Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο: Ιωάννης Λουδάρος	AM:	1067400	Έτος:	50
----------------------------	-----	---------	-------	----

Ασκηση 1

Ερώτηση α (Ερωτήματα 1,2,3) Συμπληρώστε τον παρακάτω πίνακα με τα μέτρα απόκρισης συχνότητας των φίλτρων που σχεδιάσατε.

Επίσης ακούστε το σήμα μετά το φιλτράρισμα. Τι παρατηρείτε;

Δεν υπάρχει σήμα στο ερώτημα αυτό. Θα απαντήσω στο επόμενο

Απάντηση:

Ασκηση 2

Ερώτηση α-γ

Σχεδιάστε την απόκριση συχνότητας.

Παρατηρούμε ότι το αποθορυβοποιημένο σήμα είναι πιο εύληπτο από το θορυβώδες σήμα, παρόλα αυτά ο ήχος μας παραμένει να είναι μολυσμένος στις συχνότητες που υπάρχει το αρχικό σήμα και άρα δεν καταφέρνουμε να το επαναφέρουμε πλήρως στην αρχική του κατάσταση.

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο:	Ιωάννης Λουδάρος	AM:	1067400	Έτος:	50
--------	---------------------	-----	---------	-------	----

Ερώτηση δ

Σχεδιάστε τα πρώτα και τελευταία 100 δείγματα ενός εκ των τριών αποθορυβοποιημένων σημάτων που προέκυψαν από την εφαρμογή του εκάστοτε φίλτρου στο σήμα $y_w(n)$ και τα αντίστοιχα του ιδανικού σήματος $y_o(n)$ και σχολιάστε την διάρκεια των μεταβατικών φαινομένων (αν υπάρχουν).

Απάντηση:

y (1:100) $y (end - 100:end)$

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

	Ον/μο:	Ιωάννης Λουδάρος	AM:	1067400	Έτος:	50
--	--------	---------------------	-----	---------	-------	----

Ερώτηση ε Υπολογίστε το μέσο τετραγωνικό σφάλμα (MSE) για κάθε ένα από τα αποθορυβοποιημένα σήματα. Αξιολογήστε την απόδοση κάθε φίλτρου. Είναι αυτή η απόδοση σε πλήρη συμφωνία με αυτό που ακούτε; Πού αποδίδετε την ασυμφωνία (αν υπάρχει);

Απάντηση:

Το μέσο τετραγωνικό σφάλμα, αφού τρέξαμε το πείραμα μας αρκετές φορές φαίνεται να διαμορφώνεται ως εξής: Το μικρότερο το έχει η fir1, αμέσως μεγαλύτερο είναι της firls και το μεγαλύτερο εμφανίζεται στην firpm.

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο:	Ιωάννης Λουδάρος	AM:	1067400	Έτος:	50
--------	---------------------	-----	---------	-------	----

Ακουστικά δεν παρατηρούμε διαφορά. Το ανθρώπινο αυτί δεν είναι αρκετά ευαίσθητο για να διακρίνει τόσο μικρές διαφορές.

Άσκηση 3

Ερώτηση α Καταγράψτε τα πιθανά είδη θορύβου που έχουν κατά τη γνώμη σας μολύνει το σήμα εισόδου.

Απάντηση:

Ακούγοντας το σήμα μας καταλαβαίνουμε ότι ο θόρυβος δεν είναι λευκός, αφού έχει προστεθεί μονάχα ένας υψίσυχνος ήχος.

Ερώτηση β

Αριστερά βλέπουμε το σήμα στο πεδίου του χρόνου και δεξιά στο πεδίο των συχνοτήτων (σε dB).

Ερώτηση γ Αιτιολογήστε την επιλογή της κατηγορίας του φίλτρου που επιλέξατε να χρησιμοποιήσετε.

Απάντηση:

Επιλέγω χαμηλοπερατό φίλτρο, αφού θέλω να αφαιρέσω τον θόρυβο που υπάρχει στις υψηλές συχνότητες.

Απόκριση συχνότητας φίλτρου

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο: Ιωάννης Λουδάρος	AM:	1067400	Έτος:	50
----------------------------	-----	---------	-------	----

Ερώτηση ε

Απάντηση:

Για να πάρω σκέτο τον θόρυβο έφτιαξα το αντίστοιχο υψιπερατό φίλτρο. Τα πρώτα δύο γραφήματα δείχνουν ολόκληρα τα σήματα, ενώ τα επόμενα δύο μόνο τα 250 δείγματα που ζητούνται.

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο:	Ιωάννης Λουδάρος	AM:	1067400	Έτος:	50
--------	---------------------	-----	---------	-------	----

ПАРАРТНМА

Τον κώδικα μπορείτε να τον βρείτε στο αρχείο Ex2.mlx που βρίσκεται στον ίδιο κατάλογο με το παρόν έγγραφο.