Problemas de interpolación.

Polinomios de Lagrange y método de Neville.

- (1) Sea la función $f(x) = \frac{e^x}{e^x + 1}$.
 - a. Calcular los polinomios de Lagrange y el polinomio interpolador para la función usando los nodos $x_0 = -1$, $x_1 = -0.5$, $x_2 = 0.5$ y $x_3 = 1$.
 - b. Calcular el error cometido en el punto x = 0.
 - c. Acotar el error cometido para cualquier valor de x en el intervalo [-1,1].
- (2) Demostrar que si h > 0 y i un valor entero,

$$\max_{x \in [ih,(i+1)h]} |(x-ih) \cdot (x-(i+1)h)| = \frac{h^2}{4}, \quad \max_{x \in [ih,(i+2)h]} |(x-ih) \cdot (x-(i+1)h)(x-(i+2)h)| = \frac{2h^3}{3\sqrt{3}}.$$

- (3) Usar el método de Neville para aproximar $\sqrt{5}$ con las funciones siguientes y nodos siguientes:
 - a. $f(x) = 5^x$ con nodos $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$.
 - b. $f(x) = \sqrt{x}$ con nodos $x_0 = 0$, $x_1 = 1$, $x_2 = 4$, $x_3 = 9$.
 - c. Calcular los errores cometidos en los apartados anteriores.
- (4) Supongamos que $x_j = j, j = 0, 1, 2, 3$ y sabemos que:

$$P_{0.1}(x) = 2x + 1$$
, $P_{0.2}(x) = x + 1$, $P_{1.2.3}(2.5) = 3$.

Hallar $P_{0.1.2.3}(2.5)$.

(5) Interpolación inversa. Sea $f \in \mathcal{C}^1$ una función de clase \mathcal{C}^1 con $f'(x) \neq 0$ para $x \in [a,b]$ y supongamos que f tiene un cero \hat{x} en [a,b]. Sea $x_0, x_1, \ldots, x_n, n+1$ números distintos en el intervalo [a,b] con $f(x_k) = y_k, k = 0, 1, \ldots, n$. Una manera de aproximar \hat{x} es construir el polinomio de interpolación de grado n en los nodos y_0, y_1, \ldots, y_n para f^{-1} . Como $y_k = f(x_k)$ y $0 = f(\hat{x})$, tenemos que $f^{-1}(y_k) = x_k$ y $0 = f^{-1}(\hat{x})$. Si iteramos dicho proceso para aproximar $f^{-1}(0)$ tenemos un método para hallar ceros de funciones denominado **interpolación inversa**. Usar el método de la **interpolación inversa** con una iteración para calcular una aproximación de la solución de la ecuación $x - e^{-x} = 0$ usando los nodos siguientes: $x_0 = 0.3, x_1 = 0.4, x_2 = 0.5$ y $x_3 = 0.6$.