19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(A n'utiliser que pour le classement et les commandes de reproduction.)

70.08897

2.082.366

(21) No d'enregistrement national :

(A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec l'I.N.P.I.)

® BREVET D'INVENTION

PREMIÈRE ET UNIQUE PUBLICATION

22	Date de dépôt Date de la décision de délivrance Publication de la délivrance	12 mars 1970, à 15 h 25 mn. 15 novembre 1971. B.O.P.I. — «Listes» n. 49 du 10-12-1971.
5 1)	Classification internationale (Int. Cl.)	С 01 ь 7/00.
71)	Déposant : Société dite : SOCIÉTÉ DES en France.	USINES CHIMIQUES DE PIERRELATTE, résidant
73) 74)	Titulaire : <i>Idem</i> (71) Mandataire :	
54	Procédé de préparation électrolytique du fl	uor.

- 72 Invention de : Michel Caron, Philippe Coste, Claude Coquet et Marcel Rey.
- 33 32 31 Priorité conventionnelle :

15

20

30

L'invention concerne un procédé perfectionné de fabricati n de fluor gazeux par électrolyse d bains fluorés anhydres.

1

Le fluer est usuellem nt btemu dans l'industrie par la décemposition électrolytique, à l'abri de l'air, de HF anhydre, additionné d'un fluorure alcalin tel que KF pour que le bain soit ionisé. La composition molaire de ce bain est voisine de KF, 2 HF et la température de fonctionnement n'est pas inférieure à 80°C. On recueille à l'anode du fluor contenant en volume au moins 6 % de vapeurs de HF. La densité de courant anodique ne dépasse pas 15 A/dm2 sous une tension totale moyenne de 10 V aux bornes de l'électrolyseur. Les cellules d'électrolyse sont ordinairement en acier doux, de même que les cathodes. Les anodes sont en carbone. La température du bain est maintenue grâce à un circuit étanche d'eau froide à travers une double enveloppe et un serpentin central. La vie des cellules est limitée par la destruction des anodes qui, à la longue, se fissurent par échauffement local et se corrodent chimiquement.

Par ailleurs des études ont été consacrées à l'électrolyse des mélanges liquides d'acide fluorhydrique et d'ammoniac anhydres, ou, ce qui revient au même, d'acide fluorhydrique et de fluorure d'ammonium anhydres.

L'ouvrage, publié en 1959, "Gmelins Handbuch für der anorganische Chemie" donne les résultats des recherches d'Otto Ruff. La composition du mélange gazeux recueilli à l'anode dépend de la teneur en NH₃ du bain : si cette teneur est élevée on obtient principalement de l'azote, alors que si elle est faible on obtient principalement du fluor. Un tableau indique les produits obtenus pour diverses concentrations de bain, allant de 31 % à 16 % en poids de NH₃. En travaillant vers 125°C, avec une concentration en NH₃ de 31 à 29 %, on obtient de l'azote comme produit principal. Lorsqu'on diminue la concentration de NH₃ et la température de travail, du fluor commence à se dégager pour des concentrations en NH₃ inférieures ou égales à 26 %. Dans la dernière zone de concentration étudiée dans l'ouvrage, avec une teneur en NH₃ allant de 24,5 à 16 %, et en travaillant entre 65 t 40°C, on obtient NF₃ comme produit principal, avec des produits secondaires parmi lesquels figure le fluor.

Ceci correspond parfaitement avec ce qui est dit dans l'ouvrage de Hempel: "Encyclopaedia of chemistry", à savoir que, pour moins de 10 % de NH, le produit de l'électrolyse est du fluor.

D'autre part Spears et Hackermann, en 1968, ont obtenu du fluor presque pur par électrolyse d'un mélange anhydre de HF et NH₄F, contenant moins de 2 % NH₅ en poids, n travaillant à -20°C sous 5 V, avec une d nsit' de courant anodique ne dépassant pas 0,2 A/dm2.

35

Or la demanderesse, grâce aux travaux de Messieurs Michel CARON, Philippe COSTE, Claude COQUET et Marcel REY, a trouvé que l'électrolyse d'un mélang d'acide fluorhydrique t d'ammoniac fournissait, dans des conditions particulières et inattendues au vu de la technique connue, du fluor gazeux contenant moins de 6 % (et souvent moins de 3 %) de HF en volume et contenant au plus des traces d'autres composés chimiques, c'est-à-dire du fluor de qualité au moins égale à celle du fluor produit par électrolyse de bains usuels à base de KF et HF, et ceci dans des conditions beaucoup plus favorables industriellement.

Le procédé de l'invention, qui consiste à électrolyser à l'abri de 10 l'air, sous une tension d'au moins 6 V, dans une cellule en acier ou en monel, avec cathodes en acier et anodes en carbone, un mélange anhydre de HF et NH, est caractérisé par le fait que ledit mélange contient entre 17,5 et 20,5 % en poids de NH, de préférence au voisinage de 19 % NH, et que la température de travail est comprise entre 0 et 5000, de préférence entre 15 et 3500. La composition molaire globale correspondante du bain est maintenue comprise entre NH, 7, 3 HF et NH, 7, 2,3 HF, de préférence voisine de NH, 2,6 HF, par alimentation continue en HF.

Ce procédé utilise donc les propriétés remarquables d'une zone étroite de concentration, centrée sur la composition NH₄F, 2,6 HF, qui n'avait pas été mise en évidence jusqu'alors par les chercheurs qui s'étaient intéressés à l'électrolyse des bains contenant HF et NH₃.

Selen une variante du procédé on peut remplacer dans l'électrolyte une partie de NH₄F par au meins un fluorure alcalin, à condition teutefois de conserver au moins les 3/4 de la fraction molaire de NH₄F. Ainsi, à partir de la composition préférentielle NH₄F, 2,6 HF, on pourra constituer des bains dont la composition melaire peurra aller jusqu'à 0,25 KF, 0,75 NH₄F, 2,6 HF.

Le precédé de l'invention est mis en oeuvre avec l'appareillage usuel des cellules à fluor : cuve en acier ou monel, cathodes en acier, anodes en carbone, refroidissement par circulation d'eau.

Par rapport au procédé industriel courant il présente des avantages considérables.

Tout d'abord, du point de vue électrique, la surtensien anodique est plus basse de 0,5 à 1 V au moins pour une même densité de courant, et la résistivité apparente du bain est notablement plus faible. Le rendement énergétique de la cellule en est amélieré. Ainsi le fonctionnement d la c llule sous 15 A/dm2

10

15

20

25

30

correspond à une économie d'énergie d'environ 25 % à 30°C par rapport au fonctionnement des c llul s usuelles à 90°C : 7 à 8 V contre 9 à 10 V.

3

D'un autre point d vue, la réduction du dégagement de chaleur sur les anodes et dans le bain, du fait de l'abaissement des surtensions et des résistivités, permet d'augmenter, sans fatigue anormale des anodes, la densité d courant dans la cellule. A 9 ou 10 V entre anodes et cathodes, il est possible de travailler à 30 et 35 A/dm2. Ce qui, à égalité de consommation de KwH par kg de flu r produit, permet de substantielles économies sur l'amortissement des cellules.

Ensuite, à une température aussi basse que 15 à 35°C, d'une part la tension de vapeur du HF du bain est faible, ce qui permet de recueillir du fluor contenant très peu de HF, d'autre part les réactions chimiques secondaires indésirables entre l'ammoniac du bain et le fluor naissant donnant principalement du NF3 ne se produisent pas et le fluor recueilli ne contient donc pas de composés explosifs de fluor et d'azote tels que les fluoramines. Non seulement la pureté du fluor est excellente, mais encore il n'y a pas de danger d'explosions.

Un autre avantage est l'augmentation de la durée des anodes. A la température de travail la corrosion par le fluor est ralentie. De plus, du fait de la faible surtension anodique, l'échauffement des anodes est réduit et leur température ne dépasse pas de plus de 10°C celle du bain, alors que l'écart de température atteint 30°C dans le procédé usuel. Cette faible surchauffe et la meilleur conductibilité thermique du bain réduisent le gradient thermique à l'intérieur des anodes, donc les risques de fissuration et de dégradation des contacts avec les barres d'amenée de courant.

Enfin les bains utilisés dans le precédé de l'invention ont des points de rusion compris entre -7°C et 23°C, alors que le mélange KF, 2 HF ne fond qu'à 72°C. Ce fait, combiné à la meilleure conductibilité thermique des bains de l'invention, permet un maintien plus facile de la température des cellules, efficacement refroidies par circulation d'eau. Les parois ne sont plus recouvertes de cristaux. Le ralentissement ou l'arrêt de la cellule n'entraîne en général pas la solidification du bain et le redémarrage ne comporte plus la lourde sujétion d la fusion du contenu de la cuve, dont la conduite est ainsi plus souple.

En résumé, l'exploitation des cellules selon le procédé de l'invention est plus économique, plus productive, plus souple et plus sûre.

Les exemples non limitatifs survants illustrent divers essais de mis en euvre du proc'dé de l'inv ntion.

15

20

25

30

EXEMPLE 1 - On a fait fonctionner pendant 1200 heures un cellule d'él ctrolys à un anode travaillant sous une densité de courant de 15 A/dm2.

L'anode centrale en carbone a une surface utile de 7 dm2. La cuve en acier est reliée électriquement à deux cathodes en acier, situées de part et d'autre de la plaque de carbone anodique. Au milieu de l'intervalle de 40 mm qui sépare l'anode et les cathodes, est aitué un diaphragme plan, formé d'un grillage de fils en monel, iselé électriquement. Le refroidissement est assuré par un courant d'eau dans la deuble parei de la cuve.

La teneur en NH du bain, constamment alimenté en HF, était maintemue vers 19,1 % en poids, et la température à 28ºC. La tension aux bornes était d 7,8 V sous 105 A. et la teneur en HF du fluor anodique égale à 2,9 % en volume.

EXEMPLE 2 - On a fait fenctionner pendant 800 heures une cellule d'électrolyse à 32 anodes travaillant sous une densité de courant de 15 A/dm2.

Les 32 ancdes de cette cellule sont des plaques rectangulaires en carbone, présentant une surface utile de 270 dm2. La cuve en acier est reliée électriquement aux cathodes en acier, dent la surface utile est de 560 dm2. L'intervalle entre ancdes et cathodes est de 40 mm. Le diaphragme en grillage monel est placé à 20 mm des ancdes, et isolé électriquement. Le refroidissement est assuré par un courant d'eau auteur de la cuve et dans un serpentin central.

La teneur en NH, du bain était maintenne à 19 % en peids par alimentation en HF, et la température à 302C. La tension était de 7,8 V sous 4050 A., et la teneur en HF du fluor anodique ne dépassait pas 2,9 % en volume.

EXEMPLE 3 - On a fait fonctionner pendant 1000 heures la même cellule à 32 ansdes avec une densité de courant anodique de 22 A/dm2.

La teneur en NH₃ du bain variait entre 18 et 20 % en poids. Les conditions de refroidissement étant les mêmes que dans l'exemple précédent, la température du bain était de 32ºC, et la tension aux bornes était de 8,9 V pour 6000 A. La teneur en HF du fluor anodique était de 3,1 % en volume.

EXEMPLE 4 - On a fait fonctionner pendant 2460 heures la cellule à 1 anode de l'exemple 1 avec une densité de courant anodique de 28 A/dm2.

La teneur en NH du bain était maintenue à 19,2 % en poids, et la température était de 32ºC. Pendant le fonctionmement sous un courant de 200 A, la tension aux bornes est restée constante et égale à 9,3 V. L'analyse volumétrique moy nne des gaz anodiques a été la suivante :

10

15

20

25

30

HF	3 %
NF ₃	0,2 %
N ₂ + O ₂	0,2 %
CF ₄	traces
F ₂	reste

Le démontage volentaire de la cellule a permis de constater que l'anode était en excellent état et pouvait être remise en service. La surface était apparemment intacte et le contact entre l'anode et la barre d'amenée de courant était encore de bonne qualité. En effet, par comparaison avec les contacts neufs qui dissipaient 13 Watts sous 200 A, les contacts usagés dissipaient 50 Watts. Après la même durée de fonctionnement, mais avec un bain KF, 2 HF travaillant à 90°C sous 100 A, soit une densité de courant anodique de 14,3 A/dm2, les contacts usagés dissipaient 600 Watts environ.

EXEMPLE 5 - on a fait fonctionner pendant 960 heures une cellule à 4 anodes travaillant sous une densité de courant anodique de 34 A/dm2.

Les 4 anodes en carbone de cette cellule ont une surface utile de 35 dm2. La cuve est en acier. Les cathodes sont en acier, reliées électriquement à la cuve et le diaphragme électriquement isolé est en grillage monel. La distance interpolaire est de 40 mm et le refroidissement est assuré par courant d'eau dans la double paroi de la cuve.

Le bain contenait 14 % en poids de NH₃, 15 % en poids de KF et était alimenté en HF anhydre à intervalles réguliers. La tension aux bornes, sous un courant de 1200 A, était de 9 V ⁺ 0,1 et la température de 45°C. Le gaz recueilli à l'anode avait la composition volumétrique moyenne :

HF	5,9 %
NF ₃	0,25 %
$N_2 + O_2$	0,4 %
CF ₄	traces
F ₂	reste

Au démontage, on n'a pas constaté de détérioration aux contacts anodes/barres, et les anodes étaient en excellent état.

REVENDICATIONS

- 1. Procédé de fabrication d'fluor contenant moins de 6 % HF en volume, par électrelyse à l'abri de l'air sous une tension d'au moins 6 V d'un mélange anhydre de NH₃ et HF continuellement alimenté en HF, caractérisé en ce que la teneur du bain en NH₃ est maintenue sensiblement comprise entre 17,5 % et 20,5 % en poids et la température sensiblement comprise entre 0 et 50°C.
- 2. Procédé selon la revendication 1, eù la teneur du bain en NH₃ est maintenue voisine de 19,5 % en poids et la température sensiblement comprise entre 15ºC et 30ºC.
- 3. Procédé selon l'une des revendications l eu 2, eù une fraction de NH F ne dépassant pas le quart de sa proportion molaire est remplacée mole pour mole par au moins un fluorure alcalin.
 - 4. Procédé selon l'une des revendications l à 3, eù la densité de courant est de 15 A/dm2 et la tension entre 7 et 8 V.
- 5. Procédé selen l'ume des revendications 1 à 3, eù la densité de courant est au moins égale à 28 A/dm2 et la tension comprise entre 9 et 10 V.