Seat No.: _		Enrolment No		
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2018		
Sub	iect (Code:2161603 Date:03/05/2018	8	
Subject Name:Data Compression and data Retrival Time:10:30 AM to 01:00 PM Total Marks: 70				
1. Attempt all questions.				
		Take suitable assumptions wherever necessary.		
		igures to the right indicate full marks.		
Q.1	(a)	Define: self-information, entropy, lossy compression	03	
	(b)	State the models for lossless compression and explain any one in	04	
	(c)	Explain update procedure of adaptive huffman codding with suitable	07	
		example.		
Q.2	(a)	Given an alphabet $A = \{a_1, a_2, a_3, a_4\}$, find the first order entropy in the	03	
Q. <u>2</u>	(a)	following case: $P(a_1) = 0.505$, $P(a_2) = \frac{1}{4}$, $P(a_3) = \frac{1}{8}$ and $P(a_4) = 0.12$.	0.5	
	(b)	Determine the minimum variance Huffman code with the given	04	
	()	probabilities.		
		$P(a_1) = 0.2$, $P(a_2) = 0.4$, $P(a_3) = 0.2$, $P(a_4) = 0.1$ and $P(a_5) = 0.1$		
	(c)	The probability model is given by $P(a_1) = 0.2$, $P(a_2) = 0.3$ and $P(a_3) =$	07	
		0.5. Find the real valued tag for the sequence a ₁ a ₁ a ₃ a ₂ a ₃ a ₁ . (Assume		
		cumulative probability function: $F(0) = 0$)		
	()	OR	0.5	
0.2	(c)	Explain Tunstall codes with suitable example.	07	
Q.3	(a)	Determine whether the following codes are uniquely decodable or not. 1. {0, 01, 11, 111} 2. {0, 10, 110, 111}	03	
	(1.)		0.4	
	(b)	Explain Linde-Buzo-Gray algorithm in detail.	04	
	(c)	Explain stemming and lemmatization with suitable example. OR	07	
Q.3	(a)	Generate the golomb code for $m = 9$ and $n = 8 & 9$.	03	
Q.J	(b)	Explain incident matrix and inverted index with suitable example.	03	
	(c)	Write pseudocode for integer arithmetic encoding and decoding	07	
	(-)	algorithm.		
Q.4	(a)	Explain nonuniform quantization.	03	
	(b)	Explain skip pointer with suitable example.	04	
	(c)	Explain LZ77 with suitable example.	07	
Q.4	(a)	OR Explain pdf optimized quantization.	03	
v. -	(b)	Explain phrase queries with suitable example.	03	
	(c)	Explain LZ78 with suitable example.	07	
Q.5	(a)	Explain structured vector quantizers.	03	
	(b)	Explain challenges in XML information retrieval.	04	
	(c)	Explain usage of discrete cosine transform (DCT) in JPEG.	07	
		OR		
Q.5	(a)	Explain pyramid vector quantization.	03	
	(b)	Explain tokenization in detail.	04	
	(c)	Explain audio compression technique with suitable diagram.	07	

04

07