



Advanced Workshop 6: Recurrent Neural Network

### **OVERVIEW**

- Introduction to RNN
- RNN Model
- RNN Training
- Vanishing Gradient & LSTM
- Shortcomings and Adaptations
- Code Example

#### ASSUMED KNOWLEDGE

- Basic Neural Network (week 11)
  - Feedforward
  - Backpropagation
  - Gradient Descent (week 8)
- Activation Function SoftMax, TanH
- Cross-Entropy Loss (week 9)
- PyTorch fundamental (week 7)

# WHY RNN?



## MHA KNN 5





### WHAT IS A RNN?



#### **Recurrent Neural Network**

- Recurrent: perform the same task for each element in sequence
- Neuron: multiple copies of the same network
- Network: self-connected
- Memory: hidden nodes
- Arbitrary long? Just in theory



### RNN APPLICATIONS





## RNN MODEL



#### RNN MODEL

 $O_t = softmax(Vs_t)$  $o_t$ : output at step t

 $o_{t-1}$ 

 $x_{t-1}$ 

 $o_{t+1}$ U, V, W: Wweight matrix WWUnfold

 $x_t$ : input at time step t (one-hot vector)

W

#### RNN MODEL



 $S_t$ : hidden state at time step t

$$s_t = tanh(Ux_t + Ws_{t-1})$$

 $S_{-1}$  is typically initialised to all zeroes





Memory of network

Limitation: Vanishing Gradient

## RNN TRAINING - BPTT

#### Backpropagation + Gradient Descent



Backpropagation Through Time

#### RNN TRAINING - BPTT

$$L_t = g(O_t)$$

$$L = \sum_{t=0}^{T} L_t$$
 Loss Function  $g$ : cross-entropy Loss



Take derivative on V, W, U respectively

$$\frac{\partial L}{\partial V} = \sum_{t=0}^{T} \frac{\partial L_t}{\partial V}$$

$$\frac{\partial L}{\partial W} = \sum_{t=0}^{T} \sum_{k=0}^{t} \frac{\partial L_t}{\partial s_t} \left( \prod_{j=k+1}^{t} \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$$

$$\frac{\partial L}{\partial U} = \sum_{t=0}^{T} \sum_{k=0}^{t} \frac{\partial L_t}{\partial s_t} \left( \prod_{j=k+1}^{t} \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial U}$$

BPTT Vanishing Gradient Problem



$$O_t = softmax(Vs_t)$$

#### LSTM - LONG SHORT TERM MEMORY NETWORK

In theory, RNNs are absolutely capable of handling "long-term dependencies." Sadly, in practice, RNNs don't seem to be able to learn them.

\* Hochreiter (1991) [German] and Bengio, et al. (1994)



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

### SHORTCOMINGS & ADAPTATIONS



**Bidirectional RNN** 



Deep Bidirectional RNN







#### THANK YOU!

#### References:

- Recurrent Neural Networks Tutorial, Part 1 Introduction to RNNs WildML
- Understanding LSTM Networks -- colah's blog
- NLP From Scratch: Classifying Names with a Character-Level RNN PyTorch Tutorials
- RNN/LSTM BPTT detailed derivation and gradient vanishing problem analysis ZhiHu