# Fitted ALE scheme for Two-Phase Navier–Stokes Flow

## Marco Agnese and Robert Nürnberg

Imperial College London

8<sup>th</sup> September 2016

# Problem setting

Domain  $\Omega$  in the 2-dimensional case.



## Governing equations

Bulk equations

$$\rho(\vec{u}_t + (\vec{u} \cdot \nabla) \vec{u}) - \nabla \cdot \underline{\underline{\sigma}} = \vec{f} = \rho \vec{f}_1 + \vec{f}_2 \quad \text{in } \Omega_{\pm}(t),$$

$$\nabla \cdot \vec{u} = 0 \quad \text{in } \Omega_{\pm}(t),$$

where

$$\underline{\underline{\sigma}} = \mu \left( \nabla \vec{u} + (\nabla \vec{u})^T \right) - \rho \underline{\underline{id}} = 2 \mu \underline{\underline{D}}(\vec{u}) - \rho \underline{\underline{id}}.$$

Interface equations

$$[\vec{u}]_{-}^{+} = \vec{0}$$
 on  $\Gamma(t)$ ,  
 $[\underline{\sigma}\,\vec{v}]_{-}^{+} = -\gamma\,\varkappa\,\vec{v}$  on  $\Gamma(t)$ ,  
 $\vec{\mathcal{V}}\,.\,\vec{v} = \vec{u}\,.\,\vec{v}$  on  $\Gamma(t)$ .

► To close the system, we prescribe the initial data  $\Gamma(0) = \Gamma_0$ , the initial velocity  $\vec{u}_0$  and some boundary condition for  $\vec{u}$  on  $\partial\Omega$ .



#### Interface treatment

▶  $\Gamma(t)$  is a sufficiently smooth evolving hypersurface without boundary that is parameterized by  $\vec{x}(\cdot,t): \Upsilon \to \mathbb{R}^d$ , therefore

$$\Gamma(t) = \vec{x}(\Upsilon, t),$$

where  $\Upsilon \subset \mathbb{R}^d$  is a given reference manifold.

It holds that

$$\Delta_{\mathbf{s}} \, \mathbf{id} = \varkappa \, \vec{\nu} \quad \text{on } \Gamma(t) \,,$$

where  $\Delta_s = \nabla_s$ .  $\nabla_s$  is the Laplace-Beltrami operator on  $\Gamma(t)$  with  $\nabla_s$ . and  $\nabla_s$  denoting surface divergence and surface gradient on  $\Gamma(t)$ .



# Arbitrary Lagrangian Eulerian approach

- ▶ In the ALE approach, a prescribed flow drives the movement of the bulk mesh vertices.
- Let  $h: \Omega_{\pm}(t) \times [0, T] \to \mathbb{R}$  be a function defined on the Eulerian frame, the corresponding function on the ALE frame  $\hat{h}$  is defined as

$$\hat{h}: \Upsilon_{\Omega_{\pm}} \times [0,T] \to \mathbb{R}, \qquad \hat{h}(\vec{q},t) = h(\vec{x}(\vec{q},t),t)$$

and it holds

$$h_t = h_t|_{\Upsilon_{\Omega_{\pm}}} - \vec{\mathcal{W}} \cdot \nabla h.$$

► The movement of the bulk mesh is incorporated in the finite element approximation therefore it avoids the repeated interpolation of the velocity onto the bulk mesh.



## Weak formulation

Using the function spaces

$$\begin{split} \mathbb{U} &:= [H^1_0(\Omega)]^d \,, \qquad \mathbb{P} := L^2(\Omega) \qquad \text{and} \\ \widehat{\mathbb{P}} &:= \left\{ \eta \in \mathbb{P} : \int_\Omega \eta \; \mathrm{d}\mathcal{L}^d = 0 \right\}, \end{split}$$

the Navier-Stokes weak formulation is

$$\begin{split} &(\rho \ \vec{u}_t|_{\Upsilon_{\Omega_{\pm}}}\,, \vec{\xi}) + (\rho(\vec{u} - \vec{\mathcal{W}})\,.\,\nabla\,\vec{u}\,,\,\vec{\xi}) + 2\left(\mu\,\underline{\underline{\mathcal{D}}}(\vec{u}),\underline{\underline{\mathcal{D}}}(\vec{\xi})\right) \\ &- \left(\rho,\nabla\,.\,\vec{\xi}\right) - \gamma\,\left\langle\varkappa\,\vec{\nu},\vec{\xi}\right\rangle_{\Gamma(t)} = \left(\vec{f},\vec{\xi}\right) \quad\forall\,\vec{\xi} \in \mathbb{U}\,, \\ &(\nabla\,.\,\vec{u},\varphi) = 0 \quad\forall\,\varphi \in \widehat{\mathbb{P}}\,, \\ &\left\langle\vec{\mathcal{V}} - \vec{u},\chi\,\vec{\nu}\right\rangle_{\Gamma(t)} = 0 \quad\forall\,\chi \in H^1(\Gamma(t))\,, \\ &\langle\varkappa\,\vec{\nu},\vec{\eta}\rangle_{\Gamma(t)} + \left\langle\nabla_{\mathcal{S}}\,\vec{\mathrm{id}},\nabla_{\mathcal{S}}\,\vec{\eta}\right\rangle_{\Gamma(t)} = 0 \quad\forall\,\vec{\eta} \in [H^1(\Gamma(t))]^d \end{split}$$

# Fitted approach



- ▶ Pros: naturally captured discontinuity jumps in  $\rho$ ,  $\mu$ , p and no need to interpolate bulk quantities over interface.
- Cons: possible bulk mesh distortion and difficult bulk mesh adaptation.

## Scheme properties

- Simple stationary solutions are captured exactly, which means that no spurious velocities appear.
- The scheme conserves the volume of the two phases.
- Pressure jumps at the interface are captured accurately for standard pressure finite element spaces without the need for XFEM extensions.
- The surface mesh quality is maintained and for the semidiscrete scheme an equidistribution property can be shown in 2d.

# Mesh smoothing and remeshing

▶ Smoothing: find a displacement  $\vec{\psi} \in [H^1(\Omega)]^d$  such that

$$\nabla \cdot \underline{\underline{\mathcal{S}}} = \vec{0} \qquad \text{in } \Omega_{\pm}^{m},$$

$$\vec{\psi} = \delta \vec{X} \qquad \text{on } \Gamma^{m},$$

$$\vec{\psi} \cdot \vec{\mathbf{n}} = \mathbf{0} \qquad \text{on } \partial \Omega,$$

where  $\underline{\underline{S}} = 2 \underline{\underline{D}}(\vec{\psi}) + (\nabla \cdot \vec{\psi}) \underline{id}$  is the stress tensor and where  $\underline{\vec{n}}$  is the outer unit normal to  $\Omega$  on  $\partial \Omega$ .

Remeshing: perform remeshing when

$$\frac{\max_{o \in \mathcal{T}^{m+1}}(\mathcal{H}^d(o))}{\min_{o \in \mathcal{T}^{m+1}}(\mathcal{H}^d(o))} \ge C_r,$$

where  $C_r \ge 1$  is a fixed constant.



# Equidistribution property experiment

$$\rho_{\pm} = \mathbf{0} \,, \quad \mu_{\pm} = \mathbf{1} \,, \quad \gamma = \mathbf{1}$$



# Shear flow experiment

$$ho_{\pm}=0\,,\quad \mu_{\pm}=1\,,\quad \gamma=3\,,\quad ec{g}(ec{x})=x_{3}ec{e}_{1}\quad ext{on }\partial\Omega$$



# Rising bubble experiment

$$\rho_{+} = 10^{3} \,, \rho_{-} = 10^{2} \,, \mu_{+} = 10 \,, \mu_{-} = 1 \,, \gamma = 24.5 \,, \vec{f} = -0.98 \vec{e}_{2}$$



### Outlook

- ► Test other solvers/preconditioners to solve the algebraic linear system more efficiently.
- Include surface active agents (surfactants) to the model.
- Use adaptive meshes to increase the accuracy of the scheme.
- Test higher order spaces to approximate the displacement of the interface.

#### References

- 1. J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG, *A parametric finite element method for fourth order geometric evolution equations*, J. Comput. Phys., (2007).
- 2. —, On the parametric finite element approximation of evolving hypersurfaces in  $\mathbb{R}^3$ , J. Comput. Phys., (2008).
- 3. —, Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow, Comput. Methods Appl. Mech. Engrg., (2013).
- A stable parametric finite element discretization of two-phase Navier–Stokes flow, J. Sci. Comput., (2013).
- M. AGNESE AND R. NÜRNBERG, Fitted Finite Element Discretization of Two-Phase Stokes Flow, Int. J. Numer. Meth. Fluids, (2016).