Scilab Textbook Companion for Manufacturing Science by A. Ghosh And A. K. Mallik¹

Created by
Prashant Singh
B. TECH
Mechanical Engineering
Madan Mohan Malaviya University of Technology
College Teacher
None
Cross-Checked by
Spandana

June 7, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Manufacturing Science

Author: A. Ghosh And A. K. Mallik

Publisher: Ellis Horwood

Edition: 2

Year: 2010

ISBN: 9788176710633

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
2	CASTING PROCESSES	5
3	FORMING PROCESSES	14
4	FORMING PROCESSES	28
5	JOINING PROCESSES	50
6	UNCONVENTIONAL MACHINING PROCESSES	53
7	MANUFACTURING IN TWENTY FIRST CENTURY MI- CROMACHINING GENERATIVE MANUFACTURING ASSELLE ASSEMBLY	ND 66

List of Scilab Codes

Exa 1.1	Calculation of filling time	5
Exa 2.2	Calculation of filling time	6
Exa 2.3	Calculation of time and discharge rate	7
Exa 2.5	Calculation of solidification time	8
Exa 2.6	Calculation of solidification time and surface tempera-	
	ture	9
Exa 2.7	Calculation of solidification time and surface tempera-	
	ture	10
Exa 2.8	Calculation of mould length and cooling water require-	
	ment	11
Exa 2.9	Calculation of riser volume	12
Exa 3.1	Calculation of strip thickness and average shear yield	
	stress and angle subtended by deformation zone and lo-	
	cation of neutral point	14
Exa 3.2	Calculation of roll separating force and power required	
	in the rolling process	15
Exa 3.3	Calculation of mill power	17
Exa 3.4	Calculation of maximum forging force	18
Exa 3.5	Calculation of maximum forging force	19
Exa 3.6	Calculation of maximum forging force	20
Exa 3.7	Calculation of drawing power and maximum passible	
	reduction in die	21
Exa 3.8	Calculation of drawing force and minimum passible ra-	
	dius of the cup which can drawn	22
Exa 3.9	Calculation of maximum bending force and required	
	punch angle	23
Exa 3.10	Calculation of minimum value of die length and mini-	
	mum required capacity of machine	24

Exa 3.11	Calculation of maximum force required for extruding	
	the billet and percent of the total input lost	25
Exa 3.12	Calculation of proper clearance between die and punch	
	and maximum punching force and energy required to	
	punch and die	26
Exa 4.1	Calculation of shear plane angle and shear strain	28
Exa 4.2	Calculation of coefficient of friction and ultimate shear	
	stress	28
Exa 4.3	Calculation of shear angle and cutting and trust force	29
Exa 4.4	Calculation of shear angle and cutting force and thrust	
	force	30
Exa 4.5	Calculation of cutting force	31
Exa 4.6	Calculation of maximum temperature along the rake face	32
Exa 4.7	Calculation of maximum speed at which cutting is pas-	
	sible	33
Exa 4.8	Calculation of percentage increase in tool life	34
Exa 4.9	Calculation of three components of machining force .	35
Exa 4.10	Calculation of average power consumption and specific	
	power consumption	36
Exa 4.11	Calculation of normal rake angle	37
Exa 4.12	Calculation of component of the machining force and	
	feed force component	37
Exa 4.14	Calculation of drilling torque and thrust force	39
Exa 4.15	Calculation of power consumption	40
Exa 4.16	Calculation of power required	41
Exa 4.17	Calculation of power required	42
Exa 4.18	Calculation of power required	42
Exa 4.19	Calculation of peak broaching load	43
Exa 4.20	Calculation of power required	44
Exa 4.21	Calculation of grinding force	45
Exa 4.22	Calculation of required depth of cut and feed	45
Exa 4.24	Calculation of maximum height of unevenness	46
Exa 4.25	Calculation of maximum height of unevenness	47
Exa 4.26	Calculation of cutting speed	47
Exa 4.27	Calculation of cost	48
Exa 4.28	Calculation of optimum cutting speed	49
Exa 5.1	Calculation of maximum power of the arc	50
Exa 5.2	Calculation of rate of heat generated per unit area	51

Exa 5.3	Calculation of maximum passible welding speed	51
Exa 5.4	Calculation of maximum shear stress	52
Exa 6.1	Calculation of time	53
Exa 6.2	Calculation of percentage change in cutting time	54
Exa 6.3	Calculation of current required	54
Exa 6.4	Calculation of removal rate	55
Exa 6.5	Calculation of equilibrium gap	56
Exa 6.6	Calculation of largest passible feed rate	57
Exa 6.7	Calculation of total force actin on the tool	57
Exa 6.8	Calculation of equation of required tool geometry	58
Exa 6.9	Calculation of time required to complete drilling opera-	
	tion	59
Exa 6.10	Calculation of surface roughness	60
Exa 6.11	Calculation of speed of cutting	61
Exa 6.12	Calculation of electron range	61
Exa 6.13	Calculation of speed of cutting	62
Exa 6.14	Calculation of time	62
Exa 6.15	Calculation of time	63
Exa 6.16	Calculation of minimum value of beam power intensity	64
Exa 6.17	Calculation of time	64
Exa 7.1	Calculation of maximum allowable wavelength of the	
	exposing light	66
Exa 7.2	Calculation of time required to machine the hole	67
Exa 7.3	Calculation of minimum level of exposure of the PMMA	
	surface	67
Exa 7.4	Calculation of time required to develop the PMMA resist	68

Chapter 2

CASTING PROCESSES

Scilab code Exa 1.1 Calculation of filling time

```
1 clc
2 // Given that
3 h=15 // Height of spur in cm
4 l= 50 // Length of cast in cm
5 w= 25 // weidth of cast in cm
6 h1= 15 // Height of cast in cm
7 g= 981 // Acceleration due to gravity in cm/sec^2
8 Ag= 5 // Cross sectional area of the grate in cm<sup>2</sup>
9 // Sample Problem 1 on page no. 46
10 printf("\n # PROBLEM 2.1 # \n")
11 v3 = sqrt(2*g*h)
12 \ V = 1*w*h1
13 tf1= V/(Ag*v3)
14 \text{ Am} = 1*w
15 tf2 = (Am/Ag)*(1/sqrt(2*g))*2*(sqrt(h) - sqrt(h-h1))
16 printf("\n Filling time for first design = %f sec, \
     n Filling time for second design = %f sec", tf1,
     tf2)
```

Scilab code Exa 2.2 Calculation of filling time

```
1 clc
2 // Given that
3 h=15 // Height of spur in cm
4 l= 50 // Length of cast in cm
5 w= 25 // weidth of cast in cm
6 h1= 15 // Height of cast in cm
7 g= 981 // Acceleration due to gravity in cm/sec^2
8 Ag= 5 // Cross sectional area of the grate in cm<sup>2</sup>
9 Dm = 7800 // Density of molten Fe in Kg/m^3
10 Neta = 0.00496 // Kinetic viscosity in Kg/m-sec
11 theta = 90 // Angle in degree
12 Eq = 25 // (L/D) Equivalent
13 // Sample Problem 2 on page no. 53
14 printf ("\n # PROBLEM 2.2 # \n")
15 v3 = sqrt(2* g * h)*(10^(-2))
16 d= sqrt((Ag*4)/(%pi))*(10^(-2))
17 Re = Dm*v3*d/Neta
18 f = 0.0791*(Re)^{(-1/4)}
19 L=0.12 // in meter
20 Cd= (1+0.45+4*f*((L/d)+Eq))^(-1/2)
21 \quad v3_ = Cd*v3
22 \text{ Re}_{-} = (v3_{-}/v3)*(\text{Re})
23 f_{=} = 0.0791 *(Re_{=})^{(-1/4)}
24 \text{ Cd} = (1+0.46+4*f_*(L/d + Eq))^(-1/2)
25 \text{ v3}_{-} = \text{Cd}_{-}*\text{v3}
26 \ V = 1*w*h1
27 tf = (V/(Ag*v3_{-}))*(10^{-2})
28 printf("\n Filling time for first design = \%f sec."
      , tf)
```

Scilab code Exa 2.3 Calculation of time and discharge rate

```
1 clc
2 // Given that
3 Hi=1.2 // Initial height in m
4 H= 0.05 // Height in m
5 g= 9.81 // Acceleration due to gravity in m/sec^2
6 Dm = 2700 // Density of molten metal in Kg/m<sup>3</sup>
7 Neta = 0.00273 // Kinetic viscosity in Kg/m-sec
8 d= 0.075 // Diameter in m
9 D = 1 // Internal diameter of ladle in m
10 // Sample Problem on page no. 56
11 printf("\n # PROBLEM 2.3 # \n")
12 \text{ v3} = \text{sqrt}(2*\text{ g} *\text{Hi})
13 Re = Dm*v3*d/Neta
14 \text{ ef} = 0.075
15 Cd= (1+ef)^{(-1/2)}
16 \text{ ef}_{-} = 0.82
17 \text{ Re}_{-} = (2+ef_{-})^{-}(-1/2)
18 \text{ v3}_{-} = \text{sqrt}(2*g*H)
19 \text{ Re}_{-} = \text{Dm}*v3_*d/\text{Neta}
20 \text{ At} = (\%\text{pi}/4) *D^2
21 \text{ An} = (\%pi/4)*d^2
22 Cd= 0.96
23 tf = (sqrt(2/g))*(At/An)*(1/Cd)*sqrt(Hi)
24 \text{ m} = \text{Dm}*\text{An}*\text{Cd}*\text{sqrt}(2*g*\text{Hi})
25 \text{ m} = Dm*An*Cd*sqrt(2*g*Hi*0.25)
26 printf("\n Time required to empty the ladle = %f sec
       , \ n Discharge rate are -\ n Initially =\%f Kg/
       sec \ \ n When the ladle is 75 percent empty = \%f \ Kg
       /\sec . ",tf,m,m_)
```

Scilab code Exa 2.5 Calculation of solidification time

```
1 clc
2 // Given that
3 thetaF= 1540 // Temperature of mould face in degree
      centigrade
  Theta0 = 28 // Initial temperature of mould in
      Degree centigrade
5 L= 272e3 // Latent heat of liquid metal in J/Kg
6 Dm = 7850 // Density of liquid metal in Kg/m^3
7 c = 1.17e+3 //Specific heat of sand in J/Kg-K
8 k = 0.8655 // Conductivity of sand in W/m-K
9 D= 1600 // Density of sand in Kg/m^3
10 h = 0.1 // Height in m
11 b = 10 // Thickness of slab in cm
12 \text{ r} = h/2// V/A \text{ in meter}
13 // Sample Problem 5 on page no. 66
14 printf ("\n # PROBLEM 2.5 # \n")
15 lambda = (thetaF - Theta0)*(D*c)/(Dm*L)
16 Beta1 = 2*lambda/sqrt(%pi)
17 Alpha = k / (D*c)
18 ts1 = r^2 /((Beta1^2)*Alpha)//In sec
19 ts1_=ts1/3600 // In hour
20 Beta = poly(0, "Beta");
21 p=Beta^2 - lambda*(2/sqrt(%pi))*Beta -lambda/3
22 \text{ Beta2} = \text{roots}(p)
23 printf(" The value of Beta2 is %f, ", Beta2)
24 printf("\n We only take the positive value of Beta2
      25 \text{ r1} = \text{r/3}
26 \text{ ts2} = (r1^2)/((1.75^2)*Alpha) // in sec
27 \text{ ts2}_=\text{ts2}/3600//\text{in Hour}
```

```
28 printf("\n\n Solidification time for slab-shaped casting = %f hr,\n Solidification time for sphere = %f hr", ts1_,ts2_)
```

Scilab code Exa 2.6 Calculation of solidification time and surface temperature

```
1 clc
2 // Given that
3 thetaF = 1540 // Temperature of mould face in degree
      centigrate
  Theta0 = 28 // Initial temperature of mould in
      Degree centigrate
5 L= 272e3 // Latent heat of iron in J/Kg
6 Dm = 7850 // Density of iron in Kg/m^3
7 Cs = 0.67e+3 //Specific heat of iron in J/Kg-K
8 C = 0.376e3 //Specific heat of copper in J/Kg-K
9 Ks = 83 // Conductivity of iron in W/m-K
10 K = 398 // Conductivity of copper in W/m-K
11 D= 8960 // Density of copper in Kg/m^3
12 h = .1 // Height in m
13 // Sample Problem 6 on page no. 73
14 printf("\n # PROBLEM 2.6 # \n")
15 zeta1=0.98//By solving eqauation - zeta*exp(zeta^2)*
      \operatorname{erf}(\operatorname{zeta}) = ((\operatorname{thetaF-thetaO}) * \operatorname{Cs}) / (\operatorname{sqrt}(\operatorname{pi}) * \operatorname{L}), \operatorname{zeta}
       = 0.98
16 AlphaS = Ks /(Dm*Cs)
17 ts1 = h^2 / (16*(zeta1^2) * AlphaS) / In sec
18 ts1_=ts1/3600 // In hour
19 Phi = sqrt((Ks*Dm*Cs)/(K*D*C))
20 zeta2=0.815//By solving eqauation - zeta*exp(zeta^2)
      *(erf(zeta)+Phi)=((thetaF-thetaO)*Cs)/(sqrt(pi)*L
      ), zeta = 0.815
```

```
ts2 = h^2 / (16*(zeta2^2) * AlphaS)//In sec
ts2_=ts2/3600 // In hour
thetaS= (thetaF-(L*(sqrt(%pi))*zeta2*(exp(zeta2^2))*
    erf(zeta2))/Cs)
printf("\n Solidification time for slab-shaped
    casting when the casting is done in a water
    cooled copper mould = %f hr,\n Solidification
    time for slab-shaped casting when the casting is
    done in a very thick copper mould = %f hr,\n The
    surface temperature of the mould = %f C", ts1_,
    ts2_,thetaS)
```

Scilab code Exa 2.7 Calculation of solidification time and surface temperature

```
1 clc
2 // Given that
3 thetaF= 1540 // Temperature of mould face in degree
      centigrade
4 theta0 = 28 // Initial temperature of mould in
     Degree centigrade
5 L= 272e3 // Latent heat of iron in J/Kg
6 Dm = 7850 // Density of iron in Kg/m^3
7 Cs = 0.67e+3 //Specific heat of iron in J/Kg-K
8 C = 0.376e3 //Specific heat of copper in J/Kg-K
9 Ks = 83 // Conductivity of iron in W/m-K
10 K = 398 // Conductivity of copper in W/m-K
11 D= 8960 // Density of copper in Kg/m<sup>3</sup>
12 h = .1 // Height in m
13 hF = 1420 // Total heat transfer coefficient across
     the casting-mould interface in W/m<sup>2</sup>- C
14 // Sample Problem 7 on page no. 75
15 printf ("\n # PROBLEM 2.7 # \n")
```

```
16 AlphaS = K / (D*C)
17 thetaS = 982 //In C as in example 2.6
18 h1= (1+(sqrt((Ks*Dm*Cs)/(K*D*C))))*hF
19 a = 1/2 + (sqrt((1/4) + Cs*(thetaF - thetaS)/(3*L)))
20 \text{ delta=h/2}
21 \text{ ts} = (\text{delta} + ((\text{h1} * \text{delta}^2) / (2*Ks))) / ((\text{h1} * (\text{thetaF} - \text{thetaF}))) / ((\text{h1} * (\text{thetaF}))) / ((\text{h1} * (\text{thetaF})))
                             thetaS))/(Dm*L*a)) // in sec
22 \text{ ts}_{-} = \text{ts}/3600 // \text{in hours}
23 h2 = (1 + (sqrt((K*D*C)/(Ks*Dm*Cs))))*hF
24 gama= ((h2^2)/(K^2))*AlphaS*ts
25 thetaS_ = thetaO + (thetaS-thetaO)*(1-((exp(gama)))
                             *(1-(erf(sqrt(gama))))))
26 printf("\n Solidification time = \%f hr,\n
                              surface temperature of the mould = \%f C", ts_,
                             thetaS_)
27 // The value of the surface temperature of the mould
                                 in the book is given as 658.1 C, Which is
                             wrong.
```

Scilab code Exa 2.8 Calculation of mould length and cooling water requirement

```
1 clc
2 // Given that
3 A= 60*7.5 // Cross sectional area in cm^2
4 v=0.05 // Withdrawal rate in m/sec
5 t = 0.0125 // Thickness in m
6 thetaF= 1500 // Temperature of mould face in degree centigrate
7 thetaP = 1550 //
8 thetaO = 20 // Initial temperature of mould in Degree centigrate
9 L= 268e3 // Latent heat of molten metal in J/Kg
```

```
10 Dm = 7680 // Density of molten metal in Kg/m<sup>3</sup>
11 Cs = 0.67e+3 //Specific heat of molten metal in J/Kg
     -K
12 Cm = 0.755e3 //Specific heat of mould in J/Kg-K
13 Ks = 76 // Conductivity of molten metal in W/m-K
14 hF = 1420 // Heat transfer coefficient at the
      casting-mould interface in W/m<sup>2</sup>- C
15 Dtheta = 10 // Maximum temperature of cooling water
      in
            \mathbf{C}
16 // Sample Problem 8 on page no. 77
17 printf("\n # PROBLEM 2.8 # \n")
18 L_{=} = L + Cm * (thetaP - thetaF)
19 x=L_ / (Cs*(thetaF-thetaO))
20 \text{ y= hF*t/Ks}
21 printf(" L_{-}/(Cs(thetaF-thetaO))=\%f, n hF*t/Ks=\%f", x,
22 z=0.11 // Where z=hF^2 * lm / (v*Ks*Dm*Cs)
23 lm = (z*v*Ks*Dm*Cs)/(hF^2)
24 Z=0.28 // Where Z=Q/(lm*(thetaF-thetaO)*sqrt(lm*v*Dm)
      *Cs*Ks)
25 Q = Z*lm*(thetaF-thetaO)*sqrt(lm*v*Dm*Cs*Ks)
26 m = Q / (4.2e3*Dtheta)
27 printf("\n The mould length = \%f meter,\n The
      cooling water requirement = \%f Kg/sec", lm,m)
28 // Answer for The cooling water requirement in the
      book is given as 5.05 Kg/sec, Which is wrong.
```

Scilab code Exa 2.9 Calculation of riser volume

```
1 clc
2 // Given that
3 a = 15 // Side of the aluminium cube in cm
4 Sh = 0.065 // Volume shrinkage of aluminium during
```

```
solidification
5 // Sample Problem 9 on page no. 81
6 printf("\n # PROBLEM 2.9 # \n")
7 \text{ Vc} = a^3
8 \text{ Vr} = 3*\text{Sh}*\text{Vc}
9 h = ((4*Vr)/\%pi)^(1/3)
10 Rr = 6/h // Where Rr= (A/V) r
11 Rc = 6/a // Where Rc = (A/V)c
12 printf("(A/V)r=%f, (A/V)c=%f\n Hence Rr is greater
      than Rc", Rr, Rc)
13 \text{ dmin} = 6/Rc
14 \ Vr_ = (\%pi/4)*dmin^3
15 printf("\n With minimum value of d Vr=\%d cm^3 .\n
      This valume is much more than the minimum Vr
      necessary. \nLet us now consider the top riser
      when the optimum cylindrical shape is obtained
      with h=d/2 \nand again (A/V)r = 6/d. However,
      with a large top riser, \n the cube loses its top
      surface for the purpose of heat dissipation.", Vr_
      )
16 \text{ Rc}_{-} = 5/a
17 dmin_=6/Rc_
18 printf("\n d should be greater than or equal to %d
      cm", dmin_)
19 Vr_{-} = (\%pi/4)*dmin_^2 *floor(h)
20 printf("\n The riser volume with minimum diameter is
       \%d cm<sup>3</sup>", Vr<sub>_</sub>)
```

Chapter 3

FORMING PROCESSES

Scilab code Exa 3.1 Calculation of strip thickness and average shear yield stress and angle subtended by deformation zone and location of neutral point

```
1 clc
2 // Given that
3 A = 150*6 // Cross-section of strips in mm<sup>2</sup>
4 ti = 6 // Thickness in mm
5 \text{ pA} = 0.20 // \text{Reduction in area}
6 d = 400 // Diameter of steel rolls in mm
7 Ys = 0.35// Shear Yield stress of the material
      before rolling in KN/mm<sup>2</sup>
8 \text{ Ys}_{-} = 0.4// \text{ Shear Yield stress of the material after}
       rolling in KN/mm<sup>2</sup>
9 mu = 0.1 // Cofficient of friction
10 // Sample Problem 1 on page no. 112
11 printf("\n # PROBLEM 3.1 # \n")
12 tf =0.8*ti
13 Ys_a = (Ys + Ys_)/2
14 \text{ r=d/2}
15 thetaI = sqrt((ti-tf)/r)
16 lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf))
17 \quad lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI)
18 thetaN = (sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r)))
```

```
)
19 printf("\n The final srip thickness is %f mm, \n The avg shear yield stress during the process is %f KN/mm^2, \n The angle subtended by the deformation zone at the roll centre is %f rad, \n The location of neutral point is %f rad.",tf, Ys_a,thetaI,thetaN)
```

Scilab code Exa 3.2 Calculation of roll separating force and power required in the rolling process

```
1 clc
2 // Given that
3 A = 150*6 // Cross-section of strips in mm^2
4 w = 150 // Width of the strip in mm
5 ti = 6 // Thickness in mm
6 pA = 0.20 // Reduction in area
7 d = 400 // Diameter of steel rolls in mm
8 Ys = 0.35// Shear Yield stress of the material
      before rolling in KN/mm<sup>2</sup>
9 Ys_{-} = 0.4// Shear Yield stress of the material after
        rolling in KN/mm<sup>2</sup>
10 mu = 0.1 // Cofficient of friction
11 v = 30 // Speed of rolling in m/min
12 // Sample Problem 2 on page no. 113
13 printf("\n # PROBLEM 3.2 # \n")
14 tf =0.8*ti
15 \text{ Ys_a} = (\text{Ys} + \text{Ys}_{-})/2
16 \text{ r=d/2}
17 thetaI = sqrt((ti-tf)/r)
18 lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf))
19 lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI)
20 thetaN = (\operatorname{sqrt}(\operatorname{tf/r}))*(\operatorname{tan}((\operatorname{lambdaN/2})*(\operatorname{sqrt}(\operatorname{tf/r})))
```

```
)
21 Dtheta_a = thetaN/4
22 Dtheta_b = (thetaI - thetaN)/8
23 printf ("The values of P_after are n")
24 i = 0
25 \text{ for } i = 0:4
26
       theta = i*Dtheta_a
27
       y = (1/2)* (tf+r*theta^2)
       lambda = 2*sqrt(r/tf)*atand(theta*(%pi/180) *
28
          sqrt(r/tf))
       p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lambda))
29
       printf("\%f \n",p_a)
30
31 end
32 	ext{ I1} = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830)
      // By Simpson's rule
33 printf("The values of P_before are\n")
34 \text{ for } i = 0:8
35
       theta1 = i*Dtheta_b + thetaN
       y = (1/2)* (tf+r*theta1^2)
36
37
       lambda = 2*sqrt(r/tf)*atand(theta1*(%pi/180) *
          sqrt(r/tf))
       p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lambda)))
38
       printf("\%f \n",p_b)
39
40 \, \text{end}
41 	ext{ I2} = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759)
       + 2*(.855+.804+.772))//By Simpson's rule
42 F = r*(I1 + I2)
43 \quad F_{-} = F*w
44 T = (r^2)*mu*(I2-I1)
45 \quad T_{-} = T * w
46 W = v*(1000/60)/r
47 P = 2*T_*W
48 printf("\n The roll separating force = %d kN,\n The
      power required in the rolling process = \%f \text{ kW},
      ceil(F_),P/1000)
49 // Answer in the book for the power required in the
      rolling process is given as 75.6 kW
```

Scilab code Exa 3.3 Calculation of mill power

```
1 clc
2 // Given that
3 A = 150*6 // Cross-section of strips in mm<sup>2</sup>
4 w = 150 // Width of the strip in mm
5 ti = 6 // Thickness in mm
6 pA = 0.20 // Reduction in area
7 d = 400 // Diameter of steel rolls in mm
8 Ys = 0.35// Shear Yield stress of the material
      before rolling in KN/mm<sup>2</sup>
  Ys_{-} = 0.4// Shear Yield stress of the material after
       rolling in KN/mm<sup>2</sup>
10 mu = 0.1 // Cofficient of friction
11 mu_ = 0.005 // Cofficient of friction in bearing
12 D = 150 // The diameter of bearing in mm
13 v = 30 // Speed of rolling in m/min
14 // Sample Problem 3 on page no. 115
15 printf ("\n # PROBLEM 3.3 # \n")
16 tf =0.8*ti
17 \text{ Ys_a} = (\text{Ys} + \text{Ys}_{-})/2
18 r = d/2
19 thetaI = sqrt((ti-tf)/r)
20 lambdaI=2*sqrt(r/tf)*atan(thetaI *sqrt(r/tf))
21 \quad lambdaN = (1/2)*((1/mu)*(log(tf/ti)) + lambdaI)
           =(sqrt(tf/r))*(tan((lambdaN/2)*(sqrt(tf/r)))
22 thetaN
      )
23 Dtheta_a = thetaN/4
24 Dtheta_b = (thetaI - thetaN)/8
25 i = 0
26 \text{ for } i = 0:4
27
       theta = i*Dtheta_a
```

```
28
        y = (1/2)* (tf+r*theta^2)
29
        lambda = 2*sqrt(r/tf)*atand(theta*(%pi/180) *
           sqrt(r/tf))
        p_a = 2*Ys_a*(2*y/tf)*(exp(mu*lambda))
30
31 end
32 	ext{ I1} = (Dtheta_a/3) *(0.75+.925+4*(.788+.876)+2*.830)
33 \text{ for } i = 0:8
        theta1 = i*Dtheta_b + thetaN
34
35
        y = (1/2)* (tf+r*theta1^2)
        lambda = 2*sqrt(r/tf)*atand(theta1*(%pi/180) *
36
           sqrt(r/tf))
        p_b = 2*Ys_a*(2*y/ti)*(exp(mu*(lambdaI-lambda)))
37
38 end
39 	ext{ I2} = (Dtheta_b/3)*(0.925+.75+4*(.887+.828+.786+.759)
       + 2*(.855+.804+.772))
40 F = r*(I1 + I2)
41 \quad F_{-} = F * w
42 T = (r^2)*mu*(I2-I1)
43 \quad T_{-} = T * w
44 W = v*(1000/60)/r
45 P_{-} = 2*T_{-}*W
46 \text{ Pl} = \text{mu}_*\text{F}_*\text{D}*\text{W}
47 P = P1+P_{-}
48 printf("\n The mill power = \%f kW", P/1000)
49 // Answer in the book is given as 79.18 kW
```

Scilab code Exa 3.4 Calculation of maximum forging force

```
5 h = 6 // \text{ Height of die in mm}
6 L = 150 // Length of the strip in mm
7 V1 = 24*24*150 // Volume of the strip in mm<sup>3</sup>
8 V2 = 6*96*150 // Volume of the die in mm<sup>3</sup>
9 w= 96 // Weidth of the die in mm
10 // Sample Problem 4 on page no. 118
11 printf("\n # PROBLEM 3.4 # \n")
12 K = Y/sqrt(3)
13 x_{-} = (h/(2*mu))*(log(1/(2*mu)))
14 \ 1 = w/2
15 funcprot(0)
16 function p1 = f(x), p1 = (2*K)*exp((2*mu/h)*x),
17 endfunction
18 funcprot(0)
19 I1 = intg(0,x_{-},f)
20 function p2 = f(y), p2=(2*K)*((1/2*mu)*(log(1/(2*mu))*)
      )) + (y/h)),
21 endfunction
22 \quad I2 = intg(x_{-},1,f)
23 F = 2*(I1+I2)
24 	ext{ F}_{-} = 	ext{F} * 	ext{L}
25 printf("\n The maximum forging force = \%e N", F_)
26 // Answer in the book is given as 0.54*10^6 N
```

Scilab code Exa 3.5 Calculation of maximum forging force

```
1 clc
2 // Given that
3 mu = 0.08// Cofficient of friction between the job
          and the dies
4 Y = 7 // Avg yield stress of the lead in N/mm<sup>2</sup>
5 h = 6 // Height of die in mm
6 L = 150 // Length of the strip in mm
```

```
7 V1 = 24*24*150 // Volume of the strip in mm^3
8 V2 = 6*96*150 // Volume of the die in mm^3
9 w= 96 // Weidth of the die in mm
10 // Sample Problem 5 on page no. 119
11 printf("\n # PROBLEM 3.5 # \n")
12 K = Y/sqrt(3)
13 x_ = (h/(2*mu))*(log(1/(2*mu)))
14 1 = w/2
15 funcprot(0)
16 function p1 = f(x), p1 = (2*K)*exp((2*mu/h)*x),
17 endfunction
18 I = intg(0,1,f)
19 F = 2*(I)
20 F_ = F*L
21 printf("\n The maximum forging force = %e N",F_)
```

Scilab code Exa 3.6 Calculation of maximum forging force

```
1 clc
2 // Given that
3 r = 150 // Radius of the circular disc of lead in mm
4 Ti = 50 // Initial thickness of the disc in mm
5 Tf = 25 // Reduced thickness of the disc in mm
6 mu = 0.25// Cofficient of friction between the job and the dies
7 K = 4 // Avg shear yield stress of the lead in N/mm
2
8 // Sample Problem 6 on page no. 122
9 printf("\n # PROBLEM 3.6 # \n")
10 R = r*sqrt(2)
11 rs = (R - ((Tf/(2*mu)) * log(1/(mu*sqrt(3)))))
12 funcprot(0)
13 function p1 = f(x), p1 = (((sqrt(3))*K)*exp((2*mu/Tf)))
```

```
)*(R-x)))*x,

14 endfunction
15 I = intg(rs,R,f)
16 funcprot(0)
17 function p2 = f(y), p2 = ((2*K/Tf)*(R-y) + ((K/mu)
          *(1+log(mu*sqrt(3)))))*y,

18 endfunction
19 I_ = intg(0,rs,f)
20 F = 2*%pi*(I+I_)
21 printf("\n The maximum forging force = %e N",F)
```

Scilab code Exa 3.7 Calculation of drawing power and maximum passible reduction in die

```
1 clc
2 // Given that
3 Di = 12.7 // Intial diameter in mm
4 Df = 10.2 // Final diameter in mm
5 v = 90 // Drawn speed in m/min
6 alpha=6 // Half angle of dia in degree
7 mu = 0.1// Cofficient of friction between the job
     and the dies
8 Y = 207 // Tensile yield stress of the steel
      specimen in N/mm<sup>2</sup>
9 Y_ = 414 // Tensile yield stress of the similar
      specimen at strain 0.5 in N/mm<sup>2</sup>
10 e = 0.5 // Strain
11 // Sample Problem 7 on page no. 126
12 printf("\n # PROBLEM 3.7 # \n")
13 e_=2* log(Di/Df)
14 \ Y_e = Y + (Y_ - Y) * e_/e
15 \quad Y_{--} = (Y+Y_e)/2
16 phi = 1 + (mu/tand(alpha))
```

Scilab code Exa 3.8 Calculation of drawing force and minimum passible radius of the cup which can drawn

```
1 clc
2 // Given that
3 Ri = 30 // Inside radius of cup in mm
4 t = 3 // Thickness in mm
5 Rb = 40 // Radius of the blank in mm
6 \text{ K} = 210 \text{ // Shear yield stress of the material in N/}
     mm^2
7 Y = 600 // Maximum allowable stress in N/mm<sup>2</sup>
8 \text{ Beta} = 0.05
9 mu = 0.1// Cofficient of friction between the job
      and the dies
10 // Sample Problem 8 on page no. 130
11 printf("\n # PROBLEM 3.8 # \n")
12 Fh = Beta*\pipi*(Rb^2)*K
13 Y_r = (mu*Fh/(%pi*Rb*t))+(2*K*log(Rb/Ri))
14 \quad Y_z = Y_r * exp(mu * %pi/2)
15 F = 2*\%pi*Ri*t*Y_z
16 Y_r_ = Y/exp(mu*\%pi/2)
17 Rp = (Rb/exp((Y_r_/(2*K)) - ((mu*Fh)/(2*%pi*K*Rb*t))
      ))-t
18 printf("\n Drawing force = %d N, \n Minimum passible
       radius of the cup which can drawn from the given
```

```
blank without causing a fracture = \% f mm",F,Rp) 19 // Answer in the book given as 62680~N
```

Scilab code Exa 3.9 Calculation of maximum bending force and required punch angle

```
1 clc
2 // Given that
3 L_{-} = 20 // Length of the mild steel product in mm
4 h = 50 // Height of the mild steel product in mm
5 L = 50 // Horizontal length of the mild steel
      product in mm
6 t = 5 // Thickness in mm
7 1=25 // Length of the bend in mm
8 E = 207 // Modulus of elasticity in kN/mm^2
9 n = 517 // Strain hardening rate in N/mm<sup>2</sup>
10 Y = 345 // Yield stress in N/mm^2
11 mu = 0.1// Cofficient of friction
12 e = 0.2 // Fracture strain
13 theta = 20 // Bend angle in degree
14 // Sample Problem 9 on page no. 135
15 printf("\n # PROBLEM 3.9 # \n")
16 Rp = ((1 /((exp(e) - 1))) - 0.82)*t/1.82
17 \quad Y_1 = Y + n * e
18 Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1))))
19 M = ((0.55*t)^2)*((Y/6)+(Y_1/3)) + ((0.45*t)^2)*((Y_1/3))
      /6) + (Y_2/3)
20 Fmax = (M/1)*(1+(cosd((atand(mu))+mu*sind(atand(mu)))
      )))
21 \text{ Fmax} = L_*\text{Fmax}
22 alpha = 90 /((12*(Rp+0.45*t)*M/(E*(10^3)*(t^3)))+1)
23 Ls = 2*(((Rp+0.45*t)*\%pi/4) + 50-(Rp+t))
24 printf("\n Maximum bending force = %d N, \n The
```

```
required puch angle = \% f,\n The stock length = \% f mm",Fmax_,alpha,Ls)
25 // Answer in the book for maximum bending force is given as 4144 N
```

Scilab code Exa 3.10 Calculation of minimum value of die length and minimum required capacity of machine

```
1 clc
  2 // Given that
  3 L_{-} = 20 // Length of the mild steel product in mm
  4 h = 50 // Height of the mild steel product in mm
  5 L = 50 // Horizontal length of the mild steel
                   product in mm
  6 t = 5 // Thickness in mm
  7 1=25 // Length of the bend in mm
  8 E = 207 // Modulus of elasticity in kN/mm^2
  9 n = 517 // Strain hardening rate in N/mm^2
10 Y = 345 // Yield stress in N/mm^2
11 mu = 0.1// Cofficient of friction
12 e = 0.2 // Fracture strain
13 theta = 20 // Bend angle in degree
14 F = 3000 // Maximum available force in N
15 // Sample Problem 10 on page no. 136
16 printf("\n # PROBLEM 3.10 # \n")
17 Rp = ((1 /((exp(e) - 1))) - 0.82)*t/1.82
18 \quad Y_1 = Y + n * e
19 Y_2 = Y + n*(log(1+(1/(2.22*(Rp/t)+1))))
20 M = ((0.55*t)^2)*((Y/6)+(Y_1/3)) + ((0.45*t)^2)*((Y/6)+(Y_1/3)) + ((Y/6)*(Y/6)+(Y_1/3)) + ((Y/6)*(Y/6)*((Y/6)+(Y_1/3))) + ((Y/6)*(Y/6)*((Y/6)*(Y/6)+(Y_1/3))) + ((Y/6)*(Y/6)*((Y/6)*(Y/6)+(Y_1/6)*(Y/6)*((Y/6)*(Y/6)*(Y/6)*((Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*((Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y/6)*(Y
                   /6) + (Y_2/3)
21 Fmax = (M/1)*(1+(cosd((atand(mu))+mu*sind(atand(mu)))
                   )))
22 \text{ Fmax} = L_*\text{Fmax}
```

```
23 lmin = Fmax_*1/F
24 Ls = 2*(((Rp+0.45*t)*%pi/4) + 50-(Rp+t))
25 lmax = Ls / 2
26 Fmax_min = Fmax_*1/lmax
27 printf("\n Minimum value of die length = %f mm, \n Minimum required capacity of the machine = %d N", lmin,ceil(Fmax_min))
28 // Answer in the book is give as 2323 N for Minimum required capacity of the machine
```

Scilab code Exa 3.11 Calculation of maximum force required for extruding the billet and percent of the total input lost

```
1 clc
2 // Given that
3 d = 50 // Diameter of the billet in mm
4 L =75 // Length of the billet in mm
5 D = 10 // Final diameter of billet in mm
6 Y = 170 // Avg tensile yield stress for aluminium in
      N/mm^2
7 mu = 0.15 // Cofficient of the friction
8 // Sample Problem 11 on page no. 141
9 printf("\n # PROBLEM 3.11 # \n")
10 l = L - ((d-D)/2)*cotd(45)
11 \text{ phi} = 1 + \text{mu}
12 Y_x = Y*(phi/(phi-1))*(((d/D)^(2*(phi-1)))-1)
13 F = (\%pi/4)*(d^2)*Y_x + (\%pi/sqrt(3))*(d*1*Y)
14 Pf = \pi^* Y * (d^2) * ((phi/(2*mu)) * (((d/D)^(2*mu)) - 1) - 1)
      log(d/D)) + (%pi/sqrt(3))*Y*d*1
15 \; \text{Loss_f} = (Pf/F)*100
16 \ Y_X = Y*4.31*log(d/D)
17 F_{-} = (\%pi/4)*(d^2)*Y_X + (\%pi/sqrt(3))*(d*1*Y)
18 Pf_1 = (\%pi/sqrt(3))*Y*(d^2)*(log(d/D))
```

```
19 Pf_2 = (%pi/sqrt(3))*(d*1*Y)
20 Pf_ = Pf_1+Pf_2
21 Loss_f_ = (Pf_/F_)*100
22 printf("\n Maximum force required for extruding the cylindrical aluminium billet = %d N, \n Percent of the total power input will be lost in friction at the start of the operation = %f percent.",F, Loss_f_)
23 // Answer in the book given as 2436444 N for max force required for extruding the cylindrical aluminium billet
```

Scilab code Exa 3.12 Calculation of proper clearance between die and punch and maximum punching force and energy required to punch and die

```
1 clc
2 // Given that
3 d = 50 // Diameter of the steel sheet in mm
4 t = 3 // Thickness of the steel sheet in mm
5 e = 1.75 // True fracture strain
6 Y = 2.1e3 // True fracture stress for the material
     in N/mm^2
7 // Sample Problem 12 on page no. 149
8 printf("\n # PROBLEM 3.12 # \n")
9 C_0 = (t/(1.36*exp(e)))*((2*exp(e))-1)/((2.3*exp(e)))
10 p = t*(1/2.45)*((1.9*exp(e))-1)/((2.56*exp(e))-1)
11 F = Y*C_0*\%pi*d
12 W = (1/2)*(F)*(p)*(10^-3)
13 printf("\n The proper clearance between die and
     punch = %f mm, \n Maximum punching force = %f N,
     \n Energy required to punch the hole = \%f J", C_0,
     F/1000, W)
```

 $14\ //\ Answer in the book given as <math display="inline">45.74\ J$ for energy required to punch the hole

Chapter 4

FORMING PROCESSES

Scilab code Exa 4.1 Calculation of shear plane angle and shear strain

```
1 clc
2 // Given that
3 alpha = 10 // Rake angle in Degree
4 t = 0.4 // Chip thickness in mm
5 T = 0.15 // Uncut chip thickness in mm
6 // Sample Problem 1 on page no. 187
7 printf("\n # PROBLEM 4.1 # \n")
8 r = T/t
9 phi = atand((r*cosd(alpha))/(1-r*sind(alpha)))
10 gama = cotd(phi) + tand(phi-alpha)
11 printf("\n Shear plane angle = %f , \n Magnitude of the shear strain = %f",phi,gama)
```

Scilab code Exa 4.2 Calculation of coefficient of friction and ultimate shear stress

```
1 clc
```

```
2 // Given that
3 t1 = 0.25 // Undercut thickness in mm
4 t2 = 0.75 // Chip thickness in mm
5 \text{ w} = 2.5 \text{ // Width in mm}
6 alpha = 0 // Rake angle in Degree
7 Fc = 950 // Cutting force in N
8 Ft = 475 // Thrust force in N
9 // Sample Problem 2 on page no. 192
10 printf("\n # PROBLEM 4.2 # \n")
11 r = t1/t2
12 mu = ((Fc*sind(alpha)) + (Ft*cosd(alpha)))/((Fc*cosd
      (alpha))-(Ft*sind(alpha)))
13 phi = atand((r*cosd(alpha))/(1-r*sind(alpha)))
14 As = t1*w/sind(phi)
15 Fs = Fc*cosd(phi) - Ft*sind(phi)
16 \text{ T_s} = \text{Fs/As}
17 printf("\n Coefficient of the friction between tool
      and the chip = \%f, \n The ultimate shear stress
      of the material = \%f N/mm<sup>2</sup>, mu, T_s)
```

Scilab code Exa 4.3 Calculation of shear angle and cutting and trust force

```
1 clc
2 // Given that
3 alpha = 10 // Rake angle of tool in Degree
4 v = 200 // Cutting speed in m/min
5 t1 = 0.2 // Uncut thickness in mm
6 w = 2 // Width of cut in mm
7 mu = 0.5 // Avg value of the cofficient of the friction
8 T_S = 400 // Shear stress of the work material in N/mm^2
```

Scilab code Exa 4.4 Calculation of shear angle and cutting force and thrust force

```
1 clc
2 // Given that
3 alpha = 10 // Rake angle of tool in Degree
4 v = 200 // Cutting speed in m/min
5 t1 = 0.2 // Uncut thickness in mm
6 \text{ w} = 2 \text{ // Width of cut in mm}
7 mu = 0.5 // Avg value of the cofficient of the
      friction
8 T_S = 400 // Shear stress of the work material in N/
9 Cm = 70 // Machining constant in Degree
10 // Sample Problem 4 on page no. 194
11 printf("\n # PROBLEM 4.4 # \n")
12 lambda = atand(mu)
13 phi = (Cm + alpha - lambda)/2
14 Fs = (w*t1*T_S)/(sind(phi))
15 R = Fs/(cosd(phi+lambda-alpha))
```

```
16 Fc = R*(cosd(lambda-alpha))
17 Ft = R*(sind(lambda-alpha))
18 // Using Lee and Shaffer relation
19 phi_ = 45-lambda+alpha
20 \text{ Fs}_{-} = (w*t1*T_S)/(sind(phi_{-}))
21 R_{-} = Fs_{-}/(cosd(phi_{-}+lambda-alpha))
22 \text{ Fc}_{-} = R_{+}(\cos d(\text{lambda-alpha}))
23 Ft_ = R_*(sind(lambda-alpha))
24 printf("\n Shear angle = %f , \n Cutting force = %f
       N, \n Thrust force = \%f N \n Using Lee and
      Shaffer relation - \n Shear angle = \%f , \n
      Cutting force = \%f N, \n Thrust force = \%f N,",
      phi,Fc,Ft,phi_,Fc_,Ft_)
25 // Answer in the book for cutting force is given as
      486.9 N and for thrust force is given as 144.9 N
      , When using Lee and Shaffer relation answer in
      the book for cutting force is given as 481.9 N
      and for trust force is given as 160.6\ \mathrm{N}
```

Scilab code Exa 4.5 Calculation of cutting force

```
1 clc
2 // Given that
3 t1 = 0.25 // Uncut thickness in mm
4 w = 2.5 // Width of cut in mm
5 U_0 = 1.4 // In J/mm^3
6 alpha = 0 // Rake angle in degree
7 mu = 0.5 // Cofficient of the friction
8 T_s = 400 // Shear stress in N/mm^2
9 // Sample Problem 5 on page no. 196
10 printf("\n # PROBLEM 4.5 # \n")
11 lambda = atand(mu)
12 Fc = 1000*(t1*w*U_0)*((t1)^(-.4))
```

```
13 phi = 45 + alpha - atand(mu)
14 Fc_ = (w*t1*T_s*cosd(lambda-alpha))/((sind(phi)) *
        cosd(phi+lambda-alpha))
15 printf(" \n The order of magnitude of cutting force
        = %d N,\n Using Lee and Shaffer relation - \n The
        order of magnitude of cutting force = %d N.",Fc,
        Fc_)
16 // Answer in the book for cutting force is given as
        1517 N
```

Scilab code Exa 4.6 Calculation of maximum temperature along the rake face

```
1 clc
2 // Given that
3 v = 2 // Cutting speed in m/sec
4 D = 7200 // Density of mild steel in kg /m^3
5 k = 43.6 // Thermal conductivity in W/m— c
6 c = 502 // Specific heat of the material in <math>J/kg-c
7 t1 = 0.25 // Uncut thickness in mm
8 \text{ w} = 2 \text{ // Width of cut in mm}
9 theta_0 = 40 // Initial temp of the workpiece in
      Degree
10 alpha = 0 // Rake angle in degree
11 mu = 0.5 // Cofficient of the friction
12 T_s = 400e6 // Shear stress in N/m^2
13 // Sample Problem 6 on page no. 199
14 printf("\n # PROBLEM 4.6 # \n")
15 lambda = atand(mu)
16 phi = 45 + alpha - lambda
17 Fs = (w*t1*T_s)*(10^-6)/(sind(phi))
18 R = Fs / (cosd(phi+lambda-alpha))
19 Fc = R *(cosd(lambda-alpha))
```

```
20  r = sind(phi)/(cosd(phi-alpha))
21  Ft= Fc *(tand(lambda - alpha))
22  F = Fc *(sind(alpha))+Ft*(cosd(alpha))
23  Ws = F*r*v
24  Wp = Fc*v-F*r*v
25  zeta = D*c*v*t1*(10^-3)/k
26  zeta_ = zeta*tand(phi)
27  nu = 0.15 *(log(27.5/(zeta_)))
28  theta_P = (1-nu)*Wp/(D*c*v*t1*w*(10^-6))
29  theta_S = 1.13 *(sqrt(1/(D*c*v*t1*(10^-3)*k*(1+tand(phi-alpha)))))*(Ws/w)*(10^3)
30  theta = theta_0+theta_S+ theta_P
31  printf(" \n Maximum temperature along the rake face of the tool = %d C.",theta)
32  // Answer in the book is given as 823 C
```

Scilab code Exa 4.7 Calculation of maximum speed at which cutting is passible

```
1 clc
2 // Given that
3 theta_ = 40 // Ambient temperature in C
4 v = 2 // Cutting speed in m/sec
5 D = 7200 // Density of mild steel in kg /m^3
6 k = 43.6 // Thermal conductivity in W/m- c
7 c = 502 // Specific heat of the material in J/kg- c
8 t1 = 0.25 // Uncut thickness in mm
9 w = 2 // Width of cut in mm
10 alpha = 0 // Rake angle in degree
11 mu = 0.5 // Cofficient of the friction
12 T_s = 400e6 // Shear stress in N/m^2
13 H = 350 // Hardness of SAE 1040 steel in HV(Vicker hardness)
```

```
14 // Sample Problem 7 on page no. 206
15 printf("\n # PROBLEM 4.7 # \n")
16 lambda = atand(mu)
17 phi = 45 + alpha - lambda
18 Fs = (w*t1*T_s)*(10^-6)/(sind(phi))
19 R = Fs / (cosd(phi+lambda-alpha))
20 Fc = R *(cosd(lambda-alpha))
21 r = sind(phi)/(cosd(phi-alpha))
22 Ft= Fc *(tand(lambda - alpha))
23 F = Fc *(sind(alpha))+Ft*(cosd(alpha))
24 Ws = F*r*v
25 \text{ Wp = } Fc*v-F*r*v
26 \text{ zeta} = D*c*v*t1*(10^-3)/k
27 zeta_ = zeta*tand(phi)
28 nu = 0.15 *(log(27.5/(zeta_)))
29 Theta_0v = ((1-nu)*Wp + Ws)/(D*c*v*t1*w*(10^-6))
30 \text{ H}_{-} = 1.5 * (\text{H})
31 theta_lim = 700*((1-(H_{2}/850))^{(1/3.1)})
32 \text{ v_lim} = (\text{theta_lim}/309)^(1/0.5)
33 printf(" \n Maximum speed at which cutting is
      passible = \%f m/sec.",v_lim)
```

Scilab code Exa 4.8 Calculation of percentage increase in tool life

```
1 clc
2 // Given that
3 alpha = 0 // Rake angle in degree
4 gama = 3 // Clearance angle in Degree
5 w = 1 // Maximum length of flank wear allowed in mm
6 gama_ = 7 // Increased clearance angle in Degree
7 // Sample Problem 8 on page no. 212
8 printf("\n # PROBLEM 4.8 # \n")
9 I_per = (((tand(gama_))-(tand(gama)))/tand(gama))
```

```
*100
10 printf(" \n Percentage increase in tool life = %d
percent.", I_per)
```

Scilab code Exa 4.9 Calculation of three components of machining force

```
1 clc
2 // Given that
3 d= 4 // Depth of cut in mm
4 f = 0.25 // Feed in mm/stroke
5 alpha = 10 // Rake angle in degree
6 shi = 30 // Principal cutting edge angle in Degree
7 mu =0.6 // Cofficient of friction between chip and
      tool
  T_s = 340 // Ultimate shear stress of cast iron in N
      /\text{mm}^2
  // Sample Problem 9 on page no.
10 printf("\n # PROBLEM 4.9 # \n")
11 lambda = atand(mu)
12 phi = 45 +alpha-lambda
13 Fc = f*d*T_s*(cosd(lambda-alpha))/((sind(phi))*(cosd
      (phi+lambda-alpha)))
14 Ft = Fc*(sind(lambda-alpha))/(cosd(lambda-alpha))
15 Ff = Ft*(cosd(shi))
16 \text{ Fn} = \text{Ft*}(\text{sind}(\text{shi}))
17 printf(" \n The three components of machining force
      are as follows -\n Thrust force = \%d N,\n Feed
      force component = %d N,\n Normal thrust force
      component = %d N.", Ft, Ff, Fn)
```

Scilab code Exa 4.10 Calculation of average power consumption and specific power consumption

```
1 clc
2 // Given that
3 d= 4 // Depth of cut in mm
4 f = 0.25 // Feed in mm/stroke
5 alpha = 10 // Rake angle in degree
6 shi = 30 // Principal cutting edge angle in Degree
7 mu =0.6 // Cofficient of friction between chip and
  T_s = 340 // Ultimate shear stress of cast iron in N
      /\text{mm}^2
9 N = 60 // Cutting stroke/min
10 L = 200 // Length of the job in mm
11 H = 180 // Hardness of the workpiece in BHN
12 // Sample Problem 10 on page no. 221
13 printf("\n # PROBLEM 4.10 # \n")
14 lambda = atand(mu)
15 phi = 45 +alpha-lambda
16 Fc = f*d*T_s*(cosd(lambda-alpha))/((sind(phi))*(cosd
      (phi+lambda-alpha)))
17 \text{ Fc}_{-} = \text{Fc}*(L/1000)
18 Wav = Fc_*N/60
19 t1 = f*cosd(shi)
20 \text{ U}_0 = 0.81 \text{ // By using table } 4.4 \text{ given in the book,}
      In J/mm^3
21 Uc = U_0*((t1)^(-.4))
22 Q = f*d*L*N/60
23 \text{ Wav} = \text{Uc} * Q
24 printf(" \n Avg power consumption = \%d W,\n Specific
       power consumption when hardness of the workpiece
```

```
is 180 BHN = %d W.", Wav, Wav_) 25 // Answer in the book for Specific power consumption is given as 294 W
```

Scilab code Exa 4.11 Calculation of normal rake angle

```
1 clc
2 // Given that
3 alpha_b = 6 // Back rake angle in Degree
4 alpha_s = 10 // Side rake angle in Degree
5 gama = 7 // Front clearance angle in Degree
6 gama_ = 7 // Side clearance angle in Degree
7 Shi = 10 // End cutting edge angle in Degree
8 shi = 30 // Side cutting edge angle in Degree
9 r= 0.5 // Nose radius in mm
10 // Sample Problem 11 on page no. 224
11 printf("\n # PROBLEM 4.11 # \n")
12 k = tand(alpha_b) * cosd(shi) - tand(alpha_s) * sind
     (shi)
13 printf("\n The value of k=\%f, which is near to 0.
     Hence the case is close to orthogonal one.\n",k)
14 alpha= atand(((tand(alpha_b) * sind(shi) ) + (tand(
     alpha_s) * (cosd(shi))))/ (sqrt(1+((tand(alpha_b)
     *cosd(shi)) - (tand(alpha_s)*sind(shi)))^(2))))
15 printf(" \n Normal rake angle = \%f .",alpha)
```

Scilab code Exa 4.12 Calculation of component of the machining force and feed force component

```
1 clc
2 // Given that
3 \text{ alpha_b} = 6 \text{ // Back rake angle in Degree}
4 alpha_s = 10 // Side rake angle in Degree
5 gama = 5 // Front clearance angle in Degree
6 gama_ = 7 // Side clearance angle in Degree
7 Shi = 10 // End cutting edge angle in Degree
8 shi = 30 // Side cutting edge angle in Degree
9 r= 0.55 // Nose radius in mm
10 d = 2.5 // Depth of cut in mm
11 f = 0.125 // Feed in mm/revolution
12 N = 300 // Rpm of the job
13 T_S = 400 // Ultimate shear stress of the workpiece
      in N/mm^2
14 mu = .6 // Cofficient of the friction between the
      tool and the chip
15 // Sample Problem 12 on page no. 225
16 printf("\n # PROBLEM 4.12 # \n")
17 lambda = atand(mu)
18 alpha= atand(((tand(alpha_b) * sind(shi) ) + (tand(
      alpha_s) * (cosd(shi))))/ (sqrt(1+((tand(alpha_b)
      *cosd(shi)) - (tand(alpha_s)*sind(shi)))^(2))))
19 phi = 45 + alpha - lambda
20 	 t1 = f*cosd(phi)
21 w = d/cosd(phi)
22 Fc = w*t1*T_S*(cosd(lambda-alpha))/((sind(phi))*(
      cosd(phi+lambda-alpha)))
23 Ft = Fc*tand(lambda-alpha)
24 \text{ Ff} = \text{Ft*cosd(shi)}
25 Fr = Ft*sind(shi)
26 printf ("\n Component of the machining force are as
      follows -\n Feed force component = \% d N, \n
     Normal thrust force component = % d N.", ceil(Ff),
      ceil(Fr))
```

Scilab code Exa 4.14 Calculation of drilling torque and thrust force

```
1 clc
2 // Given that
3 D = 20 // Nominal diameter of the drill in mm
4 T_S = 400 // Shear yield stress of work material in
     N/mm^2
5 N = 240 // Rpm
6 f = 0.25 // Feed in mm/revolution
7 mu = 0.6 // Cofficient of friction
8 // Sample Problem 14 on page no. 230
9 printf("\n # PROBLEM 4.14 # \n")
10 Beta = 118/2 // From the table 4.12 given in the
     book
11 shi = 30 // From the table 4.12 given in the book
12 alpha = atand(((2*(D/4)/(D))*tand(shi))/sind(Beta))
13 t1 = (f/2) * sind(Beta)
14 \text{ w} = (D/2)/\text{sind}(Beta)
15 lambda = atand(mu)
16 phi = 45 + alpha - lambda
17 t1 = f/2
18 Fc = w*t1*T_S*(cosd(lambda-alpha))/((sind(phi))*(
      cosd(phi+lambda-alpha)))
19 Ft = w*t1*T_S*(sind(lambda-alpha))/((sind(phi))*(
      cosd(phi+lambda-alpha)))
20 M = .6*Fc*D/1000
21 F = 5*Ft*sind(Beta)
22 printf (" \n The drilling torque = \%f N-m, \n Thrust
      force = \%d N.", M,F)
23 // Answer in the book for drilling torque is given
      as 18.2 N-m, and for thrust force is given as
      1500 N
```

Scilab code Exa 4.15 Calculation of power consumption

```
1 clc
2 // Given that
3 \text{ w} = 20 \text{ // Width of the mild steel block in mm}
4 Z = 20 // No of teeth in milling cutter
5 D = 50 // Diameter of the milling cutter in mm
6 alpha = 10 // Radial rake angle in Degree
7 f = 15 // Feed velocity of the table in mm/min
8 N = 60 // Rpm of the cutter
9 t = 1 // Depth of cut in mm
10 mu = 0.5 // Cofficient of friction
11 T_s = 400 // Shear yield stress in N/mm<sup>2</sup>
12 t_a = 0.0018 // Avg uncut thickness in mm
13 // Sample Problem 15 on page no. 235
14 printf("\n # PROBLEM 4.15 # \n")
15 Beta = asind(2*(t/D))
16 theta = 2*\%pi/Z
17 t1_{max} = (2*f/(N*Z))*sqrt(t/D)
18 lambda = atand(mu)
19 phi = 45+alpha - lambda
20 Fc_max = ((w*t1_max*T_s*cosd(lambda-alpha)))/((sind(
      phi))*(cosd(45)))
21 \text{ T_max} = \text{Fc_max*D/(2*1000)}
22 \text{ M_av} = (1/2)*(\text{Beta*T_max})/\text{theta}
23 \text{ omega} = 2*\%pi*N/60
24 U_0 = 1.4 // From the table 4.4 given in the book
25 \text{ Uc_ms} = \text{U_0*((t_a)^(-0.4))}
26 R = f*t*w/60
27 U = Uc_ms * R
28 printf(" \n Power consumption = \%f W.", U)
```

Scilab code Exa 4.16 Calculation of power required

```
1 clc
2 // Given that
3 \text{ w} = 20 \text{ // Width of the mild steel block in mm}
4 Z = 10 // No of teeth in milling cutter
5 D = 75 // Diameter of the milling cutter in mm
6 alpha = 10 // Radial rake angle in Degree
7 f = 100 // Feed velocity of the table in mm/min
8 N =60 // Rpm of the cutter
9 t = 5 // Depth of cut in mm
10 mu = 0.5 // Cofficient of friction
11 T_s = 400 // Shear yield stress in N/mm<sup>2</sup>
12 t_a = 0.043 // Avg uncut thickness in mm
13 // Sample Problem 16 on page no. 238
14 printf("\n # PROBLEM 4.16 # \n")
15 Beta = asind(2*(t/D))
16 theta = 2*\%pi/Z
17 t1_{max} = (2*f/(N*Z))*sqrt(t/D)
18 lambda = atand(mu)
19 phi = 45+alpha - lambda
20 Fc_max = ((w*t1_max*T_s*cosd(lambda-alpha)))/((sind(
      phi))*(cosd(45)))
21 \text{ T_max} = \text{Fc_max*D/(2*1000)}
22 \text{ M_av} = (1/2)*(Beta*T_max)/theta
23 \text{ omega} = 2*\%pi*N/60
24 U_0 = 1.4 // From the table 4.4 given in the book
25 \text{ Uc_ms} = \text{U_0*((t_a)^(-0.4))}
26 R = f*t*w/60
27 U = Uc_ms * R
28 printf(" \n Power required = \%d W.",U)
29 // Answer in the book for Power required is given as
```

Scilab code Exa 4.17 Calculation of power required

```
1 clc
2 // Given that
3 B = 20 // Width of the cut in mm
4 Z = 10 // No of teeth in milling cutter
5 D = 75 // Diameter of the milling cutter in mm
6 alpha = 10 // Radial rake angle in Degree
7 f = 25 // Feed velocity of the table in mm/min
8 N = 60 // Rpm of the cutter
9 t = 5 // Depth of cut in mm
10 mu = 0.5 // Cofficient of friction
11 T_s = 400 // Shear yield stress in N/mm<sup>2</sup>
12 t_a = 0.043 // Avg uncut thickness in mm
13 // Sample Problem 17 on page no. 240
14 printf("\n # PROBLEM 4.17 # \n")
15 t1_{max} = 0.01
16 lambda = 0.28 // From the table 4.13 Given in the
17 nu = 1400 // From the table 4.13 Given in the book
18 t1_av = t1_max/2
19 P = nu*B*t*f*(10^-4)/(6*((t1_av)^(lambda)))
20 printf(" \n Power required = \%f W.",P)
```

Scilab code Exa 4.18 Calculation of power required

```
1 clc
```

```
2 // Given that
3 \text{ w} = 20 \text{ // Width of the mild steel block in mm}
4 Z = 10 // No of teeth in milling cutter
5 D = 75 // Diameter of the milling cutter in mm
6 alpha = 10 // Radial rake angle in Degree
7 f = 25 // Feed velocity of the table in mm/min
8 N = 60 // Rpm of the cutter
9 t = 5 // Depth of cut in mm
10 mu = 0.5 // Cofficient of friction
11 T_s = 400 // Shear yield stress in N/mm<sup>2</sup>
12 t_a = 0.043 // Avg uncut thickness in mm
13 // Sample Problem 18 on page no. 240
14 printf("\n # PROBLEM 4.18 # \n")
15 R = f*t*w/60
16 Uc = 3.3 // Specific energy in J/mm<sup>3</sup> from the table
       4.14 Given in the book
17 U = Uc * R
18 printf(" \n Power required = \%d W.", ceil(U))
```

Scilab code Exa 4.19 Calculation of peak broaching load

```
1 clc
2 // Given that
3 d = 25 // Diameter of circular hole in mm
4 t = 20 // Thickness of the steel plate in mm
5 D = 27 // Enlarged diameter of hole in mm
6 c = 0.08 // Cut per tooth in mm
7 alpha = 10 // Radial rake angle in Degree
8 mu = 0.5 // Cofficient of friction
9 T_s = 400 // Shear yield stress in N/mm^2
10 // Sample Problem 19 on page no. 241
11 printf("\n # PROBLEM 4.19 # \n")
12 lambda=atand(mu)
```

```
13 phi = 45-lambda+alpha
14 w = %pi*(d+D)/2
15 Fc = w*c*T_s*(cosd(lambda-alpha))/((sind(phi))*(cosd (45)))
16 s = 1.75*sqrt(t)
17 F = 3*Fc
18 printf(" \n Peak broaching load = %d N.", ceil(F))
```

Scilab code Exa 4.20 Calculation of power required

```
1 clc
2 // Given that
3 D = 250 // Diameter of the wheel in mm
4 N = 2000 // Rpm of the wheel
5 f =5 // Plung feed rate in mm/min
6 C = 3 // Surface density of active grain in mm^2-2
7 A = 20*15 // Area of mild steel prismatic bar in mm
8 \text{ rg} = 15 // \text{In } \text{mm}^- - 1
9 // Sample Problem 20 on page no. 246
10 printf("\n # PROBLEM 4.20 # \n")
11 t1 = sqrt(f/(%pi*D*N*C*rg))
12 U_0 = 1.4 // From the table 4.4 given in the book
13 Uc = U_0*((t1)^(-.4))
14 R = A*f/60
15 P = Uc*R
16 Fc_ = 60000*(P)/(%pi*D*A*C*N)
17 printf(" \n Power requirement during plunge grinding
       of the mild steel primatic bar = %d W.", ceil(P))
18 // Answer in the book is given as 94 W
```

Scilab code Exa 4.21 Calculation of grinding force

```
1 clc
2 // Given that
3 \text{ w} = 25 \text{ // Width of mild steel block in mm}
4 d= 0.05 // Depth of cut in mm
5 D = 200 // Diameter of the wheel in mm
6 N = 3000 // Rpm of the wheel
7 f =100 // Feed velocity of table in mm/min
8 C = 3 // No of grits in mm^2-2
9 \text{ rg} = 15 // \text{ In } \text{mm}^- - 1
10 // Sample Problem 21 on page no. 248
11 printf("\n \# PROBLEM 4.21 \# \n")
12 t1_max = sqrt(((6*f)/(%pi*D*N*C*rg))*sqrt(d/D))
13 \ t1_a = t1_max/2
14 U_0 = 1.4 // From the table 4.4 given in the book
15 Uc= U_0*((t1_a)^(-.4))
16 R = w*d*f/60
17 P = Uc*R
18 Fc = 60000*(P)/(%pi*D*N)
19 printf(" \n Grinding force = \%d N", Fc)
```

Scilab code Exa 4.22 Calculation of required depth of cut and feed

```
1 clc
2 // Given that
3 d= 0.05 // Depth of cut in mm
4 f =200 // Feed rate in mm/min
```

```
5 theta = 850 // Surface temperature in C
6 Theta = 700 // Maximum surface temperature of
        workpiece surface required to maintain in C
7 // Sample Problem 22 on page no. 251
8 printf("\n # PROBLEM 4.22 # \n")
9 K = theta * (f^0.2)/(d^0.9)
10 r = Theta/K
11 C = d*f
12 Dm = (r*C^0.2)^(1/1.1)
13 fm = C/Dm
14 printf(" \n Required depth of cut = %f mm,\n Required feed = %d mm/min",Dm,fm)
```

Scilab code Exa 4.24 Calculation of maximum height of unevenness

```
clc
// Given that
shi = 30 // Side cutting edge angle in Degree
lambda = 7 // End cutting edge angle in Degree
fr = 0.7 // Nose radius in mm
f = 0.125 // Feed in mm
// Sample Problem 24 on page no. 260
printf("\n # PROBLEM 4.24 # \n")
H_max = f/(tand(shi)+cotd(lambda))
H_max_ = (f^2)/(8*r)
printf(" \n Maximum height of uneveness in first
tool case = %f mm, \n In second tool case = %f mm"
, H_max, H_max_)
```

Scilab code Exa 4.25 Calculation of maximum height of unevenness

Scilab code Exa 4.26 Calculation of cutting speed

Scilab code Exa 4.27 Calculation of cost

```
1 clc
2 // Given that
3 L = 300 // Length of the bar in mm
4 d=30 // Diameter of the bar in mm
5 f_max = 0.25 // Maximum allowable feed in mm/
      revolution
6 Lc = .25 // Labour and overhead cast in $\frac{1}{2}\text{min}
7 Tc = 2 // Regrinding cast in $
8 t = 1 // Change time for tool in min
9 C_X = 2.50 // Cast of tool of material X per piece
     in $
10 C_Y = 3 // Cast of tool of material Y per piece in
11 n_x = 0.1 // Value of exponent of time in Taylor's
      tool life equation for material X
12 n_y = 0.16 // Value of exponent of time in Taylor's
      tool life equation for material Y
13 C_x = 30 // Value of constant in Taylor's tool life
      equation for material X
14 C_y = 76 // Value of constant in Taylor's tool life
      equation For material Y
15 // Sample Problem 27 on page no. 269
16 printf("\n # PROBLEM 4.27 # \n")
17 x_x = (C_x)^(1/n_x) // Where x = k/(f^(1/n))
18 v_{opt_x} = ((n_x*x_x*Lc)/((1-n_x)*((Lc*t+Tc))))^(n_x)
19 Rmin_x = C_X+Lc*t+(Lc*\%pi*L*d/(1000*f_max*v_opt_x))
     + (Lc*t*(\%pi*L*d/(1000*x_x)))*(v_opt_x^(1/n_y))*(
     v_{opt_x^{-1}}*(f_{max_{-1}})+(Tc*((%pi*L*d/(1000*x_x)))
     *(v_{opt_x^{(1/n_x)}})*(v_{opt_x^{-1}})*(f_{max_{opt_x}^{-1}})
20 x_y = (C_y)^(1/n_y) // Where x = k/(f^(1/n))
```

Scilab code Exa 4.28 Calculation of optimum cutting speed

Chapter 5

JOINING PROCESSES

Scilab code Exa 5.1 Calculation of maximum power of the arc

```
1 clc
2 // Given that
3 A = 20 // Value of A in voltage length
      characteristic equation
4 B = 40 // Value of B in voltage length
      characteristic equation
5 v= 80 // Open circuit voltage in V
6 I = 1000 // Short circuit current in amp
7 // Sample Problem 1 on page no. 285
8 printf("\n # PROBLEM 5.1 # \n")
9 l=poly(0,"l")
10 i = ((v-A)-(B*1))*(I/v)
11 V = (A+B*1)// Given in the question
12 P = V * i
13 k = derivat(P)
14 L=roots(k)
15 Pmax = ((v-A) - (B*L))*(I/v)*(A+B*L)
16 printf("\n Maximum power of the arc = \%d kVA", Pmax
     /1000)
```

Scilab code Exa 5.2 Calculation of rate of heat generated per unit area

```
1 clc
2 // Given that
3 N =25 // No. of bridges per cm^2
4 r = 0.1 // Radius of bridge in mm
5 rho = 2e-5 // Resistivity of the material in ohm-cm
6 v= 5 // Applied voltage in V
7 // Sample Problem 2 on page no. 288
8 printf("\n # PROBLEM 5.2 # \n")
9 Rc = 0.85*rho/(N*%pi*r*0.1)
10 Q = (v^2)/Rc
11 printf("\n Rate of heat generated per unit area = %e W/cm^2",Q)
12 // Answer in the book is given as 1.136e5 W/cm^2
```

Scilab code Exa 5.3 Calculation of maximum passible welding speed

```
10 gama = 60 // Angle in degree
11 // Sample Problem on page no. 292
12 printf("\n # PROBLEM 5.3 # \n")
13 C = T/100
14 Q = C*P*10^3
15 w = t/sind(gama)
16 theta_m = theta_ - theta
17 v_max = (4*alpha/(w*(10^-3)))*((Q/(8*k*theta_m*t *(10^-3)))-0.2)
18 printf("\n Maximum passible welding speed = %f m/sec ",v_max)
19 // Answer in the book is given as 0.0146 m/sec
```

Scilab code Exa 5.4 Calculation of maximum shear stress

```
clc
// Given that
t = 1.2 // Thickness of aluminium sheet in mm

t_ = 0.25 // Adhesive thickness in mm

1 = 12 // Overlapped length in mm

E = 703 // Modulus of elastisity in N/mm^2

G = 11.9 // Shear modulus of adhesive in N/mm^2

T_S = 0.6 // Ultimate shear stress in N/mm^2

// Sample Problem 4 on page no. 303

printf("\n # PROBLEM 5.4 # \n")

K = (((1^2)*G)/(2*E*t*t_))^(1/2)

T = T_S/K

printf("\n The maximum shear stress the lap joint can withstand = %f N/mm^2",T)

// Answer in the book is given as 0.274 N/mm^2
```

Chapter 6

UNCONVENTIONAL MACHINING PROCESSES

Scilab code Exa 6.1 Calculation of time

```
1 clc
2 // Given that
3 = 5 // Side of the square hole in mm
4 t = 4 // Thickness of tungsten plate in mm
5 d = 0.01 // Diameter of abraisive grains in mm
6 F = 3.5 // Force for feeding in N
7 A =25e-3 // Amplitude of tool oscillation in mm
8 f = 25e3 // Frequency in Hz
9 Hw = 6900 // Fracture hardness of WC in N/mm<sup>2</sup>
10 // Sample Problem 1 on page no. 332
11 printf("\n # PROBLEM 6.1 # \n")
12 Z = (1/2)*(4*s^2)/(%pi*d^2)
13 lambda = 5
14 d1 = (d^2)
15 h_w = (sqrt((8*F*A)/(%pi*Z*d1*Hw*(1+lambda))))
16 \ Q = (2/3)*((d1*h_w)^(3/2))*Z*f*%pi
17 t = (a^2)*t/(Q*60)
18 printf("\n The approximate time required = \%f min", t
```

Scilab code Exa 6.2 Calculation of percentage change in cutting time

```
1 clc
2 // Given that
3 r = 1/3 // Ratio of hardness values of copper and steel
4 // Sample Problem 2 on page no. 335
5 printf("\n # PROBLEM 6.2 # \n")
6 R_Q = (r)^(3/4)
7 R_t = 1/R_Q
8 P_R = (1-(1/R_t))*100
9 printf("\n Percentage change in cutting time when tool is changed from coppper to steel = %d percent(reduction)", P_R)
```

Scilab code Exa 6.3 Calculation of current required

```
1 clc
2 // Given that
3 m = 5 // Romoval rate in cm^3/min
4 A = 56 // Atomic gram weight in gm
5 Z = 2 // Valence at which dissolation takes place
6 D = 7.8 // Density of iron in gm/cm^3
7 // Sample Problem 3 on page no. 345
8 printf("\n # PROBLEM 6.3 # \n")
9 I = (m/60)*(D*Z*96500)/(A)
10 printf("\n Current required = %d amp",I)
```

Scilab code Exa 6.4 Calculation of removal rate

```
1 clc
2 // Given that
3 I = 1000 // Current in amp
4 p1 = 72.5 // Percentage (by weight) of Ni in Nimonic
     75 allov
5 p2 = 19.5 // Percentage (by weight) of Cr in Nimonic
     75 alloy
6 p3 = 5 // Percentage(by weight) of Fe in Nimonic 75
      alloy
7 p4 = 0.4 // Percentage (by weight) of Ti in Nimonic
     75 alloy
8 p5 = 1 // Percentage (by weight) of Si in Nimonic 75
     allov
9 p6 = 1 // Percentage (by weight) of Mn in Nimonic 75
      allov
10 p7 = 06 // Percentage (by weight) of Cu in Nimonic 75
      alloy
11 // Sample Problem 4 on page no. 345
12 printf("\n # PROBLEM 6.4 # \n")
13 // From the table 6.3 given in the book
14 D1 = 8.9 // Density of Ni in g/cm^3
15 D2 = 7.19 // Density of Cr in g/cm^3
16 D3 = 7.86 // Density of Fe in g/cm^3
17 D4 = 4.51 // Density of Ti in g/cm^3
18 D5 = 2.33 // Density of Si in g/cm^3
19 D6 = 7.43 // Density of Mn in g/cm^3
20 D7 = 8.96 // Density of Cu in g/cm^3
21 A1 = 58.71 // Gram atomic weight of Ni in gm
22 A2 = 51.99 // Gram atomic weight of Cr in gm
23 A3 = 55.85 // Gram atomic weight of Fe in gm
```

```
24 A4 = 47.9 // Gram atomic weight of Ti in gm
25 A5 = 28.09 // Gram atomic weight of Si in gm
26 A6 = 54.94 // Gram atomic weight of Mn in gm
27 A7 = 63.57 // Gram atomic weight of Cu in gm
28 Z1 = 2 // Valence of dessolation for Ni
29 Z2 = 2 // Valence of dessolation for Cr
30 Z3 = 2 // Valence of dessolation for Fe
31 Z4 = 3 // Valence of dessolation for Ti
32 Z5 = 4 // Valence of dessolation for Si
33 Z6 = 2 // Valence of dessolation for Mn
34 \text{ Z7} = 1 \text{ // Valence of dessolation for Cu}
35 // Above values are given in table 6.3 in the book
36 D = 100/((p1/D1)+(p2/D2)+(p3/D3)+(p4/D4)+(p5/D5)+(p6
      /D6) + (p7/D7))
37 \ Q = ((0.1035*(10^-2))/D)*(1/((p1*Z1/A1)+(p2*Z2/A2)+(
     p3*Z3/A3)+(p4*Z4/A4)+(p5*Z5/A5)+(p6*Z6/A6)+(p7*Z7)
      /A7)))
38 R = Q*I*60
39 printf("\n Removal rate = \%f cm<sup>3</sup>/min",R)
```

Scilab code Exa 6.5 Calculation of equilibrium gap

```
11 Z = 2 // Valency of dissolation of iron

12 rho = 7.86 // Density of iron in gm/cm<sup>3</sup>

13 Yc = k*A*(V-Vo)/(rho*Z*F*(f/60))

14 printf("\n Equilibrium gap = %f cm", Yc)

15

16 // Answer in the book is given as 0.04 cm
```

Scilab code Exa 6.6 Calculation of largest passible feed rate

```
1 clc
2 // Given that
3 S_I1 = 5 // Surface irregulation in micro meter
4 S_I2 = 8 // Surface irregulation in micro meter
5 V = 12 // DC  supply voltage in Volt
6 k = 0.2 // Conductivity of electrolyte in ohm^-1-cm
7 Vo = 1.5 // Total overvoltage in Volt
8 F = 96500 // Faraday constant in coulombs per mole
9 // Sample Problem 6 on page no. 353
10 printf("\n # PROBLEM 6.6 # \n")
11 \quad Y_{\min} = (S_{I1}+S_{I2})*(10^{-4})
12 A = 55.85 // Atomic gram weight of iron in gm
13 Z = 2 // Valency of dissolation of iron
14 D = 7.86 // Density of iron in gm/cm^3
15 f_{max} = (k*A*(V-Vo)/(Z*D*F*Y_min))*60
16 printf("\n Largest passible feed rate = %f mm/min",
     f_max*10)
```

Scilab code Exa 6.7 Calculation of total force actin on the tool

```
1 clc
2 // Given that
3 f = 0.2 // Feed rate in cm/min
4 l = 2.54 // Length of tool face in cm
5 w = 2.54 // Width of tool face in cm
6 T_b = 95 // Boiling temperature of electrolyte in
7 Nita = 0.876e-3 // Viscosity of electrolyte in kg/m-
8 D_e = 1.088 // Density of electrolyte in g/cm^3
9 c = .997 // Specific heat of electrolyte
10 V = 10 // DC supply voltage in Volt
11 k = 0.2 // Conductivity of electrolyte in ohm<sup>-1-cm</sup>
     ^{-}1
12 T = 35 // Ambient temperature in
13 Vo = 1.5 // Total overvoltage in Volt
14 F = 96500 // Faraday constant in coulombs per mole
15 // Sample Problem 7 on page no. 355
16 printf("\n # PROBLEM 6.7 # \n")
17 A = 55.85 // Atomic gram weight of iron in gm
18 Z = 2 // Valency of dissolation of iron
19 D = 7.86 // Density of iron in gm/cm^3
20 Ye = k*A*(V-Vo)*60/(D*Z*F*f)
21 \quad J = k*(V-Vo)/(Ye)
22 D_T = T_b -T
23 v = (J^2)*(1)/(k*D_T*D_e*c)
24 \text{ Re} = ((D_e*v*2*Ye)/Nita)*(0.1)
25 p = 0.3164*D_e*(v^2)*1/(4*Ye*(Re^0.25))*(10^-4)
26 A = 1*w
27 F = p*A*(10^-1)*(1/2)
28 printf("\n Total force acting on the tool = %d N", F)
29 // Answer in the book is given as 79 N
```

Scilab code Exa 6.8 Calculation of equation of required tool geometry

```
1 clc
2 x = poly(0, "x")
3 // Given that
4 y = 10+0.3*x-0.05*x^2/Equation of geometry of
     workpiece surface
5 V = 15 // Applied potential in Volt
6 f = 0.75 // Feed velocity in cm/min
7 k = 0.2 // Conductivity of electrolyte in ohm^-1-cm
     ^{-}1
8 Vo = 0.67 // Total overvoltage in Volt
9 F = 96500 // Faraday constant in coulombs per mole
10 // Sample Problem 8 on page no. 361
11 printf("\n # PROBLEM 6.8 # \n")
12 A = 63.57 // Atomic gram weight of copper in gm
13 Z = 1 // Valency of dissolation of copper
14 D = 8.96 // Density of copper in gm/cm^3
15 lambda = k*A*(V-Vo)/(D*Z*F)
16 r = lambda/(f/(10*60))
17 Y = 10 + 0.3*(x-(r*((0.3-0.1*x)/(1-0.1*r)))) -
     0.05*(x-(r*((0.3-.1*x)/(1-0.1*r))))^2 - r
18 printf("\n The equation of required tool geometry is
      :- \setminus n \quad y = ")
19 disp(Y)
```

Scilab code Exa 6.9 Calculation of time required to complete drilling operation

```
1 clc
2 // Given that
3 a = 10 // Side length of a square hole in mm
4 t = 5 // Thickness of low carbon steel plate in mm
```

```
5 R = 50 // Resistance in relaxation circuit in ohm
6 C = 10 // Capacitance in relaxation circuit in micro
7 V = 200 // Supply voltage in Volt
8 V_ = 150 // Minimum required voltage for discharge
     in Volt
  // Sample Problem 9 on page no. 378
10 printf("\n # PROBLEM 6.9 # \n")
11 E = (1/2)*C*(10^-6)*(V_^2)
12 tc = R*C*(10^-6)*log(V/(V-V_-))
13 W = (E/tc)*(10^-3)
14 v = t*a^2
15 Q = 27.4*(W^{(1.54)})
16 T = v/Q
17 printf("\n The time required to complete the
      drilling operation = \%d min", T)
18 // Answer in the book is given as 306 min
```

Scilab code Exa 6.10 Calculation of surface roughness

```
clc
// Given that
R = 50 // Resistance in relaxation circuit in ohm
C = 10 // Capacitance in relaxation circuit in micro
F
V = 200 // Supply voltage in Volt
V_ = 150 // Minimum required voltage for discharge in Volt
// Sample Problem 10 on page no. 382
printf("\n # PROBLEM 6.10 # \n")
E = (1/2)*C*(10^-6)*(V_^2)
tc = R*C*(10^-6)*log(V/(V-V_))
W = (E/tc)*(10^-3)
```

```
12 Q = 27.4*(W^(1.54))
13 Hrms = 1.11*(Q^0.384)
14 printf("\n Surface roughness = %f micro meter", Hrms)
15 // Answer in the book is given as 5.16 micro meter
```

Scilab code Exa 6.11 Calculation of speed of cutting

```
1 clc
2 // Given that
3 w = 150 // Width of slot in micro meter
4 t = 1 // Thickness of tungsten sheet in mm
5 P = 5 // Power of electron beam in KW
6 // Sample Problem 11 on page no. 391
7 printf("\n # PROBLEM 6.11 # \n")
8 C = 12 // Specific power consumption for tugsten in W/(mm^3/min) from the table 6.7 given in the book
9 v = (P*(1000)/C)*(1000/(w*t))*(1/600)
10 printf("\n Speed of cutting = %f cm/sec",v)
```

Scilab code Exa 6.12 Calculation of electron range

```
1 clc
2 // Given that
3 V = 150e3 // Acceleration voltage in V
4 // Sample Problem 12 on page no. 392
5 printf("\n # PROBLEM 6.12 # \n")
6 D = 76e-7 // Density of steel in kg/mm^3
7 Delta = 2.6*(10^-17)*((V^2)/D)
```

Scilab code Exa 6.13 Calculation of speed of cutting

```
1 clc
2 // Given that
3 w = 0.015 // Width of slot in cm
4 t = 1 // Thickness of tungsten sheet in mm
5 P = 5e3 // Power of electron beam in W
6 // Sample Problem 13 on page no. 395
7 printf("\n # PROBLEM 6.13 # \n")
8 rho_c = 2.71 // Value of volume specific heat for tugsten in J/cm^3
9 k = 2.15 // Thermal conductivity of tungsten in W/cm - C
10 T_m = 3400 // Melting temperture in C
11 Z = t/10 // In cm
12 v = (0.1^2)*(P^2)/((T_m^2)*(Z^2)*(k*w*rho_c))
13 printf("\n Speed of cutting = %f cm/sec",v)
```

Scilab code Exa 6.14 Calculation of time

```
1 clc
2 // Given that
3 I = 1e5 // Power intensity of laser beam in W/mm^2
4 T_m = 3400 // Melting temperture of tungsten in C
5 rho_c = 2.71 // Value of volume specific heat for tugsten in J/cm^3
```

Scilab code Exa 6.15 Calculation of time

```
1 clc
2 // Given that
3 I = 1e5 // Power intensity of laser beam in W/mm<sup>2</sup>
4 d = 200 // Focused diameter of incident beam in
      micro meter
5 \text{ T_m} = 3400 \text{ // Melting temperture of tungsten in}
6 rho_c = 2.71 // Value of volume specific heat for
      tugsten in J/cm<sup>3</sup>
7 k = 2.15 // Thermal conductivity of tungsten in W/cm
8 p_a = 10 // Percentage of beam absorbed
9 // Sample Problem 15 on page no. 400
10 printf("\n # PROBLEM 6.15 # \n")
11 H = (p_a/100)*(I)*(100)
12 alpha = k/rho_c
13 zeta = 0.5 // Fr0m the standard table
14 // By solving the equation T_m = ((2*H)*(sqrt(alpha)))
       *tm))/k) *((1/sqrt(\%pi))-ierfc(d/(4*sqrt(alpha*tm)))
       ))))
15 tm = 1/((200^2)*(zeta^2)*(alpha))
```

Scilab code Exa 6.16 Calculation of minimum value of beam power intensity

Scilab code Exa 6.17 Calculation of time

```
1 clc
2 // Given that
3 I = 1e5 // Power intensity of laser beam in W/mm<sup>2</sup>
4 t = 0.5 // Thickness of tungsten sheet in mm
```

Chapter 7

MANUFACTURING IN TWENTY FIRST CENTURY MICROMACHINING GENERATIVE MANUFACTURING AND SELF ASSEMBLY

Scilab code Exa 7.1 Calculation of maximum allowable wavelength of the exposing light

```
1 clc
2 // Given that
3 F = 4e-6 // Maximum feature dimension in meter
4 t = 5e-6 // Photorist thickness in meter
5 g = 25e-6 // Allowable gap between the mask and the resist meter
6 // Sample Problem 1 on page no. 432
7 printf("\n # PROBLEM 7.1 # \n")
8 lambda = (F^2)/(t+g)
```

```
9 printf("\n Maximum allowable wavelength of the exposing light = \%d nm", lambda*(10^9))
```

Scilab code Exa 7.2 Calculation of time required to machine the hole

```
1 clc
2 // Given that
3 d = 5 // Diameter of hole in micro meter
4 h = 100 // Depth of hole in micro meter
5 // Sample Problem 2 on page no. 440
6 printf("\n # PROBLEM 7.2 # \n")
7 t = 31.58*(d*(exp(h/(60*d))-1))
8 printf("\n Time required to machine the hole = %f min",t)
```

Scilab code Exa 7.3 Calculation of minimum level of exposure of the PMMA surface

```
1 clc
2 // Given that
3 J = 2 // The threshold value of dose in kJ/cm^3
4 h = 300 // Height in micro meter
5 // Sample Problem 3 on page no. 448
6 printf("\n # PROBLEM 7.3 # \n")
7 J_o = J*(exp(0.1*sqrt(h)))
8 printf("\n The minimum level of exposure of the PMMA surface = %f kJ/cm^3", J_o)
```

Scilab code Exa 7.4 Calculation of time required to develop the PMMA resist

```
1 clc
2 // Given that
3 J_ = 2 // The threshold value of dose in kJ/cm^3
4 J = 15 // The dose of top surface in kJ/cm^3
5 x_ = 300 // Depth below the surface in micro meter
6 // Sample Problem 4 on page no. 4
7 printf("\n # PROBLEM 7.4 # \n")
8 function y=f(x),y = 3/((J*(exp(-0.1*sqrt(x))))^(1.6) -3),
9 endfunction
10 t = intg(0,x_,f)
11 printf("\n The time required to develop the PMMA resist = %d min",t)
```