# Órgãos de Máquinas Tribologia – Formulário

Carlos M. C. G. Fernandes

### Equação de Reynolds

$$\underbrace{\frac{\partial}{\partial x} \left( \frac{\rho h^3}{12\eta} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left( \frac{\rho h^3}{12\eta} \frac{\partial p}{\partial z} \right)}_{\text{Poiseuille}} = \underbrace{\frac{\partial}{\partial x} \left( \rho h \frac{U_1 + U_2}{2} \right) + \frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h \frac{W_1 + W_2}{2} \right) + \underbrace{\frac{\partial}{\partial z} \left( \rho h$$

As equações seguintes foram obtidas após derivar os termos de Couette e agrupar os denominadores comuns.

#### Equação de Reynolds em coordenadas cartesianas:

$$\frac{\partial}{\partial x} \left( \frac{\rho h^3}{\eta} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left( \frac{\rho h^3}{\eta} \frac{\partial p}{\partial z} \right) = 6\rho (U_1 - U_2) \frac{\partial h}{\partial x} + 6\rho (W_1 - W_2) \frac{\partial h}{\partial z} + 6\rho h \frac{\partial}{\partial z} (U_1 + U_2) + 6\rho h \frac{\partial}{\partial z} (W_1 + W_2) + 12\rho (V_2 - V_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (V_2 - V_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12h \frac{\partial \rho}{\partial z} (W_1 + W_2) + 12\rho (W_2 - W_1) + 12\rho (W_1 - W_2) + 12\rho (W_2 - W_1) + 12\rho (W_1 - W_2) + 12$$

#### Equação de Reynolds em coordenadas cilíndricas:

$$\begin{split} \frac{\partial}{\partial r} \left( \frac{\rho r h^3}{\eta} \frac{\partial p}{\partial r} \right) + \frac{\partial}{\partial \theta} \left( \frac{\rho h^3}{\eta r} \frac{\partial p}{\partial \theta} \right) &= 6 r \rho (U_1 - U_2) \frac{\partial h}{\partial r} + 6 \rho (V_2 - V_1) \frac{\partial h}{\partial \theta} + \\ 6 r h \frac{\partial}{\partial r} (\rho (U_1 + U_2)) + 6 h \frac{\partial}{\partial \theta} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + V_1)) + 12 \rho r (W_1 - W_2) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t} (\rho (V_2 + W_2)) + 12 h \frac{\partial \rho}{\partial t}$$

## Chumaceiras radiais em regime laminar

Hipóteses: escoamento laminar, isotérmico e permanente. Ranhura axial de alimentação situada no ponto de espessura máxima do filme lubrificante.



Figura 1: Chumaceira radial.



Figura 2: Problema térmico da chumaceira radial.

### Equações:

| $C_a = R \cdot W \cdot f_a$                                                                                        | $T_i = \frac{T_e + T_2}{2}$                             |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| $\overline{C_a} = \frac{1}{S} \frac{R}{c} \cdot f_a$                                                               | $V = \omega_a \cdot R$                                  |
| $P_a = C_a \cdot \omega_a$                                                                                         | $c = r_c - r_a$                                         |
| $\overline{Q} = \frac{Q}{LcV}$                                                                                     | $e = \overline{O_a O_c}$                                |
| $Q_c = h_{min} \cdot L \cdot \frac{V}{2}$                                                                          | $\overline{f} = \frac{R}{c} \cdot f_a = \frac{C_a}{cW}$ |
| $S = \left(\frac{R}{c}\right)^2 \cdot \left(\frac{\eta \cdot L \cdot V}{\pi \cdot W}\right)$                       | $f_a = \frac{c}{R} \cdot \overline{f} = \frac{C_a}{RW}$ |
| $T_2 = T_0 + \frac{\alpha \cdot P_a \cdot (Q + Q_c)}{\rho \cdot c_p \cdot Q \cdot \left(\frac{Q}{2} + Q_c\right)}$ | $h = c \cdot (1 + \epsilon \cdot \cos \theta)$          |
| $T_e = \frac{T_0 \cdot Q + T_2 \cdot Q_c}{Q + Q_c}$                                                                | $\epsilon = \frac{e}{c}$                                |

Tabela 1: Notação e unidades para as chumaceiras radiais.

| $C_a$                     | momento das forças de atrito sobre o veio              | Nm              |
|---------------------------|--------------------------------------------------------|-----------------|
| $\overline{C_a}$          | momento adimensional das forças de atrito sobre o veio | -               |
| D                         | diâmetro da chumaceira                                 | m               |
| L                         | comprimento da chumaceira                              | m               |
| $\overline{P_a}$          | perda de potência devido ao atrito                     | W               |
| Q                         | débito axial                                           | $m^3 s^{-1}$    |
| $\overline{Q_c}$          | débito da chumaceira                                   | $m^3 s^{-1}$    |
| $\overline{\overline{Q}}$ | débito axial adimensional                              | -               |
| $\overline{R}$            | raio da chumaceira                                     | m               |
| S                         | número de Sommerfeld                                   | -               |
| $\overline{T_0}$          | temperatura de alimentação do lubrificante             | °C              |
| $\overline{T_2}$          | temperatura de saída do lubrificante                   | °C              |
| $T_e$                     | temperatura de saída do lubrificante pelos bordos      | °C              |
| $T_i$                     | temperatura média do filme lubrificante                | °C              |
| $\overline{V}$            | velocidade linear                                      | ${\rm ms^{-1}}$ |
| W                         | carga aplicada                                         | N               |
| С                         | folga radial                                           | m               |
| $\overline{c_p}$          | calor específico do lubrificante                       | J/(kgK)         |
| e                         | excentricidade                                         | m               |
| $\overline{\overline{f}}$ | número de atrito sobre o veio                          | -               |
| $f_a$                     | coeficiente de atrito sobre o veio                     | -               |
| h                         | espessura de filme                                     | m               |
| $h_{min}$                 | espessura de filme mínima                              | m               |
| α                         | coeficiente de dissipação térmica das superfícies      | -               |
| $\epsilon$                | excentricidade relativa                                | -               |
| η                         | viscosidade dinâmica (Figura 3)                        | Pas             |
| φ                         | ângulo de posicionamento                               | 0               |
| $\omega_a$                | velocidade angular do veio                             | $\rm rads^{-1}$ |
| $\overline{\rho}$         | densidade do lubrificante                              | $kg m^{-3}$     |

Tabela 2:  $\frac{L}{D} < \frac{1}{6}$ 

| $\epsilon$                    | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6    | 0.7   | 0.8    | 0.9     | 0.95     |
|-------------------------------|-------|-------|-------|-------|-------|--------|-------|--------|---------|----------|
| $S\left(\frac{L}{D}\right)^2$ | 0.99  | 0.461 | 0.272 | 0.17  | 0.106 | 0.0625 | 0.033 | 0.0139 | 0.00331 | 0.000812 |
| •                             |       |       |       |       |       |        |       |        |         | 15       |
|                               |       |       |       |       |       |        |       |        |         | 0.038    |
| $\overline{C_a}$              | 18.94 | 18.47 | 18.31 | 18.50 | 19.02 | 20.02  | 21.89 | 25.55  | 34.58   | 47.79    |

Tabela 3:  $\frac{L}{D} = \frac{1}{4}$ 

| $\epsilon$                    | 0.1    | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9    | 0.95   |
|-------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| S                             | 16.2   | 7.57  | 4.49  | 2.83  | 1.78  | 1.07  | 0.58  | 0.263 | 0.0728 | 0.0221 |
| $\phi$                        | 82.5   | 75.5  | 68.5  | 61.5  | 54    | 47    | 39.5  | 31.5  | 21.5   | 15.5   |
| $\frac{R}{c} \cdot f_a$       | 307    | 140   | 82.5  | 52.67 | 34.26 | 21.85 | 13.19 | 6.97  | 2.70   | 1.20   |
| $\frac{Q}{L \cdot c \cdot V}$ | 0.0983 | 0.196 | 0.295 | 0.393 | 0.491 | 0.590 | 0.688 | 0.787 | 0.885  | 0.933  |
| $\overline{C_a}$              | 18.95  | 18.49 | 18.37 | 18.61 | 19.24 | 20.42 | 22.74 | 26.50 | 37.09  | 54.30  |

Tabela 4:  $\frac{L}{D} = \frac{1}{2}$ 

| $\epsilon$                    | 0.1    | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8    | 0.9    | 0.95   |
|-------------------------------|--------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| S                             | 4.32   | 2.03  | 1.21  | 0.784 | 0.508 | 0.318 | 0.184 | 0.0912 | 0.0309 | 0.0116 |
| $\phi$                        | 82     | 75    | 68.5  | 61.53 | 55    | 48    | 41    | 33     | 23.5   | 17     |
| $\frac{R}{c} \cdot f_a$       | 82.10  | 37.71 | 22.55 | 14.75 | 9.94  | 6.67  | 4.33  | 2.59   | 1.27   | 0.70   |
| $\frac{Q}{L \cdot c \cdot V}$ | 0.0938 | 0.187 | 0.281 | 0.374 | 0.468 | 0.562 | 0.657 | 0.751  | 0.845  | 0.890  |
| $\overline{C_a}$              | 19     | 18.57 | 18.64 | 18.81 | 19.57 | 20.97 | 23.53 | 28.40  | 41.10  | 60.34  |

Tabela 5:  $\frac{L}{D} = 1$ 

| $\epsilon$                    | 0.1    | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7    | 0.8    | 0.9    | 0.95    |
|-------------------------------|--------|-------|-------|-------|-------|-------|--------|--------|--------|---------|
| S                             | 1.33   | 0.631 | 0.388 | 0.260 | 0.178 | 0.120 | 0.0776 | 0.0443 | 0.0185 | 0.00831 |
| $\phi$                        | 79.5   | 74    | 68    | 62.5  | 56.5  | 50.5  | 44     | 36     | 26     | 19      |
| $\frac{R}{c} \cdot f_a$       | 25.36  | 11.87 | 7.35  | 5.07  | 3.67  | 2.70  | 1.99   | 1.40   | 0.859  | 0.563   |
| $\frac{Q}{L \cdot c \cdot V}$ | 0.0801 | 0.159 | 0.237 | 0.314 | 0.390 | 0.466 | 0.542  | 0.616  | 0.688  | 0.721   |
| $\overline{C_a}$              | 19.06  | 18.81 | 18.94 | 19.50 | 20.62 | 22.50 | 25.64  | 31.60  | 46.43  | 67.75   |

Tabela 6:  $\frac{L}{D} = 2$ 

| $\epsilon$                    | 0.1    | 0.2   | 0.3   | 0.4   | 0.5    | 0.6    | 0.7    | 0.8    | 0.9    | 0.95    |
|-------------------------------|--------|-------|-------|-------|--------|--------|--------|--------|--------|---------|
| S                             | 0.559  | 0.271 | 0.173 | 0.122 | 0.0893 | 0.0654 | 0.0463 | 0.0297 | 0.0143 | 0.00707 |
| $\phi$                        | 75     | 71    | 67    | 62.5  | 58     | 52.5   | 46.5   | 39     | 29     | 21      |
| $\frac{R}{c} \cdot f_a$       | 10.76  | 5.21  | 3.40  | 2.50  | 1.96   | 1.60   | 1.31   | 1.04   | 0.730  | 0.517   |
| $\frac{Q}{L \cdot c \cdot V}$ | 0.0537 | 0.104 | 0.153 | 0.199 | 0.243  | 0.285  | 0.329  | 0.369  | 0.406  | 0.422   |
| $\overline{C_a}$              | 19.25  | 19.22 | 19.65 | 20.49 | 21.95  | 24.46  | 28.29  | 35.01  | 51.05  | 73.12   |

Tabela 7:  $\frac{L}{D} > 4 \ \overline{Q} = 0$ 

| $\epsilon$              | 0.1   | 0.2   | 0.3    | 0.4    | 0.5    | 0.6    | 0.7    | 0.8    | 0.9    | 0.95    |
|-------------------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|---------|
| S                       | 0.247 | 0.123 | 0.0823 | 0.0628 | 0.0483 | 0.0389 | 0.0297 | 0.0211 | 0.0114 | 0.00605 |
| $\phi$                  | 69    | 67    | 64     | 62     | 58     | 54     | 49     | 42     | 32     | 23      |
| $\frac{R}{c} \cdot f_a$ | 5.02  | 2.61  | 1.84   | 1.47   | 1.25   | 1.10   | 0.98   | 0.852  | 0.658  | 0.494   |
| $\overline{C_a}$        | 19.54 | 19.85 | 20.68  | 22.03  | 24.03  | 26.89  | 31.39  | 38.80  | 55.42  | 78.42   |



Figura 3: Viscosidade dinâmica de lubrificantes ISO VG.



Figura 4: Parâmetro do lubrificante de lubrificantes ISO VG.

### Teoria de Cheng

### Rolamentos

$$h = C \cdot D \cdot [LP \cdot N]^{0.74}$$

$$\Lambda = \frac{h}{\sigma}$$

Tabela 8: Notação e unidades para rolamentos.

| С                 | constante geométrica (Tabela 9)                        | -                |
|-------------------|--------------------------------------------------------|------------------|
| D                 | diâmetro exterior do rolamento                         | m                |
| N                 | diferença de velocidades dos anéis interior e exterior | rpm              |
| LP                | parâmetro do lubrificante (Figura 4)                   | S                |
| h                 | espessura de filme                                     | μm               |
| α                 | coeficiente de piezoviscosidade                        | Pa <sup>-1</sup> |
| $\overline{\eta}$ | viscosidade dinâmica (Figura 3)                        | Pas              |
| Λ                 | espessura especifica de filme                          | -                |
| σ                 | rugosidade composta (Tabela 10)                        | μm               |
|                   |                                                        |                  |

Tabela 9: Constante geométrica C para anéis de rolamentos.

| Tipo de rolamento                    | Anel interior         | Anel exterior         |
|--------------------------------------|-----------------------|-----------------------|
| Esferas                              | $8.65 \times 10^{-4}$ | $9.43 \times 10^{-4}$ |
| Rolos cilíndricos ou rolos esféricos | $8.37 \times 10^{-4}$ | $8.99 \times 10^{-4}$ |
| Cónicos ou agulhas                   | $8.01 \times 10^{-4}$ | $8.48 \times 10^{-4}$ |

Tabela 10: Valores típicos de rugosidade composta  $\sigma$  para rolamentos.

| Tipo de rolamento        | $\sigma$ / $\mu$ m |
|--------------------------|--------------------|
| Esferas                  | 0.178              |
| Rolos ou esféricos       | 0.356              |
| Rolos cónicos ou agulhas | 0.229              |

Um valor razoável para  $\Lambda$  de modo a proteger as superfícies dos rolamentos de avarias precoces é de  $\Lambda \geq 1.5$ .

## Came-impulsor

$$h = 4.35 \times 10^{-3} \left[ f_N \cdot LP \cdot N \right]^{0.74} \cdot R^{0.26}$$

$$\Lambda = \frac{h}{\sigma}$$

$$f_N = \begin{cases} |2 \cdot r_n - l| & \text{com escorregamento} \\ 2l & \text{sem escorregamento} \end{cases}$$

$$\frac{1}{R} = \frac{1}{r_n} + \frac{1}{r_f}$$

Tabela 11: Notação e unidades para sistemas came-impulsor.

| N     | velocidade angular da came                            | rpm              |
|-------|-------------------------------------------------------|------------------|
| LP    | parâmetro do lubrificante (Figura 4)                  | S                |
| R     | raio de curvatura equivalente                         | m                |
| h     | espessura de filme                                    | μm               |
| $f_N$ | fator de distância                                    | m                |
| 1     | distância máxima do ponto de contacto ao eixo da came | m                |
| $r_f$ | raio do impulsor                                      | m                |
| $r_n$ | menor raio de curvatura da came                       | m                |
| α     | coeficiente de piezoviscosidade                       | Pa <sup>-1</sup> |
| η     | viscosidade dinâmica (Figura 3)                       | Pas              |
| Λ     | espessura especifica de filme                         | -                |
| σ     | rugosidade composta                                   | μm               |
|       |                                                       |                  |

Os sistemas came-impulsor operam geralmente em regime de lubrificação mista ou limite ( $\Lambda$  < 1).

#### Engrenagens

$$h = \left[G \cdot LP \cdot N \cdot \left(\frac{W_t}{l}\right)^{-0.148}\right]^{0.74}$$

$$\Lambda = \frac{h}{\sigma}$$

$$E = 2\left[\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}\right]^{-1}$$

Tabela 12: Equações de Cheng para engrenagens

| Tipo de engrenagem |                                 | N             | G                                                                                                                                          | $\frac{W_t}{l}$                                                                  | V                                                              |
|--------------------|---------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|
| Eixos fixos        | Paralelos externos <sup>1</sup> | $n_2$         | $\frac{3.4 \times 10^{-4} \cdot (u \cdot a \cdot \sin \alpha)^{1.5} \cdot E^{0.148}}{(u+1)^2}$                                             | $\frac{T_2 \cdot (u+1)}{u \cdot a \cdot b \cdot \cos \alpha \cdot \cos^2 \beta}$ | $\frac{2 \cdot \pi \cdot u \cdot a \cdot n_2}{60 \cdot (u+1)}$ |
|                    | Paralelos internos <sup>1</sup> | $n_a$         | $\frac{3.4 \times 10^{-4} \cdot (u \cdot a \cdot sin\alpha)^{1.5} \cdot E^{0.148}}{(u-1)^2}$                                               | $\frac{T_a \cdot (u-1)}{u \cdot a \cdot b \cdot \cos \alpha \cdot \cos^2 \beta}$ | $\frac{2 \cdot \pi \cdot u \cdot a \cdot n_a}{60 \cdot (u-1)}$ |
|                    | Cónicas $^2 \Sigma = 90^\circ$  | $n_2$         | $\frac{3.4 \times 10^{-4} \cdot (r_{m2} \cdot sin\alpha)^{1.5} \cdot E^{0.148}}{\left(u^2 + 1\right)^{0.25}}$                              | $\frac{T_2}{r_{m2} \cdot b \cdot \cos \alpha \cdot \cos^2 \beta_m}$              | $\frac{2 \cdot \pi \cdot r_{m2} \cdot n_2}{60}$                |
|                    | Cónicas² Σ ≠ 90°                | $n_2$         | $\frac{3.4 \times 10^{-4} \cdot (r_{m2} \cdot sin\alpha)^{1.5} \cdot E^{0.148}}{\left(\cos \gamma_2 + u \cdot \cos \gamma_1\right)^{0.5}}$ | $\frac{T_2}{r_{m2} \cdot b \cdot \cos \alpha \cdot \cos^2 \beta_m}$              | $\frac{2 \cdot \pi \cdot r_{m2} \cdot n_2}{60}$                |
| Planetários        | Sol-Planeta <sup>1</sup>        | $ n_s - n_c $ | $\frac{(r_s \cdot sin\alpha)^{1.5} \cdot E^{0.148}}{3.4 \times 10^4} \cdot \left(\frac{r_a - r_s}{r_a + r_s}\right)^{0.5}$                 | $\frac{T_s}{n_p \cdot r_s \cdot b \cdot \cos \alpha \cdot \cos^2 \beta}$         | $\frac{2 \cdot \pi \cdot r_s \cdot  n_s - n_c }{60}$           |
|                    | Anel-Planeta <sup>1</sup>       | $ n_a - n_c $ | $\frac{(r_a \cdot sin\alpha)^{1.5} \cdot E^{0.148}}{3.4 \times 10^4} \cdot \left(\frac{r_a - r_s}{r_a + r_s}\right)^{0.5}$                 | $\frac{T_a}{n_p \cdot r_a \cdot b \cdot \cos \alpha \cdot \cos^2 \beta}$         | $\frac{2 \cdot \pi \cdot r_a \cdot  n_a - n_c }{60}$           |

<sup>&</sup>lt;sup>1</sup> Dentado reto β = 0<sup>2</sup> Direitas "zerol"  $β_m = 0$ 

Tabela 13: Valores típicos de rugosidade composta  $\sigma$  / para engrenagens.

| Acabamento          | Valor inicial / μm | Após rodagem / μm |
|---------------------|--------------------|-------------------|
| Fresadas            | 1.78               | 1.02              |
| "Shaved"            | 1.27               | 1.02              |
| Retificadas (suave) | 0.89               | -                 |
| Retificadas (forte) | 0.51               | -                 |
| Polidas             | 0.18               | -                 |

O valor crítico de  $\Lambda$  varia com a velocidade tangencial da engrenagem V. O seu valor crítico para o qual existem 5% de probabilidades de avaria é dado, de forma experimental, pelo gráfico na Figura 5.

Tabela 14: Notação e unidades para engrenagens.

| a                  | entre eixo                                   | m           |
|--------------------|----------------------------------------------|-------------|
| b                  | largura do dente                             | m           |
|                    | módulo de Young equivalente                  | Pa          |
| $E_1$              | módulo de Young do material do pinhão        | Pa          |
| $E_2$              | módulo de Young do material da roda          | Pa          |
| G                  | parâmetro geométrico (Tabela 12)             | -           |
| h                  | espessura de filme                           | μm          |
| LP                 | parâmetro do lubrificante (Figura 4)         | S           |
| $n_2$              | velocidade angular da roda                   | rpm         |
| $n_a$              | velocidade angular do anel                   | rpm         |
| $n_c$              | velocidade angular do porta satélites        | rpm         |
| $n_p$              | número de satélites (planetas)               | -           |
| $n_s$              | velocidade angular do sol                    | rpm         |
| $r_{m2}$           | raio primitivo da roda na meia face          | m           |
| $r_a$              | raio primitivo do anel                       | m           |
| $r_s$              | raio primitivo do sol                        | m           |
| $T_2$              | binário da roda                              | Nm          |
| $T_s$              | binário do sol                               | Nm          |
| $T_a$              | binário do anel                              | Nm          |
| и                  | razão de multiplicação da engrenagem         | -           |
| $\overline{V}$     | velocidade tangencial (Tabela 12)            | $m s^{-1}$  |
| $W_t/l$            | carga por unidade de comprimento (Tabela 12) | $N  m^{-1}$ |
| α                  | ângulo de pressão                            | 0           |
| β                  | ângulo de hélice                             | 0           |
| $\beta_m$          | ângulo espiral na meia face                  | 0           |
| $\gamma_1$         | ângulo do cone do pinhão                     | 0           |
| $\gamma_2$         | ângulo do cone da roda                       | 0           |
| $\overline{\nu_1}$ | coeficiente de Poisson do material do pinhão | -           |
| $\overline{\nu_2}$ | coeficiente de Poisson do material da roda   | -           |
| Λ                  | espessura especifica de filme                | -           |
| σ                  | rugosidade composta (Tabela 13)              | μm          |
|                    | <u> </u>                                     | •           |



Figura 5: Valor crítico de  $\Lambda$  em função da velocidade tangencial para uma probabilidade de avaria de 5%