

## **CS531: Memory Systems and Architecture**

#### **Course Instructor:**

Dr. Shirshendu Das Assistant Professor, Department of CSE, IIT Ropar.

shirshendu@iitrpr.ac.in http://cse.iitrpr.ac.in/shirshendu/shirshendu.html



**TCMP** 

**Topic: Advancement in Replacement Policy – Part 2** 

## **Introduction 1**



**TCMP** 



**Important parameters:** 

☐ Performance.

☐ Energy consumption

☐ Hardware overheads.

#### **Introduction 2**



#### **Introduction 3: Coherence**

#### **Execution style:**

- ☐ Multiprogrammed.
- ☐ Multithreaded.

#### **Oherence Issues:**

Required to maintain the shared blocks consistent across the cores.

#### **Request Type:**

- **❖** GetS
- **❖** GetX
- PutX
- Upgrade



## **Research Paper - 1**

# **Adaptive Insertion Policies for Managing Shared Caches**

Aamer Jaleel<sup>†</sup> William Hasenplaugh<sup>†</sup> Moinuddin Qureshi<sup>§</sup> Julien Sebot<sup>‡</sup> Simon Steely Jr.<sup>†</sup> Joel Emer<sup>†</sup>

†Intel Corporation, VSSAD Hudson, MA {aamer.jaleel, william.c.hasenplaugh, simon.c.steely.jr, joel.emer} @intel.com

§IBM T. J. Watson Research Center Yorktown Heights, NY mkquresh@us.ibm.com Intel Israel Design Center
Haifa, Israel
julien.sebot@intel.com

In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT 08), 2008

**Short name: TADIP** 

I have used some figures, tables and texts from the paper in this presentation to explain you the paper. The use is completely for academic purpose.

#### **TADIP: Motivation 1**

The LLC when shared by multiple applications or threads, cannot be handled efficiently by DIP.



Figure 1: The Shared Cache Problem. The figure shows the cache sensitivity (under LRU) of two SPEC CPU2006 workloads. When both these workloads execute concurrently and share a 2MB cache, soplex, a streaming application, interferes with h264ref. Cache performance can be improved by reducing the interference.

**TADIP: Motivation** 



The main idea of TADIP is to apply DIP on each application (thread) individually.

0: LRU 00 01 10 11

1:BIP

## **TADIP**



0 : LRU 1 : BIP Difference between Cache friendly and non-cache friendly applications.



**Figure 2: Workload Diversity on CMPs.** Assuming a 4MB shared cache, this figure shows the diversity (in terms of cache requirements) of applications that can compete for the shared cache.

### **TADIP: Proposed Idea**



I have explained the proposed idea from this diagrams. To understand TADIP either you watch my lecture or read the paper. Just reading this PPT will not be enough.

