Modelos Estatísticos I Modelos para desfecho binário

Leo Bastos – leonardo.bastos@fiocruz.br

PROCC - Fundação Oswaldo Cruz

https://github.com/lsbastos/eae2

Variáveis binárias

- É o desfecho mais comum em epidemiologia
- Óbito $\{S, N\}$; Acima de peso $\{IMC > 25, IMC \le 25\}$; doente $\{S, N\}$; etc.
- A variável aleatória associada a um desfecho binário assume apenas dois valores numéricos, usualmente {0,1}.
- Exemplo:

$$Y = \left\{ \begin{array}{ll} 1, & \text{tem o desfecho de interesse}, \\ 0, & \text{n\~ao tem o desfecho de interesse}. \end{array} \right.$$

Dados binários

Os dados binários podem ser apresentados em sua forma bruta:

	Υ	X1	X2
1	0	1	Tratamento 1
2	1	1	Tratamento 1
3	1	0	Tratamento 1
4	1	1	Controle
5	1	0	Tratamento 2
6	1	1	Tratamento 2
7	0	0	Tratamento 2
8	0	0	Controle
9	1	0	Tratamento 1
10	1	0	Controle

Dados binários

Ou na forma agregada:

	Υ	n	X1	X2
1	3	10	0	Controle
2	6	30	0	Tratamento 1
3	12	45	0	Tratamento 2
4	3	20	1	Controle
5	20	50	1	Tratamento 1
6	1	15	1	Tratamento 2

Modelo para dados binários

- Seja Y_1, Y_2, \dots, Y_n variáveis aleatórias independentes
- O desfecho é binário, i.e. $Y_i = \{0, 1\}$
- A distribuição usada para dados binários é a distirbuição Bernoulli

$$Y_i \sim Bern(\theta_i)$$

onde
$$\theta_i = P(Y_i = 1) \in (0, 1)$$
.

- Nosso interesse se encontra em tentar explicar a probabilidade do desfecho de interesse θ_i .
- Isso é feito de forma similar ao modelo linear

Modelo para dados binários

No modelo

$$Y_i \sim Bern(\theta_i)$$

onde
$$\theta_i = P(Y_i = 1) \in (0, 1)$$
.

• Tentamos explicar uma função da probabilidade θ_i a partir de uma variável exposição X da seguinte forma:

$$g(\theta_i) = \alpha + \beta x_i$$

onde $g(\cdot)$ é uma função que leva dos valores entre 0 e 1 para os reais, em matematiquês $g(\cdot):(0,1)\to\mathbb{R}$

A função mais popular que cumpre esse papel é a função logit.

Função logit

• A função logit é definida por

$$logit(heta) = \log\left(rac{ heta}{1- heta}
ight)$$

- ullet O componente $\frac{\theta}{1-\theta}$ é conhecido por odds
- Veja a tabela abaixo:

	Prob	Odds	log(Odds)
1	0.10	0.11	-2.20
2	0.25	0.33	-1.10
3	0.50	1.00	0.00
4	0.75	3.00	1.10
5	0.90	9.00	2.20
6	0.99	99.00	4.60

Voltando ao modelo

Seja

$$Y_i \sim Bern(\theta_i)$$

onde
$$\theta_i = P(Y_i = 1) \in (0, 1)$$
.

- Suponha que temos uma exposição X
- Usando a função de ligação logit, temos que

$$logit(\theta_i) = \alpha + \beta x_i$$

Função logit

Função logit

- Na epidemiologia, uma medida de associação bastante popular é a razão de chances.
- Suponha uma exposição binária, $X = \{0, 1\}$, e $\theta_1 = P(Y = 1 \mid X = 1)$, e $\theta_0 = P(Y = 1 \mid X = 0)$
- A razão de chances, ou odds ratio, de X é dada por

$$OR_X = \frac{\frac{\theta_1}{1 - \theta_1}}{\frac{\theta_0}{1 - \theta_0}}$$

Usando a função de ligação logit, temos que:

$$\log\left(\frac{\theta_{\mathsf{X}}}{1-\theta_{\mathsf{X}}}\right) = \alpha + \beta \mathsf{X} \Rightarrow \frac{\theta_{\mathsf{X}}}{1-\theta_{\mathsf{X}}} = \exp\{\alpha + \beta \mathsf{X}\}$$

Função logistica

• Logo a razão de chances de interesse é

$$OR_X = \frac{\frac{\theta_1}{1 - \theta_1}}{\frac{\theta_0}{1 - \theta_0}} = \frac{\exp\{\alpha + \beta \times 1\}}{\exp\{\alpha + \beta \times 0\}} = \exp\{\beta\}$$

Ou seja,

$$\mathit{OR}_X = \exp\{\beta_1\}$$

Exemplo: Fumo na gestação versus baixo peso

- Em um estudo observacional sobre tabagismo na gestação realizado em um certo hospital, uma amostra de 189 puérperas foi aleatoriamente selecionada.
- Foi verificado se as mulheres fumaram ou não durante a gestação.
- o peso do recém nascido foi registrado, e categorizado como baixo peso sim ou não.
- Os dados observados foram

	Baixo p	eso ao nascer?
Fumou durante a gestação?	Sim	Não
Sim	30	44
Não	29	86

Os dados coletados

 A tabela de contingência Baixo peso ao nascer x mãe fumou durante gravidez

	Baixo	peso ao nascer?
Fumou durante a gestação?	Sim	Não
Sim	30	44
Não	29	86

Calculando a OR:

$$OR = ?$$

• Essa OR é estatisticamente significativa?

Construindo o modelo

- Vamos construir o modelo desse exemplo
- Quem é o desfecho, Y?
 - Peso do recem nascido (Y = 1 se baixo peso)
- Quem é a exposição, X?
 - Fumo durante a gestação (X = 1 sim)
- Como é o modelo?
 - O modelo é dado por

$$Y \mid X = x \sim Bernoulli(\theta_x)$$

onde
$$logit(\theta_x) = \alpha + \beta x$$

No R

• No R, usamos a função glm

```
> saida <- glm(low ~ smoke,
+ family=binomial(link = 'logit'),
+ data=birth)</pre>
```

- Precisamos especificar a família, nesse caso é a Binomial (Lembrem-se que a $Bernoulli(\theta) = Binomial(1, \theta)$)
- A função de ligação default é a logit.

Saída R: glm()

A saída da função glm é bastante similar a saída da função lm

```
Call: glm(formula = low ~ smoke, family = binomial(link = "logit"),
data = birth)

Coefficients:
(Intercept) smokesim
-1.0871 0.7041

Degrees of Freedom: 188 Total (i.e. Null); 187 Residual
Null Deviance: 234.7
Residual Deviance: 229.8 AIC: 233.8
```

Calculando a OR

```
> exp(0.7041)
```


Exemplo

- Essa OR é significativa? (i.e. H_0 : OR = 1 versus H_1 : $OR \neq 1$)
- Como a $OR = exp(\beta)$, então o teste acima, é equivalente a testar H_0 : $\beta = 0$ versus H_1 : $\beta \neq 0$.
- Ou, alternativamente, podemos calcular um IC de 95% de confiança para a OR (ou para β)
- Um possível intervalo de 95% para a OR é dado pela exponencial do intervalo de 95% para β .
- Note que dessa forma o intervalo para a OR não é mais simétrico em torno da estimativa pontual, mas continua sendo um IC de 95% válido.

Saidas no R

```
Call:
glm(formula = low ~ smoke, family = binomial(link = "logit"),
   data = birth)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.0871 0.2147 -5.062 4.14e-07 ***
smokesim 0.7041 0.3196 2.203 0.0276 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 229.80 on 187 degrees of freedom
AIC: 233.8
Number of Fisher Scoring iterations: 4
```


Saidas no R

• O IC para os coeficientes podemos ser calculados da seguinte forma

E o IC para o coeficiente é dado por

Função logistica

- Se for de interesse (e o delineamento do estudo permitir) podemos estimar a probabilidade do desfecho ocorrer sob condições específicas das variáveis explicativas.
- Ou seja,

$$P(Y_i = 1|X = x) = logit^{-1}(\alpha + \beta x)$$

Para o modelo logistico:

$$P(Y_i = 1|X = x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

Logo, previsões para essas probabilidades são dados por

$$\widehat{P}(Y_i = 1|X = x) = \frac{e^{\widehat{\alpha} + \widehat{\beta}x}}{1 + e^{\widehat{\alpha} + \widehat{\beta}x}}$$

No exemplo

- No exemplo, podemos estimar a probabilidade de baixo para mulheres que fumam e para mulheres que não fumam durante a gravidez.
- Basta usar a função predict

```
> birth.pred <- data.frame(smoke = c("sim", "nao"))</pre>
> prev <- predict(saida, type = 'response',
                   newdata = birth.pred)
+
> prev
```

0.4054054 0.2521739

Intervalo de confiança para a previsão

 Para evitar 'esquisitices' o intervalo de confiança para as previsões exigem um pouco mais de algebrismo.

Criando os intervalos

```
> birth.pred <- birth.pred %>%
+ bind_cols(
+ Prob = prev,
+ Link = prev2$fit,
+ Link.sd = prev2$se.fit
+ )
```


Previsões

• A tabela estimada:

	smoke	Prob	Link	Link.sd
1	sim	0.405	-0.383	0.237
2	nao	0.252	-1.087	0.215

• IC para $\eta = \alpha + \beta x$

	smoke	Link	Link.sd	LI	LS
1	sim	-0.383	0.237	-0.847	0.081
2	nao	-1.087	0.215	-1.508	-0.666

• IC para $\theta_x = logit^{-1}(\alpha + \beta x)$

	smoke	Prob	LI	LS
1	sim	0.405	0.300	0.520
2	nao	0.252	0.181	0.339

