Student #:	Student Name:

Grade 11 Physics Unit 1: Kinematics in One-Dimension

INTRUCTIONS: For *vector* quantities (i.e. position, displacement, velocity or acceleration), be sure to anwswer with a *magnitude* and a *direction*. Scalar quantities do not require a direction. When expressing directions using +/- sign, be sure to indicate which direction is positive. Write neatly. Underline or put a box around your answers. Answer with the appropriate number of significant figures.

1.	Can an object ever be accelerating and experiencing an instantaneous velocity of 0 m/s? Explain,
	or give an example.

2. Is it possible to have an average velocity of zero for some motion but an average speed of $120 \, \text{km/h}$ for that same motion? Provide a quantitative example.

- 3. A rock is thrown straight upward from the edge of a $30\,\mathrm{m}$ cliff, rising $10\,\mathrm{m}$ then falling all the way down to the base of the cliff.
 - (a) What is the *distance* that the rock travelled?
 - (b) What is it displacement after it hits the base of the cliff?

4. A student athlete runs around a $400\,\mathrm{m}$ track and completes it in $53\,\mathrm{s}$. Find her average speed and velocity.

Unit 1 Homework Page 1 of 6

5.	An object is free-falling near the surface of the Earth. At a certain instant in time, it is falling downward at a rate $25\mathrm{m/s}$. 2.5 seconds later,
	(a) what is its acceleration?(b) what is its velocity?
6.	A stalled car starts to roll backward down a hill. At the instant that it has a velocity of $4.0\mathrm{m/s}$ down the hill, the driver restarts it starts accelerating backup. After accelerating for $3.0\mathrm{s}$, the car is travelling uphill at $3.5\mathrm{m/s}$. Determine the car's acceleration once the driver got it started. Assume constant acceleration.
7.	A rocket powered sled accelerates a jet pilot in training from rest to 270 km/h in 12.1 s. Find: (a) the average acceleration of the sled (b) the time it takes to reach the speed limit on the highway, 100 km/h (c) the distance travelled when it reaches the final speed
8.	Sanna rolls a ball up to another person along a smooth ramp $19.6\mathrm{m}$ away from her. The ball reaches the other person's hands when it is travelling $4.9\mathrm{m/s}$ uphill. If the ramp angle slows the ball down by $3.7\mathrm{m/s}$ each second it travels up the ramp, find the initial velocity of the ball.

Unit 1 Homework Page 2 of 6

9. A porpoise jumps straight up and crashes back into the water at $8.9 \,\text{m/s}$. The drag and buoyancy forces of the water slow the porpoise down with an acceleration of $-9.3 \,\text{m/s}^2$ as the porpoise finally slows to a stop. Find the depth the porpoise reaches.

10. A car waits at a red light for a few seconds, and then accelerates straight ahead to $54 \, \text{km/h}$ in $3.1 \, \text{s}$ and then cruises at a constant speed for $75 \, \text{m}$. The road is straight. Express the motion of the car in a velocity-time graph, then find the total distance travelled.

11. In a long-distance race, Michael is running at $3.8 \, \text{m/s}$ and is $75 \, \text{m}$ behind Robert, who is running at a constant velocity of $4.2 \, \text{m/s}$. If Michael accelerates at $0.15 \, \text{m/s}^2$, how long will it take him to catch Robert? Draw motion graphs of Robert's and Michael's motion. Their starting position are provided. (Hint: When Michael catches up to Robert, what is the distance covered by Robert? If Michael was initially $75 \, \text{m}$ behind Robert, how far would he have to run?)

Unit 1 Homework Page 3 of 6

12.	Which of the following is not an example of uniform motion?
	 (a) A car travelling down a long, gently sloped highway at 100 km/h. (b) A very large boulder in the middle of a farmer's field. (c) A BASE jumper who has just plummeted off a cliff edge. (d) A train going uphill on a straight track at 30 km/h. (e) None of the above.
13.	A car is travelling west and approaching a stop sign. As it is slowing to a stop, the directions associated with the object's velocity and acceleration, respectively, are
	 (a) [W], [E] (b) [W], [W] (c) [E], [E] (d) [E], [W] (e) There is not enough information to tell.
14.	An athlete runs around a $400\mathrm{m}$ oval track 4 times. Her distance and displacement are,
	respectively, (a) 0, 0
	(a) 0,0 (b) 1600 m, 0 (c) 0, 1600 m (d) 1600 m, 1600 m [forward] (e) 100 m, 0
15.	If a car travelling at $60.0\mathrm{km/h}$ [S] stops in a time of $3.50\mathrm{s}$, its acceleration is:
	(a) 4.77m/s^2 [S] (b) 4.77m/s^2 [N] (c) 16.7m/s^2 [S] (d) 16.7m/s^2 [N] (e) 17.1m/s^2 [S]
16.	Which of the following objects are in "free-fall"?
	 (a) a ball that was thrown horizontally (b) a ball that was thrown at an angle above horizontal (c) a ball that was thrown at an angle below horizontal (d) a ball that was dropped (e) all of the above
17.	A car travels 35km [N] in 30minutes and then hits a traffic jam and spends 90minutes travelling 16.7km/h [N]. The average velocity of the car is:
	(a) 43.35 km/h [N] (b) 51.7 km/h [N] (c) 16.7 m/s [N] (d) 8.34 m/s [N] (e) 0

Unit 1 Homework Page 4 of 6

_____ 18. A ball is thrown straight up in the air and then caught at the same height. The acceleration is 9.8 m/s² [down]:

- (a) on the way up
- (b) on the way down
- (c) at the peak of its trajectory
- (d) two of A, B, and C are correct
- (e) all of A, B, and C are correct

19. A boy throws a ball straight up off a second floor balcony and it then lands on the ground. Neglecting air resistance, the magnitude of velocity is greatest:

- (a) just after it leaves the boy's hand
- (b) at the peak of the ball's trajectory
- (c) just before it hits the ground
- (d) it remains the same throughout the motion
- (e) impossible to tell without knowing the angle of projection

20. Draw conclusions about the *velocity* and *acceleration* of the motion represented by the following four graphs. (The four graphs are four different questions. Pay attention to the *y*-axis.)

Unit 1 Homework Page 5 of 6

21. Use the *velocity-time* graph below to answer the questions that follow.

- (a) Use words and numbers to describe the motion of the object. (Remember to include both magnitude and direction for vectors.)
 - i. from $t = 0.0 \, \text{s}$ to $15.0 \, \text{s}$
 - ii. from $t = 25.0 \,\mathrm{s}$ to $35.0 \,\mathrm{s}$
- (b) How do the motions of the object from $t = 15.0 \,\mathrm{s}$ to $30.0 \,\mathrm{s}$ and $t = 35.0 \,\mathrm{s}$ to $55.0 \,\mathrm{s}$ compare?
- (c) What is the velocity of the object at $t = 10.0 \,\mathrm{s}$?
- (d) During which time interval does the maximum magnitude of acceleration of the object occur? What is the acceleration during the interval?
- (e) What is the displacement of the object after 30.0 s?

Unit 1 Homework Page 6 of 6