(Due Friday, March 2)

Each problem will be graded out of 10 points.

1. Consider the complex numbers \mathbb{C} as a vector space over \mathbb{R} . Define $T:\mathbb{C}\to\mathbb{C}$ by $T(z)=\overline{z}$, where \overline{z} is the complex conjugate of z. Prove that T is linear and compute $[T]_B$, where B is the standard ordered basis (1,i). Is T still a linear transformation when \mathbb{C} is viewed as a vector space over \mathbb{C} ?

T is linear:

1. Additivity:

Additivity is satisfied:
$$T(a+bi)+T(c+di)=a-bi+c-di=(a+c)-(b+d)i=T(a+bi+c+di)$$

2. Homogeneity:

$$T(c(a+bi)) = T(ca+cbi) = ca-cbi = c(a-bi) = cT(a+bi)$$

Standard matrix:

In *B*-representation, $a + bi = \begin{bmatrix} a \\ b \end{bmatrix}$. So

$$[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Linear transformation for \mathbb{C} over \mathbb{C} : no: if c is a complex number, we nolonger have homogeneity:

$$(x+yi)T(a+bi) = (x+yi)(a-bi)$$
$$= ax + ayi - bxi + by$$
$$= ax + by + (ay - bx)i$$

Now,

$$T((x+yi)(a+bi)) = T(ax + ayi + bxi - by)$$
$$= T((ax - by) + (ay + bx)i)$$
$$= (ax - by) - (ay + bx)i$$

which is different from ax + by + (ay - bx)i.

2. Let $T: \mathbb{F}^n \to \mathbb{F}$ be a linear transformation. If $\{e_1, \dots, e_n\}$ is the standard basis for \mathbb{F}^n , prove that there exist scalars a_1, \dots, a_n such that, if $x = (x_1, \dots, x_n) \in \mathbb{F}^n$, then

$$T(x) = \sum_{i=1}^{n} a_i x_i.$$

Do these scalars need to be unique?

They need to be unique.

If there are two sets of scalars a_i and b_i , consider $\sum_{i=1}^n a_i e_i$ and $\sum_{i=1}^n b_i e_i$. They should be the same, because they both give us T(x).

Now, subtract the two sums and regroup the terms to get $0 = \sum_{i=1}^{n} (a_i - b_i)e_i$. If any a_i is different from any b_i , there will be nonzero coefficients, which means that $\{e_1, \ldots, e_n\}$ is not a basis because a basis must be linearly independent.

A function $f: V \to W$ is called *additive* if f(x+y) = f(x) + f(y) for all $x, y \in V$.

3. If \mathbb{R} is viewed as a vector space over \mathbb{Q} , prove that any additive map from \mathbb{R} to \mathbb{R} is also a linear transformation.

Let T denote our additive map. Because we already have additivity, we only need to prove that T is homogeneous, that it preserves scalar multiplication.

Let $r \in \mathbb{R}$ be a vector in \mathbb{R} over \mathbb{Q} . Let $c = \frac{a}{b}$ be a scalar, where $c \in \mathbb{Q}$ and $a, b \in \mathbb{Z}$. By symmetry, assume that b is positive. We split the proof into two cases: where a is positive, and where a is negative.

For positive a we have:

$$cr = \frac{a}{b}r \qquad \text{original equation}$$

$$bcr = ar \qquad \text{multiply both sides with } b \neq 0$$

$$\sum_{i=1}^{b} cr = \sum_{j=1}^{a} r \qquad \text{expand integer multiplication to summation}$$

$$T\left(\sum_{i=1}^{b} cr\right) = T\left(\sum_{j=1}^{a} r\right)$$

$$\sum_{i=1}^{b} T(cr) = \sum_{j=1}^{a} T(r) \qquad T \text{ additive}$$

$$bT(cr) = aT(r) \qquad \text{contract summation to integer multiplication}$$

$$T(cr) = \frac{a}{b}T(r) \qquad \text{multiply both sides by } b^{-1}$$

Finally, we have to prove that T(-r) = -T(r) to cover the negative-a case. Simply use additivity:

$$T(-r) = T(0-r) + T(r) - T(r)$$
 with
 $= T(-r+r) - T(r)$ additivity
 $= T(0) - T(r)$ definition of additive inverse
 $= -T(r)$ see below

We can do the last step because $T(0+0) = T(0) \implies T(0) + T(0) = T(0) \implies T(0) = 0$.

So for negative c, we can just extract the negative sign, apply homogeneity for positive scalars, and put the sign back in.

4. Let V be a vector space and W a subspace of V.

(a) Define the mapping $\rho: V \to V/W$ by $\rho(v) = v + W$. Prove that ρ is a linear transformation.

In hw3, we defined the operations (v+W)+(u+W)=((u+v)+W) and c(v+W)=(cv+W). By definition, we have additivity $(\rho(u+v)=((u+v)+W)=\rho(u)+\rho(v))$ and homogeneity $(\rho(av)=(av+W)=a\rho(v))$, so ρ is a linear transformation.

(b) If V is finite-dimensional, how do $\dim(V)$, $\dim(W)$, and $\dim(V/W)$ relate?

 $\dim(V) = \dim(W) + \dim(V/W)$. V/W can be seen as the result of collapsing V along $W \in V$.

5. Let V be an n-dimensional vector space over \mathbb{F} with ordered basis B. Define $T: V \to \mathbb{F}^n$ by $T(x) = [x]_B$. Prove that T is linear.

T is additive: let $[x]_B = [x_i]$, $[y]_B = [y_i]$, and $B = \{b_i\}$. We have $x = \sum_{i=1}^n x_i b_i$ and $y = \sum_{i=1}^n y_i b_i$.

Now consider the sum x+y. It is equal to $\sum_{i=1}^{n}(x_i+y_i)b_i$. So the coefficients are $[x_i+y_i]$, and they are unique because otherwise, if there are two different sets of coefficients $[c_i]$ and $[c'_i]$ that could generate x+y after multiplying with the $\{b_i\}$, we can say $\sum_{i=1}^{n}(c_i-c'_i)b_i=0$ and conclude that the b_i are linearly dependant, which is impossible.

T is homogeneous: let $x = \sum_{i=1}^{n} x_i b_i$. $cx = c \sum_{i=1}^{n} cx_i b_i$. Extracting the coefficients gives $[cx]_B = c[x]_B$. Again, by the same reasoning, there can be no alternative representation unless B is not a basis.

6. Let V and W be vector spaces such that $\dim(V) = \dim(W)$, and let $T: V \to W$ be linear. Prove that there exist ordered bases B (for V) and C (for W) such that $[T]_B^C$ is a diagonal matrix.

Proof. Take any basis $B = \{b_1, \ldots, b_n\}$ of V let C be a basis of the image of B. There is a matrix $M = [T]_B^C$ representing T with input in terms of B and output in terms of C.

Now, we modify M with elementary row/column operations to make it into a diagonal matrix. For each row operation we modify C accordingly to make sure that (1) C is still a basis and (2) $M = [T]_B^C$ or, equivalently, $\forall v \in V : M[v]_B = [T(v)]_C$, still holds.

Consider the column vector $w \in \mathbb{F}^{\dim(W)}, w = M[v]_B$.

- When we swap rows i and j of M, the corresponding columns of w also swap. So to make sure $M[v]_B = [T(v)]_C$ we have to swap the corresponding vectors in C. C remains a basis, because the vectors are unchanged.
- When we multiply row i of M by the nonzero scalar $c \in F$, we will have to similarly multiply vector i in C by c^{-1} , so that the scalars cancel out when we multiply each C-vector by w components to restore T(v). C remains a basis, because origonal C is in the span of the transformed C, and linear independence is preserved because if $a'_i \cdot cc_i + \sum_{k \neq i} a_k c_k = 0$ and some of the a_k are not zero, claim by C wasn't an independent set to begin with by setting a_i with ca'_i and showing that $\sum_k a_k c_k = 0$.
- When row i is modified by setting $w'_i = w_i + w_j$, the change has to be inverted in C by letting the new $c'_j = c_j c_i$. This way,

$$w'_{i}c_{i} + w_{j}c'_{j} + \sum_{k \neq i,j} w_{k}c_{k} = (w_{i} + w_{j})c_{i} + w_{j}(c_{j} - c_{i}) + \sum_{k \neq i,j} w_{k}c_{k}$$

$$= w_{i}c_{i} + w_{j}c_{i} - w_{j}c_{i} + w_{j}c_{j} \sum_{k \neq i,j} w_{k}c_{k}$$

$$= \sum_{k} w_{k}c_{k}$$

Span of C is preserved because the new old c_j can be restored by adding c_i to the new c'_i because $c'_i + c_i = c_j - c_i + c_i = c_j$.

Independence of C is preserved because if

$$a'_{i}c_{i} + a'_{j}c'_{j} + \sum_{k \neq i,j} a'_{k}c_{k} = 0$$

then

$$a'_{i}c_{i} + a'_{j}(c_{j} - c_{i}) + \sum_{k \neq i,j} a'_{k}c_{k} = 0$$

$$a'_{i}c_{i} + a'_{j}c_{j} - a'_{j}c_{i} + \sum_{k \neq i,j} a'_{k}c_{k} = 0$$

$$(a'_{i} - a'_{j})c_{i} + a'_{j}c_{j} + \sum_{k \neq i,j} a'_{k}c_{k} = 0$$

but now by linear independence of the c_k , $(a'_i - a'_j) = 0$, $a_j = 0$, and each other a_k is also 0. So the new C is linearly independent.

So as we perform row operations on M, the basis C could be modified to preserve $[T(v)]_C = M[v]_B$ while still being a basis.

Could I have written C as a "vector of vectors" and did something differnt but easier involving inverting EROs?