CSC 665: Artificial Intelligence

Reinforcement Learning

Instructor: Pooyan Fazli San Francisco State University

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A transition function T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for an optimal policy $\pi^*(s)$
- New twist: don't know T or R (model of MDP)
 - I.e. we don't know which states are good or what the actions do

Reinforcement Learning

MDP computes an optimal policy (offline)

RL learns an optimal policy (online)

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Must (learn to) act to maximize expected rewards based on observed samples of outcomes!

Example: Learning to Walk

Initial

After Learning [1K Trials]

Example: Learning to Walk

Initial

Example: Learning to Walk

Finished

The Crawler!

Video of Demo Crawler Bot

Passive vs Active Reinforcement Learning

Passive RL Learning

• The agent acts based on a fixed policy π and tries to learn how good the policy is by observing the world go by

Active RL Learning

 The agent attempts to find an optimal policy by exploring different actions in the world

Model-Based vs Model-Free Learning

- Model-Based approach to RL:
 - Learn the MDP model (T and R), or an approximation of it
 - Use it to evaluate the fixed policy (Passive RL Learning)
 - Use it to find the optimal policy (Active RL Learning)

- Model-Free approach to RL:
 - Without explicitly learning the model (T and R)
 - Evaluate the fixed policy (Passive RL Learning)
 - Find the optimal policy (Active RL Learning)

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

T(B, east, C) = 1.00T(C, east, D) = 0.75T(C, east, A) = 0.25

Learned Model

 $\widehat{T}(s,a,s')$

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

$$\hat{R}(s, a, s')$$

R(B, east, C) = -1R(C, east, D) = -1R(D, exit, x) = +10

Model-Based Learning

- Step 1: Learn the MDP model (T and R)
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - Use Policy Evaluation to evaluate the fixed policy (Passive RL Learning)
 - Use Value Iteration to find the optimal policy (Active RL Learning)

Model-Free Learning

Passive Reinforcement Learning

- Task: Policy Evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values

In this case:

- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10 A	
+8 B	+4 C	+10 D
	-2 E	

Direct Evaluation

- Goal: Compute values for each state under π
- Idea:
 - Act according to π
 - Use the actual sum of discounted rewards from s
 - Average over multiple trials and visits to s
- This is called Direct Evaluation

Problems with Direct Evaluation

- What's good about Direct Evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It ignores information about state connections
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Question?

Direct Evaluation is a Approach

Model-Free

✓

Model-Based

Temporal Difference Learning

Temporal Difference Learning

- Idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
- Temporal Difference Learning of values
 - Policy still fixed, still doing evaluation!

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

• α is the learning rate: determines to what extent the newly acquired information will override the old information.

Example: Temporal Difference Learning

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Question?

TD Learning is a Approach.

Model-Free

✓

Model-Based

Active Reinforcement Learning

- Full reinforcement learning: optimal policies
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Learning

Q-Learning

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$
or
$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a')\right]$$

Q-Learning – Manual Grid

Q-Learning – Auto Grid

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly

Flappy Bird RL

- State space
 - Discretized vertical distance from lower pipe
 - Discretized horizontal distance from next pair of pipes
 - Life: Dead or Living
- Actions
 - Click
 - Do nothing
- Rewards
 - +1 if Flappy Bird still alive
 - -1000 if Flappy Bird is dead
- 6-7 hours of Q-learning

Flappy Bird RL

- State space
 - Discretized vertical distance from lower pipe
 - Discretized horizontal distance from next pair of pipes
 - Life: Dead or Living
- Actions
 - Click
 - Do nothing
- Rewards
 - +1 if Flappy Bird still alive
 - -1000 if Flappy Bird is dead
- 6-7 hours of Q-learning

Summary: Passive vs Active Reinforcement Learning

Passive RL Learning

- Policy Evaluation on Approx. MDP (Model-Based)
- Direct Evaluation (Model-Free)
- Temporal Difference (TD) Learning (Model-Free)

Active RL Learning

- Value Iteration on Approx. MDP (Model-Based)
- Q-learning (Model-Free)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based

Unknown MDP: Model-Free

Goal	Technique
Compute V*, Q*, π*	
Evaluate a fixed policy π	

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value Iteration

Evaluate a fixed policy π Policy Evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π TD Learning/Direct Eval

Reading

■ Read Sections 22.1, 22.2, and 22.3 in the AIMA textbook