Linear classifiers

Bayes classifier (for binary classification)

- ▶ Probability distribution P over $\mathcal{X} \times \{0,1\}$; let $(X,Y) \sim P$.
- ▶ Think of *P* as being comprised of two parts.
 - 1. Marginal distribution of X (a distribution over \mathcal{X}).
 - 2. Conditional distribution of Y given X = x, for each $x \in \mathcal{X}$:

$$\eta(x) := P(Y = 1 \mid X = x).$$

▶ The optimal classifier with smallest error rate (i.e., Bayes classifier) is

$$f^*(x) = \begin{cases} 0 & \text{if } \eta(x) \le 1/2 \\ 1 & \text{if } \eta(x) > 1/2. \end{cases}$$

 \blacktriangleright Only depends on x through (the sign of) the log-odds function at x:

$$x \mapsto \log \frac{\eta(x)}{1 - \eta(x)} \in [-\infty, +\infty]$$
.

(If positive, then predict 1; else, predict 0.)

Logistic regression

Suppose feature space is $\mathcal{X} = \mathbb{R}^d$.

Logistic regression: statistical model for $Y \mid X = x$ for each $x \in \mathbb{R}^d$:

$$\mathcal{P} = \left\{ P_{(\beta_0, \boldsymbol{\beta})} : \beta_0 \in \mathbb{R}, \, \boldsymbol{\beta} \in \mathbb{R}^d \right\},$$

where

$$\eta_{(\beta_0, \boldsymbol{\beta})}(\boldsymbol{x}) := P_{(\beta_0, \boldsymbol{\beta})}(Y = 1 \mid \boldsymbol{X} = \boldsymbol{x}) = \operatorname{logistic}(\beta_0 + \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle)$$

and

$$\operatorname{logistic}(z) \; := \; \frac{1}{1 + e^{-z}} \; = \; \frac{e^z}{1 + e^z} \, .$$

(Note: Logistic regression does not specify marginal distribution for X.)

Parameter estimation

Given data $\{({m x}_i,y_i)\}_{i=1}^n$ (regarded as an iid sample), MLE for $(eta_0,{m eta})$ is

$$\begin{split} (\hat{\beta}_0, \hat{\boldsymbol{\beta}}) &= \underset{\beta_0 \in \mathbb{R}, \, \boldsymbol{\beta} \in \mathbb{R}^d}{\arg \max} \log \prod_{i=1}^n \eta_{(\beta_0, \boldsymbol{\beta})}(\boldsymbol{x}_i)^{y_i} (1 - \eta_{(\beta_0, \boldsymbol{\beta})}(\boldsymbol{x}_i))^{1-y_i} \\ &\vdots \\ &= \underset{\beta_0 \in \mathbb{R}, \, \boldsymbol{\beta} \in \mathbb{R}^d}{\arg \max} \sum_{i=1}^n y_i (\beta_0 + \langle \boldsymbol{\beta}, \boldsymbol{x}_i \rangle) - \log(1 + \exp(\beta_0 + \langle \boldsymbol{\beta}, \boldsymbol{x}_i \rangle)) \,. \end{split}$$

- ▶ No closed-form solution for MLE.
- Nevertheless, there are efficient algorithms that obtain an approximate maximizer of the MLE objective function (which is a function of (β_0, β)).

3 / 29

4/2

Log-odds function and classifier

Linear classifiers

Log-odds function of $P_{(\beta_0,\beta)}$ is

$$m{x} \mapsto \log rac{\eta_{(eta_0,m{eta})}(m{x})}{1 - \eta_{(eta_0,m{eta})}(m{x})} \ = \ \log \left(rac{\exp(eta_0 + \langle m{eta}, m{x}
angle)}{1 + \exp(eta_0 + \langle m{eta}, m{x}
angle)}}{1 \over 1 + \exp(eta_0 + \langle m{eta}, m{x}
angle)}
ight) \ = \ eta_0 + \langle m{eta}, m{x}
angle \ ,$$

which is an affine function.

Bayes classifier for $P_{(\beta_0,\beta)}$ is

$$m{x} \; \mapsto \; egin{cases} 0 & ext{if } eta_0 + \langle m{eta}, m{x}
angle \leq 0 \,, \ 1 & ext{if } eta_0 + \langle m{eta}, m{x}
angle > 0 \,. \end{cases}$$

Such classifiers are called linear classifiers.

A linear classifier is specified by a weight vector $w \in \mathbb{R}^d$ and threshold $t \in \mathbb{R}$:

$$f_{oldsymbol{w},t}(oldsymbol{x}) \; := \; egin{cases} 0 & ext{if } \langle oldsymbol{w}, oldsymbol{x}
angle \leq t \,, \ 1 & ext{if } \langle oldsymbol{w}, oldsymbol{x}
angle > t \,. \end{cases}$$

Interpretation: does a linear combination of input features exceed a threshold?

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle = \sum_{i=1}^d w_i x_i \stackrel{?}{>} t.$$

Translation from logistic regression parameters (β_0, β) :

$$\boldsymbol{w} = \boldsymbol{\beta}, \qquad t = -\beta_0.$$

5 / 29

Geometry of linear classifiers

The hyperplane and the point

A **hyperplane** in \mathbb{R}^d is a linear subspace of dimension d-1.

- ▶ A \mathbb{R}^2 -hyperplane is a line.
- ▶ A \mathbb{R}^3 -hyperplane is a plane.
- ► As a linear subspace, a hyperplane always contains the origin.

A hyperplane H can be specified by a (non-zero) normal vector $\mathbf{w} \in \mathbb{R}^d$.

The hyperplane with normal vector w is the set of points orthogonal to w:

$$H = \left\{ oldsymbol{x} \in \mathbb{R}^d : \left\langle oldsymbol{w}, oldsymbol{x}
ight
angle = 0
ight\}.$$

Projection of x onto $\operatorname{span}\{w\}$ (a line) has coordinate

$$\|\boldsymbol{x}\|_2 \cdot \cos(\theta)$$

where

$$\cos \theta = \frac{\langle \boldsymbol{w}, \boldsymbol{x} \rangle}{\|\boldsymbol{w}\|_2 \|\boldsymbol{x}\|_2}.$$

(Distance to hyperplane is $\|x\|_2 \cdot |\cos(\theta)|$.)

Which side of the hyperplane (oriented by w)?

 $\| \boldsymbol{x} \|_2 \cdot \cos(\theta) > 0 \iff \langle \boldsymbol{w}, \boldsymbol{x} \rangle > 0 \iff \boldsymbol{x}$ on same side of H as \boldsymbol{w}

= / 0

- ---

Affine hyperplanes

An affine hyperplane H is a hyperplane that may be shifted away from the origin.

Can be specified with a **normal vector** w and a **threshold** $t \in \mathbb{R}$:

$$H = \left\{ oldsymbol{x} \in \mathbb{R}^d : \left\langle oldsymbol{w}, oldsymbol{x}
ight
angle = t
ight\}.$$

side of affine hyperplane that x is on \equiv classification of x by $f_{{m w},t}$

Linear classifiers

Learning linear classifiers

Even if the Bayes classifier is not a linear classifier, we can hope that it has a good linear approximation.

Goal: learn a linear classifier $f_{\hat{\boldsymbol{w}},\hat{t}}$ using iid sample S such that

$$\underbrace{\operatorname{err}(f_{\hat{\boldsymbol{w}},\hat{t}})}_{\boldsymbol{w},t} - \underbrace{\min_{\boldsymbol{w},t} \operatorname{err}(f_{\boldsymbol{w},t})}_{\boldsymbol{w},t}$$

is as small as possible.

A natural approach is "empirical risk minimization" (ERM): find a linear classifier $f_{w,t}$ with minimum training error rate (a.k.a. empirical risk):

$$\underset{\boldsymbol{w},t}{\operatorname{arg\,min}}\operatorname{err}(f_{\boldsymbol{w},t},S) = \underset{\boldsymbol{w},t}{\operatorname{arg\,min}} \frac{1}{|S|} \sum_{(\boldsymbol{x},y) \in S} \mathbb{1} \{f_{\boldsymbol{w},t}(\boldsymbol{x}) \neq y\}.$$

Note: there is worry that ERM classifier will "overfit" the training data, but this is not a problem when (for example) $|S| \gg d$.

Empirical risk minimization

Unforunately, this is not possible in general.

► The following problem is NP-hard:

input labeled examples S from $\mathbb{R}^d \times \{0,1\}$ with promise that there is a linear classifier with training error rate 0.01. output a linear classifier with training error rate ≤ 0.49 .

Potential saving grace:

► Real-world problems we need to solve do not look like the encodings of difficult 3-SAT instances.

11/29

Linearly separable data

Suppose there is a linear classifier that perfectly classifies S: i.e., for some $\boldsymbol{w}_{\star} \in \mathbb{R}^d$ and $t_{\star} \in \mathbb{R}$,

$$f_{\boldsymbol{w}_{\star},t_{\star}}(\boldsymbol{x}) = y \text{ for all } (\boldsymbol{x},y) \in S.$$

In this case, we say the training data is linearly separable.

Homogeneous linear classifiers

Homogeneous linear classifier: a linear classifier with threshold t = 0.

A crude but easy reduction via "lifting" to \mathbb{R}^{d+1} : map $x \in \mathbb{R}^d$ to \mathbb{R}^{d+1} with

$$\phi(\boldsymbol{x}) := (\boldsymbol{x}, 1) \in \mathbb{R}^{d+1},$$

and define $\tilde{\boldsymbol{w}} := (\boldsymbol{w}, -t) \in \mathbb{R}^{d+1}$.

Then linear classifier $f_{oldsymbol{w},t}$ is the same as $f_{ ilde{oldsymbol{w}}}\circ oldsymbol{\phi}$,

where $f_{\tilde{m{w}}} = f_{\tilde{m{w}},0}$ is a homogeneous linear classifier in \mathbb{R}^{d+1} .

14 / 29

Finding a homogeneous linear separator

Problem: given training data S from $\mathbb{R}^d \times \{0,1\}$, determine whether or not there exists $\boldsymbol{w} \in \mathbb{R}^d$ such that

$$f_{\boldsymbol{w}}(\boldsymbol{x}) = y \quad \text{for all } (\boldsymbol{x}, y) \in S;$$

(and find such a vector if one exists).

- $m{v}$ d variables: $m{w} \in \mathbb{R}^d$
- ▶ |S| inequalities: for $(x, y) \in S$,

if
$$y = 0$$
: $\langle \boldsymbol{w}, \boldsymbol{x} \rangle \leq 0$,

if
$$y = 1$$
: $\langle \boldsymbol{w}, \boldsymbol{x} \rangle > 0$.

Can be solved in polynomial time using algorithms for **linear programming** (e.g., ellipsoid algorithm, interior point).

If one exists, and the inequalities can be satisfied with some non-negligible "wiggle room", then there is a very **simple** algorithm that finds a solution: **Perceptron**.

Perceptron (Rosenblatt, 1958)

(Notationally simpler to use $\mathcal{Y} := \{-1, +1\}$ instead of $\{0, 1\}$.)

Perceptron

input Labeled examples $S \subset \mathbb{R}^d \times \{-1, +1\}$.

- 1: initialize $\hat{w}_1 \coloneqq \mathbf{0}$.
- 2: **for** t = 1, 2, ..., **do**
- 3: If there is an example in S misclassified by $f_{\hat{m{w}}_t}$ then
- 4: Let (x_t, y_t) be any such misclassified example.
- 5: Update: $\hat{\boldsymbol{w}}_{t+1} := \hat{\boldsymbol{w}}_t + y_t \boldsymbol{x}_t$.
- 6: **else**
- 7: **return** $\hat{\boldsymbol{w}}_t$.
- 8: end if
- 9: end for

Note 1: An example (x, y) is misclassified by f_w if $y(w, x) \leq 0$.

Note 2: If Perceptron terminates, then $f_{\hat{\boldsymbol{w}}_t}$ perfectly classifies the data!

Perceptron

predict
$$a_{t} = -1$$

Correct label $Y_{t} = +1$

Perceptron

$$W_{t+1} := W_t + \gamma_t X_t$$

Perceptron

Perceptron

When does Perceptron work?

Let $oldsymbol{w}_{\star} \in \mathbb{R}^d$ be the shortest vector such that

$$y\langle \boldsymbol{w}_{\star}, \boldsymbol{x} \rangle \geq 1$$
 for all $(\boldsymbol{x}, y) \in S$

(assuming one exists).

Perceptron terminates quickly when $\|\boldsymbol{w}_{\star}\|_2$ is small, i.e., when the **minimum margin** $1/\|\boldsymbol{w}_{\star}\|_2$ is large.

Perceptron convergence

Theorem: If $R := \max_{(\boldsymbol{x},y) \in S} \|\boldsymbol{x}\|_2$, and $\boldsymbol{w}_{\star} \in \mathbb{R}^d$ satisfies

$$y\langle \boldsymbol{w}_{\star}, \boldsymbol{x} \rangle \geq 1$$
 for all $(\boldsymbol{x}, y) \in S$,

then Perceptron halts after at most $\|\boldsymbol{w}_{\star}\|_{2}^{2} \cdot R^{2}$ iterations.

Proof: Suppose Perceptron does not exit the for-loop in interation t.

Then there is a labeled example in S — which we call (x_t, y_t) — such that:

- $y_t \langle \boldsymbol{w}_{\star}, \boldsymbol{x}_t \rangle \geq 1$ (by definition of \boldsymbol{w}_{\star})
- $lackbox{} y_t \langle \hat{m{w}}_t, m{x}_t
 angle \leq 0$ (since $f_{\hat{m{w}}_t}$ misclassifies the example)
- $\hat{m w}_{t+1} = \hat{m w}_t + y_t m x_t$ (since an update is made)

Use this information to (inductively) lower-bound

$$\cos(ext{angle between } oldsymbol{w}_\star ext{ and } \hat{oldsymbol{w}}_{t+1}) \ = \ rac{\langle oldsymbol{w}_\star, \hat{oldsymbol{w}}_{t+1}
angle}{\|oldsymbol{w}_\star\|_2 \|\hat{oldsymbol{w}}_{t+1}\|_2} \, .$$

L / 29

Perceptron convergence

Goal: to lower-bound $\frac{\langle w_{\star}, \hat{w}_{t+1} \rangle}{\|w_{\star}\|_2 \|\hat{w}_{t+1}\|_2}$

$$\langle \boldsymbol{w}_{\star}, \hat{\boldsymbol{w}}_{t+1} \rangle = \langle \boldsymbol{w}_{\star}, \hat{\boldsymbol{w}}_{t} + y_{t} \boldsymbol{x}_{t} \rangle = \langle \boldsymbol{w}_{\star}, \hat{\boldsymbol{w}}_{t} \rangle + y_{t} \langle \boldsymbol{w}_{\star}, \boldsymbol{x}_{t} \rangle > \langle \boldsymbol{w}_{\star}, \hat{\boldsymbol{w}}_{t} \rangle + 1.$$

Therefore, by induction (with $\hat{w}_1 = 0$), $\langle w_{\star}, \hat{w}_{t+1} \rangle \geq t$.

$$\|\hat{\boldsymbol{w}}_{t+1}\|_{2}^{2} = \|\hat{\boldsymbol{w}}_{t} + y_{t}\boldsymbol{x}_{t}\|_{2}^{2} = \|\hat{\boldsymbol{w}}_{t}\|_{2}^{2} + 2y_{t}\langle\hat{\boldsymbol{w}}_{t}, \boldsymbol{x}_{t}\rangle + \|\boldsymbol{x}_{t}\|_{2}^{2} \leq \|\hat{\boldsymbol{w}}_{t}\|_{2}^{2} + R^{2}.$$

Therefore, by induction (with $\hat{\boldsymbol{w}}_1 = \boldsymbol{0}$), $\|\hat{\boldsymbol{w}}_{t+1}\|_2^2 \leq R^2 \cdot t$.

$$\cos(\text{angle between } \boldsymbol{w}_{\star} \text{ and } \hat{\boldsymbol{w}}_{t+1}) \ = \ \frac{\langle \boldsymbol{w}_{\star}, \hat{\boldsymbol{w}}_{t+1} \rangle}{\|\boldsymbol{w}_{\star}\|_{2} \|\hat{\boldsymbol{w}}_{t+1}\|_{2}} \ \geq \ \frac{t}{\|\boldsymbol{w}_{\star}\|_{2} \cdot R \cdot \sqrt{t}} \,.$$

Since cosine is at most one, we conclude

$$t \leq \|\boldsymbol{w}_{\star}\|_{2}^{2} \cdot R^{2}.$$

Online Perceptron

If data is not linearly separable, Perceptron runs forever!

Alternative: consider each example once, then halt.

Online Perceptron

input Labeled examples $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ from $\mathbb{R}^d \times \{-1, +1\}$.

- 1: initialize $\hat{m{w}}_1 \coloneqq m{0}$
- 2: for $t=1,2,\ldots,n$ do
- 3: if $y_t \langle \hat{m{w}}_t, m{x}_t \rangle \leq 0$ then
- 4: $\hat{\boldsymbol{w}}_{t+1} \coloneqq \hat{\boldsymbol{w}}_t + y_t \boldsymbol{x}_t$.
- 5: **else**
- 6: $\hat{oldsymbol{w}}_{t+1} \coloneqq \hat{oldsymbol{w}}_t$
- 7: end if
- 8: end for
- 9: **return** $\hat{m{w}}_{n+1}$.

Final classifier $f_{\hat{w}_{n+1}}$ is not necessarily a linear separator (even if one exists!).

Online learning

What good is a mistake bound?

Online learning algorithms:

- ▶ Go through examples $(x_1, y_1), (x_2, y_2), \ldots$ one-by-one.
 - ▶ Before seeing (x_t, y_t) , learner has a "current" classifier \hat{f}_t in hand.
 - Upon seeing x_t , learner makes a prediction: $\hat{a}_t := \hat{f}_t(x_t)$.
 - If $\hat{a}_t \neq y_t$, then the prediction was a "mistake".
 - ► Can now update \hat{f}_t (to get \hat{f}_{t+1}) on the basis of all past examples $(x_1, y_1), \ldots, (x_t, y_t)$ (but usually just based on (x_t, y_t)).

Theorem: If $R:=\max_{t\in\{1,\ldots,n\}}\|m{x}_t\|_2$, and $m{w}_\star\in\mathbb{R}^d$ satisfies

$$y\langle \boldsymbol{w}_{\star}, \boldsymbol{x}_{t} \rangle \geq 1 \quad \text{for all } (\boldsymbol{x}_{t}, y_{t}),$$

then Online Perceptron makes at most $\| m{w}_{\star} \|_2^2 \cdot R^2$ mistakes (and updates).

- ► Suppose you have an **online learning algorithm** that makes only a few mistakes on a sequence of iid random examples.
- ► Then the **sequence of classifiers** produced by the online learner are, on average, good at **predicting labels of random examples**.
- ► Thus, can combine the sequence of classifiers into a single classifier with low true error rate.

This is achieved via an "Online-to-Batch" conversion.

25 / 29

Online-to-Batch conversion

▶ Run online learning algorithm on sequence of examples

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

(in random order) to produce sequence of binary classifiers

$$\hat{f}_1, \hat{f}_2, \dots, \hat{f}_{n+1},$$

$$(\hat{f}_i \colon \mathcal{X} \to \{\pm 1\}).$$

ightharpoonup Final classifier: majority vote over the \hat{f}_i 's

$$\hat{f}(\boldsymbol{x}) \ := \ \begin{cases} -1 & \text{if } \sum_{i=1}^{n+1} \hat{f}_i(\boldsymbol{x}) \leq 0 \,, \\ +1 & \text{if } \sum_{i=1}^{n+1} \hat{f}_i(\boldsymbol{x}) > 0 \,. \end{cases}$$

Note #1: many of the \hat{f}_i 's could be the same.

Note #2: many variants that improve this in some cases (e.g., only use last n/2 classifiers).

Voted-Perceptron (Freund & Schapire, 1999)

 $\label{Voted-Perceptron} \textbf{Voted-Perceptron} = \textbf{Online} \ \ \textbf{Perceptron} \ \ \textbf{with} \ \ \textbf{Online-to-Batch} \ \ \textbf{conversion}.$

Classifying OCR digits (digit '9' \rightarrow class +1; all other digits \rightarrow class -1). n = 60000 (about 6000 are of class +1), presented in a random order.

# passes	0.1	1	2	3	4	10
err(OP,test)	0.079	0.064	0.057	0.063	0.058	0.059
err(VP, test)	0.045	0.039	0.038	0.038	0.038	0.037

(In practice: Making multiple passes through the data can sometimes help!)

0= /00

__ .

Key takeaways

- 1. Logistic regression model, and structure/geometry of linear classifiers, including "lifting" trick for homogeneous linear classifiers.
- 2. High-level idea of empirical risk minimization for linear classifiers and intractability.
- 3. Concept of linear separability, two approaches to find a linear separator (linear programming and Perceptron).
- 4. Online Perceptron; online-to-batch conversion via voting.

29 / 29