

Solemne 2 - Semestre 2 - 2016

da

 trada

Reducir los niveles de cuantificación de la señal de en-

Ninguna de las demás respuestas

La mitad de la distancia entre ambos niveles

8. El umbral óptimo para diferenciar entre dos niveles de una modulación binaria es:

CIT-2102

Solemine 2 - Semestre 2 - 2010	011-2102
Instrucciones. Marque las casillas completamente sin sal le entregan. Las preguntas en total tienen un valor de 3 pu	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	← Marque su RUT sin dígito verificador (el número después del guión), y escriba sus nombres y apellidos abajo.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nombre(s) y apellido(s):
7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8	
1. La relación señal a ruido en una modulación afecta a: Ninguna de las demás respuestas	El Bit Error Rate
El ancho de banda del canal	La cantidad de Información
2. Un repetidor regenerativo se coloca en el camino de la señal aumentar el ancho de banda de la señal reemplazar la codificación de entrada por otra	al para: Ninguna de las demás respuestas reconstruir los pulsos
3. El uso del rolloff se debe a que: Ninguna de las demás respuestas El ancho de banda utilizado debe aumentarse	Los pulsos sinc(x) no son realizables físicamente Se debe reducir la cantidad de símbolos utilizada
4. Una modulación 64QAM: Usa 16 símbolos de 4 bits cada uno Ninguna de las demás respuestas	Agrupa 6 bits por símbolo Usa 6 símbolos por bit
5. A medida que se reduce el E_b/N_0 , el BER: Aumenta Disminuye	☐ Es independiente ☐ Ninguna de las demás respuestas
6. La condificación Manchester permite:	
Ninguna de las demás respuestas Reducir el ancho de banda ocupado respecto de una NRZ	☐ Eliminar el valor de continua (frecuencia cero) de la señal☐ Aumentar la capacidad del canal
7. Una modulación multinivel permite: Reducir la frecuencia de muestreo de la señal de entra-	Reducir el ancho de banda ocupado

entrada

Ninguna de las demás respuestas

La mitad del valor RMS de la señal

La mitad de la frecuencia de muestreo de la señal de

9. La Interferencia Intersímbolo es consecuencia de:	
El efecto del canal sobre la señal transmitida	Ninguna de las demás respuestas
El efecto de la cuantificación no uniforme sobre la señal capturada	El efecto de la portadora sobre la señal transmitida
10. Para la modulación PSK, al aumentar la cantidad de símbe	olos:
Se requiere menor Señal a Ruido para lograr el mismo	Ninguna de las demás respuestas
BER	Se reduce el nivel de ruido de la señal
Se requiere mayor Señal a Ruido para lograr el mismo BER	
11. La cantidad de elementos de una constelación depende de:	
la cantidad símbolos que se utilizan	la potencia de la portadora
Ninguna de las demás respuestas	la capacidad del canal según Shannon
12. Al aumentar la cantidad de bits por muestra, en PCM:	
Aumenta el bit rate	Ninguna de las demás respuestas
Aumenta el ancho de banda disponible en el canal de comunicación	Se reduce la cantidad de símbolos en la modulación
13. Problema 1 - 1.5 puntos	
El ancho de banda disponible en un canal es de 100KHz; la ser	
y se utilizan 16 bits por muestra. Calcule el Bit rate, elija la	
$BER - E_b/N_0$ y encuentre el BER para un $E_b/N_0 = 12dB$. Use	e rolloff si lo cree necesario.
	$0 \boxed{0.2} \boxed{0.4} \boxed{0.6} \boxed{0.8} \boxed{1} \boxed{1.2} \boxed{1.4} \boxed{1.5}$
14. Problema 2 - 1.5 puntos	
Un sistema de espectro expandido utiliza 16 chips por bit. Calcul si la señal de entrada tiene $R=1000 \mathrm{bits/s}$.	le la ganancia de procesamiento y el ancho de banda ocupado
	$0 \boxed{0.2 0.4 0.6 0.8 1 1.2 1.4 1.5}$

$$t = int \left(\frac{D_{\min} - 1}{2}\right)$$

$$D_{\min} - 1 = e + t \qquad C_{i} \oplus C_{j} = C_{k}$$

$$P(e > R' errores) = 1 - \sum_{j=0}^{\kappa} P(j errores)$$

$$P(j errores) = (P_{e})^{j} (1 - P_{e})^{n-j} \cdot {}^{n}C_{j} \qquad \eta = \frac{R}{C}$$

$$M(x) = m_{k-1} x^{k-1} + \dots + m_{1} x + m_{0} \qquad w(t) = A \cdot \cos(w_{0} \cdot t + \varphi_{0})$$

$$P(j errores) = (P_{e})^{j} (1 - P_{e})^{n-j} \cdot {}^{n}C_{j}$$

$${}^{n}C_{j} = \frac{n!}{j!(n-j)!} = {n \choose j} \qquad t = \frac{n-k}{2} \qquad C = B \cdot \log_{2}\left(1 + \frac{S}{N}\right)$$

$$\lambda = \frac{c}{f_{c}} \qquad n = \sqrt{1 - \frac{81 \cdot N}{f^{2}}} \qquad d^{2} + r^{2} = (r+h)^{2}$$

$$d^{2} = 2rh + h^{2}$$

$$P_{r} = \frac{P_{t}G_{t}G_{r}\lambda^{2}}{(4\pi d)^{2}} \qquad d = \sqrt{(2 \cdot r \cdot h)} \qquad I_{j} = \log_{2}\left(\frac{1}{P_{j}}\right) bits$$

$$H = \sum_{j=1}^{m} P_{j} \cdot I_{j} = \sum_{j=1}^{m} P_{j} \cdot \log_{2}\left(\frac{1}{P_{j}}\right) bits$$

$$R = \frac{H}{T} bits/s$$

$$s(t) = \sum_{k=-\infty}^{\infty} \prod \left[\frac{t - kT_{s}}{\tau}\right]$$

$$M = 2^n \qquad \left(\frac{S}{N}\right)_{dB} = 6.02 \, n + \alpha$$

$$\left(\frac{S}{N}\right)_{salida} = M^2$$

$$= M^2 \qquad \qquad \eta_{max} = \log_2 \left(1 + \frac{S}{N} \right)$$

$$\lambda = \frac{c}{f_c}$$

$$d = \sqrt{(2 \cdot r \cdot h)}$$

$$\frac{A_J^2}{R_c/R_b}$$

$$\frac{A_c^2}{2R_c}$$

$$\frac{A_c^2}{2R_c} \quad \frac{R_b}{R_c} \quad N = \frac{\delta^2 B}{3 f_s} = \frac{4\pi^2 A^2 f_a^2 B}{3 f_s^3}$$

$$r_{tierracorregido} = 8497 \times 10^3 m$$

$$\lambda = \frac{c}{f_c}$$

$$d = \sqrt{(2 \cdot r \cdot h)}$$

$$r_{tierracorregido} = 8497 \times 10^3 m$$

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4 \pi d)^2}$$

$$B_T = 2\Delta F + (1+r)R$$

$$B_T = \left(\frac{1+r}{l}\right)R$$

$$P_f = \left(\frac{1}{2}\right)^K = 2^{-K}$$

$$B_T = 2(\beta + 1)B$$

$$B_{T} = 2\Delta F + (1+r)R$$

$$B_{T} = \left(\frac{1+r}{l}\right)R$$

$$B_{T} = \left(\frac{1+r}{l}\right)R$$

$$B_{T} = 2(\beta+1)B$$

$$D = \frac{2B}{l}$$

$$D = \frac{2B}{l+r}$$

$$D = \frac{2B}{1+r}$$

$$Mod_{Pos} = \frac{A_{max} - A_{min}}{2 \cdot A_{c}} \cdot 100 = \frac{max[m(t)] - min[m(t)]}{2} \cdot 100$$

$$B_{PCM} \geqslant \frac{1}{2} R = \frac{1}{2} n \cdot f_{s}$$

$$B_{PCM} \geqslant \frac{1}{2} R = \frac{1}{2} n \cdot f_s$$

