Assumptions of L.R.

(i) Assumption of Linearity: We assume that the data can be predicted using a straight line (hyperplane). It means the independent variables (features) & the target variable should have linear relationship.

2 No multicoleaniatity:

What is colineatity 9.

Ans: Suppose we have two features f. & fe and if

fi=a;f2+a, then fi & f2 are colinear

Multicolineatity: Multiple features are colinean:

 $f_1 = a_1 + a_2 \cdot f_2 + a_3 \cdot f_3 \Rightarrow f_1 \cdot f_2 + f_3 \text{ are multi-colinear.}$

How is it a phoblem ?

Suppose we found out \vec{w} as [1,2,3] \vec{q} $w_0 = 5$

:. $\hat{y} = \omega_1 y_1 + \omega_2 y_2 + \omega_3 y_3 + \omega_0$

 $\therefore \hat{y} = x_1 + 2x_2 + 3x_3 + 5$

Now suppose x_1, x_2 whe colinear and their colinearity is described as: $x_2 = 1.5 x_1$

 $\therefore \hat{j} = 34 + 2(15 34) + 3323 + 5$

J= 44+3x3+5 :: ONA classified (00) = [4,0,3]

will be same as $\vec{\omega} = [1, 2, 3]$

But we know that higher the value of wi, more important

But we know that higher the value of W; , more impossions the feature is. .. According to Original to [1,2,3], feature 24 was least imp. but with the new w [4,0,3], it becomes the most imp. feature!

.. We will not be able to identity feature importance How to deal will multicolineasity?

Ans: VIF (Vasiance Inflation Factor)

D To calculate VIF, we figst consider one of the factors as 'y' and the others as 'x'

f,	f ₂	f3	 -	fd
	$-\times$		→ 4	—g→

2) Then we thain a Linear heggession model for these new X & J.

] (3) After training the model, we compute the R2 score of the model. We will

call this as Ry (R2 scorre of feature Pj)

(4) Then we calculate VIF as:

$$VIF = \frac{1}{1 - R_j^2}$$

$$VIF = \frac{1}{1 - R_{j}^{2}}$$
Range of VIF: $[0, \infty]$

$$if R^{2} = -\infty \Rightarrow VIF = \frac{1}{1 - (-\infty)} = 0$$

$$if R^{2} = 1 \Rightarrow VIF = \frac{1}{0} = \infty$$

But In most cases, values of i. case-1: $R_j^2 \approx 1$ $\Rightarrow VIF \approx 2$

→ High Ry means the Feature is highly colinears

-> : We can drap this feature

 R^2 will be between 0 to 1 case-2: $R_j^2 \approx 0$

 \Rightarrow VIF ≈ 1

→ Low Rj means the feature is not highly colinear — Don't remove this

> .: Don't gremove this feature

We do this phocess for each feature. (calculate the VIF of each feature & based on VIF we will either drop that feature or keep it.)

- Bractically,

VIF > 10: Highly colinean feature (drop)

55 VIF 5 10: Itighly colinear feature (Think about the other aspects and then decide whether to semove on to keep)

VIF < 5: Low multicolineasity (Don't remove it)

3) Normality of Residuals: The histogram of easions must exhibit normal distribution.

Case-2: Right skewed.

4) No Heteroske dasticity

3 No Autoconnelation (seasonality):

Examples: (1) Paedicting evening sales of a hestaurant from the data of morning sales of afternoon sales

2) Predicting sales of umbhellas in January based on sales data from June to Dec.