Bag of Tricks for Efficient Text Classification

Armand Joulin

Edouard Grave Piotr Boja Facebook AI Research

Piotr Bojanowski

Tomas Mikolov

EACL '17

Noah Lee

noahlee357@korea.ac.kr

Data Intelligence Lab, Korea University 2020 12. 04

How can we further efficiency on text classification?

[Efficient Estimation of Word Representations in Vector Space] '13

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean

Related Work

[Enriching Word Vectors with Subword Information] '16

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov

6.2 Character *n*-grams and morphemes

We want to qualitatively evaluate whether or not the most important n-grams in a word correspond to morphemes. To this end, we take a word vector that we construct as the sum of n-grams. As described in Sec. 3.2, each word w is represented as the sum of its n-grams: $u_w = \sum_{g \in \mathcal{G}_w} z_g$. For each n-gram g, we propose to compute the restricted representation $u_{w \setminus g}$ obtained by omitting g:

$$u_{w \setminus g} = \sum_{g' \in G - \{g\}} z_{g'}.$$

- Word representation learning (morphology)
- Obtaining word vectors for out-of-vocabulary words

Text Classification's application on

- 1) Web Search
- 2) Information Retrieval
- 3) Ranking
- 4) Document Classification

Neural Networks increasingly popular

(Kim, 2014; Zhang and LeCun, 2015; Conneau et al., 2016)

SLOW for large datasets

Contribution

fastText

- 1) Employs a simple yet efficient baseline for **text classification** for **large** data sets.
- 2) Utilizes hierarchical softmax & n-gram features to be on par with deep learning classifiers' accuracy yet orders faster.
- 3) Enables the training of more than **one billion** words in less than **ten minutes** (on standard multicore CPU).

Model: Baseline

Represent Sentences as Bag of Words(BoW)

Train linear classifer (logistic regression / SVM)

Factorize linear classifier into low rank matrices

Model: Architecture

- 1) Input: Sentence with N n-gram features
- 2) Look up on first weight matrix
- 3) Word representations averaged into text representation (**Hidden variable**)
- 4) Fed to the linear classifier
- 5) Output: probability for each class(or node)

Model: Hierarchical Softmax*

Computational Complexity : O(kh) -> O(hlog₂k)

h = dimension of text representation, k = number of classes

Each node has a binary decision activation (e.g. sigmoid)

^{*}Distributed Representations of Words and Phrases '13 - Mikolov

Model: Bag of N-grams

- Bag of Words invariant to word order
 Ex> Jane likes monkey = Monkey likes Jane
- Bag of n-grams as additional features (storing partial info about position)
- Bigram important for classification where word order is important
- Hashing Trick to retain memory efficiency

Ex> Bigrams(two undividing tokens)

<Last donut at the night>

<Last, Last donut, donut at,
at the, the night, night>

06 Datasets / Code

[Datasets]

AG's news corpus

Sogou news corpus

DBPedia ontology dataset

Yelp reviews

Yahoo! Answers dataset

Amazon reviews.

http://groups.di.unipi.it/~gulli/AG corpus of news articles.html

https://www.sogou.com/labs/resource/cs.php

https://wiki.dbpedia.org/datasets

https://www.yelp.com/dataset

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l

https://snap.stanford.edu/data/

YFCC100M

http://projects.dfki.uni-kl.de/yfcc100m/

[Code]

https://github.com/facebookresearch/fastText

[Task 1 : Sentiment Analysis]

Input: Sentence/Document

Output: Sentiment Label

[Task 2 : Tag Prediction]

Input	Prediction	Tags
taiyoucon 2011 digitals: individuals digital photos from the anime convention taiyoucon 2011 in mesa, arizona. if you know the model and/or the character, please comment.	#cosplay	#24mm #anime #animeconvention #arizona #canon #con #convention #cos #cosplay #costume #mesa #play #taiyou #taiyoucon
2012 twin cities pride 2012 twin cities pride parade	#minneapolis	#2012twincitiesprideparade #min- neapolis #mn #usa
beagle enjoys the snowfall	#snow	#2007 #beagle #hillsboro #january #maddison#maddy#oregon#snow
christmas	#christmas	#cameraphone #mobile
euclid avenue	#newyorkcity	#cleveland #euclidavenue

Input: Sentence/Document

Output: Tag

Settings & Basline/Sota

[Setting]

- 1) 5 Epochs
- 2) Decaying LR = [0.05, 0.1, 0.25, 0.5]
- 3) Stochastic gradient descent
- 4) Hidden units = 10 (Task1) 50/200 (Task2)

[Baseline/Sota]

Task 1

- 1) char-CNN (Zhang and LeCun '15)
- 2) VDCNN (Conneau et al '16)

Task 2

1) Tagspace (Weston et al '14)

Task 1: Sentiment Analysis

Model	AG	Sogou	DBP	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW (Zhang et al., 2015)	88.8	92.9	96.6	92.2	58.0	68.9	54.6	90.4
ngrams (Zhang et al., 2015)	92.0	97.1	98.6	95.6	56.3	68.5	54.3	92.0
ngrams TFIDF (Zhang et al., 2015)	92.4	97.2	98.7	95.4	54.8	68.5	52.4	91.5
char-CNN (Zhang and LeCun, 2015)	87.2	95.1	98.3	94.7	62.0	71.2	59.5	94.5
char-CRNN (Xiao and Cho, 2016)	91.4	95.2	98.6	94.5	61.8	71.7	59.2	94.1
VDCNN (Conneau et al., 2016)	91.3	96.8	98.7	95.7	64.7	73.4	63.0	95.7
fastText, $h = 10$	91.5	93.9	98.1	93.8	60.4	72.0	55.8	91.2
fastText, $h = 10$, bigram	92.5	96.8	98.6	95.7	63.9	72.3	60.2	94.6

- Outperforms char-CRNN and baselines
- Adding bigram increases **1~4% accuracy** (trigram 97.1% on Sogou)

Task 1: Sentiment Analysis

Model	AG	Sogou	DBP	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW (Zhang et al., 2015)	88.8	92.9	96.6	92.2	58.0	68.9	54.6	90.4
ngrams (Zhang et al., 2015)	92.0	97.1	98.6	95.6	56.3	68.5	54.3	92.0
ngrams TFIDF (Zhang et al., 2015)	92.4	97.2	98.7	95.4	54.8	68.5	52.4	91.5
char-CNN (Zhang and LeCun, 2015)	87.2	95.1	98.3	94.7	62.0	71.2	59.5	94.5
char-CRNN (Xiao and Cho, 2016)	91.4	95.2	98.6	94.5	61.8	71.7	59.2	94.1
VDCNN (Conneau et al., 2016)	91.3	96.8	98.7	95.7	64.7	73.4	63.0	95.7
fastText, $h = 10$	91.5	93.9	98.1	93.8	60.4	72.0	55.8	91.2
fastText, $h=10$, bigram	92.5	96.8	98.6	95.7	63.9	72.3	60.2	94.6

- VDCNN overall slightly higher => fastText **no pretrained word embedding**

Task 1: Sentiment Analysis

	Zhang and L	eCun (2015)	Con	neau et al. (2	fastText	
	small char-CNN	big char-CNN	depth=9	depth=17	depth=29	h = 10, bigram
AG	1h	3h	24m	37m	51m	1s
Sogou	-	-	25m	41m	56m	7s
DBpedia	2h	5h	27m	44m	1h	2s
Yelp P.	_	-	28m	43m	1h09	3s
Yelp F.	-	-	29m	45m	1h12	4s
Yah. A.	8h	1d	1h	1h33	2h	5s
Amz. F.	2d	5 d	2h45	4h20	7 h	9s
Amz. P.	2d	5 d	2h45	4h25	7h	10s

- Methods using convolutions are **orders of magnitude slower**
- Max 15000x speed up with larger datasets

Task 2: Tag Prediction

Model	prec@1	Running time		
Model	prec@1	Train	Test	
Freq. baseline	2.2	-	_	
Tagspace, $h = 50$	30.1	3h8	бh	
Tagspace, $h = 200$	35.6	5h32	15h	
fastText, $h = 50$	31.2	6m40	48s	
fastText, $h = 50$, bigram	36.7	7m47	50s	
fastText, $h = 200$	41.1	10m34	1m29	
fastText, h = 200, bigram	46.1	13m38	1m37	

-fastText/fastText with bigrams outperforms Tagspace

Task 2: Tag Prediction

Model	proo@1	Running time			
Model	prec@1	Train	Test		
Freq. baseline	2.2	-	-		
Tagspace, $h = 50$	30.1	3h8	бh		
Tagspace, $h = 200$	35.6	5h32	15h		
fastText, $h = 50$	31.2	6m40	48s		
fastText, $h = 50$, $bigram$	36.7	7m47	50s		
fastText, h = 200	41.1	10m34	1m29		
fastText, $h = 200$, bigram	ı 46.1	13m38	1m37		

⁻ fastText performs upto 600 times faster at test time

fastText

- 1) Employs a simple yet efficient baseline for **text classification** for **large** data sets.
- 2) Utilizes hierarchical softmax & N-gram features to boost efficiency
- 3) On par with accuracy to Sotas on sentiment analysis & tagging but exceedingly fast in the train and test process

Q&A