1^{re} STMG : suites —approche—

I Logique

- 1. On donne la liste de nombres : 0; 3; 6; 9; 12; . . . Proposer les cinq termes suivants de cette liste. Justifier.
- 2. On donne la liste de nombres : 0; 1; 4; 9; 16; 25; ... Proposer les quatre termes suivants de cette liste. Justifier.

II Indice d'une suite

On donne la suite des nombres impairs : 1; 3; 5; 7; 9; ... On pose = $u_1 = 1$; $u_2 = 3$; $u_3 = 5$; $u_4 = 7$; $u_5 = 9$;...

- 1. Déterminer alors u_6 ; u_7 et u_8 .
- 2. Généraliser et exprimer u_n en fonction de n $(n \in \mathbb{N}^*)$.
- 3. Déterminer alors le trentième terme de la suite.
- 4. Calculer u_{100}

III

Pour tout n entier naturel, on note v_n le nombre 2n + 3.

- 1. Calculer v_1, v_5, v_{10} .
- 2. Peut-on trouver n tel que $v_n = 213$?

IV

On définit le programme P de calcul suivant : Étant donné un nombre x, on calcule 2x + 7.

- 1. On part du nombre 1 noté u_0 . on lui applique le programme P et on obtient un nombre u_1 . Que vaut u_1 ?
- 2. On applique P à u_1 pour obtenir u_2 ; que vaut u_2 ?
- 3. On répète (itère) ce procédé pour trouver des nombres $u_3,\,u_4,\,u_5,\,$ etc. Que valent $u_3,\,u_4$ et u_5 ?
- 4. Compléter : la suite des nombres (u_n) s'obtient par la définition suivante : $\begin{cases} u_0 = 5 \\ \text{Pour tout } n, \ u_{n+1} = \cdots \end{cases}$ On dit que l'on a défini la suite des termes u_n que l'on note (u_n) par récurrence (chaque terme autre que le premier est défini à partir du terme précédent)

V

On définit la suite (u_n) par : $\begin{cases} u_0 = 1 \\ u_{n+1} = 5u_n + 3 \end{cases}$ Calculer les premiers termes de cette suite de nombres.

1^{re} STMG: suites—approche—

I Logique

- 1. On donne la liste de nombres : 0; 3; 6; 9; 12; . . . Proposer les cinq termes suivants de cette liste. Justifier.
- 2. On donne la liste de nombres : 0; 1; 4; 9; 16; 25; ... Proposer les quatre termes suivants de cette liste. Justifier.

II Indice d'une suite

On donne la suite des nombres impairs : 1; 3; 5; 7; 9; ... On pose = $u_1 = 1$; $u_2 = 3$; $u_3 = 5$; $u_4 = 7$; $u_5 = 9$;...

- 1. Déterminer alors u_6 ; u_7 et u_8 .
- 2. Généraliser et exprimer u_n en fonction de n $(n \in \mathbb{N}^*)$.
- 3. Déterminer alors le trentième terme de la suite.
- 4. Calculer u_{100}

III

Pour tout n entier naturel, on note v_n le nombre 2n+3.

- 1. Calculer v_1, v_5, v_{10} .
- 2. Peut-on trouver n tel que $v_n = 213$?

IV

On définit le programme P de calcul suivant : Étant donné un nombre x, on calcule 2x+7.

- 1. On part du nombre 1 noté u_0 . on lui applique le programme P et on obtient un nombre u_1 . Que vaut u_1 ?
- 2. On applique P à u_1 pour obtenir u_2 ; que vaut u_2 ?
- 3. On répète (itère) ce procédé pour trouver des nombres $u_3,\,u_4,\,u_5,\,$ etc. Que valent $u_3,\,u_4$ et u_5 ?
- 4. Compléter : la suite des nombres (u_n) s'obtient par la définition suivante : $\begin{cases} u_0 = 5 \\ \text{Pour tout } n, \ u_{n+1} = \cdots \end{cases}$ On dit que l'on a défini la suite des termes u_n que l'on note (u_n) par récurrence (chaque terme autre que le premier est défini à partir du terme précédent)

V

On définit la suite
$$(u_n)$$
 par :
$$\begin{cases} u_0 = 1 \\ u_{n+1} = 5u_n + 3 \end{cases}$$
 Calculer les premiers termes de cette suite de nombres.