Complex Manifolds

1 Definition and Examples

Definition 1. A complex manifold of complex dimension n is a topological space M such that

- (a) M is Hausdorff and second countable;
- (b) M is locally homeomorphic to \mathbb{C}^n , i.e., for every point $p \in M$, there exists an open neighborhood U of p and a homeomorphism $\varphi : U \to V \subset \mathbb{C}^n$, where V is an open subset of \mathbb{C}^n , The pair (U, φ) is called a *chart*;
- (c) if (U, φ) and (U', φ') are two charts with $U \cap U' \neq \emptyset$, then the transition map

$$\varphi' \circ \varphi^{-1}$$
: $\varphi(U \cap U') \to \varphi'(U \cap U')$

is holomorphic.

The collection of all charts $\{(U_{\alpha}, \varphi_{\alpha})\}$ that cover M is called an *atlas*. If the atlas is maximal, it is called a *complex structure* on M.

Another way to define complex manifolds is to use the language of ringed spaces.

Definition 2. A complex manifold of complex dimension n is a locally ringed space (M, \mathcal{O}_M) such that

- (a) *M* is Hausdorff and second countable;
- (b) for every point $p \in M$, there exists an open neighborhood U of p such that $(U, \mathcal{O}_M|_U)$ is isomorphic to (B, \mathcal{O}_B) , where B is the unit open ball in \mathbb{C}^n and \mathcal{O}_B is the sheaf of holomorphic functions on B.

Question 3. Given a topological space M that is Hausdorff and second countable, when does it admit a complex structure? Is such a complex structure unique?

For complex dimension 1, the answer is positive and well-known. For higher dimensions, the answer is negative in general. In particular, does the 6-sphere S^6 admit a complex structure? This is a famous open problem in complex geometry.

Question 4. Does the 6-sphere S^6 admit a complex structure?

Definition 5. Let M and N be two complex manifolds. A continuous map $f: M \to N$ is called holomorphic if for every point $p \in M$, there exist charts (U, φ) of M around p and (V, ψ) of N around f(p) with $U \subset f^{-1}(V)$ such that

$$\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

Date: October 4, 2025, Author: Tianle Yang, My Homepage

is holomorphic.

Definition 6. Let M be a complex manifold of complex dimension n. A subset $S \subset M$ is called a complex submanifold of complex dimension k if for every point $p \in S$, there exist a chart (U, φ) of M around p such that

$$\varphi(U \cap S) = \varphi(U) \cap (\mathbb{C}^k \times \{0\}) \subset \mathbb{C}^n$$
,

where we identify \mathbb{C}^n with $\mathbb{C}^k \times \mathbb{C}^{n-k}$. This gives a chart of S around p. Endowed with the induced topology and the induced complex structure, S is a complex manifold of complex dimension k.

Example 7. Any complex vector space V of complex dimension n is a complex manifold of complex dimension n.

Example 8. The complex projective space $\mathbb{CP}^n := \mathbb{C}^{n+1} \setminus \{0\}/\mathbb{C}^{\times}$ is a complex manifold of complex dimension n. In fact, \mathbb{CP}^n can be covered by n+1 charts, each of which is biholomorphic to \mathbb{C}^n . For example, the chart $U_0 = \{[z_0 : z_1 : \cdots : z_n] \in \mathbb{CP}^n : z_0 \neq 0\}$ is biholomorphic to \mathbb{C}^n via the map

$$[z_0 : z_1 : \cdots : z_n] \mapsto \left(\frac{z_1}{z_0}, \frac{z_2}{z_0}, \dots, \frac{z_n}{z_0}\right).$$

The other charts are defined similarly.

Proposition 9. Let M and N are complex manifolds of complex dimension n and m respectively, with $n \ge m$. If $f: M \to N$ is a holomorphic map such that p is a regular value of f, i.e., the tangent map df_x is surjective for every $x \in f^{-1}(p)$, then $f^{-1}(p)$ is a complex submanifold of M of complex dimension n-m.

Proof. For every point $q \in f^{-1}(p)$, choose charts (U, φ) of M around q and (V, ψ) of N around p such that $f(U) \subset V$. By changing coordinates if necessary, we may assume that $\det(\partial f/\partial w)(q) \neq 0$, where we write the coordinates of $\varphi(U)$ as $(z, w) = (z_1, \dots, z_{n-m}, w_1, \dots, w_m) \in \mathbb{C}^{n-m} \times \mathbb{C}^m$. Then by the Holomorphic Implicit Function Theorem (Theorem 26), there exist open neighborhoods U' of q such that $f^{-1}(p) \cap U'$ is biholomorphic to an open subset of \mathbb{C}^{n-m} .

Example 10. Let $X \subset \mathbb{C}^n$ be a complex algebraic variety defined by the vanishing of polynomials $f_1, \ldots, f_m \in \mathbb{C}[z_1, \ldots, z_n]$. Suppose that X is non-singular, i.e., for every point $p \in X$, the Jacobian matrix $(\partial_{z_j} f_i(p))_{i,j}$ has maximal rank r. Then X is a complex submanifold of \mathbb{C}^n of complex dimension n-r.

Example 11. A hypersurface H in \mathbb{CP}^n is the zero locus of a homogeneous polynomial $f \in \mathbb{C}[z_0, z_1, \dots, z_n]$. Suppose 0 is a regular value of $f : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}$. On each chart $U_i \cong \mathbb{C}^n$ of \mathbb{CP}^n , it defines a holomorphic function $f_i : U_i \to \mathbb{C}, [z] \mapsto z = (z_1, \dots, z_{i-1}, 1, z_{i+1}, \dots, z_n) \mapsto f(z)$. The regularity condition implies that 0 is a regular value of each f_i . Hence $H \cap U_i = f_i^{-1}(0)$ is a complex submanifold of U_i of complex dimension n-1 by Proposition 9. Gluing these local pieces together, we see that H is a complex submanifold of \mathbb{CP}^n of complex dimension n-1.

Proposition 12. Let M be a complex manifold and let G be a discrete group acting on M by holomorphic automorphisms. If the action is free and properly discontinuous, then the quotient space M/G is a complex manifold and the quotient map $\pi: M \to M/G$ is a holomorphic covering map.

Complex Manifolds

Proof. For every point $p \in M/G$, choose a point $q \in M$ such that $\pi(q) = p$. Since the action is free and properly discontinuous (see Remark 13), there exists an open neighborhood U of q such that $gU \cap U = \emptyset$ for all $g \in G \setminus \{e\}$. Then $\pi|_U : U \to \pi(U)$ is a homeomorphism. This gives a chart of M/G around p. If we have two such charts $(\pi(U), \varphi)$ and $(\pi(U'), \varphi')$ of M/G whose intersection is non-empty, WLOG, assume that $U \cap U' \neq \emptyset$. Then $\pi^{-1}(\pi(U) \cap \pi(U')) = \bigsqcup_{g \in G} g(U \cap U')$. The transition map of U and U' gives the transition map of $\pi(U)$ and $\pi(U')$. Since the action of G is by holomorphic automorphisms, the transition maps are holomorphic.

Remark 13. Recall that an action of a group G on a topological space X is said to be *properly discontinuous* if for every compact subset $K \subset X$, the set $\{g \in G : gK \cap K \neq \emptyset\}$ is finite. If G is a discrete group acting on a manifold M by diffeomorphisms, then the action is properly discontinuous and free if and only if for every point $p \in M$, there exists an open neighborhood U of p such that $gU \cap U = \emptyset$ for all $g \in G \setminus \{e\}$.

Example 14. Let $\Lambda \subset \mathbb{C}$ be a lattice, i.e., a discrete subgroup of \mathbb{C} generated by two \mathbb{R} -linearly independent complex numbers. Then Λ is isomorphic to \mathbb{Z}^2 as an abstract group and acts on \mathbb{C} by translations, which are holomorphic automorphisms of \mathbb{C} . Then the quotient space \mathbb{C}/Λ is a complex manifold of complex dimension 1 by Proposition 12. Such a complex manifold is called an *elliptic curve*. As real manifolds, it is diffeomorphic to $S^1 \times S^1$.

Example 15. Fix $\alpha \in \mathbb{C}^{\times}$ with $|\alpha| \neq 1$. Let \mathbb{Z} act on $\mathbb{C}^n \setminus \{0\}$ by $k \cdot z = \alpha^k z$ for every $k \in \mathbb{Z}$ and $z \in \mathbb{C}^n \setminus \{0\}$. This action is free and properly discontinuous. Then the quotient space $(\mathbb{C}^n \setminus \{0\})/\mathbb{Z}$ is a complex manifold of complex dimension n by Proposition 12. Such a complex manifold is called a *Hopf manifold*.

Example 16. Let

$$M = \left\{ \begin{pmatrix} 1 & z_1 & z_3 \\ 0 & 1 & z_2 \\ 0 & 0 & 1 \end{pmatrix} \middle| z_1, z_2, z_3 \in \mathbb{C} \right\}$$

be the complex Heisenberg group, which is biholomorphic to \mathbb{C}^3 . Let $\Gamma := M \cap \operatorname{GL}(3, \mathbb{Z}[\sqrt{-1}])$. Then Γ is a discrete subgroup of M and acts on M by left multiplication, which are holomorphic automorphisms of M. The action is free and properly discontinuous. Then the quotient space M/Γ is a complex manifold of complex dimension 3 by Proposition 12. It is called the *Iwasawa manifold*. One can replace Γ by other cocompact discrete subgroups of M.

2 Almost Complex Structures

Let X be a complex manifold of complex dimension n. The tangent bundle TX is a real vector bundle of rank 2n. There is a natural endomorphism $J: TX \to TX$ induced by the complex structure of X, i.e., for every point $p \in X$, $J_p: T_pX \to T_pX$ is the multiplication by $\sqrt{-1}$. We have $J^2 = -\mathrm{id}$.

Definition 17. Let M be a smooth manifold of real dimension 2n. An almost complex structure on M is a smooth endomorphism $J: TM \to TM$ such that $J^2 = -\mathrm{id}$. The pair (M,J) is called an almost complex manifold.

Question 18. Given a smooth manifold M of real dimension 2n, when does it admit an almost complex structure? Is such an almost complex structure unique?

Giving an almost complex structure J on a smooth manifold M is equivalent to giving the tangent bundle TM the structure of a complex vector bundle. Hence the existence of almost complex structures is a purely topological problem. Note that to find a complex structure on M needs to solve some non-linear partial differential equations, which is much harder.

Example 19. The 6-sphere S^6 admits an almost complex structure. In fact, S^6 can be identified with the unit sphere in the imaginary octonions $\operatorname{Im} \mathbb O$ (see Remark 20). Denote by m(x,y) the octonionic multiplication of $x,y\in\mathbb O$. For every point $p\in S^6$, the tangent space T_pS^6 can be identified with the orthogonal complement of $\mathbb Rp$ in $\operatorname{Im} \mathbb O$. Define $J_p:T_pS^6\to T_pS^6$ by $J_p(v)=m(p,v)$. Then $J_p^2(v)=p(pv)=-v$ for every $v\in T_pS^6$. Thus we get an almost complex structure on S^6 .

Remark 20. Recall some fundamental facts about the octonions O:

- (a) $\mathbb O$ is an 8-dimensional normed vector space over $\mathbb R$ with an orthogonal basis $\{1\} \cup \{e_i | i=1,\ldots,7\}$. The subspace spanned by $\{e_i\}$ is called the space of imaginary octonions and denoted by $\mathrm{Im}\,\mathbb O$.
- (b) The multiplication $m: \mathbb{O} \times \mathbb{O} \to \mathbb{O}$ is a bilinear map and satisfies the distributive law and the norm multiplicative law ||xy|| = ||x|| ||y|| for all $x, y \in \mathbb{O}$. It is given by the following Fano plane $\mathbb{P}^2(\mathbb{F}_2)$:

If $e_i \to e_j \to e_k$ is a directed line in the Fano plane, then $e_i e_j = e_k$, $e_j e_k = e_i$, and $e_k e_i = e_j$. The multiplication is anti-commutative, i.e., $e_i e_j = -e_j e_i$ for all $i \neq j$. And we have $e_i^2 = -1$ for all i.

Yang: To be checked...

Let (M,J) be an almost complex manifold. Then the complexified tangent bundle $TM_{\mathbb{C}}:=TM\otimes_{\mathbb{R}}\mathbb{C}$ splits into the direct sum of two complex subbundles

$$TM_{\mathbb{C}} = T^{1,0}M \oplus T^{0,1}M,$$

where

$$T^{1,0}M := \ker(\sqrt{-1}\mathrm{id} - J), \quad T^{0,1}M := \ker(\sqrt{-1}\mathrm{id} + J).$$

We have $\overline{T^{1,0}M} = T^{0,1}M$ and both $T^{1,0}M$ and $T^{0,1}M$ are complex vector bundles of rank n. This

decomposition induces a decomposition of the complexified cotangent bundle

$$\Omega^{1}(M) := (TM_{\mathbb{C}})^{*} = (T^{1,0}M)^{*} \oplus (T^{0,1}M)^{*} = : \Omega^{1,0}(M) \oplus \Omega^{0,1}(M).$$

More generally, for every $p, q \ge 0$, define

$$\Omega^{p,q}(M) := \wedge^p (T^{1,0}M)^* \otimes \wedge^q (T^{0,1}M)^* \subset \wedge^{p+q} \Omega^1(M).$$

Then we have the decomposition

$$\Omega^k(M) \coloneqq \wedge^k \Omega^1(M) = \bigoplus_{p+q=k} \Omega^{p,q}(M).$$

The elements of $\Omega^{p,q}(M)$ are called differential forms of type (p,q) or (p,q)-forms for short.

Recall the exterior differential operator $d: \Omega^k(M) \to \Omega^{k+1}(M)$ is locally given by

$$d\left(\sum_{I} f_{I} dx_{I}\right) = \sum_{I} \sum_{j=1}^{2n} \frac{\partial f_{I}}{\partial x_{j}} dx_{j} \wedge dx_{I},$$

where I runs over all multi-indices with |I|=k and x_1,\dots,x_{2n} are local coordinates on M.

Proposition 21. There exist differential operators

$$\partial: \Omega^{p,q}(M) \to \Omega^{p+1,q}(M), \quad \mu: \Omega^{p,q}(M) \to \Omega^{p+2,q-1}(M)$$

such that

$$d = \partial + \overline{\partial} + \mu + \overline{\mu}.$$

In a diagram:

Proof of Proposition 21. Yang: To be continued...

Definition 22. The operator μ in Proposition 21 is called the *Nijenhuis operator* of the almost complex structure J. If $\mu = 0$, then J is called *integrable*. In this case, we have $d = \partial + \overline{\partial}$. Yang: To be continued...

Example 23. Let J be the almost complex structure on S^6 defined in Example 19.

Yang: To be checked...

Proposition 24. Let M be a smooth manifold of real dimension 2n with an almost complex structure J. If J is induced by a complex structure on M, then $\mu = 0$.

Proof. Yang: To be continued...

The converse of Proposition 24 is also true, which is the famous Newlander-Nirenberg theorem. Yang: To add reference...

Theorem 25. Let M be a smooth manifold of real dimension 2n with an almost complex structure J. If $\mu=0$, then J is induced by a complex structure on M.

Requirements

Theorem 26 (Holomorphic Implicit Function Theorem). Let $f: \mathbb{C}^{n+m} \to \mathbb{C}^m$ be a holomorphic map. Write the coordinates of \mathbb{C}^{n+m} as $(z,w)=(z_1,\ldots,z_n,w_1,\ldots,w_m)\in \mathbb{C}^n\times\mathbb{C}^m$. If $\det(\partial f/\partial w)\neq 0$ at $(z_0,w_0)\in \mathbb{C}^{n+m}$ with $f(z_0,w_0)=0$, then there exist open neighborhoods U of z_0 and V of w_0 , and a unique holomorphic map $g:U\to V$ such that for any $(z,w)\in U\times V$, f(z,w)=0 if and only if w=g(z).

