DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Mid-sem Examination (Lab Component) Odd Semester of 2015-2016

MA322 & MA311M: SCIENTIFIC COMPUTING

Instructions:

- 1. There is **only ONE** assignment in parts here.
- 2. You must e-mail your programme(s) written in in C or C++ to the TA before the deadline of 5 October, 2015. Make sure that your answers are compatible with your programmes.
- 3. Name your file as youritgemailid322msm.c or youritgemailid322msm.cpp. For example, if I were to submit the assignment in C language, I would name the file as jiten322msm.c, not as jiten@iitg.ernet.in322msm.c. Under no circumstances, you are to name your file in any other fashion. Also make sure that you write your name and roll number in your code as comments.
 - 4. The Statements you make use of to solve the problems **MUST** be clearly written.
- 5. You must return the assignments on the class of 5 October, 2015 along with the print out(s) of your programmes.
- 6. The front-page of the answer scripts must bear your roll numbers and names along with your **signatures**.

In two-dimensions, two cubic spline functions can be used together to form a **parametric representation** of a complicated curve that turns and twists. Select points on the curve and label them t = 0, 1, 2,, n. For each value of t, read-off the x- and y-coordinates of the point, thus producing a table:

\overline{t}	0	1	 n
x	x_0	x_1	 x_n
\overline{y}	y_0	y_1	 y_n

Then you can fit x = S(t) and $y = \bar{S}(t)$, where S and \bar{S} are natural cubic spline interpolants. S and \bar{S} give a parametric representation of the curve. Now do the following:

(a) Draw a spiral like above and reproduce it by way of parametric spline functions. (10).
(b) Using at most 20 knots and cubic splines, plot on a computer plotter an outline of your own SIGNATURE. (20).

Give a clear description of how you have accomplished the assignments above. (20).

NOTE: You may use software package like **windig** in order to extract the coordinates of the points chosen by you from your signature.

HAPPY COMPUTING.