

# 实分析 (Royden)

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息



宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

# 目录

| 第一部 | 部分 一元实变函数的 Lebesgue 积分                              | 1          |
|-----|-----------------------------------------------------|------------|
| 第一章 | 集合、映射与关系的预备知识                                       | 2          |
| 1.1 | 集合的基本概念                                             | 2          |
| 1.2 | 集合之间的映射                                             | 3          |
| 1.3 | 等价关系、选择公理以及 Zorn 引理                                 | 4          |
| 第二章 | 实数集:集合、序列与函数                                        | 6          |
| 2.1 | 域、正性以及完备性公理                                         | $\epsilon$ |
| 2.2 | 自然数与有理数                                             | 8          |
| 2.3 | 可数集与不可数集                                            | 10         |
| 2.4 | 实数的开集、闭集和 Borel 集                                   | 12         |
| 2.5 | 实数序列                                                | 16         |
| 2.6 | 实变量的连续函数实值函数                                        | 19         |
| 第三章 | 集合与点集                                               | 22         |
| 3.1 | 集合之间的运算                                             | 22         |
| 3.2 | 映射与基数                                               | 25         |
| 3.3 | $\mathbb{R}^n$ 中点与点之间的距离·点集的极限点                     | 30         |
|     | 3.3.1 点集的直径、点的 (球) 邻域、矩体                            | 30         |
|     | 3.3.2 点集的极限点                                        | 32         |
| 3.4 | $\mathbb{R}^n$ 中的基本点集: 闭集 · 开集 · Borel 集 · Cantor 集 | 33         |
|     | 3.4.1 闭集                                            | 33         |
|     | 3.4.2 开集                                            | 34         |
|     | 3.4.3 Borel 集                                       | 37         |
| 第四章 | Lebesgue 测度                                         | 38         |
| 4.1 | Lebesgue 外测度                                        | 38         |
| 4.2 | Lebesgue 可测集的 $\sigma$ 代数                           | 40         |
| 4.3 | Lebesgue 可测集的外逼近和内逼近                                | 41         |
| 4.4 | 可数可加性、连续性以及 Borel-Cantelli 引理                       | 41         |
| 4.5 | 不可测集                                                | 41         |
| 4.6 | Cantor 集和 Cantor-Lebesgue 函数                        | 41         |
| 第五章 | Lebesgue 可测函数                                       | 42         |
| 5.1 | 和、积与复合                                              | 42         |
| 5.2 | 序列的逐点连续与简单逼近                                        | 42         |
| 5.3 | Littlewood 的三个原理、Egoroff 定理以及 Lusin 定理              | 42         |
| 第六章 | Lebesgue 积分                                         | 43         |
| 6.1 | Riemann 积分                                          | 43         |
| 6.2 | 有限测度集上的有界可测函数的 Lebesgue 积分                          | 43         |

|     | E CONTRACTOR DE LA CONT | 1录 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.3 | 非负可测函数的 Lebesgue 积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43 |
| 6.4 | 一般的 Lebesgue 积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43 |
|     | 积分的可数可加性与连续性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|     | 一致可积性:Vitali 收敛定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43 |
| 6.7 | 一致可积性和紧性: 一般的 Vitali 收敛定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43 |
|     | 依测度收敛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | Riemann 可积与 Lebesgue 可积的刻画                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 第七章 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44 |
| 7.1 | 单调函数的连续性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44 |
| 7.2 | 单调函数的可微性:Lebesgue 定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44 |
| 7.3 | 有界变差函数:Jordan 定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44 |
| 7.4 | 绝对连续函数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44 |
|     | 导数的积分: 微分不定积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|     | 凸函数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 第八章 | $\stackrel{\cdot}{\mathbb{L}} L^p$ 空间: 完备性与逼近                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45 |
| 8.1 | 赋范线性空间                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45 |
| 8.2 | Young、Hölder 与 Minkowski 不等式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45 |
|     | L <sup>p</sup> 是完备的:Riesz-Fischer 定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45 |
|     | 逼近与可分性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45 |
| 第九章 | $\stackrel{\cdot}{\mathbb{L}} L^p$ 空间: 对偶与弱收敛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46 |
| 9.1 | 关于 $L^p(1 \leq p < \infty)$ 的对偶的 Riesz 表示定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46 |
|     | $L^p$ 中的弱序列收敛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|     | 弱序列紧性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

# 第一部分

一元实变函数的 Lebesgue 积分

# 第一章 集合、映射与关系的预备知识

# 1.1 集合的基本概念

## 定义 1.1 (集合的基本概念)

- 1. 对于集合 A, 元素 x 是 A 的成员关系记为 x ∈ A, 而 x 不是 A 的成员关系记为 x ∉ A. 我们常说 A 的一 个成员属于 A 且称 A 的成员是 A 中的一个点. 通常集合用花括号表示, 因此  $\{x|x\}$  是使得关于 x 的 陈述成立的所有元素 x 的集合. 若两个集合有相同的成员, 我们说它们相同.
- 2. 令 A 和 B 为集合. 若 A 的每个成员也是 B 的成员, 我们称 A 为 B 的子集, 记之为  $A \subseteq B$ , 也说 A 包含 于B或B包含A.B的子集A称为B的**真子集**.
- *B*}.
- 4.  $A \cap B$  的交, 记为  $A \cap B$ , 是所有同时属于  $A \cap B$  的点的集合, 即  $A \cap B = \{x | x \in Ax \in B\}$ .
- 5.  $A \in B$  中的补, 记为 B-A, 是 B 中那些不在 A 中的点的集合, 即  $B-A=\{x\in Bx\notin A\}$ . 若在特别的 讨论中所有的集合是参考集X的子集,我们常简单地称X-A为A的补.
- 6. 没有任何成员的集合称为空集, 记为 Ø. 不等于空集的集合称为非空的.
- 7. 我们称只有一个成员的集合为单点集.
- 8. 给定集合 X.X 的所有子集的集合记为 P(X) 或  $2^X$ . 称之为 X 的**幂集**.

注 为了避免考虑集合的集合时可能产生混淆, 我们常用词"族"或"簇"作为"集"的同义词. 我通常称集合的 集合为集族或集簇.

## 定义 1.2 (集族的并和交)

令 厂 为集族.

- 1.  $\mathcal{F}$  的并, 记为  $\bigcup_{F \in \mathcal{F}} F$ , 定义为属于  $\mathcal{F}$  中的至少一个集合的点的集合. 2.  $\mathcal{F}$  的交, 记为  $\bigcap_{F \in \mathcal{F}} F$ , 定义为属于  $\mathcal{F}$  中的每个集合的点的集合.
- 3. 若集族  $\mathcal{F}$  中的任何两个集合的交是空的, 集族  $\mathcal{F}$  称为是**不交的**.
- 4. 若集族  $\mathcal{F}$  是不交的,则  $\mathcal{F}$  的并称为是**无交并**或**没交并**,记为  $\mid \mid \mathcal{F}$ .

### 定理 1.1 (De Morgan 等式)

令X为集合, $\mathcal{F}$ 为集族,则一定有

$$X - \left[\bigcup_{F \in \mathcal{F}} F\right] = \bigcap_{F \in \mathcal{F}} [X - F], \quad X - \left[\bigcap_{F \in \mathcal{F}} F\right] = \bigcup_{F \in \mathcal{F}} [X - F]$$

即并的补是补的交,且交的补是补的并.

#### 定义 1.3 (指标集)

对于集合 Λ, 假定对每个  $\lambda \in \Lambda$ , 存在已定义的  $E_{\lambda}$ . 令  $\mathcal{F}$  为集族  $\{E_{\lambda}|\lambda \in \Lambda\}$ . 我们写作  $\mathcal{F} = \{E_{\lambda}\}_{\lambda \in \Lambda}$  且称  $\Lambda$ 中的元素为 $\mathcal{F}$ 的用指标集(或参数集) $\Lambda$ 标记的指标(或参数化).

# 1.2 集合之间的映射

#### 定义 1.4 (映射的基本概念)

给定两个集合 A 和 B, 从 A 到 B 的映射或函数意味着对 A 的每个成员指派 B 的一个成员给它. 在 B 是实数集的情形下, 我们总是用"函数"这个词. 一般我们记这样的映射为  $f:A\to B$ , 而对 A 的每个成员 x, 我们记 f(x) 为 B 中指派给 x 的成员.

- 1. 对于 A 的子集 A', 我们定义  $f(A') = \{b|b = f(a), a \to A'$  的某个成员 $\}: f(A')$  称为 A' 在 f 下的**象**.
- 2. 我们称集合 A 为函数 f 的定义域.
- 3. 我们称 f(A) 为 f 的**象或值域**.

# 定义 1.5 (满射、单射和双射)

- 1. 若 f(A) = B, 函数 f 称为是**映上的**或**满射**.
- 2. 若对 f(A) 的每个成员 b 恰有 A 的一个成员 a 使得 b = f(a), 函数 f 称为是**一对一的**或**单射**.
- 3. 既是一对一又是映上的映射  $f: A \to B$  称为是**可逆的**或**双射**, 我们说该映射建立了集合  $A \vdash B$  之间的一一对应.

## 定义 1.6 (可逆映射的逆)

给定一个可逆映射  $f: A \to B$ , 对 B 中的每个点 b, 恰好存在 A 中的一个成员 a 使得 f(a) = b, 它被记为  $f^{-1}(b)$ . 这个指派定义了映射  $f^{-1}: B \to A$ , 称之为 f 的**逆**.

# 定义 1.7 (对等的集合)

两个集合  $A \cap B$  称为是**对等的**, 记为  $A \sim B$ , 若存在从 A 映到 B 的可逆映射.

注 从集合论的观点看, 对等的两个集合是不可区分的.

# 命题 1.1 (可逆映射的复合是可逆的)

给定两个映射  $f:A\to B$  和  $g:C\to D$  使得  $f(A)\subseteq C$ , 则复合  $g\circ f:A\to D$  定义为对每个  $x\in A,[g\circ f](x)=g(f(x))$ . 不难看出**可逆映射的复合是可逆的**.

#### 定义 1.8 (恒等映射)

对于集合 D, 定义**恒等映射** $\mathrm{id}_D: D \to D$  为对所有  $x \in D$ ,  $\mathrm{id}_D(x) = x$ .

# 命题 1.2 (可逆映射的充要条件)

映射  $f: A \to B$  是可逆的, 当且仅当存在映射  $g: B \to A$  使得

$$g \circ f = \mathrm{id}_A f \circ g = \mathrm{id}_B$$
.

#### 定义 1.9 (原象)

即便映射  $f: A \to B$  不是可逆的, 对于集合 E, 我们定义  $f^{-1}(E)$  为集合  $\{a \in A | f(a) \in E\}$ , 称之为 E 在 f 下的**原象**.

# <u>命题 1.3 (原像的性质)</u>

我们有下面有用的性质: 对于任何两个集合  $E_1$  和  $E_2$ ,

$$f^{-1}(E_1 \cup E_2) = f^{-1}(E_1) \cup f^{-1}(E_2), \quad f^{-1}(E_1 \cap E_2) = f^{-1}(E_1) \cap f^{-1}(E_2)$$

与

$$f^{-1}(E_1 - E_2) = f^{-1}(E_1) - f^{-1}(E_2).$$

# 定义 1.10 (映射的限制)

对于映射  $f:A\to B$  和它的定义域 A 的一个子集 A',f 在 A' 上的**限制**, 记为  $f|_{A'}$ , 是从 A' 到 B 的映射, 它 将 f(x) 指派给每个  $x\in A'$ .

# 1.3 等价关系、选择公理以及 Zorn 引理

# 定义 1.11 (笛卡尔积)

给定两个非空集 A 和 B 的**笛卡尔积**, 记为  $A \times B$ , 定义为所有有序对 (a,b) 的族, 其中  $a \in A$  而  $b \in B$ , 且我们考虑 (a,b) = (a',b') 当且仅当 a = a' 且 b = b'.

# 定义 1.12 (关系及其自反性、对称性、传递性)

对于非空集合 X, 我们称  $X \times X$  的子集 R 为 X 上的一个**关系**, 且写作 xRx'.

- 1. 若 (x, x') 属于 R. 关系 R 称为**自反的**, 若对所有  $x \in X$  有 xRx;
- 2. 若 (x,x') 属于 R. 关系 R 称为**对称的**, 若 x'Rx 则 xRx';
- 3. 若 (x,x') 属于 R. 关系 R 称为**传递的**, 若 xRx' 且 x'Rx'' 则 xRx''.

# 定义 1.13 (等价关系)

集合X上的关系R称为等价关系,若它是自反的、对称的和传递的.

# 定义 1.14 (等价类)

给定集合 X 上的等价关系 R, 对每个  $x \in X$ , 集合  $R_x = \{x' | x' \in X, xRx'\}$  称为 x(关于 R) 的**等价类**. 集合 X 中所有元素 (关于 R) 的等价类构成的集合称为 X(关于 R) 的**等价类族**, 记为 X/R.

# 命题 1.4 (等价类的性质)

给定集合X上的等价关系R,

- (1)  $R_x = R_{x'}$  当且仅当 xRx'.
- (2) 等价类族 X/R 是不交的.
- (3) X/R 是 X 的非空子集的不交族, 其并是 X. 即  $X = \bigsqcup_{x \in Y} R_x = \bigsqcup_{F \in Y/R} F$ .
- (4) (反过来) 给定 X 的非空子集的不交族  $\mathcal{F}$ , 其并是 X, 属于  $\mathcal{F}$  中的同一个集的关系是 X 上使得  $\mathcal{F}$  = X/R 的等价关系 R.

# 证明

- (1) 由 R 是对称的和传递的等价类的性质 (1)容易验证.
- (2) 由关系 R 是自反的容易验证.
- (3)

#### 定义 1.15 (集合的势)

给定集合 X, 对等关系是 X 的所有子集组成的族  $2^X$  上的等价关系. 一个集合关于对等关系的等价类称为该集合的**势**或**基数**.

换句话说, 设集合  $A \cap B$ , 若  $A \sim B$ , 就可以称  $A \subseteq B$  具有相同势或基数.

#### 定义 1.16 (选择函数)

令  $\mathcal{F}$  为非空集的非空簇. $\mathcal{F}$  上的一个**选择函数** f 是从  $\mathcal{F}$  到  $\bigcup_{F \in \mathcal{F}} F$  的函数, 它具有以下性质: 对  $\mathcal{F}$  中的每个集合 F, f(F) 是 F 的一个成员.

# 公理 1.1 (Zermelo 选择公理)

令 $\mathcal{F}$ 为非空集的非空族,则 $\mathcal{F}$ 上存在选择函数.

# 定义 1.17 (序关系)

非空集合 X 上的关系 R 称为**偏序**, 若它是自反的、传递的, 且对 X 中的 x,x' 若 xRx' 且 x'Rx, 则 x=x'. X 的子集 E 称为是**全序的**, 若对 E 中的 x,x', 或者 xRx' 或者 x'Rx.

- 1. X 的成员 x 称为是 X 的子集 E 的一个**上界**, 若对所有  $x' \in E$ , 都有 x'Rx;
- 2. X 的成员 x 称为**最大的**, 若 X 中使得 xRx' 的唯一成员是 x'=x.

堂 笔记 对于集簇  $\mathcal{F}$  和  $A,B \in \mathcal{F}$ , 定义 ARB, 若  $A \subseteq B$ . **集合的被包含关系**是  $\mathcal{F}$  的偏序. 观察到  $\mathcal{F}$  中的集合 F 是  $\mathcal{F}$  的子簇  $\mathcal{F}'$  的一个上界, 若  $\mathcal{F}'$  中的每个集合是  $\mathcal{F}$  的子集; 而  $\mathcal{F}$  中的集合  $\mathcal{F}$  是最大的, 若它不是  $\mathcal{F}$  中任何集合的真子集.

类似地, 给定集簇  $\mathcal{F}$  和  $A,B \in \mathcal{F}$ , 定义 ARB, 若  $B \subseteq A$ . **集合的包含关系**是  $\mathcal{F}$  的偏序. 观察到  $\mathcal{F}$  中的集合 F 是  $\mathcal{F}$  的一个上界, 若  $\mathcal{F}'$  的每个集合包含  $\mathcal{F}$ ; 而  $\mathcal{F}$  中的集合  $\mathcal{F}$  是最大的, 若它不真包含  $\mathcal{F}$  中的任何集合.

#### 引理 1.1 (Zorn 引理)

令 X 为偏序集. 它的每个全序子集有一个上界. 则 X 有一个最大元.

我们已定义了两个集合的笛卡尔积. 对一般的参数化集族定义笛卡尔积是有用的. 对于由集合  $\Lambda$  参数化的集族  $\{E_{\lambda}\}_{\lambda\in\Lambda}$  的笛卡尔积, 记为  $\prod_{\lambda\in\Lambda} E_{\lambda}$ , 定义为从  $\Lambda$  到  $\bigcup_{\lambda\in\Lambda} E_{\lambda}$  使得对每个  $\lambda\in\Lambda$ ,  $f(\lambda)$  属于  $E_{\lambda}$  的函数 f 的集合. 显然选择公理等价于非空集的非空簇的笛卡尔积是非空的这一断言. 注意到笛卡尔积是对参数化的集簇定义的, 而相同的簇的两个不同的参数化将有不同的笛卡尔积. 笛卡尔积的这个一般定义与对两个集合给出的定义一致. 事实上, 考虑两个非空集 A 和 B. 定义  $\Lambda=\{\lambda_1,\lambda_2\}$ , 其中  $\lambda_1\neq\lambda_2$ , 接着定义  $E_{\lambda_1}=A$  与  $E_{\lambda_2}=B$ . 该映射将有序对  $(f(\lambda_1),f(\lambda_2))$  指派给函数  $f\in\prod_{\lambda\in\Lambda} E_{\lambda}$  是一个将笛卡尔积  $\prod_{\lambda\in\Lambda} E_{\lambda}$  映到有序对族  $A\times B$  的可逆映射, 因此这两个集合是对等的. 对于两个集合 E 和 E0, 对所有 E1 和 E2 是一个将笛卡尔积 E3 等于由所有从 E3 的映射组成的集合且记为 E4.

# 第二章 实数集:集合、序列与函数

# 2.1 域、正性以及完备性公理

假设给定实数集  $\mathbb{R}$ , 使得对于每对实数 a 和 b, 存在有定义的实数 a+b 和 ab, 分别称为 a 和 b 的和与积. 它们满足以下的域公理、正性公理与完备性公理.

# 公理 2.1 (域公理)

加法的交换性: 对所有实数  $a \rightarrow b$ ,

a + b = b + a

加法的结合性: 对所有实数 a,b 和 c,

(a+b)+c=a+(b+c)

加法的单位元:存在实数,记为0,使得对所有实数a,

0 + a = a + 0 = a

加法的逆元: 对每个实数 a, 存在实数 b 使得

a + b = 0

**乘法的交换性**: 对所有实数  $a \rightarrow b$ .

ab = ba

**乘法的结合性**: 对所有实数 a,b 和 c,

(ab)c = a(bc)

**乘法的单位元**: 存在实数, 记为 1, 使得对所有实数 a, 1a = a1 = a 乘法的逆元: 对每个实数  $a \neq 0$ , 存在实数 b 使得

ab = 1

**分配性**:对所有实数 a,b 和 c,

a(b+c) = ab + ac

非平凡性假设:

 $1 \neq 0$ 

满足上述公理的任何集合称为城. 从加法的交换性可以得出加法的单位元 0 是唯一的, 从乘法的交换性得出乘法的单位元 1 也是唯一的. 加法的逆元和乘法的逆元也是唯一的. 我们记 a 的加法的逆为 -a, 且若  $a \neq 0$ , 记它的乘法逆为  $a^{-1}$  或 1/a.

注 若有一个域, 我们能实施所有初等代数的运算, 包括解线性方程组. 我们不加声明地使用这些公理的多种推论.

#### 公理 2.2 (正性公理)

存在称为正数的实数集,记为 $\mathcal{P}$ .它有以下两个性质:

- (1) 若 a 和 b 是正的,则 ab 和 a+b 也是正的.
- (2) 对于实数 a, 以下三种情况恰有一种成立:

a是正的, -a是正的, a=0.

 $\Diamond$ 

## 定义 2.1 (实数的序)

对于实数 a 和 b,

- 1. 定义a > b意味着a b是正的.
- 2. 定义 $a \ge b$ 意味着a > b或a = b.
- 3. 定义 a < b 意味着 b > a.
- 4. 定义  $a \leq b$  意味着  $b \geq a$ .
- 注 实数的序的定义是根据实数的正性公理给出的.

# 定义 2.2 (实数的区间)

给定实数 a 和 b 满足 a < b, 我们定义 (a,b) =  $\{x|a$  < x <  $b\}$ , 且说 (a,b) 的点落在 a 与 b 之间. 我们称非空实数集 I 为**区间**, 若对 I 中任意两点, 所有落在这两点之间的点也属于 I. 当然, 集合 (a,b) 是区间. 以下集合也是区间:

$$(a,b) = \{x | a < x < b\}; [a,b] = \{x | a \leqslant x \leqslant b\}; [a,b) = \{x | a \leqslant x < b\}; (a,b] = \{x | a < x \leqslant b\}. \tag{2.1}$$

**室** 笔记 所有有界区间都是(2.1)式列出的形式。

# 定义 2.3 (上界和下界)

- 1. 非空实数集 E 称为**有上界**, 若存在实数 b, 使得对所有  $x \in E, x \leq b$ : 数 b 称为 E 的**上界**.
- 2. 非空实数集 E 称为**有下界**, 若存在实数 b, 使得对所有  $x \in E, x \ge b$ : 数 b 称为 E 的**下界**.

## 公理 2.3 (完备性公理)

令 E 为有上界的非空实数集.则在 E 的上界的集合中有一个最小的上界.

筆记 有上界的集合未必有最大的成员.但完备性公理断言它一定有一个最小的上界.

## 定义 2.4 (上下确界)

- 1. 有上界的非空实数集 E 有**最小上界**, 记为 1.u.b. E.E 的最小上界通常称为 E 的**上确界**且记为  $\sup E$ .
- 2. 有下界的非空实数集 E 有**最大下界**, 记为 g.l.b. E.E 的最大下界通常称为 E 的**下确界**且记为  $\inf E.$
- 3. 一个非空实数集称为有界的, 若它既有下界又有上界.

 $\frac{1}{E}$  有上界的非空实数集 E 的最小上界和有下界的非空实数集 E 的最大下界的存在性由完备性公理保证, 因此这个定义是良定义.

#### 定义 2.5 (实数的绝对值)

定义实数 x 的绝对值 |x| 为: 若  $x \ge 0$  则等于 x, 若 x < 0 则等于 -x.

#### 定理 2.1 (三角不等式)

对任何实数对a和b.都有

$$|a+b| \leqslant |a| + |b|.$$

## 定义 2.6 (扩充的实数)

引入符号  $\infty$  和  $-\infty$  并对所有实数 x 写  $-\infty < x < \infty$  是方便的. 我们称集合  $\mathbb{R} \cup \{\pm \infty\}$  为**扩充的实数**.

羹 笔记 我们将定义实数序列的极限,而允许极限是扩充的实数是方便的.

# 定义 2.7 (扩充的实数的上下确界)

- 1. 若非空实数集 E 没有上界, 我们定义它的上确界为  $\infty$  或  $+\infty$ . 定义空集的上确界为  $-\infty$ .
- 2. 若非空实数集 E 没有下界, 我们定义它的下确界为  $-\infty$ . 定义空集的下确界为  $+\infty$ .
- 🕏 笔记 因此每个实数集有一个属于扩充的实数的上确界和下确界.

#### 命题 2.1 (扩充的实数关于和与积的性质)

- 1.  $\infty + \infty = \infty, -\infty \infty = -\infty$ .
- 2. 对每个实数  $x.x + \infty = \infty$  而  $x \infty = -\infty$ .
- 4. 若 x < 0,  $x \cdot \infty = -\infty$  而  $x \cdot (-\infty) = \infty$ .

注 注意到收敛到实数的实数序列的许多性质在极限是 ±∞ 时继续成立, 例如, 和的极限是极限的和且积的极限是极限的积. 因此我们容易验证这些扩充的实数关于和与积的性质.

#### 定义 2.8 (无界区间)

定义  $(-\infty, \infty) = \mathbb{R}$ . 对于  $a,b \in \mathbb{R}$ , 定义

$$(a, \infty) = \{x \in \mathbb{R} | a < x\}, \quad (-\infty, b) = \{x \in \mathbb{R} | x < b\}$$

与

$$[a,\infty)=\{x\in\mathbb{R}|a\leqslant x\},\quad (-\infty,b]=\{x\in\mathbb{R}|x\leqslant b\}.$$

**室记** 上面形式的集合是无界区间. 从 ℝ 的完备性可以推出所有无界区间是上述形式的一种, 而所有有界区间都是(2.1)式列出的形式.

例题 2.1 令 a 和 b 为实数.

- (i) 证明: 若 ab = 0, 则 a = 0 或 b = 0.
- (ii) 验证  $a^2 b^2 = (a b)(a + b)$ , 并从 (i) 部分推出: 若  $a^2 = b^2$ , 则 a = b 或 a = -b.
- (iii) 令 c 为正实数. 定义  $E = \{x \in \mathbb{R} | x^2 < c\}$ . 验证 E 是非空的且有上界. 定义  $x_0 = \sup E$ . 证明  $x_0^2 = c$ . 用 (ii) 部分证明存在唯一的 x > 0 使得  $x^2 = c$ . 记之为  $\sqrt{c}$ .

证明

# 2.2 自然数与有理数

# 定义 2.9 (归纳集)

实数集 E 称为是**归纳的**, 若它包含 1, 且若实数 x 属于 E, 则数 x+1 也属于 E.

 $\widehat{\Psi}$  笔记 显然全体实数集  $\mathbb R$  是归纳的. 从不等式 1>0 我们容易推出集合  $\{x\in\mathbb R|x\geqslant 0\}$  和  $\{x\in\mathbb R|x\geqslant 1\}$  是归纳的.

#### 定义 2.10 (自然数集)

自然数集,记为 N,定义为 ℝ的所有归纳子集的交,即包含数 1 的最小归纳集.

注 集合论中的自然数集一般是从 0 开始,但这里自然数集是从 0 开始的,也就是说  $0 \notin \mathbb{N}$ .

# 命题 2.2 (自然数集是归纳的)

№是归纳的.

证明 观察到数 1 属于  $\mathbb{N}$ , 这是由于 1 属于每个归纳集. 此外, 若数 k 属于  $\mathbb{N}$ , 则 k 属于每个归纳集. 因此, 由归纳集的定义可知, k+1 属于每个归纳集, 所以 k+1 属于  $\mathbb{N}$ .

### 定理 2.2 (数学归纳法原理)

对每个自然数 n, 令 S(n) 为某个数学断言. 假定 S(1) 成立. 也假定每当 k 是使得 S(k) 成立的自然数,则 S(k+1) 也成立. 那么, 对每个自然数 n, S(n) 成立.

证明 定义  $A = \{k \in \mathbb{N} | S(k)$  成立  $\}$ . 假设恰好意味着 A 是一个归纳集. 于是  $\mathbb{N} \subseteq A$ . 因此对每个自然数 n,S(n) 成立.

# 定理 2.3

每个非空自然数集有一个最小成员.

证明 令 E 为自然数的非空集. 由于集合  $\{x \in \mathbb{R} | x \geq 1\}$  是归纳的, 自然数有下界 1. 因此 E 有下界 1. 作为完备性公理的一个推论, E 有下确界, 定义  $C = \inf E$ . 由于 C + 1 不是 E 的下界, 存在  $C \in \mathbb{R}$  使得  $C \in \mathbb{R}$  化为完备性  $C \in \mathbb{R}$  的最小成员. 否则, 存在  $C \in \mathbb{R}$  使得  $C \in \mathbb{R}$  化 由于  $C \in \mathbb{R}$  化 一个  $C \in \mathbb{R}$  化  $C \in \mathbb{R}$  化 由于  $C \in \mathbb{R}$  化  $C \in \mathbb{R}$ 

## 定理 2.4 (实数的 Archimedeas 性质)

对于每对正实数 a 和 b, 存在自然数 n 使得 na > b.

 $\widehat{\Psi}$  笔记 我们经常重述  $\mathbb R$  的 Archimedeas 性质: 对每个正实数  $\varepsilon$ , 存在自然数 n 使得  $1/n < \varepsilon$ .  $\Theta$ .

证明 定义 c = b/a > 0. 我们用反证法证明. 若定理是错的,则 c 是自然数的一个上界. 根据完备性公理,自然数有一个上确界,定义  $c_0 = \sup \mathbb{N}$ .则  $c_0 - 1$  不是自然数的上界. 选取自然数 n 使得  $n > c_0 - 1$ . 因此  $n+1 > c_0$ . 但自然数集是归纳的,因此 n+1 是自然数. 由于  $n+1 > c_0$ ,而 n0 不是自然数集的上界. 这个矛盾完成了证明.

## 定义 2.11 (整数集、有理数集和无理数)

- 1. 定义整数集(记为 ℤ) 为由自然数、它们的相反数和数 0 组成的数集.
- 2. **有理数集**, 记为 ℚ, 定义为整数的商的集合, 即形如 x = m/n 的数 x, 其中 m 和 n 是整数且 n ≠ 0.
- 3. 若一个实数不是有理的就称它为无理数.

**例题 2.2** 正如我们在<mark>例题 2.1(iii)</mark>证明的, 存在唯一的正数 x 使得  $x^2 = 2$ , 记之为  $\sqrt{2}$ . 证明: $\sqrt{2}$  这个数不是有理的. 证明 事实上, 假定 p 和 q 是自然数使得  $(p/q)^2 = 2$ , 则  $p^2 = 2q^2$ . 素数分解定理 <sup>⊖</sup> 告诉我们 2 除  $p^2$  的次数正好是它除 p 的次数的两倍. 因此 2 除  $p^2$  偶数次. 类似地,2 除  $2q^2$  奇数次. 于是  $p^2 \neq 2q^2$ , 且因此  $\sqrt{2}$  是无理的.

# 定义 2.12 (稠密)

实数的集合 E 称为在  $\mathbb{R}$  中**稠密**, 若任何两个实数之间有 E 的成员.

#### 定理 2.5 (有理数的稠密性)

有理数在 ℝ 中稠密.

证明 令 a 和 b 为实数,满足 a < b. 首先假定 a > 0. 根据  $\mathbb R$  的 Archimedeas 性质可知,存在自然数 q 使得 (1/q) < b - a. 再一次利用  $\mathbb R$  的 Archimedeas 性质可知,自然数集  $S = \{n \in \mathbb N | n/q \ge b\}$  非空. 根据定理 2.3可知,S 具有最小成员 p. 观察到 1/q < b - a < b, 于是 p > 1. 因此 p - 1 是自然数(见例题 2.4),因而根据 p 的选取的最小性,(p-1)/q < b. 我们也有

$$a = b - (b - a) < (p/q) - (1/q) = (p - 1)/q$$

因此有理数 r = (p-1)/q 落在 a = b 之间. 若 a < 0, 根据  $\mathbb{R}$  的 Archimedeas 性质可知, 存在自然数 n 使得 n > -a.

| 我们从考虑过的第一种情形推出:存在有理数 $r$ 落在 $n+a$ 与 $n+b$ 之间.因此有理数 $r-n$ 落在 $a$ 与 $b$ 之间. |  |
|---------------------------------------------------------------------------|--|
| 例题 2.3 用归纳法证明: 对每个自然数 $n$ , 区间 $(n, n+1)$ 不含任何自然数.                        |  |
| 证明                                                                        |  |

例题 2.4 用归纳法证明: 若 n > 1 是自然数,则 n - 1 也是一个自然数. 接着用归纳法证明: 若 m 和 n 是满足 n > m 的自然数,则 n - m 是自然数.

证明

# 2.3 可数集与不可数集

# 公理 2.4 (良序原理)

自然数集的每个非空子集都有一个最小元素,即自然数在其标准的大小关系 < 下构成一良序集.

🔮 筆记 良序原理等价于选择公理.

#### 命题 2.3

对等在集合间定义了一个等价关系,即它是自反的、对称的与传递的.

证明

# 定义 2.13 (自然数)

定义自然数  $\{k \in \mathbb{N} | 1 \le k \le n\}$  为  $\{1, \dots, n\}$ .

# 定理 2.6 (鸽笼原理)

对任何自然数 n 和 m, 集合  $\{1, \dots, n+m\}$  与集合  $\{1, \dots, n\}$  不对等.

证明 归纳可证. □

# 定义 2.14 (可数集与不可数集)

- 1. 集合 E 称为是有限的或有限集. 若它或者是空集, 或者存在自然数 n 使得 E 与  $\{1, \cdots, n\}$  对等.
- 2. 我们说 E 是**可数无穷的**, 若 E 与自然数集 ℕ 对等.
- 3. 有限或可数无穷的集合称为可数集. 不是可数的集合称为不可数集.

#### 命题 2.4

若一个集与可数集对等,则它是可数的.

证明

#### 定理 2.7

可数集的子集是可数的. 特别是, 每个自然数集是可数的.

证明 令 B 为可数集而 A 是 B 的一个非空子集. 首先考虑 B 是有限的情形. 令 f 为  $\{1, \dots, n\}$  与 B 之间的一一对应. 定义 g(1) 为第一个使得 f(j) 属于 A 的自然数  $j,1 \leq j \leq n$ . 由于  $f \circ g$  是  $\{1\}$  与 A 之间的一一对应, 若  $A = \{f(g(1))\}$ , 证明完成. 否则, 定义 g(2) 为使得 f(j) 属于  $A - \{f(g(1))\}$  的第一个自然数  $j,1 \leq j \leq n$ . 鸽笼原理告

诉我们至多 N 步后该归纳选择过程终止, 其中  $N \le n$ . 因此  $f \circ g \in \{1, \dots, N\}$  与 A 之间的一一对应. 于是 A 有限.

现在考虑 B 是可数无穷的情形. 令 f 为  $\mathbb{N}$  与 B 之间的一一对应. 定义 g(1) 为第一个使得 f(j) 属于 A 的自然数 j. 如同第一种情形的证明,我们看到若该选择过程终止,则 A 是有限的. 否则,该选择过程不终止而 g 在所有的  $\mathbb{N}$  上恰当定义. 显然  $f \circ g$  是一一映射,其中定义域是  $\mathbb{N}$  而象包含于 A 中. 归纳论证表明对所有  $j,g(j) \geqslant j$ . 对每个  $x \in A$ ,存在某个 k 使得 x = f(k). 因此 x 属于集合  $\{f(g(1)), \cdots, f(g(k))\}$ . 因此  $f \circ g$  的象是 A. 因此 A 是可数无穷.

# 推论 2.1

- (i) 对每个自然数n, 笛卡尔积  $\mathbb{N} \times \cdots \times \mathbb{N}$  是可数无穷的. 即自然数集与其自身的有限次笛卡尔积是可数无穷的.
- (ii) 有理数集 ℚ是可数无穷的.

#### 证明

(i) 我们对 n = 2 证明 (i), 而一般情形留作归纳法的练习. 定义从  $\mathbb{N} \times \mathbb{N}$  到  $\mathbb{N}$  的映射 g 为  $g(m,n) = (m+n)^2 + n$ . 映射 g 是一对一的. 事实上, 若 g(m,n) = g(m',n'), 则  $(m+n)^2 - (m'+n')^2 = n' - n$ , 因此

$$|m + n + m' + n'| \cdot |m + n - m' - n'| = |n' - n|$$

若  $n \neq n'$ , 则自然数 m+n+m'+n' 大于自然数 |n'-n|, 这是不可能的. 于是 n=n', 因而 m=m'. 因此  $\mathbb{N} \times \mathbb{N}$  与可数集  $\mathbb{N}$  的子集  $g(\mathbb{N} \times \mathbb{N})$  对等. 我们从定理 2.7推出  $\mathbb{N} \times \mathbb{N}$  是可数的.

(ii) 为证明 Q 的可数性, 我们首先从素数分解定理推出每个正有理数 x 可唯一写成 x = p/q, 其中 p 和 q 是互素的自然数. 对 x = p/q > 0 定义从 Q 到 N 的映射 g 为  $g(x) = 2((p+q)^2 + q)$ , 其中 p 和 q 是互素的自然数, g(0) = 1, 而对 x < 0, g(x) = g(-x) + 1. 我们将证明 g 是一对一的留作练习. 于是 Q 与 N 的一个子集对等, 因此根据定理 2.7, 是可数的. 我们将用鸽笼原理证明 N × N 和 Q 都不是有限的留作练习.

# 定义 2.15 (可数无穷集的列举)

对于可数无穷集 X, 我们说  $\{x_n | n \in \mathbb{N}\}$  是 X 的一个**列举**, 若

 $X = \{x_n | n \in \mathbb{N}\}, x_n \neq x_m (\stackrel{\text{``}}{\pi} n \neq m).$ 

#### 定理 2.8

非空集是可数的当且仅当它是某个定义域为非空可数集的函数的象.

证明 令 A 为非空可数集,而 f 为将 A 映上 B 的映射. 假定 A 是可数无穷的,而将有限的情形留作练习. 通过 A 与  $\mathbb{N}$  之间的一一对应的复合,我们可以假定  $A = \mathbb{N}$ . 定义 A 中的两点 x,x' 为等价的,若 f(x) = f(x'). 这是一个等价关系,即它是自反的、对称的与传递的. 令 E 为 A 的子集,它由每个等价类的一个成员组成. 则 f 在 E 的限制是 E 与 E 之间的一一对应. 但 E 是 E 的子集,因此,根据定理 E 2.7,是可数的. 集合 E 与 E 对等,因此 E 是可数的. 逆断言是显然的,若 E 是非空可数集,则它或者与自然数的一个初始部分对等,或者与自然数全体对等.

#### 推论 2.2

可数集的可数族的并是可数的.

证明 令  $\Lambda$  为可数集且对每个  $\lambda \in \Lambda$ , 令  $E_{\lambda}$  为可数集. 我们将证明并  $E = \bigcup_{\lambda \in \Lambda} E_{\lambda}$  是可数的. 若 E 是空集, 则它是可数的. 因此我们假设  $E \neq \emptyset$ . 我们考虑  $\Lambda$  是可数无穷的情形, 而将有限的情形留作练习. 令  $\{\lambda_n | n \in \mathbb{N}\}$  为  $\Lambda$  的一个列举. 固定  $n \in \mathbb{N}$ . 若  $E_{\lambda_n}$  是有限且非空的, 选取自然数 N(n) 与将  $\{1, \cdots, N(n)\}$  映上  $E_{\lambda_n}$  的一一映射  $f_n$ ; 若  $E_{\lambda_n}$ 

是可数无穷的, 选取  $\mathbb{N}$  映上  $E_{\lambda_n}$  的一一映射  $f_n$ . 定义

 $E' = \{(n,k) \in \mathbb{N} \times \mathbb{N} | E_{\lambda_n}$  是非空的,且若 $E_{\lambda_n}$  也是有限的, $1 \leq k \leq N(n)\}$ 

定义 E' 到 E 的映射 f 为  $f(n,k) = f_n(k)$ . 则 f 是 E' 映上 E 的映射. 然而, E' 是可数集  $\mathbb{N} \times \mathbb{N}$  的子集, 因此, 根据定 理 2.7, 是可数的. 定理 5 告诉我们 E 也是可数的. 

#### 定义 2.16 (退化的区间)

我们称实数的区间为退化的, 若它是空的或包含一个单独的成员,

#### 定理 2.9

一个非退化实数区间是不可数的.

证明 令 I 为实数的非退化区间. 显然 I 不是有限的. 我们用反证法证明 I 是不可数的. 假定 I 是可数无穷的. 令  $\{x_n|n \in \mathbb{N}\}$  为 I 的一个列举. 令  $[a_1,b_1]$  为 I 的不包含  $x_1$  的非退化的闭有界子区间. 接着令  $[a_2,b_2]$  为  $[a_1,b_1]$  的非 退化的闭有界子区间,它不包含 $x_2$ . 我们归纳地选取非退化闭有界区间的可数族  $\{[a_n,b_n]\}_{n=1}^{\infty}$ , 对每个n,  $[a_{n+1},b_{n+1}] \subseteq$  $[a_n,b_n]$ , 并使得对每个  $n,x_n \notin [a_n,b_n]$ . 非空集  $E=\{a_n|n\in\mathbb{N}\}$  有上界  $b_1$ .完备性公理告诉我们 E 有上确界. 定义  $x^* = \sup E$ . 由于  $x^*$  是 E 的一个上界, 对所有  $n,a_n \leq x^*$ . 另一方面, 由于  $\{[a_n,b_n]\}_{n=1}^\infty$  是下降的, 对每个  $n,b_n$  是 E的上界. 于是, 对每个  $n,x^* \leq b_n$ . 因此对每个  $n,x^*$  属于  $[a_n,b_n]$ . 但  $x^*$  属于  $[a_1,b_1] \subseteq I$ , 因此存在自然数  $n_0$  使得  $x^* = x_{n_0}$ . 由于  $x^* = x_{n_0}$  不属于  $[a_{n_0}, b_{n_0}]$ , 我们得到矛盾. 因此, I 是不可数的.

# 2.4 实数的开集、闭集和 Borel 集

# 定义 2.17 (实数的开集)

一个实数的集合 O 称为**开的**, 若对每个  $x \in O$ , 存在 r > 0 使得区间 (x - r, x + r) 包含于 O.

# 定理 2.10

实数的开集就是开区间.

# 命题 2.5 (实数的开区间)

- (1) 对于a < b, 区间(a,b)是一个开集, 且每个开有界区间(有界开集)都是这种形式.
- (2) 对于 $a,b \in \mathbb{R}$ , 区间  $(a,\infty)$ ,  $(-\infty,b)$ ,  $(-\infty,\infty)$  都是开集, 且每个开无界区间 (无界开集) 都是这三中形式 之一.

#### 证明

- (1) 事实上, 令x属于(a,b). 定义 $r = \min\{b x, x a\}$ . 观察到(x r, x + r)包含于(a,b). 因此(a,b)是开有界 区间. 又因为实数的有界开集等价于有界开区间, 而实数的有界开区间都是这种形式, 所以每个开有界区间 (有界开集)都是这种形式.
- (2) 观察到每个这样的集合是一个开区间. 此外, 不难看出, 由于每个实数集在扩充实数集中有下确界与上确界, 因此每个开无界区间(无界开集)都是这三中形式之一.

#### 命题 2.6 (实数集的开集的性质)

实数集 ℝ和空集 Ø 是开的. 任何开集的有限族的交是开的. 任何开集族的并是开的.

注 然而,任何开集族的交是开的不成立.例如,对每个自然数n, 令 $O_n$ 为开区间(-1/n,1/n).则根据实数的 Archimedeas 性质可知, $\bigcap O_n = \{0\}$ , 而  $\{0\}$  不是一个开集.

12

证明 显然  $\mathbb{R}$  和 Ø 是开的,而任何开集族的并是开的. 令  $\{O_k\}_{k=1}^n$  为  $\mathbb{R}$  的开子集的有限族. 若该族的交是空的,则交是空集,因此是开的. 否则,令 x 属于  $\bigcap_{k=1}^n O_k$ . 对于  $1 \le k \le n$ ,选取  $r_k > 0$  使得  $(x - r_k, x + r_k) \subseteq O_k$ . 定义

$$r = \min\{r_1, \cdots, r_n\}$$
. 则  $r > 0$  且  $(x - r, x + r) \subseteq \bigcap_{k=1}^n O_k$ . 因此  $\bigcap_{k=1}^n O_k$  是开的

#### 命题 2.7

每个非空开集是可数个不交开区间族的并.

证明 令 O 为  $\mathbb{R}$  的非空开子集. 令 x 属于 O. 存在 y > x 使得  $(x,y) \subseteq O$ , 且存在 z < x 使得  $(z,x) \subseteq O$ . 定义扩充的 实数  $a_x$  和  $b_x$  为

$$a_x = \inf\{z | (z, x) \subseteq O\} = \sup\{y | (x, y) \subseteq O\}$$

则  $I_x = (a_x, b_x)$  是包含 x 的开区间. 我们宣称

$$I_x \subseteq O \boxtimes a_x \notin O, \ b_x \notin O. \tag{2.2}$$

事实上,令w属于  $I_x$ , 比如  $x < w < b_x$ . 根据  $b_x$  的定义,存在数 y > w 使得  $(x,y) \subseteq O$ ,因而  $w \in O$ . 此外, $b_x \notin O$ ,因为若  $b_x \in O$ ,则对某个 r > 0 我们有  $(b_x - r, b_x + r) \subseteq O$ .因此  $(x, b_x + r) \subseteq O$ ,与  $b_x$  的定义矛盾. 类似地, $a_x \notin O$ ,考虑开区间族  $\{I_x\}_{x \in O}$ .由于 O 中的每个 x 是  $I_x$  的成员,而每个  $I_x$  包含于 O,我们有  $O = \bigcup_{x \in O} I_x$ .我们从(2.2)推出  $\{I_x\}_{x \in O}$  是不交的.因此 O 是不交的开区间族的并.剩下来要证明该族是可数的.根据有理数的稠密性,这些开区间的每一个包含一个有理数.这建立了开区间族与有理数子集之间的一一对应.我们从定理 2.7和推论 2.1(ii)推出任何有理数集是可数的.因此 O 是可数个不交开区间族的并.

#### 定义 2.18 (实数的闭包)

对于实数集 E,x 称为 E 的**闭包点**, 若每个包含 x 的开区间也包含 E 的点.E 的全体闭包点称为 E 的**闭包**且记为  $\overline{E}$ .

#### 命题 2.8

对于实数集 E, 我们总是有  $E \subseteq \overline{E}$ .

#### 定义 2.19 (实数的闭集)

若 E 包含它的所有闭包点, 即  $E = \overline{E}$ , 则集合 E 称为闭的或闭集.

#### 命题 2.9

对于实数集 E, 它的闭包  $\overline{E}$  是闭的. 此外,  $\overline{E}$  在以下意义下是包含 E 的最小闭集: 若 F 是闭的且  $E \subseteq F$ , 则  $\overline{E} \subseteq F$ .

证明 集合  $\overline{E}$  是闭的, 若它包含所有闭包点. 令 x 为  $\overline{E}$  的闭包点. 考虑包含 x 的开区间  $I_x$ . 存在一个点  $x' \in \overline{E} \cap I_x$ . 由于 x' 是 E 的闭包点, 且开区间  $I_x$  包含 x', 存在点  $x'' \in E \cap I_x$ . 因此每个包含 x 的开区间也包含 E 的点, 且因此  $x \in \overline{E}$ . 所以集合  $\overline{E}$  是闭的. 显然, 若  $A \subseteq B$ , 则  $\overline{A} \subseteq \overline{B}$ , 因此, 若 F 是闭的且包含 E, 则  $\overline{E} \subseteq \overline{F} = F$ .

#### 命题 2.10

实数集是开的当且仅当它在 ℝ中的补是闭的.

证明 首先假定  $E \in \mathbb{R}$  的一个开子集. 令  $x \to \mathbb{R} - E$  的闭包点. 则 x 不属于 E, 因为否则就会有一个包含 x 且包含于 E 的开区间, 因而与  $\mathbb{R} - E$  不交. 于是 x 属于  $\mathbb{R} - E$  且因此  $\mathbb{R} - E$  是闭的. 现在假定  $\mathbb{R} - E$  是闭的. 令 x 属于 E. 则必有包含 x 且包含于 E 的开区间, 否则每个包含 x 的开区间包含  $\mathbb{R} - E$  的点, 且因此 x 是  $\mathbb{R} - E$  的闭包点. 由于

 $\mathbb{R} - E$  是闭的,x 也属于  $\mathbb{R} - E$ . 这是一个矛盾.

# 命题 2.11 (实数集的闭集的性质)

空集 Ø 和 ℝ 是闭的, 任何闭集的有限族的并是闭的, 任何闭集族的交是闭的.

注 空集 Ø 和 ℝ 是既开又闭的.

证明 由于  $\mathbb{R}-[\mathbb{R}-E]=E$ , 从命题 2.9得出一个集合是闭的当且仅当它的补是开的. 因此, 根据De Morgan 等式和命题 2.6立得.

#### 定义 2.20 (覆盖)

- 1. 集族  $\{E_{\lambda}\}_{\lambda \in \Lambda}$  称为是集合 E 的**覆盖**, 若  $E \subseteq \bigcup E_{\lambda}$ .
- 2. 若 E 的覆盖的子族自身也是 E 的一个覆盖, 我们称为 E 的覆盖的子覆盖.
- 3. 若覆盖中的每个集合  $E_{\lambda}$  是开的, 我们称  $\{E_{\lambda}\}_{\lambda \in \Lambda}$  为 E 的一个**开覆盖**.
- 4. 若覆盖  $\{E_{\lambda}\}_{\lambda \in \Lambda}$  仅包含有限个集合, 我们称它为**有限覆盖**.

輸完 室记 该术语是不一致的: "开覆盖"中的"开"指的是该覆盖的集合; "有限覆盖"中的"有限"指的是族而不是隐含该族中的集合是有限集. 因此, 术语"开覆盖"是语言的误用, 而恰当的说法应该是"用开集覆盖". 遗憾的是, 前一个术语已在数学中广泛使用.

#### 定理 2.11 (Heine - Borel 定理)

令 F 为闭有界实数集. 则 F 的每个开覆盖有一个有限子覆盖.

证明 我们首先考虑 F 是闭有界区间 [a,b] 的情形. 令  $\mathcal{F}$  为 [a,b] 的开覆盖. 定义 E 为具有如下性质的区间 [a,x], 即可被  $\mathcal{F}$  的有限个集合覆盖的数  $x \in [a,b]$  的集合. 由于  $a \in E$ , E 是非空的. 由于 E 有上界 B, 根据  $\mathbb{R}$  的完备性, E 有上确界. 定义 E = sup E. 由于 E 属于 E [E ] ,存在 E 包含 E 包含 E 。由于 E 是非空的. 由于 E 有上界 E 的,根据 E 的完备性, E 包含于 E . 现在 E 一定 不是 E 的上界,因而必有 E E 满足 E 之 E 。由于 E E ,存在覆盖 E 。有限族 E 。因此,有限族 E 。因此,有限族 E 。因此,有限,是一定 E 的上界。因此 E 。因此 E 。因此 E 。因此 E 。因此 E 。因此 E 。因此 E 。

现在令 F 为任何闭有界集,而  $\mathcal{F}$  是 F 的一个开覆盖. 由于 F 是有界的,它包含于某个有界闭区间 [a,b].命题 2.10告诉我们集合  $O=\mathbb{R}-F$  是开的,因为 F 是闭的. 令  $\mathcal{F}^*$  为添加 O 到  $\mathcal{F}$  后得到的开集族,即  $\mathcal{F}^*=\mathcal{F}\cup O$ . 由于  $\mathcal{F}$  覆盖 [a,b]. 根据我们刚考虑的情形,存在  $\mathcal{F}^*$  的有限子族覆盖 [a,b],因此也覆盖 F. 通过从 F 的这个有限子覆盖去掉 O,若 O 属于该有限子覆盖,我们得到  $\mathcal{F}$  中覆盖 F 的有限族.

# 定义 2.21 (集族的下降与上升)

- 1. 我们说集合的可数族  $\{E_n\}_{n=1}^{\infty}$  是**下降的**, 若对每个自然数  $n,E_{n+1} \subseteq E_n$ .
- 2. 我们说集合的可数族  $\{E_n\}_{n=1}^{\infty}$  是**上升的**, 若对每个自然数  $n,E_n \subseteq E_{n+1}$ .

#### 定理 2.12 (集套定理)

令  $\{F_n\}_{n=1}^{\infty}$  为下降的非空闭实数集的可数族, 其中  $F_1$  有界. 则

$$\bigcap_{n=1}^{\infty} F_n \neq \varnothing.$$

证明 我们用反证法. 假定交集是空的. 则对每个实数 x, 存在自然数 n 使得  $x \notin F_n$ , 即  $x \in O_n = \mathbb{R} - F_n$ . 因此  $\bigcup_{n=1}^{\infty} O_n = \mathbb{R}$ . 根据命题 2.10, 由于每个  $F_n$  是闭的, 每个  $O_n$  是开的. 因此  $\{O_n\}_{n=1}^{\infty}$  是  $\mathbb{R}$  的一个开覆盖, 从而也是  $F_1$ 

的开覆盖.Heine - Borel 定理告诉我们存在自然数 N 使得  $F_1 \subseteq \bigcup_{n=1}^N O_n$ . 由于  $\{F_n\}_{n=1}^\infty$  是下降的, 补集族  $\{O_n\}_{n=1}^\infty$  是

上升的. 因此  $\bigcup_{n=1}^N O_n = O_N = \mathbb{R} - F_N$ . 因此  $F_1 \subseteq \mathbb{R} - F_N$ , 这与  $F_N$  是  $F_1$  的非空子集的假设矛盾.

# 定义 2.22 (σ 代数)

给定集合 X,X 的子集族 A 称为 (X 的子集的)  $\sigma$  代数, 若:

- (i) 空集 Ø 属于 Я;
- (ii)  $\mathcal{A}$  中的集合在 X 中的补也属于  $\mathcal{A}$ ;
- (iii) Я 中集合的可数族的并也属于 Я.

# 拿 笔记

- (1) 给定集合 X, 族  $\{\emptyset, X\}$  是一个  $\sigma$  代数, 它有两个成员且它包含于每个 X 的子集的  $\sigma$  代数.
- (2) 另一个极端情形是 X 的所有子集组成的集族且包含每个 X 的子集的  $\sigma$  代数  $2^{X}$ .

# 命题 2.12 ( $\sigma$ 代数的基本性质)

对任何 $\sigma$ 代数 $\mathcal{A}$ .

- (1) Я关于属于Я的集合的可数族的交封闭.
- (2) Я关于属于 Я的集合的有限并与有限交封闭.
- (3)  $\mathcal{A}$  关于属于  $\mathcal{A}$  的集合的相对补封闭, 即若  $A_1$  和  $A_2$  属于  $\mathcal{A}$ , 则  $A_1$   $A_2$  也属于  $\mathcal{A}$ .

#### 证明

- (1) 从 De Morgan 等式容易推出.
- (2) 由空集属于 Я 易得.
- (3)  $\exists A_1 A_2 = A_1 \cap [X A_2]$  易得.

#### 命题 2.13

令  $\mathcal{F}$  为集合 X 的子集族. 则所有包含  $\mathcal{F}$  的 X 的子集的  $\sigma$  代数的交  $\mathcal{A}$  是一个包含  $\mathcal{F}$  的  $\sigma$  代数. 此外, 在任何包含  $\mathcal{F}$  的  $\sigma$  代数也包含  $\mathcal{A}$  的意义下,  $\mathcal{A}$  是包含  $\mathcal{F}$  的最小的 X 的子集的  $\sigma$  代数.

证明 这个命题的证明可直接从 $\sigma$  代数的定义得到.

#### 命题 2.14

令  $\{A_n\}_{n=1}^{\infty}$  为属于  $\sigma$  代数  $\mathcal{A}$  的集合的可数族. 以下两个集合属于  $\mathcal{A}$ :

$$\limsup \{A_n\}_{n=1}^{\infty} = \bigcap_{k=1}^{\infty} \left[ \bigcup_{n=k}^{\infty} A_n \right] - \lim \inf \{A_n\}_{n=1}^{\infty} = \bigcup_{k=1}^{\infty} \left[ \bigcap_{n=k}^{\infty} A_n \right]$$

集合  $\limsup\{A_n\}_{n=1}^{\infty}$  是对可数无穷多个指标 n 属于  $A_n$  的点的集合, 而集合  $\liminf\{A_n\}_{n=1}^{\infty}$  是除指定至多有限多个指标 n 外属于  $A_n$  的点的集合.

证明 由 Я 关于可数交与并封闭立得.

## 定义 2.23 (实数的 Borel 集)

实数的 Borel 集族  $\mathcal B$  是包含所有实数的开集的实数集的最小  $\sigma$  代数.

#### 定义 2.24 ( $G_\delta$ 集与 $F_\sigma$ 集)

开集的可数交称为  $G_{\delta}$  集. 闭集的可数并称为  $F_{\sigma}$  集.

# 命题 2.15 (Borel 集的基本性质)

- (1) 每个开集和闭集都是 Borel 集.
- (2) 每个单点集都是 Borel 集.
- (3) 每个可数集都是 Borel 集.
- (4) 每个 $G_{\delta}$ 集和每个 $F_{\sigma}$ 集是Borel集.
- (5) 每个开的或者闭的实数集的可数族的 lim inf 和 lim sup 都是 Borel 集.

#### 证明

- (1) 显然每个开集都是 Borel 集, 由于 $\sigma$  代数关于补是封闭的, 我们从命题 2.10推出每个闭集是 Borel 集.
- (2) 由每个单点集是闭的结合(1)立得.
- (3)
- (4) 由 σ 代数关于可数并与可数交封闭立得.
- (5)

# 2.5 实数序列

## 定义 2.25 (实数序列/实数列)

实数序列是一个实值函数, 其定义域是自然数集. 习惯上我们不用标准的函数记号如  $f: \mathbb{N} \to \mathbb{R}$  表示序列, 而用下标  $a_n$  代替 f(n), 将一个序列记为  $\{a_n\}$ . 自然数 n 称为该序列的指标, 对应于指标 n 的数  $a_n$  称为序列的第 n 项.

正如同我们说实值函数是有界的, 若它的象是有界实数集; 我们说序列是有界的, 若存在某个  $c \ge 0$  使得对所有  $n,|a_n| \le c$ .

若对所有  $n,a_n \leq a_{n+1}$ , 序列  $\{a_n\}$  称为是递增的; 若  $\{-a_n\}$  是**递增的**, 序列  $\{a_n\}$  称为是**递减的**; 若它是递增的或者递减的, 序列  $\{a_n\}$  则称为是**单调的**.

#### 定义 2.26

我们说序列  $\{a_n\}$  收敛到数 a, 若对每个  $\varepsilon > 0$ , 存在指标 N, 使得当  $n \ge N$  时, 有

$$|a-a_n|<\varepsilon$$
.

我们称 a 为序列的极限且用

$$\{a_n\} \to a \not \leq \lim_{n \to \infty} a_n = a.$$

表示  $\{a_n\}$  的收敛性.

# 命题 2.16 (收敛的实数列的性质)

令实数序列  $\{a_n\}$  收敛到实数 a. 则极限是唯一的, 该序列是有界的, 且对实数 c, 若对所有 n,  $a_n \leq c$ , 则  $a \leq c$ .

#### 定理 2.13 (实数序列的单调收敛准则)

单调的实数序列收敛当且仅当它是有界的.

证明 令  $\{a_n\}$  为递增序列. 若该序列收敛,则根据前一个命题,它是有界的. 现在假设  $\{a_n\}$  是有界的,根据完备性公理,集合  $S=\{a_n|n\in N\}$  有上确界:定义  $a=\sup S$ . 我们宣称  $\{a_n\}\to a$ . 事实上,令  $\varepsilon>0$ . 由于  $a\in S$  的上界,对所有  $n,a_n\leqslant a$ . 由于  $a-\varepsilon$  不是 S 的上界,存在指标 N,使得  $a_N>a-\varepsilon$ . 由于该序列是递增的,对所有

 $n \ge N, a_n > a - \varepsilon$ . 因此, 若  $n \ge N$ , 则  $|a - a_n| < \varepsilon$ . 因此  $\{a_n\} \to a$ . 序列递减情形的证明是相同的.

# 定义 2.27 (子序列)

对于序列  $\{a_n\}$  和严格递增的自然数序列  $\{n_k\}$ , 序列  $\{a_{n_k}\}$  的第 k 项是  $a_{n_k}$  并被称为  $\{a_n\}$  的一个**子序列**.

## 定理 2.14 (Bolzano - Weierstrass 定理)

每个有界实数序列有一个收敛的子序列.

证明 令  $\{a_n\}$  为有界实数序列. 选取  $M \ge 0$  使得对所有  $n,|a_n| \le M$ . 令 n 为自然数. 定义  $E_n = \overline{\{a_j|j \ge n\}}$ . 则  $E_n \subseteq [-M,M]$  且  $E_n$  是闭的,因为它是集合的闭包. 因此, $\{E_n\}$  是下降的  $\mathbb R$  的非空闭有界子集序列. 集套定理告诉我们  $\bigcap_{n=1}^{\infty} E_n \ne \emptyset$ , 选取  $a \in \bigcap_{n=1}^{\infty} E_n$ . 对于每个自然数 k,a 是  $\{a_j|j \ge k\}$  的闭包点. 因此,对于无穷多个指标  $j \ge n,a_j$  属于 (a-1/k,a+1/k). 根据归纳法,选取严格递增的自然数序列  $\{n_k\}$  使得对所有  $k,|a-a_{n_k}| < 1/k$ . 我们从  $\mathbb R$  的 Archimedeas 性质推出子序列  $\{a_{n_k}\}$  收敛到 a.

#### 定义 2.28

实数序列  $\{a_n\}$  称为是 Cauchy **的**或 Cauchy **列**, 若对每个  $\varepsilon > 0$ , 存在指标 N 使得当  $n, m \ge N$  时, 有  $|a_m - a_n| < \varepsilon$ .

# 定理 2.15 (实数序列的 Cauchy 收敛准则)

实数序列收敛当且仅当它是 Cauchy 的.

证明 首先假定  $\{a_n\} \rightarrow a$ . 观察到对所有自然数 n 和 m,

$$|a_n - a_m| = |(a_n - a) + (a - a_m)| \le |a_n - a| + |a_m - a|$$
(2.3)

令  $\varepsilon > 0$ . 由于  $\{a_n\} \to a$ , 我们可以选取一个自然数 N 使得若  $n \geqslant N$ , 则  $|a_n - a| < \varepsilon/2$ . 我们从(2.3)推出若  $n, m \geqslant N$ , 则  $|a_m - a_n| < \varepsilon$ . 因此序列  $\{a_n\}$  是 Cauchy 的.

为证明反命题, 令  $\{a_n\}$  为 Cauchy 序列. 我们宣称它是有界的. 事实上, 对  $\varepsilon=1$ , 选取 N 使得若  $n,m \ge N$ , 则  $|a_m-a_n|<1$ . 因此, 对所有  $n \ge N$ ,

$$|a_n| = |(a_n - a_N) + a_N| \le |a_n - a_N| + |a_N| \le 1 + |a_N|.$$

定义  $M=1+\max\{|a_1|,\cdots,|a_N|\}$ . 则对所有  $n,|a_n|\leqslant M$ . 因此  $\{a_n\}$  是有界的.Bolzano - Weierstrass 定理告诉我们存在收敛于 a 的子序列  $\{a_{n_k}\}$ . 我们宣称整个序列收敛于 a. 事实上,令  $\epsilon>0$ . 由于  $\{a_n\}$  是 Cauchy 的,我们可以选取自然数 N,使得若  $n,m\geqslant N$ ,则  $|a_n-a_m|<\epsilon/2$  另外,由于  $\{a_{n_k}\}\to a$ ,我们可以选取自然数  $n_k$ ,使得对  $n_k\geqslant N,|a-a_{n_k}|<\epsilon/2$ . 因此,对所有  $n\geqslant N$ ,

$$|a_n - a| = |(a_n - a_{n_k}) + (a_{n_k} - a)| \le |a_n - a_{n_k}| + |a - a_{n_k}| < \varepsilon.$$

#### 定理 2.16 (实序列收敛的线性与单调性)

令  $\{a_n\}$  和  $\{b_n\}$  为收敛的实数序列. 则对每对实数  $\alpha$  和  $\beta$ , 序列  $\{\alpha \cdot a_n + \beta \cdot b_n\}$  收敛且

$$\lim_{n \to \infty} [\alpha \cdot a_n + \beta \cdot b_n] = \alpha \cdot \lim_{n \to \infty} a_n + \beta \cdot \lim_{n \to \infty} b_n \tag{2.4}$$

此外, 若对所有  $n, a_n \leq b_n$ , 则  $\lim a_n \leq \lim b_n$ 

证明 设

$$\lim_{n\to\infty} a_n = a = \lim_{n\to\infty} b_n = b$$

观察到对所有n,

$$|[\alpha \cdot a_n + \beta \cdot b_n] - [\alpha \cdot a + \beta \cdot b]| \le |\alpha| \cdot |a_n - a| + |\beta| \cdot |b_n - b| \tag{2.5}$$

令  $\varepsilon > 0$ . 选取自然数 N 使得对所有  $n \ge N$ ,

$$|a_n - a| < \varepsilon/[2 + 2|\alpha|] \mathbb{E}|b_n - b| < \varepsilon/[2 + 2|\beta|]$$

我们从(2.5)推出对所有  $n \ge N$ ,

$$|[\alpha \cdot a_n + \beta \cdot b_n] - [\alpha \cdot a + \beta \cdot b]| < \varepsilon$$

因此(2.4)成立. 为了验证  $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$ , 对所有 n, 设  $c_n = b_n - a_n$  与 c = b - a. 则对所有 n,  $c_n \geq 0$ , 根据收敛的线性,  $\{c_n\} \to c$ . 我们必须证明  $c \geq 0$ . 令  $\epsilon > 0$ . 存在 N 使得对所有  $n \geq N$ ,

$$-\varepsilon < c - c_n < \varepsilon$$

特别地, $0 \le c_N < c + \varepsilon$ . 由于对每个正数  $\varepsilon,c > -\varepsilon$ , 所以  $c \ge 0$ .

#### 定义 2.29 (实数列扩充的收敛)

对每个实数 c, 存在指标 N 使得  $n \ge N$  时有  $a_n \ge c$ , 我们就说序列  $\{a_n\}$  **收敛到无穷**, 称  $\infty$  为  $\{a_n\}$  的极限且记作  $\lim_{n\to\infty}\{a_n\}=\infty$ . 收敛到  $-\infty$  可做出类似的定义.

 $\hat{\mathbf{y}}$  笔记 有了这个扩充的收敛的概念, 我们可以断言任何单调实数序列  $\{a_n\}$  (有界或无界) 且一定会收敛到某个扩充的实数, 且因此  $\lim_{n \to \infty} a_n$  是良定义的.

# 定义 2.30 (实数序列的上下极限)

令  $\{a_n\}$  为实数序列. $\{a_n\}$  的上极限, 记为  $\limsup\{a_n\}$ , 定义为

$$\lim \sup\{a_n\} = \lim_{n \to \infty} [\sup\{a_k | k \ge n\}]$$

 $\{a_n\}$  的**下极限**, 记为  $\liminf\{a_n\}$ , 定义为

$$\lim\inf\{a_n\} = \lim_{n\to\infty} [\inf\{a_k|k\geqslant n\}]$$

# 命题 2.17 (实数序列的上下极限的等价命题)

令  $\{a_n\}$  和  $\{b_n\}$  为实数序列.

- (i)  $\liminf\{a_n\} = \ell \in \mathbb{R}$  当且仅当对每个  $\varepsilon > 0$ ,存在无穷多个指标 n 使得  $a_n > \ell \varepsilon$ ,且仅有有限多个指标 n 使得  $a_n > \ell + \varepsilon$ .
- (ii)  $\limsup\{a_n\} = \infty$  当且仅当  $\{a_n\}$  没有上界.
- (iii)  $\limsup \{a_n\} = -\liminf \{-a_n\}.$
- (iv) 实数序列  $\{a_n\}$  收敛到扩充的实数 a 当且仅当

$$\lim\inf\{a_n\} = \lim\sup\{a_n\} = a$$

(v) 若对所有  $n,a_n \leq b_n$ , 则

$$\limsup\{a_n\} \leqslant \limsup\{b_n\}$$

## 定义 2.31 (级数的部分和与可和)

对每个实数序列  $\{a_k\}$ , 对每个指标 n 对应着定义为  $s_n = \sum_{k=1}^n a_k$  的**部分和序列** $\{s_n\}$ . 我们说级数  $\sum_{k=1}^\infty a_k$  **可和** 

于实数 
$$s$$
, 若  $\{s_n\} \to s$  且写作  $s = \sum_{k=1}^{\infty} a_k$ .

# 命题 2.18 (级数收敛/可和的充要条件)

令  $\{a_n\}$  为实数序列.

(i) 级数  $\sum_{k=1}^{\infty} a_k$  可和当且仅当对每个  $\varepsilon > 0$ , 存在指标 N 使得对  $n \ge N$  和任何自然数 m,

$$\left|\sum_{k=n}^{n+m} a_k\right| < \varepsilon$$

- (ii) 若级数  $\sum_{k=1}^{\infty} |a_k|$  可和, 则  $\sum_{k=1}^{\infty} a_k$  也是可和的.
- (iii) 若每项  $a_k$  非负,则级数  $\sum_{k=1}^{\infty} a_k$  可和当且仅当部分和序列是有界的.

证明

# 2.6 实变量的连续函数实值函数

## 定义 2.32 (实值函数在一点连续)

令 f 为定义在实数集 E 上的实值函数. 我们说 f 在 E 中的点 x 连续, 若对每个  $\varepsilon > 0$ , 存在  $\delta > 0$ , 使得若  $x' \in E$  且  $|x' - x| < \delta$ , 则  $|f(x') - f(x)| < \varepsilon$ 

## 定义 2.33 (实值函数在定义域上连续)

称函数 f (在 E 上) 连续, 若它在其定义域 E 的每一点是连续的.

#### 定义 2.34 (Lipschitz 连续)

函数 f 称为是 Lipschitz **连续**或 Lipschitz **函数**, 若存在  $c \ge 0$ , 使得对所有  $x',x \in E, |f(x') - f(x)| \le c|x' - x|$ 

## 命题 2.19

一个 Lipschitz 函数是连续的.

拿 笔记 这个命题反过来是不对的, 不是所有连续函数都是 Lipschitz 的. 例如, 若对于  $0 \le x \le 1$ ,  $f(x) = \sqrt{x}$ , 则 f 在 [0,1] 上是连续的, 但不是 Lipschitz 的.

证明 事实上,对于数  $x \in E$  和任何  $\varepsilon > 0, \delta = \varepsilon/c$  对应关于 f 在 x 连续的准则的  $\varepsilon$  条件.

#### 命题 2.20 (序列的收敛性对函数在一个点的连续性的刻画)

定义在实数集 E 上的实值函数 f 在点  $x_* \in E$  连续, 当且仅当 E 中的序列  $\{x_n\}$  收敛到  $x_*$ , 它的象序列  $\{f(x_n)\}$  收敛到  $f(x_*)$ .

# 命题 2.21 (函数在其定义域上连续的刻画)

令 f 为定义在实数集 E 上的实值函数. 则 f 在 E 上连续当且仅当对每个开集 O,

$$f^{-1}(O) = E \cap \mathcal{U}$$
, 其中 $\mathcal{U}$  是开集. (2.6)

证明 首先假设任何开集在 f 的原象是定义域与一个开集的交. 令 x 属于 E. 为证明 f 在 x 连续, 令  $\varepsilon > 0$ . 区间

 $I = (f(x) - \varepsilon, f(x) + \varepsilon)$  是一个开集. 因此, 存在开集  $\mathcal{U}$  使得

$$f^{-1}(I) = \{x' \in E | f(x) - \varepsilon < f(x') < f(x) + \varepsilon\} = E \cap \mathcal{U}$$

特别地,  $f(E \cap \mathcal{U}) \subseteq I \perp x$  属于  $E \cap \mathcal{U}$ . 由于  $\mathcal{U}$  是开的, 存在  $\delta > 0$  使得  $(x - \delta, x + \delta) \subseteq \mathcal{U}$ . 于是, 若  $x' \in E \perp |x' - x| < \delta$ , 则  $|f(x') - f(x)| \le \varepsilon$ . 因此  $f \in X$  连续.

假定现在 f 是连续的. 令 O 为开集而 x 属于  $f^{-1}(O)$ . 则 f(x) 属于开集 O, 使得存在  $\varepsilon > 0$ , 满足  $(f(x) - \varepsilon, f(x) + \varepsilon) \subseteq O$ . 由于 f 在 x 连续, 存在  $\delta > 0$  使得若 x' 属于 E 且  $|x' - x| < \delta$ , 则  $|f(x') - f(x)| < \varepsilon$ . 定义  $I_x = (x - \delta, x + \delta)$ . 则  $f(E \cap I_x) \subseteq O$ . 定义

$$\mathcal{U} = \bigcup_{x \in f^{-1}(O)} I_x$$

由于 *U* 是开集的并, 它是开的. 它已被构造使得(2.6)成立.

#### 定理 2.17 (极值定理)

在非空闭有界实数集上的连续实值函数一定能取得最小值与最大值.

$$|f(x)| \le M \tag{2.7}$$

令 x 属于 E. 令  $\delta > 0$  对应关于 f 在 x 连续的准则的  $\varepsilon = 1$  挑战. 定义  $I_x = (x - \delta, x + \delta)$ . 因此, 若 x' 属于  $E \cap I_x$ , 则 |f(x') - f(x)| < 1, 因而  $|f(x')| \le |f(x)| + 1$ . 集族  $\{I_x\}_{x \in E}$  是 E 的开覆盖.Heine - Borel 定理告诉我们 E 中存在有限 个点  $\{x_1, \cdots, x_n\}$  使得  $\{I_{x_k}\}_{k=1}^n$  也覆盖 E. 定义  $M = 1 + \max\{|f(x_1)|, \cdots, |f(x_n)|\}$ . 我们宣称(2.7)对 E 的这个选取 成立. 事实上,令 x 属于 E. 存在指标 x 使得 x 属于 x 属于 x 人 因此 x 因此 x 因此 x 以 x 人 x 是 x 是 x 上取不到值 x 从 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x

#### 定理 2.18 (介值定理)

令 f 为闭有界区间 [a,b] 上的连续实值函数, 使得 f(a) < c < f(b). 则存在 (a,b) 中的点  $x_0$  使得  $f(x_0) = c$ .

证明 我们将归纳地定义一个下降的闭区间的可数族  $\{[a_n,b_n]\}_{n=1}^{\infty}$ , 其交由单点  $x_0 \in (a,b)$  构成, 在该点  $f(x_0) = c$ . 定义  $a_1 = a = b_1 = b$ . 考虑  $[a_1,b_1]$  的中点  $m_1$ . 若  $c < f(m_1)$ , 定义  $a_2 = a_1 = b_2 = m_1$ . 若  $f(m_1) \ge c$ , 定义  $a_2 = m_1$  与  $b_2 = b_1$ . 因此  $f(a_2) \le c \le f(b_2)$  且  $b_2 - a_2 = [b_1 - a_1]/2$ . 我们归纳地继续这个二分过程, 以得到一个下降的闭区间族  $\{[a_n,b_n]\}_{n=1}^{\infty}$ , 使得对所有 n

$$f(a_n) \leqslant c \leqslant f(b_n) \ \mathbb{L}b_n - a_n = [b-a]/2^{n-1}$$

根据集套定理, $\bigcap_{n=1}^{\infty}[a_n,b_n]$  是非空的. 选取  $x_0$  属于  $\bigcap_{n=1}^{\infty}[a_n,b_n]$ . 观察到对所有 n,

$$|a_n - x_0| \le b_n - a_n = [b - a]/2^{n-1}$$

因此  $\{a_n\} \to x_0$ . 根据 f 在  $x_0$  的连续性, $\{f(a_n)\} \to f(x_0)$ . 由于对所有  $n, f(a_n) \le c$ , 且集合  $(-\infty, c]$  是闭的, $f(x_0) \le c$ . 用类似的方法, $f(x_0) \ge c$ . 因此  $f(x_0) = c$ .

#### 定义 2.35 (一致连续)

定义在实数集 E 上的实值函数 f 称为是**一致连续的**, 若对每个  $\varepsilon > 0$ , 存在  $\delta > 0$  使得对 E 中的所有 x,x', 若  $|x-x'| < \delta$ , 则  $|f(x) - f(x')| < \varepsilon$ .

#### 定理 2.19

闭有界实数集上的连续实值函数是一致连续的.

 $\Diamond$ 

\*

证明 令 f 为闭有界实数集 E 上的连续实值函数. 令  $\varepsilon$  > 0. 对每个  $x \in E$ , 存在  $\delta_x$  > 0 使得若  $x' \in E$  且  $|x'-x| < \delta_x$ , 则  $|f(x') - f(x)| < \varepsilon/2$ . 定义  $I_x$  为开区间  $(x - \delta_x/2, x + \delta_x/2)$ . 则  $\{I_x\}_{x \in E}$  是 E 的开覆盖. 根据 Heine - Borel 定理,存在覆盖 E 的有限子族  $\{I_{x_1}, \cdots, I_{x_n}\}$ . 定义

$$\delta = \frac{1}{2} \min\{\delta_{x_1}, \cdots, \delta_{x_n}\}\$$

我们宣称该  $\delta > 0$  对应关于 f 在 E 上一致连续的准则的  $\varepsilon > 0$  挑战. 事实上, 令 x 和 x' 属于 E 满足  $|x-x'| < \delta$ . 由于  $\{I_{x_1}, \cdots, I_{x_n}\}$  覆盖 E, 存在指标 k 使得  $|x-x_k| < \delta_{x_k}/2$ . 由于  $|x-x'| < \delta \leqslant \delta_{x_k}/2$ , 因此

$$|x' - x_k| \le |x' - x| + |x - x_k| < \delta_{x_k}/2 + \delta_{x_k}/2 = \delta_{x_k}$$

根据  $\delta_{x_k}$  的定义, 由于  $|x - x_k| < \delta_{x_k}$  且  $|x' - x_k| < \delta_{x_k}$ , 我们有  $|f(x) - f(x_k)| < \varepsilon/2$  与  $|f(x') - f(x_k)| < \varepsilon/2$ . 因此  $|f(x) - f(x')| \le |f(x) - f(x_k)| + |f(x') - f(x_k)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$ .

# 定义 2.36 (实值函数的单调性)

定义在实数集 E 上的实值函数 f 称为是**递增的**, 若 x,x' 属于 E 且  $x \leq x'$  时,  $f(x) \leq f(x')$ ; 称为是**递减的**, 若 -f 是递增的; 称为是**单调的**, 若它是递增的或递减的.

# 第三章 集合与点集

# 3.1 集合之间的运算

## 定理 3.1

设有集合 A, B 与 C, 则

(i) 交换律:

 $A \cup B = B \cup A$ ,  $A \cap B = B \cap A$ ;

(ii) 结合律:

 $A \cup (B \cup C) = (A \cup B) \cup C,$  $A \cap (B \cap C) = (A \cap B) \cap C;$ 

(iii) 分配律:

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$ 

定义 3.1 (集族的并和交)

设有集合族  $\{A_{\alpha}\}_{\alpha\in I}$ , 我们定义其并集与交集如下:

 $\bigcup_{\alpha \in I} A_{\alpha} = \{x : 存在\alpha \in I, x \in A_{\alpha}\} = \{x : \exists \alpha \in I \ s.t \ x \in A_{\alpha}\},$   $\bigcap_{\alpha \in I} A_{\alpha} = \{x : 対一切\alpha \in I, x \in A_{\alpha}\} = \{x : \forall \alpha \in I, x \in A_{\alpha}\}.$ 

定理 3.2

- 1. 交換律和结合律: 当一个集合族被分解 (以任何方式) 为许多子集合族时, 那么先作子集合族中各集合的并集, 然后再作各并集的并集, 仍然得到原集合族的并, 而且作并集时与原有的顺序无关. 当然, 对于交的运算也是如此.
- 2. 分配律:

(i) 
$$A \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} (A \cap B_{\alpha});$$
  
(ii)  $A \cup \left(\bigcap_{\alpha \in I} B_{\alpha}\right) = \bigcap_{\alpha \in I} (A \cup B_{\alpha}).$ 

定义 3.2

设 A, B 是两个集合, 称  $\{x: x \in A, x \notin B\}$  为  $A \subseteq B$  的**差集**, 记作 A - B 或  $A \setminus B$ .

在上述定义中, 当  $B \subset A$  时, 称 A - B 为集合 B 相对于集合 A 的**补集**或**余集**.

通常,在我们讨论问题的范围内,所涉及的集合总是某个给定的"大"集合 X 的子集,我们称 X 为全集.此时,集合 B 相对于全集 X 的补集就简称为 B 的补集或余集,并记为  $B^c$  或 CB,即

$$B^c = X - B$$
.

今后, 凡没有明显标出全集 X 时, 都表示取补集运算的全集 X 预先已知, 而所讨论的一切集合皆为其子集. 于是  $B^c$  也记为

$$B^c = \{x \in X : x \notin B\}.$$

# 命题 3.1 (集合的差与补的基本性质)

- 1.  $A \cup A^c = X.A \cap A^c = \varnothing.(A^c)^c = A.X^c = \varnothing.\varnothing^c = X.$
- 2.  $A B = A \cap B^c$ .

# 定理 3.3 (De Morgan 法则)

(i) 
$$\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c};$$

(i) 
$$\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c};$$
 (ii)  $\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}.$ 

证明 以 (i) 为例. 若  $x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$ ,则  $x \notin \bigcup_{\alpha \in I} A_{\alpha}$ ,即对一切  $\alpha \in I$ ,有  $x \notin A_{\alpha}$ . 这就是说,对一切  $\alpha \in I$ ,有  $x \in A_{\alpha}^{c}$ . 故得  $x \in \bigcap A_{\alpha}^{c}$ .

反之, 若 $x \in \bigcap_{\alpha \in I} A^c_{\alpha}$ , 则对一切 $\alpha \in I$ , 有 $x \in A^c_{\alpha}$ , 即对一切 $\alpha \in I$ , 有 $x \notin A_{\alpha}$ . 这就是说,

$$x\notin\bigcup_{\alpha\in I}A_\alpha,\quad x\in\left(\bigcup_{\alpha\in I}A_\alpha\right)^c.$$

## 定义 3.3 (集合的对称差)

设 A, B 为两个集合, 称集合  $(A \setminus B) \cup (B \setminus A)$  为  $A \subseteq B$  的**对称差集**, 记为  $A \triangle B$ .

#### 命题 3.2 (集合的对称差的基本性质)

- (i)  $A \triangle \emptyset = A, A \triangle A = \emptyset, A \triangle A^c = X, A \triangle X = A^c$ .
- (ii) 交换律: $A \triangle B = B \triangle A$ .
- (iii) 结合律: $(A \triangle B) \triangle C = A \triangle (B \triangle C)$ .
- (iv) 交与对称差满足分配律:

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C).$$

- (v)  $A^c \triangle B^c = A \triangle B$ ;  $A = A \triangle B$  当且仅当  $B = \emptyset$ .
- (vi) 对任意的集合 A 与 B, 存在唯一的集合 E, 使得  $E \triangle A = B$  (实际上  $E = B \triangle A$ ).

#### 定义 3.4 (递增、递减集合列)

设 $\{A_k\}$ 是一个集合列. 若

$$A_1 \supset A_2 \supset \cdots \supset A_k \supset \cdots$$

则称此集合列为**递减集合列**, 此时称其交集  $\bigcap_{k\to\infty} A_k$  为集合列  $\{A_k\}$  的极限集, 记为  $\lim_{k\to\infty} A_k$ ; 若  $\{A_k\}$  满足

$$A_1 \subset A_2 \subset \cdots \subset A_k \subset \cdots$$

则称  $\{A_k\}$  为**递增集合列**, 此时称其并集  $\bigcup_{k=1}^n A_k$  为  $\{A_k\}$  的极限集, 记为  $\lim_{k\to\infty} A_k$ .

# 定义 **3.5** (上、下极限集)

设 $\{A_k\}$ 是一集合列,令

$$B_j = \bigcup_{k=j}^{\infty} A_k \quad (j=1,2,\cdots),$$

显然有  $B_j \supset B_{j+1}(j=1,2,\cdots)$ . 我们称

$$\lim_{k \to \infty} B_k = \bigcap_{j=1}^{\infty} B_j = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k$$

为集合列  $\{A_k\}$  的上极限集, 简称为上限集, 记为

$$\overline{\lim}_{k\to\infty}A_k=\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty A_k.$$

类似地, 称集合  $\bigcup_{j=1}^{\infty}\bigcap_{k=j}^{\infty}A_{k}$  为集合列  $\{A_{k}\}$  的**下极限集**, 简称为**下限集**, 记为

$$\underline{\lim}_{k\to\infty} A_k = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k.$$

若上、下限集相等,则说  $\{A_k\}$  的极限集存在并等于上限集或下限集,记为  $\lim_{k\to\infty}A_k$ .

# 命题 3.3 (上、下极限集的性质)

设 $\{A_k\}$ 是一集合列,E是一个集合则

$$(i)E\setminus \varlimsup_{k\to\infty}A_k=\varliminf_{k\to\infty}(E\setminus A_k);\quad (ii)E\setminus\varliminf_{k\to\infty}A_k=\varlimsup_{k\to\infty}(E\setminus A_k).$$

#### 定理 3.4

若  $\{A_k\}$  为一集合列,则

$$(i)\overline{\lim}_{k\to\infty}A_k=\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty A_k=\{x: 对任一自然数j, 存在k(k\geqslant j), x\in A_k\}=\{x: \forall j\in\mathbb{N}, \exists k\geqslant j \, \text{且} k\in\mathbb{N} \text{ s.t. } x\in A_k\}$$

(ii) 
$$\varliminf_{k \to \infty} A_k = \bigcup_{j=1}^\infty \bigcap_{k=j}^\infty A_k = \{x : 存在自然数j_0, 当k \geqslant j_0 时, x \in A_k\} = \{x : \exists j_0 \in \mathbb{N}, \forall k \geqslant j_0 且k \in \mathbb{N}, x \in A_k\}$$

并且我们有

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

证明 以 (ii) 为例. 若  $x \in \underline{\lim}_{k \to \infty} A_k$ , 则存在自然数  $j_0$ , 使得

$$x \in \bigcap_{k=i_0}^{\infty} A_k$$

从而当  $k \ge j_0$  时, 有  $x \in A_k$ . 反之, 若存在自然数  $j_0$ , 当  $k \ge j_0$  时, 有  $x \in A_k$ , 则得到

$$x \in \bigcap_{k=j_0}^{\infty} A_k$$
.

由此可知  $x \in \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k = \underline{\lim}_{k \to \infty} A_k$ .

由 (i) (ii) 可知, $\{A_k\}$  的上限集是由属于  $\{A_k\}$  中无穷多个集合的元素所形成的; $\{A_k\}$  的下限集是由只不属于  $\{A_k\}$  中有限多个集合的元素所形成的. 从而立即可知

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

# 定义 3.6 (直积集)

设 X,Y 是两个集合, 称一切有序"元素对"(x,y) (其中  $x \in X, y \in Y$ ) 形成的集合为 X 与 Y 的**直积集**, 记 为  $X \times Y$ , 即

$$X \times Y = \{(x, y) : x \in X, y \in Y\},\$$

其中 (x, y) = (x', y') 是指  $x = x', y = y'.X \times X$  也记为  $X^2$ .

# 3.2 映射与基数

# 定义 3.7 (单射)

# 定义 3.8 (映射的像集)

对于  $f: X \to Y$  以及  $A \subset X$ , 我们记

$$f(A)=\{y\in Y:x\in A,y=f(x)\},$$

并称 f(A) 为集合 A 在映射 f 下的 (映) **像集** ( $f(\emptyset) = \emptyset$ ).

## 命题 3.4 (映射的像集的基本性质)

对于  $f: X \to Y$ . 我们有

(i) 
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right) = \bigcup_{\alpha\in I}f(A_{\alpha})(A_{\alpha}\in X, \alpha\in I);$$
  
(ii)  $f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})(A_{\alpha}\in X, \alpha\in I).$ 

(ii) 
$$f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})(A_{\alpha}\in X,\alpha\in I).$$

#### 定义 3.9 (映射的原像集)

对于  $f: X \to Y$  以及  $B \subset Y$ , 我们记

$$f^{-1}(B) = \{x \in X : f(x) \in B\},\$$

并称  $f^{-1}(B)$  为 B 关于 f 的**原像集**.

# 命题 3.5 (映射的原像集的基本性质)

对于  $f: X \to Y$ , 我们有

(ii) 
$$f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})\ (B_{\alpha}\subset Y,\alpha\in I)\ ;$$

(iii) 
$$f^{-1}\left(\bigcap_{\alpha\in I}B_{\alpha}\right)=\bigcap_{\alpha\in I}f^{-1}(B_{\alpha})\ (B_{\alpha}\subset Y,\alpha\in I)\ ;$$

(iv) 
$$f^{-1}(B^c) = (f^{-1}(B))^c (B \subset Y)$$
.

#### 定义 3.10 (示性函数)

一般地,对于X中的子集A,我们作

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in X \setminus A, \end{cases}$$

且称  $\chi_A: X \to \mathbb{R}$  是定义在 X 上的 A 的**特征函数**或**示性函数**.

#### 命题 3.6 (示性函数的基本性质)

对于X中的子集A,B, 我们有

- (i)  $A \neq B$  等价于  $\chi_A \neq \chi_B$ .
- (ii)  $A \subset B$  等价于  $\chi_A(x) \leq \chi_B(x)$ .
- (iii)  $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_{A \cap B}(x)$ .
- (iv)  $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$ .
- (v)  $\chi_{A \setminus B}(x) = \chi_A(x)(1 \chi_B(x)).$
- (vi)  $\chi_{A \triangle B}(x) = |\chi_A(x) \chi_B(x)|$ .

## 定义 3.11 (幂集)

设 X 是一个非空集合, 由 X 的一切子集(包括  $\emptyset$ , X 自身)为元素形成的集合称为 X 的幂集, 记为  $\mathcal{P}(X)$ .

 $\stackrel{ ext{$\widehat{\Sigma}$}}{ ext{$\widehat{\Sigma}$}}$  **笔记** 例如,由n个元素形成的集合 E 之幂集  $\mathcal{P}(E)$  共有  $2^n$  个元素.

例题 3.1 单调映射的不动点 设 X 是一个非空集合, 且有  $f: \mathcal{P}(X) \to \mathcal{P}(X)$ . 若对  $\mathcal{P}(X)$  中满足  $A \subset B$  的任意 A, B, 必有  $f(A) \subset f(B)$ , 则存在  $T \subset \mathcal{P}(X)$ , 使得 f(T) = T.

证明 作集合 S,T:

$$S = \{A : A \in \mathcal{P}(X) \ \mathbb{H}A \subset f(A)\},\$$

$$T = \bigcup_{A \in S} A(\in \mathcal{P}(X)),\$$

则有 f(T) = T.

事实上, 因为由  $A \in S$  可知  $A \subset f(A)$ , 从而由  $A \subset T$  可得  $f(A) \subset f(T)$ . 根据  $A \in S$  推出  $A \subset f(T)$ , 这就导致

$$\bigcup_{A \in S} A \subset f(T), \quad T \subset f(T).$$

另一方面,又从 $T \subset f(T)$  可知  $f(T) \subset f(f(T))$ . 这说明  $f(T) \in S$ , 我们又有  $f(T) \subset T$ .

# 定义 3.12 (集合之间的对等关系)

设有集合 A 与 B. 若存在一个从 A 到 B上的一一映射,则称集合 A 与 B 对等,记为  $A \sim B$ .

# 命题 3.7 (对等关系的基本性质)

设有集合A与B,则

- (i)  $A \sim A$ ;
- (ii) 若  $A \sim B$ , 则  $B \sim A$ ;
- (iii) 若  $A \sim B, B \sim C$ , 则  $A \sim C$ .

# 引理 3.1 (映射分解定理)

若有  $f: X \to Y, g: Y \to X$ , 则存在分解

$$X=A\cup A^{\sim},\quad Y=B\cup B^{\sim},$$

其中  $f(A) = B, g(B^{\sim}) = A^{\sim}, A \cap A^{\sim} = \emptyset$  以及  $B \cap B^{\sim} = \emptyset$ .

证明 对于 X 中的子集 E (不妨假定  $Y \setminus f(E) \neq \emptyset$ ), 若满足

$$E\cap g(Y\setminus f(E))=\varnothing,$$

则称 E 为 X 中的分离集. 现将 X 中的分离集的全体记为  $\Gamma$ , 且作其并集

$$A = \bigcup_{E \in \Gamma} E.$$

我们有  $A \in \Gamma$ . 事实上, 对于任意的  $E \in \Gamma$ , 由于  $A \supset E$ , 故从

$$E \cap g(Y \setminus f(E)) = \emptyset$$

可知  $E \cap g(Y \setminus f(A)) = \emptyset$ , 从而有  $A \cap g(Y \setminus f(A)) = \emptyset$ . 这说明  $A \in X$  中的分离集且是  $\Gamma$  中最大元.

现在令  $f(A) = B,Y \setminus B = B^{\sim}$  以及  $g(B^{\sim}) = A^{\sim}$ . 首先知道

$$Y = B \cup B^{\sim}$$
.

其次, 由于  $A \cap A^{\sim} = \emptyset$ , 故又易得  $A \cup A^{\sim} = X$ . 事实上, 若不然, 那么存在  $x_0 \in X$ , 使得  $x_0 \notin A \cup A^{\sim}$ . 现在作  $A_0 = A \cup \{x_0\}$ , 我们有

$$B = f(A) \subset f(A_0), \quad B^{\sim} \supset Y \setminus f(A_0),$$

从而知  $A^{\sim} \supset g(Y \setminus f(A_0))$ . 这就是说,  $A = g(Y \setminus f(A_0))$  不相交. 由此可得

$$A_0 \cap g(Y \setminus f(A_0)) = \emptyset$$
.

这与A是 $\Gamma$ 的最大元相矛盾.

#### 定理 3.5 (Cantor - Bernstein 定理)

若集合 X 与 Y 的某个真子集对等, Y 与 X 的某个真子集对等, 则  $X \sim Y$ .

拿 筆记 特例: 设集合 A.B.C 满足下述关系:

 $C \subset A \subset B$ .

若  $B \sim C$ , 则  $B \sim A$ .

证明 由题设知存在单射  $f: X \to Y$  与单射  $g: Y \to X$ , 根据映射分解定理知

$$X = A \cup A^{\sim}$$
,  $Y = B \cup B^{\sim}$ ,  $f(A) = B$ ,  $g(B^{\sim}) = A^{\sim}$ .

注意到这里的  $f: A \to B$  以及  $g^{-1}: A^{\sim} \to B^{\sim}$  是一一映射, 因而可作 X 到 Y 上的一一映射 F:

$$F(x) = \begin{cases} f(x), & x \in A, \\ g^{-1}(x), & x \in A^{\sim}. \end{cases}$$

这说明  $X \sim Y$ .

# 定义 3.13 (集合的基数 (或势))

设 A, B 是两个集合, 如果  $A \sim B$ , 那么我们就说  $A \subseteq B$  的**基数** (cardinal number) 或**势**是相同的, 记为  $\overline{A} = \overline{B}$ . 可见, 凡是互相对等的集合均具有相同的基数.

如果用  $\alpha$  表示这一相同的基数, 那么  $\overline{A}=\alpha$  就表示 A 属于这一对等集合族. 对于两个集合 A 与 B, 记  $\overline{A}=\alpha,\overline{B}=\beta$ . 若 A 与 B 的一个子集对等, 则称  $\alpha$  不大于  $\beta$ , 记为

$$\alpha \leqslant \beta$$
.

$$\alpha < \beta \quad (\check{\mathfrak{A}}\beta > \alpha).$$

显然, 若  $\alpha \leq \beta$  且  $\beta \leq \alpha$ , 则由Cantor - Bernstein 定理可知  $\alpha = \beta$ .

# 定义 3.14 (有限集与无限集)

设A是一个集合. 如果存在自然数n, 使得 $A \sim \{1,2,\cdots,n\}$ , 则称A为**有限集**, 且用同一符号n记A的基数. 由此可见, 对于有限集来说, 其基数可以看作集合中元素的数目. 若一个集合不是有限集, 则称为**无限集**. 下面我们着重介绍无限集中若干重要且常见的基数.

# 定义 3.15 (自然数集 № 的基数・可列集)

记自然数集  $\mathbb{N}$  的基数为  $\aleph_0$  (读作阿列夫(Aleph, 希伯来文)零). 若集合 A 的基数为  $\aleph_0$ , 则 A 叫作**可列 集**. 这是由于  $\mathbb{N} = \{1, 2, \cdots, n, \cdots\}$ , 而  $A \sim \mathbb{N}$ , 故可将 A 中元素按一一对应关系以自然数次序排列起来, 附以下标, 就有

$$A = \{a_1, a_2, \cdots, a_n, \cdots\}.$$

#### 定理 3.6

任一无限集 E 必包含一个可列子集.

**笔记** 这个定理说明,在众多的无限集中,最小的基数是 **₹**0.

证明 任取 E 中一元, 记为  $a_1$ ; 再从  $E\setminus\{a_1\}$  中取一元, 记为  $a_2,\cdots$ . 设已选出  $a_1,a_2,\cdots,a_n$ . 因为 E 是无限集, 所以

$$E \setminus \{a_1, a_2, \cdots, a_n\} \neq \emptyset.$$

于是又从 $E \setminus \{a_1, a_2, \cdots, a_n\}$ 中可再选一元,记为 $a_{n+1}$ .这样,我们就得到一个集合

$$\{a_1, a_2, \cdots, a_n, a_{n+1}, \cdots\}.$$

这是一个可列集且是E的子集.

#### 定理 3.7

设 A 是无限集且其基数为  $\alpha$ . 若 B 是至多可列集, 则  $A \cup B$  的基数仍为  $\alpha$ .

证明 不妨设  $B = \{b_1, b_2, \dots\}, A \cap B = \emptyset, 且$ 

$$A = A_1 \cup A_2$$
,  $A_1 = \{a_1, a_2, \dots\}$ .

我们作映射 f 如下:

$$f(a_i) = a_{2i}, \quad a_i \in A_1;$$
  
 $f(b_i) = a_{2i-1}, \quad b_i \in B;$   
 $f(x) = x, \quad x \in A_2.$ 

显然,  $f \in A \cup B$  到  $A \perp$ 的一一映射.

#### 定理 3.8

集合 A 为无限集的充要条件是 A 与其某真子集对等.

证明 因为有限集是不与其真子集对等的,所以充分性是成立的.现在取A中一个非空有限子集B,则由定理3.7立即可知

$$\overline{\overline{A}} = \overline{\overline{((A \setminus B) \cup B)}} = \overline{\overline{(A \setminus B)}}.$$

故  $A \sim (A \setminus B)$ . □

# 定理 3.9

 $[0,1] = \{x: 0 \le x \le 1\}$  不是可数集.

证明 只需讨论 (0,1]. 为此, 采用二进位制小数表示法:

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n},$$

其中  $a_n$  等于 0 或 1, 且在表示式中有无穷多个  $a_n$  等于 1. 显然,(0,1] 与全体二进位制小数一一对应.

若在上述表示式中把  $a_n=0$  的项舍去,则得到  $x=\sum_{i=1}^{\infty}2^{-n_i}$ ,这里的  $\{n_i\}$  是严格上升的自然数数列. 再令

$$k_1 = n_1, \quad k_i = n_i - n_{i-1}, \quad i = 2, 3, \cdots,$$

则  $\{k_i\}$  是自然数子列. 把由自然数构成的数列的全体记为  $\mathcal{H}$ , 则  $\{0,1\}$  与  $\mathcal{H}$  一一对应.

现在假定(0,1]是可数的,则 光是可数的,不妨将其全体排列如下:

但这是不可能的, 因为  $(k_1^{(1)}+1,k_2^{(2)}+1,\cdots,k_i^{(i)}+1,\cdots)$  属于  $\mathcal{H}$ , 而它并没有被排列出来. 这说明  $\mathcal{H}$  是不可数的, 也就是说 (0,1] 是不可数集.

## 定义 **3.16** (R 的基数·不可数集)

我们称 (0,1] 的基数为**连续基数**, 记为 c(或  $\mathbb{N}_1)$ .

#### 定理 3.10

设有集合列  $\{A_k\}$ . 若每个  $A_k$  的基数都是连续基数,则其并集  $\bigcup_{k=1}^{\infty}A_k$  的基数是连续基数.

证明 不妨假定  $A_i \cap A_j = \emptyset (i \neq j)$ , 且  $A_k \sim [k, k+1)$ , 我们有

$$\bigcup_{k=1}^{\infty} A_k \sim [1, +\infty) \sim \mathbb{R}.$$

# 定理 3.11 (无最大基数定理)

若 A 是非空集合,则 A 与其幂集  $\mathcal{P}(A)$  (由 A 的一切子集所构成的集合族) 不对等.

💡 笔记 易知集合 A 的基数小于其幂集 Φ(A) 的基数.

证明 假定 A 与其幂集  $\mathcal{P}(A)$  对等, 即存在一一映射  $f:A\to\mathcal{P}(A)$ . 我们作集合

$$B = \{x \in A : x \notin f(x)\},\$$

于是有  $y \in A$ , 使得  $f(y) = B \in \mathcal{P}(A)$ . 现在分析一下  $y \in B$  的关系:

- (i) 若  $y \in B$ , 则由 B 的定义可知  $y \notin f(y) = B$ ;
- (ii) 若  $v \notin B$ , 则由 B 的定义可知  $v \in f(v) = B$ .

这些矛盾说明  $A 与 \mathcal{P}(A)$  之间并不存在一一映射, 即  $A 与 \mathcal{P}(A)$  并不是对等的.

# 3.3 $\mathbb{R}^n$ 中点与点之间的距离 · 点集的极限点

# 3.3.1 点集的直径、点的(球)邻域、矩体

# 定义 3.17 ( $\mathbb{R}^n$ 与 $\mathbb{R}^n$ 中的运算)

记一切有序数组  $x = (\xi_1, \xi_2, \dots, \xi_n)$  的全体为  $\mathbb{R}^n$ , 其中  $\xi_i \in \mathbb{R}$   $(i = 1, 2, \dots, n)$  是实数, 称  $\xi_i$  为 x 的第 i 个 坐标, 并定义运算如下:

(i) 加法: 对于  $x = (\xi_1, \dots, \xi_n)$  以及  $y = (\eta_1, \dots, \eta_n)$ , 令

$$x + y = (\xi_1 + \eta_1, \cdots, \xi_n + \eta_n);$$

(ii) 数乘: 对于  $\lambda \in \mathbb{R}$ , 令  $\lambda x = (\lambda \xi_1, \dots, \lambda \xi_n) \in \mathbb{R}^n$ .

在上述两种运算下构成一个向量空间. 对于  $1 \le i \le n$ , 记

$$e_i = (0, \cdots, 0, 1, 0, \cdots, 0),$$

其中除第 i 个坐标为 1, 外其余皆为  $0.e_1, e_2, \cdots, e_i, \cdots, e_n$  组成  $\mathbb{R}^n$  的基底, 从而  $\mathbb{R}^n$  是实数域上的 n 维向量空间, 并称  $x = (\xi_1, \cdots, \xi_n)$  为  $\mathbb{R}^n$  中的**向量**或点. 当每个  $\xi_i$  均为有理数时,  $x = (\xi_1, \cdots, \xi_n)$  称为**有理点**.

#### 定义 3.18

设  $x = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ , 令

$$|x| = (\xi_1^2 + \dots + \xi_n^2)^{\frac{1}{2}},$$

 $\pi |x|$  为向量x 的模或长度.

#### 命题 3.8 (向量的模的性质)

设  $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$ , 则

- (i)  $|x| \ge 0, |x| = 0$  当且仅当  $x = (0, \dots, 0)$ ;
- (ii) 对任意的  $a \in \mathbb{R}$ , 有 |ax| = |a||x|;
- (iii)  $|x + y| \le |x| + |y|$ ;
- (iv) 设  $x = (\xi_1, \dots, \xi_n), y = (\eta_1, \dots, \eta_n), 则有$

$$(\xi_1\eta_1 + \dots + \xi_n\eta_n)^2 \leq (\xi_1^2 + \dots + \xi_n^2)(\eta_1^2 + \dots + \eta_n^2).$$

证明 (i),(ii) 的结论是明显的;(iii) 是 (iv) 的推论. 因此我们只证明 (iv).

只需注意到函数

$$f(\lambda) = (\xi_1 + \lambda \eta_1)^2 + \dots + (\xi_n + \lambda \eta_n)^2$$

是非负的(对一切  $\lambda$ ), 由  $\lambda$  的二次方程  $f(\lambda)$  的判别式小于或等于零即得.(iv) 就是著名的 Cauchy - Schwarz 不等式.

#### 定义 3.19 (距离空间)

一般地说,设X是一个集合. 若对X中任意两个元素x与y,有一个确定的实数与之对应,记为d(x,y),它满足下述三条性质:

- (i)  $d(x, y) \ge 0, d(x, y) = 0$  当且仅当 x = y;
- (ii) d(x, y) = d(y, x);
- (iii)  $d(x, y) \leq d(x, z) + d(z, y)$ ,

则认为在X中定义了距离d,并称(X,d)为**距离空间**.

# 定义 3.20 (点集的直径与有界集)

设E是 $\mathbb{R}^n$ 中一些点形成的集合,令

$$diam(E) = \sup\{|x - y| : x, y \in E\},\$$

称为点集 E 的**直径**. 若 diam(E) < + $\infty$ , 则称 E 为**有界集**.

# 命题 3.9 (有界集的充要条件)

E 是有界集的充要条件是, 存在 M > 0, 使得  $\forall x \in E$  都满足  $|x| \leq M$ .

证明 由有界集的定义易得.

# 定义 3.21 (点的 (球) 邻域)

设  $x_0 \in \mathbb{R}^n, \delta > 0$ , 称点集

$$\{x \in \mathbb{R}^n : |x - x_0| < \delta\}$$

为  $\mathbb{R}^n$  中以  $x_0$  为中心, 以  $\delta$  为半径的**开球**, 也称为  $x_0$  的 (球) 邻域, 记为  $B(x_0, \delta)$ , 从而称

$$\{x \in \mathbb{R}^n : |x - x_0| \le \delta\}$$

为**闭球**, 记为  $C(x_0, \delta)$ .  $\mathbb{R}^n$  中以  $x_0$  为中心, 以  $\delta$  为半径的球面是

$$\{x \in \mathbb{R}^n : |x - x_0| = \delta\}.$$

# 定义 3.22 (矩体)

设  $a_i, b_i (i = 1, 2, \dots, n)$  皆为实数, 且  $a_i < b_i (i = 1, 2, \dots, n)$ , 称点集

$$\{x = (\xi_1, \xi_2, \dots, \xi_n) : a_i < \xi_i < b_i \ (i = 1, 2, \dots, n)\}$$

为  $\mathbb{R}^n$  中的**开矩体** (n=2 时为矩形,n=1 时为区间),即直积集

$$(a_1,b_1)\times\cdots\times(a_n,b_n).$$

类似地, $\mathbb{R}^n$ 中的闭矩体以及半开闭矩体就是直积集

$$[a_1, b_1] \times \cdots \times [a_n, b_n], \quad (a_1, b_1] \times \cdots \times (a_n, b_n],$$

称  $b_i - a_i (i = 1, 2, \dots, n)$  为**矩体的边长**. 若各边长都相等, 则称矩体为**方体**.

矩体也常用符号 I,J 等表示, 其**体积**用 |I|,|J| 等表示.

# 命题 3.10 (矩体的直径与体积)

若  $I = (a_1, b_1) \times \cdots \times (a_n, b_n)$ , 则

diam
$$(I) = [(b_1 - a_1)^2 + \dots + (b_n - a_n)^2]^{\frac{1}{2}}, \quad |I| = \prod_{i=1}^n (b_i - a_i).$$

# 定义 3.23

设 $x_k \in \mathbb{R}^n (k = 1, 2, \cdots)$ . 若存在 $x \in \mathbb{R}^n$ , 使得

$$\lim_{k\to\infty} |x_k - x| = 0,$$

则称  $x_k(k=1,2,\cdots)$  为  $\mathbb{R}^n$  中的收敛 (于 x 的) 点列, 称 x 为它的极限, 并简记为

$$\lim_{k \to \infty} x_k = x.$$

## 定义 3.24 (Cauchy 列)

称  $\{x_k\}$  为 **Cauchy 列**或**基本列**,若  $\lim_{l,m\to\infty}|x_l-x_m|=0$ . 即对任意  $\varepsilon>0$ ,存在 N,使得当 k,l>N 时,有  $|x_k-x_l|<\varepsilon$ .

## 定理 3.12

 $x_k(k=1,2,\cdots)$  是收敛列的充分必要条件是  $\{x_k\}$  为 Cauchy 列, 即

$$\lim_{l,m\to\infty} |x_l - x_m| = 0.$$

证明 若令 $x_k = \{\xi_1^{(k)}, \xi_2^{(k)}, \cdots, \xi_n^{(k)}\}, x = \{\xi_1, \xi_2, \cdots, \xi_n\}, 则由于不等式$ 

$$|\xi_i^{(k)} - \xi_i| \le |x_k - x| \le |\xi_1^{(k)} - \xi_1| + \dots + |\xi_n^{(k)} - \xi_n|$$

对一切 k = i 都成立. 故可知  $x_k(k = 1, 2, \cdots)$  收敛于 x 的充分必要条件是, 对每个 i, 实数列  $\{\xi_i^{(k)}\}$  都收敛于  $\xi_i$ . 由 此根据实数列收敛的 Cauchy 收敛准则可知结论成立.

# 3.3.2 点集的极限点

# 定义 3.25 (极限点与导集)

设 $E \subset \mathbb{R}^n, x \in \mathbb{R}^n$ . 若存在E中的互异点列 $\{x_k\}$ , 使得

$$\lim_{k\to\infty} |x_k - x| = 0,$$

则称x为E的极限点或聚点E的极限点全体记为E'. 称为E的导集.

# 筆记 显然,有限集是不存在极限点的.

# 定理 3.13 (一个点是极限点的充要条件)

若  $E \subset \mathbb{R}^n$ ,则  $x \in E'$  当且仅当对任意的  $\delta > 0$ ,有

$$(B(x, \delta) \setminus \{x\}) \cap E \neq \emptyset$$
.

证明 若  $x \in E'$ , 则存在 E 中的互异点列  $\{x_k\}$ , 使得

$$|x_k - x| \to 0 \quad (k \to \infty),$$

从而对任意的  $\delta > 0$ , 存在  $k_0$ , 当  $k \ge k_0$  时, 有  $|x_k - x| < \delta$ , 即

$$x_k \in B(x, \delta) \quad (k \ge k_0).$$

反之, 若对任意的  $\delta > 0$ , 有  $(B(x,\delta) \setminus \{x\}) \cap E \neq \emptyset$ , 则令  $\delta_1 = 1$ , 可取  $x_1 \in E, x_1 \neq x$  且  $|x - x_1| < 1$ . 令

$$\delta_2 = \min\left(|x - x_1|, \frac{1}{2}\right),\,$$

可取  $x_2 \in E, x_2 \neq x$  且  $|x - x_2| < \delta_2$ . 继续这一过程, 就可得到 E 中互异点列  $\{x_k\}$ , 使得  $|x - x_k| < \delta_k$ , 即

$$\lim_{k \to \infty} |x - x_k| = 0.$$

这说明  $x \in E'$ .

#### 定义 3.26 (孤立点)

设 $E \subset \mathbb{R}^n$ . 若E 中的点x 不是E 的极限点,即存在 $\delta > 0$ ,使得

$$(B(x, \delta) \setminus \{x\}) \cap E = \emptyset$$
,

则称 x 为 E 的**孤立点**, 即  $x \in E \setminus E'$ .

# 定理 3.14 (导集的性质)

设  $E_1, E_2 \subset \mathbb{R}^n$ , 则  $(E_1 \cup E_2)' = E_1' \cup E_2'$ .

证明 因为  $E_1 \subset E_1 \cup E_2, E_2 \subset E_1 \cup E_2$ , 所以

$$E_1'\subset (E_1\cup E_2)',\quad E_2'\subset (E_1\cup E_2)',$$

从而有  $E_1' \cup E_2' \subset (E_1 \cup E_2)'$ . 反之, 若  $x \in (E_1 \cup E_2)'$ , 则存在  $E_1 \cup E_2$  中的互异点列  $\{x_k\}$ , 使得

$$\lim_{k \to \infty} x_k = x$$

显然, 在 $\{x_k\}$  中必有互异点列 $\{x_{k_i}\}$ 属于 $E_1$ 或属于 $E_2$ , 而且

$$\lim_{i \to \infty} x_{k_i} = x.$$

在  $\{x_{k_i}\}\subset E_1$  时, 有  $x\in E_1'$ , 否则  $x\in E_2'$ . 这说明

$$(E_1 \cup E_2)' \subset E_1' \cup E_2'.$$

## 定理 3.15 (Bolzano - Weierstrass 定理)

 $\mathbb{R}^n$  中任一有界无限点集 E 至少有一个极限点.

证明 首先从 E 中取出互异点列  $\{x_k\}$ . 显然, $\{x_k\}$  仍是有界的,而且  $\{x_k\}$  的第  $i(i=1,2,\cdots,n)$  个坐标所形成的实数列  $\{\xi_i^{(k)}\}$  是有界数列. 其次,根据  $\mathbb{R}^1$  的 Bolzano - Weierstrass 定理可知,从  $\{x_k\}$  中可选出子列  $\{x_k^{(1)}\}$ ,使得  $\{x_k^{(1)}\}$  的第一个坐标形成的数列是收敛列;再考查  $\{x_k^{(1)}\}$  的第二个坐标形成的数列,同理可从中选出  $\{x_k^{(2)}\}$ ,使其第二个坐标形成的数列成为收敛列,此时其第一坐标数列仍为收敛列(注意,收敛数列的任一子列必收敛于同一极限),……至第 n 步,可得到  $\{x_k\}$  的子列  $\{x_k^{(n)}\}$ ,其一切坐标数列皆收敛,从而知  $\{x_k^{(n)}\}$  是收敛点列,设其极限为 x. 由于 $\{x_k^{(n)}\}$  是互异点列,故 x 为 E 的极限点.

# 3.4 $\mathbb{R}^n$ 中的基本点集: 闭集 · 开集 · Borel 集 · Cantor 集

# 3.4.1 闭集

#### 定义 3.27 (闭集与闭包)

设 $E \subset \mathbb{R}^n$ . 若 $E \supset E'$  (即E包含E的一切极限点),则称E为闭集(这里规定空集为闭集). 记 $\overline{E} = E \cup E'$ ,并称 $\overline{E}$  为E 的闭包(E 为闭集就是 $E = \overline{E}$ ).

# 定义 3.28 (稠密子集)

 $\exists A \subset B \perp A = B$ , 则称  $A \in B$  中稠密, 或称  $A \not\in B$  的稠密子集.

#### 定理 3.16 (闭集的运算性质)

- (i) 若  $F_1, F_2$  是  $\mathbb{R}^n$  中的闭集,则其并集  $F_1 \cup F_2$  也是闭集,从而有限多个闭集的并集是闭集;
- (ii) 若  $\{F_{\alpha}: \alpha \in I\}$  是  $\mathbb{R}^n$  中的一个闭集族,则其交集  $F = \bigcap F_{\alpha}$  是闭集.
- (iii) 设  $E_{\alpha} \subset \mathbb{R}^{n} (\alpha \in I)$ , 则

$$\bigcup_{\alpha \in I} \overline{E_\alpha} \subset \overline{\bigcup_{\alpha \in I} E_\alpha}, \quad \overline{\bigcap_{\alpha \in I} E_\alpha} \subset \bigcap_{\alpha \in I} \overline{E_\alpha}.$$

~

注 无穷多个闭集的并集不一定是闭集. 例如, 令

$$F_k = \left\lceil \frac{1}{k+1}, \frac{1}{k} \right\rceil \subset \mathbb{R} \quad (k = 1, 2, \cdots),$$

则有  $\bigcup_{k=1}^{\infty} F_k = (0,1]$ . 此例还说明

$$[0,1] = \overline{\bigcup_{k=1}^{\infty} F_k} \neq \bigcup_{k=1}^{\infty} \overline{F_k} = (0,1].$$

证明 (i) 从等式

$$\overline{F_1 \cup F_2} = (F_1 \cup F_2) \cup (F_1 \cup F_2)'$$

$$= (F_1 \cup F_2) \cup (F'_1 \cup F'_2)$$

$$= (F_1 \cup F'_1) \cup (F_2 \cup F'_2)$$

$$= \overline{F_1} \cup \overline{F_2}$$

可知, 若  $F_1$ ,  $F_2$  为闭集, 则  $\overline{F_1 \cup F_2} = F_1 \cup F_2$ . 即  $F_1 \cup F_2$  是闭集.

(ii) 因为对一切  $\alpha \in I$ , 有  $F \subset F_{\alpha}$ , 所以对一切  $\alpha \in I$ , 有  $\overline{F} \subset \overline{F_{\alpha}} = F_{\alpha}$ , 从而有

$$\overline{F} \subset \bigcap_{\alpha \in I} F_{\alpha} = F.$$

但  $F \subset \overline{F}$ , 故  $F = \overline{F}$ . 这说明 F 是闭集.

#### 定理 3.17 (Cantor 闭集套定理)

若  $\{F_k\}$  是  $\mathbb{R}^n$  中的非空有界闭集列, 且满足  $F_1 \supset F_2 \supset \cdots \supset F_k \supset \cdots$ , 则  $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$ .

证明 若在  $\{F_k\}$  中有无穷多个相同的集合, 则存在自然数  $k_0$ , 当  $k \ge k_0$  时, 有  $F_k = F_{k_0}$ . 此时,  $\bigcap_{k=1}^{\infty} F_k = F_{k_0} \neq \emptyset$ . 现在不妨假定对一切 k,  $F_{k+1}$  是  $F_k$  的真子集, 即

$$F_k \setminus F_{k+1} \neq \emptyset$$
 ( $- \forall j k$ ),

我们选取  $x_k \in F_k \setminus F_{k+1}(k=1,2,\cdots)$ , 则  $\{x_k\}$  是  $\mathbb{R}^n$  中的有界互异点列. 根据 Bolzano - Weierstrass 定理可知, 存在  $\{x_{k_i}\}$  以及  $x \in \mathbb{R}^n$ , 使得  $\lim_{k \to \infty} |x_{k_i} - x| = 0$ . 由于每个  $F_k$  都是闭集, 故知  $x \in F_k(k=1,2,\cdots)$ , 即

$$x \in \bigcap_{k=1}^{\infty} F_k$$
.

3.4.2 开集

#### 定义 3.29 (开集)

设  $G \subset \mathbb{R}^n$ . 若  $G^c = \mathbb{R}^n \setminus G$  是闭集, 则称 G 为开集.

拿 笔记 由此定义立即可知.ℝ″本身与空集 Ø 是开集:ℝ″中的开矩体是开集: 闭集的补集是开集.

#### 定理 3.18 (开集的运算性质)

(i) 若  $\{G_{\alpha}: \alpha \in I\}$  是  $\mathbb{R}^n$  中的一个开集族,则其并集  $G = \bigcup_{\alpha \in I} G_{\alpha}$  是开集;

- (ii) 若  $G_k(k=1,2,\cdots,m)$  是  $\mathbb{R}^n$  中的开集,则其交集  $G=\bigcap_{i=1}^m G_k$  是开集(有限个开集的交集是开集);
- (iii) 若 G 是  $\mathbb{R}^n$  中的非空点集,则 G 是开集的充分必要条件是,对于 G 中任一点 x,存在  $\delta>0$ ,使得  $B(x,\delta)\subset G$ .
- 证明 (i) 由定义知  $G^c_{\alpha}(\alpha \in I)$  是闭集, 且有  $G^c = \bigcap_{\alpha \in I} G^c_{\alpha}$ . 根据闭集的性质可知  $G^c$  是闭集, 即 G 是开集.
  - (ii) 由定义知  $G_k^c(k=1,2,\cdots,m)$  是闭集, 且有  $G^c=\bigcup_{k=1}^m G_k^c$ . 根据闭集的性质可知  $G^c$  是闭集, 即 G 是开集.
  - (iii) 若 G 是开集且  $x \in G$ , 则由于  $G^c$  是闭集以及  $x \notin G^c$ , 可知存在  $\delta > 0$ , 使得  $B(x, \delta) \subset G$ . 反之, 若对 G 中的任一点 x, 存在  $\delta > 0$ , 使得  $B(x, \delta) \subset G$ , 则

$$B(x,\delta) \cap G^c = \emptyset$$
,

从而 x 不是  $G^c$  的极限点, 即  $G^c$  的极限点含于  $G^c$ . 这说明  $G^c$  是闭集, 即 G 是开集.

#### 定义 3.30 (内点与边界点)

设  $E \subset \mathbb{R}^n$ . 对  $x \in E$ , 若存在  $\delta > 0$ , 使得  $B(x, \delta) \subset E$ , 则称  $x \to E$  的**内点**. E 的内点全体记为 E, 称为 E 的**内**. E 的**内**. E 的**内**. E 的**内**. E 的**内**. E 的**内**.

Ŷ 笔记 显然, 内核一定为开集.开集的运算性质 (iii)说明开集就是集合中每个点都是内点的集合.

#### 定理 3.19 ( $\mathbb{R}^n$ 中的非空开集的性质)

- (i) ℝ中的非空开集是可数个互不相交的开区间(这里也包括 $(-\infty,a),(b,+\infty)$ 以及 $(-\infty,+\infty)$ )的并集;
- (ii)  $\mathbb{R}^n$  中的非空开集 G 是可列个互不相交的半开闭方体的并集.

证明 (i) 设 G 是  $\mathbb{R}$  中的开集. 对于 G 中的任一点 a, 由于 a 是 G 的内点, 故存在  $\delta > 0$ , 使得  $(a - \delta, a + \delta) \subset G$ . 现在令

$$a' = \inf\{x : (x, a) \subset G\}, \quad a'' = \sup\{x : (a, x) \subset G\}$$

(这里 a' 可以是  $-\infty$ ,a'' 可以是  $+\infty$ ),显然 a' < a < a'' 且  $(a',a'') \subset G$ . 这是因为对区间 (a',a'') 中的任一点 z,不妨设  $a' < z \leq a$ ,必存在 x,使得 a' < x < z 且  $(x,a) \subset G$ ,即  $z \in G$ . 我们称这样的开区间 (a',a'') 为 G (关于点 a)的构成区间  $I_a$ .

如果  $I_a = (a', a''), I_b = (b', b'')$  是 G 的构成区间,那么可以证明它们或是重合的或是互不相交的.为此,不妨设 a < b.若

$$I_a \cap I_b \neq \emptyset$$
,

则有 b' < a''. 于是令  $\min\{a',b'\} = c,\max\{a'',b''\} = d$ , 则有  $(c,d) = (a',a'') \cup (b',b'')$ . 取  $x \in I_a \cap I_b$ , 则  $I_x = (c,d)$  是构成区间, 且

$$(c,d) = (a',a'') = (b',b'').$$

最后, 我们知道 ℝ中互不相交的区间族是可数的.

(ii) 首先将  $\mathbb{R}^n$  用格点(坐标皆为整数)分为可列个边长为 1 的半开闭方体,其全体记为  $\Gamma_0$ . 再将  $\Gamma_0$  中每个方体的每一边二等分,则每个方体就可分为  $2^n$  个边长为  $\frac{1}{2}$  的半开闭方体,记  $\Gamma_0$  中如此做成的子方体的全体为  $\Gamma_1$ . 继续按此方法二分下去,可得其所含方体越来越小的方体族组成的序列  $\{\Gamma_k\}$ ,这里  $\Gamma_k$  中每个方体的边长是  $2^{-k}$ ,且此方体是  $\Gamma_{k+1}$  中相应的  $2^n$  个互不相交的方体的并集. 我们称如此分成的方体为二进方体.

现在把 $\Gamma_0$  中凡含于G 内的方体取出来, 记其全体为 $H_0$ . 再把 $\Gamma_1$  中含于

$$G\setminus \bigcup_{J\in H_0}J$$

(J表示半开闭二进方体) 内的方体取出来, 记其全体为  $H_1$ . 依此类推, $H_k$  为  $\Gamma_k$  中含于

$$G\setminus\bigcup_{i=0}^{k-1}\bigcup_{J\in H_i}J$$

内的方体的全体. 显然, 一切由  $H_k(k=0,1,2,\cdots)$  中的方体构成的集合为可列的. 因为 G 是开集, 所以对任意的  $x \in G$ , 存在  $\delta > 0$ , 使得  $B(x,\delta) \subset G$ . 而  $\Gamma_k$  中的方体的直径当  $k \to \infty$  时是趋于零的, 从而可知 x 最终必落入某个  $\Gamma_k$  中的方体. 这说明

$$G = \bigcup_{k=0}^{\infty} \bigcup_{J \in H_k} J, \quad J.$$

 $\mathbb{R}^n$  中的开集还有一个重要事实,即  $\mathbb{R}^n$  中存在由可列个开集构成的开集族  $\Gamma$ , 使得  $\mathbb{R}^n$  中任一开集均是  $\Gamma$  中某些开集的并集. 事实上, $\Gamma$  可取为

$$\left\{B\left(x,\frac{1}{k}\right):x\mathbb{R}^n,k\right\}.$$

首先, $\Gamma$  是可列集. 其次, 对于  $\mathbb{R}^n$  中开集 G 的任一点 x, 必存在  $\delta > 0$ , 使得  $B(x,\delta) \subset G$ . 现在取有理点 x', 使得 d(x,x') < 1/k, 其中  $k > 2/\delta$ , 从而有

$$x \in B(x', 1/k) \subset B(x, \delta) \subset G$$
,

显然, 一切如此做成的 B(x', 1/k) 的并集就是 G.

#### 定义 3.31 (开覆盖)

设 $E \subset \mathbb{R}^n$ ,  $\Gamma \not\in \mathbb{R}^n$  中的一个开集族. 若对任意的 $x \in E$ , 存在 $G \in \Gamma$ , 使得 $x \in G$ , 则称  $\Gamma$  为 E 的一个**开覆盖**. 设  $\Gamma \not\in E$  的一个开覆盖. 若  $\Gamma' \subset \Gamma$  仍是 E 的一个开覆盖, 则称  $\Gamma'$  为  $\Gamma$  (关于 E) 的一个**子覆盖**.

#### 引理 3.2

 $\mathbb{R}^n$  中点集 E 的任一开覆盖  $\Gamma$  都含有一个可数子覆盖.

Ç

#### 定理 3.20 (Heine - Borel 有限子覆盖定理)

 $\mathbb{R}^n$  中有界闭集的任一开覆盖均含有一个有限子覆盖.

**注** 在上述定理中,有界的条件是不能缺的. 例如,在  $\mathbb{R}^1$  中对自然数集作开覆盖  $\{(n-\frac{1}{2},n+\frac{1}{2})\}$  就不存在有限子覆盖. 同样,闭集的条件也是不能缺的. 例如,在  $\mathbb{R}$  中对点集  $\{1,\frac{1}{2},\cdots,\frac{1}{n},\cdots\}$  作开覆盖

$$\left\{ \left(\frac{1}{n} - \frac{1}{2n}, \frac{1}{n} + \frac{1}{2n}\right) \right\} \quad (n = 1, 2, \cdots),$$

就不存在有限子覆盖.

证明 设 F 是 ℝ<sup>n</sup> 中的有界闭集,Γ 是 F 的一个开覆盖. 由引理 3.2, 可以假定 Γ 由可列个开集组成:

$$\Gamma = \{G_1, G_2, \cdots, G_i, \cdots\}.$$

\$

$$H_k = \bigcup_{i=1}^k G_i, \quad L_k = F \cap H_k^c \quad (k = 1, 2, \cdots).$$

显然, $H_k$  是开集, $L_k$  是闭集且有  $L_k \supset L_{k+1}(k=1,2,\cdots)$ . 分两种情况:

- (i) 存在  $k_0$ , 使得  $L_{k_0}$  是空集, 即  $H_{k_0}$  中不含 F 的点, 从而知  $F \subset H_{k_0}$ , 定理得证;
- (ii) 一切  $L_k$  皆非空集,则由Cantor 闭集套定理可知,存在点  $x_0 \in L_k(k = 1, 2, \cdots)$ ,即  $x_0 \in F$  且  $x_0 \in H_k^c(k = 1, 2, \cdots)$ . 这就是说 F 中存在点  $x_0$  不属于一切  $H_k$ ,与原设矛盾,故第 (ii) 种情况不存在.

#### 定理 3.21

设 $E \subset \mathbb{R}^n$ . 若E的任一开覆盖都包含有限子覆盖,则E是有界闭集.

证明 设  $y \in E^c$ ,则对于每一个  $x \in E$ ,存在  $\delta_x > 0$ ,使得

$$B(x, \delta_x) \cap B(y, \delta_x) = \emptyset$$
.

显然, $\{B(x,\delta_x):x\in E\}$  是 E 的一个开覆盖,由题设知存在有限子覆盖,设为

$$B(x_1, \delta_{x_1}), \cdots, B(x_m, \delta_{x_m}).$$

由此立即可知 E 是有界集. 现在再令

$$\delta_0 = \min\{\delta_{x_1}, \cdots, \delta_{x_m}\},\,$$

则  $B(y, \delta_0) \cap E = \emptyset$ , 即  $y \notin E'$ . 这说明  $E' \subset E$ , 即 E 是闭集. 有界性显然.

#### 定义 3.32 (紧集)

如果 E 的任一开覆盖均包含有限子覆盖, 我们就称 E 为紧集.



#### 定义 3.33 (实值函数的连续)

设 f(x) 是定义在  $E \subset \mathbb{R}^n$  上的实值函数, $x_0 \in E$ . 如果对任意的  $\varepsilon > 0$ , 存在  $\delta > 0$ , 使得当  $x \in E \cap B(x_0, \delta)$  时, 有

$$|f(x) - f(x_0)| < \varepsilon$$
,

则称 f(x) 在  $x = x_0$  处连续, 称  $x_0$  为 f(x) 的一个连续点(在  $x_0 \notin E'$  的情形, 即  $x_0$  是 E 的孤立点时, f(x) 自然在  $x = x_0$  处连续). 若 E 中的任一点皆为 f(x) 的连续点, 则称 f(x) 在 E 上连续. 记 E 上的连续函数之全体为 C(E).

#### 命题 3.11 (在 ℝ" 的紧集上连续的函数的性质)

设 F 是  $\mathbb{R}^n$  中的有界闭集,  $f \in C(F)$ , 则

- (i) f(x) 是 F 上的有界函数, 即 f(F) 是  $\mathbb{R}$  中的有界集.
- (ii) 存在  $x_0$  ∈ F,  $y_0$  ∈ F, 使得

$$f(x_0) = \sup\{f(x) : x \in F\}, \quad f(y_0) = \inf\{f(x) : x \in F\}.$$

(iii) f(x) 在 F 上是一致连续的,即对任给的  $\varepsilon > 0$ , 存在  $\delta > 0$ , 当  $x', x'' \in F$  且  $|x' - x''| < \delta$  时, 有

$$|f(x') - f(x'')| < \varepsilon$$
.

此外, 若  $E \subset \mathbb{R}^n$  上的连续函数列  $\{f_k(x)\}$  一致收敛于 f(x), 则 f(x) 是 E 上的连续函数.

#### 3.4.3 Borel 集

#### 定义 3.34

### 第四章 Lebesgue 测度

### 4.1 Lebesgue 外测度

#### 定义 4.1 (区间的长度)

设I为实数的非空区间,若I是无界的,则定义它的长度 $\ell(I)$ 为 $\infty$ ,否则定义它的长度为端点的差.

### 笔记 设 / 为实数的非空区间, 显然 / 的长度满足

- (1)  $\ell(I) \ge 0$ .
- (2)  $\ell(I)$  满足平移不变性, 即  $\ell(I) = \ell(I+y), \forall y \in \mathbb{R}$ .

#### 定义 4.2 (Lebesgue 外测度)

设覆盖 A 的非空开有界区间的可数集族  $\{I_k\}_{k=1}^{\infty}$ , 即使得  $A\subseteq\bigcup_{k=1}^{\infty}I_k$ . 定义 A 的 Lebesgue 外测度  $m^*(A)$  为 这些区间长度之和的下确界,即

$$m^*(A) = \inf \left\{ \sum_{k=1}^{\infty} \ell(I_k) \middle| A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}.$$

#### 命题 4.1 (常见集合的 Lebesgue 外测度)

- (1) 外测度是非负的.
- (2) 空集的外测度为 0.
- (3) 由可数个点构成的集合的外测度等于 0.
- (4) 区间的外测度等于区间的长度.

#### 证明

- (1) 由区间长度的非负性立得. (2) 注意到  $(0, \frac{1}{n}) \supset \emptyset$ , 则

$$0 \le m^*(\varnothing) \le \inf_{n \in \mathbb{N}} \frac{1}{n} = 0$$

因此  $m^*(\emptyset) = 0$ .

(3) 设  $a_1, \dots, a_m, \dots \in \mathbb{R}, A = \{a_m : m \in \mathbb{N}\}.$  任取  $n \in \mathbb{N}, \mathbb{M}$ 

$$\bigcup_{1 \le m \le n} \left( a_i - \frac{1}{2n2^m}, a_i + \frac{1}{2n2^m} \right) \supset A$$

于是

$$m^*(A) \le \sum_{m=1}^{\infty} \frac{1}{n2^m} = \frac{1}{n}$$

$$0 \le m^*(A) \le 0.$$

因此  $m^*(A) = 0$ .

(4) 我们从闭有界区间 [a,b] 的情形开始. 令  $\varepsilon > 0$ . 由于开区间  $(a-\varepsilon,b+\varepsilon)$  包含 [a,b], 我们有  $m^*([a,b]) \leqslant$  $\ell((a-\varepsilon,b+\varepsilon))=b-a+2\varepsilon$ . 这对任何  $\varepsilon>0$  成立. 因此  $m^*([a,b])\leqslant b-a$ . 接下来要证明  $m^*([a,b])\geqslant b-a$ . 而这等价于证明: 若 $\{I_k\}_{k=1}^{\infty}$ 是任何覆盖[a,b]的可数开有界区间族,则

$$\sum_{k=1}^{\infty} \ell(I_k) \geqslant b - a \tag{4.1}$$

根据Heine - Borel 定理, 任何覆盖 [a,b] 的开区间族有一个覆盖 [a,b] 的有限子族. 选取自然数 n 使得  $\{I_k\}_{k=1}^n$  覆盖 [a,b]. 我们将证明

$$\sum_{k=1}^{n} \ell(I_k) \geqslant b - a \tag{4.2}$$

从而(4.1)成立. 由于 a 属于  $\bigcup_{k=1}^{n} I_k$ ,这些  $I_k$  中必有一个包含 a. 选取这样的一个区间且记为  $(a_1,b_1)$ . 我们有  $a_1 < a < b_1$ . 若  $b_1 \geqslant b$ ,不等式(4.2)得证,这是因为

$$\sum_{k=1}^{n} \ell(I_k) \geqslant b_1 - a_1 > b - a$$

否则, $b_1 \in [a,b]$ , 且由于  $b_1 \notin (a_1,b_1)$ , 族  $\{I_k\}_{k=1}^n$  中存在一个区间, 记为  $(a_2,b_2)$  以区分于  $(a_1,b_1)$ , 使得  $b_1 \in (a_2,b_2)$ , 即  $a_2 < b_1 < b_2$ . 若  $b_2 \ge b$ , 不等式(4.2)得证, 这是因为

$$\sum_{k=1}^{n} \ell(I_k) \geqslant (b_1 - a_1) + (b_2 - a_2) = b_2 - (a_2 - b_1) - a_1 > b_2 - a_1 > b - a$$

我们继续这一选取程序直至它终止, 而它必须终止, 因为族  $\{I_k\}_{k=1}^n$  中仅有 n 个区间. 因此我们得到  $\{I_k\}_{k=1}^n$  的一个子族  $\{(a_k,b_k)\}_{k=1}^N$  使得

$$a_1 < a$$

而对  $1 \leq k \leq N-1$ ,

$$a_{k+1} < b_k$$

且由于选取过程终止,

$$b_N > b$$

因此

$$\sum_{k=1}^{n} \ell(I_k) \geqslant (b_N - a_N) + (b_{N-1} - a_{N-1}) + \dots + (b_1 - a_1)$$

$$= b_N - (a_N - b_{N-1}) - \dots - (a_2 - b_1) - a_1$$

$$> b_N - a_1 > b - a$$

因而不等式(4.2)成立.

若 I 是任意有界区间,则给定  $\varepsilon > 0$ ,存在两个闭有界区间  $J_1$  和  $J_2$  使得

$$J_1 \subseteq I \subseteq J_2$$

而

$$\ell(I) - \varepsilon < \ell(J_1) \ \mathbb{H} \ell(J_2) < \ell(I) + \varepsilon$$

根据对闭有界区间的外测度与长度的相等性,以及外测度的单调性,有

$$\ell(I) - \varepsilon < \ell(J_1) = m^*(J_1) \leqslant m^*(I) \leqslant m^*(J_2) = \ell(J_2) < \ell(I) + \varepsilon$$

这对每个 $\varepsilon > 0$ 成立. 因此 $\ell(I) = m^*(I)$ .

若 I 是无界区间,则对每个自然数 n,存在区间  $J \subseteq I$  满足  $\ell(J) = n$ . 因此  $m^*(I) \ge m^*(J) = \ell(J) = n$ . 这对每个自然数 n 成立,因此  $m^*(I) = \infty$ .

#### 命题 4.2 (Lebesgue 外测度的平移不变性)

外测度是平移不变的,即对任意集合 A 与数 v,

$$m^*(A+y) = m^*(A)$$

证明 观察到若  $\{I_k\}_{k=1}^{\infty}$  是任意可数集族,则  $\{I_k\}_{k=1}^{\infty}$  覆盖 A 当且仅当  $\{I_k+y\}_{k=1}^{\infty}$  覆盖 A+y. 此外,若每个  $I_k$  是一个开区间,则每个  $I_k+y$  是一个相同长度的开区间,因而

$$\sum_{k=1}^{\infty} \ell(I_k) = \sum_{k=1}^{\infty} \ell(I_k + y)$$

结论从这两个观察可以得到.

#### 命题 4.3 (Lebesgue 外测度的可数次可加性)

外测度是可数次可加的,即若 $\{E_k\}_{k=1}^\infty$ 是任意可数集族,互不相交或相交,则

$$m^* \left( \bigcup_{k=1}^{\infty} E_k \right) \leqslant \sum_{k=1}^{\infty} m^*(E_k)$$

注 外测度不是可数可加的, 它甚至不是有限可加的.

证明 若这些 $E_k$ 中的一个有无穷的外测度,则不等式平凡地成立. 我们因此假定每个 $E_k$ 有有限的外测度. 令 $\varepsilon > 0$ . 对每个自然数 k, 存在开有界区间的可数族  $\{I_{k,i}\}_{i=1}^{\infty}$  使得

$$E_k \subseteq \bigcup_{i=1}^{\infty} I_{k,i} \ \mathbb{E} \sum_{i=1}^{\infty} l(I_{k,i}) < m^*(E_k) + \varepsilon/2^k$$

现在  $\{I_{k,i}\}_{1\leqslant k,i\leqslant \infty}$  是一个覆盖  $\bigcup_{k=1}^{\infty}E_k$  的开有界区间的可数族: 由于该族是可数族组成的可数族, 它是可数的. 因此, 根据外测度的定义,

$$m^* \left( \bigcup_{k=1}^{\infty} E_k \right) \leqslant \sum_{1 \leqslant k, i < \infty} \ell(I_{k,i}) = \sum_{k=1}^{\infty} \left[ \sum_{i=1}^{\infty} \ell(I_{k,i}) \right]$$
$$< \sum_{k=1}^{\infty} \left[ m^*(E_k) + \varepsilon/2^k \right] = \left[ \sum_{k=1}^{\infty} m^*(E_k) \right] + \varepsilon$$

由于这对每个 $\varepsilon > 0$ 成立,它对 $\varepsilon = 0$ 也成立.证明完毕.

若  $\{E_k\}_{k=1}^n$  是任何有限集族, 互不相交或相交, 则

$$m^* \left( \bigcup_{k=1}^{\infty} E_k \right) \leqslant \sum_{k=1}^n m^*(E_k)$$

通过对 k > n 设  $E_k = \emptyset$ ,有限次可加性从可数次可加性得到.

### **4.2** Lebesgue 可测集的 $\sigma$ 代数

#### 定义 4.3 (可测)

集合 E 称为在  $\mathbb R$  中是**可测的**或是  $\mathbb R$  中的一个**可测集**, 或称 E 满足卡拉西奥多里 (Carathéodory) 条件, 若对任意集合 A,

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^C) = m^*(A \cap E) + m^*(A - E).$$

#### 命题 4.4 (可测的充要条件)

设 $E \subset \mathbb{R}$ ,则E是可测集当且仅当对任意 $A \subset \mathbb{R}$ 有

$$m^*(A) \ge m^*(A \cap E) + m^*(A - E).$$

证明 由可测的定义可知, 我们只须证明小于等于号的关系恒成立. 注意到  $A = (A \cap E) \cup (A - E)$ , 由于Lebesgue 外测度的可数次可加性, 我们有

$$m^*(A) = m^*((A \cap E) \cup (A - E)) \le m^*(A \cap E) + m^*(A - E)$$

此即得证.

#### 命题 4.5 (可测集的性质)

- (1) 空集与 ℝ 是可测的.
- (2) 可测集的补是可测的.
- (3) 任何外测度为零的集合是可测的. 特别地, 任何可数集是可测的.
- (4) 可数个可测集的并是可测的.

#### 证明

- (1) 由可测的定义易得.
- (2) 由可测的定义易得.
- (3) 令集合 E 的外测度为零. 令 A 为任意集合. 由于

$$A \cap E \subseteq E \ \mathbb{H} A \cap E^C \subseteq A$$

根据外测度的单调性,

$$m^*(A\cap E) \leqslant m^*(E) = 0 \ \mathbb{H} m^*(A\cap E^C) \leqslant m^*(A)$$

因此

$$m^*(A) \ge m^*(A \cap E^C) = 0 + m^*(A \cap E^C)$$
  
=  $m^*(A \cap E) + m^*(A \cap E^C)$ 

从而由可测的充要条件可知,E 是可测的.

(4)

- 4.3 Lebesgue 可测集的外逼近和内逼近
- 4.4 可数可加性、连续性以及 Borel-Cantelli 引理
- 4.5 不可测集
- 4.6 Cantor 集和 Cantor-Lebesgue 函数

# 第五章 Lebesgue 可测函数

- 5.1 和、积与复合
- 5.2 序列的逐点连续与简单逼近
- 5.3 Littlewood 的三个原理、Egoroff 定理以及 Lusin 定理

## 第六章 Lebesgue 积分

- 6.1 Riemann 积分
- 6.2 有限测度集上的有界可测函数的 Lebesgue 积分
- 6.3 非负可测函数的 Lebesgue 积分
- 6.4 一般的 Lebesgue 积分
- 6.5 积分的可数可加性与连续性
- 6.6 一致可积性:Vitali 收敛定理
- 6.7 一致可积性和紧性: 一般的 Vitali 收敛定理
- 6.8 依测度收敛
- 6.9 Riemann 可积与 Lebesgue 可积的刻画

## 第七章 微分与积分

- 7.1 单调函数的连续性
- 7.2 单调函数的可微性:Lebesgue 定理
- 7.3 有界变差函数:Jordan 定理
- 7.4 绝对连续函数
- 7.5 导数的积分: 微分不定积分
- 7.6 凸函数

# 第八章 $L^p$ 空间: 完备性与逼近

- 8.1 赋范线性空间
- 8.2 Young、Hölder 与 Minkowski 不等式
- 8.3  $L^p$  是完备的:Riesz-Fischer 定理
- 8.4 逼近与可分性

## 第九章 $L^p$ 空间: 对偶与弱收敛

- 9.1 关于  $L^p(1 \le p < \infty)$  的对偶的 Riesz 表示定理
- 9.2  $L^p$  中的弱序列收敛
- 9.3 弱序列紧性
- 9.4 凸泛函的最小化