

Introduction

This app note describes how to set up a profiled position move with velocity, acceleration, and deceleration limits.

Note: This document is intended for use with AN-006, which provides examples on how to configure and send target commands in various drive modes.

The Command Limiter

The Command Limiter is the tool for configuring profiled position moves. Turn on the Command Limiter in DriveWare by clicking the Accel/Decel radio button in the *Drive > Configuration 0* window in the System Browser, or through the RS232 interface using index D1h.

Figure 1 – Command Limiter in DriveWare

The following objects are used to set maximum velocity, acceleration and deceleration limits when operating in position mode.

3C.18h

Controlled Accel/Decel Maximum Speed This parameter sets the maximum speed for a profile.

3C.1Ch

Controlled Accel/Decel Maximum Acceleration This parameter sets the maximum acceleration used for a profile.

3C.1Eh

Controlled Accel/Decel Maximum Deceleration This parameter sets the maximum deceleration used for a profile.

Drive Units

To convert from physical units to drive units, start with velocity in counts/sec, then acceleration and deceleration in counts/sec² based upon feedback resolution, and then multiply by the scaling factor in Table 1.

Drive Unit Type	Physical Units	Scaling Factor
Accel/Deccl	counts/s²	$DA3 = 2^{28}/K_{ms}K_{S}$
Max Speed	counts/s	$DS3 = 2^{33}/K_s$

Table 1 - Drive Unit Scaling Factors

In order to convert to drive units, the following information in the table below must also be known.

Constant	Value
K _{ms}	Maximum profiler speed (in counts/s) for an Accel/Decel command profile.
Ks	Switching frequency of the drive in Hz. This is found on the drive datasheet.

Table 2 - Drive Quantities

Example Profiled Move

Figure 2 - Total Move = 2,133,333 counts

Write a maximum velocity of 800 RPM to 3C.18h given a motor with a 2000 line encoder using a drive with a 20KHz switching freq.

$$800 \frac{rev}{min} \times 8000 \frac{counts}{rev} \times 1 \frac{min}{60 \sec} = 106,667 \frac{cnts}{sec}$$

$$106,667 \frac{cnts}{sec} \times \frac{2^{33}}{20,000} = 45,812,984,490.668$$

Serial Example for Velocity Mode Using Command Profiler

Round to the nearest whole number and convert to hex.

45,812,984,491 = AAAAAAAABh

Write an acceleration and deceleration limit of 100 RPM/s to 3C.1Ch and 3C.1Eh given a motor with a 2000 line encoder using a drive with a 20KHz switching freq.

Convert 100 RPM/s to counts/sec², then multiply by the scaling factor.

$$100^{rev}/_{\min s} \times 8000^{counts}/_{rev} \times 1^{\min}/_{60 \text{sec}} = 13,333.33$$

The calculated maximum velocity is substituted for the K_{ms} value.

$$13,333.33$$
 cnts/ $\frac{2^{28}}{\text{sec}^2} \times \frac{2^{28}}{20,000*106667} = 1,677.72$

Round to the nearest whole number and convert to hex.

1,678 = 68Eh

Note: Make sure you have write access to the drive. If not, write an Fh to object 07.00h.

Sending RS232 Messages.

To write the maximum velocity, send the following command:

SF	DA	СВ	Ind.Off		ш	CF	RC
A5	3F	02	3C	18	04	5C	CC

Data									CRC		
ΑB	AA	AA	AA	0A	00	00	00	28	FΒ		

Reply:

To set the acceleration and deceleration values send this data. Acceleration is at index 3C offset 1C. Deceleration is at index 3C offset 1E.

Acceleration:

SF	DA	Inc	Ind.Off			CF	RC	
Α5	3F	02	3C	10)	02	F0	E
	Da	ata		CF	3			
8E	06	00	00	CD	\circ	2		

Deceleration:

SF	DA	СВ	Inc	d.Of	f	П	CF	RC
A5	3F	02	3C	1E	E ()2	96	AC
	Da	ata		CF	RC			
8E	06	00	00	CD	C	2		

Note: Changing max speed will require recalculating accel/decel values.

Drive Status – At Command

To verify that the position has been reached, read the At Command in 02.04h. When high, this indicates that the measured position is within the "At Position Window" of the Position Target. The At Position Window is the desired tolerance on the measured position and can be set within DriveWare (Position Limits).

Verify position has been reached by reading bit 1 of object 02.04h

Command a position move of 2,133,333 counts. The move begins immediately and the total time is 28s. Then, read object 02.04h as shown below.

Send:

SF	DA	СВ	S1	S2	L	CF	RC
Α5	3F	01	02	04	01	0F	٥F

Reply:

	DA CB Ind.Off		L	L CRC			Data		CRC		
Α5	FF	02	01	00	01	32	FF	C 7	00	8F	C3

Convert the data read from object 2.04h to binary.

00C7h = 0000000011000111

At Command is active, indicating that the measured position has reached the target of 2,133,333 counts.