

PROJECT 1: Navigator

Artificial Intelligence

Universitat Autònoma de Barcelona

Goal: To make a Navigation application, where the user give origin and destination and selects the preference criterion for the path search strategy.

It can be very complex!!! \rightarrow We will simplify it

Simplifications:

- We only consider Metro Maps
- Origin and destination will be given by the names of the stations or in **cartesian coordinates**, no use of street names and house numbers.
- The path between origins and destinations are provided in cartesian coordinates, and the distance between user and metro stations will be assumed as a **straight line**.
- The **preference criteria** can be the following, considered separately:
 - <u>Time</u>, this is to arrive as soon as possible (Minimum time)
 - <u>Distance</u>, ensure not to be doing unnecessary ways (<u>Minimum distance</u>)
 - <u>Line-Changes</u>, we do not want to move around a lot. (Minimum number of line changes)
 - Other criteria ...

Note: The concept of **STOP** can be ambiguous!!!, we define it like this:

Definition: A stop is a trip between two stations or a change of line.

Example: Let us assume the route

Fontana L3 \rightarrow Diagonal L3 \rightarrow Diagonal L4 \rightarrow Verdaguer L4

(*) To unify a change of line is considered as a STOP

Problems to be solved to implement a Navigator:

Problems to be solved to implement a Navigator:

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria Route

How we do represent the metro map?

We need to represent **3 elements:**

- Stations
- Connections
- Line-Changes

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

Stations

- Name
- Line where it belongs to
- Coordinates (position in the map)

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

Station's Table

Name - Line - Coordinates

Station	Line(s)	X	Y
Masséna	1	67	79
Charpennes	1,2,3	140	56
République	1	167	64
Le Tonkin	2	140	27
Collège Bellecombe	2	140	115
Thiers-Lafayette	2	140	157
Part-Dieu	2,3,4	108	206
Part-Dieu Servient	2	82	217
Brotteaux	3	108	134
Dauphiné Lacassagne	4	152	230

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

We need to represent **3 elements:**

- Stations
 Connections
- Line-Changes

Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria Route

How we do represent the metro map?

Connections:

Adjacency Matrix

Example of adjacency matrix

Adjacency Matrix

Navigator

Defining a Representation for City Data

Defining the Search
Algorithms for the best route Data about a City

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria

How we do represent the metro map?

Connections

- Costs
 - . 1. Time
 - 2. Distance
 - 3. #Line-Changes
 - 4. #Stops

Example of a time cost matrix (it will always be given)

Folder: CityInformation

File: Time.txt

Cost Matrix (Time)

Masséna	0									
Charpennes	9	0								
République		4	0							
Le Tonkin		5		0						
Collège Bellecombe		7			0					
Thiers – La fayette					4	0				
Part-Dieu						6	0			
Part-Dieu Servient							2	0		
Brotteaux		2					2		0	
Dauphiné L.								21		0
	Masséna	Charpennes	République	Le Tonkin	Collège Bellcombe	Thiers-Lafayette	Part-Dieu	Part-Dieu Serv.ient	Brotteaux	Dauphiné L

Assumptions to compute costs:

Each line goes always at a constant speed

Folder: CityInformation

File: Infovelocity.txt

- The railways connecting between two stations are not always straight.
- We will always have the Cartesian coordinates of all the station positions.

Navigator Defining a Representation for City Data Defining the Search Algorithms for the best route Defining the Optimality Criteria Defining the Optimality Criteria

How we do represent the metro map?

We need to represent **3 elements:**

Navigator

Defining a Representation for City Data

Defining the Search
Algorithms for the best route

Defining the Optimality Criteria

Previous examples, adjacency matrix and cost matrix

How do we represent the Line-Change?

There are two: Charpennes (3 lines) and Part-Dieu (3 lines)

We said Line-Changes would be regarded as **STOPS**

Solution: Repeat stations belonging to more than

one line

Example: Adjacency matrix

Masséna L1 0 Charpennes L1 0 Repúblique L1 1 0 Le Tonkin L2 Charpennes L2 0 1 Collège Bellecombe L2 1 0 0 Thiers Lafayette L2 1 Part-Dieu L2 1 0 Part-Dieu Servient L2 1 Charpennes L3 0 Brotteaux L3 1 Part-Dieu L3 Part-Dieu L4 Dauphiné Lacassagne L4 Part-Dieu L2 Part-Dieu L3 Repúblicque L1 Le Tonkin L2 Sollège Bellecombe L2 Thiers Lafayette L2 Part-Dieu Servient L2 Charpennes L3 Brotteaux L3 Charpennes

Navigator

Defining a Representation for City Data

Defining the Search Data about

Result: Move from a 10x10 matrix to a 14x14 matrix

(Charpennes x 3) i (Part-Dieu x 3)

Solution: Repeat stations belonging to more than

one line

Example: Cost Matrix

Masséna L1 0 Charpennes L1 0 Repúblique L1 0 Le Tonkin L2 Charpennes L2 20 0 Collège Bellecombe L2 7 0 0 Thiers Lafayette L2 4 Part-Dieu L2 6 0 2 Part-Dieu Servient L2 Charpennes L3 0 18 Brotteaux L3 2 Part-Dieu L3 Part-Dieu L4 6 **15** Dauphiné L. L4 Part-Dieu L3 Part-Dieu L2 Repúblicque L1 Le Tonkin L2 Sollège Bellecombe L2 Thiers Lafayette L2 Part-Dieu Servient L2 Brotteaux L3 Charpennes L3 Charpennes

Navigator

Defining a Representation for City Data

Defining the Search Data about

Result: Move from a 10x10 matrix to a 14x14 matrix

(Charpennes x 3) i (Part-Dieu x 3)

Important Note: the cost matrices we provide you have already duplicated the stations of different lines

Folder: CityInformation

File: Infovelocity.txt

Problems to be solved to implement a Navigator:

Which algorithm do we have to apply, to implement a Navigator?

Search Algorithms, allow to find the path between an origin and a destination

Which are the differences between them?

Problems to be solved to implement a Navigator:

