Control Automático

Ejemplo de control de un sistema térmico

Contenido

- Obtención del modelo
- Requisitos de operación
- Regulador analógico
- Regulador discreto
- Implementación del regulador discreto
- Ejercicios

Obtención del modelo empírico

- Los pasos para encontrar un modelo empírico, de acuerdo con [1] son:
 - Identificación: escoger el modelo para el proceso
 - Estimación: calcular los coeficientes de mejor ajuste para el modelo
 - Verificación: determinar la validez del modelo

Identificación

De acuerdo al conocimiento previo de los sistemas térmicos, el modelo continuo a usar es un sistema de primer orden con tiempo muerto.

$$G(s) = \frac{k \cdot e^{-s \cdot t_d}}{(s+a)}$$

Este modelo representa muy bien a sistemas de orden 2 o superior que tienen un comportamiento estable en lazo abierto.

El modelo discreto es una aproximación por mapeo de polos aunque en este caso, por la relación t_d/T, resultó ser idéntica a la aproximación por ZOH.

$$G(z) = \frac{k_d \cdot z^{-ceiling(\frac{t_d}{T})}}{(z - e^{(-T^*a)})}$$

■ El periodo de muestreo se calcula con $\hat{\tau}$, la constante de tiempo esperada para el sistema.

 $T \leq \frac{\tau}{10}$

La constante k_d se calcula a frecuencia cero

$$k_d = \frac{\lim_{s \to 0} G(s)}{\lim_{z \to 1} \hat{G}(z)} = \frac{\frac{k}{a}}{\frac{1}{(1 - e^{-T \cdot a})}}$$

El modelo discreto así obtenido puede ser usado para diseñar un regulador discreto directamente

Métodos de estimación

Estocástico [1] y [2]

Basado en estimación de mínimos cuadrados a través de análisis estadístico de muestras tomadas de la entrada y la salida. La entrada puede ser no determinística y se puede integrar dentro de un regulador adaptativo.

Respuesta ante escalón [1]

 Implica el determinar parámetros de una gráfica de respuesta ante escalón, obtenida por cualquier método de registro

Estimación por respuesta ante escalón: El experimento [3]

En el tiempo t_i = 10s, se aplica un escalón de 5 voltios al sistema, el cual tiene un actuador lineal, continuo, con una ganancia de 48W/V.

Estimación por respuesta ante escalón: La gráfica

Los parámetros:

$$\tau = 2(t_{63\%} - t_{39\%})$$

$$a = \frac{1}{\tau}$$

$$k = \frac{\lim_{t \to \infty} y(t) - T_i}{A} * a$$

$$t_d = t_{63\%} - (t_i + \tau)$$

Ejemplo: Estimación por respuesta ante escalón (1)

Los parámetros:

$$\tau = 2(t_{63\%} - t_{39\%})$$

$$\tau = 2(21s - 16s)$$

$$\tau = 10s$$

$$a = \frac{1}{10}$$

$$a = 0.1s^{-1}$$

Ejemplo: Estimación por respuesta ante escalón (2)

Ejemplo: Estimación por respuesta ante escalón (3)

Los parámetros:

$$t_d = t_{63\%} - (t_i + \tau)$$

$$t_d = 21s - (10s + 10s)$$
$$t_d = 1s$$

$$G(s) = \frac{0.05 \cdot e^{-1 \cdot s}}{(s+0.1)} \left[\frac{K}{W} \right]$$

Ejemplo: Obtención del modelo discreto

De los requisitos de operación (siguiente transparencia), se obtiene el tiempo de muestreo
1 t 6s

$$T \le \frac{1}{10} \frac{t_s}{4} = \frac{6s}{10}$$

$$T \cong 0.5s$$

$$k_d = \frac{\frac{0.05[K/J]}{0.1s^{-1}}}{\frac{1}{(1-e^{-0.5\cdot0.1})}} = \frac{0.05*(1-0.9512)}{0.1} = 0.0244[\frac{K}{W}]$$

$$G(z) = \frac{0.0244 \cdot z^{-2}}{(z - 0.9512)} \left[\frac{K}{W} \right]$$

Eliminación de la influencia de las perturbaciones a la entrada y a la salida de la planta con cero error de estado estacionario

Tiempo de estabilización del 2% menor o igual a 25s.

Podría suponerse que se requiere además un compensador de adelanto; pero para este caso, bastará un regulador PI con un cero adecuadamente ubicado para acelerar un poco el sistema.

$$K_{PI}(s) = \frac{(s+b)}{s}$$

$$b = [0.95 \cdot a, 1.30 \cdot a]$$

$$K_{PI}(s) = \frac{(s+0.13)}{s}$$

Ésta es también una discretización por mapeo de polos, o Tustin, con T = 0.5s

$$K_{PI}(z) = k' \frac{(z - z_0)}{(z - 1)}$$

$$K_{PI}(z) = 1.0325 \frac{(z - 0.937)}{(z - 1)}$$

Implementación del regulador digital

- El sensor de temperatura tiene una ganancia de 40mV/°C
- La perturbación es de 48W en t = 60s

Implementación DF-I para el regulador digital

Partimos de la función de transferencia

$$K_{PI}(z) = \frac{M(z)}{E(z)} = k' \cdot \frac{(z - z_0)}{(z - 1)}$$

Distribuyendo y dividiendo entre z

$$M(z) - z^{-1} \cdot M(z) = k' \cdot E(z) - z_0 \cdot k' \cdot z^{-1} \cdot E(z)$$

Transformando al dominio del tiempo

$$m(k) - m(k-1) = k' \cdot e(k) - z_0 \cdot k' \cdot e(k-1)$$

Despejando m(k)

$$m(k) = k' \cdot e(k) - z_0 \cdot k' \cdot e(k-1) + m(k-1)$$

Implementación en Simulink del regulador digital

La ecuación de diferencias se escala por 256 para trabajar en aritmética entera.

Algoritmo PI (en seudocódigo)

Rutina de atención de interrupciones periódicas, cálculo de la ecuación de diferencias Pl

```
TI1_EnInterrupción:
LeaConsigna(rk);
LeaRealimentación(yk);
ek = rk-yk;
/* Puede optimizarse con algoritmo con precálculo */
mk = (256*mk_1 + 264*ek - 248*ek_1)/256;
EscribaAccionControl(mk);
mk_1 = mk;
ek_1 = ek;
```

FindeInterrupción;

Análisis de resultados

- Puede apreciarse que la salida alcanza los 80°C, con un pequeño sobreimpulso del 2%; a pesar de variaciones en la temperatura ambiente y de variaciones en la potencia del calefactor.
- La estabilización del 2%, que ocurre en el tiempo t = 33s, indica que se ha mejorado mucho el tiempo de subida. El tiempo de estabilización = 23s.
- Ante la perturbación que ocurre en t = 60s, la variación máxima de la salida es de +9.7°C, para un cambio de +48W en la entrada de la planta, que finalmente es cancelado totalmente después de 40s. Esto contrasta con la planta sin regulación; para la cual ese mismo cambio en la entrada hubiese representado un cambio permanente a la salida de +24°C.

- Suponga un actuador no lineal con una característica 19.2*u², saturado en 240W y con una tensión de entrada que varía entre 0 y 5V. Simule el sistema de control con este actuador.
- Suponga un actuador lineal, discreto, tipo PWM, de ciclos de CA completos, que controla un calefactor con una potencia de 4W/ciclo y la ganancia del actuador PWM es de 12 ciclos/V. Simule el sistema de control con este actuador y un sensor de 0.1V/K

Ejercicios (2)

- Suponga un ruido blanco, aditivo, con una potencia de 0.1W y un tiempo de muestreo de 0.01s, sumado a la entrada del sensor del caso 2. Simule el sistema de control con este ruido.
- Suponga un ruido senoidal, de 60Hz, aditivo, con una amplitud de 10V, sumado a la entrada del sensor del caso 2. Simule el sistema de control con este ruido.
- ¿Como podría disminuir la influencia del ruido en estos dos últimos casos?

Referencias

- [1] Bollinger, John G., Duffie, Neil A.. "Computer Control of Machines and Processes", Addison-Wesley, USA, 1988.
- [2] www.ie.itcr.ac.cr/einteriano/control/TrabajosMatlab
- [3] Interiano, Eduardo. "Controlando un sistema térmico".

www.ie.itcr.ac.cr/einteriano/control/clase