DELPHION

51457-2001700-10361

Select CR

Log Out Work Files Saved Seanghes My Account RESEARCH

Search: Quick/Number Boolean Advanced Derwent

Help

The Delphion Integrated View: INPADOC Record

View: Jump to: Top Get Now: PDF | File History | Other choices Go to: Derwent Tools: Add to Work File: Create new Work File Email this to a friend Add

€ Title: CN1392268A: Detection type gene chip for detecting various peptitis

Derwent Title: Detection gene chip for detecting hepatitis B, C, D, E and G [Derwent Record]

Country: **CN** China

Kind: A Unexamined APPLIC. open to Public inspection is

High Resolution

[☼] Inventor: WEI ZHAO; China

QUANJUN LIU; China

WEI LIU; China

 $^{\odot}$ Assignee:

ZHAO WEI China
News, Profiles, Stocks and More about this company

ି Published / Filed: 2003-01-22 / 2002-06-11

 Application CN2002000113146

Number:

IPC-7: C12Q 1/68;

ECLA Code: None

©Priority Number: 2002-06-11 CN2002000113146

cost and may be used in epidemiological investigation and blood short detection period, high diagnosis accuracy and low diagnosis system and disease diagnosing system. The chip can be used to detect the virus ites of hepatitis B and hepatitis C and detect hepatitis D, hepatitis E, hepatitis G and TTV simultaneously. It has amplification. The gene chip includes detection quality controlling detection rate for using the gene chip in various subtype diagnosing serveral kinds of hepatitis and new primer with high The present invention provides a detection gene chip for

detection for identifying hepatitis gene type.

Powered by Verity

THOMSON

Other Abstract

PDF Publication Pub. Date CN1392268A 2003-01-22 2002-06-11 Detection type gene chip for detecting various peptitis 1 family members shown above Filed Title

Nominate this for the Gallery...

Subscriptions | Web Seminars | Privacy | Terms & Conditions | Site Map | Contact Us | Help Copyright © 1997-2006 The Thomson Corporation

[12] 发明专利申请公开说明书

[21] 申请号 02113146.5

[43]公开日 2003年1月22日

[11]公开号 CN 1392268A

[22]申请日 2002.6.11 [21]申请号 02113146.5

[71]申请人 赵 伟

地址 210003 江苏省南京市钟阜路 1-1号 18

栋 309 室

共同申请人 刘全俊 陆祖宏 [72]发明人 赵 伟 刘全俊 刘 伟 陆祖宏 [74]专利代理机构 南京苏科专利代理有限责任公司 代理人 奚胜元

权利要求书2页 说明书15页 附图2页

[54] 发明名称 一种检测多种肝炎的检测型基因芯片 [57] 摘要

本发明一种检测多种肝炎的检测型基因芯片。 公开了一种用于感染性疾病人多种肝炎诊断的基因 芯片,并提供了用于诊断基因芯片的适合各种亚型扩 增的高检出率的新引物。该基因芯片包括检测质量 控制系统和疾病诊断系统两个系统。由于所说的芯 片可以同时对多个乙型、丙型肝炎病毒位点及丁型肝 炎、戊型肝炎、庚型肝炎、TTV 同时进行检测,并设有 检测监控系统,不仅大大缩短了诊断时间,且大大提 高了诊断的准确性,降低了诊断成本,尤其可以用于 流行病调查、肝炎基因型鉴定的血液检测,将具有十 分深远的意义。

1. 一种检测多种肝炎的检测型基因芯片,其特征在于芯片包括(1)多种检测寡核酸探针和质量控制寡核酸探针,(2)寡核酸探针通过手臂分子以共价键连接在固相基片上形成的探针阵列。

所谓的寡核酸探针是指能与目的基因杂交的多聚核苷酸,长度在几个碱基到几十个碱基;

所谓的检测寡核酸探针是指化学合成的多种肝炎的保守区、与疾病相关的突变区、基因型及亚型的互补的寡聚核苷酸,突变区的探针包括野生型和 突变型探针,基因型及亚型决定区的探针包括多种基因型和多种亚型探针;

所谓的手臂分子是指具有双活性基团的长链有机化合物:

所谓的质量控制探针至少包括二种探针,即阳性对照,阴性对照;阴性对照用于检测杂交信号错误或污染,阳性对照用于检测是否正常杂交;

所谓的寡核酸探针固定为寡聚核苷酸的末端有一特定基团,固定在固体 基质表面时,与表面修饰的手臂分子的末端基团形成共价键。

- 2. 根据权利要求 1 所述的一种检测多种肝炎的检测型基因芯片,其特征在于: 每个病毒靶基因选择有 2—4 个核酸保守区序列,每个突变区、基因型及亚型决定区根据诊断和鉴定需要选择适当数量的探针,其中每个突变区至少要有两个探针,即一个是野生型,一个是突变型。
- 3. 根据权利要求 1 或 2 所述的一种检测多种肝炎的检测型基因芯片,其特征在于: 固相基片包括多种方法处理的玻片、硅片、陶瓷片、塑料片、硝酸纤维膜、尼龙膜等。
- 4. 根据权利要求 1 或 2 所述的一种检测多种肝炎的检测型基因芯片,其特征在于: 配备有多组针对芯片所需诊断、检测、流行病调查的感染性疾病病毒靶基因的高特异性的扩增引物,其设计原则为每一个引物必须在人肝炎病毒靶基因的高特异性部位,而每对引物扩增产物常常包含一个或多个突变部位。
- 5. 根据权利要求 1 或 2 所述的一种检测多种肝炎的检测型基因芯片,其特征在于:每一特异性引物能够扩增 GENEBANK 中所有同种病毒的基因片断。
- 6. 根据权利要求 1 或 2 所述的一种检测多种肝炎的检测型基因芯片, 其特征在

- 于: 固相基片以双活性基团的长链有机化合物进行表面修饰,常用的双活性基团的长链有机化合物试剂有: N,N-二乙氧基氨基丙基三乙氧基硅烷、三羟甲基氨基硅烷(APTES)、戊二醛、多聚赖氨酸,可采用它们中的一种或者它们的二种组合。
- 7. 根据权利要求 1 或 2 所述的一种检测多种肝炎的检测型基因芯片,其特征在于:可引物标记生物素、地高辛、荧光素,或在基因扩增时加入生物素、地高辛、荧光素标记的 dUTP;杂交后检测方法分别是使用纳米金标记的地高辛抗体与地高辛充分结合、使用纳米金标记亲合素(streptavidin or avidin)与生物素充分结合、基因芯片扫描仪进行扫描;对于纳米金标记的地高辛抗体和纳米金标记亲合素(streptavidin or avidin)可直接观察或用普通扫描仪进行扫描。
 - 8. 权利要求 1 或 2 所述的一种检测多种肝炎的检测型基因芯片,在肝炎病毒检测、诊断、传染病流行性监测,病毒性肝炎的发病原因快速检测,查明感染病毒,肝炎基因突变检测与鉴定中的运用。
 - 9. 根据权利要求 1 或 8 所述的一种检测多种肝炎的检测型基因芯片,其特征在于:可用于一种或多种肝炎病毒的检测,包括甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、庚型肝炎、TTV 及其它们的组合。
- 10. 根据权利要求 1 或 8 所述的一种检测多种肝炎的检测型基因芯片,其特征在于:可用于种或多种肝炎病毒突变的检测,包括甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、庚型肝炎、TTV 及其它们的组合。

一种检测多种肝炎的检测型基因芯片

技术领域

本发明所涉及的技术领域是一种肝炎基因芯片,特别是一种检测肝炎突变的基因芯片。

背景技术

生物芯片主要是指通过平面微细加工技术及超分子自组装技术,在固体芯片表面构建的微分析单元和系统。生物芯片可把许多不同功能器件:集成在一起,例如,生物样品的预处理,遗传物质的提取,特定基因片段的扩增,生物探针阵列以及毛细管电泳形成整体的微流体系统,以实现对化合物、蛋白质、核酸、细胞以及其它生物组分的准确、快速、大信息量的筛选或检测。基因芯片是最重要的一类生物芯片,它集成了大量的密集排列的基因探针,能够在短时间内分析大量的基因,使人们可迅速地读取和分析生命的程序。

生物芯片在生物检测、医学检验、药物筛选和基因序列分析上有着极其重要的意义。例如在生物学中,随着分子生物学的不断发展,特别是举世瞩目的人类基因组计划实施以酸、蛋白质序列和结构的数据呈指数增长。而下世纪最富挑战性的工作就是人划完成后,即在后基因时代,我们如何运用大量的生物分子信息服务于人类社会,并使医学、治疗产生根本革命。在医学中,"系统、器官、组织、细胞层次上的第二阶段医学"正在向"基因水平上的,DNA—RNA—蛋白质一蛋白质与核酸相互作用,以及它们与环境相互作用水平上的第三阶段医学"转化。这种在分子层次上进行的基因诊断与基因台疗,将根本地认识疾病产生的根源,并将有希望根本认识和治疗包括癌症在内的重大疾病。这些生物学、医学的根本变革,一个根本的前提是基因序列的测定和分析。能否有效快速地进行基因测序与分析,将影响到人类基因组计划的实施,从而影响生物学、医学的进一步发展。传统基因测序所采用的方法包括化学反应、凝胶电泳法、图像处理等一系列繁杂的步骤,这些方法花费时间较长,且操作繁复,尤其在大规模测序方面费时,并且不适宜便携化快速测序。在对传统基因测序方法进行改进的过程

中,以基因芯片为代表的生物芯片技术应运而生。生物芯片技术是将生命科学研究中所涉及的许多不连续的分析过程,如样品制备,化学反应和分析检测等通过采用微电子,微机械等工艺集成到芯片中,使之连续化,集成化,微型化和自动化。这一技术的成熟和应用将在下世纪的疾病诊断和治疗、新药开发、司法鉴定、食品和环境监测等生命科学相关领域带来一场革命,为生物信息的获取及分析提供虽有力的手段。

生物芯片(基因芯片)近年来一直是国际上的一个研究热点,并正以惊人的速度向前发展。国际上已经有多家公司进入生物芯片领域,研究出把 PCR 与 DNA 阵列集成的生物芯片。这些系统通常在芯片上制备出一个 PCR 微反应池,通过控制微反应的温度循环,进行基因扩增,接着将扩增后的基因引入杂交池中,与固相微阵列探针杂交,进行检测。Affymetrix 公司则把 PCR 微反应池进一步制成微流体通道。尽管已有将 PCR 技术芯片检测合为一体的报导,但其特点是整个 PCR 过程在一个微反应池中进行。因而需对器件的同一部位反复地升温、降温,这将无法对 PCR 结合进行动态跟踪和定量分析。而且目前升温、降温需一定时间,延长了工作时间。

基因芯片 (DNA Chip) 是生物技术与微电子芯片融合的结晶,是由固定于固相载体 (如硅片、玻璃、塑料等)表面的核苷酸阵列构成的一种新型微型器件。它集成了基因探针,通过与被检测基因的碱基序列进行互补匹配,实现核酸序列的分子识别。由于其快速、微量、准确的应用优点,正在成为新一代的自动化医学检验工具。肝炎病毒的高突变率导致药物疗效不高,并且使病情加重。通过设计针对突变基因的探针,与被检测基因的碱基序列进行互补匹配,可快速、微量、准确地检测到突变基因,指导临床诊断和治疗。美国 affymetrix 公司于二十世纪八十年代木至 90 年代初,率先开展了这方面的研究。1992 年,该公司运用半导体照相平板技术,在 1cm² 左右的玻片上原位合成寡聚核苷酸片段,诞生了世界上第一块基因芯片。同时,探针的荧光标记,激光共聚焦扫描和计算机分析等技术也随之发展。 1995 年,第一块以玻璃为载体的基因芯片(微矩阵)在美国Stanford 大学诞生,这标志着基因芯片技术步入了广泛研究和应用的时期。东南大学吴健雄实验室成功地开发了分子印章原位合成高密度基因芯片技术,标志着国内高密度基因芯片研究和应用的开端。

病毒性肝炎是我国感染率和发病率最高的传染病。据估计,乙型肝炎病毒携带者有 1.2 亿,其中有症状者约占 1/10,约 1/4 患者转为慢性,3%患者转变为肝炎后肝硬化。原发性肝癌中 90%以上由病毒性肝炎所引起。本病至今尚缺乏特效治疗方法,因此早期诊断和病情监测就尤为重要。

传统检测乙型肝炎通过两对半检测,检测五项指标后判定是否有乙型肝炎感染,检测肝功能五项指标判定肝损伤程度。乙型肝炎治疗相关基因位点突变无法检测,从而影响了具体用药:在另一方面,对于乙型肝炎流行病调查及其流行病学研究缺乏足够的证据,如果采用测序方法对多位点突变进行乙型肝炎流行病调查,不仅费用高,而且在国内无法进行推广。

PCR 技术主要是作为一种选择性体外基因扩增方法,由于在经 25~35 轮循环后就可使 DNA 扩增 10⁶ 倍,多年来在科研和医学检验中得到广泛的应用。但由于 PCR 存在假阳性等缺陷,自 98 年 6 月起已被国家卫生部禁止用于临床诊断。其主要原因有:其一是,PCR 过程中诸多实验条件(引物的设计与选择,材料配比,反应时间,温度,循环周期)等造成的不稳定因素导致产生 PCR 的错误扩增;其二是,PCR 过程的后续电泳检测方法可判断是不是得到特定长度的片段,而无法确定其具体序列:其三,PCR 反应产物形成气溶胶中所含有的 DNA 在扩增后极易在电泳凝胶形成假阳性条带,从而导致检测结果的不可靠性。

感染性病原体诊断芯片就是将待测病原体的特征基因片段(靶基因)固定于玻片上制成芯片,将从病人血清中抽提出病原体的 DNA 或 RNA 经扩增标记萤光后与芯片进行杂交,杂交信号由扫描仪扫描,再经计算机分析,判断阴阳性。诊断芯片区别于其他检测手段的优越性在于:

- (1)检测样品为各类致病基因片段,提高了检测效率;
- (2)因无需机体免疫反应,能及早诊断,且待测样品用量较少;
- (3)诊断芯片技术是 DNA 杂交技术和荧光标记技术相结合的分子诊断方法, 有极高的灵敏度、特异性和可靠性:
 - (4)自动化程度高,利于大规模推广应用。

在疾病诊断方面,已有一些单一疾病基因诊断芯片产品上市,例如美国的 Affymetrix 公司已利用基因芯片进行爱滋病(HIV)的研究工作,并有商业化的 GeneChipHIVPRT 诊断芯片上市,用于爱滋病的早期诊断.但芯片技术在疾病诊

断上的应用尚处于起步阶段,还未大面积推广,

原因主要有:

- (1)基因芯片技术是一项全新的技术,对人才、技术、资金的要求很高, 目前只有一小部分的科研机构和高科技公司完全掌握了该项技术。
- (2)现有芯片通常只能诊断一种疾病,芯片检测成本较贵,目前很难取代常规检测方法.
- (3)芯片技术,特别是在多疾病检测的质量保证和检测监控方面有待于发展和创新。多疾病诊断芯片是一种多基因的反应系统, 因此对传统的 PCR 扩增引物设计在检出率方面提出了更高的要求; 由于多疾病诊断芯片反应系统的复杂化,对反应结果的检测监控也提出了新的技术要求。

在威胁人类健康的各种疾病中,感染性疾病一直占有重要位置. 据世界卫生组织(WHO)99 年报告,98 年全球共计5390 万人死亡,其中死于感染性疾病计130055'人, 占总人数的25%,相当于平均每小时就有1500 人死于该类疾病,仅次于死于心血管疾病的31%,远高于死于癌症的13%。这1300 万人中有50%发生在发展中国家. 各种肝炎一直是威胁人类生命健康的常见病、多发病。

现知欧美国家多数 HCV- I 型感染,而亚洲国家以 II 型为主,III型次之。Okomoto 报告日本慢性丙型肝炎患者和健康献血员主要为 II 型感染,分别占59.3%和82.4%,而血友病人约50%为 I 型感染,原因是应用输入美国进口凝因子划。Wang 氏报告我国北京慢性丙型肝炎患者86.2%为 II 型感染,III型感染为13.8%。而新疆病人III型感染却占50%,说明不同型 HCV 具有一定的地区和人群分布特征。此外不同基因型感染引起临床过程和干扰素治疗反应亦表现不同,如III型感染临床症状较重,有引起严惩肝病倾向:II 型(Simmonds 1b)感染对干扰素治疗不敏感效果差。III型感染(Simononds 2a)用干扰素治疗效果好。

在鉴定肝损伤后又检测不到乙型肝炎后,医学诊断要求对其它肝炎病毒进行检测。对于多种肝炎病毒检测方法是不同的,一般使用的是酶联免疫反应检测病毒特异性蛋白的抗体,依赖病毒基因翻译的病毒特异性蛋白滞后于病毒的体内感染与复制,不能反映真实的病毒生存状态,另一方面,在病毒停止复制或体内的清除过程中,这些病毒特异性蛋白往往还要生存一段时间,这种诊断结果的滞后性给临床治疗带来不利影响。由此给诊断提出了新的课题,我们针对酶联免疫

反应检测及 PCR 检测的缺点及不足提出了使用基因芯片检测多种肝炎病毒及其 突变,使之能够直接检测到肝炎病毒的种类和突变类型,以指导临床治疗。

在血站的血液检测, 肝炎病毒是血液检测的常规项目,但现有的检测手段 无法在同一时间内通过一次实验确诊上述四种疾病,检测成本高而效率比较低。 为此,开发研究一种用于多种感染性疾病诊断的基因芯片,对多种感染性疾病的 进行准确、高效的早期诊断已成为当务之急。 发明内容:

本发明的目的是针对目前 PCR 检测方法存在不足之处,提供一种检测多种 肝炎的检测型基因芯片,该芯片是基于核酸探针固定于固体基质上形成的阵列, 是一种检测型生物芯片。该新型的集成式基因芯片,可以在此芯片上完成 PCR 过程、杂交过程、清洗过程。其结果可以由基因芯片扫描仪对结果进行检测,给 出杂交结果,从而判定标本是否具有肝炎病毒、何种病毒、发生了什么突变,并 根据突变结果指导医疗及预防肝炎传染。在检测、传染病流行监测方面,本发明 的基因芯片对垂直传播、日常生活接触传播、血与血制品传播及性传播疾病的传 播途径鉴定有十分良好的效果。

随着分子生物学技术的发展,近年来人们发现许多 HBV 感染的病人体内存在着不同的 HBV 基因株 (即多样性或异质性),并证明它们在传播与临床肝炎的发病有着密切的关系。不同株的病毒复制水平,免疫原性和传播性等均不同,因此对疾病的发展和转归的影响也不同。因此对于本发明的肝炎基因芯片在临床检验和治疗上均具有十分重要的现实意义。

在肝炎病毒检测、诊断、传染病流行性监测,病毒性肝炎的发病原因快速检测,查明感染病毒,肝炎基因交变检测与鉴定中的运用。

本发明的基因芯片检测是分为三个检测层次: a.检测病毒有无; b.对病毒进行分亚型; c.检测有意义的突变(如抗药性、免疫逃逸、癌变性等)。

本发明的另一目的是由于基因交变检测与乙型肝炎传播途径有密切相关性,此类相关各种基因突变亚种、亚型的检测与鉴定。

本基因芯片的设计原理及其相关技术如图 1。

下表列举的是乙型肝炎具有临床意义的突变位点,在下表的基础上我们根据 GENEBANK(http://www.ncbi.nlm.nih.gov)上所列举的 192 条乙型肝炎全基因进

行分类,共有6个基因型,在此基础上选取了部分长度在15~35个碱基的核苷酸序列作为探针(见图2),合成后固定的玻片的制成肝炎基因芯片中检测乙型肝炎的探针。

丙型肝炎分类标准尚未统一,Simmonds 将丙型肝炎分为 1a、1b、2a、2b、3a、3b、4a、5a、6a 型,Okomoto 将丙型肝炎分为 I、II、III、IV、V等型。我们根据上述分型将 GENEBANK(http://www.ncbi.nlm.nih.gov) 对丙型肝炎全基因进行分类,分别设计探针,在此基础上选取了部分长度在 15~35 个碱基的核苷酸序列作为探针,能够分别代表 Okomoto 的 I、II、III、IV、V其中一型的共有序列,合成后固定的玻片的制成肝炎基因芯片中检测丙型肝炎的探针。

同样对丁型肝炎、戊型肝炎、庚型肝炎、TTV 分别寻找其共有序列,分别设计探针,合成后固定的玻片的制成肝炎基因芯片中检测丙型肝炎的探针。

一般来说,每个病毒靶基因选择有 2—4 个核酸保守区序列,每个突变区、基因型及亚型决定区根据诊断和鉴定需要选择适当数量的探针,其中每个突变区至少要有两个探针,即一个是野生型,一个是突变型;

所有合成的探针用点样缓冲液溶解后使用点样仪将纳升级的溶液点到固相 基片的,在一定的条件下,寡核酸探针 5[°]端有基团能与固相基片上的化学官能 团形成共价键连接。

一种检测多种肝炎的检测型基因芯片,包括(1)多种检测寡核酸探针和质量控制寡核酸探针,(2)寡核酸探针通过手臂分子以共价键连接在固相基片上形成的探针阵列。

所谓的寡核酸探针是指能与目的基因杂交的多聚核苷酸,长度在几个碱基 到几十个碱基:

所谓的检测寡核酸探针是指化学合成的多种肝炎的保守区、与疾病相关的 突变区、基因型及亚型的互补的寡聚核苷酸,突变区的探针包括野生型和突变型 探针,基因型及亚型决定区的探针包括多种基因型和多种亚型探针;

所谓的手臂分子是指具有双活性基团的长链有机化合物;

所谓的质量控制探针至少包括二种探针,即阳性对照,阴性对照;阴性对照用于检测杂交信号错误或污染,阳性对照用于检测是否正常杂交;

所谓的寡核酸探针固定为寡聚核苷酸的末端有一特定基团,固定在固体基

质表面时,与表面修饰的手臂分子的末端基团形成共价键。

- 一种检测多种肝炎的检测型基因芯片,在设计时对每个病毒靶基因选择有 2 一4 个核酸保守区序列,每个突变区、基因型及亚型决定区根据诊断和鉴定需要选择适当数量的探针,其中每个突变区至少要有两个探针,即一个是野生型,一个是突变型。
- 一种检测多种肝炎的检测型基因芯片,使用的固相基片包括多种方法处理的玻片、硅片、陶瓷片、塑料片、硝酸纤维膜、尼龙膜等。固相基片以双活性基团的长链有机化合物进行表面修饰,常用的双活性基团的长链有机化合物试剂有: N,N-二乙氧基氨基丙基三乙氧基硅烷、三羟甲基氨基硅烷(APTES)、戊二醛、多聚赖氨酸,可采用它们中的一种或者它们的二种组合。
- 一种检测多种肝炎的检测型基因芯片,配备有多组针对芯片所需诊断、检测、流行病调查的感染性疾病病毒靶基因的高特异性的扩增引物,其设计原则为每一个引物必须在人肝炎病毒靶基因的高特异性部位,而每对引物扩增产物常常包含一个或多个突变部位。同时,每一特异性引物能够扩增 GENEBANK 中所有同种病毒的基因片断。
- 一种检测多种肝炎的检测型基因芯片,其使用的引物标记生物素、地高辛、 荧光素,或在基因扩增时加入生物素、地高辛、荧光素标记的 dUTP;杂交后检 测方法分别是使用纳米金标记的地高辛抗体与地高辛充分结合、使用纳米金标记 亲合素(streptavidin or avidin)与生物素充分结合、基因芯片扫描仪进行扫描; 对于纳米金标记的地高辛抗体和纳米金标记亲合素(streptavidin or avidin)可直 接观察或用普通扫描仪进行扫描。

按照此法设计制作的基因芯片,可用于一种或几种感染性病毒的诊断、检测、流行病调查,可用于快速检测病毒性肝炎的发病原因,查明感染病毒及与疾

病相关的基因突变,以便临床医生能够及时得到治疗、监测病情的目的。在另一方面,由于此类芯片可用检测基因突变,因此,对临床治疗有直接的指导作用。

一种检测多种肝炎的检测型基因芯片,配备有多组针对芯片所需诊断、检测、流行病调查的感染性疾病病毒靶基因的高特异性的扩增引物,其设计原则为每一个引物必须在人肝炎病毒靶基因的高特异性部位,而每对引物扩增产物常常包含一个或多个突变部位;每一特异性引物必定能够扩增 GENEBANK 中所有同种病毒的基因片断。

本发明的优点

- (1)检测样品为各类致病基因片段,提高了检测效率;
- (2)因无需机体免疫反应,能及早诊断,且待测样品用量较少;
- (3)诊断芯片技术是 DNA 杂交技术和荧光标记技术相结合的分子诊断方法, 有极高的灵敏度、特异性和可靠性;
 - (4)自动化程度高,利于大规模推广应用。
- (5)肝炎是多种原因发病,仅致病病毒就有八种之多,要确定患者的致病原因,常规方法要使用多种检测手段,而基因芯片方法不仅简单方便,而且所需仪器设备数量少。
- (6) 一种检测多种肝炎的检测型基因芯片,可用于一种或几种感染性病毒的诊断、检测、流行病调查,可用于快速检测病毒性肝炎的发病原因,查明感染病毒及与疾病相关的基因突变,以便临床医生能够及时得到治疗、监测病情的目的。在另一方面,由于此类芯片可用检测基因突变,因此,对临床治疗有直接的指导作用。

附图说明

以下将结合附图对本发明作进一步说明。

- 图1是基因芯片的设计原理及相关技术示意图
- 图 2 是一种检测多种肝炎的检测型基因芯片的结构
- 图 3 是部分乙型肝炎病毒基因排列图,从中可以找出乙型肝炎的共有序列, 再到 GENEBANK 中进行对库比较,从而可以找到乙型肝炎的专一性高又能将各种肝炎病毒进行扩增的引物序列。

具体实施方式:

参照附图 2 一种检测多种肝炎的检测型基因芯片包括: 固体基片 1,如玻片、硅片等;固体基片表面修饰了手臂分子 2,如 N,N-二乙氧基氨基丙基三乙氧基硅烷、APTES,戊二醛,手臂分子 2 是以共价键结合到固体基片 1 上;在点样后,氨基修饰的寡核酸探针 3 固定在修饰了手臂分子的固体基片上,图中表示两个点固定了不同的探针,寡核酸探针 3 是以共价键结合到手臂分子 2 上;寡核酸探针 3 包括检测寡核酸探针和质量控制寡核酸探针。

实施例 1

1、引物序列:

其中 HBV primerl 序列如下:

5'-GTTTTATCATATTCCTCT-3'

5'-GGTTTTATTAGGGTTCAA-3'

其中 HBV primer2 序列如下:

5'-GAGGCTGTAGGCATAAAT-3'

5'-GGGCATTTGGTGGTCTG-3'

HCV 扩增引物一共设计了两对引物,

其中 HCV primerl 序列如下:

HCVi: 5'-GCCTTGTGGTACTGC-3'

HCVIC: 5'-5 ACCGCTCGGAAGTC-3'

其中 HCV primer21 序列如下:

HCV2: 5'- GGCTTTACCGGCGAC-3'

HCV2C: 5'-GCTCATACCAiGCAC-3'

2、血清样品 DNA、RNA 抽提

在 10μl DEPC -乙醇溶液 (10%为焦碳酸二乙酯(DEPC),90%为无水乙醇) 中加 100μl 血清室温静置 10 分钟后,沸水浴 10 分钟后,管子盖子 65℃烘干 15分钟,离心 5分钟 (12000 转 / 分钟,离心 10分钟),备用。

3、反转录制备模板 DNA

向步骤 2 制备含的 DNA、RNA 沉淀的 eppendorf 管内, 依次加入下列试剂: Milli-Q H20(超纯水) l1μl、15μmol / L HCV、HCV、反转录引物 2μl 并充分

溶解沉淀,混匀样品,短时离心使溶液集中于管底,置于 70℃水浴锅内保温 5min。后将 eppendorf 置于冰上 1 min,加入以下试剂: 0.1 mol / 1 DTT(二硫苏糖醇) 2μ1、逆转录缓冲液(buffer) 4μl、10 mmol / 1 dNTPS lμl,短时离心使溶液集中于管底。置于 42℃水浴锅内保温 2 分钟。向该 eppendorf 管内加入 0.5μl SuperScript 反转录酶,短时离心使溶液集中于管底。置于 42℃水浴锅内保温 20 分钟。从水浴锅内取出 eppendorf 管,备用。

4、吸取 5pl 步骤 2 中制备的转录产物,并依次加入下列试剂:

ddH20 28.5µl

10×PCR Buffer 5µl

25 nunol / 1 MgCl2 4µ1

10 mmol / 1 dNTP 混合物 lµl

1 mmol / l dTTP 1µl

1 mmol / 1 spectrum-red-dUTP 0.2µl

15pmol / 1 HBV、HCV 引物混合物 lul

Taq 酶 0.5µl

短时离心使溶液集中于管底,在 PCR 仪中 PCR 反应,95℃ 变性 3 min 后进行95℃ 30 sec,55℃ 30 sec,72℃ 30 sec 循环 30 次,再在72℃ 5 min 延伸。最后在 4℃ 待机。

- 5、步骤 4 的产物加入杂交液后点到检测芯片上,盖上盖玻片,在 37℃下保温 20 分钟。
 - 6、用杂交清洗液 I 和 II 分别清洗杂交芯片各 5 分钟。用 N2 吹干。
- 7、用 scanligh 扫描仪扫描基因芯片。Imagene 软件分析杂交结果。扫描结果显示正对照有荧光信号;负对照没有荧光信号,根据信号的有无来判断待测样品是阴性还是阳性,由此可知被检血清是否感染有随检的病毒及其是否存在有意义的基因突变,同时也可检测到其中的基因分型。

实施例 2

1、设计下列探针用于对病毒进行分亚型检测

ſ		Rating	Seq. No	Length	Tm	GC%	Sequence
ſ	1	86	505	16	52.7	62.5	CACGGGACCA TGCAAG
1	1'						CACGGGACCA TGCCGG

2 2'	88	507	17	53.7	58.8	CGGGACCATG CGGGACCATG	CAAGACT CCGGACT	
3,	100	627	20	55.6		TCGCAAAATA TCGCAAGATA	CCTATGGGAG	
4 4'	100	629	. 21	56.7	47.6	GCAAAATACC GCAAGATACC	TATGGGAGTG	G G

乙型肝炎具有临床意义的突变位点

编号	核苷酸位置	突变位点	氨基酸位置	氨基酸突变	突变的临床意义
		i.	公垄 政位直	列基股大 交	光 变的临床总义
1	525	· G→A	S ⊠. 124	Cys→Tyr	HBIG 预防肝脏移植
	•				后 HBV 感染 ,
	505 500				HBsAg(-)
2	527-529	ACA→GCA	S ⊠ 126	Thr→Ala	免 疫 逃 避
		ACA→GCG		Ile→Ser	HBsAg(-)
					HBsAb(-)
3	546	C→T	S区 131	Thr→Ile	HBIG 预防肝脏移植
					后 HBV 感染,
4	552	T 0			HBsAg(-)
4	332	T→C	S区 133	Met→Thr	免 投 逃
5	569				避,HBsAg(-)
6		T→A	S 🗵 139	Cys→ATG	HBsAg(+)
0	575	A→G	S区 141	Lys→Glu	HBsAg(+)
7	587	6.4			HBsAb (+)
′	387	G→A	S区 145	Gly→Arg	免疫逃避、HBIG 预
					防肝脏移植后 HBV
					感染,HBsAg(+)、
8	624	C→A	0 = 150	T 45 76 70	HBsAb (+)
ľ	024	C→A	S 区 157	万氨酸→天	拉米夫定抵抗 HBV
				门冬氨酸	毒株 ************************************
			•		对 HBsAg 抗原性有
9	739-740	AT→TG	S ⊠ 195	足复新 女	影响
	735-140	Al-IG	2 E 193	量	拉米夫定抵抗 HBV 毒株
10	1653	C→T	XX	外段	
	1000		A 123.		暴发性肝炎和慢性
11	1762/1764	A-T	Χ区	基本启动子	肝炎急性衰竭 暴发性肝炎和慢性
		G→A	, Y. E.	(BCP)突变	暴及性肝炎和慢性 肝炎急性衰竭死亡
12	1862	G→T	前 C 区 17	前氨酸→苯	
	1002		M C E. 11	吸気酸 本	HBeAg 阴性重型肝 炎
13	1896	G→A	前 C 区 28	色氨酸→终	×
-~			m, C 12. 20	止密码子	
14	1899	G→A	前 C 区 29	色氨酸→终	a 干扰素治疗后药
			119 0 82 23	上密码子	物诱导变异,暴发
			•	.0.11.17	他仍守支井,泰及 性肝炎
15	2078	C→G	C 区 60		adw 暴发性肝炎和
			0 2 2 00		慢性肝炎
16	2157-2158	TC→GG	C区.87	丝氨酸→甘	adr 暴发性肝炎和
	1	1	7 87 01	1 = XIXX - 11	[401

				氨酸	慢性肝炎
17	2189	A→C	C ⊠ 98	异亮氨酸→ 亮氨酸	慢性乙肝
18	2798	A→C	P ⊠ 163	苏氨酸→脯 氨酸	病毒 DNA 的合成 被阻断

根据上表中的有意义突变位置设计下列探针用于对病毒进行突变类型检测

S gene	检测	Seq. No	Length	Tm	GC%	Sequence
	突变					
1	1, 2	518	- 20	55.6	50.6	AAGACTTGCA CAGCTCCTGC
1'						AAGACTTACA CAGCTCCTGC
2'	'	,				AAGACTTGCG CAGCTCCTGC
- 2"						AAGACTTGCG CGGCTCCTGC
3	3、4	539	20	54.2	45.4	CAAGGAACCT CTATGTTTCC
3'						CAAGGAATCT CTATGTTTCC
4'						CAAGGAACCT CTACGTTTCC
5	5, 6	562	21	55.7	41.0	ATGTTGCTGT ACAAAACCTA C
5'						ATGTTGCAGT ACAAAACCTA C
6,						ATGTTGCTGT ACAGAACCTA C
7'	7	579	18	54.4	53.1	CTACGGACAG AAACTGCA
8,	8	617	19	54.0	44.5	TCTTGGGATT TCGCAAAAT
9,	9	731	20	54.7	41.3	TCAGTTATTG GGATGATGTG
X gene		Seq. No	Length	Tm	GC%	Sequence
10'	10	1641	22	55.0	50.0	CCCAAGGTCT TGTATAAGAG AA
11'	- 11	1748	23	55.0	43.1	GGAGGTTAGG TTAATGATCT TTG
Precore		Seq. No	Length	Tm	GC%	Sequence
12'	12	1852	21	53.5	47.6	ATGTCCTACT TTTCAAGCCT C
13'	13	1889	17	55.0	52.9	TGGCTTTAGA GCATGGA
14'						TGGCTTTGGA ACATGGA
C gene		Seq. No	Length	Tm	GC%	Sequence
15'	14	2065	20	53.0	45.0	CAGGCAAGCT ATTGTGTGTT
16'	15	2149	24	53.6	41.7	CTTAGTAGGG AGCTATGTCA ACGT
17	16	2179	19	52.7	42.1	GGGCCTAAAA TTCAGACAA
17'						GGGCCTAAAC TTCAGACAA
P gene		Seq. No	Length	Tm	GC%	Sequence
18'	17	2798	20	56.1	58.0	CCACACGTCG CGCCTCATTT

2、将上述探针合成并在 5′端标记氨基,用点样缓冲液稀释,用点样仪将样 品点到修饰好手臂分子的玻片上,固定。

血清样品 DNA、RNA 抽提

在 10μl DEPC -乙醇溶液(10%为焦碳酸二乙酯(DEPC),90%为无水乙醇)中加 100μl 血清室温静置 10 分钟后,沸水浴 10 分钟后,管子盖子 65℃烘干 15分钟,离心 5分钟(12000转/分钟,离心 10分钟),备用。

3、反转录制备模板 DNA

向步骤 2 制备含的 DNA、RNA 沉淀的 eppendorf 管内, 依次加入下列试剂: Milli-Q H20(超纯水) llμl、15μmol/L HCV、HCV、反转录引物 2μl 并充分 溶解沉淀,混匀样品,短时离心使溶液集中于管底,置于 70℃水浴锅内保温 5min。后将 eppendorf 置于冰上 l min,加入以下试剂: 0.1 mol/l DTT(二硫苏糖醇) 2μl、逆转录缓冲液(buffer) 4μl、10 mmol/l dNTPS lμl,短时离心使溶液集中于管底。置于 42℃水浴锅内保温 2 分钟。向该 eppendorf 管内加入 0.5μl SuperScript 反转录酶,短时离心使溶液集中于管底。置于 42℃水浴锅内保温 20 分钟。从水浴锅内取出 eppendorf 管,备用。

4、吸取 5pl 步骤 2 中制备的转录产物,并依次加入下列试剂:

ddH20 28.5µl

10×PCR Buffer 5µl

25 nunol / 1 MgCl2 4μ1

10 mmol / 1 dNTP 混合物 lul

1 mmol / I dTTP 1µl

1 mmol / l spectrum-red-dUTP 0.2μl

15pmol / 1 HBV、HCV 引物混合物 lµl (仅加入反向引物)

HOT START Tag 酶 0.5µl

短时离心使溶液集中于管底。

- 5、将步骤 4 中的混合液加在芯片表面,置一块 GENE FRAME, 再加上一块盖玻片, 将芯片置于 MJ 芯片 PCR 仪中进行 PCR 反应, 95℃ 变性 5 min 后进行 95℃ 30 sec, 55℃ 30 sec, 72℃ 30 sec 循环 30 次, 再在 72℃ 5 min 延伸。最后在 4℃ 待机。
 - 6、用杂交清洗液 I 和 II 分别清洗杂交芯片各 5 分钟。用 N₂吹干。
- 7、用 scanligh 扫描仪扫描基因芯片。Imagene 软件分析杂交结果。扫描结果显示正对照有荧光信号: 负对照没有荧光信号, 根据信号的有无来判断待测样品是阴性还是阳性,由此可知被检血清是否感染有随检的病毒及其是否存在有意义的基因突变, 同时也可检测到其中的基因分型。

实施例3

1、设计探针用于对 HBV、HCV、HDV、HGV、TTV 等病毒进行病毒检测:

设计探针用于对 HBV、HCV 分亚型检测:设计下列探针用于对 HBV 病毒进行 突变类型检测。

2、将上述探针合成并在 5[°]端标记氨基,用点样缓冲液稀释,用点样仪将样品点到修饰好手臂分子的玻片上,固定。

血清样品 DNA、RNA 抽提。

在 10μl DEPC -乙醇溶液(10%为焦碳酸二乙酯(DEPC),90%为无水乙醇)中加 100μl 血清室温静置 10 分钟后,沸水浴 10 分钟后,管子盖子 65℃烘干 15分钟,离心 5分钟(12000 转 / 分钟,离心 10 分钟),备用。.

3、反转录制备模板 DNA

向步骤 2 制备含的 DNA、RNA 沉淀的 eppendorf 管内, 依次加入下列试剂:

Milli-Q H20(超纯水) l1μl、15μmol/L HCV、HDV、HGV、TTV 反转录引物 2μl 并充分溶解沉淀,混匀样品,短时离心使溶液集中于管底,置于 70℃水浴锅内保温 5min。后将 eppendorf 置于冰上 1 min,加入以下试剂:0.1 mol/l DTT(二硫苏糖醇) 2μ1、逆转录缓冲液(buffer) 4μl、10 mmol/l dNTPS lμl,短时离心使溶液集中于管底。置于 42℃水浴锅内保温 2 分钟。向该 eppendorf 管内加入 0.5μl SuperScript 反转录酶,短时离心使溶液集中于管底。置于 42℃水浴锅内保温 20 分钟。从水浴锅内取出 eppendorf 管,备用。

4、吸取 5pl 步骤 2 中制备的转录产物,并依次加入下列试剂:

ddH20 28.5µl

10×PCR Buffer 5µl

25 nunol / 1 MgCl2 4µ1

10 mmol / I dNTP 混合物 lul

1 mmol / l dTTP 1µl

1 mmol / l spectrum-red-dUTP 0.2μl

15pmol / 1 HBV、HCV 引物混合物 lul (仅加入反向引物)

HOT START Taq 酶 0.5 μl

短时离心使溶液集中于管底。

5、将步骤 4 中的混合液加在芯片表面,置一块 GENE FRAME,再加上一块盖玻片,将芯片置于 MJ 芯片 PCR 仪中进行 PCR 反应,95℃ 变性 5 min 后进

- 行 95℃ 30 sec, 55℃ 30 sec, 72℃ 30 sec 循环 30 次, 再在 72℃ 5 min 延伸。 最后在 4℃ 待机。
 - 6、用杂交清洗液 I 和 II 分别清洗杂交芯片各 5 分钟。用 N₂吹干。
- 7、用 scanligh 扫描仪扫描基因芯片。Imagene 软件分析杂交结果。扫描结果显示正对照有荧光信号,负对照没有荧光信号,根据信号的有无来判断待测样品是阴性还是阳性,由此可知被检血清是否感染有随检的病毒及其是否存在有意义的基因突变,同时也可检测到其中的基因分型。

•					
*	340 *	360	* 380	*	400
CCCAACCTCCAATCACT				GTGTCTGCGGCGT1	
• • • • • • • • • • • • • • • • • • • •					
• • • • • • • • • • • • • • • • • • • •	C				
ATG					
A T G					
ATG					
		c	T		
		<u>c</u>	T		
			T		• • • • • •
	c	c	T		
		c	<u>T</u>	• • • • • • • • • • • • • • • • • • • •	
	. T C	C	T		
	.T	C			• • • • • • •
•	420 *	440	* 46	=	460
TATTCCTCTTCATCCT	GCTGCTATGCCTCATC	TCTTGTTGGTTC1	TCTGGACTACCAA	GGTATGTTGCCCG1	TTGTCCT
	GCTGCTATGCCTCATC	TCTTGTTGGTTC1	TCTGGACTACCAA	GGTATGTTGCCCGT	TTGTCCT
	GCTGCTATGCCTCATC	TTCTTGTTGGTTCT	TCTGGACTACCAA	GGTATGTTGCCCGT	TTGTCCT
	GCTGCTATGCCTCATC	TTCTTGTTGGTTC1AAAAAA	TCTGGACTACCAA(TT TTT TTTTTT.	GGTATGTTGCCCGT	TTGTCCT
C	GCTGCTATGCCTCATC	AAAAA	TCTGGACTACCAA'T.TT.TT.T.TT.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T	GGTATGTTGCCCG1	TTGTCCT
. C G	GCTGCTATGCCTCATC	AAAAAAAAA	TCTGGACTACCAA'T.TT.TT.TT.TT.TT.T	GGTATGTTGCCCG1	TTGTCCT
. C	GCTGCTATGCCTCATC	AAAAAAAAA	TCTGGACTACCAA'TTTTTTTT	GGTATGTTGCCCG1	TTGTCCT
. C G	GCTGCTATGCCTCATC	AAAAAAAAAA	TCTGGACTACCAA'TTTTTTTT	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	AAAAAAAAAA	TCTGGACTACCAATTTTTTTT	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	AAAAAAAAAA	TCTGGACTACCAATTTTTTTT	GGTATGTTGCCCGT	TTGTCCT
	GCTGCTATGCCTCATC	TCTTGTTGGTTC1AAAA.	TCTGGACTACCAATTTTTTTT	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	A. A	TCTGGACTACCAATTTTTTTT	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	TTCTTGTTGGTTC1AAAA.	TCTGGACTACCAAT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.T.	GGTATGTTGCCCGT	TTGTCCT
	GCTGCTATGCCTCATC	A. A	TCTGGACTACCAATTTTTTTT	GGTATGTTGCCCGT	TTGTCCT
	GCTGCTATGCCTCATC	A	TCTGGACTACCAAT.TT.TT.TT.TT.TT.T.TT.T.TT.T.TT.T.T.TT.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	A. A	TCTGGACTACCAAT.TT.TT.TT.TT.TT.T.TT.T.TT.T.TT.T.TT.T.T.	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	TTCTTGTTGGTTCT A. A. A. A. C.	TCTGGACTACCAAT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.TT.T.	GGTATGTTGCCCGT	TTGTCCT
	GCTGCTATGCCTCATC	TTCTTGTTGGTTC1 A. A. A. A. A.	TCTGGACTACCAATTTTTTTT	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	TTCTTGTTGGTTCT A. A. A. A. A. C.	TCTGGACTACCAAT.T.TT.T.TT.T.T.T.TT.T.T.T.T.T.TT.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	TTCTTGTTGGTTCT A. A. A. A. A. C.	TCTGGACTACCAA.	GGTATGTTGCCCGT	TTGTCCT
	GCTGCTATGCCTCATC	TTCTTGTTGGTTCT A.A.A.A.A.C.A.C.A.C.C.C.C.C.C.C.C.C.C.C	TCTGGACTACCAAT.T.TT.TT.T.TT.T.TT.T.T.TT.T.T.T.TT.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	TTCTTGTTGGTTCT A. A. A. A. A. C. C.	TCTGGACTACCAA . T. T. . T. T	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	A. A. A. A. C. C.	TCTGGACTACCAA. . T. T.	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	A. A. A. A. C. A. C. C.	TCTGGACTACCAA. . T. T.	GGTATGTTGCCCGT	TTGTCCT
. C	GCTGCTATGCCTCATC	A. A. A. A. C. A. C. C. C.	TCTGGACTACCAA	GGTATGTTGCCCGT	TIGTCCT
. C	GCTGCTATGCCTCATC	A. A. A. A. C. A. C. C. C.	TCTGGACTACCAA . T. T. . T. T	GGTATGTTGCCCGT	TIGTCCT
. C	GCTGCTATGCCTCATC	A. A. A. A. C. A. C. C. C.	TCTGGACTACCAA. . T. T. . T.	GGTATGTTGCCCGT	TIGTCCT
. C	GCTGCTATGCCTCATC	A. A. A. A. C. A. C. C. C.	TCTGGACTACCAA T. T. T	GGTATGTTGCCCGT	TIGTCCT
. C	GCTGCTATGCCTCATC	A. A. A. A. C. A. C. C. C.	TCTGGACTACCAA T. T. T	GGTATGTTGCCCGT	TIGTCCT