Digital Logic Circuit Design Lab

Traffic Light Controller FSM

Combinational Logic Circuit Lab

Name/ID: An Gyeonheal / 21900416

Date: 06-29-2023

Problem Introduction

Introduction

본 보고서는 간단한 신호등을 FSM 으로 구현하는 보고서이다. 신호등은 사거리에서 두 방향의 차량 이동을 고려하였다. 조건에 주어진 상황으로는 B 도로를 기준으로 하여 B 도로에 차가 없는 경우와, B 도로에 차가 있는 경우로 나누어 진행하였다. 첫 번째로, B 도로에 차가 없는 경우에는 A 도로의 신호등은 초록불(G)이 들어온다. 두 번째로, B 도로에 차가 있는 경우에는 A 도로의 신호등은 1초간 노란불이 들어온 후 2초간 빨간불을 유지한다. 그 후 다시 초록불로 2초간 유지한다. 앞서 말한 조건을 수행하기 위해 본 보고서는 Moore FSM 을 기준으로 입력과 출력을 정의한 후, 상황을 고려한 State를 결정하였다. 그리고 State graph를 그려 State 간의 상관관계를 도시한 후 State Table 을 구성하였고 구성한 State Table 의 Present State, Next State 와 Output 을 Binary 로 나타내고 Karnaugh map 을 이용하여 minimum SOP 를 찾아내었다. 찾아낸 minimum SOP 를 통해 Logisim 프로그램을 활용하여 회로를 구성하고 시뮬레이션을 실행하여 정상적으로 FSM 이 작동하는지 확인하였다.

Design Process

Input & Output Definition

INPUTS

V={0, 1} - Road B 차의 유무 CLK is 1 sec

OUTPUTS:

T={G,Y, R} - Road A 의 신호

{1, 0, 0} - 초록불 점등

{0, 1, 0} - 노란불 점등

{0, 0, 1} - 빨간불 점등

State Description

States	Description
C	Road B 에 차량 없음
S_0	(T=G for 1 sec)
C	Road B 에 차량 감지
S_1	(T=Y for 1 sec)
C	Road B의 차량 이동
S_2	(T=R for 1 sec)
C	Road B의 차량 이동
S_3	(T=R for 1 sec)
S_4	Road A 신호 초록불
	(T=G for 1 sec)

State 는 위와 같이 $S_0 \sim S_4$, 총 5 개로 구성하였다. Road B 에 차가 없을 때는 Road A 의 신호등은 초록불을 유지한다. 이 후 Road B 에 차가 감지되면 신호등은 노란불을 1 초 동안 유지한 후 빨간불을 2 초 동안 유지한다. 이 때 2 초간 점등하는 빨간불과 초록불이 1 초간 점등하는 시간으로 State 로 각각 두 개의 State 로 나누었다. 다음으로는 Road A 의 신호등이 초록불을 2 초간 점등한 후 Road B 에 차량이 있는지 유무에 따라 State 가 진행된다.

State Graph / State Table

Figure 1. Moore State Graph of Traffic Light Controller

Present State	Next State		Output
	V = 0	V = 1	T
S_0	S_0	S_1	$G - \{1, 0, 0\}$
S_1	S_2	S_2	$Y - \{0, 1, 0\}$
S_2	S_3	S_3	$R - \{0, 0, 1\}$
\mathcal{S}_3	S_4	S_4	$R - \{0, 0, 1\}$
S_4	S_0	S_0	$G - \{1, 0, 0\}$

앞서 정의한 State 를 통해 우리는 위와 같이 Moore State Graph 를 그려 Input 에 의한 State 변화를 확인하였고 이를 State Table 로 제작하였다.

Present State	Next Sta	te (ABC=)	Output
(ABC=)	V = 0	V = 1	T
000	000	001	$G - \{1, 0, 0\}$
001	010	010	$Y - \{0, 1, 0\}$
010	011	011	$R - \{0, 0, 1\}$
011	100	100	$R - \{0, 0, 1\}$
100	000	000	$G - \{1, 0, 0\}$

위의 Table 은 앞서 제작한 State Table 을 FSM 으로 제작하기 위해 Binary 로 변환하였으며 3 bit 의 Present State 와 1 bit 의 input (V)를 통해 아래와 같이 Next State 의 A^+, B^+, C^+ 와 출력(G,Y,R)의 Karnaugh Map 을 제작하였으며 minimum SOP 를 구하였다. 이 때 우리는 S_4 까지 State 를 정의하였으므로 ABC 의 101 이상의 수는 Don't Care Value 로 설정하였다.

CV AB	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	Х	Х	Х	Х
10	0	0	Х	Х
$A^+ = BC$				

CV	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	Х	Х	Х	Х
10	0	0	Х	Х
$B^+ = B\overline{C} + \overline{B}C = B(XOR)C$				

CV AB	00	01	11	10
00	0	1	0	0
01	1	1	0	0
11	Х	Х	Х	Х
10	0	0	Х	Х
$C^{+} = B\overline{C} + \overline{A}\overline{C}V$				

C AB	0	1
00	1	0
01	0	0
11	Х	Х
10	1	Х
$G = \overline{B}\overline{C}$		

C AB	0	1
00	0	1
01	0	0
11	Х	Х
10	0	Х

 $Y = \overline{B}C$

C AB	0	1	
00	0	0	
01	1	1	
11	Х	X	
10	0	Х	
R = B			

Simulation Circuit Design

Figure 2. Traffic Light Controller Whole Circuit (Logisim)

Figure 3. Next_State Circuit (Logisim)

Figure 4. Output Circuit (Logisim)

Figure 5. Simple Circuits (Logisim)

Figure 7. Updating Next State Circuit (Logisim)

앞서 구한 minimum SOP 를 가지고 Logisim 프로그램을 활용하여 회로를 제작하였다. 전체적인 회로의 모습은 Figure 2 에서 볼 수 있듯이 5 개의 AND gate, 1 개의 XOR gate, 1 개의 OR gate 로 이루어짐을 확인할 수 있다. 이 후 FSM Block Circuit 을 제작하기 위해 Next_State Circuit 과 Ouput Circuit 으로 나누어 제작하였다 (이는 Figure 3 과 Figure 4 에서 확인할 수 있다.) 이를 가지고 Figure 6 의 Block Circuit 을 제작하였으며 Input 으로는 V 와 CLK 신호가 들어오고 Next State Circuit 을 통해 Update 가 된 A, B, C 가 Update 파트의 D-FF을 통해 updating 을 진행한다. 그리고 Output Circuit 으로 들어간 B 와 C 는 초록불, 노란불 혹은 빨간불(T=G,Y,R)을 출력한다. Figure 7 은 Figure 6 에 사용된 Next State Circuit 의 모습이다.

Results and Discussion

Results

아래의 표는 Logisim Simulation을 이용한 상황에 따른 Input 에 의한 출력 변화를 나타낸 것이다.

Discussion

해당 보고서는 Traffic Light Controller 를 Moore FSM 으로 설계하였다. State 의 수를 줄이는 것이 Logic Circuit 의 복잡성을 줄이고 회로 제작 단가를 낮출 수 있으므로 State 를 최소의 개수인 5 개로 설정하였다. 이를 위해 입력의 변화에 따른 State 변화와 Output 을 관찰하기 용이한 Moore 로선택하여 설계하였다. 본 Controller 의 조건은 2 초간 빨간불과 초록불을 유지해야하는데 주어진 Input 은 CLK 과 Road B 의 차량 유무이므로 2 초의 빨간불과 초록불의 State 를 각각 1 초씩으로 나누어 State 를 정의하는 것이 핵심이었다. 또한 Update 와 Combinational Circuit 의 관계를 한눈에 보기 용이하게 하기 위해 Next State 회로와 Output 회로의 Combinational Circuit Block 과 D-FF을 이용한 Updating Block 을 구분하여 하나의 Block Circuit 으로 제작하였다. 이 후 제작된 회로를 통해 Road B 의 차량의 유무에 따른 출력을 확인하여 설계한 Traffic Light Controller FSM 이 정상적으로 작동하는지 확인하였다.

FSM 은 서술적으로 표현할 수 있는 모든 상황을 입출력과 State 정의를 통해 하나의 Logic 으로 만들 수 있다는 점에서 매우 큰 장점을 가지고 있다. 따라서 Input 과 Output 을 정확하게 규정하고 State 를 효율적이며 정확하게 정의한다면 나만이 가질 수 있는 Logic 을 설계할 수 있음을 깨달았다.

Demo Video

Video Link

Appendix