Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт информационных технологий и управления Кафедра «Информационная безопасность компьютерных систем»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

по дисциплине «Электроника и схемотехника»

Выполнил

студент гр. 23508/4 Е.Г. Проценко

Проверил

доцент А.Ф. Супрун

1. Цель работы

Экспериментально исследовать вольт-амперные характеристики (ВАХ) диодов. Изучить основные свойства, проводимость и параметры диодов.

2. Ход работы

2.1. Модель исследуемой цепи

D3 – Стабилитрон

2.2. Исследования прямых ветвей ВАХ диодов D1, D2, D3.

Диод D1:

Напряжение $U_{\rm д}$, В	Ток $I_{\mathrm{д}}$, мА
1	217
0,982	183
0,968	160
0,948	131
0,921	99
0,911	89
0,891	73
0,864	55
0,853	49
0,823	36
0,780	22
0,706	9,793
0,621	3,792
0,501	0,998
0,271	0,073
0,189	0,027

$$R_{\rm ct} = \frac{U_0}{I_0}$$
, где U_0 и I_0 — напряжение и ток в рабочей точке

Для D1:
$$U_0 = 1000 \text{ мB}$$

$$I_0 = 217 \text{ мA}$$

$$R_{\text{CT}} = 4,608 \text{ Om}$$

Диод D2:

Напряжение $U_{\text{д}}$, В	Ток I_{μ} , мА
1	318
0,979	274
0,963	243
0,946	214
0,926	184
0,915	170
0,897	148
0,875	125
0,847	102
0,826	87
0,795	68
0,753	49
0,712	36
0,675	27
0,627	19
0,537	9,261
0,467	5,330
0,396	3,019
0,303	1,394
0,198	0,535
0,139	0,287
0,063	0,094
0,010	0,012

 $U_0 = 1000 \text{ мB}$ $I_0 = 318 \text{ мA}$ $R_{\rm CT} = 3,145 \text{ Ом}$

Диод D3:

 $U_0 = 999 \text{ MB}$ $I_0 = 530 \text{ MA}$ $R_{\text{CT}} = 1,885 \text{ OM}$

2.3. Исследование обратной ветви ВАХ стабилитрона D3 Диод D3:

Напряжение $U_{\rm д}$, В	Ток $I_{\mathrm{д}}$, мА	Сопротивление R, Ом
-10	-0,153	0,001
-9,985	-0,153	100
-6,977	-0,152	20k
-2,385	-0,152	50k
-0,896	-0,152	60k
-0,445	-0,147	65k
-0,312	-0,138	70k
-0,249	-0,130	75к
-0,193	-0,118	83k
-0,163	-0,109	90к
-0,135	-0,099	100к
-0,115	-0,090	110k
-0,089	-0,076	130к
-0,062	-0,058	170к
-0,018	-0,020	500к
-0,009724	-0,011	900к

$$U_0 = -445 \text{ мB}$$
 $I_0 = -0.147 \text{ мA}$

$$R_{\rm ct} = 3027,2~{
m Om}$$

2.4. Исследование обратных ветвей ВАХ диодов D1, D2 Диод D1:

Напряжение U_{π} , В	Tor I MA	
	Ток <i>I</i> _д , мА	0.001
-4,501	-45499000	0,001
-4,397	-22802000	0,002
-4,336	-15221000	0,003
-4,259	-9148000	0,005
-4,155	-4584000	0,01
-3,991	-1534000	0,03
-3,915	-921705	0,05
-3,811	-461889	0,1
-3,707	-231463	0,2
-3,570	-92859	0,5
-3,467	-46533	1
-3,226	-9355	5
-3,019	-2349	20
-2,778	-472	100
-2,614	-158	300
-2,434	-48	1к
-2,270	-16	3k
-2,089	-4,791	10k
-1,925	-1,602	30k
-1,744	-0,483	100k
-1,498	-0,097	500k
-1,405	-0,054	900k
-1,194	-0,016	3000k

Для D1:	Для D2:
$U_0 = -3991 \text{MB}$	$U_0 = -3915 \text{ мB}$
$I_0 = -1534000$ мА	$I_0 = -921705 \text{ MA}$
$R_{\rm CT} = 0.0026 {\rm OM}$	$R_{\rm ct} = 0.0042~{ m Om}$

Диод D2:

	— ———————————————————————————————————	
Напряжение $U_{\rm д}$, В	Ток $I_{\mathtt{д}}$, м \mathtt{A}	
-4,501	-45499000	0,001
-4,259	-9148000	0,005
-4,155	-4584000	0,01
-3,915	-921705	0,05
-3,811	-461889	0,1
-3,647	-154511	0,3
-3,570	-92859	0,5
-3,467	-46533	1
-3,363	-23318	2
-3,226	-9355	5
-3,019	-2349	20
-2,718	-315	150
-2,477	-63	750
-2,268	-16	3k
-2,022	-3,199	15k
-1,691	-0,483	100k
-0,145	-0,1	500k
-0,061	-0,055	900k
-0,015	-0,017	3000k
-0,009445	-0,01	4800k
·		

3. Вывод

При включении диода в прямом направлении в области n- электроны будут отталкиваться от минуса батареи и двигаться в сторону p-n перехода. В области p- произойдет отталкивание положительно заряженных дырок от плюсового вывода батареи. Электроны и дырки устремятся навстречу друг другу.

Заряженные частицы с разной полярностью собираются около p-n перехода, между ними возникает электрическое поле. Поэтому электроны преодолевают p-n переход и продолжают движение через зону p-. При этом часть из них рекомбинирует с дырками, но большая часть устремляется к плюсу батареи, через диод идет ток I. Это прямой ток.

При включении диода в обратном направлении ток через p-n переход не пойдет.

К области n- подключен положительный полюс источника питания, а к области p- отрицательный. В результате электроны из области n- устремятся к положительному полюсу источника. Положительные же заряды (дырки) притягиваются отрицательным полюсом источника питания. Поэтому в области p-n перехода образуется пустота, ток проводить просто нечем, нет носителей заряда.

Как правило, на практике, обратным током p-n перехода пренебрегают, и говорят, что p-n переход обладает только односторонней проводимостью.