Fourier Analysis on Coset Spaces

Brian Forrest presented by Alan Kydd

April 2, 2004

1 Introduction

G a locally compact group, H a closed subgroup of G. We define and study natural analogs of the Fourier and Fourier-Stieltjes algebras for G/H, and show that when H is compact, A(G/H) can be used to study the nature of G/H in a manner similar to the group case.

2 Defining A(G/H) and B(G/H)

In this section, definitions for A(G/H) and B(G/H) are given, and it is shown that these definitions are useful analogs of the Fourier and Fourier-Stieljes algebras for groups.

Notation

Let H be a closed subgroup of G. $q: G \to G/H$ denotes the canonical quotient map. \tilde{x} denotes the left coset xH. We have an isomorphism between C(G/H) and $C(G:H) = \{f \in C(G): f(xh) = f(x) \ \forall x \in G, \ h \in H\}$ via the map $\tilde{f} \mapsto f$, where $f = \tilde{f} \circ q$. We denote the equivalence class of all continuous unitary representations of G by Σ_G . For $\pi \in \Sigma_G$, we let A_{π} denote the closed linear span of the coefficient functions of π , and we denote the weak-* closure of A_{π} by B_{π} . For ρ , the left regular representation of G on $L_2(G)$, A_{ρ} is usually denoted A(G).

Definition 1

$$B(G:H) = \{u \in B(G) : u(xh) = u(x) \ \forall \ x \in G, \ h \in H\},$$

$$A(G:H) = \{u \in B(G:H) : q(supp \ u) \ compact \ in \ G/H\}^{-\|\cdot\|_{B(G)}}.$$

Proposition 2 (i) B(G:H), A(G:H) are closed subalgebras of B(G). Moreover, A(G:H) is a closed ideal in B(G:H).

- (ii) B(G:H) is unital.
- (iii) $A(G:H) \cap A(G) \neq \{0\}$ iff H is compact.
- (iv) A(G:H) = B(G:H) iff G/H is compact.

It is known that A(G:H) is isometrically isomorphic to A(G/H) when H is compact and normal. The compactness of H is not necessary:

Proposition 3 Let H be a closed normal subgroup of G. Then B(G : H) and A(G : H) are isometrically isomorphic to B(G/H) and A(G/H) respectively.

It is shown below that for compact K, B(G : K) and A(G : K) are complemented subspaces of B(G), A(G) respectively.

Theorem 4 Let H be a closed subgroup of G. Then there exists a projection $P: B(G) \to B(G:H)$ with $||P|| \le 1$.

In general, P does not map A(G) onto A(G : H). However, for compact subgroup K, we have

$$P(f)(x) = P_K(f)(x) := \int_K f(xk)dk.$$

Thus we have the following corollary:

Corollary 5 Let K be a compact subgroup of G. Then P_K is a continuous projection of B(G) onto B(G : K). The restriction of P_K to A(G) is a projection of A(G) onto A(G : K).

The analog of the Fourier Algebra for the coset space G/H is usually considered to be the space A_{π_H} , where π_H is the quasi-regular representation of G determined by H. This definition has two major problems.

Problem I. A_{π_H} is in general not an algebra. For example, when K is a compact subgroup, A_{π_H} is an algebra iff $A_{\pi_H} = A_{\pi_{K_1}}$, where $K_1 = \bigcap_{x \in G} x K x^{-1}$. Since K_1 is normal, $A_{\pi_{K_1}} = A(G/K_1)$ (Arsac, 1976). From these results it follows that for K compact, $A(G:K) \neq A_{\pi_H}$ unless K is normal.

A little more can be said:

Proposition 6 Let K be a compact subgroup of G. Then $A(G : K) = A_{\pi}$ for some $\pi \in \Sigma_G$ iff K is normal.

Problem II. It is possible to have two distinct closed subgroups H_1 , H_2 , and yet $A_{\pi_{H_1}} = A_{\pi_{H_2}}$, even when these subgroups are compact (Arsac, 1976). However, we do not have this problem for the space A(G:K) for a compact subgroup K:

Proposition 7 Let K_1 , K_2 be compact subgroups of G. Then $A(G:K_1) = A(G:K_2)$ iff $K_1 = K_2$. If G is a [SIN]-group and H_1 , H_2 are closed subgroups of G with $H_1 \neq H_2$, then $A(G:H_1) \neq A(G:H_2)$.

Proof: We give here the proof for the first case only. Clearly, $K_1 = K_2$ implies that $A(G:K_1) = A(G:K_2)$. Assume that $x_0 \in K_1$ and $x_0 \notin K_2$. Then there is an open $\tilde{U} \subset G/K_2$ with $\tilde{e} \in \tilde{U}$ and $\tilde{x}_0 \notin \tilde{U}$. Let $U = q_{K_2}^{-1}(\tilde{U})$. U is an open neighbourhood of K_2 not containing x_0 . We can find $u \in A(G)$ such that u(x) = 1 for $x \in K_2$ and u(x) = 0 if $x \notin U$. Let $u_1 = P_{K_2}u$. $u_1(xk_2) = \int_{K_2} u(xk_2k) dk = \int_{K_2} u(xk) dk = u_1(x)$ for $x \in G$, $k_2 \in K_2$. That is, $u_1 \in A(G:K_2)$. $u_1(e) = 1$ while $u_1(x_0) = 0$, and so $u_1 \notin A(G:K_1)$.

Corollary 8 Let K_1 , K_2 be compact subgroups of G. Then $B(G : K_1) = B(G : K_2)$ iff $K_1 = K_2$. If G is a [SIN]-group, then $B(G : H_1) = B(G : H_2)$ for H_1 , H_2 closed subgroups of G, iff $H_1 = H_2$.

Proof: in either case, u_1 as constructed above is in $B(G:K_2)$ $[B(G:H_2)]$, but not in $B(G:K_1)$ $[B(G:H_1)]$.

In light of the above problems for A_{π_H} , A(G:H) and B(G:H) are more useful analogs for G/H of the Fourier and Fourier-Stieltjes algebras.

Definition 9 We define A(G/H), the Fourier algebra of the coset space G/H, to be the subalgebra of C(G/H) identified with A(G:H).

Definition 10 We define B(G/H), the Fourier-Stieltjes algebra of the coset space G/H, to be the subalgebra of C(G/H) identified with B(G:H).

When H is a compact subgroup, A(G/H) and B(G/H) have many of the same properties of A(G), B(G).

We have the definitions for the almost periodic and weakly almost periodic functions on a coset space (Skantharajah, 1985):

Definition 11 AP(G/H) is the set of all $f \in C(G/H)$ such that the set $\{xf : x \in G\}$ is relatively compact in the norm topology of C(G/H).

Definition 12 WAP(G/H) is the set of all $f \in C(G/H)$ such that the set $\{xf : x \in G\}$ is relatively compact in the weak topology of C(G/H).

Proposition 13 Let H be a closed subgroup of G. Then,

- (i) $B(G/H) \subseteq WAP(G/H)$, and $B(G/H) \cap AP(G/H)$ is the space identified with $B(G:H) \cap AP(G)$.
- (ii) $B(G/H) \cap AP(G/H)$ is a complemented subalgebra of B(G/H) with the Radon-Nikodym property.

Proof: (i) follows from Skantharajah (1985). (ii): $B(G/H) \cap AP(G/H)$ is an algebra. $B(G) \cap AP(G)$ has the RNP (Lahoue, 1973) and is complemented in B(G). $B(G) \cap AP(G)$ is of the form A_{π} where π is the left regular representation of the almost periodic compactification of G. For the projection, take $P = P_{\pi} \circ P_H$, where P_{π} is the projection determined by π .

Recall that A(G) is sup-norm dense in $C_0(G)$. For a compact subgroup K, A(G/K) is also sup-norm dense in $C_0(G/K)$. However, when H is not compact, there may exist $f \in C_0(G/H)$ such that $f \notin WAP(G/H)$ (Chou). Thus A(G/H) may not separate the points of G/H. The proof of Proposition 7 gives the following result.

Theorem 14 Let G be a [SIN]-group with a closed subgroup H. Then A(G/H) separates points in G/H.

This next proposition extends a result of Herz (1973).

Proposition 15 Let K be a compact subgroup of G. Let H be a closed subgroup of G such that $K \subseteq H$. Then every $\tilde{u} \in A(H/K)$ extends to a function $\tilde{u}_1 \in A(G/K)$ with $\|\tilde{u}\|_{A(H/K)} = \|\tilde{u}_1\|_{A(G/K)}$.

Proof: Let $u \in A(H : K)$ be the function identified with \tilde{u} . By Herz's result, u extends to some $v \in A(G)$ of equal norm. Let $u_1 = P_K(v)$. Since $||P_K|| \le 1$, \tilde{u}_1 is the desired extension.

We can extend a $u \in B(H)$ to some $v \in B(G)$ when G is a [SIN]-group or if H is normal (Cowling, Rodway, 1979). Modifying the argument above produces the following proposition:

Proposition 16 Let H be a closed subgroup of G. Assume that either G is a [SIN]-group or that H is normal. Let H_1 be another closed subgroup containing H. Then every $\tilde{u} \in B(H_1/H)$ extends to a $\tilde{u}_1 \in B(G/H)$ with the same norm.

3 Structure of A(G/K) for compact subgroup K

Notation and Definitions

Let \mathcal{A} be a semisimple commutative Banach algebra. $\Delta(\mathcal{A})$ denotes the maximal ideal space of \mathcal{A} . Given any closed set A of $\Delta(\mathcal{A})$, we define the following ideals:

```
I(A) = \{ u \in \mathcal{A} : u(x) = 0 \ \forall \ x \in A \}
```

 $j(A) = \{ u \in I(A) : \text{supp } u \text{ is compact} \}$

J(A) =the norm closure of j(A) in I(A).

A is said to be of spectral synthesis if I(A) = J(A). A is said to be of weak spectral synthesis if for each $u \in I(A)$, there exists a positive integer n such that $u^n \in J(A)$. We say that (weak) spectral synthesis fails if there exists a closed subset A of $\Delta(A)$ that is not a set of (weak) spectral synthesis.

Definition 17 A multiplier of \mathcal{A} is a linear operator T on \mathcal{A} for which T(uv) = uT(v). We denote the set of all such maps by $\mathcal{M}(A)$, a Banach space with the operator norm.

Definition 18 Let \mathcal{X} be a Banach \mathcal{A} -bimodule. A derivation of \mathcal{A} on \mathcal{X} is a linear map $D: \mathcal{A} \to \mathcal{X}$ such that D(uv) = uD(v) + D(u)v for every $u, v \in \mathcal{A}$.

It is known that $\Delta(A(G)) = G$. It is also know that when G is compact, and when K is any closed subgroup, that $\Delta(A(G/K)) = G/K$. It is shown below that we need not assume G is compact.

Theorem 19 A(G/K) is a regular commutative Banach algebra with $\Delta A(G/K) = G/K$.

Proof outline: Let $\tilde{x}_0 \in G/K$. $\delta_{\tilde{x}_0}(\tilde{u}) = \tilde{u}(\tilde{x}_0)$ is continuous multiplicative linear functional on A(G/K).

Suppose $\Phi \in \Delta(A(G/K))$. We can identify Φ with $\Phi \in A(G:K)^*$. A(G:K) is complemented in A(G) by Corollary 5. Thus there exists $\Gamma \in VN(G)$ with $P_K^*(\Phi) = \Gamma$ and $\Gamma|_{A(G:K)} = \Phi$. $\Phi \neq 0$, so $\Gamma \neq 0$. It can be shown that $\operatorname{supp}\Gamma = x_0K$ for some $x_0 \in G$. x_0K is a set of spectral synthesis for A(G) (Forrest, 1992), therefor Γ is the weak-* norm limit of $\Psi = \sum_{i=1}^n a_i L_{x_i}$, where $x_i \in x_0K$. But $L_{x_i}|_{A(G:H)} = \Phi = \delta_{\tilde{x}_0}$.

It can be shown that the map $\tilde{x}_0 \mapsto \delta_{\tilde{x}_0}$ is a homeomorphism of G/K onto $\Delta(A(G/K))$.

We now examine some structural properties of A(G/K).

Theorem 20 Let G be a locally compact group with compact subgroup K. The following are equivalent:

- (i) G is amenable
- (ii) G/K is an amenable coset space
- (iii) A(G/K) has a bounded approximate identity consisting of functions with compact support in G/K
- (iv) A(G/K) weakly factorizes

Corollary 21 Let G be an amenable locally compact group with a compact subgroup K. Then $\mathcal{M}(A(G/K)) = B(G/K)$ and the usual norms agree.

Forrest showed that for amenable G, every derivation from A(G) into a Banach A(G)-bimodule is continuous. He extends the result to coset spaces in Theorem 26 below.

Proposition 22 Let K be a compact subgroup of G. Let $\tilde{E} \subset G/K$ be a set for which (weak) spectral synthesis fails in A(G/K). Then (weak) spectral synthesis fails for $q^{-1}(\tilde{E})$ in A(G/K). In particular, if (weak) spectral synthesis fails for A(G/K), then (weak) spectral synthesis fails for A(G).

Proof: We give the proof for the case of spectral synthesis. Assume spectral synthesis fails in A(G/K) for $\tilde{E} \subset G/K$. Then there is $\tilde{v} \in I_{G/K}(\tilde{E})$ such that $\tilde{v} \notin J_{G/K}(\tilde{E})$. Let $v = \tilde{v} \circ q$. $v \in I_G(A)$ for $A = q^{-1}(\tilde{E})$. Suppose now that spectral synthesis holds in A(G) for A. Then $v \in J_G(A)$, and there is a net $\{v_n\} \subset j_G(A)$ such that $\|v - v_n\|_{A(G)} \to 0$ as $n \to \infty$. Then $\|P(v-v_n)\|_{A(G)} = \|v-P(v_n)\|_{A(G)} \to 0$. $P(v_n) = \tilde{v}_n \circ q$ for some $\tilde{v} \in A(G/K)$, and $\lim_n \|\tilde{v} - \tilde{v}_n\|_{A(G/K)} = \lim_n \|v - P(v_n)\|_{A(G)} = 0$. Also, supp $P(v_n) \subset (\sup v_n)K$. It follows that $\tilde{v}_n \subset q(\sup v_n)$, and that $\tilde{v}_n \in j_{G/K}(\tilde{E})$, a contradiction since $\tilde{v} \notin J_{G/K}(\tilde{E})$.

Corollary 23 Let G be a locally compact group with a compact subgroup K. Then each singleton $\{x\} \subset G/K$ is a set of spectral synthesis for A(G/K). Furthermore, if G is amenable, then every finite subset of G/K is a set of spectral synthesis.

Proof: The first statement follows from Lemma 22 and from the fact that K and every coset of K is a set of spectral synthesis for A(G). If G is amenable, Forrest (1990) showed that any set of the form $A = \bigcup_{k=1}^{n} x_k K$ is a set of spectral synthesis for A(G). Hence, every finite set in G/K is also a set of spectral synthesis.

Proposition 24 Let G be amenable with compact subgroup K. Let $\{x_1, \ldots, x_n\}$ be a finite subset of G/K. Then $I = I_{G/K}\{x_1, \ldots, x_n\}$ has a bounded approximate identity $\{u_{\alpha}\}$ in $A(G/K) \cap C_c(G/K)$.

Theorem 25 Let K be a compact subgroup of G. The following are equivalent:

- (i) G is amenable
- (ii) If I is a cofinite ideal of A(G/K), then $I = I(\{x_1, ..., x_n\})$ where n = codim(I)
- (iii) Every cofinite ideal in A(G/K) has a bounded approximate identity
- (iv) Each homomorphism of A(G/K) with finite dimensional range is continuous

Theorem 26 Let K be a compact subgroup of G. The following are equivalent:

- (i) G is amenable
- (ii) Every derivation from A(G/K) into a Banach A(G/K)-bimodule is continuous.

Proof: A(G/K) is a Silov algebra. Corollary 23 gives us that each closed primary ideal in A(G/K) has codimension 1. Proposition 24 gives us that each maximal ideal has a bounded approximate identity. By a result of Bade and Curtis (1994) we get that each derivation from A(G/K) into a Banach A(G/K)-bimodule is continuous.

On the other hand, if G is not amenable, A(G/K) does not weakly factorize by Theorem 20. $A(G/K)^2$ is not closed in A(G/K) since since it is dense in A(G/K). Let ϕ be some discontinuous linear functional on A(G/K) with $\phi(u) = 0$ for every $u \in A(G/K)^2$. Let X be a 1-dimensional space, and let $u \cdot x = x \cdot u = 0$ for every $u \in A(G/K)$. Then the derivation $D : A(G/K) \to X$ defined by $D(u) = \phi(u)(x)$ is also discontinuous (Bade, Curtis, 1994).

4 Weak amenability of A(G)

Definition 27 A commutative Banach algebra \mathcal{A} is weakly amenable if every continuous derivation from \mathcal{A} into a commutative Banach \mathcal{A} -bimodule is identically zero.

A(G) is weakly amenable if G is discrete (Forrest, 1988). If G is the rotation group on \mathbb{R}^3 , then A(G) is not weakly amenable (Johnson, 1994). When this paper was published, very little was known about the class of groups G for which A(G) is amenable. It is here shown that this class contains all totally disconnected groups.

Theorem 28 Let H be an open subgroup of G. Then A(G/H) is weakly amenable.

Proof: Let $D: A(G/H) \to \mathcal{X}$ be a continuous derivation into a commutative Banach A(G/H)-bimodule. Let \tilde{u} be an idempotent in A(G/H). Then $D(\tilde{u}) = D(\tilde{u}^n) = nD(\tilde{u})$ for $n \geq 2$. Thus $D(\tilde{u}) = 0$. H is open, so the linear span of the idempotents is dense in A(G/H). Hence D is identically zero.

Lemma 29 Let G be totally disconnected. Let $u \in A(G)$ and $\epsilon > 0$. Then there exists an open compact subgroup K and a $v \in A(G:K)$ such that $||u-v||_{A(G)} < \epsilon$.

Proof: The map $x \mapsto_x u$, from G into A(G) is continuous. Therefore there exists an open neighbourhood V of e such that $x \in V$ implies $\|u -_x u\|_{A(G)} < \epsilon$. Let K be an open compact subgroup contained in V. Let $v = P_K(u) = \int_{K} u \, dk$. Then

$$||u-v||_{A(G)} = \left\| \int_K (u-ku) \ dk \right\|_{A(G)} \le \int_K ||u-ku||_{A(G)} \ dk \le \epsilon.$$

Theorem 30 Let G be disconnected. Then A(G) is weakly amenable.

Proof: Let $D:A(G)\to\mathcal{X}$ be a continuous derivation into a commutative Banach A(G)-bimodule. Let K be a compact open subgroup of G. The restriction of D to A(G:K) determines a derivation of A(G/K). By Theorem 28, D is zero on each A(G:K). By Lemma 29 each $u\in A(G)$ can be approximated within ϵ by some $v\in A(G:K)$ for some open compact subgroup K. Thus D=0.

This shows that for locally compact totally disconnected group G, the span of the idempotents in A(G) is dense. Claim: this characterizes totally disconnected groups. Indeed: the idempotents in A(G) are characteristic functions of open compact subsets in the coset ring of G. Let \mathcal{K} be the intersection of such open compact subgroups. If G is not totally disconnected, $\mathcal{K} \neq \{e\}$. At the same time, the idempotents in A(G) are constant of \mathcal{K} , and if follows that their span cannot be dense in A(G).

Proposition 31 Let G_1 , G_2 be such that $A(G_i)$ is weakly amenable for i = 1, 2. Then $A(G_1 \times G_2)$ is also weakly amenable.

Proof: The projective tensor product $A(G_1) \otimes A(G_2)$ is weakly amenable. The map $u \otimes v \to w$, where $w(g_1, g_2) = u(g_1)v(g_2)$ extends to a continuous homomorphism from $A(G_1) \otimes A(G_2)$ onto a dense subalgebra of $A(G_1 \times G_2)$. It follows that $A(G_1 \times G_2)$ is also weakly amenable.

Corollary 32 Let $G = G_1 \times G_2$ where G_1 is Abelian and G_2 is totally disconnected. Then A(G) is weakly amenable.

Proof: G_1 Abelian implies $A(G_1)$ is amenable, thus weakly amenable. Apply Theorem 30 and Proposition 31.