Stock Market Fluctuations Model — Geometric Brownian Motion (GBM)

1. Model Overview

The Geometric Brownian Motion (GBM) is widely used to model stock price dynamics It treats stock prices as a continuous-time stochastic process.

Let \setminus (S(t) \setminus) denote the stock price at time \setminus (t \setminus).

2. Stochastic Differential Equation (SDE)

The GBM is defined by the SDE:

$$dS(t) = \mu S(t) dt + sigma S(t) dW(t)$$

Where:

- \(\mu \) is the expected return (drift)
- \(\sigma\) is the volatility (diffusion)
- \(W(t) \) is a standard Wiener process (Brownian motion)

3. Solution of the SDE

The explicit solution to the SDE with initial price \(S 0 \) is:

 $S(t) = S \otimes \exp\left(\left(\left(- \frac{sigma^2}{2} \right) t + sigma W(t) \right)$

This implies the logarithm of stock prices follows a Brownian motion with drift.

4. Interpretation

- The drift term \(\mu \) represents the average rate of return.
- The volatility term \(\sigma\) models random fluctuations around the drift.
- Stock prices modeled by GBM have a log-normal distribution.

Applications

- Pricing options using the Black-Scholes formula.
- Simulating future stock price paths.
- Risk assessment and portfolio management.