

Classification

with Decision Trees
MODALG SoSe18

Facts & News

OpenAl Salaries (Source NYT):

- Ilya Sutskever: 1.9 MM \$ (in 2016)
- Ian Goodfellow: 800 M \$ (in 2016)
- Pieter Abbeel: 425 M \$ (in 2016)

Al in Marketing

Start of Google I/O 2018

Repitition

Artificial Intelligence

Artificial Intelligence

Machine Learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." (Tom Mitchell)

Human Perspective:

- Task: Learn a text by heart!
- Performance: How many words are wrong?
- Experience: Learning Progress

Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Machine Learning

Supervised Learning

Reinforcement Learning Unsupervised Learning

Classification

Regression

Clustering

Classification

5 Questions

What is the aim of classification?

What is a class?

Natural classification?

Artificial classification?

How we can do it?

What is the aim of classification?

Differentiation

What is a class?

- Result of grouping things
- Compare with different types of personalities
- Data with the specific label

Natural classification?

- You do it daily!!!
- Learn something about the world
- Apply knowledge

Artificial classification?

- Let an algorithm learn something about the world
- Apply knowledge

How we can do it?

- Data (knowledge about the world)
- Algorithm (something that can learn)

In Detail

Example Class Survived

Can we predict if someone would survive?

- Look at the features!
 - Male or female
 - Number of class
 - Age of the person

Decision Tree

Decision Tree

Decision Tree

Gradient Boosting

Decision Tree

Gradient Boosting

Algorithm

Decision Tree

Gradient Boosting

Algorithm

Gaussian Mixture Model

Decision Tree

Gradient Boosting

Algorithm

Gaussian
Mixture Model

Random Forest

Support Vector Machine

Decision Tree

Gradient Boosting

Algorithm

Gaussian
Mixture Model

Random Forest

K-Nearest-Neighbor **Support Vector Machine**

Naive Bayes

Decision Tree

Gradient Boosting

Neural Network

Random Forest

Algorithm

K-Nearest-Neighbor Gaussian
Mixture Model

Support Vector Machine

Algorithm = Model

Decision Tree

- Should I eat sweets?
- Possible answers: Yes/No
- Things to consider:
 - Weight
 - Condition of teeth
 - Diabetes
 - Time
 - Situation

Eat sweets?

Questions and Splits

- Given a dataset
- Assume we have some questions concerning the data
- How to decide where to split?

- Find the feature that best splits the target class into the purest possible children nodes
- If target class consist male and female
- Nodes that don't contain a mix of both male and female, rather pure nodes with only one class

Information Gain

- Information Gain is a measurement
- How much information do we gain by doing a split at particular feature?
- Compare to measure of quality when you do a split at specific question

Information Gain

information = entropy (parent) - [weighted] entropy (children)
gain

decision tree maximize informat information gai

What is entropy?

- Another measurement
- Measures impurity of data

$$H(x) = -\sum_{i=1}^{n} p(x_i) * log_b(p(x_i))$$

H: Entropy

x: Whole column of target feature (e.g. Eat sweets?)

$$x_i \in \{0,1\}$$

e.g.
$$x = (0,1,0,0,1,0,1,0,1)^T$$

$$H(x) = -\sum_{i=1}^{n} p(x_i) * log_b(p(x_i))$$

$$p(x_i)$$
:

 $p(x_i)$:

 χ_i :

How many times is $x_i = 0$

How many times is $x_i = 1$? (relative value)

Answer of eating sweets

$$x_i = 0$$
 ? (relative value)

$$H(x) = -\sum_{i=1}^{n} p(x_i) * log_b(p(x_i))$$

b: number of classes (binary: b = 2)

n: length of vector x

$$H(x) = -\sum_{i=1}^{n} p(x_i) * log_b(p(x_i))$$

What else?

- Recursive algorithm (Iterative Dichotomiser ID3)
- Assume binary problem:

```
build_tree(data, questions){
}
```


- Recursive algorithm (Iterative Dichotomiser ID3)
- Assume binary problem:

```
build_tree(data, questions){
    foreach(question) gain, question = information_gain(data, questions)
}
```


- Recursive algorithm (Iterative Dichotomiser ID3)
- Assume binary problem:

```
build_tree(data, questions){
    foreach(question) gain, question = information_gain(data, questions)
    take question with argmax gain
}
```


- Recursive algorithm (Iterative Dichotomiser ID3)
- Assume binary problem:

```
build_tree(data, questions){
    foreach(question) gain, question = information_gain(data, questions)
    take question with argmax gain
    if(gain == 0):
        return leaf_node(data)
}
```


- Recursive algorithm (Iterative Dichotomiser ID3)
- Assume binary problem:

```
build_tree(data, questions){
    foreach(question) gain, question = information_gain(data, questions)
    take question with argmax gain
    if(gain == 0):
        return leaf_node(data)
        true_data, false_data = split(data, question)
}
```


- Recursive algorithm (Iterative Dichotomiser ID3)
- Assume binary problem:

```
build_tree(data, questions){
    foreach(question) gain, question = information_gain(data, questions)
    take question with argmax gain
    if(gain == 0):
        return leaf_node(data)
        true_data, false_data = split(data, question)
        build_tree(true_data, questions)
        build_tree(false_data, questions)
}
```


- Recursive algorithm (Iterative Dichotomiser ID3)
- Assume binary problem:

```
build_tree(data, questions){
    foreach(question) gain, question = information_gain(data, questions)
    take question with argmax gain
    if(gain == 0):
        return leaf_node(data)
    true_data, false_data = split(data, question)
    build_tree(true_data, questions)
    build_tree(false_data, questions)
    return decision_node(question, data)
}
```


Eat sweets?

There is more!

- Multiclass-Problem (Eat sweets? Yes/No/Maybe)
- Pruning of the tree
- Cross Validation
- Bias
- Metrics Important: Accuracy

Accuracy = #Correct Classified / #Examples

What is the aim of classification?

- Differentiation
- You want to be a master
- Generalise!

Problem of generalisation:

- The world is full of bias
- You may a master concerning the training set, but what happens if I give you a another test set?
- Accuracy can decrease!

Overfitting

Conclusion:

- You can compare classification to grouping
- We can use algorithms (models)
- A decision tree is a human readable model
- Measure the performance with classification accuracy

Your Turn!

github.com/mati3230/modalg181