Eléments d'analyse combinatoire - solutions des exercices

Probabilités et statistique pour la biologie (STAT1)

Jacques van Helden

2018-11-19

Contents

ésumé des concepts et formules	1
Tirages avec / sans remise	
Formules	
olutions des exercices	2
Solution exercice 1: mutagenèse	2
Solution de l'exercice 2 : oligopeptides 3×20	6

Résumé des concepts et formules

Tirages avec / sans remise

Il existe deux types classiques de tirage d'éléments au sein d'un ensemble: avec ou sans remise.

- 1. Tirage sans remise: chaque élément peut être tiré au plus une fois. Exemples:
 - Jeu de loto (ou lotto).
 - Sélection aléatoire d'un ensemble de gènes dans un génome.
- 2. Tirage avec remise: chaque élément peut être tiré zéro, une ou plusieurs fois. Exemples:
 - Jeu de dés. A chaque lancer on dispose des mêmes possibilités (6 faces).
 - Génération d'une séquence aléatoire, par sélection itérative d'un élément dans l'ensemble des résidus (4 nucléotides pour l'ADN, 20 acides aminés pour les protéines).

Formules

Remise	Ordre	Formule	Description
Oui	Oui	n^x	Exponentielle: séquences de x éléments tirés dans un ensemble de taille n , avec remise.
Non	Oui	n!	Factorielle: toutes les permutations d'un ensemble de taille n
Non	Oui	$A_n^x = \frac{n!}{(n-x)!}$	Arrangements : listes (ordonnée) de x éléments tirés dans un ensemble de taille n
Non	Non	$C_n^x = \binom{n}{x} = \frac{n!}{x!(n-x)!}$	$ \begin{array}{l} \textbf{Combinaisons}: \text{ ensembles (non ordonn\'es)} \\ \text{de } x \text{ \'el\'ements tir\'es dans un ensemble de taille} \\ n \end{array} $

Solutions des exercices

Solution exercice 1: mutagenèse

On soumet un fragment d'ADN de 1 kilobase à un traitement mutagène qui provoque des mutations ponctuelles (substitutions) à 5 positions distinctes indépendantes. Combien de séquences possibles existe-t-il pour le fragment muté?

Il s'agit de choisir au hasard 5 positions mutantes parmi les 1000 nucléotides du fragment d'ADN. Il s'agit d'un choix sans remise (chaque position ne peut être tirée qu'une fois), on choisit donc le coefficient binomial.

$$\binom{n}{x} = \binom{1000}{5} = C_{1000}^5 = \frac{1000!}{5!995!} = 8.2502913 \times 10^{12}$$

Pour chacune des 5 positions mutées, on a 3 substitutions possibles. Le nombre de mutations distinctes est donc 3⁵ fois le nombre de choix de 5 positions parmi 1000.

$$N = 3^5 \cdot \binom{1000}{5} = 2.0048208 \times 10^{15}$$

Solution de l'exercice 2 : oligopeptides 3×20

Combien d'oligopeptides de taille 60 peut-on former en utilisant exactement 3 fois chaque acide aminé?

Commençons par générer une séquence particulière qui remplit ces conditions, en concaténant 3 copies de chaque acide aminé, dans l'ordre alphabétique.

,	Table	2:	Symboles	des	acides	aminés	et	codons

Aminoacid	Symbol3	Symbol	Codons
Alanine	Ala	A	GCA, GCC, GCG, GCT
Arginine	Arg	R	CGA, CGC, CGG, CGT, AGA, AGG
Aspartic acid	Asp	D	GAC, GAT
Asparagine	Asn	N	AAC, AAT
Cysteine	Cys	\mathbf{C}	TGC, TGT
Glutamic acid	Glu	\mathbf{E}	GAA, GAG
Glutamine	Gln	Q	CAA, CAG
Glycine	Gly	G	GGA, GGC, GGG, GGT
Histidine	His	Н	CAC, CAT
Isoleucine	Ile	I	ATA, ATC, ATT
Leucine	Leu	L	CTA, CTC, CTG, CTT, TTA, TTG
Lysine	Lys	K	AAA, AAG
Methionine	Met	${ m M}$	ATG
Phenylalanine	Phe	F	TTC, TTT
Proline	Pro	P	CCA, CCC, CCG, CCT
Serine	Ser	\mathbf{S}	TCA, TCC, TCG, TCT, AGC, AGT
Threonine	Thr	Τ	ACT, ACC, ACG, ACT
Tryptophan	Trp	W	TGG
Tyrosine	Tyr	Y	TAC, TAT
Valine	Val	V	GTA, GTC, GTG, GTT
STOP	-	-	TAG, TAA, TGA

AAACCCDDDEEEFFFGGGHHHIIIKKKLLLMMMNNNPPPQQQRRRSSSTTTVVVWWWYYY

Les permutations de ces 60 lettres sont des solutions valudes. En voici trois exemples.

TPVAVNQSHRLCIYYGMLQVYIIEHGQKHSNFDPWFTERDAWAPLECKMWGRSDNKTFMC QHKGYQFPENTNAVQRWDRSDIGAIEPFVGHLKRVWFHYSMNTCLITMCDWAKSLPYCME DDIEQMWCNPSHLVRNHFKWASKQTRVFTEYWISTFGNHELIQLRGACPCADPYKGYMVM

. . .

APSFGKNLQKWMPTIALDWWYMILYKQERERSTCFVMCQHHTAHCNPRGDDVNVEYGISF

Le nombre total de permutations possibles parmi 60 éléments est $60! = 8.3209871 \times 10^{81}$. Cependant, cenombre dépasse de loin le nombre de séquences distinctes. En effet, dans chacune des séquences ci-dessus, chaque lettre apparaît 3 fois. Or, des permutations entre les trois positions occupées par des A ne changeront pas la séquence. Il en va de même pour les permutations entre les positions occupées par chacun des acides aminées : A, C, D, ...

Il faut donc diviser le nombre total de permutations (60!) par le nombre de permutations qui ne modifient pas la séquence: 3! pour A, 3! pour D, et ainsi de suite pour chacun des 20 acides aminés.

La formule finale est donc:

$$N = \frac{\underbrace{\frac{60!}{60!}}}{\underbrace{3! \cdot 3! \cdot \dots 3!}} = \frac{60!}{(3!)^{20}} = 2.2758825 \times 10^{66}$$
20 acides aminés présents 3 fois