

Deep Learning for Remote Sensing – EduServ Course

Sébastien Lefèvre, Loic Landrieu

Mars 2020

Presentation outline

Deep Learning Basics

Outline

Deep Learning Basics

Deep Learning Basics

Presentation Layout

- Deep Learning Basics
 - Beyond the Hype
 - Deep Learning
 - Layer Bestiary
 - Loss Functions
 - Misc.
 - General Architecture
 - Implementation

Math/Stats: Problem is an ill-posed problem.
 Eg: projection onto the cat picture manifold (?) [impractical].

Math/Stats: Problem is an ill-posed problem.
 Eg: projection onto the cat picture manifold (?) [impractical].

Computer Science:

Eg: template matching [impractical]

- Math/Stats: Problem is an ill-posed problem.
 Eg: projection onto the cat picture manifold (?) [impractical].
- Computer Science:

Eg: template matching [impractical]

Artificial Intelligence (pre-ML)

Eg: we build a whiskers/eyes/ears detectors and combine them through a set of rules.

- Math/Stats: Problem is an ill-posed problem.
 Eg: projection onto the cat picture manifold (?) [impractical].
- Computer Science:

Eg: template matching [impractical]

- Artificial Intelligence (pre-ML)
 - Eg: we build a whiskers/eyes/ears detectors and combine them through a set of rules.
- Machine Learning (pre-DL):

Eg: We train a cat picture classifier from 10 000 images of cat/non-cat using our hand-made image descriptors based on interest points.

Math/Stats: Problem is an ill-posed problem.
 Eg: projection onto the cat picture manifold (?) [impractical].

Computer Science:

Eg: template matching [impractical]

• Artificial Intelligence (pre-ML)

Eg: we build a whiskers/eyes/ears detectors and combine them through a set of rules.

• Machine Learning (pre-DL):

Eg: We train a cat picture classifier from 10 000 images of cat/non-cat using our hand-made image descriptors based on interest points.

Deep Learning:

Eg: We train a network from 1,000,000 raw cat/non-cat images.

Presentation Layout

- Deep Learning Basics
 - Beyond the Hype
 - Deep Learning
 - Layer Bestiary
 - Loss Functions
 - Misc.
 - General Architecture
 - Implementation

Deep Learning Basics Deep Learning 7 / 4

Objective Statement of DL

- Data: $[x_i]_{i=1}^N$, Target: $[y_i]_{i=1}^N$
- **Objective:** learn a function f such that: $f(x_i)$ is close to y_i for most i.
- In classical ML, instead of working with x we work with features handcrafted by experts to be as expressive as possible.
- In the DL paradigm, we operate directly on the raw data.
- Two key questions:
- What kind of function is f?
- How to chose it such such that $f(x_i) \sim y_i$

Deep Learning Basics Deep Learning

y a cat

Artificial Neuron

- Functions *f* typically composed of elementary bricks: neurons.
- $n(x) = \sigma(\sum_{k} \theta[k]x[k])$
- x : inputs
- θ_k : weights
- ullet σ : non-linearity
- n(x): output
- In short: a matrix product x^Tθ and non-linearity.
- Non linearity essential (or else networks simplify to matrix products).

$$\sigma = \text{sigmoid}, \text{Relu} = \max(0, x).$$

Deep Learning Basics Deep Learning 9 /

Network Architecture

- Organization in layers, ie Multilayer Perceptron.
- Feature map: neurons activation at each layer = a learned descriptor of the data.
- The deeper layers extracts more complicated / abstract features.

credit: pubs.sciepub.com/ajmm

Deep Learning Basics Deep Learning 10 / 46

Network Architecture

- Organization in layers, ie Multilayer Perceptron.
- Feature map: neurons activation at each layer = a learned descriptor of the data.
- The deeper layers extracts more complicated / abstract features.
- Receptive Fields: of a neuron: input which will influence its activation function.
- Network architecture must reflects the nature of the data.
- Universal Approximation Theorem: any functions (continuous, on a compact set) can be approximated to arbitrary precision by a network with sufficient width.

Deep Learning Basics Deep Learning 10 / 46

Training a network

• What a neural network outputs depends on the weights of each of its neuron: f_{θ} .

Deep Learning Basics Deep Learning 11 / 46

Training a network

• What a neural network outputs depends on the weights of each of its neuron: f_{θ} .

Deep Learning Basics Deep Learning 11 / 46

Training a network

- What a neural network outputs depends on the weights of each of its neuron: f_{θ} .
- For a given architecture, we call Ω the set of all possible weights θ .
- Training a neural network: finding a good parameterization $\theta \in \Omega$.

Deep Learning Basics Deep Learning 11 / 46

Choosing a Loss function

- " $f(x_i)$ close to y_i " can be hard to deal with directly.
- ullet We formulate it as an optimization problem using a Loss function: \mathcal{L} .
- \mathcal{L} chosen such that the closer $f(x_i)$ is to y_i , the closer $\mathcal{L}(f(x_i), y_i)$ is to 0.
- Eg. MSE: $||f(x_i) y_i||^2$, cross entropy : $\log(|x_i|y_i|)$.
- Now we can formulate the problem as:

$$\arg\min_{\theta\in\Omega}\sum_{i=1}^{N}\mathcal{L}(f_{\theta}(x_{i}),y_{i})$$

An optimization problem with many parameters.

Deep Learning Basics Deep Learning 12 / 46

$$rg \min_{ heta \in \Omega} \sum_{i=1}^{N} \mathcal{L}(f_{ heta}(x_i), y_i)$$

- Gradient $\nabla_{\theta} \mathcal{L}(f_{\theta}(x_i), y_i) = slope$ of \mathcal{L} at θ , ie a direction in which we can change the parameters θ to increase a \mathcal{L} .
- \bullet By going in the opposite direction, we decrease $\mathcal{L}.$
- We can minimize $\mathcal L$ with the Gradient Descent algorithm:

$$\theta^{(0)}$$
 initialization for i = 1..ite_max $\theta^{(i)} \leftarrow \theta^{(i)} - \lambda \nabla \mathcal{L}(f_{\theta}(x), \hat{z})$

- λ : learning rate.
- If \mathcal{L} is convex wrt. θ we have guarantees to find global optimum with adapted λ .

credit: kdnuggets.com

Deep Learning Basics Deep Learning 13 / 46

$$\underset{\theta \in \Omega}{\operatorname{arg\,min}} \sum_{i=1}^{N} \mathcal{L}(f_{\theta}(x_i), y_i)$$

- Gradient $\nabla_{\theta} \mathcal{L}(f_{\theta}(x_i), y_i) = slope$ of \mathcal{L} at θ , ie a direction in which we can change the parameters θ to increase a \mathcal{L} .
- \bullet By going in the opposite direction, we decrease $\mathcal{L}.$
- We can minimize L with the Gradient Descent algorithm:

$$\theta^{(0)}$$
 initialization for i = 1..ite_max $\theta^{(i)} \leftarrow \theta^{(i)} - \lambda \nabla \mathcal{L}(f_{\theta}(x), \hat{z})$

- λ : learning rate.
- If \mathcal{L} is convex wrt. θ we have guarantees to find global optimum with adapted λ .
- However, \mathcal{L} is typically **not convex**.
- We get stuck in local optima.

- An adaptation of gradient descent: compute gradients using a single random data point at the time:
- Stochastic Gradient descent:

$$\begin{array}{l} \theta^{(0)} \text{ initialization} \\ \text{for i = 1..ite_max} \\ \rho \leftarrow \text{ random permutation 1 ... n} \\ \text{for j = 1..n} \\ k \leftarrow p[j] \\ \theta^{(i)} \leftarrow \theta^{(i)} - \lambda \nabla \mathcal{L}(f_{\theta}(x_k), \hat{z}_k) \end{array}$$

- **Problem:** $\nabla \mathcal{L}(f_{\theta}(x_j), \hat{z})$ is a poor substitute for $\nabla \mathcal{L}(f_{\theta}(x), \hat{z})$.
- Usually won't converge at all.

Deep Learning Basics Deep Learning 14 / 46

- A compromise: we group elements by batches of size B.
- Batch-Stochastic Gradient descent:

$$\begin{array}{l} \theta^{(0)} \text{ initialization} \\ \text{for } \text{i} = \texttt{1..ite_max} \\ p \leftarrow \text{ random permutation 1 ... n} \\ \text{for } j = \lfloor B \rfloor \\ b = p[j \times B \cdots j \times (B+1)] \\ \theta^{(i)} \leftarrow \theta^{(i)} - \lambda \nabla \mathcal{L}(f_{\theta}(x_b), \hat{z}_b) \end{array}$$

- B = n: GD. B = 1 SGD
- Large batches: fast convergence, can get stuck.
- Small batches: slow convergences, better minima found.
- Must be chosen in accord to λ .

Deep Learning Basics Deep Learning 15

Accelerated Schemes

- In practice, practitioners use accelerated schemes
- Heuristics based on momentum and adaptive learning rate, ie some
 Momentum: (fading) memory of gradients past. Helps overcome
 Adaptive learning rate: each parameter has its own learning rate. Helps
- In practice, use ADAM: Adaptive Moment Estimation for most problems.
- Already integrated in modern framework, requires zero effort to switch.

Deep Learning Basics Deep Learning 16 / 46

Backpropagation

- **Objective:** efficiently compute $\nabla_{\theta} \mathcal{L}(f_{\theta}(x)), y$).
- Organization in L layers: $\theta = (\theta_1, \cdots, \theta_L)$, with $f_{\theta} = f_{\theta_L}^{(L)} \circ \cdots \circ f_{\theta_1}^{(1)}$.
- Intermediary features: $z^{(i)} = f_{\theta_i}^{(i)} \circ \cdots \circ f_{\theta_1}^{(1)}(x)$
- Chain Rule of Differentiation:

Therentiation:
$$\nabla_{\mathcal{L}} = \frac{\partial \mathcal{L}(x,\hat{z})}{\partial x}$$

$$\nabla_{\theta_{L}} \mathcal{L}(z^{(L)},\hat{z}) = \frac{\partial z^{(L)}}{\partial \theta_{L}} \frac{\partial \mathcal{L}(z^{(L)},\hat{z})}{z^{(L)}} = \frac{\partial z^{(L)}}{\partial \theta_{L}} \nabla_{\mathcal{L}}$$

$$\nabla_{\theta_{L-1}} \mathcal{L}(z^{(L)},\hat{z}) = \frac{\partial z^{(L-1)}}{\partial \theta_{L-1}} \frac{\partial z^{(L)}}{\partial z^{(L-1)}} \frac{\partial \mathcal{L}(z^{(L)},\hat{z})}{z^{(L)}} = \frac{\partial z^{(L-1)}}{\partial \theta_{L-1}} \nabla_{L}$$

$$\vdots$$

$$\frac{\partial \mathcal{L}(f(x),\hat{z})}{\partial \theta_{1}} = \frac{\partial z^{(1)}}{\partial \theta_{1}} \nabla_{2}$$

Deep Learning Basics Deep Learning 17 / 46

Backpropagation, cont'd

credit. medium.com/ @karpat

- A forward-backward approach:
- compute the feature map $z^{(1)}\cdots z^{(L)}$
- compute the gradients $\nabla_{\mathcal{L}}, \nabla_{\mathcal{L}} \cdots \nabla_{1}$.
- Requires to keep all intermediate values in memory.
- Memory-mongers can be used to reduce memory impact.
- An automated process, requires zero code or calculation when using standard layers and modern frameworks.

Deep Learning Basics Deep Learning 18 / 46

Presentation Layout

- Deep Learning Basics
 - Beyond the Hype
 - Deep Learning
 - Layer Bestiary
 - Loss Functions
 - Misc.
 - General Architecture
 - Implementation

Deep Learning Basics Layer Bestiary 19 / 46

Linear Layers

- Simplest building block.
- Equivalent to learn a matrix multiplication *M* and a bias *b*:

$$z^{i+1} = Mz^i + b.$$

- Number of parameters:
- d_i size of z^i
- d_{i+1} size of z^i
- # parameters: $(d_i + 1) \times d_{i+1}$

Deep Learning Basics Layer Bestiary 20

Non-Linearity

- Necessary to alternate linear and non linear operations.
- Rectified Linear Unit (ReLu): simplest non-linearity.

$$\sigma(x) \mapsto \max(0, x)$$

Deep Learning Basics Layer Bestiary 21 / 46

Non-Linearity

- Necessary to alternate linear and non linear operations.
- Rectified Linear Unit (ReLu): simplest non-linearity.

$$\sigma(x) \mapsto \max(0,x)$$

Softmax: maps a vector to a distribution.

$$\sigma([x]_{i=1}^n) \mapsto \left[\frac{\exp(x_i)}{\sum_i \exp(x_i)}\right]_{i=1}^n$$

Deep Learning Basics Layer Bestiary 21 / 46

Non-Linearity

- Necessary to alternate linear and non linear operations.
- Rectified Linear Unit (ReLu): simplest non-linearity.

$$\sigma(x) \mapsto \max(0, x)$$

Softmax: maps a vector to a distribution.

$$\sigma([x]_{i=1}^n) \mapsto \left[\frac{\exp(x_i)}{\sum_i \exp(x_i)}\right]_{i=1}^n$$

• **Sigmoid**: smooth, maps to [-1,1]

$$\sigma(x) \mapsto \tanh(x)$$

Convolutional Layers

- **Problem:** the size of *W* increase quadratically for FC layers.
- 100×100 image : 10^8 parameters per layer (for grey scale images, more for RGB). **Unmanageable!**

credit: pubs.sciepub.com/ajmm

Deep Learning Basics Layer Bestiary 22

Convolutional Layers

- **Problem:** the size of *W* increase quadratically for FC layers.
- 100×100 image : 10^8 parameters per layer (for grey scale images, more for RGB). **Unmanageable!**
- **Solution:** Organize layer into image-like cubes.

Deep Learning Basics Layer Bestiary 22 / 46

Convolutional Layers

- **Problem:** the size of *W* increase quadratically for FC layers.
- 100 × 100 image: 10⁸ parameters per layer (for grey scale images, more for RGB). Unmanageable!
- **Solution:** Organize layer into image-like cubes.
- Local convolutions: values only depend on a small number of points in previous layer (receptive field).

$$f^{(l+1)}[i,j] = \sum_{k,j \in [-1,0,1]^2} w_{k,l} f^{(l)}[i+k,j+l]$$

• Number of parameters of convolution $k \times k$ from map of depth d_1 to a map of depth $d_2 = \left(\underbrace{k \times k \times d_1}_{} + 1\right) \underbrace{\times d_2}_{}$

Deep Learning Basics

Pooling Layers

- **Objective:** decrease the size of a feature map.
- Maxpool:

$$f^{(l+1)}[i,j] = \max_{k,j \in [-1,0,1]^2} f^{(l)}[2i+k,2j+l]$$

 Divides the size of the feature map by 4 for images.

Deep Learning Basics Layer Bestiary 23 / 46

Pooling Layers

- **Objective:** decrease the size of a feature map.
- Maxpool:

$$f^{(l+1)}[i,j] = \max_{k,j \in [-1,0,1]^2} f^{(l)}[2i+k,2j+l]$$

- Divides the size of the feature map by 4 for images.
- Meanpool, medianpool: viable alternatives for noisy data.

credit: cs231n.github.io

Deep Learning Basics Layer Bestiary 23 / 46

Pooling Layers

- **Objective:** decrease the size of a feature map.
- Maxpool:

$$f^{(l+1)}[i,j] = \max_{k,j \in [-1,0,1]^2} f^{(l)}[2i+k,2j+l]$$

- Divides the size of the feature map by 4 for images.
- Meanpool, medianpool: viable alternatives for noisy data.

Upsampling Layers

- **Unpool:** reverse of pooling layer: increse size of feature maps.
- Requires the max indices from corresponding maxpool layer.
- Operate jointly with a twin maxpool layer.
- Deconvolution: learns the reverse mapping from convolutions, accumulate in the overlap.

credit: DeepPainter: Painter Classification Using Deep Convolutional Autoencoders

Upsampling Layers

- **Unpool:** reverse of pooling layer: increse size of feature maps.
- Requires the max indices from corresponding maxpool layer.
- Operate jointly with a *twin* maxpool layer.
- Deconvolution: learns the reverse mapping from convolutions, accumulate in the overlap.
- Can be used for super-resolution for example.

credit: medium.com/apache-mxnet

Upsampling Layers

- **Unpool:** reverse of pooling layer: increse size of feature maps.
- Requires the max indices from corresponding maxpool layer.
- Operate jointly with a *twin* maxpool layer.
- Deconvolution: learns the reverse mapping from convolutions, accumulate in the overlap.
- Can be used for super-resolution for example.

round Truth Bicubic Net

Attention Layers

- Objective: mute some channels of feature map.
- Indirectly, which channels are the most important?
- With $a \in [0, 1]^d$:

$$f^{(l+1)} = f^{(l)} \odot a$$

 a can also be a distribution (obtained from a softmax) to represent a limited amount of attention.

Attention Layers

- **Objective:** mute some channels of feature map.
- Indirectly, which channels are the most important?
- With $a \in [0, 1]^d$:

$$f^{(l+1)} = f^{(l)} \odot a$$

- a can also be a distribution (obtained from a softmax) to represent a limited amount of attention.
- The attention layer is typically obtained from another modality, eg. f from satellite images, a from cloud cover.

credit: www.gislounge.com

Residual Layers

- Observation: Deeper network performs better.
- However, each layer can lose a small part of the information exponential decrease of information.
- Solution Residual connections:

$$x^{(l+1)} = \phi\left(x^{(l)}\right) + x^{(l)}$$

- If not needed, $\phi = 0$ will produce identity.
- $oldsymbol{\phi}$ can focus on adding to / rectifying the feature map without having to convey all information.
- Can be used in truly deep network (eg. 1000 layers)

Normalization-Layer

 $\label{eq:hamiltonian} H,W: \quad \text{size of feature map} \quad C: \quad \text{Number of channels} \quad N: \quad \text{size of batch} \\ \quad \text{credit: GroupNorm}$

- BatchNorm: each channel is normalized batchwise.
- LayerNorm: each layer is normalized channelwise.
- InstanceNorm: each channel is normalized layerwise.
- Group Norm: each layer is broken own in normalized groups.

Batch-Normalization

• Batchnorm: scale the activation of neurons for a given layer to be of 0 mean and 1 deviation in a batch.

• Justification:

- we always normalize the inputs of any ML approach
- in DL, we can see the first k layers as an encoder (feature extractor), and the rest as a decoder (classifier/regressor), for any k
- consequently, activation maps at each layers must be normalized
- can't normalize on all training set (weights are changing) ⇒ normalize per batch.

Other Benefits:

- Act as feature augmentation for each layer, increase robustness
- More efficient step size when all activation/weights are comparable.
- Batches must be sampled independently!

Drop Out

- A popular regularization layer, decrease overfiting
- Random neurons are de-activated during training.
- During inference, dropout deactivated.
- Increase resilience, promotes redundancy.
- Can be interpreted as an ensemble method.

(b) After applying dropout.

credit towardsdatascience

Deep Learning Basics Laver Bestiary

Recurrent Neural Network

- Objective: modeling temporal structure.
- General idea: the network maintains a hidden state h_t called *memory*, which remember useful information at a given time.
- **Update:** $h_{t+1} = f(h_t, x_t)$.
- Have stability problem: vanishing / exploding gradients:

$$h_T = f(f(\cdots f(f(h_0, x_0), x_1) \cdots, x_{T-1}), x_T)$$

 If a small fraction of information is lost each time, exponentially decreasing information. Memory is unstable!

credit: https://towardsdatascience.com/

credit: https://towardsdatascience.com/

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

credit: https://towardsdatascience.com/

$$\begin{split} i_t &= \sigma\left(W_i \!\cdot\! [h_{t-1}, x_t] \ + \ b_i\right) \\ \tilde{C}_t &= \tanh(W_C \!\cdot\! [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

credit: https://towardsdatascience.com/

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

credit: https://towardsdatascience.com/

$$\begin{split} o_t &= \sigma\left(W_o~[~h_{t-1}, x_t]~+~b_o\right) \\ h_t &= o_t * \tanh\left(C_t\right) \end{split}$$

credit: https://towardsdatascience.com/

Gated Recurrent Unit

credit: https://towardsdatascience.com/

Presentation Layout

- Deep Learning Basics
 - Beyond the Hype
 - Deep Learning
 - Layer Bestiary
 - Loss Functions
 - Misc.
 - General Architecture
 - Implementation

Deep Learning Basics Loss Functions 33 / 46

Examples of Loss Functions

- Reminder: loss function: differentiable surrogate to target metrics.
- Cross-Entropy: surrogate to overall accuracy. With one-hot-encoding:

Cross entropy
$$(z,\hat{z}) = -\frac{1}{n}\sum_{i=1}^{n}\log(z_i[\hat{z}_i[k]])$$

• Square Difference: for regression tasks.

$$MSE(z, \hat{z}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} ||\hat{z}_{i}[k] - z_{i}[k]||^{2}$$

Deep Learning Basics Loss Functions 34 / 46

Triplet-Loss

- Metric Learning: learning an embedding z such that similar elements have similar z.
- Anchor the target element.
- Positive element similar to the target.
- Negative element different from the target.
- Triplet Loss:

$$\mathcal{L}(A, P, N) = \max(\|(z(A) - z(P)\| - \|(z(A) - z(N)\| + \alpha, 0)).$$

- Inference: nearest neighbor.
- Hard example mining.

credit: omoindrot.github.io

Deep Learning Basics Loss Functions 35 / 46

Presentation Layout

- Deep Learning Basics
 - Beyond the Hype
 - Deep Learning
 - Layer Bestiary
 - Loss Functions
 - Misc.
 - General Architecture
 - Implementation

Deep Learning Basics Misc. 36 / 46

Augmentation Strategies

- Most problems have invariance:
- to noise
- to rotation
- to symmetries
- etc...
- Our training set may not reflect these invariance.
- Idea: at each iteration, we add random noise/rotation/symmetries to the training examples.
- Effects:
- artificially increase the dataset size
- prevent network to learns unwanted training set characteristic

Enlarge your Dataset

credit: medium.com

Deep Learning Basics Misc. 37 / 46

Presentation Layout

- Deep Learning Basics
 - Beyond the Hype
 - Deep Learning
 - Layer Bestiary
 - Loss Functions
 - Misc.
 - General Architecture
 - Implementation

Deep Learning Basics General Architecture 38 / 46

Input

Deep Learning Basics General Architecture 39 / 46

Multilayer Perceptron

Input

Batchnorms and ReLu are implied most of the time.

Deep Learning Basics General Architecture 40 / 46

Deep Learning Basics General Architecture 41 / 46

Convolutional Encoder-Decoder

Deep Learning Basics General Architecture 42 / 46

Convolutional Encoder-Decoder

Tensor	Size	Tensor	Size
input	$H \times W \times 4$		
x_1	$H \times W \times d_2$		
<i>X</i> 2	$\lceil H/2 \rceil \times \lceil W/2 \rceil \times d_2$	y	$H \times W \times K$
<i>X</i> 3	$\lceil H/2 \rceil \times \lceil W/2 \rceil \times d_4$	y 2	$H \times W \times d_{10}$
<i>X</i> 4	$\lceil H/4 \rceil \times \lceil W/4 \rceil \times d_4$	<i>y</i> 3	$\lceil H/2 \rceil \times \lceil W/2 \rceil \times d_8$
<i>X</i> 5	$\lceil H/4 \rceil \times \lceil W/4 \rceil \times d_6$	<i>y</i> 4	$\lceil H/2 \rceil \times \lceil W/2 \rceil \times d_6$

Deep Learning Basics General Architecture 43 / 46

Encoder $x_1 = \mathsf{Conv}_2(\mathsf{Conv}_1(\mathsf{input})))$ $x_2, \mathsf{indices}_{1\rightarrow 2} = \mathsf{Maxpool}(x_1))$ $x_3 = \mathsf{Conv}_4(\mathsf{Conv}_3(x_2))))$ $x_4, \mathsf{indices}_{2\rightarrow 3} = \mathsf{Maxpool}(x_3))$ $x_5 = \mathsf{Conv}_6(\mathsf{Conv}_5(x_4))))$

 $y = \mathsf{Conv}_D(y_1)$ $y_1 = \mathsf{Conv}_{10}(\mathsf{Conv}_9([y_2, x_1])))$ $y_2 = \mathsf{Unpool}(y_3, \mathsf{indices}_{1\to 2}))$ $y_3 = \mathsf{Conv}_8(\mathsf{Conv}_7([y_4, x_3])))$ $y_4 = \mathsf{Unpool}(x_4, \mathsf{indices}_{2\to 3})$

Deep Learning Basics General Architecture 44 / 46

Presentation Layout

- Deep Learning Basics
 - Beyond the Hype
 - Deep LearningLayer Bestiary
 - Loss Functions
 - Misc.
 - General Architecture
 - Implementation

Deep Learning Basics Implementation 45 / 46

Deep Learning In Practice

- Tensorflow, Pytorch: high level python-based language doing all the tedious work.
- Example for a 1 hidden layer MLP to classify D-dimension data between K classes.
- softmax: goes from activation/class scores (logits) to probablities:

$$[\operatorname{softmax}(v)]_i = \frac{\exp(v_i)}{\sum_j \exp(v_j)}$$

$$\operatorname{layer1} = \operatorname{Linear}(D, L), \ \operatorname{layer2} = \operatorname{Linear}(L, K)$$

$$\operatorname{optimizer} = \operatorname{SGD}()$$

$$\operatorname{for i_epoch in range}(\operatorname{n_epoch}):$$

$$\operatorname{for batch, gt in enumerate}(\operatorname{training_set}) \% \ \operatorname{batch} : B \times D, \ \operatorname{gt} : B$$

$$\operatorname{feat} = \operatorname{Relu}(\operatorname{layer1}(\operatorname{batch})) \qquad \% \ \operatorname{feat} : B \times L$$

$$\operatorname{feat} = \operatorname{Relu}(\operatorname{layer2}(\operatorname{feat})) \qquad \% \ \operatorname{feat} : B \times K$$

$$\operatorname{output} = \operatorname{softmax}(\operatorname{feat}) \qquad \% \ \operatorname{output} : B \times K$$

$$\operatorname{loss} = \operatorname{cross_entropy}(\operatorname{output, gt}) \qquad \% \ \operatorname{compute the loss}$$

$$\operatorname{loss.backward}() \qquad \% \ \operatorname{compute the gradient}$$

$$\operatorname{optimizer.step}(\operatorname{i_epoch}) \qquad \% \ \operatorname{gradient step}$$

$$\operatorname{print}("\operatorname{epoch} = \operatorname{epoch}, \ \operatorname{loss} = \operatorname{avg_loss}) \qquad \% \ \operatorname{monitor loss decrease}$$

$$\operatorname{return softmax}(\operatorname{Relu}(\operatorname{layer2}(\operatorname{Relu}(\operatorname{layer1}(\operatorname{test_set})))))$$

Deep Learning Basics Implementation 46 / 46