

CREATE, READ, UPDATE, DELETE

¿QUÉ VAMOS A VER?

- ¡Es hora de practicar!
- Normalización.
- Relaciones entre tablas.

VAMOS A COMENZAR!

iES HORA DE PRACTICAR!

¡ES HORA DE PRACTICAR!

- Muestra el **título** de cada película.
- Muestra el nombre de cada director.
- Muestra el campo título y el campo respectivo de director.
- Muestra el campo **título** y el campo respectivo de **año**.
- Muestra todos los datos de la película que tenga identificador 6.
- Muestra todos los datos de las películas que fueron estrenadas entre los años 2000 y 2010.
- Muestra todos los datos de las películas que no fueron estrenadas entre los años 2000 y 2010.
- Muestra el campo título y su año respectivo de las primeras 5 películas de la lista.

¡ES HORA DE PRACTICAR!

- Muestra los datos de todas las películas Toy Story.
- Muestra los datos de todas las películas en dónde el director es John Lasseter.
- Muestra los datos de todas las películas que no tienen como director a John Lasseter.
- Muestra los datos de todas las películas que comiencen con "WALL-".
- Muestra todos los directores ordenados alfabéticamente, sin repeticiones de datos.
- Muestra los títulos de las últimas cuatro películas estrenadas, ordenadas desde la más reciente hacía la más antiguo.
- Muestra todos los datos de las primeras cinco películas y ordena las filas alfabéticamente.

¡ES HORA DE PRACTICAR!

• Muestra todos los datos de las siguientes cinco películas.

NORMALIZACIÓN

NORMALIZACIÓN

- Consiste en la organización de los datos de una manera que minimice la redundancia.
- Se busca evitar la entrada de datos inconsistentes o repetitivos dentro de diferentes tablas.
- Garantizar que los datos sean precisos.
- Tal como en un lenguaje de programación, busca poder realizar cambios de manera óptima y por, sobre todo, eficiente.
- Una base de datos bien normalizada va a permitir que el tiempo de ejecución de las consultas sea mucho más rápido.

PRIMERA FORMA NORMAL (1NF)

- Se centra en eliminar los datos repetitivos dentro de una BBDD.
- Cada intersección entre tupla y campo (fila y columna)
 debe tener un dato único con valor atómico.
- Criterios importantes:
 - Cada tabla debe tener su clave primaria que la identifique.
 - Cada campo de la tabla debe tener un solo valor indivisible.
 - No se permiten valores nulos en la clave primaria.
 - Todos los atributos deben depender de la clave primaria.

PRIMERA FORMA NORMAL (1NF)

6	

NOMBRE	PAÍS	LATA 350ml	BOTELLA 330ml	BOTELLA 500ml
Kross IPA Pomelo	Chile	0	1	1
Kunstmann Torobayo	Chile	0	1	1
Heineken	Países Bajos	1	1	1
Guinness Draught	Irlanda	0	1	1
Stout Cuello Negro	Chile	0	1	1

PRIMERA FORMA NORMAL (1NF)

NOMBRE	MARCA	PAÍS	LATA 350ml
IPA Pomelo	Kross	Chile	2
Torobayo	Kunstmann	Chile	2
Heineken	Heineken	Países Bajos	1
Draught	Guinness	Irlanda	3
Stout	Cuello Negro	Chile	3

ID_TIPO_ENVASE	ENVASE
1	Lata 350ml
2	Botella 330ml
3	Botella 500ml

SEGUNDA FORMA NORMAL (2NF)

- Depende de la 1NF.
- Busca eliminar toda dependencia redundante que pueda existir entre la clave primaria y los demás atributos.
- Para cumplirla se debe llegar al objetivo de que cada atributo dependa netamente de la clave primaria.
- Criterios importantes:
 - Se debe cumplir con todos los criterios de 1NF.
 - Todos los atributos deben depender de la clave primaria.

SEGUNDA FORMA NORMAL (2NF)

ID_CERVEZA	NOMBRE	ID_MARCA
1	IPA Pomelo	1
2	Torobayo	2
3	Heineken	3
4	Draught	4
5	Stout	5

ID_MARCA	NOMBRE	PAÍS
1	Kross	Chile
2	Kunstmann	Chile
3	Heineken	Países Bajos
4	Guinness	Irlanda
5	Cuello Negro	Chile

ID_CERVEZA_ENVASE	ID_CERVEZA	ID_TIPO_ENVASE
1	1	3
2	2	2
3	3	2

ID_TIPO_ENVASE	ENVASE
1	Lata 350ml
2	Botella 330ml
3	Botella 500ml

TERCERA FORMA NORMAL (3NF)

- No siempre se llegará hasta esta forma.
- Es un nivel más purista o refinado de la 2NF.
- Su objetivo es pulir la eliminación de las dependencias entre atributos y clave primaria, en caso de quedar alguna.
- Criterios importantes:
 - Se deben cumplir todos los criterios 2NF.
 - Ningún atribute debe depender por nada del mundo de otra cosa que no sea la clave primaria.

TERCERA FORMA NORMAL (3NF)

ID_CERVEZA	NOMBRE	ID_MARCA
1	IPA Pomelo	1
2	Torobayo	2
3	Heineken	3
4	Draught	4
5	Stout	5

ID_MARCA	NOMBRE	ID_PAIS
1	Kross	1
2	Kunstmann	1
3	Heineken	2
4	Guinness	3
5	Cuello Negro	1

ID_CERVEZA_ENVASE	ID_CERVEZA	ID_TIPO_ENVASE
1	1	3
2	2	2
3	3	2

ID_TIPO_ENVASE	ENVASE
1	Lata 350ml
2	Botella 330ml
3	Botella 500ml

RELACIONES ENTRE TABLAS

RELACIÓN 1:1

- Significa que cada elemento de una tabla A, solo puede estar relacionado con un elemento de la tabla B.
- Viceversa es lo mismo, cada elemento de la tabla B, solo puede estar relacionado con un elemento de la tabla A.
- Es necesario que la relación se haga por medio de la clave primaria y la clave foránea.
- En esencia, la clave primaria de la tabla A se agregará por referencia a la tabla B convirtiéndose así en una clave foránea.

RELACIÓN 1:N

 La podemos representar a través de una tabla A que puede incluir a muchos objetos u campos de una tabla B.

 En este caso no funciona a la inversa, ya que como el nombre de la relación lo indica, uno es a muchos o uno incluye a muchos.

 Desde la otra perspectiva se podría ver como que muchos pertenecen a un solo lugar.

RELACIÓN N:M

- Si ya entendimos los anteriores, es fácil analizar la relación de muchos es a muchos.
- Los objetos de una tabla A pueden incluir a muchos objetos una tabla B, y viceversa, los objetos de una tabla B pueden pertenecer o ser parte de muchos objetos de una tabla A.
- Para modelar este tipo de tablas es necesario generar una tabla intermedia que es capaz de establecer las relaciones.

GRACIAS POR LA ATENCIÓN

