

Departamento de Electrónica, Telecomunicações e Informática Mestrado Integrado Eng. Computadores e Telemática 47064 - Desempenho e Dimensionamento de Redes

Relatório Desempenho da conectividade de redes sem fio multi-hop com terminais moveis

Autores:

Guilherme Cardoso 45726 Rui Oliveira 68779

Docente :
Amaro Sousa

Prática:

P2

Ano letivo 2016/2017 Aveiro, 23 de Março de 2017 Conteúdo 1

Conteúdo

1	Reso	olução d	los exercícios	2
	1.1	Primei	ra parte: rede ad-hoc	. 2
		1.1.1	Implementação	. 2
		1.1.2	Análise dos resultados	. 5
	1.2	Segun	da parte: redes moveis com pontos de acesso (AP)	. 8
		1.2.1	Implementação	. 8
		1.2.2	Análise dos resultados	. 10
2	Refe	erências		16

1 Resolução dos exercícios

1.1 Primeira parte: rede ad-hoc

1.1.1 Implementação

• Programa principal

Descrição: Para o primeiro simulador foi utilizado o *script* inicial fornecido no enunciado deste trabalho. Adicionamos apenas algum código de suporte de forma a poder nas fases preliminares do desenvolvimento visualizar a execução dos algoritmos.

Figura 1: Representação da conectividade na primeira simulação

Figura 2: Visualização dos resultados obtidos para uma simulação

• InitialRandom(N,S)

Descrição: Gera valores iniciais de posição e velocidade dos nós, dentro dos limites impostos.

• UpdateCoordinates(pos,vel,delta)

```
function [pos, vel] = UpdateCoordinates(pos, vel, delta)
3 \text{ AXIS\_LIMIT} = 300;
^{4} ABSCISSA_LIMIT = 200;
6 pos = pos + delta*vel;
  [lines, cols] = size(pos);
  for i=1:1ines
10
       if (pos(i,1)>AXIS_LIMIT)
11
           pos(i,1) = AXIS\_LIMIT;
12
           vel(i,1) = -vel(i,1);
13
      end
14
       if (pos(i,2)>ABSCISSA_LIMIT)
           pos(i,2) = ABSCISSA\_LIMIT;
16
           vel(i,2) = -vel(i,2);
17
      end
18
       for j=1:cols
19
           if(pos(i,j)<0)
20
                pos(i,j) = 0;
21
                vel(i,j) = -vel(i,j);
22
           end
       end
24
25 end
26
27 end
```

Descrição: Avança um passo na velocidade e posição dos nós. (um tick)

• ConnectedList(N,pos,W)

```
function L= ConnectedList(~, pos,W)
 [lines, \sim] = size(pos);
 4 connected = zeros(lines, lines);
 solution connected(:) = W + 1;
 6 \text{ draw}_x = [];
 7 \text{ draw}_y = [];
 9 L = zeros( ceil((lines*lines)/2), 2); % pre-allocate for faster
                   computation
10
      for i=2:1ines
                      ponto1 = pos(i,:);
12
                      for j = 1: i-1
13
                                    ponto2 = pos(j,:);
14
                                    connected (i,j) = sqrt((pontol(1,1)-ponto2(1,1))^2 + (pontol(1,1)-pontol(1,1))^2 + (pontol(1,1)-pontol(1,1)-pontol(1,1))^2 + (pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1))^2 + (pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1)-pontol(1,1
                    (1,2)-ponto2(1,2))^2;
                                    %connected(i,j) = pdist([ponto1; ponto2], 'euclidean');
16
                                    if(connected(i,j) < W)
17
                                                   draw_x = [draw_x NaN pontol(1,1) ponto2(1,1)];
18
19
                                                   draw_y = [draw_y NaN pontol(1,2) ponto2(1,2)];
                                                   L((i*(i-1)/2)+j,:) = [i j];
20
                      end
22
23 end
24
                                                                                  % filter the zeros of the preallocated
25 L = L(any(L,2),:);
                 memory
27 pause ()
end
```

Descrição: Calcula os nós conectados através do calculo da matriz triangular da distância entre os nós e depois verificando quais verificam a distância mínima necessária (W). Também desenha a representação das ligações.

• AverageConnectedNodePairs(N,L)

```
function o = AverageConnectedNodePairs( N, L )

labels = 1:N;

[lines, ~] = size(L);

o = 0;

for i=1:lines
   indice1 = labels(1,L(i,1));
```

```
indice2 = labels(1,L(i,2));
      if (indice1 ~= indice2)
10
11
          labels(labels==indice2) = indice1;
      end
12
13 end
14
unique_labels = unique(labels);
16 [~, unique_labels_count] = size(unique_labels);
for i=1:unique_labels_count
      number_of_nodes = sum( labels == unique_labels(i)) ;
      o = o + ((number\_of\_nodes * (number\_of\_nodes - 1)) / 2);
20
21 end
o = o / ((N*(N-1)) / 2);
24
25 end
```

Descrição: Calcula o numero de nós ligados. A média é calculada no programa principal.

1.1.2 Análise dos resultados

Case	S (km/h)	W (m)	N	run1	run2	run3	run4	avg(%)
A	3	40	50	0.45	0.47	0.46	0.56	47
В	3	60	50	0.97	0.96	0.96	0.97	97
С	3	80	50	1	1	1	1	100
D	3	40	100	0.96	0.97	0.98	0.99	97
Е	3	60	100	1	1	1	1	100
F	6	40	50	0.58	0.56	0.48	0.50	53
G	6	60	50	0.99	0.96	0.97	0.99	98
Н	6	80	50	1	1	0.99	1	100
I	6	40	100	0.97	0.97	0.96	0.97	97
J	6	60	100	1	1	1	1	100

Tabela 1: Resultados obtidos para $\Delta t = 1$ second e T = 3600

- a) Para os resultados apresentados na tabela anterior foram utilizados os seguintes parâmetros constantes: $\Delta t = 1$ second e T = 3600
- b) Segundo os dados da tabela anterior parece não haver influência direta da velocidade (S) na conectividade dos nós. O facto de maior impacto parece ser o alcance (W), em que quando é mais baixo em ambos os casos (com baixa e alta velocidade) a conectividade caiu para metade (casos A e F) enquanto em todos os outros ensaios consideramos os

valores suficientemente consistentes para concluir que a velocidade tem um impacto pouco relevante.

c) Considerando:

• Velocidade de cada nó: S = 5 Km/h

• Para os valores de alcance: W = 40, 60 e 80 meters

Objetivo: Determinar número de nós (N) tal que seja múltiplo de 10, de modo que o número médio de nós ligados não seja inferior a 99

Para cada um dos valores de W anteriormente referidos foram efetuadas simulações para diferentes valores à variável N (i.e 10, 20, 30, 40...). Os resultados obtidos e as respetivas conclusões apresentam-se de seguida.

S	\mathbf{W}	N	Node pairs(%)
		10	10.12
		20	12.84
		30	19.33
		40	30.10
		50	44.91
		60	58.39
		70	72.44
5 Km/h	40 m	80	87.87
3 KIII/II	40 111	90	94.13
		100	96.92
		110	98.30
		120	99.24
		130	99.59

Tabela 2: Resultados obtidos para W igual a 40

Resultados: Tal como é possível observar através da tabela anterior o número mínimo de nós (N) para o qual o número médio de nós ligados não seja inferior a 99% é **120**

S	W	N	Node pairs(%)
		10	23.90
		20	51.57
		30	72.39
		40	89.39
5 Km/h	60 m	50	98.17
J KIII/II	00 111	60	99.49
		70	99.85
		80	99.96
		90	99.98
		100	99.99

Tabela 3: Resultados obtidos para W igual a 60

Resultados: Segundos os resultados obtidos pelos ensaios o número mínimo de nós (N) para o qual o número médio de nós ligados não seja inferior a 99% é **60**

S	W	N	Node pairs(%)
		10	53.26
		20	82.64
		30	98.74
		40	99.86
5 Km/h	80 m	50	99.94
J KIII/II	80 111	60	99.99
		70	100
		80	100
		90	100
		100	100

Tabela 4: Resultados obtidos para W igual a 80

Resultados: Para o caso de um alcance (W) de 80 os resultados mostram que o número mínimo de nós necessário é para conectividade de 99% é **40**

1.2 Segunda parte: redes moveis com pontos de acesso (AP)

1.2.1 Implementação

• Programa principal

Descrição: As alterações ao bloco de código principal foram mínimas, apenas para acomodar a necessidade da perceção da existência de pontos de acesso.

• InitialRandom2(N,S, AP)

```
function [pos, vel, posAP] = InitialRandom2(N,S, AP)
3 % coordinates limits
4 \text{ AXIS\_LIMIT} = 300;
_5 ABSCISSA_LIMIT = 200;
7 % positions
* pos = [AXIS\_LIMIT * rand(N, 1) ABSCISSA\_LIMIT * rand(N, 1)];
10 %draw access point location
12 if AP == 1
      posAP = [AXIS_LIMIT/2, ABSCISSA_LIMIT/2];
13
14 end
if AP == 2
      posAP = [AXIS_LIMIT/4, ABSCISSA_LIMIT/2;
17
          2*AXIS_LIMIT/4, ABSCISSA_LIMIT/2];
18 end
19 if AP == 3
      posAP = [AXIS_LIMIT/6, ABSCISSA_LIMIT/2;
          3*AXIS_LIMIT/6, ABSCISSA_LIMIT/2;
          5*AXIS_LIMIT/6, ABSCISSA_LIMIT/2];
22
23 end
if AP == 4
      posAP = [AXIS_LIMIT/4, ABSCISSA_LIMIT/4;
          3*AXIS_LIMIT/4, ABSCISSA_LIMIT/4;
26
          AXIS_LIMIT/4,3*ABSCISSA_LIMIT/4;
27
          3*AXIS_LIMIT/4,3*ABSCISSA_LIMIT/4;];
28
29 end
if AP == 5
      posAP = [AXIS_LIMIT/4, ABSCISSA_LIMIT/4;
31
             3*AXIS_LIMIT/4, ABSCISSA_LIMIT/4;
32
             AXIS_LIMIT/4,3*ABSCISSA_LIMIT/4;
33
             3*AXIS_LIMIT/4,3*ABSCISSA_LIMIT/4;
             AXIS_LIMIT/2, ABSCISSA_LIMIT/2];
35
36 end
37
38 % speed and bearing
abs_val = S * rand(N, 1); 	 % random speed
```

```
angle_val = 2 * pi * rand(N, 1); % random angle
vel = [ abs_val.*cos(angle_val) abs_val.*sin(angle_val) ];
```

Descrição: Comparativamente à primeira simulação acomodamos agora a geração até 5 modelos de posições de APs

• UpdateCoordinates(pos,vel,delta)

Descrição: Não sofreu alterações em relação à primeira simulação

• ConnectedList(N,pos,W)

Descrição: Não sofreu alterações em relação à primeira simulação

• AverageConnectedNodePairs2(N,L, posAP)

```
function o = AverageConnectedNodePairs2( N, L, posAP )
ap_count, \sim] = size(posAP);
a = [zeros(1,N) ones(1,ap_count)];
5 repetir = true;
6 [lines, \sim] = size(L);
_{7} o = 0;
9 while repetir
    repetir = false;
10
      for i=1:lines
11
          indice1 = labels(1,L(i,1));
12
         indice2 = labels(1,L(i,2));
13
         if (indice1 ~= indice2)
              labels(1,L(i,1)) = 1;
15
              labels(1,L(i,2)) = 1;
17
              repetir = true;
         end
      end
19
20 end
o = sum(labels(1:N));
o = o / N;
25 end
```

Descrição: As alterações feitas são para acomodar a regra que um nó apenas tem conectividade se está ligado a um AP ou se está ligado a um nó que tem rota para o AP.

1.2.2 Análise dos resultados

Case	N. Aps	W (m)	N	run1 (0-1)	run2 (0-1)	run3 (0-1)	run4 (0-1)	avg(%)
A	1	40	30	0.2521	0.2747	0.3033	0.2698	27.225
В	1	60	30	0.8554	0.8796	0.8709	0.7981	86.315
С	1	80	30	0.9877	0.9867	0.9839	0.9835	98.53
D	1	40	50	0.5359	0.5822	0.5742	0.6045	57.82
Е	1	60	50	0.9783	0.9865	0.9811	0.9849	98.3
F	2	40	30	0.4526	0.4146	0.3926	0.4205	41.755
G	2	60	30	0.8898	0.9008	0.8815	0.8977	89.375
Н	2	80	30	0.9943	0.9957	0.9904	0.9961	99.5
I	2	40	50	0.7317	0.6769	0.7309	0.6512	70.39
J	2	60	50	0.9862	0.9934	0.9897	0.9869	98.83
K	3	40	30	0.5767	0.6309	0.5238	0.5665	57.16
L	3	60	30	0.9457	0.9569	0.9585	0.9395	95.13
M	3	80	30	0.9952	0.9958	0.9928	0.9985	99.55
N	3	40	50	0.8070	0.8283	0.8074	0.8548	81.785
О	3	60	50	0.9934	0.9924	0.9905	0.9941	99.29
P	4	40	30	0.6894	0.7043	0.7188	0.7255	71.155
Q	4	60	30	0.9778	0.9792	0.9861	0.9763	97.85
R	4	80	30	0.9993	0.9997	0.9999	0.9990	99.95
S	4	40	50	0.8724	0.8847	0.8911	0.8847	88.47
T	4	60	50	0.9965	0.9974	0.9969	0.9975	99.715
Alt5_1	5	40	30	0.7866	0.7565	0.7611	0.7613	76.64
Alt5_2	5	60	30	0.9822	0.9820	0.9820	0.9805	98.17
Alt5_3	5	80	30	0.9996	0.9998	0.9994	0.9994	99.96
Alt5_4	5	40	50	0.9016	0.8917	0.9129	0.9129	90.48
Alt5_5	5	60	50	0.9969	0.9962	0.9951	0.9945	99.58
Alt3_1	3	40	30	0.6060	0.6111	0.6052	0.5879	60.26
Alt3_2	3	60	30	0.9600	0.9681	0.9700	0.9695	96.69
Alt3_3	3	80	30	0.9991	0.9981	0.9982	0.9992	99.87
Alt3_4	3	40	50	0.8274	0.8391	0.8126	0.8399	82.98
Alt3_5	3	60	50	0.9941	0.9939	0.9953	0.9973	99.51

Tabela 5: Testes efectuados para a segunda simulação. $\Delta t = 1$, T = 3600 e S = 5

- a) Os resultados obtidos na tabela anterior foram utilizados os seguintes parâmetros constantes: $\Delta t = 1$, T = 3600 e S = 5
- **b**) Com base nos resultados obtidos nesta simulação da alínea anterior, concluímos que o alcance dos nós é o fator de maior relevância no impacto da conectividade. Isto é, basta

aumentar o alcance que mesmo com um único AP a conectividade global do sistema triplica. O mesmo aumento verifica-se no caso de dois APs, em que o aumento de alcance (W) de 40 para 60 aumenta em 1.5x a conectividade global do sistema. Embora o número de pontos de acesso reduza a magnitude do aumento da conectividade dos nós continua a ser observável em cada aumento do alcançe.

c) Testámos duas alternativas, uma que utiliza três APs e outra que utiliza cinco APs. A localização de ambos encontra-se representada nas imagens seguintes.

Figura 3: Sugestão de localização de 3 APs

Figura 4: Sugestão de localização de 5 APs

Para os dois casos foram efetuados os testes Alt5_i (i=1,2,3,4,5) e Alt3_i (i=1,2,3,4,5) respetivamente para a localização anteriormente apresentada para cinco e três pontos de acesso. Os resultados obtidos encontram-se na tabela da página anterior.

Para 5 APs a percentagem de nós ligados é significativamente melhores do que para as restantes variações de APs. Por exemplo para o caso Alt5_1 observa-se uma percentagem de ligação maior do que para os casos P, K, F ou A. No caso da implementação com 3 APs, simulando uma rede em triângulo, observa-se uma percentagem de nós ligados

ligeiramente superior à implementação dos casos K a O, sendo esta também composta por três APs mas em localizações diferentes.

Concluímos assim, para os dois casos testados que a implementação com 5 APs é mais eficiente, o que já seria intuitivo de concluir. O que esperaríamos era a configuração em triângulo oferecer melhor conectividade do que com 4 APs, o que não se verificou (embora tenha quase insignificativamente aumentado a conectividade quando comparado para três APs em linha).

- **d**) Os resultados obtidos encontram-se nas três tabelas seguintes. Para os diferentes valores atribuídos ao range (W) concluímos o seguinte:
 - W = 40: quando aumentamos o número de APs observamos que a percentagem de nós ligados aumenta sempre. Para cada um dos casos de APs, quanto maior o valor de nós utilizados maior é a percentagem de nós ligados. Para W=40 não se observa nenhum caso em que a percentagem de nós ligados seja maior do que 99%.
 - W = 60 :quando aumentamos o número de APs observamos que a percentagem de nós ligados aumenta sempre. Para cada um dos casos de APs, quanto maior o valor de nós utilizados maior é a percentagem de nós ligados. Para W=60 observam-se percentagens de ligações entre os nós superior a 99% quando existem 70 nós na simulação para qualquer tipo de APs simulados. No caso de quatro APs e 50 nós também observamos uma percentagem de ligação superior a 99%.
 - W = 80 :quando aumentamos o número de APs observamos que a percentagem de nós ligados aumenta sempre. Para cada um dos casos de APs, quanto maior o valor de nós utilizados maior é a percentagem de nós ligados. Para W=80 observam-se percentagens de ligações entre os nós superior a 99% quando existem 50 ou 70 nós na simulação para qualquer tipo de APs simulados.

40
Ī
\geq

30 0.2747 50 0.5704 70 0.8514 23 0.3862 50 0.6805		0000									
1 50 0. 1 70 0. 2 30 0.		0.3033	0.2698	1	0.2465	0.2424 0.2465 0.2822 0.2769 0.2503	0.2769		0.2646 0.3792	0.3792	0.27899
1 70 0. 2 30 0.		9009.0	0.6019 0.5921 0.5988	0.5921		0.6464	0.6464 0.5475 0.628	0.628	0.5818	0.5214	0.58889
2 30 0.		0.8512	0.8125	0.8443 0.8194	0.8194	0.8724 0.8662	0.8662	0.8613	0.8438	0.8563	0.84788
0 05 0	0.3862	0.3942	0.413	0.4205	0.4464	0.4317	0.4418	0.425	0.4206	0.4362	0.42156
)) -)	0.6805	0.6652	0.7075	0.6813	0.7488	0.6852	0.6933	0.6576	0.6714	0.7165	0.69073
2 70 0.	0.8602	0.9001	0.7165		0.8928 0.8977	0.8901 0.8845	0.8845	0.8871	0.8881	0.8964	0.87135
3 30 0.	6336	0.6336 0.5961	0.6167 0.5999 0.5603	0.5999	0.5603	0.5884 0.5868 0.5668	0.5868		0.5988 0.5544	0.5544	0.59018
3 50 0.	0.8223	0.8373	0.8257		0.8411 0.8246	0.7937 0.8389 0.8223	0.8389		0.8063	0.8094	0.82216
3 70 0.	0.931	0.9333	0.935	0.9309	0.9287	0.937	0.9362	0.9297	0.9339	0.937	0.93327
4 30 0.	0.7253	0.725	0.6775	0.692	0.7055	0.7135	0.7182	0.6944	0.7127	0.704	0.70681
4 50 0.	0.8836	0.8845	0.877	0.8825	0.8825 0.8796	0.8796 0.8916	0.8916	0.8813	0.8839	0.8984	0.8842
4 70 0.9527		0.9539	0.9583	96.0	0.9627	0.9627 0.9587 0.9594	0.9594	0.9617	0.9618 0.955	0.955	0.95842

Tabela 6: Resultados obtidos para W igual a 40

•	ſ	
	I	I
۲	_	
۲	ς	

	72	02	80	11	16	03	14	71	82	21	45	6/
avg(%)	0.8647	0.9880	0.9986	0.8921	0.9913	0.9990	0.9534	0.9938	0.9991	0.9826	0.9962	0.999279
simul10	0.85566	0.98783	0.99922	0.89258	0.99306	0.99933	0.95818 0.953414	0.99116	96866.0	0.98251 0.982621	0.99475	0.99963
simul8 simul9 simul10 avg (%)	0.84583 0.85566 0.864772	0.97558 0.99217 0.98783 0.988002	0.99862 0.99733 0.99922 0.998608	0.89447 0.89646 0.89258 0.892111	0.99413	0.99754	0.9572	0.99628 0.99292 0.99116 0.993871	0.99983	0.9813	0.99727	0.99945
simul8	0.88168	0.97558	0.99862	0.89447	0.99052 0.99413 0.99306 0.991316	0.99911 0.99754 0.99933 0.999003	0.95135		0.99939 0.99983 0.99896 0.999182	0.98236 0.98287 0.98579 0.97981 0.98118 0.98576 0.9813	0.99757 0.99665 0.99559 0.99624 0.99502 0.99609 0.99727 0.99475 0.996242	0.99915 0.99945 0.99963
simul5 simul6 simul7	0.86359	0.989	0.99733 0.99833 0.99908	0.8904	0.98565 0.99252 0.99197 0.99383 0.99124	0.99958 0.99966 0.99922 0.99888 0.99958	0.94992 0.94833 0.95443	0.99579 0.99472 0.99308 0.99494	0.99916 0.99859 0.99941 0.99887 0.99963	0.98118	0.99502	0.99954 0.99978 0.99914 0.99929 0.99929
simul6	0.85726 0.83658 0.86359	0.99129 0.98744 0.989	0.99833	0.91389	0.99383	0.99888	0.94833	0.99308	0.99887	0.97981	0.99624	0.99929
simul5	0.85726		l	0.90527	0.99197	0.99922	0.94992	0.99472	0.99941	0.98579	0.99559	0.99914
simul4	0.88091	0.99094	0.99896 0.99912	0.88007	0.99252	0.99966	0.95126		0.99859	0.98287	0.99665	0.99978
simul3	96268.0	0.98977		69868.0	0.98565	0.99958	0.95234	0.99543	0.99916	0.98236	0.99757	0.99954
simul2	0.85486 0.87339	0.98926 0.98674	0.99938	0.88009	0.98756	0.9992	0.95839	0.99373	0.99904	0.98128	0.99595	0.99922
simul1	0.85486	0.98926	70 0.99871 0.99938	30 0.86919 0.88009 0.89869 0.88007 0.90527 0.91389 0.8904	50 0.99268 0.98756	70 0.99793 0.9992	30 0.95274	0.99066 0.99373	70 0.99894 0.99904	30 0.98335 0.98128	50 0.99729 0.99595	70 0.9983 0.99922
AP N	30	20	70	30	50	70	30	20	70	30	50	70
AP	_			2	2	2	3	3	3	4	4	4

Tabela 7: Resultados obtidos para W igual a 60

(×	
	I	I
!	>	
!	5	

AP N	simul1	simul2	simu13	simul4	simul5	simul6	simul7	simul8	9lnmis	simul10 avg (%)	avg(%)
30 0.99046	9	0.97795	0.9934	0.98609	0.99164	0.99243	0.99041	0.9891	0.99309	0.99605	0.990062
50 0.99992	2		0.99983	0.9997	1	0.9997	0.9992	1	0.99953	0.99951	0.999739
70 1		0.99997	1	0.99997	1	1		0.99993	0.99985	1	0.999972
30 0.993	82	0.99378 0.98928	0.99469	0.99469 0.99367	0.99461	0.99461 0.99424	0.99519	0.99471	0.99044	0.98936 0.992997	0.992997
50 1		0.99968	0.99975	1	0.99993 0.9998	0.9998	0.99959	0.99949	1	0.99982	0.99982 0.999806
70 1		0.99991	1	1	1	0.99977	0.99978	1	1	96666.0	0.999942
30 0.99	902	0.99706 0.99486	0.99611	0.99907	0.99905	0.99399	0.99679	0.99744	0.99334	0.99519	0.99629
50 0.95	90/	0.99706 0.99486	0.99611	0.99907	0.99905	0.99905 0.99399	0.99679	0.99744	0.99334	0.99519	0.99629
70 1		0.99988	1	1	1	1	1		0.99987	1	0.999975
30 0.99	3965	0.99965 0.99858	0.99989	0.99993	0.9993	0.99956	0.99956 0.99962	0.99953	0.99925 0.99977	0.99977	0.999508
50 1		_	0.99991	1	1	1	1	0.99994	1	1	0.999985
70 1		1	0.99995 0.99997	0.99997	1	0.99999	1	96666.0	1	1	0.999987

Tabela 8: Resultados obtidos para W igual a 80

2 Referências

- Guia prático disponível na página elearning da disciplina
- Slide teóricos disponível na página elearning da disciplina
- Documentação matlab https://www.mathworks.com/help/matlab/