

Mathematical Foundations for Data Science (Probability)

Transformations of Random Variables, Jacobian Formula for Transformations, Primer on Riemann Integration, Expectations

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

14 September 2024

Transformations of Random Variables

Maximum of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables defined with respect to \mathscr{F} , with joint CDF F_{X_1,\ldots,X_n} . Let $Y_n = \max\{X_1,\ldots,X_n\}$.

- Derive the CDF of Y_n .
- Simplify the CDF of Y_n when X_1, \ldots, X_n are i.i.d..

Minimum of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables defined with respect to \mathscr{F} , with joint CDF F_{X_1,\ldots,X_n} .

- Show that $Z_n = \min\{X_1, \dots, X_n\}$ is a random variable with respect to \mathscr{F} .
- Derive the CDF of Z_n .
- Simplify the CDF of Z_n when X_1, \ldots, X_n are i.i.d..

Minimum of i.i.d. Exponential Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be independent, with $X_i \sim \text{Exponential}(\lambda_i)$ for each $i \in \{1, \ldots, n\}$. Find the distribution of $Z = \min\{X_1, \ldots, X_n\}$.

Sums of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables with respect to \mathcal{F} .

- In the cases when X and Y are jointly discrete/continuous, derive the PMF/PDF of X + Y.
- Simplify the PMF/PDF when *X* and *Y* are independent.

Sum of Two Independent Exponentials

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X \sim \text{Exponential}(\mu_1)$ and $Y \sim \text{Exponential}(\mu_2)$. Assume $X \perp Y$. Determine the distribution of Z = X + Y.

CDF and Uniform Distribution

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let X be a continuous random variable with CDF F_X . Let $g_{F_Y} : [0, 1] \to \mathbb{R}$ be defined as

$$g_{F_X}(u)=\min\{x\in\mathbb{R}:F_X(x)\geq u\},\qquad u\in[0,1].$$

- Show that $U = F_X(X)$ is uniformly distributed on [0, 1].
- If $U \sim \mathrm{Unif}([0,1])$, show that $g_{F_X}(U)$ has the same distribution as X. This is the basis for generating a random sample from a custom CDF F_X on a computer.

General Transformations and the Jacobian Formula

General Transformations

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a continuous random variable with PDF f_X .

Given $g: \mathbb{R} \to \mathbb{R}$ that is monontone and differentiable with non-zero derivative throughout its domain, what is the PDF of Y = g(X)?

Note that g admits an inverse, say g^{-1} .

General Transformations: g Monotone Increasing

$$egin{aligned} F_{Y}(y) &= \mathbb{P}(\{Y \leq y\}) \ &= \mathbb{P}(\{g(X) \leq y\}) \ &= \mathbb{P}(\{X \leq g^{-1}(y)\}) \ &= \int_{-\infty}^{g^{-1}(y)} f_{X}(x) \, dx \ &= \int_{-\infty}^{\gamma} rac{f_{X}(g^{-1}(v))}{g'(g^{-1}(v))} \, dv \end{aligned}$$
 make substitution $g(x) = v$

It thus follows that

$$f_{\mathbb{Y}}(\gamma) = egin{cases} rac{f_{\mathbb{X}}(g^{-1}(\gamma))}{g'(g^{-1}(\gamma))}, & \gamma \in \operatorname{Range}(g), \ 0, & \gamma \notin \operatorname{Range}(g). \end{cases}$$

General Transformations: g Monotone Decreasing

$$\begin{split} F_{Y}(y) &= \mathbb{P}(\{Y \leq y\}) \\ &= \mathbb{P}(\{g(X) \leq y\}) \\ &= \mathbb{P}(\{X \geq g^{-1}(y)\}) \\ &= \int_{g^{-1}(y)}^{+\infty} f_{X}(x) \, dx \\ &= \int_{y}^{+\infty} \frac{f_{X}(g^{-1}(y))}{g'(g^{-1}(y))} \, dv \qquad \text{make substitution } g(x) = v \end{split}$$

It thus follows that

$$f_{Y}(y) = egin{cases} rac{f_{X}(g^{-1}(y))}{-g'(g^{-1}(y))}, & y \in \operatorname{Range}(g), \ 0, & y
otin \operatorname{Range}(g). \end{cases}$$

General Transformations: g Monotone, Differentiable

When g is monotone and differentiable throughout its domain:

Examples

• Let $X \sim \mathcal{N}(0, 1)$.

Derive the PDF of $Y = e^X$ from first principles and using the transformation formula.

General Transformations: *g* Piecewise Monotone, Differentiable

When g is piecewise monotone and differentiable

Suppose that I_1, \ldots, I_n is a partition of \mathbb{R} , and $g: \mathbb{R} \to \mathbb{R}$ is piecewise montone and differentiable with non-zero derivative on I_i for each $i \in \{1, \ldots, n\}$. Let h_i denote the inverse of g on I_i . If X is a continuous random variable with PDF f_X , then the PDF of Y = g(X) is given by

$$f_{\mathrm{Y}}(\mathrm{y}) = \sum_{i=1}^n rac{f_{\mathrm{X}}(h_i(\mathrm{y}))}{\left|g'(h_i(\mathrm{y}))
ight|} \, \mathbf{1}_{g(I_i)}(\mathrm{y}).$$

Example

Suppose $X \sim \mathcal{N}(0, 1)$.

Derive the PDF of $Y = X^2$ from first principles and using the transformation formula.

General Transformations: Multivariate Case

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X_1, \ldots X_n$ be jointly continuous random variables with joint PDF f_{X_1, \ldots, X_n} .

Let $Y_i = g_i(X_1, \dots, X_n)$ for $i \in \{1, \dots, n\}$, where g_1, \dots, g_n are smooth functions.

Derive the joint PDF of Y_1, \ldots, Y_n .

¹We will assume that g_1, \ldots, g_n are differentiable with continuous first-order partial derivatives.

Jacobian Matrix and Jacobian

Definition (Jacobian Matrix and Jacobian)

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be defined by

$$g(\mathsf{x}_1,\ldots,\mathsf{x}_n) = egin{pmatrix} g_1(\mathsf{x}_1,\ldots,\mathsf{x}_n) \ dots \ g_n(\mathsf{x}_1,\ldots,\mathsf{x}_n) \end{pmatrix}$$

for some smooth functions g_1, \ldots, g_n .

The Jacobian matrix of the mapping g at the point (x_1, \ldots, x_n) is defined as

$$J_g(\mathbf{x}_1,\ldots,\mathbf{x}_n) = egin{pmatrix} rac{\partial g_1}{\partial \mathbf{x}_1} & \cdots & rac{\partial g_1}{\partial \mathbf{x}_n} \ dots & & dots \ rac{\partial g_n}{\partial \mathbf{x}_1} & \cdots & rac{\partial g_n}{\partial \mathbf{x}_n} \end{pmatrix}$$

The Jacobian of g at any point (x_1, \ldots, x_n) is simply equal to $\det(J_q(x_1, \ldots, x_n))$.

Jacobi's Transformation Formula

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be jointly continuous with joint PDF f_{X_1, \ldots, X_n} .

Jacobi's Transformation Formula

Let $g:\mathbb{R}^n \to \mathbb{R}^n$ be one-one, differentiable with continuous first-order partial derivatives, and non-zero Jacobian throughout its domain. Let the individual components of g be denoted by g_1,\ldots,g_n . Let $Y_i=g_i(X_1,\ldots,X_n)$ for all $i\in\mathbb{N}$. Then, the joint PDF of $Y=(Y_1,\ldots,Y_n)$ is given by

$$f_{Y_1,\ldots,Y_n}(\gamma_1,\ldots,\gamma_n) = egin{cases} rac{f_{X_1,\ldots,X_n}(g^{-1}(\gamma_1,\ldots,\gamma_n))}{\left|J_g(g^{-1}(\gamma_1,\ldots,\gamma_n))
ight|}, & (\gamma_1,\ldots,\gamma_n) \in \operatorname{Range}(g), \ 0, & (\gamma_1,\ldots,\gamma_n)
otin \operatorname{Range}(g). \end{cases}$$

Remark: For $g: \mathbb{R} \to \mathbb{R}$,

$$J_q(x) = g'(x), \qquad x \in \mathbb{R}.$$

Example

Let X and Y be independent exponential random variables with parameter λ . Derive the joint PDF of $Y_1=X_1$ and $Y_2=X_1+X_2$.

Also deduce the conditional PDF of Y_1 , "conditioned on" the event $\{Y_2 = \gamma\}$.

Jacobi's Transformation Formula: g Piecewise Differentiable with Non-Zero Jacobian

When g is piecewise differentiable with non-zero Jacobian

Suppose that I_1,\ldots,I_n is a partition of \mathbb{R}^n , and $g:\mathbb{R}^n\to\mathbb{R}^n$ is one-one, differentiable with continuous first-order partial derivatives, and has non-zero Jacobian on I_i for each $i\in\{1,\ldots,n\}$. Let h_i denote the inverse of g on I_i . Let X_1,\ldots,X_n be jointly continuous with joint PDF f_{X_1,\ldots,X_n} . Let the individual components of g be g_1,\ldots,g_n . Let $Y_i=g_i(X_1,\ldots,X_n)$ for each $i\in\mathbb{N}$. Then the joint PDF of $Y=(Y_1,\ldots,Y_n)$ is given by

$$f_{Y_1,\ldots,Y_n}(\gamma_1,\ldots,\gamma_n) = \sum_{i=1}^n rac{f_{X_1,\ldots,X_n}(h_i(\gamma_1,\ldots,\gamma_n))}{\left|J_g(h_i(\gamma_1,\ldots,\gamma_n))
ight|} \ \mathbf{1}_{g(I_i)}(\gamma_1,\ldots,\gamma_n).$$

Integration and Expectations

A Primer on Riemann Integration

Let $f:\mathbb{R} \to \mathbb{R}$ be given.

Let $a, b \in \mathbb{R}$, a < b, be given.

What is the mathematical interpretation of $\int_{-\infty}^{b} f(t) dt$?

A Primer on Riemann Integration

- Create a partition $\mathcal{P}_n = \{x_0, x_1, \dots, x_n\}$, where $x_0 = a$ and $x_n = b$
- Define the lower Riemann sum as the total area under the red rectangles, i.e.,

$$L(f,\mathcal{P}_n) = \sum_{i=1}^n m_i \cdot |x_i - x_{i-1}|.$$

• Define the upper Riemann sum as the total area under the blue rectangles, i.e.,

$$U(f,\mathcal{P}_n) = \sum_{i=1}^n M_i \cdot |x_i - x_{i-1}|.$$

A Primer on Riemann Integration

• It is easy to see that for all n,

$$L(f, \mathcal{P}_n) \le L(f, \mathcal{P}_{n+1}), \qquad \qquad U(f, \mathcal{P}_n) \ge U(f, \mathcal{P}_{n+1})$$

• If $\lim_{n\to\infty} L(f,\mathcal{P}_n) = \lim_{n\to\infty} U(f,\mathcal{P}_n)$, then this common limit is denoted $\int_a^b f(t) \, dt$

What if $\lim_{n\to\infty} L(f,\mathcal{P}_n) \neq \lim_{n\to\infty} U(f,\mathcal{P}_n)$?

Consider the function

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

For the above function:

- $L(f, \mathcal{P}_n) = 0$ for all n
- $U(f, \mathcal{P}_n) = 1$ for all n

Remedy:

A more general theory of integration, proposed by Lebesgue!

Lebesgue's Integration Theory

Consider a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable with respect to \mathscr{F} .

Objective

To build the necessary machinery on Lebesgue's theory of integration, so as to be able to interpret an abstract integral of the form

$$\int_A X d\mathbb{P}, \qquad A \in \mathscr{F}.$$

Programme:

- Definition of the abstract integral for "simple" random variables
- Definition of the abstract integral for non-negative random variables
- Definition of the abstract integral for arbitrary random variables

Simple Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable defined with respect to \mathscr{F} .

Definition: Simple Random Variable

A random variable X is called a simple random variable if it can be expressed in the form

$$X(\omega) = \sum_{i=1}^n a_i \, \mathbf{1}_{A_i}(\omega), \qquad \omega \in \Omega,$$

for some $a_1, \ldots, a_n \geq 0$ and $A_1, \ldots, A_n \in \mathscr{F}$.

Example: Consider $X: \mathbb{R} \to \mathbb{R}$ defined as

$$X(\omega) = \mathbf{1}_{[0,1]}(\omega) + \frac{3}{2} \mathbf{1}_{[1,3]}(\omega), \qquad \omega \in \Omega.$$

Here, X can also be represented as $X(\omega) = \mathbf{1}_{[0,3]}(\omega) + \frac{1}{2}\mathbf{1}_{[1,3]}(\omega)$.

Canonical Representation of a Simple Random Variable

Definition (Canonical Representation of a Simple Random Variable)

A simple random variable X is said to be in canonical representation if

$$X(\omega) = \sum_{i=1}^{n} a_i \, \mathbf{1}_{A_i}(\omega), \qquad \omega \in \Omega,$$

where $a_1, \ldots, a_n \geq 0$ are distinct, and $A_1, \ldots, A_n \in \mathscr{F}$ are disjoint.

Integral of a Simple Random Variable

Consider a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable with respect to \mathscr{F} .

For a simple random variable *X* in its canonical form

$$X(\omega) = \sum_{i=1}^{n} a_i \, \mathbf{1}_{A_i}(\omega), \qquad \omega \in \Omega,$$

we define $\int_{\Omega} X d\mathbb{P}$ as

$$\int_{\Omega} X d\mathbb{P} := \sum_{i=1}^{n} a_{i} \, \mathbb{P}(A_{i}).$$

The quantity $\int_{\Omega} X d\mathbb{P}$ is called the expectation of X under the probability measure \mathbb{P} . Expectation of X is more commonly denoted as $\mathbb{E}[X]$.

Non-Negative Random Variables

Consider a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X: \Omega \to \mathbb{R}$ be any random variable with respect to \mathscr{F} such that

$$X(\omega) \geq 0 \qquad \forall \omega \in \Omega.$$

Let

$$\mathcal{S}(\mathit{X}) \coloneqq \Big\{ q: \Omega o \mathbb{R}: q ext{ simple} \;,\; q(\omega) \leq \mathit{X}(\omega) \;\; orall \omega \in \Omega \Big\}.$$

Then, the expectation of the non-negative random variable X under \mathbb{P} is defined as

$$\mathbb{E}[X] = \int_{\Omega} X d\mathbb{P} \coloneqq \max_{q \in \mathcal{S}(X)} \int_{\Omega} q d\mathbb{P}.$$

Remark: It is possible that $\mathbb{E}[X] = +\infty$.

Arbitrary Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be any random variable with respect to \mathscr{F} .

Define

$$X_{+}(\omega) := \max\{X(\omega), 0\}, \quad \omega \in \Omega,$$
 $X_{-}(\omega) := -\min\{X(\omega), 0\}, \quad \omega \in \Omega.$

Clearly, both X_+ and X_- are non-negative random variables with respect to \mathscr{F} . We define the expectation of X under \mathbb{P} as

$$\mathbb{E}[X] = \int_{\Omega} X d\mathbb{P} := \mathbb{E}[X_{+}] - \mathbb{E}[X_{-}],$$

provided $\min\{\mathbb{E}[X_+], \mathbb{E}[X_-]\} < +\infty$.

Arbitrary Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be any random variable with respect to \mathscr{F} .

For any event $A \in \mathscr{F}$, we define the abstract integral $\int_A X d\mathbb{P}$ as

$$\int_A X d\mathbb{P} = \int_\Omega (X \cdot \mathbf{1}_A) d\mathbb{P},$$

provided the right-hand side is well-defined (i.e., not of the form $\infty - \infty$).

Properties of Expectations

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

1. If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 0$, then for any random variable X, we have

$$\mathbb{E}[X\cdot\mathbf{1}_A]=0.$$

- 2. $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$.
- 3. $\mathbb{E}[aX] = a\mathbb{E}[X]$ for all $a \in \mathbb{R}$.

Expectations for Discrete and Continuous Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable with respect to \mathscr{F} .

• If X is a discrete random variable with PMF p_X , then

$$\mathbb{E}[X] = \sum_{x} x \cdot p_X(x).$$

• If X is a continuous random variable with PDF f_X , then

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x \cdot f_X(x) \, dx.$$