Introductory Econometrics Cheat Sheet

by Marten Walk, University of Halle 2024

1a Types of Data

- Cross-Sectional: 20 countries in one year
- Time-Series: 1 country over 20 years
- Panel: 20 countries, 20 years

2 Simple Regression Model

useful for simple ceteribus paribus relationship

$$y = \beta_0 + \beta_1 x + u$$

- y = dependent / explained / regressand
- x = independent / explanatory / regressor

Assumptions:

- 1. E(u) = 0: avg. of unobserved is zero
- 2. E(u|x) = u: errors are independent

When these hold, coefficients are:

$$\widehat{\beta}_1 = \frac{\text{Cov}_{x,y}}{\text{Var}_x} = \frac{\sum x_i y_i - n\bar{y}\bar{x}}{\sum x^2 - n\bar{x}^2}$$

$$\widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x}$$

 $\begin{array}{ll} \text{fitted values} & \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_i \\ \text{residuals} & \hat{u} = y_i - \hat{y}_i \\ \text{Total Sum Sqares} & \text{SST} = \sum \left(y_i - \bar{y}\right)^2 \\ \text{Sum of Sq. Regression} & \text{SSR} = \sum \left(\hat{y}_i - \bar{y}\right)^2 \\ \text{Sum Sq. Residuals/Error} & \text{SSE} = \sum \left(y_i - \hat{y}_i\right)^2 \\ \end{array}$

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\sum \hat{u}_{i}^{2}}{\sum y_{i}^{2} - n\bar{y}^{2}}$$

$$0 \leq R^2 \leq 1$$

adj
$$R^2 = 1 - \frac{(1-R^2)(n-1)}{(n-k-1)}$$

Standard Error: $\hat{\sigma} = \sqrt{\frac{1}{n-2} \cdot \sum \hat{u}_i^2}$

for coefficient:
$$\mathrm{se}(\beta_1) = \frac{\sigma}{\sqrt{\sum (x - \bar{x})^2}}$$

2a Algebraic Properties

 $\sum \hat{u}_i = 0$: mean / sum of residuals = zero

 $\sum x_i \hat{u}_i = 0$: no covariance x and u

OLS line passes trough (\bar{x}, \bar{y})

SST = SSR + SSE

2b How To Regression

Step by Step to calcualte a simple regression

i	x_{i}	y_{i}	x_i^2	$y_i x_i$	$\hat{y_i}$	\hat{u}_i	\hat{u}_i^2	y_i^2	SST_x
1									•••
2									•••
\sum		•••		•••		0	•••		•••
	_	$\overline{}$	$\widetilde{eta_1}$	$\widehat{\beta_0}$,	\rightarrow	R^2	$se(\beta_1)$

1.
$$\bar{x} = \frac{1}{n} \sum x^n$$

$$2. \ \bar{y} = \frac{1}{n} \sum_{n}$$

3. β_1 : see left

4. $\beta_0 = \bar{y} - \hat{y}\bar{x}$

5. R^2

6. adj \mathbb{R}^2

7. σ

8. $\operatorname{se}(\beta_1)$

2c Interpretation

OLS = linear in parameters, not linear in x!

Model	expl.	indep.	interpretation
level-level	y	X	$\Delta y = \beta_1 \Delta x$
log-level	ln y	X	$\%\Delta y \approx (100\cdot\beta_1)\Delta x$
level-log	y	ln x	$\Delta y \approx \left(\frac{\beta_1}{100}\right) \left[\% \Delta x\right]$
log-log	ln y	ln x	$\%\Delta y \approx \beta_1\%\Delta x$
Quadratic	y	$x + x^2$	$\Delta y = (\beta_1 + 2\beta_2 x) \Delta x$

2ca Percentage / Percentage Points

 $\ln \text{wage} = \beta_0 + 0.05 \text{ unempl.rate}$

- unempl. rate increases by one % **point** (ex: $8\rightarrow 9$)
- $(0.05 \cdot 100) = 5\%$ wage \uparrow

$$\ln y = \beta_0 + \beta_1 \ln x$$

- rate by one % (ex: $8\rightarrow 8.08$)
- 0.05% wage \uparrow

2cb why Logarithmics?

- reduces skewness (example: income)
- extreme values = less influential
- Note: not defined for 0 (they just drop out)

exact Interpretation (log-level): $for\ values > 0.2$

$$\%\Delta y = 100 \cdot [\exp(\beta_2) - 1]$$

3 Reminder: Derivates

$$x^{a} \rightarrow a \cdot x^{1-a}$$

$$\ln x \rightarrow 1/x$$

$$e^{x} \rightarrow e^{x}$$

$$\sqrt{x} = x^{\frac{1}{2}} \rightarrow x^{-\frac{1}{2}} = 1/\sqrt{x}$$

$$1/x = x^{-1} \rightarrow x^{-2} = 1/x^{2}$$

for partial effect calculation, e.g $\frac{\delta y}{\delta x}$

4 Multiple Regression Model

more plausibly estimate the effect of multiple factors

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + u$$

4a Gauss-Markov Assumptions

- 1. **Linear**: γ is linear function of $\beta's$
- 2. **Random**: y and x are randomly sampled from pop
- 3. **Non-Collinearity**: regressors arent 100% correlated
- 4. Exogenity: $E(u|x_i,...,x_k)=E(u)=0$
 - Regressors arent correlated with error term
- 5. Homoscedasticity:
 - $\operatorname{Var}(u \mid x_i,...,x_k) = \operatorname{Var}(u) = \sigma^2$
 - Variance of the error is constant
- 6. **Normality**: u is distributed $N(0, \sigma^2)$
- (1)-(4) hold: OLS is unbiased
- (1)-(5) hold: OLS is Best Linear Based Estimator
- (1)-(6) hold: Classic Linear Model (CLM)
- allows testing hypotheses about β
- if not (6), you need asymptotics
- not exact interpretations of β

4b Omitted Variable Bias

real model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

est. model:
$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + u$$

regression of both regressors: $x_1 = \delta_0 + \delta_1 x_2$

relationship:
$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \hat{\delta}_1$$

5 Asymptotics

Efficient Estimators have

- consistency (variance goes down with N)
- asymptotically normal distribution
- asymptotic variance smaller than other estimators

 \Rightarrow OLS = asymptotically efficient!

6 Tests & CI

How to answer yes/no Questions about our models, e.g "Does Cigarette Smoking affect health?"

null hypothesis	$H_0: \theta = 0$	(typically)

alt. hypothesis
$$H_1: \theta \neq 0$$

significance level
$$\alpha = \{1\%, 5\%, 10\%\}$$

Test Statistic
$$T$$
 sample from our data

critical value
$$c$$
 Value to reject H_0 at given α ,

if
$$|T| > c$$

p-value
$$\text{reject } H_0 \text{ if } p \leq \alpha$$

degrees of freedom
$$df = N - k - 1$$

6a How to test

- 1. Define $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$
- 2. Calculate Test Statistic $T: \frac{\beta_1}{\operatorname{se}(\beta_1)}$
- 3. Find critical value for given α
 - if $df > 120 \Rightarrow$ normal distribution (one sided)
 - else: search in t-distribution table for $t_{29,\alpha/2}$
- 4. if |T| > c, reject H_0

If you want to test for positive / negative influence:

- 1. define $H_0: \beta_1 \leq 0 \text{ vs } H_1: \beta_1 > 0$
- 3. find critical value (two sided)

if test for a value of β

- 1. define $H_0: \beta_1 = z$ vs $H_1: \beta_1 \neq z$
- 2. test-statistic: $t = \frac{\beta z}{\text{se } \hat{\beta}}$

6b Confidence Intervals

$$\left[\hat{\beta}_j \pm c \cdot \operatorname{se}(\hat{\beta}_j)\right]$$

Reject
$$H_0: \beta_1 = z$$
 if z in [CI]

6c Critical Values

α	one-sided (normal)	two-sided
10%	1.64	1.28
5%	1.96	1.64
1%	2.58	2.33

for t-distribution: look at tables

- one-sided: take $\alpha/2$
- two-sided: take α as given

6d F-statistic

test significance of overall model (incl all predictors)

$$F = \frac{\text{Mean Sum Sq. Regression}}{\text{Mean Sum Sq. Error}}$$

- MSR = SSR /k
- MSE = SSE /N k 1

F-statistic critival value:

- numerator degrees of freedom = k
- demoninator degrees of freedom = N-k-1

alternative: **from** R^2

if restricted model:

- drop the relevant variables
- calculate R^2 of both models

$$F = rac{rac{R_{
m ur}^2 - R_r^2}{q}}{rac{1 - R_{
m ur}^2}{n - k - 1}}$$

- q = number of dropped vars
- $R_{\rm ur}^2$ = R-squared from unrestricted regression
- R_r^2 = R-squared from restricted / second regression

Note: if no restricted model, just drop the \mathbb{R}^2_r and set q=k

7 Dummy & Interactions

7a Scaling / Conversions

- $\mathbf{y} \cdot c \Rightarrow \hat{\beta}_1 \cdot c$
- $\mathbf{x} \cdot c \Rightarrow \frac{\beta_1}{c}$
- $\ln(c\cdot y)\Rightarrow$ no change in slope estimate
- only intercept: $\hat{\beta}_0^{\text{new}} = \hat{\beta}_1^{\text{old}} + \ln c$
- $\ln(c \cdot x) \Rightarrow$ also no change in slope
- $\hat{\beta}_0^{\text{new}} = \hat{\beta}_0^{\text{old}} \beta_i \ln c$

7b Dummies / Binaries

to represent qualitative factors in TRUE/FALSE format

wage =
$$\beta_0 + \beta_1$$
 educ + β_2 female

if $\beta_2 < 0 \Rightarrow$ women earn less

7c Binary as Dependent Variable

= linear probability model

$$\Pr(y = 1 \mid x) = \beta_0 + \beta_1 x_1 + \dots + u$$

- try to explain the binary outcome
- interpret β as increase in probability
- always heteroskedastic

7d Interactions

to explain an explanatory variable, that depends on another explanatory variable

wage = $\beta_0 + \beta_1$ fem + β_2 married + β_3 fem · married

- single men = base scenario
- married women = include all coefficients

8 R Code

some usefol commands

Variables

```
x <- 1 #Declare a Variale
is.numeric(x) #check type</pre>
```

Data Wrangling

```
data <- read.csv("data.csv")
head(data) #show first 5 rows
summary(data) #show summary statistics
describe(data) #show some general info
table(is.na(data)) #inspect missing values
table(is.na(data$col)) #in a column
data %>% select(-c("row1", "row2")) #drop
```

Describe Data

```
nrow(data) #number of rows
ncol(data) #number of columns
sapply(data, class) #types of data in rows
sd(data$col) # standard deviation
```

Dummy Var

```
data$female[data$gender=="Female"]<-1 #create
based on condition
attr(data$female, "label") <- "is Women"
# Convert into Factor
data$female <- factor(data$female,
    levels = c(0, 1),
    labels = c("male", "female"))</pre>
```

Plot with ggplot

```
# initialize with data and aesthetics
ggplot(data, aes(x = "xcol", y = "ycol")) +
   geom_scatter() + #scatterplot
   geom_hline(yintercept=1) #horizontal line
```

```
labs(x = "Sat", y = "Freq") + #labels
xlim(0, 2000) # limit how far x line goes
```

Regression

```
reg <- lm(y ~ x, data=data)
summary(reg)</pre>
```

Fitted Values and Residuals

```
data$fit <- predict(reg) #fitted values
data$res <- residuals(reg) #residuals
sum(reg$Res) #=0 to check</pre>
```

How to Read an R Regression Output [summary(reg)]

```
## catt:
## lm(formula = lwage ~ educ + exper + tenure, data = wage2)
## Residuals:
   Min
               10 Median
## -1.8545 -0.2327 0.0142 0.2471 1.3162
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.330651 0.114378 46.605 < 2e-16 ***
              0.075357
                         0.006435 11.711 < 2e-16 ***
## educ
                        0.003338
## exper
              0.014119
                                   4.229 2.57e-05 ***
## tenure
              0.012755
                       0.002559
                                  4.984 7.42e-07 ***
             0.199171 0.040820
                                  4.879 1.25e-06 ***
## married
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1
## Residual standard error: 0.3831 on 930 degrees of freedom
## Multiple R-squared: 5 (0.1762, Adjusted R-squared: 0.1727
## F-statistic: 49.73 on 4 and 930 DF, p-value: < 2.2e-16
```

- 1. regression formula
- 2. estimated coefficients
- 3. statisticla significance
- 4. Degrees of Freedom (allows calculation of *N*)
- 5. R^2 and adj. R^2