2019/2020

On rendra seulement une copie par trinôme de colle.

EXERCICE 1 Résoudre sur $[0, 2\pi[1]$ inéquation $(I) : 4\sin^2(x) + 2(1 + \sqrt{2})\cos(x) - \sqrt{2} - 4 > 0$.

EXERCICE 2 Pour n entier naturel, on pose:

$$a_n = \frac{(2n)!}{(n+1) \times (n!)^2}, \quad S_n = \sum_{k=0}^n a_k a_{n-k} \quad \text{et} \quad T_n = \sum_{k=0}^n k a_k a_{n-k}$$

1. Calculer a_0 , a_1 , a_2 , a_3 et a_4 puis S_0 , S_1 , S_2 , S_3 . Que remarque-t-on?

2. Justifier que : $\forall n \in \mathbb{N}$, $T_n = \sum_{k=0}^n (n-k) \, a_{n-k} a_k$ En déduire que $2T_n = nS_n$.

3. Montrer que : $\forall n \in \mathbb{N}, (n+2) a_{n+1} = 2 (2n+1) a_n$

4. Déduire des questions précédentes que:

$$\forall n \in \mathbb{N} \,,\, T_{n+1} + S_{n+1} = a_{n+1} + 2\,(n+1)\,S_n$$
 puis que $\frac{n+3}{2}S_{n+1} = a_{n+1} + 2\,(n+1)\,S_n$

5. En déduire que : $\forall n \in \mathbb{N}$, $S_n = a_{n+1}$ (on pourra raisonner par récurrence).

EXERCICE 3

On sait tous que pour tout entier $n \ge 1$, on a $\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$. Etablir la "réciproque" suivante :

On se donne une suite $(x_k)_{k\in\mathbb{N}^*}$ de réels strictement positifs, et on suppose que pour tout entier $n\geqslant 1$, on a

$$\sum_{k=1}^{n} x_k^3 = \left(\sum_{k=1}^{n} x_k\right)^2$$

Montrer par récurrence que pour tout entier $n \ge 1$ on a $x_n = n$.

EXERCICE 4

Soient $n \in \mathbb{N}^*$ et $a_1, a_2, ..., a_n$ des réels strictement positifs. On pose

$$S = \sum_{k=1}^{n} a_k$$
 et $T = \sum_{k=1}^{n} a_k^{(k-1)/k}$

On fixe un réel λ strictement supérieur à 1 et pour $k \in \mathbb{N}^*$, on définit la fonction $f_k : x \mapsto x^{(k-1)/k} - \lambda x$

1. Dans cette question on fixe que $k \ge 2$

- a) Quel est l'ensemble de définition \mathcal{D} de f? Est-elle dérivable sur \mathcal{D} ?
- b) Etudier les variations de f_k sur \mathcal{D} , et en déduire que f_k admet un maximum en un point x_k dont on déterminera l'expression en fonction de k.

c) Montrer que
$$f_k(x_k) = \frac{1}{\lambda^{k-1}} \times \frac{(k-1)^{k-1}}{k^k}$$

- d) En déduire que $f_k(x_k) \leqslant \frac{1}{\lambda^{k-1}}$
- **2.** Démontrer à l'aide de la question précédente que $T \leqslant \lambda S + \frac{\lambda}{\lambda 1}$.

3. Pour x > 1 on définit $g(x) = xS + \frac{x}{x-1}$.

- a) Montrer que g admet un minimum sur $]1, +\infty[$ que l'on précisera.
- b) En déduire que : $\sqrt{T} \leqslant \sqrt{S} + 1$.

PCSI 1