НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Факультет физики

Лабораторная работа

«Гистерезис»

Работу выполнил студент 2 курса Захаров Сергей Дмитриевич

Москва 2019

Содержание

1.	Цель работы	
2.	Описание метода выполнения работы 2.1. Получение характеристик катушки	
3.	Выполнение работы 3.1. Определение характеристик катушки	
4.	Заключение	

1. Цель работы

Перед началом выполнения работы были поставлены следующие цели:

- 1) Изготовить катушку индуктивности с ферритовым сердечником и измерить ее индуктивность и магнитную восприимчивость.
- 2) Пронаблюдать петлю магнитного гистерезиса и измерить на ее основании магнитные параметры материала сердечника.

2. Описание метода выполнения работы

2.1. Получение характеристик катушки

Сперва было решено определиться с тем, каким образом будет найдена индуктивность. С этой целью была собрана схема, представленная на рисунке 1.

Рис. 1. Схема для определения индуктивности катушки

Для того, чтобы с ее помощью измерить индуктивность, обратимся к следующим выкладкам:

$$\frac{U_1}{U_2} = \sqrt{1 + \left(\frac{\omega L}{R}\right)^2}$$

На основании этого получаем формулу для расчета индуктивности:

$$L = \frac{R}{\omega} \cdot \sqrt{\left(\frac{U_1}{U_2}\right)^2 - 1} \tag{1}$$

Помимо нахождения индуктивности, в лабораторной также предполагалось нахождение магнитной восприимчивости сердечника. Для того, чтобы это сделать, обратимся к следующей формуле:

$$L = \mu_0 \cdot \mu \cdot h \cdot \frac{N^2}{2 \cdot \pi} \cdot \ln \frac{D}{d}$$

Здесь N — число витков катушки, h — ее высота, μ_0 — магнитная постоянная, D — внешний диаметр, d — внутренний диаметр.

Таким образом, получаем:

$$\mu = \frac{L \cdot 2 \cdot \pi}{\mu_0 \cdot h \cdot N^2 \cdot \ln \frac{D}{d}} \tag{2}$$

2.2. Наблюдение петли магнитного гистерезиса

Для наблюдения петли гистерезиса была предложена схема, представленная на рисунке 2.

Рис. 2. Схема для наблюдения петли гистерезиса

Резистор с малым сопротивлением необходим для измерения тока в цепи с помощью напряжения U_1 .

При знании тока, текущего через катушку, можно выразить напряженность поля в ней с помощью теоремы о циркуляции:

$$H = \frac{N \cdot I}{\pi \cdot D} = \frac{N \cdot U_1}{\pi \cdot D \cdot R} \tag{3}$$

Здесь N — число витков катушки, D — средний диаметр сердечника, R — сопротивление резистора с малым сопротивлением.

Для того, чтобы выразить индукция поля, можно воспользоваться законом Фарадея:

$$U = -\frac{d\Phi}{dt} = -S \cdot N \cdot \frac{dB}{dt} \tag{4}$$

В целом нетрудно показать, что в нашем случае также верно, что напряжение на конденсаторе можно записать следующим образом:

$$U_2 = \frac{1}{R_b \cdot C} \cdot \int U dt = \frac{1}{R_b \cdot C} \cdot S \cdot N \cdot B \tag{5}$$

На основании этой связи получаем следующее выражение для индукции:

$$B = \frac{R_b \cdot C \cdot U_2}{S \cdot N} \tag{6}$$

Здесь R_b — величина большого сопротивления, подключенного к конденсатору, C — емкость конденсатора, S — площадь поперечного сечения сердечника катушки, N — число витков катушки.

Наконец, было решено получить значение остаточной намагниченности катушки — намагниченности, которую имеет ферромагнитный материал при напряженности поля, равной нулю. Строго говоря, намагниченность не является тем же самым, что и индукция, однако отличаются эти величины лишь постоянным коэффициентом, поэтому отождествим эти величины и обозначим остаточную намагниченность как B_r .

Аналогичным образом можно определить и коэрцитивную силу (значение напряжённости магнитного поля, необходимое для полного размагничивания объекта) как напряженность поля H_r при индукции, равной нулю.

3. Выполнение работы

3.1. Определение характеристик катушки

Сперва нами было создано две катушки с сердечниками различных размеров (однако, оба из них были ферритовые). Данные об этих катушках приведены ниже.

Параметр	Первая катушка	Вторая катушка
Число витков	30	36
Высота сердечника, мм	12 ± 0.2	7 ± 0.2
Толщина сердечника, мм	8.5 ± 0.2	7 ± 0.2
Внешний диаметр сердечника, мм	45 ± 0.2	38 ± 0.2
Средний диаметр сердечника, мм	36.5 ± 0.2	31 ± 0.2
Длина сердечника, мм	114.67 ± 0.2	97.39 ± 0.2

На основании полученных данных с помощью формулы (1) были получены зависимости индуктивностей катушек от частоты колебаний источника, представленные на рисунках 3(a) и 3(b) соответственно.

Рис. 3. Зависимость индуктивности катушки 1 (a) и катушки 2 (b) от частоты источника

Кроме того, зная индуктивность, возможно построить и зависимость магнитной восприимчивости материала сердечника, воспользовавшись формулой 2. Полученные зависимости отображены на рисунках 4(a) и 4(b).

Рис. 4. Зависимость магнитной проницаемости катушек 1 (a) и 2 (b) от частоты источника

3.2. Работа с наблюдаемой петлей магнитного гистерезиса

С помощью схемы, представленной на рисунке 2, а также формул (6) и (3) для каждой из катушек была получена петля магнитного гистерезиса. Петли представлены на рисунках 5(a) и 5(b).

Рис. 5. Петли магнитного гистерезиса первой (a) и второй (b) катушек.

На основании изложенной теории было также установлено, что для первой катушки остаточная намагниченность равна $B_{r1}=0.68\pm0.04~{\rm Tr}$, для второй катушки $B_{r2}=0.35\pm0.031~{\rm Tr}$. Коэрцитивные силы оказались равны $H_{r1}=24.4\pm0.53~{\rm A/m}$ и $H_{r2}=87.4\pm0.5~{\rm A/m}$.

4. Заключение

- 1) В ходе работы было установлено, что для небольших частот индуктивность катушек равна соответственно 30 м Γ н и 70 м Γ н.
- 2) Для одной из катушек также получилось пронаблюдать т.н. кривую Столетова.
- 3) Удалось пронаблюдать петлю гистерезиса
- 4) Была определена остаточная намагниченность, равная $B_{r1} = 0.68 \pm 0.04$ Тл и $B_{r2} = 0.35 \pm 0.031$ Тл для первой и второй катушек соответственно.
- 5) Была определена коэрцитивная сила, равная $H_{r1}=24.4\pm0.53~\mathrm{A/m}$ и $H_{r2}=87.4\pm0.5~\mathrm{A/m}$ для первой и второй катушек соответственно.