

Data Science Lab in Bioscience

An Integrated Approach for Data Analysis of Drawings and Articles Related to Parkinson's Patients

Agenda

- The Object of Analysis
- Project Goals
- Literature Analysis
- Text Mining
- Case Study

The Object of Analysis

"Parkinson disease is a neurodegenerative disorder that mostly presents in later life with generalized slowing of movements (bradykinesia) and at least one other symptom of resting tremor or rigidity."

(Parkinson Disease)

"Spiral drawing is commonly used to visually rate tremor intensity"

(Drawing Analysis)

"Tremor severity is estimated through visual rating of the drawings by movement disorders experts"

(Action Tremor Quantification)

Project Goals

 Applying text mining analysis for evaluate the literature around the use of patient drawings as a metric of disease severity

 Verify how the use of Machine Learning Models can help for this purpose

Literature Analysis

N. of articles: 797

Source: PubMed

Data Acquisition

Topic Modeling

Preprocessing

Data Acquisition

from Bio import Entrez

pubmed_record = Entrez.efetch(db="pubmed", id=pubmed_id, retmode="xml")

PubmedID	ArticleTitle	PubDate	Abstract	Language	date
37695259	Visuospatial memory profile of patients with P	2023-09- 11	In Parkinson's Disease (PD) cognitive impairme	eng	2023 Sep 11
37626522	Lipid Metabolism Disorder in Cerebrospinal Flu	2023-08- 04	Abnormal accumulation of lipids is found in do	eng	2023 Aug 4
37625589	Endogenous Rab38 regulates LRRK2's membrane re	2023-08- 23	Point mutations in leucine-rich repeat kinase	eng	2023 Aug 23
37603024	An introduction to directed acyclic graphs in	1970-01- 01	Directed acyclic graphs (DAGs) are visual repr	eng	2023 Sep
37553934	Effects of Exercise-based Management on Motor	1970-01- 01	Parkinson's disease (PD) is the second most co	eng	2023 Aug
	0220	222	112	7444	
6348585	Comparison of pergolide and bromocriptine ther	1970-01- 01	Twenty-four parkinsonian patients compared per	eng	1983 Aug

Preprocessing

- 1. Drop Nulls
- 2. Remove Numbers
- 3. Remove punctuation
- 4. Remove Stopwords
- 5. Tokenization
- 6. Bigrams
- 7. Lemmatization

```
df["preprocessed_text"].head(4)
```

```
0 [parkinson, disease, disease, cognitive, cogni...
```

- 1 [abnormal, accumulation, accumulation, lipid, ...
- 2 [point, mutation, mutation, leucine, leucine, ...
- 3 [directed, acyclic, acyclic, graph, graph, dag...

Name: preprocessed_text, dtype: object

Topic Modeling

!pip install pyLDAvis

A DEGLI STUDI

Topic Modeling

Searching for Features

Dataset

Data Exploration

Image Shape: 256x256

Image Shape: 256x256

Image Shape: 512x393

Image Shape: 512x297

Data Preprocessing

Reading and Resizing

spiral healthy

wave healthy

spiral parkinson

wave parkinson

Generates Binary Image Based on Thresholding

spiral healthy

wave healthy

spiral parkinson

wave parkinson

Data Preprocessing

Image Labeling and Object Filtering for Improved Image Analysis

Data Visualization

Visualization of Skeletonized Image Data and Analysis of Image Differences

Stroke Thickness Analysis and Calculation of Mean and Standard Deviation

Range of Standard Deviation of Stroke Thickness

activity	disease	
spiral	healthy	0.451398
	parkinson	1.682739
wave	healthy	0.380710
	parkinson	0.753593

Range of Mean of Stroke Thickness

activity	disease	
spiral	healthy	1.741688
	parkinson	2.662872
wave	healthy	1.800135
	parkinson	1.738006

Identification of Endpoints and Branch Points in Image Data

Average Segment Length and Total Skeleton Path Length Intersection and Point Density and Endpoint Density

activity	disease	Median Avg Segment Length Tot	al Skeleton Length
spiral	healthy	2.506122	71432
spiral	parkinson	2.548837	81769
wave	healthy	6.143836	86318
wave	parkinson	5.059524	80723

activity	disease	Mean Intersection Density	Mean Endpoint Density
spiral	healthy	0.581415	0.424406
spiral	parkinson	0.588297	0.432951
wave	healthy	0.855157	0.638555
wave	parkinson	0.739997	0.571322

Intersection-to-Endpoint Ratio and Mean Gray Levels and Standard Deviation of Gray Levels and Entropy

activity	disease	Range	Intersection-to-Endpoint Ratio
spiral	healthy		0.277254
spiral	parkinson		0.282005
wave	healthy		0.100876
wave	parkinson		0.208010

activity	disease	Range	Avg	Gray	Intensity	Range Gray Std Dev
spiral	healthy				0.087540	0.128834
spiral	parkinson				0.166809	0.192642
wave	healthy				0.106415	0.138724
wave	parkinson				0.143921	0.192057

activity	disease	Mean Entropy
spiral	healthy	0.411622
spiral	parkinson	0.446789
wave	healthy	0.410521
wave	parkinson	0.434582

Texture Analysis using GLCM (Gray-Level Co-Occurrence Matrix), Average Curvature and Curvature Change

activity	disease	Range Contrast	Range Dissimilarity	Range Homogeneity	Range Energy	Range Correlation
spiral	healthy	0.013067	0.016086	0.013480	0.014195	0.013067
spiral	parkinson	0.034421	0.043183	0.032782	0.032880	0.034421
wave	healthy	0.021752	0.021807	0.004779	0.022391	0.021752
wave	parkinson	0.038664	0.040754	0.009712	0.036463	0.038664

activity	disease	Range Curvature Change
spiral	healthy	1.533631e-17
spiral	parkinson	1.740346e-17
wave	healthy	6.749985e-18
wave	parkinson	1.171734e-17

Power Spectrum

Spettro di Potenza per Image ID V08HE01, spiral e healthy (log)

50
100
150
200 -


```
object
path
imq id
                                    object
disease
                                    object
activity
                                    object
thresh ima
                                    object
                                    object
clean_img
                                   float64
                                   float64
thickness
                                    object
mean thickness
                                   float64
std thickness
                                   float64
endpoints
                                     int64
                                     int64
branch points
avg segment length
                                   float64
total skeleton length
                                     int64
intersection density
                                   float64
endpoint_density
                                   float64
intersection to endpoint ratio
                                   float64
avg gray intensity
                                   float64
gray_std_dev
                                   float64
                                   float64
entropy
contrast
                                   float64
dissimilarity
                                   float64
homogeneity
                                   float64
                                   float64
energy
correlation
                                   float64
average curvature
                                   float64
curvature change
                                   float64
power spectrum
                                    object
```

```
# Definisci una funzione per calcolare la media degli elementi in ciascun array
def average_power_spectrum(x):
    return np.mean(np.fromstring(x.strip('[]'), sep=' '))

# Applica la funzione di calcolo della media e assegna i risultati a una nuova colonna
df['average_power_spectrum'] = df['power_spectrum'].apply(average_power_spectrum')
```

```
df['average_power_spectrum']
0
       525.281678
       502.826132
       378.742162
       241.684848
        53.748812
197
        47.648581
198
       118.387923
199
       167.894973
200
       248.670443
201
        48.750880
Name: average power spectrum, Length: 202, dtype: float64
```

disease to_binary

```
# Define a function to convert disease to binary
def convert_to_binary(disease):
    if disease == 'parkinson':
        return 1
    else:
        return 0

# Apply the function to create the "disease_binary" column
df['y'] = df['disease'].apply(convert_to_binary)
y = df['y']
```

activity to_binary

```
# Define a function to convert activity to binary
def convert_to_binary(activity):
    if activity == 'spiral':
        return 1
    else:
        return 0
# Apply the function to create the "disease_binary" column
df['binary_activity'] = df['activity'].apply(convert_to_binary)
binary_activity = df['binary_activity']
```


Matrice di correlazione tra y e le variabili esplicative

complete dataset

filtered by activity spiral

filtered by activity wave

Logistic Regression

```
# Prepare the cross-validation procedure
cv = RepeatedKFold(n_splits=10, n_repeats=5, random_state=1)
# Create the logistic regression model
model_logistic = LogisticRegression()
# Define a grid of C values to search
param grid = \{'C': [0.001, 0.01, 0.1, 1, 10]\}
# Create GridSearchCV to search for the best C value
grid_search = GridSearchCV(estimator=model_logistic, param_grid=param_grid, scoring='accuracy', cv=cv, n jobs=-1)
# Fit the model to the data using GridSearchCV
grid_search.fit(X, y)
# Print the best C value and corresponding accuracy
print("Best C value:", grid_search.best_params_['C'])
print("Best Accuracy:", grid search.best score )
# Save the trained model to a file
joblib.dump(grid_search.best_estimator_, '/content/modello_logistic_regression.pkl')
Best C value: 10
Best Accuracy: 0.7494285714285716
```


Logistic Regression

Logistic Regression

	Variable	Coefficient
0	mean_thickness	0.595021
1	std_thickness	0.033897
2	endpoints	-2.008272
3	branch_points	-0.425716
4	avg_segment_length	0.269593
5	total_skeleton_length	3.089507
6	intersection_density	-1.004600
1 2 3 4 5 6 7	endpoint_density	0.764931
8	intersection_to_endpoint_ratio	-1.827263
9	avg_gray_intensity	1.015616
10	gray_std_dev	-1.537367
11	entropy	-0.242810
12	contrast	-3.337074
13	dissimilarity	4.235216
14	homogeneity	2.085572
15	energy	0.586764
16	correlation	-3.337074
17	average_curvature	0.256519
18	curvature_change	-0.263073
19	average_power_spectrum	-0.292733
20	binary_activity	-3.407931
20	billal y_activity	3140/331

Ridge Regression

```
# Create the logistic regression model
model ridge = LogisticRegression(penalty='l2', solver='liblinear')
# Define the parameter grid for Ridge regression (alpha values)
param_grid = \{'C': [0.001, 0.01, 0.1, 1, 10, 100]\}
# Prepare the cross-validation procedure
cv = RepeatedKFold(n_splits=10, n_repeats=5, random state=1)
# Create the GridSearchCV object to find the best C value
grid search = GridSearchCV(model ridge, param grid, scoring='accuracy', cv=cv, n jobs=-1)
# Fit the model with cross-validation
grid search.fit(X, y)
# Display the best C value and corresponding accuracy
print('Best C value: ', grid_search.best_params_['C'])
print('Best Accuracy: %.3f' % grid search.best score )
# Save the trained model to a file
joblib.dump(grid_search.best_estimator_, '/content/model_ridge.pkl')
Best C value: 100
Best Accuracy: 0.763
```


Ridge Regression

Ridge Regression

	Variable	Coefficient
0	mean_thickness	1.295667
1	std_thickness	-0.284514
	endpoints	-10.382955
3	branch_points	-1.825895
4	avg_segment_length	-0.114713
2 3 4 5	total_skeleton_length	12.013801
6	intersection_density	-4.084239
6 7	endpoint_density	3.637668
8	intersection_to_endpoint_ratio	-4.175698
9	avg_gray_intensity	1.345481
10	gray_std_dev	-5.119997
11	entropy	1.988745
12	contrast	-9.241060
13	dissimilarity	9.039770
14	homogeneity	-2.638754
15	energy	5.047114
16	correlation	-9.241060
17	average_curvature	0.150507
18	curvature_change	-0.264004
19	average_power_spectrum	-0.281926
20	binary_activity	-4.464066
0.000.00	,	

Lasso Regression

```
# Create a logistic regression model with L1 penalty (Lasso)
model_lasso = LogisticRegression(penalty='l1', solver='liblinear')
# Define a grid of C values for cross-validation
param grid = \{'C': [0.001, 0.01, 0.1, 1, 10]\}
# Prepare the cross-validation procedure
cv = RepeatedKFold(n_splits=10, n_repeats=5, random_state=1)
# Create GridSearchCV to search for the best C value
grid search = GridSearchCV(estimator=model lasso, param grid=param grid, scoring='accuracy', cv=cv, n jobs=-1)
# Fit the model to the data using GridSearchCV
grid_search.fit(X, y)
# Print the best C value and corresponding accuracy
print("Best C value:", grid_search.best_params_['C'])
print("Best Accuracy:", grid_search.best_score_)
joblib.dump(grid search.best estimator , '/content/model lasso.pkl')
Best C value: 10
```

Best Accuracy: 0.7522380952380954

Lasso Regression

Lasso Regression

	Variable	Coefficient
0	mean_thickness	0.935361
1	std_thickness	-0.275028
2 3	endpoints	-8.833026
3	branch_points	-3.324016
4 5	avg_segment_length	0.000000
5	total_skeleton_length	18.569818
6 7	intersection_density	-0.072685
	endpoint_density	0.000000
8	<pre>intersection_to_endpoint_ratio</pre>	-4.144266
9	avg_gray_intensity	0.979863
10	gray_std_dev	-1.997881
11	entropy	0.000000
12	contrast	-8.833215
13	dissimilarity	4.105749
14	homogeneity	-2.817610
15	energy	0.000000
16	correlation	-8.690074
17	average_curvature	0.175130
18	curvature_change	-0.261915
19	average_power_spectrum	-0.259653
20	binary_activity	-4.496131

Model Evaluation

Roc Curve

Improvements and Next Steps

Applying Data Augmentation

Improving hyperparameters optimization

carry out text mining and topic modeling on different sites

Improving performances

Incorporating additional data sources

Thank you! Any questions?