

AFRICA BUSINESS SCHOOL – UM6P

Program FEOR – Module 6 – Optimization II

Rachid Ellaia & Agnès Gorge

How considering uncertainties in an optimization problem?

Reminder: what is a mathematical program?

$$\begin{cases} & \text{Min } f_0(x) \\ & \text{S.t. } f_1(x) \le 0 \\ & \vdots \\ & f_m(x) = 0 \\ & x \in \mathbb{R}^n \end{cases}$$

Consider uncertainties in data

III-defined

3 criteria for the choice of h_i:

- Reflect decision-maker's risk profile
- Make the best use of our knowledge of ξ
- Lead to a tractable deterministic counterpart

Determine its deterministic counterpart :

Operators $h_0,...,h_m$

Min
$$g_0(x) = h_0(f_0(x, \xi))$$

S.t. $g_1(x) = h_1(f_1(x, \xi)) \le 0$
:
 $g_m(x) = h_m(f_m(x, \xi)) = 0$
 $x \in \mathbb{R}^n, \xi \in \mathbb{R}^p$

Welldefined

Two main paradigms co-exist for choosing operators h_i

Stochastic optimization

Robust optimization

Uncertain data representation

Probability distribution

Approximation through a bunch of scenario

Support = all possible values

Objective function

 h_0 = Expected value

 $h_0 = Min/max$

Constraint

 h_i = Quantile

 $h_i = Min/max$

Philosophy

Average approach

Requires a good knowledge of the uncertainties

Worst-case approach

Very conservative

Typical application field

Finance

Engineering

TP5: The newsvendor problem

Problem presentation

Decision variable

• x: purchase

Uncertain data: demand to satisfy **D** of distribution F

Certain datas:

- SalesPrice p
- LiqPrice I (<p)
- UnitCost c

Max $E[p min(\mathbf{x}, \mathbf{D}) + I max(0, \mathbf{x} - \mathbf{D})] - c \mathbf{x}$

Solution:
$$x^* = F^{-1} \left(\frac{p-c}{p} \right)$$

→ One of the rare example where a closed formula can be found !!

TP5: The newsvendor problem through LP with a discrete approximation of the uncertain demand (scenarios)

Decision variable

- Purchase
- Sales[scenarios]: how much to sell
- Lig[scenarios]: how much to liquidate
- Revenue[scenarios] : the revenue of sales and liquidation

Uncertain data: demand following a discrete distribution (scenarios)

Certain datas:

- SalesPrice
- LiqPrice
- UnitCost

1. Formulate the problem as a linear program, for maximization of expected profit

- 2. What's the gain compared to a deterministic optimization based on the expected demand
- 3. What about considering the minimization of the variance in the objective function?
- 4. Consider chance-constraint : Proba[sold out] <= 1%
- **5. Bonus**: What is the optimal solution if the demand follows a Gaussian distribution (with same expected value and standard deviation)?

Chance-constraint (or probability constraint)

Define a binary variable per scenario to « flag » whether or not the sold-out happen in this scenario

Let X[s] be this variable: we want that « sold-out on scenario s implies X[s] = 1 »

Then we limit the number of X[s] = 1

Reminder: BigM tips

- X a continuous variable
- B a binary variable
- We want: X > 0 implies B = 1: for this we add a « bigM » constraint, i.e.,
 - X <= M. B with M sufficiently big

