

#### **Lattice CNNs for Matching Based Chinese Question Answering**

团队: Datawhale 深度学习团队

汇报人: 杨夕

2019.11.23



# 目录

- **一** 动机
- 二 方法介绍
- 三 实验结果介绍
- 四 代码调试

#### Lattice CNNs ——动机



短文本匹配受分词效果影响;

融合词级和字级信息的方法受到原有词序结构的影响;

直接将汉字与相应的词组合起来可能会失去这些字所能表达的意义。 由于顺序输入的原因,他们要么在处理字符序列时丢失字级信息,要么不得不做出分词选择。

#### Lattice CNNs ——动机



特定的任务,如问题回答(QA)可以提出进一步的挑战,短文本匹配。

基于文档的问答系统(DBQA)。匹配度反映对一个给定的问题,一个句子是他的回答的概率,问题和回答来源不同,因此会存在风格和句法结构都不同的问题。

基于知识的问题回答(KBQA)。一个关键任务是对知识库的谓词短语来匹配问题的关系表达式。



本文提出了一种用于中文问答中短文本匹配的多粒度方法,该方法利用基于 Lattice 的CNN提取单词 Lattice 上的句子级特征。具体而言,LCN 不再依赖于字符或 单词级别序列,而是将单词 Lattice 作为输入,其中每个可能的单词和字符将被平等 对待并具有各自的上下文,以便它们可以在每一层进行交互。对于每层中的每个单词,LCN可以通过合并方法以不同的粒度捕获不同的上下文单词。









#### 整体框架介绍

For our models, we use multi-layer CNNs for sentence representation. Residual connections (He et al. 2016) are used between convolutional layers to enrich features and make it easier to train. Then, max-pooling summarizes the global features to get the sentence level representations, which are merged via element-wise multiplication. The matching score is produced by a multi-layer perceptron (MLP) with one hidden layer based on the merged vector. The fusing and matching procedure is formulated as follows:

$$s = \sigma(\mathbf{W}_2 \operatorname{ReLU}(\mathbf{W}_1(\mathbf{f}_{qu} \odot \mathbf{f}_{can}) + \mathbf{b}_1^T) + \mathbf{b}_2^T) \quad (1)$$

where  $f_{qu}$  and  $f_{can}$  are feature vectors of question and candidate (sentence or predicate) separately encoded by CNNs,  $\sigma$  is the sigmoid function,  $W_2, W_1, b_1^T, b_2^T$  are parameters, and  $\odot$  is element-wise multiplication. The training objective



损失函数介绍

and ⊙ is element-wise multiplication. The training objective is to minimize the binary cross-entropy loss, defined as:

$$L = -\sum_{i=1}^{N} \left[ y_i log(s_i) + (1 - y_i) log(1 - s_i) \right]$$
 (2)

where  $y_i$  is the  $\{0,1\}$  label for the  $i_{th}$  training pair.



关键问题: 句子表示可以是原始 CNN,也可以是 Lattice CNN。在原始 CNN 中,卷积核按照顺序扫描每个 n-gram,并得到一个特征向量,该向量可以看作是中心词的表示,并被传递至下一层。但是,每一个词在每一个 lattice 中可能具有不同粒度的上下文词,并且可以被视为具有相同长度的卷积核的中心。因此,不同于原始 CNN,lattice CNN 对于一个词可能产生多个特征向量,这是将标准CNN直接用于lattice输入的关键挑战。

# 02

### Lattice CNNs —— 方法介绍





Figure 2: An illustration of our LCN-gated, when "people" is being considered as the center of convolutional spans.



#### Word lattice



Figure 1: A word lattice for the phrase "Chinese people have high quality of life."



#### lattice based CNN layer

卷积核尺寸为n 的lattice CNN层对词w在word lattice G=<V,E>G=<V,E>下的输出特征向量是:

$$F_w = g\{f(\boldsymbol{W}_c(\boldsymbol{v}_{\boldsymbol{w}_1}: \dots : \boldsymbol{v}_{\boldsymbol{w}_n}) + \boldsymbol{b}_c^T) |$$

$$\forall i, w_i \in V, (w_i, w_{i+1}) \in E, w_{\left\lceil \frac{n+1}{2} \right\rceil} = w\}$$

门池化的公式表示如下所示:

$$\alpha_1,...,\alpha_t = \text{softmax}\{\boldsymbol{v}_g^T\boldsymbol{v}_1 + b_g,...,\boldsymbol{v}_g^T\boldsymbol{v}_t + b_g\}$$
 
$$\text{gated-pooling}\{\boldsymbol{v}_1,...,\boldsymbol{v}_t\} = \sum_{i=1}^n \alpha_i \times \boldsymbol{v}_i$$

#### Lattice CNNs —— 实验结果分析



#### 数据集选取

DBQA: 是一个基于文档的问题回答数据集。 在测试集中有8.8 k 的问题和182k 的问句对用于训练, 6k 的问题和123k 的问句对用于测试。

KBQA: 是一种基于知识的关系抽取数据集。 在训练集中有14.3 k 问题, 其中问题谓词对为273k, 问题谓词对为156k, 问题谓词对为9.4 k。



## Lattice CNNs —— 实验结果分析



#### 实验结果

|                  | DBQA   |           |           | KBRE   |          |
|------------------|--------|-----------|-----------|--------|----------|
|                  | MAP    | MRR       | P@1       | P@1    | MRR      |
|                  |        | Match7    | Zoo       |        | 1 1 111  |
| Arc1             | .4006  | .4011     | 22.39%    | 32.18% | .5144    |
| Arc2             | .4780  | .4785     | 30.47%    | 76.07% | .8518    |
| CDSSM            | .5344  | .5349     | 36.45%    | 68.90% | .7974    |
| MP               | .7715  | .7723     | 65.61%    | 86.21% | .9137    |
| MV-LSTM          | .8154  | .8162     | 71.71%    | 86.87% | .9271    |
|                  | State  | -of-the-A | rt DBQA   |        |          |
| (Fu et al. 2016) | .8586  | .8592     | 79.06%    | 200    | <u> </u> |
| (Xie 2017)*      | .8763  | .8768     |           | 2000   | U        |
|                  | Single | Granula   | rity CNNs |        |          |
| CNN-jieba        | .8281  | .8289     | 75.10%    | 86.85% | .9152    |
| CNN-PKU          | .8339  | .8343     | 76.00%    | 89.87% | .9370    |
| CNN-CTB          | .8341  | .8347     | 76.04%    | 88.92% | .9302    |
| CNN-char         | .8803  | .8809     | 82.09%    | 93.06% | .9570    |

|               | Wor   | d Combin | ne CNNs | N.     |       |
|---------------|-------|----------|---------|--------|-------|
| jieba+PKU     | .8486 | .8490    | 77.62%  | 90.57% | .9417 |
| PKU+CTB       | .8435 | .8440    | 77.09%  | 90.48% | .9410 |
| CTB+jieba     | .8499 | .8504    | 78.06%  | 90.29% | .9399 |
| PKU+CTB+jieba | .8494 | .8498    | 78.04%  | 91.16% | .9450 |
|               | W     | ord+Char | CNNs    |        |       |
| Word+Char     | .8566 | .8570    | 78.94%  | 91.64% | .9489 |
| Char+Word     | .8728 | .8735    | 80.76%  | 92.78% | .9561 |
| Char+Lattice  | .8810 | .8815    | 81.97%  | 93.12% | .9582 |
|               | W.    | DGC      | S       |        |       |
| DGC-ave       | .8868 | .8873    | 83.02%  | 93.49% | .9602 |
| DGC-max       | .8811 | .8818    | 82.01%  | 92.79% | .9553 |
| DGC-gated     | .8790 | .8795    | 81.69%  | 92.88% | .9562 |
|               |       | LCN      | S       |        |       |
| LCN-ave       | .8864 | .8869    | 83.14%  | 93.60% | .9609 |
| LCN-max       | .8870 | .8875    | 83.06%  | 93.54% | .9604 |
| LCN-gated     | .8895 | .8902    | 83.24%  | 93.32% | .9592 |

# 敬请各位大佬批评指正