

Departamento Académico de Economía Matemáticas III (30651) Primer Semestre 2016 Profesores D. Winkelried O. Buene E.

Profesores D. Winkelried, O. Bueno, E. Mantilla, D. Bohorquez y C. Aparicio

Práctica Calificada 4

1. Sistemas diferenciales lineales (7 ptos)

Dado el siguiente sistema de ecuaciones diferenciales

$$\dot{x} = a_{11}x + a_{12}y + b_1$$

$$\dot{y} = a_{21}x + a_{22}y + b_2,$$

donde a_{11} , a_{12} , a_{21} , a_{22} , b_1 y b_2 son constantes. Analice por separado cada una de las siguientes afirmaciones:

- a) (1 pto) Si $a_{11}a_{22} = a_{12}a_{21}$, entonces la solución particular de x(t) es constante.
- b) (1 pto) Si $a_{11} < 0$ y $a_{22} < 0$, entonces el sistema es convergente.
- c) (1 pto) Si $a_{11} < a_{22} < a_{21} < 0$ y $a_{12} > 0$, entonces el sistema es divergente.
- d) (1 pto) Si $a_{11} = a_{22}$ y $a_{12} = -a_{21} > 0$, entonces el sistema es oscilante.
- e) (1 pto) Si $b_1 = b_2$, entonces $x(t) = \beta y(t)$ donde β es una constante.
- f) (2 ptos) Suponga que $a_{11} = 2$, $a_{12} = -3$, $a_{21} = 1$, $a_{22} = -2$ y $b_1 = b_2 = 0$. Es decir,

$$\dot{x} = 2x - 3y$$

$$\dot{y} = x - 2y.$$

Si las condiciones iniciales son $y(0) = y_0$ y $x(0) = \beta y_0$, las trayectorias de x e y son convergentes siempre que $\beta < 0$.

2. Modelo de Cagan (5 ptos)

En el siguiente modelo (donde las variables son expresadas en logaritmos), m es la oferta monetaria, p es el nivel precios, y $\pi = \dot{p}$. La demanda por dinero (que en equilibrio es igual a la oferta, m) es inversamente proporcional a la inflación esperada, π^e :

$$m-p=-\beta\pi^e$$
,

donde $\beta > 0$.

a) (1 pto) Asuma que los individuos forman sus expectativas de manera adaptativa:

$$\dot{\pi}^e = \alpha(\pi - \pi^e) \,,$$

donde $0 < \alpha < (1/\beta)$. Si la oferta monetaria se mantiene constante e igual a \bar{m} , encuentre una ecuación diferencial para el nivel de precios, $\dot{p} = f(p)$.

- b) (1 pto) Esboce el diagrama de fase para la ecuación obtenida en a) e indique si p(t) es estable.
- c) (1 pto) Utilizando el diagrama de fase de la parte b), indique qué ocurriría con la tyectoria de p si la autoridad monetaria sorpresivamente aumenta la oferta de dinero.
- d) (2 ptos) ¿Cómo cambian las respuestas de a) y b) si los individuos ahora tienen previsión perfecta? Es decir,

$$\pi^e = \pi$$
.

3. Modelo de crecimiento (5 ptos)

Suponga que la acumulación de capital (K) se rige por la ecuación diferencial

$$\dot{K} = sF(L, K) - \delta K,$$

donde $s \in (0,1)$ es la tasa de ahorro y $\delta \in (0,1)$ es la tasa de depreciación, y $F(\cdot,\cdot)$ es la función de producción. Dado un salario w, la fuerza laboral (L) evoluciona según la ecuación diferencial

$$\frac{\dot{L}}{L} = F_L(L, K) - w \,,$$

donde $F_L(\cdot,\cdot)$ es la derivada parcial de $F(\cdot,\cdot)$ respecto a L. Asuma que

$$F(L, K) = 4(LK)^{1/4}$$
.

- a) (1 pto) Encuentre el estado estacionario del sistema.
- b) (2 ptos) Analice la naturaleza del estado estacionario utilizando la matriz Jacobiana del sistema.
- c) (2 ptos) Esboce diagrama de fase en el plano (L, K) y describa el comportamiento de las trayectorias de L y K.

4. Ecuación en diferencias de primer orden (3 ptos)

En una economía abierta, S_t denota el tipo de cambio; S_t^e , el tipo de cambio esperado; y R, la cantidad de reservas internacionales (constante). Para dos constantes $\alpha > 0$ y $\beta > 0$, estas variables se relacionan de la siguiente manera:

$$\frac{R}{S_t} = \left(\frac{S_{t+1}^e}{S_t}\right)^{\alpha} \qquad \text{y} \qquad \frac{S_{t+1}^e}{S_t} = \left(\frac{S_t}{S_{t-1}}\right)^{\beta} \,.$$

- a) (1 pto) Defina $s_t = \ln(S_t)$. Encuentre una ecuación en diferencias para s_t .
- b) (1 pto) Encuentre la trayectoria S(t), con condición inicial $S(0) = Re^2$, tras resolver la ecuación en diferencias para s_t .
- c) (1 pto) ¿Bajo qué condiciones la trayectoria encontrada en b) es convergente?