je.	Bioen 7310	P5. 1.	or projection?	So	mul C	olby	
1	. Write the de	rivodica of the	central slice	theorum	t i servici destributa de seguiro de seguir se regionar de seguiro de seguiro de seguiro de seguiro de seguiro		
	one-dimensionally if we took FT of it, Projection. F P(x) = \$ f(F(Kx, Ky) =	the some the Fitter slice - st. where	con take a to T of it. This wo dimensional thru the original P(x) is the xkx - 2 migky dxdy.	result wou function, o gin, possible Projection	ld be equand take to the or of f(x,y)	uul to or 2-1 isinal onto x	
	The slice thru $F(k_{x},0)$	the origin is $= \int_{-\infty}^{\infty} f(x,y) e^{-2\pi}$	then given bixkx dxdy =	y: (J=(x,y)dy).	-zorixka dx		
		$F(k_{x,0}) = \int_{-m}^{m} \rho$	(x) e ^{-2πixKx} dx	= FT{P&	了		
2	Find Oused form $= \begin{array}{c} \text{Find Oused form} \\ \text{Find } XS = \chi + \chi \\ \end{array}$	response on the profession of the control of the co	$\sum_{i=0}^{J-1} \chi^{i} = 1 + \chi +$	x ² + x+ + x	N-1		
	=> S-xS=	= (+ x + x ² + :	$(x + x^2 +$	** + + × / -	+ x N)		
	SE		For case 1×1>1,	this Series	converges		
-							
	Andreas and the second						

3. Taking the discrete IFT of a continuous FT.

CFT: $G(K) = \int_{-\infty}^{\infty} g(x)e^{-2\pi ix} k dx$. dIFT: $g(n) = \frac{1}{N} \sum_{k=0}^{N-1} G(k) e^{i2\pi n} k dx$ $\Rightarrow G(K) = \int_{-\infty}^{\infty} g(x)e^{-2\pi ix} k dx, \quad \lim_{j \to \infty} G(j'Ak)$ $\Rightarrow G(K) = \int_{-\infty}^{\infty} g(j'Ax) = \int_{j=0}^{N-1} (-j'Ak)e^{2\pi j'N}$ $\Rightarrow g(j'Ax) = \sum_{j=0}^{N-1} (-j'Ak)e^{-2\pi ix} f(k) e^{2\pi j'N}$ $\Rightarrow g(j'Ax) = \sum_{j=0}^{N-1} (-j'Ak)e^{-2\pi ix} f(k) e^{-2\pi ix} f(k) e^{-$

=> upon solving,
$$g(j\Delta X) = \int g(x) q(x-j\Delta x) dx$$
.
The definition of convolution

L/L Problems Samuel Colby [2.18.] let S(K) = FT SP(x)} a Show hermitian Symmetry: If is real, then S(K) = 5*(K). if S(K) = FT{p(x)} = \ \ p(x)e^{-2\pi i kx} dx, $S^*(K) = \left(FT\left\{P(x)\right\}\right)^* = \left(\int_{-2\pi i kx}^{b} dx\right)^* = \int_{-2\pi i kx}^{b} dx$ by replacing K with -K, we get $S^*(-K) = \int P(x)^* e^{-2\pi i kx} dx$ When P(x) is a real function, $P(x) = P^*(x)$. : $5*(-K) = \int P(x) e^{-2\pi i kx} dx = S(K)$ (b) Prove the modulation Property: $FT\left\{P(x)\cos(2\pi K_0 x) = \frac{1}{2}\left[S(K+K_0) + S(K-K_0)\right]\right\}$ Through inverse euler's formula: $FT\{P(x)\cos(2\pi K_0x)\} = FT\{P(x)\frac{1}{2}(e^{-2\pi K_0x} + e^{2\pi K_0x})\} = FT\{\frac{1}{2}(P(x)e^{-2\pi K_0x} + P(x)e^{2\pi K_0x})\}$ Through linearity + shifting theorum: $FT\left\{\frac{1}{2}(P(x)e^{-2\pi k_0x} + P(x)e^{2\pi k_0x})\right\} = \frac{1}{2}\left(S(k-k_0) + S(k+k_0)\right) \stackrel{\text{def}}{=}$

[2.19] Prove Convolution theorem: P(x)/2(x) = FT[P](K) * FT[P](K) Say FT(PN(x)) = SN(K) Taking the FT: $FT\{P(X)P_2(X)\} = \int_{0}^{\infty} P_1(X)P_2(X) e^{-i2\pi i X} dX$ W/ def of IFT: = [] S(k) e inkx dk] P(x) e ienkx dx $=\int_{0}^{\infty} S_{1}(k) \left[\int_{0}^{\infty} P_{2}(x) e^{i2\pi kx - i2\pi kx} dx\right] dk'$ = $\int S_1(K) \int P_2(x) e^{-i2\pi(K-K')\chi} dx dx$ $= \int_{0}^{\infty} S_{1}(k) S_{2}(k-k') dk' = S_{1}(k) * S_{2}(k)$ $= FT\{P_{i}\}(k) * FT\{P_{i}\}(k) \neq$ [2.20] Calculate FT{sinc2(nax)} based on convolution theorem. FT { Sinc(Tax) sinc(Tax) } = FT { sinc(Tax) } + FT { sinc(Tax) } convolution throng from Appendix A.b: Π(t) = Sinc(πf). .. M(at) = Sinc(max) =) $\Pi(at) * \Pi(at) = \frac{d}{dx} \left[\Pi(ax) * \Pi(ax)\right] = \left(\frac{d}{ax} \Pi(ax)\right) * \Pi(ax)$ Derivative Property $= \left[S(x + ha) - S(x - ha) \right] \times \Pi(ax) = \Pi(ax + ha) - \Pi(ax - ha)$ $\Rightarrow \Pi(ax) \neq \Pi(ax) = \int_{0}^{ax} \left(\Pi(a(I+1/2) - \Pi(a(I-1/2))) dT \right)$ $= \frac{1 - |ax| |x| \le 1}{0 \text{ otherwise}} = \frac{\Delta(ax)}{ax}$

•

[2.23] Show that a periodic function f(t) w/ period T can be written as: $f(t) = f_T(t) \times \frac{1}{T} comb (7)$ where $f_T(t) = 1$ period of f(t)-The comb function can be defined as 4-comb(t/4) = 2 S(t-nT)Taking the convolution ... => $f_{\tau}(t) \star (\xi(t-n\tau)) = f_{\tau}(t) \star (\xi(t+n\tau)+...+\xi(t)+\xi(t-\tau)+...+\xi(t-n\tau))$ $= f_{7}(t) * \delta(t+nT) + ... + \delta(t) + \delta(t-nT) = f_{7}(t+nT) + ... + f_{7}(t) + f_{7}(t-T) + ... + f_{7}(t-nT)$ By definition of convolution: g(x) * S(x-a) = g(a). $= \sum_{n=-\infty}^{\infty} f_7(t-nT) = f(t)$ The expression is the infinite Summation of a period of f(t) at every integer period of f(t). . o. it is f(t). 9 9