CHAPTER 8. SEQUENCES & SERIES Section 8.1. SEQUENCES

• Definition of a sequence.

A sequence is an infinite set of numbers $a_1, a_2, \ldots, a_n, \ldots$ The terms a_i are indexed by natural numbers.

Notation:
$$\{a_n\}_{n=1}^{\infty}$$
.

A sequence can be defined by its nth term.

Example: List the first 3 terms of the sequence.

1.
$$a_n = \frac{1}{n+1}$$
 for $n \ge 1$. $a_1 = \frac{1}{2}$ $a_2 = \frac{1}{3}$ $a_3 = \frac{1}{4}$

2.
$$b_n = \frac{(-1)^n}{2^n}$$
 for $n \ge 0$. $b_0 = 1$ $b_1 = -\frac{1}{2}$ $b_2 = \frac{1}{4}$ $b_3 = -\frac{1}{8}$

A sequence can also be defined is a *recursive* fashion: The first term(s) of the sequences is (are) known, as well as a relationship between consecutive terms.

Example: Write the first 3 terms of the sequence defined by

$$a_1 = 2, \ a_{n+1} = \frac{1}{3 - a_n}$$

$$a_1 = 2, \ a_{n+1} = \frac{1}{3 - a_n}$$

$$a_2 = \frac{1}{3 - a_1} = \frac{1}{3 - a_2} = \frac{1}{2} \quad (44 = \frac{1}{3 - a_2})$$

$$a_1 = 2, \ a_{n+1} = \frac{1}{3 - a_n}$$

$$a_1 = 2, \ a_{n+1} = \frac{1}{3 - a_n}$$

$$a_2 = \frac{1}{3 - a_2} = \frac{1}{2} \quad (44 = \frac{1}{3 - a_2})$$

$$a_1 = 2, \ a_2 = \frac{1}{3 - a_1} = \frac{1}{3 - a_2} = \frac{1}{2} \quad (44 = \frac{1}{3 - a_2})$$

$$a_1 = 2, \ a_2 = \frac{1}{3 - a_1} = \frac{1}{3 - a_2} = \frac{1}{2} \quad (44 = \frac{1}{3 - a_2})$$

$$a_1 = 2, \ a_2 = \frac{1}{3 - a_1} = \frac{1}{3 - a_2} = \frac{1}{2} \quad (44 = \frac{1}{3 - a_2})$$

$$a_2 = \frac{1}{3 - a_1} = \frac{1}{3 - a_2} = \frac{1}{2} \quad (44 = \frac{1}{3 - a_2})$$

• Graph of a sequence.

Example: Sketch the graph of the sequence in example 1.

• Convergence of a sequence.

Given a sequence, what happen the the values of the terms of a sequence a_n as napproaches ∞ ? From the graph of the sequence in the previous example, it appears that a_n approaches _____ as n approaches ∞ .

<u>Definition</u>: A sequence $\{a_n\}$ has the limit L, or

$$\lim_{n \to \infty} a_n = L$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If the limit exists and is a finite number, we say that the sequence is *convergent*, otherwise the sequence is *divergent*.

Here is a list of theorems that are very useful to find the limit of a sequence.

Theorem: If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n\to\infty} a_n = L$

ightharpoonup Theorem: If $\lim_{n\to\infty}|a_n|=0$ then $\lim_{n\to\infty}a_n=0$

(glometric sequence) Theorem: The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1 \\ 1 & \text{if } r = 1 \end{cases}$$

The Squeeze Theorem: If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$

• The limit laws for sequences.

If $\{a_n\}$ and $\{b_n\}$ are *convergent* sequences and c is a constant, then

1.
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

2.
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$3. \lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

4.
$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

5.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

6.
$$\lim_{n \to \infty} [a_n]^p = [\lim_{n \to \infty} a_n]^p$$
 if $p > 0$ and $a_n > 0$.

Exercises: Determine whether the sequence converges or diverges. If it converges, find its limit.

1.
$$a_n = \frac{\sqrt{n}}{1 + \sqrt{n}}$$
. $\lim_{n \to \infty} \frac{\sqrt{n}}{1 + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n}} = \lim_{n \to \infty$

anconverges to 1

$$2. \ a_n = \frac{\ln n}{\ln 2n}. \quad \text{(n > 2)}$$

$$\lim_{n\to\infty} \frac{\ln n}{\ln(2n)} = \lim_{n\to\infty} \frac{\ln n}{\ln 2 + \ln n} = \lim_{n\to\infty} \frac{\ln n}{\ln n} = 1$$

an convenges to 1

Assume n>,1

3.
$$a_n = \frac{\sqrt{(-1)^{n-1}n^2}}{n^3 + 2n^2 + 1}$$

aternating sequen

3.
$$a_n = \frac{(-1)^{n-1}n^2}{n^3 + 2n^2 + 1}$$
.

$$\lim_{n \to \infty} |a_n| = \lim_{n \to \infty} \frac{n^2}{n^3 + 2n^2 + 1} = \lim_{n \to \infty} \frac{n^2}{n^3} - \lim_{n \to \infty} \frac{1}{n^3} = 0$$

an converge to 0.

4.
$$a_n = \frac{\sin 2n}{1 + \sqrt{n}}$$
. $-1 \le \sin 2n \le 1$ => $-\frac{1}{1 + \sqrt{n}} \le \frac{\sin 2n}{1 + \sqrt{n}} \le \frac{1}{1 + \sqrt{n}} \le \frac{1}{1 + \sqrt{n}} \le \frac{1}{1 + \sqrt{n}} \le \frac{1}{1 + \sqrt{n}} = 0$, leen $\frac{1}{1 + \sqrt{n}} = 0$, therefore leen $\frac{\sin 2n}{1 + \sqrt{n}} = 0$, $\frac{\cos 2n}{1 + \sqrt{n}} =$

$$5. \ a_n = ne^{-n}.$$

$$\lim_{n\to\infty} ne^{-n} = \lim_{n\to\infty} \frac{n}{e^{n}}$$

$$\lim_{n\to\infty} f(x) = \frac{x}{e^{x}} \qquad \lim_{x\to\infty} \frac{x}{e^{x}} = \lim_{x\to\infty} \frac{1}{e^{x}} = 0$$

$$+ \text{herefore} \qquad \lim_{n\to\infty} \frac{n}{e^{n}} = 0$$