THE DIFFERENTIAL GEOMETRY DIFFERENTIAL TOPOLOGY DUMP

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

Contents

Part 1. Combinatorics, Probability Theory

Linear Algebra Review

Part 3. Manifolds

- 1. Inverse Function Theorem
- 2. Immersions
- 3. Submersions
- Submanifolds; immersed submanifold, embedded submanifolds, regular submanifolds

Part 4. Prástaro

Part 5. Holonomy

Part 6. Complex Manifolds

Part 7. Jets, Jet bundles, h-principle, h-Prinzipien

Part 8. Morse Theory

- 6. Morse Theory introduction from a physicist
- 7. Lagrange multipliers

Part 9. Classical Mechanics applications

References

ABSTRACT. Everything about Differential Geometry, Differential Topology

Part 1. Combinatorics, Probability Theory

Theorem 1 (4.2. of Feller (1968) [1]). Let $r_1, \ldots, r_k \in \mathbb{Z}$, s.t. $r_1 + r_2 + \cdots + r_k = n$; $r_i > 0$. Let

$$\frac{N!}{r_1!r_2!\dots r_k!} =$$

number of ways in which n elemnts can be divided into k ordered parts (partitioned into k subpopulations). cf. Eq. (4.7) of Proof. Represent balls by stars, indicate n cells by n spaces between n+1 bars. e.g. r=8 balls Feller (1968) [1].

Date: 28 juillet 2016.

Key words and phrases. Differential Geometry, Differential Topology.

Note that the order of the subpopulations is essential in the sense that $(r_1 = 2, r_2 = 3)$ and $(r_1 = 3, r_2 = 2)$ represent different partitions. However, no attention is paid to the order within the groups.

Proof.

9

$$\binom{n}{r_1} \binom{n-r_1}{r_2} \binom{n-r_1-r_2}{r_3} \dots \binom{n-r_1-\dots-r_{k-2}}{r_{k-1}} = \frac{n!}{r_1!r_2!\dots r_k!}$$

- i.e. in order to effect the desired partition, we have to select r_1 elements out of n, remaining $n-r_1$ elements select a second group of size r_2 , etc. After forming the (k-1)st group there remains $n-r_1-r_2-\cdots-r_{k-1}=r_k$ elements, and these form the
- cf. pp. 37 of Feller (1968) [1] Examples. (g) Bridge. 32 cards are partitioned into 4 equal groups $\rightarrow 52!/(13!)^4$.
- Probability each player has an ace (?).

The 4 aces can be ordered in 4! = 24 ways, each order presents 1 possibility of giving 1 ace to each player.

8 Remaining 48 cards distributed (48!)/(12!)⁴ ways.

$$\to p = 24 \frac{48!}{(12!)^4} / \frac{52!}{(13!)^4}$$

(h) A throw of 12 dice $\rightarrow 6^{12}$ different outcomes total. Event each face appears twice can occur in as many ways as 12 dice can be arranged in 6 groups of 2 each.

$$\frac{12!}{(2!)^6} / \frac{52}{(13!)^6}$$

13 0.0.1. Application to Occupancy Problems; binomial coefficients. cf. Sec. 5 Application to Occupancy Problems of Feller (1968) 14 [1].

Consider randomly placing r balls into n cells.

- Let $r_k =$ occupancy number = number of balls in kth cell.
- Every n-tuple of integers satisfying $r_1 + r_2 + \cdots + r_n = r$; $r_k \ge 0$. describes a possible configuration of occupancy numbers. With indistinguishable balls 2 distributions are distinguishable only if the corresponding n-tuples (r_1, \ldots, r_n) are not identical.
 - (i) number of distinguishable distributions is

(3)
$$A_{r,n} = \binom{n+r-1}{r} = \binom{n+r-1}{n-1}$$

cf. Eq. (5.2) of Feller (1968) [1]

(ii) number of distinguishable distributions in which no cell remains empty is $\binom{r-1}{r-1}$

n=6 cells

Such a symbol necessarily starts and ends with a bar, but remaining n-1 bars and r starts appear in an arbitrary order. In (5) this way, it becomes apparent that the number of distinguishable distributions equals the number of ways of selecting

r places out of
$$n + r - 1$$
, $\frac{(n+r-1)!}{(n-1)!r!} = \binom{n-1+r}{r}$

$$|||| \dots || n+1$$
 bars
 $*** \dots **$ r stars leave $r-1$ spaces

Condition that no cell be empty imposes the restriction that no 2 bars be adjacent. r stars leave r-1 spaces of which n-1are to be occupied by bars. Thus $\binom{r-1}{r-1}$ choices.

Probability to obtain given occupancy numbers $r_1, \dots r_n = \frac{r!}{r_1! r_2! \dots r_n!} / n^r$, with r balls given by Thm. 4.2. of Feller (1968) n cells

- [1], which is the Maxwell-Boltzmann distribution.
 - (a) Bose-Einstein and Fermi-Dirac statistics. Consider r indistinguishable particles, n cells, each particle assigned to 1 cell. State of the system - random distribution of r particles in n cells.

If n cells distinguishable, n^r arrangements equiprobable \rightarrow Maxwell-Boltzmann statistics.

Bose-Einstein statistics: only distinguishable arrangements are considered, and each assigned probability $\frac{1}{4}$

$$A_{r,n} = \binom{n+r-1}{r} = \binom{n-1+r}{n-1}$$

cf. Eq. 5.2 of Feller (1968) [1]

Fermi-Dirac statistics.

- (1) impossible for 2 or more particles to be in the same cell. $\rightarrow r < n$.
- (2) all distinguishable arrangements satisfying the first condition have equal probabilities.
 - \rightarrow an arrangement is completely described by stating which of the n cells contain a particle

 $r \text{ particles} \to \binom{n}{r} \text{ ways } r \text{ cells chosen.}$

Fermi-Dirac statistics, there are $\binom{n}{r}$ possible arrangements, prob. $1/\binom{n}{r}$

pp. 39. Feller (1968) [1]. Consider cells themselves indistinguishable! Disregard order among occupancy numbers. cf. Feller (1968) [1]

Part 2. Linear Algebra Review

cf. Change of Basis, of Appendix B of John Lee (2012) [3].

Exercise B.22. Suppose V, W, X finite-dim. vector spaces

$$S:V\to W, \quad T:W\to X$$

- (a) $\operatorname{rank} S < \operatorname{dim} V$ with rank S = dim V iff S injective
- (b) $\operatorname{rank} S < \operatorname{dim} W$ with rank S = dim W iff S surjective
- (c) if $\dim V = \dim W$ and S either injective or surjective, then S isomorphism
- (d) $\operatorname{rank} TS < \operatorname{rank} S$ $\operatorname{rank} TS = \operatorname{rank} S \text{ iff } \operatorname{im} S \cap \ker T = 0$
- (e) $\operatorname{rank} TS \leq \operatorname{rank} T$ $\operatorname{rank} TS = \operatorname{rank} T$ iff $\operatorname{im} S + \ker T = W$
- (f) if S isomorphism, then rankTS = rankT
- (g) if T isomorphism, then rankTS = rankS

EY: Exercise B.22(d) is useful for showing the chart and atlas of a Grassmannian manifold, found in the More examples, for smooth manifolds.

Proof.(a) Recall the rank-nullity theorem

Theorem 2 (Rank-Nullity Theorem).

$$dim(im(S)) + dim(ker(S)) = dimV$$

Now

$$\operatorname{rank}(S) + \dim(\ker(S)) \equiv \dim(\operatorname{im}(S)) + \dim(\ker(S)) = \dim V$$

$$\Longrightarrow \boxed{\operatorname{rank}(S) \leq \dim V}$$

If rank(S) = dim V,

then by rank-nullity theorem, $\dim(\ker(S)) = 0$, implying that $\ker S = \{0\}$.

Suppose $v_1, v_2 \in V$ and that $S(v_1) = S(v_2)$. By linearity of S, $S(v_1) - S(v_2) = S(v_1 - v_2) = 0$, which implies, since $\ker S = \{0\}, \text{ that } v_1 - v_2 = 0.$

 $\implies v_1 = v_2$. Then by definition of injectivity, S injective.

If S injective, then S(v) = 0 implies v = 0. Then $\ker S = \{0\}$. Then by rank-nullity theorem, $\operatorname{rank}(S) = \dim V$.

(b) $\forall w \in \text{im}(S), w \in W$. Clearly rank S < dimW.

If S surjective, $\operatorname{im}(S) = W$. Then $\operatorname{dim}(\operatorname{im}(S)) = \operatorname{rank} S = \operatorname{dim} W$.

If rank $S = \dim W = m$, then im(S) has basis $\{y_i\}_{i=1}^m$, $y_i \in \operatorname{im}(S)$, so $\exists x_i \in V$, $i = 1 \dots m$ s.t. $S(x_i) = y_i$, with $\{S(x_i)\}_{i=1}^m$ linearly independent.

Since $\{S(x_i)\}_{i=1}^m$ linearly independent and $\dim W = m$, $\{S(x_i)\}_{i=1}^m$ basis for W. $\forall w \in W, \ w = \sum_{i=1}^m w^i S(x_i) = S(\sum_{i=1}^m w^i x_i)$. $\sum_{i=1}^m w^i x_i \in V$. S surjective.

(d) Now

$$\dim V = \operatorname{rank} TS + \operatorname{nullity} TS$$

$$\dim V = \operatorname{rank} S + \operatorname{nullity} S$$

 $\ker S \subseteq \ker TS$, clearly, so nullity $S \le \operatorname{nullity} TS$

$$\Longrightarrow \boxed{\operatorname{rank} TS \leq \operatorname{rank} S}$$

If rankTS = rankS.

then nullity S = nullity TS

Suppose
$$w \in \text{Im} S \cap \text{ker} T$$
, $w \neq 0$

Then
$$\exists v \in S$$
, s.t. $w = S(v)$ and $T(w) = 0$

Then
$$T(w) = TS(v) = 0$$
. So $v \in \ker TS$

$$v \notin \ker S \text{ since } w = S(v) \neq 0$$

This implies nullity TS > nullity S. Contradiction.

$$\Longrightarrow \operatorname{Im} S \cap \ker T = 0$$

If
$$\text{Im}S \cap \text{ker}T = 0$$
.

Consider $v \in \ker TS$. Then TS(v) = 0.

. Then
$$S(v) \in \ker T$$

S(v) = 0; otherwise, $S(v) \in \text{Im}S$, contradicting given $\text{Im}S \cap \ker T = 0$ $v \in \ker S$

$$\ker TS \subseteq \ker S$$

$$\Longrightarrow \ker TS = \ker S$$

So nullity
$$TS = \text{nullity}S$$

$$\Longrightarrow \operatorname{rank} TS = \operatorname{rank} S$$

- (e)
- (f)

Part 3. Manifolds

1. Inverse Function Theorem

Shastri (2011) had a thorough and lucid and explicit explanation of the Inverse Function Theorem [5]. I will recap it here. The following is also a blend of Wienhard's Handout 4 https://web.math.princeton.edu/~wienhard/teaching/M327/handout4.pdf

Definition 1. Let (X, a) metric space.

contraction $\phi: X \to X$ if \exists constant 0 < c < 1 s.t. $\forall x, y \in X$

$$d(\phi(x), \phi(y)) \le cd(x, y)$$

Theorem 3 (Contraction Mapping Principle). Let (X, d) complete metric space.

Then \forall contraction $\phi: X \to X$, $\exists ! y \in X$ s.t. $\phi(y) = y$, y fixed pt.

Proof. Recall def. of complete metric space X, X metric space s.t. \forall Cauchy sequence in X is convergent in X (i.e. has limit in X).

$$x_1 = \phi(x_0)$$
$$x_2 = \phi(x_1)$$

 $\forall x_0 \in X$, Define:

$$x_j = \phi(x_{j-1})$$

:

$$x_n = \phi(x_{n-1})$$

$$d(x_{n+1}, x_n) = d(\phi(x_n), \phi(x_{n-1})) \le cd(x_n, x_{n-1}) \le \dots \le c^n d(x_1, x_0)$$

for some 0 < c < 1.

$$d(x_m, x_n) \le d(x_n, x_{n-1}) + d(x_{n-1}, x_m) \le d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_m) \le \sum_{k=n-1}^{m} c^k d(x_1, x_0)$$

Thus, $\forall \epsilon > 0, \exists n_0 > 0, (n_0 \text{ large enough}) \text{ s.t. } \forall m, n \in \mathbb{N} \text{ s.t. } n_0 < n < m,$

$$d(x_m, x_n) \le \sum_{k=n-1}^m c^k d(x_1, x_0) < \epsilon d(x_1, x_0)$$

Thus, $\{x_n\}$ Cauchy sequence. Since X complete, \exists limit pt. $y \in X$ of $\{x_n\}$.

$$\phi(y) = \phi(\lim_n x_n) = \lim_n \phi(x_n) = \lim_n x_{n+1} = y$$

Since by def. of y limit pt. of $\{x_n\}$, $\forall \epsilon > 0$, then $\{n | |x_n - y| \le \epsilon, n \in \mathbb{N}\}$ is infinite.

Consider $\delta > \mathbb{N}$. Consider $\{n | |x_n - y| \leq \delta, n \in \mathbb{N}\}$

 $\exists N_{\delta} \in \mathbb{N} \text{ s.t. } \forall n > N_{\delta}, |x_n - y| < \delta; \text{ otherwise, } \forall N_{\delta}, \exists n > N_{\delta} \text{ s.t. } |x_n - y| \geq \delta. \text{ Then } \{n||x_n - y| \leq \delta, n \in \mathbb{N}\} \text{ finite.}$ Contradiction.

 ϕ cont. so by def. $\forall \epsilon > 0, \exists \delta > 0$ s.t. if $|x_n - y| < \delta$, then $|\phi(x_n) - \phi(y)| < \epsilon$.

Pick N_{δ} s.t. $\forall n > N_{\delta}$, $|x_n - y| < \delta$, and so $|\phi(x_n) - \phi(y)| < \epsilon$. There are infinitely many $\phi(x_n)$'s that satisfy this, and so $\phi(y)$ is a limit pt.

If $\exists y_1, y_2 \in X \text{ s.t. } \phi(y_1) = y_1, \text{ then } \phi(y_2) = y_2$

$$d(y_1, y_2) = d(\phi(y_1), \phi(y_2)) \le cd(y_1, y_2)$$
 with $c < 1$

so c = 1

Theorem 4 (Inverse Function Theorem). Suppose open $U \subset \mathbb{R}^n$, let $C^1 f: U \to \mathbb{R}^n$, $x_0 \in U$ s.t. $Df(x_0)$ invertible. Then \exists open neighborhoods $V \ni x_0$, $W \ni f(x_0)$ s.t. $V \subseteq U$ and $W \subseteq \mathbb{R}^n$, respectively, and s.t.

- (i) $f: V \to W$ bijection
- (ii) $g = f^{-1}: V \to U$ differentiable, i.e. $g = f^{-1}: W \to V$ is C^1
- (iii) $D(f^{-1})$ cont. on W.
- (iv) $Dg(y) = (Df(g(y)))^{-1} \quad \forall y \in W$

Also, notice that $f(g(y)) = y \forall y \in W$.

Proof. Consider $\widetilde{f}(x) = (Df(x_0))^{-1}(f(x+x_0)-f(x_0))$. Then

$$\widetilde{f}(0) = 0$$
 and

$$D\widetilde{f} = (Df(x_0))^{-1}(Df(x+x_0) - 0)$$
$$D\widetilde{f}(0) = (Df(x_0))^{-1}Df(x_0) = 1$$

So let $\widetilde{f} \to f$ (notation) and so assume, without loss of generality, that $U \ni 0$, f(0) = 0, Df(0) = 1Choose $0 < \epsilon \le \frac{1}{2}$. Let $0 < \delta < 1$ s.t. open ball $V = B_{\delta}(0) \subseteq U$, and $||Df(x) - 1|| < \epsilon$. $\forall x \in U$, since Df cont. at 0. Let W = f(V).

 $\forall y \in W$, define $\phi_y : V \to \mathbb{R}^n$

$$\phi_y(x) = x + (y - f(x))$$

$$D(\phi_y)(x) = 1 + -Df(x) \quad \forall x \in V$$

$$||D(\phi_y)(x)|| = ||1 - Df(x)|| \le \epsilon < 1$$

 $\forall x_1, x_2 \in V$, by mean value Thm. (not the equality that is only valid in 1-dim., but the inequality, that's valid for \mathbb{R}^d .

$$\|\phi_y(x_1) - \phi_y(x_2)\| \le \|D(\phi_y)(x')\| \|x_1 - x_2\|$$

for some $x' = cx_2 + (1 - c)x_1$, $c \in [0, 1]$. V only needed to be convex set.

$$\Longrightarrow \|\phi_y(x_1) - \phi_y(x_2)\| \le \epsilon \|x_1 - x_2\|$$

Then ϕ_u contraction mapping.

Suppose $f(x_1) = f(x_2) = y, x_1, x_2 \in V$.

$$\phi_y(x_1) = x_1$$

$$\phi_y(x_2) = x_2$$

$$\|\phi_v(x_1) - \phi_v(x_2)\| = \|x_1 - x_2\| \le \epsilon \|x_1 - x_2\| \quad \forall \epsilon > 0 \Longrightarrow x_1 = x_2$$

 $\implies f|_{U}$ injective.

W = f(V), so $f: V \to W$ surjective. f bijective.

Fix $y_0 \in W$, $y_0 = f(x_0)$, $x_0 \in V$.

Let r > 0 s.t. $B_r(x_0) \subset V$.

Consider $B_{r\epsilon}(y_0)$. If $y \in B_{r\epsilon}(y_0)$.

$$r\epsilon > ||y - y_0|| = ||y - f(x_0)|| = ||\phi_y(x_0) - x_0|| \text{ with}$$

$$\phi_y(x) = x + (y - f(x))$$

If $x \in B_r(x_0)$,

$$\|\phi_y(x) - x_0\| \le \|\phi_y(x) - \phi_y(x_0)\| + \|\phi_y(x_0) - x_0\| \le \epsilon \|x - x_0\| + r\epsilon < 2r\epsilon = r$$

Thus $\phi(B_r(x_0)) = B_r(x_0)$.

By contraction mapping principle, $\exists a \in B_r(x_0)$, s.t. $\phi_y(a) = a$. Then $\phi_y(a) = a + (y - f(a)) = a \Longrightarrow f(a) = y$. $y \in f(V) = W$.

So $B_{r\epsilon}(y_0) \subset W$. W open.

Let $Mat(n, n) \equiv \text{space of all } n \times n \text{ matrices; } Mat(n, n) = \mathbb{R}^{n^2}$.

There is a proof of the implicit function theorem and its various forms in Shastri (2011) [5], but I found Wienhard's Handout 4 for Math 327 to be clearer.¹

Theorem 5 (Implicit Function Theorem). Let open $U \subset \mathbb{R}^{m+n} \equiv \mathbb{R}^m \times \mathbb{R}^n$

$$C^1 f: U \to \mathbb{R}^n$$

 $(a,b) \in U$ s.t. f(a,b) = 0 and $D_y f|_{(a,b)}$ invertible.

Then \exists open $V \ni (a,b), V \subset U$

 $\exists open \ neighborhood \ W \ni a, \ W \subseteq \mathbb{R}^m$

 $\exists ! C^1 g: W \to \mathbb{R}^n \ s.t.$

$$\{(x,y) \in V | f(x,y) = 0\} = \{(x,g(x)) | x \in W\}$$

Moreover.

$$dg_x = - (d_y f)^{-1}|_{(x,g(x))} d_x f|_{(x,g(x))}$$

and g smooth if f.

Proof. Define $F: U \to \mathbb{R}^{m+n}$

$$F(x,y) = (x, f(x,y))$$

Then F(a, b) = (a, 0) (given), and

$$DF = \begin{bmatrix} 1 \\ \frac{\partial f^{i}(x,y)}{\partial x^{j}} & \frac{\partial f^{i}(x,y)}{\partial y^{j}} \end{bmatrix} \equiv \begin{bmatrix} 1 \\ D_{x}f & D_{y}f \end{bmatrix}$$

DF(a, b) invertible.

By inverse function theorem, since DF(a, b) invertible at pt. (a, b),

 \exists open neighborhoods $V \ni (a,b) \subseteq \mathbb{R}^m \times \mathbb{R}^n$ s.t. F diffeomorphism with $F^{-1} : \widetilde{W} \to V$.

$$\widetilde{W} \ni (a,0) \subset \mathbb{R}^m \times \mathbb{R}^n$$

Set $W = \{x \in \mathbb{R}^m | (x,0) \in \widetilde{W}\}$. Then $\pi_1(\widetilde{W}) = W$ open in \mathbb{R}^m .

Define $g: W \to \mathbb{R}^n$,

$$g(x) = \pi_2 \circ F^{-1}(x,0)$$
 or

$$F^{-1}(x,0) = (h(x), g(x))$$

Now $FF^{-1}(x,0) = (x,0) = (h(x), f(h(x), g(x)))$ so $h(x) = x \,\forall \, x \in W, \, 0 = f(x,g(x))$. Then

 $\{(x,y) \in V | f(x,y) = 0\} = \{(x,y) \in V | F(x,y) = (x,0)\} = \{(x,g(x)) | x \in W, 0 = f(x,g(x))\}$

Since π smooth and F^{-1} is C^1 , g is C^1 .

To reiterate, f(x, g(x)) = 0 on W.

Using chain rule while differentiating f(x, q(x)) = 0.

$$\partial_{x^{j}} f(x, g(x)) = \frac{\partial f(x, g(x))}{\partial x^{k}} \frac{\partial x^{k}}{\partial x^{j}} + \frac{\partial f(x, g(x))}{\partial y^{k}} \frac{\partial g^{k}(x)}{\partial x^{j}} = D_{x} f|_{(x, g(x))} + (D_{y} f)|_{(x, g(x))} \cdot (Dg)_{x} = 0 \text{ or } (Dg)_{x} = -(D_{y} f)|_{x, g(x)} D_{x} f|_{(x, g(x))}$$

2. Immersions

Definition 2 (Immersion). smooth $f: M \to N$, s.t. $Df(p): T_pM \to T_{f(p)}N$ injective. Then f immersion at p.

Absil, Mahony, and Sepulchre [7] pointed out that another definition for a *immersion* can utilize the theorem that rank of $Df \equiv DF = \dim T_p M$. Indeed, recall these facts from linear algebra: for $T: V \to W$.

It's always true that $\operatorname{rank} T \leq V$, and

$$\operatorname{rank} T \leq W$$

rankT = dimV iff T injective. rankT = dimW iff T surjective.

$$T_x M \xrightarrow{DF(x)} T_{F(x)} N = T_y N$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$x \in M \longmapsto F \qquad y = F(x) \in N$$

$$M \longrightarrow F$$
 N

Now

$$\dim T_x M = \dim M$$
$$\dim T_{F(x)} N = \dim N$$

And

$$\operatorname{rank}(DF(x)) \equiv \operatorname{rank} \text{ of } F$$

I know that the notation above is confusing, but this is what all Differential Geometry books apparently mean when they say "rank of F".

Now

$$\operatorname{rank}(DF(x)) = \dim(\operatorname{im}(DF(x))) = \dim T_x M \text{ iff } DF(x) \text{ injective}$$

If $\forall x \in M$, this is the case, then F an immersion.

Apply the rank-nullity theorem in this case:

$$\begin{aligned} \operatorname{rank}(DF(x)) + \operatorname{dimker}(DF(x)) &= \operatorname{dim} T_x M = \operatorname{dim} M \\ \Longrightarrow \operatorname{rank}(DF(x)) &= \operatorname{dim} M \leq \operatorname{dim} T_{F(x)} N = \operatorname{dim} N \text{ or } \operatorname{dim} M \leq \operatorname{dim} N \end{aligned}$$

Now

$$rank(DF(x)) = dim T_{F(x)} N \text{ iff } DF(x) \text{ surjective}$$

¹https://web.math.princeton.edu/~wienhard/teaching/M327/handout4.pdf

If $\forall x \in M$, this is the case, then F an submersion.

$$\operatorname{rank}(DF(x)) = \dim T_{F(x)}N = \dim N \le \dim M$$

Shastri (2011) has this as the "Injective Form of Implicit Function Theorem", Thm. 1.4.5, pp. 23 and Guillemin and Pollack (2010) has this as the "Local Immersion Theorem" on pp. 15, Section 3 "The Inverse Function Theorem and Immersions" [4].

Theorem 6 (Local immersion Theorem i.e. Injective Form of Implicit Function Theorem). Suppose $f: M \to N$ immersion at p, q = f(p).

Then \exists local coordinates around p, q, x, y, respectively s.t. $f(x_1 \dots x_m) = (x_1 \dots x_m, 0 \dots 0)$.

Proof. Choose local parametrizations

$$U \subseteq M \xrightarrow{f} N \supseteq V$$

$$\downarrow \phi \qquad \qquad \downarrow \psi$$

$$\phi(U) \xrightarrow{f} \psi(V) \qquad \phi(p) = x$$

$$\psi(q) = y$$

 $D(\psi f \varphi^{-1}) \equiv Df$. Df(p) injective (given f immersion). $Df(p) \in \text{Mat}(n, m)$ By change of basis in \mathbb{R}^n , assume $Df(p) = \begin{pmatrix} I_m \\ 0 \end{pmatrix}$.

Now define $G: \phi(U) \times \mathbb{R}^{n-m} \to \mathbb{R}^n$

$$G(x,z) = f(x) + (0,z)$$

Thus, DG(x,z) = 1 and for open $\phi(U) \times U_2$, $G(\phi(U) \times U_2)$ open.

By inverse function theorem, G local diffeomorphism of \mathbb{R}^n , at 0.

Now $f = G \circ i$, where i is canonical immersion.

$$G(x,0) = f(x)$$

$$\Longrightarrow G^{-1}G(x,0) = (x,0) = G^{-1}f(x)$$

Use $\psi \circ G$ as the local parametrization of N around pt. q. Shrink U, V so that

$$U \subseteq M \xrightarrow{f} N \supseteq V$$

$$\downarrow \phi \qquad \qquad \downarrow \psi \circ G$$

$$\phi(U) \xrightarrow{i} \psi \circ G(V)$$

Theorem 7 (Implicit Function Thm.). Let open subset $U \subseteq \mathbb{R}^n \times \mathbb{R}^d$, $(x,y) = (x^1 \dots x^n, y^1 \dots y^k)$ on U. Suppose smooth $\Phi: U \to \mathbb{R}^k$, $(a,b) \in U$, $c = \Phi(a,b)$

If $k \times k$ matrix $\frac{\partial \Phi^i}{\partial y^j}(a,b)$ nonsingular, then \exists neighborhoods $V_0 \subseteq \mathbb{R}^n$ of a and smooth $F: V_0 \to W_0$ s.t. $W_0 \subseteq \mathbb{R}^k$ of b

$$\Phi^{-1}(c) \bigcap (V_0 \times W_0)$$
 is graph of F , i.e. $\Phi(x,y) = c$ for $(x,y) \in V_0 \times W_0$ iff $y = F(x)$.

3. Submersions

cf. pp. 20, Sec. 4 "Submersions", Ch. 1 of Guillemin and Pollack (2010) [4]. Consider $X, Y \in \mathbf{Man}$, s.t. $\dim X > \dim Y$.

Definition 3 (submersion). If $f: X \to Y$, if $Df_x \equiv df_x$ is surjective, $f \equiv submersion$ at x.

Recall that,

$$Df_x: T_xX \to T_{f(x)}Y$$

 $\dim T_xX \ge \dim T_{f(x)}Y$
 $\operatorname{rank} Df_x \le \dim T_{f(x)}Y$, in general, while
 $\operatorname{rank} Df_x = \dim T_{f(x)}Y$ iff Df_x surjective

Canonical submersion is standard projection:

If
$$\dim X = k, k \ge l$$
,
 $\dim Y = l$

$$(a_1 \dots a_k) \mapsto (a_1 \dots a_l)$$

Theorem 8 (Local Submersion Theorem). Suppose $f: X \to Y$ submersion at x, and y = f(x), Then \exists local coordinates around x, y s.t.

$$f(x_1 \dots x_k) = (x_1 \dots x_l)$$

i.e. f locally equivalent to canonical submersion near x

Proof. I'll have a side-by-side comparison of my notation and the 1 used in Guillemin and Pollack (2010) [4] where I can. For charts $(U, \phi), (V, \psi)$ for X, Y, respectively, y = f(x) for $x \in X$,

 Dg_x surjective, so assume it's a $l \times k$ matrix $\begin{bmatrix} \mathbf{1}_l & 0 \end{bmatrix}$. Define

(6)
$$G: U \subset \mathbb{R}^k \to \mathbb{R}^k$$

$$G(a) \equiv G(a^1 \dots a^k) := (g(a), a_{l+1}, \dots, a_k)$$

Now

(7)
$$DG(a) = \begin{bmatrix} \mathbf{1}_l & 0 \\ \mathbf{1}_{k-l} \end{bmatrix} = \mathbf{1}_k$$

so G local diffeomorphism (at 0).

So $\exists G^{-1}$ as local diffeomorphism of some U' of a into $U \subset \mathbb{R}^k$. By construction,

$$(8) g = \mathbb{P}_l \circ G$$

where \mathbb{P}_l is the *canonical submersion*, the projection operator onto \mathbb{R}^l

$$g \circ G^{-1} = \mathbb{P}_l$$

(since G diffeomorphism)

"An obvious corollary worth noting is that if f is a submersion at x, then it is actually a submersion in a whole neighborhood of x." Guillemin and Pollack (2010) [4]

Suppose f submersion at $x \in f^{-1}(y)$.

By local submersion theorem

$$f(x_1 \dots x_k) = (x_1 \dots x_l)$$

Choose y = (0, ..., 0).

Then, near x, $f^{-1}(y) = \{(0, \dots, 0, x_{l+1} \dots x_k)\}$ i.e. let $V \ni x$ neighborhood of x, define $(x_1 \dots x_k)$ on V.

Then $f^{-1}(y) \cap V = \{(0 \dots 0, x_{l+1}, \dots x_k) | x_1 = 0, \dots x_l = 0\}.$

Thus $x_{l+1}, \ldots x_k$ form a coordinate system on open set $f^{-1}(y) \cap V \subseteq f^{-1}(y)$.

Indeed,

and now

$$f^{-1}(y) \xleftarrow{\qquad \qquad f^{-1} \qquad \qquad y}$$

$$\phi^{-1} \qquad \qquad \downarrow \psi$$

$$\{(0, \dots 0, x^1 \dots x^k)\} \xleftarrow{\qquad \qquad \mathbb{P}_{l}^{-1}} (0 \dots 0)$$

Definition 4 (regular value). For smooth $f: X \to Y$, $X, Y \in Man$, $y \in Y$ is a **regular value** for f if $Df_x: T_xX \to T_yY$ surjective $\forall x$ s.t. f(x) = y. $y \in Y$ **critical value** if y not a regular value of f.

Absil, Mahony, and Sepulchre [7] pointed out that another definition for a regular value can utilize the theorem that rank of pendent on T_xX . $Df \equiv DF = \dim T_p N = \dim N$, iff DF(p) surjective, for $p \in M$, $F: M \to N$. Then

"We express the regular value $y \in N$, of F, if rank of $F \equiv \operatorname{rank}(DF(x)) = \dim N$, $\forall x \in F^{-1}(y)$, for $F: M \to N$.

Theorem 9 (Preimage theorem). If y regular value of $f: X \to Y$, $f^{-1}(y)$ is a submanifold of X, with $dimf^{-1}(y) = dimX - dimY$

Proof. Given y is a regular value of $f: X \to Y$,

 $\forall x \in f^{-1}(y), Df_x : T_x X \to T_y Y$ is surjective. By local submersion theorem,

$$f(x^1 \dots x^k) = (x^1 \dots x^l) = y$$

П

Since $x \in f^{-1}(y)$, $(x^1 \dots x^k) = (y^1 \dots y^l, x^{l+1} \dots x^k)$.

For this chart for (U, φ) , $U \ni x$, consider $(U \cap f^{-1}(y), \psi)$ with $\psi(x) = (x^{l+1} \dots x^k) \quad \forall x \in U \cap f^{-1}(y)$. $\forall f^{-1}(y)$ submanifold with $\dim f^{-1}(y) = k - l = \dim X - \dim Y$.

Examples for emphasis

If $\dim X > \dim Y$,

if $y \in Y$, regular value of $f: X \to Y$,

f submersion, $\forall x \in f^{-1}(y)$

If $\dim X = \dim Y$.

f local diffeomorphism $\forall x \in f^{-1}(y)$

If $\dim X < \dim Y$, $\forall y \in f(X)$ is a critical value.

Example: O(n) as a submanifold of Mat(n, n)

Given $\operatorname{Mat}(n,n) \equiv M(n) = \{n \times n \text{ matrices }\}$ is a manifold; in fact $\operatorname{Mat}(n,n) \cong \mathbb{R}^{n^2}$, Consider $O(n) = \{A \in \operatorname{Mat}(n,n) | AA^T = 1\}$.

(9)
$$AA^{T} \in \text{Sym}(n) \equiv S(n) = \{S \in \text{Mat}(n, n) | S^{T} = S\} = \{ \text{ symmetric } n \times n \text{ matrices } \}$$

 $\operatorname{Sym}(n)$ submanifold of $\operatorname{Mat}(n,n)$, $\operatorname{Sym}(n)$ diffeomorphic to \mathbb{R}^k (i.e. $\operatorname{Sym}(n) \cong \mathbb{R}^k$), $k := \frac{n(n+1)}{2}$.

$$f: \operatorname{Mat}(n, n) \to \operatorname{Sym}(n)$$

 $f(A) = AA^T$

Notice f is smooth,

$$f^{-1}(1) = O(n)$$

$$Df_A(B) = \lim_{s \to 0} \frac{f(A+sB) - f(A)}{s} = \lim_{s \to 0} \frac{(A+sB)(A^T + sB^T) - AA^T}{s} = AB^T + BA^T$$

If $Df_A: T_A \operatorname{Mat}(n,n) \to T_{f(A)} \operatorname{Sym}(n)$ surjective when $A \in f^{-1}(1) = O(n)$ (???).

Proposition 1. If smooth $g_1
ldots g_l
ldots g_l$

Proof. Suppose smooth $q_1 \dots q_l \in C^{\infty}(X)$ on manifold X s.t. dimX = k > l.

Consider $g = (g_1 \dots g_l) : X \to \mathbb{R}^l, Z \equiv g^{-1}(0)$

Since $\forall g_i \text{ smooth}, D(g_i)_x : T_x X \to \mathbb{R}$ linear.

Now for

$$Dg_x = (D(g_1)_x \dots D(g_l)_x) : T_x X \to \mathbb{R}^l$$

By rank-nullity theorem (linear algebra), Dg_x surjective iff rank $Dg_x = l$ i.e. l functionals $D(g_1)_x \dots D(g_l)_x$ are linearly independent on $T_x X$.

"We express this condition by saying the l functions $g_1 \dots g_l$ are independent at x." (Guillemin and Pollack (2010) [4])

4. Submanifolds: immersed submanifold, embedded submanifolds, regular submanifolds

Recall immersion:

 $F: M \to N$ immersion iff DF injective iff $\operatorname{rank} DF = \dim M$.

Consider manifolds $M \subseteq N$.

Consider inclusion map $i: M \to N$.

$$i: x \mapsto x$$

If i immersion, $Di(x) = \frac{\partial y^i}{\partial x^j} = \delta_i^{\ i}$ if $y^i = x^i, \forall i = 1, ... \dim M$.

Definition 5 (immersed submanifold). *immersed submanifold* $M \subseteq N$ if inclusion $i: M \to N$ is an immersion.

cf. 3.3 Embedded Submanifolds of Absil, Mahony, and Sepulchre [7], also Ch. 5 Submanifolds, pp. 108, **Immersed Submanifolds** of John Lee (2012) [3].

Immersed submanifolds often arise as images of immersions.

Proposition 2 (Images of Immersions as submanifolds). Suppose smooth manifold M,

smooth manifold with or without boundaries N.

injective, smooth immersion $F: M \to N$ (F injective itself, not just immersion)

Let
$$S = F(M)$$
.

Then S has unique topology and smooth structure of smooth submanifolds of N s.t. $F: M \to S$ diffeomorphism.

cf. Prop. 5.18 of John Lee (2012) [3].

Proof. Define topology of S: set $U \subseteq S$ open iff $F^{-1}(U) \subseteq M$ open $(F^{-1}(U \cap V) = F^{-1}(U) \cap F^{-1}(V), F^{-1}(U \cup V) = F^{-1}(U) \cup F^{-1}(V))$.

Define smooth structure of S: $\{F(U), \varphi \circ F^{-1} | (U, \varphi) \in \text{atlas for } M, \text{ i.e. } (U, \varphi) \text{ any smooth chart of } M\}.$

"smooth compatibility condition":

$$(\varphi_2 \circ F^{-1})(\varphi_i F^{-1})^{-1} = \varphi_2 \circ F^{-1} F \varphi_1^{-1} = \varphi_2 \varphi_1^{-1}$$

since $\varphi_2 \varphi_1^{-1}$ diffeomorphism ($\varphi_2 \varphi_1^{-1}$ bijection and it and inverse is differentiable)

F diffeomorphism onto F(M).

and these are the only topology and smooth structure on S with this property:

$$S \xrightarrow{F^{-1}} M \xrightarrow{F} N = S \hookrightarrow M$$

and F^{-1} diffeomorphism, F smooth immersion, so $i: S \to M$ smooth immersion.

Jeffrey Lee (2009) [2]

5. Tensors

I'll go through Ch.7 Tensors of Jeffrey Lee (2009) [2].

Definition 6 (7.1[2]). Let V, W be modules over commutative ring R, with unity. Then, algebraic W-valued tensor on V is multilinear map.

(10)
$$\tau: V_1 \times V_2 \times \dots \times V_m \to W$$

where $V_i = \{V, V^*\}$ $\forall i = 1, 2, ... m$.

If for r, s s.t. r + s = m, there are r $V_i = V^*$, $sV_i = V$, tensor is r-contravariant, s-covariant; also say tensor of total type $\binom{r}{s}$.

EY: 20170404 Note that

$$(\tau_{\beta}^{i\alpha} \frac{\partial}{\partial x^{i}} \text{ or } \tau_{\beta}^{i\alpha} e_{i})(\omega_{j} dx^{j} \text{ or } \omega_{j} e^{j} \in V^{*})$$
$$(\tau_{i\alpha}^{\beta} dx^{i} \text{ or } \tau_{i\alpha}^{\beta} e^{i})(X^{j} \frac{\partial}{\partial x^{j}} \text{ or } X^{j} e_{j} \in V)$$

 \exists natural map $V \to V^{**}$, $\widetilde{v} : \alpha \mapsto \alpha(v)$. If this map is an isomorphism, V is **reflexive** module, and identify V with V^{**} .

Exercise 7.5. Given vector bundle $\pi: E \to M$, open $U \subset M$, consider sections of π on U, i.e. cont. $s: U \to E$, where $(\pi \circ s)(u) = u$, $\forall u \in U$.

Consider $E^* \ni \omega = \omega_i e^i$.

 $\forall s \in \Gamma(E), \, \omega(s) = \omega_i(s(x))^i, \, \forall x \in U \subset M. \text{ So define } \widetilde{s} : \omega, x \mapsto \omega(s(x)), \, \forall x \in U.$

If $\widetilde{s} = 0$, $\widetilde{s}(\omega, x) = \omega(s(x)) = 0$ $\forall \omega \in E^*, \forall x \in U$, and so s = 0. (Let $\omega_i = \delta_{iJ}$ for some J, and so $s^J(x) = 0$ $\forall J$).

s = 0. So $\ker(s \mapsto \tilde{s}) = \{0\}$ (so condition for injectivity is fulfilled).

Since $\widetilde{s}: \omega, x \mapsto \omega(s(x)), \forall \omega \in E^*, \forall x \in U, s \mapsto \widetilde{s}$ is surjective. $s \mapsto \widetilde{s}$ is an isomorphism so $\Gamma(E)$ is a reflexive module.

Proposition 3. For R a ring (special case), \exists module homomorphism:

tensor product space \rightarrow tensor, as a multilinear map, i.e. \exists

$$(11) \qquad (\otimes_{i=1}^r V) \otimes (\otimes_{j=1}^s V^*) \to T_s^r(V; R) u_1 \otimes \cdots \otimes u_r \otimes \beta^1 \otimes \cdots \otimes \beta^s \in (\otimes^r V) \otimes (\otimes^s V^*) \mapsto (\alpha^1 \dots \alpha^r, v_1 \dots v_s) \mapsto \alpha^1(u_1) \dots \alpha^r(u_r) \beta^1(v_1) \dots \beta^s(v_s)$$

Indeed, consider

$$(\alpha^1 \dots \alpha^r, v_1 \dots v_s) \in \underbrace{V^* \times \dots \times V^*}_r \times \underbrace{V \times \dots \times V}_s \mapsto \alpha^1(u_1) \dots \alpha^r(u_r) \beta^1(v_1) \dots \beta^s(v_s)$$

and so for

$$\alpha^{i} = \alpha_{\mu}^{i} e^{\mu}, \quad i = 1, 2, \dots r, \ \mu = 1, 2, \dots \dim V^{*} \qquad \alpha^{i}(u_{i}) = \alpha_{\mu}^{i} u_{i}^{\mu}$$

$$v_{i} = v_{i}^{\mu} e_{\mu}, \quad i = 1, 2, \dots s, \ \mu = 1, 2, \dots \dim V \qquad \beta^{i}(v_{i}) = \beta_{\mu}^{i} v_{i}^{\mu}$$

So that

$$\alpha^{1}(u_{1}) \dots \alpha^{r}(u_{r})\beta^{1}(v_{1}) \dots \beta^{s}(v_{s}) = \alpha_{\alpha_{1}}^{1} u_{1}^{\alpha_{1}} \dots \alpha_{\alpha_{r}}^{r} u_{r}^{\alpha_{r}} \beta_{\mu_{1}}^{1} v_{1}^{\mu_{1}} \dots \beta_{\mu_{s}}^{s} v_{s}^{\mu_{s}} = (u_{1}^{\alpha_{1}} \dots u_{r}^{\alpha_{r}} \beta_{\mu_{1}}^{1} \dots \beta_{\mu_{s}}^{s})(\alpha_{\alpha_{1}}^{1} \dots \alpha_{\alpha_{r}}^{r} v_{1}^{\mu_{1}} \dots v_{s}^{\mu_{s}})$$

Identify $u_1 \otimes \cdots \otimes u_r \otimes \beta^1 \otimes \cdots \otimes \beta^s$ with this multiplinear map.

 \square Proposition 4. If V is finite-dim. vector space, or if $V = \Gamma(E)$, for vector bundle $E \to M$, map

$$(12) \qquad (\bigotimes_{i=1}^r V) \otimes (\bigotimes_{i=1}^s V^*) \to T^r_s(V; R)$$

is an isomorphism.

Definition 7. tensor that can be written as

$$(13) u_1 \otimes \cdots \otimes u_r \otimes \beta^1 \otimes \cdots \otimes \beta^s \equiv u_1 \otimes \cdots \otimes \beta^s$$

is simple or decomposable.

Now well that not all tensors are simple.

Definition 8 (7.7[2], tensor product). $\forall S \in T_{s_1}^{r_1}(V), \forall T \in T_{s_2}^{r_2}(V),$ define tensor product

(14)
$$S \otimes T \in T_{s_1+s_2}^{r_1+r_2}(V)$$
$$S \otimes T(\theta^1 \dots \theta^{r_1+r_2}, v_1 \dots v_{s_1+s_2}) := S(\theta^1 \dots \theta^{r_1}, v_1 \dots v_{s_1}) T(\theta^{r_1+1} \dots \theta^{r_1+r_2}, v_{s_1+1} \dots v_{s_1+s_2})$$

Proposition 5 (7.8[2]).

$$\tau^{i_1\dots i_r}_{j_1\dots j_s}e_{i_1}\otimes\cdots\otimes e_{i_r}\otimes e^{j_1}\otimes\cdots\otimes e^{j_s}=\tau(e^{i_1}\dots e^{i_r},e_{j_1}\dots e_{j_s})e_{i_1}\otimes\cdots\otimes e_{i_r}\otimes e^{j_1}\otimes\cdots\otimes e^{j_s}=\tau$$

So $\{e_{i_1}\otimes\cdots\otimes e_{i_r}\otimes e^{j_1}\otimes\cdots\otimes e^{j_s}|i_1\dots i_r,j_1\dots j_s\in 1\dots n\}$ spans $T^*_s(V;R)$

Exercise 7.11. Let basis for V $e_1 \dots e_n$, corresponding dual basis for V^* $e^1 \dots e^n$

Let basis for $V = \overline{e}_1 \dots \overline{e}_n$, corresponding dual basis for $V^* = \overline{e}^1 \dots \overline{e}^n$ s.t.

$$\overline{e}_i = C_i^k e_k$$
$$\overline{e}^i = (C^{-1})^i{}_k e^k$$

EY:20170404, keep in mind that

$$\begin{split} Ax &= e_i A^i_{\ k} e^k(x^j e_j) = e_i A^i_{\ j} x^j = A^i_{\ j} x^j e_i \\ Ae_j &= e_k A^k_{\ i} e^i(e_j) = A^k_{\ j} e_k = \overline{e}_j \\ \overline{\tau}^i_{\ jk} \overline{e}_i \otimes \overline{e}^j \otimes \overline{e}^k &= \overline{\tau}^i_{\ jk} C^l_{\ i} e_l (C^{-1})^j_{\ m} e^m (C^{-1})^k_{\ n} e^n = \overline{\tau}^i_{\ jk} C^l_{\ i} (C^{-1})^j_{\ m} (C^{-1})^k_{\ n} = \tau^l_{\ mn} \\ \overline{\tau}^i_{\ jk} &= C^c_{\ k} C^b_{\ j} (C^{-1})^i_{\ a} \tau^a_{\ bc} \end{split}$$

On Remark 7.13 of Jeffrey Lee (2009) [2]: first, egregious typo for L(V, V); it should be L(V, W). Onward, for L(V, W),

consider $W \otimes V^* \ni w \otimes \alpha$ s.t.

$$(w \otimes \alpha)(v) = \alpha(v)w \in W, \forall v \in V, \text{ so } w \otimes \alpha \in L(V, W)$$

Now consider (category of) left R-module,

(15)
$${}_{R}\mathbf{Mod} \ni {}_{\mathrm{Mat}_{\mathbb{K}}(N,M)}\mathbb{K}^{N}$$
 where

 $V = \mathbb{K}^N$ $W = \mathbb{K}^M$

For $A \in \operatorname{Mat}_{\mathbb{K}}(N, M)$, $x \in \mathbb{K}^N$,

$$e_i A^i_{,\mu} e^{\mu}(x^{\nu} e_{\nu}) = Ax = e_i A^i_{\mu} x^{\mu}, \quad i = 1, 2, \dots M, \ \mu = 1, 2, \dots N$$

$$A \in \operatorname{Mat}_{\mathbb{K}}(N, M) \cong W \otimes V^* \cong L(V, W)$$

Consider

$$\alpha \in (\mathbb{K}^N)^* = V^* \qquad \alpha = \alpha_\mu e^\mu$$

$$w \in \mathbb{K}^M = W \qquad w = w^i e_i$$

$$\alpha \otimes w = w \otimes \alpha = w^i \alpha_\mu e_i \otimes e^\mu$$

(remember, isomoprhism between $\operatorname{Mat}_{\mathbb{K}}(N, M)$ and $W \otimes V^*$ guaranteed, if V, W are free R-modules, $R = \mathbb{K}$). Let V, W be left R-modules, i.e. $V, W \in {}_{R}\mathbf{Mod}$.

$$V^* \in \mathbf{Mod}_R$$

For $V^* \otimes W \in \mathbf{Mod}_R \otimes {}_R\mathbf{Mod}$

$$\alpha \in V^*, w \in W$$

 $(\alpha \otimes w)(v) = \alpha(v)w, \text{ for } v \in V \in {}_R\mathbf{Mod}$

But $(w \otimes \alpha)(v) = w\alpha(v)$.

Note $\alpha(v) \in R$.

Let V, W be right R-modules, i.e. $V, W \in \mathbf{Mod}_R$.

$$V^* \in {}_{R}\mathbf{Mod}$$

For $W \otimes V^* \in \mathbf{Mod}_R \otimes {}_R\mathbf{Mod}$.

$$\alpha \in V^*, w \in W$$
$$(v)(w \otimes \alpha) = w\alpha(v), \text{ with } \alpha(v) \in R, v \in V$$

So $W \otimes V^* \cong L(V, W)$, for $V, W \in \mathbf{Mod}_R$

Definition 9 (7.20[2], **contraction**). Let $(e_1, \ldots e_n)$ basis for V, $(e^1 \ldots e^n)$ dual basis. If $\tau \in T_s^r(V)$, then for $k \leq r$, $l \leq s$, define

(16)
$$C_l^k \tau \in T_{s-1}^{r-1}(V)$$

$$C_l^k \tau(\theta^1 \dots \theta^{r-1}, w_1 \dots w_{s-1}) :=$$

$$\sum_{a=1}^n \tau(\theta^1 \dots \underbrace{e^a}_{kth \ position} \dots \theta^{r-1}, w_1 \dots \underbrace{e_a}_{ith \ position} \dots w_{s-1})$$

 C_l^k is called **contraction**, for some single $1 \le k \le r$, some single $1 \le l \le s$,

$$C_{l}^{k}: T_{s}^{r}(V) \to T_{s-1}^{r-1}(V)$$

s.t.

$$(C_l^k \tau)^{i_1 \dots \widehat{i_k} \dots i_r}_{j_1 \dots \widehat{j_l} \dots j_s} := \tau^{i_1 \dots a \dots i_r}_{j_1 \dots a \dots j_s}$$

Universal mapping properties can be invoked to give a basis free definition of contraction (EY: 20170405???). IN general,

$$\forall v_1 \dots v_s \in V, \forall \alpha^1 \dots \alpha^r \in V^*$$

so that

$$v_j = v_j^{\mu} e_{\mu}$$
 $j = 1 \dots s$, $\mu = 1, \dots \dim V$
 $\alpha^i = \alpha_{i\mu}^i e^{\mu}$ $i = 1 \dots r$, $\mu = 1 \dots \dim V^*$

then $\forall \tau \in T^r_s(V)$,

$$\tau(\alpha^{1} \dots \alpha^{r}, v_{1} \dots v_{s}) = \tau(\alpha_{\mu_{1}}^{1} e^{\mu_{1}} \dots \alpha_{\mu_{r}}^{r} e^{\mu_{r}}, v_{1}^{\nu_{1}} e_{\nu_{1}} \dots v_{s}^{\nu_{s}} e_{\nu_{s}}) =$$

$$= \alpha_{\mu_{1}}^{1} \dots \alpha_{\mu_{r}}^{r} v_{1}^{\nu_{1}} \dots v_{s}^{\nu_{s}} \tau(e^{\mu_{1}} \dots e^{\mu_{r}}, e_{\nu_{1}} \dots e_{\nu_{s}}) = \alpha_{\mu_{1}}^{1} \dots \alpha_{\mu_{r}}^{r} v_{1}^{\nu_{1}} \dots v_{s}^{\nu_{s}} \tau^{\mu_{1} \dots \mu_{r}} v_{1} \dots v_{s}^{\nu_{s}} v_{1} \dots v_{s$$

which is equivalent to

$$\tau \in T_s^r(V) \xrightarrow{\alpha^1 \otimes \cdots \otimes \alpha^r \otimes v_1 \otimes \cdots \otimes v_s \otimes \alpha^1 \otimes \cdots \otimes \alpha^r \otimes v_1 \otimes \cdots \otimes v_s \otimes \tau}$$

$$C_{s+1}^1 C_{s+2}^2 \dots C_{r+s}^r C_1^r C_2^{r+1} \dots C_s^{r+s}$$

$$\tau(\alpha^1 \dots \alpha^r, v_1 \dots v_s) \in R$$

where I've tried to express the right-R-module, "right action" on $\alpha^1 \otimes \cdots \otimes \alpha^r \otimes v_1 \otimes \cdots \otimes v_s \in V^* \otimes \cdots \otimes V$. Conlon (2008) [12]

Part 4. Prástaro

Prástaro (1996) [8]

5.0.1. Affine Spaces. cf. Sec. 1.2 - Affine Spaces of Prástaro (1996) [8]

Definition 10 (affine space).

affine space
$$(M, \mathbf{M}, \alpha)$$

with

(17)
$$M \equiv set \ (set \ of \ pts.)$$

$$\mathbf{M} \equiv vector \ space \ (space \ of \ free \ vectors)$$

$$\alpha \equiv \mathbf{M} \times M \to M \equiv translation \ operator$$

Note: α is a transitive action and without fixed pts. (free).

i.e. $\forall p \in M$,

$$\forall \text{ pt. } O \in M, \ \alpha:(v,O) \mapsto O' \equiv O+v, \ \alpha(\cdot,O) \equiv \alpha_O \equiv \alpha(O). \ \alpha_O(v) = O' = O+\mathbf{v} \qquad \forall O' \in M, \ \exists \, \mathbf{v} \in \mathbf{M} \text{ s.t. } O' = O+\mathbf{v} \\ \Longrightarrow M \equiv \mathbf{M}.$$

 $\alpha:(v,p)\mapsto p'\equiv p+v$

 $\forall (O, \{e_i\})_{1 \le i \le n}$, where $\{e_i\}$ basis of $\mathbf{M}, M \equiv \mathbf{M} = \mathbb{R}^n$ so isomorphism $M \simeq \mathbb{R}^n$

Definition 11. $(O, \{e_i\}) \equiv affine frame.$

 \forall affine frame $(O, \{e_i\})$, \exists coordinate system $x^{\alpha} : M \to \mathbb{R}$, where $x^{\alpha}(p)$ is α th component, in basis $\{e_i\}$, of vector p - O

Theorem 10 (1.4 Prástaro (1996) [8]). Let (x^{α}) , (\overline{a}^{α}) 2 coordinate systems correspond to affine frames $(O, \{e_i\})$, $(\overline{O}, \{\overline{e}_i\})$, respectively.

$$\overline{x}^{\alpha} = A^{\alpha}_{\beta} x^{\beta} + y^{\alpha}$$

where

$$y^{\alpha} \in \mathbb{R}^n, \qquad A^{\alpha}_{\beta} \in GL(n; \mathbb{R})$$

Definition 12 (1.10 Prástaro (1996) [8]).

$$A(n) \equiv Gl(n, \mathbb{R}) \times \mathbb{R}^n$$

affine group of dim. n

Theorem 11 (1.5). symmetry group of n-dim. affine space, called affine group A(M) of M. \exists isomorphism,

(20)
$$A(M) \simeq A(n), \qquad f \mapsto (f^{\alpha}_{\beta}, y^{\alpha}); \qquad f^{\alpha} \equiv x^{\alpha} \circ f = f^{\alpha}_{\beta} x^{\beta} + y^{\alpha}$$

cf. Eq. 1.4 Prástaro (1996) [8]

Part 5. Holonomy

Definition 13 (Conlon, 10.1.2). If $X, Y \in \mathfrak{X}(M)$, $M \subset \mathbb{R}^m$, Levi-Civita connection on $M \subset \mathbb{R}^m$

$$\nabla : \mathfrak{X}(M) : \mathfrak{X}(M) \to \mathfrak{X}(M)$$

$$\nabla_X Y := p(D_X Y)$$

with

(21)

$$D_XY := \sum_{j=1}^m X(Y^j) \frac{\partial}{\partial x^j} = \sum_{i,j=1}^m X^i \frac{\partial Y^j}{\partial x^i} \frac{\partial}{\partial x^j} \qquad \forall X = \sum_{i=1}^m X^i \frac{\partial}{\partial x^i},$$
$$\forall Y = \sum_{i=1}^m Y^i \frac{\partial}{\partial x^i},$$

$$\nabla_{fX}Y = f(D_{fX}Y) = p(fD_XY) = fpD_XY = f\nabla_XY$$

$$\nabla_X fY = p(D_X fY) = p\left(\sum_{i,j=1}^m \left(X^i f \frac{\partial Y^j}{\partial x^i} + X^i Y^j \frac{\partial f}{\partial x^i}\right) \frac{\partial}{\partial x^j}\right) = f\nabla_X Y + p\sum_{i=1}^m X(f)Y^i \frac{\partial}{\partial x^j} = f\nabla_X Y + X(f)p(Y)$$

Definition 14 (Conlon, 10.1.4; Christoffel symbols).

(22)
$$\frac{\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} = \Gamma^k_{ij} \frac{\partial}{\partial x^k}}{\nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^j} = \Gamma^k_{ij} \frac{\partial}{\partial x^k}} \qquad (Conlon's \ notation)}{(F. \ Schuller's \ notation)}$$

Definition 15 (torsion).

(23)
$$T: \mathfrak{X}(M) \in \mathfrak{X}(M) \to \mathfrak{X}(M)$$
$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

If T = 0, ∇ torsion-free or symmetric.

$$T(fX,Y) = f\nabla_X Y - (f\nabla_Y X + Y(f)X) - \{(fXY - (Y(f)X + fYX))\} = fT(X,Y)$$
$$T(X,fY) = f\nabla_X Y + X(f)Y - f\nabla_Y X - \{((X(f)Y + fXY) - fYX)\} = fT(X,Y)$$

Thus, T(X,Y) $C^{\infty}(M)$ -bilinear.

 $T \in \tau_1^2(M)$.

 $T(v, w) \in T_x M$ defined, $\forall v, w \in T_x M, \forall x \in M$.

Thus, torsion is a **tensor**.

Exercise 10.1.7 Conlon (2008)[12] . .

If T(X,Y)=0,

$$T(e_i, e_j) = \Gamma_{ji}^k e_k - \Gamma_{ij}^k e_k - 0 = 0 \Longrightarrow \Gamma_{ji}^k = \Gamma_{ij}^k$$

If $\Gamma_{ij}^k = \Gamma_{ji}^k$, $T(e_i, e_j) = 0$.

Exercise 10.1.8, Conlon (2008)[12].

If $M \subset \mathbb{R}^m$ smoothly embedded submanifold, $\forall \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^i} \in T_x M$, spanning $T_x M$, consider $\frac{\partial}{\partial x^j} = X_i^k \frac{\partial}{\partial \tilde{x}^k}, \frac{\partial}{\partial x^i} = X_i^k (\tilde{x}) \frac{\partial}{\partial \tilde{x}^k}$

$$\begin{split} \nabla_{\frac{\partial}{\partial x^j}} \frac{\partial}{\partial x^i} &= p D_{X^k_j \frac{\partial}{\partial \widetilde{x}^k}} X^l_i \frac{\partial}{\partial \widetilde{x}^l} = p \left(X^k_j \frac{\partial X^l_i}{\partial \widetilde{x}^k} \frac{\partial}{\partial \widetilde{x}^l} \right) = X^k_j p \left(\frac{\partial X^l_i}{\partial \widetilde{x}^k} \frac{\partial}{\partial \widetilde{x}^l} \right) \\ \nabla_{\frac{\partial}{\partial x^l}} \frac{\partial}{\partial x^j} &= X^k_i p \left(\frac{\partial X^l_j}{\partial \widetilde{x}^k} \frac{\partial}{\partial \widetilde{x}^l} \right) \end{split}$$

If $X \in \mathfrak{X}(M)$, smooth $s : [a, b] \to M$, then $\forall s(t)$,

$$X'_{s(t)} = \nabla_{\dot{s}(t)} X \in T_{s(t)} M$$

In fact, it's often natural to consider fields $X_{s(t)}$ along s, parametrized by parameter t, allowing

$$X_{s(t_1)} \neq X_{s(t_2)}$$

each of $s(t_1) = s(t_2)$.

10

Definition 16 (10.1.9). Let smooth $s:[a,b]\to M$.

Vector field along s is smooth $v : [a, b] \to TM$ s.t.

commutes.

Note that $v \in \mathfrak{X}(s) \subset \mathfrak{X}(M)$

e.g. $(Y|s)(t) = Y_{s(t)}$, restriction of $Y \in \mathfrak{X}(M)$ to s.

e.g. $\dot{s}(t) \in \mathfrak{X}(M)$.

 $\forall v, w \in \mathfrak{X}(s), v + w \in \mathfrak{X}(s),$

$$(fv + gv)(t) := (f(s(t)) + g(s(t)))v(t) = f(s(t))v(t) + g(s(t))v(t) = (f + g)v(t)$$

Likewise,

$$f(v+w) = fv + fw$$

 $\mathfrak{X}(s)$ is a real vector space and $C^{\infty}[a,b]$ -module.

Definition 17 (10.1.10). Let conection ∇ on M.

Associated covariant derivative is operator

$$\frac{\nabla}{dt}\mathfrak{X}(s) \to \mathfrak{X}(s)$$

 \forall smooth s on M, s.t.

- (1) $\frac{\nabla}{dt} \mathbb{R}$ -linear
- (2) $\left(\frac{\nabla}{dt}\right)(fv) = \frac{df}{dt}v + f\frac{\nabla}{dt}v, \ \forall f \in C^{\infty}[a,b], \ \forall v \in \mathfrak{X}(s)$
- (3) If $Y \in \mathfrak{X}(M)$, then

$$\frac{\nabla}{dt}(Y|s)(t) = \nabla_{\dot{s}(t)}Y \in T_{s(t)}M, \quad a \le t \le b$$

Theorem 12 (Conlon Thm. 10.1.11[12]). \forall connection ∇ on M, \exists ! associated covariant derivative $\frac{\nabla}{dt}$

Proof. Consider arbitrary coordinate chart $(U, x^1 \dots x^n)$.

Consider smooth curve $s: [a, b] \to U$.

Let $v \in \mathfrak{X}(s)$, $v(t) = v^{i}(t) \frac{\partial}{\partial x^{i}}$; $\dot{s}(t) = s^{j} \frac{\partial}{\partial x^{j}}$

$$\frac{\nabla v}{dt} = \frac{dv^{i}(t)}{dt} \frac{\partial}{\partial x^{i}} + v^{i}(t) \frac{\nabla}{dt} \frac{\partial}{\partial x^{i}} = \frac{dv^{i}}{dt} \frac{\partial}{\partial x^{i}} + v^{i} \nabla_{\dot{s}(t)} \frac{\partial}{\partial x^{i}} = \dot{v}^{i} \frac{\partial}{\partial x^{i}} + v^{i} \dot{s}^{j} \Gamma_{ij}^{k} \frac{\partial}{\partial x^{k}} = \left(\dot{v}^{k} + v^{i} \dot{s}^{j} \Gamma_{ij}^{k}\right) \frac{\partial}{\partial x^{k}}$$

This is an explicit, local formula in terms of connection, proving uniqueness.

Existence: \forall coordinate chart $(U, x^1 \dots x^n)$, $(\dot{v}^k + v^i \dot{s}^j \Gamma^k_{ij}) \frac{\partial}{\partial x^k} =: \frac{\nabla v}{dt}$.

$$\frac{\nabla}{dt}(fv) = \dot{f}v^k + f\dot{v}^k + fv^i\dot{s}^j = \dot{f}v + f\frac{\nabla v}{dt}$$

If f constant, then $\frac{\nabla}{dt}$ is \mathbb{R} -linear.

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

Definition 18 (10.1.12 Conlon (2008)[12]). Let (M, ∇) . Let $v \in \mathfrak{X}(s)$ for smooth $s : [a, b] \to M$. If $\frac{\nabla v}{dt} \equiv 0$ on s, then v is **parallel** along s.

Theorem 13 (10.1.13). Let (M, ∇) , smooth $s : [a, b] \to M$, $c \in [a, b]$, $v_0 \in T_{s(c)}M$. Then $\exists !$ parallel field $v \in \mathfrak{X}(s)$ s.t. $v(c) = v_0$. v parallel transport along s.

Proof.

$$\dot{s}(t) = \dot{s}^{j}(t)e_{j}$$

$$v(t) = v^{i}(t)e_{i}$$

$$v_{0} = a^{i}e_{i}$$

$$0 = \left(\frac{dv^{k}}{dt}(t) + v^{i}(t)\dot{s}^{j}(t)\Gamma_{ij}^{k}(s(t))\right)e_{k}$$

or equivalently

(24)
$$\frac{dv^k}{dt} = -v^i \dot{s}^j \Gamma^k_{ij}, \qquad 1 \le k \le n \qquad (10.1)$$

with initial conditions $v^k(c) = a^k$, $1 \le k \le n$.

By existence and uniqueness of solutions of O.D.E.

 $\exists \epsilon > 0 \text{ s.t. } \exists ! \text{ solutions } v^k(t). \text{ For } c - \epsilon < t < c + \epsilon.$

In fact, these ODEs being linear in v^k , by ODE theory (Appendix C, Thm. C.4.1).

 \nexists restriction on ϵ , so $\exists ! v^k(t) \quad \forall t \in [a, b], 1 \leq k \leq n$

5.0.2. Principal bundle, vector bundle case for parallel transport. Recall the 2 different forms or viewpoints for Lie-algebra valued 1-forms, or vector-valued 1-forms, or sections of 1-form-valued endomorphisms:

$$\omega^k_{\ i\mu}dx^\mu \equiv \omega^k_{\ i} \in \Omega^1(M,\mathfrak{gl}(n,\mathbb{F})) = \Gamma(\mathfrak{gl}(n,\mathbb{R} \otimes T^*M|_U))$$

for $i, k = 1 \dots n = \dim E$

 $\mu = 1 \dots d = \dim E$

Now

$$D_X \mu = X^{\mu} D_{\frac{\partial}{\partial x^{\mu}}} \mu = X^{\mu} \left[\left(\frac{\partial}{\partial x^{\mu}} \mu^k \right) e_k + \mu^i \omega_{i\mu}^k e_k \right] = \left(X(\mu^k) + \mu^i \omega_i^k(X) \right) e_k = \left(d\mu^k(X) + \mu^i \omega_i^k(X) \right) e_k$$

So then define

(25)
$$D: \Gamma(E) \to \Gamma(E) \otimes \Gamma(T^*M)$$

$$D\mu = D(\mu^i e_i) = e_k (d\mu^k + \mu^i \omega_i^k) \equiv (d+A)\mu$$

Also, D can be defined for this case:

$$D: \Gamma(\operatorname{End}(E)) \to \Gamma(\operatorname{End}E) \otimes \Gamma(T^*M)$$

Let $\sigma = \sigma^i_{\ i} e_i \otimes e^j \in \Gamma(\operatorname{End}(E))$

(26)
$$D\sigma = D(\sigma_j^i e_i) \otimes e^j + \sigma_j^i e_i \otimes D^* e^j = \left(d\sigma_j^k + \sigma^i A_i^k \right) e_k \otimes e^j + \sigma_j^i e_i \otimes (A^*)_k^j e^k = \left(d\sigma_j^k + \sigma_j^i A_i^k \right) e_k \otimes e^j + \sigma_j^i e_j \otimes (-A_j^i) e^j = \left(d\sigma_j^k + [A, \sigma]_j^k \right) e_k \otimes e^j$$

cf. Def. 4.1.4 of Jost (2011), pp. 138.

For $\mu \in \Gamma(E)$, smooth $s : [a, b] \to M$, $X(t) = \dot{s}(t)$,

$$D_{\dot{s}(t)}\mu = \dot{s}^{\mu}D_{\frac{\partial}{\partial x^{\mu}}}\mu = \dot{s}^{\mu}\left[\frac{\partial\mu^{k}}{\partial x^{\mu}}e_{k} + \mu^{i}\omega_{i\mu}^{k}e_{k}\right] = \left[\dot{s}^{\mu}\frac{\partial\mu^{k}}{\partial x^{\mu}} + \dot{s}^{\mu}\mu^{i}\omega_{i\mu}^{k}\right]e_{k} = \frac{d}{dt}\mu(s(t)) + \mu^{i}\dot{s}^{\mu}\omega_{i\mu}^{k}e_{k}$$

Let $D_{\dot{s}(t)}\mu = 0$. Then,

(28)
$$\frac{d}{dt}\mu(s(t)) = -\mu^i \dot{s}^\mu \omega^k_{i\mu} e_k$$

Recall, given vector bundle $E \xrightarrow{\pi} N$, given $\varphi: M \to N$, then pullback

$$\varphi^*E \to M$$

i.e.

$$\varphi^* E \longleftarrow \varphi^* \qquad E \qquad (\varphi^* E)_x = E_{\varphi(x)}$$

$$\downarrow \psi \qquad \qquad \downarrow \pi \qquad \qquad \downarrow$$

$$M \longrightarrow N \qquad x \in M$$

i.e. if $s \in \Gamma(E)$,

$$\varphi^* s = s \circ \varphi \in \Gamma(\varphi^* E)$$

Thus,

For

$$\dot{v}^{k} = -v^{i}\dot{s}^{j}\Gamma^{k}_{ij}$$

$$v^{k}(c) = v^{k}_{0} \qquad 1 \le k \le m$$

$$\dot{v} = -v^{i}\dot{s}^{j}\Gamma_{ij}$$

$$(v + w) = -(v^{i} + w^{i})\dot{s}^{j}\Gamma_{ij}(v + w)(c) = v(c) + w(c) = v_{0} + w_{0}$$

so $v + w \in \mathfrak{X}(s)$ is parallel transport of $v_0 + w_0$.

Likewise, $\forall a \in \mathbb{F}, av \in \mathfrak{X}(s)$ is the parallel transport of av_0 .

$$\dot{\mu}^k = -\mu^i \dot{s}^\mu \omega^k_{\ i.i.} = -\mu^i \omega^k_{\ i} (\dot{s}^\mu)$$

Suppose γ^*E trivialized over [a, b].

Closed interval is contractible, so this is always possible.

For chart (U, φ) ,

Consider

$$\varphi : [a, b] \times V \to \gamma^* E$$

$$\varphi(t, \cdot) = \gamma^* \circ \psi^{-1}(\gamma(t), \cdot)$$

THE DIFFERENTIAL GEOMETRY DIFFERENTIAL TOPOLOGY DUMP

$$\begin{aligned} \forall \, \mu &\in \Gamma(E|_{x \in M}), \\ \mu &= \mu^i e_i. \\ \varphi(t, e_i) &= \epsilon_i \text{ is a basis for } \gamma^* E. \\ \forall \, \sigma &\in \Gamma(\gamma^* E), \end{aligned}$$

$$\sigma = \sigma^{i} \epsilon_{i}, \quad \sigma^{i} : [a, b] \to \mathbb{F}$$

$$\nabla_{\frac{\partial}{\partial x^{\mu}}} \sigma = \frac{\partial \sigma^{k}}{\partial x^{\mu}} \epsilon_{k} + \omega^{k}_{j\mu} \sigma^{j} \epsilon_{k} = \left(\frac{\partial \sigma^{k}}{\partial x^{\mu}} + \omega^{k}_{,j\mu} \sigma^{j}\right) \epsilon_{k}$$

$$\nabla \sigma = \epsilon_{k} \otimes (d\sigma^{k} + \omega^{k}_{j\mu} dx^{\mu} \sigma^{j}) = \epsilon_{k} \otimes (d\sigma^{k} + \omega^{k}_{j} \sigma^{j})$$

$$\nabla_{\frac{d}{dt}} \sigma = \epsilon_{k} \otimes \left(\frac{d\sigma^{k}}{dt} + \omega^{k}_{j\mu} \dot{x}^{\mu} \sigma^{j}\right)$$

Now

$$\frac{d}{dt} = \dot{x}^{\nu} \frac{\partial}{\partial x^{\nu}}$$

Then σ parallel along γ if

$$\frac{d\sigma^k}{dt} + \omega^k_{\ j\mu} \dot{x}^\mu \sigma^j = 0$$

Definition 19 (3.1.4 [13]). Parallel transport along γ is

(30)
$$P_{\gamma}: E_{\gamma(a)} \to E_{\gamma(b)}$$
$$P_{\gamma}(v) \mapsto \sigma(b)$$

where $\sigma \in \Gamma(\gamma^* E)$, σ unique and s.t. $\sigma(a) = v$.

Lemma 1 (10.1.16[12]). holonomy

$$h_s: T_rM \to T_{r_0}M$$

if ∇ around piecewise smooth loop s is a linear transformation.

Lemma 2 (10.1.18 Conlon (2008)[12]). Let piecewise smooth loop $s:[a,b]\to M$ at x_0 . Let weak reparametrization $\tilde{s} = s \circ r : [c, d] \to M$. If reparametrization is orientation-preserving, then $h_{\tilde{s}} = h_{\tilde{s}}$, If reparametrization is orientation-reversing, then $h_{\tilde{s}} = h_{\tilde{s}}^{-1}$,

Proof. Without loss of generality, assume smooth s, r

$$\widetilde{s}(\tau) = s(r(\tau))$$

$$\widetilde{v}(\tau) = v(r(\tau))$$

$$\widetilde{u}^{j}(\tau) = \frac{dt}{d\tau}(\tau)u^{j}(r(\tau))$$

$$\frac{d\widetilde{v}^{k}}{d\tau}(\tau) = \frac{dr}{d\tau}(\tau)\frac{dv^{k}}{dt}(r(\tau))$$

$$\frac{d\widetilde{v}^{k}}{d\tau} = -\widetilde{v}^{i}\widetilde{u}^{j}\Gamma_{ij}^{k}$$

since

$$\frac{dv^k}{dt} = -v^i u^j \Gamma^k_{ij}; \qquad 1 \le k \le n$$

$$v^k(c) = a^k; \qquad 1 \le k \le a$$

$$\frac{dr}{d\tau} \frac{dv^k}{dt} = -v^i \frac{dr}{d\tau} u^j \Gamma^k_{ij} = \frac{d\widetilde{v}^k}{d\tau} = -\widetilde{v}^i \widetilde{u}^j \Gamma^k_{ij}$$

Thus, if r(c) = a, r(d) = b

$$h_{\widetilde{s}}(v_0) = \widetilde{v}(d) = v(b) = h_s(v_0)$$

If r(c) = a, r(d) = b, then

$$\widetilde{v}(c) = v(b) = h_s(v_0)$$

and

$$h_{\widetilde{s}}(h_s(v_0)) = h_{\widetilde{s}}(v(b)) = \widetilde{v}(d) = v(a) = v_0$$

At this point, I will switch to my notation because it clarified to me, at least, what was going on, in that a holonomy h_s is invariant under orientation-preserving reparametrization, and its inverse is well-defined.

For $\widetilde{s} = s \circ t : [c, d] \to M$, piecewise smooth t is reparametrized, i.e.

$$(31) t: [c,d] \to [a,b]$$

Now,

$$\begin{split} \frac{d}{d\tau}\widetilde{s}(\tau) &= \frac{d}{d\tau}\widetilde{s}(t(\tau)) = \dot{s}(t)\frac{dt}{d\tau}(\tau) \equiv \dot{s}\frac{dt}{d\tau} \\ v^k(t) &= v^k(t(\tau)) = v^k(\tau) \\ \frac{dv^k}{d\tau}(t(\tau)) &= \frac{dv^k}{dt}\frac{dt}{d\tau} = \frac{dt}{d\tau}(-v^i(\tau)\dot{s}^j(t)\Gamma^k_{ij}) = -v^i(\tau)\frac{d\widetilde{s}^j}{d\tau}\Gamma^k_{ij} \end{split}$$

Consider

$$h_s(v_0) = v(b)$$

If
$$t(c) = a$$
, $t(d) = b$

$$h_{\tilde{s}}(v_0) = \tilde{v}(d) = v(t(d)) = v(b) = h_{\tilde{s}}(v_0)$$

If
$$t(c) = b$$
, $t(d) = a$

$$h_{\widetilde{s}}(h_s(v_0)) = h_{\widetilde{s}}(v(b)) = h_{\widetilde{s}}(v(t(c))) = h_{\widetilde{s}}(\widetilde{v}(c)) =$$
$$= \widetilde{v}(d) = v(t(d)) = v(a) = v_0$$

Thus,

$$h_{\widetilde{s}} = h_s^{-1}$$

I am working through Conlon (2008) [12], Clarke and Santoro (2012) [13], and Schreiber and Waldorf (2007), concurrently, for holonomy.

Part 6. Complex Manifolds

EY: 20170123 I don't see many good books on Complex Manifolds for physicists other than Nakahara's. I will supplement this section on Complex Manifolds with external links to the notes of other courses that I found useful to myself.

Complex Manifolds - Lecture Notes Koppensteiner (2010) [9]

Lectures on Riemannian Geometry, Part II: Complex Manifolds by Stefan Vandoren

Vandoren (2008) [10]

Part 7. Jets, Jet bundles, h-principle, h-Prinzipien

cf. Eliashberg and Misahchev (2002) [15]

cf. Ch. 1 Jets and Holonomy, Sec. 1.1 Maps and sections of Eliashberg and Misahchev (2002) [15].

Visualize $f: \mathbb{R}^n \to \mathbb{R}^q$ as graph $\Gamma_f \subset \mathbb{R}^n \times \mathbb{R}^q$.

Consider this graph as image of $\mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^q$, i.e.

$$x \mapsto (x, f(x))$$

 $\mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^q$ is called section (by mathematicians).

$$x \mapsto (x, f(x))$$

is called *field* or \mathbb{R}^q -valued field (by physicists).

cf. Ch. 1 Jets and Holonomy, Sec. 1.2 Coordinate definition of jets of Eliashberg and Misahchev (2002) [15].

Definition 20 (r-jet). Given (smooth) $f: \mathbb{R}^n \to \mathbb{R}^q$, given $x \in \mathbb{R}^n$.

r-jet of f at x - sequence of derivatives of f, up to order r, \equiv

(32)
$$J_f^r(x) = (f(x), f'(x) \dots f^{(r)}(x))$$

 $f^{(q)}$ consists of all partial derivatives $D^{\alpha}f$, $\alpha = (\alpha_1 \dots \alpha_n)$, $|\alpha| = \alpha_1 + \dots + \alpha_n = s$, ordered lexicographically. e.g. q = 1,

 $f: \mathbb{R}^n \to \mathbb{R}$.

1-jet of f at $x = J_f^1(x) = (f(x), f^{(1)}(x))$

$$f^{(1)}(x) = \{D^{\alpha} f | \alpha = (\alpha_1 \dots \alpha_n), |\alpha| = \alpha_1 + \dots + \alpha_n = 1\} = \left(\frac{\partial f}{\partial x^1}, \frac{\partial f}{\partial x^2}, \dots \frac{\partial f}{\partial x^n}\right)$$

Let $d_r = d(n,r) = \text{number of all partial derivatives } D^{\alpha} \text{ of order } r \text{ of function } \mathbb{R}^n \to \mathbb{R}.$

Consider r-jet $J_f^r(x)$ of map $f: \mathbb{R}^n \to \mathbb{R}^q$ as pt. of space $\mathbb{R}^q \times \mathbb{R}^{qd_1} \times \mathbb{R}^{qd_2} \times \cdots \times \mathbb{R}^{qd_r} = \mathbb{R}^{qN_r}$, where $N_r = N(n,r) = N(n,r)$ $1 + d_1 + d_2 + \cdots + d_r$, i.e.

$$J_f^r(x) = (f(x), f^{(1)}(x), \dots f^{(r)}(x)) \in \mathbb{R}^q \times \mathbb{R}^{qd_1} \times \dots \times \mathbb{R}^{qd_r} = \mathbb{R}^{qN_r}$$

Exercise 1.

Given order r, consider n-tuple of (positive) integers $(r_1, r_2 \dots r_n)$ s.t. $r_1 + r_2 + \dots + r_n = r$, and $r_k \ge 0$.

Imagine $r_k =$ occupancy number, number of balls in kth cell. $(r_1 \dots r_n)$ describes a positive ocnfiguration of occupancy numbers, with indistinguishable balls; 2 distributions are distinguishable only if corresponding n-tuples $(r_1 \dots r_n)$ not identical.

Represent balls by stars, and indicate n cells by n spaces between n+1 bars.

With n+1 bars, r stars, 2 bars are fixed. n-1 bars and r stars to arrange linearly, so a total of n-1+r objects to arrange. r stars indistinguishable amongst themselves, so choose r out of n-1+r to be stars.

$$(33) \qquad \Longrightarrow d_r = d(n,r) = \binom{n-1+r}{r}$$

Use induction (cf. Ch. 4 Binomial Coefficients).

$$N_0 = N(n,0) = {n-1+0 \choose 0} = 1$$

$$N_1 = N(n,1) = 1 + {n-1+1 \choose 1} = 1 + n = \frac{(n+1)!}{n!1!}$$

Induction step:

$$N_{r-1} = N(n, r-1) = \sum_{k=1}^{r-1} d_k + 1 = \binom{n+r-1}{r-1}$$

(36)

and so

$$N_r = N(n,r) = \sum_{k=1}^r d_k + 1 = \sum_{k=1}^r \binom{n-1+k}{k} + 1 = \sum_{k=1}^{r-1} \binom{n-1+k}{k} + \binom{n-1+r}{r} + 1 =$$

$$= \binom{n+r-1}{r-1} + \binom{n-1+r}{r} = \frac{(n+r-1)!}{(r-1)!n!} + \frac{(n-1+r)!}{r!(n-1)!} = \frac{(n+r)!}{n!r!} = \binom{n+r}{r}$$

$$\begin{array}{cccc}
\mathbb{R}^{qN_r} & & & J_f^r(x) \\
\downarrow & & & & \\
\mathbb{R}^n & & f & & \\
\mathbb{R}^q & & x & & f \\
\end{array}$$

Definition 21 (space of r-jets). space of r-jets of maps $\mathbb{R}^n \to \mathbb{R}^q$ or space of r-jets of sections $\mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^q \equiv$

$$J^{r}(\mathbb{R}^{n},\mathbb{R}^{q}) = \mathbb{R}^{n} \times \mathbb{R}^{qN_{r}} \equiv \mathbb{R}^{n} \times \mathbb{R}^{q} \times \mathbb{R}^{qd_{1}} \times \mathbb{R}^{qd_{2}} \times \cdots \times \mathbb{R}^{qd_{r}}$$

e.g. $J^1(\mathbb{R}^n, \mathbb{R}^q) = \mathbb{R}^n \times \mathbb{R}^q \times M_{q \times n}$, where $M_{q \times n} = \mathbb{R}^{qn}$ is the space of $(q \times n)$ -matrices.

Part 8. Morse Theory

6. Morse Theory introduction from a physicist

I needed some physical motivation to understand Morse theory, and so I looked at Hori, et. al. [11]. cf. pp. 43, Sec. 3.4 Morse Theory, from Ch. 3. Differential and Algebraic Topology of Hori, et. al. [11]. Consider smooth $f: M \to \mathbb{R}$, with non-degenerate critical points.

If no critical values of f between a and b (a < b), then subspace on which f takes values less than a is deformation retract of subspace where f less than b, i.e.

$$\{x \in M | f(x) < b\} \times [0,1] \xrightarrow{F} \{x \in M | f(x) < b\}$$

 $\forall x \in M \text{ s.t. } f(x) < b,$

$$F(x,0) = x$$

 $F(x,1) \in \{x \in M | f(x) < a\}$ and $F(a',1) = a'$ $\forall a' \in M \text{ s.t. } f(a') < a$

To show this, consider $-\nabla f/|\nabla f|^2$

Morse lemma: \forall critical pt. p s.t. \exists choice of coordinates s.t.

$$f = -(x_1^2 + x_2^2 + \dots + x_n^2) + x_{n+1}^2 + \dots + x_n^2$$

where f(p) = 0 and p is at origin of these coordinates.

• difference between

$$f^{-1}(\{x \le -\epsilon\}), f^{-1}(\{x \le +\epsilon\})$$

can be determined by local analysis and only depends on μ , $\mu \equiv$ "Morse index" = number of negative eigenvalues of Hessian of f at critical pt.

Answer:

$$f^{-1}(\{x < +\epsilon\})$$
 can be obtained from $f^{-1}(\{x < -\epsilon\})$ by "attaching μ -cell" along boundary $f^{-1}(0)$

• "attaching μ -cell to X mean, take μ -ball $B_{\mu} = \{|x| \leq 1\}$ in μ -dim. space, identity pts. on boundary $S^{\mu-1}$ with pts. in the space X, through cont. $f: S^{\mu-1} \to X$, i.e. take

$$X \coprod B_{\mu}$$

with $x \sim f(x) \quad \forall x \in \partial B_{\mu} = S^{\mu-1}$.

• find homology of M,

f defines chain complex C_f^* , kth graded piece C^{α_k} , α_k is number of critical pts. with index k.

$$\partial: C_p^k \to C_p^{k-1}$$

$$\partial x_a = \sum_b \Delta_{a,b} x_b$$

where $\Delta_{a,b} :=$ signed number of lines of gradient flow from x_a to x_b , b labels pts. of index k-1.

Gradient flow line is path x(t) s.t. $\dot{x} = \nabla(f)$, with $x(-\infty) = x_a$

$$c(+\infty) = x_b$$

- To define this number $(\Delta_{a,b}?)$, construct moduli space of such lines of flow (???) by intersecting outward and inward flowing path spaces from each critical point, and then show this moduli space is oriented, 0-dim. manifold (pts. with signs)
- $\partial^2 = 0$ proof

 ∂ , boundary of space of paths connecting critical points, whose index differs by 2 = union over compositions of paths between critical pts. whose index differs by 1.

 \implies coefficients of ∂^2 are sums of signs of pts. in 0-dim. space, which is boundary of 1-dim. space.

These signs must therefore add to 0, so $\partial^2 = 0$.

Hori, et. al. [11] is good for physics, but there isn't much thorough, step-by-step explanations of the math. I will look at Hirsch (1997) [6] and Shastri (2011) [5] at the same time.

6.1. Introduction, definitions of Morse Functions, for Morse Theory. cf. Ch. 6, Morse Theory of Hirsch (1997) [6], Section 1. Morse Functions, pp. 143-

Recall for TM, $T_xM \xrightarrow{\varphi} \mathbb{R}^n$.

Cotangent bundle T^*M defined likewise:

 $T_n^*M \xrightarrow{\varphi} \text{dual vector space } (\mathbb{R}^n)^* = L(\mathbb{R}^n, \mathbb{R})$

i.e.

$$T^*M = \bigcup_{x \in \mathcal{X}} (M_x^*) \qquad M_x^* = L(M_x, \mathbb{R})$$

If chart (φ, U) on M, natural chart on T^*M is

$$T^*U \to \varphi(U) \times (\mathbb{R}^n)^*$$

 $\lambda \in M_x^* \mapsto (\varphi(x), \lambda \varphi_x^{-1})^*$

Projection map

$$p: T^* \to M$$
$$M_\pi^* \mapsto x$$

Let C^{r+1} map, $1 \le r \le \omega$, $f: M \to \mathbb{R}$, $\forall x \in M$, linear map $T_x f: M_x \to \mathbb{R}$ belongs to M_x^*

$$T_x f = Df_x \in M_x^*$$

Then

$$Df: M \to T^*M$$

 $x \mapsto Df_x = Df(x)$

is C^r section of T^*M .

Definition 22. critical point x of f is zero of Df, i.e.

$$Df(x) = 0$$

of vector space M_r^* .

Thus, set of critical pts. of f is counter-image of submanifold $Z^* \subset T^*M$ of zeros. Note $Z^* \approx M$, codim. of Z^* is $n = \dim M$.

Definition 23. *Morse function* f *if* \forall *critical pts. of* f *are nondegenerate.*

Note set of critical pts. closed discrete subset of M.

Let open $U \subset \mathbb{R}^n$, let C^2 map $g: U \to \mathbb{R}$,

critical pt. $p \in U$ nondegenerate iff

- linear $D(Dg)(p): \mathbb{R}^n \to (\mathbb{R}^n)^*$ bijective
- identify $L(\mathbb{R}^n, (\mathbb{R}^n)^*)$ with space of bilinear maps $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, \Longrightarrow equivalent to condition that symmetric bilinear $D^2q(p): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ non-degenerate
- $n \times n$ Hessian matrix

$$\left[\frac{\partial^2 g}{\partial x^i \partial x^j}(p)\right]$$

has rank n

Hessian of g at critical pt. p is quadratic form $H_p f$ associated to bilinear form $D^2 g(p)$

$$\implies H_p f(y) = D^2 g(p)(y, y) = \sum_{i,j} \frac{\partial^2 g}{\partial x^i \partial x^j}(p) y^i y^j$$

Let open $V \subset \mathbb{R}^n$, suppose C^2 diffeomorphism $h: V \to U$.

Let $q = h^{-1}(p)$, so q is critical pt. of $gh: V \to \mathbb{R}$.

(quadratic) form $(H_p f)$ invariant under diffeomorphisms.

Let $C^2 f: M \to \mathbb{R}$.

 \forall critical pt. x of f, define

Hessian quadratic form

$$H_x f: M_x \to \mathbb{R}$$

$$H_x f: M_x \xrightarrow{D\varphi_x} \mathbb{R}^n \xrightarrow{H_{\varphi(x)}(f\varphi^{-1})} \mathbb{R}$$

where φ is any chart at x.

Thus, critical pt. of a C^2 real-valued function nondegenerate iff associated Hessian quadratic form is nondegenerate.

Let Q nondegenerate quadratic form on vector space E.

Q negative definite on subspace $F \subset E$ if Q(x) < 0 whenever $x \in F$ nonzero.

Index of $Q \equiv \text{Ind}Q$, is largest possible dim. of subspace on which Q is negative definite.

cf. 1.1. Morse's Lemma of Ch. 6, pp. 145, Morse Theory of Hirsch (1997) [6]

Lemma 3 (Morse's Lemma). Let $p \in M$ be nondegenerate critical pt. of index k of C^{r+2} map $f: M \to \mathbb{R}$, $1 \le r \le \omega$. Then $\exists C^r$ chart (φ, U) at p s.t.

(38)
$$f\varphi^{-1}(u_1 \dots u_n) = f(p) - \sum_{i=1}^k u_i^2 + \sum_{i=k+1}^n u_i^2$$

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

Let ${}^TQ \equiv Q^T$ denote transpose of matrix Q.

Lemma 4. Let $A = diag\{a_1, \ldots, a_n\}$ diagonal $n \times n$ matrix, with diagonal entries ± 1 .

Then \exists neighborhood N of A in vector space of symmetric $n \times n$ matrices, C^{∞} map

$$P: N \to GL(n, \mathbb{R})$$

s.t.
$$P(A) = I$$
, and if $P(B) = Q$, then $Q^TBQ = A$

Proof. Let $B = [b_{ij}]$ be symmetri matrix near A s.t. $b11 \neq 0$ and b_{11} has same sign as a_1 .

Consider x = Ty where

$$x_1 = \left[y_1 - \frac{b_{12}}{b_{11}} y_2 - \dots - \frac{b_{1n}}{b_{11}} y_n \right] / \sqrt{|b_n|}$$

$$x_k = y_k \text{ for } k = 2, \dots n$$

7. Lagrange multipliers

From wikipedia:Lagrange multiplier, https://en.wikipedia.org/wiki/Lagrange_multiplier, find local minima (maxima), pt. $a \in N$, s.t. \exists neighborhood U s.t. f(x) > f(a) (f(x) < f(a)) $\forall x \in U$.

For $f: U \to \mathbb{R}$, open $U \subset \mathbb{R}^n$, find $x \in U$ s.t. $D_x f \equiv Df(x) = 0$, check if Hessian $H_x f < 0$.

Maxima may not exit since U open.

References:

Relative Extrema and Lagrange Multipliers

Other interesting links:

The Lagrange Multiplier Rule on Manifolds and Optimal Control of nonlinear systems

Part 9. Classical Mechanics applications

cf. Arnold, Kozlov, Neishtadt (2006) [16].

If known forces $\mathbf{F}_1 \dots \mathbf{F}_n$ acts on points, then

(40)
$$\sum_{i=1}^{n} \langle m_i \ddot{\mathbf{r}}_i - \mathbf{F}_i, \xi_i \rangle = 0$$

cf. Eq. (1.26) of Arnold, Kozlov, Neishtadt (2006) [16], where $\xi_1, \ldots \xi_n$ are arbitrary tangent vectors to $M, \xi_i, \ldots \xi_n \in TM$. $\sum_{i=1}^{n} \langle m_i \ddot{\mathbf{r}}_i - \mathbf{F}_i, \xi_i \rangle$ called "general equation of dynamics" or d'Alembert-Lagrange principle.

References

- [1] William Feller. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd Edition. 1968. ISBN-13: 978-0471257080
- [2] Jeffrey M. Lee. Manifolds and Differential Geometry, Graduate Studies in Mathematics Volume: 107, American Mathematical Society, 2009. ISBN-13: 978-0-8218-4815-9
- [3] John Lee, Introduction to Smooth Manifolds (Graduate Texts in Mathematics, Vol. 218), 2nd edition, Springer, 2012, ISBN-13: 978-1441999818
- [4] Victor Guillemin, Alan Pollack. Differential Topology. American Mathematical Society. 2010. ISBN-13: 978-0821851937 https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjG96q9z63JAhWMLYgKHempDoMQFggmMAE&url=http%3A%2F%2Fwww.mat.unimi.it%2Fusers%2Fdedo%2Ftop%2520diff%2FGuillemin-Pollack_Differential%2520topology.pdf&usg=AFQjCNF5im0H5xeXRSK60qzM7zT97sdIsw
- [5] Anant R. Shastri. Elements of Differential Topology. CRC Press. 2011. ISBN-13: 978-0415339209
- [6] Morris W. Hirsch, Differential Topology (Graduate Texts in Mathematics), Graduate Texts in Mathematics (Book 33), Springer (September 16, 1997). ISBN-13: 978-0387901480
- [7] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press. 2008. ISBN 978-0-691-13298-3 https://press.princeton.edu/titles/8586.html
- [8] Agostino Prástaro. **Geometry of PDEs and Mechanics**. World Scientific Publishing Co. 1996. QC125.2.P73 1996 530.1'55353—dc20. Agostino Prástaro. Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università degli Studi di Roma "La Sapienza".
- [9] Clemens Koppensteiner. Complex Manifolds: Lecture Notes. http://www.caramdir.at/uploads/math/piii-cm/complex-manifolds.pdf
- [10] Stefan Vandoren. Lectures on Riemannian Geometry, Part II: Complex Manifolds. http://www.staff.science.uu.nl/~vando101/MRIlectures.pdf
- [11] Kentaro Hori (Author, Editor), Sheldon Katz (Editor), Rahul Pandharipande (Editor), Richard Thomas (Editor), Ravi Vakil (Editor), Eric Zaslow (Editor), Eric Zaslow (Editor), Mirror Symmetry (Clay Mathematics Monographs, V. 1). Clay Mathematics Monographs (Book 1). American Mathematical Society (August 19, 2003). ISBN-10: 0821829556 ISBN-13: 978-0821829554 https://web.archive.org/web/20060919020706/http://math.stanford.edu/~vakil/files/mirrorfinal.pdf
- [12] Lawrence Conlon. Differentiable Manifolds (Modern Birkhäuser Classics). 2nd Edition. Birkhäuser; 2nd edition (October 10, 2008). ISBN-13: 978-0817647667
- [13] Andrew Clarke and Bianca Santoro. Holonomy Groups in Riemannian Geometry. arXiv:1206.3170 [math.DG]
- [14] Urs Schreiber and Konrad Waldorf. Parallel Transport and Functors. arXiv:0705.0452 [math.DG]
- [15] Y. Eliashberg, N. Mishachev, Introduction to the h-principle, Grad. Studies in Math. Vol 48 (AMS 2002)
- [16] Vladimir I. Arnold, Valery V. Kozlov, Anatoly I. Neishtadt. Mathematical Aspects of Classical and Celestial Mechanics. Third Edition. Springer.