Problème.

On définit l'application

$$D: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \to & \mathbb{R}[X] \\ P & \mapsto & P' \end{array} \right.$$

On rappelle que pour un endomorphisme u d'un espace vectoriel E

$$u^0 = \mathrm{id}_E$$
 et $\forall n \in \mathbb{N} \ u^{n+1} = u \circ u^n$.

Les parties II à IV sont indépendantes.

Partie I - Préliminaires

- 1. Justifier que D est un endomorphisme surjectif de $\mathbb{R}[X]$.
- 2. Soit $P \in \mathbb{R}[X]$ et $n = \deg P$. On suppose que $n \geq 0$.
 - (a) Montrer que $\mathcal{B}_{\mathcal{P}} = (P, P', \dots, P^{(n)})$ est une famille libre de $\mathbb{R}[X]$.
 - (b) Conclure que $\mathcal{B}_{\mathcal{P}}$ est une base de $\mathbb{R}_n[X]$.

Partie II - Sous-espaces stables par D

Soit F un sous-espace vectoriel de $\mathbb{R}[X]$ stable par D, c'est-à-dire :

$$\forall P \in F \quad D(P) \in F.$$

3. si les degrés des polynômes de F sont bornés On suppose que $F \neq \{0\}$ et qu'il existe $N \in \mathbb{N}$ tel que

$$F \subset \mathbb{R}_N[X].$$

(a) Justifier que l'on peut définir un entier naturel n par

$$n = \max \left\{ \deg P \mid P \in F, \ P \neq 0 \right\}.$$

On se donne $P \in F$ tel que deg(P) = n.

Justifier que \mathcal{B}_P est une famille de vecteurs de F.

La famille \mathcal{B}_P a été définie à la question 2.

(b) Montrer que

$$F = \mathbb{R}_n[X].$$

On pourra considérer le sous-espace vectoriel engendré par \mathcal{B}_P .

- 4. si les degrés des polynômes de F ne sont pas bornés On suppose que pour tout $N \in \mathbb{N}$ il existe $P \in F$ tel que $\deg P > N$. Montrer que $\mathbb{R}_N[X] \subset F$ pour tout $N \in \mathbb{N}$. Que vaut F?
- 5. conclusion
 Quels sont tous les sous-espaces vectoriels stables par D?

Partie III - Une condition suffisante pour que D^m admette une racine k^e

On se donne deux entiers naturels non nuls m et k tels que k divise m.

6. Montrer qu'il existe un endomorphisme g de $\mathbb{R}[X]$ tel que $g^k = D^m$.

Partie IV - Cette condition suffisante est nécessaire

On se donne deux entiers naturels non nuls m et k. On suppose qu'il existe un endomorphisme g de $\mathbb{R}[X]$ tel que

$$g^k = D^m$$
.

- 7. Montrer que $\operatorname{Ker}(g^k) = \mathbb{R}_{m-1}[X]$.
- 8. Montrer que g est surjective.
- 9. Pour $i \in [0, k]$, justifier que $Ker(g^i)$ est de dimension finie. On pourra comparer $Ker(g^i)$ et $Ker(g^k)$.
- 10. Soit $i \in [1, k]$. On définit l'application ϕ_i par

$$\phi_i: \left\{ \begin{array}{ccc} \operatorname{Ker}(g^i) & \to & \operatorname{Ker}(g^{i-1}) \\ P & \mapsto & g(P). \end{array} \right.$$

- (a) Justifier que ϕ_i est bien définie et que ϕ_i est une application linéaire.
- (b) Montrer que $\operatorname{Ker} \phi_i = \operatorname{Ker} g$.
- (c) Montrer que ϕ_i est surjective.
- (d) Déduire de ce qui précède une relation entre $\dim \operatorname{Ker}(g^i)$, $\dim \operatorname{Ker}(g^{i-1})$ et $\dim \operatorname{Ker}(g)$.
- 11. Montrer que pour tout $i \in [0, k]$, dim $Ker(g^i) = i \dim Ker(g)$. Conclure que k divise m.

Exercice. (*)

1. Soient E, F deux \mathbb{K} -espaces vectoriels de dimension finie et V un sous-espace de E. On note $n = \dim E$, $p = \dim F$ et $q = \dim V$. On définit

$$\mathscr{L}_V(E,F) = \{ u \in \mathscr{L}(E,F) \mid V \subset \operatorname{Ker}(u) \}.$$

- (a) Démontrer que $\mathscr{L}_V(E,F)$ est un sous-espace vectoriel de $\mathscr{L}(E,F)$.
- (b) À l'aide de $\Phi: u \mapsto u_{|V}$, démontrer que dim $\mathscr{L}_V(E, F) = p(n-q)$.
- 2. Soit E un \mathbb{K} -espace vectoriel de dimension n et $f \in \mathcal{L}(E)$. On définit

$$G_1 = \{ u \in \mathcal{L}(E) \mid u \circ f = 0 \}$$

$$G_2 = \{ u \in \mathcal{L}(E) \mid f \circ u = 0 \}$$

$$G_3 = \{ u \in \mathcal{L}(E) \mid f \circ u \circ f = 0 \}$$

Démontrer que ce sont des sous-espaces vectoriels de $\mathscr{L}(E)$ et exprimer leur dimension à l'aide de n et de $\operatorname{rg}(f)$.