

Logbook - Tratamento de dados - S3

LFEA II

Grupo 5B PM

Alexandre Santana (100122) Guilherme Coimbra (102522) Maria Fernandes (103020) Samuel Tavares (103634)

Coincidências $\gamma-\gamma$ - PET

15 de outubro de 2023

Contents

1	Anterior.	2
2	Introdução e objetivos	2
3	Relação entre tamanho da janela no botão do SCA e no Osciloscópio	3
4	Determinação da Janela Mínima de Aquisição	5
5	Coincidências Fortuitas	7
6	Variação da fonte no plano equidistante aos detetores	8
7	Conclusões	14

1 Anterior

No logbook de análise e tratamento da sessão anterior consta a análise:

- da correlação angular para $\theta = 0^{\circ}$
- da variação da fonte no eixo dos detetores

2 Introdução e objetivos

Neste logbook de análise procuramos realizar o tratamento de dados e analisar os dados retirados durante a sessão 3 de laboratório, realizada no dia 2/10/2023

Com isto vamos analisar:

- a relação entre tamanho da janela no botão do SCA e no osciloscópio
- a janela mínima de aquisição
- as coincidências fortuitas
- a variação da fonte no plano equidistante aos detetores

3 Relação entre tamanho da janela no botão do SCA e no Osciloscópio

Para a escolha da janela de operação e para o estudo das coincidências fortuitas foi necessário utilizar o osciloscópio digital disponibilizado no laboratório para, por exemplo, medir os tamanhos da janela de aquisição e ver se estes estavam de acordo com o botão relativo a esta funcionalidade no módulo SCA.

Desde cedo verificamos algumas dificuldades na utilização do osciloscópio devido a problemas nas pontas ou nos cabos. Inicialmente ainda conseguimos retirar algumas medidas do tamanho da janela de aquisição no osciloscopio em função dos valores dados pelo botão do SCA, mas a determinada altura tornou-se bastante complicado e demorado o processo, pelo que se deixou de retirar os valores dados pelo osciloscópio.

Botao [ns]	Osciloscopio [ns]	incerteza [ns]
50	50	10
75	70	10
100	95	10
125	120	10
150	140	10
175	160	10
200	180	10

Tab. 1: Dados dos tamanhos de janela do Botão e obtidos no Osciloscópio

Posto isto, e considerando que a relação entre os valores do botão do SCA e o tamanho da janela de aquisição dado pelo osciloscópio era linear, utilizou-se os dados inicialmente retirados para obter a relação entre estes e podermos converter os valores da janela dados pelo botão nos supostos valores lidos no osciloscópio.

Para isso traçou-se um gráfico dos valores do tamanho da janela de aquisição dados pelo osciloscópio em função dos dados no botão do SCA e traçou-se um ajuste do tipo y = mx + b.

O gráfico da figura 1 ilustra os pontos experimentais e o ajuste realizado aos mesmos

y = mx + b	m	b	R^2
Valor	0.8786	6.6071	0.9980
Erro	0.0178	2.3945	-

Tab. 2: Valores do ajuste aos pontos experimentais

Através do valor de \mathbb{R}^2 podemos dizer que o ajuste se adequa bem aos pontos uma vez que este está próximo de 1.

Sendo assim, retiramos a expressão para o tamanho da janela de aquisição medida no osciloscópio, $Janela_{Osciloscpio}$, em função do valor dado no botão do SCA para esta, $Janela_{BotaoSCA}$

$$Janela_{Osciloscpio} = 0.8789 \cdot Janela_{BotaoSCA} + 6.6071 \quad [ns]$$
 (1)

Fig. 1: Tamanho da janela de aquisição medida no osciloscópio em função da indicada no botão do SCA

$$\sigma_{Janela_{Osciloscpio}} = \sqrt{0.0003 \cdot Janela_{BotaoSCA}^2 + 0.7719 \cdot \sigma_{Janela_{BotaoSCA}}^2 + 5.7336} \quad [ns]$$
 (2)

Com esta expressão, sempre que for necessário converter valores de uma escala para a outra, temos como o realizar.

4 Determinação da Janela Mínima de Aquisição

Para a determinação da janela mínima de aquisição, colocamos os detetores alinhados e aplicamos um delay ao sinal. Retiramos valores do número de contagens de coincidências, para um Δt de 5s, em função do tamanho da janela de aquisição. O tamanho da janela foi medido no osciloscópio, tendo as medidas uma incerteza um pouco elevada devido à dificuldade na sua medição.

Com os valores retirados para as coincidências em função do tamanho da janela, converteu-se estes em taxas de contagem considerando-se as seguites fórmulas:

$$R_c = \frac{C_c}{\Delta t}, \quad \sigma_{R_c} = \frac{\sigma_{C_c}}{\Delta t}, \quad \sigma_{C_c} = \sqrt{C_c}$$
 (3)

Osciloscópio [ns]	incerteza [ns]	Rc [1/s]	incerteza Rc [1/s]
105.0000	10.0000	0.0000	0.0020
110.0000	10.0000	0.2000	0.2000
115.0000	10.0000	0.0000	0.0020
120.0000	10.0000	1.4000	0.5292
125.0000	10.0000	10.4000	1.4422
130.0000	10.0000	33.0000	2.5690
135.0000	10.0000	79.0000	3.9749
140.0000	10.0000	100.4000	4.4811
150.0000	10.0000	91.0000	4.2661
155.0000	10.0000	102.2000	4.5211
160.0000	10.0000	99.4000	4.4587
165.0000	10.0000	100.8000	4.4900
185.0000	10.0000	105.0000	4.5826

Tab. 3: Dados das taxas de coincidências em função do tamanho da janela no osciloscópio

Posto isto, obteve-se o gráfico das taxas de coincidências em função do tamanho da janela de aquisição e dado o comportamento ser semelhante ao de uma sigmoide, realizou-se um ajuste deste tipo aos pontos. Para ter em conta as incertezas de ambas as variáveis foi traçado o ajuste tendo em conta a regressão dos mínimos quadrados ponderados (WLS).

$y = \frac{a}{1 + e^{(b(x-c))}} + d$	a	b	c	d	R^2	χ^2/Ndf
valor	-99.5617	0.4032	131.7128	100.3483	0.9949	1.14881/9
σ	2.8822	0.0559	0.4202	1.6503	-	-

Tab. 4: Parâmetros de ajuste

Pela tabela 4 podemos verificar que o ajuste apresenta tanto para R^2 como para χ^2 valores próximos de 1, o que mostra que é um ajuste relativamente bom.

Para além disso, pelo gráfico da figura 2, podemos observar que o tempo de transição entre os dois patamares não é superior a 50 ns, ou seja, a janela de aquisição de 50 ns será suficiente para a aquisição de dados.

Fig. 2: Coincidências em função da janela de aquisição, τ .

Concluindo, temos que a janela mínima de aquisição utilizada ao longo da aquisição de dados será a de 50 ns dada pelo botão do SCA.

5 Coincidências Fortuitas

Para o estudo das coincidências fortuitas e determinação da taxa destas a descontar às contagens das coincidências $\gamma - \gamma$, colocaram-se os detetores com um ângulo de 90° entre eles e variando o tamanho da janela de aquisição registaram-se os valores das contagens dados por ambos os detetores e das contagens coincidentes para intervalos de tempo de 20 segundos.

Com estes dados, e considerando as seguintes fórmulas,

$$R_x = \frac{C_x}{\Delta t}, \quad \sigma_{R_x} = \frac{\sigma_{C_x}}{\Delta t}, \quad \sigma_{C_x} = \sqrt{C_x}, \quad x = A, B, c$$
 (4)

$$R_f teo = 2R_A R_B \tau, \quad \sigma_{R_f teo} = \sqrt{4R_A^2 R_B^2 \sigma_\tau^2 + 4R_A^2 \tau^2 \sigma_{R_B}^2 + 4R_B^2 \tau^2 \sigma_{R_A}^2}$$
 (5)

$$R_f exp = R_c, \quad \sigma_{R_f exp} = \sigma_{R_c}$$
 (6)

onde A, B e c correspondem ao detetor A, detetor B e coincidências $\gamma - \gamma$, podemos obter as taxas de coincidências fortuitas teóricas e experimentais em função do tamanho da janela de aquisição.

au [ns]	$\sigma_{ au}$ [ns]	R_f teo [1/s]	σ_{R_f} teo [1/s]	$R_f \exp [1/s]$	σ_{R_f} exp [1/s]
226.3321	13.9008	0.0478	0.0031	0.2500	0.1118
660.0000	10.0000	0.1424	0.0033	0.3500	0.1323
860.0000	10.0000	0.1798	0.0038	0.3500	0.1323
885.5071	54.8246	0.1852	0.0119	0.4000	0.1414
1100.0000	25.0000	0.2230	0.0064	0.4500	0.1500
2203.8571	136.9516	0.4892	0.0316	0.5500	0.1658
3302.4821	205.4099	0.6911	0.0447	1.0500	0.2291
4401.1071	273.8717	0.9257	0.0599	1.5000	0.2739

Tab. 5: Dados das taxas de coincidências fortuitas teóricas e experimentais em função do tamanho da janela de aquisição

Com os dados da tabela 5 representaram-se os pontos num gráfico e para cada conjunto procurou-se ajustar regressão linear, de onde se obtiveram os parâmetros da tabela 6.

y = mx + b	m_{teo}	b_{teo}	R^2	m_{exp}	b_{exp}	R^2
Valor	$2.0800*10^{-4}$	$15.4300*10^{-4}$	0.9979	$2.6100*10^{-4}$	$1557.6100 * 10^{-4}$	0.9276
Erro	$0.0400*10^{-4}$	$27.5700 * 10^{-4}$	-	$0.3000*10^{-4}$	$447.0200*10^{-4}$	-

Tab. 6: Valores dos ajustes aos pontos experimentais e teóricos

Pelos dados obtidos é possível verificar que a taxa de coincidências fortuitas aumenta com o aumento do tamanho da janela de aquisição. Além disso temos valores de \mathbb{R}^2 próximos da unidade, algo que traduz que os pontos descrevem uma tendência de crescimento linear. Também se observa uma diferença entre os valores das coincidências fortuitas experimentais e teóricas, sendo as teóricas superiores aos que era previsto teoricamente.

Fig. 3

Sendo assim, uma vez que a janela de aquisição utilizada ao longo do trabalho será de 50 ns, é possível obter a taxa de coincidências fortuitas a descontar a todas as taxas obtidas ao longo do trabalho experimental, sendo esta de

$$R_{fort}(50 \, ns) \approx 2.6100 \cdot 10^{-4} \cdot 50 + 1557.6100 \cdot 10^{-4} \approx 0.1689 \, [s^{-1}]$$
 (7)

$$\sigma_{R_{fort}(50 \, ns)} \approx \sqrt{m^2 \cdot 0^2 + 50^2 \cdot \sigma_m^2 + \sigma_b^2} \approx 0.0447 \, [s^{-1}]$$
 (8)

Ou seja,

$$R_{corrigido} = R - 0.1689 \ [s^{-1}]$$
 (9)

$$\sigma_{R_{corrigido}} = \sqrt{\sigma_R^2 + 0.0447^2} \quad [s^{-1}]$$
 (10)

6 Variação da fonte no plano equidistante aos detetores

Para o estudo do número de coincidências detetadas pelos detetores para diferentes posições das fontes no plano equidistante aos dois, quando $\theta=0^{\circ}$, obtiveram-se os valores das contagens para diferentes posições em função do ângulo dos detetores. Com estes obtiveram-se as taxas de coincidências e os respetivos erros, assim como as taxas corrigidas e respetivos erros, obtidas pelas equações 9 e 10. Nas tabelas 7 e 8 temos estes dados representados.

x [0.5in]	x [cm]	t [s]	theta [graus]	Rc	eRc	Rc corr	eRc corr
-3.0000	-3.8100	60.0000	-50.0000	0.3667	0.0782	0.1978	0.0901
-3.0000	-3.8100	60.0000	-45.0000	0.8833	0.1213	0.7144	0.1293
-3.0000	-3.8100	60.0000	-40.0000	6.8833	0.3387	6.7144	0.3416
-3.0000	-3.8100	60.0000	-35.0000	31.3500	0.7228	31.1811	0.7242
-3.0000	-3.8100	60.0000	-30.0000	75.2833	1.1201	75.1144	1.1210
-3.0000	-3.8100	60.0000	-25.0000	105.4667	1.3258	105.2978	1.3266
-3.0000	-3.8100	60.0000	-20.0000	73.0000	1.1030	72.8311	1.1039
-3.0000	-3.8100	60.0000	-15.0000	26.2167	0.6610	26.0478	0.6625
-3.0000	-3.8100	60.0000	-10.0000	1.5333	0.1599	1.3644	0.1660
-3.0000	-3.8100	60.0000	-5.0000	0.6000	0.1000	0.4311	0.1095
-3.0000	-3.8100	60.0000	0.0000	0.2833	0.0687	0.1144	0.0820
-3.0000	-3.8100	60.0000	5.0000	0.3000	0.0707	0.1311	0.0837
-2.0000	-2.5400	60.0000	-40.0000	0.6667	0.1054	0.4978	0.1145
-2.0000	-2.5400	60.0000	-35.0000	1.0333	0.1312	0.8644	0.1386
-2.0000	-2.5400	60.0000	-30.0000	11.1167	0.4304	10.9478	0.4328
-2.0000	-2.5400	30.0000	-25.0000	46.4667	1.2445	46.2978	1.2453
-2.0000	-2.5400	30.0000	-20.0000	91.1333	1.7429	90.9644	1.7435
-2.0000	-2.5400	30.0000	-15.0000	97.0333	1.7985	96.8644	1.7990
-2.0000	-2.5400	30.0000	-10.0000	50.5333	1.2979	50.3644	1.2986
-2.0000	-2.5400	30.0000	-5.0000	10.1667	0.5821	9.9978	0.5839
-2.0000	-2.5400	30.0000	0.0000	0.9333	0.1764	0.7644	0.1820
-2.0000	-2.5400	30.0000	5.0000	0.6000	0.1414	0.4311	0.1483
-1.0000	-1.2700	30.0000	-35.0000	0.6333	0.1453	0.4644	0.1520
-1.0000	-1.2700	30.0000	-30.0000	0.7000	0.1528	0.5311	0.1592
-1.0000	-1.2700	30.0000	-25.0000	1.7000	0.2380	1.5311	0.2422
-1.0000	-1.2700	30.0000	-20.0000	21.6333	0.8492	21.4644	0.8504
-1.0000	-1.2700	30.0000	-15.0000	64.1333	1.4621	63.9644	1.4628
-1.0000	-1.2700	30.0000	-10.0000	104.1000	1.8628	103.9311	1.8633
-1.0000	-1.2700	30.0000	-5.0000	79.9000	1.6320	79.7311	1.6326
-1.0000	-1.2700	30.0000	0.0000	31.6000	1.0263	31.4311	1.0273
-1.0000	-1.2700	30.0000	5.0000	4.0333	0.3667	3.8644	0.3694
-1.0000	-1.2700	30.0000	10.0000	0.8333	0.1667	0.6644	0.1726

Tab. 7: Dados das taxas de contagens obtidas e corrigidas, com os respetivos erros para diferentes posições das fontes e diferentes ângulos entre os detetores.

Representaram-se os pontos das taxas corrigidas para cada posição da fonte e a cada conjunto ajustou-se um modelo gaussiano,

$$y = A \cdot e^{-\frac{(x-\theta_0)^2}{2\sigma^2}} \tag{11}$$

x [0.5in]	x [cm]	t [s]	theta [graus]	Rc	eRc	Rc corr	eRc corr
1.0000	1.2700	30.0000	-20.0000	0.5667	0.1374	0.3978	0.1445
1.0000	1.2700	30.0000	-15.0000	0.6000	0.1414	0.4311	0.1483
1.0000	1.2700	30.0000	-10.0000	0.8333	0.1667	0.6644	0.1726
1.0000	1.2700	30.0000	-5.0000	18.1333	0.7775	17.9644	0.7787
1.0000	1.2700	30.0000	0.0000	57.7333	1.3872	57.5644	1.3880
1.0000	1.2700	30.0000	5.0000	101.1000	1.8358	100.9311	1.8363
1.0000	1.2700	30.0000	10.0000	83.4000	1.6673	83.2311	1.6679
1.0000	1.2700	30.0000	15.0000	38.6000	1.1343	38.4311	1.1352
1.0000	1.2700	30.0000	20.0000	9.5667	0.5647	9.3978	0.5665
1.0000	1.2700	30.0000	25.0000	1.0667	0.1886	0.8978	0.1938
2.0000	2.5400	30.0000	-15.0000	0.4000	0.1155	0.2311	0.1238
2.0000	2.5400	30.0000	-10.0000	0.4000	0.1155	0.2311	0.1238
2.0000	2.5400	30.0000	-5.0000	0.5667	0.1374	0.3978	0.1445
2.0000	2.5400	30.0000	0.0000	3.4333	0.3383	3.2644	0.3412
2.0000	2.5400	30.0000	5.0000	31.9000	1.0312	31.7311	1.0321
2.0000	2.5400	30.0000	10.0000	79.4000	1.6269	79.2311	1.6275
2.0000	2.5400	30.0000	15.0000	102.3667	1.8472	102.1978	1.8478
2.0000	2.5400	30.0000	20.0000	64.9333	1.4712	64.7644	1.4719
2.0000	2.5400	30.0000	25.0000	23.7667	0.8901	23.5978	0.8912
2.0000	2.5400	30.0000	30.0000	2.1000	0.2646	1.9311	0.2683
3.0000	3.8100	30.0000	-5.0000	0.4000	0.1155	0.2311	0.1238
3.0000	3.8100	30.0000	0.0000	0.5333	0.1333	0.3644	0.1406
3.0000	3.8100	30.0000	5.0000	0.6333	0.1453	0.4644	0.1520
3.0000	3.8100	30.0000	10.0000	12.5667	0.6472	12.3978	0.6488
3.0000	3.8100	30.0000	15.0000	52.9667	1.3287	52.7978	1.3295
3.0000	3.8100	30.0000	20.0000	101.4333	1.8388	101.2644	1.8393
3.0000	3.8100	30.0000	25.0000	99.7000	1.8230	99.5311	1.8235
3.0000	3.8100	30.0000	30.0000	48.7000	1.2741	48.5311	1.2749
3.0000	3.8100	30.0000	35.0000	10.8667	0.6018	10.6978	0.6035
3.0000	3.8100	30.0000	40.0000	1.0333	0.1856	0.8644	0.1909
3.0000	3.8100	30.0000	45.0000	0.5333	0.1333	0.3644	0.1406
3.0000	3.8100	30.0000	50.0000	0.3333	0.1054	0.1644	0.1145

Tab. 8: Dados das taxas de contagens obtidas e corrigidas, com os respetivos erros para diferentes posições das fontes e diferentes ângulos entre os detetores.

Na figura 4 temos o gráfico obtido e na tabela 9 os valores dos parâmetros dos ajustes Pelo gráfico 4 e pela tabela 9:

 \bullet verifica-se um afastamento maior do θ_0 para distâncias maiores da fonte ao ponto central da plataforma

Fig. 4

x [in]	$y = A \cdot e^{-\frac{(x-\theta_0)^2}{2\sigma^2}}$	A	θ_0	σ	χ^2/Ndf	R^2
-1.5	valor	107.0795	-25.5621	5.8803	255.2562/ 9	0.9947
-	σ	5.0590	0.2333	0.1620	-	-
-1.0	valor	104.9300	-17.4202	5.8352	49.7476/ 7	0.9974
-	σ	3.5150	0.1533	0.1018	-	-
-0.5	valor	106.2259	-9.2657	5.7349	59.2728/ 7	0.9984
-	σ	3.9432	0.1766	0.1238	-	-
0.5	valor	103.9848	6.6333	5.8799	101.7829/ 7	0.9962
-	σ	5.0298	0.2388	0.1646	-	-
1.0	valor	105.5382	14.4216	5.7709	69.5944/ 7	0.9967
-	σ	4.2348	0.1933	0.1347	-	-
1.5	valor	112.5622	22.3809	5.7720	52.7882/ 9	0.9986
-	σ	3.3513	0.1435	0.0992	-	-

Tab. 9: Parâmetros de ajuste aos gráficos da figura 4

- \bullet o valor de θ_0 aparenta um comportamento linear com a variação da posição das fontes
- os valores dos sigmas de cada gaussiana parecem não variar com a variação da posição das fontes
- os valores das areas das gaussianas também aparentam um comportamento constante
- \bullet Valores de χ^2 não muito próximos de 1, entre 5 e 29, e valores de R^2 bastante bons

Traçou-se um gráfico de θ_0 em função da posição da fonte de forma a verificar o comportamento linear, figura 5

Fig. 5

y = mx + b	m	b	R^2
Valor	15.9325	-1.4693	0.9999
Erro	0.0479	0.0536	-

Tab. 10: Valores do ajuste aos pontos experimentais da figura 5

Pelo gráfico 5 e pela tabela 10:

- \bullet A tendência linear verifica-se e temos um \mathbb{R}^2 muito bom
- temos um valor de b muito afastado do esperado que seria 0
- temos uma relação entre o valor de θ_0 e a posição x da fonte, em inches,

$$\theta_0 = 15.9325 \cdot x - 1.4693 \ [^{\circ}] \tag{12}$$

$$\sigma_{\theta_0} = \sqrt{0.0023x^2 + 15.9325\sigma_x^2 + 0.0029} \ [^{\circ}]$$
 (13)

Para verificar a tendência constante da largura à meia altura, FWHM, largura necessária entre dois picos para a sua distinção, ajustaram-se dois modelos, um linear e um constante, aos valores obtidos para os sigmas de cada gaussiana multiplicados por 2.35. Os gráficos obtidos encontram-se na figura 6 e os parâmetros obtidos na tabela 11.

Pelo gráfico 6 e pela tabela 11:

Fig. 6

y = mx + b	m	b	R^2
Valor	-0.0496	13.6392	0.1554
Erro	0.0469	0.0525	-
Valor	0.0000	13.6340	-
Erro	-	0.0529	-

Tab. 11: Valores do ajuste aos pontos experimentais da figura $5\,$

- \bullet Temos um valor muito baixo para o R^2 do ajuste linear o que indica que o modelo não se adequa bem aos pontos
- \bullet Temos um valor médio de (13.634 ± 0.053)° para FWHM.

7 Conclusões

Ao longo deste logbook

- analisaram-se as coincidências fortuitas e obteve-se a taxa destas para a correção de todas as taxas obtidas
- obteve-se a janela mínima de aquisição para a melhor obtenção de dados
- verificou-se que, no plano equidistante, a variação do centróide do pico de coincidências varia linearmente com a distância das fontes ao centro da plataforma

References