Due: Dec 7-Dec 8

Math 570: Mathematical Logic

Homework 11

1. Let *T* be a σ -theory, where σ is a finite signature.

(a) Prove that if *T* is decidable, then it has a recursive completion.

Hint: Use the Deduction theorem:

$$T \cup \{\varphi_0, \dots, \varphi_{n-1}\} \vdash \theta$$
 if and only if $T \vdash \bigwedge_{i < n} \varphi_i \to \theta$.

- (b) Deduce **Church's theorem**: Any σ -theory that recursively interprets PA is undecidable.
- 2. Prove that the following are equivalent for each σ_{arthm} -sentence θ .
 - (1) $PA \models \theta$.
 - (2) $N \models Provable_{PA}([\theta])$.
 - (3) $PA \models \mathbf{Provable}_{PA}([\theta]).$
- 3. Let φ and ψ denote a σ_{arthm} -sentence. Which implications hold between the following statements? For each implication, prove it or give an example of a pair φ , ψ for which it fails.
 - (1) $PA \vdash \varphi \implies PA \vdash \psi$;
 - (2) $PA \vdash \varphi \rightarrow \psi$.
- **4.** For each of the following $\sigma_{\rm arthm}$ -sentences, either prove that PA satisfies it for every $\sigma_{\rm arthm}$ -sentence θ or provide an example of θ for which PA does not satisfy it.
 - (a) $\mathbf{Provable}_{\mathrm{PA}\cup\{\neg\theta\}}([\theta]) \to \mathbf{Provable}_{\mathrm{PA}}([\theta])$
 - (b) $Provable_{PA}([\theta]) \rightarrow \neg Provable_{PA}([\neg \theta])$
 - (c) $Provable_{PA}(Provable_{PA}([\theta])) \rightarrow Provable_{PA}([\theta])$
- 5. (a) Show that the set of Σ_n^0 relations is closed under finite unions/intersections, projections, and recursive preimages, i.e. under the operations \vee , \wedge , $\exists^{\mathbb{N}}$, and taking a preimage under a recursive function.
 - (b) Conclude that the set of Π_n^0 relations is closed under finite unions/intersections, co-projections, and recursive preimages, i.e. under the operations \vee , \wedge , $\forall^{\mathbb{N}}$, and taking a preimage under a recursive function.
 - (c) (Optional for $n \ge 2$, mandatory for n = 1) Prove that Σ_n^0 is closed under recursive images.

Hint: For $n \geq 2$, to make the induction on n work, first figure out what the corresponding statement is for Π^0_n . To do so, look at what happens with projections (they are examples of recursive images).