

Claims

1. A thiazole(bi)cycloalkylcarboxanilide of the formula (I)

5 in which

Q represents a group

or

10 R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; -COR⁷, -CONR⁸R⁹ or -CH₂NR¹⁰R¹¹,

15 R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, C₆-C₁₂-bicycloalkyl or C₆-C₁₂-bicycloalkenyl, each of which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, cyano, hydroxyl, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

20 R³ represents fluorine, chlorine, bromine or methyl,
m represents 0, 1, 2, 3 or 4,
A represents O (oxygen) or CR¹²,

R⁴, R⁵, R⁶ and R¹² independently of one another represent hydrogen, methyl or ethyl,
R⁷ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-

C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,
 R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
 R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹³,
 R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
 R¹⁰ and R¹¹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹³,
 R¹³ represents hydrogen or C₁-C₆-alkyl.

2. The thiazole(bi)cycloalkylcarboxanilide of the formula (I) as claimed in claim 1 in
 which
 Q represents a group

(Q-1)

or

(Q-2)

R¹ represents hydrogen; C₁-C₆-alkyl, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-

haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; -COR⁷, -CONR⁸R⁹ or -CH₂NR¹⁰R¹¹,

5 R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, C₆-C₁₂-bicycloalkyl or C₆-C₁₂-bicycloalkenyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

10 R³ represents fluorine, bromine or methyl,

m represents 0, 1, 2 or 3,

A represents O (oxygen) or CR¹²,

R⁴, R⁵, R⁶ and R¹² independently of one another represent hydrogen, methyl or ethyl,

15 R⁷ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

20 R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

25 R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle which is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹³,

30 R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

35 R¹⁰ and R¹¹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle may

contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulfur and NR¹²,

R¹³ represents hydrogen or C₁-C₄-alkyl.

5 3. The thiazole(bi)cycloalkylcarboxanilide of the formula (I) as claimed in claim 1 in which

Q represents a group

(Q-1)

or

(Q-2)

10 R¹ represents hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, pentyl or hexyl, methylsulfinyl, ethylsulfinyl, n- or isopropylsulfinyl, n-, iso-, sec- or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or isopropylsulfonyl, n-, iso-, sec- or tert-butylsulfonyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, trichloromethyl, trifluoroethyl, difluoromethylsulfanyl, difluorochloromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethysulfanyl, trifluoromethylsulfinyl, trifluoromethylsulfonyl, trifluoromethoxymethyl; -COR⁷, -CONR⁸R⁹ or -CH₂NR¹⁰R¹¹,

15 R² represents C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkenyl, C₆-C₁₀-bicycloalkyl or C₆-C₁₀-bicycloalkenyl, each of which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butoxy, trifluoromethyl, difluoromethyl, trichloromethyl, difluorochloromethyl, trifluoromethoxy, trifluoromethoxy, difluoromethoxy, trichloromethoxy, difluorochloromethoxy,

20 R³ represents fluorine, bromine or methyl,

m represents 0, 1, 2 or 3,

A represents O (oxygen) or CR¹²,

R⁴ represents methyl or ethyl,

25 R⁵ and R⁶ each represent methyl,

R⁷ represents hydrogen, methyl, ethyl, n- or isopropyl, tert-butyl, methoxy, ethoxy, tert-butoxy, cyclopropyl; trifluoromethyl, trifluoromethoxy or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

5 R⁸ and R⁹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, trifluoromethoxymethyl,

10 R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle from the group consisting of morpholine, thiomorpholine and piperazine which is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine and methyl, where the piperazine may be substituted on the second nitrogen atom by R¹³,

15 R¹⁰ and R¹¹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, trifluoromethoxymethyl,

20 R¹⁰ and R¹¹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle from the group consisting of morpholine, thiomorpholine and piperazine which is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine and methyl, where the piperazine may be substituted on the second nitrogen atom by R¹³,

25 R¹² represent hydrogen or methyl,

R¹³ represents hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl.

4. A thiazole(bi)cycloalkylcarboxanilide of the formula (I-a)

30 in which

Q is as defined in claim 1.

5. A thiazole(bi)cycloalkylcarboxanilide of the formula (I-b)

5 in which

Q is as defined in claim 1.

R¹⁻¹ represents C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; -COR⁷, -CONR⁸R⁹ or -CH₂NR¹⁰R¹¹, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ are as defined in claim 1.

6. A thiazole(bi)cycloalkylcarboxanilide of the formula (I-c)

15

in which

R¹, R² and R³ are as defined in claim 1.

7. A thiazole(bi)cycloalkylcarboxanilide of the formula (I-d)

in which

A , R^4 , R^5 and R^6 are as defined in claim 1.

5 8. A process for preparing thiazole(bi)cycloalkylcarboxanilides of the formula (I) as
claimed in claim 1, characterized in that

A) carboxylic acid derivatives of the formula (II)

10 in which

G represents halogen, hydroxyl or C₁-C₆-alkoxy,

are, in a first step, reacted with aniline derivatives of the formula (III)

15 H₂N-Q (III)

in which

Q is as defined in claim 1.

in the presence of an acid binder and in the presence of a diluent

20

and the resulting products of the formula (I-a)

in which

Q is as defined in claim 1

5

are, if appropriate, reacted in a second step with a halide of the formula (III)

in which

10 R¹⁻¹ represents C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; -COR⁷, -CONR⁸R⁹ or -CH₂NR¹⁰R¹¹,

15 R⁷, R⁸, R⁹, R¹⁰ and R¹¹ are as defined in claim 1 and

X represents chlorine, bromine or iodine,

in the presence of a base and in the presence of a diluent.

20 9. A composition for controlling unwanted microorganisms, characterized in that it comprises at least one thiazole(bi)cycloalkylcarboxanilide of the formula (I) as claimed in claim 1, in addition to extenders and/or surfactants.

10. The use of thiazole(bi)cycloalkylcarboxanilides of the formula (I) as claimed in claim 1 for controlling unwanted microorganisms.

25 11. A method for controlling unwanted microorganisms, characterized in that thiazole(bi)cycloalkylcarboxanilides of the formula (I) as claimed in claim 1 are applied to the microorganisms and/or their habitat.

12. A process for preparing compositions for controlling unwanted microorganisms, characterized in that thiazole(bi)cycloalkylcarboxanilides of the formula (I) according to claim 1 are mixed with extenders and/or surfactants.