CSET 2200 Lecture 5
Questions / Pavious
Questions/Review

Ethernet Devices	
Shared bus	

Repeater

- ► Layer 2 device
- ▶ Used to extend cable reach
- ► Limitations on max number

Hub

- ► Layer 2 device
- ▶ Retransmits all receives frames on every port
- ► Basically a multiport repeater

Hub (contd)

- ► No memory (forwards packets as received)
- ► Half Duplex
- Only single speed supported

Hub (contd)

- ▶ Limit to number of segments and hubs (4 3 2)
- ► Electrical properties limit this
- ► Propogation takes time
- ► Need to be able to catch colissions

Hub (contd)

- Mostly phased out these days for switches
- ► Sometimes used as active taps

Bridge

- ▶ Bridges join two collision domains
- ► Have some intelligence to handle traffic flow
- ► Have memory, usually store and forward
- ► Allow networks to get grow
- ► Limit collisions

Switch

- Switches address many issues hubs have
- ► Technically a type of bridge
- ▶ Limit traffic to necessary ports
- ► Each port has it's own collision domain

Switch (contd)

- ▶ Required for full duplex communication
- ▶ In Full duplex mode essentially a PtP link
- ► Collissions impossible with only two stations

Switch (contd)

- ► Also help with network size
- ▶ Since each segment is seperate, we don't have delay concerns
- ▶ Build an internal address table
- ► Learns by observing incoming traffic
- ▶ Once port of a MAC address known, does not flood packet

Switch (contd)

- ► Loops still a problem
- Addressed in various ways we'll cover later

Types of Switching

- Store and Forward
 - ► Receives entire packet before forwarding
 - ► Drops packets with errors
- ► Cut Through
 - ▶ Only looks at frame dest address then forwards
 - Propgates errors
- ► Fragment Free
 - ▶ Looks at first 64 bytes then cut through
- Adaptive
 - Switches between above modes based on types

Questions

Switching Gears ► Remaining Layer 2 topics VLANs ► Spanning Tree Design ▶ Will revisit after some L3 as it makes sense Layer2 on to Layer3

Diagram
Basic Layer 3
 In TCP/IP this is IP Stands for Internet Protocol Usually IPv4 is what is referred to Addresses in dotted quad (129.2.3.4)

Layer 3 networks

- ► Each network defined as a network and a mask
- ► Each Layer 3 network has a network address and a broadcast
- ► Similar in function to broadcast at layer 2
- Uses to decide if packet is local

Mapping Layer 2 to Layer 3

- ► Need a way to map a given layer 3 address to a given layer 2 address
- ► Answer is ARP (Address Resolution Protocol)

ARP

- ▶ Layer 2 protocol to aid layer 3
- ► Implemented on many technologies
- ► Replaced in IPv6 with Neighbor Discovery Protocol
- ▶ Defined in RFCs 826 and 903

ARP (contd)

- ▶ Hosts use ARP to find a layer 2 address given a layer 3
- ▶ Request Packets are sent to the broadcast ethernet address
- ▶ Response packets are normally sent to the requestor

ARP Packets

- ► Layer 2 EtherType of 0x0806 for Ethernet
- ▶ Length of Packet is determined by Layer 2 and layer 3 protocol
- ▶ For our purposes we care about Ethernet and IPv4

ARP Packet Format

Length	Purpose
2	Hardware Type (1)
2	Protocol Type (0x0800)
1	Hardware Addr Length (6)
1	Protocol Addr Length (4)
2	Operation
6	Sender Hardware Address
4	Sender Protocol Address
6	Target Hardware Address
4	Target Protocol Address

Other ARP stuff ▶ Operation is 1 for request, 2 for reply ► Hosts normally cache arp ► Some hosts send intential arp broadcast ► Prepopulates caches Some examples

Security concerns
Questions

Next Lesson ► Starting on real layer 3 ▶ Now it gets more interesting https://en.wikipedia.org/wiki/IPv4 ▶ Book 20, 21 ► We'll be here for a bit