Adv Abstract Algebra: AAA #11

Due on May 2022 at 11:59PM

Prof. Peter Hermann Spr 2022

Xianzhi

2023

HW11

Which of the following actions is primitive?

1.

$$\langle (1,2,3,4,5,6,7,8), (1,2,3,4,5) \rangle$$
 on $\{1,2,3,4,5,6,7,8\};$ (1)

2.

$$\langle (1,2,3,4,5,6,7,8), (2,4,6) \rangle$$
 on $\{1,2,3,4,5,6,7,8\};$ (2)

Solution:

Part A

Let

$$G := \langle (1, 2, 3, 4, 5, 6, 7, 8), (1, 2, 3, 4, 5) \rangle$$
 act on $\Omega := \{1, 2, 3, 4, 5, 6, 7, 8\};$ (3)

G acts transitively on Ω , since G has a 8-cycle that can take i to j for any $i, j \in \Omega$ by raise this cycle to some power.

Now, assume this action is not primitive, there are only 2 possibilities,

- 1. 4 blocks, each block has 2 elements
- 2. 2 blocks, each has 4 elements

G act on the set of 4 blocks: X, let a = (12345).

$$G \xrightarrow{\varphi} Sym(X) \cong S_4 \tag{4}$$

$$order (\varphi(a)) \mid order (a) = 5$$
 (5)

$$order (\varphi(a)) \mid |S_4| = 4! \tag{6}$$

$$\implies |\varphi(a)| = 1 \tag{7}$$

so $\varphi(a)$ is the identity permutation on X.

Similarly, a is identity permutation on each element (block) in $B_i \in X$. So a is the identity on $\{1, 2, ..., 8\}$. contradiction.

G act on the set of 2 blocks: Y

$$G \xrightarrow{\varphi} Sym(Y) \cong S_2$$
 (8)

Similarly, let a = (12345), then $\varphi(a)$ acts as identity permutation on Y, $\varphi(a)$ acts as identity on 4 elements in each block $B_i \in Y$. Then $\varphi(a)$ is id on $\{1, 2, \dots, 8\}$. hence contradiction.

Thus: the action is primitive.

Part B

We could verify $\{2,4,6,8\}$ and $\{1,3,5,7\}$ are 2 blocks, since

$$\{1, 3, 5, 7\} \xrightarrow{(12345678)} \{2, 4, 6, 8\}$$
 (9)

and (246) fix the 2 blocks, since all other elements of the group can be written as generators, those are indeed blocks.

Consider the action of the dihedral group D_n on the vertices. Determine all values of n for which the action is primitive.

Solution:

For n = p, a prime, the action is primitive $(|\Delta| \mid |\Omega|)$ If n is a composite, $n = d \cdot r$ for some 1 < d < n, if we mark d vertices that all has (r - 1) vertices in between with the same color, then those d vertices form a block.

Let A be a group and consider the right regular action of A on A [defined by $\alpha^g := \alpha \cdot g$ for all $\alpha, g \in A$]. When will this action be primitive (in terms of A)?

Solution:

Let A be a group, let $a \in A$, $a \neq e$, then consider the cyclic group $\langle a \rangle \leq A$. If $\langle a \rangle = A$, then if further A is prime order, then this right regular action is primitive. If A has composite order then let $|A| = d \cdot r$, 1 < d < |A|. We know there exist a cyclic subgroup of order d, generated by a^r , so the cosets of $\langle a^r \rangle$ form a block system, (since cosets either disjoint or coincide completely).

If $\langle a \rangle \leq A$, then consider the cosets of $\langle a \rangle$, which forms a block system.

Let G act on Ω and suppose that N is a minimal normal subgroup of G. $[1 \neq N \triangleleft G]$ and there is no $1 \neq K \subsetneq N$ such that $K \triangleleft G$.] If N is abelian and acts transitively on Ω then G acts primitively on Ω .

- 1. Hint: N acts regularly on Ω , i.e. $N_{\omega} = 1$ for all $\omega \in \Omega$. (Remember: in a transitively acting group stabilizers are conjugate to each other.)
- 2. Using that N acts transitively prove that $G = G_{\alpha} \cdot N$ for all $\alpha \in \Omega$; here, necessarily, $G_{\alpha} \cap N = 1$.
- 3. If $G_{\alpha} \leq H \leq G$ then $G = H \cdot N$ and $H \cap N \neq 1$. In this case $H \cap N \triangleleft G$ and $1 \leq H \cap N \leq N$.

Solution:

Lemma: G abelian, G acts transitively, faithfully on Ω , \Longrightarrow then this action is regular.

WLOG, we assume G acts faithfully on Ω , since if G is not faithfully acting, take

$$\bar{G} = G/ker(\varphi) \text{ where } G \xrightarrow{\varphi} Sym(\Omega)$$
 (10)

where φ is the homomorphism.

Then we prove \bar{G} acts primitively on Ω would imply G acts primitively on Ω .

Now $G \xrightarrow{\varphi} Sym(\Omega) \ ker(\varphi) = \{1\}.$

Then $N \triangleleft G$.

$$N \xrightarrow{\varphi|_N} Sym(\Omega), \ ker(\varphi|_N) = \{1\}.$$
 (11)

The kernel of φ restrict to N is also $\{1\}$, so N acts faithfully, N is abelian, transitive on Ω , then N acts regularly by lemma. This implies $N_x = 1 \forall x \in \Omega$.

N transitive on Ω implies for any $g \in G$ there exists $n \in N$ such that $x^g = x^n$ for all $x \in \Omega$.

$$x^{gn^{-1}} = x \tag{12}$$

$$gn^{-1} \in Stab_x \tag{13}$$

$$g \in Stab_x \cdot n \subseteq Stab_x \cdot N \tag{14}$$

$$\implies G \subseteq Stab_x \cdot N \tag{15}$$

since $Stab_x \cdot N \leq G$ (N is normal) which implies $G = Stab_x \cdot N$ for all $x \in \Omega$

so $G = G_x \cdot N$. G_x denotes $Stab_x$ in G, and N_x denotes $Stab_x$ in N.

we have $G_x \cap N = N_x = \{1\}$ since N is regular.

Claim: $G_x <_{max} G$ where $(x \in \Omega)$.

Suppose for contradiction $\exists K$ such that

$$G_x \lneq K \lneq G \tag{16}$$

then $K \cap N \triangleleft G$ (since $G = G_x \cdot N = K \cdot N$) and $N \leq N_G(K \cap N)$, N in normalizer of $K \cap N$ since N is abelian $K \leq N_G(K \cap N)$ since $N \triangleleft G$. So

$$K \cdot N \le N_G(K \cap N) \tag{17}$$

$$\implies G < N_G(K \cap N)$$
 (18)

$$\implies G = N_G(K \cap N) \tag{19}$$

Now, we consider $K \cap N$. If we show

$$e \lneq K \cap N \lneq N,\tag{20}$$

we obtain the desired contradiction, since N is minimal normal subgroup.

First, for sake of contradiction, if $K \cap N = N$, then $N \leq K$, which implies $G = K \cdot N = K$. Hence contradiction.

Second we show $e \leq K \cap N$.

Since $G = N \cdot G_x$, $G_x \nleq K$, there exists $y \not\in G_x$, $y \in K$ then since y is also in G, we have $y = n \cdot h$ for $n \in N$, $h \in G_x \nleq K$. $n \neq e$ since $y \notin G_x$. Then $K \ni yh^{-1} = n \in N$, so $n = yh^{-1} \in K \cap N$, and $n \neq e$. Thus, $e \nleq K \cap N$.

Thus, we showed the claim $G_x <_{max} G$ $(x \in \Omega)$. Use Thm: if G act transitively on Ω , then G act primitively $\Leftrightarrow G_y <_{max} G$, $y \in \Omega$.

(G acts transitively since N acts transitively, $N \triangleleft G$)

Problem 5

Consider the natural action of S_n on $\Omega = \{1, 2, 3, ..., n\}$. Let $2 \le k \le \frac{n}{2}$ and define the action of S_n on the set $\mathcal{K} := \{T \mid T \subset \Omega \text{ and } |T| = k\}$ by means of $T^g := \{t^g \mid t \in T\}$. Prove that S_n acts primitively on \mathcal{K} if and only if $k \ne \frac{n}{2}$.

Solution:

 S_n acts primitively on $\mathcal{K} \Leftrightarrow k \neq \frac{n}{2}$.

 \Longrightarrow

To prove this direction, consider the contrapositive: $k = \frac{n}{2} \implies S_n$ acts not primitively. Indeed, when $k = \frac{n}{2}$, we could form blocks:

$$\{a_1, a_2, \dots, a_k\} \sim \{b_1, b_2, \dots b_k\}$$
 (21)

where those two sets are disjoint set of numbers picked from Ω .

Since they have the same size, knowing $\{a_1, a_2, \dots, a_k\}$ determines uniquely $\{b_1, b_2, \dots, b_k\}$, and since elements of S_n are bijections, they preserves this equivalence relation \sim .

 \Leftarrow

Since $k \neq \frac{n}{2}$, and $2 \leq k < \frac{n}{2}$, $\implies k < n - k$

We have |T| = k, let $T \in \mathcal{K}$,

Claim: $(S_n)_T <_{max} S_n$.

Observe the stabilizer of $T: (S_n)_T \cong S_k \times S_{n-k}$, since we can freely permute the k numbers in T and the (n-k) numbers outside T among themselves.

Let $g \notin (S_n)_T$, Want To Show $H := \langle (S_n)_T, g \rangle = S_n$.

Since g is some cycle,

$$\exists \ \alpha_1 \in T \ s.t. \ \alpha_2 := \alpha_1^g \notin T \tag{22}$$

$$\exists \beta_1 \notin T \ s.t. \ \beta_2 := \beta_1^g \notin T \tag{23}$$

(24)

consider transposition

$$(\alpha_1 \beta_1) = (\alpha_2^{g^{-1}} \beta_2^{g^{-1}}) = g^{-1}(\alpha_2 \beta_2) g \in H = \langle (S_n)_T, g \rangle$$
 (25)

 $(\alpha_2, \beta_2) \in (S_n)_T$. I think for $n \in \mathbb{N}$, $g^n(\alpha_2\beta_2)(g^n)^{-1}$, could express all the transpositions. Hence generate S_n , but I don't know how to show it exactly.