Álgebra de Boole

Álgebra de Boole Binária

- A Álgebra de Boole binária através do recurso à utilização de funções booleanas (ou funções lógicas) – é a principal teoria de suporte às metodologias de síntese e análise de circuitos digitais.
- Utiliza variáveis binárias, i.e., que só podem assumir um de dois valores: {0,1}; {Low,High}; {True,False}; etc.
- Às variáveis Binárias também se dá o nome de variáveis Lógicas ou Booleanas

Álgebra de Boole

Álgebra de Boole Binária

Negação (NOT)

- Das funções apresentadas, a Negação, Complemento, ou NOT, é a mais importante, e caracteriza-se por transformar uma afirmação Verdadeira numa Falsa (e vice-versa)
- Para além da expressão algébrica e da tabela de verdade, a negação pode ser graficamente representada por um dos seguintes símbolos lógicos:

$$f(x) = \overline{x} \qquad \qquad \underline{x} \qquad \qquad \underline{x} \qquad \qquad \underline{x}$$
NOT

- Dupla Negação: $\overline{\overline{x}} = x$
- Demonstração do teorema da dupla negação por indução completa:

Χ	X	$\overline{\overline{X}}$
0	1	0
1	0	1

Álgebra de Boole

Álgebra de Boole Binária

Funções de duas variáveis

NAND (AND negado), NOR (OR negado) e XOR (OU-Exclusivo):

NAND

Х	у	x.y
0	0	1
0	1	1
1	0	1
1	1	0

NOR

Х	у	X+y
0	0	1
0	1	0
1	0	0
1	1	0

VOD	X	У	х⊕у
XOR	0	0	0
	0	1	1
	1	0	1
	1	1	^

Álgebra de Boole Binária

Propriedades Básicas da Álgebra de Boole Binária

$$x + 0 = x$$

$$x \cdot 1 = x$$

$$x + 1 = 1$$

$$x \cdot 0 = 0$$

$$x + x = x$$

$$x \cdot x = x$$

$$x + \overline{x} = 1$$

$$x \cdot \overline{x} = 0$$

$$x = x$$

$$x \oplus y = \overline{x} \cdot y + x \cdot \overline{y}$$

$$x \oplus y = (x + y) \cdot (\overline{x} + \overline{y})$$

$$x \oplus 0 = x$$

$$x \oplus 1 = \overline{x}$$
 (XOR)

$$\overline{x \oplus y} = \overline{x} \oplus y = x \oplus \overline{y}$$

$$x + y = y + x$$

$$x \cdot y = y \cdot x$$

$$x + (y+z) = (x+y) + z$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

Só vale para a base binaria
$$x + y \cdot z = (x + y) \cdot (x + z)$$
 Distributividade

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

$$x \cdot y = \overline{x} + \overline{y}$$

$$x \cdot y + x \cdot \overline{y} = x$$

$$(x+y)\cdot(x+\overline{y})=x$$

Álgebra de Boole Binária

Mais teoremas...

Absorção

$$y = (A+B) + C^*(A+B) => y = A+B$$

$$x \cdot (x + y) = x$$
 $x + x \cdot y = x$

Redundância

$$x + \overline{x} \cdot y = x + y$$
 $x \cdot (\overline{x} + y) = x \cdot y$

Consenso:

$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$
$$(x+y) \cdot (y+z) \cdot (\overline{x}+z) = (x+y) \cdot (\overline{x}+z)$$

Representação de Funções

Por função Booleana:

$$f = \overline{a}b + c$$

āb e c são os <u>termos</u> da função. ā, b e c são os <u>literais</u>.

Por Circuito Lógico (ou Logigrama):

Por Tabela de Verdade:

а	b	С	āb	f
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	0	1

Regras Booleanas em portas lógicas

As regras de idempotência:

As regras complementares:

Regras Booleanas em portas lógicas

A regra da involução

As regras comutativas

$$y = a \& b$$
 $y = b \& a$ $y = a \mid b$ $y = b \mid a$

$$\frac{b}{a} & \frac{y}{a} & \frac{b}{a} & \frac{y}{a} & \frac{b}{a} & \frac{y}{a} & \frac{b}{a} & \frac{y}{a} & \frac{y}{a$$

Regras Booleanas em portas lógicas

As regras associativas

Regras Booleanas em portas lógicas

A primeira regra distributiva

Regras Booleanas em portas lógicas

A segunda regra distributiva

Outras Funções Booleanas

FUNÇÕES NOR e NAND

$$f_1(x, y) = \overline{x} \cdot \overline{y} = \overline{x + y}$$
 NOR
 $f_7(x, y) = \overline{x} + \overline{y} = \overline{x} \cdot \overline{y}$ NAND

funcionam como uma porta OR (ou uma porta AND) seguida de uma porta NOT

FUNÇÕES OU-EXCLUSIVO

$$f_6(x,y) = \overline{x} \cdot y + x \cdot \overline{y} = x \oplus y$$
 XOR OU EXCLUSIVO. Ex.: Semáfaro

 $f_9(x,y) = \overline{x} \cdot \overline{y} + x \cdot y = \overline{x \oplus y}$ **XNOR** OU EXCLUSIVO NEGADO

XOR é verdadeira se uma e apenas uma das 2 entradas for verdadeira.

Simbologia

Função Booleana

FUNÇÕES BASEADAS NO OPERADOR BOOLEANO IMPLICAÇÃO

Simplificações de Funções Booleanas

1 - Aplicando Teoremas

Simplificações de Funções Booleanas

1 - Aplicando Teoremas

Simplificações de Funções Booleanas

1 - Aplicando Teoremas - Augustus De Morgan (1806-1871)

- Esta simplificação pode ser usada apenas nos termos complexos da equação. Não precisa usar em todos os termos.

Regras:

- 1. Substituir os operadores | por & e vice-versa.
- 2. Inverter todas as variáveis; também substituir 0's por 1'ns e vice-versa.
- 3. Inverter toda a função.
- 4. Reduzir todas as inversões múltiplas.

Simplificações de Funções Booleanas – Exemplo Morgan

Simplificações de Funções Booleanas

LEIS DE MORGAN

 $\overline{x+y} = \overline{x}.\overline{y}$ $\overline{x}.\overline{y} = \overline{x} + \overline{y}$

Verificação por Tabelas da Verdade

x y	x + y	$\overline{x+y}$	X	y	$\overline{\mathbf{x}}$ $\overline{\mathbf{y}}$	$\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$
0 0	0	1	0	0	1 1	1
0 1	1	0	0	1	1 0	0
1 0	1	0	1	0	0 1	0
1 1	1	0	1	1	0 0	0

▶ Generalização para n variáveis

$$\overline{x_1 + x_2 + \ldots + x_n} = \overline{x_1} \cdot \overline{x_2} \cdot \ldots \overline{x_n}$$

$$\overline{x_1 \cdot x_1 \cdot \ldots \cdot x_n} = \overline{x_1} + \overline{x_2} + \ldots + \overline{x_n}$$

Simplificações de Funções Booleanas

Simplificações de Funções Booleanas – Simplificações com Portas NAND

Simplificações com Portas NOR

Dual:

Qualquer circuito pode ser realizado apenas com portas NOR.

No caso de a função estar representada como um produto de somas, a transformação mantém a estrutura.

PORTAS COM MAIS DE 2 ENTRADAS

As operações AND e OR (e consequentemente as portas NAND e NOR) são facilmente generalizáveis para N-entradas.

Uma porta AND de N entradas tem a saída a 1 sse todas as entradas estiverem a 1.

Uma porta OR de N entradas tem a saída a 1 se pelo menos uma entrada estiverem a 1.

▶ Simbologia

Encontrando as Funções Booleanas – Métodos de Mínimos e Máximos - Soma de produtos e produto de somas

Encontrando as Funções Booleanas - Métodos de Mínimos e Máximos

аьс	Mintermos	Maxtermos
0 0 0	(ā&Б&ō)	(alblc)
0 0 1	(ā&Б&c)	(alblō)
0 1 0	(ā & b & ē)	(a151c)
0 1 1	(ā & b & c)	(a b̄ c̄)
1 0 0	(а&Б& с)	(ālblc)
1 0 1	(а&Б&с)	(ālblē)
1 1 0	(a & b & c ̄)	(ā l Б l c)
1 1 1	(a & b & c)	(ā b c)

Funções Booleanas –
Termos mínimos e máximos - Soma de produtos e produto de somas

Funções Booleanas por Mapa de Karnaugh

▶Exemplos:

f(X,Y)	=	X+Y
	=	$\Sigma m(1,2,3) = \Pi M(0)$

X	0	1
0	0	1
1	1	1

Funções Booleanas por Mapa de Karnaugh

Quadros de 3 Variáveis

£/V	v	マヽ
I(Λ,	Υ,	<u>(</u>

XYZ	00	01	11	10
0	m _o	m ₁	m ₃	m ₂
1	m ₄	m ₅	m ₇	m ₆

▶Exemplos:

$$f(X,Y,Z) = \sum m(0,3,5,6)$$

XYZ	00	01	11	10
0	1	0	1	0
1	0	1	0	1

Funções Booleanas por Mapa de Karnaugh

Quadros de 4 Variáveis

A mesma função pode ter representações diferentes, mas equivalentes, num Quadro de Karnaugh pela simples alteração da localização das variáveis

f(W,X,Y,Z)						f(W,X,Y,Z)				
YZ WX	00	01	11	10	WX YZ	00	01	11	10	
00	$\rm m_{\rm o}$	m ₁	m ₃	$\mathrm{m_2}$	00	m _o	m ₄	m ₁₂	m ₈	
01	m ₄	m ₅	m ₇	m _e	01	m ₁	m ₅	m ₁₃	m ₉	
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	11	m ₃	m ₇	m ₁₅	m ₁₁	
10	m ₈	m ₉	m ₁₁	m ₁₀	10	$\mathrm{m_2}$	m _e	m ₁₄	m ₁₀	

Funções Booleanas por Mapa de Karnaugh

 $y=(b \& \overline{c}) | (a \& \overline{c}) | (a \& b)$

Mapas de karnaugh com 5 variáveis

Nesta situação o mapa possuirá 32 células.

