Алгоритмы и структурам данных: ДЗ #11, fb и floyd СПб, CS-Center, осенний семестр 2015/16

Содержание	
11. Base [1/1]	3
Задача 11A. Путь в случайном графе [0.5 sec, 256 mb]	3
$11. { m Advanced} [2/4]$	4
Задача 11В. Path. Кратчайший путь [0.5 sec, 256 mb]	4
Задача 11С. Лабиринт знаний [0.5 sec, 256 mb]	5
Задача 11D. Цикл отрицательного веса [0.5 sec, 256 mb]	6
Задача 11E. Отрицательный цикл [0.5 sec, 256 mb]	7
$11.\mathrm{Hard}\left[0/2 ight]$	8

8

9

Задача 11F. Цикл минимального среднего веса [0.5 sec, 256 mb]

Задача 11G. Потенциал [0.5 sec, 256 mb]

Алгоритмы и структурам данных: ДЗ #11, fb и floyd CП6, CS-Center, осенний семестр 2015/16

Общая информация:

Bход в контест: http://contest.yandex.ru/contest/1892/

Дедлайн на задачи: 10 дней, до 28-го ноября 23:59.

К каждой главе есть более простые задачи (base), посложнее (advanced), и сложные (hard).

В скобках к каждой главе написано сколько любых задач из этой главы нужно сдать.

Caйт курса: https://compscicenter.ru/courses/algorithms-1/2015-autumn/

Семинары ведут Сергей Копелиович (burunduk30@gmail.com, vk.com/burunduk1) и Глеб Лео-

нов (gleb.leonov@gmail.com, vk.com/id1509292)

В каждом условии указан таймлимит для С/С++.

Таймлиминт для Java примерно в 2-3 раза больше.

Таймлиминт для Python примерно в 5 раз больше.

C++:

Быстрый ввод-вывод.

http://acm.math.spbu.ru/~sk1/algo/input-output/cpp_common.html

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы,

тар-ы) переопределение стандартного аллокатора ускорит вашу программу:

http://acm.math.spbu.ru/~sk1/algo/memory.cpp.html

Java:

Быстрый ввод-вывод.

http://acm.math.spbu.ru/~sk1/algo/input-output/java/java_common.html

11.Base [1/1]

Задача 11A. Путь в случайном графе [0.5 sec, 256 mb]

Дан случайный взвешенный ориентированный граф из n вершин, m рёбер. Гарантируется, что в графе нет отрицательных циклов. Ваша задача — найти расстояние от вершины s до вершины t. Что такое случайный граф? Рёбра равномерно случайного веса между равномерно случайными вершинами.

Формат входных данных

На первой строке $n \ m \ s \ t \ (1 \le n \le 100\ 000,\ 0 \le m \le 200\ 000,\ 1 \le s,t \le n)$. На следующих m строках тройки чисел $a_i\ b_i\ w_i\ (1 \le a,b \le n,\ |w|<10^9)$, рёбра из $a_i\ b_i$ веса w_i .

Формат выходных данных

Одно число – длину кратчайшего пути.

Если пути из s в t не существует, выведите число 10^{18} .

Примеры

fb.in	fb.out
2 0 1 2	10000000000000000
3 4 1 3	5
1 2 20	
2 3 -15	
1 3 10	
3 1 -4	

Замечание

Это простая задача. Достаточно реализовать алгоритм Форд-Беллмана с очередью.

11.Advanced [2/4]

Задача 11В. Path. Кратчайший путь [0.5 sec, 256 mb]

Дан взвешенный ориентированный граф и вершина s в нем. Требуется для каждой вершины u найти длину кратчайшего пути из s в u.

Формат входных данных

Первая строка входного файла содержит n, m и s — количество вершин, ребер и номер выделенной вершины соответственно ($2 \le n \le 2000$, $1 \le m \le 6000$).

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной, конечной вершиной и весом ребра. Вес каждого ребра — целое число, не превосходящее 10^{15} по модулю. В графе могут быть кратные ребра и петли.

Формат выходных данных

Выведите n строк — для каждой вершины u выведите длину кратчайшего пути из s в u, '*' если не существует путь из s в u и '-' если не существует кратчайший путь из s в u.

Пример

path.in	path.out
6 7 1	0
1 2 10	10
2 3 5	-
1 3 100	-
3 5 7	-
5 4 10	*
4 3 -18	
6 1 -1	

Замечание

Задача на алгоритм Форда-Беллмана.

Задача 11С. Лабиринт знаний [0.5 sec, 256 mb]

Участникам сборов подарили билеты на аттракцион "Лабиринт знаний". Лабиринт представляет собой N комнат, занумерованных от 1 до N, между некоторыми из которых есть двери. Когда человек проходит через дверь, показатель его знаний изменяется на определенную величину, фиксированную для данной двери. Вход в лабиринт находится в комнате 1, выход — в комнате N. Каждый участник сборов проходит лабиринт ровно один раз и набирает некоторое количество знаний (при входе в лабиринт этот показатель равен нулю). Ваша задача — показать наилучший результат.

Формат входных данных

Первая строка входного файла содержит целые числа N ($1 \le N \le 2000$) — количество комнат и M ($0 \le M \le 10000$) — количество дверей. В каждой из следующих M строк содержится описание двери — номера комнат, из которой она ведет и в которую она ведет (через дверь в лабиринте можно ходить только в одну сторону), а также целое число, которое прибавляется к количеству знаний при прохождении через дверь (это число по модулю не превышает 10000). Двери могут вести из комнаты в нее саму, между двумя комнатами может быть более одной двери.

Формат выходных данных

В выходной файл выведите ":)" — если можно пройти лабиринт и получить неограниченно большой запас знаний, ": (" — если лабиринт пройти нельзя, и максимальное количество набранных знаний в противном случае.

Пример

maze.in	maze.out
2 2	5
1 2 5	
1 2 -5	

Замечание

Задача на алгоритм Форда-Беллмана.

Алгоритмы и структурам данных: ДЗ #11, fb и floyd СПб, CS-Center, осенний семестр 2015/16

Задача 11D. Цикл отрицательного веса [0.5 sec, 256 mb]

Дан ориентированный граф. Определите, есть ли в нем цикл отрицательного веса, и если да, то выведите его.

Формат входных данных

Во входном файле в первой строке число N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках находится по N чисел — матрица смежности графа. Все веса ребер не превышают по модулю $10\,000$. Если ребра нет, то соответствующее число равно $100\,000$.

Формат выходных данных

В первой строке выходного файла выведите «YES», если цикл существует или «NO» в противном случае. При его наличии выведите во второй строке количество вершин в искомом цикле и в третьей строке — вершины входящие в этот цикл в порядке обхода.

Пример

negcycle.in	negcycle.out
2	YES
0 -1	2
-1 0	1 2

Замечание

Можно решить эту задачу алгоритмом Флойда. А можно алгоритмом Форда-Беллмана.

Задача 11E. Отрицательный цикл [0.5 sec, 256 mb]

Дан взвешенный ориентированный граф. Требуется определить, содержит ли он цикл отрицательного веса. Гарантируется, что все вершины графа достижимы из первой.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ($n \le 1111$, $m \le 11111$). Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается тремя числами b_i , e_i и w_i — номера концов ребра и его вес соответственно ($1 \le b_i, e_i \le n, -100\,000 \le w_i \le 100\,000$). Обратите внимание, что в графе могут быть кратные ребра и петли.

Формат выходных данных

Первая строка выходного файла должна содержать **yes**, если граф содержит цикл отрицательного веса и **no** в противном случае.

Пример

negcycle.in	negcycle.out
4 4	yes
2 1 -4	
1 2 1	
3 4 2	
2 3 3	
4 6	no
2 1 4	
1 2 1	
3 4 2	
2 3 3	
1 1 2	
1 2 2	

Замечание

Задача на алгоритм Форда-Беллмана.

11.Hard [0/2]

Задача 11F. Цикл минимального среднего веса [0.5 sec, 256 mb]

Дан ориентированный граф, содержащий n вершин и m ребер. Каждое ребро имеет некоторый вес. Простым циклом называется последовательность рёбер $(a_1,b_1),(a_2,b_2),\ldots,(a_k,b_k)$ такая, что все a_i различны, $b_i=a_{i+1}, b_k=a_1$. Весом цикла называется сумма весов составляющих его ребер. Средним весом цикла называется отношение веса цикла к числу составляющих его ребер.

Требуется найти в графе простой цикл минимального среднего веса.

Формат входных данных

Первая строка входного файла содержит числа n и m ($3 \le n \le 1000$, $3 \le m \le 2000$). Следующие m строк описывают ребра графа. Каждое ребро описывается тремя целыми числами u_i , v_i и w_i : номер начальной вершины, номер конечной вершины и вес ребра ($1 \le u_i, w_i \le n, -1000 \le w_i \le 1000$). Гарантируется, что в графе есть цикл. В графе может быть несколько ребер между одной и той же парой вершин, а также могут быть петли.

Формат выходных данных

На первой строке выведите число z — минимальный возможный средний вес цикла в заданном графе. На второй строке выведите число k — число ребер в таком цикле. На третьей строке выведите k чисел — номера ребер в порядке обхода вдоль цикла. Ребра пронумерованы от 1 до m в порядке, в котором они заданы во входном файле. Если возможных циклов несколько, можно вывести любой. Требуется вывести простой цикл. Число z должно быть выведено с абсолютной или относительной погрешностью 10^{-9} .

Пример

meancycle.in	meancycle.out
5 8	2.5
1 2 10	4
2 3 1	2 3 4 7
3 4 2	
4 5 3	
5 1 8	
5 5 7	
5 2 4	
3 5 4	

Замечание

Подумайте про бинарный поиск по ответу...

Задача 11G. Потенциал [0.5 sec, 256 mb]

Дан взвешенный ориентированный граф. Пусть у каждой вершины есть потенциал Φ_i . Тогда к весу каждого ребра прибавляется потенциал начала и вычитается потенциал конца. Требуется найти такие целые Φ_i , чтобы веса у всех рёбер были одинаковыми.

Формат входных данных

В первой строке задано целое число t — количество тестовых случаев.

В первой строке каждого тестового случая заданы целые числа n и m ($1 \le n \le 300\,000$, $0 \le m \le 300\,000$) — количество вершин и рёбер в графе. В следующих m строках задано по три целых числа x_i, y_i и w_i ($1 \le x_i, y_i \le n, -10^9 \le w_i \le 10^9$) — начало, конец и вес ребра. Гарантируется, что граф не содержит кратных рёбер и петель.

Также гарантируется, что сумма всех n и m по всем тестовым случаям не превосходит $600\,000$.

Формат выходных данных

Для каждого тестового случая выведите «YES», если существует целочисленное решение, и «NO» в противном случае.

Если ответ положительный, то в следующей строке выведите n целых чисел — потенциалы вершин. Все выведенные числа должны быть не больше 10^{18} по абсолютной величине. Гарантируется, что если ответ существует, то существует и ответ, удовлетворяющий этому ограничению.

Если возможных ответов несколько, выведите любой из них.

Пример

potential.in	potential.out
2	YES
5 4	0 -1 1 2 181
1 2 -1	YES
2 3 2	0 0 0 0 -1
3 4 1	
4 5 179	
5 5	
1 2 1	
2 3 1	
3 4 1	
4 5 0	
5 1 2	