Programmable Digital Systems Design HW6-Problem 2

Arash Hajisafi 9631019

ب) پیاده سازی با process

شکل مدار پس از سنتز:

گزارش منابع و توان مصرفی پس از سنتز:

فرکانس کاری پس از سنتز:

دوره تناوب کلاک را روی 10ns گذاشتم که این نتیجه حاصل شد:

tup		Hold		Pulse Width	
Worst Negative Slack (WNS):	inf	Worst Hold Slack (WHS):	inf	Worst Pulse Width Slack (WPWS):	4.650 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	16	Total Number of Endpoints:	16	Total Number of Endpoints:	9

حداکثر فرکانس کاری مدار برابر است با $\frac{1}{T-WPWS}$ ، پس حداکثر فرکانس کاری:

$$f_{max} = \frac{10^9}{10 - 4.650} = 186915887Hz \approx 187Mhz$$

شکل مدار پس از پیاده سازی:

گزارش منابع مصرفی پس از پیاده سازی:

Utilization Post-Synthesis Post-Implement										
Graph Tabl										
Resource	Utilization	Available	Utilization %							
LUT	430	203800	0.21							
FF	8	407600	0.01							
Ю	81	500	16.20							
BUFG	1	32	3.13							

گزارش توان مصرفی پس از پیاده سازی:

Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power:0.158 WDesign Power Budget:Not SpecifiedPower Budget Margin:N/AJunction Temperature:25.3 °CThermal Margin:59.7 °C (32.8 W)Effective & JA:1.8 °C/WPower supplied to off-chip devices:0 WConfidence level:Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

All user specified timing constraints are met.

فرکانس کاری پس از سنتز:

دوره تناوب کلاک را روی 10ns گذاشتم که این نتیجه حاصل شد:

Design Timing Summary

etup		Hold		Pulse Width			
Worst Negative Slack (WNS):	inf	Worst Hold Slack (WHS):	inf	Worst Pulse Width Slack (WPWS):	4.650 ns		
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns		
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0		
Total Number of Endpoints:	16	Total Number of Endpoints:	16	Total Number of Endpoints:	9		

حداکثر فرکانس کاری مدار برابر است با $\frac{1}{T-WPWS}$ ، پس حداکثر فرکانس کاری:

$$f_{max} = \frac{10^9}{10 - 4.650} = 186915887Hz \approx 187Mhz$$

تمامی نتایج پس از پیاده سازی با نتایج پس از سنتز یکسان شدند.

ج) پیاده سازی به صورت ساختاری

شکل مدار پس از سنتز:

گزارش منابع مصرفی پس از سنتز:

tilization Post-Synthesis Post-Implementation											
	Graph Table										
Resource	Estimation	Available	Utilization %								
LUT	410	203800	0.20								
FF	8	407600	0.01								
Ю	81	500	16.20								
BUFG	1	32	3.13								

گزارش توان مصرفی پس از سنتز:

فرکانس کاری پس از سنتز:

دوره تناوب کلاک را روی 10ns گذاشتم که این نتیجه حاصل شد:

esign Timing Summary										
Setup		Hold		Pulse Width						
Worst Negative Slack (WNS):	inf	Worst Hold Slack (WHS):	inf	Worst Pulse Width Slack (WPWS):	4.650 ns					
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns					
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0					
Total Number of Endpoints:	16	Total Number of Endpoints:	16	Total Number of Endpoints:	9					
All uses specified timing sensitive										

حداکثر فرکانس کاری مدار برابر است با $\frac{1}{T-WPWS}$ ، پس حداکثر فرکانس کاری:

$$f_{max} = \frac{10^9}{10 - 4.650} = 186915887Hz \approx 187Mhz$$

شکل مدار پس از پیاده سازی:

گزارش منابع مصرفی پس از پیاده سازی:

گزارش توان مصرفی پس از پیاده سازی:

فرکانس کاری پس از سنتز:

دوره تناوب کلاک را روی 10ns گذاشتم که این نتیجه حاصل شد:

حداکثر فرکانس کاری مدار برابر است با
$$\frac{1}{T-WPWS}$$
، پس حداکثر فرکانس کاری:

$$f_{max} = \frac{10^9}{10 - 4.650} = 186915887Hz \approx 187Mhz$$

همینطور که میبینیم، شماتیک حالت پس از سنتز با پس از پیاده سازی هیچ تفاوتی ندارد. از نظر منابع مصرفی، همه چیز به جز تعداد LUT مشابه است در هر دو حالت، در حالت پس از پیاده سازی یک LUT كمتر مصرف شده. از نظر توان مصرفی، توان مصرفی پس از پیاده سازی 0.001 وات بیشتر از پس از سنتز است. از نظر حداکثر فرکانس کاری هردو مشابه اند.

و) پیاده سازی به صورت ساختاری با خط لوله (pipeline)

شکل مدار پس از سنتز:

گزارش منابع مصرفی پس از سنتز:

گزارش توان مصرفی پس از سنتز:

Low

Launch Power Constraint Advisor to find and fix

Confidence level:

invalid switching activity

فرکانس کاری پس از سنتز:

دوره تناوب کلاک را روی 10ns گذاشتم که این نتیجه حاصل شد:

حداکثر فرکانس کاری مدار برابر است با
$$\frac{1}{T-WNS}$$
 ، پس حداکثر فرکانس کاری:
$$f_{max} = \frac{10^9}{10-6.421} = 279407655 Hz \approx 279 Mhz$$

شکل مدار پس از پیاده سازی:

گزارش منابع مصرفی پس از پیاده سازی:

گزارش توان مصرفی پس از پیاده سازی:

	1	Power	×	DRC I	/lethodology	Timing
Summar	ry					
Total (Design Power Junction Thermoder Fower Confid	analysis from Imp d from constraints less analysis. On-Chip Power: n Power Budget: Budget Margin: on Temperature: al Margin: ve &JA: supplied to off-chilence level: n Power Constraint	files, simulation of the simul	0.° No N	n files or 177 W ot Specifie 'A i.3°C .7°C (32.8 V	10% d	15% Clocks: 0.003 W (15%) 20% Signals: 0.004 W (20%)

فرکانس کاری پس از سنتز:

دوره تناوب کلاک را روی 10ns گذاشتم که این نتیجه حاصل شد:

Design Runs	Power	DRC	Methodo	logy	Timing	×								
Design Timing S	ummary													
Setup				Hold	Hold					Pulse Width				
Worst Nega	ative Slack (\	NNS):	6.242 ns	W	orst Hold SI	ack (V	VHS):	0.168 ns		Worst Pulse W	idth Slack (WP)	WS):	4.600 ns	
Total Nega	tive Slack (T	NS):	0.000 ns	To	tal Hold Sla	ick (Th	HS):	0.000 ns		Total Pulse Wie	dth Negative S	lack (TPWS):	0.000 ns	

Number of Failing Endpoints: 0

Total Number of Endpoints:

Total Number of Endpoints: 104

All user specified timing constraints are met.

Number of Failing Endpoints: 0

حداکثر فرکانس کاری مدار برابر است با
$$\frac{1}{T-WNS}$$
 ، پس حداکثر فرکانس کاری: $f_{max}=rac{10^9}{10-6.242}=266098988 Hzpprox 266 Mhz$

Number of Failing Endpoints:

Total Number of Endpoints:

177

همینطور که میبینیم، شماتیک حالت پس از سنتز با پس از پیاده سازی هیچ تفاوتی ندارد.

از نظر منابع مصرفی، همه چیز به جز تعداد LUT مشابه است در هر دو حالت، در حالت پس از پیاده سازی3 تا LUT کمتر مصرف شده.

از نظر توان مصرفی، پس از سنتز توان مصرفی 16.602W تخمین زده شده ولی پس از پیاده سازی توان مصرفی 0.177W بیان شده.

از نظر حداکثر فرکانس کاری، پس از سنتز **279MHz** حداکثر فرکانس تخمین زده شده ولی پس از پیاده سازی این عدد به **266MHz تغ**ییر کرده.

ز) مقایسه این 3 پیاده سازی

از نظر مساحت و میزان منابع مصرفی میبینیم که مساحت طرح پیاده سازی با pipeline از همه بیشتر است، پس از آن طرح به صورت process در وسط قرار می گیرد و طرح به صورت ساختاری هم کمترین مساحت را دارد.

 $S_{structural} < S_{process} < S_{pipeline}$ مقایسه مساحت:

از نظر توان مصرفی میبینیم که توان مصرفی طرح مبتنی بر pipeline از همه بیشتر است، پس از آن توان مصرفی طرح ساختاری در وسط قرار می گیرد و طرح به صورت process از همه توان مصرفی کمتری را دارد.

 $P_{process} < P_{structural} < P_{pipeline}$ مقایسه توان مصرفی:

از نظر فرکانس طرح ساختاری با مبتنی بر process تقریباً حداکثر فرکانس کاری برابری دارند (مبتنی بر process اندکی بهتر است). و طرح مبتنی بر pipeline با اختلاف فرکانس بالاتری دارد.

 $f_{structural} \leq f_{process} \ll f_{pipeline}$ مقایسه حداکثر فرکانس کاری:

میزان تسریع برای طرح pipeline:

 $speedup = 279 \div 187 \approx 1.50$

طرح مبتنی بر pipeline تقریباً 1.5 برابر فرکانس بیشتری از 2تای دیگر دارد.

علت اینکه دقیقاً 3 برابر نشد این است که مسیر بحرانی عملیات جمع term هاست که درون آنرا pipeline نکردم و فقط ضربها pipeline شدند و اگر جمع هم pipeline انجام میشد فرکانس خیلی بیشتر میشد.