

EIGEN VALUES AND EIGEN VECTORS

8.1 Introduction

The eigen value problem involves the evaluation of all the eigen values and eigen vectors of a square matrix or a linear transformation. The solution of this problem has variety of application in pure and applied mathematics. In this chapter, we shall study eigen values and eigen vectors of a matrix and a linear transformation. Further we shall obtain a non-singular matrix which diagonalises a given diagonalisable matrix.

8.2 Eigen values and Eigen vectors of a matrix :

Let A be a square matrix of order n having elements

$$a_{ij}$$
 (i = 1, 2,....,n; j = 1, 2,....,n).

A scalar λ is called an eigen value of A if there exists a non zero (column) vector v which satisfies the relation.

$$Av = \lambda v$$
(1)

Here v is called eigen vector of A corresponding to eigen value λ . The set of all eigen vectors belonging to λ is called eigen space of λ .

Equation (1) can be rewritten as

$$(A - \lambda I) v = 0 \qquad \dots (2)$$

This matrix equation represents n homogeneous linear equations:

$$\begin{array}{l}
(a_{11} - \lambda) v_1 + a_{12} v_2 + \dots + a_{1n} v_n = 0 \\
a_{21} v_1 + (a_{22} - \lambda) v_2 + \dots + a_{2n} v_n = 0 \\
\vdots \\
a_{n1} v_1 + a_{n2} v_2 + \dots + (a_{nn} - \lambda) v_n = 0
\end{array} \quad(3)$$

Equation (3) will have a non-trivial solution if and only if det $(A - \lambda I) = 0$ i.e., $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0 \dots (4)$$

Equation (4) is called characteristic equation of matrix A. The matrix $A - \lambda I$ is called characteristic matrix of the given matrix A and det $(A - \lambda I)$ is called characteristic polynomial of matrix A, which is a polynomial of degree n in λ . Since equation (4) has n roots $\lambda_1, \lambda_2,, \lambda_n$, we have n characteristic roots or eigen values.

- Note: (1) Corresponding to n distinct eigen values, we have n independent eigen vectors. It is not possible to have a linearly independent eigen vectors corresponding to repeated eigen values i.e., when two or more eigen values are equal.
 - (2) eigen vector corresponding to a eigen value is not nuique.

Example 8.2.1: Find the eigen values and eigen vectors of the following matrices:

(a)
$$\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$

Solution : (a) Let $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$

The eigen values λ are the roots of det $(A - \lambda I) = 0$

$$\Rightarrow \begin{vmatrix} 1-\lambda & 4\\ 3 & 2-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda)(2-\lambda)-12=0$$

$$\Rightarrow \lambda^2 - 3\lambda - 10=0$$

$$\Rightarrow (\lambda - 5)(\lambda + 2) = 0$$

$$\Rightarrow \lambda = 5, -2$$

So, the eigen values of A are $\lambda_1 = 5$ and $\lambda_2 = -2$.

Now to obtain eigen vectors of A.

The eigen vector of A w.r.t. $\lambda_1 = 5$ are the non-trivial solutions of

$$\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 5 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\therefore x_1 + 4x_2 = 5x_1 \\ 3x_1 + 2x_2 = 5x_2 \end{bmatrix} \Rightarrow x_1 - x_2 = 0$$

$$x_1 - x_2 = 0$$

$$\therefore \frac{x_1}{1} = \frac{x_2}{1} = k \qquad \therefore x_1 = k, x_2 = k, \text{ where } k \text{ is arbitrary}$$
For $k = 1$,

the corresponding eigen vector = $[(1, 1)]^T$

Again the eigen vector of A w.r.t $\lambda_2 = -2$ are the non-trivial solutions of

$$\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \begin{array}{l} x_1 + 4x_2 = -2x_1 \\ 3x_1 + 2x_2 = -2x_2 \end{array}$$

$$\Rightarrow \begin{array}{l} 3x_1 + 4x_2 = 0 \\ 3x_1 + 4x_2 = 0 \end{array}$$

$$\Rightarrow \begin{array}{l} \frac{x_1}{4} = \frac{x_2}{-3} = k \\ \Rightarrow x_1 = 4k, \ x_2 = -3k \end{array}$$

For k = 1, corresponding eigen vector $= [(4, -3)]^T$

(b) Let
$$A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

The characteristic equation is det $(A - \lambda I) = 0$

$$\Rightarrow \begin{vmatrix} 3-\lambda & 2 & 4 \\ 2 & 0-\lambda & 2 \\ 4 & 2 & 3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (3-\lambda)\{-\lambda(3-\lambda)-4\}-2\{2(3-\lambda)-8\}+4\{4-4(-\lambda)\}=0$$

$$\Rightarrow (3-\lambda)(-3\lambda+\lambda^2-4)-2(-2-2\lambda)+4(4+4\lambda)=0$$

$$\Rightarrow (3-\lambda)(\lambda^2-4\lambda+\lambda-4)+4(\lambda+1)+16(\lambda+1)=0$$

$$\Rightarrow (3-\lambda)(\lambda+1)(\lambda-4)+4(\lambda+1)+16(\lambda+1)=0$$

$$\Rightarrow (\lambda+1)\{3\lambda-\lambda^2-12+4\lambda+4+16\}=0$$

$$\Rightarrow (\lambda+1)(-\lambda^2+7\lambda+8)=0$$

$$\Rightarrow (\lambda^2-7\lambda-8)(\lambda+1)=0$$

$$\Rightarrow (\lambda+1)^2(\lambda-8)=0$$

$$\Rightarrow \lambda=-1, -1, 8$$

Hence the eigen values are $\lambda_1 = -1$, $\lambda_2 = -1$, $\lambda_3 = 8$

Now to find the eigen vectors corresponding to the eigen value $\lambda_1 = -1$, we write

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = (-1) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3x_1 + 2x_2 + 4x_3 \\ 2x_1 + 0 + 2x_3 \\ 4x_1 + 2x_2 + 3x_3 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 4x_1 + 2x_2 + 4x_3 = 0 \qquad ... (1)$$

$$2x_1 + x_2 + 2x_3 = 0$$
 ... (2)

$$4x_1 + 2x_2 + 4x_3 = 0 ... (3)$$

Putting $x_1 = 0$, $-x_2 = 2x_3$

$$\Rightarrow \frac{x_1}{0} = \frac{x_2}{-2} = \frac{x_3}{1} = k$$

$$\Rightarrow$$
 $x_1 = 0$, $x_2 = -2k$, $x_3 = k$

For k = 1, the eigen vector corresponding to $\lambda_1 = -1$ is

$$[(0, -2, 1)]^{\frac{1}{1}}$$

Putting $x_1 = 0$, $-x_2 = 2x_1$

$$\Rightarrow \frac{x_1}{1} = \frac{x_2}{-2} = \frac{x_3}{0} = k$$

$$\Rightarrow x_1 = k, \ x_2 = -2k, \ x_3 = 0$$

For k = 1, the eigen vector corresponding to $\lambda_2 = -1$ is

$$[(1, -2, 0)]^T$$

Again for $\lambda_3 = 8$, we have

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 8 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3x_1 + 2x_2 + 4x_3 \\ 2x_1 + 0 + 2x_3 \\ 4x_1 + 2x_2 + 3x_3 \end{bmatrix} - \begin{bmatrix} 8x_1 \\ 8x_2 \\ 8x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow -5x_1 + 2x_2 + 4x_3 = 0 \qquad ... (4)$$

$$2x_1 - 8x_2 + 2x_3 = 0 \qquad ... (5)$$

$$2x_1 - 8x_2 + 2x_3 = 0 \qquad ... (5)$$

$$4x_1 + 2x_2 - 5x_3 = 0 ... (6)$$

From (4) and (5), we have

$$\frac{x_1}{4+32} = \frac{x_2}{8+10} = \frac{x_3}{40-4}$$

$$\Rightarrow \frac{x_1}{2} = \frac{x_2}{1} = \frac{x_3}{2} = k$$

$$\Rightarrow$$
 $x_1 = 2k$, $x_2 = k$, $x_3 = 2k$, which satisfies equation (6).

For k = 1, the eigen vector corresponding to $\lambda_3 = 8$ is $[(2, 1, 2)]^T$

8.3 Normal Vector

8.3.1 Definition:

A vector $X = [x_1, x_2, ..., x_n]^T$ is called a normal vector (normalised form) if $\sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = 1$

Example 8.3.1 Find the eigen values and eigen vectors of the following matrix:

(a)
$$\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$

Write the eigen vector is normalised form.

Solution:

(a) Given
$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

The characteristic equation of A is det $(A - \lambda I) = 0$

$$\Rightarrow \begin{vmatrix} 3-\lambda & 4 \\ 4 & -3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (3-\lambda)(-3-\lambda)-16=0$$

$$\Rightarrow \lambda^2 - 9 - 16=0$$

$$\Rightarrow \lambda^2 = 25$$

$$\Rightarrow \lambda = \pm 5$$

Hence the eigen values are 5 and -5.

Corresponding to $\lambda_1 = 5$, the eigen vector is given by

$$\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 5 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3x_1 + 4x_2 - 5x_1 \\ 4x_1 - 3x_2 - 5x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow -2x_1 + 4x_2 = 0 \qquad (1)$$
and $4x_1 - 8x_2 = 0 \qquad (2)$

From (1),
$$\frac{x_1}{2} = \frac{x_2}{1} = k$$

 $\Rightarrow x_2 = k, x_1 = 2k$

: x₁ and x₂ satisfies equation (2).

By definition of normal vector,

$$x_1^2 + x_2^2 = 4k^2 + k^2 = 5k^2 = 1$$

$$\Rightarrow k = \frac{1}{\sqrt{5}} \qquad \therefore x_1 = \frac{2}{\sqrt{5}}, x_2 = \frac{1}{\sqrt{5}}$$

corresponding eigen vector for $\lambda = 5$ is $\left[\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) \right]^T$, which is in normalised form.

Corresponding to $\lambda_2 = -5$, the eigen vector is given by

$$\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (-5) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3x_1 + 4x_2 + 5x_1 \\ 4x_1 - 3x_2 + 5x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 8x_1 + 4x_2 = 0$$

$$4x_1 + 2x_2 = 0$$

$$\Rightarrow \frac{x_1}{-1} = \frac{x_2}{2} = k$$

$$\Rightarrow x_1 = -k, x_2 = 2k$$

Now $x_1^2 + x_2^2 = 1 \implies 5k^2 = 1 \implies k = \frac{1}{\sqrt{5}}$

.. Corresponding eigen vector for $\lambda_2 = -5$ is $\left[\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \right) \right]^T$, which is in normalised form.

(b) Let
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$$

The characteristic equation of A is det $(A - \lambda I) = 0$

$$\Rightarrow \begin{vmatrix} 1-\lambda & 1 & 0 & 0 \\ -1 & -1-\lambda & 0 & 0 \\ -2 & -2 & 2-\lambda & 1 \\ 1 & 1 & -1 & 0-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda) \begin{vmatrix} -1-\lambda & 0 & 0 \\ -2 & 2-\lambda & 1 \\ 1 & -1 & -\lambda \end{vmatrix} = 0 \quad \text{[Expanding by R}_1 \text{]}$$

$$\Rightarrow (1-\lambda) \cdot [(-1-\lambda) \cdot \{(2-\lambda)(-\lambda) + 1\}] - 1[(-1) \cdot \{(2-\lambda)(-\lambda) + 1\}] = 0$$

$$\Rightarrow (1-\lambda) \cdot (2\lambda + 2\lambda^2 - \lambda^2 - \lambda^3 - 1 - \lambda) + \lambda^2 - 2\lambda + 1 = 0$$

$$\Rightarrow (1-\lambda) \cdot (-\lambda^3 + \lambda^2 + \lambda - 1) + (\lambda - 1)^2 = 0$$

$$\Rightarrow (\lambda - 1) \cdot (\lambda^2 - 1) \cdot (\lambda - 1) + (\lambda - 1)^2 = 0$$

$$\Rightarrow (\lambda - 1)^2 (\lambda^2 - 1 + 1) = 0$$

$$\Rightarrow \lambda^2 (\lambda - 1)^2 = 0$$

$$\Rightarrow \text{The eigen values are } \lambda = 0 \text{ and } \lambda = 1$$

.. The eigen values are $\lambda_1 = 0$ and $\lambda_2 = 1$ For $\lambda_1 = 0$, the eigen vectors are given by

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\Rightarrow x_1 + x_2 = 0 \dots (1)$$

$$-x_1 - x_2 = 0 \dots (2)$$

$$-2x_1 - 2x_2 + 2x_3 + x_4 = 0 \dots (3)$$

$$x_1 + x_2 - x_3 = 0 \dots (4)$$

From (1) and (4), we have $x_1 = 0$

Putting $x_3 = 0$ in equation (3), we have $x_4 = 0$

$$\therefore x_1 = -x_2$$

$$\Rightarrow \frac{x_1}{-1} = \frac{x_2}{1} = \frac{x_3}{0} = \frac{x_4}{0}$$

Corresponding eigen vector for $\lambda_1 = 0$ is $[(-1, 1, 0, 0)]^T$

For $\lambda_2 = 1$, the eigen vectors are given by

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\Rightarrow x_1 + x_2 = x_1$$

$$-x_1 - x_2 = x_2$$

$$-2x_1 - 2x_2 + 2x_3 + x_4 = x_3$$

$$x_1 + x_2 - x_3 = x_4$$

$$\Rightarrow x_2 = 0$$

$$-x_1 - 2x_2 = 0$$

$$-2x_1 - 2x_2 + x_3 + x_4 = 0$$

$$x_1 + x_2 - x_3 - x_4 = 0$$

$$\Rightarrow x_2 = 0, x_1 = 0, x_4 = -x_3$$

$$\Rightarrow \frac{x_1}{0} = \frac{x_2}{0} = \frac{x_3}{1} = \frac{x_4}{-1} = k$$

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = k$, $x_4 = -k$

: By definition of normal vector,

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$$

$$\Rightarrow k^2 + k^2 = 1$$

$$\Rightarrow 2k^2 = 1$$

$$\Rightarrow k = \frac{1}{\sqrt{2}}$$

.. Corresponding eigen vector for $\lambda_2 = 1$ is $\left[\left(0, 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) \right]^T$, which is in normalised form.

8.4 Similarity of Matrices

8.4.1 Definition:

Basing on Theorem 5.10.3, we define similarity of matrices.

Let A and B be square matrices of order n. Then A and B are said to be similar if there exists a non-singular matrix C of order n such that AC = CB

or
$$A = CBC^{-1}$$
 or $B = C^{-1}AC$

Theorem 8.4.1: The relation of similarity is an equivalence relation in the set of all $n \times n$ matrices.

Proof Let A and B be two n × n matrices. By definition of similarity of matrices there exists a non-singular matrix C of order n such that

$$\mathbf{B} = \mathbf{C}^{-1} \mathbf{A} \mathbf{C}$$

Reflexive: Since $A = I^{-1}AI$, where I is $n \times n$ unit matrix

: A is similar to A, because I is non-singular.

Symmetric: Suppose A is similar to B.

Then there exists an $n \times n$ non-singular matrix P such that

$$AP = PB$$

$$\Rightarrow A = PBP^{-1}$$

$$\Rightarrow P^{-1}AP = P^{-1}(PBP^{-1})P$$

$$\Rightarrow P^{-1}AP = B$$

$$\Rightarrow B = P^{-1}AP$$

$$\Rightarrow B \text{ is similar to } A.$$

Transitive Let A be similar to B and B be similar to C.

Then there exists non-singular matrices P and Q, such that

$$A = PBP^{-1}$$
and
$$B = QCQ^{-1}$$

$$\Rightarrow A = P(QCQ^{-1})P^{-1}$$

$$= (PQ)C(Q^{-1}P^{-1})$$

$$= (PQ)C(PQ)^{-1} [By reversal rule]$$

.. A is similar to C.

Hence similarity is an equivalence relation in the set of all n × n matrices.

Theorem 8.4.2 Similar matrices have the same determinant.

Proof Let A and B be two similar matrices. Then there exists a non-singular matrix P such that

$$A = PBP^{-1}$$

$$\Rightarrow \det A = \det (PBP^{-1})$$

$$\Rightarrow \det A = (\det P) (\det B) (\det P^{-1})$$

$$\Rightarrow \det A = \det (P^{-1}P) \det B$$

$$\Rightarrow \det A = (\det I) \det B$$

$$\Rightarrow \det A = \det B \quad [\because \det I = 1]$$
A and B have same determinant.

Example 8.4.1 Show that the matrix $\begin{bmatrix} 10 & 2 \\ 2 & 7 \end{bmatrix}$ is similar to $\begin{bmatrix} 11 & 0 \\ 0 & 6 \end{bmatrix}$ for the non singular matrix

$$\begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

Solution: Let $B = \begin{bmatrix} 10 & 2 \\ 2 & 7 \end{bmatrix}$,

$$C = \begin{bmatrix} 11 & 0 \\ 0 & 6 \end{bmatrix}, P = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

$$\therefore BP = \begin{bmatrix} 10 & 2 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{20}{\sqrt{5}} + \frac{2}{\sqrt{5}} & \frac{10}{\sqrt{5}} - \frac{4}{\sqrt{5}} \\ \frac{4}{\sqrt{5}} + \frac{7}{\sqrt{5}} & \frac{2}{\sqrt{5}} - \frac{14}{\sqrt{5}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{22}{\sqrt{5}} & \frac{6}{\sqrt{5}} \\ \frac{11}{\sqrt{5}} & \frac{-12}{\sqrt{5}} \end{bmatrix}$$

$$PC = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 11 & 0 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} \frac{22}{\sqrt{5}} + 0 & 0 + \frac{6}{\sqrt{5}} \\ \frac{11}{\sqrt{5}} + 0 & 0 - \frac{12}{\sqrt{5}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{22}{\sqrt{5}} & \frac{6}{\sqrt{5}} \\ \frac{11}{\sqrt{5}} & -\frac{12}{\sqrt{5}} \end{bmatrix}$$

- $\therefore BP = PC \quad i.e., B = PCP^{-1}$
- ⇒ B and C are similar matrices.

Theorem 8.4.3 Similar matrices have the same eigen values.

Proof Let an $n \times n$ matrix A be similar to an $n \times n$ matrix B. Hence, there exists an invertible matrix P such that $B = P^{-1}AP$

Let I be a unit matrix of oder n.

$$\therefore B - \lambda I = P^{-1} AP - \lambda I$$

$$= P^{-1} AP - P^{-1} (\lambda I) P$$

$$= P^{-1} (A - \lambda I) P$$

$$\det (B - \lambda I) = (\det P^{-1}) \det (A - \lambda I) (\det P)$$

$$= \det (P^{-1}P) \det (A - \lambda I)$$

$$= (\det I) \det (A - \lambda I)$$

$$= \det (A - \lambda I)$$

Thus the matrices A and B have same characteristic polynomial and so they will have same eigen values.

Theorem 8.4.4: Corresponding to an eigen vector (non-zero) of a matrix, there exists unique eigen value.

Proof: Let λ_1 and λ_2 be two eigen values of the matrix A corresponding to an non-zero eigen vector v.

Then
$$Av = \lambda_1 v$$
, $Av = \lambda_2 v$, $\lambda_1 \neq \lambda_2$
 $\Rightarrow Av = \lambda_1 v = \lambda_2 v$
 $\Rightarrow (\lambda_1 - \lambda_2) v = 0$
 $\Rightarrow v = 0 \quad [\because \lambda_1 - \lambda_2 \neq 0]$

This is a contradiction since v is a non-zero vector.

Hence, corresponding to an eigen vector $v(v \neq 0)$ there is only one eigen value of A.

Note: The converse of the above theorem is not true.

Corresponding to an eigen value λ of a matrix A, there are different eigen vectors.

We have, if v is the eigen vector of A corresponding to eigen value λ , then $Av = \lambda v$

$$\Rightarrow$$
 A(kv) = λ (kv), k is a non zero scalar.

This shows that kv is also an eigen vector of A corresponding to the same eigen value λ . In Example 8.2.1 (b), for $\lambda = -1$, there are two eigen vectors

i.e.,
$$[0, -2, 1]^T$$
 and $[1, -2, 0]^T$

Theorem 8.4.5: The scalar λ is an eigen value of the matrix A iff $(A - \lambda I)$ is singular.

Proof: Let λ be the eigen value of A. By definition.

 $\det (A - \lambda I)$

$$\det (A - \lambda I) = 0$$

$$\Rightarrow (A - \lambda I) \text{ is singlular.}$$

and

Conversely, If det $(A - \lambda I) = 0$, then there exists a non-zero vector \mathbf{v} such that $(A - \lambda I) \mathbf{v} = 0$ $\Rightarrow A\mathbf{v} = \lambda \mathbf{v}$ $\Rightarrow \lambda \text{ is the eigen value of } A.$

Note: $\lambda = 0$ is the eigen value of the matrix A iff A is singular.

Theorem 8.4.6: Let Let $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_m$ be the distinct eigen values of a square matrix A of order n and v_1, v_2, \ldots, v_m be the eigen vectors of A corresponding to $\lambda_1, \lambda_2, \ldots, \lambda_m$ respectively. Then the set $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

Proof: By definition of eigen vector, $Av_i = \lambda_i v_i$, $v_i \neq 0$

for
$$i = 1, 2, ..., m$$

 $\lambda_i \neq \lambda_j$ for $i \neq j$

Suppose, if possible, the set $\{v_1, v_2, ..., v_m\}$ is linearly dependent.

The non-zero vector v_1 is linearly independent. We choose $r (\le m)$ such that the set $\{v_1, v_2,, v_{r-1}\}$ is linearly independent and $\{v_1, v_2,, v_{r-1}, v_r\}$ is linearly dependent. Then we can express v_r as a linear combination of $v_1, v_2,, v_{r-1}$

$$\therefore v_{r} = \alpha_{1}v_{1} + \alpha_{2}v_{2} + \dots + \alpha_{r-1} v_{r-1} \qquad \dots (1)$$
for the scalars α_{i} , $i = 1, 2, \dots, (r-1)$

$$\Rightarrow Av_{r} = \alpha_{1}Av_{1} + \alpha_{2} Av_{2} + \dots + \alpha_{r-1} Av_{r-1}$$

$$\Rightarrow \lambda_{r} v_{r} = \alpha_{1}\lambda_{1} v_{1} + \alpha_{2}\lambda_{2} v_{2} + \dots + \alpha_{r-1}\lambda_{r-1} v_{r-1} \qquad \dots (2)$$

Multiplying equation (1) by λ_r and subtracting from (2), we get

$$0 = \alpha_{1} (\lambda_{1} - \lambda_{r}) v_{1} + \alpha_{2} (\lambda_{2} - \lambda_{r}) v_{2} + \dots + \alpha_{r-1} (\lambda_{r-1} - \lambda_{r}) v_{r-1}$$

Since the set $\{v_1, v_2, ..., v_{r-1}\}$ is L.I, therefore each of the coefficients in the above equation is zero i.e.,

$$\alpha_i (\lambda_i - \lambda_r) = 0$$
, for $i = 1, 2,, (r - 1)$.
But $\lambda_i - \lambda_r \neq 0$, [: eigen values are distinct]
for $i = 1, 2,, (r - 1)$
Therefore $\alpha_i = 0$ for $i = 1, 2,, (r - 1)$

Putting $\alpha_i = 0$ for i = 1, 2, ..., (r-1)

in equation (1), we have

 $v_r = 0$. This is a contradiction, since the eigen vector v_r can never be zero.

Hence our assumption is wrong.

This proves that the set $\{v_1, v_2, ..., v_n\}$ must be L.I.

8.5 Diagonalisation

8.5.1 Definition:

An $n \times n$ matrix A is said to be diagonalisable if A is similar to a diagonal matrix i.e., $P^{-1}AP$ is diagonal for some non-singular $n \times n$ matrix P.

Note: Given an $n \times n$ matrix A, it is diagonisable if it has n distinct eigen values.

Now, we will prove some theorems which establishes the method of diagonalising a matrix.

Theorem 8.5.1: Let A be an $n \times n$ matrix having n distinct eigen values $\lambda_1, \lambda_2, ... \lambda_n$. Let $v_1, v_2,, v_n$ be the eigen vectors corresponding to $\lambda_1, \lambda_2,, \lambda_n$ respectively. Let $P = (v_1, v_2,, v_n)$ be the $n \times n$ matrix having $v_1, v_2,, v_n$ as its column vectors. Then $P^{-1}AP = diag(\lambda_1, \lambda_2,, \lambda_n)$.

Proof: We have, by actual multiplication,

$$AP = A (v_1, v_2,, v_n)$$

$$= (Av_1, Av_2,, Av_n)$$

$$= (\lambda_1 v_1, \lambda_2 v_2,, \lambda_n v_n),$$
since $Av_i = \lambda_i v_i$
for $i = 1, 2,, n$.

$$= (\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n}) \begin{bmatrix} \lambda_{1} & 0 & 0 & \dots & 0 \\ 0 & \lambda_{2} & 0 & \dots & 0 \\ 0 & 0 & \lambda_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \lambda_{n} \end{bmatrix} = PD \text{ where}$$

$$D = diag(\lambda_1, \lambda_2,, \lambda_n)$$

By Theorem 8.4.6 the column vectors of P are L.I. Therefore P is invertible.

$$P^{-1}AP = P^{-1}PD = D$$

$$= diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

8.6. Power of a matrix

8.6.1 Definition:

Let A be an $n \times n$ matrix.

Consider $D = P^{-1}AP$ for some non-singular matrix P.

Example 8.6.1 Diagonalise the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{bmatrix}$$
 and calculate A^2 .

Solution:

Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{bmatrix}$$

Characteristic Polynomial of A is

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 2 & 0 \\ 2 & 1 - \lambda & -6 \\ 2 & -2 & 3 - \lambda \end{vmatrix}$$

Characteristic equation is

$$\begin{vmatrix} 1-\lambda & 2 & 0 \\ 2 & 1-\lambda & -6 \\ 2 & -2 & 3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda) \{ (1-\lambda) (3-\lambda) - 12 \} - 2 \{ 2 (3-\lambda) + 12 \} = 0$$

$$\Rightarrow (1-\lambda) \{ 3-3\lambda - \lambda + \lambda^2 - 12 \} - 2 \{ 18 - 2\lambda \} = 0$$

$$\Rightarrow (1-\lambda) (\lambda^2 - 4\lambda - 9) - 4 (9 - \lambda) = 0$$

$$\Rightarrow \lambda^2 - 4\lambda - 9 - \lambda^3 + 4\lambda^2 + 9\lambda - 36 + 4\lambda = 0$$

$$\Rightarrow -\lambda^3 + 5\lambda^2 + 9\lambda - 45 = 0$$

$$\Rightarrow \lambda^3 - 5\lambda^2 - 9\lambda + 45 = 0$$

$$\Rightarrow (\lambda^2 - 9) (\lambda - 5) = 0$$

$$\Rightarrow (\lambda + 3) (\lambda - 3) (\lambda - 5) = 0$$

$$\therefore \text{ The eigen values of A are}$$

$$\lambda_1 = 5, \lambda_2 = 3, \lambda_3 = -3.$$

These eigen values are distinct. Therefore A is diagonisable.

Eigen vector for $\lambda_1 = 5$

It is given by

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 5 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x_1 + 2x_2 + 0 - 5x_1 \\ 2x_1 + x_2 - 6x_3 - 5x_2 \\ 2x_1 - 2x_2 + 3x_3 - 5x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow -4x_1 + 2x_2 = 0 2x_1 - 4x_2 - 6x_3 = 0 2x_1 - 2x_2 - 2x_3 = 0$$

From the last two equations,

$$\frac{x_1}{8-12} = \frac{x_2}{-12+4} = \frac{x_3}{-4+8}$$

$$\Rightarrow \frac{x_1}{-4} = \frac{x_2}{-8} = \frac{x_3}{4}$$

$$\Rightarrow \frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{-1} = k$$

 $v_1 = [k, 2k, -k]^T = [1, 2, -1]^T$, if k = 1

Similarly eigen vector for $\lambda_2 = 3$ is $\mathbf{v}_2 = [1, 1, 0]^T$ and eigen vector for $\lambda_3 = -3$ is $\mathbf{v}_3 = [-1, 2, 1]^T$

$$\therefore P = \begin{bmatrix} v_1, v_2, v_3 \end{bmatrix}.$$

$$= \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \text{ which diagonalises A.}$$

$$\therefore D = P^{-1}AP = -\frac{1}{4} \begin{bmatrix} 1 & -1 & 3 \\ -4 & 0 & -4 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -6 \\ 2 & -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \cdot -1 \\ 2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= -\frac{1}{4} \begin{bmatrix} 5 & -5 & 15 \\ -12 & 0 & -12 \\ -3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= -\frac{1}{4} \begin{bmatrix} -20 & 0 & 0 \\ 0 & -12 & 0 \\ 0 & 0 & 12 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{bmatrix}, \text{ which is in diagonal form.}$$

$$\therefore A^2 = PD^2 P^{-1}$$

$$= \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5^2 & 0 & 0 \\ 0 & 3^2 & 0 \\ 0 & 0 & (-3)^2 \end{bmatrix} \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & -\frac{3}{4} \\ 1 & 0 & 1 \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 25 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & -\frac{3}{4} \\ 1 & 0 & 1 \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

$$= \begin{bmatrix} 25 & 9 & -9 \\ 50 & 9 & 18 \\ -25 & 0 & 9 \end{bmatrix} \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & -\frac{3}{4} \\ 1 & 0 & 1 \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 4 & -12 \\ -8 & 17 & -24 \\ 4 & -4 & 21 \end{bmatrix}$$

Example 8.6.2: Show that the eigen values of a traingular matrix are the diagonal elements of the matrix.

Solution: Let $A = [a_{ij}]_{n \times n}$ be a upper triangular matrix, then $a_{ij} = 0$, i > j

$$\therefore A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

The characteristic equation of A is given by

 $\det(A - \lambda I) = 0$

$$\Rightarrow \begin{vmatrix} a_{11} - \lambda & 0 & \dots & 0 \\ 0 & a_{22} - \lambda & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & a_{n-1} \end{vmatrix} = 0$$

⇒
$$(a_{11} - \lambda) (a_{22} - \lambda) (a_{nn} - \lambda) = 0$$

⇒ $\lambda = a_{11}, a_{22},, a_{nn}$

Similarly, we can prove that for lower triangular matrix, the eigen values are the diagonal elements of the matrix.

Example 8.6.3 Show that the sum of the eigen values of a matrix of order 3 is the sum of the elements of the principal diagonal.

Solution: Consider a square matrix of order 3.

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\therefore \det (A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix}$$

$$= -\lambda^3 + \lambda^2 (a_{11} + a_{22} + a_{33}) - \dots [\text{on expanding}] \qquad \dots (1)$$

Let $\lambda_1, \lambda_2, \lambda_3$ be the eigen values of A

$$\therefore \det (A - \lambda I)$$

$$= (-1)^3 (\lambda - \lambda_1) (\lambda - \lambda_2) (\lambda - \lambda_3)$$

$$= -\lambda^3 + \lambda^2 (\lambda_1 + \lambda_2 + \lambda_3) - \dots \qquad \dots (2)$$

Equating the right hand sides of (1) and (2) and comparing coefficients of λ^2 we get, $\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33}$, which is the sum of the elements of the principal diagonal.

Example 8.6.4 If λ is an eigen value of a non-singular matrix A then show that $\frac{1}{\lambda}$ is the eigen value of A^{-1} .

Solution: First Method:

Let v be the eigen vector corresponding to eigen value λ .

By definition, $Av = \lambda v$. Premultiplying both sides by A^{-1} , we get

$$A^{-1} Av = A^{-1} \lambda v$$

$$\Rightarrow Iv = \lambda (A^{-1}v)$$

$$\Rightarrow v = \lambda (A^{-1}v)$$

$$\Rightarrow \lambda^{-1}v = A^{-1}v$$

$$\Rightarrow \lambda^{-1} i.e., \frac{1}{\lambda} \text{ is the eigen value of } A^{-1}.$$

Second Method:

 λ is an eigen value of the non-singular matrix A.

$$\therefore \det (A - \lambda I) = 0$$

$$\Rightarrow \det (A - \lambda A A^{-1}) = 0$$

$$\Rightarrow \det \left(\lambda A \left(\frac{1}{\lambda} I - A^{-1} \right) \right) = 0$$

$$\Rightarrow (\det \lambda A) \cdot \det \left(\frac{1}{\lambda} I - A^{-1} \right) = 0$$

$$\Rightarrow \det \left(\frac{1}{\lambda} I - A^{-1} \right) = 0 \qquad [\because \det (\lambda A) \neq 0]$$

$$\Rightarrow \det \left(A^{-1} - \frac{1}{\lambda} I \right) = 0$$

$$\therefore \frac{1}{\lambda} \text{ is the eigen value of } A^{-1}.$$

Example 8.6.5 If v is an eigen vector of a non-singular matrix A corresponding to the eigen value λ , then prove that v is an eigen vector of A^{-1} corresponding to the eigen value $\frac{1}{\lambda}$. Solution:

If v is an eigen vector of A corresponding to the eigen value λ , then $Av = \lambda v$

$$\Rightarrow \frac{1}{\lambda} A^{-1} (Av) = \frac{1}{\lambda} A^{-1} (\lambda v)$$

$$\Rightarrow \frac{1}{\lambda} Iv = \frac{1}{\lambda} \lambda A^{-1} v$$

$$\Rightarrow \frac{1}{\lambda} v = A^{-1} v$$
i.e., $A^{-1} v = \frac{1}{\lambda} v$

 \therefore v is an eigen vector of A^{-1} corresponding to $\frac{1}{\lambda}$.

Problem Set 8 (A)

1. Determine the eigen values and eigen vectors for the following matrices.

(a)
$$\begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$

(e)
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 (f)
$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$
 (g)
$$\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{bmatrix}$$

- 2. Show that eigen values of a square matrix and its transpose are same.
- 3. Show that all the eigen values of identity matrix are 1 and every non-zero vector is the eigen vector of identity matrix.
- 4. Let A be a square matrix of order n. If λ is the eigen value of A, then prove that p (λ) is the eigen value of p (A), for any polynomila p.
- 5. Show that
 - (i) If λ is an eigen value of a square matrix A, then λ^n is an eigen value of A^n , for some positive integer n.
 - (ii) If λ is an eigen value of a square matrix A, then $k + \lambda$ is an eigen value of A + kI, where k is any scalar.
 - (iii) If λ is an eigen value of A, then $k\lambda$ is an eigen value of kA, where k is any scalar.
 - (iv) If λ is an eigen value of a non-singular matrix A, then $\frac{|A|}{\lambda}$ is an eigen value of adj. A.

- 6. If v is an eigen vector of A corresponding to the eigen value λ , prove that
- v is an eigen vector of A^2 corresponding to eigen value λ^2 . (i)
- v is an eigen vector of p (A) corresponding to the eigen value p (λ), for any polynomial p. (ii)
- If $A = \begin{bmatrix} 2 & 3 & 5 \\ 0 & 4 & 7 \\ 0 & 0 & 8 \end{bmatrix}$, then find the eigen values of A^2 , A^{-1} , 2A. 7.
- 8. Show that the following matrices are diagonalisable:

$$\begin{array}{ccc}
(a) \begin{bmatrix} 20 & 18 \\ -27 & -25 \end{bmatrix}
\end{array}$$

(a)
$$\begin{bmatrix} 20 & 18 \\ -27 & -25 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$

9. Diagonalise the following matrices:

(a)
$$\begin{bmatrix} 3 & 1 & 4 \\ 2 & 2 & 4 \\ 4 & 1 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3 & 1 & 4 \\ 2 & 2 & 4 \\ 4 & 1 & 3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$$

- Show that the matrix $\begin{bmatrix} \frac{29}{11} & \frac{-6}{11} \\ \frac{-12}{11} & \frac{15}{11} \end{bmatrix}$ is similar to $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ for the non-singular matrix $\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ 10.
- Show that the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$ is similar to $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ for the non-singular 11.

$$\text{matrix} \begin{vmatrix}
 -\frac{1}{4} & \frac{3}{4} & -1 \\
 \frac{3}{4} & -\frac{1}{4} & 0 \\
 -\frac{1}{4} & -\frac{1}{4} & 1
 \end{vmatrix}$$

Find the matrix P which diagonalises the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ 12.

Compute A⁴.

Find eigen values and eigen vectors of the differential operator $D: P_2 \rightarrow P_2$ defined by 13. $D(a_0 + a_1x + a_2x^2) = a_1 + 2a_2x, a_0, a_1, a_2 \in R$

[Hints:
$$[D]_B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \{1, x, x^2\}$ is a basis for P_2 .]

- 14. State whether the following statements are true (T) or false (F).
- (i) The product of all eigen values of a square matrix A is equal to det A.
- (ii) At least one eigen value of a non-singular matrix is zero.
 - (iii) The eigen values of a singular matrix are all non-zero.
 - (iv) If zero is the eigen value of A, then A is singular.
 - (v) If v is an eigen vector of A for eigen value λ, then v is an eigen vector of A^T for eigen value λ.
 - (vi) If A and B are square matrices, then AB and BA have same eigen values.
 - (vii) All square matrices are diagonalisable.
 - (viii) The matrices A and P-1AP have different eigen values for any non-singular matrix P.
 - (ix) The square matrices A and A^T have same eigen vector.
 - (x) If λ is an eigen value of an idempotent matrix A then λ must be either 0 or 1.

8.7 Eigen value and Eigen vector of a linear map

8.7.1 Definition:

An eigen value of a linear transformation $T: V \to V$ is a scalar $\lambda \in R$ such that there exists a non-zero vector $v \in V$ satisfying the equation $T(v) = \lambda v$.

The non-zero vector $v \in V$ is called an eigen vector of T w.r.t the eigen value λ .

Example 8.7.1: Find the eigen value and corresponding eigen vector for the linear map $T: V_3 \to V_3$ defined by T(x, y, z) = (3x, 3y, 3z)

Solution: We have, if
$$v = (x, y, z) \in V_3$$
,

then
$$T(v) = T(x, y, z) = (3x, 3y, 3z)$$

= 3 (x, y, z)
= 3v = λv

 $\Rightarrow \lambda = 3$ is an eigen value of T.

Any non-zero element of V_3 is the eigen vector of T, corresponding to $\lambda = 3$.

Example 8.7.2 Find the eigen value and the eigen vector of $T: C \to C$ defined by

$$T(x, y, z) = (ix, -iy, z).$$

Solution: Let $\lambda \in C$ is the eigen value of T. By definition, $T(v) = \lambda v$, where $v = (x, y, z) \neq (0, 0, 0)$

$$\Rightarrow (ix, -iy, z) = \lambda(x, y, z)$$

$$\Rightarrow (ix, -iy, z) = (\lambda x, \lambda y, \lambda z)$$

$$\Rightarrow \lambda x = ix, \lambda y = -iy, \lambda z = z$$

$$\Rightarrow \lambda = i, y = 0, z = 0$$
or
$$\lambda = -i, x = 0, z = 0$$
or
$$\lambda = 1, x = 0, y = 0$$

For $\lambda = i$, corresponding eigen vector is (1, 0, 0) or (x, 0, 0) where x = 0

For $\lambda = -i$, corresponding eigen vector is (0, y, 0) where $y \neq 0$.

For $\lambda = 1$, corresponding eigen vector is (0, 0, z) where $z \neq 0$.

Note (1) The zero vector can never be an eigen vector but zero can be an eigen value.

(2) The set of all eigen vectors of T is denoted by I₂.

Theorem 8.7.1: Let λ be the eigen value of a linear map $T: V \to V$. Then I_{λ} , the set of all eigen vectors of T, corresponding to eigen value λ , is a subspace of V.

Proof: Let $u, v \in I_{\lambda}$.

By definition,

$$T(u) = \lambda u$$
 and $T(v) = \lambda v$...(1)

$$T(u+v) = T(u) + T(v)$$
 [:: T is linear]

$$= \lambda u + \lambda v$$
 [By (1)]

$$= \lambda (u+v)$$

 \Rightarrow u + v is the eigen vector corresponding to eigen value λ .

$$\therefore$$
 $u+v\in I_{\lambda}$

Again, if α be a scalar then

$$T(\alpha v) = \alpha T(v)$$
 [: T is linear]
= $\alpha (\lambda v)$ [by (1)]
= $\lambda (\alpha v)$

 \Rightarrow α v is the eigen vector corresponding to eigen value λ

$$\therefore \alpha v \in I_{\lambda}$$

Hence,

$$u, v \in I_{\lambda} \Rightarrow u + v \in I_{\lambda}$$
and
$$v \in I_{\lambda} \text{ and } \alpha \text{ be a scalar}$$

$$\Rightarrow \alpha v \in I_{\lambda}$$

 \therefore I_{\(\lambda\)} is a subspace of V.

Theorem 8.7.2 Let $T: V \to V$ be a linear map on a vector space V. Then λ is an eigen value of T iff the map $T - \lambda I$ is singular. (I is the matrix of identity operator)

Proof: Let λ be the eigen value of T.

 \Leftrightarrow there exists a non-zero vector v such that $T(v) = \lambda v$

$$\Leftrightarrow T(v) = \lambda I(v)$$
 $[:: I(v) = v]$

$$\Leftrightarrow$$
 $(T - \lambda I)(v) = 0$, where $v \neq 0$

 \Leftrightarrow T – λ I is singular.

Now we state a theorem which shows that eigen value of a linear map T and eigen value of matrix A = [T : B], where B is an ordered basis of V and det $(A - \lambda I) = 0$ are equivalent.

Theorem 8.7.3 Let T be a linear map on a vector space V and dim V = n and A = [T : B] where B is an ordered basis of V. Then for any $\lambda \in R$, the following statements are equivalent:

- (a) λ is an eigen value of T
- (b) λ is an eigen value of A
- (c) det $(A \lambda I) = 0$, where $I = I_{\perp}$.

The proof is left to the reader.

Note: The eigen values of T are given by det $(T - \lambda I) = 0$, where A = [T].

Example 8.7.3: Find the eigen values and eigen vectors of the linear transformation $T: V_3 \rightarrow V_3$ defined by T(x, y, z) = (x + y + z, 2y + z, 2y + 3z)

Solution: We have to find the matrix representation of T relative to the standard basis

$$B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \text{ of } V_3.$$

$$\therefore A = [T] = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

The eigen values of T are the values of λ such that

det
$$(T - \lambda I) = 0$$
 [by Theorem 8.7.2]

$$\det \begin{bmatrix} 1-\lambda & 1 & 1\\ 0 & 2-\lambda & 1\\ 0 & 2 & 3-\lambda \end{bmatrix} = 0$$

$$\Rightarrow (1-\lambda)\{(2-\lambda)(3-\lambda)-2\} = 0$$

$$\Rightarrow (1-\lambda)(\lambda^2 - 5\lambda + 4) = 0$$

$$\Rightarrow (1-\lambda)(\lambda - 1)(\lambda - 4) = 0$$

$$\Rightarrow \lambda = 1, 1, 4$$

.. The eigen values of T are 1 and 4. Now to find eigen vectors of T.

For $\lambda = 1$

The corresponding eigen vector

$$v = [x \ y \ z]^T$$
 is given by $(A - A I) v = 0$

$$\Rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} y+z \\ y+z \\ 2y+2z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow$$
 y + z = 0, y + z = 0, 2y + 2z = 0

 \Rightarrow y = -z, x is arbitrary. i.e., eigen vector corresponding to $\lambda = 1$ is of the form

 $\{(x, -z, z) \mid x \text{ is scalar}\}$.

Thus (1, 0, 0) and (0, -1, 1) are eigen vectors corresponding to eigen value $\lambda = 1$. For $\lambda = 4$

The corresponding eigen vector $\mathbf{v} = [\mathbf{x} \ \mathbf{y} \ \mathbf{z}]^T$ is $(\mathbf{A} - \lambda \mathbf{I}) \ \mathbf{v} = \mathbf{0}$

$$\Rightarrow \begin{bmatrix} -3 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -3x + y + z \\ -2y + z \\ 2y - z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow -3x + y + z = 0$$

$$-2y + z = 0$$

$$2y - z = 0$$

$$\Rightarrow x = 1, y = 1, z = 2$$

 \therefore (1, 1, 2) is the eigen vector corresponding to $\lambda = 4$.

Theorem 8.7.4 Let λ be an eigen value of a linear transformation T. Then $f(\lambda)$ is an eigen value of f(T).

Proof: Let $v \in V$ be an eigen vector of T corresponding to eigen value λ .

Then by definition

$$T(v) = \lambda v, v \neq 0$$
 ... (1)

To prove that

 $f(\lambda)$ is an eigen value of f(T),

i.e.,
$$(f(T))(v) = (f(\lambda)) v$$
.

In order to prove the theorem, first of all, we have to show that

 $T^{m}(v) = \lambda^{m} v$, where m is a positive integer.

To prove by method of induction.

Let
$$P(m): T^{m}(v) = \lambda^{m}v$$

For $m = 1$,
 $T(v) = \lambda v$, which is true by (1).

Let P(m) be true for m = k, where k is a positive integer.

i.e.,
$$T^{k}(v) = \lambda^{k}v$$
 ... (2)

Now

$$T^{k+1}(v) = (T^{k} T)(v)$$

$$= T^{k} (T(v))$$

$$= T^{k} (\lambda v) \qquad [By (1)]$$

$$= \lambda (T^{k} (v)) \qquad [\because T \text{ is linear}]$$

$$= \lambda (\lambda^{k} v) \qquad [By (2)]$$

$$= \lambda^{k+1} v$$

 \therefore P(k+1) is true.

Hence by axiom of induction, P(m) is true for all positive integral values of m.

..
$$T^{m}(v) = \lambda v$$
 ... (3)
Let $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$
be any polynomial over T, of degree m.

Then

$$f(T) = a_0 I + a_1 T + a_2 T^2 + ... + a_m T^m$$

$$(f(T)) (v)$$

$$= (a_0 I + a_1 T + a_2 T^2 + ... + a_m T^m) (v)$$

$$= (a_0 I) (v) + (a_1 T) (v) + (a_2 T^2) (v) + ... + (a_m T^m) (v)$$

$$= a_0 I(v) + a_1 T(v) + a_2 T^2 (v) + ... + a_m T^m (v)$$

$$= a_0 v + a_1 \lambda v + a_2 (\lambda^2 v) + ... + a_m (\lambda^m v)$$

$$= (a_0 + a_1 \lambda + a_2 \lambda^2 + ... + a_m \lambda^m) v$$

$$= f(\lambda) v, \quad v \neq 0$$

 \therefore $f(\lambda)$ is an eigen value of f(T).

Example 8.7.4: Verify that if λ is an eigen value of T then $f(\lambda)$ is an eigen value of f(T), where the matrix representation of T relative to standard basis of V_2 is $\begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$ and $f(x) = x^2 - 2x + 3$.

Solution : The eigen values of [T] = A are the values of λ such that

$$\det (A - \lambda I) = 0 \quad \text{where } A = \begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} 3 - \lambda & 3 \\ 1 & 5 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (3 - \lambda)(5 - \lambda) - 3 = 0$$

$$\Rightarrow \lambda^2 - 8\lambda + 12 = 0$$

$$\Rightarrow (\lambda - 2)(\lambda - 6) = 0$$

$$\Rightarrow \lambda = 2, 6$$

∴ 2 and 6 are eigen values of T.

Now

$$f(x) = x^{2} - 2x + 3$$

$$\therefore f(T) = f(A) = A^{2} - 2A + 3I$$

$$= \begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix} - 2 \begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & 24 \\ 8 & 28 \end{bmatrix} - \begin{bmatrix} 6 & 6 \\ 2 & 10 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 18 \\ 6 & 21 \end{bmatrix}$$

 \therefore The eigen values of f(T) are given by

$$\det (f(A) - \lambda I) = 0$$

$$\Rightarrow \begin{vmatrix} 9 - \lambda & 18 \\ 6 & 21 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (9-\lambda)(21-\lambda)-108=0$$

$$\Rightarrow \lambda^2 - 30\lambda + 81 = 0$$

$$\Rightarrow (\lambda - 3)(\lambda - 27) = 0$$

$$\Rightarrow \lambda = 3, 27.$$

$$f(2) = 4 - 4 + 3 = 3$$

and $f(6) = 36 - 12 + 3 = 27$

: 2 and 6 are eigen values of T

 \Rightarrow f(2) and f(6) are eigen values of f(T). Hence verified.

Problem Set 8 (B)

1. Let $f(x) = 2x^2 - 3x + 1$ and $g(x) = x^2 - 2x + 3$

$$A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix}$. Evaluate

(a)
$$f(A)$$
 (b) $g(A)$ (c) $f(B)$ (d) $g(B)$ (e) $f(A + B)$ (f) $g(A - B)$

- 2. Let $T: V_2 \rightarrow V_2$ be defined by T(x, y) = (x, 0). Find the eigen value and corresponding eigen vector of T.
- 3. Find the eigen values and eigen vectors of the identity matrix.
- 4. Show that the matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \text{ have same eigen values.}$$

5. Let T be a linear map on V_3 and $A = [T]_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

Verify that if λ is an eigen value of T then $f(\lambda)$ the eigen value of f(T), where $f(x) = x^2 - x + 1$

6. Prove that $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ is a zero of $f(t) = t^2 - 4t - 5$

[Hints:
$$f(A) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
]