

Тема 2. Разведывательный анализ в R

План лекции

- 1. Алгоритмы разведочного анализа в R.
 - 2. Команды статистического анализа.

1. Алгоритмы разведочного анализа (Exploratory Data Analysis) в R

- Процедуры разведочного анализа данных предполагают расчёт основных описательных статистических характеристик и различные способы визуализации имеющихся данных.
- Основной целью процедур разведочного анализа является получение предварительного описания имеющих данных, для оценивания однородности имеющейся информации, определения наличия выбросов и пропусков в данных, определения законов распределения показателей, возможных линейных и нелинейных взаимосвязей между рассматриваемыми признаками.

Описательные статистики – среднее

$$x_1 \leq \ldots \leq x_m$$

Выборочное среднее

$$\operatorname{mean}(X) = \frac{x_1 + \ldots + x_m}{m}$$

Усечённое среднее

$$\frac{x_k + \ldots + x_{m-k+1}}{m - 2k + 2}$$

- + весовые схемы
 - + сглаживание

Медиана

$$\operatorname{median}(X) = q_{0.5}(X) = \frac{x_{\lfloor m/2 \rfloor} + x_{\lceil m/2 \rceil}}{2}$$

Мода (частое значение)

$$mode(X) = \underset{x}{arg max} | \{i \in \{1, 2, ..., m\} | x = x_i | \}$$

mid-range (mid-extreme)

$$\operatorname{mid-range}(X) = \frac{x_1 + x_m}{2}$$

тоже одно из решений оптимизационных задач...

midhinge

midhinge(X) =
$$\frac{q_{0.25} + q_{0.75}}{2}$$

Что такое среднее?

средний, типичный, среднестатистический...

Естественная формализация - среднее арифметическое

$$\operatorname{mean}(X) = \frac{x_1 + \ldots + x_m}{m}$$

Какие плюсы и минусы?

Среднее арифметическое

Большой плюс – среднее можно вычислять в \mathbb{R}^n

Проблема выбросов

Среднее как решение оптимизационной задачи

Если суммарные затраты

$$\sum_{i=1}^{m} |x_i - a| \to \min$$

то решение – медиана

Что такое среднее для номинальных признаков?

Мода – самое популярное значение

- самое вероятное значение

Вычисление в R

Описание

Выборочной средней x_{cp} называют среднее арифметическое значение признака выборочной совокупности. Если все значения $x_1, x_2, ..., x_n$ признака выборки объема n различны, то

$$\overline{x} = (x_1 + x_2 + \dots + x_n)/n$$

Описание функции

mean(x, ...)

Параметры

X

Вектор, матрица или data.frame.

```
Пример
> x<-c(3.6,7.8,9.6,5.7,8.9)
> mean(x)
7.12 (значение среднего)
```


Что такое среднее?

Решение проблемы – медиана, для $x_1 \leq x_2 \leq \ldots \leq x_m$:

$$\operatorname{median}(X) = \frac{x_{\lfloor m/2 \rfloor} + x_{\lceil m/2 \rceil}}{2}$$

- 1) устойчива к выбросам
- 2) является (можно сделать!) точкой выборки

Важное свойство медианы — сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины: $\sum_{i=1}^{n} |x_i - Me| = \min \text{ Как известно, свойство средней состоит в следующем:}$ $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$

Вычисление в R

Описание

Медианой m_e называют варианту, которая делит вариационный ряд (упорядоченный по возрастанию) на две части, равные по числу вариант.

Если число вариант нечетно, т.е. n = 2r + 1, то $m_e = x_{r+1}$;

при четном n = 2r, то me=(xr+xr+1)/2

Модой M_0 называют варианту, которая имеет наибольшую частоту. В R для этого можно использовать построение таблицы вариант

Описание функции

```
median(x, na.rm=FALSE)
```

Параметры

» Вектор, матрица или data.frame

па. rm Удалить отсутствующие данные?

Пример

- > x < -c(3.6,7.8,9.6,5.7,8.9,9.6,5.7,8.9,9.6)
- > median(x, na.rm=FALSE)

8.9

Среднее линейное (абсолютное) отклонение Mean Absolute Deviation

$$\frac{1}{m}\sum_{i=1}^{m}|x_i-\operatorname{mid}(X)|$$

 $\operatorname{mid}(X)$ – любая формализация среднего

Среднеквадратическое отклонение
Mean Squared Error (MSE) / Mean Squared Deviation (MSD)

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}(x_i-\operatorname{mid}(X))^2}$$

Описательные статистики – абсолютные вариации

Чаще: стандартное отклонение

$$\operatorname{std}(X) = \sqrt{\frac{\sum_{i=1}^{m} (x_i - \operatorname{mean}(X))^2}{m-1}}$$

Размах

$$\operatorname{range}(X) = x_m - x_1$$

Median Absolute Deviation (MAD)

$$MAD(X) = median(\{| median(X) - x_i |\}_{i=1}^m)$$

тоже обобщается на п-мерный случай

Дисперсия (рассеяние, разброс)

$$var(X) = std^2(X)$$

Среднее квартильное расстояние Интерквартильный размах

$$q_{0.75}(X) - q_{0.25}(X)$$

Вычисление в R


```
Описание функции
  var(x, y = NULL, na.rm = FALSE)
  sd(x, na.rm = FALSE)
  Параметры
         Вектор, матрица или data.frame
X
         NULL(по умолчанию) или вектор, матрица или data.frame
         такой же размерности, что и х
         Удалить данные, значения котрорых отсуствуют
na.rm
  Пример
> x < -c(3.6,7.8,9.6,5.7,8.9)
> y < -c(2.7,8.9,6.5,8.9,6.5)
> var(x, y, na.rm = FALSE)
> sd(x, na.rm = FALSE)
[1] 2.9 (значение дисперсии)
[1] 2.459065 (значение СКО)
```


Описательные статистики – характерные элементы

Минимум

 x_1

Максимум

 x_m

Квантиль – значение, которое с.в. не превышает с заданной вероятностью

$$X = \{x_1, \dots, x_m\}$$

Квартили

$$q_{0.75}(X), q_{0.5}(X), q_{0.25}(X)$$

Дец<mark>и</mark>ли

$$q_{0.1}(X), q_{0.2}(X), ..., q_{0.8}(X), q_{0.9}(X)$$

Процентили

$$q_{1\%}(X), q_{2\%}(X), ..., q_{98\%}(X), q_{99\%}(X)$$

Описательные статистики – относительные вариации

абсолютная вариация / среднее

Коэффициент вариации Coefficient of variation

$$\frac{\operatorname{std}(X)}{\operatorname{mean}(X)}$$

$$\mathbf{V}_{\sigma} = \frac{\sigma}{\overline{x}}$$
 100

Индекс дисперсии Index of dispersion

$$\frac{\operatorname{std}^2(X)}{\operatorname{mean}(X)}$$

Относительный размах вариации (коэффициент осцилляции)

$$\frac{\operatorname{range}(X)}{\operatorname{mean}(X)}$$

Описательные статистики – другое

Стандартная ошибка среднего

$$\frac{\operatorname{std}(X)}{\sqrt{m}}$$

Описательные статистики – стандартизованные моменты Standardized moments

$$\frac{\mathbf{E}[(X - \mathbf{E}X)^k]}{\mathbf{D}[X]^{k/2}}$$

$$k = 1$$

$$k = 2$$

Асимметрия – skewness

$$k = 3$$

$$\frac{\mathbf{E}[(X - \mathbf{E}X)^3]}{\mathbf{D}[X]^{3/2}}$$

Эксцесса (островершинность) – kurtosis

$$k = 4$$

$$\frac{\mathbf{E}[(X - \mathbf{E}X)^4]}{\mathbf{D}[X]^2} - 3$$

Выбор статистических характеристик в зависимости от типа данных

•	Количественные	Порядковые	Номинальные
Среднее	+		
Медиана	+	+	
Мода	+	+	+

Источник: Сигел Э.Ф. Практическая бизнес-статистика: пер. с англ.-М.: Вильямс, 2008.

Основные характеристики, рассчитываемые как «Описательные статистики»

Статистика	Формула, комментарий		
Среднее (арифметическое)	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ $SE = S / \sqrt{n}$		
Стандартная ошибка среднего	$SE = S / \sqrt{n}$		
Медиана	Значение признака, приходящееся на середину ранжированной (упорядоченной) последовательности		
Мода	наиболее часто встречающееся значение признака		
Размах	$R = x_{\text{max}} - x_{\text{min}}$		
Межквартильный размах	разница между верхним квартильным значением и нижним		
Выборочная дисперсия (несмещенная оценка)	$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$		
Среднеквадратическое отклонение	квадратный корень из дисперсии		
Коэффициент асимметрии (skewness) - Ac	характеризует степень асимметричности, скошенности распределения данных. Правосторонняя асимметрия: Ac>0; левосторонняя асимметрия: Ac<0; симметричность распределения Ac=0.		
Коэффициент эксцесса (kurtosis) - Ek	служит мерой крутости (островершинности/плосковершинности) графика вариационного ряда в сравнении с кривой нормального распределения. Ek<0 - плосковершинность; Ek>0 - островершинность.		

Расчёт описательных статистик: мин, мах, Ме, среднее, квартили (SUMMARY)

	— упльерентет								
1	регионы	2014	2015	2016	2017	2018	2019	Ī	
2	Белгородская область	764,455	754,042	756,835	757,9	752,6	754,1		
3	Брянская область	557,766	547,669	540,643	530,2	523	508,6		
4	Владимирская область	669,711	664,413	647,434	640,6	628,2	635,8		
5	Воронежская область	1117,774	1092,535	1094,752	1102,1	1110,2	1106,4		
6	Ивановская область	455,875	451,493	447,059	456,3	444,9	443,3		
7	Калужская область	518,995	508,039	508,877	504,8	503	498,4		
8	Костромская область	307,561	299,406	293,153	290,8	282,2	276,8		
9	Курская область	529,53	520,324	520,554	519,6	510,8	505,5		
10	Липецкая область	599,317	565,151	565,45	565,8	566,1	565,1		
11	Московская область	3405,262	3366,883	3376,991	3450,2	3385,7	3437,1		
12	Орловская область	340,605	335,905	330,187	321,1	314,5	298,7		
13	Рязанская область	513,557	504,808	505,504	511	498,3	494,6		
14	Смоленская область	470,036	460,832	443,85	445,9	432,5	411,4		
15	Тамбовская область	502,179	499,777	492,131	482,4	466	454,1		
16	Тверская область	640,287	630,146	608,474	610	605	593,5		
17	Тульская область	749,993	742,625	731,46	719,9	715,1	705,4		
18	Ярославская область	633,407	635,935	626,55	621,1	622,2	607,4		
19	г.Москва	8613,866	8598,014	8692,036	8730	8838,2	8875,1		
20	Республика Карелия	290,066	283,992	283,631	274,8	269,8	266,3		
21	Республика Коми	446,783	437,72	421,763	409,9	408,9	401		
	-								

```
#загрузка годовых данных по численности занятого населения РФ с 2014 по 2019 гг по регионам РФ library(readxl)

y types = c("text", rep("numeric", 6))

t1 <- as.data.frame(read_excel("C:/Users//компьютер/Documents/employed.xlsx", 1,

col_types = types))

#смотрим структуру переменной

str(t1)

# найдем описательные статистики для каждого года

summary.data.frame(t1)
```

```
> summary.data.frame(t1)
                        2014
                                         2015
                                                                            2017
  регионы
                                                           2016
Length:80
                                    Min. : 33.05
                                                      Min. : 31.92
                   Min. : 33.26
                                                                       Min.
                                                                            : 33.7
Class :character
                   1st Qu.: 364.95
                                    1st Qu.: 359.13
                                                      1st Qu.: 356.26
                                                                       1st Qu.: 356.6
                   Median: 559.96
Mode :character
                                    Median : 556.22
                                                      Median: 546.70
                                                                       Median : 535.4
                   Mean : 901.01
                                          : 892.50
                                                      Mean : 888.36
                                                                             : 885.3
                                    Mean
                                                                       Mean
                                    3rd Qu.:1106.75
                                                      3rd Qu.:1103.06
                   3rd Qu.:1125.99
                                                                       3rd Qu.:1092.7
                          :8613.87
                                           :8598.01
                                                             :8692.04
                                                                              :8730.0
                   Max.
                                    Max.
                                                      Max.
                                                                       Max.
                      2019
     2018
Min. : 33.3
                 Min. : 33.5
1st Qu.: 354.4
                 1st Qu.: 349.5
Median : 526.6
                 Median : 515.5
Mean : 881.5
                 Mean : 875.2
 3rd Qu.:1091.2
                 3rd Qu.:1088.0
       :8838.2
                        :8875.1
                 Max.
Max.
```


Что бывает в данных

	дата	пол	образование	сумма	платёжная строка	числ просроче		????	x_m	неясность
0	12/01/2017	1	высшее	5000.0	0000		0	0	0.00000	
1	13/01/2017	1	высшее	2500.0	0000	OKTHOSTI	1	1	1.00000	дубликаты
2	13/01/2017	1	высшее	2500.0	001000	ектность	1	1	1.00000	
3	13/01/2017	0		13675.0	111		3	3	0.00000	
4	25/01/2017	0		NaN	0		0	0	0.00000	
5		1	начальное	NaN	00		0	0	0.00000	
6	02/02/2017	1	среднее	1000.0		1	0	0	0.00000	
7	01/01/0001	13/01/2017	среднее	0.0	Enerve		-7	-7	-0.00001	
	ошибка		нечисловой признак	1	пропус		/блик	саты	выброс	R

Визуализация результатов анализа (диаграмма размахов, box-plot, гистограмма)

Видное место в разведочном анализе данных занимают графические методы и процедуры. Рассмотрим, предложенную Тьюки *ящичную диаграмму* (boxplot)

Описательные статистики – характерные элементы

Визуализация описательных статистик: задача Biological Response

Чётко видны группы

plot() – это функция общего назначения, которая строит диаграммы в R


```
name <- c("Petr", "Eugeny", "Lena", "Misha", "Sasha") age <- c(26, 34, 23, 27, 26) student <- c(F, F, T, T, T)
```

df <- data.frame(name, age, student)</pre>

plot(df\$name, df\$age)

ggplot() — это функция, которая строит диаграммы в R и позволяет учитывать условие (фактор)

library(ggplot2) ggplot(df, aes(x = df\$name, y = df\$age,

col = df\$student),
size = 3)+ geom_point()

Задание графических параметров в диаграммах R Функция colors() выводит на экран список всех доступных цветов

Параметры для указания типов символов и линий

Параметр	Описание
pch	Определяет тип символа
cex	Определяет размер символа. сех – это число, обозначающее, как символы должны быть масштабированы по отношению к размеру по умолчанию. 1 = размер по умолчанию, 1.5 – на 50% крупнее, 0.5 – на 50% мельче и т. д.
lty	Определяет тип линии
lwd	Определяет толщину линии по сравнению с толщиной линии по умолчанию (1). Например, 1wd=2 делает линию в два раза толще, чем по умолчанию

Прошлый пример

plot(df\$name, df\$age, lty=5, lwd=3, pch=15, cex=3, col.lab="red", col.axis="green")

Параметры для назначения цвета

Параметр	Описание
col	Цвет элементов на графике. Для некоторых функций (таких как lines и pie) можно указывать вектор из значений, которые используются по очереди. Например, если col=c ("red", "blue") и изображены три линии, первая будет красной, вторая – синей и третья – красной
col.axis	Цвет значений осей
col.lab	Цвет подписей осей
col.main	Цвет заголовков
col.sub	Цвет подзаголовков
fg	Цвет графика
bg	Цвет фона


```
dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
                                      Увеличиваем ширину
                                      линии, размер
opar <- par(no.readonly=TRUE)
                                      символов и подписей
par(1wd=2, cex=1.5, font.lab=2)
plot(dose, drugA, type="b",
                                                 Создаем график
     pch=15, lty=1, col="red", ylim=c(0, 60),
     main="Сравнение препаратов A и B",
     xlab="Дозировка препарата", ylab="Эффект от препарата")
lines (dose, drugB, type="b",
      pch=17, lty=2, col="blue")
                                                  Добавляем
abline(h=c(30), lwd=1.5, lty=2, col="gray")
                                                  промежуточные
library (Hmisc)
                                                  деления на осях
minor.tick(nx=3, ny=3, tick.ratio=0.5)
legend("topleft", inset=.05, title="Тип препарата", c("A","В"), <-
      lty=c(1, 2), pch=c(15, 17), col=c("red", "blue"))
                                                           Добавляем
par(opar)
                                                            условные
                                                          обозначения
```

Сравнение препаратов А и В

Визуализация Ме по годам

Динамика Ме занятого населения в регионах РФ с 2014-2019гг

summary.data.frame(t1)

me=c(median(t1\$`2014`), median(t1\$`2015`), median(t1\$`2016`), median(t1\$`2017`), median(t1\$`2018`), median(t1\$`2019`))
plot(me, xlab="год", ylab="Медиана численности занятых в регионах РФ", main = "Динамика Ме занятого населения в регионах РФ с 2014-2019гг", type = "b")

```
#загрузка годовых данных по численности занятого
населения РФ с 2014 по 2019 гг по регионам РФ
library(readxl)
types = c("text", rep("numeric", 2))
t1 <-
as.data.frame(read excel("C:/Users/компьютер/Documents/e
mployed2.xlsx", 1,
                col types = types))
me=c(median(t1$занятыe[t$год=='2014']),
median(t1$занятые[t$год=='2015']),
median(t1$занятые[t$год=='2016']),
median(t1$занятые[t$год=='2017']),
median(t1$занятые[t$год=='2018']),
median(t1$занятые[t$год=='2019']))
year=c("2014", "2015", "2016", "2017", "2018", "2019")
dfme=data.frame(me, year)
plot( dfme$year, dfme$me, xlab="год", ylab="Медиана в
регионах РФ", main = "Занятое население, тыс. чел.", type =
"l")
text(dfme$year, dfme$me,
  dfme$me,
  cex=0.6, pos=3, col="red")
```

Занятое население, тыс. чел.

Построение полигона распределения по данным о занятом населении в регионах за 2019г

```
#построим полигон распределения по 2019 г
library(ggplot2)
ggplot( t1, aes(x = t1$'2019'))+geom_density(fill = "blue")
```


Построение полигонов распределения по данным о занятом населении в регионах за 2014-2019гг (меняем структуру данных)

4	А	В	С		
1	регионы	занятые	год		
2	Белгородская область	764,455	2014		
3	Брянская область	557,766	2014		
4	Владимирская область	669,711	2014		
5	Воронежская область	1117,774	2014		
6	Ивановская область	455,875	2014		
7	Калужская область	518,995	2014		
8	Костромская область	307,561	2014		
9	Курская область	529,53	2014		
10	Липецкая область	599,317	2014		
11	Московская область	3405,262	2014		
12	Орловская область	340,605	2014		
13	Рязанская область	513,557	2014		
14	Смоленская область	470,036	2014		
15	Тамбовская область	502,179	2014		
16	Тверская область	640,287	2014		
17	Тульская область	749,993	2014		
18	Ярославская область	633,407	2014		
19	г.Москва	8613,866	2014		
20	Республика Карелия	290,066	2014		
21	Республика Коми	446,783	2014		
22	Apvauron gross of sager	E60 1E0	2014		
	√ Лист1 ⊕				

Результат

Построение гистограммы распределения по данным о занятом населении в регионах за 2014г

Histogram of занятое население

Гистограмма (histogram) - диаграмма в виде столбцов, по оси абсцисс которой отображаются все возможные значения переменной,

<u>по оси ординат</u> — частоты встречаемости \mathbf{m}_i каждого значения или относительные частоты — доли,

частости (m_i/n) .

Гистограмма была введена в статистическую практику Карлом Пирсоном в 1895 г.

hist(t1\$`2014`, xlab="2014", main = 'Histogram of занятое население', col = 'tomato', freq = FALSE)

Histogram of занятое население


```
hist(t[,1], xlab="2014", main = 'Histogram of занятое население', col = 'tomato', freq = FALSE) #наложим на нее кривую нормального распределения # na.rm = TRUE - не учитываем пропуски (NA) # lwd - line width, толщина линии curve(dnorm(x, mean = mean(t1$`2014`, na.rm = TRUE), sd = sd(t1$`2014`, na.rm = TRUE)), col = 'blue', lwd = 2, add = TRUE)
```


• Одним из способов проверки распределения экспериментальных данных на нормальность является расчёт показателей ассиметрии и эксцесса и сопоставление их с критическими значениями (метод Е.И. Пустыльника).

$$A_{\kappa p} = 3 \cdot \sqrt{\frac{6 \cdot (n-1)}{(n+1) \cdot (n+3)}} \qquad E_{\kappa p} = 5 \cdot \sqrt{\frac{24 \cdot n \cdot (n-2) \cdot (n-3)}{(n+1)^2 \cdot (n+3) \cdot (n+5)}}$$

Один из статистических критериев, позволяющих проверить нормальность распределения данных, это **критерий Шапиро-Уилка**. С помощью этого критерия проверяется нулевая гипотеза, которая состоит в том, что *данные распределены нормально*. Данный тест для нормальности с неопределенным средним и дисперсией. Функция для выполнения теста Шапиро-Уилка действительно принимает только =< 5000 значений. (Shapiro S. S., Wilk M. B. An analysis of variance test for normality. — Biometrika, 1965, 52, №3 — р. 591-611.).

Скрипт shapiro tos

shapiro.test(t1\$`2014`)

Ответ:

Shapiro-Wilk normality test

data: t1\$`2014`

W = 0.57756, p-value = 8.047e-14

Вывод: P-value < 0.05, следовательно, «жизнеспособность» нулевой гипотезы, оценённая на основе имеющихся данных, мала. На имеющихся данных на уровне значимости 5% (0.05) есть основания отвергнуть нулевую гипотезу о том, что данные распределены нормально. Переменная у не распределена нормально.

Построение box-plot


```
#построим boxplot распределения занятых в регионах с учетом года ggplot(t2, aes(x = t2$год, y =t2$занятые, fill = t2$год))+ geom_boxplot()+ xlab("годы")+ ylab("число занятых в регионе")+ ggtitle("Распределение регионов")
```


boxplot(t2\$X ~ t2\$Status, notch=TRUE, varwidth=TRUE, col="red", main="Ящик с насечками")

Если «насечки» двух ящиков не перекрываются, высока вероятность того, что медианы соответствующих совокупностей различаются

Ящик с насечками

Скрипичные диаграммы (violin plot) МИРЭА Российский

Скрипичные диаграммы представляют собой симметричные диаграммы ядерной оценки функции плотности, наложенные на диаграммы размахов. Здесь белая точка — медиана, черный прямоугольник — межквартильный размах, а тонкие черные линии — «усы».

Внешний контур фигуры — это диаграмма ядерной оценки функции

Плотности.

Такую диаграмму можно создать при помощи функции vioplot() из пакета vioplot

Скрипичные диаграммы, отражающие расход топлива у автомобилей с разным числом цилиндров

Построение матрицы диаграмм

attach(t2) opar <- par(no.readonly=TRUE)</pre> par(mfrow=c(2,2)) hist(t2\$X, col="violet", main="Распределение регионов", xlab="уровень инновационной активности, %") boxplot(t2\$У) hist(t2\$У, col="orange", main="Распределение регионов", xlab="уровень участия в рабочей силе, %") boxplot(t2\$X)

Число строк и столбцов в матрице диаграмм

Распределение регионов

Распределение регионов

уровень участия в рабочей силе, %


```
attach(t2)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
hist(t2$X[t2$Status=="Not dota"], col="violet",
main="Регионы-доноры", xlab="уровень инновационной
активности, %")
boxplot(t2$X[t2$Status=="Not dota"])
hist(t2$X[t2$Status=="dota"], col="orange",
main="Дотационные регионы", xlab="ypовень
инновационной активности, %")
boxplot(t2$X[t2$Status=="dota"])
```

Регионы-доноры

уровень инновационной активности, %

Дотационные регионы


```
par (mfrow=c(2,2))
                      Простая
                         гистограмма
hist(mtcars$mpg)
hist (mtcars$mpg,
                                     Гистограмма с заданным
     breaks=12,
                                     раскрашенными столбцами
     col="red",
     кlab="Раскод топлива",
     main="Цветная гистограмма с 12 столбцами")
hist (mtcars$mpg,
     freg=FALSE,
                          С кривой плотности
                          распределения точек
     breaks=12,
     col="red".
     xlab="Раскод топлива",
     main="Гистограмма, график-щетка и кривая плотности распределения")
rug(jitter(mtcars$mpg))
lines(density(mtcars$mpq), col="blue", lwd=2)
x <- mtcars$mpg
                              С кривой нормального
h<-hist(x.
                              распределения и в рамочке
         breaks=12,
         col="red",
         xlab="Pacxog топлива",
         main="Гистограмма с кривой нормального распределения в рамочке")
xfit < -seq(min(x), max(x), length=40)
yfit<-dnorm(xfit, mean=mean(x), sd=sd(x))</pre>
vfit <- yfit*diff(h$mids[1:2])*length(x)</pre>
lines(xfit, yfit, col="blue", lwd=2)
box()
```

Пропуски – как выглядят в данных

- пустые значения
- специальные значения (NA, NaN, null, ...)
- специальный код (–999, mean, число за пределами значения признака)


```
df[name].isnull().sum() # число "нанов" df[name].count() # число не "нанов"
```

Пропуски – что делать

оставляем

(но не все модели могут работать с пропусками)

удаляем описания объектов с пропусками / признаки

(радикальная мера, которая редко используется)

• заменяем на фиксированное значение

(например, если признак бинарный, то на 0.5)

заменяем на легковычислимое значение

(среднее, медиана, мода)

восстановление значения

(построение специальной модели для восстановления)

• экспертная замена

Зашумлённые данные (Noisy Data)

Аналогия с пропусками

Что делать

- оставляем (но будет погрешность при моделировании)
- удаляем сильно зашумлённые признаки
- удаляем сильно зашумлённые объекты
- замена аномальных значений (ех: clipping)

могут нести важную информацию! Главный вопрос: «Почему в данных есть это?»

Причины

- ошибка сбора данных (ех: погрешность прибора, ввода и т.п.)
- ошибка обработки данных
- свойство данных (ех: выброс зарплата СЕО)

Винсоризация — это серия трансформаций, направленных на ограничения влияния выбросов.

90%-ая винсоризация означает, что мы берём значения меньше 5% перцентиля и выше 95% перцентиля и приравниваем их к значениям на 5-м и 95-м перцентилях соответственно.

Зашумлённые данные – Винсоризация (Winsorizing)

В чём разница между этими выбросами?

Нормировки (Data Normalization)

Для большинства алгоритмов машинного обучения необходимо, чтобы все признаки были вещественными и «в одной шкале».

функция scale() в R нормирует данные так, чтобы его среднее арифметическое было

равно нулю, а стандартное отклонение – единице (делает стандартизацию)

• Стандартизация

(Z-score Normalization / Variance Scaling)

- Нормировка на отрезок (Min-Max Normalization)
- Нормировка по максимуму
- Decimal Scaling Normalization

$$\begin{aligned} \{u_{i}\}_{i \in I} &\to \left\{ \frac{u_{i} - \operatorname{mean}\{u_{t}\}_{t \in I}}{\operatorname{std}\{u_{t}\}_{t \in I}} \right\}_{i \in I} \\ \{u_{i}\}_{i \in I} &\to \left\{ \frac{u_{i} - \min\{u_{t}\}_{t \in I}}{\max\{u_{t}\}_{t \in I} - \min\{u_{t}\}_{t \in I}} \right\}_{i \in I} \\ \{u_{i}\}_{i \in I} &\to \left\{ \frac{u_{i}}{\max\{u_{t}\}_{t \in I}} \right\}_{i \in I} \\ N_{\operatorname{ds}}(x) &= \frac{x}{10^{\min\{i:10^{i} > x\}}} \end{aligned}$$

Дендограмма регионов по нерегулируемым факторам РПТ

Выбросы

Точечные диаграммы дают нам немного больше представления об индивидуальных наблюдениях, так как отражают каждое из них. Гистограммы, в отличие от них, объединяют наблюдения, которые попадают в один интервал, под одним столбцом. Это преимущество, однако, теряется с увеличением количества наблюдений, так как с увеличением количества единичных наблюдений близкие значения также группируют в точки.

Еще с помощью точечных диаграмм легче заметить "гранулы" – одинаковые значения:

Правило трёх сигм

Описательные статистики – характерные элементы

- В качестве критерия при подобном выборе обычно предполагается достижение наиболее робастной оценки. Хогг [20] предложил простую схему для выбора робастной оценки, основанную на тестировании набора альтернативных оценок для широкого ряда распределений методам Монте-Карло:
- если эксцесс находится между 2 и 4, то среднеарифметическое является рекомендуемой оценкой;
- если эксцесс находится между 4 и 5,5, тогда лучше использовать 25-процентное усеченное среднее;
- если эксцесс превышает 5,5, тогда лучшей оценкой является медиана.
- Результаты Коенкера и Бассетта [21] подтвердили схему Хогга: чем больше эксцесс, тем тяжелее хвосты и тем меньший вес должен быть для экстремальных наблюдений (выбросов), для того чтобы получить более устойчивую оценку.

x <- pretty(c(-3,3), 30)Как нарисовать кривую стандартного y <- dnorm(x) нормального распределения в диапазоне значений [-3, 3] (см. ниже)? plot(x, y, type = $^{\circ}1''$, xlab = "Normal Deviate". ylab = "Density", yaxs = "4" 1 1 pnorm(1.96) pasho 0.975 Какова площадь под кривой стандартного нормального распределения слева от z=1.96?Каково значение 90-го процентиля нормальgnorm(.9, mean=500, sd=100) равно 628.16 ного распределения со средним значением 500 и стандартным отклонением 100? rnorm(50, mean=50, sd=10) Как создать 50 случайных чисел, принадлежащих нормальному распределению со средним значением 50 и стандартным отклонением 10?

Задача

Решение

В программе R функции распределения имеют вид:

[dpqr](сокращенное название распределения), где первые буквы означают параметры распределения данных:

- d = плотность;
- р = функция распределения;
- q = функция, определяющая квантили;
- r = генератор случайных отклонений

Распределение	Сокращенное название
Бета	beta
Биномиальное	binom
Коши	Cauchy
Хи-квадрат (асимметричное)	chisq
Экспоненциальное	exp
F	f
Гамма	gamma
Геометрическое	geom
Гипергеометрическое	hyper
Логнормальное	lnorm
Логистическое	logis
Мультиномиальное	multinom
Отрицательное биномиальное	nbinom
Нормальное	norm
Пуассоновское	pois
Знаковых рангов Вилкоксона	signrank
Т	t
Равномерное	unif

Вейбулла

Суммы рангов Вилкоксона

weibull

wilcox.

Типы распределений в R


```
> library(MASS)
> options(digits=3)
                             Определяем случайное
> set.seed(1234)
                             начальное число
                                                    Назначаем вектор
> mean <- c(230.7, 146.7, 3.6)
                                                    средних значений
                                                    и ковариационную
> sigma <- matrix(c(15360.8, 6721.2, -47.1,
                                                 Матрицу
                      6721.2, 4700.9, -16.5,
                       -47.1, -16.5, 0.3), nrow=3, ncol=3)
> mydata <- mvrnorm(500, mean, sigma)
> mydata <- as.data.frame(mydata)</pre>
                                             Пенерируем данные
> names(mydata) <- c("v","x1","x2")</pre>
> dim(mydata)
                          -4 Смотрим результаты
> head(mydata, n=10)
    98.8 41.3 4.35
   244.5 205.2 3.57
   375.7 186.7 3.69
   -59.2 11.2 4.23
   313.0 111.0 2.91
   288.8 185.1 4.18
   134.8 165.0 3.68
  171.7 97.4 3.81
```

9 167.3 101.0 4.01 10 121.1 94.5 3.76 • Генерация данных, принадлежащих многомерному нормальному распределению в R

Процедуры предварительной статистической обработки данных

- Заполнение пропущенных значений в имеющихся данных
- Выявление и исключение аномальных единиц наблюдения
- Обобщение исходных данных и приведение их в наглядную форму с применением методов описательной статистики

Методы работы с аномальными данными

Статистические методы распознавания аномалий:

- Непараметрические: не требуют формализации заранее определённого закона распределения и реализуются с помощью алгоритмов сопоставления имеющихся значений переменной (гистограмма, box-plot, дендограмма)
- Параметрические: применение статистических критериев

Гистограммы очень хороши

- быстро оценить форму распределения
- придумать деформацию
 но надо настраивать вручную (впрочем, любую визуализацию)

Есть много описательных статистик

хороши как признаки

Смотреть по признакам

распределения, распределения обучение / тест, распределения целевой переменной, аномальности в распределении, пропуски, естественность порядка значений

Приёмы:

деформация признака (чаще логарифмирование) масштабирование

2. Команды статистического анализа

Знак	Описание
<	Меньше чем
<=	Меньше или равно
>	Больше чем
>=	Больше или равно
==	Тождественно равно
! =	Не равно
! x	He x
$x \mid y$	х или у
x&y	хиу
isTRUE(x)	Проверяет, выполняется ли х

Оператор	Описание
+	Сложение
-	Вычитание
*	Умножение
/	Деление
^ или **	Возведение в степень
x%%y	Остаток от деления <i>x</i> на <i>y</i> : 5%%2=1
x%/%y	Целая часть при делении <i>х</i> на <i>у</i> : 5%/%2=2

Функция	Описание
abs(x)	Модуль abs (-4) равно 4
sqrt(x)	Квадратный корень sqrt (25) равно 5 Это то же, что и 25^(0.5)
ceiling(x)	Наименьшее целочисленное значение, не меньшее, чем х ceiling(3.457) равно 4
floor(x)	Наибольшее целочисленное значение, не большее, чем x floor (3.457) равно 3
trunk(x)	Целое число, полученное при округлении х в сторону нуля trunk (5.99) равно 5
round(x, digits=n)	Oкругляет x до заданного числа знаков после запятой round(3.475, digits=2) равно 3.48

2. Команды статистического анализа

Функция	Описание
signif(x, digits=n)	Округляет х до заданного числа значащих цифр signif(3.475, digits=2) равно 3.5
cos(x), sin(x), tan(x)	Косинус, синус и тангенс cos (2) равно -0.416
acos(x), asin(x), atan(x)	Арккосинус, арксинус и арктангенс acos (-0.416) равно 2
cosh(x), sinh(x), tanh(x)	Гиперболические косинус, синус и тангенс sinh(2) равно 3.627
$a\cosh(x)$, $a\sinh(x)$, $atanh(x)$	Гиперболические арккосинус, арксинус и арктангенс asinh (3.627) равно 2
log(x, base=n) log(x) log10(x)	Логарифм x по основанию n Для удобства: log(x) – натуральный логарифм log10(x) – десятичный логарифм log(10) равно 2.3026 log10(10) равно 1
exp(x)	Экспоненциальная функция ехр (2.3026) равно 10

Функция	Описание
mean(x)	Среднее арифметическое mean(c(1,2,3,4)) равно 2.5
median(x)	Медиана median(c(1,2,3,4)) равно 2.5
sd(x)	Стандартное отклонение sd(c(1,2,3,4)) равно 1.29
var(x)	Дисперсия var(c(1,2,3,4)) равно 1.67
mad(x)	Абсолютное отклонение медианы mad (c (1, 2, 3, 4)) равно 1.48
quantile(x, probs)	Квантили, где x — числовой вектор, для которого нужно вычислить квантили, а probs — числовой вектор с указанием вероятностей в диапазоне [0; 1] # 30-й и 84-й процентили х y <- quantile (x, c(.3,.84))
range(x)	Размах значений x <- c(1,2,3,4) range(x) равно c(1,4). diff(range(x))равно 3
sum(x)	Сумма sum(c(1,2,3,4)) равно 10
diff(x, lag=n)	Разность значений в выборке, взятых с заданным интервалом (lag). По умолчанию интервал равен 1. x <- c(1,5,23,29) diff(x) равно c(4, 18, 6)
min(x)	Минимум min (c(1,2,3,4)) равно 1
max(x)	Максимум max (c (1, 2, 3, 4)) равно 4
scale(x, center=TRUE, scale=TRUE)	Значения объекта x, центрованные (center=TRUE) или стандартизованные (center=TRUE, scale=TRUE) по столбцам. Пример дан в программном коде 5.6

Функция	Описание
length(x)	Число элементов объекта x. x <- c(2, 5, 6, 9) length(x) равно 4
seq(from, to, by)	Coздание последовательности элементов. indices <- seq(1,10,2) indices pasнo c(1, 3, 5, 7, 9)
rep(x, n)	Повторяет x n раз. y <- rep(1:3, 2) y равно c(1, 2, 3, 1, 2, 3)
cut(x, n)	Преобразует непрерывную переменную х в фактор с л уровнями. Для создания упорядо- ченного фактора добавьте опцию ordered_result = TRUE
pretty(x, n)	Создает «красивые» пограничные значения. Разделяет непрерывную переменную х на л интервалов, выбрав л+1 одинаково отстоящих друг от друга округленных значений. Часто используется при построении диаграмм
<pre>cat(, file = "myfile", append = FALSE)</pre>	Объединяет объекты в и выводит их на эк- ран или в файл (если указано его название). firstname <- c("Jane") cat("Hello", firstname, "\n")

Создание новых переменных как выборок из данных (subset)

Функция subset() — способ создания новых переменных из данных посредством выбора переменных и наблюдений Пример:

```
> newdata <- subset(t2, X >= 5 & Y > 80,
+ select=c(регионы, X, Y, Status))
> newdata
регионы X У Status
83 Чукотский автономный округ 25 83.9 dota
```

```
> str(t2)
'data.frame': 84 obs. of 4 variables:
$ регионы: chr "Иркутская область" "Карачаево-Черкесская Республика"
ия" "Сахалинская область" ...
$ У : num 68.1 65.2 64.4 72.3 69.7 69.1 71.3 77.5 66.8 65.8 ...
$ X : num 2.2 2.7 3.3 3.4 4.6 4.8 5.1 5.1 5.3 5.3 ...
$ Status : chr "dota" "dota" "dota" ...
```

Создание новых переменных как выборок из данных (sample)

Из таблицы t2 из 84 строк и 4 столбцов выбрали случайно 3 строки

Что можно увидеть в данных («признак» – «признак») корреляцию

при правильном масштабе и небольшом шуме

зависимость признаков

при малом шуме и «достаточно равномерном» распределении

независимость признаков

часто это «ложное видение»

типичные значения

сложно при большом объёме данных

выбросы

при правильном масштабе

кластеры

при правильном масштабе

Визуализация пары признаков

Самый распространённый способ – диаграмма рассеивания («скатерплот»)

Что можно увидеть в данных («признак» – «признак»)

Вопросы по теме

- 1. Какие задачи решает разведочный анализ данных?
- 2. Что такое описательные статистики?
- 3. Как с помощью визуализации оценить данные?
- 4. Какие возможности визуализации данных есть в R?
- 5. Как можно вводить данные в R?
- 6. Какие специальные возможности есть в R для проверки данных на нормальность?
- 7. Как в R найти выбросы?
- 8. Как визуализировать взаимосвязи в R?

Литература

Роберт И. Кабаков R в действии. Анализ и визуализация данных в программе R / пер. с англ. Полины A. Волковой. – М.: ДМК Пресс, 2014. – 588 с.: ил. ISBN 978-5-947060-077-1