CSC 615.01 Team Green Final Project Documentation

Fall 2020

Instructor: Robert Bierman

Table of Contents:

I eam Members:	2
GitHub Repository:	2
Task Description:	2
Building The Robot:	2
Libraries Used:	5
Pins Assignment Used:	5
Flow Chart:	6
Hardware diagram:	7
What worked well:	8
Issues encountered:	8

Team Members:

George Freedland (Hardware manager) Geroge Shen Cameron Cirini John Freirez

GitHub Repository:

https://github.com/gfreedland/csc615-group-term-project

Task Description:

Tasks were evenly distributed within the group.

George Freedland: Team lead, Programmer, Debugging, provided his place to work.

George Shen: Debugging, Testing, Hardware diagram, provided materials.

Cameron Cirini: Programmer, Build, provided back up hardware.

John Freirez: Documentation, Testing, Flow chart, provided materials.

Building The Robot:

Front | 1 Echo Sensor (HC-SR04) | 3 Reflective Sensors

Motor Shield

1 motor connected + power

All 4 connected to the shield

Reference for the motors

Cameron's Raspberry pi 3

Echo sensor using pins 29, 31

Left and right sensors connected to shield

Final setup

Libraries Used:

• stdio.h

• unistd.h

• stdbool.h

• time.h (used for delay)

• pthread.h (used for multithreading line sensors/echo sensor to not block main thread)

• wiringPi.h (used to enable pins and have the functionality of write and read)

• softPwm.h (used to manipulate speed on the motors)

Pins Assignment Used:

Motor 1: front right	Physical pins: 11, 15, 13	wPi: 0, 3, 2
Motor 2: front left	Physical pins: 22, 16, 18	wPi: 6, 4, 5
Motor 3: back left	Physical pins: 19, 21, 23	wPi: 12, 14, 13
Motor 4: back right	Physical pins: 32, 25, 27	wPi: 26, 10, 11

Left line sensor	On shield: IR1	wPi: 7
Right line sensor	On shield: IR2	wPi: 1
Center line sensor	Physical pin: 36	wPi: 27

Echo trig	Physical pin: 29	wPi: 21
Echo echo	Physical pin: 31	wPi: 22

Flow Chart:

Hardware diagram:

Notes: SB Motor Shield not included.

Physical pin numbers listed in pin assignment section.

What worked well:

- Our team worked well together especially trying to meet up during a pandemic.
- Team communication was great.

Issues encountered:

- Issue with the raspberry pi (the one given to our hardware manager) can't ssh to it causing set back on our progress, ended up using a personal pi (Cameron's pi)
- Motor shield, trying to make the wheels all run not responding to the code, figuring out how to make them all run.
- (4:46 pm) All wheels are turning, fixing directions, wheels 1 and 3 are going opposite.
- Tweaking code having issues with the line sensors not being able to cooperate properly.
- Issues with weight distribution some parts of the wheel get lifted up depending on where we set up the battery pack.
- Issues with turning, the car can turn left slightly, but right turns were not executing.