Finance Analytics

Chapter 3. Linear Regression Model Part 1. Introduction

권태연

한국외대 국제금융학과

예제: 잘사는 나라의 사람들이 오래살까?

- 1. 목적변수(Y): 오래살까? --> 기대수명
- 2. 원인변수(X)): 잘사는 --> GDP
- 3. 함수 : 선형회귀모형 --> Y= B0+B1X +e

Recall: 두변수의 관계 모형화 하기 선형 회귀선, 선형 회귀모형

선형 회귀선(linear regression line)은 설명변수 x가 변화함에 따라 반응변수 y가 "평균적으로" 어떻게, 얼마만큼 변화하는지를 보여주는 직선

• 주어진 x값에 대해 y값을 예측하는데 회귀선(regression line)을 이용한다.

$$y = a + bx$$

좀더 통계적으로 명확한 표현

$$\hat{y} = a + bx$$

or

$$y = a + bx + \varepsilon$$

Recall: 선형회귀모형에서의 종속/독립변수

반응변수 or 종속변수 or Y	설명변수 or 독립변수 or X
정량 (& 연속형)	정량
정량 (& 연속형)	범주
범주	정량
<u> </u>	범주

예제: 잘사는 나라의 사람들이 오래살까?

- 1. 목적변수(Y): 기대수명
- 2. 원인변수(X)): GDP
- 3. 함수 : Y= B0+B1X +e

자료수집

- 언제 기대수명과 GDP를 수집할 것인가?
- 어느나라의 기대수명과 GDP를 수집할 것인가?

<u>모든국가, 모든시점의 데이터</u>는 획득 불가능 하거나 힘들다 (: 모집단)

- 표본(sample)
- 표본에서서 조사된 Y값과 X값의 선형모형을 완성한다.
- Y= b0+b1X +e

Recall: 모집단과 표본 (Population and Sample)

예제: 잘사는 나라의 사람들이 오래살까?

- 1. 목적변수(Y): 기대수명
- 2. 원인변수(X)): GDP
- 3. 함수 : Y= BO+B1X +e

자료수집

- 언제 기대수명과 GDP를 수집할 것인가?
- 어느나라의 기대수명과 GDP를 수집할 것인가?

모든국가, 모든시점의 데이터는 획득 불가능 하거나 힘들다 (: 모집단)

- 표본(sample)
- 표본에서서 조사된 Y값과 X값의 성형보형을 완성한다.
- Y= b0+b1X +e

- 모집단 모형(모수모형
 Population Model)
- B0, B1: 모수, parameter

Inference (추론),

: Estimation (추정)

: Test (검정)

- 표본 모형 (Sample Model)
- b0, b1: 통계량, statistics

Finance Analytics - 권태연

<u>자료 예제 : GDP와 기대수명</u>

Per Capita Gross Domestic Product and Average Life Expectancy for Countries in Western Europe

Country	Per Capita GDP (x)	Life Expectancy (y)
Austria	21.4	77.48
Belgium	23.2	77.53
Finland	20.0	77.32
France	22.7	78.63
Germany	20.8	77.17
Ireland	18.6	76.39
Italy	21.5	78.51
Netherlands	22.0	78.15
Switzerland	23.8	78.99
United Kingdom	21.2	77.37

추정(estimation): b0,b1으로 B0,B1추정

Least-Squares Estimation 방법 으로..

$$s_x = 1.532 s_y = 0.795$$

$$b1 = b = r \frac{s_y}{s_x} = (0.809) \frac{20.795}{1.532} = 0.420$$

$$b0 = a = \overline{y} - b\overline{x} = 77.754 - (0.420)(21.52) = 68.716$$

$$\hat{y} = 68.716 + 0.420x$$

 $\bar{x} = 21.52$ $\bar{y} = 77.754$ r = 0.809

다음 파트 목차

연구주제에 따라 측정가능한 목적변수(Y), 원인변수(X)설정

모형: Y= B0+B1X +e

자료수집

- 표본(sample)
- 표본에서서 조사된 Y값과 X값의 선형모형을 완성
- Y= b0+b1X +e

(1) 모형설정

- 모집단 모형(모수모형
 Population Model)
- B0, B1: 모수, parameter

(3) 모형추정

Inference (추론),

: Estimation (추정)

: Test (검정)

- 표본 모형 (Sample Model)
- b0, b1: 통계량, statistics

(2) 모형추정 준비: 표본모형

Finance Analytics - 권태연 10