

Oddziaływanie Promieniowania Jonizującego z Materią

Tomasz Szumlak, Agnieszka Obłąkowska-Mucha

Pomiary jonizacji

- Nasze piękne równania opisujące straty jonizacyjne mogą zostać użyte do wyznaczenia średniej liczby par jon-elektron generowanych na drodze cząstki jonizującej
- UWAGA należy zawsze używać sformułowań jak poniżej
 - Cząstka naładowana deponuje energię (nie ładunek!!)
 - Deponowanie energii powoduje generację ładunku wzdłuż toru cząstki
- Wyróżniamy tu jonizację pierwotną n_p (liczba pierwotnie wytworzonych par e-jon) oraz wtórną (związaną z elektronami δ) oraz całkowitą N_T (suma obu).
- Srednia energia potrzebna do produkcji par jon-elektron, W jest w zasadzie **stała dla danego materiału** (zależy b. słabo od parametrów cząstek penetrujących)

W. Adam et al., CMS note 1998/092 (1998)

Pomiary jonizacji

- W praktyce rozpatrujemy dwa typy detektorów, które wykorzystujemy do "pomiarów jonizacji": materiał czynny, w którym dochodzi do jonizacji może być:
 - Gazem
 - Ciałem stałym (solid-state)
- \square Całkowita jonizacja, N_T , (liczba par nośników, które zostały wygenerowane) wynosi:

$$N_{Tot} = \frac{\Delta E}{W}$$

- Gdzie: ΔE całkowita strata jonizacyjna energii, W średnia energia potrzebna do generacji pary "jon"-elektron (dla gazów ~30 eV dla krzemu (germanu) ~3.6 eV (~2.8 eV)
- \square Liczba wygenerowanych nośników jest **zmienną losową** dla detektorów "ss" fluktuacje N_{Tot} są oczywiście znacznie mniejsze!
- ☐ Kapitalne znaczenie w przypadku pomiaru energii cząstek

Jonizacja pierwotna

Straty energii:

- głównie na jonizację,
- zależą od $\beta\gamma$,
- typowa strata to ok. 2-3 MeV cm²/g,
- w cieczach i ciałach stałych kilka MeV/cm,
- w gazach kilka keV/cm.
- Jonizacja pierwotna: naładowana cząstka wybija elektron z atomu, również wzbudzenia.

- \square Energia potrzebna do wytworzenia pary elektron jon W > I
- w gazach $W \approx 30$ eV, czyli średnio 60 par e-jon/cm (2 MeV/30 eV) uwaga! Liczba nośników podlega rozkładowi Poissona!

Jonizacja wtórna

- \square $n_{prim} \approx 20 50$ na cm.
- Delektrony z jonizacji pierwotnej jonizują dalej gaz, typowo dając 2-3 razy więcej nośników, czyli ok 60-120 elektronów/cm.

120 par elektron-jon wytworzy puls o amplitudzie:

$$V = \frac{ne}{C} = 2 mV$$
, przy $C = 10 pF$.

To jest za mało na detekcję.

Pomysł: powielanie (multiplikacja) nośników w silnym polu elektrycznym: $E\cong 10\ kV/cm$, potencjał 10 V w pobliżu anody (10 mm)

☐ Średnia energia potrzebna do produkcji par jon-elektron, W jest w zasadzie **stała dla danego materiału** (zależy b. słabo od parametrów cząstek penetrujących)

Gas	Density ϱ [g/cm ³]	$I_0 [eV]$	W [eV]	$n_{\rm p} \ [{\rm cm}^{-1}]$	$n_{\rm T}~[{\rm cm}^{-1}]$
$\overline{\mathrm{H}_2}$	$8.99 \cdot 10^{-5}$	15.4	37	5.2	9.2
${\rm He}$	$1.78 \cdot 10^{-4}$	24.6	41	5.9	7.8
N_2	$1.25 \cdot 10^{-3}$	15.5	35	10	56
O_2	$1.43 \cdot 10^{-3}$	12.2	31	22	73
Ne	$9.00 \cdot 10^{-4}$	21.6	36	12	39
Ar	$1.78 \cdot 10^{-3}$	15.8	26	29	94
Kr	$3.74 \cdot 10^{-3}$	14.0	24	22	192
Xe	$5.89 \cdot 10^{-3}$	12.1	22	44	307
CO_2	$1.98 \cdot 10^{-3}$	13.7	33	34	91
CH_4	$7.17 \cdot 10^{-4}$	13.1	28	16	53
$\mathrm{C_4H_{10}}$	$2.67 \cdot 10^{-3}$	10.8	23	46	195

Fluktuacje

 \square Całkowita jonizacja, N_T , (liczba par nośników, które zostały wygenerowane) wynosi:

$$N_{Tot} = \frac{\Delta E}{W}$$

- Gdzie: ΔE całkowita strata jonizacyjna energii, W średnia energia potrzebna do generacji pary "jon"-elektron (dla gazów $\sim 30~eV$ dla krzemu (germanu) $\sim 3.6~eV$ ($\sim 2.8~eV$), **ŚREDNIO!!!**
- Zależność jest prawdziwa, gdy cała zdeponowana energia została przekazana na jonizację.
- Oznacza to, że dla ciał stałych produkowana liczba nośników jest o rząd wielkości wyższa niż dla gazów (a fluktuacje mniejsze).
- ☐ Liczba wygenerowanych nośników jest **zmienną losową,** w pierwszym przybliżeniu o rozkładzie Poissona.
- \square Zatem fluktuacje wokół wartości średniej powinny być rzędu \sqrt{N} .
- \square Są jednak mniejsze o czynnik \sqrt{F} (współczynnik Fano).

Pomiary jonizacji

- □ Rozdzielczość pomiaru (dokładność) będzie zależeć od średniej liczby wyprodukowanych par j-e ⟨N⟩
- Dokładna analiza statystyczna prowadzi do wyrażenia:

$$\sigma^2 = F \cdot \langle N \rangle$$

Absorber	F
$Ar + 10\% CH_4$	≈ 0.2
Si	0.12
Ge	0.13
GaAs	0.10
Diamond	0.08

- Współczynnik Fano, F, zależy od materiału czynnego
- Zwiększa rozdzielczość energii detektora w porównaniu do tej, którą otrzymalibyśmy zakładając jedynie zależność do fluktuacji w produkcji par j-e
- □ Pamiętamy ciągle o zdarzających się bardzo dużych stratach energii, zwłaszcza w cienkich absorberach (p. rozkład Landaua)

Rozpraszania wielokro

- ☐ To "koszmar" dla detektorów pozycjo-czułych!
- Naładowana cząstka przechodząc przez materię jest rozpraszana przez "Kolumbowski" **potencjał jądra** i innych elektronów (niewielki wpływ na cząstki ciężkie)
- □ Rozpraszanie **elastyczne** nie obserwujemy **strat energii** cząstek jonizujących **zmiany pędu**
- ☐ Głównie oddziaływanie typu Coulomba cząstka jądro
 - □ Dla hadronów możliwy również wkład od oddziaływań silnych
- ☐ Cząstka podlega bardzo wielu zderzeniom z bardzo małym odchyleniem w każdym procesie (dlaczego?).
- \square Rozkład kąta rozproszenia jest gaussowski wokół $\Theta=0$

300 micron Si : RMS = 0.9 mrad $/\beta p$

1 mm Be : RMS = $0.8 \text{ mrad }/\beta p$

Rozpraszania wielokrofne

Co chcemy zrobić?

- Konstrukcja (rodzaj) detektora zależy bezpośrednio od tego jaką wielkość fizyczną chcemy zmierzyć
- ¬✓ Zwykle jesteśmy zainteresowani:
 - Detekcją cząstek (wykrycie obecności, np. Geiger-Müller duże ograniczenia związane z brakiem zależności pomiędzy energią zdeponowaną a sygnałem oraz saturacja dla dużych strumieni cząstek związane z czasem martwym)
 - Pomiarem energii (np. detektory krzemowe)
 - □ Pomiarem położenia, trajektorii oraz pędu
 - Identyfikacją cząstek
- ☐ Intuicyjnie rozumiemy, że **wykrycie** bądź pomiar **energii** są "łatwe" i nie wymagają (zwykle) skomplikowanych urządzeń hybrydowych
 - ☐ To się może zmienić, jeżeli widmo energii jest szerokie,
 - Bądź kompozycja strumienia cząstek jest złożona (fotony, elektrony...)
- ☐ Pomiary trajektorii, pędu (wektor!) czy rodzaju cząstki są trudne

12 Małe i duże

I bardzo skomplikowane

- Bez względu na rodzaj promieniowania oraz aparatury jakiej używamy, zawsze interesować nas będzie (skrót myślowy...):
 - Detekcja cząstek
 - \square Estymacja 4-pędu p^{μ}
 - ☐ Identyfikacja (PID Particle IDentification)

Geometria typu spektroskop

Geometria typu 4π

Eksperymenty FWE

- Obserwacja cząstek zawsze jako konsekwencja oddziaływania z materiałem "czynnym" detektora
 - Bez względu na typ cząstki i własności oddziaływania na końcu zawsze mamy jonizację!

Eksperymenty FWE

- Układy śladowe powinny zawierać jak najmniej materiału (wielokrotne rozproszenia, straty na jonizację)
- Kalorymetry "odwrotnie" powinny zawierać jak najwięcej materiału ("katastroficzne" pochłonięcie cząstek)

Eksperymenty (IV)

Eksperymenty FWE

Układy śladowe (I)

- Pømiar pędu jest procesem b. skomplikowanym i wymaga użycia detektorów hybrydowych
- Odpowiednio skonstruowany detektor, który jest w stanie zmierzyć pozycję cząstki naładowanej (na podstawie wygenerowanego w detektorze ładunku) umożliwia pomiar pędu
 - Cząstka naładowana musi poruszać się w polu magnetycznym

Elektron w polu magnetycznym (1940).

- Energia początkowa: 16.9 MeV, końcowa 12.4 MeV.
- Energia stracona na jonizację: 2.8 MeV.
- Pozostała energia wypromieniowana jako bremsstrahlung

Układy śladowe (I)

Komora pęcherzykowa

Układy śladowe (2010)

21

Układy śladowe (I)

- Do pomiaru pozycji używa się głównie detektorów **gazowych** oraz **półprzewodnikowych** (mikro-paskowe lub pikselowe)
 - Zasada detekcji oraz rekonstrukcji położenia praktycznie jednakowa – komory jonizacyjne
 - ☐ Fizyka oddziaływania inna detektory krzemowe oferują znacznie większą amplitudę generowanego sygnału

Układy śladowe i wierzchoł

Cel; wyznaczenie pędu i miejsca produkcji i rozpadu cząstek (wierzchołka)

Pomiar pędu w polu magnetycznym

$$\vec{F} = q\vec{v} \times \vec{B}$$

$$\frac{mv^2}{r} = qvB$$

Układy śladowe i wierzchoł

24

Układy śladowe (II)

Układy śladowe (III)

Atlas TRT – Transition Radiation Tracker