#### homework 3

```
In [1]:
```

```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

# **Numpy**

# **Cosine Similarity**

Calculate the cosine similarity of 2 vectors (as numpy arrays).

Give vector  $\vec{\mu}$  and vector  $\vec{v}$ , the cosine similarity of them is

$$S_{\overrightarrow{\mu}\overrightarrow{v}} = \frac{\overrightarrow{\mu} \cdot \overrightarrow{v}}{||\overrightarrow{\mu}||_2 \times ||\overrightarrow{v}||_2}$$

Where  $||\cdot||_2$  is the L-2 norm.

Question: Define a CosSim function, with inputs are two one-D arrays, and the output is their cosine similarity.

```
In [2]:
```

```
# your code here
def CosSim(u, v):
   return u.dot(v) / (np.sqrt(u.dot(u) * v.dot(v)))
```

### In [3]:

```
# validate your results

x = np.linspace(-1,1,100)
y = np.linspace(1,-1,100)

print(
    """The cosine similarity between x and x is {:.5f}

The cosine similarity between x and y is {:.5f}
    """.format(CosSim(x,x), CosSim(x,y))
    )
```

The cosine similarity between x and x is 1.00000 The cosine similarity between x and y is -1.00000

# Linear Algebra

Solve the following Linear equation system:

$$\begin{cases} 4x + 3y + 2z = 25 \\ -2x + 2y + 3z = -10 \\ 3x - 5y + 2z = -4 \end{cases}$$

**Question:** Define a 2-d array A and a 1-d array b according to the above equation, which satisfy AX = b, where  $X = (x, y, z)^T$ 

#### In [4]:

```
# your code here
A = np. array([[4, 3, 2], [-2, 2, 3], [3, -5, 2]])
b = np. array([25, -10, -4])

print (A)
print (b)
```

```
[[ 4 3 2]
[-2 2 3]
[ 3 -5 2]]
[ 25 -10 -4]
```

**Question:** Solve the equation, to get the values of X.

Hint: you may use <code>numpy.linalg.inv()</code> to get the inverse of a matrix.

### In [5]:

```
print(np. matmul(np. linalg. inv(A), b))
```

[ 5. 3. -2.]

# **Baby Names Data Analysis**

Load the baby\_name\_NY. txt dataset, which contains the baby names in New York city.

## In [6]:

```
# load the data
column_names = ['State', 'Sex', 'Year', 'Name', 'Count']
babynames = pd.read_csv("./baby_name_NY.TXT", header=None, names=column_names)
babynames.head(5)
```

### Out[6]:

|   | State | Sex | Year | Name     | Count |
|---|-------|-----|------|----------|-------|
| 0 | NY    | F   | 1910 | Mary     | 1923  |
| 1 | NY    | F   | 1910 | Helen    | 1290  |
| 2 | NY    | F   | 1910 | Rose     | 990   |
| 3 | NY    | F   | 1910 | Anna     | 951   |
| 4 | NY    | F   | 1910 | Margaret | 926   |

Question: What's the data types of each column?

### In [7]:

```
babynames.dtypes
```

# Out[7]:

State object
Sex object
Year int64
Name object
Count int64
dtype: object

Question: Find the most popular baby name in NY in 2018

```
In [8]:
```

```
print(babynames.loc[(babynames.Year == 2018) & (babynames.State == "NY")].sort_values("Count",ascen
```

Liam

Question: For female and male, what's the most popular baby names in 2017 respectively?

# In [9]:

```
print("Female:", babynames. loc[(babynames. Sex == "F")]. loc[(babynames. Year == 2017)]. sort_values("Coprint("Male:", babynames. loc[(babynames. Sex == "M")]. loc[(babynames. Year == 2017)]. sort_values("Coun")
```

Female: Olivia Male: Liam

Question: List all baby names that start with J.

#### In [10]:

```
for i in babynames.loc[((babynames.Name < "K") & (babynames.Name > "J"))]["Name"].unique():
    print(i)
Josephine
Jean
Julia
Jennie
Jane
Joan
Jeanette
Jessie
Jeanne
Jeannette
Janet
Johanna
June
Janice
Judith
Joyce
John
Jacqueline
Tenny
```

Question: Sort names by their length, then print the top 5 by length.

#### In [11]:

```
# babynames. sort_values("Name", ascending = False, key = lambda x, y: len(x) < len(y) ? True : (len(x)
for i in sorted(babynames. Name. unique(), key = lambda x: -len(x))[:5]:
    print(i)</pre>
```

Michaelanthony Maryelizabeth Marycatherine Samanthamarie Oluwadarasimi

Question: Name whose popularity has changed the most.

**Hint**: First you may need to define change in popularity, i.e., for each name, you need to find the difference between the name's maximum occurrence and minimum occurrence.

#### In [12]:

```
num = len(babynames)
name_map = \{\}
for i in range (num):
    record = babynames.iloc[i]
    name = record["Name"]
    ct = record["Count"]
    if (name in name map):
        val = name_map[name]
        val["min"] = min(val["min"], ct)
        val["max"] = max(val["max"], ct)
    else:
        name_map[name] = {"min":ct, "max":ct}
\max \text{ change} = 0
max name = None
for key, val in name map.items():
    change = val["max"] - val["min"]
    if (change > max change):
        max change = change
        max_name = key
print("Name:", max_name, ", Change:", max_change)
```

Name: Robert , Change: 10020

# Single variable analysis

The Salaries. csv dataset contains the salaries of employees in San Francisco, see details <u>here</u> (https://transparentcalifornia.com/salaries/san-francisco/).

# In [13]:

```
Salaries_df = pd.read_csv("Salaries.csv", index_col = "Id")
Salaries_df
```

# Out[13]:

|    | EmployeeName       | TotalPayBenefits | Year |
|----|--------------------|------------------|------|
| ld |                    |                  |      |
| 1  | NATHANIEL FORD     | 567595.43        | 2011 |
| 2  | GARY JIMENEZ       | 538909.28        | 2011 |
| 3  | ALBERT PARDINI     | 335279.91        | 2011 |
| 4  | CHRISTOPHER CHONG  | 332343.61        | 2011 |
| 5  | PATRICK GARDNER    | 326373.19        | 2011 |
| 6  | DAVID SULLIVAN     | 316285.74        | 2011 |
| 7  | ALSON LEE          | 315981.05        | 2011 |
| 8  | DAVID KUSHNER      | 307899.46        | 2011 |
| 9  | MICHAEL MORRIS     | 303427.55        | 2011 |
| 10 | JOANNE HAYES-WHITE | 302377.73        | 2011 |
| 11 | ARTHUR KENNEY      | 299494.17        | 2011 |
| 12 | PATRICIA JACKSON   | 297608.92        | 2011 |
| 13 | EDWARD HARRINGTON  | 294580.02        | 2011 |
| 14 | JOHN MARTIN        | 292671.62        | 2011 |
| 15 | DAVID FRANKLIN     | 286347.05        | 2011 |
| 16 | RICHARD CORRIEA    | 286213.86        | 2011 |
| 17 | AMY HART           | 284720.43        | 2011 |
| 18 | SEBASTIAN WONG     | 278569.21        | 2011 |
| 19 | MARTY ROSS         | 276434.22        | 2011 |
| 20 | ELLEN MOFFATT      | 274550.25        | 2011 |
| 21 | VENUS AZAR         | 274190.27        | 2011 |
| 22 | JUDY MELINEK       | 273771.21        | 2011 |
| 23 | GEORGE GARCIA      | 273702.71        | 2011 |
| 24 | VICTOR WYRSCH      | 270672.63        | 2011 |
| 25 | JOSEPH DRISCOLL    | 270324.91        | 2011 |
| 26 | GREGORY SUHR       | 267992.59        | 2011 |
| 27 | JOHN HANLEY        | 265784.56        | 2011 |
| 28 | RAYMOND GUZMAN     | 265463.46        | 2011 |
| 29 | DENISE SCHMITT     | 264074.60        | 2011 |
| 30 | MONICA FIELDS      | 261366.14        | 2011 |

|        | <b>EmployeeName</b>    | TotalPayBenefits | Year |
|--------|------------------------|------------------|------|
| ld     |                        |                  |      |
|        |                        |                  |      |
| 148625 | Lorraine Rosenthal     | 12.89            | 2014 |
| 148626 | Renato C Gurion        | 7.24             | 2014 |
| 148627 | Paulet Gaines          | 0.00             | 2014 |
| 148628 | Brett A Lundberg       | 0.00             | 2014 |
| 148629 | Mark W Mcclure         | 0.00             | 2014 |
| 148630 | Elizabeth Iniguez      | 0.00             | 2014 |
| 148631 | Randy J Keys           | 0.00             | 2014 |
| 148632 | Andre M Johnson        | 0.00             | 2014 |
| 148633 | Sharon D Owens-Webster | 0.00             | 2014 |
| 148634 | Edward Ferdinand       | 0.00             | 2014 |
| 148635 | David M Turner         | 0.00             | 2014 |
| 148636 | James S Kibblewhite    | 0.00             | 2014 |
| 148637 | Andrew J Enzi          | 0.00             | 2014 |
| 148638 | Kadeshra D Green       | 0.00             | 2014 |
| 148639 | Lennard B Hutchinson   | 0.00             | 2014 |
| 148640 | Richard A Talbert      | 0.00             | 2014 |
| 148641 | Charlene D Mccully     | 0.00             | 2014 |
| 148642 | Raphael Marquis Goins  | 0.00             | 2014 |
| 148643 | Dominic C Marquez      | 0.00             | 2014 |
| 148644 | Kim Brewer             | 0.00             | 2014 |
| 148645 | Randy D Winn           | 0.00             | 2014 |
| 148646 | Carolyn A Wilson       | 0.00             | 2014 |
| 148647 | Not provided           | 0.00             | 2014 |
| 148648 | Joann Anderson         | 0.00             | 2014 |
| 148649 | Leon Walker            | 0.00             | 2014 |
| 148650 | Roy I Tillery          | 0.00             | 2014 |
| 148651 | Not provided           | 0.00             | 2014 |
| 148652 | Not provided           | 0.00             | 2014 |
| 148653 | Not provided           | 0.00             | 2014 |
| 148654 | Joe Lopez              | -618.13          | 2014 |
|        |                        |                  |      |

148654 rows × 3 columns

Question: Make a bar plot to show the number of DataRecords by year.

#### In [68]:

```
font = {"family":"Times New Roman", "weight": "bold", "size":12}
x = Salaries_df.sort_values("Year")["Year"].unique()
y1 = []
y11 = []
y12 = []
y13 = []
y14 = []
y2 = []
y3 = []
y4 = []
for i in x:
    y1.append(Salaries_df.loc[Salaries_df.Year == i]["Year"].count())
    yll.append(Salaries df.loc[(Salaries df.Year == i) & (Salaries df.TotalPayBenefits < 865)]["Yea
    y12. append (Salaries_df. loc[(Salaries_df. Year == i) & (Salaries_df. TotalPayBenefits < 10000)]["Y
    y13. append(Salaries df. loc[(Salaries df. Year == i) & (Salaries df. TotalPayBenefits < 100000)]['
    y14. append (Salaries df. loc[(Salaries df. Year == i) & (Salaries df. TotalPayBenefits < 500000)]['
    y2. append(Salaries df. loc[Salaries df. Year == i]["TotalPayBenefits"]. max())
    y3. append (Salaries_df. loc[Salaries_df. Year == i]["TotalPayBenefits"]. mean())
    y4. append(Salaries_df. loc[Salaries_df. Year == i]["TotalPayBenefits"]. median())
fig = plt.figure(figsize=(12, 9))
ax1 = fig. add\_subplot(2, 1, 1)
ax2 = fig. add subplot(2, 1, 2)
ax1. grid(b = True, axis = "y")
ax1. set_xlabel('Year', font)
ax1. set ylabel ('Count', font)
ax1.bar(x, y1, width=0.2, color='#250250', label='Rich')
ax1.bar(x, y14, width=0.2, color='#EE3333', label='Middle Class')
ax1.bar(x, y13, width=0.2, color='#6699DD', label='Low Income')
ax1.bar(x, y12, width=0.2, color='#55AA33', label='Poor')
ax1. bar(x, y11, width=0.2, color='#FFFF33', label='Very Very Poor')
ax1.legend(loc='upper center', prop = font)
ax1. xaxis. set major locator(plt. MultipleLocator(1))
ax1. set ylim(0, 40000)
ax1. yaxis. set major locator(plt. MultipleLocator(5000))
axl. set title ("Statistics on Employees' Salary", font)
ax2. grid(b = True, axis = "y")
ax2. set_xlabel('Year', font)
ax2. set ylabel ('Salary', font)
ax2.bar(x, y2, width=0.2, color='#250250', label='Max Salary')
ax2. bar(x+0.2, y3, width=0.2, color='#EE3333', label='Average Salary')
ax2. bar(x+0.4, y4, width=0.2, color='#25DEEE', label='Median Salary')
ax2. legend (loc='upper center', prop = font)
ax2. xaxis. set major locator(plt. MultipleLocator(1))
ax2. yaxis. set major locator(plt. MultipleLocator(50000))
```



Question: Make a histogram to show distribution of the variable TotalPayBenefits.

#### In [16]:

```
x = []
y = []
step = 2000
for i in range(-1000, 570000, step):
    x. append(i)
for i in range(len(x)):
    y. append(Salaries_df. loc[(Salaries_df. TotalPayBenefits >= x[i]) & (Salaries_df. TotalPayBenefits

fig = plt. figure(figsize=(8, 6))
    axes = fig. add_axes([0, 0, 1, 1]) # left, bottom, width, height (range 0 to 1)
    axes. bar(x, y, fc = "gold", width = step)
    plt. xlim(-1000, 570000)
    axes. set_xlabel('TotalPayBenefits')
    axes. set_ylabel('Count')
    axes. set_title('Distribution of TotalPayBenefits')
```

# Out[16]:

Text (0.5, 1, 'Distribution of TotalPayBenefits')



Question: Calculate the (min, 1st quartile, median, 3rd quartile, max) of the variable TotalPayBenefits.

### In [17]:

```
t = Salaries_df.sort_values("TotalPayBenefits")
t = t["TotalPayBenefits"]

print("min", t.iloc[0])
print("1st quartile", t.iloc[int(len(t) / 4)])
print("median", t.iloc[int(len(t) / 2)])
print("3st quartile", t.iloc[int(3 * len(t) / 4)])
print("max", t.iloc[int(len(t) - 1)])
```

```
min -618.13
1st quartile 44064.41
median 92405.97
3st quartile 132876.5
max 567595.43
```

Question: Make a box plot for the variable TotalPayBenefits.

#### In [69]:

```
fig = plt.figure(figsize=(8, 6))
axes = fig.add_axes([0, 0, 1, 1])
axes.boxplot(t)
axes.set_ylabel('TotalPayBenefits')
axes.set_xticklabels('')
axes.set_title('Boxplot of TotalPayBenefits');
```



Question: What you can conclude from the box plot above?

Most of people hold a salary lower than 300,000¥, while there literally exists a handful of people have an extremely high salary.

Over a half of people(person-years) EVEN can't get a salary over 100,000¥ annually.

# The end