# **Matemáticas III**

Transformaciones
Lineales - Aplicaciones
Semana 04

Hermes Pantoja Carhuavilca

(hpantoja@utec.edu.pe)

Brigida Molina Carabaño

(bmolina@utec.edu.pe)

**Rosulo Perez Cupe** 

(rperezc@utec.edu.pe)

**Asistente: Victor Anhuaman** 

(vanhuaman@utec.edu.pe)





## Índice

Representaciones matriciales de Transformaciones Lineales

Núcleo e Imagen de Transformaciones Lineales

Aplicaciones de Transformaciones Lineales a un contexto real



# **Objetivo**

Aplicar transformaciones lineales para resolver problemas en un contexto real.





# Logros de aprendizaje

Identifica y aplica las propiedades de las transformaciones lineales en la resolución de problemas y su relación con las matrices.



## Matriz de una transformación lineal

#### **Teorema**

Suponga que A es una matriz de orden  $m \times n$ . Defina una función  $T : \mathbb{R}^n \to \mathbb{R}^m$  por T(v) = Av. Entonces T es una transformación lineal.

## Ejemplo

Indique cuál es la matriz asociada a la transformación lineal  $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ ,

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + 2y + z \\ x + y + z \\ x - 3y \\ 2x + 3y + z \end{pmatrix}$$



# **Construir transformaciones lineales a partir de matrices**

#### **Teorema**

Suponga que A es una matriz de  $m \times n$ . Defina una función  $T : \mathbb{R}^n \to \mathbb{R}^m$  por T(v) = Av. Entonces T es una transformación lineal.

## Ejemplo

Defina la transformación lineal cuya matriz es:

$$A = \left(\begin{array}{rrrr} 3 & -1 & 8 & 1 \\ 2 & 0 & 5 & -2 \\ 1 & 1 & 3 & -7 \end{array}\right)$$



# **Ejercicios**

#### P1

La Transformación Lineal  $T: \mathbb{R}^n \to \mathbb{R}^m$  es definida por T(v) = Av. Encontrar las dimensiones de  $\mathbb{R}^n$  y  $\mathbb{R}^m$  para la transformación lineal dada por cada matriz:

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 3 & 0 \\ 4 & 2 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & 0 \end{pmatrix}$$

## Continuación...

#### P2

¿Cómo podrías expresar de forma matricial la transformación lineal T(x; y) = (x; -y)?

#### P3

¿Cuál es la matriz asociada a la transformación lineal  $T: \mathbb{R}^n \to \mathbb{R}^m$ , para cada transformación T?

- T(x; y) = (3x 4y; x + y)
- T(x; y) = (x; 3y x)
- 3 T(x; y; z) = (x + 2y z; x + 7y)

## Formalización de contenidos

- Reflexiones
- Proyecciones

## Reflexiones en $\mathbb{R}^2$

Las transformaciones definida por las siguientes matrices son llamadas reflexiones.

#### Reflexiones en el Eje Y

$$T(x; y) = (-x; y)$$

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$$

#### Reflexiones en el Eje X

$$T(x; y) = (x; -y)$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$$



## **Actividad 1**

#### P1

¿Como definirías Transformaciones que reflejen puntos tomando la recta y = x como espejo?

#### P2

¿Como definirías Transformaciones que reflejen puntos tomando el origen como espejo?



## Continuación...

#### **P3**

¿Como definirías Transformaciones que permiten rotar un punto dado en el plano un cierto ángulo  $\theta$ ?





# Logros de Aprendizaje

- Calcula el núcleo e imagen de una aplicación lineal y reconoce la fórmula de las dimensiones.
- Es capaz de usar Transformaciones Lineales para resolver problemas de contexto real.

## Formalización de contenidos

Definición del Núcleo (Kernel) de una Transformación Lineal.

#### Kernel

Sea T una transformación lineal de  $\mathbb{R}^n$  en  $\mathbb{R}^m$ . El núcleo T es el subconjunto formado por todos los vectores en  $R^n$  que se mapean a cero en  $\mathbb{R}^m$ .

$$Ker(T) = \{ v \in \mathbb{R}^n \mid T(v) = 0 \in \mathbb{R}^m \}$$

# **Ejemplos**

Indique cuáles opciones contienen un vector en el núcleo de la transformación de  $\mathbf{R}^3$  en  $\mathbf{R}^3$  definida como

$$T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2x + 3z \\ -23x - 15y - 18z \\ -5x - 3y - 3z \end{bmatrix}$$

dentro de las opciones:

1. 
$$\mathbf{v}_1 = (0,0,0)^T$$
  
2.  $\mathbf{v}_2 = (12,-28,8)^T$   
3.  $\mathbf{v}_3 = (1,-2,1)^T$   
4.  $\mathbf{v}_4 = (3,-7,2)^T$   
5.  $\mathbf{v}_5 = (2,-4,-4)^T$   
6.  $\mathbf{v}_6 = (9,-18,-15)^T$ 

# **Ejemplo**

## Ejemplo

Encontrar el Núcleo de la transformación Lineal  $T: \mathbb{R}^3 \to \mathbb{R}^2$  dado por

$$T(v) = \left[ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \end{array} \right] v$$

#### Solución:

Tenemos que resolver el sistema de ecuaciones

$$T(v) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} v = 0$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

$$\begin{cases} x_1 + x_2 + x_3 &= 0 \\ x_2 + 2x_3 &= 0 \end{cases}$$

De donde:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ -2t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Así: 
$$Ker(T) = \{x \in \mathbb{R}^3 \ / \ x = (t; -2t; t), \ t \in \mathbb{R}\}$$

## Formalización de contenidos

Definición de Imagen de una Transformación Lineal.

## **Imagen**

Sea  $T: \mathbb{R}^n \to \mathbb{R}^m$  una transformación lineal. El rango o imagen de T es el conjunto de todas las imágenes de T en  $\mathbb{R}^m$ .

$$Im(T) = \{ w \in \mathbb{R}^m \mid w = T(v) \text{ Para algún } v \in \mathbb{R}^n \}$$

Es decir, el rango es el subconjunto de  $\mathbb{R}^m$  formado por aquellos vectores que provienen de algún vector de  $\mathbb{R}^n$ .

## Continuación...

## Teorema (Teorema del Nucleo Imagen)

Sea  $T: \mathbb{R}^n \to \mathbb{R}^m$  una transformacion lineal entonces:

$$dim(\mathbb{R}^n)=n=dim(Ker(T))+dim(Im(T))$$

# **Ejemplos**

Indique cuáles opciones contienen un vector en la imagen de la transformación de  $\mathbf{R}^3$  en  $\mathbf{R}^3$  definida como

$$T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x + 5y + z \\ 8x + 12y + 6z \\ -4x - 2y - 4z \end{bmatrix}$$

dentro de las opciones:

1. 
$$\mathbf{v}_1 = (0, 0, 0)'$$

2. 
$$\mathbf{v}_2 = (2, 8, -4)'$$

3. 
$$\mathbf{v}_3 = (-23, -52, 6)'$$

4. 
$$\mathbf{v}_4 = (5, 12, -2)'$$

5. 
$$\mathbf{v}_5 = (-3, 1, -1)^{\prime}$$

# **Ejemplo**

## Ejemplo

Encontrar la Imagen(Rango) de la transformación Lineal  $T: \mathbb{R}^3 \to \mathbb{R}^3$  dado por

$$T(v) = \begin{bmatrix} 2 & 5 & 1 \\ 8 & 12 & 6 \\ -4 & -2 & -4 \end{bmatrix} v$$

## Solución

El vector  $v_1 = (a; b; c)$  de  $\mathbb{R}^3$  está en la imagen de T si existe un vector (x; y; z) en  $\mathbb{R}^3$  tal que T(x; y; z) = v; es decir si es consistente el sistema

$$2x + 5y + z = a$$
  
 $8x + 12y + 6z = b$   
 $-4x - 2y - 4z = c$ 

Al formar la matriz aumentada y escalonada se obtiene

$$\left(\begin{array}{ccccc}
2 & 5 & 1 & a \\
0 & -8 & 2 & -4a+b \\
0 & 0 & 0 & -2a+b+c
\end{array}\right)$$

El sistema es consistente si y solo si -2a+b+c=0, es decir a=(1/2)b+(1/2)c.

Es decir (a; b; c) está en la imagen de T si y solo si

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1/2b + 1/2c \\ b \\ c \end{pmatrix} = b \begin{pmatrix} 1/2 \\ 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 1/2 \\ 0 \\ 1 \end{pmatrix}$$

Por lo tanto,

$$Img(T) = Gen\left\{ \left( egin{array}{c} 1/2 \\ 1 \\ 0 \end{array} 
ight), \left( egin{array}{c} 1/2 \\ 0 \\ 1 \end{array} 
ight) 
ight\}$$

## **Actividad 2**

El desplazamiento de un brazo robótico en una fábrica de galletas que se encarga de inyectar crema a las galletas que se desplazan sobre una faja sin fin (la cual se considera como un plano), se puede modelar a través de la transformación lineal  $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ , definida mediante T(x,y,z) = (2x-y+4z;-4x+2y-8z), donde (x,y,z) es el punto en  $\mathbb{R}^3$  en el que el inyector se abastece de crema mientras que (2x-y+4z;-4x+2y-8z) es el punto en  $\mathbb{R}^2$ , es decir en la faja sin fin, en el que se aplica la crema a la galleta, tal como se muestra en la figura.



## Continuación...

- Halle la matríz asociada a la transformación lineal.
- Los sabores especiales con los cuales se abastecerá el inyector se encuentra sobre un plano que pasa por el origen (0;0;0). EL brazo robótico ha sido recalibrado para que solo aplique los sabores especiales a una determinada línea de producción situado en el origen de coordenadas (0;0) de la faja sin fin. Determine la ecuación del plano en el cual está situado los sabores especiales.
- El brazo robótico ha sido recalibrado para que solo se abastezca de crema en la región triangular de vértices (0;0;0) (1;0;0) y (0;0;1). Halle y represente gráficamente la imagen de dicha región via la transformación T.
- 4 Explique la razón por la cual el brazo robótico **NO** puede aplicar crema a una galleta que se encuentra en el punto de coordenadas (1;3).

# Gracias por su atención

