Exercises on iterative methods for nonlinear systems Advanced Numerical Analysis

2019-2020

1 Newton's method

Exercise 1 Write a MATLAB function that implements Newton's method to solve the nonlinear system F(x) = 0. The function can have the following syntax:

The vector function F and the Jacobian matrix (Jac) should be provided as function handles. The meaning of the additional input parameter lsol is as follows:

Regarding the output parameters, resvec is a vector containing the norm of the residual at each nonlinear iteration. The iterative Newton procedure must be stopped whenever the following test is satisfied

$$\frac{\|\mathbf{F}(\mathbf{x}_k)\|}{\|\mathbf{F}(\mathbf{x}_0)\|} < \texttt{tol}.$$

Exercise 2 Try your Newton implementation to solve the 2×2 nonlinear problem of Lecture 11, namely

$$\begin{cases} x^2 + y^2 - 4 = 0 \\ xy - 1 = 0 \end{cases} \quad \mathbf{x}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Use a tolerance $tol = 10^{-8}$ and lsol = 1 for obvious reasons. Verify the concordance of your output with that of the slides.

Exercise 3 Solve the following system of nonlinear equations

$$\mathbf{F}(\mathbf{x}) = 0$$
, where $\mathbf{F}(\mathbf{x}) = A\mathbf{x} - 0.1\sin(\mathbf{x}) - 5$,

and A is the usual discretized Laplacian matrix provided by the delsq and number of internal nodes in each mesh dimension nx = 48.

Use an initial vector \mathbf{x}_0 such that $(x_0)_i = 1000 * \sin\left(\frac{i}{n}\right)$; tol = 10^{-12} and itmax = 100.

1. Solve the problem twice using first lsol = 1 and then lsol = 0, namely the left-preconditioned GMRES method for the inner linear systems. In this second case suggested values for the parameters are:

$$restart = 50$$
; $tol_GMRES = 10^{-8}$; $itmax_GMRES = 20$; preconditioner: $ILU(0)$.

2. Plot the nonlinear residual norm vs the Newton iteration number for both runs in the same picture. The two curves must roughly overlap.

1

Eigenvalue problem as a nonlinear system of equations

Exercise 4 Given an $n \times n$ matrix A:

- 1. Write an $(n+1) \times (n+1)$ system of nonlinear equations to find an eigenvalue/eigenvector pair (eigenpair) (\mathbf{u}, λ) . Use the definition of eigenvalue, where the eigenvector is subject to the constraint: $\|\mathbf{u}\| = 1$.
- 2. What is the Jacobian of this system?
- 3. Use Newton's method (with lsol = 1) to compute the smallest eigenvalue and corresponding eigenvector of the discretized Laplacian (with nx = 50) through the following steps:
 - (a) Compute an initial approximation of (\mathbf{u}, λ) , namely $(\mathbf{u}_0, \lambda_0)$ by slightly perturbing the "exact" eigenpair computed by the Matlab function eigs:

$$[u0, lambda0] = eigs(A, 1, 'sm');$$

 $u0 = u0 + ones(n, 1)*1e-2;$
 $lambda0 = lambda0 + 1e-2;$

- (b) Solve $\mathbf{F}(\mathbf{x}) = 0$ using Newton's method with tolerance tol = 10^{-12} , itmax = 20, $\mathbf{x}_0 = \begin{bmatrix} \mathbf{u}_0 \\ \lambda_0 \end{bmatrix}$.
- (c) Plot the norm of the residuals vs the iteration number. Say how is the convergence of Newton's method in this case.
- (d) Is the computed eigenvalue accurate to machine precision?
- 4. **Difficult**: If $\mathbf{x} = (\mathbf{u}, \lambda) \in \mathbb{R}^{n+1}$ is an eigenpair, in which case is $F'(\mathbf{x})$ nonsingular?

2 Quasi-Newton method

Exercise 5 Write a MATLAB function that implements Broyden Quasi-Newton method to solve the nonlinear system F(x) = 0. The function can have the following syntax:

Try your function onto the 2×2 problem:

$$\begin{cases} x^2 + y^2 - 4 = 0 \\ xy - 1 = 0 \end{cases} \quad \mathbf{x}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Use a tolerance tol = 10^{-8} . The method should converge in 8 iterations.

The vector function F (and possibly also the initial Jacobian approximation B0) should be provided as function handles. Solve the inner linear system using the LU factorization of B0.

3 Inexact Newton method

We consider the classical 2-dimensional Bratu problem ¹ which is an elliptic nonlinear PDE with homogeneous Dirichlet boundary conditions. The problem is given by

$$\Delta u + \lambda \exp(u) = 0 \quad \text{in } \Omega$$

$$u = 0 \quad \text{in } \partial \Omega$$
(1)

¹G. Bratu, *Sur les équations intégrales non linéaires*, Bulletin de la Société Mathématique de France, 42 (1914), pp. 113–142.

where $\Omega = [0,1]^2 \subset \mathbb{R}^2$ is an open set and $\partial\Omega$ defines its boundary; $\lambda \in [0,6.8]$ is a real parameter. Discretization of (1) by the Finite Difference method yields the following system of nonlinear equations:

$$A\mathbf{u} + \lambda \exp(\mathbf{u}) = 0 \tag{2}$$

where $\exp(\mathbf{u}) \equiv (\exp(u_1), \dots, \exp(u_n))^T$, A is the Finite Difference discretization of the Laplacian.

Exercise 6 Write a MATLAB script to solve the nonlinear system (2). In detail your MATLAB script must

1. compute the (scaled) FD discretization of the Laplacian in the unit square with $h = 5 \times 10^{-3}$. **Note**: Recall that the delsq function returns the SPD matrix $B = -h^2A$ and hence (2) reads

$$-B\mathbf{u} + h^2\lambda \exp(\mathbf{u}) = 0. \tag{3}$$

- 2. set $\lambda = 6.5$ and solve (3) using \mathbf{x}_0 with all components equal to 0.1 and tolerance tol = 10^{-13} , with the following methods:
 - (a) Newton's method with the solution of the linear systems by a direct method (LU factorization).
 - (b) Broyden (Quasi-Newton) method with the solution of the linear systems by a direct method (LU factorization).
 - (c) Inexact Newton method with the solution of the linear systems using the GMRES method with p=50 (restart parameter), ILU preconditioner with setup.type='ilutp' and droptol = 1e-2, and the following four sequences of tolerance η_k .

Set
$$\eta_{\max} = 0.1$$
, $\eta_0 = \eta_{\max}$ and, for all $k \ge 1$,
i. $\eta_k = \eta_{\max}$
... η_{k-1}

ii.
$$\eta_k = \frac{\eta_{k-1}}{3}$$

iii. $\eta_k = \min\{\eta_{\max}, 0.95 \| \mathbf{F}(\mathbf{x}_k) \| \}$
iv. $\eta_k = \min\left\{\eta_{\max}, 0.95 \frac{\| \mathbf{F}(\mathbf{x}_k) \|^2}{\| \mathbf{F}(\mathbf{x}_{k-1}) \|^2}\right\}$

3. Display the results as a table in which every row represents a single Newton iteration showing the iteration number, the residual norm, and, in case of iterative solution of the Newton system, also the forcing term η_k and the number of GMRES iterations.

Example of possible output:

- 4. Among the four strategies suggested, which is the best choice for sequence η_k ? Compare them with respect to the total number of **linear** iterations. Explain the fact that choice (iv) produces better results than choice (iii).
- 5. Produce two figures with the semilogarithmic convergence profile (residual norm vs number of nonlinear iteration) of the methods: the first picture should contain the Newton vs Quasi-Newton profiles; the second one should plot the convergence profiles of Newton's method with direct solution of the inner systems and Inexact Newton with the four choices of η_k .
- 6. Provide a table comparing execution times of all the methods in your computing environment.