Class 17: Investigating Pertussis

Kaitlyn Madriaga

Pertussis

Pertussis, or whooping cough, is a highly contagious lung infection caused by the bacterium ${\cal B}$ pertussis

The cdc tracks reported cases from the 1920s.

```
cdc <- data.frame(</pre>
                                    Year = c(1922L, 1923L, 1924L, 1925L,
                                              1926L, 1927L, 1928L, 1929L, 1930L, 1931L,
                                              1932L, 1933L, 1934L, 1935L, 1936L,
                                              1937L,1938L,1939L,1940L,1941L,1942L,
                                              1943L, 1944L, 1945L, 1946L, 1947L,
                                              1948L,1949L,1950L,1951L,1952L,
                                              1953L, 1954L, 1955L, 1956L, 1957L, 1958L,
                                              1959L, 1960L, 1961L, 1962L, 1963L,
                                              1964L, 1965L, 1966L, 1967L, 1968L, 1969L,
                                              1970L, 1971L, 1972L, 1973L, 1974L,
                                              1975L,1976L,1977L,1978L,1979L,1980L,
                                              1981L,1982L,1983L,1984L,1985L,
                                              1986L,1987L,1988L,1989L,1990L,
                                              1991L, 1992L, 1993L, 1994L, 1995L, 1996L,
                                              1997L,1998L,1999L,2000L,2001L,
                                              2002L,2003L,2004L,2005L,2006L,2007L,
                                              2008L,2009L,2010L,2011L,2012L,
                                              2013L, 2014L, 2015L, 2016L, 2017L, 2018L,
                                              2019L,2020L,2021L),
                                   Cases = c(107473, 164191, 165418, 152003,
                                              202210, 181411, 161799, 197371,
                                              166914, 172559, 215343, 179135, 265269,
                                              180518, 147237, 214652, 227319, 103188,
                                              183866,222202,191383,191890,109873,
```

```
133792,109860,156517,74715,69479,
120718,68687,45030,37129,60886,
62786,31732,28295,32148,40005,
14809,11468,17749,17135,13005,6799,
7717,9718,4810,3285,4249,3036,
3287,1759,2402,1738,1010,2177,2063,
1623,1730,1248,1895,2463,2276,
3589,4195,2823,3450,4157,4570,
2719,4083,6586,4617,5137,7796,6564,
7405,7298,7867,7580,9771,11647,
25827,25616,15632,10454,13278,
16858,27550,18719,48277,28639,32971,
20762,17972,18975,15609,18617,
6124,2116)
```

We can now plot the number of reported pertussis cases per year in the U.S.

```
library(ggplot2)

ggplot(cdc) +
  aes(Year, Cases) +
  geom_point() +
  geom_line() +
  geom_vline(xintercept = 1942, color = "blue", linetype=2) +
  geom_vline(xintercept = 1980, color = "grey", linetype = 2) +
  geom_vline(xintercept = 1992, color = "red", linetype=2)
```


The first big "whole-cell" pertussis vaccine program started in 1942; they changed the vaccine in 1992.

Something big is happening with pertussis ccases and big outbreaks are once again a major public health concern! BUGGER

One of the main hypothesis for the increasing case numbers is waning vaccine efficiency with the newer aP vaccine.

Enter the CMI-PB project, which is studying this problem on large scale. Let's see what data they have.

Their data is available in JSON format ("key:value" pair style). We will use the "jsonlite" package to read their data.

```
library(jsonlite)
subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)
head(subject)</pre>
```

```
3
           3
                       wP
                                  Female
                                                         Unknown White
4
           4
                       wP
                                    Male Not Hispanic or Latino Asian
           5
5
                       wP
                                    Male Not Hispanic or Latino Asian
           6
                       wP
                                  Female Not Hispanic or Latino White
  year_of_birth date_of_boost
                                    dataset
     1986-01-01
                    2016-09-12 2020_dataset
1
2
     1968-01-01
                    2019-01-28 2020_dataset
3
     1983-01-01
                    2016-10-10 2020_dataset
4
     1988-01-01
                    2016-08-29 2020_dataset
                    2016-08-29 2020_dataset
5
     1991-01-01
6
     1988-01-01
                    2016-10-10 2020_dataset
```

Q4 How many aP and wP infancy vaccinated subjects are in the dataset?

table(subject\$infancy_vac)

aP wP 47 49

Q5 How many Male and Female subjects are in the dataset?

table(subject\$biological_sex)

Female Male 66 30

Q6 What is the breakdown of race and biological sex (e.g. number of Asian females, White males etc...)?

table(subject\$race, subject\$biological_sex)

	${\tt Female}$	Male
American Indian/Alaska Native	0	1
Asian	18	9
Black or African American	2	0
More Than One Race	8	2
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	10	4
White	27	13

Now let's read some more database tables from CMI-PB:

```
specimen <- read_json("http://cmi-pb.org/api/specimen", simplifyVector = TRUE)</pre>
  head(specimen)
  specimen_id subject_id actual_day_relative_to_boost
1
             1
2
            2
                        1
                                                      736
3
            3
                        1
                                                        1
                                                        3
4
            4
                        1
             5
                                                        7
5
                        1
            6
                                                       11
 planned_day_relative_to_boost specimen_type visit
                                           Blood
2
                              736
                                           Blood
                                                     10
3
                                           Blood
                                                      2
                                1
4
                                3
                                                      3
                                           Blood
5
                                7
                                           Blood
                                                      4
                               14
                                           Blood
                                                      5
```

I want to "join" (merge/link/etc.) the subject and specimen tables together. I will use the dplyr package for this.

```
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
   filter, lag
The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union
   meta <- inner_join(subject, specimen)

Joining with `by = join_by(subject_id)`</pre>
```

head(meta)

```
subject_id infancy_vac biological_sex
                                                        ethnicity race
                       wP
                                   Female Not Hispanic or Latino White
1
2
           1
                       wP
                                   Female Not Hispanic or Latino White
3
           1
                       wP
                                   Female Not Hispanic or Latino White
4
           1
                                   Female Not Hispanic or Latino White
                       wP
                                   Female Not Hispanic or Latino White
5
           1
                       wΡ
6
           1
                       wP
                                   Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                     dataset specimen_id
1
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
2
     1986-01-01
                    2016-09-12 2020_dataset
                                                        2
3
     1986-01-01
                    2016-09-12 2020_dataset
                                                        3
4
                                                        4
     1986-01-01
                    2016-09-12 2020_dataset
5
     1986-01-01
                    2016-09-12 2020_dataset
                                                        5
     1986-01-01
                    2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                                         Blood
                            736
2
                                                            736
                                                                         Blood
3
                              1
                                                               1
                                                                         Blood
4
                              3
                                                              3
                                                                         Blood
                              7
                                                              7
5
                                                                         Blood
6
                             11
                                                              14
                                                                         Blood
 visit
1
      1
2
     10
3
      2
4
      3
      4
5
      5
6
  ab <- read_json("http://cmi-pb.org/api/ab_titer", simplifyVector = TRUE)</pre>
  head(ab)
  specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI_normalised
            1
                   IgE
                                              Total 1110.21154
                                                                       2.493425
1
                                      FALSE
2
            1
                                              Total 2708.91616
                   IgE
                                      FALSE
                                                                       2.493425
3
            1
                   IgG
                                       TRUE
                                                  PT
                                                       68.56614
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                 PRN
                                                      332.12718
                                                                       2.602350
5
            1
                   IgG
                                       TRUE
                                                 FHA 1887.12263
                                                                      34.050956
```

```
6
                   IgE
                                         TRUE
                                                   ACT
                                                          0.10000
                                                                          1.000000
             1
   \verb"unit lower_limit_of_detection"
1 UG/ML
                          2.096133
2 IU/ML
                         29.170000
3 IU/ML
                          0.530000
4 IU/ML
                          6.205949
5 IU/ML
                          4.679535
6 IU/ML
                          2.816431
```

Now I can join "meta" that we made above and contains all info about the subjects and specimens with this ab data.

```
abdata <- inner_join(meta, ab)

Joining with `by = join_by(specimen_id)`
   dim(abdata)

[1] 32675 20</pre>
```

Q11. How many specimens (i.e. entried in abdata) do we have for each isotype?

```
table(abdata$isotype)
```

```
IgE IgG IgG1 IgG2 IgG3 IgG4 6698 1413 6141 6141 6141 6141
```

Q12 What do you notice about the number of visit 8 specimens compared to other visits?

```
table(abdata$visit)
```

```
1 2 3 4 5 6 7 8
5795 4640 4640 4640 4640 4320 3920 80
```

There are way less visit 8 specimens because the project is still ongoing and we have not got that data for all individuals yet.

Examine IgG1 Ab titer levels

We will use the filter() function from dplyr to focus on just IgG1 isotype and visits 1 to 7(i.e. exclude visits 8 as there are not many specimens there yet)

```
ig1 <- abdata %>% filter(isotype == "IgG1", visit != 8)
#can also use filter(abdata, isotype == ...)
head(ig1)
```

```
subject_id infancy_vac biological_sex
                                                        ethnicity race
                                  Female Not Hispanic or Latino White
1
           1
                       wΡ
2
           1
                       wP
                                  Female Not Hispanic or Latino White
3
           1
                       wP
                                  Female Not Hispanic or Latino White
4
           1
                                  Female Not Hispanic or Latino White
                       wP
                                  Female Not Hispanic or Latino White
5
           1
                       wP
           1
                                  Female Not Hispanic or Latino White
6
                       wP
 year_of_birth date_of_boost
                                     dataset specimen id
     1986-01-01
                    2016-09-12 2020_dataset
1
                                                        1
2
     1986-01-01
                   2016-09-12 2020_dataset
                                                        1
3
                   2016-09-12 2020_dataset
                                                        1
     1986-01-01
4
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
5
     1986-01-01
                    2016-09-12 2020_dataset
                                                        1
6
     1986-01-01
                    2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                                         Blood
2
                             -3
                                                              0
                                                                         Blood
3
                             -3
                                                              0
                                                                         Blood
4
                             -3
                                                              0
                                                                         Blood
                             -3
                                                              0
5
                                                                        Blood
6
                             -3
                                                              0
                                                                        Blood
 visit isotype is_antigen_specific antigen
                                                      MFI MFI_normalised unit
1
      1
           IgG1
                                TRUE
                                          ACT 274.355068
                                                               0.6928058 IU/ML
2
      1
           IgG1
                                TRUE
                                          LOS 10.974026
                                                               2.1645083 IU/ML
                                        FELD1
3
      1
           IgG1
                                TRUE
                                                1.448796
                                                               0.8080941 IU/ML
4
      1
           IgG1
                                TRUE
                                        BETV1
                                                0.100000
                                                               1.0000000 IU/ML
5
      1
           IgG1
                                TRUE
                                        LOLP1
                                                0.100000
                                                               1.0000000 IU/ML
      1
           IgG1
                                TRUE Measles
                                               36.277417
                                                               1.6638332 IU/ML
  lower_limit_of_detection
1
                  3.848750
2
                   4.357917
                  2.699944
3
```

```
4 1.734784
5 2.550606
6 4.438966
```

Box plot of antigen levels over time.

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot() +
  facet_wrap(vars(visit), nrow = 2)
```


Clearly FIM2/3 changes. This is "Fimbrial protein" that makes the bacteria pilus and is involved in cell adhesion.

PT Pertussus Toxin (what causes most of the damage)

FHA is a Flamentous hemagglutinin surface associated adherence protein of bacteria pertussis, which is a component of some new acellular pertussis vaccine.

etc.

Another version of this plot adds infancy_vac

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(infancy_vac, visit), nrow=2)
```


Measels antigen levels per visit (aP red, wP teal)

```
filter(ig1, antigen=="Measles") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = TRUE) +
  facet_wrap(vars(visit)) +
   theme_bw()
```


FIM2/3 antigen levels per visit (aP red, wP teal)

```
filter(ig1, antigen=="FIM2/3") %>%
    ggplot() +
    aes(MFI, col=infancy_vac) +
    geom_boxplot(show.legend = TRUE) +
    facet_wrap(vars(visit)) +
    theme_bw()
```

