	Student information	Date	Number of session
	UO: 295180	17/02/24	2
Algorithmics	Surname: Orviz Viesca	Escuela de	

Ingeniería

Name: Mario

Activity 1. Some Iterative Models

Classes Loop1.java, Loop2.java, Loop3.java and Loop4.java are provided.

Loop1.java

```
long cont = 0;
long n1 = 1;
while (n1 \le n * n) \{ // \log 3(n^2) \}
   for (long i = 1; i \le 2 * n; i += 3) // 2n/3
          cont++;
   n1 = 3 * n1;
}
// total complexity \rightarrow \log 3(n^2)*2n/3 \rightarrow O(n\log(n))
return cont;
```

Loop2.java

```
long cont = 0;
long n1 = n;
do {
       for (long i = 1; i <= n; i++) // n
             for (long j = n; j \ge 0; j = 2) // n/2
                    cont++;
      n1 = n1 / 3;
} while (n1 >= 1); // log3(n)
// total complexity \rightarrow \log 3(n)*n*n/2 \rightarrow O(n^2\log(n))
return cont;
```

Loop3.java

```
long cont = 0;
long i = 1;
while (i \le 2 * n) \{ // 2n \}
      for (long j = i; j \ge 0; j = 2) // 2n/2
              for (long k = 1; k \le n; k *= 2) // \log_2(n)
                     cont++;
      i++;
}
// total complexity \rightarrow 2n*2n/2*log2(n) \rightarrow 0(n^2log(n))
return cont;
```

Algorithmics	Student information	Date	Number of session
	UO: 295180	17/02/24	2
	Surname: Orviz Viesca		
	Name: Mario		

Loop4.java

```
long cont = 0;
      for (int i = 1; i <= n; i++) // n
            for (int j = 1; j <= i; j++) // n
                   for (int k = 1; k \leftarrow j; k++) // n
                         cont++;
// total complexity -> n*n*n -> O(n^3)
return cont;
```

After the execution of the different algorithms, we can measure their times and observe that, in order, from loop 1 to loop 4 the time increases

N	tLoop1	tLoop2	tLoop3	tLoop4
100	0.0099	0.367	1.27	1.24
200	0.0207	1.37	5.44	9.73
400	0.0452	6.39	26.85	78.51
800	0.123	28.3	113	638
1600	0.359	115	503	5244
3200	0.478	521	2168	37901
6400	1.02	2059	9142	Oot
12800	2.37	9216	36909	Oot
25600	4.83	41427	Oot	Oot
51200	10.13	Oot	Oot	Oot

Knowing that:

loop1 has O(n log(n)) complexity

loop2 has O(n² log(n)complexity

loop3 has O(n² log(n)) complexity

loop4 has O(n³) complexity

We can observe that the increase of these algorithm theoretical complexities directly reflects into our time measurements

Algorithmics	Student information	Date	Number of session
	UO: 295180	17/02/24	2
	Surname: Orviz Viesca		
	Name: Mario		

Activity 2. Creation of iterative models of a given time complexity

We're asked to create new **Loop5.java**, **Loop6.java** and **Loop7.java** classes implementing new loops that satisfies the following theoretical time complexities:

```
loop5 has O(n^2 \log^2(n)) complexity loop6 has O(n^3 \log(n)) complexity loop7 has O(n^4) complexity
```

The following implementations are my approach for the problem:

Loop5.java

Loop6.java

```
long cont = 0;
long n1 = n;
do {
```

	Student information	Date	Number of session
	UO: 295180	17/02/24	2
Algorithmics	Surname: Orviz Viesca		
	Name: Mario		

```
for (long i = 1; i \le n; i++) // n
              for (long j = n; j \ge 0; j = 2) // n/2
                    for(long k = 0; k \leftarrow n; k++) // n
                            cont++;
       n1 = n1 / 2;
} while (n1 >= 1); // log2(n)
// total complexity \rightarrow \log_2(n)*n*n*n/2 \rightarrow O(n^3\log(n))
return cont;
```

Loop7.java

```
long cont = 0;
       for (int i = 1; i <= n; i++) // n
               for (int j = 1; j \leftarrow i; j++) // n
                      for (int k = 1; k \leftarrow j; k++) // n
                              for (int m = 1; m <= k; m++) // n</pre>
                                     cont++;
// total complexity \rightarrow n*n*n*n <math>\rightarrow O(n^4)
return cont;
```

Then, the table of times (in milliseconds without Optimization) that we obtain from the execution of this algorithms without optimizations is:

N	tLoop5	tLoop6	tLoop7
100	5.6	51.1	40.2
200	30	482	552
400	109	3897	8323
800	513	34985	Oot
1600	3069	Oot	Oot
3200	12940	Oot	Oot
6400	57776	Oot	Oot

In this case, as we increase the theoretical complexities of our algorithms, the time increases again as $O(n^2 \log^2(n)) < O(n^3 \log(n)) < O(n^4)$

	Student information	Date	Number of session
	UO: 295180	17/02/24	2
Algorithmics	Surname: Orviz Viesca		
	Name: Mario		

Activity 3. Comparison of two algorithms (A)

To compare two algorithms we can calculate the **division ratio** of the execution time for the same size of the problem.

If the complexities are different, the ratio can either:

- Tend to 0 if the numerator has the best complexity
- Tend to ∞ if the numerator has the **worst** complexity

If the size of the problem grows and the algorithms has the same complexity, it will tend to a constant that will be:

- < 1 if the algorithm in the numerator is better</p>
- > 1 if the algorithm in the denominator is better
- = 1 if the algorithms are exactly equal

N	tLoop1	tLoop2	t1/t2
100	0.0099	0.367	0.02698
200	0.0207	1.37	0.01511
400	0.0452	6.39	0.00707
800	0.123	28.3	0.00434
1600	0.359	115	0.00312
3200	0.478	521	0.00092
6400	1.02	2059	0.0005
12800	2.37	9216	0.00026
25600	4.83	41427	0.00012
51200	10.13	Oot	

As it can be seen, the division ratio tends to zero. According to the previous rules, when the division ratio tends to zero, we can conclude that the theoretical time complexity of the algorithm in the numerator (tLoop1 $O(n \log(n))$) is better than the theoretical time complexity of the algorithm in the denominator (tLoop2 $O(n^2 \log(n))$)

Activity 4. Comparison of two algorithms (B)

N	tLoop3	tLoop2	t3/t2
100	1.27	0.367	3.46049
200	5.44	1.37	3.97080

	Student information	Date	Number of session
	UO: 295180	17/02/24	2
Algorithmics	Surname: Orviz Viesca		
	Name: Mario		

400	26.85	6.39	4.20188
800	113	28.3	3.99293
1600	503	115	4.37391
3200	2168	521	4.16123
6400	9142	2059	4.44002
12800	36909	9216	4.00488
25600	Oot	41427	
51200	Oot	Oot	

As it can be seen, the division rate tends (approx) to the constant 4, that is greater than zero. When the division rate tends to a constant, according to the previous rules, we can conclude that both algorithms have the same theoretical time complexity. Knowing that the constant is greater than 1, we can conclude that the algorithm in the numerator (tLoop3 $O(n^2 \log(n))$) is worst than the algorithm in the denominator (tLoop2 O(n² log(n)))

Activity 5. Comparison of two algorithms (C)

We can also compare two algorithms exactly equal but written in different programming languages. In this case, we can execute the same algorithm in python and the same algorithm in Java with optimization.

Note: As these measurements were taken on my personal computer at home (Lenovo Laptop with a AMD Ryzen 7 5800H), I'll repeat all of them again.

N	tLoop4 (Python) - t41	tLoop4 (Java without optimization) - t42	tLoop4 (Java with optimization) - t43	t42/t41	t43/t42
200	83	26.9	0.343	0.324096	0.012751
400	553	198	1.08	0.358047	0.005455
800	4940	1506	6.19	0.304858	0.004110
1600	37992	12077	55	0.317883	0.004554
3200	Oot	Oot	377		
6400	Oot	Oot	2422		

Algorithmics	Student information	Date	Number of session
	UO: 295180	17/02/24	2
	Surname: Orviz Viesca		
	Name: Mario		

As it can be see in the table, it's not a surprise that both division ratios tend to a constant as we knew that the algorithms had the same complexity. Therefore:

t42/t41:

This division ratio compares the algorithm in Java without optimization (t42) at the numerator and the algorithm in Python (t41) at the denominator. As the constant is lower than one (0.3 < 1), we can state that although they have the same complexity, the algorithm in the numerator (The Java one), has a better performance than the one in Python.

t43/t42:

This division ratio compares the algorithm in Java with optimization (t43) at the numerator and the algorithm in Java without optimization (t42) at the denominator. As the constant is lower than one, we can state that although both algorithms have the same complexity, the one in the numerator (t43) has better performance than the other.