• RMIT UNIVERSITY

1.1 Indices

This module introduces rules for multiplying and dividing expressions using index notation. For example how to simplify expressions like $4a^3b \times 3ab^5$ or $9a^3b^2c \div 3ab^5$. We do not consider fractional indices which are covered in a different module. The plural of index is indices.

$a^{m} \times a^{n} = a^{m+n}$ $a^{m} \div a^{n} = a^{m-n}$ $a^{0} = 1$ $(a^{m})^{n} = a^{mn}$ $a^{-n} = \frac{1}{a^{n}}$

Index Notation

Consider the following examples:

$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$

 $5^3 = 5 \times 5 \times 5 = 125$
 $2^7 = 2 \times 2 = 128$

In general:

$$a^n = \underbrace{a \times a \times a \times \ldots \times a}_{n \text{ factors}}$$

The letter n in a^n is referred to in one of three ways:

- 1. n is the index in a^n with a known as the base.
- 2. *n* is the exponent or power to which the base *a* is raised.
- 3. *n* is the logarithm, with *a* as the base. (see the Logarithms module)

When a number such as 125 is written in the form 5³ we say it is written as an exponential or in index notation. Multiplication and division of numbers or expressions written in index notation is achieved using **index laws**.

Index Laws

This section states and gives examples of universal index laws.

First Index Law

To multiply index expressions you add the indices. For example:

$$2^{3} \times 2^{2} = (2 \times 2 \times 2) \times (2 \times 2)$$
$$= 2 \times 2 \times 2 \times 2 \times 2$$
$$= 2^{5}$$

Therefore $2^3 \times 2^2 = 2^{3+2} = 2^5$. In general:

First Index Law:

$$a^m \times a^n = a^{m+n}$$

Second Index Law

To divide expressions subtract the indices. For example:

$$3^{5} \div 3^{3} = \frac{3^{5}}{3^{3}}$$

$$= \frac{3 \times 3 \times 3 \times 3 \times 3}{3 \times 3 \times 3}$$

$$= \frac{3 \times 3}{1} \quad \text{cancelling three lots of } 3$$

$$= 3^{2}$$

Therefore $3^5 \div 3^3 = \frac{3^5}{3^3} = 3^{5-3} = 3^2$. In general:

Second Index Law:

$$a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}, \quad a \neq 0$$

Note that expressions in index form can only be multiplied or divided if they have the same base.

Third Index Law

To raise an expression in index form to a power, multiply the indices. For example:

$$(52)3 = 52 × 52 × 52$$

$$= 52+2+2 using the first index law$$

$$= 56$$

Therefore $\left(5^2\right)^3=5^{2\times 3}=5^6.$ In general:

Third Index Law:

$$(a^m)^n = a^{m \times n}$$

This also leads to the expression:

$$(a^m b^p)^n = a^{mn} b^{pn}$$

Be careful as this is true for multiplication and division only , not addition or subtraction , so that $(a+b)^n \neq a^n + b^n$

Examples of Index Laws

1. Simplify $x^5 \times x^6$. Solution:

$$x^5 \times x^6 = x^{5+6}$$
 by the first law $= x^{11}$

2. Simplify $a^5 \div a^3$. Solution:

$$a^5 \div a^3 = \frac{a^5}{a^3} = a^{5-3}$$
 by the second law $= a^2$

3. Simplify $(c^3)^4$. Solution:

$$\left(c^3\right)^4 = c^{3\times4}$$
 by the third law $= c^{12}$

4. Simplify $(2x^2)^3$. Solution:

$$(2x^2)^3 = 2^3 (x^2)^3$$

$$= 8x^{2\times 3}$$
 by the third law
$$= 8x^6$$

Note that terms with different bases must be considered seperately when using the index laws , such as $(2a^3b^2)^4=2^4a^{12}b^8$

Exercise 1 provides practice for these laws.

Zero Index

So far we have only considered expressions in which each index is a positive whole number¹. The index laws also apply if the index is zero, negative or a fraction (fractional indices will be dealt with in another module).

¹ Whole numbers are called integers and positive whole numbers are called the positive integers.

Consider $2^3 \div 2^3 = \frac{2^3}{2^3} = \frac{2 \times 2 \times 2}{2 \times 2 \times 2} = \frac{8}{8} = 8 \div 8 = 1$. Using the second law, $2^3 \div 2^3 = 2^{3-3} = 2^0$

therefore $1 = 2^0$. In general any expression with a zero index is equal to 1. Also note that 0^0 is ambiguous and so we don't allow a = 0 in this law.

Zero law of indices:

$$a^0=1, \qquad a\neq 0$$

Examples of the Zero Index Law

$$7^0 = 1$$
 $(xy)^0 = 1$ $\left(\frac{1}{2}\right)^0 = 1$ $(28x^2)^0 = 1$

Negative Indices

Consider $2^0 \div 2^4$.

$$2^{0} \div 2^{4} = \frac{2^{0}}{2^{4}}$$
 remember that $2^{0} = 1$
= $\frac{1}{2^{4}}$.

But

$$2^0 \div 2^4 = 2^{0-4}$$
 using the second law $= 2^{-4}$.

So
$$2^0 \div 2^4 = 2^{-4}$$
 and $2^0 \div 2^4 = \frac{1}{2^4}$ therefore $2^{-4} = \frac{1}{2^4}$. In general²,

$$a^{-n} = \frac{1}{a^n}$$
 which also leads to $\frac{1}{a^{-n}} = a^n$, $a \neq 0$

² Note that 1/0 is undefined and so $a \neq 0$ in the law below.

Examples of Negative Indices

1.
$$2^{-3} = \frac{1}{5}$$

2.
$$\frac{1}{r} = x^{-1}$$

1.
$$2^{-3} = \frac{1}{8}$$
 2. $\frac{1}{x} = x^{-1}$ 3. $2y^{-1} = \frac{2}{y}$

4.
$$\frac{1}{3x^{-2}} = \frac{x^2}{3}$$

4.
$$\frac{1}{3x^{-2}} = \frac{x^2}{3}$$
 5. $\frac{1}{(-2a)^{-3}} = (-2a)^3$ 6. $5ab^{-4} = \frac{5a}{b^4}$

6.
$$5ab^{-4} = \frac{5a}{b^4}$$

Exercise 2 provides practice on zero and negative indices.

Summary of Index Laws

The following laws should be remembered.

Summary of Index Laws

$$1. \quad a^m \times a^n = a^{m+n}$$

$$2. \quad a^m \div a^n = a^{m-n} \ , \qquad a \neq 0$$

3.
$$(a^m)^n = a^{mn}$$

4.
$$a^0 = 1$$
, $a \neq 0$

5.
$$a^{-n} = \frac{1}{a^n}$$
, $a \neq 0$

Combing of Index Laws

Index laws may be used to simplify complex expressions.

Examples

1. Simplify $(4a^2b)^3 \div b^2$. Solution:

$$(4a^2b)^3 \div b^2 = (4^3a^6b^3) \div b^2 \quad \text{using law 3}$$

$$= 4^3a^6b^1 \quad \text{using law 2}$$

$$= 4^3a^6b$$

$$= 64a^6b$$

2. Simplify $\left(\frac{3a^3b}{c^2}\right)^2 \div \left(\frac{ab}{3c^{-2}}\right)^{-3}$ Solution:

remember that $a \div \frac{b}{c} = a \times \frac{c}{b}$

$$\left(\frac{3a^3b}{c^2}\right)^2 \div \left(\frac{ab}{3c^{-2}}\right)^{-3} = \frac{3^2a^6b^2}{c^4} \div \frac{a^{-3}b^{-3}}{3^{-3}c^6} \quad \text{by law 3}$$

$$= \frac{3^2a^6b^2}{c^4} \times \frac{3^{-3}c^6}{a^{-3}b^{-3}} \quad \text{inverting the last term and multiplying}$$

$$= \frac{3^{2-3}a^6b^2c^6}{c^4a^{-3}b^{-3}} \quad \text{by law 1}$$

$$= 3^{-1}a^6-(-3)b^{2-(-3)}c^{6-4} \quad \text{by law 2}$$

$$= 3^{-1}a^9b^5c^2 \quad \text{simplifying}$$

$$= \frac{a^9b^5c^2}{3} \quad \text{by negative index law}$$

3. Write $x^{-1} + x^2$ as a single fraction.

Solution:

$$x^{-1} + x^2 = \frac{1}{x} + x^2$$
 by negative index law
$$= \frac{1}{x} + \frac{xx^2}{x}$$

$$= \frac{1 + xx^2}{x}$$
 using a common denominator
$$= \frac{1 + x^3}{x}$$
 using law 1

Exercise 1

Simplify the following:

- a). $c^5 \times c^3 \times c^7$ b). $3 \times 2^2 \times 2^3$ c). $a^3 \times a^2 b^3 \times a b^4$

- d). $3^6 \div 3^4$ e). $a^8 \div a^3$ f). $x^4 y^6 \div x^2 y^3$
- g). $(x^3)^4$ h). $(x^m y^n)^5$

Answers to Exercise 1

- a) c^{15} b) $3 \times 2^5 = 96$ c) a^6b^7 d) $3^2 = 9$ e) a^5 f) x^2y^3 g) x^{12} h) $x^{5m}y^{5n}$

Exercise 2

Write with positive indices and evaluate if possible:

- a). x^{-6} b). 250^0 c). $3ab^{-5}$ d). $(pq)^{-2}$
- e). $(5xy)^{-3}$ f). $\frac{2y}{z^{-5}}$ g). 2^{-5} h). $(-2)^{-3}$

- i). $-(3^{-2})$ j). $2 \times (-5)^{-2}$

Answers to Exercise 2

- a) $\frac{1}{x^6}$ b) 1 c) $\frac{3a}{b^5}$. d) $\frac{1}{(pq)^2}$ e) $\frac{1}{(5xy)^3} = \frac{1}{125x^3y^3}$
- f) $2yz^5$ g) $\frac{1}{32}$ h) $-\frac{1}{8}$ i) $-\frac{1}{9}$ j) $\frac{2}{25}$

Exercise 3

Simplify the following:

a).
$$2a^3b^2 \times a^{-1} \times b^3$$
 b). $(5x^{-2}y)^{-3}$ c). $(3x^3y^{-1})^5$

b).
$$(5x^{-2}y)^{-}$$

c).
$$(3x^3y^{-1})^5$$

d).
$$(a^{-4}b^{-5})^{-2}$$
 e). $\frac{a^2b^3c^{-4}}{a^4bc^5}$ f). $\frac{a^7\times a^8\times a^3}{a^2\times a^5}$

e).
$$\frac{a^2b^3c^{-4}}{a^4bc^5}$$

f).
$$\frac{a^7 \times a^8 \times a^3}{a^2 \times a^5}$$

g).
$$x(x-x^{-1})$$

h).
$$\frac{(2^4)^n}{2^3}$$

g).
$$x(x-x^{-1})$$
 h). $\frac{(2^4)^n}{2^3}$ i). $\frac{15a^2b}{3a^4b} \times \frac{4a^5b^2}{5a^3b^4}$

j).
$$2^4 - 2^3$$

Answers to Exercise 3

$$a) 2a^2b^5$$

$$b) \frac{x^6}{5^3 y^3}$$

a)
$$2a^2b^5$$
 b) $\frac{x^6}{5^3y^3}$ c) $\frac{3^5x^{15}}{y^5}$ d) a^8b^{10} e) $\frac{b^2}{a^2c^9}$

$$d) a^8 b^{10}$$

$$e) \frac{b^2}{a^2c^9}$$

$$f) a^{12}$$

$$(g) x^2 - 1$$

$$-3$$
 i) $\frac{4}{3}$

$$(a) \frac{4a^7b^3}{a^7b^5} = 4b^{-2} = \frac{4}{b^2}$$

f)
$$a^{11}$$
 g) $x^2 - 1$ h) 2^{4n-3} i) $\frac{4a^7b^3}{a^7b^5} = 4b^{-2} = \frac{4}{b^2}$ j) $2^3(2^1 - 2^0) = 2^3 = 8$