

Business Analytics

Tutorial 11: Association Rules & Recommender Systems

Decision Sciences & Systems (DSS)

Department of Informatics

TU München

Outline

Central Exercise

Association Rules

- Support
- Confidence
- Lift
- Apriori Algorithm

Tutorial

- 11.1 Exercise on Association Rules
- 11.2 Exercise on Association Rules
- 11.3 Exercise on SVD
- 11.4 Homework on Collaborative Filtering

Watch Lecture for background on each of the methods

Watch Lecture for explanation on SVD!

Association Rule Mining – "Discover correlation among different attributes"

Discover strong rules which describe the correlation among different attributes.

$${A, E} \Rightarrow B$$

Unsupervised Learning

Market Basket Analysis (MBA)

- boost the sales (up-/cross-selling)
- store layout
- loyalty card / cashback

Other Application

- Intrusion detection
- Bioinformatics

Association Rule Mining

Market basket transactions

- 1. {Milk, Bread}
- 2. {Bread, Butter}
- 3. {Beer}
- 4. {Milk, Bread, Butter}
- 5. {Bread}

Binary representation

ID	Milk	Bread	Butter	Beer
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	0	0

Association Rule Mining – Support

The support of an *item set* is its relative frequency.

Example:

- Itemset {Milk, Bread} == {Bread, Milk}
- supp({Milk, Bread}) = 2/5 = 0.4
- i.e. the combination Milk & Bread appears in 40% of all transactions.

ID	Milk	Bread	Butter	Beer
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	0	0

The support of a rule is the support of all item sets it contains: Let R: $\{A, B\} \Rightarrow \{C, D\}$; that means $supp(R) = supp(\{A, B, C, D\})$.

Example:

Association Rule Mining – Confidence

The confidence of a rule (R: $X \Rightarrow Y$) is its *likeliness* to apply to the data set.

טו	IVIIIK	Dieau	Dutter	Deel
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	0	0

Definition:

conf(R) = supp(X U Y) / supp(X)

Example:

- conf({Milk, Bread} \Rightarrow {Butter}) = supp({Milk, Bread, Butter}) / supp({Milk, Bread}) = 0.2 / 0.4 = 0.5
- i.e. the probability that the rule applies to the given data set is 50%

Association rules with minimum support and confidence are sometimes called "strong" rules.

Association Rule Mining – Lift

The lift of a rule (R: $X \Rightarrow Y$) indicates by how much the confidence of a rule surpasses the expected value. (Relation of observed confidence and expected confidence.)

C (:		•	· · ·	•
Defin	ution	\cap t	litt	ıc
Delli	IILIOII	OI.	ווונ	ıs

$$\begin{aligned} \textbf{lift}(R) &= \textbf{conf}(R) / \textbf{expConf}(R) \\ &= (\textbf{supp}(X \cup Y) / \textbf{supp}(X)) / \textbf{supp}(Y) \\ &= \textbf{supp}(X \cup Y) / (\textbf{supp}(X) * \textbf{supp}(Y)) \end{aligned}$$

ID	Milk	Bread	Butter	Beer
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	0	0

Example:

- lift({Milk, Bread} ⇒ {Butter}) = 0.2 / (0.4 * 0.4)
 = 1.25
- i.e. the observed confidence is 25% higher than expected
- lift > 1: Item sets X and Y appear more frequent than expected. X has a positive effect on Y. The greater the lift, the higher the probability that the rule is not coincidence.
- lift ≈ 1: X, Y are independent.
- lift < 1: Item sets X and Y appear less frequent than expected. X has a negative effect on Y.

Association Rule Mining - Will brute-force approach work?

Compute support and confidence for all possible rules on items {A, B, C, D, E}

How many rules on d items?

$$3^d - 2^{d+1} + 1$$

#items	2	3	4	5	6	7	8
#rules	2	12	50	180	602	1932	6050

- In the left example of 5 items
 → 180 possible rules
- In our market example of 4 items
 → 50 possible rules

Source: https://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Apriori algorithm

- Iteratively find all frequent i-item sets (item sets with cardinality i and minSup)
 - First evaluate every 1-item set (i = 1) on the minSup
 - for i > 1
 - evaluate all i-item sets which originate from single (i-1)-item sets items on the minSup
 - i++
 - Stop as soon as there are no more i-item sets which meet minSup
- Generate rules from the found item sets
 - Find rules that meet minConf and contain only 1 item on the right (side of the ⇒)
 - Evaluate possible rules that contain several items on the right and are made up of simpler rules
 - e.g. if you found $X \Rightarrow Y$ and $X \Rightarrow Z$, evaluate $X \Rightarrow Y$, Z

Outline

Central Exercise

Association Rules

- Support
- Confidence
- Lift
- Apriori Algorithm

Tutorial

- 11.1 Exercise on Association Rules
- 11.2 Exercise on Association Rules
- 11.3 Exercise on SVD
- 11.4 Homework on Collaborative Filtering

Watch Lecture for background on each of the methods

Watch Lecture for explanation on SVD!

Association Rule – Exercise 11.1

Regarding a data set about taste in music with 1000 entries below-mentioned association rule has a support of 0.4 and a confidence of 0.8. Answer each of the following questions with an interval as small as possible. ($[-\infty,+\infty]$ or a single value are valid options.)

$\{beatles, stones\} \Rightarrow \{dylan, cohen\}$

- How many people like beatles and stones?
- How many people like stones and dylan?
- What is the support of the rule {beatles, dylan, stones} ⇒ {cohen}?
- What is the lift of the above-mentioned rule (BS ⇒ DC)? Interpret your result.

Apriori algorithm — Exercise 11.2

Have a look the following items {Wine, Noodles, Tomato sauce, Diapers} and transactions and find all item sets that meet min. support = 0.4. Construct all possible rules that meet the min. confidence = 0.8.

Customer	Wine	Noodles	Tomato sauce	Diapers
1	1	1	1	0
2	1	0	0	1
3	0	1	1	1
4	1	1	1	1
5	0	1	1	0
6	1	1	0	1
7	0	0	0	1
8	1	1	1	1
9	0	0	1	1
10	1	1	1	0

Summary and outlook

- Association Rule Mining
 - MBA
 - Support
 - Confidence
 - Lift
- Apriori algorithm