PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-349784

(43)Date of publication of application: 22.12.1994

(51)Int.CI.

H01L 21/302 C23F 4/00

(21)Application number: 06-113057

(71)Applicant:

ROBERT BOSCH GMBH

(22)Date of filing:

26.05.1994

(72)Inventor:

LAERMER FRANZ

SCHILP ANDREA

(30)Priority

Priority number: 93 4317623

Priority date: 27.05.1993

Priority country: DE

(54) METHOD AND DEVICE FOR ANISOTROPICALLY PLASMA-ETCHING SUBSTRATE, AND ELECTRONIC COMPONENT OR SENSOR ELEMENT

(57)Abstract:

PURPOSE: To improve the etch rate by simultaneously using an etching gas supplying fluorine and a passive gas supplying a monomer for forming a polymer, and setting an ion energy to a value within a specified range. CONSTITUTION: A device having a microwave generator 26 connected to a resonator 30 through a wave guide 28 is provided above a substrate 20. A sulfatron 34 has a gas feed section 36, and this feed section is connected to a mixing valve 38. By this valve, a gas 40 can be mixed with a different volumetric flow and supplied to a processing chamber 12. SF6 at 10-200 sccm is used as an etching gas, and CHF3 at 50-300 sccm is used as a passive gas. The ion energy is set to 1-40 eV. It is more desired that the ion energy is 10-30 eV.

LEGAL STATUS

[Date of request for examination]

25.05.2001

[Date of sending the examiner's decision of rejection]

23.10.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

2004-01289

[Date of requesting appeal against examiner's decision of

16.01.2004

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-349784

(43)公開日 平成6年(1994)12月22日

(51) Int.Cl.5

識別記号

庁内整理番号

FI

技術表示箇所

HO1L 21/302

C23F 4/00

E 8414-4K

F

D 8414-4K

審査請求 未請求 請求項の数11 OL (全 5 頁)

(21)出願番号 特願平6-113057

(22)出願日

平成6年(1994)5月26日

(31)優先権主張番号 P4317623.2

(32)優先日

1993年5月27日

(33)優先権主張国

ドイツ(DE)

(71)出願人 390023711

ローベルト ボツシユ ゲゼルシヤフト ミツト ペシユレンクテル ハフツング ROBERT BOSCH GESELL SCHAFT MIT BESCHRAN KTER HAFTUNG

ドイツ連邦共和国 シユツツトガルト

(番地なし)

(72)発明者 フランツ レルマー

ドイツ連邦共和国 シュツットガルト ヴ

ィティコヴェーク 9

(74)代理人 弁理士 矢野 敏雄 (外2名)

最終頁に続く

(54)【発明の名称】 基板を異方性プラズマエッチングする方法および装置、および電子部品またはセンサー素子

(57)【要約】

【構成】 基板へ向かって加速されたイオンを用いて基 板表面を取り去る基板の異方性プラズマエッチング方法 において、処理室(12)中でハロゲンまたはハロゲン 化合物を含有するエッチングガス(40)と、ポリマー 形成するモノマーを含有するパッシブガス(40)とを 導入し、エネルギー入射装置(24)により励起させ、 基板(20)または基板(20)を収容している電極 (16) に、イオンが基板(20)上に当たる際に1~ 40eVのエネルギーを示すような電圧を印加すること を特徴とする基板を異方性プラズマエッチングする方 法。

【効果】 高いマスク選択性、高いエッチング速度およ びマスクのアンダーカットのないエッチングのほぼ完璧 な異方性が達成される。

1

【特許請求の範囲】

【請求項1】 基板へ向かって加速されたイオンを用い て基板表面を取り去る基板の異方性プラズマエッチング 方法において、処理室(12)中でハロゲンまたはハロ ゲン化合物を含有するエッチングガス(40)と、ポリ マー形成するモノマーを含有するパッシブガス(40) とを導入し、エネルギー入射装置(24)により励起さ せ、基板(20)または基板(20)を収容している電 極(16)に、イオンが基板(20)上に当たる際に1 ~40eVのエネルギーを示すような電圧を印加すると 10 とを特徴とする基板を異方性プラズマエッチングする方 法。

【請求項2】 エッチングガス (40) が、SF₆、C F,またはNF,を含有する請求項1記載の方法。

【請求項3】 エッチングガス (40)が、10~20 0 s c c m の間の流動速度で導入される請求項2記載の 方法。

【請求項4】 パッシブガス (40) が、CHF,、C, F,またはC,F。を含有する請求項1記載の方法。

【請求項5】 パッシブガス (40) が、50~300 20 s c c m の間の流動速度で導入される請求項4記載の方 法。

【請求項6】 処理室(12)中へ、マイクロ波エネル ギーを入射する請求項1記載の方法。

【請求項7】 処理室(12)中へ、アルゴン(40) を10~100sccmの間の流動速度で導入する請求 項1記載の方法。

【請求項8】 処理室(12)中へ、10~100sc cmの流動速度で N_1 (40)を、および/または $1\sim$ 10sccmの流動速度で〇、(40)を導入する請求 項1記載の方法。

【請求項9】 基板(20)の温度を100℃より下の 温度に冷却する請求項1記載の方法。

【請求項10】 処理室(12)を形成する容器(1 0)が、1個以上の電極、ガス導入部(36)およびエ ネルギーを入射する手段(24)を備えていることを特 徴とする請求項1から9までのいずれか1項記載の方法 を実施するための装置。

【請求項11】 請求項1から9までのいずれか1項記 載の方法により製造することを特徴とする高いアスペク 40 ト比もしくは狭く深い溝を示すエッチングされた構造を 有する電子部品またはセンサー素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、基板を異方性プラズマ エッチングするための方法、および前記方法を実施する ための装置、ならびに前記方法により製造された部品に 関する。

[0002]

ッチング法は、製造すべき構造を、実際に結晶配向に依 存せずに、基板中へ加工することができることにより優 れている。有利な応用範囲は、高いアスペクト比(構造 体の幅対深さ)もしくは狭い溝および垂直の壁を有する 構造体を製造しなければならないマイクロメカニクスお よびセンサー技術、たとえば振動する構造体、容量型セ ンサーまたは共鳴センサー、静電アクチュエーター等、 さらに素子の絶縁またはコレクター接触のためにいわゆ るトレンチ溝が必要なマイクロエレクトロニクスまたは 一般的メモリーセルである。狭い溝を製造することによ りチップ面の著しい節約が可能となる。

【0003】異方性ケイ素プラズマエッチングのために 通常使用されるRIE法(RIE=反応性イオンエッチ ング)は、比較的弱い反応性のハロゲン、塩素または臭 素(これらは直接使用されるか相応する化合物、たとえ ばCF,Br、CC14、CF,C12、CF,C1からプ ラズマ中で遊離される)を基礎とするか、もしくは比較 的高いエネルギー(たとえば100eV以上)を有する イオンを基礎とする。これにより生じたエッチンググラ ンドでのイオン衝撃が、その場所で、吸着されるハロゲ ンラジカルと取り去られるケイ素との反応を開始させ、 一方で、直接イオンの作用にさらされていないエッチン グされた構造の側壁での自発的反応は、弱い反応性のハ ロゲンの場合には僅かである。

【0004】塩素法または臭素法は、設備技術ならびに プロセス技術的種類の多数の問題と関連している、それ というのも、このガスが部分的に著しく腐蝕性であるか または毒性でありかつ発ガン性であるためである。さら に、この方法はエッチンググランド上でいわゆる望まし くない「ブラックシリコン」を形成し、かつ僅かなマス ク選択性を有する、つまりマスク材料と基板とは比較可 能なエッチング速度を示す。さらに、このFCKW材料 またはFBrKW材料は、近い将来、使用できなくな

【0005】とれらの欠点を部分的に有するフッ素化学 を主体とする方法は、著しく大きなケイ素エッチング速 度を提供し、かつプロセス技術的および設備技術的には 全く問題ないが、固有の等方性エッチング特性を示す。 つまり、ケイ素に対するフッ素ラジカルの自発的なエッ チング反応は、エッチングされた構造の側壁をも著しく 攻撃してしまい、かつ著しいオーバーエッチングを起こ してしまうほど著しい。エッチング構造体の側壁をボリ マー被膜によりエッチング攻撃から保護し、他方でエッ チンググランドをエッチングの種類によりイオンにより 支持されて攻撃させるために、RIE-プラズマ中にエ ッチングを引き起とすイオンの他に、同時に制御して、 ポリマー形成モノマーも生じさせ、かつプラズマ中で十 分に長く保持する試みは、制御の困難なプラズマ化学の ために挫折した。フッ素ラジカルと、不飽和モノマーと 【従来の技術】特にケイ素についての異方性プラズマエ 50 の共存は、低い励起密度の場合に達成するのがほとんど

困難である。さらに、それにより達成可能なエッチング 速度は著しく低く、ケイ素エッチング速度に相対して高 すぎるマスク除去の問題も同様に解決していない。 【0006】

【発明の構成】本発明による方法は、強力なエネルギー 入射により、高い密度の反応性粒子および低エネルギー イオンを用いて、有利に純粋なフッ素化学ベースの適当 な化学組成のプラズマを生成することに基づく。塩素ま たは臭素を使用しないことは、安全装置、廃ガス精製な らびに減少された装置の消耗に関して著しい費用の節約 10 を意味する。

【0007】生成されたイオンの基板の方向へのほんの僅かだけの加速は、高いマスク選択性が生じる、つまり、マスク物質(SiO₂およびさらにフォトラック)はもはや全く剥がれない。これは、Siにおける数マイクロメーター/minの高いエッチング速度であり、マスクのアンダーカットのないエッチングのほぼ完璧な異方性が達成される。

【0008】前記のことは、エッチングガス、特にフッ素を供給するエッチングガス、たとえばSF。、CF。ま 20 たはNF,、およびポリマーを形成するモノマーを供給するバッシブガス(Passiviergas)、たとえばCHF,、C、F。またはC、F。を同時に使用することにより可能になる。強力なプラズマ励起により、特にマイクロ波入射により、同時に著しい数の遊離フッ素ラジカルおよびテフロン形成するモノマー・CF、・がプラズマ中に形成される。励起の高い強度は、これらの完全に対象的な化合物を、側壁保護を形成することができる程度の十分に長い時間にわたりプラズマ中に共存させることができる。

【0009】著しく少ないエネルギーを有するイオンのエッチンググランドへの独占的作用により、とのエッチンググランドはCF、ーモノマーによるポリマー被膜がかからず、妨害なくフッ素ラジカルによりエッチングされ、他方で側壁はテフロン類の被膜(CF、)。で被覆され、それによりエッチングから保護されている。エッチンググランドを保護しないようにするためには、イオンエネルギーは1~40eV、有利に10~30eVの間で十分であり、それによりマスク材料、たとえばSiO、またはフォトラックの剥がれは著しく少なく保つことができる。

【0010】マスク材料がフォトレジストである場合、 仕上において著しいコストの利点が生じる。フォトラッ クマスクの使用は、他の必要な硬質物質マスクよりも著 しく廉価であり、高いプロセスフレキシビリティーがあ る。多くの構造は、一般にこのフレキシブルな境界条件 下(Randbedingung)で実現することができる。

【0011】側壁ポリマーによる側壁保護のためにおよ に対して押し付けている。次いで、生じた間隙により、 び高いマスク選択性にとって重要であるのは、プラズマ たとえば電極14内の穿孔を通して冷却のためにヘリウ に向う基板表面の過剰加熱を避けるために、エッチング 50 ム対流が案内される。このシール装置はヘリウム流に対

すべき基板と基板電極との良好な熱的結合である。基板温度が100℃よりも高い値に上昇する場合、フォトラックマスクの剝がれが次第に増加し、側壁ポリマーの化学的安定性がゆっくりと減少する。基板と基板電極との間の熱的結合は、基板背面と電極表面との間のヘリウム対流によりまたはその間に配置されたエラストマーによって達成することができる。基板と電極との間の間隔は、通常0.1mmの範囲内にある。

【0012】本発明による方法は、一般に、1個以上の電極、ガス導入部、エネルギーを入射するための手段を有するプラズマ装置中で行うことが有利である。このエネルギーは、高周波交流電圧の形で三極管装置中で、誘導結合プラズマ(ICP)中でまたは特に有利にECR装置またはPIE装置中へのマイクロ波の入射によりプラズマに誘導することができる(ECR=電子サイクロトロン共鳴、PIE=伝搬イオンエッチング(Propagation Ion Etching))。この場合、高いアスペクト比もしくは極端に深い溝を有するエッチングされた構造を示す構造体を製造することができる。

【0013】図1は、本発明によるマイクロ波励起装置 を備えたプラズマ装置を示す図であり、次の記載におい てさらに利点を挙げて詳説する。

【0014】典型的な装置は、真空排気可能な処理室12を備えた容器10を有する。との容器中に平板状の電極14が配置されており、との電極は真空通路16を通過して高周波発生器18に接続されている。電極14には基板20が置かれ、その表面22を加工する。

【0015】基板20の上方に、導波管28を介して共振器30と接続されているマイクロ波発生器26を備えた共振器30から、マイクロ波は基板に向かったラッパ形の放射器、いわゆるスルファトロン(Surfatron)34中へ連結され、そこから基板表面22上へ供給される。図示されていない点火装置を用いて、プラズマは基板表面22の上方でかつスルファトロン34内で点火することができる

【0016】スルファトロン34はガス導入部36を備えており、この導入部は混合弁38に接続されており、この混合弁には異なるガスを含有するガスボンベ39が接続されており、この弁によりガス40は異なる容量流と一緒に混合でき、処理室12に供給される。

【0017】高すぎる基板温度を避けるために、基板20と電極14との間に、基板20から電極14への熱の搬出を改善するエラストマー42を配置することができる。もう一つは、電極14がホルダー(図示されていない)を有しており、とのホルダーは基板20をたとえば0.1mmの限定された間隔で電極の上方でシール装置に対して押し付けている。次いで、生じた間隙により、たとえば電極14内の穿孔を通して冷却のためにヘリウム対流が案内される。とのシール装置はヘリウム流に対

して真空を維持している。

【0018】本発明による方法は、原則として、強力な高周波ーまたはマイクロ波励起を用いて高密度プラズマ(約10¹¹イオン/cm³)を生じさせることができる全てのプラズマ装置についても適している。高周波ーまたはマイクロ波励起により生じた低いエネルギーのイオンは、付加的に基板電極内へ接続された高周波出力によりプラズマから所望のエネルギーで基板の方向へ加速される。このように、イオンエネルギーはプラズマ密度に依存せず調節することができる。この場合、たとえばマ10グネトロン励起による三極管装置を用いる、またはECRーまたはICP励起によるブラズマを用いる他のプラズマ発生方法も考慮できる。

【0019】前記した装置が使用可能である適当な工程パラメーターは、 $1\sim100\mu$ barの工程圧力で、 $10\sim200$ sccm (standard com/min) の間のSF。流むよび $50\sim300$ sccmの間のCHF,流である。工程安定性を改善するために、なおアルゴン流を $10\sim100$ sccmの間で添加することができる。エッチンググランドの粗面性および側壁の粗面性は、N、を僅かに、有利に $10\sim100$ sccmをよび/または $0\sim100$ sccmを表した。 $0\sim100$ sccmを表し、 $0\sim100$ sccmを表した。 $0\sim100$ sccmを表した。 $0\sim100$ sccmを表した。 $0\sim100$ sccmを表した。 $0\sim100$ sccmを表した。

~40eV、有利に10~30eVであるのが望ましい。高すぎるイオンエネルギーが選択された場合、いわゆるマスク選択性が悪化し、基板表面22上のマスクが同様に取り除かれて著しくエッチングされてしまう。【0020】ケイ素において典型的に達成することができるエッチング速度は、1~5μm/分であり、フォトレジストマスクに対する選択性は、たとえば30:1~100:1の間にある。本発明による方法により、実際に鉛直方向へのエッチング断面が達成され、その際、エッチング溝は深さ方向に向かって傾向上僅かに狭まる。この種の断面は、再被覆のために理想的である。さらに、エッジの粗面性およびエッチンググランドの粗面性も著しく減少するため、この方法を用いて製造された構

【図面の簡単な説明】

【図1】本発明によるマイクロ波励起装置を備えたプラ ズマ装置を示す図

造は、型取の目的のために、たとえば射出成形の際の原

型として、または電気的型取技術の際に使用することも

) 【符号の説明】

できる。

14 電極、 12 処理室、 10 容器、 20 基板、 18 高周波発生器、 真空通路、 26 マイクロ波発生器、 2 表面、 24 装置、 32 整合スライ 30 共振器、 28 導波管、 36 ガス導入部、 38 混 34放射器、 ダー、 39 ガスボンベ、 合弁、 40ガス、 42 エラ ストマー

【図1】

フロントページの続き

(72)発明者 アンドレア シルプ ドイツ連邦共和国 シュヴェービッシュ グミュント ゼーレンバッハヴェーク 15