## Non-parametric tests

## Selecting a statistical test

- Different tests are used according to the level of measurement:
  - Interval
  - Ordinal
  - Categorical
- Parametric vs non-parametric (makes no assumption on the population distribution or sample size) assumptions



# Selecting a statistical test



- Different tests are used for varying amount of groups/ conditions:
  - two samples
  - > two samples
- Different tests are used for related versus unrelated designs:
  - unrelated samples = between subjects designs
  - related samples = within subjects designs & matched pairs

# Selecting a statistical test



Figure 23.1 Choosing an appropriate two-sample test.

## Different types of tests

| Test type                             | Between subjects designs (Independent samples) | Within subject designs (repeated measures/matched pairs) |
|---------------------------------------|------------------------------------------------|----------------------------------------------------------|
| Non-parametric (for categorical data) | Chi-square test                                | The binomial sign test                                   |
| Non-parametric (for ordinal data)     | Mann-Whitney U                                 | Wilcoxon Signed-Rank Test<br>The binomial sign test      |
| Parametric                            | Unrelated t-test (level of data: interval)     | Related t-test (level of data: interval)                 |

Theoretical categorical disribution vs
Observed categorical distribution

Weekend in college



preference for one brand



# Chi-Square test $\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$

$$\chi_c^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$



- Goodness-of-fit:
  - compare the observed sample distribution with the expected probability distribution
  - $H_0$  = no difference from a known population
- Chi-Square fit test:
  - determines how well theoretical distribution fits the empirical distribution
  - H<sub>0</sub> = no difference, equal proportions

- Test for Independence (for two variables):
  - test *relationship* between two separate variables
  - H<sub>0</sub> = there is no relationship between the variables
    - eg: females prefer pepsi more than males



Observed Characteristics (Variables)

Categorical Variables Measurement (numerical) Variables

Nominal Variables e.g., hair color Ordinal
Variables
e.g. agreement
with a tax proposal
(agree/neutral/disagree)

Discrete Variables e.g. number of siblings Variables e.g. time since last meal



#### Chi-Square test/goodness-offit







M&Ms Color Distribution % according to their website



**H<sub>0</sub>**: The color distribution is equal

revised H₀: The color distribution is 13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% green

**H<sub>A:</sub>** The color distribution is different from 13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% green



$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$



$$df = ?$$

$$\chi^2 = 12.94$$

$$\chi^2 = 1.53$$

### Chi-Square distribution & df

- Degrees of freedom for goodness-of-fit
  - number of cells you would need to calculate all other cell values, assuming we know marginal values
- df = C-1, C = no. of categories



$$df = ?$$



$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$



$$\chi^2 = 12.94$$

H₀? [



 $\chi^2 = 1.53$ 

$$df = 5$$

#### Critical values of the Chi-square distributio with d degrees of freedom

|    |   | Probab | oility of | exceed | ing the cr | itical va | lue    |
|----|---|--------|-----------|--------|------------|-----------|--------|
| d  | ! | 0.05   | 0.01      | 0.001  | d          | 0.05      | 0.01   |
| 1  |   | 3.841  | 6.635     | 10.828 | 11         | 19.675    | 24.725 |
| 2  |   | 5.991  | 9.210     | 13.816 | 12         | 21.026    | 26.217 |
| 3  |   | 7.815  | 11.345    | 16.266 | 13         | 22.362    | 27.688 |
| 4  |   | 9.488  | 13.277    | 18.467 | 14         | 23.685    | 29.141 |
| 5  | i | 11.070 | 15.086    | 20.515 | 15         | 24.996    | 30.578 |
| 6  |   | 12.592 | 16.812    | 22.458 | 16         | 26.296    | 32.000 |
| 7  |   | 14.067 | 18.475    | 24.322 | 17         | 27.587    | 33.409 |
| 8  |   | 15.507 | 20.090    | 26.125 | 18         | 28.869    | 34.805 |
| 9  |   | 16.919 | 21.666    | 27.877 | 19         | 30.144    | 36.191 |
| 10 |   | 18.307 | 23.209    | 29.588 | 20         | 31.410    | 37.566 |

### Degrees of Freedom (df)

- number of independent pieces of information that go into the estimate of a parameter
- df depends on
  - particular calculation you will be performing
  - what you already know before making calculation

#### **H**<sub>A:</sub> artists typically tend to be Aries or Cancer



#### $H_{0:}$

| Category    | Observed |
|-------------|----------|
| Aries       | 29       |
| Taurus      | 24       |
| Gemini      | 22       |
| Cancer      | 19       |
| Leo         | 21       |
| Virgo       | 18       |
| Libra       | 19       |
| Scorpio     | 20       |
| Sagittarius | 23       |
| Capricorn   | 18       |
| Aquarius    | 20       |
| Pisces      | 23       |
|             |          |



256 artists



#### df=1 df=2 df=3 0.8 df=4 df=5 df=6 0.6 df=7 df=8 df=9 df=10 0.4 df=11 df=12 df=13 df=14 0.2 df=15 10 15 20 25 30

#### Chi-square Distribution Table

| d.f. | .995 | .99  | .975 | .95  | .9   | .1    | .05   | .025  |
|------|------|------|------|------|------|-------|-------|-------|
| 1    | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 2.71  | 3.84  | 5.02  |
| 2    | 0.01 | 0.02 | 0.05 | 0.10 | 0.21 | 4.61  | 5.99  | 7.38  |
| 3    | 0.07 | 0.11 | 0.22 | 0.35 | 0.58 | 6.25  | 7.81  | 9.35  |
| 4    | 0.21 | 0.30 | 0.48 | 0.71 | 1.06 | 7.78  | 9.49  | 11.14 |
| 5    | 0.41 | 0.55 | 0.83 | 1.15 | 1.61 | 9.24  | 11.07 | 12.83 |
| 6    | 0.68 | 0.87 | 1.24 | 1.64 | 2.20 | 10.64 | 12.59 | 14.45 |
| 7    | 0.99 | 1.24 | 1.69 | 2.17 | 2.83 | 12.02 | 14.07 | 16.01 |
| 8    | 1.34 | 1.65 | 2.18 | 2.73 | 3.49 | 13.36 | 15.51 | 17.53 |
| 9    | 1.73 | 2.09 | 2.70 | 3.33 | 4.17 | 14.68 | 16.92 | 19.02 |
| 10   | 2.16 | 2.56 | 3.25 | 3.94 | 4.87 | 15.99 | 18.31 | 20.48 |
| 11   | 2.60 | 3.05 | 3.82 | 4.57 | 5.58 | 17.28 | 19.68 | 21.92 |
| 12   | 3.07 | 3.57 | 4.40 | 5.23 | 6.30 | 18.55 | 21.03 | 23.34 |
| 13   | 3.57 | 4.11 | 5.01 | 5.89 | 7.04 | 19.81 | 22.36 | 24.74 |
| 14   | 4.07 | 4.66 | 5.63 | 6.57 | 7.79 | 21.06 | 23.68 | 26.12 |

zodiac signs are evenly distributed across artists







#### Chi-Square test for independence

test *relationship* between two separate variables  $H_{01}$  = there is no relationship between extraversion and comfort level of dancing in public





test *difference* between two conditions  $H_{02}$  = there is no difference in comfort level of dancing in public between introverts and extraverts

# Chi-Square (example) $\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$

|                    | Extraverts | Introverts | TOTAL |
|--------------------|------------|------------|-------|
| Not<br>comfortable | 10         | 40         | 50    |
| comfortable        | 40         | 10         | 50    |
| TOTAL              | 50         | 50         | 100   |

**observed** frequencies of Introverts and Extraverts who say they would or would not feel comfortable dancing in public

|                    | Extraverts | Introverts | TOTAL |
|--------------------|------------|------------|-------|
| Not<br>comfortable | 10         | 40         | 50    |
| comfortable        | 40         | 10         | 50    |
| TOTAL              | 50         | 50         | 100   |

**expected** frequencies if the null hypothesis were true?

row total × column total total *n* for table

|                    | Extraverts      | Introverts      | TOTAL |
|--------------------|-----------------|-----------------|-------|
| Not<br>comfortable | <b>25</b><br>10 | <b>25</b><br>40 | 50    |
| comfortable        | <b>25</b><br>40 | <b>25</b><br>10 | 50    |
| TOTAL              | 50              | 50              | 100   |

**observed** and **expected** frequencies Introverts and Extraverts who say they would or would not feel comfortable dancing in public

|                    | Extroverts | Introverts | TOTAL |
|--------------------|------------|------------|-------|
| Comfortable        | 10         | 40         | 50    |
| Not<br>Comfortable | 40         | 10         | 50    |
| TOTAL              | 50         | 50         | 100   |

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}}$$

$$\frac{(40-25)^2}{25} + \frac{(10-25)^2}{25} + \frac{(10-25)^2}{25} + \frac{(40-25)^2}{25}$$
9 + 9 + 9 + 9

$$\chi^2 = 36$$

df=?

- Degrees of freedom for independence
  - number of cells you would need to calculate all other cell values, assuming we know marginal values

$$df = (R-1)(C-1)$$
  
 $df = (2-1)(2-1) = 1$ 

- Our chi-square is significant
  - Introverts tend to feel more comfortable dancing in public compared to Extraverts (surprise!)



$$\chi^2 = 36$$
 $H_0$  REJECTED

#### **Gender Study**





**H<sub>0</sub>**: There is no relationship between gender and willingness to use metal health services

**H<sub>0</sub>**: The distribution of reported willingness to use mental health services has the same proportions for males and females

**H<sub>A</sub>**: The distribution of reported willingness to use mental health services for males has proportions that are different from those in females

#### Contingency Table

row total × column total total *n* for table

Willingness to Use Mental Health Services (n=150)

|        | No           | Maybe        | Yes          | Total |
|--------|--------------|--------------|--------------|-------|
| Males  | 17 <b>12</b> | 32 <b>30</b> | 11 <b>18</b> | 60    |
| Female | 13 <b>18</b> | 43 45        | 34 <b>27</b> | 90    |
| Total  | 30           | 75           | 45           | 150   |

$$df = (R-1)(C-1)$$

$$df = 2$$

#### Gender Study



Willingness to Use Mental Health Services

$$\chi^2 = 8.23$$

$$df = 2$$





Males are less willing to use Mental Health Services

#### **Effect Size**



Phi = 
$$sqrt(8.23/150)$$
  
= 0.23

Results showed a significant difference between males' and females' attitude toward using metal health services,

$$\chi^2$$
 (2,  $n = 150$ ) = 8.23,  $p < .05$ ,  $V = 0.23$ 

#### Chi-Square Test and Correlation

| Participant | Self-<br>Esteem<br>X | Academic<br>Performance<br>Y |
|-------------|----------------------|------------------------------|
| A           | 13                   | 73                           |
| В           | 19                   | 88                           |
| C           | 10                   | 71                           |
| D           | 22                   | 96                           |
| E           | 20                   | 90                           |
| F           | 15                   | 82                           |
|             |                      |                              |
| . 0         |                      | 1                            |
|             |                      |                              |



|                     |           | Leve | of Self-Este | em  |         |
|---------------------|-----------|------|--------------|-----|---------|
|                     |           | High | Medium       | Low |         |
| Academic            | High      | 17   | 32           | 11  | 60      |
| Performance         | Low       | 13   | 43           | 34  | 90      |
| Essentia Production | graph and | 30   | 75           | 45  | n = 150 |

# Chi-square and independent measures *t* and ANOVA

| Participant | Self-<br>Esteem<br>X | Academic<br>Performance<br>Y |
|-------------|----------------------|------------------------------|
| A           | 13                   | 73                           |
| В           | 19                   | 88                           |
| C           | 10                   | 71                           |
| D           | 22                   | 96                           |
| E           | 20                   | 90                           |
| F           | 15                   | 82                           |
|             |                      |                              |
|             |                      | 1                            |
|             |                      |                              |

|                         |             | Level of Self-Esteem |        |     |         |
|-------------------------|-------------|----------------------|--------|-----|---------|
|                         |             | High                 | Medium | Low |         |
| Academic<br>Performance | High        | 17                   | 32     | 11  | 60      |
|                         | Low         | 13                   | 43     | 34  | 90      |
| angle Manuel            | great a shi | 30                   | 75     | 45  | n = 150 |

#### Median Test for Independent Samples

- non-parametric alternative to independent measures t-test (or ANOVA) to determine significant group differences
- $H_0$  = different samples come from population that share a common median

|     |    | Self-Ester<br>ree Level |     |      |     | e  |    |
|-----|----|-------------------------|-----|------|-----|----|----|
| Hig | gh | T Want                  | Med | dium |     | Lo | w  |
| 22  | 14 | 22                      | 13  | 24   | 20  | 11 | 19 |
| 19  | 18 | 18                      | 22  | 10   | 16  | 13 | 15 |
| 12  | 21 | 19                      | 15  | 14   | 19  | 20 | 16 |
| 20  | 18 | 11                      | 18  | 11   | 10  | 10 | 18 |
| 23  | 20 | 12                      | 19  | 15   | -12 | 15 | 11 |

#### Median Test for Independent Samples

- calculate median for combined group (n = 40)
- within each group, perform median (17) split and fill contingency table

|    |    | Self-Ester<br>ree Level |    |      | formance |    |    |
|----|----|-------------------------|----|------|----------|----|----|
| Hi | gh | To would                | Me | dium | 11 3 75  | Lo | w  |
| 22 | 14 | 22                      | 13 | 24   | 20       | 11 | 19 |
| 19 | 18 | 18                      | 22 | 10   | 16       | 13 | 15 |
| 12 | 21 | 19                      | 15 | 14   | 19       | 20 | 16 |
| 20 | 18 | 11                      | 18 | 11   | 10       | 10 | 18 |
| 23 | 20 | 12                      | 19 | 15   | -12      | 15 | 11 |

|                 | Academic Performance |        |     |  |  |
|-----------------|----------------------|--------|-----|--|--|
|                 | High                 | Medium | Low |  |  |
| Above<br>Median | 8                    | 9      | 3   |  |  |
| Below<br>Median | 2                    | 11     | 7   |  |  |

#### Median Test for Independent Samples

|              | Academic Performance |              |            |  |
|--------------|----------------------|--------------|------------|--|
|              | High                 | Medium       | Low        |  |
| Above Median | 8                    | 9 10         | 3          |  |
| Below Median | 2 5                  | 11 <b>10</b> | 7 <b>5</b> |  |

$$\chi^2 = 5.4$$
 df = 2  $\chi^2 = 5.99$  (p < .05)

—> not sufficient evidence to conclude that there are significant differences among the self-esteem for these three groups of students

#### Limitations

- Observations must be unique to one cell (Between subjects)
  - each person must fall into only one cell
  - not valid for within subject designs (repeated measures/ matched pairs)
- Only frequencies can be studied, not means, percentages, ratios, etc.
- Low expected frequencies cause problems (should be ≥ 5)
  - loss of statistical power
- No group should contain less than 10 (or 5) (try to regroup instead)
- Not apt for low sample size.
- Informs of presence or absence (probability of occurrence) of association but doesn't measure strength of association

Can J Psychiatry. 1998 Oct;43(8):837-42.

#### Life after chi-squared: an introduction to log-linear analysis.

Streiner DL<sup>1</sup>, Lin E.

#### Author information

1 Kunin-Lunenfeld Applied Research Unit, Baycrest Centre for Geriatric Care, North York, Ontario. dstreiner@rotman-baycrest.on.ca

#### **Abstract**

Chi-squared tests are used to examine the relationships among categorical variables. However, they are difficult to use and interpret when more than 2 variables are involved. In such cases, it is better to use a related statistic, called log-linear analysis. This article is an introduction to log-linear models, illustrating how they can be used to tease apart relationships among several variables in looking at the factors associated with photonumerophobia.

|                          | Age category of car |     |       |
|--------------------------|---------------------|-----|-------|
|                          | New                 | Old | Total |
| Male drivers             |                     |     |       |
| Behaviour at amber light |                     |     |       |
| Stopped                  | 79                  | 63  | 142   |
| Did not stop             | 87                  | 95  | 182   |
| Total                    | 166                 | 158 | 324   |
| Female drivers           |                     |     |       |
| Behaviour at amber light |                     |     |       |
| Stopped                  | 95                  | 83  | 178   |
| Did not stop             | 51                  | 94  | 145   |
| Total                    | 146                 | 177 | 323   |
| Total old/new cars:      | 312                 | 335 | 647   |

Table 18.15 Stopping behaviour of male and female drivers in old and new cars.

#### Log-Linear Analysis

- variable of interest is proportional or categorical
- have two or more options
- no assumptions of IV or DV
- used for both hypothesis testing and model

building



#### Different types of tests

| Test type                             | Between subjects designs (Independent samples) | Within subject designs (repeated measures/matched pairs) |
|---------------------------------------|------------------------------------------------|----------------------------------------------------------|
| Non-parametric (for categorical data) | Chi-square                                     | The binomial sign test                                   |
| Non-parametric (for ordinal data)     | Mann-Whitney U                                 | Wilcoxon Signed-Rank test The binomial sign test         |
| Parametric                            | Unrelated t-test (level of data: interval)     | Related t-test (level of data: interval)                 |

# Mann-Whitney U Test



- between subjects design
- skewed distribution
- used on ordinal non-normal data

#### assumption:

- a real difference between two populations should cause the scores in one sample to be generally larger than the other;
- if two samples are combined and all scores are ranked, then the larger ranks should be concentrated in one sample and smaller ranks in the other
- eg: Likert items (e.g., a 7-point scale from "strongly agree" through to "strongly disagree")

# Mann-Whitney U test

 ex: children's tendency to stereotype according to traditional gender roles if they have working mothers vs not

| Full-time job | S                   | No job outsi                    | ide home |                             |
|---------------|---------------------|---------------------------------|----------|-----------------------------|
| Score         | Points              | Score                           | Points   |                             |
| 17            | 9                   | 19                              | 6        |                             |
| 32            | 7                   | 63                              | 0        |                             |
| 39            | 6.5                 | 78                              | 0        |                             |
| 27            | 8                   | 29                              | 4        |                             |
| 58            | 6                   | 39                              | 1.5      | critical <i>U</i> value =12 |
| 25            | 8                   | 59                              | 0        |                             |
| 31            | 7                   | 77                              | 0        | $\alpha$ < .05              |
|               |                     | 81                              | 0        |                             |
|               |                     | 68                              | 0        |                             |
| Totals:       | $51.5 = U_1$        |                                 | 11.5 = 0 | U <sub>2</sub>              |
|               | U is the lower of 5 | 1.5 and 11.5, so <i>U</i> is 11 | 1.5      |                             |

• the observed U value should be less than or equal to critical U value in order to reject  $H_0$ 

# Mann-Whitney U test

 ex: children's tendency to stereotype according to traditional gender roles if they have working mothers vs not

| Full-time jobs |                     | No job outside home             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|---------------------|---------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Score          | Points              | Score                           | Points |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17             | 9                   | 19                              | 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32             | 7                   | 63                              | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 39             | 6.5                 | 78                              | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27             | 8                   | 29                              | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 58             | 6                   | 39                              | 1.5    | critical <i>U</i> value =12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25             | 8                   | 59                              | 0      | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31             | 7                   | 77                              | 0      | $\alpha$ < .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                     | 81                              | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                     | 68                              | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Totals:        | $51.5 = U_1$        |                                 | 11.5 = | = U <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | U is the lower of 5 | 1.5 and 11.5, so <i>U</i> is 11 | 1.5    | R 100 and 100 |

children of working mothers are less likely to use gender-role stereotypes

### Kruskal-Wallis Test

#### Aim







Controlled Participants (CP)

To investigate musical engagement strategies via HUMS in DC compared to control participants (CP) from the community

#### Results: Group Differences for *Unhealthy* Scores



## Different types of tests

| Test type                             | Between subjects designs (Independent samples) | Within subject designs (repeated measures/matched pairs) |
|---------------------------------------|------------------------------------------------|----------------------------------------------------------|
| Non-parametric (for categorical data) | Chi-square                                     | The binomial sign test                                   |
| Non-parametric (for ordinal data)     | Mann-Whitney U                                 | Wilcoxon Signed-Rank Test                                |
| Parametric                            | Unrelated t-test (level of data: interval)     | Related t-test (level of data: interval)                 |

# Wilcoxon Signed-Rank Test

- ordinal level (tests based on rank order)
- within subjects design (related, repeatedmeasures/matched pairs)
- null hypothesis as the claim that the two populations from which scores are sampled are identical
- most of the time this is more specifically that the two medians are equal (not means because we are working at the ordinal level)
- the observed W value should be less than or equal to critical W value in order to reject H<sub>0</sub>

# Wilcoxon Signed-Rank Test

- example:
  - assess if students performed better in the mock exam than the final GRE exam

 $H_0$ : Population median difference = 0

 $H_1$ : Population median difference > 0 (1-tail)

# Wilcoxon Signed-Rank Test

| Student | Mock | Real | Diff(d) | Rank |
|---------|------|------|---------|------|
| 1       | 316  | 320  | -4      | -4.5 |
| 2       | 324  | 319  | 5       | 6    |
| 3       | 317  | 318  | -1      | -1.5 |
| 4       | 323  | 314  | 9       | 10   |
| 5       | 333  | 333  | 0       | n/a  |
| 6       | 329  | 321  | 8       | 9    |
| 7       | 328  | 311  | 17      | 12   |
| 8       | 319  | 309  | 10      | 11   |
| 9       | 320  | 318  | 2       | 3    |
| 10      | 314  | 321  | -7      | -8   |
| 11      | 309  | 315  | -6      | -7   |
| 12      | 323  | 319  | 4       | 4.5  |
| 13      | 335  | 334  | 1       | 1.5  |

$$T_{+}=57$$
  $T_{-}=21$ 

 $W_{\text{stat}} = \min(T_+, T_-) = 21$ (> critical W value 17  $\alpha$ < .05)

| n  | Two-Tailed Test |                | One-Tailed Test |                |
|----|-----------------|----------------|-----------------|----------------|
| n  | $\alpha = .05$  | $\alpha = .01$ | $\alpha = .05$  | $\alpha = .01$ |
| 5  |                 |                | 0               | 1              |
| 6  | 0               |                | 2               | -              |
| 7  | 2               |                | 3               | 0              |
| 8  | 3               | 0              | 5               | 1              |
| 9  | 5               | 1              | 8               | 3              |
| 10 | 8               | 3              | 10              | 5              |
| 11 | 10              | 5              | 13              | 7              |
| 12 | 13              | 7              | 17              | 9              |
| 13 | 17              | 9              | 21              | 12             |
| 14 | 21              | 12             | 25              | 15             |





## Different types of tests

| Test type                             | Between subjects designs (Independent samples) | Within subject designs (repeated measures/matched pairs) |
|---------------------------------------|------------------------------------------------|----------------------------------------------------------|
| Non-parametric (for categorical data) | Chi-square                                     | The binomial sign test                                   |
| Non-parametric (for ordinal data)     | Mann-Whitney U                                 | Wilcoxon Signed-Rank Test<br>The binomial sign test      |
| Parametric                            | Unrelated t-test (level of data: interval)     | Related t-test (level of data: interval)                 |

# The Binomial Sign Test

### Categorical data

- Within subjects design
- Items are dichotomous and nominal
- may be reduced from interval or ordinal level
- two dependent samples should be paired or matched

# The Binomial Sign Test

| Α      | В                                | С                                         | D                  | E                  |
|--------|----------------------------------|-------------------------------------------|--------------------|--------------------|
| Client | Self-image rating before therapy | Self-image rating after 3 months' therapy | Difference (C – B) | Sign of difference |
| a      | 3                                | 7                                         | 4                  | +                  |
| b      | 12                               | 18                                        | 6                  | +                  |
| С      | 9                                | 5                                         | -4                 | _                  |
| d      | 7                                | 7                                         | 0                  |                    |
| e      | 8                                | 12                                        | 4                  | <sup>+</sup> S = 1 |
| f      | 1                                | 5                                         | 4                  | +                  |
| g      | 15                               | 16                                        | 1                  | +                  |
| h      | 10                               | 12                                        | 2                  | +                  |
| i      | 11                               | 15                                        | 4                  | +                  |
| j      | 10                               | 17                                        | 7                  | +                  |

Table 17.6 Self-image scores before and after three months' therapy.

• the observed S value should be less than or equal to critical S value in order to reject H<sub>0</sub>

# The Binomial Sign Test

| Α      | В                                | С                                                 | D                  | E                  |
|--------|----------------------------------|---------------------------------------------------|--------------------|--------------------|
| Client | Self-image rating before therapy | g Self-image rating<br>after 3 months'<br>therapy | Difference (C – B) | Sign of difference |
| a      | 3                                | 7                                                 | 4                  | +                  |
| b      | 12                               | 18                                                | 6                  | +                  |
| c      | 9                                | 5                                                 | -4                 | _                  |
| d      | 7                                | 7                                                 | 0                  |                    |
| е      | 8                                | 12                                                | 4                  | S = 1              |
| f      | 1                                | 5                                                 | 4                  | +                  |
| g      | 15                               | 16                                                | 1                  | +                  |
| h      | 10                               | 12                                                | 2                  | +                  |
| i      | 11                               | 15                                                | 4                  | +                  |
| j      | 10                               | 17                                                | 7                  | +                  |

Table 17.6 Self-image scores before and after three months' therapy.

critical *S* value = 1  $\alpha \leq .05$ 





which tests can i use?







unrelated / between

analytic skills: CSE vs ECE

Brain connectivity patterns musicians vs non-musicians

Gender differences in social media usage



#### Performance in Quiz 1 vs Quiz 2

Memory Pre- vs Post- Sleep depravation

Pollution level **before vs after** Diwali







related / within conditions

## Different types of tests

| Test type                             | Between subjects designs (Independent samples) | Within subject designs (repeated measures/matched pairs) |
|---------------------------------------|------------------------------------------------|----------------------------------------------------------|
| Non-parametric (for categorical data) | Chi-square                                     | The binomial sign test                                   |
| Non-parametric (for ordinal data)     | Mann-Whitney U                                 | Wilcoxon Signed-Rank Test                                |
| Parametric                            | Unrelated t-test (level of data: interval)     | Related t-test (level of data: interval)                 |

## Single Sample t-test

Does the observed distribution come from a population with a certain mean?

How certain are we that it comes from a different population?

#### 1-Sample t-test





## Single Sample t-test

$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{N}}}$$







H<sub>0:</sub>

H<sub>A:</sub>



### Single Sample t-test







$$\frac{N = 500}{\overline{X} = 83}$$



$$t = 14.9 (df = 499), p < .001$$



### Two Sample test

Do they come from the same population?

How certain are we that they are different?







## Two Sample related t-test

**HA:** Students perform better/worse in mock tests







dir or non-dir HA?

## Two Sample related *t*-test

| Student | Mock | Real |
|---------|------|------|
| 1       | 316  | 320  |
| 2       | 324  | 319  |
| 3       | 317  | 318  |
| 4       | 323  | 314  |
| 5       | 333  | 330  |
| 6       | 329  | 321  |
| 7       | 328  | 311  |
| 8       | 319  | 309  |
| 9       | 320  | 318  |
| 10      | 314  | 321  |



Is t-test valid??

## > 2 groups/conditions

| Test type      | Between subjects designs (Independent samples) | Within subjects designs (dependent samples) |
|----------------|------------------------------------------------|---------------------------------------------|
| Parametric     | One-way ANOVA                                  | One-way Repeated<br>measures ANOVA          |
| Non-parametric | Kruskal-Wallis one way analysis of variance    | Friedman's two-way analysis of variance     |





COMMENT · 20 MARCH 2019

#### Scientists rise up against statistical significance

Valentin Amrhein, Sander Greenland, Blake McShane and more than 800 signatories call for an end to hyped claims and the dismissal of possibly crucial effects.

Valentin Amrhein <sup>™</sup>, Sander Greenland & Blake McShane

#### WRONG INTERPRETATIONS

An analysis of 791 articles across 5 journals\* found that around half mistakenly assume non-significance means no effect.

\*Data taken from: P. Schatz et al. Arch. Clin. Neuropsychol. 20, 1053–1059 (2005); F. Fidler et al. Conserv. Biol. 20, 1539–1544 (2006); R. Hoekstra et al. Psychon. Bull. Rev. 13, 1033–1037 (2006); F. Bernardi et al. Eur. Sociol. Rev. 33, 1–15 (2017).







COMMENT · 20 MARCH 2019

#### Scientists rise up against statistical significance

Valentin Amrhein, Sander Greenland, Blake McShane and more than 800 signatories call for an end to hyped claims and the dismissal of possibly crucial effects.

Valentin Amrhein <sup>™</sup>, Sander Greenland & Blake McShane

#### **BEWARE FALSE CONCLUSIONS**

Studies currently dubbed 'statistically significant' and 'statistically non-significant' need not be contradictory, and such designations might cause genuine effects to be dismissed.



## p-hacking

- Stop collecting data once p<.05</li>
- 2. Analyze many measures, but report only those with *p*<.05.
- Collect and analyze many conditions, but only report those with p<.05.</li>
- 4. Use covariates to get p<.05.
- 5. Exclude participants to get *p*<.05.
- 6. Transform the data to get p<.05.