MS211 - Cálculo Numérico

Aula 04 – Método da Eliminação de Gauss e a Fatoração LU. Considerações sobre Número de Operações.

Marcos Eduardo Valle Matemática Aplicada IMECC - Unicamp

Introdução

Na aula de anterior apresentamos o método da eliminação de Gauss para resolução de sistemas lineares.

Introdução

Na aula de anterior apresentamos o método da eliminação de Gauss para resolução de sistemas lineares.

Um sistema linear com *n* equações e *n* incógnitas pode ser escrito como segue usando a notação matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

ou, equivalentemente,

$$Ax = b$$
.

Introdução

Na aula de anterior apresentamos o método da eliminação de Gauss para resolução de sistemas lineares.

Um sistema linear com *n* equações e *n* incógnitas pode ser escrito como segue usando a notação matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

ou, equivalentemente,

$$Ax = b$$
.

Sistemas lineares estão entre os mais importantes problemas matemáticos encontrados em aplicações científicas e industriais.

$$\boldsymbol{A}\boldsymbol{A}^{-1}=\boldsymbol{A}^{-1}\boldsymbol{A}=\boldsymbol{I},$$

em que $\mathbf{I} \in \mathbb{R}^{n \times n}$ denota a matriz identidade.

$$\mathbf{A}\mathbf{A}^{-1}=\mathbf{A}^{-1}\mathbf{A}=\mathbf{I},$$

em que $\mathbf{I} \in \mathbb{R}^{n \times n}$ denota a matriz identidade.

Equivalentemente, uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ é não-singular se, e somente se, $\det(\mathbf{A}) \neq 0$.

$$AA^{-1} = A^{-1}A = I,$$

em que $\mathbf{I} \in \mathbb{R}^{n \times n}$ denota a matriz identidade.

Equivalentemente, uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ é não-singular se, e somente se, $\det(\mathbf{A}) \neq 0$.

Se ${\bf A}$ é uma matriz não-singular, então a solução de ${\bf A}{\bf x}={\bf b}$ é

$$\mathbf{x}^* = \mathbf{A}^{-1}\mathbf{b}$$
.

Logo, o sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ admite uma *única solução*!

$$\mathbf{A}\mathbf{A}^{-1}=\mathbf{A}^{-1}\mathbf{A}=\mathbf{I},$$

em que $\mathbf{I} \in \mathbb{R}^{n \times n}$ denota a matriz identidade.

Equivalentemente, uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ é não-singular se, e somente se, $\det(\mathbf{A}) \neq 0$.

Se ${\bf A}$ é uma matriz não-singular, então a solução de ${\bf A}{\bf x}={\bf b}$ é

$$x^* = A^{-1}b.$$

Logo, o sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ admite uma *única solução*!

Apesar dessas considerações teóricas, não determinaremos a solução de $\mathbf{A}\mathbf{x} = \mathbf{b}$ usando \mathbf{A}^{-1} pois o cálculo da inversa de \mathbf{A} exige um número desnecessário de operações aritméticas!

O produto $\mathbf{y} = \mathbf{A}\mathbf{x}$, de uma matriz $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ por um vetor coluna $\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n$, resulta um novo vetor coluna coluna $\mathbf{y} = [y_1, y_2, \dots, y_n]^T \in \mathbb{R}^n$ cujas componentes são dadas por:

$$y_i = \sum_{j=1}^n a_{ij}x_j = a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n, \quad i = 1, \ldots, n.$$

O produto $\mathbf{y} = \mathbf{A}\mathbf{x}$, de uma matriz $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ por um vetor coluna $\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n$, resulta um novo vetor coluna coluna $\mathbf{y} = [y_1, y_2, \dots, y_n]^T \in \mathbb{R}^n$ cujas componentes são dadas por:

$$y_i = \sum_{j=1}^n a_{ij}x_j = a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n, \quad i = 1, \ldots, n.$$

Note que, para cada i, efetuamos n produtos e n-1 adições, ou seja, 2n-1 operações são efetuadas para determinar y_i .

O produto $\mathbf{y} = \mathbf{A}\mathbf{x}$, de uma matriz $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ por um vetor coluna $\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n$, resulta um novo vetor coluna coluna $\mathbf{y} = [y_1, y_2, \dots, y_n]^T \in \mathbb{R}^n$ cujas componentes são dadas por:

$$y_i = \sum_{j=1}^n a_{ij}x_j = a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n, \quad i = 1, \ldots, n.$$

Note que, para cada i, efetuamos n produtos e n-1 adições, ou seja, 2n-1 operações são efetuadas para determinar y_i .

Como **y** possui *n* componentes, o produto $\mathbf{y} = \mathbf{A}\mathbf{x}$ requer $n(2n-1) = 2n^2 - n$ operações aritméticas.

O produto $\mathbf{y} = \mathbf{A}\mathbf{x}$, de uma matriz $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{n \times n}$ por um vetor coluna $\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n$, resulta um novo vetor coluna coluna $\mathbf{y} = [y_1, y_2, \dots, y_n]^T \in \mathbb{R}^n$ cujas componentes são dadas por:

$$y_i = \sum_{j=1}^n a_{ij}x_j = a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n, \quad i = 1, \ldots, n.$$

Note que, para cada i, efetuamos n produtos e n-1 adições, ou seja, 2n-1 operações são efetuadas para determinar y_i .

Como **y** possui *n* componentes, o produto $\mathbf{y} = \mathbf{A}\mathbf{x}$ requer $n(2n-1) = 2n^2 - n$ operações aritméticas.

Simplificadamente, o produto matriz-vetor requer $\mathcal{O}(n^2)$ operações aritméticas.

Substituição Regressiva

No método da eliminação de Gauss, um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é transformado num sistema linear equivalente $\mathbf{U}\mathbf{x} = \mathbf{c}$, que é resolvido usando a substituição regressiva.

Substituição Regressiva

No método da eliminação de Gauss, um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é transformado num sistema linear equivalente $\mathbf{U}\mathbf{x} = \mathbf{c}$, que é resolvido usando a substituição regressiva.

Entrada: Matriz triangular superior não-singular $\mathbf{U} \in \mathbb{R}^{n \times n}$ e vetor coluna $\mathbf{c} \in \mathbb{R}^n$.

Inicialize x = cópia de c.

para
$$i = n$$
 até 1 faça
para $j = i + 1$ até n faça
 $x_i = x_i - u_{ij}x_j$.

fim

•
$$x_i = x_i/u_{ii}$$
.

fim

Saída: \mathbf{x} (solução do sistema linear $\mathbf{U}\mathbf{x} = \mathbf{c}$).

Número de Operações da Substituição Regressiva

	Multiplicação	Soma/Subtração	Divisão	Total
<i>i</i> = <i>n</i>	0	0	1	1
i = n - 1	1	1	1	3
i = n - 2	2	2	1	5
:	<u>:</u>	÷	÷	:
i = n - k	k	k	1	2k + 1
:	<u>:</u>	:	÷	•
<i>i</i> = 1	<i>n</i> − 1	<i>n</i> − 1	1	2 <i>n</i> – 1
			Total:	n ²

Número de Operações da Substituição Regressiva

	Multiplicação	Soma/Subtração	Divisão	Total
i = n	0	0	1	1
i = n - 1	1	1	1	3
i = n - 2	2	2	1	5
:	:	i i	:	:
i = n - k	k	k	1	2 <i>k</i> + 1
:	<u> </u>	÷	:	:
<i>i</i> = 1	<i>n</i> − 1	<i>n</i> − 1	1	2 <i>n</i> – 1
			Total:	n ²

Concluindo, a substituição regressiva efetua $\mathcal{O}(n^2)$ operações aritméticas.

Sistema Triangular Inferior

Se $\mathbf{L} \in \mathbb{R}^{n \times n}$ é uma matriz triangular inferior não-singular, i.e,

$$\mathbf{L} = \begin{bmatrix} I_{11} & 0 & 0 & \dots & 0 \\ I_{21} & I_{22} & 0 & \dots & 0 \\ I_{31} & I_{32} & I_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n1} & I_{n2} & I_{n3} & \dots & I_{nn} \end{bmatrix},$$

com $l_{ii} \neq 0$ para todo i = 1, ..., n, então a solução de $\mathbf{L}\mathbf{y} = \mathbf{b}$ é determinada usando a chamada *substituição direta*:

$$y_i = \frac{1}{I_{ii}} \left(b_i - \sum_{j=1}^{i-1} I_{ij} x_j \right), \text{ para } i = 1, 2, \dots, n.$$

A substituição direta também requer $\mathcal{O}(n^2)$ operações.

Exemplo 1

Resolva o sistema triangular inferior $\mathbf{L}\mathbf{y} = \mathbf{b}$, em que

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ 3 & 4 & 1 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ -4 \end{bmatrix}$$

Exemplo 1

Resolva o sistema triangular inferior $\mathbf{L}\mathbf{y} = \mathbf{b}$, em que

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ 3 & 4 & 1 & 1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ -4 \end{bmatrix}$$

Resposta: Usando a substituição direta, encontramos:

$$y_1 = \frac{2}{1} = 2$$

$$y_2 = \frac{1}{1} (3 - 2 \times 2) = -1$$

$$y_3 = \frac{1}{1} (1 - 4 \times 2 - 3 \times (-1))) = -4$$

$$y_4 = \frac{1}{1} (-4 - 3 \times 2 - 4 \times (-1) - 1 \times (-4))) = -2$$

Portanto, a solução do sistema é $\mathbf{L}\mathbf{y} = \mathbf{b}$ é

$$\mathbf{y}^* = \begin{bmatrix} 2 \\ 1 \\ -4 \\ -2 \end{bmatrix}.$$

Algoritmo da Eliminação de Gauss

```
Entrada: Matriz não-singular \mathbf{A} \in \mathbb{R}^{n \times n} e vetor coluna \mathbf{b} \in \mathbb{R}^n.

para j = 1 até n - 1 faça

para i = j + 1 até n faça

• m_{ij} = \frac{a_{ij}}{a_{ji}}.

• b_i = b_i - m_{ij}b_j.

para k = j + 1 até n faça

• a_{ik} = a_{ik} - m_{ij}a_{jk}

fim
```

fim

fim

Resolver $\mathbf{A}\mathbf{x} = \mathbf{b}$ com substituição regressiva.

Saída: Solução do sistema linear.

No loop para j, efetuamos

$$(\# \text{operações}) = \sum_{j=1}^{n-1} (\# \text{operações efetuadas no estágio } j).$$

No loop para j, efetuamos

$$(\# \text{operações}) = \sum_{j=1}^{n-1} (\# \text{operações efetuadas no estágio } j).$$

O loop para i, resulta em outro somatório

$$(\# \text{operações}) = \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} (\text{operações efetuadas na linha } i).$$

No loop para j, efetuamos

$$(\# \text{operações}) = \sum_{j=1}^{n-1} (\# \text{operações efetuadas no estágio } j).$$

O *loop* para *i*, resulta em outro somatório

$$(\# operações) = \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} (operações efetuadas na linha i).$$

Na linha i, efetuamos 3 + 2(n - j) operações.

No loop para j, efetuamos

$$(\# \text{operações}) = \sum_{j=1}^{n-1} (\# \text{operações efetuadas no estágio } j).$$

O *loop* para *i*, resulta em outro somatório

$$(\# \text{operações}) = \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} (\text{operações efetuadas na linha } i).$$

Na linha i, efetuamos 3 + 2(n - j) operações.

Portanto, o número total de operações para calcular **U** e **c** é:

$$(\# operações) = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} (3 + 2(n-j)) = \frac{2n^3}{3} + \frac{n^2}{2} - \frac{7n}{6}.$$

No método da eliminação de Gauss, também efetuamos n^2 operações com a substituição regressiva.

No método da eliminação de Gauss, também efetuamos n^2 operações com a substituição regressiva.

Assim, o número total de operações efetuadas na eliminação de Gauss é

$$(\# \text{operações}) = \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} \left[2(n-j) + 3 \right] + n^2 = \frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6}.$$

No método da eliminação de Gauss, também efetuamos n^2 operações com a substituição regressiva.

Assim, o número total de operações efetuadas na eliminação de Gauss é

$$(\# \text{operações}) = \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} \left[2(n-j) + 3 \right] + n^2 = \frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6}.$$

Como o número total de operações é dominado por n^3 , escrevemos

#total de operações =
$$\mathcal{O}(n^3)$$
.

No método da eliminação de Gauss, também efetuamos n^2 operações com a substituição regressiva.

Assim, o número total de operações efetuadas na eliminação de Gauss é

$$(\# \text{operações}) = \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} \left[2(n-j) + 3 \right] + n^2 = \frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6}.$$

Como o número total de operações é dominado por n^3 , escrevemos

#total de operações =
$$\mathcal{O}(n^3)$$
.

Lê-se: "O número total de operações é da ordem de n^3 ."

Fatoração LU

Os multiplicadores m_{ij} podem ser organizados numa matriz **L** triangular inferior com diagonal unitária:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ m_{21} & 1 & 0 & \dots & 0 \\ m_{31} & m_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & m_{n3} & \dots & 1 \end{bmatrix}.$$

Fatoração LU

Os multiplicadores m_{ij} podem ser organizados numa matriz **L** triangular inferior com diagonal unitária:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ m_{21} & 1 & 0 & \dots & 0 \\ m_{31} & m_{32} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & m_{n3} & \dots & 1 \end{bmatrix}.$$

A matriz original **A**, a matriz triangular superior **U** obtida no final do processo de eliminação e a matriz **L** triangular inferior com os multiplicadores satisfazem:

$$A = LU$$

chamada fatoração LU de A.

Exemplo 2

Determine a fatoração LU da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Exemplo 2

Determine a fatoração LU da matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}.$$

Resposta: Com base nos exemplos da aula anterior, tem-se

$$\mathbf{A} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ 3 & 4 & 1 & 1 \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}}_{\mathbf{U}}$$

Usando a fatoração LU, o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ é resolvido como segue: Conhecendo \mathbf{L} e \mathbf{U} tais que $\mathbf{A} = \mathbf{L}\mathbf{U}$, tem-se

$$\textbf{A}\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad (\textbf{L}\textbf{U})\textbf{x} = \textbf{b}$$

Usando a fatoração LU, o sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ é resolvido como segue: Conhecendo \mathbf{L} e \mathbf{U} tais que $\mathbf{A} = \mathbf{L}\mathbf{U}$, tem-se

$$\textbf{A}\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad (\textbf{L}\textbf{U})\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad \textbf{L}(\textbf{U}\textbf{x}) = \textbf{b}.$$

$$\textbf{A}\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad (\textbf{L}\textbf{U})\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad \textbf{L}(\textbf{U}\textbf{x}) = \textbf{b}.$$

Tomando y = Ux, temos os sistemas triangulares:

$$Ly = b e Ux = y.$$

$$\textbf{A}\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad (\textbf{L}\textbf{U})\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad \textbf{L}(\textbf{U}\textbf{x}) = \textbf{b}.$$

Tomando y = Ux, temos os sistemas triangulares:

$$Ly = b e Ux = y.$$

Portanto, conhecendo a fatoração $\mathbf{A} = \mathbf{L}\mathbf{U}$, a solução do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é determinada como segue:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff (\mathbf{L}\mathbf{U})\mathbf{x} = \mathbf{b} \iff \mathbf{L}(\mathbf{U}\mathbf{x}) = \mathbf{b}.$$

Tomando y = Ux, temos os sistemas triangulares:

$$Ly = b e Ux = y.$$

Portanto, conhecendo a fatoração $\mathbf{A} = \mathbf{L}\mathbf{U}$, a solução do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é determinada como segue:

• Resolve-se $\mathbf{L}\mathbf{y} = \mathbf{b}$ usando substituição direta ($\mathcal{O}(n^2)$).

$$\textbf{A}\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad (\textbf{L}\textbf{U})\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad \textbf{L}(\textbf{U}\textbf{x}) = \textbf{b}.$$

Tomando y = Ux, temos os sistemas triangulares:

$$Ly = b e Ux = y.$$

Portanto, conhecendo a fatoração $\mathbf{A} = \mathbf{L}\mathbf{U}$, a solução do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é determinada como segue:

- Resolve-se $\mathbf{L}\mathbf{y} = \mathbf{b}$ usando substituição direta $(\mathcal{O}(n^2))$.
- Resolve-se $\mathbf{U}\mathbf{x} = \mathbf{y}$ usando substituição regressiva $(\mathcal{O}(n^2))$.

$$\textbf{A}\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad (\textbf{L}\textbf{U})\textbf{x} = \textbf{b} \quad \Longleftrightarrow \quad \textbf{L}(\textbf{U}\textbf{x}) = \textbf{b}.$$

Tomando y = Ux, temos os sistemas triangulares:

$$Ly = b e Ux = y.$$

Portanto, conhecendo a fatoração $\mathbf{A} = \mathbf{L}\mathbf{U}$, a solução do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é determinada como segue:

- Resolve-se **Ly** = **b** usando substituição direta ($\mathcal{O}(n^2)$).
- Resolve-se $\mathbf{U}\mathbf{x} = \mathbf{y}$ usando substituição regressiva $(\mathcal{O}(n^2))$.

Teoricamente, a fatoração LU é equivalente ao método da eliminação de Gauss!

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff (\mathbf{L}\mathbf{U})\mathbf{x} = \mathbf{b} \iff \mathbf{L}(\mathbf{U}\mathbf{x}) = \mathbf{b}.$$

Tomando y = Ux, temos os sistemas triangulares:

$$Ly = b e Ux = y.$$

Portanto, conhecendo a fatoração $\mathbf{A} = \mathbf{L}\mathbf{U}$, a solução do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é determinada como segue:

- Resolve-se **Ly** = **b** usando substituição direta ($\mathcal{O}(n^2)$).
- Resolve-se $\mathbf{U}\mathbf{x} = \mathbf{y}$ usando substituição regressiva $(\mathcal{O}(n^2))$.

Teoricamente, a fatoração LU é equivalente ao método da eliminação de Gauss!

Na prática, na fatoração LU guardamos em L os multiplicadores usados para transformar A numa matriz triangular superior U.

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}.$$

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$$

O número de operações efetuadas para resolver um sistema linear usando a fatoração LU é:

$$\left(\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} + 2n^2\right) = \frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}.$$

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}$$

O número de operações efetuadas para resolver um sistema linear usando a fatoração LU é:

$$\left(\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} + 2n^2\right) = \frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}.$$

Lembrando, o número de operações efetuadas para resolver um sistema linear usando o método da eliminação de Gauss é:

$$\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6} = \left(\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}\right) - n.$$

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6}.$$

O número de operações efetuadas para resolver um sistema linear usando a fatoração LU é:

$$\left(\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} + 2n^2\right) = \frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}.$$

Lembrando, o número de operações efetuadas para resolver um sistema linear usando o método da eliminação de Gauss é:

$$\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6} = \left(\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6}\right) - n.$$

A informação contida em \mathbf{L} é particularmente útil se precisamos resolver sistema lineares $\mathbf{A}\mathbf{x}_1 = \mathbf{b}_1, \dots, \mathbf{A}\mathbf{x}_k = \mathbf{b}_k$ pois não precisamos fatorar novamente a matriz \mathbf{A} .

Exemplo 3 (Cálculo da Matriz Inversa)

Quantas operações aritméticas são efetuadas para calcular a matriz inversa \mathbf{A}^{-1} de uma matriz não-singular $\mathbf{A} \in \mathbb{R}^{n \times n}$?

Exemplo 3 (Cálculo da Matriz Inversa)

Quantas operações aritméticas são efetuadas para calcular a matriz inversa \mathbf{A}^{-1} de uma matriz não-singular $\mathbf{A} \in \mathbb{R}^{n \times n}$?

Resposta: A inversa \mathbf{A}^{-1} satisfaz a equação $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$, em que \mathbf{I} denota a matriz identidade. Denotando por $\mathbf{x}_1, \dots, \mathbf{x}_n$ as colunas de \mathbf{A}^{-1} e $\mathbf{e}_1, \dots, \mathbf{e}_n$ as colunas de \mathbf{I} , podemos determinar \mathbf{A}^{-1} resolvendo os sistemas lineares:

$$Ax_k = e_k, \quad k = 1, ..., n.$$

Exemplo 3 (Cálculo da Matriz Inversa)

Quantas operações aritméticas são efetuadas para calcular a matriz inversa \mathbf{A}^{-1} de uma matriz não-singular $\mathbf{A} \in \mathbb{R}^{n \times n}$?

Resposta: A inversa \mathbf{A}^{-1} satisfaz a equação $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$, em que \mathbf{I} denota a matriz identidade. Denotando por $\mathbf{x}_1, \dots, \mathbf{x}_n$ as colunas de \mathbf{A}^{-1} e $\mathbf{e}_1, \dots, \mathbf{e}_n$ as colunas de \mathbf{I} , podemos determinar \mathbf{A}^{-1} resolvendo os sistemas lineares:

$$Ax_k = e_k, \quad k = 1, ..., n.$$

Se resolvermos os sistemas usando o método da eliminação de Gauss, efetuaremos

$$n\left(\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6}\right) = \mathcal{O}(n^4).$$

Porém, se calculamos a fatoração LU de **A** e resolvemos 2*n* sistemas triangulares, teremos:

- 1. $\frac{2n^3}{3} \frac{n^2}{2} \frac{n}{6}$ operações para fatoração **A** = **LU**.
- 2. $2(n^2)n = 2n^3$ operações para resolver os sistemas triangulares $\mathbf{L}\mathbf{y}_k = \mathbf{e}_k$ e $\mathbf{U}\mathbf{x}_k = \mathbf{y}_k$, para $k = 1, \dots, n$.

Porém, se calculamos a fatoração LU de **A** e resolvemos 2*n* sistemas triangulares, teremos:

- 1. $\frac{2n^3}{3} \frac{n^2}{2} \frac{n}{6}$ operações para fatoração $\mathbf{A} = \mathbf{LU}$.
- 2. $2(n^2)n = 2n^3$ operações para resolver os sistemas triangulares $\mathbf{L}\mathbf{y}_k = \mathbf{e}_k$ e $\mathbf{U}\mathbf{x}_k = \mathbf{y}_k$, para $k = 1, \dots, n$.

Totalizando

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} + 2n^3 = \frac{8n^3}{3} - \frac{n^2}{2} - \frac{n}{6} = \mathcal{O}(n^3).$$

operações aritméticas para calcular a inversa de uma matriz não-singular $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Porém, se calculamos a fatoração LU de **A** e resolvemos 2*n* sistemas triangulares, teremos:

- 1. $\frac{2n^3}{3} \frac{n^2}{2} \frac{n}{6}$ operações para fatoração **A** = **LU**.
- 2. $2(n^2)n = 2n^3$ operações para resolver os sistemas triangulares $\mathbf{L}\mathbf{y}_k = \mathbf{e}_k$ e $\mathbf{U}\mathbf{x}_k = \mathbf{y}_k$, para $k = 1, \dots, n$.

Totalizando

$$\frac{2n^3}{3} - \frac{n^2}{2} - \frac{n}{6} + 2n^3 = \frac{8n^3}{3} - \frac{n^2}{2} - \frac{n}{6} = \mathcal{O}(n^3).$$

operações aritméticas para calcular a inversa de uma matriz não-singular $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Apesar da redução significativa no número de operações para o cálculo de \mathbf{A}^{-1} , em muitas situações práticas, não precisamos calcular explicitamente a inversa de uma matriz!

Exemplo 4

Considere uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ e vetores $\mathbf{b} \in \mathbb{R}^n$ e $\mathbf{c} \in \mathbb{R}^n$. Descreva os passos necessários para calcular

$$x = c + (A + I)^{-1}b,$$

de forma eficiente.

Exemplo 4

Considere uma matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$ e vetores $\mathbf{b} \in \mathbb{R}^n$ e $\mathbf{c} \in \mathbb{R}^n$. Descreva os passos necessários para calcular

$$\mathbf{x} = \mathbf{c} + (\mathbf{A} + \mathbf{I})^{-1}\mathbf{b},$$

de forma eficiente.

Resposta: O cálculo direto da expressão, resultaria em

- 1. n operações para calcular $\mathbf{M} = \mathbf{A} + \mathbf{I}$.
- 2. $\frac{8n^3}{3} \frac{n^2}{2} \frac{n}{6}$ operações para calcular a inversa de **M**.
- 3. $2n^2 n$ operações para calcular $\mathbf{z} = \mathbf{M}^{-1}\mathbf{b}$.
- 4. n operações para a soma $\mathbf{c} + \mathbf{z}$.

Portanto, seriam efetuadas o seguinte número de operações:

$$n + \left(\frac{8n^3}{3} - \frac{n^2}{2} - \frac{n}{6}\right) + (2n^2 - n) + n = \frac{8n^3}{3} + \frac{3n^2}{2} + \frac{5n}{6}.$$

Porém, podemos calcular o valor de \mathbf{x} da seguinte forma sem calcular a inversa de $\mathbf{M} = \mathbf{A} + \mathbf{I}$.

Porém, podemos calcular o valor de \mathbf{x} da seguinte forma sem calcular a inversa de $\mathbf{M} = \mathbf{A} + \mathbf{I}$.

Primeiro, escrevemos $\mathbf{x} - \mathbf{c} = (\mathbf{A} + \mathbf{I})^{-1}\mathbf{b}$. Tomando $\mathbf{y} = \mathbf{x} - \mathbf{c}$, temos os sistema linear:

$$y = M^{-1}b \iff My = b.$$

Dessa forma, efetuamos as seguintes operações para calcular x:

- 1. n operações para calcular $\mathbf{M} = \mathbf{A} + \mathbf{I}$.
- 2. $\frac{2n^3}{3} + \frac{3n^2}{2} \frac{7n}{6}$ para resolver os sistema linear**My** = **b** usando a eliminação de Gauss.
- 3. n operações para calcular $\mathbf{x} = \mathbf{y} + \mathbf{c}$.

Porém, podemos calcular o valor de \mathbf{x} da seguinte forma sem calcular a inversa de $\mathbf{M} = \mathbf{A} + \mathbf{I}$.

Primeiro, escrevemos $\mathbf{x} - \mathbf{c} = (\mathbf{A} + \mathbf{I})^{-1}\mathbf{b}$. Tomando $\mathbf{y} = \mathbf{x} - \mathbf{c}$, temos os sistema linear:

$$y = M^{-1}b \iff My = b.$$

Dessa forma, efetuamos as seguintes operações para calcular x:

- 1. n operações para calcular $\mathbf{M} = \mathbf{A} + \mathbf{I}$.
- 2. $\frac{2n^3}{3} + \frac{3n^2}{2} \frac{7n}{6}$ para resolver os sistema linear**My** = **b** usando a eliminação de Gauss.
- 3. n operações para calcular $\mathbf{x} = \mathbf{y} + \mathbf{c}$.

Dessa forma, seriam efetuadas o seguinte número de operações:

$$\left(\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{7n}{6}\right) + 2n = \frac{2n^3}{3} + \frac{3n^2}{2} + \frac{5n}{6}.$$

Considerações Finais

Na aula de hoje, comentamos sobre a resolução de sistemas lineares e vimos que a solução de um sistema triangular requerem $\mathcal{O}(n^2)$ operações.

Considerações Finais

Na aula de hoje, comentamos sobre a resolução de sistemas lineares e vimos que a solução de um sistema triangular requerem $\mathcal{O}(n^2)$ operações.

Na aula de hoje vimos também que o método da eliminação de Gauss efetua $\mathcal{O}(n^3)$ operações.

Considerações Finais

Na aula de hoje, comentamos sobre a resolução de sistemas lineares e vimos que a solução de um sistema triangular requerem $\mathcal{O}(n^2)$ operações.

Na aula de hoje vimos também que o método da eliminação de Gauss efetua $\mathcal{O}(n^3)$ operações.

Finalmente, destacamos que o método da eliminação de Gauss é equivalente a fatoração LU, no qual escrevemos $\mathbf{A} = \mathbf{LU}$. Tanto a eliminação de Gauss como a fatoração LU requerem $\mathcal{O}(n^3)$ operações.

Muito grato pela atenção!