

Unidad 4: Buenas prácticas

BBDD01, Sesión 12: Descomposición y Normalización de BBDD

> Jesús Olmeda Josefa Gómez Daniel Rodríguez García Iván González Diego Dept. Ciencias de la Computación Universidad de Alcalá

INDICE

- Descomposición.
- Propiedades deseables de la descomposición.
- Primera Forma Normal
- Segunda Forma Normal
- Tercera Forma Normal
- Forma normal Boyce-Codd.
- Cuarta forma normal.
- Otras formas normales.
- Proceso general del diseño de BD

Referencias: Silberschatz 4^a Ed. pp 161-189

Elmasri 3^a Ed. Pp 439-496

Introducción

- Las dependencias funcionales son la clave para poder realizar la normalización de la información de la BD.
- Mediante el uso de las operaciones vistas en la sesión anterior, se definirá cómo se puede segmentar una tabla.
- El uso cuidadoso de dependencias funcionales y reglas de descomposición permite la normalización

Recordando: Dependencias Funcionales

Ejemplo: Dado el conjunto de DF para el esquema (A,B,C)

$$A \rightarrow BC$$
, $B \rightarrow C$, $A \rightarrow B$ y $AB \rightarrow C$

- Calcular el recubrimiento canónico de F.
- Hay dos DF con el mismo conjunto de atributos a la izquierda:

$$A \rightarrow B$$

- Se transforman en A→ BC
- A es raro en AB→ C porque F implica lógicamente a (F-{AB→C}) U {(B→C}
- C es raro en A→ BC , ya que A→ BC está implicada lógicamente en A→ B y B→ C
- El recubrimiento canónico es:

$$A \rightarrow B$$

$$B \rightarrow C$$

Descomposición

El mal diseño anterior sugiere descomponer el esquema en varios esquemas con menos atributos cada uno.

Ejemplo: Esquema-empresito en Esquema-sucursal-cliente = (nombre-sucursal,*ciudad-sucursal, activo, nombre-cliente*) Esquema-cliente-préstamo = (nombre-cliente, número-préstamo, importe)

nombre-sucursal	ciudad- sucursal	activo	nombre- cliente
Centro	Arganzuela	9.000.000	Santos
Moralzarzal	La Granja	2.100.000	Gómez
Navacerrada	Aluche	1.700.000	López
Centro	Arganzuela	9.000.000	Sotoca
Becerril	Aluche	400.000	Santos
Collado Mediano	Aluche	8.000.000	Abril
Navas de	Alcalá	300.000	Valdivieso
la Asunción	de Henares		
Segovia	Cerceda	3.700.000	López
Centro	Arganzuela	9.000.000	González
Navacerrada	Aluche	1.700.000	Rodríguez
Galapagar	Arganzuela	7.100.000	Amo

nombre-cliente	número-préstamo	importe
Santos	P-17	1.000
Gómez	P-23	2.000
López	P-15	1.500
Sotoca	P-14	1.500
Santos	P-93	500
Abril	P-11	900
Valdivieso	P-29	1.200
López	P-16	1.300
González	P-18	2.000
Rodríguez	P-25	2.500
Amo	P-10	2.200

Descomposición

Hay casos en los que hay que reconstruir la relación préstamo. Ejemplo: hallar todas las sucursales que tienen préstamos con importes inferiores a 1000€. Se podría realizar con:

sucursal-cliente ⋈ cliente-préstamo

nombre-sucursal	ciudad-sucursal	activo	nombre-cliente	número-préstamo	importe
Centro	Arganzuela	9.000.000	Santos	P-17	1.000
Centro	Arganzuela	9.000.000	Santos	P-93	500
Moralzarzal	La Granja	2.100.000	Gómez	P-23	2.000
Navacerrada	Aluche	1.700.000	López	P-15	1.500
Navacerrada	Aluche	1.700.000	López	P-16	1.300
Centro	Arganzuela	9.000.000	Sotoca	P-14	1.500
Becerril	Aluche	400.000	Santos	P-17	1.000
Becerril	Aluche	400.000	Santos	P-93	500
Collado Mediano	Aluche	8.000.000	Abril	P-11	900
Navas de la Asunción	Alcalá de Henares	300.000	Valdivieso	P-29	1.200
Segovia	Cerceda	3.700.000	López	P-15	1.500
Segovia	Cerceda	3.700.000	López	P-16	1.300
Centro	Arganzuela	9.000.000	González	P-18	2.000
Navacerrada	Aluche	1.700.000	Rodríguez	P-25	2.500
Galapagar	Arganzuela	7.100.000	Amo	P-10	2.200

Descomposición

(Centro, Arganzuela, 9.000.000, Santos, P-93, 500) (Navacerrada, Aluche, 1.700.000, López, P-16, 1.300) (Becerril, Aluche, 400.000, Santos, P-17, 1.000) (Segovia, Cerceda, 3.700.000, López, P-15, 1.500)

- La consulta hallar todas las sucursales que han concedido un préstamo por importe inferior a 1500€ produce:
 - 1º Tabla:{Becerril,Collado,Mediano}
 - 2º Tabla:{Becerril, Collado, Mediano, Centro}
- Debido a que no se sabe qué préstamo pertenece a cada sucursal.
- Es una descomposición con pérdida (Mal diseño de la BD)
- Necesitamos descomposiciones sin pérdida de información.

Esquema-empréstito = (nombre-sucursal, ciudad-sucursal, activo, nombre-cliente, número-préstamo, importe)

Que se exige que cumpla las DF:

nombre-sucursal → ciudad-sucursal activo número-préstamo → importe nombre-sucursal

- Descomposición de reunión sin pérdida
- Sea R y sea F conjunto de DF de R. R se puede descomponer sin pérdida en R₁ y R₂ si al menos una de las siguientes dependencias se halla en F⁺

•
$$R_1 \cap R_2 \rightarrow R_1$$

•
$$R_1 \cap R_2 \rightarrow R_2$$

Esquema-sucursal = (nombre-sucursal, ciudad-sucursal, activo) Esquema-info-préstamo = (nombre-sucursal, nombre-cliente, número-préstamo, importe)

- Dado que nombre-sucursal → ciudad-sucursal activo
- Utilizando aumentatividad:
- Nombre-sucursal → nombre-sucursal ciudad-sucursal activo
- Como Esquema-sucursal ∩ Esquema-info-prestamo = {nombre-sucursal}, la reunión es sin pérdida.

Esquema-préstamo = (número-préstamo, nombre-sucursal, importe) Esquema-prestatario = (nombre-cliente, número-préstamo)

Es una descomposición de reunión sin pérdida ya que numerorestamo es un atributo común y numero-prestamo → importe nombre-sucursal.

- Hay que conservar las dependencias.
- Cuando se haga una actualización sobre la BD hay que cumplir todas las DF dadas.
- Comprobar de manera eficiente las actualizaciones sin calcular las reuniones.
- Sea F un conjunto de DF del esquema R y R₁,R₂,...R_n una descomposición de R.
- La restricción de F a R_i es el conjunto de todas las DF de F⁺ que sólo incluyen atributos de R_i.
- Puesto que todas las DF de una restricción únicamente implican atributos de un esquema de relación, es posible comprobar el cumplimiento de una dependencia verificando sólo una relación.

Sea F'=F₁UF₂U...UF_n un conjunto de DF del esquema de R.

Las descomposiciones que tienen la propiedad de F'+=F+ son descomposiciones que conservan las dependencias.

```
calcular F+;
for each esquema R_i de E do
        F_i: = la restricción de F^+ a R_i;
    end
F' := \emptyset
for each restricción F, do
    begin
     F' = F' \cup F_i
    end
calcular F'+;
if (F'^+ = F^+) then return (true)
             else return (false):
```


- Esquema-sucursal(nombre-sucursal,coudad-sucursal,activo) conserva la DF nombre-sucurcsal → ciudad-sucursal activo
- Esquema-prestamo(nombre-sucursal,numero-prestamo,importe) conserva la DF numero-prestamo→importe nombre-sucursal
- Si puede comprobarse cada miembro de F en una relación de la descomposición ⇒ conserva las dependencias

- No es deseable la repetición de la información en los diseños de la BD.
- La descomposición de Esquema-empresito no lo sufre.
- El grado hasta el que se puede conseguir la falta de redundancia viene representado por varias formas normales.
- Teoría de Normalización.

Ejemplo de descomposición

Ejemplo ERRONEO:

Se pierde una DF

Ejemplo de descomposición

Ejemplo CORRECTO:

Teoría de Normalización

- Dependencias funcionales dadas
- Cada relación una clave primaria
 - Realizan condiciones para satisfacer formas normales ⇒ Proceso de normalización.
- Formas normales:

Teoría de Normalización

- Serie de pruebas para ver si satisface una forma normal determinada (Codd 1972)
- Codd propuso tres formas normales: 1FN,2FN,3FN
- Boyce-Codd ⇒ FNBC
- Estas 4 se basan en dependencias funcionales.
- Más adelante ⇒ 4FN (dependencias multivaluadas) y 5FN (dependencias de reunión)
- Normalización ⇒ análisis de los esquemas de relación en base a sus DF y claves primarias
 - Minimizar redundancia.
 - Minimizar anomalías de inserción, actualización y borrado.
- Los esquemas que no superan las pruebas ⇒ se descomponen en esquemas más pequeños que si lo cumplen.

Teoría de Normalización

- No es necesario sólo comprobar por separado los esquemas de relación
- También se debe de cumplir:
 - Propiedad de descomposición sin pérdida (no tuplas espúreas)
 - Conservación de las dependencias.
- Se suele normalizar hasta FNBC ó 4FN
- No es necesario normalizar hasta la forma normal más alta por problemas de rendimiento ⇒ desnormalización.
- Conceptos: clave, superclave, clave candidata y clave primaria
- \blacksquare Atributo primo \Rightarrow miembro de alguna clave.

Establece:

- Dominio de un atributo debe de ser atómico (simple, indivisible)
- Valor de cualquier atributo debe ser un valor individual de ese dominio

Ejemplo:

- Esquema relación departamento con PK numerod
- Cada departamento puede tener varios lugares

DEPARTAMENTO

NOMBRED	NUMEROD	NSS_JEFED	LOCALIZACIONESD
INDIVIDITIED	TYOMETIOD	1100_021 22	100,122,10,01,1202

DEPARTAMENTO

NOMBRED	NUMEROD	NSS_JEFED	LOCALIZACIONESD
Investigación	5	333445555	{Bellaire, Sugarland, Houston}
Administración	4	987654321	{Stafford}
Dirección	1	888665555	{Houston}

- No está en 1FN ⇒ dominio es atómico, pero hay conjunto de valores.
- Cómo pasar a 1FN?

Eliminar el atributo que viola 1FN y colocarlo en otra relación.

NOMBRED NUMEROD NSS_JEFED

cl. p.

LOCALIZACIONES_DEPT
cl. e.

NUMEROD LOCALIZACIOND

cl. p.

Ampliar la PK

DEPARTAMENTO

NOMBRED	NUMEROD	NSS_JEFED	LOCALIZACIONESD
Investigación	5	333445555	Bellaire
Investigación	5	333445555	Sugarland
Investigación	5	333445555	Houston
Administración	4	987654321	Stafford
Dirección	1	888665555	Houston

- Desventaja ⇒ redundancia de tuplas
- Si se sabe máximo número de localizaciones ⇒ 3 campos: localizaciónd1, localizaciond2 y localizaciónd3

Se prohíben atributos compuestos (son multivaluados) Se prohíben relaciones anidadas

EMP_PROY

		PROY	
NSS	NOMBREE	NUMEROP	HORAS

EMP PROY

NSS	NOMBREE	NUMEROP	HORAS
123456789	Smith,John B.	1	32,5
		2	7,5
666884444	Narayan,Ramesh	K. 3	40,0
453453453	English,Joyce A.	1	20,0
		2	20,0
333445555	Wong,Franklin T.	2	10,0
		3	10,0
		10	10,0
		20	10,0
999887777	Zelaya,Alicia J.	30	30,0
		10	10,0
987987987	Jabbar, Ahmad V.	10	35,0
		30	5,0
987654321	Wallace, Jennifer S	5. 30	20,0
		20	15,0
888665555	Borg,James E.	20	nulo

Normalizar a 1FN

EMP_PROY1

NSS NOMBREE

EMP_PROY2

NSS	NUMEROP	HORAS
-----	---------	-------

Segunda Forma Normal (2FN)

- Se basa en el concepto de dependencia funcional total.
- DF total X→Y, si la eliminación de cualquier atributo A de X hace que la dependencia deje de ser válida.
- DF parcial, si al eliminar A , (X-A)→Y es válida.
- NSS,NUMEROP → HORAS, es total
- NSS,NUMEROP → NOMBREE, es parcial
- 2FN → Si está en 1FN y la verificación de DF cuyos atributos del lado izquierdo son parte de la PK
- Si la PK contiene un solo atributo ⇒ está en 2FN.
- R está en 2FN si todo atributo no primo A de R depende funcionalmente de manera total de la PK de R.

Segunda Forma Normal (2FN)

Normalización a 2FN ⇒ nuevos esquemas con DF totales para los atributos no primos.

Tercera Forma Normal (3FN)

Se basa en el concepto de DF transitiva

Una dependencia $X \rightarrow Y$ de R es transitiva si existe un subconjunto de atributos Z que no sea un subconjunto de cualquier clave de R y se cumple que $X \rightarrow Z$ y $Z \rightarrow Y$

- NSS→NUMEROD
- NUMEROD→NSS_JEFED
- Por lo que NSS→NSS_JEFED y además NUMEROD no es clave ni forma parte de alguna clave

Tercera Forma Normal (3FN)

Un esquema R está en 3FN si lo está en 2FN y ningún atributo no primo de R depende transitivamente de la PK.

- Los esquemas no deben de tener dependencias parciales ni transitivas ya que provocan anomalías de actualización.
- Hasta ahora se han visto sobre claves primarias
- Las definiciones generales de 2FN y 3Fn se hacen sobre cualquier campo que sea clave: primaria y candidata
- 2FN ⇒ ningún atributo no primo de R depende parcialmente de alguna clave de R.

Normalización a 2FN

- 3FN \Rightarrow siempre que en una DF no trivial X \rightarrow A se cumple en R, o bien (A) X es una superclave de R o (B) A es un atributo primo de R.
- Si viola ambas condiciones ⇒ no está en 3FN
- Ejemplo: parcelas2 esta en 3FN y Parcelas1 no.

Un esquema de relación R está en 3FN si todo atributo no primo de R es:

- Dependiente funcionalmente de manera total de toda clave de R.
- Dependiente de manera no transitiva de toda clave de R.

FNBC debe de estar en 3FN.

FNBC \Rightarrow siempre que una DF no trivial X \rightarrow A es válida en R, entonces X es una superclave de R.

Diferencia con 3FN es que la condición (B) no está presente (atributo A primo)

Ejemplo: Normalización a FNBC

En la práctica casi todos los esquemas de relación que están en 3FN estarán en FNBC salvo :

Exista una dependencia $X \rightarrow A$ tal que X no es una superclave y A es un atributo primo.

Ejemplo:

ESTUDIANTE,CURSO → PROFESOR PROFESOR→CURSO

IMPARTE

ESTUDIANTE	CURSO	PROFESOR
Narayan	Base de datos	Mark
Smith	Base de datos	Navathe
Smith	Sistemas operativos	Ammar
Smith	Teoría	Schulman
Wallace	Base de datos	Mark
Wallace	Sistemas operativos	Ahamad
Wong	Base de datos	Omiecinski
Zelaya	Base de datos	Navathe

- 1. {ESTUDIANTE, PROFESOR} y {ESTUDIANTE, CURSO}.
- 2. {CURSO, PROFESOR} y {CURSO, ESTUDIANTE}
- 3. {PROFESOR, CURSO} y {PROFESOR, ESTUDIANTE}.

Son una consecuencia de la 1FN

Si tenemos 2 o más atributos multivaluados independientes en el mismo esquema de relación ⇒ repetir valores de cada valor de un atributo con cada valor del otro atributo. Dependencia multivaluada.

Ejemplo:

EMP				
NOMBREE	NOMBREP	NOMBRED		
Smith	X	John		
Smith	Υ	Anna		
Smith	X	Anna		
Sgrith	Y	John		

 Siempre que en una relación se mezclan 2 relaciones 1:N independientes A:B y A:C puede surgir una DMV

DMV: $X \rightarrow Y$ sobre R, donde X e Y son subconjuntos en R:

Existen 2 tuplas t_1 y t_2 en r tales que $t_1[X]=t_2[X]$, entonces deberían de existir también dos tuplas t_3 y t_4 de r con las siguientes propiedades:

$$t_3[X]=t_4[X]=t_1[X]=t_2[X]$$

$$t_3[Y]=t_1[Y] y t_4[Y]=t_2[Y]$$

$$t_3[Z]=t_2[Z] y t_4[Z]=t_1[Z]$$

Donde Z=R-(XUY)

Entonces: $X \rightarrow Y$ y también $X \rightarrow Z$

NOMBREE →→NOMBREP

NOMBREE→→NOMBRED

EMP

NOMBREE	NOMBREP	NOMBRED
Smith	X	John
Smith	Υ	Anna
Smith	X	Anna
Sgrith	Y	John

- (RI1) (Regla reflexiva para DF): Si $X \subset Y$, entonces $X \to Y$.
- (RI2) (Regla de aumento para DF): $\{X \rightarrow Y\} \varnothing XZ \rightarrow YZ$.
- (RI3) (Regla transitiva para DF): $\{X \rightarrow Y, Y \rightarrow Z\} \varnothing X \rightarrow Z$.
- (RI4) (Regla de complemento para DMV): $\{X \rightarrow Y\} \varnothing \{X \rightarrow (R (X \cup Y))\}.$
- (RI5) (Regla de aumento para DMV): Si $X \rightarrow Y y W \subset Z$ entonces $WX \rightarrow YZ$.
- (RI6) (Regla transitiva para DMV): $\{X \rightarrow Y, Y \rightarrow Z\} \varnothing X \rightarrow (Z Y)$.
- (RI7) (Regla de réplica (DF a DMV)): $\{X \rightarrow Y\} \varnothing X \twoheadrightarrow Y$.
- (RI8) (Regla de combinación para DF y DMV): Si X woheadrightarrow Y y existe W con las propiedades de que (a) $W \cap Y$ está vacío, (b) $W \to Z$ y (c) $Y \subset Z$, entonces $X \to Z$.
- Donde X,Y,Z son un subconjunto de $R(A_1,A_2,...,A_n)$

4FN ⇒ no cumple cuando hay DMV no deseables y que se utilizan para descomponer el esquema de relación.

Está en 4FN respecto a un conjunto F de DF y DMV, si para cada DMV no trivial $X \rightarrow Y$ en F+, X es una superclave de R.

NOMBREE	NOMBREPR	NOMBRED
Silva	X	Juan
Silva	Υ	Ana
Silva	X	Ana
Silva	Υ	Juan
Bravo	W	Jaime
Bravo	X	Jaime
Bravo	Y	Jaime
Bravo	Z	Jaime
Bravo	w	Juana
Bravo	X	Juana
Bravo	Ŷ	Juana
Bravo	ż	Juana
Bravo	w	Beto
Bravo	X	Beto
Bravo	Ŷ	Beto
Bravo	ż	Beto
	_	

(b) PROYECTOS_EMP

NOMBREE	NOMBREPR
Silva	X
Silva	Υ
Silva	W
Bravo	X
Bravo	Υ
Bravo	· Z

DEPENDIENTES_EMP

NOMBREE	NOMBRED
Silva	Ana
Silva	Juan
Bravo	Jaime
Bravo	Juana
Bravo	Beto

- Necesario que la descomposición sea sin pérdida:
- \blacksquare R₁=(X U Y) y R₂=(R Y) para una DMV X $\rightarrow\rightarrow$ Y

Especifica una restricción sobre los estados r de R

Todo estado permitido de r de R debe de tener una descomposición de reunión sin pérdida para dar R₁,R₂,...,R_n

*
$$(\pi_{< R1>}(r), \pi_{< R2>}(r), ..., \pi_{< Rn>}(r)) = r$$

- Una DMV es un caso especial de una DR donde n=2
- $DR(R_1,R_2)$ implica una DMV:
 - $(R_1 \cap R_2) \rightarrow (R_1 R_2)$
 - $(R_1 \cap R_2) \rightarrow (R_2 R_1)$
- Una DR es trivial si un esquema Ri en DR(R₁,R₂,...,R_n) es igual a R

 $5FN \Rightarrow Un$ esquema R está en 5FN respecto a un conjunto F de DF, DMV y DR si para cada dependencia de reunión no trivial $DR(R_1,R_2,...,R_n)$ en F+ toda R_i es una superclave de R Ejemplo:

SUMINISTRAR

NOMPROV	NOMBRECOMP	NOMPROY	
Smith	Perno	ProyX	
Smith	Tuerca	ProyY	
Adamsky	Perno	ProyY	
Walton	Tuerca	ProyZ	
Adamsky	Clavo	ProyX	
Adamsky	Perno	ProyX	
Smith	Perno	ProyY	

Sólo tiene claves

- Proveedor v suministra un componente c
- Proyecto p utiliza el componente c
- Proveedor v suministra al menos un componente al proyecto p
- Proveedor v suministra el componente c al proyecto p

Esta restricción especifica una $DR(R_1,R_2,R_3)$, entre tres proyecciones de SUMINISTRAR

- R₁(NOMPROV,NOMBRECOMP)
- R₂(NOMPROV,NOMPROY)
- R₃(NOMBRECOMP, NOMPROY)

SUMINISTRAR

NOMPROV	NOMBRECOMP	NOMPROY	
Smith	Perno	ProyX	
Smith	Tuerca	ProyY	
Adamsky	Perno	ProyY	
Walton	Tuerca	ProyZ	
Adamsky	Clavo	ProyX	
Adamsky	Perno	ProyX	
Smith	Perno	ProyY	

NOMPROV	NOMBRECOMP	NOMPROV	NOMPROY	NOMBRECOMP	NOMPROY
Smith	Perno	Smith	ProyX	Perno	ProvX
Smith	Tuerca	Smith	ProyY	Tuerca	ProyY
Adamsky	Perno	Adamsky	ProyY	Perno	ProyY
Walton	Tuerca	Walton	ProyZ	Tuerca	ProyZ
Adamsky	Clavo	Adamsky	ProyX	Clavo	ProyX

Difícil deducir DR. En la práctica se utiliza poco.

Proceso General Diseño Bases de Datos

- 1. R puede haberse generado al convertir un diagrama E-R en un conjunto de tablas.
- 2. R puede haber sido una sola relación que contuviera todos los atributos que resultan de interés. El proceso de normalización divide a R en relaciones más pequeñas.
- R puede haber sido el resultado de algún diseño ad hoc de relaciones, que hay que comprobar para verificar que satisface la forma normal deseada.
- Proceso desnormalización ⇒ esquema normalizado y hacerlo no normalizado para mejorar rendimiento.
- Duplicación de información + más cuidado en actualizaciones
- Ejemplo: nombre titular + importe prestamo