数理统计复习自测题

一、单项选择题

1、设总体 $X \sim N(\mu, \sigma^2)$, μ 未知, 而 σ^2 已知, (X_1, X_2, \dots, X_n) 为一样本,

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$, 则以下样本的函数为统计量的是

(A)
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$$
; (B) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2$; (C) $\frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}}$; (D) $\frac{\overline{X} - \mu}{\sqrt{S^2/n}}$.

2、设 (X_1,X_2,\cdots,X_n) 是取自总体 $N(0,\sigma^2)$ 的样本,则可作为 σ^2 无偏估计量的是

(A)
$$\frac{1}{n} \sum_{i=1}^{n} X_i$$
; (B) $\frac{1}{n-1} \sum_{i=1}^{n} X_i$; (C) $\frac{1}{n} \sum_{i=1}^{n} X_i^2$; (D) $\frac{1}{n-1} \sum_{i=1}^{n} X_i^2$.

3、设总体X的二阶矩存在, (X_1, X_2, \dots, X_n) 为一样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,

$$S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
,则 $E(X^2)$ 的矩估计为

(A)
$$\overline{X}$$
; (B) S_0^2 ; (C) $\frac{n}{n-1}S_0^2$; (D) $\frac{1}{n}\sum_{i=1}^n X_i^2$.

- **4、**设 $\hat{\boldsymbol{\theta}}$ 是未知参数 $\boldsymbol{\theta}$ 的一个估计量,若 $E(\hat{\boldsymbol{\theta}}) \neq \boldsymbol{\theta}$,则 $\hat{\boldsymbol{\theta}}$ 是 $\boldsymbol{\theta}$ 的
 - (A) 极大似然估计; (B) 矩估计; (C) 有效估计; (D) 有偏估计。
- 5、设随机变量 $X \sim N(0,1)$, 而 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$, 若 $P\{\big|X\big| < x\} = \alpha$, 则 $x = \alpha$

(A)
$$u_{\alpha/2}$$
; (B) $u_{1-\alpha/2}$; (C) $u_{1-2\alpha}$; (D) $u_{(1-\alpha)/2}$.

6、设总体 $X \sim N(\mu, \sigma^2)$, μ 及 σ^2 未知,若样本容量和样本值不变,则 μ 的双侧置信区间的长度 L 与置信度 $1-\alpha$ 的关系是

- (A) 当 $1-\alpha$ 减少时L增大; (B) 当 $1-\alpha$ 减少时L缩短;
- (C) 当 $\mathbf{1}$ - α 减少时L不变; (D) 以上三个选项都不对。

7、假设检验时,当样本容量一定,若缩小犯第一类错误的概率,则犯第二类错误的概率 概率

(A) 变小; (B) 变大; (C) 不变; (D) 不确定。

二、填空题

1、设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, \dots, X_n) 为一样本,则 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \underline{\hspace{1cm}}$

$$U = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \sim \underline{\hspace{1cm}}, \quad t = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} \sim \underline{\hspace{1cm}},$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \underline{\qquad}, \quad \chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \underline{\qquad}.$$

2、设总体X在 $(\theta,\theta+1)$ 上服从均匀分布, (X_1,X_2,\cdots,X_n) 为一样本,

- 5、在假设检验中,显著性水平 α 的不同会导致不同的判断结果,显著性水平 α 是用来控制犯第____类错误的概率。

采用的统计量是_______, $H_{\mathbf{0}}$ 的拒绝域为______。

7、在检验假设 H_0 的过程中,若检验结果是接受 H_0 ,则可能犯第____类错误;若检验结果是否定 H_0 ,则可能犯第____类错误。

三、计算及证明题

- 1、设总体 $X \sim N(1,4)$, X_1, X_2, X_3 是X的样本,试求 $E(X_1^2 X_2^2 X_3^2)$, $D(X_1 X_2 X_3)$ 。
- **2、**设总体 X 服从方差为 **4** 的正态分布, (X_1, X_2, \cdots, X_n) 是一样本,求 n 使样本均值与总体均值之差的绝对值不超过 **0.1** 的概率不小于 **0.95**。

- 3、设总体 $X \sim N(4,4)$, (X_1,X_2,\cdots,X_{10}) 为 X 的简单随机样本, $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$ 为样本均值, $S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X}^-)^2$ 为样本方差,
 - (1) 求 $P{S > 2.908}$; (2) 若S = 2.5, 求 $P{\overline{X} > 6.569}$ 。
- **4、**设总体 X 的概率密度 $f(x,\theta) =$ $\begin{cases} \theta \cdot x^{\theta-1}, \ 0 < x < 1, \\ 0, \ \textbf{其它.} \end{cases}$ (x_1,x_2,\cdots,x_n) 为一样本,试求 θ 的矩估计及最大似然估计。
- 5、设总体 $X \sim N(0,\sigma^2)$, (x_1,x_2,\cdots,x_n) 为一样本, 试求 σ^2 的最大似然估计。
- 6、设 $\hat{\theta}_1$, $\hat{\theta}_2$ 都是 θ 的无偏估计量,且 $\hat{\theta}_1$, $\hat{\theta}_2$ 相互独立, $D(\hat{\theta}_1) = 2D(\hat{\theta}_2)$,求常数 C_1 , C_2 使 $\hat{\theta} = C_1\hat{\theta}_1 + C_2\hat{\theta}_2$ 为 θ 的无偏估计,并使 $D(\hat{\theta})$ 达到最小。
- **7、** 从一批产品中随机地抽取 **40** 件进行检验,发现有 **3** 件废品,试用最大似然估计法估计该批产品的废品率。
- 8、设在正常条件下某种纤维的纤度服从正态分布, 现从一批成品中抽取 10 根测得 纤度为: 1.47, 1.42, 1.36, 1.53, 1.39, 1.43, 1.37, 1.44, 1.30, 1.45
- 求① 均值 μ 的置信度为 0.95 的置信区间;② 方差 σ^2 的置信度为 0.95 的置信区间。
- 9、设机床生产的某种零件的尺寸(mm)服从正态分布,规定零件的标准长度为 32.50,标准差为 1.1; 现从某日生产的零件中抽取 6 件, 测得尺寸为:

32.56, 29.66, 31.64, 30.00, 31.87, 31.03

问:该日机床的工作是否正常?($\alpha = 0.01$)