GL Garrad Hassan

DNV GL – Turbine Power Performance in different regimes PCWG at SSE, Glasgow, December 4th 2013 Richard Whiting, Global Head of Practice, Energy

Overview

- The Data available
- Measured ws-ti matrices
- **Observations from Round Robin dataset**
- **Conclusion**

IEC power curve tests

Reviewed in detail 50+ PPTs and ws-TI matrices generated

Grouped broadly by 4 regions

Plus RePower's matrix from previous meetings – location unspecified

Range of conditions

Region 1 - North America

Region 2 - Asia Pacific

Region 3 - Europe

Region 4 - S America

Region X - RePower

Round Robin dataset 1 – Observations Site Conditions

- We already know that data-set 1 site has high frequency of stable conditions characterised by low TI and high shear particularly during the night
- •The frequency of these conditions also vary with seasons
- This will affect the site calibration speed-ups

Round Robin dataset 1 – Observations Impact on site calibration

- •Different atmospheric conditions will have different speed-ups
- •Ratio of unstable conditions: stable conditions during site calibration is this the same split as during measurements?
- Impact of differential stable/unstable speed ups could result in differences of order of 1% of wind speed =>
 2% in energy

Conclusions

- Similar trends globally but magnitude and detail of trend varies

 Need to understand nature of data making up the matrix and adapt
- Potential in TI models to model trends quadrant 1,2,3
- Quadrant 4, low TI, low-mid ws poorly modeled
- TRequires empirical approach
 - TI most dominant metric for simple model
- Manufactures can give more insight here

GL Garrad Hassan

Richard Whiting — Richard Whiting@gl-garradhassan.com

With Thanks to:

Ben Buxton
Simon Cox
Carla Ribeiro

TI adjusted Power Curve

• Shape is closer to measured PC

