Advanced Analysis in TEM

05/01/2020

Week 2

Analysis of High-Resolution STEM images

- **Extracting Quantitative information**
 - Understand read/write in hdf type
 - Improve plotting skills
 - How to write a report from Python Notebooks

Read/write in hd5 files

Python libraries for Data Visualization

Matplotlib

Interactive environment across platforms

Seaborn

Built on matplotlib,

Plotly (https://plotly.com/python/)

- Provides options for full interactivity

Other libraries:

ggplot (http://ggplot.yhathq.com/) Altair (https://altair-viz.github.io/)

Created with plotly

The beauty of data visualization:

https://www.ted.com/talks/david_mccandless_the_beauty_of_dat a_visualization?utm_campaign=tedspread&utm_medium=referra I&utm source=tedcomshare

Quantification of High-Resolution STEM images

R. dos Reis et al Appl. Phys. Lett. 102, 081905 (2013); https://doi.org/10.1063/1.4793651 B. Jany et al Micron 130, 102800 (2020); https://doi.org/10.1016/j.micron.2019.102800

Nice images...but what do they mean??

Time to code!

