The Inequality of Climate Change & Optimal Energy policy

WORK IN PROGRESS

Thomas Bourany
The University of Chicago

JMP Proposal

September 2023

Introduction

- ▶ What is the optimal taxation of energy in the presence of climate externality *and* inequality?
 - In a context where fossil fuels taxation and climate policy redistribute across countries

Introduction

- ▶ What is the optimal taxation of energy in the presence of climate externality *and* inequality?
 - In a context where fossil fuels taxation and climate policy redistribute across countries
- ▶ Develop a simple and flexible model of climate economics
 - Standard IAM model with heterogeneous regions
 - Normative implications : Optimal Ramsey policy for carbon taxation
 - Provide a numerical methodology and a quantitative model

Introduction

- ▶ What is the optimal taxation of energy in the presence of climate externality *and* inequality?
 - In a context where fossil fuels taxation and climate policy redistribute across countries
- Develop a simple and flexible model of climate economics
 - Standard IAM model with heterogeneous regions
 - Normative implications : Optimal Ramsey policy for carbon taxation
 - Provide a numerical methodology and a quantitative model
- Evaluate the heterogeneous welfare costs of global warming
 - Climate damages & temperature varies across countries
 - ⇒ Inequality increases the welfare cost of carbon
- Solve world optimal carbon policy with heterogeneous regions
 - Does the optimal carbon tax coincide with the social cost of carbon?
 - ⇒ Depends on transfer policy : need to adjust the tax for inequality level

Preview of the findings

- ► In a large class of IAM models, optimal carbon policy goes hand in hand with the availability of redistribution instruments
- ► Case 1 : (First Best)
 - Energy tax common for all countries *i* and proportional to the Social Cost of Carbon
 - Lump-sum taxes and transfers redistribute across countries
- **Case 2:**
 - Without such instruments, energy taxes are country *i*-specific & account for redistribution
 - Tax scales with Pareto weights ω_i and marg. utility of consumption $U'(c_i)$
 - \Rightarrow lower energy tax for poorer countries
 - Also accounts for redistribution through energy markets, due to changes in terms-of-trade
- **Case 3**:
 - If countries can exit climate agreements, one needs to account for participation constraints
 - Tax may be lower for countries with better outside options

3/28

Model – Representative Household

- ▶ Deterministic Neoclassical economy, in continuous time
 - heterogeneous countries $i \in \mathbb{I}$
 - In each country, 4 agents: (i) representative household, (ii) homogeneous good firm, (iii) fossil and (iv) renewable energy producers.
- \triangleright Representative household problem in each country i:

$$\mathcal{V}_{it_0} = \max_{\{c_{it}, k_{it}, b_{it}\}} \int_{t_0}^{\infty} e^{-\rho t} u(c_{it}) dt$$

▶ Dynamics of wealth of country i, $w_{it} = b_{it} + k_{it}$ More details

$$\dot{w}_{it} := \dot{k}_{it} + \dot{b}_{it} = y_{it} + \pi_{it}^f + \pi_{it}^r + r_t^* b_{it} + (r_t^* - \bar{\delta}) k_{it} - c_{it} + t_{it}^{ls}$$

- Labor income y_{it} from homogeneous good firm.
- All the lower-case variables are expressed per unit of efficient labor $y_{it} = Y_{it}/(L_{it}A_{it})$

Model – Representative Firm

► Competitive homogeneous good producer in country *i*

$$\max_{k_{it},e_{it}^f,e_{it}^r} \mathcal{D}^{y}(\tau_{it}) z_i f(k_{it},e_{it}^f,e_{it}^r) - r_t^{\star} k_{it} - (q_t^f + t_{it}^f) e_{it}^f - (q_t^r + t_{it}^r) e_{it}^r - y_{it}$$

- Energy mix with fossil e_{it}^f emitting carbon subject to price q_t^f and tax/subsidy t_{it}^f . Similarly "clean" renewable e_t^r , at price q_{it}^r and tax t_{it}^r .
- No international trade in goods and Labor is immobile

Model – Energy markets

- Competitive fossil fuels energy producer :
 - Static problem (for now) extract energy e_{it}^x depleting reserves \mathcal{R}_{it}

$$\begin{aligned} \pi_{it}^f &= \max_{e_{it}^x} q_t^f e_{it}^x - \mathcal{C}_i^f(e_{it}^x, \mathcal{R}_{it}) \\ \dot{\mathcal{R}}_{it} &= -e_{it}^x & \mathcal{R}_{it_0} &= \mathcal{R}_{i0} & \mathcal{R}_{it} \geq 0 \end{aligned}$$

Fossil energy traded in international markets :

$$\int_{\mathbb{I}} \frac{e_{it}^f}{di} di = \int_{\mathbb{I}} e_{it}^x di$$

Optimal extraction

$$q_t^f = \mathcal{C}_e^f(e_{it}^x, \mathcal{R}_{it})$$

Model – Energy markets

- Competitive fossil fuels energy producer :
 - Static problem (for now) extract energy e_{it}^x depleting reserves \mathcal{R}_{it}

$$\begin{aligned} \pi_{it}^f &= \max_{e_{it}^x} q_t^f e_{it}^x - \mathcal{C}_i^f(e_{it}^x, \mathcal{R}_{it}) \\ \dot{\mathcal{R}}_{it} &= -e_{it}^x & \mathcal{R}_{it_0} &= \mathcal{R}_{i0} & \mathcal{R}_{it} \geq 0 \end{aligned}$$

Fossil energy traded in international markets :

$$\int_{\mathbb{I}} \frac{e_{it}^f}{di} di = \int_{\mathbb{I}} e_{it}^x di$$

Optimal extraction

$$q_t^f = \mathcal{C}_e^f(e_{it}^x, \mathcal{R}_{it})$$

► Renewable energy as a substitute technology in each country *i* (Static problem for now)

$$\pi_{it}^r = \max_{\{ar{e}_i^r\}} q_{it}^r ar{e}_{it}^r - \mathcal{C}_i^r (ar{e}_{it}^r) \qquad \Rightarrow \qquad q_{it}^r = \mathcal{C}_e^r (ar{e}_t^r) = z_{it}^r$$

Climate system

Fossil energy input e_t^f causes climate externality

$$\mathcal{E}_t = \int_{\mathbb{T}} e_{it}^f di$$

 \triangleright Cumulative GHG in atmosphere S_t increases temperature

$$\dot{\mathcal{S}}_t = \mathcal{E}_t - \delta_s \mathcal{S}_t$$

Country's local temperature :

$$\dot{\tau}_{it} = \zeta \left(\Delta_i \chi \mathcal{S}_t - (\tau_{it} - \bar{\tau}_{it_0}) \right)$$

• Linear model: Climate sensitivity to carbon χ , Climate reaction/inertia ζ , Country i linear pattern scaling factor Δ_i , Carbon exit from atmosphere δ_s

Model – Solution

- ► Case 0 : Competitive equilibrium
 - Absence of Policies : Taxes $\mathbf{t}_{it}^f = \mathbf{t}_{it}^r = \mathbf{t}_{it}^{ls} = 0$

Model - Solution

- ► Case 0 : Competitive equilibrium
 - Absence of Policies : Taxes $\mathbf{t}_{it}^f = \mathbf{t}_{it}^r = \mathbf{t}_{it}^{ls} = 0$
- ► Case 1 : First Best
 - Planner maximize aggregate welfare

$$\mathcal{W}_{t_0} = \max_{\{t_{i_t}^f, t_{i_t}^f, t_{i_t}^{l_t}, \dots\}_{i_t}} \int_{\mathbb{I}} \int_{t_0}^{\infty} e^{-\bar{\rho}t} \ \omega_i \ u(c_{it}) \ dt \ di$$

• All instruments available $\mathbf{t} = \{t_{it}^f, t_{it}^r, t_{it}^{ls}\}_{it}$, including transfers across countries.

Model - Solution

- ► Case 0 : Competitive equilibrium
 - Absence of Policies: Taxes $\mathbf{t}_{it}^f = \mathbf{t}_{it}^r = \mathbf{t}_{it}^{ls} = 0$
- ► Case 1 : First Best
 - Planner maximize aggregate welfare

$$\mathcal{W}_{t_0} = \max_{\{t'_{it}, t''_{it}, t''_{it}, \ldots\}_{it}} \int_{\mathbb{I}} \int_{t_0}^{\infty} e^{-\bar{\rho}t} \omega_i u(c_{it}) dt di$$

- All instruments available $\mathbf{t} = \{t_{it}^f, t_{it}^r, t_{it}^{ls}\}_{it}$, including transfers across countries.
- Case 2 : Limited transfers
 - Ramsey policy, where lump-sum transfers across countries are prohibited
 - Country-specific energy taxes \mathbf{t}_{it}^f , \mathbf{t}_{it}^r and lump-sum (local) rebate $\mathbf{t}_{it}^{ls} = \mathbf{t}_{it}^f e_{it}^f + \mathbf{t}_{it}^r e_{it}^r$

Model - Solution

- ► Case 0 : Competitive equilibrium
 - Absence of Policies : Taxes $\mathbf{t}_{it}^f = \mathbf{t}_{it}^r = \mathbf{t}_{it}^{ls} = 0$
- ► Case 1 : First Best
 - Planner maximize aggregate welfare

$$\mathcal{W}_{t_0} = \max_{\{t'_{it}, t''_{it}, t''_{it}, \ldots\}_{it}} \int_{\mathbb{I}} \int_{t_0}^{\infty} e^{-\bar{\rho}t} \omega_i u(c_{it}) dt di$$

- All instruments available $\mathbf{t} = \{t_{it}^f, t_{it}^r, t_{it}^{ls}\}_{it}$, including transfers across countries.
- ► Case 2 : Limited transfers
 - Ramsey policy, where lump-sum transfers across countries are prohibited
 - Country-specific energy taxes \mathbf{t}_{it}^f , \mathbf{t}_{it}^r and lump-sum (local) rebate $\mathbf{t}_{it}^{ls} = \mathbf{t}_{it}^f e_{it}^f + \mathbf{t}_{it}^r e_{it}^r$
- Case 3 (Work in progress)
 - Prohibited lump-sum transfers & countries can exit climate agreements
 - Participation constraint, with \bar{c}_{it} consumption in autarky

$$u(c_{it}) \geq u(\bar{c}_{it}) \qquad \forall t \geq 0$$

Model – Equilibrium

► Equilibrium

- Given, initial conditions $\{w_{i0}, \tau_{i0}, \mathcal{R}_{i0}\}$ and country-specific policies $\{t_{it}^f, t_{it}^r, t_{it}^{ls}\}$, a **competitive equilibrium** is a continuum of sequences of states $\{w_{it}, \tau_{it}, \mathcal{R}_{it}\}_{it}$ and $\{\mathcal{S}_t, \mathcal{T}_t\}_t$, policies $\{c_{it}, b_{it}, k_{it}, e_{it}^f, e_{it}^r, e_{it}^x\}_{it}$ and price sequences $\{r_t^x, q_t^f, q_t^r\}$ such that :
- Households choose policies $\{c_{it}, b_{it}\}_{it}$ to max utility s.t. budget constraint, giving \dot{w}_{it}
- Firm choose policies $\{k_{it}, e_{it}^f, e_{it}^r\}_{it}$ to max profit
- Fossil and renewables firms extract/produce $\{e_{it}^x, \bar{e}_{it}^r\}_{it}$ to max static profit, yielding $\dot{\mathcal{R}}_t$
- Emissions \mathcal{E}_t affects climate $\{\mathcal{S}_t, \mathcal{T}_t\}_t$, & $\{\tau_{it}\}_{it}$.
- Prices $\{r_t^{\star}, q_t^f, q_{it}^r\}$ adjust to clear the markets : $\int_{\mathbb{T}} e_{it}^{\star} di = \int_{\mathbb{T}} e_{it}^f di$ and $e_{it}^r = \bar{e}_{it}^r$, and $\int_{i \in \mathbb{T}} b_{it} di = 0$, with bonds $b_{it} = w_{it} k_{it}$

Case 0 : Competitive equilibrium

- Household consumption/saving problem
 - Using Pontryagin Max. Principle: states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}\}$, controls $\{c\} = \{c_{it}, b_{it}, k_{it}\}$ and costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\} \Rightarrow$ system of coupled ODEs.

$$\mathcal{H}^{hh}(\lbrace x\rbrace, \lbrace c\rbrace, \lbrace \lambda\rbrace) = u(c_i) + \lambda_{it}^w \dot{w}_{it} + \lambda_{it}^\tau \dot{\tau}_{it} + \lambda_{it}^S \dot{\mathcal{S}}_t$$

Case 0 : Competitive equilibrium

- ► Household consumption/saving problem
 - Using Pontryagin Max. Principle: states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}\}\$, controls $\{c\} = \{c_{it}, b_{it}, b_{it}\}\$ and costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\} \Rightarrow \text{system of coupled ODEs.}$

$$\mathcal{H}^{hh}(\{x\},\{c\},\{\lambda\}) = u(c_i) + \lambda_{it}^w \dot{w}_{it} + \lambda_{it}^\tau \dot{\tau}_{it} + \lambda_{it}^S \dot{\mathcal{S}}_t$$

- ODE for the costate for wealth $\lambda_{it}^w = u'(c_{it}) \Rightarrow$ Euler equation
- The "local social cost of carbon" (LCC) for region i:

$$LCC_{it} := -rac{\partial \mathcal{V}_{it}/\partial \mathcal{S}_t}{\partial \mathcal{V}_{it}/\partial w_{it}} = -rac{\lambda_{it}^{\mathcal{S}}}{\lambda_{it}^{w}}$$

- ODEs for Costates: temperature λ_{it}^{τ} and carbon λ_{it}^{S} , More details
- Stationary equilibrium closed-form formula, analogous to GHKT (2014)

Case 1 : First-Best, Optimal policy with transfers

First-Best, Maximizing welfare of the Social Planner:

$$\mathcal{W}_{t_0} = \max_{\{\boldsymbol{t},\boldsymbol{x},\boldsymbol{c},\boldsymbol{q}\}_{it}} \int_{\mathbb{I}} \int_{t_0}^{\infty} e^{-\bar{\rho}t} \ \omega_i \ u(c_{it}) \ dt \ di = \int_{\mathbb{I}} \mathcal{W}_{it_0} di$$

▶ Full set of instruments $\mathbf{t} = \{t_{it}^f, t_{it}^r, t_{it}^{ls}\}$, including transfers *across countries*

Case 1 : First-Best, Optimal policy with transfers

First-Best, Maximizing welfare of the Social Planner:

$$\mathcal{W}_{t_0} = \max_{\{\boldsymbol{t},\boldsymbol{x},\boldsymbol{c},\boldsymbol{q}\}_{it}} \int_{\mathbb{I}} \int_{t_0}^{\infty} e^{-\bar{\rho}t} \,\omega_i \,u(c_{it}) \,dt \,di = \int_{\mathbb{I}} \mathcal{W}_{it_0} di$$

- ► Full set of instruments $\mathbf{t} = \{t_{it}^f, t_{it}^r, t_{it}^{ls}\}$, including transfers *across countries*
- Social Planner Hamiltonian States $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}\}_{it}$, controls $\{c\} = \{c_{it}, b_{it}, k_{it}, e^f_{it}, e^x_{it}\}_{it}$ and costates $\{\psi\} = \{\psi^w_{it}, \psi^s_{it}, \psi^s_{it}\}_{it} \Rightarrow$ system of coupled ODEs.

$$\mathcal{H}^{sp}(\lbrace x \rbrace, \lbrace c \rbrace, \lbrace \psi \rbrace) = \int_{i \in \mathbb{I}} \omega_i u(c_i) di + \int_{i \in \mathbb{I}} \left(\psi_{it}^w \dot{w}_{it} + \psi_{it}^\tau \dot{\tau}_{it} + \psi_{it}^S \dot{\mathcal{S}}_t \right) di$$

Social Cost of Carbon:

- ► Key Objects : Social Cost of Carbon
- ► Local:

$$LCC_{it} := -\frac{\partial \mathcal{W}_{it}/\partial \mathcal{S}_t}{\partial \mathcal{W}_{it}/\partial w_{it}} = -\frac{\psi_{it}^S}{\psi_{it}^W}$$

- Intuitives ODEs for costates ψ_{it}^S and ψ_{it}^w More details
- Global :

$$SCC_t := -\frac{\partial \mathcal{W}_t / \partial \mathcal{S}_t}{\partial \mathcal{W}_t / \partial w_t} = -\frac{\psi_t^S}{\psi_t^w} = -\frac{\int_{i \in \mathbb{I}} \psi_{it}^S di}{\int_{i \in \mathbb{I}} \psi_{it}^w di}$$

First-best

Case 1: First-Best, Optimal policy with transfers

► *Proposition 1* : Optimal carbon tax :

$$\mathbf{t}_t^S = -\frac{\psi_t^S}{\psi_t^W} =: SCC_t$$

- Same as in Representative Agent economy, c.f. GHKT (2014)
- ▶ Implies lump-sum transfers to redistribution, s.t.

$$\omega_i u'(c_{it}) = \psi_{it}^w = \psi_t^w = \psi_{jt}^w = \omega_j u'(c_{jt}) \ \forall i, j \in \mathbb{I}$$

- Imply cross-countries lump-sum transfers $\exists i \ s.t. \ T_i \ge 0 \text{ or } \exists j \ s.t. \ T_i \le 0$
- There exist Pareto weights $\{\omega_i\}$ shutting down redistribution $T_i = 0$, e.g. $\omega_i = 1/u'(c_{it})$

Case 2 : Ramsey policy with limited transfers

- Second best without access to lump-sum transfers
 - Only region-*i*-specific distortive energy taxes : $\{t_{it}^f, t_{it}^r\}$. \Rightarrow Tax receipts redistributed lump-sum : $t_{it}^{ls} = t_{it}^f e_{it}^f + t_{it}^r e_{it}^r$
 - Implies inequality across regions :

$$\widehat{\psi}_{it}^{w} = \frac{\psi_{it}^{w}}{\psi_{t}^{w}} = \frac{\omega_{i}u'(c_{it})}{\int_{j \in \mathbb{I}} \omega_{j}u'(c_{jt})dj} \leq 1$$

- \Rightarrow ceteris paribus, poorer countries have higher $\widehat{\psi}_{it}^{w}$
- Social Cost of Carbon integrates these inequalities :

$$SCC_{t} = -\int_{i \in \mathbb{I}} \widehat{\psi}_{it}^{w} \underbrace{\frac{\psi_{it}^{w}}{\psi_{it}^{w}}}_{=-LCC_{it}} di$$

$$SCC_{t} = \mathbb{C}ov_{i}(\widehat{\psi}_{it}^{w}, LCC_{it}) + \mathbb{E}_{i}[LCC_{it}]$$

Case 2 : Ramsey Problem – Optimal Carbon & Energy Policy

Optimal Pigouvian carbon tax :

$$\mathbf{t}_{it}^{S} = \frac{1}{\widehat{\psi}_{it}^{w}} SCC_{t}$$

- Integrate redistribution motives, both:
 - for the distribution of tax : countries with higher $\widehat{\psi}_{it}^w \propto \omega_i u'(c_{it})$ have lower tax t_{it}^S
 - for the level : $SCC_t = \mathbb{C}ov_i(\widehat{\psi}_{it}^w, LCC_{it}) + \mathbb{E}_i[LCC_{it}]$
- Implementation: taxing carbon amounts to taxing fossil fuels/energy

Case 2 : Ramsey Problem – Optimal Carbon & Energy Policy

- ► Taxing fossil energy has additional redistributive effects :
 - Lowering the equilibrium price of fossil fuels benefit importers and hurt exporters
 - New measure of this effect : Social Cost of Fossil (SCF)

$$SCF_{t} := \frac{\partial \mathcal{W}_{t}/\partial E_{t}^{f}}{\partial \mathcal{W}_{t}/\partial w_{t}} = \mathcal{C}_{EE}^{f} \mathbb{C}ov_{i} \left(\widehat{\psi}_{it}^{w}, \mathbf{e}_{it}^{f} - \mathbf{e}_{it}^{x}\right) \qquad \qquad \mathcal{C}_{EE}^{f} = \left(\int_{i \in \mathbb{I}} \frac{1}{\mathcal{C}_{i,e^{x}e^{x}}^{f}} dj\right)^{-1}$$

– with \mathcal{C}_{EE}^f and $\mathcal{C}_{i,e^xe^x}^f \propto$ fossil energy supply elasticity

Case 2: Ramsey Problem – Optimal Carbon & Energy Policy

- ► Taxing fossil energy has additional redistributive effects :
 - Lowering the equilibrium price of fossil fuels benefit importers and hurt exporters
 - New measure of this effect : Social Cost of Fossil (SCF)

$$SCF_{t} := \frac{\partial \mathcal{W}_{t}/\partial E_{t}^{f}}{\partial \mathcal{W}_{t}/\partial w_{t}} = \mathcal{C}_{EE}^{f} \mathbb{C}ov_{i} \left(\widehat{\psi}_{it}^{w}, \mathbf{e}_{it}^{f} - \mathbf{e}_{it}^{x}\right) \qquad \qquad \mathcal{C}_{EE}^{f} = \left(\int_{i \in \mathbb{I}} \frac{1}{\mathcal{C}_{i,e^{x}e^{x}}^{f}} dj\right)^{-1}$$

- with \mathcal{C}_{EE}^f and $\mathcal{C}_{i,e^xe^x}^f \propto$ fossil energy supply elasticity
- ▶ *Proposition 2* : Optimal fossil energy tax :

$$\Rightarrow \quad \mathbf{t}_{it}^f = \frac{1}{\widehat{\psi}_{it}^w} [SCC_t + \mathbf{SCF}_t]$$

- ▶ What about renewable energy e_t^r ?
 - Not traded, with constant return to scale, and not carbon intensive, hence :

$$t_{it}^{r} = 0$$

Case 3: Ramsey Problem with participation constraints

- ► Assume that lump-sum transfers are prohibited & countries can exit climate agreements
 - Participation constraint, with \bar{c}_i autarky consumption (no trade in energy/assets)

$$u(c_{it}) \geq u(\bar{c}_{it})$$
 $[\nu_{it}]$

Case 3: Ramsey Problem with participation constraints

- ▶ Assume that lump-sum transfers are prohibited & countries can exit climate agreements
 - Participation constraint, with \bar{c}_i autarky consumption (no trade in energy/assets)

$$u(c_{it}) \geq u(\bar{c}_{it})$$
 $[\nu_{it}]$

- ▶ Proposition 3 : Second-Best without transfers & participation constraints
 - Participation incentive change our measure of inequality

$$\widetilde{\psi}_{it}^w \propto \omega_i u'(c_{it}) + \nu_{it} u'(c_{it}) \neq \widehat{\psi}_{it}^w$$

Optimal fossil energy tax :

$$\Rightarrow \mathbf{t}_{it}^f = \frac{1}{\widetilde{\psi}_{it}^w} \left[SCC_t + \mathbf{SCF}_t \right]$$

- With levels changing
$$SCC_t = \mathbb{C}ov_j(\widetilde{\psi}_{it}^w, LSCC_{jt}) + \mathbb{E}_j[LSCC_{jt}]$$
$$SCF_t = \mathcal{C}_{EE}^f \mathbb{C}ov_j(\widetilde{\psi}_{it}^w, e_{jt}^f - e_{jt}^x)$$

Quantification – Firms

▶ Production function $y_i = \mathcal{D}_i^y(\tau_i)z_if(k, \varepsilon(e^f, e^r))$

$$f_i(k, \varepsilon(e^f, e^r)) = \left[(1 - \epsilon)^{\frac{1}{\sigma_y}} k^{\alpha \frac{\sigma_y - 1}{\sigma_y}} + \epsilon^{\frac{1}{\sigma_y}} \left(z_i^e \ \varepsilon(e^f, e^r) \right)^{\frac{\sigma_y - 1}{\sigma_y}} \right]^{\frac{\sigma_y}{\sigma_y - 1}}$$
$$\varepsilon(e^f, e^r) = \left[\omega^{\frac{1}{\sigma_e}} (e^f)^{\frac{\sigma_e - 1}{\sigma_e}} + (1 - \omega)^{\frac{1}{\sigma_e}} (e^r)^{\frac{\sigma_e - 1}{\sigma_e}} \right]^{\frac{\sigma_e}{\sigma_e - 1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2011 (PPP).
- Today : $\omega_i = \bar{\omega} = 85\%$ and $\epsilon_i = \bar{\epsilon} = 12\%$ for all i
- Future : $(z_i^e, \omega_i, \epsilon_i)$ to match Energy/GDP $(e_i^f + e_i^r)/y_i$ and energy mix (e_i^f, e_i^r)
- Damage functions in production function y:

$$\mathcal{D}_i^{y}(\tau) = e^{-\gamma_i^{\pm,y}(\tau - \tau_i^{\star})^2}$$

• Asymmetry in damage to match empirical evidence, with

$$\gamma^{y} = \gamma^{+,y} \mathbb{1}_{\{\tau > \tau_{i}^{*}\}} + \gamma^{-,y} \mathbb{1}_{\{\tau < \tau_{i}^{*}\}}$$

• Today
$$\gamma_i^{\pm,y} = \bar{\gamma}^{\pm,y} \& \tau_i^{\star} = \bar{\alpha} \tau_{it_0} + (1 - \bar{\alpha}) \tau^{\star}$$

Quantification – Energy markets

- ▶ Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now : $\bar{\nu}_i = \bar{\nu}$ and $\nu_i = \nu$ and \mathcal{R}_{it} calibrated to proven reserves data from BP.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost C_e & extraction level data e_i^x (BP, IEA)

Quantification – Energy markets

- ▶ Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now : $\bar{\nu}_i = \bar{\nu}$ and $\nu_i = \nu$ and \mathcal{R}_{it} calibrated to proven reserves data from BP.
 - Future : Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost \mathcal{C}_e & extraction level data e_i^x (BP, IEA)

- ▶ Renewable : Production \bar{e}_{it}^r and price q_{it}^r
 - Now : $q_{it}^r = z^r e^{-g_r t}$, with g_r growth rate in renewable energy price decreases.
 - Future : Choose z_i^r to match the energy mix (e_i^f, e_i^r)

Quantification – Future Extensions :

- Damage parameters :
 - $\gamma_i^{\pm,y}$ depends on daily temperature distribution $\tau \sim \mathcal{T}_i(\bar{T}, \sigma^T)$ following Rudik et al. (2022)
 - Use Climate Lab's (Greenstone et al) estimates for damage γ_i
- ► Fossil Energy markets :
 - Divide fossils e_{it}^f/e_{it}^x into oil/gas/coal
 - Match the production/cost/reserves data across countries
 - Use a dynamic model : extraction/exploration a la Hotelling
- Renewables Energy markets :
 - Make the problem dynamic with investment in capacity C_{it}^r
- Population dynamics
 - Match UN forecast for growth rate / fertility

Calibration

TABLE – Baseline calibration (\star = subject to future changes)

			<u> </u>
Tecl	hnology &	& Energy markets	
α	0.35	Capital share in $f(\cdot)$	Capital/Output ratio
ϵ	0.12	Energy share in $f(\cdot)$	Energy cost share (8.5%)
σ	0.3	Elasticity capital-labor vs. energy	Complementarity in production (c.f. Bourany 2020)
ω	0.8	Fossil energy share in $e(\cdot)$	Fossil/Energy ratio
σ_e	2.0	Elasticity fossil-renewable	Slight substitutability & Study by Stern
δ	0.06	Depreciation rate	Investment/Output ratio
\bar{g}	0.01^{\star}	Long run TFP growth	Conservative estimate for growth
g_e	0.01^{*}	Long run energy directed technical char	nge Conservative / Acemoglu et al (2012)
g_r	-0.01^{*}	Long run renewable price decrease	Conservative / Match price fall in R.E.
ν	2*	Extraction elasticity of fossil energy	Cubic extraction cost
Prej	ferences d	& Time horizon	
ρ	0.03	HH Discount factor	Long term interest rate & usual calib. in IAMs
η	2.5	Risk aversion	
'n	0.01*	Long run population growth	Conservative estimate for growth
ω_i	1	Pareto weights	Uniforms / Utilitarian Social Planner
T	90	Time horizon	Horizon 2100 years since 2010
1	Thomas Boura	ny (UChicago) The	Inequality of Climate Change September 2023 21

Calibration

TABLE – Baseline calibration (\star = subject to future changes)

Climate parameters							
ξ	0.81	Emission factor	Conversion 1 $MTOE \Rightarrow 1 MT CO_2$				
ζ	0.3	Inverse climate persistence / inertia	Sluggishness of temperature $\sim 11-15$ years				
χ	2.1/1e6	Climate sensitivity	Pulse experiment : $100 GtC \equiv 0.21^{\circ}C$ medium-term warming				
δ_s	0.0014	Carbon exit from atmosphere	Pulse experiment : $100 GtC \equiv 0.16^{\circ} C$ long-term warming				
γ^{\oplus}	0.00234^{\star}	Damage sensitivity	Nordhaus' DICE				
γ^\ominus	$0.2 \! imes \! \gamma^{\oplus} ^{\star}$	Damage sensitivity	Nordhaus' DICE & Rudik et al (2022)				
$\alpha^{ au}$	0.2*	Weight historical climate for optimal temp.	Marginal damage decorrelated with initial temp.				
$ au^\star$	15.5	Optimal yearly temperature	Average spring temperature / Developed economies				
	7.1	, , ,					

Parameters calibrated to match data

Turameters cationated to match data						
p_i	Population	Data – World Bank 2011				
z_i	TFP	To match GDP Data – World Bank 2011				
$ au_i$	Local Temperature	To match temperature of largest city				
\mathcal{R}_i	Local Fossil reserves	To match data from BP Energy review				
٠, ١	1	1 2 3				

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^{\star}\}_t$

Sequential solution method

- ► Summary of the model :
 - ODEs for states $\{x\} = \{w_{it}, \tau_{it}, \mathcal{R}_{it}, \mathcal{S}_t\}_{it}$
 - Backward ODE for the costates $\{\lambda\} = \{\lambda_{it}^w, \lambda_{it}^\tau, \lambda_{it}^s\}_{it}$
 - Non-linear equations (FOCs) for household controls $\{c_1\} = \{c_{it}, b_{it}, k_{it}\}_{it}$ and static demands for energy/capital $\{c_2\} = \{e_{it}^f, e_{it}^r, k_{it}\}_{it}$ and static supplies $\{c_3\} = \{e_{it}^x, \bar{e}_{it}^r\}_{it}$.
 - Market clearing as equation for prices $\{q\} = \{q_t^f, r_t^{\star}\}_t$
- Global Numerical solution :
 - Discretize agents (countries) space $i \in \mathbb{I}$ with M and time-space $t \in [t_0, t_T]$ with T periods
 - Express as a large vector $y = \{x, \lambda, c, q\}$ in a large non-linear function

$$F(\mathbf{y}) = \mathbf{0}$$

• Solve for the large system with $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$ unknowns and N equations with gradient-descent – Newton-Raphson methods.

Sequential method: Pros and Cons

- ▶ Why use a sequential approach?
 - Global approach : Only need to follow the trajectories for i agents :
 - Arbitrary (!) number of dimension of *ex-ante* heterogeneity : Productivity z_i Population p_i , Temperature scaling Δ_i , Fossil energy cost $\bar{\nu}_i$, Energy mix ϵ_i , ω_i , z_i^r , Local damage γ_i^y , γ_i^u , τ_i^* , Directed Technical Change z_i^e
 - Potentially large dimensions of *ex-post* heterogeneity and aggregate state variables: For now: Wealth w_{it} , temperature τ_{it} , reserves \mathcal{R}_{it} , Carbon \mathcal{S}_t Extension with a large climate system as a proof of concept (e.g. Cai, Lontzek, Judd, 2013)
 - Newton method & Non-linear solvers very efficient

► Why not :

- Numerical constraint to solve a large system of ODEs and non-linear equations :
- \Rightarrow Constraint on $N = (N_{ind,vars} \times M + N_{agg,vars}) \times T$, so either M or T can't be too large
 - Relying on numerical solvers/structure of the problem can be opaque

Numerical Application – Competitive equilibrium

- ▶ Data : 40 countries, 25 largest countries either both GDP and population
- ► Work in progress (quantification/algorithm) subject to changes

September 2023

25 / 28

Local Cost of Carbon

▶ Difference $LCC_i = \frac{\lambda_{it}^{S}}{\lambda_{it}^{w}}$ and $LWCC_{it} = \widehat{\lambda}_{it}^{w}LCC_{it} = \frac{\lambda_{it}^{S}}{\lambda_{it}^{w}}$

Social Cost of Carbon and Carbon Tax

▶ Difference $LCC_i = \frac{\lambda_i^S}{\lambda_{it}^W}$ and $\mathbf{t}_{it}^S = (1/\widehat{\lambda}_{it}^W)SCC$

Conclusion

- Climate change has redistributive effects & heterogeneous impacts
- Optimal carbon policy take into account inequality and redistribution
 - Depends on the availability of transfer mechanisms
 - Level of Pigouvian tax & Social Cost of Carbon exacerbated by inequality
 - Distribution of carbon & energy taxes inversely related to distribution of consumption
 - Energy tax also depends on redistribution through changes in terms-of-trade
- ► Future improvement in the calibration / quantification & numerical method

Appendices

More details – Capital market

In each countries, the agent can save in two assets, capital k_{it} and bonds b_{it} :

$$\begin{cases} \dot{k}_{it} &= \mathcal{D}_{i}^{y}(\tau_{it})z_{i}f(k_{it},e_{it}) - (\delta + n + \bar{g})k_{it} + \iota_{it} \\ \dot{b}_{it} &= r^{\star}b_{it} + \theta_{i}\pi_{t}^{f} + \pi_{it}^{r} - (q_{t}^{f} + t_{it}^{f})e_{it}^{f} - (q_{t}^{r} + t_{it}^{r})e_{it}^{r} - \iota_{it} - c_{it} + t_{it}^{ls} \\ b_{it} &\geq -\vartheta k_{it} \end{cases}$$

► Combining, substituting ι_{it} and defining wealth $w_{it} = k_{it} + b_{it}$, we obtain the main equation

$$\dot{w}_{it} = r^{\star}w_{it} + \mathcal{D}^{y}(au_{it})z_{it}f(k_{it},e_{it}) - (ar{\delta} + r_{t}^{\star})k_{it} + heta_{i}\pi_{t}^{f} + \pi_{it}^{r} - (q_{t}^{f} + \mathbf{t}_{it}^{f})e_{it}^{f} - (q_{t}^{r} + \mathbf{t}_{it}^{r})e_{it}^{r} - c_{it} + \mathbf{t}_{it}^{f}$$
 $k_{it} \leq \frac{1}{1-a^{2}}w_{it}$

- ► Two polar cases :
 - $\vartheta \to 0$, full autarky (no trade), and $w_{it} = k_{it}$
 - $\vartheta \to 1$, full financial integration :

$$k_{it}$$
 s.t. $MPk_{it} - \bar{\delta} = \mathcal{D}_{i}^{y}(\tau_{it})z_{i}\partial_{k}f(k_{it}, e_{it}) - (\delta + n + \bar{g}) = r_{t}^{\star}$

The Inequality of Climate Change

Impact of increase in temperature

▶ Marginal values of the climate variables : λ_{it}^s and λ_{it}^{τ}

$$\dot{\lambda}_{it}^{\tau} = \lambda_{it}^{\tau}(\rho + \zeta) + \overbrace{\gamma_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{y}(\tau_{it})}^{-\partial_{\tau}\mathcal{D}^{y}(\tau_{it})} f(k_{it}, e_{it}) \lambda_{it}^{k} + \overbrace{\phi_{i}(\tau_{it} - \tau_{i}^{\star})\mathcal{D}^{u}(\tau_{it})^{1-\eta} c_{it}^{1-\eta}}^{\partial_{\tau}u(c,\tau)}$$

$$\dot{\lambda}_{it}^{S} = \lambda_{it}^{S}(\rho + \delta^{s}) - \zeta \chi \Delta_{i} \lambda_{it}^{\tau}$$

- Costate λ_{it}^S : marg. cost of 1Mt carbon in atmosphere, for country i. Increases with:
 - Temperature gaps $\tau_{it} \tau_i^*$ & damage sensitivity of TFP γ_i^y and utility γ_i^u
 - Development level $f(k_{it}, e_{it})$ and c_{it}
 - Climate params : χ climate sensitivity, Δ_i "catching up" of τ_i and ζ reaction speed
 - back

Cost of carbon / Marginal value of temperature

► Solving for the cost of carbon and temperature ⇔ solving ODE

$$\dot{\lambda}_{it}^{\tau} = \lambda_{t}^{\tau}(\widetilde{\rho} + \Delta\zeta) + \gamma(\tau - \tau^{\star})\mathcal{D}^{y}(\tau)f(k, e)\lambda_{t}^{k} + \phi(\tau - \tau^{\star})\mathcal{D}^{u}(\tau)u(c)
\dot{\lambda}_{t}^{S} = \lambda_{t}^{S}(\widetilde{\rho} + \delta^{s}) - \int_{\mathbb{I}} \Delta_{i}\zeta\chi\lambda_{it}^{\tau}$$

Solving for λ_t^{τ} and $\lambda_t^{\mathcal{S}}$, in stationary equilibrium $\dot{\lambda}_t^{\mathcal{S}} = \dot{\lambda}_t^{\tau} = 0$

$$\begin{split} &\lambda_{it}^{\tau} = -\int_{t}^{\infty} e^{-(\widetilde{\rho} + \zeta)u} (\tau_{u} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{u}) y_{\tau} \lambda_{u}^{k} + \phi \mathcal{D}^{u}(\tau_{u}) u(c_{u}) \Big) du \\ &\lambda_{it}^{\tau} = -\frac{1}{\widetilde{\rho} + \Delta \zeta} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{\infty}) y_{\infty} \lambda_{\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{\infty}) u(c_{\infty}) \Big) \\ &\lambda_{t}^{S} = -\int_{t}^{\infty} e^{-(\widetilde{\rho} + \delta^{S})u} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,u}^{\tau} dj du \\ &= \frac{1}{\widetilde{\rho} + \delta^{S}} \zeta \chi \int_{\mathbb{I}} \Delta_{j} \lambda_{j,\infty}^{\tau} \\ &= -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \frac{\zeta}{\widetilde{\rho} + \zeta} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{\infty} \lambda_{j,\infty}^{k} + \phi \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \\ &\lambda_{t}^{S} \xrightarrow{\zeta \to \infty} -\frac{\chi}{\widetilde{\rho} + \delta^{S}} \int_{\mathbb{I}} \Delta_{j} (\tau_{j,\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^{y}(\tau_{j,\infty}) y_{j,\infty} \lambda_{j,\infty}^{k} + \mathcal{D}^{u}(\tau_{j,\infty}) u(c_{j,\infty}) \Big) dj \end{split}$$

Cost of carbon / Marginal value of temperature

► Proposition (Stationary LSCC) :

When $t \to \infty$ and for a BGP with $\mathcal{E}_t = \delta_s \mathcal{E}_t$ and $\tau_t \to \tau_\infty$, the LSCC is *proportional* to climate sensitivity χ , marg. damage γ_i^y , γ_i^u , temperature, and output, consumption.

$$LSCC_{it} \equiv \frac{\Delta_i \chi}{\rho - n + \bar{g}(\eta - 1) + \delta^s} (\tau_{\infty} - \tau^{\star}) \Big(\gamma \mathcal{D}^y(\tau_{\infty}) y_{\infty} + \phi \mathcal{D}^u(\tau_{\infty}) c_{\infty} \Big)$$

- Stationary equilibrium : $\dot{\lambda}_t^S = \dot{\lambda}_t^T = 0$
- Fast temperature adjustment $\zeta \to \infty$
- Back

Social cost of carbon & temperature

► Cost of carbon depends only on final temperatures and path of emissions :

$$\tau_T - \tau_{t_0} = \Delta \chi \xi \omega \int_{t_0}^T e^{(n+\bar{g})t - \delta_s(T-t)} q_t^{f-\sigma_e} \int_{j \in \mathbb{I}} (z_j z_{j,t}^e \mathcal{D}(\tau_{j,t}))^{\sigma-1} y_{j,t} q_{j,t}^{\sigma_e-\sigma} dj dt$$

- Geographical factors determining warming Δ_i
- Climate sensitivity χ & carbon exit from atmosphere δ_s
- Growth of population n, aggregate productivity \bar{g}
- Deviation of output from trend y_i & relative TFP z_i
- Directed technical change z_t^e , elasticity of energy in output σ Fossil energy price q^{ef} and Hotelling rent $g^{ef} \approx \lambda_t^R/\lambda_t^R = \rho$
- Change in energy mix, renewable share ω , price q_t^r & elasticity of source σ_e
- Approximations at $T \equiv$ Generalized Kaya (or I = PAT) identity More details

$$rac{\dot{ au}_T}{ au_T} \propto n + ar{g}^{ ext{y}} - (1-\sigma)ig(g^{z^e} - \widetilde{\gamma}ig) + (\sigma_e - \sigma)(1-\omega)g^{q^r} - (\sigma_e(1-\omega) + \sigma\omega)g^{q^f}$$

