Data Security and Privacy DSE 3258

L7 –Asymmetric Ciphers **Public-Key Cryptosystems** Diffie-Hellman Key Exchange

- It is a protocol that enables two users to establish a secret key using a public-key scheme based on discrete logarithms. The protocol is secure only if the authenticity of the two participants can be established.
- The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages.
- The algorithm itself is limited to the exchange of secret values.
- The Diffie—Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms.
- This algorithm facilitates the exchange of secret key without actually transmitting it.

• Primitive Root:

• A primitive root of a prime number **p** is defined as one whose powers modulo generate all the integers from **1** to **p-1**. That is, if **a** is a primitive root of the prime number **p**, then the numbers

$$a \bmod p$$
, $a^2 \bmod p$, ..., $a^{p-1} \bmod p$

- are distinct and consist of the integers from 1 through p 1 in some permutation.
- For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

$$b \equiv a^i \pmod{p}$$
 where $0 \le i \le (p-1)$

The exponent i is referred to as the discrete logarithm of b for the base a, mod p

- Primitive roots of value q
- Example:

```
a = 3
```

$$q = 7$$

To say a is primitive to q:

 $3^1 \mod 7 = 3$

 $3^2 \mod 7 = 2$

 $3^3 \mod 7 = 6$

 $3^4 \mod 7 = 4$

 $3^5 \mod 7 = 5$

 $3^6 \mod 7 = 1$

- Diffie-Hellman Key Exchange Algorithm:
- For this scheme, there are two publicly known numbers:
- a prime number ${\bf q}$ and an integer ${\bf \alpha}$ that is a primitive root of ${\bf q}$.
- Suppose the users A and B wish to exchange a key K.
- User A selects a random integer $X_A < q$ and computes Y_A .
- Similarly, user B independently selects a random integer
 X_B < q and computes Y_B.
- Each side keeps the X value private and makes the Y value available publicly to the other side. The whole algorithm can be summarized as follows:

Global Public Elements

q prime number

 α $\alpha < q$ and α a primitive root of q

User A Key Generation

Select private $X_A < q$

Calculate public $Y_A = \alpha^{XA} \mod q$

User B Key Generation

Select private X_B $X_B < q$

Calculate public $Y_B = \alpha^{XB} \mod q$

Calculation of Secret Key by User A

 $K = (Y_R)^{XA} \mod q$

Calculation of Secret Key by User B

 $K = (Y_A)^{XB} \bmod q$

Key Exchange Protocol

Scenario using Diffie-Hellman:

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key *YB* in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_R such that $X_R < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

- Diffie-Hellman Key Exchange Example:
- Key exchange is based on the use of the prime number q=353 and a primitive root of 353, in this case $\alpha=3$. A and B select secret keys $X_A=97$, $X_B=233$ respectively. Each computes its public key:

```
A computes Y_A = 3^{97} \mod 353 = 40.
B computes Y_B = 3^{233} \mod 353 = 248.
```

 After they exchange public keys, each can compute the common secret key:

```
A computes K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160.
B computes K = (Y_A)^{X_B} \mod 353 = 40^{233} \mod 353 = 160.
```

DH Example

$$q=11 \quad \alpha=3$$

$$X_A = 5$$

$$Y_{\Delta} = 3^5 \mod 11 = 1$$

$$X_B = 3$$

$$Y_B = 3^3 \mod 11 = 27 \mod 11 = 5$$

$$K1 = 5^5 \mod 11 = 1$$

$$K2 = 1^3 \mod 11 = 1$$

Q1. In a Diffie-Hellman Key Exchange, Alice and Bob have chosen prime value q = 17 and primitive root = 5. If Alice's secret key is 4 and Bob's secret key is 6, what is the secret key they exchanged?

- 1.16
- 2.17
- 3.18
- 4.19

Q2. In a Diffie-Hellman Key Exchange, Alice and Bob have chosen prime value q = 23 and primitive root = 5. If Alice's secret key is 6 and Bob's secret key is 15, what is the secret key they exchanged?

- 1.4
- 2.3
- 3.2
- 4.1

Breaking of Diffie-Hellman

- The Diffie-Hellman key exchange is vulnerable to a man-in-the-middle attack.
- In this attack, an opponent Darth intercepts Alice's public value and sends her own public value to Bob.
- When Bob transmits his public value, Darth substitutes it with her own and sends it to Alice.
- Darth and Alice thus agree on one shared key and Darth and Bob agree on another shared key.
- After this exchange, Darth simply decrypts any messages sent out by Alice or Bob, and then reads and possibly modifies them before re-encrypting with the appropriate key and transmitting them to the other party.
- This vulnerability is present because Diffie-Hellman key exchange does not authenticate the participants. Possible solutions include the use of digital signatures and other protocol variants.

Middle man attack / bucket bridge attack

Middle man attack / bucket bridge attack

Alice	Darth	Bob
q=11 α=7	q=11 α=7	q=11 α=7
$X_A = 3$	$M_{XA}=8$ $M_{XB}=6$	$X_B = 9$
1 ^	$Y_A = 7^8 \mod 11$	$Y_B = 7^9 \mod 11$
= 2	= 9	= 8
$= 2$ $Y_B = 4$	$Y_B = 7^6 \mod 11$	Y _A = 9
K1= 4 ³ mod 11 = 9	$= 4$ $Y_A = 2$ $Y_B = 8$ $K1 = 8^8 \mod 11$ $= 5$ $K2 = 2^6 \mod 11$ $= 9$	K2= 9 ⁹ mod 11 = 5