Recitation 5

Orthogonal matrices

Definition (Orthogonal matrix)

Given a dot product $\langle \cdot, \cdot \rangle$, an orthogonal matrix is a real square matrix whose columns are *orthonormal* vectors.

Recall:

- ightharpoonup Q is an orthonormal matrix iff its inverse is Q^T .
- $\langle Qx,Qy\rangle = \langle x,y\rangle$ for all x,y with the appropriate dimensions and Q orthogonal.
- Show that ||Qx|| = ||x|| for all x and Q orthogonal.

Questions: Gram-Schmidt and QR

1. Let $A \in \mathbb{R}^{n \times n}$ have linearly independent columns. Show that there is a matrix $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{n \times n}$ s.t that A = QR, where Q has orthonormal columns and R is upper triangular. (Hint: Recall the "linear combination of columns interpretation of matrix multiplication"). What if the columns are not linearly independent?

Questions: Gram-Schmidt and QR

1. Let $A \in \mathbb{R}^{n \times n}$ have linearly independent columns. Show that there is a matrix $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{n \times n}$ s.t that A = QR, where Q has orthonormal columns and R is upper triangular. (Hint: Recall the "linear combination of columns interpretation of matrix multiplication"). What if the columns are not linearly independent?

Questions: Gram-Schmidt and QR

1. Let $A \in \mathbb{R}^{n \times n}$ have linearly independent columns. Show that there is a matrix $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{n \times n}$ s.t that A = QR, where Q has orthonormal columns and R is upper triangular. (Hint: Recall the "linear combination of columns interpretation of matrix multiplication"). What if the columns are not linearly independent?

Eigenvalues and eigenvectors

Definition

Let $A \in \mathbb{R}^{n \times n}$. A **non-zero** vector $v \in \mathbb{R}^n$ is said to be an eigenvector of A is there exists $\lambda \in \mathbb{R}$ such that

$$Av = \lambda v$$
.

The scalar λ is called the *eigenvalue* (of A) associated to v. The set

$$E_{\lambda}(A) = \{x \in \mathbb{R}^n \mid Ax = \lambda x\} = \text{Ker}(A - \lambda \text{Id})$$

is called the eigenspace of A associated to λ . The dimension of $E_{\lambda}(A)$ is called the multiplicity of the eigenvalue λ .

Eigenvalues and eigenvectors

Recall:

- If a matrix $A \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1 < \cdots < \lambda_k$ with eigenvectors v_1, \ldots, v_k resp., then v_1, \ldots, v_k are linearly independent. $\implies A$ has at most n different eigenvalues.
- lacktriangle More strongly, if $A \in \mathbb{R}^{n imes n}$ has eigenvalues $\lambda_1 < \dots < \lambda_k$

$$\sum_{i=1}^k \dim(E_{\lambda_i}(A)) \le n$$

Note: To compute eigenvalues and eigenvectors using determinants and characteristic polynomials, see Léo's video. Recommended but optional and not covered in this recitation.

1. Let $V=\begin{bmatrix}v_1&\cdots&v_n\end{bmatrix}\in\mathbb{R}^{n\times n}$. Show that a matrix $A\in\mathbb{R}^{n\times n}$ has eigenvalues $\lambda_1,\ldots,\lambda_n$ with linearly independent eigenvectors v_1,\ldots,v_n iff $A=V\mathrm{diag}((\lambda_i)_{i=1}^n)V^{-1}$.

Definition

We say that $A \in \mathbb{R}^{n \times n}$ is a diagonalizable matrix if it has has eigenvalues $\lambda_1, \ldots, \lambda_n$ with linearly independent eigenvectors v_1, \ldots, v_n .

- 2. Show that if $A \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1 < \cdots < \lambda_n$, A is diagonalizable.
- 3. Write the expression of a matrix in $\mathbb{R}^{2\times 2}$ for which [2,-1] is an eigenvector of eigenvalue 2 and [1,3] is an eigenvector of eigenvalue -1.

1. Let $V=\begin{bmatrix}v_1&\cdots&v_n\end{bmatrix}\in\mathbb{R}^{n\times n}$. Show that a matrix $A\in\mathbb{R}^{n\times n}$ has eigenvalues $\lambda_1,\ldots,\lambda_n$ with linearly independent eigenvectors v_1,\ldots,v_n iff $A=V\mathrm{diag}((\lambda_i)_{i=1}^n)V^{-1}$. In this case, A is a diagonalizable matrix.

1. Let $V=\begin{bmatrix}v_1&\cdots&v_n\end{bmatrix}\in\mathbb{R}^{n\times n}$. Show that a matrix $A\in\mathbb{R}^{n\times n}$ has eigenvalues $\lambda_1,\ldots,\lambda_n$ with linearly independent eigenvectors v_1,\ldots,v_n iff $A=V\mathrm{diag}((\lambda_i)_{i=1}^n)V^{-1}$. In this case, A is a diagonalizable matrix.

2. Show that if $A \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1 < \dots < \lambda_n$, A is diagonalizable.

3. Write the expression of a matrix in $\mathbb{R}^{2\times 2}$ for which [2,-1] is an eigenvector of eigenvalue 2 and [1,3] is an eigenvector of eigenvalue -1.

3. Write the expression of a matrix in $\mathbb{R}^{2\times 2}$ for which [2,-1] is an eigenvector of eigenvalue 2 and [1,3] is an eigenvector of eigenvalue -1.

- 1. Show that the trace is invariant by change of basis, i.e. if $X \in \mathbb{R}^{n \times n}$ is invertible and $A \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(A) = \operatorname{tr}(XAX^{-1})$. (Hint: $\operatorname{tr}(BC) = \operatorname{tr}(CB)$).
- 2. Show that if $A \in \mathbb{R}^{n \times n}$ is diagonalizable and has eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\operatorname{tr}(A) = \sum_{i=1}^n \lambda_i$.

1. Show that the trace is invariant by change of basis, i.e. if $X \in \mathbb{R}^{n \times n}$ is invertible and $A \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(A) = \operatorname{tr}(XAX^{-1})$. (Hint: $\operatorname{tr}(BC) = \operatorname{tr}(CB)$).

1. Show that the trace is invariant by change of basis, i.e. if $X \in \mathbb{R}^{n \times n}$ is invertible and $A \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(A) = \operatorname{tr}(XAX^{-1})$. (Hint: $\operatorname{tr}(BC) = \operatorname{tr}(CB)$).

2. Show that if $A \in \mathbb{R}^{n \times n}$ is diagonalizable and has eigenvalues $\lambda_1, \dots, \lambda_n$, then $\operatorname{tr}(A) = \sum_{i=1}^n \lambda_i$.

2. Show that if $A \in \mathbb{R}^{n \times n}$ is diagonalizable and has eigenvalues $\lambda_1, \dots, \lambda_n$, then $\operatorname{tr}(A) = \sum_{i=1}^n \lambda_i$.

Some matrices do not admit (real) eigenvalues and eigenvectors.

1. Show that if $\theta \in [0, 2\pi)$,

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

does not admit real eigenvalues and eigenvectors in general.

2. Find the matrices, and the real eigenvalues and eigenvectors for the values of θ for which they exist.

1. For which values of $\theta \in [0, 2\pi)$ does the rotation matrix

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

admit real eigenvalues and eigenvectors?

1. For which values of $\theta \in [0, 2\pi)$ does the rotation matrix

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

admit real eigenvalues and eigenvectors?

2. Find the matrices, and the real eigenvalues and eigenvectors for the values of θ for which they exist.

2. Find the matrices, and the real eigenvalues and eigenvectors for the values of θ for which they exist.