PH 366 Day 6: Data Sets and Electric Potential

27 Jan 2025

Announcements

Midterm mini-project next week

- Open-ended, more complex version of a regular assignment
- Monday and Wednesday classes set aside for project work time
- Collaboration and online resources allowed, but submit your own work
- Detailed description and grading rubric on Canvas

Locating a Data File

Open the .zip file to get the assignment

| day6-potential-data-STUDENT.ipynb | day6-potential-data-STUDENT.ipynb | potential-table.txt

Keep the .ipynb and .txt files in the same folder

Enables computer to locate .txt file by filename alone:

```
"potential-table.txt"
```

Reading Files with pandas

pandas: library for data analysis and manipulation

import pandas as pd

Functions read_csv and read_fwf can read data sets depending on the file format

- csv: comma-separated values (or separated by some other character)
- **fwf:** fixed-width file (each data point typed to take up same amount of space when reading)

Reading a Fixed-width File

Fixed-width file:

Notice...

- Each data point takes up a fixed amount of space
- The first five rows do not contain data at all, just information about what the file contains

```
data = pd.read_fwf("file-name.txt", skiprows=5)
```

Viewing Data with pandas

data.head()

	У	-10.0	-9.9	-9.8	-9.7	-9.6	-9.5	-9.4	-9.3	-9.2
0	0.0	59.01	59.30	59.59	59.88	60.17	60.47	60.76	61.06	61.36
1	0.1	59.26	59.55	59.84	60.14	60.44	60.73	61.04	61.34	61.64
2	0.2	59.51	59.80	60.10	60.40	60.70	61.01	61.31	61.62	61.92
3	0.3	59.76	60.06	60.36	60.67	60.97	61.28	61.58	61.89	62.21
4	0.4	60.02	60.32	60.62	60.93	61.24	61.55	61.86	62.18	62.49

Get your whiteboards out...

We are looking at the same data in 2D NumPy array form

```
[[ 0. , 59.01, 59.3 , ..., 82.22, 81.78, 81.33], [ 0.1 , 59.26, 59.55, ..., 82.91, 82.46, 82.01], [ 0.2 , 59.51, 59.8 , ..., 83.62, 83.15, 82.69], [ 0.3 , 59.76, 60.06, ..., 84.33, 83.86, 83.38], [ 0.4 , 60.02, 60.32, ..., 85.06, 84.57, 84.08]]
```

The same data in 2D NumPy array form

```
[[ 0. , 59.01, 59.3 , ..., 82.22, 81.78, 81.33], [ 0.1 , 59.26, 59.55, ..., 82.91, 82.46, 82.01], [ 0.2 , 59.51, 59.8 , ..., 83.62, 83.15, 82.69], [ 0.3 , 59.76, 60.06, ..., 84.33, 83.86, 83.38], [ 0.4 , 60.02, 60.32, ..., 85.06, 84.57, 84.08]]
```

```
[[0.], 59.01, 59.3, ..., 82.22, 81.78, 81.33], [0.1, 59.26, 59.55, ..., 82.91, 82.46, 82.01], [0.2, 59.51, 59.8, ..., 83.62, 83.15, 82.69], [0.3, 59.76, 60.06, ..., 84.33, 83.86, 83.38], [0.4, 60.02, 60.32, ..., 85.06, 84.57, 84.08]]
```

```
[[ 0. , 59.01, 59.3 , ..., 82.22, 81.78, 81.33], [ 0.1 , 59.26, 59.55, ..., 82.91, 82.46, 82.01], [ 0.2 , 59.51, 59.8 , ..., 83.62, 83.15, 82.69], [ 0.3 , 59.76, 60.06, ..., 84.33, 83.86, 83.38], [ 0.4 , 60.02, 60.32, ..., 85.06, 84.57, 84.08]]
```

```
[[ 0. , 59.01, 59.3 , ..., 82.22, 81.78, 81.33], [ 0.1 , 59.26, 59.55, ..., 82.91, 82.46, 82.01], [ 0.2 , 59.51, 59.8 , ..., 83.62, 83.15, 82.69], [ 0.3 , 59.76, 60.06, ..., 84.33, 83.86, 83.38], [ 0.4 , 60.02, 60.32, ..., 85.06, 84.57, 84.08]]
```

```
[[ 0. , 59.01, 59.3 , ..., 82.22, 81.78, 81.33], [ 0.1 , 59.26, 59.55, ..., 82.91, 82.46, 82.01], [ 0.2 , 59.51, 59.8 , ..., 83.62, 83.15, 82.69], [ 0.3 , 59.76, 60.06, ..., 84.33, 83.86, 83.38], [ 0.4 , 60.02, 60.32, ..., 85.06, 84.57, 84.08]]
```

Reminder

You are learning new tools today - both accessing data and plotting data

Fill out the **generative AI check-in tasks** to help us design better ways to help you learn computing