Experiment No.: 03

Title: Write a program to implement Multiple Linear Regression

Objectives: 1. To learn **Multiple linear regression**

Theory:

Most of time output Y can not be predicted by single independent variable but needs multiple Independent variables.

The Regression that has one output variable and more than one input/independent variables with Linear relationship between input and output is called as **multiple linear regression**.

Example:

y = h(x)

 $= w0 + w1x1 + w2x2 + w3x3 + \dots$

Prediction of house price based on size of house, age of house, distance from the center of city, etc.

Coefficient

The coefficient is a factor that describes the relationship with an unknown variable.

Example: if x is a variable, then 2x is x two times. x is the unknown variable, and the number 2 is the coefficient.

e.g.

 House price prediction based on size of the house, number of rooms in the house, Number of floors, Age of the building, open space around the building.

Here:

y = House Price

 X_1 = Size of the House

 X_2 = Number of Rooms

 X_3 = Number of floors

 X_4 = Age of the building

 X_5 = open space

Sr. No.	X ₁	X ₂	X ₃	X ₄	X ₅	у
0	X_1^0	X_{2}^{0}	X_3^0	X_4^0	X_5^0	y ⁰
1	X_1^{-1}	X_{2}^{-1}	X_{3}^{-1}	X_4^{-1}	X ₅ ¹	y¹
2	X ₁ ²	X_{2}^{2}	X ₃ ²	X ₄ ²	X ₅ ²	y ²
3	X ₁ ³	X ₂ ³	X ₃ ³	X ₄ ³	X ₅ ³	y^3
4	X ₁ ⁴	X ₂ ⁴	X ₃ ⁴	X ₄ ⁴	X ₅ ⁴	y ⁴

Response or Target variable \hat{y} is defined as

$$\hat{y} = h(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + ... + w_n x_n$$

Where

 $X_1, X_2, X_3, \dots, X_n$ are input/independent/predictor variables \hat{y} is the output variable.

W₀,W₁,W₂,, W_n are parameters or coefficients of regression.

Since there is possibility of difference between actual output value and Predicted value, we can write actual output as

$$y = \hat{y} + e = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + ... + w_n x_n + e$$

 $e = y - w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + ... + w_n x_n$
 $= y - \hat{y}$
if e is negative, $e = \hat{y} - y$

Parameter Estimation in Multiple Linear Regression:

Gradient Descent Algorithm is used to estimate parameters in Multiple Linear Regression

The Cost function is:

$$J(W) = \frac{1}{2n} \sum_{i=1}^{n} (h(x^{i}) - y^{i})^{2}$$

Xⁱ ith input in the dataset yⁱ ith output in the dataset

Basic Gradient Descent Algorithm:

Repeat Until Converge
$$\{ \\ w_{new} = w_{old} - \eta \frac{\partial J(w)}{\partial w}$$
 }

Algorithm-

- 1] Import all necessary libraries.
- 2] Read data set into pandas dataframe
- 3] Create linear Regression object
- 4] Train model using fit function
- 5] Use build model for prediction