TODAY'S GOALS

- Mercury contamination
 - Why do we care about mercury contamination?
 - How are mercury compounds classified?
 - How does mercury enter our water supply?
 - What happens once the mercury is in the water supply?
 - How does mercury leave our water supply?
- At the end of the lecture, we should be able to understand how mercury affects organisms, ecosystems, and the water cycle.

WHY DO WE CARE ABOUT MERCURY CONTAMINATION?

- Health effects
 - Nervous system
 - Kidneys

- Environmental effects
 - Plants and Bacteria
 - Food chain

CLASSIFICATION OF MERCURY COMPOUNDS

Elemental Mercury

- Hg⁰ elemental
- Hg₂²⁺ monovalent
- Hg²⁺ divalent
- Inorganic mercury
 - HgCl₂, Hg₂Cl₂, HgS, HgC₄H₆O₄
- Methylmercury
 - CH₃Hg⁺
 - Easily forms complexes with anions, such as Cl⁻, OH⁻, NO₃⁻
 - Thiols

THE MERCURY CYCLE

HOW DOES MERCURY ENTER OUR WATER SUPPLY?

WHAT HAPPENS ONCE THE MERCURY HAS ENTERED THE WATER SUPPLY?

CHEMICAL REACTIONS - PHASES


```
Hg^{2+} + OH^{-} \leftrightarrow Hg(Hg_{1}^{2}) + CI^{-} \leftrightarrow HgCI^{+}
CH_{3}HgCI(g) \leftrightarrow CH_{3}HgCI(aq)
(CH_3Hg)_2S \rightarrow (CH_3)_2Hg + HgS
   \begin{array}{c} \text{Hg(OH)}_2(g) & \text{(CH}_3)_2\text{Hg} + \text{H}^+ \rightarrow \text{CH}_4 + \text{CH}_3\text{Hg}^+ \\ \text{Hg(OH)}_2(g) & \text{Hg(OH)}_2(gq) \\ \text{Hg(CH}_3)_2(g) & \leftrightarrow \text{Hg(CH}_3)_2(gq) \end{array}
Hg^{0}(g) \leftrightarrow Hg^{0}(aq)_{CH_{3}}^{2})_{2}Hg \rightarrow CH_{3}Hg + CH_{3}
Hg^{2+} + 4 Cl^{-} \leftrightarrow HgCl_{4}^{2+} + 3 Cl^{-} \leftrightarrow HgCl_{3}^{-}
 Hg^{2+} + C_2O_4^{2-} \leftrightarrow HgC_2O_4^{2+} + 2 Cl^- \leftrightarrow HgCl_2
 \begin{array}{c} 2\mathsf{CH_3Hg^+ + HS^-} \to (\mathsf{CH_3Hg})2\mathsf{S} + \mathsf{H^+} \\ \mathsf{Hg^{2+} + 2OH_2^-} & \mathsf{Hg}(\mathsf{OH})_2 \\ \mathsf{Hg^{2+} + 2SO_3^{2-}} & \mathsf{Hg}(\mathsf{SO_3})_2^{2-} & \mathsf{Hg}(\mathsf{SO_3})_2^{2-} \\ 4\mathsf{CH_3Hg^+ + 2H_2O} + 4\mathsf{H^+} \to 3\mathsf{CH_4} + \mathsf{CO_2} + 4\mathsf{Hg^{2+}} + 4\mathsf{H_2} \\ \end{array} 
       CH_{3}Hg \rightarrow Hg + CH_{4}HgCl_{2}(g) \leftrightarrow HgCl_{2}(aq)
+ CH_{3}Hg \rightarrow HgCl_{2}(aq)
+ CH_{3}Hg \rightarrow HgCl_{2}(aq)
```

Environment

CHEMICAL REACTIONS

$$Hg^0+CH_4 \leftrightarrow HgCH_3^-+H^+$$

$$HgCH_3^++CH_4 \leftrightarrow Hg(CH_3)_2^+H^+$$

Body

$$Hg(CH_3)_2 \xrightarrow{h\nu} Hg^0 + 2CH_4$$

$$2CH_3Hg^+ + HS^- \rightarrow (CH_3Hg)_2S + H^+$$

HOW DOES MERCURY EXIT THE WATER SUPPLY? ABSORPTION BY PLANTS/ANIMALS

HOW DOES MERCURY EXIT THE WATER SUPPLY? REMOVAL FROM DRINKING WATER

- Coagulation/Filtration methods use metal salts that bind to metals, including mercury, allowing for it to be filtered out of the water.
- Coagulant Formulas: FeCl3, Fe2(SO4)3, AlnCl(3n-m)(OH)m

HOW DOES MERCURY EXIT THE WATER SUPPLY? REMOVAL FROM DRINKING WATER

 Granular Activated Carbon is a highly porous carbon structure usually derived from plant material.

HOW DOES MERCURY EXIT THE WATER SUPPLY? REMOVAL FROM DRINKING WATER

 Osmosis is the spontaneous net movement of solvent molecules through semipermeable membrane into a region of higher solute concentration

CONCLUSION

