3.4.5 Петля гистерезиса(динамический метод)

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.

1.2 В работе используются

Автотрансформатор, реостат, интегрирующая ячейка, амперметор, вольтметр, резистор, делитель напряжения, электронный осциллограф, тороидальные образцы с двумя обмотками.

2 Работа

Запишем некоторые характеристики образцов:

	Кремнистое железо	Феррит	Пермаллой
N_0	20	42	15
N_u	200	400	300
S, cm^2	2	3	0.66
$2\pi R$, cm	11	25	14.1

Запишем некоторые параметры установки:

R_0, Ω	0.2
$R_u, k\Omega$	20
$C_u, \mu F$	20

2.1 Калибровка канала Х ЭО

Закоротим обмотку N_0 . Ток будет синусоидален. Амперметр А подключим на измерение эффективного тока I_{act} , текущий через R_0 . Сигнал с этого сопротивления подаётся на вход X Θ 0. В этом случае ширина горизонтальной

развёртки на экране ЭО будет соответствовать удвоеной амплитуде напряжения на R_0 . Измерив длину $2x=7\ cells$ горизонтальной прямой на экране, ток $I_{act}=2.37\ A$ вычислим K_x - чувствительность канала X.

$$K_x = \frac{2R_0\sqrt{2}I_{act}}{2x} = 0.19 \ V/cell$$

3 Выводы