



### OBJECTIVE OF THE COURSE

- To introduce various concepts in IoT based applications and the associated HW and SW design
- To understand and apply different enabling technologies for IoT like application level protocols, identification, device management, service discovery in various use cases.
- To explore the integration of IoT with Cloud and the usage of Edge / Fog Computing along with Data Analytics to build Autonomous Systems.

# COURSE

|      | Course Outcome                                                                            | BTL   |
|------|-------------------------------------------------------------------------------------------|-------|
| CO 1 | Understand the key techniques and theory behind Internet of Things                        | L2    |
| CO 2 | Apply effectively the various enabling technologies (both hardware and software ) for IoT |       |
| CO 3 | Understand the integration of Cloud and IoT , Edge and Fog Computing                      | L2    |
| CO 4 | Apply various techniques for Data Accumulation, Storage and Analytics                     |       |
| CO 5 | Design and build IoT system for any one interesting Use case                              | L4,L5 |

### **SYLLABUS**

### Unit - I

Introduction to IoT - IoT definition - Characteristics - Things in IoT - IoT Complete Architectural Stack - IoT enabling Technologies - IoT Challenges - IoT Levels - A Case Study to realise the stack.

Sensors and Hardware for IoT - Accelerometer, Proximity Sensor, IR sensor, Gas Sensor, Temperature Sensor, Chemical Sensor, Motion Detection Sensor. Hardware Kits - Arduino, Raspberry Pi, nodeMCU. A Case study with any one of the boards and data acquisition from sensors (Lab Component)

### Unit - II

Protocols for IoT – Infra structure protocol (IPV4/V6|RPL), Identification (URLs), Transport (Wi-Fi, Li-Fi, BLE), Discovery, Data Protocols, Device Management Protocols. - A Case Study with MQTT/CoAP usage. (Lab Component).

Cloud and Data analytics-Types of Cloud - IoT with cloud challenges - Selection of cloud for IoT applications. Fog computing for IoT - Edge computing for IoT - Cloud security aspects for IoT applications. RFM for Data Analytics. Case study with AWS / AZURE / Adafruit / IBM Bluemix (Lab Component).

### Unit - III

Case studies with architectural analysis:

IoT applications - Smart City - Smart Water - Smart Agriculture - Smart Energy - Smart Healthcare - Smart Transportation - Smart Retail - Smart waste management . (Lab Component - As a project)

### TEXT BOOKS / REFERENCE BOOKS

### **Text Books:**

1. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press)

### References:

- 1. Infosys Training E Materials. Infosys Knowledge Institute (IKI)
- 2. "The Internet of Things: Enabling Technologies, Platforms, and Use Cases',, by pethuru Raj and Anupama C. Raman (CRC press)
- 3. Adrian McEwen, Designing the Internet of Things, Wiley (B November 20t3), ISBN-13:978-.11-L1,8430620,
- 4. NPTEL Reference: https://nptel.ac.in/courses/106/105/106105166/
- 5. NPTEL IIoT (Prof Sudip Misra IIT Kharagpur)

https://onlinecourses.nptel.ac.in/noc20\_cs24/unit?unit=14&lesson=125

- 6. Swayam portal: <a href="https://swayam.gov.in/nd1">https://swayam.gov.in/nd1</a> noc20 cs69/preview
- 7. RBCCPS IISc: https://cps.iisc.ac.in/ IUDX



FYI: End Exam Reference Materials are Listed in <a href="https://sites.google.com/view/aseiot/endexam">https://sites.google.com/view/aseiot/endexam</a>

Last Date to complete your Final review for IoT Project 10th October 2019 - Refer Instruction's regarding 15CSE480 IoT Course Project available in Lab manuals section.

Additional Materials for Edge, Fog and Cloud Computing as well as Data Analytics were added in the

### EVALUATION PATTERN

| S. No    | Components                                              | Weightage in %                   |
|----------|---------------------------------------------------------|----------------------------------|
| <b>I</b> | Internal (70 Marks)                                     | ENEN                             |
| 1        | Mid Term Exam (Online exam)                             | 10                               |
| 2        | Mid Term Exam (Online Viva)                             | 10                               |
| 3        | Continuous Assessment – Theory                          | 10                               |
|          | 3.a No of online Quiz (3) 3.b Missed online Quiz (1)    | Quiz1: 3<br>Quiz2: 3<br>Quiz3: 4 |
| 4        | Continuous Assessment-Lab                               | 40                               |
|          | 4.a Use case –Design-Sprint #1 (No of Review:2)         | Review1:5<br>Review2:15          |
|          | 4.b Use case-Implementation-Sprint #2 (For of Review:1) | No<br>Review3 :20                |
|          | External (30 Marks)                                     |                                  |
| 5        | End semester Exam (Online Exam)                         | 10                               |
| 6        | End Semester Exam (Online Viva)                         | 20                               |

## HARDWARE AND SOFTWARE DETAILS

### Hardware:

- Node MCU ESP8266 /ESP32
- Raspberry pi / Intel IoT

### Software

- Arduino IDE
- MicroPython

### **Cloud Platform**

- Adafruit
- Thingspeak
- AWS
- Google Cloud Platform