Декартовы деревья Дискретный анализ 2016/17

1 октября 2016 г.

Литература

- Оригинальная статья: Randomized Search Trees, Siedel,
 Aragon. http://vis.lbl.gov/~aragon/pubs/rst96.pdf
- ► E-maxx Максима Иванова, статья про декартовы деревья: http://e-maxx.ru/algo/treap
- ► Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К.. Алгоритмы: построение и анализ, 2-е издание, М.:Вильямс, 2005, стр. 360-364, задача 13-4, «Дерамиды».

Декартовы деревья

Определение Основные операции Анализ времени работы

Неявные декартовы деревья

Декартовы деревья

Декартовы деревья Определение

Основные операции Анализ времени работы

Неявные декартовы деревья

Определение и свойства

Пусть X — множество пар < key, priority >, оба элемента пары взяты из упорядоченных множеств, приоритеты имеют равномерное распределение.

Декартово дерево:

- ▶ бинарное дерево над множеством X;
- ▶ порядок ключей соответствует порядку в дереве поиска (левый <= корень <= правый);
- приоритеры преставляют собой пирамиду (приоритет родителя больше приоритета потомков).

Для любого множества X, в котором ключи и приоритеты уникальны, декартово дерево существует и единственно. Другие варианты названия: treap, дерамида, дуча, курево.

Декартовы деревья

Декартовы деревья

Определение

Основные операции

Анализ времени работы

Неявные декартовы деревья

Поиск, вставка и удаление

- Поиск по ключу делается так же, как и в обычном дереве поиска.
- Вставка:
 - вставляем в лист, как в обычном дереве;
 - может нарушиться свойство пирамиды для приоритетов;
 - нужно выполнить некоторое количество поворотов: не нарушают свойства дерева, но могут восстановить пирамиду для приоритетов.
- Удаление:
 - ▶ если удаляемый узел лист, освободить память;
 - иначе с помощью поворотов сделать узел листом.

Реализация вставки

```
\begin{split} &\operatorname{Insert}(T, item) \\ &1 \quad x \leftarrow \operatorname{Insert-Into-Tree}(T, item) \\ &2 \quad \text{while } p[x] \neq NULL \ \&\& \ priority[p[x]] < priority[x] \\ &3 \quad \text{if } x = left[p[x]] \\ &4 \quad \operatorname{RIGHT-ROTATE}(p[x]) \\ &5 \quad \text{else Left-Rotate}(p[x]) \end{split}
```

Реализация удаления

```
\begin{array}{ll} \operatorname{DELETE}(T, item) \\ 1 & x \leftarrow \operatorname{FIND}(T, item) \\ 2 & \textbf{while } left[x] \neq NULL \parallel right[x] \neq NULL \\ 3 & y \leftarrow \operatorname{MAX-PRIORITY}(left[x], right[x]) \\ 4 & \textbf{if } y = left[x] \\ 5 & \operatorname{RIGHT-ROTATE}(x) \\ 6 & \textbf{else } \operatorname{LEFT-ROTATE}(x) \\ 7 & \operatorname{DELETE-FROM-TREE}(T, x) \end{array}
```

Разбиение и слияние

- ▶ Если необходимо разбить дерево на два по ключу k (в первом все ключи меньшие k, во втором большие), можно добавить элемент (k, ∞)
- Если нужно объединить два поддерева, можно сделать их сыновьями корня $(any, -\infty)$ и удалить корень
- Обычно сначала реализуют операция разбиения и слияния, а через них — удаление и вставку

Разбиение

- Разбить дерево T на два по ключу k, чтобы в первом были элементы, меньшие k, а во втором большие
- Если ключ корня дерева T меньше, чем k, по которому разбиваем, то корень и его левое поддерево новое дерево T_1 (если больше аналогично для T_2)
- ightharpoonup Рекурсивно разбиваем правое поддерево T по ключу k, получаем T' и T_2
- lacktriangle Дерево с меньшими элементами T' становится правым поддеревом T_1
- ▶ T_1 и T_2 результат разбиения

Реализация разбиения

```
\begin{array}{lll} \text{SPLIT}(Treap\ t, key, Treap\&\ t_1, Treap\&\ t_2) \\ 1 & \text{if } t = NULL \\ 2 & t_1 \leftarrow t_2 \leftarrow NULL \\ 3 & \text{else if } key > key[t] \\ 4 & \text{SPLIT}(right[t], key, right[t], t_2) \\ 5 & t_1 \leftarrow t \\ 6 & \text{else} \\ 7 & \text{SPLIT}(left[t], key, t_1, left[t]) \\ 8 & t_2 \leftarrow t \end{array}
```

Слияние

- Соединить два декартовых дерева T_1 и T_2 в T, при условии что ключи всех элементов из T_1 меньше ключей всех элементов из T_2
- lacktriangle Корни деревьев T_1 и T_2 имеют приоритеты p_1 и p_2 соответственно
- Если p₁ > p₂:
 - ▶ корень дерева T_1 корень их объединения T;
 - левое поддерево остается без изменений;
 - правое поддерево объединяется с T_2 , результат становится новым правым поддеревом.
- Иначе алгоритм выше с инвертированными параметрами

Реализация слияния

```
Merge(Treap \& t, Treap t_1, Treap t_2)
    if t_1 = NULL \&\& t_2 \neq NULL
           t \leftarrow t_2
     else if t_2 = NULL \&\& t_1 \neq NULL
 4
                 t \leftarrow t_1
     else if priority[t_1] > priority[t_2]
                 Merge(right[t_1], right[t_1], t_2)
 6
 7
                 t \leftarrow t_1
 8
           else
 9
                 Merge(left[t_2], t_1, left[t_2])
10
                 t \leftarrow t_2
```

Вставка через разбиение и слияние

► Алгоритм №1:

- разбиваем дерево по ключу вставляемого элемента k на два новых T_1 и T_2 ;
- выполняем слияние T_1 и дерева из одного вставляемого элемента < k, p>;
- ightharpoonup выполняем слияние результата с деревом T_2 .

► Алгоритм №2:

- спускаемся по дереву как при поиске, ищем либо NULL, либо элемент, приоритет которого меньше, чем у вставляемого элемента;
- ь выполняем разбиение найденного поддерева по ключу вставляемого элемента k на два новых T_1 и T_2 ;
- lacktriangledown < k,p> вставляем как корень вместо найденного дерева, T_1 и T_2 его левое и правое поддеревья соответственно.

Удаление через разбиение и слияние

► Алгоритм №1:

- разбиваем дерево по ключу удаляемого элемента k на два новых T_1 и T_2 ;
- разбиваем T_1 на T_1' и T_2' , чтобы во втором дереве оказались все элементы с ключом k;
- lacktriangle выполняем слияние T_1' с T_2 .

► Алгоритм №2:

- спускаемся по дереву как при поиске, ищем элемент с нужным ключом;
- выполняем слияние его левого и правого поддеревьев;
- вставляем получившееся дерево вместо найденного с корнем k.

Декартовы деревья

Декартовы деревья

Определение Основные операции

Анализ времени работы

Неявные декартовы деревья

Сложность доступа к случайному элементу

Дано декартово дерево, с элементами $x_1...x_n$, такими что $x_i.key < x_{i+1}.key$, а все его приоритеты различны

Лемма

 x_i является предком x_j тогда и только тогда, когда x_i имеет наибольший приоритет среди всех $x_{i...j}$

Доказательство.

- если приоритет x_i наибольший, он либо предок x_j , либо у них есть общий предок, который лежит в множестве $x_{i+1...j}$, то есть у этого элемента больший приоритет, чем у x_i противоречие;
- если x_i предок x_j , то предположим, что есть элемент x_k , $k \in [i+1;j-1]$, приоритет которого больше, тогда либо x_i и x_j лежат по разные стороны от него (противоречие), либо по одну, но тогда нарушается условие возрастания ключей, значит приоритет x_i наибольший.

Сложность доступа к случайному элементу

- ightharpoonup D(x) глубина узла x, количество узлов от x до корня
- $A_{ij} = I\{x_i \text{ is ancestor of } x_j\}$
- $D(x_l) = \sum_{i=1}^n A_{i,l}$
- $\blacktriangleright E(D(x_l)) = \sum_{i=1}^n E(A_{i,l}) = \sum_{i=1}^n Pr(x_i \text{ is ancestor } x_l)$
- Вероятность того, что x_i предок x_j при равномерном распределении приоритеров:

$$E(A_{i,j}) = \frac{1}{|i-j|+1}$$

▶ Учитывая, что $\sum_{i=1}^{n} \frac{1}{i} \le \ln(n) + 1$:

$$E(D(x_l)) = \sum_{i=1}^{n} E(A_{i_l}) \le \ln(l) + \ln(n-l) + 2$$

▶ То есть: $E(D(x_l)) = O(\log(n))$

Декартовы деревья

Определение Основные операции Анализ времени работы

Неявные декартовы деревья

Определение и применение

- Простая модификация обычных декартовых деревьев: неявным ключом будет индекс текущего элемента в массиве, построенном по отсортированным элементам
- ▶ Что можно сделать за $O(\log n)$:
 - вставка в массив на любую позицию;
 - удаление произольного элемента;
 - сумма/минимум/максимум/... на произвольном подотрезке.

Детали

- ightharpoonup Если хранить сам порядковый номер, то придется пересчитывать O(n) элементов каждый раз
- Будем хранить количество элементов в поддереве, тогда порядковый номер – количество детей в левом поддереве + количество детей в левых поддеревьях для предков текущего элемента, у которых он в правом поддереве
- Merge не изменяется (не использует информацию о ключах), нужно только обновлять число элементов в поддеревьях
- Split делит не по ключу, а по порядковому номеру (индексу) элемента: если номер корня меньше, чем нужный нам индекс, то вызываем рекурсивно для правого поддерева, уменьшив индекс на порядковый номер корня, иначе – рекурсивный вызов для левого поддерева