Aula 15

A DISTRIBUIÇÃO NORMAL – 1ª PARTE

Objetivos

Nesta aula, você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas nos concentraremos, nesse primeiro momento, na distribuição normal padrão, com ênfase no cálculo de probabilidades associadas a essa variável. Assim, você verá os seguintes tópicos nesta aula:

- 1 definição da distribuição normal;
- média e variância da distribuição normal;
- 3 a distribuição normal padrão;
- 4 tabela da distribuição normal padrão.

FUNÇÃO DE DENSIDADE DE PROBABILI-DADE

Uma v.a. contínua *X* tem distribuição normal se sua função de densidade de probabilidade é dada por

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty \quad (15.1)$$

Analisando essa expressão, podemos ver que ela está definida para todo $x \in \mathbb{R}$ e depende de dois parâmetros: μ e σ . Outras características importantes dessa função são as seguintes:

- 1. ela é simétrica em torno do ponto $x = \mu$;
- 2. o gráfico da função tem forma de sino;
- 3. quando $x \to \pm \infty$, $f_X(x) \to 0$;
- 4. o ponto $x = \mu$ é o ponto de máximo e nesse ponto, $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}};$
- 5. os pontos $x = \mu \sigma$ e $x = \mu + \sigma$ são pontos de inflexão, ou seja, nesses pontos, a curva muda de concavidade. Para $x < \mu \sigma$ ou $x > \mu + \sigma$, a função é côncava para cima e para $\mu \sigma < x < \mu + \sigma$, a função é côncava para baixo.

Na **Figura 15.1** ilustram-se essas características da densidade normal.

Figura 15.1: Ilustração das principais características da densidade normal.

Pode-se mostrar, usando técnicas de cálculo integral, que a área sob a curva de densidade normal é igual a 1 e, como a função exponencial é sempre não negativa, resulta que a função f_X dada na equação (15.1) realmente define uma função de densidade de probabilidade.

ESPERANÇA E VARIÂNCIA

Os parâmetros μ e σ da densidade normal definem a média e o desvio padrão da distribuição, respectivamente:

$$X \sim N(\mu; \sigma^2) \Rightarrow \begin{cases} E(X) = \mu \\ Var(X) = \sigma^2 \\ DP(X) = \sigma \end{cases}$$

Vamos usar a seguinte notação: indicaremos o fato de a v.a. X ter distribuição normal com média μ e variância σ^2 pela notação $X \sim N\left(\mu;\sigma^2\right)$. Na **Figura 15.2**, temos os gráficos das seguintes distribuições normais: N(0;1) e N(2;1), ou seja, duas distribuições normais com médias diferentes e variâncias iguais. Note que o efeito de mudar a média é simplesmente deslocar o gráfico, mudando o seu eixo de simetria.

Figura 15.2: Distribuições normais com mesma variância e médias diferentes.

Na **Figura 15.3**, temos duas distribuições normais com a mesma média, mas com variâncias diferentes. Note que a distribuição continua em forma de sino, mas a dispersão muda – lembre-se de que variância e desvio padrão são medidas de dispersão. Como o máximo da função é $\frac{1}{\sqrt{2\pi\sigma^2}}$, quanto maior a variância, "mais baixa" é a curva; para compensar esse fato e continuar com área sob a curva igual a 1, a curva fica mais "espalhada", ou seja, mais dispersa.

Figura 15.3: Distribuições normais com mesma média e variâncias diferentes.

FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA

Como antes, a função de distribuição acumulada é $F(x) = \Pr(X \le x)$. Na **Figura 15.4** temos as respectivas fda para as densidades N(0;1), N(2;1) e N(0;4). Note que, pela simetria da curva em torno da média, qualquer que seja a densidade normal, $F(\mu) = 0.5$, ou seja, o eixo de simetria divide a área em duas partes iguais. No gráfico da fda, podemos ver que, para as densidades N(0;1) e N(0;4), F(0) = 0.5 e para a densidade N(2;1), F(2) = 0.5.

Figura 15.4: Função de distribuição acumulada de algumas densidades normais.

A DENSIDADE NORMAL PADRÃO

Quando $\mu=0$ e $\sigma^2=1$, temos a densidade normal padrão, cuja fdp é usualmente representada pela letra grega fi:

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right), \quad -\infty < z < +\infty$$

É comum também representar uma variável aleatória com distribuição normal padronizada pela letra Z. Além de ser um caso especial, a densidade normal padrão tem papel importante no cálculo de probabilidades associadas às densidades normais, como veremos na próxima aula.

A TABELA DA NORMAL PADRÃO

Na última aula, você aprendeu que o cálculo de probabilidades associadas a variáveis aleatórias contínuas envolve cálculo de áreas sob a curva de densidade (mais precisamente, cálculo de integral da fdp). Isso, obviamente, continua valendo para a densidade normal. A diferença está no fato de que o cálculo de áreas sob a curva normal envolve métodos numéricos mais complexos e, para facilitar esses cálculos, podemos usar uma tabela em que alguns valores já se encontram calculados.

Este curso terá como base a **Tabela 15.1** apresentada no final desta aula, embora muitos livros utilizem a tabela da distribuição acumulada dada na **Tabela 15.2**, que discutiremos no final desta aula.

A **Tabela 15.1** será usada para calcular probabilidades associadas a uma variável aleatória normal padrão Z. Assim, com essa tabela, poderemos calcular probabilidades do tipo Pr(Z>1), $Pr(Z\leq 3)$, $Pr(-1\leq Z\leq 2)$ etc.

Vamos analisar cuidadosamente esta tabela. A partir do cabeçalho e do gráfico na tabela, podemos ver que as entradas no corpo da tabela fornecem probabilidades do tipo $\Pr(0 \le Z \le z)$, ou seja, probabilidades de valores de Z pertencerem ao intervalo [0,z].

Com relação à abscissa *z*, seus valores são apresentados na tabela ao longo da coluna lateral à esquerda em conjunto com a linha superior, ambas sombreadas de cinza. Na coluna à esquerda, temos a casa inteira e a primeira casa decimal; na linha superior, temos a segunda casa decimal.

Por exemplo, ao longo da primeira linha da tabela, temos probabilidades associadas às abscissas 0,00; 0,01; 0,02, ..., 0,09; na segunda linha da tabela, temos probabilidades associadas às abscissas 0,10; 0,11; 0,12; ..., 0,19; na última linha da tabela, temos probabilidades associadas às abscissas 4,00; 4,01; 4,02; ...; 4,09.

A entrada 0,00000 no canto superior esquerdo da tabela corresponde à seguinte probabilidade: $\Pr(0 \le Z \le 0,00)$, ou seja, $\Pr(Z=0)$ e, como visto, essa probabilidade é nula, uma vez que, para qualquer variável aleatória contínua X, $\Pr(X=x_0)=0$. A segunda entrada na primeira linha, 0,00399, corresponde a $\Pr(0 \le Z \le 0,01)$, que é a área sob a curva de densidade normal padronizada compreendida entre os valores 0 e 0,01 (veja o gráfico na tabela).

Note que esta tabela apresenta probabilidades correspondentes a abscissas positivas, ou seja, esta tabela trata de área sob a curva no lado positivo do eixo. Para calcular áreas no lado negativo, teremos de usar o fato de a curva da densidade normal ser simétrica. É interessante que, no cálculo de probabilidades associadas a variáveis aleatórias normais, você faça um esboço da curva de densidade, sombreando a área correspondente à probabilidade desejada. Vamos terminar esta aula apresentando vários exemplos de cálculos de probabilidades de uma v.a. Z com distribuição normal padrão, ou seja, no que segue, $Z \sim N(0;1)$.

Exemplo 15.1.

Calcule $Pr(0 \le Z \le 1,22)$.

Solução:

Veja a **Figura 15.5**, queremos calcular a área (probabilidade) da parte sombreada. Essa probabilidade é dada diretamente na **Tabela 15.1**, utilizando a entrada correspondente à linha 1,2 e à coluna com o valor 2 (veja a **Figura 15.6**). O resultado é $Pr(0 \le Z \le 1,22) = 0,38877$.

Figura 15.5: Cálculo de $Pr(0 \le Z \le 1,22)$.

Casa inteira	2ª decimal						
1ª decimal	0	1	2	3			
0,0	0,00000	0,00399	0,00798	0,01197			
0,1	0,03983	0,04380	0,04776	0,05172			
0,9	0,31594	0,31859	0,32121	0,32381			
1,0	0,34134	0,34375	0,34614	0,34849			
1,1	0,36433	0,36650	0,36864	0,37076			
1,2	0,38493	0,38686	0,38877	0,39065			
1,3	0,40320	0,40490	0,40658	0,40824			

Figura 15.6: Uso da **Tabela 15.1** no cálculo de $Pr(0 \le Z \le 1,22)$.

Exemplo 15.2.

Calcule $Pr(1 \le Z \le 2)$.

Solução:

Essa probabilidade corresponde à área sombreada na **Figura 15.7**. Note que essa área pode ser obtida subtraindose a área que abrange o intervalo [0,1], da área que abrange o intervalo [0,2]. A primeira área corresponde a $\Pr(0 \le Z \le 1)$ e a segunda área corresponde a $\Pr(0 \le Z \le 2)$. Assim,

$$\begin{array}{ll} \Pr(1 \leq Z \leq 2) & = & \Pr(0 \leq Z \leq 2) - \Pr(0 \leq Z < 1) \\ & = & \Pr(0 \leq Z \leq 2) - \Pr(0 \leq Z \leq 1) \\ & = & tab(2) - tab(1) \\ & = & 0,47725 - 0,34134 = 0,13591 \end{array}$$

Note a convenção que adotaremos: $tab(z) = Pr(0 \le Z \le z)$ corresponde à entrada na **Tabela 15.1**.

Figura 15.7: Cálculo de $Pr(1 \le Z \le 2)$.

Figura 15.8: Cálculo de $Pr(0 \le Z \le 2)$.

Figura 15.9: Cálculo de $Pr(0 \le Z \le 1)$.

Exemplo 15.3.

Calcule $Pr(Z \ge 1)$.

Solução:

 $\Pr(Z \ge 1)$ é a área sombreada na **Figura 15.10**, que pode ser calculada, lembrando que a área à direita do eixo de simetria

14 CEDERJ

é igual a 0,5. Assim, a probabilidade pedida pode ser obtida subtraindo-se de 0,5 a área hachurada, isto é:

$$Pr(Z \ge 1) = 0.5 - Pr(0 \le Z \le 1)$$

= 0.5 - 0.34134 = 0.15866

Figura 15.10: Cálculo de $Pr(Z \ge 1)$.

Exemplo 15.4.

Calcule $Pr(Z \le 1, 5)$.

Solução:

 $\Pr(Z \le 1,5)$ é a área à esquerda de 1,5, sombreada de cinza claro e de cinza escuro na **Figura 15.11**. Podemos escrever:

$$Pr(Z \le 1,5) = Pr(Z < 0) + Pr(0 \le Z \le 1,5)$$

= 0,5 + tab (1,5)
= 0,5 + 0,43319 = 0,93319

Figura 15.11: Cálculo de $Pr(Z \le 1,5)$.

Exemplo 15.5.

Calcule $Pr(Z \leq -0,5)$.

Solução:

 $\Pr(Z \le -0.5)$ é a área sombreada de cinza escuro na **Figura 15.12**. Note que, por simetria, essa área é igual à área sombreada de cinza claro. Esta, por sua vez, pode ser obtida subtraindo-se de 0.5 (área à direita do eixo de simetria) a área hachurada. Mais precisamente:

$$Pr(Z \le -0.5) = Pr(Z \ge 0.5)$$

$$= 0.5 - Pr(0 \le Z \le 0.5)$$

$$= 0.5 - tab(0.5)$$

$$= 0.5 - 0.19146$$

$$= 0.30854$$

Figura 15.12: Cálculo de $Pr(Z \le -0.5)$.

Exemplo 15.6.

Calcule $Pr(-1, 5 \le Z \le 0)$.

Solução:

 $\Pr(-1, 5 \le Z \le 0)$ é a área sombreada de cinza claro na **Figura 15.13**, que, pela simetria da curva, é igual à área sombreada de cinza escuro. Mais precisamente:

$$Pr(-1,5 \le Z \le 0) = Pr(0 \le Z \le 1,5)$$

= tab(1,5) = 0,43319

Figura 15.13: Cálculo de $Pr(-1, 5 \le Z \le 0)$.

Exemplo 15.7.

Calcule $Pr(-1, 32 \le Z \le 2, 05)$.

Solução:

 $\Pr(-1,32 \le Z \le 2,05)$ é a área sombreada de cinza claro na **Figura 15.14**. Note que essa área pode ser decomposta na área à esquerda do eixo de simetria mais a área à direita do eixo de simetria. A área à direita do eixo de simetria nada mais é que tab(2,05). Com relação à área sombreada à esquerda do eixo de simetria, ela é igual à área hachurada no lado direito e essa última é tab(1,32). Assim,

$$\begin{array}{lll} \Pr(-1,32 \leq Z \leq 2,05) & = & \Pr(-1,32 \leq Z \leq 0) + \Pr(0 \leq Z \leq 2,05) \\ & = & \Pr(0 \leq Z \leq 1,32) + \Pr(0 \leq Z \leq 2,05) \\ & = & \tanh(1,32) + \tanh(2,05) \\ & = & 0,40658 + 0,47982 = 0,88640 \end{array}$$

Figura 15.14: Cálculo de $Pr(-1, 32 \le Z \le 2, 05)$.

Exemplo 15.8.

Calcule $Pr(-2, 33 \le Z \le -1, 00)$.

Solução:

 $\Pr(-2,33 \le Z \le -1,00)$ é a área sombreada de cinza claro na **Figura 15.15**. Por simetria, essa área é igual à área sombreada de cinza escuro. Assim,

$$\begin{array}{lll} \Pr(-2,33 \leq Z \leq -1,00) & = & \Pr(1,00 \leq Z \leq 2,33) \\ & = & \Pr(0,00 \leq Z \leq 2,33) - \Pr(0,00 \leq Z \leq 1,00) \\ & = & \tan(2,33) - \tan(1,00) \\ & = & 0,49010 - 0,34134 \\ & = & 0,14876 \end{array}$$

Figura 15.15: Cálculo de $Pr(-2, 33 \le Z \le -1, 00)$.

A TABELA DA DISTRIBUIÇÃO ACUMULADA DA NORMAL PADRÃO

Muitos livros trabalham com a tabela da distribuição acumulada da normal padrão, que representaremos pela letra grega fi maiúscula, Φ:

$$\Phi(z) = \Pr(Z \le z).$$

A **Tabela 15.2** é apresentada ao final desta aula. Note que nesta tabela são dadas abscissas negativas e positivas, variando de -4,09 a +4,09. Na primeira parte, estamos trabalhando com as abscissas negativas e, na segunda parte, com as abscissas positivas.

Vamos usar a **Tabela 15.2** para refazer os exemplos vistos anteriormente.

Exemplo 15.9.

$$\begin{split} \Pr(0 \le Z \le 1, 22) &= \Phi(1, 22) - \Phi(0) = 0,88777 - 0,5 = 0,38877 \\ \Pr(1 \le Z \le 2) &= \Phi(2) - \Phi(1) = 0,97725 - 0,84134 = 0,13591 \\ \Pr(Z \ge 1) &= 1,0 - \Phi(1) = 1,0 - 0,84134 = 0,15866 \\ \Pr(Z \le 1,5) &= \Phi(1,5) = 0,93319 \\ \Pr(Z \le -0,5) &= \Phi(-0,5) = 0,30854 \\ \Pr(-1,5 \le Z \le 0) &= \Phi(0) - \Phi(-1,5) = 0,5 - 0,06681 = 0,43319 \\ \Pr(-1,32 \le Z \le 2,05) &= \Phi(2,05) - \Phi(-1,32) = 0,97982 - 0,09342 = 0,88640 \end{split}$$

$Pr(-2, 33 \le Z \le -1,00) = \Phi(-1,00) - \Phi(-2,33) = 0,15866 - 0,00990 = 0,14876$

Exercício 15.1.

Usando a Tabela 15.1, calcule as seguintes probabilidades:

- 1. $Pr(-2, 34 \le 1, 02)$
- 2. $Pr(1, 36 \le Z \le 4, 50)$
- 3. $Pr(Z \ge -2,35)$
- 4. Pr(Z > 4,80)
- 5. Pr(Z < -4.89)

7.
$$Pr(-1,22 < Z < -0.89)$$

8.
$$Pr(Z < -2)$$

9.
$$Pr(Z > -2)$$

10.
$$Pr(-2,56 < Z < 5,00)$$

Exercício 15.2.

Calcule as probabilidades do exercício anterior usando a **Tabela 15.2**.

SOLUÇÃO DOS EXERCÍCIOS

Exercício 15.1.

1.
$$Pr(-2,34 \le Z \le 1,02) = tab(1,02) + tab(2,34) = 0,34614 + 0,49036 = 0,83650$$

2.
$$Pr(1,36 \le Z \le 4,50) = tab(4,50) - tab(1,36) = 0,5 - 0,41308 = 0,08692$$

3.
$$Pr(Z \ge -2,35) = 0,5 + tab(2,35) = 0,5 + 0,49061 = 0,99061$$

4.
$$Pr(Z > 4,80) = 0.5 - tab(4,80) = 0.5 - 0.5 = 0$$

5.
$$Pr(Z \le -4.89) = Pr(Z \ge 4.89) = 0.5 - tab(4.89) = 0.5 - 0.5 = 0$$

6.
$$Pr(1,54 \le Z < 3,12) = tab(3,12) - tab(1,54) = 0,49910 - 0,43822 = 0,06088$$

7.
$$Pr(-1,22 < Z < -0.89) = Pr(0.89 < Z < 1.22) = tab(1.22) - tab(0.89) = 0.38877 - 0.31327 = 0.07550$$

8.
$$Pr(Z < -2) = Pr(Z > 2) = 0, 5 - tab(2,0) = 0, 5 - 0, 47725 = 0,02275$$

9.
$$Pr(Z > -2) = 0.5 + tab(2.0) = 0.5 + 0.47725 = 0.97725$$

10.
$$Pr(-2,56 < Z < 5,00) = tab(5,00) + tab(2,56) = 0,5 + 0,49477 = 0,99477$$

Exercício 15.2.

- 1. $Pr(-2,34 \le Z \le 1,02) = \Phi(1,02) \Phi(-2,34) = 0,84614 0,00964 = 0,83650$
- 2. $Pr(1,36 \le Z \le 4,50) = \Phi(4,50) \Phi(1,36) = 1,0-0,91308 = 0,08692$
- 3. $Pr(Z \ge -2.35) = 1.0 \Phi(-2.35) = 1.0 0.00939 = 0.99061$
- 4. $Pr(Z > 4,80) = 1,0 \Phi(4,80) = 1,0 1,0 = 0$
- 5. $Pr(Z \le -4,89) = \Phi(-4,89) = 0$
- 6. $Pr(1,54 \le Z < 3,12) = \Phi(3,12) \Phi(1,54) = 0,99910 0,93822 = 0,06088$
- 7. $Pr(-1,22 < Z < -0.89) = \Phi(-0.89) \Phi(-1.22) = 0.18673 0.11123 = 0.07550$
- 8. $Pr(Z < -2) = Pr(Z \le -2) = \Phi(-2, 0) = 0,02275$
- 9. $Pr(Z > -2) = 1, 0 \Phi(-2, 0) = 1, 0 0,02275 = 0,97725$
- 10. $Pr(-2,56 < Z < 5,00) = \Phi(5,00) \Phi(-2,56) = 1,0-0,00523 = 0,99477$

Distribuição normal padrão

Valores de p

 $p = \Pr(0 \le Z \le z)$

Tabela 15.1 Para abscissas maiores que 4,09, use a probabilidade de 0,50000.

22 CEDERJ

Distribuição acumulada da normal padrão

Valores de p

$$p = \Phi(z) = \Pr(Z \le z)$$

Casa inteira e 1 ^a . Decimal	2 ^a decimal									
	9	8	7	6	5	4	3	2	1	0
-4,0	0,00002	0,00002	0,00002	0,00002	0,00003	0,00003	0,00003	0,00003	0,00003	0,00003
-3,9	0,00003	0,00003	0,00004	0,00004	0,00004	0,00004	0,00004	0,00004	0,00005	0,00005
-3,8	0,00005	0,00005	0,00005	0,00006	0,00006	0,00006	0,00006	0,00007	0,00007	0,00007
-3,7	0,00008	0,00008	0,00008	0,00008	0,00009	0,00009	0,00010	0,00010	0,00010	0,00011
-3,6	0,00011	0,00012	0,00012	0,00013	0,00013	0,00014	0,00014	0,00015	0,00015	0,00016
-3,5	0,00017	0,00017	0,00018	0,00019	0,00019	0,00020	0,00021	0,00022	0,00022	0,00023
-3,4	0,00024	0,00025	0,00026	0,00027	0,00028	0,00029	0,00030	0,00031	0,00032	0,00034
-3,3	0,00035	0,00036	0,00038	0,00039	0,00040	0,00042	0,00043	0,00045	0,00047	0,00048
-3,2	0,00050	0,00052	0,00054	0,00056	0,00058	0,00060	0,00062	0,00064	0,00066	0,00069
-3,1	0,00071	0,00074	0,00076	0,00079	0,00082	0,00084	0,00087	0,00090	0,00094	0,00097
-3,0	0,00100	0,00104	0,00107	0,00111	0,00114	0,00118	0,00122	0,00126	0,00131	0,00135
-2,9	0,00139	0,00144	0,00149	0,00154	0,00159	0,00164	0.00169	0,00175	0,00181	0,00187
-2,8	0,00193	0,00199	0,00205	0,00212	0,00219	0,00226	0,00233	0,00240	0,00248	0,00256
-2,7	0,00264	0,00272	0,00280	0,00289	0,00298	0,00307	0,00317	0,00326	0,00336	0,00347
-2,6	0,00357	0,00368	0,00379	0,00391	0,00402	0,00415	0,00427	0,00440	0,00453	0,00466
-2,5	0,00480	0.00494	0,00508	0,00523	0,00539	0,00554	0.00570	0,00587	0,00604	0,00621
-2,4	0,00639	0,00657	0.00676	0.00695	0,00714	0,00734	0.00755	0.00776	0,00798	0,00820
-2,3	0,00842	0,00866	0,00889	0.00914	0,00939	0,00964	0,00990	0,01017	0,01044	0,01072
-2,2	0,01101	0,01130	0,01160	0,01191	0,01222	0,01255	0,01287	0,01321	0,01355	0,01390
-2,1	0.01426	0,01463	0,01500	0.01539	0,01578	0,01618	0.01659	0,01700	0.01743	0,01786
-2,0	0.01831	0.01876	0.01923	0.01970	0.02018	0.02068	0,02118	0.02169	0.02222	0,02275
-1,9	0,02330	0,02385	0,02442	0,02500	0,02559	0,02619	0,02680	0,02743	0,02807	0,02872
-1,8	0.02938	0,03005	0.03074	0.03144	0,03216	0,03288	0.03362	0.03438	0,03515	0,03593
-1,7	0.03673	0.03754	0,03836	0.03920	0.04006	0,04093	0.04182	0.04272	0.04363	0,04457
-1,6	0.04551	0.04648	0.04746	0.04846	0.04947	0.05050	0.05155	0,05262	0,05370	0,05480
-1,5	0.05592	0.05705	0.05821	0.05938	0.06057	0.06178	0.06301	0.06426	0.06552	0,06681
-1,4	0,06811	0.06944	0.07078	0.07215	0,07353	0,07493	0.07636	0,07780	0,07927	0,08076
-1,3	0.08226	0.08379	0,08534	0.08692	0.08851	0,09012	0.09176	0,09342	0.09510	0,09680
-1,2	0,09853	0,10027	0,10204	0.10383	0,10565	0,10749	0,10935	0,11123	0,11314	0,11507
-1,1	0.11702	0.11900	0.12100	0.12302	0,12507	0,12714	0.12924	0.13136	0,13350	0,13567
-1.0	0,13786	0.14007	0.14231	0.14457	0.14686	0,14917	0,15151	0,15386	0,15625	0,15866
-0,9	0,16109	0,16354	0,16602	0,16853	0,17106	0,17361	0,17619	0,17879	0,18141	0,18406
-0,8	0,18673	0,18943	0,19215	0.19489	0.19766	0,20045	0,20327	0,20611	0,20897	0,21186
-0,7	0,21476	0.21770	0,22065	0,22363	0,22663	0,22965	0.23270	0,23576	0,23885	0,24196
-0.6	0.24510	0.24825	0.25143	0.25463	0.25785	0,26109	0.26435	0,26763	0,27093	0,27425
-0,5	0.27760	0.28096	0.28434	0.28774	0,29116	0,29460	0.29806	0,30153	0,30503	0,30854
-0,4	0,31207	0.31561	0,31918	0.32276	0,32636	0,32997	0,33360	0,33724	0,34090	0,34458
-0,3	0.34827	0.35197	0,35569	0.35942	0,36317	0,36693	0,37070	0,37448	0,37828	0,38209
-0,2	0,38591	0.38974	0,39358	0,39743	0,40129	0,40517	0,40905	0,41294	0,41683	0,42074
-0,1	0.42465	0,42858	0,43251	0.43644	0,44038	0,44433	0,44828	0,45224	0,45620	0,46017
-0,0	0,46414	0.46812	0,47210	0.47608	0.48006	0.48405	0.48803	0.49202	0.49601	0,50000

Tabela 15.2 Esta parte da tabela contém as abcissas negativas. Para abscissas menores que -4,09, use a probabilidade de 0,00000.

Probabilidade e Estatística | A Distribuição Normal – 1ª Parte

Distribuição acumulada da normal padrão

Valores de p $p = \Phi(z) = \Pr(Z \le z)$

Casa inteira e 1 <u>*</u> . Decimal	2ª decimal									
	0	1	2	3	4	5	6	7	8	9
0,0	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,65910	0,66276	0,66640	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0.69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72240
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7	0,75804	0,76115	0,76424	0,76730	0,77035	0,77337	0,77637	0,77935	0,78230	0,78524
0,8	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,0	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91308	0,91466	0,91621	0.91774
1,4	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0.93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0	0.97725	0.97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,2	0,98610	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,98840	0,98870	0,98899
2,3	0,98928	0.98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0.99361
2,5	0.99379	0.99396	0.99413	0.99430	0.99446	0,99461	0.99477	0,99492	0,99506	0.99520
2,6	0,99534	0.99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0.99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3,0	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893	0,99896	0,99900
3,1	0,99903	0,99906	0,99910	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,99940	0,99942	0,99944	0,99946	0,99948	0,99950
3,3	0,99952	0.99953	0,99955	0,99957	0,99958	0,99960	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,99970	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
3,5	0,99977	0,99978	0,99978	0,99979	0,99980	0,99981	0,99981	0,99982	0,99983	0,99983
3,6	0,99984	0,99985	0,99985	0,99986	0,99986	0,99987	0,99987	0,99988	0,99988	0,99989
3,7	0,99989	0,99990	0,99990	0,99990	0,99991	0,99991	0,99992	0,99992	0,99992	0,99992
3,8	0,99993	0,99993	0,99993	0,99994	0,99994	0,99994	0,99994	0,99995	0,99995	0,99995
3,9	0,99995	0,99995	0,99996	0,99996	0,99996	0,99996	0,99996	0,99996	0,99997	0,99997
4,0	0,99997	0,99997	0,99997	0,99997	0,99997	0,99997	0,99998	0,99998	0,99998	0,99998

Tabela 15.2 Esta parte da tabela contém as abcissas positivas. Para abscissas maiores que 4,09, use a probabilidade de 1,00000.