

E22-400T30S 产品规格书

SX1268 433/470MHz 1W LoRa 无线模块

成都亿佰特电子科技有限公司

第一章 产品概述	2
1.1 产品简介	2
1.2 特点功能	2
1.3 应用场景	2
第二章 规格参数	3
2.1 极限参数	3
2.2 工作参数	3
第三章 机械尺寸与引脚定义	4
第四章 推荐连线图	5
第五章 功能详解	6
5.1 定点发射	6
5. 2 广播发射	6
5. 3 广播地址	7
5.4 监听地址	7
5.5 模块复位	7
5.6 AUX 详解	7
5.6.1 串口数据输出指示	7
5.6.2 无线发射指示	8
5.6.3 模块正在配置过程中	8
5. 6. 4 注意事项	8
第六章 工作模式	9
6.1 模式切换	
6.2 一般模式(模式 0)	10
6.3 WOR 模式 (模式 1)	
6.4 配置模式(模式 2)	
6.5 深度休眠模式(模式 3)	
第七章 寄存器读写控制	
7.1 指令格式	11
7.2 寄存器描述	12
7.3 出厂默认参数	14
第八章 中继组网模式使用	14
第九章 上位机配置说明	15
第十章 硬件设计	16
第十一章 常见问题	17
11.1 传输距离不理想	
11.2 模块易损坏	
11.3 误码率太高	17
第十二章 焊接作业指导	
12. 1 回流焊温度	
12.2 回流焊曲线图	
第十三章 相关型号	
第十四章 天线指南	
14.1 天线推荐	
第十五章 批量包装方式	

第一章 产品概述

1.1 产品简介

E22-400T30S 是全新一代的 LoRa 无线模块,基于 SEMTECH 公司 SX1268 射频芯片的无线串口模块(UART),具有多种传输方式,工作在(410.125~493.125MHz)频段(默认 433.125MHz),LoRa 扩频技术,TTL 电平输出,兼容 3.3V 与 5V 的 10 口电压。

E22-400T30S 采用全新一代 LoRa 扩频技术,与传统 SX1278 方案相比, SX1268 方案传输距离更远,速度更快,功耗更低,体积更小;支持空中唤 醒、无线配置、载波监听、自动中继、通信密钥等功能,支持分包长度设定, 可提供定制开发服务。

1.2 特点功能

- 基于 SX1268 开发全新 LoRa 扩频调制技术,带来更远的通讯距离,抗干扰能力更强;
- 支持自动中继组网,多级中继适用于超远距离通信,同一区域运行多个网络同时运行;
- 支持用户自行设定通信密钥,且无法被读取,极大提高了用户数据的保密性;
- 支持 LBT 功能,在发送前监听信道环境噪声,可极大的提高模块在恶劣环境下的通信成功率;
- 支持 RSSI 信号强度指示功能,用于评估信号质量、改善通信网络、测距;
- 支持无线参数配置,通过无线发送指令数据包,远程配置或读取无线模块参数;
- 支持空中唤醒,即超低功耗功能,适用于电池供电的应用方案;
- 支持定点传输、广播传输、信道监听;
- 支持深度休眠,该模式下整机功耗约 2uA;
- 支持全球免许可 ISM 433MHz 频段,支持 470MHz 抄表频段;
- 模块内置 PA+LNA, 理想条件下通信距离可达 10km;
- 参数掉电保存,重新上电后模块会按照设置好的参数进行工作;
- 高效看门狗设计,一旦发生异常,模块将在自动重启,且能继续按照先前的参数设置继续工作;
- 支持 0.3k~62.5kbps 的数据传输速率;
- 支持 3.3~5.5V 供电,大于 5V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选(IPEX/邮票孔),便于用户二次开发,利于集成。

1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

主要参数	性能		A 7)+
土安多奴	最小值	最大值	备注
电源电压 (V)	0	5. 5	超过 5.5V 永久烧毁模块
阻塞功率 (dBm)	_	10	近距离使用烧毁概率较小
工作温度(℃)	-40	+85	工业级

2.2 工作参数

主要参数		性能			备注	
	土安多数	最小值	典型值 最大值		金 江	
	工作电压 (V)	3.3	5.0	5.5	≥5.0V 可保证输出功率	
	通信电平 (V)		3. 3		使用 5V TTL 有风险烧毁	
	工作温度(℃)	-40	-	85	工业级设计	
	工作频段 (MHz)	410. 125	-	493. 125	支持 ISM 频段	
功	发射电流 (mA)		610		瞬时功耗	
月期	接收电流(mA)		17			
1	休眠电流(uA)		2		软件关断	
	最大发射功率 (dBm)	29. 5	30.0	30. 5		
	接收灵敏度 (dBm)	-146	-147	-148	空中速率 2.4 kbps	
	空中速率 (bps)	0. 3k	2. 4k	62. 5k	用户编程控制	

主要参数	描述	备注
参考距离	10km	晴朗空旷,天线增益 5dBi,天线高度 2.5米,空中速率 2.4kbps
发射长度	240 Btye	可通过指令设置分包 32/64/128/240 字节发送
缓存容量	1000 Btye	
调制方式	LoRa	新一代 LoRa 调制技术
通信接口	UART 串口	TTL 电平
封装方式	贴片式	
接口方式	1.27mm	
外形尺寸	25*40.5mm	
天线接口	IPEX/邮票孔	等效阻抗约 50 Ω

第三章 机械尺寸与引脚定义

			Onit. min
引脚序号	引脚名称	引脚方向	引脚用途
1	MO	输入(极弱上拉)	和 M1 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
2	M1	输入(极弱上拉)	和 MO 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
3	RXD	输入	TTL 串口输入,连接到外部 TXD 输出引脚;
4	TXD	输出	TTL 串口输出,连接到外部 RXD 输入引脚;
5	AUX	输出	用于指示模块工作状态;用户唤醒外部MCU,上电自检初始化期间输出低
Э		制出	电平; (可以悬空)
6	VCC	输入	模块电源正参考, 电压范围: 3.3~5.5V DC
7	GND	输入	模块地线
8	C2CK	输入	程序加载时的时钟引脚(悬空,用户无需连接)
9	GND	输入	程序加载时的地引脚(悬空,用户无需连接)
10	C2D	输入	程序加载时的数据引脚(悬空,用户无需连接)
11	+3.3V	输入	程序加载时的电源引脚(用户无需连接,悬空)
12	P2. 7	输入/输出	NC 引脚,此引脚需悬空(以备后续扩展使用)
13	P1.5	输入/输出	NC 引脚, 此引脚需悬空(以备后续扩展使用)

14	P1.6	输入/输出	NC 引脚, 此引脚需悬空(以备后续扩展使用)
15	GND		固定地
16	GND		固定地
17	GND		固定地
18	ANT	输出	天线接口(高频信号输出,50Ω特性阻抗)

第四章 推荐连线图

序号	模块与单片机简要连接说明(上图以 STM8L 单片机为例)	
1	无线串口模块为 TTL 电平,请与 TTL 电平的 MCU 连接。	
2	某些 5V 单片机,可能需要在模块的 TXD 和 AUX 脚加 4~10K 上拉电阻。	

第五章 功能详解

5.1 定点发射

5.2 广播发射

5.3 广播地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为发射时(相同模式,透明传输方式),0x04 信道下所有的接收模块都可以收到数据,达到广播的目的。

5.4 监听地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为接收时,可以接收到 0x04 信道下所有的数据,达到监听的目的。

5.5 模块复位

● 模块上电后,AUX 将立即输出低电平,并进行硬件自检,以及按照用户参数进行工作方式设置; 在此过程中,AUX 保持低电平,完毕后 AUX 输出高电平,并按照 M1、M0 组合而成的工作模式开始正常工作; 所以,用户需要等待 AUX 上升沿,作为模块正常工作的起点。

5.6 AUX 详解

- AUX 用于无线收发缓冲指示和自检指示。
- 它指示模块是否有数据尚未通过无线发射出去,或已经收到无线数据是否尚未通过串口全部发出,或模块正在初始化自 检过程中。

5.6.1 串口数据输出指示

● 用于唤醒休眠中的外部 MCU;

模块串口外发数据时,AUX引脚时序图

5.6.2 无线发射指示

● 缓冲区空:内部 1000 字节缓冲区的数据,都被写入到无线芯片(自动分包);

当 AUX=1 时用户连续发起小于 1000 字节的数据,不会溢出;

当 AUX=0 时缓冲区不为空:内部 1000 字节缓冲区的数据,尚未全部写入到无线芯片并开启发射,此时模块有可能在等待用户数据结束超时,或正在进行无线分包发射。

【注意】: AUX=1 时并不代表模块全部串口数据均通过无线发射完毕,也可能最后一包数据正在发射中。

分包发射:最后一包数据已 写入RF芯片并自动发射,用户 可以继续输入1000字节。(实 质是缓冲区为空)

模块接收串口数据时, AUX引脚时序图

5.6.3 模块正在配置过程中

● 仅在复位和退出休眠模式的时候;

自检期间, AUX引脚时序图

5.6.4 注意事项

序号	AUX 注意事项
1	上述功能 1 和功能 2,输出低电平优先,即:满足任何一个输出低电平条件,AUX 就输出低电平; 当所有低电平条件均不满足时,AUX 输出高电平。
2	当 AUX 输出低电平时,表示模块繁忙,此时不会进行工作模式检测; 当模块 AUX 输出高电平后 1ms 内,将完成模式切换工作。
3	用户切换到新的工作模式后,至少需要在 AUX 上升沿 2ms 后,模块才会真正进入该模式;如果 AUX 一直处于高电平,那么模式切换将立即生效。
4	用户从模式 3 (休眠模式) 进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出低电平。
5	因 LoRa 调制方式的特点,信息传输时延相较于 FSK 要长很多,如在 1.2kbps 空速下,100 字节传输时延在 1.5 秒 左右,建议客户不要在低空速下进行大数据量传输,以免因数据堆积造成数据丢失引发通信异常。

第六章 工作模式

模块有四种工作模式,由引脚 M1、M0 设置;详细情况如下表所示:

模式 (0-3)	M1	МО	模式介绍	备注
0 传输模式	0	0	串口打开,无线打开,透明传输	支持特殊指令空中配置
1 WOR 模式	0	1	可以定义为 WOR 发送方和 WOR 接收方	支持空中唤醒
2 配置模式	1	0	用户可通过串口对寄存器进行访问,从而控制模块工作状态	
3 深度休眠	1	1	模块进入休眠	

6.1 模式切换

序号	备注
1	 ● 用户可以将 M1、M0 进行高低电平组合,确定模块工作模式。可使用 MCU 的 2 个 GPIO 来控制模式切换; ● 当改变 M1、M0 后: 若模块空闲,1ms 后,即可按照新的模式开始工作; ● 若模块有串口数据尚未通过无线发射完毕,则发射完毕后,才能进入新的工作模式; ● 若模块收到无线数据后并通过串口向外发出数据,则需要发完后才能进入新的工作模式; ● 所以模式切换只能在 AUX 输出 1 的时候有效,否则会延迟切换。
2	● 例如:用户连续输入大量数据,并同时进行模式切换,此时的切换模式操作是无效的;模块会将所有用户数据处理完毕后,才进行新的模式检测;● 所以一般建议为:检测 AUX 引脚输出状态,等待输出高电平后 2ms 再进行切换。
3	 ● 当模块从其他模式被切换到休眠模式时,如果有数据尚未处理完毕; ● 模块会将这些数据(包括收和发)处理完毕后,才能进入休眠模式。这个特征可以用于快速休眠,从而节省功耗;例如:发射模块工作在模式0,用户发起串口数据"12345",然后不必等待AUX引脚空闲(高电平),可以直接切换到休眠模式,并将用户主MCU立即休眠,模块会自动将用户数据全部通过无线发出后,1ms内自动进入休眠; ● 从而节省MCU的工作时间,降低功耗。
4	 ● 同理,任何模式切换,都可以利用这个特征,模块处理完当前模式事件后,在1ms内,会自动进入新的模式;从而省去了用户查询AUX的工作,且能达到快速切换的目的; ● 例如从发射模式切换到接收模式;用户MCU也可以在模式切换前提前进入休眠,使用外部中断功能来获取AUX变化,从而进行模式切换。
5	● 此操作方式是非常灵活而高效的,完全按照用户 MCU 的操作方便性而设计,并可以尽可能降低整个系统的工作 负荷,提高系统效率,降低功耗。

6.2 一般模式 (模式 0)

类型	当 MO = 0, M1 = 0 时, 模块工作在模式 0
发射	用户可以通过串口输入数据,模块会启动无线发射。
接收	模块无线接收功能打开,收到无线数据后会通过串口 TXD 引脚输出。

6.3 WOR 模式 (模式 1)

类型	当 MO = 1, M1 = 0 时,模块工作在模式 1
发射	当定义为发射方时,发射前会自动增加一定时间的唤醒码
接收	可以正常接收数据,接收功能等同于模式 0

6.4 配置模式 (模式 2)

类型	当 MO = 0, M1 = 1 时,模块工作在模式 2
发射	无线发射关闭
接收	无线接收关闭
配置	用户可以访问寄存器,从而配置模块工作状态

6.5 深度休眠模式 (模式 3)

类型	当 MO = 1, M1 = 1 时,模块工作在模式 3
发射	无法发射无线数据。
接收	无法接收无线数据。
注意	当从休眠模式进入到其他模式,模块会重新配置参数,配置过程中,AUX 保持低电平; 完毕后输出高电平,所以建议用户检测 T_BUSY 上升沿。

第七章 寄存器读写控制

7.1 指令格式

配置模式(模式 2: M1=1, M0=0)下,支持的指令列表如下(**设置时,只支持 9600, 8N1 格式**):

序号	指令格式	详细说明
1	设置寄存器	指令: C0+起始地址+长度+参数 响应: C1+起始地址+长度+参数 例 1: 配置信道为 0x09 指令 起始地址 长度 参数 发送: C0 05 01 09 返回: C1 05 01 09 例 2: 同时配置模块地址 (0x1234)、网络地址(0x00)、串口(9600 8N1)、空速(1.2K) 发送: C0 00 04 12 34 00 61 返回: C1 00 04 12 34 00 61
2	读取寄存器	指令: C1+起始地址+长度 响应: C1+起始地址+长度+参数 例 1: 读取信道 指令 起始地址 长度 参数 发送: C1 05 01 返回: C1 05 01 09 例 2: 同时读取模块地址、网络地址、串口、空速 发送: C1 00 04 返回: C1 00 04 12 34 00 61
3	设置临时寄存器	指令: C2 +起始地址+长度+参数 响应: C1 +起始地址+长度+参数 例 1: 配置信道为 0x09 指令 起始地址 长度 参数 发送: C2 05 01 09 返回: C1 05 01 09 例 2: 同时配置模块地址 (0x1234)、网络地址(0x00)、串口(9600 8N1)、空速(1.2K) 发送: C2 00 04 12 34 00 61 返回: C1 00 04 12 34 00 61
5	无线配置	指令: CF CF + 常规指令 响应: CF CF + 常规响应 例 1: 无线配置信道为 0x09
6	格式错误	格式错误响应 FF FF FF

7.2 寄存器描述

序号	读写	名称				描述	备注		
0011	法/定	ADDII	ADDII	ADDH (默认 0)			模块地址高字节和低字节;		
ООН	读/写	ADDH	ADDH				注意: 当模块地址等于 FFFF 时,可作为广播和		
01H	读/写	ADDL	ADDL	(默认 0)			监听地址,即:此时模块将不进行地址过滤		
02Н	读/写	NETID	NETID	(默认 0)			网络地址,用于区分网络; 相互通信时,应设置为相同。		
			7	6	5	UART 串口速率(bps)			
			0	0	0	串口波特率为 1200	□		
			0	0	1	串口波特率为 2400	校验方式也可以不同;		
			0	1	0	串口波特率为 4800			
			0	1	1	串口波特率为9600(默认)	── 当连续发射较大数据包时,用户需要考虑波特 │ 率相同带来的数据阻塞,甚至可能丢失;		
			1	0	0	串口波特率为 19200			
			1	0	1	串口波特率为 38400	一般建议通信双方波特率相同。		
			1	1	0	串口波特率为 57600			
			1	1	1	串口波特率为 115200			
			4	3	串口村	交验位			
			0	0	8N1 (默认)			
03Н	读/写	REGO	0	1	801		通信双方串口模式可以不同;		
			1	0					
			1	1			1		
			2	1	0	无线空中速率 (bps)			
			0	0	0	空中速率 0.3k			
			0	0	1	空中速率 1.2k			
				0	1	0	空中速率 2.4k (默认)	一 通信双方空中速率必须相同:	
			0	1	1	空中速率 4.8k	一		
			1	0	0	空中速率 9.6k	空中速率越高,延迟越小,传输距离越短。		
			1	0	1	空中速率 19.2k			
					1	1	0	空中速率 38.4k	
			1	1	1	空中速率 62.5k			
			7	6	分包证	· 殳定	用户发送数据小于分包长度,接收端串口输出		
			0	0	240 学	2节(默认)	呈现为不间断连续输出;		
			0	1	128 字		─ 用户发送数据大于分包长度,接收端串口会分		
			1	0	64 字	节	包输出。		
			1	1	32 字	节			
04H	读/写	REG1	5	RSSI	环境噪	声使能	启用后,可在传输模式或 WOR 发送模式发送指		
	庆/ 引	NLO1	0	禁用	(默认)		→ 令 C0 C1 C2 C3 指令 读取寄存器; → 寄存器 0x00 : 当前环境噪声 RSSI;		
				1	启用			寄存器 0X00 : 当前が現保	

1 0 发射功率 0 0 30dBm (默认) 功率和电流是非线性关系,最大功率时,电源效率最高; 0 1 27dBm 电流不会随功率降低而同比例降低。 1 1 21dBm 电流不会随功率降低而同比例降低。 6 道控制 (CH) 实际频率= 410.125 + CH *1M 7 启用 RSSI 字节 启用后,模块收到无线数据,通过串口 TXD输出后,将跟随一个 RSSI 强度字节。 1 启用 6 传输方式 定点传输时,模块会将串口数据的钱三个字节识别为:地址后,将其作为无线数时标。 1 定点传输 线发射目标。 5 中继功能 中继功能启用后,如果目标地址不是模块自身,特块的自由。如果目标地址不是模块自身,特块的自由。如果目标地址不是模块自身,特块的自由。如果目标地址不是模块自身,特块的自由。如果目标地址不是模块自身,
0 0 30dBm (默认) 功率和电流是非线性关系,最大功率时,电源效率最高; 0 1 27dBm 电流不会随功率降低而同比例降低。 1 0 24dBm 电流不会随功率降低而同比例降低。 0 1 1 21dBm 信道控制 (CH) 0-83 分别代表总共 84 个信道 实际频率= 410.125 + CH *1M 7 启用 RSSI 字节 启用后,模块收到无线数据,通过串口 TXD 输出后,将跟随一个 RSSI 强度字节。 1 启用 6 传输方式 定点传输时,模块会将串口数据的钱三个字节识别为:地址高+地址低+信道,并将其作为无线发射目标。 1 定点传输 5 中继功能 中继功能启用后,如果目标地址不是模块自身,
0 0 30dbm (試状) 效率最高; 27dBm
0 1 27dBm 1 0 24dBm 电流不会随功率降低而同比例降低。 05H 读/写 REG2 信道控制(CH) 0-83分别代表总共 84个信道 实际频率= 410.125 + CH *IM 7 启用 RSSI 字节 0 禁用(默认) 1 启用 启用后,模块收到无线数据,通过串口 TXD 输出后,将跟随一个 RSSI 强度字节。 6 传输方式 0 透明传输(默认) 1 定点传输 定点传输时,模块会将串口数据的钱三个字节识别为:地址高+地址低+信道,并将其作为无线发射目标。 1 定点传输 5 中继功能
1 1 21dBm 6i 道控制 (CH) 实际频率= 410.125 + CH *1M 7 启用 RSSI 字节 0 禁用 (默认) 1 启用 6 传输方式 0 透明传输 (默认) 1 定点传输时,模块会将串口数据的钱三个字节识别为: 地址高+地址低+信道,并将其作为无线发射目标。 1 定点传输 5 中继功能
O5H 读/写 REG2 信道控制 (CH) 0-83 分别代表总共 84 个信道 实际频率= 410. 125 + CH *1M 7 启用 RSSI 字节 0 禁用 (默认) 1 启用 6 传输方式 0 透明传输 (默认) 1 定点传输 5 中继功能 启用后,模块收到无线数据,通过串口 TXD 输出后,将跟随一个 RSSI 强度字节。
05H 读/写 REG2 0-83 分别代表总共 84 个信道 实际频率= 410. 125 + CH *1M 7 启用 RSSI 字节 启用后,模块收到无线数据,通过串口 TXD 输出后,将跟随一个 RSSI 强度字节。 1 启用 6 传输方式 定点传输时,模块会将串口数据的钱三个字节识别为: 地址高+地址低+信道,并将其作为无线发射目标。 1 定点传输 5 中继功能启用后,如果目标地址不是模块自身,
7
0 禁用(默认) 启用后,模块收到无线数据,通过串口 TXD 输出后,将跟随一个 RSSI 强度字节。 1 启用 6 传输方式 定点传输时,模块会将串口数据的钱三个字节识别为:地址高+地址低+信道,并将其作为无线发射目标。 1 定点传输 5 中继功能启用后,如果目标地址不是模块自身,
1
6 传输方式 定点传输时,模块会将串口数据的钱三个字节识别为: 地址高+地址低+信道,并将其作为无识别为: 地址高+地址低+信道,并将其作为无线发射目标。 1 定点传输 5 中继功能启用后,如果目标地址不是模块自身,
0 透明传输(默认) 1 定点传输 5 中继功能 正点传输的 定点传输的 块层标布口数据的线三个子口识别为: 地址高+地址低+信道,并将其作为无线发射目标。 线发射目标。 中继功能启用后,如果目标地址不是模块自身,
1 定点传输 5 中继功能 + 中继功能启用后,如果目标地址不是模块自身,
1 た点传測
模块将启动一次转发;
0 禁用中继功能(默认) 为了防止数据回传,建议和定点模式配合使用;
1 启用中继功能 即: 目标地址和源地址不同。 4 LBT 使能
1 启用 上BT 最大停留时间 2 秒,达到两秒会强制发出。
3 WOR 模式收发控制
WOR 接收方 (默认) 仅针对模式 1 有效;
06H 读/写 REG3 0 模块收发打开,且在发射数据时,加入一定 WOR 接收方收到无线数据并通过串口输出后,会
时间的唤醒码。
WOR 发射方 期间输入串口数据并通过无线返回;
用户必须在 1000ms 内发起第一个字节。
2 1 0 WOR 周期
0 0 0 500ms 仅针对模式 1 有效;
0 0 1 1000ms
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
0 1 2000ms
1 0 0 2500ms WOR 监听间隔周期时间越长,平均功耗越低,但数据延迟越大;
1 0 1 3000ms 数据延迟越入;
1 1 0 3500ms 收发双方必须一致(非常重要)
1 1 1 4000ms
07H 写 CRYPT_H 密钥高字节(默认 0) 只写,读取返回 0; 用于加密,避免被同类模块截获空中无线数据;
模块内部将使用这两个字节作为计算因子对空
08H 写 CRYPT_L 密钥低字节(默认 0) 中无线信号进行变换加密处理。
80H~86H 读 PID 产品信息 7 个字节 产品信息 7 个字节

7.3 出厂默认参数

型号	出厂默认参数值: 62 00 00 00 00								
模块型号	频率	地址	信道	空中速率	波特率	串口格式	发射功率		
E22-400T30S	433.125MHz	0x0000	0x17	2.4kbps	9600	8N1	30dbm		

第八章 中继组网模式使用

序号	中继模式说明
1	通过配置模式设置中继模式后,切换到一般模式下,中继开始工作。
2	中继模式下 ADDH, ADDL 不再作为模块地址,而是分别对应 NETID 转发配对,如果接收到其中一个网络,则转发到另一个网络;中继器自身的网络 ID 无效。
3	中继模式下,中继模块不能发送和接收数据,无法进行低功耗操作。
4	用户从模式 3 (休眠模式) 进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出低电平。

中继组网规则说明:

- 1、转发规则,中继能将数据在两个NETID之间进行双向转发。
- 2、中继模式下, ADDH\ADDL 不再作为模块地址, 作为 NETID 转发配对。

如图:

①一级中继

"节点1" NETID为08。

"节点 2" NETID 为 33。

中继 1 的 ADDH\ADDL 分别为 08, 33。

所以节点1(08)发送的信号能被转发到节点2(33)

同时节点1和节点2地址相同,因此节点1发送的数据能被节点2收到。

②二级中继

中继 2 的 ADDH\ADDL 分别为 33, 05。

所以中继2能转发中继1的数据到网络NETID: 05。

从而节点3和节点4能接收到节点1数据。节点4正常输出数据,节点3与节点1地址不同,所以不输出数据。

③双向中继

如图配置: 节点1发送的数据节点2、4可以收到, 节点2、4发送的数据, 节点1也可以收到。

第九章 上位机配置说明

● 下图为 E22-400T30S 配置上位机显示界面,用户可通过 M0、M1 切换为命令模式,在上位机进行参数快速配置和读取。

● 在配置上位机中,模块地址、频率信道、网络 ID、密钥均为十进制显示模式;其中各参数取值范围:

网络地址: 0~65535

频率信道: 0~83

网络 ID: 0~255

密钥: 0~65535

● 用户在使用上位机配置中继模式时,需要特别注意,由于在上位机中,各参数为十进制显示模式,所以模块地址和网络 ID 填写时需要通过转换进制;

如发射端 A 输入的网络 ID 为 02,接收端 B 输入的网络 ID 为 10,则中继端 R 设置模块地址时,将十六进制数值 0X020A 转换为十进制数值 522 作为中继端 R 填入的模块地址;

即此时中继端 R 需要填入的模块地址值为 522。

第十章 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在需要经过模块下方,假设模块焊接在 Top Layer,在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的,会在不同程度影响模块的杂散以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平, 必须串联 1k-5.1k 电阻 (不推荐, 仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露且最好垂直向上;
- 当模块安装于机壳内部时,可使用优质的天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

第十一章 常见问题

11.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力,故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

11.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

11.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

第十二章 焊接作业指导

12.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235℃	230−250°C
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

12.2 回流焊曲线图

第十三章 相关型号

产品型号	芯片方案	载波频率 Hz	发射功率 dBm	测试距离 km	封装形式	产品尺寸 mm	通信接口
E22-230T22S	SX1262	230M	22	5	贴片	16*26	TTL
E22-230T30S	SX1262	230M	30	10	贴片	20*40.5	TTL
E22-400T22S	SX1268	433/470M	22	5	贴片	16*26	TTL
E22-400T30S	SX1268	433/470M	30	10	贴片	20*40.5	TTL
E22-900T22S	SX1262	868/915M	22	5	贴片	16*26	TTL
E22-900T30S	SX1262	868/915M	30	10	贴片	20*40.5	TTL
E22-400M22S	SX1268	433/470M	22	7	贴片	14*20	SPI
E22-400M30S	SX1268	433/470M	30	12	贴片	24*38.5	SPI
E22-900M22S	SX1262	868/915M	22	7	贴片	14*20	SPI
E22-900M30S	SX1262	868/915M	30	12	贴片	24*38.5	SPI

第十四章 天线指南

14.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

产品型号	类型	频段	接口	增益	高度	馈线	功能特点
)加生与	大 至	Hz	坂口	dBi	mm	cm	为此何点
TX433-NP-4310	柔性天线	433M	焊接	2.0	43. 8*9. 5	_	内置柔性, FPC 软天线
<u>TX433-JZ-5</u>	胶棒天线	433M	SMA-J	2.0	52	_	超短直式,全向天线
<u>TX433-JZG-6</u>	胶棒天线	433M	SMA-J	2.5	62	_	超短直式,全向天线
<u>TX433-JW-5</u>	胶棒天线	433M	SMA-J	2.0	50	_	弯折胶棒,全向天线
<u>TX433-JWG-7</u>	胶棒天线	433M	SMA-J	2.5	75	-	弯折胶棒,全向天线
<u>TX433-JK-11</u>	胶棒天线	433M	SMA-J	2.5	110	_	可弯折胶棒,全向天线
<u>TX433-JK-20</u>	胶棒天线	433M	SMA-J	3.0	210	_	可弯折胶棒,全向天线
TX433-XPL-100	吸盘天线	433M	SMA-J	3.5	185	100	小型吸盘天线, 性价比
TX433-XP-200	吸盘天线	433M	SMA-J	4.0	190	200	中性吸盘天线,低损耗
<u>TX433-XPH-300</u>	吸盘天线	433M	SMA-J	6.0	965	300	大型吸盘天线, 高增益
TX490-JZ-5	胶棒天线	470/490M	SMA-J	2.0	50	_	超短直式,全向天线
TX490-XPL-100	吸盘天线	470/490M	SMA-J	3.5	120	100	小型吸盘天线,性价比

第十五章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2018-01-08	初始版本	huaa
1.1	2018-04-16	内容更新	huaa
1.2	2018-05-24	名称变更	Huaa
1.3	2018-07-20	型号拆分	Huaa
1.4	2018-10-23	内容更新	Ray
1.5	2019-04-03	内容更新	Ray

关于我们

销售热线:4000-330-990公司电话:028-61399028技术支持:support@cdebyte.com官方网站:www.ebyte.com公司地址:四川省成都市高新西区西芯大道 4 号创新中心 B333-D347

