24-6 Bitonic shortest paths

A sequence is *bitonic* if it monotonically increases and then monotonically decreases, or if by a circular shift it monotonically increases and then monotonically decreases. For example the sequences $\langle 1,4,6,8,3,-2\rangle$, $\langle 9,2,-4,-10,-5\rangle$, and $\langle 1,2,3,4\rangle$ are bitonic, but $\langle 1,3,12,4,2,10\rangle$ is not bitonic. (See Problem 15-3 for the bitonic euclidean traveling-salesman problem.)

Suppose that we are given a directed graph G=(V,E) with weight function $w:E\to\mathbb{R}$, where all edge weights are unique, and we wish to find single-source shortest paths from a source vertex s. We are given one additional piece of information: for each vertex $v\in V$, the weights of the edges along any shortest path from s to v form a bitonic sequence.

Give the most efficient algorithm you can to solve this problem, and analyze its running time.

Observe that a bitonic sequence can increase, then decrease, then increase, or it can decrease, then increase, then decrease. That is, there can be at most two changes of direction in a bitonic sequence. Any sequence that increases, then decreases, then increases, then decreases has a bitonic sequence as a subsequence.

Now, let us suppose that we had an even stronger condition than the bitonic property given in the problem: for each vertex $v \in V$, the weights of the edges along any shortest path from s to v are increasing. Then we could call INITIALIZE-SINGLE-SOURCE and then just relax all edges one time, going in increasing order of weight. Then the edges along every shortest path would be relaxed in order of their appearance on the path. (We rely on the uniqueness of edge weights to ensure that the ordering is correct.) The path-relaxation property (Lemma 24.15) would guarantee that we would have computed correct shortest paths from s to each vertex.

If we weaken the condition so that the weights of the edges along any shortest path increase and then decrease, we could relax all edges one time, in increasing order of weight, and then one more time, in decreasing order of weight. That order, along with uniqueness of edge weights, would ensure that we had relaxed the edges of every shortest path in order, and again the path-relaxation property would guarantee that we would have computed correct shortest paths.

To make sure that we handle all bitonic sequences, we do as suggested above. That is, we perform four passes, relaxing each edge once in each pass. The first and third passes relax edges in increasing order of weight, and the second and fourth passes in decreasing order. Again, by the path-relaxation property and the uniqueness of edge weights, we have computed correct shortest paths.

The total time is $O(V+E\lg V)$, as follows. The time to sort |E| edges by weight is $O(E\lg E)=O(E\lg V)$ (since $|E|=O(V^2)$).

INITIALIZE-SINGLE-SOURCE takes O(V) time. Each of the four passes takes O(E) time. Thus, the total time is $O(E \lg V + V + E) = O(V + E \lg V)$.