Probabilistic Soundness Guarantees in LLM Reasoning Chains

Weiqiu You, Anton Xue, Shreya Havaldar, Delip Rao, Helen Jin, Chris Callison-Burch, Eric Wong University of Pennsylvania

LLMs often make reasoning errors

Existing methods struggle to detect ungrounded statements, propagated errors, and invalid derivations.

ARES: Structured error detection with logic

The entailment model autoregressively checks each claim with respect to the previous claims verified to be sound.

Statistical guarantees on reasoning

Entailment models are **probabilistic**: each step's soundness estimated by probabilistically including previous claims by their soundness rates.

Theorem. With $N \ge \log(2m/\delta)/(2\varepsilon^2)$ samples, the soundness rate for m claims is estimated to $\pm \varepsilon$ error with $1 - \delta$ confidence.

ARES excels on long synthetic reasoning

ARES maintains high Macro-F1 on ClaimTrees, even for long chains.

ClaimTrees: A synthetic reasoning benchmark

Reasoning Chain			ARES	Entail- Prev	Entail- Base	LLM- Judge
Base 1:	Rule: H3 -> AZ		-	-	-	-
Base 2:	Fact: I have D8		-	-	-	-
•••			-	-	-	-
Base 9:	Rule: DG -> G8		-	-	-	-
Claim 1: I have D8, I use rule (D8 -> U8) to derive U8			0.96	1.00	1.00	1.00
Claim 6: I have H3, I use rule (H3 > AZ) to derive AZ			0.90	1.00	1.00	1.00
Claim 7: I have AZ, I use rule (AZ -> SG) to derive SG			0.00	0.00	0.00	0.20
Claim 8: I have SG, Huse rule (SG -> C6) to derive C6			0.09	1.00	1.00	1.00

Only ARES detects the propagated error: The non-existent rule (AZ -> SG) cannot be used!

ARES also wins on real benchmarks

Why is ARES so effective?

Method	Robust	Causal	Sufficient
ARES (ours)	✓	✓	√
Entail-Prev	X		
Entail-Base	✓		X
LLM-Judge	X	×	

Robust: Previous errors do not adversely affect current step.

Causal: Downstream steps do not affect current step.

Sufficient: All relevant claims included as premise for detection.

