6.5 The voltage across a 4- μ F capacitor is shown in Fig. 6.45. Find the current waveform.

Figure 6.45 For Prob. 6.5.

6.13 Find the voltage across the capacitors in the circuit of Fig. 6.49 under dc conditions.

Figure 6.49 For Prob. 6.13.

6.45 If the voltage waveform in Fig. 6.68 is applied to a 10-mH inductor, find the inductor current i(t). Assume i(0) = 0.

Figure 6.68 For Prob. 6.45.

6.48 Under steady-state dc conditions, find *i* and *v* in the circuit in Fig. 6.71.

Figure 6.71 For Prob. 6.48.

6.73 Show that the circuit in Fig. 6.90 is a noninverting integrator.

Figure 6.90 For Prob. 6.73.

6.78 Design an analog computer to simulate

e∕od

$$\frac{d^2v_o}{dt^2} + 2\frac{dv_o}{dt} + v_o = 10\sin 2t$$

where $v_0(0) = 2$ and $v'_0(0) = 0$.

6.80 Figure 6.93 presents an analog computer designed to solve a differential equation. Assuming f(t) is known, set up the equation for f(t).

Figure 6.93 For Prob. 6.80.