Process Mining: Data Science in Action

Organizational Mining

Where innovation starts

Resource-activity matrix

(see previous lecture)

case	id	trace

 $egin{array}{lll} 1 & \langle a^{Pete}, b^{Sue}, d^{Mike}, e^{Sara}, h^{Pete}
angle \ 2 & \langle a^{Mike}, d^{Mike}, c^{Pete}, e^{Sara}, g^{Ellen}
angle \ 3 & \langle a^{Pete}, c^{Mike}, d^{Ellen}, e^{Sara}, f^{Sara}, b^{Sean}, d^{Pete}, c^{Mike}, d^{Ellen}, e^{Sara}, f^{Sara}, d^{Pete}, d^{Ellen}, d^{Ellen},$

Mean number of times a resource performs an activity per case.

1	Dot o Mile	Carr	Cana . F11.	~~~ \					
5		а	b	С	d	e	f	g	h
	Pete	0.3	0	0.345	0.69	0	0	0.135	0.165
5	Mike	0.5	0	0.575	1.15	0	0	0.225	0.275
	Ellen	0.2	0	0.23	0.46	0	0	0.09	0.11
	Sue	0	0.46	0	0	0	0	0	0
	Sean	0	0.69	0	0	0	0	0	0
	Sara	0	0	0	0	2.3	1.3	0	0

Question: Which resources are similar?

	а	b	С	d	e	f	g	h
Pete	0.3	0	0.345	0.69	0	0	0.135	0.165
Mike	0.5	0	0.575	1.15	0	0	0.225	0.275
Ellen	0.2	0	0.23	0.46	0	0	0.09	0.11
Sue	0	0.46	0	0	0	0	0	0
Sean	0	0.69	0	0	0	0	0	0
Sara	0	0	0	0	2.3	1.3	0	0

Suppose that you need to make three groups with similar resources. What would these groups be?

Answer

	а	b	\overline{c}	d	e	\overline{f}	g	h
Pete	0.3	0	0.345	0.69	0	0	0.135	0.165
Mike	0.5	0	0.575	1.15	0	0	0.225	0.275
Ellen	0.2	0	0.23	0.46	0	0	0.09	0.11
Sue	0	0.46	0	0	0	0	0	0
Sean	0	0.69	0	0	0	0	0	0
Sara	0	0	0	0	2.3	1.3	0	0

{ Pete, Mike, Ellen } { Sue, Sean } { Sara }

Distance based on resource-activity matrix

Standard notions of "distance" can be used e.g., Euclidian distance, Manhattan distance, Minkowski distance, and Pearson's correlation coefficient.

$$P_{Pete} = (0.3, 0, 0.345, 0.69, 0, 0, 0.135, 0.165)$$

$$P_{Mike} = (0.5, 0, 0.575, 1.15, 0, 0, 0.225, 0.275)$$

$$P_{Sara} = (0, 0, 0, 0, 2.3, 1.3, 0, 0)$$

Social network based on similarity of profiles

Related to clustering

(basic data mining technique discussed before)

- k-means clustering
- agglomerative hierarchical clustering

Clustering: cases and resources

Clustering may be used for:

- grouping cases (process variants)
- grouping resources(identifying roles)

Real-life example: Roles found by ProM

user	a_1	a_2	a_3	a_4	a_5	a_6	<i>a</i> ₇	a_8	<i>a</i> 9	a_{10}	a_{11}	<i>a</i> ₁₂	<i>a</i> ₁₃
user 1	0	0	51	0	0	0	0	0	0	0	0	0	0
user 2	1	2	0	0	2	0	0	0	0	38	0	69	0
user 3	0	9	0	0	0	0	0	0	0	0	0	0	0
user 4	2	0	0	0	0	0	0	0	0	0	0	0	0
user 5	117	0	4	0	3	0	0	0	0	1	0	20	6
user 6	172	6	14	0	7	3	0	0	1	2	0	48	53
user 7	1	41	8	14	275	8	8	865	55	180	0	128	5
user 8	2	868	7	6	105	0	0	79	266	441	0	844	3
user 9	90	0	2	0	1	2	0	0	1	2	0	27	28
user 10	0	0	0	899	0	0	0	0	0	0	0	0	1019
user 11	336	1	3	1	4	2	0	0	0	1	0	18	23
user 12	1	645	13	21	419	3	0	3	217	281	1	334	9
user 13	0	1	0	0	0	0	0	0	0	0	0	0	0
user 14	0	0	0	0	0	0	0	0	0	1	0	0	0
user 15	0	0	0	0	0	0	0	2	2	0	0	2	0
user 16	1	3	3	2	1	0	0	1	2	3	1	0	0
user 17	0	4	0	0	0	0	0	0	0	0	0	0	0
user 18	9	0	0	0	0	0	0	0	0	0	0	0	0
user 19	13	1	0	0	1	0	0	0	0	0	0	4	0
user 20	0	0	0	21	0	0	0	0	0	0	0	0	258

Extending process models with the organizational perspective

Learning more about resources

- When are resources available?
 - part-time, vacation, illness, ...
 - shared among different processes
- Which resources collaborate well?
- Which resources perform well on specific activities?
- •

Yerkes-Dodson law of arousal

All-inclusive process models are needed ...

Processes, people, roles, and other organizational entities are intertwined and cannot be viewed in isolation.

Part I: Preliminaries

Chapter 1 Introduction

Chapter 2

Process Modeling and Analysis

Chapter 3

Data Mining

Part III: Beyond Process Discovery

Chapter 7

Conformance Checking

Chapter 8

Mining Additional Perspectives

Chapter 9 **Operational Support**

Part IV: Putting Process Mining to

Chapter 4 Getting the Data

Chapter 5

Part II: From Event Logs to Process Models

Process Discovery: An Introduction

Chapter 6

Advanced Process Discovery Techniques

Chapter 10

Tool Support

Chapter 11

Analyzing "Lasagna Processes"

oter 12

Analyzing "Spaghetti Processes'

Part V: Reflection

Chapter 13

Cartography and Navigation

Chapter 14 **Epilogue**

Wil M. P. van der Aalst

Process Mining

