Basics of Algorithm Analysis

History

- Al-khwarizmi (Persian) introduced the concept of algorithm.
- Also founded the discipline of algebra.
- Around 800 CE

What is an algorithm?

Definition:

Example: Suppose you have 8 balls ...

• We analyze an algorithm on the basis of its following resource requirements.

- 1. Time required.
- 2. Space required.

Theoretical Analysis

- Describe the algorithm in pseudo code.
- Count the number of pseudo code steps.
- Characterize the running time as a function of the input size, n.

Example

The algorithm below finds the maximum element in an array of size n.

Algorithm $arrayMax(A, n)$	# operations	
$currentMax \leftarrow A[0]$		1
for $i \leftarrow 1$ to $n-1$ do		(n-1)
if $A[i] > currentMax$ then		(n-1)
$currentMax \leftarrow A[i]$		(n-1)
return currentMax		1
	Total	3n - 1

Best case vs worst case

- What input array will lead to best case performance.
- What input array will lead to worst case performance.

Big-Oh Notation

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c>0 and $n_0>=0$ such that $f(n)\leq cg(n)$ for $n\geq n_0$

 \bullet Example: 2n + 10 is O(n)

How?

Big-Oh Notation

- \bullet Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Example

 \blacksquare Example: the function n^2 is not O(n)

Why?

Big-Oh Example

• Example: the function n^2 is not O(n)

- $n^2 \le cn$
- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

- ♦ 7n-2
 - 7n-2 is O(n) $need \ c>0 \ and \ n_0\geq 1 \ such \ that \ 7n-2\leq c\bullet n \ for \ n\geq n_0$ this is true for c=7 and $n_0=1$
- $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
- 3 log n + log log n

 $3 \log n + \log \log n$ is $O(\log n)$ need c > 0 and $n_0 \ge 1$ such that $3 \log n + \log \log n \le c \cdot \log n$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate,

e.g. $\log n$, $\log^2 n$, \sqrt{n} , n, n^3 , 5^n

Big-Oh Rules

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Example revisited

• We say that algorithm arrayMax "runs in O(n) time"

```
Algorithm arrayMax(A, n) # operations currentMax \leftarrow A[0] for i \leftarrow 1 to n-1 do if A[i] > currentMax then (n-1) currentMax \leftarrow A[i] (n-1) return currentMax 1
```

What constitutes a fast algorithm?

 $O(n^x)$ is considered fast. (x > 0)

 $O(x^n)$ is considered slow. (x > 1)

What constitutes a fast algorithm?

$$O(n^x)$$
 is considered fast. $(x > 1)$

 $O(x^n)$ is considered slow.

How about
$$f(n) = n^{500}$$
?

What constitutes a fast algorithm?

$$O(n^x)$$
 is considered fast. $(x > 1)$

O(xⁿ) is considered slow.

```
How about f(n) = n^{500} ?
Yes, it is also fast !!
```


big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

big-Theta

■ f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c' \cdot g(n) \le f(n) \le c'' \cdot g(n)$ for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c' \cdot g(n) \le f(n) \le c'' \cdot g(n)$ for $n \ge n_0$

We say, f(n) and g(n) have same growth rate

Remember

f(x) is $\Theta(g(x))$ if and only if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = c$$

• f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

• f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

We say, g(n) is faster than f(n)

Remember

f(x) if o(g(x)) if and only if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

◆little-omega

• f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

♦little-omega

• f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

We say, g(n) is slower than f(n)

Remember

f(x) if $\omega(g(x))$ if and only if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

Example Uses of the Relatives of Big-Oh

• $5n^2$ is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 5 and $n_0 = 1$

■ $5n^2$ is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 1 and $n_0 = 1$

f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

need $5n_0^2 \ge c \cdot n_0 \rightarrow \text{given c}$, the n_0 that satisfies this is $n_0 \ge c/5 \ge 0$