

Universidade de Brasília

Departamento de Ciência da Computação

Aula 2 Desempenho

Never let your computer know that you are in a hurry.

Computers can smell fear.
They slow down if they know that you are running out of time.

Desempenho

O que é Desempenho???

Avião	Capacidade de passageiros	Autonomia de vôo (milhas)	Velocidade de vôo (milhas por hora)
Boeing 777	375	4.630	610
Boeing 747	470	4.150	610
BAC/Sud Concorde	132	4.000	1350
Douglas DC-8-50	146	8.720	544

- O quanto mais rápido é o Concorde comparado com o 747?
- O quanto maior é o 747 do que o Douglas DC-8?

Qual o avião vc escolheria para;

- Levar 1 passageiro de Recife para Lisboa? E 400?
- Levar 100 passageiros de Recife para Paris? E 300?
- Levar 100 passageiros de Brasília para Auckland? E 400?

Recife – Lisboa : 3625 mi Recife – Paris : 4527 mi

Brasília – Auckland: 7865 mi

Desempenho

Desempenho em relação a o que????

```
Tempo
                             Desempenho= f(t, P, c, m, w, l, h, H, T, ...)
□ Potência
Custo
Portabilidade
  (peso, tamanho,..)
□ Robustez física
  (queda, água, temperatura,...)
□ Irradiação
   (interferência, recepção, transmissão)
Ergonomia
    (acessibilidade, facilidade utilização,...)
```


Desempenho nesta disciplina:

Precisa ser uma grandeza fácil de medir e de relacionar com software e hardware

Tempo de resposta [s]

- Tempo decorrido: conta tudo (*E/S, execução de outros programas, etc.*) um número útil, mas normalmente não é ideal para fins de comparação
- Tempo de CPU: não conta E/S ou tempo gasto executando outros programas.

 Para o seu programa podemos ter ainda:
 - tempo de sistema
 - tempo de usuário ← Nosso foco agora

Grandeza relacionada: Vazão [unidade/segundo]

Se atualizarmos uma máquina com um novo processador, em que melhoramos? Se acrescentarmos uma máquina ao laboratório, em que melhoramos?

Definição de desempenho do Patterson

Para um programa sendo executado na máquina X,

$$Desempenho_X = \frac{1}{Tempo_Execução_X}$$

Modelo adotado neste curso

Fator de Desempenho: "X é η vezes mais rápido do que Y"

$$\eta = \frac{Desempenho_X}{Desempenho_Y}$$

- Exemplo:
 - a máquina A executa um programa em 10 segundos
 - a máquina B executa o mesmo programa em 15 segundos

Qual o fator de desempenho de A em relação a B?

Cálculo do Desempenho

Tempo de Execução da = ciclos de clock da CPU x Tempo de ciclo de clock CPU para um programa para um programa

$$t_{exec} \left[\frac{segundos}{programa} \right] = C \left[\frac{ciclos}{programa} \right] \times T \left[\frac{segundos}{ciclo} \right]$$

- tempo de ciclo (período) = tempo entre os tiques [segundos por ciclo]
- "velocidade" de clock (frequência) = taxa de tiques [ciclos por segundo]

Um sinal de clock de 4GHz possui um tempo de ciclo de

$$T[s] = \frac{1}{f[Hz]} = \frac{1}{4 \times 10^9} = 250 \times 10^{-12} = 250 \, ps$$
 [pico segundos]

Quantos ciclos são necessários para um programa?

Poderíamos considerar que o número de ciclos é igual ao número de

instruções do programa?

Essa suposição é geralmente incorreta; diferentes instruções geralmente levam a diferentes períodos em diferentes máquinas.

Por quê? Dica: Lembre-se de que essas são instruções de máquina, não linhas de código C.

- A multiplicação leva mais tempo do que a adição
- As operações de ponto flutuante levam mais tempo do que as operações de inteiros
- Acessar a memória leva mais tempo do que acessar os registradores

Para gerar a tabela relacional inicial de objetos do jogo The Sims, necessitase de 10 segundos no computador A, que possui um clock de 4GHz. Estamos tentando ajudar um projetista de computador a construir uma nova máquina B, que gere essa tabela em 6 segundos. O projetista determinou que um aumento substancial na frequência de clock é possível, mas esse aumento afetará o restante do projeto da CPU, fazendo com que o computador B exija 1,2 vez mais ciclos de clock do que o computador A para esse programa. Que frequência de clock devemos pedir para que o projetista almeje?

Processador Atual:

$$t_{exec} = C \times T$$

$$10 = C \times \frac{1}{4 \times 10^9}$$

$$C = 40 \times 10^9 \text{ ciclos}$$

Novo processador:

$$6 = 1.2 \times C \times \frac{1}{f}$$

$$f = \frac{1.2 \times 40 \times 10^{9}}{6} = 8 \text{ GHz}$$

Equação Fundamental do Desempenho

$$t_{exec}\left[\frac{segundos}{programa}\right] = I\left[\frac{Instruç\~oes}{programa}\right] \times CPI\left[\frac{Ciclos_clock}{Instruç\~ao}\right] \times T\left[\frac{segundos}{Ciclos_clock}\right]$$

- Tempo de Execução da CPU para um programa (t_{exec})
 - Segundos para execução do programa
- Contagem de Instruções (I)
 - □ Número de instruções executadas no programa
- Ciclos de clock por instrução (CPI)
 - □ Número médio de ciclos de clock para execução de uma instrução
- Tempo do ciclo de clock (T)
 - □ Segundos por ciclo de clock

 Suponha que tenhamos duas implementações da mesma arquitetura do conjunto de instruções (ISA)

Para um determinado programa,

A máquina A tem um tempo de ciclo de clock de 250 ps e uma CPI de 2,0 A máquina B tem um tempo de ciclo de clock de 500 ps e uma CPI de 1,2

Que máquina é mais rápida para esse programa e o quanto?

Mesma ISA -> logo mesmo número de instruções (I)

$$t_{exec} = I \times CPI \times T$$

Máquina A: $t_A = I \times 2 \times 250 \times 10^{-12} = 500pI$

Máquina B: $t_B = I \times 1,2 \times 500 \times 10^{-12} = 600pI$

$$\eta = \frac{\frac{1}{t_A}}{\frac{1}{t_B}} = \frac{t_B}{t_A} = \frac{600pI}{500pI} = 1,2$$
 Maquina A é 1,2 vezes mais rápida que a B

Componentes que afetam os fatores:

Componente	Afeta o que?	Como?
Algoritmo	Contagem de Instruções e possivelmente CPI	Número e tipo de instruções
Linguagem de Programação	Contagem de Instruções e CPI	Instruções da linguagem são traduzidos para instruções do processador
Compilador	Contagem de Instruções e CPI	Eficiência do compilador.
Conjunto de Instruções	Contagem de Instruções, frequência de clock e CPI	Afeta os 3 aspectos do desempenho

Comparando segmentos de código

Um projetista de compilador está tentando decidir entre duas sequências de código para um determinada máquina. Baseado na implementação de hardware, existem três classes diferentes de instruções: Classe A, Classe B e Classe C, e elas exigem um, dois e três ciclos (CPI), respectivamente.

A primeira sequência de código possui 5 instruções:

2 de A, 1 de B e 2 de C.

A segunda sequência possui 6 instruções:

4 de A, 1 de B e 1 de C.

Que sequência será mais rápida?

O quanto mais rápida?

Qual é a CPI para cada sequência?

Obs.: RISC versus CISC

RISC: Reduced Instruction Set Computer

- Processador com um pequeno número de instruções
- Apenas instruções simples
- "Rápidas" e "Compactas"
- Ex.: RISC-V, ARM, MIPS, SunSPARC

CISC: Complex Instruction Set Computer

- Processador com um grande número de instruções
- Instruções simples e complexas
- "Lentas" e "Grandes"
- Ex.: x86, x64

Grande questão: RISC ou CISC qual a melhor estratégia ???

Milhões de Instruções Por Segundo (nativo)

$$MIPS = \frac{Contagem_Instruções}{Tempo_{exec}} \cdot \frac{1}{10^6}$$

- Vantagem:
 - □ Fácil de entender.
 Um computador capaz de processar 100 MIPS é mais rápido que outro de 50 MIPS
- Porém:
 - □ Não leva em consideração a capacidade das instruções. RISC × CISC
 - □ O MIPS varia entre programas no mesmo processador.
 - □ O MIPS pode variar inversamente com o desempenho!

Hoje em dia: Cuidar com as medidas xFLOPS Que embora sejam mais precisas ainda podem incorrer em erros

Supercomputadores – Top500

Jun 2021

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	RIKEN Center for Computational Science Japan	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu	7,630,848	442,010.0	537,212.0	29,899
2	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, IBM	2,414,592	148,600.0	200,749.9	10,096
3	DOE/NNSA/LLNL United States	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, IBM	1,572,480	94,640.0	125,712.0	7,438
4	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway ,NRCPC	10,649,600	93,014.6	125,435.9	15,371
5	HPE DOE/SC/LBNL/NERSC United States	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE	706,304	64,590.0	89,794.5	2,528
46	Petróleo Brasileiro S.A Brazil	Dragão - Supermicro SYS-4029GP- TVRT, Xeon Gold 6230R 26C 2.1GHz, NVIDIA Tesla V100, Infiniband EDR, Atos	188,224	8,983.0	14,006.5	943

Os computadores A e B executaram um programa que gerou os seguintes resultados:

Measurement	Computer A	Computer B
Instruction count	10 billion	8 billion
Clock rate	4 GHz	4 GHz
CPI	1.0	1.1

- Quais as medidas MIPS para cada máquina?
- Qual máquina é a mais rápida?