Saving and Breaking Entanglement

Project Outside the Course Scope

Enrique Escobar David Ullrich

Motivation and Big Picture

Entanglement and Noise

- Entanglement is a fundamental resource for quantum computing and communication.
- Quantum channels model the noise and open-system dynamics that degrade entanglement.

Motivation and Big Picture

Entanglement and Noise

- Entanglement is a fundamental resource for quantum computing and communication.
- **Quantum channels** model the noise and open-system dynamics that degrade entanglement.

Core Question

Which quantum channels **preserve** entanglement under repeated application, and which **destroy** it?

Breaking Entanglement

Separable States

$$S_{AB} = \left\{ \sum_{i} P_{i} \otimes Q_{i} \middle| P_{i}, Q_{i} \geq 0 \ \forall i \right\} \subset M_{d_{1}}(\mathbb{C}) \otimes M_{d_{2}}(\mathbb{C})$$

Breaking Entanglement

Separable States

$$S_{AB} = \left\{ \sum_{i} P_{i} \otimes Q_{i} \middle| P_{i}, Q_{i} \geq 0 \ \forall i \right\} \subset M_{d_{1}}(\mathbb{C}) \otimes M_{d_{2}}(\mathbb{C})$$

Entanglement-Breaking Channel (EB)

A channel Φ is **entanglement-breaking** if

$$(\Phi \otimes \mathsf{id})(\rho_{AB}) \in \mathcal{S}_{AB} \quad \forall \rho_{AB}$$

Breaking Entanglement

Entanglement-Breaking Index

The **entanglement-breaking index** $n(\Phi)$ is the smallest N such that Φ^N is EB, or $n(\Phi) = \infty$ if no such N exists.

Entanglement-Breaking Index

The entanglement-breaking index $n(\Phi)$ is the smallest N such that Φ^N is EB, or $n(\Phi) = \infty$ if no such N exists.

Eventually Entanglement-Breaking (EEB)

 Φ is eventually entanglement-breaking if $n(\Phi) < \infty$.

UNIVERSITY OF COPENHAGEN

Breaking Entanglement

Entanglement-Breaking Index

The **entanglement-breaking index** $n(\Phi)$ is the smallest N such that Φ^N is EB, or $n(\Phi) = \infty$ if no such N exists.

Eventually Entanglement-Breaking (EEB)

 Φ is eventually entanglement-breaking if $n(\Phi) < \infty$.

Inclusion Relations

$$\mathsf{EB} \subset \mathsf{EEB}$$

Entanglement-Saving (ES) Channel

 Φ is **entanglement-saving** if Φ^n is not entanglement-breaking for any $n \in \mathbb{N}$ (i.e $n(\Phi) = \infty$).

Saving Entanglement

Entanglement-Saving (ES) Channel

 Φ is **entanglement-saving** if Φ^n is not entanglement-breaking for any $n \in \mathbb{N}$ (i.e $n(\Phi) = \infty$).

Asymptotically Entanglement-Saving (AES)

 Φ is **AES** if none of the limit points of $(\Phi^n)_{n\in\mathbb{N}}$ are entanglement-breaking.

Saving Entanglement

Entanglement-Saving (ES) Channel

 Φ is **entanglement-saving** if Φ^n is not entanglement-breaking for any $n \in \mathbb{N}$ (i.e $n(\Phi) = \infty$).

Asymptotically Entanglement-Saving (AES)

 Φ is **AES** if none of the limit points of $(\Phi^n)_{n\in\mathbb{N}}$ are entanglement-breaking.

Universal Entanglement-Preserving (UEP)

 Φ is **UEP** if $(\Phi \otimes id)(\rho_{AB})$ is entangled whenever ρ_{AB} is entangled.

UNIVERSITY OF COPENHAGEN

Saving Entanglement

Entanglement-Saving (ES) Channel

 Φ is **entanglement-saving** if Φ^n is not entanglement-breaking for any $n \in \mathbb{N}$ (i.e $n(\Phi) = \infty$).

Asymptotically Entanglement-Saving (AES)

 Φ is **AES** if none of the limit points of $(\Phi^n)_{n\in\mathbb{N}}$ are entanglement-breaking.

Universal Entanglement-Preserving (UEP)

 Φ is **UEP** if $(\Phi \otimes id)(\rho_{AB})$ is entangled whenever ρ_{AB} is entangled.

Inclusion Relations

$$UEP \subset AES \subset ES$$

The Landscape of Quantum Channels

UNIVERSITY OF COPENHAGEN

Main Result — UEP Channels are Unitaries

Theorem (Lami & Giovannetti, Thm 17)

The only universal entanglement-preserving (UEP) channels are unitary evolutions:

$$\Phi(\rho) = U\rho U^{\dagger}$$

for some unitary U.

Wigner's Theorem

Theorem (Wigner). Let $T: \mathcal{H} \to \mathcal{H}$ (not necessarily linear) on a Hilbert space \mathcal{H} . Suppose

$$|\langle T(x)|T(y)\rangle| = |\langle x|y\rangle| \quad \forall x, y \in \mathcal{H}.$$

Then there exists a real function $\varphi:\mathcal{H}\to\mathbb{R}$ and an isometry or anti-isometry $V:\mathcal{H}\to\mathcal{H}$ such that

$$T(x) = e^{i\varphi(x)} Vx.$$

In particular, if \mathcal{H} is finite-dimensional, V is unitary or anti-unitary.

UEP Channels are Unitary Evolutions: Steps 1 & 2

Step 1: Strict Positivity of $\Phi(1)$

Suppose $\exists |\alpha\rangle$ such that $\langle \alpha | \Phi(1) | \alpha \rangle = 0$.

$$\Rightarrow \Phi^{\dagger}(|\alpha\rangle\langle\alpha|) = 0 \Rightarrow 0 \in \sigma(\Phi)$$

This leads to a contradiction with the UEP property (see Lemma 16 in Lami).

UEP Channels are Unitary Evolutions: Steps 1 & 2

Step 1: Strict Positivity of $\Phi(1)$

Suppose $\exists |\alpha\rangle$ such that $\langle \alpha | \Phi(1) | \alpha \rangle = 0$.

$$\Rightarrow \Phi^{\dagger}(|\alpha\rangle\langle\alpha|) = 0 \Rightarrow 0 \in \sigma(\Phi)$$

This leads to a contradiction with the UEP property (see Lemma 16 in Lami).

Step 2: Reduction to the Unital Case

Let $A := \Phi(1)^{1/2}$.

Define:

$$\Psi(X) := A^{-1}\Phi(X)A^{-1}$$

Then Ψ is UEP, CP, and

$$\Psi(1) = 1$$

Step 3: Preservation of Non-Invertibility

Statement

If $\rho \geq 0$ and $\det \rho = 0$, then $\det \Psi(\rho) = 0$.

Step 3: Preservation of Non-Invertibility

Statement

If $\rho \geq 0$ and $\det \rho = 0$, then $\det \Psi(\rho) = 0$.

Proposition 15

 $\rho_A \otimes \rho_B \in \partial \mathcal{S}_{AB} \iff \det \rho_A \cdot \det \rho_B = 0$

Step 3: Preservation of Non-Invertibility

Statement

If $\rho \geq 0$ and $\det \rho = 0$, then $\det \Psi(\rho) = 0$.

Proposition 15

$$\rho_A \otimes \rho_B \in \partial \mathcal{S}_{AB} \iff \det \rho_A \cdot \det \rho_B = 0$$

Sketch

•
$$\rho \otimes \frac{1}{d} \in \partial \mathcal{S}_{AB}$$

(Prop. 15)

- $\exists (\sigma_{\epsilon})_{\epsilon>0} \notin \mathcal{S}_{AB}, \ \sigma_{\epsilon} \to \rho \otimes \frac{1}{d}$
- Ψ UEP $\Rightarrow (\Psi \otimes id)(\sigma_{\epsilon}) \notin \mathcal{S}_{AB}$
- Ψ continuous $\Rightarrow \lim_{\epsilon \to 0} (\Psi \otimes id)(\sigma_{\epsilon}) = \Psi(\rho) \otimes \frac{1}{d}$
- $\Psi(\rho) \otimes \frac{1}{d} \in \partial \mathcal{S}_{AB} \Rightarrow \det \Psi(\rho) = 0$

(Prop. 15)

Step 4: Preservation for Hermitian Matrices

Statement

If $X = X^{\dagger}$ and $\det X = 0$, then $\det \Psi(X) = 0$.

Step 4: Preservation for Hermitian Matrices

Statement

If $X = X^{\dagger}$ and $\det X = 0$, then $\det \Psi(X) = 0$.

Sketch

- $X^2 \ge 0$, $\det(X^2) = 0$
- Step 3 \Rightarrow det $\Psi(X^2) = 0$
- $\exists |\eta\rangle : \langle \eta | \Psi(X^2) | \eta \rangle = 0$
- Kadison's inequality:

$$0 = \langle \eta | \Psi(X^2) | \eta \rangle = \langle \eta | \Psi(X^{\dagger}X) | \eta \rangle \ge (\Psi(X) | \eta \rangle)^{\dagger} (\Psi(X) | \eta \rangle)$$

• $\Rightarrow \Psi(X)|\eta\rangle = 0 \Rightarrow \det \Psi(X) = 0$

Step 5: Preservation of the Spectrum

Statement

If $X=X^{\dagger}$, then $\sigma(\Psi(X))=\sigma(X)$.

Step 5: Preservation of the Spectrum

Statement

If
$$X=X^{\dagger}$$
, then $\sigma(\Psi(X))=\sigma(X)$.

Sketch

- $\lambda \in \sigma(X) \stackrel{\mathsf{Step}}{\Rightarrow} \det \Psi(X \lambda \mathbb{1}) = 0$
- Ψ linear and unital $\Rightarrow \lambda \in \sigma(\Psi(X))$
- For X Hermitian and non-degenerate, $\sigma(X)\subseteq \sigma(\Psi(X))$ and both have d elements, so $\sigma(X)=\sigma(\Psi(X))$
- ullet For any $X=X^\dagger$, take $(X_\epsilon)_\epsilon$ non-degenerate, $X_\epsilon o X$
- By continuity (Weyl's theorem):

$$\sigma(\Psi(X)) = \lim_{\epsilon \to 0} \sigma(\Psi(X_\epsilon)) = \lim_{\epsilon \to 0} \sigma(X_\epsilon) = \sigma(X)$$

Step 6: Pure States and Inner Products

Statement

 Ψ sends pure states to pure states and preserves $|\langle\alpha|\beta\rangle|.$

Step 6: Pure States and Inner Products

Statement

 Ψ sends pure states to pure states and preserves $|\langle \alpha | \beta \rangle|$.

Sketch

- For $|\alpha\rangle$, the spectrum is $\sigma(|\alpha\rangle\langle\alpha|) = \{1, 0, \dots, 0\}$
- Spectrum preservation $\Rightarrow \Psi(|\alpha\rangle\langle\alpha|) = |\alpha'\rangle\langle\alpha'|$
- For $|\alpha\rangle$, $|\beta\rangle$:

$$\sigma(|\alpha\rangle\langle\alpha|+|\beta\rangle\langle\beta|) = \{1+|\langle\alpha|\beta\rangle|, 1-|\langle\alpha|\beta\rangle|, 0, \dots, 0\}$$

Spectrum preservation:

$$\sigma(\Psi(|\alpha\rangle\langle\alpha|) + \Psi(|\beta\rangle\langle\beta|)) = \{1 + |\langle\alpha'|\beta'\rangle|, 1 - |\langle\alpha'|\beta'\rangle|, 0, \dots, 0\}$$

•
$$\Rightarrow |\langle \alpha | \beta \rangle| = |\langle \alpha' | \beta' \rangle|$$

Step 7: Conclusion via Wigner's Theorem

Statement

 Ψ is conjugation by a unitary: $\Psi(X) = \mathit{UXU}^\dagger$ for all X.

Step 7: Conclusion via Wigner's Theorem

Statement

 Ψ is conjugation by a unitary: $\Psi(X) = UXU^{\dagger}$ for all X.

Sketch

- By Step 6: Ψ preserves $|\langle \alpha | \beta \rangle|$
- Wigner's Theorem $\Rightarrow |\alpha'\rangle = e^{i\varphi(\alpha)}U|\alpha\rangle$
- $\Psi(|\alpha\rangle\langle\alpha|) = U|\alpha\rangle\langle\alpha|U^{\dagger}$
- By linearity, $\Psi(X) = UXU^{\dagger}$ for all X
- ullet Returning to Φ :

$$\Phi(X) = AUXU^{\dagger}A$$

where
$$A = \Phi(1)^{1/2}$$

- Trace preservation $\Rightarrow A = 1$
- $\bullet \Rightarrow \Phi(X) = UXU^{\dagger}$

Theorem 21: Characterization of ES Channels (Nonzero Determinant)

Statement

Let $\phi \in \mathbf{CPt}_d$ be a quantum channel with $a_\phi(0) < 2(d-1)$ (in particular, $\det \phi \neq 0$ suffices). The following are equivalent:

- 1. ϕ is entanglement-saving (ES)
- 2. ϕ has a semipositive fixed point, or $|\sigma_P(\phi)| \geq 2$
- 3. $\exists 1 \leq n \leq d$ such that ϕ^n has a semipositive fixed point

Theorem 21: Characterization of ES Channels (Nonzero Determinant)

Statement

Let $\phi \in \mathbf{CPt}_d$ be a quantum channel with $a_{\phi}(0) < 2(d-1)$ (in particular, $\det \phi \neq 0$ suffices). The following are equivalent:

- 1. ϕ is entanglement-saving (ES)
- 2. ϕ has a semipositive fixed point, or $|\sigma_P(\phi)| \geq 2$
- 3. $\exists 1 \leq n \leq d$ such that ϕ^n has a semipositive fixed point

Notation

$$\sigma_P(\phi) = \{\lambda \in \sigma(\phi) \mid |\lambda| = 1\}$$
 (peripheral spectrum)

Open Question: Why Do ES Channels Have Measure Zero?

Claim from Lami & Giovannetti

"The set of ES channels has measure zero in the space of all quantum channels."

Open Question: Why Do ES Channels Have Measure Zero?

Claim from Lami & Giovannetti

"The set of ES channels has measure zero in the space of all quantum channels."

Open Questions for Discussion

- Why exactly do these spectral constraints lead to measure zero?
- What does this mean physically for the "probability" of encountering ES channels?
- Can anyone provide intuition for this measure-theoretic argument?

PPT Squared Conjecture

Definitions

A linear map $T: M_{d_1} \to M_{d_2}$ is called

- entanglement breaking if for any positive matrix $X \in (M_{d_2} \otimes M_{d_1})^+$, the matrix $(\mathrm{id}_{d_2} \otimes T)(X)$ is separable.
- completely copositive if $\vartheta_{d_2} \circ T$ is completely positive, where $\vartheta_d: M_d \to M_d$ denotes the matrix transposition map.

PPT Squared Conjecture - Version 1

If a linear map $T:M_d\to M_d$ is both completely positive and completely copositive, then its square $T\circ T$ is entanglement breaking.

Motivation: Quantum Key Distribution

A) Composition of different linear maps

PPT Squared Conjecture - Version 2

For any pair of linear maps $T_1: M_{d_1} \to M_{d_2}$ and $T_2: M_{d_2} \to M_{d_3}$ that are both completely positive and completely copositive, the composition $T_2 \circ T_1$ is entanglement breaking.

$$2) \Rightarrow 1)$$
:

Obvious.

$$1) \Rightarrow 2)$$
:

Assumption: \exists linear maps $T_1:M_{d_1}\to M_{d_2}$ and $T_2:M_{d_2}\to M_{d_3}$ and both CP and PPT, such that the composition $T_2\circ T_1$ is <u>not</u> EB.

A) Composition of different linear maps

$$1) \Rightarrow 2)$$
:

Step 1: Isometric Embedding

Let $V_1:\mathbb{C}^{d_1}\to\mathbb{C}^d$, $V_2:\mathbb{C}^{d_2}\to\mathbb{C}^d$ denote the canonical isometries into the first d_i coordinates of \mathbb{C}^d and $d=\max(d_1,d_2,d_3)$. Define the linear maps $\tilde{T}_1:M_d\to M_d$ and $\tilde{T}_2:M_d\to M_d$ as

$$\tilde{T}_1(X) = T_1(V_1^{\dagger}XV_1) \oplus 0_{(d-d_2)}
\tilde{T}_2(X) = T_2(V_2^{\dagger}XV_2) \oplus 0_{(d-d_3)} \qquad X \in M_d$$

A) Composition of different linear maps

$$1) \Rightarrow 2)$$
:

Step 2: Switch Map

Define the switch map $T:M_d\otimes M_2 o M_d\otimes M_2$ as

$$T(X) = \tilde{T}_1((\mathbb{I}_d \otimes \langle 1|)X(\mathbb{I}_d \otimes |1\rangle)) \otimes |2\rangle \langle 2| + \tilde{T}_2((\mathbb{I}_d \otimes \langle 2|)X(\mathbb{I}_d \otimes |2\rangle)) \otimes |1\rangle \langle 1|$$

for any $X \in M_d \otimes M_2$.

Note: T is still completely positive and completely copositive.

A) Composition of different linear maps

$$1) \Rightarrow 2)$$
:

Step 3: Putting it all together

Result in Paper:
$$T_2 \circ T_1(Y) = T \circ T\left(V_1 Y V_1^\dagger \otimes \ket{1}ra{1}\right)$$

$$\textit{Our Result:} \quad \textit{T}_{2} \circ \textit{T}_{1}(\textit{Y}) \oplus 0_{(\textit{d}-\textit{d}_{3})} \otimes \left|1\right\rangle \left\langle 1\right| = \textit{T} \circ \textit{T}\left(\textit{V}_{1}\,\textit{Y}\textit{V}_{1}^{\dagger} \otimes \left|1\right\rangle \left\langle 1\right|\right)$$

By assumption, this channel is not entanglement breaking. Therefore, $T \circ T$ cannot be entanglement breaking either.

B) Connection to local entanglement annihilation

Definition (2-locally entanglement annihilating maps)

A linear map $T:M_{d_1}\to M_{d_2}$ is called 2-locally entanglement annihilating if the image $(T\otimes T)(X)$ is separable for any positive matrix $X\geq 0$.

PPT squared conjecture - Version 3

For any pair of linear maps $T_1:M_{d_1}\to M_{d_2}$ and $T_2:M_{d_3}\to M_{d_4}$, both CP and PPT, the image $(T_1\otimes T_2)(X)$ is separable for any positive matrix $X\in (M_{d_1}\otimes M_{d_3})_+$.

Tricks with maximally entangled state (MES)

Notation: (Unnormalized) MES:
$$|\Omega_d\rangle = \sum_{i=1}^d |i\rangle \otimes |i\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$$

Corresponding matrix: $\omega_d := |\Omega_d\rangle \langle \Omega_d|$

Lemma I.1

Any vector $|\psi\rangle \in \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ can be written as

$$|\psi\rangle = (\mathbb{I}_{d_1} \otimes A) |\Omega_{d_1}\rangle = (B \otimes \mathbb{I}_{d_2}) |\Omega_{d_2}\rangle,$$

with linear maps $A: \mathbb{C}^{d_1} \to \mathbb{C}^{d_2}$ and $B: \mathbb{C}^{d_2} \to \mathbb{C}^{d_1}$.

Lemma I.2

For any map $L:M_{d_1} o M_{d_2}$ that is Hermiticity-preserving (i.e., it maps Hermitian matrices to Hermitian matrices), we have

$$(\mathsf{id}_{d_1} \otimes L)(\omega_{d_1}) = (\vartheta_{d_1} \circ L^* \circ \vartheta_{d_2} \otimes \mathsf{id}_{d_2})(\omega_{d_2}).$$

B) Connection to local entanglement annihilation

$$2) \Rightarrow 3)$$
:

Note: Suffices to check that $(T_1 \otimes T_2)(|\psi\rangle \langle \psi|)$ is separable for any pure state $|\psi\rangle \in \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_3}$.

Rewrite expression using MES-tricks

$$(\mathit{T}_{1}\otimes\mathit{T}_{2})(\left|\psi\right\rangle\left\langle\psi\right|)=\left[\mathsf{id}_{\mathit{d}_{2}}\otimes\left(\mathit{T}_{2}\circ\mathsf{Ad}_{\mathit{A}}\circ\vartheta_{\mathit{d}_{1}}\circ\mathit{T}_{1}^{*}\circ\vartheta_{\mathit{d}_{2}}\right)\right](\left|\Omega_{\mathit{d}_{2}}\right\rangle\left\langle\Omega_{\mathit{d}_{2}}\right|).$$

Note: Ad_A $\circ \vartheta_{d_1} \circ T_1^* \circ \vartheta_{d_2} : M_{d_2} \to M_{d_3}$ is still CP and PPT.

By assumption, their composition is entanglement breaking, and therefore the expression $(T_1 \otimes T_2)(|\psi\rangle \langle \psi|)$ is separable.

B) Connection to local entanglement annihilation

$$3) \Rightarrow 1)$$
:

Choose a choose a map $T: M_d \to M_d$ that is CP and PPT.

$$T_1(X) = (\vartheta_d \circ T^* \circ \vartheta_d)(X)$$

$$T_2(X) = T(X)$$

for any $X \in M_d$. Using the previous tricks for the MES again

Rewrite expression using MES-tricks again

$$(T_1 \otimes T_2)(\omega_d) = ((\vartheta_d \circ T^* \circ \vartheta_d) \otimes T)(\omega_d) = (\mathsf{id}_d \otimes T^2)(\omega_d) = \mathcal{C}_{T^2}$$

By assumption, $(\mathrm{id}_d \otimes T^2)(\omega_d)$ is separable and therefore, T^2 is entanglement breaking.

C) Decomposability of certain positive maps

Definition (Decomposable maps)

A positive map $P: M_{d_1} \to M_{d_2}$ is called *decomposable* if $P = T_1 + \vartheta_{d_2} \circ T_2$, for some CP maps $T_1, T_2 : M_{d_1} \to M_{d_2}$.

PPT squared conjecture - Version 4

For any completely positive and completely copositive map $T: M_{d_1} \to M_{d_2}$ and any positive map $P: M_{d_2} \to M_{d_3}$, the composition $P \circ T : M_{d_1} \to M_{d_3}$ is decomposable.

Important Results

Lemma II.1 (Horodeckis)

A linear map $T: M_{d_1} \to M_{d_2}$ is entanglement breaking if and only if for any positive map $P: M_{d_2} \to M_{d_1}$, the composition $P \circ T : M_{d_1} \to M_{d_1}$ is completely positive.

Lemma II.2 (Størmer)

A linear map $T: M_{d_1} \to M_{d_2}$ is decomposable if and only if $(\mathsf{id}_{d_A} \otimes T)(X) \geq 0$ for any $X \in (M_{d_A} \otimes M_{d_B})^+$ with $X^{\Gamma} \geq 0$ where Γ denotes the partial transpose.

C) Decomposability of certain positive maps

$1) \Rightarrow 4):$

Consider a map $T: M_{d_1} \to M_{d_2}$ that is completely positive and completely copositive, and a map $P: M_{d_2} \to M_{d_3}$ that is positive.

C) Decomposability of certain positive maps

$1) \Rightarrow 4):$

Consider a map $T: M_{d_1} \to M_{d_2}$ that is completely positive and completely copositive, and a map $P: M_{d_2} \to M_{d_3}$ that is positive.

For any completely positive and completely copositive map $S: M_{d_3} \to M_{d_1}$, the composition $T \circ S: M_{d_3} \to M_{d_2}$ is entanglement breaking by assumption.

C) Decomposability of certain positive maps

$1) \Rightarrow 4)$:

Consider a map $T: M_{d_1} \to M_{d_2}$ that is completely positive and completely copositive, and a map $P: M_{d_2} \to M_{d_3}$ that is positive.

For any completely positive and completely copositive map $S: M_{d_3} \to M_{d_1}$, the composition $T \circ S: M_{d_3} \to M_{d_2}$ is entanglement breaking by assumption.

By **Lemma** II.1, the composition $P \circ T \circ S$ is completely positive.

C) Decomposability of certain positive maps

$1) \Rightarrow 4)$:

Consider a map $T: M_{d_1} \to M_{d_2}$ that is completely positive and completely copositive, and a map $P: M_{d_2} \to M_{d_3}$ that is positive.

For any completely positive and completely copositive map $S: M_{d_3} \to M_{d_1}$, the composition $T \circ S: M_{d_3} \to M_{d_2}$ is entanglement breaking by assumption.

By **Lemma** II.1, the composition $P \circ T \circ S$ is completely positive.

Since this holds for any completely positive and completely copositive map S, **Lemma** II.2 shows that $P \circ T$ must be decomposable.

C) Decomposability of certain positive maps

$$4) \Rightarrow 1)$$
:

Assume the maps $T: M_{d_1} \to M_{d_2}$ and $S: M_{d_3} \to M_{d_1}$ are CP and PPT, but $T \circ S : M_{d_3} \to M_{d_2}$ is <u>not</u> EB.

C) Decomposability of certain positive maps

$$4) \Rightarrow 1)$$
:

Assume the maps $T: M_{d_1} \to M_{d_2}$ and $S: M_{d_3} \to M_{d_1}$ are CP and PPT, but $T \circ S : M_{d_2} \to M_{d_3}$ is not EB.

By **Lemma** II.1, \exists a positive map $P: M_{d_2} \to M_{d_3}$ s.t. $P \circ T \circ S$ is not completely positive.

C) D

C) Decomposability of certain positive maps

$$4) \Rightarrow 1)$$
:

Assume the maps $T:M_{d_1}\to M_{d_2}$ and $S:M_{d_3}\to M_{d_1}$ are CP and PPT, but $T\circ S:M_{d_3}\to M_{d_2}$ is <u>not</u> EB.

By **Lemma** II.1, \exists a positive map $P: M_{d_2} \to M_{d_3}$ s.t. $P \circ T \circ S$ is <u>not</u> completely positive.

By **Lemma** II.2, $P \circ T$ cannot be decomposable.

Bibliography

Main References

- L. Lami and V. Giovannetti. "Entanglement-saving channels." Journal of Mathematical Physics 57, 032201 (2016).
- M. Christandl, A. Müller-Hermes, and M. M. Wolf. "When do composed maps become entanglement breaking?" Physical Review Letters 119, 220506 (2017).

Additional References

- M. Rahaman, S. Jaques, and V. I. Paulsen. "Eventually entanglement breaking maps." Journal of Mathematical Physics 59, 062201 (2018).
- M. Horodecki, P. W. Shor, and M. B. Ruskai. "Entanglement breaking channels." Reviews in Mathematical Physics 15, 629-641 (2003).

Backup Slides

Additional material for questions and discussion

Preliminaries for Theorem 21

Spectral Properties (Theorem 6, Lami)

Let $\phi \in \mathbf{CPt}_d$.

- All eigenvalues λ satisfy $|\lambda| \leq 1$.
- $1 \in \sigma(\phi)$, and ϕ has at least one positive fixed point.

Preliminaries for Theorem 21

Spectral Properties (Theorem 6, Lami)

Let $\phi \in \mathbf{CPt}_d$.

- All eigenvalues λ satisfy $|\lambda| < 1$.
- $1 \in \sigma(\phi)$, and ϕ has at least one positive fixed point.

Supporting Results

Corollary 14: If $|\sigma_P(\phi)| \geq 2$, $\exists 1 \leq n \leq d$ such that $1 \in \sigma_P(\phi^n)$ with multiplicity > 1.

Lemma 20: If $1 \in \sigma(\phi)$ with multiplicity > 1, then ϕ admits a semipositive fixed point.

Corollary 19: If ϕ is entanglement-breaking and has a semipositive fixed point, then dim ker $\phi \geq 2(d-1)$ and det $\phi = 0$.

Proof of Theorem 21: $(1) \Rightarrow (2)$

Statement

If ϕ is ES, then ϕ has a semipositive fixed point or $|\sigma_P(\phi)| \geq 2$.

Proof of Theorem 21: $(1) \Rightarrow (2)$

Statement

If ϕ is ES, then ϕ has a semipositive fixed point or $|\sigma_P(\phi)| \geq 2$.

Sketch

- Suppose by contradiction: ϕ has a strictly positive fixed point $\rho_0 > 0$ and $\sigma_P(\phi) = \{1\}$
- Then $\lim_{n\to\infty}\phi^n=D_{\rho_0}$, where $D_{\rho_0}(X)=\rho_0\operatorname{Tr} X$
- Choi–Jamiolkowski: $R_{\phi^n} o R_{D_{
 ho_0}} =
 ho_0 \otimes rac{\mathbb{1}}{d}$
- By Proposition 15, $R_{D_{\rho_0}}$ is interior to the separable set
- $\Rightarrow \phi$ is not ES (contradiction)

Proof of Theorem 21: $(2) \Rightarrow (3)$

Statement

If ϕ has a semipositive fixed point or $|\sigma_P(\phi)| \ge 2$, then $\exists 1 \le n \le d$ such that ϕ^n has a semipositive fixed point.

Proof of Theorem 21: $(2) \Rightarrow (3)$

Statement

If ϕ has a semipositive fixed point or $|\sigma_P(\phi)| \geq 2$, then $\exists 1 \leq n \leq d$ such that ϕ^n has a semipositive fixed point.

Sketch

- If ϕ has a semipositive fixed point, done.
- Else, $|\sigma_P(\phi)| > 2$
- Corollary 14: $\exists 1 \leq n \leq d$ such that $1 \in \sigma_P(\phi^n)$ with multiplicity > 1
- **Lemma 20:** ϕ^n has a semipositive fixed point

Proof of Theorem 21: $(3) \Rightarrow (1)$

Statement

If $\exists 1 \leq n \leq d$ such that ϕ^n has a semipositive fixed point and $a_{\phi}(0) < 2(d-1)$ (or $\det \phi \neq 0$), then ϕ is ES.

Proof of Theorem 21: $(3) \Rightarrow (1)$

Statement

If $\exists 1 \leq n \leq d$ such that ϕ^n has a semipositive fixed point and $a_{\phi}(0) < 2(d-1)$ (or $\det \phi \neq 0$), then ϕ is ES.

Sketch

- Suppose, for contradiction, that ϕ is not ES: $\exists N$ such that ϕ^N is entanglement-breaking and has a semipositive fixed point.
- Corollary 19: ϕ^N entanglement-breaking with semipositive fixed point \Rightarrow dim ker $\phi^N \geq 2(d-1) \Rightarrow \det \phi^N = 0$
- But $\det \phi \neq 0 \Rightarrow \det \phi^N \neq 0$ (contradiction)
- $\Rightarrow \phi$ is ES