Animation & Simulation

He Wang (王鹤)

- Basic concepts
 - Explicit
 - Implicit
 - Parametric
 - Polynomials
 - Other functions: trigonometrics, logs, called transcendental here
 - Continuity, nth-order continuous derivatives
 - A function formed by curve segments has *piece-wise* properties
 - Distinction between parametric continuity and geometric continuity

- Interpolation
 - Hermite interpolation
 - Catmull-Rom Spline
 - Four-point form (fit a cubic curve to four points)
 - Blended parabolas
 - Bezier interpolation/approximation
 - Tension, continuity and bias control
 - B-splines

- Interpolation
 - MotionBuilder

- Controlling the motion
 - Given a motion function, control higher-order information (speed, acc.)
 - Need to control them by arc length (instead of raw coordinates)

Equally increment on parameters

Not evenly distributed on the curve!

- Controlling the motion
 - Computing arc length (Analytic)

Assume
$$P(u) = au^3 + bu^2 + cu + d$$

 $P(u) = (x(u), y(u), z(u))$
 $x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$
 $y(u) = a_y u^3 + b_y u^2 + c_y u + d_y$
 $z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$

- Controlling the motion
 - Computing arc length (Analytic)
 - Only a space curve
 - Distance-time function
 - distance=arc length

Assume
$$P(u) = au^3 + bu^2 + cu + d$$

 $P(u) = (x(u), y(u), z(u))$
 $x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$
 $y(u) = a_y u^3 + b_y u^2 + c_y u + d_y$
 $z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$

- Controlling the motion
 - Computing arc length (Analytic)
 Say arc length is s, s = S(u) where S is the function of variable u
 Equally, u = U(s)

$$P(u) = (x(u), y(u), z(u))$$

$$x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$y(u) = a_y u^3 + b_y u^2 + c_y u + d_y$$

$$z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$$

- **1.** Given parameters u_a and u_b , find $LENGTH(u_a, u_b)$.
- **2.** Given an arc length s and a parameter value u_a , find u_b such that $LENGTH(u_a, u_b) = \mathbf{s}$. This is equivalent to finding the solution to the equation $s LENGTH(u_a, u_b) = 0$.

- Controlling the motion
 - Computing arc length (Analytic)

$$P(u) = (x(u), y(u), z(u))$$

$$x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$y(u) = a_y u^3 + b_y u^2 + c_y u + d_y$$

$$z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$$

$$s = \int_{u_a}^{u_b} |dP/du| du$$

$$dP/du = ((dx(u)/(du)), (dy(u)/(du)), (dz(u)/(du)))$$

$$|dP/du| = \sqrt{(dx(u)/du)^2 + (dy(u)/du)^2 + (dz(u)/du)^2}$$

- Controlling the motion
 - Computing arc length (Analytic)

$$P(u) = (x(u), y(u), z(u))$$

$$x(u) = a_{x}u^{3} + b_{x}u^{2} + c_{x}u + d_{x}$$

$$y(u) = a_{y}u^{3} + b_{y}u^{2} + c_{y}u + d_{y}$$

$$z(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$S = \int_{u_{a}}^{u_{b}} |dP/du|du$$

$$dP/du = ((dx(u)/(du)), (dy(u)/(du)), (dz(u)/(du))$$

$$dP/du = \sqrt{(dx(u)/du)^{2} + (dy(u)/du)^{2} + (dz(u)/du)^{2}}$$

$$P(u) = (x(u), y(u), z(u))$$

$$x(u) = a_{x}u^{3} + b_{x}u^{2} + c_{x}u + d_{x}$$

$$y(u) = a_{y}u^{3} + b_{y}u^{2} + c_{y}u + d_{y}$$

$$z(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}u$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}u$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}u$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}u$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}u$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z}u$$

$$d(u) = a_{z}u^{3} + b_{z}u^{2} + c$$

- Controlling the motion
 - Computing arc length (Analytic)

$$P(u) = (x(u), y(u), z(u))$$

$$x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$y(u) = a_y u^3 + b_y u^2 + c_y u + d_y$$

$$z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$$

$$dx(u)/du = 3a_xu^2 + 2b_xu + c_x$$
$$Au^4 + Bu^3 + Cu^2 + Du + E$$

$$A = 9(a_x^2 + a_y^2) \\ B = 12(a_x b_x + a_y b_y) \\ C = 6(a_x c_x + a_y c_y) + 4(b_x^2 + b_y^2) \\ D = 4(b_x c_x + b_y c_y) \\ E = c_x^2 + c_y^2$$

- Controlling the motion
 - Computing arc length (Analytic)
 - Computing arc length (forward differencing)

Not all curves can be analytically represented and solved

- Controlling the motion
 - Computing arc length (forward differencing)

```
P(u), u = 0.00, 0.05, 0.10, 0.15...
```

```
G[0] = 0.0

G[1] = the distance between P(0.00) and P(0.05)

G[2] = G[1] plus the distance between P(0.05) and P(0.10)

G[3] = G[2] plus the distance between P(0.10) and P(0.15)

...

G[20] = G[19] plus the distance between P(0.95) and P(1.00)
```

- Controlling the motion
 - Computing arc length (forward differencing)

Index	Parametric Value (V)	Arc Length (G)
0	0.00	0.000
1	0.05	0.080
2	0.10	0.150
3	0.15	0.230
4	0.20	0.320
5	0.25	0.400
5 6 7	0.30	0.500
7	0.35	0.600
8	0.40	0.720
9	0.45	0.800
10	0.50	0.860
11	0.55	0.900
12	0.60	0.920
13	0.65	0.932

- Controlling the motion
 - Computing arc length (forward differencing)

$$P(u)$$
, $u = 0.00$, 0.05, 0.10, 0.15...

find the closest in the table, v = 0.73, d = 0.05

$$i = \left\lfloor \frac{v}{d} + 0.5 \right\rfloor = \left\lfloor \frac{0.73}{0.05} + 0.5 \right\rfloor = 15$$

Index	Parametric Value (V)	Arc Length (G
0	0.00	0.000
1	0.05	0.080
2	0.10	0.150
3	0.15	0.230
4	0.20	0.320
5	0.25	0.400
6	0.30	0.500
7	0.35	0.600
8	0.40	0.720
9	0.45	0.800
10	0.50	0.860
11	0.55	0.900
12	0.60	0.920
13	0.65	0.932
14	0.70	0.944
15	0.75	0.959
16	0.80	0.972
17	0.85	0.984
18	0.90	0.994
19	0.95	0.998

Controlling the motion

= 0.953

• Computing arc length (forward differencing) P(u), u = 0.00, 0.05, 0.10, 0.15... interpolate between two entries

$$i = \left\lfloor \frac{v}{d} \right\rfloor = \left\lfloor \frac{0.73}{0.05} \right\rfloor = 14$$

$$i = \left\lfloor \frac{v}{d} + 0.5 \right\rfloor = \left\lfloor \frac{0.73}{0.05} + 0.5 \right\rfloor = 15$$

$$s = G[i] + \frac{v - V[i]}{V[i+1] - V[i]} (G[i+1] - G[i])$$

$$= 0.944 + \frac{0.73 - 0.70}{0.75 - 0.70} (0.959 - 0.944)$$

Index	Parametric Value (V)	Arc Length (G)
0	0.00	0.000
1	0.05	0.080
2	0.10	0.150
3	0.15	0.230
4	0.20	0.320
5	0.25	0.400
6	0.30	0.500
7	0.35	0.600
8	0.40	0.720
9	0.45	0.800
10	0.50	0.860
11	0.55	0.900
12	0.60	0.920
13	0.65	0.932
14	0.70	0.944
15	0.75	0.959
16	0.80	0.972
17	0.85	0.984
18	0.90	0.994
19	0.95	0.998

- Controlling the motion
 - Computing arc length (forward differencing)
 - 1. Given parameters u_a and u_b , find $LENGTH(u_a, u_b)$.
 - **2.** Given an arc length s and a parameter value u_a , find u_b such that $LENGTH(u_a, u_b) = \mathbf{s}$. This is equivalent to finding the solution to the equation $s LENGTH(u_a, u_b) = 0$.
 - Search table for s or closest to s, then work out $u_{\rm b}$
 - Binary search to find the closest s' to s.
 - Interpolate two us and add a difference to u_a
 - Pros: Easy to implement, quick
 - Cons: errors from both values and parameters
 - Mitigation: subsampling curves, higher-order interpolation

- Controlling the motion
 - Computing arc length (Adaptive forward differencing)
 - Same as before
 - Test if error is above some threshold, if so, split it into two

$$|||P(0.0) - P(1.0)|| - (||P(0.0) - P(0.5)|| + ||P(0.5) - P(1.0)||)| < \varepsilon$$

Lengths A + B - C erroneously report that the error is within tolerance

- Controlling the motion
 - Computing arc length (*Numerically*)
 - Numerical integration!! (remember integration for animation?)
 - On an unknown arbitrary curve
 - Simpson's and trapezoidal integration, Gaussian quadrature

- Controlling the motion
 - Computing arc length (Numerically)
 - Simpson's integration
 - Point a, b and the middle point m (the simplest version)

$$P(x) = f(a) rac{(x-m)(x-b)}{(a-m)(a-b)} + f(m) rac{(x-a)(x-b)}{(m-a)(m-b)} + f(b) rac{(x-a)(x-m)}{(b-a)(b-m)}$$

$$\int_a^b P(x)\,dx = rac{b-a}{6}\left[f(a) + 4f\left(rac{a+b}{2}
ight) + f(b)
ight]$$

- Controlling the motion
 - Computing arc length (*Numerically*)
 - Trapezoidal integration

$$\int_a^b f(x)\,dxpprox (b-a)\left[rac{f(a)+f(b)}{2}
ight]$$

$$\int_a^b f(x)\,dx pprox \sum_{k=1}^N rac{f(x_{k-1})+f(x_k)}{2} \Delta x_k$$

- Controlling the motion
 - Computing arc length (Numerically)
 - Gaussian quadrature

$$\int_{-1}^1 f(x) \, dx = \int_{-1}^1 \omega(x) g(x) \, dx pprox \sum_{i=1}^n w_i' g(x_i').$$

where g(x) is approximately polynomial

$$\omega(x)=1/\sqrt{1-x^2}$$
 (Chebyshev-Gauss) $\omega(x)=e^{-x^2}$ (Gauss-Hermite)

Interval	$\omega(x)$	Orthogonal polynomials
[-1, 1]	1	Legendre polynomials
(-1, 1)	$(1-x)^\alpha(1+x)^\beta, \alpha,\beta>-1$	Jacobi polynomials
(-1, 1)	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials (first kind)
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev polynomials (second kind)
[0, ∞)	e^{-x}	Laguerre polynomials
[0, ∞)	$x^{lpha}e^{-x}, lpha > -1$	Generalized Laguerre polynomials
(-∞, ∞)	e^{-x^2}	Hermite polynomials

Blue: ground truth Orange: Trapezoidal

Black: Gaussian quadrature

$$y(x) = 7x^3 - 8x^2 - 3x + 3,$$

- Controlling the motion
 - Computing arc length (*Numerically*)
 - Adaptive Gaussian Integration
 - Test errors, divide it into halves

- Controlling the motion
 - Computing arc length (Numerically)
 - Finding a point, given a distance along a curve

$$s-LENGTH(u_1,\,U(p_{n\,-\,1})) \qquad \text{Solve for } s-LENGTH(u_a,\,u)=0$$
 • Newton-Rapson
$$p_n=p_{n-1}-f(p_{n-1})/f^{'}(p_{n-1})$$

- Problems: p_n is not on the curve or dP/du = 0 (binary division can help) When finding u such that LENGTH(0, u) = s find the values s_i , s_{i+1} such that $s_i < s < s_{i+1}$
- No need for Gaussian quadrature anymore

- Controlling the motion
 - Speed control
 - A function of arc length and time
 - Time is usually normalised [0, 1]

- **1.** The distance-time function should be monotonic in *t*, that is, the curve should be traversed without backing up along the curve.
- **2.** The distance-time function should be continuous, that is, there should be no instantaneous jumps from one point on the curve to a nonadjacent point on the curve.

- Controlling the motion
 - Speed control
 - Ease-in/Ease-out

distance-time function $(2 - t)^*t$.

- Controlling the motion
 - Speed control
 - Sinusoidals for acceleration and deceleration

$$s = ease(t) = \frac{\sin(t_{\pi} - \frac{\pi}{2}) + 1}{2}$$

Sine curve segment to use as ease-in/ease-out control

Sine curve segment mapped to useful values

- Controlling the motion
 - Speed control
 - Sinusoidals for acceleration and deceleration

Ease-in/ease-out curve as it is initially pieced together

$$ease(t) = \left(k_1 \frac{2}{\pi} \left(\sin\left(\frac{t}{k_1} \frac{\pi}{2} - \frac{\pi}{2}\right) + 1\right)\right) / f \qquad t \le k_1$$

$$= \left(\frac{k_1}{\pi/2} + t - k_1\right) / f \qquad k_1 \le t \le k_2$$

$$= \left(\frac{k_1}{\pi/2} + k_2 - k_1 + \left((1 - k_2) \frac{2}{\pi}\right) \sin\left(\left(\frac{t - k_2}{1 - k_2}\right) \frac{\pi}{2}\right)\right) / f \quad k_2 \le t$$
where $f = k_1 (2/\pi + k_2 - k_1 + (1 - k_2)(2/\pi)$

- Controlling the motion
 - Speed control
 - Single cubic polynomial

$$s = -2t^3 + 3t^2$$

- Controlling the motion
 - Speed control
 - Constant acceleration: parabolic ease-in/ease-out

- Controlling the motion
 - Speed control
 - Constant acceleration: parabolic ease-in/ease-out

- Controlling the motion
 - General distance-time functions

$$d = v_0 \frac{t^2}{2t_1}$$
 0.0 < $t < t_1$

$$d = v_0 \frac{t_1}{2} + v_0 (t - t_1)$$
 $t_1 < t < t_2$

$$d = v_0 \frac{t_1}{2} + v_0 (t_2 - t_1) + \left[v_0 - \frac{\left(v_0 \frac{t - t_2}{1 - t_2} \right)}{2} \right] (t - t_2)$$
 $t_2 < t < 1.0$

- Controlling the motion
 - General distance-time functions (arbitrary velocity)->interpolation of vel

- Controlling the motion
 - General distance-time functions (arbitrary distance-time)

- Controlling the motion
 - General distance-time functions (both distance and speed)

