ИНФОРМАЦИОННЫЙ ОТЧЕТ

Лабораторные испытания новых реагентов для выщелачивания золота из руды (проба ТПП-66)

Введение

Экологически безопасный препарат JINCHAN для извлечения золота из руды является новым высокотехнологичным продуктом, созданным SENHE HIGH TECHNOLOGY И применяемый при выщелачивании золота заменителя цианида натрия. В настоящее время препарат JINCHAN является единственным в мире запатентованным продуктом для «экологически чистого извлечения золота». Продукт, используемый В производстве непосредственно в качестве замены цианида натрия без изменения исходного процесса и оборудования, обладает такими преимуществами как низкая экологическая безопасность, высокая степень хорошая стабильность, удобство применения, быстрая переработка, низкая дозировка, небольшая стоимость, удобное хранение и транспортировка.

<u>Цель испытаний</u>: Определение эффективности выщелачивания золота из руды растворами реагента JINCHAN.

<u>Место проведения испытаний:</u>

Опытный цех АО «Покровский рудник» г. Благовещенск.

Срок проведения испытаний: 4 квартал 2020г.

Работа выполнена по заданию АО "Покровский рудник".

<u>Работа предусматривала:</u>

- 1. Определение оптимальной концентрации реагента JINCHAN для прямого выщелачивания золота из руды.
- 2.Снятие кинетики выщелачивания золота из руды при оптимальной концентрации реагента JINCHAN.

1 Проведение технологических исследований

Сравнительные испытания были проведены на навеске цианируемой руды пробы ТПП-66 месторождения Пионер, с заверенным содержанием золота 3,85 г/т, крупностью 90% кл. -0,071мм, выделенной из резервного дубликата руды, сформированного при ППИ.

Сравнительные исследования проводили с использованием исходных растворов:

- цианида натрия с концентрацией 100 г/л, расход и концентрацию которого в ходе опытов определяли по утвержденной методике;
- реагента JINCHAN с концентрацией 100 г/л, расход и концентрацию которого в ходе опытов определяли по рекомендациям АО «НПГФ «Регис».
- В ходе всех опытов фиксировали расход реагента JINCHAN и цианида натрия и контролировали концентрацию реагента JINCHAN и цианида натрия и не допуская их снижения более чем на 25%.

1.1 Определение оптимальной концентрации реагента JINCHAN для прямого выщелачивания золота из руды

Лабораторные исследования по определению оптимальной концентрации реагента, результаты которых представлены в таблице 1, были проведены с использованием бутылочного агитатора. Каждый опыт проводили на двух навесках руды крупностью 90% кл. -0,071мм, массой по 150г.

Условия проведения эксперимента:

- соотношение фаз Ж:Т=1,5:1;
- pH=11,0-11,5;
- температура 20°C;
- концентрация реагента JINCHAN в жидкой фазе пульпы 0,5; 1,0; 1,5; 2,0 г/л;
 - крупность измельчения руды: 90% кл. -0,071мм;
 - продолжительность выщелачивания: 24 часа.

Таблица 1 – Результаты прямого выщелачивания руды при различной концентрации реагента JINCHAN

Концентрация, г/л		Содержание, г/т		Концентрация Au, мг/л	Извлечение Au, %		Расход реагента	
		Кек	Руда по анализу/балансу	Жидкая фаза	по анализу	по балансу	JINCHAN, Γ/τ	
0,5	1	0,6 8		1,18		73,80	1,4	
	2	0,6 4	3,85/2,52	1,30	82,9			
	Среднее	0,6 6		1,24				
1,0	1	0,6 4	3,85/2,50	1,20	83,1	74,0	2,7	
	2	0,6 5		1,26				
	Среднее	0,6 5		1,23				
1,5	1	0,6 6		1,28	82,6	74,4	4,1	
	2	0,6 8	3,85/2,62	1,32				
	Среднее	0,6 7		1,30				
2,0	1	0,6 6	3,85/2,63	1,30	82,9	74,9	5,2	
	2	0,6 5		1,31				
	Среднее	0,6 6		1,31				

1.2 Кинетика выщелачивания золота из руды при оптимальной концентрации реагента JINCHAN

Как следует из таблицы 1, минимально-необходимая концентрация реагента JINCHAN составила 0,5 г/л. Поэтому сравнительные опыты по определению кинетики выщелачивания золота из руды, результаты которых представлены в таблицах 2, 3 и на рисунке, проведены при оптимальной

концентрации реагента JINCHAN – 0,5 г/л и, определенной ранее, концентрации цианида натрия – 0,4 г/л.

Лабораторные исследования проводили с использованием бутылочного агитатора. Каждый опыт проводили на двух навесках руды крупностью 90% кл. -0,071мм, массой по 150г.

Условия проведения эксперимента:

- соотношение фаз Ж:T=1,5:1;
- pH=11,0-11,5;
- температура 20°C;
- концентрация JINCHAN в жидкой фазе пульпы 0,5 г/л;
- концентрация NaCN в жидкой фазе пульпы 0,4 г/л;
- крупность измельчения руды: 90% кл. -0,071мм;
- продолжительность выщелачивания: 4, 8, 12, 18, 24 ч.

Таблица 2 - Кинетика прямого выщелачивания золота из руды

 $(C_{CIINCHAN}=0.5\Gamma/\Lambda)$

Chorage By Water Burger	Параддолица	Содержание, г/ г		Концентрация Au, мг/л		ение Au, %	Расход реагента
Продолжительность , час	опыты	Кек	Руда по анализу/балансу	Жидкая фаза	по анализ У	по балансу	ĴINCHAN, κг/τ
4	1	1,6 5		0,75			
	2	1,5 9	3,03/3,03	1,15	57,9	46,8	1,2
	Среднее	1,6 2		0,95			
8	1	0,9 0	3,85/2,25	0,95	74,8	56,8	1,4
	2	1,0 3		0,74			
	Среднее	0,9 7		0,85			
12	1	0,7 7	3,85/2,33	0,99	80,5	67,6	1,3
	2	0,7 3		1,10			
	Среднее	0,7 5		1,05			
18	1	0,7 1	3,85/2,39	0,77	82,3	71,5	1,3
	2	0,6 4		1,50			
	Среднее	0,6 8		1,14			
24	1	0,6 8	3,85/2,52	1,18	82,9	73,80	1,3
	2	0,6 4		1,30			
	Среднее	0,6 6		1,24			

Таблица 3 - Кинетика прямого цианирования руды ($C_{NaCN} = 0,4\Gamma/\Lambda$)

Продолжительно сть, час	Параллельные опыты	Содержание, г/т		Концентрация Au, мг/л	я Извлечение Au %		Pасход NaCN,
		Кек	Руда по анализу/балансу	Жидкая фаза	по анализ У	по балансу	кг/т
4	1	1,63		0,98	57,4	48,3	0,9
	2	1,64	3,85/3,17	1,08			
	Среднее	1,64		1,02			
8	1	0,89	3,85/2,9	1,10	73,5	64,8	1,0
	2	1,15		1,39			
	Среднее	1,02		1,25			
12	1	0,78		1,10	80,0	72,2	1,0
	2	0,76	3,85/2,77	1,39			
	Среднее	0,77	<u> </u>	1,33			
18	1	0,68		1,32	83,1	76,9	1,0
	2	0,62	3,85/2,81	1,55			
	Среднее	0,65		1,44			
24	1	0,50	3,85/2,40	1,17	85,7	77,0	
	2	0,60		1,29			1,0
	Среднее	0,55		1,23			

Рисунок – Влияние продолжительности выщелачивания золота из руды пробы ТПП-66 растворами реагента JINCHAN и цианида натрия

Как следует из результатов сравнительных лабораторных исследований извлечение золота ИЗ цианируемой руды месторождения представленной рудой пробы ТПП-66, растворами реагента JINCHAN и цианида натрия сопоставимых концентраций практически находится на одном уровне. Кинетические зависимости выщелачивания золота таже практически совпадают. Относительный общий расход реагента JINCHAN оказался выше расхода цианида натрия на ~30%, что объясняется меньшей долей активного компонента (\sim 51%, определенного АО «НПГФ «Регис») в данном реагенте.

Таким образом, аналогичные, или более расширенные, сравнительные исследования новых реагентов SENHE HIGH TECHNOLOGY могут быть

проведены на руде других месторождений в Опытном цехе АО «Покровский рудник».

Начальник БНТИ АО «Покровский рудник», к.т.н. С.М. Ряховский

21.10.2020.