- **Задача 1.** Даны две различные проективные прямые l_1 и l_2 в проективной плоскости, пересекающиеся в точке S, и дано проективное отображение $F: l_1 \stackrel{\sim}{\to} l_2$ такое, что $F(S) \neq S$. Пусть p прямая Паппа, построенная по точкам $A, B, C \in l_1$ и точкам $f(A), f(B), f(C) \in l_2$. Покажите, что прямая Паппа p не зависит от выбора точек $A, B, C \in l_1$, а зависит только от отображения f. Как ее построить, зная только отображение f и не привлекая точек $A, B, C \in l_1$ и точек $f(A), f(B), f(C) \in l_2$.
- Задача 2. 1) Докажите, совпадение определения двойного отношения (ABCD) четырех различных точек $A,\ B,\ C,\ D$ на проективной прямой через $\frac{\lambda}{\mu}$ с определением через отношение определителей $\frac{|xz|}{|xw|}/\frac{|yz|}{|yw|}$ и с определением в аффинной карте как отношения $\frac{|a-c|}{|a-d|}/\frac{|b-c|}{|b-d|}$; эти определения были даны на семинаре 4.
- 2) Докажите, что двойное отношение сохраняется при проективных отображениях, т.е. если $f: \mathbb{P}^1 \to \mathbb{P}'^1$ проективное отображение и A, B, C, D четыре различные точки на \mathbb{P}^1 , то (ABCD) = (f(A)f(B)f(C)f(D)).
- **Задача 3.** 1) Докажите, что если на проективной прямой пара точек A, B гармонически делит пару точек C, D, то и пара точек C, D гармонически делит пару точек A, B.
- 2) Докажите, что определение гармонической четверки точек, данное на семинаре 4, не зависит от вспомогательного 4-вершинника PQRS, с помощью которого определялась гармоническая четверка, т.е. если $AB \stackrel{h}{-} CD$ и $AB \stackrel{h}{-} CD'$, то D = D'. сПусть пара точек A, B гармонически делит пару точек C, D. Найдите двойное отношение (ABCD) этих точек. Чему равно двойное отношение (CDAB)?
- Задача 4. Пусть $(x_0:x_1:x_2)$ однородные координаты в проективной плоскости \mathbb{P}^2 над произвольным полем, и пусть $F(x_0,x_1,x_2)$ ненулевой однородный многочлен (форма) степени $d\geqslant 1$, а $L(x_0,x_1,x_2)$ ненулевая линейная форма. Рассмотрим в \mathbb{P}^2 кривую $X=\{(x_0:x_1:x_2):F(x_0,x_1,x_2)=0\}$ и прямую $l=\{(x_0:x_1:x_2):L(x_0,x_1,x_2)=0\}$. Докажите, что если $l\subset X$, то форма F делится на линейную форму L.

B (yo: 41) $A(x_o:x_i)$ $\exists \lambda, r \in \mathbb{R}^{\times}$ $C = (x_0 + \lambda y_0: x_1 + \lambda y_1)$ $D = (x_0 +) (y_0; x_1 +) (y_0)$ Def. $(ABCD):=\frac{\lambda}{\pi}\in\mathbb{R}^{\times}$ (AB,CD) (Wo: W1) (Zo!ZI) |XZ|:= |XZ|:= |XZ|:=(ABCD) = \frac{1X71}{1XW1}/1921 $(ABCD) = \frac{1131}{1141} / \frac{1231}{1241} = \frac{1131}{1231} / \frac{1141}{1241}$ A=PQnRS J PQRS: B=PS~RQ $C = (AB) \cap PR$ = (AB) n QS $(x) \Rightarrow AB - h$ (AB, CD) - rapusoner. 4-ka na P1 $(ABCD) = \frac{2}{3}$ $(AB,C) \longrightarrow D^2$

Created with IDroo.com