CORSO di LAUREA in **INFORMATICA**

Corso di

PROGRAMMAZIONE I e LABORATORIO PROGRAMMAZIONE I (12 CFU)

A.A. 2021-22

Docenti: Proff. Angelo Ciaramella e Giulio Giunta

Cognome: Viscillo

Nome: Nicola

Matricola: 0124/2557

PROGETTO D'ESAME DI LABORATORIO

1. Gioco delle biglie

Si vuole sviluppare un programma per la simulazione del gioco delle biglie. Supponiamo di avere un giocatore che gioca su di un campo di dimensione N x N. Il giocatore (rosso in figura) in ogni istante può lanciare in una delle 8 direzioni. Nel campo da gioco esiste una sola buca, scelta in modo casuale all'inizio del gioco, che permette di terminare il gioco ed è nota al giocatore.

Il giocatore può incontrare diverse difficoltà durante il percorso

- 40 buche nascoste al giocatore fanno andare la palla in un'altra posizione scelta casualmente
- 20 buche fanno terminare il gioco senza arrivare alla fine del gioco

Il gioco procede in questo modo:

- La posizione iniziale del giocatore è casuale ma non può corrispondere con quella della buca.
- Ad ogni lancio viene visualizzato il campo da gioco e la posizione del giocatore. Viene chiesto al giocatore la direzione di lancio della palla.
- La palla che va fuori va rimessa in una posizione casuale sul bordo da dove è uscita.
- Il gioco termina o quando la palla va nella buca principale o quando si superano 50 tiri.

Simulare 10 volte la gara ed elencare il numero di tiri effettuati in ordine crescente (50 è il punteggio assegnato se il gioco termina inaspettatamente).

L'algoritmo usa la function rand() in stdlib per generare numeri casuali: si ricorda che, per esempio, se numero_casuale è un int, la chiamata numero_casuale=rand() %11; genera un numero casuale intero (distribuzione uniforme) nell'insieme (0,1,2,3,4,5,6,7,8,9,10). Effettuare al

2. Gestione dischi

Si supponga di voler gestire un archivio di dischi. Supponiamo di avere *n* categorie musicali identificate da un codice numerico e dal nome del genere (jazz, rock, punk, ecc..) e di disporre di possibili dischi identificati da un titolo, autore e prezzo. Per ogni categoria è possibile inserire fino a *m* prodotti.

Gestire l'archivio in modo tale che l'utente possa

- Data una categoria inserire un nuovo disco se è possibile. Considerare le posizioni dei prodotti eventualmente venduti.
- Dato solo il titolo eliminare un prodotto.
- Data le categoria restituire il titolo del disco con prezzo minore (usare un algoritmo divide-et-impera ricorsivo).

Implementare l'algoritmo per la simulazione per la gestione dei dischi. Effettuare e visualizzare almeno un test per ognuna delle opzioni richieste dall'utente.

<u>ATTENZIONE – LEGGERE ATTENTAMENTE</u>

La prova d'esame di laboratorio richiede il progetto degli algoritmi e la loro implementazione come programmi C.

Tutti i programmi devono contenere

- un insieme di commenti iniziali che spiega brevemente le finalità del programma;
- un insieme di commenti all'inizio di ogni function che spiega le finalità della function e il significato dei parametri di input output (*specifiche* della function);
- commenti esplicativi dei principali blocchi di istruzioni;

e devono essere corredati da

• un insieme di almeno **3 esecuzioni** per testare il programma con diversi dati di input.

Lo studente deve consegnare al docente una <u>UNICA</u> relazione organizzata come documento multimediale. In particolare deve essere inviata per e-mail al docente una <u>UNICA</u> cartella (zippata) denominata <u>Relazione</u> <u>Cognome</u> <u>Nome.zip</u>.

La cartella deve contenere:

- un file index.html che è il documento multimediale;
- una cartella images che contiene le immagini del documento multimediale;
- una cartella C contenente i file sorgente del progetto (.c, .h);
- il testo della prova inviata dal docente in formato .pdf ;
- altre cartelle eventualmente generate per il documento.

La relazione deve contenere necessariamente almeno

• il testo della prova inviata dal docente;

- il testo dei programmi C (sorgente);
- l'output e la descrizione dei test di esecuzione.

I test devono essere almeno tre per ogni programma, devono essere salvati come "print screen" e come figure nel documento multimediale. Devono essere corredati da una descrizione per l'interpretazione dei risultati del test.

La relazione deve riportare chiaramente il nome e cognome dell'allievo e la sua matricola.

La relazione deve essere inviata al docente e-mail per (angelo.ciaramella@uniparthenope.it) entro la data di scadenza della prenotazione on-line dell'esame e deve essere inviata esclusivamente dall'indirizzo personale dello studente (nome.cognome@ studenti.uniparthenope.it).

IL NOME DELLA CARTELLA CHE CONTIENE LA RELAZIONE DEVE ESSERE Relazione cognomeallievo nomeallievo.zip

NON SARANNO ESAMINATI PROGETTI DIFFORMI DA QUANTO PRECISATO.