Д.В.Карпов

Алгебра. Глава 9. Квадратичные формы и скалярное произведение

Д.В.Карпов

2023

- Здесь и далее K поле характеристики не 2 (то есть, $2 \neq 0$ в поле K).
- ullet Мы будем иметь дело с линейным пространством V над K с базисом $\{e_1,\ldots,e_n\}.$
- Элементы V будут записываться как столбцы координат в этом базисе: $X = (x_1, \dots, x_n)^T$.

Определение

Функция f:V o K, заданная формулой

$$f((x_1,\ldots,x_n)^T) = \sum_{i=1}^n a_{i,i}x_i^2 + \sum_{1 \leq i < j \leq n} 2a_{i,j}x_ix_j,$$

где все коэффициенты $a_{i,j} \in K$, называется квадратичной формой.

• Зачем в определении фигурирует $2a_{i,j}x_ix_j$ при $i \neq j$? Для того, чтобы была возможность расписать этот член как $a_{i,j}x_ix_j + a_{j,i}x_jx_i$, где $a_{i,j} = a_{j,i}$

- Рассмотрим *симметричную* матрицу $A=(a_{i,j})_{i,j\in\{1,\dots,n\}}\in M_n(K)$ (то есть, удовлетворяющую условию $a_{i,j}=a_{j,i}$ для всех пар индексов) и вектор $X=(x_1,\dots,x_n)^T$.
- Тогда значение квадратичной формы f на векторе X может быть переписано как $f(X) = X^T A X$.
- Матрица A называется матрицей квадратичной формы f.
- ullet Как меняется матрица квадратичной формы при замене базиса V?
- Пусть базис $\{e_1,\ldots,e_n\}$ меняется на $\{e'_1,\ldots,e'_n\}$, в котором координаты записываются как $X'=(x'_1,\ldots,x'_n)^T$ (мы считаем, что столбец координат без штрихов в старом базисе соответствует столбцу со штрихами в новом), а матрица квадратичной формы f обозначается A'.
- Это означает, что квадратичная форма f в исходном базисе записывается как X^TAX а в новом базисе как $(X')^TA'X'$.
- Как нам известно, изменение координат при замене базиса делается умножением на матрицу перехода.

- ullet Пусть C матрица перехода от $\{e_1',\ldots,e_n'\}$ к $\{e_1,\ldots,e_n\}.$
- Тогда X = CX' и $X^T AX = (CX')^T A(CX') = (X')^T (C^T AC)X'$.
- Следовательно, $A' = C^T A C$.

Определение

- Квадратичной форма имеет *диагональный вид*, если она записывается $f(x_1,\ldots,x_n)=\sum_{i=1}^n a_i x_i^2$, то есть, ее матрица диагональная.
- Привести квадратичную форму к диагональном виду значит найти такой базис, в котором эта форма имеет диагональный вид.

Любую квадратичную форму f:V o K можно привести к диагональному виду.

Доказательство. • Индукция по количеству переменных n.

- ullet База n=1 очевидна. Также утверждение очевидно в случае, когда все коэффициенты квадратичной формы равны 0 (такая форма уже имеет диагональный вид).
- ullet Пусть n>1, для меньшего числа переменных теорема доказана и мы рассматриваем в базисе e_1,\ldots,e_n квадратичную форму

$$f((x_1,...,x_n)^T) = \sum_{i=1}^n a_{i,i}x_i^2 + \sum_{1 \le i < j \le n} 2a_{i,j}x_ix_j,$$

имеющую хотя бы один ненулевой коэффициент.

• Разберем два случая.

- ullet НУО i=1. Рассмотрим члены f, содержащие x_1 это $a_{1,1}x_1^2+2a_{1,2}x_1x_2+\cdots+2a_{1,n}x_1x_n=$
- $a_{1,1}(x_1+\frac{a_{1,2}}{a_{1,1}}x_2+\cdots+\frac{a_{1,n}}{a_{1,1}}x_n)^2-a_{1,1}\left(\sum_{i=2}^n\frac{a_{1,i}}{a_{1,1}}x_i\right)^2.$ (*
- Построим новый базис $e_1'=e_1$ и $e_i'=e_i-\frac{a_{1,i}}{a_{1,1}}e_1$ при $i\in\{2,\dots,n\}$. (Очевидно, вектора $e_1',\dots e_n'-\Pi$ НЗ, а значит, образуют базис n-мерного пространства.)
- Тогда вектор $(x_1,\ldots,x_n)^T$ в исходном базисе в новом базисе имеет вид $(x_1',x_2'\ldots,x_n')^T$, где $x_1'=x_1+(\frac{a_{1,2}}{a_{1,1}}x_2+\cdots+\frac{a_{1,n}}{a_{1,1}}x_n)$ и $x_i'=x_i$ при $i\in\{2,\ldots,n\}$.
- Поэтому, ввиду (*) получаем

$$f(x_1,\ldots,x_n)=a_{1,1}(x_1')^2+g(x_2',\ldots,x_n'),$$

где g — квадратичная форма, которую можно привести к диагональному виду по индукционному предположению.

ullet Сделаем это и оставим без изменений базисный вектор e_1' , в результате получится базис, в котором f имеет диагональный вид.

- Но есть ненулевой коэффициент тогда не умаляя общности можно считать, что $a_{1,2} \neq 0$.
- ullet Рассмотрим новый базис, в котором изменен только первый вектор: e_1' , e_2 , e_3 , . . . , e_n , причем $e_1'=e_1-e_2$.
- Нетрудно понять, что вектор с координатами $(x_1,\ldots,x_n)^T$ в исходном базисе в новом базисе имеет вид $(x_1',x_2',\ldots,x_n')^T$, где $x_2'=x_2+x_1$ и $x_i'=x_i$ при $i\neq 2$.
- Одночлен $2a_{1,2}x_1x_2 = 2a_{1,2}x_1'(x_2' x_1')$ в новом базисе содержит $-2a_{1,2}(x_1')^2$.
- В других одночленах $(x_1')^2$ появиться не может, поэтому, мы получаем $a_{1,1}'=-2a_{1,2}\neq 0$ и попадаем в разобранный выше случай 1.

• Вещественные числа в первую очередь хороши тем, что на них есть отношение порядка больше-меньше.

• Следующую теорему называют *законом инерции квадратичных форм*.

Теорема 2

Пусть $f((x_1, \dots, x_n)^T)$ — вещественная квадратичная форма, которая двумя способами приведена к диагональному виду:

$$g((y_1,\ldots,y_n)^T) = \sum_{i=1}^n a_i y_i^2 \text{ in } h((z_1,\ldots,z_n)^T) = \sum_{i=1}^n b_i z_i^2.$$

Тогда среди a_1,\ldots,a_n и b_1,\ldots,b_n поровну положительных коэффициентов. Также среди a_1,\ldots,a_n и b_1,\ldots,b_n поровну отрицательных коэффициентов, а значит, и поровну нулевых коэффициентов.

Доказательство. • Достаточно доказать равенство количеств положительных коэффициентов. Утверждение для отрицательных коэффициентов доказывается аналогично, после чего утверждение для нулевых выводится. ■ ■ ◆ ◆ ◆ ◆ ◆ ◆

Алгебра. Глава 9.

Квадратичные формы и скалярное произведение

• Предположим противное, пусть, скажем, у g положительных коэффициентов меньше, чем у h.

• Можно занумеровать коэффициенты так, чтобы $a_1, \ldots, a_p > 0$, $b_1, \ldots, b_{p+q} > 0$, а все остальные коэффициенты не превосходили 0.

• По определению, диагональный вид квадратичной формы — это ее запись в другом базисе, то есть, существуют такие невырожденные матрицы перехода $C, D \in M_n(\mathbb{R})$, что $f((x_1, \ldots x_n)^T) = a_1 y_1^2 + \cdots + a_n y_n^2 = b_1 z_1^2 + \cdots + b_n z_n^2$, где

$$(y_1, \dots, y_n)^T = C(x_1, \dots, x_n)^T, \quad (z_1, \dots, z_n)^T = D(x_1, \dots, x_n)^T.$$
• Попробуем подобрать такой ненулевой вектор $(x_1, \dots, x_n)^T$, что для него $y_1 = \dots = y_p = z_{p+q+1} = \dots = z_n = 0.$

• Равенство нулю каждой координаты — это линейное уравнение на x_1, \ldots, x_n , вместе получаем ОСЛУ с переменными x_1, \ldots, x_n :

$$\begin{cases} y_1 & = c_{1,1}x_1 + c_{1,2}x_2 + \dots + c_{1,n}x_n = 0, \\ & \dots \\ y_p & = c_{p,1}x_1 + c_{p,2}x_2 + \dots + c_{p,n}x_n = 0, \\ z_{p+q+1} & = d_{p+q+1,1}x_1 + d_{p+q+1,2}x_2 + \dots + d_{p+q+1,n}x_n = 0, \\ & \dots \\ z_n & = d_{n,1}x_1 + d_{n,2}x_2 + \dots + d_{n,n}x_n = 0 \end{cases}$$

9. Квадратичные формы и скалярное произведение

Алгебра. Глава

 \bullet В полученной ОСЛУ n переменных и n-q уравнений, а значит, существует ненулевое решение — вектор x^0 , которому соответствуют

$$Cx^0 = y^0 = (0, \dots, 0, y_{p+1}, \dots, y_n)$$
 и $Dx^0 = z^0 = (z_1, \dots, z_{p+q}, 0, \dots, 0).$

Тогда

$$f(x^0)=\sum_{i=1}^n a_i y_i^2=\sum_{i=p+1}^n a_i y_i^2\leq 0$$
 w
$$f(x^0)=\sum_{i=1}^n b_i z_i^2=\sum_{i=1}^{p+q} b_i z_i^2\geq 0,$$

откуда следует, что $f(x^0) = 0$ и $z_1 = \cdots = z_{p+q} = 0$.

• Таким образом, $z^0=0$, а это значит, что $D\cdot x^0=0$ для $x^0\neq 0$, что для невырожденной матрицы D невозможно. Противоречие.

Квадратичные формы и скалярное произведение

Определение

Вещественная квадратичная форма $f:V\to\mathbb{R}$ называется положительно определенной, если для любого $x\in V,\,x\neq 0$ мы имеем f(x)>0.

• На всякий случай заметим, что для квадратичной формы всегда выполнено $f(0) = f((0, \dots, 0)^T) = 0$.

Теорема 3

Пусть положительно определенная квадратичная форма $f: \mathbb{R}^n \to \mathbb{R}$ приведена к диагональному виду $a_1 y_1^2 + \cdots + a_n y_n^2$. Тогда все коэффициенты a_1, \ldots, a_n положительны.

Доказательство. \bullet Пусть это не так и, скажем, $a_1, \ldots, a_p > 0$, $a_{p+1}, \ldots, a_n \leq 0, \ p < n$.

- ullet По определению, диагональный вид квадратичной формы это ее запись в другом базисе.
- Это означает, что существуют такая невырожденная матрица перехода $C \in M_n(\mathbb{R})$, что $f((y_1,\dots,y_n)^T) = a_1 y_1^2 + \dots + a_n y_n^2, \quad (y_1,\dots,y_n)^T = C(x_1,\dots,x_n)^T.$

произведение Д.В.Карпов

- Попробуем подобрать такой ненулевой вектор $(x_1, \dots x_n)^T$, что для него $y_1 = \dots = y_p = 0$.
- Получаем ОСЛУ

$$\begin{cases} y_1 = c_{1,1}x_1 + c_{1,2}x_2 + \dots + c_{1,n}x_n = 0, \\ \dots \\ y_p = c_{p,1}x_1 + c_{p,2}x_2 + \dots + c_{p,n}x_n = 0. \end{cases}$$

- В этой ОСЛУ n переменных и p < n уравнений, а значит, существует ненулевое решение вектор x^0 .
- ullet Так как матрица C невырождена, вектор $Cx^0=y^0=(0,\dots,0,y_{p+1},\dots,y_n)$ не равен 0.
- Тогда

$$f(x^0) = \sum_{i=1}^n a_i y_i^2 = \sum_{i=p+1}^n a_i y_i^2 \le 0,$$

что противоречит положительной определенности f.

Определение

Пусть V — линейное пространство над \mathbb{R} , а отображение (,) : $V \times V \to \mathbb{R}$ удовлетворяет следующим условиям:

 $1^{\circ}. \ (\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ для любых $\alpha, \beta \in \mathbb{R}$ и $x, y, z \in V$;

- 2° . (x,y)=(y,x) для любых $x,y\in V$;
- 3° . (x,x)>0 для любого $x\in V$, отличного от 0.

Тогда (,) называется вещественным скалярным произведением, а V — пространством со скалярным произведением, или Eвклидовым пространством.

Определение

Пусть V — линейное пространство над \mathbb{C} , а отображение $(\ ,\):V imes V o \mathbb{C}$ удовлетворяет следующим условиям:

- 1°. $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ для любых $\alpha, \beta \in \mathbb{C}$ и $x, y, z \in V$:
 - 2° . (x, y) = (y, x) для любых $x, y \in V$;
- 3° . Для любого $x \in V$, отличного от 0, число (x,x) вещественное и положительное.
- Тогда (,) называется комплексным скалярным произведением, а V- пространством со скалярным произведением, или Эрмитовым пространством.

Свойство 1

Пусть V — пространство со скалярным произведением над \mathbb{C} . Тогда $(z, \alpha x + \beta y) = \overline{\alpha}(z, x) + \overline{\beta}(z, y)$ для любых $\alpha, \beta \in \mathbb{C}$ и $x, y, z \in V$.

Доказательство.
$$(z, \alpha x + \beta y) = \overline{(\alpha x + \beta y, z)} = \overline{\alpha(x, z) + \beta(y, z)} = \overline{\alpha} \cdot \overline{(x, z)} + \overline{\beta} \cdot \overline{(y, z)} = \overline{\alpha}(z, x) + \overline{\beta}(z, y).$$

• Многие свойства вещественного и комплексного скалярного произведения аналогичны, мы будем их доказывать одинаково, используя обозначение $K \in \{\mathbb{R}, \mathbb{C}\}$.

Свойство 2

Пусть V — пространство со скалярным произведением над K, $x \in V$. Тогда (0, x) = (x, 0) = 0 для любого $x \in V$.

Доказательство. Ввиду определения, нам достаточно доказать, что (0,x)=0. Это очевидно следует из (0,x)=(0+0,x)=(0,x)+(0,x).

Определение

Пусть $K \in \{\mathbb{C}, \mathbb{R}\}$, V — пространство со скалярным произведением над K, а e_1, \ldots, e_n — базис V. *Матрица Грама* базиса e_1, \ldots, e_n — это матрица $G = (g_{i,j})_{i,j \in \{1,\ldots,n\}}$, где $g_{i,j} = (e_i, e_j)$.

• Непосредственно из определений можно вывести свойства матрицы Грама.

Свойство 3

Пусть V — пространство со скалярным произведением над K. Тогда на главной диагонали матрицы Грама стоят положительные вещественные коэффициенты.

Алгебра. Глава 9. Квадратичные

Квадратичные формы и скалярное произведение

Свойство 5

Пусть V — пространство со скалярным произведением над \mathbb{C} . Тогда $G^T = \overline{G}$ (то есть, $g_{i,j} = \overline{g_{j,i}}$).

Неравенство Коши-Буняковского-Шварца над $\mathbb R$

Теорема 4

Пусть V — пространство со скалярным произведением над \mathbb{R} , $x,y\in V$. Тогда $(x,y)^2\leq (x,x)\cdot (y,y)$.

Доказательство. • По определению вещественного скалярного произведения, для любого $\lambda \in \mathbb{R}$

$$0 \le (\lambda x - y, \lambda x - y) = \lambda^2(x, x) - 2\lambda(x, y) + (y, y). \tag{*}$$

• При фиксированных x и y мы имеем квадратный трехчлен относительно λ , у которого, очевидно, не более одного корня, а значит, его дискриминант неположителен:

$$4(x,y)^2 - 4(x,x)(y,y) \le 0,$$

откуда следует доказываемое неравенство.

Алгебра. Глава 9.

Квадратичные формы и скалярное произведение

скалярное

произведение

Д. В. Карпов

Пусть V — пространство со скалярным произведением над \mathbb{C} , $x, y \in V$. Тогда $|(x, y)|^2 \le (x, x) \cdot (y, y)$.

Доказательство. • Пусть $(x, y) = |(x, y)|e^{i\varphi}$.

- \bullet Тогда $\overline{(x,y)} = |(x,y)|e^{-i\varphi}$.
- По определению комплексного скалярного произведения и сказанному выше, для любого $t \in \mathbb{R}$

$$0 \leq (tx + e^{i\varphi}y, tx + e^{i\varphi}y) = (tx, tx) + (e^{i\varphi}y, tx) + (tx, e^{i\varphi}y) + (e^{i\varphi}y, e^{i\varphi}y) = t^{2}(x, x) + t \cdot ((e^{i\varphi}y, x) + (x, e^{i\varphi}y)) + e^{i\varphi} \cdot \overline{e^{i\varphi}}(y, y) = t^{2}(x, x) + t \cdot (e^{i\varphi}(x, y) + \overline{e^{i\varphi}}(x, y)) + N(e^{i\varphi})(y, y) = t^{2}(x, x) + t \cdot (e^{i\varphi}e^{-i\varphi}|(x, y)| + e^{-i\varphi}e^{i\varphi}|(x, y)|) + (y, y) = t^{2}(x, x) + 2t|(x, y)| + (y, y).$$

• При фиксированных х и у мы имеем квадратный трехчлен относительно t, у которого, очевидно, не более одного корня, а значит, его дискриминант неположителен:

$$4|(x,y)|^2-4(x,x)(y,y)\leq 0.$$

Определение

Пусть $K\in\{\mathbb{C},\mathbb{R}\}$, V — пространство со скалярным произведением над K, $x\in V$. Длина вектора x — это $\|x\|:=\sqrt{(x,x)}$.

• Длина ненулевого вектора — положительное вещественное число.

Свойство 1

Если
$$\lambda \in K$$
, то $\|\lambda x\| = |\lambda| \cdot \|x\|$

Доказательство. (при $K=\mathbb{R}$ считаем, что $\overline{\lambda}=\lambda$)

$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda \cdot \overline{\lambda} \cdot (x, x)} = \sqrt{|\lambda|^2 (x, x)} = |\lambda| \cdot \|x\|.$$

Свойство 2

Если $x, y \in V$, то $||x + y|| \le ||x|| + ||y||$.

Доказательство. •
$$\|x + y\|^2 = (x + y, x + y) =$$

$$(x,x) + (y,y) + (x,y) + (y,x) = ||x||^2 + ||y||^2 + (x,y) + (y,x)$$
 (*).

ullet При $K=\mathbb{R}$ по Теореме 4 имеем $(x,y)=(y,x)\leq \|x\|\cdot \|y\|$ и (*) продолжается так:

$$||x + y||^2 \le ||x||^2 + ||y||^2 + 2||x|| \cdot ||y|| = (||x|| + ||y||)^2,$$

откуда следует доказываемое неравенство.

• При $K=\mathbb{C}$ по Теореме 5 имеем $(x,y)+(y,x)=2{\rm Re}((x,y))\leq 2|(x,y)|\leq 2\|x\|\cdot\|y\|$ и (*) продолжается точно так же, как в вещественном случае.

Свойство 3

(Неравенство треугольника). Если $x, y, z \in V$, то $\|x - y\| \le \|x - z\| + \|z - y\|$.

Доказательство. Так как x - y = (x - z) + (z - y), утверждение следует из Свойства 2.

ullet В этом разделе $K\in\{\mathbb{R},\mathbb{C}\}$, а V — пространство со скалярным произведением.

Определение

Пусть e_1, \ldots, e_n — базис V.

- 1) Базис называется *ортогональным*, если его матрица Грама диагональна и *ортонормированным*, если его матрица Грама равна E_n .
- 2) Векторы $x, y \in V$ называются *ортогональными*, если (x, y) = 0.
- Ортогональность базиса эквивалентна тому, что $(e_i,e_j)=0$ при $i\neq j$ (то есть, любые два различных базисных вектора ортогональны).
- Базис является ортонормированным, если и только если он ортогональный и $(e_i,e_i)=1$ для каждого базисного вектора.

Д. В. Карпов

скалярное произведение

Пусть V — пространство со скалярным произведением над \mathbb{R} , e_1, \ldots, e_n — ортонормированный базис $V, x, y \in V$, причем $x=(x_1,\ldots,x_n)^T$ и $y=(y_1,\ldots,y_n)^T$ — координаты векторов в указанном базисе. Тогда $(x,y) = \sum_{i=1}^n x_i y_i$.

Доказательство.

$$(x,y) = (\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j (e_i, e_j) = \sum_{i=1}^{n} x_i y_i,$$

так как $(e_i, e_i) = 1$ и $(e_i, e_i) = 0$ при $i \neq j$.

Свойство 2

Пусть V — пространство со скалярным произведением над \mathbb{C} , e_1,\ldots,e_n — ортонормированный базис $V,x,y\in V$, причем $x=(x_1,\ldots,x_n)^T$ и $y=(y_1,\ldots,y_n)^T$ — координаты векторов в указанном базисе. Тогда $(x,y) = \sum\limits_{i=1}^{n} x_i \cdot \overline{y_i}$.

Доказательство.

$$(x,y) = (\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \cdot \overline{y_j}(e_i, e_j) = \sum_{i=1}^{n} x_i \cdot \overline{y_i},$$

так как $(e_i,e_i)=1$ и $(e_i,e_i)=0$ при $i \neq j$

• Это в точности алгоритм, из которого состоит доказательство следующей теоремы.

Теорема 6

Пусть V — пространство со скалярным произведением над K, а $e_1,\ldots,e_m\in V$. Тогда существует такой ортогональный набор векторов $f_1,\ldots,f_m\in V$, что для любого $p\in\{1,\ldots,m\}$ выполнено $\mathrm{Lin}(f_1,\ldots,f_p)=\mathrm{Lin}(e_1,\ldots,e_p)$.

Доказательство. • Будем доказывать утверждение индукцией по m.

 $ag{\it basa}$ для m=1 очевидна: возьмем $f_1=e_1$.

Переход. Пусть набор f_1, \ldots, f_k уже построен.

• Будем искать следующий вектор в виде

$$f_{k+1} = e_{k+1} + \sum_{i=1}^{\kappa} \alpha_i f_i.$$

ullet Так как $\mathrm{Lin}(e_1,\ldots,e_k)=\mathrm{Lin}(f_1,\ldots,f_k)$ и по построению f_{k+1} , мы имеем

$$\operatorname{Lin}(f_1,\ldots,f_k,f_{k+1}) = \operatorname{Lin}(f_1,\ldots,f_k,e_{k+1}) = \operatorname{Lin}(e_1,\ldots,e_k,e_{k+1}).$$

ullet Для того, чтобы найти коэффициент $lpha_i$ (где $i\in\{1,\ldots,k\}$), заметим, что

$$0 = (f_{k+1}, f_i) = (e_{k+1}, f_i) + \sum_{j=1}^k \alpha_j(f_j, f_i) = (e_{k+1}, f_i) + \alpha_i(f_i, f_i),$$

откуда
$$\alpha_i = \frac{-(e_{k+1},f_i)}{(f_i,f_i)}$$
 (напомним, что $(f_i,f_i) \neq 0$).

• Если вектора e_1, \dots, e_k (где $k \leq m$) попарно ортогональны, то алгоритм ортогонализации их не изменит и мы получим $f_i = e_i$ для всех $i \in \{1, \dots, k\}$.

Следствие 2

Любое подпространство W < V имеет ортогональный и ортонормированный базис.

Доказательство. • Рассмотрим базис W и подвергнем его ортогонализации — получится ортогональный базис e_1, \ldots, e_n .

• Базис e_1', \dots, e_n' , где $e_i' = \frac{1}{\sqrt{(e_i, e_i)}} e_i$ — ортонормированный (извлечение квадратного корня корректно, так как (e_i, e_i) — положительное вещественное число).

Алгебра. Глава 9. Квадратичные

Квадратичные формы и скалярное произведение

ullet В этом разделе $K\in\{\mathbb{R},\mathbb{C}\}$, а V — пространство над K со скалярным произведением.

Определение

Для W < V определим *ортогональное дополнение* как $W^{\perp} = \{x \in V : \forall w \in W \, (x,w) = 0\}.$

Теорема 7

Пусть
$$W < V$$
, $\dim(V) = n$, $\dim(W) = m$. Тогда $\dim(W^\perp) = n - m$, $W \oplus W^\perp = V$ и $(W^\perp)^\perp = W$.

Доказательство. • Пусть f_1, \ldots, f_m — ортогональный базис W, который мы уже научились строить.

- ullet Дополним его до базиса V, пусть получился базис $f_1, \ldots, f_m, e_{m+1}, \ldots, e_n.$
- Применим к этом базису ортогонализацию Грама-Шмидта, пусть в результате получились векторы $f_1, \ldots, f_m, f_{m+1}, \ldots, f_n$ (напомним, что первые m векторов не изменились!).
- Рассмотрим $U = \operatorname{Lin}(f_{m+1}, \dots, f_n)$.

Утверждение 1

 $U\subset W^{\perp}.$

Доказательство. ullet Пусть $u\in U,\ w\in W.$ Нам нужно доказать, что (w,u)=0.

- ullet Тогда $w=\sum\limits_{i=1}^{m}lpha_{i}f_{i}$ и $u=\sum\limits_{j=m+1}^{n}eta_{j}f_{j}$, где $lpha_{i},eta_{j}\in\mathbb{R}.$
- ullet Так как для любых $i\in\{1,\ldots,m\}$ и $j\in\{m+1,\ldots,n\}$ мы имеем $(f_i,f_j)=0$,

$$(w,u) = \sum_{i=1}^{m} \sum_{j=m+1}^{n} \alpha_i \cdot \overline{\beta_j} \cdot (f_i, f_j) = 0.$$

Утверждение 2

 $U\supset W^{\perp}$.

Доказательство. \bullet Пусть $x \in W^{\perp}$. Тогда $x = \sum_{i=1}^{n} \alpha_i f_i$.

- ullet Для любого $s\in\{1,\ldots,m\}$ имеем
- $0 = (x, f_s) = \sum_{i=1}^{n} \alpha_i(f_i, f_s) = \alpha_s(f_s, f_s),$

 $0=(x,r_s)=\sum_{i=1}^n \alpha_i(r_i,r_s)=\alpha_s(r_s,r_s),$ откуда следует, что $\alpha_s=0.$ Но тогда $x\in U.$

9.
Квадратичные формы и скалярное произведение

Алгебра. Глава

- ullet Таким образом, $W^\perp = U = \operatorname{Lin}(f_{m+1}, \dots, f_n)$ и $\operatorname{dim}(W^\perp) = n m$.
- ullet Так как $f_1,\dots,f_m,f_{m+1},\dots,f_n$ базис V, то 0 единственным образом представляется в виде линейной комбинации этих векторов.
- ullet Следовательно, $V=\mathrm{Lin}(f_1,\ldots,f_m)\oplus\mathrm{Lin}(f_{m+1},\ldots,f_n)=W\oplus W^\perp.$
- ullet Теперь возьмем ортогональный базис f_{m+1},\dots,f_n пространства W^\perp , дополним его векторами f_1,\dots,f_m до базиса V.
- Этот базис и так ортогонален, и мы аналогично сказанному выше получаем, что $(W^{\perp})^{\perp} = \operatorname{Lin}(f_1, \dots, f_m) = W$.

Свойства ортогонального дополнения

Свойство 1

Пусть W, U < V, причем $W \subset U$. Тогда $U^\perp \subset W^\perp$.

Доказательство. Непосредственное следствие определения.

Свойство 2

Пусть W, U < V. Тогда $(W+U)^\perp = W^\perp \cap U^\perp.$

Доказательство. • По Свойству 1, $(W+U)^{\perp} \subset W^{\perp}$ и $(W+U)^{\perp} \subset U^{\perp}$, следовательно, $(W+U)^{\perp} \subset W^{\perp} \cap U^{\perp}$.

- Наоборот, пусть $a \in W^{\perp} \cap U^{\perp}$.
- ullet Рассмотрим любой вектор $x\in W+U$. Тогда x=y+z, где $y\in W$ и $z\in U$.
- ullet Так как $a\in W^\perp$, мы имеем (a,y)=0. Так как $a\in U^\perp$, мы имеем (a,z)=0.
- ullet Но тогда (a,x)=(a,y+z)=(a,y)+(a,z)=0. Следовательно, $W^{\perp}\cap U^{\perp}\subset (W+U)^{\perp}$.

9. Квадратичные формы и скалярное произведение

Алгебра, Глава

Свойство 3

Пусть
$$W, U < V$$
. Тогда $(W \cap U)^\perp = W^\perp + U^\perp.$

Доказательство. • По Свойству 2 мы имеем $(W^{\perp} + U^{\perp})^{\perp} = (W^{\perp})^{\perp} \cap (U^{\perp})^{\perp} = W \cap U.$

$$(W\cap U)^{\perp}=\left((W^{\perp}+U^{\perp})^{\perp}\right)^{\perp}=W^{\perp}+U^{\perp}.$$

Теорема 8

Пусть V и U — два пространства со скалярным произведением над $K \in \{\mathbb{R}, \mathbb{C}\}$, $\dim(V) = \dim(U) = n$. Тогда существует изоморфизм (то есть, биективное линейное отображение) $\varphi: V \to U$, сохраняющий скалярное произведение (то есть, $(x,y) = (\varphi(x), \varphi(y))$ для любых $x,y \in V$).

Доказательство. • Пусть e_1, \ldots, e_n — ортонормированный базис V, а f_1, \ldots, f_n — ортонормированный базис U.

- ullet Зададим arphi формулами $arphi(e_i)=f_i$ для всех $i\in\{1,\ldots,n\}.$
- ullet Если $(x_1,\ldots,x_n)^T$ координаты $x\in V$ в базисе e_1,\ldots,e_n , то $\varphi(x)$ имеет такие же координаты в базисе f_1,\ldots,f_n .
- Аналогично, пусть $(y_1, \ldots, y_n)^T$ координаты $y \in V$ в базисе e_1, \ldots, e_n и $\varphi(y)$ в базисе f_1, \ldots, f_n .
- ullet Если $K = \mathbb{R}$, то $(x,y) = \sum_{i=1}^n x_i y_i = (\varphi(x), \varphi(y)).$
- ullet Если $K=\mathbb{C}$, то $(x,y)=\sum\limits_{i=1}^n x_i\cdot \overline{y_i}=(\varphi(x),\varphi(y)).$