习题 6.3 对物理实验中所得下列数据

t _i	1	1.5	2	2.5	3	3.5	4	4.5
y _i	33.40	79.50	122.65	159.05	189.15	214.15	238.65	252.2
t_i	5	5.5	6	6.5	7	7.5	8	
y _i	267.55	280.50	296.65	301.65	310.40	318.15	325.15	

- (1)用公式 $y=a+bt+ct^2$ 作曲线拟合;
- (2)用指数函数 y=ae^{bt} 作曲线拟合;
- (3)比较上述两条拟合曲线, 哪条更好?

分析:

使用法方程方法求解曲线拟合的最小二乘问题,用 cholesky 分解 求出 \mathbf{x} (即函数 \mathbf{S} (t)中 a,b,c 的值)。第二问中先对指数函数 $\mathbf{y}=\mathbf{ae}^{bt}$ 取对 数得到 $\mathbf{y}'=\mathbf{lna}+\mathbf{bt}=\mathbf{a}'+\mathbf{bt}$,再进行拟合,拟合之后再算 $\mathbf{y}=\mathbf{e}^{\mathbf{y}'}$ 得到实际 拟合曲线。使用均方误差 $\sqrt{1/m}\Sigma(\mathbf{S}(\mathbf{t_i})-\mathbf{f_i})^2$ 来考查拟合曲线的精确度。

实验结果:

(1)求得拟合曲线 S(t)=-45.2942+94.1943t-6.1238t²,均方误差 5.6839;

(2)求得拟合曲线 $S(t)=67.3938e^{0.2390t}$,均方误差 56.5378。

实验结论:

从均方误差来看,曲线(1)的拟合程度更高,曲线(2)指数函数拟合程度较差,考虑改进为 $S(t)=ae^{bt}+ce^{dt}$ 曲线,会使拟合程度显著提升。