Familienname:	Bsp.	1	2	3	4	$\sum /40$			
Vorname:									
Matrikelnummer:									
Studienkennzahl(en):		Note:							

Einführung in die Analysis

Roland Steinbauer, Sommersemester 2012

3. Prüfungstermin (14.12.2012)

Gruppe A

- 1. Definitionen, Formulierungen und Beweise.
 - (a) Definiere die folgenden Begriffe (je 1 Punkt): gleichmäßig stetige Funktion, Teilfolge einer reellen Folge, Cauchy-Folge
 - (b) Formuliere und beweise den Zwischenwertsatz (Existenz einer Nullstelle). (6 Punkte)
 - (c) Beantworte folgende Fragen zu obigem Beweis. Verweise explizit auf deine Ausarbeitung von (b). (3 Punkte) Wo wird die Vollständigkeit von \mathbb{R} verwendet? Wo wird die Stetigkeit von fverwendet? Ist die Nullstelle eindeutig?
- 2. Folgen & Konvergenz.
 - (a) Formuliere und beweise das Sandwich-Lemma. (4 Punkte)
 - (b) Berechne die Grenzwerte der folgenden Folgen (je 2 Punkte)

$$\sqrt{1+\frac{1}{n}},$$
 $\sqrt{n+\sqrt{n}}-\sqrt{n}$

- (c) Diskutiere, was es anschaulich für eine reelle Folge bedeutet, gegen einen Grenzwert (in \mathbb{R}) zu konvergieren. (2 Punkte)
- 3. Vermischtes.
 - (a) Skizziere die Exponential- und die Logarithmusfunktion und gib die Limiten $\lim_{x\to-\infty} e^x$, $\lim_{x\to\infty} e^x$, $\lim_{x\to\infty} \log(x)$, $\lim_{x\to\infty} \log(x)$ an. (2 Punkte)
 - (b) Gib je eine reelle Reihe mit den folgenden Eigenschaften an: absolut konvergent, konvergent aber nicht absolut konvergent, divergent (3 Punkte)
 - (c) Diskutiere die folgende Aussage "Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist stetig, falls sie ohne Absetzen gezeichnet werden kann." (3 Punkte)
 - (d) Untersuche die folgenden Reihen auf absolute Konvergenz. (je 2 Punkte)

$$\sum_{n=0}^{\infty} \frac{(-1)^n (n)!}{n^n}, \qquad \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!}$$

Bitte umblättern!

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (Je 3 Punkte)

- (a) Eine stetige Funktion nimmt auf einem beschränkten Intervall Maximum und Minimum an.
- (b) Jede gleichmäßig stetige Funktion ist auch stetig.

Familienname:	Bs	p.	1	2	3	4	$\sum /40$			
Vorname:										
Matrikelnummer:										
Studienkennzahl(en):		Note:								

Einführung in die Analysis

Roland Steinbauer, Sommersemester 2012

3. Prüfungstermin (14.12.2012)

Gruppe B

- 1. Reihen & Konvergenz.
 - (a) Formuliere und Beweise den Quotiententest für Reihen. (5 Punkte)
 - (b) Untersuche die folgenden Reihen auf absolute Konvergenz. (4 Punkte)

$$\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} \qquad \sum_{n=0}^{\infty} \frac{(-1)^n (n)!}{n^n}$$

- (c) Begründe anschaulich, warum eine Reihe $\sum a_n$ mit $a_n > 0$ für alle n überhaupt konvergieren kann. (3 Punkte)
- 2. Definitionen, Formulierungen und Beweise.
 - (a) Definiere die folgenden Begriffe (je 1 Punkt): Bestimmte Divergenz einer reellen Folgen gegen ∞ , Konvergenz einer Reihe, stetige Funktion.
 - (b) Formuliere und beweise den Zwischenwertsatz (Existenz einer Nullstelle). (6 Punkte)
 - (c) Beantworte folgende Fragen zu obigem Beweis. Verweise explizit auf deine Ausarbeitung von (b). (3 Punkte) Wo wird die Vollständigkeit von \mathbb{R} verwendet? Wo wird die Stetigkeit von fverwendet? Ist die Nullstelle eindeutig?
- 3. Vermischtes.
 - (a) Skizziere die Sinus- und die Cosinusfunktion im Intervall $[-2\pi, 2\pi]$. (2 Punkte)
 - (b) Gib je eine reelle Folge mit den folgenden Eigenschaften an: divergent aber beschränkt, unbeschränkt aber nicht bestimmt divergent, divergent und nach oben sowie nach unten unbeschränkt (3 Punkte)
 - (c) Diskutiere die folgende Aussage "Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist stetig, falls sie ohne Absetzen gezeichnet werden kann." (3 Punkte)
 - (d) Berechne $\lim_{n\to\infty} \frac{(-1)^n(n+4)}{n^2+7n-1}$ (2 Punkte)

Bitte umblättern!

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (Je 3 Punkte)

- (a) Für eine konvergente Folge $(a_n)_n$ mit $a_n < 0$ für alle n gilt $\lim_{n \to \infty} a_n < 0$.
- (b) Für eine Funktion $f:D\to\mathbb{R}$ und $a\in D$ gilt:

$$f$$
 stetig in $a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$