UNIT 1

1. Finite Automaton

- **Definition**: A mathematical model with a finite number of states used to recognize patterns in strings.
- Components:
 - o States (Q): Set of all possible states.
 - o Alphabet (Σ): Set of input symbols.
 - o **Transition Function** (δ): Defines state changes based on input.
 - o Start State (q₀): Initial state.
 - o Accept States (F): States where the string is accepted.

2. Deterministic and Non-Deterministic Finite Automata

- DFA (Deterministic Finite Automaton):
 - o For every state and input, there is **exactly one transition**.
 - o Easier to implement.
 - o Example: Recognizing binary strings divisible by 3.
- NDFA (Non-Deterministic Finite Automaton):
 - o Allows **multiple transitions** for a single input or state.
 - \circ Uses ε (epsilon) transitions (moves without input).
 - o More abstract and flexible.

3. Transition Systems and Properties

- Transition Function: $\delta(q,a) \rightarrow q' \delta(q,a)$ \to $q' \delta(q,a) \rightarrow q'$, maps state qqq and input aaa to a new state q'q'q'.
- Properties:
 - o Completeness: Defined for all states and inputs.
 - Closure: DFA and NDFA transitions are closed under certain operations like union, concatenation, etc.

4. Acceptability of a String

• A string is **accepted** if, starting from the initial state, it ends in an accept state after processing all input symbols.

5. Equivalence of DFA and NDFA

• Theorem: Every NDFA can be converted to an equivalent DFA.

• Process:

- o Construct subsets of NDFA states (subset construction).
- Each subset corresponds to a DFA state.

6. Mealy and Moore Machines

• Mealy Machine:

- o Outputs depend on both the state and input.
- o Output: $\lambda(q,a) \rightarrow \text{output} \lambda(q,a) \setminus \text{to output} \lambda(q,a) \rightarrow \text{output}$.

• Moore Machine:

- Outputs depend only on the state.
- o Output: $\lambda(q) \rightarrow \text{output} \lambda(q) \setminus \text{to output} \lambda(q) \rightarrow \text{output}$.

7. Minimization of Finite Automata

- Goal: Reduce the number of states in DFA while preserving functionality.
- Steps:
 - 1. Remove unreachable states.
 - 2. Combine equivalent states.

8. Basics of Strings and Alphabets

- Alphabet (Σ): Set of symbols (e.g., $\{0, 1\}$ for binary).
- **String**: Sequence of symbols from the alphabet.
- Language: Set of strings over an alphabet.

9. Transition Graph and Properties

- Transition Graph: Visual representation of states and transitions.
- Properties:
 - o Can represent DFA, NDFA, or ε-NDFA.
 - o Helps in visualizing language recognition.

10. Regular Languages

- Defined by regular expressions and recognized by finite automata.
- Operations:
 - Union (A U B).
 - \circ Concatenation (A · B).
 - Kleene Star (A*).

11. Equivalence of Deterministic and Non-Deterministic Automata

- Proven by subset construction method.
- Both recognize the same class of languages: regular languages.

Quick Example

- Alphabet: {a, b}
- DFA Example:
 - States: {q₀, q₁}, Start: q₀, Accept: q₁.
 - $\circ \quad \text{Transition: } \delta(q0,a) \rightarrow q1, \delta(q1,b) \rightarrow q0 \\ \delta(q_0,a) \setminus \text{to } q_1, \ \delta(q_1,b) \setminus \text{to } q_0 \\ \delta(q0,a) \rightarrow q1, \delta(q1,b) \rightarrow q0.$
 - o Accepts strings with alternating "a" and "b".

Important MCQ

1. Basic Definitions

- 1. What is a Finite Automaton?
 - a) A device with finite memory
 - b) A mathematical model with finite states
 - c) A machine with infinite memory
 - d) None of the above

Answer: b

- 2. The components of a finite automaton are:
 - a) States, Alphabet, Transition Function, Start State, Accept States
 - b) Input, Output, Memory
 - c) Transition Table and Stack
 - d) None of the above

Answer: a

- 3. What does DFA stand for?
 - a) Deterministic Functional Automaton
 - b) Deterministic Finite Automaton
 - c) Deterministic Finite Algorithm
 - d) Deterministic Formal Algorithm

Answer: b

2. Deterministic and Non-Deterministic Automata

- 4. In a DFA, for every state and input symbol, there is:
 - a) Exactly one transition
 - b) At most one transition
 - c) Zero transitions
 - d) Multiple transitions

Answer: a

- 5. NDFA allows:
 - a) Only one transition per input
 - b) Multiple transitions and ε-transitions
 - c) No transitions for some inputs
 - d) None of the above

Answer: b

- 6. Which is true about DFA and NDFA?
 - a) NDFA is more powerful than DFA
 - b) DFA is faster than NDFA
 - c) DFA and NDFA recognize the same languages
 - d) None of the above

Answer: c

3. Transition Systems

- 7. What is the purpose of the transition function in a finite automaton?
 - a) Determines state changes based on input
 - b) Converts NDFA to DFA
 - c) Accepts or rejects strings
 - d) None of the above

Answer: a

- 8. Transition functions in DFA are:
 - a) Total functions
 - b) Partial functions
 - c) Recursive functions
 - d) None of the above

Answer: a

- 9. What is the output of the transition function $\delta(q0,a)\delta(q0,a)\delta(q0,a)$ if $q0q_0q0$ is the start state?
 - a) Input symbol
 - b) Next state
 - c) Current state
 - d) None of the above

Answer: b

4. Acceptability of Strings

- 10. A string is accepted by a finite automaton if:
 - a) It starts with an accept state
 - b) It ends in an accept state
 - c) It is processed by all states
 - d) None of the above

Answer: b

- 11. What is the language of a finite automaton?
 - a) Set of states
 - b) Set of all strings it accepts
 - c) Set of transitions
 - d) None of the above

Answer: b

5. Equivalence of DFA and NDFA

- 12. Every NDFA can be converted to:
 - a) DFA
 - b) Moore Machine
 - c) Mealy Machine
 - d) None of the above

Answer: a

- 13. Which method is used to convert NDFA to DFA?
 - a) Transition reduction
 - b) Subset construction
 - c) State minimization
 - d) State partitioning

Answer: b

6. Mealy and Moore Machines

- 14. In a Mealy Machine, the output depends on:
 - a) State only
 - b) Input and State
 - c) Input only
 - d) None of the above

Answer: b

- 15. In a Moore Machine, the output depends on:
 - a) State only
 - b) Input and State
 - c) Input only
 - d) None of the above

Answer: a

- 16. Which is true for Mealy and Moore machines?
 - a) Moore machines are faster than Mealy machines
 - b) Mealy machines produce output earlier
 - c) Mealy and Moore machines recognize the same languages
 - d) None of the above

Answer: c

7. Minimization of Finite Automata

- 17. Why is DFA minimization performed?
 - a) To reduce memory usage
 - b) To improve efficiency
 - c) To reduce states while preserving behavior
 - d) All of the above

Answer: d

- 18. Which step is part of DFA minimization?
 - a) Removing unreachable states
 - b) Adding new states
 - c) Splitting transitions
 - d) None of the above

Answer: a

8. Strings and Alphabets

- 19. What is an alphabet in the context of finite automata?
 - a) Set of strings
 - b) Set of symbols
 - c) Transition table
 - d) None of the above

Answer: b

- 20. Which of the following represents a string?
 - a) Sequence of states
 - b) Sequence of symbols from an alphabet
 - c) Sequence of transitions
 - d) None of the above

Answer: b

9. Transition Graphs

- 21. A transition graph is used to:
 - a) Represent states and transitions visually
 - b) Minimize DFA
 - c) Convert regular expressions
 - d) None of the above

Answer: a

- 22. Transition graphs are equivalent to:
 - a) Transition tables
 - b) Regular expressions
 - c) Both a and b
 - d) None of the above

Answer: c

10. Regular Languages

- 23. Regular languages can be recognized by:
 - a) Finite automata
 - b) Turing machines
 - c) Context-free grammars
 - d) None of the above

Answer: a

- 24. Regular languages are closed under:
 - a) Union
 - b) Concatenation
 - c) Kleene Star
 - d) All of the above

Answer: d

- 25. Which is true about regular languages?
 - a) They are recognized by all machines
 - b) They can be expressed with finite automata
 - c) They require infinite memory to recognize
 - d) None of the above

Answer: b

11. Equivalence of DFA and NDFA

- 26. Which languages do DFA and NDFA both recognize?
 - a) Regular languages
 - b) Context-free languages
 - c) Recursive languages
 - d) None of the above

Answer: a

- 27. Which of the following is NOT a property of DFA?
 - a) Deterministic transitions
 - b) Unique next state for each input
 - c) ε-transitions allowed
 - d) Finite number of states

Answer: c

- 28. Which type of automaton uses ε -transitions?
 - a) DFA
 - b) NDFA
 - c) Turing Machine
 - d) None of the above

Answer: b

- 29. Which finite automaton is easier to implement in hardware?
 - a) DFA
 - b) NDFA
 - c) Moore Machine
 - d) Mealy Machine

Answer: a

- 30. What is a distinguishing feature of regular languages?
 - a) Infinite memory
 - b) Can be recognized by finite automata
 - c) Require a stack for recognition
 - d) None of the above

Answer: b