Classical Ciphers Analysis

Computer Science and Engineering
Indian Institute of Information Technology Sri
City, India

Cryptography

- Encryption algorithm also called a cipher
- Cryptography has evolved so that modern encryption and decryption use secret keys

Kerckhoffs' Principle

- Cryptographic algorithms can be openly published
- Only have to protect the keys

Symmetric-Key Cryptography

- Both sender and receiver keys are the same: $K_A = K_B$
- The keys must be kept secret and securely distributed
 - Thus, also called "Secret Key Cryptography"
- Data Encryption Standard (DES)

Classical Techniques

- Substitution Techniques
 - Shift Cipher Caesar Cipher
 - Affine Cipher
 - Vigenere Cipher
 - Hill Cipher (Tutorial)
- Transposition Techniques
 - Rail Fencing
 - Permutation/Transposition cipher

Transposition cipher techniques

- 1. Rail Fence Cipher
- 2. Columnar Transposition
 - Simple Columnar Transposition
 - Double Columnar Transposition

Rail Fence Cipher

- In this method plain text is written downwards on "rails of fence", starting a new column when bottom is reached.
- Algorithm:
- 1. First write down plain text message as a sequence of diagonals.
- 2. Read the plain text written in first step as a sequence of rows.

Example: welcome home

Simple Columnar Transposition

• Algorithm:

- 1. Write the plain text message row by row in a rectangle of predefined size (length of key)
- 2. Read the message column by column according to the selected order, thus obtained message is a cipher text.

plain text: welcome home

Key: 632415

1	2	3	4	5	6
W	Е	L	C	О	M
Е	Н	О	M	Е	

Cipher text:

Double Columnar Transposition

- Single columnar transposition can be attack by guessing possible column lengths.
- Therefore to make it stronger double transposition is used.
- This is simple columnar transposition technique applied twice.
- Here same key can be used for transposition or two different keys can be used.

Double Columnar Transposition

First apply simple columnar transposition

plain text: welcome home

Key: 632415

1	2	3	4	5	6
W	E	L	C	О	M
Е	Н	О	M	Е	Z

Cipher text: MLOEHCMWEOE

Double Columnar Transposition

Cipher text 1: MLOEHCMWEOE

Order: 632415

1	2	3	4	5	6
M	L	О	Е	H	C
M	W	Е	0	E	

Final Cipher Text: COELWEOMMHE

Plaintext : Cryptography Course

Key : 2314

Cyphertext:

\Rightarrow	ROPOEYGHUZCTACS
	PRYRZ

Confusion and Diffusion

Terms courtesy of Claude Shannon, father of Information Theory

- "Confusion" = Substitution
 - $a \rightarrow b$
 - Caesar cipher
- "Diffusion" = Transposition or Permutation
 - abcd -> dacb

Confusion and Diffusion

• "Confusion": a classical Substitution Cipher

 Modern substitution ciphers take in N bits and substitute N bits using lookup table: called S-Boxes

Confusion and Diffusion

• "Diffusion": a classical Transposition cipher

 Modern Transposition ciphers take in N bits and permute using lookup table: called P-Boxes

Block Cipher

• Divide input bit stream into n-bit sections, encrypt only that section, no dependency/history between sections

Example: DES

- Data Encryption Standard (DES)
 - Block size 64 bits
 - Key size 56 bits
 - A combination of diffusion and confusion
 - Cracked in 1997
 - Parallel attack exhaustively search key space

Beyond DES

- Triple-DES:
 - put the output of DES back as input into DES again with a different key, loop again: 3*56 = 168 bit key
- Advanced Encryption Standard (AES)
 - Requirements:
 - The key length may be increased as needed.
 - Block size n = 128 bits
 - Key size k = 128, 192, 256 bits
- Candidates: MARS, twofish, RC6, Serpent, Rijndael
- Successor (Rijndael)

Encryption Mode (ECB)

• Electronic Code Book (ECB) mode for block ciphers of a long digital sequence

- Vulnerable to replay attacks: If an attacker thinks block C_2 corresponds to X amount, then substitute another C_k
- Attacker can also build a codebook of $\langle C_k, \text{ guessed } P_k \rangle$ pairs

Encryption Mode (CBC)

• Cipher Block Chaining (CBC) mode for block ciphers

- Inhibits replay attacks and codebook building:
 - Identical input plaintext $P_i = P_k$ won't result in same output code due to memory-based chaining
- IV = Initialization Vector use only once

Stream Cipher

• Stream ciphers

- XOR each bit of your plaintext continuous stream with a bit from a pseudo-random sequence
- At receiver, use same symmetric key, XOR again to extract plaintext

Encryption Mode (OFB)

 Output Feedback (OFB) mode makes a block cipher into a synchronous stream cipher

THANK YOU