CITS2211 Assignment 1

Baasil Siddiqui

Question 1

a)
$$P \vee (Q \vee \neg P)$$

P	\overline{Q}	$\neg P$	$Q \vee \neg P$	$P \lor (Q \lor \neg P)$
T	T	F	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

As the truth table demonstrates, the proposition is a tautology since it's always true regardless of the truth values of Q or P

b)
$$(P \land \neg P) \lor \neg Q$$

$$P \wedge \neg P = F$$
 (by contradiction)
 $\neg Q$ (By absorption)

the proposition depends on the truth value of Q hence it's a contingent

c)
$$Q \rightarrow (P \land \neg Q)$$

P	Q	$\neg Q$	$P \wedge \neg Q$	$Q \to (P \land \neg Q)$
T	_	F	F	F
T	F	T	T	T
F	T	F	F	F
F	F	T	F	T

As the truth table demonstrates, the truth value of the proposition depends on the truth values of P and Q. Hence, the proposition is a contingent.

Question 2

$$P \vee \neg (P \vee \neg Q) \equiv P \vee \neg Q$$

1. $P \lor \neg (P \lor \neg Q)$	Premise
2. $P \vee (\neg P \wedge Q)$	1, Demorgan's laws
3. $(P \lor \neg P) \land (P \lor Q)$	2, distributivity
4. $T \wedge (P \vee Q)$	3, excluded middle
5. P ∨ Q	4, absorption

Question 3

 $\forall x \; \exists n \; (x \leq n \leq x + 5 \; \land \; (\exists a \; \exists b \; (a \neq n) \; \land \; (a \neq 1) \; \land \; (b \neq n) \; \land \; (b \neq 1) \; \land \; (a \times b = n))$

Question 4

let N(x, y) be "x is a neighbour of y"

a) Anna has no neighbours

$$\neg(\exists x.N(x, a))$$

b) Ben has two neighbours

$$\exists \, x \, \exists \, y \, (N(x, \, b) \, \land \, N(y, \, b) \, \land \, x \neq y \, \land \, \forall \, z \, (N(z, \, b) \, \rightarrow (z = x \, \lor \, z = y)))$$

c) If somebody is a neighbour of Ben, Ben is also a neighbour of that person

$$\forall x (N(x, b) \rightarrow N(b, x))$$

d) Except for Anna, everyone is the neighbour of someone

$$\forall x (x \neq a \rightarrow \exists y (N(x, y)))$$

Question 5

a) $\frac{P}{P}$

 $P \equiv P$ by rule of identity hence, the inference rule is sound

b)
$$\frac{P}{P \leftrightarrow Q}$$

if Q if false, the axiom is true but the conclusion is false Hence, the inference rule is unsound

c)
$$\frac{P \leftrightarrow Q}{P}$$

if P and Q are false, the axiom is true but the conclusion is false Hence, the inference rule is unsound

$$\mathrm{d})\;\frac{P\;Q}{P\vee Q}$$

From the premise P we can infer P \vee Q by disjunction introduction rule Hence, the inference rule is sound

e)
$$\frac{P \to Q \; \neg \neg P}{Q}$$

1. ¬¬P	Premise
$2. P \rightarrow Q$	Premise
3. P	1, double negation
4. Q	3, 2, Demorgan's laws

Hence the rule is sound

Question 6

$$\forall x. (\neg \ Q(x) \ \lor \ P(x)) \ \lor \ \exists \ x(Q(x) \ \lor \ (P(x) \ \land \ R(x))) \ \to \ \exists x. R(x)$$

1. $\forall x (\neg Q(x) \land P(x))$	premise
2. $\exists x (Q(x) \lor (P(x) \land R(x)))$	premise
3. $Q(a) \lor (P(a) \land R(a))$	2, Exist elimination
$4. \ \neg Q(a) \land P(a)$	1, Forall elimination
5. $\neg Q(a)$	4, conjunction elimination
6. $\neg Q(a) \rightarrow (P(a) \land R(a))$	3, implication law
7. $P(a) \wedge R(a)$	5, 6, Modus ponens
8. R(a)	7, conjunction elimination
	, ,
$9. \ \exists x. R(x)$	8, Exists introduction

Question 7

Assuming the difference beetween a squidgy and a non-squidgy number multiplied by 2 produces a squidgy number

we have a non-squidgy number k and a squidgy number l, l can be represented as $\frac{p}{q}$ where p and q are integers

$$\left(\frac{p}{q} - k\right) * 2 = \frac{p\prime}{q\prime}$$

where p' and q' are integers (by the assumption that the result is a squidgy number)

$$k = \frac{2pq\prime - p\prime q}{2q\prime q}$$

By arithmetic

we know that the product of integers is an integer the difference of integers is an integer as well

hence, 2pq' - p'q is an integer and 2q'q is an integer as well

hence k can be represented in the form of $\frac{a}{b}$ where a and b are integers, which contradicts with our premise that k is a non-squidgy number.

Our assumption that the result is a squidgy number must be false.

Hence, the result of multiplying the difference between a squidgy and a non-squidgy number by 2 is a non-squidgy number

Q.E.D.

Question 7

Case 1: x is an odd integer Case 2: x is an even integer