For any χ_1 , χ_2 that satisfy $f(x_1) \in C$, $f(x_2) \in C$, because C is convex, we have that $\theta f(x_1) + \overline{\theta} f(x_2) = A[\theta \chi_1 + \overline{\theta} \chi_2) + b = f(\theta \chi_1 + \overline{\theta} \chi_2) \in C$ Thus $\theta \chi_1 + \overline{\theta} \chi_2 \in f^{-1}(C)$, $\forall \theta \in [0,1]$. $f^{-1}(C)$ is convex.

2. Grand Grare nonempty, so C 13 nonempty.

Let $\eta_1 = \vartheta_1 - \varkappa_1$ ($\chi_1 \in C_1$, $\chi_2 \in C_2$), $\eta_2 = \chi_3 - \varkappa_4$ ($\chi_3 \in C_1$, $\chi_4 \in C_2$). Then $\vartheta \eta_1 + \overline{\vartheta} \eta_2 = (\vartheta \chi_1 + \overline{\vartheta} \chi_3) - (\vartheta \chi_1 + \overline{\vartheta} \chi_4)$.

C, and Grare convers, so $\vartheta \chi_1 + \overline{\vartheta} \chi_3 \in C_1$, $\vartheta \chi_1 + \overline{\vartheta} \chi_4 \in C_2$.

Thus, $\vartheta \eta_1 + \overline{\vartheta} \eta_1 \in C$, $\vartheta \theta \in [0,1]$. C is convex.

If $0 \in C$, then $\exists \chi_1$, $\chi_1 \in C_1$, $\chi_1 \in C_2$, from which we conclude that $C_1 \cap C_2 \neq \emptyset$. It is a contradiction, so $0 \notin C$.

3. (a) For any χ_1 , χ_1 \in int C, there exists an open hall $A = U(\chi_1, \chi_2)$, ξ_1 , $A \subset C$. Let $\chi_2 = U(\chi_1 + \overline{U}\chi_2)$, $B \in (0,1)$, and open hall $B = U(\chi_3, \overline{U})$. $\forall \chi_3' \in B$, we can find χ_1' that satisfies $\chi_3' = U(\chi_3' + \overline{U}\chi_1' + \overline{U}\chi_2)$. $||\chi_1 - \chi_1'|| = \frac{1}{\theta} ||\chi_2 - \chi_3'|| < \chi_1'$, so $\chi_1' \in A$, $\chi_2' \in C$. C is convex, so $\chi_3' \in C$. Thus, $B \subset C$, $\chi_3 \in A$.

int Cis convex.

(b) $\forall x, y \in C, \exists \{x_n\}, \{y_n\}, \{y_n\}, \{x_n\}, \{y_n\}, \{y_$

4. (a) Let XEC sit. XiES, di=D(i=1,2,-,m), $\sum_{i=1}^{m_1} \lambda_i = 1, \quad \chi = \sum_{i=1}^{m_1} \lambda_i \gamma_i$ MEC sit. Nies, B; 30 (i=1,2, ..., mz), EB; 1, 1 = 12 fing; Then YOG (U,D), Ux+Uy= \sum_{121} \limboling $Z_{i}^{*} = \begin{cases} \gamma_{i}^{*}, & l \in i \leq M_{1} \\ \gamma_{i-M_{1}}^{*}, & m_{1} < i \leq m_{1} + m_{2} \end{cases}$ $Z_{i}^{*} \in \mathcal{S}_{j}$ So DX+ Dy EC. Cis convex. (b) Let A= {X|X is convex and SCX}. $\forall X \in A$, $\forall x = \sum_{i=1}^{m} \theta_i \chi_i \in C$, be cause $\chi_i \subset X$ and X is convex, we know that $x \in X$ and $C \subset X$. conv S & A, so CC conv S. By definition, YXEA, conuSCX. Fix mzl. Then we know that CEA, SO convSCC. CconvSAconvScC=> C= convS.

5. $||x-x_0|| \leq ||x-x_0|| \approx ||x-x_0||^2 \leq ||x-x_0||^2$ $(x_0-x_0)^{T}(x_0-x_0) \leq (x_0-x_0)^{T}(x_0-x_0)$ $(x_0^{T}-x_0^{T})(x_0^{T}x_0) \leq (x_0^{T}-x_0^{T})(x_0^{T}x_0)$ $||x_0||^2 + ||x_0||^2 - x_0^{T}x_0 - x_0^{T}x_0 \leq ||x_0||^2 + ||x_0||^2 - x_0^{T}x_0$ $||x_0||^2 - ||x_0||^2 + (x_0^{T}-x_0^{T})x_0 \leq x_0^{T}(x_0-x_0^{T}) = (x_0^{T}-x_0^{T})x_0$ $(x_0^{T}-x_0^{T})x_0 \leq \frac{||x_0||^2 - ||x_0||^2}{2}$ Thus, $A^2 \begin{pmatrix} x_0^{T}-x_0^{T} \\ x_0^{T}-x_0^{T} \end{pmatrix}$, $b^2 = \frac{1}{2} \begin{pmatrix} ||x_0||^2 - ||x_0||^2 \\ ||x_0||^2 - ||x_0||^2 \end{pmatrix}$

An example of Vin R2 is:

