Problem Set 5: 2.1, 2.2, 2.3

Joshua Ramette & Daniel Halmrast

October 28, 2016

PROBLEM 2.1

(a)

Let U, V, W be vector spaces, with $\phi: V \times W \to V \otimes W$ the natural mapping, $l: V \times W \to U$ bilinear.

NTS: exists unique $\tilde{l}: V \otimes W \to U$ such that $\tilde{l} \circ \phi = l$.

Define \widetilde{l} on decomposable tensors of the form $v \otimes w$ as $\widetilde{l}(v \otimes w) = l(v, w)$ and extend to all of $V \otimes W$ by linearity.

It is clear that $\widetilde{l} \circ \phi(v, w) = \widetilde{l}(v \otimes w) = l(v, w)$ and the diagram commutes. Uniqueness: Suppose \widetilde{l}' is another linear lifting of l. Then, for (v_0, w_0) , $\widetilde{l} \circ \phi(v_0, w_0) = \widetilde{l}(v_0 \otimes w_0) = l(v_0, w_0) = \widetilde{l}' \circ \phi(v_0, w_0) = \widetilde{l}'(v_0 \otimes w_0)$, and thus $\widetilde{l}' = \widetilde{l}$.

Now to prove isomorphism. The universal mapping property can be summarized in a commutative diagram: For some A, B is said to satisfy the universal mapping property if $\forall C \forall l, \exists ! \tilde{l}$ such that the following diagram commutes.

$$\begin{array}{c}
B \\
\phi_B \uparrow \qquad \tilde{l} \\
A \xrightarrow{l} C
\end{array}$$

To prove uniqueness, let (X, ϕ_X) be another object that satisfies the mapping property for A. Then, by applying the mapping property of B to X, we get the following diagram.

Then, from the diagram, since $\widetilde{\phi_X} \circ \phi_B = \phi_X$ and $\widetilde{\phi_B} \circ \phi_X = \phi_B$, it follows that $\phi_X = \widetilde{\phi_X} \circ \widetilde{\phi_B} \circ \phi_X$ and $\phi_B = \widetilde{\phi_B} \circ \widetilde{\phi_X} \circ \phi_B$. Thus, $\widetilde{\phi_B}$ and $\widetilde{\phi_X}$ are inverses of each other that compose to the identity, and form an isomorphism of X and B.

(b) Now we also prove universality within a general category. In a general category C, let X and Y satisfy the mapping property for A.

 $V \otimes W \cong W \otimes V$. Define the isomorphism as, for $\psi : V \times W \to W \times V$ the canonical isomorphism, $\psi_0 : V \otimes W \to W \otimes V$.

Let ϕ be the bilinear map from part (a) of $V \times W$ into $V \otimes W$ and ϕ' the bilinear map of $W \times V$ into $W \otimes V$. Then, $\psi_0 = \phi' \circ \psi$, with natural inverse $\psi_0^{-1} = \phi \circ \psi^{-1}$ where ψ_0 is extended to all of $V \otimes W$ via linearity.

- (c) $U \otimes (V \otimes W) = (U \otimes V) \otimes W$. Apply the same lifting as (b) on $\psi : U \times (V \times W) \to (U \times V) \times W$.
- (d) α is injective by linearity $\alpha(\nu_1) \alpha(\nu_2) = 0 \rightarrow \alpha(\nu_1 \nu_2) = 0$ and triviality of the kernel.

Let $T: V \to W$ be an element of $\operatorname{Hom}(V, W)$. $T(x_i) = \sum c_j y_j = w_i$. Then, $T(V) = T(\sum c_i y_i) = \sum c_i T(x_i) = \sum c_i (\sum (c_j y_j)) = \sum_i w_i$. Let $f_i = \pi_i$ be the i-th coordinate projection. Then $T(V) = \sum f_i(v) w_i = \sum \alpha (f_i \otimes w_i)(v) = \alpha (\sum (f_i \otimes w_i)(v))$. Then α is surjective as well.

Suppose $(v \otimes w) \in V \otimes W$). Then $(v \otimes w) = (\sum c_i e_i) \otimes (\sum d_j f_j) = \sum_i ((c_i e_i) \otimes (\sum d_j f_j)) = \sum_i c_i (e_i \otimes (\sum d_j f_j)) = \sum_i \sum_j c_i (e_i \otimes (d_j f_j)) = \sum_i \sum_j c_i d_j (e_i \otimes f_j)$. Thus the desired set is a basis.

PROBLEM 2.2

(a) Provide an example of a homogeneous tensor that is not decomposable

Proof. Let V be a vector space, and $V \otimes V$ the corresponding tensor product space. Furthermore, let v, w be vectors in V. Then, the tensor $v \otimes w + w \otimes v$ is homogeneous of degree two, but is not decomposable.

(b) Show that for $dim(V) \le 3$, every homogeneous element of $\Lambda(V)$ is decomposable.

Proof. Let V be a three dimensional vector space with basis $\{v_1, v_2, v_3\}$. Then, the corresponding exterior algebra has basis elements

$$\begin{array}{ccc} & v_1 \wedge v_2 \wedge v_3 \\ v_1 \wedge v_2 & v_1 \wedge v_3 & v_2 \wedge v_3 \\ v_1 & v_2 & v_3 \\ & & & & & & & & & & & & \\ \end{array}$$

It suffices to check for degree two elements of $\Lambda(V)$ that they are decomposable. To this end, let $c_1v_1 \wedge v_2 + c_2v_1 \wedge v_3 + c_3v_2 \wedge v_3$ be an arbitrary degree two element of the exterior algebra. Then, it is easy to see that

$$c_1 v_1 \wedge v_2 + c_2 v_1 \wedge v_3 + c_3 v_2 \wedge v_3 = v_1 \wedge (c_1 v_2 + c_2 v_3) + c_3 v_2 \wedge v_3$$
$$= (v_1 - \frac{c_1}{c_3} v_3) \wedge (c_1 v_2 + c_2 v_3)$$

(c) Give an example of a homogeneous indecomposable element of $\Lambda(V)$.

Proof. The element $v_1 \wedge v_2 + v_3 \wedge v_4$ for linearly independent $v_1...v_4$ is indecomposable. \Box

(d)

Is $\alpha \wedge \alpha = 0$?

Proof. Decomposable elements of α wedge together to zero, meaning $\alpha \wedge \alpha = 0$.

PROBLEM 2.3

(a) Let $u \in \Lambda_k(V)$ and $v \in \Lambda_l(V)$. Then, u and v are homogeneous and the wedge product $u \wedge v$ is an element of $\Lambda_{k+l}(V)$ by the definition of the exterior algebra as C(V)/I(V), following from the definition of the tensor product of homogeneous tensors. Since u, v are homogeneous, $u = u_1 \wedge ... \wedge u_k$ and $v = v_1 \wedge ... \wedge v_l$, and thus $u \wedge v = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l = u_1 \wedge ... \wedge u_k \wedge v_1 \wedge ... \wedge v_l \wedge u_k \wedge v_1 \wedge u_k \wedge v_1 \wedge ... \wedge v_l \wedge u_k \wedge v_1 \wedge u$

Hogehous, $u = u_1 \land ... \land u_k$ and $v = v_1 \land ... \land v_l$, and thus $u \land v = u_1 \land ... \land u_k \land v_1 \land ... \land (-1)^k v_1 \land u_1 \land ... \land u_k \land v_2 \land ... \land v_l = (-1)^k (-1)^l v_1 \land ... \land v_l \land u_1 \land ... \land u_k \land = (-1)^{kl} v \land u_1 \land ... \land v_l \land u_1 \land ... \land u_k \land u_k \land u_1 \land ... \land u_k \land u_1 \land ... \land u_k \land u_k \land u_1 \land ... \land u_k \land$

(b)

First we show that $\{e_{\Phi}\}$ is a basis of $\Lambda(V)$. Observe that the elements of $\{e_{\Phi}\}$ span $\Lambda(V)$. To show linear independence of the set, consider $\sum a_{\Phi}e_{\Phi}=0$. Then, $(\sum a_{\Phi}e_{\Phi}) \wedge (e_1 \wedge ... \wedge e_n)=a_{\emptyset}(e_1 \wedge ... \wedge e_n)=0$. Then we induct; assume that $a_s=0 \ \forall s$ such that $|s| \leq k$.

Then, for $|s| \ge k+1$, $\sum a_s e_s = 0$, $(\sum a_{\Phi} e_{\Phi}) \wedge e_{\Phi^c} = a_{\Phi}(e_1 \wedge ... \wedge e_n) = 0$ which implies that $a_{\Phi} = 0$ for $|\Phi| = k+1$, where Φ^c is the set theoretic complement of Φ .

Furthermore, it is obvious that $\Lambda_d(V)$ is a 1 dimensional vector space and is isomorphic to \mathbb{R} , and that $\Lambda_{d+j}(V)$ is isomorphic to $\{0\}$ and that $\dim(\Lambda_k(V)) = 2^d$ and $\dim(\Lambda_k(V)) = \binom{n}{k}$.

Define \widetilde{l} on decomposable states as $\widetilde{l}(v_1 \wedge ... \wedge v_k) = l(v_1, ... v_k)$ so that $\widetilde{l} \circ \phi = l$, and extend \widetilde{l} to all of $\Lambda_k(V)$ by linearity. Universality follows from the result in problem 2.1 (b).