$k - \omega$ SST

Turbulence Model

Nick Earle

MECH 511 Department of Mechanical Engineering University of British Columbia

February 25th, 2019

Why SST?

Formulation

Constants and Definitions

Boundaries

Validation and Flows

Variations

Why SST?

Formulation

Constants and Definition

Boundaries

Validation and Flows

Variations

Why SST? Formulation Constants and Definitions Boundaries Validation and Flows Variations Conclusion

Why SST?

- ► Two-equation eddy-viscosity turbulence models have a difficult time correctly predicting the location and amount of flow separation when facing adverse pressure gradients
- ▶ The $k-\omega$ Shear Stress Transport (SST) turbulence model developed by Florian Menter [1] looks to combine the best of the $k-\epsilon$ model with the $k-\omega$ model to improve accuracy and agreement with experimental and direct numerical simulation data

The New Baseline (BSL) Model

- ▶ Based on the Wilcox $k \omega$ model
- ▶ Designed to take advantage or the accuracy and robustness of the $k-\omega$ model near the wall and the "freestream independence" of the $k-\epsilon$ model outside of the boundary layer
- ▶ Uses a transformed version of the $k \epsilon$ model, introducing an additional cross-diffusion term
- ▶ Each model multiplied by F_1 and $(1 F_1)$, then summed.
 - $ightharpoonup F_1 = 1$ in sublayer and logarithmic region of boundary layer
 - $F_1 \rightarrow 0$ in the wake and free stream regions

The Shear Stress Transport (SST) Model

► Exactly the same as the BSL model except that the eddy viscosity is redefined to account for the transport of the principle turbulent shear stress, $\tau =: -\rho \overline{u'v'}$

Why 55 I :

Formulation

Constants and Definition

Boundaries

Validation and Flows

Variations

BSL/SST Formulation

Original $k - \omega$ model:

$$\frac{\partial(\rho k)}{\partial t} + u_i \frac{\partial(\rho k)}{\partial x_i} = \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_{k1} \mu_t) \frac{\partial k}{\partial x_j} \right]$$

$$\frac{\partial(\rho\omega)}{\partial t} + u_i \frac{\partial(\rho\omega)}{\partial x_i} = \frac{\gamma_1}{\nu_t} \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta_1 \rho \omega^2 + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_{\omega 1} \mu_t \right) \frac{\partial \omega}{\partial x_j} \right]$$

Transformed $k - \epsilon$ model:

$$\frac{\partial(\rho k)}{\partial t} + u_i \frac{\partial(\rho k)}{\partial x_i} = \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_{k2} \mu_t \right) \frac{\partial k}{\partial x_j} \right]$$

$$\frac{\partial(\rho\omega)}{\partial t} + u_i \frac{\partial(\rho\omega)}{\partial x_i} = \frac{\gamma_2}{\nu_t} \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta_2 \rho \omega^2 + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma_{\omega 2} \mu_t\right) \frac{\partial\omega}{\partial x_j} \right] + 2\rho \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial\omega}{\partial x_j}$$

BSL/SST Formulation

New Baseline (BSL) model:

$$\frac{\partial(\rho k)}{\partial t} + u_i \frac{\partial(\rho k)}{\partial x_i} = \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta^* \rho \omega k + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j} \right]$$

$$\begin{split} \frac{\partial(\rho\omega)}{\partial t} + u_i \frac{\partial(\rho\omega)}{\partial x_i} &= \frac{\gamma}{\nu_t} \tau_{ij} \frac{\partial u_i}{\partial x_j} - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left[(\mu + \sigma_\omega \mu_t) \frac{\partial \omega}{\partial x_j} \right] \\ &+ 2\rho (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} \end{split}$$

Where for any constant ϕ_1 in the original model or ϕ_2 in the transformed model:

$$\phi = F_1 \phi_1 + (1 - F_1) \phi_2$$

Why SST

Formulation

Constants and Definitions

Boundaries

Validation and Flows

Variations

BSL Constants

The constants for the BSL model are simply those of the Wilcox $k-\omega$ model and the standard $k-\epsilon$ model. Set 1 (ϕ_1) :

$$\sigma_{k1} = 0.5,$$
 $\sigma_{\omega 1} = 0.5,$ $\beta_1 = 0.0750$
 $\beta^* = 0.09,$ $\kappa = 0.41,$ $\gamma_1 = \beta_1/\beta^* - \sigma_{\omega 1}\kappa^2/\sqrt{\beta^*}$

Set 2 (ϕ_2):

$$\sigma_{k2} = 1.0,$$
 $\sigma_{\omega 2} = 0.856,$ $\beta_2 = 0.0828$
 $\beta^* = 0.09,$ $\kappa = 0.41,$ $\gamma_2 = \beta_2/\beta^* - \sigma_{\omega 2}\kappa^2/\sqrt{\beta^*}$

BSL Definitions

Kinematic eddy viscosity:

$$\nu_t = \frac{k}{\omega}$$

Turbulent stress tensor $\tau_{ij} = -\rho \overline{u_i' u_j'}$:

$$\tau_{ij} = \mu_t \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) - \frac{2}{3} \rho k \delta_{ij}$$

BSL Definitions

Blending function:

$$F_1 = tanh(arg_1^4)$$

$$arg_1 = min \left[max \left(\frac{\sqrt{k}}{0.09 \omega y}; \frac{500 \nu}{y^2 \omega} \right); \frac{4 \rho \sigma_{\omega 2} k}{C D_{k \omega} y^2} \right]$$

where y is the distance from that point to the nearest surface and $CD_{k\omega}$ is the positive portion of the cross-diffusion term given by:

$$CD_{k\omega} = max \left(2\rho\sigma_{\omega} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i}; 10^{-20} \right)$$

SST Constants and Definitions

The constants for the SST model are identical to the BSL model except for:

▶ Set 1 (ϕ_1):

$$\sigma_{k1} = 0.85, \quad \sigma_{\omega 1} = 0.5, \quad \beta_1 = 0.0750, \quad a_1 = 0.31$$

 $\beta^* = 0.09, \quad \kappa = 0.41, \quad \gamma_1 = \beta_1/\beta^* - \sigma_{\omega 1}\kappa^2/\sqrt{\beta^*}$

And the eddy viscosity:

$$\nu_t = \frac{\mathsf{a}_1 \mathsf{k}}{\mathsf{max}(\mathsf{a}_1 \omega; \Omega \mathsf{F}_2)}$$

where Ω is the absolute value of the vorticity.

SST Definitions

Blending function:

$$F_2 = tanh(arg_2^2)$$

$$arg_2 = max\left(2\frac{\sqrt{k}}{0.09\omega y}; \frac{500\nu}{y^2\omega}\right)$$

Figure: Blending functions F_1 and F_2 vs y/δ for different velocity profiles[2]

Why SS I

Formulation

Constants and Definition

Boundaries

Validation and Flows

Variations

Recommended SST Freestream Boundary Conditions

$$rac{U_{\infty}}{L} < \omega_{\infty} < 10 rac{U_{\infty}}{L}$$
 $rac{10^{-5} U_{\infty}^2}{Re_L} < k_{\infty} < rac{10^{-2} U_{\infty}^2}{Re_L}$ $\omega_{wall} = 10 rac{6
u}{eta_1 (\Delta y_1)^2}$ $k_{wall} = 0$

where L is the approximate length of the computational domain.

Why SST

Formulatio

Constants and Definition

Boundaries

Validation and Flows

Variations

hy SST? Formulation Constants and Definitions Boundaries Validation and Flows Variations Conclusion

SST Validation

Experiments and flows used for validation and calibration:

- Flat Plate Boundary Layer
- Free Shear Layers
- Adverse Pressure Gradient Flow
- Backward-Facing Step Flow
- NACA 4412 Airfoil Flow
- Transonic Bump Flow

Flat Plate Boundary Layer

Here we see the freestream dependency of the eddy-viscosity of the original $k-\omega$ model and the BSL model[1].

Adverse Pressure Gradient Flow

This flow as experimented by Driver is of a flow around a circular cylinder at $Re_D = 2.8 \times 10^5$ with a diameter D = 140mm [3].

Figure: Distributions for Driver's adverse pressure gradient flow[1]

Backward-Facing Step Flow

This flow as experimented by Driver and Seegmiller is over a backward-facing step. The four models produced reattachment lengths of: 6.5(SST), 5.9(BSL), 6.4($k-\omega$), 5.5($k-\epsilon$), and 6.4 for the experiment[4].

(b) Velocity Profiles at locations: x/H = 2.0, 4.0, 6.5, 8.0, 14.0, 32.0

Figure: Distributions for Driver and Seegmiller's backward-facing step flow[1]

hy SST? Formulation Constants and Definitions Boundaries Validation and Flows Variations Conclusion

NACA 4412 Airfoil

This flow was experimented around a NACA 4412 airfoil at a 13.87° angle of attack with a $Re_L = 1.52 \times 10^6$ [5].

Figure: Velocity profiles on the upper surface of the NACA 4412 airfoil at 13.87° angle of attack at streamwise stations x/c=0.675, 0.731, 0.786, 0.842, 0.897, 0.953[1]

Transonic Bump Flow

This final flow was is an axisymmetric transonic shockwave/turbulent boundary layer experiment around a circular arc by Bachalo and Johnson at a mach number of 0.925[6].

Figure: Surface pressure distributions for transonic bump flow[1]

Why SS I

Formulation

Constants and Definition

Boundaries

Validation and Flows

Variations

SST Variations and Extensions

Since Menter's original paper in 1993 many variations and extensions have been made to the SST model. These include:

- SST with Vorticity Source Term (SST-V)
- SST from 2003 (SST-2003)
- SST with Controlled Decay (SST-sust)
- SST with Controlled Decay and Vorticity Source Term (SST-Vsust)
- SST with Rotation/ Curvature Correction (SST-RC)
- SST with Hellsten's Simplified Rotation/ Curvature Correction (SST-RC-Hellsten)

Why SS I

Formulation

Constants and Definition

Boundaries

Validation and Flows

Variations

hy SST? Formulation Constants and Definitions Boundaries Validation and Flows Variations Conclusions

- ▶ Simply better than $k \omega$ and $k \epsilon$ for adverse pressure gradients and determining flow separation.
- Does require some addition programming effort
- However, no significant change in computing time or stability

Conclusions

Bibliography I

F. R. Menter.

Two-equation eddy-viscosity turbulence models for engineering applications.

AIAA Journal, 32(8):1598-1605, 1994.

F. R. Menter.

Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows.

In 23rd Fluid Dynamics Conference, number 93, Orlando, Florida, 1993, AIAA,

Conclusions

Bibliography II

D. M. Driver.

Reynolds Shear Stress Measurements in a Separated Boundary Layer.

AIAA Paper, (91):1787, June 1991.

Seegmiller H. L. Driver, D. M.

Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow.

AIAA Journal, 23(2):163–172, 1985.

Wadcock A. J. Coles, D.

Flying-Hot-Wire Study of Flow Past A NACA 4412 Airfoil at Maximum Lift.

AIAA Journal, 17(4):321–328, 1979.

hy SST? Formulation Constants and Definitions Boundaries Validation and Flows Variations **Conclusions**

Bibliography III

Johnson D. A. Bachalo, W. D.

An Investigation of Transonic Turbulent Boundary Layer Separation Generated on an Axisymmetric Flow Model. AIAA Paper, (79):1479, June 1970.

