ECS404 Computer Systems and Networks

Computer Architecture
Week 4 Pt 2: CPU Registers and SRAM

Aims

• Show how SRAM, the memory used for cpu registers, works.

Learning Objectives

 Understand the construction of a flipflop, and understand how these are used to implement high-speed memory, for example in cpu registers and high-speed caches

Logic Gates

- In week 3 we looked at how to build logic gates.
- Gates have inputs and they produce outputs.
- In the jargon they are combinational circuits: their state depends only on the current inputs.
- Memory cells incorporate feedback and their state depends on past inputs as well as the current ones. They are **sequential** circuits (state depends on sequence of inputs).

Basic Flip Flop (see lecture notes)

Memory

- .. and that is enough.
- If we can store one bit, then we can build whole computer memories.

An actual SRAM

Inverter or not gate

Inverter or not gate

Access control

Data input and output

Access control

Inverters

Inverter 1: input and output

Inverter 2: input and output

- Input of each inverter is output of other.
- So we can have
 - A=1 and B=0
 - Or A=0 and B=1
- We can't have
 - A=1 and B=1
 - A=0 and B=0

A=1 and **B=0**

A=0 and **B=1**

A=1 and B=0: wordline High

A=0 and B=1: wordline High

A=1 and B=0: wordline High bit lines as driver

A=1 and B=0: wordline High bit lines as driver

A=1 and B=0: wordline High bit lines as driver

A=1 and B=0: wordline High bit lines as driver Configuration flipped and stable

Summary

