tabe	d 1 M:	n drag (16f)	Velocity (knots)	stall speed (u	nots)
RVIO	Sea Levelmoux	209.5	88.3	114.3	
	Sea Level min	184.0	82.2	106.2	
	Cruise half	195.2	96.3	124.5	
(V12	Sea Level max	107.1	67.3	75.3	
	Sea Level min	96.4	64.0	71.4	
	Cruise half	101.8	73.5	4 z.2	

As expected the cruise velocity for Minimum Ivag is highest

and the empty weight has lowest dray at its minimum. As expected
the faster is heavier RV-10 must fly faster not to stall and both
may fly slower at sea level than at cruising Alt

Range (nowtide Mile) | Flight I (hr) | USD/flight | USD/Pass | USD RVID 11431 14.9 \$301.9 \$75.5 \$.053 RV#12 906.7 12.4 \$99.8

\$ 49.9

\$.055

2

Cruise

the cost per flight is much higher for RV10 which helps to explain why RV12 is recommeded unless you will be flying 4 passengers often. At 4 passengers, the cost plet mile per passenger is slightly lower. This makes sense since the RV-10 is heavier than the 12, which means a greater thrust is needed to overcome a greater and coefficient of induced drag.