Notes for "The Quantum Theory of Fields 1, Foundations" - Weinberg

Nico Dichter*
Friedrich-Wilhelm-Universität Bonn
(Dated: November 9, 2023)

abc

I. INTRODUCTION

4. Eq. (2.2.22) (P.54)

abc

II. RELATIVISTIC QUANTUM MECHANICS

A. Quantum Mechanics

B. Symmetries

1. "For this to be unitary and linear, t must be Hermitian and linear" (P.51)

Linearity is trivial and hermiticity follow from the following observation:

$$\langle U\Psi|U\Phi\rangle = \langle (1+i\varepsilon t)\Psi|(1+i\varepsilon t)\Phi\rangle$$

$$= \langle \Psi|\Phi\rangle + \varepsilon i \left(\langle \Psi|t\Phi\rangle - \langle t\Psi|\Phi\rangle\right) + \mathcal{O}(\varepsilon^2)$$

$$\stackrel{Eq. (2\cdot 2\cdot 2)}{\Leftrightarrow} \langle \Psi|t\Phi\rangle = \langle t\Psi|\Phi\rangle$$

$$\stackrel{Eq. (2\cdot 1\cdot 5)}{\Leftrightarrow} t^{\dagger} = t$$

 f_{bc}^{a} and f^{a} have to be real as θ^{a} are real.

From Eq. (2.2.20) we have up to $\mathcal{O}(\theta^2, \bar{\theta}^2)$

$$\begin{aligned} 1 + i \left(\theta^a + \bar{\theta}^a + f^a_{\ bc} \bar{\theta}^b \theta^c\right) t_a + \frac{1}{2} \left(\theta^b + \bar{\theta}^b\right) \left(\theta^c + \bar{\theta}^c\right) t_{bc} \\ &= \left[1 + i \bar{\theta}^a t_a + \frac{1}{2} \bar{\theta}^b \bar{\theta}^c t_{bc}\right] \cdot \left[1 + i \theta^a t_a + \frac{1}{2} \theta^b \theta^c t_{bc}\right] \\ &= 1 + i \theta^a t_a + \frac{1}{2} \theta^b \theta^c t_{bc} + i \bar{\theta}^a t_a - \bar{\theta}^b t_b \theta^c t_c + \frac{1}{2} \bar{\theta}^b \bar{\theta}^c t_{bc} \\ \Leftrightarrow &i f^a_{\ bc} \bar{\theta}^b \theta^c t_a + \frac{1}{2} \left(\theta^b \bar{\theta}^c + \bar{\theta}^b \theta^c\right) t_{bc} = -\bar{\theta}^b \theta^c t_b t_c \\ \Leftrightarrow &\bar{\theta}^b \theta^c \left[t_{bc} + i f^a_{\ bc} t_a + t_b t_c\right] = 0 \\ \Leftrightarrow &t_{bc} = -i f^a_{\ bc} t_a - t_b t_c \end{aligned}$$

$$-if_{bc}^{a}t_{a} - t_{b}t_{c} \stackrel{(2.2.21)}{=} t_{bc} = t_{cb} \stackrel{(2.2.21)}{=} -if_{cb}^{a}t_{a} - t_{c}t_{b}$$

$$\Leftrightarrow [t_{b}, t_{c}] = i(f_{cb}^{a} - f_{bc}^{a})t_{a}$$

C. Quantum Lorentz Transformations

1. " $\Lambda^{\mu}_{\ \nu}$ has an **inverse**" (P.57)

This is true because

$$\det(\Lambda) = \pm 1 \neq 0$$

2. "
$$(\bar{\Lambda}\Lambda)_0^0 \ge \bar{\Lambda}_0^0 \Lambda_0^0 - \sqrt{(\Lambda_0^0)^2 - 1} \sqrt{(\bar{\Lambda}_0^0)^2 - 1} \ge 1$$
" (P.58)

The first inequality is trivial from the preceding considerations. For the second inequality assume the contrary holds, then:

$$\begin{split} 0 &\leq \bar{\Lambda}^{0}{}_{0}\Lambda^{0}{}_{0} - 1 < \sqrt{\left(\Lambda^{0}{}_{0}\right)^{2} - 1}\sqrt{\left(\bar{\Lambda}^{0}{}_{0}\right)^{2} - 1} \\ \Rightarrow \left(\bar{\Lambda}^{0}{}_{0}\right)^{2}\left(\Lambda^{0}{}_{0}\right)^{2} - 2\bar{\Lambda}^{0}{}_{0}\Lambda^{0}{}_{0} + 1 \\ &< \left(\bar{\Lambda}^{0}{}_{0}\right)^{2}\left(\Lambda^{0}{}_{0}\right)^{2} - \left(\bar{\Lambda}^{0}{}_{0}\right)^{2} - \left(\Lambda^{0}{}_{0}\right)^{2} + 1 \\ \Rightarrow \left(\Lambda^{0}{}_{0} + \bar{\Lambda}^{0}{}_{0}\right)^{2} &= \left(\bar{\Lambda}^{0}{}_{0}\right)^{2} - 2\bar{\Lambda}^{0}{}_{0}\Lambda^{0}{}_{0} + \left(\Lambda^{0}{}_{0}\right)^{2} < 0 \end{split}$$

Which is a contradiction as $\Lambda^0_{\ 0} + \bar{\Lambda}^0_{\ 0} \ge 1 + 1 = 2$ and therefore completes the proof.

D. The Poincaré Algebra

1. "In order fo $U(1 + \omega, \varepsilon)$ to be unitary, the operators $J^{\rho\sigma}$ and P^{ρ} must be **Hermitian**" (P.59)

Analog to IIB1.

^{*} nicodichter@nocoffeetech.de

$$\begin{split} &\frac{1}{2}\omega_{\rho\sigma}UJ^{\rho\sigma}U^{-1}-\varepsilon_{\rho}UP^{\rho}U^{-1}\\ &\stackrel{(2.4.7)}{=}\frac{1}{2}\left(\Lambda\omega\Lambda^{-1}\right)_{\mu\nu}J^{\mu\nu}-\left(\Lambda\varepsilon-\Lambda\omega\Lambda^{-1}a\right)_{\mu}P^{\mu}\\ &=\frac{1}{2}\Lambda_{\mu}{}^{\rho}\omega_{\rho\sigma}\left(\Lambda^{-1}\right)^{\sigma}{}_{\nu}J^{\mu\nu}\\ &-\left(\Lambda_{\mu}{}^{\rho}\varepsilon_{\rho}-\Lambda_{\mu}{}^{\rho}\omega_{\rho\sigma}\left(\Lambda^{-1}\right)^{\sigma}{}_{\nu}a^{\nu}\right)P^{\mu}\\ &\stackrel{(2.3.10)}{=}\frac{1}{2}\Lambda_{\mu}{}^{\rho}\omega_{\rho\sigma}\Lambda_{\nu}{}^{\sigma}J^{\mu\nu}\\ &-\left(\Lambda_{\mu}{}^{\rho}\varepsilon_{\rho}-\Lambda_{\mu}{}^{\rho}\omega_{\rho\sigma}\Lambda_{\nu}{}^{\sigma}a^{\nu}\right)P^{\mu}\\ &=\frac{1}{2}\omega_{\rho\sigma}\left(\Lambda_{\mu}{}^{\rho}\Lambda_{\nu}{}^{\sigma}J^{\mu\nu}+\Lambda_{\mu}{}^{\rho}\Lambda_{\nu}{}^{\sigma}a^{\nu}P^{\mu}\right)\\ &-\varepsilon_{\rho}\Lambda_{\mu}{}^{\rho}P^{\mu} \end{split}$$

In order to be able to compare coefficients in this, the coefficient of $\omega_{\rho\sigma}$ has to be anti symmatrized. With this Eqs. (2.4.8/9) follow immediately.

Up to $\mathcal{O}(\omega, \varepsilon)$ one can identify

$$U^{-1}(1+\omega,\varepsilon) = U(1-\omega,-\varepsilon)$$

,since

$$U(1+\omega,\varepsilon)U(1-\omega,-\varepsilon) = U(1-\omega+\omega,-\varepsilon+\varepsilon) = U(1,0).$$

With this we have up to $\mathcal{O}(\omega, \varepsilon)$

$$\begin{split} i & \left[\frac{1}{2} \omega_{\mu\nu} J^{\mu\nu} - \varepsilon_{\mu} P^{\mu}, J^{\rho\sigma} \right] \\ & = \left(1 + \frac{1}{2} i \omega_{\mu\nu} J^{\mu\nu} - i \varepsilon_{\mu} P^{\mu} \right) J^{\rho\sigma} \\ & \cdot \left(1 - \frac{1}{2} i \omega_{\mu\nu} J^{\mu\nu} + i \varepsilon_{\mu} P^{\mu} \right) - J^{\rho\sigma} \\ & = U J^{\rho\sigma} U^{-1} - J^{\rho\sigma} \\ & \stackrel{(2.4.8)}{=} (1 + \omega)_{\mu}{}^{\rho} (1 + \omega)_{\nu}{}^{\sigma} \\ & \cdot \left(J^{\mu\nu} - \varepsilon^{\mu} P^{\nu} + \varepsilon^{\nu} P^{\mu} \right) - J^{\rho\sigma} \\ & = -\varepsilon^{\rho} P^{\sigma} + \varepsilon^{\sigma} P^{\rho} + \omega_{\nu}{}^{\sigma} J^{\rho\nu} + \omega_{\nu}{}^{\rho} J^{\mu\sigma} \end{split}$$

and also

$$\begin{split} i \left[\frac{1}{2} \omega_{\mu\nu} J^{\mu\nu} - \varepsilon_{\mu} P^{\mu}, P^{\rho} \right] \\ &= \left(1 + \frac{1}{2} i \omega_{\mu\nu} J^{\mu\nu} - i \varepsilon_{\mu} P^{\mu} \right) P^{\rho} \\ &\cdot \left(1 - \frac{1}{2} i \omega_{\mu\nu} J^{\mu\nu} + i \varepsilon_{\mu} P^{\mu} \right) - P^{\rho} \\ &= U P^{\rho} U^{-1} - P^{\rho} \\ &\stackrel{(2.4.9)}{=} \omega_{\mu}{}^{\rho} P^{\mu} \end{split}$$

The only difficulty lies in the derivation of Eq. (2.4.12) because for this one has to anti symmatrize the coefficient of $\omega_{\mu\nu}$ in Eq. (2.4.10) in order to be able to compare coefficients, similar to II D 2. (Similarly if one derives Eq. (2.4.13) from Eq. (2.4.11))

5. Eqs.
$$(2.4.18 - 24)$$
 $(P.61)$

First observe

$$J^{ij} = \varepsilon_{ijk} J_k$$

and

$$J_i = \frac{1}{2}\varepsilon_{lmi}J^{lm}$$

$$\begin{split} [J_{i},J_{j}] &= \frac{\varepsilon_{lmi}\varepsilon_{kpj}}{4} \left[J^{lm},J^{kp}\right] \\ &= -i\frac{\varepsilon_{lmi}\varepsilon_{kpj}}{4} \left[\eta^{mk}J^{lp} - \eta^{lk}J^{mp} - \eta^{pl}J^{km} + \eta^{pm}J^{kl}\right] \\ &= -\frac{i}{2} \left[\varepsilon_{kil}\varepsilon_{kmj}J^{lm} + \varepsilon_{kim}\varepsilon_{kjl}J^{lm}\right] \\ &= -\frac{i}{2} \left[J^{ji} - J^{ij}\right] \\ &= iJ^{ij} = i\varepsilon_{ijk}J_{k} \\ [J_{i},K_{j}] &= \left[J^{lm},J^{0j}\right]\frac{\varepsilon_{lmi}}{2} \\ &\stackrel{(2.4.12)}{=} -i\frac{\varepsilon_{lmi}}{2} \left[\eta^{m0}J^{lj} - \eta^{l0}J^{mj} - \eta^{jl}J^{0m} + \eta^{jm}J^{0l}\right] \\ &= -i\frac{\varepsilon_{lmi}}{2} \left[\delta_{jm}K_{l} - \delta_{jl}K_{m}\right] = i\varepsilon_{ijl}K_{l} \\ [K_{i},K_{j}] &= \left[J^{0i},J^{0j}\right] \\ &\stackrel{(2.4.12)}{=} -i\left[\eta^{i0}J^{0j} - \eta^{00}J^{ij} - \eta^{j0}J^{0i} + \eta^{ij}J^{00}\right] \\ &= -iJ^{ij} = -i\varepsilon_{ijk}J_{k} \\ [J_{i},P_{j}] &= \frac{\varepsilon_{lmi}}{2} \left[J^{lm},P^{j}\right] \\ &\stackrel{(2.4.13)}{=} \frac{i\varepsilon_{lmi}}{2} \left[\eta^{jl}P^{m} - \eta^{jm}P^{l}\right] \\ &= \frac{i}{2} \left[\varepsilon_{jmi}P^{m} - \varepsilon_{mji}P^{m}\right] = i\varepsilon_{ijm}P_{m} \\ [K_{i},P_{j}] &= \left[J^{0i},P^{j}\right] \\ &= -i\delta_{ji}P^{0} = -i\delta_{ij}H \\ [J_{i},H] &\stackrel{(2.4.13)}{=} \frac{i\varepsilon_{lmi}}{2} \left[\eta^{0l}P^{m} - \eta^{0m}P^{l}\right] = 0 \\ [P_{i},H] &= \left[P^{i},P^{0}\right] \stackrel{(2.4.14)}{=} 0 \\ [H,H] &= \left[P^{0},P^{0}\right] \stackrel{(2.4.14)}{=} 0 \\ [K_{i},H] &= \left[J^{0i},P^{0}\right] \\ &\stackrel{(2.4.13)}{=} i \left[\eta^{00}P^{i} - \eta^{0i}P^{0}\right] = -iP_{i} \end{aligned}$$

When trying to check this for e.g. the standard representation in 4 dimensions, in terms of infinitesimal rotations, attention with the sign in front of sin for the different rotation axis.

7. "Inspection of Eqs. (2.4.18-24) shows that these commutation relations have a limit for $v \ll 1$ of the form ..." (P.62)

Always equate same orders in v for this.

8. "
$$\exp(-i\mathbf{K} \cdot \mathbf{v}) \exp(-i\mathbf{P} \cdot \mathbf{a}) = \exp(iM\mathbf{a} \cdot \mathbf{v}/2) \exp(-i(\mathbf{K} \cdot \mathbf{v} + \mathbf{P} \cdot \mathbf{a}))$$
" (P.62)

Use BCH Formula

$$\exp(-iK_{i}v_{i})\exp(-iP_{j}a_{j})$$

$$=\exp\left(-i(K_{i}v_{i}+P_{j}a_{j})+\frac{1}{2}(-i)^{2}[K_{i},P_{j}]v_{i}a_{j}+0\right)$$

$$=\exp\left(-i(K_{i}v_{i}+P_{j}a_{j})+\frac{1}{2}iMv_{i}a_{i}\right)$$

E. One-Particle States

 Λ^{-1} shows up here since in Eq. (2.4.9) UPU^{-1} is given but here $U^{-1}PU$ is being used.

2. "with σ within any one block by themselves furnish a representation of the inhomogeneous Lorentz group" (P.63)

In this case the Blocks do not mix with other blocks.

3. "and for $p^2 \le 0$, also the sign of p^0 " (P.64)

For $p^2 \leq 0$ we have

$$p^2 = -(p^0)^2 + \vec{p}^2 \le 0$$
$$\Rightarrow |\vec{p}| < |p^0|$$

and from Eq. (2.3.13) we know

$$\left|\Lambda^0_{0}\right| \ge \left|\vec{\Lambda^0}_{}\right|.$$

First suppose $p^0 \ge 0$:

$$\begin{split} p'^0 &= \Lambda^0_{0} p^0 + \Lambda^0_{i} p^i \\ &\geq \Lambda^0_{0} p^0 - \left| \vec{\Lambda^0}_{\cdot} \right| |\vec{p}| \\ &= \left| \Lambda^0_{0} \right| |p^0| - \left| \vec{\Lambda^0}_{\cdot} \right| |\vec{p}| \\ &\geq \left| \vec{\Lambda^0}_{\cdot} \right| \left(\left| p^0 \right| - |\vec{p}| \right) \geq 0 \end{split}$$

Now suppose $p^0 \le 0$:

$$\begin{split} p'^0 &= \Lambda^0_{0} p^0 + \Lambda^0_{i} p^i \\ &\leq \Lambda^0_{0} p^0 + \left| \vec{\Lambda^0}_{\cdot} \right| |\vec{p}| \\ &= - \left| \Lambda^0_{0} \right| |p^0| + \left| \vec{\Lambda^0}_{\cdot} \right| |\vec{p}| \\ &\leq \left| \Lambda^0_{0} \right| \left(- \left| p^0 \right| + \left| \vec{p} \right| \right) \leq 0 \end{split}$$

4. Eq. (2.5.12) "The delta function appears here because $\Psi_{\mathbf{k},\sigma}$ and $\Psi_{\mathbf{k}',\sigma'}$ are eigenstates of a Hermitian operator with eigenvalues \mathbf{k} and \mathbf{k}' , respectively." (P.66)

Note: From this point forward in this section of the book the states considered have standard momentum k^{μ} ! (see Text in the Book preceding Eq. (2.5.12))

Suppose that for given values of \mathbf{k} and \mathbf{k}'

$$\langle \Psi_{k',\sigma'} | \Psi_{k,\sigma} \rangle \neq 0$$

then from

$$k^{i} \langle \Psi_{k',\sigma'} | \Psi_{k,\sigma} \rangle$$

$$= \langle \Psi_{k',\sigma'} | P^{i} \Psi_{k,\sigma} \rangle$$

$$= \langle P^{i} \Psi_{k',\sigma'} | \Psi_{k,\sigma} \rangle$$

$$= k'^{i} \langle \Psi_{k',\sigma'} | \Psi_{k,\sigma} \rangle$$

follows

$$k^i = k'^i$$
.

On why there is only a 3 dimensional delta function showing up:

This is because both states are assumed to have standard momentum k^{μ} and therefore their 0-th component is completely fixed from their spatial components:

$$k'^0 = \pm \sqrt{\mathbf{k}'^2 - k^2}$$

Choice between + and - comes from sign of k^0 , i.e. + for cases (a) and (c) of Table 2.1.

$$\begin{split} &\langle U(W)\Psi_{k',\sigma'}|U(W)\Psi_{k,\sigma}\rangle\\ &\stackrel{(2.5.8)}{=} \sum_{\sigma''\sigma'''} \langle D_{\sigma''\sigma'}\Psi_{k',\sigma''}|D_{\sigma'''\sigma}\Psi_{k,\sigma'''}\rangle\\ &= \sum_{\sigma''\sigma'''} (D_{\sigma''\sigma'})^* D_{\sigma'''\sigma} \langle \Psi_{k',\sigma''}|\Psi_{k,\sigma'''}\rangle\\ &\stackrel{(2.5.12)}{=} \sum_{\sigma''} (D_{\sigma''\sigma'})^* D_{\sigma''\sigma}\delta^{(3)}(\mathbf{k}'-\mathbf{k})\\ &\stackrel{(2.2.2)}{=} \langle \Psi_{k',\sigma'}|\Psi_{k,\sigma}\rangle\\ &\stackrel{(2.5.12)}{=} \delta_{\sigma'\sigma}\delta^{(3)}(\mathbf{k}'-\mathbf{k}) \end{split}$$

From this it follows

$$D^{\dagger}(W) = D^{-1}(W)$$

6. "
$$\langle \Psi_{p',\sigma'} | \Psi_{p,\sigma} \rangle = \dots$$
" (P.67)

Note: What is meant by "arbitrary momenta" is that these momenta still have the standard momentum k^{μ} , but now none of the states has exactly k^{μ} as its momentum.

First define

$$k' \coloneqq L^{-1}(p)p'$$

with this we get:

$$\begin{split} &\langle \Psi_{p',\sigma'} | \Psi_{p,\sigma} \rangle \\ &\stackrel{(2.5.5)}{=} \langle \Psi_{p',\sigma'} | N(p)U(L(p))\Psi_{k,\sigma} \rangle \\ &= N(p) \left\langle U(L^{-1}(p))\Psi_{p',\sigma'} \middle| \Psi_{k,\sigma} \right\rangle \\ &\stackrel{(2.5.11)}{=} N(p) \frac{N^{\star}(p')}{N^{\star}(k')} \\ &\cdot \sum_{\sigma''} D_{\sigma''\sigma'}^{\star} \left(W\left(L^{-1}(p),p'\right) \right) \left\langle \Psi_{k',\sigma''} \middle| \Psi_{k,\sigma} \right\rangle \\ &\stackrel{(2.5.12)}{=} N(p)N^{\star}(p') D_{\sigma\sigma'}^{\star} \left(W\left(L^{-1}(p),p'\right) \right) \delta^{(3)}(\mathbf{k}' - \mathbf{k}) \end{split}$$

Where in the last step we used

$$\frac{\delta^{(3)}(\mathbf{k}' - \mathbf{k})}{N^{\star}(k')} = \frac{\delta^{(3)}(\mathbf{k}' - \mathbf{k})}{N^{\star}(k)} \stackrel{(2.5.5)}{=} \delta^{(3)}(\mathbf{k}' - \mathbf{k})$$

This is valid as from Eq. (2.5.5) we know that N(p) is implicitly dependent on k^{μ} . This therefor fixes $p^2=k^2$

and the sign of p^0 (see end of II E 4), s.t.

$$N(p) = N(\mathbf{p}).$$

Further we are allowed to use Eq. (2.5.12) in the last step since k' also has k as its standard momentum:

$$k' = L^{-1}(p)p' = \underbrace{L^{-1}(p)L(p')}_{=:L(k')}k$$
7. "W $(L^{-1}(p),p) = 1$ " (P.67)

First note

$$L(k) = 1 = L^{-1}(k)$$

with this we get:

$$W\left(L^{-1}(p), p\right) \stackrel{(2.5.10)}{=} L^{-1}\left(L^{-1}(p)p\right) L^{-1}(p)L(p)$$
$$= L^{-1}(k) = 1$$

8. "So we see that the **invariant delta function** is ..." (P.67)

Invariant in this case means w.r.t. proper orthochronous Lorentz transformations, which can be interpreted as change of variables under the $\int d^4p$ integral.

$$\begin{split} p^{0} &= L^{0}{}_{0}k^{0} + L^{0}{}_{i}k^{i} \\ &= \frac{\sqrt{\mathbf{p}^{2} + M^{2}}}{M}M = \sqrt{\mathbf{p}^{2} + M^{2}} \\ p^{i} &= L^{i}{}_{0}k^{0} + L^{i}{}_{j}k^{j} \\ &= \frac{p_{i}}{|\mathbf{p}|}\sqrt{\frac{\mathbf{p}^{2} + M^{2}}{M^{2}} - 1}M \\ &= \frac{p_{i}}{|\mathbf{p}|}\sqrt{\frac{\mathbf{p}^{2}}{M^{2}}}M = p_{i} \end{split}$$

10. "To see this, note that the boost Eq. (2.5.24) may be expressed as $L(p) = R(\hat{\mathbf{p}})B(|\mathbf{p}|)R^{-1}(\hat{\mathbf{p}})$ " (P.68)

First note that the columns and rows of the matrix $B(|\mathbf{p}|)$ are counted in the order 1,2,3,0.

Let

$$\hat{\mathbf{p}} = \begin{pmatrix} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{pmatrix}$$

then we have

$$R(-\hat{\mathbf{p}}) = R_3(-\phi)R_2(\theta) = \begin{pmatrix} \cos(\phi)\cos(\theta) & -\sin(\phi) & \cos(\phi)\sin(\theta) \\ \sin(\phi)\cos(\theta) & \cos(\phi) & \sin(\phi)\sin(\theta) \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}$$

(see IIE 20) and

$$R^{-1}(\hat{\mathbf{p}}) = R_2(\theta)R_3(\phi) = \begin{pmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{pmatrix} \begin{pmatrix} \cos(\phi) & \sin(\phi) & 0 \\ -\sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\theta)\cos(\phi) & \cos(\theta)\sin(\phi) & -\sin(\theta) \\ -\sin(\phi) & \cos(\phi) & 0 \\ \sin(\theta)\cos(\phi) & \sin(\theta)\sin(\phi) & \cos(\theta) \end{pmatrix} = R^{\top}(\hat{\mathbf{p}})$$

From Eq. (2.5.24) we know

$$L(p) = \begin{pmatrix} 1 + (\gamma - 1)s_{\theta}^{2}c_{\phi}^{2} & (\gamma - 1)s_{\theta}c_{\phi}s_{\theta}s_{\phi} & (\gamma - 1)s_{\theta}c_{\phi}c_{\theta} & s_{\theta}c_{\phi}\sqrt{\gamma^{2} - 1} \\ (\gamma - 1)s_{\theta}c_{\phi}s_{\theta}s_{\phi} & 1 + (\gamma - 1)s_{\theta}^{2}s_{\phi}^{2} & (\gamma - 1)s_{\theta}s_{\phi}c_{\theta} & s_{\theta}s_{\phi}\sqrt{\gamma^{2} - 1} \\ (\gamma - 1)s_{\theta}c_{\phi}c_{\theta} & (\gamma - 1)s_{\theta}s_{\phi}c_{\theta} & 1 + (\gamma - 1)c_{\theta}^{2} & c_{\theta}\sqrt{\gamma^{2} - 1} \\ s_{\theta}c_{\phi}\sqrt{\gamma^{2} - 1} & s_{\theta}s_{\phi}\sqrt{\gamma^{2} - 1} & c_{\theta}\sqrt{\gamma^{2} - 1} & \gamma \end{pmatrix}$$

where s and c are shorthand for sin and cos. With this we can now check:

$$\begin{split} R(\hat{\mathbf{p}})B(|\mathbf{p}|)R^{-1}(\hat{\mathbf{p}}) &= \begin{pmatrix} c_{\phi}c_{\theta} & -s_{\phi} & c_{\phi}s_{\theta} & 0 \\ s_{\phi}c_{\theta} & c_{\phi} & s_{\phi}s_{\theta} & 0 \\ -s_{\theta} & 0 & c_{\theta} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{\gamma^{2}-1} & \gamma \end{pmatrix} \begin{pmatrix} c_{\phi}c_{\theta} & s_{\phi}c_{\theta} & -s_{\theta} & 0 \\ -s_{\phi} & c_{\phi} & 0 & 0 \\ c_{\phi}s_{\theta} & s_{\phi}s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} c_{\phi}c_{\theta} & -s_{\phi} & c_{\phi}s_{\theta} & 0 \\ s_{\phi}c_{\theta} & c_{\phi} & s_{\phi}s_{\theta} & 0 \\ -s_{\theta} & 0 & c_{\theta} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{\phi}c_{\theta} & s_{\phi}c_{\theta} & -s_{\theta} & 0 \\ -s_{\phi} & c_{\phi} & 0 & 0 \\ -s_{\phi} & c_{\phi} & 0 & 0 \\ \gamma c_{\phi}s_{\theta} & \gamma s_{\phi}s_{\theta} & \gamma c_{\theta} & \sqrt{\gamma^{2}-1}c_{\theta} \\ \sqrt{\gamma^{2}-1}c_{\phi}s_{\theta} & \sqrt{\gamma^{2}-1}c_{\phi}s_{\theta} & \sqrt{\gamma^{2}-1}c_{\theta} & \gamma \end{pmatrix} = L(p) \end{split}$$

11. "
$$W(\mathbf{R}, p) = \mathbf{R}$$
" (P.69) 13. Eq. (2.5.26) (P.70)

To see this just substitute $R(\theta)$ back into the previous result.

This is a Lorentz transformation, since

$$S^{\top} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} S = \begin{pmatrix} 1 & 0 & \alpha & \alpha \\ 0 & 1 & \beta & \beta \\ -\alpha & -\beta & 1 - \zeta & -\zeta \\ \alpha & \beta & \zeta & 1 + \zeta \end{pmatrix}$$

$$\cdot \begin{pmatrix} 1 & 0 & -\alpha & \alpha \\ 0 & 1 & -\beta & \beta \\ \alpha & \beta & 1 - \zeta & \zeta \\ -\alpha & -\beta & \zeta & -1 - \zeta \end{pmatrix}$$

$$-1 = (Wt)^{\mu} (Wt)_{\mu} = \alpha^{2} + \beta^{2} + \zeta^{2} - (1 + \zeta)^{2}$$

$$\Leftrightarrow \alpha^{2} + \beta^{2} = 2\zeta$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Eq. (2.5.30) is trivial since the rotations around the three axis satisfy this group multiplication and

$$S(0,0) = 1.$$

For Eq. (2.5.29) explicit calculation shows it (see TODO) together with

$$R(0) = \mathbf{1}.$$

Explicit calculation shows Eq. (2.5.31) (see TODO) and the invariance follows then immediately, since:

$$W'SW'^{-1} = S' \underbrace{R'SR'^{-1}}_{=S''} S'^{-1} = S'''$$

16. "
$$W(\theta, \alpha, \beta) = 1 + \omega$$
" (P.71)

From Eq. (2.5.28) we immediately get for infinitesimal θ, α, β :

$$(W(\theta, \alpha, \beta))^{\mu}_{\ \nu} = \delta^{\mu}_{\nu} + \begin{pmatrix} 0 & \theta & -\alpha & \alpha \\ -\theta & 0 & -\beta & \beta \\ \alpha & \beta & 0 & 0 \\ \alpha & \beta & 0 & 0 \end{pmatrix}^{\mu}_{\ \nu}$$

$$\Rightarrow \omega_{\mu\nu} = \begin{pmatrix} 0 & \theta & -\alpha & \alpha \\ -\theta & 0 & -\beta & \beta \\ \alpha & \beta & 0 & 0 \\ -\alpha & -\beta & 0 & 0 \end{pmatrix}_{\mu\nu}$$

$$U(1+\omega) \stackrel{(2.4.3)}{=} 1 + \frac{1}{2}i\omega_{\rho\sigma}J^{\rho\sigma}$$

$$= 1 + i\theta J^{12} + i\alpha(-J^{13} + J^{10}) + i\beta(-J^{23} + J^{20})$$

$$= 1 + i\theta J_3 + i\alpha(J_2 - K_1) + i\beta(-J_1 - K_2)$$

From Eqs. (2.4.18/19/20) we get:

$$\begin{split} [J_3,A] &= [J_3,J_2-K_1] \\ &= [J_3,J_2] - [J_3,K_1] \\ &= -iJ_1 - iK_2 = iB \\ [J_3,B] &= -[J_3,J_1] - [J_3,K_2] \\ &= -iJ_2 - i(-K_1) = -iA \\ [A,B] &= -[J_2,J_1] - [J_2,K_2] + [K_1,J_1] + [K_1,K_2] \\ &= iJ_3 - iJ_3 = 0 \end{split}$$

19. "Since A and B are commuting Hermitian operators they can be simultaneously diagonalized by states $\Psi_{k,a,b}$ "
(P.71)

This is valid, including the label k, since

$$\begin{split} [A,P_1]\Psi_{k,a,b} &= ([J_2,P_1] - [K_1,P_1])\Psi_{k,a,b} \\ &= (-iP_3 + iP^0)\Psi_{k,a,b} = 0 \\ [A,P_2]\Psi_{k,a,b} &= ([J_2,P_2] - [K_1,P_2])\Psi_{k,a,b} \\ &= 0 \\ [A,P_3]\Psi_{k,a,b} &= ([J_2,P_3] - [K_1,P_3])\Psi_{k,a,b} \\ &= (iP_1)\Psi_{k,a,b} = 0 \\ [A,P^0]\Psi_{k,a,b} &= ([J_2,P^0] - [K_1,P^0])\Psi_{k,a,b} \\ &= (-iP_1)\Psi_{k,a,b} = 0 \\ [B,P_1]\Psi_{k,a,b} &= (-[J_1,P_1] - [K_2,P_1])\Psi_{k,a,b} \\ &= 0 \\ [B,P_2]\Psi_{k,a,b} &= ([J_1,P_2] - [K_2,P_2])\Psi_{k,a,b} \\ &= (iP_3 - iP^0)\Psi_{k,a,b} = 0 \\ [B,P_3]\Psi_{k,a,b} &= ([J_1,P_3] - [K_2,P_3])\Psi_{k,a,b} \\ &= (-iP_2)\Psi_{k,a,b} = 0 \\ [B,P^0]\Psi_{k,a,b} &= ([J_1,P^0] - [K_2,P^0])\Psi_{k,a,b} \\ &= (-iP_2)\Psi_{k,a,b} = 0 \end{split}$$

20. "take $R(\hat{\mathbf{p}})$ as a rotation by angle θ around the two-axis followed by a rotation by angle ϕ around the three-axis" (P.73)

Let

$$\hat{\mathbf{p}} = \begin{pmatrix} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{pmatrix}$$

then

$$\begin{split} R(\hat{\mathbf{p}}) &= R_3(-\phi)R_2(-\theta) \\ &= \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix} \\ &= \begin{pmatrix} \cos(\phi)\cos(\theta) & -\sin(\phi) & \cos(\phi)\sin(\theta) \\ \sin(\phi)\cos(\theta) & \cos(\phi) & \sin(\phi)\sin(\theta) \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix}, \end{split}$$

(With this sign convention everything is consistent, see definition of $R(\theta)$ after Eq. (2.5.27) and compare Eq. (2.5.47) to Eq. (2.4.27)) with this we have

$$\hat{\mathbf{p}} = R(\hat{\mathbf{p}})\hat{e}_3.$$

- F. Space Inversion and Time-Reversal
 - G. Projective Representations
- H. The Symmetry Representation Theorem
- 1. "But $\langle \Psi'_k | \Psi'_k \rangle$ is automatically **real and positive**" (P.91)

This follows immediately from Eq. (2.1.1).

2. "From Eq. (2.A.1) we have $|c_{kk}| = |c_{k1}| = \frac{1}{\sqrt{2}}$ and for $l \neq k$ and $l \neq 1$: $c_{kl} = 0$ " (P.91)

$$|c_{kl'}|^2 \stackrel{(2.A.3)}{=} \left| \sum_{l} c_{kl}^{\star} \langle \Psi_l' | \Psi_{l'}' \rangle \right|^2 = |\langle \Upsilon_k' | \Psi_{l'}' \rangle|^2$$

$$\stackrel{(2.A.1)}{=} |\langle \Upsilon_k | \Psi_{l'} \rangle|^2 = \begin{cases} \frac{1}{2} & \text{for } l' = 1, k \\ 0 & \text{for } l' \neq 1, k \end{cases}$$

3. Eq. (2.A.10) (P.92)

$$\begin{aligned} |C_{k}|^{2} + |C_{1}|^{2} + 2\operatorname{Re}(C_{k}C_{1}^{\star}) &= |C_{k} + C_{1}|^{2} \\ \stackrel{(2.A.9)}{=} |C'_{k} + {C'_{1}}|^{2} &= |C'_{k}|^{2} + |C'_{1}|^{2} + 2\operatorname{Re}(C'_{k}C'_{1}^{\star}) \\ \stackrel{Eq. (2.A.8)}{\Rightarrow} \operatorname{Re}(C_{k}C_{1}^{\star}) &= \operatorname{Re}(C'_{k}C'_{1}^{\star}) \\ \stackrel{Eq. (2.A.8)}{\Rightarrow} \operatorname{Re}\left(\frac{C_{k}}{C_{1}}\right) &= \operatorname{Re}\left(\frac{C'_{k}}{C'_{1}}\right) \end{aligned}$$

4. Eq. (2.A.11) (P.92)

$$\left\{ \operatorname{Re} \left(\frac{C_k}{C_1} \right) \right\}^2 + \left\{ \operatorname{Im} \left(\frac{C_k}{C_1} \right) \right\}^2 = \left| \frac{C_k}{C_1} \right|^2$$

$$\stackrel{Eq. (2.A.8)}{=} \left| \frac{C'_k}{C'_1} \right|^2 = \left\{ \operatorname{Re} \left(\frac{C'_k}{C'_1} \right) \right\}^2 + \left\{ \operatorname{Im} \left(\frac{C'_k}{C'_1} \right) \right\}^2$$

$$\stackrel{Eq. (2.A.10)}{\Rightarrow} \operatorname{Im} \left(\frac{C_k}{C_1} \right) = \pm \operatorname{Im} \left(\frac{C'_k}{C'_1} \right)$$

5. "This is only possible if $\operatorname{Re}\left(\frac{C_k}{C_1}\frac{C_1^*}{C_1^*}\right) = \operatorname{Re}\left(\frac{C_k}{C_1}\frac{C_1}{C_1}\right)$ or, in other words, if $\operatorname{Im}\left(\frac{C_k}{C_1}\right)\operatorname{Im}\left(\frac{C_l}{C_1}\right) = 0$ " (P.93)

Define

$$a \coloneqq \frac{C_k}{C_1}$$
$$b \coloneqq \frac{C_l}{C_1}$$

With this we have

$$|1 + a + b^{\star}|^2 = |1 + a + b|^2$$
 (1)

$$\Leftrightarrow 1 + a^* + b + a + |a|^2 + ab + b^* + b^* a^* + |b|^2$$
 (2)

$$= 1 + a^{\star} + b^{\star} + a + |a|^{2} + ab^{\star} + b + ba^{\star} + |b|^{2}$$
 (3)

$$\Leftrightarrow ab + b^* a^* = ab^* + ba^* \tag{4}$$

And further rewriting yields

$$\operatorname{Re}\left(\frac{C_k}{C_1}\frac{C_l}{C_1}\right) = \operatorname{Re}(ab) \stackrel{4}{=} \operatorname{Re}(ab^*) = \operatorname{Re}\left(\frac{C_k}{C_1}\frac{C_l^*}{C_1^*}\right)$$
$$\operatorname{Im}\left(\frac{C_k}{C_1}\right) \operatorname{Im}\left(\frac{C_l}{C_1}\right) = \operatorname{Im}(a) \operatorname{Im}(b)$$
$$= -\frac{1}{4}(ab - ab^* - a^*b + a^*b^*) \stackrel{4}{=} 0$$

6. "Then the invariance of transition probabilities requires that $\left|\sum_{k} B_{k}^{\star} A_{k}\right|^{2} = \left|\sum_{k} B_{k} A_{k}\right|^{2}$ " (P.93)

$$\begin{split} \left| \sum_{k} B_{k}^{\star} A_{k} \right|^{2} & E^{q.} \stackrel{(2.A.2)}{=} \left| \sum_{kl} B_{k}^{\star} A_{l} \left\langle \Psi_{k} | \Psi_{l} \right\rangle \right|^{2} \\ & = \left| \left\langle \sum_{k} B_{k} \Psi_{k} \middle| \sum_{l} A_{l} \Psi_{l} \right\rangle \right|^{2} \\ & E^{q.} \stackrel{(2.A.1)}{=} \left| \left\langle U \left(\sum_{k} B_{k} \Psi_{k} \right) \middle| U \left(\sum_{l} A_{l} \Psi_{l} \right) \right\rangle \right|^{2} \\ & = \left| \left\langle \sum_{k} B_{k}^{\star} U \Psi_{k} \middle| \sum_{l} A_{l} U \Psi_{l} \right\rangle \right|^{2} \\ & = \left| \sum_{kl} B_{k} A_{l} \left\langle U \Psi_{k} | U \Psi_{l} \right\rangle \right|^{2} \\ & E^{q.} \stackrel{(2.A.3)}{=} \left| \sum_{k} B_{k} A_{k} \middle|^{2} \end{split}$$

8. "However, for any pair of such state-vectors, with neither A_k nor B_k all of the same phase" (P.94)

If they were all of the same phase then

$$\forall k, l : \operatorname{Im}\{A_k^{\star} A_l\} = 0$$

or

$$\forall k, l : \operatorname{Im}\{B_k^{\star} B_l\} = 0$$

See Footnote j, for why this is relevant.

9. "We have thus shown that for a given symmetry transformation T either all state-vectors satisfy Eq. (2.A.14) or else they all satisfy Eq. (2.A.15)" (P.94)

Preceding this a contradiction was derived from the assumption that Eq. (2.A.14) applies for a state-vector

$$\sum_{k} A_k \Psi_k$$

while Eq. (2.A.15) applies for a state vector

$$\sum_{k} B_k \Psi_k.$$

Such that the statement is obvious.

- I. Group Operators and Homotopy Classes
- J. Inversions and Degenerate Multiplets

ACKNOWLEDGMENTS

Typesetting done with REVTEX 4.2.

 $\sum_{kl} \operatorname{Im}(B_{k}^{*}B_{l}) \operatorname{Im}(A_{k}^{*}A_{l})$ $= \operatorname{Im} \left(\sum_{kl} \operatorname{Im}(B_{k}^{*}B_{l}) A_{k}^{*} A_{l} \right)$ $= \frac{1}{2i} \left[\sum_{kl} \operatorname{Im}(B_{k}^{*}B_{l}) A_{k}^{*} A_{l} - \text{c.c.} \right]$ $= \frac{1}{2i} \left[\sum_{kl} \frac{1}{2i} (B_{k}^{*}B_{l} - B_{k}B_{l}^{*}) A_{k}^{*} A_{l} - \text{c.c.} \right]$ $= \frac{1}{2i} \left[\frac{1}{2i} \left(\sum_{kl} B_{k}^{*}B_{l} A_{k}^{*} A_{l} - \sum_{kl} B_{k} B_{l}^{*} A_{k}^{*} A_{l} \right) - \text{c.c.} \right]$ $= \frac{1}{2i} \left[\frac{1}{2i} \left(\left| \sum_{kl} B_{k} A_{k} \right|^{2} - \left| \sum_{kl} B_{k}^{*} A_{k} \right|^{2} \right) - \text{c.c.} \right]$ $= \frac{1}{2i} \left[\frac{1}{i} \left(\left| \sum_{kl} B_{k} A_{k} \right|^{2} - \left| \sum_{kl} B_{k}^{*} A_{k} \right|^{2} \right) \right]$ $II_{H}^{H} = 0$