

INSTITUTO FEDERAL MINAS GERAIS (IFMG) - CAMPUS BAMBUÍ Banco de Dados II Prof. Marcos Roberto Ribeiro

Lista de Exercícios 11

Beatriz Rodrigues de Oliveira Paiva

Exercício 1:

Explique como o SGBD deve garantir as propriedades de atomicidade e durabilidade.

As transações podem ser incompletas devido a problemas na execução, falta de energia ou acesso a disco. O SGBD garante a atomicidade e durabilidade criando um registro de tudo o que é feito no banco de dados, caso o sistema falhe, ele usa esse registro para restaurar as alterações feitas.

Exercício 2:

Cite e descreva as três fases de reinício que devem ser executadas pelo gerenciador de recuperação.

- 1 Análise, identifica as páginas sujas no pool de buffers (isto é, as alterações que não foram gravadas no disco) e as transações ativas no momento da falha.
- 2 Refazer, repete todas as ações começando a partir de um ponto apropriado no log, e restaura o estado em que o banco de dados estava no momento da falha.
- 3 Desfazer, ele desfaz as ações de transações que não foram efetivadas, para que o banco de dados reflita apenas as ações de transações efetivadas.

Exercício 3:

Quais os princípios fundamentais do ARIES? Explique-os.

O algoritmo ARIES, utilizado para recuperação, projetado para trabalhar em uma estratégia com roubo e sem imposição. Quando o gerenciador de recuperação é ativado, após uma falha, o reinício ocorre em três fases.

Exercício 4:

O que é o log usado no processo de recuperação de falhas? Descreva os tipos de registros de log. O Log de Gravação Antecipada é um histórico de ações executadas pelo SGBD, que é mantido em arquivos de registro para garantir a durabilidade em caso de falhas. Existem dois tipos de registros de log: Registros de Log de Atualização e Registros de Log de Compensação.

Exercício 5:

Para que são utilizadas a tabela de transações e a tabela de páginas sujas?

A tabela de transações armazena informações sobre transações ativas, incluindo id, status e por último NSL. A tabela de páginas sujas armazena informações sobre páginas que ainda não foram atualizadas no disco, incluindo o NSL do primeiro registro de log que as tornou sujas.

Exercício 6:

Como funciona o protocolo WAL?

O protocolo WAL garante que as alterações no banco de dados sejam registradas para garantir a recuperação em caso de falha. Sem esses registros, as alterações efetivadas não poderiam ser mantidas após uma falha..

Exercício 7:

O que são e para que servem os pontos de verificação?

O ponto de verificação é uma fotografia do estado do SGBD que pode reduzir o trabalho de recuperação em caso de falha. O processo de recuperação começa localizando o último ponto de verificação e sempre inicia a execução normal com as tabelas de transações e páginas sujas vazias.

Exercício 8:

Explique o funcionamento do algoritmo da fase desfazer.

Explique o funcionamento do algoritmo da fase desfazer. O Algoritmo desfaz as alterações de todas as transações ativas no momento da falha. A fase Desfazer retrocede a partir do final do log. O objetivo é desfazer as ações de todas as transações ativas no momento da falha

Exercício 9:

Execute o ARIES para as execuções mostradas nas Figuras 1 e 2.

00	Ponto de verificação
10	atualização: T1 grava P5
20	atualização: T2 grava P3
30	T2 é cancelada
40	RLC: desfazer T2, NSL 20
50	T2 termina
60	atualização: T3 grava P3
70	T1 é cancelada
X	FALHA, REINÍCIO

Figura 1: Execução 1

00	Ponto de verificação
10	atualização: T1 grava P1
20	atualização: T2 grava P2
30	atualização: T2 grava P3
40	T2 é efetivada
50	atualização: T3 grava P2
60	T2 termina
70	atualização: T1 grava P5
80	T3 é cancelada
X	FALHA, REINÍCIO

Figura 2: Execução 2