Géométrie avancée

Fibrés tangents et

différentiels

Question 1/23

Fibré tangent de M

Réponse 1/23

La variété TM muni de l'atlas (TU_i, Φ_{φ_i}) , qui est de dimension $\dim(TM) = 2\dim(M)$ C'est un fibré vectoriel de rang $\dim(M)$

Question 2/23

Un fibré $E \to B$ est vectoriel

Réponse 2/23

Les fibres sont des R-ev et leur structure est cohérente avec celle de la fibration

Question 3/23

X est transverse à Z via $f: X \to Y$ lisse $X \pitchfork_f Z$

Réponse 3/23

Pour tout $x \in X$ tel que $f(x) \in Z$, $T_{f(x)}Y = \operatorname{im}(\operatorname{d} f_x) + T_{f(x)}Z$ En particulier si $Z = \{y\}$ alors $X \cap_f Z$ si et seulement si f est une submersion le long de $f^{-1}(\{y\})$

Question 4/23

f est une submersion en x

Réponse 4/23

 $\mathrm{d}f_x$ est surjective

Question 5/23

f est un plongement

Réponse 5/23

f est une immersion qui réalise un homéomorphisme sur son image

Question 6/23

Théorème du rang constant

Réponse 6/23

Si M et N sont deux variétés différentielles de dimensions m et n avec $f: M \to N$ lisse et si $x \mapsto \operatorname{rg}(\mathrm{d} f_x)$ est constante au voisinage de x_0 alors il existe $\varphi: U_{x_0} \ni x_0 \to \mathbb{R}^m$ et $\psi: V_{f(x_0)} \ni f(x_0) \to \mathbb{R}^n$ telles que $\psi \circ f \circ \varphi^{-1}$: $\mathbb{R}^m \longrightarrow \mathbb{R}^n$ $(x_1,\cdots,x_m)\longmapsto (x_1,\cdots,x_r,0,\cdots,0)$

Question 7/23

TM

Réponse 7/23

$$\coprod_{x \in M} \mathrm{T}_x M$$

Question 8/23

Morphisme de fibrés lisse $E_1 \to B$ et $E_2 \to B$

Réponse 8/23

$$E_1 \xrightarrow{f} E_2$$
 $\downarrow p_1 \xrightarrow{f} p_2 \downarrow$ tel que f soit lisse et
$$B \xrightarrow{\text{id}} B$$
 $f_{|(E_1)_x} : (E_1)_x \to (E_2)_x$ soit linéaire

Question 9/23

Deux germes courbes de \mathcal{C}_x ont la même vitesse en x

Réponse 9/23

$$(\varphi \circ \gamma_1)'(0) = (\varphi \circ \gamma_2)'(0)$$

Question 10/23

Isomorphisme de fibrés vectoriels

Réponse 10/23

Difféomorphisme de fibrés vectoriels

Question 11/23

Un fibré $p:E\to B$ est vectoriel de rang k

Réponse 11/23

Les fibres sont des \mathbb{R} -ev de dimension kLa fibre type est \mathbb{R}^k Si on se donne une trivialisation $p^{-1}(U) \xrightarrow{\varphi} U \times \mathbb{R}^k$ $\downarrow p \qquad pr_1 \downarrow \qquad \varphi_{\mid E_x} : E_x \to \mathbb{R}^k \text{ est un}$ isomorphisme de \mathbb{R} -ev

Question 12/23

Ouverts de TM pour M une variété topologique ou différentielle

Réponse 12/23

On impose que les TU_i soient ouverts et que les Φ_{φ_i} soient des homéomorphismes $\Omega \subseteq M$ est ouvert si et seulement si pour tout $i, \Phi_{\varphi_i}(\Omega \cap TU_i)$ est ouvert TM est dénombrable à l'infini et un atlas est

donné par (TU_i, Φ_{φ_i}) Dans le cas d'une variété différentielle, c'est aussi un atlas différentiel

Question 13/23

M est parallélisable

Réponse 13/23

TM est trivial

Question 14/23

Théorème de Sard

Réponse 14/23

Si $f: M \to N$ est lisse alors $f(\operatorname{crit}(f))$ est négligeable dans N, dans le sens où l'image de $f(\operatorname{crit}(f))$ par toute carte est de mesure nulle pour la mesure de Lebesgue

Question 15/23

Définition et structure de T_xM

Réponse 15/23

 C_x/\sim où $\gamma_1 \sim \gamma_2$ ei et seulement si γ_1 et γ_2 ont la même vitesse en xTxM a une structure naturelle d'espace

$$TxM$$
 a une structure naturelle d'espace
vectoriel via l'isomorphisme
 $\theta_{\varphi}: T_xM \longrightarrow \mathbb{R}^{\dim(M)}$
 $[\gamma] \longmapsto (\varphi \circ \gamma)'(0)$

Question 16/23

$$f: M \to N$$
 lisse entre deux variétés $\mathrm{d} f_x$

Réponse 16/23

$$\mathrm{d} f_x : \mathrm{T}_x M \longrightarrow \mathrm{T}_{f(x)} N$$

$$[\gamma] \longmapsto [f \circ \gamma]$$
C'est bien défini et linéaire

Question 17/23

f est une immersion en x

Réponse 17/23

 $\mathrm{d}f_x$ est injective

Question 18/23

Section d'un fibré vectoriel $p:E\to B$ d'une variété différentielle

Réponse 18/23

Application $s: B \to E$ telle que $p \circ s = \mathrm{id}_B$

Question 19/23

Germes de courbes passant par x

Réponse 19/23

L'ensemble C_x des $\gamma: I \to M$ lisses avec I un voisinage de x quotientés par la relation d'équivalence « avoir la même valeur sur un voisinage ouvert de x »

Question 20/23

Théorème de transversalité

Réponse 20/23

Soit $f: X \to Y$ lisse et $Z \subseteq Y$ une sous-veriété telle que $X \pitchfork_f Z$ alors $f^{-1}(Z)$ est une sous-vériété de X et si $f^{-1}(Z)$ est non vide alors $\operatorname{codim}(f^{-1}(Z)) = \operatorname{codim}(Z)$

Question 21/23

Point critique et valeur critique de $f: M \to N$ lisse

Réponse 21/23

 $x \in M$ est point critique si d f_x n'est pas surjective $y \in N$ est valeur critique s'il existe $x \in M$ point critique tel que f(x) = ySi $\dim(M) < \dim(N)$ alors tous les points sont critiques

 $\operatorname{crit}(f)$ désigne l'ensemble des points critiques de f

Question 22/23

$$E \to B$$
 est trivial de rang k

Réponse 22/23

Le fibré est isomorphe à $\operatorname{pr}_1: B \times \mathbb{R}^k \to B$

Question 23/23

TU

Réponse 23/23

$$\prod_{x \in U} T_x M$$
On a une application bijective $\Phi_{\varphi} \colon TU \longrightarrow \varphi(U) \times \mathbb{R}^{\dim(M)}$

 $(x, [\gamma]) \longmapsto (\varphi(x), (\varphi \circ \gamma)'(0))$