Лабораторная работа № 8. Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

8.1. Цель работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом 1 .

8.2. Указание к работе

Исходные данные.

Две телеграммы Центра:

 P_1 = НаВашисходящийот1204

 P_2 = всеверный филиал Банка

Ключ Центра длиной 20 байт:

K = 05 OC 17 7F OE 4E 37 D2 94 10 09 2E 22 57 FF C8 OB B2 70 54

Режим шифрования однократного гаммирования одним ключом двух видов открытого текста реализуется в соответствии со схемой, приведённой на рис. 8.1.

Шифротексты обеих телеграмм можно получить по формулам режима однократного гаммирования:

$$C_1 = P_1 \oplus K,$$

$$C_2 = P_2 \oplus K.$$
(8.1)

Открытый текст можно найти в соответствии с (8.1), зная шифротекст двух телеграмм, зашифрованных одним ключом. Для это оба равенства (8.1)

Рис. 8.1. Общая схема шифрования двух различных текстов одним ключом

¹При составлении работы использовалось пособие [1].

складываются по модулю 2. Тогда с учётом свойства операции XOR

$$1 \oplus 1 = 0, \quad 1 \oplus 0 = 1$$
 (8.2)

получаем:

$$C_1 \oplus C_2 = P_1 \oplus K \oplus P_2 \oplus K = P_1 \oplus P_2.$$

Предположим, что одна из телеграмм является шаблоном — т.е. имеет текст фиксированный формат, в который вписываются значения полей. Допустим, что злоумышленнику этот формат известен. Тогда он получает достаточно много пар $C_1 \oplus C_2$ (известен вид обеих шифровок). Тогда зная P_1 и учитывая (8.2), имеем:

$$C_1 \oplus C_2 \oplus P_1 = P_1 \oplus P_2 \oplus P_1 = P_2.$$
 (8.3)

Таким образом, злоумышленник получает возможность определить те символы сообщения P_2 , которые находятся на позициях известного шаблона сообщения P_1 . В соответствии с логикой сообщения P_2 , злоумышленник имеет реальный шанс узнать ещё некоторое количество символов сообщения P_2 . Затем вновь используется (8.3) с подстановкой вместо P_1 полученных на предыдущем шаге новых символов сообщения P_2 . И так далее. Действуя подобным образом, злоумышленник даже если не прочитает оба сообщения, то значительно уменьшит пространство их поиска.

8.3. Порядок выполнения работы

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P_1 и P_2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C_1 и C_2 обоих текстов P_1 и P_2 при известном ключе ; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

8.4. Содержание отчёта

Отчёт должен включать:

- 1. титульный лист;
- 2. формулировку цели работы;
- 3. описание процесса выполнения задания. Для каждого действия, производимого в командной строке, в отчёт следует включить:
 - краткое описание действия;
 - вводимая команда или команды;
 - результаты выполнения команд (снимок экрана);

4. выводы, согласованные с целью работы.

8.5. Контрольные вопросы

- 1. Как, зная один из текстов (P_1 или P_2), определить другой, не зная при этом ключа?
- 2. Что будет при повторном использовании ключа при шифровании текста?
- 3. Как реализуется режим шифрования однократного гаммирования одним ключом двух открытых текстов?
- 4. Перечислите недостатки шифрования одним ключом двух открытых текстов.
- 5. Перечислите преимущества шифрования одним ключом двух открытых текстов.