Mass Spectrometry Lemierre - Supplementary plots

Gustav Torisson

Descripton of raw data

- Raw data consists of a wide dataframe with 654 rows with protein names and 24 columns (1 with protein names and 23 samples).
- These were grouped into 8 with Lemierre syndrome ("LS"), 15 other sepsis ("Sepsis").
- There was one measurement per sample.

Initial data management

- Proteins with several names, separated with semicolon(;) were renamed to only the first name (left of semicolon)
- Datapoints labelled as "Filtered" were re-labelled as NA.
- Data was converted to "numeric" format, as it was "character" from the Excel import
- Datapoints labelled as Nan (Not a Number) were also labelled as NA

Log2 transformation

ullet all measurements were log2 transformed

Figure 1: Density plots of raw and log2 transformed values

Filtering

- $\bullet\,$ Of 654 proteins, 341 (52.1%) had complete data, in all 23 samples
- 205 proteins (31.3%) were missing in \geq 7 (30% of all) samples.
- These were filtered, leaving 449 proteins

Figure 2: Missing structure before and after filterina

Normalisation

 $\bullet\,$ all values were normalised by sample by subtracting the sample median from the Log2 intensity values

Figure 3: Before and after by-sample normalisation.

Missing per sample and group

• All NAs were considered to represent low intensities and to represent MNAR (missing not at random)

Figure 4: Valid measurements after filtering per sample and group

Imputation

- NAs were imputed using single imputation, assuming MNAR
- For each sample, the sample mean and sample sd were determined
- Then imputations were performed, using a random draw from a Gaussian distribution
- \bullet The mean for imputations was donwshifted with -1.8 sample sd and the width 0.3 * sample sd

Figure 5: Distribution of imputed values.

Differential expression

- 449 t-tests (students t-test) were performed, one-at-a-time for each protein, between LS and Sepsis groups
- Results are presented as:
 - $\text{Log2FC} = \text{mean}(\log(\text{LS})) \text{mean}(\log(\text{Sepsis}))$
 - p values from t-test
 - q values using Benjamini-Hochberg corrections
 - $FC(Fold change) = 2^Log2FC$
 - Values with Log2FC \pm 1.0 and q value < 0.05 were considered significant

Table 1: Differential expression between LS and Sepsis.

protein	$\log 2FC$	pval	qval	FC	sign
P05362	2.435316	0.00007	0.0075	5.41	+
P01833	2.235880	0.00203	0.0380	4.71	+
Q8NBJ4	2.211931	0.00013	0.0096	4.63	+
P22897	2.193893	0.00046	0.0173	4.58	+
Q8WWZ8	1.960625	0.00065	0.0224	3.89	+
Q8N6C8	1.954227	0.00021	0.0105	3.88	+
P59665	1.865810	0.00076	0.0243	3.64	+
Q9Y6R7	1.803332	0.00002	0.0047	3.49	+
O43493	1.746654	0.00127	0.0304	3.36	+
P13987	1.732519	0.00018	0.0100	3.32	+
P13796	1.528998	0.00000	0.0013	2.89	+
P18065	1.462872	0.00107	0.0301	2.76	+
P01011	1.234761	0.00032	0.0145	2.35	+
P16070	1.215531	0.00007	0.0075	2.32	+
P08637	1.211105	0.00213	0.0382	2.32	+
P02763	1.198712	0.00039	0.0160	2.30	+
P19652	1.125478	0.00015	0.0096	2.18	+
P02649	1.010606	0.00085	0.0254	2.01	+
P02647	-1.091806	0.00122	0.0304	0.47	+
P80108	-1.759293	0.00012	0.0096	0.30	+

Volcano plot

Figure 6: Volcano plot. Proteins that are differentially expressed between LS and Sepsis = red

Heatmap

Figure 7: heatmap of differentially expressed proteins between LS and Sepsis