UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

Manca Murn METRIČNA DIMENZIJA LEKSIKOGRAFSKEGA PRODUKTA GRAFOV

Delo diplomskega seminarja

Mentor: prof. dr. Sandi Klavžar

Kazalo

Metrična dimenzija leksikografskega produkta grafov ${\tt POVZETEK}$

...

The metric dimension of the lexicographic product of graphs $$\operatorname{Abstract}$$

...

Math. Subj. Class. (2020): ..., ... Ključne besede: ..., ... Keywords: ..., ...

1 Uvod

V decembru leta 2010 sta v razmaku 17 dni nastala dva različna članka z enakim naslovom - "The metric dimension of the lexicographic product of graph". Avtorji obeh člankov niso vedeli za delo drugega in so se teme lotili na dva posvem različna načina. V tem diplomskem seminarju si bomo ogledali pojma metrične in sosedske dimenzije grafa in njune osnovne lastnosti, ter povezave med njima, definirali bomo leksikografski produkt grafov ter povzeli glavne rezultate o metrični dimenziji leksikografskega produkta iz obeh člankov.

1.1 Osnovni pojmi

Za začetek ponovimo nekaj osnovnih definicij in oznak iz teorije grafov, ki jih bomo potrebovali za razumevanje tega diplomskega seminarja.

Definicija 1.1. Graf G je urejen par (V(G), E(G)), kjer je V(G) množica vozlišč in E(G) podmnožica v $\binom{V(G)}{2}$, ki vsebuje povezave grafa.

Če je V(G) končna množica, je G končen graf. Število |V(G)| imenujemo red grafa. Če je med dvema različnima vozliščema največ ena povezava in nobeno vozlišče ni povezano samo s seboj, pravimo, da je graf enostaven. Povezave med vozlišči $\{u,v\}$ bomo zaradi preglednosti pisali kar uv. Vozlišči $v,u\in G$ sta sosedni, če $uv\in E(G)$. Sosednost je ekvivalenčna relacija, zato sosedni vozlišči označimo $u\sim v$. Če $w,x\in V(G)$ nista sosedni pa pišemo $w\not\sim x$.

Definicija 1.2. Naj bo G graf in $v \in V(G)$. Množico

$$N(v) = \{ u \in V(G) \mid vu \in E(G) \}$$

imenujemo soseščina vozlišča v.

Stopnja vozlišča je deg(u) = |N(u)|.

Definicija 1.3. Komplement grafa G, je graf \overline{G} , za katerega velja $V(G) = V(\overline{G})$ in

$$\forall u,v \in V(\overline{G}): uvE(\overline{G}) \Leftrightarrow uv \not\in E(G).$$

Sprehod v grafu G je zaporedje vozlišč $v_1, v_2, \ldots v_k$ iz V(G), tako da je $\forall i: v_i, v_{i+1} \in E(G)$. Sprehod je enostaven, če vsebuje sama različna vozlišča. Graf je povezan, če med vsakima dvema različnima vozliščema obstaja sprehod. Na povezanem grafu lahko definiramo razdaljo med vozliščema.

Definicija 1.4. Razdalja med dvema vozliščema $u, v \in V(G)$ je dolžina najkrajšega sprehoda in jo označujemo z $d_G(u, v)$.

Naslednja trditev o razdaji med vozlišči je očitna.

Trditev 1.5. Za povezan graf G in poljubni vozlišči $v, w \in V(G)$ velja:

$$d_G(v, w) = 0 \Leftrightarrow v = w.$$

Definicija 1.6. Premer povezanega grafa G označujemo z diam(G) in je enak največji razdalji med vozlišči. Torej

$$diam(G) = \max_{v,u \in V(G)} d_G(u,v).$$

Iz definicije očitno sledi, da za poljubni dve vozlišči u, v iz povezanega grafa G velja $0 \le d_G(u, v) \le \text{diam}(G)$.

Definicija 1.7. Graf H je podgraf grafa G, če velja $V(H) \subseteq V(G)$ in $E(H) \subseteq E(G)$. Podgraf H je induciran, če velja $\forall u, v \in V(H) : uv \in E(G) \Rightarrow E(H)$.

Definicija 1.8. Komponenta grafa je povezan podgraf, ki ni del nobenega večjega povezanega podgrafa.

Povezan graf ima seveda samo eno komponento. Definirajmo še operacijo spojitve grafov.

Definicija 1.9. Spoj grafov G in H, je graf G+H, za katerega velja $V(G+H)=V(G)\cup V(H)$ in $E(G+H)=E(G)\cup E(H)\cup \{uv\mid u\in V(G)\wedge v\in V(H)\}.$

Poglejmo še nekaj primerov osnovnih razredov grafov:

- Graf brez povezav na n vozliščih, ki ga označujemo z N_n , nima nobenih povezav.
- Polni graf na n vozliščih, ki ga označujemo s K_n , ima vse možne povezave.
- Polni dvodelni graf $K_{n,m}$ ima množico vozlišč $V(K_{n,m}) = \{v_{1,1}, v_{1,2}, \dots, v_{1,n}, v_{2,1}, v_{2,2}, \dots, v_{2,m}\}$ in povezave $E(K_{n,m}) = \{v_{1,i}v_{2,j} \mid i, j \in \{1, 2, \dots, m\}\}.$
- Polni t-delni graf, ki ga označujemo s K_{m_1,\dots,m_t} , ima množico vozlišč enako $V(K_{m_1,\dots,m_t}) = \{v_{1,1},v_{1,2},\dots,v_{1,m_1},v_{2,1},v_{2,2},\dots,v_{2,m_2},\dots,v_{t,1},v_{t,2},\dots,v_{t,m_t}\}$, množica povezav pa je $E(K_{m_1,\dots,m_t}) = \{v_{a,i}v_{b,j} \mid a \neq b \land i,j \in \{1,2,\dots,m\}\}$.
- Zvezda na n vozliščih je poseben primer polnega dvodelnega grafa in jo označujemo s $S_{n-1}=K_{1,n-1}$
- Pot na n vozliščih, kjer je $n \geq 2$, ki jo označujemo s P_n , ima množico povezav $E(P_n) = \{v_1v_2, v_2v_3, \dots, v_{n-1}v_n\}.$
- Cikel na n vozliščih, kjer je $n \geq 3$, dobimo tako, da grafu P_n dodamo povezavo $v_n v_1$. Označimo ga s C_n .
- Polni razcepljeni graf na k+l vozliščih je enak spoju poti in grafa brez povezav ter ga označujemo s $F_{k,l} = N_k + P_l$.
- Drevo je povezan graf, ki ne vsebuje nobenega cikla.

Opomba 1.10. Očitno velja $K_1 = N_1$. To je graf s samo enim vozliščem. Običajno ga bomo označevali s K_1 .

2 Metrična dimenzija grafa

motivacija TODO

2.1 Definicija

Metrična dimenzija grafa je najmanjše število vozlišč grafa, ki jih potrebujemo, da vsa vozlišča v grafu razlikujemo med sabo zgolj s pomočjo razdalj do izbranih vozlišč. Formalno to povemo takole:

Definicija 2.1. Naj bo G povezan graf.

- Naj bo $W = \{w_1, \ldots, w_k\} \subseteq V(G)$ neprazna podmnožica vozlišč. Vektor $r_W(v) = (d(v, w_1), \ldots, d(v, w_k))$ imenujemo metrična predstavitev vozlišča $v \in V(G)$ s podmnožico W.
- Neprazna podmnožica $R \subseteq V(G)$ je rešljiva, če $\forall u, v \in V(G) : u \neq v \implies r_R(v) \neq r_R(u)$.
- Najmanjša rešljiva množica grafa G se imenuje metrična baza. Njeno velikost imenujemo metrična dimenzija in jo označimo z $\beta(G)$.

Za lažje razumevanje si poglejmo nekaj lahkih osnovnih primerov.

Primer 2.2. Označimo vozlišča poti z v_1, v_2, \ldots, v_n , kot je prikazano na spodnji sliki ??. Izberimo podmnožico $W = \{v_1\} \subseteq V(G)$. Metrične predstavitve vozlišč grafa P_n , glede na W, so potem sledeče:

$$r_W(v_1) = d(v_1, v_1) = 0$$

$$r_W(v_2) = d(v_2, v_1) = 1$$

$$\dots$$

$$r_W(v_{n-1}) = d(v_{n-1}, v_1) = n - 2$$

$$r_W(v_n) = d(v_n, v_1) = n - 1.$$

Vidimo, da so metrične predstavitve vseh vozlišč med seboj različne. Sledi, da je W rešljiva množica. Ker je njena velikost enaka 1 in je to najmanjša možna neprazna podmnožica vozlišč, je torej metrična dimenzija grafa poti poljubne dolžine enaka $\beta(P_n) = 1$.

Slika 1: Graf P_5

Primer 2.3. Označimo vozlišča cikla z v_1, v_2, \ldots, v_n , kot je prikazano na sliki ??. Izberimo podmnožico $W = \{v_1, v_2\} \subseteq V(G)$. Metrične predstavitve vozlišč grafa C_n , glede na W, so potem sledeče:

$$r_{W}(v_{1}) = (d(v_{1}, v_{1}), d(v_{1}, v_{2})) = (0, 1)$$

$$r_{W}(v_{2}) = (d(v_{2}, v_{1}), d(v_{2}, v_{2})) = (1, 0)$$

$$...$$

$$r_{W}(v_{n-1}) = (d(v_{n-1}, v_{1}), d(v_{n-1}, v_{2})) = (2, 3)$$

$$r_{W}(v_{n}) = (d(v_{n}, v_{1}), d(v_{n}, v_{2})) = (1, 2)$$

Zopet vidimo, da so metrične predstavitve vseh vozlišč med seboj različne. Če bi vzeli množico s samo enim vozliščem, bi imeli po dve vozlišči enako metrično prestavitev. W je torej najmanjša rešljiva množica, njena velikost pa je enaka 2. Metrična dimenzija poljubno velikega cikla je enaka $\beta(C_n) = 2$.

Slika 2: Graf C_5 .

Primer 2.4. Označimo vozlišča polnega grafa z v_1, v_2, \ldots, v_n , kot je prikazano na sliki ??. Izberimo podmnožico $W = \{v_1, v_2, \ldots, v_{n-1}\} \subseteq V(G)$. Metrične predstavitve vozlišč grafa K_n , glede na W, so potem sledeče:

$$r_{W}(v_{1}) = (d(v_{1}, v_{1}), d(v_{1}, v_{2}), \dots, d(v_{1}, v_{n-1})) = (0, 1, \dots, 1)$$

$$r_{W}(v_{2}) = (d(v_{2}, v_{1}), d(v_{2}, v_{2}), \dots, d(v_{2}, v_{n-1})) = (1, 0, \dots, 1)$$

$$\dots$$

$$r_{W}(v_{n-1}) = (d(v_{n-1}, v_{1}), d(v_{n-1}, v_{2}), \dots, d(v_{n-1}, v_{n-1})) = (1, 1, \dots, 0)$$

$$r_{W}(v_{n}) = (d(v_{n}, v_{1}), d(v_{n}, v_{2}), \dots, d(v_{n}, v_{n-1})) = (1, 1, \dots, 1)$$

Zopet vidimo, da so metrične predstavitve vseh vozlišč med seboj različne. Vsako vozlišče ima na i - ti komponenti metrične predstavitve 0 in povsod drugje 1, z izjemo vozlišča v_n , ki ima povsod 1. Če bi iz W izvzeli poljubno vozlišče v_i , bi imeli vozlišči v_i in v_n enaki metrični predstavitvi. W je torej najmanjša rešljiva množica, njena velikost pa je n-1. Metrična dimenzija poljubno velikega polnega grafa je enaka $\beta(K_n) = n-1$.

Slika 3: Graf K_5 .

2.2 Sosedska dimenzija grafa

V nekaterih primerih si bomo pri obravnavanju metrične dimenzije pomagali tudi s pojmom sosedske dimenzije.

Pri sosedski dimenziji zopet iščemo podmnožico vozlišč, s pomočjo katerih bomo lahko vsa vozlišča v grafu med sabo razlikovali, vendar tokrat ne s pomočjo razdalje, pač pa s pomočjo relacije sosednosti.

Definirajmo preslikavo $a:V(G)\times V(G)\to\mathbb{N}$ takole:

$$a(v,w) = \begin{cases} 0; & v = w \\ 1; & v \sim w \\ 2; & v \nsim w \end{cases}$$
 (2.1)

Sedaj lahko zapišemo naslednjo definicijo.

Definicija 2.5. Naj bo G poljuben graf.

- Naj bo $W = \{w_1, \ldots, w_k\} \subseteq V(G)$ neprazna podmnožica vozlišč. Vektor $s_W(v) = (a(v, w_1), \ldots, a(v, w_k))$ imenujemo sosedska predstavitev vozlišča $v \in V(G)$ s podmnožico W.
- Podmnožica vozlišč $S \subseteq V(G)$ je sosedsko rešljiva, če $\forall u, v \in V(G) : u \neq v \implies s_S(v) \neq s_S(u)$.
- Najmanjša sosedsko rešljiva množica grafa G se imenuje sosedska baza. Njeno velikost imenujemo sosedska dimenzija in jo označimo z $\mu(G)$.

2.2.1 Lastnosti sosedske dimenzije

Trditev 2.6. Naj bo G povezan graf. Potem velja:

- 1. $\mu(G) \geq \beta(G)$.
- 2. diam $(G) = 2 \Rightarrow \mu(G) = \beta(G)$.
- 3. $\mu(G) = \mu(\overline{G})$.

4.
$$\mu(G) = 1 \Leftrightarrow G \in \{P_1, P_2, P_3, \overline{P_2}, \overline{P_3}\}.$$

5.
$$\mu(G) = n - 1 \Leftrightarrow G \in \{K_n, \overline{K_n}\}.$$

Dokaz. TODO

2.3 Lastnosti metrične dimenzije

Oglejmo si nekaj osnovnih ugotovitev o metrični dimenziji. Iz primera ?? lahko hitro razberemo, da metrična baza ni nujno enolično določena. Za W bi lahko vzeli tudi vozlišče v_n in prišli do enakega rezultata. Poiščimo sedaj najbolj splošno omejitev za metrično dimenzijo.

Trditev 2.7. Za povezan graf G, je V(G) rešljiva množica. Še več, za poljubno vozlišče $v_i \in V(G)$ je $W_i = V(G) \setminus \{v_i\}$ rešljiva množica.

Dokaz. Naj bo G povezan in |V(G)| = n. Označimo vozlišča z v_1, \ldots, v_n . Upoštevajoč trditev ?? hitro opazimo, da velja $\forall j \in \{1, 2, \ldots, i-1, i+1, \ldots, n\}$: vozlišče v_j ima natanko j-to komponento metrične predstavitve glede na W_i enako 0. Vozlišče v_i pa je edino, ki ima vse komponente različne od 0. Sledi $\forall u, v \in V(G) : u \neq v \Rightarrow r_{W_i}(v) \neq r_{W_i}(u)$, torej je W_i rešljiva množica. Če rešljivi množici dodamo še kako vozlišče, je tudi slednja očitno rešljiva. Torej je tudi $V(G) = W_i \cup \{v_i\}$ rešljiva. \square

Metrična baza povezanega grafa torej vselej obstaja.

Posledica 2.8. Za povezan graf G velja

$$1 \le \beta(G) \le |V(G)| - 1.$$

Opomba 2.9. Če za neko množico $S \subseteq V(G)$ preverjamo, če je rešljiva, je dovolj preveriti metrične predstavitve vozlišč $v \in V(G) \setminus S$. Vozlišča iz S bodo imela natanko eno komponento vektorja enako nič.

Lema 2.10. Naj bo G povezan graf in |V(G)| = n, ter naj bodo $u_1, \ldots, u_k \in V(G)$ vozlišča stopnje n-1. Potem metrična baza v G vsebuje vsaj k-1 vozlišč stopnje n-1.

Dokaz. Denimo, da je R metrična baza povezanega grafa G, ki vsebuje manj kot k-1 vozlišč stopnje n-1. Potem imajo vozlišča stopnje n-1, ki niso vsebovana v R, metrično predstavitev glede na R enako $(1,1,\ldots,1)$ in sledi, da R ne more biti metrična baza.

Lema 2.11. Naj bo G povezan graf in |V(G)| = n, ter naj bo $u \in V(G)$ vozlišče stopnje n-1. Potem obstaja metrična baza v G, ki ne vsebuje vozlišča u.

Dokaz. Naj bo G povezan graf reda n, u vozlišče stopnje n-1 in R metrična baza.

1. Če $u \notin R$ smo končali.

2. Denimo, da $u \in R$. Želimo si u zamenjati z nekim drugim vozliščem grafa. Označimo $R = \{v_1, v_2, \dots, v_k, u\}$ in $V(G) = R \cup \{v_{k+1}, v_{k+3}, \dots, v_n\}$. Velja:

$$r_R(v_{k+1}) = (d(v_{k+1}, v_1), d(v_{k+1}, v_2), \dots, 1)$$

$$r_R(v_{k+2}) = (d(v_{k+2}, v_1), d(v_{k+2}, v_2), \dots, 1)$$

$$\dots$$

$$r_R(v_n) = (d(v_n, v_1), d(v_n, v_2), \dots, 1).$$

Vidimo, da se morajo metrične predstavitve vozlišč, ki niso vsebovana v R, razlikovati v prvih k komponentah.

Denimo, da obstaja vozlišče, ki ima metrično predstavitev enako (1, 1, ..., 1). Po definiciji je tako največ eno in BŠS naj bo to v_{k+1} . Vzemimo $R' = (R \setminus \{u\}) \cup \{v_{k+1}\}$. Metrične predstavitve vozlišč $v_{k+2}, ... v_n$ glede na R' se še vedno razlikujejo v prvih k komponentah, u pa je edino voszlišče z metrično predstavitvijo (1, 1, ..., 1). R' je torej metrična baza.

Če nobeno vozlišče nima metrične predstavitve glede na R enako (1, 1, ..., 1), lahko u zamenjamo s poljubnim drugim vozliščem, ki še ni vsebovano v R.

V splošnem je iskanje metrične dimenzije grafa NP-poln problem. Za nekatere vrste grafov pa lahko najdemo eksplicitne formule za njen izračun.

Trditev 2.12. Naj bo G povezan graf in $|V(G)| = n \ge 2$. Potem velja:

1.
$$G = K_n \Leftrightarrow \beta(G) = n - 1$$
.

2.
$$G = P_n \Leftrightarrow \beta(G) = 1$$
.

Dokaz. Implikacijo v desno stran za obe točki smo že pokazali v ?? in ??.

1. \Leftarrow Recimo, da imamo povezan graf G na n vozliščih z $\beta(G) = n-1$. Označimo metrično bazo z $W = \{v_1, v_2, \dots, v_{n-1}\}$ in $V(G) = W \cup \{v_n\}$.

Če odstranimo poljubno vozlišče v_i iz množice W, morata obstajati vsaj dve vozlišči, katerih metrični predstavitvi se ne razlikujeta glede na $W' = W \setminus \{v_i\}$ - v nasprotnem primeru W ni bila metrična baza. Še vedno se metrična predstavitev vsakega vozlišča vsebovanega v W', glede na W', razlikuje od vseh ostalih. Sledi $r_{W'}(v_i) = r_{W'}(v_n)$. Ker smo vzeli poljubno vozlišče iz množice W, lahko enako ponovimo še z vsemi ostalimi. Sledi

$$\forall v_j \in W : r_{W \setminus \{v_i\}}(v_j) = r_{W \setminus \{v_i\}}(v_n).$$

Označimo $deg(v_n)=k,\ 1\leq k\leq n-1.$ Metrične predstavitve vseh vozlišč

glede na W so potem sledeče:

$$r_{W}(v_{1}) = (0, 1, \dots, 1, d(v_{n}, v_{k+1}), \dots, d(v_{n}, v_{n-1}))$$

$$r_{W}(v_{2}) = (1, 0, \dots, 1, d(v_{n}, v_{k+1}), \dots, d(v_{n}, v_{n-1}))$$

$$\dots$$

$$r_{W}(v_{k}) = (1, 1, \dots, 0, d(v_{n}, v_{k+1}), \dots, d(v_{n}, v_{n-1}))$$

$$r_{W}(v_{k+1}) = (1, 1, \dots, 1, 0, \dots, d(v_{n}, v_{n-1}))$$

$$\dots$$

$$r_{W}(v_{n-1}) = (1, 1, \dots, 1, d(v_{n}, v_{k+1}), \dots, 0)$$

$$r_{W}(v_{n}) = (1, 1, \dots, 1, d(v_{n}, v_{k+1}), \dots, d(v_{n}, v_{n-1})).$$

Ker je G povezan, mora obstajati vsaj eno vozlišče v_i , da velja $d(v_i, v_{k+1}) = 1$. Potem sledi

$$d(v_1, v_{k+1}) = d(v_2, v_{k+1}) = \dots d(v_k, v_{k+1}) = d(v_{k+2}, v_{k+1}) = \dots d(v_n, v_{k+1}) = 1.$$

Podobno velja za $v_{k+2}, v_{k+3}, \dots, v_{n-1}$. Sledi, da so vsa vozlišča stopnje n-1 in $G = K_n$.

2. \Leftarrow Recimo, da imamo povezan graf G na n vozliščih z $\beta(G) = 1$. Sledi, da obstaja neka metrična baza $W = \{w\}$. Označimo $V(G) = \{v_1, v_2, \dots, v_{n-1}, w\}$. Sedaj mora veljati, da so števila

$$d(v_1, w), d(v_2, v_1), \dots, d(v_{n-1}, w), d(w, w)$$

paroma različna. Vemo d(w, w) = 0. Ker je G povezan, mora obstajati vsaj eno vozlišče, ki je sosednje z w. BSŠ naj bo $v_{n-1} \sim w$. Torej je $d(v_{n-1}, w) = 1$ in sledi, da nobeno drugo vozlišče ni sosednje z w. Zopet zaradi povezanosti grafa obstaja vozlišče sosednje z v_{n-1} , ki je različno od w. Recimo, da je to v_{n-2} , za katerega sedaj velja $d(v_{n-2}, w) = 2$. Spet je to edino takšno vozlišče. Nadaljujemo podobno, dokler ne pridemo do v_1 . Dobimo graf P_n .

Trditev 2.13. Naj bo $n \geq 4$, potem velja:

1.
$$n \neq 6 \Rightarrow \beta(C_n + K_1) = \left\lfloor \frac{2n+2}{5} \right\rfloor$$
.

2.
$$n \neq 6 \Rightarrow \beta(P_n + K_1) = \left\lfloor \frac{2n+2}{5} \right\rfloor$$
.

Dokaz. TODO

Opomba 2.14. Za manjše n velja:

•
$$C_3 + K_1 = K_4 \Rightarrow \beta(C_3 + K_1) = 3.$$

•
$$P_2 + K_1 = C_3 \Rightarrow \beta(P_2 + K_1) = 2.$$

•
$$\beta(P_3 + K_1) = 2.$$

2.3.1 Metrična dimenzija in premer grafa

Ni presenetljivo, da lahko najdemo povezavo med metrično dimenzijo in premerom grafa.

Trditev 2.15. Naj bo G povezan graf in |V(G)| = n. Potem velja naslednja povezava:

$$n \le (\operatorname{diam}(G))^{\beta(G)} + \beta(G).$$

Dokaz. Naj bo R metrična baza grafa G, torej $|R| = \beta(G)$. Zanima nas, največ koliko vozlišč ima lahko tak graf. Vozlišča iz množice R bodo imela natanko eno komponento metrične predstavitve enako nič, tako se bodo te razlikovale med sabo in od vseh ostalih. Če vzamemo vozlišče $v \notin R$, pa velja sledeče:

$$\forall r_i \in R : 1 \le d(v, r_i) \le \operatorname{diam}(G).$$

Vseh možnih različnih metričnih predstavitev za vozlišča izven rešljive množice R je tako $(\text{diam}(G))^{\beta(G)}$ in lahko zapišemo:

$$n \le (\operatorname{diam}(G))^{\beta(G)} + \beta(G).$$

V resnici lahko red grafa z dano metrično dimenzijo in premerom še bolj omejimo.

Trditev 2.16. Naj bo G povezan graf in |V(G)| = n. Označimo $\delta = \text{diam}(G)$ in $\beta = \beta(G)$. Potem velja

$$n \le \left(\left\lfloor \frac{2\delta}{3} \right\rfloor + 1 \right)^{\beta} + \beta \sum_{i=1}^{\lceil \delta/3 \rceil} (2i - 1)^{\beta - 1}.$$

Dokaz. TODO

Ta zgornja meja postane še bolj natančna za posamezne družine grafov, vendar v tem delu tega ne bomo obravnavali tako podrobno.

2.3.2 Dvojčki in metrična dimenzija

Vpeljimo ekvivalenčno relacijo na vozliščih:

$$v \equiv u \Leftrightarrow N(v) \setminus \{u\} = N(u) \setminus \{v\}. \tag{2.2}$$

Če sta vozlišči v tej ekvivalenčni relaciji, pravimo, da sta dvojčka. Ekvivalenčni razred vozlišča v označimo z v^* , množico vseh ekvivalenčnih razredov s $\tau(G)$, število vseh razredov pa naj bo označeno z $\iota(G) = |\tau(G)|$.

Lema 2.17. Naj bosta $u, v \in v(G)$ dvojčka. Potem je

$$\forall w \in V(G) \setminus \{u, v\} : d(u, w) = d(v, w).$$

Dokaz. Naj bosta u in v dvojčka v grafu G. Označimo $V(G) = \{u, v, w_1, \dots, w_k\}$ in $S = N(v) \setminus \{u\} = N(u) \setminus \{v\}$. Izberimo vozlišče $w_i \in V(G) \setminus \{u, v\}$.

- 1. $w_i \in S \implies d(u, w_i) = d(v, w_i) = 1$.
- $2. \ w_i \notin S \implies d(u, w_i) = m \ge 2.$

Denimo m=2. Potem obstaja $w_i \in S$, da je $w_i \sim w_i$ in sledi $d(v,w_i)=2$.

Naj bo sedaj m > 2. Obstaja vozlišče w_j , sosednje od w_i , za katerega velja $d(u, w_j) = m - 1$. Potem je po indukcijski predpostavki tudi $d(v, w_j) = m - 1$ in sledi $d(v, w_i) = m - 1 + 1 = m$.

Iz tega sledi, da mora vsaka rešljiva množica vsebovati vsaj enega od dvojčkov. Zapišemo lahko naslednjo trditev:

Trditev 2.18. Za povezan graf G velja

$$\beta(G) \ge \sum_{v^* \in \tau(G)} (|v^*| - 1).$$

Dokaz. Vzemimo ekvivačenčni razred $v^* \in \tau(G)$. Po ?? vidimo, da mora metrična baza vsebovati vse razen največ enega elementa v^* . V nasprotnem primeru bi imeli tisti, ki niso vsebovani v rešljivi bazi med seboj enake metrične predstavitve. To velja za vse ekvivalenčne razrede, neenačba sledi.

2.3.3 Metrična dimenzija in sosedska dimenzija

Trditev 2.19. Za poljuben graf G velja

$$\beta(G+K_1)-1 \le \mu(G) \le \beta(G+K_1).$$

Velja še več, $\mu(G) = \beta(G + K_1) \Leftrightarrow obstaja sosedska baza S grafa G, da nobeno vozlišče ni sosednje vsem vozliščem iz S.$

$$Dokaz$$
. TODO

Trditev 2.20. Če je
$$n \ge 4$$
, velja $\mu(C_n) = \mu(P_n) = \left| \frac{2n+2}{5} \right|$.

Dokaz. Opazimo, da velja diam $(P_n + K_1) = \text{diam}(C_n + K_1) = 2$. Vozlišča so namreč sosednja, ali pa najdemo sprehod dolžine dva preko vozlišča, ki pripada K_1 . Po ?? velja

$$\beta(P_n + K_1) = \left\lfloor \frac{2n+2}{5} \right\rfloor$$

Če se spomnimo še druge točke?? sledi

$$\mu(P_n + K_1) = \beta(P_n + K_1) = \left\lfloor \frac{2n+2}{5} \right\rfloor.$$

Spojitev dodatnega vozlišča s pot
jo ne vpliva na sosednost vozlišč ${\bf v}$ graf
u $P_n,$ zato velja

$$\mu(P_n) \le \mu(P_n + K_1) \le \mu(P_n) + 1.$$

Na novo spojeno vozlišče, je sosednje z vsemi vozlišči v poti. Enakost z zgornjo mejo torej velja natanko tedaj, ko ima eno od vozlišč v poti sosedsko predstavitev enako vektorju samih enic, sicer je $\mu(P_n + K_1) = \mu(P_n)$.

V poti je vsako vozlišče sosedno kvečjemu dvem ostalim, torej imamo lahko vektor samih enic samo, če je $\mu(P_n) = 2$ - manj ni, saj je $n \geq 4$, glej ??, točko 4. Denimo, da je $s_W(u_i) = (1,1)$. To pomeni, da je $W = \{u_{i-1}, u_{u+1}\}$. TODO

Trditev 2.21. Naj bo $K_{m_1,...,m_t}$ t-delni polni graf, v katerem ima r delov vsaj 2 vozlišči, ter naj velja $\sum_{i=1}^{t} m_i = m$. Potem je

$$\mu(K_{m_1,\dots,m_t}) = \beta(K_{m_1,\dots,m_t}) = \begin{cases} m - r - 1; & r \neq t \\ m - r; & r = t \end{cases}.$$

Dokaz. TODO

3 Leksikografski produkt grafov

Definicija 3.1. Leksikografski produkt G[H] grafov G in H je definiran na množici vozlišči $V(G[H]) = V(G) \times V(H)$. Dve različni vozlišči (u, v) in (x, y) sta sosedni, kadar velja

- $ux \in E(G)$ ali
- u = x in $vy \in E(H)$.

3.1 Primer

Za lažjo predstavo si lahko ogledamo sliko ??, ki prikazuje leksikografski produkt dveh naključnih povezanih grafov.

3.2 Lastnosti

Nekaj osnovnih lastnosti leksikografskega produkta grafov:

- RED: |V(G)| = n in $|V(H)| = m \Rightarrow |V(G[H])| = n \cdot m$.
- POVEZANOST: G[H] je povezan $\Leftrightarrow G$ povezan.
- NEKOMUTATIVNOST: v splošnem velja $G[H] \neq H[G]$.
- DISTRIBUTIVNOST: $(G_1 + G_2)[H] = G_1[H] + G_2[H]$,
- ENAKOST KOMPLEMENTOV: $\overline{G[H]} = \overline{G}[\overline{H}].$
- PREMER:

$$\operatorname{diam}(G[H]) = \begin{cases} \operatorname{diam}(G); & |V(G)| \ge 2\\ \operatorname{diam}(H); & G = K_1 \end{cases}$$

Slika 4: Leksikografski produkt povezanih grafov G in H.

Poglejmo si, kako izgleda razdalja med vozliščema v leksikografskem produktu grafov. Opazujemo leksikografski produkt povezanega grafa G reda n, z množico vozlišč $V(G) = \{v_1, v_2, \ldots, v_n\}$ in grafa H reda m, z množico vozlišč $V(H) = \{u_1, u_2, \ldots, u_m\}$. Vpeljimo oznako $v_{ij} := (v_i, u_j) \in V(G[H])$. Sedaj lahko zapišemo

$$d_{G[H]}((v_i, u_j), (v_r, u_s)) = \begin{cases} d_G(v_i, v_r); & v_i \neq v_r \\ a_H(u_j, u_s); & \text{sicer} \end{cases}$$
(3.1)

Tu je preslikava a definirana v (??).

4 Metrična dimenzija leksikografskega produkta grafov

4.1 Metrična dimenzija leksikografskega produkta glede na metrično dimenzijo grafa H

V tem razdelku obravnavamo leksikografski produkt G[H], kjer je G povezan graf reda vsaj 2 in H poljuben graf reda vsaj 2, ki ima $k \geq 1$ komponent. Naj bosta $a \in V(G)$ in $b \in V(H)$ poljubni vozlišči. Za potrebe tega podpoglavlja vpeljimo naslednje oznake:

- $H(a) = \{(a, v) \mid v \in V(H)\}.$
- $G(b) = \{(v, b) \mid v \in V(G)\}.$
- Če so H_1, H_2, \ldots, H_k komponente grafa H, označimo $H_i(a) = \{(a, v) \mid v \in V(H_i)\}.$

Vzemimo sosednji vozlišči $a, b \in V(G)$. Vemo, da je vsako vozlišče iz $H_j(b)$ sosednje vsakemu iz $H_i(a)$ za vse $i, j \in \{1, 2, ..., k\}$. Hitro lahko preverimo, da je inducirani podgraf grafa G[H], kjer vzamemo eno vozlišče iz množice $H_j(b)$ in vsa vozlišča iz $H_i(a)$, izomorfen grafu $H_i + K_1$. V nadaljevanju bomo pokazali, da lahko z metrično dimenzijo tega spoja grafov omejimo metrično dimenzijo G[H].

Naprej si oglejmo naslednje leme.

Lema 4.1. Naj bo $a \in V(G)$. Potem velja

$$\forall x, y \in H(a) \ \forall z \in V(G[H]) : d_{G[H]}(x, z) = d_{G[H]}(y, z).$$

Dokaz. Označimo $x = (a, u_i), y = (a, u_j), z = (b, u_k)$ za neke $u_i, u_j, u_k \in V(H)$ in $b \in V(G)$. Denimo, da sta a in b različni. Potem po (??) velja $d_{G[H]}((a, u_i), (b, u_k)) = d_G(a, b) = d_{G[H]}((a, u_j), (b, u_k))$. Če pa a = b, po (??) velja $d_{G[H]}((a, u_i), (a, u_k)) = a_H(u_i, u_k) = d_{G[H]}((a, u_j), (a, u_k))$. □

Lema 4.2. Naj bo W metrična baza grafa G[H]. Potem

$$\forall a \in V(G) \ \forall i \in \{1, 2, \dots, k\} : V(H_i) > 2 \Rightarrow W \cap H_i(a) \neq \emptyset.$$

Velja še več, $|W \cap H_i(a)| \geq \beta(H_i)$.

Dokaz. Denimo, da obstaja $a \in V(G)$ za kateterega obstaja tak $i \in \{1, 2, ..., k\}$, da je $V(H_i) \geq 2$ in velja $W \cap H_i(a) = \emptyset$. Potem obstajata vsaj dve vozlišči iz $H_i(a)$ z različnimi metričnimi predstavitvami glede na W, kar je v protislovju s ??, saj je $H_i(a) \subseteq H(a)$.

Označimo sedaj $W \cap H_i(a) = \{(a, u_1), (a, u_2), \dots, (a, u_t)\}$, kjer je $t \leq \beta(H_i)$. Oglejmo si množico $S = \{u_1, u_2, \dots, u_t\}$, ki je podmnožica $V(H_i)$. Ker je $|S| \leq \beta(H_i)$, obstajata dve voizlišči v H_i , ki imata enako metrično predstavitev glede na S. Označimo ti dve vozlišči zx in y. Velja torej $d_{H_i}(x, u_i) = d_{H_i}(y, u_i)$ za vsak $u_i \in S$. Potem sledi tudi $a_{H_i}(x, u_i) = a_{H_i}(y, u_i)$ in lahko zapišemo:

$$d_{G[H]}((a,x),(a,u_i)) = a_H(x,u_i) = a_H(y,u_i) = d_{G[H]}((a,y),(a,u_i))$$

za vsak $u_i \in S$. To pa je v protislovju s tem, da so vozlišča (a, u_i) vsebovana v metrični bazi W.

Lema 4.3. Naj bo Q povezan graf. Obstaja metrična baza S grafa $Q + K_1$, da je $S \subseteq V(Q)$.

Dokaz. Označimo množico vozlišč $V(Q+K_1)=V(Q)\cup\{u\}$. Naj bo S metrična baza $Q+K_1$. Če $u\notin S$ je lema dokazana.

Denimo $u \in S$. V tem primeru ločimo dve situaciji:

1. $S \setminus \{u\} = \emptyset$

Po ?? sledi $Q + K_1 = P_n$, to pa je možno le za $Q = K_1$, torej za n = 2 po defininciji spoja grafov v ??.

Hitro lahko preverimo, da je metrična baza grafa P_2 množica, ki vsebuje enega od robnih vozlišč. Torej bi lahko namesto v, vzeli vozlišče, ki sestavlja graf Q in tako dobimo metrično bazo $S \subseteq V(Q)$.

2. $S \setminus \{v\} \neq \emptyset$

Definirajmo $B = V(Q+K_1) \setminus S$ in naj bo r = |B|, torej $B = \{b_1, b_2, \ldots, b_r\}$. Za $t \in \{1, 2, \ldots, r\}$ definiramo množici $S_t = S \cup \{b_t\}$ in $B_t = B \setminus \{b_t\}$. Če obstaja t, da $\forall u \in B_t : r_{S_t}(u) \neq (1, 1, \ldots, 1)$, je lema dokazana. Sicer je $Q + K_1$ polen graf. Za poln graf pa lahko vzamemo rešljivo množico, ki vsebuje vse razen enega vozlišča, torej S = V(Q).

Lema 4.4. Naj bo $a \in V(G)$ in B_i metrična baza grafa $H_i + K_1$, za katero velja $B_i \subseteq V(H_i)$. Označimo $W_i(a) = \{(a,x)|x \in B_i\}$ in $W(a) = \bigcup_{1 \le i \le k} W_i(a)$. Potem sta za $x, y \in V(H)$ ekvivalentni naslednji trditvi:

1.
$$r_{W(a)}(a, x) = r_{W(a)}(a, y);$$

2. $x \in V(H_i), y \in V(H_j), r_{B_i}(x) = (2, 2, ..., 2), r_{B_j}(y) = (2, 2, ..., 2), kjer je i \neq j.$

Lema 4.5. Naj bo G povezan graf reda vsaj 2 in H graf reda vsaj 2, ki vsebuje k komponent. Naj bo $a \in V(G)$ in W metrična baza grafa G[H]. Označimo $W(a) = W \cap H(a)$. Potem velja:

$$|W(a)| \le \left(\sum_{p=1}^{k} \beta(H_p + K_1)\right) + k - 1.$$

Dokaz. TODO

Lema 4.6. Naj bo G povezan graf reda vsaj 2 in H graf reda vsaj 2, ki vsebuje k komponent. Naj bodo $a, b \in V(G)$. Označimo $W(a) = \bigcup_{a \in V(G)} W(a)$, kjer je W(a) rešljiva množica za graf H(a). Potem za $x, y \in V(H)$ velja:

$$r_W(a,x) = r_W(a,y) \Leftrightarrow r_{W(a)}(a,x) = (2,2,\ldots,2), \ r_{W(b)}(b,y) = (2,2,\ldots,2)$$

in je vsaka najkrajša pot med a in b ekcentrična ??? pot dolžine 2.

$$Dokaz$$
. TODO

Lema 4.7. Naj bo G povezan graf reda $n \geq 2$ in H graf reda vsaj 2, ki vsebuje k komponent.

$$\beta(G[H]) \le n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right) + (n-2).$$

ž

Dokaz. TODO

4.1.1 H je nepovezan graf

Izrek 4.8. Naj bo G povezan graf reda $n \geq 2$ in H poljuben graf reda $m \geq 2$, $s \geq 1$ komponentami H_1, H_2, \ldots, H_k . Potem velja:

$$n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p) \right) - 1 \right) \le \beta(G[H]) \le n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right) + (n-2).$$

V dokazu naslednjega izreka bomo konstruirali grafe, katerih metrična dimenzija je enaka spodnji ali zgornji meji iz izreka ?? ter dvema vmesnima vrednostima.

Izrek 4.9. Obstajata taka grafa G in H, da je G povezan graf reda $n \geq 2$ in H poljuben graf reda $m \geq 2$, s $k \geq 1$ komponentami H_1, H_2, \ldots, H_k , da velja:

1.
$$\beta(G[H]) = n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p)\right) - 1\right).$$

2.
$$\beta(G[H]) = n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right) + (n-2).$$

3.
$$\beta(G[H]) = n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right).$$

4.
$$\beta(G[H]) = n \cdot \left(\sum_{p=1}^{k} \beta(H_p + K_1)\right)$$
.

Dokaz. 1. Naj bo $G = P_n$, $n \geq 4$ in $H = N_k$, $k \geq 2$. Zaradi izreka ?? je dovolj pokazati $\beta(G[H]) \leq n \cdot \left(\left(\sum_{p=1}^k \beta(H_p)\right) - 1\right) = n \cdot (k-1)$. Označimo $V(G) = \{p_1, p_2, \dots, p_n\}$, kjer so $\forall 1 \leq i < n : p_i p_{i+1} \in E(G)$, in $V(H) = \{v_1, v_2, \dots, v_k\}$. Definirajmo množico $W = V(G[H]) \setminus G(v_k)$. Velja $|W| = n \cdot (k-1)$. Pokažimo, da je W rešljiva množica. Opomba ?? nam pove, da je dovolj preveriti vozlišča iz množice $G(v_k) = \{(p_1, v_k), (p_2, v_k), \dots, (p_n, v_k)\}$. Če se spomnimo formule (??), vidimo, da velja:

- $2 \le d((p_i, v_k), (p_{j+1}, v_1)) \ne d((p_j, v_k), (p_{j+1}, v_1)) = 1$, za $1 \le i \le j < n$.
- $2 \le d((p_n, v_k), (p_{i-1}, v_1)) \ne d((p_i, v_k), (p_{i-1}, v_1)) = 1$, za $2 \le i < n$.
- $1 = d((p_1, v_k), (p_2, v_1)) \neq d((p_n, v_k), (p_2, v_1)) \geq 2.$

Sledi, da so metrične predstavitve vozlišč iz $G(v_k)$ paroma različne in je W rešljiva množica.

2. Naj bo $G = S_{n-1}$ zvezda na n vozliščih, $n \ge 4$, in H graf s $k \ge 2$ komponentami H_1, H_2, \ldots, H_k , kjer je $H_i = P_8$. Velja $\beta(P_8 + K_1) = \left\lfloor \frac{2 \cdot 8 + 2}{5} \right\rfloor = 3$. Zato je, podobno kot v prvi točki, dovolj pokazati

$$\beta(G[H]) \ge n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right) + (n-2) = 4kn - 2.$$

Naj bo B metrična baza $P_8 + K_1$, potem obstaja $v \in V(P_8)$, da je $r_B(v) = (2, 2, 2)$.

Recimo, da je $\beta(G[H]) < 4kn-2$, in naj bo W metrična baza G[H]. TODO

- 3. TODO
- 4. TODO

4.1.2 H je povezan graf

Izrek 4.10. Naj bo G povezan graf reda $n \geq 2$ in H povezan graf reda $m \geq 2$. Potem velja:

$$n \cdot \beta(H) \le \beta(G[H]) \le n \cdot \beta(H_p + K_1) + (n-2).$$

Izrek 4.11. Obstajata taka grafa povezana G in H, reda vsaj 2, da velja:

- 1. $\beta(G[H]) = n \cdot \beta(H)$
- 2. $\beta(G[H]) = n \cdot \beta(H_p + K_1) + (n-2)$
- 3. $\beta(G[H]) = n \cdot \beta(H_p + K_1)$

Dokaz. TODO

Na tej točki se lahko vprašamo, če za vsako vrednost c znotraj zgornjih mej lahko najdemo grafa G in H, ki bosta zadoščala $\beta(G[H]) = c$.

4.2 Metrična dimenzija, sosedska dimenzija in dvojčki

V tem podpoglavju bomo obravnavali metrično dimenzijo leksikografskega produkta G[H] na podlagi reda grafa G in sosedske dimenzije grafa H.

Lema 4.12. Naj bo G povezan graf reda n in H poljuben graf. Potem velja $\beta(G[H]) \ge n \cdot \mu(H)$.

Dokaz. TODO

Trditev 4.13. Naj bo G povezan graf reda n in H poljuben graf. Če obstajata dve sosedski bazi grafa H, S_1 in S_2 , da nobeno vozlišče nima sosedske predstavitve z množico S_1 enako $(1,1,\ldots,1)$ in nobeno vozlišče nima sosedske predstavitve z množico S_2 enako $(2,2,\ldots,2)$, potem velja

$$\beta(G[H]) = \beta(G[\overline{H}]) = n \cdot \mu(H).$$

Dokaz. TODO

Trditev 4.14. Naj bo G povezan graf reda n in H poljuben graf. Če za vsako sosedsko bazo S grafa H obstajata vozlišči s sosedskima predstavitvama glede na S enakima $(1,1,\ldots,1)$ in $(2,2,\ldots,2)$, potem je

$$\beta(G[H]) = \beta(G[\overline{H}]) = n \cdot (\mu(H) + 1) - \iota(G).$$

Dokaz. TODO

Trditev 4.15. Naj bo G povezan graf reda n in H poljuben graf. Naj ima H sledeči lastnosti:

- 1. za vsako sosedsko bazo obstaja vozlišče s sosedsko predstavitvijo $(1,1,\ldots,1)$,
- 2. obstaja sosedska baza S, da nobeno vozlišče nima sosedske predstavitve enake $(2,2,\ldots,2)$.

Potem velja

$$\beta(G[H]) = n \cdot \mu(H) + a(G) - \iota_K(G).$$

Dokaz. TODO

Trditev 4.16. Naj bo G povezan graf reda n in H poljuben graf. Naj ima H sledeči lastnosti:

- 1. za vsako sosedsko bazo obstaja vozlišče s sosedsko predstavitvijo $(2,2,\ldots,2)$,
- 2. obstaja sosedska baza S, da nobeno vozlišče nima sosedske predstavitve enake (1, 1, ..., 1).

Potem velja

$$\beta(G[H]) = n \cdot \mu(H) + b(G) - \iota_N(G).$$

Dokaz. TODO

Izrek 4.17. Če je G povezan graf reda n, ki nima dvojčkov, velja $\beta(G[H]) = n \cdot \mu(H)$.

Dokaz. Če G nima dvojčkov, je $\iota(G) = n$, $\iota_K(G) = a(G) = 0$ in $\iota_N(G) = b(G) = 0$. Graf H gotovo zadostuje pogojem v eni od zgornjih treh trditev, zato sledi $\beta(G[H]) = n \cdot \mu(H)$.

Izrek 4.18. Naj bo $G = P_n$, za $n \ge 4$ ali $G = C_n$ za $n \ge 5$, ter naj bo $m \ge 3$. Tedaj velja $\beta(G[P_m]) = \beta(G[\overline{C_m}]) = \beta(G[\overline{C_m}]) = \beta(G[\overline{C_m}]) = n \cdot \left\lfloor \frac{2 \cdot m + 2}{5} \right\rfloor$. Velja še več,

$$\beta(G[K_{m_1,\dots,m_t}]) = \beta(G[\overline{K}_{m_1,\dots,m_t}]) = \begin{cases} n \cdot (m-r-1); & r \neq t, \\ n \cdot (m-r); & r = t, \end{cases}$$

kjer so $m_1, \ldots, m_r \ge 2$, $m_{r+1} = \ldots = m_t = 1$ in $\sum_{i=1}^t m_i = m$.

Dokaz. TODO

Izrek 4.19. Naj bodo n, m, m_1, \ldots, m_t števila, za katera velja:

- $n \ge 2$,
- $m_1, \ldots, m_r \geq 2$,
- $m_{r+1} = \ldots = m_t = 1$,
- $\sum_{i=1}^{t} m_i = m.$

Potem velja

$$\beta(K_n[K_{m_1,...,m_t}]) = \begin{cases} n \cdot (m-r) - 1; & r \neq t, \\ n \cdot (m-r); & r = t, \end{cases}$$

Dokaz. TODO

5 Zaključek

Slovar strokovnih izrazov