

互联网数据传输协议QUIC 研究综述

李学兵, 陈阳, **周孟莹**, 王新 {xbli16, chenyang, **myzhou19,** xinw}@fudan.edu.cn

前期相关工作

HTTP

在现有的 TCP、TLS 协议之上实现一个全新的应用层协议

SPDY, HTTP 2.0

->

QUIC协议

Making the internet faster with...

Q uick
U DP
I nternet
C onnections

- QUIC汇集了 TCP 和 UDP 的优点:
 - ➤UDP:传输数据以加快网络速度,降低延迟
 - ▶ 应用程序层面:TCP 的可靠性,TLS 的安全性和 ト██
 - ▶只需要应用程序层面支持:避开了操作系统和中间
- QUIC 相比现在广泛应用的 TCP + TLS + HTTP2 协议有如
 - ▶避免队头阻塞的多路复用
 - ▶减少了 TCP 三次握手及 TLS 握手时间

- 多路传输
 - ▶QUIC 通过对多路传输的支持,解决了TCP中的队头阻塞问题,减少了延时。

图 2 多路传输与单路传输的对比

- 握手协议
 - ▶QUIC 设计了自己的握手协议,达到了更低的握手延时,显著减少用户访问网络的延迟感,提升用户体验

往返时间 Round Trip Time, RTT

图 3 不同协议握手延时的对比

- 握手协议
 - ▶QUIC 设计了自己的握手协议,达到了更低的握手延时,显著减少用户访问网络的延迟感,提升用户体验

图 3 不同协议握手延时的对比

- 握手协议
 - ▶QUIC 设计了自己的握手协议,达到了更低的握手延时,显著减少用户访问网络的延迟感,提升用户体验

图 3 不同协议握手延时的对比

- 握手协议
 - ▶QUIC 设计了自己的握手协议,达到了更低的握手延时,显著减少用户访问网络的延迟感,提升用户体验

图 3 不同协议握手延时的对比

发展历史

- 2种版本:
 - **>**gQUIC
 - Google开发
 - **≻**QUIC
 - 2015年6月: 由IETF进行标准化
 - 2018年10月: 认可QUIC成为HTTP/3

发展历史

• 2种版本: **>**gQUIC 目前大部分工作的研究对象 - Google开发 **>QUIC** - 2015年6月: 由IETF进行标准化 - 2018年10月: 认可QUIC成为HTTP/3 You Tube (Akamai Google

研究现状分析

图 4 QUIC 相关工作的分类

传输性能测量

作者	发表处	发表年份	应用场景	测试环境	网络环境	测试对象	主要结论
Das[12]	MIT thesis	2014年	网页浏览	模拟网络	有线网络	带宽 , RTT	低带宽时QUIC更快,高带宽时TCP更快
Kharat 等学 者[22]	ICCSP	2018年	网页浏览	模拟网络	Wi-Fi网 络	带宽	在只有一条连接时,QUIC能够比TCP抢占更多的带宽;但有2条即以上连接时,则相反
Yang 等学者 [23]	IWCMC	2018年	网页浏览	模拟网络	卫星网络	丟包率	QUIC在高延时的卫星网络下表现得比TCP更好

传输性能测量

作者	发表处	发表年份	应用场景	测试环境	网络环境	测试对象	主要结论
Das[12]	MIT thesis	2014年	网页浏览	模拟网络	有线网络	带宽 , RTT	低带宽时QUIC更快,高带宽时TCP更快
Kharat 等学 者[22]	ICCSP	2018年	网页浏览	模拟网络	Wi-Fi网 络	带宽	在只有一条连接时,QUIC能够比TCP抢占更多的带宽;但有2条即以上连接时,则相反
Yang 等学者 [23]	IWCMC	2018年	网页浏览	模拟网络	卫星网络	丢包率	QUIC在高延时的卫星网络下表现得比TCP更好
Rajiullah 等 学者 [8]	www	2019年	网页浏览	真实网络	蜂窝网络	加载时间	支持QUIC的网站在引用其他不支持QUIC的网站是 需要回滚到TCP,带来额外延时,并最终慢于TCP

传输性能测量

作者	发表处	发表年份	应用场景	测试环境	网络环境	测试对象	主要结论
Das[12]	MIT thesis	2014年	网页浏览	模拟网络	有线网络	带宽 , RTT	低带宽时QUIC更快,高带宽时TCP更快
Kharat 等学 者[22]	ICCSP	2018年	网页浏览	模拟网络	Wi-Fi网 络	带宽	在只有一条连接时,QUIC能够比TCP抢占更多的带宽;但有2条即以上连接时,则相反
Yang 等学者 [23]	IWCMC	2018年	网页浏览	模拟网络	卫星网络	丟包率	QUIC在高延时的卫星网络下表现得比TCP更好
Rajiullah 等 学者 [8]	WWW	2019年	网页浏览	真实网络	蜂窝网络	加载时间	支持QUIC的网站在引用其他不支持QUIC的网站是 需要回滚到TCP,带来额外延时,并最终慢于TCP
Langley 等学 者[5]	SIGCOM M	2017年	网页浏 览 , 视频传 输	真实网络	蜂窝网络	桌面端和 移动端	对视频传输的丢包重传机制大幅度优化视频播放的 质量
Kakhki 等学 者[3]	IMC	2017年	网页浏 览 , 视频传 输	模拟网络	有线网络	带宽 , 延 时 , 丢包率	QUIC过于激进的丢包判断机制导致其在高丢包率网络下性能严重下降

性能优化

	作者	发表处	发表年份	主要改进措施
多路径	Quentin 等学者 [7]	CoNEXT	2017年	MPQUIC:在Stream之下定义了Path,用于描述数据传输所使用的物理网络路径
QUIC	Viernickel 等学 者[28]	ICC	2018年	通过不同的UDP 套接字直接区分不同的物理网络路径

性能优化

	作者	发表处	发表年份	
多路径	Quentin 等学者 [7]	CoNEXT	2017年	MPQUIC:在Stream之下定义了Path,用于描述数据传输所使用的物理网络路径
QUIC	Viernickel 等学 者[28]	ICC	2018年	通过不同的UDP 套接字直接区分不同的物理网络路径
用户态与内	Duan 等学者 [30]	KBNets	2017年	在用户空间实现了包括UDP在内的gQUIC协议栈
核态	Wang 等学者 [29]	MSWiM	2018年	在内核空间实现了gQUIC ,用于在公平的环境下进行 gQUIC 和 TCP 的性能对比

性能优化

	作者	发表处	发表年份	主要改进措施
多路径	Quentin 等学者 [7]	CoNEXT	2017年	MPQUIC:在Stream之下定义了Path,用于描述数据传输所使用的物理网络路径
QUIC	Viernickel 等学 者[28]	ICC	2018年	通过不同的UDP 套接字直接区分不同的物理网络路径
用户态与内	Duan 等学者 [30]	KBNets	2017年	在用户空间实现了包括UDP在内的gQUIC协议栈
核态	Wang 等学者 [29]	MSWiM	2018年	在内核空间实现了gQUIC,用于在公平的环境下进行gQUIC和TCP的性能对比
加速 QUIC 数据包处理的速度:		QUIC 性能的加密与解密算		将加密解密相关的操作移到 GPU 上进行执行,从而降低 CPU 负载并加速数据包的处理

安全性

	作者	发表处	发表年份	主要内容
	Fischlin 等学者 [2]	CCS	2014年	QUICi:采用了更为复杂的密钥生成机制
安全模型	Lychev 等学者 [40]	IEEE S&P	2015年	提出了快速通信协议的概念,用于描述在最终会话 密钥生成之前先使用初始会话密钥的做法
·	Jager 等学者[4]	CCS	2015年	模拟攻击结果表明,TLS1.3和QUIC通过增加 Bleichenbacher攻击所消耗的时间来消解此攻击

安全性

	作者	发表处	发表年份	主要内容
	Fischlin 等学者 [2]	CCS	2014年	QUICi:采用了更为复杂的密钥生成机制
安全模型	Lychev 等学者 [40]	IEEE S&P	2015年	提出了快速通信协议的概念,用于描述在最终会话 密钥生成之前先使用初始会话密钥的做法
	Jager 等学者[4]	CCS	2015年	模拟攻击结果表明,TLS1.3和QUIC通过增加 Bleichenbacher攻击所消耗的时间来消解此攻击
前向安全	Gunther 等学者 [43]	PLDI	2016年	一次性密钥和不可多次解析密文的密钥设计

安全性

	作者	发表处	发表年份	主要内容
	Fischlin 等学者 [2]	CCS	2014年	QUICi:采用了更为复杂的密钥生成机制
安全模型	Lychev 等学者 [40]	IEEE S&P	2015年	提出了快速通信协议的概念,用于描述在最终会话 密钥生成之前先使用初始会话密钥的做法
	Jager 等学者[4]	CCS	2015年	模拟攻击结果表明,TLS1.3和QUIC通过增加 Bleichenbacher攻击所消耗的时间来消解此攻击
前向安全	Gunther 等学者 [43]	PLDI	2016年	一次性密钥和不可多次解析密文的密钥设计
离线攻击	Lychev 等学者 [40]	IEEE S&P	2015年	Server Config重复攻击 , Crypto Stream Offset攻 击
在线攻击	Lychev 等学者 [40]	IEEE S&P	2015年	连接ID篡改攻击,Source-Address Token篡改攻 击

表3 QUIC安全性的相关工作

目前工作的局限性

- 缺乏对IETF 版本QUIC的分析
- 软件实现对分析结果的影响过大
 - 大多局限于特定的实现
 - 普遍根据测量结果猜测造成差异的原因,没有进行严格的对比
- CPU成为QUIC的性能瓶颈
 - TLS1.3达到了更高的安全性。但是随之而来的是加密解密复杂度的提高以及CPU负载的增加

未来研究方向

• 传输性能测量:

• 提高QUIC算法选择灵活性

•性能优化:

- 提高QUIC的系统性能和降低数据包处理的延时
- 内核旁路、GPU、CPU并行

安全性:

- 平衡安全性与计算开销
- QUIC连接容易攻击者所中断

总结

- 本文从传输性能测量、性能优化、安全性分析对现有的QUIC的研究进行了 总结分析
- 本文对现有研究成果可能的进一步提高之处进行了总结,并对QUIC带来的新的研究课题及其挑战进行了展望

Thank you!