Session 4: Hands-on Object Detection Lab

Transfer Learning for Building Detection from Sentinel Imagery

Stylianos Kotsopoulos

EU-Philippines CoPhil Programme

Lab Overview

Duration: 2.5 hours Type: Hands-on Coding Lab Platform: Google Colab with GPU

You will:

- Load and configure pre-trained object detectors
- Prepare Sentinel-2 imagery and COCO annotations
- Fine-tune detector on Metro Manila building dataset
- Evaluate with mAP, Precision, Recall metrics
- Visualize detections and export results for GIS

Prerequisites:

- Session 3 (object detection theory)
- Google Colab account
- GPU runtime enabled
- Basic Python/TensorFlow knowledge

Resources:

- Notebook: Day3_Session4_Object_Detection_STUDENT.ipynb
- Demo dataset: Metro Manila urban patches

Case Study: Metro Manila

Philippine Urban Monitoring Context

Location: Metro Manila - National Capital Region (NCR) Focus Areas: Quezon City and Pasig River corridor Challenge: Rapid informal settlement growth and urban sprawl

i Why This Matters

Metro Manila's rapid urbanization creates challenges for:

- Disaster Risk Reduction Identifying vulnerable settlements in flood zones
- **Urban Planning** Monitoring informal settlements and infrastructure
- Population Estimation Building counts for demographic analysis
- Resource Allocation Targeting social services and infrastructure

Data and Objectives

Data Source: Sentinel-2 Multispectral Imagery

- Spatial Resolution: 10m RGB bands (B4, B3, B2)
- Temporal Coverage: 5-day revisit for change detection
- Additional Bands: NIR (B8) for enhanced detection
- Study Area: Urban patches from Quezon City

Lab Goal:

Automate building detection using transfer learning to enable rapid, scalable urban monitoring

The Challenge Manual Approach Problems

- Time-consuming digitization
- Inconsistent interpretation
- Cannot scale to city-wide mapping
- Difficult to update regularly
- Subjective delineation

Deep Learning Solution

- Automated identification from satellite imagery
- Rapid mapping of large areas in hours
- Change detection over time
- Scalable monitoring for metropolitan regions
- Quantitative analysis of urban patterns

Lab Workflow

Transfer Learning Workflow

7 Key Steps:

- 1. Setup & load pre-trained model
- 2. Load demo building dataset
- 3. Prepare data and annotations
- 4. Fine-tune detector (10-30 epochs)
- 5. Run inference on test images
- 6. Evaluate with mAP metrics
- 7. Visualize and export results

Part 1: Transfer Learning Concepts

What is Transfer Learning?

Definition: Adapt a model pre-trained on a large dataset to your specific task with minimal additional training data

Analogy: Like a doctor specializing in cardiology after completing general medical training - the foundational knowledge transfers, requiring less time to specialize

Transfer Learning for Object Detection

Pre-trained Model Knows

- What makes objects distinct from background
- How to propose bounding boxes
- How to classify regions
- General visual features (edges, textures, shapes)

Trained on: COCO dataset (330K images, 80 classes)

We Adapt It For

- Detecting buildings in satellite imagery
- Understanding urban patterns
- Philippine-specific urban morphology
- Sentinel-2 spectral characteristics

Fine-tune with: 100-500 labeled satellite images

Why Transfer Learning for Philippine EO?

Challenge: Limited Labeled Data

- Annotation is expensive (bounding boxes take time)
- Philippine-specific datasets are scarce
- Small agencies can't afford large labeling efforts
- Traditional approach: Need 10,000+ annotated images

. . .

Solution: Transfer Learning

- Start with pre-trained model (free, publicly available)
- Fine-tune with 100-500 labeled satellite images
- Achieve 75-85% accuracy (operational quality)
- Training time: **30-60 minutes** (vs. days from scratch)

Model Options

Model	Speed	Accuracy	Best For
SSD MobileNet V2	Fast	Good	Real-time applications, resource-constrained
Faster R-CNN ResNet50	Slow	Excellent	Offline analysis, high accuracy priority
YOLO v5/v8	Moderate	Very Good	Balanced speed and accuracy

☐ Recommendation for Lab

We'll use SSD MobileNet V2 - fast training, good accuracy, works well with Sentinel-2 imagery

Part 2: Data Preparation

Exercise 1: Load Pre-trained Model (20 min)

Objective: Load a pre-trained object detector from TensorFlow Hub

```
import tensorflow_hub as hub

load pre-trained SSD MobileNet

model_url = "https://tfhub.dev/tensorflow/ssd_mobilenet_v2/fpnlite_320x320/1"

detector = hub.load(model_url)

# Test on sample image

detections = detector(sample_image)
```

What You'll Learn:

- How to load pre-trained models from TF Hub
- Understanding model input/output format
- Visualizing default detections (COCO classes)

Exercise 2: Prepare Training Data (30 min)

Objective: Load and prepare satellite imagery with building annotations

Data Format:

Images:

- Sentinel-2 RGB patches
- Size: 320×320 or 512×512 pixels
- Format: PNG or GeoTIFF
- Normalized 0-1 range

Annotations:

- COCO JSON format
- Bounding boxes: [x, y, width, height]
- Category: building (id=1)
- Includes image metadata

COCO JSON Format Example

```
"images": [
       {"id": 1, "file_name": "metro_manila_001.png", "width": 512, "height": 512}
     "annotations": [
6
         "id": 1,
         "image_id": 1,
8
         "category_id": 1,
         "bbox": [120, 150, 80, 60],
10
11
         "area": 4800,
12
         "iscrowd": 0
13
14
15
     "categories": [
       {"id": 1, "name": "building", "supercategory": "structure"}
16
17
18 }
```


Data Preparation Tasks

Steps:

- 1. Load demo dataset 100 pre-annotated urban patches
- 2. Visual inspection View images with bounding boxes overlay
- 3. Data split 70% train, 15% validation, 15% test
- 4. Convert format Transform to model's expected input
- 5. Data augmentation (optional) Rotation, flip, brightness

(i) Demo Data Included

For this lab, we provide ready-to-use Metro Manila satellite patches with pre-annotated buildings. No lengthy data collection required!

Part 3: Fine-Tuning

Exercise 3: Fine-tune Model (40 min)

Objective: Adapt the pre-trained detector to recognize buildings in satellite imagery Fine-tuning Strategy:

- Freeze early layers Keep general feature extractors
- Train detection head Adapt bounding box prediction
- Small learning rate 0.0001 to 0.001 (avoid catastrophic forgetting)
- Limited epochs 10-30 epochs typically sufficient
- Early stopping Monitor validation loss

Fine-Tuning Code Structure

```
1 # Configure optimizer
2 optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)
4 # Training loop
5 for epoch in range(20):
       for batch_images, batch_boxes in train_dataset:
           with tf.GradientTape() as tape:
               # Forward pass
8
               predictions = model(batch_images, training=True)
9
10
               # Calculate loss (classification + localization)
11
12
               loss = detection_loss(predictions, batch_boxes)
13
           # Backpropagation
14
           gradients = tape.gradient(loss, model.trainable_variables)
15
           optimizer.apply_gradients(zip(gradients, model.trainable_variables))
16
17
18
       # Validation
```


What You'll Observe

Training Progress:

- Training loss decreases steadily over epochs
- Validation loss decreases then plateaus (convergence)
- Typical training time: **30-45 minutes** on Colab GPU
- Without GPU: 5-6 hours (GPU acceleration essential!)

Signs of Good Training:

- Train and validation loss both decrease
- Small gap between train and val loss
- Validation loss stabilizes (not increasing)

Part 4: Evaluation

Exercise 4: Evaluate with mAP (25 min)

Objective: Calculate mean Average Precision - the standard object detection metric

What is mAP?

Precision: Of detected buildings, how many are correct?

$$Precision = \frac{True Positives}{True Positives + False Positives}$$

Recall: Of all actual buildings, how many did we detect?

Recall =
$$\frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}$$

Understanding Average Precision

Average Precision (AP):

- Area under the precision-recall curve
- Summarizes precision at all recall levels
- Higher AP = better model performance

mAP (mean Average Precision):

- Mean AP across all classes
- For single-class (buildings): mAP = AP
- Standard metric for comparing detectors

IoU Threshold

Intersection over Union (IoU):

$$IoU = \frac{Area \text{ of Overlap}}{Area \text{ of Union}}$$

Common Thresholds:

- mAP@0.5 (VOC metric) Detection correct if IoU ≥ 0.5
- mAP@[0.5:0.95] (COCO metric) Average across IoU 0.5 to 0.95

We'll use mAP@0.5 - more lenient, suitable for satellite imagery where exact boundaries are challenging

Evaluation Code

```
1 # Evaluate on test set
2 from object_detection.utils import object_detection_evaluation
4 evaluator = object_detection_evaluation.ObjectDetectionEvaluator(
       categories=[{"id": 1, "name": "building"}]
 5
6 )
8 for test_image, test_boxes in test_dataset:
       detections = model(test_image)
9
       evaluator.add_single_ground_truth_image_info(test_boxes)
10
       evaluator.add_single_detected_image_info(detections)
11
12
   results = evaluator.evaluate()
14
15 print(f"mAP@0.5: {results['mAP_50']:.3f}")
16 print(f"Precision: {results['precision']:.3f}")
17 print(f"Recall: {results['recall']:.3f}")
```


Expected Performance

Phase	mAP@0.5	Interpretation
Before fine-tuning	0.10-0.20	Pre-trained on natural images, not adapted for buildings
After fine-tuning	0.70-0.85	Operational quality, suitable for urban monitoring
Production target	>0.80	High confidence for decision-making

! Performance Depends On

- Quality and quantity of training data
- Annotation accuracy
- Model architecture chosen
- Fine-tuning hyperparameters

Part 5: Visualization

Exercise 5: Visualize Detections (20 min)

Objective: Visualize model predictions on Metro Manila satellite imagery

Tasks:

- 1. Run inference on test images
- 2. Draw bounding boxes with confidence scores
- 3. Compare before/after fine-tuning
- 4. Analyze false positives and false negatives

Visualization Code

```
1 import matplotlib.pyplot as plt
2 import matplotlib.patches as patches
4 # Load test image
5 image = load_satellite_image("metro_manila_test_001.tif")
6 detections = model.predict(image)
8 # Create figure
9 fig, ax = plt.subplots(1, figsize=(12, 12))
10 ax.imshow(image)
11
12 # Draw bounding boxes
13 for det in detections:
       if det['score'] > 0.5: # Confidence threshold
14
           x, y, w, h = det['bbox']
15
           rect = patches.Rectangle((x, y), w, h,
16
                                     linewidth=2, edgecolor='red',
17
                                     facecolor='none')
18
```


Analysis Tasks

Quantitative:

- Count detected buildings per image
- Compare against ground truth count
- Calculate detection rate (recall)
- Identify confidence score distribution

Qualitative:

- Inspect false positives (non-buildings detected)
- Inspect false negatives (buildings missed)
- Identify challenging cases:
 - Dense urban areas
 - Buildings with shadows
 - Partially occluded structures

Common Detection Patterns Well-Detected

- Isolated buildings with clear boundaries
- Moderate-sized structures (20-100m²)
- Good contrast with surroundings
- Minimal shadow occlusion

Challenging Cases

- Dense informal settlements Buildings too close
- Shadows From tall buildings or terrain
- **Vegetation cover** Trees obscuring rooftops
- Construction sites Temporary structures

Part 6: Applications & Deployment

Metro Manila Urban Monitoring Applications

1. Informal Settlement Mapping

Application: Identify unplanned settlements in flood-prone areas **Stakeholder:** NDRRMC, Local Government Units (LGUs) **Output:** Building density maps, population estimates

Workflow:

- Detect all buildings in area of interest
- Calculate building density (buildings per km²)
- Overlay with flood hazard maps
- Prioritize vulnerable areas

2. Urban Growth Monitoring

Application: Track new construction over time **Method:** Compare detections from multi-temporal imagery **Output:** Change maps showing urban expansion hotspots

Process:

- 1. Detect buildings in 2020 imagery
- 2. Detect buildings in 2024 imagery
- 3. Identify new detections (2024 2020)
- 4. Quantify growth rate and patterns

3. Disaster Impact Assessment

Application: Post-typhoon damage assessment **Method:** Detect changes in building footprints **Output:** Damage severity maps for relief operations

Indicators:

- Missing buildings (collapsed structures)
- Changed building sizes (partial destruction)
- New debris areas
- Rapid assessment within 24-48 hours

4. Infrastructure Planning

Application: Identify under-served areas **Stakeholder:** DPWH, MMDA **Output:** Priority areas for infrastructure development

Analysis:

- Map building density across city
- Identify low-density areas lacking services
- Correlate with existing infrastructure (roads, utilities)
- Plan targeted development projects

Operational Deployment Pipeline

Deployment Steps

1. Automated Data Acquisition

- Copernicus Open Access Hub API
- Google Earth Engine
- PhilSA Mirror Site

2. Pre-processing

- Cloud masking (QA bands)
- Atmospheric correction
- Geometric correction
- Tile into model input size (512×512)

Deployment Steps (Continued)

3. Inference

- Batch processing of tiles
- GPU acceleration for speed
- Confidence threshold filtering (>0.5)

4. Post-processing

- Non-Maximum Suppression (NMS) to remove duplicates
- Merge tile detections
- Convert pixel coordinates to geographic coordinates

5. GIS Export

- Export to GeoJSON or Shapefile
- Include attributes: confidence, area, centroid
- Integrate with QGIS/ArcGIS

Part 7: Production Considerations

Real Data Acquisition For Production Deployment

1. Acquire Satellite Imagery:

- Google Earth Engine (free, cloud-based, massive archive)
- Copernicus Data Space Ecosystem (official Sentinel data)
- PhilSA Mirror Site (optimized for Philippines)

2. Create Annotations:

- Manual tools: RoboFlow, CVAT, Label Studio, LabelImg
- Semi-automated: Use model predictions + human review (active learning)
- Crowdsourced: Engage local communities for ground truth

Quality Control

3. Annotation Guidelines:

- Define clear building criteria (min size, structure types)
- Train annotators with examples
- Ensure consistent bounding box placement
- Review inter-annotator agreement (>90% target)

4. Validation:

- Field surveys where possible
- Cross-reference with OpenStreetMap
- Use high-resolution imagery for verification
- Iterative quality improvement

Model Improvement Strategies

To Increase Accuracy

- More training samples 500-1000 recommended for production
- Multi-temporal imagery Capture seasonal variations
- Ensemble models Combine YOLO + SSD predictions
- Post-processing Use existing building databases for validation
- Multi-scale detection Train on various image resolutions

Handling Challenges

Challenge	Solution
Dense urban areas	Use higher resolution imagery (Pléiades, SPOT 6/7)
Cloud cover	Combine Sentinel-2 optical with Sentinel-1 SAR
Small buildings	Use models optimized for small objects (YOLO v8)
Shadow confusion	Include shadow-augmented training data
Computation cost	Use lighter models (MobileNet) or cloud GPUs

Time Plan & Troubleshooting

Lab Time Allocation

Activity	Duration	Notes
Introduction & Setup	15 min	GPU check, notebook familiarization
Load Pre-trained Model	20 min	TensorFlow Hub, test inference
Data Preparation	30 min	Load data, visualize, split
Fine-tuning	40 min	Training loop, monitor loss
Evaluation	25 min	Calculate mAP, interpret metrics
Visualization	20 min	Plot detections, analyze results
Export & Integration	10 min	GeoJSON export, GIS demo
Troubleshooting	10 min	Address common issues
Buffer	10 min	Q&A, extensions
Total	150 min	2.5 hours

Common Issues & Solutions

Issue 1: Out of Memory (OOM)

- Symptom: Training crashes with "ResourceExhausted" error
- Solution: Reduce batch size (try 4 or 8 instead of 16)
- Solution: Use smaller input images (320×320 instead of 512×512)
- Solution: Restart runtime and clear all outputs

Common Issues (Continued)

Issue 2: mAP Very Low (<0.30)

- Cause: Model not fine-tuned sufficiently
- Solution: Train for more epochs (30-50)
- Solution: Verify annotations are correct
- Solution: Increase learning rate slightly (try 0.001)
- Solution: Check for data loading bugs

Issue 3: Detects Everything as Buildings

- Cause: Confidence threshold too low
- Solution: Increase threshold from 0.3 to 0.5-0.7
- Solution: Add negative examples (non-building areas) to training
- Solution: Review training data for mislabeled samples

Common Issues (Final)

Issue 4: Training Very Slow

- Check: GPU is enabled (Runtime → Change runtime type → GPU)
- Check: Run !nvidia-smi to verify GPU allocation
- Solution: Use SSD MobileNet instead of Faster R-CNN
- Solution: Reduce training dataset size (use subset for debugging)
- Solution: Use smaller image size

Summary & Key Takeaways

What You've Accomplished

Key Achievements

✓ Loaded and understood pre-trained object detection models ✓ Prepared satellite imagery and COCO annotations ✓ Fine-tuned detector on urban building dataset ✓ Evaluated performance using mAP metrics ✓ Visualized detections on Metro Manila imagery ✓ Connected to real-world Philippine urban monitoring ✓ Understood deployment pipeline for operations

Comparison: Segmentation vs Detection

Aspect	Session 2 (Segmentation)	Session 4 (Detection)
Task	Pixel-wise classification	Object localization + classification
Output	Binary flood mask	Bounding boxes + labels
Metric	IoU, F1-score, Dice	mAP, Precision, Recall
Use Case	Flood extent mapping	Building counting, urban growth
Data	Sentinel-1 SAR	Sentinel-2 Optical
Granularity	Every pixel labeled	Objects with boxes

Both are complementary!

- Use **segmentation** for continuous phenomena (floods, vegetation, land cover)
- Use object detection for discrete objects (buildings, vehicles, ships)

Key Takeaways

- 1. Transfer learning dramatically reduces data and training time requirements
- 2. Pre-trained models provide strong baselines no need to start from scratch
- 3. mAP is the standard metric for object detection evaluation
- 4. Object detection enables scalable urban monitoring for disaster preparedness
- 5. Philippine applications benefit from free Sentinel-2 data and open models
- 6. Operational deployment requires end-to-end pipeline thinking

Resources and Further Learning

Documentation

- TensorFlow Object Detection API: Official Tutorial
- PyTorch Detection Tutorial: PyTorch Docs
- COCO mAP Explained: Research Paper

Pre-trained Models

- TensorFlow Hub: https://tfhub.dev/ (search "object detection")
- PyTorch Hub: https://pytorch.org/hub/ (search "detection")
- Ultralytics YOLO: https://github.com/ultralytics/ultralytics

Philippine EO Resources

- PhilSA SIYASAT: Access Sentinel-2 data for Philippines
- NAMRIA Geoportal: Administrative boundaries for Metro Manila
- OpenStreetMap Philippines: Building footprints for validation
- Copernicus Data Space: Official Sentinel data access

Annotation Tools

- RoboFlow: https://roboflow.com (web-based, COCO export)
- CVAT: https://cvat.org (open-source, collaborative)
- Label Studio: https://labelstud.io (versatile labeling)

Next Steps

Apply This Workflow:

- Use your own area of interest in Philippines
- Collaborate with PhilSA/LGUs to acquire local annotations
- Integrate detections with GIS workflows
- Monitor urban changes using Sentinel-2 time series

Advanced Extensions:

- Multi-class detection (informal vs formal buildings)
- Change detection across time periods
- Integration with Sentinel-1 for cloud-free detection
- Anchor box optimization for Philippine building sizes

Optional Exercises (If Time Permits)

Advanced Exercise 1: Multi-class Detection

- Add "informal settlement" as second class
- Train model to distinguish formal vs informal buildings
- Analyze spatial distribution patterns

Advanced Exercise 2: Change Detection

- Load imagery from 2020 and 2024
- Compare building counts
- Quantify and map urban growth

Advanced Exercise 3: Anchor Box Optimization

- Analyze building size distribution in Metro Manila
- Customize anchor boxes for typical sizes
- Retrain with optimized anchors

Assessment Checklist

By the end of this lab, you should be able to:

- Explain transfer learning for object detection
- □ Load pre-trained model from TensorFlow/PyTorch Hub
- Prepare annotations in COCO JSON format
- ☐ Fine-tune detector on custom satellite imagery
- ☐ Calculate and interpret mAP metrics
- Visualize bounding box detections
- Apply object detection to Philippine urban monitoring
- Understand operational deployment pipeline

Conclusion

Object detection with transfer learning is a powerful and practical tool for Earth observation applications.

Key Benefits:

- Low data requirements (100-500 annotations vs 10,000+)
- Fast training (30-60 minutes vs days)
- **High accuracy** (70-85% mAP with fine-tuning)
- Scalable (city-wide mapping in hours)
- Operational (ready for Philippine agency deployment)

Final Message:

Even small teams with limited resources can build production-quality detectors for critical applications like disaster preparedness and urban planning!

Ready to Start?

Day3_Session4_Objec

Estimated completion:

Questions? Ask your ins

Thank You!

Questions?

- Email: skotsopoulos@neuralio.ai
- Office Hours: [schedule]

Session 4: Hands-on Object Detection Lab - CoPhil 4-Day Advanced Training on AI/ML for Earth Observation, funded by the European Union under the Global Gateway initiative.

