Fault Simulation

- Introduction
- Fault simulation techniques
- Alternatives to fault simulation
- Issues of fault simulation
- Conclusion

Issues of Fault Simulations

- Long CPU time
 - Distributed computing, or Fault sampling
- Large memory requirement
 - Partition faults into multiple simulation passes
- Potentially detected faults
- Compatibility with logic simulation

Speed and Memory Solutions

- 1. Multiple-pass fault simulation
 - Run only small portion of faults per pass
- 2. Distributed fault simulation
 - Distribute faults to more than one computers
- 3. Emulation
 - Use hardware emulator, like FPGA

- *A simulation pass is a single simulation run
 - from beginning to end of test patterns

Potentially Detected Faults

- DEF: faults that may or may not be detected in practice
 - Detection cannot be determined by fault simulation
- Possible reasons for potentially detected faults
 - Bus contention, Oscillation, High impedance, Unknown
- Examples:

- Different tools have different ways to calculate FC
 - Please see tool manual for details

Compatibility with Logic Simulation

- To speed up fault simulation, many tools requires circuits to be represented in a library models pre-defined by tools
- Functional verification logic simulations often involve mixed-level codes, which make such modeling very difficult
 - Circuit delay
 - RTL behavior description
 - User Defined Primitives (UDP)
 - * DFF, MUX

Fault Simulation

- Introduction
- Fault simulation techniques
- Comparison of fault simulation
- Alternatives to fault simulation
- Issues of fault simulation
- Conclusion

Quiz: Comparison of Techniques

Items	Serial	PPSFP	Deductive	Concurrent	Differential
unknown logic value	©	©	8	©	©
Delay model					
Run time					
Sequential circuits					
Memory					

Conclusion

- Usage of fault simulation
 - ATPG, fault grading, diagnosis
- Techniques
 - Serial, parallel, PPSFP, deductive, concurrent, differential
- Most popular technique in industry now
 - PPSFP is simple for comb. ckt (or seq. ckt with full scan)
 - Concurrent and differential good for both comb./seq. ckt

Commercial Tools

- Cadance
 - Verifault
- Mentor Graphic:
 - Fastscan, flextest
- Synoopsys
 - Tetramax
- Syntest
 - Turboscan
 - TurboFault

References

- [Abramovici 1984] M. Abramovici, P. R. Menon, and D. T. Miller, "Critical Path Tracing: An Alternative to Fault Simulation," IEEE Design and Test of Computers, 1984.
- [Armstrong 1972] D. B. Armstrong, A deductive method for simulating faults in logic circuits, IEEE Trans. Comput., C-21(5), 464–471, 1972.
- [Butler 1974] T. T. Butler, T. G. Hallin, J. J. Kulzer, and K. W. Johnson, LAMP: Application to switching system development, Bell System Tech. J., 53, 1535–1555, 1974.
- [Cheng 1989] W. T. Cheng and M. L. Yu, Differential fault simulation: A fast method using minimal memory, in Proc. Des. Automat. Conf., June 1989, pp. 424–428.
- [Jain 1985] S. K. Jain and V. D. Agrawal, Statistical fault analysis, IEEE Des. Test Comput., 2(1), 38–44, 1985.
- [Seshu 1965] S. Sesuh and D. N. Freeman, On improved diagnosis program, IEEE Trans. Electron. Comput., EC-14(1), 76–79, 1965.
- [Ulrich 1974] E. G. Ulrich and T. Baker, Concurrent simulation of nearly identical digital networks, IEEE Trans. Comput., 7(4), 39–44, 1974.
- [Waicukauski 1985] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lindbloom, and T. McCarthy, Fault simulation for structured VLSI, Proc. VLSI Syst. Des., 6(12), 20–32, 1985.