

FIELD TRANSMITTERS II

HUMAN MACHINE INTERFACE (HMI)

INDUSTRIAL MOTOR DRIVE

INDUSTRIAL COMMUNICATION

LOGIC CONTROL (PLC)

Tema 10. Programación en Tiempo Real

4º Grado de Ingeniería en Electrónica, Robótica y Mecatrónica Andalucía Tech

Índice

- Introducción
- Sistemas en Tiempo Real
- TI-RTOS

Introducción

- Esquema general:
- Bucle de control
 - Medir-calcular-actuar
 - Ni muy lento ni muy rápido
- RTOS
- Programación en Tiempo Real

Sistemas en Tiempo Real

- Adecuar la actuación y la medida al sistema
- Si muy lento, pierdo información
- Si muy rápido, mayor consumo y sobreactúo
- Dependerá de los tiempos característicos
 - Requiere conocer bien el sistema
 - A veces, estimar o suponer la dinámica

Sistemas operativos en RT

- Necesidad de coordinar múltiples tareas
 - Paralelismo o multitarea
- Temporizar eventos
- Gestionar recursos comunes
 - Evitar colisiones
- Capa extra de software que gestiona los periféricos y el uso de la CPU

- Control de una instalación
 - 3 cintas transportadoras
 - Mando único
 - Funcionamiento en paralelo
 - Supervisión remota
 - 3 tareas simultáneas y otras en background
 - Gestión coordinada

- Coordinar las 3 cintas
 - Mover el selector para recoger piezas
 - Notificar fallos en la cinta
 - Señalar el estado
 - Detectar entrada y salida de piezas
 - Informar a supervisión. Recibir comandos

- Tarea 'Cinta i'
 - Leer sensores
 - Computar estado
 - Parado, moviendo, final
 - Comprobar estado selector
 - Variar velocidad cinta
 - Informar a tarea central
 - Si error, parar y esperar
 - Mover selector

- Tarea central
 - Comprobar estado cintas
 - Señalizar localmente
 - Mensajes a monitor
 - Leds
 - Informar supervisión
 - Gestionar alarmas

- Tiempos característicos:
 - Selector en uso: 5s
 - Cintas moviendo: 10s
 - Manejo monitor local: 40ms
 - Mensajes a supervisión: 20ms
 - Muestreo cada 50ms

• Sin RTOS:

- Programar 3 timers para las 3 cintas
- Variables globales para comprobar
- Rutina de background para la tarea central
- Cuidado con los recursos compartidos (selector)
- Prioridad de las interrupciones

Con RTOS:

- Definir 3 tareas en paralelo
- Establecer sincronización entre ellas
- Comunicación con la tarea de background
- Reparto del tiempo de proceso y recursos

Ventajas e inconvenientes

- Ventajas RTOS:
 - Mejor gestión de tareas y recursos
 - Escalabilidad y soporte de la complejidad
- Inconvenientes de los RTOS:
 - Consumo de memoria y recursos (timers...)
 - Capa extra de software

TI-RTOS

- Sistema completo y escalable para TIVA
 - Núcleo multitarea (SYS/BIOS)

- Drivers para la placa
- Analizadores del sistema
- Middleware:
 - Network
 - USB
 - FatFS

SYS/BIOS

• CORE del RTOS. Gestión de tareas y

sincronización

- Tipos de tareas:
 - Tarea IDLE
 - Tareas simultáneas
 - Interrupciones SW
 - Interrupciones HW
- Gestión de prioridades

SYS/BIOS

Events

- Prioridades por tipo y dentro del tipo
- Las SWI paran a las tareas
- Las HWI paran a las SWI

- Varios métodos para sincronizar tareas:
 - Semáforos
 - Eventos
 - Mailbox
 - Colas
 - Puertas

🔄 Queue

> 👜 Gates

> 🎌 Syncs

Semáforos

- Para 2 tareas (binarios) o más.
- Una tarea "señala" y la otra "espera" a que la primera señale.

Eventos

- Como semáforos, pero con condiciones múltiples
- And y Or de varias condiciones

Mailbox

 Mandar mensajes entre tareas. Se suele usar en conjunción con eventos o semáforos

Colas

- Colas FIFO.
- Se depositan elementos o se leen elementos de la cola.

- Puertas (gates)
 - Previene acceso concurrente en regiones críticas
 - Diversos tipos, según qué deshabilitan:
 - GateHwi: deshabilita incluso interrupciones hw
 - GateSwi: deshabilita hasta interrupciones sw
 - GateTask: solo deshabilita el resto de tareas
 - Se debe minimizar el tiempo de uso

Tareas

- Se definen tareas con propiedades específicas
 - Paso de parámetros
 - Tamaño de la pila
 - Función que se ejecuta
- Tarea 'Idle' en caso de no ejecutar ninguna
- Se accede a todas las tareas de manera concurrente
 - Cada cierto tiempo se cambia de una a otra

Procesos temporizados

- Usar Tareas continuas con un sleep
 - Las tareas se ejecutan en paralelo, cada una con un bucle infinito y un sleep de tiempo fijo
- Usar tareas con Clock (swi)
 - Definir funciones que se ejecutan cada N ticks de sistema.
- Usar interrupciones con Timers (hwi)
 - Usar timers del micro para generar interrupciones hw.
- Ordenadas de menor a mayor prioridad y exactitud

• Con TI-RTOS:

- Tareas de manejo de cada cinta
- Gestión de SEL:
 - GATE y variable global
 - Cola FIFO
 - Mailbox
- Tarea central:
 - Manejo de terminal local y remoto

Programación en TI-RTOS

- Instalar el módulo TI-RTOS
 - Se instala a la vez el XDCTOOLS 3.32.0.06
- Crear un proyecto con TIRTOS
- Editar el fichero *.cfg con XGCONF
- Añadir los drivers/librerías
- Ver los ejemplos:
 - C:\ti\tirtos_tivac_2_16_01_14\tirtos_tivac_2_16_ 01_14_examples\TI\EK_TM4C1294XL

Por desarrollar

- Adaptar drivers para poder usar pantalla y boosterpack
- Rehacer ejemplos para manejo de periféricos y características de Tiempo Real

