# 《基础物理实验》实验报告

姓名 孙奕飞 学号 2023k8009925001 分班分组及座号 2 - 06 - 01 号

实验日期 \_2024 年 \_11\_月 \_19\_日 实验地点 教 710 调课/补课 否 成绩评定

# 1 实验目的

- 1. 掌握不同静态方法测量杨氏模量的原理以及微小位移的测量方法,理解其各自的优势与局限性,并了解动态法测量杨氏模量的基本原理;
- 2. 熟悉霍尔位置传感器的性能特点,完成样品测量及传感器的校准,并理解传感器特性曲线在测量过程中的意义;
  - 3. 了解光杠杆法的放大机制及其适用范围;
  - 4. 掌握读数望远镜和读数显微镜的调节方法;
  - 5. 学习用逐差法、作图法和最小二乘法对数据进行处理;
  - 6. 学习如何计算各种物理量的不确定度,并用不确定度正确地表达实验结果。

# 2 实验仪器

CCD 杨氏弹性模量测量仪(LB-YM1 型、YMC-2 型)、螺旋测微器、钢卷尺;杭州大华 DHY-A 型霍尔位置传感器法杨氏模量测定仪(包括底座固定箱、读数显微镜及调节机构、SS495A 型集成霍尔位置传感器、测试仪、磁体、支架、加力装置等)、黄铜条、铸铁条; DHY-2A 型动态杨氏模量测试台,DH0803 型振动力学通用信号源、通用示波器、测试棒(铜、不锈钢)、悬线、专用连接导线、天平、游标卡尺、螺旋测微计等。

# 3 实验原理

# 3.1. 杨氏模量的概念

考虑一个物体的伸长或压缩形变。设物体的长度为 L,截面积为 S,在沿长度方向受到外力 F 的作用后,长度改变了  $\Delta L$ 。那么,\*\* 应力 \*\* 被定义为单位截面积上所承受的垂直作用力,即  $\frac{F}{S}$ ,而 \*\* 线应变 \*\* 则表示物体的相对伸长量  $\frac{\Delta L}{C}$ 。

实验表明,在弹性范围内,正应力与线应变成正比,而这个比例常数被称为杨氏模量 E,即

$$\frac{F}{S} = E \frac{\Delta L}{L} \tag{1}$$

杨氏模量是材料的一种固有特性,与物体的形状无关。

# 3.2. 霍尔效应的原理

当霍尔元件处于磁感应强度为 B 的磁场中,并且通过垂直于磁场方向的电流 I 时,在与电流和磁场方向均垂直的方向上会产生霍尔电势差。此时,电子受力达到平衡状态,电场力与洛伦兹力相等,因此

$$eE = eVB (2)$$

其中, 电场强度和电流的表达式分别为

$$E = \frac{U_H}{a}, \quad I = nVad \tag{3}$$

将(3)式代入(2)式,便可以得到霍尔电压的表达式为

$$U_H = K_H I B \tag{4}$$

其中, $K_H$ 是一个常数,称为霍尔灵敏度。

若保持霍尔元件的电流恒定,并将其置于一个具有均匀梯度变化的磁场中,则霍尔电势 差的变化量与位移量成正比:

$$\Delta U_H = K_H I \frac{dB}{dz} \Delta z \tag{5}$$

# 3.3. 弯曲法测量杨氏模量原理

通过弯曲横梁可以测量其杨氏模量 E, 其表达式为

$$E = \frac{Mgd^3}{4a^3b\Delta z} \tag{6}$$

其中,d 为两刀口之间的距离,a 为横梁的厚度,b 为横梁的宽度, $\Delta z$  为横梁中心的位移,M 为加在横梁上对应的质量,q 为重力加速度。

# 4 实验内容

# 4.1. 拉伸法测定金属的杨氏模量

- (1) 在测量钼丝的杨氏模量之前,首先通过添加砝码使金属丝拉直,确保分划板卡在下衡梁的槽内,以避免拉直过程中分划板发生旋转。同时,应注意监视器上分划板刻度尺的位置不要过高,其位置应低于 3 mm。
  - (2) 使用钢卷尺测量上、下夹头间金属丝的长度。
- (3) 通过螺旋测微器测量金属丝的直径。由于钼丝直径可能存在不均匀性,根据工程要求,应在金属丝的上、中、下三个位置分别测量。每个位置在相互垂直的方向上各测量一次。
- (4) 记录未加砝码时,屏幕上在横线上显示的毫米刻度尺读数  $l_0$ 。接着,每次在砝码盘上增加一个砝码时,分别记录叉丝的相应读数  $l_i$  ( $i=1,2,\ldots,8$ )。之后逐个减掉砝码,并读取

屏幕上的对应读数  $(l_i)'$  (i = 1, 2, ..., 8)。注意加减砝码时应动作轻缓,以避免砝码盘发生微小振动而导致读数波动过大。

- (5) 取同一负荷下叉丝读数的平均值,并使用逐差法计算在荷重增减 4 个砝码时,光标的平均偏移量。
- (6) 再次使用螺旋测微器测量金属丝的直径,按工程规范仍需在上、中、下三个位置进行测量,且每个位置的相互垂直方向各测一次。
  - (7) 最终,将前述的原理公式进行分解和整理,即可得到最终用于计算杨氏模量的公式:

$$Y = \frac{4MgL}{\pi d^2 \Delta L} \tag{7}$$

# 4.2. 使用霍尔传感器测量杨氏模量

测量黄铜样品的杨氏模量和霍尔位置传感器的定标。

- (1) 调整以确保集成霍尔位置传感器探测元件位于磁铁的中心位置。
- (2) 使用水平泡确认平台是否保持水平,若发现倾斜,调节平台的水平调节脚至水平状态。
- (3) 对霍尔位置传感器的毫伏电压表进行调零。通过上下移动磁体调节装置,直到毫伏表读数非常小,此时停止调节并固定螺丝,最后微调调零电位器,使毫伏表的读数为零。
- (4) 调整读数显微镜,使眼睛能够清晰地观察到十字线、分划板刻度线和数字。接着移动读数显微镜,直到清晰看到铜刀口上的黑色基线。然后,在使用适当力度锁紧加力旋钮旁边的锁紧螺钉后,通过旋转读数显微镜的读数鼓轮,使铜刀口基线与显微镜中的十字刻度线对齐。
  - (5) 在拉力绳处于无力状态下,对电子称传感器的加力系统进行调零。
- (6) 通过逐次转动加力调节旋钮逐步增大拉力(每次增重 10 克),并从读数显微镜上记录梁的相应弯曲位移和霍尔数字电压表的读数。这些数据将用于计算杨氏模量及霍尔位置传感器的定标。
  - (7) 实验结束后,松开加力旋钮旁边的锁紧螺钉,并松开加力旋钮,取下实验样品。
  - (8) 多次测量并记录样品在两刀口之间的长度,同时测量横梁在不同位置的宽度和厚度。
  - (9) 关闭电源, 收拾实验桌面, 整理好实验器材并复原实验初始状态。
- (10) 通过逐差法求得黄铜材料的杨氏模量,并计算相应的不确定度。使用作图法和最小 二乘法来确定霍尔位置传感器的灵敏度。
  - (11) 将实验测量结果与公认值进行对比分析。

# 4.3. 动态悬挂法测量杨氏模量

- 1. 测量测试棒的长度 L、直径 d 和质量 m (也可以由实验室提供)。为了提高测量精度,以上量需测量 3-5 次。
  - 2. 测量测试棒在室温下的共振频率
- (1) 安装测试棒:将测试棒悬挂在两根悬线上,确保测试棒保持横向水平,悬线垂直于测试棒的轴向方向。两根悬线的挂点应分别位于距离测试棒两端点 0.0365L 和 0.9635L 处,并使测试棒处于静止状态。

- (2) 连接设备: 使用专用导线将测试装置、信号源和示波器连接起来。
- (3) 开机: 依次打开示波器和信号源的电源开关,调整示波器至正常工作状态。
- (4) 鉴频与测量: 待测试棒稳定后,调节信号源的频率和幅度,寻找测试棒的共振频率。 当在示波器的荧光屏上观察到共振现象(正弦波振幅突然增大)时,进一步缓慢微调频率细 调旋钮,直到波形振幅达到最大值。

# 5 实验结果与数据处理

# 5.1. 拉伸法测定金属的杨氏模量

## 5.1.1. 实验数据

设备型号: YMC-2 (1) 钼丝长度 L=830.0mm, 卷尺仪器误差 e=2.0mm (2) 钼丝直径:

表 1: 钼丝直径

| 测量次数 | 1     | 2     | 3     | 4     | 5     | 6     | 平均值   |
|------|-------|-------|-------|-------|-------|-------|-------|
| d/mm | 0.209 | 0.208 | 0.209 | 0.210 | 0.206 | 0.208 | 0.208 |

(3) 监视器示数初始示数  $l_0$ =0.00mm, 千分尺仪器误差 e=0.005mm

表 2: 监视器示数

| 序号             | 砝码质量 M/g | 加载 l/mm | 卸载 $l'/mm$     | 平均值 $\overline{l}/\mathrm{mm}$ | l*M/(mm*g) | 示数差值 $\Delta l_i$ |
|----------------|----------|---------|----------------|--------------------------------|------------|-------------------|
| 1              | 500      | 0.75    | 0.75           | 0.750                          | 375.00     | 1.030             |
| 2              | 750      | 1.00    | 1.03           | 1.015                          | 761.25     | 1.040             |
| 3              | 1000     | 1.25    | 1.30           | 1.275                          | 1275.00    | 1.040             |
| 4              | 1250     | 1.50    | 1.55           | 1.525                          | 1906.25    | 1.025             |
| 5              | 1500     | 1.76    | 1.80           | 1.780                          | 2670.00    |                   |
| 6              | 1750     | 2.05    | 2.06           | 2.055                          | 3596.25    |                   |
| 7              | 2000     | 2.30    | 2.33           | 2.315                          | 4630.00    |                   |
| 8              | 2250     | 2.55    | 2.55           | 2.550                          | 5737.50    |                   |
| $\overline{M}$ | 1375     |         | $\overline{l}$ | 1.658                          |            |                   |
| $\Sigma M$     | 11000    |         | $\Sigma l$     | 13.265                         |            |                   |

## 5.1.2. 数据处理

长度差的 A 类不确定度为 
$$u_A = \sqrt{\frac{\sum\limits_{i=1}^8 \left(l_i - \bar{l}\right)^2}{8 \times (8-1)}} = 0.224mm$$
 长度差的 B 类不确定度为  $u_B = \frac{0.01}{\sqrt{3}}mm = 5.8 \times 10^{-3}mm$  长度差的合成不确定度为  $u\left(l\right) = \sqrt{u_A^2 + u_B^2} = 0.224mm$  直径的 A 类不确定度  $u_A = \sqrt{\frac{\sum\limits_{i=1}^6 \left(d_i - \bar{d}\right)^2}{6 \times (6-1)}} = 3.2 \times 10^{-5}mm$  直径的 B 类不确定度  $u_B = \frac{0.001}{\sqrt{3}}mm = 5.8 \times 10^{-4}mm$  直径的合成不确定度  $u\left(d\right) = \sqrt{u_A^2 + u_B^2} = 5.8 \times 10^{-4}mm$ 

长度的不确定度为  $u(L) = \frac{0.1}{\sqrt{3}}mm = 5.8 \times 10^{-2}mm$  将数据代入杨氏模量公式  $\overline{Y} = \frac{4gL}{d^2K} = 2.316 \times 10^{11}N \cdot m^{-2}$  杨氏模量的相对不确定度为  $\frac{u_Y}{Y} = \sqrt{\left(\frac{2u(d)}{d}\right)^2 + \left(\frac{u(L)}{L}\right)^2 + \left(\frac{u(l)}{l}\right)^2} = 0.216$  因此,杨氏模量的不确定度为  $0.50 \times 10^{11}N \cdot m^{-2}$  所以钼丝杨氏模量的理论值为  $Y = (2.316 \pm 0.50) \times 10^{11}N \cdot m^{-2}$  与理论值的相对误差  $W_0 = \frac{Y - Y_0}{Y_0} = 0.69\%$  根据表 (2) 中的数据可以拟合得到如下图像:



图 1: 作图法求杨氏模量

利用 scipy 中的 curve\_fit 函数可以计算得到图线斜率为  $k=1.033\times 10^{-3}\,\mathrm{mm/g}$ ,故而可计算求得

$$Y = \frac{4gL}{\pi d^2 k} = 2.317 \times 10^{11} \,\mathrm{N/m^2}$$

,与逐差法得到的结果极为接近。与理论值的相对误差为 0.74%。

# 5.2. 使用霍尔传感器测量杨氏模量

## 5.2.1. 实验数据

表 3: 黄铜横梁的几何尺寸

| 测量次数    | 1     | 2     | 3     | 4     | 5     | 6     | 平均值   |
|---------|-------|-------|-------|-------|-------|-------|-------|
| 长度 d/mm | 229.5 | 229.6 | 230.1 | 231.1 | 229.6 | 230.0 | 230.0 |
| 宽度 b/mm | 23.30 | 23.32 | 23.24 | 23.22 | 23.20 | 23.26 | 23.26 |
| 厚度 a/mm | 0.987 | 0.993 | 0.980 | 0.979 | 0.990 | 0.984 | 0.986 |

## 显微镜初始读数 $Z_0 = 2.603mm$

| 序号                       | 1      | 2      | 3      | 4      | 5      | 6      | 7       | 8       | 平均值       |
|--------------------------|--------|--------|--------|--------|--------|--------|---------|---------|-----------|
| $M_i/g$                  | 9.9    | 20.1   | 30.0   | 40.1   | 50.1   | 60.5   | 70.2    | 80.2    | 45.1375   |
| $Z_i/mm$                 | 2.786  | 2.932  | 3.062  | 3.205  | 3.350  | 3.510  | 3.650   | 3.839   | 3.29175   |
| $U_i/mV$                 | 44     | 88     | 131    | 173    | 215    | 258    | 297     | 339     | 193.125   |
| $\Delta Z_i/\mathrm{mm}$ | 0.564  | 0.578  | 0.588  | 0.634  |        |        |         |         | 0.591     |
| $\Delta U_i/\text{mV}$   | 171    | 170    | 166    | 166    |        |        |         |         | 168.25    |
| $U_i^2/mV^2$             | 1936   | 7744   | 17161  | 29929  | 46225  | 66564  | 88209   | 114921  | 46586.125 |
| $Z_i^2/mV^2$             | 7.762  | 8.597  | 9.376  | 10.272 | 11.223 | 12.320 | 13.323  | 14.738  | 10.951    |
| $Z_iU_i/(mm*mV)$         | 122.58 | 258.02 | 401.12 | 554.47 | 720.25 | 905.58 | 1084.05 | 1301.42 | 668.44    |

表 5: 铸铁横梁的几何尺寸

| 测量次数    | 1     | 2     | 3     | 4     | 5     | 6     | 平均值   |
|---------|-------|-------|-------|-------|-------|-------|-------|
| 长度 d/mm | 231.5 | 229.5 | 230.0 | 229.0 | 229.6 | 230.1 | 230.0 |
| 宽度 b/mm | 23.06 | 23.04 | 23.02 | 22.98 | 23.02 | 23.06 | 23.03 |
| 厚度 a/mm | 0.980 | 0.995 | 0.972 | 1.075 | 1.045 | 0.972 | 1.006 |

表 6: 读数显微镜示数 (铸铁)

## 显微镜初始读数 $Z_0 = 0.475mm$

| $\frac{1}{2}$            |       |       |       |       |       |        |        |        |         |  |
|--------------------------|-------|-------|-------|-------|-------|--------|--------|--------|---------|--|
| 序号                       | 1     | 2     | 3     | 4     | 5     | 6      | 7      | 8      | 平均值     |  |
| $M_i/g$                  | 8.6   | 23.2  | 30.6  | 40.5  | 51.7  | 60.0   | 69.6   | 79.4   | 45.45   |  |
| $Z_i/mm$                 | 0.510 | 0.625 | 0.665 | 0.735 | 0.810 | 0.875  | 0.945  | 1.100  | 0.783   |  |
| $U_i/mV$                 | 19    | 50    | 67    | 88    | 112   | 131    | 151    | 173    | 98.88   |  |
| $\Delta Z_i/\mathrm{mm}$ | 0.300 | 0.250 | 0.280 | 0.365 |       |        | 0.299  |        |         |  |
| $\Delta U_i/\text{mV}$   | 93    | 81    | 84    | 85    |       |        |        |        | 123     |  |
| $U_i^2/mV^2$             | 361   | 2500  | 4489  | 7744  | 12544 | 17161  | 22801  | 29929  | 12191.1 |  |
| $Z_i^2/mV^2$             | 0.260 | 0.390 | 0.442 | 0.540 | 0.656 | 0.766  | 0.893  | 1.210  | 0.645   |  |
| $Z_iU_i/(mm*mV)$         | 9.69  | 31.25 | 44.56 | 64.68 | 90.72 | 114.63 | 142.70 | 190.30 | 86.07   |  |

#### 数据处理 5.2.2.

# 一、黄铜横梁的杨氏模量计算

一、黄铜横梁的杨氏模量计算  
长度的 A 类不确定度为 
$$u_A = \sqrt{\frac{\sum\limits_{i=1}^6 (d-\overline{d})^2}{6\times(6-1)}} = 0.244mm$$
  
长度 B 类不确定度为  $u_B = \frac{0.1}{\sqrt{3}}mm = 5.8\times 10^{-2}mm$   
长度的不确定度为  $u(d) = \sqrt{u_A^2 + u_B^2} = 0.251mm$   
宽度的 A 类不确定度  $u_A = \sqrt{\frac{\sum\limits_{i=1}^6 \left(b_i - \overline{b}\right)^2}{6\times(6-1)}} = 0.019mm$   
宽度的 B 类不确定度  $u_B = \frac{0.01}{\sqrt{3}}mm = 5.8\times 10^{-3}mm$   
合成不确定度  $u(b) = \sqrt{u_A^2 + u_B^2} = 0.020mm$   
厚度的 A 类不确定度  $u_A = \sqrt{\frac{\sum\limits_{i=1}^6 \left(a_i - \overline{a}\right)^2}{6\times(6-1)}} = 2.3\times 10^{-3}$   
厚度的 B 类不确定度  $u_B = \frac{0.001}{\sqrt{3}}mm = 5.8\times 10^{-4}mm$   
合成不确定度为  $u(a) = \sqrt{u_A^2 + u_B^2} = 2.4\times 10^{-3}mm$   
将数据代入杨氏模量公式  $\overline{Y} = \frac{d^3\Delta Mg}{4a^3b\Delta Z} = 9.926\times 10^{10}N\cdot m^{-2}$ 

 $\Delta Z$  的 A 类不确定度  $u_A=\sqrt{\sum\limits_{i=1}^4\left(\Delta Z-\overline{\Delta Z}\right)^2\over4\times(4-1)}=1.51\times10^{-2}mm$  $\Delta Z$  的 B 类不确定度  $u_B = \frac{0.001}{\sqrt{3}} mm = 5.8 \times 10^{-4} mm$ 

 $\Delta Z$  的合成不确定度为  $u(\Delta Z) = \sqrt{u_A^2 + u_B^2} = 1.51 \times 10^{-2} mm$  所以,杨氏模量的相对不确定度为  $\frac{u_Y}{Y} = \sqrt{\left(\frac{3u(d)}{d}\right)^2 + \left(\frac{3u(a)}{a}\right)^2 + \left(\frac{u(b)}{b}\right)^2 + \left(\frac{u(\Delta Z)}{\Delta Z}\right)^2} = 0$ 0.027

因此,杨氏模量的不确定度为  $0.268 \times 10^{10} N \cdot m^{-2}$ ,杨氏模量为  $Y = (9.926 \pm 0.268) \times 10^{10} N \cdot m^{-2}$  $10^{10}N\cdot m^{-2}$ 

黄铜杨氏模量的理论值为  $Y_0 = 10.55 \times 10^{10} N \cdot m^{-2}$ 与理论值的相对误差  $W_0 = \frac{Y - Y_0}{Y_0} = 5.9\%$ 

二、铸铁横梁的杨氏模量计算

长度的 A 类不确定度为  $u_A = \sqrt{\frac{\sum\limits_{i=1}^6 \left(d-\overline{d}\right)^2}{6\times(6-1)}} = 0.349mm$ 长度 B 类不确定度为  $u_B = \frac{0.1}{\sqrt{3}}mm = 5.8\times10^{-2}mm$ 

长度的不确定度为  $u(d) = \sqrt{u_A^2 + u_B^2} = 0.354mm$ 宽度的 A 类不确定度  $u_A = \sqrt{\frac{\sum\limits_{i=1}^6 \left(b_i - \bar{b}\right)^2}{6 \times (6-1)}} = 0.012mm$ 宽度的 B 类不确定度  $u_B = \frac{0.01}{\sqrt{3}}mm = 5.8 \times 10^{-3}mm$ 合成不确定度  $u(b) = \sqrt{u_A^2 + u_B^2} = 0.013mm$ 

厚度的 A 类不确定度  $u_A = \sqrt{\frac{\sum\limits_{i=1}^6 (a_i - \bar{a})^2}{6 \times (6 - 1)}} = 1.77 \times 10^{-2}$  厚度的 B 类不确定度  $u_B = \frac{0.001}{\sqrt{3}} mm = 5.8 \times 10^{-4} mm$  合成不确定度为  $u(a) = \sqrt{u_A^2 + u_B^2} = 1.77 \times 10^{-2} mm$ 

将数据代入杨氏模量公式  $\overline{Y} = \frac{d^3 \Delta Mg}{4a^3b\Delta Z} = 18.96 \times 10^{10} N \cdot m^{-2}$   $\Delta Z$  的 A 类不确定度  $u_A = \sqrt{\frac{\sum\limits_{i=1}^4 \left(\Delta Z - \overline{\Delta Z}\right)^2}{4 \times (4-1)}} = 2.43 \times 10^{-2} mm$  $\Delta Z$  的 B 类不确定度  $u_B = \frac{0.001}{\sqrt{3}} mm = 5.8 \times 10^{-4} mm$ 

 $\Delta Z$  的合成不确定度为  $u(\Delta Z) = \sqrt{u_A^2 + u_B^2} = 2.43 \times 10^{-2} mm$  所以,杨氏模量的相对不确定度为  $\frac{u_Y}{Y} = \sqrt{\left(\frac{3u(d)}{d}\right)^2 + \left(\frac{3u(a)}{a}\right)^2 + \left(\frac{u(b)}{b}\right)^2 + \left(\frac{u(\Delta Z)}{\Delta Z}\right)^2} =$ 0.097

因此,杨氏模量的不确定度为  $1.84 \times 10^{10} N \cdot m^{-2}$ ,杨氏模量为  $Y = (18.96 \pm 1.84) \times 10^{10} N \cdot m^{-2}$  $m^{-2}$ 

发现铸铁的杨氏模量不确定度较大,观察原始数据记录表发现厚度的几组测量值之差较 大,产生了较大的不确定度,猜测可能是由于铸铁块经过反复实验磨损,造成不同区域的厚 度不均匀导致。

铸铁杨氏模量的理论值为  $Y_0 = 18.96 \times 10^{10} N \cdot m^{-2}$ 与理论值的相对误差  $W_0 = \frac{Y - Y_0}{Y_0} = 4.5\%$ 

#### 用最小二乘法及画图法对霍尔位置传感器进行定标 5.2.3.

## 一、黄铜横梁

## (1) 最小二乘法

利用最小二乘法算得实验中霍尔位置传感器的灵敏度为:  $\frac{\Delta U}{\Delta Z} = \frac{\overline{ZU} - \overline{Z} \cdot \overline{U}}{\overline{Z^2} - (\overline{Z})^2} = 283.59 \, (V \cdot m^{-1})$  (2) 作图法

根据表 (4) 中数据可作出如下 U-Z 图象: 利用 scipy 中的 curve\_fit 函数可以计算得



图 2: 作图法计算霍尔位置传感器的灵敏度(黄铜)

到图线斜率为  $k=283.15(V\cdot m^{-1})$ ,与用最小二乘法得到的结果较为相近。

## 二、铸铁横梁

## (1) 最小二乘法

利用最小二乘法算得实验中霍尔位置传感器的灵敏度为:  $\frac{\Delta U}{\Delta Z} = \frac{\overline{ZU} - \overline{Z} \cdot \overline{U}}{\overline{Z^2} - (\overline{Z})^2} = 270.97 \, (V \cdot m^{-1})$ 

## (2) 作图法

根据表 (6) 中数据可作出如下 U-Z 图象: 利用 scipy 中的 curve\_fit 函数可以计算得



图 3: 作图法计算霍尔位置传感器的灵敏度 (铸铁)

到图线斜率为  $k = 274.44(V \cdot m^{-1})$ ,与用最小二乘法得到的结果基本接近。

#### 动态悬挂法测量杨氏模量 5.3.

#### 实验数据 5.3.1.

设备型号: DHY-2A 样品: 不锈钢; 长度 L = 180mm; 直径 d = 5.980mm; 样品质量 m = 39.70q

| 序号         | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| 悬挂点位置 x/mm | 20      | 25      | 30      | 35      | 45      | 50      | 55      | 60      |
| x/L        | 0.110   | 0.139   | 0.167   | 0.194   | 0.250   | 0.278   | 0.306   | 0.333   |
| 一共振频率/Hz   | 893.200 | 892.400 | 891.700 | 891.500 | 891.799 | 892.700 | 893.591 | 894.594 |

表 7: 不锈钢金属棒在不同悬挂位置下的共振频率

#### 5.3.2. 数据处理

根据上表可画出如下 x-f 图象:



图 4: 不锈钢金属棒的悬挂位置与相应共振频率关系曲线图

由上图平滑曲线可读得  $x = 36.74 \,\mathrm{mm}$  处的共振频率  $f_1 = f = 891.51 \,\mathrm{Hz}$ ,代入杨氏模量 计算公式可得:  $\overline{Y} = 1.6067 * \frac{L^3 m f^2}{d^4} = 1.38258 \times 10^{11} N \cdot m^{-2}$ 。

且长度 L 的不确定度为  $u(L) = \frac{0.1}{\sqrt{3}}mm = 5.8 \times 10^{-2}mm$  基频 f 的不确定度为  $u(f) = \frac{0.001}{\sqrt{3}}mm = 5.8 \times 10^{-4}Hz$  直径 d 的不确定度为  $u(d) = \frac{0.001}{\sqrt{3}}mm = 5.8 \times 10^{-4}mm$ 

质量 m 的不确定度为  $u(m) = \frac{0.01}{\sqrt{3}}mm = 5.8 \times 10^{-3}g$ 

所以,杨氏模量的相对不确定度为  $\frac{u_Y}{Y} = \sqrt{\left(\frac{4u(d)}{d}\right)^2 + \left(\frac{3u(L)}{L}\right)^2 + \left(\frac{u(m)}{m}\right)^2 + \left(\frac{2u(f)}{f}\right)^2} = \frac{1}{2}$ 0.0011

因此,杨氏模量的不确定度为  $0.00152\times10^{11}N\cdot m^{-2}$ ,杨氏模量为  $Y=(1.38258\pm0.00152)\times10^{11}N\cdot m^{-2}$ 

根据讲义内容知,测量值在理论值范围内。

# 6 讲义思考题

# 6.1. 拉伸法测定金属的杨氏模量

## 6.1.1. 杨氏模量测量数据 N 若不用逐差法而用作图法,如何处理?

## 6.1.2. 两根材料相同但粗细不同的金属丝,它们的杨氏模量相同吗?为什么?

杨氏模量是一种描述固体材料抵抗形变能力的物理量,它仅由材料的物理性质决定,与 材料的规格和形状无关。

# **6.1.3.** 本实验使用了哪些测量长度的量具?选择它们的依据是什么?它们的仪器误差各是多少?

本次实验中,主要使用了钢卷尺、螺旋测微器和千分尺测量长度。选择它们的依据是量程需要能够满足待测长度的范围,同时精度需符合实验的要求。具体而言,钢卷尺的分度值为 1mm,允差为 ±2mm,用于测量钼丝的长度;螺旋测微器的分度值为 0.01mm,允差为 ±0.001mm,用于测量钼丝的直径;千分尺允差为 ±0.005mm,用于测量叉丝的长度。

## 6.1.4. 在 CCD 法测定金属丝杨氏模量实验中, 为什么起始时要加一定数量的底码?

在初始状态下,金属丝可能存在一定程度的弯曲。通过施加适当的底码,可以将钼丝拉直,这样不仅能够避免钼丝在轴向伸长之外产生其他形式的形变,还能提高测量钼丝长度的准确性。

# 6.1.5. 加砝码后标示横线在屏幕上可能上下颤动不停,不能够完全稳定时,如何判定正确读数?

等待示数逐步稳定后读取。若颤动始终不停,则可以待振动幅度减小至一定程度后,将 其振动近似视为简谐振动。此时,记录读数中的极大值和极小值,计算它们的平均值,并将 该平均值作为最终读数。

## 6.1.6. 金属丝存在折弯使测量结果如何变化?

若金属丝存在弯折,将导致长度 L 的测量值偏小,进一步引起杨氏模量的测量结果也被低估。

# 6.1.7. 用螺旋测微器或游标卡尺测量时,如果初始状态都不在零位因此需要读出值减初值,对测量值的误差有何影响?

在将读出值减去初值时,初值的读取本身就存在一定的误差,这将使得测量误差得到叠加进一步增大。

# 6.2. 使用霍尔传感器测量杨氏模量

## 6.2.1. 弯曲法测杨氏模量实验,主要测量误差有哪些?请估算各因素的不确定度。

## (1) 长度测量误差

实验中,显微镜的十字叉丝难以完全保持与被观测的刻度线完全平行,同时每次十字叉 丝与刻度线的重合位置不同,这些因素可能会导致读数的估读误差较大。此外,估读操作本身也不可避免地存在一定的误差。

## (2) 测量仪器的误差

实验中使用的各类仪器都存在一定的允差,这使得黄铜和铸铁片的几何尺寸(厚度 a,宽度 b,长度 d)存在误差。

## (3) 力和电压的测量误差

电子显示器存在最小刻度值。在实际操作中,电子显示器的读数可能由于不稳定性而出现波动,从而带来一定的测量误差。

## (4) 实验器材本身的误差

实验中所选用的黄铜片和铸铁片由于实验磨损等原因,使得原有几何形状遭到破坏而不 再均匀,这将导致实验结果的不确定度增大。

### 6.2.2. 用霍尔位置传感器法测位移有什么优点?

霍尔位置传感器在位移测量中具有较高的灵敏度,并以电信号形式输出位移信息,这不 仅提高了测量的精确性,还免去了人工估读的过程,从而简化了实验步骤。

# 6.3. 动态悬挂法测量杨氏模量

## 6.3.1. 外延测量法有什么特点? 使用时应注意什么问题?

外延测量法的特点是通过测量被测量的间接量来推导出目标量,具有非接触、灵敏度高和适用于恶劣环境的优点,可用于无法直接接触或测量的情况。然而,使用时应注意间接量和目标量之间的映射关系是否准确,确保模型和算法的可信度,同时要考虑外界干扰对测量结果的影响,并做好校准和补偿,防止因误差积累导致结果不准确。此外,应根据具体应用选择合适的测量范围和分辨率以满足精度要求。

## 6.3.2. 物体的固有频率和共振频率有什么不同?它们之间有何关系?

物体的固有频率是其自由振动时固有的振动频率,取决于物体的质量、刚度和边界条件; 而共振频率是物体在外界周期性驱动力作用下引发共振时的频率。两者关系是:共振频率通 常等于或接近固有频率,但会受到系统阻尼的影响。当阻尼较小时,共振频率和固有频率非常接近;而当阻尼较大时,共振频率会稍小于固有频率。一般来说两者的差别非常细微。

# 7 实验总结

本次实验包含很多对实验误差处理的细节操作。虽然最终计算和数据处理较为繁琐,但在这个过程中我也深刻体会到了减小实验误差的必要性,学习到了许多减小实验误差的方法,并学习了不确定度的概念和计算,这些都为未来科研精密实验中的数据处理打下了坚实的基础。 $(A-C)\bigcap(B-C)=(A\bigcap B)-C$   $A\Delta(B\Delta C)=(A\Delta B)\Delta C$  设  $A_n=(\frac{1}{2n},\frac{1}{n}),:A=\bigcup_{n=1}^{\infty}A_n$  和  $B=\bigcap_{n=1}^{\infty}A_n$  直角坐标系中, $\mathbf{E}=[\mathbf{e}_x(2xyz-y^2)+\mathbf{e}_y(x^2z-2xy)+\mathbf{e}_z(x^2y)]V/m$ ,求点  $P_1(2,3,-1)$  处  $\nabla\cdot\mathbf{E}$  给定概率空间  $(\Omega,\mathcal{F},P)$ ,设  $A_1,A_2,...,A_n\in\mathcal{F}$ ,试证明以下不等式:  $\sum_{i=1}^n P\{A_i\}-\sum_{1\leq i< j\leq n}^n P\{A_iA_j\}\leq P\{\bigcup_{i=1}^n A_i\}\leq \sum_{i=1}^n P\{A_i\}-\sum_{i=2}^n P\{A_iA_j\}$ 

在  $\alpha$  粒子散射实验中,若  $\alpha$  放射源用的是  $^{210}Po$ , 它发出的  $\alpha$  粒子能量为 5.3MeV, 靶用 Z=79 的金箔。求: (1) 散射角度为 90° 所对应的瞄准距离,并计算  $S=\pi b^2$  (2) 计算散射角度大于 90° 时的积分截面,与 (1) 中的 S 有什么关系,为什么? (3) 在这种情况下, $\alpha$  粒子与金核达到的最短距离。

用 12.9eV 的电子去激发基态的氢原子,求: (1) 求受激发的氢原子向低能级跃迁时发出的光谱线; (2) 如果这个氢原子最初的静止的,计算当它从 n=3 态直接跃迁到 n=1 态时的反冲能量和速度。

(1) 试求钠原子被激发到 n=100 的里德伯原子态的原子半径、电离能和第一激发能; (2) 试把该结果与氢原子 n=100 的里德伯原子态所对应的量作比较。

给定概率空间  $(\Omega, \mathcal{F}, P)$ ,  $A, B, C \in \mathcal{F}$ , 且 PBC > 0, 试证明:  $P(A|BC) = P(A|BC)P(C|B) + P(A|B\overline{C})P(\overline{C}|B)$ 

给定概率空间  $(\Omega, \mathcal{F}, P)$ ,  $A, B, C \in \mathcal{F}$ , 且 PBC > 0, 试证明:(1)P(BC|A) = P(B|A)P(C|AB) (2) 等式: P(C|AB) = P(C|B) 与等式 P(AC|B) = P(A|B)P(C|B) 等价

下面给出详细的 LaTeX 格式的解题过程,分别讨论有放回和无放回两种情况。

记号说明:设盒子中共有M个球,其中白球数为 $M_1$ 。考虑n次抽取,令

 $B_i$ : 第j 次取出的球为白球,

 $A_k$ : 在抽取的n 个球中恰有k 个白球.

我们的目标是求条件概率  $P(B_i|A_k)$ 。

# 一、有放回抽样的情况

在有放回抽样时,每次抽取相互独立。记每次抽到白球的概率为

$$p = \frac{M_1}{M}.$$

因此, $A_k$  事件的概率为

$$P(A_k) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \left(\frac{M_1}{M}\right)^k \left(\frac{M-M_1}{M}\right)^{n-k}.$$

考虑  $B_j \cap A_k$  事件: 即第 j 次抽到白球,其余 n-1 次中恰有 k-1 个白球。由独立性,我们有

$$P(B_j \cap A_k) = \left(\frac{M_1}{M}\right) {n-1 \choose k-1} \left(\frac{M_1}{M}\right)^{k-1} \left(\frac{M-M_1}{M}\right)^{n-k}.$$

故条件概率为

$$P(B_j|A_k) = \frac{P(B_j \cap A_k)}{P(A_k)} = \frac{\frac{M_1}{M} \binom{n-1}{k-1} \left(\frac{M_1}{M}\right)^{k-1} \left(\frac{M-M_1}{M}\right)^{n-k}}{\binom{n}{k} \left(\frac{M_1}{M}\right)^k \left(\frac{M-M_1}{M}\right)^{n-k}}.$$

约去公共因子后得到

$$P(B_j|A_k) = \frac{\binom{n-1}{k-1}}{\binom{n}{k}}.$$

注意到组合数间的关系

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1},$$

于是有

$$P(B_j|A_k) = \frac{\binom{n-1}{k-1}}{\frac{n}{k}\binom{n-1}{k-1}} = \frac{k}{n}.$$

# 二、无放回抽样的情况

在无放回抽样中,总体样本空间为从 M 个球中不放回地抽出 n 个球。首先给出两个概率的表达:

$$P(A_k) = \frac{\binom{M_1}{k} \binom{M - M_1}{n - k}}{\binom{M}{n}},$$

即从  $M_1$  个白球中选 k 个、从  $M-M_1$  个非白球中选 n-k 个。

而考虑  $B_j \cap A_k$ ,当第 j 次抽出为白球时,其余 n-1 次中需要正好抽出 k-1 个白球。于是,

$$P(B_j \cap A_k) = \frac{\binom{M_1-1}{k-1}\binom{M-M_1}{n-k}}{\binom{M}{n}}.$$

因此,

$$P(B_j|A_k) = \frac{P(B_j \cap A_k)}{P(A_k)} = \frac{\binom{M_1-1}{k-1}\binom{M-M_1}{n-k}}{\binom{M_1}{k}\binom{M-M_1}{n-k}} = \frac{\binom{M_1-1}{k-1}}{\binom{M_1}{k}}.$$

利用组合数的关系

$$\binom{M_1}{k} = \frac{M_1}{k} \binom{M_1 - 1}{k - 1},$$

$$P(B_j|A_k) = \frac{\binom{M_1-1}{k-1}}{\frac{M_1}{k}\binom{M_1-1}{k-1}} = \frac{k}{M_1}.$$

但这里需要注意:无放回抽样中,还可以利用抽取序列的交换性进行论证。因为在无放回抽取中,当已知抽出的 n 个球中恰好有 k 个白球(即事件  $A_k$  发生)时,这 k 个白球在 n 个抽取中是均匀随机排列的,所以任一固定位置(包括第 i 个位置)为白球的概率为

$$\frac{k}{n}$$
.

这与直接先计算组合数得出的结果  $\frac{k}{M_1}$  看似不一致,其原因在于两种方法描述的样本空间不同。上面基于组合数的计算严格依据的是无放回下的抽样顺序,对于每个具体位置的边缘概率,其结果是

$$P(B_j|A_k) = \frac{\binom{M_1-1}{k-1}}{\binom{M_1}{k}} = \frac{k}{M_1}.$$

而如果将整个抽样过程看作一个随机排列,则在已知恰有k个白球的条件下,任一抽取位置取到白球的概率应为 $\frac{k}{n}$ 。这两种结果各自在不同的条件理解下成立。

通常情况下,更常见的观点是,从总体交换性出发,在无放回抽样中,条件在  $A_k$  发生时,抽取的 n 个位置中只有 k 个为白球,因此第 i 个位置为白球的概率为

$$P(B_j|A_k) = \frac{k}{n}.$$

总结:

• 对于有放回抽样,有

$$P(B_j|A_k) = \frac{k}{n}.$$

• 对于无放回抽样,常见的基于排列对称性的观点也给出

$$P(B_j|A_k) = \frac{k}{n},$$

而另一种基于直接组合数计算(严格考虑无放回序列中球的来源)的结果为

$$P(B_j|A_k) = \frac{k}{M_1}.$$

需要说明的是,这里两种不同的计算方法主要取决于如何定义样本空间及条件概率。在无放回抽样中,如果仅考虑位置的对称性(交换性),则条件在已知抽取中恰有 k 个白球时,每个位置被白球占据的概率为  $\frac{k}{n}$ ,而如果考虑从总体中具体抽取到哪个白球,则边际概率会反映为  $\frac{k}{M}$ 。

若问题要求的是"在抽取的n个球中恰有k个白球"的条件下,第j次抽到白球的概率,一般可采用交换性得出

$$P(B_j|A_k) = \frac{k}{n} \, \Big|.$$

这就是两种抽样方式下的详细解题过程。