The F-test (to check the goodness of linear models)

We have the model, $Y = X\beta + \epsilon$, $X_{n \times p}$ of rank $r \leq p$ and with $\epsilon \sim N_n(0, \sigma^2 I_n)$. Suppose we want to test $H_0: A\beta = c$, $A_{q \times p}$ of rank $q \leq r$, and c is given. Then

RSS = SSE =
$$(Y - X\hat{\beta})'(Y - X\hat{\beta}) = Y'(I - P)Y$$

RSS_{H₀} = $(Y - X\hat{\beta}_{H_0})'(Y - X\hat{\beta}_{H_0})$, where
 $\hat{\beta}_{H_0} = \hat{\beta} + (X'X)^- A' \left(A(X'X)^- A'\right)^{-1} \left\{c - A\hat{\beta}\right\}$.

Theorem. Under the above mentioned assumptions, we have,

- (i) RSS $\sim \sigma^2 \chi_{n-r}^2$;
- (ii) $RSS_{H_0} RSS = (A\hat{\beta} c)' (A(X'X)^- A')^{-1} (A\hat{\beta} c);$ (iii) $E(RSS_{H_0} RSS) = q\sigma^2 + (A\beta c)' (A(X'X)^- A')^{-1} (A\beta c);$
- (iv) under $H_0: A\beta = c$,

$$F = \frac{(\text{RSS}_{H_0} - \text{RSS})/q}{\text{RSS}/(n-r)} \sim F_{q,n-r};$$

(v) when c=0,

$$F = \left(\frac{n-r}{q}\right) \frac{Y'(P-P_{H_0})Y}{Y'(I_n-P)Y},$$

where P_{H_0} is symmetric idempotent and $P_{H_0}P = PP_{H_0} = P_{H_0}$.

Proof. (i) Already known.

(ii) Note that

$$RSS_{H_{0}} = (Y - X\hat{\beta}_{H_{0}})'(Y - X\hat{\beta}_{H_{0}})$$

$$= (Y - X\hat{\beta} + X\hat{\beta} - X\hat{\beta}_{H_{0}})'(Y - X\hat{\beta} + X\hat{\beta} - X\hat{\beta}_{H_{0}})$$

$$= (Y - X\hat{\beta})'(Y - X\hat{\beta}) + (X\hat{\beta} - X\hat{\beta}_{H_{0}})'(X\hat{\beta} - X\hat{\beta}_{H_{0}})$$

$$+2(X\hat{\beta} - X\hat{\beta}_{H_{0}})'(Y - X\hat{\beta})$$

$$= RSS + (\hat{\beta} - \hat{\beta}_{H_{0}})'X'X(\hat{\beta} - \hat{\beta}_{H_{0}}),$$

since $(X\hat{\beta} - X\hat{\beta}_{H_0})'(Y - X\hat{\beta}) = (\hat{\beta} - \hat{\beta}_{H_0})'(X'Y - X'X\hat{\beta}) = 0$. Now from an earlier result, $(\hat{\beta} - \hat{\beta}_{H_0})'X'X(\hat{\beta} - \hat{\beta}_{H_0}) = (A\hat{\beta} - c)'(A(X'X)^{-}A')^{-1}(A\hat{\beta} - c).$ (iii) $A\hat{\beta} = MX\hat{\beta} = MPY \sim N_q(A\beta, \sigma^2(A(X'X)^-A'))$, so that $E(A\hat{\beta} - c) =$ $A\beta - c$ and $Cov(A\hat{\beta}) = \sigma^2 A(X'X)^- A'$. Therefore,

 $E(RSS_{H_0} - RSS)$

$$= E\left\{ (A\hat{\beta} - c)' \left(A(X'X)^{-}A' \right)^{-1} (A\hat{\beta} - c) \right\}$$

$$= (A\beta - c)' \left(A(X'X)^{-}A' \right)^{-1} (A\beta - c) + \operatorname{tr} \left\{ \sigma^{2} A(X'X)^{-}A' \left(A(X'X)^{-}A' \right)^{-1} \right\}$$

$$= q\sigma^{2} + (A\beta - c)' \left(A(X'X)^{-}A' \right)^{-1} (A\beta - c),$$

which is large if $A\beta$ is far from c.

(iv) Note that

$$RSS_{H_0} - RSS = (A\hat{\beta} - c)' (A(X'X)^- A')^{-1} (A\hat{\beta} - c) \sim \sigma^2 \chi_a^2$$

under H_0 since $A\hat{\beta}-c \sim N_q(A\beta-c, \sigma^2(A(X'X)^-A')) = N_q(0, \sigma^2A(X'X)^-A')$. Also, RSS $\sim \sigma^2\chi^2_{n-r}$ from (i). Further, RSS is independent of $X\hat{\beta} = PY$. Since $A\beta$ is estimable, A = MX, so that $A\hat{\beta} = MX\hat{\beta} = MPY$, which is independent of RSS.

(v) If c = 0, we have,

$$X\hat{\beta}_{H_0} = X \left\{ \hat{\beta} - (X'X)^{-}A' \left(A(X'X)^{-}A' \right)^{-1} A \hat{\beta} \right\}$$

$$= X \left\{ (X'X)^{-}X'Y - (X'X)^{-}A' \left(A(X'X)^{-}A' \right)^{-1} A(X'X)^{-}X'Y \right\}$$

$$= \left\{ X(X'X)^{-}X' - X(X'X)^{-}A' \left(A(X'X)^{-}A' \right)^{-1} A(X'X)^{-}X' \right\} Y$$

$$= (P - P_1)Y = P_{H_0}Y.$$

Clearly, P_{H_0} is symmetric. Further, P_1 is symmetric, $P_1^2 = X(X'X)^-A'(A(X'X)^-A')^{-1}A(X'X)^-X'X(X'X)^-A'(A(X'X)^-A')^{-1}A(X'X)^-X' = X(X'X)^-A'(A(X'X)^-A')^{-1}\{A(X'X)^-X'X(X'X)^-A'\}(A(X'X)^-A')^{-1}A(X'X)^-X' = X(X'X)^-A'(A(X'X)^-A')^{-1}\{A(X'X)^-A'\}(A(X'X)^-A')^{-1}A(X'X)^-X' = X(X'X)^-A'(A(X'X)^-A')^{-1}A(X'X)^-X' = P_1$, since the term in the middle of the expression,

 $\begin{array}{l} A(X'X)^-X'X(X'X)^-A' = MX(X'X)^-X'X(X'X)^-X'M' = MP^2M'\\ = MPM' = A(X'X)^-A'. \text{ Also,}\\ P_1P = X(X'X)^-A'\left(A(X'X)^-A'\right)^{-1}A(X'X)^-X'X(X'X)^-X'\\ = X(X'X)^-A'\left(A(X'X)^-A'\right)^{-1}A(X'X)^-X' = P_1,\\ \text{since } X'X(X'X)^-X' = X'P = X'P' = (PX)' = X'. \text{ Note, } P_1 = (P_1)' = (P_1P)' = PP_1. \text{ Therefore,}\\ P_{H_0}^2 = (P-P_1)^2 = P^2 - PP_1 - P_1P + P_1^2 = P - 2P_1 + P_1 = P - P_1 = P_{H_0}\\ \text{and } P_{H_0}P = (P-P_1)P = P - P_1 = P_{H_0} = PP_{H_0}. \text{ Therefore,} \end{array}$

$$RSS_{H_0} = ||Y - X\hat{\beta}_{H_0}||^2 = (Y - X\hat{\beta}_{H_0})'(Y - X\hat{\beta}_{H_0})$$

= $(Y - P_{H_0}Y)'(Y - P_{H_0}Y) = Y'(I - P_{H_0})Y$

and

$$RSS_{H_0} - RSS = Y'(I - P_{H_0})Y - Y'(I - P)Y = Y'(P - P_{H_0})Y.$$