Harvard-MIT Division of Health Sciences and Technology

HST.121: Gastroenterology, Fall 2005 Instructors: Dr. Richard S. Blumberg

Introduction

- Overwhelming majority of initial antigen encounters occur at mucosal surfaces
- Surface bathed by a heterogeneous population of microorganisms
- Confronted by a large number of antigenic stimuli which must be deciphered for pathologic potential
- For the majority, a response characterized by either ignorance or active suppression is appropriate
- For a few, a robust immune response is in order

Introduction (II)

- Gut associated lymphoid tissue (GALT) is characterized by a regulated state of physiologic inflammation
- GALT is poised for, but actively restrained from, full action and noteable for a tendency to suppress responses, called oral tolerance
- Certain microorganisms and food antigens elicit vigorous immune responses
- The rules which govern these immunologic decisisons are beginning to be clear and are important to the development of vaccines and the treatment of inflammatory bowel disease

MUCOSAL BARRIER FUNCTION

Illustration by MIT OCW.

INNATE HUMORAL FACTORS

Lactoferrin, Lysozyme, Peroxidase, ITF. Complement, Defensins

TLR Ligands and their Receptors

Figure removed due to copyright reasons. Please see:

Figure 1 in Akira, Shizuo. "Mammalian Toll-like receptors." Curr Opin Immunol 15 (2003): 6.

Figure removed due to copyright reasons. Please see:

Figure 1 and Figure 2 in Hooper, Lora V., et al. "Molecular Analysis of Commensal Host-Microbial Relationships in the Intestine." *Science* 291 (2001): 881-84.

INNATE HUMORAL FACTORS: DEFENSINS

Luminal Factors:

Specific Extrinsic or Immunologic Barriers

Secretory Immunoglobulins

Isotype Distribution of Ig Production By Mucosal Plasma Cells

Levels (µg/ml) of Immunoglobulins in Human Secretions

Fluid	<i>IgA</i>	IgG	IgM
Nasal Secretions	70-846	8-304	0
Broncho- alveolar fluid	3	13	0.1
Milk	470-1632	40-168	50-340
Duodenal fluid	313	104	207
Colonic fluid	162 μg/min	34 μg/min	17 μg/min

IgA2 is Enriched in Mucosal Secretions Relative to Peripheral Blood

T Cell Independent IgA Secretion in the Intestine

(IgA-secreting cells, no. per 10⁵ lymphocytes)

Mouse strain	Housing conditions	Intestinal lamina propria
C57BL/6	SPF	11,600 ± 1,500
TCR ^{β-/-δ-/-}	SPF	$3,900 \pm 1,600$
C57BL/6 nu/nu	SPF	2,800 ± 1,700
CD4-/-	Conventional	$9,100 \pm 930$
TNFR-1-/-	SPF	$9,500\pm540$
aly/aly	SPF	<1
LTα-/-	Conventional	<10
C57BL/6	Germ-free	$1,600\pm860$

Enrichment of dimeric (d)lgA in Mucosal Secretions Relative to Serum Which contains monomeric lgA

Secretory dlgA is formed by Association With J Chain and proteolytic fragment of plgR or SC

STRUCTURE OF POLYMERIC Ig RECEPTOR (plgR)

Intracellular Transport of plgA via plgR

Quantification of IgA Production In Mucosal Secretions

IgA is a Component of Bile via Expression of plgR in hepatocytes (rat) or bile duct epithelium (human)

IgA has complex effects in Mucosal Tissues Through interaction with Fcα-receptors

The Neonatal Fc Receptor for IgG, FcRn

- MHC I-like structure/β₂m associated
- Closed cleft/no defined role in antigen presentation
- Binds overlapping region of IgG as Protein A

Figure removed due to copyright reasons. Please see:

Burmeister, W. P., et al. "Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor." *Nature* 372 (1994): 336-43.

- Binds IgG with a 2:1 stoichiometry
- Binds IgG at pH 6.0 (K_d = 10 nM)
 but negligibly at physiologic pH 7.4

FcRn Plays a Role in the Uptake of Lumenal Antigens

Intrinsic Barrier Function of Epithelium

Association of Dendritic Cells with Mucosal Epithelium

ASSOCIATION OF DENDRITIC CELLS WITH MUCOSAL EPITHELIUM

Pathways for antigen-uptake from the lumen antigen IEC FcRn M cell FcRn Мф DC **APCs** MHC class II B7-1/2 Mucosal Tolerance/ Activation?

Subtypes of Epithelial Cells in Intestinal Mucosa

M (MICROVILLOUS FOLD) CELLS

M CELLS TRANSPORT PARTICULATE Ag AND ASSOCIATE WITH MONONUCLEAR CELLS

Absorptive epithelial cells take up Ag by Receptor And non-Receptor mediated mechansims sorting Ag to either a degradative or absorptive fate

Epithelial Transport of Macromolecules

adapted from Martine Heymann

Absorbed antigens may enter an antigen presenting pathway such as that associated with MHC class II

THE IEC AS AN APC

Ability to acquire and/or transport antigen

- Ability to process and/or present antigen
- Ability to provide costimulatory and/or regulatory second signals to T cells

Molecules expressed by IECs possibly associated with antigen presentation

Image by MIT OCW.

Antigen Presentation by Absorptive Epithelial Cell

IEC projection through the basement membrane expressing class Ib, class I, or class II MHC

AEC secrete and respond to a wide variety of cytokines and chemokines

AEC Respond to cytokines and inflammatory mediators With increased chloride and mucus secretion and paracellular Permeability resulting in diarrhea clinically

Figure by MIT OCW. After Yamada, Atlas of Gastroenterology, 2003.

Peyer's Patch Development

Concept of the Common MALT

Image removed due to copyright reasons.

Heirarchal Linkage of MALT Component Tissues

Image removed due to copyright reasons.

Molecular interactions during lymphocyte trafficking

Intraepithelial Lymphocyte

BY-55+

TCRγδ < TCRγδ

Potential Functions of iIELs

<u>Mouse</u> <u>Human</u>

Oral Tolerance $TCR\gamma\delta$????

Cytotoxicity $TCR\alpha\beta$ $TCR\alpha\beta$ & $\gamma\delta$

Regulation of B cell $TCR\gamma\delta$????

production

Anti-microbial $TCR\alpha\beta$????

Mast Cells: Stimuli and Mediators

Stimuli

Allergen-IgE T cell factor (antigen specific) Polypeptide histamine releasing factors Neuropeptides Cytokines (e.g. SCF, IL-8) Complement anaphylatoxins Cationic agents

Mediators

PREFORMED/STORED

Histamine

Proteoglycans

Proteinases

Chemotactic factors

NEWLY SYNTHESIZED PGD2,LTC4 PAF, NO

CYTOKINES IL3,4,5,8,10,13, TGF- β ,TNF- α

Concept of Oral Tolerance

No oral feeding — Immunize — T cells from subcutaneous regional lymph nodes respond

Feed oral antigen Immunize subcutaneous

- 1. T cells from regional lymph nodes do not respond.
 - 2. Specific IgA is measurable in gut.

from Challacombe and Tomasi, J Exp Med, 1980

Mechanisms of Oral Tolerance

Oral administration of antigen **GALT** Low dose (1 mg X 5) High dose (20 mg) Induction of Th2 (IL-4/IL-10) Deletion or anergy and Th3 (TGF-β) secreting of Th1 and Th2 cells regulatory cells Clonal deletion/ **Active suppression** anergy

Summary of IBD Susceptibility Loci

Locus	Chromosomal Region	Comments	Variation identified
IBD1	16q12	CD-specific CARD 15	YES
IBD2	12p	Possibly UC specific	No
IBD3	6p	IBD HLA region	Potential HLA alleles
IBD4	14q11-12	Possibly CD specific	No
IBD5	5 q31	OCTN [§]	YES
IBD6	19p13	IBD	No
IBD7	1p36	IBD	No
IBD8	10q30	Scaffold protein	YES

§ OCTN: organic cation transporter

adapted from Rioux J 2003

IBD-1: Nucleotide binding oligermization Domain (NOD)2 or CARD15: Intracellular Bacterial Sensor

Luminal Bacteria Stimulate Colitis

Germ Free Housing

Addition of Bacteria

Mice
IL-2 -/IL-10 -/CD45RBhi →
SCID
SAMP1-Yit
TCRα -/-

<u>Rats</u> HLA-B27 Transgenic

No immune activation

Severe Colitis

Crohn's Disease

Ulcerative Colitis

Image removed due to copyright reasons.

Image removed due to copyright reasons.

Ileocolitis Transmural Granulomas Colitis
Superficial
Crypt Abscesses/Ulceration

Th1 Inflammation: IL-12, IFN- γ , TNF- α

Th2-like Inflammation: EBI3, IL-5, IL-13, IL-6

Neurath et al, JEM 2002 Blumberg et al, Ann Rev Immunol 2002

Mizoguchi et al, Immunity 2001 Heller et al, Immunity 2001 Nieuwenhuis et al, PNAS 2002 Van de Waal et al, Gastroenterology 2003

Celiac Disease

Figure removed due to copyright reasons. Please see:

Figure 3 in Green, Peter, and Bana Jabri. "Coeliac disease." Lancet 362 (2003): 383-391.

Figure removed due to copyright reasons. Please see: Figure 4 in Green, Peter, and Bana Jabri. "Coeliac disease." Lancet 362 (2003): 383-391.