Decomposition of Graphs: Graph Basics

Graph

An (undirected) graph is a collection V of vertices, and a collection E of edges of each which connects a pair of vertices

Loop

Loop is an edge which connects a vertex to itself

There can be multiple edges between same set of vertices

Decomposition of Graphs: Representing Graphs

Edge list: A list of all edges

Adjacency matrix: A matrix with entries 1 if there is an edge, 0 if not

Adjacency list: A list of adjacent vertices

Op.	Is Edge?	List Edge	List Nbrs	<u> </u>
Adj. Matrix	$\Theta(1)$	$\Theta({ V }^2)$	$\Theta(V)$	
Edge List	$\Theta(E)$	$\Theta(E)$	$\Theta(E)$	
Adj. List	$\Theta(\deg)$	$\Theta(E)$	$\Theta(\deg)$	•

In dense graphs, $|E| pprox |V|^2$ because there are many edges between vertices In sparse graphs, |E| pprox |V| because there are few edges between vertices

Decomposition of Graphs: Exploring Graphs

Path

A path in a graph G is a sequence of vertices v_0, v_1, \ldots, v_n so that for all $i, (v_i, v_{i+1})$ is an edge of G

Reachability

Input: Graph G and vertex s

Output: The collection of vertices v of ${\it G}$ so that there is a path from s to v

```
Component(s):

DiscoveredNodes <- {s}

while there is an edge e leaving DiscoveredNodes that has not been explored:

add vertex at other end of e to DiscoveredNodes

return DiscoveredNodes
```

```
Explore(v):
    visited(v) <- true
    for (v, w) in E:
        if not visited(w):
            Explore(w)</pre>
```

Remark: It is a depth first search and it requires adjacency list representation.

Theorem

If all vertices start unvisited, Explore(v) marks as visited exactly the vertices reachable from v.

Proof:

- ullet Explore (v) only explores things reachable from v
- w is not marked as visited unless explored
- If w is explored, then all neighbors will also be explored
- Suppose u is reachable from v by path
- ullet Assume w furthest along path explored
- It must explore the next item in the path

```
DFS(G):
  for all v in V:
    mark v as unvisited
  for v in V:
    if not visited(v):
        Explore(v)
```

Running time:

- Each explored vertex is marked visited. No vertex is explored after visited once. Each vertex is explored exactly once, O(|V|)
- For each vertex, its neighborhood are checked. Total number of neighborhood over all vertices is O(|E|)
- Total O(|V| + |E|)

Theorem

The vertices of a graph G can be partitioned into Connected Components so that v is reachable from w if and only if they are in the same connected component.

Proof:

Need to show reachability is an equivalence relation. Namely:

- v is reachable from v
- If v is reachable from w, w is reachable from v
- If v is reachable from u, and w is reachable from v, w is reachable from u

Connected Components

Input: Graph G

Output: The connected components of G

```
Explore(v):
    visited(v) <- true
    CCnum(v) <- cc
    for (v, w) in E:
        if not visited(w):
            Explore(w)</pre>
```

```
DFS(G):
    for all v in V:
        mark v as unvisited
    cc <- 1
    for v in V:
        if not visited(v):
            Explore(v)
            cc <- cc + 1</pre>
```

Decomposition of Graphs: Previsit and Postvisit Orders

```
Explore(v):
    visited(v) <- true
    previsit(v)
    for (v, w) in E:
        if not visited(w):
            Explore(w)
        postvisit(v)</pre>
```

```
previsit(v): # Initialize clock to 1
pre(v) <- clock
clock <- clock + 1</pre>
```

```
postvisit(v):
  post(v) <- clock
  clock <- clock + 1</pre>
```

Lemma

For any vertices u and v the intervals $[\operatorname{pre}(u),\operatorname{post}(u)]$ and $[\operatorname{pre}(v),\operatorname{post}(v)]$ are either nested or disjoint

Proof:

Assume that u is visited before v. Two cases:

Find v while exploring u . It is a nested case because $\operatorname{pre}(u) < \operatorname{pre}(v)$ and $\operatorname{post}(u) > \operatorname{post}(v)$.

Find v after exploring u. It is a disjoint case because pre(v) > post(u)

Decomposition of Graphs: Directed Acyclic Graphs

Directed Graphs

A directed graph is a graph where each edge has a start vertex and an end vertex

Directed DFS

Only follow directed edges

Cycle

A cycle in a graph G is a sequence of vertices v_1, v_2, \ldots, v_n so that $(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n), (v_n, v_1)$ are all edges

Theorem

If *G* contains a cycle, it cannot be linearly ordered.

Proof:

- Suppose G has cycle v_1,\ldots,v_n and it can be linearly ordered
- Assume v_k comes first
- Then, v_k comes before v_{k-1} which leads to a contradiction

DAGs

A directed graph G is a directed acyclic graph or DAG if it has no cycle

Theorem

Any DAG can be linearly ordered

Decomposition of Graphs: Topological Sort

Source, sink

A source is a vertex with no incoming edges

A sink is a vertex with no outgoing edges

```
LinearOrder(G):
while G is non-empty:
Follow a path until cannot extend
Find sink v
Put v at the end of order
Remove v from G
```

Running time:

- The worst case is O(|V|) paths (Start from source, remove the sink and start from the source again)
- Each path takes O(|V|) time (For each path, we traverse O(|V|) nodes)
- In total $O(|V|^2)$

```
TopologicalSort(G):

DFS(G)

sort vertices by reverse post-order
```

Theorem

If G is a DAG, with an edge u to v, post(u) > post(v)

Proof:

Explore v before exploring u. We can only start to explore u after v is explored. post(u) > post(v)

Explore v while exploring u. We must finish exploring v before u is explored. So, post(u) > post(v)

Explore v after exploring u. It's impossible because there is an edge pointing from u to v

Decomposition of Graphs: Strongly Connected Components

Connectedness

Two vertices v, w in a directed graph are connected if you can reach v from w and can reach w from v.

Theorem

A directed graph can be partitioned into strongly connected components where two vertices are connected if and only if they are in the same component.

Theorem

The metagraph of a graph G is always a DAG.

Proof:

Supposed not. There must be a cycle \mathcal{C} in G. Any nodes in cycle can reach any others. Then, these nodes should be considered as in the same SCCs. It leads to a contradiction that it is a metagraph (every node of a metagraph represents a strongly connected component).

Strongly Connected Components

Input: Graph G

Output: The strongly connected components of G

```
EasySSC(G): # O(|V|^2 + |V||E|)
for each vertex v:
    run explore(v) to determine vertices reachable from v
for each vertex v:
    find the u reachable from v that can also reach v
these are the SCCs
```

Theorem

If \mathcal{C} and \mathcal{C}' are two strongly connected components with an edge from some vertex of \mathcal{C} to some vertex of \mathcal{C}' , then the largest post in \mathcal{C} is bigger than the largest post in \mathcal{C}' .

Proof:

Cases:

- Visit \mathcal{C} before visit \mathcal{C}'
- Visit \mathcal{C}' before visit \mathcal{C}

Case I – visit \mathcal{C} first

- Explore all nodes in \mathcal{C}' while exploring \mathcal{C}
- ${\cal C}$ has the largest post (recall how the process of depth first search works)

Case II – visit C' first

- We cannot reach $\mathcal C$ from $\mathcal C'$. Otherwise, they belongs to the same connected component
- Must finish exploring C' before exploring C
- So, C has the largest post

Reverse graph

A reverse graph G^R is the graph obtained from G by reversing all of the edges

Reverse graph components

- ullet G^R and G have the same SCCs
- Source components of ${\cal G}^R$ are sink components of ${\cal G}$
- So, we can find sink components of G by running DFS on G^R

```
SCCs(G):
run DFS(G^R)
let v have the largest post number
run Explore(v)
vertices found are first SCC
Remove from G and repeat
```

```
SCCs(G): # Runtime: O(|V| + |E|)
run DFS(G^R)
for v in V in reverse postorder:
   if not visited(v):
       Explore(v)
      mark visited vertices as new SCC
```