$\begin{tabular}{ll} Wintersemester $2017/18$ \\ Modulpr\u00fufung "Automaten und Formale Sprachen" \\ 28.03.2018 & 11:00 \begin{tabular}{ll} 11:00$

Name:			
Matrikelnumı	ner:		
Studiengang,	Abschlı	ıss:	
	hen und	als Hilfsbo	nal einen beidseitig beschriebenen Bogen DIN A4, der mit dem ogen eindeutig zu kennzeichnen ist. Keine elektronischen Hilfsechner).
Bearbeitungsz	zeit: 60 1	Minuten	
Hinweise:			
63 PunkteBeschrifter fest zusamAlle in der ist bei eine	erreichen Sie alle mengehe Vorlesur r Aufgab der nati	n. Bei 30 o abzugeber fteten Blät ag oder Üb be ausdrüch irlichen Za	den Aufgaben so viele wie möglich. Dabei können Sie insgesamt der mehr Punkten ist die Prüfung bestanden. nden Blätter mit Ihrem Namen und Ihrer Matrikelnummer. Bei tern genügt es das oberste zu beschriften. ung bewiesenen Aussagen dürfen verwendet werden, außer dies klich ausgeschlossen. ahlen enthält die Null.
Aufgabe	Punkte	erreicht	Note:
1	10		
2	12		Bemerkungen:
3	10		
4	6		
5	5		
6	12		
7	8		
Summe	63		

Beachten Sie folgende Definitionen:

- Für ein Alphabet Σ , einen Buchstaben $x \in \Sigma$ und ein Wort $w \in \Sigma^*$ sei $|w|_x$ die Anzahl der Vorkommen von x in w (z. B. $|aabcab|_a = 3$).
- Ein Wort $u \in \Sigma^*$ heißt Suffix eines Wortes $w \in \Sigma^*$, falls ein Wort $x \in \Sigma^*$ existiert mit w = xu.

Beispiel: Die Suffixe von abac sind genau ε , c, ac, bac und abac.

Aufgabe 1 (10 Punkte)

Sei $\Sigma = \{a, b, c\}$. Geben Sie graphisch einen minimalen deterministischen endlichen Automaten für

 $L = \{w \in \Sigma^* \mid w \text{ enthält mindestens ein } c \text{ und } abba \text{ ist ein Suffix von } w\}$

an.

Hinweis: Der gesuchte Automat hat genau 6 Zustände.					

Sei L die Sprache $L = \left\{ a^{2^n} \; \middle \; n \in \mathbb{N} \right\}$						
über dem Alphabet $\Sigma = \{a\}$. Beweisen Sie, dass L nicht regulär ist.						

Aufgabe 2

(12 Punkte)

Aufgabe 3	[10 Punkte]

Sei M' der folgende nichtdeterministische endliche Automat über dem Alphabet $\Sigma = \{a, b\}$:

M bezeichne den deterministischen endlichen Automaten, der aus M' mittels Potenzmengenkonstruktion hervorgeht. Ferner bezeichne δ die Überführungsfunktion von M.

a)	Geben Sie den Startzustand von M an. Ist dieser ein Endzustand von M ? Begründen Sie kurz.	(1 P)
b)	Berechnen Sie $\delta(\{q_0, q_1\}, b)$. Ist das Ergebnis ein Endzustand von M ? Begründen Sie kurz.	(3 P)
c)	Berechnen Sie $\hat{\delta}(\{q_3, q_4, q_5\}, ba)$. Ist das Ergebnis ein Endzustand von M ? Begründen Sie kurz.	(3 P)
d)	Berechnen Sie $\hat{\delta}(\{q_0, q_1, q_2\}, bb)$. Ist das Ergebnis ein Endzustand von M ? Begründen Sie kurz.	(3 P)

a) C	Geben Sie	ein Wort w_1 an mit	$t w_1 \neq abb \text{ aber } w_1 $	$R_L \ abb$:	(1 P
b) G	Geben Sie	ein Wort w_2 an mit	t $w_2 \neq baa$ aber w_2 .	$R_L \ baa$:	(1 P
c) C	Geben Sie o	lie Myhill-Nerode-A	Äquivalenzklasse voi	n <i>aaaa</i> in Mengens	schreibweise an: (3 P
	$[aaaa]_{R_I}$	$L = \{ w \in \Sigma^* \mid w R_I \}$	$\{aaaa\} = $		
d) D)ie Äquiva	lenzrelation R_L bes	sitzt		(1 P
	□	. endlich viele Äq	uivalenzklassen und	l zwar	
	□	. unendlich viele	Äquivalenzklassen.		
gabe					(5 Punkte
Sei G	die Gram	$\text{matik } G = (\{S, A, A,$	$B, C\}, \{a, b\}, P, S)$ n	mit	
			$P = \{S \to BB \mid BG\}$	C,	
			$A \to a$, $B \to AC \mid BA$	B,	
			$C \rightarrow a \mid b \mid C$	(A).	
		G		1 1 777 . 7 7 .	
, L A	$\lambda(G)$ enthal	alten ist. Benutzen is wie in der Vorles	CYK-Algorithmus, o Sie die unten steh ung zu protokolliere ndig aus und streiche	ende Tabelle, um en.	die Ausführung der
, L A	$\lambda(G)$ enthal	alten ist. Benutzen is wie in der Vorles	Sie die unten steh ung zu protokolliere	ende Tabelle, um en.	die Ausführung der
L A	L(G) enthand $L(G)$ enthand $L(G)$ enthand $L(G)$ enthand $L(G)$	alten ist. Benutzen Is wie in der Vorles die Tabelle vollstän	Sie die unten steh ung zu protokolliere ndig aus und streiche	ende Tabelle, um en. en Sie dabei leere	die Ausführung der Felder durch.
L A	L(G) enthal silgorithmus Süllen Sie of Länge	alten ist. Benutzen Is wie in der Vorles die Tabelle vollstän	Sie die unten steh ung zu protokolliere ndig aus und streiche	ende Tabelle, um en. en Sie dabei leere	die Ausführung der Felder durch.
L A	$L(G)$ enthalgorithmus Süllen Sie of Länge $\frac{L$ änge $\frac{1}{1}$	alten ist. Benutzen Is wie in der Vorles die Tabelle vollstän	Sie die unten steh ung zu protokolliere ndig aus und streiche	ende Tabelle, um en. en Sie dabei leere	die Ausführung der Felder durch.

b) Gilt $abab \in L(G)$? \square Ja \square Nein Gilt $ba \in L(G)$? \square Ja \square Nein

Aufgabe 4

(6 Punkte)

(1 P)

Aufgabe 6 (12 Punl	kte)
--------------------	------

Kreuzen Sie jeweils die (bezüglich Inklusion) **kleinste** Sprachklasse an, in der die jeweilige Sprache enthalten ist. Nicht angekreuzt oder mehr als ein Kreuz zählt als falsches Kreuz.

Falsche Kreuze führen **nicht** zu Punktabzügen!

		regulär (Typ 3)	deterministisch kontextfrei	kontextfrei (Typ 2)	kontextsensitiv (Typ 1)	rekursiv aufzählbar (Typ 0)
1.	$\{w \in \{a, b, c\}^* \mid w _a \neq w _b \text{ oder } w _a \neq w _c\}$					
2.	$\{w \in \{a, b, c\}^* \mid w _a = w _b\}$					
3.	$\{w \in \{a, b, c\}^* \mid w _a = w _b = w _c\}$					
4.	$\{www \mid w \in \{a,b,c\}^*\}$					
5.	$\{a^{2^n}b^{m\cdot 4^n}\mid n,m\in\mathbb{N}\}$					
6.	$\{a^{2n}a^{2m}\in\{a\}^*\mid n,m\in\mathbb{N}\}$					
7.	$\{a^{3m}b^{2n}\mid m,n\in\mathbb{N}\}$					
8.	$\{a^pb^p\mid p \text{ prim}\}$					
9.	$(\{a\}^* \cup \{b\}^*) \setminus \{a^{n^2}b^n \mid n \in \mathbb{N}\}$					
10.	$\{bc\}^* \cap \{c\}^*$					

Beantworten Sie die folgenden Fragen eindeutig. Falsche Antworten führen nicht zu	8 Punkte) negativen
Punkten. a) Sei $L = L((a b)(a)^*)$. Gilt $baba \in L$? \square Ja \square Nein Gilt $b \in L$? \square Ja \square Nein	(2 P)
Gilt $\varepsilon \in L$? \square Ja \square Nein	(
b) Gegeben sei folgender DEA:	(2 P)
Wie viele Zustände hat ein äquivalenter Minimalautomat?	
c) Gegeben sei eine Grammatik G mit Startsymbol S und folgenden Regeln:	(2 P)
$S \to aAB$ $A \to aB \mid bA$ $B \to b$	

Geben Sie die Anzahl der Elemente in der Menge $\{w\in L(G)\mid |w|\leq 7\}$ an:

Außerdem bezeichne \equiv_L die syntaktische Kongruenz-Relation.

 \square Nein

 $\hfill\square$ Nein

 \square Nein

 \Box Ja

□ Ja

□ Ja

 $L = \{a^n b^m a \mid n, m \in \mathbb{N}\}.$

d) Sei L die Sprache

Gilt $bb \equiv_L bbb$?

Gilt $a \equiv_L aaba$?

Gilt $a \equiv_L \varepsilon$?

(2 P)