

MANUAL DE INSTRUÇÕES

CONTROLADOR DE POTÊNCIA mod.: **P301**

Versão 1.01 / Revisão 8

Vendas: 11 4223-5140 vendas@contemp.com.br Al. Araguaia, 204 - Santa Maria São Caetano do Sul / SP - Brasil CEP 09560-580

www.contemp.com.br

Suporte Técnico:: 11 4223-5125

suporte.tecnico@contemp.com.br

SUMÁRIO

1. Introdução
2. Características
3. Itens inclusos na embalagem
4. Especificações
4.1. Sinal de Comando
4.2. Entrada Digital (bloquei externo)
4.3. Generalidades
4.4. Codificação
5. Instalação
5.1. Mecânica
5.1.1. Instalação do controlador P301
5.2. Elétrica
5.2.1. Ligação do comando
5.2.2. Ligação da potência
6. Painel de operação
7. Parametrização
7.1. Configuração
7.1.1. Seleção do sinal de comando
7.1.2. Seleção do tipo de acionamento
7.1.3. Configuração da partida suave
7.1.4. Bloqueio externo
7.1.5. Tratamento de falhas
7.1.6. Tensão de alimentação do comando
7.2. Início de operação
8. Manutenção
9 Garantia

1. INTRODUÇÃO

O controlador de potência P301 foi desenvolvido para controlar tensão em cargas resistivas trifásicas, com correntes entre 100 e 250 ampéres. Apoiado sobre um microcontrolador de 8 bits, o controlador proporciona recursos únicos: sinal de comando configurável, sinalização de falha, dois modos de acionamento, partida suave e entrada de bloqueio externo. Todas as funcionalidades são configuráveis via dip switch local. Montado sobre uma mecânica moderna e compacta, o controlador dispõe de sistema de refrigeração integrado (dissipadores + ventiladores) e barramentos de potência protegidos que garantem segurança no manuseio e instalação (compatível com a norma NR10). A CONTEMP é pioneira neste tipo de equipamento e busca o aperfeiçoamento contínuo para melhor atender as necessidades do mercado.

2. CARACTERÍSTICAS

- Sinal de comando configurável: V, mA ou potenciômetro.
- Controle de cargas resistivas trifásicas com correntes entre 100 e 250 ampéres.
- Sinalização de falha: alta temperatura.
- Dois tipos de acionamento: PWM ou SSR.
- Partida suave.
- Entrada de bloqueio externo.
- Sinalização de alimentação, acionamento, bloqueio externo e alta temperatura via leds.
- Barramentos de entrada e saída de potência protegidos, compatíveis com a norma NR10.
- Sistema de refrigeração integrado (dissipadores + ventiladores).

3. ITENS INCLUSOS NA EMBALAGEM

- 1 controlador de potência P301.
- 1 manual de instruções.
- 1 guia de instalação.

4. ESPECIFICAÇÕES

4.1. Sinal de Comando

Sinal	Sinal de Entrada	Escala	Exatidão @25°C	Impedância
Tensão	0a10Vdc, 0a5Vdc, 1a5Vdc	0 a 100,0%	0,2%	60ΚΩ
Tensão	3a32Vdc,(SSR)	0 ou 100,0%	-	60ΚΩ
Corrente	0a20mAdc, 4a20mAdc,	0 a 100,0%	0,5%	100Ω
Ohms	Potenciômetro	0 a 100,0%	-	-

Resolução: 10bits

Atualização da medição: 20 por segundo

Obs.: utilizar potenciômetro entre 10 K Ω e 100K Ω .

4.2. Entrada digital (Bloqueio Externo)

Tipo de entrada	Contato seco
Tempo de resposta	150ms
Isolação galvânica	500Vrms

4.3. Generalidades

Comando				
Tensão de alimentação 110/220VCA - 47 a 63Hz (selecionar na chave H-H interna)				
Consumo	Com um ventilador: 28VA Com dois ventiladores: 48VA Com três ventiladores: 68VA			
Isolação Dielétrica 1.500Vrms entre alimentação, entrada do sinal de comando, entrada digital. 500Vrms entre sinal de comando e entrada digital.				

Potência			
Tensão de rede	100 a 500VCA		
Frequência de rede	47 a 63Hz		
Corrente nominal	100, 150, 200, 250A		
Qtd. de fases controladas	2 ou 3		
Tipo de carga	Resistiva		
Circuito de potência	Tiristores (um por fase controlada)		
Potência dissipada	100A 2, 3 FC: 1W/ampere por fase. 150A 2FC: 1W/ampere por fase. 150A 3FC: 0.94W/ampere por fase. 200A/250A 2, 3 FC: 1.1W/ampere por fase.		
Refrigeração	Sistema de refrigeração integrado (dissipadores + ventiladores)		
Proteção contra transientes	Circuito Snubber integrado (um por tiristor)		
Isolação Dielétrica	500Vrms entre barramentos de entrada 500Vrms entre barramentos de saída 1.500Vrms entre barramentos de entrada/saída e o gabinete 1.500Vrms entre barramentos de entrada/saída e o comando		

Obs.: Barramentos de entrada e saída de potência são protegidos, compatíveis com a norma NR10.

Geral				
Temp. de armazenagem -25 a 70°C				
Temperatura de operação	Vide tabelas de DERATING em INSTALAÇÃO MECÂNICA			
Umidade rel. de operação	5 a 95% sem condensação			
Altitude Max. de operação	2000m			
Atmosfera	Não explosiva, não corrosiva, não condutiva			
Grau de proteção	IP00			
Material do gabinete	Aço carbono			
Material dos protetores de barramento	Policarbonato UL94 V-0			
	100A e 150A (2 e 3 FC): 6 Kg			
Peso aproximado	200A e 250A (2 FC) : 11 Kg			
	200A e 250A (3 FC) : 15 Kg			

4.4. Codificação

			4						
P	3	0	1	-	3			-	S

6 - Tensão de comando

3 110/220Vca

7 - Quantidade de fases controladas

Duas fases controladas
 Três fases controladas

8, 9, 10, 11 - Corrente nominal

0100	100A
0150	150A
0200	200A
0250	250A

13 - Versão do firmware

S Standard

Exemplo: Controlador P301 com três fases controladas, 250A: P301-330250-S

5. INSTALAÇÃO

5.1. Mecânica

5.1.1. Instalação do Controlador P301

- 1º Fixar quatro parafusos fenda M6x15mm no painel. Não é necessário o uso de arruelas.
- 2º Encaixar o controlador nos parafusos.
- 3º "Deslizar" o controlador nos parafusos pelo oblongo de fixação do gabinete.
- 4º Apertar os quatro parafusos.

Instruções gerais para instalação mecânica

Antes de manusear qualquer conexão ou ligação elétrica, certificar-se de que o controlador e a chave seccionadora estejam desenergizados. Sempre conferir as ligações elétricas antes de ligar o controlador.

 Na instalação do controlador, manter uma área livre de pelo menos 15cm acima e abaixo dos barramentos de entrada e saída. Nesta área, há fluxo de ar para refrigeração dos dissipadores.

 Para a devida climatização do painel elétrico no qual o controlador será instalado, consultar as curvas de DERATING a seguir.

IMPORTANTE: para potência dissipada pelo controlador, consultar item 4.3 Generalidades.

 Os controladores P301 não estão em conformidade com as normas que regularizam os equipamentos intrinsecamente seguros, assim, para instalação em áreas classificadas, garantir confinamento dos controladores em encapsulamento robusto contra explosão.

5.2. Elétrica

5.2.1. Ligação do comando

As conexões elétricas de comando compreendem a alimentação da placa eletrônica de comando e a ligação de todos os sinais elétricos de baixa potência sinalizados na figura a seguir.

Para as ligações, são disponibilizados conectores tipo plug-in que permitem uso de terminais ou condutores elétricos de até 4mm²(12AWG) para ligação da alimentação e de até 1,5mm²(16 AWG) para ligação do sinal de comando e entrada digital.

Instruções gerais para instalação elétrica do comando:

- Alimentar o comando através de rede própria para instrumentação, isenta de flutuações de tensão e interferências.
- Para ligar sinal de tensão, corrente ou potenciômetro na entrada do sinal de comando do controlador, utilizar condutores de cobre, preferencialmente trançados com cordoalha aterrada no ponto de origem do sinal. Canalizar estes condutores em eletrodutos aterrados, separados dos condutores de alimentação e potência.
- Para minimizar a suscetibilidade eletromagnética do controlador, utilizar filtros RC em paralelo às bobinas de contatores e solenoides.

5.2.2. Ligação da potência

As conexões elétricas de potência compreendem a ligação da rede elétrica na entrada de potência, e da carga a ser acionada na saída de potência.

Para conexão elétrica dos elementos que compõem o circuito de potência, o controlador P301 dispõe de terminais fixados com parafusos Allen M10 (P301 até 150A) ou Allen M12 (P301 acima de 150A), nos quais podem ser inseridos barramentos ou cabos.

FIXAÇÃO DE CABOS E BARRAMENTOS				
CONTROLADORES DE 100 E 150A				
Opções entre cabos e barramentos Fixação Recomendada Torque Recomendado				
1 cabo de 1,5 a 25mm²	Ponta do cabo com terminal anel tubular de 1 furo	15N.m		
1 cabo de 35 a 70mm², ou 2 cabos de 25 a 35mm²	Ponta de cabo sem terminal	15N.m		

CONTROLADORES DE 200 A 250A				
Opções entre cabos e barramentos Fixação Recomendada Torque Recomendad				
1 cabo de 1,5 a 70mm²	Ponta do cabo com terminal anel tubular de 1 furo	28N.m		
1 cabo de 95 a 185mm², ou 2 cabos de 50 a 95mm²	Ponta de cabo sem terminal	28N.m		
1 barramento	Largura até 25mm	28N.m		

Ligação da potência para controladores de duas fases controlada

Obs.:

- Nas cargas com ligação em estrela, não aterrar o ponto comum ou mesmo ligá-lo ao neutro.
- O controlador detecta automaticamente a sequência de fases (R, S, T).

Ligação da potência para controladores de três fases controladas

Obs.:

- Nas cargas com ligação em estrela, não aterrar o ponto comum ou mesmo ligá-lo ao neutro.
- O controlador detecta automaticamente a sequência de fases (R, S, T).

Instruções gerais para instalação elétrica da potência

Antes de manusear qualquer conexão ou ligação elétrica, certificar-se de que o controlador e a chave seccionadora estejam desenergizados. Sempre conferir as ligações elétricas antes de ligar o controlador.

Além das instruções a seguir elencadas, seguir a norma NBR 5410 para correta instalação elétrica de potência, e a norma NBR 247-3 para correta escolha do cabeamento.

- Instalar chave seccionadora na entrada do circuito de potência.
- Instalar fusíveis ultra-rápidos para proteção do controlador e contra sobrecorrente.

Segue tabela com modelos de fusíveis recomendados.

Sugestão de Fusíveis						
Corrente	Fusível Imáx(A)/ I2tmáx(A2s)	Sitor	I2t (A2s)	Bussmann	I2t (A2s)	
100A	100/10000	3NE8 721-1	4950	170M1567	4650	
150A	200/87000	3NE8 724-1	17000	170M1569	16000	
200A	200/87000	3NE8 725-1	30000	170M1570	28000	
250A	250/136000	3NE8 727-1	55000	170M1571	51500	

- Antes de manusear as conexões elétricas de potência, desligar o controlador P301, desligar a chave seccionadora e aguardar pelo menos cinco minutos para manuseio, pois existem elementos que armazenam energia e podem causar choques elétricos mesmo desligados. Nunca retirar a tampa do controlador quando este estiver ligado.
- Certificar-se do adequado aterramento do controlador.

Recomendações gerais para o adequado funcionamento elétrico

 Na compra do controlador, especificar a corrente nominal, pelo menos, 15% maior que a corrente máxima de trabalho. Esta prática previne o desarme do comando por sobre temperatura.

6. PAINEL DE OPERAÇÃO

O controlador P301 dispõe de quatro leds destinados ao monitoramento de variáveis de processo e estados de operação e um dip switch com quatro chaves para configuração de parâmetros e modo de funcionamento.

Led Power (Alimentação)	Indica quando o controlador está ligado.
Led Output (Acionamento)	Sinaliza o acionamento da carga.
Led Disable Output (Bloqueio Externo)	Indica quando o bloqueio externo está acionado.
Led Over Temperature (Alta Temperatura)	Sinaliza alarme de alta temperatura.

7. PARAMETRIZAÇÃO

O controlador de potência P301 possui um dip switch com quatro chaves para configuração de parâmetros e modo de funcionamento.

7.1. Configuração

Antes de ligar o comando, o controlador P301 deve ser configurado, ou seja, devem ser definidos o tipo de entrada a ser utilizado, o tipo de acionamento e o funcionamento da partida suave. A seguir estão as tabelas demonstrando como essa configuração deve ser feita.

Obs.: As alterações na configuração das chaves do dip switch somente terão efeito na energização do comando.

7.1.1. Seleção do sinal de comando

A posição das chaves 4, 3 e 2 do dip switch definem o sinal de comando a ser utilizado. Segue configuração na tabela a seguir.

Tipo de Entrada						
Sinal	Chave 4	Chave 3	Chave 2			
4 a 20mAdc	0FF	0FF	0FF			
0 a 20mAdc	0FF	0FF	ON			
0 a 10Vdc	0FF	ON	0FF			
0 a 5Vdc	0FF	ON	ON			
1 a 5Vdc	ON	0FF	0FF			
Potenciômetro	ON	0FF	ON			
SSR	ON	ON	0FF			

7.1.2. Seleção do tipo de acionamento

O tipo de acionamento é selecionado de acordo com o tipo de sinal de comando escolhido. O acionamento pode ser PWM ou SSR. Para os sinais de comando 4 a 20mAdc, 0 a 20mAdc, 0 a 10Vdc, 0 a 5Vdc, 1 a 5Vdc e Potenciômetro, o tipo de acionamento é PWM.

Acionamento PWM

Quando em PWM, o controlador P301 aciona os tiristores, controlando o número de ciclos de senóide da tensão de rede em que estes ficam ligados dentro de um tempo de ciclo fixo de 2 segundos, logo, a energia entregue à carga é proporcional ao tempo que os tiristores conduzem dentro do tempo de ciclo.

Pelo fato deste tipo de acionamento ter ciclos ligados e desligados, a leitura por amperímetros e/ou transformadores de corrente (TC) externos pode não apresentar valores médios corretos. Para medição desses valores, utilizar medidores com integradores internos.

Vantagens do PWM

 Reduzida geração de ruído na rede elétrica, uma vez que os tiristores são ligados no zero de tensão da rede elétrica e desligados no zero de corrente da carga (zero crossing).

Desvantagens do PWM

 Entrega n\u00e3o homog\u00e9nea de energia \u00e0 carga devido ao acionamento/desacionamento peri\u00f3dico dos tiristores.

Acionamento SSR

Quando em SSR, o controlador de potência P301 funciona como uma chave, ou seja, aciona os tiristores quando houver sinal na entrada de tensão. Vale ressaltar que os tiristores são acionados no zero de tensão da rede elétrica e desligados no zero de corrente da carga (zero crossing). O máximo atraso entre ligar a entrada e acionar os tiristores é de 50ms.

Nesse modo de acionamento, o controlador funciona apenas em 0% ou 100%. A modulação (controle) da potência deverá ser feita por um elemento externo.

Vantagens do SSR

- Reduzida geração de ruído na rede elétrica, uma vez que os tiristores são ligados no zero de tensão da rede elétrica e desligados no zero de corrente da carga (zero crossing).
- Acionamento instantâneo ao sinal de entrada (respeitando o zero de tensão da rede elétrica).

Desvantagens do SSR

 Entrega n\u00e3o homog\u00e3nea de energia \u00e3 carga devido ao acionamento/desacionamento peri\u00f3dico dos tiristores.

7.1.3. Configuração da partida suave

A partida suave é uma função útil quando a carga a ser acionada é sensível à variação térmica, necessitando, em determinadas situações, que a potência seja fornecida de modo gradativo.

O modo de funcionamento da partida suave é permanente, ou seja, a partida suave irá atuar a qualquer momento que o sinal de entrada tenha um acréscimo.

A taxa da partida suave é fixa em 100%/min. Isso significa que a saída leva um minuto para sair de 0% e chegar a 100%. Partindo de 50% para chegar a 100%, irá levar 30 segundos.

A partida suave pode ser ligada ou desligada pela chave 1 do dip switch de configuração.

Partida Suave				
Status	Chave 1			
Ligada	ON			
Desligada	0FF			

Obs.: Não alterar o status dessa chave com o controlador ligado.

Segue uma ilustração representando o comportamento de funcionamento da partida suave:

7.1.4. Bloqueio externo

A entrada de bloqueio externo tem a função de desligar o acionamento dos tiristores independente da condição de operação do controlador P301.

Quando essa entrada for acionada, seu respectivo led no painel frontal ficará aceso.

7.1.5. Tratamento de falhas

O controlador P301 possui detecção de alta temperatura, a qual é potencialmente prejudicial à integridade dos tiristores internos. Neste caso, quando detectada a falha, o controlador automaticamente desliga o acionamento dos tiristores a liga led ALTA TEMPERATURA no painel frontal.

Falhas Primárias	Condição Possíveis Causas	
Alta temperatura nos tiristores	Temperatura nos tiristores maior que 105 °C	 Problema no ventilador do controlador Temperatura de operação maior que 45 °C

7.1.6. Tensão de alimentação do comando

A tensão de alimentação do comando também deve ser configurada. Essa seleção é necessária para a correta operação da placa de comando, bem como dos ventiladores de refrigeração.

Para fazer essa configuração, desencaixar a tampa do controlador e selecionar a tensão de comando na chave 110/220V situada na parte inferior da tampa, conforme mostrado nas figuras a seguir:

Tensão de Alimentação do Comando

Obs.: A configuração incorreta dessa chave pode danificar o ventilador.

7.2. Início de operação

Ao ser ligado o comando, o controlador P301 entra no ciclo de inicialização. Neste, os leds de alimentação, acionamento, bloqueio externo e alta temperatura acendem sequencialmente. Após a inicialização, o led de alimentação acende sinalizando o correto funcionamento do controlador P301.

8. MANUTENÇÃO

Antes de manusear qualquer conexão ou ligação elétrica, certificar-se de que o controlador e a chave seccionadora estejam desenergizados. Sempre conferir as ligações elétricas antes de ligar o controlador.

O controlador P301 somente deve ser manuseado por pessoal devidamente qualificado e autorizado a trabalhar em ambiente de tensão industrial baixa.

Tensões acima de 600VRMS podem existir no controlador, mesmo quando desligado. Assegurar que as fontes de tensão estejam desligadas e desconectadas antes de realizar qualquer trabalho no controlador.

O dissipador de calor pode manter-se excessivamente quente, mesmo após o desligamento do controlador. Assegurar que o dissipador esteja devidamente resfriado antes de manusear o controlador.

Periodicamente devem ser executadas as seguintes ações:

- Apertar todos os parafusos dos conectores de comando e dos terminais de potência.
- Verificar os chicotes internos, trocando-os no caso de desgaste.
- Limpar o ventilador, sua grade de proteção e os dissipadores, a fim de melhorar a eficácia da refrigeração.
- Limpar a placa de comando e suas conexões.

Recomenda-se que o usuário possua um controlador reserva para processos críticos, os quais não possam ficar longos períodos sem funcionamento.

9. GARANTIA

O fabricante garante que os controladores P301 relacionados na Nota Fiscal de venda estão isentos de defeitos e cobertos por garantia de 12 meses, a contar da data de emissão da referida Nota Fiscal.

Ocorrendo defeito dentro do prazo da garantia, os controladores devem ser enviados a nossa fábrica, acompanhados de NF de remessa para conserto, onde serão reparados ou substituídos sem ônus, desde que comprovado o uso de acordo com as especificações técnicas contidas neste manual.

O que a garantia não cobre:

Despesas indiretas como: fretes, viagens e estadias.

O fabricante não assume nenhuma responsabilidade por qualquer tipo de perda, dano, acidente, ou lucro cessante decorrentes de falha ou defeito no controlador, tão somente se comprometendo a consertar ou repor os componentes defeituosos quando comprovado o uso dentro das especificações técnicas.

Perda da garantia

A perda de garantia se processará caso haja algum defeito no controlador e seja constatado que tal fato ocorreu devido à instalação elétrica inadequada e/ou o controlador ter sido utilizado em ambiente agressivo, modificado sem autorização, sofrido violação ou utilizado fora das especificações técnicas.

O fabricante reserva-se o direito de modificar qualquer informação contida neste manual sem aviso prévio.