ÁLGEBRA DE OPERADORES

Habiendo definido el espacio *n* - dimensional euclídeo y los vectores funciones capaces de expresarlo necesitamos trabajar con tales vectores funciones para poder modelar teóricamente los fenómenos de la cuantización. Los **operadores** (de operar, trabajar, laborar, accionar) son los elementos que nos servirán para estos fines.

Un **operador matemático** puede ser considerado como un símbolo o notación abreviada de un conjunto definido, no vacío, de operaciones u acciones a realizar con o sobre un término llamado operando.

Ejemplos de operadores comunes:

$$log, d/dx, \sqrt{}$$

Se dice que un espacio vectorial R tiene definido un operador \hat{A} si cualquiera de sus vectores $\psi_i \in R$ puede generar un vector $\hat{A} \psi_i \in R$ que se conoce como su **imagen** con ese operador.

 \hat{A} es un **operador lineal** si:

$$\hat{A}(\psi_i + \psi_j) = \hat{A}\psi_i + \hat{A}\psi_j$$
$$\hat{A}(\alpha\psi_i) = \alpha \hat{A}\psi_i$$

donde α es un número real cualquiera.

En el caso del principio de superposición de los estados :

$$c_i \psi_i + c_j \psi_j = \Psi$$

si se aplica un operador lineal sobre cada estado componente, entonces:

$$\hat{A}(c_i\psi_i+c_j\psi_j)=\hat{A}c_i\psi_i+\hat{A}c_j\psi_j=\hat{A}\Psi$$

El operador \hat{A} es la suma de los operadores lineales \hat{G} y \hat{H} si son operadores lineales del mismo espacio vectorial \mathbf{R} y se cumple que:

$$\hat{A}\psi_i = \hat{G}\psi_i + \hat{H}\psi_i$$

para toda $\psi_i \in \mathbf{R}$. En este caso \hat{A} es también un operador lineal.

La suma de operadores lineales tiene las siguientes propiedades:

$$1. \quad \hat{G} + \hat{H} = \hat{H} + \hat{G}$$

2.
$$(\hat{G} + \hat{H}) + \hat{A} = \hat{G} + (\hat{H} + \hat{A})$$

2.
$$(\hat{G} + \hat{H}) + \hat{A} = \hat{G} + (\hat{H} + \hat{A})$$

3. $\hat{A} + \hat{O} = \hat{A}$ para toda operación \hat{A}

$$5. \quad (-\hat{A}) + \hat{A} = \hat{O}$$

^{4.} Existe una operación $-\hat{A}$ tal que: 5. $(-\hat{A}) + \hat{A} = \hat{O}$

El operador \hat{A} se llama **producto de los operadores lineales** \hat{G} y \hat{H} si se cumple que:

$$\hat{A}\psi_i = \hat{G}(\hat{H}\psi_i)$$

para toda $\psi_i \in R$.

La multiplicación de operadores es la aplicación sucesiva de dos o más de ellos sobre un vector-función en el orden a partir del más inmediato hacia el más lejano a dicho vector.

El **producto de operadores lineales** tiene las siguientes propiedades:

- 1. $(\hat{G}\hat{H})\hat{A} = \hat{G}(\hat{H}\hat{A})$ que es la ley asociativa.
- 2. Existen operaciones identidad o transformaciones unitarias \tilde{E} tales que

$$\hat{G}\tilde{E}=\tilde{E}\hat{G}=\hat{G}$$

3. La suma y el producto se vinculan por la ley distributiva:

$$(\hat{G} + \hat{H}) \hat{A} = \hat{G}\hat{A} + \hat{H}\hat{A}$$

y también por:

$$\hat{G}(\hat{H} + \hat{A}) = \hat{G}\hat{H} + \hat{G}\hat{A}$$

La **conmutatividad** NO es una propiedad inherente a los operadores lineales. O sea, en general:

 $(\hat{A}\hat{H}) \neq (\hat{H}\hat{A})$

Sin embargo, existen algunos operadores que SI conmutan:

$$(\hat{G}\hat{H}) = (\hat{H}\hat{G})$$

Se denomina **conmutador** a la relación:

$$\left[\hat{A},\hat{G}\right] \equiv \hat{A}\hat{G} - \hat{G}\hat{A}$$

de forma que si $[\hat{A}, \hat{G}] = 0$ los operadores \hat{A} y \hat{G} SI conmutan, y si $[\hat{A}, \hat{G}] \neq 0$ los operadores \hat{A} y \hat{G} NO conmutan.

Si \hat{A} es un operador en un espacio \mathbf{R} , entonces el conjunto \mathbf{D} de todos los vectores imagen $\hat{A}\psi_i$ no nulos (donde $\psi_i \in \mathbf{R}$) se llama el **dominio de valores del operador** \hat{A} y el conjunto \mathbf{M} de los todos vectores ψ_i tales que $\hat{A}\psi_i = 0$ es el **núcleo del operador**.

Tanto el dominio como el núcleo del operador son subespacios de \mathbf{R} .

La dimensión del dominio de valores del operador \hat{A} se denomina **rango del operador**. La dimensión del núcleo se denomina **defecto del operador**.

Debe anotarse que el dominio del operador agrupa a aquellos vectores a los que corresponda un valor no nulo de $\hat{A}\psi_i$ por lo que eso delimita o selecciona el tipo de funciones afines al operador que cumplen estas características.

[©] Reservados todos los derechos de reproducción. Luis A. Montero Cabrera y Lourdes A. Díaz, Universidad de La Habana, Cuba, 2003.