#### Pointers and references

Victor Eijkhout and Carrie Arnold and Charlie Dey

Fall 2017



#### Pointers and addresses



# C and F pointers

C++ and Fortran have a clean reference/pointer concept: a reference or pointer is an 'alias' of the original object

C/C++ also has a very basic pointer concept: a pointer is the address of some object (including pointers)

If you're writing C++ you should not use it. if you write C, you'd better understand it.



## **Memory addresses**

If you have an int i; then &i is the address of i. An address is a (long) integer, denoting a memory address. Usually it is rendered in *hexadecimal* notation. C style: int i; printf("address of i: %ld\n",(long)(&i)); printf(" same in hex:  $lx\n$ ",(long)(&i)); and C++:

cout << "address of i, decimal: " << (long)&i << endl;</pre>

int i;

# Address types

```
The type of '&i' is int*, pronounced 'int-star', or more formally: 'pointer-to-int'.
```

You can create variables of this type:

```
int i;
int* addr = &i;
```



# **Dereferencing**

Using \*addr 'dereferences' the pointer: gives the thing it points to; the value of what is in the memory location.

```
int i;
int* addr = &i;
i = 5;
cout << *addr;
i = 6;
cout << *addr;</pre>
```

This will print 5 and 6:



#### illustration





#### illustration





#### Star stuff

#### Equivalent:

- int\* addr: addr is an int-star, or
- int \*addr: \*addr is an int.



### Arrays and pointers



# Array and pointer equivalence

Array and memory locations are largely the same:

```
double array[5];
double *addr_of_second = &(array[1]);
array = (11,22,33,44,55);
cout << *addr_of_second;</pre>
```



### Multi-dimensional arrays



## Multi-dimensional arrays

After

```
double x[10][20];
a row x[3] is a double*, so is x a double**?
Was it created as:
double **x = new double*[10];
for (int i=0; i<10; i++)
  x[i] = new double[20];</pre>
```

No: multi-d arrays are contiguous.



### Pointers and parameter passing



### C++ pass by reference

C++ style functions that alter their arguments:

```
void inc(int &i) { i += 1; }
int main() {
  int i=1;
  inc(i);
  cout << i << endl;
  return 0;
}</pre>
```



# C-style pass by reference

In C you can not pass-by-reference like this. Instead, you pass the address of the variable i by value:

```
void inc(int *i) { *i += 1; }
int main() {
  int i=1;
  inc(&i);
  cout << i << endl;
  return 0;
}</pre>
```

Now the function gets an argument that is a memory address: i is an int-star. It then increases \*i, which is an int variable, by one.



#### Exercise 1

Write another version of the swap function:

```
void swapij( /* something with i and j */ {
  /* your code */
int main() {
  int i=1, j=2;
  swapij( /* something with i and j */ );
  cout << "check that i is 2: " << i << endl;</pre>
  cout << "check that j is 1: " << i << endl;</pre>
  return 0:
```

Hint: write C++ code, then insert stars where needed.



## Reference: change argument

```
void f( int &i ) { i += 1; };
int main() {
  int i = 2;
  f(i); // makes it 3
```



# Reference: save on copying

```
class BigDude {
private:
   vector<double> array(5000000);
int main() {
   BigDude big;
   f(big); // whole thing is copied
Instead write:
void f( BigDude &thing ) { .... };
Prevent changes:
void f( const BigDude &thing ) { .... };
```



### **Dynamic allocation**



# Problem with static arrays

```
if ( something ) {
  double ar[25];
} else {
  double ar[26];
}
ar[0] = // there is no array!
```



#### **Declaration and allocation**

```
double *array;
if (something) {
  array = new double[25];
} else {
  array = new double[26];
}
```



#### **De-allocation**

Memory allocated with new does not disappear when you leave a scope. Therefore you have to delete the memory explicitly:

```
delete(array);
```

The C++ vector does not have this problem, because it obeys scope rules.



# Memory leak1

```
void func() {
  double *array = new double[large_number];
  // code that uses array
}
int main() {
  func();
};
```

- The function allocates memory
- After the function ends, there is no way to get at that memory
- ⇒ memory leak.



# Memory leak2

```
for (int i=0; i<large_num; i++) {
  double *array = new double[1000];
  // code that uses array
}</pre>
```

Every iteration reserves memory, which is never released: another *memory leak*.

Your code will run out of memory!

