深度学习数学基础之高等数学讲义

1. 函数与极限

1.1 函数

函数的定义:

设数集 $D \subset R$,则称映射 $f:D \to R$ 为定义在D上的函数,通常简记为

$$y = f(x), x \in D$$

其中x称为自变量,y称为因变量,D称为定义域,记作 D_f ,即 $D_f = D$.

1.2. 函数极限的定义

$$y = f(x)$$
,自变量 x 无限趋近的几种形式:
$$\begin{cases} x \to x_0 & x \to \infty \\ x \to x_0^+ & x \to +\infty \\ x \to x_0^- & x \to -\infty \end{cases}$$

函数极限通常写为: $\lim_{x \to x_0} f(x) = A \operatorname{d} f(x) \to A \ (\, \exists \, x \to x_0 \,)$

函数极限的定义:

如果 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} 0 < |x - x_0| < \delta$ 时,总有 $|f(x) - A| < \varepsilon$ 则 $\lim_{x \to x_0} f(x) = A$ 等价于 $\exists \delta > 0$, $\dot{\exists} x \in \mathring{\bigcup}(x_0, \delta)$ 时总有 $f(x) \in \bigcup(A, \varepsilon)$ 则 $\lim_{x \to x_0} f(x) = A$. $x \in \mathring{\bigcup}(x_0, \delta)$ 的含义:点的 δ 邻域 $U(\alpha, \delta) = \{x | (x - \alpha) | < \delta\}$

只要 x 与目标点 x_0 的距离不超过 δ ,那么函数 f(x)与 A 的距离就不超过 ϵ

1.3 无穷小与无穷大

无穷小的定义:

如果函数 f(x) 当 $x \to x_0$ (或 $x \to \infty$) 时的极限为零,那么称函数 f(x) 为当

 $x \to x_0$ (或 $x \to \infty$) 时的无穷小.

特别地,以零为极限的数列 $\{x_n\}$ 称为 $n \to \infty$ 时的无穷小.

无穷大的定义:

设函数 f(x) 在 x_0 的某一去心邻域内有定义(或 |x| 大于某一正数时有定义). 如果对于任意给定的正数 M (不论它多么大), 总存在正数 δ (或正数 X), 只要 x 满足不等式 $0<|x-x_0|<\delta$ (或 |x|>X), 对应的函数值 f(x) 总满足不等式 |f(x)|>M, 那么称函数 f(x) 是当 $x\to x_0$ (或 $x\to \infty$) 时的无穷大.

1.4 极限的四则运算

定理1:两个无穷小的和是无穷小

定理 2: 有界函数与无穷小的乘积是无穷小

定理 3: 如果 $\lim f(x) = A$, $\lim g(x) = B$, 那么

- (1) $\lim [f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = A \pm B;$
- (2) $\lim [f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x) = A \cdot B$;

(3) 若又有B ≠ 0, 则
$$\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}$$
;

定理 4: 设有数列 $\{x_n\}$ 和 $\{y_n\}$. 如果 $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, 那么

- $(1) \lim_{n\to\infty} (x_n \pm y_n) = A \pm B;$
- (2) $\lim_{n\to\infty}(x_n\cdot y_n)=A\cdot B;$

(3) 当
$$y_n \neq 0$$
 $(n = 1, 2, \cdots)$ 且 $B \neq 0$ 时, $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{A}{B}$.

定理 5: 如果 $\varphi(x) \ge \psi(x)$, 而 $\lim \varphi(x) = A$, $\lim \psi(x) = B$, 那么 $A \ge B$.

定理 6:(复合函数的极限运算法则) 设函数 y = f[g(x)] 是由函数 u = g(x) 与函数 y = f(u) 复合而成, f[g(x)] 在点 x_0 的某去心领域内有定义,若 $\lim_{x \to x_0} g(x) = u_0, \lim_{u \to u_0} f(u) = A$,且存在 $\delta_0 > 0$,当 $x \in \overset{\circ}{U}(x_0, \delta_0)$ 时,有 $g(x) \neq u_0$,则

$$\lim_{x \to x_0} f[g(x)] = \lim_{u \to u_0} f(u) = A.$$

1.5 函数极限求解例题

(1)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2$$

$$(2) \lim_{x\to\infty}\frac{1}{x}=0$$

(3)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

题(3)解:

 $:: S_{\Delta}AOB \leq S_{\overline{n}\overline{n}}AOB \leq S_{\Delta}AOD$

$$\therefore \frac{1}{2}\sin x \le \frac{1}{2}x \le \frac{1}{2}\tan x \left(x \in \left(0, \frac{\pi}{2}\right)\right)$$

$$\because \cos x$$
, $\frac{\sin x}{x}$, 1均是偶函数, \therefore 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 均成立.

$$\cos x \le \frac{\sin x}{x} \le 1$$
 (运用夹逼准则)

$$\therefore \lim_{x \to 0} \frac{\sin x}{x} = 1$$

(4)
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$
 依据定理 2.

$$\text{Fig. } \lim_{x\to 0}\frac{1-\cos x}{x^2}$$

1.6 函数连续

函数连续的定义:

设函数 y = f(x) 在点 x_0 的某一邻域内有定义, $\lim_{x \to x_0} f(x) = f(x_0)$,则函数 f(x) 在 x_0 处连续。

2. 导数

2.1 导数定义

∫导数:变化快慢 微分:变化程度

$$K = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

导数的定义:

y = f(x)在点 x_0 的某个邻域内有定义,若 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ 存在,则

称函数 f(x) 在 x_0 处可导,并称这个极限为函数 y = f(x) 在点 x_0 处的导数。

例题: 求证 $y = \sin x$

解:
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2\cos(x + \frac{1}{2}\Delta x) \cdot \sin\frac{\Delta x}{2}}{\Delta x} = \lim_{\Delta x \to 0} \cos(x + \frac{1}{2}\Delta x) \cdot \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$

 $=\cos x$

同理
$$(\cos x)' = -\sin x$$

$$(1)\sin(x+h) = \sin\left(x+\frac{h}{2}+\frac{h}{2}\right) \qquad \sin x = \sin\left(x+\frac{h}{2}-\frac{h}{2}\right)$$

 $\sin(a+\beta) = \sin a \cos \beta + \cos a \sin \beta$

作业: $y = \cos x$ 的导数

导数的表达形式: $\frac{dy}{dx}$. f'(x). y'. $\frac{df(x)}{dx}$

导数的几何意义: 切线的斜率

☆可导必然连续,连续未必可导.

例: ReLU (x) = max(x, 0)

$$f(x) = \begin{cases} x, x > 0 \\ 0, x \le 0 \end{cases}$$

在x=0处连续但不可导。

2.2 导数的四则运算

(1)
$$\left(au(x)\pm\beta v(x)\right)'=au'(x)\pm\beta v'(x)$$

$$(2) \left[u(x) \cdot v(x) \right]' = u'(x)v(x) + u(x) \cdot v'(x)$$

(3)
$$\left[\frac{u(x)}{v(x)} \right]' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)} \left(v(x) \neq 0 \right)$$

(2) 证明:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$

$$= \lim_{h \to 0} \left[\frac{u(x+h) - u(x)}{h} \cdot v(x+h) + u(x) \cdot \frac{v(x+h) - v(x)}{h} \right]$$

$$= u'(x)v(x) + u(x)v'(x)$$

2.3 高阶导数

表达形式:
$$f''(x_0)$$
, $y''|_{x=x_0}$; $\frac{d^2y}{dx^2}\Big|_{x=x_0}$; $\frac{d^2f(x)}{dx^2}\Big|_{x=x_0}$

例:
$$S = S(t)$$

速度:
$$v = \frac{ds}{dt}$$
 加速度: $a = \frac{dv}{dt}$

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{ds}{dt}\right) = \frac{d^2s}{dt^2}$$

应用: 可判断凸凹性.

举例:控制了房价过快上涨的趋势.

问题:
$$f(x) = \begin{cases} 6x^2, & x \ge 0 \\ 12x^2, & x < 0 \end{cases}$$
 几阶可导?

2.4 链式求导(复合函数求导)

(复合函数的求导链式规则,简称链规则) 设 y = y(u) 在点 u_0 处可导,u = u(x) 在点 x_0 处可导, $u_0 = u(x_0)$,则复合函数 y = y(u(x)) 在点 x_0 处可导,且

证明:

则 $F(\Delta u)$ 在 $\Delta u = 0$ 处 连 续. 此 外 , 由 u = u(x) 在 点 x_0 处 可 导 知 ,

 $\Delta u \rightarrow 0(\Delta x \rightarrow 0)$. 于是:

$$(y(u(x)))'\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{y(u(x_0 + \Delta x)) - y(u(x_0))}{\Delta x}$$
$$= \lim_{\Delta x \to 0} F(\Delta u) \frac{\Delta u}{\Delta x} = y'(u_0)u'(x_0).$$

2.5 Sigmoid 函数求导与梯度消失

例:
$$S(x) = \frac{1}{1 + e^{-x}}$$

 $S'(x) = \frac{-(-e^{-x})}{(1 + e^{-x})^2} = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{1}{1 + e^{-x}} \cdot \frac{1 + e^{-x} - 1}{1 + e^{-x}}$
 $= S(x) \cdot [1 - S(x)]$ < 1

为什么 Sigmoid 函数会导致梯度消失?

Sigmoid 激活函数"糟糕"的解析性质:

多层网络示例:

$$x \xrightarrow{W_1} b_1 \xrightarrow{W_2} b_2 \xrightarrow{W_3} b_3 \xrightarrow{W_4} b_4 \longrightarrow C$$

利用 BP 算法计算b 的梯度:

$$\frac{\partial C}{\partial b_1} = \sigma'(b_1) w_2 \sigma'(b_2) w_3 \sigma'(b_3) w_4 \sigma'(b_4) \frac{\partial C}{\partial \hat{b}_4}$$

Sigmoid 激活函数梯度: $\sigma'(x) = \sigma(x)(1 - \sigma(x)) \in \left(0, \frac{1}{4}\right]$

曲此可得:
$$\frac{\partial C}{\partial b_1} \leq \left(\frac{1}{4}\right)^4 w_2 w_3 w_4 \frac{\partial C}{\partial \hat{b}_4}$$

2.5 偏导数和梯度

偏导数定义:

设函数 z = f(x, y) 在点 (x_0, y_0) 的某一邻域内有定义,当 y 固定在 y_0 而 x 在 x_0 处有增量 Δx 时,相应的函数有增量

$$f(x_0 + \Delta x, y_0) - f(x_0, y_0),$$

如果

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} \tag{2-1}$$

存在,那么称此极限为函数z = f(x, y)在点 (x_0, y_0) 处对x的偏导数,记作

例如,极限(2-1)可以表为

$$f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$
 (2-2)

类似地,函数z = f(x, y)在点 (x_0, y_0) 处对y的偏导数定义为

$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y},$$
 (2-3)

记作

$$\frac{\partial z}{\partial y}\bigg|_{\substack{x=x_0\\y=y_0}}, \frac{\partial f}{\partial y}\bigg|_{\substack{x=x_0\\y=y_0}}, z_y\bigg|_{\substack{x=x_0\\y=y_0}} \vec{E}(x_0, y_0).$$

如果函数 z = f(x,y) 在区域 D 内每一点 (x,y) 处对 x 的偏导数都存在,那么这个偏导数就是 x 、y 的函数,它就称为函数 z = f(x,y) 对自变量 x 的偏导函数,记

$$\frac{\partial z}{\partial x}, \frac{\partial f}{\partial x}, z_x \not \boxtimes f_x(x, y).$$

类似地,可以定义函数z = f(x, y)对自变量y的偏导函数,记作

$$\frac{\partial z}{\partial y}, \frac{\partial f}{\partial y}, z_y \stackrel{\mathbf{I}}{\otimes} f_y(x, y).$$

由偏导数的概念可知,f(x,y)在点 (x_0,y_0) 处对x的偏导数 $f_x(x_0,y_0)$ 显然就是 7/13

偏导函数 $f_x(x,y)$ 在点 (x_0,y_0) 处的函数值; $f_y(x_0,y_0)$ 就是偏导函数 $f_y(x,y)$ 在点 (x_0, y_0) 处的函数值. 就像一元函数的导函数一样,以后在不至于混淆的地方也把 偏导函数简称为偏导数。

将偏导函数写成向量形式就表示梯度函数。

$$\nabla F(x, y, z) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)$$
$$F(x, y, z) = x + y^2 + z^3$$
$$\nabla F(x, y, z) = (1, 2y, 3z^2)$$

3. 微分

3.1 微分的定义

$\Delta S \approx 2x_0 \cdot \Delta x$ (约去 Δx 的高阶无穷小)

微分的定义:

如果 y = f(x) 在 x_0 的增量可表示为 $\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$, A 是与 x_0 有关的而不依赖于 Δx 的常数, $A \cdot \Delta x$ 称为函数y = f(x)在点 x_0 相应于自 变量的增量 Δx 的微分, 记为 dy, 即 $dy = A \cdot \Delta x$.

可微的充要条件: ① f(x)在 x_0 点处可导② $A = f'(x_0)$ 即 $dy = f'(x_0) \cdot \Delta x$ 几何意义: 切线纵坐标的增量

3.2 拉格朗日中值定理

若f(x)在[a,b]上连续,在(a,b)内可导,则 $\exists \xi \in (a,b)$ 使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$
 (利用罗尔定理证明)

3.3 泰勒公式

若f(x)在(a,b)内有(n+1)阶导数,那么对 $x \in (a,b)$ 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + R_n(x)$$

其中, $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{(n+1)}$. $\xi \in \mathbb{R}$ 之间的某值, $R_n(x)$ 称为拉格朗日 余项。

4. 积分

4.1 不定积分

若:
$$F'(x) = f(x)$$
 则 $\int f(x)dx = F(x) + C$.

微分
$$F'(x) = (?)$$
 可逆运算
$$(?)' = f(x)$$

例题:
$$\int e^x dx = e^x + C$$
. $\int k dx = kx + C$. $\int x^u dx = \frac{1}{u+1} x^{u+1} + C$.

4.2 定积分

求面积:

$$A = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i$$

其中
$$\lambda = \max \{ \Delta x_1, \Delta x_2 \cdots \Delta x_n \}$$

- (1) 积分中值定理: 若f(x)在[a,b]上连续,则[a,b]上至少存在点 ξ .使得 $\int_{a}^{b} f(x)dx = f(\xi)(b-a) (a \le \xi \le b).$
- (2) 定理 1: 若f(x)在[a,b]上连续,那么积分上限函数 $\Phi(x) = \int_a^x f(t)dt$ 可导. 导数为: $\Phi'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x) (a \le x \le b)$
- (3) 定理 2: 由定理 1 可引出, 若 f(x) 在 [a,b] 上连续, 则积分上限函数 $\int_a^x f(t) dt$ 就是它的一个原函数.
- (4) 牛顿一菜布尼茨公式: 若f(x)在[a,b]上连续,函数F(x)在[a,b]上是f(x)的一个原函数,则: $\int_a^b f(x)dx = F(b) - F(a)$
- (5) 牛顿一菜布尼茨公式的证明:

根据定理 2

$$:: F(x) 与 \Phi(x) = \int_{a}^{x} f(t) dt$$
 都是 $f(x)$ 原函数
$$:: \Phi(x) = F(x) + C$$

$$\Rightarrow x = a \qquad \Phi(a) = F(a) + C$$

$$\therefore \int_{a}^{x} f(t)dt = F(x) + C = F(x) - F(a)$$

$$\diamondsuit x = b \qquad \qquad \iiint_a^b f(t) dt = F(b) - F(a)$$

- 5. 单调与凸函数
- 5.1 单调增与单调减

设函数 y = f(x) 在 [a,b] 上连续, 在 (a,b) 内可导.

- (1) 如果在(a,b)内 $f'(x) \ge 0$, 且等号仅在有限多个点处成立,那么函数 y = f(x) 在[a,b]上单调增加;
- (2) 如果在(a,b)内 $f'(x) \le 0$, 且等号仅在有限多个点处成立,那么函数 y = f(x) 在[a,b]上单调减少.

判别: f(x)在[a,b]上连续, 在(a,b)上可导.

①对 $\forall x \in (a,b)$ f'(x) > 0则 [a,b] 上单调增加

②对 $\forall x \in (a,b)$ f'(x) < 0则 [a,b] 上单调减少

证明: 在[a,b]上取 x_1 , x_2 其中 $x_1 < x_2$, 在 $[x_1,x_2]$ 上应用**拉格朗日中值定理**:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \qquad (x_1 < \xi < x_2),$$

若 $f'(\xi) > 0$,则 $f(x_2) - f(x_1) > 0$;若 $f'(\xi) < 0$,则 $f(x_2) - f(x_1) < 0$.

5.2 凸函数判定

凸函数: 凹弧(下凸的)

定义: f(x)在区间 I 连续, $x_1x_2 \in I$.

$$f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f\left(x_1\right) + f\left(x_2\right)}{2}$$

 $f''(x) \ge 0$ 或 f'(x) 在 I 内单调增加

凹函数: 凸弧(上凸的)

定义: f(x)在区间 I 连续, $x_1.x_2 \in I$

$$f\left(\frac{x_1+x_2}{2}\right) \ge \frac{f\left(x_1\right)+f\left(x_2\right)}{2}$$

判别: f'(x)在I内单调减少. $f''(x) \le 0$.

证明: 根据微分中值定理:

取:
$$x_1 < \xi_1 < x_0 < \xi_2 < x_2$$

$$\begin{cases} f(x_1) = f(x_0) + f'(\xi_1) \cdot (x_1 - x_0) & (x_1 < \xi_1 < x_0) \\ f(x_2) = f(x_0) + f'(\xi_2)(x_2 - x_0) & (x_0 < \xi_2 < x_2) \end{cases}$$

$$\frac{f(x_1) + f(x_2)}{2} = f(x_0) + f'(\xi_1) \frac{(x_1 - x_0)}{2} + f'(\xi_2) \frac{x_2 - x_0}{2}$$

$$= f(x_0) + \frac{1}{4}(x_2 - x_1) \Big[f'(\xi_2) - f'(\xi_1) \Big]$$
其中: $f(x_0) = f\left(\frac{x_1 + x_2}{2}\right); \quad (x_2 - x_1) > 0;$

$$[f'(\xi_2) - f'(\xi_1)]$$
的值取决于 $f'(x)$ 单调性.

大作业: Softmax Loss 的梯度推导

高等数学作业

姓名: 得分:

1.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$

$$2. 求 y = \cos x$$
 的导数

3.
$$f(x) = \begin{cases} 6x^2 & x \ge 0 \\ 12x^2 & x < 0 \end{cases}$$
 几阶可导?

4. 证明中值定理: 若 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导. 则 $\exists \xi \in (a,b)$ 使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a} \text{ (提示: 罗尔定理)}$

5. 推导 Softmax Loss