

MIPS Reference Data

AV.	
	Ì

1

CORE INSTRUCTI	ON SE				OPCODE
NAME MATEMO	NIC	FOR- MAT			/ FUNCT (Hex)
NAME, MNEMO Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned			R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
	addu	R	R[rd] = R[rs] + R[rt]	(2)	0 / 21 _{hex}
Add Unsigned		R	R[rd] = R[rs] + R[rt] $R[rd] = R[rs] & R[rt]$		0 / 24 _{hex}
And	and	K I	R[rt] = R[rs] & R[rt] R[rt] = R[rs] & ZeroExtImm	(3)	
And Immediate	andi	1	$K[R] = K[R] \otimes ZeroExtrimin$ if(R[R] = R[R])	(3)	c_{hex}
Branch On Equal	beq	I	PC=PC+4+BranchAddr	(4)	$4_{\rm hex}$
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{\rm hex}$
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		$0/08_{hex}$
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24_{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25_{hex}
Load Linked	11	Ι	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{\rm hex}$
Load Upper Imm.	lui	Ι	$R[rt] = \{imm, 16'b0\}$		f _{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	Ι	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	Ι	R[rt] = (R[rs] < SignExtImm)? 1	:0(2)	
Set Less Than Imm. Unsigned	sltiv	ıI	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$	(0)	0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{\rm hex}$
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29.
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{\scriptscriptstyle hex}^{}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}

(1) May cause overflow exception
(2) SignExtImm = { 16{immediate[15]}, immediate }
(3) ZeroExtImm = { 16{lb'0}, immediate }

 $\verb"subu" R R[rd] = R[rs] - R[rt]$

- (4) BranchAddr = { 14(immediate [15]), immediate, 2'b0 }
- (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.)
- (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

Subtract Unsigned

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	2
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

ARITHMETIC CORE INSTRUCTION SET

			2	
			•	/FMT/FT
	I	OR-	-	/ FUNCT
NAME, MNEMO	NIC I	MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FΙ	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FΙ	if(! FPcond)PC=PC+4+BranchAddr (4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0///1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	ED	${F[fd],F[fd+l]} = {F[fs],F[fs+l]} +$	11/11//0
Double	auu.u	1.10	$\{F[ft],F[ft+l]\}$	11/11//0
FP Compare Single	c.x.s*	FR	FPcond = (F[fs] op F[ft])? 1:0	11/10// <i>y</i>
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double			$\{F[ft],F[ft+l]\}$) ? 1 : 0	11/11/ //
	rle) (o	p is	==, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+l]} = {F[fs],F[fs+l]}/$	11/11//3
Double	_		{F[ft],F[ft+l]}	11/10/ /2
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	mul.d	FR	${F[fd],F[fd+l]} = {F[fs],F[fs+l]} *$	11/11//2
Double	,	ED	{F[ft],F[ft+l]}	11/10//1
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+l]} = {F[fs],F[fs+l]} -$	11/11//1
Double		ī	$ \{F[ft],F[ft+l]\} F[rt]=M[R[rs]+SignExtImm] $ (2)	31//
Load FP Single	lwc1	1		31//
Load FP Double	ldc1	I	F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+l]=M[R[rs]+SignExtImm+4]	35//
Move From Hi	mfhi	R	R[rd] = Hi	0///10
Move From Lo	mflo	R	R[rd] = III R[rd] = Lo	0///12
Move From Control		R		10/0//0
	mult	R	R[rd] = CR[rs] {Hi,Lo} = R[rs] * R[rt]	0///18
Multiply	multu	R		
Multiply Unsigned Shift Right Arith.	sra	R	())[] ()	0///3
Store FP Single	sra swcl	I	$R[rd] = R[rt] \gg shamt$ M[R[rs] + SignExtImm] = F[rt] (2)	
Store FP Single	SWCI	1	M[R[rs]+SignExtImm] = F[rt] (2) M[R[rs]+SignExtImm] = F[rt]; (2)	
Double	sdcl	I	M[R[rs]+SignExtImm] = F[rt]; (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d//
Double			M[K[IS]+SIGHEXHIMM+4] = F[IT+1]	

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	:
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	if(R[rs]>=R[rt]) PC = Label
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NUMBER	USE	PRESERVED ACROSS A CALL?
0	The Constant Value 0	N.A.
1	Assembler Temporary	No
2-3	Values for Function Results and Expression Evaluation	No
4-7	Arguments	No
8-15	Temporaries	No
16-23	Saved Temporaries	Yes
24-25	Temporaries	No
26-27	Reserved for OS Kernel	No
28	Global Pointer	Yes
29	Stack Pointer	Yes
30	Frame Pointer	Yes
31	Return Address	Yes
	0 1 2-3 4-7 8-15 16-23 24-25 26-27 28 29 30	0 The Constant Value 0 1 Assembler Temporary 2-3 Values for Function Results and Expression Evaluation 4-7 Arguments 8-15 Temporaries 16-23 Saved Temporaries 24-25 Temporaries 26-27 Reserved for OS Kernel 28 Global Pointer 29 Stack Pointer 30 Frame Pointer

0 / 23_{hex}

OPCOL	DES, BAS	E CONVER	SION, A	SCII	SYMB	OLS		(3)	
		(2) MIPS	,	Doc:	Hexa-	ASCII	Doc:	Hexa-	ASCI
opcode	funct	funct	Binary		deci-	Char-	Deci-	deci-	Char
(31:26)	(5:0)	(5:0)		mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000) ()	0	NUL	64	40	@
(-)		sub.f	00 0001		1	SOH	65	41	A
i	srl	mul.f	00 0010		2	STX	66	42	В
jal	sra	div.f	00 0011		3	ETX	67	43	Č
beq	sllv					EOT	68		D
bcq bne	DIIV	sqrt.f	00 0100 00 0101		4 5	ENQ	69	44 45	E
blez	srlv	abs.f	00 0101		6	ACK	70	45	E F
bgtz	srav	mov.f	00 0110		7	BEL	71	47	G
		neg.f					-		
addi	jr		00 1000		8	BS	72	48	Η
addiu	jalr		00 1001		9	HT	73	49	Ĩ
siti	movz		00 1010		a	LF	74	4a	J
sltiu	movn		00 1011		<u>b</u>	VT	75	<u>4b</u>	K
andi		round.w.f	00 1100		C	FF	76	4c	L
ori	break	trunc.w.f	00 1101		d	CR	77	4d	M
xori		ceil.w.f	00 1110) 14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001		11	DC1	81	51	Q
. /	mflo	movz.f	01 0001		12	DC2	82	52	R
	mtlo	movn.f	01 0011		13	DC3	83	53	S
		٧ 11							
			01 0100		14	DC4	84	54	T
			01 0101		15	NAK	85	55	U
			01 0110		16	SYN	86	56	V
	mult		01 0111		17	ETB	87	57	W
			01 1000		18	CAN	88	58	X
	multu		01 1001		19	EM	89	59	Y
	div		01 1010		la	SUB	90	5a	Z
	divu		01 1011		lb	ESC	91	5b	[
			01 1100		lc	FS	92	5c	\
			01 1101	29	1d	GS	93	5d]
			01 1110	30	le	RS	94	5e	^
			01 1111	31	1f	US	95	5f	_
1b	add	cvt.s.f	10 0000	32	20	Space	96	60	-
1h	addu	cvt.d.f	10 0000		21		97	61	a
lwl	sub	cvc.u.j	10 0001		22	!	98	62	b
lw	subu		100011		23	#	99	63	c
1bu	and	cvt.w.f	10 0100		24	\$	100	64	d
lhu	or	CVL.W.J	10 0100		25	%	101	65	e
lwr	xor		10 0101		26		102	66	f
	nor		10 0111		27	<u>&</u>	102	67	
ah	1101								g
sb			10 1000		28	(104	68	h
sh	a1+		10 1001		29)	105	69	i
swl	slt		10 1010		2a		106	6a	į.
sw	sltu		10 1011		2b	+	107	6b	k
			10 1100		2c	,	108	6c	1
			10 1101		2d	-	109	6d	m
swr			10 1110		2e	;	110	6e	n
cache			10 1111		<u>2f</u>		111	<u>6f</u>	0
11	tge	c.f.f	11 0000		30	0	112	70	P
lwcl	tgeu	c.un.f	11 0001		31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010		32	2	114	72	r
pref	tltu	c.ueq.f	11 0011		33	3	115	73	S
	teq	c.olt.f	11 0100		34	4	116	74	t
idc1		c.ult.f	11 0101		35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	v
		c.ule.f	11 0111		37	7	119	77	w
sc		c.sf.f	11 1000		38	8	120	78	x
swcl		c.si.j	11 1000		39	9	121	79	
swc2			11 1001		39 3a		121	79 7a	y z
		c.seq.f	11 1010			:			
BWC2			11 101	59	3b	;	123	7b	{
BWC2		c.ngl.f							
		c.lgi,	11 1100		3c	<	124	7c	
sdcl		c.lt.f c.nge.f	11 1100 11 1101	61	3d	=	125	7d	}
		c.lt.f	11 1100	61					

(1) opcode) 31:26) == 0

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023

IEEE Single Precision and Double Precision Formats:

IEEE	4 754 Sym	bols
Exponent	Fraction	Object
0	0	± 0
0	≠ 0	± Denorm
1 to MAX - 1	anything	± F1. Pt. Num
MAX	0	± ∞
MAX	≠ 0	NaN
S.P. MAX = 2	255, D.P. N	MAX = 2047

DATA ALIGNMENT

	Double Word								
		Wo	ord			Wo	ord		
	Half	word	Halfword		Half	word	Half	word	
ĺ	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 HON CONTROL REC	113	LING. UAU	,,	- 711	, ,		55			
В		Interrupt	٦			Exce	ptio	n		
D		Mask				Co	ode			
31	15		8		6			2		
		Pending				Ţ	J		Е	Ι
		Interrupt				N	1		L	Е
	15		0				1		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, \overrightarrow{IE} = Interrupt Enable **EXCEPTION CODES**

	,,, ,,,	DLO			
Number	Name	Cause of Exception	Numbe	r Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Вр	Breakpoint Exception
4	AdEL	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE 1	Floating Point Exception

SIZE PREFIXES

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
1000¹	Kilo-	K	210	Kibi-	Ki	1000°	Exa-	E	260	Exbi-	Ei
1000²	Mega-	M	220	Mebi-	Mi	1000 ⁷	Zetta-	z	270	Zebi-	Zi
1000³	Giga-	G	230	Gibi-	Gi	1000s	Yotta-	Y	250	Yobi-	Yi
1000 ⁴	Tera-	T	240	Tebi-	Ti	1000°	Ronna-	R	290	Robi-	Ri
1000 ⁵	Peta-	P	250	Pebi-	Pi	100010	Quecca-	Q	2100	Quebi-	Qi

⁽²⁾ opcode(31:26) == 17_{ten} (11_{bex}); if fmt(25:21)== 16_{ten} (10_{bex}) f = s (single); if fmt(25:21)== 17_{ten} (11_{bex}) f = d (double)

^{© 2021} by Elsevier Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 6th ed.