

Gerenciamento de Recursos I

1

3º Trabalho em Grupo

- 1) Considerando o uso de particionamento Buddy em um sistema com 4 GB de memória principal, responda as seguintes perguntas:
- a) Esboce o gráfico que representa o uso da memória caso a seguinte sequência de requisições seja apresentada no sistema: A (130 MB), B (750 MB), C (600 MB), D (300 MB) e E (230 MB).
- b) É possível no particionamento Buddy haver fragmentação externa? Justifique.
- c) Indique no gráfico que representa o uso de memória onde seria carregado o processo X, de tamanho igual a 240 MB.

Gerenciamento de Recursos I Gerência de Memória

2) Suponha um sistema computacional com 64 KB de memória principal e que utilize um sistema operacional de 14 KB que implementa alocação contígua de memória. Considere também um programa de 80 KB, formado por um módulo principal de 20 Kb e três módulos independentes, cada um com 10 KB, 20 KB e 30 KB. Como o programa poderia ser executado utilizando-se apenas a técnica de overlay?

- 3) Considere um sistema que possua as seguintes áreas livres na memória principal, ordenadas crescentemente: 10 Kb, 4 Kb, 20 Kb, 18 Kb, 7 Kb, 9 Kb, 12 Kb, 12 Kb e 15 Kb. Para cada programa abaixo, qual seria a partição alocada utilizando-se as estratégias first-fit, best-fit e worst-fit (Tanenbaum, 1992)?
 - a) 12 Kb
 - b) 10 Kb
 - c) 9 Kb

Gerenciamento de Recursos I Gerência de Memória

4) Um sistema utiliza alocação particionada dinâmica como mecanismo de gerência de memória. O sistema operacional aloca uma área de memória total de 50 Kb e possui, inicialmente, os programas da tabela a seguir

Tamanho	Status	
5 Kb	Processo A	
3 Kb	Processo B	
10 Kb	Livre	
6 Kb	Processo C	
26 Kb	Livre	

Realize as operações abaixo, sequencialmente, mostrando o estado da memória após cada uma delas. Resolva a questão utilizando as estratégias best-fit, worst-fit e first-fit.

- a) alocar área para o processo D que possui 6 Kb;
- b) liberar a área do programa A;
- c) alocar área para o processo E que possui 4 Kb

Gerenciamento de Recursos I

Exercícios – Endereçamento em MV

2. Uma memória virtual possui páginas de 1024 endereços, existem 8 páginas virtuais e 4096 bytes de memória real. A tabela de páginas de um processo está descrita abaixo, sendo que o asterisco indica que a página não está na memória principal:

Página Virtual	Página Real	
0	3	
1	1	
2	*	
3	*	
4	2	
5	*	
6	0	
7	*	

- a) Faça a lista/faixa de todos os endereços virtuais que irão causar page fault.
- b) Indique o endereço real correspondente aos seguintes endereços virtuais: 0, 1023, 1024, 6500 e 3728.

Gerenciamento de Recursos I Busca e alocação em MV

3. Considere um sistema de memória virtual que implemente paginação, onde o limite de frames por processo é igual a três. Descreva para os itens abaixo, onde é apresentada uma sequência de referências à páginas pelo processo, o número total de page fault para as estratégias de realocação de páginas FIFO e LRU. Indique qual a mais eficaz para cada item.

- a) 1/2/3/1/4/2/5/3/4/3
- b) 1/2/3/1/4/1/3/2/3/3

Profa. Valeria M. Bastos

Gerenciamento de Recursos I Deadlock

4. Aplique o algoritmo de detecção de deadlock, considerando os seguintes dados:

Disponibilidade de Recursos

R1	R2	R3	R4
2	1	0	0

	Matriz de Requisição			Matriz de Alocação				
Processo	R1	R2	R3	R4	R1	R2	R3	R4
P1	2	0	0	1	0	0	1	0
P2	1	0	1	0	2	0	0	1
Р3	2	1	0	0	0	1	2	0

Gerenciamento de Recursos I Deadlock

15

5. Considere que em um determinado instante "K", a situação das estruturas de dados usada pelo sistema apresenta os seguintes valores (considere que o ID dos processos inicia em P0 e dos recursos em R0):

Disponibilidade

?	2	0	?
5	5	0	8
3	5	1	3
1	0	0	1
6	4	2	4
4	4	3	6
3	4	4	1
3	2	4	2
2	6	5	1

Requisição Máxima	
(Claim Matrix)	

3	0	0	6
0	3	1	2
0	0	0	0
4	2	1	3
1	0	1	3
0	3	0	0
1	0	2	0
2	4	5	1

Alocação Corrente (Allocation Matrix)

2	1	0	1
0	0	0	1
0	0	0	0
0	1	0	0
0	2	0	1
1	0	1	0
1	0	0	0
0	0	1	3

Recursos

Requisição Pendente (Request Matrix)

7

Gerenciamento de Recursos I Deadlock

- a) Considerando as estratégias vistas em sala, aponte quais delas trabalham com estas estruturas de dados e, para cada uma, cite quais estruturas são de fato usadas.
- b) Com base nos dados fornecidos, complete os vetores *Disponibilidade* e *Recursos*.
- c) Verifique se o estado corrente é seguro.
- d) Informe se com as estruturas fornecidas é possível identificar processos com múltiplos fluxos de execução. Em caso negativo justifique. Em caso positivo, explique como chegou a esta conclusão e indique quais são estes processos.