Hazard Analysis Flick Picker

Team 7, 7eam
Talha Asif - asift
Jarrod Colwell - colwellj
Madhi Nagarajan - nagarajm
Andrew Carvalino - carvalia
Ali Tabar - sahraeia

April 6, 2023

Contents

1	Introduction	1
2	Scope and Purpose	1
3	Background	1
4	System Boundary	1
5	Scope of Hazard Analysis	2
6	Definition of Hazard	3
7	Critical Assumptions	3
8	Failure Modes and Effects Analysis	4
9	Safety Requirements 9.1 Access Requirements 9.2 Integrity Requirements 9.3 Privacy Requirements 9.4 Efficiency Requirements 9.5 Algorithm Requirements	7 7 8 8 8
10) Roadman	8

Revision History

Table 1: Revision History

Date	Developer(s)	Change
October 17	Jarrod Colwell	Created document structure
October 17	Talha Asif	Modifying Doc Structure
October 17	Talha Asif	Added introduction section content
October 17	Jarrod Colwell	Added scope and purpose section con-
		tent
October 19	Andrew Carvalino	Definition of Hazard and Critical As-
		sumptions
October 19	Talha Asif	Adding Section 8
October 19	Ali Tabar	Adding Sections 5 and 6
October 19	Madhi Nagarajan	Adding Sections 3 and 4
October 19	Jarrod Colwell	Section 1-4 editing
October 19	Jarrod Colwell	Section 5 editing

1 Introduction

Before going any further with system design, it is crucial to conduct a hazard analysis of the system from an engineering perspective. The goal is to identify critical safety concerns the users of the application could face, and the solutions to them. Hazards will be identified and eliminated or mitigated using the Failure Modes and Effects Analysis (FMEA).

2 Scope and Purpose

This document covers the various areas in which the system is most vulnerable, including but not limited to:

- External Resource Integration Points
- Server Communication
- TODO: Add more here or delete

Along with identifying the vulnerable areas of the system, this document also covers the strategies, both elimination and mitigation, and new security requirements to reduce or eliminate the impact that these hazards have.

3 Background

Flick Picker is a web application that finds the most compatible movie, TV show, or Anime for an individual user or a group of users. Users will have the ability to set their preferences related to TV Shows, Movies, or Anime. Based on these preferences, the system will produce personalized recommendations for the individual user or the group.

4 System Boundary

The list below identifies the various components of the system:

- 1. Web Application
 - (a) Authentication: Verifies and logs the user into the system.

- (b) Profile Management: Stores and manages the user's profile, including their username, preferences, groups etc. Note that this data is stored
- (c) Recommendation System: Provides movie/TV show recommendations to users and groups.
- 2. The user's Physical Device (Laptop or Phone)
- 3. External APIs (OMDb, MyAnimeList etc.): Our application requires these APIs to collect movie and TV show records.
- 4. Database: Storing user data on our database, through Firebase.
- 5. Deployments: Builds and deployments will be managed by Jenkins/GitHub Workflow.

The system boundary includes the entire Flick Picker Application, and application database. Note that user's device and APIs are external elements, therefore not part of the system boundary. Firebase/Google maintains the uptime of our application and database. We also make use of Jenkins/GitHub Workflow for CI/CD of our application.

5 Scope of Hazard Analysis

This document will identify safety concerns and solutions that users may face via:

- Defining what a hazard is in this context
- Stating the critical assumptions that are being made by the system
- Providing a Failure Modes and Effects Analysis of the components of the system
- Outlining the safety requirements that are a byproduct of that analysis
- Outlining a roadmap of when the hazard analysis may be consulted or further adjusted

6 Definition of Hazard

A hazard, as defined by Nancy Leveson, is a property or condition in the system, that may cause some sort of loss when combined with an environmental condition.

7 Critical Assumptions

- 1. System will not have direct access to users' hardware (ex. specific CPU registers)
- 2. Files will not be downloaded onto the users' device without the explicit consent of the user (should that be a feature of the system)
- 3. Users' private information will not be sold or intentionally disclosed to any third parties

8 Failure Modes and Effects Analysis

Below are tables containing the full Failure Modes and Effects Analysis.

Table 2: Failure Modes and Effects 1

Component	Failure Modes	Effects of Fail-	Causes of Failure	Recommended	SR
		ure		Actions	
Database	Data is deleted	All user data is	Database Failure	Regular back-	IR1, IR2, IR3
	on accident	lost		ups exist where	
				data can be	
				rolled back on	
				demand	
	Data is un-	User cannot	Database Failure	Refer Above	IR7
	available	access data			
Profile Man-	Data is modi-	User data is	Database Failure	System alerts	$\bar{\text{IR2}}$
agement	fied incorrectly	not updated		if data is not	
				modified when	
				requested	
Authentication	User cannot lo-	User cannot	Authentication	Use the correct	AR1, PR1
	gin	view recom-	Failure	credentials	
		mendations or			
		friends			

Table 3: Failure Modes and Effects 2

Component	Failure Modes	Effects of Fail-	Causes of Failure	Recommended	SR
		ure		Actions	
Authentication	Impersonated	User data is	Database Security	Reset superad-	AR2
	Superadmin	changed on	Failure	min password	
	manipulates	back-end, or		and rollback	
	user's database	deleted		database	
Recommendation	Recommendation	Group will be	Preference Error	Group has to	ALGR1
System	misses prefer-	given a rec-		try a new rec-	
	ences	ommendation		ommendation	
		which does		or modify their	
		not match all		preferences as	
		preferences		none would	
				match]
	Recommendation	Group is given	Algorithmic Effi-	Server must be	ER1
	generation takes	recommen-	ciency Error	able to handle	
	too long	dations too		influx of re-	
		slowly		quests at busy	
				times	
	Recommendation	*	Algorithmic Error	Review and	ALGR2
	generation is	vidual is given		recreate error	
	incorrect	recommenda-		to determine	
		tions that do		where the algo-	
		not meet their		rithm is making	
		preferences at		mistakes and fix	
		all			

Table 4: Failure Modes and Effects 3

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended	SR
				Actions	
Physical De-	Application	Unsaved user	General browser	Reopen browser	IR6
vice	Crashes	data can be lost	crash	application and	
				fill in any data	
				that was not	
				saved	
Deployments	Pipeline Not Au-	The current	GitHub Error	Manually start	IR4, IR5
	tomatically Run	build of will look		pipeline	
		like it has no			
		issues but the			
		tests were not			
		run			

9 Safety Requirements

Below are the Requirements that have been formed by the above analysis.

9.1 Access Requirements

These requirements ensure that user data is only accessible to the correct users (superadmin and the user them self).

- AR1: Users can only access and modify their own data.
- AR2: Only a superadmin can modify the database directly, which there is only one of.

9.2 Integrity Requirements

These requirements revolve around the user's data, our database, our deployment, and the user's device. These requirements ensure that the application maintains its own health, the health of the user's device, and the health of the data.

- IR1: User data is not modified without their permission. (In table)
- IR2: Database backups occur daily. (In table)
- IR3: Database backups are kept for at minimum one month. (In table)
- IR4: CI/CD Pipeline is run before every deployment to ensure a healthy application state. (In table)
- IR5: CI/CD Pipeline is run on every new code change before it can be merged. (In table)
- IR6: Application crashes will not cause the device to stop working. (In table)
- IR7: Database will be available as long as the service is available. (In table)

9.3 Privacy Requirements

This requirement ensures that access to the application data and user data requires proper authentication.

• PR1: Users have to login with their credentials to access application data. (In table)

9.4 Efficiency Requirements

This requirement ensures that users do not have to wait a long period of time before receiving their recommendation, preventing the user from thinking that the page has frozen.

• ER1: Algorithm must complete the generation of recommendations in a reasonable time (Less than 5 seconds) and be able to report that information to the UI. (In table)

9.5 Algorithm Requirements

These requirements ensure that the algorithm functions in edge cases and will ensure proper functionality of the algorithm.

- ALGR1: Algorithm must be able to generate recommendations even if there is no perfect match to the user or group's preferences. (In table)
- ALGR2: Algorithm must generate recommendations that align in some way with the user or group's preferences. (In table)

10 Roadmap

The safety requirements determined within this document will be considered throughout the development of the project. After completion of key components (Frontend, Backend, Database etc.), hazard analysis will be conducted to ensure that potential risks are mitigated. If any issues or risks are discovered, action will be taken immediately to resolve them.