

Approaches to Build and Run MindSpore on Windows

2023-01-18 OpenMindSpore Project Silicon Valley System Software Lab

Contents

- Goals
- Solutions
 - 1. Using WSL 2
 - 2. Using MSVC
 - 3. Using DirectML

Goals

- Most ML platforms, including TF, and PyTorch etc, support Windows environment.
- It is useful to support MindSpore on Windows, including build, training and serving.
- It is the needs of application but the necessary to expand the ecosystem of MindSpore.

Solutions

- 1. The most nature way in Windows, is to build and run MS in WSL2 which has been integrated into latest Windows, e.g. 10/11 for home/business and server 2022 for the infra and cloud. (*Evaluated in W11+WSL2*)
- 2. To build MS with CMake and MSVC, by including MS libraries (refer to example of running PyTorch examples)
- 3. To leverages DirectML to provide cross-vendor hardware acceleration on Windows and its WSL. Need build a package, mindspore_directml, with MS C++ API.

Solutions – WSL2

- Utilize WSL2 as the bridge to build and run MindSpore on WSL2
- Through tweaks, we can successfully build and run MindSpore-gpu.

```
adding 'mindspore/train/train_thor/model_thor.py'
adding 'mindspore-2.0.0.dist-info/METADATA'
adding 'mindspore-2.0.0.dist-info/WHEEL'
adding 'mindspore-2.0.0.dist-info/entry_points.txt'
adding 'mindspore-2.0.0.dist-info/top_level.txt'
adding 'mindspore-2.0.0.dist-info/RECORD'
removing build/bdist.linux-x86_64/wheel
CPack: - package: /home/lin/mindspore/build/mindspore/mindspore generated.
success building mindspore project!
----- MindSpore: build end
testMS mindspore $
                                       Installing collected packages: mindspore
                                       Successfully installed mindspore-2.0.0
                                        testMS mindspore $ ...
                                        testMS ~ $ p3 test.py
                                       [[[[2. 2. 2. 2.]
                                          [2. 2. 2. 2.]
                                          [2. 2. 2. 2.]]
                                         [[2. 2. 2. 2.]
                                         [2. 2. 2. 2.]
                                         [2. 2. 2. 2.]]
                                         [[2. 2. 2. 2.]
                                         [2. 2. 2. 2.]
                                         [2. 2. 2. 2.]]]]
```


Solutions – CMAKE+MSVC

```
if (MSVC)
  file(GLOB TORCH_DLLS "${MS_INSTALL_PREFIX}/lib/*.dll")
  add_custom_command(TARGET example-app
                     POST_BUILD
                     COMMAND ${CMAKE_COMMAND} -E
copy_if_different
                     ${MS_DLLS}
                     $<TARGET_FILE_DIR:example-app>)
endif (MSVC)
```


Solutions – DirectML

	Windows ML	ONNX Runtime with DirectML	TensorFlow with DirectML	<u>DirectML</u>
	The best developer experience for		Hardware accelerated model	Provides flexibility with direct access to
	· · · · · · · · · · · · · · · · · · ·	Cross platform C API for ONNX model inferencing.		DirectX 12 resources for high-performance frameworks and applications.
Documentation	MS Docs	<u>GitHub</u>	GitHub and MS Docs	GitHub and MS Docs
Distribution			PyPI Package: tensorflow- directml	Windows SDK or NuGet: Microsoft.AI.DirectML
DirectML Support	Inference	Inference	Inference and Training	Inference and Training

- MindSpore need develop mindspore-directml package to support DirectML
- It supports multi-GPU. Use DML_VISIBLE_DEVICES to control which GPU(s) get used by DirectML.
- Need support Ops under DirectML.
- There is quite much work to be done for this solution.
- A proposed example as the right.

```
import numpy as np
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import functional as F

context.set_context(mode=context.PYNATIVE_MODE,
device_target="GPU", device_id="/DML:0")

x =
Tensor(np.ones([1,3,3,4]).astype(np.float32))
y =
Tensor(np.ones([1,3,3,4]).astype(np.float32))
print(F.tensor_add(x, y))
```


Thank You

