

Simulazione numerica del modello di Ising 2D.

Esame metodi statistici per la fisica.

Giuseppe Francesco Conte

January 26, 2025

Indice 1 Introduzione

► Introduzione

Implementazione

Risultati

Introduzione

1 Introduzione

Il modello di Ising spiega la transizione di fase da ferromagnetico a paramagnetico oltre a una certa temperatura critica.

Consideriamo il caso di un reticolo bidimensionale di spin $\sigma=\pm 1$ descritto da un'Hamiltoniana della seguente forma:

$$H = -J \sum_{\substack{\langle i,j \rangle \\ A}} \sigma_i \sigma_j - h \sum_{i=1}^{N} \sigma_i. \tag{1}$$

A termine di interazione tra spin vicini con costante di accoppiamento *J*;

B termine di interazione con un campo esterno h.

$$ullet$$
 settiamo $h=0$ $\stackrel{ ext{soluzione analitica}}{ ext{}}$ esiste $T_c=rac{2}{ln(1+\sqrt{2})}pprox 2.269$ tale per cui

$$egin{cases} m_s
eq 0, & ext{per } T < T_c, \ m_s = 0, & ext{for } T \geq T_c \end{cases}$$
 (2)

• l'obiettivo è simulare il modello tramite l'algoritmo di Metropolis per riprodurre la curva teorica.

Perché Metropolis

1 Introduzione

In meccanica statistica, il calcolo delle medie d'ensemble richiede una somma su tutti i punti dello spazio delle fasi, operazione in pratica impossibile. Utilizziamo quindi l'importance sampling, considerando solo gli stati che contribuiscono maggiormente alla media.

$$\langle A \rangle = \frac{\sum_{s} e^{-\beta H(s)} A(s)}{\sum_{s} e^{-\beta H(s)}} = \frac{1}{M} \sum_{s}^{M} A(s)$$
 (3)

Usiamo un peso Boltzmanniano $p(s)=\frac{e^{-\beta H}}{Z}$ per concentrarci sugli stati rilevanti. M è il numero di stati "importanti" su cui effettuiamo la media, riducendo lo spazio delle fasi alla regione significativa.

Strategia

Come generare la distribuzione per semplificare il calcolo?

- Utilizziamo un processo di Markov, dove uno stato s+1 è costruito da uno stato s tramite una probabilità di transizione $W(s \rightarrow s+1)$.
- Impostiamo un'equazione di bilancio che garantisca, per ogni coppia di stati s, r:

$$P_{eq}(s)W(s \to r) = P_{eq}(r)W(r \to s) \tag{4}$$

• Con una probabilità à-la-Boltzmann otteniamo:

$$\frac{W(s \to r)}{W(r \to s)} = e^{-\beta(H(r) - H(s))} \tag{5}$$

che definisce il rate di transizione.

Transizione e Conservazione

1 Introduzione

• Scegliendo:

$$W(s o r) = egin{cases} e^{-eta(H(r)-H(s))} & ext{se } H(r)-H(s) < 0, \ 1 & ext{altrimenti} \end{cases}$$
 (6)

soddisfiamo la condizione (5).

- Questa scelta, pur non essendo unica, è la più efficiente ed evita che il sistema resti confinato in una regione limitata dello spazio delle fasi.
- Inserendo questa definizione nella Master Equation di Markov Conserviamo la probabilità per ogni s, t.
- Possiamo dimostrare che $P(s) o P_{eq}(s)$ per $M o \infty$ (Teorema Fondamentale delle Catene di Markov).

Indice 2 Implementazione

▶ Introduzione

► Implementazione

Risultat

Implementazione

2 Implementazione

In questa sezione mostriamo il codice MATLAB utilizzato per inizializzare il modello. Procediamo per passi:

1 Creiamo una matrice $N \times N$ i cui elementi sono ± 1 , distribuiti casualmente.

```
% Creazione della matrice casuale
H = rand(N);  % Matrice con numeri uniformemente distribuiti in [0,1]

% Assegnazione di +1 o -1 in base al valore
for i = 1:N
    for j = 1:N
        if H(i,j) < 0.5
            H(i,j) = -1;
        else
            H(i,j) = +1;
        end
    end
end</pre>
```


Implementazione: Condizioni Periodiche

2 Implementazione

2 Fissiamo uno spin *i* e formalizziamo i concetti di "sopra", "sotto", "destra" e "sinistra", includendo le condizioni di periodicità.

```
% Condizioni periodiche per gli indici i (analogamente per j)
% Questo codice è all'interno di un doppio ciclo for
if i == 1
    left = N;
    right = i + 1;
elseif i == N
    left = i - 1;
    right = 1;
else
    left = i - 1;
    right = i + 1;
end
```


Calcolo dell'Energia di Interazione

2 Implementazione

3 Calcoliamo:

- L'energia di interazione tra lo spin i e i suoi vicini.
- La differenza di energia ΔE tra due configurazioni, considerando il flip dello spin i.

```
% Energia di interazione dello spin i
H_interaction = -J * H(i,j) * (H(left,j) + H(right,j) + H(i,up) + H(i,down));

% Energia di interazione con lo spin i flippato
H_flipp = -H(i,j);
H_interaction_flipp = -J * H_flipp * (H(left,j) + H(right,j) + H(i,up) + H(i,down));

% Variazione di energia dopo il flip
deltaE = H_interaction_flipp - H_interaction;
```


Algoritmo di Metropolis

2 Implementazione

- 4 Implementazione dell'algoritmo di Metropolis:
 - Calcolo ΔE tra la configurazione corrente e quella con lo spin flippato.
 - Se $\Delta E < 0$, accetto il flip con probabilità 1.
 - Se $\Delta E > 0$, accetto il flip con probabilità $e^{-\Delta E/(k_BT)}$.
 - Se $\Delta E = 0$, accetto il flip con probabilità 50%.

```
if deltaE < 0
    H(i,j) = H_flipp;
elseif deltaE == 0    % 50% di probabilità di flippare
    if rand < 0.5
        H(i,j) = H_flipp;
    end
else
    % Accetto il flip con probabilità pesata da una distribuzione canonica
    if rand < exp(-deltaE / (kbT))
        H(i,j) = H_flipp;
    end
end</pre>
```


Sweep e Iterazioni

2 Implementazione

- 5 Per completare uno sweep:
 - Seleziono uno spin del reticolo in modo casuale.
 - Applico le operazioni descritte nei punti precedenti per ogni elemento della matrice.

```
for n = 1:N^2
    % Selezione casuale di uno spin
    i = randi(N);
    j = randi(N);

    % Operazioni descritte nei punti precedenti
    .
    .
end
```

6 Itero il processo per $N_{sweeps} = 10^6$ volte.

Simulazione della Dinamica di Ising

2 Implementazione

Iterando la procedura per il numero di sweep desiderati, è possibile simulare la dinamica "alla Ising".

Di seguito, alcuni snapshot della matrice H calcolata con i seguenti parametri:

• Dimensione del reticolo: N = 100

• Temperature: $T = \{1, 1.5, T_c, 3\}$

• Step di osservazione: $Q = \{0, 10, 100, N_{sweeps}\}$

.

Indice 3 Risultati

Introduzione

- Implementazione
- ► Risultati

T=1 3 Risultati

T=1.5 3 Risultati

$T=T_c$ 3 Risultati

T=3 3 Risultati

Osservazioni 3 Risultati

Dall'analisi degli snapshot si osserva che:

- Per $T < T_c$, si forma una fase ordinata, mentre per $T \ge T_c$ domina il disordine.
- All'aumentare della temperatura, è necessario un maggior numero di step per raggiungere l'ordine.
- Per $T > T_c$, la fase ordinata non si manifesta.

Magnetizzazione

3 Risultati

Iteriamo il codice del punto 5 su un set di temperature. La magnetizzazione è calcolata come media su tutti gli elementi della matrice H a N_{sweeps} fissato, e ulteriormente mediata per i passi successivi a τ_{eq} .

```
M_t = zeros(1, Nconf);
for m = 1:Nconf
    for ns = 1:Nsweeps
        for n = 1:N^2
            . . .
        end
        % Magnetizzazione media per spin
        M_m = sum(sum(H)) / N^2;
        M_{time(ns)} = abs(M_m):
    end
    % Media della magnetizzazione per ns > tau
    M_average_time = mean(M_time(tau:end));
    M_t(m) = abs(M_average_time); % Memorizza la magnetizzazione assoluta
end
21/25
```


Waiting for equilibrium

3 Risultati

Il risultato della simulazione è relativa a 60 diversi valori della temperatura nell'intevallo [0,4] e scegliendo $\tau_{eq}=10^5$.

Osservazioni 3 Risultati

- ullet Tempo di equilibrio $au_{eq}\colon \stackrel{\mathsf{ergodicità}}{\longrightarrow} \langle m
 angle = ar{m}.$
- Transizione di fase evidente a T_c .
- Simulazione di un <u>reticolo finito</u>: transizione più smooth.

Grazie mille per l'attenzione!