Math HW6

$Matthew\ Vanaman$ 04-09-2019

6.3a, 6.4a, 6.5a, 6.6

6.1

(a)

$$f(x) = \int_{-1.96}^{1.96} \frac{1}{\sqrt{2\pi}} e^{-0.5^2} dx$$

Left

Right

Midpoint

Trapezoidal

(b)

Left

Answer:

$$A \approx \frac{0.392}{\sqrt{2\pi}} \left(\sum_{i=0}^{9} e^{-0.5^2 \left(0.392i - 1.96 \right)^2} \right).$$

Work:

The left Riemann Sum formula is:

$$A \approx \sum_{i=0}^{n-1} f\left(a + \frac{(b-a)i}{n}\right).$$

We want to find the sums for 10 partitions between -1.96 and 1.96. Which means that n = 10, a = -1.96, and a = 1.96. We also plug in the pdf for f. The Reimann Sum formula gets substituted in for x in a = 1.96.

$$\begin{split} A &\approx \sum_{i=0}^{n-1} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left(a + \frac{(b-a)i}{n} \left(\frac{b-a}{n} \right) \right)^2}, \\ &\approx \sum_{i=0}^{10-1} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left(-1.96 + \frac{(1.96 - (-1.96))i}{10} \left(\frac{1.96 - (-1.96)}{10} \right) \right)^2}, \\ &\approx \sum_{i=0}^{9} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left((0.392i - 1.96)0.392 \right)^2}, \end{split}$$

0.392 does not depend on index, and neither does the constant $\frac{1}{\sqrt{(2\pi)}}$:

$$\approx \frac{1}{\sqrt{2\pi}}(0.392) \left(\sum_{i=0}^{9} e^{-0.5\left((0.392i-1.96)0.392\right)^{2}}\right),\,$$

$$\approx \frac{0.392}{\sqrt{2\pi}} \left(\sum_{i=0}^{9} e^{-0.5^2 \left(0.392i - 1.96 \right)^2} \right).$$

[1] 0.392

Right:

Answer:

$$A \approx \frac{0.392}{\sqrt{2\pi}} \left(\sum_{i=1}^{10} e^{-0.5^2 \left(0.392i - 1.96\right)^2} \right).$$

Work:

Do the same thing here except the index is from 1 to n instead of from 0 to n-1.

$$A \approx \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left(-1.96 + \frac{1.96 - (-1.96)}{10}i\left(\frac{1.96 - (-1.96)}{10}\right)\right)^2}\right)$$

$$\approx \sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left((0.392i - 1.96)0.392\right)^2},$$

$$\approx \frac{0.392}{\sqrt{2\pi}} \left(\sum_{i=1}^{10} e^{-0.5^2 \left(0.392i - 1.96\right)^2}\right).$$

Midpoint:

Answer:

$$A \approx 0.392 \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left(-2.16 + 0.392i \right)^2} \right).$$

Work:

$$A \approx \sum_{i=0}^{n-1} f\left(a + \frac{(b-a)(i-0.5)}{n}\right).$$

We want to find the sums for 10 partitions between -1.96 and 1.96. Which means that n = 10, a = -1.96, and a = 1.96. We also plug in the pdf for f. The Reimann Sum formula gets substituted in for x in a = 1.96.

$$A \approx \left(\sum_{i=0}^{n-1} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left(a + \frac{(b-a)(i-0.5)}{n} \left(\frac{b-a}{n}\right)\right)^2}\right),$$

$$\approx \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left(-1.96 + \frac{1.96 - (-1.96)}{10} \left(\frac{(i-0.5)}{1}\right) \left(\frac{1.96 - (-1.96)}{10}\right)\right)^2}\right),$$

$$\approx \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5\left(-1.96+0.392(i-0.5)(0.392)\right)^2}\right),$$

$$\approx 0.392 \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5\left(-1.96+0.392i-0.196)\right)^2}\right),$$

$$\approx 0.392 \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5\left(-2.16+0.392i\right)\right)^2}\right),$$

$$\approx 0.392 \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5\left(-2.16+0.392i\right)\right)^2}\right).$$

Calculations

0.392 * 0.5

[1] 0.196

-1.96 - 0.196

[1] -2.16

Trapezoidal

Answer:

$$A \approx \left(\frac{0.196}{\sqrt{2\pi}}\right) \sum_{i=0}^{9} \frac{e^{-0.5(0.392i - 1.96)^2} + e^{-0.5(0.392i - 0.564)^2}}{2}.$$

Work:

$$\begin{split} A &\approx \sum_{i=0}^{n-1} \frac{b-a}{n} \frac{\frac{1}{\sqrt{2\pi}} e^{\left(a + \frac{(b-a)i}{n}\right)^2} + \frac{1}{\sqrt{2\pi}} e^{\left(a + \frac{(b-a)i+1}{n}\right)^2}}{2} \frac{b-a}{n}, \\ &\approx \sum_{i=0}^{10-1} \frac{1.96 - (-1.96)}{10} \frac{\frac{1}{\sqrt{2\pi}} e^{\left((-1.96) + \frac{(1.96 - (-1.96))i}{10}\right)^2} + \frac{1}{\sqrt{2\pi}} e^{\left((-1.96) + \frac{(1.96 - (-1.96))i+1}{10}\right)^2}}{2} \\ &\approx \sum_{i=0}^{9} (0.392) \frac{\frac{1}{\sqrt{2\pi}} e^{-0.5(0.392i-1.96)^2} + \frac{1}{\sqrt{2\pi}} e^{-0.5(0.392i-0.564)^2}}{2}, \\ &\approx \frac{0.392}{2} \left(\frac{1}{\sqrt{2\pi}}\right) \sum_{i=0}^{9} \frac{e^{-0.5(0.392i-1.96)^2} + e^{-0.5(0.392i-0.564)^2}}{2}, \\ &\approx \left(\frac{0.196}{\sqrt{2\pi}}\right) \sum_{i=0}^{9} \frac{e^{-0.5(0.392i-1.96)^2} + e^{-0.5(0.392i-0.564)^2}}{2}. \end{split}$$

0.392 /2

[1] 0.196

(c)

Left

Answer: 0.947

Work:

Just plug in to x each level of n from 0 - 9:

$$A \approx \frac{0.392}{\sqrt{2\pi}} \left(\sum_{i=0}^{9} e^{-0.5^2 \left(0.392i - 1.96 \right)^2} \right).$$

[1] 0.947

Right

Answer:

0.947

** Work:**

Same thing, except runs from 1-10 instead of 0-9. Not surprising that it gives you the same answer:

[1] 0.947

Midpoint

Answer: 0.951

Work:

$$A \approx 0.392 \left(\sum_{i=1}^{10} \frac{1}{\sqrt{2\pi}} e^{-0.5 \left(-2.16 + 0.392i \right)^2} \right).$$

[1] 0.951

Trapezoidal

Answer:

0.947

$$A \approx \left(\frac{0.196}{\sqrt{2\pi}}\right) \sum_{i=0}^{9} \frac{e^{-0.5(0.392i - 1.96)^2} + e^{-0.5(0.392i - 0.564)^2}}{2}$$

```
e^(-0.5 * (0.392 * (6 + 1) - 1.96)^2) +
e^(-0.5 * ((0.392 * 7) - 1.96)^2) +
e^(-0.5 * (0.392 * (7 + 1) - 1.96)^2) +
e^(-0.5 * ((0.392 * 8) - 1.96)^2) +
e^(-0.5 * (0.392 * (8 + 1) - 1.96)^2) +
e^(-0.5 * ((0.392 * 9) - 1.96)^2) +
e^(-0.5 * ((0.392 * 9) - 1.96)^2)
)
```

[1] 0.947

6.2

(a)

Answer:

$$=\frac{x^{101}}{101}+3e^x-7\frac{4^x}{1.39}+c.$$

Work:

$$F(x) = \int x^{100} + 3e^x - 7(4^x)dx,$$

$$= \int x^{100}dx + \int 3e^x dx - \int 7(4^x)dx,$$

$$= \frac{x^{100+1}}{100+1} + \int 3e^x dx - \int 7(4^x)dx,$$

$$= \frac{x^{101}}{101} + 3\int e^x dx - 7\int (4^x)dx,$$

$$= \frac{x^{101}}{101} + 3e^x - 7\frac{4^x}{\ln(4)} + c,$$

$$= \frac{x^{101}}{101} + 3e^x - 7\frac{4^x}{139} + c.$$

Should $3 * \int e^x dx$ become $3 * e^x + c$?

(b)

Answer:

87.7

$$F(x) = \int_{1}^{9} 5\sqrt{x} \, dx + \frac{3}{x^{4}} dx,$$
$$= \int_{1}^{9} 5\sqrt{x} \, dx + \int \frac{3}{x^{4}} dx,$$

$$= 5 \int_{1}^{9} \sqrt{x} \, dx + 3 \int \frac{1}{x^{4}} dx,$$

$$= 5 \int_{1}^{9} x^{1/2} \, dx + 3 \int x^{-4} dx,$$

$$= 5 \frac{x^{1/2+1}}{\frac{1}{2}+1} + 3 \frac{x^{-4+1}}{-4+1},$$

$$= 5 \frac{x^{3/2}}{\frac{3}{2}} + 3 \frac{x^{-3}}{-3},$$

$$= 5 \left(x^{3/2} \frac{2}{3}\right) + 3 \left(\frac{-1}{3} x^{-3}\right),$$

$$= (x^{3/2}) \frac{10}{3} + (3) \frac{1}{x^{3}}.$$

From here, plug in the bounds and take the difference:

$$(9^{(3/2)} * 10/3 - 1/9^{3}) - (1^{(3/2)} * 10/3 - 1/1^{3})$$

[1] 87.7

(c)

Answer:

6

Work:

$$\begin{split} F(x) &= \int_{2}^{\infty} \frac{12}{x^{2}} dx, \\ &= \lim_{k \to \infty} \int_{2}^{k} \frac{12}{x^{2}} dx, \\ &= 12 \lim_{k \to \infty} \int_{2}^{k} x^{-2} dx, \\ &= 12 \lim_{k \to \infty} \int_{2}^{k} \frac{x^{-2+1}}{-2+1} dx, \\ &= 12 \lim_{k \to \infty} \frac{-1}{x}. \end{split}$$

Plug in the bounds (plugging for the -1/x since it approaches zero the higher x gets):

[1] 6

(d)

Answer: $2y^2$.

$$F(x) = \frac{d}{dy} \int_{-3}^{y^2} \sqrt{x} \ dx,$$

$$= \sqrt{y^2} \; \frac{d}{dy} y^2,$$
 Power rule...
$$= \sqrt{y^2} \; 2y,$$

$$= \sqrt{y^2 2y}$$
$$= 2y^2.$$

(e)

Answer:
$$-e^{\sqrt{z}+\ln(z)}\Big(\frac{1}{2\sqrt{z}}+\frac{1}{z}\Big).$$

Work:

$$F(x) = \frac{d}{dz} \int_{\sqrt{z} + \ln(z)}^{10} e^x dx,$$

$$= -1 \times \frac{d}{dz} \int_{\sqrt{z} + \ln(z)}^{10} e^x dx,$$

$$= -\frac{d}{dz} \int_{10}^{\sqrt{z} + \ln(z)} e^x dx,$$

$$= -e^{\sqrt{z} + \ln(z)} \frac{d}{dy} \sqrt{z} + \ln(z),$$

$$= -e^{\sqrt{z} + \ln(z)} \left(\frac{1}{2\sqrt{z}} + \frac{1}{z}\right).$$

6.3a

Answer:

$$\frac{(5x^{10} - 25x^4 + 15x)^8}{40} + c.$$

$$\int (10x^9 - 20x^3 + 3)(5x^{10} - 25x^4 + 15x)^7 dx,$$

$$\int (10x^9 - 20x^3 + 3)(5x^{10} - 25x^4 + 15x)^7 dx.$$

$$u = 5x^{10} - 25x^4 + 15x,$$

$$\frac{du}{dx} = \frac{d}{dx}(5x^{10} - 25x^4 + 15x)$$

$$\frac{du}{dx} = \frac{d}{dx}(5x^{10}) - \frac{d}{dx}(25x^4) + \frac{d}{dx}(15x),$$

$$\frac{du}{dx} = 5(10x^9) - 25(4x^3) + 15,$$

$$\frac{du}{dx} = 50x^9 - 100x^3 + 15,$$

$$\frac{1}{5}\frac{du}{dx} = (50x^9 - 100x^3 + 15)\frac{1}{5},$$

$$\frac{1}{5}\frac{du}{dx} = 10x^{10} - 20x^4 + 5x,$$

$$\frac{1}{5}du = (10x^{10} - 20x^4 + 5x)dx.$$

Substitute in u and 1/5 du:

$$\int (10x^9 - 20x^3 + 3)(5x^{10} - 25x^4 + 15x)^7 dx,$$

$$\int (u)^7 (\frac{1}{5}du),$$

$$\frac{1}{5} \int (u)^7 (du),$$

$$\frac{1}{5} \int \frac{u^8}{8} + c,$$

$$\frac{u^8}{40} + c,$$

$$\frac{(5x^{10} - 25x^4 + 15x)^8}{40} + c.$$