Randomised response

Imperial College London

Adding noise to the mix

Imagine being asked:

- Have you ever cheated on your spouse?
- Have you ever committed a crime?

Answering truthfully, even if guaranteed about the data being later anonymised might be threatening to the respondent:

- Extrinsically, e.g., if certain responses carry the risk of sanctions (illegal behaviour)
- Intrinsically, if the questions are personal, stressful, or make the respondent "look bad"

Imperial College London

Adding noise to the mix Each respondent is asked a sensitive Yes/No question, but their answer is randomly perturbed (Lensvelt-Mulders et al., 2005):

Figure 7: Randomized response trades off privacy for precision.

Would this protocol protect the user if we flip Yes and No?

Imperial College London

Adding noise vs other techniques
How does this compare to redaction / coarsening / aggregation?

- Every patient record is simultaneously protected
- Can recover true aggregates with pre-specified accuracy
- Can resemble coarsening if the noise is local (say, Gaussian)
- At the extreme, randomisation approaches redaction In this course, we are big fans of randomisation.

responder.id	gender	age	cheated	cheated.rr
pid 1	0	24	1	1
pid 2	0	27	1	1
pid 3	0	51	0	1
pid 4	0	41	1	1
pid 5	0	30	0	1
pid 6	0	48	0	0

Table 4: Randomisation can also preserve group aggregates, e.g., percentage of women aged under 40 that have cheated on their spouse.

Imperial College

A real-world deployment: Google and Apple

Your phone reports information back continuously to help improve services, some of which is hard to obfuscate, e.g.,

- Which websites consume more energy than average?
- Your location

URLs and locations are harder but still possible to randomise, e.g., Google's RAPPOR (Erlingsson, Pihur, and Korolova, 2014).

RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response

Úlfar Erlingsson Google, Inc. ulfar@google.com Vasyl Pihur Google, Inc. vpihur@google.com

Aleksandra Korolova University of Southern California korolova@usc.edu