3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.4 Autômato Finito Não-Determinístico

Não-determinismo

- importante generalização dos modelos de máquinas
- fundamental no estudo
 - Modelos para Concorrência
 - * Teoria da Computação
 - Linguagens Formais, ...

Semântica de não-determinismo adotada

- usual no estudo das Linguagens Formais
- objetiva determinar a capacidade de
 - * reconhecer linguagens
 - * solucionar problemas
- pode causar alguma confusão com semântica da concorrência

◆ Nem sempre não-determinismo aumenta o poder

- reconhecimento de linguagens de uma classe de autômatos
 - * qualquer autômato finito não-determinístico pode ser simulado por um autômato finito determinístico

◆ Não-determinismo no programa, é uma função parcial

dependendo do estado corrente e do símbolo lido, determina um conjunto de estados do autômato.

Assume um conjunto de estados alternativos

- como uma multiplicação da unidade de controle
- uma para cada alternativa
- processando independentemente
- sem compartilhar recursos

Def: Autômato Finito Não-Determinístico (AFN)

$$M = (\Sigma, Q, \delta, q_0, F)$$

- ∑ alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis (finito)
- δ (função) programa ou função de transição (função parcial)

$$\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$$

- * transição: $\delta(p, a) = \{ q_1, q_2, ..., q_n \}$
- q₀ é um elemento distinguido de Q: estado inicial
- F é um subconjunto de Q: conjunto de estados finais

Autômato como diagrama

$$\delta(p, a) = \{q_1, q_2, ..., q_n\}$$

Computação de um autômato finito nãodeterminístico

- sucessiva aplicação da função programa
- para cada símbolo da entrada (da esquerda para a direita)
- até ocorrer uma condição de parada

- Argumentos: computação/função programa estendida
 - conjunto finito de estados e uma palavra

Def: Função Programa Estendida, Computação

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito não-determinístico

$$\delta^*: 2^Q \times \Sigma^* \rightarrow 2^Q$$

indutivamente definida

- $\delta^*(P, \varepsilon) = P$
- $\underline{\delta}^*(P, aw) = \underline{\delta}^*(\bigcup_{q \in P} \delta(q, a), w)$

◆ Transição estendida (a um conjunto de estados)

$$\delta^*(\{q_1, q_2, ..., q_n\}, a) = \delta(q_1, a) \cup \delta(q_2, a) \cup ... \cup \delta(q_n, a)$$

Parada do processamento

- Aceita a entrada
 - após processar o último símbolo da fita, existe pelo menos um estado final pertencente ao conjunto de estados alternativos atingidos
- Rejeita a entrada. Duas possibilidades
 - após processar o último símbolo da fita, todos os estados alternativos atingidos são não-finais
 - programa indefinido para o argumento (conjunto de estados e símbolo)

Def: Linguagem Aceita, Linguagem Rejeitada

Seja $M = (\Sigma, Q, \delta, q_0, F)$ um autômato finito não-determinístico

Linguagem Aceita ou Linguagem Reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(\{q_0\}, w) \cap F \neq \emptyset \}$$

Linguagem Rejeitada por M

REJEITA(M) = { w |
$$\delta^*(\{q_0\}, w) \cap F = \emptyset$$
 ou $\delta^*(\{q_0\}, w)$ é indefinida }

Exp: Autômato Finito Não-Determinístico: aa ou bb como subpalavra

 $L_5 = \{ w \mid w \text{ possui aa ou bb como subpalavra } \}$

Autômato finito não-determinístico:

$$M_5 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_5, q_0, \{q_f\})$$

- o ciclo em q₀ realiza uma varredura em toda a entrada
- o caminho q₀/q₁/q_f garante a ocorrência de aa
- o caminho q₀/q₂/q_f garante a ocorrência de bb

δ5	а	b
90	{ q ₀ ,q ₁ }	{ q ₀ ,q ₂ }
q ₁	{ q _f }	-
q 2	-	{ q _f }
Qf	{ q _f }	{ q _f }

Exp: AFN: aaa como sufixo

 $L_6 = \{ w \mid w \text{ possui aaa como sufixo } \}$

Autômato finito não-determinístico:

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$$

◆ Não-determinismo

- aparentemente, um significativo acréscimo ao poder computacional autômato finito
- na realidade não aumenta seu poder computacional

Teorema: Equivalência entre AFD e AFN

Classe dos Autômatos Finitos Determinísticos é equivalente à

Classe dos Autômatos Finitos Não-Determinísticos

Prova: (por indução)

Mostrar que

- a partir de um AFN M qualquer
- construir um AFD MD que realiza as mesmas computações
- M_D simula M

AFN → AFD

- estados de M_D simulam combinações de estados alternativos de M
- prova da simulação: por indução

AFD → AFN

não necessita ser mostrado: decorre trivialmente das definições

 $M = (\Sigma, Q, \delta, q_0, F)$ um AFN qualquer. AFD construído

$$M_D = (\Sigma, Q_D, \delta_D, \langle q_0 \rangle, F_D)$$

- QD todas as combinações, sem repetições, de estados de Q
 - * notação (q₁q₂...q_n)
 - * ordem não distingue combinações: $\langle q_u q_v \rangle = \langle q_v q_u \rangle$
 - imagem de todos os estados alternativos de M
- $\delta_D: Q_D \times \Sigma \rightarrow Q_D$

$$\delta_D(\langle q_1...q_n \rangle, a) = \langle p_1...p_m \rangle$$
 sse $\delta^*(\{q_1, ..., q_n\}, a) = \{p_1, ..., p_m\}$

- $\langle q_0 \rangle$ estado inicial
- F_D conjunto de estados (q₁q₂...q_n) pertencentes a Q_D
 - * alguma componente qi pertence a F, para i em { 1, 2, ..., n }

AFD M_D simula as computações do AFN M ???

- indução no tamanho da palavra
- mostrar que

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1 ... q_u \rangle$$
 sse $\delta^*(\{q_0\}, w) = \{q_1, ..., q_u\}$

Base de indução. | w | = 0. Portanto $w = \varepsilon$:

$$\delta_D^*(\langle q_0 \rangle, \varepsilon) = \langle q_0 \rangle$$
 se e somente se $\delta^*(\{q_0\}, \varepsilon) = \{q_0\}$

• verdadeiro, por definição de computação

Hipótese de indução. | w | = n e n ≥ 1. Suponha que:

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1 ... q_u \rangle$$
 sse $\delta^*(\{q_0\}, w) = \{q_1, ..., q_u\}$

Passo de Indução. | wa | = n + 1 e n ≥ 1

$$\delta_D^*(\langle q_0 \rangle, wa) = \langle p_1...p_V \rangle$$
 sse $\delta^*(\{q_0\}, wa) = \{p_1, ..., p_V\}$

equivale (hipótese de indução)

$$\delta_D(\langle q_1...q_u \rangle, a) = \langle p_1...p_v \rangle$$
 sse $\delta^*(\{q_1, ..., q_u\}, a) = \{p_1, ..., p_v\}$

verdadeiro, por definição de δ_D

Logo, M_D simula M para qualquer entrada w pertencente a ∑*

Portanto, linguagem aceita por AFN

é Linguagem Regular ou Tipo 3

Obs: Determinismo × Não-Determinismo

Muitas vezes é mais fácil desenvolver um AFN do que um AFD

• exemplo

{ w | o quinto símbolo da direita para a esquerda de w é a }

- solução determinista: não é trivial; número grande de estados
- solução não-determinista: bem simples; poucos estados

Alternativa para construir um AFD

- desenvolver inicialmente AFN
- aplicar o algoritmo apresentado na prova do teorema

Exp: AFN → AFD

$$M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\})$$

$$M_{6D} = (\{a, b\}, Q_D, \delta_{6D}, \langle q_0 \rangle, F_D)$$

- $Q_D = \{ \langle q_0 \rangle, \langle q_1 \rangle, \langle q_2 \rangle, \langle q_f \rangle, \langle q_0 q_1 \rangle, \langle q_0 q_2 \rangle, ..., \langle q_0 q_1 q_2 q_f \rangle \}$
- $F_D = \{ \langle q_f \rangle, \langle q_0 q_f \rangle, \langle q_1 q_f \rangle, ..., \langle q_0 q_1 q_2 q_f \rangle \}$

AFN

AFD

δ_{6D}	a	b
(q ₀)	(9091)	(q ₀)
<q<sub>0q₁></q<sub>	(909192)	$\langle q_0 \rangle$
(909192)	(q0q1q2q _f)	$\langle q_0 \rangle$
(q0q1q2qf)	(q0q1q2q _f)	$\langle q_0 \rangle$

δ _{6D}	a	b
$p_0 = \langle q_0 \rangle$ $p_1 = \langle q_0 q_1 \rangle$	<q0q1><q0q1q2></q0q1q2></q0q1>	<q<sub>0></q<sub>
$p_2 = \langle q_0 q_1 q_2 \rangle$	(q0q1q2qf)	(q ₀)
$p_f = \langle q_0 q_1 q_2 q_f \rangle$	(q0q1q2qf)	$\langle q_0 \rangle$

