METHOD FOR MOUNTING CHIP

Publication number: JP11026922

Publication date:

1999-01-29

Inventor:

TAKANO YASUYUKI; TAKEDA MASATOSHI

Applicant:

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

H05K13/04; H05K3/34; H05K3/32; H05K13/04;

H05K3/34; H05K3/32; (IPC1-7): H05K3/34; H05K13/04

- European:

Application number: JP19970176745 19970702 **Priority number(s):** JP19970176745 19970702

Report a data error here

Abstract of JP11026922

PROBLEM TO BE SOLVED: To provide a method for mounting a chip with high connection reliability in which small pressure mounting and fluxless mounting can be attained. SOLUTION: A semiconductor chip 5 on which a gold bump 6 sucked by a tool 7 for ultrasonic pulse heat heating is formed is positioned on a substrate 3 on which an ACF1 is adhered, and pressurization is operated by adding an ultrasonic wave and pulse heat to the tool 7. Thus, the gold bump 6 and an electrode 4 are electrically connected by Ni particles 2 of conductive particles, and the gold bump 6 can be connected with the electrode 4 with a small pressure and fluxless by adding the ultrasonic wave to the tool 7.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-26922

(43)公開日 平成11年(1999)1月29日

(51) Int.Cl. 6

識別記号 504

H 0 5 K 3/34

13/04

FΙ

H 0 5 K 3/34

13/04

504Z

В

審査請求 未請求 請求項の数6 〇L (全 6 頁)

(21)出願番号

特願平9-176745

(22)出願日

平成9年(1997)7月2日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 ▲高▼野 泰行

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 竹田 雅俊

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】 チップ実装方法

(57)【要約】

【課題】 低荷重実装、フラックスレス実装を可能とし 接合信頼性の高いチップ実装方法を提供することを目的 とする。

【解決手段】 ACF1を貼付した基板3に超音波バルスピート加熱用のツール7で吸着した金バンブ6の形成された半導体チップ5を位置合わせし、ツール7に超音波とバルスピートをかけながら加圧する。これにより金バンブ6と電極4は導電粒子であるNi粒子2で電気的に接続される。ツール7に超音波を加えることにより、低荷重、フラックスレスで金バンプ6を電極4に接続できる。

1 ACF 2 NI粒子 3 基板 4 電極

5 半導体チップ 6 会パンプ 7 ツール

【特許請求の範囲】

【請求項1】バンプが形成されたチップを被接続母材に接続するための実装方法であって、バンプを母材に接続するために超音波を加えることを特徴とするチップ実装方法

【請求項2】前記チップと前記被接続母材との間に異方性標電性接着剤を介して加熱するとともに加圧と超音波とをそれぞれ同時に加えて接続することを特徴とする請求項1記載のチップ実装方法

【請求項3】前記バンプの材質は金、アルミニウム、バンダのグループから選択された材質を用い、前記加圧に際しては1バンプ当たり5gから6gの範囲で加圧することを特徴とする請求項2記載のチップ実装方法。

【請求項 1】ハンダを材質とするバンプが形成されたチャプを被接続母材に接続するための実装方法であって、前記バンフと前記被接続母材とを位置合わせした状態で超音波を印加する加振ステップと、前記加振ステップの後に加熱し前記バンプと前記被接続母材とを溶融接続する加熱ステップと、前記加熱ステップの後に前記チップと前記被接続母材とを封止樹脂により結合する樹脂封止ステップとを有することを特徴とするチップ実装方法。

【請求項5】金を材質とするバンプが形成されたチッフをハンダを材質とする被接続母材に接続するための実装方法であって、前記バンプと前記被接続母材とを位置合わせした状態で超音波を印加する加振ステップと、前記加振ステップの後に加熱し前記バンプと前記被接続母材とを溶融接続する加熱ステップと、前記加熱ステップの後に前記チップと前記被接続母材とを封止樹脂により結合する樹脂封止ステップとを有することを特徴とするチップ実装方法。

【請求項6】金を材質とするバンプが形成されたチップを表面に熱圧着硬化絶縁樹脂を有する被接続母材に接続するための実装方法であって、前記バンプと前記被接続母材とを位置合わせした状態で超音波を印加し前記熱圧着硬化絶縁樹脂を排除する加振ステップと、前記加振ステップの後に加熱して前記バンプと前記被接続母材とを接続するとともに排除された前記熱圧着硬化絶縁樹脂が硬化して前記チップと前記被接続母材とを結合する加熱ステップとを有することを特徴とするチップ実装方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、バンプ付き半導体 チップを基板にフェースダウンで接続するためのチップ 実装方法に関するものである。

[0002]

【従来の技術】バンプ付き半導体チップは、基板の小型 化に有利なことから、各種コンピュータなどの多くの電 子機器に多用されるようになってきている。バンプ付き 半導体チップを基板に実装する方法として、従来より様 々な方法が提案されている。 【0003】第1の方法は、ACF(異方性標電剤)を 用いる方法である。この方法は、半導体チップと基板の 間にACFを介在させ、半標体チップを加熱加圧するこ とにより、ACFに混入された標電粒子によりバンプを 基板の電極に接続するものである。

【0004】第2の方法は、バンプを半田により形成して半田バンフとし、リフローにより半田バンフを溶融固化させて基板の電極に接続するものである。この場合、半導体チップと基板の接合力を確保するために、好ましくは半序体チップと基板の間に封止用の樹脂が割入される。

【0005】第3の方法は、バンプを金により形成して 金パンプとし、また基板の電極上にはメッキ等により半 田をプリコートする。そして上記第2の方法と同様にり プローにより半田付けし、好ましくは封正用の樹脂を封 人する。

【0006】第4の方法は、熱圧者硬化絶縁樹脂を用いる方法である。この方法は、基板に熱圧者硬化絶縁樹脂を塗布し、半導体チップの金バンフを基板の電積上に熱圧者し、熱圧者硬化絶縁樹脂を硬化させるものである。 【0007】

【発明が解決しようとする課題】しかしながら上記第1の方法では、Ni粒子などの尊電粒子をバンプに食い込ませるために大きな荷重を半導体チップに加える必要があり、このため基板に大きなストレスが加わって回路パターンの断線を発生しやすく、また半導体チップもダメージを受けやすい。

【0008】また上記第2の方法は、リフローにより半田バンブを基板の電極に接着するため、荷重ストレスはほとんどないという利点がある。しかしながら第2の方法は半田のぬれ性を確保するためにフラックスを使用する必要があり、単にフラックス途布やフラックス洗浄等の工程が必要となるだけでなく、フラックスを使用することによる環境上の問題が発生し、さらにはマイグレーションを引き起こしやすいなどの問題点がある。また樹脂対止を行った場合には、フラックスの残査により樹脂の封入時や硬化時に樹脂の流動性が阻害されてボイドが発生しやすくなり、ボイドが発生すると熱ストレスにより半田亀裂などの問題を誘発する。

【0009】また上記第3の方法も半田を用いることから、第2の方法と同様の問題がある。また第4の方法は、半導体チップに大きな荷重を加えねばならないため第1の方法と同様の問題がある。以上のように、従来方法は、いずれも様々な問題点を有していた。

【0010】そこで本発明は、上記従来の問題点を解決するもので、低荷重実装、フラックスレス実装を可能とし接合信頼性の高いチップ実装方法を提供することを目的としている。

[0011]

【課題を解決するための手段】本発明は、バンプ付き半

導体チップを基板の電極に実装する際に、超音波を加える実装方法とするものである。そしてこの方法により低荷重実装、フラックスレス実装が可能となり、接合信頼性の高いチップ実装方法が得られる。

[0012]

【発明の実施の形態】請求項1から3に記載の発明は、バンプ付き半導体チップを基板の電極に実装する実装方法であって、異方性導電性接着剤を介し加熱・加圧・超音波を加えて実装する。この実装方法により、バンプを低荷重で基板の電極に接続させて実装することができる。

【0013】請求項4および5に記載の発明は、バンプ側または基板の電極側のいずれかにハンダが使用されている場合の実装方法であって、超音波加振してハンダ表面の酸化膜を破壊し、加熱して溶融接合して樹脂封止する。この実装方法により、フラックスレスのハンダ接続を可能とし、信頼性の高い接合状態を得ることができる。

【0014】請求項6に記載の発明は、熱圧着硬化絶縁 樹脂を用いた実装方法であって、超音波加振し、加熱す ることにより熱圧着硬化絶縁樹脂を排除して電気的接続 を行いり熱圧着硬化絶縁樹脂の硬化によりチップと基板 とを結合する。この実装方法により、バンプを低荷重で 基板の電極に接続させて実装することができる。

【0015】(実施の形態1)図1は、本発明の実施の 形態1のバンプ付き半導体チップの実装工程図であっ て、ACFによるフリップチップ実装に超音波を印加す る場合の製造工程図を示すものである。

【0016】図1において1はACF、2はNi粒子、3は基板、4は基板3上に形成された電極、5は半導体チップ、6は半導体チップ5に形成された金パンプ、7はツールである。次に実装方法を説明する。

【0017】ACF1の貼付が完了した基板3(図1(a))にツール7で吸着した金パンプ6の形成された半導体チップ5を位置合わせし(図1(b))、ツール7に超音波とパルスヒートをかけながら加圧する(図1(c))、

【0018】この方法によれば、Ni粒子2が金バンプ6に捕獲後、超音波を加えながら加圧していくため、超音波の振動によりNi粒子2はバンプ6と基板3上に形成された電極4に食い込み易くなる、従って、従来はNi粒子2を金バンプ6に食い込ませるために1バンプ50~60gの荷重を印加していたが、超音波に影成された電極4に食い込みやすくなるため、5g~6g(約1 5~1/6)の低荷重で接合が可能となる。また低荷重で投合が可能となる。また低荷重で増かチップ5へのストレスも低減可能である。実の超音波の印加方法は、超音波発信器を使用しツールでは超音波を印加し、超音波の方向はACF1中のNi粒子2を金バンプ6及び基板3上に形成された電極4に食い

込ませるために各方向 (X, Y, Z方向) 併用しながら 行う。

【0019】またこの方法はNi粒子を用いたACFのみならず、樹脂ボールに金メッキ、絶縁膜を施した導電粒子を用いたACFに対しても非常に有効である。通常、このタイプのACFは実装時に高荷重をかけ絶縁膜を破り押さえつけて電気的導通をとるが、ボンディング時に超音波を併用することにより、超音波が絶縁膜を破るため低荷重化を図ることができる。

【0020】以上のことよりACFを用いた実装において超音波併用実装は非常に信頼性向上に有効な実装手段である。なお、超音波の印加方法はツールのみでなく、基板ステージから印加してもよく、また加熱においてもツール加熱ではなく、基板ステージからの加熱でもよい。さらに本実施の形態1ではパルスヒートツールを使用したが、常時加熱のコンスタント加熱でもよい。さらに本実施の形態1ではバンブ材質を金としているがバンプ材質に関しては金に限らず、半田、アルミ等他の金属にも適用される。

【0021】(実施の形態2)図2は、本発明の実施の形態2のバンプ付き半導体チップの実装工程図であって、半田バンブを用いた実装方法を示すものである。図中、8は半導体チップ5に形成された半田バンブ、9は空気に触れることによりその表面に生じた酸化膜である。従来例で説明したように、半田バンプ8による実装では、実装荷重に関しては、基本的に基板3に低荷重(数ま/バンプ)で実装するため、基板3への荷重ストレスと言う点では特に大きな問題はないが、基板3上に形成された電極4への半田の濡れの向上、酸化膜9除去のために、従来はフラックスを使用していたものである。

【0022】本方法では、実装時にツール7に超音波とバルスとートをかけ実装する。具体的には、半田バンプ 8の形成された半導体チップ5をまず基板3の電極4と位置合わせを行い実装する(図2(a))。次にツール 7に半導体チップ5を吸着した状態で超音波をかける(図2(b))。その結果、半田バンプ8と基板3上に形成された電極4とが超音波により擦れあい、酸化膜9が除去された状態でツール7をバルスヒートにて加熱することにより半田バンプ8が溶融し、酸化膜9の無い部分において基板パターンに半田 8が濡れ、良好な接合が得られる(図2(c))。その後、半導体チップ5と基板3の間に封止樹脂11を封入し、接合が完了する(図2(d))。

【0023】以上のことから半田接合においてフラックスレスが可能となり、洗浄工程が不要になる。さらにフラックス残査による封止樹脂11の封入工程時の問題であったチッフ基板間への封止樹脂11の流れにくさによるボイドの発生の防止を図ることが可能で、信頼性が低下するといった問題が解消され、非常に信頼性の高い接

合状態を得ることが可能となる。なお、この実施の形態 2では封止工程を半田バンプ 8と基板うとの接合が完了 した後行っていたが、封止樹脂11を実装時に同時にパ ルスピートで硬化させる実装方式でもよい。

【0014】(実施の形態3)図3は、本発明の実施の形態3のバンプ付き半導体チャプの実装工程図であって、金バンプの形成された半導体チャブを半田がプリコートされた基板に実装する方法を示している。図3において、10は基板3の電極4上にメッキ法などによる半田である。この方法においても半田を使用するという特質上、従来は半田の基板上に形成された電極への濡れの向上、酸化膜の除去のためにフラックスを使用し実装していたものである。

【0025】本方法では実装時にツール7に超音波とハルスピートが付実装する。具体的には、金パンプ6の形成された半導体チャフラをまず基板3の半田プリコートされた電板1と位置合わせを行い実装する(図3

(a)) 次にツール子に半導体チップうを吸着した状態で超音波をかける(図3(b))。その結果、金バンプもと基板3上に形成された電極4に半田10とが超音波により擦れ高い、半田10表面の酸化膜11が除去される(図3(c))。酸化膜9が除去された状態でツール子をバルスピートにて加熱することにより基板3上に形成された電極4に半田10が溶融し、酸化膜9の無い部分において金バンプも表面に半田10が濡れ、良好な接合が得られる。その後、封止樹脂11で封止工程を行い接合が完了する(図3(d))。

【0026】以上のことから実施の形態2と同様な作用効果と同等の硬化が得られる。なお、この実施の形態3では封止工程をバンプと基板との接合が完了した後行っているが(図3(d))、樹脂をボンディング時に同時にバルスヒートで硬化させる実装方式でもよい。

【0027】(実施の形態4)図4は、本発明の実施の 形態4のバンプ付き半導体チップの実装工程図であっ て、金バンプの形成されたチップを熱圧着硬化絶縁樹脂 を用い基板に実装する方法を示している。具体的にはツ ール7に吸着された金バンプ6の形成された半導体チッ プ5を熱圧着硬化絶縁樹脂12が塗布された基板3上の 電極4に位置合わせし実装する(図4(a))。次にツ ール7に半導体チップ5を吸着した状態で超音波とバル スピートをかける(図1(b)) その結果、超音波により半導体チャプラ形成された金パンプもと基板3上に形成された電極1間の熱圧者硬化絶縁樹脂12が周囲に排除され、金パンプも表面と基板3上に形成された電極4の表面とが良好な接触が得られる。またパルスピートによる加熱で熱圧者硬化絶縁樹脂12が硬化し半導体チャプラと基板3とが固定される(図1(c)) 従って従来はバンプ基板の樹脂を排除するために高い荷重(約50g)をかけ実装していたが、超音波の併用により、低荷重(数3 バンフ)での実装が可能であり、基板へのストレスも低減される

[0028]

【発明の効果】以上のように本発明によれば、バンプ付き半導体チップを基板に実装する際に超音波を加えることにより、低荷重実装、フラックスレス実装が可能となり、接合信頼性の高い半導体チップの実装方法を実現できる。

【図面の簡単な説明】

【図1】本発明の実施の形態1のバンフ付き半導体チップの実装工程図

【図2】本発明の実施の形態2のバンフ付き半導体チップの実装工程図

【図3】本発明の実施の形態3のバンプ付き半導体チップの実装工程図

【図 1】本発明の実施の形態 4のバンプ付き半導体チップの実装工程図

【符号の説明】

- 1 ACF
- 2 Ni 粒子
- 3 基板
- 4 電極
- 5 半導体チップ
- 6 金パンプ
- 7 ツール
- 8 半田バンプ
- 10 半田
- 11 封止樹脂
- 12 熱圧着硬化絶縁樹脂

[[34]

12 驗圧羞硬化絶鞣樹脂