Discrete Structures and Theory of Logic Lecture-17

Dharmendra Kumar July 23, 2020

Theorem: The intersection of any two subgroups of a group (G,o) is again a subgroup of (G,o).

Proof: Let (H_1,o) and (H_2,o) are the two subgroups of (G,o).

Let
$$a \in H_1 \cap H_2$$
 and $b \in H_1 \cap H_2$

$$\Rightarrow$$
 (a $\in H_1$ and a $\in H_2$) and (b $\in H_1$ and b $\in H_2$)

$$\Rightarrow$$
 (a $\in H_1$ and b $\in H_1$) and (a $\in H_2$ and b $\in H_2$)

$$\Rightarrow$$
 a $ob^{-1} \in \mathcal{H}_1$ and a $ob^{-1} \in \mathcal{H}_2$ (Since \mathcal{H}_1 and \mathcal{H}_2 are

subgroups.)

$$\Rightarrow$$
 aob⁻¹ $\in H_1 \cap H_2$

Therefore, $H_1 \cap H_2$ is also a subgroup.

Example: The union of two subgroups is not necessarily a subgroup.

Solution: Let G be the additive group of integers.

$$H_1 = \{ \ \dots, -6, -4, -2, 0, 2, 4, 6, \dots \}$$
 and $H_2 = \{ \ \dots, -9, -6, -3, 0, 3, 6, 9, \dots \}$

are both subgroups of G. But $H_1 \cup H_2$ is not subgroup.

Coset

Let H be subgroup of G and let $a \in G$. Then set $\{aoh \mid h \in H\}$ is called the left coset generated by a and H and is denoted by aH. And right coset is denoted by $aH = \{ba \mid h \in H\}$.

Index of a subgroup in a group

If H is a subgroup of a group G, then the number of distinct right(or left) cosets of H in G is called the index of H in G and it is denoted by [G:H].

Example: Let G be the additive group of integers i.e. $G = \{ \dots, 3,-2,-1,0,1,2,3,4,\dots \}$. Let $H = \{ \dots,-9,-6,-3,0,3,6,9,\dots \}$ be the subgroup of G. Determine the index of H in G.

Solution: The index of H in G = The number of left cosets of H in G.

Now, we calculate all distinct left cosets.

Clearly the number of distinct left cosets is 3. Therefore, the index of H in G = 3.

Normal subgroup

A subgroup H of G is said to be normal subgroup of G if Ha = aH, \forall a \in G.

Theorem: A subgroup H of G is normal iff $g^{-1}hg \in H$, $\forall h \in H$, $g \in G$.

Proof:

First part: Let H be a normal subgroup of G.

Let $h \in H$, $g \in G$. Since H is normal subgroup, therefore gH = Hg.

Now,
$$hg \in Hg \Rightarrow hg \in gH \text{ (since } gH = Hg)$$

 $\Rightarrow g^{-1}hg \in (g^{-1}g)H$
 $\Rightarrow g^{-1}hg \in eH$
 $\Rightarrow g^{-1}hg \in H$

Now, it is proved.

```
Second part: Suppose g^{-1}hg \in H, \forall h \in H, g \in G ......(1)

Now, we have to show that gH = Hg.

Let hg \in Hg. \Rightarrow (gg^{-1})hg \in Hg

\Rightarrow g(g^{-1}hg) \in Hg

\Rightarrow gh' \in Hg (using (1))

\Rightarrow gh' \in gH

\Rightarrow g(g^{-1}hg) \in gH

\Rightarrow hg \in gH

Therefore, Hg \subseteq gH ......(2)
```

Now, let
$$gh \in gH$$
. $\Rightarrow (g^{-1})^{-1}hg^{-1}g \in gH$
 $\Rightarrow h'g \in gH \text{ (using (1))}$
 $\Rightarrow h'g \in Hg$
 $\Rightarrow (g^{-1})^{-1}hg^{-1}g \in Hg$
 $\Rightarrow gh \in Hg$
Therefore, $gH \subseteq Hg$ (3)
From (2) and (3), $gH = Hg$, $\forall g \in G$.
Therefore, H is normal subgroup of G. Now, it is proved.

7

Example: If H is a subgroup of G such that $a^2 \in H$ for every $a \in G$, then prove that H is a normal subgroup of G.

Solution: Let $a \in G$. Then $a^2 \in H$. We know that if $a^{-1}ba \in H$, then H is normal subgroup, for $b \in H$. Here, $b = a^2$, therefore, $a^{-1}ba = a^{-1}a^2a = a^2 = b$ Since, $b \in H$, therefore $a^{-1}ba \in H$. Hence, H is a normal subgroup.

8