# IntRoduction générale

Techniques avancées en programmation statistique R

Patrick Fournier

Automne 2019

Université du Québec à Montréal

Un peu d'histoire

→ Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- $\rightsquigarrow$  9 prix nobels et 4 prix Turing [2].

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1939)

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1939)
  - → transistor (1947)

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1939)

  - → téléphonie cellulaire (1947)

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1954)
    (1939)

  - → téléphonie cellulaire (1947)

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1954)
     (1939)
     → laser (1957)

  - → téléphonie cellulaire (1947)

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1939)
  - → transistor (1947)
  - √ téléphonie cellulaire (1947)
  - → cellule photovoltaïque

- (1954)
- → laser (1957)
- → satellite de communication (1962)

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1939)
  - → transistor (1947)
  - → téléphonie cellulaire (1947)

- (1954)
- → laser (1957)
- → satellite de communication (1962)
- → Unix, C (1969 1972)

- → Fondé en 1925 par la American Telephone & Telegraph Company (AT&T).
- → Mecque du développement technologique au 20 siècle.
- → 9 prix nobels et 4 prix Turing [2].
- → Y ont été développés (entre autres) [9]
  - → ordinateur binaire (1939)
  - → transistor (1947)
  - → téléphonie cellulaire (1947)

- (1954)
- → laser (1957)
- → satellite de communication (1962)
- → Unix, C (1969 1972)

→ Inventé par John Chambers au sein des Bell labs dans la seconde moitié des années '70.

- → Inventé par John Chambers au sein des Bell labs dans la seconde moitié des années '70.
- → Développé spécifiquement à des fins de programmation statistique.

- → Inventé par John Chambers au sein des Bell labs dans la seconde moitié des années '70.
- → Développé spécifiquement à des fins de programmation statistique.
  - → Auparavant, les procédures étaient implémentées en Fortran.

- → Inventé par John Chambers au sein des Bell labs dans la seconde moitié des années '70.
- → Développé spécifiquement à des fins de programmation statistique.
  - → Auparavant, les procédures étaient implémentées en Fortran.
- → Objectif [4]: "to turn ideas into software, quickly and faithfully."

#### Avant S: Fortran

```
CALL FIT B(TAG C)
   C INITIAL ESTIMATES OF PARAMETERS
3 100 IF(.NOT.FIT AQ(TAG C)) GO TO 150
    C TEST FOR ASSESSMENT ON THIS STEP
          CALL FIT A(TAG C)
5
   C REPORT ON CURRENT MODEL
7 150 IF(.NOT.FIT CQ(TAG C)) GO TO 200
    C TEST FOR COMPLETION OF ITERATION
          CALL FIT C(TAG C)
   C FINAL REPORT
10
          RETURN
11
12 200 CALL FIT S(TAG C)
   C TAKE NEXT STEP IN ITERATION
13
          GO TO 100
14
```

Listing 1 : Sous-programme d'optimisation du système FIT, John Chambers, 1969 [3].

# programmation?

Qu'est-ce qu'un langage de



**FIGURE 1** – Platon et Aristote, probablement en train de débattre du meilleur langage de programmation entre R et SAS, Raphaël, *L'École d'Athènes*, 1512.

## Langage machine

→ Couture à l'aiguille.

## Langage machine

- → Couture à l'aiguille.
- → Directement exécuté par la machine ⇒ aucune abstraction.

## Langage machine

- → Couture à l'aiguille.
- → Directement exécuté par la machine ⇒ aucune abstraction.

## Langage machine

- → Directement exécuté par la machine ⇒ aucune abstraction.
- → Très difficile à comprendre pour un humain.

Exemple : Calcul d'un nombre de Fibonacci sur x86 [7] :

8B542408 83FA0077 06B80000 0000C383 FA027706 B8010000 00C353BB 01000000 B9010000 008D0419 83FA0376 078BD989 C14AEBF1 5BC3

## Langage assembleur

→ Couture à l'aiguille, mais avec un dé à coudre.

## Langage assembleur

- → Couture à l'aiguille, mais avec un dé à coudre.

## Langage assembleur

- → Couture à l'aiguille, mais avec un dé à coudre.
- → Très près du langage machine, mais "compréhensible" par un "humain".

## Langage assembleur

- → Couture à l'aiguille, mais avec un dé à coudre.
- → Combinaisons de bits représentés par des symboles ⇒ très légère abstraction.
- → Très près du langage machine, mais "compréhensible" par un "humain".

Exemple: 1,..., 10 en assembleur x64 [5]

```
XOR EAX, EAX; zero out eax

MOV ECX, 10; loop 10 times

Label: ; this is a label in assembly

INX EAX; increment eax

LOOP Label; decrement ECX, loop if not 0
```

# Typologie<sup>1</sup>

## Langage de bas niveau

→ Machine à coudre.

## Langage de bas niveau

- → Machine à coudre.
- → Relativement éloigné du langage machine ⇒ bon niveau d'abstraction.

## Langage de bas niveau

- → Machine à coudre.
- → Relativement éloigné du langage machine ⇒ bon niveau d'abstraction.
  - Nécessite une véritable phase de compilation.

## Langage de bas niveau

- → Machine à coudre.
- → Relativement éloigné du langage machine ⇒ bon niveau d'abstraction.
  - → Nécessite une véritable phase de compilation.
- Relativement près du langage naturel tout en reposant sur des opérations de bas niveau (ex. arithmétique des pointeurs).

## Langage de bas niveau

Exemple: tableau dynamique en C:

```
int main(int argc, char** argv){
    unsigned int* t;
    unsigned int n;

    n = atoi(argv[argc - 1]);
    t = (unsigned int*)malloc(n * sizeof(unsigned int));
    // ...
    free(t);
    return 0;
}
```

## Langage de haut niveau

→ Machine à coudre électrique.

## Langage de haut niveau

- → Machine à coudre électrique.
- → Éloigné du langage machine, voir n'a presque aucun lien avec celui-ci.

# Typologie

#### Langage de haut niveau

- → Machine à coudre électrique.
- → Éloigné du langage machine, voir n'a presque aucun lien avec celui-ci.
- Conçu pour être indépendant de l'architecture sur lequel il est implémenté et faciliter la vie du programmeur.

### Typologie

#### Langage de haut niveau

Exemple : Addition de polynômes en Haskell [1] :

```
type Poly = [(Int,Int)]

addPoly :: Poly -> Poly -> Poly

addPoly [] ys = ys

addPoly xs [] = xs

addPoly ((a,b):xs) ((c,d):ys)

| a == c = ((a,b+d):(addPoly xs ys))

| a < c = ((a,b):(addPoly xs ((c,d):ys)))
| a > c = ((c,d):(addPoly ((a,b):xs) ys))
```

Ordinateur ≠ magie; ultimement, machine qui n'accomplit qu'une unique tâche : exécution de code machine.

- Ordinateur ≠ magie; ultimement, machine qui n'accomplit qu'une unique tâche : exécution de code machine.
- → Tout langage autre ne peut être exécuté par un ordinateur ⇒ compilation ou iterprétation.

- → Ordinateur ≠ magie; ultimement, machine qui n'accomplit qu'une unique tâche : exécution de code machine.
- → Tout langage autre ne peut être exécuté par un ordinateur
   ⇒ compilation ou iterprétation.

#### Compilation

"Traduction" en langage machine (éventuellement, optimisations).

- → Ordinateur ≠ magie; ultimement, machine qui n'accomplit qu'une unique tâche : exécution de code machine.
- → Tout langage autre ne peut être exécuté par un ordinateur
   ⇒ compilation ou iterprétation.

#### Compilation

"Traduction" en langage machine (éventuellement, optimisations).

#### Interprétation

Exécution du code par un programme, l'interpréteur.

# Language: spécification vs. implémentation

## Language : spécification vs. implémentation

Qu'est-ce qu'un langage de programmation?

→ Premiers ordinateurs modernes : années '40.

## Language : spécification vs. implémentation

- → Premiers ordinateurs modernes : années '40.

### Language: spécification vs. implémentation

- → Premiers ordinateurs modernes : années '40.
  - ∼→ Contraintes de performances ⇒ programmes écrits en language <u>assembleur</u> ou <u>machine</u>.
  - → Spécification et implémentation se confondent.

## Language : spécification vs. implémentation

- → Premiers ordinateurs modernes : années '40.
  - ∼→ Contraintes de performances ⇒ programmes écrits en language <u>assembleur</u> ou <u>machine</u>.
  - → Spécification et implémentation se confondent.
- → En 1948, Konrad Zuse publie une spécification d'un des premiers langage de plus haut niveau, le Plankalkül [11].

## Language : spécification vs. implémentation

- → Premiers ordinateurs modernes : années '40.
  - ∼→ Contraintes de performances ⇒ programmes écrits en language <u>assembleur</u> ou <u>machine</u>.
  - → Spécification et implémentation se confondent.
- → En 1948, Konrad Zuse publie une spécification d'un des premiers langage de plus haut niveau, le Plankalkül [11].
  - → Malgré cela, le Plankalkül ne sera pas implémenté avant 1975, soit 27 ans plus tard!

R

### Qu'est-ce que R?

R est...

#### un langage de haut niveau

Implémente des *concepts mathématiques abstraits*; le programmeur ne se soucie pas de détails d'implémentation.

### Qu'est-ce que R?

R est...

#### un langage de haut niveau

Implémente des concepts mathématiques abstraits; le programmeur ne se soucie pas de détails d'implémentation.

#### un langage interprété

Code exécuté par l'interpréteur R.

### Qu'est-ce que R?

R est...

#### un langage de haut niveau

Implémente des *concepts mathématiques abstraits*; le programmeur ne se soucie pas de détails d'implémentation.

#### un langage interprété

Code exécuté par l'interpréteur R.

#### une implémentation de S [6]

Tout comme le "vieux S" et le "nouveau S", R implémente les spécifications du langage S.

→ R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.

- → R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.
- → Dialecte important de Lisp : Common Lisp.

- R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.
- → Dialecte important de Lisp : Common Lisp.
  - → Programmation orientée objet (CLOS).

- R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.
- → Dialecte important de Lisp : Common Lisp.
  - → Programmation orientée objet (CLOS).
  - → Réflectivité.

- R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.
- → Dialecte important de Lisp : Common Lisp.
  - → Programmation orientée objet (CLOS).
  - → Réflectivité.
  - → Programmation fonctionnelle (& array programming).

- → R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.
- → Dialecte important de Lisp : Common Lisp.
  - → Programmation orientée objet (CLOS).
  - → Réflectivité.
  - → Programmation fonctionnelle (& array programming).
- → Influence plus récente : XLispStat; basé sur XLisp qui étend Scheme, un dialecte minimaliste de Lisp.

- R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.
- → Dialecte important de Lisp : Common Lisp.
  - → Programmation orientée objet (CLOS).
  - → Réflectivité.
  - → Programmation fonctionnelle (& array programming).
- → Influence plus récente : XLispStat; basé sur XLisp qui étend Scheme, un dialecte minimaliste de Lisp.
  - → Procédures statistiques de haut niveau (régressions, modèles linéaires généralisés, ...).

- R est fortement influencé par une famille de langages extrêmement importante dans l'histoire de l'informatique : Lisp.
- → Dialecte important de Lisp : Common Lisp.
  - → Programmation orientée objet (CLOS).
  - → Réflectivité.
  - → Programmation fonctionnelle (& array programming).
- → Influence plus récente : XLispStat; basé sur XLisp qui étend Scheme, un dialecte minimaliste de Lisp.
  - → Procédures statistiques de haut niveau (régressions, modèles linéaires généralisés, ...).
  - → Visualisation de données (statique et même dynamique, voir exemple).

# Une influence importante : Lisp



FIGURE 2 – John McCarthy, concepteur de Lisp et pionnier de l'intelligence artificielle, ≈ 1967.



FIGURE 3 – Lisp machine, ordinateur conçu pour l'exécution directe de code Lisp, années '70.

16

## Une influence importante : XLispStat

```
(def h (histogram abrasion-loss))
(sequence-slider-dialog
(order hardness) :action
#'(lambda (i)
(send h :unselect-all-points)
(send h :point-selected i t)))
```



**FIGURE 4 –** Programme XLispStat et sa sortie graphique dynamique, Luke Tierney, 1989 [10].

R est multi-paradigmes:

#### Programmation impérative

Programme  $\simeq$  modifications successives de son propre état.

R est multi-paradigmes :

#### Programmation impérative

Programme  $\simeq$  modifications successives de son propre état.

#### Programmation procédurale

Possibilité de faire appel à des procédures (fonctions).

#### R est multi-paradigmes :

#### Programmation impérative

Programme  $\simeq$  modifications successives de son propre état.

#### Programmation procédurale

Possibilité de faire appel à des procédures (fonctions).

#### Programmation fonctionnelle (Purrr)

Programme  $\simeq$  application de fonctions.

#### R est multi-paradigmes :

#### Programmation impérative

Programme  $\simeq$  modifications successives de son propre état.

#### Programmation procédurale

Possibilité de faire appel à des procédures (fonctions).

#### Programmation fonctionnelle (Purrr)

Programme  $\simeq$  application de fonctions.

#### Programmation réflective

Un programme peut examiner et modifier sa structure.

R est multi-paradigmes :

Programmation orientée objet (OOP)

Le concept d'objet joue un rôle central.

R est multi-paradigmes :

Programmation orientée objet (OOP)

Le concept d'objet joue un rôle central.

Array programming

Opérations sur des ensembles de valeurs.

R est multi-paradigmes :

#### Programmation orientée objet (OOP)

Le concept d'objet joue un rôle central.

#### Array programming

Opérations sur des ensembles de valeurs.

#### Programmation lettrée (Knittr & Sweave)

Explications du programmes données en conjonction avec le code source.

## Exemple: impératif vs. déclaratif

### Prolog (déclaratif)

```
car(X) := toyota(X).
    car(X) :- honda(X).
3
    toyota(prius) :- true.
    toyota(patrick) :- false.
5
    honda(patrick) :- false.
6
    humain(X) :- not(car(X)).
8
9
    ?- car(prius).
10
    true
11
12
    ?- car(patrick).
13
    false.
14
15
    ?- humain(patrick).
16
    true.
17
```

### Exemple: impératif vs. déclaratif

#### R (impératif)

```
marques <- c("toyota", "honda")</pre>
    marques_alist <- pairlist(prius = "toyota")</pre>
3
    isCar <- function(x) margues alist[x] %in% margues</pre>
    isHuman <- function(x) !isCar(x)</pre>
5
6
    > isCar("prius")
    [1] TRUE
9
    > isCar("patrick")
10
    [1] FALSE
11
12
    > isHuman("patrick")
13
14
    [1] TRUE
```

### Exemple: impératif vs. fonctionnel

### Pascal (impératif)

```
Program autoCor1;
1
    var
        uniforms, uniforms1: array [1..10000] of Real;
3
        kk: Integer:
        avg, prod, sumSq, res: Real;
5
    begin
6
        avg := 0; prod := 0; sumSq := 0;
        for kk := 1 to 10000 do uniforms[kk] := random;
8
        for kk := 1 to 10000 do avg := avg + uniforms[kk] / 10000;
9
        for kk := 1 to 10000 do uniforms[kk] := uniforms[kk] - avg;
10
        for kk := 2 to 10000 do uniforms1[kk - 1] := uniforms[kk];
11
        uniforms1[10000] := uniforms[1];
12
13
        for kk := 1 to 10000 do
14
            prod := prod + uniforms[kk] * uniforms1[kk];
15
        for kk := 1 to 10000 do
16
            sumSq := sumSq + uniforms[kk] * uniforms[kk];
17
18
        res := prod / sumSq
19
    end.
20
```

## Exemple: impératif vs. fonctionnel

### R (fonctionnel)

### Exemple: scalar vs. array

### Pascal (scalar)

```
Program autoCor1;
2
    var
        uniforms, uniforms1: array [1..10000] of Real;
3
        kk: Integer;
        avg, prod, sumSq, res: Real;
5
    begin
6
        avg := 0; prod := 0; sumSg := 0;
7
        for kk := 1 to 10000 do uniforms[kk] := random;
8
        for kk := 1 to 10000 do avg := avg + uniforms[kk] / 10000;
9
        for kk := 1 to 10000 do uniforms[kk] := uniforms[kk] - avg;
10
        for kk := 2 to 10000 do uniforms1[kk - 1] := uniforms[kk];
11
        uniforms1[10000] := uniforms[1]:
12
13
        for kk := 1 to 10000 do
14
            prod := prod + uniforms[kk] * uniforms1[kk];
15
        for kk := 1 to 10000 do
16
            sumSq := sumSq + uniforms[kk] * uniforms[kk];
17
18
        res := prod / sumSq
19
    end.
20
```

### Exemple: scalar vs. array

### R (array)

Mathématiques appliquées?

### Définition

Utilisation des mathématiques pour résoudre des problèmes provenant d'autre domaines.

#### Définition

Utilisation des mathématiques pour résoudre des problèmes provenant d'autre domaines.

#### Définition

Utilisation des mathématiques pour résoudre des problèmes provenant d'autre domaines.

Discipline faisant face à un ensemble distinct de problèmes.

→ Contraintes d'implémentation.

### Définition

Utilisation des mathématiques pour résoudre des problèmes provenant d'autre domaines.

- → Contraintes d'implémentation.
- → Précision

### Définition

Utilisation des mathématiques pour résoudre des problèmes provenant d'autre domaines.

- → Contraintes d'implémentation.
- → Précision
- → Efficacité

### Définition

Utilisation des mathématiques pour résoudre des problèmes provenant d'autre domaines.

- → Contraintes d'implémentation.
- → Précision
- → Efficacité
  - → Temporelle

### Définition

Utilisation des mathématiques pour résoudre des problèmes provenant d'autre domaines.

- → Contraintes d'implémentation.
- → Précision
- → Efficacité
  - → Temporelle
  - → Spatiale

#### Contexte

### Problème

Étant donné  $y_n$  : réponse aléatoire,  $X_{n \times p}$  : prédicteurs, n > p trouver  $\beta$  tel que

$$y = X\beta$$

#### Contexte

### Problème

Étant donné  $y_n$ : réponse aléatoire,  $X_{n \times p}$ : prédicteurs, n > p trouver  $\beta$  tel que

$$y = X\beta$$

Habituellement, erreurs de mesure ⇒ système indéterminé.

#### Contexte

### Problème

Étant donné  $y_n$  : réponse aléatoire,  $X_{n\times p}$  : prédicteurs, n>p trouver  $\beta$  tel que

$$y = X\beta$$

Habituellement, erreurs de mesure ⇒ système indéterminé.

### Outils

#### Contexte

### Problème

Étant donné  $y_n$  : réponse aléatoire,  $X_{n \times p}$  : prédicteurs, n > p trouver  $\beta$  tel que

$$y = X\beta$$

Habituellement, erreurs de mesure ⇒ système indéterminé.

#### Outils

→ Méthode des moindres carrés.

#### Contexte

#### Problème

Étant donné  $y_n$  : réponse aléatoire,  $X_{n \times p}$  : prédicteurs, n > p trouver  $\beta$  tel que

$$y = X\beta$$

Habituellement, erreurs de mesure ⇒ système indéterminé.

#### Outils

- → Méthode des moindres carrés.
- → Maximum de vraisemblance.

#### Contexte

#### Problème

Étant donné  $y_n$  : réponse aléatoire,  $X_{n\times p}$  : prédicteurs, n>p trouver  $\beta$  tel que

$$y = X\beta$$

Habituellement, erreurs de mesure ⇒ système indéterminé.

#### Outils

- → Méthode des moindres carrés.
- → Maximum de vraisemblance.
- → ????

### Méthode des moindres carrés

Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.

### Méthode des moindres carrés

- → Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \operatorname*{arg\,max}_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

### Méthode des moindres carrés

- → Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \arg\max_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

### Méthode des moindres carrés

- → Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \arg\max_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

- - → accordéon,

### Méthode des moindres carrés

- Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \arg\max_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

- - → accordéon,

### Méthode des moindres carrés

- → Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \arg\max_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

- - → accordéon,

→ moteur diesel,

### Méthode des moindres carrés

- Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \arg\max_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

→ accordéon,

→ moteur diesel,

→ Otto von Bismarck.

### Méthode des moindres carrés

- Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \arg\max_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

→ accordéon, → moteur diesel,

→ Karl Marx, 
→ Otto von Bismarck.

→ Étaient absent en Allemagne au 19<sup>e</sup> siècle :

### Méthode des moindres carrés

- Développée par nul autre que Carl Friedrich Gauss (et Adrien-Marie Legendre de manière indépendante) en 1795, publiée en 1805.
- → Estimateur:

$$\hat{\beta} = \arg\max_{\beta} ||y - X\beta||^2 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

→ accordéon,

→ moteur diesel.

- → Otto von Bismarck.
- → Étaient absent en Allemagne au 19<sup>e</sup> siècle :
  - → ordinateurs binaires.

### Maximum de vraisemblance

→ Histoire plus alambiquée [8].

### Maximum de vraisemblance

- → Histoire plus alambiquée [8].
- $\rightarrow$  Idée : on suppose que *y* suit une certaine distribution puis on maximise la vraisemblance comme fonction de  $\beta$ .

### Maximum de vraisemblance

- → Histoire plus alambiquée [8].
- $\sim$  Idée : on suppose que y suit une certaine distribution puis on maximise la vraisemblance comme fonction de  $\beta$ .
- → Il est bien connu que

$$y \sim \mathcal{N} \Rightarrow \hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

### Maximum de vraisemblance

- → Histoire plus alambiquée [8].
- $\sim$  Idée : on suppose que y suit une certaine distribution puis on maximise la vraisemblance comme fonction de  $\beta$ .
- → Il est bien connu que

$$y \sim \mathcal{N} \Rightarrow \hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Donc, ces deux méthodes nécessitent une inversion de matrice.

### Inversion de matrice

Sur un ordinateur standard, l'inversion de matrice est

#### Inversion de matrice

Sur un ordinateur standard, l'inversion de matrice est

### **Imprécise**

Perte de précision due à l'encodage des nombres à virgule flottante.

#### Inversion de matrice

Sur un ordinateur standard, l'inversion de matrice est

### **Imprécise**

Perte de précision due à l'encodage des nombres à virgule flottante.

#### Inefficace

#### Inversion de matrice

Sur un ordinateur standard, l'inversion de matrice est

### **Imprécise**

Perte de précision due à l'encodage des nombres à virgule flottante.

#### Inefficace

 $\rightarrow$  Méthodes gaussiennes :  $\mathcal{O}(n^3)$ 

#### Inversion de matrice

Sur un ordinateur standard, l'inversion de matrice est

### **Imprécise**

Perte de précision due à l'encodage des nombres à virgule flottante.

#### Inefficace

- $\rightarrow$  Méthodes gaussiennes :  $\mathcal{O}(n^3)$
- $\rightarrow$  Meilleures méthodes :  $\mathcal{O}(>n^{2.3})$

### Décomposition QR

Toute matrice X peut se décomposer en une matrice Q orthogonale et R triangulaire supérieure de sorte que

$$X = QR$$
.

#### Décomposition QR

Toute matrice X peut se décomposer en une matrice Q orthogonale et R triangulaire supérieure de sorte que

$$X = QR$$
.

#### **Précis**

Perte de précision moindre que l'inversion de matrice.

#### Décomposition QR

Toute matrice X peut se décomposer en une matrice Q orthogonale et R triangulaire supérieure de sorte que

$$X = QR$$
.

#### **Précis**

Perte de précision moindre que l'inversion de matrice.

#### Efficace

Multiple optimisation possible (entre autre, pas besoin de calculer explicitement *Q*).

Estimation et décomposition QR En posant X = QR, on obtient.

### Estimation et décomposition QR

$$X\beta = y$$

#### Estimation et décomposition QR

$$X\beta = y$$
 
$$\Leftrightarrow X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

#### Estimation et décomposition QR

$$X\beta = y$$

$$\Leftrightarrow X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

$$\Leftrightarrow R^{\mathsf{T}}R\beta = R^{\mathsf{T}}Q^{\mathsf{T}}y$$

#### Estimation et décomposition QR

$$X\beta = y$$

$$\Leftrightarrow X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

$$\Leftrightarrow R^{\mathsf{T}}R\beta = R^{\mathsf{T}}Q^{\mathsf{T}}y$$

$$\Leftrightarrow R\beta = Q^{\mathsf{T}}y.$$

#### Estimation et décomposition QR

En posant X = QR, on obtient.

$$X\beta = y$$

$$\Leftrightarrow X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

$$\Leftrightarrow R^{\mathsf{T}}R\beta = R^{\mathsf{T}}Q^{\mathsf{T}}y$$

$$\Leftrightarrow R\beta = Q^{\mathsf{T}}y.$$

→ On a transformé un problème surdéterminé en problème déterminé!

#### Estimation et décomposition QR

$$X\beta = y$$

$$\Leftrightarrow X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

$$\Leftrightarrow R^{\mathsf{T}}R\beta = R^{\mathsf{T}}Q^{\mathsf{T}}y$$

$$\Leftrightarrow R\beta = Q^{\mathsf{T}}y.$$

- → On a transformé un problème surdéterminé en problème déterminé!
- → Le système d'équations est échelonné.

#### Estimation et décomposition QR

$$X\beta = y$$

$$\Leftrightarrow X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

$$\Leftrightarrow R^{\mathsf{T}}R\beta = R^{\mathsf{T}}Q^{\mathsf{T}}y$$

$$\Leftrightarrow R\beta = Q^{\mathsf{T}}y.$$

- → On a transformé un problème surdéterminé en problème déterminé!
- → Le système d'équations est échelonné.
- → Seules les p premières lignes de R sont non nulles.

#### Estimation et décomposition QR

$$X\beta = y$$

$$\Leftrightarrow X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

$$\Leftrightarrow R^{\mathsf{T}}R\beta = R^{\mathsf{T}}Q^{\mathsf{T}}y$$

$$\Leftrightarrow R\beta = Q^{\mathsf{T}}y.$$

- → On a transformé un problème surdéterminé en problème déterminé!
- → Le système d'équations est échelonné.
- $\rightarrow$  Seules les p premières lignes de R sont non nulles.
- $\leadsto$  Donc, on peut résoudre ce système d'équations directement par backsolving  $(\mathcal{O}(m^2))$ .

### Variance de $\hat{\beta}$

 $\rightsquigarrow$  On sait que  $\hat{\mathbf{V}}[\hat{\beta}] = s^2(X^TX)^{-1}$ .

#### Variance de $\hat{\beta}$

- $\rightarrow$  On sait que  $\hat{\mathbf{V}}[\hat{\beta}] = s^2(X^TX)^{-1}$ .
- → Toutefois, on peut faire mieux que d'inverser XTX!

### Variance de $\hat{\beta}$

- $\rightsquigarrow$  On sait que  $\hat{\mathbf{V}}[\hat{\beta}] = s^2(X^TX)^{-1}$ .
- → Toutefois, on peut faire mieux que d'inverser XTX!
- $\rightsquigarrow$  Si X = QR, on a que

$$\hat{\mathbf{V}}[\hat{\beta}] = \mathbf{S}^2 (R^{\mathsf{T}} R)^{-1}.$$

### Variance de $\hat{\beta}$

- $\rightsquigarrow$  On sait que  $\hat{\mathbf{V}}[\hat{\beta}] = s^2(X^TX)^{-1}$ .
- → Toutefois, on peut faire mieux que d'inverser XTX!
- $\rightsquigarrow$  Si X = QR, on a que

$$\hat{\mathbf{V}}[\hat{\beta}] = \mathbf{S}^2 (R^{\mathsf{T}} R)^{-1}.$$

On remarque que R<sup>T</sup> est une matrice triangulaire inférieure de sorte que R<sup>T</sup>R est la décomposition de Cholesky de X<sup>T</sup>X!

#### Variance de $\hat{\beta}$

- $\rightsquigarrow$  On sait que  $\hat{\mathbf{V}}[\hat{\beta}] = s^2(X^TX)^{-1}$ .
- → Toutefois, on peut faire mieux que d'inverser XTX!
- $\rightsquigarrow$  Si X = QR, on a que

$$\hat{\mathbf{V}}[\hat{\beta}] = \mathbf{S}^2 (R^{\mathsf{T}} R)^{-1}.$$

- On remarque que R<sup>T</sup> est une matrice triangulaire inférieure de sorte que R<sup>T</sup>R est la décomposition de Cholesky de X<sup>T</sup>X!
- Il existe des algorithmes efficaces (analogue au backsolving) pour l'inversion d'une matrice dont on possède la décomposition de Cholesky.

$$\mathbf{M} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

→ Soit

$$\mathbf{M} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

 $\rightarrow$  On peut montrer que le  $n^e$  nombre de Fibonacci,  $n=0,1,\ldots$ , est l'entrée supérieure gauche de  $M^n$ .

→ Soit

$$\mathbf{M} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

- $\sim$  On peut montrer que le  $n^e$  nombre de Fibonacci,  $n=0,1,\ldots$ , est l'entrée supérieure gauche de  $M^n$ .
- → Il n'est pas nécessaire de calculer explicitement les puissances de M.

 $\leadsto$  Les valeurs propres de M sont  $\varphi$  et  $-\varphi^{-1}$  où  $\varphi=\frac{1+\sqrt{5}}{2}$  est le nombre d'or.

- Les valeurs propres de M sont  $\varphi$  et  $-\varphi^{-1}$  où  $\varphi = \frac{1+\sqrt{5}}{2}$  est le nombre d'or.
- → De plus, des vecteurs propres de M sont

$$u_1 = \begin{pmatrix} \varphi \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -\varphi^{-1} \\ 1 \end{pmatrix}.$$

- Les valeurs propres de M sont  $\varphi$  et  $-\varphi^{-1}$  où  $\varphi = \frac{1+\sqrt{5}}{2}$  est le nombre d'or.
- → De plus, des vecteurs propres de M sont

$$u_1 = \begin{pmatrix} \varphi \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} -\varphi^{-1} \\ 1 \end{pmatrix}.$$

→ On obtient la décomposition spectrale suivante :

$$M = UDU^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi & -\varphi^{-1} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & -\varphi^{-1} \end{pmatrix} \begin{pmatrix} 1 & \varphi^{-1} \\ -1 & \varphi \end{pmatrix}.$$

 $\rightsquigarrow$  La puissance n de M peut alors se calculer efficacement :

$$M^n = UD^nU^{-1}$$

 $\rightarrow$  La puissance *n* de *M* peut alors se calculer efficacement :

$$M^n = UD^nU^{-1}$$

→ En fait, comme on n'a besoin que de l'entrée supérieure
gauche de M, on a que le ne nombre de Fibonacci est

$$\frac{1}{\sqrt{5}} \left( \varphi^{n+1} \quad (-\varphi)^{-(n+1)} \right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{\varphi^{n+1} - (-\varphi)^{-(n+1)}}{\sqrt{5}}$$

 $\rightarrow$  La puissance *n* de *M* peut alors se calculer efficacement :

$$M^n = UD^nU^{-1}$$

→ En fait, comme on n'a besoin que de l'entrée supérieure
gauche de M, on a que le ne nombre de Fibonacci est

$$\frac{1}{\sqrt{5}} \left( \varphi^{n+1} \quad (-\varphi)^{-(n+1)} \right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{\varphi^{n+1} - (-\varphi)^{-(n+1)}}{\sqrt{5}}$$

On peut donc calculer les nombres de Fibonacci directement : pas besoin d'algorithme dynamiques, si sophistiqués soient-ils!

#### Références

- [1] Add polynomials. Engilsh. Mai 2009. URL: https://wiki.haskell.org/Add\_polynomials.
- [2] Bell Labs. en. Page Version ID: 908476575. Juil. 2019. URL: https://en.wikipedia.org/w/index.php? title=Bell\_Labs&oldid=908476575.
- [3] John M CHAMBERS. "A computer system for fitting models to data". In: Journal of the Royal Statistical Society: Series C (Applied Statistics) 18.3 (1969), p. 249-263.
- [4] John M CHAMBERS. Programming with data: A guide to the S language. Springer Science & Business Media, 1998.

- [5] CHRIS LOMONT. Introduction to x64 Assembly. English. Mar. 2012. URL: https://software.intel.com/en-us/articles/introduction-to-x64-assembly.
- [6] Kurt HORNIK. R FAQ What are the differences between R and S? English. Oct. 2018. URL: https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-are-the-differences-between-R-and-S\_003f.
- [7] Low-level programming language Wikipedia. URL: https://en.wikipedia.org/wiki/Lowlevel\_programming\_language#Machine\_code.

- [8] Stephen M. STIGLER. "The Epic Story of Maximum Likelihood". EN. In: Statistical Science 22.4 (nov. 2007), p. 598-620. ISSN: 0883-4237, 2168-8745. DOI: 10.1214/07-STS249. URL: https: //projecteuclid.org/euclid.ss/1207580174.
- [9] The Top Bell Labs Innovations Part I: The
   Game-Changers. en-US. URL:
   http://blog.tmcnet.com/next-generation communications/,%20http:
   //blog.tmcnet.com/next-generation communications/2011/08/the-top-bell-labs innovations---part-i-the-game changers.html.

- [10] Luke TIERNEY. XLISP-STAT A Statistical Environment Based on the XLISP Language (Version 2.0). English. Technical Report 528. Minnesota, United States of America:

  University of Minnesota, School of Statistics, juil. 1989.

  URL:
  - https://homepage.divms.uiowa.edu/~luke/xls/tutorial/techreport/techreport.html.
- [11] Konrad Zuse. "Über den Allgemeinen Plankalkül als Mittel zur Formulierung schematisch-kombinativer Aufgaben". de. In: Archiv der Mathematik 1.6 (nov. 1948), p. 441-449. ISSN: 1420-8938. DOI: 10.1007/BF02038459. URL: https://doi.org/10.1007/BF02038459.