```
In [1]: from matplotlib import pyplot as plt
        from matplotlib.dates import MonthLocator, num2date
        from matplotlib.ticker import FuncFormatter
        from prophet import Prophet
        from prophet.diagnostics import cross validation, performance metrics
        from prophet.plot import add changepoints to plot
        import pandas as pd
        import numpy as np
        import datetime as dt
        from collections import defaultdict
        import time
        import datetime as dt
        from pytz import timezone
        tz = timezone('EST')
        from tqdm import tqdm
        from sklearn.metrics import mean absolute error, mean absolute percentage error,
        import seaborn as sns
        %config InlineBackend.figure format = 'retina'
        %matplotlib inline
        from matplotlib import pyplot as plt
        from matplotlib import style
        sns.set()
```

```
In [2]:
    nemassbost2011 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hou
    nemassbost2011 = pd.read_excel(nemassbost2011, 'NEMASSBOST')
    nemassbost2012 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hou
    nemassbost2012 = pd.read_excel(nemassbost2012, 'NEMASSBOST')
    nemassbost2013 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hou
    nemassbost2013 = pd.read_excel(nemassbost2013, 'NEMASSBOST')
    nemassbost2014 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hou
    nemassbost2014 = pd.read_excel(nemassbost2014, 'NEMASSBOST')
    nemassbost2015 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hou
    nemassbost2015 = pd.read_excel(nemassbost2015, 'NEMASSBOST')
    nemassbost2016 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hou
    nemassbost2016 = pd.read_excel(nemassbost2016, 'NEMA')
```

```
In [3]: nemassbost2017 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hoto
    nemassbost2018 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hoto
    nemassbost2019 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hoto
    nemassbost2020 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hoto
    nemassbost2021 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hoto
    nemassbost2022 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hoto
    nemassbos
```

In [4]: nemassbost2022

Out[4]:

	Date	Hr_End	DA_Demand	RT_Demand	DA_LMP	DA_EC	DA_CC	DA_MLC	RT_LMP	RT_
0	2022 - 01-01	1	2293.0	2171.821	33.01	32.35	0.23	0.43	26.26	25.
1	2022 - 01-01	2	2213.3	2093.030	33.03	32.31	0.28	0.44	26.21	25.
2	2022 - 01-01	3	2113.4	2025.558	31.25	30.85	0.00	0.40	27.85	27.
3	2022- 01-01	4	2094.7	1983.638	30.06	29.69	0.00	0.37	25.47	25.
4	2022- 01-01	5	2098.1	1980.257	31.26	30.86	0.00	0.40	29.66	29
739	2022- 01-31	20	3397.3	3431.972	227.75	226.40	0.00	1.35	297.63	295.
740	2022- 01-31	21	3277.7	3332.719	203.77	202.82	0.00	0.95	265.60	264.
741	2022- 01-31	22	3108.5	3181.992	184.25	183.42	0.00	0.83	253.17	251.
742	2022- 01-31	23	2929.9	2993.214	180.74	179.93	0.00	0.81	191.40	190,
743	2022- 01-31	24	2740.9	2830.547	191.49	190.54	0.00	0.95	190.27	189.

744 rows × 14 columns

```
In [5]: val2011 = nemassbost2011['DEMAND']
    val2012 = nemassbost2012['DEMAND']
    val2013 = nemassbost2013['DEMAND']
    val2014 = nemassbost2014['DEMAND']
    val2015 = nemassbost2015['DEMAND']
    val2016 = nemassbost2016['RT_Demand']
    val2017 = nemassbost2017['RT_Demand']
    val2018 = nemassbost2018['RT_Demand']
    val2019 = nemassbost2019['RT_Demand']
    val2020 = nemassbost2020['RT_Demand']
    val2021 = nemassbost2021['RT_Demand']
    val2022 = nemassbost2022['RT_Demand']
```

In [6]: values = [val2011, val2012, val2013, val2014, val2015, val2016, val2017, val2018]

values_df = pd.concat(values, axis=0, ignore_index=False)

period = len(values_df)

values_df = values_df.reset_index()

```
In [7]: rng = pd.date range('2011-01-01', periods=period, freq='1H')
                          date_df = pd.DataFrame({ 'ds': rng})
                          date_df = date_df.reset_index()
  In [8]: frames = [date_df, values_df]
                          nemassbost_load = pd.concat(frames, axis=1, ignore_index=False)
                          nemassbost_load = nemassbost_load.rename(columns={nemassbost_load.columns[1]: 'ds
                          frames2 = [nemassbost load['ds'], nemassbost load['y']]
                          nemassbost load = pd.concat(frames2, axis=1, ignore index=False)
                          nemassbost load
  Out[8]:
                                                                                ds
                                                                                                         У
                                      0 2011-01-01 00:00:00 2474.000
                                      1 2011-01-01 01:00:00 2367.000
                                      2 2011-01-01 02:00:00 2282.000
                                      3 2011-01-01 03:00:00 2231.000
                                      4 2011-01-01 04:00:00 2212.000
                            97171 2022-01-31 19:00:00 3431.972
                            97172 2022-01-31 20:00:00 3332.719
                            97173 2022-01-31 21:00:00 3181.992
                            97174 2022-01-31 22:00:00 2993.214
                            97175 2022-01-31 23:00:00 2830.547
                          97176 rows × 2 columns
   In [9]: model = Prophet(
                                                changepoint prior scale=0.5,
                                                seasonality_mode='multiplicative',
                                                interval width=0.95,
                          model.add_country_holidays(country_name='US')
  Out[9]: cout[9]: <p
In [10]: model.fit(nemassbost load)
Out[10]:  content content
In [11]: | future_pd = model.make_future_dataframe(
                                                periods=365,
                                                freq='1H',
                                                include history=True
                                     )
                          # make predictions
                          forecast_pd = model.predict(future_pd)
```

In [12]: forecast_pd[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[12]:

	ds	yhat	yhat_lower	yhat_upper
97536	2022-02-16 00:00:00	2477.856424	1895.421955	3013.725683
97537	2022-02-16 01:00:00	2366.653877	1816.744042	2938.663993
97538	2022-02-16 02:00:00	2299.842996	1721.691274	2865.523223
97539	2022-02-16 03:00:00	2288.794608	1762.070472	2878.195247
97540	2022-02-16 04:00:00	2348.509610	1780.105049	2914.531632

In [13]: fig1 = model.plot(forecast_pd)

In [14]: fig2 = model.plot_components(forecast_pd)

In [15]: forecast_pd

Out[15]:

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	Christmas Day	Chr Day
0	2011- 01-01 00:00:00	2903.728324	1766.175559	2895.101747	2903.728324	2903.728324	0.0	
1	2011- 01-01 01:00:00	2903.774015	1639.676683	2824.473215	2903.774015	2903.774015	0.0	
2	2011- 01-01 02:00:00	2903.819705	1495.288850	2691.770081	2903.819705	2903.819705	0.0	
3	2011- 01-01 03:00:00	2903.865395	1560.419953	2633.025587	2903.865395	2903.865395	0.0	
4	2011- 01-01 04:00:00	2903.911086	1614.031167	2727.892329	2903.911086	2903.911086	0.0	
97536	2022- 02-16 00:00:00	2672.719377	1895.421955	3013.725683	2668.104546	2678.612327	0.0	
97537	2022- 02-16 01:00:00	2672.722362	1816.744042	2938.663993	2668.039209	2678.651019	0.0	
97538	2022- 02-16 02:00:00	2672.725348	1721.691274	2865.523223	2668.015270	2678.689711	0.0	
97539	2022- 02-16 03:00:00	2672.728334	1762.070472	2878.195247	2668.013679	2678.728403	0.0	
97540	2022- 02-16 04:00:00	2672.731320	1780.105049	2914.531632	2668.012088	2678.767094	0.0	

97541 rows × 73 columns

In []: