02_Unconstrained MPC: LQR

Summary

1. Model and Motivation of LQR

Model

2. Solution of Finite-Horizon LQR

Dynamic Programming Method (Bellman Recursion)

Receding Horizon Method

Comparison

3. Stability of LQR Controllers

Problem of Finite Horizon Controller

Extending to Infinite Horizon

Summary

Summary

- LQR is easily to **solved**, so it is preferred by us
- Two methods can be used when horizon is finite: DP and FRH
- Finite horizon will face the problem of **instability**. But if with infinite horizon, a controllable system will always **keep stable** and the solution of FRH will **converge** to the static solution

1. Model and Motivation of LQR

Model

Cost of State:

$$I(x,u) = x^T Q x + u^T R u$$

Cost of a trajectory:

$$V\left(x_{0},\mathbf{u}
ight)=\sum_{i=0}^{N}x_{i}^{T}Qx_{i}+u_{i}^{T}Ru_{i}$$

Motivation

- Can adjust the weight between input and state
- Can be easily and quickly solve in Embedded Controller

2. Solution of Finite-Horizon LQR

Dynamic Programming Method (Bellman Recursion)

Basic Idea:

This problem has the **optimal sub-structure** property: For the given optimal input sequence, no matter x_n , the input from n to N should make the sub-structure is also the optimal, otherwise, we can build a better solution from x_n which made the total value smaller than current optimal solution. Which also indicates:

- no matter how we arrive at a state x_n , the optimal solution from x_n only depend on x_n , not related to how we arrive at x_n
- Start from tail and iteration forward, we can find the best solution

Process

In the finite-horizon case, we explicitly knows that the final state is a state with quadratic cost $x^T H x$. Then we can use mathematical induction to prove $V^*(x)$ is quadratic. Assume for timestamp i.

$$egin{aligned} V_i\left(x_i
ight) &= \min_{u_i} x_i^T Q x_i + u_i^ op R u_i + V_{i+1} \left(A x_i + B u_i
ight) \ &= \min_{u_i} \left(x_i^ op Q x_i + u_i^ op R u_i + \left(A x_i + B u_i
ight)^ op H_{i+1} \left(A x_i + B u_i
ight) \end{aligned}$$

Then we can take the derivative to zero and get the $V_i^*(x)$

1. start from the last step N and compute

$$egin{aligned} V_N^\star\left(x_N
ight) &:= \min_{u_N} x_N^T Q x_N + u_N^T R u_N \ &= x_N^ op Q x_N \quad ext{(Quardratic)} \ H_N &:= Q \end{aligned}$$

2. Iterate backwards for $i=N-1,\cdots,0$, do DP iterations

$$V_i^\star\left(x_i
ight) := \min_{u_i} x_i^ op Q x_i + u_i^ op R u_i + V_{i+1}^\star\left(A x_i + B u_i
ight)$$

A closed-form equation can be calculated:

$$egin{aligned} u_i^\star\left(x_i
ight) &= K_ix_i \quad K_i = -\left(R + B^ op H_{i+1}B
ight)^{-1}B^ op H_{i+1}A \ V_i^\star\left(x_i
ight) &= x_i^T H_i x_i \quad H_i = Q + K_i^T R K_i + \left(A + B K_i
ight)^ op H_{i+1}\left(A + B K_i
ight) \end{aligned}$$

3. Finally, we will get $V^st(x_0) = V_0^st(x_0)$ and the optimal controller $u_0^st(x_0)$

Properties

- $V_i^st(x)$ is **quadratic** (can be proved by mathematical induction method)
- ullet $V_i^*(x)$ is **positive definite** (can be proved by mathematical induction method)
- Optimizer $u_0^*(x)$ is **linear** of current state

Receding Horizon Method

Receding Horizon Method use **optimization perspective** to solve this problem. It first represent the problem to a model with single variable.

Model

$$V^{\star}\left(x_{0}
ight) := \min_{\mathbf{u}} \quad \mathbf{x}^{ op} \mathcal{Q} \mathbf{x} + \mathbf{u}^{ op} \mathcal{R} \mathbf{u} \quad ext{ s.t. } \quad \mathcal{A} \mathbf{x} + \mathcal{B} \mathbf{u} = \mathcal{C} x_{0}$$

where

$$\mathcal{B} := \left[egin{array}{cccc} B & 0 & \cdots & 0 \ 0 & B & \cdots & 0 \ dots & \ddots & \ddots & dots \ 0 & \cdots & \cdots & B \end{array}
ight] \quad \mathcal{C} := \left[egin{array}{c} -A \ 0 \ dots \ 0 \end{array}
ight]$$

$$\mathcal{Q} := \operatorname{diag}(Q, \dots, Q) \quad \mathcal{R} := \operatorname{diag}(R, \dots, R)$$

Solution

$$\mathbf{u} = \mathcal{K} x_0 = \left[egin{array}{c} K_0 \ dots \ K_{N-1} \end{array}
ight] x_0 \quad \mathcal{K} = -\left(\mathcal{R} + F^T \mathcal{Q} F
ight)^{-1} F^T \mathcal{Q} G$$
 $F = -\mathcal{A}^{-1} \mathcal{B} \quad G = \mathcal{A}^{-1} \mathcal{C}$

Comparison

- Although the u with different equation, but they are the same in several simulation in MATLAB
- Because their u based on different reference, so the K(DB) may not equal to K(FRH)

Dynamic Programming

Pros:

- Leads to elegant closed-form solution for LQR
- ullet Provides a solution when $N o\infty$

Cons:

• Virtually no problems have simple, closed-form solutions (except LQR)

Optimization / Least-squares

Pros:

• Can **extend** to nonlinear, constrained systems with complex cost-functions

Cons:

- Finite-horizon only
- More computationally intense

3. Stability of LQR Controllers

Problem of Finite Horizon Controller

Because using finite horizon, some early stage decision may be harmful to later stages optimization. One example of stability graph for system $x^+ = (A + BK_{R,N})x$ in the following figure.

Another example for effect of length of the horizon:

Extending to Infinite Horizon

Assumption

Assume system is **controllable**, i.e. have input sequence that generates a bounded cost. This is only possible when x, u finally goes to zero.

Solution:

First, the optimal V should meet: $V^*(x) := \min_u I(x,u) + V^*(Ax + Bu)$. Second, there is a fact (can be proved by some complex mathematical theory): $V^*(x)$ is a quadratic function with form $V^*(x) = x^T P x$ with P positive definite. Then we can prove :

Theorem (Lyapunov Function for LQR)

The optimal value function $V^\star(x)=x^\top Px$ is a **Lyapunov function** for the system $x^+=(A+BK)x$ where $K=-\left(R+B^TPB\right)^{-1}B^TPA$ and P solves

$$P = Q + A^T P A - A^T P B \left(R + B^T P B \right)^{-1} B^T P A$$

for some $Q \succeq 0, R \succ 0$

Conclusion

- ullet Finite horizon LQR converges to static solution as $N o\infty$
- Infinite-horizon LQR is nominally stabilizing

Summary

- The **LQR** controller, we widely used it because it is solvable.
- For a Finite-Horizon LQR controller, we can solve it by Dynamic Programming or Optimization Method
 (Receding Horizon Method). One big problem of Finite-Horizon LQR Controller is the finite-horizon may cause
 the system unstable.

- Theoretically, an **Infinite-Horizon LQR Controller** can always **stable**, and a Finite-Horizon LQR Controller will **converge** to the Infinite-Horizon Controller as the horizon increase.
- We can also get the ${\bf closed\text{-}loop\ solution}$ for Infinite-horizon LQR Controller.