Kunasekaran Nirmalkanna

Independent Study Project

ACENET Microcredential in Advanced Computing

Outline

Introduction

Introduction

Magnificent Seven Stocks Prediction Analysis

> Kunasekaran Nirmalkanna

Introduction

Method

- "Magnificent Seven Stocks."
 - Microsoft
 - Apple
 - Nvidia
 - Alphabet
 - Amazon
 - Meta
 - Tesla
- Objective

Method 1: Predict stock closing price using the history of stock prices.Method 2: Predict stock closing price using the history of other stock prices.

Compare the prediction methods.

- ARIMA stands for AutoRegressive Integrated Moving Average.
- lt's a widely used time series analysis technique.
- Components include AutoRegressive (AR), Integrated (I), and Moving Average (MA).

$$Y_t = c + \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} + \epsilon_t$$
 (1)

Where:

- Y_t: Time series data at time t
- c: Constant term
- ϕ_1, \ldots, ϕ_p : AutoRegressive parameters
- \bullet $\theta_1, \ldots, \theta_q$: Moving Average parameters
- $ightharpoonup \epsilon_t$: Error term at time t
- For simplicity Auto Regressive models are considered in this project.
- ► An AR(p) can be formulated as

$$Y_t = \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \epsilon_t$$
 (2)

This study can be extended to full ARIMA models.

Kunasekaran Nirmalkanna

Introduction

Kunasekaran Nirmalkanna

Introduction

Method 2

Magnificent Seven Stocks Prediction Analysis

> Kunasekaran Nirmalkanna

Introduction

Let's define
$$AR(p) + AR_1(p_1) + \ldots + AR_6(p_6)$$
 as
$$Y_t = \phi_1 Y_{t-1} + \ldots + \phi_p Y_{t-p} + \phi_{1,1} X_{1,t-1} + \ldots + \phi_{1,p} X_{1,t-p_1} + \ldots + \phi_{6,1} X_{6,t-1} + \ldots + \phi_{6,p} X_{6,t-p_6} + \epsilon_t$$
 (3)