Deep Learning with Topological Signatures

Romain Egele & Martin Cepeda

 $\{romain.egele, martin.cepeda\} @polytechnique.edu$

November 2, 2020

Outline

- Introduction
 - Deep Learning
 - Topological Signatures
- Deep Learning with Topological Signatures
 - Contributions of the paper
 - Experiments
- Conclusion
 - Limitations
 - Possible extensions
- References

Introduction

3/31

The basis of Deep Learning I

Deep learning uses several stacked layers of **neurons** (generally implementing linear operations) followed by a non-linear activation function:

Figure: An artificial neuron (source)

Figure: Feature learning process (source)

This stacking of non-linear operations is used for **feature learning** of the inputs the during a **training** stage to then perform predictions (classification/regression) during the **testing** stage.

4/31

The basis of Deep Learning II

In order to successfully train a neural network, several "ingredients" are necessary in terms of optimization:

- **Algorithm**: to minimize the loss of the model w.r.t. network parameters.
- (In most cases) Layer backpropagation: to perform gradient descent.
- Regularization: to control the complexity of a neural network model in order to avoid over-fitting.

Other aspects must also be taken into account (data harmonization, computing capabilities, initialization, callbacks during training, etc.) in order to train a network, which are out of the scope of this paper.

Persistence Diagrams I

Given a topological space X and a distance function f, a persistent diagram encodes the topological structure of the pair (X, f). More technically:

Simplex, complex, filtration (Boissonnat et al. [2020])

Topological spaces are represented by simplicial complexes. Let $V=\{1,\cdots,|V|\}$ be a set of vertices. A simplex σ is a subset of vertices $\sigma\subseteq V$. A **simplicial complex** K on V is a collection of **simplices** $\{\sigma\},\sigma\subseteq V$, such that $\tau\subseteq\sigma\in K\Rightarrow\tau\in K$. The dimension $n=|\sigma|-1$ of σ is its number of elements minus 1. A **filtration** of a simplicial complex is a function $F:K\to\mathbb{R}$ satisfying $F(\tau)\leq F(\sigma)$ whenever $\tau\subseteq\sigma$.

A filtration is done over sub-level sets of the distance function $f^{-1}((-\infty,t])$ for t ranging over \mathbb{R} . For a given dimension, the topological features span (birth and death) over the varying t mentioned before, which is encoded by a finite set of intervals: a **barcode**.

Persistence Diagrams II

Persistence diagram (Hofer et al. [2017] and Turner et al. [2014])

Let $\mathbb{R}^2_\star = \{(x_0,x_1) \in \mathbb{R}^2 : x_1 > x_0\}$. We define the k-th persistence diagram corresponding to the filtration F to be the multi-set of points in \mathbb{R}^2_\star such that alongside countably infinite copies of the diagonal such that the number of points (counting multiplicity) in $[-\infty,a]\times[b,\infty]$ is equal to the number of topological features of dimension k that are born at or before a and die at or after b.

Figure: Encoding of a barcode into the plane (source). We call **persistence** of a feature its time span.

We note by \mathbb{D} the set of all persistence diagrams with a finite quantity of non-essential features (those with finite persistence).

Persistence Diagrams for Deep Learning?

Neural networks take inputs from a vector space. In order to feed NNs with persistence diagrams, we need to have a mapping $T: \mathbb{D} \to \mathbb{R}^{n \times m}$. In order to find such a mapping:

- How to compute persistence diagrams from heterogeneous data types?
- How to define T?

This "topological step" allows to feed the neural-network model with topological, structural information of the input.

Figure: Deep Learning with Topological Signatures

Deep Learning with Topological Signatures

Contributions of the paper I

Figure: Vector inputs (left) and persistence diagram inputs (right) neural network architectures.

Contributions of the paper II

Hofer et al. [2017] introduce a novel neural network layer to **learn a mapping** $T: \mathbb{D} \to \mathbb{R}^N$. Given a persistence diagram $\mathcal{D} \in \mathbb{D}$ with x axis α the birth time and y axis β the death time:

- ① Rotate the diagram by $-\frac{\pi}{4}$: x axis now represents $\alpha+\beta$ and y axis is $\beta-\alpha$ (persistence)
- ② We note $\mathbb{R}^2_{\Delta} = \{(x_0, x_1) \in \mathbb{R}^2 : x_1 = x_0\}$ the diagonal in \mathbb{R}^2 . Let $s : \mathbb{R}^2_{\star} \cup \mathbb{R}^2_{\Delta} \to \mathbb{R}^+_0$ Lipschitz continuous w.r.t. $\|\cdot\|_q$ and constant K_s and $s(\boldsymbol{x}) = 0$ for $\boldsymbol{x} \in \mathbb{R}^2_{\Delta}$. In particular:

$$s(\boldsymbol{x}) = s_{\boldsymbol{\mu}, \boldsymbol{\sigma}, \nu}(x_0, x_1) = \begin{cases} \exp\left[-\sigma_0^2(x_0 - \mu_0)^2 - \sigma_1^2(x_1 - \mu_1)^2\right] & x_1 \in [\nu, \infty) \\ \exp\left[-\sigma_0^2(x_0 - \mu_0)^2 - \sigma_1^2(\ln(\frac{x_1}{\nu})\nu + \nu - \mu_1)^2\right] & x_1 \in (0, \nu) \\ 0 & x_1 = 0 \end{cases}$$

where ν is fixed and μ, σ are **trainable**. The mapping of $\mathcal D$ is the sum of $s_{\mu,\sigma,\nu}(x_0,x_1)$ over all points in the rotated persistence diagram (visualization of s available at https://tda-layer-viz.herokuapp.com/)

3 Concatenate over a fixed number N of pairs $(\mu_i, \sigma_i)_{i=0}^{N-1}$, pass to next layer

Contributions of the paper III

Figure: TDA input layer

Contributions of the paper IV

The previous pipeline makes sense because the proposed layer a) is stable w.r.t. the 1-Wasserstein distance w_1^q (robust to noise) b) has absolutely bounded first-order partial derivatives w.r.t. x_0 and x_1 on $\mathbb{R} \times \mathbb{R}^+$ and c) in particular, $s_{\mu,\sigma,\nu}(x)$ is Lipschitz continuous with respect to w_1^q on \mathbb{D} (Lemmas 1, 2 and Theorem 1, respectively).

 \triangle The particular definition of $s_{\mu,\sigma,\nu}(x)$ is trainable via **backpropagation** as it is differentiable w.r.t. μ, σ (sums and concatenations preserve differentiability).

 \triangle The proposed layer (learned $\mathbb{D} \to \mathbb{R}^N$ mapping) achieves same kind of **stability** as fixed, learning task-dependent mappings.

¹The q-Wasserstein distance is defined as the minimal value achieved by a perfect matching between the points of the two diagrams (+ all diagonal points), where the value of a matching is defined as the q-th root of the sum of all edge lengths to the power q. Edge lengths are measured in norm p, for $1 \le p \le \infty$ (Boissonnat et al. [2020])

List of experiments

Classification of 2D object shapes (2D arrays):

- Animal: 20 animal shapes classes, 100 samples each, 2,000 samples
- MPEG-7: 70 classes of object/animal shapes, 20 samples each, 1,400 samples

Figure: Animal (top) and MPEG-7 (bottom) data sets.

Classification of social networks graphs (unlabeled vertices, undirected edges):

- reddit-5k: 5 classes, 5,000 graphs.
- reddit-12k: 11 classes, about 12,000 graphs.

each sample represents a discussion graph and classes indicate subreddits (e.g., worldnews, video, etc.)

Classification of 2D object shapes

From a 2D array, we create a persistence diagram which we map to a vector space to feed it to a classifier.

Figure: TDA + ML steps

Height function filtration (PHT) I

Figure: Height function filtration in the direction d = (0, -1) of a clean (left) and noisy (right) shape.

Not invariant by rotation but invariant by translation!

Height function filtration (PHT) II

Figure: "Recognize an N" learned s

Examples of height function filtration I

Figure: Height function filtration in the direction d = (-1, 0) of a E shape.

Examples of height function filtration II

Figure: Reproduction of paper results with the N shape.

Temporal Performance of PHT

For 20 classes, 1 sample per class, 1 direction for PHT.

- 1 process: 46 sec.
- 8 processes: 10 sec.

Good and easy parallelism! Thank to parallelization we managed to generate the PHT with 1, 2 and 16 directions for the *Animal* data set. It took about 5 hours for the computation of 16 directions using 10 parallel processes.

Vectorization of Persistence Diagram

•Idea: directly use the persistence diagrams as features via vectorization

```
Algorithm 1: Vectorization of Persistence Diagram
```

```
Input: \mathcal{D} persistence diagram, N output vector size
Result: vector V of size N
tmp = list()
for (b,d) in \mathcal{D} do
   p = d - b
                                                                      /* persistence */
   tmp.append(p)
end
tmp.sort(reverse=True)
                                                               /* decreasing order */
if leng(tmp) > N then
   V = tmp[:N]
else
   V = tmp + [0]*(N-len(tmp))
end
```

Baseline performance I

•Idea: Use the vetorization of persistence diagrams to directly fit a classifier.

	N					0	
	5	10	20	40	80	160	Ours
MPEG-7	81.8	82.3	79.7	74.5	68.2	64.4	91.8
Animal	48.8	50.0	46.2	42.4	39.3	36.0	69.5
reddit-5k	37.1	38.2	39.7	42.1	43.8	45.2	$\overline{\bf 54.5}$
reddit-12k	24.2	24.6	27.9	29.8	31.5	31.6	44.5

Figure: Results against Baseline

N is the size of the vectorized persistence diagram (i.e., 10 directions with N=5 gives an input vector of size 50). The baseline classifier used is a linear support vector machine (SVM). All the even directions of 32-PHT were used (i.e., 16 directions).

Baseline performance II

Classifiers	CVVV	RF	NN-1	
Classifiers	SVIVI	(Ours)	(Ours)	
Animal	50.0	56.0 ± 2.7	53.0	

Table: Classification accuracies for different classifier. A linear support vector machine (SVM), random forest (RF), neural network (NN). Where the vectorized persistence diagram is of size N=10.

Neural Network Architecture I

Figure: Neural architecture with TDA-layer

Neural Network Architecture II

Figure: Fully connected neural architecture with multiple inputs.

Neural Network Architecture III

Classifiers	NN TDA	NN 1 input no TDA	NN N inputs no TDA
Test Accuracy	69.5	53.0	71.0

Table: Performance of classic fully connected neural networks and TDA-layer neural network.

Temporal performance:

- NN TDA: 8.6 sec per epoch for 500 epochs.
- N inputs no TDA: 0.37 sec per epoch for 100 epochs.

Conclusion

Limitations

- Prohibitive computing time for higher order features ($q \ge 2$, voids and higher order homology groups)
- the claim "no specific data preprocessing" for MPEG-7 and Animal datasets is, at least, non accurate: Turner et al. [2014] mention that PHT (image \rightarrow persistence diagram) centers, scales and rotates images (SOTA² in $\mathcal{O}(n^2)$) prior to computing projections
- It needs a high number of epochs (e.g., 500 epochs in the experiments)

Possible extensions

- Adding image "channels" by pre-segmentating input image
- Application to time-series data (even sound?)
- Transfer learning (e.g. train on a "basic shapes" dataset and use learned embedding with a more high-level problem such as image classification)

References

References I

- Boissonnat, J.-D., Glisse, M., Maria, C., Michel, B. and Rouvreau, V. [2020]. GUDHI library documentation, https://gudhi.inria.fr/python/latest/. Accessed: 2020-27-10.
- Hofer, C. D. [2020]. torchph, https://github.com/c-hofer/torchph.
- Hofer, C. D., Kwitt, R., Niethammer, M. and Uhl, A. [2017]. Deep learning with topological signatures, https://arxiv.org/abs/1707.04041.
- Rangan, A., Spivak, M., Andén, J. and Barnett, A. [2019]. Factorization of the translation kernel for fast rigid image alignment, https://arxiv.org/abs/1905.12317.
- Turner, K., Mukherjee, S. and Boyer, D. M. [2014]. Persistent homology transform for modeling shapes and surfaces, https://arxiv.org/abs/1310.1030.

