			-						
Reg. No.	a 7.	11		n,	y e I	,mo			

B.Tech. DEGREE EXAMINATION, MAY 2024

Fifth to Seventh Semester

18CEO306T - MUNICIPAL SOLID WASTE MANAGEMENT

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

- 3	N.⊺	_	4.	_
- 1	w	-	ŧο	

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over (i) to hall invigilator at the end of 40th minute.

(ii)	Pai	t - B & Part - C should be answered	in ans	wer booklet.				
Tin	ne: 3	hour	s			Max. M	1ark	s: 10	0
			PART – A (20 × 1 =	= 20 I	Marks)	Marks	BL	co	PO
			Answer ALL Q						
	1.	The	development of odour in onsite	stora	ge is more significant when it i	s 1	1	1	1
		(A)	Cold	(B)	Warm				
		(C)	Freezy	(D)	Rainy				
	2.	The	rate of biodegradation of lipids is	relat	ively slow because of	1	1	1	1
			Low solubility in water						
		(C)			Dissolvable in water				
	3.	Whi	ich of the following is inert waste	?		1	1	1	1
			Leather, tin, alumunium		Brick, sand, concrete				
			Carry bag, food container, straw	(D)	Card board, paper bag, diaper				
	4.	Was	ste from dwelling apartment is refe	erred	as .	1	1	1	1
			Commercial waste		Residential waste				
			Municipal waste	(D)	Agricultural waste				
	5.	Porc	osity of solid waste typically vary	from		1	1	2	1
			0.2 - 0.3		0.4 - 0.67				
			0.8 - 0.98	(D)	1.2 – 1.4				
	6.		recyclable waste having calorific osed on landfills.	valu	e of or more, shall not be	e ¹	1	2	1
		(A)	1000 K/ cal/ kg	(B)	1200 K/ cal/ kg				
		(C)	1500 K/ cal/ kg	(D)	2000 K/ cal/ kg				
	7.	In c	ommunities with pay-as-you throw	v pro	grams, are changed by	1	2	2	1
		(A)	Based on the amount they throw away	(B)	Monthly				
		(C)	Yearly	(D)	Quarterly				
	8.	Whi	ch physical property will help in a	recov	ering materials from solid waste	? 1	2	2	1
			Specific weight	(B)	Moisture content				
			Field capacity	(D)	Particle size distribution				

9.	Line	ers are used in storage container to)		1	1	3	1
	(A)	Imply material recovery	(B)	Avoid washing of container				
	(C)	Reduce aesthetic purpose		Separate the solid waste				
10.	To s		ste in	India, generally used colours for	1		3	1
	(A)	Yellow and blow	(B)	Blue and green				
	(C)	Red and yellow		Yellow and green				
11.		Il transfer station capacities are es/ per day.	gene	rally receive wastage of	1	2	3	1
	(A)	Less than 100	(B)	Greater than 200				
	(C)	300-400	(D)	500-760				
12.	Whi	ch factor to be considered for dete	ermin	nation of crew size?	1	1	3	1
	(A)	Hauling cost	(B)	Type of containers				
	(C)	Labour cost	(D)	Traffic volume				
13.	For a		is ma	indator to maintain the C/N ratio	1	I	4	1
	(A)	20-30%	(B)	30-40%				
	(C)	50-60%	(D)	60-70%				
14.	mixt	ure can be	1 oth	er solid waste, and the resulting	I	1	4	1
	(A)	Dumped off	(B)	Dried in drying beds				
	(C)	Energy recovery	(D)	Incinerated to reduce volume				
15.		ch of the following can be consider	ered a	as source reduction?	1	1	4	1
	. ,	Material substitution	(B)	Treating offsite				
	(C)	Analysis	(D)	Landfill disposal				
16.		heterogeneous wastes generated in days.	in re	sidential areas must be removed	1	2	4	1
	(A)		(B)	15				
	(C)		(D)					
17.	Whic	ch of the following relates to mecl	hanis	m for gas to leave the landfill?	1	2	5	1
		Clay liners		Perforated drains				
		Pressure gradient	` '	Wells				
18.	Land	fill capping is required to control	and i	minimize	1	1	5	i
		Landfill gas		Leachate				
	(C)	Odour	` '	Surface runoff				
19.		der to dispose hazardous waste, vod adopted is	vhere	there are no abundant lands, the	1	1	5	1
	(A)	Land disposal	(B)	Burning				
		Floats in water bodies		Incineration				

	20.		aestnetic sensil	oility is offende	d by the	unsightliners of piles of wastes on	- 1	1	5	1	
			Land pollution	n	(B)	Visual pollution					
			Noise pollution			Water pollution					
				PART - B (Answer AN			Marks	BL	CO	PO	
2	21.	Men	tion the objects	ves of solid wa	ste mana	gement.	4	2	1	1	
2	22.	. What are the sources of solid waste?								1	
2	23.	Expl	lain the importa	ince of waste st	ream infe	ormation.	4	3	2	1	
2	24.	Men	tion few examp	oles for source i	eduction		4	2	2	1	
2	25.	Expl	ain the collecti	on frequency of	f solid wa	aste.	4	2	3	1	
2	26.	Expl	ain about hydro	pulper.			4	3	4	1	
2	27.	Write	e short notes or	leachate gener	ration.		4	2	5	1	
			PA	ART – C (5 × 1 Answer ALL		,	Marks	BL	CO	PO	
28.	a.	Expla	ain in detail ab	out the chemica	l charact	eristics of solid waste.	12	3	1	1	
	b.		ain in detail a oper waste mai			ronmental effect caused due to	12	3	1	1	
29.	a.	Expla waste		out the onsite	segregati	on and source recovery on solid	12	3	2	1	
	b.	Expla	ain the signific	(OR	-	id waste.	12	3	2	1	
30.	a.	Expla	ain in detail ab	out the various	waste co	llection methods.	12	3	3	1	
				(OR)						
	b.	Expla	ain in detail abo	out the types of	transfer	station.	12	4	3	1	
31.	a.	Expla	ain the waste pr	ocessing technical (OR		detail and its significances.	12	4	7	1	
1	b.	Expla	ain in detail abo	•	,	g process with a neat sketch.	12	3	4	1	
				out the various	echnique	es for disposal of waste.	12	3	5	1	
,	L	W	- Ab (1)	(OR			10		-	,	
	U.	w rite	e about linear a	na expiain in de	etail abou	it the types of linear.	12	4	5	1	
