

Thème Transformations de Grammaire.

Exercice 1 Soit la grammaire G = (V, X, P, S) composée des non-terminaux $V = \{S, A, B\}$, de l'axiome S, des terminaux $X = \{+, *, id\}$ et de l'ensemble P des règles suivantes :

- 1. $S \to A$
- $2. \quad A \to B + A$
- $A \rightarrow B$
- 4. $B \rightarrow A * id$
- 5. $B \rightarrow id$
- 1. Eliminer la récursivité à gauche dans cette grammaire.
- 2. Factoriser les règles de production obtenue.

Exercice 2 Soit la grammaire des nombres complexes G = (A, V, F, P) composée des non-terminaux $V = \{N, R, C, S\}$, de l'axiome N, des terminaux $A = \{p, i, c\}$ (p représente le symbole + d'addition, i le complexe unité, c un chiffre) et de l'ensemble de règles suivantes:

- 1. $N \rightarrow R p C$
- $2. \quad N \rightarrow R$
- 3. $N \rightarrow C$
- 4. $C \rightarrow i R$
- 5. $R \rightarrow R c$
- 6. $R \rightarrow c$
- 1. Donner une grammaire régulière droite équivalente.
- 2. Donner l'automate fini associé.
- 3. Donner une expression régulière associée.

Exercice 3 Soit la grammaire des nombres réels :

- 1. Nombre \rightarrow NombreSansSigne | Signe NombreSansSigne
- 2. NombreSansSigne \rightarrow Mantisse | Exposant | Mantisse Exposant
- 3. Mantisse \rightarrow Partie Entière | Partie Décimale | Partie Entière Partie Décimale
- 4. Partie Entière \rightarrow Chiffre Suite
- 5. Partie Décimale \rightarrow . Partie Entière
- 6. Exposant \rightarrow e EntierSigné
- 7. EntierSigné → PartieEntière | Signe PartieEntière
- 8. Suite \rightarrow Chiffre Suite
- 9. Suite $\rightarrow \Lambda$
- 10. Signe \rightarrow (+|-)
- 11. Chiffre \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Par simplification d'utilisation, on notera cette grammaire sous une forme plus concise en utilisant un terminal pour les signes et un terminal pour les chiffres :

- 1. $N_1 \rightarrow N_2 \mid s N_2$
- 2. $N_2 \rightarrow M \mid E_x \mid M E_x$
- 3. $M \rightarrow E \mid D \mid E D$
- 4. $E \rightarrow c S$
- 5. $D \rightarrow . E$
- 6. $E_x \to e E_s$
- 7. $E_s \to E \mid S_i \mid E$
- 8. $S \rightarrow c S$
- 9. $S \to \Lambda$
- 1. Donner une grammaire régulière droite factorisée équivalente.
- 2. Donner l'automate fini équivalent.