2020年全国硕士研究生招生考试

数 学 (一)

(科目代码:301)

- 一、选择题($1 \sim 8$ 小题,每小题 4 分,共 32 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)
- (1) 当 $x \rightarrow 0^+$ 时,下列无穷小量中最高阶的是().

$$(A) \int_{0}^{x} (e^{t^{2}} - 1) dt$$

(B)
$$\int_{0}^{x} \ln(1+\sqrt{t^{3}}) dt$$

$$(C)$$
 $\int_{0}^{\sin x} \sin t^2 dt$

$$(D) \int_{0}^{1-\cos x} \sqrt{\sin^3 t} \, dt$$

(2) 设函数 f(x) 在区间(-1,1) 内有定义,且 $\lim_{x\to 0} f(x) = 0$,则().

(A) 当
$$\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = 0$$
 时, $f(x)$ 在 $x = 0$ 处可导

(B) 当
$$\lim_{x\to 0} \frac{f(x)}{r^2} = 0$$
 时, $f(x)$ 在 $x = 0$ 处可导

(C) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$

(D) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$

(3) 设函数 f(x,y) 在点(0,0) 处可微, f(0,0) = 0, $n = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right) \Big|_{(0,0)}$, 非零向量 α 与 n 垂直,则().

(A)
$$\lim_{(x,y)\to(0,0)} \frac{|\mathbf{n}\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在

(B)
$$\lim_{(x,y)\to(0,0)} \frac{|\mathbf{n}\times(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在

(C)
$$\lim_{(x,y)\to(0,0)} \frac{|\boldsymbol{\alpha}\cdot(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在

(D)
$$\lim_{(x,y)\to(0,0)} \frac{|\boldsymbol{\alpha}\times(x,y,f(x,y))|}{\sqrt{x^2+y^2}}$$
存在

4) 设 R 为幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径, r	是实数,则().
(A) 当 $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 发散时, $ r \geqslant R$	(B) 当 $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛时, $ r \leqslant R$
(C) 当 $ r \geqslant R$ 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 发散	(D) 当 $ r \leqslant R$ 时, $\sum_{n=1}^{\infty} a_{2n} r^{2n}$ 收敛
5) 若矩阵 A 经过初等列变换化成 B,则(
(A) 存在矩阵 P , 使得 $PA = B$	
(B) 存在矩阵 P , 使得 $BP = A$	
(C) 存在矩阵 P , 使得 $PB = A$	
(D) 方程组 $AX = 0$ 与 $BX = 0$ 同解	
6) 已知直线 $L_1: \frac{x-a_2}{a_1} = \frac{y-b_2}{b_1} = \frac{z-c_2}{c_1}$	$\frac{c^2}{2}$ 与直线 $L_2: \frac{x-a_3}{a_2} = \frac{y-b_3}{b_2} = \frac{z-c_3}{c_2}$ 相交
记向量 $\boldsymbol{\alpha}_i = \begin{pmatrix} a_i \\ b_i \\ c_i \end{pmatrix}$, $i = 1, 2, 3, 则($).
(A) α_1 可由 α_2 , α_3 线性表示	$(B)\alpha_2$ 可由 α_1,α_3 线性表示
$(C)\alpha_3$ 可由 α_1 , α_2 线性表示	(D) a ₁ , a ₂ , a ₃ 线性无关

于一点,

7) 设A,B,C为三个随机事件,且 $P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = 0$,

 $P(AC) = P(BC) = \frac{1}{12}$,则 A,B,C 中恰有一个事件发生的概率为().

(A)
$$\frac{3}{4}$$
 (B) $\frac{2}{3}$ (C) $\frac{1}{2}$

8) 设 X_1, X_2, \dots, X_{100} 为来自总体X的简单随机样本,其中 $P(X=0) = P(X=1) = \frac{1}{2}, \Phi(x)$

表示标准正态分布函数,利用中心极限定理可得 $P\{\sum_{i=1}^{100} X_i \le 55\}$ 的近似值为().

(A)1 –
$$\Phi$$
(1) (B) Φ (1) (C)1 – Φ (0.2) (D) Φ (0.2)

 $_{-}$ 、填空题($9\sim14$ 小题,每小题 4 分,共 24 分.请将答案写在题中的横线上.)

9)
$$\lim_{x \to 0} \left[\frac{1}{e^x - 1} - \frac{1}{\ln(1+x)} \right] = \underline{\hspace{1cm}}$$

10) 设
$$\left| \begin{array}{l} x = \sqrt{t^2 + 1}, \\ y = \ln(t + \sqrt{t^2 + 1}), \end{array} \right| \frac{d^2 y}{dx^2} \right|_{t=1} = \underline{\hspace{1cm}}.$$

11) 设函数 f(x) 满足 f''(x) + af'(x) + f(x) = 0 (a > 0),且 f(0) = m, f'(0) = n,则 $\int_{0}^{+\infty} f(x) dx = \underline{\qquad}.$

12) 设函数
$$f(x,y) = \int_0^{xy} e^{xt^2} dt$$
,则 $\frac{\partial^2 f}{\partial x \partial y}\Big|_{(1,1)} = \underline{\qquad}$.

(13) 行列式
$$\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = \underline{\qquad}.$$

- (14) 设 X 服从区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的均匀分布, $Y = \sin X$,则 $Cov(X,Y) = \underline{\hspace{1cm}}$.
- 三、解答题($15 \sim 23$ 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.)
- (15)(本题满分10分)

求函数 $f(x,y) = x^3 + 8y^3 - xy$ 的极值.

(16) (本题满分 10 分)

计算曲线积分 $I = \int_{L} \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy$,其中 $L \neq x^2 + y^2 = 2$,方向为逆时针方向.

(17) (本题满分 10 分)

设数列 $\{a_n\}$ 满足 $:a_1=1,(n+1)a_{n+1}=\left(n+\frac{1}{2}\right)a_n$,证明:当|x|<1时,幂级数 $\sum_{n=1}^{\infty}a_nx^n$ 收敛,并求其和函数.

(18) (本题满分 10 分)

设 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ $(1 \le x^2 + y^2 \le 4)$ 的下侧,f(x) 是连续函数,计算 $I = \iint_{\Sigma} [xf(xy) + 2x - y] dy dz + [yf(xy) + 2y + x] dz dx + [zf(xy) + z] dx dy.$

(19) (本题满分 10 分)

设函数 f(x) 在区间[0,2]上具有连续导数,f(0) = f(2) = 0, $M = \max_{x \in [0,2]} \{ |f(x)| \}$,证明:

- (I) 存在 $\xi \in (0,2)$,使得 $|f'(\xi)| \geqslant M$;
- (II) 若对任意的 $x \in (0,2), |f'(x)| \leq M, 则 M = 0.$

(20) (本题满分11分)

设二次型 $f(x_1, x_2) = x_1^2 - 4x_1x_2 + 4x_2^2$ 经正交变换 $\binom{x_1}{x_2} = \mathbf{Q} \binom{y_1}{y_2}$ 化为二次型 $g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$,其中 $a \ge b$.

- (I) 求 a,b 的值;
- (Ⅱ) 求正交矩阵 O.

(21)(本题满分11分)

设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$,其中 α 是非零向量且不是 A 的特征向量.

- (I)证明P为可逆矩阵;
- (II) 若 $\mathbf{A}^2 \boldsymbol{\alpha} + \mathbf{A} \boldsymbol{\alpha} 6 \boldsymbol{\alpha} = \mathbf{0}$, 求 $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$, 并判断 \mathbf{A} 是否相似于对角矩阵.

(22) (本题满分11分)

设随机变量 X_1 , X_2 , X_3 相互独立,其中 X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2}.Y=X_3X_1+(1-X_3)X_2.$

- (I) 求二维随机变量(X_1 ,Y) 的分布函数,结果用标准正态分布函数 $\Phi(x)$ 表示;
- (Ⅱ)证明随机变量 Y 服从标准正态分布.

(23) (本题满分11分)

设某元件的使用寿命 T 的分布函数为

$$F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, t \geqslant 0, \\ 0, & 其他, \end{cases}$$

其中 θ ,m 为参数且大于零.

- (I) 求概率 $P\{T > t\}$ 与 $P\{T > s + t \mid T > s\}$,其中 s > 0, t > 0;
- (Π) 任取n 个这种元件做寿命试验,测得它们的寿命分别为 t_1,t_2,\cdots,t_n ,若m 已知,求 θ 的最大似然估计值 $\hat{\theta}$.