SES 2024 届高一下数学测验(10)22.05.11

一、填空题(5'×10)

- 1. 设 \vec{a} 与单位向量 \vec{b} 的数量积为-2,则 \vec{a} 在 \vec{b} 方向上的数量投影为_____;
- 2. 平面直角坐标系中 O 为坐标原点,M(3,4),B(3,1), $\overrightarrow{AC} = (-1,1)$,且 \overrightarrow{OM} 为 \overrightarrow{AB} 的位置向量,则点 C 的坐标为______;
- 4. " $\frac{x_1}{y_1} + \frac{y_2}{x_2} = 0$ " 是 " $(x_1\vec{i} + y_1\vec{j}) \perp (x_2\vec{i} + y_2\vec{j})$ " 的_____条件;
- 6. $\vec{a} = (3m 2, 1)$, $\vec{b} = (m^2 + 1, 2)$, 若9 $\vec{a} + 3\vec{b}$ 与 $\vec{a} \vec{b}$ 共线, 则实数m = 3;
- 7. 已知 A, B, C 坐标依次为(1,2), (2,3), (5,10),则△ ABC的面积为______;
- 8. 如图,正方形 ABCD 的边长为 1,E 为边 BC 的中点,F 为边 CD 上一点,D

若 $\overrightarrow{AE} \cdot \overrightarrow{AF} = \overrightarrow{AE}^2$,则 $|\overrightarrow{AF}| = _______$;

9. 如图,A, B, C, D 四点共线,P, Q 为直线外两点,已知AB:BC=2:3,

 $\overrightarrow{PB} = \frac{3}{2}\overrightarrow{PC} - \frac{1}{2}\overrightarrow{PD}$,若 $\overrightarrow{QB} = \lambda \overrightarrow{QA} + \mu \overrightarrow{QD}$,则 $\lambda - \mu =$ ______;

- 10. 以下命题中, 所有真命题的序号为_____;
- ①若 \vec{a} 与 \vec{b} 可作为平面向量的一组基,则 \vec{a} , $\vec{b} \neq \vec{0}$;
- ②若 \vec{a} 和 \vec{b} 非共线,则平面上任意向量 \vec{c} 关于2 \vec{a} + \vec{b} 与 \vec{a} + \vec{b} 的分解均存在且唯一;
- ③若 $\vec{a} \parallel \vec{b}$,则 $\vec{a} + \vec{b} = \lambda \vec{a} + \mu \vec{b}$ 的充要条件为 $\lambda = \mu = 1$;
- ④若 $\vec{a} \parallel \vec{b}$,且 \vec{c} 与 \vec{a} , \vec{b} 均不共线,则 \vec{c} 关于 \vec{a} 与 \vec{b} 的分解不存在;

二、解答题(15′+15′+20′)

- 11. $\forall \vec{a} = (3, -4), \vec{b} = (2, -1),$
- (1) 求 \vec{a} 与 $2\vec{b}$ \vec{a} 的夹角; (2) 求 \vec{a} 在 $(2\vec{b}$ \vec{a})方向上的投影向量(用坐标表示).

12. 同一平面上的 \vec{a} , \vec{b} , \vec{c} 满足 $|\vec{a} + \vec{b} + \vec{c}| = 2\sqrt{7}$,且 $|\vec{a}| = |\vec{b}| = 2$, $|\vec{c}| = 6$,若 $\langle \vec{a}, \vec{b} \rangle = \frac{2\pi}{3}$,选取合适的方式建立平面直角坐标系,求 $\langle \vec{b}, \vec{c} \rangle$.

13. 记 \triangle *ABC*的重心为 G,D, E 分别为射线 AB, AC 上的动点(不包括 A 点本身),满足 \overrightarrow{AD} = $\lambda \overrightarrow{AB}$, $\overrightarrow{AE} = \mu \overrightarrow{AC}$,且 G 恒位于线段 DE 上,

- (1) 若 \triangle ABC位于平面直角坐标系中,且 $\mu = \frac{3}{4}$,A(1,4),B(-1,-1),C(5,0),求:
 - ①点 $C \to \overrightarrow{AE}$ 所成的比; ②点 E 的坐标; ③ $\triangle ABC$ 垂心 H 的坐标;
- (2) 将 μ 表示为 λ 的函数 $f(\lambda)$, 并写出其定义域;
- (3) 求 $2\lambda + \mu$ 的最小值.

三、附加题(10')

14. 在 \triangle *ABC*中,*AB* = *AC* = 5,*BC* = 6,M 是边 AC 上距 A 较近的三等分点,试研究在线段 BM 上是否存在点 P,满足*PC* \bot *BM*? 若存在则求 BP 的长度,若不存在则说明理由.