

Replica Exchange Simulations of Protein-Protein Binding and Multi-protein Complex Formation

Youngchan Kim and Gerhard Hummer

Laboratory of Chemical Physics

National Institute of Diabetes and Digestive and Kidney Diseases

National Institutes of Health

February 3, 2009 NIH Biowulf Symposium

Background

- Many biological functions are carried out by large, multiprotein assemblies
 - DNA transcriptional regulation
 - Signal transduction
 - Nuclear pore complex
 - Membrane-protein trafficking
 - Viral entry and release

ESCRT machinery (Membrane trafficking)

Motivation

Understanding structure and dynamics of multi-protein assemblies

- Many multi-protein assemblies form only transiently
 - Held together by relatively weak pairwise interactions ($K_d > 1 \mu M$)
- Multi-protein assemblies contain unstructured regions
 - Flexible polymeric linkers connecting structured domains
- ⇒ Challenges for traditional structural approaches
 - X-ray crystallography: Difficult to crystallize weak complexes with unstructured regions
 - NMR spectroscopy: Size limits
 - Electron microscopy: Trapping of functional assemblies
- ⇒ New opportunities for modeling, simulation, and theory!
 - Complement experiments
 - Provide predictions, insights, and new directions

Outline

1. Model and Method:

- Validation: structures and binding affinities
- 2. Structure and dynamics of multiprotein assemblies
 - Vps27/Hse1: ESCRT protein sorting machinery
 - Collaboration with James H. Hurley,
 NIDDK
- 3. Transient encounter complexes in protein-protein complex formation
 - Paramagnetic relaxation enhancement
 NMR of protein-protein complexes
 - Collaboration with G. Marius Clore, NIDDK

Coarse-grained model for multi-protein assemblies

- Residue-level (C_α only) coarse-graining
 - Rigid body for structured domains
- Transferable energy function
 - Long-range Debye-Hückel electrostatic interactions
 - Residue-dependent short-range interactions (Miyazawa-Jernigan statistical contact potentials)
 - Experimental inputs: Lysozyme osmotic protein secondvirial coefficient and Ub-CUE protein binding affinity
- Flexible linkers: polymer model
 - Harmonic stretching potential
 - Bending potential
 - Torsion angle potential
- Membrane interactions
 - Planar membrane
 - Short-range interactions between residues and membrane
 - Electrostatic interactions

(YCK, Hummer, J. Mol. Biol. 375, 1416, 2008)

Simulation method

Replica exchange Monte Carlo

- Twenty replicas at different temperatures
- Enhances equilibrium sampling
- Implemented in the parallel architecture of Biowulf cluster

Validation: complex structure

Validation: binding affinities

(YCK, Hummer; J. Mol. Biol. 375, 1416, 2008)

Application I:multi-vesicular body (MVB) protein sorting machinery

- The ESCRT machinery targets ubiquitinated transmembrane proteins for degradation in the lysosome or yeast vacuole
- ESCRTs are required for HIV budding at the plasma membrane

Vps27/Hse1(yeast) Hrs/STAM(human)

Structure of the assembled Vps27/Hse1 complex

(Prag, Watson, YCK, Beach, Ghirlando, Hummer, Bonifacino, Hurley, Dev. Cell 12, 973, 2007)

Vps27/Hse1 complex is dynamic and open

Hrs/STAM(human) complex also shows open structures

Positive cooperativity enhances Vps27 binding to ubiquitin

(YCK, Hummer; *J. Mol. Biol.* **375**, 1416, 2008)

Summary I: Simulations of Vps27/Hse1

- Dynamic and open structure
 - Important for targeting a variety of ubiquitinated cargos
- Cooperative binding of ubiquitin via nonspecific interactions
 - Essential for function at low biological concentrations
- Are nonspecific interactions detectable?

Application II: Transient encounter complexes probed by simulation and NMR

 Paramagnetic relaxation enhancement (PRE) probes the presence of low-population (<10%) transient encounter complexes

$$\Gamma_2 = 2.0 \text{ s}^{-1}$$

Iwahara, Clore, Nature **440**, 1227, 2006

PRE $\sim 1/r^6$

NMR Paramagnetic Relaxation Enhancement (encounter complexes of HPr-IIA^{Mannose}?)

PRE of backbone amide protons on IIA^{Mannose}

Can we simulate encounter complexes?

(Tang, Iwahara, Clore, *Nature* **444**, 383, 2006)

Replica-exchange simulations of HPr-IIA^{Man} complex

Coarse-grained simulation model (YCK,

Hummer; J. Mol. Biol. 375, 1416, 2008)

 $K_d(\exp)\sim 30 \,\mu\text{M} \Rightarrow \text{error} \sim kT \,\text{ln} \,60 \sim 2.5 \,\text{kcal/mol}$

PRE profiles of HPr-IIA^{Man} complex

PRE of backbone amide protons on IIA^{Mannose}

(YCK, Tang, Clore, Hummer, Proc. Natl. Acad. Sci. USA 105, 12855, 2008)

Reweighting of simulation structures

- Simulation model should not be expected to produce accurate populations
- 2 kT binding free energy difference
 - → 10-fold difference in population
 - ⇒Cluster the structures of the specific and non-specific complexes
 - ⇒Re-weight the populations of the clusters to match PRE profiles

PRE profiles of HPr-IIA^{Man} complex

PRE of backbone amide protons on IIA^{Mannose}

(YCK, Tang, Clore, Hummer, Proc. Natl. Acad. Sci. USA 105, 12855, 2008)

Energy landscape of protein complex formation

Funnel-like energy landscape

(YCK, Tang, Clore, Hummer, Proc. Natl. Acad. Sci. USA 105, 12855, 2008)

Summary II: Biology of transient encounter complexes

- Accelerated on-rate (barnase: Schreiber, Fersht, Nat Struct Biol 3, 427, 1996)
- Strengthening of weak specific interactions in multi-protein assemblies (Vps27)
- Alternative binding modes (mannose transport: Hu et al. J Biol Chem 283, 11024, 2008)
- Evolutionary remnants of earlier specific interactions?

Conclusion

 Coarse-grained model and transferable energy function provide valuable and complementary information regarding structures and dynamics of multi-protein assemblies and transient encounter complexes

Acknowledgments

Gerhard Hummer (NIDDK, NIH)

ESCRT complex

James Hurley (NIDDK, NIH)

PRE of encounter complexes

- G. Marius Clore (NIDDK, NIH)
- Chun Tang (U. Missouri)

Computational resources

- NIH Biowulf
- Helix Systems Staff