CSE202 Design and Analysis of Algorithms

Week 13 — P vs NP

Model for Polynomial Time Computation

Def 1. A function from $\{0,1\}^*$ to $\{0,1\}^*$ is computable in polynomial time if there exists a k and a program computing the output in time $O(n^k)$ for all input of size n.

Input: a word in $\{0,1\}^n$

Or any encoding of polynomial size

Computation: a Python program

Python, C++, Java, Turing machines,... can simulate each other in polynomial time

Output: a word in $\{0,1\}^m$

Def 2. Decision problem: m = 1

Def 3. P is the class of all decision problems computable in polynomial time.

I. The Class NP

Verifier and Certificate

Decision problem: $A: w \in \{0,1\}^* \rightarrow \{0,1\}$

```
Verifier: a program V: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\} s.t.
```

$$\forall w \in \{0,1\}^*, \quad A(w) = 1 \iff \exists C \in \{0,1\}^*, V(w,C) = 1.$$

certificate, witness, proof

Note the asymmetry between 0 & 1.

Def. NP is the class of problems A s.t. there exists a verifier V in P with |C| = poly(|w|).

Prop. $P \subseteq NP$.

Example 1: k-Coloring

Problem *k*-Coloring:

Input: a graph

Output: yes iff there exists a proper coloring

with $\leq k$ colors (no unicolor edge).

Proof: a proper coloring is easy to check.

No polynomial algorithm known to find a coloring for $k \ge 3$, or to check non-k-Coloring.

Example 2: Hamiltonian Cycle

Problem Hamiltonian Cycle:

Input: a graph

Output: yes iff there exists a circuit visiting each vertex exactly once.

Hamiltonian Cycle ∈ NP

Proof: a circuit is easy to check.

No polynomial algorithm known to find a Hamiltonian cycle, or to check that none exists.

Example 3: Traveling Salesman Problem

Problem TSP:

Input: $n \times n$ matrix M of positive integers, k in \mathbb{N}

$$\sigma \text{ s.t. } \sum_{1 \le i \le n} M_{i,\sigma(i)} \le k.$$

 $TSP \in NP$

Proof: a cycle is easy to check.

No polynomial algorithm known to find a TS tour, or to check that none exists.

Example 4: Subset-Sum

Problem SubsetSum:

Input:
$$L = (x_1, ..., x_\ell) \in \mathbb{N}^\ell$$
, $k \text{ in } \mathbb{N}$

Output: yes iff there exists a subset $A \subset \{1,...,\ell\}$ s.t.

$$\sum_{i \in A} x_i = k .$$

SubsetSum ∈ NP

Proof: a solution is easy to check.

No polynomial algorithm known to find a solution, or to check that none exists.

Example 5: Prime

Problem Prime:

Input: $n \in \mathbb{N}$

Output: yes iff *n* is prime

Eratosthenes' sieve has exponential complexity

Prime ∈ NP

Lehmer's theorem: n is prime iff $\exists a \in \{2,...,n-1\}$ s.t. $a^{n-1} \equiv 1 \mod n$ and

 $\forall q \text{ prime factor of } n-1, \quad a^{(n-1)/q} \not\equiv 1 \mod n.$

→ recursive certificate
(proof polynomial verifier not obvious).

NP is at most Exponential Time

Def. NP is the class of problems A s.t. there exists a verifier V in P with |C| = poly(|w|).

Algorithm:

For
$$m = 1, 2, ...$$

For all *C* of length *m*

If
$$V(w, C) = 1$$
 return YES

proves

$$P \subseteq NP \subseteq TIME(2^{poly(n)})$$

No better upper bound known.

The 'N' in NP

N stands for non-deterministic

The program can flip coins to guess the certificate.

NP is about:

- . the power of nondeterminism;
- . the difference of complexity between finding and checking;
- . and this applies to mathematical proofs as special cases.

II. NP-Complete Problems

Reductions Comparing Hardness

Def. A & B two decisions problems.

A reduces to B (denoted $A \le B$), if there exists f computable in polynomial time s.t. $A(x) = 1 \Leftrightarrow B(f(x)) = 1$.

Def: B in NP is NP-complete if for all A in NP, $A \leq B$.

If one
NP-complete
problem is in
P, they all are!

 $A \leq B, B \in NP$ and A NP-complete $\Rightarrow B$ NP-complete

3-SAT is NP-complete

Ex.: $(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor x_3)$

Clause: disjunction (v) of variables or their negations.

Recall: Conjunctive normal form: conjunction (∧) of clauses.

k-SAT: every clause involves k of the n variables.

Thm. (Cook-Levin, early 70's) 3-SAT is NP-complete.

NP-complete problems exist!

Proof requires a more rigorous/precise definition of algorithm, e.g., Turing machine

3-SAT ≤ 3-Coloring

Proof. Encode a 3-SAT problem into a graph coloring problem.

1. encode the variables

2. encode the clauses (in the same graph)

3-Coloring is NP-complete

3-SAT ≤ SubsetSum

n variables $x_1, ..., x_n, k$ clauses $C_1, ..., C_k$

Ex.:
$$(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor x_3)$$

1. To each x_i , associate two integers t_i , f_i of n + k decimal digits:

$$t_{ii} = f_{ii} = 1, \quad t_{i,n+j} = 1 \text{ if } x_i \in C_j,$$

$$f_{i,n+j} = 1 \text{ if } \overline{x}_i \in C_j.$$

- 2. To each C_j , associate 2 integers s_j, s_j' : $s_{j,k+j} = s'_{j,k+j} = 1$.
- 3. All other digits are 0.
- 4. Target sum is 11…133…3.

$$n \longrightarrow k$$

SubsetSum is NP-complete

Other NP-Complete Examples

All the examples of Part I that are not in P;

$$k$$
-SAT for $k \ge 3$; SAT;

Shortest total path length spanning tree;

Quadratic diophantine equations $(ax^2 + by = c?)$;

Integer linear programming;

Other graph problems: VertexCover, Clique,...;

Minesweeper consistency;

Tetris;

Other games...

If your problem is in this list, simple solutions will probably be inefficient.

More than 300 entries in Garey & Johnson (1979).

P vs. NP

If P≠NP

```
Hamiltonian
    SAT
                      cycle
        NP-complete
   3-SAT
                         TSP
            3-coloring
   graph
              NP
                        factoring
isomorphism
  2-coloring
                    Minimum
                P spanning tree
     Prime
                 Eulerian circuit
       2-SAT
```

If P=NP

If P=NP, then the world would be a profoundly different place than we usually assume it to be. Scott Aaronson.

I've come to believe that P = NP. Donald Knuth.

References for this lecture

The slides are designed to be self-contained.

They were prepared using the following books that I recommend if you want to learn more:

this one was not used but gives a nice introduction through games

Next

Assignment: yet another NP-complete problem

Next tutorial: faster Traveling Salesman

Next lecture: Approximation Algorithms for NP-hard problems

Next week:

Feedback

Moodle for the slides, tutorials and exercises.

Questions or comments: <u>Bruno.Salvy@inria.fr</u>