SYSTEMS OF EQUATIONS: SUR AND PANEL DATA, REVISITED

Econometric Analysis of Cross Section and Panel Data, 2e
MIT Press
Jeffrey M. Wooldridge

- 1. SUR, Revisited
- 2. Panel Data

1. SUR, REVISITED

• Consider again the SUR system, written for a random draw *i* as

$$y_{ig} = \mathbf{x}_{ig}\mathbf{\beta}_g + u_{ig}, g = 1, \dots, G$$

where β_g is $K_g \times 1$. We have considered two estimators of the β_g : OLS equation-by-equation and GLS using $\hat{\Omega}$ as the estimated $G \times G$ variance matrix.

1.1. OLS versus SUR for Systems

- Algebraic/Asymptotic Equivalences:
- (1) If the same regressors appear in each equation, that is, $\mathbf{x}_{ig} = \mathbf{x}_i$, g = 1, ..., G, the OLS equation-by-equation is numerically the same as FGLS for any structure of $\hat{\Omega}$.
- The matrix of regressors can be written as $\mathbf{X}_i = \mathbf{I}_G \otimes \mathbf{x}_i$.
- The algebra is tedious. When the data are stacked differently by equation, not observation the algebra is easy, but the asymptotic analysis is unnatural.

(2) If $\hat{\Omega}$ is diagonal, FGLS = OLS equation by equation for any choice of explanatory variables, \mathbf{x}_{ig} . Again, this is an algebraic result, which can be shown by writing

$$\left(\sum_{i=1}^{N} \mathbf{X}_{i}^{\prime} \hat{\mathbf{\Omega}}^{-1} \mathbf{X}_{i}\right)^{-1} = \begin{pmatrix} \hat{\sigma}_{1}^{2} \left(\sum_{i=1}^{N} \mathbf{x}_{i1}^{\prime} \mathbf{x}_{i1}\right)^{-1} & \cdots & \mathbf{0} \\ \vdots & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \hat{\sigma}_{G}^{2} \left(\sum_{i=1}^{N} \mathbf{x}_{iG}^{\prime} \mathbf{x}_{iG}\right)^{-1} \end{pmatrix}$$

$$\sum_{i=1}^{N} \mathbf{X}_{i}^{\prime} \hat{\mathbf{\Omega}}^{-1} \mathbf{y}_{i} = \begin{pmatrix} \hat{\sigma}_{1}^{-2} \sum_{i=1}^{N} \mathbf{x}_{i1}^{\prime} y_{i1} \\ \vdots \\ \hat{\sigma}_{G}^{-2} \sum_{i=1}^{N} \mathbf{x}_{iG}^{\prime} y_{iG} \end{pmatrix}$$

(2') If Ω is diagonal, and $\hat{\Omega} \stackrel{p}{\to} \Omega$, then FGLS and OLS EBE are asymptotically equivalent. Why? By (2), OLS EBE and GLS would be identical, and we know FGLS and GLS are asymptotically equivalent:

$$\sqrt{N} (\hat{\boldsymbol{\beta}}_{GLS} - \hat{\boldsymbol{\beta}}_{SOLS}) = \mathbf{0}$$

$$\sqrt{N} (\hat{\boldsymbol{\beta}}_{FGLS} - \hat{\boldsymbol{\beta}}_{GLS}) = o_p(1)$$

SO

$$\sqrt{N}(\hat{\boldsymbol{\beta}}_{FGLS} - \hat{\boldsymbol{\beta}}_{SOLS}) = o_p(1).$$

- Important implication of (1) and (2) [or (2')]: FGLS is (asymptotically) more efficient the OLS EBE only when at least some exclusion restrictions have been made and there is some correlation in the errors across equations. Therefore, there is a tradeoff between efficiency and robustness.
- If we are interested in, say, the first equation, then $E(\mathbf{x}'_{i1}u_{i1}) = \mathbf{0}$ is sufficient for OLS on that equation to be consistent. SUR generally requires $E(\mathbf{x}'_{ig}u_{ih}) = \mathbf{0}$ for all g and h. Therefore, if we have improperly omitted, say, an explanatory variable from the second equation, the FGLS estimates of β_1 (and β_2) are generally inconsistent.

- FGLS gains efficiency over OLS (under system homoskedasticity) only when it is valid to use the orthogonality condition $E[(\mathbf{\Omega}^{-1}\mathbf{X}_i)'\mathbf{u}_i] = \mathbf{0}$ and some variables omitted from an equation, say, g, are assumed to be uncorrelated with at least one explanatory variable omitted from that equation.
- Can test the null hypothesis $H_0: \sigma_{gh} = 0$, all $g \neq h$. Have G(G-1)/2 restrictions, with $\sigma_g^2, g = 1, ..., G$ unrestricted.
- The Breusch-Pagan test assumes normality (actually, that the first four moments of the multivariate distribution are the same as multivariate normal, with independence between \mathbf{u}_i and \mathbf{X}_i .

- The B-P statistic uses the OLS residuals for each equation because it is a Lagrange Multiplier test, which is based on estimation under the null.
- The outcome of the B-P test is rarely in doubt: one almost always strongly rejects the null. A robust test that uses only SGLS.1 and SGLS.2 could be derived, using

$$N^{-1/2} \sum_{i=1}^{N} \mathbf{\check{u}}_{i} \mathbf{\check{u}}_{i}' = N^{-1/2} \sum_{i=1}^{N} \mathbf{u}_{i} \mathbf{u}_{i}' + o_{p}(1)$$

without restricting the fourth moments of \mathbf{u}_i .

• **EXAMPLE**: A two equation SUR system for hourly earnings and benefits. N = 606.

. sureg (hrearn educ exper expersq union married white male) (hrbens educ exper expersq union married white male), corr

Seemingly unrelated regression

Equation	0bs	Parms	RMSE	"R-sq"	chi2	P
hrearn	616	7	4.332039	0.1965	150.68	0.0000
hrbens	616	7	.5417217	0.3353	310.77	

Coef. Std. Err. z P>|z| [95% Conf. Interval] hrearn .4645619 .0672265 6.91 0.000 .3328004 .5963234 educ exper -.0530683 .0522106 -1.02 0.309 -.1553992 .0492627 kpersq .0033981 .0011129 3.05 0.002 .0012168 .0055794 expersq .7685325 .3905196 1.97 .003128 1.533937 union 0.049 .6222725 .413202 1.51 0.132 -.1875886 1.432134 1.107492 .605861 1.83 0.068 -.0799737 2.294958 married white | male | 1.735931 .3939833 4.41 0.000 .9637374 2.508124 -3.078173 1.076508 -2.86 -5.18809 -.9682564 0.004 _cons

```
hrbens
        educ
                  .0739853
                             .0084067
                                          8.80
                                                  0.000
                                                            .0575085
                                                                         .0904621
                                                  0.000
       exper
                 .0431919
                             .0065289
                                          6.62
                                                            .0303954
                                                                         .0559883
                                         -5.28
                -.0007348
                             .0001392
                                                  0.000
                                                           -.0010076
                                                                        -.0004621
     expersq
                             .0488345
                                          9.10
                                                  0.000
                                                            .3485129
                                                                         .5399406
       union
                  .4442268
                 .0889692
                             .0516709
                                          1.72
                                                  0.085
                                                           -.012304
                                                                        .1902424
     married
       white
                             .0757629
                                                  0.253
                                          1.14
                                                           -.0618527
                 .0866399
                                                                         .2351326
                 .2400792
                             .0492676
                                          4.87
                                                  0.000
                                                                         .336642
        male
                                                            .1435164
                -.8888685
                             .1346174
                                         -6.60
                                                  0.000
                                                           -1.152714
                                                                        -.6250233
       _cons
```

Correlation matrix of residuals:

hrearn hrbens hrearn 1.0000

hrbens 0.3022 1.0000

Breusch-Pagan test of independence: chi2(1) = 56.267, Pr = 0.0000

- . test married
- (1) [hrearn]married = 0
- (2) [hrbens]married = 0

chi2(2) = 4.03Prob > chi2 = 0.1331 . reg hrearn educ exper expersq union married white male, robust

Linear regression	Number of obs =	616
	F(7, 608) =	37.08
	Prob > F =	0.0000
	R-squared =	0.1965
	Root MSE =	4.3604

hrearn	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.4645619	.0764839	6.07	0.000	.3143572	.6147665
exper	0530683	.2310098	-0.23	0.818	5067423	.4006058
expersq	.0033981	.005917	0.57	0.566	0082221	.0150183
union	.7685325	.2896582	2.65	0.008	.1996804	1.337385
married	.6222725	.3362197	1.85	0.065	0380204	1.282565
white	1.107492	.4993442	2.22	0.027	.1268432	2.088141
male	1.735931	.2734542	6.35	0.000	1.198901	2.27296
_cons	-3.078173	.8501402	-3.62	0.000	-4.747741	-1.408605

1.2 Imposing Cross-Equation Restrictions

• Suppose a two-equation system in the population is

$$y_1 = \gamma_{10} + \gamma_{11}x_{11} + \gamma_{12}x_{12} + \alpha_1x_{13} + \alpha_2x_{14} + u_1$$

$$y_2 = \gamma_{20} + \gamma_{21}x_{21} + \alpha_1x_{22} + \alpha_2x_{23} + \gamma_{24}x_{24} + u_2$$

Let the vector of all parameters be the 8×1 vector

$$\beta = (\gamma_{10}, \gamma_{11}, \gamma_{12}, \alpha_1, \alpha_2, \gamma_{20}, \gamma_{21}, \gamma_{24})'.$$

Then we can define the matrix of regressors as

$$\mathbf{X}_{i} = \begin{pmatrix} 1 & x_{i11} & x_{i12} & x_{i13} & x_{i14} & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{i22} & x_{i23} & 1 & x_{i21} & x_{i24} \end{pmatrix}$$

- Stata has a feature that allows one to specify linear constraints on the parameters, which is more natural.
- Cross-equation restrictions arise naturally in demand systems, cost share equations, and so on.
- In share equations, where the dependent variable is a fraction, can question whether linearity seems reasonable. Almost certainly the system homoskedasticity assumption fails.

1.3. Systems with Singular Variance-Covariance Matrices.

- In expenditure and cost share systems, the *G* responses, if the categories are exhaustive and mutually exclusive, sum to unity.
- For firm i let s_{iK} , s_{iL} , and s_{iM} be the cost shares for capital, labor, and materials, respectively, and assume that $s_{iK} + s_{iL} + s_{iM} = 1$. A popular cost share system is

$$s_{iK} = \gamma_{10} + \gamma_{11} \log(p_{iK}) + \gamma_{12} \log(p_{iL}) + \gamma_{13} \log(p_{iM}) + u_{iK}$$

$$s_{iL} = \gamma_{20} + \gamma_{21} \log(p_{iK}) + \gamma_{22} \log(p_{iL}) + \gamma_{23} \log(p_{iM}) + u_{iL}$$

$$s_{iM} = \gamma_{30} + \gamma_{31} \log(p_{iK}) + \gamma_{32} \log(p_{iL}) + \gamma_{33} \log(p_{iM}) + u_{iM}$$

• The restriction on the sum implies

$$\gamma_{10} + \gamma_{20} + \gamma_{30} = 1, \ \gamma_{11} + \gamma_{21} + \gamma_{31} = 0, \ \gamma_{12} + \gamma_{22} + \gamma_{32} = 0$$

$$\gamma_{13} + \gamma_{23} + \gamma_{33} = 0, \ u_{iK} + u_{iL} + u_{iM} = 0$$

and that last restriction implies that $\Omega = E(\mathbf{u}_i \mathbf{u}_i')$, a 3 × 3 matrix, has rank two, not three.

• Can drop any of the equations. Make it the last one, and impose the restrictions on the parameters. Can write

$$s_{iK} = \gamma_{10} + \gamma_{11} \log(p_{iK}/p_{iM}) + \gamma_{12} \log(p_{iL}/p_{iM}) + u_{iK}$$

$$s_{iL} = \gamma_{20} + \gamma_{12} \log(p_{iK}/p_{iM}) + \gamma_{22} \log(p_{iL}/p_{iM}) + u_{iL}$$

• This two-equation system has a cross equation restriction, too. But the singularity in the variance matrix is gone, so can apply FGLS with

$$\beta = (\gamma_{10}, \gamma_{11}, \gamma_{12}, \gamma_{20}, \gamma_{22})$$

$$\mathbf{X}_{i} = \left(\begin{array}{cccc} 1 & \log(p_{iK}/p_{iM}) & \log(p_{iL}/p_{iM}) & 0 & 0 \\ 0 & 0 & \log(p_{iK}/p_{iM}) & 1 & \log(p_{iL}/p_{iM}) \end{array} \right).$$

- Can add firm characteristics to the share equations without essential change.
- Current interesting question: What nonlinear systems are consistent with production theory that respect the fractional nature of the shares?

2. PANEL DATA

• Write for a random draw *i* as

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + u_{it}, \ t = 1, \dots, T. \tag{2.1}$$

• Remember, \mathbf{x}_{it} can contain all kinds of explanatory variables, including time period dummies and variables that do not change over time.

2.1. Assumptions for Pooled OLS (POLS).

Assumption POLS.1 (Contemporaneous Exogeneity):

$$E(\mathbf{x}'_{it}u_{it}) = \mathbf{0}, \ t = 1, ..., T.$$
 (2.2)

• Remember, POLS.1 allows for lagged dependent variables as well as other non-strictly exogenous regressors.

Assumption POLS.2 (Rank Condition):

$$rank \left[\sum_{t=1}^{T} E(\mathbf{x}'_{it}\mathbf{x}_{it}) \right] = K.$$
 (2.3)

• Under POLS.1 and POLS.2 the asymptotic variance of

$$\sqrt{N} (\hat{\boldsymbol{\beta}}_{POLS} - \boldsymbol{\beta})$$
 is

$$\left[\sum_{t=1}^{T} E(\mathbf{x}'_{it}\mathbf{x}_{it})\right]^{-1} \left[\sum_{t=1}^{T} \sum_{s=1}^{T} E(u_{it}u_{is}\mathbf{x}'_{it}\mathbf{x}_{is})\right] \left[\sum_{t=1}^{T} E(\mathbf{x}'_{it}\mathbf{x}_{it})\right]^{-1}.$$
 (2.4)

• This expression simplifies if we appropriately restrict the conditional variances and covariances.

Assumption POLS.3 (Homoskedasticity and No Serial Correlation):

(a)
$$E(u_{it}^2 \mathbf{x}_{it}' \mathbf{x}_{it}) = E(u_{it}^2) E(\mathbf{x}_{it}' \mathbf{x}_{it})$$
 (2.5)

$$= \sigma^2 E(\mathbf{x}_{it}' \mathbf{x}_{it}), \text{ where } \sigma^2 = E(u_{it}^2), \text{ all } t$$
(b) $E(u_{it}u_{is}\mathbf{x}_{it}' \mathbf{x}_{is}) = \mathbf{0}, \text{ all } t \neq s.$ (2.6)

• Under POLS.3, (2.4) becomes

$$\sigma^2 \left[\sum_{t=1}^T E(\mathbf{x}'_{it}\mathbf{x}_{it}) \right]^{-1}.$$

• POLS.3 implies that the "usual" asymptotic variance matrix estimator of $\hat{\boldsymbol{\beta}}_{POLS}$ is valid:

$$\widehat{\text{Avar}}(\widehat{\boldsymbol{\beta}}_{POLS}) = \widehat{\sigma}^2 \left(\sum_{i=1}^N \sum_{t=1}^T \mathbf{x}'_{it} \mathbf{x}_{it} \right)^{-1} = \widehat{\sigma}^2 (\mathbf{X}' \mathbf{X})^{-1}$$
(2.7)

$$\hat{\sigma}^2 = (NT - K)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{u}_{it}^2 = SSR/(NT - K).$$
 (2.8)

• Can use the usual t and F statistics as approximately valid for large N.

• Without POLS.3, generally need fully robust variance matrix. That is, robust to arbitrary heteroskedasticity and serial correlation (unconditional or conditional):

$$\widehat{\text{Avar}}(\widehat{\boldsymbol{\beta}}_{POLS}) = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it}' \mathbf{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{T} \widehat{u}_{it} \widehat{u}_{is} \mathbf{x}_{it}' \mathbf{x}_{is}\right)$$

$$\cdot \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it}' \mathbf{x}_{it}\right)^{-1}$$

$$(2.9)$$

• This estimator in Stata is computed using a "cluster" option, where each unit *i* is a cluster of *T* time series observations.

• If we maintain the no serial correlation part of POLS.3, that is, $E(u_{it}u_{is}\mathbf{x}'_{it}\mathbf{x}_{is}) = \mathbf{0}$, all $t \neq s$, then a heteroskedasticity-robust form is valid:

$$\left(\sum_{i=1}^{N}\sum_{t=1}^{T}\mathbf{x}_{it}'\mathbf{x}_{it}\right)^{-1}\left(\sum_{i=1}^{N}\sum_{t=1}^{T}\hat{u}_{it}^{2}\mathbf{x}_{it}'\mathbf{x}_{is}\right)\left(\sum_{i=1}^{N}\sum_{t=1}^{T}\mathbf{x}_{it}'\mathbf{x}_{it}\right)^{-1}$$

• In Stata, this estimator is obtained with a "robust" option, but its robustness is limited to heteroskedasticity, not serial correlation.

EXAMPLE: Relationsip Between Air Fares and Concentration Ratio.

$$N = 1,149, T = 4.$$

- . use airfare
- . tab year

1997, 1998, 1999, 2000	 Freq.	Percent	Cum.
1997 1998 1999 2000	1,149 1,149 1,149 1,149	25.00 25.00 25.00 25.00	25.00 50.00 75.00 100.00
Total	4,596	100.00\	pagebreak

. des fare concen

variable name	_	display format	value label	variable label
fare concen		%9.0g %9.0g		avg. one-way fare, \$ market share, largest carrier

. list id year fare concen dist in 1/16

_					+
	id	year	fare	concen	dist
1.		1997	106	.8386	528
2.		1998	106	.8133	528
3.	1	1999	113	.8262	528
4.	1	2000	123	.8612	528
5.	2	1997 	104	.5798 	861
6.	2	1998	105	.5817	861
7.	2	1999	115	.7319	861
8.	2	2000	129	.5386	861
9.		1997	207	.818	852
10.	3 	1998 	188	.8172	852
11.	3	1999	229	.7998	852
12.		2000	247	.7097	852
13.	4	1997	243	.4604	724
14.		1998	226	.4614	724
15.	4 	1999 	229 	.4334	724
16.	4	2000	176	.3716	724
	+				++

. sum fare concen

Variable	0bs	Mean	Std. Dev.	Min	Max
fare	4596	178.7968	74.88151	37	522
concen	4596	.6101149	.196435	.1605	1

. reg lfare concen ldist ldistsq y98 y99 y00

Number of obs = 4596		MS		df	SS	Source
F(6, 4589) = 523.18 Prob > F = 0.0000 R-squared = 0.4062 Adj R-squared = 0.4054 Root MSE = .33651		423096 236112 444913	.113	4589 4595	+ 355.453858 519.640516 + 875.094374	Model Residual Total
					'	
[95% Conf. Interval]	P> t	t	Err.	Std.	Coef.	lfare
3011705 .4190702	0.000	11.98	0691	.0300	.3601203	concen

ldist -.9016004 .128273 -7.03 0.000 -1.153077-.6501235 .1220863 .0486533 ldistsq .1030196 .0097255 10.59 0.000 .0839529 у98 .0211244 .0140419 1.50 0.133 -.0064046 .0378496 у99 .0140413 2.70 0.007 .010322 .0653772 у00 .09987 .0140432 0.000 .0723385 .1274015 7.11 _cons 6.209258 .4206247 14.76 0.000 5.384631 7.033884

. reg lfare concen ldist ldistsq y98 y99 y00, robust

Linear regression	Number of obs $=$	4596
	F(6, 4589) =	558.39
	Prob > F =	0.0000
	R-squared =	0.4062
	Root MSE =	.33651

 lfare	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
concen ldist ldistsq y98 y99 y00 cons	.3601203 9016004 .1030196 .0211244 .0378496 .09987 6.209258	.0318147 .1406543 .0104402 .0141734 .0144012 .0143821 .4711359	11.32 -6.41 9.87 1.49 2.63 6.94 13.18	0.000 0.000 0.000 0.136 0.009 0.000	.2977482 -1.177351 .0825518 0066623 .0096162 .0716742 5.285605	.4224925 6258503 .1234875 .048911 .0660829 .1280658 7.132911

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

Linear regression	Number of obs $=$	4596
	F(6, 1148) =	205.63
	Prob > F =	0.0000
	R-squared =	0.4062
	Root MSE =	. 33651

(Std. Err. adjusted for 1149 clusters in id)

lfare	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
concen ldist	.3601203	.058556 .2719464	6.15 -3.32	0.000	.2452315 -1.435168	.4750092 3680328
ldistsq	.1030196	.0201602	5.11	0.000	.0634647	.1425745
у98 у99	.0211244 .0378496	.0041474 .0051795	5.09 7.31	0.000	.0129871 .0276872	.0292617
y00 _cons	.09987 6.209258	.0056469 .9117551	17.69 6.81	0.000	.0887906 4.420364	.1109493 7.998151

2.2. Dynamic Completeness and Time Series Persistence

• In an important case, there can be no serial correlation in the errors in the sense that POLS.3(b) must hold. If \mathbf{x}_t has been chosen such that

$$E(y_t|\mathbf{x}_t, y_{t-1}, \mathbf{x}_{t-1}, \dots, y_1, \mathbf{x}_1) = E(y_t|\mathbf{x}_t)$$
 (2.10)

then the errors $\{u_t\}$ can have no serial correlation, and neither can $\{\mathbf{x}'_t u_t : t = 1, ..., T\}.$

• When (2.10) holds, we say the model is **dynamically complete** (in its mean). In the context of the linear model, it is the same as

$$E(u_t|\mathbf{x}_t, u_{t-1}, \mathbf{x}_{t-1}, \dots, u_1, \mathbf{x}_1) = 0.$$
 (2.11)

• Let s < t, so that $(\mathbf{x}_t, u_s, \mathbf{x}_s) \subset (\mathbf{x}_t, u_{t-1}, \mathbf{x}_{t-1}, \dots, u_1, \mathbf{x}_1)$. By iterated expectations,

$$E(u_t u_s \mathbf{x}_t' \mathbf{x}_s) = E[E(u_t u_s \mathbf{x}_t' \mathbf{x}_s | \mathbf{x}_t, u_s, \mathbf{x}_s)]$$

$$= E[E(u_t | \mathbf{x}_t, u_s, \mathbf{x}_s) u_s \mathbf{x}_t' \mathbf{x}_s]$$

$$= E[0 \cdot u_s \mathbf{x}_t' \mathbf{x}_s]$$

because $E(u_t|\mathbf{x}_t, u_s, \mathbf{x}_s) = 0$ under dynamic completeness.

• A weaker sufficient conditon for POLS.3(b) is

$$E(u_t u_s | \mathbf{x}_t, \mathbf{x}_s) = 0, \text{ all } t \neq s.$$
 (2.12)

• $E(u_t u_s) = 0$ for $t \neq s$ is not enough with random regressors.

• Dynamic completeness (DC) is a very strong assumption in static models. Suppose

$$y_t = \eta_t + \mathbf{z}_t \mathbf{\gamma} + u_t, \tag{2.13}$$

where \mathbf{z}_t is dated contemporaneously with y_t . DC requires

$$E(y_t|\mathbf{z}_t, y_{t-1}, \mathbf{z}_{t-1}, \dots, y_1, \mathbf{z}_1) = E(y_t|\mathbf{z}_t),$$
 (2.14)

that is, once \mathbf{z}_t is controlled for, neither past values of y or \mathbf{z} help to predict y_t .

• Also for finite distributed lags, say

$$y_t = \eta_t + \mathbf{z}_t \mathbf{\gamma}_0 + \mathbf{z}_{t-1} \mathbf{\gamma}_1 + \mathbf{z}_{t-2} \mathbf{\gamma}_2 + u_t, \qquad (2.15)$$

it may be reasonable to assume the distributed lag dynamics are correct:

$$E(y_t|\mathbf{z}_t,\mathbf{z}_{t-1},\mathbf{z}_{t-2}) = E(y_t|\mathbf{z}_t,\mathbf{z}_{t-1},\mathbf{z}_{t-2},\ldots,\mathbf{z}_1).$$
 (2.16)

But dynamic completeness as stated in (2.10) requires much more: no lagged outcomes on y help to predict y_t :

$$E(y_t|\mathbf{z}_t, y_{t-1}, \mathbf{z}_{t-1}, \dots, y_1, \mathbf{z}_1) = E(y_t|\mathbf{z}_t, \mathbf{z}_{t-1}, \mathbf{z}_{t-2}). \tag{2.17}$$

• One way to interpret the presence of serial correlation in the errors of panel data models is that the model has misspecified dynamics.

However, we may not want a model to satisfy the DC assumption

$$E(y_t|\mathbf{x}_t,y_{t-1},\mathbf{x}_{t-1},\ldots,y_1,\mathbf{x}_1)=E(y_t|\mathbf{x}_t)$$

We may be happy estimating, say, $E(y_t|\mathbf{z}_t)$, $E(y_t|\mathbf{z}_t,\mathbf{z}_{t-1},\mathbf{z}_{t-2},\ldots,\mathbf{z}_1)$, or even $E(y_t|\mathbf{z}_t,y_{t-1})$ without having any of these represent the fully dynamic conditional mean.

• Remember that the presence of serial correlation is entirely different from strict exogeneity. Strict exogeneity always fails in models with a lagged dependent variable.

• An important point for inference is that all statistics we have discussed are valid for large *N* and small *T* without restricting the time series dependence in the data. So, for example, suppose our model is

$$y_t = \eta_t + \mathbf{z}_t \mathbf{\gamma} + \rho y_{t-1} + u_t, t = 1, \dots, T.$$
 (2.18)

If this were a pure time series problem, we would need to worry about the time series properties of $\{\mathbf{z}_t\}$, and we would have to use different inference methods if $\rho \geq 1$. But with a large cross section and small T, the statistical properties of the estimators are invariant to the time series properties of the series.

2.3. Testing for Serial Correlation and Heteroskedasticity

- Recall under strict exogeneity that we can ignore estimation of β in this case, estimation by POLS in testing assumptions about the unconditional variance-covariance matrix.
- Therefore, testing for serial correlation, or for constant variances across time, is straightforward.
- Consider testing for AR(1) serial correlation:

$$u_t = \rho u_{t-1} + e_t \tag{2.19}$$

$$H_0: \rho = 0$$
 (2.20)

• The natural steps for testing (2.20) (with strictly exogenous regressors) are (1) Run pooled OLS of y_{it} on \mathbf{x}_{it} , t = 1, ..., T; i = 1, ..., N, and obtain the POLS residuals (and one lag). (2) Run the POLS regression \hat{u}_{it} on $\hat{u}_{i,t-1}$; t = 2, ..., T; i = 1, ..., N, and use either the usual t statistic or that made robust to heteroskedasticity.

- The heteroskedasticity-robust form is robust to changes in the unconditional variance of u_{it} as well as dynamic heteroskedasticit in $Var(u_{it}|u_{i,t-1})$. (ARCH)
- If the \mathbf{x}_{it} are not strictly exogenous, the test needs to be adjusted. Can use the (heteroskedasticity-robust) t statistic for $\hat{\rho}$ from the regression

$$\hat{u}_{it}$$
 on $\hat{u}_{i,t-1}$, \mathbf{x}_{it} , $t = 2, \dots, T$; $i = 1, \dots, N$. (2.21)

• In effect, this accounts for the possibility that $u_{i,t-1}$ is correlated with \mathbf{x}_{it} , which must happen when \mathbf{x}_{it} contains lagged dependent variables but could happen other times, too.

• To test for constant variance over time, regress the squared OLS residuals on time period dummies:

$$\hat{u}_{it}^2 \text{ on } 1, d2_t, \dots, dT_t, t = 1, \dots, T; i = 1, \dots, N$$
 (2.22)

and use a joint F test.

• Can show under $E(y_{it}|\mathbf{x}_{it}) = \mathbf{x}_{it}\boldsymbol{\beta}$ that the asymptotic distribution of the test statistic does not depend on that of the POLS estimator, $\hat{\boldsymbol{\beta}}_{POLS}$. But, there might be serial correlation in the squared errors (ARCH), or the fourth moment of u_{it} might not line up with the normal, so the joint test from (2.21) should be made "cluster robust."

- Can add functions of \mathbf{x}_{it} to the regression in (2.21), too, such as the POLS fitted values and their squares.
- What do we do with the information? If we reject constant variances, maybe just use fully robust inference. But it could be used as motivation for GLS.

AIRFARE data:

- . predict uh, resid
- . sort id year
- . gen uh_1 = uh[_n-1] if year > 1997
 (1149 missing values generated)
- . reg uh uh_1

Source	ss	df	MS		Number of obs $F(1,3445)$	= 3447 $=$ 21752.96
Model Residual	322.9744 51.149214	1 3445 	322.9744 .014847377		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8633
Total	374.123614	3446	.108567503		Root MSE	= .12185
uh	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval]
uh_1 _cons	.9072729 -1.33e-10	.0061			.895212 0040692	.9193338 .0040692

. reg uh uh_1, robust

Linear regression

Number of obs = 3447F(1, 3445) =16321.87 Prob > F = 0.0000 R-squared = 0.8633 Root MSE = .12185

Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] uh uh 1 | .9072729 .0071015 127.76 0.000 .8933492 .9211966 1.000 -1.33e-10 .0020754 -0.00 -.0040692 .0040692 _cons

^{. *} Very strong serial correlation. Using heteroskedasticity-robust version

^{. *} does not change the outcome; with rhohat = .907, this should not

^{. *} be surprising.

. reg uhsq y98 y99 y00

Source	SS	df	MS		Number of obs F(3, 4592)	
Model Residual	.32784636 81.1617978	3 4592 .	.10928212		Prob > F R-squared Adj R-squared	= 0.0003 $= 0.0040$
Total	81.4896441	4595 .	017734417		Root MSE	= .13295
uhsq	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
y98 y99 y00 _cons	0232182 0152361 0158774 .1266466	.005546 .005546 .005546 .003922	$ \begin{array}{rrr} 66 & -2.75 \\ 66 & -2.86 \end{array} $	0.000 0.006 0.004 0.000	0340923 0261101 0267515 .1189574	0123441 004362 0050033 .1343357

^{. *} The F test, with p-value = .0003, assumes no serial correlation in the

^{. *} squared errors and also that the fourth moments are constant over time.

^{. *} Nevertheless, the rejection is strong.

. reg uhsq y98 y99 y00, cluster(id)

Linear regression

Number of obs = 4596F(3, 1148) = 35.42Prob > F = 0.0000R-squared = 0.0040Root MSE = .13295

(Std. Err. adjusted for 1149 clusters in id)

uhsq	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
y98	0232182	.0024718	-9.39	0.000	028068	0183684
y99	0152361	.0032039	-4.76	0.000	0215222	00895
y00	0158774	.0032599	-4.87	0.000	0222734	0094814
_cons	.1266466	.0045367	27.92	0.000	.1177453	.1355478

^{. *} The above F test (given p = .0000) is robust to serial correlation in the

^{. *} squared errors and nonconstant fourth moments of the errors. Its rejection

[.] \star is even stronger than the nonrobust test.

^{. *} Later, we will use the estimated variances for the different time periods:

[.] predict sigsqh
(option xb assumed; fitted values)

2.4. FGLS with Strictly Exogenous Regressors

• If we detect serial correlation or heteroskedasticity, it is tempting to use a FGLS method to try to improve over POLS in the model

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + u_{it}, t = 1, \dots, T.$$

(Remember, with large *N* we can do valid inference with POLS. So, this is an efficiency issue.)

• If we use FGLS to account for serial correlation, strict exogeneity is key. If we make adjustments just for heteroskedasticity, contemporaneous exogeneity sufficies provided our estimated variance functions depend only on elements of \mathbf{x}_{it} .

• So, we might estimate a model for $Var(u_{it}|\mathbf{x}_{it})$ without taking a stand on the fully dynamic mean, which means we allow for the possibility of serial correlation. If we use weighted least squares, with weights $1/\hat{h}(\mathbf{x}_{it})$ (the estimated variance function), we should use the fully robust variance matrix for two reasons: (i) There is likely to be serial correlation; (ii) Our model for $Var(u_{it}|\mathbf{x}_{it})$ might be wrong. If we can rule out serial correlation, it suffices to use the "robust" option for WLS.

- Under strict exogeneity, we might use a simple AR(1) correction.
- A panel version of Prais-Winsten method uses the OLS residuals in the regression

$$\hat{u}_{it}$$
 on $\hat{u}_{i,t-1}; t = 2, \dots, T; i = 1, \dots, N$ (2.23)

to get $\hat{\rho}$. Then, define the quasi-differenced data, $\tilde{y}_{it} = y_{it} - \hat{\rho}y_{i,t-1}$ for $t \geq 2$, $\tilde{y}_{i1} = (1 - \hat{\rho}^2)^{1/2}y_{i1}$ (and similarly for $\tilde{\mathbf{x}}_{it}$). Finally, use pooled OLS to get FGLS:

$$\tilde{y}_{it} \text{ on } \tilde{\mathbf{x}}_{it}, t = 1, \dots; i = 1, \dots, N.$$
 (2.24)

- Why might we use a fully robust ("cluster" robust) variance matrix in (2.24)? Not to account for the first-stage estimation of ρ . That does not affect the large-sample distribution of $\hat{\beta}_{FGLS}$; it is as if we know ρ . Instead, it is because (i) The AR(1) model might be wrong and/or (ii) The system homoskedasticity assumption fails.
- The FGLS estimator *might* be more efficient that POLS even if the AR(1) model is not quite right. Maybe it accounts for "enough" of the serial correlation. But we should make our inference robust.

- The previous comment is the motivaton in the **generalized estimating equations** (**GEE**) literature. GEE is essentially FGLS (and certainly asymptotically equivalent to it) recognizing that our chosen variance matrix such as the homoskedasticity AR(1) might be incorrect. It also allows for unrestricted system heteroskedasticity in conducting inference.
- In the AR(1) case, not too hard to implement (2.24) "by hand," but the "xtgee" command in Stata is convenient. If the "robust" option is not included, the inference is the same as FGLS under SGLS.3. With the "robust" option, the inference is robust to incorrect restrictions on Ω if any are imposed along with system heteroskedasticity.

• Tradeoff between efficiency and consistency: The POLS estimator only requires

$$E(\mathbf{x}_{it}^{\prime}u_{it})=\mathbf{0}$$

while Prais-Winsten (and other methods that exploit serial correlation in estimation) effectively requires

$$E(\mathbf{x}'_{i,t-1}u_{it}) = \mathbf{0}, E(\mathbf{x}'_{it}u_{it}) = \mathbf{0}, E(\mathbf{x}'_{i,t+1}u_{it}) = \mathbf{0}$$

(except with some fluke cancellations).

- Can use other forms for Ω , too, or leave it fully unrestricted (attractive with large N, small T, to estimate T(T+1)/2 separate elements). In Stata, use an "unstructured" option in xtgee.
- Even with $\hat{\Omega}$ unrestricted (with $\{\mathbf{x}_{it}: t=1,...,T\}$ strictly exogenous), still can use a fully robust variance matrix estimator to account for possible system heteroskedasticity.

AIRFARE EXAMPLE: Use weighted least squares to account for different variances over time, but make inference robust to serial correlation (and other kinds of heteroskedasticity). Then, use FGLS with an AR(1) model, with and without robust inference.

- . * Use weighted least squares to adjust for different unconditional
- . * variances over time. First, nonrobust inference.
- . reg lfare concen ldist ldistsq y98 y99 y00 [w = 1/sigsqh] (analytic weights assumed) (sum of wgt is 4.0868e+04)

Source	SS	df 	MS		Number of obs F(6, 4589)	
Model Residual	354.010324 516.866129		.0017206 12631538		Prob > F R-squared	= 0.0000 $= 0.4065$
Total	870.876453	4595 .18	89526976		Adj R-squared Root MSE	= 0.4057 = .33561
lfare	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
concen ldist ldistsq y98 y99 y00 _cons	.35920689008375 .1028932 .0211325 .0378426 .09986 6.210433	.0300054 .1279271 .0096992 .0141639 .0144068 .0143893 .419516	11.97 -7.04 10.61 1.49 2.63 6.94 14.80	0.000 0.000 0.000 0.136 0.009 0.000	.3003817 -1.151636 .0838781 0066355 .0095984 .0716501 5.38798	.41803196500389 .1219083 .0489006 .0660868 .1280698 7.032886

- . * Make inference robust to any serial correlation and additional
- . * heteroskedasticity.

. reg lfare concen ldist ldistsq y98 y99 y00 [w = 1/sigsqh], cluster(id) (analytic weights assumed) (sum of wgt is 4.0868e+04)

Linear regression

Number of obs = 4596 F(6, 1148) = 205.89 Prob > F = 0.0000 R-squared = 0.4065 Root MSE = .33561

(Std. Err. adjusted for 1149 clusters in id)

Robust Std. Err. t P>|t| [95% Conf. Interval] lfare Coef. .4739428 .0584782 0.000 .2444707 .3592068 6.14 concen .2710967 ldist -.9008375 -3.32 -1.432738 -.3689368 0.001 5.12 .1028932 .0200969 0.000 .0634624 .142324 ldistsq .0129994 5.10 7.30 .0129994 .0292657 .0276773 .0480079 .0211325 у98 .0041453 0.000 .0378426 .005181 0.000 у99 17.68 0.000 .1109427 .09986 .0056486 .0887772 у00 .9088932 6.83 0.000 6.210433 4.427155 7.993711 _cons

. xtgee lfare concen ldist ldistsq y98 y99 y00, corr(ar1)

GEE population Group and time Link: Family: Correlation:	_	id y ident Gauss	-	Obs per	of groups = group: min = avg = max =	4.0
Scale paramete	er:	.1136	5252	Wald character Prob > 0		1157.88
lfare	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
concen ldist ldistsq y98 y99 y00 _cons	.2173983 9000279 .1009652 .0223992 .0367543 .0983042 6.379169	.0279859 .2408907 .0182148 .0041045 .0056737 .0068041 .7915448	7.77 -3.74 5.54 5.46 6.48 14.45 8.06	0.000 0.000 0.000 0.000 0.000 0.000	.1625469 -1.372165 .0652649 .0143545 .0256341 .0849684 4.82777	.27224974278908 .1366655 .0304439 .0478746 .1116399 7.930569

. xtgee lfare concen ldist ldistsq y98 y99 y00, corr(ar1) robust

	Number of obs	=	4596
id year	Number of grou	.ps =	1149
identity	Obs per group:	min =	4
Gaussian		avg =	4.0
AR(1)		max =	4
	Wald chi2(6)	=	1200.79
.1136252	Prob > chi2	=	0.0000
	identity Gaussian AR(1)	id year Number of grou identity Obs per group: Gaussian AR(1) Wald chi2(6)	<pre>id year</pre>

(Std. Err. adjusted for clustering on id)

lfare	Coef.	Semi-robust Std. Err.	z	P> z	[95% Conf.	Interval]
concen ldist ldistsq y98 y99 y00 cons	.2173983 9000279 .1009652 .0223992 .0367543 .0983042 6.379169	.0371709 .2817608 .0208502 .0041428 .0051472 .0055529	5.85 -3.19 4.84 5.41 7.14 17.70 6.73	0.000 0.001 0.000 0.000 0.000 0.000	.1445446 -1.452269 .0600995 .0142795 .026666 .0874207 4.522588	.290252 347787 .1418309 .0305189 .0468427 .1091877 8.235751

. xtgee lfare concen ldist ldistsq y98 y99 y00, corr(uns)

GEE population	n-averaged mod	del		Number	of obs	=	4596
Group and time	e vars:	id	year	Number	of group	s =	1149
Link:		iden	tity	Obs per	group:	min =	4
Family:		Gaus	sian			avg =	4.0
Correlation:		unstruct	ured			max =	4
				Wald ch	ni2(6)	=	1321.99
Scale paramete	er:	.113	5142	Prob >	chi2	=	0.0000
lfare	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
concen	.2364893	.0249533	9.48	0.000	.1875	817	.2853969
ldist	8806104	.2457398	-3.58	0.000	-1.362	2252	3989693
ldistsq	.0992803	.0185775	5.34	0.000	.0628	8691	.1356915
у98	.0222287	.003546	6.27	0.000	.0152	2787	.0291786
у99	.0369008	.0040047	9.21	0.000	.0290)518	.0447499
y00	.0985136	.0046874	21.02	0.000	.0893	3264	.1077008
_cons	6.313734	.8076273	7.82	0.000	4.730	813	7.896654

^{. *} The above estimates allow omega to be unrestricted, but maintain

^{. *} system homoskedasticity for inference.

. xtgee lfare concen ldist ldistsq y98 y99 y00, corr(uns) robust

	Number of obs	=	4596
id year	Number of groups	=	1149
identity	Obs per group: min	า =	4
Gaussian	avg	g =	4.0
unstructured	max	ζ =	4
	Wald chi2(6)	=	1246.97
.1135142	Prob > chi2	=	0.0000
	id year identity Gaussian unstructured	id year Number of groups identity Obs per group: min avg unstructured Mald chi2(6)	<pre>id year identity Gaussian unstructured identity Wald chi2(6)</pre> Number of groups = Obs per group: min = avg = max =

(Std. Err. adjusted for clustering on id)

lfare	 Coef.	Semi-robust Std. Err.	Z	P> z	[95% Conf.	Interval]
concen	.2364893	.0406545	5.82	0.000	.1568079	.3161706
ldist	8806104	.26696	-3.30	0.001	-1.403842	3573785
ldistsq	.0992803	.0197484	5.03	0.000	.0605741	.1379866
у98	.0222287	.0041432	5.37	0.000	.0141082	.0303492
y99	.0369008	.0051386	7.18	0.000	.0268293	.0469724
y00	.0985136	.0055411	17.78	0.000	.0876533	.109374
_cons	6.313734	.8977898	7.03	0.000	4.554098	8.07337

^{. *} The above inference is robust to system heteroskedasticity. The fully robust

^{. *} confidence standard error for concen is quite a bit larger than the

^{. *} nonrobust one: about .041 versus .025.

• When "robust" is used as an option, Stata labels the standard errors "semi-robust." For linear models, there is no distinction between fully robust and semi-robust. But for certain kinds of nonlinear models, one distinguishes between standard errors that allow misspecification of the conditional mean – given fully robust standard errors – and those that only allow misspecification of the conditional variance – which are dubbed "semi-robust."