Randomisierte Algorithmen – Übungen

1. Von Monte Carlo nach Las Vegas

Gegeben sei ein Monte-Carlo-Algorithmus M für ein Problem Π , welcher für jede Instanz des Problems durchschnittlich T Schritte benötigt und dabei eine korrekte Antwort mit Wahrscheinlichkeit α liefert. Angenommen für Π existiere ein deterministischer Verifikationsalgorithmus V, der in K Schritten feststellt, ob eine mögliche Lösung stimmt. Transformieren Sie M in einen Las-Vegas-Algorithmus L, welcher immer eine richtige Lösung für Π liefert, und zeigen Sie, dass die erwartete Laufzeit $(T+K)/\alpha$ Schritte ist.

2. Zufallserzeugung

Gegeben sei eine Methode RBIT(), welche bei jedem Aufruf ein zufälliges, uniform verteiles Bit $R \in \{0,1\}$ liefert. Konstruieren Sie daraus eine Methode (in Pseudocode), welche Zufallswerte mit einer anderen Verteilung erzeugt, sofern die Methode terminiert. Es darf sein, dass Ihre Lösung mit kleiner Wahrscheinlichkeit (WSK) nicht terminiert.

- a) Beschreiben Sie eine Methode Alpha(), welche ein Bit $A \in \{0, 1\}$ erzeugt, so dass A = 1 mit WSK $\frac{5}{8}$ und A = 0 sonst.
- b) Beschreiben Sie eine Methode Beta(), welche $B \in \{1,2,3\}$ erzeugt, so dass B=1 mit WSK $\frac{1}{13}$, B=2 mit WSK $\frac{4}{13}$ und B=3 mit WSK $\frac{8}{13}$.

Beachten Sie dabei (nochmals!), dass die WSK-Verteilung nur in den Fällen gelten muss, dass der Algorithmus auch terminiert hat.