InstantAvatar: Efficient 3D Head Reconstruction via Surface Rendering

Antonio Canela Pol Caselles Ibrar Malik Eduard Ramon Jaime Garcia Jordi Sanchez-Riera Gil Triginer Francesc Moreno-Noguer

crisalixsa.github.io/instant-avatar

Introduction

Optimization based models Representations

Optimization based models

Rendering

Method	Computational cost	Rendering stability	Use case	
Surface rendering	Lower	Lower	Objects	
Volumetric rendering	Higher	Higher	Scenes	
Surface + Volumetric rendering	Higher	Higher	Objects / Scenes	

Contributions

- We introduce, for the first time, a framework that combines a grid-based architecture with a surface rendering method that yields to fast and accurate 3D reconstructions from one or few input images.
- We leverage a statistical **prior**, obtained with thousands of 3D head models, to guide network convergence and achieve a reconstruction accuracy on a par with state of the art methods, but with ~100× speed-up.
- We provide optimal training techniques for grid-based structures combined with surface rendering methods exhibited through a variety of evaluated datasets.

Method

CelebA-HQ. Reconstruction from in-the-wild frontal

Grid-based shape prior Shallow \mathbf{V} decoder \mathbf{X}_{diff} Rendering $\mathbf{z}(\mathbf{x})$ Network Monocular normal Normals supervision estimation + Addition Concatenation

Key Insights

Speed

Surface rendering has less computational

cost than volumetric rendering

Grids improve convergence speed

Comparisons

produce instability, which we diminish by: **Statistical**

shape prior

Progressive LODs scheduling

Stability

These speed upgrades

Supervision with normals

Ablation

1 view 3DFAW 3DFAW HR H3DS face ↓ face ↓ face ↓ head ↓ time ↓ Dib et al. 1.99 2.16 2.06 1.57 22.22 **DECA** 1.43 Multi-NeuS 13.92 H3D-Net 1.63 1.47 14.36

14.43

12.43

1.51

1.69

1.36

1.58

SIRA

Ours

		3 views				6 views		
		3DFAW	H3DS			H3DS		
time ↓		face ↓	face \	head ↓	time \downarrow	face ↓	head ↓	time ↓
\sim 1s	MVF-Net	1.61	1.67	-	\sim 1s	-	-	-
$\sim 1 \mathrm{s}$	DFNRMVS	1.74	1.96	-	$\sim 1s$	-	-) -
$\sim 1 \mathrm{h}$	H3D-Net	1.32	1.47	11.13	$\sim 20 \mathrm{min}$	1.24	6.24	$\sim 40 \mathrm{min}$
$\sim 10 \text{min}$	Ours	1.32	1.39	9.71	\sim 15s	1.22	8.03	$\sim 30 \mathrm{s}$
$\sim 10 \mathrm{min}$								

3D reconstruction method comparison (multi-view). Error⁽¹⁾ in millimeters. Time in seconds.

SIRA

(~ 10min)

(~ 20min)

3 views

(~ 30s)

(~ 40min)

6 views

Ours w/o normals Ours w/ single grid

Ours w/o grid

(8 layers)

Ours w/o grid

(3 layers)

Ours

(~ 5s)

Input

 $(\sim 15s)$

Ours

Input

DECA

(~ 1s)