

EPICS module

Release 5.0.7.210830

Document: MAN_SOFT_EPICS

Issue: A

Date (DD/MM/YYYY): 30/08/2021

Number of pages: 66

Phone: +33 (0)4 66 29 43 88 - info@symetrie.fr

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

INFORMATION AND PROPERTY

SYMETRIE

10, Allee Charles Babbage

30035 Nimes - Cedex 1

FRANCE

Phone: +33 (0)4 66 29 43 88

Technical support: info@symetrie.fr

This document is the property of SYMETRIE. It can be neither disclosed nor duplicated without prior authorization. Use only allowed within the scope of an order to SYMETRIE or its authorized representatives.

MODIFICATIONS TABLE

Issue	Date	Pages	Nature of change
Α	30/08/2021	All	Document creation

APPROBATION TABLE

A	30/08/2021	AND		
		A. L'HOSTIS	P. NOIRE	T. ROUX
		Mechatronic engineer	Product R&D manager	Technical manager
Issue	Date	Prepared by	Checked by	Released by

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

SUMMARY

In	format	on and property	2	
N	lodifica	tions table	2	
Α	pproba	ion table	2	
Sı	ummary	······································	3	
1	Intro	Introduction 5		
2	Requ	irements	6	
	2.1	Hardware requirements	6	
	2.2	Software requirements		
3	Insta	llation under Linux		
	3.1	Core OS package installation		
	3.2	Installation folder		
	3.3	libssh2 Installation		
	3.4	EPICS Base, modules and extensions		
	3.4.1	EPICS Base		
	3.4.2	IPAC module	10	
	3.4.3	Seq module	10	
	3.4.4	Async module	11	
	3.4.5	Calc module	12	
	3.4.6	Autosave module	13	
	3.4.7	Busy module	13	
	3.4.8	Motor module	14	
	3.4.9	PMAC module		
	3.4.10	,		
	3.4.1	EDM installation		
	3.4.12	·		
	3.4.13	• •		
4		ning the Test Application		
	4.1	EPICS base path in terminal default paths list		
	4.2	Running the EPICS database		
	4.3	Running the PyDM screens		
	4.3.1	Start the PyDM main screen		
	4.3.2	Main screen presentation		
	4.3.3	Advanced states screen presentation	33	

|| Symétrie

Software user manual

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

	4.3.4	Parameters screen presentation	36
	4.4	Running the EDM screens	41
	4.4.1	Start the EDM main screen	41
	4.4.2	Main screen presentation	41
	4.4.3	Advanced states screen presentation	44
	4.4.4	Parameters screen presentation	48
5	EPIC	S records	53
	5.1	Presentation	53
	5.2	Basic example	63
6	Soft	ware release history	66
	6.1	Release 5.0.7.210830	66
	6.2	Release 5.0.5.191103	66

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

1 INTRODUCTION

This document describes the installation and use of the EPICS support module for the SYMETRIE positioning hexapods. This module is compatible with controller hardware based on the Delta Tau Power PMAC motion controller. This EPICS support module utilises the SYMETRIE Application programming interface (API) and is built on the existing EPICS "pmac" module which communicates with the hardware controller by opening an SSH connection. This document describes the steps required to install the EPICS support module and presents the example application provided with the support module. The example application can be integrated into any existing EPICS control system or used as a base for writing a custom integration.

The SYMETRIE Hexapod EPICS software module contains an asyn driver and a set of GUI screens for PyDM and EDM. This module is built on top of the pmac software module and makes use of the existing low level ssh asyn driver. The module uses standard EPICS records to make integration with existing facilities easy to manage.

The module contains a demonstration application with EPICS database files and start-up scripts to quickly get started with a test EPICS IOC. There are some PyDM and EDM screens that can be used to interact with the hexapod records which are used within the demonstration application.

This document often refers to the Application programming interface (API) manual. The API manual offers detailed description of the command's parameters and of the status, while this EPICS manual concentrates on the EPICS module description. If an information on a command or a status cannot be found in this manual, please refer to the API manual.

The release is number is composed as followed: MajorVersion.MinorVersion.SvnNumber.APIversion.

MajorVersion	Software family major version number.	
	This number must match with the MajorVersion number of the SYM_Positioning version, the API version, and other interface libraries.	
MinorVersion	Software family minor version number.	
	This number must match with the MinorVersion number of the SYM_Positioning version, the API version, and other interface libraries.	
SvnNumber	Trace the EPICS module version.	
APIversion	Give the API compatibility version.	
	It makes the link with the Application programming interface (API) manual.	

The development and most of this documentation has been realized by the company Observatory Sciences (http://www.observatorysciences.co.uk/).

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

2 REQUIREMENTS

This section details the hardware and software requirements for using the SYMETRIE hexapod EPICS software module.

2.1 HARDWARE REQUIREMENTS

The following hardware is required to run the support module code:

- Standard PC with an Ethernet port.
- SYMETRIE Hexapod control enclosure present on the network. For operation with the EPICS device support
 code the controller should be configured to have a static IP address and this address must be specified in
 the start-up script.

2.2 SOFTWARE REQUIREMENTS

The following software must be installed to run the driver and device support code:

- Linux operating system. The support module code has been written using general asyn, motor, pmac and EPICS base function calls and methods and as a result will be fully functional on any system that can compile the required versions of EPICS base and the asyn, motor and pmac modules. The device support code was developed on Debian 10 (64 bit).
- EPICS Base (version 3.15.7 or later)
- EPICS module 'asyn' (version 4.38 or later)
- EPICS module 'pmac' (version 2.4.10 or later).
- EDM to run engineering screens, if they are required.
- PyDM to run the ui screens, if they are required.
- libssh2 library (not an EPICS module, see installation instructions below).

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3 INSTALLATION UNDER LINUX

This section covers installation of the support module for the SYMETRIE hexapod on a Linux operating system.

3.1 CORE OS PACKAGE INSTALLATION

To be able to compile and run all software modules there are a set of system development tools and libraries that must first be installed. To install all of the necessary tools and libraries the following commands should be executed from a terminal command line.

The packages below are required for compiling the EPICS base applications and support modules required by the SYMETRIE hexapod module.

```
sudo apt-get install build-essential sudo apt-get install re2c sudo apt-get install libssh2-1-dev sudo apt-get install libsost-all-dev
```

Git can be used to download many of the EPICS modules although it is not necessary.

```
sudo apt-get install git
```

The packages below are required for the setup of the PyDM environment and to be able to execute the application. Note the use of these packages is not necessarily the only way to install and run PyDM, they are required for the installation method described below.

```
sudo apt-get install python3-venv
sudo apt-get install libxcb-xinerama0-dev
```

The packages below are required for the compilation of the EDM application. Note the installation of EDM can be fairly complex and these packages were required for a Debian installation. The exact package requirements may differ for alternative Linux distributions.

```
sudo apt-get install multiarch-support
sudo apt-get install libxt-dev
sudo apt-get install libxmu-dev
sudo apt-get install libmotif-dev
sudo apt-get install libxtst-dev
sudo apt-get install libxtst-dev
sudo apt-get install libgif-dev
```

One additional package is required for EDM that could not be found with apt-get. Instead, it can be manually installed.

```
cd ~/Downloads
wget http://ftp.uk.debian.org/debian/pool/main/libx/libxp/libxp6_1.0.2-2_amd64.deb
sudo dpkg -i ~/Downloads/libxp6_1.0.2-2_amd64.deb
sudo ln -s /usr/lib/x86_64-linux-gnu/libXp.so.6 /usr/lib/x86_64-linux-gnu/libXp.so
```


EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.2 INSTALLATION FOLDER

The installation root is defined as follows

/home/\$USER/epics/R3.15.7

\$USER is an environment variable representing the user session name. R3.15.7 is the EPICS base version used to develop the SYMETRIE hexapod support module.

The environment variable \$HOME will be used to define the home path to be independent of the user and to shorter the home path.

\$HOME/epics/R3.15.7

An environment variable can be read with the command "printenv":

printenv HOME

Please create the following folder:

mkdir -p \$HOME/epics/R3.15.7/download

A more detailed explanation is given on the choice made for this installation folder at the chapter 3.4.

The environment variable cannot be used in the RELEASE files of an EPICS build. When that it is the case, the user "symetrie" will be used as an example, giving the following path:

/home/symetrie/epics/R3.15.7

3.3 LIBSSH2 INSTALLATION

The lower-level driver class provided by the EPICS module requires that an external library be installed on the system to handle SSH encryption and connections. The library libssh2 (http://www.libssh2.org) may already be available for use within the OS, or else it can be downloaded and installed.

Either download using the link on the libssh2 website, or from a command line download using wget. Unpack the archive to a suitable location, configure, build and install.

```
cd $HOME/epics/R3.15.7/download
wget http://www.libssh2.org/download/libssh2-1.4.3.tar.gz
gunzip -k libssh2-1.4.3.tar.gz
tar -xvf libssh2-1.4.3.tar
cd libssh2-1.4.3
./configure
make
```

The libraries are by default installed in /usr/local/lib. Note that installation in that location requires root access.

su

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

```
make install exit
```

```
cd $HOME/epics/R3.15.7/download rm -r libssh2-1.4.3.tar libssh2-1.4.3
```

Note that a libssh2 Debian package already exists but the current package version may not be compatible with this module, depending on the Debian OS version.

3.4 EPICS BASE, MODULES AND EXTENSIONS

3.4.1 EPICS Base

The SYMETRIE hexapod support module has been developed against EPICS base version 3.15.7. EPICS base can be downloaded from https://epics-controls.org/download/base/base-3.15.7.tar.gz

The following instructions will assume a common installation directory and all instructions will be valid starting from this point. The particular directory structure presented by this installation guide is not enforced by EPICS, it is simply chosen to offer a clean and consistent way of naming and installing EPICS modules and applications within this guide.

The installation root is defined as follows, with \$USER representing the user session name

/home/\$USER/epics/R3.15.7

The environment variable \$HOME is used to be independent of the user and to shorter the home path.

```
$HOME/epics/R3.15.7
```

Now download and install EPICS base

```
cd $HOME/epics/R3.15.7/download
wget https://epics.anl.gov/download/base/base-3.15.7.tar.gz
gunzip -k base-3.15.7.tar.gz
tar -xvf base-3.15.7.tar
mv base-3.15.7 $HOME/epics/R3.15.7/base
rm -r base-3.15.7.tar
cd $HOME/epics/R3.15.7/base
make
```

Create a support area in which the modules will be installed

```
mkdir -p $HOME/epics/R3.15.7/support
mkdir -p $HOME/epics/R3.15.7/download/support
```

Now it is necessary to install the modules that the SYMETRIE Hexapod module depends on.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.4.2 IPAC module

Install the ipac module (required by the asyn and motor modules)

```
cd $HOME/epics/R3.15.7/download/support
wget https://github.com/epics-modules/ipac/releases/download/2.15/ipac-2.15.tar.gz
gunzip -k ipac-2.15.tar.gz
tar -xvf ipac-2.15.tar
mkdir -p $HOME/epics/R3.15.7/support/ipac
mv ipac-2.15/ $HOME/epics/R3.15.7/support/ipac/2-15
rm ipac-2.15.tar
```

Edit the RELEASE file located in the module configure directory, update the EPICS_BASE definition, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/ipac/2-15/configure/RELEASE

EPICS_BASE=/home/symetrie/epics/R3.15.7/base

Note that "symetrie" should be replaced by the user.

Build the module

cd \$HOME/epics/R3.15.7/support/ipac/2-15
make

3.4.3 Seq module

Install the seq module (required by the asyn and motor modules)

```
cd $HOME/epics/R3.15.7/download/support
wget https://www-csr.bessy.de/control/SoftDist/sequencer/releases/seq-2.2.7.tar.gz
gunzip -k seq-2.2.7.tar.gz
tar -xvf seq-2.2.7.tar
mkdir -p $HOME/epics/R3.15.7/support/seq
mv seq-2.2.7 $HOME/epics/R3.15.7/support/seq/2-2-7
rm seq-2.2.7.tar
```

Edit the RELEASE file located in the module configure directory, update the EPICS_BASE definition, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/seq/2-2-7/configure/RELEASE

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

EPICS_BASE=/home/symetrie/epics/R3.15.7/base

Note that "symetrie" should be replaced by the user.

Build the module

cd \$HOME/epics/R3.15.7/support/seq/2-2-7
make

3.4.4 Async module

Install the asyn module (required by the busy, motor and pmac modules)

```
cd $HOME/epics/R3.15.7/download/support
wget https://epics.anl.gov/download/modules/asyn4-38.tar.gz
gunzip -k asyn4-38.tar.gz
tar -xvf asyn4-38.tar
mkdir -p $HOME/epics/R3.15.7/support/asyn
mv asyn4-38 $HOME/epics/R3.15.7/support/asyn/4-38
rm asyn4-38.tar
```

Edit the RELEASE file located in the module configure directory, update the SUPPORT, EPICS_BASE, IPAC and SNCSEQ definitions, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/asyn/4-38/configure/RELEASE

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

```
SUPPORT=/home/symetrie/epics/R3.15.7/support
IPAC=$(SUPPORT)/ipac/2-15
SNCSEQ=$(SUPPORT)/seq/2-2-7
EPICS_BASE=/home/symetrie/epics/R3.15.7/base
```

Build the module

cd \$HOME/epics/R3.15.7/support/asyn/4-38 make

3.4.5 Calc module

Install the calc module (required by the pmac module)

```
cd $HOME/epics/R3.15.7/download/support
wget https://github.com/epics-modules/calc/archive/R3-7-4.tar.gz
gunzip -k R3-7-4.tar.gz
tar -xvf R3-7-4.tar
mkdir -p $HOME/epics/R3.15.7/support/calc
mv calc-R3-7-4 $HOME/epics/R3.15.7/support/calc/3-7-4
rm R3-7-4.tar
mv R3-7-4.tar
```

Edit the RELEASE file located in the module configure directory, comment out the SSCAN definition and update the EPICS BASE definition, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/calc/3-7-4/configure/RELEASE


```
SUPPORT=/home/symetrie/epics/R3.15.7/support
#SSCAN=
EPICS_BASE=/home/symetrie/epics/R3.15.7/base
```

Build the module

cd \$HOME/epics/R3.15.7/support/calc/3-7-4
make

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.4.6 Autosave module

Install the autosave module (required by the busy module)

```
cd $HOME/epics/R3.15.7/download/support
wget https://github.com/epics-modules/autosave/archive/R5-8.tar.gz
gunzip -k R5-8.tar.gz
tar -xvf R5-8.tar
mkdir -p $HOME/epics/R3.15.7/support/autosave
mv autosave-R5-8 $HOME/epics/R3.15.7/support/autosave/5-8
rm R5-8.tar
mv R5-8.tar.gz autosave-R5-8.tar.gz
```

Edit the RELEASE file located in the module configure directory, update the EPICS_BASE definition, save and exit the file

gedit \$HOME/epics/R3.15.7/support/autosave/5-8/configure/RELEASE

EPICS_BASE=/home/symetrie/epics/R3.15.7/base

Build the module

cd \$HOME/epics/R3.15.7/support/autosave/5-8 make

3.4.7 Busy module

Install the busy module (required by the motor and pmac modules)

```
cd $HOME/epics/R3.15.7/download/support
wget https://github.com/epics-modules/busy/archive/R1-7-2.tar.gz
gunzip -k R1-7-2.tar.gz
tar -xvf R1-7-2.tar
mkdir -p $HOME/epics/R3.15.7/support/busy
mv busy-R1-7-2 $HOME/epics/R3.15.7/support/busy/1-7-2
rm R1-7-2.tar
mv R1-7-2.tar.gz busy-R1-7-2.tar.gz
```

Edit the RELEASE file located in the module configure directory, update the SUPPORT, EPICS_BASE, ASYN, AUTOSAVE and BUSY definitions, save and exit the file.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

gedit \$HOME/epics/R3.15.7/support/busy/1-7-2/configure/RELEASE

SUPPORT=/home/symetrie/epics/R3.15.7/support ASYN=\$(SUPPORT)/asyn/4-38 AUTOSAVE=\$(SUPPORT)/autosave/5-8 BUSY=\$(SUPPORT)/busy/1-7-2 EPICS_BASE=/home/symetrie/epics/R3.15.7/base

Build the module

cd \$HOME/epics/R3.15.7/support/busy/1-7-2
make

3.4.8 Motor module

Install the motor module (required by the pmac module)

cd \$HOME/epics/R3.15.7/download/support
wget https://github.com/epics-modules/motor/archive/R6-10.tar.gz
gunzip -k R6-10.tar.gz
tar -xvf R6-10.tar
mkdir -p \$HOME/epics/R3.15.7/support/motor
mv motor-R6-10 \$HOME/epics/R3.15.7/support/motor/6-10
rm R6-10.tar
mv R6-10.tar.gz motor-R6-10.tar.gz

Edit the RELEASE file located in the module configure directory, update the SUPPORT, EPICS_BASE, ASYN, IPAC, SNCSEQ and BUSY definitions, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/motor/6-10/configure/RELEASE

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

```
≡
  Open ▼ 🕒
                      ~/epics/R3.15.7/support/motor/6-10/configure
# RELEASE - Location of external products
# Note: This file will be scanned to automatically generate
        include path definitions etc.
        The order of the following declarations will be retained
        within those definitions.
# Note that "#!" marks lines that can be uncommented.
# Add your declarations here
SUPPORT=/home/symetrie/epics/R3.15.7/support
-include $(TOP)/../configure/SUPPORT.$(EPICS HOST ARCH)
ASYN=$(SUPPORT)/asyn/4-38
IPAC=$(SUPPORT)/ipac/2-15
SNCSEQ=$(SUPPORT)/seq/2-2-7
BUSY=$(SUPPORT)/busy/1-7-2
EPICS_BASE=/home/symetrie/epics/R3.15.7/base
-include $(TOP)/../configure/EPICS_BASE.$(EPICS_HOST_ARCH)
                    Plain Text ▼ Tab Width: 8 ▼ Ln 20, Col 1 ▼ INS
```

```
SUPPORT=/home/symetrie/epics/R3.15.7/support
ASYN=$(SUPPORT)/asyn/4-38
IPAC=$(SUPPORT)/ipac/2-15
SNCSEQ=$(SUPPORT)/seq/2-2-7
BUSY=$(SUPPORT)/busy/1-7-2
EPICS_BASE=/home/symetrie/epics/R3.15.7/base
```

Edit the Makefile file located in the module motorApp directory, comment the OmsSrc lines, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/motor/6-10/motorApp/Makefile


```
#DIRS += OmsSrc
#OmsSrc_DEPEND_DIRS = MotorSrc
```

Build the module

```
cd $HOME/epics/R3.15.7/support/motor/6-10 make
```


EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.4.9 PMAC module

Install the pmac module

```
cd $HOME/epics/R3.15.7/download/support
wget https://github.com/dls-controls/pmac/archive/2-4-10.tar.gz
mv 2-4-10.tar.gz pmac-2-4-10.tar.gz
gunzip -k pmac-2-4-10.tar.gz
tar -xvf pmac-2-4-10.tar
mkdir -p $HOME/epics/R3.15.7/support/pmac
mv pmac-2-4-10 $HOME/epics/R3.15.7/support/pmac/2-4-10
rm pmac-2-4-10.tar
```

Edit the RELEASE file located in the module configure directory, update the SUPPORT, EPICS_BASE, ASYN, CALC, MOTOR and BUSY definitions, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/pmac/2-4-10/configure/RELEASE


```
SUPPORT=/home/symetrie/epics/R3.15.7/support
ASYN=$(SUPPORT)/asyn/4-38
CALC=$(SUPPORT)/calc/3-7-4
MOTOR=$(SUPPORT)/motor/6-10
BUSY=$(SUPPORT)/busy/1-7-2
EPICS_BASE=/home/symetrie/epics/R3.15.7/base
```

Edit the RELEASE.local file located in the module configure directory, comment or delete all lines, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/pmac/2-4-10/configure/RELEASE.local

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

The RELEASE.local file could also simply be deleted.

rm \$HOME/epics/R3.15.7/support/pmac/2-4-10/configure/RELEASE.local

Edit the RELEASE.linux-x86_64.Common file located in the module configure directory, comment or delete all lines, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/pmac/2-4-10/configure/RELEASE.linux-x86 64.Common

The RELEASE.linux-x86 64.Common file could also simply be deleted.

rm \$HOME/epics/R3.15.7/support/pmac/2-4-10/configure/RELEASE.linux-x86_64.Common

Edit the RULES files, comment the line with RULES.DIs, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/pmac/2-4-10/configure/RULES

Edit the CONFIG_SITE.linux-x86_64.Common file located in the module configure directory, update the BOOST and SSH locations to point to the installed versions, save and exit the file.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

gedit \$HOME/epics/R3.15.7/support/pmac/2-4-10/configure/CONFIG SITE.linux-x86 64.Common

```
CONFIG_SITE.linux-x86_64.Common
                                                             Save
            \oplus
                                                                     ≡
  Open ▼
                                                                           ×
# The following definitions must be changed for each site
      - To build the IOC applications set {\tt BUILD\_IOCS} to YES
        Otherwise set it to NO
BUILD_IOCS=NO
       - To include GraphicsMagick support set the following to YES
      - To not use it comment out the line or set it to NO
      - GraphicsMagick is required for NDFileMagick and the URL driver.
USE GRAPHICSMAGICK=NO
#CROSS_COMPILER_TARGET_ARCHS =
# Comment-in the following line if building asyn ports stand-alone
# i.e. without an IOC. Note that asyn will also need to have been # built with this flag
# EPICS_LIBCOM_ONLY=YES
# Definitions required for compiling the unit tests
                 = /usr
= $(B00ST)/lib/x86_64-linux-gnu
BOOST
BOOST LIB
BOOST_INCLUDE
                 = -I$(B00ST)/include
SSH
                 = /usr
SSH LIB
                 = $(SSH)/lib/x86 64-linux-gnu
SSH INCLUDE
                 = -I$(SSH)/include
                      Plain Text ▼ Tab Width: 8 ▼
                                                     Ln 26, Col 1
                                                                         INS
```

```
BOOST = /usr
BOOST_LIB = $(BOOST)/lib/x86_64-linux-gnu
BOOST_INCLUDE = -I$(BOOST)/include
SSH = /usr
SSH_LIB = $(SSH)/lib/x86_64-linux-gnu
SSH_INCLUDE = -I$(SSH)/include
```

Edit the Makefile in the pmacApp directory, comment out the unitTests directory, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/pmac/2-4-10/pmacApp/Makefile


```
#DIRS += unitTests
```

Build the module

```
cd $HOME/epics/R3.15.7/support/pmac/2-4-10 make
```


EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.4.10 PyDM installation

There are many ways in which Python applications can be installed. This guide presents only one way which works for PyDM within the Debian operating system. It is simple to follow and makes use of virtual environments. Ensure python3 is available on the system.

Change directory to where PyDM should be installed

cd \$HOME/epics

Create a python virtual environment for the PyDM installation

python3 -m venv pydm

Activate the virtual environment

source pydm/bin/activate

This will alter the bash prompt to signify the user is running the pydm virtual environment, see the "(pydm)" prefix below:

(pydm) symetrie@debian:~/epics\$

Upgrade pip and the virtual environment using pip.

pip install --upgrade pip
pip install --upgrade virtualenv

Install PyQT5 package

pip install PyQt5

Install PyDM

pip install pydm

Verify the installation by running pydm

pydm

This should open a blank PyDM application instance.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.4.11 EDM installation

The EDM display manager tool must be installed as an EPICS extension. EPICS extensions are built into an area alongside the base code and are built against the already installed base libraries.

Download and install EPICS extensions:

```
mkdir -p $HOME/epics/R3.15.7/download/extensions
cd $HOME/epics/R3.15.7/download/extensions
wget https://epics.anl.gov/download/extensions/extensionsTop_20120904.tar.gz
gunzip -k extensionsTop_20120904.tar.gz
tar -xvf extensionsTop_20120904.tar
mv extensions $HOME/epics/R3.15.7/extensions
rm -r extensionsTop_20120904.tar
```

Download and unpack the EDM application source into the extensions area:

```
cd $HOME/epics/R3.15.7/download/extensions
wget https://github.com/gnartohl/edm/archive/V1-12-105.tar.gz
gunzip -k V1-12-105.tar.gz
tar -xvf V1-12-105.tar
mv edm-1-12-105 $HOME/epics/R3.15.7/extensions/src/edm
rm -r V1-12-105.tar
mv V1-12-105.targz edm-V1-12-105.tar.gz
```

Edit the CONFIG_SITE files to setup the locations of X11 and MOTIF libraries.

gedit \$HOME/epics/R3.15.7/extensions/configure/os/CONFIG_SITE.linux-x86_64.linux-x86_64


```
X11_LIB=/usr/lib/x86_64-linux-gnu
MOTIF_LIB=/usr/lib/x86_64-linux-gnu
```

```
gedit $HOME/epics/R3.15.7/extensions/configure/CONFIG_SITE
```


EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

-include \$(TOP)/configure/os/CONFIG_SITE.linux-x86.linux-x86

Edit the source directory Makefile to add the EDM application directory:

gedit \$HOME/epics/R3.15.7/extensions/src/Makefile

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

```
EDM = edm
DIRS += $(EDM)
```

Update the giflib Makefile within the EDM source directory:

```
cd $HOME/epics/R3.15.7/extensions/src/edm/giflib sed -i -e 's| ungif||g' Makefile*
```

Update the source file gif.cc to ensure the OPEN and CLOSE macros are correctly defined:

gedit \$HOME/epics/R3.15.7/extensions/src/edm/giflib/gif.cc

```
#include "gif.h"
```


EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

```
#if GIFLIB_MAJOR > 5 || GIFLIB_MAJOR == 5 && GIFLIB_MINOR >= 1
  #define GIF_CLOSE_FILE(gif) DGifCloseFile(gif, NULL)
  #define GIF_OPEN_FILE(gif) DGifOpenFileName(gif, NULL)
#else
  #define GIF_CLOSE_FILE(gif) DGifCloseFile(gif)
  #define GIF_OPEN_FILE(gif) DGifOpenFileName(gif)
#endif
```

Now compile the module:

```
cd $HOME/epics/R3.15.7/extensions make clean make
```

The EDM executable application will be compiled and installed into the extensions bin directory.

Finals EDM installation steps, setup the configuration files in the setup directory.

```
cd $HOME/epics/R3.15.7/extensions/src/edm/setup
export HOST_ARCH=linux-x86_64
export EPICS_HOST_ARCH=linux-x86_64
setup.sh
```

Then some images management need to be added. Edit the "edmObjects » file:

gedit \$HOME/epics/R3.15.7/extensions/src/edm/setup/edmObjects

Add +2 to the number (here from 36 to 38) and add the 2 following lines:

```
38
activePngClass /home/symetrie/epics/R3.15.7/extensions/src/edm/pnglib/O.linux-
x86_64/lib57d79238-2924-420b-ba67-dfbecdf03fcd.so Graphics PNG Image
cfcf6c8a_dbeb_11d2_8a97_00104b8742df
/home/symetrie/epics/R3.15.7/extensions/src/edm/giflib/O.linux-x86_64/libcf322683-513e-4570-
a44b-7cdd7cae0de5.so Graphics GIF Image
```


Done.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.4.12 SYMETRIE hexapod module installation

Assuming the required software described above has been installed, unpack the SYMETRIE hexapod EPICS module archive file and cd into the top directory. For this presentation, the "symetrie_hexapod_epics-5.0.7.210830.tar.gz" archive was manually placed in the same download folder as the other downloaded modules.

```
cd $HOME/epics/R3.15.7/download/support
gunzip -k symetrie_hexapod_epics-5.0.7.210830.tar.gz
tar -xvf symetrie_hexapod_epics-5.0.7.210830.tar
mkdir -p $HOME/epics/R3.15.7/support/symetrie_hexapod
mv symetrie_hexapod_epics-5.0.7.210830 $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830
rm symetrie_hexapod_epics-5.0.7.210830.tar
cd $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830
```

Here, you will see the following files and directories:

Directory	Description
SYMETRIE_EPICSApp	This directory contains the asyn driver code, database templates for control and EDM and PyDM screen files.
configure	The configuration directory.
iocs	The iocs directory contains a demonstration application which controls a single Hexapod instance. This application can be built and executed and demonstrates how to integrate the Hexapod software into an IOC.
Makefile	Top-level Makefile to build all the software.
docs	The directory containing documentation (including this manual).

Before building the support module it is necessary to define the installation locations of the EPICS base installation, asyn, motor and pmac modules.

Edit the RELEASE file located in the module configure directory, update the SUPPORT, EPICS_BASE, ASYN and PMAC definitions, save and exit the file.

gedit \$HOME/epics/R3.15.7/support/symetrie hexapod/5.0.7.210830/configure/RELEASE

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

The main record name and device port macros are set during the build procedure. It can be changed by editing the substitutions file. The delivered hexapod-demo application has the following main record prefix name: "SYM:HEX01:".

```
gedit $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/iocs/hexapod-
demo/hexapodDemoApp/Db/hexapodDemo_expanded.substitutions
```

Build the module

```
cd $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830
make clean
make
```


EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

3.4.13 Demonstration application installation

The module is supplied with a demonstration application that will connect to and control a single hexapod. Change directory into the top level of the IOC application.

cd \$HOME/epics/R3.15.7/support/symetrie hexapod/5.0.7.210830/iocs/hexapod-demo

Edit the RELEASE file located in the configure directory, update the SUPPORT, EPICS_BASE, ASYN, BUSY, CALC, MOTOR, PMAC and SYMETRIE definitions, save and exit the file.

gedit configure/RELEASE

SUPPORT=/home/symetrie/epics/R3.15.7/support

ASYN=\$(SUPPORT)/asyn/4-38

BUSY=\$(SUPPORT)/busy/1-7-2

CALC=\$(SUPPORT)/calc/3-7-4

MOTOR=\$(SUPPORT)/motor/6-10

PMAC=\$(SUPPORT)/pmac/2-4-10

SYMETRIE=\$(SUPPORT)/symetrie_hexapod/5.0.7.210830

EPICS_BASE=/home/symetrie/epics/R3.15.7/base

Edit the stHexapodDemo.boot file located in the "iocBoot/iochexapod-demo" folder, update the line that configures the asyn Power PMAC port with the IP address of the SYMETRIE hexapod unit on your network, save and exit the file.

gedit iocBoot/iochexapod-demo/stHexapodDemo.boot

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

For example

drvAsynPowerPMACPortConfigure("PPMAC_SSH", "192.168.56.10", "root", "deltatau", "0", "0", "0")

Now build the example application. The build should complete with no errors.

cd \$HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/iocs/hexapod-demo
make clean
make

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4 RUNNING THE TEST APPLICATION

Once the system has successfully compiled the test application should be executed to ensure good connection to the hexapod.

4.1 EPICS BASE PATH IN TERMINAL DEFAULT PATHS LIST

For user which have access to root:

```
su
gedit /etc/bash.bashrc
```

```
Open Path=$PATH:$HOME/epics/R3.15.7/base/bin/linux-86_64
```

```
export PATH=$PATH:$HOME/epics/R3.15.7/base/bin/linux-x86_64
export PATH=$PATH:$HOME/epics/R3.15.7/extensions/bin/linux-x86_64
export EDMPVOBJECTS=$HOME/epics/R3.15.7/extensions/src/edm/setup
export EDMOBJECTS=$HOME/epics/R3.15.7/extensions/src/edm/setup
export EDMFILES=$HOME/epics/R3.15.7/extensions/src/edm/setup
```

For user which do not have access to root:

gedit \$HOME/.bashrc

```
Open ▼ ① .bashrc Save ■ ×

. /usr/share/bash-completion/bash_completion
elif [ -f /etc/bash_completion ]; then
. /etc/bash_completion
fi

export PATH=$PATH:$HOME/epics/R3.15.7/base/bin/linux-x86_64

sh ▼ Tab Width: 8 ▼ Ln116, Col1 ▼ INS
```

```
export PATH=$PATH:$HOME/epics/R3.15.7/base/bin/linux-x86_64
export PATH=$PATH:$HOME/epics/R3.15.7/extensions/bin/linux-x86_64
export EDMPVOBJECTS=$HOME/epics/R3.15.7/extensions/src/edm/setup
export EDMOBJECTS=$HOME/epics/R3.15.7/extensions/src/edm/setup
export EDMFILES=$HOME/epics/R3.15.7/extensions/src/edm/setup
```

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4.2 RUNNING THE EPICS DATABASE

To run the IOC change directory into the demonstration application top level and execute the installed shell script.

```
cd $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/iocs/hexapod-demo
./bin/linux-x86_64/stHexapodDemo.sh
```

Below is an example of the output generated when the system is started on Debian 10.

Figure 1: IOC output during start-up

Once the start-up has completed and the records have been loaded the SYMETRIE hexapod can be controlled by setting records present in the database.

The available records are presented in chapter 5.1.

The main record name and device port macros are set during the build procedure and can be changed by editing the substitutions file present in the demonstration application database directory. Main record name and device port macros:

```
gedit $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/iocs/hexapod-demo/hexapodDemoApp/Db/hexapodDemo_expanded.substitutions
```

The delivered hexapod-demo application has the following main record prefix name: "SYM:HEX01:".

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4.3 RUNNING THE PYDM SCREENS

4.3.1 Start the PyDM main screen

To provide a mechanism for testing the example application a set of PyDM screens have been added to the support module. These can be started on Linux by activating the python virtual environment and then executing PyDM with some specific macros set.

```
source $HOME/epics/pydm/bin/activate cd $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/SYMETRIE_EPICSApp/opi/ui pydm --hide-nav-bar --hide-menu-bar -m "P=SYM,R=:HEX01:" $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/SYMETRIE_EPICSApp/opi/ui/SymetrieHex apodMain.ui
```

Once started the user is presented with the main screen.

4.3.2 Main screen presentation

Figure 2: Main PyDM screen

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

The top of the screen contains buttons to perform the following actions:

- Menu: clicking on this presents a menu where the user can select either "Advanced States" or "Parameters".
 Clicking on "Advanced States" opens the corresponding PyDM display. Clicking on "Parameters" opens the corresponding PyDM display.
- Control on/Control off: when the status "Control on" is off, the "Control on" button is displayed. Clicking
 on it executes the C_CONTROLON command. When the status "Control on" is on, the "Control off" button
 is displayed. Clicking on it executes the C_CONTROLOFF command.
- Stop: clicking on this button executes the C_STOP command.
- Home: clicking on this button executes the C HOME command.
- Clear Error: clicking on this button executes the C CLEARERROR command.

The left-hand side of the screen displays the status of the hexapod. The status consists of the following:

- Initialized: controller start-up is terminated.
- Control on: at least one motor is enabled, or in other words at least one motor has its control loop closed.
- In position: no axis is moving.
- Home complete: hexapod home task has been complete successfully.
- Emergency stop: informs that a hardware emergency stop button is pressed.
- Error: an error is present. Errors can be read in the advanced states error screen.

The hexapod user position is displayed below the status indicators.

The right-hand side of the display presents the positioning commands available. It is divided into two parts:

- Specific positions section allows to move to predefined positions.
- Command section allows to start a movement defined in a selected move type.

The specific positions section allows to move to predefined positions. The drop-down list should give access to the following three specific positions:

- "USER ZERO": zero position (Tx=Ty=Tz=Rx=Ry=Rz=0) expressed in the User coordinate system. It is equivalent to an absolute zero command sent from the Command section below.
- "RETRACTED": refers to an hexapod position were actuators are retracted. In that position the hexapod is close to its smallest size. It is useful for loading, storage, transportation. The position is expressed in the Machine coordinate system.
- "MACHINE ZERO": zero position (Tx=Ty=Tz=Rx=Ry=Rz=0) expressed in the Machine coordinate system.
 Most of the time, it refers to the middle travel range of the hexapod.

The Move To button starts the movement.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Below the specific positions section is the Command section which allows the user to start a movement defined in a selected move type. The move type should be selected from the drop-down list:

- Absolute
- Relative object
- Relative user

Tx, Ty, Tz, Rx, Ry and Rz values can be chosen and will be applied according to the selected move type (Absolute, Relative User or Relative Object). The Start button launch the movement if the positioning command is valid according to the hexapod limits. The validity of the proposed move is shown by the LED next to Command drop down menu. If the LED is red then the move is invalid and clicking on the LED opens a new window which displays the reason(s) why the proposed move is invalid. See example below.

Figure 3: Move validity screen

At the bottom of the main screen the command execution status is displayed. If the value is zero then the latest command has been successfully executed. If any command fails then the return value is reported and the corresponding error message is displayed.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4.3.3 Advanced states screen presentation

Clicking on the "Menu" and selecting the "Advanced states" option opens the advanced states general screen.

Figure 4: Advanced states general screen

The General screen is divided into four sections:

- System: retrieves main controller status
- Action: display the current running action
- Inputs & outputs: retrieves states of the inputs and outputs
- Machine position: hexapod position expressed in Machine coordinate system.

The system status is described fully in the Application programming interface (API) manual. The individual LEDs represent a single bit from the bitmask returned from the s_hexa value. Below the system indicators the widget displays the current action which is executing. The following actions are possible:

- None
- Stop
- ControlOn
- ControlOff
- Home

EPICS module

Reference: MAN_SOFT_EPICS

Issue:

- HomeVirtual
- MovePTP
- MoveSpecificPos
- MoveSequence
- MoveJog
- Handwheel
- Maintenance

The GPIO displays the current status of the individual GPIO signals. On the right of the screen the current machine position is displayed in the machine coordinate system.

Clicking on the Actuator button at the top of the screen switches to the Actuator screen.

Figure 5: Advanced states actuator screen

The actuator screen contains the full status for each individual axis of the hexapod, along with the raw lengths (in mm) of each axis. The actuator status is described fully in Application programming interface (API) manual. The individual LEDs represent a single bit from the bitmask returned from the specific axis status variable (s_ax_1..6).

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the Error button at the top of the screen switches to the Error screen.

Figure 6: Advanced states error screen

The error screen displays a table of errors present on the hexapod controller. Each error that occurs is displayed with the time at which the error occurred, a numerical value representing the error code and a description of the error itself. Any additional information required to specify the error conditions is appended to the error message. In the figure above three errors have occurred. Errors can only be cleared by clicking on the "Clear errors" button on the main display.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4.3.4 Parameters screen presentation

Returning to the main screen, clicking on the "Menu" and selecting the "Parameters" option opens the parameters speed/acceleration screen.

Figure 7: Parameters speed / acceleration screen

All parameter screens contain the same block of widgets at the bottom. Parameter values by default are only read out of the hardware controller when a new value is applied, or when defaults are loaded. A manual read of parameters is possible by clicking on the "Refresh" button. It is also possible to set an automatic refresh rate by change the "Passive" value in the drop-down menu to one of the other scan rates. Whenever a read of parameters is executed, the corresponding EPICS read back records (those whose names contain RBV) will be updated.

All parameters have demand records and read back records, represented by the two sets of widgets for each parameter seen above. The demand can be changed and when the "Apply" button is clicked the current demands (of all parameters) are written to the control hardware.

The default values can be re-applied by clicking on the "Default" button. After a default reset, all demand records are updated to match the read back records.

Clicking on the "Clear" button will reset any changed demand values back to the currently read back value.

Clicking on the "Save" button will save the currently applied demands so that they persist after a reboot of the control hardware.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

The speed / acceleration screen allows the user to configure the speed and acceleration time used for the positioning of the hexapod. Speeds are specified separately for the translation and rotation. New demand values can either be typed into the demand boxes or the sliders can be used. Minimum and maximum values are shown as the limits of the slider widgets.

Clicking on the "Coordinate Systems" button at the top of the screen opens the parameters coordinate systems screen.

Figure 8: Parameters coordinate systems screen

The coordinate systems parameters are explained in detail in Application programming interface (API) manual. This screen can be used to define both User and Object coordinate systems. In most applications, the User and Object coordinate systems must be identical. The arrowed buttons can be used to copy the demands of one coordinate system into the demands of the other. Note that clicking on the arrowed buttons will not apply the changes, it will simply setup the demands ready to be applied.

Coordinate system parameters cannot be applied if a motion task is running.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the "Machine limits" button at the top of the screen opens the parameters Machine limits screen.

Figure 9: Parameters machine limits screen

The machine limits screen provides widgets for setting the negative and positive Machine limits, as well as enabling or disabling the limit enforcement.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the "User limits" button at the top of the screen opens the parameters User limits screen.

Figure 10: Parameters user limits screen

The user limits screen provides widgets for setting the negative and positive User limits, as well as enabling or disabling the limit enforcement.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the "Advanced" button at the top of the screen opens the parameters advanced screen.

Figure 11: Parameter advanced screen

The advanced screen provides widgets to set the motor control parameters. Automatic activation will activate the motor control loop when a motion task is executed. If this is set, then it is not necessary to turn control on from the main screen. Automatic deactivation will automatically disable the motor control loop whenever the hexapod has reached the requested position. The holding current for stepper motors can be set, it is specified as a percentage (between 0 and 100%) of the nominal motor current. The backlash compensation strategy can be selected, with all positioning tasks always finishing with the same approach movement. A detailed explanation of these parameters can be found in Application programming interface (API) manual.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4.4 RUNNING THE EDM SCREENS

4.4.1 Start the EDM main screen

As well as the PyDM screens a set of EDM engineering screens have been provided. To provide a mechanism for testing the example application a set of EDM engineering screens have been added to the support module; these can be started on Linux by executing EDM with some specific macros set.

```
cd $HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/SYMETRIE_EPICSApp/opi/edl
edm -m "P=SYM,R=:HEX01:" -x
$HOME/epics/R3.15.7/support/symetrie_hexapod/5.0.7.210830/SYMETRIE_EPICSApp/opi/edl/SymetrieHe
xapodMain.edl
```

Once started the user is presented with the main screen.

4.4.2 Main screen presentation

Figure 12: Main EDM screen

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

The top of the screen contains buttons to perform the following actions:

- Menu: clicking on this presents a menu where the user can select either "Advanced States" or "Parameters". Clicking on "Advanced States" opens the corresponding EDM display. Clicking on "Parameters" opens the corresponding EDM display.
- Control on/Control off: when the status "Control on" is off, the "Control on" button is displayed. Clicking
 on it executes the C_CONTROLON command. When the status "Control on" is on, the "Control off" button
 is displayed. Clicking on it executes the C_CONTROLOFF command.
- Stop: clicking on this button executes the C STOP command.
- Home: clicking on this button executes the C_HOME command.
- Clear Error: clicking on this button executes the C CLEARERROR command.

The left-hand side of the screen displays the status of the hexapod. The status consists of the following:

- Initialized: controller start-up is terminated.
- Control on: at least one motor is enabled, or in other words at least one motor has its control loop closed.
- In position: no axis is moving.
- Home complete: hexapod home task has been complete successfully.
- Emergency stop: informs that a hardware emergency stop button is pressed.
- Error: an error is present. Errors can be read in the advanced states error screen.

The hexapod user position is displayed below the status indicators.

The right-hand side of the display presents the positioning commands available. It is divided into two parts:

- Specific positions section allows to move to predefined positions.
- Command section allows to start a movement defined in a selected move type.

The Specific positions section allows to move to predefined positions. The drop-down list should give access to the following three specific positions:

- "USER ZERO": zero position (Tx=Ty=Tz=Rx=Ry=Rz=0) expressed in the User coordinate system. It is equivalent to an absolute zero command sent from the Command section below.
- "RETRACTED": refers to a hexapod position were actuators are retracted. In that position the hexapod is close to its smallest size. It is useful for loading, storage, transportation. The position is expressed in the Machine coordinate system.
- "MACHINE ZERO": zero position (Tx=Ty=Tz=Rx=Ry=Rz=0) expressed in the Machine coordinate system. Most of the time, it refers to the middle travel range of the hexapod.

The Move To button starts the movement.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Below the Specific positions section is the Command section which allows the user to start a movement defined in a selected move type. The move type should be selected from the drop-down list:

- Absolute
- Relative object
- Relative user

Tx, Ty, Tz, Rx, Ry and Rz values can be chosen and will be applied according to the selected move type (Absolute, Relative User or Relative Object). The Start button starts the movement if the positioning command is valid according to the hexapod limits. The validity of the proposed move is shown by the LED next to Command drop down menu. If the LED is red then the move is invalid and clicking on the LED opens a new window which displays the reason(s) why the proposed move is invalid. See example below.

Figure 13: Move validity screen

At the bottom of the main screen the command execution status is displayed. If the value is zero then the latest command has been successfully executed. If any command fails then the return value is reported and the corresponding error message is displayed.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4.4.3 Advanced states screen presentation

Clicking on the "Menu" and selecting the "Advanced states" option opens the advanced states general screen.

Figure 14: Advanced states general screen

The General screen is divided into four sections:

- System retrieves main controller status
- Action display the current running action
- Inputs & outputs retrieves states of the inputs and outputs
- Machine position hexapod position expressed in Machine coordinate system.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

The system status is described fully in the Application programming interface (API) manual. The individual LEDs represent a single bit from the bitmask returned from the s_hexa value. Below the system indicators the widget displays the current action which is executing. The following actions are possible:

- None
- Stop
- ControlOn
- ControlOff
- Home
- HomeVirtual
- MovePTP
- MoveSpecificPos
- MoveSequence
- MoveJog
- Handwheel
- Maintenance

The GPIO displays the current status of the individual GPIO signals. On the right of the screen the current machine position is displayed in the machine coordinate system.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the Actuator button at the top of the screen switches to the Actuator screen.

Figure 15: Advanced states actuator screen

The actuator screen contains the full status for each individual axis of the hexapod, along with the raw lengths (in mm) of each axis. The actuator status is described fully in Application programming interface (API) manual. The individual LEDs represent a single bit from the bitmask returned from the specific axis status variable (s_ax_1..6).

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the Error button at the top of the screen switches to the Error screen.

Figure 16: Advanced states error screen

The error screen displays a table of errors present on the hexapod controller. Each error that occurs is displayed with the time at which the error occurred, a numerical value representing the error code and a description of the error itself. Any additional information required to specify the error conditions is appended to the error message. In the figure above three errors have occurred. Errors can only be cleared by clicking on the "Clear errors" button on the main display.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

4.4.4 Parameters screen presentation

Returning to the main screen, clicking on the "Menu" and selecting the "Parameters" option opens the parameters speed/acceleration screen.

Figure 17: Parameters speed / acceleration screen

All parameter screens contain the same block of widgets at the bottom. Parameter values by default are only read out of the hardware controller when a new value is applied, or when defaults are loaded. A manual read of parameters is possible by clicking on the "Refresh" button. It is also possible to set an automatic refresh rate by change the "Passive" value in the drop-down menu to one of the other scan rates. Whenever a read of parameters is executed, the corresponding EPICS read back records (those whose names contain _RBV) will be updated.

All parameters have demand records and read back records, represented by the two sets of widgets for each parameter seen above. The demand can be changed and when the "Apply" button is clicked the current demands (of all parameters) are written to the control hardware.

The default values can be re-applied by clicking on the "Default" button. After a default reset, all demand records are updated to match the read back records.

Clicking on the "Clear" button will reset any changed demand values back to the currently read back value.

Clicking on the "Save" button will save the currently applied demands so that they persist after a reboot of the control hardware.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

The speed / acceleration screen allows the user to configure the speed and acceleration time used for the positioning of the hexapod. Speeds are specified separately for the translation and rotation virtual axes. New demand values can either be typed into the demand boxes or the sliders can be used. Minimum and maximum values are shown as the limits of the slider widgets.

Clicking on the "Coordinate Systems" button at the top of the screen opens the parameters coordinate systems screen.

Figure 18: Parameters Coordinate systems screen

The Coordinate Systems parameters are explained in detail in Application programming interface (API) manual. This screen can be used to define both user and object coordinate systems. In most applications the user and object coordinate systems must be identical. The arrowed buttons can be used to copy the demands of one coordinate system into the demands of the other. Note that clicking on the arrowed buttons will not apply the changes, it will simply setup the demands ready to be applied.

Coordinate system parameters cannot be applied if a motion task is running.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the "Machine limits" button at the top of the screen opens the parameters Machine limits screen.

Figure 19: Parameters Machine limits screen

The Machine limits screen provides widgets for setting the negative and positive Machine limits, as well as enabling or disabling the limit enforcement.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Clicking on the "User limits" button at the top of the screen opens the parameters User limits screen.

Figure 20: Parameters User limits screen

The User limits screen provides widgets for setting the negative and positive User limits, as well as enabling or disabling the limit enforcement.

EPICS module

Reference: MAN_SOFT_EPICS

Issue:

Clicking on the "Advanced" button at the top of the screen opens the parameters advanced screen.

Figure 21: Parameter advanced screen

The advanced screen provides widgets to set the motor control parameters. Automatic activation will activate the motor control loop when a motion task is executed. If this is set then it is not necessary to turn control on from the main screen. Automatic deactivation will automatically disable the motor control loop whenever the hexapod has reached the requested position. The holding current for stepper motors can be set, it is specified as a percentage (between 0 and 100%) of the nominal motor current. The backlash compensation strategy can be selected, with all positioning tasks always finishing with the same approach movement. A detailed explanation of these parameters can be found in Application programming interface (API) manual.

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

5 EPICS RECORDS

5.1 Presentation

The table below presents the records used to control a SYMETRIE hexapod using the support module. The record name, corresponding SYMETRIE command/status item and a supporting description are shown. This table can be used to integrate the support module into existing EPICS IOC applications. Every record in the template files have the prefix (P) to provide macro substitution for specific applications.

Detailed explanations of the SYMETRIE commands can be found in Application programming interface (API) manual and so are not discussed here.

The status records (s_xxx) are updated whenever the STATUS_GET record is processed. That record has a scan rate of 0.5 seconds (2.0 Hz) as a default setting and can be configured using any channel access client by updating the value of the scan field "STATUS_GET.SCAN".

The configuration RBV (Read Back Value) records (CFG_xxx_RBV) are updated by processing the CFG_GET record. That record can also be processed by other template records as a result of performing specific actions (for example applying a new configuration). It has a "Passive" scan rate by default which can be configured using any channel access client by updating the value of the scan field "CFG_GET.SCAN".

Possible values for SCAN are the following strings: "Passive", "Event", "I/O Intr", "10 second", "5 second", "2 second", "1 second", ".5 second", ".1 second".

The configuration set commands can by executed command by command, by processing the CFG:xxx:Set record of the command. It is also possible to execute all configuration set commands at once, using the CFG_SET record.

When the configuration commands have parameters, the parameters records must be set before the execution record ("CFG:xxx:Set" or "CFG_SET").

When the action commands have parameters, the parameters records must be set before the execution record. For the MOVE_PTP command for example, the parameters record "MOVE_PTP:MoveType", "MOVE_PTP:Tx", ..., "MOVE_PTP:Rz" must be modified before the use of the "MOVE_PTP" execution record.

The response value of the latest processed command is stored in the records "Drv:CmdReturnCode_RBV" and Drv:CmdReturnDescription_RBV".

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with $(P)(R)$)	SYMETRIE API	Description
VERSION:ControllerSoftwareID_RBV	C_VERSION	These records hold the current versions of firmware and
VERSION:SystemID_RBV	C_VERSION	hardware. They are all read out once from the hexapod controller at driver start-up, directly after the connection to
VERSION:SystemNum_RBV	C_VERSION	the controller
VERSION:SystemCfgVersion_RBV	C_VERSION	
VERSION:ControllerSoftwareVersion_RBV	C_VERSION	
VERSION: APISoftware Version_RBV	C_VERSION	
s_hexa_RBV	s_hexa	General state of the hexapod.
s_hexa:Error_RBV	s_hexa	The bitmask is stored in the main record, individual bits are
s_hexa:Initialised_RBV	s_hexa	represented by each of the other records.
s_hexa:ControlOn_RBV	s_hexa	
s_hexa:InPosition_RBV	s_hexa	
s_hexa:MotionTaskRunning_RBV	s_hexa	
s_hexa:HomeTaskRunning_RBV	s_hexa	
s_hexa:HomeComplete_RBV	s_hexa	
s_hexa:HomeVirtual_RBV	s_hexa	
s_hexa:PhaseFound_RBV	s_hexa	
s_hexa:BrakeOn_RBV	s_hexa	
s_hexa:MotionRestricted_RBV	s_hexa	
s_hexa:PowerOnEncoders_RBV	s_hexa	
s_hexa:PowerOnLimits_RBV	s_hexa	
s_hexa:PowerOnDrives_RBV	s_hexa	
s_hexa:EmergencyStop_RBV	s_hexa	
s_action_RBV	s_action	Currently executing task.
s_uto_tx_RBV	s_uto	Current hexapod position in the user coordinate system.
s_uto_ty_RBV	s_uto	
s_uto_tz_RBV	s_uto	
s_uto_rx_RBV	s_uto	
s_uto_ry_RBV	s_uto	
s_uto_rz_RBV	s_uto	
s_mtp_tx_RBV	s_mtp	Current hexapod position in the machine coordinate
s_mtp_ty_RBV	s_mtp	system.
s_mtp_tz_RBV	s_mtp	
s_mtp_rx_RBV	s_mtp	
s_mtp_ry_RBV	s_mtp	
s_mtp_rz_RBV	s_mtp	
s_ax_ <n>_RBV</n>	s_ax	(n = 1,2,3,4,5,6)
s_ax_ <n>:Error_RBV</n>	s_ax	

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with $(P)(R)$)	SYMETRIE API	Description
s_ax_ <n>:ControlOn_RBV</n>	s_ax	General state of the actuators. The bitmask is stored in
s_ax_ <n>:InPosition_RBV</n>	s_ax	main record, individual bits are represented by each of the other records.
s_ax_ <n>:MotionTaskRunning_RBV</n>	s_ax	
s_ax_ <n>:HomeTaskRunning_RBV</n>	s_ax	
s_ax_ <n>:HomeComplete_RBV</n>	s_ax	
s_ax_ <n>:PhaseFound_RBV</n>	s_ax	
s_ax_ <n>:BrakeOn_RBV</n>	s_ax	
s_ax_ <n>:HomeHardwareInput_RBV</n>	s_ax	
s_ax_ <n>:NegativeLimitSwitch_RBV</n>	s_ax	
s_ax_ <n>:PositiveLimitSwitch_RBV</n>	s_ax	
s_ax_ <n>:SoftwareLimit_RBV</n>	s_ax	
s_ax_ <n>:FollowingError_RBV</n>	s_ax	
s_ax_ <n>:DriveFault_RBV</n>	s_ax	
s_ax_ <n>:EncoderError_RBV</n>	s_ax	
s_pos_ax_ <n>_RBV</n>	s_ax	(n = 1,2,3,4,5,6)
		Actuator positions (in mm).
s_dio_RBV	s_dio_1	Status of the digital IO.
s_dio:GPIO1:Input1_RBV	s_dio_1	The bitmask is stored in the main record and individual bit
s_dio:GPIO1:Output1_RBV	s_dio_1	are represented by each of the other records.
s_dio:GPIO1:Output2_RBV	s_dio_1	
s_dio:GPIO2:Input1_RBV	s_dio_1	
s_dio:GPIO2:Input2_RBV	s_dio_1	
s_dio:GPIO2:Input3_RBV	s_dio_1	
s_dio:GPIO2:Input4_RBV	s_dio_1	
s_dio:GPIO2:Input5_RBV	s_dio_1	
s_dio:GPIO2:Input6_RBV	s_dio_1	
s_dio:GPIO2:Input7_RBV	s_dio_1	
s_dio:GPIO2:Input8_RBV	s_dio_1	
s_ai_1_RBV	s_ai	Analogue input values.
s_ai_2_RBV	s_ai	
s_ai_3_RBV	s_ai	
s_ai_4_RBV	s_ai	
s_ai_5_RBV	s_ai	
s_ai_6_RBV	s_ai	
s_ai_7_RBV	s_ai	
s_ai_8_RBV	s_ai	
s_cycle_RBV	s_cycle	Cycle of the currently running sequence.

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with \$(P)\$(R))	SYMETRIE API	Description
s_index_RBV	s_index	Index of the currently running sequence.
s_err_nr_RBV	s_err_nr	Number of errors currently present on the hexapod controller.
ERR_INFO: <n>:Index</n>	C_ERR_INFO	(n = 020)
ERR_INFO: <n>:Code</n>	C_ERR_INFO	These records hold the information relating to any errors
ERR_INFO: <n>:Group</n>	C_ERR_INFO	currently present on the hexapod controller. Each time a new error occurs the next set of records will be populated.
ERR_INFO: <n>:Axis</n>	C_ERR_INFO	Clearing errors will result in the records also being cleared.
ERR_INFO: <n>:Return</n>	C_ERR_INFO	The update rate is linked to the status scan rate
ERR_INFO: <n>:Data</n>	C_ERR_INFO	(STATUS_GET.SCAN).
ERR_INFO: <n>:Data2</n>	C_ERR_INFO	The Day and Experience and DDV is a description string
ERR_INFO: <n>:Time</n>	C_ERR_INFO	The Drv: <n>:ErrorDescription_RBV is a description string. The description string table is part of the driver. The "Code"</n>
Drv: <n>:ErrorDescription_RBV</n>		record is used to index this description string table.
STOP	C_STOP	Stop the current movement.
CONTROLON	C_CONTROLON	Activate the control loop on motors.
CONTROLOFF	C_CONTROLOFF	Disable the control loop on motors.
номе	C_HOME	Start the home task on the hexapod controller.
HOMEVIRTUAL	C_HOMEVIRTUAL	Execute a virtual home.
CLEARERROR	C_CLEARERROR	Clear any errors currently present on the hexapod controller.
MOVE_PTP:MoveType	C_MOVE_PTP	Move the hexapod to the specified demand positions
MOVE_PTP:Tx	C_MOVE_PTP	according to the specified move type.
MOVE_PTP:Ty	C_MOVE_PTP	
MOVE_PTP:Tz	C_MOVE_PTP	
MOVE_PTP:Rx	C_MOVE_PTP	
MOVE_PTP:Ry	C_MOVE_PTP	
MOVE_PTP:Rz	C_MOVE_PTP	
MOVE_PTP	C_MOVE_PTP	
MOVE_SPECIFICPOS:Index	C_MOVESPECIFICPOS	Move the hexapod to a predefined specific position.
MOVE_SPECIFICPOS	C_MOVESPECIFICPOS	
MOVE_SEQ	C_MOVE_SEQ	Start executing the last downloaded sequence.
VALID_PTP:ValidationMode	C_VALID_PTP	Validate the positions. The validation result is contained in
VALID_PTP:MoveType	C_VALID_PTP	the Result_RBV record.
VALID_PTP:Tx	C_VALID_PTP	
VALID_PTP:Ty	C_VALID_PTP	See also the Drv:ValidateMove records
VALID_PTP:Tz	C_VALID_PTP	
VALID_PTP:Rx	C_VALID_PTP	
VALID_PTP:Ry	C_VALID_PTP	
VALID_PTP:Rz	C_VALID_PTP	

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with \$(P)\$(R))	SYMETRIE API	Description
VALID_PTP	C_VALID_PTP	
VALID_PTP:Result_RBV	C_VALID_PTP	
POWER:Power	C_POWER	Turn on or off power to the encoders and limit switches.
POWER	C_POWER	
MAINTENANCE:Mode	C_MAINTENANCE	Start execution of a maintenance cycle.
MAINTENANCE:Axis	C_MAINTENANCE	
MAINTENANCE	C_MAINTENANCE	
AXIS_JOG:Increment	C_AXIS_JOG	Start a jog type movement on the selected actuator.
AXIS_JOG:Axis	C_AXIS_JOG	
AXIS_JOG	C_AXIS_JOG	
REBOOT	system reboot	Reboot the controller.
		NOTE: This will result in the EPICS application losin communication with the hexapod controller.
CFG_DEFAULT	C_CFG_DEFAULT	Restore the default configuration parameters.
CFG_SAVE	C_CFG_SAVE	Save the configuration parameters currently applied to th
CFG_SAVE:saved_RBV	C_CFG_SAVE	hexapod controller.
CFG_SAFETYINPUT:Value	C_CFG_SAFETYINPUT	Enable safety inputs on the hexapod controller.
CFG_SAFETYINPUT:Set	C_CFG_SAFETYINPUT	
CFG_SAFETYINPUT:Value_RBV	C_CFG_SAFETYINPUT	
CFG_CHANNEL:Actuator1	C_CFG_CHANNEL	Configure the channels used to control the hexapod.
CFG_CHANNEL:Actuator2	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator3	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator4	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator5	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator6	C_CFG_CHANNEL	
CFG_CHANNEL:Set	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator1_RBV	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator2_RBV	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator3_RBV	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator4_RBV	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator5_RBV	C_CFG_CHANNEL	
CFG_CHANNEL:Actuator6_RBV	C_CFG_CHANNEL	
CFG_SPEED:Trans	C_CFG_SPEED	Set the translational and rotational speed of the hexapo
CFG_SPEED:Rot	C_CFG_SPEED	moves.
CFG_SPEED:Set	C_CFG_SPEED	Minimum and maximum values are read from the controller and these cannot be set.
CFG_SPEED:Trans_RBV	C_CFG_SPEED	
CFG_SPEED:Trans_Min_RBV	C_CFG_SPEED	
CFG_SPEED:Trans_Max_RBV	C_CFG_SPEED	

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with $(P)(R)$)	SYMETRIE API	Description
CFG_SPEED:Rot_RBV	C_CFG_SPEED	
CFG_SPEED:Rot_Min_RBV	C_CFG_SPEED	
CFG_SPEED:Rot_Max_RBV	C_CFG_SPEED	
CFG_TA:Value	C_CFG_TA	Set the acceleration time of movements.
CFG_TA:Set	C_CFG_TA	Minimum and maximum values are read from the
CFG_TA:Value_RBV	C_CFG_TA	controller and these cannot be set.
CFG_TA:Min_RBV	C_CFG_TA	
CFG_TA:Max_RBV	C_CFG_TA	
CFG_CS:Txu	C_CFG_CS	Set the definition of the coordinate systems (user and
CFG_CS:Tyu	C_CFG_CS	object).
CFG_CS:Tzu	C_CFG_CS	
CFG_CS:Rxu	C_CFG_CS	See also the Drv:Copy_UserCSToObjectCS and
CFG_CS:Ryu	C_CFG_CS	Drv:Copy_ObjectCSToUserCS records.
CFG_CS:Rzu	C_CFG_CS	
CFG_CS:Txo	C_CFG_CS	
CFG_CS:Tyo	C_CFG_CS	
CFG_CS:Tzo	C_CFG_CS	
CFG_CS:Rxo	C_CFG_CS	
CFG_CS:Ryo	C_CFG_CS	
CFG_CS:Rzo	C_CFG_CS	
CFG_CS:Set	C_CFG_CS	
CFG_CS:Txu_RBV	C_CFG_CS	
CFG_CS:Tyu_RBV	C_CFG_CS	
CFG_CS:Tzu_RBV	C_CFG_CS	
CFG_CS:Rxu_RBV	C_CFG_CS	
CFG_CS:Ryu_RBV	C_CFG_CS	
CFG_CS:Rzu_RBV	C_CFG_CS	
CFG_CS:Txo_RBV	C_CFG_CS	
CFG_CS:Tyo_RBV	C_CFG_CS	
CFG_CS:Tzo_RBV	C_CFG_CS	
CFG_CS:Rxo_RBV	C_CFG_CS	
CFG_CS:Ryo_RBV	C_CFG_CS	
CFG_CS:Rzo_RBV	C_CFG_CS	
CFG_LIMIT:Machine_Tx_Neg	C_CFG_LIMIT	Set the Machine limits of the hexapod.
CFG_LIMIT:Machine_Ty_Neg	C_CFG_LIMIT	
CFG_LIMIT:Machine_Tz_Neg	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rx_Neg	C_CFG_LIMIT	

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with \$(P)\$(R))	SYMETRIE API	Description
CFG_LIMIT:Machine_Ry_Neg	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rz_Neg	C_CFG_LIMIT	
CFG_LIMIT:Machine_Tx_Pos	C_CFG_LIMIT	
CFG_LIMIT:Machine_Ty_Pos	C_CFG_LIMIT	
CFG_LIMIT:Machine_Tz_Pos	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rx_Pos	C_CFG_LIMIT	
CFG_LIMIT:Machine_Ry_Pos	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rz_Pos	C_CFG_LIMIT	
CFG_LIMIT:Machine:Set	C_CFG_LIMIT	
CFG_LIMIT:Machine_Tx_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Ty_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Tz_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rx_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Ry_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rz_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Tx_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Ty_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Tz_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rx_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Ry_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:Machine_Rz_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Tx_Neg	C_CFG_LIMIT	Set the User limits of the hexapod.
CFG_LIMIT:User_Ty_Neg	C_CFG_LIMIT	
CFG_LIMIT:User_Tz_Neg	C_CFG_LIMIT	
CFG_LIMIT:User_Rx_Neg	C_CFG_LIMIT	
CFG_LIMIT:User_Ry_Neg	C_CFG_LIMIT	
CFG_LIMIT:User_Rz_Neg	C_CFG_LIMIT	
CFG_LIMIT:User_Tx_Pos	C_CFG_LIMIT	
CFG_LIMIT:User_Ty_Pos	C_CFG_LIMIT	
CFG_LIMIT:User_Tz_Pos	C_CFG_LIMIT	
CFG_LIMIT:User_Rx_Pos	C_CFG_LIMIT	
CFG_LIMIT:User_Ry_Pos	C_CFG_LIMIT	
CFG_LIMIT:User_Rz_Pos	C_CFG_LIMIT	
CFG_LIMIT:User:Set	C_CFG_LIMIT	
CFG_LIMIT:User_Tx_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Ty_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Tz_Neg_RBV	C_CFG_LIMIT	

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with \$(P)\$(R))	SYMETRIE API	Description
CFG_LIMIT:User_Rx_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Ry_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Rz_Neg_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Tx_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Ty_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Tz_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Rx_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Ry_Pos_RBV	C_CFG_LIMIT	
CFG_LIMIT:User_Rz_Pos_RBV	C_CFG_LIMIT	
CFG_LIMITENABLE:Machine	C_CFG_LIMITENABLE	Enable or disable the machine and user limits.
CFG_LIMITENABLE:Machine:Set	C_CFG_LIMITENABLE	
CFG_LIMITENABLE:Machine_RBV	C_CFG_LIMITENABLE	
CFG_LIMITENABLE:User	C_CFG_LIMITENABLE	
CFG_LIMITENABLE:User:Set	C_CFG_LIMITENABLE	
CFG_LIMITENABLE:User_RBV	C_CFG_LIMITENABLE	
CFG_CONTROL:AutomatedControlOn	C_CFG_CONTROL	Turn on or off the automatic enabling and disabling of the
CFG_CONTROL:AutomatedControlOff	C_CFG_CONTROL	motor control loop when moving the hexapod.
CFG_CONTROL:Delay	C_CFG_CONTROL	
CFG_CONTROL:Set	C_CFG_CONTROL	
CFG_CONTROL:AutomatedControlOn_RBV	C_CFG_CONTROL	
CFG_CONTROL:AutomatedControlOff_RBV	C_CFG_CONTROL	
CFG_CONTROL:Delay_RBV	C_CFG_CONTROL	
CFG_STALLCURRENT:Value	C_CFG_STALLCURRENT	Set the holding current for stepper motors as a percentage
CFG_STALLCURRENT:Set	C_CFG_STALLCURRENT	of nominal current.
CFG_STALLCURRENT:Value_RBV	C_CFG_STALLCURRENT	
CFG_BACKLASH:Axis	C_CFG_BACKLASH	Set the backlash compensation movement (axis and size).
CFG_BACKLASH:Value	C_CFG_BACKLASH	
CFG_BACKLASH:Set	C_CFG_BACKLASH	
CFG_BACKLASH:Axis_RBV	C_CFG_BACKLASH	
CFG_BACKLASH:Value_RBV	C_CFG_BACKLASH	
CFG_HOME:Auto_RBV	C_CFG_HOME	Read only. Gets the home task options for the hexapod
CFG_HOME:Virtual_RBV	C_CFG_HOME	controller. Auto if the controller auto homes on startup. Virtual if the home virtual feature is enabled. Type of home
CFG_HOME:Type_RBV	C_CFG_HOME	(absolute, relative).
CFG_KIN:Mode	C_CFG_KIN	Set the kinematic mode of the hexapod.
CFG_KIN:Set	C_CFG_KIN	
CFG_KIN:Mode_RBV	C_CFG_KIN	
CFG_KIN:OperationalAxisNum_RBV	C_CFG_KIN	

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with \$(P)\$(R))	SYMETRIE API	Description
CFG_TUNING:Index	C_CFG_TUNING	Set the tuning selection for the hexapod.
CFG_TUNING:Set	C_CFG_TUNING	
CFG_TUNING:Index_RBV	C_CFG_TUNING	
CFG_POWER:Enable	C_CFG_POWER	Set the power dissipation reduction strategy parameters.
CFG_POWER:Auto	C_CFG_POWER	
CFG_POWER:Set	C_CFG_POWER	
CFG_POWER:Enable_RBV	C_CFG_POWER	
CFG_POWER:Auto_RBV	C_CFG_POWER	
STATUS_GET		When this record is processed all status is read from th hexapod controller.
CFG_GET		When this record is processed all configuration parameter are read from the hexapod controller.
CFG_SET		When this record is processed all configuration paramete demands are applied to the hexapod controller.
TERMINAL:String		Writing a string into the String record will result in a
TERMINAL:String_RBV		immediate write into the hexapod controller. Any respons from the controller will be written into the RBV record.
Drv:CmdReturnCode_RBV		Whenever a command is executed the response value
 Drv:CmdReturnDescription_RBV		written into the ReturnCode record. If the code is negative then the command has failed and the reason is written into the Description record.
Drv:SetLimit_Speed_Trans_Min		These records monitor the limits read out from th
Drv:SetLimit_Speed_Trans_Max		hexapod controller hardware and apply them to the lim fields of the demand records, providing EPICS limits at the
Drv:SetLimit_Speed_Rot_Min		record level.
Drv:SetLimit_Speed_Rot_Max		
Drv:SetLimit_Speed_TA_Min		
Drv:SetLimit_Speed_TA_Max		
Drv:ValidateMove:CopyAndExecute		These records monitor changes to the move demands ar
Drv:ValidateMove:DetectAndExecute		immediately validate them by executing the VALID_PT command. This provides an immediate feedback to an
Drv:Validate Move: Valid_RBV		moves before the move is executed.
Drv:Copy_UserCSToObjectCS		These records copy the RBV values from one CS into th
Drv:Copy_ObjectCSToUserCS		demand records of the other CS.
Drv:Copy_CfgStatusToCfgCmd		These records copy all configuration parameters read from
Drv:Copy_CfgStatusToCfgCmd_Sub01		the hexapod controller (the _RBV) into the EPICS deman records to provide consistent values. The mai
Drv:Copy_CfgStatusToCfgCmd_Sub02		Copy_CfgStatusToCfgCmd record call the _Sub01, whic
Drv:Copy_CfgStatusToCfgCmd_Sub03		call the _Sub02, and so on.
Drv:Copy_CfgStatusToCfgCmd_Sub04		
Drv:Copy_CfgStatusToCfgCmd_Sub05		The main record is processed at driver start-up, at the en of the CFG_SET record process.
Drv:Copy_CfgStatusToCfgCmd_Sub06		
Drv:Copy_CfgStatusToCfgCmd_Sub07		

EPICS module

Reference: MAN_SOFT_EPICS

Record (all prefixed with \$(P)\$(R))	SYMETRIE API	Description
Drv:Copy_CfgStatusToCfgCmd_Sub08		On the PyDM parameters screen, it is processed when the
Drv:Copy_CfgStatusToCfgCmd_Sub09		"Clear" button is pressed.
Drv:Copy_CfgStatusToCfgCmd_Sub10		

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

5.2 BASIC EXAMPLE

This chapter presents one way of reading and writing records in the terminal. The "caget" terminal command is used get a record value, the "caput" terminal command is used to set a record value.

Read the controller API software version:

Command:

caget SYM:HEX01:VERSION:APISoftwareVersion RBV

Command and reply in a terminal:

symetrie@debian:~\$ caget SYM:HEX01:VERSION:APISoftwareVersion_RBV
SYM:HEX01:VERSION:APISoftwareVersion RBV 5.0.106.191103

Read the s hexa:ControlOn RBV status:

Command:

caget SYM:HEX01:s_hexa:ControlOn_RBV

Command and reply in a terminal:

symetrie@debian:~\$ caget SYM:HEX01:s_hexa:ControlOn_RBV
SYM:HEX01:s hexa:ControlOn RBV 0

Execute the CONTROLON command:

Command:

caput SYM:HEX01:CONTROLON 0

Command and reply in a terminal:

Check command return after execution:

Command:

caget SYM:HEX01:Drv:CmdReturnCode RBV

Command and reply in a terminal:

symetrie@debian:~\$ caget SYM:HEX01:Drv:CmdReturnCode_RBV
SYM:HEX01:Drv:CmdReturnCode RBV 0

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

Execute the MOVE PTP command, on purpose a command which is not feasible:

Command:

```
caput SYM:HEX01:MOVE_PTP:MoveType 0
caput SYM:HEX01:MOVE_PTP:Tx 0
caput SYM:HEX01:MOVE_PTP:Ty 0
caput SYM:HEX01:MOVE_PTP:Tz 1000000
caput SYM:HEX01:MOVE_PTP:Rx 0
caput SYM:HEX01:MOVE_PTP:Rx 0
caput SYM:HEX01:MOVE_PTP:Ry 0
caput SYM:HEX01:MOVE_PTP:Rz 0
caput SYM:HEX01:MOVE_PTP:Rz 0
caput SYM:HEX01:MOVE_PTP:Rz 0
```

Command and reply in a terminal:

```
symetrie@debian:~$ caput SYM:HEX01:MOVE PTP:MoveType 0
Old : SYM:HEX01:MOVE PTP:MoveType
                                     ABSOLUTE
New : SYM:HEX01:MOVE PTP:MoveType
                                     ABSOLUTE
symetrie@debian:~$ caput SYM:HEX01:MOVE PTP:Tx 0
Old : SYM:HEX01:MOVE PTP:Tx
                                     0
New : SYM:HEX01:MOVE PTP:Tx
                                     0
symetrie@debian:~$ caput SYM:HEX01:MOVE PTP:Ty 0
Old : SYM:HEX01:MOVE PTP:Ty
                                     0
New : SYM:HEX01:MOVE PTP:Ty
                                     0
symetrie@debian:~$ caput SYM:HEX01:MOVE PTP:Tz 100000
Old : SYM:HEX01:MOVE_PTP:Tz
                                     100000
New : SYM:HEX01:MOVE PTP:Tz
                                     100000
symetrie@debian:~$ caput SYM:HEX01:MOVE PTP:Rx 0
Old : SYM:HEX01:MOVE PTP:Rx
                                     0
New : SYM:HEX01:MOVE PTP:Rx
symetrie@debian:~$ caput SYM:HEX01:MOVE PTP:Ry 0
Old : SYM:HEX01:MOVE PTP:RV
                                     0
New : SYM:HEX01:MOVE PTP:Ry
symetrie@debian:~$ caput SYM:HEX01:MOVE PTP:Rz 0
Old : SYM:HEX01:MOVE PTP:Rz
                                     0
New : SYM:HEX01:MOVE PTP:Rz
symetrie@debian:~$ caput SYM:HEX01:MOVE_PTP 0
Old : SYM:HEX01:MOVE PTP
New : SYM:HEX01:MOVE PTP
                                     0
symetrie@debian:~$
```

Check command return after execution:

Command:

```
caget SYM:HEX01:Drv:CmdReturnCode_RBV
```

Command and reply in a terminal:

```
symetrie@debian:~$ caget SYM:HEX01:Drv:CmdReturnCode_RBV
SYM:HEX01:Drv:CmdReturnCode_RBV -40
```

Check command return description:

Command:

```
caget -S SYM:HEX01:Drv:CmdReturnDescription RBV
```

Command and reply in a terminal:

```
symetrie@debian:~$ caget -S SYM:HEX01:Drv:CmdReturnDescription_RBV
SYM:HEX01:Drv:CmdReturnDescription RBV Requested move is not feasible.
```


EPICS module

Reference: MAN_SOFT_EPICS

Issue:

Check status scan rate:

Command:

caget SYM: HEX01:STATUS GET. SCAN

Command and reply in a terminal:

Modification of status scan rate:

Command:

caput SYM:HEX01:STATUS GET.SCAN "1 second"

Command and reply in a terminal:

New : SYM:HEX01:STATUS GET.SCAN 1 second

EPICS module

Reference: MAN_SOFT_EPICS

Issue: A

6 SOFTWARE RELEASE HISTORY

6.1 Release 5.0.7.210830

Update to guarantee compatibility with API version: 5.0.210830:

Add:

API: Error codes: 34 to 36

■ API: Command returns: -92; -1017

Update to guarantee compatibility with API version: 5.0.201028:

Add:

API: CFG_POWER command

API: Error codes: from 30 to 33.

■ API: Command returns: from -83 to -90.

Update:

API: POWER command: modification of the command arguments.

API: CFG_CONTROL command: add of delay parameter

6.2 Release 5.0.5.191103

First release