1109-B

कक्षा 11वीं त्रैमासिक परीक्षा, 2022-23 भौतिक शास्त्र—210

(माध्यम हिन्दी)

(कुल प्रश्नों की संख्या : 19)

(समय : 03 घण्टे)

(जुल मुद्रित पृष्ठों की संख्या 08) (पूर्णाक 70)

निर्देश –

- (1) सभी प्रश्न हल करना अनिवार्य हैं।
- (2) प्रश्न क्र 1 से 4 तक वस्तुनिष्ठ प्रश्न है, प्रत्येक प्रश्न में 1×7 = 7 अंक निर्धारित है।
- (3) प्रश्न क्र 5 से 12 तक प्रत्येक प्रश्न 2 अंक का है, जिसकी शब्द सीमा 30 शब्द है।
- (4) प्रश्न क्र 13 से 16 तक प्रत्येक प्रश्न 3 अंक का है, जिसकी शब्द सीमा 75 शब्द है।
- (5) प्रश्न क्र 17 प्रश्न 4 अंक का है, जिसकी शब्द सीमा 75 शब्द है।
- (6) प्रश्न क्र 18 से 19 तक प्रत्येक प्रश्न 5 अंक का है, जिसकी शब्द सीमा 120 शब्द है।

प्र.1 सही विकल्प का वयन की	जिये (1×7=7
(i) वेग – समय ग्राफ व	न क्षेत्रफल प्रदर्शित करता है -
(a) वेग	ACT ACTION C
(b) त्वरण	
(c) मदन	
(d) विस्थापन	
(ii) वेग – समय ग्राफ स	मय अक्ष के समान्तर कब होगा?
(a) एक समान गति	ा में
(b) तात्क्षणिक गति	में
(c) विराम अवस्था	में
(d) कभी नहीं	
(iii) वृत्ताकार गति में वेग	और त्वरण के मध्य कोण होता है –
- (a) 90°	
(p) eo _o	
(c) 0°	
(d) 30°	
	केन प्रक्षेप्य कोण के जोड़ों के लिए क्षैतिज परास समान
होगा	•
(a) 90°. 60°	
(b) 60°, 30°	
(c) 50°. 60°	
(d) 30°, 45°	
(v) वेग परिवर्तन की दर व	रराबर होती है –
(a) वेग के	
(b) त्वरण के	

(c) बल के (d) आवेग के

	(V	i) नाव	से किसी सवार के किनारे पर कूदते समय प्रतिक्रिया बल लगता है -	
		(a)	किनारे पर	
		. (b)	नाव पर	
		(c)	व्यक्ति पर	
		(d)	किसी पर नही	
	(vi	i) समत	ल सडक पर किसी कार की गति को एकसमान बनायें रखने के लिए -	
		(a)	कार पर गति की दिशा में नेट बल आवश्यक है	
		(b)	कार पर नेट बल शून्य होना चाहिए	
		(c)	कार के टायर और सडक के मध्य घर्षण नगण्य होना चाहिए	
		(d)	विकल्प (a) एवं (c) दोनों लागू होना चाहिए	
I .2	रिक	त स्थान	त की पूर्ति कीजिए —	(1×7=7)
	(i)	नियत	वंग से गतिशील वस्तु का	
		शून्य	होता है।	
	(ii)	वे रा	शियाँ जिनमें परिमाण तथा दिशा दोनों होती हैं	
		राशिय	वॉ कहलाती हैं।	
	(iii)	अधिव	न्तम क्षैतिज परास प्राप्त करने के लिए प्रक्षेप्य कोण	
		श्रोता	चाहिए ।	
	(iv)	बल त	तथा समयावधि के गुणनफल को	
			4	_
	()	110	है। किसी पिंड पर लगन वाला नेट बाह्य बल शून्य है तो उसका त्वरण होता है।	ı
	(♥)	वाद	होता है।	
			नोदन कर किया होता है।	
	(vi)	रॉकेट	होता है।	
	(vii)	घर्षण	द्वारा किया गया कार्य	

1109-B

 $(1\times7=7)$

- (i) एक वस्तु को ऊर्ध्वाधर ऊपर की ओर फेंकने पर वह 6 सेकण्ड में अधिकतम ऊँचाई तक पहुँच जाती है। अधिकतम ऊँचाई से पुनः हाथों तक आने में कितना समय लगेगा?
- (ii) स्थिति समय ग्राफ की प्रवणता क्या व्यक्त करता है?
- (iii) एकांक सदिश किसे कहते हैं?
- (iv) दो सदिशों को बराबर कब कहा जा सकता है?
- (v) गुरुत्व के अधीन गिरते हुए m द्रव्यमान के एक पिंड पर नेट बल का मान कितना होगा?
- (vi) आवेग का SI मात्रक लिखिए।
- (vii) यदि कोई मशीन 10 सेकेण्ड में 10 जूल कार्य करे तो उसकी शक्ति कितने वाट होगी?

प्र.4 सही जोड़ी मिलाकर लिखिए --

 $(1 \times 7 = 7)$

कॉलम ''अ'

कॉलम "ब"

(i) पारसेक

(a) M⁰L⁰T⁻¹

(ii) आवर्तकाल की विमा

(b) M^oLT^o

(iii) प्रकाश वर्ष की विमा

(c) 10⁻⁹ मीटर

(iv) नैनो मीटर

(d) 3.08×10¹⁶ मीटर

(v) आपेक्षिक घनत्व

(e) MoLoTo

(vi) खगोलीय मात्रक ,

(f) ML²T⁻²

(vii) कार्य का विमीय सूत्र

(g) 1.496×10¹¹ मीटर

109-B

प्र.5 र्मूल राशियां किन्हें कहते हैं? उदाहरण लिखिए।•	(2)
अथवा	
 मूल मुर्त्रक तथा व्युत्पन्न मात्रक में कोई दो अंतर लिखिए। 	
प्र.6 विमीय विश्लेषण की सीमाएं बताईये।	(2)
अथवा	
विमीय विश्लेषण के उपयोग लिखिए।	
प्र.7 एक लिफ्ट आठवीं मंजिल से नीचे आ रही है और चौथी मंजिल पर पहुँचने वाली है।	
यदि सभी राशियों के लिए भूतल को मूल बिंदु तथा ऊपर की ओर धनात्मक दिशा लें.	
तो विस्थापन, वेग, त्वरण एवं समय का चिन्ह (धनात्मक अथवा ऋणात्मक) लिखिए।	(2)
अथवा	
· किसी एकसमान गति से आती हुई क्रिकेट गेंद को बल्ला मारकर वापस लौटा दिया	
गया। गेंद अति अल्पकाल के लिए ही बल्ले के संपर्क में रही। समय के साथ गेंद के	
वेग में होने वाले परिवर्तन को आरेख द्वारा दर्शाइए।	
प्र.8 सदिशों के योग संबंधी त्रिभुज नियम लिखिए।	(2)
अथवा	
_किसी सदिश A को किसी XY समतल में वियोजित करके लिखिए।	
प्र.9 15° के कोण पर प्रक्षेपित किसी प्रक्षेप्य का क्षैतिज परास 50 m है। यदि इसे 45° के	
न्कीण पर प्रक्षेपित किया जाए तो इसका परास कितना होगा?	(2)
अथवा	
1109-B Page 5 of 8	

कोई कीडा एक वृत्तीय खोंचे में जिसकी त्रिज्या 12m है. फर्स गया है। वह खांच पर	
अनुदिश स्थिर बाले से बलता है और 100 सेकड में 7 बक्कर लगा लेता है। कीड की	
कोणीय बाल जात कीजिए।	(2)
प 10 प्रक न्यूटन बल को परिभाषित कीजिए।	V=7
अथवा	
्रबूटन का गति संबोधेत प्रथम नियम लिखिए।	
लबी कूद में खिलाड़ी कुछ दूरी से दौडकर आते हैं ताकि, वे अधिक दूरी तक कूद सके।	
इसमें गति के किस नियम का उपयोग किया जाता है?	(2)
अथवा	
्रसेलर (लॉन मूवर) को धकेलने की अपेक्षा खींचना क्यों आसान होता है	
. प्र12 कार्य कर्जा प्रमेय लिखिए।	(2)
अथवा	
सर्दिशों के अदिश गुणा के कोई दो गुण लिखिए।	
प्र13 विमीस विश्लेषण द्वारा समीकरण T = 2π(Vg) की शुद्धता की जाँच कीजिए। जहां	
T = सरल लोलक का आवर्तकाल । = प्रभावकारी ल बाई , g = गुरुत्वीय त्वरण है	(3)
अथवा	
विमीय विकलेषण द्वारा गति क समीकरण $V^2=U^2+2as$ की शुद्धता की जाँच कीजिए।	
· प्र.14 निम्नलिखित भौतिक राशियों के SI मात्रक एवं विमीय सूत्र लिखिए।	
वेग बल दाव	(3)

1109-B

(स.आई. पद्धति की सभी मूल राशियां, इनके महत्रक तथा संकेत लिखए।

प्र.15 5 किया दव्यमान के किसी पिंड पर कोई बल F = (-3i + 4j) N कार्य कर रहा है। यदि

समय t = 0 पर पिंड का वेग v = (6i - 12j) ms⁻¹ हो, तो वह समय ज्ञात कीजिए, जब

इसका वेग केवल X अक्ष के अनुदिश होगा।

अथवा

(3)

(5)

40 kg की वस्तु पर 20 न्यूटन का बल 2.5 सेकण्ड तक लगाया जाता है। निम्नलिखित की गणना कीजिए —

- a. आवेग
- b. संवेग में परिवर्तन
- c. उत्पन्न त्वरण

प्र.16 शक्ति के लिये सूत्र p = f.v स्थापित कीजिए।

अथवा

यदि $f=3\hat{i}+4\hat{j}+5\hat{k}$ तथा विस्थापन $d=5\hat{i}+4\hat{j}-3\hat{k}$ हो, तो कार्य की गणना किजिए। y.17 yक्षेप्य गति में किस कोण पर क्षैतिज परास ऊँचाई के बराबर होती है? गणना कीजिए। (4)

अथवा

सिर्द्ध कीजिए कि मूल बिंदु से θ कोण पर फेंके गये प्रक्षेप्य के लिये प्रक्षेप्य कोण का मान $\theta = \tan^{-1}\frac{4h}{R} \ \text{होगा} \ | \ u_{\text{हा}} \ | \ \text{प्रयुक्त प्रतीकों के अर्थ सामान्य हैं।}$ एक समान त्वरित गति में v-t ग्राफ खींचकर गति के समीकरण प्राप्त कीजिए।

अथवा

1109-B

Page 7 of 8

https://www.mpboardonline.com

गतिमान वस्तु के लिए अवरोधन दूरी किसे कहते हैं? सिद्ध कीजिए कि प्रारंभिक वेग को दुगुना करने पर उसी मंदन के लिए अवरोधन दूरी का मान चार गुना हो जाता है। प्र. 19 प्रक्षेप्य गति किसे कहते हैं? पृथ्वी सतह से क्षैतिज से किसी कोण पर फेंके गये प्रक्षेप्य के लिये उड़यन काल, प्राप्त अधिकतम ऊँचाई एवं क्षैतिज परास के लिये सूत्र स्थापित कीजिए।

(5)

अथवा

वृत्तीय गति किसे कहते हैं? एक समान वृत्तीय गति के लिये अभिकेन्द्री त्वरण ज्ञात कीजिए।