To loan or not to loan - That is the question

Practical assignment of the *Machine Learning* course at U.Porto

Group

Ricardo Fontão - up201806317 João Cardoso - up201806531 Eduardo Correia - up201806433

Domain Description

- Dataset from the records of a Czech bank, dating from 1993 up to 1998.
- Data was provided in .csv files, containing information about accounts, transactions, district information, previous loans and their result, etc... each in a separate file

Exploratory Data Analysis

Outlier detection

- (Box) plot each non-categorical field; found columns with possible outliers.
- Found those outliers using standard deviation and first/third quartile methods.
- Analyzed them manually and test with/without them (removing outliers would've worsened results)

Null-values

- Only 11 clients who had loans also had a (credit) card. The card table was dropped.
- The transaction table had very few (not null) k_symbol, bank and account values. Those columns were dropped.
- The district table had a handful of null values on 2 columns. They were replaced with that column's median.

Exploratory Data Analysis

Interesting observations

- Almost every client that has had a balance below 0 had their loan rejected.
- There is a negligible correlation between **age** and **sex** with **status**.
- The same client was never in multiple accounts
- Accounts only have 1 or 2 clients each
- Accounts with 2 clients are significantly more likely to be accepted

35

30

10

- The dataset is unbalanced:
 - o It has very little refused loans (<50).

Expected observations

- The loan amounts graph tends towards the left half of the plot
- There were no clients requesting loans with ages below 15 or above 65

-2500

2500

5000

balance min

7500

10000

12500

250

200

Data Quality

After carefully analyzing the data, we concluded that it doesn't fulfill any of the data quality dimensions

Completeness

 There are many missing values and no data from the permanent order relation

Consistency

Operation field contains stray "withdrawal in cash" value

Conformity

birth_number gives both birthdate and sex information

Accuracy

 Client sex doesn't affect loan status, unlike the real world, where sex plays a major role in loan application

Integrity

There are client relation entries with no correspondent loans

Timeliness

 Provided dataset is already over two decades old

Problem Definition

- Objective: Predict the probability of a loan not succeeding, given past loans (paid 1, or unpaid -1) and client information.
- Procedure: Train a set of machine learning models and compare their performances to achieve the best result possible.
- **Evaluation metric:** Area Under ROC Curve (**AUC**). It's also better to predict not giving someone a loan because in that case the bank doesn't lose money

Data Preparation

- Converted dates to "YYYY/MM/DD" format
- Categorized sex field
- Encoded region name, using weight of evidence encoding (single column encoding whose results are the In(%status=1/%status=-1))
- Converted categorical values into dummy variables in transaction operation field
- Filled missing values in unemployment rate '95 and no. of committed crimes '95 fields using median values
- Detected outliers (none were found)
- Dropped features with high-correlation (for example, *payment* and *duration*, since these are a function of the *amount* field)
- Converted "withdrawal in cash" to "withdrawal" in transaction's type field
- Dropped all card data, since there were only 11 cards associated with accounts
- Dropped unemployment. rate '95, unemployment. rate '96, no. crimes '95, no. crimes '96 and no. entrepreneurs per 1000 habitants
- Removed null values and features with low impact

Feature Engineering

- Created a field for the number of clients of a given account
- Extracted min, max and mean aggregations for balance and amount fields
- Created a field to indicate whether the transaction balance of a given loan has reached negative values or not
- Unified account issuance frequency by a month period
- Created fields criminality_growth, unemployment_growth and ratio_enterpreneurs
- Extracted client age (at time of loan) and gender from birth_number field
- Used logarithmic transformation for skewed values

Experimental Setup

Our project pipeline is as follows:

- Preprocessing
 - Load and process data (drop values, create new features, extract information...)
 - Aggregate all data into just one table
 - Employ clustering techniques
 - Visualize data with different kinds of charts
- Prediction
 - Tune set models
 - For each, plot respective ROC curves and confusion matrix
 - Fit best model to test data and save the obtained results

Experimental Setup

Models tested

- SVC
- KNN
- Decision Tree
- Random Forest
- Naive Bayes
- Logistic Regression Classifier

Feature Selection

- Single filter method (Anova Test)
- Chooses top 10 features

Oversampling

Use of SMOTE

Scaling

Use of Sklearn's StandardScaler

- For each model, Sklearn's GridSearchCV was used to search for the best hyperparameters to each model.
- To reduce overfitting, Cross-Validation was used
 - 5 folds
- For each model, 4 scenarios were analyzed
 - No Feature Selection and No Oversampling
 - Only Feature Selection
 - Only Oversampling
 - Feature Selection and Oversampling

Results

	ROC-AUC			
Decision Tree	0.83	0.82	0.83	0.87
SVC	0.88	0.87	0.87	0.87
K-nearest Neighbours	0.84	0.86	0.86	0.87
Naive Bayes	0.87	0.85	0.88	0.85
Random Forest	0.88	0.88	0.88	0.88
Logistic Regression	0.86	0.87	0.86	0.88
The chestatuling to salue salution Oversamping Chestatuling				

Results

- All classifiers presented similar results
- The one that stands out the most in terms of metrics is the Random Forest Classifier

 Both Feature Selection and Oversampling don't appear to influence the results very much

Logistic Regression vs Random Forest

Random Forest

Descriptive Analysis

- PCA was used to reduce the dimensionality of the data
- The silhouette method was used to choose the number of clusters
- Kmeans was the clustering method used

All features

From using the silhouette method, we can infer that 2 clusters is the best starting amount. However, when plotting the clusters, no clear aggregations could be visualized. When plotting which points had status 1 or -1 there still were no conclusions regarding groups of costumers.

Models

Decision Tree

SVM

KNN

Naive Bayes

Random Forest

Logistic Regression

Best and worst performing

- Best:
 - Random Forest
 - Decision Tree
 - K nearest neighbors (KNN)
- Worst:
 - Logistic regression
 - However, it defaults to -1, which is good for the bank, because losing money to an accepted loan which doesn't work is likely worse than not gaining money from a would-be successful loan
 - Naive Bayes

Second Best - Decision Tree

- Model explanation:
 - Start with a root node R; it contains the full dataset.
 - For each node:
 - Select the best feature, create nodes for each of its values containing every part of the dataset.
 - Repeat step 2 until the nodes can't be split, or max depth is reached.
- Positive: Handles numerical and categorical data
- Negative: Relatively prone to overfitting

```
parameter_grid = {
    'criterion': ['gini', 'entropy'],
    'splitter': ['best', 'random'],
    'max_depth': range(1, 7)
}

dt, dt_fs, dt_os, dt_fs_os = (tune_model(
    train_df,
    DecisionTreeClassifier(random_state=RANDOM_STATE),
    parameter_grid,
    columns_to_drop,
    target_column,
    oversample=oversample,
    feature_selection=feature_selection
) for oversample, feature_selection in ((False, False), (False, True), (True, False), (True,True)))
```

Best - Random Forest

- Model explanation:
 - Generate a number of decision trees, each with a different sample of the training dataset.
 - (See Decision Tree)
 - For each value in the testing dataset, run reach decision tree and the result (status value) with the most votes is chosen.

Positive: More resistant to overfitting than random forest.

```
parameter_grid = {
    'n_estimators': [10, 50, 100, 200],
    'max_depth': [5, 10, 15],
    'n_jobs': [-1], # Use all cores
    'criterion': ['gini', 'entropy']
}

rfc, rfc_fs, rfc_os, rfc_fs_os = (tune_model(
    train_df,
    RandomForestClassifier(random_state=RANDOM_STATE),
    parameter_grid,
    columns_to_drop,
    target_column,
    oversample=oversample,
    feature_selection=feature_selection
) for oversample, feature_selection in ((False, False), (False, True), (True, False), (True,True)))
```

Third Best - K nearest neighbors (KNN)

- Model explanation:
 - Select a number of neighbors K for any new point:
 - Take the K nearest neighbors (based on Euclidean distance)
 - Count the number of points for each category in those K
 - The new point is assumed to belong to the category with the highest amount.

Positives:

Robust to noisy data

Negatives:

- Need to find best K
- Best with high amount of data (not our case)

```
parameter_grid = {
    'n_neighbors': [4, 5, 6, 7, 10, 15],
    'leaf_size': [5, 10, 15, 20, 50, 100],
    'n_jobs': [-1],
    'algorithm': ['auto']
}
knn, knn_fs, knn_os, knn_fs_os = (tune_model(
    train_df,
    neighbors.KNeighborsClassifier(),
    parameter_grid,
    columns_to_drop,
    target_column,
    scaler=StandardScaler(),
    oversample=oversample,
    feature_selection=feature_selection
) for oversample, feature_selection in ((False, False), (False, True), (True, False), (True,True)))
```

Worst - Naive Bayes

Model explanation:

- Calculate the probability of success (status = 1) for each value of each feature (P(Y|X))
- For each value, multiply each of its features' values' probabilities to obtain the probability of success.

Positives:

- Fast (handles high dimensional data easily)
- Less bad with little data

Negatives:

- Assumes each variable is independent (gives bad results if there are many variables with high correlations)
- Bad for probability estimation

```
nb, nb_fs, nb_os, nb_fs_os = (tune_model(
    train_df,
    GaussianNB(),
    parameter_grid,
    columns_to_drop,
    target_column,
    scaler=StandardScaler(),
    oversample=oversample,
    feature_selection=feature_selection
) for oversample, feature_selection in ((False, False), (False, True), (True, False), (True, True)))
```

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \rightarrow Posterior = \frac{likelihood \times prior}{evidence}$$

No Feature Selection / No oversampling

Feature Selection / No Oversampling

No Feature Selection / With Oversampling

Feature Selection / Oversampling

Conclusion

- Some algorithms could not be used effectively due to the fact that the available data was so scarce (for instance, DeepLearning).
- Some data (for instance, the card relation) proved to be irrelevant.
- There were missing fields and even relations (for instance, the *permanent order* relation) from the banking case description.
- Tree-based models perform well, but tend to overfit if not configured correctly and with many features.
- Filter Methods for feature selection and oversampling didn't improve or worsen the results

Future Work

- Experiment with new models (for instance, VotingClassifier, to take advantage of our best models)
- Test more feature selection algorithms
- Further improve features being used (with feature engineering/selection)
- Apply other oversampling techniques other than SMOTE and also undersampling

Used Tools

- **Python/Jupyter Notebook:** Development of the entire project
 - o numpy Numerical handling of matrix-like data
 - o pandas Data manipulation
 - imblearn Dealing with imbalanced classes
 - sklearn Classifier algorithms
 - o matplotib/seaborn Data visualization

Self-Evaluation

Ricardo Fontão - 1

João Cardoso - 1

Eduardo Correia - 1

All students contributed the same amount of effort to the project