

67. Soit $f(x) = \ln \left| \tan \frac{x}{2} \right|$. $f'(x)$ est égale à :

1. $\frac{1}{\cos x}$ 2. $\frac{1}{\sin x}$ 3. $-\tan x$ 4. $\cot x$ 5. $\frac{1}{e}$ (M-2005)

68. Soit f la fonction définie par $f(x) = \ln \sqrt[3]{\cos 2x}$, $f' \left(\frac{\pi}{6} \right) =$

1. $-\frac{2}{3}$ 2. $\frac{2}{3}$ 3. $-\frac{2\sqrt{3}}{3}$ 4. $\frac{3\sqrt{2}}{2}$ 5. $-\frac{2\sqrt{3}}{9}$ (B-2006)

69. Le coefficient du quatrième terme non nul du développement en série de Mac-Laurin de la fonction $f(x) = \ln(1 + 2x)$ est :

1. 4 2. $\frac{81}{4}$ 3. $\frac{9}{2}$ 4. -4 5. $-\frac{81}{4}$ (M-2006)

70. La dérivée première au point d'abscisse nulle de la fonction f définie par $f(x) = \ln(\sqrt{1+e^x} - 1) - \ln(\sqrt{1+e^x} + 1)$ est égale à :

1. $\sqrt{2}$ 2. $-\sqrt{2}$ 3. 2 4. $\frac{\sqrt{2}}{2}$ 5. $-\frac{\sqrt{2}}{2}$ (M-2006)

71. On considère la fonction f définie par $y = f(x) = \arctan e^x$.

La valeur de la différentielle $\frac{dy}{dx}$ au point d'abscisse $x = \ln 2$ vaut :

1. $\frac{3}{10}$ 2. $\frac{4}{17}$ 3. $\frac{2}{5}$ 4. $\frac{5}{26}$ 5. $\frac{6}{37}$ (M-2006)

72. Soit la fonction définie par $f(x) = x^2 e^{-x}$. Le coefficient du quatrième non nul du développement en série de Mac-Laurin de la fonction f est :

1. $-\frac{1}{6}$ 2. $-\frac{4}{3}$ 3. $\frac{4}{3}$ 4. $\frac{1}{6}$ 5. -20 (M-2007)

73. $\lim_{x \rightarrow 0} \left(\frac{2}{1 - \cos x} - \frac{4}{x^2} \right) =$ www.ecoles-rdc.net

1. $\frac{1}{3}$ 2. 0 3. $-\frac{1}{3}$ 4. $\frac{1}{6}$ 5. $-\frac{1}{6}$ (B - 2007)