

Sales Forecasting

Team-278

Index

INTRODUCTION

Introduction

- Company manufactures electric fans and sells them to consumers in various regions.
- Due to poor forecasting, the demand and supply ratio is poor.
- The task is to improve forecasting using advanced time series and machine learning algorithms.
- We have used data visualization tools and developed various time series, forecasting models.

(2) WORKFLOW

WorkFlow

3

EXPLORATORY ANALYSIS

Autocorrelation Plot

Augmented Dickey-Fuller (ADF) Test

Heat Map

Geovisualization

Rolling Mean and Rolling Standard Deviation

APPROACH & MODEL

Approach and Models

Models	MAPE	Root Mean Square Error
Random Forest	85%	355
XG Boost	93%	404
ARIMA	102%	473
SARIMA	215%	556
Holt Linear Trend	298%	621
Holt's Winter	365%	745
FB Prophet	655%	934
LSTM	94%	412
Temporal Fusion Transformer	544%	898

APPROACH

Problem

- In our initial approach, we made use of Random Forest, XG boost regressor, LSTM,TFT, ARIMA, SES, SARIMA, SARIMAX, HOLT'S linear trend, HOLT'S winter and FB prophet models.
- They turned out to be much more complex and resulted into a large MAPE.

 Moreover, the data provided wasn't showing similar trends over a larger time span.

Solution

- Comparing sales of consecutive months shows a strong correlation between them. MAPE reduced significantly when month's sales were predicted by taking the previous month's sales.
- MAPE favors under-forecasting because the percentage error can't exceed 100% for relatively lower forecasts, while there is no upper limit for forecasts that are too high.
- So our final approach was as follows: Predicted June's sales is the minimum of April and May sales.

Predicted vs Actual June-18

Predicted vs Actual June-19

Thank You.