

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 09:37:08 ; Search time 11131 Seconds
(without alignments)
11583.805 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 2661

Sequence: 1 cggcacgagggccagagga.....aaaaaaaaaaaaaaaaaa 2661

Scoring table: IDENTITY_NUC
Gapext 1.0 , Gapext 1.0

Searched: 4708233 seqs, 24227607955 residues

Total number of hits satisfying chosen parameters: 9416466

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : GenEmbl:
1: gb_ba:
2: gb_htg:
3: gb_in:
4: gb_om:
5: gb_ov:
6: gb_pat:
7: gb_ph:
8: gb_pl:
9: gb_pr:
10: gb_ro:
11: gb_sts:
12: gb_sy:
13: gb_un:
14: gb_vi:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result	Query	No.	Score	Match	Length	DB	ID	Description
<hr/>								
1	2650	99.6	2662	9	AF322909			AF322909 Homo sapi
2	2547.8	95.7	2669	6	AR018808			AR018808 Sequence
3	2547.8	95.7	2669	6	AR018814			AR018814 Sequence

	4	2547.8	95.7	2669	6	CQ776677	CQ776677 Sequence
	5	2547.8	95.7	2669	6	AX818137	AX818137 Sequence
	6	2547.8	95.7	2669	9	HSNMB	X76534 H.sapiens N
	7	2533.6	95.2	2658	6	CQ727007	CQ727007 Sequence
	8	2522	94.8	2787	9	BC032783	BC032783 Homo sapi
	9	2485	93.4	2683	6	AX358788	AX358788 Sequence
	10	2485	93.4	2683	6	AX362281	AX362281 Sequence
	11	2485	93.4	2683	9	AY359124	AY359124 Homo sapi
	12	1671	62.8	1683	6	AX677738	AX677738 Sequence
	13	1051.2	39.5	2282	10	BC061725	BC061725 Rattus no
	14	1051.2	39.5	2303	6	AR439670	AR439670 Sequence
	15	1051.2	39.5	2303	6	BD062749	BD062749 Modulator
	16	1049.8	39.5	2279	10	AF322054	AF322054 Mus muscu
	17	1049.8	39.5	2299	10	BC026375	BC026375 Mus muscu
	18	1047.8	39.4	2213	6	AR156839	AR156839 Sequence
	19	1047.8	39.4	2213	6	BD269857	BD269857 The poly
	20	1046.4	39.3	2320	10	AF184983	AF184983 Rattus no
	21	1045	39.3	2305	6	CQ777541	CQ777541 Sequence
	22	1045	39.3	2305	10	MMU251685	AJ251685 Mus muscu
	23	1002.6	37.7	169739	9	AC005082	AC005082 Homo sapi
c	24	988.2	37.1	221255	9	AC145883	AC145883 Pan trogl
	25	854.2	32.1	898	11	G26743	G26743 human STS S
	26	673.6	25.3	820	6	CQ427083	CQ427083 Sequence
	27	584.6	22.0	2467	5	CJQNR71	X94144 C.japonica
	28	572	21.5	1690	9	BC011595	BC011595 Homo sapi
	29	568.8	21.4	1593	9	HSA505015	AJ505015 Homo sapi
	30	546.4	20.5	621	9	BT007074	BT007074 Homo sapi
	31	546.4	20.5	621	12	BT007499	BT007499 Synthetic
	32	545.6	20.5	619	6	AR176427	AR176427 Sequence
	33	545.6	20.5	619	6	BD226040	BD226040 Compound
	34	545.6	20.5	619	6	BD226053	BD226053 Compound
	35	545.6	20.5	619	6	BD275711	BD275711 COMPOUNDS
	36	545.6	20.5	619	6	BD275724	BD275724 COMPOUNDS
	37	545.6	20.5	619	6	AR220496	AR220496 Sequence
	38	545.6	20.5	619	6	AR220509	AR220509 Sequence
	39	545.6	20.5	619	6	AR255490	AR255490 Sequence
	40	545.6	20.5	619	6	AR255503	AR255503 Sequence
	41	545.6	20.5	619	6	AR281060	AR281060 Sequence
	42	545.6	20.5	619	6	AR281073	AR281073 Sequence
	43	545.6	20.5	619	6	AR437851	AR437851 Sequence
	44	545.6	20.5	619	6	AR437864	AR437864 Sequence
	45	545.6	20.5	619	6	AR476387	AR476387 Sequence

ALIGNMENTS

RESULT 1

AF322909

LOCUS AF322909 2662 bp mRNA linear PRI 23-APR-2003
 DEFINITION Homo sapiens transmembrane glycoprotein HGFIN mRNA, complete cds.
 ACCESSION AF322909
 VERSION AF322909.1 GI:11993664
 KEYWORDS .
 SOURCE Homo sapiens (human)
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

REFERENCE Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
 AUTHORS 1 (bases 1 to 2662)
 Bandari,P.S., Qian,J., Yehia,G., Joshi,D.D., Maloof,P.B.,
 Potian,J., Oh,H.S., Gascon,P., Harrison,J.S. and Rameshwar,P.
 TITLE Hematopoietic growth factor inducible neurokinin-1 type: a
 transmembrane protein that is similar to neurokinin 1 interacts
 with substance P
 JOURNAL Regul. Pept. 111 (1-3), 169-178 (2003)
 MEDLINE 22498106
 PUBMED 12609765
 REFERENCE 2 (bases 1 to 2662)
 AUTHORS Rameshwar,P.
 TITLE Direct Submission
 JOURNAL Submitted (20-NOV-2000) Medicine, UMDNJ-New Jersey Medical School,
 185 South Orange Ave, MSB, Rm. E-579, Newark, NJ 07103, USA
 FEATURES Location/Qualifiers
 source 1. .2662
 /organism="Homo sapiens"
 /mol_type="mRNA"
 /db_xref="taxon:9606"
 /tissue_type="bone marrow peripheral blood"
 CDS 60. .1742
 /note="hematopoietic growth factor-inducible neurokinin-1
 protein"
 /codon_start=1
 /product="transmembrane glycoprotein HGFIN"
 /protein_id="AAG42839.1"
 /db_xref="GI:11993665"
 /translation="MECLYYFLGFLLLAARLPLDAKRFHDVLGNERPSAYMREHNQL
 NGWSSDENDWNEKLYPVWKRGRDMRWKNSWKGRVQAVLTSDSPALVGSNITFAVNLI
 PRCQKEDANGNIVYEKNCRNEAGLSADPYVYNWTAWSEDSDGENGTGQSHHNVFPDGK
 PFPHHPGWRWNFIYVFHTLGQYFQKLGRCSVRSVNTANVTLGPQLMEVTYRRHGR
 AYVPIAQVKDVYVVTDQIPVFVTMFQKNDRNSSDETFLKDLPIFDVLIHDPSHFLNY
 STINYKWSFGDNTGLFVSTNHTVNVLYVLNGTFSLNLTVKAAAPGPCPPPPPRPSK
 PTPSLGPAGDNPLELSRIPDENQINRYGHFQATITIVEGILEVNIIQMTDVLMPVPW
 PESSLIDFVVTCQGSIPTEVCTIISDPTCEITQNTVCSPVDVDEMCLLTVRRTFNGSG
 TYCVNLTLGDDTSLATSTLISVPDRDPASPLRMANSALISVGCLAI FVTVI SLLVYK
 KHKEYNPIENS PGNVVRSKGLSVFLNRAKAVFFPGNQEKDPLLKNQEFGVSV"

ORIGIN

Query Match 99.6%; Score 2650; DB 9; Length 2662;
 Best Local Similarity 100.0%; Pred. No. 0;
 Matches 2661; Conservative 0; Mismatches 0; Indels 1; Gaps 1;

Qy	1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCA 	GCA 60
Db	1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCA 	GCA 60
Qy	61 TGGAAATGTCTCTACTATTCCTGGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG	120
Db	61 TGGAAATGTCTCTACTATTCCTGGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG	120
Qy	121 CCGCCAAACGATTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC	180
Db	121 CCGCCAAACGATTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC	180
Qy	181 ACAATCAATTAAATGGCTGGTCTTGATGAAAATGACTGGAATGAAAAACTCTACCCAG	240

Db ||||||| 181 ACAATCAATTAAATGGCTGGTCTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Qy 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCAG 300
Db ||||||| 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGCAG 300
Qy 301 TCCTGACCAGTGA CTC ACCAGC CCT CGT GGG CT CAA AT A TA AC AT TT GCG GT GA AC CT GA 360
Db ||||||| 301 TCCTGACCAGTGA CTC ACCAGC CCT CGT GGG CT CAA AT A TA AC AT TT GCG GT GA AC CT GA 360
Qy 361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420
Db ||||||| 361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420
Qy 421 GAAATGAGGCTGGTTATCTGCTGATCCATATGTTACA ACT GGACAGCATGGTCAGAGG 480
Db ||||||| 421 GAAATGAGGCTGGTTATCTGCTGATCCATATGTTACA ACT GGACAGCATGGTCAGAGG 480
Qy 481 ACAGTGACGGGAAAATGGCACCGCAAAGCCATCATAACGTCTCCCTGATGGAAAC 540
Db ||||||| 481 ACAGTGACGGGAAAATGGCACCGCAAAGCCATCATAACGTCTCCCTGATGGAAAC 540
Qy 541 CTTTCCTCACCA CCCC GGATGGAGAAGATGGAATT CATCTACGTCTCCACACACTTG 600
Db ||||||| 541 CTTTCCTCACCA CCCC GGATGGAGAAGATGGAATT CATCTACGTCTCCACACACTTG 600
Qy 601 GTCAGTATTCCAGAAATTGGGACGATGTTCA GTGAGAGTTCTGTGAACACAGCCAATG 660
Db ||||||| 601 GTCAGTATTCCAGAAATTGGGACGATGTTCA GTGAGAGTTCTGTGAACACAGCCAATG 660
Qy 661 TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGCATATG 720
Db ||||||| 661 TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGCATATG 720
Qy 721 TTCCCATCGCACAA GTGAAAGATGTGTACGTGGTAACAGATCAGATTCTGTGTTGTGA 780
Db ||||||| 721 TTCCCATCGCACAA GTGAAAGATGTGTACGTGGTAACAGATCAGATTCTGTGTTGTGA 780
Qy 781 CTATGTTCCAGAAGAACGATCGAAATT CATCCGACGAAACCTTCC-CAAAGATCTCCCCA 839
Db ||||||| 781 CTATGTTCCAGAAGAACGATCGAAATT CATCCGACGAAACCTTCCCAAAGATCTCCCCA 840
Qy 840 TTATGTTGATGTCCTGATTCA TGATGCCACTTCCCTCAATTATTCTACCAATTAACT 899
Db ||||||| 841 TTATGTTGATGTCCTGATTCA TGATGCCACTTCCCTCAATTATTCTACCAATTAACT 900
Qy 900 ACAAGTGGAGCTCGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATC 959
Db ||||||| 901 ACAAGTGGAGCTCGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATC 960
Qy 960 ACACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAG 1019
Db ||||||| 961 ACACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAG 1020
Qy 1020 GACCTTGTCCGCCACCGCCACCA CACCAGACCTTCAAAACCCACCCCTTCTTAGGAC 1079
|||||||

Db 1021 GACCTTGTCCGCCACCGCCACCACCAAGACCTCAAAACCCACCCCTTTAGGAC 1080
Qy 1080 CTGCTGGTGACAACCCCTGGAGCTGAGTAGGATTCTGATGAAAAGCTGCCAGATTAACA 1139
|||
Db 1081 CTGCTGGTGACAACCCCTGGAGCTGAGTAGGATTCTGATGAAAAGCTGCCAGATTAACA 1140
Qy 1140 GATATGGCCACTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCA 1199
|||
Db 1141 GATATGGCCACTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCA 1200
Qy 1200 TCCAGATGACAGACGTCTGATGCCGGTGCATGGCCTGAAAGCTCCCTAATAGACTTG 1259
|||
Db 1201 TCCAGATGACAGACGTCTGATGCCGGTGCATGGCCTGAAAGCTCCCTAATAGACTTG 1260
Qy 1260 TCGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTCTGACCCCACCT 1319
|||
Db 1261 TCGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTCTGACCCCACCT 1320
Qy 1320 GCGAGATCACCCAGAACACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGA 1379
|||
Db 1321 GCGAGATCACCCAGAACACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGCTGA 1380
Qy 1380 CTGTGAGACGAACCTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCGGGGATG 1439
|||
Db 1381 CTGTGAGACGAACCTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCGGGGATG 1440
Qy 1440 ACACAAGCCTGGCTCTCACGAGCACCCCTGATTCTGTTCTGACAGAGACCCAGCCTCGC 1499
|||
Db 1441 ACACAAGCCTGGCTCTCACGAGCACCCCTGATTCTGTTCTGACAGAGACCCAGCCTCGC 1500
Qy 1500 CTTTAAGGATGGCAAACAGTGCCTGATCTCCGTTGGCTGCTGGCCATATTGTCAGT 1559
|||
Db 1501 CTTTAAGGATGGCAAACAGTGCCTGATCTCCGTTGGCTGCTGGCCATATTGTCAGT 1560
Qy 1560 TGATCTCCCTTTGGTGTACAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTG 1619
|||
Db 1561 TGATCTCCCTTTGGTGTACAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTG 1620
Qy 1620 GGAATGTGGTCAGAAGCAAAGGCCTGAGTGTCTTCTCAACCGTGCAAAAGCCGTGTTCT 1679
|||
Db 1621 GGAATGTGGTCAGAAGCAAAGGCCTGAGTGTCTTCTCAACCGTGCAAAAGCCGTGTTCT 1680
Qy 1680 TCCC GGAA ACCAGG AAAAGG ATCCGCTACTCAAA ACCAAGA ATTAA AGGAGTTCTT 1739
|||
Db 1681 TCCC GGAA ACCAGG AAAAGG ATCCGCTACTCAAA ACCAAGA ATTAA AGGAGTTCTT 1740
Qy 1740 AAATTCGACCTTGTCTGAAGCTCACTTTCAAGTGCCTGAGATGTGCTGG 1799
|||
Db 1741 AAATTCGACCTTGTCTGAAGCTCACTTTCAAGTGCCTGAGATGTGCTGG 1800
Qy 1800 GTGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAA 1859
|||
Db 1801 GTGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAA 1860
Qy 1860 GTTGAATTTTATAGGTTAAATGTCATTTAGAGATGGGAGAGGGATTATACTGCAGG 1919
|||
Db 1861 GTTGAATTTTATAGGTTAAATGTCATTTAGAGATGGGAGAGGGATTATACTGCAGG 1920

Qy	1920	CAGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCATTATT	1979
Db	1921	CAGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCATTATT	1980
Qy	1980	TTTTATGTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCCGAG	2039
Db	1981	TTTTATGTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCCGAG	2040
Qy	2040	AGTAAGGAGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCG	2099
Db	2041	AGTAAGGAGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCG	2100
Qy	2100	GGATACTTCAGCTTCCATGTAACGTATGCATAAAGCCAATGTAGTCCAGTTCTAAG	2159
Db	2101	GGATACTTCAGCTTCCATGTAACGTATGCATAAAGCCAATGTAGTCCAGTTCTAAG	2160
Qy	2160	ATCATGTTCCAAGCTAACTGAATCCCACCACTCAATACACACTCATGAACTCCTGATGGAAC	2219
Db	2161	ATCATGTTCCAAGCTAACTGAATCCCACCACTCAATACACACTCATGAACTCCTGATGGAAC	2220
Qy	2220	AATAACAGGCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTA	2279
Db	2221	AATAACAGGCCAAGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAATACTA	2280
Qy	2280	CTCTCATAAATGGGTGGGAGTATTTGGTACAACCTACTTGCTGGCTGAGTGAAGGA	2339
Db	2281	CTCTCATAAATGGGTGGGAGTATTTGGTACAACCTACTTGCTGGCTGAGTGAAGGA	2340
Qy	2340	ATGATATTCATATATTCAATTATTCCATGGACATTAGTTAGTGTCTTTATATACCAGG	2399
Db	2341	ATGATATTCATATATTCAATTATTCCATGGACATTAGTTAGTGTCTTTATATACCAGG	2400
Qy	2400	CATGATGCTGAGTGACACTCTTGTGTATATTCCAAATTGTATAGTCGCTGCACATA	2459
Db	2401	CATGATGCTGAGTGACACTCTTGTGTATATTCCAAATTGTATAGTCGCTGCACATA	2460
Qy	2460	TTTGAAATCAAAATATTAAGACTTCCAAAATTGGTCCCTGGTTTCATGGCAACTT	2519
Db	2461	TTTGAAATCAAAATATTAAGACTTCCAAAATTGGTCCCTGGTTTCATGGCAACTT	2520
Qy	2520	GATCAGTAAGGATTCCCTCTGTTGAACTAAACCATTACTATATGTTAGACAAGA	2579
Db	2521	GATCAGTAAGGATTCCCTCTGTTGAACTAAACCATTACTATATGTTAGACAAGA	2580
Qy	2580	CATTTTTTTTCCTCCTGAAAAAAATGAGGGAAGAGACAAAAAA	2639
Db	2581	CATTTTTTTTCCTCCTGAAAAAAATGAGGGAAGAGACAAAAAA	2640
Qy	2640	AAAAAAAAAAAAAAAAAAAAA	2661
Db	2641	AAAAAAAAAAAAAAAAAAAAA	2662

RESULT 2

AR018808

LOCUS AR018808 2669 bp DNA linear PAT 05-DEC-1998

DEFINITION Sequence 91 from patent US 5783182.
ACCESSION AR018808
VERSION AR018808.1 GI:3973922
KEYWORDS .
SOURCE Unknown.
ORGANISM Unknown.
Unclassified.
REFERENCE 1 (bases 1 to 2669)
AUTHORS Thompson, T.C.
TITLE Method for identifying metastatic sequences
JOURNAL Patent: US 5783182-A 91 21-JUL-1998;
FEATURES Location/Qualifiers
source 1. .2669
/organism="unknown"
/mol type="unassigned DNA"

Qy 568 GATGGAATTCTACGTCTTCCACACACTGGTCAGTATTCCAGAAATTGGGACGAT 627
Db 600 GATGGAATTCTACGTCTTCCACACACTGGTCAGTATTCCAGAAATTGGGACGAT 659

Qy 628 GTTCAGTGAGAGTTCTGTGAACACAGCCAATGTGACACTTGGCCTCAACTCATGGAAG 687
Db 660 GTTCAGTGAGAGTTCTGTGAACACAGCCAATGTGACACTTGGCCTCAACTCATGGAAG 719

Qy 688 TGACTGTCTACAGAAGACATGGACGGCATATGTTCCATCGCACAGTCAAAGATGTGT 747
Db 720 TGACTGTCTACAGAAGACATGGACGGCATATGTTCCATCGCACAGTCAAAGATGTGT 779

Qy 748 ACGTGGTAACAGATCAGATT CCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 807
Db 780 ACGTGGTAACAGATCAGATT CCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 839

Qy 808 CATCCGACGAAACCTTCC-CAAAGATCTCCCCATTATGTTGATGTCCTGATTGATGATC 866
Db 840 CATCCGACGAAACCTTCTCAAAGATCTCCCCATTATGTTGATGTCCTGATTGATGATC 899

Qy 867 CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTCGGGGATAATACTG 926
Db 900 CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTCGGGGATAATACTG 959

Qy 927 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 986
Db 960 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 1019

Qy 987 GCCTAACCTCACTGTGAAAGCTGCAGCACCGACCTGTCCGCCACCGCCACCCAC 1046
Db 1020 GCCTAACCTCACTGTGAAAGCTGCAGCACCGACCTGTCCGCCACCGCCACCCAC 1079

Qy 1047 CCAGACCTTCAAAACCCACCCCTTCTTAGGACCTGCTGGTGACAACCCCTGGAGCTGA 1106
Db 1080 CCAGACCTTCAAAACCCACCCCTTCTTAGGACCTGCTGGTGACAACCCCTGGAGCTGA 1139

Qy 1107 GTAGGATTCTGATGAAAAGCTGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1166
Db 1140 GTAGGATTCTGATGAAAAGCTGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1199

Qy 1167 CAATTGTAGAGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCTGATGCCGG 1226
Db 1200 CAATTGTAGAGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCTGATGCCGG 1259

Qy 1227 TGCCATGGCCTGAAAGCTCCCTAACATAGACTTGTGACCTGCCAAGGGAGCATTCCA 1286
Db 1260 TGCCATGGCCTGAAAGCTCCCTAACATAGACTTGTGACCTGCCAAGGGAGCATTCCA 1319

Qy 1287 CGGAGGTCTGTACCATCATTCTGACCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1346
Db 1320 CGGAGGTCTGTACCATCATTCTGACCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1379

Qy 1347 GCCCTGTGGATGTGGATGAGATGTGACTGTGAGACGAACCTCAATGGGTCTG 1406
Db 1380 GCCCTGTGGATGTGGATGAGATGTGACTGTGAGACGAACCTCAATGGGTCTG 1439

Qy 1407 GGACGTACTGTGTGAACCTCACCCCTGGGGATGACACAAGCCTGGCTCACGAGCACCC 1466

Db ||||||| 1440 GGACGTACTGTGTGAAACCTCACCCCTGGGGATGACACAAGCCTGGCTCTCACGAGCACCC 1499
Qy ||||||| 1467 TGATTCTGTCCTGACAGAGACCCAGCCTGCCTTAAGGATGGCAAACAGTGCCCTGA 1526
Db ||||||| 1500 TGATTCTGTCCTGACAGAGACCCAGCCTGCCTTAAGGATGGCAAACAGTGCCCTGA 1559
Qy ||||||| 1527 TCTCCGTTGGCTGCTGGCCATATTGTCACTGTGATCTCCCTCTGGTGTACAAAAAAC 1586
Db ||||||| 1560 TCTCCGTTGGCTGCTGGCCATATTGTCACTGTGATCTCCCTCTGGTGTACAAAAAAC 1619
Qy ||||||| 1587 ACAAGGAATAACAACCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCAAAGGCCTGA 1646
Db ||||||| 1620 ACAAGGAATAACAACCAATAGAAAATAGTCCTGGGAATGTGGTCAGAAGCAAAGGCCTGA 1679
Qy ||||||| 1647 GTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTCCCAGGAAACCAGGAAAAGGATCCGC 1706
Db ||||||| 1680 GTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTCCCAGGAAACCAGGAAAAGGATCCGC 1739
Qy ||||||| 1707 TACTCAAAACCAAGAATTAAAGGAGTTCTAAATTGACCTGTTCTGAAGCTCA 1766
Db ||||||| 1740 TACTCAAAACCAAGAATTAAAGGAGTTCTAAATTGACCTGTTCTGAAGCTCA 1799
Qy ||||||| 1767 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTCTAAAG 1826
Db ||||||| 1800 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTTCTAAAG 1859
Qy ||||||| 1827 ATTATTGTTAAATAGATATTGGGAGTTCTAAATTGACCTGTTCTGAAGCTCA 1886
Db ||||||| 1860 ATTATTGTTAAATAGATATTGGGAGTTCTAAATTGACCTGTTCTGAAGCTCA 1919
Qy ||||||| 1887 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 1946
Db ||||||| 1920 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 1979
Qy ||||||| 1947 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTTATGTTCACTTATAAAGTCTTAG 2006
Db ||||||| 1980 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTTATGTTCACTTATAAAGTCTTAG 2039
Qy ||||||| 2007 GTAACTAGTAGGATAGAAACACTGTGTCAGGAGAGTAAGGAGAGAAGCTACTATTGATTA 2066
Db ||||||| 2040 GTAACTAGTAGGATAGAAACACTGTGTCAGGAGAGTAAGGAGAGAAGCTACTATTGATTA 2099
Qy ||||||| 2067 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAAGT 2126
Db ||||||| 2100 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAAGT 2159
Qy ||||||| 2127 TATGCATAAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCAAGCTAACTGAATCCCA 2186
Db ||||||| 2160 TATGCATAAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCAAGCTAACTGAATCCCA 2219
Qy ||||||| 2187 CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA 2246
Db ||||||| 2220 CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA 2279
Qy ||||||| 2247 TGTGCACACTTGCTAGACTCAGAAAAAAACTACTCTCATAAATGGGTGGAGTATTG 2306

Db 2280 TGTGCACACTGCTAGACTCAGAAAAAATCACTACTCTCATAAATGGTGGAGTATTTG 2339
Qy 2307 GTGACAAACCTACTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCAATTATTCCA 2366
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 2340 GTGACAAACCTACTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTCAATTATTCCA 2399
Qy 2367 TGGACATTTAGTTAGTGCTTTATATACCAGGCATGATGCTGAGTGACACTCTGTGTA 2426
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 2400 TGGACATTTAGTTAGTGCTTTATATACCAGGCATGATGCTGAGTGACACTCTGTGTA 2459
Qy 2427 TATTCCAAATTGGTATAGTCGCTGCACATATTGAAATCAAATATTAAGACTTTCC 2486
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 2460 TATTCCAAATTGGTATAGTCGCTGCACATATTGAAATC-ATATATTAAGACTTTCC 2518
Qy 2487 AAAAATTGGTCCCTGGTTTCATGGCAACTTGATCAGTAAGGATTCACCTCTGTTG 2546
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 2519 AAAGATGAGGTCCCTGGTTTCATGGCAACTTGATCAGTAAGGATTCACCTCTGTTG 2578
Qy 2547 GAACTAAAACCATTACTATATGTTAGACAAGACATTTCCTCCTGAAAAA 2606
||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
Db 2579 TAACTAAAACCATTACTATATGTTAGACATGACATTCTTCTCCTGAAAAA 2638
Qy 2607 -AAAATGAGGGAAGAGACAAAAAAAAAAAAA 2636
||| ||| ||| ||| ||| ||| ||| |||
Db 2639 TAAAGTGTGGGAAGAGACAAAAAAAAAAAAA 2669

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 08:39:53 ; Search time 1308 Seconds
(without alignments)
12043.143 Million cell updates/sec

Title: US-10-039-272-1
Perfect score: 2661
Sequence: 1 cggcacgagggcccagagga.....aaaaaaaaaaaaaaaaaa 2661

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 4390206 seqs, 2959870667 residues

Total number of hits satisfying chosen parameters: 8780412

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : N_Geneseq_16Dec04:*
1: geneseqn1980s:*
2: geneseqn1990s:*

```

3: geneseqn2000s:*
4: geneseqn2001as:*
5: geneseqn2001bs:*
6: geneseqn2002as:*
7: geneseqn2002bs:*
8: geneseqn2003as:*
9: geneseqn2003bs:*
10: geneseqn2003cs:*
11: geneseqn2003ds:*
12: geneseqn2004as:*
13: geneseqn2004bs:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
1	2661	100.0	2661	6	ABQ78551	Abq78551 Nucleotid
2	2571.2	96.6	2845	12	ADQ22838	Adq22838 Human sof
3	2559.2	96.2	2952	11	ACN89693	Acn89693 Breast ca
4	2547.8	95.7	2669	2	AAT69328	Aat69328 Murine me
5	2547.8	95.7	2669	2	AAT69318	Aat69318 Murine me
6	2547.8	95.7	2669	3	AAC55715	Aac55715 Human NMB
7	2547.8	95.7	2669	6	ABQ88185	Abq88185 Human ost
8	2547.8	95.7	2669	8	ABX76321	Abx76321 Lung canc
9	2547.8	95.7	2669	10	ADL14996	Adl14996 Human NMB
10	2547.8	95.7	2669	11	ADN39723	Adn39723 Cancer/an
11	2547.8	95.7	2669	12	ADJ75111	Adj75111 Marker ge
12	2547.8	95.7	2669	12	ADQ18309	Adq18309 Human sof
13	2547.8	95.7	2669	13	ADR24918	Adr24918 Breast ca
14	2547.8	95.7	2669	13	ADP23126	Adp23126 PRO polyp
15	2547.8	95.7	2669	13	ADR66172	Adr66172 Human pro
16	2547.8	95.7	2669	13	ADR66150	Adr66150 Human pro
17	2531.6	95.1	2666	10	ADJ56363	Adj56363 Human cDN
18	2505.6	94.2	2728	10	ADD78274	Add78274 Human CGD
19	2485	93.4	2683	6	ABK33556	Abk33556 cDNA enco
20	2485	93.4	2683	8	ACA68517	Aca68517 Novel hum
21	2485	93.4	2683	9	ABT44246	Abt44246 Human PRO
22	2485	93.4	2683	9	ABT44529	Abt44529 Human PRO
23	2485	93.4	2683	9	ACD82196	Acd82196 Human sec
24	2485	93.4	2683	9	ABT43902	Abt43902 Human mem
25	2485	93.4	2683	9	ADB83531	Adb83531 Novel hum
26	2485	93.4	2683	9	ADB80637	Adb80637 Novel hum
27	2485	93.4	2683	9	ADB73178	Adb73178 Novel hum
28	2485	93.4	2683	9	ADB78260	Adb78260 Novel hum
29	2485	93.4	2683	10	ADB84908	Adb84908 Human PRO
30	2485	93.4	2683	10	ADB78014	Adb78014 Novel hum
31	2485	93.4	2683	10	ADB87080	Adb87080 Human PRO
32	2485	93.4	2683	10	ADB84662	Adb84662 Human PRO
33	2485	93.4	2683	10	ADB83777	Adb83777 Novel hum
34	2485	93.4	2683	10	ADB72932	Adb72932 Novel hum
35	2485	93.4	2683	10	ADC36770	Adc36770 Human PRO
36	2485	93.4	2683	10	ADC21760	Adc21760 Human PRO

37	2485	93.4	2683	10	ADC49791	Adc49791 Novel hum
38	2485	93.4	2683	10	ADC48990	Adc48990 Novel hum
39	2485	93.4	2683	10	ADC49507	Adc49507 Novel hum
40	2485	93.4	2683	10	ADC47368	Adc47368 Novel hum
41	2485	93.4	2683	10	ADC47113	Adc47113 Novel hum
42	2485	93.4	2683	10	ADC77988	Adc77988 Novel hum
43	2485	93.4	2683	10	ADD06223	Add06223 Novel hum
44	2485	93.4	2683	10	ADC77742	Adc77742 Novel hum
45	2485	93.4	2683	10	ADD50705	Add50705 Novel hum

ALIGNMENTS

RESULT 1

ABQ78551

ID ABQ78551 standard; DNA; 2661 BP.

XX

AC ABQ78551;

XX

DT 25-NOV-2002 (first entry)

XX

DE Nucleotide sequence of human HGFIN.

XX

KW Human; cell differentiation; white blood cell; bone marrow cell;
 KW haematopoietic growth factor inducible neurokin-1; HGFIN;
 KW progenitor proliferation; acute myeloid leukemia; non-Hodgkin's disease;
 KW acute lymphocytic leukemia; chronic myeloid leukemia;
 KW chronic lymphocytic leukemia; Hodgkin's disease; gene; ss.

XX

OS Homo sapiens.

XX

FH	Key	Location/Qualifiers
FT	CDS	60. .1741
FT		/*tag= a
FT		/product= "HGFIN"
FT		/transl_except= (825. .826,aa:Leu)

XX

PN WO200262947-A2.

XX

PD 15-AUG-2002.

XX

PF 20-OCT-2001; 2001WO-US050204.

XX

PR 20-OCT-2000; 2000US-0241881P.

XX

PA (UYNE-) UNIV NEW JERSEY MEDICINE & DENTISTRY.

XX

PI Pranela R;

XX

DR WPI; 2002-657531/70.

DR P-PSDB; ABB78200.

XX

PT Hematopoietic growth factor inducible neurokin-1 type polypeptide and
 PT polynucleotide for treating a disease associated with abnormal bone
 PT marrow cell differentiation or proliferation, e.g. leukemia.

XX

PS Claim 2; Page 121-123; 125pp; English.

XX

CC The present sequence encodes human haematopoietic growth factor inducible
CC neurokin-1 type (HGFIN) polypeptide. HGFIN induces white blood cell
CC differentiation and inhibits progenitor proliferation. HGFIN polypeptides
CC and polynucleotides are useful for treating a disease associated with
CC abnormal bone marrow cell differentiation or proliferation, especially
CC acute myeloid leukemia, acute lymphocytic leukemia, chronic myeloid
CC leukemia, chronic lymphocytic leukemia, Hodgkin's and non-Hodgkin's
CC disease

XX

SQ Sequence 2661 BP; 772 A; 586 C; 587 G; 716 T; 0 U; 0 Other;

Query Match 100.0%; Score 2661; DB 6; Length 2661;
Best Local Similarity 100.0%; Pred. No. 0;
Matches 2661; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCA
GCA 60
Db 1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCCGTGAGAATTCA
GCA 60

Qy 61 TGGAATGTCTCTACTATTCCTGGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Db 61 TGGAATGTCTCTACTATTCCTGGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120

Qy 121 CCGCCAAACGATTTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC 180
Db 121 CCGCCAAACGATTTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC 180

Qy 181 ACAATCAATTAAATGGCTGGTCTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Db 181 ACAATCAATTAAATGGCTGGTCTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240

Qy 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGC
GG 300
Db 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGC
GG 300

Qy 301 TCCTGACCAGTGA
CTCACCA
GCCCC
CTCGTGG
GCTCAA
ATATA
AACATT
TGC
GGTGA
ACCTGA 360
Db 301 TCCTGACCAGTGA
CTCACCA
GCCCC
CTCGTGG
GCTCAA
ATATA
AACATT
TGC
GGTGA
ACCTGA 360

Qy 361 TATTCCCTAGATGCC
AAAAGGA
AGATGCC
AATGG
CAACATAG
TCTATG
AGAAGAA
CTGCA 420
Db 361 TATTCCCTAGATGCC
AAAAGGA
AGATGCC
AATGG
CAACATAG
TCTATG
AGAAGAA
CTGCA 420

Qy 421 GAAATGAGGCTGGTTATCTGCTGATCC
ATATG
TTACA
ACTGG
ACAGC
AGCATGG
TCAGAGG 480
Db 421 GAAATGAGGCTGGTTATCTGCTGATCC
ATATG
TTACA
ACTGG
ACAGC
AGCATGG
TCAGAGG 480

Qy 481 ACAGTGACGGGAAAATGGCACCG
GCC
AAAGCC
CATCATA
AACGT
CTTCC
GTATGG
AAAC 540
Db 481 ACAGTGACGGGAAAATGGCACCG
GCC
AAAGCC
CATCATA
AACGT
CTTCC
GTATGG
AAAC 540

Qy 541 CTTTCCTCACCA
CCCCGG
ATGG
GAGAAG
ATG
GAATT
CATCT
ACGT
CTTCC
CACAC
ACTTG 600
Db 541 CTTTCCTCACCA
CCCCGG
ATGG
GAGAAG
ATG
GAATT
CATCT
ACGT
CTTCC
CACAC
ACTTG 600

Qy 601 GTCAGTATTCCAGAAATTGGGACGATGTTCACTGAGAGTTCTGTGAACACAGCCAATG 660
Db 601 GTCAGTATTCCAGAAATTGGGACGATGTTCACTGAGAGTTCTGTGAACACAGCCAATG 660

Qy 661 TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG 720
Db 661 TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG 720

Qy 721 TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCCTGTGTTGTGA 780
Db 721 TTCCCATCGCACAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCCTGTGTTGTGA 780

Qy 781 CTATGTTCCAGAAGAACGATCGAAATTCCGACGAAACCTTCCAAAGATCTCCCCAT 840
Db 781 CTATGTTCCAGAAGAACGATCGAAATTCCGACGAAACCTTCCAAAGATCTCCCCAT 840

Qy 841 TATGTTGATGTCCTGATTCACTGATCCTAGCCACTTCCTCAATTATTCTACCATTAAC 900
Db 841 TATGTTGATGTCCTGATTCACTGATCCTAGCCACTTCCTCAATTATTCTACCATTAAC 900

Qy 901 CAAGTGGAGCTCGGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATCA 960
Db 901 CAAGTGGAGCTCGGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATCA 960

Qy 961 CACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAAGG 1020
Db 961 CACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAAGG 1020

Qy 1021 ACCTTGTCCGCCACCGCCACCACCCAGACCTTCAAAACCCACCCCTTCTTAGGACC 1080
Db 1021 ACCTTGTCCGCCACCGCCACCACCCAGACCTTCAAAACCCACCCCTTCTTAGGACC 1080

Qy 1081 TGCTGGTGACAACCCCTGGAGCTGAGTAGGATTCCCTGATGAAAATGCCAGATTAACAG 1140
Db 1081 TGCTGGTGACAACCCCTGGAGCTGAGTAGGATTCCCTGATGAAAATGCCAGATTAACAG 1140

Qy 1141 ATATGCCACTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT 1200
Db 1141 ATATGCCACTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT 1200

Qy 1201 CCAGATGACAGACGTCTGATGCCGGTGCATGGCCTGAAAGCTCCCTAACAGACTTGT 1260
Db 1201 CCAGATGACAGACGTCTGATGCCGGTGCATGGCCTGAAAGCTCCCTAACAGACTTGT 1260

Qy 1261 CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTCTGACCCACCTG 1320
Db 1261 CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTCTGACCCACCTG 1320

Qy 1321 CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGAC 1380
Db 1321 CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGAC 1380

Qy 1381 TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCGGGGATGA 1440
Db 1381 TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCGGGGATGA 1440

Qy 1441 CACAAGCCTGGCTCTCACGAGCACCCGTATTCTGTTCTGACAGAGACCCAGCCTGCC 1500

Db |||||||
1441 CACAAGCCTGGCTCTCACGAGCACCTGATTCTGTTCTGACAGAGACCCAGCCTCGCC 1500

Qy |||||||
1501 TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTGGCTGCTGGCCATATTGTCAGTGT 1560

Db |||||||
1501 TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTGGCTGCTGGCCATATTGTCAGTGT 1560

Qy |||||||
1561 GATCTCCCTTTGGTGTACAAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG 1620

Db |||||||
1561 GATCTCCCTTTGGTGTACAAAAAACACAAGGAATACAACCCAATAGAAAATAGTCCTGG 1620

Qy |||||||
1621 GAATGTGGTCAGAAGCAAAGGCCTGAGTGTCTCAACCGTGCAAAAGCCGTGTTCTT 1680

Db |||||||
1621 GAATGTGGTCAGAAGCAAAGGCCTGAGTGTCTCAACCGTGCAAAAGCCGTGTTCTT 1680

Qy |||||||
1681 CCCGGAAACCAGGAAAGGATCCGCTACTCAAAACCAAGAATTAAAGGAGTTCTTA 1740

Db |||||||
1681 CCCGGAAACCAGGAAAGGATCCGCTACTCAAAACCAAGAATTAAAGGAGTTCTTA 1740

Qy |||||||
1741 AATTCGACCTGTTCTGAAGCTCACTTTCAGTGCCATTGATGTGAGATGTGCTGGAG 1800

Db |||||||
1741 AATTCGACCTGTTCTGAAGCTCACTTTCAGTGCCATTGATGTGAGATGTGCTGGAG 1800

Qy |||||||
1801 TGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAAG 1860

Db |||||||
1801 TGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAAG 1860

Qy |||||||
1861 TTGAATTTTATAGGTAAATGTCATTTAGAGATGGGGAGAGGGATTATACTGCAGGC 1920

Db |||||||
1861 TTGAATTTTATAGGTAAATGTCATTTAGAGATGGGGAGAGGGATTATACTGCAGGC 1920

Qy |||||||
1921 AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCATTATT 1980

Db |||||||
1921 AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCATTATT 1980

Qy |||||||
1981 TTTATGTTCACTTATAAGTCTTAGTAACTAGTAGGATAGAAACACTGTGTCCCAGA 2040

Db |||||||
1981 TTTATGTTCACTTATAAGTCTTAGTAACTAGTAGGATAGAAACACTGTGTCCCAGA 2040

Qy |||||||
2041 GTAAGGAGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTACTGCAAGAAGAGGC 2100

Db |||||||
2041 GTAAGGAGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTACTGCAAGAAGAGGC 2100

Qy |||||||
2101 GATACTTCAAGCTTCCATGTAAGTGTATGCATAAGCCAATGTAGTCCAGTTCTAAGA 2160

Db |||||||
2101 GATACTTCAAGCTTCCATGTAAGTGTATGCATAAGCCAATGTAGTCCAGTTCTAAGA 2160

Qy |||||||
2161 TCATGTTCCAAGCTAACTGAATCCACTCAATACACACTCATGAACCTCTGATGGAACA 2220

Db |||||||
2161 TCATGTTCCAAGCTAACTGAATCCACTCAATACACACTCATGAACCTCTGATGGAACA 2220

Qy |||||||
2221 ATAACAGGCCAAGCCTGTGGTATGATGTGCACACTGCTAGACTCAGAAAAAAACTAC 2280

Db |||||||
2221 ATAACAGGCCAAGCCTGTGGTATGATGTGCACACTGCTAGACTCAGAAAAAAACTAC 2280

Qy |||||||
2281 TCTCATAAATGGGTGGAGTATTGTTGGTACAAACCTACTTGCTGGCTGAGTGAAGGAA 2340

Db 2281 TCTCATAAAATGGGTGGGAGTATTTGGTGACAACCTACTTGCTGGCTGAGTGAAGGAA 2340
Qy 2341 TGATATTCATATATTCAATTATTCCATGGACATTTAGTTAGTAGTCGCTTTATATACCAGGC 2400
Db 2341 ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| ||||||| |||||||
Db 2341 TGATATTCATATATTCAATTATTCCATGGACATTTAGTTAGTAGTCGCTTTATATACCAGGC 2400
Qy 2401 ATGATGCTGAGTGACACTCTTGTGTATATTCCAAATTTGTATAGTCGCTGCACATAT 2460
Db 2401 ATGATGCTGAGTGACACTCTTGTGTATATTCCAAATTTGTATAGTCGCTGCACATAT 2460
Qy 2461 TTGAAATCAAAATATTAAGACTTCCAAAATTGGTCCCTGGTTTCATGGCAACTTG 2520
Db 2461 TTGAAATCAAAATATTAAGACTTCCAAAATTGGTCCCTGGTTTCATGGCAACTTG 2520
Qy 2521 ATCAGTAAGGATTCCCCTCTGTTGGAACCTAAACCATTACTATATGTTAGACAAGAC 2580
Db 2521 ATCAGTAAGGATTCCCCTCTGTTGGAACCTAAACCATTACTATATGTTAGACAAGAC 2580
Qy 2581 ATTTTTTTTTTCCTCCTGAAAAAAATGAGGGAGAGACAAAAAA 2640
Db 2581 ATTTTTTTTTTCCTCCTGAAAAAAATGAGGGAGAGACAAAAAA 2640
Qy 2641 AAAAAAAAAAAAAAA 2661
Db 2641 AAAAAAAAAAAAAAA 2661

RESULT 2
ADQ22838
ID ADQ22838 standard; DNA; 2845 BP.
XX
AC ADQ22838;
XX
DT 26-AUG-2004 (first entry)
XX
DE Human soft tissue sarcoma-upregulated DNA - SEQ ID 5658.
XX
KW soft tissue sarcoma; cytostatic; gene therapy; vaccine; screening; human;
KW ds.
XX
OS Homo sapiens.
XX
PN WO2004048938-A2.
XX
PD 10-JUN-2004.
XX
PF 26-NOV-2003; 2003WO-US038193.
XX
PR 26-NOV-2002; 2002US-0429739P.
XX
PA (PROT-) PROTEIN DESIGN LABS INC.
XX
PI Aziz N, Ginsburg WM, Zlotnik A;
XX
DR WPI; 2004-441208/41.
XX
PT Early detection of soft tissue sarcoma comprises determining expression

Qy 508 AAAGCCATCATAACGTCTTCCCTGATGGAAACCTTTCTCACCAACCCGGATGGAGAA 567
Db |||||||
Qy 620 AAAGCCATCATAACGTCTTCCCTGATGGAAACCTTTCTCACCAACCCGGATGGAGAA 679
Db |||||||
Qy 568 GATGGAATTTCATCTACGTCTTCCACACACTGGTCAGTATTCCAGAAATTGGGACGAT 627
Db |||||||
Qy 680 GATGGAATTTCATCTACGTCTTCCACACACTGGTCAGTATTCCAGAAATTGGGACGAT 739
Db |||||||
Qy 628 GTTCAGTGAGAGTTCTGTGAACACAGCCAATGTGACACTTGGCCTCAACTCATGGAAG 687
Db |||||||
Qy 740 GTTCAGTGAGAGTTCTGTGAACACAGCCAATGTGACACTTGGCCTCAACTCATGGAAG 799
Db |||||||
Qy 688 TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAGTGAAGATGTGT 747
Db |||||||
Qy 800 TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCCATCGCACAGTGAAGATGTGT 859
Db |||||||
Qy 748 ACGTGGTAACAGATCAGATT CCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 807
Db |||||||
Qy 860 ACGTGGTAACAGATCAGATT CCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 919
Db |||||||
Qy 808 CATCCGACGAAACCTTCC-CAAAGATCTCCCATTATGTTGATGTCCTGATTGATGATC 866
Db |||||||
Qy 920 CATCCGACGAAACCTTCTCAAAGATCTCCCATTATGTTGATGTCCTGATTGATGATC 979
Db |||||||
Qy 867 CTAGCCACTTCCTCAATTATTCTACCATTAAC TACAAGTGGAGCTCGGGGATAATACTG 926
Db |||||||
Qy 980 CTAGCCACTTCCTCAATTATTCTACCATTAAC TACAAGTGGAGCTCGGGGATAATACTG 1039
Db |||||||
Qy 927 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 986
Db |||||||
Qy 1040 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 1099
Db |||||||
Qy 987 GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTGTCCGCCACCGCCACCAAC 1046
Db |||||||
Qy 1100 GCCTTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTGTCCGCCACCGCCACCAAC 1159
Db |||||||
Qy 1047 CCAGACCTTCAAAACCCACCCCTTCTTAGGACCTGCTGGTGACAACCCCTGGAGCTGA 1106
Db |||||||
Qy 1160 CCAGACCTTCAAAACCCACCCCTTCTTAGGACCTGCTGGTGACAACCCCTGGAGCTGA 1219
Db |||||||
Qy 1107 GTAGGATT CCTGATGAAA ACTGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1166
Db |||||||
Qy 1220 GTAGGATT CCTGATGAAA ACTGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1279
Db |||||||
Qy 1167 CAATTGTAGAGGGAATCTTAGAGGTTAACATCCAGATGACAGACGTCCTGATGCCGG 1226
Db |||||||
Qy 1280 CAATTGTAGAGGGAATCTTAGAGGTTAACATCCAGATGACAGACGTCCTGATGCCGG 1339
Db |||||||
Qy 1227 TGCCATGGCCTGAAAGCTCCCTAACAGACTTGTGACCTGCCAAGGGAGCATTCCCA 1286
Db |||||||
Qy 1340 TGCCATGGCCTGAAAGCTCCCTAACAGACTTGTGACCTGCCAAGGGAGCATTCCCA 1399
Db |||||||
Qy 1287 CGGAGGTCTGTACCATCATTCTGACCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1346
Db |||||||
Qy 1400 CGGAGGTCTGTACCATCATTCTGACCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1459

Qy 1347 GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTCAATGGCTG 1406
Db 1460 GCCCTGTGGATGTGGATGAGATGTGTCTGCTGACTGTGAGACGAACCTCAATGGCTG 1519

Qy 1407 GGACGTACTGTGTGAACCTCACCCCTGGGGATGACACAAGCCTGGCTCTCACGAGCACCC 1466
Db 1520 GGACGTACTGTGTGAACCTCACCCCTGGGGATGACACAAGCCTGGCTCTCACGAGCACCC 1579

Qy 1467 TGATTCTGTTCTGACAGAGACCCAGCCTGCCTTAAGGATGGCAAACAGTGCCCTGA 1526
Db 1580 TGATTCTGTTCTGACAGAGACCCAGCCTGCCTTAAGGATGGCAAACAGTGCCCTGA 1639

Qy 1527 TCTCCGTTGGCTGCTGGCCATATTGTCACTGTGATCTCCCTTTGGTGTACAAAAAAC 1586
Db 1640 TCTCCGTTGGCTGCTGGCCATATTGTCACTGTGATCTCCCTTTGGTGTACAAAAAAC 1699

Qy 1587 ACAAGGAATACAACCAATAGAAAATAGTCCTGGAAATGTGGTCAGAAGCAAAGGCCTGA 1646
Db 1700 ACAAGGAATACAACCAATAGAAAATAGTCCTGGAAATGTGGTCAGAAGCAAAGGCCTGA 1759

Qy 1647 GTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTCCCAGGAAACCAGGAAAAGGATCCGC 1706
Db 1760 GTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTCCCAGGAAACCAGGAAAAGGATCCGC 1819

Qy 1707 TACTCAAAACCAAGAATTAAAGGAGTTCTTAAATTGACCTTGTGAAGCTCA 1766
Db 1820 TACTCAAAACCAAGAATTAAAGGAGTTCTTAAATTGACCTTGTGAAGCTCA 1879

Qy 1767 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTACCTTTCTAAAG 1826
Db 1880 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTACCTTTCTAAAG 1939

Qy 1827 ATTATTGTTAAATAGATATTGGTTGGGAAGTTGAATTTCAGGTTAAATGTCA 1886
Db 1940 ATTATTGTTAAATAGATATTGGTTGGGAAGTTGAATTTCAGGTTAAATGTCA 1999

Qy 1887 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 1946
Db 2000 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 2059

Qy 1947 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTCAGGTTCACTTATAAGTCTTAG 2006
Db 2060 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTCAGGTTCACTTATAAGTCTTAG 2119

Qy 2007 GTAACTAGGATAGAAACACTGTGTCCGAGAGTAAGGAGAGAAGCTACTATTGATTA 2066
Db 2120 GTAACTAGGATAGAAACACTGTGTCCGAGAGTAAGGAGAGAAGCTACTATTGATTA 2179

Qy 2067 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAACG 2126
Db 2180 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAACG 2239

Qy 2127 TATGCATAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCCAAGCTAACTGAATCCC 2186
Db 2240 TATGCATAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCCAAGCTAACTGAATCCC 2299

Qy 2187 CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA 2246

Db	2300	CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA	2359
Qy	2247	TGTGCACACTTGCTAGACTCAGAAAAAAACTACTCTCATAAATGGGTGGGAGTATTG	2306
Db	2360	TGTGCACACTTGCTAGACTCAGAAAAAAACTACTCTCATAAATGGGTGGGAGTATTG	2419
Qy	2307	GTGACAACCTACTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTATTATTCCA	2366
Db	2420	GTGACAACCTACTTGCTTGGCTGAGTGAAGGAATGATATTCATATATTATTCCA	2479
Qy	2367	TGGACATTTAGTTAGTGCTTTATATACCAGGCATGATGCTGAGTGACACTCTGTGTA	2426
Db	2480	TGGACATTTAGTTAGTGCTTTATATACCAGGCATGATGCTGAGTGACACTCTGTGTA	2539
Qy	2427	TATTTCAAATTGGTACAGTCGCTGCACATATTGAAATCAAAATATTAAGACTTTCC	2486
Db	2540	TATTTCAAATTGGTACAGTCGCTGCACATATTGAAATC-ATATATTAAGACTTTCC	2598
Qy	2487	AAAAATTGGTCCCTGGTTTCATGGCAACTTGATCAGTAAGGATTCCCCTCTGTTG	2546
Db	2599	AAAGATGAGGTCCCTGGTTTCATGGCAACTTGATCAGTAAGGATTCACCTCTGTTG	2658
Qy	2547	GAACTAAAACCATTACTATGTTAGACAAGACATTCCCCCTTGAAAGAAAAAA	2606
Db	2659	TAACTAAAACCATTACTATGTTAGACATGACATTCTTTCTCCTTGAAAGAAAAAA	2718
Qy	2607	-AAAATGAGGGAAGAGACAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAA	2661
Db	2719	TAAAGTGTGGGAAGAGACAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAA	2774

GenCore version 5.1.6
Copyright (c) 1993 - 2005 CompuGen Ltd.

OM nucleic = nucleic search, using sw model

Run on: February 21, 2005, 10:32:04 ; Search time 458 Seconds
(without alignments)
9506.839 Million cell updates/sec

Title: US-10-039-272-1
Perfect score: 2661
Sequence: 1 cggcacacgaaaggcccaagggaa.....aaaaaaa.....aaaaaaa.....aaaaaaa 2661

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 1202784 seqs, 818138359 residues

Total number of hits satisfying chosen parameters: 2405568

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%

Listing first 45 summaries

Database : Issued_Patents_NA:*

1: /cgn2_6/ptodata/1/ina/5A_COMB.seq:*

2: /cgn2_6/ptodata/1/ina/5B_COMB.seq:*

3: /cgn2_6/ptodata/1/ina/6A_COMB.seq:*

4: /cgn2_6/ptodata/1/ina/6B_COMB.seq:*

5: /cgn2_6/ptodata/1/ina/PCTUS_COMB.seq:*

6: /cgn2_6/ptodata/1/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result	Query					Description
No.	Score	Match	Length	DB	ID	
1	2547.8	95.7	2669	1	US-09-985-799-91	Sequence 91, Appl
2	2547.8	95.7	2669	1	US-09-985-799-101	Sequence 101, App
3	2547.8	95.7	2669	1	US-09-977-371-91	Sequence 91, Appl
4	2547.8	95.7	2669	1	US-09-977-371-101	Sequence 101, App
5	2547.8	95.7	2669	1	US-08-594-031-91	Sequence 91, Appl
6	2547.8	95.7	2669	1	US-08-594-031-101	Sequence 101, App
7	1664.6	62.6	1683	4	US-09-943-075A-8	Sequence 8, Appli
8	1051.2	39.5	2303	4	US-09-197-970B-4	Sequence 4, Appli
9	1047.8	39.4	2213	3	US-09-383-586-27	Sequence 27, Appl
10	1047.8	39.4	2213	4	US-09-823-038A-27	Sequence 27, Appl
11	1046.4	39.3	2320	4	US-09-943-075A-1	Sequence 1, Appli
12	1010.2	38.0	1725	4	US-09-943-075A-7	Sequence 7, Appli
13	545.6	20.5	619	3	US-09-123-912-105	Sequence 105, App
14	545.6	20.5	619	3	US-09-643-597-105	Sequence 105, App
15	545.6	20.5	619	3	US-09-643-597-121	Sequence 121, App
16	545.6	20.5	619	4	US-09-480-884A-105	Sequence 105, App
17	545.6	20.5	619	4	US-09-480-884A-121	Sequence 121, App
18	545.6	20.5	619	4	US-09-542-615A-105	Sequence 105, App
19	545.6	20.5	619	4	US-09-542-615A-121	Sequence 121, App
20	545.6	20.5	619	4	US-09-606-421B-105	Sequence 105, App
21	545.6	20.5	619	4	US-09-606-421B-121	Sequence 121, App
22	545.6	20.5	619	4	US-09-221-107-105	Sequence 105, App
23	545.6	20.5	619	4	US-09-221-107-121	Sequence 121, App
24	545.6	20.5	619	4	US-09-466-396A-105	Sequence 105, App
25	545.6	20.5	619	4	US-09-466-396A-121	Sequence 121, App
26	545.6	20.5	619	4	US-09-476-496A-105	Sequence 105, App
27	545.6	20.5	619	4	US-09-476-496A-121	Sequence 121, App
28	545.6	20.5	619	4	US-09-630-940B-105	Sequence 105, App
29	545.6	20.5	619	4	US-09-630-940B-121	Sequence 121, App
30	545.6	20.5	619	4	US-09-285-479-105	Sequence 105, App
31	545.6	20.5	619	4	US-09-285-479-121	Sequence 121, App
32	493	18.5	494	4	US-09-389-681-449	Sequence 449, App
33	493	18.5	494	4	US-09-620-405B-449	Sequence 449, App
34	493	18.5	494	4	US-09-433-826B-449	Sequence 449, App
35	493	18.5	494	4	US-09-604-287A-449	Sequence 449, App
36	493	18.5	494	4	US-09-834-759-449	Sequence 449, App
37	493	18.5	494	4	US-09-590-751A-449	Sequence 449, App
38	493	18.5	494	4	US-09-551-621-449	Sequence 449, App

39	480.8	18.1	698	3	US-09-040-984-5	Sequence 5, Appli
40	480.8	18.1	698	3	US-09-123-912-5	Sequence 5, Appli
41	480.8	18.1	698	3	US-09-643-597-5	Sequence 5, Appli
42	480.8	18.1	698	4	US-09-480-884A-5	Sequence 5, Appli
43	480.8	18.1	698	4	US-09-542-615A-5	Sequence 5, Appli
44	480.8	18.1	698	4	US-09-606-421B-5	Sequence 5, Appli
45	480.8	18.1	698	4	US-09-221-107-5	Sequence 5, Appli

ALIGNMENTS

RESULT 1

US-09-985-799-91

; Sequence 91, Application US/09985799

; Patent No. RE38392

; GENERAL INFORMATION:

; APPLICANT: THOMPSON, Timothy C.

; TITLE OF INVENTION: METHOD FOR IDENTIFYING METASTATIC SEQUENCES

; NUMBER OF SEQUENCES: 175

; CORRESPONDENCE ADDRESS:

; ADDRESSEE: BAKER & BOTTS, L.L.P.

; STREET: 1299 Pennsylvania Avenue, N.W.

; CITY: Washington

; STATE: DC

; COUNTRY: USA

; ZIP: 20004-2400

; COMPUTER READABLE FORM:

; MEDIUM TYPE: Diskette

; COMPUTER: IBM Compatible

; OPERATING SYSTEM: DOS

; SOFTWARE: FastSEQ Version 1.5

; CURRENT APPLICATION DATA:

; APPLICATION NUMBER: US/09/985,799

; FILING DATE: 06-No. RE38392-2001

; CLASSIFICATION: <Unknown>

; PRIOR APPLICATION DATA:

; APPLICATION NUMBER: US/08/594,031

; FILING DATE: 30-JAN-1996

; APPLICATION NUMBER: 60/006,838

; FILING DATE: 16-NOV-1995

; ATTORNEY/AGENT INFORMATION:

; NAME: Remenick, James

; REGISTRATION NUMBER: 36,902

; REFERENCE/DOCKET NUMBER: 0A146-0110

; TELECOMMUNICATION INFORMATION:

; TELEPHONE: 202-639-7700

; TELEFAX: 202-639-7890

; TELEX: <Unknown>

; INFORMATION FOR SEQ ID NO: 91:

; SEQUENCE CHARACTERISTICS:

; LENGTH: 2669 base pairs

; TYPE: nucleic acid

; STRANDEDNESS: single

; TOPOLOGY: linear

; MOLECULE TYPE: cDNA

; HYPOTHETICAL: NO

; ANTI-SENSE: NO
; FRAGMENT TYPE: <Unknown>
; ORIGINAL SOURCE:
; SEQUENCE DESCRIPTION: SEQ ID NO: 91:
US-09-985-799-91

Qy 748 ACGTGGTAACAGATCAGATTCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 807
Db |||||||
Qy 780 ACGTGGTAACAGATCAGATTCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 839
Db |||||||
Qy 808 CATCCGACGAAACCTTCC-CAAAGATCTCCCCATTATGTTGATGTCCTGATTCATGATC 866
Db |||||||
Qy 840 CATCCGACGAAACCTTCTCAAAGATCTCCCCATTATGTTGATGTCCTGATTCATGATC 899
Db |||||||
Qy 867 CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTCGGGGATAATACTG 926
Db |||||||
Qy 900 CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTCGGGGATAATACTG 959
Db |||||||
Qy 927 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 986
Db |||||||
Qy 960 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 1019
Db |||||||
Qy 987 GCCTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTGTCCGCCACCGCCACCAAC 1046
Db |||||||
Qy 1020 GCCTAACCTCACTGTGAAAGCTGCAGCACCAGGACCTGTCCGCCACCGCCACCAAC 1079
Db |||||||
Qy 1047 CCAGACCTTCAAAACCCACCCCTCTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA 1106
Db |||||||
Qy 1080 CCAGACCTTCAAAACCCACCCCTCTTAGGACCTGCTGGTGACAACCCCCTGGAGCTGA 1139
Db |||||||
Qy 1107 GTAGGATTCTGATGAAAATGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1166
Db |||||||
Qy 1140 GTAGGATTCTGATGAAAATGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1199
Db |||||||
Qy 1167 CAATTGTAGAGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCTGATGCCGG 1226
Db |||||||
Qy 1200 CAATTGTAGAGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCTGATGCCGG 1259
Db |||||||
Qy 1227 TGCCATGGCCTGAAAGCTCCCTAACATAGACTTGTGACCTGCCAAGGGAGCATTCCA 1286
Db |||||||
Qy 1260 TGCCATGGCCTGAAAGCTCCCTAACATAGACTTGTGACCTGCCAAGGGAGCATTCCA 1319
Db |||||||
Qy 1287 CGGAGGTCTGTACCATCATTCTGACCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1346
Db |||||||
Qy 1320 CGGAGGTCTGTACCATCATTCTGACCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1379
Db |||||||
Qy 1347 GCCCTGTGGATGTGGATGAGATGTGCTGACTGTGAGACGAACCTCAATGGGTCTG 1406
Db |||||||
Qy 1380 GCCCTGTGGATGTGGATGAGATGTGCTGACTGTGAGACGAACCTCAATGGGTCTG 1439
Db |||||||
Qy 1407 GGACGTACTGTGTGAACCTCACCTGGGGATGACACAAGCCTGGCTCTACGAGCACCC 1466
Db |||||||
Qy 1440 GGACGTACTGTGTGAACCTCACCTGGGGATGACACAAGCCTGGCTCTACGAGCACCC 1499
Db |||||||
Qy 1467 TGATTTCTGTTCTGACAGAGACCCAGCCTCGCCTTAAGGATGGCAAACAGTGCCCTGA 1526
Db |||||||
Qy 1500 TGATTTCTGTTCTGACAGAGACCCAGCCTCGCCTTAAGGATGGCAAACAGTGCCCTGA 1559
Db |||||||
Qy 1527 TCTCCGTTGGCTGCTTGGCCATATTGTCACTGTGATCTCCCTTTGGGTACAAAAAAC 1586
Db |||||||
Qy 1560 TCTCCGTTGGCTGCTTGGCCATATTGTCACTGTGATCTCCCTTTGGGTACAAAAAAC 1619

Qy 1587 ACAAGGAATACAACCAATAGAAAATAGTCCTGGATGTGGTCAGAACAGGCCTGA 1646
|||
Db 1620 ACAAGGAATACAACCAATAGAAAATAGTCCTGGATGTGGTCAGAACAGGCCTGA 1679
|||
Qy 1647 GTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTCCGGAAACCAGGAAAAGGATCCGC 1706
|||
Db 1680 GTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTCCGGAAACCAGGAAAAGGATCCGC 1739
|||
Qy 1707 TACTCAAAAACCAAGAATTAAAGGAGTTCTAAATTGACCTTGTGAAGCTCA 1766
|||
Db 1740 TACTCAAAAACCAAGAATTAAAGGAGTTCTAAATTGACCTTGTGAAGCTCA 1799
|||
Qy 1767 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTCTAAAG 1826
|||
Db 1800 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTAACCTTTCTAAAG 1859
|||
Qy 1827 ATTATTGTTAAATAGATATTGGTTGGGAAGTTGAATTTTATAGTTAAATGTCA 1886
|||
Db 1860 ATTATTGTTAAATAGATATTGGTTGGGAAGTTGAATTTTATAGTTAAATGTCA 1919
|||
Qy 1887 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 1946
|||
Db 1920 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 1979
|||
Qy 1947 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTTATGTTCACTTATAAAGTCTTAG 2006
|||
Db 1980 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTTATGTTCACTTATAAAGTCTTAG 2039
|||
Qy 2007 GTAACTAGTAGGATAGAAACACTGTGTCGGAGAGTAAGGAGAGAAGCTACTATTGATTA 2066
|||
Db 2040 GTAACTAGTAGGATAGAAACACTGTGTCGGAGAGTAAGGAGAGAAGCTACTATTGATTA 2099
|||
Qy 2067 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAAGT 2126
|||
Db 2100 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAAGT 2159
|||
Qy 2127 TATGCATAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCAAGCTAACTGAATCCCA 2186
|||
Db 2160 TATGCATAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCAAGCTAACTGAATCCCA 2219
|||
Qy 2187 CTTCAATACACACTCATGAACCTCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA 2246
|||
Db 2220 CTTCAATACACACTCATGAACCTCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA 2279
|||
Qy 2247 TGTGCACACTTGCTAGACTCAGAAAAAAACTACTCTCATAAATGGGTGGAGTATTTG 2306
|||
Db 2280 TGTGCACACTTGCTAGACTCAGAAAAAAACTACTCTCATAAATGGGTGGAGTATTTG 2339
|||
Qy 2307 GTGACAAACCTACTTGCTGGCTGAGTGAAGGAATGATATTCATATATTCAATTCCA 2366
|||
Db 2340 GTGACAAACCTACTTGCTGGCTGAGTGAAGGAATGATATTCATATATTCAATTCCA 2399
|||
Qy 2367 TGGACATTAGTTAGTGTCTTTATACCAAGGCATGATGCTGAGTGACACTCTGTGTA 2426
|||
Db 2400 TGGACATTAGTTAGTGTCTTTATACCAAGGCATGATGCTGAGTGACACTCTGTGTA 2459
|||
Qy 2427 TATTCCAAATTGTATAGTCGCTGCACATATTGAAATCAAATATTAAGACTTCC 2486

Db ||||||||||||||||||||||||||||||||||| ||| ||| |||
2460 TATTTC CAAATTTGTATAGTCGCTGCACATATTGAAATC-ATATATTAAGACTTCC 2518

Qy ||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
2487 AAAAATTGGTCCCTGGTTTTCATGGCAACTTGATCAGTAAGGATTCACCTCTGTTG 2546

Db ||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||
2519 AAAGATGAGGTCCCTGGTTTTCATGGCAACTTGATCAGTAAGGATTCACCTCTGTTG 2578

Qy ||||| ||| ||| ||| ||| ||| ||| ||| ||| |||
2547 GAACTAAAACCATTACTATATGTTAGACAAGACATTTTTTCCCTGAAAAA 2606

Db ||||| ||| ||| ||| ||| ||| ||| ||| |||
2579 TAACTAAAACCATCTACTATATGTTAGACATGACATTCTTTCTCCTCCTGAAAAA 2638

Qy ||||| ||| ||| ||| ||| ||| ||| |||
2607 -AAAATGAGGGAAGAGACAAAAAAAAAAAAA 2636

Db ||||| ||| ||| ||| ||| ||| |||
2639 TAAAGTGTGGGAAGAGACAAAAAAAAAAAAA 2669

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 14:08:32 ; Search time 1392 Seconds
(without alignments)
11298.729 Million cell updates/sec

Title: US-10-039-272-1
Perfect score: 2661
Sequence: 1 cggcacgaggcccagagga.....aaaaaaaaaaaaaaa 2661
Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 5384158 seqs, 2955248155 residues

Total number of hits satisfying chosen parameters: 10768316

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : Published_Applications_NA:
1: /cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:
2: /cgn2_6/ptodata/1/pubpna/PCT_NEW_PUB.seq:
3: /cgn2_6/ptodata/1/pubpna/US06_NEW_PUB.seq:
4: /cgn2_6/ptodata/1/pubpna/US06_PUBCOMB.seq:
5: /cgn2_6/ptodata/1/pubpna/US07_NEW_PUB.seq:
6: /cgn2_6/ptodata/1/pubpna/PCTUS_PUBCOMB.seq:
7: /cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:
8: /cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:
9: /cgn2_6/ptodata/1/pubpna/US09A_PUBCOMB.seq:
10: /cgn2_6/ptodata/1/pubpna/US09B_PUBCOMB.seq:
11: /cgn2_6/ptodata/1/pubpna/US09C_PUBCOMB.seq:
12: /cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:

```

13: /cgn2_6/ptodata/1/pubpna/US10A_PUBCOMB.seq:*
14: /cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
15: /cgn2_6/ptodata/1/pubpna/US10C_PUBCOMB.seq:*
16: /cgn2_6/ptodata/1/pubpna/US10D_PUBCOMB.seq:*
17: /cgn2_6/ptodata/1/pubpna/US10E_PUBCOMB.seq:*
18: /cgn2_6/ptodata/1/pubpna/US10F_PUBCOMB.seq:*
19: /cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:*
20: /cgn2_6/ptodata/1/pubpna/US11_NEW_PUB.seq:*
21: /cgn2_6/ptodata/1/pubpna/US60_NEW_PUB.seq:*
22: /cgn2_6/ptodata/1/pubpna/US60_PUBCOMB.seq:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result	Query					Description
No.	Score	Match	Length	DB	ID	
1	2661	100.0	2661	13	US-10-039-272-1	Sequence 1, Appl
2	2661	100.0	2661	17	US-10-463-106-1	Sequence 1, Appl
3	2571.2	96.6	2845	18	US-10-723-860-5658	Sequence 5658, Ap
4	2559.2	96.2	2952	14	US-10-198-846-10843	Sequence 10843, A
5	2547.8	95.7	2669	10	US-09-525-978B-82	Sequence 82, Appl
6	2547.8	95.7	2669	17	US-10-172-118-779	Sequence 779, App
7	2547.8	95.7	2669	17	US-10-295-027-1041	Sequence 1041, Ap
8	2547.8	95.7	2669	17	US-10-342-887-779	Sequence 779, App
9	2547.8	95.7	2669	18	US-10-450-826-92	Sequence 92, Appl
10	2547.8	95.7	2669	18	US-10-723-860-1127	Sequence 1127, Ap
11	2531.6	95.1	2666	15	US-10-084-817-169	Sequence 169, App
12	2485	93.4	2683	14	US-10-227-884-41	Sequence 41, Appl
13	2485	93.4	2683	14	US-10-230-163-41	Sequence 41, Appl
14	2485	93.4	2683	14	US-10-230-338-41	Sequence 41, Appl
15	2485	93.4	2683	14	US-10-218-631-41	Sequence 41, Appl
16	2485	93.4	2683	14	US-10-230-414-41	Sequence 41, Appl
17	2485	93.4	2683	14	US-10-232-224-41	Sequence 41, Appl
18	2485	93.4	2683	14	US-10-216-159A-41	Sequence 41, Appl
19	2485	93.4	2683	14	US-10-218-849-41	Sequence 41, Appl
20	2485	93.4	2683	14	US-10-227-873-41	Sequence 41, Appl
21	2485	93.4	2683	14	US-10-227-883-41	Sequence 41, Appl
22	2485	93.4	2683	14	US-10-219-076-41	Sequence 41, Appl
23	2485	93.4	2683	14	US-10-230-434-41	Sequence 41, Appl
24	2485	93.4	2683	14	US-10-219-003-41	Sequence 41, Appl
25	2485	93.4	2683	14	US-10-219-075-41	Sequence 41, Appl
26	2485	93.4	2683	14	US-10-219-464-41	Sequence 41, Appl
27	2485	93.4	2683	14	US-10-219-466-41	Sequence 41, Appl
28	2485	93.4	2683	14	US-10-219-479-41	Sequence 41, Appl
29	2485	93.4	2683	14	US-10-219-481-41	Sequence 41, Appl
30	2485	93.4	2683	14	US-10-230-260-41	Sequence 41, Appl
31	2485	93.4	2683	14	US-10-232-231-41	Sequence 41, Appl
32	2485	93.4	2683	14	US-10-232-233-41	Sequence 41, Appl
33	2485	93.4	2683	14	US-10-216-165-41	Sequence 41, Appl
34	2485	93.4	2683	14	US-10-218-956-41	Sequence 41, Appl
35	2485	93.4	2683	14	US-10-219-468-41	Sequence 41, Appl
36	2485	93.4	2683	14	US-10-219-478-41	Sequence 41, Appl
37	2485	93.4	2683	14	US-10-219-536-41	Sequence 41, Appl

38	2485	93.4	2683	14	US-10-233-205-41	Sequence 41, Appl
39	2485	93.4	2683	14	US-10-219-072-41	Sequence 41, Appl
40	2485	93.4	2683	14	US-10-219-470-41	Sequence 41, Appl
41	2485	93.4	2683	14	US-10-219-474-41	Sequence 41, Appl
42	2485	93.4	2683	14	US-10-219-524-41	Sequence 41, Appl
43	2485	93.4	2683	14	US-10-219-528-41	Sequence 41, Appl
44	2485	93.4	2683	14	US-10-227-880-41	Sequence 41, Appl
45	2485	93.4	2683	14	US-10-227-881-41	Sequence 41, Appl

ALIGNMENTS

RESULT 1

US-10-039-272-1

; Sequence 1, Application US/10039272

; Publication No. US20020168653A1

; GENERAL INFORMATION:

; APPLICANT: RAMESHWAR, Pranela

; TITLE OF INVENTION: HEMATOPOIETIC GROWTH FACTOR INDUCIBLE NEUROKININ-TYPE

; FILE REFERENCE: 267/033 University of Medicine & Dentistry of New Jersey

; CURRENT APPLICATION NUMBER: US/10/039,272

; CURRENT FILING DATE: 2001-10-20

; PRIOR APPLICATION NUMBER: US 60/241,881

; PRIOR FILING DATE: 2000-10-20

; NUMBER OF SEQ ID NOS: 2

; SOFTWARE: PatentIn version 3.1

; SEQ ID NO 1

; LENGTH: 2661

; TYPE: DNA

; ORGANISM: Homo sapiens

US-10-039-272-1

Query Match 100.0%; Score 2661; DB 13; Length 2661;
 Best Local Similarity 100.0%; Pred. No. 0;
 Matches 2661; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCGCTGCGTCCGTGAGAATT CAGCA 60
 |||

Db 1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCGCTGCGTCCGTGAGAATT CAGCA 60

Qy 61 TGGAATGTCTACTATTCCTGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
 |||

Db 61 TGGAATGTCTACTATTCCTGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120

Qy 121 CCGCCAAACGATTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC 180
 |||

Db 121 CCGCCAAACGATTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC 180

Qy 181 ACAATCAATTAAATGGCTGGTCTTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
 |||

Db 181 ACAATCAATTAAATGGCTGGTCTTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240

Qy 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGC 300
 |||

Db 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGC 300

Qy 301 TCCTGACCAGTGA CTC ACCAGCCCTCGTGGGCTCAAATATAACATTGCGGTGAACCTGA 360
Db 301 TCCTGACCAGTGA CTC ACCAGCCCTCGTGGGCTCAAATATAACATTGCGGTGAACCTGA 360

Qy 361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420
Db 361 TATTCCCTAGATGCCAAAAGGAAGATGCCAATGGCAACATAGTCTATGAGAAGAACTGCA 420

Qy 421 GAAATGAGGCTGGTTATCTGCTGATCCATATGTTACA ACTGGACAGCATGGTCAGAGG 480
Db 421 GAAATGAGGCTGGTTATCTGCTGATCCATATGTTACA ACTGGACAGCATGGTCAGAGG 480

Qy 481 ACAGTGACGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTCCCTGATGGAAAC 540
Db 481 ACAGTGACGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTCCCTGATGGAAAC 540

Qy 541 CTTTCCTCACCA CCCCCGGATGGAGAAGATGGAATTCTACGTCTCCACACACTTG 600
Db 541 CTTTCCTCACCA CCCCCGGATGGAGAAGATGGAATTCTACGTCTCCACACACTTG 600

Qy 601 GTCAGTATTCCAGAAATTGGGACGATGTT CAGTGAGAGTTCTGTGAACACAGCCAATG 660
Db 601 GTCAGTATTCCAGAAATTGGGACGATGTT CAGTGAGAGTTCTGTGAACACAGCCAATG 660

Qy 661 TGACACTTGGGCCTCAACTCATGGAA GTGACTGTCTACAGAAGACATGGACGGCATATG 720
Db 661 TGACACTTGGGCCTCAACTCATGGAA GTGACTGTCTACAGAAGACATGGACGGCATATG 720

Qy 721 TTCCCATCGCACAA GTGAAAGATGTGTACGTGGTAACAGATCAGATT CCTGTGTTGTGA 780
Db 721 TTCCCATCGCACAA GTGAAAGATGTGTACGTGGTAACAGATCAGATT CCTGTGTTGTGA 780

Qy 781 CTATGTTCCAGAAGAACGATCGAAATTCCATCCGACGAAACCTCCAAAGATCTCCCCAT 840
Db 781 CTATGTTCCAGAAGAACGATCGAAATTCCATCCGACGAAACCTCCAAAGATCTCCCCAT 840

Qy 841 TATGTTGATGTCCTGATT CATGATCCTAGCCACTTCCTCAATTATTCTACCACTTA ACTA 900
Db 841 TATGTTGATGTCCTGATT CATGATCCTAGCCACTTCCTCAATTATTCTACCACTTA ACTA 900

Qy 901 CAAGTGGAGCTCGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATCA 960
Db 901 CAAGTGGAGCTCGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATCA 960

Qy 961 CACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAGG 1020
Db 961 CACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAGG 1020

Qy 1021 ACCTTGTCCGCCACCGCCACCACCA CCCAGACCTCAAAACCCACCCCTTCTTAGGACC 1080
Db 1021 ACCTTGTCCGCCACCGCCACCACCA CCCAGACCTCAAAACCCACCCCTTCTTAGGACC 1080

Qy 1081 TGCTGGTGACAACCCCTGGAGCTGAGTAGGATT CCTGATGAAA ACTGCCAGATTAACAG 1140
Db 1081 TGCTGGTGACAACCCCTGGAGCTGAGTAGGATT CCTGATGAAA ACTGCCAGATTAACAG 1140

Qy 1141 ATATGGCCACTTTCAAGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT 1200

Db ||||||| 1141 ATATGGCCACTTCAAGCCACCATCACAAATTGTAGAGGGAATCTTAGAGGTTAACATCAT 1200
Qy 1201 CCAGATGACAGACGTCTGATGCCGGTGCATGCCCTGAAAGCTCCCTAATAGACTTGT 1260
Db ||||||| 1201 CCAGATGACAGACGTCTGATGCCGGTGCATGCCCTGAAAGCTCCCTAATAGACTTGT 1260
Qy 1261 CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCACATTTCTGACCCCCACCTG 1320
Db 1261 CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCACATTTCTGACCCCCACCTG 1320
Qy 1321 CGAGATCACCCAGAACACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGTC 1380
Db 1321 CGAGATCACCCAGAACACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGTC 1380
Qy 1381 TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCCTGGGGATGA 1440
Db 1381 TGTGAGACGAACCTTCAATGGGTCTGGGACGTACTGTGTGAACCTCACCCCTGGGGATGA 1440
Qy 1441 CACAAGCCTGGCTCTCACGAGCACCCCTGATTCTGTTCTGACAGAGACCCAGCCTGCC 1500
Db 1441 CACAAGCCTGGCTCTCACGAGCACCCCTGATTCTGTTCTGACAGAGACCCAGCCTGCC 1500
Qy 1501 TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTGGCCATATTGTCACTGT 1560
Db 1501 TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTGGCCATATTGTCACTGT 1560
Qy 1561 GATCTCCCTTTGGTGTACAAAAACACAAGGAATACAACCCAATAGAAAATAGCCTGG 1620
Db 1561 GATCTCCCTTTGGTGTACAAAAACACAAGGAATACAACCCAATAGAAAATAGCCTGG 1620
Qy 1621 GAATGTGGTCAGAAGCAAAGGCCTGAGTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTT 1680
Db 1621 GAATGTGGTCAGAAGCAAAGGCCTGAGTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTT 1680
Qy 1681 CCCGGAAACCAGGAAAAGGATCCGCTACTCAAAACCAAGAATTAAAGGAGTTCTTA 1740
Db 1681 CCCGGAAACCAGGAAAAGGATCCGCTACTCAAAACCAAGAATTAAAGGAGTTCTTA 1740
Qy 1741 AATTCGACCTTGTTCGAAGCTCACTTTCAGTGCCATTGATGTGAGATGTGCTGGAG 1800
Db 1741 AATTCGACCTTGTTCGAAGCTCACTTTCAGTGCCATTGATGTGAGATGTGCTGGAG 1800
Qy 1801 TGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAAG 1860
Db 1801 TGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAAG 1860
Qy 1861 TTGAATTAGGTAAATGTCATTAGAGATGGGGAGAGGGATTATACTGCAGGC 1920
Db 1861 TTGAATTAGGTAAATGTCATTAGAGATGGGGAGAGGGATTATACTGCAGGC 1920
Qy 1921 AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCAATTATT 1980
Db 1921 AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCAATTATT 1980
Qy 1981 TTTATGTTCACTTATAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA 2040
|||||||

Db	1981	TTTATTTCACTTATAAAGTCTTAGGTAACTAGTAGGATAGAAACACTGTGTCCCGAGA	2040
Qy	2041	GTAAGGAGAGAACGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGG	2100
Db	2041	GTAAGGAGAGAACGCTACTATTGATTAGAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGG	2100
Qy	2101	GATACTTCAGCTTCATGTAACGTATGCATAAGCCAATGTAGTCCAGTTCTAAGA	2160
Db	2101	GATACTTCAGCTTCATGTAACGTATGCATAAGCCAATGTAGTCCAGTTCTAAGA	2160
Qy	2161	TCATGTTCCAAGCTAACGTAACTGAATCCCACCAATTCAATACACACTCATGAACTCCTGATGGAACA	2220
Db	2161	TCATGTTCCAAGCTAACGTAACTGAATCCCACCAATTCAATACACACTCATGAACTCCTGATGGAACA	2220
Qy	2221	ATAACAGGCCAACGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAAATACTAC	2280
Db	2221	ATAACAGGCCAACGCCTGTGGTATGATGTGCACACTTGCTAGACTCAGAAAAAAATACTAC	2280
Qy	2281	TCTCATAAATGGGTGGGAGTATTTGGTACAAACCTACTTGCTGGCTGAGTGAAGGAA	2340
Db	2281	TCTCATAAATGGGTGGGAGTATTTGGTACAAACCTACTTGCTGGCTGAGTGAAGGAA	2340
Qy	2341	TGATATTCATATATTCAATTATTCCATGGACATTAGTTAGTAGTGCTTTATATACCAGGC	2400
Db	2341	TGATATTCATATATTCAATTATTCCATGGACATTAGTTAGTAGTGCTTTATATACCAGGC	2400
Qy	2401	ATGATGCTGAGTGACACTCTTGTATATTCAAAATTTGTATAGTCGCTGCACATAT	2460
Db	2401	ATGATGCTGAGTGACACTCTTGTATATTCAAAATTTGTATAGTCGCTGCACATAT	2460
Qy	2461	TTGAAATCAAAATATTAAGACTTCAAAATTGGTCCCTGGTTTCATGGCAACTTG	2520
Db	2461	TTGAAATCAAAATATTAAGACTTCAAAATTGGTCCCTGGTTTCATGGCAACTTG	2520
Qy	2521	ATCAGTAAGGATTCCCTCTGTTGAACTAAAACCATTACTATATGTTAGACAAGAC	2580
Db	2521	ATCAGTAAGGATTCCCTCTGTTGAACTAAAACCATTACTATATGTTAGACAAGAC	2580
Qy	2581	ATTTTTTTTTCTGAAAAAAATGAGGGAGAGACAAAAAA	2640
Db	2581	ATTTTTTTTTCTGAAAAAAATGAGGGAGAGACAAAAAA	2640
Qy	2641	AAAAAAAAAAAAAAAAAAAAA	2661
Db	2641	AAAAAAAAAAAAAAAAAAAAA	2661

RESULT 2

US-10-463-106-1
; Sequence 1, Application US/10463106
; Publication No. US20030202938A1
; GENERAL INFORMATION:
; APPLICANT: RAMESHWAR, Pranela
; TITLE OF INVENTION: HEMATOPOIETIC GROWTH FACTOR INDUCIBLE NEUROKININ-1 GENE
; FILE REFERENCE: 267/033 University of Medicine & Dentistry of New Jersey
; CURRENT APPLICATION NUMBER: US/10/463,106
; CURRENT FILING DATE: 2003-06-17

; PRIOR APPLICATION NUMBER: US 10/039,272
; PRIOR FILING DATE: 2001-10-20
; PRIOR APPLICATION NUMBER: US 60/241,881
; PRIOR FILING DATE: 2000-10-20
; NUMBER OF SEQ ID NOS: 2
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 1
; LENGTH: 2661
; TYPE: DNA
; ORGANISM: Homo sapiens

US-10-463-106-1

Query Match 100.0%; Score 2661; DB 17; Length 2661;
Best Local Similarity 100.0%; Pred. No. 0;
Matches 2661; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Qy 1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCGTGAGAATT CAGCA 60
Db 1 CGGCACGAGGGCCCAGAGGAATAAGTTAACCTTGGTGCCTGCGTCGTGAGAATT CAGCA 60

Qy 61 TGGAATGTCTCTACTATTCCTGGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120
Db 61 TGGAATGTCTCTACTATTCCTGGGATTCTGCTCCTGGCTGCAAGATTGCCACTTGATG 120

Qy 121 CCGCCAAACGATTTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC 180
Db 121 CCGCCAAACGATTTCATGATGTGCTGGCAATGAAAGACCTCTGCTTACATGAGGGAGC 180

Qy 181 ACAATCAATTAAATGGCTGGTCTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240
Db 181 ACAATCAATTAAATGGCTGGTCTCTGATGAAAATGACTGGAATGAAAAACTCTACCCAG 240

Qy 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGC 300
Db 241 TGTGGAAGCGGGGAGACATGAGGTGGAAAAACTCCTGGAAGGGAGGCCGTGTGCAGGC 300

Qy 301 TCCTGACCAGTGACTCACCAAGCCCTCGTGGCTCAAATATAACATTGCGGTGAACCTGA 360
Db 301 TCCTGACCAGTGACTCACCAAGCCCTCGTGGCTCAAATATAACATTGCGGTGAACCTGA 360

Qy 361 TATTCCCTAGATGCCAAAAGGAAGATGCCAACATAGTCTATGAGAAGAACTGCA 420
Db 361 TATTCCCTAGATGCCAAAAGGAAGATGCCAACATAGTCTATGAGAAGAACTGCA 420

Qy 421 GAAATGAGGCTGGTTATCTGCTGATCCATATGTTACAACGGACAGCATGGTCAGAGG 480
Db 421 GAAATGAGGCTGGTTATCTGCTGATCCATATGTTACAACGGACAGCATGGTCAGAGG 480

Qy 481 ACAGTGACGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTCCCTGATGGAAAC 540
Db 481 ACAGTGACGGGAAAATGGCACCGGCCAAAGCCATCATAACGTCTCCCTGATGGAAAC 540

Qy 541 CTTCCTCACCAACCCGGATGGAGAAGATGGAATTCTACGTCTCCACACACTTG 600
Db 541 CTTCCTCACCAACCCGGATGGAGAAGATGGAATTCTACGTCTCCACACACTTG 600

Qy 601 GTCAGTATTCCAGAAATTGGGACGATGTCAGTGAGAGTTCTGTGAACACAGCCAATG 660

Db |||||||
601 GTCAGTATTCCAGAAATTGGGACGATGTTCACTGAGAGTTCTGTGAACACAGCCAATG 660

Qy |||||||
661 TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG 720

Db |||||||
661 TGACACTTGGGCCTCAACTCATGGAAGTGACTGTCTACAGAAGACATGGACGGGCATATG 720

Qy |||||||
721 TTCCCATCGCACAAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCGTGTTGTGA 780

Db |||||||
721 TTCCCATCGCACAAAGTGAAAGATGTGTACGTGGTAACAGATCAGATTCCGTGTTGTGA 780

Qy |||||||
781 CTATGTTCCAGAAGAACGATCGAAATTCCGACGAAACCTTCCAAAGATCTCCCCAT 840

Db |||||||
781 CTATGTTCCAGAAGAACGATCGAAATTCCGACGAAACCTTCCAAAGATCTCCCCAT 840

Qy |||||||
841 TATGTTGATGTCCTGATTGATCCTAGCCACTTCCTCAATTATTCTACCATTAAC 900

Db |||||||
841 TATGTTGATGTCCTGATTGATCCTAGCCACTTCCTCAATTATTCTACCATTAAC 900

Qy |||||||
901 CAAGTGGAGCTCGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATCA 960

Db |||||||
901 CAAGTGGAGCTCGGGATAATACTGGCCTGTTGTTCCACCAATCATACTGTGAATCA 960

Qy |||||||
961 CACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAGG 1020

Db |||||||
961 CACGTATGTGCTCAATGGAACCTTCAGCCTAACCTCACTGTGAAAGCTGCAGCACCAGG 1020

Qy |||||||
1021 ACCTTGTCCGCCACCGCCACCAACCCAGACCTTCAAAACCCACCCCTTTAGGACC 1080

Db |||||||
1021 ACCTTGTCCGCCACCGCCACCAACCCAGACCTTCAAAACCCACCCCTTTAGGACC 1080

Qy |||||||
1081 TGCTGGTGACAACCCCTGGAGCTGAGTAGGATTCTGATGAAAACGCCAGATTAACAG 1140

Db |||||||
1081 TGCTGGTGACAACCCCTGGAGCTGAGTAGGATTCTGATGAAAACGCCAGATTAACAG 1140

Qy |||||||
1141 ATATGCCACTTCAGGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT 1200

Db |||||||
1141 ATATGCCACTTCAGGCCACCATCACAATTGTAGAGGGAATCTTAGAGGTTAACATCAT 1200

Qy |||||||
1201 CCAGATGACAGACGTCCGTGATGCCGGTGCATGGCCTGAAAGCTCCCTAACAGACTTG 1260

Db |||||||
1201 CCAGATGACAGACGTCCGTGATGCCGGTGCATGGCCTGAAAGCTCCCTAACAGACTTG 1260

Qy |||||||
1261 CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTCTGACCCACCTG 1320

Db |||||||
1261 CGTGACCTGCCAAGGGAGCATTCCCACGGAGGTCTGTACCATCATTCTGACCCACCTG 1320

Qy |||||||
1321 CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGAC 1380

Db |||||||
1321 CGAGATCACCCAGAACACAGTCTGCAGCCCTGTGGATGTGGATGAGATGTGTCTGAC 1380

Qy |||||||
1381 TGTGAGACGAACCTTCAGGGTCTGGGACGTACTGTGTGAACCTCACCCCTGGGGATGA 1440

Db |||||||
1381 TGTGAGACGAACCTTCAGGGTCTGGGACGTACTGTGTGAACCTCACCCCTGGGGATGA 1440

Qy |||||||
1441 CACAAGCCTGGCTCTCACGAGCACCCGTATTCTGTTCTGACAGAGACCCAGCCTGCC 1500

Db 1441 CACAAGCCTGGCTCTCACGAGCACCCGTATTCTGTTCTGACAGAGACCCAGCCTGCC 1500
Qy 1501 TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTGGCCATATTGTCAGTGT 1560
|||
Db 1501 TTTAAGGATGGCAAACAGTGCCCTGATCTCCGTTGGCTGCTGGCCATATTGTCAGTGT 1560
Qy 1561 GATCTCCCTTTGGTGTACAAAAACACAAGGAATACAACCAATAGAAAATAGCCTGG 1620
|||
Db 1561 GATCTCCCTTTGGTGTACAAAAACACAAGGAATACAACCAATAGAAAATAGCCTGG 1620
Qy 1621 GAATGTGGTCAGAACAGCAGGCTGAGTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTT 1680
|||
Db 1621 GAATGTGGTCAGAACAGCAGGCTGAGTGTCTTCTCAACCGTGCAAAAGCCGTGTTCTT 1680
Qy 1681 CCCGGAAACCAGGAAAGGATCCGCTACTCAAAACCAAGAATTAAAGGAGTTCTTA 1740
|||
Db 1681 CCCGGAAACCAGGAAAGGATCCGCTACTCAAAACCAAGAATTAAAGGAGTTCTTA 1740
Qy 1741 AATTCGACCTTGTTCAGCTACTTTAGTGCATTGATGTGAGATGTGCTGGAG 1800
|||
Db 1741 AATTCGACCTTGTTCAGCTACTTTAGTGCATTGATGTGAGATGTGCTGGAG 1800
Qy 1801 TGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAAG 1860
|||
Db 1801 TGGCTATTAACCTTTCTAAAGATTATTGTTAAATAGATATTGTGGTTGGGAAG 1860
Qy 1861 TTGAATTTTATAGGTAAATGTCATTAGAGATGGGGAGAGGGATTATACTGCAGGC 1920
|||
Db 1861 TTGAATTTTATAGGTAAATGTCATTAGAGATGGGGAGAGGGATTATACTGCAGGC 1920
Qy 1921 AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCTTATTATT 1980
|||
Db 1921 AGCTTCAGCCATGTTGTGAAACTGATAAAAGCAACTTAGCAAGGCTTCTTCTTATTATT 1980
Qy 1981 TTTATGTTCACTTATAAAGTCTTAGTAACTAGTAGGATAGAAACACTGTGTCCGAGA 2040
|||
Db 1981 TTTATGTTCACTTATAAAGTCTTAGTAACTAGTAGGATAGAAACACTGTGTCCGAGA 2040
Qy 2041 GTAAGGAGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTACTGCAAGAAGAGGCAG 2100
|||
Db 2041 GTAAGGAGAGAAGCTACTATTGATTAGAGCCTAACCCAGGTTACTGCAAGAAGAGGCAG 2100
Qy 2101 GATACTTCAGCTTCCATGTAACGTATGCATAAGCCAATGTAGTCCAGTTCTAAGA 2160
|||
Db 2101 GATACTTCAGCTTCCATGTAACGTATGCATAAGCCAATGTAGTCCAGTTCTAAGA 2160
Qy 2161 TCATGTTCCAAGCTAACTGAATCCACTCAATACACACTCATGAACTCCTGATGGAACA 2220
|||
Db 2161 TCATGTTCCAAGCTAACTGAATCCACTCAATACACACTCATGAACTCCTGATGGAACA 2220
Qy 2221 ATAACAGGCCAAGCCTGTGGTATGATGTGCACACTGCTAGACTCAGAAAAAAACTAC 2280
|||
Db 2221 ATAACAGGCCAAGCCTGTGGTATGATGTGCACACTGCTAGACTCAGAAAAAAACTAC 2280
Qy 2281 TCTCATAAAATGGGTGGAGTATTGTTGGTACAACCTACTTGCTGGCTGAGTGAAGGAA 2340
|||
Db 2281 TCTCATAAAATGGGTGGAGTATTGTTGGTACAACCTACTTGCTGGCTGAGTGAAGGAA 2340

Qy 2341 TGATATTCATATATTCA~~T~~TTATTCCATGGACATTTAGTAGTGCTTTATATACCAGGC 2400
Db 2341 TGATATTCATATATTCA~~T~~TTATTCCATGGACATTTAGTAGTGCTTTATATACCAGGC 2400

Qy 2401 ATGATGCTGAGTGACACTCTTGTGTATATTCAAATTGGTATAGTCGCTGCACATAT 2460
Db 2401 ATGATGCTGAGTGACACTCTTGTGTATATTCAAATTGGTATAGTCGCTGCACATAT 2460

Qy 2461 TTGAAATCAAAATATTAAGACTTCCAAAATTGGTCCCTGGTTTCATGGCAACTTG 2520
Db 2461 TTGAAATCAAAATATTAAGACTTCCAAAATTGGTCCCTGGTTTCATGGCAACTTG 2520

Qy 2521 ATCAGTAAGGATTCCCCTCTGTTGGA~~A~~CTAAAACC~~A~~TTACTATGTTAGACAAGAC 2580
Db 2521 ATCAGTAAGGATTCCCCTCTGTTGGA~~A~~CTAAAACC~~A~~TTACTATGTTAGACAAGAC 2580

Qy 2581 ATTTTTTTTTTCCTCCTGAAAAAATGAGGGAGAGACAAAAA 2640
Db 2581 ATTTTTTTTTTCCTCCTGAAAAAATGAGGGAGAGACAAAAA 2640

Qy 2641 AAAAAAAAAAAAAAAA 2661
Db 2641 AAAAAAAAAAAAAAAA 2661

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: February 21, 2005, 10:29:04 ; Search time 7723 Seconds
(without alignments)
13115.243 Million cell updates/sec

Title: US-10-039-272-1
Perfect score: 2661
Sequence: 1 cggcacgagggcccagagga.....aaaaaaaaaaaaaaa 2661

Scoring table: IDENTITY_NUC
Gapop 10.0 , Gapext 1.0

Searched: 34239544 seqs, 19032134700 residues

Total number of hits satisfying chosen parameters: 68479088

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Database : EST:
1: gb_est1:
2: gb_est2:

```

3: gb_htc:*
4: gb_est3:*
5: gb_est4:*
6: gb_est5:*
7: gb_est6:*
8: gb_gss1:*
9: gb_gss2:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result	Query					Description	
	No.	Score	Match	Length	DB	ID	
	1	2550	95.8	2636	3	BC025297	BC025297 Homo sapi
	2	1698	63.8	1757	3	CR620418	CR620418 full-leng
	3	1664.8	62.6	1695	3	CR625459	CR625459 full-leng
	4	1617	60.8	1726	3	CR626032	CR626032 full-leng
	5	1049.8	39.5	3615	3	AK044764	AK044764 Mus muscu
	6	1046.6	39.3	2265	3	AK076347	AK076347 Mus muscu
c	7	1017.4	38.2	1106	5	BX397314	BX397314 BX397314
c	8	1013.6	38.1	1050	5	BX379978	BX379978 BX379978
	9	943.8	35.5	2431	3	AK079220	AK079220 Mus muscu
c	10	932.6	35.0	971	5	BX423077	BX423077 BX423077
c	11	926.6	34.8	1015	5	BX458448	BX458448 BX458448
	12	918	34.5	1029	5	BX406949	BX406949 BX406949
	13	913.6	34.3	998	5	BX379979	BX379979 BX379979
	14	910.6	34.2	1063	5	BX336884	BX336884 BX336884
	15	906.4	34.1	1067	5	BX364871	BX364871 BX364871
	16	885.6	33.3	947	5	BX458449	BX458449 BX458449
	17	867.4	32.6	895	7	CF552020	CF552020 AGENCOURT
	18	864.4	32.5	949	5	BX423078	BX423078 BX423078
c	19	863.4	32.4	1011	5	BX406948	BX406948 BX406948
c	20	862.2	32.4	905	1	AL542811	AL542811 AL542811
c	21	851.2	32.0	930	5	BX364870	BX364870 BX364870
	22	844.6	31.7	987	5	BX381217	BX381217 BX381217
c	23	835.4	31.4	1035	1	AL575920	AL575920 AL575920
c	24	827.2	31.1	957	5	BX396828	BX396828 BX396828
	25	823	30.9	858	1	AL542812	AL542812 AL542812
	26	816.6	30.7	891	5	BX452668	BX452668 BX452668
	27	815.8	30.7	911	4	BI521316	BI521316 603081887
	28	799.8	30.1	910	5	BX396829	BX396829 BX396829
	29	796.8	29.9	858	4	BG742951	BG742951 602632050
	30	788	29.6	1107	4	BM550298	BM550298 AGENCOURT
	31	779	29.3	1089	4	BM547872	BM547872 AGENCOURT
	32	776	29.2	835	4	BG576651	BG576651 602597538
	33	775	29.1	808	4	BG742272	BG742272 602631402
	34	775	29.1	962	4	BG676576	BG676576 602623049
	35	758.2	28.5	810	1	AU139997	AU139997 AU139997
c	36	749.8	28.2	993	1	AL564958	AL564958 AL564958
	37	745	28.0	754	4	BG211992	BG211992 RST31703
	38	743.8	28.0	892	5	BU157659	BU157659 AGENCOURT
c	39	742.4	27.9	878	5	BX437190	BX437190 BX437190
	40	737.8	27.7	855	5	BU178305	BU178305 AGENCOURT

41	733.8	27.6	807	4	BG696053	BG696053	602658007
42	731.6	27.5	905	6	CD109017	CD109017	AGENCOURT
43	728.2	27.4	857	5	BU150501	BU150501	AGENCOURT
44	722.2	27.1	808	6	CD108927	CD108927	AGENCOURT
c 45	715.2	26.9	894	1	AL550419	AL550419	AL550419

ALIGNMENTS

RESULT 1
BC025297

LOCUS BC025297 2636 bp mRNA linear HTC 08-MAR-2002

DEFINITION Homo sapiens, glycoprotein (transmembrane) nmb, clone
IMAGE:4877773, mRNA.

ACCESSION BC025297

VERSION BC025297.1 GI:19264140

KEYWORDS HTC.

SOURCE Homo sapiens (human)

ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 2636)

AUTHORS Strausberg,R.

TITLE Direct Submission

JOURNAL Submitted (05-MAR-2002) National Institutes of Health, Mammalian
Gene Collection (MGC), Cancer Genomics Office, National Cancer
Institute, 31 Center Drive, Room 11A03, Bethesda, MD 20892-2590,
USA

REMARK NIH-MGC Project URL: <http://mgc.nci.nih.gov>

COMMENT Contact: MGC help desk
Email: cgapbs-r@mail.nih.gov
Tissue Procurement: ATCC/DCTD/DTP
cDNA Library Preparation: Rubin Laboratory
cDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL)
DNA Sequencing by: Genome Sequence Centre,
BC Cancer Agency, Vancouver, BC, Canada
info@bcgsc.bc.ca
Steven Jones, Jennifer Asano, Ian Bosdet, Yaron Butterfield,
Susanna Chan, Readman Chiu, Chris Fjell, Erin Garland, Ran Guin,
Letticia Hsiao, Martin Krzywinski, Reta Kutsche, Oliver Lee, Soo
Sen Lee, Victor Ling, Carrie Mathewson, Candice McLeavy, Steven
Ness, Pawan Pandoh, Anna-Liisa Prabhu, Parvaneh Saeedi, Jacqueline
Schein, Duane Smailus, Michael Smith, Lorraine Spence, Jeff Stott,
Michael Thorne, Miranada Tsai, Natasja van den Bosch, Jill Vardy,
George Yang, Scott Zuyderduyn, Marco Marra.

Clone distribution: MGC clone distribution information can be found
through the I.M.A.G.E. Consortium/LLNL at: <http://image.llnl.gov>
Series: IRAL Plate: 42 Row: i Column: 5
This clone was selected for full length sequencing because it
passed the following selection criteria: matched mRNA gi: 4505404
This clone has the following problem: frame shifted.

FEATURES Location/Qualifiers

source 1. .2636
/organism="Homo sapiens"
/mol_type="mRNA"

/db_xref="LocusID:10457"
/db_xref="taxon:9606"
/clone="IMAGE:4877773"
/tissue_type="Skin, melanotic melanoma, high MDR."
/clone_lib="NIH_MGC_49"
/lab_host="DH10B-R"
/note="Vector: pOTB7"

ORIGIN

Query Match 95.8%; Score 2550; DB 3; Length 2636;
Best Local Similarity 99.1%; Pred. No. 0;
Matches 2595; Conservative 0; Mismatches 20; Indels 3; Gaps 3;

Db 80 TTCTGCTCCTGGCTGCAAGATTGCCACTTGATGCCGCCAACGATTTCATGATGTGCTGG 139

148 CGAATGAAAGACCTTCTCCTTAGATGACGGAGCAATGAATTAAATGCCCTCTCTTCTG 307

Db 140 GCAATGAAAGACCTTCTGCTTACATGAGGGAGCACAATCAATTAAATGGCTGGTCTTCTG 199

Ov 208 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCGGGGAGACATGAGGTGGA 267

Db 200 ATGAAAATGACTGGAATGAAAAACTCTACCCAGTGTGGAAGCAGGGAGACATGAGGTGAA 259

```

Qy      268 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCTGACCACTGACTCACCAAGCCCTCG 327
          ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Db      260 AAAACTCCTGGAAGGGAGGCCGTGTGCAGGCGGTCTGACCACTGACTCACCAAGCCCTCG 319

```

Db 320 TGGGCTCAAATATAACATTGCGGTGAACCTGATATTCCCTAGATGCCAAAAGGAAGATG 379

588 CCAATGGCAACATAGCTATGAAACACATGCCAATGACCCCTGTTTATCCTTC 599

Qy 440 CATATGTTACAACCTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 507
 |
 Db 440 CGTATGTTACAACCTGGACAGCATGGTCAGAGGACAGTGACGGGGAAAATGGCACCGGCC 499

Db 500 AAAGCCATCATAACGTCTTCCCTGATGGAAACCTTCCTCACCAACCCGGATGGAGAA 559

Qv 568 GATGGAATTCTATCTACGTCTTCCACACACTGGTCAGTATTCCAGAAATTGGGACCGAT 627

Db 560 GATGGAATTCTACGTCTTCCACACACTGGTCAGTATTCCAGAAATTGGGACGAT 619

Qy 688 TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCATCGCACAAGTGAAGATGTGT 747
Db 680 TGACTGTCTACAGAAGACATGGACGGGCATATGTTCCATCGCACAAGTGAAGATGTGT 739

Qy 748 ACGTGGTAACAGATCAGATT CCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 807
Db 740 ACGTGGTAACAGATCAGATT CCTGTGTTGTGACTATGTTCCAGAAGAACGATCGAAATT 799

Qy 808 CATCCGACGAAACCTTCC-CAAAGATCTCCCCATTATGTTGATGTCCTGATTGATGATC 866
Db 800 CATCCGACGAAACCTTCCCTAAAGATCTCCCCATTATGTTGATGTCCTGATTGATGATC 859

Qy 867 CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTCGGGGATAATACTG 926
Db 860 CTAGCCACTTCCTCAATTATTCTACCATTAACTACAAGTGGAGCTCGGGGATAATACTG 919

Qy 927 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 986
Db 920 GCCTGTTGTTCCACCAATCATACTGTGAATCACACGTATGTGCTCAATGGAACCTTCA 979

Qy 987 GCCTAACCTCACTGTGAAAGCTGCAGCACCAAGGACCTGTCCGCCACCGCCACCCAC 1046
Db 980 GCCTAACCTCACTGTGAAAGCTGCAGCACCAAGGACCTGTCCGCCACCGCCACCCAC 1039

Qy 1047 CCAGACCTTCAAAACCCACCCCTTCTTAGGACCTGCTGGTGACAACCCCTGGAGCTGA 1106
Db 1040 CCAGACCTTCAAAACCCACCCCTTCTTAGGACCTGCTGGTGACAACCCCTGGAGCTGA 1099

Qy 1107 GTAGGATT CCTGATGAAA ACTGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1166
Db 1100 GTAGGATT CCTGATGAAA ACTGCCAGATTAACAGATATGCCACTTCAAGCCACCATCA 1159

Qy 1167 CAATTGTAGAGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCTGATGCCGG 1226
Db 1160 CAATTGTAGAGGAATCTTAGAGGTTAACATCATCCAGATGACAGACGTCTGATGCCGG 1219

Qy 1227 TGCCATGGCCTGAAAGCTCCCTAACAGACTTGTGACCTGCCAAGGGAGCATTCCA 1286
Db 1220 TGCCATGGCCTGAAAGCTCCCTAACAGACTTGTGACCTGCCAAGGGAGCATTCCA 1279

Qy 1287 CGGAGGTCTGTACCATCATTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1346
Db 1280 CGGAGGTCTGTACCATCATTCTGACCCCACCTGCGAGATCACCCAGAACACAGTCTGCA 1339

Qy 1347 GCCCTGTGGATGTGGATGAGATGTGCTGACTGTGAGACGAACCTCAATGGGTCTG 1406
Db 1340 GCCCTGTGGATGTGGATGAGATGTGCTGACTGTGAGACGAACCTCAATGGGTCTG 1399

Qy 1407 GGACGTACTGTGTGAAACCTCACCCCTGGGGATGACACAAGCCTGGCTCTCACGAGCACCC 1466
Db 1400 GGACGTACTGTGTGAAACCTCACCCCTGGGGATGACACAAGCCTGGCTCTCACGAGCACCC 1459

Qy 1467 TGATTCTGTT CCTGACAGAGACCCAGCCTGCCCTTAAGGATGGCAAACAGTGCCCTGA 1526
Db 1460 TGATTCTGTT CCTGACAGAGACCCAGCCTGCCCTTAAGGATGGCAAACAGTGCCCTGA 1519

Qy 1527 TCTCCGTTGGCTGCTGGCCATATTGTCAGTGATCTCCCTTTGGGTACAAAAAAC 1586

Db ||||||| 1520 TCTCCGTTGGCTGCTGGCCATATTGTCACTGTGATCTCCCTTGGTGTACAAAAAAC 1579
Qy 1587 ACAAGGAATACAACCAATAGAAAATAGTCCTGGAATGTGGTCAGAAGCAAAGGCCTGA 1646
|||
Db 1580 ACAAGGAATACAACCAATAGAAAATAGTCCTGGAATGTGGTCAGAAGCAAAGGCCTGA 1639
Qy 1647 GTGTCTTCTCAACCGTCAAAAGCCGTGTTCTCCCAGGAAACCAGGAAAAGGATCCGC 1706
|||
Db 1640 GTGTCTTCTCAACCGTCAAAAGCCGTGTTCTCCCAGGAAACCAGGAAAAGGATCCGC 1699
Qy 1707 TACTCAAAACCAAGAATTAAAGGAGTTCTAAATTGACCTTGTGTTCTGAAGCTCA 1766
|||
Db 1700 TACTCAAAACCAAGAATTAAAGGAGTTCTAAATTGACCTTGTGTTCTGAAGCTCA 1759
Qy 1767 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTACCTTTTCTAAAG 1826
|||
Db 1760 CTTTCAGTGCCATTGATGTGAGATGTGCTGGAGTGGCTATTACCTTTTCTAAAG 1819
Qy 1827 ATTATTGTTAAATAGATATTGTTGGGGAGTTGAATTAGTTAGGTTAAATGTCA 1886
|||
Db 1820 ATTATTGTTAAATAGATATTGTTGGGGAGTTGAATTAGTTAGGTTAAATGTCA 1879
Qy 1887 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 1946
|||
Db 1880 TTTAGAGATGGGGAGAGGGATTATACTGCAGGCAGCTCAGCCATGTTGTGAAACTGAT 1939
Qy 1947 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTTATGTTCACTTATAAAGTCTTAG 2006
|||
Db 1940 AAAAGCAACTTAGCAAGGCTTCTTCATTATTTTATGTTCACTTATAAAGTCTTAG 1999
Qy 2007 GTAATCTAGGATAGAAACACTGTGTCGGAGAGTAAGGAGAGAAGCTACTATTGATTA 2066
|||
Db 2000 GTAATCTAGGATAGAAACACTGTGTCGGAGAGTAAGGAGAGAAGCTACTATTGATTA 2059
Qy 2067 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAAC 2126
|||
Db 2060 GAGCCTAACCCAGGTTAACTGCAAGAAGAGGCAGGATACTTCAGCTTCCATGTAAC 2119
Qy 2127 TATGCATAAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCAAGCTAACTGAATCCC 2186
|||
Db 2120 TATGCATAAAAGCCAATGTAGTCCAGTTCTAAGATCATGTTCAAGCTAACTGAATCCC 2179
Qy 2187 CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA 2246
|||
Db 2180 CTTCAATACACACTCATGAACTCCTGATGGAACAATAACAGGCCAAGCCTGTGGTATGA 2239
Qy 2247 TGTGCACACTTGCTAGACTCAGAAAAAAACTACTCTCATAAATGGTGGAGTATTTG 2306
|||
Db 2240 TGTGCACACTTGCTAGACTCAGAAAAAAACTACTCTCATAAATGGTGGAGTATTTG 2299
Qy 2307 GTGACAAACCTACTTGCTGGCTGAGTGAAGGAATGATATTCATATATTCAATTCTTCCA 2366
|||
Db 2300 GTGACAAACCTACTTGCTGGCTGAGTGAAGGAATGATATTCATATATTCAATTCTTCCA 2359
Qy 2367 TGGACATTTAGTTAGTGCTTTATACCAAGGCATGATGCTGAGTGACACTCTGTGTA 2426
|||

Db 2360 TGGACATTAGTTAGTGCTTTATATACCAGGCATGATGCTGAGTGACACTCTGTGTA 2419
Qy 2427 TATTTCCTAAATTGGTATAGTCGCTGCACATATTGAAATCAAATATTAAGACTTCC 2486
Db 2420 TATTTCCTAAATTGGTACAGTCGCTGCACATATTGAAATC-ATATATTAAGACTTCC 2478
Qy 2487 AAAAATTGGTCCCTGGTTTCACTGGCAACTTGATCAGTAAGGATTCCCCTCTGTTG 2546
Db 2479 AAAGATGAGGTCCCTGGTTTCACTGGCAACTTGATCAGTAAGGATTCACCTCTGTTG 2538
Qy 2547 GAACTAAAACCATTACTATATGTTAGACAAGACATTCCCCCTGAAAAAA 2606
Db 2539 TAACTAAAACCATCTACTATATGTTAGACATGACATTCTCTCCTGAAAAAA 2598
Qy 2607 -AAAATGAGGGAAGAGACAAAAAAAAAAAAAAA 2643
Db 2599 TAAAGTGTGGGAAGAGACAAAAAAAAAAAAAAA 2636

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model

Run on: February 18, 2005, 22:03:33 ; Search time 355 Seconds
(without alignments)
5798.137 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 4850

Sequence: 1 cggcacgagggccagagga.....aaaaaaaaaaaaaaaaaa 2661

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 2105692 seqs, 386760381 residues

Total number of hits satisfying chosen parameters: 4211384

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp
-
Q=/cgn2_1/USPTO_spool_p/US10039272/runat_18022005_095204_14690/app_query.fasta_1
.2823
-DB=A_Geneseq_16Dec04 -QFMT=fastan -SUFFIX=rag -MINMATCH=0.1 -LOOPCL=0
-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi
-LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15
-MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000
-USER=US10039272 @CGN_1_1_398 @runat_18022005_095204_14690 -NCPU=6 -ICPU=3
-NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG
-DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -YGAPEXT=0.5 -FGAPOP=6
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : A_Geneseq_16Dec04:
1: geneseqp1980s:
2: geneseqp1990s:
3: geneseqp2000s:
4: geneseqp2001s:
5: geneseqp2002s:
6: geneseqp2003as:
7: geneseqp2003bs:
8: geneseqp2004s:

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,
and is derived by analysis of the total score distribution.

SUMMARIES

%

Result No.	Score	Query Match	Length	DB	ID	Description
1	3014	62.1	563	8	ADR66659	Adr66659 Human pro
2	3014	62.1	563	8	ADR66317	Adr66317 Human pro
3	3014	62.1	563	8	ADR66339	Adr66339 Human pro
4	3014	62.1	563	8	ADR66681	Adr66681 Human pro
5	2999	61.8	560	2	AAW35382	Aaw35382 Murine me
6	2999	61.8	560	3	AAB11329	Aab11329 Human lun
7	2999	61.8	560	5	ABB78200	Abb78200 Amino aci
8	2999	61.8	560	5	ABB74961	Abb74961 Human lun
9	2999	61.8	560	5	ABP61881	Abp61881 Human lun
10	2999	61.8	560	6	ABU56592	Abu56592 Lung canc
11	2999	61.8	560	6	ABG72962	Abg72962 Human ost
12	2999	61.8	560	6	ABU70852	Abu70852 Human adi
13	2999	61.8	560	7	ADA28315	Ada28315 Human lun
14	2999	61.8	560	7	ADE95620	Ade95620 Human NOV
15	2999	61.8	560	7	ADH36879	Adh36879 Human lun
16	2999	61.8	560	7	ADJ68660	Adj68660 Human hea
17	2999	61.8	560	7	ADL14995	Adl14995 Human NMB
18	2999	61.8	560	7	ADN39940	Adn39940 Cancer/an
19	2999	61.8	560	8	ADH56342	Adh56342 Human nmb
20	2999	61.8	560	8	ADJ75569	Adj75569 Marker ge
21	2999	61.8	560	8	ADM56682	Adm56682 Human lun
22	2999	61.8	560	8	ADQ18310	Adq18310 Human sof
23	2999	61.8	560	8	ADP23127	Adp23127 PRO polyp
24	2980	61.4	572	7	ADD78235	Add78235 Human CGD
25	2979	61.4	572	5	AAU83612	Aau83612 Human PRO
26	2979	61.4	572	6	ABU80759	Abu80759 Human PRO
27	2979	61.4	572	6	ABO33725	Abo33725 Novel hum
28	2979	61.4	572	6	ABU82068	Abu82068 Novel hum
29	2979	61.4	572	6	ABJ72248	Abj72248 Human PRO
30	2979	61.4	572	6	ABJ72376	Abj72376 Human PRO
31	2979	61.4	572	6	ABO34271	Abo34271 Human sec
32	2979	61.4	572	7	ABJ72078	Abj72078 Human mem
33	2979	61.4	572	7	ADB83532	Adb83532 Novel hum
34	2979	61.4	572	7	ADB80638	Adb80638 Novel hum
35	2979	61.4	572	7	ADB73179	Adb73179 Novel hum
36	2979	61.4	572	7	ADB78261	Adb78261 Novel hum
37	2979	61.4	572	7	ADB84909	Adb84909 Human PRO
38	2979	61.4	572	7	ADB78015	Adb78015 Novel hum
39	2979	61.4	572	7	ADB87081	Adb87081 Human PRO
40	2979	61.4	572	7	ADB84663	Adb84663 Human PRO
41	2979	61.4	572	7	ADB83778	Adb83778 Novel hum
42	2979	61.4	572	7	ADB72933	Adb72933 Novel hum
43	2979	61.4	572	7	ADC36771	Adc36771 Human PRO
44	2979	61.4	572	7	ADC21761	Adc21761 Human PRO
45	2979	61.4	572	7	ADC49792	Adc49792 Novel hum

Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model

Run on: February 18, 2005, 22:15:00 ; Search time 73 Seconds
(without alignments)
5442.224 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 4850

Sequence: 1 cggcacgagggccagagga.....aaaaaaaaaaaaaaaaaa 2661

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 513545 seqs, 74649064 residues

Total number of hits satisfying chosen parameters: 1027090

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-

Q=/cgn2_1/USPTO_spool_p/US10039272/runat_18022005_095206_14721/app_query.fasta_1
.2823
-DB=Issued_Patents_AA -QFMT=fastan -SUFFIX=rai -MINMATCH=0.1 -LOOPCL=0
-LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi
-LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15
-MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000
-USER=US10039272@CGN_1_1_72@runat_18022005_095206_14721 -NCPU=6 -ICPU=3
-NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG
-DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : Issued_Patents_AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*

3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*

5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*

6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
1	2999	61.8	560	1	US-09-985-799-90	Sequence 90, Appl
2	2999	61.8	560	1	US-09-977-371-90	Sequence 90, Appl
3	2999	61.8	560	1	US-08-594-031-90	Sequence 90, Appl
4	2999	61.8	560	4	US-09-643-597-225	Sequence 225, App
5	2999	61.8	560	4	US-09-480-884A-225	Sequence 225, App
6	2999	61.8	560	4	US-09-542-615A-225	Sequence 225, App
7	2999	61.8	560	4	US-09-606-421B-225	Sequence 225, App
8	2999	61.8	560	4	US-09-476-496A-225	Sequence 225, App
9	2999	61.8	560	4	US-09-630-940B-225	Sequence 225, App
10	2999	61.8	560	4	US-09-943-075A-6	Sequence 6, Appli
11	2170	44.7	574	3	US-09-383-586-36	Sequence 36, Appl
12	2170	44.7	574	4	US-09-823-038A-36	Sequence 36, Appl
13	2170	44.7	574	4	US-09-943-075A-5	Sequence 5, Appli
14	2152	44.4	572	4	US-09-197-970B-5	Sequence 5, Appli
15	2136	44.0	572	4	US-09-943-075A-2	Sequence 2, Appli
16	950.5	19.6	376	1	US-09-985-799-100	Sequence 100, App
17	950.5	19.6	376	1	US-09-985-799-102	Sequence 102, App
18	950.5	19.6	376	1	US-09-977-371-100	Sequence 100, App
19	950.5	19.6	376	1	US-09-977-371-102	Sequence 102, App
20	950.5	19.6	376	1	US-08-594-031-100	Sequence 100, App
21	950.5	19.6	376	1	US-08-594-031-102	Sequence 102, App
22	593	12.2	661	2	US-08-417-174-121	Sequence 121, App
23	593	12.2	661	3	US-09-267-439-121	Sequence 121, App
24	593	12.2	661	4	US-08-388-852B-2	Sequence 2, Appli
25	593	12.2	661	4	US-09-073-138-121	Sequence 121, App
26	592	12.2	661	2	US-08-417-174-27	Sequence 27, Appl
27	592	12.2	661	2	US-08-231-565A-27	Sequence 27, Appl
28	592	12.2	661	2	US-09-007-961-27	Sequence 27, Appl
29	592	12.2	661	3	US-09-267-439-27	Sequence 27, Appl
30	592	12.2	661	4	US-09-073-138-27	Sequence 27, Appl
31	574.5	11.8	668	1	US-07-891-942G-6	Sequence 6, Appli
32	327.5	6.8	460	4	US-09-949-016-8029	Sequence 8029, Ap
33	238.5	4.9	190	4	US-08-388-852B-35	Sequence 35, Appl
34	236	4.9	202	4	US-08-388-852B-38	Sequence 38, Appl
35	233.5	4.8	192	4	US-08-388-852B-37	Sequence 37, Appl
36	233	4.8	197	4	US-08-388-852B-36	Sequence 36, Appl
37	124	2.6	71	1	US-09-985-799-98	Sequence 98, Appl
38	124	2.6	71	1	US-09-977-371-98	Sequence 98, Appl
39	124	2.6	71	1	US-08-594-031-98	Sequence 98, Appl
40	120	2.5	724	4	US-09-784-358-8	Sequence 8, Appli
41	120	2.5	845	4	US-09-784-358-12	Sequence 12, Appl
42	120	2.5	1691	4	US-09-784-358-2	Sequence 2, Appli
43	112.5	2.3	440	4	US-09-248-796A-26860	Sequence 26860, A
44	111	2.3	525	4	US-09-976-594-64	Sequence 64, Appl
45	111	2.3	525	4	US-09-919-039-62	Sequence 62, Appl

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

Run on: February 18, 2005, 22:44:56 ; Search time 303.5 Seconds
(without alignments)
5738.309 Million cell updates/sec

Title: US-10-039-272-1
Perfect score: 4850
Sequence: 1 cggcacgagggcccagagga.....aaaaaaaaaaaaaaaaaa 2661

Scoring table: BLOSUM62
Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 1380268 seqs, 327241040 residues

Total number of hits satisfying chosen parameters: 2760536

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 45 summaries

Command line parameters:

```
-MODEL=frame+_n2p.model -DEV=xlp
-
Q=/cgn2_1/USPTO_spool_p/US10039272/runat_18022005_095208_14781/app_query.fasta_1
.2823
-DB=Published_Applications_AA -QFMT=fastan -SUFFIX=rapb -MINMATCH=0.1
-LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62
-TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100
-THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0
-MAXLEN=2000000000 -USER=US10039272 @CGN_1_1_393 @runat_18022005_095208_14781
-NCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100
-LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5
-FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7
```

Database : Published_Applications_AA:
1: /cgn2_6/ptodata/2/pubpaa/US07_PUBCOMB.pep:*
2: /cgn2_6/ptodata/2/pubpaa/PCT_NEW_PUB.pep:*
3: /cgn2_6/ptodata/2/pubpaa/US06_NEW_PUB.pep:*
4: /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*
5: /cgn2_6/ptodata/2/pubpaa/US07_NEW_PUB.pep:*
6: /cgn2_6/ptodata/2/pubpaa/PCTUS_PUBCOMB.pep:*
7: /cgn2_6/ptodata/2/pubpaa/US08_NEW_PUB.pep:*
8: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*
9: /cgn2_6/ptodata/2/pubpaa/US09A_PUBCOMB.pep:*
10: /cgn2_6/ptodata/2/pubpaa/US09B_PUBCOMB.pep:*
11: /cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:*
12: /cgn2_6/ptodata/2/pubpaa/US09_NEW_PUB.pep:*
13: /cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:*
14: /cgn2_6/ptodata/2/pubpaa/US10B_PUBCOMB.pep:*
15: /cgn2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:*
16: /cgn2_6/ptodata/2/pubpaa/US10D_PUBCOMB.pep:*

```

17: /cgn2_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:*
18: /cgn2_6/ptodata/2/pubpaa/US11_NEW_PUB.pep:*
19: /cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:*
20: /cgn2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*

```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1	2999	61.8	560	9	US-09-735-705-225	Sequence 225, App
2	2999	61.8	560	9	US-09-850-716A-225	Sequence 225, App
3	2999	61.8	560	9	US-09-897-778-225	Sequence 225, App
4	2999	61.8	560	9	US-09-943-075A-6	Sequence 6, Appli
5	2999	61.8	560	13	US-10-039-272-2	Sequence 2, Appli
6	2999	61.8	560	14	US-10-007-700-225	Sequence 225, App
7	2999	61.8	560	14	US-10-117-982-225	Sequence 225, App
8	2999	61.8	560	15	US-10-463-106-2	Sequence 2, Appli
9	2999	61.8	560	15	US-10-295-027-1258	Sequence 1258, Ap
10	2999	61.8	560	15	US-10-313-986-225	Sequence 225, App
11	2999	61.8	560	15	US-10-309-290-152	Sequence 152, App
12	2999	61.8	560	16	US-10-408-765A-466	Sequence 466, App
13	2979	61.4	572	14	US-10-227-884-42	Sequence 42, Appl
14	2979	61.4	572	14	US-10-230-163-42	Sequence 42, Appl
15	2979	61.4	572	14	US-10-230-338-42	Sequence 42, Appl
16	2979	61.4	572	14	US-10-218-631-42	Sequence 42, Appl
17	2979	61.4	572	14	US-10-230-414-42	Sequence 42, Appl
18	2979	61.4	572	14	US-10-232-224-42	Sequence 42, Appl
19	2979	61.4	572	14	US-10-216-159A-42	Sequence 42, Appl
20	2979	61.4	572	14	US-10-218-849-42	Sequence 42, Appl
21	2979	61.4	572	14	US-10-227-873-42	Sequence 42, Appl
22	2979	61.4	572	14	US-10-227-883-42	Sequence 42, Appl
23	2979	61.4	572	14	US-10-219-076-42	Sequence 42, Appl
24	2979	61.4	572	14	US-10-230-434-42	Sequence 42, Appl
25	2979	61.4	572	14	US-10-219-003-42	Sequence 42, Appl
26	2979	61.4	572	14	US-10-219-075-42	Sequence 42, Appl
27	2979	61.4	572	14	US-10-219-464-42	Sequence 42, Appl
28	2979	61.4	572	14	US-10-219-466-42	Sequence 42, Appl
29	2979	61.4	572	14	US-10-219-479-42	Sequence 42, Appl
30	2979	61.4	572	14	US-10-219-481-42	Sequence 42, Appl
31	2979	61.4	572	14	US-10-230-260-42	Sequence 42, Appl
32	2979	61.4	572	14	US-10-232-231-42	Sequence 42, Appl
33	2979	61.4	572	14	US-10-232-233-42	Sequence 42, Appl
34	2979	61.4	572	14	US-10-216-165-42	Sequence 42, Appl
35	2979	61.4	572	14	US-10-218-956-42	Sequence 42, Appl
36	2979	61.4	572	14	US-10-219-468-42	Sequence 42, Appl
37	2979	61.4	572	14	US-10-219-478-42	Sequence 42, Appl
38	2979	61.4	572	14	US-10-219-536-42	Sequence 42, Appl
39	2979	61.4	572	14	US-10-233-205-42	Sequence 42, Appl
40	2979	61.4	572	14	US-10-219-072-42	Sequence 42, Appl
41	2979	61.4	572	14	US-10-219-470-42	Sequence 42, Appl
42	2979	61.4	572	14	US-10-219-474-42	Sequence 42, Appl
43	2979	61.4	572	14	US-10-219-524-42	Sequence 42, Appl

44	2979	61.4	572	14	US-10-219-528-42	Sequence 42, Appl
45	2979	61.4	572	14	US-10-227-880-42	Sequence 42, Appl

GenCore version 5.1.6
Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model

Run on: February 18, 2005, 22:06:53 ; Search time 91 Seconds
(without alignments)
5627.095 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 4850

Sequence: 1 cggcacgagggcccagagga.....aaaaaaaaaaaaaaaaaa 2661

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 566832

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-

Q=/cgn2_1/USPTO_spool_p/US10039272/runat_18022005_095205_14708/app_query.fasta_1
.2823

-DB=PIR_79 -QFMT=fastan -SUFFIX=rpr -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10039272 @CGN_1_1_135 @runat_18022005_095205_14708 -NCPU=6 -ICPU=3

-NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : PIR_79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query				Description
		Match	Length	DB	ID	
	1	2999	61.8	560	2	I38065 gene NMB protein -
	2	635	13.1	626	2	S53871 Pmel 17 protein -
	3	593.5	12.2	662	2	I38400 melanoma-associate
	4	588.5	12.1	668	2	A41234 melanocyte-specifi
	5	436.5	9.0	491	2	A49179 melanoma antigen h
	6	135	2.8	446	2	T07907 hydroxyproline-ric
	7	129	2.7	926	1	A41105 protein-tyrosine-p
	8	118	2.4	2869	2	T18518 apolipoprotein(a)
	9	116.5	2.4	555	2	S21766 dihydrolipoamide S
	10	114	2.4	2395	1	S50820 surface protein ty
	11	113	2.3	1541	2	T02831 AAA protein L4171.
	12	112.5	2.3	457	2	I55976 dihydrolipoamide S
	13	111.5	2.3	2946	2	T15840 hypothetical prote
	14	111	2.3	525	1	KGHUGH histidine-rich gly
	15	110.5	2.3	1874	1	JQ0533 genome polyprotein
	16	109.5	2.3	492	2	C96521 protein F21D18.18
	17	109	2.2	1737	2	A59235 unconventional myo
	18	108.5	2.2	348	2	AB3260 hypothetical membr
	19	108.5	2.2	588	2	T45564 hypothetical prote
	20	107.5	2.2	768	2	protein ZC123.1 [i
	21	107.5	2.2	1208	2	hypothetical prote
	22	106	2.2	658	2	T27822 cysteine proteinas
	23	106	2.2	1537	2	S53465 flocculation prote
	24	106	2.2	1585	2	T31611 hypothetical prote
c	25	105	2.2	499	2	S52422 chitinase (EC 3.2.
c	26	104.5	2.2	4006	2	T09070 probable tenascin
c	27	104	2.1	435	2	D41602 transcription fact
c	28	103	2.1	626	1	NBHUIA platelet glycoprot
c	29	103	2.1	921	2	A33718 retinoblastoma pro
c	30	103	2.1	1009	2	C64483 hypothetical prote
c	31	102.5	2.1	394	2	E82572 ABC transporter so
c	32	102.5	2.1	826	2	G90283 hypothetical prote
c	33	102.5	2.1	979	2	A35913 regulatory factor
c	34	102	2.1	281	2	T29150 hypothetical prote
c	35	102	2.1	393	2	T33103 lin-1 protein - Ca
c	36	102	2.1	1213	2	A41724 limb deformity (ld
c	37	102	2.1	2014	2	T21560 hypothetical prote
c	38	101.5	2.1	445	2	D81716 hypothetical prote
c	39	101.5	2.1	2165	2	T21371 hypothetical prote
c	40	101	2.1	848	2	T23694 hypothetical prote
c	41	101	2.1	2090	2	S26058 probable transform
c	42	100.5	2.1	221	2	T07176 extensin homolog -
c	43	100.5	2.1	1048	2	T30815 platelet-derived g
c	44	100	2.1	432	2	AB2222 twitching motility
c	45	100	2.1	26926	1	I38344 titin, cardiac mus

Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model

Run on: February 18, 2005, 22:04:28 ; Search time 445 Seconds
(without alignments)
6124.237 Million cell updates/sec

Title: US-10-039-272-1

Perfect score: 4850

Sequence: 1 cggcacgagggccagagga.....aaaaaaaaaaaaaaaaaa 2661

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5
Ygapop 10.0 , Ygapext 0.5
Fgapop 6.0 , Fgapext 7.0
Delop 6.0 , Delext 7.0

Searched: 1612378 seqs, 512079187 residues

Total number of hits satisfying chosen parameters: 3224756

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlp

-
Q=/cgn2_1/USPTO_spool_p/US10039272/runat_18022005_095205_14696/app_query.fasta_1
.2823
-DB=UniProt_03 -QFMT=fastan -SUFFIX=rup -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0
-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45
-DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL
-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000
-USER=US10039272 @CGN_1_1_518 @runat_18022005_095205_14696 -NCPU=6 -ICPU=3
-NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG
-DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6
-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database : UniProt_03:*

1: uniprot_sprot:*

2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

%

Result	Query				
No.	Score	Match	Length	DB	ID

Description

1	2999	61.8	560	1	NMB_HUMAN	Q14956 homo sapien
2	2983	61.5	572	2	Q8N1A1	Q8n1a1 homo sapien
3	2979	61.4	572	2	Q6UVX1	Q6uvx1 homo sapien
4	2170	44.7	574	2	Q99P91	Q99p91 mus musculu
5	2170	44.7	574	2	Q8BVV9	Q8bvv9 mus musculu
6	2170	44.7	574	2	Q9QXA0	Q9qxa0 mus musculu
7	2166	44.7	574	2	Q8BXL4	Q8bxl4 mus musculu
8	2152	44.4	572	2	Q6P7C7	Q6p7c7 rattus norv
9	2136	44.0	572	2	Q9QZF6	Q9qzf6 rattus norv
10	2015	41.5	526	2	Q8BVA0	Q8bva0 mus musculu
11	1563.5	32.2	559	1	QNR_COTJA	Q90372 coturnix co
12	1029	21.2	206	2	Q96F58	Q96f58 homo sapien
13	1022	21.1	206	2	Q8IXJ5	Q8ixj5 homo sapien
14	711.5	14.7	721	2	Q6DDN6	Q6ddn6 xenopus lae
15	704.5	14.5	746	2	Q6DIR2	Q6dir2 xenopus tro
16	644.5	13.3	626	2	Q9CZB2	Q9czb2 mus musculu
17	635	13.1	626	1	PM17_MOUSE	Q60696 mus musculu
18	631.5	13.0	760	2	Q6DW64	Q6dw64 gallus gall
19	630	13.0	733	2	093391	093391 coturnix co
20	629.5	13.0	764	2	Q6DW63	Q6dw63 gallus gall
21	628	12.9	763	2	Q6DW62	Q6dw62 gallus gall
22	620.5	12.8	788	2	Q6DW65	Q6dw65 gallus gall
23	617	12.7	762	1	P115_CHICK	Q98917 gallus gall
24	612	12.6	783	2	Q6DW60	Q6dw60 gallus gall
25	609	12.6	759	2	Q6DW61	Q6dw61 gallus gall
26	593	12.2	661	1	PM17_HUMAN	P40967 homo sapien
27	436.5	9.0	491	1	PM17_BOVIN	Q06154 bos taurus
28	372	7.7	461	2	097884	Q97884 equus cabal
29	247.5	5.1	236	2	Q9QY67	Q9qy67 mus musculu
30	198.5	4.1	423	2	Q8N0W9	Q8n0w9 homo sapien
31	198.5	4.1	435	2	Q8N3G9	Q8n3g9 homo sapien
32	192	4.0	397	2	Q8N3R2	Q8n3r2 homo sapien
33	167	3.4	141	2	Q9QY70	Q9qy70 mus musculu
34	154.5	3.2	419	2	Q6NXM3	Q6nxm3 mus musculu
35	151	3.1	354	2	Q8IY46	Q8iy46 homo sapien
36	141.5	2.9	906	2	Q8TPY9	Q8tpy9 methanosarc
37	135	2.8	446	2	022458	022458 chlamydomon
38	134.5	2.8	1817	2	Q8TI59	Q8ti59 methanosarc
39	131	2.7	879	2	Q8PWJ6	Q8pwj6 methanosarc
40	129.5	2.7	1131	2	Q75DJ5	Q75dj5 ashbya goss
41	129	2.7	926	1	PTN4_HUMAN	P29074 homo sapien
42	128.5	2.6	688	2	Q8TR88	Q8tr88 methanosarc
43	127.5	2.6	3988	2	Q8TPZ1	Q8tpz1 methanosarc
44	126	2.6	603	2	Q7U5X8	Q7u5x8 synechococc
45	125.5	2.6	881	2	Q6H7U3	Q6h7u3 oryza sativ