STAT1301 Advanced Analysis of Scientific Data Semester 2, 2025

Assignment 2

1 Introduction

Throughout the report, the following syntactical shortcuts and notation will be used.

If X is a random variable of the sample space Ω , an abbreviation of set notation is as follows:

Abbreviate
$$\{d : \forall d \in \Omega \text{ and } X(d) = x\}$$
 (1)

$$As \{X = x\}$$
 (2)

Additionally, when thinking in terms of sets becomes obselete,

Abbreviate
$$P(\{d : \forall d \in \Omega \text{ and } X(d) = x\})$$
 (3)

$$As P(X = x) (4)$$

The abbriviation will be used with inequalities as well.

Given some random variable X, there must exist a function mapping from the sample space Ω to the domain of X, which can be at most \mathbb{R} . This function is (intuitively) named X. This function incidentally defines the random variable, which is the motivating reason for using its letter to represent its mapping. The notation Domain[X] will be used throughout this report to indicate the domain of the function mapping X and hence the random variable X itself by definition.

2 Question 1

To begin, lets define the sample space

$$\Omega = \{(a, b) \in \{1, 2, 3, 4, 5, 6\}\}$$
$$|\Omega| = 36$$

Notice this is uniform, and hence that a and b are independent

$$P(A) = \frac{|A|}{|\Omega|} = \frac{|A|}{36} \tag{5}$$

2.1 Part a)

Let X be a random variable representing the payout of a given dice roll $(a, b) \in \Omega$:

$$X((a,b) \in \Omega) = a \cdot b$$

Let f_X be the PMF of X. Note $f_X(x \in \Omega) = P(\{X = x\})$. By cases, the probability distribution of X can be deduced:

$$f_{X}(1) = \frac{1}{36}$$

$$f_{X}(2) = \frac{2}{36}$$

$$f_{X}(2) = \frac{2}{36}$$

$$f_{X}(3) = \frac{2}{36}$$

$$f_{X}(4) = \frac{3}{36}$$

$$f_{X}(4) = \frac{3}{36}$$

$$f_{X}(5) = \frac{2}{36}$$

$$f_{X}(10) = \frac{2}{36}$$

$$f_{X}(10) = \frac{2}{36}$$

$$f_{X}(12) = \frac{4}{36}$$

$$f_{X}(13) = \frac{2}{36}$$

$$f_{X}(24) = \frac{2}{36}$$

$$f_{X}(25) = \frac{1}{36}$$

$$f_{X}(30) = \frac{2}{36}$$

$$f_{X}(30) = \frac{2}{36}$$

$$f_{X}(30) = \frac{1}{36}$$

For all other values x, $f_X(x) = 0$

2.2 Part b)

This makes determining the expected value of X trivial:

$$E(X) = \sum_{c \in \Omega} X(c)P(c)$$
 (6)

$$= \sum_{x \in \text{Domain}[X]} x P(\{X = x\}) \tag{7}$$

$$= 1 \cdot f_{X}(1) + 2 \cdot f_{X}(2) + \dots + 30 \cdot f_{X}(30) + 36 \cdot f_{X}(36)$$
(8)

$$=\frac{1}{36} + \frac{4}{36} + \dots + \frac{60}{36} + \frac{36}{36} \tag{9}$$

$$=\frac{441}{36} = \frac{49}{4} = 12.25\tag{10}$$

2.3 Part c)

Evaluating Var(X) is similarly trivial

$$Var(X) = E[(X - E(X))^2]$$
(11)

$$= \sum_{c \in \Omega} (X(c) - \frac{49}{4})^2 P(\{c\})$$
 (12)

$$= \sum_{x \in \text{Domain}[X]} (x - \frac{49}{4})^2 P(\{X = x\})$$
 (13)

$$= (1 - \frac{49}{4})^2 \cdot \frac{1}{36} + (2 - \frac{49}{4})^2 \cdot \frac{2}{36} + \dots + (30 - \frac{49}{4})^2 \cdot \frac{2}{36} + (36 - \frac{49}{4})^2 \cdot \frac{1}{36}$$
 (14)

$$=\frac{11515}{144}\approx 79.97\tag{15}$$

$$\implies \sigma_{\mathcal{X}} = \sqrt{\operatorname{Var}(\mathcal{X})} = \sqrt{\frac{11515}{144}} \approx 8.942 \tag{16}$$

3 Question 2

Understanding this question in terms of a sample space isn't very fruitful. Ω is completely unspecified, we can only deduce that $|\Omega| \geq (0,20)$, which implies it is continuous. $P(A): \exists A \in \Omega$ is also completely unknown.

Part a) 3.1

Let X be the continuous random variable of algae growth as measured in grams of biomass produced. Note Domain[X] = (0, 20).

Since X is a random variable, its PDF f_X must sum to 1:

$$1 = \int_{c \in \Omega} P(\lbrace c \rbrace) \tag{17}$$

$$= \int_{x \in \text{Domain}[X]} P(\{X = x\})$$
 (18)

$$= \int_0^{20} c(x^2 - 60x + 800) dx \tag{19}$$

$$= c\left[\frac{1}{3}x^3 - 30x^2 + 800x\right]_{x=0}^{x=20} \tag{20}$$

$$1/c = \left[\frac{1}{3}(20)^3 - 30(20)^2 + 800(20)\right] - \left[0 - 0 + 0\right]$$
 (21)

$$1/c = \frac{20000}{3}$$
 (22)
$$c = \frac{3}{20000}$$
 (23)

$$c = \frac{3}{20000} \tag{23}$$