Serviço de Nomes

Raquel Mini - raquelmini@pucminas.br

Nomes são usados para designar recursos de um sistema distribuído

 Recursos: máquinas, impressoras, portas (lógicas ou físicas), ...

Dois tipos de nomes:

- Textuais (strings): são indicados para leitura e memorização por humanos
- Identificadores de sistema: são sequências de bits e são usados por questões de eficiência

Binding: associação entre um nome e o recurso que o mesmo denotará

Sistema de nomes: banco de dados que armazena mapeamento entre nomes textuais e atributos dos recursos que estes nomes denotam

Principal serviço:

 Resolução: pesquisar atributos associados a um determinado nome

Outros serviços:

- Inserir nomes e seus atributos
- Remover nomes
- Listar nomes

Exemplos de serviços de nomes:

- DNS (Domain Name System)
- WINS (Windows Internet Naming Service)
- X.500

Composição de um nome de domínio para identificar um recurso a partir de um URL

Estudo de Caso: DNS

DNS: Domain Name System

Sistema de nomes padrão da Internet

É comum aplicações e usuários fazerem referência a um computador através de seu nome e não de seu endereço

É necessário um mecanismo de mapeamento de nome para endereço e vice-versa

Nome

- tamanho variável, mnemônico, fácil para humanos memorizarem
- Não contém informações que ajudam a rede a localizar um host

Endereço

- tamanho fixo, fácil de serem processados
- Possuem informações de roteamento embutidos

Solução quando havia a ARPANET:

- Uma entidade central (Network Information Center NIC) mantinha um arquivo hosts.txt com todos os computadores e endereços IP´s
- Sempre que algum site quisesse adicionar um novo host, o administrador enviava um e-mail para o NIC fornecendo o par endereço / nome
- Esta informação era manualmente inserida no arquivo hosts.txt que deveria ser periodicamente baixado para toda máquina cliente
- Os administrados dos sites instalavam este arquivo em todas as máquinas

Inviável com o crescimento da Internet:

- Tamanho do arquivo se torna muito grande
- Conflito de nomes

Nova solução: **Domain Name System** (1980s)

- Banco de dados distribuído utilizado pelas aplicações TCP/IP para fazer o mapeamento entre os nomes e os endereços IP
- Esquema de nomes hierárquico, baseado em domínio
- Pode ser vista como um middleware porque ele preenche um gap entre as aplicações e as outras camadas da rede
- Normalmente, é utilizado por outras aplicações e não pelo usuário

DNS: banco de dados hierárquico e distribuído de nomes de domínios Internet

- Utiliza UDP
- Padronização: RFC 1034 e RFC 1035

Cliente/servidor

- Clientes: resolvers
- Servidores: name servers

Domínios DNS

Domínio DNS: conjunto de hosts

 Domínios são hierarquizados e separados por pontos

Exemplo: dcc.pucmg.br

- 1° domínio: br
- 2° domínio: pucmg
- 3° domínio: dcc

Objetivo: descentralizar manutenções de nomes

DNS: Funcionamento

Domínios formam uma árvore

Níveis da árvore:

- Root-level domain
- Top-level domain
- Second-level domain

Espaço de Nomes

Root-level domain:

- Treze servidores:
 - a.root-servers.net até m.root-servers.net.
- Referenciado por um ponto (".")

Top-level domain

- Domínios que terminam com: .com, .edu, .gov, .mil, .net, .org
- Domínios que terminam com duas letras representando um país (.br, .uk, .fr etc)

Second-level domain:

Subdomínios dos top-level domain

Espaço de Nomes

Um pedaço do espaço de nomes de domínio da Internet

Servidores de nomes

Em teoria, um único servidor de nomes com todo o banco de dados do DNS poderia ser usado para fazer o mapeamento

Na prática, solução inviável

O espaço de nomes do DNS é dividido em **zonas** de tal forma a não haver sobreposição

- · Cada zona corresponde a uma parte da árvore
- Cada zona possui servidores de nomes que contêm informações sobre a zona

Servidores de nomes

Espaço de nomes divido em zonas

com	_	Organizações comerciais
edu	_	Universidades e outras instituições educacionais
gov	_	Órgãos do governo norte-americano
mil	_	Organizações militares dos EUA
net	_	Principais centros de suporte à rede
org	_	Organizações não mencionadas anteriormente
int	_	Organizações internacionais

us – Estados Unidos
uk – Reino Unido
fr – França
br – Brasil

Resolução de Nomes DNS

Princípio básico de funcionamento:

- Os servidores de cada domínio conhecem os servidores dos domínios que encontram-se abaixo dele ("seus descendentes na árvore")
- Todos os servidores conhecem os endereços IP dos servidores raiz

Exemplo: resolução do nome www.pucminas.br

- 1ª consulta: servidor root
- 2ª consulta: servidor .br
- 3ª consulta: servidor pucminas.br

Tipos de Consultas

Consulta Recursiva

- Servidor de nomes deve responder o end. IP solicitado ou falhar.
- Clientes (resolvers) realizam consultas recursivas

Consulta Iterativa

 Servidor de nomes devolve a "melhor resposta possível", isto é, ou o endereço IP procurado ou um outro servidor de nomes "mais próximo" deste endereço IP

Consulta Recursiva

Como resolver o nome linda.cs.yale.edu

Consulta Iterativa

Servidor de 1º nível

princeton.edu.	IN	NS	cit.princeton.edu.
cit.princeton.edu.	IN	Α	128.196.128.233
cisco.com.	IN	NS	ns.cisco.com.
ns.cisco.com.	IN	Α	128.96.32.20

Servidor do domínio princeton.edu, máquina cit.princeton.edu.

cs.princeton.edu.	ĬN	NS	gnat.cs.princeton.edu.
gnat.cs.princeton.edu.	IN	Α	192.12.69.5
ee.princeton.edu.	IN	NS	helios.ee.princeton.edu.
helios.ee.princeton.edu.	IN	Α	128.196.28.166
jupiter.physics.princeton.edu.	IN	Α	128.196.4.1
saturn.physics.princeton.edu.	IN	Α	128.196.4.2
mars.physics.princeton.edu.	IN	Α	128.196.4.3
venus.physics.princeton.edu.	IN	Α	128.196.4.4

Servidor do domínio cs.princeton.edu, máquina gnat.cs.princeton.edu.

cs.princeton.edu.	•	ĪN	MX	gnat.cs.princeton.edu.
cicada.cs.princeton.edu.		IN	Α	192.12.69.60
cic.cs.princeton.edu.		IN	CNAME	cicada.cs.princeton.edu.
gnat.cs.princeton.edu.		IN	Α	192.12.69.5
gna.cs.princeton.edu.		IN	CNAME	gnat.cs.princeton.edu.
www.cs.princeton.edu.		IN	CNAME	cicada.cs.princeton.edu.

Consulta Iterativa

Cache DNS

Servidores DNS possuem um cache

Exemplo:

 Caso o IP de www.pucminas.br esteja no cache de algum servidor de nomes, dispensa-se o acesso aos demais servidores.

Respostas obtidas do cache de um servidor são chamadas de "non-authoritative"

Cada entrada do cache possui um TTL (Time to Live)

· Quando o TTL expira a entrada é removida do cache

Tipos de Servidores DNS

Servidor Primário:

 Fornece respostas consultando sua tabela local de endereços IP

Servidor Secundário:

- Obtém sua tabela de end. IP a partir de um outro servidor (chamado de servidor master)
- Consulta servidor master periodicamente: novas informações são então carregadas
- Este carregamento é chamado de "zone transfer"

Implementação de DNS: Conceito geral

DNS funciona como um Banco de Dados

Cada servidor mantém disponível parte deste banco para clientes chamados de resolvers

Cada domínio pode ser sub-dividido em subdomínios

Tipos de Registro no banco de dados DNS

Nome do registro	Tipo do reg.	Função
Start of Authority	SOA	Marca começo de zona
Name Server	NS	Identifica um servidor de nome
Address	Α	Mapeia host para endereço
Pointer	PTR	Mapeia endereço para nome
Mail Exchanger	MX	Identifica servidor de nomes para domínio de e-mail
Canonical name	CNAME	Define Alias para um host name.

Um cliente entra em contato iterativamente com os servidores de nomes NS1-NS3 para resolver um nome

Um servidor de nomes NS1 se comunica com outros servidores de nomes a pedido de um cliente

Endereço Físico X IP X Nome

O usuário especifica o nome quando se interage com as aplicações

As aplicações utilizam o DNS para traduzir o nome no endereço IP

Na comunicação entre os roteadores o endereço IP é utilizado (endereço IP do próximo hop)

IP utiliza o ARP para traduzir o endereço IP do próximo hop no endereço físico correspondente

Frames utilizam o endereço físico do próximo hop

Tarefa 7 – postar no Canvas até 11/04/2021

1. Por que os servidores de DNS raízes contêm entradas para nomes de dois níveis, como yahoo.com e purdue.edu, em vez de nomes de um nível, como edu e com?

2. Por que um cliente de DNS poderia escolher a navegação recursiva em vez da navegação iterativa? Qual é a relevância da opção na navegação recursiva para a concorrência dentro de um servidor de nomes?

Tarefa 7 – postar no Canvas até 11/04/2021

3. Quando um servidor DNS poderia dar várias respostas para uma única pesquisa de nome e por quê?

4. Apresente um resumo sobre o que são os servidores raiz do DNS e como esses servidores são atacados.