HOW DO I TRANSLATE ENGLISH INTO (SENTENTIAL) LOGIC? PART 2

WEEK 1. DEEPER DIVE

HOW DO I TRANSLATE ENGLISH INTO (SENTENTIAL) LOGIC? PART 2

WEEK 1. DEEPER DIVE

harder translations . well-formed formulas . main connective

RECALL:

CONNECTIVES ARE OPERATORS
WHICH COMBINE ONE OR MORE
SENTENCES TO GENERATE
COMPLEX SENTENCES.

THERE ARE 5: \wedge , \vee , \rightarrow , \leftrightarrow , \neg

SO HOW DO WE KNOW WHICH CONNECTIVE TO USE?

INDICATOR WORDS

^	AND, ALTHOUGH, BUT, UNLESS
V	OR, EITHEROR
\rightarrow	IFTHEN, ONLY IF
\leftrightarrow	IF AND ONLY IF, NECESSARY AND SUFFICIENT, JUST IN CASE
	IT'S NOT THE CASE THAT

HOW SHOULD IINTERPRET $\neg C \land D$?

Translation manual:

C is "He's a white supremacist" and

D is "He's a racist."

HOW SHOULD INTERPRET $\neg C \land D$?

Translation manual:

C is "He's a white supremacist" and

D is "He's a racist."

Does it mean:

"He's not a white supremacist but he's a racist"?

HOW SHOULD LINTERPRET $\neg C \land D$?

Translation manual:

C is "He's a white supremacist" and

D is "He's a racist."

Does it mean:

"He's not a white supremacist but he's a racist"?

Or does it mean:

"It's false that he's a white supremacist and he's a racist"?

HOW DO I COMPLEX UNAMBIGUOUS SENTENCES WITH CONNECTIVES?

Use the rules for well-formed formulas (wffs)

1. Any sentence letter on it's own is a wff (e.g., "A").

- 1. Any sentence letter on it's own is a wff (e.g., "A").
- 2. If ϕ is a wff, so is $\neg \phi$.

- 1. Any sentence letter on it's own is a wff (e.g., "A").
- 2. If ϕ is a wff, so is $\neg \phi$.
- 3. If ϕ and ψ are wffs, so are: $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), \text{ and } (\phi \leftrightarrow \psi)$

- 1. Any sentence letter on it's own is a wff (e.g., "A").
- 2. If ϕ is a wff, so is $\neg \phi$.
- 3. If ϕ and ψ are wffs, so are: $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), \text{ and } (\phi \leftrightarrow \psi)$
- 4. and nothing else!

- 1. Any sentence letter on it's own is a wff (e.g., "A").
- 2. If ϕ is a wff, so is $\neg \phi$.
- 3. If ϕ and ψ are wffs, so are: $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi), \text{ and } (\phi \leftrightarrow \psi)$
- 4. and nothing else!

WHY'D I SWITCH FROM "A" TO " ϕ "?

"A" IS A SENTENCE LETTER WHEREEAS " ϕ " IS A WELL-FORMED FORMULA ITSELF. THIS MEANS IT COULD BE "A" BY RULE 1, BUT IT COULD ALSO BE " $(A \land B)$ "!

REVISIT: HOW SHOULD LINTERPRET $\neg C \land D$?

Translation manual:

C is "He's a white supremacist" and

D is "He's a racist."

REVISIT:

HOW SHOULD I INTERPRET ¬CD?

Translation manual:

C is "He's a white supremacist" and

D is "He's a racist."

NOT A WFF!

REVISIT:

HOW SHOULD IINTERPRET ¬CD?

Translation manual:

C is "He's a white supremacist" and

D is "He's a racist."

NOT A WFF!

 $(\neg C \land D)$: "He's not a white supremacist but he's a racist"

REVISIT:

HOW SHOULD IINTERPRET ¬CD?

Translation manual:

C is "He's a white supremacist" and

D is "He's a racist."

NOT A WFF!

 $(\neg C \land D)$: "He's not a white supremacist but he's a racist"

 $\neg(C \land D)$: "It's false that he's a white supremacist and he's a racist"

P and \sim P are wff so (P \wedge \sim P) is as well.

P and \sim P are wff so (P $\land \sim$ P) is as well.

Q and (P \land ~P) are wff so (Q \lor (P \land ~P)) is as well.

P and \sim P are wff so (P $\land \sim$ P) is as well.

Q and (P \land ~P) are wff so (Q \lor (P \land ~P)) is as well.

~R and (P \leftrightarrow (P \land Q)) are wff so (~R \rightarrow (P \leftrightarrow (P \land Q))) is as well.

P and \sim P are wff but P \wedge (\sim P) is not.

P and \sim P are wff but P \wedge (\sim P) is not.

Q and (P $\land \sim$ P) are wff but (Q \lor P $\land \sim$ P) is not.

P and \sim P are wff but P \wedge (\sim P) is not.

Q and $(P \land \sim P)$ are wff but $(Q \lor P \land \sim P)$ is not.

~R is a wff but (P \leftrightarrow P \land Q) is not! So (~R \rightarrow (P \leftrightarrow P \land Q)) is not.

P and \sim P are wff but P \wedge (\sim P) is not.

Q and $(P \land \sim P)$ are wff but $(Q \lor P \land \sim P)$ is not.

~R is a wff but $(P \leftrightarrow P \land Q)$ is not! So $(~R \rightarrow (P \leftrightarrow P \land Q))$ is not.

ASK YOURSELF: IS THIS UNIQUELY READABLE?

The "main connective" is the last connective that was added in the construction of a wff.

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

Consider: $(\sim R \rightarrow (P \leftrightarrow Q))$

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

Consider: $(\sim R \rightarrow (P \leftrightarrow (P \land Q)))$

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

Consider: $(\sim R \rightarrow (P \leftrightarrow (P \land Q)))$

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

Consider: $(R \rightarrow (P \leftrightarrow Q))$

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

Consider:

$$(\sim R \rightarrow (P \leftrightarrow (P \land Q)))$$

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

Consider:

this → is the main connective!

The "main connective" is the last connective that was added in the construction of a wff.

WE WILL SEE THE
IMPORANCE OF IDENTIFYING
THE MAIN CONNECTIVE ONCE
WE GET TO TRUTH TABLES!

The "main connective" is the last connective that was added in the construction of a wff.

Because our formulas are uniquely readable, we can always identify the "main connective."

WE WILL SEE THE
IMPORANCE OF IDENTIFYING
THE MAIN CONNECTIVE ONCE
WE GET TO TRUTH TABLES!