Übungsblatt 15 zur Kommutativen Algebra

Aufgabe 1. (m) Eine explizite Beschreibung der adischen Vervollständigung Sei $\mathfrak{a}=(x_1,\ldots,x_n)$ ein Ideal in einem noetherschen Ring A. Zeige, dass die Vervollständigung $\hat{A}_{\mathfrak{a}}$ isomorph zu $A[\![X_1,\ldots,X_n]\!]/(X_1-x_1,\ldots,X_n-x_n)$ ist.

Aufgabe 2. (m+m) Intervalle von Primidealen in noetherschen Ringen

- a) Seien $\mathfrak{p} \subseteq \mathfrak{q}$ Primideale in einem noetherschen Ring. Sei $(\mathfrak{p}, \mathfrak{q})$ die Menge all derjenigen Primideale \mathfrak{r} mit $\mathfrak{p} \subsetneq \mathfrak{r} \subsetneq \mathfrak{q}$. Zeige, dass $(\mathfrak{p}, \mathfrak{q})$ entweder leer oder unendlich ist.
- b) Sei A ein noetherscher Ring in dem alle Primideale in einer einzigen Kette $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ mit $n \geq 2$ auftreten. Zeige: Es gibt ein Element $x \in A$ mit $x + 0 \neq x$.

Aufgabe 3. (m) Dimension des Polynomrings im noetherschen Fall Sei A ein noetherscher Ring. Zeige: $\dim A[X] = 1 + \dim A$.

Aufgabe 4. (m) Nulldimensionale reguläre lokale Ringe

Zeige, dass ein Ring genau dann ein nulldimensionaler regulärer lokaler Ring ist, wenn er ein Körper ist.

Aufgabe 5. (m) Gar nicht mehr erste Schritte mit der Dimension von Ringen Berechne die Dimension des Rings $\mathbb{C}[X,Y,Z]/(X-Z,X^2+Y^2+Z^2)$.

Mumfords Schatzkarte der Primideale von $\mathbb{Z}[X]$