

Investigating Imperceptibility of Adversarial Attacks on Tabular Data: An Empirical Analysis

Zhipeng He¹, Chun Ouyang¹, Laith Alzubaidi¹, Alistair Barros¹, Catarina Moreira²

¹ Queensland University of Technology, ² University of Technology Sydney

Problem Definition

Background: Adversarial attacks involve modifying input data to deceive machine learning models. These attacks have been studied for unstructured data (e.g., images), but structured tabular data poses unique challenges.

Gaps: 1) The imperceptibility of adversarial attacks on tabular data requires approaching different concepts compared to those for images. 2) Current adversarial attacks lack imperceptibility metrics tailored for tabular data.

Goal: Develop a set of standardised properties and metrics to evaluate the imperceptibility of adversarial attacks on tabular data.

Contributions and Findings

Contributions: Our contributions to the field are twofold:

- We propose seven key properties that define imperceptible adversarial attacks for tabular data. These properties—

 proximity, sparsity, deviation, sensitivity, immutability, feasibility, and feature interdependency—are derived from the unique characteristics and challenges associated with tabular data.
- Using the proposed metrics, we empirically evaluated five adversarial attack methods, investigating all seven imperceptibility properties, analysing their relationship with attack effectiveness, and providing insights from the results.

Findings: The findings reveal that:

- With the exception of proximity, current adversarial attack methods often fail to consider the proposed imperceptibility properties in their algorithm designs.
- Additionally, our analysis highlights a trade-off between the effectiveness of adversarial attacks and their imperceptibility.

Properties and Metrics of Imperceptibility

Proximity: A good adversarial example should introduce *minimal* changes, quantified by ensuring the smallest possible distance from the original feature vector. To measure the perturbation distance, we use the ℓ_2 and ℓ_∞ *norms*.

Sparsity: An ideal adversarial example should misclassify the model's prediction by altering the fewest features possible. We use the ℓ_0 *norm* to count the number of perturbed features.

Deviation: To ensure imperceptibility, an adversarial example should closely resemble the majority of original inputs. We propose using the *Mahalanobis distance* to measure the deviation between an adversarial perturbation and the distribution of variations in the original data inputs.

Sensitivity: We adapt the concept of *perturbation sensitivity* as a metric to quantify the extent to which features with narrow distributions in tabular data are altered, which is defined as follows:

$$SDV(x_i) = \sqrt{\frac{\sum_{j=1}^{m} (x_{i,j} - \bar{x}_i)^2}{m}}, \quad SEN(\boldsymbol{x}, \boldsymbol{x}^{adv}) = \sum_{i=1}^{n} \frac{\|x_i^{adv} - x_i\|_2}{SDV(x_i)}$$

where n is the number of numerical features, m is the number of all input vectors, and \bar{x}_i represents the average of the ith features within all datapoints.

Immutability: Immutable features are fixed attributes in a dataset that are either inherently unchangeable or should remain unaltered due to ethical or practical constraints.

Feasibility: Adversarial attacks should avoid introducing perturbations that push feature values beyond *feasible value ranges*, ensuring alignment with semantic correctness.

Feature Interdependency: Tabular data often contains features with non-linear and context-specific interactions or relationships. Altering a feature independently of its *correlated features* can create anomalies that are easily detectable.

Experiments & Results

Results of Attack Effectiveness:										
Adult - LR	84.95	84.95	69.86	82.69		100				
Adult - MLP	84.65	85.15	45.19	84.51						
Adult - LinearSVC	84.75	84.75	14.76	85.32		00				
German - LR	80.73	80.73	72.40	81.25		- 80				
German - MLP	76.56	78.65	61.98	80.73						
German - LinearSVC	80.73	80.73	18.23	81.25		- 60				
COMPAS - LR	79.26	79.26	69.46	79.33		- 60				
COMPAS - MLP	80.82	80.89	72.09	80.47						
COMPAS - LinearSVC	79.76	79.76	20.81	79.76		- 40				
Diabetes - LR	75.00	75.00	75.00	78.13	75.78	40				
Diabetes - MLP	72.66	72.66	71.88	72.66	72.66					
Diabetes - LinearSVC	75.78	75.78	25.78	75.78	75.78	- 20				
Breast Cancer - LR	96.88	96.88	90.63	98.44	98.44	20				
Breast Cancer - MLP	96.88	96.88	82.81	96.88	96.88					
Breast Cancer - LinearSVC	98.44	98.44	4.69	98.44	98.44	- 0				
	FGSM	PGD	C&W	DeepFool	LowProFool	ŭ				

Results of Proxmity ℓ_2 :

Adult - LR	0.56	0.56	0.52	0.64		- 1.6
Adult - MLP	0.57	0.57	0.19	0.96		1.0
Adult - LinearSVC	0.57	0.57	0.00	0.11		- 1.4
German - LR	0.58	0.58	0.62	0.64		
German - MLP	0.59	0.58	0.44	1.13		- 1.2
German - LinearSVC	0.58	0.58	0.00	0.41		
COMPAS - LR	0.53	0.53	0.24	0.41		- 1.0
COMPAS - MLP	0.52	0.51	0.25	0.46		- 0.8
COMPAS - LinearSVC	0.53	0.53	0.00	0.24		- 0.6
Diabetes - LR	0.78	0.78	0.19	0.27	0.75	- 0.6
Diabetes - MLP	0.79	0.80	0.21	0.29	0.60	
Diabetes - LinearSVC	0.78	0.78	0.01	0.23	0.66	- 0.4
Breast Cancer - LR	1.53	1.53	0.44	1.70	1.30	
Breast Cancer - MLP	1.42	1.47	0.28	1.53	1.71	- 0.2
Breast Cancer - LinearSVC	1.50	1.50	0.00	0.39	0.95	
	FGSM	PGD	C 8.\\\/	DeenFool	LowProFool	 _

Analysis of Imperceptibility using Qualitative Properties

Immutability: Feature *Race* should not be perturbed.

Feature Interdependency: If feature *Age*'s value is altered, feature *Age Category* should be correspondingly updated to reflect this change accurately.

Case	Attack	Age	Priors Count	Length of Stay	Age Cat.	Sex	Race	Class
#285	Original	80	0	0	Greater than 45	Male	Caucasian	$\overline{Medium\text{-}Low}$
11 = 0 0	DeepFool	18	38	799	Greater than 45	Male	Native American	High
#501	Original	83	0	0	Greater than 45	Male	Hispanic	$\overline{Medium\text{-}Low}$
// 0 0 1	DeepFool	18	38	799	Less than 25	Male	A frican- $A merican$	High

Fessibility: Features *Glucose* and *BMI* are prone to being perturbed into extreme values.

Case	Attack	Glucose	Blood Pressure	$\begin{array}{c} \mathbf{Skin} \\ \mathbf{Thickness} \end{array}$	Insulin	BMI	Age	Diabetes?
	Original	86.00	68.00	28.00	71.00	30.20	24.00	N
#19	DeepFool	159.50	62.21	30.24	51.32	49.00	32.69	Y
	C&W	135.98	63.93	29.18	69.29	43.22	24.32	Y
	LowProFool	199.00	56.17	32.57	30.80	67.10	41.74	Y
	Original	74.00	68.00	28.00	45.00	29.70	23.00	N
#57	DeepFool	191.86	58.71	31.59	13.43	59.85	36.93	Y
	C&W	136.88	62.84	29.65	43.81	45.97	23.24	Y
	LowProFool	199.00	55.53	32.81	2.65	67.10	41.69	Y

About Us

Project Webpage:
Code & Dataset & Model

