PERFORMANCE METRICS

Date	18 November 2022	
Team ID	PNT2022TMID40873	
Project Name	University Admit Eligibility Predictor	
Maximum Marks	10 Marks	

PERFORMANCE METRICS:

S.No.	PARAMETER	VALUES	SCREENSHOT
1.	Metrics	Regression Model: MAE - , MSE - , RMSE - , R2 score - Classification Model: Confusion Matrix - , Accuracy Score - & Classification Report -	Model Building Gradient Boosting Regression In [44]: rgr = GradientBoostingRegressor() rgr.fst(X_train_y_rrain) Out[44]: GradientBoostingRegressor() In [45]: rgr.score(X_test,y_test) Out[45]: 0.784593723173658 In [46]: y_predictrgr.predict(X_test) In [47]: print('Mean Absolute Error:', mean_sbuolute_error(y_test, y_predict)) print('Moot Nean Squared Error:', me.aque(mean_squared_error(y_test, y_predict)) print('Moot Nean Squared Error:', ne.aque(mean_squared_error(y_test, y_predict)) Hean Absolute Error: 0.004092358380002498 Root Nean Squared Error: 0.004092358380002498 Root Nean Squared Error: 0.07058582280240886
			Data Correlation
			One [11] GRE Score TOER Score University Rating SOP LOR CGPA Research Chance of Admit
			core_matrix = df.core() plt:figner(figite = (15, 12)) sos.heatemp(core.matrix_monot*rue_fint=0.2f*) plt:title("corelation Matrix", fontsize = 20) plt.tohou()
			Correlation Matrix -10
		09 100 100 070 066 057 083 049 079 -09	
		- 08 G- 661 666 873 100 873 072 044 068	
			등 - 656 637 666 877 100 667 643 647 - 106
			6 083 083 075 072 067 100 052 087 085 085 085 085 085 085 085 085 085 085
			1

2.	Tune the Model	Hyper parameter Tuning - Validation Method -	In (48): In (40): In (50):	Inter 1. Logistic Company and Condense State () . ma_tter
			In [Si]:	<pre>Ampure pickle pickle.houndTr, mpan("university.pkl", 'ub')) model = pickle.load(dpan("university.pkl", 'ub'))</pre>