

Problem R-09I This problem requires you to analyze the ¹H NMR spectrum of a steroid, and determine the stereochemistry at three centers. A planar projection and conformational drawing is shown below.

$$t\text{-BuMe}_2\text{SiO}$$
 $t\text{-BuMe}_2\text{SiO}$ $t\text{-$

(a) Assign the signal at C-3 (δ ____). Explain how you identified the signal, and make a stereochemical assignment: P =____, Q =_____(**H** or **OTBS**).

(b) Assign the signal at C-7 (δ ____). Explain how you identified the signal, and make a stereochemical assignment: R =_____, S =____(**H** or **OTBS**).

(c) Assign the signal at C-17 (δ ____). Explain how you identified the signal, and make a stereochemical assignment: T =____, U =____ (**H** or **CH**₃**C(=O)**).

- (d) Why is the methyl group at δ 2.1 so much taller (i.e. sharper) than the one at δ 0.6?
- (e) Assign and explain the signals at δ 0.00 to 0.10

4

1

Problem R-09I This problem requires you to analyze the ¹H NMR spectrum of a steroid, and determine the stereochemistry at three centers. A planar projection and conformational drawing is shown below.

$$t$$
-BuMe $_2$ SiO t -Bu t -BuMe $_2$ SiO t -Bu t -BuMe $_2$ SiO t -Bu

(a) Assign the signal at C-3 (δ 3.4). Explain how you identified the signal, and make a stereochemical assignment: P = H , Q = OTBS (**H** or **OTBS**).

The multiplet at δ 3.4 is a tt, J = 11, 4 Hz. This must correspond to two J_{aa} and two J_{ae} couplings, and can only be H-3. H-7 has only 3 neighbors, and H-17 only two. Since there are two large axial couplings, H-3 must be axial, and the OTBS group equatorial.

- (b) Assign the signal at C-7 (δ _3.81_). Explain how you identified the signal, and make a stereochemical assignment: R = H____, S = OTBS____(**H** or **OTBS**).
- This signal is probably a broad quartet, with J = 3 Hz, thus at least 3 nearest neighbors. None of couplings are axial-axial, thus the proton must be equatorial.
 - (c) Assign the signal at C-17 (δ 2.52). Explain how you identified the signal, and make a stereochemical assignment: T = Ac , U = H (**H** or $CH_3C(=0)$).
- This is the only other downfield signal (no other protons are adjacent to a carbonyl group). The signal is a triplet, J=9 Hz. Examination of the conformation shows that if T=H then one of the couplings should be very small, since Θ is likely to be near 90° . On the other hand, if U=H then both couplings will be fairly large, since one has Θ near 0° , the other with Θ near 180° .

(d) Why is the methyl group at δ 2.1 so much taller (i.e. sharper) than the one at δ 0.6?

The ring Me group has small W-couplings to the trans-diaxial protons, the Me-C(=O) group is essentially uncoupled

- We don't, however, know which of the bridgehead methyl groups we are looking at, the other one is under the t-butyl signals
- (e) Assign and explain the signals at δ 0.00 to 0.10
- **2** The SiMe₂ groups are each diastereotopic, so we see four Me signals

