Seoul National University

M1522.001400-001 Introduction to Data Mining

Homework 4: Frequent Itemsets (Chapter 6) & Clustering (Chapter 7)

2017-18538 Hwang SunYoung

1.

Basket	Items	
1	a, b, c	
2	a, b, d	
3	b, c, d, e	
4	c, e, f	
5	b, c, f	
6	a, c, e	

(1)

Support of $\{a\} = 3$

Support of $\{b\} = 4$

Support of $\{c\} = 5$

Support of $\{b, c\} = 3$

Support of $\{a, c, e\} = 1$

(2) minimum support = 3

Frequent itemsets: {a}, {b}, {c}, {e}, {b, c}, {c, e}

(3)

Confidence of {a, b} -> c is

$$conf({a, b}) \rightarrow c) = \frac{support({a,b}) \cup c)}{support({a,b})} = 1/2 = 0.5$$

(4)

Interest of {a, c} -> e is

Interest($\{a, c\} \rightarrow e$) = conf($\{a, c\} \rightarrow e$) - Pr[e] (Pr[e] is fraction of baskets that contain e)

$$= \frac{support(\{a,c\} \cup e)}{support(\{a,c\})} - 3/6$$
$$= 1/2 - 1/2 = 0$$

2.

(1)

Basket	Itemsets	
1	1	
2	1, 2	
3	1, 3	
4	1, 2, 4	
5	1, 5	
6	1, 2, 3, 6	
7	1, 7	
8	1, 2, 4, 8	
9	1, 3, 9	
10	1, 2, 5, 10	

(2) minimum support = 2

By A-Priori algorithm,

$$C_1 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{10\}\}$$

Count the support of itemsets in C_1 and prune non-frequent. (save itemset that is support \geq 2)

$$L_1 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\}$$

Generate $C_2 = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}\}$

Count the support of itemsets in C_2 and prune non-frequent. (save itemset that is support \geq 2)

$$L_2 = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 4\}\}$$

Generate $C_3 = \{\{1, 2, 4\}\} \leftarrow \{1, 2\}, \{1, 4\}, \{2, 4\}$ are frequent.

Count the support of itemsets in C_3 and prune non-frequent. (save itemset that is support \geq 2)

$$L_3 = \{\{1, 2, 4\}\}$$

Frequent itemsets are {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {1, 2, 4}

3.

(1)

Best K is 3.

(2)

Method to select k is "Finding the Knee" method. Try different k, looking at the change in the average distance to centroid as k increases.(k is the number of clusters.) Average falls rapidly until right k(=best k), then changes little.

All result is rounded to the second digit after the decimal point.

If k=1, centroid is (6.83, 5.5) and average distance to centroid of each point is 4.60

If k=2, centroids are (4, 6.43), (10.8, 4.2) and average distance to centroid of each point is 2.62

If k=3, centroids are (3, 2.33), (4.75, 9.5), (10.8, 4.2) and average distance to centroid of each point is 1.24

If k=4, centroids are (3, 2.33), (4.75, 9.5), (10, 4), (12, 4.5) and average distance to centroid of each point is 1.22

Because average falls rapidly until k=3 and after k=3 changes little, the best value of k is 3.

4.

(1) SUMSQ is sum of the squares of coordinates

cluster	points	N	SUM	SUMSQ
1	(4, 8)	4	(4+4+6+7,	(117, 328)
	(4, 10)		8+10+8+10)	
	(6, 8)		=(21, 36)	
	(7, 10)			
2	(2, 2)	3	(2+3+5,	(38, 24)
	(3, 4)		2+4+2)	
	(5, 2)		=(10, 8)	
3	(9, 3)	5	(9+10+11+12+12,	(590, 95)
	(10, 5)		3+5+4+3+6)	
	(11, 4)		=(54, 21)	
	(12, 3)			
	(12, 6)			

(2) the variance in the i-th dimension is $(SUMSQ_i/N) - (SUM_i/N)^2$

Variance of cluster 1 is $((117/4) - (21/4)^2, (328/4) - (36/4)^2) = (27/16, 1)$

Variance of cluster 2 is $((38/3) - (10/3)^2, (24/3) - (8/3)^2) = (14/9, 8/9)$

Variance of cluster 3 is $((590/5) - (54/5)^2, (95/5) - (21/5)^2) = (34/25, 34/25)$

Standard deviation is the square root of that

Standard deviation of cluster 1 is $(\frac{3\sqrt{3}}{4}, 1)$

Standard deviation of cluster 2 is $(\frac{\sqrt{14}}{3}, \frac{2\sqrt{2}}{3})$

Standard deviation of cluster 3 is $(\frac{\sqrt{34}}{5}, \frac{\sqrt{34}}{5})$