thioaryloxy group having from 6 to 30 carbon atoms, an amino group, an amido group, a carboxyl group, or an alkylsilyl or akylsilylalkyl group having from 3 to 30 carbon atoms, and R's may be the same or different, and may be optionally bonded to each other to form a cyclic structure; a represents 0, 1 or 2; and n and m each represent an integer of at least 1.

40. (New) A method for producing olefinic polymers, which comprises polymerizing olefins in the presence of the polymerization catalyst of Claim 16.

REMARKS

Claims 1-40 are active in the present application. Claims 5-10, 12, 17-22, and 24 have been amended to remove multiple dependencies. New Claims 25-40 have been added. Support for new Claims 25-40 is found in the original Claims 1-24. No new matter is added. An action on the merits and allowance of claims is solicited.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Norman F. Oblon Attorney of Record Registration No. 24,618

Daniel J. Pereira Registration No. 45,518

22850

(703) 413-3000

Fax #: (703)413-2220

DJPER/rac

I:\atty\SUKOS\209357US-PR.wpd

2002	$C \cap T$	TC .	\sim	v	D.	\sim 1
2093	3 / U	J O -	v-	Λ	Г	U J

Marked-Up Copy Serial No:	
Amendment Filed on:	
07-26-01	

- 5. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 1 to 4] Claim 1, wherein at least one of three R¹'s is an aromatic hydrocarbon group having from 6 to 30 carbon atoms.
- 6. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 1 to 4] Claim 1, wherein three R¹'s are all aromatic hydrocarbon groups each having from 6 to 30 carbon atoms.
- 7. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 1 to 4] Claim 1, wherein three R¹'s are all phenyl groups.
- 8. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 1 to 7] Claim 1, wherein R² is an alkyl group having at least 2 carbon atoms.
- 9. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 3 to 8] Claim 1, wherein Z is aluminium.
- 10. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 1 to 9] Claim 1, wherein the transition metal compound (A) is represented by any of the following general formulae (I-2) to (I-6):

$$Q_{a}^{I}(C_{5}H_{5-a-b}R_{b}^{8})(C_{5}H_{5-a-c}R_{c}^{9})M^{I}X^{I}Y^{I}$$
 (I-2)

$$Q_{a}^{2}(C_{5}H_{5-a-d}R_{d}^{10})Z^{1}M^{1}X^{1}Y^{1}$$
 (I-3)

$$(C_5H_{5-e}R^{11}_e)M^1X^1Y^1W^1$$
 (I-4)

$$M^{I}X^{I}Y^{I}W^{I}U^{I} \tag{I-5}$$

$$L^{1}L^{2}M^{2}X^{1}Y^{1} \tag{I-6}$$

in which Q^1 represents a bonding group that crosslinks the two conjugated five-membered cyclic ligands ($C_3H_{5-a-b}R^8_b$) and ($C_3H_{5-a-c}R^9_c$); Q^2 represents a bonding group that crosslinks the conjugated five-membered cyclic ligand ($C_3H_{5-a-d}R^{10}_d$) and the group Z^1 ; R^8 , R^9 , R^{10} and R^{11} each represent a hydrocarbon group, a halogen atom, an alkoxy group, a silicon-containing hydrocarbon group, a phosphorus-containing hydrocarbon group, a nitrogen-containing hydrocarbon group, or a boron-containing hydrocarbon group; and a plurality of these groups, if any, may be the same or different, and may be bonded to each other to form a cyclic structure; a represents 0, 1 or 2; b, c and d each represent an integer of from 0 to 5 when a=0, or an integer of from 0 to 4 when a=1, or an integer of from 0 to 3 when a=2; e is an integer of from 0 to 5; M^1 represents a transition metal of Groups 4 to 6 of the Periodic Table; M^2 represents a transition metal of Groups 8 to 10 of the Periodic Table; L^1 and L^2 each represent a coordination-bonding ligand; L^1 , L^2 , L^1 , L^2 , $L^$

- 12. (Amended) A method for producing olefinic polymers, which comprises polymerizing olefins in the presence of the polymerization catalyst of [any of claims 1 to 11] Claim 1.
- 17. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 13 to 16] Claim 13, wherein at least one of three R³¹'s is an aromatic hydrocarbon group having from 6 to 30 carbon atoms.
- 18. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 13 to 16] Claim 13, wherein three R³¹'s are all aromatic hydrocarbon groups each having from 6 to 30 carbon atoms.

- 19. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 13 to 16] Claim 13, wherein three R³¹'s are all phenyl groups.
- 20. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 13 to 19] Claim 13, wherein R³² is an alkyl group having at least 2 carbon atoms.
- 21. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 15 to 20] Claim 15, wherein Z is aluminium.
- 22. (Amended) The catalyst for polymerization of olefins as claimed in [any of claims 13 to 21] Claim 13, wherein the transition metal compound (A) is represented by any of the following general formulae (II-2) to (II-6):

$$Q^{21}_{o}(C_5H_{5-a-b}R^{38}_{b})(C_5H_{5-a-c}R^{39}_{c})M^{21}X^{21}Y^2$$
 (II-2)

$$Q_{a}^{21}(C_{5}H_{5-a-d}R_{d}^{40})Z^{21}M^{21}X^{21}Y^{21} \tag{II-3}$$

$$(C_5H_{5-e}R^{41}_e)M^{21}X^{21}Y^{21}W^{21}$$
 (II-4)

$$M^{21}X^{21}Y^{21}W^{21}U^{21}$$
 (II-5)

$$L^{21}L^{22}M^{22}X^{21}Y^{21} (II-6)$$

in which Q^{21} represents a bonding group that crosslinks the two conjugated five-membered cyclic ligands ($C_5H_{5-a-b}R^{38}_b$) and ($C_5H_{5-a-c}R^{39}_c$); Q^{22} represents a bonding group that crosslinks the conjugated five-membered cyclic ligand ($C_5H_{5-a-d}R^{40}_d$) and the group Z^{21} ; R^{38} , R^{39} , R^{40} and R^{41} each represent a hydrocarbon group, a halogen atom, an alkoxy group, a silicon-containing hydrocarbon group, a phosphorus-containing hydrocarbon group, a nitrogen-containing hydrocarbon group, or a boron-containing hydrocarbon group; and a plurality of these groups, if any, may be the same or different, and may be bonded to each other to form a cyclic structure; a represents 0, 1 or 2; b, c and d each represent an integer of from 0 to 5 when a = 0, or an integer of from 0 to 4 when a = 1, or an integer of from 0 to 3 when a = 2; e is an integer of from 0 to 5; M^{21} represents a transition metal of Groups 4 to 6

of the Periodic Table; M^{22} represents a transition metal of Groups 8 to 10 of the Periodic Table; L^{21} and L^{22} each represent a coordination-bonding ligand; X^{21} , Y^{21} , Z^{21} , W^{21} and U^{21} each represent a covalent-bonding or ionic-bonding ligand; and L^{21} , L^{22} , X^{21} , Y^{21} , Z^{21} , W^{21} and U^{21} may be bonded to each other to form a cyclic structure.

24. (Amended) A method for producing olefinic polymers, which comprises polymerizing olefins in the presence of the polymerization catalyst of [any of claims 13 to 23] Claim 13.

Claims 25-40 (New).