

CUSTOMER APPROVAL SHEET

Company Name	
MODEL	A070STN01.1
CUSTOMER	Title :
APPROVED	Name :

	APPROVAL	FOR SPE	ECIFICATIO	ONS ONLY	′ (Spec.	Ver.	0.0)
--	----------	---------	------------	----------	----------	------	------

☐ APPROVAL FOR SPECIFICATIONS AND ES SAMPLE (Spec. Ver.0.0)

☐ APPROVAL FOR SPECIFICATIONS AND CS SAMPLE (Spec. Ver. 0.0)

☐ CUSTOMER REMARK:

AUO PM: Valia Hsu

P/N: 97.07A24.101

Comment:

 Doc. version :
 0.0

 Total pages :
 29

 Date :
 2011/11/15

Product Specification

7" COLOR TFT-LCD MODULE

MODEL NAME: A070STN01.1

Model Name: A070STN01.1

Planned Lifetime: From 2011/May To 2012/Dec
Phase-out Control: From 2012/June To 2012/Dec
EOL Schedule: 2012/Dec

>Preliminary Specification
>Final Specification

Note: The content of this specification is subject to change.

© 2010 AU Optronics All Rights Reserved, Do Not Copy.

Page: 1/29

Record of Revision

Version	Revise Date	Dago	Content
		Page	Content
0.0	2011/11/15	All	First Draft.
			0
			5
			*0
		-	9),
	7. C		

Page: 2/29

Contents

A.	General Information	3
В.	Outline Dimension	4
	1. TFT-LCD Module – Front View	4
	2. TFT-LCD Module – Rear View	5
C.	Electrical Specifications	6
	1. TFT LCD Panel Pin Assignment (Tentative)	6
	3. Absolute Maximum Ratings	8
	4. Electrical DC Characteristics	9
	5. LVDS DC Characteristics	10
	6. Power On/Off Characteristics	11
D.	Optical Specification	12
E.	Reliability Test Items	15
F.	Packing and Marking	17
	1. Packing Form	17
	2. Module/Panel Label Information	17
	3. Carton Label Information	18
G.	Reference application circuit	19
	1.Recomonded Gamma Voltage	19
	Application Circuit	19
H.	Precautions	19

Page: 3/29

General Information

This product is for car after-market. digital photo frame and other suitable application.

NO.	Item	Unit	Specification	Remark
1	Screen Size	inch	7(Diagonal)	
2	Display Resolution	dot	1024RGB(W)x600(H)	
3	Overall Dimension	mm	165.75(H) × 105.39(V) ×3.2 (T)	Note 1
4	Active Area	mm	153.60(H)×90.00(V)	
5	Pixel Pitch	mm	0.150(W)x0.150(H)	
6	Color Configuration		R. G. B. Stripe	Note 2
7	Color Depth		16.2M Colors	Note 3
8	NTSC Ratio	%	50	
9	Display Mode		Normally White	
10	Panel surface Treatment		Anti-Glare, 3H	
11	Weight	g	99.7	
12	Panel Power Consumption	mW	TBD	Note 3
13	Backlight Power Consumption	W	1.4	
	Viewing direction		6 o'clock (gray inversion)	

Note 1: Not include FPC. Refer next page to get further information.

Note 2: Below figure shows dot stripe arrangement.

Note 3: Please refer to Electrical Characteristics chapter.

Version:

Page: 4/29

0.0

A. Outline Dimension

1. TFT-LCD Module - Front View

Version:

Page: 5/29

0.0

2. TFT-LCD Module - Rear View

Page: 6/29

B. Electrical Specifications

1. TFT LCD Panel Pin Assignment (Tentative)

Recommended connector:

NO.	Symbol	I/O	Description	Remark
1	VCOM	Р	Common Voltage	
2	VDD	Р	Power Voltage for digital circuit	
3	VDD	Р	Power Voltage for digital circuit	
4	NC		NC	
5	Reset	I	Global reset pin	\
			Standby mode, Normally pulled high	3
6	STBYB	ı	STBYB = "1", normal operation	
0	SIDID	'	STBYB = "0", timing controller, source	
			driver will turn off, all output are High-Z	
7	GND	Р	Ground	
8	RXIN0-	I	- LVDS differential data input	
9	RXIN0+	I	+ LVDS differential data input	
10	GND	Р	Ground	
11	RXIN1-	Ι	- LVDS differential data input	
12	RXIN1+	Ι	+ LVDS differential data input	
13	GND	Р	Ground	
14	RXIN2-	Ι	- LVDS differential data input	
15	RXIN2+	Ι	+ LVDS differential data input	
16	GND	Р	Ground	
17	RXCLKIN-	1	- LVDS differential clock input	
18	RXCLKIN+		+ LVDS differential clock input	
19	GND	Р	Ground	
20	RXIN3-	Τ	- LVDS differential data input	
21	RXIN3+	I	+ LVDS differential data input	
22	GND	Р	Ground	
23	NC		No connection	
24	NC		No connection	
25	GND	Р	Ground	
26	NC		No connection	
27	DIMO	0	Backlight CABC controller signal output	
28	SELB	I	6bit/8bit mode select	Note1
29	AVDD	Р	Power for Analog Circuit	
30	GND	Р	Ground	
31	LED-	Р	LED Cathode	

Page: 7/29

32	LED-	Р	LED Cathode	
33	L/R	I	Horizontal inversion	Note2
34	U/D	I	Vertical inversion	Note2
35	VGL	Р	Gate OFF Voltage	
36	CABCEN1	I	CABC H/W enable	Note3
37	CABCEN0	I	CABC H/W enable	Note3
38	VGH	Р	Gate ON Voltage	
39	LED+	Р	LED Anode	
40	LED+	Р	LED Anode	

I: input O: Output P: Power

Note1: If LVDS input data is 6 bits ,SELB must be set to High;

If LVDS input data is 8 bits, SELB must be set to Low.

Note2 : When L/R="0", set right to left scan direction.

When L/R="1", set left to right scan direction.

When U/D="0", set top to bottom scan direction.

When U/D="1", set bottom to top scan direction.

Note3: When CABC_EN="00", CABC OFF.

When CABC_EN="01", user interface image.

When CABC_EN="11", moving image.When CABC_EN="10", still picture.

When CABC off, don't connect DIMO, else connect it to backlight.

Page: 8/29

2. The Input Data Format

6bit LVDS input

8-bit LVDS input (HSD='L')

3. Absolute Maximum Ratings

Page: 9/29

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	VDDIO	GND=0	-0.5	5	V	
Power voltage	AVDD	GND=0	-0.5	15	V	
	VGH	GND=0	-0.3	42	V	
	VGL	GND=0	-20	0.3	V	
Operating Temperature	Тора		-20	85	$^{\circ}\!\mathbb{C}$	
Storage temperature	Tstg		-55	125	$^{\circ}$ C	

4. Electrical DC Characteristics

a. DC Charateristics

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
		VDD	3.0	3.3	3.6	V	Digital power
1		AVDD	10	11	13.5	>	Analog Power
Power Vol	tage	VGH	17	18	19	>	Positive power supply for gate
1 0 1 0 1	1 ower voltage		17	10		٧	driver
		VGL	-12.5	-12	-11.5	V	Negative power supply for
		V 0 L	-12.0		-11.5	٧	gate driver
Input	H Level	VIH	VDDx0.7	-	VDD	٧	Note 1
Signal Voltage	L Level	VIL	GND	-	0.3xVDD	٧	Note I
VCOM vol	tage	VCOM	TBD	TBD	TBD	V	Detail Gamma voltage please

Note 1: DE , Digital Data

b. Current Consumption (AGND=GND=0V)

or carrone concampation (North-City)								
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Input current for VDD	I_{VDD}	VDD=3.3V	-	TBD		mA	Note 1	
Inpur current for AVDD	I_{AVDD}	AVDD=11V	-	TBD		mA	Note 1	
Inpur current for VGH	I _{VGH}	VGH= TBD	-	TBD		mA	Note 1	
Inpur current for VGL	I _{VGL}	VGL= TBD		TBD		mA	Note 1	
Inpur current for VCOM	I _{VCOM}	VCOM=TBD		TBD		mA	Note 1	

Note 1: The test pattern use the following pattern.

Page: 10/29

c. Backlight Driving Conditions

The backlight (LED module, Note 1) is suggested to drive by constant current 220mA.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED light bar Voltage	V_{L}	8.4	9	10.2	V	I _F =140mA
Power Consumption	P_{BL}	1.18	1.26	1.43	W	Note 1
LED Life Time	L _L	10000		-	Hr	Note 2, 3

Note 1: The LED driving condition is defined for LED module (21LED). The voltage range will be 8.4V to 10.2V based on suggested driving current set as 140mA.

Note 2: Define "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25° C and LED lightbar current = 140mA.

Note 3: If it uses larger LED lightbar voltage/ current more than 10.2V/140mA, it maybe decreases the LED lifetime.

5. LVDS DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential input high threshold voltage	R _{xVTH}			+0.1	٧	D 12V
Differential input low threshold voltage	R _{xVTL}	-0.1		~	٧	- R _{xVCM} =1.2V
Input voltage range (singled-end)	R _{XVIN}	0		2.4	٧	
Differential input common mode voltage	R _{xVCM}	V _{ID} /2		2.4- V _{ID} /2	٧	
Differential input voltage	V _{ID}	0.2		0.6	٧	
Differential input leakage current	RV_{xliz}	-10		+10	μΑ	
LVDS Digital Operating Current	Iddlvds		40	50	mA	Fclk=65 MHz, VDD=3.3V
LVDS Digital Stand-by Current	Istlvds	•	10	50	μА	Clock & all Functions are stopped

Page: 11/29

Single-end Signals

6. Power On/Off Characteristics

Page: 12/29

C. Optical Specification

All optical specification is measured under typical condition (Note 1, 2)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time								
Rise		Tr	θ=0°		3	6	ms	Note 2
Fall		Tf			6	12	ms	
Contrast ratio		CR	At optimized viewing angle	600	800			Note 3
Viewing Angle	Тор		CR≧10	55	70			1
	Bottom			60	75		deg.	Viewing
	Left		ON≦ IU	60	75		deg.	Angle
	Right			60	75	(2)		
Brightness		Y_L	θ=0°			5	cd/m ²	Note 5
Chromaticity	White	X	θ=0°	-	0.31)*		
		Y	θ=0°	(0.33			
	Red	Х	θ=0°	TBD	TBD	TBD		
		Y	θ=0°	TBD	TBD	TBD		
	Green	Х	θ=0°	TBD	TBD	TBD		
		Υ	θ=0°	TBD	TBD	TBD		
	Blue	Х	θ=0°	TBD	TBD	TBD		
		Y	θ=0°	TBD	TBD	TBD		
Uniformity		ΔY_{L}	%	70	75		%	Note 7

Note 1: Ambient temperature =25°C, and LED lightbar current::220mA. To be measured in the dark room.

Note 2: To be measured on the center area of panel with a viewing cone of 1° by Topcon luminance meter BM-5A, after 15 minutes operation.

Note 3: Definition of response time:

Page: 13/29

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4.Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR) = $\frac{\text{Photo detector output when LCD is at "White" status}}{\text{Photo detector output when LCD is at "Black" status}}$

Note 5. Definition of viewing angle, θ , Refer to figure as below.

Note 6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 14/29

opened.

Note 7: Luminance Uniformity of these 9 points is defined as below:

Uniformity = \frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}

Page: 15/29

D. Reliability Test Items

No.	Test items	Conditions	Remark	
1	High Temperature Storage	Ta= 70°C	240Hrs	
2	Low Temperature Storage	Ta= -30°C	240Hrs	
3	High Ttemperature Operation	Tp= 60°C	240Hrs	
4	Low Temperature Operation	Ta= -20℃	240Hrs	
5	High Temperature & High Humidity	Tp= 40°C . 90% RH	240Hrs	Operation
6	Heat Shock	-30°C ~70°C, 100 cycle,	1Hrs/cycle	Non-operation
7	Image Sticking	25℃, 4hrs	150	Note 5
7	Electrostatic Discharge	Contact = ± TBD kV Air = ± TBD kV, class B A		Note 6
9	Vibration	Frequency range : 10H. Stoke : 1.5m Sweep : 10H. 2 hours for each direction Total 6 hours	Non-operation JIS C7021, A-10 condition A	
10	Mechanical Shock	100G . 6ms, ±X,±3 times for each di		Non-operation JIS C7021, A-7 condition C
11	Vibration (With Carton)	Random vibration: 0.015G ² /Hz from 5~200Hz –6dB/Octave from 200~500Hz		IEC 68-34
12	Drop (With Carton)	Height: 60cm 1 corner, 3 edges, 6 surfaces		
13	Pressure	5kg, 5sec		Note 7

Note 1: Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

Page: 16/29

Note4: All test techniques follow IEC6100-4-2 standard.

Test Condition		Note
Pattern		
Procedure And Set-up	Contact Discharge : 330Ω, 150pF, 1sec, 8 point, 25times/point Air Discharge : 330Ω, 150pF, 1sec, 8 point, 25times/point	
Criteria	B – Some performance degradation allowed. No data lost. Self-recoverable hardware failure.	
Others	Gun to Panel Distance No SPI command, keep default register settings.	

Note 5: Operate with chess board pattern as figure and lasting time and temperature as the conditions. Then judge with 50% gray level, the mura is less than JND 2.5

Note 6: The panel is tested as figure. The jig is ϕ 10 mm made by Cu with rubber and the loading speed is 3mm/min on position A~E. After the condition, no glass crack will be found and panel function check is OK.(no guarantee LC mura \cdot LC bubble)

Page: 17/29

E. Packing and Marking

1. Packing Form

TBD

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 39/128 with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

AUO Module or Panel factory code, represents the final production factory to complete the Product

Product version code, ranging from 0~9 or A~Z (for Version after 9)

Week Code, the production week when the product is finished at its production process

Page: 18/29

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton Date from 01 to 31

- Month, ranging from 1∼9, A~C. A for Oct, B for Nov and C for Dec.

- A.D. year, ranging from 1~9 and 0. The single digit code reprents the last number of the year

Refer to the drawing of packing format for the location and size of the carton label.

Page: 19/29

F. Reference application circuit

1.Recomonded Gamma Voltage

TBD

2. Application Circuit

a.Power

TBD

b.LVDS signal bus

TBD

G. Precautions

- Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.

Page: 20/29

20. Be careful of injury from a broken display module.

21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.

For Promate internal use only