CE 382 Reinforced Concrete Fundamentals

Bond & Anchorage

Introduction

- Basic assumption of RC Theory
 - Perfect bond between concrete and steel bars
- Flexural Bond

$$\tau_b u \Delta x = \Delta T = \frac{\Delta M}{Z}$$

$$\tau_b = \frac{\Delta M}{\Delta x} \frac{1}{uz}$$

$$V = \frac{\Delta M}{\Delta x}$$

$$\tau_b = \frac{V}{vz}$$

Anchorage Bond

- For a bar subjected to tension
 - It should not be pulled out of concrete
 - Steel should yield

$$\tau_b \ell_b \pi \phi = A_s f_{yd}$$

$$\tau_b \ell_b \pi \phi = \frac{\pi \phi^2}{4} f_{yd}$$

$$\ell_b = \frac{f_{yd}}{4\tau_b} \phi$$

$$\ell_b = C_0 \frac{f_{yd}}{f_{ctd}} \phi$$

Development length in TS500:

$$\ell_b = 0.12 \frac{f_{yd}}{f_{ctd}} \phi \ge 20\phi$$

For plain bars $\geq 40\phi$ If $32 \leq \phi \leq 40$ mm multiply ℓ_b by $\frac{100}{(132-\phi)}$

(c)

The Nature of Bond

- Resistance provided mainly by:
 - Adhesion b/w steel & concrete
 - Friction b/w steel & concrete
 - Bearing of deformations on steel surface against surrounding concrete

Plain bar \rightarrow failure due to SLIP

Deformed bar \rightarrow failure due to SPLITTING

Deformed Bar

Variables influencing bond

- Concrete tensile strength
- Type of aggregate and cement; mix proportion
 - ▶ light weight concrete → lower bond strength
- Curing and compaction
- ▶ Yield strength of steel; $\sigma_s \nearrow \to$ bond more critical
- Surface conditions of bar;
 - ▶ plain bar → irregularities & rust improve bond characteristics
- Geometry of deformations
- Bar diameter
 - $\phi \nearrow \to \frac{perimeter}{bar\ area} \searrow \to bond\ strength \searrow$

Variables influencing bond

- ▶ Development length / → bond strength /
- Concrete cover & clear distance

 → bond strength
- Position of bars during concreting
 - Top bar → lower bond strength because of the accumulation of excess water and air under bars
 - Bottom bar
- Local stress
 - Local compressive strength can increase bond strength
- ▶ Hoops or ties → bond strength

Straight anchorage

Hooks or loops

Hooks or loops

Stirrup hooks

Welded transverse bars

Mechanical devices

Lap Splice

- $\alpha_1 = 1 + 0.5r$
- r: the ratio of spliced reinforcement to total reinforcement at the same section.

Problems associated with hooks

Problems associated with hooks

Problems associated with anchorage

Problems associated with anchorage

Problems associated with anchorage

Beam-column joints deserve attention!..

Can you bend an R/C Column into U-Shape?

I wish you the best of luck in your final exams...

Dr. G. Özcebe

