Конспекты по матанализу

Владимир Милосердов, Владимир Шабанов, Шумилов Пётр 18 ноября 2015 г.

Оглавление

1	Пре	Предел последовательности		
	1.1	Определение	Ę	
	1.2	Теорема об единственности предела	5	
	1.3	Т. об огр. сход. посл	6	
	1.4	Т. о пред. перех. в нерав.	6	
	1.5	Т. о п/посл. сход. послед	7	
	1.6	Т. о влож. отрезках	7	
	1.7	Т. Больцано	7	
	1.8	Критерий Коши	8	
		1.8.1 Фундаментальная последовательность	8	
2	Предел функции			
	2.1	Определение по Гейне	11	
	2.2	Определение по Коши	11	
	2.3	Теорема о двух миллиционерах	11	
	2.4	Доказательство эквивалентности определений по Коши и по Гейне	12	
		2.4.1 От Гейне к Коши	12	
		2.4.2 От Коши к Гейне	12	
	2.5	Теорема об единственности предела функции	12	
	2.6	Теорема о локальной ограниченности функции	13	
3	Дифференциалы и производные			
	3.1	Определение	15	
	3.2	Производные некоторых функций	15	
	3.3	Критерий дифференциируемости	16	
	3.4	Правило Лопиталя	16	
		$3.4.1$ Раскрытие неопределенноти вида $\frac{0}{2}$	16	

ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ

Глава 1

Предел последовательности

Определение 1.1

Пусть имеется последовательность a_n . Тогда если начиная с некоторго элемента под индексом N каждый следующий элемент a_n , где n > N будет входить в ε -окрестность некоторой точки A, то говорят, что последовательность имеет предел и он равен A. $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n > N(n \in \mathbb{N}), \; a_n \in U_{\varepsilon}(A)$

Пример Возъмём
$$\lim_{n\to +\infty} \frac{(-1)^n}{n} = 0$$
Тут $A=0,\ a_n=\frac{(-1)^n}{n}$

Подставим значения в определение:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N(n \in \mathbb{N}), \ \tfrac{(-1)^n}{n} \in \mathring{U}_\varepsilon(0)$$

 $\frac{(-1)^n}{n}\in\mathring{U}_{arepsilon}(0)\equiv|rac{(-1)^n}{n}-0|<arepsilon,$ т.к. последовательность a_n , принадлежащая arepsilon-окрестности в точке A=0 тоже самое, когда расстояние между рассматриваемыми членами a_n u A = 0 меньше ε .

Упростим: $\left|\frac{(-1)^n}{n} - 0\right| < \varepsilon \Rightarrow \left|\frac{(-1)^n}{n}\right| < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon \Rightarrow n > \frac{1}{\varepsilon}$.

1) Возьмём $\varepsilon = \frac{1}{2} \Rightarrow n > 2$. Подставим в формулу наименьшее удовлетворяющее условию n > 2 число: $\left|\frac{-1^3}{3} - 0\right| = \frac{1}{3}$. Получается, что $\frac{1}{3} < \frac{1}{2}$ и $\forall n > 2$: $\left|\frac{(-1)^n}{n} - 0\right| < \varepsilon \Rightarrow$ все условия из определения соблюдены.

Определение Последовательность - сходящеяся, если она имеет предел.

Определение Последовательность - расходящеяся, если у нее нет предела

Определение Последовательность называется ограниченной, если все её члены по модулю не превосходят некоторого числа.

Теорема об единственности предела 1.2

Теорема Если последовательность имеет предел, то он единственный.

$$\begin{cases} \lim_{n \to +\infty} a_n = A_1 \\ \lim_{n \to +\infty} a_n = A_2 \end{cases} \implies A_1 = A_2$$

Пойдём от противного. Возьмем какие-либо непересекающиеся окрестности $U_{\varepsilon}(A_1)$ и $V_{\varepsilon}(A_2)$ точек A_1 и A_2 соответственно, $U_{\varepsilon} \cap V_{\varepsilon} = \emptyset$.

Согласно определению предела вне окрестности $U_{\varepsilon}(A_1)$, в частности в окрестности $V_{\varepsilon}(A_2)$, содержится лишь **конечное** число членов $\{x_n\}$. Однако точка A_2 также является ее пределом, и потому в ее окрестности $V_{\varepsilon}(A_2)$ должны находиться все члены последовательности $\{x_n\}$, начиная с некоторого номера, а следовательно, **бесконечно** много ее членов. Получилось противоречие, значит $A_1 = A_2$, что и требовалось доказать.

1.3 Теорема об ограниченности сходящейся последовательности

Теорема Если последовательность сходится, то она является ограниченной.

Пусть есть сходящаяся последовательность $a_n \Rightarrow \exists \lim_{n \to +\infty} a_n = a$.

Возьмём $\varepsilon = c > 0 \Rightarrow \exists N : \forall n > N, |a_n - a| < ca$

Избавимся от модуля:

$$-c < a_n - a < c$$

$$a - c < a_n < a + c$$

Исходя из верхнего неравентсва, если взять max из $|a_n|, |a-c|$ и |a+c|, причём $n \leq N$ $A = max(|a_n|, n \leq N; |a-c|; |a+c|)$

то получится, что $|a_n| \le A$, $\forall n \in \mathbb{N}$, что и требовалось доказать.

1.4 Теорема о предельном переходе в неравенстве

Теорема Пусть заданы две последовательности $a_n u \ b_n$. Если $\lim_{n \to +\infty} a_n = a$, $\lim_{n \to +\infty} b_n = b$, u начиная c некоторого номера $a_n \le b_n$, то выполняется неравенство $a \le b$.

$$\begin{cases} \lim_{n \to +\infty} a_n = a \\ \lim_{n \to +\infty} b_n = b \\ \forall n > N, a_n \le b_n \end{cases} \implies a \le b$$

Докажем от противного. Пусть $a > b, \varepsilon = \frac{a-b}{2}$. Скажем, что

$$\exists N_a : \forall n > N_a, |a_n - a| < \varepsilon$$

$$\exists N_b : \forall n > N_b, |b_n - b| < \varepsilon$$

Возьмём максимальный номер $N = max(N_a, N_b)$ и тогда получится, что $\forall n > N$ верно:

$$a - \varepsilon < a_n < a + \varepsilon$$

$$b - \varepsilon < b_n < b + \varepsilon$$

$$b - \varepsilon < a_n <$$

Мы знаем, что a > b, тогда из верхних неравенств вытекает, что $b_n < a_n$. Получили противоречие, значит теорема верна.

1.5 Теорема о подпоследовательности сходящейся последовательности

Теорема Если последовательность стремится κ A, то любая её подпоследовательность тоже стремится κ A.

$$\lim_{x \to +\infty} a_n = A \Rightarrow \forall a_{n_k} \lim_{k \to +\infty} a_{n_k} = A$$

По определению предела найдётся такой номер, что все члены с бо́льшими номерами принадлежат ε -окрестности. $\forall \varepsilon > 0 \ \exists N: \ \forall n > N \ |a_n - A| < \varepsilon$

Тогда
$$\forall k > N: \ \forall n_k > N, \ |a_{n_k} - A| < \varepsilon.$$

Значит a_{n_k} стремится к A по определению предела для последовательности, что и требовалось доказать.

1.6 Теорема Коши-Кантора о вложенных отрезках

Теорема Для всякой системы бесконечного числа вложенных отрезков существует хотя бы одна точка, принадлежащая всем отрезкам системы.

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = c$$

Если длины отрезков стремятся к нулю, то такая точка единственна.

Обозначим за $\{a_n\}$ множество левых концов отрезков, а за $\{b_m\}$ – множество правых концов. Заметим, что $\forall n, m: a_n \leq b_m$. Из *аксиомы непрерывности* заключаем существование точки c, лежащей между любыми двумя левым и правым концами:

$$\forall n, m \; \exists \; c: \quad a_n \leq c \leq b_m$$

В частности (когда n=m): $a_n \leq c \leq b_n$

Последнее выражение означает существование точки между концами самого маленького отрезка. Эта точка – объединение всей системы, что и требовалось доказать.

Докажем единственность этой точки при стремлении длин отрезков к нулю.

Пусть это не так и существуют точки $c_0, c_1, c_0 \neq c_1$. Тогда из рассуждений предыдущего доказательства следует:

- (1) $\forall n: c_0, c_1 \in [a_n, b_n]$ и $|c_1 c_0| \leq b_n a_n$. Т.к. длины отрезков стремятся к нулю:
- (2) $\forall \varepsilon > 0$: $\exists N : \forall n > N : b_n a_n < \varepsilon$ (по определению предела).

Но если взять $\varepsilon = \frac{1}{2}|c_1 - c_0|$, то из (1) и (2) получим противоречие: $|c_1 - c_0| < \frac{1}{2}|c_1 - c_0|$. Таким образом точка c единственна в случае стремления длин отрезков к нулю, что и требовалось доказать.

1.7 Теорема Больцано — Вейерштрасса

Теорема На любой ограниченной последовательности $x_n, n \in \mathbb{N}$ можно выделить сходящююся подпоследовательность $x_{nk}, k \in \mathbb{N}$

Если последовательность x_n ограниченна, то всё её бесконечное множество членов принадлежит некоторому промежутку, обозначим его $-[a_0, b_0]$. Разделим этот промежуток

на два равных отрезка, тогда хотя бы один из них будет содержать бесконечное число членов последовательности x_n , обозначим этот отрезок, как $[a_1,b_1]$. Продолжая процесс получим последовательность вложенных отрезков.

$$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \dots$$

В которой каждый отрезок $[a_{k+1},b_{k+1}]$ является половиной отрезка $[a_k,b_k]$ и содержит бесконечное число членов последовательности x_n . Т.к. размер отрезка под номером k равен $S_k = \frac{|b_0 - a_0|}{2^k}$, то при $k \to +\infty$, $S_k \to 0$. А по лемме о вложенных отрезках, существует единственная точка ν , принадлежащая всем отрезкам. Тогда выберем подпоследовательность $x_{n_k} \in [a_k,b_k]$. Новая последовательность x_{n_k} будет сходится к точке ν потому, что и ν , и x_{n_k} принадлежат отрезку $[a_k,b_k]$, размеры которого стремятся к 0 при $k \to +\infty$. Т.е. $|x_{n_k} - \nu| \leq |b_k - a_k| \to 0$. Таким образом, в ограниченной последовательности x_n мы выделили сходящююся подпоследовательность x_{n_k} .

1.8 Критерий Коши

1.8.1 Фундаментальная последовательность

Определение Последовательность a_k называется фундаментальной или сходящейся в себе, если $\forall \varepsilon > 0 \ \exists N: \ \forall n,k: |a_k - a_n| < \varepsilon$

Другими словами, если начиная с некоторго номера, расстояние между всеми членами последовательности меньше любого числа из \mathbb{R}_+ .

Критерий Коши

Определение Последовательность a_n сходится тогда и только тогда, когда она фундаментальна. Т.е. $\exists \lim_{n \to +\infty} a_n$

Докажем, что если последовательность a_n имеет предел, то она сходится в себе. Пусть $A = \lim_{n \to +\infty} a_n$, тогда из определения предела:

$$\forall \varepsilon > 0: \ \exists N: \ \forall n > N: \ |A - a_n| < \frac{\varepsilon}{2}$$

Определим такое m, что m>N, тогда $|A-a_m|<\frac{\varepsilon}{2}$

$$\begin{cases} |A - a_n| < \frac{\varepsilon}{2} \\ |A - a_m| < \frac{\varepsilon}{2} \end{cases} \implies |A - a_m| + |A - a_n| < \varepsilon$$

Применив неравенство треугольника, для последней части неравенства. Получим: $|a_m - a_n| \le |A - a_m| + |A - a_n| < \varepsilon$ Или:

$$|a_m - a_n| < \varepsilon$$

Что равносильно определению сходящейся в себе последовательности.

Докажем, что если последовательность a_n сходится в себе, то она имеет предел. Для этого докажем две Леммы.

Φ ундаментальна \Rightarrow ограниченна

Если последовательность a_n сходится в себе, то это по определению означает, что:

$$\forall \varepsilon : \exists N_1 : \forall n, m > N_1 : |a_n - a_m| < \varepsilon$$

Зафиксируем такой номер m, тогда получается, что в ε окрестности точки a_m лежат все члены последовательности, начиная с номера N_1 , ведь для любого $n > N_1$ спроведливо $|a_n - a_m| < \varepsilon$. Последнее неравенство эквивалентно определению ограниченной последовательности, или нет.

Предел ограниченной последовательности, равен пределу подпоследовательности

По теореме Больцано — Вейерштрасса если последовательность a_n ограниченна, то на ней можно выделить сходящююся подпоследовательность a_{n_k} . Обозначим предел последней $A = \lim_{k \to +\infty} a_{n_k}$. Докажем, что $\lim_{n \to +\infty} a_n = A$. Т.к. a_n — сходящееся в себе последовательность, а $A = \lim_{k \to +\infty} a_{n_k}$ то по определению:

$$\forall \varepsilon > 0 : \begin{cases} \exists N : \ \forall n, l > N : |a_n - a_l| < \frac{\varepsilon}{2} \\ \exists K : \ \forall k > K : |a_{n_k} - A| < \frac{\varepsilon}{2} \end{cases}$$

Пусть M := max(N, K) + 1 и n > M, тогда:

$$|a_n - A| = |a_n - a_{n_n} + a_{n_n} - A|$$

Где $n_{\mu} > M > max(N, K)$. По неравенству треугольника:

$$|a_n - a_{n_n} + a_{n_n} - A| \le |a_n - a_{n_M}| + |a_{n_M} - A|$$

Т.к.
$$|a_n-a_{n_M}|<rac{arepsilon}{2}$$
 и $|a_{n_M}-A|<rac{arepsilon}{2},$ то

$$|a_n - a_{n_M}| + |a_{n_M} - A| \le \varepsilon$$

Что и требовалось доказать

Глава 2

Предел функции

2.1 Определение по Гейне

Пределом функции f(x) в точке a называется точка A, если для любой сходящейся в точке a последовательности x_n множество соответсвующих значений $y_n = f(x_n)$, при $n \neq 0$ стремится к A.

$$\forall n \in \mathbb{N}, \lim_{n \to x_0} x_n = a$$

$$\lim_{n \to a} f(x_n) = A$$

2.2 Определение по Коши

Пределом функции f(x) в точке a называется точка A, если для любого $\varepsilon>0$ найдется $\delta>0$ такое, что для любого аргуманта x такого, что $0<|x-a|<\delta$ выполняется неравенство $|f(x)-A|<\varepsilon$

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x: \ 0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon$$

2.3 Теорема о двух миллиционерах

Функция, "зажатая" между двумя функциями, имеющими одиннаковый предел имеет такой же предел.

$$\begin{cases} \varphi(x) \leq f(x) \leq \psi(x), \forall x \\ \lim_{x \to a} \varphi(x) = A \\ \lim_{x \to a} \psi(x) = A \end{cases} \implies \lim_{x \to a} f(x) = A$$

Доказательство:

Прибавим к каждой части неравенства $\varphi(x) \leq f(x) \leq \psi$ по -A: $\varphi(x) - A \leq f(x) - A \leq \psi(x) - A$. Из предыдущего неравенства и рисунка

очевидно, что для любых допустимых взаимных расположений точек $A, \varphi(x), \psi(x), f(x)$ верно следующее неравенство:

(1)
$$|f(x) - A| \le \max(|\varphi(x) - A|, |\psi(x) - a|)$$

Т.к. $\lim_{x\to a} \varphi(x) = \lim_{x\to a} \psi(x) = A$, то $\forall \varepsilon > 0$ существует ε -окрестность U_a и $\varphi(x) \in U_{\varepsilon}(a)$ и $\psi(x) \in U_{\varepsilon}(a)$. Т.е. $|\varphi(x) - A| < \varepsilon$ и $|\psi(x) - A| < \varepsilon$.

$$\varphi(x) \in U_{\varepsilon}(a)$$
 in $\psi(x) \in U_{\varepsilon}(a)$. T.e. $|\varphi(x) - A| < \varepsilon$ in $|\psi(x) - A| < \varepsilon$.

Тогда из (1) следует: $|f(x) - A| < \varepsilon$ из чего согласно определению предела по Коши следует, что $\lim f(x) = A$, что и требовалось доказать.

Доказательство эквивалентности определений по 2.4Коши и по Гейне

От Гейне к Коши 2.4.1

Докажем от противного. Пусть $A = \lim_{x \to a} f(x)$ (по Гейне) и он не равен пределу по Коши.

Т.е. (из определения по Коши):

$$\exists \varepsilon > 0: \ \forall \delta > 0: \ \exists x_{\delta}: \ 0 < |x_{\delta} - a| < \delta$$
 и $|f(x_{\delta}) - A| \ge \varepsilon$

Рассмотрим $\delta = \frac{1}{n}$, где $n \in \mathbb{N}$, обозначим последовательность значений в точке δ через x_n . Тогда имеем:

 $0<|x_n-a|<\frac{1}{n}$, где $0\to 0$ и $\frac{1}{n}\to 0$. Из строгости неравенства следует $x_n\neq a$, а по теореме о трёх миллиционерах имеем:

 $|x_n-a|\to 0 \Rightarrow x_n\to a$, поэтому из определения по Гейне $f(x_n)\to A$, но по построению (t.k. $|f(x_{\delta}) - A| \ge \varepsilon$) $f(x_n) \not\to A$

Получили противоречие, значит если функция имеет предел по Гейне, то его можно определить и по Коши.

2.4.2 От Коши к Гейне

Пусть $A = \lim f(x)$ по Коши. Т.е.

$$\forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x: \ 0 < |x - a| < \delta \ \Rightarrow \ |f(x) - A| < \varepsilon$$

Выберем произвольную последовательность x_n такую, что $\lim_{n\to +\infty} x_n = a$. Т.к. x_n стремится к a, то для любого $\delta > 0$ найдется такой номер (обозначим его n_{δ}), начиная с которго $\forall n > n_{\delta}$ будет выполнятся неравенство $|f(x_n) - A| < \varepsilon$, что по Коши равносильно $\lim_{n\to+\infty} f(x_n) = A$

Теорема об единственности предела функции 2.5

Теорема
$$\begin{cases} \lim_{x \to a} f(x) = A_1 \\ \lim_{x \to a} f(x) = A_2 \end{cases} \implies A_1 = A_2$$

Докажем от противного. Пусть $\lim_{x\to a} f(x) = A_1$ и $\lim_{x\to a} f(x) = A_2$ Тогда из определения предела по Коши имеем $|f(x) - A_1| < \varepsilon$ и $|f(x) - A_2| < \varepsilon$. Пусть $\varepsilon = \frac{\varepsilon_1}{2}$. Имеем:

$$|f(x) - A_1| < \frac{\varepsilon_1}{2} \text{ if } |f(x) - A_2| < \frac{\varepsilon_1}{2}.$$

Рассмотрим выражение $|A_2 - A_1|$. Прибавим и отнимем f(x):

$$|A_2 - f(x) + f(x) - A_1|$$

Из свойств модуля следует:

$$|A_2 - f(x) + f(x) - A_1| \le |f(x) - A_1| + |f(x) - A_2|$$

Получаем:

$$|A_2 - f(x) + f(x) - A_1| \le |f(x) - A_1| + |f(x) - A_2| < \frac{\varepsilon_1}{2} + \frac{\varepsilon_1}{2}$$
, t.e. $|A_2 - A_1| < \varepsilon_1$

Возьмём $\varepsilon_1=|A_2-A_1|$ и получим $|A_2-A_1|<\frac{|A_2-A_1|}{2}$. Противоречие. Значит предел функции единственный.

2.6 Теорема о локальной ограниченности функции

Теорема Если функция имеет конечный предел при $x \to a$, то существует такая окрестность a, что функция на нём ограничена.

$$\lim_{x \to a} f(x) = A \Rightarrow \exists \mathring{U}(a), K > 0: \forall x \in \mathring{U}(a): |f(x)| \le K$$

Из определения предела следует, что для любого положительного ε существует $\delta>0$ такая, что $\forall x\in \mathring{U}_{\delta}(a)\ |f(x)-A|<\varepsilon$. Из свойств модуля:

$$A - \varepsilon < f(x) < A + \varepsilon$$
. Пусть $K = max(A - \varepsilon, A + \varepsilon)$

Тогда (опять же из свойств модуля) следует: $|f(x)| \le K$, что и требовалось доказать.

Глава 3

Дифференциалы и производные

3.1Определение

Производная – предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует.

$$f(x)' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Диффенциал – произведение производной на приращение аргумента. Дифференциал функции f в точке a обозначается df_a .

Пусть $f: \langle a, b \rangle \to \mathbb{R}$ и $x_0 \in \langle a, b \rangle$. Тогда функция f дифференцируема в точке x_0 , если $\exists A \in \mathbb{R} : f(x) - f(x_0) = A(x - x_0) + o(x - x_0)$.

Обозначим за h приращение аргумента: $h = x - x_0$. Тогда дифференциал этой функции может быть записан так:

$$d_{x_0}f(h) = A \cdot h$$

А приращение функции так:

производная
$$f(x_0+h)-f(x_0)=\underbrace{A\cdot h}_{\text{глав. линейная часть приращ. функции}}+o(h)$$

Производные некоторых функций 3.2

1.
$$(c)' = 0$$

2.
$$(x^n)' = nx^{n-1}$$

$$3. \ (n^x)' = n^x \ln n$$

4.
$$(\log_n(x))' = \frac{1}{x \ln n}$$

5.
$$\cos x' = -\sin x$$

$$6. \sin x' = \cos x$$

7.
$$tg x' = \frac{1}{\cos^2 x}$$

8.
$$\cot x' = \frac{1}{-\sin^2 x}$$

9.
$$\arcsin x' = \frac{1}{\sqrt{1-x^2}}$$

10.
$$\arccos x' = -\frac{1}{\sqrt{1-x^2}}$$

11.
$$\arctan x' = \frac{1}{1+x^2}$$

12.
$$\operatorname{arcctg} x' = -\frac{1}{1+x^2}$$

13.
$$(e^x)' = e^x$$

3.3 Критерий дифференциируемости

Теорема Следующие условия равносильны:

1. $f - \partial u \phi \phi$ еренцируема в точке x_0 и её производная – A

2.
$$\exists \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \in \mathbb{R} = A$$

3.
$$\exists f(x)$$
 - непрерывная в точке $x_0: f(x) = f(x_0) + F(x)(x - x_0)$

$$1 \Rightarrow 2$$

 $\widetilde{\text{Т.к.}}$ f – дифференциируема в т. x_0 :

$$f(x) = f(x_0) + A(x - x_0) + o(x - x_0)$$
 (при $x \to x_0$)

$$f(x) = f(x_0) + A(x - x_0) + o(x - x_0) \text{ (при } x \to x_0)$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{A \cdot h + o(h)}{h} = A$$

$$(2) \Longrightarrow (3)$$

Правило Лопиталя 3.4

Раскрытие неопределенноти вида $\frac{0}{0}$ 3.4.1

Теорема
$$\exists a,b:$$

$$\begin{cases} a < b \\ f,g - \partial u \phi \phi e p e н u u p y e м ы \ ha \ (a,b), \\ \lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0, \\ \forall x \in (a,b): g'(x) \neq 0, \\ \exists \lim_{x \to a+} \frac{f'(x)}{g'(x)} = L \in \overline{R}; \end{cases} \Longrightarrow \lim_{x \to a+} \frac{f(x)}{g(x)} = L$$

Для доказательства рассмотрим два случая.

1)
$$a \in R$$

Определим последовательность x_n следующим образом $x_n \underset{n \to \infty}{\longrightarrow} a+$

Другими словами:
$$x_n \in (a,b), x_n \underset{n \to \infty}{\to} a$$
 Доопределим (или переопределим) f и g :

$$f(a) = g(a) = 0$$

f,g - дифференцируемы на (a,x_n) и непрерывны на $[a,x_n]$. Значит по теореме Коши $\exists c_n \in (a, x_n)$:

$$\frac{f(x_n) - f(a)}{g(x_n) - g(a)} = \frac{f'(c_n)}{g'(c_n)} = \frac{f(x_n)}{g(x_n)}$$