Analiza 1

Zveznost

(1) Po definiciji preveri, da je funkcija $f(x) = \frac{x}{x^2+2}$ zvezna v točkah a=0 in a=2.

Rešitev: Pri tej nalogi se bomo spoznali z zveznostjo, ki je ena izmed ključnih pojmov matematične analize. Večina funkcij, ki jih podajamo s predpisi, je zveznih povsod, kjer so definirane. Naš cilj pri tej nalogi pa bo, da spoznamo, kaj to v resnici pomeni.

Funkcija f je zvezna v točki a, če so za vrednosti x blizu a tudi vrednosti f(x) blizu f(a). Če hočemo to isto trditev povedati bolj precizno, lahko podamo naslednjo definicijo. Funkcija f je zvezna v točki a, če za vsak $\epsilon > 0$ obstaja tak $\delta > 0$, da za vse x, ki zadoščajo pogoju $|x - a| < \delta$, velja

$$|f(x) - f(a)| < \epsilon.$$

Pri tem moramo biti pozorni na to, da jemljemo samo vrednosti iz definicijskega območja dane funkcije.

Poglejmo si najprej graf racionalne funkcije f.

Da bi dokazali, da je funkcija f zvezna v točki a=0, si najprej izberimo poljuben $\epsilon>0$. Radi bi našli tak $\delta>0$, da bo za vse x, ki zadoščajo pogoju $|x|<\delta$, veljalo

$$|f(x) - f(0)| < \epsilon.$$

Ker je f(0) = 0, lahko ta pogoj prepišemo v obliko

$$\left| \frac{x}{x^2 + 2} \right| < \epsilon.$$

Strategija dokazovanja zveznosti po definiciji bo sedaj naslednja. S pomočjo ocen bomo poskusili levo stran navzgor oceniti z izrazom, ki bo vseboval konstante in pa izraz |x|. Iz konstant bomo na koncu lahko prebrali vrednost δ . Ker je $x^2 + 2 \ge 2$, imamo oceno

$$\left| \frac{x}{x^2 + 2} \right| = \frac{|x|}{x^2 + 2} \le \frac{|x|}{2}.$$

Če sedaj vzamemo $\delta = 2\epsilon,$ bo iz neenakosti $|x| < \delta$ sledilo

$$\left| \frac{x}{x^2 + 2} \right| \le \frac{|x|}{2} < \frac{\delta}{2} = \epsilon.$$

V točki a=0 je torej za poljuben ϵ dober $\delta=2\epsilon$. Poglejmo si na skici, kako lahko interpretiramo ta rezultat.

Če si izberemo poljuben vodoraven pas $(-\epsilon, \epsilon)$, bo graf funkcije f na intervalu $(-\delta, \delta)$ ležal znotraj tega pasu. Na sliki je prikazan primer, ko je $\epsilon = 0.3$. Naš račun je pokazal, da je v tem primeru dober $\delta = 0.6$, čeprav vidimo, da bi dejansko lahko izbrali še malo večji δ , če bi napravili boljšo oceno. Ko dokazujemo zveznost funkcije f, ni toliko pomembno, da δ najdemo čim bolj optimalno, važno je le, da za vsak $\epsilon > 0$ obstaja δ , ki zadošča pogoju iz definicije zveznosti.

Pokažimo sedaj še, da je funkcija f zvezna v točki a=2. Izberimo torej poljuben $\epsilon>0$. Najti moramo tak $\delta>0$, da za vsak x, ki zadošča pogoju $|x-2|<\delta$, velja $|f(x)-f(2)|<\epsilon$ oziroma

$$\left| \frac{x}{x^2 + 2} - \frac{1}{3} \right| < \epsilon.$$

Izraz na levi lahko preoblikujemo v

$$\left| \frac{3x - x^2 - 2}{3(x^2 + 2)} \right| = \frac{|x^2 - 3x + 2|}{3(x^2 + 2)} = \frac{|(x - 2)(x - 1)|}{3(x^2 + 2)} \le \frac{|(x - 2)(x - 1)|}{6}.$$

Člen |x-2| bomo lahko ocenili navzgor z δ , medtem ko je člen |x-1| v principu lahko velik, če je x velik. Ker nas pri obravnavi zveznosti zanimajo samo vrednosti blizu točke a=2, se lahko omejimo na nek interval okoli te točke. Da ne bomo preveč komplicirali, vzemimo kar interval (1,3). Za $x \in (1,3)$ imamo oceno $|x-1| \le 2$, zato je

$$\frac{|(x-2)(x-1)|}{6} \le \frac{|x-2|}{3}.$$

Če vzamemo $\delta=3\epsilon,$ bo torej iz neenakosti $|x-2|<\delta$ sledilo

$$\left| \frac{x}{x^2 + 2} - \frac{1}{3} \right| < \epsilon.$$

Vidimo, da je za razliko od točke a=0, kjer smo vzeli $\delta=2\epsilon$, sedaj dober $\delta=3\epsilon$. Razlog je v tem, da je graf funkcije f v okolici točke a=0 bolj strm kot pa v okolici točke a=2. Kot bomo videli v poglavju o odvodu, je kvocient $\frac{\epsilon}{\delta}$ povezan z vrednostjo odvoda v dani točki, če je funkcija odvedljiva. S slike je razvidno, da je bila naša ocena dokaj slaba, saj bi lahko vzeli še precej večji δ .

Opomnimo še, da zaradi omejitve $x \in (1,3)$ vsi računi veljajo le za $\delta < 1$.

(2) Določi konstanto k tako, da bo funkcija

$$f(x) = \begin{cases} x \arctan \left(\frac{1}{x}\right) & ; x \neq 0, \\ k & ; x = 0 \end{cases}$$

zvezna na \mathbb{R} , če je mogoče.

Rešitev: Funkcija f je definirana z dvema predpisoma. V točkah $x \neq 0$ je

$$f(x) = x \arctan \operatorname{tg}(\frac{1}{x}).$$

Ker je f izražena z zveznimi funkcijami, je torej zvezna v vseh točkah $x \neq 0$. Zvezno jo bomo lahko razširili na cel \mathbb{R} , če bo obstajala limita funkcije f v točki a = 0.

Limita funkcije f v dani točki je vrednost, ki se ji približujejo vrednosti funkcije v točkah blizu točke a. Formalno pa je število L limita funkcije f v točki a, če za vsak $\epsilon > 0$ lahko najdemo tak $\delta > 0$, da iz pogoja $0 < |x - a| < \delta$ sledi

$$|f(x) - L| < \epsilon$$
.

Definicija limite funkcije v dani točki je skoraj identična definiciji zveznosti funkcije v dani točki. Razlika je v tem, da vrednost f(a) pri limiti zamenjamo z L. Pomembno je tudi, da pri limiti gledamo samo vrednosti $x \neq a$. Vrednost funkcije v dani točki torej ne vpliva na limito. Funkcija f je zvezna v točki a natanko takrat, ko ima limito L v točki a in velja f(a) = L. Obstoj limite je torej potreben, ne pa zadosten pogoj za zveznost funkcije v dani točki.

Poskusimo sedaj izračunati limito funkcije f v točki a=0. Na limito vplivajo samo vrednosti $x \neq 0$, zato moramo proučiti izraz

$$x \operatorname{arctg}(\frac{1}{x}).$$

Ko se bo x približeval k točki 0, se bo vrednost zgornjega izraza približevala k vrednosti L=0. Da bi formalno dokazali, da je L=0 limita funkcije f v točki a=0, najprej izberimo poljuben $\epsilon>0$. Potem iščemo tak $\delta>0$, da bo za vse $|x|<\delta$ veljalo $|f(x)|<\epsilon$. Iz ocene

$$|f(x)| = |x \operatorname{arctg}(\frac{1}{x})| \le \frac{\pi}{2}|x|$$

sledi, da lahko izberemo kar $\delta = \frac{2}{\pi}\epsilon$.

Če definiramo f(0) = k = 0, bo veljalo $f(0) = \lim_{x \to 0} f(x)$, od koder bo sledilo, da je funkcija f zvezna na celi realni osi.

(3) Naj bo

$$f(x) = \begin{cases} -2\sin x & ; \ x \le -\frac{\pi}{2}, \\ a\sin x + b & ; \ -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ \cos x & ; \ x \ge \frac{\pi}{2}. \end{cases}$$

Določi realni števili a in b tako, da bo funkcija f zvezna na \mathbb{R} .

Rešitev: Funkcija f je definirana s tremi predpisi na intervalih $(-\infty, -\frac{\pi}{2}]$, $(-\frac{\pi}{2}, \frac{\pi}{2})$ in $[\frac{\pi}{2}, \infty)$. V notranjosti vsakega izmed teh treh intervalov je funkcija f zvezna, zato bomo konstanti a in b določili tako, da bo funkcija zvezna v točkah $\pm \frac{\pi}{2}$. Pogoj za to je, da sta leva in desna limita v teh dveh točkah enaki. V točki $x = -\frac{\pi}{2}$ tako dobimo pogoj:

$$\lim_{x \downarrow -\frac{\pi}{2}} f(x) = \lim_{x \uparrow -\frac{\pi}{2}} f(x),$$

$$\lim_{x \downarrow -\frac{\pi}{2}} (a \sin x + b) = \lim_{x \uparrow -\frac{\pi}{2}} -2 \sin x,$$

$$-a + b = 2,$$

v točki $x = \frac{\pi}{2}$ pa pogoj:

$$\lim_{x \downarrow \frac{\pi}{2}} f(x) = \lim_{x \uparrow \frac{\pi}{2}} f(x),$$

$$\lim_{x \downarrow \frac{\pi}{2}} \cos x = \lim_{x \uparrow \frac{\pi}{2}} (a \sin x + b),$$

$$0 = a + b.$$

Od tod dobimo sistem enačb:

$$-a+b=2,$$
$$a+b=0,$$

ki ima rešitev a = -1 in b = 1.

Graf funkcije f je neprekinjena krivulja. Ker pa smo pravzaprav skupaj zlepili tri krivulje, ni presenetljivo, da v točki $x = \frac{\pi}{2}$ ne obstaja tangenta na graf funkcije.

(4) Funkcija f je dana s predpisom

$$f(x) = \begin{cases} x & ; x \in \mathbb{R} \setminus \mathbb{Q}, \\ 0 & ; x \in \mathbb{Q} \end{cases}$$

Določi vse točke, v katerih je f zvezna.

 $Re\check{s}itev$: Funkcija f je definirana z dvema predpisoma. V racionalnih točkah je enaka nič, v iracionalnih točkah pa se ujema z identiteto. Njen graf ima naslednjo obliko.

Na prvi pogled se zdi, kot da je graf funkcije f sestavljen iz dveh neprekinjenih krivulj. V resnici pa je funkcija f zelo nezvezna, saj ti dve krivulji nista neprekinjeni. Tako se nam samo zdi, ker sta množici racionalnih in iracionalnih števil gosti v množici realnih števil.

Pokazali bomo, da je funkcija f zvezna samo v točki a=0, v vseh ostalih točkah pa ne. Izberimo torej poljuben $\epsilon > 0$. Za dokaz zveznosti v točki a=0 moramo potem najti tak $\delta > 0$, da za vsak $|x| < \delta$ velja $|f(x) - f(0)| < \epsilon$ oziroma

$$|f(x)| < \epsilon$$
.

Dober je kar $\delta = \epsilon$, saj za vsak $x \in \mathbb{R}$ velja $|f(x)| \leq |x|$.

Naj bo sedaj $a \neq 0$. Da funkcija f ni zvezna v tej točki, bi lahko dokazali podobno kot prej. Pogosto pa je za dokazovanje nezveznosti bolj primerna naslednja ekvivalentna karakterizacija zveznosti. Vemo že, da je funkcija f zvezna v točki x=a natanko takrat, ko velja

$$\lim_{x \to a} f(x) = f(a).$$

Izkaže pa se, da je funkcija f zvezna v točki x=a tudi natanko takrat, ko za vsako zaporedje (a_n) , ki konvergira k a, velja

$$\lim_{n \to \infty} f(a_n) = f(a).$$

Namesto, da bi gledali limito v funkcijskem smislu, se je torej dovolj omejiti na vsa zaporedja, ki konvergirajo k a. Za dokazovanje zveznosti je to pogosto nepraktično, saj je težko dani pogoj preveriti za vsa zaporedja. Je pa na ta način ponavadi preprosto dokazati, da funkcija v dani točki ni zvezna, saj je dovolj najti zaporedje (a_n) , ki konvergira k a in za katero velja

$$\lim_{n \to \infty} f(a_n) \neq f(a).$$

Denimo najprej, da je a iracionalno število, od koder sledi, da je f(a) = a. Potem lahko najdemo zaporedje racionalnih števil (a_n) , ki konvergira k a. Ker so števila a_n racionalna, je $f(a_n) = 0$, zato je

$$\lim_{n \to \infty} f(a_n) = 0 \neq a.$$

Funkcija f torej ni zvezna v točki x = a.

Če pa je a racionalno število, pa je f(a) = 0. Podobno kot prej lahko najdemo zaporedje iracionalnih števil (a_n) , ki konvergira k a. Potem je $f(a_n) = a_n$ in

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} (a_n) = a \neq 0.$$

Funkcija f je torej zvezna samo v točki a=0.

(5) Thomaejeva funkcija je definirana s predpisom

$$f(x) = \left\{ \begin{array}{ll} 0 & ; \ x \in \mathbb{R} \setminus \mathbb{Q}, \\ \frac{1}{n} & ; \ x \in \mathbb{Q}, \ x = \frac{m}{n}, \ \text{kjer sta si} \ m \in \mathbb{Z} \ \text{in} \ n \in \mathbb{N} \ \text{tuji}. \end{array} \right.$$

- (a) Dokaži, da f ni zvezna v točkah iz \mathbb{Q} .
- (b) Dokaži, da je f zvezna na $\mathbb{R} \setminus \mathbb{Q}$.

Rešitev: Poskusimo najprej dobiti občutek, kako izgleda graf funkcije f. Iz predpisa sledi, da je f soda funkcija, ki je enaka 0 v vseh iracionalnih točkah. V celih številih funkcija f zavzame vrednost 1, v točkah $x=\frac{1}{2},\frac{3}{2},\frac{5}{2},\ldots$ pa vrednost $\frac{1}{2}$. Preostale možne pozitivne vrednosti funkcije f so vse oblike $\frac{1}{n}$. Vrednosti se torej približujejo k nič, na vsakem nadaljnjem nivoju pa so te točke čedalje gosteje razporejene.

Če pogledamo graf, se zdi, da funkcija f ni zvezna v racionalnih točkah. Da pokažemo, da je zvezna v iracionalnih točkah, pa se bomo morali malce potruditi.

(a) Naj bo najprej $a = \frac{m}{n} \in \mathbb{Q}$ nek okrajšan ulomek. Potem je $f(a) = \frac{1}{n}$. Po drugi strani pa lahko najdemo zaporedje iracionalnih števil (a_n) , ki konvergira k a, od koder sledi

$$\lim_{n \to \infty} f(a_n) = 0 \neq \frac{1}{n} = f(a).$$

Funkcija f torej ni zvezna v točki x = a.

(b) Sedaj bomo dokazali, da je funkcija f zvezna na $\mathbb{R} \setminus \mathbb{Q}$. Izberimo $a \in \mathbb{R} \setminus \mathbb{Q}$ in poljuben $\epsilon > 0$. Radi bi našli tak $\delta > 0$, da bo iz $|x - a| < \delta$ sledilo $|f(x) - f(a)| < \epsilon$. Ker je f(a) = 0, moramo torej pokazati, da za x blizu a velja

$$|f(x)| < \epsilon$$
.

Ker je funkcija malce neobičajna, bo tudi dokaz drugačen kot ponavadi. Pokazati hočemo, da imajo racionalna števila, ki so blizu števila a, velike imenovalce.

Kot prvo lahko najdemo tak $N \in \mathbb{N}$, da bo veljalo $\frac{1}{N} < \epsilon$. Če nam uspe najti tak $\delta > 0$, da bodo vsa racionalna števila na intervalu $(a-\delta,a+\delta)$ imela imenovalec $n \geq N$, bo od tod sledilo, da za $x \in (a-\delta,a+\delta)$ velja $|f(x)| \leq \frac{1}{N} < \epsilon$. Problematični za dokaz zveznosti so torej ulomki, ki imajo imenovalec $n \leq N$. Takšnih ulomkov pa je na intervalu $x \in (a-\delta,a+\delta)$ samo končno mnogo, zato lahko najdemo takšnega izmed njih, označimo ga s q, ki je izmed vseh najbližji številu a. Če potem definiramo $\delta' = |a-q|$, bodo na intervalu $x \in (a-\delta',a+\delta')$ vsi ulomki imeli imenovalec $n \geq N$. Torej je funkcija f zvezna v točki x=a.

V nadaljevanju poglavja se bomo ukvarjali z računanjem limit. V grobem lahko limite razdelimo na dva tipa. Pri obravnavi limite funkcije v dani točki nas zanima, če lahko funkcijo zvezno razširimo čez to točko. Če limita ne obstaja, ima funkcija v dani točki singularnost, kot je na primer pol. Drugi tip limit pa so limite v neskončnosti. Pri teh limitah gre v bistvu za iskanje horizontalne asimptote dane funkcije.

(6) Izračunaj limite:

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$
,

(b)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a}, n \in \mathbb{N},$$

(c)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$
,

(d)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
.

 $Re\check{s}itev$: Začeli bomo z obravnavanjem limite funkcije v dani točki. Limito funkcije $\lim_{x\to a} f(x)$ računamo podobno kot limite zaporedij, upoštevamo pa naslednji dejstvi:

- · če predpis za funkcijo f ni definiran v točki a, poskušamo najti tak predpis g, ki je definiran in zvezen v a in da za $x \neq a$ velja f(x) = g(x),
- · če nam uspe najti tak predpis g, je $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = g(a)$.

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(2x + 1)(x - 1)} = \lim_{x \to 1} \frac{x + 1}{2x + 1} = \frac{2}{3}.$$

(b)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{x \to a} \frac{(x - a)(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1})}{x - a},$$
$$= \lim_{x \to a} (x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1}),$$
$$= na^{n-1}.$$

V tej limiti smo pravzaprav izračunali odvod funkcije $f(x) = x^n$ v točki x = a.

(c)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{(\sqrt[3]{x} - 1)(\sqrt{x} + 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(\sqrt{x} - 1)(\sqrt{x} + 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})},$$
$$= \lim_{x \to 1} \frac{(x - 1)(\sqrt{x} + 1)}{(x - 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})} = \lim_{x \to 1} \frac{\sqrt{x} + 1}{1 + \sqrt[3]{x} + \sqrt[3]{x^2}},$$
$$= \frac{2}{3}.$$

(d)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = \lim_{x \to 0} \frac{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{1+x} + \sqrt{1-x})}{x(\sqrt{1+x} + \sqrt{1-x})},$$
$$= \lim_{x \to 0} \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} = \lim_{x \to 0} \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})},$$
$$= \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}},$$
$$= 1.$$

(7) Izračunaj limite:

(a)
$$\lim_{x \to 0} \frac{\sin ax}{x}, \ a > 0,$$

(b)
$$\lim_{x \to 0} \frac{\sin x}{|x|},$$

(c)
$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\frac{\pi}{2} - x)^2}$$
.

Rešitev: Dane limite bomo izračunali z uporabo limite

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

(a) Najprej velja

$$\lim_{x \to 0} \frac{\sin ax}{x} = \lim_{x \to 0} a \cdot \frac{\sin ax}{ax}.$$

Če uvedemo novo spremenljivko t=ax, bo pri $x\to 0$ veljalo tudi $t\to 0$. Torej je

$$\lim_{x\to 0}\frac{\sin ax}{x}=\lim_{x\to 0}a\cdot\frac{\sin ax}{ax}=a\lim_{t\to 0}\frac{\sin t}{t}=a.$$

(b) Sedaj bomo upoštevali definicijo absolutne vrednosti in posebej izračunali levo in desno limito. Če je x < 0, je |x| = -x, zato je leva limita enaka

$$\lim_{x \uparrow 0} \frac{\sin x}{|x|} = \lim_{x \uparrow 0} \frac{\sin x}{-x} = -1.$$

Za x > 0 pa je |x| = x, zato je desna limita enaka

$$\lim_{x \downarrow 0} \frac{\sin x}{|x|} = \lim_{x \downarrow 0} \frac{\sin x}{x} = 1.$$

Ker se leva in desna limita ne ujemata, limita dane funkcije ne obstaja. Poglejmo še graf funkcije v okolici točke a=0.

(c) Dano limito bomo prevedli v standardno obliko z uvedbo nove spremenljivke $t=x-\frac{\pi}{2}$. Pri $x\to\frac{\pi}{2}$ potem velja $t\to0$. Torej je

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\frac{\pi}{2} - x)^2} = \lim_{t \to 0} \frac{1 - \sin(t + \frac{\pi}{2})}{(-t)^2} = \lim_{t \to 0} \frac{1 - \cos t}{t^2} = \lim_{t \to 0} \frac{2\sin^2 \frac{t}{2}}{t^2}.$$

Sedaj definirajmo $u=\frac{t}{2}.$ Pri $t\to 0$ gre potem $u\to 0$ in velja

$$\lim_{t \to 0} \frac{2\sin^2 \frac{t}{2}}{t^2} = \lim_{u \to 0} \frac{2\sin^2 u}{4u^2} = \frac{1}{2}.$$

(8) Izračunaj limite:

(a)
$$\lim_{x \to \infty} (\sqrt{x+1} - \sqrt{x})$$

(b)
$$\lim_{x \to \infty} x^2 (x + \sqrt[3]{1 - x^3}),$$

(c)
$$\lim_{x \to \infty} (x - \ln \cosh x)$$
,

(d)
$$\lim_{x \to \infty} (\sin \sqrt{x+1} - \sin \sqrt{x}).$$

 $Re \check{s}itev:$

(a)
$$\lim_{x \to \infty} (\sqrt{x+1} - \sqrt{x}) = \lim_{x \to \infty} \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0.$$

(b)
$$\lim_{x \to \infty} x^2 (x + \sqrt[3]{1 - x^3}) = \lim_{x \to \infty} x^2 \frac{(x + \sqrt[3]{1 - x^3})(x^2 - x\sqrt[3]{1 - x^3} + \sqrt[3]{(1 - x^3)^2})}{(x^2 - x\sqrt[3]{1 - x^3} + \sqrt[3]{(1 - x^3)^2})},$$

$$= \lim_{x \to \infty} \frac{x^2}{x^2 + x\sqrt[3]{x^3 - 1} + \sqrt[3]{(x^3 - 1)^2}},$$

$$= \lim_{x \to \infty} \frac{1}{1 + \sqrt[3]{1 - \frac{1}{x^3}} + \sqrt[3]{(1 - \frac{1}{x^3})^2}},$$

$$= \frac{1}{3}.$$

(c)
$$\lim_{x \to \infty} (x - \ln \cot x) = \lim_{x \to \infty} \left(\ln e^x - \ln \frac{e^x + e^{-x}}{2} \right) = \lim_{x \to \infty} \ln \frac{2e^x}{e^x + e^{-x}},$$

 $= \ln \left(\lim_{x \to \infty} \frac{2e^x}{e^x + e^{-x}} \right) = \ln \left(\lim_{x \to \infty} \frac{2}{1 + e^{-2x}} \right),$
 $= \ln 2.$

(d) Pri tej limiti bomo uporabili faktorizacijsko formulo

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right).$$

Najprej je:

$$\lim_{x \to \infty} (\sin \sqrt{x+1} - \sin \sqrt{x}) = \lim_{x \to \infty} 2 \sin \left(\frac{\sqrt{x+1} - \sqrt{x}}{2} \right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2} \right),$$

$$= 2 \lim_{x \to \infty} \sin \left(\frac{1}{2(\sqrt{x+1} + \sqrt{x})} \right) \cos \left(\frac{\sqrt{x+1} + \sqrt{x}}{2} \right).$$

Levi faktor gre v limiti proti nič, desni pa je omejen. Torej je

$$\lim_{x \to \infty} (\sin \sqrt{x+1} - \sin \sqrt{x}) = 0.$$

(9) Denimo, da obstajata limiti $\lim_{x\to a} g(x)$ in $\lim_{x\to a} f(x) > 0$, kjer je $a\in\mathbb{R}$ ali $a=\pm\infty$. Dokaži, da potem velja

$$\lim_{x \to a} f(x)^{g(x)} = \left(\lim_{x \to a} f(x)\right)^{\lim_{x \to a} g(x)}.$$

Rešitev: Dana enakost sledi iz naslednjega računa

$$\lim_{x\to a} f(x)^{g(x)} = \lim_{x\to a} e^{g(x)\ln f(x)} = e^{\lim_{x\to a} (g(x)\ln f(x))} = e^{\lim_{x\to a} g(x)\cdot \ln(\lim_{x\to a} f(x))} = \left(\lim_{x\to a} f(x)\right)^{\lim_{x\to a} g(x)}.$$

(10) Izračunaj limite:

- (a) $\lim_{x\to 0} (1+3x)^{\frac{2}{\sin x}}$,
- (b) $\lim_{x\to 0} (1+x^2e^x)^{\frac{1}{1-\cos x}}$,
- (c) $\lim_{x \to 1} x^{\operatorname{tg} \frac{\pi}{2}x}$,
- (d) $\lim_{x \to \infty} \left(\frac{x^2 1}{x^2 + 1} \right)^{x^2 + x + 3}$.

Rešitev: Pri tej nalogi bomo računali limite tipa $1^{\pm\infty}$. Računamo jih lahko na dva načina.

(1) Na dolgo lahko takšne limite računamo s preoblikovanjem v limito oblike

$$\lim_{x \to a} f(x)^{g(x)} = \left(\lim_{x \to a} f(x)\right)^{\lim_{x \to a} g(x)}.$$

Pri tem moramo pogosto uporabiti limito

$$\lim_{x \to a} (1 + f(x))^{\frac{1}{f(x)}} = e,$$

ki velja za vsako zvezno funkcijo f, ki ima v a izolirano ničlo. To limito lahko izpeljemo iz limite

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e.$$

(2) Račun iz prejšnjega dela lahko pogosto strnemo v formulo

$$\lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} (f(x) - 1)g(x)},$$

kjer je $\lim_{x\to a} f(x) = 1$ in $\lim_{x\to a} g(x) = \pm \infty$.

(a) Limito $\lim_{x\to 0}(1+3x)^{\frac{2}{\sin x}}$ bomo izračunali na oba načina. Po prvi poti tako dobimo

$$\lim_{x \to 0} (1+3x)^{\frac{2}{\sin x}} = \lim_{x \to 0} (1+3x)^{\frac{1}{3x} \cdot \frac{6x}{\sin x}} = \lim_{x \to 0} \left((1+3x)^{\frac{1}{3x}} \right)^{\frac{6x}{\sin x}} = e^6.$$

Po drugi poti pa dobimo

$$\lim_{x \to 0} (1+3x)^{\frac{2}{\sin x}} = e^{\lim_{x \to 0} 3x \cdot \frac{2}{\sin x}} = e^6$$

Uporabnost formule je v tem, da avtomatično poskrbi za košček, ki limitira proti e.

(b)
$$\lim_{x \to 0} (1 + x^2 e^x)^{\frac{1}{1 - \cos x}} = e^{\lim_{x \to 0} \frac{x^2 e^x}{1 - \cos x}} = e^{\lim_{x \to 0} \frac{x^2 e^x}{2 \sin^2 \frac{x}{2}}} = e^{\lim_{x \to 0} 2e^x \frac{\left(\frac{x}{2}\right)^2}{\sin^2 \frac{x}{2}}} = e^2.$$

(c) Pri tej limiti bomo med računom uvedli t=x-1. Ko gre $x\to 1$, gre $t\to 0$ in velja

$$\lim_{x \to 1} x^{\lg \frac{\pi}{2}x} = e^{\lim_{x \to 1} (x-1) \lg \frac{\pi}{2}x} = e^{\lim_{t \to 0} t \lg \frac{\pi}{2}(t+1)}.$$

Izračunajmo posebej to limito

$$\lim_{t \to 0} t \operatorname{tg} \frac{\pi}{2} (t+1) = \lim_{t \to 0} \frac{t \sin \frac{\pi}{2} (t+1)}{\cos \frac{\pi}{2} (t+1)} = \lim_{t \to 0} \frac{t}{-\sin \frac{\pi}{2} t} = -\frac{2}{\pi}.$$

Od tod dobimo

$$\lim_{x \to 1} x^{\lg \frac{\pi}{2}x} = e^{-\frac{2}{\pi}}.$$

(d)
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{x^2 + x + 3} = e^{\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1} - 1 \right) (x^2 + x + 3)} = e^{\lim_{x \to \infty} \frac{-2(x^2 + x + 3)}{x^2 + 1}} = e^{-2}.$$

(11) Dokaži, da je funkcija $f(x) = \sqrt{x}$ enakomerno zvezna na $[0, \infty)$.

Rešitev: Funkcija $f: I \to \mathbb{R}$ je enakomerno zvezna na I, če za vsak $\epsilon > 0$ obstaja tak $\delta > 0$, da za vsaka $x, y \in I$, ki zadoščata pogoju $|x - y| < \delta$, velja

$$|f(x) - f(y)| < \epsilon.$$

Enakomerna zveznost je močnejši pogoj od zveznosti. Funkcija f je namreč zvezna v točki x, če pri danem $\epsilon > 0$ lahko najdemo tak $\delta_x > 0$, da iz $|x - y| < \delta_x$ sledi

$$|f(x) - f(y)| < \delta_x.$$

Ta δ_x je načeloma lahko odvisen od x. Če nam uspe najti tak δ , ki je dober za vse $x \in I$, je funkcija enakomerno zvezna na I. V praksi torej iščemo δ , ki zadošča pogoju $0 < \delta \le \delta_x$ za vsak $x \in I$. Če ti δ_x konvergirajo proti nič, funkcija ne bo enakomerno zvezna.

Primeri funkcij, ki so zvezne, a niso enakomerno zvezne, so $f(x) = \frac{1}{x}$, $f(x) = x^2$ in $f(x) = e^x$. Razlog, da niso enakomerno zvezne, je v tesni povezavi z neomejenostjo njihovih odvodov.

Primeri enakomerno zveznih funkcij pa so zvezne funkcije na končnem zaprtem intervalu in pa odvedljive funkcije z omejenim odvodom. Takšni sta na primer funkciji f(x) = x in $f(x) = \operatorname{arc} \operatorname{tg} x$.

Enakomerno zveznost funkcije f pogosto dokazujemo na naslednja dva načina:

- (1) Vsaka zvezna funkcija $f:[a,b]\to\mathbb{R}$ je enakomerno zvezna.
- (2) Poskusimo najti konstanto C, da velja $|f(x) f(y)| \le C|x y|$ za vsaka $x, y \in D_f$. Preden začnemo z dokazom, si poglejmo graf funkcije $f(x) = \sqrt{x}$.

Poskusimo sedaj navzgor oceniti izraz |f(x)-f(y)| za $x,y\in[0,\infty)$. Najprej je

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \left| \frac{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} + \sqrt{y}} \right| = \left| \frac{x - y}{\sqrt{x} + \sqrt{y}} \right| = \frac{1}{\sqrt{x} + \sqrt{y}} |x - y|$$

Sedaj pridemo do problema, saj je lahko izraz $\frac{1}{\sqrt{x}+\sqrt{y}}$ poljubno velik, če sta x in y majhna. Zato tega izraza ne moremo omejiti na celem intervalu $[0,\infty)$. Lahko pa ga na primer omejimo na intervalu $[1,\infty)$. Za $x,y \in [1,\infty)$ namreč velja ocena

$$\frac{1}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}$$

oziroma

$$|\sqrt{x} - \sqrt{y}| \le \frac{|x - y|}{2}.$$

Če sedaj izberemo $\delta = 2\epsilon$, bo iz pogoja $|x - y| < \delta$ sledilo

$$|\sqrt{x} - \sqrt{y}| < \epsilon.$$

Tako smo dokazali enakomerno zveznost funkcije $f(x) = \sqrt{x}$ na intervalu $[1, \infty)$. Razlog, da smo lahko napravili to oceno, je v tem, da je odvod funkcije f na tem intervalu navzgor omejen z $\frac{1}{2}$. Hkrati pa smo videli tudi, da takšne ocene ne moremo napraviti za majhne vrednosti x in y. Lahko pa v tem primeru uporabimo izrek, ki pravi, da je zvezna funkcija enakomerno zvezna na vsakem končnem zaprtem intervalu. Konkretno to pomeni, da je funkcija $f(x) = \sqrt{x}$ enakomerno zvezna na intervalu [0, 2].

Oboje skupaj nam pove, da lahko za vsak $\epsilon > 0$ najdemo tak $\delta > 0$, da iz pogoja $|x-y| < \delta$ sledi $|\sqrt{x} - \sqrt{y}| < \epsilon$, če sta le $x, y \in [0, 2]$ ali pa $x, y \in [1, \infty)$. V principu bi sedaj lahko zabredli v težave, če x in y ne bi bila elementa istega intervala. Da se izognemo tej komplikaciji, pa lahko dodatno zahtevamo še, da je $\delta < 1$. V tem primeru bosta zagotovo x in y oba v [0, 2] ali pa v $[1, \infty)$.

Opomba: Omejenost odvoda je zadosten pogoj za enakomerno zveznost. Ni pa nujno, da funkcija, ki ima na danem intervalu neomejen odvod, na tem intervalu ni enakomerno zvezna. Funkcija $f(x) = \sqrt{x}$ je namreč primer take funkcije.

(12) Naj bo a>0. Obravnavaj enakomerno zveznost funkcije $f(x)=\sin\frac{\pi}{x}$ na intervalih $(0,\infty)$, (0,a) in (a,∞) .

 $Re\check{s}itev$: Poglejmo najprej graf funkcije f.

Vidimo, da je pri velikih vrednostih graf položen, blizu izhodišča pa poljubno strm. Na podlagi tega lahko postavimo domnevo, da je funkcija f enakomerno zvezna na (a, ∞) , ni pa enakomerno zvezna na (0, a) in $(0, \infty)$.

Dokažimo najprej, da je f enakomerno zvezna na (a, ∞) . Izberimo $\epsilon > 0$. Potem bi radi našli tak $\delta > 0$, da bo za vsaka $x, y \in (a, \infty)$, ki zadoščata pogoju $|x - y| < \delta$, veljalo

$$\left|\sin\frac{\pi}{x} - \sin\frac{\pi}{y}\right| < \epsilon.$$

Z uporabo faktorizacijske formule

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)$$

dobimo

$$\left|\sin\frac{\pi}{x} - \sin\frac{\pi}{y}\right| = 2\left|\sin\frac{1}{2}(\frac{\pi}{x} - \frac{\pi}{y})\cos\frac{1}{2}(\frac{\pi}{x} - \frac{\pi}{y})\right|.$$

Z uporabo neenakosti $|\cos t| \le 1$ in $|\sin t| \le |t|$ lahko torej ocenimo

$$\left|\sin\frac{\pi}{x} - \sin\frac{\pi}{y}\right| \le 2 \cdot \frac{1}{2} \cdot \left|\frac{\pi}{x} - \frac{\pi}{y}\right| = \pi \frac{|x-y|}{|xy|}.$$

Na tem mestu bomo sedaj upoštevali, da sta $x, y \in (a, \infty)$. V tem primeru lahko namreč ocenimo

 $\left|\sin\frac{\pi}{x} - \sin\frac{\pi}{y}\right| \le \pi \frac{|x-y|}{|xy|} \le \frac{\pi}{a^2} |x-y|.$

Na intervalu (a, ∞) je torej pri danem $\epsilon > 0$ dober

$$\delta = \frac{a^2 \epsilon}{\pi}.$$

Vidimo, da gre pri $a \to 0$ tudi $\delta \to 0$. Od tod še ne sledi avtomatično, da funkcija ni enakomerno zvezna na intervalu $(0, \infty)$, je pa vsekakor namig v to smer.

Poskusimo torej dokazati, da funkcija f ni enakomerno zvezna na intervalu $(0, \infty)$. Da dokažemo, da funkcija ni enakomerno zvezna, je dovolj poiskati zaporedji točk (x_n) in (y_n) iz $(0, \infty)$, ki bodo zadoščale pogoju

$$\lim_{n \to \infty} |x_n - y_n| = 0$$

in za katere je

$$|f(x_n) - f(y_n)| \ge C$$

za nek C > 0. To pomeni, da so te točke čedalje bliže skupaj, razlike njihove vrednosti pa ne konvergirajo proti 0.

V našem konkretnem primeru lahko ti dve zaporedji konstruiramo tako, da za x_n izberemo lokalne maksimume, za y_n pa lokalne minimume funkcije f.

Ker ima funkcija sin x lokalne maksimume v točkah oblike $x = \frac{\pi}{2} + 2n\pi$, bodo točke x_n zadoščale pogojem:

$$\frac{\pi}{x_n} = \frac{\pi}{2} + 2n\pi,$$
$$x_n = \frac{2}{4n+1}.$$

Podobno lahko izpeljemo, da velja

$$y_n = \frac{2}{4n+3}.$$

Za ti dve zaporedji velja, da je

$$\lim_{n \to \infty} |x_n - y_n| = \lim_{n \to \infty} \left| \frac{2}{4n+1} - \frac{2}{4n+3} \right| = 0$$

in

$$|f(x_n) - f(y_n)| = 2.$$

Našli smo torej točke, ki so poljubno blizu skupaj, razlike njihovih vrednosti pa ne konvergirajo proti nič. Od tod sledi, da funkcija f ni enakomerno zvezna na $(0, \infty)$ in posledično tudi na $(0, \infty)$. Opomnimo še, da ta argument ne deluje na intervalu (a, ∞) , ker zaporedji (x_n) in (y_n) slej ko prej padeta izven intervala (a, ∞) .

(13) Dokaži, da ima enačba $x2^x = 1$ rešitev na intervalu [0,1]. Določi jo na dve decimalki natančno.

Rešitev: Poskusimo najprej dano enačbo rešiti grafično.

Z grafov lahko razberemo, da ima dana enačba rešitev nekje na intervalu [0, 1]. Vendar pa te rešitve ne znamo natančno izračunati. V takšnem primeru lahko približno rešitev poiščemo s kakšno numerično metodo. Pri tej nalogi bomo spoznali metodo bisekcije, ki deluje, kadar v enačbi nastopajo same zvezne funkcije.

Metoda bisekcije temelji na naslednji ključni lastnosti zveznih funkcij:

Če imata vrednosti funkcije v krajiščih intervala različna predznaka, ima funkcija na tem intervalu ničlo.

Pri metodi bisekcije uporabljamo naslednji algoritem:

- · izberemo željeno natančnost,
- · enačbo zapišemo v obliki f(x) = 0,
- · izberemo začetni interval, ki vsebuje ničlo funkcije f,
- · na vsakem koraku razdelimo interval na dva dela in izberemo tistega, ki vsebuje ničlo,
- · postopek ponavljamo, dokler ne dosežemo željene natančnosti.

V našem primeru lahko dano enačbo prevedemo v obliko $x2^x - 1 = 0$, zato definirajmo $f(x) = x2^x - 1$. Za začetni interval bomo izbrali interval [0,1]. Potem je f(0) = -1 in f(1) = 1. Nadalje pa lahko izračunamo:

- f(0.5) = -0.29, zato bo ničla na intervalu [0.5, 1],
- f(0.7) = 0.14, zato bo ničla na intervalu [0.5, 0.7],
- f(0.6) = -0.09, zato bo ničla na intervalu [0.6, 0.7],
- f(0.65) = 0.02, zato bo ničla na intervalu [0.6, 0.65],
- f(0.63) = -0.02, zato bo ničla na intervalu [0.63, 0.65],
- f(0.64) = -0.003, zato bo ničla na intervalu [0.64, 0.65].

Velja še f(0.645) = 0.009, zato bomo za približek vzeli število x = 0.64. Bolj natančen približek za rešitev enačbe je x = 0.641186.

Metoda bisekcije je zelo robustna, saj jo lahko uporabimo pri vsaki enačbi, v kateri nastopajo zvezne funkcije. Je pa tudi relativno počasna, saj za vsako decimalko rešitve potrebujemo približno tri korake bisekcije.

(14) Naj bo $f:[0,1] \to [0,1]$ zvezna funkcija. Pokaži, da ima negibno točko.

Rešitev: Najprej opomnimo, da je točka $x \in A$ negibna točka preslikave $f: A \to A$, če velja f(x) = x. V našem primeru torej iščemo takšen $x \in [0,1]$, da bo veljalo f(x) = x. Grafično to pomeni, da graf funkcije f seka simetralo lihih kvadrantov.

Ker je funkcija f zvezna, se nam zdi, da to mora biti res. Formalno pa lahko to dokažemo takole. Najprej definirajmo funkcijo

$$g(x) = f(x) - x.$$

Potem je funkcija g zvezna, njeni vrednosti v krajiščih intervala [0,1] pa sta:

$$g(0) = f(0) - 0 \ge 0,$$

$$g(1) = f(1) - 1 \le 0.$$

Zaradi zveznosti funkcije g od tod sledi, da obstaja nek $x \in [0, 1]$, za katerega je g(x) = 0 oziroma

$$f(x) = x.$$

(15) Dokaži, da na ekvatorju obstajata diametralno nasprotni točki z isto temperaturo. V nalogi privzemimo, da ima ekvator obliko krožnice in da je temperatura zvezna funkcija.

Rešitev: Pri tej nalogi imamo opravka s funkcijo, ki ni definirana na nekem intervalu, pač pa na krožnici. Ker lahko krožnico parametriziramo s parametri $\phi \in [-\pi, \pi]$, si lahko mislimo, da je temperatura zvezna funkcija

$$T = T(\phi) : [-\pi, \pi] \to \mathbb{R},$$

ki zadošča pogoju $T(-\pi) = T(\pi)$.

Diametralno nasprotni točki lahko opišemo s parametroma ϕ in $\phi - \pi$ za nek $\phi \in [0, \pi]$. Torej hočemo dokazati, da obstaja tak $\phi \in [0, \pi]$, da velja

$$T(\phi) = T(\phi - \pi).$$

Obstoj takšnega ϕ bomo dokazali na podoben način kot pri prejšnji nalogi. Definirajmo torej zvezno funkcijo $f:[0,\pi]\to\mathbb{R}$ s predpisom

$$f(\phi) = T(\phi) - T(\phi - \pi).$$

Potem velja:

$$f(0) = T(0) - T(-\pi),$$

$$f(\pi) = T(\pi) - T(0) = -(T(0) - T(\pi)).$$

Iz zveznosti funkcije T sledi, da je $T(\pi) = T(-\pi)$, kar pa pomeni, da je

$$f(0) = -f(\pi).$$

Funkcija f je torej v krajiščih intervala $[0,\pi]$ različno predznačena, zato obstaja $\phi \in [0,\pi]$, da je $f(\phi) = 0$. Od tod pa sledi, da je

$$T(\phi) = T(\phi - \pi),$$

kar smo želeli pokazati.