The Political Economy of Conservation

Robin Burgess, LSE Francisco Costa, FGV EPGE Allan Hsiao, Stanford Benjamin Olken, MIT Veronica Salazar Restrepo, GSEM

September 24, 2025

Forest conservation protects major carbon stocks (Spawn et al. 2020)

But conservation is political

View from Brazil: Agribusiness lobby scuppers climate gains

Lula wants Brazil to be a beacon in the fight against global warming, Leonardo Sakamoto. The powerful lobby that represents agribusiness in...

Sep 4, 2023

M Mongabay

Indonesia palm oil lobby pushes 1 million hectares of new Sulawesi plantations

Aug 8, 2024

Question

How can conservation policy navigate political challenges?

This paper

- Conservation is political
 - Regulation today may lead to repeal tomorrow
- Producers resist regulation
 - In Brazil, producers resist regulation with campaign donations
- Regulatory design matters quantitatively
 - In Brazil and Indonesia, bans reduce emissions and minimize producer losses

This paper

- Conservation is political
 - Regulation today may lead to repeal tomorrow
- Producers resist regulation
 - In Brazil, producers resist regulation with campaign donations
- Regulatory design matters quantitatively
 - In Brazil and Indonesia, bans reduce emissions and minimize producer losses

This paper

- Conservation is political
 - Regulation today may lead to repeal tomorrow
- Producers resist regulation
 - In Brazil, producers resist regulation with campaign donations
- 3 Regulatory design matters quantitatively
 - In Brazil and Indonesia, bans reduce emissions and minimize producer losses

Regulation with repeal

$$\underbrace{W_1(\tau)}_{\mathsf{today}} + \underbrace{[1-\rho(\tau)]W_2(\tau) + \rho(\tau)W_2(0)}_{\mathsf{tomorrow}}$$

- Regulation au affects welfare today and tomorrow
 - Pigouvian tax au^P maximizes $W_1(au)$ today
 - Producer losses induce repeal $\rho(\tau) = R(\Delta PS(\tau))$ tomorrow
- Pigouvian tax helps today, but not tomorrow

Example: deforestation for agricultural production

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Plots i of low (L) and high (H) conservation value
 - Common private profits $\pi > 0$
 - ullet Heterogeneous carbon stocks e_i
- **First best:** deforest *L*, protect *H*

Pigouvian taxes e_i

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Plots L: deforest and pay tax, so lose e_i
- Plots H: protected, so lose π (for $\pi < e_i$)
- Achieves first best, but large producer losses risk repeal

Uniform taxes *u*

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Cannot achieve the first best
 - Need to treat L and H differently
- Targeting principle applies
 - Poor targeting on emissions, so not efficient

Bans on H

$$L = \{i \mid e_i \le \pi\}, \quad H = \{i \mid e_i > \pi\}$$

- Plots L: deforest and no tax, so lose 0
- Plots H: protected, so lose π
- Targeting principle applies differently
 - Poor targeting on emissions, but still efficient
 - Good targeting on marginality by leaving L alone
- Dominates Pigouvian tax
 - Smaller producer losses, lower risk of repeal

Producers resist regulation

The Brazilian Amazon

- **PPCDAm** strengthened forest regulation between 2005-2011
 - Enforcing Forest Code for private land (80% rule)
 - Criminalizing deforestation of unclaimed land
- We measure political resistance via campaign donations

PPCDAm strengthened regulation

Data

- Universe of formal donations (*Tribunal Superior Eleitoral*)
 - Every state and federal election from 2002 to 2018
 - For donors and candidates in Brazil
- Universe of firm registries (*Receita Federal*)
 - We identify donors and candidates who are agricultural firm owners
 - And thus are likely to oppose forest regulation

Campaign donations over time

Difference-in-differences

$$y_{imt} = \beta Ag_i \times \mathbb{1}\{t > 2006\} + \alpha_i + \gamma_{mt} + \varepsilon_{imt}$$

- Agriculture vs. non-agriculture, before vs. after the program
- Individuals i, municipalities m, election years t, fixed effects (α_i, γ_{mt})
- Errors ε_{imt} clustered by i

Agricultural donors increased donations

	Total	To ag candidate
$Ag \times Post$ 2006	5.81*** (0.97)	3.27*** (0.57)
Effect as % of mean Municipality-year FEs Observations	242.1 × 35,195	297.4 × 35,195

Especially under strong regulation

Heterogeneity H :	Deforestation reduction (2004-2006)	Cloud coverage
$Ag \times Post \ 2006$	3.59***	11.55***
Ac v Doct 2006 v II	(0.85) 1.10***	(2.49) -15.20***
$Ag \times Post \ 2006 \times H$	(0.34)	(4.49)
Municipality-year FEs	X	×
Observations	34,275	27,785

And relative to the non-Amazon (triple-difference)

Non-Amazon sample:	Rest of Brazil	Neighboring states
$Ag \times Post \ 2006$	0.65	-0.08
	(0.55)	(1.43) 3.77**
$Ag \times Post \ 2006 \times Amazon$	2.70***	3.77**
	(0.97)	(1.66)
Municipality-year FEs	×	×
Observations	367,295	147,905

Bans induce less resistance than taxes

Sample:	High clouds	No new PAs	Full sample
$Ag \times Post \ 2006$	2.50**	10.87***	10.65***
	(1.17)	(2.68)	(2.51)
$Ag \times Post \ 2006 \times New \ PAs$	-0.53		-4.45
	(5.17)		(4.43)
$Ag \times Post \ 2006 \times Clouds$		-12.68**	-12.44***
		(5.06)	(4.58)
Municipality-year FEs	×	X	X
Observations	10,460	24,155	27,385

Agricultural candidates received more donations

	Total	From ag donor
$Ag \times Post \ 2006$	32.85*** (2.79)	11.08*** (1.17)
Effect as % of mean Municipality-year FEs Observations	176.6 × 15,660	257.8 × 15,660

And also more votes (!)

	Federal Congress		State Congress	
	Votes	Elected	Votes	Elected
Ag × Post 2006	32.61*** (4.35)	0.33*** (0.05)	10.37*** (0.92)	0.30*** (0.03)
Effect as % of mean Municipality-year FEs	71.2 ×	81.6 ×	87.6 ×	75.5 ×
Observations	1,378	1,378	4,995	4,995

Regulatory design matters quantitatively

Quantification: Brazil and Indonesia

- Brazil: pasture, soy, maize
- Indonesia: palm oil + peatlands
- Spatial data on plantations, crop yields, market access, carbon stocks
- Simulate regulation and evaluate welfare (CS = 0)
 - **1** Bans $\tau_i^{\mathsf{ban}}(b) = B \cdot \mathbb{1}(e_i > b)$ for cutoff b, big B
 - 2 Taxes $\tau_i^{\mathsf{tax}}(t) = te_i$ for tax rate t

Land use for plots i

• Profits π_i from plantations n_i under regulation τ_i

$$\pi(n_i) = (r_i - c_i - \tau_i)n_i$$

• Revenues r_i vs. costs c_i per hectare of production

$$r_i = \left(rac{P}{1-eta}
ight)\!y_i, \quad c_i = \gamma_{g(i)} + \delta^d d_i + \delta^e e_i + rac{1}{2}\psi n_i + arepsilon_i$$

Estimating equation from first order condition

$$n_i = \frac{1}{\psi} \left(r_i - \gamma_{g(i)} - \delta^d d_i - \delta^e e_i - \tau_i - \varepsilon_{it} \right)$$

Land use for plots i

• Profits π_i from plantations n_i under regulation τ_i

$$\pi(n_i) = (r_i - c_i - \tau_i)n_i$$

• Revenues r_i vs. costs c_i per hectare of production

$$r_i = \left(rac{P}{1-eta}
ight) y_i, \quad c_i = \gamma_{g(i)} + \delta^d d_i + \delta^e e_i + rac{1}{2} \psi n_i + arepsilon_i$$

Estimating equation from first order condition

$$n_i = \frac{1}{\psi} \left(r_i - \gamma_{g(i)} - \delta^d d_i - \delta^e e_i - \tau_i - \varepsilon_{it} \right)$$

Land use for plots i

• Profits π_i from plantations n_i under regulation τ_i

$$\pi(n_i) = (r_i - c_i - \tau_i)n_i$$

• Revenues r_i vs. costs c_i per hectare of production

$$r_i = \left(rac{P}{1-eta}
ight) y_i, \quad c_i = \gamma_{g(i)} + \delta^d d_i + \delta^e e_i + rac{1}{2} \psi n_i + arepsilon_i$$

Estimating equation from first order condition

$$n_i = \frac{1}{\psi} \left(r_i - \gamma_{g(i)} - \delta^d d_i - \delta^e e_i - \tau_i - \varepsilon_{it} \right)$$

Brazil: taxes reduce PS + G losses, bans reduce PS losses

But bans give up G

Indonesia: similar patterns, with magnitudes driven by peat

Summary

- Conservation is political
 - Regulation should account for producer resistance
- Quantitatively important in Brazil and Indonesia
 - And perhaps in other high-value conservation zones