Problem 1

$$\begin{split} \beta^{\text{new}} &= \beta^{\text{old}} + \eta \frac{\partial \log \Pr \left(\beta\right)}{\partial \beta} \\ &= \beta^{\text{old}} + \eta \frac{\partial \log \prod\limits_{i=1}^{n} \frac{e^{y_{i}^{*}X_{i}^{\top}\beta}}{1 + e^{X_{i}^{\top}\beta}}}{\partial \beta} \\ &= \beta^{\text{old}} + \eta \frac{\partial \sum\limits_{i=1}^{n} \left(y_{i}^{*}X_{i}^{\top}\beta - \log\left(1 + e^{X_{i}^{\top}\beta}\right)\right)}{\partial \beta} \\ &= \beta^{\text{old}} + \eta \sum_{i=1}^{n} \frac{\partial \left(y_{i}^{*}X_{i}^{\top}\beta - \log\left(1 + e^{X_{i}^{\top}\beta}\right)\right)}{\partial \beta} \\ &= \beta^{\text{old}} + \eta \sum_{i=1}^{n} \left(y_{i}^{*}X_{i} - \frac{e^{X_{i}^{\top}\beta}}{1 + e^{X_{i}^{\top}\beta}}X_{i}\right) \\ &= \beta^{\text{old}} + \eta \sum_{i=1}^{n} \left(y_{i}^{*} - \frac{e^{X_{i}^{\top}\beta}}{1 + e^{X_{i}^{\top}\beta}}\right)X_{i} \\ &= \beta^{\text{old}} + \eta \sum_{i=1}^{n} \left(y_{i}^{*} - p_{i}\right)X_{i} \end{split}$$

where

$$p_i = rac{e^{X_i^ opeta}}{1+e^{X_i^ opeta}} = rac{1}{1+e^{-X_i^ opeta}}$$

The reasons of gradient should be computed on $\log \Pr(\beta)$, not on $\Pr(\beta)$:

- 1. Converting cumulative multiplication into cumulative addition($\prod \to \sum$) makes calculating gradients easier.
- 2. Cumulative multiplication(\prod) of many decimals between zero and one will cause the result to converge to zero and float type with finite precision will cause loss of precision problem, while cumulative addition(\sum) will not.