# Probabilidade

Otaviano Francisco Neves

# Partição do Espaço amostral

Considere : A<sub>1</sub>, A<sub>2</sub> ...A<sub>n</sub> como partição do espaço amostral tal que

$$A_1 \cup A_2 \cup ... \cup A_n = S$$

$$P(A_i) > 0$$

$$A_i \cap A_j = \emptyset$$

Seja B um evento qualquer, assim:

$$P(B) = \sum P(A_i) \cdot P(B/A_i)$$



## Teorema de Bayes

Considere a probabilidade de ocorrência de A<sub>i</sub>, dado a ocorrência de B, assim:

$$P(A_i/B) = \frac{P(A_i \cap B)}{P(B)}$$

$$P(A_i/B) = \frac{P(A_i) \cdot P(B/A_i)}{P(B)}$$



## Exemplo

Considere 3 caixas:

Caixa 1: com 10 lâmpadas sendo 3 defeituosas;

Caixa 2: com 8 lâmpadas sendo 1 defeituosa;

Caixa 3: com 6 lâmpadas sendo 4 defeituosas;

Uma caixa é selecionada aleatoriamente e uma lâmpada é retirada. Se a lâmpada é defeituosa qual a probabilidade de ter vindo da caixa 1?



# Resolução

#### Considere 3 caixas:

 $A_1$  = Caixa 1;  $A_2$  = Caixa 2;  $A_3$  = Caixa 3 B = lâmpada defeituosa

#### Assim:

$$P(A_1) = P(A_2) = P(A_3) = 1/3$$

$$P(B/A_1) = 3/10$$

$$P(B/A_2) = 1/8$$

$$P(B/A_3) = 4/6$$



# Resolução

#### Assim:

 $P(B) = P(A_1) * P(B/A_1) + P(A_2) * P(B/A_2) + P(A_3) * P(B/A_3)$ 

P(B) = 1/3\*3/10 + 1/3\*1/8 + 1/3\*4/6

P(B) = 0.10 + 0.0417 + 0.2222 = 0.3639

Pelo teorema de Bayes temos:

$$P(A_1/B) = \frac{P(A_1) \cdot P(B/A_1)}{P(B)}$$

$$P(A_1/B) = \frac{0,10}{0,3639} = 0,2748$$



## Teste de Câncer

Suponha que existisse um teste para câncer com a propriedade de que 95% das pessoas com câncer e 5% das pessoas sem câncer reagem positivamente. Admita que 2% dos pacientes de um hospital tem câncer. Qual a probabilidade de que um paciente escolhido ao acaso, que reage positivamente a esse teste, realmente tenha câncer?



## Teste de Câncer

B= pessoa ter reagido positivamente ao teste

 $A_1$  = pessoa tem câncer

 $A_2$  = pessoa não tem câncer

Assim:

 $P(A_1) = 0.02$ 

 $P(A_2) = 0.98$ 

 $P(B/A_1) = 0.95$ 

 $P(B/A_2) = 0.05$ 



## Teste de Câncer

#### Assim:

$$P(B) = P(A_1) * P(B/A_1) + P(A_2) * P(B/A_2)$$

$$P(B) = 0.02*0.95 + 0.98*0.05$$

$$P(B) = 0.019 + 0.049 = 0.068$$

Pelo teorema de Bayes temos:

$$P(A_1/B) = \frac{P(A_1) \cdot P(B/A_1)}{P(B)}$$

$$P(A_1/B) = \frac{0,019}{0,068} = 0,2794$$



# Solução



## Preferência alimentar

Um restaurante popular apresenta apenas dois tipos de refeições: salada completa ou um prato a base de carne. Considere que 20% dos fregueses do sexo masculino e 65% dos fregueses do sexo feminino prefiram salada e que 25 % dos fregueses são mulheres. Calcule a probabilidade de uma pessoa que tenha pedido salada, ser uma mulher?



## Preferência alimentar

B= Pessoa pedir salada

 $A_1$  = pessoa do sexo Feminino

 $A_2$  = pessoa do sexo Masculino

#### Assim:

 $P(A_1) = 0.25$ 

 $P(A_2) = 0.75$ 

 $P(B/A_1) = 0.65$ 

 $P(B/A_2) = 0.20$ 



## Preferência alimentar

#### Assim:

$$P(B) = P(A_1) * P(B/A_1) + P(A_2) * P(B/A_2)$$

$$P(B) = 0.25*0.65+0.75*0.20$$

$$P(B) = 0.1625 + 0.15 = 0.3125$$

Pelo teorema de Bayes temos:

$$P(A_1/B) = \frac{0,1625}{0,3125} = 0,52$$



# Solução

