

Поведенческое ранжирование 2

Владимир Гулин

7 апреля 2018 г.

План лекции

Напоминание

Click Models

Поведенческие факторы

Сглаживание поведенческих данных

Базовые кликовые модели: выводы

- ► CTR model: подсчет кликов
- ▶ Position-based model: просмотры и привлекательность документа
- Cascade model: имеют значения предыдущие просмотры и клики
- Dynamic Bayesian Network model: удовлетворяемость документом
- ▶ User browsing model: ранки кликнутых документов

Click models

Click model	$P(C_u = 1)$	$P(C_u = 1 \mid \mathbf{C}_{\leq r_u})$
RCM	ρ	ρ
RCTR	ρ_{r_u}	ρ_{r_u}
DCTR	ρ_{uq}	ρ_{uq}
PBM	$\alpha_{uq}\gamma_{r_u}$	$\alpha_{uq}\gamma_{r_u}$
CM	$\alpha_{uq}\epsilon_{r_u},$ where $\epsilon_{r+1}=\epsilon_r(1-\alpha_{u_rq})$	$\alpha_{uq}\epsilon_{r_u},$ where $\epsilon_r = \begin{cases} 1 & \text{if no clicks before } r \\ 0 & \text{otherwise} \end{cases}$
UBM	$\begin{array}{l} \sum_{j=0}^{r_u-1} P(C_j=1) \left(\prod_{k=j+1}^{r_u-1} (1-\alpha_{u_k q} \gamma_{kj}) \right) \alpha_{uq} \gamma_{r_u j}, \\ \text{where } P(C_0=1)=1 \end{array}$	$\alpha_{uq}\gamma_{rr'}$
DCM	$\begin{split} &\alpha_{uq}\epsilon_{r_u}, \text{where} \\ &\epsilon_{r+1}=\epsilon_r\left(\alpha_{u_rq}\lambda_{r_u}+(1-\alpha_{u_rq})\right) \end{split}$	$\alpha_{uq}\epsilon_{r_u}$, where $\epsilon_{r+1} = c_r^{(s)}\lambda_r + \left(1 - c_r^{(s)}\right) \frac{(1 - \alpha_{u_rq})\epsilon_r}{1 - \alpha_{u_rq}\epsilon_r}$
CCM	$\alpha_{uq}\epsilon_{r_u}$, where	$\alpha_{uq}\epsilon_{r_u}$, where
	$\epsilon_{r+1} = \epsilon_r \left(\alpha_{u_rq} ((1-\alpha_{u_rq})\tau_2 + \alpha_{u_rq}\tau_3) + (1-\alpha_{u_rq})\tau_1\right)$	
		$\left(1 - c_r^{(s)}\right) \frac{(1 - \alpha_{urg})\epsilon_r \tau_1}{1 - \alpha_{urg}\epsilon_r}$
DBN	$\alpha_{uq}\epsilon_{r_u}$, where	$\alpha_{uq}\epsilon_{r_u}$, where
	$\epsilon_{r+1} = \epsilon_r \gamma (\alpha_{u_rq} (1 - \sigma_{u_rq}) + (1 - \alpha_{u_rq}))$	$\epsilon_{r+1} = c_r^{(s)} \gamma (1 - \sigma_{u_r q}) + \left(1 - c_r^{(s)}\right) \frac{(1 - \alpha_{u_r q})\epsilon_r \gamma}{1 - \alpha_{u_r q}\epsilon_r}$
SDBN	Same as DBN with $\gamma = 1$	Same as DBN with $\gamma = 1$

PGM-based click models

- Основаны на фреймворке probabilistic graphical model (PGM)
- Структура соответствующей PGM должна задаваться вручную

Альтернативный фреймворк

Выучиваем паттерны пользовательского поведения непосредственно из кликовых данных

Disributed representations $(\mathbf{s}_0, \mathbf{s}_1, \mathbf{s}_2, \ldots)$

Моделируем пользовательское поведение в виде последовательности состояний, представленных векторами $(\mathbf{s}_0,\mathbf{s}_1,\mathbf{s}_2,\ldots)$, которые описывают информационную потребность пользователя и получаемую информацию в процессе поиска.

Описание модели

q – user query d_r – document at rank r

 i_r – user interaction with document at rank r

$$P(C_{r+1} = 1 \mid q, i_1, \dots, i_r, d_1, \dots, d_{r+1}) = \mathcal{F}(\mathbf{s}_{r+1})$$

Neural click modeling framework

Representations of q, d_r and i_r

 Используем 3 набора представлений: QD, QD+Q, QD+Q+D

Parametrization of \mathcal{I}, \mathcal{U} and \mathcal{F}

- I Feed-forward neural network
- U Recurrent neural network (RNN, LSTM)
- F Feed-forward neural network (with one output and sigmoid activation)

Training

Stochastic gradient descent (AdaDelta + gradient clipping)

Experimantal setup

Dataset

➤ Yandex relevance prediction dataset (WSCD 2012) (146,278,823 query sessions)

Evaluation

- Click prediction (log-likelihood, perplexity)
- Ranking (NDCG)

Baselines

▶ DBN, DCM, CCM, UBM

Evaluation

Likelihood

$$\mathcal{LL}(M) = \frac{1}{|S|} \sum_{s \in S} log P_M(C_1 = c_1^{(s)}, \dots, C_n = c_n^{(s)})$$

- $ightharpoonup C_r$ случайная бинарная величина, означающая клик по позиции r
- $ightharpoonup c_r^{(s)}$ наблюдаемый клик по позиции r в поисковой сессии s
- $ightharpoonup P(\mathit{C}_r = \mathit{c}_r^{(s)})$ вероятность пронаблюдать $\mathit{c}_r^{(s)}$ в сессии s
- $P_M(C_1 = c_1^{(s)}, \dots, C_n = c_n^{(s)})$ вероятность пронаблюдать серию $c_1^{(s)}, \dots, c_n^{(s)}$ в сессии s.

Evaluation

Perplexity

Perplexity измеряет на сколько хорошо модель оценивает вероятность клика по кокнретной позиции

$$p_r(M) = 2^{-\frac{1}{5}\sum_{s \in S}(log_2 P_M(C_r^{(s)} = c_r^{(s)}))}$$
$$p_r(M) \in [1...2]$$

Ранжирование

$$DCG = \sum_{i=1}^{n} \frac{2^{rel_i} - 1}{log_2(i+1)}$$

Click prediction

Click model	Perplexity	Log-likelihood	
DBN	1.3510	-0.2824	
DCM	1.3627	-0.3613	
CCM	1.3692	-0.3560	
UBM	1.3431	-0.2646	
NCM ^{RNN}	1.3379	-0.2564	
NCM ^{LSTM}	1.3362	-0.2547	
NCM_{QD+Q}^{LSTM}	1.3355	-0.2545	
NCM _{QD+Q+D}	1.3318	-0.2526	

Ranking

	NDCG				
Click model	@1	@3	@5	@10	
DBN	0.717	0.725	0.764	0.833	
DCM	0.736	0.746	0.780	0.844	
CCM	0.741	0.752	0.785	0.846	
UBM	0.724	0.737	0.773	0.838	
NCM ^{RNN}	0.762	0.759	0.791	0.851	
NCM ^{LSTM}	0.756	0.759	0.789	0.850	
NCM^{LSTM}_{QD+Q}	0.775	0.773	0.799	0.857	
NCM_{QD+Q+D}^{LSTM}	0.755	0.755	0.787	0.847	

Анализ

Two-dimensional t-SNE projections of vector states s_r for different ranks r. Colors correspond to ranks: black 0; purple 1; dark blue 2; light blue 3; light blue-green 4; green 5; light green 6; yellow 7; orange 8; red 9; grey 10.

Поведенческие факторы

BrowseRank

Идентификация сессии

Событие:

- Cookie
- timestamp
- URL
- referral URL
- attribute

События объединяются в сессию:

- 1. По пользователю
- 2. referral URL(i) = URL(i 1)
- 3. Время неактивности не должно превышать порог (30 мин.)

Характеристики сессий

- ▶ Среднее число событий в сессии: 9.1
- ▶ Средняя продолжительность сессии: 420.3 с
- Среднее число сессий на пользователя в день: 15.5
- ▶ Процент поисковых сессий: 4.85%

Local ClickRank

Опредилим local ClickRank как функцию

$$ClickRank(p_i, s_j) = \sum_{p_i \in s_j} w_r(i, s_j) w_t(p, s_j) I(p = p_i)$$

- ▶ The weight function $w_r(i, s_j)$ is computed from the rank of the page visit event p_i in session s_i
- ▶ The weight function $w_t(p, s_j)$ is computed from temporal information associated with browsing of the page p_i
- I индикатор функция

ClickRank учитывает порядок кликов

Определим функцию взвешивания $w_r(i,s_j)$ для события i на позиции r(i) в сессии s_j с общам числом событий n_j как

$$w_r(i, s_j) = \frac{2(n_j + 1 - r(i))}{n_j(n_j + 1)}$$

где $r(i) \in \{1,\ldots,n_j\}$

- $ightharpoonup w_r(i,s_i)$ монотонно обывающая функция по r(i)
- $w_r(i-1,s_j) w_r(i,s_j) = w_r(i,s_j) w_r(i+1,s_j)$
- $\sum_{i=1}^{n_j} w_r(i,s_j) = 1$

ClickRank учитывает время

Определим функцию взвешивания $w_t(p,s)$ с учетом временной информации

$$w_t(p,s) = (1-e^{-\lambda_1 t_d})e^{-\lambda_2 t_l}I(t(p) \in \mathcal{T})$$

где t_d и t_l это нормализованный dwelltime и время загрузки страницы

Индикатор функция $I(t(p) \in \mathcal{T})$ определяющая интересующий временной интервал

Global ClickRank

Имея набор сессий $S=(s_1,\ldots,s_k)$, global ClickRank может быть вычислен из local ClickRank функций путем агрегации

$$ClickRank(p, S) = AGGR_{s \in S}[ClickRank(p, s)]$$

Замечание:

При этом в качестве функции агрегации можно использовать помимо суммы, среднего еще и фильтрацию (например по времени или соц. дему)

Применение в поиске

Данные

3.3 миллиарда веб сессий извлеченных из Yahoo! тулбара за 6 месяцев 2008

Site ranking

$$ClickRank(w, S) = \sum_{p \in w} ClickRank(p, S)$$

Page ranking

Использование в качестве дополнительного фактора в ранжировании

Site Ranking

Rank	PageRank	BrowseRank	ClickRank
1	adobe.com	myspace.com	yahoo.com
2	wordpress.com	msn.com	google.com
3	w3.org	yahoo.com	myspace.com
4	miibeian.gov.cn	youtube.com	live.com
5	statcounter.com	live.com	youtube.com
6	phpbb.com	facebook.com	facebook.com
7	baidu.com	google.com	msn.com
8	php.net	ebay.com	friendster.com
9	microsoft.com	hi5.com	pogo.com
10	mysql.com	bebo.com	aol.com
11	mapquest.com	orkut.com	microsoft.com
12	cnn.com	aol.com	wikipedia.org
13	google.com	friendster.com	ebay.com
14	blogger.com	craigslist.org	craigslist.org
15	paypal.com	google.co.th	hi5.com
16	macromedia.com	microsoft.com	go.com
17	jalbum.net	comcast.net	ask.com
18	nytimes.com	wikipedia.org	google.co.th
19	simplemachines.org	pogo.com	comcast.net
20	yahoo.com	photobucket.com	orkut.com

Top Ranked sites with different algorithms

Вклад в ранжирование

Query		Affected	Improvements in				Significance test
length		queries	DCG(1)	DCG(5)	DCG(10)	NDCG	p-value
1	1484	1232	0.45%	0.71%	1.00%	0.38%	5.33×10^{-2}
2	2992	2450	0.56%	0.99%	1.12%	1.07%	4.65 × 10 ⁻⁴
3	2153	1722	1.62%	1.08%	1.41%	2.18%	1.10×10^{-4}
4+	2412	1937	0.92%	0.86%	0.78%	1.43%	1.61 × 10 ⁻⁵
All	9041	7341	1.02%	0.97%	1.11%	1.33%	9.98 × 10 ⁻⁵

Сглаживание поведенческих данных

Query:[гдз по математике 6 класс забурева мордкович учебник]

гдз по математике	11158
гдз по математике 6 класс	11974
учебник зубарева мордкович 6 класс	169
учебник по математике зубарева	17
гдз зубарева мордкович 6 класс	2089
гдз 6 класс математика	6036

Сглаживание поведенческих данных

Идея:

Будем использовать двудольный граф: терм-документ

Heuristic Retrieval Model

$$\begin{aligned} w_{d_i,t_j} &= QTF_{i,j} \cdot IQF_j = \\ &= \frac{(\lambda+1)n(d_i,d_j)}{\lambda((1-\beta)+\beta\frac{n(d_i)}{\overline{n}(d_i)}+n(d_i,t_j))} \cdot log \, \frac{N_d-n(t_j)+0.5}{n(t_j)+0.5} \\ &n(d_i,t_j) = \sum_{q \rightsquigarrow d_i,t_j \in q} f(q \rightsquigarrow d_i) \end{aligned}$$

- ▶ $n(d_i)$ число термов, связанных с d_i
- $ightharpoonup ar{n}(d_i)$ среднее число термов, связанных с d_i
- $ightharpoonup n(t_j)$ число документов, связанных с t_j
- lacktriangle $\lambda = 0.5, \, eta = 0.75$ коэффициенты сглаживания
- ▶ N_d число документов

Heuristic Retrieval Model

Для нового запроса
$$\hat{q}=\{\hat{t}_1,\dots,\hat{t}_k\}$$
: $Rel_H(d_i,\hat{q})=\sum_{\hat{t}_j\in\hat{q}}w_{d_i,\hat{t}_j}\cdot w_{\hat{t}_j}$ $w_{\hat{t}_j}=\log \frac{N_q-n(\hat{t}_j)+0.5}{n(\hat{t}_j)+0.5}$

- $ightharpoonup n(t_j)$ число документов, связанных с t_j
- $ightharpoonup N_q$ общее число запросов

Probabilistic Retrieval Model

$$Rel_{P}(d_{i},\hat{q}) = p(d_{i}|\hat{q}) = \sum_{\hat{t}_{j} \in \hat{q}} p(\hat{t}_{j}|\hat{q})p(d_{i}|\hat{t}_{j})$$

$$p(\hat{t}_{j}|\hat{q}) = \frac{\exp(-p(\hat{t}_{j}))}{\sum_{\hat{t}_{l} \in \hat{q}} \exp(-p(\hat{t}_{l}))} = \frac{\exp(-\frac{n(\hat{t}_{j}) + \mu}{\sum_{\hat{t}_{l} \in \hat{q}} \exp(-\frac{n(\hat{t}_{l}) + \mu}{\sum_{\hat{t}_{l} \in \hat{q}} \exp(-\frac{n(\hat{t}_{l}) + \mu}{\sum_{\hat{t}_{s} \in D} n(\hat{t}_{s}) + \mu})}$$

$$p(d_{i}|\hat{t}_{j}) = \frac{n(d_{i}, \hat{t}_{j})}{\sum_{d_{l} \in D} n(d_{l}, \hat{t}_{j})}$$

$$n(d_{i}, \hat{t}_{j}) = \sum_{q_{i} \in S} f(q_{i} \rightsquigarrow d_{i})$$

Random-Walk Extension

$$ReI_{P+RW}(d_i,\hat{q}) =$$

$$= \sum_{\hat{t}_j \in \hat{q}} p(\hat{t}_j | \hat{q}) \left(\alpha p(d_i, \hat{t}_j) + (1 - \alpha) \sum_{\hat{t}_l \in \hat{q}, d_j} p(d_j, \hat{t}_j) p(\hat{t}_l, d_j) p(d_i, \hat{t}_l) \right)$$

Сравнение алгоритмов сглаживания

Collaborative ranking

Figure 1: Query frequency with respect to the number of distinct queries

Figure 2: Query length with respect to different levels of query frequency

Collaborative ranking

$$f(q,d) = h(q,d) + \frac{1}{|S_q|} \sum_{q' \in S_q} s(q,q')h(q',d)$$
$$f(q,d) = h(x_{qd}) + \frac{1}{|S_q|} \sum_{q' \in S_q} s(x_{qq'})h(x_{q'd})$$

- ightharpoonup s(q,q') функция похожести между запросами
- lacktriangledown h(q,d) скоринг функция по одному запросу
- $ightharpoonup S_q$ множесто "похожих" на запрос q запросов
- $ightharpoonup x_{qd}$ множество факторов, описывающих пару (q,d)
- $ightharpoonup x_{qq'}$ множество факторов, описывающих пару (q,q')

Collaborative ranking

Pointwise

$$\begin{aligned} \min_{h,s} \mathcal{R}_{reg}(f) &= \sum_{q,d} (y_{qd} - f(q,d))^2 \\ \mathcal{R}_{reg}(h,s) &= \sum_{q,d} \left(y_{qd} - h(x_{qd}) - \frac{1}{|S_q|} \sum_{q' \in S_q} s(x_{qq'}) h(x_{q'd}) \right)^2 \end{aligned}$$

Pairwise

$$L(f(x_{qd}), f(x_{qd'})) = \max(0, f(x_{qd'}) - f(x_{qd}) + \tau)^2$$

Alternating Minimization

lacktriangle Имея $s(x_{qq'})$, можем оптимизировать $\mathcal{R}_{reg}(h,s)$ по h

$$\min_{h \in \mathcal{H}_h} \sum_{q,d} \left(y_{qd} - h(x_{qd}) - \frac{1}{|S_q|} \sum_{q' \in S_q} s(x_{qq'}) h(x_{q'd}) \right)^2$$

lacktriangle Имея $h(x_{qd})$, можем оптимизировать $\mathcal{R}_{reg}(h,s)$ по s

$$\min_{h \in \mathcal{H}_s} \sum_{q,d} \left(y_{qd} - h(x_{qd}) - \frac{1}{|S_q|} \sum_{q' \in S_q} s(x_{qq'}) h(x_{q'd}) \right)^2$$

Сравнение алгоритмов

Figure 4: The performance comparisons of CollRank and four baseline methods

Вопросы

