1、写出下列缩略语的英文全称和中文解释 TCP、UDP、MSS、ARQ、RTT、RTO

TCP(Transmission Control Protocol) 传输控制协议

UDP(User Datagram Protocol)
同學知程刊(以

MSS (Maximum Segment Size) 最低报文段

ARQ (Automatic Repeat reQuest) 自初重任情形

RTT (Round—Trip Time) 往後時间

RTO (Retransmission Time-Out) 超时重任时间

2、写出下列应用程序的熟知端口号 FTP、TELNET、SMTP、DNS、TFTP、HTTP、SNMP

| FTP | TELNET | SMTP | DNS | TFTP | HTTP | SNMP |
|-----|--------|------|-----|------|------|------|
| 21  | 23     | 25   | 53  | 69   | 80   | 131  |

| 一个 UDP 用尸数据报的数据字段为 8192 字节。在链路层要使                                       | 用以太阳 | 对来传送。试<br>第40世纪孙启 |     |
|-------------------------------------------------------------------------|------|-------------------|-----|
| 一个 UDP 用户数据报的数据字段为 8192 字节。在链路层要使问应当划分为几个 IP 数据报片? 说明每一个 IP 数据报片的数据段的值。 | 子段长度 | 数据智慧的             | 片偏移 |
| UPP首部 8 B.                                                              | Û    | 1480              | 0   |
| 2P 翻话报卷处报部分: 8192+8=8200B                                               | @    | 1480              | 281 |
|                                                                         | (3)  | 1480              | 370 |
| 从太网传输,最大分长心OB.                                                          | (P)  | 1480              | IIT |
| (150-20=(480B ,→草介的花取路。                                                 | E    | 1470              | 740 |
| 8200 /1480 = 6 H                                                        | @    | 800               | BI  |

- 5-23 主机 A 向主机 B 连续发送了两个 TCP 报文段, 其序号分别是 70 和 100。试问:
  - (1) 第一个报文段携带了多少字节的数据?
  - (2) 主机 B 收到第一个报文段后发回的确认中的确认号应当是多少?
  - (3) 如果 B 收到第二个报文段后发回的确认中的确认号是 180, 试问 A 发送的第二个报文段中的数据有多少字节?
  - (4) 如果 A 发送的第一个报文段丢失了,但第二个报文段到达了 B。B 在第二个报文 段到达后向 A 发送确认。试问这个确认号应为多少?

(2) (00

5-13

- (3) 100~17P 80B
- (4) 70

**5-30** 设 TCP 使用的最大窗口为 65535 字节,而传输信道不产生差错,带宽也不受限制。 若报文段的平均驻返时间为 20 ms,问所能得到的最大吞吐量是多少?

5-31 通信信道带宽为 1 Gbit/s,端到端传播时延为 10 ms。TCP 的发送窗口为 65535 字节。试问:可能达到的最大吞吐量是多少?信道的利用率是多少?

5-38 设 TCP 的 ssthresh 的初始值为 8 (单位为报文段)。当拥塞窗口上升到 12 时网络发生了超时,TCP 使用慢开始和拥塞避免。试分别求出 RTT = 1 到 RTT = 15 的各拥塞窗口大小。你能说明拥塞窗口每一次变化的原因吗?

| cwnd | 1  | 2  | 4  | 8  | 16 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| RTT  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 |
| cwnd | 40 | 41 | 42 | 21 | 22 | 23 | 24 | 25 | 26 | 1  | 2  | 4  | 8  |
| RTT  | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |

- (1) 试画出如图 5-25 所示的拥塞窗口与 RTT 的关系曲线。
- (2) 指明 TCP 工作在慢开始阶段的时间间隔。
- (3) 指明 TCP 工作在拥塞避免阶段的时间间隔。
- (4) 在 RTT = 16 和 RTT = 22 之后发送方是通过收到三个重复的确认还是通过超时检 测到丢失了报文段?
- (5) 在 RTT = 1、RTT = 18 和 RTT = 24 时, 门限 ssthresh 分别被设置为多大?

345678 810 1112 13 145

(6) 在 RTT 等于多少时发送出第 70 个报文段?

(7) 假定车 RTT = 26 之后收到了三个重复的确认,因而检测出了报文段的丢失,那 么拥塞窗口 cwnd 和门限 ssthresh 应设置为多大? (1)32 26 ا2 16 8 4

3

16 17 18 18 20 21 21 23 24 25 26

277

用 TCP 传送 512 字节的数据。设窗口为 100 字节,而 TCP 报文段每次也是传送 100 字节的数据。再设发送方和接收方的起始序号分别选为 100 和 200, 试画出类似于图 5-28 的工作示意图。从连接建立阶段到连接释放都要画上(可不考虑传播时延)。 A 锭: B Seg=101

