Computer Project #2: Instructions for RobotStudio

Dr. Anthony Maciejewski

After running your MATLAB script to generate the joint angles required to reach the given points, you will likely want (and are highly encouraged) to test your results. A workspace has been designed in RobotStudio to aid in testing your program. To visually see the location of the end-effector using your generated *angles* file, you will need to do several steps:

- 1. Unpack the RobotStudio Workspace
- 2. Import trajectory points into RobotStudio
- 3. Simulate the angles file

The following material will provide step-by-step instructions for each task.

Unpacking Workspace:

- 1. Download the *project2.rspag* file from the course website.
- 2. Unpack the *project2.rspag* file:
 - (a) Right mouse click on the project2.rspag and select Open with RobotStudio 6.01.
 - (b) RobotStudio will open and the *Unpack & Work Wizard* will appear automatically. Click 'Next' as indicated by the red box in Fig. 1.

Figure 1: Unpack & Work Window - click 'Next'

- 3. On the next menu, Fig. 2, select your project folder as the Target folder then click Next.
- 4. For the *Controller Systems* menu, click *Next* again and then *Finish* for the *Ready to unpack* screen. Patiently wait for the system to unpack the folder then click *Close* when the system is finished.

The unpacking process will generate four folders at the location you specified: Backups, Libraries, Stations, and Systems. Inside Systems/System/HOME there will be several important files, namely:

Figure 2: Select your project folder as the Target folder

- trajectory.txt
- arm.txt
- positiongenerator.m

Note: It is important to make sure the *angles* file you generate in MATLAB is located inside *System-s/System/HOME* so RobotStudio can access the values. As such, it is recommended to place all other files used (including .m and .wrl files) inside of the folder as well.

Importing Trajectory:

1. Inside RobotStudio, select the *Home* tab and then click *Import Geometry* as indicated in Fig. 3

Figure 3: Importing trajectory points

- 2. A window will appear. Browse for sqrpositions.wrl you will need to look in the Systems/System/HOME folder. Select the .wrl file by double clicking on it.
- 3. Verify you imported *sqrpositions.wrl* by seeing it appear on the left hand side of your screen under the *Layout* subtab as shown in Fig. 4.

Whenever you modify the trajectory file, you will need to delete the original *sqrpositions.wrl* and reimport the file. To delete, simply right mouse-click the component you wish to remove and select *Delete*.

Simulating:

1. Select the Simulation tab then click Play as shown in Fig. 5.

There are several ways to get a better view of the robot during the simulation. To modify the speed of the simulation, click the *Simulation Control Options* (bottom right arrow next to Simulation Control in 5). A

Figure 4: Confirm *sqrpositions.wrl* was successfully imported.

Figure 5: Run your simulation

window will appear that allows you to adjust the simulation speed and time step. It is recommended to use a slow simulation speed (10%) and a short timestep (12 ms) to see the robot behavior more clearly.

RobotStudio Viewing Shortcuts:

- Ctrl translate the point of view, can pan left or right
- Ctrl + Shift rotate the point of view
- 'View All' Button located at top left side of the workcell, returns point of view to center of screen