Obliczenia Naukowe - Lista nr 2

Jakub Jaśków

November 4, 2023

1 Zad

Opis

Powtórzyć zadanie 5 z listy 1. Usunąć ostatnią 9 z x_4 i ostatnią 7 z x_5 . Porównać i objaśnić wyniki.

x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]

x' = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]

y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

Rozwiązanie

Modyfikujemy kod z zadania 5 listy 1 tak aby wartości odpowiadały tym z polecenia.

Wyniki

Table 1:

Float32	Function	New	Old
	forwards()	-0.4999443	-0.4999443
	backwards()	-0.4543457	-0.4543457
	maxToMax()	-0.5	-0.5
	revmaxToMax()	-0.5	-0.5
Float64	Function	New	Old
	forwards()	-0.004296342739891585	1.0251881368296672e-10
	backwards()	-0.004296342998713953	-1.5643308870494366e-10
	maxToMax()	-0.004296342842280865	0.0
	revmaxToMax()	-0.004296342842280865	0.0

Jak widać wyniki algorytmów dla typu **Float32** są takie same. Nie jest to szokujące, ponieważ zmiany w danych zostały dokonane na końcach precyzji **Float32**.

Wyniki dla **Float64** różnią się jednak znacząco. Porównujące je do prawidłowej nowej wartości sum(x',y) = -0.004296343192495245 widzimy, że nowe wyniki nie tak bardzo różnią się od wartości prawidłowych. Różnica jest rzędu 10^-10

Zauważyć możemy, że o ile błąd bezwzględny dla obu danych wejściowych mają podobny rząd wielkości to wartości iloczynu znacząco się zmieniła, w wyniku czego błąd względny drastycznie zmalał. Wartość realna iloczynu skalarnego znacznie się zmieniła.

Na skutek wyżej wymienionych obserwacji możemy wywnioskować, że to nie wina dopasowania naszych algorytmów, ale uwarunkowanie zadania sprawia, że niewielkie zmiany danych wejściowych w znaczny sposób wpływają na wyniki.

2 Zad

Opis

Narysować wykres funkcji $f(x) = e^x ln(1 + e^{-x})$ w co najmniej dwóch programach do wizualizacji. Policzyć granicę funkcji przy $\lim_{x\to\infty} f(x)$. Porównać wykres funkcji z jej granicą i wyjaśnić zjawisko.

Rozwiązanie

Do rozwiązania tego zadania użyjemy 4 różnych programów graficzny: Wolfram Alpha, Symbolab, Julia, Desmos. Wartości przedstawione na wykresach porównamy z limitem funkcji $lim_{x\to\infty}(e^x ln(1+e^{-x}))=1$.

Figure 2: Wolfram Alpha - przybliżenie

Figure 3: Julia - przybliżenie

Figure 4: Symbolab - przybliżenie

Widać, że wykresy różnią się od prawdziwych wartości funkcji.

Wnioski

Wartość granicy funkcji odczytana z wykresu znacząco różni się od tej wyliczonej ręcznie. Dzieje się tak ponieważ dla dużych x wyrażenie w środku logarytmu $1+e^{-x}=1+\left(\frac{1}{e^x}\right)\approx 1$, a $e^x*ln(1)=e^x*0=0$. Możemy zatem wnioskować, że zadanie to jest źle uwarunkowane, co potwierdzają aż 4 wykresy z odrębnych programów graficzno-matematycznych.

3 Zad

Opis

Rozwiązać układ liniowy $\mathbf{A}\mathbf{x} = \mathbf{b}$, gdzie \mathbf{A} to macierz współczynników $\mathbf{A} \in \mathbb{R}^{n \times n}$, a $\mathbf{b} \in \mathbb{R}^n$ to wektor prawych stron. Macierz \mathbf{A} generujemy dzięki funkcjom $\mathbf{hilb}(\mathbf{n})$ (n > 1) oraz $\mathbf{matcond}(\mathbf{n}, \mathbf{c})$ $(n = 5, 10, 15; c = 1, 10, 10^3, 10^7, 10^{12}, 10^{16})$, pobranym ze strony wykładowcy.

Prawidłowe rozwiązanie to wektor jedynek, czyli $\mathbf{x} = (1, ..., 1)^T$. Naszym zadaniem jest rozwiązać równanie $\mathbf{A}\mathbf{x} = \mathbf{b}$ za pomocą dwóch algorytmów: eliminacji Gaussa (x = A) oraz $x = A^{-1}b$. Porównać policzony $\tilde{\mathbf{x}}$ z $\mathbf{x} = (1, ..., 1)^T$, czyli **policzyć błędy względne**.

Rozwiązanie

Wykonujemy wyżej wymienione algorytmy w pętli for i odczytujemy wyniki.

Table 2: hilb(n)

n	$\operatorname{cond}(\mathbf{A})$	$\operatorname{rank}(\mathbf{A})$	Gauss Relative Error	Invert Relative Error
1	1.0	1	0.0	0.0
5	476607.2502425855	5	$1.6828426299227195 \times 10^{-12}$	$3.3544360584359632 \times 10^{-12}$
9	$\begin{array}{c} 4.9315375594102344 \times \\ 10^{11} \end{array}$		$3.8751634185032475 \times 10^{-6}$	$4.541268303176643 \times 10^{-6}$
13	$\begin{array}{c} 3.1883950689209334 \times \\ 10^{18} \end{array}$		0.11039701117868264	5.331275639426837
17	$\begin{array}{c c} 1.249010044779401 \times \\ 10^{18} \end{array}$	12	13.707236683836307	10.516942378369349
21	$3.2902428208431683 \times 10^{18}$	13	44.089455838364245	34.52041154914292
25	$\begin{array}{c} 1.3309197502927598 \times \\ 10^{18} \end{array}$	13	7.095757204652332	21.04404299195525
29	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	60.095450394724104	43.40383683199056
33	$\begin{array}{c} 1.1705237268888885 \\ 10^{19} \end{array}$	14	37.556822732776205	32.889697413799794
37	$\begin{array}{c} 5.871718859396612 \times \\ 10^{18} \end{array}$	15	13.974714130452178	16.39248770656996
41	$\begin{array}{c} 1.052376926308958 \times \\ 10^{20} \end{array}$	15	41.348771577098454	40.75749340255354
45	$\begin{array}{c} 1.1757348627810804 \times \\ 10^{19} \end{array}$	< 15	244.58124814685377	179.92316617880468
49	$\begin{array}{c} 6.145459250718421 \times \\ 10^{18} \end{array}$	16	24.15062009750964	35.92139018094681
53	$1.5742943175983743 \times 10^{19}$	(16	845.0038584060173	744.7484527726867
57	$\begin{array}{c} 8.190646875595796 \times \\ 10^{19} \end{array}$	16	202.94297451029178	179.84690703784088
61	$\begin{array}{c} 9.02594600748171 \times \\ 10^{18} \end{array}$	16	70.48680315009305	67.11583016786831

Table 3: matcond(n, c)

n	$\operatorname{\mathbf{cond}}(A)$	$\mathbf{rank}(A$) Gauss Relative Error	Invert Relative Error	С
5	1.0000000000000013	5	$2.7194799110210365 \times 10^{-16}$	$1.1102230246251565 \times 10^{-16}$	10^{0}
5	9.9999999999993	5	$2.220446049250313 \times 10^{-16}$	$2.808666774861361 \times 10^{-16}$	10^{1}
5	1000.000000000075	5	$1.3331924943818472 \times 10^{-14}$	$1.3197745560238665 \times 10^{-14}$	10^{3}
5	9.999999988554455e6	5	$3.199232142364538 \times 10^{-10}$	$1.4257906835893972 \times 10^{-10}$	10^{7}
5	$1.0000033494643236\mathrm{e}{12}$	5	$2.036498994500373 \times 10^{-5}$	$1.8843214470258284 \times 10^{-5}$	10^{12}
5	$6.688500865685893\mathrm{e}15$	4	0.5889024188140967	0.451559796704711	10^{16}
10	1.0000000000000007	10	$1.6088660122137096 \times 10^{-16}$	$3.3121136700345433 \times 10^{-16}$	10^{0}
10	9.9999999999993	10	$3.8459253727671276 \times 10^{-16}$	$5.301242283512285 \times 10^{-16}$	10^{1}
10	1000.0000000000341	10	$1.5780952360285983 \times 10^{-14}$	$2.0871838533448145 \times 10^{-14}$	10^{3}
10	$1.0000000009265918\mathrm{e}7$	10	$4.6003538792904206 \times 10^{-10}$	$4.5321682416826476 \times 10^{-10}$	10^{7}
10	$1.0000299226323792\mathrm{e}{12}$	10	$5.088133827453193 \times 10^{-5}$	$5.29604895008069 \times 10^{-5}$	10^{12}
10	3.722163178554466e16	9	0.20999773729554208	0.23783898505606685	10^{16}
20	1.0000000000000013	20	$4.3920512659784095 \times 10^{-16}$	$3.8218127502839273 \times 10^{-16}$	10^{0}
20	10.0	20	$3.979805003092567 \times 10^{-16}$	$4.2711132545550575 \times 10^{-16}$	10^{1}
20	1000.00000000008	20	$2.3048828947687884 \times 10^{-15}$	$1.3048309088140642 \times 10^{-14}$	10^{3}
20	1.0000000003904887e7	20	$2.302074075751533 \times 10^{-10}$	$2.4959292115882135 \times 10^{-10}$	10^{7}
20	9.999831732131125e11	20	$4.404089447858288 \times 10^{-5}$	$4.344454948384514 \times 10^{-5}$	10^{12}
20	$9.624512830246104\mathrm{e}15$	19	0.04769860428854183	0.10502383733558494	10^{16}

Znając wskaźnik uwarunkowania macierzy oraz błąd reprezentacji wektora prawych stron jesteśmy w stanie oszacować błąd względny naszej metody pomiarowej.

Błędy względne wyliczone na podstawie obu metod są znaczące. Nawet małych rozmiarów macierz Hilberta posiada bardzo duży wskaźnik uwarunkowania. Rozwiązywanie równań liniowych na macierzy Hilberta metodą Gaussa zdaje się być nieco dokładniejsze niż metoda odwrotnej macierzy.

W przypadku macierzy losowych o ustalonym wskaźniku uwarunkowania ciężko stwierdzić, czy któryś algorytm jest lepszy. Dla każdej macierzy błędy względne obu algorytmów są tego samego rzędu.

Skoro algorytmy działają w odpowiedni sposób dla macierzy losowych, oznacza to, że podpunkt w którym współczynniki równania określa macierz Hilberta jest zadaniem źle uwarunkowanym.

4 Zad

\mathbf{A}

Opis

Naszym zadaniem jest zbadanie złośliwego wielomianu Wilkinsona:

$$\prod_{i=1}^{20} (x-i)$$

Sprawdź jak pakiet **Polynomials** języka Julia radzi sobie z wyznaczaniem pierwiastków wielomianu. Sprawdź czy wartości zwrócone przez pakiet faktycznie są pierwiastkami tego wielomianu.

Rozwiązanie

Wczytujemy współczynniki z pliku dostępnego na stronie wykładowcy. Używamy pakietu Polynomials do znalezienia pierwiastków wielomianu oraz sprawdzamy, czy faktycznie zerują wielomian.

Table 4: Pierwiastki wielomianu, wartości wielomianów

1		D/		1 7 1
k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999996989	35696.50964788257	5.518479490350445e6	3.0109248427834245e-
				13
2	2.0000000000283182	176252.60026668405	7.37869762990174e19	2.8318236644508943e-
				11
3	2.9999999995920965	279157.6968824087	$3.3204139316875795\mathrm{e}{20}$	4.0790348876384996e-
				10
4	3.9999999837375317	3.0271092988991085e6	8.854437035384718e20	1.626246826091915e-8
5	5.000000665769791	2.2917473756567076e7	1.8446752056545688e21	6.657697912970661e-7
6	5.999989245824773	1.2902417284205095e8	3.320394888870117e21	1.0754175226779239e-
				5
7	7.000102002793008	4.805112754602064e8	$5.423593016891273\mathrm{e}21$	0.00010200279300764947
8	7.999355829607762	$1.6379520218961136\mathrm{e}9$	$8.262050140110275\mathrm{e}21$	0.0006441703922384079
9	9.002915294362053	4.877071372550003e9	1.196559421646277e22	0.002915294362052734
10	9.990413042481725	$1.3638638195458128\mathrm{e}{10}$	1.655260133520688e22	0.009586957518274986
11	11.025022932909318	3.585631295130865e10	2.24783329792479e22	0.025022932909317674
12	11.953283253846857	$7.533332360358197 \mathrm{e}{10}$	$2.886944688412679\mathrm{e}22$	0.04671674615314281
13	13.07431403244734	$1.9605988124330817\mathrm{e}{11}$	3.807325552826988e22	0.07431403244734014
14	13.914755591802127	3.5751347823104315e11	4.612719853150334e22	0.08524440819787316
15	15.075493799699476	$8.21627123645597\mathrm{e}{11}$	$5.901011420218566\mathrm{e}22$	0.07549379969947623
16	15.946286716607972	$1.5514978880494067\mathrm{e}{12}$	$7.010874106897764\mathrm{e}22$	0.05371328339202819
17	17.025427146237412	$3.694735918486229\mathrm{e}{12}$	$8.568905825736165\mathrm{e}22$	0.025427146237412046
18	17.99092135271648	$7.650109016515867\mathrm{e}{12}$	1.0144799361044434e23	0.009078647283519814
19	19.00190981829944	$1.1435273749721195\mathrm{e}{13}$	1.1990376202371257e23	0.0019098182994383706
20	19.999809291236637	$2.7924106393680727\mathrm{e}{13}$	1.4019117414318134e23	0.00019070876336257925

Table 5: Faktyczne pierwiastki wielomianu

k	P(k)	p(k)
1	0.0	0
2	8192.0	0
3	27648.0	0
4	622592.0	0
5	2.176e6	0
6	8.84736e6	0
7	2.4410624e7	0
8	5.89824e7	0
9	1.45753344e8	0
10	2.27328e8	0
11	4.79074816e8	0
12	8.75003904e8	0
13	1.483133184e9	0
14	2.457219072e9	0
15	3.905712e9	0
16	6.029312e9	0
17	9.116641408e9	0
18	1.333988352e10	0
19	1.9213101568e10	0
20	2.7193344e10	0

Jak widać na zamieszczonej powyżej tabeli 4 wyznaczone przez nas pierwiastki nie są dokładne.

Dlaczego tak się dzieje? Na ratunek przybywam nam tabela 5, na której widać, że prawdziwe pierwiastki wielomianu P(x) nie zerują go. Dzieje się tak, ponieważ wartości współczynników przechowywane są w arytmetyce Float64. Dla małych współczynników tego wielomianu oznacza to pozbycie się kilku cyfr znaczących.

Na tabeli 4 można też zaobserwować mniemaną "złośliwość" tego wielomianu. Pomimo bardzo małych odchyleń $|z_k - k|$ uzyskane przez nas wartości wielomianu Wilkinsona postaci $P(z_k)$ oraz $p(z_k)$ są **ogromne**.

Możemy zatem wnioskować, że zadanie to jest źle uwarunkowane.

\mathbf{B}

Opis

Powtórzyć eksperyment ${\bf Wilkinsona}$ - minimalnie zaburzyć wielomian oraz wyjaśnić zjawisko.

Rozwiązanie

To samo co w podpunkcie A) powtarzamy dla podpunktu B). Zmieniamy tylko współczynnik -210 na $-210-2^{-23}.$

Table 6: Wartości wielomianu dla $p[2] = -210 - 2^{-23}$

	Table 6: Wartości wielomianu dla $p[2] = -210 - 2^{-23}$					
k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $		
1	0.999999999998357 +	20259.872313418207	$3.0131001276845885\times$	$1.6431300764452317 \times$		
	$0.0 \mathrm{im}$		10^{6}	10^{-13}		
2	2.0000000000550373 +	346541.4137593836	$7.37869763029606 \times$	$5.503730804434781 \times$		
	$0.0 \mathrm{im}$		10^{19}	10^{-11}		
3	2.99999999660342 +	$2.3655796995492927 \times$	$3.320413920110016 \times$	$3.3965799062229962 \times$		
	$0.0 \mathrm{im}$	10^{6}	10^{20}	10^{-9}		
4	4.000000089724362 +	$1.0018343680854071\times$	$8.854437817429642 \times$	$8.972436216225788 \times$		
	0.0im	10^{7}	10^{20}	10^{-8}		
5	4.99999857388791 +	$4.6254074679189965 \times$	1.844672697408419×	$1.4261120897529622 \times$		
	$0.0 \mathrm{im}$	10^{7}	10^{21}	10^{-6}		
6	6.000020476673031 +	$2.0241763473292372 \times$	$3.320450195282313 \times$	$2.0476673030955794 \times$		
	$0.0 \mathrm{im}$	10^{8}	10^{21}	10^{-5}		
7	6.99960207042242 +	$1.710626634091394 \times$	$5.422366528916004 \times$	0.00039792957757978087		
	$0.0 \mathrm{im}$	10^9	10^{21}			
8	8.007772029099446+	$1.869950954754733 \times$	8.289399860984408×	0.007772029099445632		
	0.0im	10^{10}	10^{21}			
9	8.915816367932559+	$1.3757318900886914 \times$	1.160747250177049×	0.0841836320674414		
	0.0im	10 ¹¹	10 ²²	0.05105000000000		
10		$\begin{array}{c} 1.491101451791542 \times \\ 10^{12} \end{array}$	$\begin{array}{c} 1.7212892853670706 \times \\ 10^{22} \end{array}$	0.6519586830380407		
11	0.6449328236240688im	-	-	1 1100100000000000		
11		$1.491101451791542 \times 10^{12}$	$\begin{array}{c} 1.7212892853670706 \times \\ 10^{22} \end{array}$	1.1109180272716561		
10	0.6449328236240688im 11.793890586174369-	$3.2967412333942234 \times$	$2.8568401004080956 \times$	1.665281290598479		
14	11.793890580174309— 1.6524771364075785im		2.8508401004080950× 10 ²²	1.005281290598479		
19	11.793890586174369+	$3.2967412333942234 \times$	$2.8568401004080956 \times$	2.0458202766784277		
13	1.6524771364075785im		10^{22}	2.0436202100164211		
14		$9.545851019861934 \times$	$4.934647147686795 \times$	2.518835871190904		
14	2.5188244257108443im		10^{22}	2.310033071190904		
15	13.992406684487216+	$9.545851019861934 \times$	$4.934647147686795 \times$	2.7128805312847097		
10	2.5188244257108443im		10^{22}	2.7120000012047007		
16	16.73074487979267-	$2.7421389712291324 \times$	$8.484694713563005 \times$	2.9060018735375106		
	2.812624896721978im	10^{16}	10^{22}	2.5000010105010100		
17	16.73074487979267+	$2.7421389712291324 \times$	8.484694713563005×	2.825483521349608		
•	2.812624896721978im	10^{16}	10^{22}			
18	19.5024423688181 -	$4.252503605694188 \times$	$1.3181947820607215 \times$	2.4540214463129764		
-]	1.940331978642903im	10^{17}	10^{23}			
19		$4.252503605694188 \times$	$1.3181947820607215 \times$	2.0043294443099486		
	1.940331978642903im	10^{17}	10^{23}			
20		$1.3743593159265196 \times$	$1.5911084081430876 \times$	0.8469102151947894		
	0.0im	10^{18}	10^{23}			
\Box						

Wartości przedstawione na tabeli 6 potwierdzają wnioski o złym uwarunkowaniu zadanie z podpunktu A. Marginalne zaburzenie jednego z współczynników wielomianu powoduje pojawienie się rozwiązań zespolonych. Zauważalny jest też wzrost wartości wynikowych wielomianów $P(z_k)$, $p(z_k)$ oraz $|z_k - k|$.

5 Zad

Opis

Wyznaczyć 40 pierwszych wyrazów ciągu:

$$p_{n+1} := p_n + rp_n(1 - p_n)$$
, dla $n = 0, 1, ...$

, gdzie r = 3 a $p_0 = 0.01$.

Sposoby wyznaczania ciągu:

- 1. Arytmetyka Float32
- 2. Arytmetyka Float32 z obcięciem p_{10} do 3 cyfr po przecinku ($p_{10}=0.722$)
- 3. Arytmetyka Float64

Rozwiązanie

Ustawiamy odpowiednie parametry a następnie wykonujemy 10 iteracji pętli for. Kiedy wyjdziemy z pierwszej pętli tworzymy nową zmienną, która będzie reprezentowała $p_{10}=0.722$. Znowu wchodzimy do pętli i wykonujemy następne 30 iteracji. Wszystkie wartości wyświetlamy na bieżąco w terminalu w sposób ułatwiający nam konwersję do tabeli.

Table 7: Zad 5.1 i Zad5.2

Table 7: Zad 5.1 i Zad5.2						
n	Float32	Float32 z obcięciem	Float 64			
0	0.01	0.01	0.01			
1	0.0397	0.0397	0.0397			
2	0.15407173	0.15407173	0.154071730000000002			
3	0.5450726	0.5450726	0.5450726260444213			
4	1.2889781	1.2889781	1.2889780011888006			
5	0.1715188	0.1715188	0.17151914210917552			
6	0.5978191	0.5978191	0.5978201201070994			
7	1.3191134	1.3191134	1.3191137924137974			
8	0.056273222	0.056273222	0.056271577646256565			
9	0.21559286	0.21559286	0.21558683923263022			
10	0.7229306	0.722	0.722914301179573			
11	1.3238364	1.3241479	1.3238419441684408			
12	0.037716985	0.036488414	0.03769529725473175			
13	0.14660022	0.14195944	0.14651838271355924			
14	0.521926	0.50738037	0.521670621435246			
15	1.2704837	1.2572169	1.2702617739350768			
16	0.2395482	0.28708452	0.24035217277824272			
17	0.7860428	0.9010855	0.7881011902353041			
18	1.2905813	1.1684768	1.2890943027903075			
19	0.16552472	0.577893	0.17108484670194324			
20	0.5799036	1.3096911	0.5965293124946907			
21	1.3107498	0.09289217	1.3185755879825978			
22	0.088804245	0.34568182	0.058377608259430724			
23	0.3315584	1.0242395	0.22328659759944824			
24	0.9964407	0.94975823	0.7435756763951792			
25	1.0070806	1.0929108	1.315588346001072			
26	0.9856885	0.7882812	0.07003529560277899			
27	1.0280086	1.2889631	0.26542635452061003			
28	0.9416294	0.17157483	0.8503519690601384			
29	1.1065198	0.59798557	1.2321124623871897			
30	0.7529209	1.3191822	0.37414648963928676			
31	1.3110139	0.05600393	1.0766291714289444			
32	0.0877831	0.21460639	0.8291255674004515			
33	0.3280148	0.7202578	1.2541546500504441			
34	0.9892781	1.3247173	0.29790694147232066			
35	1.021099	0.034241438	0.9253821285571046			
36	0.95646656	0.13344833	1.1325322626697856			
37	1.0813814	0.48036796	0.6822410727153098			
38	0.81736827	1.2292118	1.3326056469620293			
39	1.2652004	0.3839622	0.0029091569028512065			
40	0.25860548	1.093568	0.011611238029748606			
	1	<u> </u>	<u>l</u>			

Na tabeli 7 możemy zaobserwować, że początkowe wartości wyrazów ciągu są bardzo podobne. Dopiero dla n=19 uwidacznia się znaczna różnica w wartości Float32 z obcięciem, a dla n=22 także dla samej wartości Float32. Oddalenie się od siebie wartości spowodowane jest postępującą akumulacja błędów, którą zawdzięczamy miedzy innymi potęgowaniu ukrytemu we wzorze ciągu.

Możemy zatem wnioskować, że wyznaczanie kolejnych wyrazów ciągu p_n jest procesem niestabilnym, ponieważ z każdą iteracją błędy nakładają się na siebie, potęgując rozstrzał pomiędzy wartościami oczekiwanymi a rzeczywistymi.

Nawet wartości p_n wyliczone w arytmetyce Float64 dla odpowiedni dużego n staną się **BARDZO** oddalone od rzeczywistości.

6 Zad

Opis

Rozważmy ciągi rekurencyjne wyrażone wzorem:

$$x_{n+1} = x_n^2 + c$$

Rozwiązanie

Aby uzyskać rozwiązania wystarczy przeprowadzić 40 iteracji wyrażenia

$$x_{n+1} = x_n^2 + c$$

dla danych wejściowych podanych wyżej oraz na bieżąco wyświetlać potrzebne nam wyniki w terminalu.

Table 8: Wartości x_n dla c=-2

Table 8: Wartości x_n dla $c = -2$						
n	$x_0 = 1$	$x_0 = 2$	$x_0 = 1.99999999999999999999999999999999999$			
1	-1.0	2.0	1.9999999999996			
2	-1.0	2.0	1.999999999998401			
3	-1.0	2.0	1.999999999993605			
4	-1.0	2.0	1.99999999997442			
5	-1.0	2.0	1.9999999999897682			
6	-1.0	2.0	1.9999999999590727			
7	-1.0	2.0	1.999999999836291			
8	-1.0	2.0	1.9999999993451638			
9	-1.0	2.0	1.9999999973806553			
10	-1.0	2.0	1.999999989522621			
11	-1.0	2.0	1.9999999580904841			
12	-1.0	2.0	1.9999998323619383			
13	-1.0	2.0	1.9999993294477814			
14	-1.0	2.0	1.9999973177915749			
15	-1.0	2.0	1.9999892711734937			
16	-1.0	2.0	1.9999570848090826			
17	-1.0	2.0	1.999828341078044			
18	-1.0	2.0	1.9993133937789613			
19	-1.0	2.0	1.9972540465439481			
20	-1.0	2.0	1.9890237264361752			
21	-1.0	2.0	1.9562153843260486			
22	-1.0	2.0	1.82677862987391			
23	-1.0	2.0	1.3371201625639997			
24	-1.0	2.0	-0.21210967086482313			
25	-1.0	2.0	-1.9550094875256163			
26	-1.0	2.0	1.822062096315173			
27	-1.0	2.0	1.319910282828443			
28	-1.0	2.0	-0.2578368452837396			
29	-1.0	2.0	-1.9335201612141288			
30	-1.0	2.0	1.7385002138215109			
31	-1.0	2.0	1.0223829934574389			
32	-1.0	2.0	-0.9547330146890065			
33	-1.0	2.0	-1.0884848706628412			
34	-1.0	2.0	-0.8152006863380978			
35	-1.0	2.0	-1.3354478409938944			
36	-1.0	2.0	-0.21657906398474625			
37	-1.0	2.0	-1.953093509043491			
38	-1.0	2.0	1.8145742550678174			
39	-1.0	2.0	1.2926797271549244			
40	-1.0	2.0	-0.3289791230026702			

bardzo małego odchylenia, pon=22uzyskane przez nas wyniki są chaotyczne.

Table 9: Wartości x_n dla c = -1

Table 9: Wartości x_n dla $c = -1$					
n	$x_0 = 1$	$x_0 = -1$	$x_0 = 0.75$	$x_0 = 0.25$	
1	0.0	0.0	-0.4375	-0.9375	
2	-1.0	-1.0	-0.80859375	-0.12109375	
3	0.0	0.0	-0.3461761474609375	-0.9853363037109375	
4	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135	
5	0.0	0.0	-0.2253147218564956	-0.9991524699951226	
6	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965	
7	0.0	0.0	-0.0989561875164966	-0.9999971292061947	
8	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6	
9	0.0	0.0	-0.01948876442658909	-0.999999999670343	
10	-1.0	-1.0	-0.999620188061125	-6.593148249578462e- 11	
11	0.0	0.0	-0.0007594796206411569	-1.0	
12	-1.0	-1.0	-0.9999994231907058	0.0	
13	0.0	0.0	-1.1536182557003727e-6	-1.0	
14	-1.0	-1.0	-0.999999999986692	0.0	
15	0.0	0.0	-2.6616486792363503e-12	-1.0	
16	-1.0	-1.0	-1.0	0.0	
17	0.0	0.0	0.0	-1.0	
18	-1.0	-1.0	-1.0	0.0	
19	0.0	0.0	0.0	-1.0	
20	-1.0	-1.0	-1.0	0.0	
21	0.0	0.0	0.0	-1.0	
22	-1.0	-1.0	-1.0	0.0	
23	0.0	0.0	0.0	-1.0	
24	-1.0	-1.0	-1.0	0.0	
25	0.0	0.0	0.0	-1.0	
26	-1.0	-1.0	-1.0	0.0	
27	0.0	0.0	0.0	-1.0	
28	-1.0	-1.0	-1.0	0.0	
29	0.0	0.0	0.0	-1.0	
30	-1.0	-1.0	-1.0	0.0	
31	0.0	0.0	0.0	-1.0	
32	-1.0	-1.0	-1.0	0.0	
33	0.0	0.0	0.0	-1.0	
34	-1.0	-1.0	-1.0	0.0	
35	0.0	0.0	0.0	-1.0	
36	-1.0	-1.0	-1.0	0.0	
37	0.0	0.0	0.0	-1.0	
38	-1.0	-1.0	-1.0	0.0	
39	0.0	0.0	0.0	-1.0	
40	-1.0	-1.0	-1.0	0.0	
			•		

Jeżeli radykalnie zmienimy równanie naszego ciągu i zastąpimy c=-2 na c=-1 to uzyskamy podobne zachowanie. Dla $x_0\in\{-1,1\}$ wartości oscylują pomiędzy 0 a -1, dla $x_0\in\{-0.75,0.25\}$ na początku otrzymujemy zachowanie

chaotyczne, które po paru iteracjach stabilizuje się pomiędzy 0 a -1.

Wnioski

Wyznaczanie kolejnych wyrazów ciągów rekurencyjnych może mieć różną stabilność w zależności od parametrów wejściowych. Przykładem tego jest nasz ciąg $x_{n+1} = x_n^2 + c$. Wynika z tego, że pomimo obecności potęgi w naszym wzorze istnieje klasa zadań/problemów które "stabilizują" się; błędy akumulacyjne są w nich pomijane. Pozwala nam to na wykonywanie niektórych obliczeń na maszynach o skończonej precyzji.