

UNITED INTERNATIONAL UNIVERSITY

Department of Computer Science and Engineering (CSE) **Course Syllabus**

1	Course Title	Software Engineering Lab		
2	Course Code	CSE 3422		
3	Trimester and Year	Spring 2024		
4	Pre-requisites	CSE 3412 - Sy	ystem Analysis and Design Lab	
5	Credit Hours	1.0		
6	Section	D		
7	Class Hours	Section-D: Tu	uesday, 2:00PM – 4:30PM	
8	Class Room	Section-D: Ro	oom # 529	
9	Instructor	Md Hasan Al Kayem Lecturer, CSE, UIU		
10	Email	hasan@cse.uiu.ac.bd		
11	Office	Room # 319 (A)		
12	Counselling Hours			
13	Text Book	Software Eng	rineering, Eighth edition, Roger Pressman, 2015	
14	Reference	Lecture documents		
15	Course Contents (approved by UGC)	Laboratory work based on CSE 3421		
16	Course			
	Outcomes (COs)	CO Desc	cription	
		CO1 Fun	ction as an individual and as a member or leader of a team.	
			ign and develop a software	
		CO3 Learn to use modern software engineering tools.		
		CO4 Apply modern techniques of software engineering.		
		CO5 Presentation on Term Project		
17	Teaching Methods	Lecture, labo	ratory exercise and reports, project development.	

18 **CO** with Assessment Methods \mathbf{CO} **Assessment Method** (%) Attendance 10 CO1 **Class Performance** 30 CO2 Assignment 10 CO3 ${\bf Midterm}$ 15 CO4 Final 25

CO5

19 Mapping of COs and Program outcomes

CO	Statement	Bloom' s Domai n	Program Outcome	Knowledge Profile	Complex Problem	Engineerin g Activities
CO 1	Function as an individual and as a member or leader of a team. Design and	С	i Individual work and teamwork	Engineering fundamental s (K3) Specialist Knowledge (K4) Engineering	Depth of Knowledge (P1) Range of Conflicting requirements(P2) Depth of Analysis	Range of Resources (A1) Level of Interaction (A2)
2	develop a software	С	c Design/Developmen t of solutions	Design (K5)	(P3) Extent of	
CO 3	Learn to use modern software engineering tools.	С	e Modern Tool Usage	Engineering Practice (K6)	stakeholder (P6) Interdependence (P7)	
CO 4	Apply modern techniques of software engineering	С	b Problem analysis			
CO 5	Presentatio n on Term Project	A	J Communication			

Presentation (on Project)

10

20 Lab Outline

Lab Topics	СО	References	Activities	
------------	----	------------	------------	--

1	Process Models	CO1, CO2	Lecture documents	Lecture, practice
2	Software Architecture	CO1, CO2	Lecture documents	Lecture, practice
3	Services Computing	CO1, CO2	Lecture documents	Lecture, practice
4	Requirements Definition	CO1, CO2	Lecture documents	Lecture, practice
5	User Interface Design	CO1, CO2	Lecture documents	Lecture, practice
6	Midterm exam	CO3		Exam
7	System Design	CO1, CO2	Lecture documents	Lecture, practice
8	Testing	CO1, CO2	Lecture documents	Lecture, practice
9	Documentation	CO1, CO2	Lecture documents	Lecture, practice
10	Version Control	CO1, CO2	Lecture documents	Lecture, practice
11	Presentation on Project	CO5		Presentation
12	Final exam	CO4		Exam

Appendix 1: Assessment Methods

Assessment Types	Marks
Attendance	10%
Class Performance	20%
Report/Viva	10%
Presentation (on Project)	15%
Mid Term	25%
Final Exam	20%

Appendix 2: Grading Policy

Letter	Marks %	Grade	Letter	Marks	Grade
Grade		Point	Grade	%	Point
A (Plain)	90-100	4.00	C+ (Plus)	70-73	2.33
A- (Minus)	86-89	3.67	C (Plain)	66-69	2.00
B+ (Plus)	82-85	3.33	C- (Minus)	62-65	1.67
B (Plain)	78-81	3.00	D+ (Plus)	58-61	1.33
B- (Minus)	74-77	2.67	D (Plain)	55-57	1.00
			F (Fail)	<55	0.00

Appendix-3: Program outcomes

	Program Outcomes
1	Engineering knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals
	and Computer Science and Engineering to the solution of complex engineering problems.

2	Problem analysis: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
3	Design/development of solutions: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
4	Investigation: Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions
5	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.
6	The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems.
7	Environment and sustainability: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.
8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
9	Individual work and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11	Project management and finance: Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's 13 own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.