

Doc. Number:

- □ Tentative Specification
- Preliminary Specification
- □ Approval Specification

MODEL NO.: P101KDA SUFFIX: AB0

Customer: Amazon	
APPROVED BY	SIGNATURE
Name / Title Note :	
Please return 1 copy for your consignature and comments.	firmation with your

Approved By	Checked By	Prepared By

Version 0.0 8 December 2017 1 / 34

CONTENTS

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 GENERAL SPECIFICATIONS	4
2. MECHANICAL SPECIFICATIONS	4
2.1 CONNECTOR TYPE	4
3. ABSOLUTE MAXIMUM RATINGS	
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	5
3.2 ELECTRICAL ABSOLUTE RATINGS	5
3.2.1 TFT LCD MODULE	
4. ELECTRICAL SPECIFICATIONS	
4.1 FUNCTION BLOCK DIAGRAM	
4.2 INTERFACE CONNECTIONS	6
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD ELECTRICAL SPECIFICATION	8
4.3.2 LED CONVERTER SPECIFICATION	
4.3.3 BACKLIGHT UNIT	
4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS	
4.4.1. MIPI Interface DC characteristic	
4.4.2 MIPI AC Characteristic	
4.4.3 High Speed Transmission	
4.5 MIPI interface (Mobile Industry Processing Interface)	
4.5.1 MIPI Lane Configuration	
4.6 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	
6. RELIABILITY TEST ITEM	
7. PACKING	
7.1 MODULE LABEL	
7.2 CARTON	
7.3 PALLET	
7.4 UN-PACKAGING METHOD	
8. PRECAUTIONS	
8.1 HANDLING PRECAUTIONS	
8.2 STORAGE PRECAUTIONS	
8.3 OPERATION PRECAUTIONS	
Appendix 1 : OUTLINE DRAWING	
Appendix 2: NT51021B REGISTER SETTING	
Appendix 3: SYSTEM COVER DESIGN GUIDANCE	31

Version 0.0 8 December 2017 2 / 34

REVISION HISTORY

Version	Date	Page	Description
0.0	2017/12/08	All	Spec Ver.0.0 was first issued.

Version 0.0 3 / 34 8 December 2017

1. GENERAL DESCRIPTION

1.1 OVERVIEW

P101KDA-AB0 is a 10.1" (10.1" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 51 pins MIPI interface. This module supports 1200 x 1920 WUXGA mode.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	10.1" diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1200 x R.G.B. x 1920	pixel	-
Pixel Pitch	0.1128 (H) x 0.1128 (V)	mm	-
Pixel Arrangement	RGB vertical stripe		-
Display Colors	16,777,216 (8bit color depth)	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Glare	/ -	-
Luminance, White	440	Cd/m2	Тур.
Power Consumption	2.556 W (Max.) (Panel 0.5 W @ White (Max.), BLU 2.056W (Max.))		(1)

Note (1) The specified power consumption (without LED converter efficiency) is under the conditions at VDDI = 3.3 V, fv = 60 Hz, Brightness = 440 nits, $I_{F_LED} = 21 \text{ mA}$ and $Ta = 25 \pm 2 \,^{\circ}\text{C}$, whereas white pattern is displayed.

2. MECHANICAL SPECIFICATIONS

	tem	Min.	Тур.	Max.	Unit	Note	
	Horizontal (H)	227.63	227.93	228.23	mm		
Module Size	Vertical (V)	142.7	143	143.3	mm	(1)	
Module Size	Thickness (T)	2.3 (w/o PCBA)	2.5 (w/o PCBA)	2.7 (w/o PCBA) 4.4 (w/ PCBA)	mm	(1)	
Active Area	Horizontal		216.576		mm		
Active Area	Vertical		135.36		mm		
Weight	-	-		144	g		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 CONNECTOR TYPE

Please refer to Appendix Outline Drawing for detail design.

Connector Part No.: I-PEX 20718-051E-01

Version 0.0 8 December 2017 4 / 34

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltom	Cumbal	Va	lue	Linit	Moto
Item	Symbol	Min.	Max.	Unit	Note
Storage Temperature	T _{ST}	-20	+70	°C	(1)
Operating Ambient Temperature	T _{OP}	-10	+60	°C	(1), (2)

Note (1) (a) 90 %RH Max.

(b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2) The temperature of panel surface should be -10 $^{\circ}$ C min. and 60 $^{\circ}$ C max.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

		Value	11. 2	N	
Item	Symbol	Min. Max.	Unit	Note	
Power Supply Voltage	VDDI	3.0 3.6	V	(1)	

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 0.0 8 December 2017 5 / 34

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2 INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin No.	Symbol	I/O	Description	Remark
1	GND	Р	Ground	
2	TP_INT	-	NC	
3	TP_RST	-	NC	
4	TP_SCL	-	NC	
5	TP_SDA	-	NC	
6	TP_1.8V	- 1	NC	
7	GND	Р	Ground	
8	TP_3.3V		NC	
9	GND	P	Ground	
10	GND	Р	Ground	
11	NC	Р	INX use for MTP, no connection for system	
12	NC	-	No connection,	
13	VDD_3.3 V	Р	3.3 V input	3.0 ~3.6 V
14	VDD_3.3 V	Р	3.3 V input	3.0 ~3.6 V
15	VDD_3.3 V	Р	3.3 V input	3.0 ~3.6 V
16	NC	-	No connection,	
17	GND	Р	Ground	
18	D0+	I	MIPI differential data0 input (Positive)	
19	GND	Р	Ground	
20	D0-	I	MIPI differential data0 input (Negative)	
21	GND	Р	Ground	
22	D1+	I	MIPI differential data1 input (Positive)	

Version 0.0 8 December 2017 6 / 34

23	GND	P	Ground		
24	D1-	I	MIPI differential data1 input (Negative)		
25	GND	Р	Ground		
26	CLK+	I	MIPI differential clock input (Positive)		
27	GND	Р	Ground		
28	CLK-	I	MIPI differential clock input (Negative)		
29	GND	Р	Ground		
30	D2+	I	MIPI differential data2 input (Positive)		
31	GND	Р	Ground		
32	D2-	I	MIPI differential data2 input (Negative)		
33	GND	Р	Ground		
34	D3+	I	MIPI differential data3 input (Positive)		
35	GND	Р	Ground		
36	D3-	I	MIPI differential data3 input (Negative)		
37	GND	Р	Ground		
38	LED_PWM_OUT	0	PWM control signal for LED driver		
39	RST(GRB)	I	Device reset signal		
40	SCL	I	I2C signal		
41	SDA	I	I2C signal		
42	NC	I	INX use for WPN, no connection for system		
43	TP_SYNC	0			
44	ID1(GND)		ID		
45	LED1-	0	Cathode for light bar		
46	LED2-	0	Cathode for light bar		
47	LED3-	0	Cathode for light bar		
48	LED4-	0	Cathode for light bar		
49	NC	-	No connection,		
50	LED+	Р	Anode for light bar		
51	LED+	Р	Anode for light bar		

Note (1) The first pixel is odd as shown in the following figure.

Note (2) Normal operation/BIST pattern selection. (Control by MIPI LP Command)

Version 0.0 8 December 2017 7 / 34

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELECTRICAL SPECIFICATION

Item		Symbol		Values	Unit	Remark	
item		Symbol	Min.	Тур.	Max.	Offic	Remark
Power Supply Voltage	je	VDDI	3.0	3.3	3.6	V	
Logic High Level Inp Voltage	ut	V _{IH1}	0.7xVDD		VDD	V	Far I/O airevit
Logic Low Level Inpu Voltage	ut	V _{IL1}	0		0.3xVDD	V	For I/O circuit
Power Supply Current	White	I _{VDDI}		0.15	C	А	Note (2)

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) The specified power supply current is under the conditions at VDDI = 3.3 V ,Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power-dissipation check pattern is displayed below.

4.3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, ^{\circ}C$

Parameter	Symbol	Value			Unit	Note
raiametei	Syllibol	Min.	Тур.	Max.	Offic	Note
Forward Current	I _B		21		mA	Note (1)
Forward Current Voltage	V _f		2.96	3.06	V	
Power Consumption	P _{BL}	-	1.988	2.056	mW	Note (2)

Note (1) 8 LEDs are connected in series; each LED forward current is 21mA.

Note (2) I_B =21mA, $P_{BL} = I_{B \times LED \ Q'ty} \times V_{BL}$, V_{BL} is backlight forward voltage.

4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS

4.4.1. MIPI Interface DC characteristic

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Damanatan	0	Oursell Oursellities -		pecificatio	n			
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT		
MIPI digital operation current	Ivccif	VCC=VCC_IF=1.5V, Data Rate=500Mbps,	-	-	24	mA		
MIPI digital stand-by current	Ivccifst	VCC_IF input current. All input signal are stopped.	-	200	-	uA		
	MIP	I Characteristics for High Speed Red	ceiver					
Single-endedl input low voltage	VILHS		-40	-	-	mV		
Single-endedl input high voltage	VIHHS		-		460	mV		
Common-mode voltage	VCMRXDC		155	-	330	mV		
Differential input impedance	Zıd		80	100	125	ohm		
Differential input high threshold	VIDTH)	-	70	mV		
Differential input low threshold	VIDTL	10	70	-	-	mV		
MIPI Characteristics for Low Power Mode								
Pad signal voltage range	Vı		-50	-	1350	mV		
Ground shift	VGNDSH		-50	-	50	mV		
Input low level	VIL		-150		150	mV		
Input high level	VIH		1.1	1.2	1.3	V		

Note 1) VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C

Figure :MIPI DC Diagram

群創光電

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

4.4.2 MIPI AC Characteristic

4.4.2.1 LP Transmission

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Dovomatav	Cymahal	Sp	LINIT		
Parameter	Symbol	MIN	TYP	MAX	UNIT
15%-85% rise time and fall time	TRLP / TFLP	-	-	25	ns
Pulse width of the LP exclusive-OR clock	TLP-PULSE-TX	50	-	-	ns
Period of the LP exclusive-OR clock	Tlp-per-tx	100			ns

Figure :LP Transmitter Timing Definitions

4.4.3 High Speed Transmission

4.4.3.1 Data-Clock Timing Specifications

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Parameter	Come le el	Sı	LINUT		
	Symbol	MIN	TYP	MAX	UNIT
UI instantaneous	UIINST	1.0	-	12.5	ns
Data to Clock Setup Time	Тѕетир	0.25	-	-	Ulinst
Data to Clock Hold Time	THOLD	0.25	-	-	Ulinst

Figure : Data to Clock Timing Definitions

Version 0.0 10/34 8 December 2017

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

- 4.4.3.2 High-Speed Data Transmission in Bursts
- 4.4.3.2.1 High-Speed Data Transmission Operation Timing Parameters

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Powerston.	Comple of	Sp	UNI		
Parameter	Symbol	MIN	TYP	MAX	Т
Time to drive LP-00 to prepare for HS transmission	Ths-prepare	40+4UI	-	85+6UI	ns
Time from start of tHS-TRAIL or tCLK-TRAIL period to start of LP-11 state	Теот	-	-	105+12U	ns
Time to enable Data Lane receiver line termination measured from when Dn cross VIL,MAX	Ths-term-en	-	-	35+4UI	ns
Time to drive flipped differential state after last payload data bit of a HS transmission burst	Ths-trail	60+4UI	(-)	-	ns
Time-out at RX to ignore transition period of EoT	THS-SKIP	40	*	55+4UI	ns
Time to drive LP-11 after HS burst	THS-EXIT	100	-	-	ns
Length of any Low-Power state period	TLPX	50	-	-	ns
Sync sequence period	Ths-sync	-	8UI	-	ns
Minimum lead HS-0 drive period before the Sync sequence	Ths-zero	105+6UI	-	-	ns

Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. UI means Unit Interval, equal to one half HS clock period on the Clock Lane.
- 3. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

Figure : High-Speed Data Transmission in Bursts

- 4.4.3.3 High-Speed Clock Transmission
- 4.4.3.3.1 Switching the Clock Lane Operation Timing Parameters

(VDD= 2.7V to 3.6V, AVDD= 7V to 10V, GND=AGND= 0V, TA= -20 to +85°C)

Downworton	C. mah al	Spe	UNIT		
Parameter	Symbol	MIN	TYP	MAX	UNII
Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	Tclk-post	60+52UI	-	-	ns
Detection time that the clock has stopped toggling	Tclk-miss	-	-	60	ns
Time to drive LP-00 to prepare for HS clock Transmission	Tclk-prepare	38	-	95	ns
Minimum lead HS-0 drive period before starting Clock	Tclk-prepare +Tclk-zero	300			ns
Time to enable Clock Lane receiver line termination measured from when Dn cross VIL,MAX	Ths-term-en			38	ns
Minimum time that the HS clock must be set prior to any associated date lane beginning the transmission from LP to HS mode	Tclk-pre	8	-	-	UI
Time to drive HS differential state after last payload clock bit of a HS transmission burst	TCLK-TRAIL	60	-	-	ns

Note:

The DSI host processor shall support continuous clock on the Clock Lane for NT chip that require it, so the host processor needs to keep the HS serial clock running.

Figure :Switching the Clock Lane between Clock Transmission and Low-Power Mode

4.4.3.4 LP11 timing request between data transformation

When Clock lane of DSI TX chip always keeps High speed mode, then Clock lane never go back to Low power mode. If Date lane of TX chip needs to transmit the next new data transmission or sequence, after the end of Low power mode or High speed mode. Then TX chip needs to keep LP-11 stop state before the next new data transmission, no matter in Low power mode or High speed mode. The LP-11 minimum timing is required for RX chip in the following 9 conditions, include of LP - LP, LP - HS, HS - LP, and HS – HS. This rule is suitable for short or long packet between TX and RX data transmission.

(1) Timing between LP - LP command

Parameter	Symbol	Spe	UNIT		
Parameter	Symbol	MIN	TYP	MAX	UNIT
LP-11 delay to a start of the new Escape Mode Entry	TDEE	150	-	-	ns

Version 0.0 8 December 2017 13 / 34

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

(2)Timing between LP - HS command

Parameter	Symbol	Specific	UNIT		
Farameter	Syllibol	MIN	TYP	MAX	UNIT
LP-11 delay to a start of the Entering High Speed Mode	TDEH	Max(150,32UI)	-	-	ns

(3)Timing between HS - LP command

Parameter	Cumhal	Specifi	UNIT		
Parameter	Symbol	MIN	TYP	MAX	UNIT
LP-11 delay to a start of the Escape Mode Entry	TDHE	Max(150,32UI)	-	-	ns

14 / 34 Version 0.0 8 December 2017

(4)Timing between HS - HS command

Davamatav	Cymphol	Specific	UNIT		
Parameter	Symbol	MIN	TYP MAX		UNIT
LP-11 delay to a start of the Entering High Speed Mode	Тонн	Max(150,32UI)	-	-	ns

Version 0.0 8 December 2017 15 / 34

4.5 MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode. Which mode is used depends on the architecture and capabilities of the peripheral. The mode definitions reflect the primary intended use of DSI for display interconnect, but are not intended to restrict DSI from operating in other applications.

Command Mode refers to operation in which transactions primarily take the form of sending commands and data to a peripheral, such as a display module, that incorporates a display controller. The display Controller may include local registers. Systems using Command Mode write to, and read from the registers. The host processor indirectly controls activity at the peripheral by sending commands, parameters and data to the display controller. The host processor can also read display module status information. Command Mode operation requires a bidirectional interface.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

Note: The NT51021 IC only supports Video Mode operation.

4.5.1 MIPI Lane Configuration

	MCU (Master)	Display Module (Slave)			
	Unidirectional Lar	ne			
Clock Lane+/-	■ Clock Only				
	■ Escape Mode(\lambda	JLPS Only)			
	Unidirectional Lar				
Data Lancou	■ Forward High-S	Speed			
Data Lane0+/- ■ Forward Escape Mode					
	■ Forward LPDT				
Data Lane1+/-	Unidirectional				
Data Lane 1+/-	■ Forward High speed				
Data Lane2+/-	Unidirectional				
Data Lane2+/-	■ Forward High speed				
Deta Lene2./	Unidirectional				
Data Lane3+/-	■ Forward High speed				

The connection between host device and display module is as reference.

Version 0.0 8 December 2017 16 / 34

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

a. Power on:

VDDI=3.0 ~ 3.6 V

Symbol		Value		Unit	Remark
	Min.	Тур.	Max.		
t1	-	-	2	ms	
t2	25	-	-	ms	
t3	100	-	-	ms	

Version 0.0 8 December 2017 17 / 34

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

b. Power off: VDDI=3.0~3.6V,

Symbol		Value		Unit	Remark
	Min.	Тур.	Max.		
t4	0	-	-	ms	
t5	100	-	-	ms	
t6	20	-	-	ms	

Version 0.0 8 December 2017 18 / 34

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit	
Ambient Temperature	Та	25±2	°C	
Ambient Humidity	На	50±10	%RH	
Supply Voltage	V _{cc}	(3.0)	V	
Input Signal	According to typical value in "4.3. ELECTRICAL CHARACTERISTICS"			
LED Light Bar Input Current	Ι _L	88	mA	

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contras	t Ratio	CR		800	1000	_	-	(2), (5),(7)
Response T	ime (Tr+Tf)	Т		-	25	35	ms	(3) ,(7)
CP Luminan	ce of White	LCP	θx=0°, θY =0° Viewing Normal Angle	350	440	1	Cd/m2	(4), (6),(7)
Color	\/\b:to	Wx		0.283	0.313	0.343	-	
Coordinate	White	Wy	Wy	0.299	0.329	0.359	-	
Color Gan	nut Color	NTSC		65	70		%	
Luminance	Uniformity	U_L		75	80		%	(6)
Viewing Angle Vertical	Harizantal	θ_{X+}		1	80	1	Deg.	
	Horizontai	θ_{X} -		-	80	-		(1), (5),
	Vertical	θ_{Y+}		-	80	-		(7)
		θ _Y -		-	80	-		
Flick	ker	dB			-30	-20		(8)
Crosstalk		%				2.5		(9)
Gam	ıma		θx=0°, θY =0°	1.9	2.2	2.5		·
White Variation	of 13 Points	δW _{13p}	Viewing Normal Angle	70	75	-	%	(5), (6), (7)

Version 0.0 8 December 2017 19 / 34

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression:

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Version 0.0 8 December 2017 20 / 34

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

Note (4) Definition of Center Point Luminance of White (L_{CP}):

Measure the luminance of gray level 255 at center point

$$L_{CP} = L(5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 13 points

$$\delta W_{13p} = \{Minimum [L (1) \sim L (13)] / Maximum [L (1) \sim L (13)]\}*100\%$$

Version 0.0 21 / 34 8 December 2017

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Note (8) Flicker

No visual flicker will be allowed. The flicker level should be measured on GS127, The output signal is measured by Minolta CA210 immediately while Vcom is optimized. The flicker is essentially a ratio of the Amplitude in the frequency spectrum at 30 Hz (A30) and 0 Hz (A0), i.e.,

$$F = 20 \text{ Log } (A30 / A0).$$

Note (9) Crosstalk

Three luminance values are measured at the same position (i.e. A, B, and C).

The cross-talk, is defined as,

$$C(H) = |(L(A) - L(B)| / L(B) \cdot 100\%,$$

$$C(V) = |(L(C) - L(B)| / L(B) \cdot 100\%,$$

Where, L (A, B, C) = Luminance in Position A, B, C

Crosstalk = max (C(H), C(V))

Version 0.0 8 December 2017 22 / 34

6. RELIABILITY TEST ITEM

Test Item	Test Condition	
High Temperature Storage Test	70°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour ←→60°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	60°C, 240 hours	
Low Temperature Operation Test	-10°C, 240 hours	
High Temperature & High Humidity Storage Test	50°C, RH 90%, 240hours	
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z	
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

- Note (1) criteria: Normal display image with no mura and extra line defect. (should be checked with 6% ND filter and within 45° viewing angle from vertical)
- Note (2) Evaluation should be tested after storage at room temperature for more than two hour
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 0.0 23 / 34 8 December 2017

7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Version 0.0 8 December 2017 24 / 34

7.2 CARTON

- (1) Box Dimensions : 590(L)*390(W)*320(H)
- (2) 36 Modules/Carton

Figure. 7-2 Packing method

7.3 PALLET

- (1) 16 box(max.) / 1pallet
- (2) Pallet stack 1200(L) x 800(W) x 1425(H) mm

Sea / Land Transportation (40ft /40ft HQ Container) Air Transportation

Figure. 7-3 Packing method

7.4 UN-PACKAGING METHOD

Figure. 7-4 Un-Packing method

Version 0.0 8 December 2017 27 / 34

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) Do not disassemble the module or insert anything into the Backlight unit.

Version 0.0 8 December 2017 28 / 34

Appendix 1: OUTLINE DRAWING

Version 0.0 8 December 2017 29 / 34

Appendix 2: NT51021B REGISTER SETTING

Command/ Function	R/W	Parameter
0x8F	W	0xA5
0x01	W	0x00
0x8F	W	0xA5
0x8C	W	0x80
0xC7	W	0x50
0xC5	W	0x50
0x85	W	0x04
0x86	W	0x08
0xA9	W	0x20
0x83	W	0xAA
0x84	W	0x11
0x9C	W	0x10
0xA9	W	0x4B
0x8F	W	0x00

Version 0.0 8 December 2017 **30 / 34**

Appendix 3: SYSTEM COVER DESIGN GUIDANCE

Version 0.0 8 December 2017 31 / 34

Version 0.0 8 December 2017 32 / 34

Version 0.0 8 December 2017 33 / 34

Version 0.0 8 December 2017 34 / 34

The copyright belongs to InnoLux. Any unauthorized use is prohibited.