كد فرم : FR/FY/11

ويرايش : صفر

۲۰ نمره

(فرم طرح سئوالات امتحانات پایان ترم) دانشکده ریاضی

گروه آموزشی : **ریاضی** امتحان درس : **ریاضی۱-فنی (۷ گروه هماهنگ**) نیمسال (ا**ول/دوم) ۹۳-۱۳۹۲** نام مدرس:

نام و نام خانوادگی : شماره دانشجویی : تاریخ : ۱۳۹۳/۳/۱۷ وقت : ۱۳۵ دقیقه

توجه:

مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید. در طول برگزاری امتحان به هیچ سوالی پاسخ داده نمی شود.

سوال ۱۱ اگر
$$f^{-1}(x) = \ln(\frac{1+\sqrt{1-x^{+}}}{x})$$
 , $0 < x \le 1$: نشان دهید $f(x) = \frac{1}{\cosh x}$, $x \ge 0$ نمره

سوال ۲– انتگرال معین
$$\int_{1}^{\infty} \frac{dx}{\sqrt{4x-x^{7}}}$$
 را محاسبه کنید.

سوال ۳- انتگرال نامعین
$$\frac{dx}{\sin x (\mathbf{1} + \cos x - \mathbf{1} \sin x)}$$
 را حل کنید.

سوال ۲۰ مساحت ناحیه محدود به منحنی تابع
$$y=\frac{\ln x}{\sqrt{x}}$$
 و محور x ها را در بازه $y=\frac{\ln x}{\sqrt{x}}$ بیابید.

سوال ۵- طول قوس منحنی
$$f(x)=\int_{\cdot}^{x}\sqrt{\cos 7t}$$
 , $\cdot \leq x \leq \frac{\pi}{4}$ منحنی -۵ سوال -۵ س

سوال
$$\int_{1}^{\infty} \frac{\cos^{7}x \, dx}{x^{7} + 7}$$
 ممگرایی یا واگرایی انتگرال ناسره مقابل را بررسی کنید. $\int_{1}^{\infty} \frac{\cos^{7}x \, dx}{x^{7} + 7}$

سوال ۷- الف) همگرایی یا واگرایی سری
$$\sum_{n=1}^{\infty}\frac{1}{n\ln^{n}n}$$
 را مشخص کنید. $a=\cdot$ الف $a=\cdot$ و را بنویسید. $y=\ln\frac{1-x}{1+x}$ را بنویسید. $y=\ln\frac{1-x}{1+x}$ را بنویسید.

موفق باشيد

پاسخ سوالات امتحان پایان ترم درس ریاضی۱ (فنی) (۷ گروه هماهنگ) نيمسال دوم ٩٣–١٣٩٢

سوال 1 - a میدانیم $\cos h \ x \ge 1$ بنابر این $\cos h \ x = \frac{re^x}{e^{rx} + 1}$ بنابر این $\cos h \ x = \frac{e^x + e^{-x}}{r} = \frac{e^{rx} + 1}{re^x}$ برای -1پیدا کردن تابع وارون جای x و y را عوض می کنیم و می نویسیم $x = \frac{\mathsf{Y}e^y}{e^{\mathsf{Y}y} + \mathsf{Y}}$ و $x \in \mathcal{Y}$ را به عنوان یک مجهول محاسبه می کنیم. $x = \frac{\Upsilon e^y}{e^{\Upsilon y} + Y} \rightarrow xe^{\Upsilon y} - \Upsilon e^y + x = 1$ $. \cdot \leq y$ و $\cdot < x \leq 1$ اکنون داریم

$$\rightarrow e^{y} = \frac{1 \pm \sqrt{1 - x^{\dagger}}}{x} \xrightarrow{\leq y} e^{y} \geq 1 \rightarrow e^{y} = \frac{1 + \sqrt{1 - x^{\dagger}}}{x} \rightarrow y = \ln \frac{1 + \sqrt{1 - x^{\dagger}}}{x} \rightarrow f^{-1}(x) = \ln \frac{1 + \sqrt{1 - x^{\dagger}}}{x}$$

$$I = \int_{\gamma}^{\tau} \frac{dx}{\sqrt{\tau x - x^{\tau}}} = \int_{\gamma}^{\tau} \frac{dx}{\sqrt{\tau - \tau + \tau x - x^{\tau}}} = \int_{\gamma}^{\tau} \frac{dx}{\sqrt{\tau - (x - \tau)^{\tau}}}$$
 : سوال ۲- داريم

$$I = \int_{-\pi/\hat{\tau}}^{\pi/\hat{\tau}} \frac{\mathsf{Y} \cos t \, dt}{\sqrt{\mathsf{Y} - \mathsf{Y} \sin^{\mathsf{Y}} t}} = \int_{-\pi/\hat{\tau}}^{\pi/\hat{\tau}} \frac{\mathsf{Y} \cos t \, dt}{\mathsf{Y} \mid \cos t \mid} = \int_{-\pi/\hat{\tau}}^{\pi/\hat{\tau}} dt = \frac{\pi}{\mathsf{Y}}$$
 را اعمال می کنیم. $x - \mathsf{Y} = \int_{-\pi/\hat{\tau}}^{\pi/\hat{\tau}} \frac{\mathsf{Y} \cos t \, dt}{\mathsf{Y} \mid \cos t \mid} = \int_{-\pi/\hat{\tau}}^{\pi/\hat{\tau}} dt = \frac{\pi}{\mathsf{Y}}$

اکنون تغییر متغیر $x-r=r\sin t$ را اعمال می کنیم.

 $\cos x = \frac{1-t^{\frac{1}{2}}}{1+t^{\frac{1}{2}}}$, $\sin x = \frac{7t}{1+t^{\frac{1}{2}}}$, $dx = \frac{7dt}{1+t^{\frac{1}{2}}}$: استفاده می کنیم. داریم $t = \tan \frac{x}{2}$ استفاده می کنیم.

$$I = \int \frac{dx}{\sin x \left(\mathbf{Y} + \cos x - \mathbf{Y} \sin x \right)} = \int \frac{\frac{\mathbf{Y} dt}{\mathbf{Y} + t^{\mathbf{Y}}}}{\frac{\mathbf{Y} t}{\mathbf{Y} + t^{\mathbf{Y}}} \left(\mathbf{Y} + \frac{\mathbf{Y} - t^{\mathbf{Y}}}{\mathbf{Y} + t^{\mathbf{Y}}} - \mathbf{Y} \frac{\mathbf{Y} t}{\mathbf{Y} + t^{\mathbf{Y}}} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{Y} \right)} = \int \frac{(\mathbf{Y} + t^{\mathbf{Y}}) dt}{t \left(t^{\mathbf{Y}} - \mathbf{Y} t + \mathbf{$$

 $\frac{1+t^{\frac{1}{2}}}{t(t-1)(t-r)} = \frac{\sqrt{r}}{t} - \frac{1}{t-1} + \frac{\Delta/r}{t-r} = \frac{1}{r}(\frac{1}{t-r} - \frac{r}{t-1} + \frac{\Delta}{t-r})$ کسر داخل انتگرال را به کسرهای ساده تر تجزیه می کنیم.

$$I = \int \frac{1}{r} \left(\frac{1}{t} - \frac{r}{t-1} + \frac{\Delta}{t-r} \right) dt = \frac{1}{r} \left(\ln|t| - r \ln|t-1| + \Delta \ln|t-r| \right) + c = \frac{1}{r} \ln\left| \frac{t(t-r)^{\Delta}}{(t-1)^{r}} \right| + c$$

سوال $-\mathbf{r}$ مساحت مورد نظر برابر است با $S = \int_{1}^{e^{t}} \frac{\ln x}{\sqrt{x}} dx$ برای حل انتگرال به دو روش می توان عمل کرد.

روش اول (انتگرالگیری جزء به جزء) : با فرض $du=\frac{dx}{\sqrt{x}}$, $v= \sqrt{x}$ داریم $u=\ln x$, $dx=\frac{dx}{\sqrt{x}}$ بنابر این

$$S = \int_{1}^{e^{\Upsilon}} \frac{\ln x}{\sqrt{x}} dx = \Upsilon \sqrt{x} \ln x \Big|_{1}^{e^{\Upsilon}} - \int_{1}^{e^{\Upsilon}} \frac{\Upsilon}{\sqrt{x}} dx = \Upsilon e - \Upsilon \sqrt{x} \Big|_{1}^{e^{\Upsilon}} = \Upsilon e - \Upsilon e + \Upsilon = \Upsilon$$

: و با انتگرالگیری جزء به جزء داریم $S=\int_{t}^{e^{t}}\frac{\ln x}{\sqrt{x}}dx=\int_{t}^{e}t\ln t\,dt$ و با انتگرالگیری جزء به جزء داریم

$$S = \int_{1}^{e} f \ln t \, dt = f[t \ln t - t]_{1}^{e} = f$$

: بنابر این ب $y' = \sqrt{\cos 7x}$. $z = \int_{-\infty}^{\pi/4} \sqrt{1 + (y')^4} dx$ بنابر این ب

$$l = \int_{1}^{\pi/4} \sqrt{1 + (y')^{\frac{1}{4}}} \, dx = \int_{1}^{\pi/4} \sqrt{1 + \cos 7x} \, dx = \int_{1}^{\pi/4} \sqrt{1 \cos x} \, dx = \sqrt{1} \int_{1}^{\pi/4} \cos x \, dx = \sqrt{1} \sin x \, |_{x}^{\pi/4} = \sqrt{1} \int_{1}^{\pi/4} \cos x \, dx = \sqrt{1} \int_{1}^$$

پاسخ سوالات امتحان پایان ترم درس ریاضی۱ (فنی) (۷ گروه هماهنگ) نیمسال دوم ۹۳–۱۳۹۲

: سوال
$$-8$$
 چون $1 \le x \le 1$ و داريم $\int_{1}^{\infty} \frac{\cos^{7} x \, dx}{x^{7} + 7}$ بنابر اين $\cdot \le \cos^{7} x \le 1$ و داريم $\cdot \le \int_{1}^{\infty} \frac{\cos^{7} x \, dx}{x^{7} + 7} \le \int_{1}^{\infty} \frac{dx}{x^{7}} = \frac{-1}{7x^{7}} \Big|_{1}^{\infty} = \frac{1}{7}$

پس انتگرال داده شده همگراست.

سوال ۷- الف) چون تابع $f(x) = \frac{1}{x \ln^r x}$ در بازه $x \ge x$ یک تابع نزولی است پس میتوان از آزمون انتگرال استفاده کرد.

$$f(x) = \int_{\tau}^{\infty} \frac{dx}{x \ln^{\tau} x} = \frac{-1}{\tau \ln^{\tau} x} \Big|_{\tau}^{\infty} = \frac{1}{\tau \ln^{\tau} x}$$

اکنون همگرایی انتگرال ، همگرایی سری را نتیجه می دهد.

$$y = \ln(1-x) - \ln(1+x)$$
 وامنه تابع $y = \ln \frac{1-x}{1+x}$ عبارت است از $|x| < 1$. در این ناحیه داریم $y = \ln \frac{1-x}{1+x}$

می توان دید که اگر
$$1 \geq n$$
 داریم $y^{(n)}(\cdot) = \cdot$ می توان دید که اگر $1 \geq n$ داریم $y^{(n)}(\cdot) = (n-1)!(\frac{(-1)^{n-1}}{(x-1)^n} - \frac{(-1)^{n-1}}{(x-1)^n})$ و برای هر می توان دید که اگر $1 \geq n$ داریم $1 \geq n$ داریم

. ورا بنویسیم.
$$a=\cdot$$
 را بنویسیم. گذرد داریم $y^{(n)}(\cdot)=-\mathsf{T}(n-1)!$ فرد داریم n

$$y = \cdot - tx + \cdot x^{\tau} - \frac{t \times t!}{t!} x^{\tau} + \cdot x^{\tau} - \frac{t \times t!}{2} x^{2} + \cdot x^{5} - \frac{t \times 5!}{2} x^{2} + \cdots$$

$$y = \ln \frac{1-x}{1+x} = -7(x + \frac{1}{r}x^r + \frac{1}{\Delta}x^{\Delta} + \frac{1}{r}x^r + \cdots) = -7\sum_{n=1}^{\infty} \frac{x^{r_{n+1}}}{(r_{n+1})!}$$
 در نهایت داریم :

. |x|<۱ است از ۱ مگرایی آن عبارت است از