Abstract Algebra I Homework 1

Carson Connard

Section 1.1

Let G be a group.

1 Determine which of the following binary operations are associative:

a) The operation \star on \mathbb{Z} defined by $a \star b = a - b$

Solution. This is associative. We see

$$(a \star b) \star c = (a - b) \star c = a - b - c = a \star (b - c) = a \star (b \star c)$$

b) The operation \star on \mathbb{R} defined by $a \star b = a + b + ab$

Solution. This is associative. We see

$$(a \star b) \star c = (a + b + ab) \star c$$

$$= (a + b + ab) + c + (ac + bc + abc)$$

$$= a + b + c + ab + ac + bc + abc$$

$$= a + (b + c + bc) + ab + ac + abc$$

$$= a \star (b + c + bc)$$

$$= a \star (b \star c)$$

c) The operation \star on $\mathbb Q$ defined by $a\star b=\frac{a+b}{5}$

Solution. This is not associative. We see

$$(a \star b) \star c = \left(\frac{a+b}{5}\right) \star c = \frac{\frac{a+b}{5}+c}{5} \neq \frac{a+\frac{b+c}{5}}{5} = a \star \left(\frac{b+c}{5}\right) = a \star (b \star c)$$

d) The operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a,b) \star (c,d) = (ad + bc,bd)$

Solution. This is associative. We see

$$\begin{split} ((a,b)\star(c,d))\star(e,f) &= (ad+bc,bd)\star(e,f) \\ &= (adf+bcf+bdc,bdf) \\ &= (a,b)\star(cf+de,df) \\ &= (a,b)\star((c,d)\star(e,f)) \end{split}$$

e) The operation \star on $\mathbb{Q} \setminus \{0\}$ defined by $a \star b = a/b$

Solution. This is not associative. We see

$$(a \star b) \star c = \left(\frac{a}{b}\right) \star c = \frac{a/b}{c} = \frac{a}{bc} \neq \frac{ac}{b} = \frac{a}{b/c} = a \star \left(\frac{b}{c}\right) = a \star (b \star c)$$

8 Let $G = \{ z \in \mathbb{C} : z^n = 1, n \in \mathbb{Z}^+ \}.$

a) Prove that G is a group under multiplication (called the group of roots of unity in \mathbb{C}).

Proof. We show the following properties:

(a) Closure under multiplication: Let some $x, y \in G$. Then we know that there exist some $a, b \in \mathbb{Z}_+$ such that $x^a = y^b = 1$ by definition. Then we have that

$$x^{a}y^{b} = (xy)^{ab} = (x^{a})^{b} \cdot (y^{a})^{b} = 1^{b} \cdot 1^{b} = 1.$$

So we have that $xy \in G$.

- (b) Associativity: Since $G \subset \mathbb{C}$, associativity is inherited.
- (c) Existence of multiplicative identity: Certainly, we have that the multiplicative identity 1 from \mathbb{C} holds, that is $x \cdot 1 = 1 \cdot x = x$.
- (d) Inverses: Take some arbitrary $x \in G$. Then

$$(x^{-1})^n = (x^n)^{-1} = (1)^{-1} = 1.$$

Therefore, $x^{-1} \in G$.

We have shown all necessary conditions for (G, \cdot) to be a group.

b) Prove that G is not a group under addition.

Proof. We see that $-1^2 = 1$, therefore $-1 \in G$. Certainly, $1 \in G$ as well. But, -1 + 1 = 0, and $0^n \neq 1$ for any n. So, $0 \notin G$ and (G, +) is not a group.

25 Prove that if $x^2 = 1$ for all $x \in G$, then G is abelian.

Proof. Having the condition $x^2 = 1$ implies that $x = x^{-1}$ for all $x \in G$. So, for any $x, y \in G$, we have that

$$xy = (xy)^{-1} = y^{-1}x^{-1} = yx.$$

Section 1.2

In these exercises, D_{2n} has the usual presentation $D_{2n} = \{r, s : r^n = s^2 = 1, rs = sr^{-1}\}.$

2 Use the generators and relations above to show that if x is any element if D_{2n} which is not a power of r, then $rx = xr^{-1}$.

Proof. The problem statement states that x is of the form sr^m for $1 \le m \le n-1$. So, considering the relations given in the definition of D_{2n} and subsequently the fact that $s = s^{-1}$, we have the following:

$$rx = r(sr^m) = (rs)r^m = sr^{m-1} = sr^mr^{-1} = xr^{-1}.$$

9 Let G be the group of rigid motions in \mathbb{R}^3 of a tetrahedron. Show that |G|=12.

Solution. We notice that a tetrahedron has four vertices. Fix one vertex. We see that there are three rigid rotations that can be made to yield the identity. So, there are 4 choices of vertex, and 3 choices of rotation, giving a total of 12.

Section 1.3

2 Let σ be the permutation

And let τ be the permutation

Find the cycle decompositions of the following permutations: $\sigma, \tau, \sigma^2, \sigma\tau, \tau\sigma, \tau^2\sigma$.

Solution. Via the cycle decomposition algorithm given in the book, we have the following:

- 1. $\sigma = (1 \ 13 \ 5 \ 10)(3 \ 15 \ 8)(4 \ 14 \ 11 \ 7 \ 12 \ 9)$
- 4. $\sigma\tau = (1\ 11\ 3)(2\ 4)(5\ 9\ 8\ 7\ 10\ 15)(13\ 14)$
- 2. $\tau = (1\ 14)(2\ 9\ 15\ 13\ 4)(3\ 10)(5\ 12\ 7)(8\ 11)$
- 5. $\tau \sigma = (1 \ 4)(2 \ 9)(3 \ 13 \ 12 \ 15 \ 11 \ 5)(8 \ 10 \ 14)$

- 3. $\sigma^2 = (1\ 5)(3\ 8\ 15)(4\ 11\ 12)(7\ 9\ 14)(10\ 13)$
- 6. $\tau^2 \sigma = (1\ 2\ 15\ 8\ 3\ 4\ 14\ 11\ 12\ 13\ 7\ 5\ 10)$

Section 1.6

17 Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^2$ is a homomorphism if and only if G is abelian.

Proof. (\Longrightarrow) For the sake of contradiction, assume $\phi: G \to G$ ($g \mapsto g^2$) is a homomorphism, and assume G is not abelian. Now taking some $x, y \in G$ such that $xy \neq yx$, we see

$$xyxy = (xy)^2 = \phi(xy) = \phi(x)\phi(y) = x^2y^2 = xxyy$$

Now since G is a group, there exist $x^{-1}, y^{-1} \in G$. Let us left multiply the equation by x^{-1} and right multiply by y^{-1} :

$$x^{-1}xyxyy^{-1} = x^{-1}xxyyy^{-1}$$
$$yx = xy$$

This yields a contradiction. As such, we must have that G is abelian.

 (\Leftarrow) Assume G is abelian and consider the map $g \stackrel{\phi}{\mapsto} g^2$. Let us take two arbitrary elements $x, y \in G$. Then we have the following:

$$\phi(xy) = (xy)^2 = (xy)(xy) = x^2y^2 = \phi(x)\phi(y).$$

Therefore, ϕ is a group homomorphism.