになり ます.

Definition. 2.4.1. 行列式とは定義域が $M(n,n;C^n)$ で値域が C の、単位行 列に対し 1 を対応させる、列に関する交代性を持った多重線形写像である。

ここで $M(n,m;\mathbf{C}^n)$ とは $n\times m$ 型行列全体の集合でした. 多重線形性とい うのは、行列式は多変数写像(関数)ですが、この全ての変数(全ての列)に対し線 形性を要求するということです. この性質を用いて n 次行列式の持つ性質をいく つか調べて、具体的に計算できるようにします.

最終目標をはじめに示しておきます.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$
 (2.2.107)

これが出来れば、2次の行列式の計算は知っているわけですから、3次の行列式が 計算できるというわけです. 4 次での対応する結果を書いておくのは無駄ではな いでしょう. 下に記しておきます.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$(2.2.108)$$

$$\begin{vmatrix} a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \end{vmatrix} + (-1)^{2+1} a_{21} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + (-1)^{4+1} a_{41} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + (-1)^{4+1} a_{41} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \end{vmatrix}$$
 (2.2.110)

$$+(-1)^{3+1}a_{31}\begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + (-1)^{4+1}a_{41}\begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \end{vmatrix}$$
 (2.2.110)

まず次の定理を示しましょう.

Theorem. 2.4.2. 二つの列が一致すれば $\det A = 0$ となる.

(証明) これは交代性からほとんど明らかです. 確認してみましょう. 例えば $a_1=a_2$ とすると交代性から

$$\det(\boldsymbol{a}_1 \, \boldsymbol{a}_1 \, \boldsymbol{a}_3) = -\det(\boldsymbol{a}_1 \, \boldsymbol{a}_1 \, \boldsymbol{a}_3) \Longrightarrow \det(\boldsymbol{a}_1 \, \boldsymbol{a}_1 \, \boldsymbol{a}_3) = 0 \tag{2.2.111}$$

他の列の場合でも同様に成立することが示せます. ■ 次の定理にいきましょう.

Theorem. 2.4.3. ある列に他のある列の定数倍を加えて得られる行列の行列式は、もとの行列の行列式 $\det A$ に等しい。

意味が分からないかもしれないので、何を示せばよいのかをまず確認しましょう。 式で書くと

$$\det(\mathbf{a}_1 \ \mathbf{a}_2 + c\mathbf{a}_1 \ \mathbf{a}_3) = \det(\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3). \tag{2.2.112}$$

といったことです.

(証明) 多重線形性から

$$\det(\mathbf{a}_1 \ \mathbf{a}_2 + c\mathbf{a}_1 \ \mathbf{a}_3) = \det(\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3) + c\det(\mathbf{a}_1 \ \mathbf{a}_1 \ \mathbf{a}_3)$$
(2.2.113)

前定理から $\det(\mathbf{a}_1 \ \mathbf{a}_1 \ \mathbf{a}_3) = 0$ なので

$$= \det(\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \boldsymbol{a}_3) \tag{2.2.114}$$

先程同様,他の列あるいは行の場合でも同じです. ■ 次に示すのは

Theorem. 2.4.4. 転置行列と元の行列式の行列式の値は等しい.

つまり、

$$\det{}^t A = \det A \tag{2.2.115}$$

すなわち

$$\det \begin{pmatrix} {}^{t}\boldsymbol{a}_{1} \\ {}^{t}\boldsymbol{a}_{2} \\ {}^{t}\boldsymbol{a}_{3} \end{pmatrix} = \det \left(\boldsymbol{a}_{1}\boldsymbol{a}_{2}\boldsymbol{a}_{3} \right) \tag{2.2.116}$$

です.これが示されると、列ベクトルに対して示した結果が行ベクトルに対しても成立することになります.つまり

Theorem. 2.4.5. 二つの行が一致すれば $\det A = 0$ となる.

Theorem. 2.4.6. ある行に他のある行の定数倍を加えて得られる行列の行列式は、もとの行列の行列式 $\det A$ に等しい。

という定理を直接証明せずとも良いことが分かります。また定義としても

Definition. 2.4.7. 行列式は定義域が $M(n,m;C^n)$ で値域が C の, 単位行列 に対し 1 を対応させる, 行に関する交代性を持った多重線形写像である.

を採用してよいことが分かります. 転置行列と元の行列式の行列式の値が等しいことは多重線形性を用いて証明します.

(定理の証明)

$$a_i = \sum_{k=1}^{3} a_{ki} e_k, \quad {}^{t} a_i = \sum_{k=1}^{3} a_{ki} {}^{t} e_k$$
 (2.2.117)

と書けますから、これを用いて

$$\det \begin{pmatrix} {}^{t}\boldsymbol{a}_{1} \\ {}^{t}\boldsymbol{a}_{2} \\ {}^{t}\boldsymbol{a}_{3} \end{pmatrix} = \det \begin{pmatrix} \sum_{i=1}^{3} a_{i1} {}^{t}\boldsymbol{e}_{i} \\ \sum_{j=1}^{3} a_{j2} {}^{t}\boldsymbol{e}_{j} \\ \sum_{k=1}^{3} a_{k3} {}^{t}\boldsymbol{e}_{k} \end{pmatrix}$$
(2.2.118)

$$= \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} a_{i1} a_{j2} a_{k3} \det \begin{pmatrix} {}^{t} e_{i} \\ {}^{t} e_{j} \\ {}^{t} e_{k} \end{pmatrix} (\mathbf{3} \mathbf{\Xi} \mathbf{k} \mathbf{H} \mathbf{E}), \tag{2.2.119}$$

$$\det (\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3) = \det \left(\sum_{i=1}^3 a_{i1} \ \mathbf{e}_i \ \sum_{j=1}^3 a_{j2} \ \mathbf{e}_j \ \sum_{k=1}^3 a_{ki} \ \mathbf{e}_k \right)$$
(2.2.120)

$$= \sum_{i=1}^{3} \sum_{i=1}^{3} \sum_{k=1}^{3} a_{i1} a_{j2} a_{k3} \det (\mathbf{e}_{i} \, \mathbf{e}_{j} \, \mathbf{e}_{k}) \, (\$ \mathbf{\Xi} \mathbf{\& H} \mathbf{E})$$
 (2.2.121)

$$\iff 0 = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} a_{i1} a_{j2} a_{k3} \left\{ \det \begin{pmatrix} {}^{t} \boldsymbol{e}_{i} \\ {}^{t} \boldsymbol{e}_{j} \\ {}^{t} \boldsymbol{e}_{k} \end{pmatrix} - \det \left(\boldsymbol{e}_{i} \, \boldsymbol{e}_{j} \, \boldsymbol{e}_{k} \right) \right\}$$
(2.2.122)

示すべき式はこのようになります. したがって焦点は

$$\det \begin{pmatrix} {}^{t}\boldsymbol{e}_{i} \\ {}^{t}\boldsymbol{e}_{j} \\ {}^{t}\boldsymbol{e}_{k} \end{pmatrix} = \det \left(\boldsymbol{e}_{i} \, \boldsymbol{e}_{j} \, \boldsymbol{e}_{k} \right) \tag{2.2.123}$$

が示せるかどうかです。 先程示した定理から i,j,k のうちのいずれか 2 つ以上が一致するときは両辺 0, つまりこのときはきちんと等号が成立します。 そこで問題は i,j,k が異なる場合です。

実際に一致するのですが、全部確認するのは面倒なのでいくつか具体的に見てみましょう.

$$\det \begin{pmatrix} {}^{t}\boldsymbol{e}_{1} \\ {}^{t}\boldsymbol{e}_{2} \\ {}^{t}\boldsymbol{e}_{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \det \left(\boldsymbol{e}_{1} \, \boldsymbol{e}_{2} \, \boldsymbol{e}_{3} \right)$$
(2.2.124)

$$\det \begin{pmatrix} {}^{t}\boldsymbol{e}_{2} \\ {}^{t}\boldsymbol{e}_{3} \\ {}^{t}\boldsymbol{e}_{1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 (2.2.125)

$$= -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} (交代性を用いて 1 列と 2 列を交換) (2.2.126)$$

$$=\begin{pmatrix}0&0&1\\1&0&0\\0&1&0\end{pmatrix}(交代性を用いて 1 列と 3 列を交換) \qquad (2.2.127)$$

$$= \det\left(\boldsymbol{e}_2 \, \boldsymbol{e}_3 \, \boldsymbol{e}_1\right) \tag{2.2.128}$$

したがって上の等号が確かに成立します. ■ さらに次に示すのは

Theorem. 2.4.8. (行列式の展開 1)

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
 (2.2.129)

です。3 次行列の行列式と 2 次行列の行列式を結ぶ式ですから、重要そうな気配がするわけです。

(定理の証明) 前に示した定理と多重線形性から

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \det(\boldsymbol{e}_1 \, \boldsymbol{a}_2 \, \boldsymbol{a}_3)$$
 (2.2.130)

$$= \det(\mathbf{e}_1 - a_{12}\mathbf{e}_1 + \mathbf{a}_2 - a_{13}\mathbf{e}_1 + \mathbf{a}_3)$$
 (2.2.131)

$$= \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = a_{22} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} + a_{32} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & a_{23} \\ 0 & 1 & a_{33} \end{vmatrix}$$
 (2.2.132)

$$= a_{22} \left(a_{23} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} + a_{33} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \right)$$
 (2.2.133)

$$+a_{32} \left(a_{23} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} + a_{33} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} \right)$$
 (2.2.134)

ここで前定理により第 1 項と第 4 項が 0 になります。第 2 項と第 3 項には交代性を用いて

$$= a_{22}a_{33}\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + a_{23}a_{32}(-1)\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 (2.2.135)

$$= a_{22}a_{33} - a_{23}a_{32} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
 (2.2.136)

これで証明終了です. ■

準備が整ったので、はじめの懸案を片付けましょう. 示すべきは

Theorem. 2.4.9. (行列式の展開 2)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$
 (2.2.137)

(証明) まず $a_1 = a_{11}e_1 + a_{21}e_2 + a_{31}e_3$ を用いて多重線形性から

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 (2.2.138)

$$= a_{11} \begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + a_{21} \begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} 0 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33} \end{vmatrix}$$
 (2.2.139)

まず右辺第一項から考えましょう. つい先程示した定理から

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
 (2.2.140)

となります. 第2項は交代性を用いて

$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} 1 & a_{22} & a_{23} \\ 0 & a_{12} & a_{13} \\ 0 & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$
(2.2.141)

となります. 第3項も同様です. これで証明終了です. ■

手間暇はかかりますが、全く同じようにして一般の n 次の行列式をこのように「展開」することが出来ます.

行列式に関する定理をもう2つ紹介しておきます.

Theorem. 2.4.10. 2 つの行列の積の行列式はそれぞれの行列式の積に等しい。 すなわち $\det A \det B = \det(AB)$

(証明) これも多重線形性が命です.

$$\det(AB) = \det\left(\sum_{i=1}^{3} b_{i1} \boldsymbol{a}_{i} \sum_{j=1}^{3} b_{j2} \boldsymbol{a}_{j} \sum_{k=1}^{3} b_{k3} \boldsymbol{a}_{k}\right)$$
(2.2.142)

$$= \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} b_{i1} b_{j2} b_{k3} \det(\boldsymbol{a}_{i} \ \boldsymbol{a}_{j} \ \boldsymbol{a}_{k})$$
 (2.2.143)

ここで交代性から i,j,k のうちで一致するものがあると 0 で、このうちのどれか

一つの添え字をひっくり返したものにはマイナスがつきますから、

$$\det(AB) \qquad (2.2.144)$$

$$= b_{11}b_{22}b_{33} \det(\mathbf{a}_{1} \ \mathbf{a}_{2} \ \mathbf{a}_{3}) + b_{11}b_{32}b_{23} \det(\mathbf{a}_{1} \ \mathbf{a}_{3} \ \mathbf{a}_{2}) \qquad (2.2.145)$$

$$+ b_{21}b_{12}b_{33} \det(\mathbf{a}_{2} \ \mathbf{a}_{1} \ \mathbf{a}_{3}) + b_{21}b_{32}b_{13} \det(\mathbf{a}_{2} \ \mathbf{a}_{3} \ \mathbf{a}_{1}) \qquad (2.2.146)$$

$$+ b_{31}b_{22}b_{13} \det(\mathbf{a}_{3} \ \mathbf{a}_{2} \ \mathbf{a}_{1}) + b_{31}b_{12}b_{23} \det(\mathbf{a}_{3} \ \mathbf{a}_{1} \ \mathbf{a}_{2}) \qquad (2.2.147)$$

$$= (b_{11}b_{22}b_{33} - b_{11}b_{32}b_{23} - b_{21}b_{12}b_{33} + b_{21}b_{32}b_{13} - b_{31}b_{22}b_{13} + b_{31}b_{12}b_{23})$$

$$+ \det(\mathbf{a}_{1} \ \mathbf{a}_{2} \ \mathbf{a}_{3}) \qquad (2.2.148)$$

$$\times \det(\mathbf{a}_{1} \ \mathbf{a}_{2} \ \mathbf{a}_{3}) \qquad (2.2.149)$$

$$= \{b_{11}(b_{22}b_{33} - b_{32}b_{23}) - b_{12}(b_{21}b_{33} - b_{23}b_{31}) + b_{13}(b_{21}b_{32} - b_{22}b_{31}\} \quad (2.2.150)$$

$$\times \det(\mathbf{a}_{1} \ \mathbf{a}_{2} \ \mathbf{a}_{3}) \qquad (2.2.151)$$

$$= \left(b_{11}\begin{vmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{vmatrix} - b_{21}\begin{vmatrix} b_{12} & b_{13} \\ b_{32} & b_{33} \end{vmatrix} + b_{31}\begin{vmatrix} b_{12} & b_{13} \\ b_{22} & b_{23} \end{vmatrix}\right) \det(\mathbf{a}_{1} \ \mathbf{a}_{2} \ \mathbf{a}_{3}) \quad (2.2.152)$$

$$= \det(\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \boldsymbol{b}_3) \det(\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \boldsymbol{a}_3) \tag{2.2.153}$$

最後のところで先程の行列式の展開を用いました. ■

あとで用いる連立一次方程式に関する結果をここで示しておきます.

Theorem. 2.4.11. 連立一次方程式

$$c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n = 0 (2.2.154)$$

$$c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n = 0 (2.2.155)$$

$$c_{n1}x_1 + c_{n2}x_2 + \dots + c_{nn}x_n = 0 (2.2.157)$$

が $x_i \neq 0$ となる i が存在するような解の組 $oldsymbol{x} := (x_1 \ \cdots \ x_n)$ を持つ必要十分条 件は係数 c_{ij} のなす正方行列 $C:=(c_{ij})$ の行列式 $\det C$ が 0 になることである.

(証明) まず連立一次方程式は行列で Cx = 0 と書けることに注意します.

(必要性) 背理法で証明します. $\det C = 0$ としましょう. すると逆行列が存在 するので、これをかけると x=0 となり、仮定に反します。

(十分性) 一般には帰納法で証明できますが、帰納法で何をやっているのかを確 認することにもなりますから, n=1,2,3 で具体的に調べてみます. n=1 のとき は連立方程式は $c_{11}x_1=0$ で $\det C=c_{11}=0$ なので, $x_1\neq 0$ となる解が存在す ることはすぐに分かります.

n=2 のとき, 2 行目に c_{11} をかけ, 1 行目に c_{21} をかけて, 2 行目から 1 行目 を引くと

$$c_{11}x_1 + c_{12}x_2 = 0 (2.2.158)$$

$$0x_1 + (c_{11}c_{22} - c_{12}c_{21})x_2 = 0 (2.2.159)$$

(2.2.160)

となります. x_2 の係数は $-\det C=0$ なので, $x_2\neq 0$ としてもよいことが分かり ます. $x_i \neq 0$ となる i が存在することさえ示せればよいので、これで十分です.

n=3 のとき、もし全ての c_{ij} が 0 ならば、当然 $\det C=0$ です.そして任意 の x が解となるので、証明終了です.次に $c_{ij} \neq 0$ となる i,j が存在するとしま す.例えばそれが c_{22} であったとしましょう.1 行目と 2 行目を入れ替え,1 列と 2 列目を入れ替えると, c_{22} が c_{11} の位置に来ます. こうして得られたものにあら ためて番号を振りなおすと $c_{11} \neq 0$ となります. このようなことを考慮に入れる と $c_{11} \neq 0$ と仮定してもよいことに注意しましょう. n=2 のときと同じように して,

$$c_{11}x_1 + c_{12}x_2 + c_{13}x_3 = 0 (2.2.161)$$

$$0x_1 + (c_{11}c_{22} - c_{21}c_{12})x_2 + (c_{11}c_{23} - c_{21}c_{13})x_3 = 0 (2.2.162)$$

$$0x_1 + (c_{11}c_{32} - c_{31}c_{12})x_2 + (c_{11}c_{33} - c_{31}c_{13})x_3 = 0 (2.2.163)$$

となります. n=2 のときと同様にして今度は 3 行目の x_2 の係数を 0 にします. このとき 3 行目の x_3 の係数を計算すると、

$$(c_{11}c_{22} - c_{21}c_{12})(c_{11}c_{33} - c_{31}c_{13}) - (c_{11}c_{32} - c_{31}c_{12})(c_{11}c_{23} - c_{21}c_{13})$$

$$(2.2.164)$$

となります.ここで $\det C$ を計算してみます.C の第 i 行ベクトルを c_i として 今まで証明してきた定理を色々使うと

$$0 = \det C = \begin{vmatrix} c_1 \\ c_2 \\ c_3 \end{vmatrix} = \begin{vmatrix} c_1 \\ -c_{21}c_1 + c_{11}c_2 \\ -c_{31}c_1 + c_{11}c_3 \end{vmatrix}$$
 (2.2.165)

$$0 = \det C = \begin{vmatrix} c_1 \\ c_2 \\ c_3 \end{vmatrix} = \begin{vmatrix} c_1 \\ -c_{21}c_1 + c_{11}c_2 \\ -c_{31}c_1 + c_{11}c_3 \end{vmatrix}$$

$$= \begin{vmatrix} c_{11} & c_{12} & c_{13} \\ 0 & c_{11}c_{22} - c_{21}c_{12} & c_{11}c_{23} - c_{21}c_{13} \\ 0 & c_{11}c_{32} - c_{31}c_{12} & c_{11}c_{33} - c_{31}c_{13} \end{vmatrix}$$

$$= c_{11} \det \begin{vmatrix} c_{11}c_{22} - c_{21}c_{12} & c_{11}c_{23} - c_{21}c_{13} \\ c_{11}c_{32} - c_{31}c_{12} & c_{11}c_{23} - c_{21}c_{13} \\ c_{11}c_{32} - c_{31}c_{12} & c_{11}c_{33} - c_{31}c_{13} \end{vmatrix}$$

$$(2.2.165)$$

$$= c_{11} \det \begin{vmatrix} c_{11}c_{22} - c_{21}c_{12} & c_{11}c_{23} - c_{21}c_{13} \\ c_{11}c_{32} - c_{31}c_{12} & c_{11}c_{33} - c_{31}c_{13} \end{vmatrix}$$
(2.2.167)

 $c_{11} \neq 0$ なので $x_3 \neq 0$ と選べます.

一般の場合は帰納法で示せますがここでは省略します、これで証明終了です。 ここ本節はじめに述べた、「線型変換に逆変換があるかどうかを行列による表 示だけから判定できるか?」という問題の答が述べられます. 線型変換 f に対す る行列表示, は適当に座標系 (基底) を選んだときに一意的に定まるものです. 標 準基底を取った時の線型写像を表す行列を A , 別の座標系 $\langle oldsymbol{u}_i
angle_{i=1}^3$ を取った時の 線型写像を表す行列を B とし、座標系の変換を表す行列を P とします.このとき ${
m p}$ $36,\,(2.2.97)$ から $A=PBP^{-1}$ となります.今示した定理と $P^{-1}P=I$ から

$$\det A = \det(PBP^{-1}) = \det P \det B \det P^{-1}$$
 (2.2.168)

$$= \det(PP^{-1}) \det B = \det I \det B = \det B$$
 (2.2.169)

となります. 高校でも学んだとおり逆行列が存在することと行列式が 0 でないこ とは同値です. 上の式から適当な座標系で行列式が 0 でないならば、いかなる座 標系で行列式を計算しようとも行列式の値は 0 ではありません. すなわち逆変換 が存在するか否かは適当な座標系を取ったときの行列式を計算すれば十分である ことが分かりました.

2.2.5 内積と外積

内積から書きます.ここでの内積は高校のときと同じです. $x = \sum_{i=1}^n x_i e_i \in C^n$ $y=\sum_{i=1}^n y_i e_i \in C^n$ としましょう. このとき x と y の内積 (x,y) を以下のように定義します.
$$(\boldsymbol{x}, \boldsymbol{y}) := \sum_{i=1}^{n} x_i \overline{y_i}$$
 (2.2.170)

 y_I についたバーは複素共役を表します。もちろん実数のときはあってもなくても同じです。また行列の積を用いると内積はこうも書けます。

$$(\boldsymbol{x}, \boldsymbol{y}) = {}^{t}\boldsymbol{x}\overline{\boldsymbol{y}} \tag{2.2.171}$$

内積を $\langle x\mid y\rangle$, $\langle x,y\rangle$ と書くこともあります。 ややこしいですが,本冊子でも物理の記述をするときには従来どおり内積を $x\cdot y$ と書くことがあるでしょう。 また定義から (x,x)>0 ですが、これをベクトルの長さと呼び、

$$\sqrt{(\boldsymbol{x}, \boldsymbol{x})} = |\boldsymbol{x}| \tag{2.2.172}$$

と書くことも高校と同じです.

その他内積の値が一般に複素数になることが分かります. 高校で $\cos\theta=(x,y)/(|x||y|)$ という 2 つのベクトルのなす角度が余弦の形で計算できる式を学んだはずですが,これがそのまま成立するとすれば, \cos の値が複素数になります. 複素関数論を学んだ後では別にどうということもないのですが,角度を定義するという観点からみると, θ が複素数になってしまってまともな角度でなくなる(実数でなくなる)ので少し困ります. これの解決法としては,複素ベクトルの範囲で角度を考えるときは内積の値が $0\Leftrightarrow 2$ つのベクトルは直交というところにだけ着目して,後の角度に関する事項は一切考えない,というものがあります.実際問題として,直交性は非常に重要な役割を果たすことがよくありますが,それ以外の角度を論じることはほとんどありませんので,特に問題ありません.

次に外積です。これから書く外積は \mathbb{R}^3 のときにしか定義されないことに注意して下さい $x={}^t(x_1,x_2,x_3)$ 、 $y={}^t(y_1,y_2,y_3)$ として外積を以下のように定義します。

Definition. 2.5.2. $x \ge y$ の外積 $x \times y$

$$\mathbf{x} \times \mathbf{y} := \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}. \tag{2.2.173}$$

簡単な記憶法を紹介します.このために行列式の後にしたのですが,行列式を 用いた記憶法です.

$$\mathbf{x} \times \mathbf{y} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$
 (2.2.174)

これを第1 行に関して展開します。先程は列に関して展開しましたが、今度は行です。 すると

$$\mathbf{x} \times \mathbf{y} = (x_2y_3 - x_3y_2)\mathbf{e}_1 + (x_3y_1 - x_1y_3)\mathbf{e}_2 + (x_1y_2 - x_2y_1)\mathbf{e}_3$$
 (2.2.175)

となり、確かに上の定義と一致します. これを記憶法といって定義としなかった 理由は成分にベクトルと実数が共存する行列式というものを定義していないから です.

2.2.6 線形独立と基底,次元

とりあえず天下りですが、線形結合と線形独立、線形従属の定義を述べます。あまり変わらないので、本節は一般の n で述べます。 C^n のベクトル $a_1,a_2,...,a_m$ に対して

$$c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \dots + c_m \mathbf{a}_m$$
 (2.2.176)

の形のベクトルを $a_1, a_2, ..., a_m$ の線形結合といいます. 高校では一次結合と呼んでいたかもしれません.

ベクトル $a_1, a_2, ..., a_m$ の間の関係

$$c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \dots + c_n \mathbf{a}_m = \mathbf{0}$$
 (2.2.177)

を線形関係と呼びます. 全ての c_i が 0 の場合がありますから, 線形関係は必ず存在します. これを自明な線形関係といいます. 自明でない線形関係はあるとは限りませんが.

Definition. 2.6.1. 自明でない線形関係が存在するとき, $a_1, a_2, ..., a_m$ は線形従属である自明な線形関係が存在しないとき, $a_1, a_2, ..., a_m$ は線形独立である.

と定義します.

次に基底の定義を述べましょう.

Definition. 2.6.2. C^n の有限個のベクトル $e_1, e_2, ..., e_m$ が次の 2 条件を満た すとき、これらのベクトルが基底であるという。

- 1. C^n の任意のベクトルは $e_1, e_2, ..., e_m$ の線形結合として表される.
- $2. e_1, e_2, ..., e_m$ は線形独立である.

定義から、基底は何か特定の一組のものを指しているわけではありません。また基底はその順番も大事なので、順番を込めたものとして基底を $\langle e_1,\dots,e_m\rangle=\langle e_i\rangle_{i=1}^m$ などとも書きます。とりあえずはこれを座標軸のようなものだと考えておいて下さい。座標軸の選び方が色々あった方がいいので、それを数学的に定式化したものが基底です。これまで何度となく使ってきた(ものの n 次元版の)n 項単位ベクトルの組 e_i 、 $i=1,2,\cdots,n$ (上のものとは別!)は標準基底と呼ばれます。

座標軸の選び方が色々あった方がいい、ということがよく分からないと思いますが、これは物理からの要請とも言えます. \mathbb{R}^3 で考えてみましょう.

どういうことかというと、例えば固体の結晶構造を解析したいとします. 手持ちの「キッテル固体物理学入門」によりますと、三斜晶系、単斜晶系、斜方晶系、正方晶系、立方晶系、菱面体晶系、六方晶系というのがあるようで、さらにこれに格子の数がどうのこうのとあります. 今調べたい結晶の原子配列を見てみたら、お互いに 60 度の角度をなす、長さの比が 2:1:1 のベクトルの先に原子がちょうど上手く乗っていたとしましょう. このときこのようなベクトルを取ってやれば、現象の記述に便利そうです. この少し斜めに傾いた結晶の解析をするのに、先程の「まっすぐ」な標準基底をとって調べるような人間がいたら、その人間の心は曲がっています.

そういうわけでこうした都合の良いベクトルを用いていきたいわけですが、これが標準基底と数学的に同じような資格をもっていて欲しいわけです。物理的には良くても数学的に問題があるようでは困ってしまいますから、ここで「標準基底と数学的に同じような資格」と書きましたが、これがまた曲者です。どういうことかというと、「標準基底の持っている性質」というのが何なのかよく分かっていないといけない訳ですが、これが良く分かりません。困ってしまったわけで

すが, こういうとき数学でよく行なう手法というのがありまして, それを紹介します. それというのは, 標準基底がどんな性質を持っているかではなく, どんな性質を持っていて欲しいかを考えるということです.

 R^3 の標準基底が持っていて欲しい性質を考えましょう。まず 1 つは標準基底で空間内の全ての点を表現出来ないと困ります。これは固体内の全ての原子の位置を書き表せないと困る。ということです。ここから標準基底が持っていて欲しい性質を一つ要請しましょう。それはある程度たくさんのベクトルからなることです。例えば上の定義から基底は複数のベクトルからなるのが一般的だそうですが、仮に基底がただ 1 つのベクトル a_1 からなったとしましょう。そうすると a_1 では直線上の点しか記述できません。少なくとも基底がある程度たくさんのベクトルからなっていないと困るわけです。実際上で述べた標準基底はそうなっています。

そうなるとどのくらい多ければいいのか、というのを考えたいわけです。あまり多くても邪魔なので、少なめにしたいところです。あまり少ないと先程の 1 つということになってしまうので、少し考えないといけません。これもまた、空間内の全ての点を表現出来ないと困るというところが重要です。先程同様、基底が 2 つのベクトルからなるとしても高校で学んだとおり、良くて平面上の点しか記述出来ません。というわけで 3 本以上は欲しいことがわかります。詳しく述べるのはやめますが、3 次元空間内では 4 本以上あるとこれは上で定義した言葉を使うと、このベクトルの組は線形従属になります。線形従属だと、その中のベクトルのうちいくつかはその組の中のベクトルのいくつかで書くことが出来、空間の点を全て表現する、という観点からは別に無くても不自由しません。ということで、 \mathbb{R}^3 の基底は 3 つあればよい、ということです。実際標準基底はそうなっています。

今までのことをまとめると、基底は空間内の点を全て表現できること、数がなるべく少ないことという性質を持っていて欲しいということになりました。基底の定義と比べると、「空間内の点を全て表現できること」が 1、■数がなるべく少ないこと」が 2 に対応することが分かります。

ちなみに 2 を考慮に入れると、定義で m と書いたところは実は n であったことが分かります。この数 n のことを次元といいます。ある空間の次元を \dim で表します。今の例で言えば、 $\dim \mathbf{R}^3=3$ です。

基底に関して 1 つ重要なことを述べておきます。それは正規直交基底というものです。これは $\langle e_i \rangle_{i=i}^n$ を基底としたとき、

$$(\mathbf{e}_i, \mathbf{e}_j) = \delta_{ij} \tag{2.2.178}$$

となるもののことです。ここで δ_{ij} は Kronecker の δ であり, i=j で 1 , $i\neq j$ で 0 になるというものでした。ここの言葉の意味を説明しておきましょう。正規というのは $\sqrt{(e_i,e_i)}=\mid e_i\mid =1$ となるもの,つまりベクトルの長さが 1 であるということです。直交というのはもちろん $i\neq j$ のとき $(e_i,e_j)=0$ となることです.例えば標準基底は正規直交基底です.

2.2.7 固有値, 固有ベクトル

まず固有値・固有ベクトルを定義しましょう.

Definition. 2.7.1. 行列 A に対し零ベクトルでないベクトル x と複素数 λ が以下の関係式を満たすとき, λ を固有値, x を固有ベクトルという.

$$Ax = \lambda x \tag{2.2.179}$$

要するに、行列の作用により方向を変えないベクトルを固有ベクトルといい、 そのとき行列の作用は当然定数倍にしかなりえないわけですが、その倍数を固有 値といいます. また固有値を一般に複素数といいましたが、この理由を具体例で考えます。

$$R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{2.2.180}$$

この行列の固有値を考えてみましょう. 幾何学的に考えると、この行列をあるべ クトルにかける(作用させる)ことは平面内での回転を意味します.回転させるの で、「方向を変えない」ということは $\theta = 2n\pi, n \in \mathbb{N}$ のときしかありえません. 実際この行列の固有値は $\cos \theta + i \sin \theta$ であって複素数です. 実行列だけを考えて いても複素数の固有値が出てくるので、はじめから複素数で話を進めようという ことです.

また固有ベクトルを零ベクトルでないとした訳は、当然ながら零ベクトルであ れば固有値が何であれ上の式を満たしてしまうからです.

上の固有値・固有ベクトルの定義式では、行列だけ分かっていて一般には固有 値・固有ベクトルは未知です.これを求める方法を見つけないといけませんが.一 度に両方見つけようというのは欲張りです。1 つずつ見つけることにしましょう。 上の式を以下のように変形します.

$$Ax = \lambda x = \lambda Ix$$
 (I は単位行列) (2.2.181)

$$\iff (\lambda I - A) \, \boldsymbol{x} = \boldsymbol{0} \tag{2.2.182}$$

固有ベクトルはゼロベクトルではないとしていますから, $\det(\lambda I - A) = 0$ が従い ます.

ここで行列式の計算をすると n 次行列のとき、一般に行列式は λ の n 次方程 式になります。代数学の基本定理により、重複を含めてn個の根 (\mathbf{W}) が必ず存在 します. つまり固有値が存在します. ここで求まった固有値を定義式に代入して 固有ベクトルを求めます. この手続きは1度やってみないと分からないと思いま すので、1 つ例をやってみましょう.

後で使うのにもちょうど良いので、一番初めの運動方程式のところで出てきた 行列を使いましょう.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \tag{2.2.183}$$

つまり上の A の固有値・固有ベクトルをを求めます. 上の教えにしたがってま ず行列式を計算します. 行列式の具体的な計算練習も兼ねて, 少し丁寧にやりま しょう.

$$0 = \det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & 1 & 0 \\ 1 & \lambda - 2 & 1 \\ 0 & 1 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 2 & 1 \\ 1 & \lambda - 2 \end{vmatrix} - 1 \times \begin{vmatrix} 1 & 1 \\ 0 & \lambda - 2 \end{vmatrix}$$
(2.2.184)

$$= (\lambda - 2) \begin{vmatrix} \lambda - 2 & 1 \\ 1 & \lambda - 2 \end{vmatrix} - 1 \times \begin{vmatrix} 1 & 1 \\ 0 & \lambda - 2 \end{vmatrix}$$
 (2.2.185)

$$= (\lambda - 2)\{(\lambda - 2)^2 - 1\} - (\lambda - 2) \tag{2.2.186}$$

$$= (\lambda - 2)\{\lambda - (2 + \sqrt{2})\}\{\lambda - (2 - \sqrt{2})\}$$
 (2.2.187)

したがって固有値は $2, 2+\sqrt{2}, 2-\sqrt{2}$ と分かりました.

固有ベクトルを求めましょう. 分かりやすいように各固有値に対する固有ベクトルを u_2 , $u_{2+\sqrt{2}}$, $u_{2-\sqrt{2}}$ とします. 式 (2.2.182) から

$$(2I - A)\mathbf{u}_2 = \mathbf{0} \tag{2.2.188}$$

$$\iff \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_{2,1} \\ u_{2,2} \\ u_{2,3} \end{pmatrix} = 0, \quad \boldsymbol{u}_2 := \begin{pmatrix} u_{2,1} \\ u_{2,2} \\ u_{2,3} \end{pmatrix}$$
 (2.2.189)

$$\Longrightarrow \boldsymbol{u}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \tag{2.2.190}$$

定義から分かるとおり、u が固有ベクトルだとすれば任意の実数 c に対して cu も固有ベクトルです。つまり、固有ベクトルの大きさは特に指定されていません。それを良いことに固有ベクトルの大きさを 1 に取っておきました。後々 1 の方が都合がいいのです。ついでに述べておきますと $u_2=1/\sqrt{2}^{\,t}(-1\ 0\ 1)$ でも構いません。これについては趣味です。同様にして $u_{2+\sqrt{2}}=1/2^{\,t}(1\ -\sqrt{2}\ 1)$ 、 $u_{2-\sqrt{2}}=1/2^{\,t}(1\ \sqrt{2}\ 1)$ となります。

直有値について注意をいくつかしておきます. 1 つの固有値に対して固有ベクトルが 1 つであるとは限りません. 具体的に見てみましょう.

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \tag{2.2.191}$$

上の行列の固有値は 1,4 ですが, 固有値 1 の固有ベクトルは 2 つあります. 選び方には任意性がありますが, 例えば t(1-10), t(10-1) です. さらに重要な注意として, 上の固有ベクトルは互いに直交する大きさ 1 のベクトルに選ぶことが出来ます. 最後の以下の定理を証明しておきます.

Theorem. 2.7.2. 任意の Hermite 行列 H , ユニタリ行列 U の互いに異なる固有値に対する固有ベクトルは直交する.

(証明) 互いに異なる固有値を λ_1,λ_2 , 対応する固有ベクトルを x_1,x_2 とします。まず Hermite から示します。定義から $H^*=H$ であり,内積の定義から A に対して $(Ax,y)=(x,A^*y)$ となることを思い出して下さい。まず Hermite 行列の固有値が(複素数ではなく)実数になることを示します。

$$(Hx, x) = \lambda(x, x) \tag{2.2.192}$$

$$(Hx, x) = (x, Hx) = \overline{\lambda}(x, x)$$
 (2.2.193)

$$\Longrightarrow \lambda = \overline{\lambda} \tag{2.2.194}$$

これから

$$(Hx_1, x_2) = \lambda_1(x_1, x_2) \tag{2.2.195}$$

$$(Hx_1, x_2) = (x_1, Hx_2) = \lambda_2(x_1, x_2)$$
 (2.2.196)

となりますから、辺々引くと $(\lambda_1-\lambda_2)({m x}_1,{m x}_2)=0$ であり、固有値が異なるので、 $({m x}_1,{m x}_2)=0$ となります.

ユニタリについてもほぼ同様に示せます。ユニタリの場合は $U^*=U^{-1}$ なので, $Ux_i=\lambda_i x_i$ から $U^*x_i=(1/\lambda_i)x_i$ となります.さらに

$$(\boldsymbol{x}, \boldsymbol{x}) = (U^*U\boldsymbol{x}, \boldsymbol{x}) = (U\boldsymbol{x}, U\boldsymbol{x}) = (\lambda \boldsymbol{x}, \lambda \boldsymbol{x}) = \lambda \overline{\lambda}(\boldsymbol{x}, \boldsymbol{x})$$
(2.2.197)

から $\lambda \overline{\lambda} = 1$ が分かります. これから

$$(U\boldsymbol{x}_1, \boldsymbol{x}_2) = \lambda_1(\boldsymbol{x}_1, \boldsymbol{x}_2) \tag{2.2.198}$$

$$= (\boldsymbol{x}_1, U^* \boldsymbol{x}_2) = (\boldsymbol{x}_1, \frac{1}{\lambda_2} \boldsymbol{x}_2) = (\boldsymbol{x}_1, \overline{\lambda_2} \boldsymbol{x}_2) = \lambda_2(\boldsymbol{x}_1, \boldsymbol{x}_2) \quad (2.2.199)$$

となるので、先程と同様にして $(x_1,x_2)=0$ です.

2.2.8 対称行列の対角化とスペクトル分解

さて行列の話も大詰めです。ここでは対称行列が対角化可能であることを示します。対角化とは、ある行列 A に適当な行列 U をかけることで対角行列 Λ にしてしまうことです。これがあると何が嬉しいかということは次節で明らかになります

さて、まず本節で示す定理の最も一般的な形を紹介します. 行列 A が正規行列であるということは $AA^*=A^*A$ で定義されました. ここで A^* は $A^*={}^t\overline{A}$ で定義される随伴行列と呼ばれるものでした. ここで示したい定理は

Theorem. 2.8.1. 正方行列 A に対し $U^{-1}AU$ が対角行列になるようなユニタリ行列 U が存在する為には A が正規行列であることが必要十分である.

というものです.しかし実用性の観点からは次の定理を示せば十分です.また 実 Hermite 行列は直交行列であることを思い出して下さい.

Theorem. 2.8.2. *Hermite* 行列 *H* は適当なユニタリ行列によって対角化可能である.

(証明) 分かりやすくするために 3 次行列に対して証明します. 全く同様にして一般の n 次でも出来ます. H の固有値を h_1,h_2,h_3 , 対応する固有ベクトルをそれぞれ u_1,u_2,u_3 とします. 固有ベクトルは規格化 (大きさが 1) しておきます. また $U=(u_1\ u_2\ u_3)$ としておきます.

一旦全ての固有値が異なるとして証明します. 積の行列 U^*HU の (i,j) 成分を計算すると

$$U^*HU = \begin{pmatrix} \boldsymbol{u}_1^* \\ \boldsymbol{u}_2^* \\ \boldsymbol{u}_3^* \end{pmatrix} (H\boldsymbol{u}_1 H\boldsymbol{u}_2 H\boldsymbol{u}_3)$$
 (2.2.200)

$$= \begin{pmatrix} \overline{(u_1, Hu_1)} & \overline{(u_1, Hu_2)} & \overline{(u_1, Hu_3)} \\ \overline{(u_2, Hu_1)} & \overline{(u_2, Hu_2)} & \overline{(u_2, Hu_3)} \\ \overline{(u_3, Hu_1)} & \overline{(u_3, Hu_2)} & \overline{(u_3, Hu_3)} \end{pmatrix}$$
(2.2.201)

となります。つまり $U^*HU=\left(\overline{(m{u}_i,Hm{u}_j)}\right)$ です。ここで i,j を 1,2,3 のいずれかとして、

$$(\boldsymbol{u}_i, H\boldsymbol{u}_j) = \overline{h_j}(\boldsymbol{u}_i, \boldsymbol{u}_j) = \overline{h_j}\delta_{ij}$$
 (2.2.202)

となりますから, U^*HU は対角行列です.

固有値に重複があったときは、重複した固有値に対する固有ベクトルが複数存在することになりますが、これらを全て互いに直交するように選びなおすことが出来ます. したがって上の議論がほぼそのままで成立します. これで定理が完全に証明されました. ■

ここで前に正規行列を紹介したので、スペクトル分解を紹介したいと思います。 まず射影 P を定義します. W の直交補空間を W^\perp とすると, C^n の任意のベクトル x は

$$x = x' + x$$
, $x' \in W$, $x'' \in W^{\perp}$ (2.2.203)

と一意的に分解されます. このとき x に対して上手く Px=x' となる行列 P を部分空間 W への射影であるといいます. また P は

$$P^2 = P$$
 , $P^* = P$ (2.2.204)

を満たします.

ここで W_1,W_2 を \mathbb{C}^n の 2 つの部分空間とし, P_1,P_2 をそれぞれ W_1,W_2 への射影としましょう. このとき部分空間 W_1,W_2 が直交する必要十分条件は $P_1P_2=P_2P_1=O$ となります.

実際, W_1 と W_2 が直交すれば $W_1\subset W_2^\perp$ から $P_1P_2x=\mathbf{0}$ です. 逆に $P_1P_2=O$ ならば, 任意の $x_1\in W_1, x_2\in W_2$ に対し,

$$(x_1, x_2) = (P_1x_1, P_2x_2) = (x_1, P_1P_2x_2) = \mathbf{0}$$
 (2.2.205)

となり、証明終了です. ■

A を正規行列としましょう. A の異なる固有値全部を $\beta_1,\beta_2,\dots,\beta_k$,対応する i に対し $W_i:=\{x\,;\,Ax=\beta_ix\}$ とします. このとき各 W_i は互いに直交し, \mathbb{C}^n はこれらの部分空間の直和になります. P_i を各 W_i への射影とすると

$$P_1 + P_2 + \dots + P_k = I, \ P_i P_j = O, \ i \neq j$$
 (2.2.206)

$$A = \beta_1 P_1 + \beta_2 P_2 + \dots + \beta_k P_k \tag{2.2.207}$$

が一意的に成り立ちます. これを正規行列 A のスペクトル分解と言います.

スペクトル分解の意味を少し説明しておきましょう。一番重要なのは固有ベクトルに対しては行列の積の作用が単なる定数倍になるということです。きちんと証明していませんが、ある行列に対してはその行列の固有ベクトルを基底として選べることがあります。この行列を A 、固有ベクトルからなる基底を u_1,u_2,u_3 、固有値はそれぞれ $\lambda_1,\lambda_2,\lambda_3$ とします。すなわち $Au_i=\lambda iu_i$ です。この固有ベクトルで任意のベクトル x を $x=x_1u_1+x_2u_2+u_3$ と展開します。このとき行列の作用を考えると、

$$Ax = A(x_1u_1 + x_2u_2 + x_3u_3)$$
 (2.2.208)

$$= x_1 \lambda_1 \mathbf{u}_1 + x_2 \lambda_2 \mathbf{u}_2 + x_3 \lambda_3 \mathbf{u}_3 \tag{2.2.209}$$

$$= x_1(\lambda_1 I) \mathbf{u}_1 + x_2(\lambda_2 I) \mathbf{u}_2 + x_3(\lambda_3 I) \mathbf{u}_3$$
 (2.2.210)

と書けます。ここで I は単位行列です。こうすると「行列をかける (作用させる)」という直観的に捉えにくいものが、ただの定数倍に還元され、非常に見やすくなります。 あとでスペクトル分解と Fourier 解析との関係を少し紹介する予定なので、軽く紹介してみました。

2.2.9 物理への適用

準備が終わったので、早速これをはじめに言ってあった現象の解析に応用してみましょう。3 質点系での解析を行ないます。問題を再録しましょう。

$$m\ddot{x}_{1} = -kx_{1} - k(x_{1} - x_{2})$$

$$m\ddot{x}_{2} = +k(x_{1} - x_{2}) - k(x_{2} - x_{3})$$

$$m\ddot{x}_{3} = -kx_{3} + k(x_{2} - x_{3})$$

$$\iff m\begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{x}_{3} \end{pmatrix} = -k\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

$$\iff m\ddot{\boldsymbol{x}} = -kA\boldsymbol{x} \ , \ \boldsymbol{x} := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \ , \ A := \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

ここで A が対称行列 (正規行列) になっていますから、これが対角化できます.

対角化すれば一番初めに見せた X のようなものが上手く見つけられたことに相当し、首尾よく問題が解けたことになります。 というわけで、2.2.8 節で示したように A を対角化するようなユニタリ行列を見つけられれば良い、ということになります。 A の固有値、固有ベクトルは 2.2.7 節で求めてしまいました。これにより A を対角化するには 2.2.8 節のはじめに示した定理を使えば十分です。つまり、固有ベクトルから作ったユニタリ行列 U を使えば良いということです。

2.2.7 節から固有値、固有ベクトルを再録してきましょう.

$$u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, u_{2+\sqrt{2}} = \frac{1}{2} \begin{pmatrix} 1\\-\sqrt{2}\\1 \end{pmatrix}, u_{2-\sqrt{2}} = \frac{1}{2} \begin{pmatrix} 1\\\sqrt{2}\\1 \end{pmatrix}$$
 (2.2.211)

したがって $U=(u_2\;u_{2+\sqrt{2}}\;u_{2-\sqrt{2}})$ とすればこの U で $U^*AU=\Lambda$ として対角化できます. 2.2.8 節のはじめに示した定理によれば, 対角成分には固有値が並びます. このあたりが固有値を「固有」値と呼ぶ所以でしょう.

Λ を実際に書いてみると

$$\Lambda = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 + \sqrt{2} & 0 \\ 0 & 0 & 2 - \sqrt{2} \end{pmatrix}$$
(2.2.212)

ここで $X := U^*x = {}^t(X_1X_2X_3)$ とします. 上の行列に左から U^* をかけて

$$mU^*\ddot{\boldsymbol{x}} = -kU^*A\boldsymbol{x} = -kU^*AUU^*\boldsymbol{x}$$
 (2.2.213)

$$\iff m\mathbf{X} = -k\Lambda\mathbf{X} \tag{2.2.214}$$

あとは各 X_i について解くだけです。もちろん、はじめに天下りに出した X_i がこれらです。これらはこのようにして導き出したものです。

あと詳しく詰めるのは各人で練習してみて下され、弾性体への拡張 ($n \to \infty$ への拡張) も適当な本を見ると載っていますから、まずは自分でアタックしてみて下さい。本節もまだ残り一節ありますが、次の予告をしましょう。次章は一般のポテンシャルとその安定点近傍での振動です。数学的には微分積分学です。

2.2.10 無限次元の線形代数学

この節は後々への接続と量子力学のためのものです気楽に読んでみて下さい.

抽象ベクトル 2

2.2.3 節ではベクトルについて少し突っ込んだ議論をしました。ここではもう少し踏み込んでいきます。まず、 \mathbb{C}^n のベクトルを幾何ベクトルといいます。ということで他のベクトルがあるということを匂わすわけですが、その前に一般のベクトルが持つべき性質を考えて見ましょう。x,y,z を任意の幾何ベクトル、 α,β を任意の複素数としましょう。このときこれらは以下の関係式を満たします。

- 1. x + y = y + x
- 2. (x + y) + z = x + (y + z)
- 3. 全ての x に対し, x + 0 = x を満たすベクトル 0 がただ 1 つ存在する.
- 4. 全ての x に対し, x + x' = 0 を満たすベクトル x' がただ 1 つ存在する.
- 5. 1x = x
- 6. $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$
- 7. $\alpha(\boldsymbol{x} + \boldsymbol{y}) = \alpha \boldsymbol{x} + \alpha \boldsymbol{y}$
- 8. $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$

ここで一般のベクトルにも全く同じ性質を要求します。また時として、今まで持ってきたベクトルの幾何学的な描像は理解の妨げになります。例として普通のn次元ベクトルでも幾何学的な描像が思い描きにくいようなものをあげましょう。

我々が八百屋だとします。仕入れなどの問題もありますから、野菜の売上というものは気にかかるものです。よく売れる品物や品種を調べたりしたいわけですが、このとき3品目を扱っているとするとこの3品目の個数を時間変化を調べてみればそれなりに売れ行きが分かるでしょう。確かにこれは3次元の空間ベクトルですが、これに空間的な描像を対応させる人はあまりいないでしょう。ここではそれをさらに先鋭化させていきます。

線形空間

ここで一般的なベクトルの定義 (線形空間の定義) をしてもう一度はっきりさせておきましょう.

Definition. 2.10.1. ある集合 V が $\mathbb C$ 上の (複素) 線形空間であるとは, $f,g \in V$ に対して和 (加法) と呼ばれる演算があって f+g が定まり, かつ $f+g \in V$ となり, 複素数 α と $f \in V$ に対してスカラー積と呼ばれる演算があって αf が定まり, かつ $\alpha f \in V$ となって, これらが次の演算規則を満たすことをいう

- 1. f + g = g + f
- 2. (f+g)+h=f+(g+h)
- 3. 全ての f に対し, $f + \theta = f$ を満たすベクトル θ がただ f つ存在する.
- 4. 全ての f に対し, $f + f' = \theta$ を満たすベクトル f がただ f つ存在する.
- 5. 1f = f
- 6. $\alpha(\beta f) = (\alpha \beta) f$
- 7. $\alpha(f+g) = \alpha f + \alpha g$
- 8. $(\alpha + \beta)f = \alpha f + \beta f$

このとき 3 で存在を要請した θ を零ベクトルと言います. 零ベクトルは概念的には数の 0 とは異なりますが, 全く無関係でもありません. 実際, $0f=\theta$ が成立します.

これを示すには8から

$$0f = (0+0)f = 0f + 0f (2.2.215)$$

この両辺に 4 で存在を要請した (0f)' を加えて 2 と 3 を用いると

$$\theta = 0f + \{0f + (0f)'\} = 0f + \theta = 0f \blacksquare$$
 (2.2.216)

4 で存在を要請した f' を -f と書き, f の逆元と呼びます. ここでマイナス 記号を使って混乱が無いのは (-1)f=-f が成立するからです. 実際

$$\theta = 0f = (1-1)f = 1f + (-1)f \tag{2.2.217}$$

$$\Longrightarrow (-1)f = -f \blacksquare \tag{2.2.218}$$

この他, 今まで使った来たベクトルに対する算法は基本的に全て成立することが 証明できます.

そろそろベクトルに対して今までの x と異なり、太字ですら無n f をつかっている理由を説明しましょう。ここから出てくるベクトルは無限次元を射程に入れた議論をしています。主に扱うものは数列、関数 (写像)、線形作用素です。ここで数列は自然数を定義域とした複素数を値域とする関数 (写像) ですから、関数の取り扱いを基本とします。本冊子で扱う線形作用素はほぼ微分作用素、積分作用素です。高校までに学んできた微分・積分は「演算」という印象が強かったと思います。ここでは作用という性質を前面に出します。

まずは次の定理を証明します.

Theorem. 2.10.2. 関数空間 $\mathcal{F}(\mathbb{C},\mathbb{C})$ は線形空間である.

(証明) ここではじめの方に述べた「関数」と「関数値」の区別が重要になります。 先程の定義によれば和とスカラー倍を定義しないといけません。早速定義しましょう。 f,g,h を \mathbb{C}^n から \mathbb{C}^n への関数, α,β,z を複素数とします。このとき和とスカラー倍は

$$f + g \longrightarrow (f+g)(z) := f(z) + g(z) \tag{2.2.219}$$

$$\alpha f \longrightarrow (\alpha f)(z) := \alpha f(z)$$
 (2.2.220)

という風に、関数の作用を用いて定義します。前に関数の対応や作用という面を強調したのはこの為です。また零元 (零ベクトル) θ は、恒等的に 0 を与える関数 (零関数) です。つまり任意の z に対し $\theta(z)=0$ 。ある関数 f が恒等的に 0 を与える (つまり零関数) とき、 $f\equiv\theta$ と g 本線で書くことがあります。

また 2 つの関数 f,g が等しいことも作用で定義します。つまり任意の複素数に対し f(z)=g(z) が成立するとき関数として (ベクトルとして) f と g が等しいと言います。ベクトルであることの証明ですが、関数値は複素数なので、上に述べた性質を満たすのは明らかでしょう。一度きちんとやってみます。1 は

$$(f+g)(z) = f(z) + g(z)$$
 (2.2.221)

$$= g(z) + f(z) (2.2.222)$$

$$= (q+f)(z) (2.2.223)$$

つまり

$$f + g = g + f (2.2.224)$$

2 は,

$$\{(f+g)+h\}(z) = (f+g)(z)+h(z) \tag{2.2.225}$$

$$= f(z) + g(z) + h(z)$$
 (2.2.226)

$$= f(z) + (g+h)(z)$$
 (2.2.227)

$$= \{f + (g+h)\}(z) \tag{2.2.228}$$

つまり

$$(f+g) + h = f + (g+h)$$
 (2.2.229)

3 は,

$$(f + \theta)(z) = f(z) + \theta(z)$$
 (2.2.230)

$$= f(z) \tag{2.2.231}$$

つまり

$$f + \theta = f \tag{2.2.232}$$

4 は、

$$\{f + (-f)\}(z) = f(z) + (-f)(z) \tag{2.2.233}$$

$$= f(z) - f(z) \tag{2.2.234}$$

$$= 0 = \theta(z) \tag{2.2.235}$$

つまり

$$f + (-f) = \theta \tag{2.2.236}$$

確かにこのとき f の逆元 -f は一意的です. 5 は,

$$(1f)(z) = 1 \times f(z) \tag{2.2.237}$$

$$= f(z) \tag{2.2.238}$$

つまり

$$1f = f (2.2.239)$$

6 は,

$$\{\alpha(\beta f)\}(z) = \alpha(\beta f)(z) \tag{2.2.240}$$

$$= \alpha \beta f(z) \tag{2.2.241}$$

$$= (\alpha \beta) f(z) \tag{2.2.242}$$

つまり

$$\alpha(\beta f) = (\alpha \beta)f \tag{2.2.243}$$

7は,

$$\{(\alpha+\beta)f\}(z) = (\alpha+\beta)f(z) \tag{2.2.244}$$

$$= \alpha f(z) + \beta f(z) \tag{2.2.245}$$

$$= \{(\alpha f + \beta f)\}(z)$$
 (2.2.246)

つまり

$$(\alpha + \beta)f = \alpha f + \beta f \tag{2.2.247}$$

8 は,

$$\{(\alpha + \beta)f\}(z) = (\alpha + \beta)f(z) \tag{2.2.248}$$

$$= \alpha f(z) + \beta f(z) \tag{2.2.249}$$

$$= (\alpha f + \beta f)(z) \tag{2.2.250}$$

つまり

$$(\alpha + \beta)f = \alpha f + \beta f \tag{2.2.251}$$

以上で関数がベクトルである証明は終わりました. ■ これで関数の集合が線形空間であることが示されました. 線形空間としての関数の集合を関数空間と呼ぶことがあります.

作用素についても同じように出来ます. 作用素を A とします. 作用素の場合, あくまで「作用」なので作用する空間を設定しないといけません.

例えば微分作用素のとき、後でも使いますが、r 回微分可能でかつ各階の導関数が連続な、 $\Omega\in\mathbb{R}$ から \mathbb{R} への関数全体の集合を $C^r(\Omega,\mathbb{R})$ と書きますが、その上での作用素、といったような位置付けになります。今は作用素が作用する空間として適当な空間 V を取ります。このとき作用素を A,B,作用する空間の元を $f\in V$ を取り、作用素の和とスカラー培は以下のように定義します。

$$A+B \longrightarrow (A+B)f := Af+Bf \tag{2.2.252}$$

$$\alpha A \longrightarrow (\alpha A)f := \alpha Af$$
 (2.2.253)

線形独立と次元,基底2

退屈な話が続きました。そろそろもう少し身のある話に行きます。ここからは今までに有限次元(\mathbb{C}^n)でしてきた話を無限次元を視野に入れて話しなおします。まずは線形独立性です。

Definition. 2.10.3. $V = \{f_{\lambda}; \lambda \in \Lambda\}$ の元が線形独立であるというのは任意の有限個の V の元 $f_{\lambda_1}, \ldots, f_{\lambda_n}$ が線形独立であることをいう.

直接に無限個の一次独立性を言わないのは、無限個の元の線形結合を考えると 級数の収束の問題が入ってきて線形結合の係数に余計な制限が加わるからです. 次に次元です.

Definition. 2.10.4. ある正数 K が存在して V の任意の線形独立な元の組 $\{f_i\}_{i=1}^r$ に対し $r \leq K$ となるとき, V は有限次元であるという. 一方, どんなに 大きい正数 K をとってもある線形独立な元の組 $\{f_i\}_{i=1}^r$ が存在して $r \geq K$ となるとき. V は無限次元であるという.

基底はあまり変わりありません.

Definition. 2.10.5. V の部分集合 $E = \{f_{\lambda}; \lambda \in \Lambda\}$ が基底であるというのは次の 2 条件が成り立つときである.

- $1. \ V$ の任意の元は E の元の線形結合として表される.
- 2. E は線形独立である.

ここで

Theorem. 2.10.6. 関数空間は無限次元である.

を証明しましょう。 関数空間としては,一旦実数から実数への関数の集合を取ります.この部分集合としては $f_n(x)=x^n$ となる関数の集合 $\mathcal{F}=\{f_n\,;\,n\in\mathbb{N}\}$ を取ります. \mathcal{F} は無限個の元からなっています.したがってこの任意の有限個の元の線形結合がベクトルとしての零,つまり零関数 θ であることを示せば良いわけです.簡単のため, $g=c_0f_0+c_1f_1+\cdots+c_nf_n$ を考えましょう.たまたま g は微分できるのでそれを使いましょう.g(x)=0 の両辺を k 階微分して k0 を代入すると k2 のです.したがって k3 を示すことが出来ました.

ついでに言っておくと、この f_n は適当な V の部分空間を取ると、その基底になることがあります。このあたりは後で Taylor 展開と絡めて説明する予定です。

内積

次に内積の話をします、無限次元での内積をどう定義するか、ということですが、まずは有限次元を思い出しましょう、 $x,y\in\mathbb{C}^n$ とします、このとき内積は

$$(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} x_i \overline{y_i}$$
 (2.2.254)

で定義しました.ここで数列 $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ を考えます.これを縦に無限に長い列ベクトルのようにみなし,上の内積の定義の n を ∞ を無限大に飛ばしたものを考えると,内積のようなものが出来ました.

$$(a_n, b_n) := \sum_{n=1}^{\infty} a_n b_n$$
 (2.2.255)

無限級数になってしまったので、収束の問題が真っ先に登場します。以後は和が上手く収束するようなものだけ考えましょう。これを l^2 空間といいます。 l^2 と略して言うこともあります。「空間」とつけてしまいましたが、これは問題があります。何故かと言うと、これは数列全体の部分集合にはなりますが、部分空間になるか分かりません。きちんと部分空間になることを示しましょう。後できちんと書くか分かりませんが、

Theorem. 2.10.7. 上に有界な単調増加実数列は収束する.

Theorem. 2.10.8. 絶対収束する数列は収束する.

という2つの定理を拝借してきます.

部分空間の定義から和とスカラー倍がまた l^2 の元でないといけません. スカラー倍については良いでしょう. 和を考えます.

$$|a_n + b_n|^2 \le 2(|a_n|^2 + |b_n|^2) \tag{2.2.256}$$

という簡単な不等式を使います. 両辺の和を取ると, まず右辺は収束します. 左辺は正数の和ですから単調増加で, さらに収束級数の和で抑えられていますから上に有界です. 上の定理によりこれは収束します. これで l^2 が線形空間であることが分かりました. \blacksquare

次は l^2 の元の内積がきちんと収束することを示さないといけません。こちらもまた初等的な不等式ですが、

$$|a_n b_n| \le (|a_n| + |b_n|)^2 \le 2(|a_n|^2 + |b_n|) \tag{2.2.257}$$

を使います.これもまた和を取ると右辺は収束します.先程同様これから左辺が収束しますが,これは絶対値の級数なので,絶対収束しています.したがって元の級数.すなわち内積も収束します.■

ちなみに「内積」とは言いますが、有限次元の内積が持つような性質を無限次元でも同様に持っていてもらいたいわけです。それでは有限時限の内積が持つ性質とは何でしょうか?これは以下に述べるようなものです。それを定義として採用します。

Definition. 2.10.9. 内積とは線形空間 V の 2 元 f,g に対して複素数を対応させ、かつ以下の性質を満たす写像である.

$$(f, f) \ge 0 \tag{2.2.258}$$

$$(f, f) = 0 \Longleftrightarrow f = \theta \tag{2.2.259}$$

$$(f,g) = \overline{(g,f)} \tag{2.2.260}$$

$$(\alpha f_1 + \beta f_2, g) = \alpha(f_1, g) + \beta(f_2, g)$$
 (2.2.261)

上の 2 つの性質は正定値性と呼ばれます。これを使うと内積は正定値性を持つ双線形写像であると言えます。

また記法として主に無限次元のベクトルに対して、今後ベクトルの長さを

$$||f|| := (f, f) \tag{2.2.262}$$

と書きます。こう書くときは長さではなくノルムと呼びます。

内積から以下のようにして角度 (正確には余弦) が定義できました.

$$\cos \theta = \frac{(f,g)}{\|f\| \|g\|} \tag{2.2.263}$$

有限次元でこれが定義できるには $\cos\theta \le 1$ から $|(f,g)| \le ||f|| \, ||g||$ を満たさない といけなかったわけですが、これは Cauchy-Schwarz の不等式で確かに成立していました。 Cauchy-Schwarz の不等式を再録しましょう。

$$|(f,g)| \le ||f|| \, ||g|| \tag{2.2.264}$$

無限次元と言わず、有限次元でも一般に内積が複素数なので、 $\cos\theta$ が複素数値になってしまいます。(複素) 関数論を学んだあとなら別にあまり問題もないと思うのですが、それなりに困ったものではあります。しかも正規直交基底の定義に内積を使っているので、内積は無いと困ります。ここで方向転換をしまして、基本的に内積で角度を測るときは直交しているかしていないか、つまり内積が 0 かどうかだけ見ているものだと思いましょう。無条件ではありませんが、無限次元でも Cauchy-Schwarz の不等式は成立します。

 l^2 で考えましょう. テクニカルで腹立たしいですが, 紙数の都合もあるのでこんなものを考えます.

$$\sum_{n=1}^{\infty} |ta_n + b_n|^2 = t^2 \sum_{n=1}^{\infty} |a_n|^2 + 2t \sum_{n=1}^{\infty} |a_n| |b_n| + \sum_{n=1}^{\infty} |b_n|^2$$
 (2.2.265)

これを t の 2 次式と考えましょう. $\sum_{n=1}^{\infty}|a_n|^2=0$ のときは $(a_n)_{n\in\mathbb{N}}=\theta$ ですから, Cauchy-Schwarz の両辺は 0 で成立します. 0 でないとき判別式が負とならねばならないわけですが、これがそのまま Cauchy-Schwarz の不等式です.

というわけで内積が上手く定義できることがわかります. ここから正規直交基底なども定義できます.

次は内積を関数について定義してみましょう. 手がかりはもちろん l^2 です. 高校で区分求積法を学んだはずですが、それを使います.

$$\int_{0}^{1} f(x)\overline{g(x)}dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \overline{g\left(\frac{k}{n}\right)}$$
 (2.2.266)

積分区間が (0,1) である必要は無いのですが、ひとまず書いてみました。 とりあえず無限級数さえ出てきてくれれば良いです。 a として $\$-\infty$ \$ を b として $\$\infty$ \$ を許して、関数の内積を

$$(f,g) := \int_{a}^{b} f(x)\overline{g(x)}dx \qquad (2.2.267)$$

とします。こうするとこれは内積の性質を全て持ちます。当然これから直交などという事も色々でてきます。Lebesgue の意味で 2 乗絶対可積分な関数空間にこの内積を入れた空間を L^2 空間といいます。本冊子ではとても触れることは出来ませんが、これまでに述べた l^2 や L^2 空間は Hilbert(ヒルベルト)空間と呼ばれるものの具体例です。これが量子力学の数理の主戦場です。可分な Hilbert 空間は全て同型であるという同型定理と呼ばれるものがありますが、 l^2 、 L^2 空間はそれぞれ可分な Hilbert 空間です。量子力学は当初 Heisenberg(ハイゼンベルク)の行列力学と $Schr\{o\}$ dinger(シュレディンガー)の波動力学という形式があって、これが物理的な解釈なり何なり色々異なって大論争があったそうですが、物理的な結果は全く同じものを与えるので非常に不思議がられていたそうですが、これは数学的に行列力学は l^2 で考え、波動力学 L^2 で考えていたので、同型定理から数学的には同じ結果が出てもおかしくない、とかいう紆余曲折があったそうです。

直交多項式と基底

打って変わって基底のところで「この f_n は適当な V の部分空間を取ると、その基底になることがあります」と書きました。そのような基底になる直交多項式としていくつか挙げておきましょう。

$$P_n(x) := \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \tag{2.2.268}$$

$$H_n(x) := (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$
(2.2.269)

$$L_n^{\alpha}(x) := \frac{d^n}{dx^n} \left(e^{-x} x^{n+\alpha} \right) \tag{2.2.270}$$

$$J_{\nu}(z) := \sum_{k=0}^{\infty} \frac{(-1)^k \left\{ \frac{z}{2} \right\}^{\nu + 2k}}{\Gamma(k+1)\Gamma(k+\nu+1)} , \quad \Gamma(z) := \int_0^{\infty} e^{-t} t^{z-1} dt \qquad (2.2.271)$$

これらははじめから順に Legendre (ルジャンドル) 多項式, Hermite (エルミート) 多項式, Lagurre (ラゲール) 多項式, Bessel (ベッセル) 多項式, 最後のおまけは Γ 関数といいます。本当はもう少し言わないといけないことがありますが, 紙数の都合もあり略します。

基底といえば、我々は今振動・波動の数理を扱っているのであり、振動・波動と言えば三角関数であり、振動・波動と言えば重ね合わせの原理というのもあり、ということで基底として三角関数を選んで、それで波動を表す関数を三角関数の重ね合わせでかけると嬉しいな、と思ってみたりするわけですが、それは既に昔々(確かフランス人の)Fourier(フーリエ)さんが考えていまして、関数を三角関数の重ね合わせで書く事を関数を Fourier 級数展開(または Fourier 変換) するといいます。 紙数の余裕があればあとでやりますが、とりあえず展開式だけ書いておきましょう。

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (2.2.272)

$$a_n := \int_{-\pi}^{\pi} f(t) \cos nt dt$$
, $b_n := \int_{-\pi}^{\pi} f(t) \sin nt dt$ (2.2.273)

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{i\xi x} d\xi \qquad (2.2.274)$$

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-i\xi x} dx$$
 (2.2.275)

微分方程式と Fourier 解析ことはじめ

そろそろ筆者の知識と認識の限界に来ているのですが、もう少し書きましょう. 線形作用素についてです. t を時間として微分作用素を $D:=\frac{d}{dt}$ とします. $D^2=\frac{d^2}{dt^2}$ としましょう. 見やすくするため, x(t)=f(t) と書きます. 運動方程式は以下のような方程式になります.

$$D^2 f = -\omega^2 f$$
 , $\omega := \sqrt{\frac{k}{m}}$ (2.2.276)

これをもって何とするか、ですが、前に $Ax = \lambda x$ というのをやりました。固有値の話です。全く同じ形をしています。すなわち運動方程式(微分方程式)は無限次元空間での固有値問題を考えている、ということです。あとで証明しますが、ある条件下で微分方程式には解の存在と一意性が言えます。いつであっても、適当な場所から適当な速度で放り出した物体が同一条件下では同じ運動をしてくれないと困るのですが、この定理は数学的にもきちんとそれが示された、という点で非常に有意義です。

上で述べたように解が存在してしかも一意的です。そんな訳で解を見つけてこられれば、それで全て片がつきます。解自体は高校の段階で既に見つかっていまして、三角関数でした。ここでそれを知らないとしてどうするかを考えてみましょう。 1 回微分して自分自身に戻る関数として、指数関数 $g(x)=e^{kx}$ があります。これを運動方程式に代入してみましょう。

$$D^2g = k^2g = -\omega^2g (2.2.277)$$

となるわけです.となると, $k^2=-\omega^2$ となる数を探してくれば答が見つかります.2 乗して負になる数として虚数単位の i さんがいらっしゃいました.したがって $k=\pm i\omega$ です.ここで実は何処かの誰かがこの方程式の解として三角関数があ

る,ということを教えてくれたとしましょう.実は 2 階の常微分方程式の解は 2 次元の線形空間になっていまして, $\cos \omega t$, $\sin \omega t$ は基底になっています一意性から $e^{i\omega x}$ は三角関数の線形結合で書けないと困ります.しかも虚数が入っているので係数に虚数を含んだ線形結合になるでしょう.結果としてはご存知の方もたくさんいることでしょう.Euler(オイラー)の公式という次式になります.

$$e^{ix} = \cos x + i\sin x \tag{2.2.278}$$

虚数乗とはこれいかに、といった問題も色々あって結構困るのですが、関数論の解析接続というものがあって、これはきちんと数学的に正当化されます。今のところはこれが虚数乗の定義だとでも思っておいて下さい。 微分積分の Taylor 展開のところでも再び登場させるつもりです。

あまりにもとんでもないところまで来てしまいましたが、これは本冊子の目標 到達点です.そして非常に難しいので、現段階で分からなくても全く問題ありま せん.

それではそろそろ微分積分に行きましょう.

Chapter 3

Application to Google's pagerank

動画の原稿から取ってくる.

Part IV

Calculus

Chapter 4

Is 0 area for a point, line segment, line?

動画から適当に切り出してくる.

Chapter 5

ポテンシャルの振る舞いと微分 積分

5.1 導入

前章ではばねにつながれた質点の運動の解析を行ないました. 本章では一般のポテンシャルにしたがう力学系 (多数の質点) の運動の解析を行ないます.

まずポテンシャルとは何かですけれども、系のエネルギーを書いたとき、運動エネルギー以外に $\frac{1}{2}kx^2, -G\frac{Mm}{r}$ などの項が現われることがありますが、それのことです.正確には力 f に対し

$$\mathbf{f} = \frac{\partial U}{\partial x} \mathbf{e}_x + \frac{\partial U}{\partial y} \mathbf{e}_y + \frac{\partial U}{\partial z} \mathbf{e}_z \tag{5.1.1}$$

となる実数値関数 U が存在するとき, f はポテンシャル U を持つといいます. 一般にポテンシャルは U,V などで表します. ここでは一般のポテンシャルにしたがう力学系がつりあいの状態から少しずらすとその系は微小振動をすることを示します.

具体的な状況を考えてみましょう。先程のばねではつりあいの状態はばねの長さが 0 となるところです。これは振幅の小さいところでは振動します。これ以外には、例えば振り子の振動を考えましょう。あまり高くない適当な位置から振り子を静かに放すと、摩擦などが無いとすればずっと振動を続けるでしょう。鉛直方向から少しだけずらしたところでは、完全に単振動となることは高校で学んだと思います。他には放物線 $y=x^2$ に沿って質点を静かに放すと、これも摩擦が無いとすれば放物線に沿って転がりつづけるでしょう。ある程度の高さまで上ったらまた放物線に沿って戻ってくるということも問題ないでしょう。

上の例では適当に座標系を取ると、原点でつりあいの状態になります。これらは全て安定なつりあいになっています。安定なつりあいというのは、少しずらしただけならばまたその元の状態に自然に戻ろうとするような状態のことです。不安定なつりあいを考えてみると良く分かるでしょう。 $y=-x^2$ の放物線に沿った運動では原点はつりあいの点ですが、少し動かすと放物線に沿って転がり落ちていき、原点に自然に戻ってくることはありません。これが不安定な釣り合いです。

少々唐突ですが、今の状況を考えると 1 変数では下に凸な曲線に従った運動は安定であるといえそうです。 もちろん $y=x^2$ や (半) 円が基礎です。 ただ、これを高次元に一般化しようと思うと大変です。 大変そうな具体例が作れます。

例えば $z=f(x,y)=x^2-y^2$ を考えます. これの微分をどう考えるか、という問題がまずありますが、それよりも比較的楽に図が描けるので、その図を元に考えます. はじめに言っておくと、原点で変な挙動を取ります.

原点の近くをx軸に沿って進んでみましょう。つまり $z=f(x,0)=x^2$ に沿って進みます。するとzは原点で極小になります。一方でy軸に沿って進んでみましょう。つまり $z=f(0,y)=-y^2$ に沿って進みます。すると今度はzが原点で極大になります。ある方向から近づくと極大値を取り,ある方向から近づくと極小になるような点が存在します。また実はこの点で微分が0になりますから,微分が0になり,かつ極大とも極小ともいえないような変な点が存在することになります。ちなみにこの点を鞍点といいます。

次に $z=y^2$ を z 軸の周りに回転させたものを考え、これを z=f(x,y) としましょう.これは簡単に想像できるでしょう.このとき、直観的に原点が安定点になることが分かります.先程との比較で言うと、こちらはどの方向から原点に近づいても z=f(x,y) は極小になる事がわかります.

以上から、どの方向から原点に近づいても、というような条件を数学的にどう 定式化していくかが鍵になりそうです.

そして私たちは前章で線形代数を学びました。出来ればそれを上手く使っていけると嬉しいわけです。その方法として線形化ということを考えます。高校で微分を用いた一次近似式を学んだと思います。接線、といえばもっとはっきりするでしょう。これは曲がったものでも、ある点の十分近くで考えればそれはまっすぐとみなせる、ということです。これは日常経験で常に感じていることです。

私たちは地球表面上に住んでいますが、地球は楕円形です。要するに曲がっているわけですが、普段私たちは地面が曲がっているとは感じないで、まっすぐになっていると感じています。これは曲がったものを十分小さいところで考えてまっすぐのものとみなす考えは、日常的な行為であり直観的にも正当なものであると考えられます。

私たちはこれを線形化と呼びましょう. そして上に述べた直観を数学の理論として取り込むべく, 線形化法として微分を考えてみましょう. せっかくなので本章では微分だけでなく積分も説明します. こちらは微分方程式の実際の解法を考えることから導入してみたいと思います.

5.2 ε - δ 論法と収束

5.2.1 ε - δ 論法

これから微分・積分を論じます。積分は微分の逆、という感じであまり極限の香りがしないと思っている方もいるかもしれません。しかし微分を考えれば分かるように、これから極限についての考察をすることになりますが、場合によっては非常に精密な取り扱いを要求されることがあります。その際、高校での極めていい加減な極限の定義では、ほとんど全く何も議論できません。そこでもっと議論しやすくするために極限の精密な定義を与えます。

 $\lim_{n\to\infty}a_n=a$ というものを考えましょう. これは高校では「 n が限りなく大きくなる時 a_n は a に限りなく近づく」ということを意味している, という事でした. これを再考します.

今何か適当な実験、例えば重力加速度の測定実験をするとしましょう。まず考えるべきは実験の精度をどこまで高めたいか、という事です。高校でも実験をしてきたでしょうが、こうした実験では誤差がある程度大きくても許されるでしょう。一方で値の正確さを競うような研究の現場のレベルの実験においては可能な限り精度を高めねばならず、京大に国際重力基準点というのがあるそうですが、そ

こで行なっている実験では9桁の精度で重力加速度を測定しているようです.さらには実験を行なう際,高出力を出し過ぎると危険な装置もありますし,何処かの施設に行って時間制限のある中でやらねばならないこともあるでしょう.この際,これぐらいの結果を出したい(出力したい)がそのためにはどれぐらいの入力を行なえばよいかということを事前にきっちり決めておかないといけません.

ここで前章に述べた、「数列は関数の一種であり、関数とは対応である」ということを思い出しましょう。各種の入力(気温や湿度、装置の精度など)に対しある実験データが出てきますから、その出力の平均のようなものを対応させる関数(数列)を考えます。このとき、各種の入力が精度の順で適当に順序付けできるものとします。ここで上に述べたことを実行するには、出力に対しその出力を得られるような上手い入力を見つけることが重要になります。例えば理論で予測される値がaであったとして、aの付近に適当な誤差で値が散らばるような実験が行ないたいものとします。

精度の程度 (レベル) を自然数で n とし、それに対し実験値を与える対応 (数列) を $(a_n)_{n\in N}$ としましょう。 理論値と実験で得るべき値との誤差を $\varepsilon>0$ とします。 すなわち $|a_n-a|<\varepsilon$ となってくれれば良いわけです。今 a の値を実現するような n が存在したとし、それを N とします。n の値については、ある精度の実験をすれば上の不等式を満たすのならば、それ以上の精度では必ず上の不等式を満たすでしょう。 つまり適当な自然数 N が存在して $n\geq N$ ならば $|a_n-a|<\varepsilon$ となるはずです。

以上をまとめると、誤差範囲 $\varepsilon>0$ を決めたのち、ある精度レベル N の実験で結果が上手くその誤差の範囲に収まるならば、その精度以上の実験 $n\geq N$ をすれば、実験結果 a_n と出したい値 a の差は $|a_n-a|<\varepsilon$ に収まってくれるだろう、ということです.ここで $\varepsilon\to 0$ をすると、誤差が「限りなく」小さくなるので、それに対応して入力も極めてシャープにせざるを得ず、 $N\to\infty$ となるでしょう.こうした現実を踏まえ、これ以降極限を次の定義で置き換えます.

Definition. 2.1.1. $(\varepsilon - \delta)$ 論法 1 実数列 $(a_n)_{n \in \mathbb{N}}$ が実数 a に収束するとは、任意の正数 ε に対して自然数 N が存在し、 $n \geq N$ を満たす全ての n に対し $|a_n - a| < \varepsilon$ が成立することをいう。このとき a は $(a_n)_{n \in N}$ の極限であるといい、

$$a = \lim_{n \to \infty} a_n, \ a_n \to a \, (n \to \infty) \tag{5.2.1}$$

などとかく.

これを関数について言うと以下のようになります.

Definition. 2.1.2. $(\varepsilon - \delta)$ 論法 2 区間 I 上定義された実数値関数 f が $x \to a$ で α に収束するとは,任意の正数 ε に対して実数 $\delta > 0$ が存在し, $|x-a| < \delta$ を満たす全ての x に対し $|f(x)-a| < \varepsilon$ が成立することをいう.このとき a は f(x) の極限であるといい,

$$\alpha = \lim_{x \to a} f(x), \ f(x) \to \alpha (x \to a)$$
 (5.2.2)

などと

最後に極限について 1 つ注意をしておきます.それは一般に極限をとる順序は交換出来ないということです.例えば二重数列 $a_{mn}=\frac{m}{m+n}$ というものを考えてみると

$$\lim_{m \to \infty} \lim_{n \to \infty} a_{mn} = \lim_{m \to \infty} 0 = 0, \qquad \lim_{n \to \infty} \lim_{m \to \infty} a_{mn} = \lim_{n \to \infty} 1 = 1$$
 (5.2.3)

$$\Longrightarrow \lim_{m \to \infty} \lim_{n \to \infty} a_{mn} \neq \lim_{n \to \infty} \lim_{m \to \infty} a_{mn}$$
 (5.2.4)

となります. 物理にもよく出てくる極限の順序交換は微分と積分の順序交換, 多変数の高階微分の順序交換です. 物理をやっている場合, 普通は性質の良いものを扱うからこうした順序交換が許される, という仮定の元でどんどん計算を進めていきますが, 量子力学では, こうした演算の順序が交換出来ないということが本質的な条件として登場してきますので, 一応注意を喚起しておきます.

5.2.2 Cauchy 列と実数の性質

高校までは基本的に具体的な数列を扱い (例えば $a_n=1/n$), かつ極限も比較的楽に求まるようなものばかり扱ってきたと思います。しかしこれからはかなり一般的な数列を扱い、さらに具体的な数列であろうとも極限がまともに求まらないような数列まで扱うようになります。後で色々証明しますが、収束するだけことは分かっても収束する値が全く分からないことも良くあります。その際、収束先が分かっていないのに上の極限の定義で極限値を表に出すのは気が引けるというものです。それで以下の Cauchy (コーシー) 列を導入します。

Definition. 2.2.1. 数列 $(a_n)_{n\in \mathbb{N}}$ が Cauchy 列 (基本列) であるとは、任意の $\varepsilon>0$ に対し自然数 N が存在して $n,m\geq N$ ならば $|a_n-a_m|<\varepsilon$ となることを言う.

すぐあとで使うこともあり、解析学で良く使う基本的な不等式である三角不等式を載せておきます。簡単に証明できるので証明は各自行なってみて下さい。

$$|a+b| < |a| + |b|, \quad |a| - |b| < |a-b|$$
 (5.2.5)

ここで収束列が Cauchy 列であることを証明します. $(a_n)_{n\in\mathbb{N}}$ が収束列で, a に収束するものとすると、収束の定義から任意の $\varepsilon>0$ に対して自然数 N が存在して, $n,m\geq N$ ならば $|a_n-a|<\varepsilon/2, |a_m-a|<\varepsilon/2$ が成立します. 三角不等式を用いて

$$|a_m - a_n| \le |a_m - a| + |a - a_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon. \blacksquare \tag{5.2.6}$$

問題はこの逆、Cauchy 列は収束列であるが成立するかどうかです。Cauchy 列というのは、n と m が十分大きければ a_n と a_m がいくらでも近い値を取るということなので、直観的にはこれが満たされそうな気がしますが、例えば有理数の集合内で考えたとき Cauchy 列は収束しないことがあります。例えば数列

$$a_1 = 1, \quad a_{n+1} = \frac{2a_n + 2}{a_n + 2}$$
 (5.2.7)

を考えます.これが a に収束するとすれば,漸化式の両辺で $n\to\infty$ とすれば, $a=\frac{2a+2}{a+2}$ から $a=\sqrt{2}$ を得ます. $(a_n)_{n\in\mathbb{N}}$ は初項が 1 で有理数,漸化式から全ての n について a_n が有理数ですが,収束先の a は無理数です.

当然この原因は窮屈な有理数の中だけで考えている為に起こる現象です. したがって実数列ではこのようなことが起こらないという要請をおきましょう.

Axiom. 5.2.1. Cauchy 列は収束列である.

この他にももう1つの性質を要請します.

Axiom. 5.2.2. (Archimedes の原理) 任意の実数 a,b>0 に対し, na>b となる自然数 n が存在する.

この Archimedes (アルキメデス) の原理は以下の式と同等です.

$$\lim_{n \to \infty} n = \infty, \qquad \lim_{n \to \infty} 2^n = \infty. \tag{5.2.8}$$

これと同値な連続の公理を述べるのにいくつか新しい概念が必要なので、それを紹介します. 1 つは最大値を一般化した上限と呼ばれるものです. まず最大値をきちんと定義しておきます.

Definition. 2.2.2. ある集合 A の最大値が M であるというのは, $M \in A$ であって, 任意の $x \in A$ に対して $x \leq M$ となるものである. 最小値も同様に定義する

重要なのは $M\in A$ というところです。具体的に開区間 I=(0.1) を考えてみましょう。I の最大値とは何でしょうか?当然真っ先に思いつくのは 1 という答ですが, $1\notin I$ であり,1 は最大値ではありません。しかし最大値のようなものを持ち出して議論をしたいときがあり,1 に最大値のような資格を与えておくと便利なことが多々あります。これを定式化したものが上限です。その前に上界を定義しておきます。

Definition. 2.2.3. u が A の上界であるというのは、任意の $a \in A$ に対して $a \le u$ となる u のことである. A の上界全体の集合を U(A) と書く. さらに下界も同様に定義する. こちらは L(A) と書く.

ここで上界には必ず最小元が存在します.この最小元を上限と定義します.

 ${f Definition.}$ 2.2.4. 上限とは上界の最小の元, $\min U(A)$ のことである. これを $\sup U(A)$ と書く. 下限も同様に定義する. こちらは $\inf L(A)$ と書く.

これを用いてもう 1 つ新しい概念を導入します.

Definition. 2.2.5. ある集合 A が上に有界であるというのは、有限な上界が存在することである。 すなわち $U(A) \neq \emptyset$ である。 下に有界も同様に定義する。 上下に有界な集合を単に有界であるという。

直観的には $\pm \infty$ を含まない、といったようなことです.

さて、やっとのことで連続の公理です。いくつかあるのでそれを列挙します。

Axiom. 5.2.3. (Weierstrass) 上に有界な空でない集合 $A \neq \emptyset$ は上限を持つ.

上に有界というのは A が一定以上の大きな値を元に持たないということですから, 直観的にはこれも正しいと感じられるのではないでしょうか.

Axiom. 5.2.4. 1)上に有界な単調増加数列 $(a_n)_{n\in\mathbb{N}}$ は収束し、極限は $\sup a_n$ に等しい.

2)下に有界な単調減少数列 $(b_n)_{n\in\mathbb{N}}$ は収束し,極限は $\inf b_n$ に等しい.

これは上に有界ならば、数列の各項はある値以上にはなれません. さらに単調増加なので、数列の各項はそのある値にいくらでも近くなれるでしょう. ただ近くなるだけでなく、実際にその値に収束までしてしまうことを述べた (要請した)ものです.

 $\mathbf{Axiom.}$ 5.2.5. (区間縮小法) $I_n:=[a_n,b_n]$ で $(a_n)_{n\in\mathbb{N}}$ は単調増加数列, $(b_n)_{n\in\mathbb{N}}$ は単調減少数列であるとする。 すなわち $a_1\leq a_2\leq \cdots a_n\leq b_n\leq \cdots b_2\leq b_1$ であり,全ての自然数 n に対して $I_n\supset I_{n+1}$ であるとする。このとき $\lim_{n\to\infty}(b_n-a_n)=0$ ならば、 I_n の共通部分は 1 点 a のみからなる。

これはある区間 I=[a,b] には隙間無く実数が詰まっていることを表しています。有理数と対比させると分かりやすいでしょう。

Axiom. 5.2.6. (Bolzano-Weierstrass) 有界数列は収束部分列を持つ.

数列 $(a_n)_{n\in\mathbb{N}}$ の部分列というのは $(a_n)_{n\in\mathbb{N}}$ の各項を a_1,a_5,a_78,\cdots などのように適当に選んできたとき,上手い選び方をすると,もとの数列が何であろうとも有界でさえあれば,その部分列が上手く収束することを述べています.例えば $a_n=(-1)^n$ を考えると a_n 自体は収束しませんが,偶数番目,奇数番目だけ集めた数列 $(a_{2n})_{n\in\mathbb{N}},(a_{2n+1})_{n\in\mathbb{N}}$ はそれぞれ +1,-1 に収束します.これらの公理は全て同値ですが,この同値性を証明するのは面倒なので略します.

5.2.3 数列, 級数の収束

本冊子では全ての定理を完全に証明しきることは出来ませんが、あとで登場する Taylor の定理ぐらいはきちんと証明したいので、そのための準備をします。ただ ひたすらに証明を行ないます。3 つ言葉を定義しておきます。各項が正、すなわち 任意の $n\in\mathbb{N}$ に対して $a_n\leq 0$ となる級数 $\sum a_n$ を正項級数と呼びます。さらに 数列(一般に関数などでも良い)が上に有界であるとは定数 $M\in\mathbb{R}$ が存在し、任意の $n\in\mathbb{N}$ に対し $a_n\geq M$ となることをいいます。また x のべき x^n からなる 級数 $\sum a_n x^n$ をべき級数といいます。

Theorem. 2.3.1. (級数に関する Cauchy の収束条件) 級数 $\sum a_n$ に対し次の 2 条件は互いに同値である.

- $(s_n) \subset a_n$ は収束する. すなわち部分和の数列 $(s_n)_{n \in \mathbb{N}}$ が収束する.
- 2)任意の $\varepsilon > 0$ に対してある $n_0 \in \mathbb{N}$ が存在して, $n > m \geq n_0$ となる全て の自然数 n,m に対して $|a_{m+1} + \cdots + a_n| < \varepsilon$ となる.

(証明)

1. は $(s_n)_{n\in\mathbb{N}}$ が Cauchy 列であるということです.

Cauchy 列は収束することを公理として要請していますから、定理の statement が成立します. ■

Theorem. 2.3.2. $\sum |a_n|$ が収束するとき, $\sum a_n$ も収束する.

(証明) 三角不等式から $|a_{m+1}+\dots+a_n|\leq |a_{m+1}|+\dots|a_n|$ ですから, $\sum |a_n|$ が前定理の Cauchy の収束条件を満たすとき, $\sum a_n$ も Cauchy の条件を満たします. \blacksquare またこの定理を元にして, 級数 $\sum a_n$ が絶対収束するというのは各項を絶対値にした級数 $\sum |a_n|$ が収束することを言います.

Theorem. 2.3.3. 正項級数 $\sum a_n$ が収束するためには部分和の数列 $(s_n)_{n\in\mathbb{N}}$ が上に有界となることが必要十分である.

(証明) まず十分性から示します. 部分和の数列とは $s_n=\sum_{k=0}^n a_k$ のことでした. 任意の $n\in\mathbb{N}$ に対し, $a_n\leq 0$ から部分和の数列 $(s_n)_{n\in\mathbb{N}}$ が上に有界ならば「上に有界な単調増加列は収束する」という公理から, この数列は収束します.

次に必要性を示しましょう. $(s_n)_{n\in\mathbb{N}}$ が収束するならば, 収束先を s とすると定義により任意の ε に対し $N\in\mathbb{N}$ が存在し, $n\leq N$ ならば $|s_n-s|<\varepsilon$ となります. ε を適当に固定します. 色々な本を見ると大抵 1 にとってあるでしょう. 別

に何でもよいのでここでは $\varepsilon=10^{-2098}$ とでもしておきます.このときにも自然数 N_0 が存在して $n\le N_0$ ならば $|s_n-s|<10^{-2098}$ となります.これから

$$n \le N_0 \Longrightarrow s_n < s + 10^{-2098}.$$
 (5.2.9)

ここで $M:=\max\{|s_0|,|s_1|,\cdots,|s_{N_0-1}|,s+10^{-2098}\}$ としましょう. ここで $\max\{\cdots\}$ とは $\{\cdots\}$ の中の最大数を表すものとします.第 n 項 s_n を考えたとき, $n\leq N_0$ ならば \max の定義から $s_n\leq M$ で, $n\geq N_0$ でも $s_n< s+10^{-2098}\leq M$ であり,確かに上に有界です.これは

Theorem. 2.3.4. 収束する数列は有界である

を示したことになります. ■

Theorem. 2.3.5. (比較定理) $\sum a_n$, $\sum c_n$ は正項級数で $\sum c_n$ は収束するものとする. このとき全ての n に対し $a_n \geq c_n$ ならば $\sum a_n$ は収束する.

(証明) このとき、級数 $\sum c_n$ の部分和の数列は級数が収束することから上に有界です。仮定から $\sum a_n$ の部分和の数列も上に有界となり、 $\sum a_n$ が単調増加数列になることから「上に有界な単調増加数列は収束する」という公理を用いることでこの級数が収束することが分かります。 \blacksquare

Theorem. 2.3.6. 正項級数 $\sum a_n$ に対し, $0 \ge k < 1$ となる実数 k が存在し, ある n_0 より大きな全ての $n \in \mathbb{N}$ に対し $a_{n+1}/a_n \le k$ となるとき, $\sum a_n$ は収束する.

(証明) $a_{n+1} \le ka_n$ から $a_n < k^{n-1}a_0$ となります.両辺の和を取ると左辺は公比が 1 より小さいので収束します.よって上の比較定理から $\sum a_n$ は収束します.■

Theorem. 2.3.7. (ratio test) 正項級数 $\sum a_n$ に対して

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l \tag{5.2.10}$$

が存在するとき, l が 1 より小さいならば $\sum a_n$ は収束する.

(証明) このとき収束の定義から十分大きな $n \in \mathbb{N}$ を取ると

$$\frac{a_{n+1}}{a_n} < l + \varepsilon < k < 1 \tag{5.2.11}$$

をみたす実数 k が存在します. これから $\frac{a_{n+1}}{a_n} < k < 1$ となり, 前定理より級数 $\sum a_n$ は収束します. \blacksquare

5.2.4 開集合, 閉集合, 近傍

後の叙述の便宜の為にいくつかの概念を紹介します。まず集合族 (系) というものを定義します。標語的には集合を元とする集合です。具体的にいうと、 $\mathcal{O}=\{A,B,\cdots\}$ が集合族であるというのは、その元である A,B,\cdots がまた集合であるということです。さらに \mathbb{R}^n の開区間とは、 $(a_1,b_1)\times\cdots\times(a_n,b_n)$ の形の集合とします。その上で開集合系を以下のように定義します。

Definition. 2.4.1. 開区間の適当な個数 (有限個でも無限個でも良い) の和集合で書ける集合を開集合という. 開集合からなる集合系を開集合系といい, $\mathcal O$ と書く. 開集合系には全空間 $\mathbb R$ と空集合 \emptyset も含む.

このように開集合とは開区間の一般化であると考えて構いません. 他にもいくつか言葉を定義します.

Definition. 2.4.2. \mathbb{R}^n の部分集合 A の 1 点 $a \in A$ の ε -近傍を、

$$U(a;\varepsilon) := \{ \boldsymbol{x} \in \mathbb{R}^n \, ; \, |\boldsymbol{x} - \boldsymbol{a}| < \varepsilon \}$$
 (5.2.12)

で定義する. これは中心を a とし、半径 ε の円 (球) のことであり、さらに開集合である.

Definition. 2.4.3. \mathbb{R}^n の部分集合 A の 1 点 $a \in A$ が内点であるというのは, ある $\varepsilon > 0$ が存在して, a の ε -近傍全体が A に含まれることである. すなわち $U(a;\varepsilon) \subset A$.

近傍というとき普通 ε の値は小さいとして考えるのが普通です。したがって a の近傍とは文字通り a のすぐまわりの点の集合です。a が A の内点であるというのは,a のある程度近くの点が全て A に属するということです。さらに定義 から $a\in A$ が前提です。例えば I=[0,1) とします。0,1 の近くには I の点がありますが,一方ですぐ近くに I に属さない点があります。つまり 0,1 は I の内点ではありません。-1,9 などはそもそも A の点ですらありません。したがって内点ではありません。I の内点とは開区間 (0,1) の点です。重要なことですが,開集合の点は全て内点です。

閉集合書く.

まだ作りかけ、収束の話はなるべくきちんとする.

5.2.5 コンパクト性

作りかけ.

5.2.6 連続と一様連続

作りかけ.

5.2.7 連結と弧状連結

領域

5.2.8 完備な空間

5.3 1 変数の微分と Taylor 展開

まずは定義域が開区間 $I=(a,b)\in \mathbf{R}$ の 1 変数実数値関数 f(x) の線形化を考えてみましょう. y=f(x) のグラフを考えます. 簡単のため, はじめは座標を適当にとって原点の近くで考えることにします. 直観的な描像から原点の近くで関数値の差が直線になっていてくれればよさそうです. x を十分小さくとったとき, A をある定数とすると

$$f(x) - f(0) = A(x - 0) + O((x - 0)^{2})$$
(5.3.1)

とすれば、原点の十分近くでは直線になっているでしょう。 ここで $O\left((x-0)^2\right)$ は h がある程度大きくなってくると当然曲がりが大きくなるので、その補正です。 曲がりなので $(x-0)^2$ 以上の項で適当に近似できるものと考えます.

ここで原点の十分近くでの線形化ですから、定数 A は原点のみで決まって欲しいと思います。 つまり x が十分小さいうちは A だけで f(x) の挙動が完璧に把握できるものとしたいわけです。 したがって A は原点のみの関数であることを要求します。 また $O\left((x-0)^2\right)$ は 2 次以上の挙動をあらわすので, $x\to 0$ で $O\left((x-0)^2\right)/(x-0)\to 0$ となることを要求します。

この事情を、原点を一般の点 x_0 にして次のように定義します。

Definition. 3.0.1. $\mathbb R$ の開区間 I=(a,b) で定義された実数値関数 f と $x\in I$ に対して

$$f(x) - f(x_0) = A(x_0)(x - x_0) + O\left((x - x_0)^2\right)$$
(5.3.2)

$$\lim_{x \to x_0} \frac{O\left((x - x_0)^2\right)}{x - x_0} = 0 \tag{5.3.3}$$

と書けるとき, f は x_0 で線形化可能 (微分可能) であるといい, A を f の x_0 に おける導値または微分係数という. このとき,

$$A = f'(x_0) = \frac{df}{dx} = \frac{df}{dx}\Big|_{x=x_0} (Df)(x_0) = (f(x))' = (f(x))'\Big|_{x=x_0}$$
 (5.3.4)

などと書く. I の各点で f が微分可能であるとき, $I \to \mathbf{R}$ への関数 $f': x \mapsto f'(x)$ が生じる. これを f の導関数という.

これが高校で学んできた微分可能性の定義と一致する事を確認しましょう.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \left\{ A + \frac{O\left((x - x_0)^2\right)}{x - x_0} \right\}$$
 (5.3.5)

$$= A \tag{5.3.6}$$

となり、確かに一致しました.

線形化はあくまで近似ですから近似の度合いを高め、さらに正確なものが得られるかどうかということを考えてみましょう。 考えるのは $O\left((x-0)^2\right)$ を正確に評価することです。ここで高校で学んだ平均値の定理を考えましょう。

Theorem. 3.0.2. (平均値の定理) a < b とする. $f: I = [a,b] \to R$ が I で連続, $I^i = (a,b)$ で微分可能ならば定数 $\theta \in (0,1)$ が存在して,

$$f(b) - f(a) = f'(b + \theta(b - a))(b - a)$$
(5.3.7)

この定理は証明なしに認めます. これで b=x, $a=x_0$ として

$$f(x) - f(x_0) = f'(x + \theta_1(x - x_0))(x - x_0)$$
(5.3.8)

が出ます.

ここで f が I で 2 階微分可能であるとします. すると f' が線形化できて,

$$f'(x + \theta_1(x - x_0)) - f'(x_0) \tag{5.3.9}$$

$$= \frac{1}{2}D^2 f(x_0)(x + \theta_1(x - x_0) - x_0) + O\left((x - x_0)^2\right)$$
 (5.3.10)

となります. D^2 の前の 1/2 は、上の式に代入した式を両辺 2 階微分して $x \to x_0$ としたときにきちんと両辺が一致するようにつけたものです. 上の式に代入して

$$f(x) - f(x_0) (5.3.11)$$

$$= \left\{ Df(x_0) + \frac{1}{2}D^2f(x_0)\{x + \theta_1(x - x_0) - x_0\} + O\left((x - x_0)^2\right) \right\} (x - x_0)$$
(5.3.12)

$$= Df(x_0)(x - x_0) + \frac{1}{2}D^2f(x_0)(x - x_0)^2$$
 (5.3.13)

$$+\frac{1}{2}D^2f(x_0)\theta_1(x-x_0)^2O\left((x-x_0)^2\right)$$
 (5.3.14)

$$= Df(x_0)(x - x_0) + \frac{1}{2}D^2f(x_0)(x - x_0)^2 + O\left((x - x_0)^3\right)$$
 (5.3.15)

となります。ここで $O\left((x-x_0)^3\right)$ は 3 次以上の補正項です。これは $D^2f(x_0)$ の 分 f の情報が多くなっているので近似の度合いは高まっていることが予測されます。

これを繰り返していくことで以下の定理が得られます.

Theorem. 3.0.3. $(Taylor\ (\mathcal{F} \mathcal{A} \mathcal{D} -)$ の定理 $) \mathbf{N} \ni n \ge 1$ とする. 区間 [a,x] = I or [x,a] = I で n 回微分可能な実数値関数 f に対し

$$f(x) = f(a) + \frac{Df(a)}{1!}(x - a) + \frac{D^2f(a)}{2!}(x - a)^2$$
 (5.3.16)

$$+\cdots + \frac{D^{n-1}f(a)}{(n-1)!}(x-1)^{n-1} + R_n(x)$$
 (5.3.17)

によって R_n を定義するとき, 定数 θ が存在して

$$R_n(x) = \frac{D^n f(x + \theta(x - a))}{n!} (x - a)^n$$
 (5.3.18)

と書ける. これはまた積分を使って

$$R_n(x) = \int_{-\infty}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} D^n f(t) dt$$
 (5.3.19)

と書くこともできる. ここで R_n のことを n 次剰余項という.

上の式を Taylor の公式といいます。これを用いて関数がある条件を満たすとき x の多項式で関数の近似を行なうことが出来ます。 x の多項式ならば様子が簡単に掴めるので、これは非常に有用な定理です。 さらに関数の性質が非常によいものならば、これはある区間で x のべき級数に展開できます。

これを定理として提出しましょう.

Theorem. 3.0.4. (Taylor 展開)

 $1. \ f$ が a を含む区間 I において C^{∞} 級で, I の各点 x で

$$\lim_{n \to \infty} R_n(x) = 0 \tag{5.3.20}$$

を満たすとき, f は I 上で

$$f(x) = \sum_{n=0}^{\infty} \frac{D^n f(a)}{n!} (x - a)^n$$
 (5.3.21)

の形の級数 (a を中心とするべき級数) で表される. これを f の a を中心とする Taylor 展開という.

2. 定数 $C \ge 0, M \ge 0$ が存在して、全ての $n \in \mathbb{N}$ および $x \in I$ に対し

$$|Df^n(x)| \le CM^n \tag{5.3.22}$$

を満たすとき, f は a を中心として Taylor 展開できる.

(証明) まずは1から. S_n を

$$S_n(x) := \sum_{k=0}^n \frac{D^k f(a)}{k!}$$
 (5.3.23)

とします. 仮定から f は C^{∞} 級であり, Taylor の定理から

$$f(x) - S_n(x) = R_{n+1}(x)$$
(5.3.24)

とかけます. ここで仮定から, R_{n+1} が任意の x に対し 0 に収束しますから,

$$\lim_{n \to \infty} \{ f(x) - S_n(x) \} = 0 \tag{5.3.25}$$

となり、証明終わりです.

次に 2 を示しましょう. こちらは少々長くなります. 仮定と剰余項の形から $c=x+\theta(x-a)$ として

$$|R_n(x)| = \frac{|D^n f(c)|}{n!} |x - a|^n \le C \frac{M^n}{n!} |x - a|^n$$
 (5.3.26)

となります。ここで前節で示した定理により級数 $\sum CM^n|x-a|^n/n!$ は収束します。高校でも学んだと思いますが、級数 $\sum a_n$ が収束するとき a_n は 0 に収束しますから、1 の条件が満たされ f は Taylor 展開可能です。

次節ではいくつか良く使う Taylor 展開がありますからそれを示すことにします.

5.4 初等超越関数の Taylor 展開

何はともあれ初等超越関数とは何か、ですが $\cos x, \sin x, e^x, \log x$ のことです.まずはこれらの Taylor 展開を求めます.はじめに 0 のまわりの Taylor 展開の式を書いておきます.ほとんど 0 の場合しか使いませんので,これだけで十分です.

$$f(x) = \sum_{n=0}^{\infty} \frac{D^n f(0)}{n!} x^n$$
 (5.4.1)

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$
 (5.4.2)

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
 (5.4.3)

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \tag{5.4.4}$$

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \tag{5.4.5}$$

無限級数なので収束の話をいつでも考えないといけないのですが、まずは n 階微分を計算して上の計算が合っているかを確かめましょう. $\cos x$ は $D\cos x = -\sin x$, $D^2\cos x = -\cos x$, $D^3\cos x = \sin x$, $D^4\cos x = \cos x$ ですから、

$$D^n \cos x|_{x=0} = \begin{cases} (-1)^{n/2}, (n \text{ は偶数}) \\ 0, (n \text{ は奇数}) \end{cases}$$
 (5.4.6)

となり、上の展開式は正しいです。 \sin はほとんど同じなので省略します。 e^x は $D^n e^x|_{x=0}=1$ なのでやはり正しいです。次に \log ですが, $D\log(1+x)=\frac{1}{1+x}=(1+x)^{-1}$ であり, $D^n\log(1+x)|_{x=0}=(-1)^{n-1}(n-1)!$ となり,やはり正しいです

問題は収束です. Taylor 展開の式を $f(x) = \sum a_n$, $a_n = D^n f(0) x^n/n!$ と書きましょう.

 $\cos x, \sin x$ についてはまず x^{2n}, x^{2n+1} を一律に y^n として考えます. 前節に示した収束に関する定理を使います. 具体的には ratio test です. まずは \cos .

$$\frac{a_{n+1}}{a_n} = \frac{(-1)^{n+1}y^{n+1}}{(2n+2)!} \frac{(2n)!}{(-1)^n y^n} = \frac{-y}{2n+2} \to 0, \, n \to \infty$$
 (5.4.7)

上の収束は y によらないので、任意の実数 y に対して上の Taylor 展開が成立します。ここで $y=x^{2n}$ としたものが \cos です。この展開はある点のそばでの線形化 (近似) からはじまったものですが、その近似を高めていったところ任意の実数に対して成立してしまいました。恐るべき結果です。 \sin もほとんど同じです。ついでに e^x もほとんど同じです。

log は何でもそう上手くいくものではないということを教えてくれるのでそれを見てみましょう.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^n x^{n+1}}{n+1} \right| \left| \frac{n}{(-1)^{n-1} x^n} \right| = \frac{nx}{(n+1)} \to x, \ n \to \infty$$
 (5.4.8)

これは $n\to\infty$ が x に依存します. ratio test によればこの極限値が 1 より小さいところならば級数が収束するのですから, 対数の場合は Taylor 展開は 1 より小さいところでしか成立しません. ただ $\log(1+x)$ の 0 まわりの展開が |x|<1 でしか成立しないと言っているだけですから, 1 のまわり, 2 のまわりで展開すればまた少し事情が変わるはずです.

5.5 Euler の公式

Euler (オイラー) の公式とは以下の想像を絶する式です.

$$e^{ix} = \cos x + i\sin x \tag{5.5.1}$$

ここで e の肩に乗っていて右辺の \sin の前に燦然と輝く i は虚数単位の i です. この公式を「導出」しましょう. 前節の e^x の Taylor 展開の式で $x \to ix$ とす

ると

$$e^{ix} = \sum_{n=0}^{\infty} \frac{1}{n!} (ix)^n \tag{5.5.2}$$

$$= \sum_{n=0}^{\infty} \left\{ \frac{1}{(2n)!} (ix)^{2n} + \frac{1}{(2n+1)!} (ix)^{2n+1} \right\}$$
 (5.5.3)

$$= \sum_{n=0}^{\infty} \left\{ \frac{1}{(2n)!} i^{2n} x^{2n} + i \frac{1}{(2n+1)!} i^{2n} x^{2n+1} \right\}$$
 (5.5.4)

$$= \sum_{n=0}^{\infty} \frac{1}{(2n)!} (-1)^n x^{2n} + i \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} (-1)^n x^{2n+1}$$
 (5.5.5)

ここで cos, sin の Taylor 展開と比べて上の式を得ます.

虚数に対して級数展開が成立するか、虚数乗とは何者か、といった大問題があるのですが、(複素) 関数論をきちんとやらないと決着がつきません。解析接続を持ち出すと、一般の複素数 z に対し $e^z = \cos z + i \sin z$ が成立しこれが複素数へのただ一つの拡張の仕方であることが分かります。余裕があれば後で触れるでしょう。今は有用な公式としてどんどん使っていくことにします。振動・波動との関連はとても分かりやすいと思います。我々は三角関数の新たな表現を手に入れたことになります。特に微分方程式を解くとき、これを導入すると計算が著しく簡単になります。

5.6 多変数の微分と Taylor 展開

変数が多いとややこしくなるので主に 2 変数 x,y (定義域は適当に $(a_1,b_1)\times(a_2,b_2)$ としておきます) の実数値関数に対して話を進めます. つまり z=f(x,y) を考えていきます. 1 変数の実数値関数のときの扱いと比べると,これが「平面」内の「曲線」を取り扱うことに相当したのと同様に今度は「空間」内の「曲面」を扱うことになり、ある程度は直観を働かせることも出来ます.

まず 2 変数の線形化 (線形近似) が何になるかを考えてみます. 1 変数のときは高校で学んだとおり直線でした. 直線とは 1 次元のものです. これから 2 変数での線形近似は 2 次元のもの、平面で行なうのが妥当であると考えられます. 高校では空間内の平面をあまりやっていないものと思うので、少しこれを補足します. 高校の教科書にも軽く載っていたと思いますが、ある平面は一直線上にない 3 点 A,B,C を適当に取ることで指定することが出来ます. 3 点が一直線上にないので、例えば $\overrightarrow{AB},\overrightarrow{AC}$ を考えれば、これらは線形独立であって、平面内の任意の点がこの 2 本のベクトルの線形結合で書けることになります.

つまり、1 変数の実数値関数のときは平面内の曲線の挙動を捉えるのに直線 (接線) による線形化を用いましたが、2 変数の実数値関数では空間内の曲面の挙動を捉えるのに平面 (接平面) による線形化を用い、さらに曲面上の各点での平面 の挙動は 2 本の直線で捉えるということです.

それでは実際に線形化を開始します. 適当に $x = {}^t(x,y)$ を取り、十分小さい h,k を取って $h = {}^t(h,k)$ とし、r+h での様子を考えてみます.

$$f(x+h,y+k) - f(x,y) = ah + bk + O(h^2, hk, k^2)$$
(5.6.1)

ここで $O(h^2, hk, k^2)$ は 1 変数のとき同様曲がった部分の補正項ですが, 2 変数なので 2 次の項のバリエーションが増えています。このままでは色々と面倒なので, これ

を少し整理しておきます. 1 変数のときを参考にすると, O の項は微小増分 Δx が 0 に近づく時, $O(\Delta x)/\Delta x \to 0$ となれば良い, ということでした. ベクトルの割り 算というものが正体不明である (定義していない) 以上, 直接 $O(h^2,hk,k^2)/h\to 0$ とすることは出来ません. そこで不等式 $\min\{h^2,k^2\}\leq |hk|\leq h^2+k^2$ を参考にして, 2 次の挙動は $(h^2,hk\cdot k^2)/|h|^2\to 0$ で上手く押さえられるものとします.

さて、この線形化を 1 変数のときと同じように一次関数の形で書いてみましょう. $A:=(a,b), \mathbf{h}:={}^t(h,k)$ とすれば、

$$f(x+h,y+k) - f(x,y) = A\mathbf{h} + O(h^2, hk, k^2)$$
(5.6.2)

1 変数の場合と同じ形式で書いてみると、微分係数が行ベクトル $(1 \times 2 \ 7)$ になる事がわかります。 直接に h を出してくると、左辺が実数、右辺がベクトルというすさまじい式になってしまいますから、行列の形にすることが必要である、ともいえます。 ここではあまり詳しくやりませんが、多変数のベクトル値関数ではもっと露骨な形で行列になります。 ここで一旦 2 変数 (多変数) の微分の定義をしておきましょう。

Definition. 6.0.5. \mathbb{R}^2 のある開区間 $I=(a_1,b_1)\times(a_2,b_2)$ で定義された実数値関数 f と $x\in I$ に対して

$$f(\boldsymbol{x} + \boldsymbol{h}) - f(\boldsymbol{x}) = A(\boldsymbol{x})\boldsymbol{h} + O(|\boldsymbol{h}|)$$
(5.6.3)

$$\lim_{h \to 0} \frac{O(h^2, hk, k^2)}{|h|} = 0$$
 (5.6.4)

と書けるとき, f は x で微分可能であるといい, A を f の x における導値または微分係数という. このとき,

$$A = f'(x) = (Df)(x) = (f(x))'$$
(5.6.5)

などと書く. I の各点で f が微分可能であるとき, $I \to \mathbf{R}$ への関数 $f': x \mapsto f'(x)$ が生じる. これを f の導関数という.

ここから重要な役者である偏微分に登場してもらいます。上では $h={}^t(h,k)$ として h,k 両方が動いていたわけですが、今度は k を k_0 に固定しておいて h だけに動いてもらいましょう。 $k=k_0$ を固定すると $z=f(x,k_0):=g(x)$ は曲面を平面 $y=k_0$ で切った断面上を動くことになりますから、幾何学的には g の接線を求める作業へ移ることに対応します。本節はじめに述べたことと対応させると、接平面を決める為の 2 本のベクトルの内の一本を決めることにあたります。演算的な側面から言うと、偏微分とはある着目している変数以外全て止めて(定数とみなし)、着目した変数に対する関数の挙動を調べるということです。

1 階の偏微分の定義にいきたいところなのですが、後での都合もあるのでもう少し寄り道をします. 読者の皆さんがそうだと思いますが、

$$\boldsymbol{x} = x\boldsymbol{e}_x + y\boldsymbol{e}_y, \boldsymbol{e}_x = \boldsymbol{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \boldsymbol{e}_y = \boldsymbol{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (5.6.6)

として考えていると思います. e_i は前章で言うところの標準基底というものでした. 上では当然このつもりで説明をしてきました. これから述べる偏微分を標準基底を用いて表せば, $f(x+te_1)=g(t)$ の t についての (1 変数の) 微分ということになります. この e_1 を一般に n としたものを n 方向への方向微分と言います. 何故こんなことを言い出すのか, 数学上の衒学的趣味ではないか, と言う人もいるかと思いますが、物理でも電磁気学などで「 (曲面上での) 法線方向への微

分」というものを考えることがあります。それ以上に、我々の目的の 1 つに安定点の定式化がありますが、これはどの方向から近づいても微分が 0 になる点であると定式化出来そうである、という予備考察があります。方向微分とは、まさしくこのような方向性に沿うものとしての期待が持てます。

さて、ここで方向微分と特殊な方向微分としての偏微分を定義しましょう.

Definition. 6.0.6. a は \mathbb{R}^2 の開区間 $I=(a_1,b_1)\times(a_2,b_2)$ の 1 点で, f は I で定義された実数値関数であるとする. 今 \mathbb{R}^2 の任意の元 e に対して実変数 $t\in\mathbb{R}$ の関数 g(t):=f(a+te) が $(-\varepsilon,\varepsilon),\varepsilon>0$ で定義されているとする. この 関数 g が t=0 で微分可能ならば, 関数 f は a において e 方向に微分可能であるといい, g'(0) を f の a における e 方向の導値 f または微分係数) といい,

$$g'(o) = (D_e f)(\mathbf{a}) = \frac{\partial f}{\partial \mathbf{e}}(\mathbf{a})$$
 (5.6.7)

などと記す. $(D_e f)(a)$ が I の各点 a で定義されるとき, I 上の関数 $D_e f: a \mapsto (D_e f)(a)$ を, f の e 方向の導関数という.

Definition. 6.0.7. $x=xe_x+ye_y=x_1e_1+x_2e_2$ と表すこととし、a は \mathbb{R}^2 の 開区間 $I=(a_1,b_1)\times(a_2,b_2)$ の 1 点で、f は I で定義された実数値関数であるとする、f が $a\in\mathbb{R}^2$ で e_i 方向に微分可能であるとき、f は第 i 座標 x_i について偏微分可能という、 $(D_{e_i}f)(a)$ を f の a における x_i についての偏導値 f または偏微分係数)といい、

$$(D_{\boldsymbol{e}_i}f)(\boldsymbol{a}) = \frac{\partial f}{\partial x_i}(\boldsymbol{a}) = f_{x_i}(\boldsymbol{a}) = (D_i f)(\boldsymbol{a}) = \partial_i f(\boldsymbol{a})$$
 (5.6.8)

などと記す. これを極限を用いて表せば、

$$D_1 f(x,y) = \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(\mathbf{r} + h\mathbf{e}_1) - f(\mathbf{r})}{h}$$
 (5.6.9)

などとなる. f が I の各点で x_i について微分可能であるとき, f の x_i についての偏導関数

$$\frac{\partial f}{\partial x_i} : \mathbf{a} \mapsto \frac{\partial f}{\partial x_i}(\mathbf{a}) \tag{5.6.10}$$

が生じる. f から $\partial f/\partial x_i$ を得ることを f を x_i について偏微分するという.

さらに高階の偏導関数を先に定義してしまいましょう.

Definition. 6.0.8. x_i に関する偏導値 $(D_if)(a)$ が I の全ての点 a で定義されるとき, I 上で $D_if: a\mapsto (D_if)(a)$ が定義される. D_i を f の第 i 成分 x_i に関する偏導関数という. もし D_if が第 j 座標に関して偏微分可能ならば 2 階偏導関数 $D_j(D_if)$ が定義される. これを

$$D_{j}(D_{i}f)(\boldsymbol{x}) = (D_{i,j}f)(\boldsymbol{x}) = f_{x_{i},x_{j}}(\boldsymbol{x}) = \partial j \partial i f(\boldsymbol{x}) = \begin{cases} \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}(\boldsymbol{x}) &, (i \neq j) \\ \frac{\partial^{2} f}{\partial x_{i}^{2}}(\boldsymbol{x}) &, (i = j) \end{cases}$$

$$(5.6.11)$$

などと記す. 同様に高階の偏導関数も定義される.

Definition. 6.0.9. $k\in\mathbb{N}$ とする. $I=(a_1,b_2)\times(a_2,b_2)$ で定義された関数 f は, f の k 階までの全ての偏導関数 $(\sum_{l=1}^k n^l$ 個ある) が存在して I 上連続であるとき, I 上で C^k 級である, または k 回連続微分可能であるという. 全ての $k\in\mathbb{N}$ に対し C^k 級であれば, C^∞ 級または無限回微分可能という.

ここで本節はじめに述べた (多変数での) 微分係数と偏微分係数の関係を述べておきます.

$$f(x+h,y+k) - f(x,y) = ah + bk + O(h^2, hk, k^2)$$
(5.6.12)

において k=0 とすると、

$$f(x+h,y) - f(x,y) = ah + O(h^2)$$
(5.6.13)

1 変数の微分の定義と上に示した偏微分の定義から、辺々 h で割って $O(h^2)/h \to 0(h \to 0)$ から $a=D_1f(x)=\partial f/\partial x$ となります. 同様にして $b=D_2(f(x)=\partial f/\partial y$ です.これから微分係数 A は

$$A = \begin{pmatrix} a & b \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \tag{5.6.14}$$

と書けることになります.

前にも述べましたが、偏微分の順序は一般に交換できません。 つまり一般に $D_iD_j \neq D_jD_i$ です。 しかし比較的緩い条件でこの交換が可能になります。後でも使うので先んじてその証明を載せておきましょう。

Theorem. 6.0.10. $I=(a_1,b_1)\times(a_2,b_2)$ で定義された実数値関数 f に対し、点 $c\in I$ で f_{xy},f_{yx} が共に存在し c で連続ならば偏微分の順序が交換できる. すなわち

$$f_{xy}(\mathbf{c}) = f_{ys}(\mathbf{c}). \tag{5.6.15}$$

(証明) 定義によれば, f_{xy} は偏微分を 2 階続けて行なったものであり, 1 つの変数についての極限操作を 2 回繰り返すことで得られます. ところがこれを 2 次元空間 \mathbb{R}^2 における一つの極限で書くことが出来ます. 今 $\mathbf{l}={}^t(h,k)\in\mathbb{R}^2$ を小さく取り, $\mathbf{c}+\mathbf{l}\in I$ となるようにします. また $\varphi(x):=f(x,b+k)-f(x,b)$ とすれば, $\varphi'(x)=f_x(x,b+k)-f_x(x,b)$ となります. 今

$$\Delta(h,k) := f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b)$$
 (5.6.16)

とします. 平均値の定理から $0 < \theta, \theta' < 1$ となる θ, θ' が存在して,

$$\Delta(h,k) = \varphi(a+h) - \varphi(a) = h\varphi'(a+\theta h) \tag{5.6.17}$$

$$= h\{f_x(a+\theta h, b+k) - f_x(a+\theta h, b)\}$$
 (5.6.18)

$$= hk f_{xy}(a + \theta h, b + \theta' k) \tag{5.6.19}$$

となります. 今 $l \rightarrow 0$ とすれば,

$$\begin{pmatrix} a+\theta\\b+\theta'k \end{pmatrix} \to \begin{pmatrix} a\\b \end{pmatrix} = c$$
 (5.6.20)

であり、仮定から $\$ f_{xv}\$$ が連続ですから、上式から

$$f_{xy}(\mathbf{c}) = \lim_{(h,k)\to\mathbf{0}, hk\neq0} \frac{\Delta(h,k)}{hk}$$
 (5.6.21)

を得る. 今定理の仮定が x,y について対称なので, 同じ議論を繰り返すことで

$$f_{yx}(\mathbf{c}) = \lim_{(h,k)\to\mathbf{0}, hk\neq0} \frac{\Delta(h,k)}{hk}$$
 (5.6.22)

と出来ます. これで $f_{xy}(c) = f_{yx}(c)$ が証明されました. \blacksquare

5.7 微分公式

この節では合成関数の微分と関数の積の微分公式を扱います. まず合成関数の微分公式を示します.

Theorem. 7.0.11. f を $\Omega_1 \subset \mathbb{R}^n$ から \mathbb{R}^m への関数, g を $\Omega_2 \subset f(\Omega_1) \subset \mathbb{R}^m$ から \mathbb{R}^l への関数とし, f が点 $a \in \Omega_1$ で微分可能, g が点 $b = f(a) \in \Omega_2$ で微分可能とする. このとき合成関数 $\varphi := g \circ f$ は点 a で微分可能であり

$$D\varphi = D(\mathbf{g} \circ \mathbf{f}) = D\mathbf{g} \cdot D\mathbf{f}, \tag{5.7.1}$$

$$\frac{\partial \varphi_r}{\partial x_j} = \sum_{l=1}^m \frac{\partial g_r}{\partial y_l} \frac{\partial f_l}{\partial x_j} \quad (1 \le r \le p, 1 \le j \le n). \tag{5.7.2}$$

(証明) 次元 n,m がほとんど表に出てきませんので、一般の形で示していきます. f,g の微分可能性から、

$$f(a+h) = f(a) + Ah + O(|h|^2), \quad A := Df$$
 (5.7.3)

$$g(b+k) = g(b) + Bk + O(|k|^2), \quad B := Dg$$
 (5.7.4)

となります. b = f(a) を g の式に代入して,

$$\mathbf{g}\left(\mathbf{f}(\mathbf{a}+\mathbf{h})\right) = \mathbf{g}\left(\mathbf{f}(\mathbf{a}) + A\mathbf{h} + O(|\mathbf{h}|^2)\right) \tag{5.7.5}$$

$$= g(f(a)) + B(Ah + O(|h|^{2})) + O(|Ah + O(|h|^{2})|^{2})$$
(5.7.6)

$$= (\mathbf{g} \circ \mathbf{f})(\mathbf{a}) + BA\mathbf{h} + O(|\mathbf{h}|^2)$$
(5.7.7)

と書けます. 合成 $h = g \circ f$ が点 a で微分可能ならば、

$$h(a+h) = h(a) + Ch + O(|h|^2)$$
(5.7.8)

なるので、これを上の式と比べると合成の微分可能性と $C=BA=D\mathbf{g}\cdot D\mathbf{f}$ が分かります、というのが直観的な議論です.

以下きちんと議論しなおします. f の変数を x で, g の変数を y で書くことにします. 各関数の微分可能性から, ε,δ を $h\to 0\Rightarrow \varepsilon(h)\to 0, k\to 0\Rightarrow \delta(k)\to 0$ となる関数として

$$f(x+h) - f(x) = Ah + |h|\varepsilon(h)$$
(5.7.9)

$$\mathbf{g}(\mathbf{y} + \mathbf{k}) - \mathbf{g}(\mathbf{y}) = B\mathbf{k} + |\mathbf{k}|\delta(\mathbf{k})$$
 (5.7.10)

と書けます. ここで

$$k = k(h) = f(x+h) - f(x)$$
 (5.7.11)

とすれば, f の連続性から $h \to 0 \Rightarrow k(h) \to 0$ となります. 合成関数 φ について考えると、

$$\varphi(x+h) - \varphi(x) = g(f(x+h)) - g(f(x))$$
(5.7.12)

$$= g(y+k) - g(y) = Bk(h) + |k(h)|\delta(k(h))$$
(5.7.13)

$$= B \left(A \boldsymbol{h} + |\boldsymbol{h}| \boldsymbol{\varepsilon}(\boldsymbol{h}) \right) + |\boldsymbol{k}(\boldsymbol{h})| \boldsymbol{\delta} \left(\boldsymbol{k}(\boldsymbol{h}) \right)$$
 (5.7.14)

$$= BA\mathbf{h} + |\mathbf{h}|\boldsymbol{\rho}(\mathbf{h}), \quad \boldsymbol{\rho}(\mathbf{h}) := B\boldsymbol{\varepsilon}(\mathbf{h}) + \frac{|\mathbf{k}(\mathbf{h})|}{|\mathbf{h}|} \delta(\mathbf{k}(\mathbf{h}))$$
(5.7.15)

となります. ここで (m,n) 行列 $A=(a_{ij})$ に対して

$$|A| := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2\right)^{\frac{1}{2}}$$
 (5.7.16)

と書くことにします. A の第 i 行べクトルを a_i とすれば、

$$|Ax||^2 = \sum_{i=1}^m |a_i x|^2 = \sum_{i=1}^m ({}^t a_i, x)^2$$
 (5.7.17)

$$\leq \sum_{i=1}^{m} |{}^{t}\boldsymbol{a}_{i}|^{2} |\boldsymbol{x}|^{2}$$
 (Cauchy-Schwartz の不等式) (5.7.18)

$$= |A|^2 |x|^2 \tag{5.7.19}$$

が一般に成立します. これと三角不等式を用いて

$$|\mathbf{k}(\mathbf{h})| = |\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x})| = |A\mathbf{h} + |\mathbf{h}|\varepsilon(\mathbf{h})| \le (|A| + |\varepsilon(\mathbf{h})|) |\mathbf{h}| \quad (5.7.20)$$

となります. これから

$$\lim_{h \to 0} \rho(h) = 0 \tag{5.7.21}$$

となって証明終了です. ■

Theorem. 7.0.12. f,g が開集合 $\Omega\subset\mathbb{R}^n$ を定義域とする実数値関数とする. f,g が 1 点 a で微分可能なとき,積 fg は a で微分可能であり,導関数 D(fg) は次のように書ける.

$$D(fg)(\mathbf{a}) = f \cdot Dg + g \cdot Df \tag{5.7.22}$$

(証明) 以下の証明を見れば分かるように、定義域の次元 n はまったく表に出てきません。そこで一般の n で証明を構成します。 f,g が a で微分可能なので、 ε,δ を先程と同様、 $h\to 0\Rightarrow \varepsilon(h),\delta(h)\to 0$ となるように取れば

$$f(\boldsymbol{a} + \boldsymbol{h}) = f(\boldsymbol{a}) + A(\boldsymbol{a})\boldsymbol{h} + |\boldsymbol{h}|\varepsilon(\boldsymbol{h}), \quad A := Df(\boldsymbol{a}), \tag{5.7.23}$$

$$g(\boldsymbol{a} + \boldsymbol{h}) = g(\boldsymbol{a}) + B(\boldsymbol{a})\boldsymbol{h} + |\boldsymbol{h}|\delta(\boldsymbol{h}), \quad B := Dg(\boldsymbol{a})$$
(5.7.24)

と書けます.

積 fg について計算してみると

$$(fg)(\mathbf{a} + \mathbf{h}) = f(\mathbf{a} + \mathbf{h}) \cdot g(\mathbf{a} + \mathbf{h})$$
(5.7.25)

$$= \{f(\boldsymbol{a}) + A(\boldsymbol{a})\boldsymbol{h} + |\boldsymbol{h}|\varepsilon(\boldsymbol{h})\} \cdot \{g(\boldsymbol{a}) + B(\boldsymbol{a})\boldsymbol{h} + |\boldsymbol{h}|\delta(\boldsymbol{h})\}$$
(5.7.26)

$$= f(\boldsymbol{a}) \cdot g(\boldsymbol{a}) + f(\boldsymbol{a}) \cdot B(\boldsymbol{a})\boldsymbol{h} + g(\boldsymbol{a}) \cdot A(\boldsymbol{a})\boldsymbol{h}$$

$$+ (g(\mathbf{a}) + B(\mathbf{a})\mathbf{h} + |\mathbf{h}|\delta(\mathbf{h})) |\mathbf{h}|\varepsilon(\mathbf{h})$$
 (5.7.27)

 $+(f(\boldsymbol{a})+A(\boldsymbol{a})\boldsymbol{h}+|\boldsymbol{h}|\varepsilon(\boldsymbol{h}))|\boldsymbol{h}|\delta(\boldsymbol{h})$

$$= (fg)(\mathbf{a}) + (fB + gA)(\mathbf{a}) \cdot \mathbf{h} + O(|\mathbf{h}|^2). \tag{5.7.28}$$

積 fq が微分可能ならば、定義から

$$(fg)(a+h) = (fg)(a) + Ch + O(|h|^2)$$
 (5.7.29)

と書けます。すぐ上の式と比べれば、積の微分可能性と $C=fB+gA=f\cdot Dg+g\cdot Df$ となることが分かります。 \blacksquare

5.8 多変数の Taylor の定理と微分

多変数の実数値関数に関しても Taylor の定理が成立します. 1 変数のときと同じようにして線形化を中心に組み立てれば良いのですが, 1 変数と同じなのでそこの詳論は控えます. まずは予備定理から証明します.

Theorem. 8.0.13. f を $I=\prod_{i=1}^n(a_i,b_i)\subset\mathbb{R}^n$ 上で C^k 級実数値関数とする. I の 2 点 x,x+z を結ぶ線分 $L:g(t)=x+tz,t\in[0,1]$ が I に含まれているとき,合成関数 $\varphi=f\circ g$ は [0,1] 上で C^k 級で, $1\leq m\leq k$ のとき φ の m 階 導関数は

$$\varphi^{(m)}(t) = \sum_{1 \le i_1, \dots, i_m \le n} \frac{\partial^m f}{\partial x_{i_1} \cdots \partial x_{i_m}} (\boldsymbol{x} + t\boldsymbol{z}) z_{i_1} \cdots z_{i_m}$$
 (5.8.1)

で与えられる.

 $(証明) \ g$ は t の一次関数です. これは 2 階以降の導関数が 0 になってしまいますが, これを微分可能な関数と考えれば g は C^∞ の関数です. そこで m=1 のときは単純な合成関数の微分から

$$\varphi'(t) = f'(\boldsymbol{x} + t\boldsymbol{z})g'(t) = f'(\boldsymbol{x} + t\boldsymbol{z})\boldsymbol{z} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\boldsymbol{x} + t\boldsymbol{z})z_i$$
 (5.8.2)

が成立します。そこで m についての帰納法で (5.8.1) が成立することを証明をします。今 m < k に対して (5.8.1) が成立すると仮定すれば, (5.8.1) を t について 微分すれば, m+1 に対する (5.8.1) が得られます。実際 f は C^k 級で $m+1 \le k$ から, f の m+1 階偏導値は, 前に示した定理から偏微分の順序によりません。したがって m=1 の場合を用いて

$$\varphi^{(m)}(t) = \sum_{1 \le i_1, \dots, i_{m+1} \le n} \frac{\partial^{m+1} f}{\partial x_{i_1} \cdots \partial x_{i_{m+1}}} (\boldsymbol{x} + t\boldsymbol{z}) z_{i_1} \cdots z_{i_{m+1}}$$
 (5.8.3)

が得られます. ■

ここで一旦便利な記法として m 次微分 $(d^mf)_{\boldsymbol{x}}$ を導入しておきます. (5.8.1) の右辺からそのまま

$$(d^m f)_{\boldsymbol{x}}(\boldsymbol{z}) := \varphi^{(m)}(t) = \sum_{1 \le i_1, \dots, i_m \le n} \frac{\partial^m f}{\partial x_{i_1} \cdots \partial x_{i_m}} (\boldsymbol{x} + t\boldsymbol{z}) z_{i_1} \cdots z_{i_m} \quad (5.8.4)$$

とします. これを f の x における m 次微分といいます. 特に m=1 のときの d^1f を df と書きます.

それでは Taylor の定理です.

Theorem. 8.0.14. (多変数の Taylor の定理)f を $\prod_{i=1}^n (a_i,b_i)$ 上で C^k 級 $(k \geq 1)$ の実数値関数とする. 2 点 x,x+h を結ぶ線分 L が I に含まれるとき, $0 < \theta < 1$ なる実数 θ が存在して

$$f(x+h) = f(x) + \sum_{m=1}^{k-1} \frac{1}{m!} (d^m f)_x(h) + \frac{1}{k!} (d^k f)_{x+\theta h}(h)$$
 (5.8.5)

が成立する.

(証明) $\varphi(t):=f(x+th)$ は [0,1] で C^k 級ですから, 1 変数関数についての Taylor の定理から, ある実数 $\theta\in(0,1)$ が存在して

$$\varphi(1) = \sum_{m=0}^{k-1} \frac{1}{m!} \varphi^{(m)}(0) + \frac{1}{k!} \varphi^{(k)}(\theta)$$
 (5.8.6)

となります。前定理から $\varphi^{(m)}(0)=(d^mf)_{\boldsymbol{x}}(\boldsymbol{z}), \varphi^{(k)}(\theta)=(d^kf)_{\boldsymbol{x}+\theta\boldsymbol{h}}(\boldsymbol{h})$ ですから定理が成立します。

ここで特に m=1 とした 1 次微分 (普通単に微分という) の効能を見てみま しょう. 我々の目的の 1 つは「安定点はあらゆる方向からの 1 階の微分が消える (微分係数が 0 になる) 点である」という予想をきちんと確認することです. 先 程見たように、偏微分は標準基底に沿った方向微分であり、「あらゆる方向」と いうものをどう定式化するかには多少の困難があります. ここで、標準基底を全 て同じ角度だけ回転させたベクトルの組 $\{u_i\}$ はまた基底になります。この基底 に沿った方向微分を考えれば、新たな方向微分が得られます。これを繰り返せば、 原理的には「あらゆる方向からの微分」を考えることが出来ますが、非常に面倒 どころか変化の方向は無限にあるので、人間の手では追いつきません。そこで線 形代数で示した (空間内の) 任意の回転は直交行列で表現出来るという定理を使 います. $oldsymbol{x}={}^t(x_1,x_2,x_3)$ を回転させたベクトルを $oldsymbol{y}={}^t(y_1,y_2,y_3)$ とすると $m{y} = Um{x}(m{x} = {}^tUm{y})$ となります.成分で書くと, $y_k = U_{ki}x_i(x_i = {}^tU_{ik}y_k)$ です. さらに微分作用素の方も変換しないといけません. 高校でも学んできた 1 変数の ときと同じで良いのですが、多変数では $y_k = U_{k1}x_1 + U_{k2}x_2 + U_{k3}x_3$ となり、こ れらを各変数で微分しないといけないことに注意して下さい. これをふまえて計 算すると以下のようになります.

$$\frac{\partial}{\partial x_i} = \sum_{k=1}^{3} \frac{\partial y_k}{\partial x_i} \frac{\partial}{\partial y^k} = \sum_{k=1}^{3} U_{ki} \frac{\partial}{\partial y^k}.$$
 (5.8.7)

準備が整ったので微分を計算します.また $,f(oldsymbol{x})=f(U^{-1}oldsymbol{y})=g(y)\;,oldsymbol{z}$ も変換し

て $\boldsymbol{w} = U\boldsymbol{z}$ とすると

$$(df)_{\boldsymbol{x}}(\boldsymbol{z}) = \sum_{i=1}^{3} \frac{\partial f}{\partial x_i}(\boldsymbol{x}) z_i = \sum_{i=1}^{3} \sum_{k=1}^{3} U_{ki} \frac{\partial}{\partial y_k} g(\boldsymbol{y}) z_i$$
 (5.8.8)

$$= \sum_{i=1}^{3} \sum_{k=1}^{3} \frac{\partial}{\partial y_k} g(\mathbf{y}) U_{ki} z_i = \sum_{i=1}^{3} \sum_{k=1}^{3} \frac{\partial}{\partial y_k} g(\mathbf{y})^{t} U_{ik} z_i$$
 (5.8.9)

$$=\sum_{k=1}^{3} \frac{\partial g}{\partial y_k}(\mathbf{y}) w_k \tag{5.8.10}$$

となり、どのように回転させた基底に対する方向微分に対しても、微分は形を変えません。これは微分が基底の取り方に関係なく存在する量であることを示しています。つまり、方向に対する依存性がないということですから、これは「あらゆる方向への微分」に対応するものであるといえます。

5.8.1 Taylor 展開の応用-波動方程式の導出

流れとしてはこのまま本筋の極値問題へ行くべきですが、その前にもう 1 つの本筋である振動・波動論に対して非常に重要な波動方程式の導出を行ないます.

物理的な状況としては、両端が固定された(固定端の)長さ l 、質量 m の弦を考えます.そして一方の端(左端とする)を座標の原点とし、もう一方の端へと x 軸を取ります.時刻 t 、位置 x での弦の振幅を u(x,t) で表し、また考察の便宜の為、弦を n 分割します(n 等分としても構いません). n はあとで行なう近似が十分正確になる程度に大きく取り、最後には $n\to\infty$ とします.さらに作業上の都合から、等分した各点に各弦の部分の全質量が集まっているものとし,その各部分が適当に質量の無い(無視できる)糸で結ばれているものとします.

このとき i 番目の質点の運動方程式を考えます。糸の張力は質点の左右で等しいとし、T とします。また水平線と質点を結ぶ糸のなす角を左から θ_1,θ_2 とします。 μ を弦 (の質量) の線密度として、

$$(\mu \Delta x) \frac{\partial^2 u}{\partial t^2}(x_i, t) = T \sin \theta_2 - T \sin \theta_1$$
 (5.8.11)

ここで θ が十分小さく, $\sin\theta \simeq \tan\theta$ が成立するように n を取ります.ここで \tan の幾何学的意味から, $\tan\theta = \frac{\partial u}{\partial x}$ となります.上の式に代入して Taylor 展開を用いると

$$\mu \Delta x \frac{\partial^2 u}{\partial t^2}(x_i, t) = T \frac{\partial u}{\partial x}(x_i, t) - T \frac{\partial u}{\partial x}(x_i - \Delta x, t)$$
 (5.8.12)

$$= T \left[\frac{\partial u}{\partial x}(x_i, t) - \left\{ \frac{\partial u}{\partial x}(x_i, t) - \Delta x \frac{\partial^2 u}{\partial x^2}(x_i, t) + O\left(\left(\Delta x\right)^2\right) \right\} \right]$$
 (5.8.13)

$$=T\frac{l}{n}\frac{\partial^{2} u}{\partial x^{2}}(x_{i},t)+O\left(\left(\Delta x\right)^{2}\right) \tag{5.8.14}$$

$$\Longrightarrow \mu \frac{\partial^2 u}{\partial t^2}(x_i, t) = T \frac{\partial^2 u}{\partial x^2}(x_i, t) + (\Delta x)$$
 (5.8.15)

ここで $n \to \infty$ とし, $x_i = x$ と書き直すと

$$\frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), \quad v := \sqrt{\frac{T}{\mu}}$$
 (5.8.16)

上式を (1 次元の) 波動方程式といいます。あとで使うこともあるでしょうから,3 次元版も付記しておきましょう。 $\nabla:=\partial_x e_x+\partial_y e_y+\partial_z e_z$ とし, $\nabla\cdot\nabla=\nabla^2=\partial_x^2+\partial_y^2+\partial_z^2$, $\square:=(1/v^2)\partial_t^2-\nabla^2$ とすると,

$$0 = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} - \nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial z^2} = \Box u \tag{5.8.17}$$

波動方程式が本当に波動を表しているかを簡単な例で確認してみましょう。 高校で単振動は $u(x,t)=\sin(\omega t-kx)$ で表されると学んだはずです。ここで $\$\omega:=2\pi$ f , $k:=2\pi$ f/ λ \$ です。 $\$\omega$ \$ を角振動数, $\$\lambda$ \$ を波数といいます。これの 2 階の時間・空間微分を考えると $v:=\sqrt{\omega/k}$ とすれば確かに波動方程式を満たします。また波動方程式は重ね合わせの原理も満たします。2 つの波 u_1,u_2 があるとしましょう。この 2 つを重ね合わせたものもまた波である,というのは $u:=u_1+u_2$ が波動方程式の解となるということです。 u_1,u_2 それぞれが波動方程式の解ですから, $\square u_i=0 (i=1,2)$ となります。微分作用素 \square は線形作用素ですから, $\square u=\square u_1+\square u_2=0+0=0$ となり,重ね合わせた u も確かに波動方程式を満たします。

少し脱線します.ここで Euler の公式 $\$e^{ix}=\cos x+i\sin x\$$ から $\sin x=\frac{1}{2}(e^{ix}+e^{-ix}),\cos x=\frac{1}{2i}(e^{ix}-e^{-ix})$ です.微分の手間を考えると,数学的には \sin , \cos の代わりに e^{ix} を考えた方が楽ですからそうしてみます.この複素表示を 用いると正弦波(単振動)は $\psi_{k,\omega}(x,t)=e^{i(kx-\omega t)}$ と書けます.そして重ね合わせ の原理から,波の重ね合わせはまた波ですから,波動方程式にしたがう波 u は正弦波の重ね合わせで記述できる(または非常に良く振る舞いが近似される)と仮定してみましょう.重ね合わせの際には様々な波数・角振動数の正弦波を使うのが もっともらしいでしょう.つまり $\$k,\omega$ \$ としては,全実数を考えます.全実数に 対して重ね合わせるのだから,積分を使えばよいでしょう.すなわち,

$$u(x,t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} a(k,\omega)e^{i(kx-\omega t)} dk d\omega$$
 (5.8.18)

と書けます。ここで $a(k,\omega)$ は重ね合わせる際の荷重です。ちなみにこれを u の Fourier 逆変換といいます。ついでにいうと、上の表示では単発の(重ね合わせされていない)正弦波そのものを表現しきれません。この不都合を解消する為に 1 つの「関数」を導入します。線形代数で学んだ Kronecker の δ を真似た (と思われる) Dirac の δ 関数 $\delta(x)$ です。これは上の式の正当化をこめて、次のように積分を用いて定義します。

$$\int_{-\infty}^{\infty} f(x')\delta(x - x') \, dx = f(x). \tag{5.8.19}$$

つまり, $\delta(x-x')$ にある関数 f をかけ全空間上を x' で積分すると, f の x での値がでてくるというものです.これを用いて正弦波が復元できるか確認してみましょう. $a(k,\omega)=\delta(k-k')\delta(\omega-\omega')$ として,Fourier 逆変換の定義式で積分変数を $k\to k',\omega\to\omega'$ と変えれば,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(k - k') \delta(\omega - \omega') e^{i(k'x - \omega't)} dk' d\omega' = e^{i(kx - \omega t)}$$
 (5.8.20)

となり、確かに単発の正弦波が復元できます.少し話が飛びましたが、それでは Fourier 変換は? というのは当然の疑問でしょう.それは $a(k,\omega)$ のことです.これは u を用いて以下のように書けます.

$$a(k,\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x,t)e^{-i(kx-\omega t)} dx dt$$
 (5.8.21)

です. これを $\hat{u}(k,\omega)$, $\mathcal{F}[u](k,\omega)$ などと書きます. Fourier 逆変換は $\mathcal{F}^{-1}[u](k,\omega)$ と書きます.

さらに少々線形代数を思い出してもらいましょう。 行列 A に対して $Ax = \lambda x$ をみたす λ, x を固有値・固有ベクトルといいました。 正確には変数分離という手法を用いた後に分かることですが, $e^{i(kx-\omega t)}$ は線形作用素 \square の固有ベクトルになります。 さらにスペクトル分解というのは, (正規) 行列を固有ベクトルと平行な成分への射影子と固有値の積を用いて分解するものでした。 これを用いて微分作用素(線形作用素!) \square のスペクトル分解 を行なうと,

$$\Box = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{1}{v^2} (-i\omega)^2 - (ik)^2 \right) e^{i(kx - \omega t)} dk d\omega$$
 (5.8.22)

となります. ただし, これは作用素としての等式です. ここでは線形代数が無限次元に拡張されていく様を見ておいてください.

5.9 最大最小, 極値問題

本章のメインとなる節です. 本節最後に安定点の定式化を行ないます. まず極値 の正確な定義をしておきます.

Definition. 9.0.1. \mathbb{R}^n の部分集合 A で定義された実数値関数 f を考える. $a \in A$ のある近傍 $U = U(a; \varepsilon)$ が A に含まれ f すなわち f が f の内点でf の最大値である,すなわち任意の f に対して f に対して f において極大であるという。極小についても同様。また f が f で極大であるだけなく f 以外の任意の f に対し f に対し f にないとき,f は f で狭義の極大であるという。狭義の極小についても同様。

f が a で極大または極小になるとき, f は a で極値を取るといい, a を f の極値点という.

1 変数のときの極値に関する結果は既知として, 多変数の極値に関して調べてみます. まず 1 変数のときとほとんど変わらない極値に関する必要条件が得られます.

Theorem. 9.0.2. \mathbb{R}^n の部分集合 D の内点 a で関数 $f:D\to\mathbb{R}$ が微分可能であるとする. a で f が極値を取るならば次のことが成立する.

$$\frac{\partial f}{\partial x_i}(\mathbf{a}) = 0 (1 \le i \le n), \tag{5.9.1}$$

$$f'(\mathbf{a}) = 0, \quad (df)_{\mathbf{a}} = \mathbf{0}.$$
 (5.9.2)

(証明) 本質が損なわれるわけでもなく、理解がしやすくもなるので 2 変数関数 f(x,y) で示します. y を a の座標 a_2 に固定して得られる関数 $f_1(x):=f(x,a_2)$ は x=a で極値を取るので、1 変数の場合の対応する定理から

$$Df_1(x) = \frac{\partial f}{\partial x}(\mathbf{a}) = 0 \tag{5.9.3}$$

が成立します。また、 $(df)_{m a}(m x)=Df(m a)m x=0$ が任意の $m x\in\mathbb R$ に対して成立するので $df_{m a}=0$ です。

本章はじめに述べたように Df(a) = O となる点を停留値といいます. 上で示した極値に関する条件と安定点は極小点であることが必要という直観的考察から安定点では微分が消えます. また 1 変数のときの類推から, 2 次の導関数の挙

動を調べる必要があります.このとき座標系(基底)の選択によらない 2 次微分 d^2f を考えるというのは以前書いたとおりです.ここで任意の $x\in\mathbb{R}^n$ に 2 次微分 d^2f を作用させると

$$(d^2 f)_{\mathbf{a}}(\mathbf{x}) = \sum_{1 \le i, j \le n} \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}) x_i x_j$$
 (5.9.4)

となりますが、これは2次形式 (2次同次式) と呼ばれるものです。そこで2次形式を正確に定義したのち、これを調べます。

Definition. 9.0.3. \mathbb{R}^n 上の 2 次形式 (qudratic form)

$$Q(x) = \sum_{i,j=1}^{n} b_{ij} x_i x_j, \quad b_{ij} = b_{ji} \in \mathbb{R}$$
 (5.9.5)

に対し対称行列 $B=(b_{ij})$ をその係数行列という. $Q(x)=(Bx,x)={}^txBx$ である. Q に対し次のように定義する.

- 1)全ての ${\bf 0}$ でない ${m x} \in \mathbb{R}^n$ に対し, $Q({m x})>0$ ならば, Q は正値であるという.
- 2)全ての ${f 0}$ でない ${f x}\in \mathbb{R}^n$ に対し, $Q({f x})<0$ ならば, Q は負値であるという.
- β)ある $x,y\in\mathbb{R}^n$ に対し, Q(x)>0>Q(y) となるならば, Q は不定符号であるという.
- 4)det $B \neq 0$ となるとき, Q は正則という.

Theorem. 9.0.4. 2 次形式 (5.9.5) に対して次の 5 つの条件は互いに同値で ある.

- 1)x = 0 で Q は狭義の最小値 0 を取る.
- 2)x = 0 で Q は狭義の極小値 0 を取る.
- 3)Q は正値である.
- 4)係数行列 $B=(b_{ij})$ の固有値は全て正である.
- 5)係数行列 B の全ての主小行列式 D_k は正である. すなわち

$$D_{k} = \begin{vmatrix} b_{11} & b_{12} & \dots & b_{1k} \\ b_{21} & b_{22} & \dots & b_{2k} \\ \dots & \dots & \dots & \dots \\ a_{k1} & b_{k2} & \dots & b_{kk} \end{vmatrix} > 0 \quad (1 \le k \le n)$$
 (5.9.6)

(証明) B が対称行列なので適当な直交行列 U を用いて Q を「対角化」できます. $m{y}:=Um{x}$, B の固有値を λ_i とし, $UB^tU:=\Lambda=(\lambda_i\delta_{ij})$ とすると,

$$Q(\boldsymbol{x}) = {}^{t}\boldsymbol{x}B\boldsymbol{x} = {}^{t}(U\boldsymbol{x})(UB^{t}U)(U\boldsymbol{x}) = {}^{t}\boldsymbol{y}\Lambda\boldsymbol{y} = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2} =: P(\boldsymbol{y}).$$
 (5.9.7)

これから P について考えていけば良いことになります.

- $1)\Rightarrow 2)$ 直観的には局所的な最小のことを極小というので、これは明らかでしょう.
- $2)\Rightarrow 3)$ 背理法で証明しましょう. P が正値でないとします. このとき固有値の少なくとも 1 つ, 例えば λ_1 が負になります. 何故かというと, 正値の条件は

「任意の y に対して P(y)>0 となる」ことですが、この否定は「ある y が存在して P(y)<0 となる」ことです。全ての λ_i が正であると、y をどう取っても P は負になれません。

このとき $\varepsilon>0$ を任意に取ります. さらに ${\bf 0}$ の近傍 $U({\bf 0};\varepsilon)$ を考えます. そして ${\bf y}_1=(\varepsilon/2,0,\cdots,0)$ とすると,

$$P(\mathbf{y}_1) = \lambda_1 \left(\frac{\varepsilon}{2}\right)^2 < 0 \tag{5.9.8}$$

となり, y = 0 で狭義極小値 0 を取ることに反します.

- $3)\Rightarrow 4)$ こちらも背理法で示します.ある固有値,例えば λ_1 が負であるとします.このとき例えば ${m y}_0=(1,0,\cdots,0)$ を取ると $P({m y}_0)<0$ となり,P,したがって Q が正値であることに反します.
- $4)\Leftrightarrow 5)$ 実際に主小行列式を計算します. このとき行列の積の行列式が行列式の積になること、 すなわち $\det(AB)=\det A\cdot\det B$ となることを用いると、

$$D_n = \det B = \det B(\det U \det^t U) = \det(UB^t U) = \det \Lambda \tag{5.9.9}$$

$$= \begin{vmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \lambda_n \end{vmatrix} = (-1)^{2n} \lambda_n \begin{vmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \lambda_{n-1} \end{vmatrix} = \lambda_n D_{n-1} \quad (5.9.10)$$

これを繰り返していけば $D_n = \lambda_1 \cdots \lambda_n > 0$ となることが分かります.

 $4)\Rightarrow 1)$ 仮定から P の全ての固有値 λ_i は正です. 定義から任意の ${\bf 0}$ でない ${m y}\in\mathbb{R}^n$ に対して $P({m y})>0$ となります. したがって Q は ${m y}={m 0}$ で狭義最小値 0 を取ります. \blacksquare

この定理を用いて, C^2 級関数 f の停留点 a が極値を取る為の 1 つの十分条件が与えられます.

Theorem. 9.0.5. \mathbb{R}^n の開集合 U で定義された C^2 級の実数値関数 f が, 1 点 $a \in U$ で Df(a) = 0 を満たすとき次のことが成立する.

1 \mathbb{R}^n 上の 2 次形式 $(d^2f)_{m{a}}$ が正値ならば, $m{a}$ は f の狭義の極小点である.

 $2)(d^2f)_a$ が負値ならば、a は f の狭義の極大点である.

 $3)(d^2f)_a$ が不定符号ならば, a は f の鞍点であり極値点ではない.

(証明) U が開集合ですから, a のある近傍で $U(a;\varepsilon)\in U$ となるものが存在します. そこで $|h|<\varepsilon$ となる任意の $h\in\mathbb{R}^n$ に対して Taylor の定理と仮定 Df(a)=0 から

$$f(a+h) - f(a) = \frac{1}{2} (d^2 f)_{a+\theta h}(h), \quad \theta \in (0,1).$$
 (5.9.11)

1) の証明: $(d^2f)_{m a}$ が正値ならば、前定理からその係数行列の主小行列式 $D_k({m a})$ に対して $D_k({m a})>0(1\le k\le n)$ が成立します.今 f は C^2 級なので、連続な関数 $D_{ij}f({m x})$ を成分とする行列式 $D_k({m x})$ は連続となります.そこで $\varepsilon>0$ を十分小さく取ると

$$D_k(\boldsymbol{a} + \theta \boldsymbol{h}) > 0(1 < k < n) \tag{5.9.12}$$

が成立します。そこで再び前定理を用いると、 $|h|<arepsilon,0<\theta<1$ に対して 2 次形式 $(d^2f)_{m{a}+\thetam{h}}$ は正値となります。そこで |h|<arepsilon となる任意の $m{h}\neq m{0}$ に対して

$$f(a+h) - f(a) = \frac{1}{2}(d^2f)_{a+\theta h}(h) > 0$$
 (5.9.13)

となります. これは a が f の狭義極小点であることを意味します.

- 2) の証明: このとき $(d^2(-f))_a = -(d^2f)_a$ は正値ですから, 1) から -f は a で狭義極小となります. したがって f は a で狭義極大となります.
 - 3) の証明: $(d^2f)_a$ が不定符号ならば、

$$(d^2f)_{\mathbf{a}}(\mathbf{x}) > 0 > (d^2f)_{\mathbf{a}}(\mathbf{y})$$
 (5.9.14)

となる $x,y\in\mathbb{R}^n$ が存在します. x,y を cx,cy で置き換えても上式が成立するので, $|x|<\varepsilon$, $|y|<\varepsilon$ と仮定できます. このとき実変数 $t\in(-1,1)$ の 2 つの関数

$$g(t) = f(\boldsymbol{a} + t\boldsymbol{x}), \quad h(t) = f(\boldsymbol{a} + t\boldsymbol{y})$$
 (5.9.15)

を考えると, g,h は共に C^2 級で p 82, 定理 8.0.13 から,

$$D^k g(\mathbf{0}) = (d^k f)_{\mathbf{a}}(\mathbf{x}), \quad D^k h(\mathbf{0}) = (d^k f)_{\mathbf{a}}(\mathbf{y})(k = 1, 2)$$
 (5.9.16)

となります。今仮定から $(df)_a=0$ ですから,Dg(a)=Dh(a)=0 で, $D^2g(0)>0>D^2h(0)$ です。そこで t=0 は g の狭義極小点で h の狭義極大点となります。すなわち a は f の鞍点で,f は x 方向には a で狭義極大となります。したがって f は a で極大または極小になりません。

Remark. 9.0.6. この定理を固有値について述べなおすと、 $(d^2f)_a$ の係数行列 の全ての固有値が正のとき a で狭義極小を取り、全ての固有値が負のとき a で狭義極大を取るということです.

またこれらを用いて安定点の定式化を行ないます. N 質点系がしたがうポテンシャルを $U(r):=U(r_1,\cdots,r_N)$ とし, U が適当に性質が良いものである (例えば C^∞ 級) とします. r_0 がつりあいの位置でそこからのずれを $y=r-r_0$ とします. ここで U を r_0 のまわりで Taylor 展開すると

$$U(\mathbf{r}) = U(\mathbf{r}_0) + \sum_{i=1}^{3N} \frac{\partial U}{\partial x_i} \bigg|_{\mathbf{r}_0} y_i + \frac{1}{2} \sum_{i=1}^{3N} \frac{\partial^2 U}{\partial x_i \partial x_j} \bigg|_{\mathbf{r}_0} y_i y_j O(|\mathbf{x}|^3)$$
 (5.9.17)

$$= U(\mathbf{r}_0) + \frac{1}{2} \sum_{i,j=1}^{3N} \frac{\partial^2 U}{\partial x_i \partial x_j} \bigg|_{\mathbf{r}_0} y_i y_j$$
 (5.9.18)

となります。ここで $r_1=(x_1,x_2,x_3), r_2=(x_4,x_5,x_6),\cdots,r_N=(x_{3N-2},x_{3N-1},x_{3N})$ としました。考えるのは平衡点まわりの微小振動なので, $O(|x|^3)\approx 0$ とみなせます。本章はじめの節での考察とエネルギーが低い方がより安定であるという一般的な原理から,系が安定である為には

$$U(\mathbf{r}) > U(\mathbf{r}_0) \Longrightarrow \sum_{i,j=1}^{3N} V_{ij} y_i y_j > 0 (V_{ij} = V_{ji} = D_{ij} U(\mathbf{r}_0))$$
 (5.9.19)

でなければなりません。すなわち安定性の条件は $\hat{U}=(U_{ij})$ が正値行列であるということです。この条件を用いて本章の主題であるポテンシャルの安定点近傍で質点系は微小振動を行なうことを示します。これは一旦節を改めましょう。

5.10 物理への適用

本節では時間によらなNポテンシャルの安定点近傍で質点系は微小振動を行なうことを示します。まず r_i の質点の質量を m_i とします。各座標成分に対する運動

方程式は,

$$m_i \ddot{y}_i = -\sum_{j=1}^{3N} U_{ij} y_j \tag{5.10.1}$$

となります. この式を $\sqrt{m_i}$ で割って整理すると,

$$\sqrt{m_i}\ddot{y}_i = -\sum_{j=1}^{3N} \frac{1}{\sqrt{m_i m_j}} U_{ij} \sqrt{m_j} y_j$$
 (5.10.2)

なります.ここでさらに $ilde{y}_i := \sqrt{m_i} y_i \;, \; ilde{U}_{ij} := U_{ij}/\sqrt{m_i m_j}$ と定義すると,

$$\ddot{\tilde{y}}_i = -\sum_{i=1}^{3N} \tilde{U}_{ij} \tilde{y}_j \iff \tilde{\boldsymbol{y}} = -\tilde{\tilde{U}} \tilde{\boldsymbol{y}}$$
 (5.10.3)

と書けます。今 \hat{U} は対称行列なので、適当な直交行列 V で対角行列 $\Lambda=(\lambda_i\delta_{ij})$ に対角化可能です。また前節での注意 p 89、注意 9.0.6 から正値行列 \hat{U} の固有値 λ_i は全て正であることから

$$\lambda_i = \omega_i^2, \quad \omega > 0 \tag{5.10.4}$$

としても良いことが分かります。ここで U が時間依存しないのでこれを対角化する V も時間依存しません。したがって $\dot{V}=O$ となり, $\Omega:=(\omega_i^2\delta ij)$ としてこれを用いると運動方程式は

$$\frac{d^2}{dt^2}V\boldsymbol{y} = -V\hat{U}V^{-1}V\boldsymbol{y} \iff \ddot{\boldsymbol{z}} = -\Omega\boldsymbol{z}, \quad \boldsymbol{z} := V\boldsymbol{y}$$
 (5.10.5)

となります、 Ω が対角行列であることを用いて成分ごとに書けば

$$\ddot{z}_i = -\omega_i^2 z_i \tag{5.10.6}$$

となります. これは簡単に解けて

$$z_i = a_i e^{i\omega_i t} + b_i e^{i\omega_i t} = A_i \sin(\omega_i t + \phi_i)$$
(5.10.7)

と書けます. これを逆に解いて

$$\mathbf{y} = \operatorname{diag}\left(\frac{1}{\sqrt{m_i}}\right) V^{-1} \mathbf{z} \tag{5.10.8}$$

が得られます。ここで diag は括弧の中身を成分とする対角行列を表します。

以上から互いに相互作用を持つ N 個の質点に対する微小振動の方程式が N 個の互いに独立な調和振動子の集合として記述できたことになります. この振動を基準振動 (normal mode) といいます. 基準振動によって系を記述する考え方は、多自由度振動系の基本であり、構造力学、分子モデルなど多くの応用例があるほか、場の量子論の基礎付けでも重要な役割を果たすようです.

これで本章の目的は果たしたのですが、以後のことも考えて積分についても議論することにします。 その前に微分方程式と絡めて動機づけをしておきます.

5.11 微分と積分の掛け橋-微分方程式

運動方程式 $m\ddot{r}=f$ は 2 階の時間微分を含んでおり、さらにその微分されて埋まっている関数が求めるべきものです.こうしたものを微分方程式と呼びます.ここではこれを (近似的に) 解く方法を考えます.

本当に求めたいのは質点が力 f を受けながら描く運動の軌跡です。しかしいきなり 2 階微分を解きほぐすのは大変です。欲張らずにまずは速度 $\dot{r}=v$ を求めてみましょう。初期時刻を $t=t_i$, 初期速度 $v(t_i):=v_0$ として,適当な時間 $t_f>0$ での質点の速度を求めることにします。前の節で微分とは線形化であるということを見ました。非常に短い時間間隔 $\Delta t>0$ を取れば,質点に働く力は Δt の間 $f(r_{t_i},\dot{r}_{t_i})$ で一定であるとみなせるでしょう。ただし $r_{t_i}:=r(t_i),\dot{r}_{t_i}:=\dot{r}(r(t_i),t_i)$ としました。すると線形化によって,運動方程式は

$$\mathbf{v}(t_i + \Delta t) \simeq \mathbf{v}_0 + \frac{\Delta t}{m} \mathbf{f}(\mathbf{r}_{t_i}, \dot{\mathbf{r}}_{t_i})$$
 (5.11.1)

と書けます. 速度のなす 3 次元空間で考えれば、当然これはその空間の中の線分となります. ここからさらに Δt 経ったときの速度 ${m v}(t_0+2\Delta t)$ は、同様の線形化によって

$$\mathbf{v}(t_i + 2\Delta t) \simeq \mathbf{v}(t_i + \Delta t) + \frac{\Delta t}{m} \mathbf{f}(\mathbf{r}_{t_i + \Delta t}, \dot{\mathbf{r}}_{t_i + \Delta t})$$
 (5.11.2)

$$\simeq \boldsymbol{v}_0 + \frac{\Delta t}{m} \boldsymbol{f}(\boldsymbol{r}_{t_i}, \dot{\boldsymbol{r}}_{t_i}) + \frac{\Delta t}{m} \boldsymbol{f}(\boldsymbol{r}_{t_i + \Delta t}, \dot{\boldsymbol{r}}_{t_i + \Delta t})$$
 (5.11.3)

と書けます. 先程と同じですが, こちらは折れ線になっています. これを n 回繰り返すと

$$\boldsymbol{v}(t_0 + n\Delta t) \simeq \boldsymbol{v}_0 + \sum_{k=0}^{n} \boldsymbol{f}(\boldsymbol{r}_{t_0 + k\Delta t}, \dot{\boldsymbol{r}}_{t_0 + k\Delta t})$$
 (5.11.4)

となります.十分大きな N を取れば, $t_i + N \Delta t \simeq t_f$ とできるでしょう.したがって

$$\boldsymbol{v}(t_f) \simeq \boldsymbol{v}_0 + \sum_{k=0}^{N} \boldsymbol{f}(\boldsymbol{r}_{t_0 + k\Delta t}, \dot{\boldsymbol{r}}_{t_0 + k\Delta t}) =: \boldsymbol{v}_p(t; \Delta t; N)$$
 (5.11.5)

が得られます. 作り方からこれは求めるべき速度の折れ線近似のグラフを与えることが分かります.

近似というと程度が低いと思うかもしれません。しかし例えばボールを投げたとき、滞空時間が 10 秒であったとします。空気抵抗などがないものとすれば、当然ボールは放物線を描きます。このとき Δt を 1/20000 秒, $N=2\times 10^5$ として上の折れ線近似を頑張ってやれば、折れ線といえどもかなり正確に放物線様の軌道を描いてくれるでしょう。同様のプロセスを踏んで r の (近似) 解が求められます。つまり原理的にはこれできちんと近似解 $v_p(t;\Delta t;N)$ が求められます。また近似というならば精度を高めたいと思うのは当然の欲求でしょう。そのためには $\Delta t>0$ をさらに小さく、したがって N もさらに大きくすれば良いと考えるのは普通でしょう。

このとき $\Delta t \to 0(N \to \infty)$ という理想的な極限を考えます. そうすると各 Δt での線分が短くなっていき、次第に近似解の折れ線 ${m v}_v(t;\Delta t;N)$ が真の解曲線 ${m v}$

になっていくでしょう。このとき上の式の和の中では $\Delta t \to 0, N \to \infty$ という極限を同時に取ることになります。 つまり

$$v_p(t; \Delta t; N) = v_0 + \sum_{k=0}^{N} f(r_{t_0 + k\Delta t}, \dot{r}_{t_0 + k\Delta t})$$
 (5.11.6)

$$\xrightarrow{\Delta t \to 0, N \to \infty} v = v_0 + \lim_{\Delta t \to 0, N \to \infty} \sum_{k=0}^{N} f(r_{t_0 + k\Delta t}, \dot{r}_{t_0 + k\Delta t})$$
 (5.11.7)

となります。右辺で現れる和の極限が上手く収束するときがあります。そこでこの和の極限を積分と名付けて以下のように書きます。

$$\int_{t_{i}}^{t_{f}} \mathbf{f}(\mathbf{r}(\tau), \dot{\mathbf{r}}(\mathbf{r}(\tau)))) d\tau$$
 (5.11.8)

$$:= \lim_{\Delta t \to 0, N \to \infty} \sum_{k=0}^{N} f(r_{t_0 + k\Delta t}, \dot{r}_{t_0 + k\Delta t}).$$
 (5.11.9)

実際には収束の議論をするのは一苦労です. そのあたりを以下で簡単に見る他, 実際に必要となる計算結果, 変数変換公式などを導出していきます.

5.12 運動方程式と常微分方程式

5.12.1 常微分方程式

何度か述べたように、力学の基本法則である運動方程式は数学的には(常)微分方程式というものになります.運動方程式を考えれば分かるように、求める解(関数)の具体的な形は分からなくとも、その満たすべき関係式が分かっているときがあります.その関係式から関数の具体的な形を求めることを、一般に(微分)方程式を解くといいます.解く際に許される演算は

- 1)有限回の微分、
- 2)有限回の与えられた関数との合成、

のみです. 波動方程式を考えれば分かるように、物理で現れる変数は一般に時間と空間の 4 変数があります. 多変数の微分方程式を偏微分方程式といいますが、ここでは時間のみを変数とする常微分方程式のみを考えます.

まず 1 つ注意をしておきます. 力として $f=q(E+v\times B)$ という Lorentz 力を取ります. 関数の引数をきちんと示して, 質量 m, 電荷 q を持つ質点の運動方程式を書くと

$$m\ddot{\mathbf{r}}(t) = q\left\{\mathbf{E}(\mathbf{r}(t), t) + \dot{\mathbf{r}}(t) \times \mathbf{B}(\mathbf{r}(t), t)\right\}$$
(5.12.1)

という式になります。求めるべき r が両辺に入っている上,時間 t の変化に対して一般にはひどく複雑な挙動を取るでしょう。しかし積分の導入のところで示したように,E や B が時間的にあまりにも複雑すぎる変化をしなければ,非常に短い時間に区切って線形化して,その折れ線近似で近似解を構成できるでしょう。ここから時間分割を小さくしていくことで厳密な解が「求められる」でしょう。

「求められる」と書きましたが、これは具体的に $f=A\sin\omega t$ などの数式で書けるとは限りません。むしろ、このようにきちんと数式で解が表現出来ないほうが普通です。しかし何といっても上で考えたようにすれば、運動方程式には解

が存在するだけでなく、実験的な状況を考えれば同じ初期条件を与えれば同じ結 果が出る、という意味で解が一意的であろうと推測されます.この解の存在と一 意性は数学的に比較的緩い条件下で厳密に示すことができます。この章ではこの 解の存在と一意性を示したのち、具体的ないくつかの微分方程式の解法を述べる ことにします.

初期値問題の解の存在と一意性 5.12.2

準備

1番初めに私達に課せられた課題がかなり重いものであることを改めて確認しま す. 前章で N 質点系の安定点近傍での微小振動を示しました. これから私達は N 質点系でも成立するような形で定理を示さなければなりません. さらに前節の Lorentz 力のところで見たように、力としても求めるべき系の軌道 r や速度 \dot{r} に 依存します. k 番目の質点の質量を m_k , 位置を r_k , 加わる力を f_k として, 扱う べき微分方程式は

$$m_1 \ddot{\boldsymbol{r}}_1 = \boldsymbol{f}_1(\boldsymbol{r}_1, \dots, \boldsymbol{r}_N, \dot{\boldsymbol{r}}_1, \dots, \dot{\boldsymbol{r}}_N, t)$$
 (5.12.2)

$$\vdots$$
 (5.12.3)

$$\vdots (5.12.3) m_N \ddot{\mathbf{r}}_N = \mathbf{f}_N(\mathbf{r}_1, \dots, \mathbf{r}_N, \dot{\mathbf{r}}_1, \dots, \dot{\mathbf{r}}_N, t) (5.12.4)$$

初期条件:
$$r_k(t_0) = r_{k0}$$
, $\dot{r}_k(t_0) = v_k(t_0) = v_{k0}(k = 1, 2, ..., N)$ (5.12.5)

となります. ここで力は加速度には依存しないものとしました. ここでやや作為 的ですが、以下のように考えます。まず $m{r}_i={}^t(x_i,y_i,z_i):={}^t(x_{6i-5},x_{6i-3},x_{6i-1})$ とします. そして次のように定義します.

$$\mathbf{r}_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \dot{\mathbf{r}}_1 = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} := \begin{pmatrix} x_{3N+1} \\ x_{3N+2} \\ x_{3N+3} \end{pmatrix},$$
 (5.12.6)

$$\mathbf{r}_{N} = \begin{pmatrix} x_{3N-2} \\ x_{3N-1} \\ x_{3N} \end{pmatrix}, \quad \dot{\mathbf{r}}_{N} = \begin{pmatrix} \dot{x}_{3N-2} \\ \dot{x}_{3N-1} \\ \dot{x}_{3N} \end{pmatrix} := \begin{pmatrix} x_{6N-2} \\ x_{6N-1} \\ x_{6N} \end{pmatrix}, \tag{5.12.8}$$

$$\boldsymbol{R} := \begin{pmatrix} x_1 \\ \vdots \\ x_{3N} \\ \dot{x}_1 \\ \vdots \\ \dot{x}_{3N} \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_{3N} \\ x_{3N+1} \\ \vdots \\ x_{6N} \end{pmatrix}, \quad \boldsymbol{f}_i := \begin{pmatrix} f_{3i-2}(\boldsymbol{R}, t) \\ f_{3i-1}(\boldsymbol{R}, t) \\ f_{3i}(\boldsymbol{R}, t) \end{pmatrix}, \quad (5.12.9)$$

$$\Rightarrow \dot{\mathbf{R}} = \begin{pmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_{3N} \\ \dot{x}_{3N+1} \\ \vdots \\ \dot{x}_{6N} \end{pmatrix} = \begin{pmatrix} x_{3N+1} \\ \vdots \\ x_{6N} \\ \ddot{x}_1 \\ \vdots \\ \dot{x}_{3N} \end{pmatrix} = \begin{pmatrix} x_{3N+1} \\ \vdots \\ x_{6N} \\ f_1/m_1 \\ \vdots \\ f_{3N}/m_{3N} \end{pmatrix} := \mathbf{F}(\mathbf{R}, t) \quad (5.12.10)$$

初期条件:
$$\mathbf{R}(t_0) = \mathbf{R}_0$$
 (5.12.11)

今までは多数の式を統制する必要がありましたが、こうすることで一本の式を制御すればよく、見かけ上 1 変数のように扱えるようになり、数学的な見通しが非常に良くなります.

正確には $D^nx=f(x,Dx,\ldots,D^{n-1}x,t)$ という形, つまり最高階の微分について 1 価に解けているものです. $\}$.

先程 F があまり複雑な変化をしなければ解の存在と一意性が示せると書きました。 どこまでの変化を許容できるか、ということで 1 つ定義をします.

Definition. 12.2.1. (Lipschitz(リプシッツ) 条件) 関数 F は $D:=\mathbb{R}^n \times I$ を定義域とし,値域が \mathbb{R}^m であるとする. F が Lipschitz 条件を満たすというのは,ある正数 L が存在して D の任意の 2 点 $(\mathbb{R}_1,t),(\mathbb{R}_2,t)$ に対して以下の式を満たすことをいう.

$$|F(\mathbb{R}_1, t) - F(\mathbb{R}_2, t)| \le L|\mathbb{R}_1 - \mathbb{R}_2|.$$
 (5.12.12)

このとき $|\mathbb{R}_1 - \mathbb{R}_2| < \varepsilon =: \delta/L$ とすれば $|F(\mathbb{R}_1,t) - F(\mathbb{R}_2,t)| < \varepsilon$, つまり F は R について連続となります。ただし x^2 などはこの Lipschitz 条件を満たしませんから、Lipschitz 条件はただの連続性よりは強い条件です。

微分方程式の解の存在と一意性の証明 1

以下では有界閉領域

$$D := \{ (\mathbf{R}, t); |\mathbf{R} - \mathbf{R}_0| \le b, |t - t_0| < a \, (0 < a, b < \infty) \}$$
 (5.12.13)

上で考えます. 連続関数は有界閉集合上で最大値、最小値を取るので

$$\max_{(\mathbb{R},t)\in D} |\boldsymbol{F}(\boldsymbol{R},t)| = M < \infty \tag{5.12.14}$$

となります.

さて、定理の statement を述べましょう.

Theorem. 12.2.2. (微分方程式の解の存在と一意性 I) F(R,t) を $D=\mathbb{R}^N \times I$ において Lipschitz 条件を満たす 連続関数とする. このとき $t_0 \in I$ ならば, 任意の初期値 $R_0 \in \mathbb{R}^N$ に対して初期値問題

$$\frac{d}{dt}\mathbb{R}(t) = \mathbf{F}(\mathbf{R}, t), \quad \mathbb{R}(t_0) = \mathbf{R}_0$$
 (5.12.15)

を

$$|t - t_0| \le h, \quad h := \min\left(a, \frac{b}{M}\right)$$
 (5.12.16)

で満たす一意的な解Rが存在する.

(証明) 第1段:"折れ線" ℝ。の作り方.

有界閉領域 D において連続なので、Heine の定理から F は D において一様連続です。 すなわち任意の $\varepsilon>0$ に対して $\kappa=\kappa(\varepsilon)$ を定めて

$$(\mathbb{R}_1, t_1) \in D, (\mathbb{R}_2, t_2) \in D \text{ to } |R_1 - R_2| \le \kappa, |t_1 - t_2| \le \kappa|$$
 (5.12.17)

$$\Longrightarrow |F(R_1, t_1) - F(R_2, t_2)| \le \varepsilon. \tag{5.12.18}$$

とできます. さらに

$$\delta := \min\left(\kappa, \frac{\kappa}{M}, \frac{b}{M}\right) > 0 \tag{5.12.19}$$

を取ります $0<|t-t_0|\leq h$ となる任意の t に対して 0 , または正整数 n= $n(\delta,t) = n(\delta(\varepsilon),t) = n_{\varepsilon}(t)$ を

$$n\delta < |t - t_0| \le (n+1)\delta \tag{5.12.20}$$

となるように定めて、Cauchy の折れ線 $\mathbb{R}_{\varepsilon}(t)$ を

によって与えます.この折れ線が作成可能なことをいうためには、点 (R_j,t_j) が 全て D に属することをいわなければなりません.そうでないと $oldsymbol{F(R_j,t_j)}$ が定 義されないからです. まず (5.12.16), 5.12.20) によって

$$|t_j - t_0| \le j\delta \le n\delta < |t - t_0| \le h \le a \quad (j = 1, 2, \dots, n).$$
 (5.12.22)

となります. 同じく $\{(5.12.19),\,(5.12.20)\}$ によって, $|R_1-R_0| \leq \delta |F(R_0,t_0)| \leq \delta |F(R_0,t_0)|$ $\delta M \leq b$ となります.したがって $\mathbb{R}_2, \mathbb{R}_3, \dots, \mathbb{R}_{j-1}$ が全て $|\mathbb{R}_k - \mathbb{R}_0| \leq b \, (k=1)$ $(1,2,\ldots,j-1)$ を満たすとすると、 $(oldsymbol{R}_k,t_k)\in D$ 、したがって $oldsymbol{F}(oldsymbol{R}_k,t_k)$ $(k=1,2,\ldots,j-1)$ $(1,2,\ldots,j-1)$ が定義されて、しかも

$$|\mathbf{R}_j - \mathbf{R}_0| \le \sum_{k=1}^j |\mathbf{R}_k - \mathbf{R}_{k-1}| = \sum_{k=1}^j \delta |\mathbf{F}(\mathbf{R}_{k-1}, t_{k-1})|$$
 (5.12.23)

$$\leq j\delta M \leq n\delta M < |t - t_0| M \leq hM \leq b \tag{5.12.24}$$

を満たします.こうして j に関する帰納法から点 (\mathbf{R}_j,t_j) $(j=1,2,\ldots,n)$ が全 て D に属することが分かりました.

第 2 段:折れ線 $R_s(t)$ が "近似微分方程式" の解であることの証明.

折れ線 $\mathbb{R}_{\varepsilon}(t)$ はその角である有限個の点 x_1, x_2, \ldots, x_n では

$$\frac{d\mathbf{R}_{\varepsilon}(t)}{dt} = \mathbf{F}(\mathbf{R}_n, t_n) = \mathbf{F}(\mathbf{R}_{n_{\varepsilon}(t)}, t_{n_{\varepsilon}(t)})$$
 (5.12.25)

を満たします. 一方 {(5.12.19), (5.12.20), (5.12.21)} から

$$\left| t - t_{n_{\varepsilon}(x)} \right| \le \delta \le \kappa, \tag{5.12.26}$$

$$\left| t - t_{n_{\varepsilon}(x)} \right| \le \delta \le \kappa, \tag{5.12.26}$$

$$\left| \mathbf{R}_{\varepsilon}(t) - \mathbf{R}_{n_{\varepsilon}(t)} \right| \le \delta |\mathbf{F}(\mathbf{R}_{n_{\varepsilon}(t)}, t_{n_{\varepsilon}(t)})| \le \delta M \le \kappa \tag{5.12.27}$$

となります. さらに $\{(5.12.18)\}$ によって $|F(R_{arepsilon}(t),t) - F(R_{n_{arepsilon}(t)},t_{n_{arepsilon}(t)})| \le arepsilon$ と なります. したがって折れ線 $oldsymbol{R}_{arepsilon}(t)$ は有限個の角以外では

$$\left| \frac{d\mathbf{R}_{\varepsilon}(t)}{dt} - \mathbf{F}(\mathbf{R}_{\varepsilon}(t), t) \right| \le \varepsilon \tag{5.12.28}$$

を満たします.

第 3 段:2 つの折れ線 $R_{\varepsilon}(t), R_{\varepsilon'}(t)$ の比較. $\varepsilon'>0$ に対する折れ線 $R_{\varepsilon'}(t)$ も有限個の角以外では

$$\left| \frac{d\mathbf{R}_{\varepsilon'}(t)}{dt} - \mathbf{F}(\mathbf{R}_{\varepsilon'}(t), t) \right| \le \varepsilon' \tag{5.12.29}$$

を満たします. したがって Lipschitz 条件から有限個の角以外では

$$\left| \frac{d\mathbf{R}_{\varepsilon}(t)}{dt} - \frac{d\mathbf{R}_{\varepsilon'}(t)}{dt} \right| \le L|\mathbf{R}_{\varepsilon}(t) - \mathbf{R}_{\varepsilon'}(t)| + \varepsilon + \varepsilon'$$
(5.12.30)

を満たします.そして $R_{\varepsilon}(t)-R_{\varepsilon'}(t)$ は連続関数,その上 $R_{\varepsilon}(t_0)-R_{\varepsilon}(t_0)=0$ ですから.

$$\mathbf{R}_{\varepsilon}(t) - \mathbf{R}_{\varepsilon'}(t) = \int_{r_0}^{x} \left\{ \frac{d\mathbf{R}_{\varepsilon}(s)}{ds} - \frac{d\mathbf{R}_{\varepsilon'}(s)}{ds} \right\} ds \tag{5.12.31}$$

であり, $U(t):=|m{R}_{arepsilon}(t)-m{R}_{arepsilon'}(t)|$ とすると, (5.12.30) によって

$$U(t) \le \left| \int_{t_0}^t LU(s) \, ds \right| + (\varepsilon + \varepsilon') \left| \int_{x_0}^x ds \right| \tag{5.12.32}$$

となります. したがって $\max_{|t-t_0| < h} U(x) =: M'$ とすると (5.12.32) から

$$U(t) \le |t - t_0| \left(LM' + \varepsilon + \varepsilon' \right) \tag{5.12.33}$$

となるので、これを (5.12.32) の右辺に代入して

$$U(t) \le \frac{|t - t_0|^2}{2!} L(LM' + \varepsilon + \varepsilon') + (\varepsilon + \varepsilon')|t - t_0|$$
(5.12.34)

となるので、これをまた (5.12.32) の右辺に代入して

$$U(t) \le \frac{|t - t_0|}{3!} L^2(LM' + \varepsilon + \varepsilon') + (\varepsilon + \varepsilon') L \frac{|t - t_0|}{2!} + (\varepsilon + \varepsilon')|t - t_0|$$

$$(5.12.35)$$

となります. 以下同様に繰り返し, さらに e^x の Taylor 展開も用いて

$$U(t) \le \frac{|t - t_0|^n}{n!} L^{n-1} (LM' + \varepsilon + \varepsilon') + (\varepsilon + \varepsilon') \sum_{m=1}^{n-1} \frac{|t - t_0|^m L^{m-1}}{m!}$$
 (5.12.36)

$$\leq \frac{|t-t_0|^n}{n!} L^{n-1} (LM' + \varepsilon + \varepsilon') + (\varepsilon + \varepsilon') \frac{1}{L} \left(e^{L|t-t_0|} - 1 \right) \tag{5.12.37}$$

となりますが、ここで $n \to \infty$ として

$$|\mathbf{R}_{\varepsilon}(t) - \mathbf{R}_{\varepsilon'}(t)| \le \frac{\varepsilon + \varepsilon'}{L} \left(e^{L|t - t_0|} - 1 \right)$$
 (5.12.38)

が得られます. 次に行く前に上の極限の成立を示します. 証明すべきは a>0 に対して $a^n/n! \to 0 (n \to \infty)$ です. まずは 2a < k となる数 k を 1 つ取ります. n>k に対して

$$\frac{a}{n} < \frac{k}{2n} < \frac{1}{2} \tag{5.12.39}$$

ですから,

$$\frac{a^n}{n!} = \frac{a}{1} \frac{a}{2} \dots \frac{a}{k-1} \frac{a}{k} \frac{a}{k+1} \dots \frac{a}{n} < \frac{a^k}{k!} \cdot \left(\frac{1}{2}\right)^{n-k} = \frac{a^k}{k!} \frac{1}{2^k} \left(\frac{1}{2}\right)^n$$
 (5.12.40)

となります. $(1/2)^n \to 0 (n \to \infty)$ から $a^n/n! \to 0$ が分かります.

第4段:解の存在.

 $\varepsilon>0$ を与えた場合に少なくとも 1 つ折れ線 $\mathbf{R}_{\varepsilon}(t)$ が定まりました. 少なくとも 1 つ, というのは例えば (5.12.18) における $\kappa=\kappa(\varepsilon)$ の定め方が一意的でないことによります. しかし少なくとも 1 つ定まった $\mathbf{R}_{\varepsilon}(t)$ は (5.12.38) を満足するので, $\varepsilon=1/k(k\in\mathbb{Z}^+)$ とすれば, $|t-t_0|\leq h$ において一様に

$$\mathbf{R}(t) := \lim_{n \to \infty} \mathbf{R}_{1/n}(t) \tag{5.12.41}$$

が存在します. $a_n(t):=R_{1/n}(t)$ とすれば全ての n について a_n は連続関数となります. (5.12.38) を a_n で書き直すと

$$|\boldsymbol{a}_n(t) - \boldsymbol{a}_m(t)| \le \frac{m+n}{Lmn} (e^{L|t-t_0|} - 1)$$
 (5.12.42)

であり、これから $(a_n)_{n\in\mathbb{N}}$ が Cauchy 列であることが分かります。一様ノルムに対して連続関数の空間は Banach 空間になるので収束先が連続関数として確かに存在します。

議論を進めましょう. R(t) は各 $R_{1/n}(t)$ と共に初期条件 $R(t_0)=R_0$ を満たし、かつ連続です. $R_{\varepsilon}(t_0)=R_0$ となる連続関数 $R_{\varepsilon}(t)$ を代入し、(5.12.28) から

$$\left| \mathbf{R}_{\varepsilon}(t) - \mathbf{R}_{0} - \int_{t_{0}}^{t} \mathbf{F}(\mathbf{R}_{\varepsilon}(s), s) \, ds \right| \leq \varepsilon |t - t_{0}| \leq \varepsilon h \tag{5.12.43}$$

が得られます. $\varepsilon=1/n$ として $n\to\infty$ とすると (5.12.41) から一様収束で

$$\mathbf{R}(t) - \mathbf{R}_0 = \int_{t_0}^{t} \mathbf{F}(\mathbf{R}(s), s) ds$$
 (5.12.44)

となります。右辺括弧内が連続関数であり、連続関数の合成はまた連続関数になるので、R は微分可能でかつ

$$\frac{d\mathbf{R}(t)}{dt} = \mathbf{F}(\mathbf{R}(t), t) \tag{5.12.45}$$

であり、こうして $R(t_0)=R_0$ となる解が少なくとも 1 つ $|t-t_0|\leq h$ において存在することがわかりました.

第5段:解の一意性.

背理法で証明します. R(t) の他に $P(t_0) = R_0$ となる解 P が $|t-t_0| \le h' \le h$ において存在したとしましょう. P を誤差 $\varepsilon' = 0$ の近似解と考えると

$$\left| \frac{d\mathbf{P}(t)}{dt} - \mathbf{F}(\mathbf{P}(t), t) \right| = 0 \tag{5.12.46}$$

と書けます. (5.12.38) を得たときと同様にして

$$|\mathbf{R}_{\varepsilon}(t) - \mathbf{P}(t)| \le \frac{\varepsilon}{L} \left(e^{L|t-t_0|} - 1 \right)$$
 (5.12.47)

と書けます. したがって $\varepsilon=1/n$ の n を ∞ にすると $\pmb{R}=\pmb{P}$ となり, 証明終了です. \blacksquare

微分方程式の解の存在と一意性の証明 2 の準備-局所 Lipschitz 条件まず次の定理の証明からはじめます.

Theorem. 12.2.3. $F(R,t): \mathbb{R}^{m+1} \to \mathbb{R}^l$ が変数 R に対して Lipschitz 条件を満たすならば、K を Lipschitz 定数、C をある定数として

$$|F(R,t)| \le L(|R| + C).$$
 (5.12.48)

(証明) 適当に $R_0 \in \mathbb{R}^m$ を取ってきます. このとき三角不等式を用いて

$$|F(R,t)| \le |F(R,t) - F(R_0,t)| + |F(R_0,t)|$$
 (5.12.49)

$$\leq L|\mathbf{R} - \mathbf{R}_0| + |\mathbf{F}(\mathbf{R}_0, t)|$$
 (F は Lipschitz 条件を満たす) (5.12.50)

$$\leq L(|\mathbf{R}| + |\mathbf{R}_0|) + |\mathbf{F}(\mathbf{R}_0, t)| \leq L(|\mathbf{R}| + C). \blacksquare$$
 (5.12.51)

この定理によって、Lipschitz条件を満たす関数は高々一次の増大度であるということが分かります。 x^2 が Lipschitz条件を満たさないと前に書きましたが、それはこのことです。今しがた示した定理は非常に適用範囲が狭いということです。つまり Lipschitz条件から非常に嬉しい結果が出ましたが、物理への適用という点から見て、こんなものはハリボテのおもちゃです。もっと緩い条件で定理が成立してくれないと物理としてはとても困ります。多少制限が強くなりますが、幸いにもこれよりも緩い条件で同じような結果が出せます。その為にまず定義を 1 つ出します。

Definition. 12.2.4. (局所 Lipschitz 条件) $G:\Omega\to\mathbb{R}^n$ が Ω で R に対して局所 Lipschitz 条件を満たすというのは、任意の $K\subset\Omega$ となる有界閉集合 K に対して定数 $L_K>0$ が存在して、任意の $(R_1,t),(R_2,t)$ に対して以下の式が成立することをいう.

$$|G(R_1,t) - G(R_2,t)| \le L_K |R_1 - R_2|.$$
 (5.12.52)

ある集合 Ω に K が有界閉集合として含まれるということを $K \in \Omega$ と書くことにします。すぐあとで示しますが,局所 Lipschitz 条件を満たす為の 1 つの十分条件として G が C^1 級である,というものがあります。(普通の)Lipschitz 条件を満たしても微分不可能な関数が存在するので, C^1 級というのはかなり厳しい条件ではないか,という人もいるかもしれませんが,当面物理では不連続性の激しいものは扱いません。むしろ C^1 級というのは緩すぎるくらい緩い条件です.

一意性存在定理 2 の証明に入る前に予備定理を 2 つ証明しておきます.

Theorem. 12.2.5. $F: \mathbb{R}^m \to \mathbb{R}^n$ が C^1 級ならば, これは局所 Lipschitz 条件を満たす.

(証明) 任意に $K \in \mathbb{R}^m$ を取ります。ただしこのとき K は凸集合であるとします。凸集合というのは,任意の $x,y \in K$ に対して x と y を結ぶ線分も K に含まれる集合です。 $F = (F_1,\ldots,F_n)$, $R = (x_1,\ldots,x_m)$ とします。 C^1 級の仮定から F の全ての偏導関数は連続です。K は有界閉集合(コンパクト集合)であり,有界閉集合上の連続関数は必ず最大・最小値を取ります。そこで以下のように定義します。

$$L_K^k := \max_{\boldsymbol{X} \in K, 1 \le j \le m} \left| \frac{\partial}{\partial x_j} F_k(\boldsymbol{X}) \right| < +\infty \quad (有限値). \tag{5.12.53}$$

三角不等式と平均値の定理から,

$$|F(X) - F| \le \sum_{i=1}^{n} |F_i(X) - F_i(Y)| (\Xi \text{角不等式})$$
 (5.12.54)

$$\sum_{i=1}^{n} \left| \sum_{j=1}^{m} \frac{\partial}{\partial x_{j}} F_{i}(\boldsymbol{X} + \theta(\boldsymbol{Y} - \boldsymbol{X}))(Y_{j} - X_{j}) \right|, \ \theta \in (0, 1)$$
(平均値の定理)
$$(5.12.55)$$

$$\leq \sum_{i=1}^{n} \left| \sum_{j=1}^{m} L_K^i | Y_j - X_j \right| \times 1 \tag{5.12.56}$$

$$\leq \sqrt{m} \sum_{i=1}^{n} L_K^i |\boldsymbol{X} - \boldsymbol{Y}| \tag{5.12.58}$$

$$\leq L_K |\mathbf{X} - \mathbf{Y}| \quad \left(L_K := \sqrt{m} \sum_{i=1}^n L_K^i\right) \tag{5.12.59}$$

$$\iff |F(X) - F| \le L_K |X - Y| \tag{5.12.60}$$

が得られます. 最後の式は局所 Lipschitz 性を示す式です. ■

次の予備定理の証明に入る前にカットオフ関数 (cut off function) として任意の正の実数 r に対して $\chi_r:\mathbb{R}^n\to\mathbb{R}^n$ (カイと読む) というものを次のように定義します.

$$\chi_r(\mathbf{X}) = \begin{cases} \mathbf{X} & |\mathbf{X}| < r \\ \frac{\mathbf{X}}{|\mathbf{X}|} r & |\mathbf{X}| \ge r \end{cases}$$
 (5.12.61)

したがって任意の $X \in \mathbb{R}^n$ に対して $|\chi_r(X)| \leq r$ となります. これから示すのは、この χ が Lipschitz 定数 2 の Lipschitz 連続関数であるということです.

Theorem. 12.2.6.

$$|\chi_r(\boldsymbol{X}) - \chi_r(\boldsymbol{Y})| \le 2|\boldsymbol{X} - \boldsymbol{Y}|. \tag{5.12.62}$$

(証明) 3 通りに場合を分ければ十分です。解析らしく、延々不等式と格闘します。

1. $|X|, |Y| \le r$ のとき.

このときカットオフ関数は恒等写像となるので、何もする必要はありません.

1. $|X| \ge r, |Y| \le r$ のとき.

まず三角不等式と $|Y| \leq r$ から

$$|X| - r \le |X| - |Y| \le |X - Y|$$
 (5.12.63)

となります. 愚直に三角不等式を用いて

$$|\chi_r(\mathbf{X}) - \chi_r(\mathbf{Y})| = \left| \frac{\mathbf{X}}{|\mathbf{X}|} r - \mathbf{Y} \right|$$
 (5.12.64)

$$\leq \left| \frac{\boldsymbol{X}}{|\boldsymbol{X}|} r - \frac{\boldsymbol{Y}}{|\boldsymbol{X}|} r \right| + \left| \frac{\boldsymbol{Y}}{|\boldsymbol{X}|} r - \boldsymbol{Y} \right| = \frac{r}{|\boldsymbol{X}|} |\boldsymbol{X} - \boldsymbol{Y}| + \frac{|\boldsymbol{Y}|}{|\boldsymbol{X}|} |\boldsymbol{X} - r| \qquad (5.12.65)$$

$$\leq \left(\frac{r}{|\boldsymbol{X}|} + \frac{|\boldsymbol{Y}|}{|\boldsymbol{X}|}\right)|\boldsymbol{X} - \boldsymbol{Y}| \leq 2|\boldsymbol{X} - \boldsymbol{Y}|. \tag{5.12.66}$$

3) の証明: $|X|, |Y| \ge r$ のとき.

$$|\chi_r(\mathbf{X}) - \chi_r(\mathbf{Y})| = \left| \frac{\mathbf{X}}{|\mathbf{X}|} r - \frac{\mathbf{Y}}{|\mathbf{Y}|} r \right|$$
 (5.12.67)

$$\leq \left| \frac{\boldsymbol{X}}{|\boldsymbol{X}|} r - \frac{\boldsymbol{Y}}{|\boldsymbol{X}|} r \right| + \left| \frac{\boldsymbol{Y}}{|\boldsymbol{X}|} r - \frac{\boldsymbol{Y}}{|\boldsymbol{Y}|} r \right| \tag{5.12.68}$$

$$= \frac{r}{|\boldsymbol{X}|}|\boldsymbol{X} - \boldsymbol{Y}| + r \left| \frac{|\boldsymbol{X}| - |\boldsymbol{Y}|}{|\boldsymbol{X}| \cdot |\boldsymbol{Y}|} \right| |\boldsymbol{Y}|$$
 (5.12.69)

$$=\frac{r}{|\boldsymbol{X}|}|\boldsymbol{X}-\boldsymbol{Y}|+\frac{r}{|\boldsymbol{X}|}|\boldsymbol{X}-\boldsymbol{Y}| \qquad (5.12.70)$$

$$\leq \frac{2r}{|\mathbf{X}|}|\mathbf{X} - \mathbf{Y}| \leq 2|\mathbf{X} - \mathbf{Y}|.\blacksquare \tag{5.12.71}$$

それでは目標の定理の証明に入ります。はじめに色々と定義が書いてありますが、あまり気にしないで構いません。また、定義域を狭めた所で成立する解のことを局所解といいます。

Theorem. 12.2.7. (局所解の存在と一意性) $I:=[t_0,T)$, $B(R_0;R):=\{R\in\mathbb{R}^m; |R-R_0|< R\}(0< R\leq \infty)$, $\Omega:=B(R_0;R)\times I=\Omega(R_0,T,R)$ とする. F が Ω で局所 Lipschitz 条件を満たすならば, 任意の $Y_0\in B(X_0;R)$ に対して $T_0=T_0(Y_0)\in (t_o,T)$ が定まり, 次の微分方程式を一意的に満たす解 \mathbb{R} が存在する.

$$\begin{cases} \frac{d}{dt} \mathbb{R}(t) = \mathbf{F}(\mathbf{R}(t), t), & t_0 < t \le T_0 \\ \mathbb{R}(t_0) = \mathbb{R}_0. \end{cases}$$
 (5.12.72)

(証明) 記号が煩雑になりますので、読むときはゆっくり読んで下さい. $|R_0|=:R_0(< R)$ とします. まずは適当なコンパクト集合 (有界閉集合) を作りましょう. 上の不等式から R_1,T_1 が存在して

$$R_0 < R_1 < R, \quad t_0 < T_1 < T$$
 (5.12.73)

と書けます. これを用いて

$$K_1 := \{ \boldsymbol{X} \in \mathbb{R}^m; |\boldsymbol{X} - \boldsymbol{R}_0| \le R_1 \} \times [x_0, T_1]$$
 (5.12.74)

とすると、これは Ω のコンパクト集合 (有界閉集合) です. カットオフ関数 χ_{R_1} を用いて

$$\tilde{\boldsymbol{F}}(\boldsymbol{R},t) := \boldsymbol{F}(\chi_{R_1}(\boldsymbol{R}),t) \tag{5.12.75}$$

として、次の微分方程式を考えます.

$$(\tilde{E}) \begin{cases} \frac{d}{dt} \mathbf{R}(t) = \tilde{\mathbf{F}}(\mathbf{R}, t) (= \mathbf{F}(\chi_{R_1}(\mathbf{R}), t)) & (t_0 < t < T_1) \\ \mathbf{R}(t_0) = \mathbf{R}_0 \end{cases}$$

$$(5.12.76)$$

ここで $ilde{F}$ が K_1 で Lipschitz 条件を満たすことを示します. カットオフ関数の定義から

$$|\chi_{R_1}(\mathbf{X})| \le R_1, \quad |\chi_{R_1}(\mathbf{Y})| \le R_1$$
 (5.12.77)

となります. これによって

$$(\chi_{R_1}(\mathbf{X}), t), (\chi_{R_1}(\mathbf{Y}, t) \in K_1$$
 (5.12.78)

が分かります. F の局所 Lipschitz 性から任意の $(X,t),(Y,t)\in K_1$ に対して

$$\left|\tilde{\boldsymbol{F}}(\boldsymbol{X},t) - \tilde{\boldsymbol{F}}(\boldsymbol{Y},t)\right| = \left|\boldsymbol{F}(\chi_{R_1}(\boldsymbol{X}),t) - \boldsymbol{F}(\chi_{R_1}(\boldsymbol{Y}),t)\right|$$
(5.12.79)

$$\leq L_{K_1}|\chi_{R_1}(\mathbf{X}) - \chi_{R_1}(\mathbf{Y})| \leq 2L_{K_1}|\mathbf{X} - \mathbf{Y}|$$
 (5.12.80)

となります. 最後のところで前の定理を使いました. 微分方程式の解の一意性存在定理 12.2.2 と, \tilde{F} の K_1 における Lipschitz 性から (\tilde{E}) の解 \tilde{R} が一意的に存在することが分かりました.

最後に、この $ilde{R}$ がある時刻のあいだで(定義域を小さく取った所で)元の方程式を満たすことを示さなければなりません。まず $ilde{R}$ が $[t_0,T_1]$ で連続であること、はじめの不等式 (5.12.73) から $ilde{R}(t_0)=R_0$, $|R_0|=R_0< R_1$ であることから適当な時刻 $t_1\in (t_0,T_1]$ が存在して、任意の $t\in [t_0,t_1]$ に対して $| ilde{R}|\leq R_1$ と出来ることを証明しましょう。これが示されれば、時刻を $[t_0,t_1]$ を制限した $ilde{R}$ が元の方程式を満たすことが分かります。それでは証明。

 $ilde{m{R}}$ の連続性から $arepsilon=R_1-R_0$ とすると, これに対応して $\delta>0$ が存在して任意の $t\in[t_0,t_0+\delta]$ に対して $| ilde{m{R}}(t)-m{R}_0|<arepsilon$ となります. 三角不等式から

$$\left|\tilde{\boldsymbol{R}}(t)\right| \le \left|\tilde{\boldsymbol{R}}(t) - \boldsymbol{R}_0\right| + \left|\boldsymbol{R}_0\right| < \varepsilon + R_0 < R_1$$
 (5.12.81)

となり, $t_1 := t_0 + \delta$ とすればめでたく証明完了です.

 $t\in[t_0,t_1]$ としましょう. このとき $| ilde{R}|< R_1$ となるので, $\chi_{R_1}(ilde{R})= ilde{R}$ となります. したがって

$$\tilde{\mathbf{F}}(\tilde{\mathbf{R}}(t),t) = \mathbf{F}(\chi_{R_1}(\tilde{\mathbf{R}}(t)),t) = \mathbf{F}(\tilde{\mathbf{R}}(t),t)$$
(5.12.82)

が分かるので、 \tilde{R} が元の方程式

$$\begin{cases} \frac{d}{dt} \mathbb{R}(t) = \mathbf{F}(\mathbf{R}(t), t), & t_0 < t \le T_0 \\ \mathbb{R}(t_0) = \mathbb{R}_0. \end{cases}$$
 (5.12.83)

を満たす、つまり定義域を制限した所で成立する局所的な解であることが分かりました. ■

解の延長

前小節で局所解の一意的な存在を証明できましたが、上の証明では定義域 (時刻)を狭めた所まででしか一意的な存在を保証できません。しかし場合によってはその定義域を拡張しなければ (もっと先の時刻まで解の存在を保証しなければ) ならないときがあるかもしれません。つまり解の延長ができるか否か、という問題にもけりをつけなければなりません。まず解の延長を正確に定義します。

Definition. 12.2.8. (解の延長) $R=R_1(t)$ は t_1 を右端とする閉区間 $[t_0,t_1]$ において, $R=R_2(t)$ は t_1 を左端とする左に閉じた区間 $[t_1,t_2)$ において $D_tR(t)=F(R(t),t)$ の解であって,かつ $R_1(t_1)=R_2(t_1)$ であるとする. このとき解 R_1 は t_1 を越えて右に向かって R_2 に延長できるという. 同様にして t_1 を越えて左に延長できるということも定義できる.

解の最大存在時刻 T_m を次の式で定義します.

$$T_m := \sup\{T_0; 微分方程式が [t_0, T_0) で解を持つ \}$$
 (5.12.84)

Theorem. 12.2.9. $I:=[t_0,T)$, $B(\textbf{\textit{R}}_0;R):=\{\textbf{\textit{R}}\in\mathbb{R}^m;|\textbf{\textit{R}}-\textbf{\textit{R}}_0|< R\}(0< R\leq\infty)$, $\Omega:=B(\textbf{\textit{R}}_0;R)\times I=\Omega(\textbf{\textit{R}}_0,T,R)$ とする. 局所解の一意性存在定理 12.2.7 によって保証される解の延長可能性は以下の 2 通りである.

1)
$$T_m < T$$
, $\lim_{t \to T_m} |\mathbf{R}(t) - \mathbf{R}_0| = R$,
2) $T_m = T$.

(証明)

- 1) の証明: 背理法で証明します。この解の上の点列 $(R(t_n),t_n),t_0 \leq t_n \leq T_m$ が $n \to \infty$ のとき Ω の境界からの距離 η が正であるような Ω の内点 (R',T) に収束するものとします。n を十分大きく取れば、点 $(R(t_n),t_n)$ と Ω との距離が $\eta/2$ であるようにできます。このとき t_n で $R(t_n)$ となるような DR=F(R(t),t) の解が $|t-t_n| \leq h' := \min(\eta/2,\eta/2M)$ において一意的に存在します。この t の領域 $|t-t_n| \leq h'$ は $\lim_{n \to \infty} t_n = T_m$ によって、n が十分大きいときには点 T_m を内点とします。これは $R(t_0) = R_0$ がとなるもとの解 R が T_m を超えてなお右に延長できることを示し、 T_m の定義に反します。
- 2) の証明: 先程の解 R は $|t-t_n|\leq h'$ において DR(t)=F(R(t),t) の解として連続であり、しかも $|t-t_n|\leq h'$ が点 T_m を内部に含むので、仮定 $\lim_{n\to\infty}(R(t_n),t_n)=(R',T_m)$ から

$$\mathbf{R}(T_m) = \mathbf{R}' \tag{5.12.85}$$

となり、証明終了です. ■

解の初期値および解に対する連続依存性

これまでは決まった初期値に対する解の存在と一意性について調べてきました. 実験的な状況を考えれば、カオス的な振る舞いでもない限り、初期値が少し異なる 場合その解も少しだけ「異なる」ということが実現されていないと困ります.こ れをある範囲内で示すことができます.ここではもう少し一般化して示しますが、 その証明に入る前に予備定理を 1 つ証明します.

Theorem. 12.2.10. (Gronwall) I=[a,b] , $x_0 \in I$ とする. $g,h:I \to \mathbb{R}$ とし、g については任意の $x \in I$ に対して $g(x) \geq 0$ となる連続関数とする. このとき a を定数として

$$h(x) \le a + \int_{x_0}^x h(s) g(s) ds$$
 (5.12.86)

ならば

$$h(x) \le a \int_{x_0}^x e^{\int_{x_0}^x g(s)} ds. \tag{5.12.87}$$

(証明)

$$H(x) := a + \int_{x_0}^x h(s) g(s) ds$$
 (5.12.88)

とすると条件の不等式を用いて

$$DH(x) = h(x)g(x) \le H(x)g(x) \Longleftrightarrow DH(x) - H(x)g(x) \le 0 \tag{5.12.89}$$

となります. さらに

$$D\left(H(x)e^{-\int_{x_0}^x g(s)\,ds}\right) = e^{-\int_{x_0}^x g(s)\,ds} \left\{DH(x) - g(x)H(x)\right\} \le 0 \qquad (5.12.90)$$

となることから,

$$H(x)e^{-\int_{x_0}^x g(s) \, ds} \tag{5.12.91}$$

は単調減少になります. したがって

$$H(x)e^{-\int_{x_0}^x g(s) ds} \le H(x_0)e^{-\int_{x_0}^{x_0} g(s) ds} = H(x_0) = a$$
 (5.12.92)

であり、これから示すべき不等式が導かれます. ■

$$(E)_{i} = \begin{cases} \frac{d}{dt} \mathbf{R}^{i}(t) = \mathbf{F}^{i}(\mathbf{R}^{i}(t), t) \\ \mathbf{R}^{i}(t_{0}) = \mathbf{R}_{0}^{1} \end{cases}$$
 (i = 1, 2) (5.12.93)

とする. このとき任意の $t \in I$ に対して

$$\left| \mathbf{R}^{1}(t) - \mathbf{R}^{2}(t) \right| \le \left(\left| \mathbf{R}_{0}^{1} - \mathbf{R}_{0}^{2} \right| + \frac{1}{L} \sup_{t \in I, \mathbf{R} \in \mathbb{R}^{m}} \left| \mathbf{F}^{1}(\mathbf{R}, t) - \mathbf{F}^{2}(\mathbf{R}, t) \right| \right) e^{L|t - t_{0}|}$$

$$(5.12.94)$$

(証明) 各微分方程式の差を取ると

$$D\{\mathbf{R}^{1}(t) - \mathbf{R}^{2}(t)\} = \mathbf{F}^{1}(\mathbf{R}^{1}(t), t) - \mathbf{F}^{2}(\mathbf{R}^{2}(t), t)$$
(5.12.95)

となります. 辺々積分して整理すると、

$$\mathbf{R}^{1}(t) - \mathbf{R}^{2}(t) = \mathbf{R}_{0}^{1} - \mathbf{R}_{0}^{2} + \int_{t_{0}}^{t} \left\{ \mathbf{F}^{1}(\mathbf{R}^{1}(s), s) - \mathbf{F}^{2}(\mathbf{R}^{2}(s), s) \right\} ds \quad (5.12.96)$$

すぐ後で出て来るので先んじて β の定義をしておきます.

$$\beta := \sup_{t \in I.\mathbf{R} \in \mathbb{R}^m} |\mathbf{F}(\mathbf{R}, t) - \mathbf{F}(\mathbf{R}, t)|. \tag{5.12.97}$$

先程の積分した式の両辺の絶対値を取り、三角不等式と Lipschitz 条件を用いた式

$$|F^{1}(R^{1}(s), s) - F^{2}(R^{2}(s), s)|$$
 (5.12.98)

$$\leq \left| \mathbf{F}^{1}(\mathbf{R}^{1}(s), s) - \mathbf{F}^{1}(\mathbf{R}^{2}(s), s) \right| + \left| \mathbf{F}^{2}(\mathbf{R}^{1}(s), s) - \mathbf{F}^{2}(\mathbf{R}^{2}(s), s) \right| \quad (5.12.99)$$

$$\leq L|\mathbf{R}^{1}(s) - \mathbf{R}^{2}(s)| + \beta$$
 (5.12.100)

を用いて, $h(x) := |\mathbf{R}^1(x) - \mathbf{R}^2(x)|, \alpha := |\mathbf{R}^1_0 - \mathbf{R}^2_0|$ とすれば

$$h(x) \le \alpha + \int_{t_0}^t \{Lh(s) + \beta\} ds = \alpha + \int_{t_0}^t L\left\{h(s) + \frac{\beta}{L}\right\} ds$$
 (5.12.101)

となります. $H(x) := h(x) + \beta/L$ とすれば,

$$H(x) \le \left(\alpha + \frac{\beta}{L}\right) + \int_{x_0}^x LH(s)ds \tag{5.12.102}$$

であり、Gronwall の不等式を用いると

$$H(x) \le \left(\alpha + \frac{\beta}{L}\right) e^{L|t - t_0|} \tag{5.12.103}$$

となります. $h(x) \leq H(x)$ から

$$\left| \mathbf{R}^{1}(t) - \mathbf{R}^{2}(t) \right| \le \left(\alpha + \frac{\beta}{L} \right) e^{L|t-t_{0}|}. \blacksquare$$
 (5.12.104)

この定理において $F^1=F^2, R^1_0=R^2_0$ とすれば, 全ての $t\in I$ に対して

$$\left| \mathbf{R}^{1}(t) - \mathbf{R}^{2}(t) \right| \le 0 \Longrightarrow \mathbf{R}^{1}(t) = \mathbf{R}^{2}(t) \tag{5.12.105}$$

となります. つまり解の一意性の別証明が得られました.

5.12.3 常微分方程式の解法の為の一般論

具体的な微分方程式として 1 階と 2 階の常微分方程式をあとで扱います. 以下で主に使うものは単独の (連立でない) 方程式であり, 方程式系に対する扱いは少々煩雑にもなるので, 単独の方程式に対して議論を展開します. とりあえずこんなものか, と思って眺めておいて下さい. まずは定義から.

Definition. 12.3.1. n 階線形常微分方程式

$$\Lambda(D)x(t) := D^n x(t) + p_{n-1}(t)D^{n-1}x(t) + \dots + p_1(t)Dx(t) + p_0(t)x(t) = q(t)$$
(5.12.106)

は $q=\theta$ (関数として 0 , つまり恒等的に 0 を返す関数) のとき斉次方程式といい, $q\neq\theta$ のとき非斉次方程式という.

次に斉次方程式について重ね合わせの原理 (重畳原理)を証明します.

 ${f Theorem.}$ 12.3.2. $({f \underline{u}}$ (重ね合わせの原理) 全ての係数関数 p_i を連続関数とする n 階の斉次の線形常微分方程式

$$\Lambda(D)x(t) := D^{n}x(t) + p_{n-1}(t)D^{n-1}x(t) + \cdots + p_{1}(t)Dx(t) + p_{0}(t)x(t) = 0$$
(5.12.107)

の解 x_1, \ldots, x_m の線形結合

$$x(t) = \sum_{i=1}^{m} c_i x_i(t)$$
 (5.12.108)

はまた (5.12.107) の解である.

(証明) すぐに終わります. x_1,\ldots,x_m がそれぞれ (5.12.107) の解なので, $\Lambda(D)x_i=0$ となります. 微分作用素の線形性を用いて

$$\Lambda(D)x = \Lambda(D)\left(\sum_{i=1}^{m} c_i x_i\right) = \sum_{i=1}^{m} c_i \Lambda(D)x_i = \sum_{i=1}^{m} c_i 0 = 0. \blacksquare$$
 (5.12.109)

次に解の線形独立性を定義します.これは微分方程式の解のなす集合を考える際に重要なものです.

Definition. 12.3.3. (5.12.108) の形に表せない解が存在するとき,素の解は x_1,\ldots,x_m に対して線形独立であるという.一般に m 個の解の中のどの 1 つも残りの (m-1) 個に対して線形独立であるときに,これら m 個の解は互いに線形独立であるという.

次に線形独立性の判定法を紹介します.

Theorem. 12.3.4. n 個の解 $x_1(t), \ldots, x_n(t)$ が線形独立であるための必要十分 条件は Wronski 行列式 (Wronkian)(ロンスキアン)

$$W(x_1(t), x_2(t), \dots, x_n(t)) := \begin{vmatrix} x_1(t) & x_2(t) & \dots & x_n(t) \\ Dx_1(t) & Dx_2(t) & \dots & Dx_n(t) \\ \dots & \dots & \dots & \dots \\ D^{n-1}x_1(t) & D^{n-1}x_2(t) & \dots & D^{n-1}x_n(t) \end{vmatrix}$$
(5.12.110)

が定義域 I 内で決して 0 にならないことである.

(証明) (必要性) まず $W(x_1(t),x_2(t),\ldots,x_n(t))\neq 0$ となる $t_1\in I$ が少なくとも一つ存在することを示しましょう. 背理法を使います. もしそのような t_1 が存在しないとすると、定理 (2.4.11) から $c_i(i=1,\ldots,n)$ に関する連立一次方程式

$$c_1 x_1(t) + c_2 x_2(t) + \dots + c_n x_n(t) = 0 (5.12.111)$$

$$c_1 Dx_1(t) + c_2 Dx_2(t) + \dots + c_n Dx_n(t) = 0$$
(5.12.112)

:

$$c_1 D^{n-1} x_1(t) + c_2 D^{n-1} x_2(t) + \dots + c_n D^{n-1} x_n(t) = 0$$
 (5.12.113)

次に

$$DW(x_1(t), x_2(t), \dots x_n(t))$$
 (5.12.114)

$$= \begin{vmatrix} x_1(t) & x_2(t) & \dots & x_n(t) \\ Dx_1(t) & Dx_2(t) & \dots & Dx_n(t) \\ \dots & \dots & \dots & \dots \\ D^n x_1(t) & D^n x_2(t) & \dots & D^n x_n(t) \end{vmatrix}$$
(5.12.115)

(5.12.116)

となります。置換による行列式の定義を採用したほうが楽なので、一般の場合の証明は見送りますが、そうかといって読者に任せる、というのも気が引けるのでn=2 で確認してみます。

$$DW(x_1, x_2) = D(x_1 D x_2 - x_2 D x_1)$$
(5.12.117)

$$= Dx_1Dx_2 + x_1D^2x_2 - Dx_2Dx_1 - x_2D^2x_1 (5.12.118)$$

$$= x_1 D^2 x_2 - x_2 D^2 x_1 = \begin{vmatrix} x_1 & x_2 \\ D^2 x_1 & D^2 x_2 \end{vmatrix}.$$
 (5.12.119)

話を元に戻しましょう. DW の第 n 行は各 x_i が (5.12.107) の解なので、

$$x_i(t) = -\sum_{k=1}^{n} p_k(t) D^k x_i(t)$$
 (5.12.120)

と書けることを用いて、行列式の列に関する交代性から

$$DW(x_1(t), x_2(t), \dots, x_n(t)) = -p_{n-1}(t)W(x_1(t), x_2(t), \dots, x_n(t)) \quad (5.12.121)$$

となります. n=2 で確認してみましょう.

$$DW(x_1, x_2) (5.12.122)$$

$$= x_1 D^2 x_2 - x_2 D^2 x_1 = -x_1 (p_1 D x_2 + p_0 x_2) + x_2 (p_1 D x_1 + p_0 x_1)$$
 (5.12.123)

$$= -p_1(x_1Dx_2 - x_2p_1Dx_1) = -p_1W(x_1, x_2).$$
(5.12.124)

これは W に関する 1 階の線形の斉次微分方程式となります. p_1 は連続であるとしているので, ある 1 点 t_0 で $W(t_0)=0$ となるならば W は恒等的に 0 になります. しかし $t=t_1$ で $W(t_1)\neq 0$ なので, W は定義域内で 0 となることはありません.

(十分性)背理法で証明します.定義域 I 内で $W(x_1(t),\dots,x_n(t))\neq 0$ かつ y_1,\dots,y_n が線形独立でないと仮定します.線形独立ではないので,少なくとも 1 つは零でない定数 c_i を用いて

$$c_1 x_1(t) + \dots + c_n x_n(t) \equiv 0$$
 (5.12.125)

となります. これを微分して

$$c_1 D^i x_1(t) + \dots + c_n D^i x_n(t) \equiv 0 (i = 0, 1, \dots, n - 1)$$
 (5.12.126)

となりますが、 $\hat{W}(t):=(D^{i-1}x_j(t))$ とすると $\hat{W}(t)c=\mathbf{0}$ と行列でまとめて書けます.Wronskian W が 0 でないので、 \hat{W} には逆が存在して、それをかければ $c=\mathbf{0}$ となりますが、これは不合理です.

ここで n 階の斉次の線形常微分方程式において n+1 個の解を持ってくるとこれらは線形独立ではないことが分かります。見やすいので n=1 で書いてみます。

$$Dx(t) = p(t)x(t) (5.12.127)$$

の 2 つの解を x_1, x_2 としましょう. 前定理によって Wronskian を計算すると

$$W(x_1, x_2) = \begin{vmatrix} x_1 & x_2 \\ Dx_1 & Dx_2 \end{vmatrix} = \begin{vmatrix} x_1 & x_2 \\ px_1 & px_2 \end{vmatrix} = p \begin{vmatrix} x_1 & x_2 \\ x_1 & x_2 \end{vmatrix} = 0$$
 (5.12.128)

つまり (互Nに線形独立な) 解を持つとしたら、それは n 個まで、ということが分かります。 さらに n 個の解 $x_i(i=1,\ldots,n)$ を $D^{i-1}x_i(t_1)=1,D^jx_i(t_1)=0$ ($j\neq i-1$) となる初期条件で求めれば、Wronskian が 1 になるので、 x_i は線形独立です。 したがって n 階の斉次線形常微分方程式の解の集合は n 次の線形空間になります。そこで次の定義をします。

Definition. 12.3.5. (5.12.107) の n 個の線形独立な解 x_1, x_2, \ldots, x_n を (5.12.107) の基本解系という.

Theorem. 12.3.6. (5.12.107) の任意の解 x は (5.12.107) の任意の基本解 x_1, x_2, \ldots, x_n の線形結合として一意的に表される.

(証明) $W(x_1,\ldots,x_n)\neq 0$ から定数 c_i を

$$D^{k}x(t_{1}) = \sum_{i=1}^{n} c_{i}D^{k}x_{i}(t_{1})(k=0,1,\ldots,n-1)$$
 (5.12.129)

となるように定めることが出来ます. x_1,x_2,\dots,x_n の線形独立性から表現 $x(t)=\sum c_ix_i(t)$ の一意性が分かります. \blacksquare

最後に非斉次方程式について議論します. まず斉次方程式

$$\Lambda(D)x(t) := D^{n}x(t) + p_{n-1}(t)D^{n-1}x(t) + \cdots + p_{1}(t)Dx(t) + p_{0}(t)x(t) = 0$$
(5.12.130)

の解を斉次解, 非斉次方程式

$$D^{n}x(t) + p_{n-1}(t)D^{n-1}x(t) + \dots + p_{1}(t)Dx(t) + p_{0}(t)x(t) = q(t) \quad (5.12.131)$$

の解を特解(特殊解)と呼びます.このもとで

Theorem. 12.3.7. (5.12.131) の任意の解はその任意の 1 つの特解と斉次方程式 (5.12.130) の一般解の和として表される.

(証明) (5.12.131) の 2 つの解を x_1, x_2 としましょう. ここで $z := x_1 - x_2$ とすると

$$\Lambda z = \Lambda x_1 - \Lambda x_2 = q - q = 0 \tag{5.12.132}$$

となります。これは z が斉次方程式 (5.12.130) の解であることを表します。 $x_1=z+x_2$ と書けますが、これが証明すべきことでした。 \blacksquare

5.13 1 階線形方程式の解法

物理的に重要な微分方程式の結果をいくつか紹介しました。ここからは良く出てくる具体的な微分方程式の解法を紹介します。解法を紹介する前に1つ確認しておきます。解の存在と一意性をきちんと証明した以上,どんな手を使ってでも解を1つ見つけられればそれで終わりです。どれほど納得のいかない変な導出法であったとしても,です。逆にいうならば,変な導出法だが解が1つしかないのだから見つけた者勝ちだと強弁をはるためにこれまで色々な飛び道具を用意してきた,ともいえます。

さて、1 階の方程式で重要なのは電気回路についての方程式

$$\Lambda(D)j(t) := L\frac{dj(t)}{dt} + Rj(t) = v(t)$$
(5.13.1)

でしょう。ここで L はコイルのインダクタンス, j は電流, R は抵抗, v は電源電圧です。

斉次解, 特解をそれぞれ j_1, j_2 とします. つまり

$$\Lambda(D)j_1(t) = 0 \tag{5.13.2}$$

$$\Lambda(D)j_2(t) = v(t). \tag{5.13.3}$$

 j_1 から求めます。今解の一意性存在定理での F としたところが $-kj_1$ となっています。これは高々一次の増大度の C^1 級関数なので Lipschitz 条件を満たし、解が一意的に存在します。これは $Dj_1=-kj_1, k=R/L$ となる関数を求めれば良いのですが、 e^{-kt} はこれを満たします。したがって

$$j_1(t) = ce^{-\frac{R}{L}t}. (5.13.4)$$

 c_1 は初期条件から決める定数です.

次に特解を求めます.これには定数変化法と呼ばれる手法を用います.これは 先程の ce^{-kt} で,c=c(t) としてみよう,というものです.これを非斉次方程式に 代入してみます.

$$v(t) = \Lambda(D) (c(t)e^{-kt}) = LD (c(t)e^{-kt}) + Rc(t)e^{-kt}$$
(5.13.5)

$$= L(Dc(t) - kc(t))e^{-kt} + Rc(t)e^{-kt} = Le^{-kt}Dc(t)$$
(5.13.6)

となり, これから

$$c(t) = \frac{1}{L} \int v(s)e^{ks} ds$$
 (5.13.7)

と求められます. 一般解は

$$j(t) = ce^{\frac{R}{L}t} + \frac{1}{L} \int v(s)e^{\frac{R}{L}(t-s)} ds$$
 (5.13.8)

となります.

5.14 2 階線形方程式の解法

2 階の線形方程式は振動の方程式です。摩擦などの抵抗が速度に比例するものとしましょう。比例定数を Γ , F を外力として運動方程式は

$$mD^2x(t) + \Gamma Dx(t) + kx(t) = F(t)$$
 (5.14.1)

となります. ここで f := F/m, $2 \gamma := \Gamma / m$, $k/m := \omega^2$, $\omega \ge 0$ \$ とすると

$$D^{2}x(t) + 2\gamma x(t) + \omega^{2}x(t) = f(t)$$
 (5.14.2)

となります。実際に解く際にはこれで考えると楽なことはおいおい分かるでしょう。各種考察の前に抵抗、コンデンサ、コイルが全て入った回路の方程式を書いておきます。 高校では $i=\Delta q/\Delta t$ と学んだと思いますが、この $\Delta\to 0$ とした極限で i=dq/dt=Dq となります。

$$LDj(t) + Rj(t) + \frac{1}{C} \int j(s)ds = v(t)$$
(5.14.3)

これは一般に微分積分方程式と呼ばれるものですが、v を例えば C^1 級であると しておいて両辺を微分すると 2 階の常微分方程式になります.

それでは実際に (5.14.2) を解いていきましょう. まず解の存在と一意性を確 かめます. $y_0(t):=x(t),y_1(t):=Dx(t), Y(t):={}^t(y_0(t)|y_1(t))$ としましょう. こ のとき

$$D\mathbf{Y}(t) = \begin{pmatrix} Dy_0(t) \\ Dy_1(t) \end{pmatrix} = \begin{pmatrix} y_1(t) \\ -2\gamma y_1(t) - \omega^2 y_0(t) \end{pmatrix} =: \mathbf{F}(\mathbf{Y}(t), t)$$
 (5.14.4)

となります. 示すべきは F の Lipschitz 性です. 2 行目から 3 行目への不等式は $(a+b)^2 \le 2(a^2+b^2)$ を使っています.

$$|F(Y,t) - F(Z,t)| \tag{5.14.5}$$

$$= \sqrt{(y_0 - z_0)^2 + \{-2\gamma(y_1 - z_1) - \omega^2(y_0 - z_1)\}^2}$$
 (5.14.6)

$$= \sqrt{(y_0 - z_0)^2 + \{-2\gamma(y_1 - z_1) - \omega^2(y_0 - z_1)\}^2}$$

$$\leq \sqrt{(y_0 - z_0)^2 + 2\left[\{-2\gamma(y_1 - z_1)\}^2 + \{-\omega^2(y_0 - z_1)\}^2\right]}$$
(5.14.6)

$$= \sqrt{(1+2\omega^4)(y_0-z_0)^2 + 8\gamma^2(y_1-z_1)^2}$$
 (5.14.8)

$$\leq \max\left(\sqrt{1+2\omega^4},\sqrt{8\gamma^2}\right)\sqrt{(y_0-z_0)^2+(y_1-z_1)^2}$$
 (5.14.9)

$$= \max(1 + 2\omega^4, 8\gamma^2)|\boldsymbol{Y} - \boldsymbol{Z}|. \blacksquare$$
 (5.14.10)

次に斉次解を求めます. $\gamma = 0$, つまり摩擦がない時の解は高校で学んだもの と同じです、以下に示す方法を使えば各自で容易に導出できるはずなので、ここ では省略して, $\gamma \neq 0$ の場合を扱っていきます. かなりの荒技ですが, ここで微分 作用素 $\Lambda(D)$ を因数分解します. まず x が $\Lambda(D)$ の固有関数 (ベクトル) である とします. このとき D はただ数をかけるだけの掛け算作用素に変わるので, 固有 関数を考える限りは普通の数と同じように扱ってよいでしょう. これは (5.14.2) の係数が実数であって、関数ではないからできることです。 $d:=\gamma^2-\omega^2$ として $D^2 + 2\gamma D + \omega^2$ を因数分解すると,

$$\left\{D - (-\gamma + \sqrt{d})\right\} \left\{D - (-\gamma - \sqrt{d})\right\} \tag{5.14.11}$$

となります. したがって (5.14.2) は

$$0 = \left\{ D - (-\gamma + \sqrt{d}) \right\} \left\{ D - (-\gamma - \sqrt{d}) \right\} x(t) \tag{5.14.12}$$

$$= \left\{ D - (-\gamma - \sqrt{d}) \right\} \left\{ D - (-\gamma + \sqrt{d}) \right\} x(t) \tag{5.14.13}$$

となります. $\left\{D-(-\gamma-\sqrt{d})\right\}x(t)=0, \left\{D-(-\gamma+\sqrt{d})\right\}x(t)$ の解をそれぞ れ x_1,x_2 とすると, これらは自動的に (5.14.2) を満たしまず. 前節での計算結果 から c_i を (初期条件により定まる) 定数として

$$x_1(t) = c_1 e^{(-\gamma - \sqrt{d})t}, \quad x_2(t) = c_2 e^{(-\gamma + \sqrt{d})t}$$
 (5.14.14)

となります. またこの Wronskian を計算すると

$$W(x_1, x_2) = \begin{vmatrix} x_1 & x_2 \\ Dx_1 & Dx_2 \end{vmatrix} = c_1 c_2 e^{-\gamma t} \left\{ (-\gamma + \sqrt{d}) - (-\gamma - \sqrt{d}) \right\} \quad (5.14.15)$$

$$=2c_1c_2\sqrt{d}e^{-\gamma t} \neq 0 (d \neq 0)$$
 (5.14.16)

となり, $d \neq 0$ のとき x_1, x_2 は線形独立です. d = 0 のときはどうするかということが問題として浮上してきました. このとき (5.14.2) は

$$(D+\gamma)^2 x(t) = 0 (5.14.17)$$

となります。つまり $x_1(t):=c_1e^{-\gamma t}$ とすれば、これは上の方程式の解になっています。もう 1 つ線形独立な解を見つける必要があります。 Laplace 変換を使うと何も考えずにすんなり出てきますが、今はひとまず天下りに与えます。 $x_2(t):=c_2te^{-\gamma t}$ が求める答です。 実際

$$(D+\gamma)^2 x_2 = c_2 (D^2 + 2\gamma D + \gamma^2) t e^{-\gamma t}$$
 (5.14.18)

$$= c_2 e^{-\gamma t} \{ (\gamma^2 - 2\gamma) + 2\gamma (1 - \gamma) + \gamma^2 \} = 0$$
 (5.14.19)

となります. Wronskian も

$$W(x_1, x_2) = \begin{vmatrix} x_1 & x_2 \\ Dx_1 & Dx_2 \end{vmatrix} = \begin{vmatrix} c_1 e^{-\gamma t} & c_2 t e^{-\gamma t} \\ -c_1 \gamma e^{-\gamma t} & c_2 (1 - \gamma t) e^{-\gamma t} \end{vmatrix}$$
(5.14.20)

$$= c_1 c_2 e^{-\gamma t} (2 - \gamma t) \neq 0 (t \neq 2/\gamma)$$
(5.14.21)

となります。したがっていずれにせよ斉次方程式の任意の解は x_1, x_2 の線形結合 で書くことができることが分かります。ここでずっと気になっていた読者もいることと思いますが、d はいわゆる判別式であって、d の正負が次の問題です。

数学は一旦忘れて物理を考えてみましょう. いま (5.14.2) がばねの振動を記述しているものとします. ある程度ばねを伸ばして (縮ませて) から手を放したとしましょう. 摩擦力が十分小さいとき, はじめは大きく振動していても時間が経つごとに振幅が小さくなっていくはずです. つまり減衰振動になるはずです. 逆に摩擦力が非常に大きいとき, ほとんど全く振動せずに振動が止まってしまうでしょう.

この状況が $d=\gamma^2-\omega^2$ の正負と直接に関係します. d<0 のときを考えます. つまり $\gamma<\omega$ であり、上でいうところの「摩擦係数が小さいとき」です. このとき $\sqrt{d}=i\sqrt{-d}=i\sqrt{\omega^2-\gamma^2}$ であり、

$$x_1(t) = c_1 e^{-\gamma t} e^{-i\sqrt{\omega^2 - \gamma^2}t}, \quad x_2(t) = c_2 e^{-\gamma t} e^{+i\sqrt{\omega^2 - \gamma^2}t}$$
 (5.14.22)

です. 時間と共に振幅 $ce^{-\gamma t}$ は減衰していき, Euler の公式 $e^{it}=\cos t+i\sin t$ からきちんと振動項も入っていて, 減衰振動を記述していることが分かります.

次に d>0 を考えましょう. このときは何もせずに

$$x_1(t) = c_1 e^{(-\gamma - \sqrt{d})t}, \quad x_2(t) = c_2 e^{(-\gamma + \sqrt{d})t}$$
 (5.14.23)

として良いことになります。ここで場合によっては x_2 で $-\gamma+\sqrt{d}>0$ となることがあり、これは時間と共に振幅が無限に大きくなっていく、という非物理的 (非現実的) な解になってしまいます。しかしこれはもともと Hooke の法則が振動の小さいところでしか成り立たない近似的な法則であり、その近似の限界を超えてしまったところにまで法則の成立を仮定したために起こったことです。実際には非線形項 x^2, x^3, \ldots などが出てきて、振幅の発散は起こりません。 x_1 (と d が十分小さいときの x_2) は過減衰と呼ばれます。

最後に d=0 ですが、これは振動と過減衰を分ける臨界 (現象) であり、精査すると色々と面白いようですが、踏み込むのはやめます.

非斉次方程式ですが、この解について一般論を述べるのはひどく大変です。ここでは回路理論で最も自然だと思われる $f(t)=f\sin\omega_0 t$ について述べます。これに

ついても解の一意性存在と物理的な直観を頼りに議論しましょう。今考えているのは外力による振動を加えた時のばねの伸び縮みです。普通に考えて、ばねの振動と外力による振動は同じような振動になるでしょう。つまり、解を $x_0(t)=A\sin\omega_0 t$ と仮定して良いでしょう。しかしこれだと $Dx(t)=A\omega_0\cos\omega_0 t$ となり、計算がやや面倒になります。そこで複素数の世界に潜って、 $f(t)=fe^{i\omega_0 t},x_0(t)=Ae^{i\omega_0 t}$ とします。すると微分の計算が簡単になる他、 $\operatorname{Re} x_0(t),\operatorname{Im} x_0(t)$ とすることで、それぞれ外力が \cos , \sin で与えられる場合に一度に対応できます。実際に計算してみましょう。

$$fe^{i\omega_0 t} = (D^2 + 2\gamma D + \omega^2)Ae^{i\omega_0 t} = A(-\omega_0^2 + 2i\gamma\omega_0 + \omega^2)e^{i\omega_0 t}$$
 (5.14.24)

$$\Longrightarrow A = \frac{f}{-\omega_0^2 + 2i\gamma\omega_0 + \omega^2} \tag{5.14.25}$$

したがって非斉次解は

$$x_0(t) = \frac{f}{-\omega_0^2 + 2i\gamma\omega_0 + \omega^2} e^{i\omega_0 t}$$
 (5.14.26)

となります.

Chapter 6

Maxwell方程式とベクトル解析

- 6.1 導入
- 6.2 微分作用素ナブラ
- 6.3 諸公式の導出とテンソル
- 6.4 Green の定理
- 6.5 Stokesの定理
- 6.6 Gauss の定理
- 6.7 微分形式とベクトル解析

Part V Complex Analysis

Chapter 7

Talk: Complex Analysis in One variable

See, e.g., [37] for consultation. In the following we assume $U \subset \mathbb{C}$ is a domain withour further mention.

7.1 Definition: complex differentiablity

Definition. 1.0.8. Let $f: U \to \mathbb{C}$ be a function. A function f is called (complex-) differentiable at $a \in U$ if there exists a constant $A \in \mathbb{C}$ such that

$$f(z) = f(a) + A(z - a) + o(z - a). (7.1.1)$$

A constant A is written by f'(a). A function f is **holomorphic** if f is differentiable at all points in U.

Note that we do not assume continuity of a derivative for holomorphy.

Remark. 1.0.9. (What is different from differentiablity for functions in two real variables?) Consider the following function f(x, y) with two real variables,

$$f(x,y) = \begin{cases} 0, & x = y = 0, \\ \frac{xy}{x^2 + y^2}, & \text{otherwise.} \end{cases}$$
 (7.1.2)

This function f is C^{∞} for x or y but f is not **continuous** in two variables. A deep result, **Hartogs' theorem**, exists for the theory in several complex variables. See, e.g., [32].

7.2 Cauchy-Riemann equation

Theorem. 2.0.10. (The Cauchy-Riemann equation.) Let $f: U \to \mathbb{C}$ be holomorphic and denote f = u + iv, u = u(x, y) and v = v(x, y). Then we have $u_x = v_y$ and $u_y = -v_x$.

Proof. Calculate as below:

$$f'(0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = u_x + iv_x$$
 (7.2.1)

$$= \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{iy} = \frac{1}{i} (u_y + iv_y).$$
 (7.2.2)

7.3 Complex line integral

First we review a line integral in \mathbb{R}^2 .

Definition. 3.0.11. (Line integral in \mathbb{R}^2) Let $C: I = [a, b] \to \mathbb{R}^2$ be a piecewise C^1 curve and Im $C \subset U$ and $F: U \to \mathbb{R}^2$ be a continuous vector field. Then we define a line integral over C of F as

$$\int_{C} F \cdot dC = \int_{\operatorname{Im} C} F(C) \cdot dC = \int_{a}^{b} F(C(t)) \cdot C'(t) dt. \tag{7.3.1}$$

Definition. 3.0.12. (Complex line integral) Assume $f: U \to \mathbb{C}$ is continuous and $C \subset U$ is a piecewise C^1 curve. Then we define a complex line integral as

$$\int_C f(z)dz := \int_C (udx - vdy) + i \int_C (udy + vdx), \tag{7.3.2}$$

where we denote f = u + iv. Furthermore we define another type of integral.

$$\int_{C} f(z) |dz| := \int_{a}^{b} f(z(t)) |z'(t)| dt.$$
 (7.3.3)

We define two more concepts for assertion of the Cauchy's integral theorem.

Definition. 3.0.13. (Homolog 0 curve.) Assume $C \subset U$ is a piecewise C^1 closed curve, i.e., $C \colon [0,1] \to U$ satisfied C(0) = C(1), and $a \in U$. Then a number n(C,a), called a winding number, is defined by

$$n(C,a) := \frac{1}{2\pi i} \int_C \frac{1}{z-a} dz. \tag{7.3.4}$$

Furthermore a curve C is called **homolog 0 for** U if n(C,a)=0 for any $a\notin U$. This is denoted by $C\sim 0$ in U.

Definition. 3.0.14. (Simply connectedness.) Assume $U \subset \mathbb{C}$. A domain U is called **simply connected** if each piecewise C^1 closed curve C is homolog θ in U.

Here we can state two forms of the Cauchy integral theorem.

Theorem. 3.0.15. (Cauchy's integral theorem 1: for any U but confined C.) Assume a function f on U is holomorphic and a curve $C \subset U$ is a homolog 0 curve. Then we have $\int_C f(z)dz = 0$.

Theorem. 3.0.16. (Cauchy's integral theorem 2: for confined U but any C.) Assume a function f on U is holomorphic, a region U is simply connected, and a curve $C \subset U$ is piecewise C^1 . Then we have $\int_C f(z)dz = 0$.

Remark. 3.0.17. The assumption of piecewise smoothness for curves in the Cauchy integral theorems is needed for application, e.g., the residue theorem.

Proof. We prove the theorem in a easy form: we use the famous Green theorem in the vector calculus [37]. Assume a function f is in C^1 and we denote a region surrounded by C as B. Then we have, by Green' theorem,

$$\int_{C} f = \int_{C} (udx - vdy) + i \int_{C} (udy + vdx)$$

$$(7.3.5)$$

$$= -\int_{B} (u_{y} + v_{x}) dx dy + i \int_{B} (u_{x} - v_{y}) dx dy$$
 (7.3.6)

$$=0, (7.3.7)$$

where we use the Cauchy-Riemann equation in the last equal sign.

This theorem is wonderful in, at least, two points.

- 1. The value of f is determined by line integrals. We can take curves arbitrarily, so holomorphic functions cannot determine their values freely. See also Cauchy's integral representation formula.
- 2. It defines an another function by line integrals, $F_{z_0} := \int_C f$, where C is a curve which connects two points z_0 and z in U. See Morela's theorem.

7.3.1 Appendix: Green's theorem

We introduce a simple version. Consider C^1 functions φ and ψ defined on a compact interval I = [a, b] satisfying

$$\varphi(x) \le \psi(x), \quad x \in I.$$
 (7.3.8)

The region U is defined by

$$U = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \quad \varphi(x) \le y \le \psi(x)\}. \tag{7.3.9}$$

By similar functions f, g the region U is also described by

$$U = \left\{ (x, y) \in \mathbb{R}^2 : \alpha \le y \le \beta, \quad f(y) \le x \le g(y) \right\}. \tag{7.3.10}$$

Theorem. 3.1.1. (Green's theorem.) Assume a C^1 vector field F = (u, v) is defined in U. Then it holds that

$$\int_{U} (v_x - u_y) dx dy = \int_{\partial U} u dx + v dy.$$
 (7.3.11)

Proof. The fundamental theorem in calculus leads

$$-\int_{U} u_{y} dx dy = -\int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} u_{y} dy \right) dx \tag{7.3.12}$$

$$= \int_{a}^{b} \left\{ u(x, \varphi(x)) - u(x, \psi(x)) \right\} dx = \int_{C_1 + C_2} u dx = \int_{\partial U} u dx,$$
(7.3.13)

where the curves C_1 and C_2 are assumed to be properly defined. Similar computation for v shows

$$\int_{U} v_x dx dy = \int_{\alpha}^{\beta} \left(\int_{f(y)}^{g(y)} v_x dx \right) dy \tag{7.3.14}$$

$$= \int_{\alpha}^{\beta} \{v(g(y), y) - u(f(y), y)\} dy = \int_{\partial U} v dy.$$
 (7.3.15)

Summing up the above two expressions leads the result.

7.4 Morela's theorem

Morela's theorem is a converse of Cauchy's integral theorem: i.e., differentiablity and integrability coincide for holomorphic functions. For proof we need some preparations.

Definition. 4.0.2. A function $F: U \to C$ is a primitive function of f in U is F' = f.

Theorem. 4.0.3. Assume a function $f: U \to \mathbb{C}$ is continuous and $\int_C f(z)dz = 0$ for any piecewise C^1 closed curves. Then there exists a function F on U such that F' = f.

Proof. Fix a point $z_0 \in U$ and let $z \in U$ be arbitrary. Since U is connected we have two piecewise C^1 curve C_j which do not intersect. A curve $C := C_1 + (-C_2)$ is a closed piecewise C^1 curve. Then, by assumption,

$$0 = \int_{C} f(z)dz = \int_{C_{1}} f(z)dz - \int_{C_{2}} f(z)dz.$$
 (7.4.1)

Hence we can define a function F as

$$F(z) := \int_{z_0}^{z} f(z)dz := \int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$
 (7.4.2)

Next we would like to show F' = f. Since f is continuous, for any $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(z+h) - f(z)| < \epsilon$ if $|h| < \delta$. Then we obtain

$$\left| \frac{F(z+h) - F(z)}{z} - f(z) \right| = \left| \frac{1}{h} \int_{z}^{z+h} (f(w) - f(z)) \, dw \right| \tag{7.4.3}$$

$$\leq \frac{1}{|h|} \epsilon |h| = \epsilon. \tag{7.4.4}$$

Then we obtain

Theorem. 4.0.4. (Morela's theorem.) Assume a function $f: U \to \mathbb{C}$ is continuous and $\int_C f = 0$ for any piecewise C^1 closed curve $C \subset U$. Then f is holomorphic in U.

Proof. By the above theorem we have a function F such that F' = f. The following Cauchy's integral representation formula and Taylor series expansion theorem show that F and f are holomorphic.

7.5 Cauchy's integral representation formula and Taylor series expansion

Theorem. 5.0.5. Let $f: U \to \mathbb{C}$ be holomorphic and $C \subset U$ be a homolog 0 curve. Then we have a following representation:

$$n(C,a)f(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z-a} dz.$$
 (7.5.1)

Proof. Let $a \in U \setminus C$ and put

$$\varphi(z) = \begin{cases} \frac{f(z) - f(a)}{z - a}, & z \neq a, \\ f'(a), & z = a. \end{cases}$$
 (7.5.2)

Since φ is holomorphic in U^{-1} we get, by Cauchy's integral theorem,

$$0 = \frac{1}{2\pi i} \int_C \varphi(z) dz = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - a} dz - \frac{f(a)}{2\pi i} \int_C \frac{1}{z - a} dz.$$
 (7.5.3)

Theorem. 5.0.6. (Taylor series expansion.) Assume a function $f: U \to \mathbb{C}$ is holomorphic. Then a function f is complex analytic and has a following expansion:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, \quad c_n := \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n+1}} dz.$$
 (7.5.4)

Proof. For sufficiently small |z-a|, we have the following expansion:

$$\frac{1}{w-z} = \frac{1}{w-a - (z-a)} = \frac{1}{w-a} \frac{1}{1 - \frac{z-a}{w-a}}$$
 (7.5.5)

$$= \frac{1}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a}\right)^n.$$
 (7.5.6)

Due to Cauchy's integral representation formula and exchange of limits we have

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n, \quad c_n := \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - a)^{n+1}} dz.$$
 (7.5.7)

A function $f: \mathbb{C} \to \mathbb{C}$ is called **entire** if it is holomorphic in all \mathbb{C} .

Theorem. 5.0.7. (Liouville's theorem) If an entire function f is bounded f is constant.

¹There are some gaps. See the proof of Theorem 2.4, Chapter 9 in [37].

7.6 Simple application of fundamental theorems: convergence of holomorphic functions

Definition. 6.0.8. (Uniform convergence in the wider sense.) Let $f_n, f: U \to \mathbb{C}$ be functions. A sequence of functions (f_n) converges to f uniformly in the wider sense if, for any compact subset $K \subset U$ such that $\lim_{n\to\infty} \|f_n - f\|_K = 0$, where

$$||f|| := \sup_{z \in K} |f(z)|$$
. (7.6.1)

We denote this convergence as $f_n \stackrel{\text{uw}}{\to} f$.

Theorem. 6.0.9. (Weierstrass. Theorem 3.5 in [37].) Assume functions $f_n \colon U \to \mathbb{C}$ are holomorphic, $f \colon U \to \mathbb{C}$ is defined by a uniform limit in the wider sense, i.e., $f_n \stackrel{\mathrm{uw}}{\to} f$.

1. For any piecewise C^1 curves we have the following equality,

$$\int_{C} f(z)dz = \lim_{n \to \infty} \int_{C} f_n(z)dz. \tag{7.6.2}$$

- 2. The limit function f is holomorphic.
- 3. We have

$$f'(z) = \lim_{n \to \infty} f'_n(z).$$
 (7.6.3)

Proof. 1)-2): Due to Cauchy's integral theorem, for any homolog 0 curve C, we obtain $\int_C f_n = 0$. Since C is compact and a sequence (f_n) converges to f, a sequence $(\|f - f_n\|_C)_{n \in \mathbb{N}}$ converges to 0 and hence is bounded. Then it holds that

$$\left| \int_{C} f \right| = \left| \int_{C} f - \int_{C} f_{n} \right| \le \int_{C} \left| f - f_{n} \right| \left| dz \right| \tag{7.6.4}$$

$$= ||f - f_n||_C \int_C |dz| \to 0.$$
 (7.6.5)

3): By Cauchy' integral representation theorem it holds that, for $a \in U \setminus C$,

$$f'(a) = \frac{-1}{2\pi i} \int_C \frac{f(z)}{(z-a)^2} dz, \tag{7.6.6}$$

$$f'_n(a) = \frac{-1}{2\pi i} \int_C \frac{f_n(z)}{(z-a)^2} dz.$$
 (7.6.7)

The remaining argument is the same as above.

Remark. 6.0.10. (Points for the proof.) Assume functions $f_n: K \to \mathbb{C}$ are continuous on a compact set $K \subset \mathbb{C}$ and that a sequence (f_n) converges to a function f on K.

- 1. A new sequence $(||f_n f||)_n$ converges to 0 and hence is bounded.
- 2. It holds that $\int_K f_n \to \int_K f$.

7.7 Zero points for holomorphic functions and theorem of identity

Theorem. 7.0.11. (Zero points for holomorphic functions are isolated.) Let a function $f: U \to \mathbb{C}$ be holomorphic. Then each zero point of f is isolated.

Proof. Suppose $z_0 \in U$ is a zero point of f, i.e., $f(z_0) = 0$, and its degree is k-th. Let a point z be sufficiently near z_0 . Then, by Cauchy's integral representation formula, we get

$$f(z) = \sum_{n=k}^{\infty} c_n (z - z_0)^n = (z - z_0)^k g(z), \quad g(z) := \sum_{n=k}^{\infty} c_n (z - z_0)^{n-k}. \quad (7.7.1)$$

Since a function g is continuous there exists a neighborhood $B \subset U$ of z_0 such that $g(w) \neq 0$ for all $w \in B$. Hence $f(z) \neq 0$ for all $z \in B \setminus z_0$.

Theorem. 7.0.12. (Theorem of identity) Let functions $f, g: U \to \mathbb{C}$ be holomorphic and $C \subset U$ have a limit point in U. If f = g on C then f = g in U.

Proof. Let h = f - g. Then h = 0 on C. Since zero points are isolated for holomorphic functions in one variable it holds that h = 0.

Theorem. 7.0.13. (Theorem of identity in several complex variables.) Let $U \subset \mathbb{C}^n$ be an open set. Assume $f: U \to \mathbb{C}$ is holomorphic. If $f|_V = 0$ for an open subset $V \subset U$ then f = 0.

Example. 7.0.14. (Conterexamples for Theorem of identity in several complex variables.)

- 1. (Using the proof of isolated zero points.) Consider a holomorphic functions f in one variables and set $F(z_1, z_2) = z_1 f(z_2)$. Then F = 0 on a complex line $z_1 = 0$ but this is not a zero function.
- 2. (Using algebraic geometry.) Assume a polynomial f is not zero and non-constant. Consider an algebraic variety $V(f) = \{f = 0\}$. Then f is 0 on a closed set V(f) and $f \neq 0$.

7.8 Theorem of residues

7.8.1 Laurent expansion

Let $a \in U$ and R > 0. We call the following $B_0(a, R)$ an **exclusive neighborhood** of a:

$$B_0(a, R) := \{ z \in \mathbb{C} : 0 < |z - a| < R \}. \tag{7.8.1}$$

Definition. 8.1.1. (Singular points.) Let $a \in U$ and R > 0. If a function $f: B_0(a, R) \to \mathbb{C}$ is holomorphic and not holomorphic in B(a, R), then a point a is called an **isolated singular point**. I.e., a function f is not defined at a point a, or f is defined and not differentiable at a.

Theorem. 8.1.2. (Laurent expansion.) If a function f is holomorphic in $B_0(a, R)$ for a point $a \in U$, then f is represented as the following Laurent series in $B = B_0(a, R)$.

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n,$$
 (7.8.2)

where coefficients c_n is defined by

$$c_n := \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-a)^{n+1}} dz \quad (\forall n \in \mathbb{Z}).$$
 (7.8.3)

Here the above C is a circle with a center $a \in U$ and a radius $r \in (0, R)$.

Proof. Let $0 < R_2 < R_1 < R$, define an annulus $A(a; R_1, R_2) := \{z \in \mathbb{C} : R_2 < |z - a| < R_1\}$, and take a point $z \in A(a; R_1, R_2)$. Take a positive number $\rho > 0$ such that $\overline{B(z, \rho)}$ is included by $A(a; R_1, R_2)$. Let C_i be circles with positive direction for $B(a, R_i)$ and Γ is a boundary of $A(a; R_1, R_2)$. Then we have

$$\int_{\Gamma} \frac{f(w)}{w - z} dw = \int_{C_1} \frac{f(w)}{w - z} dw - \int_{C_2} \frac{f(w)}{w - z} dw.$$
 (7.8.4)

Since |(z-a)/(w-a)| < 1 when $w \in C_1$ we obtain

$$\frac{1}{w-z} = \sum_{n=0}^{\infty} \frac{(z-a)^n}{(w-a)^{n+1}}.$$
 (7.8.5)

This leads

$$\frac{1}{2\pi i} \int_{C_1} \frac{f(w)}{w - z} dw = \sum_{n=0}^{\infty} c_n (z - a)^n, \quad c_n = \frac{1}{2\pi i} \int_{C_1} \frac{f(w)}{(w - z)^{n+1}} dw. \quad (7.8.6)$$

Furthermore, due to holomorphy of f in $B(z,\rho)$, Cauchy's integral representation formula leads

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - z} dw \tag{7.8.7}$$

Since |(w-a)/(z-a)| < 1 when $w \in C_2$ we obtain

$$\frac{1}{w-z} = -\sum_{n=1}^{\infty} \frac{(w-a)^{n-1}}{(z-a)^n}.$$
 (7.8.8)

This leads

$$-\frac{1}{2\pi i} \int_{C_2} \frac{f(w)}{w - z} dw = \sum_{n=1}^{\infty} c_{-n} (z - a)^{-n}, \quad c_{-n} = \frac{1}{2\pi i} \int_{C_2} \frac{f(w)}{(w - z)^{-n+1}} dw.$$
(7.8.9)

Taking limits for R_1 and R_2 and arguments for changes of paths end the proof.

Definition. 8.1.3. Assume $a \in U$ is an (isolated) singular point of a function f and its Laurent expansion is

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n.$$
 (7.8.10)

We classify a singular point a as follows.

- 1. A singular point a is called a removable singular point if $c_n = 0$ for all $n \le -1$.
- 2. A singular point a is called a **pole of** n-th order if there exists a negative integer $n \le -1$ such that $c_n \ne 0$ and $a_m = 0$ for all m < n.
- 3. A singular point a is called a essential singular point if there exists infinitely many negative integer n such that $c_n \neq 0$.

We have several analyses and characterizations for singular points but we omit them.

7.8.2 Theorem of residue

Definition. 8.2.1. Let $a \in U$ and R > 0 and a function $f: B_0(a, R) \to \mathbb{C}$ is holomorphic. The Laurent expansion of f around a is

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n.$$
 (7.8.11)

Then the number a_{-1} is called the **residue of** f **at** a and denoted by

$$a_{-1} = \text{Res}(f, a).$$
 (7.8.12)

Theorem. 8.2.2. (Theorem of residue.) Assume a function f is holomorphic in $U = B_0(a, R)$ for $a \in U$ and R > 0. For any piecewise C^1 curves C in U it holds that

$$\frac{1}{2\pi i} \int_C f(z)dz = n(C, a)\operatorname{Res}(f, a). \tag{7.8.13}$$

Proof. Trivial.

7.8.3 Argument principle

Proposition. 8.3.1. Assume a function f is holomorphic in $B_0(a, R)$ for $a \in U$ and R > 0, and that a is a n-th zero point or pole. Then $a \in U$ is a pole of first order for a function g = f'/f and its residue at a is given by

Res
$$\left(\frac{f'}{f}, a\right) = \begin{cases} n, & a \text{ is a zero point,} \\ -n, & a \text{ is a pole.} \end{cases}$$
 (7.8.14)

Proof. We show this the case a is a zero point. Then we have an expression

$$f(z) = (z - a)^n f_1(z) (7.8.15)$$

for some holomorphic function f_1 with $f(a) \neq 0$. Hence we obtain

$$\frac{f'(z)}{f(z)} = \frac{n}{z - a} + \frac{f'_1(z)}{f_1(z)} \tag{7.8.16}$$

Since the second term in the RHS is holomorphic we obtain the result. \Box

This result is generalized to the famous Argument principle and Louche's theorem.

Definition. 8.3.2. (Riemann sphere.) One point compactification space $\overline{\mathbb{C}}$ of the complex line \mathbb{C} is called the **Riemann sphere**.

Definition. 8.3.3. Let $U \in \overline{\mathbb{C}}$ a domain. A function $f: U \to \mathbb{C}$ is holomorphic without several poles is called **meromorphic** in U.

Theorem. 8.3.4. (Argument principle.) Assume a function $f: U \to \mathbb{C}$ is meromorphic in U, the set of zero points of f is $\{a_1, \ldots, a_n\}$ with multiplicity, and the set of poles is $\{b_1, \ldots, b_p\}$ with multiplicity. If C is a homolog 0 curve in U and walk through no zero points and no poles of f then it holds that

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{n} n(C, a_j) - \sum_{k=1}^{p} n(C, b_k).$$
 (7.8.17)

Proof. Use the theorem of residue.

Theorem. 8.3.5. (Louche's theorem.) Assume a piecewise C^1 closed curve C surround a region U and that functions f and g are holomorphic in $U \cup C$. If |f(z) - g(z)| < |f(z)| holds over C then f and g have the same number of zero points in U with multiplicity.

7.9 Convergence theorems

Theorem. 9.0.6. (Hurwitz, [2] P191.) Assume functions $f_n: U \to \mathbb{C}$ are holomorphic and vanish nowhere and a function f is defined by a uniform limit of a sequence (f_n) in the wider sence. Then a function f = 0 or f vanishes nowhere.

Proof. Assume $f \neq 0$. Zero points of f, if they exist, are isolated. For any $z \in U$ there exists a small radius r > 0 such that $B(z,r) \subset U$ and $f(w) \neq 0$ for all $w \in B(z,r) \setminus \{z\}$. In particular |f(z)| attains its minimum on $C := \partial B(z,r)$ and it is positive. Since sequences (f_n) and (f'_n) converge to f respectively f' we obtain

$$\lim_{n \to \infty} \frac{1}{2\pi i} \int_C \frac{f'_n(z)}{f_n(z)} dz = \frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz$$
 (7.9.1)

By Argument principle the LHS of the above is 0 for all n and hence the LHS is 0. Thus $f(z) \neq 0$. Since a point z is taken arbitrarily this ends the proof. \square

Definition. 9.0.7. Denote the abelian algebra of continuous functions on U as

$$C(U) := \{ f : U \to \mathbb{C} : f \text{ is continuous.} \}$$
 (7.9.2)

A set $H \subset C(U)$ is **normal family** if, for any subset $(f_n)_n \subset H$, there exists a subsequence $(f_{n_k})_k$ and a (continuous) function f such that $f_{n_k} \stackrel{\text{uw}}{\to} f$.

Theorem. 9.0.8. (Ascoli-Arzela.) Let $U \subset \mathbb{R}^n$ and $H \subset C(U)$. A subset H is a normal family if and only if the following two properties hold.

- 1. H is an equicontinuous family,
- 2. H is uniformly-bounded on any compact subset $K \subset U$.

We denote an algebra of holomorphic functions on U as $\mathcal{O}(U)$.

Theorem. 9.0.9. (Montel.) Let $H \subset \mathcal{O}(U)$ be a subset. Then the followings are equivalent.

- 1. H is a normal family.
- 2. H is uniformly-bounded on any compact subset $K \subset U$.

Theorem. 9.0.10. (Vitali. See [37] P.374.) Let $E = z_{n_n \in \mathbb{N}} \subset U$, $z_n \to z \in U$, and a family $(f_n) \subset \mathcal{O}(U)$ be uniformly-bounded in U. If sequences $(f_n(z))_n$ converge for all $z \in E$ then there exists a holomorphic function $f \in \mathcal{O}(U)$ such that $f_n \stackrel{\text{uw}}{\to} f$.

7.10 Representation of holomorphic functions

First we explain the setup of Mittag-Leffler's theorem. Assume an arbitrary sequence $(a_n)_{n\in\mathbb{N}}$ satisfying

$$|a_0| \le |a_1| \le \dots \le |a_n| \le |a_{n+1}| \le \dots, \quad \lim_{n \to \infty} |a_n| = \infty,$$
 (7.10.1)

$$a_n \neq a_m \quad (n \neq m), \tag{7.10.2}$$

and that a sequence of polynomials $(P_n)_{n\in\mathbb{N}}$ in $(z-a_n)^{-1}$ have forms

$$P_n(z) = \sum_{k=1}^{m(n)} \frac{c_{n,k}}{(z - a_n)^k}.$$
 (7.10.3)

Since P_n is holomorphic in $|z| < |a_n|$ we have a Taylor expansion

$$P_n(z) = \sum_{k=0}^{\infty} b_{n,k} z^k, \quad |z| < |a_n|, \quad n \ge 1.$$
 (7.10.4)

Choosing natural numbers k(n) for each $n \in \mathbb{N}$ properly and set functions $(\varphi_n)_n$ as

$$\varphi_n(z) = \sum_{k=0}^{k(n)} b_{n,k} z^k. \tag{7.10.5}$$

Put $\varphi_0 = 0$.

Theorem. 10.0.11. (Mittag-Leffler. Theorem 10.1 in [37].) We assume the above setup. Then the series

$$g(z) := \sum_{n=0}^{\infty} (P_n(z) - \varphi_n(z))$$
 (7.10.6)

converges uniformly in the wider sense on $\mathbb{C} \setminus \{a_n : n \in \mathbb{N}\}$ for properly chosen (k(n)). Furthermore it satisfies the following properties.

- 1. The function g is meromorphic on \mathbb{C} .
- 2. The set $A = \{a_n : n \in \mathbb{N}\}$ is the set of poles of g in \mathbb{C} .
- 3. The principal parts of g at each a_n is P_n .

Proof. Since a series P_n converges in $B(0, |a_n|/2)$. there exists a natural number k(n) such that, letting $\varphi_n(z) = \sum_{k=0}^{k(n)} b_{n,k} z^k$, it follows that

$$|P_n(z) - \varphi_n(z)| < \frac{1}{2^n} \quad \left(z \in B(0, \frac{|a_n|}{2})\right).$$
 (7.10.7)

For any R > 0 there exists $N \in \mathbb{N}$ such that $|a_n| > 2R$ for all n > N. Since functions (P_n) is holomorphic in B(0,R) for n > N it holds that

$$h(z) = \sum_{n=N+1}^{\infty} (P_n(z) - \varphi_n(z))$$
 (7.10.8)

uniformly converges in B(0,R) and hence the above function h is holomorphic in B(0,R). Here the below function

$$g(z) = \sum_{n=0}^{N} (P_n(z) - \varphi_n(z)) + h(z)$$
 (7.10.9)

is meromorphic in B(0,R), poles are $\{a_n : 0 \le n \le N\}$, and the principal part of the function g are P_n at a_n .

Since R > 0 is arbitrary the function g is meromorphic in \mathbb{C} , and the set of poles is $\{a_n : n \in \mathbb{N}\}$, and the principal part of g is P_n at a_n .

Remark. 10.0.12. Mittag-Leffler's theorem in a several complex variables version is the famous Cousin first problem.

Theorem. 10.0.13. (Weierstrass. Theorem 5.5.4. in [34]) Let $Z \subset U$ be a discrete set. Set numbers $\nu_{\zeta} \in \mathbb{Z} \setminus \{0\}$ for each $\zeta \in Z$. Then there exists a meromorphic function f on U such that, for each neighborhood of ζ , the function f can be represented as

$$f(z) = (z - \zeta)^{\nu_{\zeta}} h(z), \quad h(\zeta) \neq 0,$$
 (7.10.10)

by a holomorphic function h. The function f is holomorphic in $U \setminus Z$ and has no zero points.

Remark. 10.0.14. Weierstrass' theorem in a several complex variables version is the famous Cousin second problem.

7.11 Riemann's mapping theorem

Definition. 11.0.15. Two regions U_1 and U_2 are analytically homeomorphic if there exists an biholomorphic function $f: U_1 \to U_2$.

Theorem. 11.0.16. (Theorem 13.1 in [37].) The following three simply connected regions are not analytically homeomorphic each other.

1. The Riemann sphere, $\overline{\mathbb{C}}$.

- 2. The complex line, \mathbb{C} .
- 3. The unit disc, D = B(0, 1).

Proof. Since the Riemann sphere is compact the image $f(\overline{\mathbb{C}})$ by a continuous function is compact. On the other hand \mathbb{C} and D is not compact and hence $f(\overline{\mathbb{C}})$ is not analytically homeomorphic to \mathbb{C} of D. If a homeomorphic function f on \mathbb{C} satisfies $f(\mathbb{C}) \subset D$ then, since f is a bounded entire function, Liouville's theorem asserts f is a constant function, i.e., $f(\mathbb{C}) \neq D$.

Theorem. 11.0.17. (Riemann's mapping theorem. Theorem 13.2 in [37].) If U is a simply connected region in \mathbb{C} and $U \neq \mathbb{C}$, then there exists a holomorphic and univalent function f on U such that it maps U onto the unit disc D. Furthermore we set an additional condition

$$f(a) = 0, \quad f'(a) > 0$$
 (7.11.1)

for an arbitrary point $a \in U$. Under the above additional condition a function f is unique and it is a analytically holomorphic map from U to D.

7.12 Miscellaneous results

We give examples of unexplained but important results.

- 1. Omitted proofs.
- 2. Theorem of mean: Corollary 2.4 in [37].
- 3. Maximum principle: Theorem 3.9 in [37]).
- 4. Inverse mapping theorem.
- 5. Relations between holomorphic functions and harmonic functions.
- 6. Calculation of definite integrals using theorem of residue.
- 7. Interrelation for Fourier transform.
- 8. Theory of elliptic functions.
- 9. Theory of automorphic forms.
- 10. Algebraic function theory.
- 11. Theory of Riemann surface.

7.13 Appendix

7.13.1 Vector Analysis

7.13.2 Analytic continuation

Chapter 8

Talk: Complex analysis for Ising model

Chapter 9

Several complex variables

Cousin's problems.

Part VI Functional Analysis

Chapter 10

Introduction to Lebesgue integral

10.1 Why Lebesgue integral?

10.1.1 Area

Theory of Lebesgue integral is one for integral, of course. However integral is closely connected with a theory of area. Consider finitely many disjoint plane sets (A_n) . We denote an area of a (plane) set A as m(A). Then an area of their union $\bigcup A_n$ is $\sum_n m(A_n)$.

Next consider a infinitely many disjoint plane sets (A_n) and an area of their union. In this case we may face a severe problem if we treat "infinity" too roughly. Suppose sets $A_y = [0,1] \times \{y\}$ for $y \in [0,1]$ and their union $\bigcup_{y \in [0,1]} A_y$. An area $m(A_y)$ of each A_y is 0 (later we will prove), but their union is $\bigcup_y A_y = [0,1] \times [0,1]$ An area is $m(\bigcup_y A_y) = 1$. Thus it holds that

$$m\left(\bigcup_{y} A_{y}\right) \neq \sum_{y} m(A_{y}).$$
 (10.1.1)

Clearly uncountable operation leads contradiction.

One way to overcome this difficulty may be just ignoring of a union of infinitely many sets. However, if we would like to define areas for general sets by fundamental sets such as recangles, we must consider a union of infinitely many recangles. It suffice to consider an area of circle.

How do we define an area for a (disjoint) union of infinitely many sets?

10.1.2 Function space: approximation of functions

In application it is important to consider approximation of functions, e.g., application to analysis of differntial equations. Then we would like to set distances for functions since, in computer simulation, we cannot use an exact solution but an approximated solution. However what is the distance between functions?

10.1.3 Distance by supremum norm

We can use a distance defined by supremum norm, e.g.,

$$d_{\infty}(f,g) := \|f - g\| := \sup_{x \in \Omega} |f(x) - g(x)|.$$
 (10.1.2)

This distance detects the maximum pointwise distance between functions. This seem intuitive and natural, and is useful, in fact.

Distance by L^2 norm

However here is another natural distance for functions, i.e., L^2 distance. We are going to "derive" this distance. Consider vectors $f, g \in \mathbb{C}^n$. Then we can define their inner product and distance.

$$\langle f, g \rangle := \sum_{x=1}^{n} \overline{f(x)} g(x),$$
 (10.1.3)

$$d_2(f,g) := \|f - g\|_2 := \sqrt{\langle f - g, f - g \rangle}$$
 (10.1.4)

If the sum converges we can take a limit $n \to \infty$.

$$\langle f, g \rangle := \sum_{x=1}^{\infty} \overline{f(x)} g(x).$$
 (10.1.5)

A distance d_2 is defined similarly. Now we sum up values in increments of 1. If this increments tends to 0 we obtain an integral:

$$\langle f, g \rangle := \int_0^\infty \overline{f(x)} g(x) dx.$$
 (10.1.6)

Here an interval can be arbitrary. This distance is called a L^2 distance.

This distance is also intuitive, natural and useful. Furthermore this is a natural interpretation in physics, i.e., energy of function. Consider a rope and a system of N subropes. Then the energy of N subropes is

$$E = \sum_{k=1}^{N} \frac{1}{2} m v_k^2 + \sum_{k=1}^{N} k (x_{k-1} - x_k)^2.$$
 (10.1.7)

A division number N is virtual, so we would like to take a limit $N \to \infty$.

$$E = \int_0^1 \left(\frac{1}{2} m \left(\frac{\partial u}{\partial t} \right)^2 + \frac{1}{2} k \left(\frac{\partial u}{\partial x} \right)^2 \right) dx.$$
 (10.1.8)

This is an (almost) L^2 .

10.1.4 Comparison of these two distances

There are some difference in these two distances. We want to see these "sense of distances" are totally different.

First consider two functions $f, g: I = (0, N) \to \mathbb{R}$ such as

$$f(x) = 1, \quad g(x) = 1 + \varepsilon,$$
 (10.1.9)

where $\varepsilon > 0$. Then we have

$$||f - g||_{\infty} = \varepsilon, \tag{10.1.10}$$

$$||f - g||_2 = \varepsilon \sqrt{N}. \tag{10.1.11}$$

Next consider two functions $h_n, h: [0,1] \to \mathbb{R}$ such as

$$h_n(x) = \begin{cases} n+1, & x \in \left[0, \frac{1}{n^4}\right), \\ 1, & x \in \left[\frac{1}{n^4}1\right], \end{cases}$$
 (10.1.12)

$$h(x) = 1. (10.1.13)$$

Then we obtain

$$||h_n - h||_{\infty} = n, \tag{10.1.14}$$

$$||h_n - h||_2 = \frac{1}{n}. (10.1.15)$$

Hence these two distances have totally different metric strucures.

There is one more problem: a sequence of functions (h_n) seems to converge to h, but true convergence destination is a function h_{∞} such that

$$h_{\infty} = \begin{cases} \infty, & x = 0, \\ 1, & \text{otherwise.} \end{cases}$$
 (10.1.16)

Furthermore a function h_{∞} is not Riemann integrable. Since a line has an area 0 (later we will prove) an area of the graph of h_{∞} must be finite, or 1. Then how do we define an integral for functions which may have an infinite value?

10.1.5 Limiting procedure

In analysis our main task is to control various limits. In "functional" analysis we must control limits for functions. Here limits, i.e., topologies are defined by integrals. We must search a managable integral theory. We require the following points.

- 1. We can identify the above two functions h and h_{∞} .
- 2. We can manage limits and integral easily.
- 3. Our limit theorems are simple, easy to memorize, and analogous to the famous theorems in the theory of real numbers.

10.2 Definition and Properties of measure

10.2.1 Definition

Definition. 2.1.1. (Finitely additive family.) Suppose X is a set and \mathcal{F} is a family of subsets X. Then the family \mathcal{F} is finitely additive if it satisfies the following three conditions.

- 1. $\emptyset \in \mathcal{F}$.
- 2. A set A^c is in \mathcal{F} if $A \in \mathcal{F}$.

3. $A \mid B \in \mathcal{F} \text{ if } A, B \in \mathcal{F}.$

Proposition. 2.1.2. For a finitely additive family (X, \mathcal{F}) it holds that

- 1. $X \in \mathcal{F}$,
- 2. $\bigcup_{k=1}^{n} A_k$, $\bigcap_{k=1}^{n} A_k \in \mathcal{F}$ if $A_k \in \mathcal{F}$ for $k = 1, \dots, n$.

Definition. 2.1.3. (Finitely additive measure.) Suppose X is a set and \mathcal{F} is a finitely additive family of subsets X. Then a function $m: \mathcal{F} \to \mathbb{R}$ is called a finitely additive measure (on \mathcal{F}) if it satisfies the following three conditions.

- 1. For any $A \in \mathcal{F}$ we obtain $0 \le m(A) \le \infty$. In particular $m(\emptyset) = 0$.
- 2. If $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, then m(A + B) = m(A) + m(B).
- 3. All $B \in \mathcal{F}$ if $A, B \in \mathcal{F}$.

Proposition. 2.1.4. Suppose (X, \mathcal{F}) is a finitely additive family and m is a finitely additive measure. Then it follows that

1. (finite additivity) if $A_1, \ldots, A_n \in \mathcal{F}$ and they are pairwise disjoint, then

$$m\left(\bigcup_{j=1}^{n} A_j\right) = \sum_{j=1}^{n} m(A_j).$$
 (10.2.1)

2. (monotonicity) if $A, B \in \mathcal{F}$ and $A \subset B$, then $m(A) \leq m(B)$. In particular, if $m(B) < \infty$ then

$$m(A \setminus B) = m(A) - m(B). \tag{10.2.2}$$

3. (finite subadditivity) If $A_1, \ldots A_n \in \mathcal{F}$ then

$$m\left(\bigcup_{j=1}^{n} A_j\right) = \sum_{j=1}^{n} m(A_j).$$
 (10.2.3)

Definition. 2.1.5. (σ -additive family.) Suppose X is a set and \mathcal{B} is a family of subsets of X. The family \mathcal{B} is called a completely additive (contably additive, or σ -additive) family, or σ -algebra if the following three conditions hold.

- 1. $\emptyset \in \mathcal{B}$.
- A set E^c is in B if E ∈ B.
 ∪_{n=1}[∞] A_n ∈ B if E_n ∈ B for all n.

Definition. 2.1.6. (Measure.) Suppose X is a set and \mathcal{B} is a σ -additive family of subsets X. Then a function $\mu \colon \mathcal{B} \to \mathbb{R}$ is called a measure (on \mathcal{B}) if it satisfies the following three conditions.

- 1. (non-negativity) $0 \le \mu(A) \le \infty$, $\mu(\emptyset) = 0$.
- 2. (countable additivity) If $A_n \in \mathcal{B}$ (n = 0, 1, 2, ...) and (A_n) is pairwise disjoint, then

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} m(A_n). \tag{10.2.4}$$

We call a pair (X, \mathcal{B}, μ) a measure space.

10.2.2 Why countable?

Assume a Lebesgue measure (orginary area) μ is uncountable additive. Suppose sets $A_y = [0,1] \times \{y\}$ for $y \in [0,1]$ and their union $\bigcup_{y \in [0,1]} A_y = [0,1] \times [0,1]$. An area $\mu(A_y)$ of each A_y is 0, but their union is $[0,1] \times [0,1]$. An area is $\mu(\bigcup_y A_y) = 1$. Thus it holds that

$$\mu\left(\bigcup_{y} A_{y}\right) \neq \sum_{y} \mu(A_{y}). \tag{10.2.5}$$

Clearly uncountable operation leads contradiction.

Proposition. 2.2.1. *An area of a set* $A = [0, 1] \times \{0\}$ *is* 0.

Proof. Let $\varepsilon > 0$ and $b = [0, 1] \times [\varepsilon/2, \varepsilon/2]$. Then $A \subset B$ and

$$0 \le \mu(A) \le \mu(B) \le \varepsilon. \tag{10.2.6}$$

10.2.3 Definition of Lebesgure measure

Definition. 2.3.1. (Carethéodory outer measure.) If there is a set function $\Gamma: 2^X \to \mathbb{R}$ on X and Γ satisfies the following three conditions

- 1. (non-negativity) $0 \le \Gamma(A) \le \infty$, $\Gamma(\emptyset) = 0$,
- 2. (monotonicity) if $A \subset B$ then $\Gamma(A) \leq \Gamma(B)$,
- 3. (subadditivity) $\Gamma(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \Gamma(A_n)$,

then a set function Γ is called Carathéodory's outer measure or, simply, outer measure.

Theorem. 2.3.2. ([18] Theorem. 5.1) Let \mathcal{F} be a finitely additive family of X and m be a finitely additive measure on \mathcal{F} .

1. If we define a set function Γ as

$$\Gamma(A) := \inf \sum_{n=1}^{\infty} m(E_n), \qquad (10.2.7)$$

where inf is taken for all countable covering $A \subset \bigcup E_n$ $(E_n \in \mathcal{F})$, then Γ is an outer measure.

2. If m is countably additive on \mathcal{F} then $\Gamma(E) = m(E)$ for $E \in \mathcal{F}$.

Let $-\infty \leq a_k < b_k \leq \infty$ and $R = \prod_{k=1}^n (a_k, b_k)$. We call R an open hyperrectangle and a set defined by a finite union of (open) hyperrectangles as hyperrectangle mass. Let \mathcal{R}^n be a family of (open) hyperrectangles in \mathbb{R}^n and \mathcal{F}^n a family of hyperrectangle masses. For $R = \prod_{k=1}^n (a_k, b_k) \in \mathcal{R}^n$ we define a (finitely) additive measure on \mathcal{R}^n as

$$m(R) := \prod_{k=1}^{n} (b_k - a_k).$$
 (10.2.8)

Then we define the **Lebesgue outer measure** μ^* on \mathcal{F}^n as an outer measure from m.

Suppose Γ is an outer measure on X. If a set $E \subset X$ satisfies the condition

$$\Gamma(A) = \Gamma(A \cap E) + \Gamma(A \cap E^c), \quad \forall A \subset X, \tag{10.2.9}$$

then E is called Γ -measurable.

Theorem. 2.3.3. ([18] Theorem. 6.1) If Γ is an outer measure on X then the family of Γ -measurable sets \mathcal{M}_{Γ} is a σ -algebra and Γ is a measure on \mathcal{M}_{Γ} .

Consider the Lebesgue outer measure μ^* . A set belonging to \mathcal{M}_{μ^*} is called a **Lebesgue measurable set**. We denote μ for a measure μ^* on \mathcal{M}_{μ^*} and call the **Lebesgue measure**.

Theorem. 2.3.4. ([18] Theorem. 6.3) Let A_0 be an arbitrary family of subsets of a set X. Then there is a smallest σ -algebra \mathcal{B}_0 contains A_0 . We denote this \mathcal{B}_0 as $\mathcal{B}(A_0)$.

Proof. There is a σ -algebra containing \mathcal{A}_0 , e.g., the power set 2^X . If we consider all σ -algebra $\{\mathcal{B}\}$ containing \mathcal{A}_0 and set $\mathcal{B}_0 := \bigcap_{\{\mathcal{B}\}} \mathcal{B}$, then this \mathcal{B}_0 is a σ -algebra and minimal.

Let $\mathcal{O}(\mathbb{R}^n)$ be a set of open sets in \mathbb{R}^n . Then a σ -algebra $\mathcal{B}^n = \mathcal{B}(\mathcal{O}(\mathbb{R}^n))$ is called the **Borel family** and its elements **Borel sets**. In the following our main concern is a measure space $(\mathbb{R}^n, \mathcal{B}^n, \mu)$, where μ is the Lebesgue measure. However main arguments holds for general measure spaces.

10.2.4 Null sets

Definition. 2.4.1. Suppose (X, \mathcal{B}, μ) is a measure space and $A \in \mathcal{B}$. If $\mu(A) = 0$ then A is called a **null set** (for μ).

For the Lebesgue measure μ a point $a \in \mathbb{R}^n$ is a null set. A countable set $A = \{a_n\}_n \in \mathbb{R}^n$ is also null since

$$\mu(A) = \sum_{n=1}^{\infty} \mu(\{a_n\}) = 0.$$
 (10.2.10)

Note that there is an uncountable Lebesgue null set in \mathbb{R} , e.g., the **Cantor set**. For details see P.41 in [18].

10.2.5 Almost everywhere

Suppose (X, \mathcal{B}, μ) is a measure space. If there is a proposition P related to points in a set $E \in \mathcal{B}$ and it holds on $E \setminus E_0$, where $E_0 \subset E$ is null, then we say that the proposition P holds almost everywhere on E for μ .

For example, assume $X = E = \mathbb{R}$, μ is the Lebesgue measure, and $E_0 = \mathbb{Q}$. Note that \mathbb{Q} is null for μ since it is countable. Then a function

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & \text{otherwise,} \end{cases}$$
 (10.2.11)

is 0 almost everywhere on $\mathbb R$ and we denote

$$f(x) = 0$$
 a.e. $(10.2.12)$

10.2.6 Examples of other measures or measure spaces

Example. 2.6.1. Let \mathcal{B}^n be the Borel σ -algebra and μ is the Lebesgue measure. We define a new measure ν as

$$\nu(A) := \int_{A} f(x)d\mu(x) = \int_{A} f(x)dx, \quad A \in \mathcal{B}, \tag{10.2.13}$$

where a function $f: \mathbb{R}^n \to \mathbb{R}_{>}$ is integrable.

Example. 2.6.2. Let $X = \mathbb{N}$, $\mathcal{B} = 2^{\mathbb{N}}$, and μ be a counting measure, i.e., for $A = \{n_k\}_{k=1}^m$,

$$\mu(A) := \sum_{k=1}^{m} 1 = |A|. \tag{10.2.14}$$

Then, for a function $f: \mathbb{N} \to \mathbb{C}$, an integral is defined by

$$\int_{\mathbb{N}} f(x)d\mu(x) = \sum_{n=1}^{\infty} f(n),$$
(10.2.15)

i.e., an integral is a series in this case. Hence a series theory must be contained in Lebesque integration theory.

10.3 Properties of measure

Theorem. 3.0.3. ([18] Theorem 6.2.) Suppose (X, \mathcal{B}, μ) is a measure space and $(A_n)_n \subset \mathcal{B}$. If a sequence of sets (A_n) is monotone increasing or monotone decreasing and $\mu(A_1) < \infty$, then

$$\mu\left(\lim_{n\to\infty} A_n\right) = \lim_{n\to\infty} \mu(A_n). \tag{10.3.1}$$

In general

1.

$$\mu\left(\liminf_{n\to\infty} A_n\right) \le \liminf_{n\to\infty} \mu(A_n). \tag{10.3.2}$$

2. If $\mu(|A_n| < \infty then$

$$\limsup_{n \to \infty} \mu(A_n) \le \mu\left(\limsup_{n \to \infty} A_n\right). \tag{10.3.3}$$

3. If $\mu(\bigcup A_n) < \infty$ and $\lim_{n \to \infty} A_n$ exists then we obtain

$$\mu\left(\lim_{n\to\infty} A_n\right) = \lim_{n\to\infty} \mu(A_n). \tag{10.3.4}$$

Proof. If (A_n) is increasing we have $A_n = \bigcup_{k=1}^n (A_k \setminus A_{k-1})$, where $A_0 := \emptyset$. Since $\lim A_n = \sum_{k=1}^{\infty} (A_k \setminus A_{k-1})$ additivity shows that

$$\mu\left(\lim_{n\to\infty} A_n\right) = \sum_{k=1}^{\infty} \mu\left(A_k \setminus A_{k-1}\right) = \lim_{n\to\infty} \sum_{k=1}^{n} \mu(A_k \setminus A_{k-1}) = \lim_{n\to\infty} \mu(A_n).$$
(10.3.5)

If (A_n) is decreasing then a sequence $(A_1 - A_n)_n$ is increasing and $\lim_{n \to \infty} (A_1 - A_n) = A_1 - \lim_{n \to \infty} A_n$. Hence the above and $\mu(A_1) < \infty$ shows that

$$A_n) = A_1 - \lim_{n \to \infty} A_n. \text{ Hence the above and } \mu(A_1) < \infty \text{ shows that}$$

$$\mu(A_1) - \mu\left(\lim_{n \to \infty} A_n\right) = \mu\left(A_1 \setminus \lim_{n \to \infty} A_n\right) \tag{10.3.6}$$

$$= \lim_{n \to \infty} \mu\left(A_1 \setminus A_n\right) = \lim_{n \to \infty} \left(\mu(A_1) - \mu(A_n)\right) = \mu(A_1) - \lim_{n \to \infty} \mu(A_n). \tag{10.3.7}$$

For a general case set $B_n = \bigcap_{k=n}^{\infty} A_n$. Then $(B_n)_n$ is monotone increasing and $\liminf_{n \to \infty} A_n = \liminf_{n \to \infty} A_n$. Hence it holds that

$$\mu\left(\liminf_{n\to\infty}A_n\right) = \mu\left(\liminf_{n\to\infty}B_n\right) \le \liminf_{n\to\infty}\mu(A_n). \tag{10.3.8}$$

The remaining parts are derived from similar arguments.

10.4 Product measure and extension theorem

Definition. 4.0.4. Suppose $(X, \mathcal{B}_X, \mu_X)$ is a measure space. A measure space X is σ -finite if there is a monotonically increasing sequence of sets (X_k) belonging to \mathcal{B}_X such that $\mu_X(X_k) < \infty$ $(k \in \mathbb{N})$ and $\lim_{n \to \infty} X_n = X$.

Suppose $(X, \mathcal{B}_X, \mu_X)$ and $(Y, \mathcal{B}_Y, \mu_Y)$ are σ -finite measure spaces. We want to define a **product measure space** on $Z := X \times Y$.

We call a set $C \in \mathbb{Z}$ a **rectangle** if it has the form

$$C = A \times B, \quad A \in \mathcal{B}_X, \quad B \in \mathcal{B}_Y.$$
 (10.4.1)

The family \mathcal{F} of rectangles in C becomes a finitely additive family. Then we call $\mathcal{B}_Z := \mathcal{B}(\mathcal{F})$ a **product Borel family** or **product** σ -algebra, sometimes denoted by $\mathcal{B}_Z = \mathcal{B}_X \times \mathcal{B}_Y$.

Next we define a measure μ on \mathcal{B}_Z . For a rectangle $C = A \times B$, $\mu_X(A)$, $\mu_Y(B) < \infty$ we define

$$\mu(C) := \mu_X(A)\mu_Y(B). \tag{10.4.2}$$

We call μ a **product measure**.

Theorem. 4.0.5. (Theorem 9.4 [18].) The above μ is unique.

For the proof we need the following

Theorem. 4.0.6. (E. Hopf's extension theorem, Theorem 9.1 [18].) Suppose X is a set, \mathcal{F} is a finitely additive family, $\mathcal{B} = \mathcal{B}(\mathcal{F})$, and m is a finitely additive measure on \mathcal{F} . A finitely additive measure m can be extended to a measure μ on \mathcal{B} if and only if m is countably additive on \mathcal{F} . If, furthermore, X is σ -finite then the extension is unique.

10.5 Measurable functions

Suppose X is a set and \mathcal{B} is a σ -algebra on X. Fix $E \in X$ and set a function $f: E \to \overline{\mathbb{R}}$, where $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ Define the following sets:

$$E(f > a) := \{x \in E : f(x) > a\},$$
(10.5.1)

$$E(f \le a) := \{x \in E : f(x) \le a\}, \qquad (10.5.2)$$

$$E(f = a) := \{x \in E : f(x) = a\},$$
(10.5.3)

$$E(a < f \le b) := \{x \in E : a < f(x) \le b\}, \text{ etc.}$$
 (10.5.4)

(10.5.5)

A function f on E is \mathcal{B} -measurable or measurable if

$$E(f > a) \in \mathcal{B} \quad \forall a \in \mathbb{R}.$$
 (10.5.6)

A function $f: E \to \mathbb{R}$ is called a **simple function** if, for a finite pairwise disjoint decomposition $E = \bigsqcup_{k=1}^{n} E_k$, f has a form

$$f(x) = \sum_{j=1}^{n} \alpha_j \chi_{E_j}(x), \qquad (10.5.7)$$

where $\alpha_j \in \mathbb{R}$, $\alpha_j \neq \alpha_k$, and χ_E is a defining function of E.

Theorem. 5.0.7. If a function $f: E \to \mathbb{R}_{\leq}$ is measurable, then there is a non-negative and monotonically increasing sequence of simple functions (f_n) such that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in E$.

Proof. Define (f_n) as

$$f_n(x) = \begin{cases} \frac{k-1}{2^n}, & x \in E\left(\frac{k-1}{2^n} \le f < \frac{k}{2^n}\right) & (k = 1, 2, \dots, 2^n n), \\ n, & x \in E(f \ge n). \end{cases}$$
(10.5.8)

Theorem. 5.0.8. If f and g are measurable then sets E(f > g), $E(f \le g)$, and E(f = g) are all measurable.

Proof. The claims holds, e.g.,

$$E(f > g) = \bigcup_{q \in \mathbb{Q}} (E(f > q) \cup E(q > g)) \in \mathcal{B}. \tag{10.5.9}$$

Theorem. 5.0.9. If f is measurable then $|f|^{\alpha}$ is also measurable for any $\alpha \in \mathbb{R}$. For the case $\alpha < 0$ we define $|f(x)|^{\alpha} = \infty$ for the point x where f(x) = 0.

Proof. We consider only the case $\alpha > 0$ here. Let $a \in \mathbb{R}$. If a > 0 then we have

$$E\left(\left|f\right|^{\alpha}>a\right)=E\left(\left|f\right|>a^{1/\alpha}\right)=E\left(f>a^{1/\alpha}\right)\bigcup E\left(f<-a^{1/\alpha}\right)\in\mathcal{B}.\tag{10.5.10}$$

If $a \leq 0$ then it holds that

$$E\left(\left|f\right|^{\alpha} > a\right) = E \in \mathcal{B}.\tag{10.5.11}$$

Theorem. 5.0.10. *If* f *and* g *are measurable then, for any* $\alpha, \beta \in \mathbb{R}$ *, a function* $\alpha f + \beta g$ *is measurable.*

Proof. It suffices to show the case $\alpha > 0$. If $\beta = 0$ then, for any $a \in \mathbb{R}$,

$$E\left(\alpha f > a\right) = E\left(f > \frac{a}{\alpha}\right) \in \mathcal{B}.\tag{10.5.12}$$

If $\beta \neq 0$ then ,for any $a \in \mathbb{R}$,

$$E(\alpha f + \beta > a) = E\left(f > \frac{a - \beta}{\alpha}\right) \in \mathcal{B}.$$
 (10.5.13)

Thus a function $\alpha f + \beta$ is measurable. Hence it follows that, for $\beta \geq 0$

$$E(\alpha f + \beta g > a) = E\left(g \ge -\frac{\alpha}{\beta}f + \frac{a}{\beta}\right) \in \mathcal{B}.$$
 (10.5.14)

Theorem. 5.0.11. If f and g are measurable then the product fg is also measurable.

Proof. This is due to the fact

$$fg = \frac{1}{4} \left((f+g)^2 - (f-g)^2 \right).$$
 (10.5.15)

Theorem. 5.0.12. If all f_n are measurable then the following functions are also measurable.

$$g := \sup_{n \in \mathbb{N}} f_n, \quad h := \inf_{n \in \mathbb{N}} f_n, \quad \limsup_{n \to \infty} f_n, \quad \liminf_{n \to \infty} f_n.$$
 (10.5.16)

Proof. The function g is measurable since, for any $a \in \mathbb{R}$,

$$E(g > a) = \bigcup_{n=1}^{\infty} E(f_n > a) \in \mathcal{B}.$$
 (10.5.17)

The function h is measurable since $h = -\sup_{n \in \mathbb{N}} (-f_n)$. Setting $g_n = \sup_{k \geq n} f_k$, g_n is measurable and $\inf_{n \in \mathbb{N}} g_n = \limsup_{n \to \infty} f_n$ is also measurable since g_n is measurable. \square

Sum up:

Theorem. 5.0.13. The set of measurable functions is a linear space and closed in pointwise limits.

10.6 Definition of Lebesgue integral and its properties

Fix a measure space (X, \mathcal{B}, μ) and $E \in \mathcal{B}$.

Definition. 6.0.14. (Definition of integral for non-negative simple functions.) If a simple function $f: E \to \mathbb{R}_{\leq}$ defined by

$$f = \sum_{j=0}^{n} \alpha_j \chi_{E_j}, \quad E = \bigsqcup_{j=0}^{n} E_j, \quad \alpha_0 = 0 < \alpha_j,$$
 (10.6.1)

then we define and denote an integral of f as

$$\int_{E} f(x)d\mu(x) := \sum_{j=1}^{n} \alpha_{j}\mu(E_{j}).$$
 (10.6.2)

Theorem. 6.0.15. The above definition is well-defined.

Proof. A simple function can be described by

$$f = \sum_{k=0}^{m} \beta_k \chi_{F_k}, \quad E = \bigsqcup_{k=0}^{m} F_k, \quad \beta_0 = 0 < \beta_k.$$
 (10.6.3)

If there exists $j, k \geq 1$ such that $\mu(E_j \cap F_k) = \infty$ then

$$\sum_{j=1}^{n} \alpha_{j} \mu(E_{j}) = \sum_{k=1}^{m} \beta_{k} \mu(F_{k}) = \infty.$$
 (10.6.4)

1 \

Lemma. 6.0.16. (Linearity of integrals.)

1. If functions f and g are non-negative and simple then

$$\int_{E} (f+g)d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$
 (10.6.5)

2. If a function f is non-negative and simple and if $A \cup B \subset E$ then it holds that

$$\int_{A+B} f d\mu = \int_A f d\mu + \int_B f d\mu. \tag{10.6.6}$$

Proof. Proof for 1). By assumption it follows that

$$f = \sum_{j=0}^{n} \alpha_j \chi_{E_j}, \quad E = \bigsqcup_{j=0}^{n} E_j, \quad \alpha_0 = 0 < \alpha_j,$$
 (10.6.7)

$$g = \sum_{k=0}^{m} \beta_k \chi_{F_k}, \quad E = \bigsqcup_{k=0}^{m} F_k, \quad \beta_0 = 0 < \beta_k.$$
 (10.6.8)

A function (f+g) is also simple and described by

$$f + g = \sum_{j,k} (\alpha_j + \beta_k) \chi_{E_j \cap F_k}. \tag{10.6.9}$$

If there exists a number $j \geq 1$ such that $\mu(E_j) = \infty$ then the both hand sides are ∞ and the claim is shown. If $\mu(E_j \cap F_K) < \infty$ for any j, k then we habe

$$\int_{E} (f+g)d\mu = \sum_{j,k} (\alpha_j + \beta_k) \,\mu(F_j \cap G_k)$$
(10.6.10)

$$= \sum_{j=1}^{n} \alpha_j \sum_{k=0}^{m} \mu(F_j \cap G_k) + \sum_{k=1}^{m} \beta_k \sum_{j=0}^{n} \mu(F_j \cap G_k)$$
 (10.6.11)

$$= \sum_{j=1}^{n} \alpha_j \mu(F_j) + \sum_{k=1}^{m} \beta_k \mu(G_k)$$
 (10.6.12)

$$= \int_{E} f d\mu + \int_{E} g d\mu. \tag{10.6.13}$$

Proof for 2).

$$\int_{A+B} f d\mu = \sum_{j=1}^{n} \alpha_{j} \mu \left(E_{j} \cap (A \sqcup B) \right)$$
 (10.6.14)

$$= \sum_{j=1}^{n} \alpha_{j} \mu (E_{j} \cap A) + \sum_{j=1}^{n} \alpha_{j} \mu (E_{j} \cap B) = \int_{A} f d\mu + \int_{B} f d\mu.$$
(10.6.15)

Lemma. 6.0.17. (Lemma 12.2 in [18].) Suppose functions (f_n) and g are nonnegative and simple, g is finite, a sequence (f_n) is monotonically increasing, and $\lim f_n(x) \geq g(x)$ for any $x \in E$ then it holds that

$$\lim_{n \to \infty} \int_{E} f_n d\mu \ge \int_{E} g d\mu. \tag{10.6.16}$$

Proof. We may assume g is positive on E. Since g can be described by

$$g = \sum_{j=m} \alpha_j \chi_{E_j}, \quad 0 \le \alpha_j < \infty, \tag{10.6.17}$$

putting $\alpha = \min \{\alpha_i\}$ and $\beta = \max \{\alpha_i\}$ it holds that

$$0 < \alpha \le g \le \beta < \infty. \tag{10.6.18}$$

For $\varepsilon \in (0, \alpha)$ a function $g - \varepsilon > 0$ is simple. If we set $F_n := E(f_n > g - \varepsilon)$, then, since (f_n) is monotonically increasing and $\lim_{n \to \infty} f_n \ge g$, it follows that (F_n) is monotonically increasing and

$$\lim_{n \to \infty} F_n = E, \quad \lim_{n \to \infty} \mu(F_n) = \mu(E). \tag{10.6.19}$$

141

If $\mu(E) < \infty$, since $\lim \mu(E \setminus F_n) = \mu(E) - \lim \mu(F_n) = 0$, for any $\varepsilon > 0$ there is n_0 such that

$$\mu(E \setminus F_n) < \varepsilon, \quad n \ge n_0.$$
 (10.6.20)

Since it holds that

$$\int_{E} f_n d\mu \ge \int_{F_n} f_n d\mu \ge \int_{F_n} (g - \varepsilon) d\mu = \int_{F_n} g d\mu - \varepsilon \mu(F_n)$$
 (10.6.21)

$$\geq \int_{E} g d\mu - \int_{E \setminus F_{-}} g d\mu \varepsilon \mu(E) \tag{10.6.22}$$

$$\geq \int_{E} g d\mu - \beta \mu \left(E \setminus F_{n} \right) + \varepsilon \mu(E) \tag{10.6.23}$$

$$> \int_{E} g d\mu - \varepsilon \left(\beta + \mu(E)\right), \tag{10.6.24}$$

we obtain

$$\lim_{n \to \infty} \int_{E} f_n d\mu \int_{E} g d\mu - \varepsilon \left(\beta + \mu(E)\right). \tag{10.6.25}$$

For the case $\mu(E) = \infty$, we use a similar reasoning.

Lemma. 6.0.18. (Lemma 12.3 in [18].) Suppose sequences of nonnegative simple functions (f_n) and (g_n) are monotonically increasing in n and that $\lim_{n\to\infty} f_n = \lim_{n\to\infty} g_n$, then it follows that

$$\lim_{n \to \infty} \int_{E} f_n d\mu = \lim_{n \to \infty} \int_{E} g_n d\mu. \tag{10.6.26}$$

Proof. By assumption we have

$$\lim_{n \to \infty} \int_{E} f_n d\mu \ge \int_{E} g_m d\mu. \tag{10.6.27}$$

Clearly the converge inequality holds.

Definition. 6.0.19. There is a monotonically increasing sequence of simple functions (f_n) such that $\lim_{n\to\infty} f_n = f$. Then We define an integral for nonnegative measurable function f by

$$\int_{E} f d\mu := \lim_{n \to \infty} \int_{E} f_n d\mu. \tag{10.6.28}$$

This definition makes sense since the above limit does not depend on a choice of a sequence.

For a general real-valued function f, we decompose f as

$$f_{+}(x) := \max\{f(x), 0\}, \quad f_{-}(x) := \max\{-f(x), 0\}.$$
 (10.6.29)

A function f is integralable if $\int_E f_+ < \infty$ or $\int_E f_- < \infty$, and we define

$$\int_{E} f d\mu := \int_{E} f_{+} d\mu - \int_{E} f_{-} d\mu. \tag{10.6.30}$$

If f is complex-valued we decompose f as $f = \Re f + i \Im f$ and define an integral

$$\int_{E} f d\mu := \int_{E} \Re f d\mu + i \int_{E} \Im f d\mu. \tag{10.6.31}$$

Theorem. 6.0.20. (Theorem 12.1 in [18].) If a function f is integralable on E then

$$\left| \int_{E} f d\mu \right| \le \int_{E} |f| \, d\mu. \tag{10.6.32}$$

Theorem. 6.0.21. (Theorem 12.2 in [18].)

1. If $\mu(E) = 0$ then

$$\int_{E} f d\mu = 0. \tag{10.6.33}$$

2. If f is integralable on E then

$$\mu(E(f = \infty)) = \mu(E(f = -\infty)) = 0.$$
 (10.6.34)

Proof. We show only 2). Set $E_0 := E(f = \infty)$. Then, for $\alpha > 0$, we obtain

$$\int_{E} f_{+} d\mu = \int_{E_{0}} f_{+} d\mu + \int_{E \setminus E_{0}} f_{+} d\mu \ge \int_{E_{0}} \alpha d\mu = \alpha \mu(E_{0}).$$
 (10.6.35)

Since α is arbitrary $\mu(E_0) = 0$.

Theorem. 6.0.22. (Theorem 12.3 in [18].)

1. (Linearity of integral) For integralable functions f, g and any complex number α, β it holds that

$$\int_{E} (\alpha f + \beta g) d\mu = \alpha \int_{E} f d\mu + \beta \int_{E} g d\mu.$$
 (10.6.36)

2. If f is integralable and $A \sqcup B \subset E$ then we have

$$\int_{A \cup B} f d\mu = \int_{A} f d\mu + \int_{B} f d\mu. \tag{10.6.37}$$

10.7 Famous theorems for exchanging orders of limits

We fix a measure space (X, \mathcal{B}, μ) .

Theorem. 7.0.23. (Theorem. 13.1 in [18].) If functions (f_n) is nonnegative and $f = \sum_{n=1}^{\infty} f_n$ then

$$\int_{E} f d\mu = \sum_{n=1}^{\infty} \int_{E} f_n d\mu. \tag{10.7.1}$$

Theorem. 7.0.24. (Monotone convergence theorem, Beppo-Levi, Theorem. 13.2 in [18].) If a sequence (f_n) is nonnegative and monotonically increasing and that $\lim_{n\to\infty} f_n = f$ it holds that

$$\int_{E} f d\mu = \lim_{n \to \infty} \int_{E} f_n d\mu. \tag{10.7.2}$$

Proof. We may assume functions (f_n) is finite on E. Letting

$$g_1 = f_1, \quad g_n = f_n - f_{n-1} \quad (n \ge 2),$$
 (10.7.3)

we obtain

$$f_n = \sum_{k=1}^n g_k, \quad f = \sum_{k=1}^\infty g_k, \quad g_k \ge 0.$$
 (10.7.4)

Then it follows that

$$\int_{E} f d\mu = \sum_{k=1}^{\infty} \int_{E} g_k d\mu = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{E} g_k d\mu = \lim_{n \to \infty} \int_{E} f_n d\mu.$$
 (10.7.5)

Theorem. 7.0.25. (Absolute continuity, Theorem 13.4 in [18].) Assume a function f is integrable on X. Then, for any $\varepsilon > 0$, there is a $\delta > 0$ such that

$$\mu(E) < \delta \Longrightarrow \left| \int_{E} f d\mu \right| < \varepsilon.$$
 (10.7.6)

Theorem. 7.0.26. (Fatou's lemmna, Theorem 13.5 in [18].) If functions (f_n) is nonnegative then it holds that

$$\int_{E} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{E} f_n d\mu. \tag{10.7.7}$$

Theorem. 7.0.27. (Lebesgue's dominant convergence theorem, Theorem 13.6 in [18].) If there is a function φ on E and that

$$|f_n| \le \varphi \quad (n \in \mathbb{N}), \tag{10.7.8}$$

then it follows that

$$\int_{E} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{E} f_n d\mu, \tag{10.7.9}$$

$$\limsup_{n \to \infty} \int_{E} f_n d\mu \le \int_{E} \limsup_{n \to \infty} f_n d\mu. \tag{10.7.10}$$

In particular, if there is $f = \lim_{n \to \infty} f_n$ then we have

$$\lim_{n \to \infty} \int_{E} f_n d\mu = \int_{E} \lim_{n \to \infty} f_n d\mu. \tag{10.7.11}$$

Theorem. 7.0.28. (Theorem 13.7 in [18].) If a sequence of functions (f_n) satisfies

$$\sum_{n=1}^{\infty} \int_{E} |f_n| \, d\mu \le \infty, \tag{10.7.12}$$

then there is an a.e. finite function $\sum_{n=1}^{\infty} f_n$ such that

$$\sum_{n=1}^{\infty} \int_{E} f_n d\mu = \int_{E} \sum_{n=1}^{\infty} f_n d\mu.$$
 (10.7.13)

Theorem. 7.0.29. (Theorem 14.2 in [18].) If a function $f(x,t) = f \colon X \times (a,b) \to \mathbb{C}$ is integralable on X for x and differentiable for t and that there is a integralable function φ such that $\left|\frac{\partial f}{\partial t}\right| \leq \varphi$, then it holds that

$$\frac{d}{dt} \int_{X} f(x,t) d\mu(x) = \int_{X} \frac{\partial f}{\partial t}(x,t) d\mu(x). \tag{10.7.14}$$

10.8 Fubini's theorem

10.9 Function spaces L^p

Riemann-Lebesgue. Def of Sobolev using Fourier transform. P83, Theorem 12.6. P84, Theorem 12.7, P85, Theorem 12.8.

10.10 Riesz-Markov-Kakutani's theorem

10.11 Fourier Analysis

- 10.11.1 Hilbert space
- 10.11.2 Fourier series
- 10.11.3 Fourier transform
- 10.11.4 Functions of positive type: Bochner's theorem

10.12 Miscellaneous results

- 1. Omitted proofs.
- 2. Examples and construction of measures. ([18], Section 4-6, Theorem 4.2.)
- 3. Details for outer measure. ([18], Section 5.)
- 4. Important (topological) properties of the Lebesgue measure. ([18], Section 7.)
- 5. Completion of a measure. ([18], Section 8.)
- 6. Borel measurability and Lebesgue measurability. ([18], Section 11.)
- 7. Radon-Nikodym's theorem. ([18], Section 18.)
- 8. Probability theory. ([40, 16])

Introduction to functional analysis

Introduction to operator theory

- 12.1 Functional calculus
- 12.2 Normed field

Introduction to Hilbert Space Theory And Operator Theory

13.1 Introduction

[3, 7, 6, 10, 15, 14, 17, 21, ?, 24, 31, 30, 33, 35, 23, 38]

13.1.1 概要

この間 Twitter で新入生が線型代数何ぞ的なこと言っていたのもあるので、新入生向けに線型代数の世界を見せたい. 私が話せるのは解析学周辺しかないが、ないよりはましだろう. Hilbert 空間と線型作用素を基本に話す. 線型代数へのモチベーションを高めることを目的に概論的な話で 4-5 回に分けて解説する. 主な参考書は [17, 7, 6] とする.

やる予定の内容を書いておきたい. 基本的には抽象論をやる. 作用素論方面の話に行ってスペクトル定理まで進む. 作用素環でも大事になる. 非可換幾何への展開でまた L^2 など具体的な話との関係が返ってくる. あと, L^2 のような話は具体的な話はもちろん大事だが, これはイントロで少し触れるだけにする.

まずイントロでする予定の話.まず超大雑把に言って教養でやる線型代数らしい線型代数と、微分方程式方面と関わる方面の話と、関数解析または作用素論的な抽象論みたいな感じの話がある的な話をする.

13.1.2 線型代数からの代数的展開

加群への展開とか、Lie 群への展開とか数学として取り逃すところは色々出てくるが、この辺は私の数学力的に手に負えないところが出てくるので色々ある、とだけ言って逃げる。ただ表現論と Fourier と、みたいなところと量子力学とかは少し触れたい。

13.1.3 標準的なコースで出てくる諸概念の重要性

あと標準的なコースの重要性はきちんと言わないといけない. 行列式と固有値, 固 有ベクトルあたりは何をネタにしよう. 物理の各所で出てくるが. 固体物理とい うか連成振動とかその辺か、あと統計学での主成分分析とかそういう話か、この 辺、具体例を仕入れる必要がある。

固有値, 固有ベクトルは量子力学とかその他物理でも色々展開があるという話はしよう. 物理の話ばかりしているのもどうかという気はするが, 応用はそれしか知らない無学な市民だった.

Google のページランクみたいな話もしよう. 確率との関係とかエルゴードとか言っておくと響く向きには響くだろう. これ, 数値計算とも関係するかなりクールな話なので盛り込みたい.

とりあえず有限次元はこんなものか、無限次元というか微分積分への接続として平衡点近傍の話をもってくる方がいいか、あとは微分作用素と積分作用素の線型性は必ず触れる.

13.1.4 線型代数と物理や工学への応用

有限次元と言ったところで専門に近い所で見ても色々あるし困る. とりあえずハバードだとか、直接的に研究に結び付くくらいやばい、という話はしよう

あとは数値計算でも使う的な話は入れよう. 微積分との絡みで平衡点近傍の安 定性とかそんな話もしよう.

脱線するが、平衡点近傍の話、多分力学系とかそういうところでも使う. あまりきちんと勉強していないが、山本義隆の解析力学にも解説あるし、ゆきみさんいわく常微分方程式と解析力学にも解説あるらしい.

これは適当な線型化から系の性質を調べるとかいう話で、微分積分や力学と も深い関係がある、機械工学とかその辺でも確か出てくるはずとかそんな話をし たい。

考えてみれば、Hubbard や Google のページランクについては動画を作ったのだった。

13.1.5 線型代数と量子力学

Hilbert 空間の抽象論と作用素論的な展開と量子力学との関係的なアレはあとで詳しくやるから、軽くこなす、まずは有限次元の方か、

13.1.6 線型代数と Hilbert 空間

線型代数は (数学内部または少なくとも物理と物理に近い工学で) 役に立つという話はされるだろうが、あまり具体的な話はされない (時間がない) だろうから、その辺の話から入る. 新入生向けなので、まず Hilbert 空間は何ぞというところを話す. 高校でもやった三角関数の積分が実は Hilbert 空間で意味を持つというところ、微分積分と線型代数の交点というか親玉みたいな話としての関数解析で大事な空間という話をする. また、物理でそれなりに色々な数学が出てくるが、線型代数という視点でクリアで統一的な理解ができるから大事という話をする. 微分作用素、積分作用素の線型性とかも話す必要がある.

13.1.7 微分方程式

物理または工学上大事な数学的道具立てとして大事な微分方程式があるが、初等的な方程式なら具体的に解ける.「線型の微分方程式」という中で既に線型性が出ているので、そういうところで解析と線型代数の関わりみたいな話がしたい.これを解く中で現われる直交多項式の話の「直交」も線型代数由来の話で、これが

Hilbert 空間の話という感じで. [7] の 1 章の演習問題にいくつか書いてあるので, 一応参考文献として挙げておこう.

今回,個別の話をやっている余裕はなかろうが Legendre やら Bessel やら,量子力学とか電磁気周りでの微分方程式を解くときにも出てくるという話も盛り込みたいこれは個別の関数の相手もそれはそれで大事なのだが,理屈としては線型空間論で一括処理できるのだ,という認識を持つことで数学的,精神的な負担を減らすことを目的に,必ず触れるようにしたい.

あとアレだ、モノによっては多重極展開とか応用上の意味があったりもするから、単なる数学ではない部分もある的なアレ. 変分とか無限次元の微分とかいう話はすると楽しいかよくわからないが、ネタとして書いておこう.

13.1.8 微分方程式を解くときに出てくる直交多項式

第1回のイントロでは特に特殊関数周りの具体例を色々あげておきたいと思っている。全体的な話として、まだ買っていないのだが[3]がかなり気になっている。

とりあえず触れようと思っているのは、Legendre 多項式、Legendre 陪関数、Hermite 多項式、Laguerre 多項式、Fourier 級数のあたりだ。ちなみに今はじめて知ったのだが、Chebyshev 多項式は [38] によると、計算機の中での応用があるらしい。

Legendre 多項式, 球 Bessel 多項式

Legendre や球 Bessel については [28] が参考になるかと思う。自分が知っている話、ということで物理への応用について話す予定で、正にそういう話だ。Laguerre は例えば [21] を検討している。上記多項式もそうだが、Hermite についても手元にある本含め、まだ資料をあさっている。

今すぐ参考文献を知りたい向きは、基本的には偏微分方程式を解くところで使うので、その辺で探すといい、「物理数学 Legendre 多項式」などで探せば色々出てくる。

Fourier

Fourier は熱方程式,波動方程式,電磁気学あたりで探すといいだろう,数学の本ではあるが,逆問題を通じた応用的な色彩が強い本として,波動方程式への応用については [33] を,熱方程式への応用については [23] を参考にすると楽しいだろう.

物理への応用に関してよい参考書は今探しているところだ. 波動の本でもいいが, 電磁気 (電磁波) からの話が個人的に気に入っているというか感覚が掴みやすかったので, その辺で探すといい. もちろん, 自分の専門に近いところ, 自分にとって分かりやすいところで探すのが一番いい. いいのがあったら教えてほしい.

微分作用素の固有値展開からの Fourier という線もある. Fourier は高校でやった三角の積分が直交関係を表す.

13.1.9 变分

多項式から話題を変えるが、例えば変分というのがある。変分原理として物理の各所で現われるが、量子力学で基底エネルギーを出すのに使うこともある。実係数の微分方程式への数学的応用ということでは [15] が定評がある。もちろんかっちりとした数学の本だ。Hilbert 空間を中心に議論されている。最近演習問題も追加された英語版 [14] も出版されたので、買うならそちらを買った方がいいかもしれない。東大の微分方程式系の研究室での学部 4 年のセミナーでも使われることがあるようなので、そのくらいきちんとした本だ。

また,何度も紹介しているが,解析力学というか幾何学での変分ということでは [31] が比較的分かりやすく,しかも面白い. 読んだことはないのだが,物理での変分原理については [35] もある.

13.1.10 作用素のスペクトル

これまでの微分方程式の話とは大分変わるが、作用素論につなげるので、量子力学とスペクトルの話もしたいと思っている。これについては [17] はもちろんのこと、数理物理としては新井先生の本 [7, 10] がいい。

量子力学での変分に関する数学的に精密な話も書いてある。他には、作用素の関数やユニタリ表現に関する話も大事だ、作用素の関数については先日ワヘイへイオフで詳しい話を聞かせる、という要望を受けたので、別途早めにまとめようと思っている。

13.1.11 Taylor 展開と作用素論

また、Taylor 展開と作用素論ということで e^{ipx} の話もしよう. 簡単に説明しておくとこんな感じ. f(x) を原点周りで Taylor 展開するとこうなる:

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{d}{dx}\right)^n f(0). \tag{13.1.1}$$

どうでもいいが、量子力学っぽく p = -id/dx と書こう:

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} (ip)^n f(0).$$
 (13.1.2)

ここで指数関数の Taylor 展開は

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \tag{13.1.3}$$

となる. ここで Taylor 展開の $\sum_{n=0}^\infty \frac{1}{n!} \left(ip\right)^n$ は x に ip を代入したものと同じ形をしていることに注意して次のように書き換えてみる.

$$f(x) = (e^{ipx}f)(0).$$
 (13.1.4)

指数関数に微分作用素を叩き込むという荒技を披露したが,作用素論を使ってこれが正当化できます,みたいなことも言いたい.また,作用素の指数関数 e^{ipx} は Taylor 展開で定義してしまうと解析関数に対してしか定義できないが,x だけずらす作用素と思えば一般の関数に対して定義できる.ここでユニタリ作用素とかそういう話になる.あと x だけずらす作用素 e^{ipx} の無限小生成子としての運動量という所から,解析力学と量子力学の関係がどうの,みたいな話もちょろっと触れたい.

以上大体イントロで話す予定のこと.

13.1.12 2 回目の概論

2 回目から実際にもう少し踏み込んだ話をしていく. まずは Hilbert 空間自体の話をする. [?] には Banach 空間の話もあるが, 時間的に多分カットだろう. 演習問題になっている定理にも少し触れたい. 完備性の話などもあるので, 証明もポイントをおさえて触れていきたい.

13.1.13 3-4 回目の概論

引き続き 2,3 章を力づくでやっていく.非有界作用素はゴツ過ぎて触れられないが,スペクトル定理は紹介する.スペクトル定理は無限次元版の対角化だ.スペクトル測度や解析関数カルキュラスとか出てきてやばいのだが,むしろ色々な数学との関係を話す機会として採り上げたい. Stone の定理と量子力学の話とかも一応入れる予定.

13.1.14 参考文献の紹介

参考文献をまとめておこう. [17, 7] の他, 1 つの展開としての作用素環方面, 特に(非可換) 幾何方面ということで, 数学会で PDF が公開されている [30] も紹介しておく. 触れる予定はないが, 微分方程式関係と共に関数解析をやろうという感じの本も紹介だけはしておこう. [33, 23, 15, 14] だ. [14] は [15] のあと, 演習問題を追加して増補されたバージョンだ. 英語に慣れることも含め, こちらを読んだ方が楽しいだろう. こういう具体的な方から学ぶのが好きな人は頑張ってアタックしてみてほしい. また, こちらに興味があるという人は声をかけてほしい. トークしろと言われると困る部分はあるが, 一緒に勉強しようというなら時間さえ合えば付き合いたい. そしてプロデュースしたい.

Fourier Analysis

動画から適当に切り出してくる.

重ね合わせの原理とFourier 解析

- 15.1 Fourier 級数 関数の大域近似
- 15.2 Fourier 変換
- 15.3 Dirac の $$\delta$ \$関数
- 15.4 波動方程式の解
- 15.5 Green 関数
- 15.6 スペクトル分解

Talk: Inverse analysis for heat equation—mathematics, physics, engineering

DVD の原稿をもう少し整理して張る.

Talk: Analysis for the Thomas-Fermi functional after Lieb-Loss [25]

17.1 Introduction

17.1.1 Comparison for the two problems

Here we talk about two problems, i.e.,

- 1. theory for the Schrödinger equation,
- 2. theory for Thomas-Fermi problem.

The former is connected to

- Lebesgue integral and various inequalities,
- linear algebra,
- functional analysis,
- the theory of distribution,
- partial differential equations,

and so on. On the other hand the latter is connected to

- Lebesgue integral and various inequalities,
- functional analysis.

In the seminar on Feb. 14th, 2014 we talk about the latter because the first talking plan is to explain the latter and the latter is a little bit easier because the latter needs less knowledge.

17.1.2 Variational problem and its mathematical background

We give a lecture on a book [25] and a paper [26].

Here we give two examples of solving optimization (variational) problems. In general we consider optimization for a **functional** if we say 'variational'.

The first comes from quantum mechanics and is the problem of determining the energy of an atom–primarily the lowest one. The second is a classical type minimization problem—the Thomas-Fermi problem—that arizes in chemistry. In these two cases the difficult part is showing the existence of a minimizer, and hence of a solution to a partial differential equation. Needless to say, the following considerations (known as the **direct mechod in the calculus of variations**) for establishing a solution to a differential equation are not limited to these elementary examples, but should be viewed as a general strategy to attack optimization problems.

Historically, and even today in many places, it is customary to dispense with the question of existence as a mere subtlety. By simply assuming that a minimizer or maximizer exists, however, and then trying to derive properties for it, one can be led to severe inconsistencies—as the following amusing example taken from [41] and attributed to Perron shows:

Let N be the largest natural number. Since $N^2 \ge N$ and N is the largest natural number, $N^2 = N$ and hence N = 1.

What this example tells us is that even if the 'variational equation', here $N^2 = N$, can be solved explicitly, the resulting solution need not have anything to do with the problem we started out to solve.

Let us continue this overview with some general remarks about minimization of functions. A general theorem in analysis says that a bounded continuous real function f defined on a bounded and close set K in \mathbb{R}^n attains its minimum value. To prove this, pick a sequence of points x_j such that

$$f(x_j) \to \lambda := \inf_{x \in K} f(x)$$
 as $j \to \infty$. (17.1.1)

Since K is compact there exists a subsequence, again denoted by x_j , and a point $x \in K$ such that $x_j \to x$ as $j \to \infty$. Hence, since f is continuous,

$$\lambda = \lim_{j \to \infty} f(x_j) = f(x), \tag{17.1.2}$$

and the minimum value is attained at x.

Instead of \mathbb{R}^n , consider now $L^2(\Omega, d\mu)$ and let $\mathcal{F}(\psi)$ be some (nonlinear) functional defined on this space. In many examples $\mathcal{F}(\psi)$ is strongly continuous, i.e., $\mathcal{F}(\psi_j) \to \mathcal{F}(\psi)$ as $j \to \infty$ whenever $\|\psi_j - \psi\|_2 \to 0$ as $j \to \infty$. Suppose we wish to show that the infimum of $\mathcal{F}(\psi)$ is attained on $K := \{\psi \in L^2(\Omega, d\mu) : \|\psi\|_2 \le 1\}$. This set is certainly closed and bounded, but for a bounded sequence $\psi_j \in K$ there need not be a strongly convergent subsequence (see Sect. 2.9 in [25]).

The idea now is to relax the strength of convergence (topology). Indeed, if we use the notion of weak convergence instead of strong convergence, then, by Theorem 2.18 in [25], every sequence in K has a weakly convergent subsequence: see also Section 17.2.5. In this way, the set of convergent sequences has been enlarged—but a new problem arises. The functional $\mathcal{F}(\psi)$ need not be weakly continuous—and it rarely is. Thus, to summarize, the more sequences exist that have convergent subsequences the less likely it is that $\mathcal{F}(\psi)$ is continuous on these sequences. The way out of this apparent dilemma is that in many examples the functional turns out to be **weakly lower semicontinuous**, i.e.,

$$\liminf_{j \to \infty} \mathcal{F}(\psi_j) \ge \mathcal{F}(\psi) \quad \text{if} \quad \psi_j \xrightarrow{\mathbf{w}} \psi.$$
(17.1.3)

Thus, if ψ_i is a minimizing sequence, i.e., if

$$\mathcal{F}(\psi_i) \to \inf \left\{ \mathcal{F}(\psi) : \psi \in K \right\} = \lambda,$$
 (17.1.4)

then there exists a subsequence ψ_i such that $\psi_i \xrightarrow{\mathbf{w}} \psi$, and hence

$$\lambda = \lim_{j \to \infty} \mathcal{F}(\psi_j) \ge \mathcal{F}(\psi) \ge \lambda. \tag{17.1.5}$$

Therefore, $\mathcal{F}(\psi) = \lambda$, and the goal is achieved!

17.1.3 Schrödinger equation

The time independent Schrödinger equation for a particle in \mathbb{R}^n , interacting with a force field $F(x) = -\nabla V(x)$, is

$$-\Delta \psi + V\psi = E\psi. \tag{17.1.6}$$

The function $V: \mathbb{R}^n \to \mathbb{R}$ is called a potential¹. The 'wave function' ψ is a complex-valued function in $L^2(\mathbb{R}^n)$ subject to the **normalization condition**

$$\|\psi\|_2 = 1. \tag{17.1.7}$$

An L^2 solution to (17.1.6) may or may not exist for any E; often does not. The special real numbers E for which such solutions exist are called **eigenvalues** and the solution, ψ , is called an **eigenfunction**. These have, of course, its origin in linear algebra: $H := -\Delta + V$ is a linear operator, and E's are its eigenvalues and ψ is an eigenfunction belonging to E.

Associated with (17.1.6) is a variational problem. Suppose ψ is some nice function (i.e., in $\mathcal{D}(\mathbb{R}^n) := C_c^{\infty}(\mathbb{R}^n)$) and multiplied $\bar{\psi}$ to (17.1.6):

$$-\bar{\psi}\Delta\psi + V|\psi|^2 = E|\psi|^2.$$
 (17.1.8)

By integration by parts (Stokes' theorem), we get

$$\int |\nabla \psi|^2 + \int V |\psi|^2 = E \|\psi\|_2^2. \tag{17.1.9}$$

Consider the following functional defined for a suitable class of functions in $L^{2}(\mathbb{R}^{n})$ (to be specified later):

$$\mathcal{E}\left(\psi\right) = T_{\psi} + V_{\psi},\tag{17.1.10}$$

with

$$T_{\psi} = \int_{\mathbb{R}^n} \left| \nabla \psi(x) \right|^2 dx, \tag{17.1.11}$$

$$V_{\psi} = \int_{\mathbb{R}^n} V(x) |\psi(x)|^2 dx.$$
 (17.1.12)

Physicaly T_{ψ} is called the **kinetic energy** of ψ , V_{ψ} is its **potential energy** and $\mathcal{E}(\psi)$ is the **total energy** of ψ .

 $^{^1}$ ただし三角の微分があってそこは高校 3 年理系相当だから世間的にはあまり馴染みもないだろうとも思っている.

The variational problem we shall consider is to minimize $\mathcal{E}(\psi)$ subject to the constant $\|\psi\|_2 = 1$. This relates to the fundamental physical inspection: nature favors the states having lower energy. Note that we change the problem to easier one, i.e., differential equation to integro-differential equation. Integral equation is easier because we can use many inequalities. Furthermore integral does conserve the order of functions, i.e.,

$$f \le g \Longrightarrow \int f \le \int g.$$
 (17.1.13)

This property is essential in the following analysis.

As we shall show below, a minimizing function ψ_0 , if one exists, will satisfy equation (17.1.6) with $E = E_0$, where

$$E_0 := \inf \left\{ \mathcal{E}(\psi) : \int |\psi|^2 = 1 \right\}.$$
 (17.1.14)

Such a function ψ_0 will be called a **ground state**. The number E_0 is called the **ground state energy**.

Thus the variational problem determines not only ψ_0 but also a corresponding eigenvalue E_0 , which is the smallest eigenvalue of (17.1.6).

Our route to finding a solution to (17.1.6) takes us to the main problem.

- 1. Show, under suitable assumptions on V, that a minimizer exists.
 - 1. Note that there are examples where a minimizer does ${f not}$ exist, e.g., take V=0.
- 2. Show that the minimizers satisfy (17.1.6) in the sense of distributions.
- 3. Show that, under suitable additional assumptions on V, the distributional solutions of (17.1.6) are sufficiently regular to yield classical solutions.
- 4. Show that (non-) uniqueness of the minimizer.
 - 1. Here uniqueness means that it is unique apart from an overall phase, i.e., $\psi_0 \to e^{i\theta} \psi_0$.

Considering distributional solutions is usual procedure in mathematics. If we want to solve algebraic equations we first consider solutions in \mathbb{C} for existence. Then we consider properties of solutions. Considering distributional solutions amounts to considering in \mathbb{C} .

17.1.4 Connection to other mathematical branches

Mathematics for quautum mechanics

Time dependent Schrödinger equation
 A time dependent Schrödinger equation is

$$i\frac{\partial}{\partial t}\phi = H\psi, \tag{17.1.15}$$

where H is a Hamiltonian, i.e., selfadjoint operator. There are many PDE analysis including scattering theory, etc.

Operator theory
 In operator theoretic language, our main task in this seminar is a proof that

- 1. the **Hamiltonian** $H = -\Delta + V$ is bounded below,
- 2. the infimum of the spectrum $\sigma(H)$ of H is in the point spectrum (the set of eigenvalues).

Note that, in operator theory, the ground state does not appear explicitly. Remember the theory of eigenvalues and eigenvectors in linear algebra: eigenvectors are defined after the definition of eigenvalues.

Main concern of operator theory is, of course, the properties of operators, not the properties of functions. Hence operator theoretic point of view is different from real analytic one.

This originates in the physics of quantum mechanics: in quantum mechanics the spectrum of an operator is the set of measured values, i.e., the spectrum of an operator has direct physical meaning. Since my main concern is physics my main mathematical tool is operator theory or operator algebras.

Today's analysis is one for an operator by real analytic methods.

Probability

We can use probability theory for operator analysis. Usually we can only see propeties before or after action of an operator. However, using probability, we can see some property 'in course of action'. For example, by heat semigroup technique and Feynman-Kac formula, we get a formula for ground state energy, functional integral representation,

$$E_{0} = -\lim_{t \to \infty} \frac{1}{t} \log \int_{W} \overline{\psi(\phi(0))} \psi(\phi(t)) e^{-\int_{0}^{t} V(\phi(s)) ds} d\mu_{0}, \quad (17.1.16)$$

where

$$W := \mathbb{R}^n \times M, \quad M := (\mathbb{R}^n)^{[0,\infty)}, \qquad (17.1.17)$$

$$\phi(t) \colon \mathbb{R}^n \times M \to \mathbb{R}^n; \quad \phi(t)(x,\omega) := x + \omega(t), \quad (x,\omega) \in W \quad \forall t \ge 0.$$

$$(17.1.18)$$

Or we can express the heat semigroup action by path integral. For the Nelson model we obtain

$$\langle F, e^{-tH_N} G \rangle = \int_{\mathbb{R}^d} dx \mathcal{E}^x \left[e^{-\int_0^t V(B_s) ds} \langle I_0 \overline{F(B_0)}, e^{\phi_{\mathcal{E}} \left(\int_0^t \delta_s \otimes \varphi(\cdot - B_s) ds \right)} \rangle I_t G(B_t) \right]$$
(17.1.19)

See [27], [11], [13] for details.

- Algebraic analysis
 - I do not know this area well. A Keyword is the exact WKB analysis. See, for example, [22].
- Nonstandard analysis

I do not know also this area well. See, for example, [29]. This book explains, e.g., Feynman's path integral. Nonstandard analysis relates to the domain of mathematical logic: quantum physics connects mathematical logic to other mathematical branches!

• Number theory: noncommutative harmonic oscillator I do not know also this area well. See, for example, [36, 39]. We define an non-commutative harmonic oscillator. Consider a Hilbert space $L^2\{\mathbb{R}\}\otimes\mathbb{C}$ and a differential operator of matrix type $Q=Q_{\alpha,\beta}$:

$$Q := \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \left(-\frac{1}{2} \frac{d^2}{dx^2} + \frac{1}{2} x^2 \right) + \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \left(x \frac{d}{dx} + \frac{1}{2} \right), \quad (17.1.20)$$

where $\alpha, \beta > 0$, $\alpha\beta > 1$. Then the operator Q is of strictly positive operator and has only discrete spectrum. For invegesting the spetral structure we define the following Dirichlet series (spectral zeta).

$$\zeta_Q(s) := \sum_{n=1}^{\infty} \lambda_n^{-s}.$$
 (17.1.21)

This series absolutely converges in $\Re(s) > 1$ and is analytically continued to all \mathbb{C} as a meromophic function. In particular, if $\alpha = \beta = \sqrt{2}$ then we have

$$\zeta_Q(s) = 2(2^s - 1)\zeta(s),$$
 (17.1.22)

i.e., this spectral zeta is Riemann's zeta.

This relates to many other mathematical branches, e.g., a differential equation of Picard-Fuch type for a universal family of a elliptic curve, theory of automorphic forms and functions, Heun's differential equation and its connection problem. Furthermore Taniguchi shows some interesting property using stochastic analysis. For details see [36].

• In connection to topology: Aharonov-Bohm effect We may consider Schrödinger operators on topologically defected regions, especially, non-simply connected regions. Topological properties on the domain give some effects on the properties of the operator. In this respect Aharonov-Bohm effect is very famous and important in physics or gauge theory. See, e.g., chapter 3 in [10] and its references.

Geometric variational problem

A variational method is a basic tool in many physical branches. Analytical mechanics and its relation to (differential) geometry is famous. Variational argument for energy of a curve introduces connection, covariant derivative, parallel displacement, geodesic, curvature and so on. We can generalize the theory of energy for curves to the one for energy for maps between (Riemann/Kähler) manifolds, i.e., theory of harmonic maps. Geometric variational problem also relates to Morse theory. See [31]. See also the isoperimetric problem.

Nonlinear analysis

In the analysis for the Thomas-Fermi theory we face nonlinear analysis. In physics there are many nonlinear partial differential equations and we have many analysis for these equations. In geometry we have many interesting nonlinear functionals and nonlinear partial differential equations, such as the Yamabe equation or the Monge-Ampère equation. See [12].

Index theorem

In Aharonov-Bohm effect the topology of spaces affects operators on it. E.g., if a Riemannian manifold is compact the spectrum of Laplacian becomes discrete².

Conversely properties of some operators determines some interesting properties in topology. A Laplacian on a Riemannian manifold, especially its spectrum, has many topological information. This type of problems offers the region, spectral geometry [19].

In this course one of the most interesting thing is the celebrated index theorem by Atiyah and Singer. The Atiyah Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some topological data). It includes many other theorems, such as the Riemann Roch theorem, as special cases, and has applications in theoretical physics.

Path integral (functional integral) has a deep connection to this problem. We have a (formal?) proof for index theorem using path integral.

Stochastic optimization

Stochastic optimization is the process of maximizing or minimizing the value of a mathematical or statistical function when one or more of the input parameters is subject to randomness. The word stochastic means involving chance or probability. This is applied to, e.g., machine learning. This is used to improve a user's dictionary in converting "kanji-kana".

Other optimization problem

In real world we encounter many optimization problems. In general engineering solves optimization problems in real constraints.

Singular analysis

The Coulomb potential has a singular point at x = 0 and a solution has a singularity at x = 0. That is, singularity of a potential affects a singularity of a solution.

Both physics and mathematics have many singular problems, such as resolution of singularity in algebraic geometry, the residue theorem in complex analysis, existence of black holes in general relativity, definition of phase transition, and so on.

17.2 Mathematical preliminaries

In this section we assume $\Omega \subset \mathbb{R}^n$ is an open set.

²数学ではよくある.

17.2.1 The important difference in integration and differentiation

In analysis integration is very important because it saves an order of functions: we define $f \leq g$ by

$$f(x) \le g(x) \quad \forall x. \tag{17.2.1}$$

Then it follows that

$$f \le g \Rightarrow \int f \le \int g.$$
 (17.2.2)

Furthermore, if f and g is continuos, $f \leq g$, and there is x such that f(x) < g(x), then we get

$$\int f < \int g. \tag{17.2.3}$$

This is called the strong monotonicity of integration.

Can you make counterexamples for differentiation?

17.2.2 Important spaces

In this seminar we mainly consider L^p spaces and Sobolev spaces H^k on \mathbb{R}^n .

L^p spaces

Here we consider only Lebesgue or Borel measurable functions. For details see [18] or [25].

For $p \in [1, \infty)$, L^p spaces is defined by

$$L^{p}\left(\Omega\right) := \left\{ f : \int_{\Omega} \left| f(x) \right|^{p} dx < \infty \right\}. \tag{17.2.4}$$

For $p = \infty$

$$L^p = \{ f : \text{ess.sup} \, |f| < \infty \}.$$
 (17.2.5)

We introduce the topology on L^p by the norms:

$$||f||_{p} = \begin{cases} \left(\int_{\Omega} |f(x)|^{p} dx \right)^{1/p}, & 1 \le p < \infty, \\ \text{ess.sup} |f|, & p = \infty. \end{cases}$$
 (17.2.6)

Then, by the Minkowski inequality, L^p spaces are linear for $p \in [1, \infty)$. L^{∞} is also linear. In fact L^p spaces are complete for $p \in [1, \infty]$. For details see [18] or [25].

Moreover, for p = 2, we can introduce the inner product:

$$\langle f, g \rangle := \int_{\Omega} \overline{f(x)} g(x) dx.$$
 (17.2.7)

For this inner product the space L^2 becomes a Hilbert space.

 $L^p + L^q$ spaces

Let $p, q \in [1, \infty]$. Then a function f is in $L^p + L^q$ if f can be decomposed as

$$f = f_1 + f_2, \quad f_1 \in L^p, \quad f_2 \in L^q.$$
 (17.2.8)

This decomposition is simple but ingenious.

Example. 2.2.1. Let $V = -\frac{1}{|x|}$ in \mathbb{R}^3 and

$$V = V_1 + V_2, \quad V_1 := -\chi_{|x| < 1} V, \quad V_2 := -\chi_{|x| | 1} V, \quad .$$
 (17.2.9)

Then we have

$$V_1 \in L^{5/2}, \quad V_2 \in L^4 \cap L^{\infty}.$$
 (17.2.10)

the $L^1_{\rm loc}$ space

The space $L_{\text{loc}}^{1}\left(\Omega\right)$ is defined by

$$L_{\text{loc}}^{1}\left(\Omega\right) := \left\{f : \forall A \subset \Omega, A \text{ is compact}, \|\chi_{A}f\|_{1} < \infty\right\},\tag{17.2.11}$$

where a function χ_A is an indicator function for $A \subset \Omega$. This space is useful when considering the theory of distributions.

Sobolev spaces H^k

A Sobolev space $H^1(\mathbb{R}^n)$ is defined by

$$H^{1}\left(\mathbb{R}^{n}\right):=\left\{\psi\in L^{2}\left(\mathbb{R}^{n}\right):\int_{\mathbb{R}^{n}}\left(\left|\nabla\psi(x)\right|^{2}+\left|\psi(x)\right|^{2}\right)dx<\infty\right\},\quad\left(17.2.12\right)$$

where $\nabla \psi$ is in the distributional sense. We have another definition of a Sobolev space $H^1(\mathbb{R}^n)$ using Fourier transform,

$$H^{1}\left(\mathbb{R}^{n}\right):=\left\{\psi\in L^{2}\left(\mathbb{R}^{n}\right):\int_{\mathbb{R}^{n}}\left(\left|k\hat{\psi}(k)\right|^{2}+\left|\hat{\psi}(k)\right|^{2}\right)dk<\infty\right\}.$$
 (17.2.13)

17.2.3 Convolution

Definition

Here we consider $\Omega = \mathbb{R}^d$. For suitable functions f and g we can define a some type of product, called the convolution, by

$$(f * g)(x) := \int_{\mathbb{R}^d} f(y)g(x - y)dy.$$
 (17.2.14)

For this product the space $L^1(\mathbb{R}^d)$ becomes a Banach algebra. There exists a useful inequality, Young's inequality: see Theorem 3.1.6.

Convolutions of functions in dual L^p spaces are continuous

Lemma. 2.3.1. (Lemma 2.20. [25]) Let $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$ with p, q > 1 dual indices, i.e.,

$$\frac{1}{p} + \frac{1}{q} = 1. (17.2.15)$$

Then the convolution f * g is a continuous function on \mathbb{R}^n that tends to zero at infinity in the strong sense that, for any $\varepsilon > 0$ there is $\mathcal{R}_{\varepsilon}$ such that

$$\sup_{|x| > \mathcal{R}_{\varepsilon}} |(f * g)(x)| < \varepsilon. \tag{17.2.16}$$

17.2.4 Various inequalities

Hölder's inequality

Theorem. 2.4.1. (Theorem 2.3 [25].) Let p and q be dual indices, i.e., 1/p + 1/q = 1 with $1 \le p \le \infty$. Let $\Omega \subset \mathbb{R}^n$ be open, $f \in L^p(\Omega)$ and $f \in L^q(\Omega)$. Then $fg \in L^1(\Omega)$ and

$$\left| \int_{\Omega} f g dx \right| \le \left\| f \right\|_{p} \left\| g \right\|_{q}. \tag{17.2.17}$$

This means that

$$L^{p}(\Omega) \subset L^{q}(\Omega)', \quad p \in [1, \infty],$$
 (17.2.18)

where, for a linear space L, L' is a dual space. In fact we can prove

$$L^{q}\left(\Omega\right)=\left(L^{p}\left(\Omega\right)\right)', \quad L^{p}\left(\Omega\right)=\left(L^{q}\left(\Omega\right)\right)'=\left(L^{p}\left(\Omega\right)\right)'', \quad p\in\left(1,\infty\right), \ (17.2.19)$$

i.e., L^p spaces are **reflexive** for $p \in (1, \infty)$.

It is well-known L^{∞} is not reflexive. See, e.g., [15, 14].

Young's inequality

Theorem. 2.4.2. (Theorem 4.2 [25].) Let $\Omega = \mathbb{R}^n$.

1. Assume that

$$1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}, \quad 1 \le p, q, r \le \infty.$$
 (17.2.20)

Then, for any $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$, it holds that

$$||f * g||_r \le ||f||_n ||g_q||. \tag{17.2.21}$$

2. Assume that

$$\frac{1}{n} + \frac{1}{q} + \frac{1}{r} = 2, \quad 1 \le p, q, r \le \infty.$$
 (17.2.22)

Then, for any $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$, and $h \in L^r(\mathbb{R}^n)$ it holds that

$$\left| \int_{\mathbb{R}^n} f(x) (g * h) (x) dx \right| \le \|f\|_p \|g\|_q \|h\|_r.$$
 (17.2.23)

Sobolev's inequality

A function $f: \mathbb{R}^n \to \mathbb{C}$ is in $D^1(\mathbb{R}^n)$ if it is in $L^1_{loc}(\mathbb{R}^n)$, if its distributional derivative $\nabla f \in L^2(\mathbb{R}^n)$, and if f vanishes at infinity, i.e.,

$$|\{x: |f(x)| > a\}| < \infty, \quad \forall a > 0.$$
 (17.2.24)

Theorem. 2.4.3. (Sobolev's inequality for $n \geq 3$, Section 8.3 in [25].) For $n \geq 3$ let $f \in D^1(\mathbb{R}^n)$. Then $f \in L^q(\mathbb{R}^n)$ with q = 2n/(n-2) and the following inequality holds:

$$S_n \|f\|_q^2 \le \|\nabla f\|_2^2,$$
 (17.2.25)

where

$$S_n = \frac{n(n-2)}{4} \left| \mathbb{S}^2 \right|^{2/n} = \frac{n(n-2)}{4} 2^{2/n} \pi^{1+1/n} \Gamma\left(\frac{n+1}{2}\right)^{-2/n}.$$
 (17.2.26)

17.2.5 Topologies

Strong topology and weak topology in Hilbart spaces

Here we explain only Hilbert spaces since it suffices in this seminar.

Suppose \mathcal{H} is a (separable) Hilbert space, i.e., \mathcal{H} has a complete inner product space. The space \mathcal{H} has a natural topology, called the **strong topology**, defined by its norm. We may consider other topology for \mathcal{H} , called the **weak topology**. It is defined by the convergence for sequences. The strong topology is defined by convergence in norm, i.e.,

$$\operatorname{s-lim}_{j \to \infty} \psi_j = \psi \iff \|\psi_j - \psi\| \to 0 \text{ as } j \to \infty.$$
 (17.2.27)

The weak topology is defined by some convergence using inner product, i.e.,

w-
$$\lim_{j\to\infty} \psi_j = \psi \iff \langle \psi_j - \psi, \phi \rangle \to 0 \text{ as } j\to\infty \quad \forall \phi \in \mathcal{H}.$$
 (17.2.28)

Proposition. 2.5.1. If $\psi_i \stackrel{s}{\to} \psi$ then $\psi_i \stackrel{w}{\to} \psi$.

Proof. By Cauchy-Schwarz.

Remark. 2.5.2. Suppose a functional $F: \mathcal{H} \to \mathbb{C}$ is strongly continuous. However F is not necessarily weakly continuous.

Example of weakly convergent sequence

Before introducing concrete examples, we state a general example.

Theorem. 2.5.3. (Inequality of Bessel, Sec. 2.21 [25].) If ψ_j is orthonormal system, then we have, for any $\phi \in \mathcal{H}$,

$$\sum_{j=1}^{\infty} |\langle \psi_j, \, \phi \rangle|^2 \le \|\phi\|^2.$$
 (17.2.29)

Suppose a sequence (ψ_j) is orthonormal. Then the Bessel inequality states that (ψ_j) converges weakly to 0. However (ψ_j) does not converges strongly because $\|\psi_j - \psi_k\| = \sqrt{2}$ if $j \neq k$.

A concrete example is as follows. A function ψ_j is defined by $\psi_j = \chi_{A_j}$, where $A_j = (j-1,j]$ and χ_A is a indicator function for a set A. Then a sequence (ψ_j) is orthonormal and $\psi_j \xrightarrow{w} 0$. This (ψ_j) also converges to 0 pointwise but (ψ_j) does not converge strongly. The weak topology fills in this discrepancy.

Why we use the pointwise convergence instead of weak convergence?

A function space has many interesting and important convergence, e.g., pointwise convergence and uniform convergence. The weak topology is natural if we consider its linear space strucure. A (normed) linear space always has its dual space³ and the weak topology uses a dual space in its definition. Furthermore the importance of the weak topology is also due to the theorem 2.6.3.

17.2.6 Theorems in Lebesgue integral and functional analysis

Dominated convergence

Theorem. 2.6.1. (Theorem 1.8. [25]) Assume functions (f_j) and f are measurable and $f_j \to f$ pointwise. If a function $g \in L^1(\Omega)$ exists and $|f_j| \leq g$ then $|f| \leq g$ and

$$\lim_{j \to \infty} \int_{\Omega} f_j(x) dx = \int_{\Omega} f(x) dx. \tag{17.2.30}$$

Differentiality of norms, Gateaux derivative

Theorem. 2.6.2. (Theorem 2.6. [25]) Suppose f and g are functions in $L^p(\Omega)$ with $p \in (1, \infty)$. The function defined on \mathbb{R} by

$$N(t) := \int_{\Omega} |f(x) + tg(x)|^p dx$$
 (17.2.31)

is differentiable and its derivative at t = 0 is given by

$$\frac{d}{dt}N(t)\Big|_{t=0} = p \int_{\Omega} |f(x)|^{p-2} \Re\left(\overline{f(x)}g(x)\right) dx.$$
 (17.2.32)

Uniform boundedness principle

Theorem. 2.6.3. (Theorem 2.12. [25]) Let $f_j \in L^p(\Omega)$ with the property

$$\{L(f_j): j \in \mathbb{N}\} < \infty \quad \forall L \in L^p(\Omega)^*.$$
 (17.2.33)

Then the sequence of norms $(\|f_j\|_p)$ is bounded.

³これがまた分かりづらい、21.4.4 節でこれをすっきりさせる。

Banach-Alaoglu theorem

Theorem. 2.6.4. (Theorem 2.18. [25])

- 1. Strongly Bounded and strongly closed sets of a Hilbert space H are weakly
- 2. Strongly Bounded and strongly closed sets of each $L^p(\Omega)$ space are weakly compact.

Remark. 2.6.5. This theorem implies that a strong bounded sequence in $L^p(\Omega)$ has a weakly convergent subsequence! Note also that this is the extremely important property for the analysis on \mathbb{R} .

Derivative of the absolute value

Theorem. 2.6.6. (Theorem 6.17. [25]) Let f be in $W^{1,p}(\Omega)$. Then the function |f|, defined by |f|(x) := |f(x)|, is in $W^{1,p}(\Omega)$ with $\nabla |f|$ being the function

$$(\nabla |f|)(x) = \begin{cases} \frac{1}{|f|(x)} (R(x)\nabla R(x) + I(x)\nabla I(x)), & f(x) \neq 0, \\ 0 & f(x) = 0, \end{cases}$$
(17.2.34)

here R(x) and I(x) denote the real and imaginary parts of f. In particular, if f is real-valued,

$$(\nabla |f|)(x) = \begin{cases} \nabla f(x) & f(x) > 0, \\ -\nabla f(x) & f(x) < 0, \\ 0 & f(x) = 0. \end{cases}$$
 (17.2.35)

Thus

- 1. $|\nabla |f|| \le |\nabla f|$ a.e. if f is complex-valued, 2. $|\nabla |f|| = |\nabla f|$ a.e. if f is real-valued.

Convexity inequality for gradients

Theorem. 2.6.7. (Theorem 7.8. [25]) Let f, g be real-valued functions in $H^1(\mathbb{R}^n)$. Then

$$\int_{\mathbb{R}^n} \left| \nabla \sqrt{f^2 + g^2} \right|^2 (x) dx \le \int_{\mathbb{R}^n} \left(\left| \nabla f(x) \right|^2 + \left| \nabla g(x) \right|^2 \right) dx. \tag{17.2.36}$$

If, moreover, g(x) > 0, then equality holds if and only if there exists a constant c such that

$$f(x) = cg(x)$$
 a.e. (17.2.37)

Remark. 2.6.8. For complex-valued F the above inequality becomes

$$\int_{\mathbb{R}^n} |\nabla |F|(x)|^2 dx \le \int_{\mathbb{R}^n} |\nabla F(x)|^2 dx. \tag{17.2.38}$$

Fundamental theorem of variational method, du Bois-Reymond's lemma

Theorem. 2.6.9. Let $f \in L^1_{loc}$. If, for any $\phi \in C^\infty_c(\Omega)$, it holds that

$$\int_{\Omega} f(x)\phi(x)dx = 0, \qquad (17.2.39)$$

then we must have f = 0.

17.2.7 Potential theory

We use this theory in Section 17.3.1. See the chapter 9 in [25] for details.

Positivity properties of the Coulomb energy

We define a sesquilinear form D as

$$D(f,g) := \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{f(x)g(x)}{|x-y|} dx dy.$$
 (17.2.40)

Then we have the

Theorem. 2.7.1. (Theorem 9.8. [25]) If $f: \mathbb{R}^n \to \mathbb{C}$ satisfies $D(|f|, |f|) < \infty$, then

$$D(f, f) \ge 0. \tag{17.2.41}$$

If g satisfies the same property as f, then we have Schwartz' inequality for D, i.e.,

$$|D(f,g)|^2 \le D(f,f,)D(g,g).$$
 (17.2.42)

Furthermore $f \mapsto D(f, f)$ is strictly convex.

In [25] more properties for the Coulomb potential are explained.

17.3 Thomas-Fermi theory

17.3.1 Thomas-Fermi problem

Outline

We turn now to our second example of a variational problem—the Thomas-Fermi (TF) problem. See [26] for details and further developments. It goes back to the idea of L. H. Thomas and E. Fermi in 1926 that a large atom, with many electrons, can be approximately modeled by a simple **nonlinear** problem for a 'charge density' $\rho(x)$. We do not derive the energy functional. See a textbook.

Here we state the mathematical problem. The potential function $Z/\left|x\right|$ that appears in the following can easily be replaced by

$$V(x) := \sum_{j=1}^{K} \frac{Z_j}{|x - R_j|}$$
 (17.3.1)

with $Z_j > 0$ and $R_j \in \mathbb{R}^3$, but we refrain from doing so in the interest of simplicity.

In [25] the authors leave many steps as an exercise for the reader. If you want details you should read the original papers, e.g., [26].

TF theory is defined by an energy function \mathcal{E} on a certain class of **nonnegative** functions ρ on \mathbb{R}^3 :

$$\mathcal{E}(\rho) := \frac{3}{5} \int_{\mathbb{R}^3} \rho(x)^{5/3} dx - \int_{\mathbb{R}^3} \frac{Z}{|x|} \rho(x) dx + D(\rho, \rho), \qquad (17.3.2)$$

where Z > 0 is a fixed parameter (the charge of the atom's nucleus) and

$$D(\rho, \rho) := \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \rho(x) \rho(y) \frac{1}{|x - y|} dx dy = \frac{1}{2} \int_{\mathbb{R}^3} \rho(x) \left(\rho * \frac{1}{|x|} \right) (x) dx$$
(17.3.3)

is the Coulomb energy of a charge density⁴. The class of admissible functions is

$$C = \left\{ \rho : \rho \ge 0, \rho \in L^1\left(\mathbb{R}^3\right) \bigcap L^{5/3}\left(\mathbb{R}^3\right) \right\}. \tag{17.3.4}$$

Our problem is to minimize $\mathcal{E}(\rho)$ under the condition $\int \rho = N$, where N is any fixed positive number (identified as the 'number' of electrons in the atom). The case N = Z is special an is called the **neutral case**. We define two subsets of \mathcal{C} :

$$C_N := C \bigcap \left\{ \rho : \int_{\mathbb{R}^3} \rho = N \right\} \subset C_{\leq N} := C \bigcap \left\{ \rho : \int_{\mathbb{R}^3} \rho \leq N \right\}.$$
 (17.3.5)

Corresponding to these two sets are two energies: The 'constrained' energy

$$E(N) := \inf \left\{ \mathcal{E} \left(\rho \right) : \rho \in \mathcal{C}_N \right\}, \tag{17.3.6}$$

and the 'unconstrained' energy

$$E_{<}(N) := \inf \left\{ \mathcal{E} \left(\rho \right) : \rho \in \mathcal{C}_{< N} \right\}. \tag{17.3.7}$$

Obviously it holds that

$$E_{<}(N) \le E(N).$$
 (17.3.8)

The reason for introducing the unconstrained problem will become clear later. A minimizer will not exist for the constrained problem when N>Z: atoms cannot be negatively charged in TF theory. But a minimizer will always exist for the unconstrained problem. It is often advantageous, in variational problems, to relax a problem in order to get at a minimizer; in fact, we already used this device in the study of the Schrödinger equation⁵. When a minimizer for the constrained problem does exist it will later be seen to be the ρ that is a minimizer for the unconstrained problem.

 $^{^4}$ 指数関数 2^n が前にかかっているのに発散せずに x という有限確定値に収束するのはちょっとした驚きだ.

⁵正確にはその内の一番簡単な例.

Existence of an unconstrained Thomas-Fermi minimizer

The main theorem in this section is as follows.

Theorem. 3.1.1. (Theorem 11.12. [25]) For each N > 0 there is a unique minimizing $\rho_{N,\infty}$ for the unconstrained TF problem (17.3.7), i.e.,

$$\mathcal{E}\left(\rho_{N,\infty}\right) = E_{\leq}(N). \tag{17.3.9}$$

The constrained energy E(N) and the unconstrained energy $E_{\leq}(N)$ are equal. Moreover E(N) is a convex and nonincreasing function of N.

The proof is divided into several steps.

Lemma. 3.1.2. (Theorem II.2. (c) [26]) The expression (17.3.2) is well-defined and finite when $\rho \in \mathcal{C}$. The functional $\mathcal{E}(\rho)$ is bounded from below on each $\mathcal{C}_{\leq N}$.

Proof. Write

$$V(x) = -\frac{1}{|x|} = V_1 + V_2, \quad V_1 \in L^{5/2}, \quad V_2 \in L^{\infty},$$
 (17.3.10)

e.g.,

$$V_1 = \chi_{|x| \le 1} V, \quad V_2 = \chi_{|x| > 1} V.$$
 (17.3.11)

Then, by Hölder's inequality we obtain

$$\int |\rho V| \, dx \le \|V_1\|_{5/2} \, \|\rho\|_{5/3} + \|V_2\|_{\infty} \, \|\rho\|_1 \,, \tag{17.3.12}$$

and Young's inequality shows that

$$D(\rho, \rho) = \frac{1}{2} \int \left(\rho * \frac{1}{|x|} \right) \rho dx \le \frac{1}{2} \|\rho\|_1 \left(\|V_1\|_{5/2} \|\rho\|_{5/3} + \|V_2\|_{\infty} \|\rho\|_1 \right), \tag{17.3.13}$$

positive definiteness of 1/|x| (Theorem 2.7.1) implies

$$D(\rho, \rho) \ge 0,\tag{17.3.14}$$

and, of course,

$$\int \rho^{5/3} dx = \|\rho\|_{5/3}^{5/3}. \tag{17.3.15}$$

Summing up we get

$$E_{\leq}(N) \ge \frac{3}{5} \|\rho\|_{5/3}^{5/3} - c_1 \|\rho\|_{5/3} - c_2$$
 on each $\mathcal{C}_{\leq N}$, (17.3.16)

where the number c_1 is N independent $(\|V_1\|_{5/2})$ and c_2 is N dependent $(ZN \|V_2\|_{\infty})$. Since $x^{5/3} - cx$ is bounded from below on $[0, \infty)$, the desired properties hold. \square

Let (ρ_i) be a minimizing sequence for $\mathcal{E}(\rho)$.

Lemma. 3.1.3. (Theorem II.2. (d) [26]) The sequence of numbers $(\|\rho_j\|_{5/3})$ is also bounded.

Proof. The inequality (17.3.16) and the fact that $\{x:0\leq x,\,x^{5/3}-cx\leq d\}$ is bounded for each fixed $c,\,d.$

Therefore, by passing to a subsequence we can assume that $\rho_j \xrightarrow{w} \rho_{N,\infty}$ in $L^{5/3}(\mathbb{R}^3)$ for some $\rho_{N,\infty} \in L^{5/3}(\mathbb{R}^n)$. Here we use the Banach-Alaoglu theorem, Theorem 2.6.4.

Lemma. 3.1.4. (Theorem II.13. [26]) The functional $\mathcal{E}(\rho)$ is lower semicontinuous on each $\mathcal{C}_{\leq N}$ in the weak $L^{5/3}(\mathbb{R}^3)$ topology, i.e., if $\rho_j \stackrel{w}{\to} \rho_{N,\infty}$ in weak $L^{5/3}$ with $\sup_j \|\rho_j\|_1 < \infty$, $\rho \in L^1$, and ρ_j , $\rho_{N,\infty} \geq 0$, then

$$\mathcal{E}(\rho_{N,\infty}) \le \liminf \mathcal{E}(\rho_j).$$
 (17.3.17)

Moreover, if $\mathcal{E}(\rho_{N,\infty}) = \lim \mathcal{E}(\rho_j)$, then $\|\rho_j - \rho_{N,\infty}\|_{5/3} \to 0$ and each term in $\mathcal{E}(\rho_j)$ converges to the corresponding term in $\mathcal{E}(\rho_{N,\infty})$.

Proof. By passing to a subsequence, we can suppose that $\lim \mathcal{E}(\rho_j)$ exists and we may as well suppose the limit is finite since (17.3.17) is trivial otherwise. Then by Lemma 3.1.3 it follows that $\sup_{j} \|\rho_j\|_{5/3} < \infty$.

First claim for (17.3.17):

$$\|\rho_{N,\infty}\|_{5/3} \le \liminf \|\rho_j\|_{5/3}$$
. (17.3.18)

This is due to the lower semicontinuity of norms. For explicit proof, noting that $\rho_{N,\infty}^{2/3} \in L^{5/2}$, the definition of weak convergence and Hölder's inequality leads

$$\int \rho_{N,\infty}^{5/3} dx = \lim_{j \to \infty} \int \rho_j \rho_{N,\infty}^{2/3} dx \le \|\rho_{N,\infty}\|_{5/3}^{2/3} \liminf \|\rho_j\|_{5/3}.$$
 (17.3.19)

Second claim for (17.3.17):

$$\lim \int \rho_j V = \int \rho_{N,\infty} V. \tag{17.3.20}$$

Write $V=V_1+V_2$ with $V_1\in L^{5/2}$ and $V_2\in L^p$ (5/2 < $p<\infty$). Hölder's inequality shows that

$$\int V_1 \rho_j \to \int V_1 \rho_{N,\infty}. \tag{17.3.21}$$

The following Lemma 3.1.5 implies $\rho_j \xrightarrow{w} \rho_{N,\infty}$ in weak L^q (1 < $q \le 5/3$) sense. Hence it holds that

$$\int V_2 \rho_j \to \int V_2 \rho_{N,\infty}. \tag{17.3.22}$$

Third claim for (17.3.17):

$$D(\rho_{N,\infty}, \rho_{N,\infty}) \le \liminf D(\rho_i, \rho_i).$$
 (17.3.23)

We use positive definiteness of $|x|^{-1}$, Theorem 2.7.1 and the resulting Schwartz inequality. Since $\rho \in L^1$ and $|x|^{-1} \in L^{5/2} + L^4$, Young's inequality shows that

 $\rho * |x|^{-1} \in L^{5/2} + L^4$. Since the Lemma 3.1.5 leads that $\rho_j \xrightarrow{w} \rho_{N,\infty}$ both in $L^{5/3}$ and $L^{4/3}$, we obtain

$$D(\rho_{N,\infty}, \rho_j) = \int \left(\rho_{N,\infty} * \frac{1}{|x|}\right) \rho_j dx \tag{17.3.24}$$

$$\to \int \left(\rho_{N,\infty} * \frac{1}{|x|}\right) \rho_{N,\infty} dx = D(\rho_{N,\infty}, \rho_{N,\infty}). \tag{17.3.25}$$

Therefore

$$D\left(\rho_{N,\infty},\rho_{N,\infty}\right) = \lim_{j \to \infty} D\left(\rho_{N,\infty},\rho_j\right) \tag{17.3.26}$$

$$\leq \liminf \left(D\left(\rho_{N,\infty}, \rho_{N,\infty}\right)^{1/2} D\left(\rho_j, \rho_j\right)^{1/2} \right),$$
 (17.3.27)

where we use Schwartz' inequality in the final step.

The above three estimates imply that if $\mathcal{E}(\rho_{N,\infty}) = \lim \mathcal{E}(\rho_j)$, then each term of $\mathcal{E}(\rho_{N,\infty})$ converges and in particular $\lim \|\rho_j\|_{5/3} = \|\rho_{N,\infty}\|_{5/3}$. Since $L^{5/3}$ is uniformly convex, convergence of norms and weak convergence implies norm convergence.

Here we show the Lemma used in the above Lemma.

Lemma. 3.1.5. If a sequence of functions $(f_j) \subset L^1 \cap L^{5/3}$ weakly converges to f in $L^{5/3}$ and is bounded in $L^{5/3}$, then there exists a subsequece (f_{j_k}) such that

$$f_{j_k} \xrightarrow{w} f$$
 in L^q , (17.3.28)

where $q \in (1, 5/3]$.

Proof. We assume $q \in (1, 5/3)$. Set a number α as follows:

$$\frac{1}{q} = \alpha + (1 - \alpha)\frac{3}{5}$$
, i.e., $\alpha = \frac{5}{2}\left(\frac{1}{q} - \frac{3}{5}\right) \in (0, 1)$. (17.3.29)

Note that

$$q\alpha < 1, \quad q(1-\alpha)\frac{3}{5} < 1,$$
 (17.3.30)

and that

$$|f_j|^q = |f_j|^{q\alpha} |f_j|^{q(1-\alpha)}, \quad |f_j|^{q\alpha} \in L^{\frac{1}{q\alpha}}, \quad |f_j|^{q(1-\alpha)} \in L^{\frac{5}{3}\frac{1}{(1-\alpha)q}}.$$
 (17.3.31)

Then Hölder's inequality implies that

$$\int |f_j|^q \le \int |f_j|^{q\alpha} |f_j|^{q(1-\alpha)} \tag{17.3.32}$$

$$\leq \left(\int |f_j|\right)^{q\alpha} \left(\int |f_j|^{5/3}\right)^{\frac{3}{5}(1-\alpha)q} = \|f_j\|_1^{q\alpha} \|f_j\|_{5/3}^{(1-\alpha)q}. \quad (17.3.33)$$

Hence we obtain

$$||f_j||_q \le ||f_j||_1^{\alpha} ||f_j||_{5/3}^{1-\alpha} \le \left(\sup ||f_j||_1\right)^{\alpha} \left(\sup ||f_j||_{5/3}\right)^{1-\alpha}.$$
 (17.3.34)

The Banach-Alaoglu theorem 2.6.4 implies our assertion.

We return to the main path. From The Lemma 3.1.4, the function $\rho_{N,\infty}$ is a minimizer because we can deduce now

$$E_{\leq}(N) = \lim_{j \to \infty} \mathcal{E}(\rho_j) \ge \mathcal{E}(\rho_{N,\infty}) \ge E_{\leq}(N). \tag{17.3.35}$$

Next we show the

Lemma. 3.1.6. The above $\rho_{N,\infty}$ is unique.

To do this we need the following

Lemma. 3.1.7. (Theorem II.6. [26].) The functional $\mathcal{E}(\rho)$ is s strictly convex functional of ρ on the convex set $\mathcal{C}_{\leq N}$. Furthermore $E_{\leq}(N)$ is nonincreasing. Proof. Write

$$\mathcal{E}(\rho) = K(\rho) - A(\rho) + R(\rho) \tag{17.3.36}$$

corresponding to the three terms in the definition (17.3.16) of $\mathcal{E}(\rho)$. The functional $A(\rho)$ is linear and $K(\rho)$ is strictly convex since $f(x) = x^{5/3}$ is strictly convex on $[0, \infty)$. Finally $R(\rho)$ is strictly convex since $|x|^{-1}$ is strictly positive definite by Theorem 2.7.1.

Proof. We start the proof for Lemma 3.1.6. Assume there were two different minimizers ρ^1 and ρ^2 in $\mathcal{C}_{\leq N}$. Then $\rho = (\rho^1 + \rho^2)/2$, which is also in $\mathcal{C}_{\leq N}$, has strictly lower energy than $E_{\leq}(N)$, which is a contradiction. This reasoning also shows that $E_{\leq}(N)$ is a convex function. It is a simple consequence of its definition that $E_{\leq}(N)$ is nonincreasing. This is the end of the proof for Lemma 3.1.6.

By definition we have

$$E_{<}(N) \le E(N). \tag{17.3.37}$$

Lemma. 3.1.8. It holds that

$$E_{<}(N) = E(N),$$
 (17.3.38)

i.e, we can show that

$$E(N) \le E_{<}(N). \tag{17.3.39}$$

Proof. We can suppose that $\int \rho_{N,\infty} = M < N$, for otherwise the desired conclusion is immediate. Take any nonnegative function $g \in L^{5/3} \cap L^1$ with

$$\int g = N - M \tag{17.3.40}$$

and consider, for each $\lambda > 0$, the function

$$\rho_{\lambda}(x) := \rho_{N,\infty}(x) + \lambda^3 g(\lambda x). \tag{17.3.41}$$

As $\lambda \to 0$, $\rho_{\lambda} \xrightarrow{s} \rho_{N,\infty}$ in every L^p with $p \in (1,5/3]$. Therefore we have $\mathcal{E}(\rho_{\lambda}) \to \mathcal{E}(\rho_{N,\infty})$. On the other hand it holds that $\mathcal{E}(\rho_{\lambda}) \geq E(N)$, and hence $E(N) \leq E_{<}(N)$. Here we use the fact that our domain is the whole of \mathbb{R}^3 . \square

Note that we travel around (infinitely) many L^p spaces and use many useful and important properties for them!.

Thomas-Fermi equation

Theorem. 3.1.9. (Theorem 11.13 [25], Theorem II.10. [26].) The minimizer of the unconstrained problem, $\rho_{N,\infty}$, is not the zero function and it satisfies the following equation, in which $\mu \geq 0$ is some constant that depends on N:

$$\rho_{N,\infty}(x)^{2/3} = \frac{Z}{|x|} - \left(\frac{1}{|x|} * \rho_{N,\infty}\right)(x) - \mu \quad \text{if } \rho_{N,\infty}(x) > 0, \qquad (17.3.42)$$

$$0 \ge \frac{Z}{|x|} - \left(\frac{1}{|x|} * \rho_{N,\infty}\right)(x) - \mu \quad \text{if } \rho_{N,\infty}(x) = 0. \qquad (17.3.43)$$

Remark. 3.1.10. An equivalent way to write the above is

$$\rho_{N,\infty}(x)^{2/3} = \left[\frac{Z}{|x|} - \left(\frac{1}{|x|} * \rho_{N,\infty} \right) (x) - \mu \right]_{\perp}.$$
 (17.3.44)

Proof. Clearly $E_{\leq}(N)$ is strictly negative because we can easily construct some small ρ for which $\mathcal{E}(\rho) < 0$. This implies that $\rho_{N,\infty} \neq 0$ as a function.

For any real-valued function $g \in L^{5/3} \cap L^1$ and all $t \in [0,1]$ consider the family of functions

$$\rho_t(x) := \rho_{N,\infty}(x) + t \left(g(x) - \frac{\int g}{\int \rho_{N,\infty}} \rho_{N,\infty}(x) \right), \tag{17.3.45}$$

which are defined since $\rho_{N,\infty} \neq 0$. Clearly $\int \rho_t = \int \rho_{N,\infty}$ and it is easy to check that $\rho_t \geq 0$ for all $t \in [0,1]$ provided that g satisfies the two conditions:

$$g(x) \ge -\frac{\rho_{N,\infty}}{2}, \quad -\int g \ge -\frac{1}{2} \int \rho_{N,\infty}.$$
 (17.3.46)

Define the function

$$F(t) := \mathcal{E}\left(\rho_t\right),\tag{17.3.47}$$

which certainly has the property that

$$E_{<}(N) \le F(t), \quad \forall t \in [0, 1].$$
 (17.3.48)

We check the differentiability of F:

- 1. the $\int \rho^{5/3}$ term is differentiable by Theorem 2.6.2 (Gateaux derivative),
- 2. the second and third term in the expression (17.3.2) are trivially differentiable since they are polynomials in t.

Since $F(0) = E_{\leq}(N)$ and F must be nondecreasing at t = 0, it follows that

$$F'(0) \ge 0. \tag{17.3.49}$$

Define the function

$$W(x) := \rho_{N,\infty}^{2/3}(x) - \frac{Z}{|x|} + \left(\frac{1}{|x|} * \rho_{N,\infty}\right)(x)$$
 (17.3.50)

and set

$$\mu := -\frac{\int \rho_{N,\infty}(x)W(x)dx}{\int \rho_{N,\infty}(x)dx}.$$
(17.3.51)

Since

$$\frac{d}{dt} \int \rho_t(x)^{5/3} dx \Big|_{t=0} = \frac{5}{3} \int \rho_{N,\infty}(x)^{2/3} \left(g(x) - \frac{\int g}{\int \rho_{N,\infty}} \rho_{N,\infty}(x) \right) dx,$$
(17.3.52)

$$\frac{d}{dt} \int \frac{1}{|x|} \rho_t(x) dx \Big|_{t=0} = \int \frac{1}{|x|} \left(g(x) - \frac{\int g}{\int \rho_{N,\infty}} \rho_{N,\infty}(x) \right) dx, \tag{17.3.53}$$

$$\frac{d}{dt}D\left(\rho_{t},\rho_{t}\right)\Big|_{t=0} = \int \left(\rho_{N,\infty} * \frac{1}{|x|}\right)\left(x\right)\left(g(x) - \frac{\int g}{\int \rho_{N,\infty}}\rho_{N,\infty}(x)\right)dx,\tag{17.3.54}$$

it holds that

$$0 \le \frac{d}{dt} F(t) \Big|_{t=0} = \int W(x) \left(g(x) - \frac{\int g}{\int \rho_{N,\infty}} \rho_{N,\infty}(x) \right) dx \tag{17.3.55}$$

$$= \int W(x)g(x)dx + \int g(x)dx \int \frac{-W(x)\rho_{N,\infty}(x)}{\int \rho_{N,\infty}} dx \quad (17.3.56)$$

$$= \int g(x) (W(x) + \mu) dx$$
 (17.3.57)

for all functions g with the properties stated above.

In particular (17.3.57) holds for all nonnegative functions g with

$$\int g \le \frac{1}{2} \int \rho_{N,\infty},\tag{17.3.58}$$

and hence (17.3.57) holds for all nonnegative functions in $L^{5/3} \cap L^1$. From this it follows that $W(x) + \mu \ge 0$ a.e., which yields (17.3.43). From (17.3.51) we see that $-\mu$ is the average of W with respect to the measure $\rho_{N,\infty}(x)dx$, and hence the condition $W(x) + \mu \ge 0$ forces us to conclude that

$$W(x) + \mu = 0 \quad \forall x \in \{x : \rho_{N,\infty}(x) > 0\};$$
 (17.3.59)

this proves (17.3.42).

The last task is to prove that $\mu \geq 0$. If $\mu < 0$ then (17.3.42) implies that for $|x| > -\mu/Z$, $\rho_{N,\infty}(x)^{2/3}$ equals an L^6 -function plus a constant function, i.e., $-\mu$. It $\rho_{N,\infty}$ had this property it could not be in L^1 .

The Thomas-Fermi equation (17.3.44) reveals many interesting properties of $\rho_{N,\infty}$ and we refer the reader to [26] for this theory.

The Thomas-Fermi minimizer

Theorem. 3.1.11. (Theorem 11.14. [25]) As before the function $\rho_{N,\infty}$ be the minimizer for the unconstrained problem. Then it holds that

$$\int_{\mathbb{D}^3} \rho_{N,\infty}(x) dx = N \quad \text{if} \quad 0 < N \le Z, \tag{17.3.60}$$

$$\rho_{N,\infty} = \rho_{Z,\infty} \quad \text{if} \quad N \ge Z. \tag{17.3.61}$$

In particular the former implies that $\rho_{N,\infty}$ is the minimizer for the constrained problem when $N \leq Z$. If N > Z, there is no minimizer for the constrained problem.

The number μ in (17.3.44) is 0 if and only if $N \geq Z$ and in this case $\rho_{N,\infty}(x) = \rho_{Z,\infty} > 0$ for all $x \in \mathbb{R}^3$.

The Thomas-Fermi potential Φ_N defined by

$$\Phi_N(x) := \frac{Z}{|x|} - \left(\frac{1}{|x|} * \rho_{N,\infty}\right)(x)$$
 (17.3.62)

satisfies $\Phi_N(x) > 0$ for all $x \in \mathbb{R}^3$. Hence, when $\mu = 0$, corresponding to N = Z, the TF equation becomes

$$\rho_{Z,\infty}(x)^{2/3} = \Phi_Z(x). \tag{17.3.63}$$

Proof. We shall start by proving that there is a minimizer for the constrained problem if and only if $\int \rho_{N,\infty} = N$, in which case the minimizer is then obviously $\rho_{N,\infty}$. If $\int \rho_{N,\infty} = N$, then $\rho_{N,\infty}$ is a minimizer for E(N). If the E(N) problem has a minimizer (call it ρ^N), then $\int \rho^N = N$ and, by the monotonicity statement in Lemma 3.1.6, ρ^N is a minimizer for the unconstrained problem. Since this minimizer is unique $\rho^N = \rho_{N,\infty}$.

Now suppose that there is some M>0 for which $M>\int \rho_{M,\infty}=:N_c$ (we shall soon see that $N_c=Z$). By uniqueness, we have that $E(M)=E(N_c)$. Then two statements are true:

1.
$$\int \rho_{N,\infty} = N_c$$
 and $\rho_{N,\infty} = \rho_{N_c,\infty}$ for all $N \geq N_c$, and 2. $\int \rho_{N,\infty} = N$ for all $N \leq N_c$.

To prove the former suppose that $N \geq N_c$. We shall show that $E(N) = E(N_c)$ (recall that $E(N) = E_{\leq}(N)$), and hence that $\rho_{N,\infty} = \rho_{N_c,\infty}$ by uniqueness. Clearly $E(N) \leq E(N_c)$. If $E(N) < E(N_c)$ and if N < M, we have a contradiction with the monotonicity of the function E. If $E(N) < E(N_c)$ and if N > M, we have a contradiction with the convexity of the function E. Thus $E(N) = E(N_c)$ and the former statement is proved. The latter statement follows from the former, for suppose that $\int \rho_{N,\infty} =: P < N$. Then the conclusion of the former holds with N_c replaced by P and M replaced by N. Thus, by the former, $\int \rho_{Q,\infty} = P$ for all $Q \geq P$. By choosing

$$Q = N_c \ge N \ge P,\tag{17.3.64}$$

we find that $N_c = \int \rho_{N_c} = P$, which is a contradiction.

We have to show that $N_c = Z$ and this will be done in conjunction with showing the nonnegatity of the TF potential.

Let

$$A = \left\{ x \in \mathbb{R}^3 : \Phi_N(x) < 0 \right\}. \tag{17.3.65}$$

By Lemma 2.3.1, Φ_N is continuous away from x=0 and vanishes uniformly as $|x| \to \infty$. Hence A is an open set. In some small neighborhood of x=0, $\Phi_N(x)$ is clearly positive, so $0 \notin A$. From the TF equation with $\mu \geq 0$, we see that $\rho_{N,\infty}(x)=0$ for $x\in A$. But

$$\Delta\Phi_N = 4\pi\rho_{N,\infty} = 0 \quad \text{in} \quad A,\tag{17.3.66}$$

and Theorem 9.3 in [25] tells us that Φ_N is harmonic in A. Since Φ_N is continuous, Φ_N vanishes on the boundary of A. Since Φ_N also vanishes uniformly at ∞ , the strong maximum principle, Theorem 9.4 in [25], states that $\Phi_N = 0$ for $x \in A$. Thus A is empty, as claimed. We omit the proof that Φ_N is strictly positive as an exercise.

Let N > Z and consider the unconstrained optimizer $\rho_{N,\infty}$. We claim that $\int \rho_{N,\infty} \leq Z$. By the fact that $\rho_{N,\infty}$ is a radial function we get from equation 9.7 (5) [25] (Newton's theorem), that

$$\left(\frac{1}{|x|} * \rho_{N,\infty}\right)(x) = \frac{1}{|x|} \int_{|y| \le |x|} \rho_{N,\infty}(y) dy + \int_{|y| > |x|} \frac{1}{|y|} \rho_{N,\infty}(y) dy. \quad (17.3.67)$$

From this and the definition of Φ_N it follows easily that $\lim_{|x|\to\infty}|x|\,\Phi_N(x)=Z-\int\rho_{N,\infty}$. Hence $\int\rho_{N,\infty}\leq Z$, for otherwise it would contradict the positivity of Φ_N . Thus, for N>Z ther constrained TF problem does not have a minimizer and we conclude that $N_c\leq Z$.

Because $E(N_c)$ is the absolute minimum of $\mathcal{E}(\rho)$ on \mathcal{C} , and because $\rho_{N_c,\infty}$ is the absolute minimizer, a proof analogous to that of Theorem 3.1.1 (indeed, an even simpler proof), shows that this $\rho_{N_c,\infty}$ satisfies the TF equation with $\mu=0$. Since Φ_N is nonnegative, this is the equation (17.3.63) with $\rho_{Z,\infty}$ replaced by $\rho_{N_c,\infty}$. We have seen that $\Phi_N(x)$ behaves like $(Z-N_c)/|x|$ for large |x|. If $N_c < Z$, then, from (17.3.63), $\rho_{N_c,\infty} \notin L^{5/3}$, which is a contradiction.

Talk: Analysis for the Friedrichs model: perturbation theory for embedded eigenvalues

手書きのメモしかないので、そのうち TeX におこす.

Mathematical foundations for quantum statistical mechanics

動画から適当に切り出してくる.

Mathematical foundations for quantum mechanics

動画から適当に切り出してくる.

Part VII Probability and Statistics

Talk: Law of large number and central limit theorem in coin tossing

21.1 参考文献

話は [20] を元に組んでいる. 確率論それ自体については [16] が参考になる.

21.2 数学的準備

21.2.1 加法定理・倍角の公式

きちんとした証明は面倒なので, Euler の公式 $e^{ix} = \cos x + i \sin x$ を使う簡単な導出だけしておこう.

$$e^{2ix} = \cos 2x + i\sin 2x \tag{21.2.1}$$

$$= (e^{ix})^2 = (\cos^2 x - \sin^2 x) + i(2\cos x \sin x).$$
 (21.2.2)

あとは実部と虚部を比較する.

21.2.2 指数関数の微分積分

まず微分.

$$\frac{d}{dx}e^{ax} = ae^{ax}. (21.2.3)$$

これで(不)定積分もできる.

$$\int_0^1 e^{ax} dx = \frac{1}{a} (e - 1). \tag{21.2.4}$$

あとで使う計算もやっておこう.

$$\int_0^1 e^{ix(1-2t)} dt = \int_{-1}^1 e^{ixs} \frac{ds}{2} = \frac{\sin x}{x}.$$
 (21.2.5)

21.2.3 Rademacher 関数

定義は式 (21.4.12) だ. 周期 1 の周期関数として考えると関数 $r_k(t)$ は

$$r_k(t) = r_1(2^{k-1}t) (21.2.6)$$

と書ける. この周期性は実際の計算のときに役に立つ.

21.2.4 Rademacher 関数の積分公式

Rademacher 関数 (21.4.12) に関する積分公式を導出しておく.

Theorem. 2.4.1.

$$\int_{0}^{1} e^{iyr_{k}(t)} dt = \cos y. \tag{21.2.7}$$

Proof. (21.2.6) を使って計算していく.

$$\int_0^1 e^{iyr_k(t)} dt = \int_0^1 e^{iyr_k(2^{k-1}t)} dt$$
 (21.2.8)

$$= \int_0^{2^{k-1}} e^{iyr_1(s)} \frac{ds}{2^{k-1}}$$
 (21.2.9)

$$=\sum_{l=1}^{2^{k-1}} \int_{l-1}^{l} e^{iyr_1(s)} \frac{ds}{2^{k-1}}$$
 (21.2.10)

$$=\sum_{l=1}^{2^{k-1}} \frac{1}{2^{k-1}} \int_0^1 e^{iyr_1(s)} ds$$
 (21.2.11)

$$= \int_0^1 e^{iyr_1(s)} ds \tag{21.2.12}$$

$$= \int_0^{1/2} e^{iy} ds + \int_{1/2}^1 e^{-iy} ds$$
 (21.2.13)

$$= \frac{1}{2} \left(e^{iy} + e^{-iy} \right) = \cos y. \tag{21.2.14}$$

21.2.5 Rademacher 関数の積分公式 2

あとで使うので、[20] P.11 の演習問題 3. を解く.

Proposition. 2.5.1. $s \ge 1, k_1 < k_2 < \cdots < k_s$ に対して

$$\int_0^1 \prod_{l=1}^s r_{k_l}(t)dt = 0. \tag{21.2.15}$$

が成り立つ.

Hilbert 空間論 (関数の直交性) も想起させるなかなか含蓄の深い関係式だ. もちろん, 正確には確率論でより深く大事な概念, 独立性を表わしている.

 $Proof. \ s = 1$ のときは自明だ. s = 2 のときは式 (21.2.6) を使うと

$$\int_{0}^{1} r_{k_{1}}(t) r_{k_{2}}(t) dt = \int_{0}^{1} r_{1} \left(2^{k_{1}-1}t\right) r_{1} \left(2^{k_{2}-1}t\right) dt \tag{21.2.16}$$

となる. 正と負が適当に互い違いになるだけで同じ回数出てくるので, 効果が打ち消しあって積分は 0 になる. 一般の *s* でも同じことを議論すればいい. □

21.2.6 Lebesgue 積分の定理

Theorem. 2.6.1. 関数列 (f_n) の各関数は非負で可積分だとする.

$$\sum_{n=1}^{\infty} \int_{0}^{1} f_n(t)dt < \infty, \tag{21.2.17}$$

つまり上記の積分の和が収束するなら関数項級数

$$\sum_{n=1}^{\infty} f_n \tag{21.2.18}$$

はほとんどいたる所で収束する.

21.3 導入

今回のひなしろ数学会では確率論,特に大数の法則と中心極限定理について議論 しよう.まず大数の法則と中心極限定理の説明が必要だ.

大数の法則の説明を Wikipedia から引いてみよう.

ある試行において事象が起きる確率 (数学的確率, 理論的確率などともいう) が p であり、その試行は、繰り返し行ったとしてもある回の試行が他の回の試行に影響を及ぼすことがない (独立試行) ものとする。このような前提条件の下で、その事象が起きる比率が試行回数を増やすにつれて近づく値 (統計的確率あるいは経験的確率) は p である。つまり、各回の試行において各事象の起こる確率というものが、試行回数を重ねることで、各事象の出現回数によって捉えられるというのが大数の法則の主張するところである.

「確率」という言葉を2つの意味で使っているのでかなり面倒な話をしているが、ひとまずあとできちんと書く数学的な内容からいうと次のような感じになる.

- 1. (変な細工がない) 硬貨を投げるとき, 表と裏が出るのは平均的には 1/2 ずつになる: 表が出るのを +1, 裏が出るのを -1 と考えると, 平均 (期待値) が 0 になる.
- 2. (変な細工がない) 骰子を投げるとき、出る目の平均 (期待値) は (1+2+3+4+5+6)/6=3.5 になる.

色々微妙なところはあるが、これらを一般的にきちんと証明しようとして頑張った数学的成果を大数の法則と呼んでいる.

応用上も色々な話がある。まずは平均にどんな情報・意味があるかを考えてみよう。よくニュースなり何なりで平均の数値が出てくる。しかし、必ずしも平均に意味があるとは限らない、次のような状況を考えよう。

3 年 1 組の生徒, 40 人に数学のテストを受けさせたところ, 簡単だが 授業をきちんと聞いていないと出来ない問題を出題した. きちんと勉強している生徒 20 人は 100 点を取れたが, クラスのもう半分の 20 名は 0 点だった.

このとき平均点はもちろん 50 点だが, この 50 という数値に何の意味があるだろうか.

次のような状況を考えてもいい.

ある国の国民の 1 年の所得を調べた. 富が偏在していて, 人口の 1 # は各人 100 億円の所得があるものの, 他の 99 # の所得は 1 万円以下だった.

こんな歪な状況で平均に何の意味があるだろうか、意味が全くないとは言わない、ただ、平均だけを見ていても仕方がないことはいくらでもあるということだ、話はそれるが、そういうときに真っ先に見るべきは実際のデータとそのグラフだ、グラフを見るだけでも色々なことが分かる。これは統計学、特に記述統計学の基本中の基本で、色々なところでグラフが出てくる理由でもある。数値だけでなくグラフを見ることが大事なのだ。

ちなみに、グラフを徹底利用して統計学の応用に決定的な影響を与えた人物として Florence Nightingale がいる. 看護師としてばかり有名なところがあるが、実際には医療統計学と統計学の普及に大きな影響を与えた不朽の業績がある.

それはそれとして、平均が持つ意味、平均からのずれ、そしてそれを表す量も調べなければいけないことが分かってもらえたとして、これらの問題について考えていこう。先程「平均には意味があるかは微妙なところだ」と書いた。しかし、当然のことだが、平均がきちんと意味を持つときもある。そういう場合に「どのくらい頑張ると平均に辿り着けるか」という問題が出てくる。例えば物理の実験では(理論から予測される)適当な真の値がある。特に理論の検証というタイプの実験・測定では当然その値を得ようと実験をする。しかし誤差など色々な問題があるため本来の値からは少しずれてふらついた値が実験値として出てくる。このふらつきをおさえた値を実験値から計算するにはどのくらい実験すればいいか、といった問題を是非解きたい。1-2 回やっただけではふらつきが多過ぎたときにその影響をおさえきれないし、実験の試料が高かったり、施設利用費が高いとそう何度も実験できないという現実的な問題もある。この辺をどうにかしたいということだ。これが次の中心極限定理の内容にあたる。

難しすぎるので今日は話さないし勉強不足もあってそもそも話せないが、分散または偏差という大事な量があってそれについて大偏差原理という命題がある。そちらはそちらで応用上大事だ、統計力学とも深い関わりがあるようで勉強したい。

大偏差原理はそれとして、今度は中心極限定理だ. ひとまず Wikipedia から説明を引いてみよう.

大数の法則によると、ある母集団から無作為抽出された標本平均はサンプルのサイズを大きくすると真の平均に近づく.これに対し中心極限定理は標本平均と真の平均との誤差を論ずるものである.多くの場合、母集団の分布がどんな分布であっても、その誤差はサンプルのサイズを大きくしたとき近似的に正規分布に従う.

要は何回くらい実験すればまともな値と思えるようになるか、そのレートを教えてくれるのが中心極限定理だ.正規分布などは一旦無視する.

今日はこうした応用上の目的 (確率論というより統計学?) を背景にした確率論の数学を議論する. 高校の確率論とはかなり毛色が違うし, 大学の普通のコースともかなり違う. 参考文献 [20] を元に, ちょっと変わった確率論入門コースを走ってみる. メインテーマはひたすらにコイン投げだ. それでは始めよう.

硬貨投げの数理と独立性 21.4

21.4.1Viète の公式

まずは Viète の公式を出してみよう. 次の式を Viète の公式という.

$$\frac{2}{\pi} = \prod_{k=1}^{\infty} \cos \frac{\pi}{2^{k+1}} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \cdot \dots$$
 (21.4.1)

どうやって発見したのか、どうやって導いたのか・証明を思い付いのかが謎だし、 比較的簡単に計算できる $\cos\pi/2^k$ が出てくるのも不思議で, さらには $\cos\pi/2^k$ を きちんと頑張って計算してみたというところも尊い, 色々な感慨をかきたてると ても不思議な式だ.

まず計算自体は簡単な、しかし不思議な次の式から始める. 21.2.1 で導出した 倍角の公式を繰り返し使うのだ.

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} \tag{21.4.2}$$

$$= 2^2 \sin \frac{x}{4} \cos \frac{x}{4} \cos \frac{x}{2} \tag{21.4.3}$$

$$= 2^{2} \sin \frac{x}{4} \cos \frac{x}{4} \cos \frac{x}{2}$$

$$= 2^{3} \sin \frac{x}{8} \cos \frac{x}{8} \cos \frac{x}{4} \cos \frac{x}{2}$$
(21.4.3)

$$=2^n \sin \frac{x}{2^n} \prod_{k=1}^n \cos \frac{x}{2^k}.$$
 (21.4.5)

割り算がしたいのでいったん $x \neq 0$ (正確には $x \neq 2n\pi, n \in \mathbb{Z}$) とする. ここで sin の原点での微分係数から

$$1 = \lim_{n \to \infty} \frac{\sin \frac{x}{2^n}}{\frac{x}{2^n}} = \frac{1}{x} \lim_{n \to \infty} 2^n \sin \frac{x}{2^n}$$
 (21.4.6)

となるから

$$\lim_{n \to \infty} 2^n \sin \frac{x}{2^n} = x \tag{21.4.7}$$

が導ける. 最終結論のこの式自体は x=0 でも成り立つことに注意しよう 26 . 再び $x \neq 0$ を仮定しよう 1 . 式 (21.4.5) と (21.4.7) から

$$\frac{\sin x}{x} = \prod_{k=1}^{\infty} \cos \frac{x}{2^k} \tag{21.4.8}$$

が出る. ここで何をどう思ったか $x=\frac{\pi}{2}$ を代入してみると次のようになる.

$$\frac{2}{\pi} = \prod_{k=1}^{\infty} \cos \frac{\pi}{2^{k+1}} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \cdot \dots$$
 (21.4.9)

これが示したかった Viète の公式だ.

Rademacher 関数 21.4.2

これまではまさに高校の数学だった 23 . 本番はここからだ.式(21.4.8)を別の観 点から眺めてみようという体で、唐突に次の無茶苦茶な理論展開を見せる.

実数 $t \in [0,1]$ を取り、これを 2 進展開しよう。 $\varepsilon_k \in \{0,1\}$ とすると実数 $t \in [0,1]$ は

$$t = \frac{\varepsilon_1}{2} + \frac{\varepsilon_2}{2^2} + \cdots \tag{21.4.10}$$

と書ける. もちろん上の式で 2 が 10 のときがいつもの 10 進法での展開だ. 展開 を一意に決めるため $0.1111 \cdots = 1$ のようないつもの処方箋を出しておく.

各桁の ε_i は t の関数だから 2 進展開をきちんと書くと

$$t = \frac{\varepsilon_1(t)}{2} + \frac{\varepsilon_2(t)}{2^2} + \dots = \sum_{k=1}^{\infty} \frac{\varepsilon_k(t)}{2^k}$$
 (21.4.11)

となる.

関数 $\varepsilon_k(t)$ の図を描いてみよう. 見ているだけでも特徴的で結構楽しい. 数 学的には次の Rademacher 関数が便利なのでこれを使っていく. 今後の主役でも ある.

$$r_k(t) := 1 - 2\varepsilon_k(t), \quad k \in \mathbb{Z}_+. \tag{21.4.12}$$

これを使って2進展開を書き直そう.

$$1 - 2t = \sum_{k=1}^{\infty} \frac{r_k(t)}{2^k}.$$
 (21.4.13)

21.2.4 節の結果と式 (21.4.8) を使うと

$$\frac{\sin x}{x} = \int_0^1 e^{ix(1-2t)} dt = \int_0^1 \exp\left(ix \sum_{k=1}^\infty \frac{r_k(t)}{2^k}\right) dt$$
 (21.4.14)

$$= \prod_{k=1}^{\infty} \cos \frac{x}{2^k} = \prod_{k=1}^{\infty} \int_0^1 \exp\left(ix \frac{r_k(t)}{2^k}\right) dt$$
 (21.4.15)

が分かる. つまり

$$\int_{0}^{1} \exp\left(ix \sum_{k=1}^{\infty} \frac{r_k(t)}{2^k}\right) dt = \prod_{k=1}^{\infty} \int_{0}^{1} \exp\left(ix \frac{r_k(t)}{2^k}\right) dt.$$
 (21.4.16)

一般に極限と極限の順序交換ができないことには注意しておこう 2. そう思うと 上式は積分と無限積が交換できることを言っていることになる! 印象的にいうな ら「積の積分が積分の積になる」のだ.

$$\lim_{m \to \infty} \lim_{n \to \infty} \frac{n}{n+m} = 1,$$

$$\lim_{n \to \infty} \lim_{m \to \infty} \frac{n}{n+m} = 0.$$
(21.4.17)

$$\lim_{n \to \infty} \lim_{m \to \infty} \frac{n}{n+m} = 0. \tag{21.4.18}$$

²次の例をよく使っている.

21.4.3 どういうことなの?

式 (21.4.15) は偶然だろうか. 本質が見えるようになるまでは偶然というほかない. ここで式 (21.4.8) を別の方法で導いてみよう.

唐突だが次の関数を考える²⁴. いったん少し面倒な方法で取り組んでみよう. 21.4.4 節で整理するので少しのあいだ我慢してほしい.

$$\sum_{k=1}^{n} c_k r_k(t). \tag{21.4.19}$$

これは区間

$$\left(\frac{s}{2^n}, \frac{s+1}{2^n}\right), \quad s = 0, 1, \dots, 2^n - 1$$
 (21.4.20)

上でそれぞれ一定の値を取る階段関数だ. その一定の値は

$$\pm c_1 \pm c_2 \pm \dots \pm c_n \tag{21.4.21}$$

になる. したがって次の式が成り立つ

$$\int_{0}^{1} \exp\left[i\sum_{k=1}^{n} c_{k} r_{k}(t)\right] dt = \frac{1}{2^{n}} \sum_{k=1}^{n} \exp\left[i\sum_{k=1}^{n} \pm c_{k}\right]. \tag{21.4.22}$$

ここで右辺の和は全ての ± 1 の組み合わせで取る 25 . したがって

$$\frac{1}{2^n} \sum_{\pm} \exp\left[i \sum_{k=1}^n \pm c_k\right] = \prod_{k=1}^n \frac{e^{ic_k} + e^{-ic_k}}{2} = \prod_{k=1}^n \cos c_k$$
 (21.4.23)

だから, 21.2.4 の結果を使って

$$\int_0^1 \exp\left[i\sum_{k=1}^n c_k r_k(t)\right] dt = \prod_{k=1}^n \cos c_k = \prod_{k=1}^n \int_0^1 e^{ic_k r_k(t)} dt$$
 (21.4.24)

が分かる. $c_k = x/2^k$ とすると,

$$\int_0^1 \exp\left[ix \sum_{k=1}^n \frac{r_k(t)}{2^k}\right] dt = \prod_{k=1}^n \cos\frac{x}{2^k}$$
 (21.4.25)

となる. (21.4.13) の収束

$$\lim_{n \to \infty} \sum_{k=0}^{n} \frac{r_k(t)}{2^k} = 1 - 2t \tag{21.4.26}$$

は区間 (0,1) で一様 3 だから、積分と極限の順序の交換ができて次の式が導ける.

$$\frac{\sin x}{x} = \int_0^1 e^{ix(1-2t)} dt = \lim_{n \to \infty} \int_0^1 \exp\left[ix \sum_{k=1}^n \frac{r_k(t)}{2^k}\right] dt = \lim_{n \to \infty} \prod_{k=1}^n \cos \frac{x}{2^k} = \prod_{k=1}^\infty \cos \frac{x}{2^k}.$$
(21.4.27)

これで (21.4.8) の別証明ができた.

21.4.1 節での導出よりは長いし初等的でもないが, 2 進展開との関係を示唆する不思議な証明といえる. これは一体何だろうか. ここからは 2 進展開と上の証明について深く考えていこう.

³大学の数学科でしか使わない概念なので気にしなくていい。あとで自分が困らないように数学的にきちんと書いておいただけだから。

21.4.4 2 進展開の確率論ことはじめ

次の条件を満たす実数 t はいくつあるだろうか. 正確にいうなら次の条件を満たす t の集合は何だろうか:

$$r_1(t) = 1, \quad r_2(t) = -1, \quad r_3(t) = -1.$$
 (21.4.28)

グラフを書くとこの集合は端点を除いて区間 (3/8,4/8) になる. 区間の長さ (今後測度と呼ぶ) は当然 1/8 で、さらに

$$\frac{1}{8} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \tag{21.4.29}$$

とも書ける. これを測度 (区間の長さ) の記号を使って面倒くさく書くとこうなる.

$$\mu\left(r_{1}(t)=1,\ r_{2}(t)=-1,\ r_{3}(t)=-1\right)=\mu\left(r_{1}(t)=1\right)\cdot\mu\left(r_{2}(t)=-1\right)\cdot\mu\left(r_{3}(t)=-1\right).$$
(21.4.30)

ここで $\mu(A)$ は集合 (区間) A の長さを表わす.

これは次のように一般化できる: $\delta_k = \pm 1$ とすると,

$$\mu(r_1(t) = \delta_1, \dots, r_n(t) = \delta_n) = \prod_{k=1}^n \mu(r_k(t) = \delta_k).$$
 (21.4.31)

何も言わなければわざわざ

$$\left(\frac{1}{2}\right)^n = \frac{1}{2} \cdot \frac{1}{2} \cdot \dots \cdot \frac{1}{2} \tag{21.4.32}$$

を難しく書いているだけで何がしたいのか全く分からないし,馬鹿ではないかと思うだろう.しかしこれが関数 r_k ,ひいては 2 進展開に深く関わっていることが分かる.

ここまで来ると式 (21.4.24) は次のように機械的に計算できる.

$$\int_0^1 \exp\left[i\sum_{k=1}^n c_k r_k(t)\right] dt = \sum_{\delta_1,\dots,\delta_n} \exp\left[i\sum_{k=1}^n c_k \delta_k\right] \mu\left(r_1(t) = \delta_1,\dots,r_n(t) = \delta_n\right)$$
(21.4.33)

$$= \sum_{\delta_1, \dots, \delta_n} \prod_{k=1}^n e^{ic_k \delta_k} \prod_{k=1}^n \mu(r_k(t) = \delta_k)$$
 (21.4.34)

$$= \sum_{\delta_1, \dots, \delta_n} \prod_{k=1}^n e^{ic_k \delta_k} \mu(r_k(t) = \delta_k)$$
 (21.4.35)

$$= \prod_{k=1}^{n} \sum_{\delta_k = \pm 1} e^{ic_k \delta_k} \mu(r_k(t) = \delta_k)$$
 (21.4.36)

$$= \prod_{k=1}^{n} \int_{0}^{1} e^{ic_k r_k(t)} dt.$$
 (21.4.37)

前の議論だと組み合わせ的に面倒な話が必要で、少なくとも私には難しい4.

⁴センターレベルの組み合わせ・確率論ですら私には難しい.

21.4.5 独立性ことはじめ

硬貨投げを考えるとき、普通は次の条件を仮定している.

- 1. 硬貨投げは「公平」である: 表か裏かが出る確率に偏りはなく, 両方とも確率 1/2 である.
- 2. 硬貨投げの結果は他の回の結果とは関係ない: それぞれの事象は独立である.

独立を数学的に書くと次のようになる 5.

事象 $A_1, \dots A_n$ が独立であることの定義は次式が成り立つことと定める.

$$P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P(A_2) \dots P(A_n).$$
 (21.4.38)

ここで P(A) は事象 A が起きる確率を表わす.

表と裏が適当な回数ずつ出るときの確率は明らかに

$$\frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2} = \frac{1}{2^n} \tag{21.4.39}$$

になる. これまで計算してきた r_k に関する計算結果と同じなので、計算の便法として高校以来やってきた組み合わせ的な計算を r_k に関する計算で置き換えることができるかもしれない. そこで次の「辞書」を作って翻訳できるか試してみよう.

表 +1 裏 -1 k 回目の結果 $r_k(t)$ 事象の確率 事象と対応する t の集合の測度

辞書の使い方を見るために次の問題を考えてみる.

公平な硬貨投げを n 回繰り返すときにちょうど l 回表が出る確率を求めよ.

辞書を使うと次のように翻訳できる.

 r_1 から r_n のうち, ちょうど l 個が +1 になる t の集合の測度を求めよ.

こうすると、面倒な組み合わせの議論が積分 (測度) の問題として考えられるようになる。組み合わせは色々チェックが大変なので、個人的には精神的な負担が減り苦しみから解放された気になる 6 .

実際に確率を計算してみよう、組み合わせ的に考えたときの結果

$$\frac{1}{2^n} \binom{n}{l} \tag{21.4.40}$$

が再現できるだろうか. もちろんできなければ困る. まず求める値が

$$\mu\left(\sum_{k=1}^{n} r_k(t) = 2l - n\right) \tag{21.4.41}$$

⁵正確にはこう定義する.

⁶センターの組み合わせや確率論すらろくに解けない方の市民だった.

と書けることに注意しよう. 整数 m に対して

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imx} dx = \begin{cases} 1, & m = 0, \\ 0, & m \neq 0 \end{cases}$$
 (21.4.42)

となるから

$$\phi(t) := \frac{1}{2\pi} \int_0^{2\pi} \exp\left[ix\left(\sum_{k=1}^n r_k(t) - (2l-n)\right)\right] dx = \begin{cases} 1, & \sum_{k=1}^n r_k(t) = 2l-n, \\ 0, & \sum_{k=1}^n r_k(t) \neq 2l-n. \end{cases}$$
(21.4.43)

したがって

$$\mu\left(\sum_{k=1}^{n} r_{k}(t) = 2l - n\right) = \int_{0}^{1} \phi(t)dt$$

$$= \int_{0}^{1} \frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[ix\left(\sum_{k=1}^{n} r_{k}(t) - (2l - n)\right)\right] dxdt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i(2l - n)x} \left(\int_{0}^{1} \left[ix\sum_{k=1}^{n} r_{k}(t)\right] dt\right) dx$$

$$(21.4.46)$$

式 (21.4.24) で $c_k = x$ とすれば

$$\mu\left(\sum_{k=1}^{n} r_k(t) = 2l - n\right) = \frac{1}{2\pi} \int_0^{2\pi} e^{-i(2l-n)x} \cos^n x \, dx \tag{21.4.47}$$

となる. ここで

$$\cos^n x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{i(n-2k)x}$$
 (21.4.48)

に注意すると.

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-i(2l-n)x} \cos^n x \, dx = \frac{1}{2\pi} \int_0^{2\pi} e^{-i(2l-n)x} \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{i(n-2k)x} dx$$
(21.4.49)

$$= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{1}{2\pi} \int_0^{2\pi} e^{2i(k-l)x} dx \qquad (21.4.50)$$

$$= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \, \delta_{k,l} \tag{21.4.51}$$

となる.

まとめると次のようになることが分かった.

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-i(2l-n)x} \cos^n x \, dx = \frac{1}{2^n} \binom{n}{l}$$
 (21.4.52)

2 項係数が指数関数の 2 項展開から出てくるところが証明のポイントで, 組み合わせ的な議論がこれと積分計算に落ちていることが見て取れる. 計算ではさらっと流してしまっているので, Rademacher 関数の独立性, (21.4.31) が本質的に効いていることを注意し直しておきたい.

21.5 大数の法則

前節では Viète の公式の初等的な証明からはじめ、硬貨投げにどう落とし込むか、 さらには確率論、特に独立性がどう効いてくるのかを見た.

この節では主題の 1 つ, 大数の法則について考えてみよう. 弱法則と強法則の 2 種類がある. ここで「強弱」は論理的な強弱を表わしている.

21.5.1 大数の弱法則

また硬貨投げを考えよう. 「公平」な硬貨を 1 枚投げたとき, 表が出れば 1 円もらえ, 裏が出れば 1 円払う (-1 円もらう) ことにする 7. n 回硬貨を投げたあと, いくらくらい儲かっているか (損しているか) を予測したい. このとき, 硬貨投げという運の要素が絡んでいるため, 正確な値ももちろん出せず, どのくらいの確率でどのくらい儲かるか, ということを予測することしかできないことに改めて注意しよう.

21.4.5 節の辞書を使うと儲け自体は次のように書ける.

$$\sum_{k=1}^{n} r_k(t). \tag{21.5.1}$$

問題は n 回硬貨投げをしたあとに想定額 A_n を越えられるかどうかだろう. 要はいくら儲けたいという目標があって、それに到達できるかだ. 辞書を使うと儲けの見込み額は次の値 (集合の測度、区間の長さ) を求める問題に帰着する:

$$\mu\left(\sum_{k=1}^{n} r_k(t) > A_n\right). \tag{21.5.2}$$

ここからは数学的な結果の解釈が絡んできて難しい. 次のように考えて議論を 組み立てよう.

 A_n が十分に大きいとき, (21.5.2) は小さいはずだ.

もう少し噛み砕くと「公平な硬貨投げで大儲けすることは難しいだろう」という予想を立てたと言ってもいい. A_n の取り方も結構面倒だが, $\varepsilon>0$ として $A_n=\varepsilon n$ と取ることにする. その上で次の式を証明しよう.

$$\lim_{n \to \infty} \mu\left(\left|\sum_{k=1}^{n} r_k(t)\right| > \varepsilon n\right) = 0. \tag{21.5.3}$$

いきなり絶対値が入ったが、あまり気にしないでほしい. 「公平な硬貨投げなので、大きな得がないなら大きな損もないはずだ」 (ローリスクローリターン) という気持を表わしている 8 .

 $^{^7}$ Rademacher 関数を適当に変換すれば他の金額設定もできないことはないはずだが、独立性などがうまくいくのか確認していない.

 $^{^8}$ これが成り立つような状況しか考えに入れていないといってもいい. 実際に「大きな得はないが大損の可能性はある」状況はあるから.

式 (21.4.52) を使うことはできる. 実際次のように書ける.

$$\mu\left(\left|\sum_{k=1}^{n} r_k(t)\right| > \varepsilon n\right) = \sum_{|2l-n|>\varepsilon n} \mu\left(\sum_{k=1}^{n} r_k(t) = 2l - n\right) = \sum_{|2l-n|>\varepsilon n} \frac{1}{2^n} \binom{n}{l}.$$
(21.5.4)

このルートだと問題は次の式を示すことに帰着する.

$$\lim_{n \to \infty} \sum_{|2l-n| > \varepsilon n} \frac{1}{2^n} \binom{n}{l} = 0. \tag{21.5.5}$$

Stirling の公式を使って示すこともできるが面倒だ. Chebyshev による簡明かつ重要な結果を使った証明だけ紹介しておこう. 次のように変形していく.

$$\int_{0}^{1} \left(\sum_{k=1}^{n} r_{k}(t) \right)^{2} dt \ge \int_{\left| \sum_{k=1}^{n} r_{k}(t) \right| > \varepsilon n} \left(\sum_{k=1}^{n} r_{k}(t) \right)^{2} dt > \varepsilon^{2} n^{2} \mu \left(\left| \sum_{k=1}^{n} r_{k}(t) \right| > \varepsilon n \right).$$
(21.5.6)

21.2.5 節を参考に計算すると

$$\int_{0}^{1} \left(\sum_{k=1}^{n} r_{k}(t) \right)^{2} dt = n \tag{21.5.7}$$

となるから,

$$\mu\left(\left|\sum_{k=1}^{n} r_k(t)\right| > \varepsilon n\right) < \frac{1}{\varepsilon^2 n} \tag{21.5.8}$$

が分かる. これで簡単に (21.5.3) が証明できた.

Chebyshev の不等式だけでなく、Rademacher 関数の独立性、つまり 21.2.6 の結果も本質的に効いている。実は式 (21.5.3) が大数の弱法則だ 27 . 弱法則ではまだまだほしい内容に足りない。「儲けが際限なく大きくなる確率が 0 に収束する」くらいの微妙なことしか言っていないからだ。平均がばっちり 0 に行くことを証明したい。これは次節で議論する大数の強法則として数学的に定式化されている。

21.5.2 大数の強法則

Borel は次の定理を示した.

Theorem. 5.2.1. (Borel) ほとんど全ての $t \in [0,1]$ に対して

$$\lim_{n \to \infty} \frac{r_1(t) + r_2(t) + \dots + r_n(t)}{n} = 0$$
 (21.5.9)

が成り立つ.

Rademacher 関数 $r_k(t)$ での「硬貨投げ」では期待値 (平均) 0 であることに注意してほしい。これはまさに、算術平均がその「期待値」に収束することを言っている。

それと、定理の言明の中で \sum を使っていないのは「何となく全部和で書いた方が気分が出る感じがする」という程度の理由で特に意味はない。また「ほとんど全て」という魔術的な言葉は測度論の専門用語だ。かなり難しいが測度論・確率論には本質的な言葉でもある。ここでは無視しよう: いったん全部の t で成り立つと思ってもらって構わない。

Proof. 証明は読むだけなら簡単だ. 自分でそんなものをすんなり思いつくか? と 言われたらつらいところはある.

$$f_n(t) = \left(\frac{1}{n} \sum_{k=1}^{n} r_k(t)\right)^4 \tag{21.5.10}$$

として $\int_0^1 f_n(t)dt$ を考える. 4 乗をかつぎ出すというのが楽に進める上でとても 大事なポイントになっている.

和を展開して 21.2.5 節の結果を使うと

$$\int_0^1 f_n(t)dt = \frac{n + \frac{4!}{2!2!} \binom{n}{2}}{n^4}$$
 (21.5.11)

となる.分子は全ての r_k が偶数個だけしか表われないときだけ抜き出した項の

数だ. 21.2.5 節の結果から奇数次が出てくる場合の積分は消えてしまう. 分子は高々 2 次で分母が 4 次だから $\sum_{n=1}^\infty \int_0^1 f_n < \infty$ になる. したがって定 理 2.6.1 から

$$\sum_{n=1}^{\infty} f_n \tag{21.5.12}$$

はほとんどいたる所収束する. 収束する級数を構成する数列は極限で 0 になると いう一般的な定理があるから、

$$\lim_{n \to \infty} \left(\frac{r_1(t) + r_2(t) + \dots + r_n(t)}{n} \right)^4 = 0$$
 (21.5.13)

になる. つまり

$$\lim_{n \to \infty} \frac{r_1(t) + r_2(t) + \dots + r_n(t)}{n} = 0$$
 (21.5.14)

となる.

ここで

$$r_k(t) = 1 - 2\varepsilon_k(t) \tag{21.5.15}$$

だったから実は

$$\lim_{n \to \infty} \frac{\varepsilon_1(t) + \varepsilon_2(t) + \dots + \varepsilon_n(t)}{n} = \frac{1}{2}$$
 (21.5.16)

でもある. これは次のようにまとめられる.

Theorem. 5.2.2. ほとんど全ての実数 t に対してその 2 進展開に 0 と 1 は漸 近的に同じ個数だけ表われる.

確率論的にいうと次のようになる.

繰り返し公平に硬貨を投げる. 各回の試行が独立ならば確率 1 (ほと んどいたる所の t にあたる表現)で表・裏が出る頻度 (相対度数) は 極限で 1/2 になる.

これが「(試行が独立なら)表と裏が出る確率は同じ」という言明の数学的精 密化であって、21.4.5 節の辞書の正当性も主張している.

この話は正規数という解析数論の話題にも繋がっていく. 魔界の住人のような 結果もある. 興味がある向きは [20] 2.2 節を読み, さらに解析数論にもアタック してみてほしい.

21.6 中心極限定理

21.6.1 正規分布

まずは定義を書く. 平均 μ , 分散 σ^2 の正規分布というのは次の確率密度関数を持つ分布のことだ.

$$N(\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]. \tag{21.6.1}$$

適当な仮定, 特に独立性がある場合, 試行の確率分布が試行を無限回繰り返す極限 で正規分布に漸近していくという言明が中心極限定理なのだった.

21.6.2 中心極限定理の正確な言明: Rademacher 関数版

まず中心極限定理 (の Rademacher 関数版) を数学的に正確に書いておこう.

Theorem. 6.2.1. Rademacher 関数に関して次の式が成り立つ.

$$\lim_{n \to \infty} \mu \left(\omega_1 < \frac{r_1(t) + \dots + r_n(t)}{\sqrt{n}} < \omega_2 \right) = \frac{1}{\sqrt{2\pi}} \int_{\omega_1}^{\omega_2} e^{-y^2/2} dy.$$
 (21.6.2)

上式右辺が正に平均 0, 分散 1 の正規分布だ.

これは Stirling の公式と組み合わせ的な議論からも導ける. しかしもっと確率 論的にクリアな形で導出したい.

21.6.3 Markov の方法とその厳密化

Proof. 実数 $\omega_1 < \omega_2$ を固定しておき、

$$g(x) = \xi_A(x), \quad A = \{x : \omega_1 < x < \omega_2\}$$
 (21.6.3)

とする. さらに補助関数を定義しよう. 式で書くと面倒だが図を描くとすぐ分かる. $0<\varepsilon,\,2\varepsilon<\omega_2-\omega_1$ として

$$g_{\varepsilon}^{+}(x) = \begin{cases} \frac{x - (\omega_{1} - \varepsilon)}{\varepsilon}, & x \in [\omega_{1} - \varepsilon, \omega_{1}], \\ 1, & x \in [\omega_{1}, \omega_{2}], \\ -\frac{x - (\omega_{2} + \varepsilon)}{\varepsilon}, & x \in [\omega_{2}, \omega_{2} + \varepsilon], \\ 0, & \text{otherwise,} \end{cases}$$
(21.6.4)

$$g_{\varepsilon}^{-}(x) = \begin{cases} \frac{x - \omega_{1}}{\varepsilon}, & x \in [\omega_{1}, \omega_{1} + \varepsilon] \\ 1, & x \in [\omega_{1} + \varepsilon, \omega_{2} - \varepsilon], \\ -\frac{x - \omega_{2}}{\varepsilon}, & x \in [\omega_{2} - \varepsilon, \omega_{2}], \\ 0 & \text{otherwise.} \end{cases}$$
(21.6.5)

こうすると

$$g_{\varepsilon}^{-}(x) \le g(x) \le g_{\varepsilon}^{+}(x)$$
 (21.6.6)

であり.

$$\int_0^1 g_{\varepsilon}^- \left(\frac{\sum_{k=1}^n r_k(t)}{\sqrt{n}} \right) dt \le \mu \left(\omega_1 < \frac{\sum_{k=1}^n r_k(t)}{\sqrt{n}} < \omega_2 \right) \le \int_0^1 g_{\varepsilon}^+ \left(\frac{\sum_{k=1}^n r_k(t)}{\sqrt{n}} \right) dt.$$
(21.6.7)

ところで ξ の関数 $(g_{\varepsilon}^+, g_{\varepsilon}^-$ の逆 Fourier 変換)

$$G_{\varepsilon}^{-}(\xi) := \int_{\mathbb{R}} g_{\varepsilon}^{-}(y)e^{iy\xi}dy, \quad G_{\varepsilon}^{+}(\xi) := \int_{\mathbb{R}} g_{\varepsilon}^{+}(y)e^{iy\xi}dy, \tag{21.6.8}$$

は絶対可積分になる. Fubini の定理が使えるから,

$$\lim_{n \to \infty} \int_0^1 g_{\varepsilon}^- \left(\frac{\sum_{k=1}^n r_k(t)}{\sqrt{n}} \right) dt = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-\xi^2/2} \int_{\mathbb{R}} g_{\varepsilon}^-(y) e^{i\xi y} dy d\xi \qquad (21.6.9)$$
$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g_{\varepsilon}^-(y) e^{-y^2/2} dy. \qquad (21.6.10)$$

関数 $g_{arepsilon}^+$ に対しても同じことが言えるので

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g_{\varepsilon}^{-}(y) e^{-y^2/2} dy \le \liminf_{n \to \infty} \mu \left(\omega_1 < \frac{\sum_{k=1}^n r_k(t)}{\sqrt{n}} < \omega_2 \right)$$
 (21.6.11)

$$\leq \limsup_{n \to \infty} \mu \left(\omega_1 < \frac{\sum_{k=1}^n r_k(t)}{\sqrt{n}} < \omega_2 \right) \qquad (21.6.12)$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} g_{\varepsilon}^{+}(y) e^{-y^{2}/2} dy \tag{21.6.13}$$

が任意の $\varepsilon > 0$ に対して成立する. したがって

$$\lim_{n \to \infty} \mu \left(\omega_1 < \frac{\sum_{k=1}^n r_k(t)}{\sqrt{n}} < \omega_2 \right) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(y) e^{-y^2/2} dy$$
 (21.6.14)

$$= \frac{1}{\sqrt{2\pi}} \int_{\omega_1}^{\omega_2} e^{-y^2/2} dy \tag{21.6.15}$$

この証明を精査すると確率論的には分布関数という大事な概念に導かれる. その他のトピックへの展開も面白い. 興味がある向きは是非 [20] の 3 章を読んでほしい.

Talk: Gaussian superprocess and its application to Quantum Field Theory: Sasakure Seminar

22.1 Introduction

Today we consider Gaussian superprocesses and its application to quantum field theory. We talk about construction of a probability space on the space of real tempered distributions, $\mathcal{S}'_{\text{real}}(\mathbb{R}^3)$ using a Gaussian superprocess. We are going to construct it from the Sobolev space $H^{-1/2}(\mathbb{R}^3)$.

Almost all of you may not know how large the space $L^2(\mathcal{S}'_{real}(\mathbb{R}^3))$. So we state a theorem on it. It relates to quantum field theory.

We set some notations. The function $\omega \colon \mathbb{R}^3 \to \mathbb{R}_{\geq}$ is $\omega(k) := \sqrt{k^2 + m^2}$, m > 0, and the real Hilbert space $H^{-1/2}(\mathbb{R}^3)$ is defined by

$$H^{-1/2}(\mathbb{R}^3) := \left\{ f \in \mathcal{S}'_{\text{real}}(\mathbb{R}^3) : \omega^{-1/2} \hat{f} \in L^2(\mathbb{R}^3) \right\}. \tag{22.1.1}$$

For any (separable) Hilbert space \mathcal{K} we set a new Hilbert space, called a (boson) Fock space [9, 8], by

$$\mathcal{F}_{\mathbf{b}}(\mathcal{K}) := \bigoplus_{n=0}^{\infty} \bigotimes_{\mathbf{s}}^{n} \mathcal{K}, \tag{22.1.2}$$

where \oplus means a direct sum, \otimes_s means a symmetric tensor product, and $\otimes_s^0 \mathcal{K} := \mathbb{C}$.

Then we can state a

Theorem. 1.0.1. ([5], Theorem 4.4.1) We have a unitary equivalence $\mathcal{F}_b(L^2(\mathbb{R}^3)) = L^2(\mathcal{S}'_{real}(\mathbb{R}^3), d\mu)$, where $d\mu$ is a probability measure.

Theorem. 1.0.2. A L^2 space $L^2(\mathcal{S}'_{real}(\mathbb{R}^3), d\mu)$ can be constructed from a Gaussian superprocess indexed by $H^{-1/2}(\mathbb{R}^3)$.

Note that Prof. Obata in University of Tohoku uses the above Fock space in his study of quantum probability [1].

22.1.1 Application to quantum field theory [9, 8]

The above Fock space \mathcal{F}_b is used in quantum field theory. We use the space $L^2(\mathbb{R}^3)$ for one particle **quantum mechanics**, use the space $L^2(\mathbb{R}^{3*2})$ for two particle quantum mechanics, and use the space $L^2(\mathbb{R}^{3n})$ for n particle quantum mechanics.

Since particles are created or annihilated in quantum field theory, i.e., a particle number is not a constant in quantum field theory, we must use the space for the space with variable particle number. For this, our space must include all subspaces for n particle spaces, and hence our particle space is the (boson) Fock space.

One more feeling for the need of tempered distributions

We use a Brownian motion for quantum mechanics, i.e., integration theory on the set of continuous functions $C(\mathbb{R}^3)$. Roughly speaking the set of tempered distributions $\mathcal{S}'_{\text{real}}$ is a dual space for a space $C(\mathbb{R}^3)$, i.e., $\mathcal{S}'_{\text{real}}$ is on $C(\mathbb{R}^3)$. Quantum field theory is one on quantum mechanics. So our space must be constructed as integration theory on the space over $C(\mathbb{R}^3)$, the space $\mathcal{S}'_{\text{real}}$.

Usage of Lévy process

We use Lévy processes for probabilistic representations of quantum mechanical systems. See [27] for details.

22.1.2 Application to geometry [9] chap. 6

Let $\mathcal H$ and $\mathcal K$ be separable Hilbert spaces and define a **Fermion Fock space** by

$$\mathcal{F}_{f}(\mathcal{K}) := \bigoplus_{n=0}^{\infty} \bigotimes_{as}^{n} \mathcal{K}, \qquad (22.1.3)$$

where \bigotimes_{as}^n means an antisymmetric tensor product. We define the Hilbert space $\mathcal{F}(\mathcal{H},\mathcal{K})$ by

$$\mathcal{F}:=\mathcal{F}(\mathcal{H},\mathcal{K}):=\mathcal{F}_{b}(\mathcal{H})\bigotimes\mathcal{F}_{f}(\mathcal{K}). \tag{22.1.4}$$

This space relates to supersymmetric quantum field theory.

We can define a coboundary operator, a cochain complex, and p-th Laplace-Beltrami operator on \mathcal{F} . We can define p-th cohomology groups and prove a de Rham-Hodge-Kodaira decomposition. Furthermore we can define an infinite dimensional Dirac operator.

For finite dimensional Dirac operators celebreted index theory has developed. Its relation to supersymmetric quantum mechanics has been also studied. There exists some studies for infinite dimensional Dirac operators and its functional integral (path integral) representations for their indices. This suggests a geometric study, in particular, topological invariants for infinite dimensional spaces.

22.1.3 Application to analytic number theory [4]

We can derive the Dirichlet series and other arithmetic functions including the famous Riemann ζ , using quantum statistical partition functions. This relates to the Hilbert-Polya conjecture. Supersymmetric quantum theory and duality are encoded into many relations of functional equations of arithmetic functions.

22.2 Gaussian superprocess and its construction

22.2.1 Basics for probability

First we introduce some probabilistic notions.

Let (M, Σ, μ) be a probability space, i.e., Σ is a σ -algebra on a space M and μ is a probability measure on Σ . A real-valued measurable function on a measurable space (M, Σ) is called a **random variable**. For a random variable f we define a **expectation** for μ by

$$E[f] := \int_{M} f \, d\mu.$$
 (22.2.1)

A set of random variables of finite number $\{f_1, \ldots, f_n\}$ is called **Gaussian** if its characteristic function has the following form:

$$C_{f_1,\dots,f_n}(t_1,\dots,t_n) := \mathbb{E}\left[\exp\left[i\sum_{i=1}^n t_i f_i\right]\right] = \exp\left[-\frac{1}{2}\sum_{i,j}^n a_{i,j} t_i t_j\right], \quad t_i \in \mathbb{R},$$
(22.2.2)

where $A := \{a_{i,j}\}$ is a real positive definite matrix.

In the following we denote Gaussian random variables as GRV. One of GRVs' fundamental property is

Proposition. 2.1.1. For a GRV $\{f_1, \ldots, f_m\}$ we have

$$E[f_1 \cdots f_{2n}] = \sum E[f_{i_1} f_{j_1}] \cdots E[f_{i_n} f_{j_n}],$$
 (22.2.3)

$$E[f_1 \cdots f_{2n-1}] = 0. \tag{22.2.4}$$

Remark. 2.1.2. A quasi-free state amounts to a representation of GRV in operator algebra.

Wick product

Let f_1, \ldots, f_n be mutually different random variables. We define their **Wick products**: $f_1^{n_1} \cdots f_k^{n_k}$: recursively as follows:

$$: f_1^0 \cdots f_k^0 := 1, \tag{22.2.5}$$

$$\frac{\partial}{\partial f_i} \colon f_1^{n_1} \cdots f_k^{n_k} \colon = \begin{cases} n_i \colon f_1^{n_1} \dots f_i^{n_i-1} \dots f_k^{n_k} \colon & (n_i \ge 1), \\ 0 & (n_i = 0), \end{cases}$$
(22.2.6)

$$E[: f_1^{n_1} \cdots f_k^{n_k}:] = 0 \quad (n_1 + \cdots + n_k \neq 0).$$
 (22.2.7)

We define an operator $\partial/\partial f_i$ is defined by

$$\frac{\partial}{\partial f_i} f_1^{n_1} \cdots f_k^{n_k} = \begin{cases} n_i f_1^{n_1} \dots f_i^{n_i-1} \dots f_k^{n_k} & (n_i \ge 1), \\ 0 & (n_i = 0), \end{cases}$$
 (22.2.8)

and extend it by linearity for $\{f_i\}$ polynomials.

Proposition. 2.1.3. For a GRV f we get

$$: f^{n} := \sum_{k=0}^{[n/2]} \frac{n!}{k!(n-2k)!} f^{n-2k} \left(-\frac{1}{2} \mathbf{E} \left[f^{2} \right] \right)^{k}.$$
 (22.2.9)

Proposition. 2.1.4. *Let* f *be a GRV. Then, for any* $\alpha \in \mathbb{C}$ *,*

$$: e^{\alpha f} : := \sum_{n=0}^{\infty} \frac{: f^n :}{n!} \alpha^n$$
 (22.2.10)

is defined by a.e. absolute convergence and it holds that

$$: e^{\alpha f}: = e^{-\frac{\alpha^2}{2} E[f^2]} e^{\alpha f}. \tag{22.2.11}$$

The RHS of the above converges in $L^p(M, d\mu)$ for all $p \in [1, \infty)$.

22.2.2 Gaussian superprocesses

Definition. 2.2.1. Suppose (M, Σ, μ) is a probability space, H is a real Hilbert space, and $\phi \colon H \ni f \to \phi(f)$ is a map from H to random variables on M. The map ϕ is a Gaussian superprocess with index H if ϕ satisfies the following four conditions:

1. (linearity) we have, for all $f, g \in H$ and $\alpha, \beta \in \mathbb{R}$,

$$\phi(\alpha f + \beta g) = \alpha \phi(f) + \beta \phi(g)$$
, a.e. (22.2.12)

- 2. $\{\phi(f): f \in H\}$ is full, i.e., Σ is the smallest σ -algebra where enables $\{\phi(f)\}$ measurable.
- 3. each $\phi(f), f \in H$ is a GRV, i.e.,

$$\mathrm{E}\left[e^{it\phi(f)}\right] = \exp\left[-\frac{1}{2}t^{2}\mathrm{E}\left[\phi(f)^{2}\right]\right], \quad t \in \mathbb{R}. \tag{22.2.13}$$

4. We have

$$E\left[\phi(f)\phi(g)\right] = \frac{1}{2}\langle\phi(f), \phi(g)\rangle, \quad f, g \in H, \tag{22.2.14}$$

where $\langle f, g \rangle$ is an inner product for H.

A probability space which realizes a Gaussian superprocess with index H clearly depends on the space H. Hence, in general, we denote a measure space Q_H , a probability measure μ_H , and a superprocess $\phi_H(f)$. If there is no confusion we simply denote them Q, μ , and $\phi(f)$.

In the following we consider its fundamental structures, uniqueess, existence.

Fundamental structures

Lemma. 2.2.2. Suppose $\{f_{\alpha}\}_{{\alpha}\in I}$ is a set of random variables on a probability space (M, Σ, μ) with index I and set

$$\mathcal{A} := \{ F(f_{\alpha_1}, \dots, f_{\alpha_n}) : F \in \mathcal{S}(\mathbb{R}^n), \alpha_i \in I, n \ge 1 \}.$$
 (22.2.15)

A set $\{f_{\alpha}\}\$ is full if and only if A is dense in $L^{2}(M, d\mu)$.

Proof. We show only that fullness implies density. Denote $H = L^2(M, d\mu)$. We consider the following action of $F \in \mathcal{A}$ over $\Psi \in H$, i.e.,

$$(F\Psi)(m) := F(m)\Psi(m), \quad m \in M.$$
 (22.2.16)

The set \mathcal{A} becomes a non-unital abelian *-subalgebra of the operator algebra of all bounded operators on H. Then the strong operator topological closure \mathcal{A}_S is an abelian von Neumann algebra. In fact $\mathcal{A}_S = L^{\infty}(M)$. (You may need a proof: Since L^{∞} is a von Neumann algebra, this is made of projections. Projections in it is defining functions for measurable sets of M. Thus we must approximate them by rapidly decreasing functions.)

Next we define
$$\tilde{\mathcal{A}}_S = \mathcal{A}_S 1$$
, where $1 \in H$ is a constant function. Clearly $\tilde{\mathcal{A}}_S \subset \overline{\mathcal{A}}$ and $\tilde{\mathcal{A}}_S = L^{\infty}(M)$. This proves $\overline{\mathcal{A}} = H$.

Theorem. 2.2.3. Let ϕ be a Gaussian superprocess indexed by a real Hilbert space H. We define closed subspaces $\Gamma_n(H)$, $n \geq 0$, of $L^2(Q, d\mu)$ as follows:

$$\Gamma_0(H) := \mathbb{C},\tag{22.2.17}$$

$$\Gamma_n(H) := \overline{\{: \phi(f_1) \cdots \phi(f_n): : f_j \in H, j = 1, \cdots, n\}}.$$
 (22.2.18)

Then we have

$$L^{2}(Q, d\mu) = \bigoplus_{n=0}^{\infty} \Gamma_{n}(H).$$
 (22.2.19)

In the proof we use the following interesting orthogonal properties.

Lemma. 2.2.4. Suppose $\{f_1, \ldots, f_n, g_1, \ldots, g_m\}$ is a GRV. Then we obtain

$$\mathbf{E}\left[:f_{1}\cdots f_{n}\colon :g_{1}\cdots g_{m}\colon\right] = \begin{cases} \sum_{\sigma\in\mathfrak{S}_{n}}\mathbf{E}\left[f_{1}g_{\sigma(1)}\right]\cdots\mathbf{E}\left[f_{n}g_{\sigma(n)}\right] & (n=m),\\ (n\neq m). & (22.2.20) \end{cases}$$

Remark. 2.2.5. The above spaces $\Gamma_n(H)$ are 'n-particle subspaces'.

Uniqueness

Theorem. 2.2.6. Suppose ϕ_1 and ϕ_2 are Gaussian superprocesses for H and their probability spaces are $(Q_i, d\mu_i)$, i = 1, 2. Then there exists a unitary operator $U: L^2(Q_1) \to L^2(Q_2)$ satisfies

$$U1 = 1, (22.2.21)$$

$$U\phi_1(f)U^{-1} = \phi_2(f), \quad f \in H.$$
 (22.2.22)

Existence of a Gaussian superprocess for any separable H

Proof. Let H be a separable real Hilbert space and $\{e_n\}_{n=1}^{\infty}$ is a CONS. Set \mathbb{R} be the one-point compactification

$$\dot{\mathbb{R}} := \mathbb{R} \big[\ \big| \{ \infty \} \big] \tag{22.2.23}$$

and $\mathbb{R}^{(n)}$ is a copy of $\dot{\mathbb{R}}$. Then

$$Q := \prod_{n=1}^{\infty} \mathbb{R}^{(n)}$$
 (22.2.24)

is a compact Hausdorff space by Tychonoff's theorem. We denote C(Q) is an abelian C^* -algebra of continuous functions on Q and $C_{\text{fin}}(Q)$ is a vector subspace of C(Q) whose functions depends on finite variables. We set a functional l for $F \in C_{\text{fin}}(Q)$ by

$$l(F) := \frac{1}{\pi^{n/2}} \int_{\mathbb{R}^n} F(x_1, \dots, x_n) \exp\left[-\sum_{i=1}^n x_i^2\right] dx_1 \cdots dx_n.$$
 (22.2.25)

The functional l is a continuous linear functional on $C_{\mathrm{fin}}(Q)$. By the way $C_{\mathrm{fin}}(Q)$ is dense in C(Q) thanks to celebrating Stone-Weierstrass' theorem. Hence the functional l can be uniquely extended to a functional on C(Q); we denote it l too. Since $F \geq 0$ leads $l(F) \geq 0$ the functional l is positive. Riesz-Markov-Kakutani theorem shows the unique existence of the probability measure μ on Q such that

$$l(F) = \int_{O} F \, d\mu. \tag{22.2.26}$$

We define a real valued function $\phi(e_n)$ on Q, for each e_n , by

$$\phi(e_n)(q) := x_n, \quad q = \{x_k\}_{k=1}^{\infty} \in Q.$$
 (22.2.27)

Functions $\{\phi(e_n)\}$ are random variables on Q and clearly $\phi(e_n) \in L^2(Q, d\mu)$. Hence $\{\phi(e_n)\}_{n=1}^{\infty}$ is full. Expand $f \in H$ by $\{e_n\}$:

$$f = \sum_{n=1}^{\infty} \alpha_n e_n. \tag{22.2.28}$$

Set functions

$$\phi_n(f) := \sum_{k=1}^n \alpha_k \phi(e_k). \tag{22.2.29}$$

The sequence $\{\phi_n(f)\}$ converges in $L^2(Q)$ because, for n > m, we have

$$\|\phi_n(f) - \phi_m(f)\|^2 = \frac{1}{2} \sum_{k=m+1}^n \alpha_k^2 \to 0.$$
 (22.2.30)

Denote the above limit function $\phi(f)$.

We can show

$$E[\phi(f)\phi(g)] = \frac{1}{2}\langle f, g \rangle_{H}.$$
 (22.2.31)

Since $\phi(f)$ is a GRV and the correspondence $f \to \phi(f)$ is linear, the constructed $\phi(\cdot)$ is a Gaussian superprocess indexed by H.

22.3 Concrete realization of the set Q

Finally we consider a useful realization of Q because we would like to describe Q concretely for concrete H. The reason why we want to use $\mathcal{S}'_{\text{real}}$ is a representation theory: a Minkowski space \mathcal{M}^4 and the Lorenz group actions are extended to a function space on it, and their actions are extended to the space of distributions. Their actions are closely related to relativistic causality, light cone analysis, and so on.

Let $S_{\text{real}}(\mathbb{R}^{\nu})$ be the subset of real valued rapid decreasing functions $S(\mathbb{R}^{\nu})$. For a Borel set B of \mathbb{R}^n and functions $f_1, \ldots, f_n \in S_{\text{real}}(\mathbb{R}^{\nu})$, a subset in $S'_{\text{real}}(\mathbb{R}^{\nu})$

$$\{T \in \mathcal{S}'_{\text{real}}(\mathbb{R}^{\nu}) : (T(f_1), \dots, T(f_n)) \in B\}$$
 (22.3.1)

is called a **cylinder set**. In the following the σ -algebra of $\mathcal{S}'_{\text{real}}(\mathbb{R}^{\nu})$ is the minimal σ -algebra generated by the above cylinder sets.

Theorem. 3.0.7. (Minlos, Theorem 3.2.12 in [5], Theorem D.20 in [11]) Let C be a functional on $\mathcal{S}_{real}(\mathbb{R}^{\nu})$. Then the existence of a probability measure on $\mathcal{S}'_{real}(\mathbb{R}^{\nu})$ satisfying

$$C(f) = \int_{\mathcal{S}'_{\text{real}}(\mathbb{R}^{\nu})} e^{iT(f)} d\mu(T), \quad f \in \mathcal{S}_{\text{real}}(\mathbb{R}^{\nu})$$
 (22.3.2)

is equivalent to the following three conditions:

- 1. C(0) = 1;
- 2. a map $f \to C(f)$ is continuous in the strong topology of $\mathcal{S}_{real}(\mathbb{R}^{\nu})$;
- 3. C is of positive type, i.e., for each $f_i \in \mathcal{S}_{real}(\mathbb{R}^{\nu})$ and $z_i \in \mathbb{C}$, $n = 1, 2, \dots$, we have

$$\sum_{i,j=1}^{n} \bar{z}_i z_j C(f_i - f_j) \ge 0.$$
 (22.3.3)

Remark. 3.0.8. This theorem is an infinite dimensional version of finite dimensional Bochner's theorem.

Theorem. 3.0.9. Suppose a real Hilbert space H satisfies the following two conditions:

- 1. an inclusion $S_{\text{real}}(\mathbb{R}^{\nu}) \subset H$ is dense;
- 2. embedding is continuous.

Then we can take $\mathcal{S}'_{real}(\mathbb{R}^{\nu})$ as a measure space Q realizing a Gaussian superprocess $\phi(\cdot)$ indexed by H and $\phi(f)$ is given by

$$\phi(f)(T) = T(f), \quad T \in \mathcal{S}'_{real}.$$
 (22.3.4)

Remark. 3.0.10. Real α -th Sobolev spaces $H^{\alpha}(\mathbb{R}^{\nu})$ are examples of Hilbert spaces satisfing the condition in the above theorem.

Proof. A characteristic function of a Gaussian superprocess indexed by H is given by

$$C(f) := \mathbb{E}\left[e^{i\phi(f)}\right] = \exp\left[-\frac{1}{4}\|f\|^2\right].$$
 (22.3.5)

Since $S_{\text{real}}(\mathbb{R}^{\nu}) \subset H$, $C(\cdot)$ is a functional on $S_{\text{real}}(\mathbb{R}^{\nu})$ and C(0) = 1. By the assumption 2, a correspondense $f \to C(f)$ is continuous in the strong topology of $S_{\text{real}}(\mathbb{R}^{\nu})$. Clearly C(f) is of positive type. Hence, by Minlos' theorem, there exists a probability measure μ on $S'_{\text{real}}(\mathbb{R}^{\nu})$ such that

$$C(f) = \int_{\mathcal{S}'_{\text{real}}(\mathbb{R}^{\nu})} e^{iT(f)} d\mu(T), \quad f \in \mathcal{S}_{\text{real}}(\mathbb{R}^{\nu}). \tag{22.3.6}$$

Define $\phi(f)(T) := T(f), T \in \mathcal{S}'_{real}, f \in \mathcal{S}_{real}$. Then $\phi(f)$ becomes a GRV on $(\mathcal{S}'_{real}(\mathbb{R}^{\nu}), d\mu)$ and satisfies

$$E\left[\phi(f)\phi(g)\right] = \frac{1}{2}\langle f, g \rangle, \quad f, g \in \mathcal{S}_{real}(\mathbb{R}^{\nu}). \tag{22.3.7}$$

The assumption 1 shows that we can define $\phi(f)$ for $f \in H$ by

$$\phi(f) := \lim_{n \to \infty} \phi(f_n), \quad ||f_n - f||_H \to 0.$$
 (22.3.8)

Since $|e^{ix} - e^{iy}| \le |x - y|$, we obtain

$$\lim_{n\to\infty} \mathbf{E}\left[e^{i\phi(f_n)}\right] = \mathbf{E}\left[e^{i\phi(f)}\right], \quad \lim_{n\to\infty} \exp\left[-\frac{1}{4}\left\|f_n\right\|^2\right] = \exp\left[-\frac{1}{4}\left\|f\right\|^2\right]. \tag{22.3.9}$$

Hence $\phi(f)$ is a GRV.

22.4 Application to quantum field theory and relation to operator algebraic formuration

If having time.

22.5 Appendix

22.5.1 Stone-Weierstrass theorem

We consider the algebra $C_0(X,\mathbb{C})$ of complex-valued continuous functions on a locally compact Hausdorff space X with the topology of uniform convergence. This is a C^* -algebra with the *-operation given by pointwise complex conjugation.

Theorem. 5.1.1. Let X be a locally compact Hausdorff space and let A be a subset of $C_0(X,\mathbb{C})$ which satisfies the following two conditions:

- 1. for any pair $x, y \in X$, $x \neq y$ there exists a function $p \in A$ which satisfies $p(x) \neq p(y)$;
- 2. for any point $x \in X$ there exists a function $p \in A$ which satisfies $p(x) \neq 0$.

Then the complex unital *-algebra generated by A is dense in $C_0(X,\mathbb{C})$.

22.5.2 Minlos' theorem

First we review Bochner' theorem. A function $\phi \colon \mathbb{R}^n \to \mathbb{C}$ is of positive type if, for any $x_1, \ldots, x_n \in \mathbb{R}^n$ and any $z_1, \ldots, z_n \in \mathbb{C}$,

$$\sum_{i,j=1}^{n} \bar{z}_i z_j \phi(x_i - x_j) \ge 0. \tag{22.5.1}$$

Theorem. 5.2.1. (Bochner, [18], Section 30) A function $\phi \colon \mathbb{R}^n \to \mathbb{C}$ is of positive type with $\phi(0) = 1$ if and only if ϕ has the form

$$\phi(x) = \int_{\mathbb{R}^n} e^{2\pi i \langle x, k \rangle} d\mu(k), \qquad (22.5.2)$$

where μ is a Borel probability measure on \mathbb{R}^n .

Minlos' theorem is an infinite dimensional version of Bochner. One of its proof uses Bochner directly: we use a finite dimensional net and apply it for each finite dimensional subspaces. Then a net limit functional is the desired one

There are two proofs in [11]. One is abstract and uses **nuclear extension**. The other is concrete and uses a **quantum mechanical harmonic oscillator**

Statistics for idol management

動画から適当に切り出してくる.

Part VIII

Algebra

対称性と群論

- 24.1 運動方程式を不変にする変換
- 24.2 エネルギーを不変にする変換
- 24.3 群
- 24.4 Lorentz 群と Maxwell 方程式
- 24.5 解析力学小論

Part IX Geometry

$\begin{array}{c} {\rm Part~X} \\ {\rm Interesting~counter} \\ {\rm examples} \end{array}$

Playing with interesting counter examples

DVD の原稿をもう少し整理して張る.

Part XI Applied mathematics

Degital signal processing and algebraic geometry

動画から適当に切り出してくる.

Peano curve and its application to engineering

動画から適当に切り出してくる.

Part XII Quantum mechanics and Quantum field theory

Part XIII

Statistical Mechanics and condensed matter physics

LASER: song by electrones

動画から適当に切り出してくる.

Analysis for Hubbard model

動画から適当に切り出してくる.

Part XIV Physical misc

Similarity for hydrodynamics and general relativity

動画から適当に切り出してくる.

Part XV

Reference

Bibliography

- [1] 類似明出伊, 伸明尾畑. 『量子確率論の基礎』. 牧野書店, 9 2003.
- [2] L. V. Ahlfors, 乾吉笠原. 『複素解析』. 現代数学社, 3 1982.
- [3] 和彦青本. 『直交多項式入門』. 数学書房, 4 2013.0.
- [4] Asao Arai. Infinite-Dimensional Analysis and Analytic Number Theory, Vol. 63. 2000.
- [5] 朝雄新井, 洋江沢. 『場の量子論と統計力学』. 日本評論社, 6 1988.
- [6] 朝雄新井,洋江沢. 『量子力学の数学的構造 II』. 朝倉書店,7 1999.
- [7] 朝雄新井,洋江沢. 『量子力学の数学的構造 I』. 朝倉書店,7 1999.
- [8] 朝雄新井. 『フォック空間と量子場 下』. 数理物理シリーズ. 日本評論社, 8 2000.
- [9] 朝雄新井. 『フォック空間と量子場 上』. 数理物理シリーズ. 日本評論社, 8 2000.
- [10] 朝雄新井. 『量子現象の数理』. 朝倉物理学体系. 朝倉書店, 2 2006.
- [11] 朝雄新井. 『量子数理物理学における汎関数積分法』. 共立出版, 8 2010.
- [12] T. Aubin. Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer New York, 12 1982.
- [13] Simon B. Functional Integration And Quantum Physics. Chelsea Pub Co., 12 2004.
- [14] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 11 2011.
- [15] H. Brezis, 宏藤田, 芳雄小西. 『関数解析 その理論と応用に向けて』. 産業 図書, 10 1988.
- [16] 直久舟木. 『確率論』. 朝倉書店, 11 2004.
- [17] 文雄日合, 研二郎柳. 『ヒルベルト空間と線型作用素』. 牧野書店, 7 1995.
- [18] 清三伊藤. 『ルベーグ積分入門』. 裳華房, 4 1963.
- [19] Mark Kac. Can one hear the shape of a drum? American Mathematical Monthly, Vol. 73, pp. 1–23, 1966.

- [20] M. Kac, 陽一郎高橋, 眞澄中嶋. 『Kac 統計的独立性』. 数学書房, 4 2011.
- [21] 健一金谷. 『これなら分かる応用数学教室 最小二乗法からウェーブレットまで』. 共立出版, 6 2003.
- [22] 隆裕河合, 義次竹井. 『特異摂動の代数解析学』. 岩波書店, 5 2008.
- [23] 成煥金, 昌宏山本. 『熱方程式で学ぶ逆問題 Fourier 解析 関数解析から数値 解析まで』. サイエンス社, 3 2008.
- [24] T. Koornwinder. Orthogonal polynomials, a short introduction. arXiv:1303.2825, 3 2013.
- [25] E. H. Lieb and M. Loss. Analysis. Amer. Math. Soc., 4 2001.
- [26] E. H. Lieb and B. Simon. Thomas-fermi theory of atoms, molecules and solids. *Adv. in Math.*, Vol. 23, pp. 22–116, 1977.
- [27] J. Lórinczi, F. Hiroshima, and V. Betz. Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory. Walter De Gruyter, 6 2011.
- [28] 典克三尾. 『電磁気学第2参考資料』.
- [29] 徹中村. 『超準解析と物理学』. 日本評論社, 6 1998.
- [30] 利一夏目, 仁志森吉. 『作用素環と幾何学』. 数学メモワール, 6 2001.
- [31] 青季西川. 『幾何学的变分問題』. 岩波書店, 4 2006.
- [32] 利雄西野. 『多変数函数論』. 東京大学出版会, 11 1996.
- [33] 宣好登坂, 和栄大西, 昌宏山本. 『逆問題の数理と解法 偏微分方程式の逆解析』. 東京大学出版会, 12 1999.
- [34] 潤次郎野口. 『多変数解析関数論 学部生へおくる岡の連接定理』. 朝倉書店, 4 2013.
- [35] 誠岡崎. 『べんりな変分原理』. 共立出版, 5 1993.
- [36] Alberto Parmeggiani. Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction. Springer Berlin Heidelberg, 4 2010.
- [37] 光夫杉浦. 『解析入門 II』. 東京大学出版会, 4 1985.
- [38] 宏志田中. 『物理数学 i』. 2013.
- [39] Masato Wakayama. 『非可換調和振動子のスペクトルゼータ関数』. 数理解析研究所講究録, Vol. 1479, pp. 26-39, 2006.
- [40] D. Williams, 次郎赤堀, 啓介原, 俊雄山田. 『マルチンゲールによる確率論』. 培風館, 2 2004.
- [41] L. C. Young. Lectures on the calculus of variations and optimal control theory. Saunders, Philadelhia, 5 1969.