Machine Learning & Data Mining

Logistic Regression

Kyung-Ah Sohn

Ajou University

Content

- Introduction
- Simple Logistic Regression
- Multiple logistic regression
- Training logistic regression

INTRODUCTION

Linear model

- Some algorithms are slow at runtime
 - e.g. K-NN
- Linear models are very fast, both to train and to use at runtime
- Simpler (e.g. linear) models are more interpretable

Example: Pass/Fail prediction

- We would like to predict whether a student will pass or fail an accountancy exam.
- The Y (pass?) variable is <u>categorical</u>: 0 or 1
- The X variable is a numerical value which specifies the student's math exam score.
- Can we use Linear Regression when Y is categorical?

Example (single explanatory variable)

- x: math exam score
- y: pass or fail on the accountancy exam $y = \beta_0 + \beta_1 x$?

ndependent variable Matris Score (X)

Why not Linear Regression?

 When Y only takes on values of 0 and 1, why standard linear regression is inappropriate?

Solution: Use Logistic Function

- Instead of trying to predict Y, let's try to predict P(Y = 1), i.e., the
 probability a student will pass the exam
- Thus, we can model P(Y = 1) using a function that gives outputs between 0 and 1.
- We can use the logistic function
- Logistic Regression!

Logistic regression

- The output of a logistic regression model is the probability of each class
- You can use these probabilities directly, or you could find a threshold so that you can predict either 1 or 0
- Unlike with linear regression which predicts the actual value- the aim of logistic regression isn't to predict the actual value (0 or 1), but to output a probability.

Underlying Math

 You want a function that takes the data and outputs a value between 0 ~ 1.

$$P(t) = \log i t^{-1}(t) \equiv \frac{1}{(1 + e^{-t})} = \frac{e^t}{1 + e^t}$$

Sigmoid function

- When t is very large, the value is close to 1.
- When t is very small, the value is close to 0.

SIMPLE LOGISTIC REGRESSION

Simple Logistic Regression

Logistic regression is very similar to linear regression

$$p = P(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- We have similar problems and questions as in linear regression
 - e.g. Is β_1 equal to 0? How sure are we about our guesses for β_0 and β_1 ?

Probability of success (y=1)

- The outcome is a probability of belonging to one of two conditions of Y, which can take any value between 0 and 1 (rather than just 0 or 1)
- p(y=1 | x=82): probability of passing the exam when the math score was 82

We wish to choose the best curve to fit the data.

Data that has a sharp survival cut off point between two classes (0 or 1) should have a large value of β_1 .

Data with a lengthy transition from 0 to 1 should have a low value of β_1 .

Interpreting β_1

- Interpreting what β_1 means is not very easy with logistic regression, simply because we are predicting P(Y) and not Y.
- If β_1 =0, this means that there is no relationship between Y and X.
- If $\beta_1 > 0$, this means that when X gets larger so does the probability that Y = 1.
- If β_1 <0, this means that when X gets larger, the probability that Y = 1 gets smaller.
- But how much bigger or smaller depends on where we are on the slope

odds

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

After a bit of manipulation:

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X} \quad \text{odds}$$

- e.g. 1 in 5 people with an odds of ¼ will default
- Traditionally used instead of probabilities in horseracing
- Log-odds (logit) is linear in logistic regression

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

Example: Credit Card Default Data

- We would like to be able to predict customers that are likely to default
- Possible X variables are:
 - Annual Income
 - Monthly credit card balance
- The Y variable (Default) is <u>categorical</u>: Yes or No
- How do we check the relationship between Y and X?

The Default Dataset

Logistic Function on Default Data

 Now the probability of default is close to, but not less than zero for low balances. And close to but not above 1 for high balances

Are the coefficients significant?

- We still want to perform a hypothesis test to see whether we can be sure that are β_0 and β_1 significantly different from zero.
- Here the p-value for balance is very small, and β_1 is positive, so we are sure that if the balance increase, then the probability of default will increase as well.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Making Prediction

 Suppose an individual has an average balance of \$1000. What is their probability of default?

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.00576$$

- The predicted probability of default for an individual with a balance of \$1000 is less than 1%.
- For a balance of \$2000, the probability is much higher, and equals to 0.586 (58.6%).

MULTIPLE LOGISTIC REGRESSION

Multiple Logistic Regression

- Multiple variables case
- We can fit multiple logistic just like regular regression

$$p(X) = rac{e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}{1 + e^{eta_0 + eta_1 X_1 + \cdots + eta_p X_p}}.$$

Multiple Logistic Regression - Default Data -

- Predict Default using:
 - Balance (quantitative), Income (quantitative), Student (qualitative)

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

 Predictions: A student with a credit card balance of \$1,500 and an income of \$40,000 has an estimated probability of default

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058.$$

An Apparent Contradiction!

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004
Positive				

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062
	7			

Students (Orange) vs. Non-students (Blue)

To whom should credit be offered?

 A student is risker than non students if no information about the credit card balance is available

 However, that student is less risky than a non student with the same credit card balance!

Decision boundary of logistic regression model

Where P(Y=1|X) == P(Y=0|X)?

$$\frac{\exp(\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p})}{1 + \exp(\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p})} = \frac{1}{1 + \exp(\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p})}$$

$$\exp(\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p}) = 1$$

$$\beta_{0} + \beta_{1}x_{1} + \dots + \beta_{p}x_{p} = 0$$
: Linear classifier

- 1D threshold
- 2D linear line
- 3D plane

Multi-class classification

Multinomial logistic regression (softmax regression)

$$p(y=k|x) = \frac{\exp w_k^{\top} x}{\sum_j \exp w_j^{\top} x}$$
 Softmax function

 Recommended for mutually exclusive classes (each sample can only belong to a single class)

Multi-class classification

- Or, One versus Rest (OvR, or OvA: one vs. all)
 - Train binary logistic regression classifier for each class k to predict probability of y=k
 - On new x, predict class k which has the maximum probability value

Decision boundary

TRAINING LOGISTIC REGRESSION

Training a logistic regression model

- More complex than the case of linear regression
- Need to optimize β so that the model gives the best possible reproduction of training set labels
 - Usually done by numerical approximation of maximum likelihood estimation (MLE)
 - On really large datasets, may use stochastic gradient descent

Cost function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$z = w_0 + w_1 x_1 + \dots + w_P x_p$$

$$\hat{y}_i = \begin{cases} 1 & if \ \sigma(z_i) \ge 0.5 \\ 0 & otherwise \end{cases}$$

Likelihood
$$L(w) = p(y|x;w) = \prod_{i}^{n} (\sigma(z_i))^{y_i} (1 - \sigma(z_i))^{1-y_i}$$
Log-likelihood
$$l(w) = \log L(w) = \sum_{i}^{n} y_i \log(\sigma(z_i)) + (1 - y_i) \log(1 - \sigma(z_i))$$

Negative Log-
likelihood
$$J(w) = -l(w)$$

Minimize the cost function using gradient descent

Overfitting

Regularized logistic regression

- Tune the model complexity via regularization
- e.g. Add L2 penalty on the cost function

$$J(w) = \sum_{i=0}^{n} \left[-y_{i} \log(\sigma(z_{i})) - (1 - y_{i}) \log(1 - \sigma(z_{i})) \right] + \frac{\lambda}{2} ||w||^{2}$$

Coefficient shrink

 Weight coefficients shrink if we decrease parameter C, that is, if we increase the regularization strength

Logistic regression: summary

Advantages

- Makes no assumptions about distributions of classes in feature space
- Easily extended to multiple classes
- Quick to train, fast at classifying new data
- Good accuracy for many simple data sets
- Can interpret model coefficients as indicators of feature importance

Disadvantages

Linear decision boundary

Summary: regression models

- Regression models can be used to describe the average effect of predictors on outcomes in your data set.
- They can look at each predictor "adjusting for" the others (estimating what would happen if all others were held constant.)
- Removing redundant predictors (variable selection) is key to achieving predictive accuracy and robustness