C5

<u>Vsiq</u>

100m

Use the circuit to the right

- 1. Use: ignore $r_{o_s}|V_{BE}|=0.7, \beta=100$
 - (a) Assume active mode and solve for the DC values:
 - a. I_{B1} , I_{E1} , I_{C1}
 - b. V_{B1}, V_{E1}, V_{C1}
 - (b) Prove or disprove operation in the active region for the transistor.
- 2. Use the circuit at the right and results of #1.
- (a) What will be the maximum input for V_{sig} if the AC gain is $V_C/V_{sig} = -5V/V$? (Assume the circuit is operating in the correct frequency range.)
- (b) What condition (state a numerical value) for Rc to keep this transistor in the ACTIVE region?

3. Use: ignore r_0 , $|V_{BE}|=0.7$, $\beta=100$

- (a) Assume active mode and solve for the DC values:
 - a. I_{B1} , I_{E1} , I_{C1}
 - b. V_{B1}, V_{E1}, V_{C1}
- (b) Prove or disprove operation in the active region for both transistors.
- 4. Use the circuit at the right and results of #3.
- (a) What will be the maximum

input for V_I if the AC gain is $V_C/V_{sig} = -10V/V? \text{ (Assume the circuit is operating in the correct frequency range.)}$

(b) What condition (state a numerical value) for Rc to keep this

transistor in the ACTIVE region?

5V

5k

10k

1mADC

DC = 2V

Rc=100

DC = 15V

Q2N3904

DC = 1.7V

Q1

5k

5. Use: ignore r_o , $|V_{BE}|$ =0.7, β =100, V_T =25mV V_{sig} = 10+0.002sin(20t) r_{s1} =4,000 and g_{m2} =4mA/V

For the following hybrid- π equivalent circuit below, find the following values:

- (a) R_{in} (input resistance –ignore only the input source, Vsig and include all resistors at the base)
- (b) R_{out} (output resistance-include **all** resistors {no load is connected})
- (c) midband gain, $\frac{Vo}{Vsig}$

- (d) Comment on the values found for R_{in} , R_{out} , V_o/V_{sig} whether they are good values or not for an ideal amplifier.
- (e) If r_0 is included in parallel to the second transistor, how does this effect R_{out} . Will R_{out} increase or decrease in value?

6. Use: ignore
$$r_{o,}|V_{BE}|$$
=0.7, β =100, V_{T} =25mV V_{sig} = 10+0.002sin(20t)

$$r_{\star 1}$$
=2,000 and g_{m2} =2mA/V

For the following hybrid- π equivalent circuit below, find the following values:

- (a) R_{in} (input resistance –ignore only the input source, Vsig and include all resistors at the base)
- (b) R_{out} (output resistance-include **all** resistors {no load is connected})
- (c) midband gain, $\frac{Vo}{Vsig}$
- (d) Comment on the values found for R_{in} , R_{out} , V_o/V_{sig} whether they are good values or not for an ideal amplifier.
- (e) If r_0 is included in parallel to the second transistor, how does this effect R_{out} . Will R_{out} increase or decrease in value?

7. For the circuit shown below, **draw** the AC small-signal equivalent circuit(use hybrid- π or model T).

Make sure that everything is labeled in terms of the transistor number. (e.g. g_{m1} , v_{*2} , etc.). **Include r_o** for all transistors. Assume that the capacitors act as a short.

8. For the circuit shown below, **draw** the AC small-signal equivalent circuit(use hybrid- π or model T). Make sure that everything is labeled in terms of the transistor number. (e.g. g_{m1} , v_{s2} , etc.). **Include r₀** for all transistors. v_{sig} =0.001sin(10t) AC. Assume that the capacitors act as a short.

- 9. $|V_{BE}|=0.7$, $\beta=100$, $V_T=25$ mV, $|V_{CE_{SAT}}|=0.2$ V, ignore r_o , $v_{sig}=\{2+0.1\sin(\omega t)\}$ Volts. Assume that the capacitor acts as an open for DC operation and short for AC operation.
- (a) Assume transistor is acting in saturation, solve for I_B , I_C , and β_{forced} .
- (b) Express the range of values for the Rc resistor, without changing any other supply voltage or resistors, that keeps the transistor in **active region.**

- 10. $|V_{BE}|=0.7$, $\beta=100$, $V_T=25$ mV, $|V_{CE_{SAT}}|=0.2$ V, ignore r_o , $v_{sig}=\{2+0.1\sin(\omega t)\}$ Volts. Assume that the capacitor acts as an open for DC operation and short for AC operation.
- (a) Assume transistor is acting in saturation, solve for I_B , I_C , and β_{forced} .
- (b) Express the range of values for the Rc resistor, without changing any other supply voltage or resistors, that keeps the transistor in **active region.**

