Análisis exploratorios

Santos G

Tabla de contenidos

```
# Librerías
library(tidyverse)
                     # Manipulación de datos: dplyr, tidyr, readr
library(janitor)
                    # Limpieza: clean_names(), tabyl()
library(ggplot2)
                   # Gráficos profesionales
library(kableExtra) # Tablas formateadas para informes
library(skimr)
                   # EDA rápido y completo (skim())
library(GGally)
                    # Matriz de gráficos para variables múltiples
library(corrplot)
                   # Visualización de matrices de correlación
library(vegan)
                   # Funciones para PCA/NMDS
library(broom)
                   # Limpiar salidas estadísticas a data.frames
library(effectsize) # Tamaños de efecto
library(randomForest) # Ejemplo de importancia de variables
```

Se realizó una exploración y control de calidad de los datos de entrada para identificar variables relevantes, evaluar supuestos básicos y priorizar rutas analíticas. El objetivo es generar una guía reproducible que permita a futuros analistas (o a un equipo de consultoría) replicar y ampliar los análisis según objetivos específicos (p. ej. comparar tratamientos, modelar abundancias o construir índices de condición).

```
# Carga de datos (ejemplo iris) y limpieza mínima
data("iris")
df <- as_tibble(iris) %>%
    janitor::clean_names() # convierte a snake_case: sepal_length, etc.

# Información básica
n_rows <- nrow(df); n_cols <- ncol(df)
glimpse(df)</pre>
```

Rows: 150 Columns: 5

```
$ sepal_length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~
```

\$ sepal_width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~

\$ petal_length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.6

\$ petal_width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~

\$ species <fct> setosa, setosa

skim(df)

Tabla 1: Data summary

Name	df
Number of rows	150
Number of columns	5
Column type frequency:	
factor	1
numeric	4
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique top_counts
species	0	1	FALSE	3 set: 50, ver: 50, vir: 50

Variable type: numeric

skim_variable n	_missing comp	lete_rate	mean	sd	p0	p25	p50	p75	p100	hist
sepal_length	0	1	5.84	0.83	4.3	5.1	5.80	6.4	7.9	
$sepal_width$	0	1	3.06	0.44	2.0	2.8	3.00	3.3	4.4	
$petal_length$	0	1	3.76	1.77	1.0	1.6	4.35	5.1	6.9	
petal_width	0	1	1.20	0.76	0.1	0.3	1.30	1.8	2.5	

El dataset contiene N=150 observaciones y 5 variables. Las variables cuantitativas son: sepal_length, sepal_width, petal_length, petal_width (continuas, en cm). La variable categórica species indica tres grupos balanceados (n = 50 por grupo). No se detectaron valores faltantes ni duplicados tras una inspección inicial. Esta estructura (muestras balanceadas y variables continuas sin NA) permite aplicar análisis univariados, comparativos y multivariados con mínima preprocesamiento.