Fundamental Physical Constants — Extensive Listing				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	- Symmetri			
	LINII	VERSAL		
speed of light in vacuum	c, c_0	299 792 458	${ m m~s^{-1}}$	exact
magnetic constant	μ_0	$4\pi \times 10^{-7}$	$\stackrel{ ext{M S}}{ ext{N A}^{-2}}$	CAUCE
magnetic constant	μ_0	$= 12.566370614\times10^{-7}$	NA^{-2}	exact
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$	exact
characteristic impedance of vacuum $\mu_0 c$	Z_0	376.730 313 461	Ω	exact
Newtonian constant of gravitation	G	$6.67384(80)\times10^{-11}$	$m^3 kg^{-1} s^{-2}$	1.2×10^{-4}
The modern constant of grantation	$G/\hbar c$	$6.70837(80) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	1.2×10^{-4}
Planck constant	$h^{'}$	$6.62606957(29) \times 10^{-34}$	Js	4.4×10^{-8}
		$4.135667516(91) \times 10^{-15}$	eV s	2.2×10^{-8}
$h/2\pi$	\hbar	$1.054571726(47)\times10^{-34}$	Js	4.4×10^{-8}
,		$6.58211928(15)\times10^{-16}$	eV s	2.2×10^{-8}
	$\hbar c$	197.326 9718(44)	MeV fm	2.2×10^{-8}
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.17651(13) \times 10^{-8}$	kg	6.0×10^{-5}
energy equivalent	$m_{\mathrm{P}}c^2$	$1.220932(73)\times10^{19}$	GeV	6.0×10^{-5}
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416833(85) \times 10^{32}$	K	6.0×10^{-5}
Planck length $\hbar/m_{\rm P}c=(\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.616199(97) \times 10^{-35}$	m	6.0×10^{-5}
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.39106(32)\times10^{-44}$	S	6.0×10^{-5}
Think time $ip/c = (mG/c)$,	3	0.0 × 10
		OMAGNETIC	C	2.2 10-8
elementary charge	e	$1.602176565(35)\times 10^{-19}$	C	2.2×10^{-8}
	e/h	$2.417989348(53) \times 10^{14}$	$A J^{-1}$	2.2×10^{-8}
magnetic flux quantum $h/2e$	Φ_0	$2.067833758(46) \times 10^{-15}$	Wb	2.2×10^{-8}
conductance quantum $2e^2/h$	G_0	$7.7480917346(25) \times 10^{-5}$	S	3.2×10^{-10}
inverse of conductance quantum	G_0^{-1}	12906.4037217(42)	Ω	3.2×10^{-10}
Josephson constant $\frac{1}{2}e/h$	$K_{ m J}$	$483597.870(11) \times 10^9$	$Hz V^{-1}$	2.2×10^{-8}
von Klitzing constant ² $h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25 812.807 4434(84)	Ω	3.2×10^{-10}
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.400968(20) \times 10^{-26}$	$J T^{-1}$	2.2×10^{-8}
	/1	$5.7883818066(38) \times 10^{-5}$	$eV T^{-1}$	6.5×10^{-10}
	$\mu_{ m B}/h$	$13.99624555(31) \times 10^9$	$Hz T^{-1}$	2.2×10^{-8}
	μ_{B}/hc	46.686 4498(10)	$m^{-1} T^{-1}$	2.2×10^{-8}
1 + 10	$\mu_{ m B}/k$	0.671 713 88(61)	$K T^{-1}$	9.1×10^{-7}
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.05078353(11) \times 10^{-27}$	$J T^{-1}$	2.2×10^{-8}
	/1	$3.1524512605(22) \times 10^{-8}$	$eV T^{-1}$	7.1×10^{-10}
	$\mu_{\rm N}/h$	7.62259357(17)	MHz T^{-1}	2.2×10^{-8}
	$\mu_{\rm N}/hc$	$2.542623527(56) \times 10^{-2}$	$m^{-1} T^{-1}$	2.2×10^{-8}
	$\mu_{ m N}/k$	$3.6582682(33) \times 10^{-4}$	${ m K}~{ m T}^{-1}$	9.1×10^{-7}
A		ND NUCLEAR		
	Ge	eneral		10
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525698(24) \times 10^{-3}$		3.2×10^{-10}
inverse fine-structure constant	α^{-1}	137.035999074(44)		3.2×10^{-10}
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10 973 731.568 539(55)	${ m m}^{-1}$	5.0×10^{-12}
	$R_{\infty}c$	$3.289841960364(17) \times 10^{15}$	Hz	5.0×10^{-12}
	$R_{\infty}hc$	$2.179872171(96) \times 10^{-18}$	J	4.4×10^{-8}
		13.605 692 53(30)	eV	2.2×10^{-8}
Bohr radius $\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_e e^2$	a_0	$0.52917721092(17)\times 10^{-10}$	m	3.2×10^{-10}
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_{\rm e}c^2$	$E_{ m h}$	$4.35974434(19) \times 10^{-18}$	J	4.4×10^{-8}
	- 1	27.211 385 05(60)	eV	2.2×10^{-8}
quantum of circulation	$h/2m_{ m e}$	$3.6369475520(24) \times 10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	6.5×10^{-10}

_	, 52002			Relative std.
Quantity	Symbol	Value	Unit	uncert. u_{r}
	$h/m_{ m e}$	$7.2738951040(47)\times 10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	6.5×10^{-10}
	Elec	troweak		
Fermi coupling constant ³	$G_{\mathrm{F}}/(\hbar c)^3$	$1.166364(5) \times 10^{-5}$	${ m GeV^{-2}}$	4.3×10^{-6}
weak mixing angle ⁴ $\theta_{\rm W}$ (on-shell scheme)	1/(//	()		
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.2223(21)		9.5×10^{-3}
	Elec	tron, e		
electron mass	$m_{ m e}$	$9.10938291(40) \times 10^{-31}$	kg	4.4×10^{-8}
	C	$5.4857990946(22) \times 10^{-4}$	u	4.0×10^{-10}
energy equivalent	$m_{ m e}c^2$	$8.18710506(36)\times10^{-14}$	J	4.4×10^{-8}
		0.510998928(11)	MeV	2.2×10^{-8}
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633166(12)\times10^{-3}$		2.5×10^{-8}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87592(26)\times10^{-4}$		9.0×10^{-5}
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.4461702178(22)\times10^{-4}$		4.1×10^{-10}
electron-neutron mass ratio	$m_{ m e}/m_{ m n}$	$5.4386734461(32) \times 10^{-4}$		5.8×10^{-10}
electron-deuteron mass ratio	$m_{ m e}/m_{ m d}$	$2.7244371095(11)\times 10^{-4}$		4.0×10^{-10}
electron-triton mass ratio	$m_{ m e}/m_{ m t}$	$1.8192000653(17)\times10^{-4}$		9.1×10^{-10}
electron-helion mass ratio	$m_{ m e}/m_{ m h}$	$1.8195430761(17) \times 10^{-4}$		10
electron to alpha particle mass ratio	$m_{ m e}/m_{ m lpha}$	$1.37093355578(55)\times10^{-4}$	a. 1	4.0×10^{-10}
electron charge to mass quotient	$-e/m_{\rm e}$	$-1.758820088(39) \times 10^{11}$	$C kg^{-1}$	2.2×10^{-8}
electron molar mass $N_{\rm A}m_{\rm e}$	$M(e), M_e$	$5.4857990946(22) \times 10^{-7}$	kg mol ^{−1}	4.0×10^{-10}
Compton wavelength $h/m_e c$	$\lambda_{ m C}$	$2.4263102389(16) \times 10^{-12}$	m	6.5×10^{-10}
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	$\lambda_{ m C}$	$386.15926800(25) \times 10^{-15}$	m	$6.5 \times 10^{-10} $ 9.7×10^{-10}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403267(27)\times10^{-15}$ $0.6652458734(13)\times10^{-28}$	${ m m} { m m}^2$	9.7×10^{-13} 1.9×10^{-9}
Thomson cross section $(8\pi/3)r_{\rm e}^2$ electron magnetic moment	$\sigma_{ m e}$	$-928.476430(21) \times 10^{-26}$	$ m JT^{-1}$	2.2×10^{-8}
to Bohr magneton ratio	$\mu_{ m e} \ \mu_{ m e}/\mu_{ m B}$	$-928.470430(21) \times 10$ -1.00115965218076(27)	JI	2.2×10^{-13} 2.6×10^{-13}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m B} \ \mu_{ m e}/\mu_{ m N}$	-1838.28197090(75)		4.1×10^{-10}
electron magnetic moment	$\mu_{ m e}/\mu_{ m N}$	1000.201 010 00(10)		4.1 × 10
anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{ m e}$	$1.15965218076(27) \times 10^{-3}$		2.3×10^{-10}
electron g-factor $-2(1+a_e)$	$g_{ m e}$	-2.00231930436153(53)		2.6×10^{-13}
electron-muon magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.766 9896(52)		2.5×10^{-8}
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.2106848(54)		8.1×10^{-9}
electron to shielded proton magnetic	, c, , p	()		
moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}'$	-658.2275971(72)		1.1×10^{-8}
electron-neutron magnetic moment ratio	$\mu_{ m e}/\mu_{ m n}$	960.920 50(23)		2.4×10^{-7}
electron-deuteron magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.923498(18)		8.4×10^{-9}
electron to shielded helion magnetic				
moment ratio (gas, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m h}'$	864.058257(10)		1.2×10^{-8}
electron gyromagnetic ratio $2 \mu_{\rm e} /\hbar$	$\gamma_{ m e}$	$1.760859708(39) \times 10^{11}$	$s^{-1} T^{-1}$	2.2×10^{-8}
	$\gamma_{ m e}/2\pi$	28024.95266(62)	$ m MHz~T^{-1}$	2.2×10^{-8}
	Mu	on, μ ⁻		
muon mass	m_{μ}	$1.883531475(96)\times10^{-28}$	kg	5.1×10^{-8}
	•	0.1134289267(29)	u	2.5×10^{-8}
energy equivalent	$m_{\mu}c^2$	$1.692833667(86) \times 10^{-11}$	J	5.1×10^{-8}
		105.6583715(35)	MeV	3.4×10^{-8}
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.7682843(52)		2.5×10^{-8}
muon-tau mass ratio	$m_{ m \mu}/m_{ m au}$	$5.94649(54) \times 10^{-2}$		9.0×10^{-5}
muon-proton mass ratio	$m_{ m \mu}/m_{ m p}$	0.1126095272(28)		2.5×10^{-8}

	·		8	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
muon-neutron mass ratio	$m_{ m \mu}/m_{ m n}$	0.1124545177(28)		2.5×10^{-8}
muon molar mass $N_{ m A} m_{ m u}$	$M(\mu), M_{\mu}$	$0.1134289267(29) \times 10^{-3}$	$kg mol^{-1}$	2.5×10^{-8}
muon Compton wavelength $h/m_{\rm u}c$	$\lambda_{\mathrm{C},\mu}$	$11.73444103(30) \times 10^{-15}$	m	2.5×10^{-8}
$\lambda_{ ext{C},\mu}/2\pi$	$\lambda_{\mathrm{C},\mu}$	$1.867594294(47) \times 10^{-15}$	m	2.5×10^{-8}
muon magnetic moment	μ_{μ}	$-4.49044807(15) \times 10^{-26}$	$ m J~T^{-1}$	3.4×10^{-8}
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197044(12)\times10^{-3}$		2.5×10^{-8}
to nuclear magneton ratio	$\mu_{\mu}/\mu_{ m N}$	-8.89059697(22)		2.5×10^{-8}
muon magnetic moment anomaly	γ-μ/ γ-1	, , , , , , , , , , , , , , , , , , , ,		
$ \mu_{\mathfrak{u}} /(e\hbar/2m_{\mathfrak{u}})-1$	a_{μ}	$1.16592091(63) \times 10^{-3}$		5.4×10^{-7}
muon g-factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318418(13)		6.3×10^{-10}
muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345107(84)		2.6×10^{-8}
muon proton magnetie moment muse		` '		2.0 // 10
tau mass ⁵		Tau, τ^- $3.16747(29) \times 10^{-27}$	lea.	9.0×10^{-5}
tau mass	$m_{ au}$		kg	9.0×10 9.0×10^{-5}
	2	1.90749(17)	u	
energy equivalent	$m_{ au}c^2$	$2.84678(26) \times 10^{-10}$	J	9.0×10^{-5}
4 1 4	,	1776.82(16)	MeV	9.0×10^{-5}
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.15(31)		9.0×10^{-5}
tau-muon mass ratio	$m_{ au}/m_{\mu}$	16.8167(15)		9.0×10^{-5}
tau-proton mass ratio	$m_{ m au}/m_{ m p}$	1.893 72(17)		9.0×10^{-5}
tau-neutron mass ratio	$m_{ m \tau}/m_{ m n}$	1.891 11(17)	1	9.0×10^{-5}
tau molar mass $N_{ m A} m_{ au}$	$M(\tau), M_{\tau}$	$1.90749(17) \times 10^{-3}$	$kg mol^{-1}$	9.0×10^{-5}
tau Compton wavelength $h/m_{\tau}c$	$\lambda_{\mathrm{C}, au}$	$0.697787(63) \times 10^{-15}$	m	9.0×10^{-5}
$\lambda_{ ext{C}, au}/2\pi$	$\lambda_{\mathrm{C}, au}$	$0.111056(10)\times10^{-15}$	m	9.0×10^{-5}
	I	Proton, p		
proton mass	$m_{ m p}$	$1.672621777(74) \times 10^{-27}$	kg	4.4×10^{-8}
		1.007276466812(90)	u	8.9×10^{-11}
energy equivalent	$m_{ m p}c^2$	$1.503277484(66) \times 10^{-10}$	J	4.4×10^{-8}
		938.272046(21)	MeV	2.2×10^{-8}
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267245(75)		4.1×10^{-10}
proton-muon mass ratio	$m_{ m p}/m_{ m \mu}$	8.88024331(22)		2.5×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ m au}$	0.528063(48)		9.0×10^{-5}
proton-neutron mass ratio	$m_{ m p}/m_{ m n}$	0.99862347826(45)		4.5×10^{-10}
proton charge to mass quotient	$e/m_{ m p}$	$9.57883358(21)\times10^7$	$ m C~kg^{-1}$	2.2×10^{-8}
proton molar mass $N_{ m A} m_{ m p}$	$M(p), M_p$	$1.007276466812(90)\times 10^{-3}$	$kg mol^{-1}$	8.9×10^{-11}
proton Compton wavelength $h/m_{\rm p}c$	$\lambda_{ ext{C,p}}$	$1.32140985623(94) \times 10^{-15}$	m	7.1×10^{-10}
$\lambda_{ m C,p}/2\pi$	$\lambda_{ ext{C,p}}$	$0.21030891047(15)\times10^{-15}$	m	7.1×10^{-10}
proton rms charge radius	$r_{ m p}$	$0.8775(51) \times 10^{-15}$	m	5.9×10^{-3}
proton magnetic moment	$\mu_{ m p}$	$1.410606743(33) \times 10^{-26}$	$ m J~T^{-1}$	2.4×10^{-8}
to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.521032210(12)\times10^{-3}$		8.1×10^{-9}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792847356(23)		8.2×10^{-9}
proton g-factor $2\mu_{\rm p}/\mu_{\rm N}$	$g_{ m p}$	5.585 694 713(46)		8.2×10^{-9}
proton-neutron magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	-1.45989806(34)		2.4×10^{-7}
shielded proton magnetic moment	μ_{p}'	$1.410570499(35) \times 10^{-26}$	$ m J~T^{-1}$	2.5×10^{-8}
(H ₂ O, sphere, 25 °C)	~ p		v -	// 10
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993128(17) \times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio		2.792775598(30)		1.1×10^{-8} 1.1×10^{-8}
proton magnetic shielding correction	$\mu_{ m p}'/\mu_{ m N}$	2.132 110 030(00)		1.1 ^ 10
	σ'	25 604(14) × 10-6		5.3×10^{-4}
$1 - \mu_{\rm p}'/\mu_{\rm p}~({\rm H_2O,sphere,25~^\circ C})$	$\sigma_{ m p}'$	$25.694(14) \times 10^{-6}$		0.0×10^{-2}

	•		8	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	<u> </u>			-
proton gyromagnetic ratio $2\mu_{ m p}/\hbar$	$\gamma_{ m p}$	$2.675222005(63)\times 10^8$	$s^{-1} T^{-1}$	2.4×10^{-8}
proton gyromagnetic racio 2pp/ n	$\gamma_{ m p}^{ m p}/2\pi$	42.5774806(10)	$ m MHz~T^{-1}$	2.4×10^{-8}
shielded proton gyromagnetic ratio	/p/ =			
$2\mu'_{\rm p}/\hbar$ (H ₂ O, sphere, 25 °C)	$\gamma_{\rm p}^{\prime}$	$2.675153268(66) \times 10^{8}$	${ m s}^{-1}~{ m T}^{-1}$	2.5×10^{-8}
, b, , , ,	$\gamma_{ m p}^{\prime} / 2\pi$	42.576 3866(10)	$ m MHz~T^{-1}$	2.5×10^{-8}
		tron, n		
neutron mass	$m_{ m n}$	$1.674927351(74)\times10^{-27}$	kg	4.4×10^{-8}
neuton mass	non.	1.00866491600(43)	u	4.2×10^{-10}
energy equivalent	$m_{ m n}c^2$	$1.505349631(66) \times 10^{-10}$	J	4.4×10^{-8}
energy equivalent	Will C	939.565 379(21)	MeV	2.2×10^{-8}
neutron-electron mass ratio	$m_{ m n}/m_{ m e}$	1838.683 6605(11)		5.8×10^{-10}
neutron-muon mass ratio	$m_{ m n}/m_{ m \mu}$	8.892 484 00(22)		2.5×10^{-8}
neutron-tau mass ratio	$m_{ m n}/m_{ m au}$	0.528 790(48)		9.0×10^{-5}
neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.00137841917(45)		4.5×10^{-10}
neutron-proton mass difference	$m_{\rm n} - m_{\rm p}$	$2.30557392(76) \times 10^{-30}$	kg	3.3×10^{-7}
•	n P	0.00138844919(45)	u	3.3×10^{-7}
energy equivalent	$(m_{\rm n} - m_{\rm p})c^2$	$2.07214650(68)\times10^{-13}$	J	3.3×10^{-7}
	, F/	1.29333217(42)	MeV	3.3×10^{-7}
neutron molar mass $N_{ m A} m_{ m n}$	$M(n), M_n$	$1.00866491\dot{6}00(43)\times10^{-3}$	$kg mol^{-1}$	4.2×10^{-10}
neutron Compton wavelength $h/m_{ m n}c$	$\lambda_{ m C,n}$	$1.3195909068(11)\times 10^{-15}$	m	8.2×10^{-10}
$\lambda_{ m C,n}/2\pi$	$\lambda_{ m C,n}$	$0.21001941568(17)\times10^{-15}$	m	8.2×10^{-10}
neutron magnetic moment	$\mu_{ m n}$	$-0.96623647(23)\times10^{-26}$	$ m J~T^{-1}$	2.4×10^{-7}
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25)\times10^{-3}$		2.4×10^{-7}
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304272(45)		2.4×10^{-7}
neutron g -factor $2\mu_{ m n}/\mu_{ m N}$	$g_{ m n}$	-3.82608545(90)		2.4×10^{-7}
neutron-electron magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25)\times10^{-3}$		2.4×10^{-7}
neutron-proton magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.68497934(16)		2.4×10^{-7}
neutron to shielded proton magnetic				_
moment ratio (H_2O , sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}'$	-0.68499694(16)		2.4×10^{-7}
neutron gyromagnetic ratio $2 \mu_{ m n} /\hbar$	$\gamma_{ m n}$	$1.83247179(43)\times10^8$	$s^{-1} T^{-1}$	2.4×10^{-7}
	$\gamma_{ m n}/2\pi$	29.1646943(69)	$ m MHz~T^{-1}$	2.4×10^{-7}
	Deut	eron, d		
deuteron mass	$m_{ m d}$	$3.34358348(15) \times 10^{-27}$	kg	4.4×10^{-8}
		2.013553212712(77)	u	3.8×10^{-11}
energy equivalent	$m_{ m d}c^2$	$3.00506297(13) \times 10^{-10}$	J	4.4×10^{-8}
		1875.612859(41)	MeV	2.2×10^{-8}
deuteron-electron mass ratio	$m_{ m d}/m_{ m e}$	3670.4829652(15)		4.0×10^{-10}
deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.99900750097(18)		9.2×10^{-11}
deuteron molar mass $N_{\rm A} m_{ m d}$	$M(\mathrm{d}), M_\mathrm{d}$	$2.013553212712(77) \times 10^{-3}$	$kg mol^{-1}$	3.8×10^{-11}
deuteron rms charge radius	$r_{ m d}$	$2.1424(21) \times 10^{-15}$	m x m = 1	9.8×10^{-4}
deuteron magnetic moment	$\mu_{ m d}$	$0.433073489(10) \times 10^{-26}$	$ m J~T^{-1}$	2.4×10^{-8}
to Bohr magneton ratio	$\mu_{ m d}/\mu_{ m B}$	$0.4669754556(39) \times 10^{-3}$		8.4×10^{-9}
to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.857 438 2308(72)		8.4×10^{-9}
deuteron g -factor $\mu_{\rm d}/\mu_{ m N}$	$g_{ m d}$	0.857 438 2308(72)		8.4×10^{-9}
deuteron-electron magnetic moment ratio	$\mu_{ m d}/\mu_{ m e}$	$-4.664345537(39) \times 10^{-4}$		8.4×10^{-9}
deuteron-proton magnetic moment ratio	$\mu_{ m d}/\mu_{ m p}$	0.307 012 2070(24)		7.7×10^{-9}
deuteron-neutron magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820652(11)		2.4×10^{-7}

Triton, t

•	,		0	Relative std.	
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$	
triton mass	$m_{ m t}$	$5.00735630(22) \times 10^{-27}$	kg	4.4×10^{-8}	
	0	3.0155007134(25)	u	8.2×10^{-10}	
energy equivalent	$m_{ m t}c^2$	$4.50038741(20) \times 10^{-10}$	J	4.4×10^{-8}	
	1	2808.921 005(62)	MeV	2.2×10^{-8}	
triton-electron mass ratio	$m_{ m t}/m_{ m e}$	5496.921 5267(50)		9.1×10^{-10}	
triton-proton mass ratio	$m_{\rm t}/m_{\rm p}$	2.9937170308(25)	1 1-1	$8.2 \times 10^{-10} \\ 8.2 \times 10^{-10}$	
triton molar mass $N_{\rm A}m_{ m t}$	$M(\mathrm{t}), M_{\mathrm{t}}$	$3.0155007134(25) \times 10^{-3}$ $1.504609447(38) \times 10^{-26}$	$kg mol^{-1}$ $J T^{-1}$	8.2×10^{-8} 2.6×10^{-8}	
triton magnetic moment to Bohr magneton ratio	$\mu_{ m t} \ \mu_{ m t}/\mu_{ m B}$	$1.622393657(21) \times 10^{-3}$	JI	1.3×10^{-8}	
to nuclear magneton ratio	$\mu_{ m t}/\mu_{ m B} \ \mu_{ m t}/\mu_{ m N}$	2.978962448(38)		1.3×10^{-8} 1.3×10^{-8}	
triton g -factor $2\mu_{\rm t}/\mu_{\rm N}$		5.957 924 896(76)		1.3×10^{-8} 1.3×10^{-8}	
and g factor $2\mu_{\mathrm{t}}/\mu_{\mathrm{N}}$	$g_{ m t}$, ,		1.0 × 10	
Helion, h helion mass $m_{\rm h} = 5.00641234(22)\times 10^{-27}$ kg 4.4×10^{-8}					
helion mass	$m_{ m h}$	$5.00641234(22) \times 10^{-27}$	kg	4.4×10^{-10} 8.3×10^{-10}	
energy equivalent	$m_{ m h}c^2$	3.0149322468(25) $4.49953902(20)\times10^{-10}$	u J	4.4×10^{-8}	
energy equivalent	$m_{ m h}c$	2808.391 482(62)	MeV	2.2×10^{-8}	
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.885 2754(50)	IVIC V	9.2×10^{-10}	
helion-proton mass ratio	$m_{ m h}/m_{ m p}$	2.993 152 6707(25)		8.2×10^{-10}	
helion molar mass $N_{ m A} m_{ m h}$	$M(\mathrm{h}), M_{\mathrm{h}}$	$3.0149322468(25)\times 10^{-3}$	$kg mol^{-1}$	8.3×10^{-10}	
helion magnetic moment	$\mu_{ m h}$	$-1.074617486(27) \times 10^{-26}$	$ m JT^{-1}$	2.5×10^{-8}	
to Bohr magneton ratio	$\mu_{ m h}/\mu_{ m B}$	$-1.158740958(14) \times 10^{-3}$		1.2×10^{-8}	
to nuclear magneton ratio	$\mu_{ m h}/\mu_{ m N}$	-2.127625306(25)		1.2×10^{-8}	
helion g -factor $2\mu_{ m h}/\mu_{ m N}$	$g_{ m h}$	-4.255250613(50)		1.2×10^{-8}	
shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074553044(27)\times10^{-26}$	$ m JT^{-1}$	2.5×10^{-8}	
(gas, sphere, 25 °C)					
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$		1.2×10^{-8}	
to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m N}$	-2.127497718(25)		1.2×10^{-8}	
shielded helion to proton magnetic				0	
moment ratio (gas, sphere, 25 °C)	$\mu_{ m h}'/\mu_{ m p}$	-0.761766558(11)		1.4×10^{-8}	
shielded helion to shielded proton magnetic	, , ,	0 = 01 = 00 1010(00)		10-0	
moment ratio (gas/H ₂ O, spheres, 25 °C)	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}	
shielded helion gyromagnetic ratio	,	2.027.004.050(51) 108	$s^{-1} T^{-1}$	0.510-8	
$2 \mu'_{\rm h} /\hbar$ (gas, sphere, 25 °C)	$\gamma'_{\rm h}$	$2.037894659(51) \times 10^8$ 32.43410084(81)		2.5×10^{-8}	
	$\gamma_{ m h}''/2\pi$	()	$ m MHz~T^{-1}$	2.5×10^{-8}	
		particle, α	_		
alpha particle mass	$m_{oldsymbol{lpha}}$	$6.64465675(29) \times 10^{-27}$	kg	4.4×10^{-8}	
	2	4.001506179125(62)	u	1.5×10^{-11}	
energy equivalent	$m_{\mathbf{\alpha}}c^2$	$5.97191967(26) \times 10^{-10}$	J M-W	4.4×10^{-8}	
alpha particle to electron mass ratio	m /m	3727.379 240(82) 7294.299 5361(29)	MeV	2.2×10^{-8} 4.0×10^{-10}	
alpha particle to electron mass ratio	$m_{\alpha}/m_{\rm e}$	3.972 599 689 33(36)		9.0×10^{-11}	
alpha particle to proton mass ratio alpha particle molar mass $N_{\rm A} m_{ m c}$	$m_{lpha}/m_{ m p} \ M(lpha), M_{lpha}$	$4.001506179125(62)\times10^{-3}$	$kg mol^{-1}$	1.5×10^{-11}	
alpha particle motal mass $I_{NA}m_{\alpha}$, ,	kg moi	1.0 × 10	
Assassa dua assastant		CHEMICAL	1-1	4.4.4.10-8	
Avogadro constant	$N_{ m A}, L$	$6.02214129(27)\times10^{23}$	mol^{-1}	4.4×10^{-8}	
atomic mass constant $m = \frac{1}{2} m(^{12}C) = 1 \text{ n}$	m	$1.660538921(73)\times 10^{-27}$	lzα	4.4×10^{-8}	
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 1 \text{ u}$ energy equivalent	$m_{ m u} \ m_{ m u} c^2$	$1.492417954(66) \times 10^{-10}$	kg J	4.4×10^{-8} 4.4×10^{-8}	
chergy equivalent	$m_{ m u}c$	931.494061(21)	MeV	2.2×10^{-8}	
		001.404.001(21)	1V1C V	2.2 ∧ 10	

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
Faraday constant $^6 N_{\rm A} e$	F	96 485.3365(21)	$C \text{ mol}^{-1}$	2.2×10^{-8}
molar Planck constant	$N_{ m A} h$	$3.9903127176(28)\times 10^{-10}$	$\rm J~s~mol^{-1}$	7.0×10^{-10}
	$N_{ m A}hc$	0.119626565779(84)	$\rm J~m~mol^{-1}$	7.0×10^{-10}
molar gas constant	R	8.3144621(75)	$\rm J~mol^{-1}~K^{-1}$	9.1×10^{-7}
Boltzmann constant $R/N_{\rm A}$	k	$1.3806488(13) \times 10^{-23}$	$ m J~K^{-1}$	9.1×10^{-7}
		$8.6173324(78) \times 10^{-5}$	${ m eV~K^{-1}}$	9.1×10^{-7}
	k/h	$2.0836618(19) \times 10^{10}$	$\mathrm{Hz}\mathrm{K}^{-1}$	9.1×10^{-7}
	k/hc	69.503476(63)	${\rm m}^{-1}~{\rm K}^{-1}$	9.1×10^{-7}
molar volume of ideal gas RT/p				
T = 273.15 K, p = 100 kPa	$V_{ m m}$	$22.710953(21) \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	9.1×10^{-7}
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	$2.6516462(24) \times 10^{25}$	m^{-3}	9.1×10^{-7}
molar volume of ideal gas RT/p				
$T=273.15~{ m K},p=101.325~{ m kPa}$	$V_{ m m}$	$22.413968(20) \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	9.1×10^{-7}
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	$2.6867805(24) \times 10^{25}$	m^{-3}	9.1×10^{-7}
Sackur-Tetrode (absolute entropy) constant ⁷				
$\frac{5}{2} + \ln[(2\pi m_{\rm u}kT_1/h^2)^{3/2}kT_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.1517078(23)		2.0×10^{-6}
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$		-1.1648708(23)		1.9×10^{-6}
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670373(21) \times 10^{-8}$	$ m W~m^{-2}~K^{-4}$	3.6×10^{-6}
first radiation constant $2\pi hc^2$	c_1	$3.74177153(17) \times 10^{-16}$	$ m W~m^2$	4.4×10^{-8}
first radiation constant for spectral radiance $2hc^2$	$c_{1 m L}$	$1.191042869(53) \times 10^{-16}$	$\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}$	4.4×10^{-8}
second radiation constant hc/k	c_2	$1.4387770(13) \times 10^{-2}$	m K	9.1×10^{-7}
Wien displacement law constants				
$b = \lambda_{\text{max}} T = c_2 / 4.965 114 231$	b	$2.8977721(26) \times 10^{-3}$	m K	9.1×10^{-7}
$b' = \nu_{\text{max}}/T = 2.821439372c/c_2$	b'	$5.8789254(53) \times 10^{10}$	$\mathrm{Hz}\mathrm{K}^{-1}$	9.1×10^{-7}

¹ See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

² See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

³ Value recommended by the Particle Data Group (Nakamura, et al., 2010).

⁴ Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Nakamura, *et al.*, 2010). The value for $\sin^2\theta_{\rm W}$ they recommend, which is based on a particular variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2\hat{\theta}_{\rm W}(M_{\rm Z})=0.231\,22(15)$.

⁵ This and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group (Nakamura, *et al.*, 2010), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of -0.26 MeV, +0.29 MeV.

⁶ The helion, symbol h, is the nucleus of the ³He atom.

⁷ The numerical value of F to be used in coulometric chemical measurements is $96\,485.3401(48)$ [5.0×10^{-8}] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants $K_{\rm J-90}$ and $R_{\rm K-90}$ given in the "Adopted values" table.

⁸ The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$.