

数据挖掘

第7章 规则和最近邻分类器

2024年10月

01 基于规则的分类

02 急切学习与惰性学习

03 最近邻分类器

基于规则的分类

- 使用一组 "if…then…" 规则进行分类
- 规则: (Condition) → y
 - 其中
 - Condition 是属性测试的合取
 - y 是类标号
 - 左部: 规则的前件(或前提) (Rule antecedent) ⊚
 - 右部: 规则的后件(或结论) (Rule consequent)
 - 分类规则的例子:
 - (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Cheat =No

基于规则的分类:例

• 脊椎动物数据集

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
人类	恒温	毛发	是	否	否	是	否	哺乳类
蟒蛇	冷血	鳞片	否	否	否	否	是	爬行类
鲑鱼	冷血	鳞片	否	是	否	否	否	鱼类
鲸	恒温	毛发	是	是	否	否	否	哺乳类
青蛙	冷血	无	否	半	否	是	是	两栖类
巨蜥	冷血	鳞片	否	否	否	是	否	爬行类
蝙蝠	恒温	毛发	是	否	是	是	是	哺乳类
鸽子	恒温	羽毛	否	否	是	是	否	鸟类
猫	恒温	软毛	是	否	否	是	否	哺乳类
虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类
豪猪	恒温	刚毛	是	否	否	是	是	哺乳类
鳗鲡	冷血	鳞片	否	是	否	否	否	鱼类
蝾螈	冷血	无	否	半	否	是	是	两栖类

基于规则的分类:例

• 规则 r 覆盖 实例 x (记录) ,如果该实例的属性满足规则r的 条件

```
r_1: (胎生 = 否) \wedge (飞行动物 = 是) \rightarrow 鸟类
```

$$r_2$$
: (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

$$r_3$$
: (胎生 = 是) \land (体温 = 恒温) \rightarrow 哺乳类

$$r_a$$
: (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

$$r_5$$
: (水生动物 = 半) \rightarrow 两栖类

名和	r 1	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
鹰	1	恒温	羽毛	否	否	是	是	否	?
灰熊	K 1	恒温	软毛	是	否	否	是	是	?

・ 规则r₁覆盖"鹰" => 鸟类

基于规则的分类:例

 规则 r 覆盖 实例 x (记录) , 如果该实例的属性满足规则r的 条件

```
r_1: (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类
```

$$r_2$$
: (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

$$r_3$$
: (胎生 = 是) \land (体温 = 恒温) \rightarrow 哺乳类

$$r_4$$
: (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

$$r_5$$
: (水生动物 = 半) \rightarrow 两栖类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
鹰	恒温	羽毛	否	否	是	是	否	?
灰熊	恒温	软毛	是	否	否	是	是	?

- 规则r₁覆盖 "鹰" => 鸟类
- 规则r3 覆盖"灰熊" => 哺乳类

规则的质量

- 用覆盖率和准确率度量
- 规则的覆盖率(Coverage):
 - 满足规则前件的记录所占的比例
- 规则的准确率(Accuracy):
 - 在满足规则前件的记录中,满足规则后件的记录所占的比例
- 规则: (Status=Single) → No
- Coverage = 40%, Accuracy = 50%

Tid	Refund	Marital Stayus	Taxable Income	Class
1 2 3 4 5 6 7 8 9	Yes No No Yes No No Yes No No Yes No	Single Married Single Married Divorced Married Divorced Single Married	125K 100K 70K 120K 95K 60K 220K 85K 75K	No No No Yes No Yes No
10	No	Single	90K	Yes

如何用规则分类

一组规则

```
r_1: (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类
```

 r_2 : (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

 r_5 : (水生动物 = 半) \rightarrow 两栖类

• 待分类记录

名称	体温	胎生	飞行动物	水生动物	类
狐猴	恒温	是	否	否	?
海龟	冷血	否	否	半水生	?
狗鲨	冷血	是	否	是	?

- 狐猴触发规则 r₃, 它分到哺乳类
- 海龟触发规则 r_4 和 r_5 —— 冲突
- 狗鲨未触发任何规则

规则分类的特征

- 互斥规则集
 - 每个记录最多被一个规则覆盖
 - 如果规则都是相互独立的,分类器包含互斥规则
- 如果规则集不是互斥的
 - 一个记录可能被多个规则触发
 - 如何处理?
 - 有序规则集
 - —— 基于规则的序 vs 基于类的序

*r*₂: (胎生 = 否) ∧ (水生动物 = 是) → 鱼类

 r_1 : (胎生 = 否) \wedge (飞行动物 = 是) \rightarrow 鸟类

- r_4 : (胎生 = 否) \wedge (飞行动物 = 否) \rightarrow 爬行类

(胎生 = 是) ∧ (体温 = 恒温)→ 哺乳类

- r_5 : (水生动物 = 半) \rightarrow 两栖类
 - 海龟触发规则r4和r5——冲突

- 无序规则集
 - —— 在无序规则方案中,允许一条记录触发多条规则,规则被触发时视为<mark>对</mark> 其相应类的一次投票,然后计算不同类的票数(可以使用加权方式)来决定记 录的类所属。

规则分类的特征

- 穷举规则集
 - 每个记录至少被一个规则覆盖
 - 如果规则集涵盖了属性值的所有可能组合,则规则集具有穷举覆盖
- 如果规则集是非穷举的
 - 一个记录可能不被任何规则触发
 - 如何处理?
 - 使用缺省类

有序规则集

- 根据规则优先权将规则排序定秩(rank)
 - 有序规则集又称决策表(decision list)
- 对记录进行分类时
 - 由被触发的,具有最高秩的规则确定记录的类标号
 - 如果没有规则被触发,则指派到缺省类

```
r_1: (胎生 = 否) \wedge (飞行动物 = 是) \rightarrow 鸟类 r_2: (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类 r_3: (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类 r_4: (胎生 = 否) \wedge (飞行动物 = 否) \rightarrow 爬行类 r_5: (水生动物 = 半) \rightarrow 两栖类
```

名称	体温	胎生	飞行动物	水生动物	类
海龟	冷血	否	否	半水生	?

规则定序方案

- 基于规则的序
 - 根据规则的质量排序: 覆盖率(coverage)和准确率(accuracy)
- 基于类的序
 - 属于同一类的规则放在一起
 - 基于类信息(如类的分布、重要性)对每类规则排序

基于规则的排序

(表皮覆盖=羽毛,飞行动物=是) ⇒ 鸟类

(体温=恒温,胎生=是) ⇒ 哺乳类

(体温=恒温, 胎生=否) ⇒ 鸟类

(水生动物=半) ⇒ 两栖类

(表皮覆盖=鳞片,水生动物=否) ⇒ 爬行类

(表皮覆盖=鳞片,水生动物=是) ⇒ 鱼类

(表皮覆盖=无) ⇒ 两栖类

基于类的排序

(表皮覆盖=羽毛,飞行动物=是) ⇒ 鸟类

(体温=恒温,胎生=否) ⇒ 鸟类

(体温=恒温,胎生=是) ⇒ 哺乳类

(水生动物=半) ⇒ 两栖类

(表皮覆盖=无) ⇒ 两栖类

(表皮覆盖=鳞片,水生动物=否) ⇒ 爬行类

(表皮覆盖=鳞片,水生动物=是) ⇒ 鱼类

如何建立基于规则的分类器

- 直接方法:
 - 直接由数据提取规则
 - 例如: RIPPER, Holte's 1R

- 间接方法:
 - 由其他分类模型提取规则 (例如,从决策树等).
 - 例如: C4.5rules

直接方法: 顺序覆盖

- 基本思想
 - 依次对每个类建立一个或多个规则
 - 对第i类建立规则
 - 第i类记录为正例,其余为负例
 - 建立一个第i类的规则r,尽可能地覆盖正例,而不覆盖负例(即构建一个正例的规则)
 - 删除r覆盖的所有记录,在剩余数据集上学习下一个规则,直到所有第i类记录都被删除

直接方法: 顺序覆盖

● 顺序覆盖 (sequential covering) 算法

- 1: 令E是训练记录, A是属性—值对的集合 $\{(A_j, \nu_j)\}$
- 2: 令 Y_0 是类的有序集 $\{y_1, y_2, ..., y_k\}$
- 3: 令R = {}是初始规则列表
- 4: for 每个类 $y \in Y_0 \{y_k\}$ do
- 5: while 终止条件不满足 do
- 6: $r \leftarrow \text{Learn-One-Rule}(E, A, y)$
- 7: 从E中删除被r覆盖的训练记录
- 8: 追加r到规则列表尾部: $R \leftarrow R \lor r$
- 9: end while
- 10: end for
- 11: 把默认规则 $\{\} \rightarrow y_k$ 插入到规则列表R尾部

直接方法: 顺序覆盖

(a) Original data

(c) Step 2

(b) Step 1

(c) Step 3

 r_1 : (胎生 = 否) ∧ (飞行动物 = 是) → 鸟类

 r_2 : (胎生=否) \wedge (水生动物=是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
人类	恒温	毛发	是	否	否	是	否	哺乳类
蟒蛇	冷血	鳞片	否	否	否	否	是	爬行类
鲑鱼	冷血	鳞片	否	是	否	否	否	鱼类
鲸	恒温	毛发	是	是	否	否	否	哺乳类
青蛙	冷血	无	否	半	否	是	是	两栖类
巨蜥	冷血	鳞片	否	否	否	是	否	爬行类
蝙蝠	恒温	毛发	是	否	是	是	是	哺乳类
鸽子	恒温	羽毛	否	否	是	是	否	鸟类
猫	恒温	软毛	是	否	否	是	否	哺乳类
虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类
豪猪	恒温	刚毛	是	否	否	是	是	哺乳类
鳗鲡	冷血	鳞片	否	是	否	否	否	鱼类
蝾螈	冷血	无	否	半	否	是	是	两栖类

 r_1 : (胎生 = 否) \wedge (飞行动物 = 是) \rightarrow 鸟类

 r_2 : (胎生 = 否) \land (水生动物 = 是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
人类	恒温	毛发	是	否	否	是	否	哺乳类
蟒蛇	冷血	鳞片	否	否	否	否	是	爬行类
<u>鲑鱼</u>	冷血	鳞片	否	是	否	否	否	鱼类
鲸	恒温	毛发	是	是	否	否	否	哺乳类
青蛙	冷血	无	否	半	否	是	是	两栖类
巨蜥	冷血	鳞片	否	否	否	是	否	爬行类
蝙蝠	恒温	毛发	是	否	是	是	是	哺乳类
_								
猫	恒温	软毛	是	否	否	是	否	哺乳类
虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类
豪猪	恒温	刚毛	是	否	否	是	是	哺乳类
鳗鲡	冷血	鳞片	否	是	否	否	否	鱼类
蝾螈	冷血	无	否	半	否	是	是	两栖类

 r_1 : (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类

 r_2 : (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

	名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
	人类	恒温	毛发	是	否	否	是	否	哺乳类
	蟒蛇	冷血	鳞片	否	否	否	否	是	爬行类
	鲑鱼	冷血	鳞片	否	是	否	否	否	鱼类
	鲸	恒温	毛发	是	是	否	否	否	哺乳类
	青蛙	冷血	无	否	半	否	是	是	两栖类
	巨蜥	冷血	鳞片	否	否	否	是	否	爬行类
	蝙蝠	恒温	毛发	是	否	是	是	是	哺乳类
	猫	恒温	软毛	是	否	否	是	否	哺乳类
	虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
	美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
	企鹅	恒温	羽毛	否	半	否	是	否	鸟类
	豪猪	恒温	刚毛	是	否	否	是	是	哺乳类
П	鳗鲡	冷血	鳞片	否	是	否	否	否	鱼类
	蝾螈	冷血	无	否	半	否	是	是	两栖类

 r_1 : (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类

 r_2 : (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
人类 蟒蛇	恒温 冷血	毛发 鳞片	是 否	否否	否否	是 否	否是	哺乳类 爬行类
鲸	恒温	毛发	是	是	否	否	否	哺乳类
青蛙	冷血	无	否	半	否	是	是	两栖类
巨蜥	冷血	鳞片	否	否	否	是	否	爬行类
蝙蝠	恒温	毛发	是	否	是	是	是	哺乳类
猫	恒温	软毛	是	否	否	是	否	哺乳类
虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类
豪猪	恒温	刚毛	是	否	否	是	是	哺乳类
蝾螈	冷血	无	否	半	否	是	是	两栖类

 r_1 : (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类

 r_2 : (胎生 = 否) \land (水生动物 = 是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \land (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
人类	恒温	毛发	是	否	否	是	否	哺乳类
蟒蛇	冷血	鳞片	否	否	否	否	是	爬行类
鲸	恒温	毛发	是	是	否	否	否	哺乳类
青蛙	冷血	无	否	半	否	是	是	两栖类
巨蜥	冷血	鳞片	否	否	否	是	否	爬行类
蝙蝠	恒温	毛发	是	否	是	是	是	哺乳类
猫	恒温	软毛	是	否	否	是	否	哺乳类
虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类
豪猪	恒温	刚毛	是	否	否	是	是	哺乳类
							<u> </u>	
蝾螈	冷血	无	否	半	否	是	是	两栖类

蝾螈

冷血

无

 r_1 : (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类

 r_2 : (胎生 = 否) \land (水生动物 = 是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

 r_5 : (水生动物 = 半) \rightarrow 两栖类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
蟒蛇	冷血	鳞片	否	否	否	否	是	爬行类
青蛙	冷血	无	否	半	否	是	是	两栖类
巨蜥	冷血	鳞片	否	否	否	是	否	爬行类
虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类

两栖类

 r_1 : (胎生 = 否) \wedge (飞行动物 = 是) \rightarrow 鸟类

 r_2 : (胎生=否) \wedge (水生动物=是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

 r_5 : (水生动物 = 半) \rightarrow 两栖类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号
蟒蛇	冷血	鳞片	否	否	否	否	是	爬行类
						_		
青蛙	冷血	无	否	半	否	是	是	两栖类
巨蜥	冷血	鳞片	否	否	否	是	否	爬行类

虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
美洲鳄	冷血	鳞片	否	半	否	是	否	爬行类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类

蝾螈 冷血 无 否 半 否 是 是 两栖类

```
r_1: (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类
```

$$r_2$$
: (胎生 = 否) \land (水生动物 = 是) \rightarrow 鱼类

$$r_3$$
: (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

$$r_4$$
: (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

名称	体温	表及覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号

青蛙	冷血	无	否	半	否	是	是	两栖类

虹鳉	冷血	鳞片	是	是	否	否	否	鱼类
企鹅	恒温	羽毛	否	半	否	是	否	鸟类
•								

蝾螈	冷血	无	否	半	否	是	是	两栖类
-01/-73/	/ <	70	_		_	~_	~ _	1.2102

```
(胎生=否) ∧ (飞行动物=是)→鸟类
```

$$r_2$$
: (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

$$r_3$$
: (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

$$r_4$$
: (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

 r_5 : (水生动物 = 半) \rightarrow 两栖类

名称	体温	表皮覆盖	胎生	水生动物	飞行动物	有腿	冬眠	类标号	
青蛙	冷血	无	否	半	否	是	是	两栖类	

删除 虹鳉 冷血 鳞片 是 是 否 否 否 鱼类 企鹅 恒温 羽毛 半 否 是 否 鸟类

半

两栖类

负实例

蝾螈

冷血

无

```
r_1: (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类
```

 r_2 : (胎生 = 否) \land (水生动物 = 是) \rightarrow 鱼类

 r_3 : (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

 r_4 : (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

 r_5 : (水生动物 = 半) \rightarrow 两栖类

名称 体温 表皮覆盖 胎生 水生动物 飞行动物 有腿 冬眠 类标号

删除负实例

蝾螈 冷血 无 否 半 否 是 是 两栖类

```
r_1: (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类
```

$$r_2$$
: (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

$$r_3$$
: (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

$$r_4$$
: (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

 r_5 : (水生动物 = 半) → 两栖类

名称	体温	表皮覆盖	胎生	水牛动物	飞行动物	有腿	冬眠	类标 号
ינוום	PT-/1111	心 风风复皿	/JI-I	() (<u> </u>	רגו נגיי ב ו ט		~ HV	

		青蛙	冷血	无	否	半	否	是	是	两栖类
--	--	----	----	---	---	---	---	---	---	-----

虹鳉 冷血 鳞片 是 鱼类

蝾螈 冷血 无 否 半 否 是 是 两栖类

```
r_1: (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类
```

$$r_2$$
: (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

$$r_3$$
: (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

$$r_4$$
: (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

$$r_5$$
: (水生动物 = 半) \rightarrow 两栖类

名称 体温 表皮覆盖 胎生 水生动物 飞行动物 有腿 冬眠 类标号

```
r_1: (胎生 = 否) \land (飞行动物 = 是) \rightarrow 鸟类
```

$$r_2$$
: (胎生 = 否) \wedge (水生动物 = 是) \rightarrow 鱼类

$$r_3$$
: (胎生 = 是) \wedge (体温 = 恒温) \rightarrow 哺乳类

$$r_4$$
: (胎生 = 否) \land (飞行动物 = 否) \rightarrow 爬行类

 r_5 : (水生动物 = 半) \rightarrow 两栖类

名称 体温 表皮覆盖 胎生 水生动物 飞行动物 有腿 冬眠 类标号

该规则集是穷举规则还是非穷举规则?

- 为什么要删除实例?
 - 否则,下一个规则将与前面的规则相同 (规则可能重复)
- 为什么删除正实例?
 - 防止高估后面规则的准确率
 - 确保下一个规则不同
- 为什么删除负实例?
 - 防止过拟合错误训练集
 - 防止低估后面规则的准确率
 - 比较图中的规则 R2 和 R3

- R1: 12/15=80%
- R2: 7/10=70%
- R3: 8/12=66.7%

- 1) 产生R1 (第一步)
- 2) 产生R2? R3?
 - R1 U R2: 19/25=76%
 - R1 U R3:
- 3) 产生R? (第二步)

• R1: 12/15=80%

• R2: 7/10=70%

• R3: 8/12=66.7%

- 1)产生R1(第一步)
- 2) 产生R2? R3?
 - R1 U R2: 19/25=76%
 - R1 U R3: 18/23=78.3%
- 3) 产生R3 (第二步, 6/8=75%)

Learn-One-Rule

- 规则增长
- 规则评估
- 停止准则
- 规则剪枝

顺序覆盖(sequential covering)算法

- 1. 令 E是训练记录,A是属性 值对的集合 $\{(A_i, \nu_i)\}$
- 2. 令 Y_o 是类的有序集 $\{y_1, y_2..., y_k\}$
- 3. 令 $R={}$ 是初始规则列表
- 4. for 每个类*y*∈ *Y_o* {*y_k*} do
- 5. while 终止条件不满足 do 6
- 6. $r \leftarrow \text{Learn-One-Rule (E,A,y)}$
- 7. 从 E中删除被r覆盖的训练记录
- 8. 追加r到规则列表尾部: $R \leftarrow R \lor r$
- 9. end while
- 10. end for
- 11. 把默认规则 $\{\}$ → y_k 插入到规则列表R尾部

规则增长

- 两种策略
 - 一般到特殊(通常采用的策略)
 - 从初始规则r: {}→y开始
 - 反复加入合取项,得到更特殊的规则,直到不能再加入
 - 特殊到一般(适用于小样本情况)
 - 随机地选择一个正例作为初始规则
 - 反复删除合取项,得到更一般的规则,直到不能再删除

(胎生 = 否) ∧ (飞行动物 = 是) → 鸟类

规则增长

- 两种策略
 - 一般到特殊(通常采用的策略)
 - 从初始规则r: {}→y开始
 - 反复加入合取项,得到更特殊的规则,直到不能再加入
 - 特殊到一般(适用于小样本情况)
 - 随机地选择一个正例作为初始规则
 - 反复删除合取项,得到更一般的规则,直到不能再删除

- 问题
 - 加入/删除合取项有多种选择,如何选择?
 - 何时停止加入/删除合取项?
 - → 需要评估标准

规则增长 (一般到特殊)

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷 htt	tps稍糊blo	og. 稍凹 ln. r	net 頑潤 iguo	ozhi a ngr

规则r后件为(好瓜=是),前件从空开始,先依次添加一个 (属性,值),计算覆盖的部分记录编号及它的分类准确率。

规则增长 (一般到特殊)

 可以看到, (纹理=清晰)的正确率最高,因此首先在规则r 的前件中添加(纹理=清晰),接着在(纹理=清晰)覆盖 的记录中,继续规则r前件中(属性,值)添加。

属性-值	覆盖的记录编号	准确率
色泽=青绿	1,4,6,10,13,17	1/2
色泽=乌黑	2,3,7,8,9,15	2/3
根蒂=蜷缩	1,2,3,4,5,12,16,17	5/8
敲声=浊响	1,3,5,6,7,8,12,13,15,16	3/5
纹理=清晰	1,2,3,4,5,6,8,10,15	7/9
脐部=凹陷	1,2,3,4,5,13,14,17	5/8

规则增长 (一般到特殊)

可以看到,在(纹理=清晰)覆盖的记录中,(根蒂=蜷缩)与(脐部=凹陷)覆盖记录的准确率都达到了100%,可以任选一个(属性,值),这里可以选择(根蒂=蜷缩),此时也达到了(属性,值)添加的终止条件,故在类(好瓜=是)中,函数生成了第一条规则。

属性-值	覆盖的记录编号	准确率
色泽=青绿	1,4,6,10	3/4
色泽=乌黑	2,3,8,15	3/4
根蒂=蜷缩	1,2,3,4,5	5/5
敲声=浊响	1,3,5,6,8,15	5/6
脐部=凹陷	1,2,3,4,5	5/5

{(纹理=清晰) ^(根蒂=蜷缩)} → (好瓜=是)

规则增长 (一般到特殊)

- 从一般到特殊的规则生成策略中,每次只考虑一个最优的(属性,值)
- 这显得过于贪心,容易陷入局部最优麻烦
- 为了缓解该问题,可以采用一种"集束搜索(Beam search)"的方式
 - 具体做法为:每次选择添加的(属性,值)时,可以保留前k个最优的(属性,值),值),而不是只选择最优的那个,然后对这k个最优的(属性,值)
 继续进行下一轮的(属性,值)添加。
- {(纹理=清晰) ^ (根蒂=蜷缩)} → (好瓜=是)

Learn-One-Rule

- 规则增长
- 规则评估
- 停止准则
- 规则剪枝

顺序覆盖(sequential covering)算法

- 1. 令 E是训练记录,A是属性 值对的集合 $\{(A_i, \nu_i)\}$
- 2. 令 Y_0 是类的有序集 $\{y_1, y_2..., y_k\}$
- 3. 令 $R={}$ 是初始规则列表
- 4. for 每个类*y*∈ *Y_o* {*y_k*} do
- 5. while 终止条件不满足 do 6
- 6. $r \leftarrow \text{Learn-One-Rule (E,A,y)}$
- 7. 从E中删除被r覆盖的训练记录
- 8. 追加r到规则列表尾部: $R \leftarrow R \lor r$
- 9. end while
- 10. end for
- 11. 把默认规则 $\{\}$ → y_k 插入到规则列表R尾部

- 常用的度量
 - 准确率
 - 似然比
 - Laplace
 - FOIL信息增益

例如 考虑一个训练集,它包含60个正例和100个反例,现有两个候选规则:

r1:覆盖50个正例和5个反例

• 准确率

• Accuracy= $\frac{n_c}{n}$

 $Acc(r_1): 90.9\%$

• n:被规则覆盖的实例数

 $Acc(r_2): 100\%$

• n_c:被规则正确分类的实例数

• 问题: 准确率高的规则可能覆盖率太低

例如 考虑一个训练集,它包含60个正例和100个反例,现有两个候选规则:

r1:覆盖50个正例和5个反例

准确率

• Accuracy= $\frac{n_c}{n}$

• n:被规则覆盖的实例数

• n_c:被规则正确分类的实例数

• 问题: 准确率高的规则可能覆盖率太低

 $Acc(r_1): 90.9\%$

 $Acc(r_2): 100\%$

例如 考虑一个训练集,它包含60个正例和100个反例,现有两个候选规则:

r1:覆盖50个正例和5个反例

- 似然比 (越高越好)
 - k是类别数
 - f_i是被规则覆盖的类i的样本的观测频度
 - e_i是规则作随机猜测的期望频度

$$R = 2\sum_{i=1}^{k} f_i \log(f_i/e_i)$$

简单理解就是当前规则分类效果比随机效果越高,说明规则越好

$$LRS(r_1) = 2 \times \left[50 \times \log_2 \frac{50}{55 \times 60/160} + 5 \times \log_2 \frac{5}{55 \times 100/160} \right] = 99.99$$

例如 考虑一个训练集,它包含60个正例和100个反例,现有两个候选规则:

r1:覆盖50个正例和5个反例

- 似然比 (越高越好)
 - k是类别数
 - f_i是被规则覆盖的类i的样本的观测频度
 - e_i是规则作随机猜测的期望频度

$$R = 2\sum_{i=1}^{k} f_i \log(f_i/e_i)$$

简单理解就是当前规则分类效果比随机效果越高, 说明规则越好

$$LRS(r_1) = 2 \times \left[50 \times \log_2 \frac{50}{55 \times 60/160} + 5 \times \log_2 \frac{5}{55 \times 100/160} \right] = 99.99$$
$$LRS(r_2) = 2 \times \left[2 \times \log_2 \frac{2}{2 \times 60/160} + 0 \times \log_2 \frac{0}{2 \times 100/160} \right] = 5.66$$

例如 考虑一个训练集,它包含60个正例和100个反例,现有两个候选规则:

r1:覆盖50个正例和5个反例

- Laplace估计
 - k是类别数
 - n₊是被规则覆盖的的正例数
 - n是被规则覆盖的样例数

例如考虑一个训练集,它包含60个 正例和100个反例,现有两个候选 规则:

r1:覆盖50个正例和5个反例

$$Laplace = \frac{n_{+}+1}{n+k}$$
 $Laplace$

$$Laplace(r_1) = \frac{50+1}{55+2} = 0.8947$$

- 准确率
 - Accuracy $=\frac{n_+}{n}$ 简单理解: Laplace估计 即为准确率的平滑

- Laplace估计
 - k是类别数
 - n₊是被规则覆盖的的正例数
 - n是被规则覆盖的样例数

例如考虑一个训练集,它包含60个 正例和100个反例,现有两个候选 规则:

r1:覆盖50个正例和5个反例

r2:覆盖2个正例和0个反例

$$Laplace = \frac{n_{+}+1}{n+k}$$

$$Laplace(r_1) = \frac{50+1}{55+2} = 0.8947$$

• 准确率

$$Laplace(r_2) = \frac{2+1}{2+2} = 0.75$$

• Accuracy
$$=\frac{n_+}{n}$$

简单理解: Laplace估计 即为准确率的平滑

- FOIL信息增益 类似决策树的信息增益
 - 假设规则r: $A \rightarrow 覆盖 n_{0+}$ 个正例和 n_{0-} 个反例,增加新的合取项B后,扩展的规则r: $B \rightarrow 覆盖 n_{1+}$ 个正例和 n_{1-} 个反例,此时扩展规则后FOIL信息增益定义为: 使用规则1后 使用规则2后数据熵值 数据熵值

$$FOIL(r) = n_{1+} \times \left[\log_2 \frac{n_{1+}}{n_{1+} + n_{1-}} - \log_2 \frac{n_{0+}}{n_{0+} + n_{0-}} \right]$$

• 该度量倾向于选择那些高支持度计数和高准确率的规则

例如 考虑一个训练集,它包含60个正例和100个反例,现有两个候选规则:

- r1:覆盖50个正例和5个反例
- r2:覆盖2个正例和0个反例

$$FOIL(r_1) = 50 \times \left[\log_2 \frac{50}{50+5} - \log_2 \frac{60}{60+100} \right] = 63.87$$

FOIL信息增益 →

类似决策树的信息增益

• 假设规则r:A→覆盖 n_{0+} 个正例和 n_{0-} 个反例,增加新的合取项B 后,扩展的规则r:B →覆盖 n_{1+} 个正例和 n_{1-} 个反例,此时扩展 使用规则1后 使用规则2后 规则后FOIL信息增益定义为: 数据熵值 数据熵值

$$FOIL(r) = n_{1+} \times \left[\log_2 \frac{n_{1+}}{n_{1+} + n_{1-}} - \log_2 \frac{n_{0+}}{n_{0+} + n_{0-}} \right]$$

• 该度量倾向于选择那些高支持度计数和高准确率的规则

例如 考虑一个训练集,它包含60个正例和100个反例,现有两个候选规则:

- r1:覆盖50个正例和5个反例
- r2:覆盖2个正例和0个反例

$$FOIL(r_1) = 50 \times \left[\log_2 \frac{50}{50+5} - \log_2 \frac{60}{60+100} \right] = 63.87$$

 $FOIL(r_2) = 2 \times \left[\log_2 \frac{2}{2} - \log_2 \frac{60}{60+100} \right] = 2.83$

Learn-One-Rule

- 规则增长
- 规则评估
- 停止准则
- 规则剪枝

顺序覆盖(sequential covering)算法

- 1. 令 E是训练记录,A是属性 值对的集合 $\{(A_i, \nu_i)\}$
- 2. 令 Y_o 是类的有序集 $\{y_1, y_2..., y_k\}$
- 3. 令R={}是初始规则列表
- 4. for 每个类*y*∈ *Y_o* {*y_k*} do
- 5. while 终止条件不满足 do 6
- 6. $r \leftarrow \text{Learn-One-Rule (E,A,y)}$
- 7. 从E中删除被r覆盖的训练记录
- 8. 追加r到规则列表尾部: $R \leftarrow R \lor r$
- *9.* end while
- 10. end for
- 11. 把默认规则 $\{\}$ → y_k 插入到规则列表R尾部

停止条件与规则剪枝

- 停止条件
 - 计算增益
 - 如果增益不显著,则丢弃新规则
- 规则剪枝
 - 类似于决策树后剪枝
 - 降低错误剪枝:
 - 删除规则中的合取项
 - 比较剪枝前后的错误率
 - 如果降低了错误率,则剪掉该合取项

如何建立基于规则的分类器

- 直接方法:
 - 直接由数据提取规则
 - 例如: RIPPER, CN2, Holte's 1R
- 间接方法:
 - 由其他分类模型提取规则 (例如,从决策树等).
 - 例如: C4.5rules

- 对于2类问题, 选定一个类为正类, 另一个为负类
 - 从正类学习规则
 - 负类时缺省类
- 多类问题
 - 按类的大小(属于特定类的实例所占的比例)对诸类排序
 - 从最小的类开始学习规则,其余类都看做负类
 - 对次小类学习规则,如此下去

- 规则增长:
 - 由空规则开始
 - 只要能够提高FOIL信息增益就增加一个合取项
 - 当规则开始覆盖负实例时就停止
 - 剪枝
 - 剪枝度量: v = (p-n)/(p+n)
 - p: 验证集中被规则覆盖的正实例数
 - n: 验证集中被规则覆盖的负实例数
 - 剪枝方法:

如果剪掉合取项可以提高v就剪

- 建立规则集:
 - 使用顺序覆盖算法
 - 找出覆盖当前正实例的最佳规则
 - 删除被规则覆盖的所有正实例和负实例
 - 当一个规则加入规则集时,计算新的最小描述长度MDL
 - 当新的MDL比已经得到的MDL多d位时,就停止增加新规则
 - 当在确认集上的错误率超过50%时,停止增加新规则

- 优化规则集:
 - 对规则集R中的每个规则 r
 - 考虑2个替换的规则:
 - 替换规则 (r*): 重新增长新规则
 - 编辑的规则(r'): 把一个新的合取项增加到规则 r
 - 比较替换前后的规则集
 - · 选择最小描述长度(MDL)的规则集
 - 对剩下的正实例,重复规则产生和优化

规则提取的间接方法

- 决策树从根结点到叶结点的每一条路径都可以表示为一个分类规则
 - 路径中的测试条件构成规则前件的合取项,叶结点的类标号赋给规则后件

规则分类的特点

优点

- 表达能力与决策树一样高
- 容易解释
- 容易产生
- 能够快速对新实例分类
- 性能可与决策树相媲美

缺点

- 规则库难以维护
- 规则匹配计算量大
- 模型缺乏泛化能力

01 基于规则的分类

02 急切学习与惰性学习

急切学习 vs 惰性学习

- 急切学习(Eager Learner)
 - 两步过程: (1) 归纳 (2) 演绎
- 惰性学习(Lazy Learner)
 - 把训练数据建模过程推迟到需要对样本分类时
 - 例子
 - Rote-learner (死记硬背)
 - 记住所有的训练数据,仅当记录的属性值与一个训练记录完全匹配才对它分类
 - 最近邻 (Nearest neighbor)
 - 使用"最近"的 k 个点 (最近邻) 进行分类

01 基于规则的分类

02 急切学习与惰性学习

- 基本思想:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

- 要求
 - 存放训练记录
 - 计算记录间距离的度量
 - k值, 最近邻数
- 对未知记录分类:
 - 计算域各训练记录的距离
 - 找出 k 个最近邻
 - 使用最近邻的类标号决定未知 记录的类标号 (例如, 多数表决)

最近邻定义

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor (c) 3-nearest neighbor

记录x的k-最近邻是与x之间距离最小的k个训练数据点

k-最近邻分类算法

• k-最近邻分类算法

1: 令k是最近邻数目, D是训练样例的集合

2: for 每个测试样例 z = (x', y') do

3: 计算z和每个样例(x, y) ∈ D之间的距离d(x', x)

4: 选择离z最近的k个训练样例的集合Dz D

5:
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$$

6: end for

• 距离加权表决

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} w_i \times I(v = y_i)$$

k-最近邻分类算法

- k-最近邻分类算法
 - 1: 令k是最近邻数目, D是训练样例的集合
 - 2: for 每个测试样例 z = (x', y') do
 - 3: 计算z和每个样例(x, y) ∈ D之间的距离d(x', x)

计算开销大

4: 选择离z最近的k个训练样例的集合Dz D

5:
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$$

- 6: end for
- 距离加权表决

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} w_i \times I(v = y_i)$$

k-最近邻分类算法

- k-最近邻分类算法
 - 1: 令k是最近邻数目, D是训练样例的集合
 - 2: for 每个测试样例 z = (x', y') do
 - 3: 计算z和每个样例 $(x, y) \in D$ 之间的距离d(x', x)

计算开销大

- 选择离z最近的k个训练样例的集合Dz
- 5: $y' = \operatorname{argmax}$ $\sum I(v = y_i)$ 两种特殊的数据结构提前 $(\mathbf{x}_i, y_i) \in D_{\tau}$

6: end for

• 距离加权表决

对训练集进行优化存储

- Kd-Tree
- Kd-Ball

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, y_i) \in D_z} w_i \times I(v = y_i)$$

k-最近邻注意的问题

- k值的选择:
 - 如果 k 太小, 则对噪声点敏感
 - 如果 k 太大, 邻域可能包含很多其他类的点
- 定标问题 (规范化)
 - 属性可能需要规范化,防止距离度量被具有很大值域的属性所

左右

k-NN的特点

- k-NN的特点
 - 是一种基于实例的学习
 - 需要一个邻近性度量来确定实例间的相似性或距离
 - 不需要建立模型,但分类一个测试样例开销很大
 - 需要计算域所有训练实例之间的距离
 - 基于局部信息进行预测,对噪声非常敏感
 - 最近邻分类器可以生成任意形状的决策边界
 - 决策树和基于规则的分类器通常是直线决策边界
 - 需要适当的邻近性度量和数据预处理
 - 防止邻近性度量被某个属性左右