

Introduction to Data Science

- The content for these slides has been obtained from books and various other source on the Internet
- I here by acknowledge all the contributors for their material and inputs.
- I have provided source information wherever necessary
- I have added and modified the content to suit the requirements of the course

Topics

- Textual
 - Simple Text
 - Tables
 - Heatmap
- Graphs
 - Points
 - Lines
 - Bars
 - Area
- Visuals be avoided

TECHNOLOGY.

Text-based Visuals

भीनं प्रमं बले

Simple Text

Suitable with just a number or two to be shown

Text-based Visuals

 When we have a number or two to communicate, use the number solely and a few supporting words to make the point clear

Simple Text – Example

- This graph is from April 2014 Pew Research Center report on stay-at-home moms
- Quite a lot of text and space are used for just two numbers
- The graph doesn't help much in interpreting the numbers
- The positioning of the data labels outside of the bars also skews our visual perception of relative height
 - 20 is less than half of 41 doesn't really come across visually

Children with a "Traditional" Stay-at-Home Mother

% of children with a married stay-at-home mother with a working husband

Note: Based on children younger than 18. Their mothers are categorized based on employment status in 1970 and 2012.

Source: Pew Research Center analysis of March Current Population Surveys Integrated Public Use Microdata Series (IPUMS-CPS), 1971 and 2013

Adapted from PEW RESEARCH CENTER

Text-based Visuals

Simple Text – Example

- In this case, a simple sentence would suffice:
 - 20% of children had a traditional stay-at-home mom in 2012, compared to 41% in 1970
- Alternatively, a simple visual with a number and simple text could be used
- We might also want to show a different metric:
 - A percentage change
- Any time we reduce from multiple numbers down to a single one
 - Think about what context may be lost in doing so
- For example:
 - Instead of simply saying 50%, if we mention both (20% and 41%), it helps in interpreting and understanding the change

20%

of children had a **traditional stay-at-home mom** in 2012, compared to 41% in 1970

"The number of children having a traditional stay-at-home mom decreased more than 50% between 1970 and 2012."

Table

- If we need to communicate multiple different units of measure,
 - it would easier with a table than a graph
- Table structure uses verbal system

Text-based Visuals

- i.e. we read table across rows and down columns
- When you use a table, let data take the center stage
 - everything else should fade into the background
- Use light borders or white space to set apart elements
- Data should stand out, not the borders

	Α	В	C
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29%	26%
Category 5	55%	30%	58%
Category 6	11%	25%	49%

Impact of Table Borders

 Note how the data stands out more than the structural components of the table in the 2nd and 3rd cases (light borders, minimal borders)

Heavy borders

Group	Metric A	Metric B	Metric C
Group 1	\$X.X	Y%	Z,ZZZ
Group 2	\$X.X	Y%	Z,ZZZ
Group 3	\$X.X	Y%	Z,ZZZ
Group 4	\$X.X	Y%	Z,ZZZ
Group 5	\$X.X	Y%	Z,ZZZ

Light borders

Group	Metric A	Metric B	Metric C
Group 1	\$X.X	Y%	Z,ZZZ
Group 2	\$X.X	Y%	Z,ZZZ
Group 3	\$X.X	Y%	Z,ZZZ
Group 4	\$X.X	Y%	Z,ZZZ
Group 5	\$X.X	Y%	Z,ZZZ

Minimal borders

Group	Metric A	Metric B	Metric C
Group 1	\$X.X	Y%	Z,ZZZ
Group 2	\$X.X	Y%	Z,ZZZ
Group 3	\$X.X	Y%	Z,ZZZ
Group 4	\$X.X	Y%	Z,ZZZ
Group 5	\$X.X	Y%	Z,ZZZ

Text-based Visuals

When to use tables?

- When we need to *compare* or look up *individual values*
- When we require *precise values*
- When the values involve multiple units of measure
- When the data has to communicate quantitative information, but not trends

Heavy	v bo	ord	ers
11001	, ~ ·	<i>></i> . ~	\circ

Group	Metric A	Metric B	Metric C
Group 1	\$X.X	Y%	Z,ZZZ
Group 2	\$X.X	Y%	Z,ZZZ
Group 3	\$X.X	Y%	Z,ZZZ
Group 4	\$X.X	Y%	Z,ZZZ
Group 5	\$X.X	Y%	Z,ZZZ

Light borders

Group	Metric A	Metric B	Metric C
Group 1	\$X.X	Y%	Z,ZZZ
Group 2	\$X.X	Y%	Z,ZZZ
Group 3	\$X.X	Y%	Z,ZZZ
Group 4	\$X.X	Y%	Z,ZZZ
Group 5	\$X.X	Y%	Z,ZZZ

Minimal borders

Group	Metric A	Metric B	Metric C
Group 1	\$X.X	Y%	Z,ZZZ
Group 2	\$X.X	Y%	Z,ZZZ
Group 3	\$X.X	Y%	Z,ZZZ
Group 4	\$X.X	Y%	Z,ZZZ
Group 5	\$X.X	Y%	Z,ZZZ

A heatmap is a way to visualize data in tabular format

Text-based Visuals

- It is used to mix data in a table with visual cues
- Useful to leverage colored cells to convey the <u>relative magnitude</u> of the numbers
- Excel's <u>conditional formatting</u> uses this feature
- Always include a legend to help the reader interpret the data
- Use *color saturation* to provide visual cues
 - Helps our eyes and brains more quickly target the potential points of interest.

	Α	В	C
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4			26%
Category 5	55%		58%
Category 6	11%	25%	49%

Heatmaps

- In the "Heatmap," higher the saturation of blue, the higher the number
- This makes picking out and processing the details easier compared to original table
 - The lowest number (11%) and highest number (58%)

Text-based Visuals

Plain table doesn't have any visual cues to help direct our attention

Catagon, 1	A 15%	B 22%	C 42%
Category 1		200	197500
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29%	26%
Category 5	55%	30%	58%
Category 6	11%	25%	49%

_OW- HIGH			
	Α	В	С
Category 1	15%	22%	42%
Category 2	40%		20%
Category 3		17%	
Category 4			26%
Category 5	55%	30%	58%
Category 6	11%	25%	49%

- Design Best Practices for Heat Map:
 - Use a basic and clear map outline to avoid distracting from the data
 - Use a single color in varying shades to show changes in data
 - Avoid using multiple patterns

TECHNOLOGY

Graph-based Visuals

भानं प्रभं बल

Graphs

Graphs interact with our visual system

Graph-based Visuals

- A well-designed graph will typically get the information across more quickly than a well-designed table
- Graphs broadly fall into four categories:
 - Points, Lines, Bars, and Area

Scatterplot

Points (Scatterplot)

- Useful for showing the relationship between two things
- Allows us to encode data simultaneously on a horizontal x-axis and vertical y-axis
- Helps us see if any type of relationship exists between the two
- Typically used in scientific fields
- Figure shows the relationship between miles driven and cost per mile

Cost per mile by miles driven

Points (Scatterplot)

 A different color can be used to highlight those cases where cost per mile is above average

Scatterplots: Design Best Practices

- Include more variables such as size and dot color to encode additional data variables
- Start y-axis at 0 to represent data accurately.
- Use trend lines
- When using trend lines, only use a maximum of two to make the plot easy to understand

innovate

Lines

- Commonly used for plotting <u>continuous data</u>
- Points are physically connected with a line
 - Connection between the points may not make sense for categorical data
- Horizontal axis usually <u>time based</u>:
 - days, months, quarters, or years
- Two types of line graphs:
 - standard line graph
 - slopegraph

Slopegraph

60,000

Number of SportsCenter Episodes

Line Graph

- Shows a one or multiple series of data
- When using time on horizontal axis, data must be plotted on consistent intervals

achieve

Graph-based Visuals

Line Graphs

- Can be used to show summary statistic such as <u>average</u>, or the point estimate of a forecast
- A sense of range such as confidence level can be shown using line graph

Figure shows minimum, average, and maximum wait times at passport control for an airport over a 13-month period

Line Graphs: Design Best Practices

- Use only solid lines
- Don't plot more than four lines to avoid visual distractions.
- Use the right height so the lines take up roughly
 2/3 of the y-axis' height.

Slopegraph

- Useful when two time periods or points of comparison are present
- Can quickly show
 - relative increases and decreases or
 - differences across various categories between the two data points
- For Example:
 - To analyze data from an employee feedback survey, a slopegraph would be ideal to show the relative change in survey categories from 2014 to 2015

Slopegraph

- In addition to the absolute values (the points), the lines that connect them give a visual increase or decrease in rate of change
- A slopegraph may not work if many of the lines are overlapping
- In some cases, we can emphasize a single series at a time
- For example
 - We can draw attention to the single category that decreased over time with a different color

Bars

- Bar charts should be leveraged because they are common
 - This means less of a learning curve for our audience

Graph-based Visuals

- They can spend time figuring out what information to take away from the visual
- Visually, bars are easy to read because our eyes compare the end points of the bars
 - It is easy to see which category is the biggest, the smallest, and also the incremental difference between categories
- Subtypes :
 - Vertical / Horizontal
 - Stacked
 - Waterfall

achieve

Bars

- It is important for bar charts to always have a zero baseline (where the x-axis) crosses the y-axis at zero)
 - Because our eyes compare the relative end points of the bars
- Graph on the left side, the visual increase is 460%
 - The heights of the bars are 35 34 = 1and 39.6 - 34 = 5.6
 - So (5.6 1) / 1 = 460%
- Graph on the right side, the visual increase is 13%
 - heights are accurately represented (35) and 39.6)
 - Actual visual increase = (39.6 35) / 35 =13%

Bars – Real-life Example

Bars

- Vertical Bar Chart / Column Chart
 - Shows one or more than one series
 - Use multi series bars with care as more series clutters it
- Horizontal Bar chart
 - Single go-to graph for categorical data
 - Extremely easy to read
 - Useful when category names are long
 - Can show one or more than one series

Vertical Bar Charts

- Like line graphs, vertical bar charts can be single series, two series, or multiple series
- As more series of data added to the chart, it becomes more difficult to focus on one at a time
- There is visual grouping that happens as a result of the spacing in bar charts having more than one data series
 - This makes the relative order of the categorization important

Bar Charts – Design Best Practices:

- Use consistent colors throughout the chart
- Select accent colors to highlight meaningful data points or changes over time
 - Accent colors are those colors that are used for emphasizing in a color scheme.
- Use horizontal labels to improve readability
- Start the y-axis at 0 to appropriately reflect the values in the graph
- Make sure the bar width is wider than the white space between the bars

Vertical bar

Stacked Vertical/Horizontal Bar Chart

- Meant to allow comparison of totals across categories
- Also allows us to see the subcomponent pieces within a given category
- This can quickly become visually overwhelming
- Hard to compare subcomponents above the bottom series (the one directly next to the x-axis)
 - because there is no consistent baseline to compare

Stacked vertical bar

Stacked horizontal bar

Stacked bar charts

Stacked bar charts – Best Design Practices

- Best used to illustrate part-to-whole relationships
- Use contrasting colors for greater clarity
- Make chart scale large enough to view group sizes in relation to one another
- Show direct values or as percent

Waterfall Chart

- Used to pull apart the pieces of a stacked bar chart to focus on one at a time
- Used to show a starting point, increases and decreases, and the resulting ending point
- Used to reveal the composition of a number

Though more employees transferred out of the team than transferred in, aggressive hiring means overall headcount (HC) increased 16% over the course of the year.

Waterfall Chart – Best Design Practices

Graph-based Visuals

- Use contrasting colors to highlight differences in data sets.
- Choose warm colors to indicate increases and cool colors to indicate decreases

Areas

- Basically a line chart, but the space between the x-axis and the line is filled with a color or pattern
- Useful for showing part-to-whole relations,
 - such as showing individual sales reps' contribution to total sales for a year
- Helps you analyze both overall and individual trend information

Areas – Best Design Practices

- Use transparent colors so information isn't obscured in the background
 - E.g., highlighter color that lets the light pass through through
- Don't display more than four categories to avoid clutter.
- Organize highly variable data at the top of the chart to make it easy to read

TECHNOLOGY

Graphs to be avoided

भानं प्रभं बले

Four Types of Graphs

- Pie charts
- Donut charts
- 3D charts
- Dual Axis charts

Pie & Donut Charts

Most widely used (and misused)

Graphs to be Avoided

 Used to visualize a part to whole relationship or a composition

- Typically represents numbers in percentages,
- The human mind thinks linearly
 - but, when it comes to angles and areas, most of us can't judge them well.

Pie Charts

- The pie chart shown in the figure shows market share across four suppliers: A, B, C, and D
- Which supplier is the largest based on this visual?
 - Most people will agree that "Supplier B," (medium blue at the bottom right) appears to be the largest
- What proportion supplier B makes up of the overall market?
 - We might estimate 35% or 40%

Pie Charts

- 3D tilted view distorts the figure and makes the pieces at the top appear farther away
 - This makes them to appear smaller than they are
- Data visualization rule: don't use 3D!
 - It skews the visual perception of the numbers
- Even if we take 3D away
 - It's difficult to tell judge the size of segments when they are closer

Pie Charts - Alternative

- One approach is to replace the pie chart with a horizontal bar chart
- We can order them from greatest to least or vice versa (unless there is some other natural ordering to be followed)
- As the bar charts are aligned at a common baseline, it is easy to assess relative size
- This makes it easy to see the size of the segments and the incremental difference between the segments

Pie Charts – Dos and Don'ts

- Make sure that the total sum of all segments equals 100 percent
- Use pie charts only if you have less than six categories, unless there's a clear winner you want to focus on
- Ideally, there should be only two categories, such as
 - men and women visiting a website
 - market share of your company, compared to the whole market
- Don't use a pie chart if the category values are almost identical
- You could add labels, but that's a patch, not an improvement
- Don't use 3D or blow apart effects
 - they reduce comprehension and show incorrect proportions

achieve

3D Charts

- Golden Rule: Never use 3D
 - Only use when really third dimension is needed
- Never use 3D to plot to show one or two dimensions
- 3D skews our numbers
 - Makes difficult interpret numbers
 - Makes comparisons challenging

 3D graphs introduces unnecessary chart elements like side and floor panels

Graphs to be Avoided

- Makes the bar height to be determined by an invisible tangent plane intersecting the corresponding height on the y-axis
- How many issues were there in January and February?
 - Actually, there is only single issue in each of these months
 - Visually, we may estimate a value of 0.8

Number of issues

Dual Axis Charts

- Sometimes it's useful to plot data that is in entirely different units against the same x-axis
- This often gives rise to the secondary y-axis
 - another vertical axis on the right-hand side of the graph.
- Used to show relationships and compare variables on vastly different scales
- Much more difficult to read and understand

Secondary y-axis

Dual Axis Charts - Alternative

Don't show the second y-axis

Instead, label the data points that belong on

this axis directly

Alternative 1: label directly

Alternative 2: pull apart vertically

- Pull the graphs apart vertically
 - Have a separate y-axis for each (both along the left)
 - leverage the same x-axis across both.

Types of Visualization

Recap

- Text Based
 - Simple text
 - Table
 - Heatmap

- Graphs
 - Points
 - Lines
 - Bars
 - Areas

- To be avoided
 - Pie and Donut
 - -3D
 - Dual Axis

Thank You!