Practice Test 1

Semester One 2017 Year 12 Mathematics Methods Calculator Free

20 Marks

20 Minutes

Mana		
Name:		

(4 marks)

Show that
$$\int_{1}^{2} \frac{6x+4}{\sqrt{x}} dx = 16 \sqrt{2} - 12.$$

2 (3,3,3 marks)

a)
$$\frac{dy}{dx} = \frac{2}{x^2} + 4x$$
, and $y = 3$ when $x = 2$, determine the value of y when $x = 5$

b) Evaluate
$$\int_1^2 \frac{d}{dx} \left(\frac{x^3}{x^2+1} \right) dx$$

c)
$$\frac{d}{dx} \int_4^{x^2} \frac{2}{3t^3 - 1} dt$$

The graph of the function f(x) is shown below for $-3 \le x \le 3$.

The areas enclosed between the graph, the x-axis and the lines x = -3 and x = 3 are marked in the appropriate regions.

Determine:

(a) the value of
$$\int_{-2}^{3} f(x) dx$$
. [2]

(b) the area enclosed between the graph of f(x) and the x-axis, from x = -2 to x = 3. [2]

(c) the value of
$$\int_{0}^{2} (x - f(x)) dx.$$
 [3]

Practice Test 1

PERTH MODERN SCHOOL

Exceptional schooling, Exceptional students.

Year 12 Mathematics Methods Semester One 2017 Calculator Free

20 Minutes 20 Marks

Solutions

Name:

(4 marks)

Show that
$$\int_{1}^{2} \frac{6x + 4^{2}}{\sqrt{x}} dx = 16 \sqrt{2} - 1$$

Show that
$$\int_{1}^{\infty} \frac{6x + 4^{\prime}}{\sqrt{x}} dx = 16\sqrt{2} - 12.$$

$$= 2 \int 6x^{\frac{1}{2}} + 4x^{\frac{1}{2}} dx$$

a)
$$\frac{dy}{dx} = \frac{2}{x^2} + 4x$$
, and $y = 3$ when $x = 2$, determine the value of y when $x = 5$

=10/2-12

b) Evaluate
$$\int_1^2 \frac{d}{dx} \left(\frac{x^3}{x^2 + 1} \right) dx$$

The graph of the function f(x) is shown below for $-3 \le x \le 3$.

[7 marks]

The areas enclosed between the graph, the x-axis and the lines x = -3 and x = 3 are marked in the appropriate regions.

Determine:

(a) the value of
$$\int_{-2}^{3} f(x) dx$$
.

 $\overline{2}$

(b) the area enclosed between the graph of f(x) and the x-axis, from x = -2 to x = 3.

[7]

(c) the value of
$$\int_{0}^{2} (x-f(x)) dx$$
. $\int_{0}^{2} \int_{0}^{2} f(x) dx + \int_{0}^{2} \int_{0}^{2} f(x) dx - \int_{0}^{2} \int_{0}^{2} f(x) dx + \int_$