Algebra Przemienna

why am I doing this

koteczek

 \sim

Contents

1	Wstę	p	3
	1.1	Gradacje, filtracje	3
		ścienie i ideały	4
	2.1	Pierścienie i homomorfizmy pierścieni	4
	2.2	Ideały, pierścienie ilorazowe	4
	2.3	Dzielniki zera, elementy nilpotentne i odwracalne	4
	2.4	Ideały główne i maksymalne	5
	2.5	Nilradykał i radykał Jacobsona	6
	26	Operacie na ideałach	6

1. Wstęp

1.1. Gradacje, filtracje

Są pierścienie i ideały, St_K to struktura pierścienia, dalej na środku mamy przykład pierścienia.

Są pierścienie, które są zgradowane i są pierścienie, które są zfiltrowane. Czemu nas to interesuje? bo mamy ciąg liczb. Stanley jest zgradowany.

Jak jest zgradowany, to ma ciąg wymiarów. Jakie są wymiary stopni gradacji?

Liczymy $\sum_{i=0}^{\infty}$ dim $R_i \cdot t^i$ dla punktu i dwóch punktów. Jeżeli K to $\frac{1}{1-t}$, dla połączonych dwóch punktów to $\left(\frac{1}{1-t}\right)^2$, a dla dwóch niepołączonych punktów $\frac{2}{1-t} - 1$.

Topologia < 3

Pierwszy rodzaj pierścieni pojawiających się w topologii to twory oznaczane

$$H^{\cdot}(X, R)$$
,

gdzie R to pierścień, a X to przestrzeń topologiczna. To jest chwilowo blackbox i my potem to wytłumaczymy. To coś jest zgradowane.

Taki pierścień to na przykład R[X]/ x^2 = 0.To jest pierścień wielomianów jednej zmiennej. Teraz dla dwóch zmiennych R[X, Y] : $/X^2$ = 0 = y^2 , xy = -yx. Pierwsze odpowiada okręgowi [S¹], a drugie odpowiada torusowi [T²]. Czyli torusowi przypisujemy taki pierścień, o to mniej więcej tutaj chodzi.

Te obiekty, o których algebra przemienna chce mówić to są zgradowane przemienne obiekty. Czyli R = \otimes R_i, a potem przemienność ma być taka, że r_ir_i = $(-1)^{\alpha ij}$ r_ir_i. Możemy na przykład mieć α = 1.

Pierścienie grupowe: k[G], gdzie k jest być może ciałem, a G jest grupą. I teraz jeżeli G jest nieprzemienne, to to jest bardzo nieprzemienne. Teoria reprezentacji zajmuje się badaniem takich pysi. W topologii jak mamy przestrzeń X, to nad nią wisi \overline{X} razem z działaniem grupy G takie, że $\overline{X}/G = X$ i to się nazywa pokryciem uniwersalnym. Iloraz jest X i to działa nakrywająco, to znaczy każda orbita G to jest zawsze otoczenie punktu który wybraliśmy. Zawsze możemy rozłożyć to jakoś trudne słowo, triangulacja. To co działa początkowo na \overline{X} , to działą teraz na traingulacji XDDD. $C_k(\overline{X})$ to formalne kombinacje liniowe o współczynnikach w k[G] K-sympleksów. Operatory brzegów. Mam wrażenie, że to akurat jest jakaś losowa baja o trójkącikach.

2. Pierścienie i ideały

Szybkie powtórzenie notacji i podstawowych definicji, z małym dodatkiem ponad algebrę 1r.

2.1. Pierścienie i homomorfizmy pierścieni

Pierścien A to zbiór z dwoma binarnymi operacjami (dodawanie i mnożenie) takimi, że

- 1. A jest abelową grupą względem dodawania,
- 2. mnożenie jest łączne i rozłączne względem dodawania,
- 3. dla nas dodatkowo mnożenie jest przemienne,
- 4. i ma element neutralny.

Czyli rozważamy tylko *pierścienie przemienne z jednością*. Warto zaznaczyć, że nie wykluczamy że 1 = 0, ale wtedy A ma tylko jeden element i jest pierścieniem zerowym, oznaczanym przez 0.

Homomorfizm pierścieni to funkcja f z pierścienia A w pierścień B taka, że

- 1. f(x + y) = f(x) + f(y),
- 2. f(xy) = f(x)f(y),
- 3. f(1) = 1.

2.2. Ideały, pierścienie ilorazowe

Ideał I pierścienia A to podzbiór A taki, że jest podgrupą względem dodawania i taki, że AI \subseteq I. Grupa ilorazowa A/I zachowuje mnożenie zdefiniowane w I, co sprawia, że jest pierścieniem, nazywanym **pierścieniem ilorazowym** [lub *residue-class ring*]. Elementami A/I są warstwy I w A, a funkcja $\phi: A \to A/I$ taka, że $\phi(x) = x + I$ jest surjiektywnym homomorfizmem.

Twierdzenie: Istnieje funkcja 1 – 1 zachowująca porządek zależności pomiędzy ideałami $I \subseteq J \triangleleft A$ oraz ideałami $J' \triangleleft A/I$ zadana przez $J = \phi^{-1}(J')$.

Dowód: Jeśli $f: A \to B$ jest homomorfizmem pierścieni, to jądro f jest ideałem I w A oraz obraz f jest podpierścieniem $C \subseteq B$. f indukuje izomorfizm pierścieni $A/I \cong C$.

W dalszej części możemy stosować oznaczenie $x \equiv y \mod I$ żeby powiedzieć, że $x - y \in I$.

2.3. Dzielniki zera, elementy nilpotentne i odwracalne

Dzielnik zera pierścienia A to element x taki, że istnieje dla niego y \neq 0 takie, że xy = 0. Pierścień, który nie posiada dzielników zera różnych od 0 jest nazywany dziedzina całkowita [integral domain].

Element $x \in A$ jest **nilpotentny**, jeżeli istnieje n > 0 takie, że $x^n = 0$. Element nilpotenty jest zawsze dzielnikiem zera, ale odwrotna zależność nie zawsze zachodzi.

Element odwracalny $x \in A$ to element "dzielący zero", czyli istnieje unikalne $y \in A$ takie, że xy = 1. Zwykle oznaczamy $y = x^{-1}$. Wszystkie elementy odwracalne pierścienia A tworzą **grupę multiplikatywną** [multiplicative group], która jest abelową.

Wielokrotności ax elementu $x \in A$ tworzą ideał główny [principal ideal] pierścienia A, co oznaczamy przez (x). Jeżeli x jest odwracalny, to (x) = A = (1). Ideał generowany przez 0 jest zwykle oznaczany (0) = 0.

Ciało to pierścień A w którym 1 ≠ 0 i każdy niezerowy dzielnik zera jest odwracalny. Każde ciało jest domeną całkowitą.

Twierdzenie: Niech A będzie pierścieniem, wtedy poniższe są równoważne:

I A jest ciałem,

II jedyne ideały w A są 0 lub (1),

III każdy homomorfizm z A w niezerowy pierścień B jest iniekcyjną.

Dowód:

I \implies II: Niech I \neq 0 będzie ideałem w A. Wtedy I zawiera niezerowy element x, który jest odwracalny. W takim razie (x) \subseteq I, a ponieważ (x) = (1), to I = (1).

II \implies III: Niech ϕ : A \rightarrow B będzie homomorfizmem pierścieni. Wtedy ker(ϕ) jest ideałem różnym od (1), czyli ker(ϕ) musi byc zerem, a więc jest funkcją 1 – 1.

III \implies I: Niech x będzie elementem A, który nie jest odwracalny. WTedy (x) \neq (1), czyli B = A/(x) nie jest pierścieniem zerowym. Niech ϕ : A \rightarrow B będzie naturalnym homomorfizmem A w B z jądrem (x). Przez hipotezę ϕ jest 1 – 1, czyli (x) = 0, więc x = 0.

2.4. Ideały główne i maksymalne

Ideał I \triangleleft A jest ideałem pierwszym, jeżeli I \neq (1) oraz xy \in I \Longrightarrow x \in I albo y \in I. Ideał I \triangleleft A jest z kolei ideałem maksymalnym, jeżeli I \neq (1) i nie istnieje ideał J taki, że I \subseteq J \subseteq (1). Równoważnie:

- \hookrightarrow I jest ideałem pierwszym \iff A/I jest domeną całkowitą,
- \hookrightarrow J jest ideałem maksymalnym \iff A/J jest ciałem.

Stąd też, ideał maksymalny jest zawsze pierwszy, ale nie każdy ideał pierwszy jest ideałem maksymalnym.

Jeżeli $f: A \to B$ jest homomorfizmem pierścieni i I jest ideałem pierwszym w B, wtedy $f^{-1}(I)$ jest ideałem pierwszym w A, ale jeżeli J jest ideałem maksymalnym to $f^{-1}(J)$ niekoniecznie musi byc ideałem maksymalnym.

Twierdzenie: Każdy pierścień A ≠ 0 ma co najmniej jeden ideał maksymalny.

Dowód: Standardowe zastosowanie lematu Zorna¹. Niech Σ będzie zbiorem wszystkich ideałów różnych od (1). Uporządkujmy Σ przez inkluzję. Σ jest zbiorem niepustym, bo $0 \in \Sigma$. Musimy pokazać, że każdy łańcuch w Σ jest ograniczony od góry. Niech $\{I_n\}$ będzie ciągiem ideałów z Σ , wtedy $I = \bigcup I_n$ też jest ideałem i nie zawiera 1, bo nic w ciągu 1 nie zawierało. Wskazaliśmy więc górne ograniczenie dowolnego łańcucha z Σ , więc z lematu Zorna Σ ma element maksymalny.

Jeśli I ≠ (1) jest ideałem w A, to istnieje ideał maksymalny w A zawierający I. Trywialne.

Każdy nieodwracalny element A jest zawarty w pewnym maksymalnym ideale. Też trywialne.

Zauważmy, że jeśli pierścień jest noetherowski, to nie musimy używać Zorna w dowodzie wyżej. Dalej, istnieją pierścienie mające dokładnie jeden pierścień maksymalny, na przykład ciała. Pierścień zawierający dokładnie jeden pierścień maksymalny I jest nazywany pierścieniem lokalnym [local ring], a ciało k = A/I jest nazywane residue field pierścienia A.

Twierdzonko:

- I. Jeżeli A jest pierścieniem, a I \neq (1) jego ideałem takim, że dla każdego x \in A \ I x jest elementem odwracalnym, to A jest pierścieniem lokalnym.
- II. JEżeli A jest pierścieniem i I jego ideałem maksymalnym takim, że każdy element 1 + I (czyli $1 + x, x \in I$) jest odwracalny w A, to A jest pierścieniem lokalnym.

Dowód:

- I. Każdy ideał składa się z elementów nieodwracalnych, więc jest zawarty w I. Czyli I jest jedynym pierścieniem maksymalnym A.
- II. Niech $x \in A \setminus I$. Skoro I jest maksymalny, to ideał generowany przez x i I jest równy (1), więc istnieje $y \in A$ i $t \in I$ takie, że xy + t = 1. Stąd, xy = 1 t należy do 1 + I i jest odwracalny. Teraz używamy punktu I i śmiga.

¹Niech S będzie niepustym, częściowo uporządkowanym zbiorem, wtedy jeśli każdy jego łańcuch T ma górną granicę w S, to S ma co najmniej jeden element maksymalny.

Pierścień półlokalny to pierścień zawierający skończoną liczbę ideałów maksymalnych.

Dziedzina ideałów głównych [*Principal ideal domain*, *PID*] to dziedzina całkowita w której każdy ideał jest ideałem głównym.

2.5. Nilradykał i radykał Jacobsona

Zbiór $\mathfrak R$ zawierający wszystkie nilpotentne elementy pierścienia A jest nazywany jego nilradykałem i jest ideałem. Później zostanie podana równoważna definicja nilradykału, ale najpierw twierdzonko.

Twierdzenie: Nilradykał \Re jest ideałem i A/ \Re nie posiada elementów nilpotentych różnych od 0.

Dowód: Jeśli $x \in \mathfrak{R}$, to $ax \in \mathfrak{R}$ dla dowolnego $a \in A$. Niech $x, y \in \mathfrak{R}$ takie, że $x^m = 0 = y^n$. Wtedy również $(x + y)^{n+m-1}$ jest sumą wielokrotności x^ry^s takich, że r + s = m + n - 1. Wiemy, że r < m i s < n, stąd też każdy produkt z nich znika i mamy,że $(x + y)^{n+m-1} = 0$. Czyli $x + y \in \mathfrak{R}$, więc \mathfrak{R} w istocie jest ideałem.

Niech $\overline{x} \in A/\mathfrak{R}$ będzie reprezentowane przez $x \in A$. Wtedy \overline{x}^n jest reprezentowane przez x^n , więc jeśli $\overline{x}^n = 0$, to również $x^n = 0$ i $x \in \mathfrak{R}$, a więc $\overline{x} = 0$.

Druga definicja nilradykału to przekrój wszystkich pierwszych ideałów pierścienia A.

Dowód: Niech \mathfrak{R}' oznacza przekrój wszystkich pierwszych ideałów pierścienia A. Wtedy jeśli $f \in A$ jest nilpotentne i I jest ideałem pierwszym, to $f^n = 0 \in I$, stąd też $f \in I$, bo I jest ideałem pierwszym. Stąd też $f \in \mathfrak{R}'$.

Z drugiej strony, co jeśli f nie jest nilpotentny? Niech Σ będzie zbiorem wszystkich ideałów z własnością n > 0 \Longrightarrow $f^n \notin I$. Wtedy Σ nie jest pusty, ponieważ $0 \in \Sigma$. Znowu możemy śmignąć Zornem przy porządkowaniu przez inkluzję i Σ ma pewien element maksymalny, nazwijmy go J. Pokażemy, że J jest ideałem pierwszym. Niech x, y \notin J. Wtedy ideały J + (x) i J + (y) zawierają właściwie J i stąd też nie należą do Σ . Stąd też $f^m \in$ J + (x) oraz $f^n \in$ J + (y) dla pewnych m, n. W takim razie $f^{m+n} \in$ J + (xy) i ideał J + (xy) nie jest w Σ , czyli xy \notin J. W takim razie mamy ideał pierwszy J taki, że f \notin J i f \notin \Re' .

Radykał Jacobsona R to przekrój wszystkich maksymalnych ideałów pierścienia A. Spełnia on:

 $x \in \Re \iff 1$ - xy jest odwracalne dla wszystkichy

Dowód:

 \implies Załóżmy, że 1 – xy nie jest odwracalne. Wtedy jest zawarte w pewnym ideale maksymalnym I. Ale skoro $x \in \mathfrak{R} \subseteq I$, to $xy \in I$ i $1 \in I$, co jest sprzecznością.

 \Leftarrow Załóżmy, że x \notin I dla pewnego ideału maksymalnego I. Wtedy I i x generują ideał (1), więc dla pewnego u \in I oraz y \in A mamy u + xy = 1. Stąd też 1 – xy \in I, a więc nie jest elementem odwracalnym i mamy sprzeczność.

2.6. Operacje na ideałach

Sumę dwóch ideałów I, J \triangleleft A definiujemy jako zbiór wszystkich sum x + y, gdzie x \in I oraz y \in J. Jest to najmniejszy ideał zawierający I oraz J. W ogólności, jeśli mamy jakąś rodzinę ideałów I_{α} , to $\sum I_{\alpha}$ jest definiowane jako zbiór elementów $\sum x_{\alpha}$, gdzie $x_{\alpha} \in I_{\alpha}$. Znowu, jest to najmniejszy ideał zawierający wszystkie ideały I_{α} .

Przekrój ideałów jest nadal ideałem, to wiemy, ale nie wiemy, że tworzą one pełną sałatę względem zawierania.

Produkt dwóch ideałów I, J to ideał IJ generowany przez wszystkie xy dla $x \in I$ oraz $y \in J$. Możemy to uogólnić na zbiór wszystkich $\sum x_{\alpha}y_{\alpha}$ dla $x_{\alpha} \in I$ i $y_{\alpha} \in J$. Analogicznie możemy zapisać produkt dowolnej, skończonej rodziny ideałów. W szczególności, potęgi Iⁿ ideału I to dobrze zdefiniowane ideały.

Wszystkie powyżej zdefiniowane operacje sa przemienne i łączne. Co więcej, działa rozłączność mnożenia względem dodawania (czy tam na odwrót). Dodatkowo mamy prawo modułu(?) [modular law], czyli jeśli $J \subseteq I$ albo $L \subseteq I$, to

$$I \cap (J + L) = I \cap J + I \cap L$$

Z ciekawych rzeczy, w $\mathbb{Z} \cap i$ + są rozdzielne względem siebie oraz (I + J)(I \cap J) = IJ, ale nie jest to regułą ogólną, zwykle tylko (I + J)(I \cap J) \subseteq IJ.

Dwa ideały I oraz J są względnie pierwsze lub względnie maksymalne [coprime or comaximal], jeżeli I + J = (1). W takim przypadku mamy I \cap J = IJ. Jasno widać, że I i J są względnie pierwsze \iff istnieją $x \in I$ oraz $y \in J$ takie, że x + y = 1.

Niech $A_1,...,A_n$ będą pierścieniami. Wtedy ich iloczyn prosty direct product

$$A = \prod A_i$$

jest zbiorem wszystkich ciągów $x = (x_1, ..., x_n)$ dla $x_i \in A_i$ i dodawaniem oraz mnożeniem po współrzędnych.

Niech A będzie pierścieniem, a I₁,..., I_n jego ideałami. Możemy zdefiniować homomorfizm

$$\phi: A \to \prod (A/I_i)$$

$$\phi(x) = (x + I_1, ..., x + I_n).$$

Twierdzenie:

I. Jeżeli I_i , I_i są względnie pierwsze, wtedy $\prod I_i = \bigcap I_i$

II. ϕ jak wyżej jest "na" \iff I $_{\rm i}$, I $_{\rm j}$ są względnie pierwsze

III.
$$\phi$$
 jest 1-1 $\iff \bigcap I_i = (0)$

Dowód:

I. Indukcją po n. Przypadek dla n = 2 jest już rozpykany. Załóżmy, że n > 2. Niech J = $\prod_{i=1}^{n-1} I_i = \bigcap I_i$. Ponieważ $I_i + I_j = (1)$ (są względnie pierwsze), to mamy $x_i + y_i = 1$ i z tego też względu

$$\prod_{i=1}^{n-1}x_i=\prod_{i=1}^{n-1}(1-y_i)\equiv 1 \mod I_n.$$

Z tego też względu $I_n + J = (1) i$

$$\prod_{i=1}^{n} I_i = JI_n = J \cap I_n = \bigcap_{i=1}^{n} I_i$$

str 7