

Prática de Eletrônica Digital 1 - FGA0071

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Prática de Eletrônica Digital 1. Código: FGA0071.

Professor: Henrique Marra Taira Menegaz e-mail: henriquemenegaz@unb.br

EXPERIMENTO DE PROTOBOARD

SOMADORES

1 REGRAS DE APRESENTAÇÃO

Este experimento deve ser apresentado presencialmente ao professor em sala de aula, **nos horários das aulas, somente**. O prazo final de apresentação será a aula seguinte à aula deste experimento.

Não há necessidade de apresentação de pré-relatório nem de relatório. No entanto, só será pontuado o que estiver operando corretamente.

2 Nota

O experimento receberá nota entre 0 e 10 pontos.

3 Projeto

Faça, na protoboard, um circuito somador completo de 2 bits do tipo *Ripple Carry*. A Figura 1 mostra o esquemático de um somador desse tipo, composto por dois somadores completos (de 1 bit). A Figura 2 apresenta o esquemático de um somador completo de 1 bit. A Tabela 1 contém a tabela verdade.

Note que é possível simplificar o circuito do primeiro somador porque $C_{in} = 0$.

3.1 MATERIAL UTILIZADO

- Protoboard, fonte de alimentação, jumpers (fios) e multímetro.
- Chaves de 3 pinos: 4.
- CI 7408 (4 portas AND de duas entradas): 1.
- CI 7432 (4 portas OR de duas entradas): 1
- CI 7486 (4 portas XOR): 1
- Resistor de 220 Ω (cores: vermelho, vermelho, marrom): 3.
- LED: 3.

Prática de Eletrônica Digital 1 - FGA0071

Curso de Graduação em Engenharia Eletrônica - Faculdade Gama - Universidade de Brasília

Prática de Eletrônica Digital 1. Código: FGA0071.

Professor: Henrique Marra Taira Menegaz

e-mail: <u>henriquemenegaz@unb.br</u>

Figura 2. Esquemático do somador completo de 1 bit.

Figura 1. Esquemático de um somador completo de 4

Tabela 1. Tabela verdade de um somador completo de 2 bits.

A_2	B_2	A_1	B_1	Σ_3	Σ_2	Σ_1
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	1	0
0	1	0	1	0	1	1
0	1	1	0	0	1	1
0	1	1	1	1	0	0

A_2	$\boldsymbol{B_2}$	A_1	$\boldsymbol{B_1}$	Σ_3	Σ_2	Σ_1
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	1	0	1
1	1	1	0	1	0	1
1	1	1	1	1	1	0

4 ESQUEMÁTICOS

