Faculty Name: Dr. Y.V. Srinivasa Murthy

Exam Duration: 50 +10 Mins

General instruction(s): Answer any three questions and each question carry 10 marks.

	(Acties as	matruction(3).			
	Answer any Three Questions				
	SLNo.	Ouestions ,	Course	BL	
	SLIVE		Outcome	State 1	
			(CO)		
		What is the loop invariant for insertion sort technique. Develop	COI	L3	
		insertion sort algorithm by providing its pseudo code. Check the proof	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
		of correctness for the same.	Henris Th		
	2	Mr. X has taken array having a set of numerals. He would like to find	CO2	L5.	
		the difference among the maximum and minimum elements of a			
		given array. He would like to develop a findMaxMin() algorithm for	E 1- 1-		
The second		the same. However, the time complexity for such algorithm needs 'n'		Vet .	
		internal operations. Hence, the same has to be reduced to achieve		1 345	
		optimality. In such a case, which technique is more suitable. Develop			
		the optimal algorithm using the same technique and discuss its time	THE YEAR	1 = 29	
9	1000	complexity.	002	* *	
7	3.	A thief enters a house for robbing it. He can carry a maximal	CO2	L6	
		weight of 15 kg into his bag. There are 5 items in the house with	The same of the		
		the following weights and values. What items should thief take		134	
		if he either takes the item completely or leaves it completely?	1	-18	
		Item Weight (Kg) Value (6)	1	4	
	-	1Pad 2 300			
		Mac Book Air 3 450		N.	
ı		Laptop 5 200	(() ()		
		Desktop 8 180	1		
		Paint 3 800		/	
		Design an algorithm for the above problem using dynamic	D	A ARTH	
		programming and apply the same for the given data. Explain			
		each step while constructing a table for the above problem.	· ·	APPL ST	
			the second second	-	