import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 from sklearn.metrics import accuracy_score

In [4]: data = pd.read_csv('Diabetes.csv')
 data

Out[4]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	Diabetes Pedigree Fu
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••							
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 9 columns

In [5]: sns.heatmap(data.isnull())

Out[5]: <Axes: >

In [6]: correlation =data.corr()
print(correlation)

	Pregnanci	es G1	lucose	BloodPressure	SkinThickness	\	
Pregnancies	1.0000			0.141282	-0.081672	`	
Glucose	0.1294		00000	0.152590	0.057328		
BloodPressure	0.1412		52590	1.000000	0.207371		
SkinThickness	-0.0816	72 0.6	57328	0.207371	1.000000		
Insulin	-0.0735	35 0.3	31357	0.088933	0.436783		
BMI	0.0176	83 0.2	221071	0.281805	0.392573		
DiabetesPedigreeFunction	-0.0335	23 0.1	.37337	0.041265	0.183928		
Age	0.5443	41 0.2	263514	0.239528	-0.113970		
Outcome	0.2218	98 0.4	166581	0.065068	0.074752		
	Insulin	E	BMI Di	abetesPedigreeF	unction \		
Pregnancies	-0.073535	0.0176	83	-0	.033523		
Glucose	0.331357	0.2210	71	0	.137337		
BloodPressure	0.088933	0.2818	805	0	.041265		
SkinThickness	0.436783	0.3925	573	0	.183928		
Insulin	1.000000				.185071		
BMI	0.197859	1.0000	900	0.140647			
DiabetesPedigreeFunction		0.1406			.000000		
Age	-0.042163				.033561		
Outcome	0.130548	0.2926	595	0	.173844		
	Age	Outco					
Pregnancies	0.544341						
Glucose	0.263514	0.4665					
BloodPressure	0.239528	0.0656					
SkinThickness	-0.113970						
Insulin	-0.042163						
BMI	0.036242		_				
DiabetesPedigreeFunction							
Age	1.000000						
Outcome	0.238356	1.0000	טטט				

In [7]: sns.heatmap(correlation)

Out[7]: <Axes: >


```
In [8]: X =data.drop("Outcome",axis=1)
Y =data['Outcome']
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2)

In [9]: model=LogisticRegression()
model.fit(X_train,Y_train)

C:\Users\Gupta's\AppData\Roaming\Python\Python312\site-packages\sklearn\linear_model
\_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(
Out[9]:    LogisticRegression
```

In [10]: prediction = model.predict(X_test)

LogisticRegression()