Allen's Interval Algebra Makes the Difference

Tomi Janhunen Michael Sioutis

Department of Computer Science Aalto University

September 10, 2019

Qualitative Spatial & Temporal Reasoning

- QSTR is a major field of study in Knowledge Representation
 & Reasoning.
- QSTR abstracts from numerical quantities of space and time by using qualitative descriptions instead (e.g., precedes, contains, is left of).

Figure: My apartment is located in the city of Espoo, Finland

Applications of QSTR

- Natural language processing
- Mobile robot navigation
- Image processing
- Geographical information systems (GIS)
- Qualitative spatio-temporal reasoning
- Querying linked geospatial data (e.g., GeoSPARQL)
- Neural-symbolic reasoning
- Data Mining
- Healthcare

Qualitative Constraint Language

Definition

A binary qualitative constraint language is based on a finite set B of base relations such that:

- its base relations are jointly exhaustive and pairwise disjoint;
- its base relations are defined on an infinite domain D;
- B contains the identity relation Id;
- B is closed under the converse operation $(^{-1})$;
- 2^B is equipped with the usual set-theoretic operations union and intersection, the converse operation, and the weak composition operation (⋄).

Allen's Interval Algebra (IA) Constraint Language

Figure: The thirteen base relations of Interval Algebra

The RCC-8 Constraint Language

disconnected	DC	
externally connected	EC	
partially overlapping	PO	(x)y
tangential proper part	TPP TPPi	(y)
non-tangential proper part	NTPP NTPPi	(I)
equal	EQ	$\begin{pmatrix} x \\ y \end{pmatrix}$

Figure: Two-dimensional examples for the eight base relations of RCC-8

Qualitative Constraint Network (QCN)

Definition

A QCN is a pair $\mathcal{N}=(V,C)$ where V is a non-empty finite set of variables, and C a mapping $C:V\times V\to 2^B$.

Figure: Figurative examples of QCN terminology using Interval Algebra

Fundamental Reasoning Problems of QCNs

Definition

The satisfiability checking problem of a QCN $\mathcal N$ is deciding whether $\mathcal N$ admits a solution.

Deciding the satisfiability of a QCN is NP-complete in general.

Definition

The minimal labeling problem (MLP) of a QCN $\mathcal N$ is finding the strongest implied constraints of $\mathcal N$.

 The satisfiability checking problem and the MLP are equivalent under polynomial Turing reductions [GS93].

Difference Constraints for Answer-Set Programming

A difference constraint is an expression of the form

$$x - y \le k$$

where x and y are variables and k is a constant.

- Consistency checks can be performed using Bellman-Ford in time $O(|V| \cdot |E|)$.
- Inconsistency explanations are negative cycles.
- A difference constraint $x y \le k$ can be expressed as $% x y \le k = k$ can be expressed as
- The implementation of ASP(DL) is known as the CLINGO-DL solver.¹

¹https://potassco.org/labs/clingodl/

Encoding Temporal Networks in ASP(DL)

Example

Evaluation (1/3)

Figure: Runtime scaling: checking *satisfiability* vs computing *intersection* of solutions

Evaluation (2/3)

Figure: Runtime scaling (median): computing intersection of solutions vs computing union of solutions

Evaluation (3/3)

For hard instances, constraints are picked from a set of relations expressible in 3-CNF when transformed into first-order formulae.

d					13				17		19
Inters.	4.8	8.7	19.8	50.8	122.3	940.7	1738.0	758.5	384.4	258.0	155.9
Union	25.6	46.9	105.5	298.5	7226.3	5636.5	749.8	1585.5	438.9	93.8	169.3

Table: Median runtimes for hard IA instances with 50 variables

Conclusion

- We encoded QCNs based on Allen's Interval Algebra in ASP(DL), an extension of ASP by difference constraints.
- The transitive effects of relation composition are avoided when it comes to the space complexity of representing QCN instances.
- The presented encoding scales reasonably well.

Future Work

- We aim to investigate more thoroughly the performance characteristics of our ASP(DL) encoding.
- We would like establish collaborative frameworks among ASP-based and native QSTR tools.

Thank you for your interest and attention!

