Lab Assignment #4

Instructor: Dr. Ioannis Savidis TA: Ying Teng E-Mail:yt74@drexel.edu

Drexel University Electrical and Computer Engineering Oct 16th, 2013 (Wednesday, week 4)

1 Objective

The objective of this laboratory is to understand the effect of Inverter sizing on propagation delay and the design of a Ring Oscillator. The laboratory tasks are:

- Sizing a chain of Inverters;
- Design a Ring Oscillator.

2 Assignments

An Inverter Chain and a Ring Oscillator are designed in this laboratory.

2.1 Sizing an Inverter Chain

The Inverter Chain consists of a row of Inverters, and is used to find the propagation delay of an Inverter:

- 1. Compute the optimal number of Inverters that leads to a minimum propagation delay from input to output in an Inverter Chain (Set the input capacitance to 10fF, and the output capacitance to 1pF);
- 2. Simulate the Inverter Chain to observe the propagation delay Input pulse parameters:

period: 200ns,rise time: 10ns,fall time: 10ns;

- 3. Compute the average propagation delay of each Inverter and compare the average propagation delay with the propagation delay simulated in Laboratory #2;
- 4. Increase the size of each Inverter from 1.5um to 5um and calculate the propagation delay for each Inverter size.

2.2 Ring Oscillator

The Ring Oscillator can be used to generate square waves in digital circuits. The tasks in this assignment are:

- 1. Design a Ring Oscillator with 21 Inverters;
- 2. Simulate the Ring Oscillator;
- 3. Observe the propagation delay from input to output.

2.3 Hand in Report(Due next Wednesday!)

Lab reports are due next Wednesday before the class. Unless explicitly stated, lab reports are typically due one week after the Wednesday laboratory session. **Electronic submission in pdf or doc format through email** is accepted.

The report on this laboratory should include the following:

1. Inverter Chain:

- Calculate the optimal number of Inverters in a chain. Simply explain how you calculate the optimal number of Inverters.;
- The schematic view of the Inverter Chain;
- \bullet The simulation waveform with markers delineating the propagation delay t_p time;
- Compute the average propagation dalay of each Inverter. Compare the average propagation delay with the propagation delay simulated in Laboratory #2;
- Increase the size of the Inverters from 1.5um to 5.0um with a step of 0.2um, and plot the change in propagation delay as a function of the size of the Inverters.

2. Ring Oscillator:

- The schematic view of Ring Oscillator;
- The simulation result of the waveform generated by the ring oscillator.
- Mark the simulation result to indicate the clock period of the generated waveform.