HARISH GANESAN

UB Person No: 50249122

Computer Vision and Image Processing Homework 1

Spatial Pyramid Matching and Scene Classification

- **1.0** There are 20 filters in total, and they are of broadly four categories:
 - Gaussian this type of filter is used to obtain a filtered image using a 2-D lowpass Gaussian smoothing kernel, it is used for blurring the image to remove the noise and yet preservse high frequency components
 - Laplacian of Gaussian (LoG) this filter is obtained by calculating the Laplacian of a Gaussian filter, it is used for edge detection as it highlights regions of rapid intensity change
 - Oriented Gaussian in X Direction this filter is used to detect any horizontal edges or lines in the images
 - Oriented Gaussian in Y Direction this filter is used to detect any vertical edges or lines in the images

1.1 For the original image given below:

The montage of all the filters applied on the image is as follows :

1.2 File provided in the .zip

1.3 Three images from the category 'computer-room' have been picked and their word-maps are shown below:

As we can see from the word maps shown above, the edges of the objects present in the image have been highlighted. This includes edges of two types – horizontal and vertical. It also determines where the colour is similar and where it is changing. It also differentiates light intensity in the different areas in the image.

2.1 - 2.4 present in the .zip file

2.5 The confusion matrix is as follows:

	con	f ×						
8x8 double								
	1	2	3	4	5	6	7	8
1	9	2	1	1	6	0	0	1
2	1	6	2	3	6	0	0	2
3	1	1	13	2	3	0	0	0
4	3	2	2	12	0	0	0	1
5	0	2	6	2	9	0	0	1
6	1	3	4	1	1	3	7	0
7	0	4	3	0	2	3	8	0
8	2	5	4	1	4	0	0	4

Upon summing the diagonal elements, the number of correct predictions = 9 + 6 + 13 + 12 + 9 + 3 + 8 + 4 = 64.

The total number of test images are **160**.

Therefore the accuracy percentage is (64 / 160) * 100 = 40 %

- **2.6** The three classes with the lowest accuracy are 6, 8 and 2, which are 'mountain', 'tennis_court' and 'computer_room' respectively.
- It is likely that the 'mountain' class is harder to classify because of its similarity to the 'garden' samples due to both the images containing a lot of the similar objects and colors and both being in a outdoor setting.
- The class 'tennis_court' is also being mis-classified as 'garden' because of the similar colous and due to there being not much variety in the training images.
- The samples in 'computer_room' are mostly being mis-classified as class 'library' as they are both in an indoor setting and share similar elements in the images.
- **2.7** Performance can be improved if the values of Alpha are raised from the current values of alpha = 100 and k = 250 to some larger values. It can also possibly be improved if we obtain the filter responses to the image once the random-pixels have been picked from the images. We can also try new filters such as 'laplacian' or 'average'.