Quiz 5

2023-07-25

Question 1

In this task we look at a fictive data example. We have continuous predictors x_1 , x_2 and x_3 and a count data response Y. In order to analyze the data we perform a Poisson regression. Attached is the R-Output

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	1.7719	0.8910	1.989	0.0467	*
X1	1.6350	15.3774	0.106	0.9153	
X2	1.0897	0.1035	10.528	<2e-16	***
ХЗ	-4.1656	30.7287	-0.136	0.8922	

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 269.730 on 19 degrees of freedom Residual deviance: 16.068 on 16 degrees of freedom

AIC: 73.272

Number of Fisher Scoring iterations: 5

- (a) Write down the Poisson regression model for this case
- (b) Look at the following R-Output. What is R^2 ?
- (c) According to the fitted model from above, estimate $E[Y^*]$ for a new observation with $x_1^*=3, x_2^*=3$ and $x_3^*=1$
- (d) Now we look at the model where we drop the predictor x_2 . See the following R-output. Do we have under or overdispersion in this model?

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8354  0.5813 -1.437  0.151

X1  68.8018  14.2170  4.839 1.30e-06 ***

X3  -136.0553  28.5669 -4.763 1.91e-06 ***
```

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 269.73 on 19 degrees of freedom Residual deviance: 190.89 on 17 degrees of freedom

AIC: 246.10

Number of Fisher Scoring iterations: 6

- (e) How would you solve the problem in part (d)? Name two solutions.
- (f) How does the dispersion parameter ϕ in general impact the inference in the case of overdispersion? Comment on confidence interval and significance of parameters.

Question 2

The following figure is the diagnostic plot for a linear model

- (a) Name the issue you identified in the figure
- (b) Propose your solution to the problem
- (c) Sketch the corrected diagnostic plot after your take the solution in part (b)