

Labeled anomalies

Alastair Rushworth
Data Scientist

Satellite image data

```
head(sat, 5)

label V1 V2 V3 V4 V5

1 0 92 115 120 94 84

2 0 84 102 106 79 84

3 0 84 102 102 83 80

4 0 80 102 102 79 84

5 0 84 94 102 79 80
```

```
table(sat$label)

0 1
5732 71
```

Cotton crop image proportion

```
71 / 5803
0.01223505
```

Visualize true anomalies

 $plot(V2 \sim V3, data = sat, col = as.factor(label), pch = 20)$

Anomaly score versus true label

```
sat_for <- iForest(sat[, -1], nt = 100)
sat$score <- predict(sat_for, features)
boxplot(score ~ label, data = sat, col = "olivedrab4")</pre>
```


Why not use models to predict labels?

Example 1: Detecting rare disease cases

Too few cases

Example 2: Credit card fraud

Changes rapidly

Let's practice!

Measuring performance

Alastair Rushworth
Data Scientist

Using a decision threshold

Choose a high value

```
high_score <- quantile(sat$score, probs = 0.99)
high_score

99%
0.6228078
```

Binarize score

```
sat$binary_score <- as.numeric(score >= high_score)
```


Tables of agreement

Comparing true label and binarized score

```
table(sat$label, sat$binary_score)

0 1
0 5729 3
1 15 56
```

• 56 out of 71 anomalies found

Recall

Anomalies correctly identified ÷ Total anomalies

• 1 = Perfect recall; every anomaly detected by algorithm

```
table(sat$label, sat$binary_score)

0 1
0 5729 3
1 15 56
```

```
recall <- 56 / (15 + 56)
recall
[1] 0.7887324
```


Precision

Anomalies correctly identified ÷ Total scored as anomalous

• 1 = Perfect precision; no normal instances incorrectly labeled

```
table(sat$label, sat$binary_score)

0 1
0 5729 3
1 15 56
```

```
precision <- 56 / (56 + 3)
precision
[1] 0.9491525</pre>
```


Let's practice!

Working with categorical features

Alastair Rushworth
Data Scientist

Checking column classes

Class of a single column

```
class(sat$V1)
[1] "numeric"
```

Class of all columns

Isolation forest

Encode categorical features as factor

```
sat$high_low <- as.factor(sat$high_low)
```

```
class(sat$high_low)
[1] "factor"
```

Train isolation forest

```
sat_for <- iForest(sat[, -1], nt = 100)
```

LOF with factors

Gower distance measures distance between points with categorical & numeric features

```
library(cluster)
sat_dist <- daisy(sat[, -1], metric = "gower")</pre>
```

Pass sat_dist to lof

```
sat_lof <- lof(sat_dist, k = 10)</pre>
```


Exploring Gower distance matrix

Convert object to matrix

```
sat_distmat <- as.matrix(sat_dist)</pre>
```

Find max and min interpoint distances

```
range(sat_distmat)
[1] 0.0000000 0.8680774
```


Let's practice!

Recap: Anomaly Detection in R

Alastair Rushworth
Data Scientist

Course summary

Chapter 1

Testing and visualizing outliers for single variable and time series

Chapter 2

Distance and density based anomaly detection

Chapter 3

Tree based anomaly detection

Chapter 4

Comparing performance and using factors

What's next?

- Model tuning: eg. choosing k for LOF & kNN
- Many other techniques: One-class SVM & clustering approaches

Congratulations!