## PrEP Meta-Analysis

Tyler Maule

June 6th, 2022

1

### Contents

1 Setup & Helper Funcs

| 2  | Analysis                             | 1  |
|----|--------------------------------------|----|
|    | 2.1 Internalized Homonegativity (IH) | 1  |
|    | 2.2 PrEP Stigma                      | 11 |
|    | 2.3 HIV Stigma                       | 22 |
| 1  | Setup & Helper Funcs                 |    |
| #1 | oading relevant libraries            |    |
| li | brary(metafor)                       |    |
| li | brary(tidyverse)                     |    |

### 2 Analysis

### 2.1 Internalized Homonegativity (IH)

#### 2.1.1 Effect Sizes

```
ih_effect_nonlor_df <- data.frame(</pre>
    ogunbajo_2019_A = c("Ogunbajo et al.","2019 A",2019,"Nigeria",251,
                         -0.01151454784,0.02497515401,0.884,2176.002772,"81.10%"),
    zhang_liu_2022 = c("Zhang & Liu", 2022, 2019.5, "United States",
                        318,0.08427930442,0.02385766616,0.360,58021.4005,"81.80%")
)
rownames(ih_effect_nonlor_df) <- c("Authors", "Year", "Median Study Year",</pre>
                                     "Countries", "Sample Size", "Effect Size",
                                     "Effect Size Variance",
                                     "Homophobic Climate Index (HCI)",
                                     "GDP per Capita", "Percent Willing")
tih_effect_nonlor_df <- as.data.frame(t(ih_effect_nonlor_df))</pre>
tih_effect_nonlor_df <- tih_effect_nonlor_df %>%
     mutate_at(c(3,5,6,7,8,9), as.numeric)
ih_effect_lor_df <- data.frame(</pre>
  stephenson_2021_A = c("Stephenson et al.","2021 A",2017.5,"United States",
                         0.003847459834, 0.01173335055,764,0.360,58021.4005,
```

```
"42.30%"),
  stephenson_2021_B = c("Stephenson et al.", "2021 B", 2016.5,
                         "South Africa & Namibia",
                         -0.02888987146,0.03335482513,254,
                         0.5155433071,5166.291339,"15.90%"),
  coulaud_2018 = c("Coulaud et al.",2018,2015,
                    "Mali, Côte d'Ivoire, Burkina Faso, Togo",
                    -0.08081082927,0.2393594359,564,
                    0.7703829787, 1044.771277, "87.00%"),
  belludi 2021 = c("Belludi et al.", 2021, 2016.5,
                    "India", -0.05025167927, 0.3335200256,
                    8621,0.663,1732.554242,"67.60%"),
  storholm_2019 = c("Storholm et al.",2019,2016.5,
                     "United States", 0.03650708414, 0.03404751029,
                     226,0.360,58021.4005,"55.50%"),
  ogunbajo_2019_B = c("Ogunbajo et al.","2019 B",2014,"Kenya",
                       -0.14202375, 0.17723625,352,0.834,1525.235192,"44.90%"),
  ayala_2013 = c("Ayala et al.",2020,2017,"Multinational",
                  0.1452, 0.1852040816, 3748, 0.5150502972, 14522.89101, "80.80%"),
  driver_2020 = c("Driver et al.",2020,2017,"China",0.2478,
                   0.1652,123,0.680,8094.363367,"67.80%")
rownames(ih_effect_lor_df) <- c("Authors", "Year", "Median Study Year",</pre>
                                  "Countries", "Log Odds", "Log Odds SE",
                                  "Sample Size", "Homophobic Climate Index (HCI)",
                                  "GDP per Capita", "Percent Willing")
tih_effect_lor_df <- as.data.frame(t(ih_effect_lor_df))</pre>
tih_effect_lor_df <- tih_effect_lor_df %>%
     mutate_at(c(3,5,6,7,8,9), as.numeric)
esize \leftarrow rep(0,8)
esize_var \leftarrow rep(0,8)
for (i in c(1:8)){
  e_result <- escalc("OR",
                      yi=tih_effect_lor_df[i,5],
                      sei=tih effect lor df[i,6],
                      ni=tih_effect_lor_df[i,7])
  esize[i] <- e_result$yi
  esize_var[i] <- e_result$vi
  i <- i + 1
}
tih_effect_lor_df$`Effect Size` <- esize</pre>
tih_effect_lor_df$`Effect Size Variance` <- esize_var</pre>
tih_effect_total <- rbind(tih_effect_lor_df %>%
                             select(-c(`Log Odds`, `Log Odds SE`)),
                           tih_effect_nonlor_df)
tih_effect_total <- tih_effect_total %>%
```

|                  |                     |                                    |       |                             |        | Effect |        |              |             |
|------------------|---------------------|------------------------------------|-------|-----------------------------|--------|--------|--------|--------------|-------------|
|                  |                     |                                    |       | Percent                     |        | Size   | Median | Standardized | Homophobic  |
|                  |                     |                                    | Sampl | $\mathrm{e}\mathrm{Will}$ - | Effect | Vari-  | Study  | GDP per      | Climate     |
| Authors          | Year                | Countries                          | Size  | ing                         | Size   | ance   | Year   | Capita       | Index (HCI) |
| Ayala et al.     | 2020                | Multinational                      | 3748  | 80.80%                      | 0.145  | 0.034  | 2017.0 | -0.243       | 0.515       |
| Belludi          | 2021                | India                              | 8621  | 67.60%                      | -      | 0.111  | 2016.5 | -0.735       | 0.663       |
| et al.           |                     |                                    |       |                             | 0.050  |        |        |              |             |
|                  | 2018                | Mali, Côte                         | 564   | 87.00%                      | -      | 0.057  | 2015.0 | -0.762       | 0.770       |
| et al.           |                     | d'Ivoire,<br>Burkina Faso,<br>Togo |       |                             | 0.081  |        |        |              |             |
| Driver           | 2020                | China                              | 123   | 67.80%                      | 0.248  | 0.027  | 2017.0 | -0.490       | 0.680       |
| et al.           |                     |                                    | 120   | 01.0070                     | 0.210  | 0.02.  | 2011.0 | 0.100        | 0.000       |
| Ogunbajo         | 2019                | Nigeria                            | 251   | 81.10%                      | _      | 0.025  | 2019.0 | -0.718       | 0.884       |
| et al.           | A                   | O                                  |       |                             | 0.012  |        |        |              |             |
| Ogunbajo         | 2019                | Kenya                              | 352   | 44.90%                      | -      | 0.031  | 2014.0 | -0.743       | 0.834       |
| et al.           | В                   |                                    |       |                             | 0.142  |        |        |              |             |
| Stephense et al. | о <u>й</u> 021<br>А | United States                      | 764   | 42.30%                      | 0.004  | 0.000  | 2017.5 | 1.432        | 0.360       |
| Stephense        | o <b>2</b> 021      | South Africa &                     | 254   | 15.90%                      | -      | 0.001  | 2016.5 | -0.603       | 0.516       |
| et al.           | В                   | Namibia                            |       |                             | 0.029  |        |        |              |             |
| Storholm et al.  | 2019                | United States                      | 226   | 55.50%                      | 0.037  | 0.001  | 2016.5 | 1.432        | 0.360       |
| Zhang<br>& Liu   | 2022                | United States                      | 318   | 81.80%                      | 0.084  | 0.024  | 2019.5 | 1.432        | 0.360       |

#### 2.1.2 Random Effects Models

```
## Test for Heterogeneity:
## Q(df = 9) = 5.7492, p-val = 0.7647
##
## Model Results:
## estimate
                                      ci.lb
                                              ci.ub
                se
                      zval
                              pval
    0.0047 0.0104 0.4525 0.6509 -0.0157 0.0251
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
funnel(res_ih, level=c(90, 95, 99),
      shade=c("white", "gray55", "gray75"), refline=0, legend=TRUE,
       main = "Impact of Internalized Homonegativity \n on PrEP Willingness")
```

## Impact of Internalized Homonegativity on PrEP Willingness



# Impact of Internalized Homonegativity on PrEP Willingness



par(op)
res\_ih\_inf.ME <- influence(res\_ih)
plot(res\_ih\_inf.ME)</pre>



|           | REML    |
|-----------|---------|
| logLik:   | 8.125   |
| deviance: | -16.249 |
| AIC:      | -12.249 |
| BIC:      | -11.855 |
| AICc:     | -10.249 |

qqnorm(res\_ih)



```
rma(yi=`Effect Size`, vi=`Effect Size Variance`,
    data=tih_effect_total[-c(7,8),])
```

```
## Random-Effects Model (k = 8; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0068)
## tau (square root of estimated tau^2 value):
## I^2 (total heterogeneity / total variability):
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 7) = 3.4851, p-val = 0.8368
##
## Model Results:
##
## estimate
                                        ci.lb
                 se
                        zval
                                pval
     0.0388 \quad 0.0306 \quad 1.2693 \quad 0.2043 \quad -0.0211 \quad 0.0988
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

#### 2.1.3 Mixed Effects Models

```
reg_ih_gdp
## Mixed-Effects Model (k = 10; tau^2 estimator: REML)
## tau^2 (estimated amount of residual heterogeneity):
                                                          0 (SE = 0.0009)
## tau (square root of estimated tau^2 value):
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):
                                                          1.00
## R^2 (amount of heterogeneity accounted for):
                                                           0.00%
## Test for Residual Heterogeneity:
## QE(df = 8) = 5.0177, p-val = 0.7557
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.7315, p-val = 0.3924
##
## Model Results:
##
##
                                  estimate
                                                       zval
                                                              pval
                                                                      ci.lb
                                               se
                                  -0.0117 0.0218 -0.5361 0.5919 -0.0545
## intrcpt
## `Standardized GDP per Capita`
                                   0.0137 0.0160 0.8553 0.3924 -0.0177
                                   ci.ub
## intrcpt
                                  0.0311
## `Standardized GDP per Capita`
                                 0.0451
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
forest(reg_ih_gdp, slab = paste(tih_effect_total$Authors,
                               tih_effect_total$`Year`, sep = ", "),
       main = "Impact of Internalized Homonegativity \n on PrEP Willingness, Moderated by GDP per Capit
                xlim = c(-6, 4),
       at = log(c(0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)), atransf = exp,
                 cex = 0.75)
op <- par(cex = 0.75, font = 2)
text(-6, 7, "Author(s) and Year", pos = 4)
text(4, 7, "Relative Risk [95% CI]", pos = 2)
```

# Impact of Internalized Homonegativity on PrEP Willingness, Moderated by GDP per Capita



par(op)

reg\_ih\_gdp\_inf.ME <- influence(reg\_ih\_gdp)
plot(reg\_ih\_gdp\_inf.ME)</pre>





```
reg_ih_mod.RE.ML <- rma(yi=`Effect Size`,</pre>
                         vi= Effect Size Variance .
                         data=tih_effect_total,
                        method="ML")
reg_ih_gdp_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tih_effect_total,
              mods = ~ `Standardized GDP per Capita`,
              method = "ML")
reg_ih_year_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tih_effect_total,
              mods = ~ `Median Study Year`,
              method = "ML")
reg_ih_year_gdp_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tih_effect_total,
              mods = ~ `Median Study Year` + `Standardized GDP per Capita`,
              method = "ML")
reg_ih_hci_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tih_effect_total,
              mods = ~ `Homophobic Climate Index (HCI)`,
              method = "ML")
knitr::kable(cbind(fitstats(reg_ih_mod.RE.ML),
                   fitstats(reg_ih_gdp_mod.ME.ML),
                   fitstats(reg_ih_year_mod.ME.ML),
                   fitstats(reg_ih_hci_mod.ME.ML),
                   fitstats(reg_ih_year_gdp_mod.ME.ML)),
             digits = 3, col.names=c("Random Effects",
                                      "Mixed Effects (GDP)",
                                      "Mixed Effects (Year)",
                                      "Mixed Effects (HCI)",
                                      "Mixed Effects (Year + GDP)"))
```

|           | Random<br>Effects | Mixed Effects<br>(GDP) | Mixed Effects<br>(Year) | Mixed Effects<br>(HCI) | Mixed Effects (Year + GDP) |
|-----------|-------------------|------------------------|-------------------------|------------------------|----------------------------|
| logLik:   | 10.620            | 10.985                 | 10.736                  | 10.854                 | 10.986                     |
| deviance: | 5.749             | 5.018                  | 5.517                   | 5.280                  | 5.017                      |
| AIC:      | -17.239           | -15.971                | -15.472                 | -15.709                | -13.971                    |
| BIC:      | -16.634           | -15.063                | -14.564                 | -14.801                | -12.761                    |
| AICc:     | -15.525           | -11.971                | -11.472                 | -11.709                | -5.971                     |

#### 2.2 PrEP Stigma

#### 2.2.1 Effect Sizes

```
zhang_liu_2022 = c("Zhang & Liu", 2022, 2019.5, "United States",
                       318,0.08427930442,0.02385766616,0.360,58021.4005,
                       "81.80%"),
    holloway_2017 = c("Holloway et al.",2017,2015,"United States",
                      270, 0.04736105393, 0.1131649572, 0.360, 58021.4005,
                      "55.30%"),
    bil 2015 = c("Bil et al.", 2015, 2012.5, "Netherlands",
                 270, -0.4519422329, 0.1326387181, 0.131, 46039.10593,
                 "55.70%").
    eaton_2017 = c("Eaton et al.",2017,2015,"United States",
                   264,-0.265498889,0.08096737091
                                                     ,0.360,58021.4005,"43.56%"),
    sun_2021 = c("Sun et al.",2021,2018,"China",
                 612,-0.1550296911,0.08983203858
                                                      .0.680,8094.363367,
                 "35.00%"),
    golub_2013 = c("Golub et al.",2013,2012,"United States",
                   184,0.0268129064,0.1553931795,0.360,58021.4005,"55.40%"),
    wang_{2020_A} = c("Wang et al.", 2020, 2018, "China",
                  70,-1.039618429,0.2748798736,0.680,8094.363367,"67.10%"),
    wang_2020_B = c("Wang et al.",2018,2017,"China",
                    403,-0.7292862272,1.120395591,0.680,8094.363367,"52.90%"),
    draper_2017 = c("Draper et al.",2017,2014,"Myanmar",
                    432,-0.1242306796,0.1277911559,0.797,1136.610665,
                    "62.20%"),
    ayala 2013 = c("Ayala et al.", 2013, 2012, "Multinational",
                   3748,0.25802,0.07448,0.5150502972,14522.89101,
                   "80.80%").
    ahouda_2020 = c("Ahouda et al.",2020,2018,"Benin",
                    400, -0.545902591, 0.289633366, 0.781, 1087.287331,
                    "35.70%"),
    uthappa_2017 = c("Uthappa et al.",2017,2015,"India",
                     271,-1.325519023,0.6786891292,0.663,1732.554242,
                     "99.00%"),
    moskowitz_2020 = c("Moskowitz et al.",2020,2019, "United States",
                       491,-0.08713050078,0.0374747664,0.360,58021.4005,
                        "67.80%"),
    wetmoreland_2021 = c("Westmoreland et al.",2021,2017.5,"United States",
                         5817, -0.03901322528, 0.02095646939, 0.360, 58021.4005,
                          "53.30%"),
    driver 2020 = c("Driver et al.",2020,2017, "United States",
                    123,-0.122,0.061,0.360,58021.4005,"67.80%"),
    zhou_2012 = c("Zhou et al.",2012,2009.5,"China",
                  265, -0.67140204, 0.1222885987, 0.680, 8094.363367,
                  "67.80%")
)
rownames(prep_effect_lor_df) <- c("Authors", "Year",</pre>
                                   "Median Study Year", "Countries",
                                   "Sample Size", "Effect Size",
                                   "Effect Size Variance",
                                   "Homophobic Climate Index (HCI)",
                                   "GDP per Capita",
                                   "Percent Willing")
```

```
tprep_effect_lor_df <- as.data.frame(t(prep_effect_lor_df))</pre>
tprep_effect_lor_df <- tprep_effect_lor_df %>%
     mutate_at(c(3,5,6,7,8,9), as.numeric)
prep_esize <- rep(0,17)</pre>
prep_esize_var <- rep(0,17)</pre>
for (i in c(1:17)){
  prep_e_result <- escalc("OR",</pre>
                      yi=tprep_effect_lor_df[i,6],
                      sei=tprep_effect_lor_df[i,7],
                      ni=tprep_effect_lor_df[i,5])
  prep_esize[i] <- prep_e_result$yi</pre>
 prep_esize_var[i] <- prep_e_result$vi</pre>
  i <- i + 1
}
tprep_effect_lor_df$`Effect Size` <- prep_esize</pre>
tprep_effect_lor_df$`Effect Size Variance` <- prep_esize_var</pre>
tprep_effect_lor_df$`Standardized GDP per Capita` <-</pre>
  (tprep_effect_lor_df$`GDP per Capita`-mean(tprep_effect_lor_df$`GDP per Capita`))/(sd(tprep_effect_lor_df$`GDP per Capita`))/
tprep_effect_lor_df <- tprep_effect_lor_df %>% arrange(Authors)
knitr::kable(tprep_effect_lor_df %>%
                select(Authors, Year, Countries, `Sample Size`,
                        `Percent Willing`, `Effect Size`,
                        `Effect Size Variance`,`Median Study Year`,
                        `Standardized GDP per Capita`, `Homophobic Climate Index (HCI)`),
              digits = 3, row.names=FALSE)
```

|            |      |            |                |         |        | E.C.     | 3.5.11 | G. 1 1. 1    |               |
|------------|------|------------|----------------|---------|--------|----------|--------|--------------|---------------|
|            |      |            |                |         |        | Effect   | Median | Standardized | Homophobic    |
|            |      | S          | $_{ m lample}$ | Percent | Effect | Size     | Study  | GDP per      | Climate Index |
| Authors    | Year | Countries  | Size           | Willing | Size   | Variance | Year   | Capita       | (HCI)         |
| Ahouda     | 2020 | Benin      | 400            | 35.70%  | -      | 0.084    | 2018.0 | -1.217       | 0.781         |
| et al.     |      |            |                |         | 0.546  |          |        |              |               |
| Ayala et   | 2013 | Multinatio | <b>3174</b> 8  | 80.80%  | 0.258  | 0.006    | 2012.0 | -0.704       | 0.515         |
| al.        |      |            |                |         |        |          |        |              |               |
| Bil et al. | 2015 | Netherland | d270           | 55.70%  | _      | 0.018    | 2012.5 | 0.497        | 0.131         |
|            |      |            |                |         | 0.452  |          |        |              |               |
| Draper     | 2017 | Myanmar    | 432            | 62.20%  | _      | 0.016    | 2014.0 | -1.215       | 0.797         |
| et al.     |      |            |                |         | 0.124  |          |        |              |               |
| Driver et  | 2020 | United     | 123            | 67.80%  | _      | 0.004    | 2017.0 | 0.954        | 0.360         |
| al.        |      | States     |                |         | 0.122  |          |        |              |               |
| Eaton et   | 2017 | United     | 264            | 43.56%  | _      | 0.007    | 2015.0 | 0.954        | 0.360         |
| al.        |      | States     |                |         | 0.265  |          |        |              |               |
| Golub et   | 2013 | United     | 184            | 55.40%  | 0.027  | 0.024    | 2012.0 | 0.954        | 0.360         |
| al.        |      | States     |                |         |        |          |        |              |               |
| Holloway   | 2017 | United     | 270            | 55.30%  | 0.047  | 0.013    | 2015.0 | 0.954        | 0.360         |
| et al.     |      | States     |                |         |        |          |        |              |               |
| Moskowitz  | 2020 | United     | 491            | 67.80%  | -      | 0.001    | 2019.0 | 0.954        | 0.360         |
| et al.     |      | States     |                |         | 0.087  |          |        |              |               |

|            |                |           |        |         |        | Effect   | Median | Standardized | Homophobic    |
|------------|----------------|-----------|--------|---------|--------|----------|--------|--------------|---------------|
|            |                | ,         | Sample | Percent | Effect | Size     | Study  | GDP per      | Climate Index |
| Authors    | Year           | Countries | Size   | Willing | Size   | Variance | Year   | Capita       | (HCI)         |
| Ogunbajo   | 2019           | United    | 251    | 81.10%  | -      | 0.001    | 2019.0 | 0.954        | 0.360         |
| et al      | A              | States    |        |         | 0.012  |          |        |              |               |
| Sun et     | 2021           | China     | 612    | 35.00%  | -      | 0.008    | 2018.0 | -0.949       | 0.680         |
| al.        |                |           |        |         | 0.155  |          |        |              |               |
| Uthappa    | 2017           | India     | 271    | 99.00%  | -      | 0.461    | 2015.0 | -1.192       | 0.663         |
| et al.     |                |           |        |         | 1.326  |          |        |              |               |
| Wang et    | 2020           | China     | 70     | 67.10%  | -      | 0.076    | 2018.0 | -0.949       | 0.680         |
| al.        |                |           |        |         | 1.040  |          |        |              |               |
| Wang et    | 2018           | China     | 403    | 52.90%  | -      | 1.255    | 2017.0 | -0.949       | 0.680         |
| al.        |                |           |        |         | 0.729  |          |        |              |               |
| Westmorela | a <b>26</b> 21 | United    | 5817   | 53.30%  | -      | 0.000    | 2017.5 | 0.954        | 0.360         |
| et al.     |                | States    |        |         | 0.039  |          |        |              |               |
| Zhang &    | 2022           | United    | 318    | 81.80%  | 0.084  | 0.001    | 2019.5 | 0.954        | 0.360         |
| Liu        |                | States    |        |         |        |          |        |              |               |
| Zhou et    | 2012           | China     | 265    | 67.80%  | -      | 0.015    | 2009.5 | -0.949       | 0.680         |
| al.        |                |           |        |         | 0.671  |          |        |              |               |

#### 2.2.2 Random Effects Models

```
res_prep <- rma(`Effect Size`, `Effect Size Variance`,</pre>
               data=tprep_effect_lor_df)
res_prep
##
## Random-Effects Model (k = 17; tau^2 estimator: REML)
## tau^2 (estimated amount of total heterogeneity): 0.0638 (SE = 0.0285)
## tau (square root of estimated tau^2 value):
                                                   0.2526
## I^2 (total heterogeneity / total variability):
## H^2 (total variability / sampling variability): 24.35
##
## Test for Heterogeneity:
## Q(df = 16) = 112.6462, p-val < .0001
## Model Results:
##
## estimate
               se
                       zval
                               pval
                                       ci.lb ci.ub
## -0.1707 0.0711 -2.4010 0.0164 -0.3101 -0.0314 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
rma(`Effect Size`, `Effect Size Variance`,
data=tprep_effect_lor_df[-17,])
##
## Random-Effects Model (k = 16; tau^2 estimator: REML)
## tau^2 (estimated amount of total heterogeneity): 0.0372 (SE = 0.0184)
## tau (square root of estimated tau^2 value):
## I^2 (total heterogeneity / total variability):
```

```
## H^2 (total variability / sampling variability): 15.33
##
## Test for Heterogeneity:
## Q(df = 15) = 84.2055, p-val < .0001
## Model Results:
##
## estimate
                 se
                        zval
                                pval
                                        ci.lb
                                                 ci.ub
   -0.1166 0.0586 -1.9886 0.0467
                                     -0.2314 -0.0017 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
plot(influence(rma(`Effect Size`, `Effect Size Variance`,
                   data=tprep_effect_lor_df[-17,])))
                   rstudent
                                                                  dffits
                                             0.2
                                             -0.6
                                                 1 2 3 4 5 6
         3
             5 6 7 8 9
                                 13
                                      15
                                                               7
                                                                                   15
           4
                            11
                                                                  8 9
                    cook.d
                                                                  cov.r
0.3
                                 13
                                                 1 2 3 4 5 6 7 8 9
    1 2 3 4 5 6 7 8 9
                            11
                                      15
                                                                         11
                                                                              13
                                                                                   15
                   tau2.del
                                                                 QE.del
                                             75
                                             9
                                                 1 2 3 4 5 6 7 8 9
    1 2 3 4 5 6 7 8 9
                            11
                                 13
                                      15
                                                                              13
                                                                                   15
                                                                 weight
                     hat
0.00
                                             0
    1 2 3 4 5 6 7 8 9
                            11
                                 13
                                      15
                                                                              13
                                                                                   15
                                                   2
                                                      3 4 5 6 7
                                                                  8 9
                                                                         11
funnel(res_prep, level=c(90, 95, 99),
       shade=c("white", "gray55", "gray75"), refline=0, legend=TRUE,
       main = "Impact of PrEP Stigma \n on PrEP Willingness")
```

# Impact of PrEP Stigma on PrEP Willingness



## Observed Odicome

# Impact of PrEP Stigma on PrEP Willingness





## REML
## logLik: -6.208241
## deviance: 12.416483
## AIC: 16.416483
## BIC: 17.961660
## AICc: 17.339560

qqnorm(res\_prep)



#### 2.2.3 Mixed Effects Models

```
reg_prep_gdp <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tprep_effect_lor_df,
              mods = ~ `Standardized GDP per Capita`,
              method = "REML")
reg_prep_gdp
##
## Mixed-Effects Model (k = 17; tau^2 estimator: REML)
## tau^2 (estimated amount of residual heterogeneity):
                                                             0.0601 \text{ (SE = } 0.0281)
## tau (square root of estimated tau^2 value):
                                                             0.2452
## I^2 (residual heterogeneity / unaccounted variability): 95.76%
## H^2 (unaccounted variability / sampling variability):
                                                             23.60
## R^2 (amount of heterogeneity accounted for):
                                                             5.83%
##
## Test for Residual Heterogeneity:
## QE(df = 15) = 105.8130, p-val < .0001
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.7369, p-val = 0.0532
##
## Model Results:
##
##
                                   estimate
                                                                         ci.lb
                                                                 pval
                                                 se
                                                         zval
## intrcpt
                                    -0.2044 0.0718 -2.8489 0.0044 -0.3451
```

```
## `Standardized GDP per Capita`
                                   0.1465 0.0758
                                                   1.9331 0.0532 -0.0020
##
                                    ci.ub
## intrcpt
                                  -0.0638
  `Standardized GDP per Capita`
                                  0.2951
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
forest(reg_prep_gdp, slab = paste(tprep_effect_lor_df$Authors,
                                 tprep_effect_lor_df$`Year`, sep = ", "),
       main = "Impact of PrEP Stigma \n on PrEP Willingness, Moderated by GDP per Capita",
                xlim = c(-6, 4), at = log(c(0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)),
       atransf = exp, cex = 0.75)
op <- par(cex = 0.75, font = 2)
text(-6, 19, "Author(s) and Year", pos = 4)
text(4, 19, "Relative Risk [95% CI]", pos = 2)
```

# Impact of PrEP Stigma on PrEP Willingness, Moderated by GDP per Capita

#### Author(s) and Year Relative Risk [95% CI] Ahouda et al., 2020 0.58 [0.33, 1.02] 1.29 [1.12, 1.50] Ayala et al., 2013 Bil et al., 2015 0.64 [0.49, 0.83] Draper et al., 2017 0.88 [0.69, 1.13] Driver et al., 2020 0.89 [0.79, 1.00] Eaton et al., 2017 0.77 [0.65, 0.90] Golub et al., 2013 1.03 [0.76, 1.39] 1.05 [0.84, 1.31] Holloway et al., 2017 Moskowitz et al., 2020 0.92 [0.85, 0.99] Ogunbajo et al, 2019 A 0.99 [0.94, 1.04] Sun et al., 2021 0.86 [0.72, 1.02] Uthappa et al., 2017 0.27 [0.07, 1.00] Wang et al., 2020 0.35 [0.21, 0.61] Wang et al., 2018 0.48 [0.05, 4.33] Westmoreland et al., 2021 0.96 [0.92, 1.00] 1.09 [1.04, 1.14] Zhang & Liu, 2022 Zhou et al., 2012 0.51 [0.40, 0.65] 0.25 0.5 1.5 Observed Outcome

```
par(op)

reg_prep_gdp_inf.ME <- influence(reg_prep_gdp)
plot(reg_prep_gdp_inf.ME)</pre>
```





```
reg_prep_mod.RE.ML <- rma(yi=`Effect Size`,</pre>
                        vi=`Effect Size Variance`.
                        data=tprep_effect_lor_df,
                        method="ML")
reg_prep_hci_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tprep_effect_lor_df,
              mods = ~ `Homophobic Climate Index (HCI)`,
              method = "ML")
reg_prep_gdp_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tprep_effect_lor_df,
              mods = ~ `Standardized GDP per Capita`,
              method = "ML")
reg_prep_year_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tprep_effect_lor_df,
              mods = ~ `Median Study Year`,
              method = "ML")
reg_prep_gdp_hci_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tprep_effect_lor_df,
              mods = ~ `Standardized GDP per Capita` +
                `Homophobic Climate Index (HCI)`,
              method = "ML")
reg_prep_gdp_yr_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = tprep_effect_lor_df,
              mods = ~ `Standardized GDP per Capita` +
                'Median Study Year',
              method = "ML")
knitr::kable(cbind(fitstats(reg_prep_mod.RE.ML),
                   fitstats(reg_prep_gdp_mod.ME.ML),
                   fitstats(reg_prep_year_mod.ME.ML),
                   fitstats(reg_prep_hci_mod.ME.ML),
                   fitstats(reg_prep_gdp_yr_mod.ME.ML)),
             digits = 3, col.names=c("Random Effects",
                                      "Mixed Effects (GDP)",
                                      "Mixed Effects (Year)",
                                      "Mixed Effects (HCI)",
                                      "Mixed Effects (Year + GDP)"))
```

|           | Random  | Mixed Effects | Mixed Effects | Mixed Effects | Mixed Effects (Year + |
|-----------|---------|---------------|---------------|---------------|-----------------------|
|           | Effects | (GDP)         | (Year)        | (HCI)         | GDP)                  |
| logLik:   | -5.875  | -3.925        | -5.543        | -4.668        | -3.915                |
| deviance: | 56.339  | 52.440        | 55.674        | 53.925        | 52.420                |
| AIC:      | 15.750  | 13.851        | 17.085        | 15.336        | 15.831                |
| BIC:      | 17.417  | 16.351        | 19.585        | 17.836        | 19.163                |
| AICc:     | 16.607  | 15.697        | 18.931        | 17.182        | 19.164                |

#### 2.3 HIV Stigma

#### 2.3.1 Effect Sizes

```
hiv effect df <- data.frame(
    zhang_liu_2022 = c("Zhang & Liu", 2022, 2019.5, "United States",
                        315,0.4596033465,0.2507835062,0.360,58021.4005,
                        "81.80%"),
    meyers_2018 = c("Meyers et al.",2018,2013.5,"China",
                     200,0.2282825605,0.1473118038,0.680,8094.363367,
                     "51.50%"),
    chaung_2018 = c("Chuang et al.",2018,2014,"Taiwan",
                     176,0.5799862723,0.215992354,0.580,23071,"35.00%"),
    wheelock_2013 = c("Wheelock et al.",2013,2011,"Thailand",
                       260,0.5003416684,0.2077108941,0.533,5993.305516,
                       "88.40%"),
    fallon_2015 = c("Fallon et al.",2015,2014, "United States",
                     398,0.2297640034,0.1135258395,0.360,58021.4005,"48.00%")
)
rownames(hiv_effect_df) <- c("Authors", "Year",</pre>
                              "Median Study Year", "Countries",
                               "Sample Size", "LOR", "LOR SE",
                               "Homophobic Climate Index (HCI)",
                              "GDP per Capita", "Percent Willing")
thiv_effect_df <- as.data.frame(t(hiv_effect_df))</pre>
thiv_effect_df <- thiv_effect_df %>%
     mutate_at(c(2,3,5,6,7,8,9), as.numeric)
hiv_esize \leftarrow rep(0,5)
hiv_esize_var <- rep(0,5)
for (i in c(1:5)){
  hiv_e_result <- escalc("OR",</pre>
                      yi=thiv_effect_df[i,6],
                      sei=thiv_effect_df[i,7],
                     ni=thiv_effect_df[i,5])
  hiv_esize[i] <- hiv_e_result$yi
 hiv_esize_var[i] <- hiv_e_result$vi</pre>
  i < -i + 1
}
thiv_effect_df$`Standardized GDP per Capita` <-</pre>
  (thiv_effect_df$`GDP per Capita`-mean(thiv_effect_df$`GDP per Capita`))/(sd(thiv_effect_df$`GDP per C
thiv_effect_df$`Effect Size` <- hiv_esize</pre>
thiv_effect_df$`Effect Size Variance` <- hiv_esize_var</pre>
thiv_effect_df <- thiv_effect_df %>% arrange(Authors) %>%
  select(-c("LOR","LOR SE"))
knitr::kable(thiv_effect_df %>%
                select(Authors, Year, Countries, `Sample Size`,
                       `Percent Willing`, `Effect Size`,
                       `Effect Size Variance`, `Median Study Year`,
                       `Standardized GDP per Capita`, `Homophobic Climate Index (HCI)`),
```

#### digits = 3, row.names=FALSE)

|                            |                       | Sample | Percent | Effect | Effect<br>Size | Median<br>Study | Standardized<br>GDP per | Homophobic<br>Climate Index |
|----------------------------|-----------------------|--------|---------|--------|----------------|-----------------|-------------------------|-----------------------------|
| Authors                    | Year Countries        | -      | Willing | Size   | Variance       | Year            | Capita                  | (HCI)                       |
| Chuang                     | 2018 Taiwan           | 176    | 35.00%  | 0.580  | 0.047          | 2014.0          | -0.293                  | 0.580                       |
| et al.<br>Fallon<br>et al. | 2015 United<br>States | 398    | 48.00%  | 0.230  | 0.013          | 2014.0          | 1.059                   | 0.360                       |
| Meyers et al.              | 2018 China            | 200    | 51.50%  | 0.228  | 0.022          | 2013.5          | -0.872                  | 0.680                       |
| Wheelock<br>et al.         | 2013 Thailand         | 260    | 88.40%  | 0.500  | 0.043          | 2011.0          | -0.954                  | 0.533                       |
| Zhang<br>& Liu             | 2022 United<br>States | 315    | 81.80%  | 0.460  | 0.063          | 2019.5          | 1.059                   | 0.360                       |

### 2.3.2 Random Effects Models

```
res_hiv <- rma(`Effect Size`, `Effect Size Variance`,</pre>
              data=thiv_effect_df, method="REML")
res_hiv
## Random-Effects Model (k = 5; tau^2 estimator: REML)
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0189)
## tau (square root of estimated tau^2 value):
## I^2 (total heterogeneity / total variability):
                                                   0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 4) = 3.5290, p-val = 0.4735
## Model Results:
## estimate
              se zval
                              pval ci.lb ci.ub
   0.3240 0.0737 4.3977 <.0001 0.1796 0.4685 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
funnel(res_hiv, level=c(90, 95, 99), shade=c("white", "gray55", "gray75"),
      refline=0, legend=TRUE,
       main = "Impact of HIV Stigma \n on PrEP Willingness")
```

# Impact of HIV Stigma on PrEP Willingness



### **Observed Outcome**

# Impact of HIV Stigma on PrEP Willingness



**Observed Outcome** 

par(op)

res\_hiv\_inf.ME <- influence(res\_hiv)
plot(res\_hiv\_inf.ME)</pre>



## REML ## logLik: 1.3347175 ## deviance: -2.6694349 ## AIC: 1.3305651 ## BIC: 0.1031538 ## AICc: 13.3305651

qqnorm(res\_hiv)



```
rma(`Effect Size`, `Effect Size Variance`,
    data=thiv_effect_df[-2,], method="REML")

##
## Random-Effects Model (k = 4; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0019 (SE = 0.0330)
## tau (square root of estimated tau^2 value): 0.0430
## I^2 (total heterogeneity / total variability): 4.42%
## H^2 (total variability / sampling variability): 1.05
##
## Test for Heterogeneity:
## Q(df = 3) = 2.3373, p-val = 0.5054
##
```

ci.ub

ci.lb

pval

0.3957 0.0996 3.9721 <.0001 0.2005 0.5910 \*\*\*

## Model Results:

se

zval

## estimate

##

## ##







### 2.3.3 Mixed Effects Models

```
##
## Mixed-Effects Model (k = 5; tau^2 estimator: REML)
## tau^2 (estimated amount of residual heterogeneity):
                                                             0.0069 \text{ (SE = } 0.0352)
## tau (square root of estimated tau^2 value):
                                                             0.0829
## I^2 (residual heterogeneity / unaccounted variability): 15.83%
## H^2 (unaccounted variability / sampling variability):
                                                             1.19
## R^2 (amount of heterogeneity accounted for):
                                                             0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 3) = 3.2078, p-val = 0.3607
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.2158, p-val = 0.6423
## Model Results:
##
```

```
pval
##
                                                                     ci.lb
                                 estimate
                                             se
                                                    zval
                                   0.3436 0.0854 4.0224 <.0001
                                                                    0.1762
## intrcpt
## `Standardized GDP per Capita`
                                  -0.0428 0.0921 -0.4645 0.6423 -0.2233
##
                                  ci.ub
## intrcpt
                                 0.5111 ***
## `Standardized GDP per Capita`
                                 0.1377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
forest(reg_hiv_gdp, slab = paste(thiv_effect_df$Authors,
                                thiv_effect_df$`Year`, sep = ", "),
      main = "Impact of HIV Stigma \n on PrEP Willingness, Moderated by GDP per Capita",
                xlim = c(-6, 4),
      at = log(c(0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2)), atransf = exp,
                cex = 0.75)
op <- par(cex = 0.75, font = 2)
text(-6, 7, "Author(s) and Year", pos = 4)
text(4, 7, "Relative Risk [95% CI]", pos = 2)
```

# Impact of HIV Stigma on PrEP Willingness, Moderated by GDP per Capita







```
reg_hiv_mod.RE.ML <- rma(yi=`Effect Size`,</pre>
                         vi=`Effect Size Variance`,
                         data=thiv_effect_df,
                         method="ML")
reg_hiv_gdp_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = thiv_effect_df,
              mods = ~ `Standardized GDP per Capita`,
              method = "ML")
reg_hiv_year_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = thiv_effect_df,
              mods = ~ `Median Study Year`,
              method = "ML")
reg_hiv_hci_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = thiv_effect_df,
              mods = ~ `Homophobic Climate Index (HCI)`,
              method = "ML")
reg_hiv_year_gdp_mod.ME.ML <- rma(yi = `Effect Size`,</pre>
              vi = `Effect Size Variance`,
              data = thiv_effect_df,
              mods = ~ `Median Study Year` + `Standardized GDP per Capita`,
              method = "ML")
knitr::kable(cbind(fitstats(reg_hiv_mod.RE.ML),
                   fitstats(reg_hiv_gdp_mod.ME.ML),
                   fitstats(reg_hiv_year_mod.ME.ML),
                   fitstats(reg_hiv_hci_mod.ME.ML),
                   fitstats(reg_hiv_year_gdp_mod.ME.ML)),
             digits = 3, col.names=c("Random Effects",
                                      "Mixed Effects (GDP)",
                                      "Mixed Effects (Year)",
                                      "Mixed Effects (HCI)",
                                      "Mixed Effects (Year + GDP)"))
```

|           | Random  | Mixed Effects | Mixed Effects | Mixed Effects | Mixed Effects (Year + |
|-----------|---------|---------------|---------------|---------------|-----------------------|
|           | Effects | (GDP)         | (Year)        | (HCI)         | GDP)                  |
| logLik:   | 2.219   | 2.380         | 2.221         | 2.255         | 2.479                 |
| deviance: | 3.529   | 3.208         | 3.525         | 3.456         | 3.010                 |
| AIC:      | -0.438  | 1.241         | 1.557         | 1.489         | 3.043                 |
| BIC:      | -1.219  | 0.069         | 0.386         | 0.317         | 1.481                 |
| AICc:     | 5.562   | 25.241        | 25.557        | 25.489        | 43.043                |