Focal Loss

Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollar´ Facebook Al Research (FAIR)

20151739 공대현

❖ Focal Loss의 필요성

- RCNN 계열의 Two-stage Network와 SSD,YOLO 같은 One-stage Network의 Accuracy 차이가 존재함
- Object Detection에서 Class의 Imbalance가 있기 때문 (Background↑,Foregrou<mark>nd D</mark>
- Two-stage Network 는 Selective Search를 통해 Class Imbalance를 해결 (ROI:2000개), Background : Foreground = 3:1
- 하지만 One-stage Network는 ROI로 Background Examples가 매우 많이 나옴("Overwhelm")
- → Focal Loss 를 이용해 Easy example(Backgrounds)에 대한 Loss 비중을 낮추고, Hard example(Fore Ground)에 대한 Loss 비중을 높임

❖ Focal Loss 식

• Cross Entropy Loss :
$$CE(p,y) = \begin{cases} -\log(p) & \text{if } y = 1 \\ -\log(1-p) & \text{otherwise.} \end{cases}$$

$$p_{\mathsf{t}} = \begin{cases} p & \text{if } y = 1 \\ 1 - p & \text{otherwise,} \end{cases}$$

$$\mathsf{CE}(p, y) = \mathsf{CE}(p_{\mathsf{t}}) = -\log(p_{\mathsf{t}}).$$

Focal Loss:
$$\mathrm{FL}(p_{\mathsf{t}}) = -\alpha_{\mathsf{t}} (1-p_{\mathsf{t}})^{\gamma} \log(p_{\mathsf{t}}).$$

❖ Focal Loss 식

$$P_1 = 0.9$$
, $P_2 = 0.1$ $(1-P_1)$

$$CE: -|.|_{09} \underbrace{0.9}_{-0.09} + 0.|_{09} \underbrace{0.|}_{-1}$$

$$= -|.-0.09 + 0.(-1) = 0.09$$

$$ii)$$
 if $L = [0, 1]$

bad predict

good predict

$$P_1 = 0.9$$
, $P_2 = 0.1$ $(1-P_1)$

Focal Loss $(d=1, N=2)$: $-(1-P_t)^t log(P_t)$

i) if
$$L = [1, 0]$$

 $F[: -|.(1-0.9)^{2}|og 0.9 + 0.log 0.1]$ good predict

$$= -|\cdot|^{2}(-0.09) + 0.(-1) = 0.0729$$

$$i(i)$$
 if $L = [0, 1]$

$$= 0.-0.09 + 0.9^{2}(-1)(-1) = 0.81$$

α	AP	AP_{50}	AP_{75}
.10	0.0	0.0	0.0
.25	10.8	16.0	11.7
.50	30.2	46.7	32.8
.75	31.1	49.4	33.0
.90	30.8	49.7	32.3
.99	28.7	47.4	29.9
.999	25.1	41.7	26.1

(a) Varying α for CE loss (γ	$\gamma = 0$	
---	--------------	--

γ	α	AP	AP_{50}	AP_{75}
0	.75	31.1	49.4	33.0
0.1	.75	31.4	49.9	33.1
0.2	.75	31.9	50.7	33.4
0.5	.50	32.9	51.7	35.2
1.0	.25	33.7	52.0	36.2
2.0	.25	34.0	52.5	36.5
5.0	.25	32.2	49.6	34.8

(b) Varying γ for FL (w. optimal α)

#sc	#ar	AP	AP_{50}	AP_{75}
1	1	30.3	49.0	31.8
2	1	31.9	50.0	34.0
3	1	31.8	49.4	33.7
1	3	32.4	52.3	33.9
2	3	34.2	53.1	36.5
3	3	34.0	52.5	36.5
4	3	33.8	52.1	36.2

(c) Varying anchor scales and aspects

• 매우 불균형한 데이터셋 Training : ex) Object Detection, Face Recognition ..