CS5590: Exam - 1

7:45pm-9:15pm, 03-Sep-2019

ROLL NO.

Note: Fill in the blanks/boxes appropriately such that the respective statements become true. While filling the blanks/boxes strictly follow the instructions in the respective question appearing immediately after/before the blank/box. You are free to use any standard mathematical symbols like $\pi, e, \Sigma, \|\cdot\|$, log, max etc. Answers that are not simplified enough, (correct) answers in wrong format, illegible writings, and those outside the blanks/boxes, will be ignored by the evaluator. Please attempt the problems in rough sheets first and prepare answers for all the blanks/boxes in rough. Then fair copy them in this sheet while respecting the boundaries of the blanks/boxes.

1. Consider a binary classification problem with input space $\mathcal{X} = \mathbb{R}^n$, and output space $\mathcal{Y} = \{-1,1\}$. Consider a training set given by $= \{(x_0,1),(-x_0,-1)\}$, where $x_0 \in \mathcal{X} \neq 0$ is a given fixed point. It is proposed to employ the logistic loss and the linear inductive bias (without the norm-bound). Then, the simplified expression for the ERM problem is:

Your expression in the previous blank must involve w, x_0 only.

[1 Mark]

In the box below argue that this optimization problem as no solution:

Since log, e are nonetonic, the Phothem's equipment to not were protoco fortin of 1 will. i. No Solm.

[1 Mark]

Now, the inductive bias is changed to linear functions with norm-bound given by hyperparameter W=1. Then, the optimal solution, \hat{w} , of the corresponding ERM problem in it's original form involving the hyperparameter W is given by: $\hat{w} = \frac{2}{2} \sqrt{|\hat{x}|}$. This expression must involve x_0 alone.

[0.5 Mark]

The above exercise highlights yet another advantage of the norm-bounded linear functions over the set of all linear functions!

¹Here, the ERM is not re-written in the Tikhonov form i.e., it is NOT rewritten in the regularized risk minimization form.

2. Assume you have a classification problem with 3 classes: ' \maltese ', '†', and ' \P '. The loss function, l, you would employ if you were restricted to model only one real-valued function, f, is given by $l(x, \maltese, f) \equiv \underbrace{1_{\{u, v, v\}}}_{l}, \ l(x, \P, f) \equiv \underbrace{1_{\{u, v, v\}}}_{l}, \ l(x, \P, f) \equiv \underbrace{1_{\{u, v, v\}}}_{l}$.

[1.5 Marks; Practice set problem!]

Suppose you re allowed to model 3 real-valued functions, say, f, g, h. Then, the loss function you would employ is given by: $l(x, \mathbf{H}, (f, g, h)) \equiv \underbrace{r(x, \mathbf{H}, (f, g, h))}_{\mathbf{H}, \mathbf{H}, \mathbf$

[2 Marks; Practice set problem!]

3. Consider a regression problem where the input space, $\mathcal{X} = \mathbb{R}^n$, and the output space, $\mathcal{Y} = \mathbb{R}$. It is proposed to use the inductive bias as the set of all affine functions:

$$\mathcal{G} \equiv \left\{g \mid \exists \; w \in \mathbb{R}^n, \; b \in \mathbb{R} \; \ni \; g(x) = w^ op x - b \; orall \; x \in \mathcal{X}
ight\}.$$

The parameters are $w \in \mathbb{R}^n$, $b \in \mathbb{R}$. The loss to be used is the square loss. Let the input vectors in the training set be arranged as column vectors in the matrix $X_{n \times m}$, where m is the training set size. Let $y_{m \times 1}$ denote the vector with entries as the corresponding outputs in the training set. Let us denote the q-dimensional vector with all entries as unity by 1_q . Then, the simplified expression for the ERM optimization problem written in terms of $X, y, 1_m, w, b$ is given by:

$$\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left[\frac{1}{m} \left(\left| \left(\mathbf{X}^{\mathsf{T}} \boldsymbol{\omega} - \mathbf{b} \mathbf{1}_{\mathsf{m}} - \mathbf{Y} \right| \right|^{2} \right) \right]$$

Your expression in the previous blank must not use explicit symbols for columns, entries of X, y. In other words, please employ vector operations rather than scalar ones.

[1 Mark]

Now, if the inductive bias is changed to norm-bounded affine functions:

$$\mathcal{G}_W \equiv \left\{g \mid \exists \; w \in \mathbb{R}^n, \; b \in \mathbb{R}, \; \|w\| \leq W \; \ni \; g(x) = w^ op x - b \; orall \; x \in \mathcal{X}
ight\},$$

the simplified expression for the ERM problem in Tikhonov form² turns out to be:

$$\min_{w \in \mathbb{R}^n, b \in \mathbb{R}} \left[\frac{\|\chi^{f_{\infty}} - b1_{m} - \gamma\|^2 + \lambda \|\omega\|^2}{\|\chi^{f_{\infty}} - b1_{m} - \gamma\|^2 + \lambda \|\omega\|^2} \right]$$

Your expression in the previous blank must be in terms of $X, y, 1_m, w, b, \lambda$ only, where λ is the hyperparameter (that replaces W).

[0.5 Mark]

Now, by repeating the analysis done in the lecture for the case of linear/ridge regression, or otherwise, find an analytical expression for the optimal solution, (\hat{w}, \hat{b}) , of this problem. The optimal \hat{w} satisfies the following linear equalities:

$$(x) = (x) - x = (x) - x = (x)$$

$$\hat{y} = (x) - x = (x)$$

Your expression for the first of the previous two blanks must be only in terms of X, λ , I_n , 1_m , m, where I_n is the identity matrix of size n. And, the second must be in terms of X, y, 1_m , m.

²Regularized risk minimization form.

In the following box, please write a formal proof of why the matrix in the first of the previous two blanks, denoted by, say, P, is positive definite.

It is earlie we that Pis reprincting.	Now (yTy) (m) > (yT2m) By
It is earlier text Pis reprintance.	Candy Schnartz i regulity.
Call XX=7	:. LP370 (as 170, 470)

Hence, the optimal $\hat{w} = P^{-1}q$, where q denotes the vector in the second of the previous two blanks.

The optimal \hat{b} is given by the expression: $(\hat{\boldsymbol{x}}_{1m} - \hat{\boldsymbol{y}}_{2m})_{m}$. This expression must involve $\hat{\boldsymbol{w}}, X, y, 1_m, m$ alone.

[0.5 Mark]