MATLAB ASSIGNMENT-4

EIGEN VALUES AND EIGEN VECTORS

- NAME: ANSHIL SETH
- REG NO.: 18BCI0173
- SLOT: L15 +L16
- SESSION: WINTER SEMESTER 2018-2019
- FACULTY: PROF. POORNIMA T

▶ DATE: - 9th JANUARY 2019

- Q1. Prove the following statements:
- (a) The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal.
- (b) If λ is an eigenvalue of a matrix A, then $1/\lambda$ is the eigenvalue of A^{-1} .
- (c) If $\lambda 1$, $\lambda 2$, \cdots , λn are the eigenvalues of a matrix, then A^m has the eigenvalues λ^m_1 , λ^m_2 , \cdots , λ^m_n (m being a positive integer).

Sol: -

(a)

(b)

(c)

Q2. Using Cayley-Hamilton theorem,

(a) find the inverse of $A = [1 \ 1 \ 3; 1 \ 3 \ -3; -2 \ -4 \ -4]$.

Sol.: -

CODE: -

INPUT & OUTPUT: -

(b) find A8, if $A = [1 \ 2; 2 \ -1]$

CODE:-

INPUT AND OUTPUT: -

-----THANK YOU-----