REFERENCE

STEPS

- 1. The program will determine the dimension of the support
 - 1. The program will determine the dimension of the support

LEGEND:

- If the support is a Column connected to its width "Support Name(D)" then
 - a) Case 1: The Beam Type is "Footing Tie Beam" & "Grade Beam"

$$Dim_{S:Left/Top} = \frac{B_{column} + \left(CC_{EE} - CC_{EW}\right)}{2} \quad or \quad Dim_{S:Right/Bott} = \frac{B_{column} + \left(CC_{EE} - CC_{EW}\right)}{2}$$

b) Case 2: The Beam Type is "Suspended Beam" & "Roof Beam"

$$Dim_{S:Left/Top} = \frac{B_{column}}{2}$$
 or $Dim_{S:Right/Bott} = \frac{B_{column}}{2}$

- If the support is a Column connected to its length "Support Name(B)" then
 - a) Case 1: The Beam Type is "Footing Tie Beam" & "Grade Beam"

$$Dim_{S:Left/Top} = \frac{D_{column} + \left(CC_{EE} - CC_{EW}\right)}{2} \quad or \quad Dim_{S:Right/Bott} = \frac{D_{column} + \left(CC_{EE} - CC_{EW}\right)}{2}$$

b) Case 2: The Beam Type is "Suspended Beam" & "Roof Beam"

$$Dim_{S:Left/Top} = \frac{D_{column}}{2}$$
 or $Dim_{S:Right/Bott} = \frac{D_{column}}{2}$

If the support is a Beam, then

$$Dim_{S:Left/Top} = \frac{B_{beam}}{2}$$
 or $Dim_{S:Right/Bott} = \frac{B_{beam}}{2}$

• If there is No support, then

$$Dim_{S:Left/Top} = 0$$
 or $Dim_{S:Right/Bott} = 0$

Example:

BEAM ROW	1				[+
Beam Nam	e Length	Quantity	End Support (Left/Top)	End Support (Right/Bottom	Į	Δ
B-2	3000	1	C-1 (B)	C-1 (B)	7	
B-3 V	7000	1	C-1 (B)	C-1 (B)	7	
B-3 V	7000	1	C-1 (B)	B-1	7	7
1	7		1	7	7	ı
1	7		1	7	7	ı
	7		1	7	7	₹I

Ref (1)

Since Ref (1) is connected to C-1(D) @ its left/top and @ its right/bottom. Thus,

$$Dim_{Left(1)} = \frac{B_{C1}}{2} = \frac{600}{2} = 300$$

$$Dim_{Right(1)} = \frac{B_{C1}}{2} = \frac{600}{2} = 300$$

Ref (2)

Since Ref (2) is connected to C-1(D) @ its left/top and @ its right/bottom. Thus,

$$Dim_{Left(2)} = \frac{B_{C1}}{2} = \frac{600}{2} = 300$$

$$Dim_{Right(2)} = \frac{B_{C1}}{2} = \frac{600}{2} = 300$$

Ref (3)

Since Ref (2) is connected to C-1(D) @ its left/top and @ its right/bottom. Thus,

$$Dim_{Left(2)} = \frac{B_{C1}}{2} = \frac{600}{2} = 300$$

$$Dim_{Right(2)} = \frac{B_{B-1}}{2} = \frac{450}{2} = 225$$

2. The program will determine the clear length of each beam.

$$L_{Cn} = L_n - \left(Dim_{Left(n)} + Dim_{Right(n)}\right)$$

Example:

BEAM ROV	V							+
Beam Nan	ne	Length	Quantity	End Support (Left/Top)		End Support (Right/Bottom		▶
B-2	₹	3000	1	C-1 (B)	V	C-1 (B)	Y	
B-3	₹	7000	1	C-1 (B)	V	C-1 (B)	V	1
B-3	Ŧ	7000	1	C-1 (B)	V	B-1	¥	Н
	¥				V		Y	1 1
	₹				V		V	1 1
	¥				Y		Y	V

Ref (1)

$$L_{C(1)} = L_1 - \left(Dim_{Left(1)} + Dim_{Right(1)}\right) = 3000 - (300 + 300) = 2400$$

Ref (2)

$$L_{C(2)} = L_2 - \left(Dim_{Left(2)} + Dim_{Right(2)}\right) = 7000 - (300 + 300) = 6400$$

Ref (3)

$$L_{C(3)} = L_3 - \left(Dim_{Left(3)} + Dim_{Right(3)}\right) = 7000 - (300 + 225) = 6475$$

3. The program will determine the quantity of stirrups each beam.

If a beam has an end support on both sides

$$Qty_{Cn} = \frac{{}^{L_{Cn}-2[Qty_{A}\bullet Spacing}_{@A}+Qty_{B}\bullet Spacing}_{@B}]}{{}^{Spacing}_{@Rest}} + 1$$

Else,

$$Qty_{Cn} = \frac{L_{Cn} - [Qty_{A} \bullet Spacing_{@A} + Qty_{B} \bullet Spacing_{@B}]}{Spacing_{@Rest}} + 1$$

Example:

Ref (1)

Since it has end support on both sides. Thus,

$$Qty_{C(1)} = \frac{{}^{L_{C(1)}-2[Qty_{A1} \bullet Spacing_{@A1} + Qty_{B1} \bullet Spacing_{@B1}]}}{{}^{Spacing_{@Rest1}}} + 1$$

$$Qty_{C(1)} = \frac{2400 - 2[1(50) + 0(0)]}{75} + 1$$

$$Qty_{C(1)} = 31.67 \rightarrow 32$$

Ref (2)

Since it has end support on both sides. Thus,

$$Qty_{\mathcal{C}(2)} = \frac{{}^{L_{\mathcal{C}(2)}-2[\mathit{Qty}_{A2}\bullet\mathit{Spacing}_{@A2}+\mathit{Qty}_{B2}\bullet\mathit{Spacing}_{@B2}]}}{\mathit{Spacing}_{@\mathit{Rest2}}} \, + \, 1$$

$$Qty_{C(2)} = \frac{6400 - 2[1(50) + 14(100)]}{200} + 1$$

$$Qty_{C(2)} = 18.5 \rightarrow 19$$

Ref (3)

Since it has end support on both sides. Thus,

$$Qty_{C(3)} = \frac{{}^{L_{C(3)}-2[Qty_{A3}\bullet Spacing_{@A3} + Qty_{B3}\bullet Spacing_{@B3}]}}{{}^{Spacing_{@Rest3}}} + 1$$

$$Qty_{C(3)} = \frac{6475 - 2[1(50) + 14(100)]}{200} + 1$$

$$Qty_{C(3)} = 18.875 \rightarrow 19$$

4. The program will determine the spacing of the main reinforcements of each beam.

$$S = \frac{{}^{B}_{B(n)} - d_{bUM} - 2 \left[d_{bS} + CC_{B} \right]}{Qty_{RED@Int.Support(n)} - 1}$$

Example:

Beam Type: Suspended Beam

		M RON	_	Length	Quan	titv	End Supp	ort (L	eft/Top)	Er	nd Suppor	t (Righ	nt/B	ottom	
	В-		v	3000	1	,		1 (B)				C-1 (B)	•	1	7
	_	-3	÷	7000	_	\dashv		1 (B)	-	-		C-1 (B)	_	-	¥
	_	_	<u>.</u>		1	\rightarrow		• •		<u>▼</u>					¥II
	В	-3	<u>Y</u>	7000	1	_	C-:	1 (B)		▼		B-1			¥□
	ᆫ		Y							<u> </u>					▼
			₹							₹					▼
			₹						1	7				7	₹
ame	В	D		n											
anne							Support	N	Midspan	Int	Support	9	itin	runs	Web Bar
			S	Proper		Otv	Support 5	Qty.	1idspan 5	Int. Qty.	Support 5	Dia.	itin	rups 12	Web Bar Dia.
D 1	450		M	Proper	Dia. 25	Qty Qty	. 5	Qty. Qty.		Qty. Qty.		Dia.	@		Dia. 16
B-1	450	700		Proper	Dia. 25	Qty Qty Qty	5 4 3	Qty. Qty. Qty.	5	Qty. Qty. Qty.	3	Dia. 1 10	@ @	12 50 100	Dia. 16 Qty.
B-1	450			Froper ▼	Dia. 25	Qty Qty Oty	5 3 4 5	Qty. Qty.	5	Qty. Qty.	5 3 5	Dia. 1 10 Rest	@	12 50 100 200	Dia. 16 Qty. 2
B-1	450				Dia. 25	Qty Qty Qty Qty	5 3 4 5	Qty. Qty. Qty. Qty. Qty.	5	Qty. Qty. Qty. Qty. Qty.	5 3 5	Dia. 1 10 Rest Dia.	0 0 0	12 50 100 200 12	Dia. 16 Qty. 2 Dia.
	450 450				Dia. 25 Dia. 25 Dia. 25	Qty Qty Qty Qty Qty Qty	5 3 4 5	Qty. Qty. Qty. Qty. Qty. Qty.	5 5 5	Qty. Qty. Qty. Qty. Qty. Qty.	5 3 5	Dia. 1 10 Rest	000	12 50 100 200	Dia. 16 Qty. 2 Dia. 16
		700			Dia. 25	Qty Qty Qty Qty Qty Qty	5 3	Qty. Qty. Qty. Qty. Qty.	5	Qty. Qty. Qty. Qty. Qty.	5 3 5	Dia. 1 10 Rest Dia. 1	00000	12 50 100 200 12	Dia. 16 Qty. 2 Dia.
		700			Dia. 25 Dia. 25 Dia. 25 Dia. 25	Qty Qty Qty Qty Qty Qty Qty	5 3	Qty. Qty. Qty. Qty. Qty. Qty. Qty.	5 5 5	Qty. Qty. Qty. Qty. Qty. Qty. Qty. Qty.	5 3 5 5	Dia. 1 10 Rest Dia.	00000	12 50 100 200 12 50	Dia. 16 Qty. 2 Dia. 16 Qty.
B-1 B-2		700			Dia. 25 Dia. 25 Dia. 25	Qty Qty Qty Qty Qty Qty Qty	5 3 4 5 5 5 6 5 6 5	Qty. Qty. Qty. Qty. Qty. Qty. Qty. Qty.	5 5 5 5	Qty. Qty. Qty. Qty. Qty. Qty. Qty. Qty.	5 3 5 5 5	Dia. 1 10 Rest Dia. 1 Rest	00000	12 50 100 200 12 50 75	Dia. 16 Qty. 2 Dia. 16 Qty. 2

Ref (1)

$$S_{1} = \frac{B_{B(1)} - d_{bUM(1)} - 2[d_{bS(1)} + CC_{B}]}{Qty_{RED@Int.Support(1)} - 1} = \frac{450 - 25 - 2(12 + 40)}{5 - 1} = 80.25$$

Ref (2)

$$S_2 = \frac{B_{B(2)} - d_{bUM(2)} - 2[d_{bS(2)} + CC_B]}{Qty_{RED@Int.Support(2)} - 1} = \frac{450 - 25 - 2(12 + 40)}{6 - 1} = 64.2$$

Ref (3)

$$S_{3} = \frac{{}^{B}_{B(3)} - d_{bUM(3)} - 2[d_{bS(3)} + CC_{B}]}{Qty_{RED@IntSupport(3)} - 1} = \frac{450 - 25 - 2(12 + 40)}{6 - 1} = 64.2$$

5. The program will determine the length of each beam through their corresponding property of their respected Beam Mark

Properties No. 1:

$$L_{Bn} = 2\left(D_{Bn} + d_{bUM} + S_n\left(Qty_{RED@Int.Support(n)} - 1\right) + H_L\right) - 4\left(CC_B\right) - 11d_{bS(n)}$$

• Properties No. 2

$$L_{Bn} = 2[D_{Bn} + d_{bUM} + S_n(Qty_{RED@Int.Support(n)} - 2) + H_L] - 4(CC_B) - 11d_{bS(n)}$$

Where:

 $H_{L} = Hook\ Length\ of\ the\ Stirrups(135^{\circ})\ based\ on\ the\ Table\ in\ Parameters(Renforcement)$

Example:

Ref (1)

$$L_{B(1)} = 2 \Big[D_{B(1)} + d_{bUM(1)} + S_1 \Big(Qty_{RED@Int.Support(1)} - 2 \Big) + H_L \Big] - 4 \Big(CC_B \Big) - 11 d_{bS(1)} + C_B \Big(CC_B \Big) + C_B \Big(CC_B \Big(CC_B \Big) + C_B \Big(CC_B \Big) + C_B \Big(CC_B \Big(CC_B \Big) + C_B \Big(CC_B \Big(CC_B \Big) + C_B \Big(CC_B \Big(CC_B \Big) + C_B \Big$$

$$L_{B(1)} = 2[700 + 25 + 80.25(5 - 2) + 125] - 4(40) - 11(12)$$

$$L_{B(1)} = 1889.5 \, mm$$

Ref (2)

$$L_{B(2)} = 2 \left[D_{B(2)} + d_{bUM(2)} + S_2 \left(Qty_{RED@Int.Support(2)} - 2 \right) + H_L \right] - 4 \left(CC_B \right) - 11d_{bS(2)}$$

$$L_{B(2)} = 2[700 + 25 + 64.2(6 - 2) + 125] - 4(40) - 11(12)$$

$$L_{B(2)} = 1921.6 mm$$

Ref (3)

$$L_{B(3)} = 2 \left[D_{B(3)} + d_{bUM(3)} + S_3 \left(Qty_{RED@Int.Support(3)} - 2 \right) + H_L \right] - 4 \left(CC_B \right) - 11d_{bS(3)}$$

$$L_{B(3)} = 2[700 + 25 + 64.2(6 - 2) + 125] - 4(40) - 11(12)$$

$$L_{B(3)} = 1921.6 mm$$

6. After determining the quantities of main reinforcement and their respective required bar length, the program will determine their respective manufactured bars and no. of manufactured pcs.

If $\sum Qty_{(n)}$ or its L_{R} is equal to ZERO then,

$$Qty_{p_n} = 0 pcs$$

$$L_{CBn} = 0 m$$

$$Qty_{pn} = \frac{L_{M}}{L_{Rn}}$$

For $Qty_{_{Mn}}$

If the Beam Properties No. 1:

If the Beam Properties No. 2:

a) If a beam has an end support on both sides.

$$Qty_{_{Mn}} = \frac{_{m \cdot Qty_{_{Beam(n)}} \bullet \left[2\left(Qty_{_{A(n)}} + Qty_{_{B(n)}}\right) + Qty_{_{C(n)}}\right]}}{_{Qty_{_{Pn}}(round\ down\ into\ whole\ number)}} \bullet \ Qty_{_{Beam\ Row}}$$

b) Else,

$$Qty_{Mn} = \frac{{}^{m \cdot Qty_{{}_{Beam(n)}} \bullet \left[Qty_{{}_{A(n)}} + Qty_{{}_{B(n)}} + Qty_{{}_{C(n)}}\right]}}{Qty_{{}_{P_n}}(round\ down\ into\ whole\ number)} \bullet Qty_{{}_{Beam\ Row}}$$

Then,

$$\begin{split} L_{W}^{} &= \left[Qty_{_{Pn}}^{} - Qty_{_{Pn}}^{} \left(round\ down\ into\ whole\ number\right)\right] \times L_{_{Bn}}^{} \\ L_{_{E}}^{} \left(m\right) &= \left[Qty_{_{Mn}}^{} \left(round\ up\ to\ whole\ number\right) - Qty_{_{Mn}}^{}\right] \times L_{_{M}}^{} \end{split}$$

And

$$Total\ Wastage\ = L_{_E} + L_{_W}Qty_{_{Mn}}(round\ down\ to\ whole\ number)$$

Then the program will choose the manufactured bar length with the lowest *Total Wastage*.

Example:

Ref (1): Beam Property 1 & has support on both sides

$$Qty_{_{Total(1)}} = Qty_{_{Beam(1)}} \bullet \left[2 \left(Qty_{_{A(1)}} + Qty_{_{B(1)}}\right) + Qty_{_{C(1)}}\right] = 1 \cdot [2(1 + 0) + 32] = 34$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow	m	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6					3.18	3	68	68	0.332	0	22.542
7.5	34	1.8895	3	2	3.97	3	68	68	1.832	0	124.542
9	34	1.0095		2	4.76	4	51	51	1.442	0	73.542
12					6.35	6	34	34	0.663	0	22.542

$$L_{{\it CM}(1)} = 6 \, m \ {\rm and} \ {\it Qty}_{{\it M}(1)} = 68 \, pcs$$

Ref (2): Beam Property 1 & has support on both sides

$$Qty_{Total(1)} = Qty_{Beam(2)} \bullet \left[2 \left(Qty_{A(2)} + Qty_{B(2)} \right) + Qty_{C(2)} \right] = 1 \cdot [2(1 + 14) + 19] = 49$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	m	Qty [P]		[P] Qty [M		L [W]	L [E]	Total Waste
6					3.12	3	98	98	0.235	0	23.050
7.5	49	1.9216	3	2	3.90	3	98	98	1.735	0	170.050
9	49	1.9210	3		4.68	4	73.5	74	1.314	4.5	100.393
12					6.24	6	49	49	0.470	0	23.050

$$L_{CM(2)} = 6 m \text{ and } Qty_{M(2)} = 98 pcs$$

Ref (3): Beam Property 1 & has support on both sides

$$Qty_{_{Total(1)}} = Qty_{_{Beam(3)}} \bullet \left[2 \left(Qty_{_{A(3)}} + Qty_{_{B(3)}}\right) + Qty_{_{C(3)}}\right] = 1 \cdot [2(1 \, + \, 14) + \, 19] = 49$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	m	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6					3.12	3	98	98	0.235	0	23.050
7.5	49	1.9216	3	2	3.90	3	98	98	1.735	0	170.050
9	49	1.9210]	۷	4.68	4	73.5	74	1.314	4.5	100.393
12					6.24	6	49	49	0.470	0	23.050

$$L_{CM(3)} = 6 m \text{ and } Qty_{M(3)} = 98 pcs$$

7. The program will then compute the total weight of the reinforcement.

$$W_T = \sum W_{Dn} L_{CMn} Q t y_{Mn}$$

Where:

 $W_{_{Dn}} = \mbox{Weight based of the closest coresponding diameter of the stirrup of each beam.}$

Example:

BAR SIZE	kg/m
(Diameter)	KS/111
6 mm	0.222
8 mm	0.395
10 mm	0.616
12 mm	0.888
16 mm	1.597
20 mm	2.466
25 mm	3.854
28 mm	4.833
32 mm	6.313
36 mm	7.991
40 mm	9.864
44 mm	11.926
50 mm	15.413
56 mm	19.318

Ref (1) Beam Name: B-2; Stirrups Dia. = 12 mm Thus, $W_{D(1)} = 0.888 kg/m$

Ref (2) Beam Name: B-3; Stirrups Dia. = 12 mm Thus, $W_{D(2)} = 0.888 kg/m$

Ref (3) Beam Name: B-3; Stirrups Dia. = 12 mm Thus, $W_{D(2)} = 0.888 kg/m$

$$W_{T} = \sum W_{Dn} L_{CMn} Q t y_{Mn}$$

$$W_{_{T}} = W_{_{D(1)}} L_{_{CM(1)}} Q t y_{_{M(1)}} + W_{_{D(2)}} L_{_{CM(2)}} Q t y_{_{M(2)}} + W_{_{D(3)}} L_{_{CM(3)}} Q t y_{_{M(3)}}$$

 $W_{T} = 0.888(6)(68) + 0.888(6)(98) + 0.888(6)(98)$