

Département de génie électrique et de génie informatique

IDENTIFICATION DES SYSTÈMES GEL-20701/GEL-65395

Examen #2 (40% de la note finale) Mercredi 13 décembre 2000, 15h30-17h20 Professeur: André Desbiens

 Document permis: une feuille 8.5 X 11 10% de la note peut être associé à la qualité du français Ne détachez pas les feuilles du questionnaire.
NOM :
MATRICULE :

QUESTION 1 (5 points)

La représentation fréquentielle du critère d'identification de l'identification basée sur l'erreur de prédiction est la suivante:

$$V(\theta) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \frac{\left| L(e^{j\omega T}) \right|^2 \left| G_o(e^{j\omega T}) - G(e^{j\omega T}) \right|^2}{\left| H(e^{j\omega T}) \right|^2} \Phi_u(\omega) d\omega + \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} \frac{\left| L(e^{j\omega T}) \right|^2 \left| H_o(e^{j\omega T}) \right|^2}{\left| H(e^{j\omega T}) \right|^2} \sigma_e^2 d\omega$$

- a) Les moindres carrés simples (sans filtrer les données) conduisent souvent à un modèle dont le gain statique n'est pas très précis. Pourquoi?
- b) Si l'identification du modèle est parfaite, que vaut la somme résiduelle?

Si on suppose que la précision du modèle aux hautes fréquences n'est pas requise, alors comment peut-on se concentrer sur les basses et moyennes fréquences en modifiant

- c) la période d'échantillonnage T?
- d) le spectre du signal d'entrée $F_u(?)$?
- e) le filtre *L*?

QUESTION 2 (5.4 points)

Une identification récursive avec les moindres carrés simples à facteur d'oubli variable est en cours. Nous sommes à la $k^{\text{ème}}$ période d'échantillonnage depuis que l'algorithme a été mis en marche. Voici les valeurs des différents paramètres:

$$?_{0} = 0.99$$

$$u(k) = 1$$

$$u(k-1) = 2$$

$$u(k-2) = -1$$

$$na = 1$$

$$d = 0$$

$$P(k-1) = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

$$?_{1}(k-1) = 0.991$$

$$y(k) = 4$$

$$y(k-1) = 2$$

$$y(k-2) = 1$$

$$nb = 1$$

$$?(k-1) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Que vaut ?(k)?

QUESTION 3 (5.4 points)

Quelle est une façon simple (mais approximative) de mettre en œuvre une identification récursive pour un modèle ARMAX? Donnez les équations de l'algorithme.

QUESTION 4 (4 points)

La variance de la réponse en fréquences du modèle à la fréquence $\omega = 1$ rad/sec a été estimée à 2. Si le nombre de points utilisés pour calculer le modèle avait été deux fois moins élevé mais que le rapport signal sur bruit à cette fréquence avait été quatre fois plus grand, alors quelle aurait été approximativement la variance obtenue?

QUESTION 5 (4 points)

Un système peut approximativement être représenté par un modèle du premier ordre dont la constante de temps vaut 10. Quelle période d'échantillonnage utiliserez-vous pour récolter des donner sur le système afin de l'identifier?

QUESTION 6 (5.4 points)

Un test de validation consiste à calculer l'autocorrélation des résidus. Comment utilise-t-on ce test et quelle en est l'idée de base?

QUESTION 7 (5.4 points)

Afin de sélectionner de façon optimale le nombre p de paramètres du modèle, on peut minimiser le critère suivant:

$$J(p,\theta) = f(p) \sum_{k=1}^{N} \varepsilon^{2}(k)$$

οù

$$f(p) = 1 + \frac{2p}{N}$$

et où θ est le vecteur des paramètres, N le nombre d'équations de prédictions et ϵ les erreurs de prédictions.

Quelle est la raison d'être de f(p)?

QUESTION 8 (5.4 points)

On désire utiliser les moindres carrés simples (non récursifs) pour identifier un modèle avec na = 1 et nb = 1. Ne connaissant pas les points d'opération, on décide d'augmenter d'un le nombre de paramètres inconnus du modèle afin d'en tenir compte. Quelle est l'expression de $\varepsilon(k)$, l'erreur de prédiction au temps k, en y faisant bien apparaître sous forme matricielle le régresseur et le vecteur des paramètres inconnus? Une fois l'identification complétée, est-il possible de déduire les points d'opération u_{op} et y_{op} ?