20

CLAIMS

What is claimed is:

- 1. A peptide fragment of a viral Macrophage Inflammatory Protein-II (vMIP-II) (SEQ. ID. NO: 1), wherein said fragment selectively prevents CXCR4 signal transduction and coreceptor function in mediating an entry of an HIV-1.
- 2. The peptide fragment of **Claim 1**, wherein said fragment comprises an amino-terminal end of said vMIP-II.
 - **3.** The peptide fragment of **Claim 2**, wherein said amino-terminal end comprises amino acid residues 1-21 (V1, SEQ ID NO: 2), or any subfragments therein.
 - **4.** The peptide fragment of **Claim 1**, wherein said fragment is a lead compound for development of novel small molecular agents to prevent HIV-1 from entering a cell.
 - **5.** A peptide of the formula

$$\begin{array}{l} X-R_{_{1}}-R_{_{2}}-R_{_{3}}-R_{_{4}}-R_{_{5}}-R_{_{6}}-R_{_{7}}-R_{_{8}}-R_{_{9}}-R_{_{10}}-R_{_{11}}-R_{_{12}}-R_{_{13}}-R_{_{14}}-R_{_{15}}-R_{_{16}}-R_{_{17}}-R_{_{18}}-R_{_{19}}-R_{_{20}}-R_{_{20}}-R_{_{21}}-R_{_{20}}-R_{_{2$$

wherein:

X is a substituent attached on the N-terminal of a peptide, X can be H, CH_3CO , C_6H_5CO , or $C_6H_5CH_2CO$;

Y is a substituent attached on the C-terminal of a peptide with the following general structure,

$$C(\alpha)$$
- CO - Y

Y can be OH, NH₂, OCH₃, OCH₂C₆H₅, or NHCH₃; Y can be from zero to nine amino acids,

 R_1 is Ile, Leu, Val, or Phe;

PATENT HUA01.NP007

R₂ is Gly, Ala;

R₃ is Ala, Gly;

R₄ is Ser, Thr, or Tyr;

R₅ is Trp, Phe, Tyr;

5 R₆ is His, Lys, Arg, or Tyr;

 R_{7} is Arg, His, or Lys;

Re is Pro, Leu, or Val;

R_o is Asp, Glu, Arg, or Lys;

 R_{10} is Lys, Arg, or His;

 R_{11} is Cys, Ser, or Ala;

R₁₉ is Cys, Ser, or Ala;

 R_{13} is Ile, Leu, or Val;

R₁₄ is Gly, Ala;

R₁₅ is Tyr, Thr, Ser;

15 R₁₆ is Gln, Asn, Arg, or Lys;

 R_{17} is Lys, Arg, or His;

 R_{18} is Arg, His, or Lys;

R₁₉ is Pro, Leu, or Val;

R₂₀ is Ile, Leu, or Val;

20 R₂₁ is Pro, Leu, or Val;

and if R_{11} is Cys then R_{12} can be Cys, penicillamine or tertiary

butyloxycarbonyl-a-aminobutyric acid;

if R₁₂ is Cys then R₁₁ can be Cys, penicillamine, tertiary

butyloxycarbonyl-a-aminobutyric acid, and,

 R_{11} and R_{12} can be penicillamine, or tertiary butyloxycarbonyl-a-

aminobutyric acid;

and, R_{11} and R_{12} can be Ala.

6. The peptide of Claim 5, wherein a preferred embodiment,

30 comprises

X can be H, or CH₃CO; Y can be OH, or NH₂; and, R₁ is Leu, R₂ is

Gly, $R_{_3}$ is Ala, $R_{_4}$ is Ser, $R_{_5}$ is Trp, $R_{_6}$ is His, $R_{_7}$ is Arg, $R_{_8}$ is Pro, $R_{_9}$ is

25

$$\begin{split} &\text{Asp, R_{10} is Lys, R_{11} is Cys, R_{12} is Cys, R_{13} is Leu, R_{14} is Gly, R_{15} is Tyr,} \\ &R_{16}$ is Gln, R_{17} is Lys, R_{18} is Arg, R_{19} is Pro, R_{20} is Leu, R_{21} is Pro.} \end{split}$$

- 7. The peptide of **Claim 5**, wherein a most preferred embodiment, comprises X is H, Y is NH_2 ; and, R_1 is Leu, R_2 is Gly, R_3 is Ala, R_4 is Ser, R_5 is Trp, R_6 is His, R_7 is Arg, R_8 is Pro, R_9 is Asp, R_{10} is Lys, R_{11} is Cys, R_{12} is Cys, R_{13} is Leu, R_{14} is Gly, R_{15} is Tyr, R_{16} is Gln, R_{17} is Lys, R_{18} is Arg, R_{19} is Pro, R_{20} is Leu, R_{21} is Pro.
- 8. The peptide of **Claim 5**, wherein a preferred embodiment comprises a C-terminal truncation peptide containings at least the following fragment:

 $X-R_1-R_2-R_3-R_4-R_5-R_6-R_7-R_8-Y$, and wherein;

R₁ is Ile, Leu, or Phe;

15 R₂ is Gly, Ala, or Val;

R₃ is Ala, Val, or Gly;

R₄ is Ser, Thr, or Tyr;

R₅ is Trp, Phe, Tyr, or Leu;

R₆ is His, Lys, Arg, or Trp;

20 R₇ is Arg, His, or Lys;

R_g is Pro, Leu, or Val.

and, a C-terminal truncation peptide preferably containing at least a following fragment, wherein X is H, Y is NH_2 ; and, R_1 is Leu, R_2 is Gly, R_3 is Ala, R_4 is Ser, R_5 is Trp, R_6 is His, R_7 is Arg, R_8 is Pro, R_9 is Asp, R_{10} is Lys.

- **9**. The peptide of **Claim 1**, wherein said peptide comprises between 3-30 amino acids, preferably 8-21 amino acids.

PATENT HUA01.NP007

X is a substituent attached on the N-terminal of a peptide, X can be H, CH₂CO, C₂H₂CO, or C₂H₃CH₂CO; and

Y is a substituent attached on the C-terminal of a peptide with the following general structure:

5 $C(\alpha)$ -CO-Y, wherein Y can be OH, NH_2 , OCH_3 , $OCH_2C_6H_5$, or $NHCH_3$ and Y can be from zero to nine amino acids.

R₁₃ is Ile, Leu, Val, or Phe;

R_{2d} is Gly, Ala;

R_{3d} is Ala, Gly;

10 R_{4d} is Ser, Thr, or Tyr;

R_{5d} is Trp, Phe, or Tyr;

R_{6d} is His, Lys, Arg, or Tyr;

R_{7d} is Arg, His, or Lys;

R_{sd} is Pro, Leu, or Val;

15 R_{od} is Asp, Glu, Arg, or Lys;

R_{10d} is Lys, Arg, or His;

R_{11d} is Ala, Cys, or Ser;

R_{12d} is Ala, Cys, or Ser;

R_{13d} is Ile, Leu, or Phe;

 R_{14d} is Gly, Ala;

R_{15d} is Tyr, Thr, Ser;

R_{16d} is Gln, Asn, Arg, or Lys;

 R_{17d} is Lys, Arg, or His;

R₁₈₄ is Arg, His, or Lys;

25 R_{19d} is Pro, Leu, or Val;

R_{20d} is Ile, Leu, or Val;

R_{21d} is Pro, Leu, or Val;

and wherein:

if $R_{\mbox{\tiny 11d}}$ is Cys then $\mbox{\ }R_{\mbox{\tiny 12d}}$ can be Cys, penicillamine or tertiary

30 butyloxycarbonyl-a-aminobutyric acid;

if $R_{\mbox{\tiny 12d}}$ is Cys then $R_{\mbox{\tiny 11d}}$ can be Cys, penicillamine, or tertiary

butyloxycarbonyl-a-aminobutyric acid;

and,

 $R_{\mbox{\tiny 11d}}$ and $R_{\mbox{\tiny 12d}}$ can be penicillamine, or tertiary butyloxycarbonyl-aminobutyric acid;

and, R_{11d} and R_{12d} can be Ala.

5

11. The peptide of **Claim 10**, wherein a preferred embodiment comprises the following formula:

X can be H, CH₃CO; Y can be OH, or NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala, R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is Pro.

15

10

12. The peptide of **Claim 10**, wherein a most preferred

embodiment comprises the following formula:

X is H, Y is NH_2 ; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala, R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is Pro.

20

13. The peptide of **Claim 10**, wherein a preferred C-terminal truncation peptide comprising at least the following fragment:

$$X-R_{1d}-R_{2d}-R_{3d}-R_{4d}-R_{5d}-R_{6d}-R_{7d}-R_{8d}-Y$$

and wherein;

 R_{1d} is Ile, Leu, or Phe;

R_{2d} is Gly, Ala, or Val;

R_{3d} is Ala, Val, or Gly;

R_{4d} is Ser, Thr, or Tyr;

 R_{5d} is Trp, Phe, Tyr, or Leu;

 R_{6d} is His, Lys, Arg, or Trp;

R_{7d} is Arg, His, or Lys;

R_{sd} is Pro, Leu, or Val.

- 14. The peptide of Claim 10, wherein a more preferably C-terminal truncation peptide comprises at least the following fragment; $X \text{ is } H, Y \text{ is } NH_2; \text{ and, } R_{1d} \text{ is Leu, } R_{2d} \text{ is Gly, } R_{3d} \text{ is Ala, } R_{4d} \text{ is Ser, } R_{5d} \text{ is Trp, } R_{6d} \text{ is His, } R_{7d} \text{ is Arg, } R_{8d} \text{ is Pro, } R_{9d} \text{ is Asp, } R_{10d} \text{ is Lys.}$
 - **15**. The peptide of **Claim 10**, comprising between 3-30 amino acids, preferably 8-21 amino acids.
- 16. The peptide of **Claim 5**, wherein said peptide comprises a reversed form of said formula, comprising, $X-R_{21}-R_{20}-R_{19}-R_{18}-R_{17}-R_{16}-R_{15}-R_{14}-R_{13}-R_{12}-R_{11}-R_{10}-R_{9}-R_{8}-R_{7}-R_{6}-R_{5}-R_{4}-R_{3}-R_{2}-R_{1}-Y$ wherein an amino acid is in an L form or as naturally occurring amino acid.
 - 17. The peptide of **Claim 16**, wherein a preferred embodiment, comprises
- $X\ can\ be\ H,\ or\ CH_3CO;\ Y\ can\ be\ OH, or\ NH_2;\ and, R_1\ is\ Leu,\ R_2\ is$ $Gly,\ R_3\ is\ Ala,\ R_4\ is\ Ser,\ R_5\ is\ Trp,\ R_6\ is\ His,\ R_7\ is\ Arg,\ R_8\ is\ Pro,\ R_9\ is$ $Asp,\ R_{10}\ is\ Lys,\ R_{11}\ is\ Cys,\ R_{12}\ is\ Cys,\ R_{13}\ is\ Leu,\ R_{14}\ is\ Gly,\ R_{15}\ is\ Tyr,$ $R_{16}\ is\ Gln,\ R_{17}\ is\ Lys,\ R_{18}\ is\ Arg,\ R_{19}\ is\ Pro,\ R_{20}\ is\ Leu,\ R_{21}\ is\ Pro.$
- 25 embodiment, comprises X is H, Y is NH_2 ; and, R_1 is Leu, R_2 is Gly, R_3 is Ala, R_4 is Ser, R_5 is Trp, R_6 is His, R_7 is Arg, R_8 is Pro, R_9 is Asp, R_{10} is Lys, R_{11} is Cys, R_{12} is Cys, R_{13} is Leu, R_{14} is Gly, R_{15} is Tyr, R_{16} is Gln, R_{17} is Lys, R_{18} is Arg, R_{19} is Pro, R_{20} is Leu, R_{21} is Pro.
- 30 **19**. The peptide of **Claim 16**, wherein a preferred embodiment comprises a C-terminal truncation peptide containings at least the following fragment:

25

 $X-R_1-R_2-R_3-R_4-R_5-R_6-R_7-R_8-Y$, and wherein;

R₁ is Ile, Leu, or Phe;

R₂ is Gly, Ala, or Val;

R₃ is Ala, Val, or Gly;

5 R₄ is Ser, Thr, or Tyr;

R₅ is Trp, Phe, Tyr, or Leu;

R₆ is His, Lys, Arg, or Trp;

 R_7 is Arg, His, or Lys;

R_s is Pro, Leu, or Val.

and, a C-terminal truncation peptide preferably containing at least a following fragment, wherein X is H, Y is NH_2 ; and, R_1 is Leu, R_2 is Gly, R_3 is Ala, R_4 is Ser, R_5 is Trp, R_6 is His, R_7 is Arg, R_8 is Pro, R_9 is Asp, R_{10} is Lys.

20. The peptide of **Claim 16**, wherein said peptide comprises between 3-30 amino acids, preferably 8-21 amino acids.

21. The peptide of **Claim 5**, wherein said peptide comprises a reversed form of said formula, comprising

22. The peptide of **Claim 21**, wherein a preferred embodiment comprises the following formula:

X can be H, CH₃CO; Y can be OH, or NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala, R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is R_{21d} is R_{3d} is R_{3d} is Pro, R_{20d} is Leu, R_{21d} is R_{3d} is R_{3d} is R_{3d} is Pro, R_{20d} is Leu, R_{21d} is R_{3d} is R_{3d} is R_{3d} is R_{3d} is R_{3d} is Pro, R_{3d} is R_{3d} is

30 Pro.

PATENT HUA01.NP007

23. The peptide of **Claim 21**, wherein a most preferred embodiment comprises the following formula:

X is H, Y is NH_2 ; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys, R_{11d} is Ala, R_{12d} is Cys, R_{13d} is Leu, R_{14d} is Gly, R_{15d} is Tyr, R_{16d} is Gln, R_{17d} is Lys, R_{18d} is Arg, R_{19d} is Pro, R_{20d} is Leu, R_{21d} is Pro.

23. The peptide of Claim 21, wherein a preferred C-terminal truncation peptide comprising at least the following fragment:

 $\begin{array}{ccc} {\rm X-R_{_{1d}}-R_{_{2d}}-R_{_{3d}}-R_{_{4d}}-R_{_{5d}}-R_{_{6d}}-R_{_{7d}}-R_{_{8d}}-Y} \\ & {\rm and\ wherein;} \end{array}$

R_{1d} is Ile, Leu, or Phe;

R_{2d} is Gly, Ala, or Val;

R_{3d} is Ala, Val, or Gly;

15 R_{4d} is Ser, Thr, or Tyr;

R_{5d} is Trp, Phe, Tyr, or Leu;

R_{6d} is His, Lys, Arg, or Trp;

 R_{7d} is Arg, His, or Lys;

 $R_{\mbox{\tiny 8d}}$ is Pro, Leu, or Val.

20

24. The peptide of **Claim 21**, wherein a more preferably C-terminal truncation peptide comprises at least the following fragment; X is H, Y is NH₂; and, R_{1d} is Leu, R_{2d} is Gly, R_{3d} is Ala, R_{4d} is Ser, R_{5d} is Trp, R_{6d} is His, R_{7d} is Arg, R_{8d} is Pro, R_{9d} is Asp, R_{10d} is Lys.

25

30

5

25. The peptide of **Claim 21**, comprising between 3-30 amino acids, preferably 8-21 amino acids.

1

26. A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a peptide according to **Claim 5**.

15

20

PATENT HUA01.NP007

27 .	A pharmaceutical	composition,	, comprising a ph	armaceutically
acce	eptable carrier and	l a peptide ac	cording to Claim	10 .

- 28. A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a peptide according to **Claim 16**.
- 29. A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and a peptide according to **Claim 21**.
- 30. A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to Claim 5.
 - 31. A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to Claim 10.
 - 32. A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to Claim 16.
 - 33. A method of inhibiting entry of HIV-1 into CXCR4-expressing cells, comprising contacting said cells with a peptide according to Claim 21.
- 25
 34. A method of treating infection by HIV-1, comprising administering to an individual an effective amount of a peptide according to Claim 5.

20

25

30

- **35**. A method of treating infection by HIV-1, comprising administering to an individual an effective amount of a peptide according to **Claim 10**.
- 5 **36**. A method of treating infection by HIV-1, comprising administering to an individual an effective amount of a peptide according to **Claim 16**.
- 36. A method of treating infection by HIV-1, comprising administering to an individual an effective amount of a peptide according to Claim 21.
 - 37. A method of inhibiting a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising contacting said cells with a peptide according to Claim 5
 - 38. A method of inhibiting a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising contacting said cells with a peptide according to Claim 10.
 - 39. A method of inhibiting a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising contacting said cells with a peptide according to Claim 16.
 - **40**. A method of inhibiting a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising contacting said cells with a peptide according to **Claim 21**.

. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide according to **Claim 5**.

42. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide according to **Claim 10**.

. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide according to **Claim 46**.

44. A method of treating a disease, a causative agent of said disease requiring entry into CXCR4-expressing cells via CXCR4, comprising administering to an individual an effective amount of a peptide according to **Claim 21**.