Lecture 05

Data Warehouse Architecture Conceptual Model

Summary – last week

SIMMAN

- Last week:
 - DW Architecture
 - Storage Architecture
 - Tier Architecture

- This week:
 - Distributed DW
 - DW Data Modeling
 - Conceptual Model

Distributed DW

- In most cases the economics and technology greatly favor a single centralized DW
- But in some cases, distributed DW make sense
- Types of distributed DW
 - Geographically distributed
 - Local DW instances of global DW
 - Technologically distributed DW
 - Logically one DW but data is stored on multiple stores

- Geographically distributed
 - In the case of corporations spread around the world
 - Information is needed both locally and globally
 - A distributed DW makes sense
 - When much processing occurs at the local level
 - Even though local branches report to the same balance sheet, the local organizations are their own companies

- Technologically distributed DW
 - Placing the DW on the distributed technology of a vendor
 - Advantages
 - The entry cost is cheap large centralized hardware is expensive
 - No theoretical limit to how much data can be placed in the DW – we can add new servers to the network

- As the DW starts to expand network data
 communication starts playing an important role
 - Example: Let's simplify and consider we have 4 nodes holding each data regarding the last 4 years
 - Now let's consider we have a query which needs to access the data from the last 4 years: such a query arises the issue of transporting large amount of data between processors

Data Modeling

- Data Modeling / DB Design Basics
 - Is the process of creating a data model by analyzing the requirements needed to support the business processes of an organization
 - It is sometimes called database modeling/design because a data model is eventually implemented in a database

Data Modeling (cont'd.)

Data models

- Provide the **definition** and **form at** of data
- Graphical representations of the data within a specific area of interest
 - Enterprise Data Model: represents the integrated data requirements of a complete business organization
 - Subject Area Data Model: Represents the data requirements of a single business area or application

Data Modeling (cont'd.)

Conceptual Design

- Transforms data requirements to conceptual model
- Conceptual model describes data entities, relationships, constraints, etc. on high-level
 - Does not contain any implementation details
 - Independent of used software and hardware

Logical Design (next lecture)

- Maps the conceptual data model to the logical data model used by the DBMS
 - e.g. relational model, dimensional model, ...
 - Technology independent conceptual model is adapted to the used DBMS software
- Physical Design (2nd next lecture)
 - Creates internal structures needed to efficiently store/manage data
 - Table spaces, indexes, access paths, ...
 - Depends on used hardware and DBMS software

Data Modeling (cont'd.)

- Going from one phase to the next:
 - The phase must be complete
 - The result serves as input for the next phase
 - Often automatic transition is possible with additional designer feedback

Conceptual Model

- Highest conceptual grouping of ideas
 - Data tends to naturally cluster with data from the same or similar categories relevant to the organization
- The major relationships between subjects have been defined
 - Least amount of detail

Conceptual Model (cont'd.)

Conceptual design

- Entity-Relationship (ER) Modeling
 - Entities -"things" in the real world
 - E.g. Car, Account, ProductCarAccountProduct
 - Attributes property of an entity, entity type, or relationship type
 - E.g. color of a car, balance of an account, price of a product
 - Relationships between entities there can be relationships, which also can have attributes
 - E.g. Person owns CarPerson owns Car

Conceptual Model (cont'd.)

Conceptual Model (cont'd.)

- Conceptual design in usually done using the Unified Modeling Language (UML)
 - Class Diagram, Component Diagram, Object Diagram, Package Diagram...
- Conceptual Design ER-diagram, UML, ...
- For Data Modeling only Class Diagrams are used
 - Entity type becomes class
 - Relationships become associations
 - There are special types of associations like: aggregation, composition, or generalization

attribute 1 : domain ... attribute n : domain operation 1 ... operation m

Logical Model

 Logical design arranges data into a logical structure

- Which can be mapped into the storage objects supported by DBMS
 - In the case of RDB, the storage objects are *tables* which store data in *rows and columns*Attribute

Physical Model

 Physical design specifies the physical configuration of the database on the storage media

Detailed specification of:
 data elements, data types,
 indexing options, and
 other parameters
 residing in the DBMS
 data dictionary

Data Model in DW

- Managing Complex Data Relationships
 - Helps keep track of the complex environment that is a DW
 - Many complex relationships exist, with the ability to change over time
 - Transformations and integration from various systems of record need to be worked out and maintained
 - Provides the means of supplying users with a
 roadmap through the data and relationships

Conceptual Model in DW

Modeling business queries

Goal

Define the purpose, and decide on the subject(s) for the data warehouse

Identify questions of interest

Subject

Who bought the products?
 (customers structure)

Who sold the product? (store/sales organization structure)

- What was sold? (product structure)
- When was it sold? (time structure)

Conceptual Model in DW (cont'd.)

- For Conceptual design in DW conventional techniques like E/R or UML are not appropriate
 - Lack of necessary semantics for modeling the multidimensional data model
 - E/R are constituted to
 - Remove redundancy in the data model
 - Facilitate retrieval of individual records
 - Therefore optimize OLTP
 - In the case of DW, however redundancy and MaterializedViews help speed up Analytical queries

Conceptual Model in DW (cont'd.)

Components

- Facts: a fact is a focus of interest for decision-making,
 e.g., sales, shipments..
- Measures: attributes that describe facts from different points of view, e.g., each sale is measured by its revenue
- Dim ensions: discrete attributes which determine the granularity adopted to represent facts, e.g., product, store, date
- Hierarchies: are made up of dimension attributes
 - Determine how facts may be aggregated and selected, e.g.,
 day month quarter year

Conceptual Model in DW (cont'd.)

- Conceptual design models for DW
 - Multidimensional Entity Relationship (ME/R)
 Model
 - Multidimensional UML (m UML)
 - Other methods e.g., Dimension Fact Model,
 Totok approach, etc.

Multidimensional ER Model

ME/R Model

- Its purpose is to create an intuitive representation of the multidimensional data that is optimized for high-performance access
- It represents a specialization and evolution of the E/R to allow specification of multidimensional semantics

- ME/R notation was influenced by the following considerations
 - Specialization of the E/R model
 - All new elements of the ME/R have to be specializations of the E/R elements
 - In this way the flexibility and power of expression of the E/R models are not reduced
 - Minimal expansion of the E/R model
 - Easy to understand/learn/use: the number of additional elements should be small
 - Representation of the multidimensional semantics
 - Although being minimal, it should be powerful enough to be able to represent multidimensional semantics

- There are 3 main ME/R constructs
 - The fact node
 - The **level node**
 - A special binary classification edge

- Lets consider a **store scenario** designed in E/R
 - Entities bear little semantics
 - E/R doesn't support classification and aggregation levels

• ME/R notation:

ME/R notation:

- Sales was elected as fact node
- The dimensions are product, geographical area and time
- The dimensions are represented through the so called **Basic** Classification Level

- Alternative paths in the classification level are also possible Week

Summary

- Tier Architecture
- Distributed DW
- DW Data Modeling

Summary (cont'd.)

- DW are usually distributed geographically and technologically
- Data Modeling Conceptual Modeling
 - In conceptual modeling for DW, conventional techniques like E/R or UML are not appropriate
 - Appropriate methods are:
 - Multidimensional Entity Relationship (ME/R) Model
 - Multidimensional UML (mUML)

Next Lecture

- Data Modeling (continued)
 - Logical model
 - Cubes, Dimensions,
 Hierarchies, Classification
 Levels

