MAT336 Elements of Analysis

Michael Boyadjian

January 14, 2021

Contents

1	Logic and Proof	3
	1.1 Logical Connectives	3
	1.2 Quantifiers	4
2	The Real Numbers	5
3	Sequences	5
4	Limits and Continuity	5

1 Logic and Proof

1.1 Logical Connectives

Mathematics consists of declarative sentences. A **statement** is a sentence that can be classified as either true or false; we don't need to know if it is true or false, just that it's one or the other.

- ex. "Every continuous function is differentiable" is a FALSE statement
- ex. "Two plus two equals four" is a TRUE statement

The words not, and, or, if \cdots then, and if and only if are called **sentential** connectives. The meanings of these are all summarized below:

- not: Represents the logical opposite or negation of a statement p. This is denoted by $\sim p$
- <u>and</u>: Represents the **conjunction** of two statements p and q. This is used in the same way as in English and is denoted by $p \wedge q$
- <u>or</u>: Represents the **disjunction** of two statements p and q. This is used only in the inclusive context where there is the possibility of having both statements and is denoted by $p \lor q$
- <u>if · · · then</u>: Represents an **implication** or **conditional** statement. If we say "if p, then q", the if-statement p in the implication is called the **antecedent** and the then-statement q is called the **consequent**. This is denoted by $p \Rightarrow q$. In words, this can be represented in many forms

• if and only if: Represents the conjunction of two conditional statements, $p \Rightarrow q$ and $q \Rightarrow p$. This is considered a **biconditional** and is denoted by $p \Leftrightarrow q$ which is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$. If a compound statement is true in all cases, this is called a **tautology**, which shows that the two parts of the biconditional are logically equivalent. That is, the two component statements have the same truth tables.

3

ex.
$$\sim (p \land q) \Leftrightarrow [(\sim p) \lor (\sim q)]$$

ex.
$$\sim (p \vee q) \Leftrightarrow [(\sim p) \wedge (\sim q)]$$

ex.
$$\sim (p \Rightarrow q) \Leftrightarrow [p \land (\sim q)]$$

1.2 Quantifiers

Certain sentences need to be considered within a particular context in order to become a statement. When a sentence involves a variable such as x, it is customary to use functional notation when referring to it.

ex.
$$p(x)$$
: $x^2 - 5x + 6$

- 2 The Real Numbers
- 3 Sequences
- 4 Limits and Continuity