

INF-0618 Tópicos em Aprendizado de Máquina II

Aula 5 – Batch normalization / Transfer Learning

Profa. Fernanda Andaló 2018

Instituto de Computação - Unicamp

Roteiro

Batch normalization

Transfer Learning

CPU vs. GPU

Batch normalization

Técnica utilizada para normalizar os inputs de cada camada da rede neural pela média e variância, a fim de aumentar a estabilidade do treinamento.

BATCH + NORMALIZATION

Batch normalization

Técnica utilizada para normalizar os inputs de cada camada da rede neural pela média e variância, a fim de aumentar a estabilidade do treinamento.

BATCH + NORMALIZATION

Batch normalization

Técnica utilizada para normalizar os inputs de cada camada da rede neural pela média e variância, a fim de aumentar a estabilidade do treinamento.

BATCH + NORMALIZATION

O que é batch?

<u>Treinando sem batch</u> – Stochastic Gradient Descent

O que é batch?

Treinando sem batch – Stochastic Gradient Descent

O que é batch?

Treinando sem batch - Stochastic Gradient Descent

O que é batch?

<u>Treinando sem batch</u> – Stochastic Gradient Descent

O que é batch?

<u>Treinando sem batch</u> – Stochastic Gradient Descent

O que é batch?

Treinando sem batch – Stochastic Gradient Descent

O que é batch?

Treinando sem batch - Stochastic Gradient Descent

O que é batch?

Treinando sem batch - Stochastic Gradient Descent

O que é batch?

<u>Treinando sem batch</u> – Stochastic Gradient Descent

O que é batch?

Treinando sem batch – Stochastic Gradient Descent

O que é batch?

<u>Treinando sem batch</u> – Stochastic Gradient Descent

E assim por diante, para cada sample, por algumas épocas,...

O que é batch?

O que é batch?

Treinando com batch – Mini-batch Gradient Descent

E assim por diante, para cada batch, por algumas épocas,...

O que é batch?

Batch

Quantidade de samples passados para a rede neural em uma única iteração.

$$\frac{100}{i_2}$$

$$\frac{1}{i_1}$$

$$\frac{1}{1000}$$

$$\mu = \frac{1}{n} \sum_{j=1}^{n} x_j$$

$$X = X - \mu$$

O que é normalização?

O que é normalização?

O que é normalização?

Analisando a função de custo

Sem normalização dos dados:

O que é normalização?

Analisando a função de custo

O que é normalização?

Analisando a função de custo

Sem normalização dos dados:

Com normalização dos dados:

O que é normalização?

Analisando a função de custo

Sem normalização dos dados:

Com normalização dos dados:

O que é normalização?

Analisando a função de custo

Sem normalização dos dados:

Com normalização dos dados:

Input features

Input features

Data normalization!

Data normalization!

MDC - Tópicos em Aprendizado de Máquina II

<u>Durante o treinamento</u>

Para um batch $B = \{x_1, x_2, ..., x_m\}$, o neurônio i produz $z_{i,j}$, para cada cada input $x_i \in B$:

$$z_{i,j} = w_i \cdot x_j + b_i$$
.

<u>Durante o treinamento</u>

Calcular média e variância de $z_{i,j}$ para $j \in B$:

$$\mu_i = \frac{1}{m} \sum_{j=1}^m z_{i,j}$$
 $\sigma_i^2 = \frac{1}{m} \sum_{j=1}^m z_{i,j} - \mu_i$

<u>Durante o treinamento</u>

Normalizar
$$z_{i,j}$$
: $z_{norm_{i,j}} = \frac{z_{i,j} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$.

Bias $b_i = 0$, pois já seria cancelado pela subtração da média.

<u>Durante o treinamento</u>

Novos parâmetros γ_i e β_i :

$$\hat{\mathbf{z}}_{i,j} = \gamma_i \mathbf{z}_{norm_{i,j}} + \beta_i$$

são aprendidos para não limitar a capacidade da rede.

<u>Durante o teste</u>

Utilizar médias e variâncias móveis calculadas durante o treinamento para cada neurônio.

Keras – Exemplo MNIST:

Modelo sem batch normalization:

```
# Creating model
model_without_bn = Sequential()
# Adjusting model structure
model_without_bn.add(Dense(256, activation="relu", input_shape=(784,)))
model_without_bn.add(Dense(128, activation="relu"))
model_without_bn.add(Dense(64, activation="relu"))
model_without_bn.add(Dense(10, activation="softmax"))
```

Keras – Exemplo MNIST:

Modelo sem batch normalization:

```
# Creating model
model_without bn = Sequential()
# Adjusting model structure
model_without bn.add(Dense(256, activation="relu", input_shape=(784,)))
model_without_bn.add(Dense(128, activation="relu"))
model_without_bn.add(Dense(64, activation="relu"))
model_without_bn.add(Dense(10, activation="softmax"))
```

Modelo com batch normalization:

```
# Creating model
model_with_bn = Sequential()
# Adjusting model structure
model_with bn.add(Dense(256, use_bias=False, input_shape=(784,)))
model_with_bn.add(Activation("relu"))

model_with_bn.add(Activation("relu"))

model_with_bn.add(Sense(128, use_bias=False))
model_with_bn.add(Sense(128, use_bias=False))
model_with_bn.add(Setivation("relu"))

model_with_bn.add(Setivation("relu"))

model_with_bn.add(Setivation("relu"))

model_with_bn.add(Setivation("relu"))

model_with_bn.add(Setivation("relu"))

model_with_bn.add(Setivation("relu"))
```

Keras – Exemplo MNIST:

- epochs = 10
- batch size = 128
- learning rate = 0.01
- data normalization: X/255
- weight init: glorot_uniform

Keras – Exemplo MNIST:

Without batch norm test-acc: 0.9657
With batch norm test-acc: 0.9739

Keras – Exemplo MNIST:

- epochs = 10
- batch size = $128 \Longrightarrow 1024$
- learning rate = $0.01 \Longrightarrow 1$
- data normalization: X/255
- weight init: glorot_uniform

Keras – Exemplo MNIST:

With batch norm test-acc: 0.0892
With batch norm test-acc: 0.9505

Keras – Exemplo MNIST:

- epochs = 10
- batch size = 128
- learning rate = 0.01
- · data normalization: X/255
- $\cdot \text{ weight init: glorot_uniform} \Longrightarrow$

RandomUniform(minval=-5, maxval=5)

Keras – Exemplo MNIST:

Without batch norm test-acc: 0.3525
With batch norm test-acc: 0.9660

Keras – Exemplo MNIST:

- epochs = 10
- batch size = 128
- learning rate = 0.01
- · data normalizațion: X/255 ⇒ sem normalização
- weight init: glorot_uniform

Keras – Exemplo MNIST:

Without batch norm test-acc: 0.1135
With batch norm test-acc: 0.9766

Vantagens da técnica de batch normalization:

- · utilização de learning rates mais altos
- · convergência do modelo em menos épocas
- · inicialização de pesos de maneira não tão cuidadosa
- · menor necessidade de normalização dos dados
- · adição de regularização quando o batch não é tão grande

Sempre são necessários muitos dados para treinamento de uma CNN.

Sempre são necessários muitos dados para treinamento de uma CNN.

CNN treinada em dataset grande (p.ex., ImageNet)

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

Donahue et al., "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

CNN treinada em dataset grande (p.ex., ImageNet)

FC-4096 FC-4096 MaxPool Conv-512 Conv.512 MaxPool Conv.512 Conv-512 MaxPool Conv.256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

FC-1000

Transfer Learning com dataset pequeno e C classes

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavían et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

FC-4096 FC-4096 MaxPool Conv.512 Conv.512 MaxPool Conv.512 Conv.512 MaxPool Conv.256 Conv.256 MayPool Conv-128 Conv-128 MaxPool Conv-64 Conv.64 Image

FC-1000

Transfer Learning com dataset pequeno e C classes

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition"; ICML 2014 Razavána et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

... ou com dataset maior

	dataset bem similar	dataset bem diferente
poucos dados	?	?
muitos dados	?	?

	dataset bem similar	dataset bem diferente
poucos dados	usar classificador linear como última camada	?
muitos dados	Finetuning de algumas camadas	?

	dataset bem similar	dataset bem diferente
poucos dados	usar classificador linear como última camada	Tentar classificador linear em diferentes estágios
muitos dados	Finetuning de algumas camadas	Finetuning de muitas camadas

Transfer learning é o mais comum na prática.

Image Captioning: CNN + RNN

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning é o mais comum na prática.

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning é o mais comum na prática.

Tem um tarefa de interesse, mas o dataset possui $< \sim 1 \text{M}$ imagens?

- Encontre um dataset grande para uma tarefa similar
- Treine uma CNN com este dataset grande
- · Faça transfer learning para a sua tarefa

CPU vs. GPU

CPU vs. GPU

Fonte: https://github.com/jcjohnson/cnn-benchmarks

CPU vs. GPU

O uso de GPUs é altamente recomendado!

O treinamento em GPU é de 49× a 74× mais rápido do que em CPU.