DATE: NAME: CLASS:

Chapter 5 Energy and Change

Practice Problems

Problem 1

The molar heat capacities of the elements Li_(s) and Rb_(s) are respectively 24.8 J/mol·°C and 31.0 J/mol·°C.

- (a) Compare the heat absorbed by 1.00 g of each of these metals to increase the temperature by 1°C.
- (b) What mass of Rb is required to absorb the same amount of heat as 1.00 g of Li to achieve a temperature change of 1°C?

Problem 2

Two reactions are given by the following equations:

$$\begin{array}{l} X_{(g)} \, + \, W_{(g)} \, \to \, Z_{(g)} \, + \, Y_{(g)} \, + \, 30.0 \; kJ \\ Z_{(g)} \, + \, Y_{(g)} + 25 \; kJ \, \to \, P_{(g)} \\ \text{Find the } \Delta \! \textit{H}^o \; \text{value for the reaction} \; P_{(g)} \, \to \, X_{(g)} \, + \, W_{(g)}. \end{array}$$

Problem 3

When $CO_{2(s)}$ sublimes (changes directly from a solid to a gas) at -90° C, ΔH_{sub} is 16.20 kJ/mol. What is the mass of $CO_{2(s)}$ that must have undergone this process of sublimation if 186.0 kJ of heat is absorbed?

Problem 4

A calorimeter designed to have negligible heat loss is used to determine the specific heat capacity of metals. A piece of thallium having a mass of 111.2 g is warmed to 95.0°C and placed into the calorimeter containing 125.00 g of water at 12.5°C. The water temperature goes up to 14.9°C. Use this information to calculate the specific heat capacity of thallium. The specific heat capacity of water is 4.184 J/g·°C.

Problem 5

Use the data table of standard enthalpies of formation to help determine the enthalpy of reaction for each of the following reactions.

(a)
$$N_2O_{4(g)} + 3CO_{(g)} \rightarrow N_2O_{(g)} + 3CO_{2(g)}$$

(b) $4FeS_{2(s)} + 11O_{2(g)} \rightarrow 8SO_{2(g)} + 2Fe_2O_{3(s)}$

Problem 6

- (a) Write the balanced equation for the complete combustion of glucose, $C_6H_{12}O_{6(s)}$, to form carbon dioxide gas and water (liquid).
- (b) When a 2.000 g sample of glucose is burned in a bomb calorimeter, the temperature of 200.00 g of water rises by 37.3°C. What is the molar enthalpy of combustion of glucose?
- (c) Use the answers from (a) and (b) and the ΔH^0_f values from the data table of standard enthalpies of formation to calculate the ΔH^0_f value for glucose.

Problem 7

In the Contact process for the production of $H_2SO_{4(aq)}$, sulfur is burned to produce $SO_{2(g)}$. This gas is then converted to $SO_{3(g)}$ in the presence of a catalyst, and the resulting gas is dissolved in water to form the acid. The equations shown below summarize the process. Use this information to calculate the enthalpy of reaction, in kJ/mol, for the production of $H_2SO_{4(aq)}$.

$$\begin{array}{ll} \text{in kJ/mol, for the production of $H_2SO_{4(aq)}$.} \\ S_{8(s)} \ + \ 8O_{2(g)} \ \rightarrow \ 8SO_{2(g)} \ & \Delta H_1 = -2375.2 \text{ kJ} \\ 2SO_{2(g)} \ + \ O_{2(g)} \ \rightarrow \ 2SO_{3(g)} \ & \Delta H_2 = -196.6 \text{ kJ} \\ SO_{3(g)} \ + \ H_2O_{(l)} \ \rightarrow \ H_2SO_{4(aq)} \ & \Delta H_3 = -130.2 \text{ kJ} \end{array}$$

Problem 8

Determine the heat absorbed when a 5.00 g sample of $Fe_2O_{3(s)}$ undergoes the following reaction. $6Fe_2O_{3(s)} \rightarrow 4Fe_3O_{4(s)} + O_{2(g)}$

Problem 9

Use the ΔH information given to determine the $\Delta H_{\rm rxn}$ value for the following reaction.

$$\begin{array}{lll} 5CO_{2(g)} + Si_3N_{4(s)} & \rightarrow & 3SiO_{(s)} + 5CO_{(g)} + 2N_2O_{(g)} \\ \Delta H \ information: \\ 3SiO_{2(s)} + 2N_2O_{(g)} + 8CO_{(g)} & \rightarrow & Si_3N_{4(s)} + 8CO_{2(g)} \\ CO_{(g)} + SiO_{2(s)} & \rightarrow & SiO_{(g)} + CO_{2(g)} \\ \end{array} \qquad \begin{array}{lll} \Delta H_1 = -461.1 \ kJ \\ \Delta H_2 = +520.9 \ kJ \end{array}$$

Problem 10

Hydazine, $N_2H_{4(l)}$, will burn according to the reaction equation below. $N_2H_{4(l)}+3O_{2(g)}\rightarrow 2NO_{2(g)}+2H_2O_{(g)}$

- (a) Determine the ΔH_{comb} value for this reaction.
- (b) Calculate the amount of heat that is given off when a 10.0 kg sample of 87.8 % pure hydrazine is burned.

Answers

(a) Heat required to increase the temperature of 1.00 g of Li metal

$$= \frac{1 \text{ g}}{6.94 \text{ g/mol}} \times 24.8 \text{ J/mol} \cdot {}^{\circ}\text{C} \times 1 {}^{\circ}\text{C} = 3.57 \text{ J}$$

Heat required to increase the temperature of 1.00 g of Rb metal

=
$$\frac{1 \text{ g}}{85.47 \text{ g/mol}} \times 31.0 \text{ J/mol} \cdot ^{\circ}\text{C} \times 1^{\circ}\text{C} = 0.363 \text{ J}$$

(b) To achieve a temperature change of 1°C,

$$\frac{\text{Mass of Rb}}{1 \text{ g of Rb}} = \frac{3.57 \text{ J}}{0.363 \text{ J}}$$

Mass of Rb = 9.83 g of Rb

$$\begin{array}{l} X_{(g)} \, + \, W_{(g)} \, \longrightarrow \, Z_{(g)} \, + \, Y_{(g)} \, + \, 30.0 \; kJ \\ Z_{(g)} \, + \, Y_{(g)} + 25 \; kJ \, \longrightarrow \, P_{(g)} \end{array}$$

$$X_{(g)} + W_{(g)} \rightarrow P_{(g)} + 5.0 \text{ kJ}$$
 $\Delta H^{\circ} = -5.0 \text{ kJ}$
Therefore,

$$P_{(g)} \rightarrow X_{(g)} + W_{(g)}$$

$$\Delta H^{\circ} = +5.0 \text{ kJ}$$

3.

$$n \bmod CO_2 = \frac{\text{Mass of CO}_2}{44.01 \text{ g/mol}}$$

$$\frac{n \, \text{mol CO}_2}{1 \, \text{mol CO}_2} = \frac{186.0 \, \text{kJ}}{16.20 \, \text{kJ}}$$

$$n \text{ mol CO}_2 = 11.5 \text{ mol CO}_2$$

$$\frac{\text{Mass of CO}_2}{44.01 \text{ g/m s}^{-1}} = 11.5 \text{ mol CO}_2$$

Mass of
$$CO_2 = 506$$
 g of CO_2

4.

Heat lost by thallium = Heat gained by water $-m \cdot c \cdot \Delta T$ (thallium) = $m \cdot c \cdot \Delta T$ (water)

$$-(111.2 \text{ g})(c)(14.9^{\circ}\text{C} - 95.0^{\circ}\text{C}) = (125.00 \text{ g})(4.184 \text{ J/g} \cdot ^{\circ}\text{C})(14.9^{\circ}\text{C} - 12.5^{\circ}\text{C})$$

 $c = 0.14 \text{ J/g} \cdot ^{\circ}\text{C}$

(a)
$$N_2O_{4(g)} + 3CO_{(g)} \rightarrow N_2O_{(g)} + 3CO_{2(g)}$$

 $\Delta H^o_{rxn} = [\Delta H^o_f N_2O_{(g)} + 3\Delta H^o_f CO_{2(g)}] - [\Delta H^o_f N_2O_{4(g)} + 3\Delta H^o_f CO_{(g)}]$
 $= [81.6 \text{ kJ/mol} + 3(-393.5 \text{ kJ/mol})] - [11.1 \text{ kJ/mol} + 3(-110.5 \text{ kJ/mol})]$
 $= -1441.5 \text{ kJ/mol of } N_2O_4$

(b)
$$4\text{FeS}_{2(s)} + 11\text{O}_{2(g)} \rightarrow 8\text{SO}_{2(g)} + 2\text{Fe}_2\text{O}_{3(s)}$$

 $\Delta H^{\text{o}}_{\text{rxn}} = [8\Delta H^{\text{o}}_{\text{f}} \, \text{SO}_{2(g)} + 2\Delta H^{\text{o}}_{\text{f}} \, \text{Fe}_2\text{O}_{3(s)}] - [4\Delta H^{\text{o}}_{\text{f}} \, \text{FeS}_{2(s)} - 11\Delta H^{\text{o}}_{\text{f}} \, \text{O}_{2(g)}]$
 $= [8(-296.8 \, \text{kJ/mol}) + 2(-824.2 \, \text{kJ/mol})] - [4(-178.2 \, \text{kJ/mol}) - 11(0 \, \text{kJ/mol})]$
 $= -3310 \, \text{kJ/4} \, \text{mol of FeS}_2$
 $= -827.5 \, \text{kJ/mol of FeS}_2$

6. (a)
$$C_6H_{12}O_{6(8)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(l)}$$
(b) Heat gained by water = $m \cdot c \cdot \Delta T$ (water)
= $(200.00 \text{ g})(4.184 \text{ J/g}^{\circ}\text{C})(37.3^{\circ}\text{C})$
= 31.200 J
= 31.20 J
 $n \text{ mol } C_6H_{12}O_6 = \frac{2.000 \text{ g}}{180.18 \text{ g/mol}} = 0.01110 \text{ mol}$
 $\Delta H^{\circ}_{\text{comb}} = \frac{-31.2 \text{ kJ}}{0.01110 \text{ mol}} = -2.81 \times 10^3 \text{ kJ/mol}$
(c) $\Delta H^{\circ}_{\text{comb}} = [6\Delta H^{\circ}_{\text{F}}\text{CO}_{2(g)} + 6\Delta H^{\circ}_{\text{F}}\text{H-O}_{(l)}] - [\Delta H^{\circ}_{\text{F}}\text{C-}_{\text{H-I}_2}O_{6(e)} - 6\Delta H^{\circ}_{\text{F}}\text{O}_{2(g)}]$
 $-2.81 \times 10^3 \text{ kJ/mol} = [6(-393.5 \text{ kJ/mol}) + 6(-285.8 \text{ kJ/mol})] - [\Delta H^{\circ}_{\text{F}}\text{C-}_{\text{H-I}_2}O_{6(e)} - 6(0 \text{ kJ/mol})]$
7.
(1) $S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{2(g)} \quad \Delta H_1 = -2375.2 \text{ kJ}$
(2) $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)} \quad \Delta H_2 = -196.6 \text{ kJ}$
(3) $SO_{3(g)} + H_2O_{(l)} \rightarrow H_2SO_{4(aq)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{2(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_2 = -2375.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_2 = -2375.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8SO_{3(g)} \quad \Delta H_3 = -130.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8O_{2(g)} \quad \Delta H_2 = -2375.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8O_{2(g)} \quad \Delta H_2 = -2375.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8O_{2(g)} \quad \Delta H_2 = -2375.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8O_{2(g)} \quad \Delta H_2 = -2375.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g)} \rightarrow 8O_{2(g)} \quad \Delta H_3 = -230.2 \text{ kJ}$
 $1 \times (1) S_{8(s)} + 8O_{2(g$

 $\Delta H_{\rm rxn}$ = +2023.8 kJ/mol of Si₃N₄

$$\begin{split} N_2 H_{4(l)} \ + \ &3 O_{2(g)} \rightarrow 2 N O_{2(g)} \ + \ 2 H_2 O_{(g)} \\ (a) \ &\Delta H_{comb} = \left[2 \Delta H^o_f \ N O_{2(g)} + 2 \Delta H^o_f \ H_2 O_{(g)} \right] - \left[\Delta H^o_f \ N_2 H_{4(l)} - 3 \Delta H^o_f \ O_{2(g)} \right] \\ &= \left[2 (+33.2) \ kJ + 2 (-241.8) \ kJ \right] - \left[(+50.6 \ kJ/mol) - 3 (0 \ kJ/mol) \right] \\ &= -467.8 \ kJ/mol \ of \ N_2 H_4 \end{split}$$

(b) Mass of
$$N_2H_{4(l)}$$
 = 10.0 kg \times 87.8 % = 8.78 kg

$$n \text{ mol } N_2H_4 = \frac{8.78 \text{ kg}}{32.06 \text{ g/mol}} = 274 \text{ mol of } N_2H_4$$

Heat given off by the 10.0 kg sample = 274 mol × 467.8 kJ/mol = 1.28 × 10⁵ kJ