UCS 2411 DATABASE LAB

PHARMACY SUPPLY MANAGEMENT SYSTEM

SUBMITTED BY SRI HARI VK (3122225001138) R SKANTA SAMVARTAN (3122225001137) SHRI VISHAAL (3122225001131)

Department of Computer Science and Engineering

Sri Sivasubramaniya Nadar College of Engineering (An Autonomous Institution, Affiliated to Anna University)

Kalavakkam – 603110

2023 - 2024

INDEX:

Insights of the Project(Identification of table and attributes)	03
Assumptions	05
Identification of FD's and minimalizing the FD's (Project Phase 1)	06
ER Diagram	21
Normalization(Project Phase 2)	22
Relation Schema	38
SQL code	40
Triggers Used	45
Procedure/Function Used	46
Sample Screenshots	47
Novelty	53

Insights of the Project:

The project is pharmaceutical management system that tracks drugs from suppliers to pharmacies and customers. The system includes inventory management, order processing, supplier and manufacturer details, and customer information.

Tables and Their Attributes

1. Supplier

-Attributes:

- `supplier_id`: Unique identifier for the supplier.
- `supplier_name`: Name of the supplier.
- `phone no`: Contact number of the supplier.
- 'address': Physical address of the supplier.
- 'email': Email address of the supplier.

-Relationships:

- Supplies drugs to the 'Pharmacy'.

2. Pharmacy

-Attributes:

- `pharmacy id`: Unique identifier for the pharmacy.
- `pharmacy_name`: Name of the pharmacy.
- `pharmacy type`: Type of pharmacy (e.g., retail, hospital).
- `license no`: License number of the pharmacy.
- `open hours`: Operating hours of the pharmacy.
- `phone`: Contact number of the pharmacy.
- `address`: Physical address of the pharmacy.
- `administration_status`: Status of the administration (possibly regulatory compliance status).

-Relationships:

- Receives supplies from 'Supplier'.

3. Inventory

- Attributes:

- `inventory_id`: Unique identifier for the inventory entry.
- 'location': Storage location within the inventory.
- `batch number`: Batch number of the stored drugs.
- 'invoice date': Date of the invoice for the inventory entry.
- `expiry date`: Expiry date of the stored drugs.
- `quantity`: Quantity of the drugs in the inventory.
- `status`: Current status of the inventory entry.

-Relationships:

- Gets drugs from `Supplier`.
- Stores `Drug`.

4. Drug

-Attributes:

- `drug_id`: Unique identifier for the drug.
- `drug_name`: Name of the drug.
- `drug code`: Code associated with the drug.
- `storage_conditions`: Conditions required for storing the drug.
- `drug_category`: Category or type of the drug.
- `composition`: Chemical composition of the drug.
- `dosage`: Dosage information for the drug.
- `unit_price`: Price per unit of the drug.

-Relationships:

- Stored in `Inventory`.
- Manufactured by `Manufacturer`.

5. Manufacturer

-Attributes:

- `manufacturer id`: Unique identifier for the manufacturer.
- `manufacturer name`: Name of the manufacturer.
- `phone no`: Contact number of the manufacturer.
- `address`: Physical address of the manufacturer.
- `email`: Email address of the manufacturer.

-Relationships:

- Manufactures `Drug`.

6. Customer

-Attributes:

- `cust id`: Unique identifier for the customer.
- `cust name`: Name of the customer.
- `phone`: Contact number of the customer.
- `email`: Email address of the customer.
- `gender`: Gender of the customer.
- `dob`: Date of birth of the customer.
- `address`: Physical address of the customer.

-Relationships:

- Places 'Order'.

7. Order

-Attributes:

- `order id`: Unique identifier for the order.
- `order date`: Date the order was placed.
- `quantity`: Quantity of drugs ordered.
- `tot amt`: Total amount of the order.
- `delivery_date`: Date the order was delivered.

-Relationships:

- Contains `Drug`.
- Placed by `Customer`.

8. Payment

- Attributes:

- `pay id`: Unique identifier for the payment.
- `pay amt`: Amount paid.
- `pay date`: Date of the payment.

- Relationships:

- Associated with 'Customer'.

Relationships:

- Supplier to Inventory: Suppliers provide drugs to be stored in the inventory.
- Inventory to Drug: Inventory entries store specific drugs.
- Drug to Manufacturer: Drugs are produced by manufacturers.
- Customer to Order: Customers place orders for drugs.
- Order to Drug: Orders include specific drugs.
- Customer to Payment: Payments are made by customers.

ASSUMPTIONS:

Customer Registration:

New customers are added to the CUSTOMER table with unique USER_NAME.

Passwords are securely stored (assumed hashed and not plain text).

Placing Orders:

When a customer places an order, a record is created in the ORDERS table with a foreign key reference to USER_NAME.

Each order contains multiple entries in the ORDER_LIST table, detailing the DRUG_ID and quantity ordered.

Order History:

The system can query the ORDERS table to retrieve all orders placed by a specific customer using USER NAME.

The ORDER_LIST table can be queried to find out all drugs ordered within a particular order.

Manufacturer and Drug:

Each drug (DRUG_ID) is produced by a single manufacturer (MANUFACTURER_ID). The relationship ensures traceability and accountability for the drug's production. Drug and Inventory:

Each drug can have multiple inventory records, indicating different batches or stocks. This allows tracking of stock levels, expiry dates, and inventory locations.

Drug and Pharmacy:

The single pharmacy maintains a record for each drug, indicating the supplied quantity. This relationship simplifies the tracking of drug availability in the pharmacy. Drug and Orders:

Each drug can be ordered multiple times by different customers.

The ORDER_LIST table captures these details, linking each drug to its respective orders and quantities.

IDENTIFICATION OF FD's:

1)Pharmacy:

```
 \begin{array}{l} (\text{A-Pharmacy\_id,B} \rightarrow \text{Pharmacy\_name,C} \rightarrow \text{License\_no,D} \rightarrow \text{Phone,E} \rightarrow \text{address,F} \rightarrow \text{open\_hrs,} \\ \text{G} \rightarrow \text{accreditation\_status,H} \rightarrow \text{Pharmacy\_type,I} \rightarrow \text{Supplier\_id}) \\ \text{Pharmacy\_id} \rightarrow \text{Pharmacy\_name,license\_no,Phone,address,open\_hrs,accreditation\_status,} \\ \text{Pharmacy\_type.} \\ \text{License\_no} \rightarrow \text{address} \\ \text{Pharmacy\_type} \rightarrow \text{accrediation\_status} \\ \text{Pharmacy\_type} \rightarrow \text{accrediation\_status} \\ \text{Pharmacy\_type} \rightarrow \text{open\_hrs} \\ \text{Pharmacy\_id,Pharmacy\_name} \rightarrow \text{phone,Pharmarcy\_type,address} \\ \end{array}
```

- A → B,C,D,E,F,G,H,I
- \bullet C \rightarrow E
- $H \rightarrow F,G$
- \bullet A,B \rightarrow D,H,E

Schema:

MINIMAL FDs:

a)
With A → B
A+={A,B,C,D,H,E,F,G,I}
Without A → B
A+={A}
Therefore A→B is not redundant
b)
With A→C

With $A\rightarrow C$ $A+=\{A,C,E\}$ Without $A\rightarrow C$ $A+=\{A\}$ Therefore $A\rightarrow C$ is not redundant


```
d)
        With A→E
        A+=\{A,B,C,D,E,F,G,H,I\}
        Without A→E
        A \leftarrow \{A,B,C,D,E,F,G,H,I\}
        Therefore the fd is not redundant
  e)
        With C \rightarrow E
        C=\{C,E\}
        Without C \rightarrow E
        C += \{C\}
        Therefore C \rightarrow E is not redundant
 f)
        With H \rightarrow F,G
        H+=\{H,F,G\}
        Without H \rightarrow F,G
        H+=\{H\}
        Therefore H \rightarrow F,G is not redundant
 g)
        With A,B \rightarrow D,H,E
        AB+=\{A,B,D,H,E,C,F,G,I\}
        Without A,B \rightarrow D,H,E
        AB+=\{A,B,C,D,E,F,G,H,I\}
        Therefore A,B → D,H,E is redundant
• The minimal FDs are
        {
                 A \rightarrow B,C,D,H,I
                 C \rightarrow E
                 H \rightarrow F,G
        }
```

- The candidate key is {A}
- PA={A}
- NPA={B,C,D,E,F,G,H,I}

2)Supplier:

 $\mathsf{A} \to \mathsf{Supplier_id}, \mathsf{B} \to \mathsf{Supplier_name}, \mathsf{C} \to \mathsf{phone}, \mathsf{D} \to \mathsf{address}, \mathsf{E} \to \mathsf{email}$

FDs:

- \bullet A \rightarrow B,C,D,E
- \bullet C,E \rightarrow D

Schema:

Minimal FDs:

i)Decomposition:

- $\bullet \ A \to B$
- $\bullet \ \mathsf{A} \to \mathsf{C}$
- $\bullet \ A \to D$
- $\bullet \ \mathsf{A} \to \mathsf{E}$

$$I)A \rightarrow B$$

With $A \rightarrow B$

 $A \leftarrow \{A,B,C,D,E\}$

Without $A \rightarrow B$

 $A \leftarrow \{A,C,D,E\}$

Therefore $A \rightarrow B$ Is not redundant

ii) $A \rightarrow C$

With $A \rightarrow C$

 $A \leftarrow \{A,B,C,D,E\}$

Without $A \rightarrow C$

 $A \leftarrow \{A,B,D,E\}$

Therefore $A \rightarrow C$ is not redundant

iii) $A \rightarrow D$

With $A \rightarrow D$

 $A \leftarrow \{A,B,C,D,E\}$

Without $A \rightarrow D$

 $A \leftarrow \{A,B,D,C,E\}$

Therefore $A \rightarrow D$ is redundant

$IV)A \rightarrow E$

With $A \rightarrow E$

 $A \leftarrow \{A,B,C,D,E\}$

Without $A \rightarrow E$

 $A \leftarrow \{A,B,C,D\}$

Therefore $A \rightarrow E$ is not redundant

2)


```
C,E \rightarrow D

With C,E \rightarrow D

CE+=\{C,E,D\}

Without C,E \rightarrow D

CE+=\{C,E\}

Therefore C,E \rightarrow D is not redundant

MINIMAL FDs:

A \rightarrow B,C,E

C,E \rightarrow D
```

The candidate key for relation is {A} PA={A} NPA={B,C,D,E}

<u>3)DRUG:</u>

 $A\text{-}Drug_id, B \to Drug_name, C \to Unit_price, D \to Storage_condition, E \to Drug_category, F \to Composition, G \to Dosage, H \to Drug_code, I \to manufacturer_id$

FDs:

- \bullet A \rightarrow B,C,D,E,F,G,H,I
- \bullet B \rightarrow E,I
- \bullet H \rightarrow G,F
- $\bullet \ B \to C$
- \bullet A,B \rightarrow G,F

Schema:

MINIMAL FDs:

```
i)Decomposition:
```

 $A \rightarrow B$

 $A \rightarrow C$

 $\mathsf{A}\to\mathsf{D}$

 $\mathsf{A}\to\mathsf{E}$

 $A \rightarrow F$

 $A \rightarrow G$

 $A \rightarrow H$

 $A \rightarrow I$

 $\mathsf{B}\to\mathsf{E}$

 $\mathsf{B}\to\mathsf{I}$

 $H \rightarrow G$

 $\mathsf{H} \to \mathsf{F}$

 $\mathsf{B} \to \mathsf{C}$

1)

a)

With $A \rightarrow B$

 $A+=\{A,B,C,D,E,F,G,H,I\}$

Without $A \rightarrow B$

 $A \leftarrow \{A,C,D,E,F,G,H,I\}$

 $A \rightarrow B$ is not redundant

b)

With $A \rightarrow C$

 $A+=\{A,B,C,D,E,F,G,H,I\}$

Without $A \rightarrow C$

 $A+=\{A,B,C,D,E,F,G,H,I\}$

 $A \rightarrow C$ is redundant

c)

With $A \rightarrow D$

 $A+=\{A,B,C,D,E,F,G,H,I\}$

Without $A \rightarrow D$

 $A+=\{A,B,C,E,F,G,H,I\}$

 $\mathsf{A} \to \mathsf{D}$ is not redundant

d)

With $A \rightarrow E$

 $A+=\{A,B,C,D,E,F,G,H,I\}$

Without $A \rightarrow E$

 $A+=\{A,B,C,D,E,F,G,H,I\}$

 $A \rightarrow E$ is redundant

```
e)
          With A \rightarrow F
          A \leftarrow \{A,B,C,D,E,F,G,H,I\}
          Without A \rightarrow F
          A \leftarrow \{A,B,C,D,E,F,G,H,I\}
          A \rightarrow F is redundant
f)
          With A \rightarrow G
          A \leftarrow \{A,B,C,D,E,F,G,H,I\}
          Without A \rightarrow G
          A \leftarrow \{A,B,C,D,E,F,G,H,I\}
          A \rightarrow G is redundant
g)
          With A \rightarrow H
          A+=\{A,B,C,D,E,F,G,H,I\}
          Without A \rightarrow H
          A+=\{A,B,C,D,E,F,G,I\}
          A \rightarrow H is not redundant
g1)
          With A \rightarrow I
          A+=\{A,B,C,D,E,F,G,H,I\}
          Without A \rightarrow I
          A \leftarrow \{A,B,C,D,E,F,G,H,I\}
          A \rightarrow I is redundant
h)
          With B \rightarrow E
          B+=\{B,E,C,I\}
          Without B \rightarrow E
          B+=\{B, C, I\}
          Therefore B \to E is not redundant
i)
          With B \rightarrow C
          B+=\{B,C,E,I\}
          Without B \rightarrow C
          B+=\{B,E,I\}
          Therefore B \rightarrow C is not redundant
i1)
          With B \rightarrow I
          B+=\{B,C,E,I\}
          Without B \rightarrow I
          B+=\{B,C,E\}
          Therefore B → I is not redundant
j)
          With H \rightarrow G
          H+=\{H,G,F\}
          Without H \rightarrow G
          H+=\{H,F\}
          Therefore H \rightarrow G is not redundant
k)
          With H \rightarrow F
          H+=\{H,G,F\}
          Without H \rightarrow F
          H+=\{H,G\}
          Therefore H \rightarrow F is not redundant
```


MINIMAL FDs:

- \bullet A \rightarrow B,D,H
- $\bullet~H \to F,G$
- B \rightarrow C,E,I

Candidate key of the relation is {A}

Therefore

- PA={A}
- NPA={B,C,D,E,F,G,H,I}

4)Inventory:

A-Inventory_id

B-Batch no

C-Location

D-Status

E-Qty

F-Expiry_date

G-Supplier_id

H-Drug_id

I-Invoice_date

FDs:

- A,H → B,C,D,E,F,G,I
- $\bullet \ A \to C, D, B$ $\bullet \ A, G \to I$

Schema:

Decomposing:

 $A,H \rightarrow B$

 $A,H \rightarrow C$

 $A,H \rightarrow D$

 $A,H \rightarrow E$ $A,H \rightarrow F$

 $A,H \rightarrow G$

 $A,H \rightarrow I$

A→C

 $A,G \rightarrow I$

```
Minimal FDs:
a)A,H \rightarrow B
        With A, H \rightarrow B
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Without AH \rightarrow B
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Therefore the above FD is redundant
b)
        With AH \rightarrow C
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Without AH \rightarrow C
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Therefore the above FD is redundant
c)
        With AH \rightarrow D
        AD+=\{A,B,C,D,E,F,G,H,I\}
        Without AH \rightarrow D
        AD+=\{A,B,C,D,E,F,G,H,I\}
        Therefore the above FD is redundant
d)
        With AH \rightarrow E
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Without AH \rightarrow E
        AH+=\{A,B,C,D,F,G,H,I\}
        Therefore the above FD is not redundant
e)
        With AH \rightarrow F
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Without AH \rightarrow F
        AH+=\{A,B,C,D,E,G,H,I\}
        Therefore the above fd is not redundant
f)
        With A,H \rightarrow G
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Without AH \rightarrow G
        AH+=\{A,B,C,D,E,F,H,I\}
        Therefore the above fd is not redundant
g)
        With AH \rightarrow I
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Without AH \rightarrow I
        AH+=\{A,B,C,D,E,F,G,H,I\}
        Therefore the above fd is redundant
h)
        With A,G \rightarrow I
        AG+=\{A,G,I\}
        Without A,G \rightarrow I
        AG += \{A,G\}
```


Therefore the above fd is not redundant

MINIMAL FDs:

- \bullet AH \rightarrow EFG
- A→B,C,D
- $\bullet \ AG \to I$

The candidate key for the relation is AH. PA={A,H} NPA={B,C,D,E,F,G,I}

5)CUSTOMER TABLE:

ATTRIBUTES:

A: CUST_ID

B: CUST_NAME

C: EMAIL

D: ADDRESS

E: PHONE

F: PAY ID

G: PAY_AMT

H: PAY_DATE

FUNCTIONALS DEPENDENCIES:

 $A \rightarrow B$, C , D , E

 $A, B \rightarrow C$

 $\mathsf{A} \ , \ \mathsf{B} \to \mathsf{C}$

 $A, B \rightarrow B, C$

 $A, D \rightarrow E$

 $F \rightarrow G$, H

Minimal FD's:

REMOVING TRIVIAL FD's : A , B \rightarrow B, C

Schema:


```
AFTER DECOMPOSING:
```

```
A \rightarrow B
```

 $A \rightarrow C$

 $\mathsf{A}\to\mathsf{D}$

 $\mathsf{A}\to\mathsf{E}$

$$A, B \rightarrow C$$

A , $D \rightarrow E$

 $\mathsf{F} \to \mathsf{G}$

 $\mathsf{F}\to\mathsf{H}$

CHECKING FOR EXTRANEOUS:

1) A, $B \rightarrow C$

TAKING B AS EXTRANEOUS:

 $A \rightarrow C$

 ${A}+ = {A, B, C, D, E}$

TAKING A AS EXTRANEOUS:

 $B \rightarrow C$

 $\{B\} + = \{B, C\}$

SO , $A \rightarrow$; C IS THE MINIMAL FD.

2) A, D \rightarrow E

TAKING A AS EXTRANEOUS:

 $A \rightarrow E$

 ${A}+ = {A, B, C, D, E}$

TAKING A AS EXTRANEOUS:

 $D \rightarrow E$

 $\{D\} + = \{D, E\}$

SO, $A \rightarrow E$ IS THE MINIMAL FD.

NON - REDUNDANT AND MINIMAL FD's:

 $A \rightarrow B$

 $A \rightarrow C$

 $\mathsf{A}\to\mathsf{D}$ $A \rightarrow E$

 $\mathsf{F}\to\mathsf{G}$

 $\mathsf{F}\to\mathsf{H}$

FINDING CANDIDATE KEY:

6)MANUFACTURERS:

Attributes:

A: MANUFACTURER_ID

B: MANUFACTURER_NAME

C: ADDRESS

D: EMAIL

E: PHONE_NO

F: INVENTORY_ID

Functional Dependencies:

Given the attributes, the likely functional dependencies can be inferred as follows:

$$A \rightarrow B, C, D, E, F$$

Minimal FD's:

 $\mathsf{A}\to\mathsf{B}$

 $\mathsf{A} \to \mathsf{C}$

 $\mathsf{A}\to\mathsf{D}$

 $\mathsf{A} \to \mathsf{E}$

 $\mathsf{A}\to\mathsf{F}$

Since the given dependency is already minimal and there are no composite keys, we can proceed to normalization.

Schema:

Candidate Key:

SSI

{A} (MANUFACTURER_ID)

Prime Attributes:

{A}

Non-Prime Attributes:

• {B, C, D, E, F}

7)ORDERS:

Let the attributes be:

A: ORDER_ID

B: ORDER_DATE

C: DELV_DATE

D: QUANTITY

E: TOT_AMT

F: CUST_ID

G: DRUG_ID

Functional Dependencies:

AG->DE

AF->BC

A->BCF

Minimal FD's:

=>Splitting the FD's:

A->B

A->C

A->F

AF->B

AF->C

AG->D

AG->E

Schema:

=>Removing Extraneous Attributes:

Extraneous Attributes are:

Since,

A->B , A->C

=>Checking For Redundancy:

a) A->B

With A->B:

 $A+=\{B,C,D,E,F,G\}$

Without A->B:

 $A+=\{C,D,E,F,G\}$

A->B IS NOT REDUNDANT.

b) A->C

With A->C:

 $A+=\{B,C,D,E,F,G\}$

Without A->C:

 $A+=\{B,D,E,F,G\}$

A->C IS NOT REDUNDANT.

c) A->F

With A->F:

 $A+=\{B,C,D,E,F,G\}$

Without A->F:

 $A+=\{B,C,D,E,G\}$

A->F IS NOT REDUNDANT.

d) AG->D

With AG->D:

 $AG+=\{A,G,D,E\}$

Without AG->D:

 $AG+=\{A,G,E\}$

AG->D IS NOT REDUNDANT.

e) AG->E

With AG->E:

 $AG+=\{A,G,D,E\}$

Without AG->E:

 $AG+=\{A,G,D\}$

AG->E IS NOT REDUNDANT.

CANDIDATE KEY: {A,AG}

PRIME ATTRIBUTES: {A,G}

NON-PRIME ATTRIBUTES: {B,C,D,E,F}

ER DIAGRAM:

PHASE 2 NORMALIZATION OF RELATIONS INTO

BCNF,3NF

1)Pharmacy:

Checking for 1NF:

• Atomicity is satisfied in this relation relation

Therefore the following relation is in the 1NF

Checking for 2NF:

- No partial dependency should determine a NPA attribute of the relation
- Therefore the given relation satisfies the above condition
- The given relation is in the 2NF

Checking for 3NF:

- No NPA → NPA in the relation
- \bullet C \rightarrow E
- $H \rightarrow F,G$
- The above FDs violate the 3NF conditions

Checking for BCNF:

The condition for BCNF is

- LHS must be a super key
- There is no FDs that violate BCNF

Pharmacy1

Pharmacy1:

Candidate key = $\{A\}$

FD's= $\{A \rightarrow B,C,D,H,I\}$

Pharmacy2:

Candidate $key=\{c\}$

SSI

$$FD's=\{C \rightarrow E\}$$

Pharmacy3:

Candidate key={H}

FD's=
$$\{H \rightarrow F,G\}$$

Pharmacy4:

Candidate $key = \{A\}$

FD's =
$$\{A \rightarrow C, H\}$$

2)Supplier:

Checking for 1NF:

- The atomicity of the relation is satisfied.
- The following FDs are in 1NF relation.

Checking for 2NF:

- No partial dependency should determine a NPA attribute of the relation
- Therefore the given relation satisfies the above condition
- The given relation is in the 2NF

Checking for 3NF:

• No transitive dependency in the relation

• NPA \rightarrow NPA

The fd which violates the 3NF is C,E \rightarrow D

Supplier1:

- Candidate key={A}
- PA={A}
- NPA= $\{B,C,E\}$
- FDs:

 $A \rightarrow B,C,E$

Supplier2:

- Candidate Key={C}
- PA={C}
- NPA= $\{E,D\}$
- FDs:

SSI

 $C \rightarrow E,D$

Checking for BCNF:

- LHS must be a super key
- The relation satisfies BCNF

3)DRUG:

Checking for 1NF:

- The atomicity of the relation is satisfied.
- The above relation satisfies the condition.

Checking for 2NF:

- No partial dependency should exist in the relation
- The above relation satisfies the condition.

Checking for 3NF:

- No transitive dependency should exist in the relation.
- NPA \rightarrow NPA

 $H \rightarrow F,G$

 $B \rightarrow C, E, I$

The above two FDs violate the 3NF condition.

The 3NF is satisfied.

Drug1:

- Candidate key={A}
- PA={A}
- NPA={B,D,H}
- FDs:

$$A \rightarrow B,D,H$$

Drug2:

- Candidate key={H}
- PA={H}
- NPA= $\{F,G\}$
- FDs:

SSI

Drug3:

- Candidate key={B}
- PA={B}
- NPA={C,E,I}
- FDs:

$$B \rightarrow C, E, I$$

Checking for BCNF:

- LHS must be a Super-key
- The above relation satisfies the BCNF condition

4)Inventory:

Checking for 1NF:

The atomicity of the relation is satisfied

Checking for 2NF:

No partial dependency in the relation

A→BCD Violates the 2NF condition

Inventory1:

- Candidate key={A,H}
- PA={A,H}
- NPA= $\{E,F,G,I\}$
- FDs:

Inventory2:

- Candidate key={A}
- PA={A}
- NPA={CBD}
- FDs:

Checking for 3NF:

- PA={AH}
- NPA= $\{E,G,I,F\}$
- Candidate key is AH
- No transitive dependency should exist in the relation
- NPA→NPA

AG→I

violates the condition for 3NF

Therefore 3CNF is satisfied

Checking for BCNF:

- LHS must be a super-key
- The above relation satisfies the condition.

5) CUSTOMER TABLE:

CHECKING FOR 1NF:

COMPOSITE AND MULTIVALUED ATTRIBUTE PRESENT

DECOMPOSING TO 1 NF:

D1: DOOR_NO

D2: CITY

D3: PINCODE

E1: PHONE_NUM1

E2: PHONE_NUM2

CUSTOMER1 TABLE FDS ARE:

 $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow D1$, $A \rightarrow D2$, $A \rightarrow D3$, $F \rightarrow G$, $F \rightarrow H$

CUSTOMER2 TABLE FDS ARE:{A -> E1, E2}

A IS THE CANDIDATE KEY FOR CUSTOMER1 TABLE.

CHECKING FOR 2NF:

PARTIAL DEPENDENCIES ARE PRESENT IN CUSTOMER1 TABLE.

THE FDS WITH PARTIAL DEPENDENCIES

{

{

SSI

```
A \rightarrow B , C , D1 , D2 , D3 F \rightarrow G, H
```

DECOMPOSING TO 2NF:

CHECKING FOR FURTHER PARTIAL DEPENDENCIES:

IN CUSTOMER1 TABLE THE CANDIDATE KEY IS {A}

THERE IS NO PARTIAL DEPENDENCIES IN CUSTOMER1.

IN PAYMENT1 TABLE THE CANDIDATE KEY ID {F}

THERE IS NO PARTIAL DEPENDENCIES IN PAYMENT1.

CHECKING FOR 3NF:

NO, TRANSITIVE DEPENDENCIES IS PRESENT.

THEREFORE 3NF IS SATISFIED.

CHECKING FOR BCNF:

ALL FDS HAVE SUPER KEY AS THE LEFT ATTRIBUTE.

THEREFORE BCNF IS SATISFIED.

6)MANUFACTURERS:

1NF (First Normal Form):

- Condition: The relation with the functional dependency A → B, C, D, E, F is in First Normal Form (1NF) because:
- All attributes contain atomic values.
- Each attribute holds a single value.
- Values in each column are of the same data type.
- Each row is uniquely identified by the primary key MANUFACTURER_ID, ensuring there are no repeating groups or arrays.

Conclusion: The given relation satisfies all the conditions of 1NF.

2NF (Second Normal Form):

- Condition: A relation is in 2NF if it is in 1NF and all non prim attributes are fully functionally dependent on the entire primary key.
- Explanation:

The relation is in 1NF because all attributes contain only atomic values.

The primary key is A (MANUFACTURER_ID).

- The functional dependency A → B, C, D, E, F shows that all non prime attributes (B, C, D, E, F) are fully functionally dependent on the primary key A.
- Since A is a single attribute key, there cannot be partial dependencies.

Conclusion: The relation is in 2NF because it is in 1NF and all non-prime attributes are fully functionally dependent on the primary key A.

3NF (Third Normal Form):

- Condition: A relation is in 3NF if it is in 2NF and for every functional dependency X
 → Y, either X is a super key or Y is a prime attribute.
- Explanation:

The relation is already in 2NF.

For the dependency $A \rightarrow B$, C, D, E, F, the left-hand side A is a super key (since A is the primary key).

There are no transitive dependencies (dependencies where a non-prime attribute depends on another non-prime attribute).

Conclusion: The relation is in 3NF because it is in 2NF and for every functional dependency, the left-hand side is a super key.

BCNF (Boyce-Codd Normal Form):

Condition: A relation is in BCNF if for every non-trivial functional dependency $X \rightarrow Y$, X is a super key.

• Explanation:

The relation is already in 3NF.

The given functional dependency $A \rightarrow B$, C, D, E, F shows that the primary key A determines all other attributes.

In this case, A (MANUFACTURER_ID) is a super key because it uniquely identifies each tuple in the relation.

There are no other functional dependencies where a non-super key determines another attribute.

MANUFACTURER

MANUFACTURER_ID	MANUFACURER_NAME	ADDRESS	EMAIL	PHONE_NO	INVENTORY_ID
	↑	<u> </u>	<u> </u>	<u> </u>	<u> </u>

7)ORDERS:

• 1NF(First Normal Form):

The relations with the functional dependency $A \rightarrow B$, C, F AND AG->D,E are in First Normal Form (1NF) because:

- All attributes contain atomic values.
- Each attribute holds a single value.
- Values in each column are of the same data type.
- Each row is uniquely identified by the primary key order_id, (order_id,drug_id) ensuring there are no repeating groups or arrays.

Therefore, the given relation satisfies all the conditions of 1NF.

• 2NF (Second Normal Form):

- To satisfy Second Normal Form (2NF), the relation must first be in 1NF and also meet the following criteria:
- There should be no partial dependency, which means no non-prime attribute should be functionally dependent on any proper subset of any candidate key of the relation.
- Given:
 - The candidate keys are {A, AG}.
 - Prime attributes are {A, G}.
 - Non-prime attributes are $\{B, C, D, E, F\}$.
 - From the given functional dependencies:
 - $\bullet \quad A \to B$
 - $\bullet \quad A \to C$
 - $\bullet \quad A \to F$
- These functional dependencies show that B, C, and F are dependent on A, which is a candidate key by itself, so there is no partial dependency with respect to A.
- However, for the combined candidate key AG:
 - $\bullet \quad AG \to D$
 - $AG \rightarrow E$
 - Since A is a subset of AG and:
 - \bullet A \rightarrow B
 - $\bullet \quad A \to C$
 - $\bullet \quad A \to F$

- These show that B, C, and F are partially dependent on A (a proper subset of AG), thus indicating a partial dependency, which violates 2NF.
- Therefore, the given relation does not satisfy 2NF due to partial dependencies of non-prime attributes on a part of a candidate key.

• 3NF (Third Normal Form):

-Condition: A relation is in 3NF if it is in 2NF and for every functional dependency $X \to Y$, either X is a super key or Y is a prime attribute.

- Explanation:
- The relation is already in 2NF.
- For $A \rightarrow B, C, F$
- There are no transitive dependencies (dependencies where a non-prime attribute depends on another non-prime attribute).
- Conclusion: The relation is in 3NF because it is in 2NF and for every functional dependency, the left-hand side is a super key.

-For AG->DE:

- There are no transitive dependencies (dependencies where a non-prime attribute depends on another non-prime attribute).
- Conclusion: The relation is in 3NF because it is in 2NF and for every functional dependency, the left-hand side is a super key.

• BCNF (Boyce-Codd Normal Form):

- Condition: A relation is in BCNF if for every non-trivial functional dependency X → Y,
 X is a superkey.
- Explanation:
- The relation is already in 3NF.
- The given functional dependency $A \rightarrow B$, C F and AG ->DE shows that the primary key A and AG determines all other attributes of the same table.

FINAL SCHEMA:

PHARMACY

SUPPLIER

DRUG

SQL CODE:

```
DROP TABLE ORDER LIST;
DROP TABLE ORDERS;
DROP TABLE PHARMACY;
DROP TABLE MANUFACTURER;
DROP TABLE SUPPLIER;
DROP TABLE INVENTORY;
DROP TABLE DRUGS;
DROP TABLE CUSTOMER;
CREATE TABLE CUSTOMER(
    USER_NAME VARCHAR2(100) CONSTRAINT C_ID_PK PRIMARY KEY,
    PASSWORD VARCHAR2(100),
    CUST NAME VARCHAR2(100),
    EMAIL VARCHAR2(100),
    DOOR_NO INT,
    CITY VARCHAR2(100),
    PINCODE NUMERIC(6)
);
CREATE TABLE DRUGS(
    DRUG_ID CHAR(4) CONSTRAINT D_ID_PK PRIMARY KEY,
    DRUG NAME VARCHAR2(100),
    STORAGE_CONDITION VARCHAR2(100),
    DRUG CODE INT,
    UNIT_PRICE INT,
    CONSTRAINT D ID CH CHECK(DRUG ID LIKE 'D%')
);
CREATE TABLE INVENTORY(
    INVENTORY_ID CHAR(4) CONSTRAINT IN_PK PRIMARY KEY,
    DRUG_ID CHAR(4) CONSTRAINT I_FK_D REFERENCES DRUGS(DRUG_ID),
    EXPIRY DATE DATE,
    QTY INT,
    CONSTRAINT I_ID_CH CHECK(INVENTORY_ID LIKE 'I%')
);
CREATE TABLE SUPPLIER(
    SUPPLIER_ID CHAR(4) CONSTRAINT SUPPLIER_PK PRIMARY KEY,
    INVENTORY ID CHAR(4) CONSTRAINT I FK REFERENCES INVENTORY(INVENTORY ID),
    DRUG ID CHAR(4) CONSTRAINT D FK REFERENCES DRUGS(DRUG ID),
    SUPPLIER_NAME VARCHAR2(100),
    PHONE_NO VARCHAR2(10) CONSTRAINT S_PH_U UNIQUE,
    EMAIL VARCHAR2(100),
    CONSTRAINT S_ID_CH CHECK(SUPPLIER_ID LIKE 'S%')
);
```



```
CREATE TABLE MANUFACTURER(
    MANUFACTURER_ID CHAR(4) CONSTRAINT MF_PK PRIMARY KEY,
    MANUFACTURER_NAME VARCHAR2(100),
    DRUG_ID CONSTRAINT D1_FK REFERENCES DRUGS(DRUG_ID),
    ADDRESS VARCHAR2(100),
    PHONE NO NUMERIC CONSTRAINT M PH U UNIQUE,
    EMAIL VARCHAR(100),
    INVENTORY_ID CHAR(4) CONSTRAINT M_FK_I REFERENCES INVENTORY(INVENTORY_ID),
    CONSTRAINT M_ID_CH CHECK(MANUFACTURER_ID LIKE 'M%')
);
CREATE TABLE PHARMACY(
    DRUG_ID CHAR(4) CONSTRAINT D_FK_P REFERENCES DRUGS(DRUG_ID),
    SUPPLIER_ID CHAR(4) CONSTRAINT S_FK_P REFERENCES SUPPLIER(SUPPLIER_ID),
    SUPPLIED_QTY INT,
    PHARMACY_NAME VARCHAR2(100),
    PHONE_NO NUMERIC(10) CONSTRAINT P_PH_U UNIQUE,
    CONSTRAINT P_ID_PK PRIMARY KEY(SUPPLIER_ID,DRUG_ID)
);
CREATE TABLE ORDERS(
    ORDER_ID CHAR(4) CONSTRAINT O_PK PRIMARY KEY,
    USER_NAME VARCHAR2(100) CONSTRAINT O_FK_C REFERENCES CUSTOMER(USER_NAME),
   ORDER_DATE DATE,
    TOTAL_AMT INT,
    CONSTRAINT O_ID_CH CHECK(ORDER_ID LIKE '0%')
);
CREATE TABLE ORDER_LIST(
    ORDER_ID CHAR(4) CONSTRAINT O_FK_OL REFERENCES ORDERS(ORDER_ID),
    DRUG_ID CHAR(4) CONSTRAINT D_FK_O REFERENCES DRUGS(DRUG_ID),
    QTY INT,
    CONSTRAINT CMP_KEY_OL PRIMARY KEY(ORDER_ID,DRUG_ID)
);
INSERT INTO CUSTOMER (USER_NAME, PASSWORD, CUST_NAME, EMAIL, DOOR_NO, CITY,
PINCODE) VALUES
('john_doe', 'password123', 'John Doe', 'john.doe@example.com', 101, 'New York',
10001);
INSERT INTO CUSTOMER (USER_NAME, PASSWORD, CUST_NAME, EMAIL, DOOR_NO, CITY,
PINCODE) VALUES
('jane_smith', 'pass456', 'Jane Smith', 'jane.smith@example.com', 202, 'Los Ange-
les', 90001);
```

```
INSERT INTO CUSTOMER (USER_NAME, PASSWORD, CUST_NAME, EMAIL, DOOR_NO, CITY,
PINCODE) VALUES
('alice_w', 'alice789', 'Alice Wonderland', 'alice.w@example.com', 303, 'Chicago',
60007);
INSERT INTO DRUGS (DRUG ID, DRUG NAME, STORAGE CONDITION, DRUG CODE, UNIT PRICE)
('D001', 'Aspirin', 'Room Temperature', 1001, 10);
INSERT INTO DRUGS (DRUG_ID, DRUG_NAME, STORAGE_CONDITION, DRUG_CODE, UNIT_PRICE)
VALUES
('D002', 'Paracetamol', 'Cool and Dry', 1002, 15);
INSERT INTO DRUGS (DRUG_ID, DRUG_NAME, STORAGE_CONDITION, DRUG_CODE, UNIT_PRICE)
VALUES
('D003', 'Ibuprofen', 'Room Temperature', 1003, 12);
INSERT INTO INVENTORY (INVENTORY_ID, DRUG_ID, EXPIRY_DATE, QTY) VALUES
('I001', 'D001', '31-DEC-2023', 100);
INSERT INTO INVENTORY (INVENTORY ID, DRUG ID, EXPIRY DATE, QTY) VALUES
('I002', 'D002', '30-NOV-2023', 200);
INSERT INTO INVENTORY (INVENTORY_ID, DRUG_ID, EXPIRY_DATE, QTY) VALUES
('I003', 'D003', '31-OCT-2023', 150);
INSERT INTO SUPPLIER (SUPPLIER_ID, INVENTORY_ID, DRUG_ID, SUPPLIER_NAME, PHONE_NO,
EMAIL) VALUES
('S001', 'I001', 'D001', 'Supplier One', '1234567890', 'supplier1@example.com');
INSERT INTO SUPPLIER (SUPPLIER_ID, INVENTORY_ID, DRUG_ID, SUPPLIER_NAME, PHONE_NO,
EMAIL) VALUES
('S002', 'I002', 'D002', 'Supplier Two', '0987654321', 'supplier2@example.com');
INSERT INTO SUPPLIER (SUPPLIER_ID, INVENTORY_ID, DRUG_ID, SUPPLIER_NAME, PHONE_NO,
EMAIL) VALUES
('S003', 'I003', 'D003', 'Supplier Three', '1122334455', 'supplier3@example.com');
INSERT INTO MANUFACTURER (MANUFACTURER_ID, MANUFACTURER_NAME, DRUG_ID, ADDRESS,
PHONE_NO, EMAIL, INVENTORY_ID) VALUES
('M001', 'Manufacturer One', 'D001', '123 Street, City', 1112223333, 'manu1@exam-
ple.com', 'I001');
```



```
INSERT INTO MANUFACTURER (MANUFACTURER_ID, MANUFACTURER_NAME, DRUG_ID, ADDRESS,
PHONE_NO, EMAIL, INVENTORY_ID) VALUES
('M002', 'Manufacturer Two', 'D002', '456 Avenue, City', 4445556666, 'manu2@exam-
ple.com', 'I002');
INSERT INTO MANUFACTURER (MANUFACTURER_ID, MANUFACTURER_NAME, DRUG_ID, ADDRESS,
PHONE NO, EMAIL, INVENTORY ID) VALUES
('M003', 'Manufacturer Three', 'D003', '789 Boulevard, City', 7778889999,
'manu3@example.com', 'I003');
INSERT INTO PHARMACY (DRUG_ID, SUPPLIER_ID, SUPPLIED_QTY, PHARMACY_NAME, PHONE_NO)
VALUES
('D001', 'S001', 50, 'Pharmacy One', 1231231231);
INSERT INTO PHARMACY (DRUG_ID, SUPPLIER_ID, SUPPLIED_QTY, PHARMACY_NAME, PHONE_NO)
VALUES
('D002', 'S002', 75, 'Pharmacy Two', 4564564564);
INSERT INTO PHARMACY (DRUG ID, SUPPLIER ID, SUPPLIED QTY, PHARMACY NAME, PHONE NO)
VALUES
('D003', 'S003', 100, 'Pharmacy Three', 7897897897);
INSERT INTO ORDERS (ORDER_ID, USER_NAME, ORDER_DATE, TOTAL_AMT) VALUES
('0001', 'john_doe', '15-JUN-2023', 150);
INSERT INTO ORDERS (ORDER_ID, USER_NAME, ORDER_DATE, TOTAL_AMT) VALUES
('0002', 'jane_smith', '16-JUN-2023', 200);
INSERT INTO ORDERS (ORDER_ID, USER_NAME, ORDER_DATE, TOTAL_AMT) VALUES
('0003', 'alice_w','17-JUN-2023', 180);
INSERT INTO ORDER LIST (ORDER ID, DRUG ID, QTY) VALUES
('0001', 'D001', 10);
INSERT INTO ORDER_LIST (ORDER_ID, DRUG_ID, QTY) VALUES
('0001', 'D002', 5);
INSERT INTO ORDER_LIST (ORDER_ID, DRUG_ID, QTY) VALUES
('0002', 'D002', 10);
INSERT INTO ORDER_LIST (ORDER_ID, DRUG_ID, QTY) VALUES
('0002', 'D003', 8);
```

```
INSERT INTO ORDER_LIST (ORDER_ID, DRUG_ID, QTY) VALUES
('0003', 'D001', 6);
INSERT INTO ORDER_LIST (ORDER_ID, DRUG_ID, QTY) VALUES
('0003', 'D003', 12);
```


Trigger used:

Trigger is used to make sure that order date is prior to expiry date.

```
CREATE OR REPLACE TRIGGER trg_check_order_date
BEFORE INSERT ON ORDER_LIST
FOR EACH ROW
DECLARE
    v_order_date ORDERS.ORDER_DATE%TYPE;
    v_expiry_date INVENTORY.EXPIRY_DATE%TYPE;
BEGIN
    -- Retrieve the order date from the ORDERS table
    SELECT ORDER_DATE INTO v_order_date
    FROM ORDERS
   WHERE ORDER_ID = :NEW.ORDER_ID;
    -- Retrieve the expiry date from the INVENTORY table
    SELECT EXPIRY_DATE INTO v_expiry_date
    FROM INVENTORY
   WHERE DRUG_ID = :NEW.DRUG_ID;
    -- Check if the order date is before the expiry date
    IF v_order_date >= v_expiry_date THEN
        RAISE_APPLICATION_ERROR(-20001, 'Order date must be before the expiry date
of the drug.');
   END IF;
END;
```


Procedure used:

Procedure is used to calculate the bill amount for the order.

```
CREATE OR REPLACE PROCEDURE CALCULATE_TOTAL_AMOUNT (
    p_order_id IN CHAR
) AS
   v_total_amt INT := 0;
BEGIN
    -- Calculate the total amount for the given order ID
    SELECT SUM(o1.QTY * d.UNIT_PRICE)
    INTO v_total_amt
    FROM ORDER LIST ol
    JOIN DRUGS d ON ol.DRUG_ID = d.DRUG_ID
   WHERE ol.ORDER_ID = p_order_id;
    -- Update the total amount in the ORDERS table
   UPDATE ORDERS
    SET TOTAL_AMT = v_total_amt
   WHERE ORDER_ID = p_order_id;
   COMMIT;
END;
```


OUTPUT SCREENSHOTS:

Login Page:

This is the basic login page that would be displayed to the user where the user has to enter their login credentials to access the page further.

Customer Login:

Menu Page:

Menu Page will display the various options that are available to the user. The options include gateway to view the profile ,to visit the orders placed, to place new order.

Profile Page:

Profile page will display the details of the customer that includes their customer name, user name, password, mail_id, address details, etc.

Customer Profile:

Supplier profile:

Orders Placed:

Orders Placed will contain in detail contents of the orders placed by the customer. It provides the details of order_id,drug id of the drug ordered, quantity orders,total amount.

Orders List After Placing New order:

Placing New order:

Orders page will open the gateway to order new drug where user must give inputs like drug id,quantity to be ordered.

Available Stock:

Supplier Adding New Stock:

Manufacturer Adding New Drug:

NOVELTY:

- Deploy the pharmacy management system on a cloud platform to leverage scalability, reliability, and flexibility.
- Use AI to predict future trends, helping the pharmacy to manage inventory more effectively and anticipate demand.
 - Analyze feedback and reviews to continually improve services and user satisfaction
 - Implement advanced security features to protect user data and ensure secure transactions.
 - Integrate the pharmacy management system with external services and platforms for enhanced functionality.

