Algoritma Decrease and Conquer

(Bagian 1)

Bahan Kuliah IF2211 Strategi Algoritma

Oleh: Rinaldi Munir

Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika ITB 2021

Definisi Decrease and Conquer

- Decrease and conquer: metode perancangan algoritma dengan mereduksi persoalan menjadi dua upa-persoalan (sub-problem) yang lebih kecil, tetapi selanjutnya hanya memproses satu sub-persoalan saja.
- Berbeda dengan divide and conquer yang memproses semua upa-persoalan dan menggabung semua solusi setiap sub-persoalan.
- Di dalam literatur lama, semua algoritma yang membagi persoalan menjadi dua upa-persoalan yang lebih kecil dimasukkan ke kategori divide and conquer.
- Meskipun demikian, tidak kedua upa-persoalan hasil pembagian diselesaikan. Jika hanya satu upa-persoalan yang diselesaikan, maka tidak tepat dimasukkan sebagai algoritma divide and conquer. Mereka dikategorikan sebagai decrease and conquer

- Algoritma decrease and conquer terdiri dari dua tahapan:
 - 1. **Decrease**: mereduksi persoalan menjadi beberapa persoalan yang lebih kecil (biasanya dua upa-persoalan).

2. *Conquer*: memproses satu upa-persoalan secara rekursif.

• Tidak ada tahap combine dalam decrease and conquer, karena hanya satu upa-persoalan yang diselesaikan.

Tiga varian decrease and conquer:

- 1. **Decrease by a constant**: ukuran instans persoalan direduksi sebesar konstanta yang sama setiap iterasi algoritma. Biasanya konstanta = 1.
- 2. **Decrease by a constant factor**: ukuran instans persoalan direduksi sebesar faktor konstanta yang sama setiap iterasi algoritma. Biasanya faktor konstanta = 2.
- 3. **Decrease by a variable size**: ukuran instans persoalan direduksi bervariasi pada setiap iterasi algoritma.

Decrease by a Constant

Contoh persoalan:

- 1. Perpangkatan aⁿ
- 2. Selection sort
- 3. Insertion sort

1. Persoalan perpangkatan aⁿ

Dengan metode decrease and conquer:

$$a^n = \begin{cases} 1 & , n = 0 \\ a^{n-1} \cdot a & , n > 0 \end{cases}$$

Kompleksitas waktu (berdasarkan jumlah operasi kali):

$$T(n) = \begin{cases} 0 &, n = 0 \\ T(n-1) + 1 &, n > 0 \end{cases}$$

Bila diselesaikan:

$$T(n) = T(n-1) + 1 = = O(n)$$

sama seperti algoritma brute-force.

```
function exp(a : real; n : integer) \rightarrow real
{ memberikan hasil perpangkatan a<sup>n</sup>}
Deklarasi
    k: integer
Algoritma:
   if n = 0 then
      return 1
  else
      return \exp(a, n-1) * a
   endif
```

2. Selection sort.

Algoritma ini sudah dijelaskan di dalam materi divide and conquer sebelumnya.
 Algoritma ini sebenarnya kategori decrease and conquer.

• Selection Sort adalah pengurutan hard split/easy join dengan cara mempartisi larik menjadi dua buah upalarik, upalarik pertama hanya satu elemen, sedangkan upalarik kedua berukuran n-1 elemen.

• <u>Catatan</u>: materi ini dapat dilewati karena sudah dipelajari di dalam materi *divide* and conquer.

Pohon pembagian larik:

Proses partisi di dalam Selection Sort dilakukan dengan mencari elemen
 A
 bernilai minimum (atau bernilai maksimum) di dalam larik A[i..j]

• lalu elemen minimum ditempatkan pada posisi A[i] dengan cara pertukaran.

```
procedure SelectionSort(input/output A : LarikInteger, input i, j : integer)
{ Mengurutkan larik A[i..j] dengan algoritma Selection Sort
 Masukan: Larik A[i..j] yang sudah terdefinisi elemen-elemennya
Luaran: Larik A[i..j] yang terurut
Deklarasi
 k: integer
Algoritma:
  if i < j then
                              \{ Ukuran(A) > 1 \}
     Partisi3(A, i, j) { Partisi\ menjadi\ 1\ elemen\ dan\ n-1\ elemen\ \}
                                                                                          i+1
     SelectionSort(A, i+1, j)  { Urut\ hanya\ upalarik\ A[i+1..j]\ dengan\ Selection\ Sort\ }
  endif
```

• Algoritma di atas dapat dianggap sebagai versi rekursif algoritma Selection Sort

```
procedure Partisi3(input/output A : LarikInteger, input i, j : integer)
{ Menmpartisi larik A[i..j] dengan cara mencari elemen minimum di dalam A[i..j], dan menempatkan
elemen terkecil sebagai elemen pertama larik.
                                                                                        Α
Masukan: A[i..j] sudah terdefinisi elemen-elemennya
Luaran: A[i..j] dengan A[i] adalah elemen minimum.
Deklarasi
  idxmin, k : integer
Algoritma:
 idxmin \leftarrow i
 for k \leftarrow i+1 to j do
   if A[k] < A[idxmin] then
      idxmin \leftarrow k
   endif
 endfor
 swap(A[i], A[idxmin])  { pertukarkan A[i] dengan A[idxmin]  }
```

Contoh 1. Misalkan tabel A berisi elemen-elemen berikut:

Langkah-langkah pengurutan dengan Selection Sort:

 \rightarrow terurut!

Kompleksitas waktu algoritma Selection Sort:

$$T(n) = \begin{cases} a, n = 1 \\ T(n-1) + cn, n > 1 \end{cases}$$

Penyelesaiannya sama seperti pada Insertion Sort:

$$T(n)=O(n^2).$$

• Kompleksitas waktu algoritma Selection Sort:

T(n) = waktu pembagian + waktu pemanggilan rekurens *Selection Sort* untuk bagian tabel kanan yang berukuran n elemen.

$$T(n) = \begin{cases} a & ,n = 1 \\ T(n-1) + cn & ,n > 1 \end{cases}$$

Persamaan pada bagian rekurensi bila diselesaikan menghasilkan $T(n) = O(n^2)$.

Decrease by a Constant Factor

Contoh persoalan:

- 1. Binary search
- 2. Mencari koin palsu

3. Binary search

Kondisi awal: larik A sudah terurut menaik
 K adalah nilai yang dicari di dalam larik

- Jika elemen tengah (mid) $\neq k$, maka pencarian dilakukan hanya pada setengah bagian larik (kiri atau kanan)
- Ukuran persoalan selalu berkurang sebesar setengah ukuran semula.
 Hanya setengah bagain yang diproses, setengah bagian lagi tidak.

Algoritma Binary Search (Kasus 1: Larik sudah terurut menaik)

```
procedure binsearch(input A : LarikInteger, i, j : integer; K : integer; output idx : integer)
{ Mencari elemen bernilai K di dalam larik A[i..j].
                                                                                     Α
  Masukan: larik A sudah terurut menaik, K sudah terdefinisi nilainya
  Luaran: indek lariks sedemikian sehingga A[idx] = K
Deklarasi
    mid : integer
Algoritma:
     if i > j then
                  { ukuran larik sudah 0}
                                                                                       Α
        idx \leftarrow -1 { K tidak ditemukan }
     else
        mid \leftarrow (i+j)/2
                                                                                      mid mid+1
        if A(mid) = K then
                              { K ditemukan }
                         \{ indeks elemen larik yang bernilai = K \}
           idx \leftarrow mid
        else
           if A(mid) > K then
              binsearch(A, i, mid - 1, K, idx)
                                               { cari di upalarik kiri, di dalam larik A[i..mid]}
           else
              binsearch(A, mid + 1, j, K, idx) { cari di upalarik kanan, di dalam larik A[mid+1..j}
           endif
        endif
     endif
```

Algoritma Binary Search (Kasus 2: Larik sudah terurut menurun)

```
procedure binsearch(input A : LarikInteger, i, j : integer; K : integer; output idx : integer)
{ Mencari elemen bernilai K di dalam larik A[i..j].
                                                                                     Α
  Masukan: larik A sudah terurut menurun, K sudah terdefinisi nilainya
  Luaran: indek lariks sedemikian sehingga A[idx] = K
Deklarasi
    mid : integer
Algoritma:
     if i > j then
                  { ukuran larik sudah 0}
                                                                                       Α
        idx \leftarrow -1 { K tidak ditemukan }
     else
        mid \leftarrow (i+j)/2
                                                                                      mid mid+1
        if A(mid) = K then
                              { K ditemukan }
                         \{ indeks elemen larik yang bernilai = K \}
           idx \leftarrow mid
        else
           if A(mid) < K then
              binsearch(A, i, mid - 1, K, idx)
                                               { cari di upalarik kiri, di dalam larik A[i..mid]}
           else
              binsearch(A, mid + 1, j, K, idx) { cari di upalarik kanan, di dalam larik A[mid+1..j}
           endif
        endif
     endif
```

Contoh 3: Misalkan diberikan larik *A* dengan delapan buah elemen yang sudah terurut menurun seperti di bawah ini:

81	76	21	18	16	13	10	7
i =1	2	3	4	5	6	7	8=j

Nilai K yang dicari adalah K = 16.

Langkah-Langkah pencarian:

Langkah 1:

 $i = 1 \operatorname{dan} j = 8$

Indeks elemen tengah $mid = (1 + 8) \underline{\text{div}} \ 2 = 4$ (elemen yang diarsir)

81	76	21	18	16	13	10	7
1	2	3	4	5	6	7	8

kiri kanan

 $A[4] \neq 16$

A[4] < 16? Tidak, cari pada upalarik kanan

Langkah 2:

$$i = 5 \operatorname{dan} j = 8$$

Indeks elemen tengah $mid = (5 + 8) \underline{div} 2 = 6$ (elemen yang diarsir)

16	13	10	7
5	6	7	8

kiri'

kanan'

$$A[6] \neq 16$$

A[4] < 16? Ya, cari pada upalarik kiri

Langkah 3:

$$i = 5 \operatorname{dan} j = 5$$

Indeks elemen tengah $mid = (5 + 5) \underline{\text{div}} 2 = 5$ (elemen yang diarsir)

$$A[5] = 16$$

• Jumlah operasi perbandingan elemen-elemen larik:

$$T(n) = \begin{cases} 0 & , n = 0 \\ 1 + T(n/2) & , n > 0 \end{cases}$$

• Relasi rekursens tersebut diselesaikan secara iteratif sbb (atau pakai Teorema Master):

$$T(n) = 1 + T(n/2)$$

$$= 1 + (1 + T(n/4)) = 2 + T(n/4)$$

$$= 2 + (1 + T(n/8)) = 3 + T(n/8)$$

$$= ...$$

$$= k + T(n/2^{k})$$

Asumsi: ukuran larik adalah perpangkatan dua, atau n = $2^k \rightarrow k = 2 \log n$

$$T(n) = {}^{2}log n + T(1) = {}^{2}log n + (1 + T(0)) = 1 + {}^{2}log n = O({}^{2}log n)$$

4. Mencari koin palsu

Diberikan *n* buah koin yang identik, satu diantaranya palsu. Asumsikan koin yang palsu mempunyai berat yang lebih ringan daripada koin asli. Untuk mencari yang palsu, disediakan sebuah timbangan yang teliti. Carilah koin yang palsu dengan cara penimbangan.

Algoritma *decrease* and conquer:

- 1. Bagi himpunan koin menjadi dua upa-himpunan (*subset*), masing-masing $\lfloor n/2 \rfloor$ koin. Jika n ganjil, maka satu buah koin tidak dimasukkan ke dalam kedua upahimpunan.
- 2. Timbang kedua upa-himpunan dengan neraca.
- 3. Jika beratnya sama, berarti satu koin yang tersisa adalah palsu.
- 4. Jika beratnya tidak sama, maka ulangi proses untuk upa-himpunan yang beratnya lebih ringan (salah satu koin di dalamnya palsu).

• Ukuran persoalan selalu berkurang dengan faktor setengah dari ukuran semula. Hanya setengah bagian yang diproses, setengah bagian yang lain tidak diproses.

• Jumlah penimbangan yang dilakukan adalah:

$$T(n) = \begin{cases} 0, n = 1 \\ 1 + T(\lfloor n/2 \rfloor), n > 1 \end{cases}$$

• Penyelesaian relasi rekurens T(n) mirip seperti *binary search*, atau menggunakan Teorema Master:

$$T(n) = 1 + T(\lfloor n/2 \rfloor) = \dots = O(2 \log n)$$

5. Persoalan Perkalian Petani Rusia

Mengalikan dua buah bilangan bulat positif m dan n

$$n \cdot m = \begin{cases} \frac{n}{2} \cdot 2m &, n \text{ genap} \\ \frac{n-1}{2} \cdot 2m + m &, n \text{ ganji} l \end{cases}$$

- Pada setiap pemanggilan rekursif, nilai n berkurang dengan faktor ½ menjadi n/2.
- Kasus trivial untk n = 1, maka $1 \cdot m = m$

Contoh: menghitung 50 · 65 dengan metode perkalian petani Rusia

n	m		n	m	
50	65		50	65	
25	130		25	130	130
12	260	(+130)	12	260	
6	520		6	520	
3	1040		3	1040	1040
1	2080	(+1040)	1	2080	2080
	2080	+(130 + 1040) = 3250			3250
		(a)		(b)	

FIGURE 4.11 Computing $50 \cdot 65$ by the Russian peasant method.

Note that all the extra addends shown in parentheses in Figure 4.11a are in the rows that have odd values in the first column. Therefore, we can find the product by simply adding all the elements in the *m* column that have an odd number in the *n* column (Figure 4.11b).

Sumber: Levitin

BERSAMBUNG