Zadanie 1. (0–1)

Liczba $\sqrt{3-2\sqrt{2}} - \sqrt{9+4\sqrt{2}}$ jest równa:

Zadanie 2. (0–1)

Wartość wyrażenia $\log_2 5 \cdot \log_5 81 \cdot \log_9 216$ wynosi:

Zadanie 3. (0–1)

Równanie $|x^2-2x-8|=m+1$ w zależności od parametru m, gdzie $m \in R$, ma maksymalną liczbę pierwiastków dla:

A.
$$m \in (0,9)$$

B.
$$m \in (-1,8)$$

B.
$$m \in (-1,8)$$
 C. $m \in (-9,0)$ **D.** $m \in (-1,8)$

D.
$$m \in (-1,8)$$

Zadanie 1. (0–1)

Wyrażenie $\frac{\sqrt[3]{18}}{\sqrt[3]{9}-2\sqrt[3]{3}+4}$ jest równe:

A.
$$\sqrt[3]{36} - 2\sqrt[3]{18}$$

C.
$$\frac{\sqrt[3]{54}-2\sqrt[3]{18}}{7}$$

B.
$$3\sqrt[3]{2} + 2\sqrt[3]{18}$$

C.
$$\frac{\sqrt[3]{54} - 2\sqrt[3]{18}}{7}$$
D.
$$\frac{3\sqrt[3]{2} + 2\sqrt[3]{18}}{11}$$

Zadanie 4. (0–1)

Równanie $\left| \frac{-4x-17}{x+5} \right| = m$ ma dokładnie dwa rozwiązania dla:

A.
$$m \in (-5,0) \cup (0,+\infty)$$

C.
$$m \in (0,4) \cup (4,+\infty)$$

B.
$$m \in (0,+\infty)$$

D.
$$m \in (0,5) \cup (5,+\infty)$$

Zadanie 5. (0-2)

Rozwiąż nierówność
$$\frac{x-6}{36-x^2} \ge \frac{3x}{x^2-6x}$$
.

Wyznacz wszystkie liczby naturalne dodatnie spełniające tę nierówność i oblicz ich iloczyn. W poniższe kratki wpisz kolejno trzy pierwsze cyfry otrzymanego wyniku.

Zadanie 6. (0-3)

Z dwóch podobnych trójkątów prostokątnych o skali podobieństwa 2 zbudowano trapez *ABCD*. Oblicz miarę kąta ostrego tego trapezu.

Zadanie 7. (0-3)

Wiesz, że a + b + c = 0 i abc = 2. Wykaż, że $a^3 + b^3 + c^3 = 6$.

Zadanie 8. (0–4)

Reszta z dzielenia wielomianu W(x) przez dwumian x-1 jest równa 2, a reszta z dzielenia wielomianu W(x) przez dwumian x-2 jest równa 5. Wyznacz wielomian R(x), który jest resztą z dzielenia wielomianu W(x) przez (x-1)(x-2).

Zadanie 9. (0-4)

Dany jest czworokąt ABCD, w którym |AB| = 12, $|BC| = 6\sqrt{3}$, $|CD| = 3\sqrt{3}$, |DA| = 3 i przekątna AC ma długość 6. Oblicz długość przekątnej BD tego czworokąta.

Zadanie 10. (0–2)

Dana jest funkcja f określona wzorem $f(x) = \frac{9-4x^2}{x^2+1}$. Oblicz wartość pochodnej tej funkcji dla argumentu –3.

Zadanie 11. (0-3)

Wyznacz równania stycznych do okręgu $x^2 + y^2 - 2x - 8 = 0$ równoległych do prostej y = 2x + 5.

Zadanie 12. (0-5)

Rozwiąż równanie $2\sin^3 x - \sin x \cos x - \sin x = 0$ w przedziale $\langle 0, 2\pi \rangle$.

Zadanie 13. (0–4)

Wyznacz wszystkie wartości parametru m, dla których trójmian kwadratowy $f(x) = -x^2 + mx - m$ ma dwa różne pierwiastki rzeczywiste x_1 i x_2 , spełniające warunek $(x_1 + 3x_2)(x_2 + 3x_1) = -1$.

Zadanie 5. (0-2)

Oblicz $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$, jeżeli wiadomo, że $\log_{ab} a = 4$.

Zakoduj cyfrę jedności i dwie cyfry po przecinku otrzymanego wyniku.

Zadanie 6. (0-3)

Znajdź równanie stycznej do wykresu funkcji $f(x) = \frac{x-8}{4-3x}$ w punkcie $(x_0, 3)$.

Zadanie 8. (0-3)

Dany jest trapez prostokątny o podstawach długości a,b oraz wysokości długości 2h. Dłuższe ramię trapezu jest równocześnie średnicą okręgu, który jest styczny do drugiego ramienia trapezu. Udowodnij, że $h^2 = ab$.

Zadanie 10. (0-4)

W trójkącie równobocznym ABC na boku AB zaznaczono punkt D w taki sposób, że $\frac{|AD|}{|DB|} = \frac{1}{3}$. Wyznacz sinus kąta BCD.

Zadanie 11. (0-4)

Rozwiąż równanie
$$\sin^2 2x + 1 = 7\cos^2\left(\frac{3}{2}\pi - x\right)$$
 dla $x \in \langle -2\pi, 2\pi \rangle$.

Zadanie 13. (0-4)

Ciąg (a_n) jest ciągiem arytmetycznym. W wyniku podzielenia wyrazu a_{13} przez a_3 otrzymujemy iloraz 5 i resztę 1, dodatkowo wyrazy pierwszy, siódmy i sto trzeci w podanej kolejności tworzą ciąg geometryczny. Oblicz iloraz ciągu geometrycznego.

Zadanie 14. (0-6)

Wyznacz równanie okręgu, który jest styczny do prostych x = 0 oraz 4x + 3y + 33 = 0, a także przechodzi przez punkt P(-2,0).

Zadanie 6. (0–2)

Oblicz
$$\lim_{x \to -2} \frac{x^2 + 7x + 10}{x^3 + 8}$$
.

Zadanie 7. (0-3)

Wyznacz największą i najmniejszą wartość funkcji $f(x) = \frac{x^2 + 8}{x + 1}$ w przedziale $\langle 0, 3 \rangle$.

Zadanie 8. (0-3)

Wykaż, że dla dowolnych liczb rzeczywistych x,y zachodzi nierówność $2x^2+5y^2+10>6xy+4y$.

Zadanie 9. (0-3)

Dany jest trójkąt prostokątny o przyprostokątnych długości a i b, w którym kąt między środkową a wysokością wychodzącymi z wierzchołka kąta prostego ma miarę α . Wykaż, że $tg\alpha = \frac{\left|a^2 - b^2\right|}{2ab}.$