

Functional Analysis Solutions

作者: 正寅

教材: 泛函分析讲义 (许全华, 马涛, 尹智著 第一版)

目录

第1章	拓扑空间简介	4
第2章	完备度量空间	11
第 3 章	赋范空间和连续线性映射	23
第4章	Hilbert 空间	47
第6章	Baire 定理及其应用	69

拓扑空间简介

定理 1.3.2 的证明

证明: (\Rightarrow)(反证法) 假设 $\bigcap_{i \in I} F_i = \emptyset$, 则

$$\left(\bigcap_{i\in I} F_i\right)^c = \bigcup_{i\in I} F_i^c = E,$$

也即 E 存在开覆盖 $(F_i^c)_{i \in I}$, 由 E 为紧集可知存在有限集 $J \subset I$ 使得

$$E = \bigcup_{i \in J} F_i^c.$$

故 $\bigcap_{i \in I} F_i = \emptyset$, 这与闭集族 $(F_i)_{i \in I}$ 的有限交性质相矛盾, 所以假设不成立.

定理 1 (距离越小, 拓扑越小) 设 (E,d_1) 和 (E,d_2) 都是度量空间,且 d_1 诱导的拓扑为 τ_1 , d_2 诱导的拓扑为 τ_2 ,若 $d_1 \leq d_2$,则 $\tau_1 \subset \tau_2$;若存在正常数 C_1,C_2 使得 $C_1d_2(x,y) \leq d_1(x,y) \leq C_2d_2(x,y)$, $\forall x,y \in E$,则 $\tau_1 = \tau_2$.换言之,若两个度量等价,则其诱导出的拓扑是相同的.

证明: 事实上只需要证明后半部分, 因为前半部分是后半部分的推论.

$$U \in \tau_1 \Leftrightarrow \forall x \in U, \exists r > 0, \$$
使得 $\{y \in E \mid d_1(x,y) < r\} \subset U$
 $\Leftrightarrow \forall x \in U, \exists r > 0, \$ 使得 $\{y \in E \mid \frac{1}{C_2}d_1(x,y) < \frac{r}{C_2}\} \subset U$
 $\Rightarrow \forall x \in U, \exists r > 0, \$ 使得 $\{y \in E \mid d_2(x,y) < \frac{r}{C_2}\} \subset U$
 $\Leftrightarrow U \in \tau_2.$

所以 $\tau_1 \subset \tau_2$, 同理可证明 $\tau_2 \subset \tau_1$, 故 $\tau_1 = \tau_2$. 在这里, 我们要建立起一个清醒的认识, 那就是度量越大, 其所对应的相同半径的开球越小.

求证: 设 d 是 E 上的度量, 则 d, $\min\{1,d\}$, rd(r>0) 都诱导出 E 上相同的拓扑.

证明: 记三者诱导的拓扑分别为 τ_1, τ_2, τ_3 , 要证明 $\tau_1 = \tau_2 = \tau_3$, 由上述性质知 $\tau_1 = \tau_3$ 显 然成立, 故只需要证明 $\tau_1 = \tau_2$. 由 $d \ge \min\{1, d\}$ 知 $\tau_2 \subset \tau_1$. 又因为

$$U \in \tau_1 \Leftrightarrow \forall x \in U, \exists r \in (0,1), \$$
使得 $\{y \in E \mid d(x,y) < r\} \subset U$
 $\Rightarrow \forall x \in U, \exists r \in (0,1), \$ 使得 $\{y \in E \mid \min\{1, d(x,y)\} < r\} \subset U$
 $\Rightarrow U \in \tau_2,$

所以 $\tau_1 \subset \tau_2$, 从而 $\tau_1 = \tau_2$. 显然 $d = \min\{1, d\}$ 不是等价的度量,由此可见不等价的度量也可以诱导出相同的拓扑.

1. 证明定理 1.1.22.

证明: (1) 显然.

(2) 要证 $E \setminus \mathring{A} = \overline{E \setminus A}$, 即证 $\mathring{A} = E \setminus (\overline{E \setminus A})$, 而

$$x \in E \setminus (\overline{E \setminus A}) \Leftrightarrow \exists U \in \mathcal{N}(x), s.t.U \cap (E \setminus A) = \emptyset$$

 $\Leftrightarrow \exists U \in \mathcal{N}(x), s.t.U \subset A$
 $\Leftrightarrow x \in \mathring{A}.$

故结论得证.

- (3) 因为 $A \subset A \cup B$, 所以 $\overline{A} \subset \overline{A \cup B}$, 同理 $\overline{B} \subset \overline{A \cup B}$, 故 $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$, 又 $\overline{A} \cup \overline{B} \supset A \cup B \Rightarrow \overline{(\overline{A} \cup \overline{B})} = \overline{A} \cup \overline{B} \supset \overline{A \cup B}$, 结合双向包含关系可得 $\overline{A \cup B} = \overline{A} \cup \overline{B}$, 同理可证 $\widehat{A \cap B} = \mathring{A} \cap \mathring{B}$.
- **2.** (a) 设 (E,d) 是一个度量空间, $F \subset E$. 证明 d 在 F 上诱导的拓扑和 d 在 E 上诱导的拓扑空间在 F 上的限制一致.
- (b) 设 E 是一个拓扑空间, F 是 E 的拓扑子空间, $A \subset F$. 用实例说明 A 是 F 中闭集但 是在 E 中不一定是闭集, 以及 A 在 F 中是开集但在 E 中不一定是开集.
- 证明: (a) 记 d 在 F 上诱导的拓扑为 τ , 在 E 上诱导的拓扑为 τ' , 则我们需要证明 $\tau'|_F = \tau$.

$$U \in \tau'|_F \Leftrightarrow \exists V \in \tau', s.t.U = V \cap F$$

 $\Leftrightarrow \forall x \in U, \exists r > 0, s.t.B(x, r) \subset V \coprod U = V \cap F$
 $\Leftrightarrow \forall x \in U, \exists r > 0, s.t.B(x, r) \cap F \subset U$
 $\Leftrightarrow U \in \tau$

故 $\tau'|_F = \tau$.

- (b) 取 E 为二维欧式空间, F 为一维欧氏空间, 则 F 中的开集和闭集在 E 中分别不再是开集和闭集.
- **3.** 设 $E \in \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ 和另外两个不同的点构成的并集, 如 $E = \mathbb{R}^* \cup \{-\infty, +\infty\}$. 并设 $\tau \in E$ 中满足如下条件的子集 U 构成的集族:
 - (i) 在 \mathbb{R}^* 的拓扑下, $U \cap \mathbb{R}^*$ 在 \mathbb{R}^* 中是开的.
 - (ii) 若 $-\infty \in U$ 或 $+\infty \in U$, 则 U 包含一个形如 $\mathbb{R}^* \cap V$ 的集合, 其中 V 是 \mathbb{R} 中零点的一个邻域.

证明:

- (a) τ 是 E 上的拓扑.
- (b) τ 不是 Hausdorff 空间.
- (c) 任一点 $x \in E$ 的所有邻域的交集为 $\{x\}$.

证明: (a)

- 显然 ∅, E ∈ τ
- 任意并性质: 设 $(U_i)_{i\in I} \subset \tau$, 需要证明 $\bigcup_{i\in I} U_i \in \tau$. 首先验证其满足条件 (i): 对于每个 $i\in I$, 因为 $U_i\cap\mathbb{R}^*$ 在 \mathbb{R}^* 中是开的, 所以存在 \mathbb{R} 中的开集 U_i^* 使得 $U_i\cap\mathbb{R}^* = U_i^*\cap\mathbb{R}^*$, 故

$$\left(\bigcup_{i\in I} U_i\right) \cap \mathbb{R}^* = \bigcup_{i\in I} (U_i \cap \mathbb{R}^*) = \left(\bigcup_{i\in I} U_i^*\right) \cap \mathbb{R}^* \text{ $\vec{\mathbf{x}}$ \mathbb{R}^* $\vec{\mathbf{p}}$} \in \mathbb{H}.$$

再验证其满足条件 (ii): 不妨设 $-\infty \in \bigcup_{i \in I} U_i$, 则存在某个 $i_0 \in I$, $s.t. -\infty \in U_{i_0}$, 则 U_{i_0} 包含一个形如 $\mathbb{R}^* \cap V$ 的集合,V 是 \mathbb{R} 中零点的一个邻域, 从而 $\bigcup_{i \in I} U_i$ 必然包含此 $\mathbb{R}^* \cap V$.

- 有限交性质: 验证方法与上面方法类似.
- (b) 考虑 +∞ 和 -∞ 这两个特殊的点, 由条件 (ii) 可知 +∞ 与 -∞ 不存在不相交的开 邻域, 故 τ 不是 Hausdorff 空间.
- (c) 若 $x \in \mathbb{R}^*$, 则由于 \mathbb{R}^* 是 Housdorff 空间, 故 x 的所有邻域的交集为 $\{x\}$; 若 $x \in E \setminus \mathbb{R}^*$, 如 $x = -\infty$, 取 $-\infty$ 的一列邻域 $\left(-\infty \cap \left(\left(-\frac{1}{n}, \frac{1}{n}\right) \cap \mathbb{R}^*\right)\right)_{n > 1}$. 显然

$$\bigcap_{n=1}^{\infty} \left(-\infty \cap ((-\frac{1}{n}, \frac{1}{n}) \cap \mathbb{R}^*) \right) = -\infty.$$

因此 $-\infty$ 的所有邻域的交集必为单点集 $\{-\infty\}$.

4. 证明: 紧空间中的任一序列均有凝聚点.

证明: 设 E 是紧空间, $(x_n)_{n\geq 1}\subset E$ 为任一序列.

当 $(x_n)_{n\geq 1}$ 为有限集时, $(x_n)_{n\geq 1}$ 从某一项开始必为常值,此常值即为 $(x_n)_{n\geq 1}$ 的凝聚点. 当 $(x_n)_{n\geq 1}$ 为无限集时,假设 $(x_n)_{n\geq 1}$ 没有凝聚点,则对任意 $x\in E$,存在 $V_x\in \mathcal{N}(x)$ 使得

$$V_x \cap (x_n)_{n>1} \setminus \{x\} = \varnothing.$$

因为 E 为紧空间, 所以 E 的开覆盖 $\bigcup_{x \in E} V_x$ 存在有限子覆盖 $\bigcup_{i=1}^n V_{x_i} = E$. 然而 $\bigcup_{i=1}^n V_{x_i}$ 至多包含 $(x_n)_{n>1}$ 中的有限个点, 这与 $(x_n)_{n>1}$ 为无限集相矛盾.

5. 证明: 有限维的赋范空间是局部紧的.

证明: 设 E 为有限维赋范空间, 教材注 3.1.12 (2) 表明在有限维空间中有界闭集为紧集. 任取 $x \in E$, $\overline{B(x,1)}$ 即为 x 的紧邻域, 故有限维的赋范空间是局部紧的.

- **6.** 设 (E,τ) 是一个局部紧的但不是紧的 Hausdorff 空间. 我们在 E 上增加一个点, 记作 ∞ , 然后定义 $\hat{E} = E \cup \{\infty\}$. 在 \hat{E} 上定义集族 $\hat{\tau}$, $U \in \hat{\tau}$ 当且仅当 $U \in \tau$ 或者存在 E 中的紧集 K, 使得 $U = \hat{E} \setminus K$. 证明:
 - (a) $\hat{\tau}$ 是 \hat{E} 上的拓扑.
 - (b) $\hat{\tau}$ 在 E 上的限制等于 τ , 即 (E,τ) 是 $(\hat{E},\hat{\tau})$ 的拓扑子空间.
 - (c) $(\hat{E}, \hat{\tau})$ 是一个紧 Hausdorff 空间.
 - (d) $E \propto \hat{E} + \pi$ 中稠密.

注 拓扑空间 $(\hat{E}, \hat{\tau})$ 通常被称为 (E, τ) 的 Alexandorff 紧化空间 (Alexandorff compactification or one-point compactification).

证明: (a) 显然 \emptyset , $\widehat{E} \in \widehat{\tau}$.

下面验证任意并性质: 设 $(U_i)_{i\in I}\subset\widehat{\tau}$, 要证明 $\bigcup_{i\in I}U_i\in\widehat{\tau}$, 分三种情况讨论:

(1) 当 $(U_i)_{i\in I} \subset \tau$ 时, $\bigcup_{i\in I} U_i \in \tau \Rightarrow \bigcup_{i\in I} U_i \in \hat{\tau}$. (2) 当对任意 $i\in I$, $U_i = \hat{E}\setminus K_i$ 时, 其中 K_i 为 E 中紧集. 注意到 $\bigcap_{i\in I} K_i$ 仍为 E 中紧集且.

$$\bigcup_{i\in I} U_i = \bigcup_{i\in I} \widehat{E} \setminus K_i = \widehat{E} \setminus \left(\bigcap_{i\in I} K_i\right),\,$$

因此 $\bigcup_{i \in I} U_i \in \tau$. (3) 存在非空真子集 $J \subset I$ 使得当 $i \in J$ 时, $U_i = \hat{E} \setminus K_i$, K_i 为 E 中紧集; 当 $i \in I \setminus J$ 时, $U_i \in \tau$, 则

$$\bigcup_{i \in I} U_i = \left(\bigcup_{i \in J} \widehat{E} \setminus K_i \right) \bigcup \left(\bigcup_{i \in I \setminus J} U_i \right) = \left(\widehat{E} \setminus \bigcap_{i \in J} K_i \right) \bigcup \left(\widehat{E} \setminus \bigcap_{i \in I \setminus J} U_i^c \right) \\
= \widehat{E} \setminus \left(\left(\bigcap_{i \in J} K_i \right) \bigcap \left(\bigcap_{i \in I \setminus J} U_i^c \right) \right).$$

而 $(\bigcap_{i \in J} K_i) \cap (\bigcap_{i \in I \setminus J} U_i^c)$ 是 E 中紧集, 故 $\bigcup_{i \in I} U_i \in \widehat{\tau}$.

再验证有限交性质: 只需要考虑两个开集 $V_1, V_2 \in \hat{r}$ 即可. 分三种情形:

- (1) 若 $V_1, V_2 \in \tau$, 则 $V_1 \cap V_2 \in \tau \Rightarrow V_1 \cap V_2 \in \hat{\tau}$. (2) 若 $V_1 = \hat{E} \setminus K_1$, $V_2 = \hat{E} \setminus K_2$, 其中 K_1 和 K_2 是 E 中的紧集,则 $V_1 \cap V_2 = (\hat{E} \setminus K_1) \cap (\hat{E} \setminus K_1) = \hat{E} \setminus (K_1 \cup K_2)$. 由于 $K_1 \cup K_2$ 为 E 中紧集,故 $V_1 \cap V_2 \in \hat{\tau}$. (3) 若 $V_1 \in \tau$ 且 $V_2 = \hat{E} \setminus K_2$, 其中 K_2 是 E 中紧集,则 $V_1 \cap V_2 = V_1 \cap (\hat{E} \setminus K_2) = V_1 \cap (E \setminus K_2) \in \tau$. 由此可知有限交性质成立.
 - (b) 往证 $\hat{\tau}|_E = \tau$.

对于任意 $U \in \tau$, 有 $U \in \widehat{\tau}$, 故 $U = U \cap E \in \widehat{\tau}|_E$, 从而 $\tau \subset \widehat{\tau}|_E$.

对于任意 $U \in \widehat{\tau}|_{E}$, 存在 $\widehat{U} \in \widehat{\tau}$ 使得 $U = \widehat{\tau} \cap E$. 当 $\widehat{U} \in \tau$ 时, $U = \widehat{U} \cap E = \widehat{U} \in \tau$; 当 $\widehat{U} = \widehat{E} \setminus K$ 时, $U = (\widehat{E} \setminus K) \cap E = E \setminus K \in \tau$, 从而 $\widehat{\tau}|_{E} \subset \tau$.

因此 $\hat{\tau}|_E = \tau$.

(c) 首先证明 $(\hat{E}, \hat{\tau})$ 是紧空间. 设 $\{U_i \mid i \in I\}$ 为 \hat{E} 的开覆盖, 则存在 $i_0 \in I$ 使得 $\infty \in U_{i_0}$ 且 $U_{i_0} = \hat{E} \setminus K_{i_0}$, 其中 K_{i_0} 为 E 中紧集. 由于 $\{U_i \cap E \mid i \in I, i \neq i_0\}$ 为 K_{i_0} 的开覆盖, 故存在 K_{i_0} 的有限子覆盖 $\{U_i \cap E\}_{i=1}^n$, 那么 $\{U_{i_0}, U_1, \dots, U_n\}$ 即为 \hat{E} 的有限子覆盖.

然后证明 $(\widehat{E},\widehat{\tau})$ 为 Hausdorff 空间. 事实上, 只需要证明 $\forall x \in E$ 与 ∞ 存在不相交的开邻域即可. 由于 E 局部紧, 所以存在开集 V 使得 $x \in V \subset E$ 且 \overline{V} 为紧集. 因此, 取 x 的开邻域 V 和 ∞ 的开邻域 $\widehat{E} \setminus \overline{V}$ 即可.

7. 设 E 是一个局部紧的 Hausdorff 空间, 则 E 中每一点都有一个紧邻域基.

证明: 对于 E 中任意一点 x, 由 E 局部紧可知 x 点处存在紧邻域 W. 对于点 x 的任意 开邻域 G, 我们的目标是寻找紧集 \overline{V} 使得 $x \in \overline{V} \subset G$.

若 W ⊂ G, 取 $\overline{V} = W$ 即可;

若 $W \not\subset G$, 记 $A=W\cap G^c$, 显然 A 是非空紧集. $\forall y\in A$, 由 Hausdorff 条件可知 y 与 x 存在不相交的开邻域 U_y 和 W_y 使得 $W_y\subset W$. 因为 A 为紧集, 所以存在 $y_1,y_2,\cdots,y_k\in A$, 使得 $A\subset\bigcup_{i=1}^k U_{y_i}$, 令

$$U = \bigcup_{i=1}^k U_{y_i}, \quad V = \bigcap_{i=1}^k W_{y_i},$$

则 U 和 V 都是开集并且 $U \cap V = \emptyset$, 这意味着 $\overline{V} \cap U = \emptyset$, 从而有

$$\overline{V}\cap G^c=\overline{V}\cap (W\cap G^c)=\overline{V}\cap A\subset \overline{V}\cap U=\varnothing,$$

故 $\overline{V} \subset G$, 此时的 \overline{V} 就是我们要寻找的紧集.

8. 证明注 1.4.2 中的命题 (1), (3) 和 (4).

命题 (1) 证明: 记所有基础开集的并集构成的集合为 τ , 下面证明 τ 是 E上的拓扑.

(i) 显然 \varnothing , $E \in \tau$

(ii) 任意并性质: 设 $(V_{\alpha})_{\alpha \in \Lambda} \subset \tau$, 则每个 V_{α} 可以表为:

$$V_{\alpha} = \bigcup_{\beta \in \Lambda_{\alpha}} O_{\beta} = \bigcup_{\beta \in \Lambda_{\alpha}} \left(\prod_{i \in J_{\beta}} U_i \times \prod_{i \in I \setminus J_{\beta}} E_i \right) (J_{\beta} \ \ \hat{q} \ \mathbb{R})$$

故

$$\bigcup_{\alpha \in \Lambda} V_{\alpha} = \bigcup_{\alpha \in \Lambda} \bigcup_{\beta \in \Lambda_{\alpha}} \left(\prod_{i \in J_{\beta}} U_{i} \times \prod_{i \in I \setminus J_{\beta}} E_{i} \right)$$

上式仍为基础开集的并, 故 $\bigcup_{\alpha \in \Lambda} V_{\alpha} \in \tau$

(iii) 有限交性质: 设 $(V_{\alpha})_{\alpha \in \Lambda} \subset \tau$, 其中 $\Lambda = \{\alpha_1, \cdots, \alpha_n\}$ 为有限指标集, 则

$$V_{\alpha} = \bigcup_{\beta \in \Lambda_{\alpha}} O_{\beta}$$

故

$$\bigcap_{\alpha \in \Lambda} V_{\alpha} = \bigcap_{\alpha \in \Lambda} \bigcup_{\beta \in \Lambda_{\alpha}} O_{\beta}$$

$$= \left(\bigcup_{\beta_{1} \in \Lambda_{\alpha_{1}}} O_{\beta_{1}}\right) \bigcap \left(\bigcup_{\beta_{2} \in \Lambda_{\alpha_{2}}} O_{\beta_{2}}\right) \bigcap \cdots \bigcap \left(\bigcup_{\beta_{n} \in \Lambda_{\alpha_{n}}} O_{\beta_{n}}\right)$$

$$= \bigcup_{\beta_{1} \in \Lambda_{\alpha_{1}}} \bigcup_{\beta_{2} \in \Lambda_{\alpha_{2}}} \cdots \bigcup_{\beta_{n} \in \Lambda_{\alpha_{n}}} \left(O_{\beta_{1}} \bigcap O_{\beta_{2}} \bigcap \cdots \bigcap O_{\beta_{n}}\right)$$

注意到有限个基础开集的交仍为基础开集,故上式为基础开集的并,因此 $\bigcap_{\alpha \in \Lambda} V_{\alpha} \in \tau$.

命题 (3) 证明: 记 \mathbb{R}^n 上的自然拓扑为 τ_1 , $\mathbb{R} \times \cdots \times \mathbb{R}$ 上的乘积拓扑为 τ_2 , 为叙述方便, 记 $E := \mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$.

首先证明 $\tau_1 \subset \tau_2$. 只需证明 (E, τ_1) 中的任意开球为 (E, τ_2) 中的开集即可. 任取 $x \in E$ 和开球 B(x,r), 选取 (E, τ_2) 中含 x 的开集 $O = \prod_{i=1}^n B_i(x_i, \frac{r}{\sqrt{n}})$, 则对于任意 $y \in O$, 有 $(x_i - y_i)^2 < \frac{r^2}{n}$, 从而

$$\left(\sum_{i=1}^{n} (x_i - y_i)^2 < r\right)^{1/2} \Rightarrow y \in B(x, r),$$

故 $O \subset B(x,r)$, 因此 $\tau_1 \subset \tau_2$.

然后证明 $\tau_2 \subset \tau_1$. 只需证明 (E, τ_2) 中任意基础开集为 (E, τ_1) 中的开集即可. 任取 $x \in E$ 和 (E, τ_2) 中的基础开集 $O = \prod_{i=1}^n B_i(x_i, r_i)$. 令 $r = \min\{r_1, \dots, r_n\}$, 取 (E, τ_1) 中的开球

B(x,r), 则对于任意 $y \in B(x,r)$, 有 $\sum_{i=1}^{n} (x_i - y_i)^2 < r^2$, 从而对任意 $1 \le i \le n$ 有

$$(x_i - y_i)^2 \le \sum_{i=1}^n (x_i - y_i)^2 < r^2 \le r_i^2,$$

所以 $y_i \in B_i(x_i, r_i) \Rightarrow y \in O$, 故 $B(x, r) \subset O$, 因此 $\tau_2 \subset \tau_1$.

命题 (4) 证明: 因为

$$\left(\prod_{i\in I} F_i\right)^c = \bigcup_{i_0\in I} \left(F_{i_0}^c \times \bigcup_{i\in I\setminus\{i_0\}} E_i\right)$$
 为开集,

所以 $\prod_{i \in I} F_i$ 为 E 中闭集.

9. 把定理 1.4.9 中的距离换成下面的距离

$$\delta(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x_n, y_n).$$

证明由 δ 诱导的拓扑也与乘积拓扑相同.

- 10. 证明一列紧度量空间的乘积空间(赋予乘积拓扑)是紧的可度量化空间.
- **11.** 设 $E = \{x = (x_n)_{n=1}^{\infty} \mid \forall n \geq 1, x_n = 0 \ \text{或} \ 1\} = \{0, 1\}^{\mathbb{N}^*}.$ 对每个 $x = (x_n)_{n \geq 1} \in E$, 令

$$\phi(x) = \sum_{n=1}^{\infty} \frac{2x_n}{3^n}.$$

在 $\{0,1\}$ 上赋予离散拓扑 (这实际上对应着自然的距离 d(0,1)=1), 则在 E 上有相应的乘积 拓扑. 证明 ϕ 是 E 到 $\mathbb R$ 的紧子集 $C=\phi(E)$ 上的同胚.

完备度量空间

推论 (推论 2.5.7) 若度量空间 (E,d) 完备, 则 $A \subset E$ 是相对紧的当且仅当 A 是预紧的. 证明: (\Rightarrow) 设 $A \subset E$ 相对紧, 则 \overline{A} 是 \overline{E} 中紧集, 故 \overline{A} 预紧, 从而 \overline{E} 也是预紧的.

(\Leftarrow) 设 A 是预紧的,则对任意 $\epsilon > 0$,A 存在有限的 $\frac{\epsilon}{2}$ -网 $\{x_i\}_{i=1}^n$,故 $A \subset \bigcup_{i=1}^n B(x_i, \frac{\epsilon}{2})$. 注意到有限个闭集的并仍为闭集,故

$$\overline{A} \subset \bigcup_{i=1}^{n} \overline{B\left(x_i, \frac{\epsilon}{2}\right)} \subset \bigcup_{i=1}^{n} B(x_i, \epsilon).$$

所以 $\{x_i\}_{i=1}^n$ 为 A 的有限 ϵ -网, 从而 \overline{A} 预紧 (从上述证明过程中可以看出 A 预紧 \iff \overline{A} 预 紧). 由于完备度量空间的闭子集完备,故 \overline{A} 完备,结合 \overline{A} 完备和预紧即知 \overline{A} 为紧集,从而 A 相对紧.

- 1. 完备性不是一个拓扑概念, 我们用两个例子说明这一点.
- (a) 设有函数 $\phi(x) = \frac{x}{1+|x|}, x \in \mathbb{R}$, 并定义

$$d(x,y) = |\phi(x) - \phi(y)|, \quad x, y \in \mathbb{R}.$$

证明由此定义的 d 是 \mathbb{R} 上的距离并和 \mathbb{R} 上通常意义下的拓扑一致, 但 d 不完备.

(b) 更一般地, 设 O 是完备度量空间 (E,d) 上的开子集, 且 $O \neq E$. 映射 $\phi: O \to E \times \mathbb{R}$ 定义为

$$\phi(x) = \left(x, \frac{1}{d(x, O^c)}\right) := (x, \rho(x)), \quad \forall x \in O.$$

证明 ϕ 是从 O 到 $E \times \mathbb{R}$ 的一个闭子集上的同胚. 并由此导出 O 上存在一个完备的距离, 由其所诱导的拓扑和 d 在 O 上所诱导的拓扑一致 (注意, (O, d_O) 一般并不完备).

证明: (a) 易知 $\phi(x)$ 是严格单调递增函数且 $-1 < \phi(x) < 1, |\phi'(x)| \le 1$

• $d(x,y) \ge 0$ 且 d(x,y) = 0 当且仅当 x = y

- $d(x,y) = |\phi(x) \phi(y)| = |\phi(y) \phi(x)| = d(y,x)$
- $d(x,y) = |\phi(x) \phi(y)| \le |\phi(x) \phi(z)| + |\phi(y) \phi(z)| = d(x,z) + d(y,z)$

因此, d 是一个距离.

下证两拓扑一致 (距离越小, 拓扑越小, 下面第一个包含关系的推导是自然的), 记 τ 为自然拓扑, τ_d 为由 d 诱导的拓扑. 一方面,

$$U \in \tau_d \Leftrightarrow \forall x \in U, \exists r > 0, s.t. \{ y \mid |\phi(x) - \phi(y)| < r \} \subset U$$
$$\Rightarrow \forall x \in U, \exists r > 0, s.t. \{ y \mid |x - y| < r \} \subset U$$
$$\Rightarrow U \in \tau.$$

另一方面,

$$\begin{split} U &\in \tau \Leftrightarrow \forall x \in U, \exists r > 0, s.t. \{ y \mid |y - x| < r \} \subset U \\ &\Rightarrow \forall x \in U, 取 \ s = \min \{ \phi(x) - \phi(x - r), \phi(x + r) - \phi(x) \}, 则 \ \{ y \mid |\phi(y) - \phi(x)| < s \} \subset U \\ &\Rightarrow U \in \tau_d. \end{split}$$

综合两个方向知 $\tau = \tau_d$.

最后证明 d 不完备. 取集列 $\{A_n\}_{n=1}^{\infty}(A_n = [n, +\infty))$, 则

diam
$$A_n = \sup_{x,y \in A_n} |\phi(x) - \phi(y)| = 1 - \frac{n}{n+1} = \frac{1}{n+1} \to 0 \quad (n \to +\infty)$$

但 $\bigcap A_n = \emptyset$, 由完备性的等价推论知 d 不完备.

(b) 由于

- ϕ 是连续的——对应. $\phi_1 = \mathrm{id}_O : x \mapsto x$ 是连续的, 且 $\phi_2 = \rho(x) : x \mapsto \frac{1}{d(x,O^C)}$ 是连续的, 故 ϕ 连续, 由 ϕ_1 是——对应知 ϕ 是——对应.
- $\phi(O)$ 是闭集. 只需证明 $\phi(O)$ 完备, 任取 $\phi(O)$ 中的 Cauchy 序列 $\{(x_n, \rho_n)\}$, 设其在 $E \times \mathbb{R}$ 中收敛到 (x, ρ) , 由 Cauchy 序列的有界性知存在 M > 0, 使得 $0 \le \rho_n < M$, 且 $x \in \overline{O}$, 则 $x \in O$ 或者 $x \in \partial O$. 若 $x \in \partial O$, 则 $d(x, O^C) = 0$, 故存在 n_o , 使得 $d(x_{n_0}, O^C) < \frac{1}{M} \Rightarrow \rho_{n_0} > M$, 矛盾. 所以 $x \in O$, 因此 $(x, \rho) \in \phi(O)$, 故 $\phi(O)$ 完备.
- ϕ^{-1} 连续. 由 $(x_n, \rho_n) \to (x, \rho)$ 显然得到 $x_n \to x$, 故 ϕ^{-1} 连续

综上得知, ϕ 是从 O 到 $E \times R$ 上的闭子集的同胚.

记 $E \times \mathbb{R}$ 上的度量为 δ , 定义 d^* 为 $d^*(x_1, x_2) = \delta(\phi(x_1), \phi(x_2))$, 容易验证 d^* 是 O 上的一个完备的距离, 记 d^* 诱导的拓扑为 τ^* , d 诱导的拓扑为 τ , 则: 由 $d(x,y) \leq d^*(x,y) = \max\{d(x,y), |\rho(x) - \rho(y)|\}$ 知 $\tau \subset \tau^*$, 又: 另一个方向待完善.

2. 证明度量空间 (E,d) 是完备的充分必要条件是: 对 E 中任意序列 (x_n) , 若对任一个 $n \ge 1$ 有 $d(x_n, x_{n+1}) \le 2^{-n}$, 则序列 (x_n) 收敛.

证明: $(\Rightarrow) \forall \varepsilon > 0$, 取 $N = [1 - \log_2 \varepsilon]$, 对于任意 m, n > N 有

$$d(x_m, x_n) \le \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}} = \frac{1}{2^{n-1}} - \frac{1}{2^{m-1}} < \varepsilon,$$

所以 (x_n) 是 Cauchy 序列, 因 (E,d) 完备, 故 (x_n) 在 E 中收敛.

- (秦) 任取 (E,d) 中的 Cauchy 序列 $(x_n)_{n\geq 1}$. 对于 $\varepsilon_1=\frac{1}{2}$, 存在 N_1 , 使得对于 $\forall m,n\geq N_1$ 有 $d(x_m,x_n)<\frac{1}{2}$; 对于 $\varepsilon_2=\frac{1}{2^2}$, 存在 $N_2>N_1$, 使得对于 $\forall m,n\geq N_2$ 有 $d(x_m,x_n)<\frac{1}{2^2}$; 依次 进行下去可得 $(x_n)_{n\geq 1}$ 的子列 $(x_{N_k})_{k\geq 1}$ 且此子列满足对于任意 $k\geq 1$ 有 $d(x_{N_k},x_{N_{k+1}})<2^{-k}$. 由假设条件知 $(x_{N_k})_{k\geq 1}$ 收敛,因此 $(x_n)_{n\geq 1}$ 也收敛,由此证明 (E,d) 完备.
- **3.** 设 (E,d) 是度量空间, (x_n) 是 E 中的 Cauchy 序列, 并有 $A \subset E$. 假设 A 的闭包 \overline{A} 在 E 中完备并且 $\lim_{n\to\infty} d(x_n,A)=0$. 证明 (x_n) 在 E 中收敛.

证明: 先证明 $\lim_{n\to\infty} d(x_n, \overline{A}) = 0$. 任取 $x \in A, y \in \overline{A}$, 有

$$d(x_n, y) \le d(x_n, x) + d(x, y),$$

上述不等式关于 $x \in A$ 取下确界得

$$d(x_n, y) \le d(x_n, A) + \inf_{x \in A} d(x, y) = d(x_n, A),$$

上述不等式再关于 $y \in \overline{A}$ 取下确界得

$$d(x_n, \overline{A}) \le d(x_n, A).$$

即得 $\lim_{n\to\infty} d(x_n, \bar{A}) = 0.$

令 $(y_n)_{n\geq 1}$ 为 \overline{A} 中满足 $d(x_n,y_n)=d(x_n,\overline{A})$ 的序列, 由 $\lim_{n\to\infty}d(x_n,y_n)=0$ 及 $(x_n)_{n\geq 1}$ 是 Cauchy 序列有

$$\forall \varepsilon > 0, \exists N > 0, \forall m, n > N, d(x_n, y_n) < \varepsilon/3, d(x_n, x_m) < \varepsilon/3.$$

故

$$d(y_n, y_m) \le d(y_n, x_n) + d(x_n, x_m) + d(x_m, y_m) < \varepsilon.$$

从而 $(y_n)_{n>1}$ 是 Cauchy 序列, 由 \overline{A} 的完备性知 $(y_n)_{n>1}$ 收敛, 记为 $y_n \to y$, 故

$$\forall \varepsilon > 0, \exists M > 0, \forall n > M, d(y_n, y) < \varepsilon/2, d(x_n, y_n) < \varepsilon/2.$$

因此 $d(x_n, y) \leq d(x_n, y_n) + d(y_n, y) < \varepsilon$, 从而说明 $x_n \to y$.

4. 设 (E,d) 是度量空间, $\alpha > 0$. 假设 $A \subset E$ 满足对任意 $x,y \in A$ 且 $x \neq y$, 必有 $d(x,y) \geq \alpha$. 证明 A 是完备的.

证明: 任取 A 中的 Cauchy 序列 $(x_n)_{n\geq 1}$, 由定义知对于题给常数 α , $\exists N>0$, 使得对于 $\forall m,n>N$, 有 $d(x_m,x_n)<\alpha$, 结合条件知 $\forall m,n>N,x_m=x_n$, 因此序列 $(x_n)_{n\geq 1}$ 收敛, 故 A 完备.

5. 设 (E,d) 是度量空间且 $A \subset E$. 假设 A 中任一 Cauchy 序列在 E 中收敛, 证明 A 的闭包 \overline{A} 是完备的.

证明: 任取 \overline{A} 中的 Cauchy 序列 $(x_n)_{n\geq 1}$. 对于 $\forall \varepsilon > 0$, 存在序列 $(y_n)_{n\geq 1} \subset A$ 使得对于 $\forall n\geq 1$ 有

$$d(x_n, y_n) < \frac{\varepsilon}{3}.$$

因为 $(x_n)_{n\geq 1}$ 是 Cauchy 序列, 所以对于上述 $\varepsilon>0$, 存在 $N\geq 1$, 使得对于 $\forall m,n\geq N$ 有

$$d(x_m, x_n) < \frac{\varepsilon}{3},$$

于是

$$d(y_m, y_n) \le d(y_m, x_m) + d(x_m, x_n) + d(x_n, y_n) < \varepsilon,$$

所以 $(y_n)_{n\geq 1}$ 是 A 中的 Cauchy 序列, 由题目条件知 $y_n\to y\in \overline{A}$, 于是对于上述 $\varepsilon>0$, 存在 $M\geq 1$, 使得当 $n\geq M$ 时 $d(y_n,y)<\frac{2}{3}\varepsilon$, 从而 $d(x_n,y)< d(x_n,y_n)+d(y_n,y)<\frac{\varepsilon}{3}+\frac{2}{3}\varepsilon=\varepsilon$. 所以 $x_n\to y\in \overline{A}$, 由完备性定义知 \overline{A} 完备.

- **6.** 设 (E,d) 是度量空间, 而 (x_n) 是 E 中发散的 Cauchy 序列. 证明
- (a) 任取 $x \in E$, 序列 $(d(x, x_n))$ 收敛于一个正数, 记为 g(x).
- (b) 函数 $x \mapsto \frac{1}{g(x)}$ 是从 E 到 \mathbb{R} 的连续函数.
- (c) 上面的函数无界.

证明: (a) 由 $(x_n)_{n\geq 1}$ 是 Cauchy 序列和三角不等式得

$$|d(x,x_m)-d(x,x_n)| \leq d(x_m,x_n) \to 0, \quad m,n \to \infty,$$

故序列 $(d(x,x_n))_{n\geq 1}$ 是 \mathbb{R} 中的 Cauchy 序列, 由 \mathbb{R} 的完备性知 $(d(x,x_n))_{n\geq 1}$ 收敛, 记收敛值为 g(x).

显然 $g(x) \ge 0$, 若 g(x) = 0, 则 $\lim_{n\to\infty} d(x, x_n) = 0$, 故 $x_n \to x$, 与 $(x_n)_{n\ge 1}$ 发散相矛盾, 因此 g(x) > 0.

(b) 只需证明 g(x) 连续即可. 任意取定 $x_0 \in E$, 则

$$|g(x) - g(x_0)| = |\lim_{n \to \infty} d(x, x_n) - \lim_{n \to \infty} d(x_0, x_n)|$$

$$= \left|\lim_{n \to \infty} \left(d(x, x_n) - d(x_0, x_n) \right) \right|$$

$$\leq \lim_{n \to \infty} d(x, x_0)$$

$$= d(x, x_0),$$

上述不等式表明 g(x) 为连续函数.

- (c) 假设 $\frac{1}{g(x)}$ 有界,即存在 M>0,使得 $\frac{1}{g(x)}< M\Rightarrow g(x)>\frac{1}{M}(\forall x\in E)$. 因为 $(x_n)_{n\geq 1}$ 是 Cauchy 序列,所以存在 $N\geq 1$,当 $\forall n>N$ 时, $d(x_n,x_N)<\frac{1}{M}$,故 $g(x_N)=\lim_{n\to\infty}d(x_n,x_N)\leq \frac{1}{M}$,矛盾,因此 $\frac{1}{g(x)}$ 无界.
- 7. 设 (E,d) 和 (F,δ) 都是度量空间, $f:(E,d)\to (F,\delta)$ 是一致连续的双射并且逆映射 f^{-1} 也是一致连续的. 证明对任意 $A\subset E, f(A)$ 完备当且仅当 A 完备.

证明: (秦) 假设 A 完备,要证明 f(A) 完备。任取 f(A) 中的 Cauchy 序列 $(y_n)_{n\geq 1}$,记 $f^{-1}(y_n)=x_n$,从而得到 A 中的序列 $(x_n)_{n\geq 1}$,由 f^{-1} 一致连续知对于 $\forall \varepsilon>0$,存在 $\theta>0$,使得当 $\delta(y_m,y_n)<\theta$ 时,有 $d(x_m,x_n)<\varepsilon$. 对于上述的 $\theta>0$,存在 $N\geq 1$,当 m,n>N 时, $\delta(y_m,y_n)<\theta$,此时 $d(x_m,x_n)<\varepsilon$. 从而 $(x_n)_{n\geq 1}$ 是 A 中的 Cauchy 序列,由 A 完备知 $(x_n)_{n\geq 1}$ 收敛,记 $x_n\to x\in A$,故 $y_n=f(x_n)\to f(x)\in f(A)$,因此 f(A) 是完备的.

$$(⇒)$$
 由 f 的一致连续性可证, 证法同充分性.

8. 设 $f: \mathbb{R}^n \to \mathbb{R}$ 是一致连续函数. 证明存在两个非负常数 a 和 b, 使得

$$|f(x)| \le a||x|| + b,$$

这里 ||x|| 是 x 的欧氏范数.

证明: 为强调自变量为 \mathbb{R}^n 中向量, 下面记 $x \in \mathbb{R}^n$ 为 \vec{x} .

因为 $f(\vec{x})$ 一致连续, 所以对于任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $||\vec{x} - \vec{y}|| < \delta$ 时, 有 $|f(\vec{x}) - f(\vec{y})| < \varepsilon$.

固定 ε 和 δ , 取定某 $0 < \delta' < \delta$. 则对于任意 $\vec{x} \in \mathbb{R}^n$, 可将其表为

$$\vec{x} = \delta' \frac{\vec{x}}{\|\vec{x}\|} \cdot N + \vec{x}_0, \quad \|\vec{x}_0\| < \delta',$$

其中 $N = \frac{\|\vec{x} - \vec{x}_0\|}{\delta'}$. 可以将 $f(\vec{x})$ 进行如下和式分解:

$$f(\vec{x}) = \sum_{k=1}^{N} \left[f\left(\delta' \frac{\vec{x}}{\|\vec{x}\|} k + \vec{x}_0\right) - f\left(\delta' \frac{\vec{x}}{\|\vec{x}\|} (k-1) + \vec{x}_0\right) \right] + f(\vec{x}_0),$$

并且注意到 $\|\vec{x}_0\| = \|\vec{x}_0 - \vec{0}\| < \delta' < \delta$, 所以 $|f(\vec{x}_0) - f(\vec{0})| < \varepsilon$, 即 $f(\vec{0}) - \varepsilon < f(\vec{x}_0) < f(\vec{0}) + \varepsilon$,

记 $M = \max\{|f(\vec{0}) - \varepsilon|, |f(\vec{0}) + \varepsilon|\}$. 从而

$$\begin{split} |f(\vec{x})| &\leq \sum_{k=1}^{N} \left| f \left(\delta' \frac{\vec{x}}{\|\vec{x}\|} k + \vec{x}_0 \right) - f \left(\delta' \frac{\vec{x}}{\|\vec{x}\|} (k-1) + \vec{x}_0 \right) \right| + |f(\vec{x}_0)| \\ &\leq N \cdot \varepsilon + M \\ &= \frac{\|\vec{x} - \vec{x}_0\|}{\delta'} \cdot \varepsilon + M \\ &\leq \frac{\|\vec{x}\| + \|\vec{x}_0\|}{\delta'} \cdot \varepsilon + M \\ &\leq \frac{\varepsilon}{\delta'} \|\vec{x}\| + (M + \varepsilon). \end{split}$$

记 $a = \frac{\varepsilon}{\delta t}$ 且 $b = M + \varepsilon$, 则上述不等式表明

$$|f(\vec{x})| \le a||\vec{x}|| + b.$$

- 9. 设 $f: E \to F$ 是两个度量空间之间的连续映射, 并设 f 在 E 的每个有界子集上一致连续.
 - (a) 证明若 $(x_n)_{n\geq 1}$ 是 E 中的 Cauchy 序列, 则 $(f(x_n))_{n\geq 1}$ 也是 F 中的 Cauchy 序列.
- (b) 设 E 在度量空间 E' 中稠密并且 F 是完备的, 证明 f 可以唯一地拓展成从 E' 到 F 的连续映射.

证明: (a) 因为 $(x_n)_{n\geq 1}$ 是 Cauchy 序列, 所以 $(x_n)_{n\geq 1}$ 为有界序列. 又 f 在 E 的有界子集上一致连续且一致连续映射将 Cauchy 序列映为 Cauchy 序列, 故 $(f(x_n))_{n\geq 1}$ 是 F 中的 Cauchy 序列.

(b) 记 E 上的度量为 d, F 上的度量为 δ .

首先构造 f 的一个扩展映射. 由于 E 在 E' 中稠密, 故对于 $\forall x \in E'$, 存在 $(x_n)_{n\geq 1} \subset E$ 使得 $(x_n)_{n\geq 1}$ 收敛于 x. 显然 $(x_n)_{n\geq 1}$ 为 Cauchy 序列, 故由 (a) 知 $(f(x_n))_{n\geq 1}$ 为 F 中的 Cauchy 序列, 又因 F 完备, 故存在 $y \in F$, 使得 $(f(x_n))_{n\geq 1}$ 收敛于 y. 定义 $\tilde{f}(x) = y$. 由于 E 中收敛于 x 的序列不唯一, 故需证明这一定义不依赖 $(x_n)_{n\geq 1}$ 的选择. 设 $(x'_n)_{n\geq 1}$ 也收敛于 x, 相应地, 定义 $y' = \tilde{f}(x'_n)$. 由于 $(x_n)_{n\geq 1}$ 和 $(x'_n)_{n\geq 1}$ 都收敛于 x, 故存在 x>0 使得 $(x_n)_{n\geq 1}\subset B(x,r)$ 且 $(x'_n)_{n\geq 1}\subset B(x,r)$. 由于 f 在有界集 f(x,r) 上一致连续, 故对于 $f(x_n)$ 0, 存在 $f(x_n)$ 1, $f(x'_n)$ 2, $f(x_n)$ 3, $f(x'_n)$ 3, $f(x'_n)$ 4, 为 $f(x_n)$ 5, $f(x'_n)$ 6, 为 $f(x_n)$ 6, $f(x_n)$ 7, $f(x'_n)$ 7, $f(x'_n)$ 8, $f(x_n)$ 8, $f(x_n)$ 9, $f(x_n)$ 9

10. 构造一个反例说明: 在不动点定理中, 如果我们将映射 f 满足的条件减弱为

$$d(f(x), f(y)) < d(x, y), \quad \forall x, y \in E \perp x \neq y,$$

则结论不成立.

П

证明: 取函数 $f(x) = (x^2 + 1)^{1/2}$, 不妨设 x > y, 则由下面推导过程:

$$\begin{split} \sqrt{x^2 + 1} - \sqrt{y^2 + 1} &< x - y \Leftarrow 2 - 2\sqrt{x^2 + 1}\sqrt{y^2 + 1} < -2xy \\ & \Leftarrow 1 + xy < \sqrt{x^2 + 1}\sqrt{y^2 + 1} \\ & \Leftarrow 1 + x^2y^2 + 2xy < x^2y^2 + x^2 + y^2 + 1 \\ & \Leftarrow 0 < (x - y)^2, \end{split}$$

可知 f(x) 满足题给条件, 显然 f(x) 没有不动点.

11. 设 (E,d) 是一个完备的度量空间, f 是其上的映射, 并满足 $f^n = f \circ \cdots \circ f$ (n 次幂) 是压缩映射. 证明 f 有唯一的不动点, 并给出例子说明 f 可以不连续.

证明: 因为 f^n 是压缩映射, 所以 f^n 存在唯一的不动点 $x_0 \in E$, 即 $f^n(x_0) = x_0$. 那么就有

$$f^{n}(f(x_{0})) = f(f^{n}(x_{0})) = f(x_{0}).$$

这说明 $f(x_0)$ 也是 f^n 的不动点, 而由不动点的唯一性知 $f(x_0) = x_0$, 即 x_0 为 f 的不动点.

下证 f 的不动点唯一,假设 f 存在另一个不动点 y_0 ,即 $f(y_0) = y_0$,则由归纳法可推出 $f^n(y_0) = y_0$. 由 f^n 的不动点的唯一性知 $y_0 = x_0$.

综上可知,
$$f$$
 的不动点存在且唯一.

- **12.** 记区间 $I = (0, \infty)$ 上通常的拓扑为 τ .
- (a) 证明 τ 可由如下完备的距离 d 诱导:

$$d(x, y) = |\log x - \log y|.$$

(b) 设函数 $f \in C^1(I)$ 满足对某个 $\lambda < 1$, 任取 $x \in I$, 都有 $x|f'(x)| \le \lambda f(x)$. 证明 f 在 I 上存在唯一的不动点.

证明: (a) 将距离 d 诱导的拓扑记为 τ_d .

$$U \in \tau \Leftrightarrow \forall x \in U, \exists r > 0, s.t. \{y > 0 \mid |y - x| < r\} \subset U$$

$$\Rightarrow \forall x \in U, \exists r^* = \ln\left(\frac{r}{x} + 1\right) > 0, s.t. \{y > 0 \mid |\log y - \log x| < r^*\} \subset U$$

$$\Rightarrow U \in \tau_d$$

$$U \in \tau_d \Leftrightarrow \forall x \in U, \exists r > 0, s.t. \{y > 0 \mid |\log y - \log x| < r\} \subset U$$
$$\Rightarrow \forall x \in U, \exists r^* = x(1 - e^{-r}) > 0, s.t. \{y > 0 \mid |y - x| < r^*\} \subset U$$
$$\Rightarrow U \in \tau$$

因而 τ 可由距离 d 诱导, 下面证明距离 d 是完备的:

任取 (I,d) 中的 Cauchy 序列 $(x_n)_{n\geq 1}$, 记 $y_n=\log x_n\in\mathbb{R}$, 则

$$\forall \varepsilon > 0, \exists N, \forall m, n > N, |\log x_m - \log x_n| < \varepsilon$$

也即

$$\forall \varepsilon > 0, \exists N, \forall m, n > N, |y_m - y_n| < \varepsilon$$

故 $(y_n)_{n\geq 1}$ 是 $(\mathbb{R},d_{\mathbb{R}})$ 中的 Cauchy 序列 $(d_{\mathbb{R}}$ 表示自然距离), 由 $(\mathbb{R},d_{\mathbb{R}})$ 的完备性知

$$\exists y \in \mathbb{R}, s.t.y_n \to y$$

令 $x = e^y \in I$, 则有 $d(x_n, x) = |\log x_n - \log x| = |y_n - y| \to 0$, 从而说明 (I, d) 完备.

(b) 首先, 应该声明 f 恒大于零, 否则, 取 $f \equiv 0$, 此时 f 满足题目条件但是显然 f 没有不动点. 在度量空间 (I,d) 中, f 的导数为:

$$\forall x_0 \in I, f^{(1)}(x_0) = \lim_{x \to x_0} \frac{d(f(x), f(x_0))}{d(x, x_0)} = \lim_{x \to x_0} \frac{|\log f(x) - \log f(x_0)|}{|\log x - \log x_0|}$$
$$= \lim_{x \to x_0} \frac{\left|\frac{\log f(x) - \log f(x_0)}{x - x_0}\right|}{\left|\frac{\log x - \log x_0}{x - x_0}\right|} = \frac{x_0 |f'(x_0)|}{f(x_0)}.$$

结合题目条件 $x|f'(x)| \le \lambda f(x)$ 知对 $\forall x \in I$, 有 $|f^{(1)}(x)| \le \lambda < 1$, 这表明 f 在度量空间 (I,d) 中为压缩映射. 又因为 (I,d) 是完备度量空间, 因此 f 在 I 上存在唯一的不动点.

13. 设 E 是可数集, 其元素记为 a_1, a_2, \cdots 定义

$$d(a_p, a_p) = 0$$
 且当 $p \neq q$ 时, $d(a_p, a_q) = 10 + \frac{1}{p} + \frac{1}{q}$.

- (a) 证明 $d \in E$ 上的距离并且 E 成为一个完备的度量空间.
- (b) 设 $f: E \to E$ 定义为 $f(a_p) = a_{p+1}$. 证明当 $p \neq q$ 时, 有

$$d(f(a_n), f(a_n)) < d(a_n, a_n),$$

但是 f 没有不定点.

证明: (a) 由 d 的定义容易验证其满足正定性、对称性以及三角不等式, 因此 d 是 E 上的距离. 并且对任意 $p \neq q$, 有 $d(a_p, a_q) > 10$, 由第四题结论, 可知 (E, d) 是完备度量空间.

(b) 当 $p \neq q$ 时, $d(f(a_p), f(a_q)) = d(a_{p+1}, a_{q+1}) = 10 + \frac{1}{p+1} + \frac{1}{q+1} < d(a_p, a_q)$. 假设 f 存在不动点 a_k , 则 $f(a_k) = a_k = a_{k+1}$, 因此 $d(a_k, a_{k+1}) = 0$, 矛盾, 故 f 没有不动点.

14. 本习题的目的是给不动点定理一个新的证明方法. 设 (E,d) 是非空的完备度量空间, $f: E \to E$ 是压缩映射. 任取 $R \ge 0$, 设

$$A_R = \{ x \in E \mid d(x, f(x)) \le R \}.$$

- (a) 证明 $f(A_R) \subset A_{\lambda R}$.
- (b) 证明当 R > 0 时, A_R 是 E 中的非空闭子集.
- (c) 证明任取 $x, y \in A_R$, 有 $d(x, y) \le 2R + d(f(x), f(y))$. 并由此导出

$$\operatorname{diam}(A_R) \leq 2R/(1-\lambda).$$

(d) 证明 A₀ 非空.

证明: (a) 任取 $y \in f(A_R)$, 存在 $x \in A_R$, 使得 y = f(x), 则

$$d(y, f(y)) = d(f(x), f(f(x))) \le \lambda d(x, f(x)) \le \lambda R,$$

故 $y \in A_{\lambda R}$, 因此 $f(A_R) \subset A_{\lambda R}$.

(b) 先证明 A_R 非空. 取定某 $x_0 \in E$, 若 $x_0 = f(x_0)$, 则 $x_0 \in A_R$; 若 $x_0 \neq f(x_0)$, 则 $d(x_0, f(x_0)) > 0$, 取正整数 $N \geq \log_{\lambda} \frac{R}{d(x_0, f(x_0))}$. 通过 $x_{n+1} = f(x_n)$ $(n \geq 0)$ 构造序列 $(x_n)_{n \geq 0}$, 则

$$d(x_1, f(x_1)) = d(f(x_0), f(f(x_0))) \le \lambda d(x_0, f(x_0)),$$

$$d(x_2, f(x_2)) = d(f(x_1), f(f(x_1))) \le \lambda^2 d(x_0, f(x_0)),$$

由归纳法可得

$$d(x_n, f(x_n)) < \lambda^n d(x_0, f(x_0)).$$

当 $n \ge N$ 时, 有 $d(x_n, f(x_n)) \le R$, 因此 A_R 非空.

再证明 A_R 为闭集. 任取 A_R 中的收敛序列 $(x_n)_{n\geq 1}$, 记其收敛值为 x. 则对任意 $n\geq 1$ 有 $d(x_n,f(x_n))\leq R$, 令 $n\to\infty$, 由度量的连续性以及 f 的连续性得 $d(x,f(x))\leq R$, 即得 $x\in A_R$, 因此 A_R 为闭集.

(c) 任取 $x, y \in A_R$, 由度量的三角不等式得

$$d(x,y) \le d(x, f(x)) + d(f(x), f(y)) + d(f(y), y)$$

$$\le 2R + d(f(x), f(y)).$$

于是 $d(x,y) \leq 2R + \lambda d(x,y)$,即 $d(x,y) \leq 2R/(1-\lambda)$. 关于 $x,y \in A_R$ 取上确界即得 $\operatorname{diam}(A_R) \leq 2R/(1-\lambda)$.

(d) 取 $R_n = \frac{1}{n}$,则 $(A_{R_n})_{n \geq 1}$ 为单调下降的非空闭集列且 $\lim_{n \to \infty} \operatorname{diam}(A_{R_n}) = 0$,由**定理 2.2.6** 知 $A_0 = \bigcap_{n \geq 1} A_{R_n}$ 为单点集.

15. 设 (E,d) 是完备度量空间, f 和 g 是 E 上两个可交换的压缩映射 (即 $f \circ g = g \circ f$). 证明 f 和 g 有唯一的、共同的不动点.

证明: 因 f 是压缩映射, 故 f 有唯一的不动点 x, 即 f(x) = x. 因为 $f \circ g = g \circ f$, 所以

$$f \circ g(x) = f(g(x)) = g \circ f(x) = g(x),$$

从而 g(x) 也是 f 的不动点, 而由不动点唯一性知 g(x) = x, 这说明 x 也为 g 的不动点.

16. 本习题的目的是把上一习题的结论推广到更一般的情形, 在某种意义上说是非交换的压缩映射不动点定理. 设 (E,d) 是完备的度量空间. 定义联系于集合 $A\subset E$ 的距离函数 d_A 如下:

$$d_A(x) := d(x, A) = \inf\{d(x, a) \mid a \in A\}.$$

并设 C 表示 E 的所有紧子集构成的集族. 对任意的 $A, B \in C$, 定义

$$h(A, B) = \sup_{x \in E} |d_A(x) - d_B(x)|.$$

- (a) 证明 $h \in \mathcal{C}$ 上的一个距离.
- (b) 任取 $F \subset E$, 令 $F_{\varepsilon} = \{x \in E \mid d_F(x) \leq \varepsilon\}$. 证明

$$h(A, B) = \inf\{\varepsilon \ge 0 \mid A \subset B_{\varepsilon}, B \subset A_{\varepsilon}\}.$$

- (c) 证明 (C,h) 完备.
- (d) 现在令 f_1, \dots, f_n 是 E 上的 n 个压缩映射. 定义 (\mathcal{C}, h) 上的映射 T 为

$$T(A) = \bigcup_{k=1}^{n} f_k(A), \quad A \in \mathcal{C}.$$

证明 T 是压缩映射. 并由此导出存在唯一的一个紧子集 K, 使得 T(K) = K.

证明: (a) 由 Housdorff 空间的紧子集是闭集知 \mathcal{C} 里面的任意元素都是闭集,当 h(A,B)=0 时,我们有

$$\forall x \in E, d_A(x) = d_B(x).$$

故当 $x \in A$ 时,有 $d_B(x) = d_A(x) = 0 \Rightarrow x \in B \Rightarrow A \subset B$,同理可得 $B \subset A$,因此 $h(A,B) = 0 \Rightarrow A = B$.又显然 $A = B \Rightarrow h(A,B) = 0$,因此 $h(A,B) = 0 \Leftrightarrow A = B$,故 h满足正定性,并且容易验证 d满足对称性和三角不等式,所以 h 是 C 上的一个距离(实际上,h称为 Housdorff 度量).

(b) $i \exists Q = \{ \varepsilon \geq 0 \mid A \subset B_{\varepsilon}, B \subset A_{\varepsilon} \}.$

任取 $\varepsilon \in Q$, 下面用反证法证明 $\varepsilon \geq h(A, B)$.

假设 $\varepsilon < h(A,B) = \sup_{x \in E} |d_A(x) - d_B(x)|$, 则存在 $x \in E$, 使得 $|d_A(x) - d_B(x)| > \varepsilon$, 不 妨设 $d_A(x) - d_B(x) > \varepsilon$, 由 A,B 为闭集知存在 $a \in A$ 和 $b \in B$, 使得 $d_A(x) = d(a,x), d_B(x) = d(b,x)$, 且存在 $a' \in A$, 使得 $d_A(b) = d(a',b) \le \varepsilon$, 因此

$$d(x,b) + \varepsilon = d_B(x) + \varepsilon < d_A(x) = d(x,a)$$

$$< d(x,a') < d(x,b) + d(b,a') < d(x,b) + \varepsilon.$$

矛盾, 故 $\varepsilon \geq h(A, B)$.

任取 r > h(A,B), 下证 r 不是集合 Q 的下界. 事实上, 存在 s, 使得 r > s > h(A,B), 故 $\forall x \in E, |d_A(x) - d_B(x)| < s$, 因此 $\forall x \in A, d_B(x) < s$ 且 $\forall x \in B, d_A(x) < s$, 从而 $A \subset B_s, B \subset A_s$, 这说明 $s \in Q$, 从而 r 不是集合 Q 的下界.

综合两点知 $h(A, B) = \inf Q = \inf \{ \varepsilon \ge 0 \mid A \subset B_{\varepsilon}, B \subset A_{\varepsilon} \}.$

(c) 任取 \mathcal{C} 中的 Cauchy 序列 $(A_n)_{n\geq 1}$, 即 $\forall \varepsilon > 0, \exists N > 0, s.t. \forall m, n > N_1, h(A_m, A_n) < \varepsilon/2.$

定义集合 A 为:

$$A = \{x \mid$$
存在序列 $(x_k)s.t.x_k \in A_k \ \perp x_k \rightarrow x\}.$

 $\forall x \in A, \exists (x_k)(x_k \in A_k), s.t.x_k \to x$ 故 $\exists N_2 > 0, \forall k > N_2, d(x_k, x) < \varepsilon/2$ 若 $k > max\{N_1, N_2\}, \$ 则 $h(A_k, A_n) < \varepsilon/2, \$ 故 $\exists y \in A_n, s.t.d(x_k, y) < \varepsilon/2, \$ 故 $d(y, x) \leq d(x_k, y) + d(x_k, x) < \varepsilon \Rightarrow x \in (A_n)_\varepsilon \Rightarrow A \subset (A_n)_\varepsilon$ 另一方面, $\forall y \in A_n$,选取一列整数 $n = k_1 < k_2 < \cdots$ 使得

$$h(A_{k_i}, A_m) < 2^{-j} \varepsilon (\forall m \ge k_i)$$

然后我们如下定义序列 $(y_k)_{k\geq 1}(y_k\in A_k)$: k< n 时, y_k 任意选取, 选择 $y_n=y$, 如果 y_{k_j} 已经选择了,且 $k_j< k\leq k_{j+1}$,选择 $y_k\in A_k$, $s.t.d(y_{k_j},y_k)< 2^{-j}\varepsilon$,则 $(y_k)_{k\geq 1}$ 是 Cauchy 序列,故 $y_k\to x\in A$ 由

$$d(y,x) = \lim_{k \to \infty} d(y,y_k) = \lim_{j \to \infty} d(y,y_{k_j}) \le \lim_{j \to \infty} (2^{-1}\varepsilon + \dots + 2^{-j+1}\varepsilon) = \varepsilon$$

知 $y \in (A)_{\varepsilon} \Rightarrow A_n \subset (A)_{\varepsilon}$, 所以 $h(A, A_n) < \varepsilon$, 这就证明了 $A_n \xrightarrow{h} A$

下面还需证明 A 是紧的, 为此, 需要证明 A 是闭集且完全有界:

i) 假设 $x \in \bar{A}$, 则 $\forall n \geq 1, \exists y_n \in A, s.t.d(x,y_n) < 2^{-n}$, 又因为 $\forall n \geq 1, \exists z_n \in A_n, s.t.d(z_n,y_n) \leq h(A_n,A)$, 故

$$d(z_n, x) \le d(z_n, y_n) + d(x, y_n) < h(A_n, A) + 2^{-n} \to 0$$

所以 $z_n \to x$, 故 $x \in A$, 因而 A 是闭集.

第2章 完备度量空间

 $ii)\forall \varepsilon > 0, \exists n \geq 1, s.t. h(A_n, A) < \varepsilon/3$, 由于 A_n 紧, 故 A_n 存在有限的 $\varepsilon/3$ 网, 即存在 $\{y_1, y_2, \cdots, y_m\} \subset A_n, s.t. A_n \subset \bigcup_{i=1}^m B(y_i, \varepsilon/3), \forall y_i, \exists x_i \in A, s.t. d(x_i, y_i) < \varepsilon/3$, 我们断言 $\{x_1, x_2, \cdots, x_m\}$ 构成了 A 的一个有限 ε 网 (反证法: 假设 $\exists x_0 \in A, s.t. d(x_0, x_i) \geq \varepsilon(\forall i = 1, 2, \cdots, m)$, 设 x_0 与 A_n 中的 y_0 距离最近,且 y_0 所在的开球球心为 y_i ,则 $d(x_0, x_i) \leq d(x_0, y_0) + d(y_0, y_i) + d(y_i, x_i) < \varepsilon$,矛盾) 因此 A 是完全有界的.

(d) 将 $\{f_i\}$ 的压缩系数分别记为 $\lambda_1, \dots, \lambda_n$, 令 $\lambda = \max\{\lambda_1, \dots, \lambda_n\}$, 下面证明 T 是以 λ 为压缩系数的压缩映射, 即证: $\forall A, B \in C, h(T(A), T(B)) \leq \lambda h(A, B)$

任取 $r > h(A,B), \forall x \in T(A), \exists 1 \leq i \leq n, a \in A, s.t.x = f_i(a),$ 因为 h(A,B) < r, 所以 $\exists b \in B, s.t.d(a,b) < r,$ 令 $y = f_i(b) \in T(B),$ 我们有

$$d(x,y) = d(f_i(a), f_i(b)) \le \lambda_i d(a,b) < \lambda r$$

所以

$$d(x,T(B))<\lambda r\Rightarrow \sup_{x\in T(A)}d(x,T(B))\leq \lambda r$$

同理可得

$$\sup_{y \in T(B)} d(y, T(A)) \le \lambda r$$

因此 $h(T(A), T(B)) \le \lambda r$, 令 $r \to h(A, B)$, 即得 $h(T(A), T(B)) \le \lambda h(A, B)$, 从而说明 T 是 压缩映射.

赋范空间和连续线性映射

1. 设 $C([0,1], \mathbb{R})$ 表示 [0,1] 上的所有连续实函数构成的空间. 定义

- (a) 证明 $\|\cdot\|_{\infty}$ 和 $\|\cdot\|_{1}$ 都是 $C([0,1],\mathbb{R})$ 上的范数.
- (b) 证明 $C([0,1], \mathbb{R})$ 关于范数 $\|\cdot\|_{\infty}$ 是完备的.
- (c) 证明 $C([0,1],\mathbb{R})$ 关于范数 $\|\cdot\|_1$ 不完备.

证明: (a) 由

- $\|f\|_{\infty} = \sup_{0 \le t \le 1} |f(t)| \ge 0$,且 $\|f\|_{\infty} = 0$ 当且仅当 $f \equiv 0$
- $\|\lambda f\|_{\infty} = \sup_{0 \le t \le 1} |\lambda f(t)| = |\lambda| \sup_{0 \le t \le 1} |f(t)| = |\lambda| \cdot \|f\|_{\infty}$ $\|f + g\|_{\infty} = \sup_{0 \le t \le 1} |f(t) + g(t)| \le \sup_{0 \le t \le 1} (|f(t)| + |g(t)|) = \|f\|_{\infty} + \|g\|_{\infty}$

和

- $||f||_1 = \int_0^1 |f(t)| dt \ge 0$ 且 $||f||_1 = 0$ 当且仅当 $f \equiv 0$ $||\lambda f||_1 = \int_0^1 |\lambda f(t)| dt = |\lambda| \cdot ||f||_1$
- $||f+g||_1 = \int_0^1 |f(t)+g(t)| \, \mathrm{d}t \le \int_0^1 |f(t)| \, \mathrm{d}t + \int_0^1 |g(t)| \, \mathrm{d}t = ||f||_1 + ||g||_1$

知 $\|\cdot\|_{\infty}$ 和 $\|\cdot\|_{1}$ 都是 $C([0,1],\mathbb{R})$ 上的范数.

(b) 任取 $C([0,1],\mathbb{R})$ 中的 Cauchy 序列 $(f_n)_{n\geq 1}$, 即对于 $\forall \epsilon > 0$, 存在 N > 0, 对于 $\forall m, n > N, \uparrow$

$$||f_m - f_n||_{\infty} = \max_{0 \le x \le 1} |f_m(x) - f_n(x)| < \epsilon,$$

所以对任意 $t \in [0,1]$, 序列 $(f_n(t))_{n\geq 1}$ 为 Cauchy 序列, 其必收敛. 令

$$f(t) = \lim_{n \to \infty} f_n(t).$$

这样就定义了一个[0,1]上的实值函数.

下面证明 f 是连续函数且 $||f_n - f||_{\infty} \to 0$ (即 $(f_n)_{n \ge 1}$ 一致收敛到 f). 而我们只需要证明 $(f_n)_{n \ge 1}$ 一致收敛到 f 即可,事实上,由一致收敛级数的连续性定理可知,如果 $(f_n)_{n \ge 1}$ 一致收敛到 f,则 f 必为连续函数.

任意给定 $\varepsilon > 0$, 存在 $N = N(\varepsilon) > 0$, 使得对于 $\forall m, n > N$ 和 $\forall t \in [0, 1]$ 都有

$$|f_m(t) - f_n(t)| < \varepsilon.$$

任意固定 n > N 并令 $m \to \infty$ 可得对于 $\forall n > N$ 和 $\forall t \in [0,1]$ 有

$$|f_n(t) - f(t)| < \varepsilon.$$

所以 $(f_n)_{n>1}$ 一致收敛到 f.

(c) 我们只需寻找范数 $\|\cdot\|_1$ 意义下的柯西列使其不收敛即可. 定义折线段:

$$f_n(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2} - \frac{1}{n} \\ n\left(x - \frac{1}{2} + \frac{1}{n}\right), & \frac{1}{2} - \frac{1}{n} \le x \le \frac{1}{2} \\ 1, & \frac{1}{2} \le x \le 1. \end{cases}$$

则

$$||f_m - f_n||_1 = \int_0^1 |f_m(x) - f_n(x)| dx = \frac{1}{2} \left| \frac{1}{m} - \frac{1}{n} \right| \to 0 (m, n \to \infty)$$

故 $(f_n)_{n\geq 1}$ 是 Cauchy 序列, 但是其没有极限.

注 证明度量空间的完备性基本都是转化为基本的完备空间 (如 $(\mathbb{R}, d_{\mathbb{R}})$) 来考虑.

2. 设 E 是 ℝ 上所有的实系数多项式构成的向量空间. 对任意 $P \in E$, 定义

$$||P||_{\infty} = \max_{x \in [0,1]} |P(x)|.$$

- (a) 证明 $\|\cdot\|_{\infty}$ 是 E 上的范数.
- (b) 任取一个 $a \in \mathbb{R}$ 定义线性映射 $L_a : E \to \mathbb{R}$ 满足 $L_a(P) = P(a)$. 证明 L_a 连续当且 仅当 $a \in [0,1]$, 并且给出该连续线性映射的范数.
- (c) 设 a < b 并定义 $L_{ab}: E \to \mathbb{R}$ 满足

$$L_{a,b}(P) = \int_a^b P(x) \, \mathrm{d}x.$$

给出 a,b 的范围, 使其成为 $L_{a,b}$ 连续的充分必要条件, 然后确定 $L_{a,b}$ 的范数.

证明: (a) 由

- $\|P\|_{\infty} = 0 \Leftrightarrow \max_{x \in [0,1]} |P(x)| = 0 \Leftrightarrow P(x) = 0 (\forall x \in [0,1]) \Leftrightarrow P = 0$
- $\|\lambda P\|_{\infty} = \max_{x \in [0,1]} |\lambda P(x)| = |\lambda| \max_{x \in [0,1]} |P(x)| = |\lambda| \|P\|_{\infty}$
- $\|P+Q\|_{\infty} = \max_{x \in [0,1]} |(P+Q)(x)| \le \max_{x \in [0,1]} (|P(x)| + |Q(x)|) = \|P\|_{\infty} + \|Q\|_{\infty}$

知 $\|\cdot\|_{\infty}$ 是 E 上的范数.

(b)(\Leftarrow) 当 $a \in [0,1]$ 时, 对于任意 $P \in E$, 有

$$|L_a(P)| = |P(a)| \le \max_{0 \le x \le 1} |P(x)| = ||P||_{\infty},$$

故 L_a 为连续线性映射.

(⇒)(直接法) 由 L_a 为连续线性映射知, 存在常数 $C \ge 0$, 使得对于 $\forall P \in E$, 有

$$|L_a(P)| = |P(a)| \le C||P||_{\infty} = C \max_{0 \le x \le 1} |P(x)|.$$

取 $P(x) = x^{2n}$, 则 $a^{2n} \le C$, 故 $-1 \le a \le 1$. 再取 $P(x) = (1-x)^{2n}$, 则 $(1-a)^{2n} \le C$, 故 $0 \le a \le 2$. 因此 $0 \le a \le 1$.

综上得证: L_a 连续 $\Leftrightarrow a \in [0,1]$, 且

$$||L_a|| = \sup_{y \in E, P \neq 0} \frac{|P(a)|}{\max_{0 \le x \le 1} |P(x)|} = 1 (P \equiv 1 \text{ BPB})$$
 最大值).

- (c) $L_{a,b}$ 连续的充要条件是 $0 \le a < b \le 1$, 理由如下:
- (\Leftarrow) 当 $0 \le a < b \le 1$ 时, 对于任意 $P \in E$, 有

$$|L_{a,b}(P)| = \left| \int_a^b P(x) \, \mathrm{d}x \right| \le \int_a^b |P(x)| \, \mathrm{d}x$$

$$\le \int_0^1 |P(x)| \, \mathrm{d}x \le \max_{0 \le x \le 1} |P(x)| = ||P||_{\infty}.$$

故 $L_{a,b}$ 为连续线性映射且 $||L_{a,b}|| \leq 1$.

(⇒) 先给出一个结论 (*): 设 b>1 且 a< b,则数列 $\left(\frac{b^n-a^n}{n}\right)_{n\geq 1}$ 必有子列为正无穷大量. 事实上,当 1< a< b 时,由 Stolz 定理可得该数列为正无穷大量;当 $-1\leq a\leq 1$ 时,该数列显然为正无穷大量;当 a<-1 时,子列 $\left(\frac{b^{2n+1}-a^{2n+1}}{2n+1}\right)_{n>1}$ 为正无穷大量.

因为 $L_{a,b}$ 连续, 所以存在常数 $C \ge 0$ 使得对于任意 $P \in E$, 有

$$|L_{a,b}(P)| = \left| \int_a^b P(x) \, \mathrm{d}x \right| \le C \max_{0 \le x \le 1} |P(x)|.$$

取 $P(x) = x^n$,则 $\left| \frac{b^{n+1} - a^{n+1}}{n+1} \right| \le C$,即数列 $\left(\frac{b^{n+1} - a^{n+1}}{n+1} \right)_{n \ge 1}$ 有界.假设 b > 1,则由上述结论 (\star) 知 $\left(\frac{b^{n+1} - a^{n+1}}{n+1} \right)_{n > 1}$ 存在子列为正无穷大量,矛盾,因此 $b \le 1$.

再取 $P(x) = (1-x)^n$,则 $\left| \frac{(1-a)^{n+1}-(1-b)^{n+1}}{n+1} \right| \le C$,同理可知 $1-a \le 1$,即 $a \ge 0$.从而当 $L_{a,b}$ 连续时,有 $0 \le a < b \le 1$.

综上得知 $L_{a,b}$ 连续 $\Leftrightarrow 0 \leq a < b \leq 1$, 且

$$||L_{a,b}|| = \sup_{P \in E, P \neq 0} \frac{|\int_a^b P(x) \, \mathrm{d}x|}{\max_{0 < x < 1} |P(x)|} = b - a(P \equiv 1 \ \text{BP} \ \text{DP} \ \text{BP} \ \text{DP}$$

- **3.** 设 $(E, \|\cdot\|_{\infty})$ 是习题 2 中定义的赋范空间. 设 E_0 是 E 中没有常数项的多项式构成的向量子空间 (即多项式 $P \in E_0$ 等价于 P(0) = 0).
 - (a) 证明 $N(P) = \|P'\|_{\infty}$ 定义了 E_0 上的一个范数, 并且对任意 $P \in E_0$, 有 $\|P\|_{\infty} \le N(P)$.
 - (b) 证明 $L(P) = \int_0^1 \frac{P(x)}{x} dx$ 定义了 E_0 关于 N 的连续线性泛函, 并求它的范数.
 - (c) 上面定义的 L 是否关于范数 $\|\cdot\|_{\infty}$ 连续?
 - (d) 范数 $\|\cdot\|_{\infty}$ 和 N 在 E_0 上是否等价?

证明: (a) 由

- $N(P) = ||P'||_{\infty} = \max_{0 \le x \le 1} |P'(x)| \ge 0 \perp N(P) = 0 \preceq L \times P \equiv 0$
- $N(\lambda P) = \max_{0 \le x \le 1} |\lambda P'(x)| = |\lambda| \max_{0 \le x \le 1} |P'(x)| = |\lambda| N(P)$
- $N(P+Q) = \max_{0 \le x \le 1} |P'(x) + Q'(x)| \le \max_{0 \le x \le 1} (|P'(x)| + |Q'(x)|) = N(P) + N(Q)$ 知 $N(\cdot)$ 是 E_0 上的范数.

由中值定理知: $P(x) - P(0) = P(x) = xP'(\theta), \forall x \in (0,1], \exists \theta \in (0,x).$ 故

$$|P(x)| \le |P'(\theta)| \Rightarrow \max_{0 \le x \le 1} |P(x)| \le \max_{0 \le x \le 1} |P'(x)| \Rightarrow ||P||_{\infty} \le N(P).$$

(b) 由

$$L(\lambda P + Q) = \int_0^1 \frac{\lambda P(x) + Q(x)}{x} dx$$
$$= \lambda \int_0^1 \frac{P(x)}{x} dx + \int_0^1 \frac{Q(x)}{x} dx = \lambda L(P) + L(Q)$$

知 L 是线性映射. 又因为

$$|L(P)| = \left| \int_0^1 \frac{P(x)}{x} \, dx \right| \le \int_0^1 \left| \frac{P(x)}{x} \right| dx \le \left\| \frac{P(x)}{x} \right\|_{\infty}$$

$$= \left| \frac{P(x_0)}{x_0} \right| \quad (\exists x_0 \in [0, 1])$$

$$= \left| \frac{P(x_0) - P(0)}{x_0 - 0} \right| = |P'(\theta)| \le ||P'||_{\infty} = N(P),$$

即 $|L(P)| \le N(P)$. 故 $L \in E_0$ 关于 N 的连续线性泛函, 且 ||L|| = 1.

(c) 对于 $\forall C > 0$, 取 $M > \frac{3}{2}C - \frac{1}{2}$, 令 $\delta = e^{-M} \in (0,1)$, 取

$$f(x) = \begin{cases} \frac{1}{\delta}, & 0 \le x \le \delta \\ \frac{1}{x}, & \delta \le x \le 1. \end{cases}$$

由 Weierstrass 多项式逼近定理知, 存在多项式函数 $p_n(x) \in P_n$ 使得

$$\lim_{n \to \infty} \max_{0 \le x \le 1} |p_n(x) - f(x)| = 0.$$

故 $\exists N$, 使得对于 $\forall n > N$, 有 $-\frac{1}{2} < p_n(x) - f(x) < \frac{1}{2}$, 记 $q_n(x) = xp_n(x) \in E_0$, 则:

$$|L(q_n)| = \left| \int_0^1 p_n(x) dx \right| > \int_0^1 \left(f(x) - \frac{1}{2} \right) dx = \frac{1}{2} + M.$$

而

$$||q_n||_{\infty} < ||x(f(x) + \frac{1}{2})||_{\infty} = \max_{0 \le x \le 1} \left| x(f(x) + \frac{1}{2}) \right| = \frac{3}{2}.$$

所以 $|L(q_n)| > C||q_n||_{\infty}$, 故 L 关于范数 $||\cdot||_{\infty}$ 不连续.

(d) $\|\cdot\|_{\infty}$ 与 N 在 E_0 上不等价. 反证法证明: 假设存在常数 C_1 和 C_2 使得对于 $\forall P \in E_0$ 有 $C_1N(p) \leq \|p\|_{\infty} \leq C_2N(p)$. 取 $n > \frac{1}{C_1}$ 且 $p(x) = x^n$,则

$$N(p) = \max_{0 \le x \le 1} |nx^{n-1}| = n > \frac{1}{C_1} = \frac{1}{C_1} ||p||_{\infty}.$$

矛盾, 证毕.

- **4.** 设 E 是由 [0,1] 上所有连续函数构成的向量空间. 定义 E 上的两个范数分别为 $\|f\|_1 = \int_0^1 |f(x)| \, \mathrm{d}x$ 和 $N(f) = \int_0^1 x |f(x)| \, \mathrm{d}x$.
 - (a) 验证 N 的确是 E 上的范数并且 $N \leq \|\cdot\|_1$.
 - (b) 设函数 $f_n(x) = n n^2 x$, 若 $x \le \frac{1}{n}$; $f_n(x) = 0$, 其它. 证明函数列 $(f_n)_{n \ge 1}$ 在 (E, N) 上收敛到 0. 它在 $(E, \|\cdot\|_1)$ 中是否收敛? 由这两个范数在 E 上诱导的拓扑是否相同?
 - (c) 设 $\alpha \in (0,1]$, 并令 $B = \{ f \in E : f(x) = 0, \forall x \in [0,\alpha] \}$. 证明这两个范数在 B 上诱导相同的拓扑.

证明: (a) 由

- $N(f) = \int_0^1 x |f(x)| dx \ge 0$ 且 $N(f) = 0 \Leftrightarrow x |f(x)| \equiv 0 \Leftrightarrow f(x) \equiv 0$ (这里利用了 f(x) 的连续性)
- $N(\lambda f) = \int_0^1 x |\lambda f(x)| dx = |\lambda| \int_0^1 x |f(x)| dx = |\lambda| N(f)$

• $N(f+g) = \int_0^1 x |f(x) + g(x)| dx \le \int_0^1 x (|f(x)| + |g(x)|) dx = N(f) + N(g)$ 知 N 是 E 上的范数, $N \le \|\cdot\|_1$ 是显然的.

(b) 因

$$N(f_n) = \int_0^{\frac{1}{n}} x(n - n^2 x) dx = \frac{1}{6n} \to 0 (n \to \infty),$$

故 $(f_n)_{n\geq 1}$ 在 (E,N) 中收敛到 0. 假设函数列在 $(E,\|\cdot\|_1)$ 中收敛, 即存在 $g(x)\in E$ 使得

$$\lim_{n \to \infty} \int_0^1 |f_n(x) - g(x)| \, \mathrm{d}x = 0 \Rightarrow f_n(x) - g(x) = 0 \text{ a.e.}(n \to \infty).$$

又 $f_n(x) = 0$ a.e. $(n \to \infty)$, 故 g(x) = 0, 也就是说如果收敛只能收敛到 0, 但

$$\lim_{n \to \infty} ||f_n(x) - 0||_1 = \lim_{n \to \infty} \int_0^{\frac{1}{n}} (n - n^2 x) \, \mathrm{d}x = \frac{1}{2} \neq 0.$$

矛盾, 故 $(f_n)_{n>1}$ 在 $(E, \|\cdot\|_1)$ 中不收敛.

两范数在 E 上诱导的拓扑不同, 理由如下:

记 $\|\cdot\|_1$ 诱导的拓扑为 τ_1 , N 诱导的拓扑为 τ_2 , 相应的距离分别记为 d_1, d_2 . 由 $N \leq \|\cdot\|_1$ 知 $\tau_2 \subset \tau_1$, 故我们实际需要证明 τ_2 是 τ_1 的真子集, 即

$$\exists V \in \tau_1, 但 V \notin \tau_2.$$

取 τ_1 中开球 $B_{d_1}(0,\frac{1}{3}) \in \tau_1$,假设 $B_{d_1}(0,\frac{1}{3}) \in \tau_2$. 因为 $0 \in B_{d_1}(0,\frac{1}{3})$,所以 $\exists \delta > 0, s.t.B_{d_2}(0,\delta) \subset B_{d_1}(0,\frac{1}{3})$. 取前面给出的 $(f_n)_{n>1}$,由 $d_2(f_n,0) \to 0 (n \to \infty)$ 知

$$\exists M > 0, s.t. f_M \in B_{d_2}(0, \delta) \subset B_{d_1}(0, \frac{1}{3})$$

但是 $d_1(f_M,0) = \frac{1}{2} > \frac{1}{3}$, 矛盾, 故假设不成立, 即 $B_{d_1}(0,\frac{1}{3}) \notin \tau_2$.

(c) 对于 $\forall f \in B$, 有

$$N(f) = \int_0^1 x |f(x)| \, dx = \int_a^1 x |f(x)| \, dx$$
$$\ge a \int_a^1 |f(x)| \, dx = a \int_0^1 |f(x)| \, dx = a ||f||_1,$$

结合 (a) 中给出的 $N \leq \|\cdot\|_1$ 知两范数等价, 因此必在 B 上诱导相同的拓扑.

5. 设 $\varphi:[0,1] \to [0,1]$ 是连续函数并且不恒等于 1. 设 $\alpha \in \mathbb{R}$, 定义 $C([0,1],\mathbb{R})$ 上的映射 T 为

$$T(f)(x) = \alpha + \int_0^x f(\varphi(t)) dt.$$

证明 T 是压缩映射.

根据以上结论证明下面的方程存在唯一解:

$$f(0) = \alpha, \quad f'(x) = f(\varphi(x)), \quad x \in [0, 1].$$

证明: 取 C([0,1]) 上的范数 $\|\cdot\|$, 定义为

$$||f|| = \sup_{x \in [0,1]} |f(x)| e^{-Mx}.$$

由 $\varphi([0,1]) \subset [0,1]$ 知

$$\sup_{t \in [0,1]} |f(\varphi(t)) - g(\varphi(t))| e^{-M\varphi(t)} \le \sup_{x \in [0,1]} |f(x) - g(x)| e^{-x} = ||f - g||.$$

因此

$$\begin{split} \|T(f)-T(g)\| &= \sup_{x \in [0,1]} \left| \int_0^x (f(\varphi(t))-g(\varphi(t))) \,\mathrm{d}t \right| \mathrm{e}^{-Mx} \\ &= \sup_{x \in [0,1]} \left| \int_0^x (f(\varphi(t))-g(\varphi(t))) \mathrm{e}^{-M\varphi(t)} \mathrm{e}^{M\varphi(t)} \,\mathrm{d}t \right| \mathrm{e}^{-Mx} \\ &\leq \|f-g\| \cdot \sup_{x \in [0,1]} \int_0^x \mathrm{e}^{M\varphi(t)} \,\mathrm{d}t \cdot \mathrm{e}^{-Mx}. \end{split}$$

下面我们说明通过选取合适的 M > 0, 可以使得

$$\lambda \colon = \sup_{0 \le x \le 1} \int_0^x \mathrm{e}^{M\varphi(t)} \, \mathrm{d}t \cdot \mathrm{e}^{-Mx} < 1.$$

令函数

$$h(x) := \int_0^x e^{M\varphi(t)} dt \cdot e^{-Mx}.$$

因 h(x) 在 [0,1] 上连续, 故 h(x) 在 [0,1] 上存在最大值点, 记之为 x_0 .

若 $x_0 < 1$, 则

$$h(x_0) = \int_0^{x_0} e^{M\varphi(t)} dt \cdot e^{-Mx_0} \le x_0 e^{M(1-x_0)},$$

取 $0 < M < \frac{-\ln x_0}{1-x_0}$, 则 $h(x_0) < 1$.

若 $x_0 = 1$, 注意到 φ 不恒等于 1, 则

$$h(x_0) = \int_0^1 e^{M\varphi(t)} dt \cdot e^{-M} < e^M \cdot e^{-M} = 1.$$

综上得知, 通过选择合适的 M>0, 可以使得映射 T 为 C([0,1]) 上的压缩映射. 且由 $\mathrm{e}^{-M}\|f\|_{\infty}\leq\|f\|\leq\|f\|_{\infty}$ 知 $(C([0,1]),\|\cdot\|)$ 是 Banach 空间, 故根据不动点定理知存在唯一 $f\in C([0,1])$ 使得 T(f)=f, 即:

$$\alpha + \int_0^x f(\varphi(t)) dt = f(x) \Leftrightarrow f(0) = \alpha \text{ }\exists . f'(x) = f(\varphi(x)).$$

6. 设 $\alpha \in \mathbb{R}, a > 0, b > 1$. 考察下面的微分方程

$$f(0) = \alpha, \quad f'(x) = af(x^b), \quad 0 \le x \le 1.$$
 (*)

$$||f|| = \sup_{0 \le x \le 1} |f(x)| e^{-Mx}$$

后成为一个 Banach 空间.

- (b) 设 $g(x) = \alpha + \int_0^x af(t^b) dt$, 定义映射 $T: E \to E$ 为 T(f) = g. 证明选择合适的 M, 可使 T 为压缩映射.
- (c) 证明方程 (*) 有唯一解.

证明: (a) 容易验证 $\|\cdot\|$ 是 $C([0,1],\mathbb{R})$ 上的范数, 并且

$$e^{-M} \sup_{0 \le x \le 1} |f(x)| \le \sup_{0 \le x \le 1} |f(x)| e^{-Mx} \le \sup_{0 \le x \le 1} |f(x)|,$$

即

$$e^{-M} ||f||_{\infty} \le ||f|| \le ||f||_{\infty}.$$

因此 $E = C([0,1],\mathbb{R})$ 赋予范数 $\|\cdot\|$ 是 Banach 空间.

(b) 因为

$$(T(f_1) - T(f_2))(x) = \int_0^x a(f_1(t^b) - f_2(t^b)) dt,$$

所以

$$||T(f_1) - T(f_2)|| = \sup_{0 \le x \le 1} \left| \int_0^x a \left(f_1(t^b) - f_2(t^b) \right) dt \right| \cdot e^{-Mx}$$

$$\le a \sup_{0 \le x \le 1} \int_0^x |f_1(t^b) - f_2(t^b)| e^{-Mt^b} \cdot e^{Mt^b} dt \cdot e^{-Mx}$$

$$\le ||f_1 - f_2|| \cdot a \sup_{0 \le x \le 1} \int_0^x e^{Mt^b} dt \cdot e^{-Mx}$$

$$\le ||f_1 - f_2|| \cdot a \sup_{0 \le x \le 1} \int_0^x e^{Mt} dt \cdot e^{-Mx}$$

$$= ||f_1 - f_2|| \cdot \sup_{0 \le x \le 1} \frac{a \left(1 - e^{-Mx}\right)}{M} \le \frac{a}{M} ||f_1 - f_2||.$$

故当 M > a 时, $||T(f_1) - T(f_2)|| < ||f_1 - f_2||$, 也就是此时 T 是压缩映射.

(c) 压缩映射有唯一不动点, 即存在唯一 $f \in C([0,1],\mathbb{R})$ 使得

$$\alpha + \int_0^x af(t^b) dt = f(x),$$

而上述方程等价于方程(*),证毕.

- 7. 设 E 是数域 \mathbb{K} 上的无限维向量空间. 设 $(e_i)_{i\in I}$ 是 E 中的一组向量, 若 E 中任一向量可用 $(e_i)_{i\in I}$ 中的有限个向量唯一线性表示,即对任意 $x\in E$, 存在唯一一组 $(\alpha_i)_{i\in I}\subset \mathbb{K}$, 使得仅有有限多个 α_i 不等于零且 $x=\sum_{i\in I}\alpha_ie_i$,则称 $(e_i)_{i\in I}$ 是 E 中的 Hamel 基.
 - (a) 由 Zorn 引理证明 E 有一组 Hamel 基.
 - (b) 假设 E 还是一个赋范空间, 证明 E 上必存在不连续的线性泛函.
 - (c) 证明在任一无限维赋范空间上,一定存在一个比原来的范数严格强的范数(即新范数诱导的拓扑一定比原来的范数诱导的拓扑强且不相同).

证明: (a) 首先构造一个偏序集 (\mathcal{F}, \subset) , 这里的 \mathcal{F} 是 \mathcal{E} 中一些子集构成的集族, 满足若 $\mathcal{F} \in \mathcal{F}$, 则 \mathcal{F} 中任意有限多个向量都线性无关, \subset 表示集合间的包含关系.

任取 \mathcal{F} 的一个链 \mathcal{A} , 令 $G = \bigcup_{A \in \mathcal{A}} A$, 则 $G \in \mathcal{F}$, 即 $G \not\in \mathcal{A}$ 的上界. 由 Zorn 引理知 \mathcal{F} 有极大元, 记为 \mathcal{B} . 如果存在 $x \in \mathcal{E}$, x 不能由 \mathcal{B} 中任意有限多个向量线性表达, 则 $\mathcal{B} \bigcup \{x\} \in \mathcal{F}$, 这与 \mathcal{B} 是极大元矛盾, 故这个极大元 \mathcal{B} 就是 \mathcal{E} 的 Hamel 基.

(b) 设 $B \in E$ 上的一个 Hamel 基,若 E 还是一个赋范空间,则不妨设 Hamel 基中的任一向量 e 的范数为 1,由于 E 中的任意向量关于 Hamel 基的线性表达是唯一的,故 E 上的线性泛函 f 由其在 Hamel 基中每一个元素上的取值 f(e) 决定,显然 Hamel 基是无限集,故我们可以选取一个序列 $(e_n) \in B$,令 $f(e_n) = n$; 当 $e \in B \setminus (e_n)$ 时,f(e) = 1,则线性泛函 f 在 E 上不连续.

注: 和课本定理 3.2.9 对比体会有限维和无限维的区别.

(c) 仍考虑 (b) 中约定的 Hamel 基 B, 并记 E 上原有的范数为 $\|\cdot\|$, 接下来定义 E 上的新范数 $\|\cdot\|_1$, 取 $(e_n) \in B$, 令 $\|e_n\|_1 = n, n \ge 1$; 当 $e \in B \setminus (e_n)$ 时, 令 $\|e\|_1 = \|e\|$, 任取 $x \in E$, 则 $x = \sum_{i \in I} \lambda_i e_i$, $J \subset I$ 是有限集, 注意这种表达式唯一, 令

$$||x||_1 = \sum_{i \in J} |\lambda_i| ||e_i||_1$$

容易验证 $\|\cdot\|_1$ 确实是 E 上的范数, 并且由三角不等式有

$$||x|| = ||\sum_{j \in J} \lambda_j e_j|| \le \sum_{j \in J} |\lambda_j| ||e_j|| \le \sum_{j \in J} |\lambda_j| ||e_j||_1 = ||x||_1$$

故 $\|\cdot\|_1$ 是在 E 上比 $\|\cdot\|$ 强的范数. 另一方面 (b) 约定的线性泛函 f 满足

$$|f(x)| \le \sum_{j \in J} |\lambda_j| |f(e_j)| = \sum_{j \in J} |\lambda_j| ||e_j||_1 = ||x||_1$$

但是 f 关于原来的范数 $\|\cdot\|$ 不连续, 这意味着 $\|\cdot\|$ 一定是比 $\|\cdot\|$ 严格强的范数.

8. 设 E 为数域 \mathbb{K} 上有限维向量空间, 其维数 $\dim E = n$. $\{e_1, \dots, e_n\}$ 表示 E 上的一组基, 任取 $u \in \mathcal{L}(E)$, 令 [u] 表示 u 在这组基下对应的矩阵.

- (a) 证明映射 $u \mapsto [u]$ 建立了从 $\mathcal{L}(E)$ 到所有 $n \times n$ 矩阵构成的向量空间 $\mathbb{M}_n(\mathbb{K})$ 之间的同构映射.
- (b) 假设 $E = \mathbb{K}^n$ 且 $\{e_1, \dots, e_n\}$ 是经典基 (即 $e_k = (0, \dots, 0, 1, 0, \dots, 0)$, 对应于第 k 个向量, 它仅在第 k 个位置取 1 , 其他位置取 0). 并约定 $E = \mathbb{K}^n$ 赋予欧氏范数. 证明若 u (或等价地 [u]) 可对角化, 则 $||u|| = \max\{|\lambda_1|, \dots, |\lambda_n|\}$, 这里 $\lambda_1, \dots, \lambda_n$ 是 u 的特征值.
 - (c) $\{e_1, \dots, e_n\}$ 如上, 试由 [u] 中的元素分别确定在 p = 1 和 $p = \infty$ 时的范数 $\|u : (\mathbb{K}^n, \|\cdot\|_p) \to (\mathbb{K}^n, \|\cdot\|_p)\|$. 证明: (a) 记

$$u(e_k) = \sum_{m=1}^{n} u_{mk} e_m, \quad k = 1, \dots, n$$

并记矩阵 $[u]=(u_{mk})\in \mathbb{M}_n(\mathbb{K}),$ 则 $(u(e_1),\cdots,u(e_n))=(e_1,\cdots,e_n)[u].$ 任取 $x\in E,$ 存在唯一的一组数 x_1,\cdots,x_n 使得 $x=\sum_{k=1}^n x_k e_k.$ 则

$$u(x) = \sum_{k=1}^{n} x_k u(e_k) = (e_1, \dots, e_n)[u] \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

由此说明映射 $u \mapsto [u]$ 建立了从 $\mathcal{L}(E)$ 到所有 $n \times n$ 矩阵构成的向量空间 $\mathbb{M}_n(\mathbb{K})$ 之间的同构映射.

(b) 注: 这一问的题目条件稍微改一下, 将 u 可对角化改为 u 可酉对角化, 即存在酉矩阵 P 使得 $P[u]P^* = \Lambda$, 其中 $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_n\}$.

由题意知此时 E 为有限维赋范空间, 故由定理 3.2.9 知 $\mathcal{L}(E) = \mathcal{B}(E)$, 即对于任意 $u \in \mathcal{L}(E)$, 都有 u 为有界线性算子. 对于任意 $x \in E = \mathbb{K}^n$, 由 (a) 知 u(x) 在 e_1, \dots, e_n 下的坐标为 $[u]_x$, 故

$$||u(x)||^{2} = x^{*}[u]^{*}[u]x$$

$$= x^{*}P^{*}\Lambda^{*}PP^{*}\Lambda Px$$

$$= (Px)^{*}\Lambda^{*}\Lambda(Px)$$

$$= (Px)^{*} \begin{pmatrix} |\lambda_{1}|^{2} & & \\ & \ddots & \\ & |\lambda_{n}|^{2} \end{pmatrix} (Px)$$

$$\leq \max\{|\lambda_{1}|, \dots, |\lambda_{n}|\}^{2} ||Px||^{2}$$

$$= \max\{|\lambda_{1}|, \dots, |\lambda_{n}|\}^{2} ||x||^{2},$$

故 $||u(x)|| \le \max\{|\lambda_1|, \dots, |\lambda_n|\}||x||$, 因此 $||u|| \le \max\{|\lambda_1|, \dots, |\lambda_n|\}$.

设 $\max\{|\lambda_1|, \dots, |\lambda_n|\} = |\lambda_k|$,取 $Px = (0, \dots, 0, 1, 0, \dots, 0)^T$,||x|| = 1,其中 1 位于第 k个坐标位置,则

$$||u(x)||^2 = |\lambda_k|^2 ||x||^2 \Rightarrow ||u(x)|| = |\lambda_k|||x||$$

综上知 $||u|| = \max\{|\lambda_1|, \cdots, |\lambda_n|\}$

(i) 当
$$p=1$$
 时, 任取 $x=(x_1,\cdots,x_n)^T\in\mathbb{K}^n$, 则

$$||u(x)||_{1} = ||[u]x||_{1} = \sum_{j=1}^{n} \left| \sum_{i=1}^{n} u_{ji} x_{i} \right|$$

$$\leq \sum_{j=1}^{n} \sum_{i=1}^{n} |u_{ji}| \cdot |x_{i}| = \sum_{i=1}^{n} \sum_{j=1}^{n} |u_{ji}| \cdot |x_{i}|$$

$$= \sum_{i=1}^{n} \left(|x_{i}| \sum_{j=1}^{n} |u_{ji}| \right) \leq \left(\max_{1 \leq i \leq n} \sum_{j=1}^{n} |u_{ji}| \right) ||x||_{1},$$

故

$$||u||_1 \le \max_{1 \le i \le n} \sum_{j=1}^n |u_{ji}|.$$

设 $\max_{1\leq i\leq n}\sum_{j=1}^n|u_{ji}|=\sum_{j=1}^n|u_{jk}|$, 取 $x=(0,\cdots,0,1,0,\cdots,0)^T,\|x\|_1=1$, 其中 1 位于第 k 个坐标位置,则

$$||u(x)||_1 = \left(\sum_{j=1}^n |u_{jk}|\right) ||x||_1.$$

综上得知

$$||u||_1 = \max_{1 \le i \le n} \sum_{j=1}^n |u_{ji}|.$$

(ii) 当 $p = \infty$ 时, 同理可证明:

$$||u||_{\infty} = \max_{1 \le j \le n} \sum_{i=1}^{n} |u_{ji}|.$$

- **9.** 设 *E* 是 Banach 空间.
- (a) 设 $u \in \mathcal{B}(E)$ 且 ||u|| < 1. 证明 $I_E u$ 在 $\mathcal{B}(E)$ 中可逆.
- (b) 设 GL(E) 表示 $\mathcal{B}(E)$ 中可逆元构成的集合. 证明 GL(E) 关于复合运算构成一个群且是 $\mathcal{B}(E)$ 中的开集.
- (c) 证明 $u \to u^{-1}$ 是 GL(E) 上的同胚映射.

证明: 因为 $\|u\|<1$, 且 $\|u^n\|\leq\|u\|^n$, 所以级数 $\sum_{n=0}^\infty\|u^n\|$ 收敛, 又因为 $\mathcal{B}(E)$ 完备, 故 $\sum_{n=0}^\infty u^n$ 收敛, 记

$$v = \sum_{n=0}^{\infty} u^n \in \mathcal{B}(E).$$

则

$$(I_E - u)v = \lim_{k \to \infty} (I_E - u) \sum_{n=0}^k u^n = I_E.$$

同理可证 $v(I_E - u) = I_E$, 因此 $I_E - u$ 在 $\mathcal{B}(E)$ 中可逆.

(b)

- (uv)w = u(vw), 即满足结合律
- 恒等映射 id 即为单位元
- 任意元 u 都存在 $u^{-1} \in GL(E), s.t.u \circ u^{-1} = id$

故 GL(E) 关于复合运算构成一个群,下证 GL(E) 是 $\mathcal{B}(E)$ 中的开集: 任意 $u \in GL(E)$,考虑 u 的开球 $B(u, \|u^{-1}\|^{-1})$,则 $\forall v \in B(u, \|u^{-1}\|^{-1})$,有 $\|v - u\| < \|u^{-1}\|^{-1}$,故 $\|u^{-1}(u - v)\| \le \|u^{-1}\| \cdot \|u - v\| < 1$,从而

$$I - u^{-1}(u - v) = u^{-1}v \in GL(E).$$

由群中元素运算封闭性知

$$u \cdot u^{-1}v = v \in GL(E).$$

故

$$B(u, ||u^{-1}||^{-1}) \in GL(E).$$

由开集的定义知 GL(E) 是 $\mathcal{B}(E)$ 中的开集.

- (c) $\exists \Box \Phi : GL(E) \to GL(E), u \mapsto u^{-1}.$
- 显然映射 $\Phi: u \mapsto u^{-1} \not\in GL(E)$ 上的双射;
- Φ 连续: 由前面的证明过程知 $\forall v \in B(u, ||u^{-1}||^{-1})$ 有

$$(I - u^{-1}(u - v))^{-1} = \sum_{n=0}^{\infty} (u^{-1}(u - v))^n.$$

故

$$v^{-1} = (u - (u - v))^{-1} = (u(I - u^{-1}(u - v)))^{-1} = \sum_{n=0}^{\infty} (u^{-1}(u - v))^n u^{-1}.$$

因此

$$||v^{-1} - u^{-1}|| = ||\sum_{n=1}^{\infty} (u^{-1}(u - v))^n u^{-1}||$$

$$\leq ||u^{-1}|| \cdot \sum_{n=1}^{\infty} (||u - v|| \cdot ||u^{-1}||)^n$$

$$= \frac{||u^{-1}||^2 ||u - v||}{1 - ||u^{-1}|| \cdot ||u - v||}.$$

当 $||u-v|| \to 0$ 时, $||u^{-1}-v^{-1}|| \to 0$, 所以 Φ 连续;

• $\Phi = \Phi^{-1}$

综上知 Φ 是 GL(E) 上的同胚.

10. 设 $f \in L_2(\mathbb{R}), g(x) = \frac{1}{x} \mathbb{1}_{[1,\infty)}(x)$, 证明 $fg \in L_1(\mathbb{R})$. 给出例子说明 $f_1, f_2 \in L_1(\mathbb{R})$, 但 是 $f_1f_2 \notin L_1(\mathbb{R})$.

证明: (1) 因为

$$g(x) = \frac{1}{x} \cdot \mathbb{1}_{[1,+\infty)}(x),$$

所以

$$\int_{\mathbb{R}} g^{2}(x) \, dx = \int_{1}^{\infty} \frac{1}{x^{2}} \, dx = 1.$$

故 $g \in L_2(\mathbb{R})$, 又 $f \in L_2(\mathbb{R})$, 所以 $fg \in L_1(\mathbb{R})$.

(2) 取

$$f_1(x) = f_2(x) = \frac{1}{\sqrt{x}} \mathbb{1}_{(0,1)}(x),$$

则

$$\int_{\mathbb{R}} |f_1(x)| \, \mathrm{d}x = \int_{\mathbb{R}} |f_2(x)| \, \mathrm{d}x = \int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = 2,$$

但是

$$\int_{\mathbb{R}} |f_1(x)f_2(x)| \, \mathrm{d}x = \int_0^1 \frac{1}{x} \, \mathrm{d}x = +\infty.$$

- **11.** 设 $(\Omega, \mathcal{A}, \mu)$ 为有限测度空间, 即有 $\mu(\Omega) < \infty$.
- (a) 证明若 $0 , 则 <math>L_q(\Omega) \subset L_p(\Omega)$. 用反例说明当 $\mu(\Omega) = \infty$ 时, 结论不成 <u>)</u>.

 - (b) 证明若 $f \in L_{\infty}(\Omega)$, 则 $f \in \bigcap_{p < \infty} L_p(\Omega)$ 且 $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$. (c) 设 $f \in \bigcap_{p < \infty} L_p(\Omega)$ 且满足 $\limsup_{p \to \infty} ||f||_P < \infty$, 证明 $f \in L_{\infty}(\Omega)$.

证明: (a) 因 $0 , 故可设 <math>\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$, 其中 r > 0. 因 $\mu(\Omega) < \infty$, 故 $\int_{\Omega} 1^r d\mu = \mu(\Omega) < \infty \Rightarrow 1 \in L_r(\Omega)$. 任取 $f \in L_q(\Omega)$, 由 Hölder 不等式可得 $f = f \cdot 1 \in L_p(\Omega)$, 且.

$$||f||_p \le ||f||_q ||1||_r = ||f||_q \cdot (\mu(\Omega))^{1/r}$$

因此 $L_q(\Omega) \subset L_p(\Omega)$.

当 $\mu(\Omega) = \infty$ 时, $L_q(\Omega) \subset L_p(\Omega)$ 不一定成立, 例如取 $f(x) = \frac{1}{x}$, 则 $f \in L_2([1,\infty))$, 但 $f \notin L_1([1,\infty))$.

(b) 对于任意 $p < \infty$, 有 $\frac{1}{p} = \frac{1}{\infty} + \frac{1}{p}$. 又因为 $f \in L_{\infty}(\Omega)$, $1 \in L_{p}(\Omega)$, 所以由 Hölder 不等式知 $f = f \cdot 1 \in L_{p}(\Omega)$, 从而 $f \in \bigcap_{p < \infty} L_{p}(\Omega)$. 又因

$$||f||_p = \left(\int_{\Omega} |f|^p d\mu\right)^{1/p} \le \left(\int_{\Omega} ||f||_{\infty}^p d\mu\right)^{1/p} = ||f||_{\infty} (\mu(\Omega))^{1/p},$$

故

$$\limsup_{p \to \infty} \|f\|_p \le \|f\|_{\infty}. \tag{*}$$

任意固定 $\delta>0$, 令 $\Omega_\delta=\{x\mid |f(x)|>\|f\|_\infty-\delta\}$, 则 $\mu(\Omega_\delta)>0$, 否则的话, 假设 $\mu(\Omega_\delta)=0$, 则由本性上确界的定义知 $\|f\|_\infty\leq\|f\|_\infty-\delta$, 矛盾. 故

$$||f||_p = \left(\int_{\Omega} |f|^p d\mu\right)^{1/p} \ge \left(\int_{\Omega_{\delta}} (||f||_{\infty} - \delta)^p d\mu\right)^{1/p} = (||f||_{\infty} - \delta) (\mu(\Omega_{\delta}))^{1/p},$$

两侧取下极限并结合 δ 的任意性, 得

$$\liminf_{p \to \infty} ||f||_p \ge ||f||_{\infty}.$$

 $\dot{\mathbf{H}}$ (*)(**) 得 $\lim_{p\to\infty} \|f\|_p = \|f\|_{\infty}$.

(c) 假设 $f \notin L_{\infty}(\Omega)$, 则对任意 M>0, 存在 $A\in\mathcal{A}$, 使得 $\mu(A)>0$ 且在 $A\perp |f|>M$, 则

$$||f||_p = \left(\int_{\Omega} |f|^p d\mu\right)^{1/p} \ge \left(\int_A M^p d\mu\right)^{1/p} = M \cdot (\mu(A))^{1/p},$$

于是

$$\limsup_{p \to \infty} ||f||_p \ge M.$$

由于 M 是任意的, 故上式与 $\limsup_{p\to\infty} \|f\|_p < \infty$ 相矛盾.

12. 设 0 . 并令

$$\frac{1}{s} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

证明若 $f \in L_p(\Omega) \cap L_q(\Omega)$, 则

$$f \in L_s(\Omega)$$
 \coprod $||f||_s \le ||f||_p^\theta ||f||_q^{1-\theta}$.

证明: $\theta=0$ 与 $\theta=1$ 的情形是平凡的, 故只需考虑 $0<\theta<1$. 因 $f\in L_p(\Omega)$, 故 $f^{\theta}\in L_{\frac{p}{\theta}}(\Omega)$. 又因 $f\in L_q(\Omega)$, 故 $f^{1-\theta}\in L_{\frac{q}{1-\theta}}(\Omega)$. 而 $\frac{1}{s}=\frac{1}{p/\theta}+\frac{1}{q/(1-\theta)}$, 故由 Hölder 不等式 知 $f=f^{\theta}f^{1-\theta}\in L_s(\Omega)$ 且

$$||f||_s \le ||f^{\theta}||_{\frac{p}{\theta}} ||f^{1-\theta}||_{\frac{q}{1-\theta}} = ||f||_p^{\theta} ||f||_q^{1-\theta}.$$

13. (广义 Minkowski 不等式) 设 $(\Omega_1, \mathcal{A}_1, \mu_1)$ 和 $(\Omega_2, \mathcal{A}_2, \mu_2)$ 是两个测度空间, $0 . 证明对任意可测函数 <math>f: (\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2) \to \mathbb{K}$, 有

$$\left(\int_{\Omega_{2}} \left(\int_{\Omega_{1}} \left| f(x_{1}, x_{2}) \right|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p}} d\mu_{2}(x_{2}) \right)^{\frac{1}{q}} \\
\leq \left(\int_{\Omega_{1}} \left(\int_{\Omega_{2}} \left| f(x_{1}, x_{2}) \right|^{q} d\mu_{2}(x_{2}) \right)^{\frac{p}{q}} d\mu_{1}(x_{1}) \right)^{\frac{1}{p}}.$$

证明: 首先由 Fubini 定理可得

$$\int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p}} d\mu_{2}(x_{2})$$

$$= \int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p}-1} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right) d\mu_{2}(x_{2})$$

$$= \int_{\Omega_{1}} \int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p}-1} \cdot |f(x_{1}, x_{2})|^{p} d\mu_{2}(x_{2}) d\mu_{1}(x_{1}).$$

然后由 Hölder 不等式得

$$\int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p} - 1} \cdot |f(x_{1}, x_{2})|^{p} d\mu_{2}(x_{2})$$

$$\leq \left[\int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p}} d\mu_{2}(x_{2}) \right]^{\frac{q - p}{q}} \left(\int_{\Omega_{2}} |f(x_{1}, x_{2})|^{q} d\mu_{2}(x_{2}) \right)^{\frac{p}{q}}.$$

故

$$\int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p}} d\mu_{2}(x_{2})
\leq \left[\int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1}) \right)^{\frac{q}{p}} d\mu_{2}(x_{2}) \right]^{\frac{q-p}{q}} \cdot \int_{\Omega_{1}} \left(\int_{\Omega_{2}} |f(x_{1}, x_{2})|^{q} d\mu_{2}(x_{2}) \right)^{\frac{p}{q}} d\mu_{1}(x_{1}).$$

即

$$\left[\int_{\Omega_2} \left(\int_{\Omega_1} |f(x_1, x_2)|^p d\mu_1(x_1) \right)^{\frac{q}{p}} d\mu_2(x_2) \right]^{\frac{p}{q}} \leq \int_{\Omega_1} \left(\int_{\Omega_2} |f(x_1, x_2)|^q d\mu_2(x_2) \right)^{\frac{p}{q}} d\mu_1(x_1).$$

因此

$$\left(\int_{\Omega_{2}} \left(\int_{\Omega_{1}} \left|f\left(x_{1}, x_{2}\right)\right|^{p} d\mu_{1}(x_{1})\right)^{\frac{q}{p}} d\mu_{2}\left(x_{2}\right)\right)^{\frac{1}{q}} d\mu_{2}\left(x_{2}\right) \leq \left(\int_{\Omega_{1}} \left(\int_{\Omega_{2}} \left|f\left(x_{1}, x_{2}\right)\right|^{q} d\mu_{2}\left(x_{2}\right)\right)^{\frac{p}{q}} d\mu_{1}\left(x_{1}\right)\right)^{\frac{1}{p}}.$$

14. 设 0 .

(a) 对任意 $x = (x_n) \in \ell_p$ 定义 (0,1) 上如下的函数

$$T(x)(t) = \sum_{n \ge 1} [n(n+1)]^{\frac{1}{p}} x_n \mathbb{1}_{(\frac{1}{n+1}, \frac{1}{n})}(t).$$

证明 $T \in \ell_p$ 到 $L_p(0,1)$ 的线性等距同构映射.

(b) 假设 $p \ge 1$ 且 q 是 p 的共轭数. 对任意 $f \in L_p(0,1)$, 定义

$$S(f)_n = [n(n+1)]^{\frac{1}{q}} \int_{\frac{1}{n+1}}^{\frac{1}{n}} f(t) dt, \ \forall n \ge 1$$

证明 S 定义了从 $L_p(0,1)$ 到 ℓ_p 上的线性映射并且 $S \circ T$ 等于 ℓ_p 上的单位映射. **证明**: (a)

•

$$\int_{0}^{1} |T(x)(t)|^{p} dt = \int_{0}^{1} \left| \sum_{n \ge 1} [n(n+1)]^{\frac{1}{p}} x_{n} \mathbb{1}_{\left(\frac{1}{n+1}, \frac{1}{n}\right)}(t) \right|^{p} dt$$

$$= \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \left| [n(n+1)]^{\frac{1}{p}} x_{n} \right|^{p} dt$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) n(n+1) |x_{n}|^{p} = \sum_{n=1}^{\infty} |x_{n}|^{p} < \infty$$

故 $T(x)(t) \in L_p(0,1)$.

• 线性:

$$T(\lambda x + y)(t) = \sum_{n \ge 1} [n(n+1)]^{\frac{1}{p}} (\lambda x_n + y_n) \mathbb{1}_{(\frac{1}{n+1}, \frac{1}{n})}(t) = \lambda \cdot T(x) + T(y)$$

• 等距: 由第一条知 $\forall x, y \in \ell_p$:

$$||T(x-y)(t)||_p = \left(\int_0^1 (T(x-y)(t))^p dt\right)^{\frac{1}{p}} = \left(\sum_{n=1}^\infty (x_n - y_n)^p\right)^{\frac{1}{p}} = ||x - y||_p$$

故 T 是等距映射

注意: 题目有一点小问题,T 不是同构,因为不满足满射,例如 $f(x) = x \in L_p(0,1)$ 不存在原像. (b)

•

$$\sum_{i=1}^n |S(f)_n|^p = \sum_{n=1}^\infty [n(n+1)]^{\frac{p}{q}} \left| \int_{\frac{1}{n+1}}^{\frac{1}{n}} f(t) \, \mathrm{d}t \right|^p \leq \sum_{n=1}^\infty [n(n+1)]^{p-1} \left(\int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)| \, \mathrm{d}t \right)^p$$

(i) 当 p = 1 时:

$$\sum_{n=1}^{\infty} |S(f)_n| \le \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)| \, \mathrm{d}t = \int_{0}^{1} |f(t)| \, \mathrm{d}t < \infty$$

故 $(S(f)_n)_{n\geq 1} \in \ell_1$

(ii) 当 p > 1 时:

$$\sum_{n=1}^{\infty} |S(f)_n|^p \le \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \cdot (n(n+1))^p \cdot \left(\int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)| \, \mathrm{d}t \right)^p$$
$$= \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \left(\int_{\frac{1}{n+1}}^{\frac{1}{n}} n(n+1)|f(t)| \, \mathrm{d}t \right)^p$$

由 Hölder 不等式得:

$$\int_{\frac{1}{n+1}}^{\frac{1}{n}} n(n+1)|f(t)| \, \mathrm{d}t \le \left(\int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)|^p \, \mathrm{d}t\right)^{\frac{1}{p}} \cdot \left(\int_{\frac{1}{n+1}}^{\frac{1}{n}} (n(n+1))^q\right)^{\frac{1}{q}}$$

故

$$\left(\int_{\frac{1}{n+1}}^{\frac{1}{n}} n(n+1)|f(t)| \, \mathrm{d}t\right)^{p} \le \int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)|^{p} \, \mathrm{d}t \cdot \left((n(n+1))^{q} \frac{1}{n(n+1)}\right)^{\frac{p}{q}}$$

$$= \int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)|^{p} \, \mathrm{d}t \cdot (n(n+1))^{(p-1)(q-1)}$$

$$= n(n+1) \int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)|^{p} \, \mathrm{d}t$$

从而

$$\sum_{n=1}^{\infty} |S(f)_n|^p \le \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} |f(t)|^p dt = \int_0^1 |f(t)|^p dt < \infty$$

综上知 S 确实将 $L_p(0,1)$ 中得元素映到 ℓ_p 中

• 线性:

$$S(\lambda f + g)_n = [n(n+1)]^{\frac{1}{q}} \int_{\frac{1}{n+1}}^{\frac{1}{n}} (\lambda f(t) + g(t)) dt = \lambda S(f)_n + S(g)_n$$

• 单位映射: $\forall x \in \ell_p$, 有

$$((S \circ T)(x))_n = (S(T(x)(t)))_n = [n(n+1)]^{\frac{1}{q}} \int_{\frac{1}{n+1}}^{\frac{1}{n}} [n(n+1)]^{\frac{1}{p}} x_n dt = x_n$$

故 $(S \circ T)(x) = x$, 即 $S \circ T$ 是 ℓ_p 上的单位映射.

证毕.

- **15.** (a) 证明: 若 (E,d) 是可分的度量空间, $F \subset E$, 则 (F,d) 也是可分的度量空间.
- (b) 证明: $\mathbb{R}^n, c_0, \ell_p, 1 \leq p < \infty, C([a, b], \mathbb{R}), C_0(\mathbb{R}, \mathbb{R})$ 和 $L_p(0, 1), 1 \leq p < \infty$, 都是可分的.
- (c) 设 $C = \{-1,1\}^{\mathbb{N}}$ 是 ℓ_{∞} 的子集, 它由所有的每项是 1 或 -1 的序列构成. 首先验证若 x 和 y 是 C 中两个不同序列, 则 $||x-y||_{\infty} = 2$. 再证明 C 不可数, 由此导出 ℓ_{∞} 不可分. 类似证明 $L_{\infty}(0,1)$ 不可分.

证明: (a) 因 (E,d) 可分,故有可数稠密子集 A, 令 $B = A \cap F$, 则 B 为 (F,d) 的可数稠密子集,从而 (F,d) 可分.

(b) 令 $\mathbb{Q}^n = \{(q_1, \dots, q_n) \mid q_i \in \mathbb{Q}, 1 \leq i \leq n\}$, 则 \mathbb{Q}^n 为 \mathbb{R}^n 的可数稠密子集.

 c_0 可分: 令 $S_k = \{(a_0, \cdots, a_k, 0, \cdots) \mid a_i \in \mathbb{Q}, 1 \leq i \leq k\}, S = \bigcup_{k \geq 1} S_k$,则 S 为可数集. 任取 $y = (y_n)_{n \geq 1} \in c_0$,由于 $\lim_{n \to \infty} |y_n| = 0$,故对任意 $\epsilon > 0$,存在 N,使得 当 n > N 时, $|y_n| < \epsilon$. 由 \mathbb{Q} 在 \mathbb{R} 中稠密可知存在 $x = (x_1, \cdots, x_N, 0, \cdots) \in S_N$,使得 $|x_i - y_i| < \epsilon (1 \leq i \leq N)$,从而 $|x - y||_{\infty} < \epsilon$,从而 S 在 c_0 中稠密.

(c) 我们先说明一个引理: 设 (E,d) 为度量空间, $U \subset E$ 为不可数子集且存在 r > 0, 使得对任意 $x,y \in U, x \neq y$, 有 $d(x,y) \geq r$, 则 E 不可分.

引理证明: 假设 E 存在可数稠密子集 C, 即 $C = (x_n)_{n \geq 1}$ 且 $\overline{C} = E$. 首先我们有 $E = \bigcup_{n=1}^{\infty} B(x_n, \frac{r}{2})$, 事实上, 任取 $x \in E = \overline{C}$, 由闭包的性质知 $B(x, \frac{r}{2}) \cap C \neq \emptyset$, 即存在 C 中某 x_n 使得 $x_n \in B(x, \frac{r}{2})$, 而 $x_n \in B(x, \frac{r}{2})$ $\Leftrightarrow x \in B(x_n, \frac{r}{2})$, 因此 $x \in \bigcup_{n=1}^{\infty} B(x_n, \frac{r}{2})$, 从而 $E = \bigcup_{n=1}^{\infty} B(x_n, \frac{r}{2})$. (从过程可看出,这里的 $\frac{r}{2}$ 可替换为任意的正常数,只不过为下面导出矛盾,故选择 $\frac{r}{2}$).

于是 $U \subset \bigcup_{n=1}^{\infty} B(x_n, \frac{r}{2})$,而 U 为不可数子集,故必存在不同两点 $x, y \in U$ 包含于同一个 球 $B(x_n, \frac{r}{2})$ 中,那么 d(x, y) < r,矛盾. 这就说明 E 不可分.

 ℓ_{∞} 不可分: 考虑 ℓ_{∞} 的子集 $C = \{1, -1\}^{\mathbb{N}}$,若 $x = (x_n)_{n \geq 1}$ 与 $y = (y_n)_{n \geq 1}$ 是 C 中两个不同序列,则必存在某 $n_0 \geq 1$,使得 $x_{n_0} \neq y_{n_0} \Rightarrow |x_{n_0} - y_{n_0}| = 2$,从而 $||x - y||_{\infty} = 2$.根据实变函数中的技巧,将 C 中元素与无限小数表示对应可证 C 的基数为 c,即 C 不可数. 因此 ℓ_{∞} 不可分.

 $L_{\infty}(0,1)$ 不可分: 考虑 $L_{\infty}(0,1)$ 的子集 $A=(\mathbb{1}_{(0,r)})_{0< r<1}$, 显然 A 为不可数子集, 且对于任意的 $r_1\neq r_2$, 有 $\|\mathbb{1}_{(0,r_1)}-\mathbb{1}_{(0,r_2)}\|_{\infty}=1$, 故 $L_{\infty}(0,1)$ 不可分.

16. (卷积) 在实数集 \mathbb{R} 上取 Lebesgue σ -代数及 Lebesgue 测度, 并设 $f,g \in L_1(\mathbb{R})$.

(a) 证明

$$\begin{split} \int_{\mathbb{R} \times \mathbb{R}} f(u) g(v) \, \mathrm{d}u \, \mathrm{d}v &= \left[\int_{\mathbb{R}} f(u) \, \mathrm{d}u \right] \left[\int_{\mathbb{R}} g(v) \, \mathrm{d}v \right] \\ &= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} f(x - y) g(y) \, \mathrm{d}y \right] \mathrm{d}x. \end{split}$$

由此导出函数 $x \mapsto \int_{\mathbb{R}} f(x-y)g(y) \, \mathrm{d}y$ 在 \mathbb{R} 上几乎处处有定义.

(b) 我们定义 f 和 g 的卷积 f * g 为

$$f * g(x) = \begin{cases} \int_{\mathbb{R}} f(x - y)g(y) \, \mathrm{d}y, & \text{当积分存在,} \\ 0, & \text{其他.} \end{cases}$$

证明 $f * g \in L_1(\mathbb{R})$ 且 $||f * g||_1 \le ||f||_1 ||g||_1$.

(c) 取 $f = \mathbb{1}_{[0,1]}$, 计算 f * f.

证明: 首先容易验证 f(x-y)g(y) 为可测函数, 故由 Tonelli 定理得

$$\begin{split} \int_{\mathbb{R}^2} |f(x-y)g(y)| \, \mathrm{d}(x,y) &= \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-y)g(y)| \, \mathrm{d}x \, \mathrm{d}y \\ &= \int_{\mathbb{R}} |g(y)| \int_{\mathbb{R}} |f(x-y)| \, \mathrm{d}x \, \mathrm{d}y \\ &= \|f\|_{L_1} \int_{\mathbb{R}} |g(y)| \, \mathrm{d}y = \|f\|_{L_1} \|g\|_{L_1} < \infty. \end{split}$$

故 f(x-y)g(y) 在 \mathbb{R}^2 上可积, 由 Fubini 定理立即可得对于几乎处处的 $x \in \mathbb{R}$, 有

$$\int_{\mathbb{R}} f(x-y)g(y) \, \mathrm{d}y < \infty,$$

也即函数 $x \mapsto \int_{\mathbb{R}} f(x-y)g(y) \, \mathrm{d}y$ 在 \mathbb{R} 上几乎处处有定义.

(b) 由 (a) 中结论知

$$\int_{\mathbb{R}} |f * g(x)| \, \mathrm{d}x = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(x - y)g(y) \, \mathrm{d}y \right| \, \mathrm{d}x$$

$$\leq \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x - y)g(y)| \, \mathrm{d}y \, \mathrm{d}x$$

$$= ||f||_{L_1} ||g||_{L_1} < \infty.$$

故 $f * g \in L_1(\mathbb{R})$ 且 $||f * g||_{L_1} \leq ||f||_{L_1} ||g||_{L_1}$.

(c) 由定义

$$f * f(x) = \int_{\mathbb{R}} f(x - y) f(y) \, dy = \int_{\mathbb{R}} \mathbb{1}_{[0,1]} (x - y) \mathbb{1}_{[0,1]} (y) \, dy$$
$$= \int_{0}^{1} \mathbb{1}_{[0,1]} (x - y) \, dy.$$

分类讨论可得, 当 x < 0 时, f * f(x) = 0; 当 $0 \le x \le 1$ 时, f * f(x) = x; 当 $1 < x \le 2$ 时, f * f(x) = 2 - x; 当 x > 2 时, f * f(x) = 0.

17. 在 \mathbb{R} 上考虑 Borel σ -代数和 Lebesgue 测度. 设 $1 且 <math>f \in L_p(0, +\infty)$. 定义

$$F(x) = \frac{1}{x} \int_0^x f(t) dt, \quad \forall x > 0.$$

本题的目标是证明 Hardy 不等式:

$$||F||_p \le \frac{p}{p-1} ||f||_p, \forall f \in L_p(0, +\infty). \tag{*}$$

(a) 首先说明 F 在 $(0,+\infty)$ 上的定义是合理的, 并且

$$|x_1F(x_1) - x_2F(x_2)| \le |x_1 - x_2|^{\frac{1}{q}} ||f||_p, \quad \forall x_1, x_2 > 0.$$

这里 $q \neq p$ 的共轭数. 并由此证明 F 在 $(0,+\infty)$ 上连续, 故可测.

(b) 假设 f 是有紧支撑的连续函数且 $f \ge 0$. 证明 F 在 $(0, \infty)$ 上连续可导且有

$$(p-1)\int_0^{+\infty} F(x)^p dx = p \int_0^{+\infty} F(x)^{p-1} f(x) dx.$$

并由此导出公式(*).

- (c) 证明公式 (*) 对所有的 $f \in L_p(0, +\infty)$ 成立.
- (d) 用反例说明当 p=1 时, (\star) 不成立, 即不存在任何常数 C>0, 使得

$$||F||_p \le C||f||_p, \quad \forall f \in L_p(0, +\infty).$$

(e) 证明 $\frac{p}{p-1}$ 是使得 (*) 式成立的最优常数. 也就是说, 若有 C>0 使得

$$||F||_p \le C||f||_p, \quad \forall f \in L_p(0, +\infty),$$

则 $C \geq \frac{p}{p-1}$.

提示: 考虑函数 $f(x) = x^{-\frac{1}{p}} \mathbb{1}_{[1,n]}(x)$ 和极限

$$||F\mathbb{1}_{[1,n]}(x)||_p/||f||_p, n \to \infty.$$

证明: (a) 不妨设 $x_1 \leq x_2$, 则

$$|x_1 f(x_1) - x_2 f(x_2)| = \left| \int_0^{x_1} f(t) dt - \int_0^{x_2} f(t) dt \right|$$

$$= \left| \int_{x_1}^{x_2} f(t) dt \right|$$

$$\leq \int_{x_1}^{x_2} |f(t)| dt$$

$$\leq \left(\int_{x_1}^{x_2} |f(t)|^p dt \right)^{\frac{1}{p}} \left(\int_{x_1}^{x_2} 1 dt \right)^{\frac{1}{q}}$$

$$\leq |x_1 - x_2|^{\frac{1}{q}} ||f||_p.$$

(b) 注意到 (xF(x))' = f(x), 故由分部积分得

$$p \int_{0}^{+\infty} F(x)^{p-1} f(x) \, \mathrm{d}x = p \int_{0}^{+\infty} F(x)^{p-1} \, \mathrm{d}(x F(x))$$

$$= px F(x)^{p} \Big|_{0}^{+\infty} - p \int_{0}^{+\infty} x F(x) (p-1) F(x)^{p-2} \, \mathrm{d}F(x)$$

$$= -p(p-1) \int_{0}^{+\infty} x F(x)^{p-1} \, \mathrm{d}F(x)$$

$$= -(p-1) \int_{0}^{+\infty} x \, \mathrm{d}F(x)^{p}$$

$$= -(p-1) x F(x)^{p} \Big|_{0}^{+\infty} + (p-1) \int_{0}^{+\infty} F(x)^{p} \, \mathrm{d}x$$

$$= (p-1) \int_{0}^{+\infty} F(x)^{p} \, \mathrm{d}x.$$

18. 今 $2 \le p < \infty$, 在本题中 $L_p(\mathbb{R})$ 简单记作 L_p .

(a) 我们的第一个目标是证明 Clarkson 不等式:

$$\left\| \frac{f+g}{2} \right\|_{p}^{p} + \left\| \frac{f-g}{2} \right\|_{p}^{p} \le \frac{1}{2} \left(\|f\|_{p}^{p} + \|g\|_{p}^{p} \right), \quad \forall f, g \in L_{p}.$$

- (i) 任取 $s, t \in [0, +\infty)$, 证明 $s^p + t^p \le (s^2 + t^2)^{\frac{p}{2}}$.
- (ii) 仟取 $a,b \in \mathbb{R}$, 证明

$$\left| \frac{a+b}{2} \right|^p + \left| \frac{a-b}{2} \right|^p \le \frac{1}{2} \left(|a|^p + |b|^p \right).$$

- (iii) 导出 Clarkson 不等式.
- (b) 设 C 是 L_p 空间中的非空门凸集, 且 $f \in L_p$, 并记 d = d(f, C). 我们的第二个目标是证明: 存在唯一的函数 $g_0 \in C$, 使得 $d = \|f g_0\|_p$.
 - (i) 解释为什么存在 C 中的序列 $(g_n)_{n>1}$, 使得

$$\|f - g_n\|_p^p \le d^p + \frac{1}{n}, \quad \forall n \in \mathbb{N}^*.$$

(ii) 运用 Clarkson 不等式证明

$$\left\| \frac{g_n - g_m}{2} \right\|_p^p \le \frac{1}{2n} + \frac{1}{2m}, \quad \forall n, m \in \mathbb{N}^*.$$

- (iii) 导出: 存在函数 $g_0 \in C$, 使得 $d(f,C) = ||f g_0||_p$.
- (iv) 证明这样的函数 $g_0 \in C$ 是唯一的. 当证明了该命题后, 将 g_0 记为 $P_C(f)$.
- (c) 最后我们的目标是证明映射 $P_C: L_p \to C$ 的连续性.
 - (i) 证明

$$||g - P_C(g)||_p \le ||f - g||_p + ||f - P_C(f)||_p, \quad \forall f, g \in L_p.$$

(ii) 运用 Clarkson 不等式, 证明

$$\left\| \frac{P_C(f) - P_C(g)}{2} \right\|_p^p \le \frac{1}{2} \left\| f - P_C(g) \right\|_p^p - \frac{1}{2} \left\| f - P_C(f) \right\|_p^p, \quad \forall f, g \in L_p.$$

(iii) 最后导出 P_C 的连续性.

证明: (a)(i) 当 t=0 时不等式显然成立, 当 $t\neq 0$ 时, 原不等式等价于

$$\left(\frac{s}{t}\right)^p + 1 \le \left(\left(\frac{s}{t}\right)^2 + 1\right)^{\frac{p}{2}}.$$

令 $f(x) = (x^2 + 1)^{\frac{p}{2}} - x^p, x \ge 0$, 则 $f'(x) = px(x^2 + 1)^{\frac{p}{2} - 1} - px^{p-1} \ge 0$, 故 $f(x) \ge f(0) = 1$, 此蕴含所证不等式.

(ii) 由 (i) 中结论和 $x \mapsto x^{\frac{p}{2}}$ 的凸性得

$$\left| \frac{a+b}{2} \right|^p + \left| \frac{a-b}{2} \right|^p \le \left(\left| \frac{a+b}{2} \right|^2 + \left| \frac{a-b}{2} \right|^2 \right)^{\frac{p}{2}} = \left(\frac{a^2+b^2}{2} \right)^{\frac{p}{2}}$$

$$\le \frac{1}{2} \left[(a^2)^{\frac{p}{2}} + (b^2)^{\frac{p}{2}} \right] = \frac{1}{2} (|a|^p + |b|^p).$$

(iii) 由 (ii) 中结论可得

$$\left\| \frac{f+g}{2} \right\|_{p}^{p} + \left\| \frac{f-g}{2} \right\|_{p}^{p} = \int_{\mathbb{R}} \left| \frac{f(x) + g(x)}{2} \right|^{p} + \left| \frac{f(x) - g(x)}{2} \right|^{p} dx$$

$$\leq \frac{1}{2} \int_{\mathbb{R}} |f(x)|^{p} + |g(x)|^{p} dx$$

$$= \frac{1}{2} (\|f\|_{p}^{p} + \|g\|_{p}^{p}).$$

(b)(i) 因 $d^p = d^p(f, C) = \inf\{\|f - g\|_p^p \mid g \in C\}$, 故由下确界的定义知对于任意 $n \in \mathbb{N}^*$, 存在 $g_n \in C$, 使得

$$||f - g_n||_p^p \le d^p + \frac{1}{n}.$$

(ii) 由于

$$||f - g_m||_p^p \le d^p + \frac{1}{m}, \quad ||f - g_n||_p^p \le d^p + \frac{1}{n}.$$

故结合 Clarkson 不等式得

$$\left\| f - \frac{g_m + g_n}{2} \right\|_p^p + \left\| \frac{g_m - g_n}{2} \right\|_p^p \le \frac{1}{2} \left(\|f - g_m\|_p^p + \|f - g_n\|_p^p \right) \le d^p + \frac{1}{2m} + \frac{1}{2n}.$$

因 C 为凸集, 故 $\frac{g_m+g_n}{2} \in C$, 从而 $\|f-\frac{g_m+g_n}{2}\|_p^p \ge d^p$, 代入上述不等式得

$$\left\| \frac{g_m - g_n}{2} \right\|_p^p \le \frac{1}{2m} + \frac{1}{2n}.$$

- (iii) 由 (ii) 知 $\|\frac{g_n-g_m}{2}\|_p^p \to 0$ $(m,n\to\infty)$, 故 $(g_n)_{n\geq 1}$ 为 C 中 Cauchy 序列. 注意到 C 为 Banach 空间 L_p 的闭子集, 故 C 完备, 从而 $(g_n)_{n\geq 1}$ 在 C 中收敛, 记收敛值为 g_0 . 在 $\|f-g_n\|_p^p \leq d^p + \frac{1}{n}$ 两侧取极限, 即得 $\|f-g_0\|_p = d$.
 - (iv) 假设存在 $g_1 \in C$, 使得 $d(f,C) = ||f g_1||_p$, 则由 Clarkson 不等式得

$$d^{p} = \frac{1}{2} \left(\|f - g_{0}\|_{p}^{p} + \|f - g_{1}\|_{p}^{p} \right)$$

$$\geq \left\| f - \frac{g_{0} + g_{1}}{2} \right\|_{p}^{p} + \left\| \frac{g_{0} - g_{1}}{2} \right\|_{p}^{p} \geq d^{p} + \left\| \frac{g_{0} - g_{1}}{2} \right\|_{p}^{p}.$$

故 $g_0 = g_1$, 唯一性得证.

(c)(i) 由 Minkowski 不等式得

$$||g - P_C(g)||_p \le ||g - P_C(f)||_p \le ||f - g||_p + ||f - P_C(f)||_p$$

(ii) 由 Clarkson 不等式知

$$\left\| f - \frac{P_C(f) + P_C(g)}{2} \right\|_p^p + \left\| \frac{P_C(f) - P_C(g)}{2} \right\|_p^p \le \frac{1}{2} \left(\|f - P_C(f)\|_p^p + \|f - P_C(g)\|_p^p \right).$$

结合
$$\left\| f - \frac{P_C(f) + P_C(g)}{2} \right\|_p^p \ge \| f - P_C(f) \|_p^p$$
, 即得

$$\left\| \frac{P_C(f) - P_C(g)}{2} \right\|_p^p \le \frac{1}{2} \left\| f - P_C(g) \right\|_p^p - \frac{1}{2} \left\| f - P_C(f) \right\|_p^p.$$

第4章

Hilbert 空间

$$||u(x) - u(y)|| = ||x - y||$$
, $\forall x, y \in H$ (也就是说, u 是一个等距映射).

证明 u - u(0) 是线性的.

证明: 记 v = u - u(0), 则 v(0) = 0, $||v(x) - v(y)|| = ||x - y|| (\forall x, y \in H)$, 即 v 保距离 (特别地, v 还保范数), 将上式平方得

$$||v(x)||^2 + ||v(y)||^2 - 2\langle v(x), v(y) \rangle = ||x||^2 + ||y||^2 - 2\langle x, y \rangle.$$

故

$$\langle v(x), v(y) \rangle = \langle x, y \rangle.$$

因此 v 保内积, 下面证明 v 是线性的:

• $v(x+y) = v(x) + v(y) \ (\forall x, y \in H)$:

$$\begin{split} & \langle v(x+y) - v(x) - v(y), v(x+y) - v(x) - v(y) \rangle \\ & = \|v(x+y)\|^2 + \|v(x)\|^2 + \|v(y)\|^2 - 2\langle v(x+y), v(x) \rangle - 2\langle v(x+y), v(y) \rangle + 2\langle v(x), v(y) \rangle \\ & = \|x+y\|^2 + \|x\|^2 + \|y\|^2 - 2\langle x+y, x \rangle - 2\langle x+y, y \rangle + 2\langle x, y \rangle \\ & = \|x+y\|^2 + \|x\|^2 + \|y\|^2 - 2\|x+y\|^2 + 2\langle x, y \rangle \\ & = 0 \\ & \Rightarrow v(x+y) = v(x) + v(y). \end{split}$$

• $v(\lambda x) = \lambda v(x) \ (\forall \lambda \in \mathbb{R}, x \in H)$:

$$\begin{split} &\langle v(\lambda x) - \lambda v(x), v(\lambda x) - \lambda v(x) \rangle \\ &= \|v(\lambda x)\|^2 + \lambda^2 \|v(x)\|^2 - 2\lambda \langle v(\lambda x), v(x) \rangle \\ &= \|\lambda x\|^2 + \lambda^2 \|x\|^2 - 2\lambda \langle \lambda x, x \rangle \\ &= 0 \\ &\Rightarrow v(\lambda x) = \lambda v(x). \end{split}$$

根据上面两点知 v 是线性的.

注 保距离 + 保原点 → 保内积.

2. 设 $A \in \ell_2$ 的子集, 其元素 $x = (x_n)_{n \ge 1}$ 满足 $|x_n| \le \frac{1}{n}, n \ge 1$. 证明 A 是紧集.

证明: 我们证明 A 序列紧, 即证 A 中任意序列有收敛子列, 任取 A 中的序列 $(x^{(m)})_{m\geq 1}$, 记

$$x^{(m)} = \left(x_1^{(m)}, x_2^{(m)}, \cdots, x_n^{(m)}, \cdots\right) \quad m = 1, 2, \cdots.$$

$$\left(x_1^{(m)}\right)_{m \geq 1} \text{ 为有界序列, 有收敛子列 } \left(x_1^{(m_k^1)}\right)_{k \geq 1};$$

$$\left(x_2^{(m_k^1)}\right)_{k \geq 1} \text{ 为有界序列, 有收敛子列 } \left(x_2^{(m_k^2)}\right)_{k \geq 1};$$

$$\cdots \cdot \left(x_n^{(m_k^{n-1})}\right)_{k \geq 1} \text{ 为有界序列, 有收敛子列 } \left(x_n^{(m_k^n)}\right)_{k \geq 1};$$

$$\cdots \cdot \cdot$$

根据对角线法选取指标列 $(m_k^k)_{k\geq 1}$, 由此得到 $(x^{(m)})_{m\geq 1}$ 的子列 $(x^{(m_k^k)})_{k\geq 1}$, 不妨将其简 记为 $(x^{(m_k)})_{k\geq 1}$, 其每一个坐标分量都是收敛的,记 $(x^{(m_k)})_{k\geq 1}$ 依坐标收敛于 $x=(x_n)$, 且有 $|x_n|\leq \frac{1}{n}$, 故 $x=(x_n)\in \ell_2$, 下面证明 $(x^{(m_k)})_{k\geq 1}$ 依 ℓ_2 范数收敛到 x: 事实上, 对于每个 $k\geq 1$, 都有 $|x_n^{(m_k)}|\leq \frac{1}{n}$, 故

$$|x_n^{(m_k)} - x_n| \le \frac{2}{n}.$$

那么, 对任意 $\varepsilon > 0$, 存在 $N \ge 1$, 使得

$$\sum_{n=N+1}^{\infty}|x_n^{(m_k)}-x_n|^2\leq\sum_{n=N+1}^{\infty}\frac{4}{n^2}<\varepsilon.$$

另一方面, 因为 $(x^{(m_k)})_{k\geq 1}$ 依坐标收敛于 $x=(x_n)$, 故存在 $k_0\geq 1$, 使得当 $k\geq k_0$ 时, 有

$$\sum_{n=1}^{N} |x_n^{(m_k)} - x_n|^2 \le \sum_{n=1}^{N} \frac{\varepsilon}{N} = \varepsilon.$$

因此

$$||x^{(m_k)} - x||_{\ell_2} = \left(\sum_{n=1}^{\infty} |x_n^{(m_k)} - x_n|^2\right)^{\frac{1}{2}} < (2\varepsilon)^{\frac{1}{2}}.$$

即说明 $(x^{(m_k)})_{k>1}$ 依 ℓ_2 范数收敛到 x, 故 A 是紧集.

注 从证明过程可以看出题目条件中的控制项 $\frac{1}{n}$ 可以换成任意 (a_n) , 只要其满足 $\sum_{n=1}^{\infty} a_n^2$ 收敛即可.

3. 设 E 和 F 是内积空间 H 的两个向量子空间. 证明存在常数 $\alpha \geq 0$ 使得

$$|\langle x, y \rangle| = \alpha ||x|| ||y||, \quad \forall x \in E, \forall y \in F$$

的充分必要条件是或者 $\dim E = \dim F = 1$, 或者 $\alpha = 0$ (即 E = F 正交).

证明: (⇐) 充分性显然.

(⇒) 已知存在 $\alpha \geq 0$, 使得 $|\langle x,y \rangle| = \alpha ||x|| \cdot ||y||$ ($\forall x \in E, y \in F$). 当 $\alpha = 0$ 时, 显然 E 与 F 正交; 当 $\alpha > 0$ 时, 需证 $\dim E = \dim F = 1$, 反证法, 当 $\mathbb{K} = \mathbb{R}$ 时, 假设 $\dim F \geq 2$, 取 F 中两个不共线的单位向量 e_1, e_2 , 取 E 中一个单位向量 e, 则 $\langle e, e_1 \rangle = \langle e, e_2 \rangle = \alpha$, 且

$$\langle e, e_1 + e_2 \rangle = 2\alpha = \alpha ||e_1 + e_2||,$$

因此 $||e_1 + e_2|| = ||e_1|| + ||e_2||$, 于是 e_1 与 e_2 共线, 矛盾.

4. 设 E 和 F 是内积空间 H 的两个向量子空间. 假设 E 和 F 都不等于集合 $\{0\}$. 定义 E 和 F 之间的夹角 θ 为

$$\cos \theta = \sup \left\{ \frac{|\langle x, y \rangle|}{\|x\| \|y\|} : x \in E, y \in F \right\}, \quad \theta \in \left[0, \frac{\pi}{2}\right].$$

证明: $\theta > 0$ 当且仅当存在一个常数 c > 0, 使得

$$||x + y||^2 \ge c(||x||^2 + ||y||^2), \quad \forall x \in E, y \in F.$$

证明: (\Rightarrow) 记 $m = \cos \theta$, 则 $\theta > 0 \iff 0 \le m < 1$. 由夹角的定义知

$$|\langle x, y \rangle| \le m||x|||y|| \le \frac{m}{2}(||x||^2 + ||y||^2),$$

故

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x, y \rangle \ge ||x||^2 + ||y||^2 - 2|\langle x, y \rangle|$$

$$\ge ||x||^2 + ||y||^2 - m(||x||^2 + ||y||^2)$$

$$= (1 - m)(||x||^2 + ||y||^2).$$

在上式中取 c=1-m>0 即得所证.

(⇐) 注意到

$$\cos \theta = \sup \left\{ \frac{|\langle x, y \rangle|}{\|x\| \|y\|} \colon x \in E, y \in F \right\}$$
$$= \sup \{ |\langle x, y \rangle| \colon \|x\| = \|y\| = 1, x \in E, y \in F \}.$$

故只需证 $\sup\{|\langle x, y \rangle| : ||x|| = ||y|| = 1, x \in E, y \in F\} < 1.$

对任意 $x \in E$, $y \in F$, 且 ||x|| = ||y|| = 1, 由条件 $||x + y||^2 \ge c(||x||^2 + ||y||^2)$ (不妨设 0 < c < 1) 得 Re $\langle x, y \rangle \ge c - 1$. 当 ||x|| = 1 时, 亦有 ||-x|| = 1, 故

$$\operatorname{Re}\langle x, y \rangle = -\operatorname{Re}\langle -x, y \rangle \le 1 - c.$$

因此

$$\begin{aligned} |\langle x, y \rangle| &= \operatorname{sgn} \langle x, y \rangle \cdot \langle x, y \rangle \\ &= \langle \operatorname{sgn} \langle x, y \rangle \cdot x, y \rangle \quad \text{(real number)} \\ &= \operatorname{Re} \langle \operatorname{sgn} \langle x, y \rangle \cdot x, y \rangle \\ &\leq 1 - c. \end{aligned}$$

从而 $\sup\{|\langle x,y\rangle|: ||x|| = ||y|| = 1, x \in E, y \in F\} \le 1 - c < 1$,由此即得 $\theta > 0$.

- **5.** 设 H 是 Hilbert 空间, (A_n) 是 H 中递减的闭凸非空子集列. 任取 $x \in H$, 令 $d_n(x) = d(x, A_n)$ 且 $d(x) = \lim_{n \to \infty} d_n(x)$.
 - (a) 证明: 若对某一个 $x \in H$, 有 $d(x) < \infty$, 则对所有的 $x \in H$, $d(x) < \infty$. 我们在下面 假设该命题成立, 并用 $A(x,\varepsilon,n)$ 表示中心在 x、半径为 $d(x) + \varepsilon$ 的闭球与 A_n 的交集, 即 $A(x,\varepsilon,n) = A_n \cap \overline{B}(x,d(x)+\varepsilon)$.
 - (b) 证明

$$\lim_{\varepsilon \to 0, n \to \infty} \operatorname{diam}(A(x, \varepsilon, n)) = 0.$$

(c) 证明所有 A_n 的交集 A 非空并且 d(x) = d(x, A).

证明: (a) 假设存在 $x_0 \in H, s.t.d(x_0) < \infty$, 记 $y_n = P_{A_n}(x_0)$, 则

$$d_n(x_0) = d(x_0, A_n) = d(x_0, y_n) < \infty$$

故 $\forall x \in H$

$$d_n(x) = d(x, A_n) \le d(x, y_n) \le d(x, x_0) + d(x_0, y_n) < \infty$$

因此 $d(x) < \infty (\forall x \in H)$.

(b) 仍记 $y_n = P_{A_n}(x)$, 则 $d_n(x) = d(x, y_n) \le d(x)$, 因此 $y_n \in A_n \cap \overline{B}(x, d(x) + \varepsilon)$. 由于 $d_n(x) = d(x, y_n) \le d(x) < \infty$, 故对于 $\forall \varepsilon > 0, \exists N(\varepsilon), s.t. \forall n \ge N(\varepsilon), d(x) < d_n(x) + \varepsilon$. 因此对 $\forall z, w \in A_n \cap \overline{B}(x, d(x) + \varepsilon), \forall n \ge N(\varepsilon), 有$:

$$d_n(x) \le d(x, z) \le d(x) + \varepsilon \le d_n(x) + 2\varepsilon$$

$$d_n(x) \le d(x, w) \le d(x) + \varepsilon \le d_n(x) + 2\varepsilon$$

由 A_n 及 $\overline{B}(x,d(x)+\varepsilon)$ 均为凸集知 $\frac{z+w}{2}\in A_n\cap\overline{B}(x,d(x)+\varepsilon),$ 从而:

$$d_n(x) \le d\left(x, \frac{z+w}{2}\right)$$

结合以上三式并根据平行四边形公式得:

$$d_n(x)^2 + \frac{1}{4}||z - w||^2 \le \left| \left| x - \frac{z + w}{2} \right| \right|^2 + \left| \left| \frac{z - w}{2} \right| \right|^2$$
$$= 2\left(\left| \left| \frac{x - z}{2} \right| \right|^2 + \left| \left| \frac{x - w}{2} \right| \right|^2 \right)$$
$$\le (d_n(x) + 2\varepsilon)^2$$

即

$$||z - w||^2 \le 16\varepsilon (d_n(x) + \varepsilon)$$

对所有的 $z, w \in A(x, \varepsilon, n)$ 取上确界得:

diam
$$A(x, \varepsilon, n) \le 16\varepsilon (d_n(x) + \varepsilon)(n \ge N(\varepsilon))$$

从而

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \operatorname{diam} A(x, \varepsilon, n) = 0$$

- (c) 取 H 中集列 $\left(A(x,\frac{1}{n},n)\right)_{n\geq 1},$ 则
- $\left(A(x,\frac{1}{n},n)\right)_{n\geq 1}$ 是单调递减的闭集列
- $\left(A(x,\frac{1}{n},n)\right)_{n\geq 1}^{-}$ 非空
- $\lim_{n\to\infty} \overline{\operatorname{diam}\left(A(x,\frac{1}{n},n)\right)_{n\geq 1}} = 0$ (在 (b) 中取 $\varepsilon = 1/n$ 知此式成立)

因为 H 是完备的, 所以

$$\bigcap_{n>1} A\left(x, \frac{1}{n}, n\right)$$
 是单点集

又
$$(A(x, \frac{1}{n}, n)) \subset A_n$$
, 故 $A = \bigcap_{n \ge 1} A_n$ 非空.
下证 $d(x) = d(x, A)$:

П

因为 $d_n(x) = d(x, A_n) \le d(x, A)$, 所以 $d(x) \le d(x, A)$, 假设 d(x) < d(x, A), 则存在 $\delta, s.t. d(x, A_n) \le d(x) < \delta < d(x, A)$, 同理可知:

故

$$\bigcap_{n\geq 1} \left(A_n \cap \overline{B}(x,\delta) \right) = A \cap \overline{B}(x,\delta) \ddagger \overline{\Sigma}$$

但事实是

$$A \cap \overline{B}(x,\delta) = \emptyset$$

故假设不成立, 即得 d(x) = d(x, A).

6. 设 H 是内积空间, $x_n, x \in H$. 并假设

$$\lim_{n \to \infty} ||x_n|| = ||x|| \quad \text{I.} \quad \lim_{n \to \infty} \langle y, x_n \rangle = \langle y, x \rangle, \forall y \in H.$$

证明 $\lim_{n\to\infty} ||x_n - x|| = 0.$

证明: 因 $\lim_{n\to\infty}\|x_n\|=\|x\|$, 所以 $\lim_{n\to\infty}\langle x_n,x_n\rangle=\langle x,x\rangle\cdots(1)$ 因为 $\lim_{n\to\infty}\langle y,x_n\rangle=\langle y,x\rangle$, 所以 $\lim_{n\to\infty}\langle x,x_n\rangle=\langle x,x\rangle\cdots(2)$ 两式相减得 $\lim_{n\to\infty}\langle x_n-x,x_n\rangle=0$, 另外由第二式可得 $\lim_{n\to\infty}\langle x_n-x,x\rangle=0$. 故

$$\lim_{n \to \infty} ||x_n - x||^2 = \lim_{n \to \infty} \langle x_n - x, x_n - x \rangle$$
$$= \lim_{n \to \infty} \langle x_n - x, x_n \rangle - \lim_{n \to \infty} \langle x_n - x, x \rangle$$
$$= 0 - 0 = 0.$$

从而 $\lim_{n\to\infty} ||x_n - x|| = 0.$

7. 设 (x_n) 是 Hilbert 空间 H 中的有界序列. 证明存在 (x_n) 的子序列 (x_{n_k}) 及 $x \in H$, 使得对任意 $y \in H$, 有 $\lim_k \langle y, x_{n_k} \rangle = \langle y, x \rangle$.

证明: (本题考查对角线选择法和 Riesz 表示定理) 设 $||x_n|| \leq M(\forall n \in \mathbb{N}^*)$, 故对任意 $m, n \in \mathbb{N}^*, |\langle x_m, x_n \rangle| \leq ||x_m|| \cdot ||x_n|| \leq M^2$, 考虑下面的一族有界内积序列

$$\langle x_1, x_1 \rangle \quad \langle x_1, x_2 \rangle \quad \cdots \quad \langle x_1, x_n \rangle \quad \cdots$$

$$\langle x_2, x_1 \rangle \quad \langle x_2, x_2 \rangle \quad \cdots \quad \langle x_2, x_n \rangle \quad \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\langle x_m, x_1 \rangle \quad \langle x_m, x_2 \rangle \quad \cdots \quad \langle x_m, x_n \rangle \quad \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

第一行序列 $(\langle x_1, x_n \rangle)_{n \geq 1}$ 存在收敛子列 $(\langle x_1, x_{n_k^1} \rangle)_{k \geq 1}$ 第二行子列 $(\langle x_2, x_{n_k^1} \rangle)_{k \geq 1}$ 存在收敛子列 $(\langle x_2, x_{n_k^2} \rangle)_{k \geq 1}$

.

第 m 行子列 $(\langle x_m, x_{n_k^{m-1}} \rangle)_{k \geq 1}$ 存在收敛子列 $(\langle x_m, x_{n_k^m} \rangle)_{k \geq 1}$

依此下来, 并运用对角线选择法取出 (x_n) 的子列 $(x_{n_k})_{k\geq 1}$, 不妨将其简记为 $(x_{n_k})_{k\geq 1}$.

设 $E = span((x_n)_{n\geq 1})$,则任意 $y \in E, (\langle y, x_{n_k} \rangle)_{k\geq 1}$ 收敛,进一步容易验证对 $\forall y \in \overline{E}, (\langle y, x_{n_k} \rangle)_{k\geq 1}$ 收敛,最后任意 $y \in H$,由正交分解定理得 $y = y_1 + y_2, y_1 \in \overline{E}, y_2 \in E^{\perp}$,故

$$\langle y, x_{n_k} \rangle = \langle y_1, x_{n_k} \rangle + \langle y_2, x_{n_k} \rangle = \langle y_1, x_{n_k} \rangle.$$

因此对任意 $y \in H$, $\lim_{k\to\infty} \langle y, x_{n_k} \rangle$ 存在, 而且

$$\left| \lim_{k \to \infty} \langle y, x_{n_k} \rangle \right| \le \limsup_{k \to \infty} |\langle y, x_{n_k} \rangle| \le M ||y||.$$

因此 $y \mapsto \lim_{k \to \infty} \langle y, x_{n_k} \rangle$ 是连续线性泛函, 由 Riesz 表示定理知存在 $x \in H$ 使得 $\lim_{k \to \infty} \langle y, x_{n_k} \rangle = \langle y, x \rangle (\forall y \in H)$.

8. 设 A 和 B 都是 Hilbert 空间 H 的非空闭凸子集, 并设它们其中一个有界. 证明存在 $a \in A$ 和 $b \in B$, 使得 d(a,b) = d(A,B), 这里

$$d(A,B) = \inf\{d(x,y) \mid x \in A, y \in B\}.$$

证明: 不妨设 A 有界, 由距离的定义知对任意 $n \ge 1, \exists x_n \in A$ 使得

$$d(x_n, B) < d(A, B) + \frac{1}{n}.$$

因为 $(x_n)_{n\geq 1}$ 是有界序列, 故由上一题结论知存在 $a\in H$ 及 $(x_n)_{n\geq 1}$ 的子列 (不妨仍记为 $(x_n)_{n\geq 1}$) 使得

$$\lim_{n \to \infty} \langle x_n, y \rangle = \langle a, y \rangle, \quad \forall y \in H.$$

下面证明 $a \in A$, 由投影的性质知

$$\|a - P_A(a)\|^2 = \langle a - P_A(a), a - P_A(a) \rangle$$

$$= \lim_{n \to \infty} \langle a - P_A(a), x_n - P_A(a) \rangle \quad (注意到虚部的极限为 0)$$

$$= \lim_{n \to \infty} \operatorname{Re} \langle a - P_A(a), x_n - P_A(a) \rangle \leq 0.$$

故 $a = P_A(a)$, 从而 $a \in A$, 又

$$||x_n - P_B(x_n)||^2 = ||x_n - a + a - P_B(a) + P_B(a) - P_B(x_n)||^2$$

$$= ||a - P_B(a)||^2 + ||x_n - a + P_B(a) - P_B(x_n)||^2$$

$$+ 2\langle a - P_B(a), x_n - a \rangle + 2\langle a - P_B(a), P_B(a) - P_B(x_n) \rangle$$

$$\geq ||a - P_B(a)||^2 + 2\langle a - P_B(a), x_n - a \rangle$$

故

$$(d(A,B))^{2} \leq ||a - P_{B}(a)||^{2} \leq ||x_{n} - P_{B}(x_{n})||^{2} - 2\langle a - P_{B}(a), x_{n} - a \rangle$$
$$< \left(d(A,B) + \frac{1}{n}\right)^{2} - 2\langle a - P_{B}(a), x_{n} - a \rangle \to (d(A,B))^{2}(n \to \infty)$$

因此 $||a - P_B(a)|| = d(A, B)$, 记 $b = P_B(a) \in B$, 即得 d(a, b) = d(A, B).

9. 将上一习题中的条件换成 A 和 B 无界, 但假设 ||x|| 和 ||y|| 都趋向 ∞ 时, 必有 d(x,y) 趋向 ∞ . 证明结论仍然成立. 在 \mathbb{R}^2 中用反例说明若条件不符合假设时, 结论不成立.

证明: 反例: 取 \mathbb{R}^2 中的区域 $A = \{(x,y) \mid xy \leq -1, x < 0\}, B = \{(x,y) \mid xy \geq 1, x > 0\},$ 则 d(A,B) = 0, 但是不存在 $a \in A, b \in B$ 使得 d(a,b) = 0.

10. (a) 设 H 是 Hilbert 空间, $D_n = \{-1,1\}^n$. 证明

$$\frac{1}{2^n} \sum_{(\varepsilon_k) \in D_n} \|\varepsilon_1 x_1 + \dots + \varepsilon_n x_n\|^2 = \|x_1\|^2 + \dots + \|x_n\|^2, \quad \forall x_1, \dots, x_n \in H.$$

(b) 设 $(X, \|\cdot\|)$ 是 Banach 空间, 并假设有一个 X 上的内积范数 $|\cdot|$ 等价于 $\|\cdot\|$. 证明存在正常数 a 和 b, 使得

$$a\sum_{k=1}^{n} \|x_k\|^2 \le \frac{1}{2^n} \sum_{(\varepsilon_k) \in D} \left\| \sum_{k=1}^{n} \varepsilon_k x_k \right\|^2 \le b\sum_{k=1}^{n} \|x_k\|^2, \quad \forall x_1, \dots, x_n \in X.$$

(c) 设 $1 \le p \ne 2 \le \infty$, 证明空间 c_0, ℓ_p 和 $L_p(0,1)$ 没有等价的内积范数.

证明: (a) 原等式等价于

$$\sum_{(\varepsilon_k) \in D_n} \|\varepsilon_1 x_1 + \dots + \varepsilon_n x_n\|^2 = 2^n (\|x_1\|^2 + \dots + \|x_n\|^2).$$

上式左边

RHS =
$$\sum_{(\varepsilon_{k})\in D_{n}} \left\langle \sum_{i=1}^{n} \varepsilon_{i} x_{i}, \sum_{i=1}^{n} \varepsilon_{i} x_{i} \right\rangle$$

$$= \sum_{(\varepsilon_{k})\in D_{n}} \sum_{i=1}^{n} \sum_{j=1}^{n} \varepsilon_{i} \varepsilon_{j} \left\langle x_{i}, x_{j} \right\rangle$$

$$= \sum_{(\varepsilon_{k})\in D_{n}} \sum_{i=1}^{n} \varepsilon_{i}^{2} \left\langle x_{i}, x_{i} \right\rangle + \sum_{(\varepsilon_{k})\in D_{n}} \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} \varepsilon_{i} \varepsilon_{j} \left\langle x_{i}, x_{j} \right\rangle$$

$$= \sum_{(\varepsilon_{k})\in D_{n}} \sum_{i=1}^{n} \left\langle x_{i}, x_{i} \right\rangle + \sum_{(\varepsilon_{k})\in D_{n}} \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} \varepsilon_{i} \varepsilon_{j} \left\langle x_{i}, x_{j} \right\rangle$$

$$= 2^{n} \sum_{i=1}^{n} ||x_{i}||^{2} + \sum_{(\varepsilon_{k})\in D_{n}} \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} \varepsilon_{i} \varepsilon_{j} \left\langle x_{i}, x_{j} \right\rangle.$$

观察最后一项中 $\langle x_i, x_j \rangle$ 的系数: $\varepsilon_i = \varepsilon_j = 1$ 有 2^{n-2} 项, $\varepsilon_i = \varepsilon_j = -1$ 有 2^{n-2} 项, $\varepsilon_i = 1$, $\varepsilon_j = -1$ 有 2^{n-2} 项, $\varepsilon_i = 1$, $\varepsilon_j = 1$ 有 2^{n-2} 项, $\varepsilon_i = 1$, $\varepsilon_j = 1$ 有 2^{n-2} 项, 因此

$$\langle x_i, x_i \rangle$$
 的系数 $= 2 \cdot 2^{n-2} - 2 \cdot 2^{n-2} = 0$.

于是即证所需.

(b) 由于 $|\cdot|$ 等价于 $|\cdot|$, 故存在正常数 C_1 和 C_2 使得 $C_1||\cdot|| \le |\cdot| \le C_2||\cdot||$. 由 (a) 知

$$\frac{1}{2^n} \sum_{(\varepsilon_k) \in D_n} \left| \sum_{k=1}^n \varepsilon_k x_k \right|^2 = \sum_{k=1}^n |x_k|^2.$$

故

$$\sum_{k=1}^{n} C_2^2 ||x_k||^2 \ge \sum_{k=1}^{n} |x_k|^2 = \frac{1}{2^n} \sum_{(\varepsilon_k) \in D_n} \left| \sum_{k=1}^{n} \varepsilon_k x_k \right|^2 \ge \frac{1}{2^n} \sum_{(\varepsilon_k) \in D_n} C_1^2 \left\| \sum_{k=1}^{n} \varepsilon_k x_k \right\|^2,$$

因此

$$\frac{1}{2^n} \sum_{(\varepsilon_k) \in D} \left\| \sum_{k=1}^n \varepsilon_k x_k \right\|^2 \le \left(\frac{C_2}{C_1} \right)^2 \sum_{k=1}^n \|x_k\|^2.$$

故取 $b = \left(\frac{c_2}{c_1}\right)^2$ 即得

$$\frac{1}{2^n} \sum_{(\varepsilon_k) \in D_n} \left\| \sum_{k=1}^n \varepsilon_k x_k \right\|^2 \le b \sum_{k=1}^n \|x_k\|^2.$$

同理取 $a = \left(\frac{C_1}{C_2}\right)^2$ 可得左半边不等式

11. 设 (C_n) 是 Hilbert 空间 H 中的一个递增的非空闭凸子集列, C 是所有 C_n 的并集的闭包. 证明

$$P_C(x) = \lim_{n \to \infty} P_{C_n}(x), \quad \forall x \in H.$$

证明: 首先容易验证 C 是闭凸集, 从而 $P_C(x)$ 是有定义的, 接下来证明 $P_C(x) = \lim_{n \to \infty} P_{C_n}(x)$ ($\forall x \in H$), 分几步进行:

 $d(x,C) = \lim_{n\to\infty} d(x,C_n)$: 因为对于每个 $n,d(x,C) \leq d(x,C_n)$, 故 $d(x,C) \leq \lim_{n\to\infty} d(x,C_n)$, 假设 $d(x,C) < \lim_{n\to\infty} d(x,C_n)$, 则存在 $y \in C$, 使得 $d(x,y) < \lim_{n\to\infty} d(x,C_n)$, 不妨设 $y \in \bigcup_{n=1}^{\infty} C_n$, 也就是说存在 n_0 使得 $y \in C_{n_0}$, 从而 $d(x,y) \geq d(x,C_{n_0}) \geq \lim_{n\to\infty} d(x,C_n)$, 矛盾, 故 $d(x,C) = \lim_{n\to\infty} d(x,C_n)$.

 $(P_{C_n}(x))_{n\geq 1}$ 收敛: 因为 $(d(x,C_n))_{n\geq 1}$ 单调递减趋于 d(x,C), 故对 $\forall \varepsilon > 0$, 存在 $N\geq 1$, 使得当 n>N 时, $d(x,C_n)< d(x,C)+\varepsilon$, 故 $\forall m,n>N$, 有

$$4(d(x,C) + \varepsilon)^{2} \ge 2(\|x - P_{C_{n}}(x)\|^{2} + \|x - P_{C_{m}}(x)\|^{2})$$

$$= 4 \left\|x - \frac{P_{C_{n}}(x) + P_{C_{m}}(x)}{2}\right\|^{2} + \|P_{C_{n}}(x) - P_{C_{m}}(x)\|^{2}$$

$$\ge 4d(x,C)^{2} + \|P_{C_{n}}(x) - P_{C_{m}}(x)\|^{2}.$$

由上式知 $(P_{C_n}(x))_{n\geq 1}$ 是 Cauchy 序列, 由 C 的完备性知其在 C 中收敛, 记为 $\lim_{n\to\infty} P_{C_n}(x) = y \in C$.

 $y=P_C(x)$: 对于任意 $\forall \varepsilon>0$, 存在 $N\geq 1$, 使得对 $\forall n>N$, 有 $d(y,P_{C_n}(x))<\varepsilon$, $d(x,C_n)< d(x,C)+\varepsilon$, 故

$$d(x,y) \le d(y, P_{C_n}(x)) + d(x, C_n) < d(x, C) + 2\varepsilon,$$

由 ε 的任意性知 $d(x,y) \leq d(x,C)$,又因为 $y \in C$,故 d(x,y) = d(x,C),由投影的唯一性知 $y = P_C(x)$,证毕.

- **12.** 设 H 是内积空间. (x_1, \dots, x_n) 是 H 中的任一向量组, 称矩阵 $(\langle x_i, x_j \rangle)_{1 \leq i, j \leq n}$ 的行列式为向量组 (x_1, \dots, x_n) 的 Gram 行列式, 记作 $G(x_1, \dots, x_n)$.
- (a) 证明 $G(x_1, \dots, x_n) \ge 0$; 且 $G(x_1, \dots, x_n) > 0$ 当且仅当向量组 (x_1, \dots, x_n) 线性独立.
 - (b) 假设向量组 (x_1, \dots, x_n) 线性独立. 今 $E = \text{span}(x_1, \dots, x_n)$. 证明

$$d(x,E)^{2} = \frac{G(x,x_{1},x_{2},\cdots,x_{n})}{G(x_{1},x_{2},\cdots,x_{n})}, \quad \forall x \in H.$$

证明: (参考《高等代数与解析几何》陈志杰习题 6.3.13 及 6.4.6)

(a) 设 $W = \text{span}\{x_1, \dots, x_n\}$ 且 dim W = k, 取 W 的规范正交基 $(e_i)_{1 \le i \le k}$. 由于

$$x_i = \sum_{m=1}^k \langle x_i, e_m \rangle e_m, \quad x_j = \sum_{k=1}^m \langle x_j, e_m \rangle e_m,$$

故

$$\langle x_i, x_j \rangle = \left\langle \sum_{m=1}^k \langle x_i, e_m \rangle e_m, \sum_{m=1}^k \langle x_j, e_m \rangle e_m \right\rangle$$
$$= \sum_{m=1}^k \langle x_i, e_m \rangle \langle x_j, e_m \rangle = \sum_{k=1}^m \langle x_i, e_m \rangle \overline{\langle e_m, x_j \rangle}.$$

记

$$M = \begin{pmatrix} \langle x_1, e_1 \rangle & \cdots & \langle x_1, e_k \rangle \\ \vdots & & \vdots \\ \langle x_n, e_1 \rangle & \cdots & \langle x_n, e_k \rangle \end{pmatrix}_{n \times k}.$$

则

$$M^{\mathrm{T}} = \begin{pmatrix} \overline{\langle e_1, x_1 \rangle} & \cdots & \overline{\langle e_1, x_n \rangle} \\ \vdots & & \vdots \\ \overline{\langle e_k, x_1 \rangle} & \cdots & \overline{\langle e_k, x_n \rangle} \end{pmatrix}_{k \times n},$$

且 $(\langle x_i, x_j \rangle)_{1 \leq i, j \leq n} = MM^{\mathrm{T}}$,从而 $G(x_1, \dots, x_n) = \det(MM^{\mathrm{T}})$.

若 k < n, 则 $\operatorname{rank}(M) \le k < n$, 故 $\operatorname{rank}(\langle x_i, x_j \rangle) < n$, 故 $|G(x_1, \dots, x_n)| = 0$.

若 k = n, 则 x_1, \dots, x_n 线性无关, 即关于 $\lambda_1, \dots, \lambda_n$ 的方程

$$\lambda_1 x_1 + \dots + \lambda_n x_n = 0$$

只有零解. 考虑关于 $\lambda_1, \cdots, \lambda_n$ 的齐次线性方程组

$$\begin{cases} \lambda_1 \langle x_1, e_1 \rangle + \dots + \lambda_n \langle x_n, e_1 \rangle = 0 \\ \dots \\ \lambda_1 \langle x_1, e_n \rangle + \dots + \lambda_n \langle x_n, e_n \rangle = 0. \end{cases}$$

上述方程组的系数矩阵即为 M^{T} , 将上述方程组的第 i ($1 \le i \le n$) 个方程乘以 e_i 并求和即得

$$\lambda_1 x_1 + \dots + \lambda_n x_n = 0,$$

于是 $\lambda_1 = \cdots = \lambda_n = 0$, 因此 $\det(M) \neq 0$, 从而

$$G(x_1, \dots, x_n) = \det(MM^T) = \det(M) \det(M^T) = (\det(M))^2 > 0.$$

13. 设 E = C([0,1]) 上装备有如下的内积

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} \, \mathrm{d}t.$$

并设 E_0 表示在 [0,1] 上积分为 0 的函数组成的 E 的向量子空间. 考虑 E 的向量子空间:

$$H = \{ f \in E : f(1) = 0 \} \coprod H_0 = E_0 \cap H.$$

- (a) 验证 H_0 是 H 的闭的真向量子空间.
- (b) 设 $h(t) = t \frac{1}{2}, t \in [0, 1]$. 证明
 - (i) E = span(H, h) 且有 $E_0 = \text{span}(H_0, h)$;
 - (ii) h 属于 H_0 在 E 中的闭包.
- (c) 证明 $H_0^{\perp} = \{0\}$. 解释所得结果蕴含的意义.

证明: (a) 任取一列 $(f_n) \subset E_0$ 且 $f_n \to f$, 则 $\int_0^1 f_n(t) dt = 0$, $\int_0^1 |f_n(t) - f(t)|^2 dt \to 0$, 故 $f_n(t) - f(t) = 0$ a.e. $(n \to \infty)$, 因此 $\int_0^1 f(t) dt = 0$, 也即 $f \in E_0$, 从而说明 E_0 是闭子空间,故 $H_0 = E_0 \cap H$ 是 H 的闭子空间.取 f(t) = 1 - t, 显然 $f(t) \in H$, 但是 $f(t) \notin H_0$, 故 H_0 是 H 的真子空间.

(b)(i) 对于 $\forall f \in E$, \diamondsuit g(t) = f(t) - 2f(1)h(t), 则 g(1) = 0, 故 $g \in H$, 所以 $E = \operatorname{span}(H,h)$.

对于 $\forall f \in E_0$, $\diamondsuit g(t) = f(t) - 2f(1)h(t)$, 则 g(1) = 0, $\int_0^1 g(t) dt = 0$, 即 $g \in H_0$, 所以 $E_0 = \operatorname{span}(H_0, h)$.

- (ii) 取 $g_n(t) = \sin 2\pi nt$, 则 $g_n \in H_0$, 由于 h 关于点 (1/2,0) 对称,故 h 的 Fourier 展开式中只含有形如 g_n 的项,因此 $h \in \bar{H}_0$
 - **14.** 仍设 E 为上一习题中的内积空间, 并令 0 < c < 1. 记

$$F=\left\{f\in E: f|_{[0,c]}=0\right\}.$$

- (a) 验证 F 是 E 的闭的真向量子空间.
- (b) 证明 $F \oplus F^{\perp} \neq E$. 解释所得结果蕴含的意义.
- **15.** (a) 设 E 和 F 是 Hilbert 空间 H 的两个正交向量子空间. 证明 E+F 是闭的当且 仅当 E 和 F 都是闭的.
- (b) (e_n) 表示 ℓ_2 中的标准正交基. 设 E 是 $\{e_{2n}: n \geq 1\}$ 的线性扩张的闭包, 而 F 是 $\{e_{2n} + \frac{1}{n}e_{2n+1}: n \geq 1\}$ 的线性扩张的闭包. 证明 $E \cap F = \{0\}$ 并且 E + F 在 ℓ_2 中不是闭的.

证明: (a) 由 E 与 F 正交知 $E+F=E\oplus F$, 即任取 $z\in E+F$, 存在唯一的 $x\in E$ 和 $y\in F$, 使得 z=x+y.

(⇒) 任取 E 中收敛列 $(x_n)_{n\geq 1}$, 设 $x_n \to x \in E + F$, 即 $\lim_{n\to\infty} ||x_n - x|| = 0$. 由于 $x \in E + F$, 故存在 $x' \in E$, $x'' \in F$, 使得 x = x' + x'', 那么

$$\lim_{n \to \infty} ||x_n - x||^2 = \lim_{n \to \infty} ||x_n - x' - x''||^2$$

$$= \lim_{n \to \infty} ||x_n - x'||^2 + ||x''||^2 - 2 \operatorname{Re} \langle x_n - x', x'' \rangle$$

$$= \lim_{n \to \infty} ||x_n - x'||^2 + ||x''||^2 = 0.$$

故必有 x'' = 0, 从而 $x = x' \in E$, 因此 E 为闭集. 同理可证 F 为闭集.

(秦) 任取 E + F 中 Cauchy 序列 $(z_n)_{n\geq 1}$, 设 $z_n = x_n + y_n$, 其中 $x_n \in E$, $y_n \in F$, 则

$$||z_m - z_n||^2 = ||x_m + y_m - x_n - y_n||^2$$

$$= ||x_m - x_n||^2 + ||y_m - y_n||^2 + 2\operatorname{Re}\langle x_m - x_n, y_m - y_n\rangle$$

$$= ||x_m - x_n||^2 + ||y_m - y_n||^2 \to 0 \quad (m, n \to \infty).$$

故 $(x_n)_{n\geq 1}$ 和 $(y_n)_{n\geq 1}$ 分别为 E 和 F 中的 Cauchy 序列, 而 E,F 皆完备, 故设 $x_n\to x\in E$, $y_n\to y\in F$. 令 $z=x+y\in E+F$, 则当 $n\to\infty$ 时

$$||z_n - z||^2 = ||x_n + y_n - x - y||^2 = ||x_n - x||^2 + ||y_n - y||^2 \to 0.$$

即 $z_n \to z \in E + F$, 故 E + F 完备, 从而为闭集.

(b) 任取 $x \in E \cap F$, 由于 E 是 Hilbert 空间,且 $\{e_{2n}: n \geq 1\}$ 是 E 的一组规范正交基,故存在唯一的系数列 $(x_n)_{n\geq 1}$, 使得 $x = \sum_{n=1}^{\infty} x_n e_{2n}$. 类似地,F 为 Hilbert 空间,且规范化后的 $\{\frac{n}{\sqrt{n^2+1}}(e_{2n}+\frac{1}{n}e_{2n+1}): n \geq 1\}$ 是 F 的一组规范正交基,故存在唯一的系数列 $(y_n)_{n\geq 1}$,使得 $x = \sum_{n=1}^{\infty} y_n \frac{n}{\sqrt{n^2+1}}(e_{2n}+\frac{1}{n}e_{2n+1})$. 于是对任意 $n \geq 1$,有

$$x_n = y_n \cdot \frac{n}{\sqrt{n^2 + 1}}, \quad \frac{y_n}{\sqrt{n^2 + 1}} = 0 \Longrightarrow x_n = y_n = 0.$$

故 x = 0, 因此 $E \cap F = \{0\}$. 下证 E + F 不是闭集, 取 $x^{(m)} = \sum_{n=1}^{m} -e_{2n} \in E$, $y^{(m)} = \sum_{n=1}^{m} (e_{2n} + \frac{1}{n}e_{2n+1}) \in F$, 则

$$x^{(m)} + y^{(m)} = \sum_{n=1}^{m} \frac{1}{n} e_{2n+1} \in E + F$$

且

$$x^{(m)} + y^{(m)} \xrightarrow{\ell_2} \sum_{n=1}^{\infty} \frac{1}{n} e_{2n+1}.$$

但 $\sum_{n=1}^{\infty} \frac{1}{n} e_{2n+1} \notin E + F$, 事实上, 若存在 $x = \sum_{n=1}^{\infty} x_n e_{2n} \in E$ 和 $y = \sum_{n=1}^{\infty} y_n \frac{n}{\sqrt{n^2+1}} (e_{2n} + \frac{1}{n} e_{2n+1}) \in F$, 使得 $x + y = \sum_{n=1}^{\infty} \frac{1}{n} e_{2n+1}$, 则

$$x_n + \frac{ny_n}{\sqrt{n^2 + 1}} = 0, \quad \frac{y_n}{\sqrt{n^2 + 1}} = \frac{1}{n} \Longrightarrow x_n = -1, y_n = \frac{\sqrt{n^2 + 1}}{n}.$$

П

但此时 $x = \sum_{n=1}^{\infty} -e_{2n} \notin \ell_2$, 矛盾.

16. 设 H 是 Hilbert 空间, E 是 H 的非零的闭向量子空间. 设 P 是 H 到 E 的投影 (投影意味着 P 是 H 上的线性算子且满足 $P^2 = P$). 证明以下命题等价:

- (a) $P = P_E$.
- (b) ||P|| = 1.
- (c) $|\langle x, P(x) \rangle| \le ||x||^2, \forall x \in H$.

证明: (a) ⇒ (b) 显然.

- (b) \Rightarrow (c) $\exists \|P\| = 1 \exists \|P(x)\| \le \|x\|, \ \forall |\langle x, P(x) \rangle| \le \|x\| \cdot \|P(x)\| \le \|x\|^2.$
- (c) ⇒ (a) 分三步进行
- $\forall y \in E, P(y) = y$: 任意 $y \in E, \exists x \in H, s.t. P(x) = y$, 故 P(y) = P(P(x)) = P(x) = y.
- $\forall y \in E^{\perp}, P(y) = 0$: 根据 P 的线性性知:

$$P(y + nP(y)) = (n+1)P(y).$$

故结合条件得

$$|\langle y + nP(y), (n+1)P(y)\rangle| \le ||y + nP(y)||^2 = ||y||^2 + n^2||P(y)||^2.$$

又

$$|\langle y + nP(y), (n+1)P(y)\rangle| = |\langle nP(y), (n+1)P(y)\rangle| = (n^2 + n)||P(y)||^2.$$

结合两式得

$$||P(y)||^2 \le \frac{1}{n}||y||^2.$$

上式对于任意正整数 n 成立, 故只能有 P(y) = 0.

• $\forall x \in H, P(x) = P_E(x)$: 根据前两步的结果可知

$$P(x) = P(P_E(x)) + P(x - P_E(x)) = P_E(x).$$

17. 设 H 是 Hilbert 空间, E 是 H 的向量子空间. 设 F 为赋范空间, $u:E\to F$ 是连续线性映射. 证明 u 有连续的线性延拓 $\hat{u}:H\to F$, 且 $\|\hat{u}\|=\|u\|$.

证明: 假设 F 为 Banach 空间, 由定理 3.2.13 知连续线性映射 $u: E \to F$ 可以唯一地扩展为连续线性映射 $\tilde{u}: \overline{E} \to F$ 且 $\|\tilde{u}\| = \|u\|$. 对任意 $x \in H$, 定义

$$\hat{u}(x) := \tilde{u}\left(P_{\overline{E}}(x)\right).$$

若 $x \in E$, 则 $\hat{u}(x) = \tilde{u}(x) = u(x)$, 故 \hat{u} 为 u 的扩展映射.

 \hat{u} 为连续映射: 对任意 $x, y \in H$ 和 $\lambda \in \mathbb{K}$, 由 \tilde{u} 和 $P_{\overline{E}}$ 的线性性得

$$\begin{split} \hat{u}(\lambda x + y) &= \tilde{u}(P_{\overline{E}}(\lambda x + y)) \\ &= \tilde{u}(\lambda P_{\overline{E}}(x) + P_{\overline{E}}(y)) \\ &= \lambda \tilde{u}(P_{\overline{E}}(x)) + \tilde{u}(P_{\overline{E}}(y)) \\ &= \lambda \hat{u}(x) + \hat{u}(y). \end{split}$$

 \hat{u} 为有界映射: 对任意 $x \in H$, 有

$$\|\hat{u}(x)\| = \|\tilde{u}(P_{\overline{E}}(x))\| \le \|\tilde{u}\| \|P_{\overline{E}}\| \|x\| = \|u\| \|x\|.$$

故 $\|\tilde{u}\| \leq \|u\|$, 又

$$||u|| = \sup_{x \in E, x \neq 0} \frac{||u(x)||}{||x||} \le \sup_{x \in H, x \neq 0} \frac{||\hat{u}(x)||}{||x||} = ||\hat{u}||,$$

所以 $\|\hat{u}\| = \|u\|$.

18. 设 [0,1] 上赋予 Lebesgue 测度, $H=L_2(0,1)$. 并假设 $K\in L_2([0,1]\times[0,1])$. 我们定义

$$T_K(f)(x) = \int_0^1 K(x, y) f(y) \, dy, \quad f \in H, x \in [0, 1].$$

- (a) 证明 $T_K(f)$ 在 [0,1] 上几乎处处有定义.
- (b) 证明 $T_K \in \mathcal{B}(H)$ 且

$$||T_K|| \le ||K||_{L_2([0,1]\times[0,1])}$$

- (c) 设 $\widetilde{K}(x,y) = \overline{K(y,x)}, x,y \in [0,1]$. 证明 $T_K^* = T_{\widetilde{K}}$.
- (d) 定义

$$T(f)(x) = \int_0^x f(1-y) \, dy, \quad f \in H, x \in [0,1].$$

证明 $T \in \mathcal{B}(H)$ 且有 $T^* = T$. 最后给出 T 的非零特征值并证明相应的特征子空间两两正交.

证明: (a) 任意固定 x, 将 K(x,y) 看作关于 y 的一元函数, 由 Cauchy-Schwarz 不等式得:

$$|\langle K, \bar{f} \rangle|^2 = \left| \int_0^1 K(x, y) f(y) \, \mathrm{d}y \right|^2$$

$$\leq \int_0^1 |K(x, y)|^2 \, \mathrm{d}y \cdot \int_0^1 |f(y)|^2 \, \mathrm{d}y.$$

因为 $f \in L_2(0,1)$, 所以

$$\int_0^1 |f(y)|^2 \, \mathrm{d}y < \infty.$$

因为 $K \in L_2([0,1] \times [0,1])$, 所以

$$\int_0^1 \int_0^1 |K(x,y)|^2 \, dy \, dx < \infty \Rightarrow \int_0^1 |K(x,y)|^2 \, dy < \infty, \text{ a.e.}$$

结合以上三式得

$$\left| \int_0^1 K(x,y) f(y) \, \mathrm{d}y \right|^2 < \infty, \text{ a.e.}$$

也就证明了 $T_K(f)$ 在 [0,1] 上几乎处处有定义.

(b) 由 (a) 中结论知: $\forall f \in H, T_K(f) \in H$.

首先, T_K 为线性算子. 对于任意 $f,g \in H$ 和 $\lambda \in \mathbb{K}$, 有

$$T_K(\lambda f + g) = \int_0^1 K(x, y)(\lambda f(y) + g(y)) dy = \lambda T_K(f) + T_K(g).$$

其次, T_K 为有界算子. 对于任意 $f \in H$, 有

$$||T_K(f)||^2 = \int_0^1 |T_K(f)(x)|^2 dx$$

$$= \int_0^1 \left| \int_0^1 K(x, y) f(y) dy \right|^2 dx$$

$$\leq \int_0^1 \left(\int_0^1 |K(x, y)|^2 dy \cdot \int_0^1 |f(y)|^2 dy \right) dx$$

$$= \int_0^1 |f(y)|^2 dy \cdot \int_0^1 \int_0^1 |K(x, y)|^2 dx dy$$

$$= ||f||^2 \cdot ||K||_{L_2([0, 1] \times [0, 1])}^2.$$

故 T_K 为有界算子且 $||T_K|| \le ||K||_{L_2([0,1]\times[0,1])}$.

(c) 对于 $\forall f, g \in H$, 有

$$\langle T_{\widetilde{K}}(f), g \rangle = \int_0^1 \left(\int_0^1 \widetilde{K}(x, y) f(y) \, \mathrm{d}y \right) \overline{g(x)} \, \mathrm{d}x$$

$$= \int_0^1 \left(\int_0^1 \overline{K}(y, x) f(y) \, \mathrm{d}y \right) \overline{g(x)} \, \mathrm{d}x$$

$$= \int_0^1 \left(\int_0^1 \overline{K}(x, y) f(x) \, \mathrm{d}x \right) \overline{g(y)} \, \mathrm{d}y$$

$$= \int_0^1 \left(\int_0^1 \overline{K}(x, y) g(y) f(x) \, \mathrm{d}x \right) \mathrm{d}y$$

$$= \int_0^1 \left(\int_0^1 \overline{K}(x, y) g(y) f(x) \, \mathrm{d}y \right) \mathrm{d}x$$

$$= \int_0^1 f(x) \left(\int_0^1 K(x, y) g(y) \, \mathrm{d}y \right) \mathrm{d}x$$

$$= \langle f, T_K(g) \rangle.$$

因此由伴随算子的定义知 $T_K^* = T_{\widetilde{K}}$.

(d)
$$T(f)(x) = \int_0^x f(1-y) dy = \int_{1-x}^1 f(y) dy$$
, \mathbb{R} :

$$K(x,y) = \begin{cases} 0, & 0 \le y \le 1 - x, \\ 1, & 1 - x < y \le 1. \end{cases}$$

显然 $K(x,y) \in L_2([0,1] \times [0,1])$, 且

$$T_K(f)(x) = \int_0^1 K(x, y) f(y) \, \mathrm{d}y = \int_{1-x}^1 f(y) \, \mathrm{d}y = T(f)(x).$$

即在此情形下 T_K 和 T 是同一个算子, 利用 (b) 中结论知 $T \in \mathcal{B}(H)$.

由 K(x,y) 的定义知 $\widetilde{K}(x,y) = \overline{K(y,x)} = K(y,x) = K(x,y)$, 所以由 (c) 中结论知:

$$T^* = T_K^* = T_{\widetilde{K}} = T_K = T.$$

因为 $T^* = T$, 所以 T 的特征值全部都为实数, 任取两个特征值 $\lambda, \mu \in \mathbb{R}$, 任取两个相应的特征向量 $f, g \in H$, 即 $T(f) = \lambda f, T(g) = \mu g$, 则:

$$\mu \langle f,g \rangle = \langle f,\mu g \rangle = \langle f,T(g) \rangle = \langle T(f),g \rangle = \lambda \langle f,g \rangle.$$

从而

$$(\mu - \lambda)\langle f, g \rangle = 0.$$

故 $\langle f, g \rangle = 0$, 因此相应的特征子空间两两正交.

下面具体求特征值. 任取非零特征值 λ 及其相应的特征向量 f, 则

$$T(f)(x) = \int_{1-x}^{1} f(y) \, \mathrm{d}y = \lambda f(x), \quad \forall x \in [0, 1].$$

故 f(0) = 0 且 $\lambda f(1) = \int_0^1 f(y) \, dy$. 将上式求导一次得

$$f(1-x) = \lambda f'(x) \Longrightarrow f(x) = \lambda f'(1-x).$$
 (*)

再将上式求导一次得

$$-f'(1-x) = \lambda f''(x). \tag{**}$$

结合 (*)(**) 两式即得 ODE

$$f''(x) + \frac{1}{\lambda^2}f(x) = 0.$$

上述常微分方程的解为 $f(x) = C_1 \cos \frac{x}{\lambda} + C_2 \sin \frac{x}{\lambda}$. 由 f(0) = 0, 得 $f(x) = C_2 \sin \frac{x}{\lambda}$, 再由 $\lambda f(1) = \int_0^1 f(x) dx$ 得

$$\lambda C_2 \sin \frac{1}{\lambda} = \int_0^1 C_2 \sin \frac{x}{\lambda} \, \mathrm{d}x.$$

由上式直接解得 $\sin \frac{1}{\lambda} + \cos \frac{1}{\lambda} = 1$, 故 $\lambda = \frac{1}{2k\pi} \ (k \in \mathbb{Z}, k \neq 0)$ 或 $\frac{1}{\frac{\pi}{2} + 2k\pi} \ (k \in \mathbb{Z})$.

19. 和上一习题一样, 令 $H = L_2(0,1)$; 并设 $(e_n)_{n\geq 1}$ 是 H 中的规范正交集. 证明: $(e_n)_{n\geq 1}$ 是 H 上的规范正交基的充分必要条件是

$$\sum_{n>1} \left| \int_0^x e_n(t) \, \mathrm{d}t \right|^2 = x, \quad \forall x \in [0, 1].$$

证明: (\Rightarrow) 取 $f_x = \mathbb{1}_{(0,x)}$, 由 Parseval 恒等式得

$$||f_x||_{L_2}^2 = \sum_{n \ge 1} |\langle f_x, e_n \rangle|^2, \tag{*}$$

换个马甲即为

$$x = \sum_{n \ge 1} \left| \int_0^x e_n(t) \, \mathrm{d}t \right|^2.$$

(\Leftarrow) 将 $(e_n)_{n\geq 1}$ 扩展成为 $L_2(0,1)$ 的规范正交基 $(e_n)_{n\geq 1}\cup (\tilde{e}_n)_{n\geq 1}$, 则由 Parseval 恒等式得

$$||f_x||_{L_2}^2 = \sum_{n>1} |\langle f_x, e_n \rangle|^2 + \sum_{n>1} |\langle f_x, \tilde{e}_n \rangle|^2.$$

而由 (*) 式得 $\sum_{n>1} |\langle f_x, \tilde{e}_n \rangle|^2 = 0$, 即对任意的 $n \geq 1$, 有

$$\langle f_x, \tilde{e}_n \rangle = \int_0^x \tilde{e}_n(t) dt = 0, \quad \forall x \in [0, 1].$$

故 $\tilde{e}_n = 0, \forall n \geq 1, 从而 (e_n)_{n>1} 为 L_2(0,1)$ 的规范正交基.

20. 设 Ω 是复数域 $\mathbb C$ 中的开集,约定 $\mathbb C$ 上的测度为 $\mathbb R^2$ 上的 Lebesgue 测度,记为 $\mathrm{d}\lambda(z)$. 令

$$H_{\Omega} = \{ f \in L_2(\Omega) : f \in \Omega \text{ L的全纯函数} \}.$$

对任一点 $z \in \Omega$, δ_z 表示 z 处在 H_{Ω} 上的演化, 即有 $\delta_z(f) = f(z)$, $f \in H_{\Omega}$.

(a) 若 $\overline{B}(z,r) = \{w \in \mathbb{C} : |w-z| \le r\} \subset \Omega$, 证明

$$f(z) = \frac{1}{\pi r^2} \int_{\overline{B}(z,r)} f(w) \, d\lambda(w), \quad \forall f \in H_{\Omega}.$$

(b) 证明

$$f \in H_{\Omega}, z \in \Omega, d(z, \Omega^c) > r \Longrightarrow |f(z)| \le \frac{1}{\sqrt{\pi r}} ||f||_2.$$

- (c) 证明: 当在 $L_2(\Omega)$ 上赋予内积运算时, H_{Ω} 是一个可分的 Hilbert 空间.
- **21.** 设 H 是一个 Hilbert 空间, 并设 $T \in \mathcal{B}(H)$ 且 $||T|| \le 1$. 证明:
- (a) T(x) = x 当且仅当 $T^*(x) = x, x \in H$.
- (b) $\ker(I T) = \ker(I T^*)$.
- (c) $H = \ker(I T) \oplus \overline{(I T)(H)}$.

证明: (a) 由伴随算子的性质知 $||T^*|| = ||T|| \le 1$. 当 T(x) = x 时,

$$||T^*(x) - x||^2 = ||T^*(x)||^2 + ||x||^2 - 2\operatorname{Re}\langle T^*, x\rangle$$

$$= ||T^*(x)||^2 + ||x||^2 - 2\operatorname{Re}\langle x, T(x)\rangle$$

$$= ||T^*(x)||^2 + ||x||^2 - 2\operatorname{Re}\langle x, x\rangle$$

$$= ||T^*(x)||^2 - ||x||^2$$

$$\leq ||T^*||^2 ||x||^2 - ||x||^2 \leq 0,$$

故 $T^*(x) = x$. 同理可证当 $T^*(x) = x$ 时有 T(x) = x.

- (b) $x \in \ker(I T) \Leftrightarrow x T(x) = 0 \Leftrightarrow x T^*(x) = 0 \Leftrightarrow x \in \ker(I T^*)$, 故 $\ker(I T) = \ker(I T^*)$.
 - (c) 由正交分解定理, 只需证明:

$$\ker(I-T) = [(I-T)(H)]^{\perp}$$

先证: $(I-T)^* = I - T^*$. 对于任意 $x, y \in H$, 有

$$\langle (I-T)(x), y \rangle = \langle x, y \rangle - \langle T(x), y \rangle = \langle x, y \rangle - \langle x, T^*(y) \rangle = \langle x, (I-T^*)(y) \rangle,$$

故 $(I-T)^* = I - T^*$.

再证: $\ker(I-T) = (I-T)(H)^{\perp}$. 一方面, 对任意 $x \in (I-T)(H)^{\perp}$ 和 $y \in H$, 有

$$\langle (I - T^*)(x), y \rangle = \langle (I - T)^*(x), y \rangle = \langle x, (I - T)(y) \rangle = 0.$$

由 y 的任意性知 $x \in \ker(I - T^*) = \ker(I - T)$, 故 $(I - T)(H)^{\perp} \subset \ker(I - T)$. 另一方面, 对 任意 $x \in \ker(I - T) = \ker(I - T^*)$ 和 $(I - T)(y) \in (I - T)(H)$, 有

$$\langle x, (I-T)(y) \rangle = \langle (I-T)^*(x), y \rangle = \langle (I-T^*)(x), y \rangle = 0,$$

故 $\ker(I-T) \subset (I-T)(H)^{\perp}$.

22. 设 H 是 Hilbert 空间. 称映射 $A \in \mathcal{B}(H)$ 为压缩算子, 若 $\|A\| \le 1$; 称 A 是正的, 若 对任一 $x \in H$, 有 $\langle A(x), x \rangle \ge 0$.

(a) 证明 H 上任意压缩正算子 A 满足

$$||x - A(x)||^2 \le ||x||^2 - ||A(x)||^2, \quad x \in H.$$

证明: (a) 先证明 A 是自伴算子, 即 $\langle A(x), y \rangle = \langle x, A(y) \rangle, \forall x, y \in H$. 因

$$\langle A(x+y), x+y \rangle = \langle A(x), x \rangle + \langle A(y), y \rangle + \langle A(y), x \rangle + \langle A(x), y \rangle \in \mathbb{R},$$

故 $\langle A(y), x \rangle + \langle A(x), y \rangle \in \mathbb{R}$, 故

$$\langle A(y), x \rangle + \langle A(x), y \rangle = \overline{\langle A(y), x \rangle} + \overline{\langle A(x), y \rangle} = \langle x, A(y) \rangle + \langle y, A(x) \rangle. \tag{*}$$

又因

$$\langle A(x-iy), x-iy \rangle = \langle A(x), x \rangle + \langle A(y), y \rangle + i \langle A(x), y \rangle - i \langle A(y), x \rangle \in \mathbb{R},$$

故 $i\langle A(x), y\rangle - i\langle A(y), x\rangle \in \mathbb{R}$, 故

$$i(\langle A(x), y \rangle - \langle A(y), x \rangle) = (-i)(\langle y, A(x) \rangle - \langle x, A(y) \rangle),$$

从而

$$\langle A(x), y \rangle - \langle A(y), x \rangle = \langle x, A(y) \rangle - \langle y, A(x) \rangle.$$
 $(\star\star)$

结合 $(\star)(\star\star)$ 即得 $\langle A(x), y \rangle = \langle x, A(y) \rangle$.

再证明 I-A 是正算子, 从而是自伴算子. 对任意 $x \in H$, 由 Cauchy-Schwarz 不等式有

$$\langle A(x), x \rangle \le ||A(x)|| ||x|| \le ||A|| ||x||^2 \le ||x||^2 = \langle x, x \rangle,$$

即 $\langle (I-A)(x), x \rangle \geq 0$, 故 I-A 是正算子.

原不等式 $||x-A(x)||^2 \le ||x||^2 - ||A(x)||^2$ 等价于 $\langle A(x), (I-A)(x) \rangle \ge 0$, 故只需证后者即可, 由 I-A 为自伴算子得

$$\begin{split} \langle A(x), (I-A)(x) \rangle &= \langle (I-A)A(x), x \rangle \\ &= \langle (I-A)A(x), (I-A)(x) + A(x) \rangle \\ &= \langle (I-A)A(x), (I-A)(x) \rangle + \langle (I-A)A(x), A(x) \rangle \\ &= \langle A(I-A)(x), (I-A)(x) \rangle + \langle (I-A)A(x), A(x) \rangle \\ &> 0. \end{split}$$

最后用到了 A 和 I-A 皆为正算子, 证毕.

注 从 (a) 可以得到一个结论: 正算子必为自伴算子. 事实上, 我们也可以用极化恒等式证明此结论, 但这里所说的极化恒等式是广义的极化恒等式, 设 H 为 $\mathbb C$ 上的向量空间, 映射 $S: H \times H \to \mathbb C$, $(x,y) \to S(x,y)$ 关于第一个变量是线性的, 关于第二个变量是共轭线性的,则我们有极化恒等式

$$4S(x,y) = \sum_{k=0}^{3} i^{k} S(x + i^{k} y, x + i^{k} y).$$

证明很容易,将上式右侧展开验证即可.特别地,取S为内积,则得到经典的极化恒等式

$$4 \langle x, y \rangle = \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2}.$$

如果假设 S 关于第一个变量是共轭线性的而关于第二个变量是线性的,则也有相应的极化恒等式

$$4S(x,y) = \sum_{k=0}^{3} (-i)^{k} S(x + i^{k} y, x + i^{k} y).$$

在本问题中,定义 $\mathcal{S}(x,y)=\langle A(x),y\rangle$ 和 $\mathcal{T}(x,y)=\langle x,A(y)\rangle$,则 \mathcal{S} 和 \mathcal{T} 都关于第一个变量为线性且关于第二个变量为共轭线性,由极化恒等式得

$$4\mathcal{S}(x,y) = \sum_{k=0}^{3} i^{k} \mathcal{S}(x + i^{k} y, x + i^{k} y),$$

$$4\mathcal{T}(x,y) = \sum_{k=0}^{3} i^{k} \mathcal{T}(x + i^{k} y, x + i^{k} y).$$

即

$$4 \langle A(x), y \rangle = \sum_{k=0}^{3} i^{k} \langle A(x + i^{k}y), x + i^{k}y \rangle,$$

$$4\langle x, A(y)\rangle = \sum_{k=0}^{3} i^{k} \langle x + i^{k} y, A(x + i^{k} y)\rangle.$$

结合 A 为正算子即得 $\langle A(x),y\rangle=\langle x,A(y)\rangle.$

Baire 定理及其应用

- **1.** (a) 证明: $\mathbb{R} \setminus \mathbb{Q}$ 是 \mathbb{R} 上的 \mathcal{G}_{δ} 集. 并导出 \mathbb{Q} 不是 \mathcal{G}_{δ} 集, 且不存在函数 $f: \mathbb{R} \to \mathbb{R}$ 使 得 $\mathrm{Cont}(f) = \mathbb{Q}$.
- (b) 定义函数 $f: \mathbb{R} \to \mathbb{R}$: 当 $x \in \mathbb{R} \setminus \mathbb{Q}$ 时, 令 f(x) = 0; f(0) = 1; 若 x 是非零的有理数 $\frac{p}{q}$, 这里 $\frac{p}{q}$ 是 x 的不可约形式, $p \in \mathbb{Z}$, $q \in \mathbb{N}$, 令 $f(x) = \frac{1}{q}$. 证明: $\operatorname{Cont}(f) = \mathbb{R} \setminus \mathbb{Q}$.
- (c) 设 $f = \mathbb{1}_{\mathbb{Q}}$. 证明: f 不是第一纲的 (即不是任一函数列的极限函数), 但是存在一列第一纲的函数逐点收敛到 f.

证明: (a) 记 $\mathbb{Q} = \{r_k\}_{k=1}^{\infty}$, 对于每一个 k, 令

$$U_k = \mathbb{R} \setminus \{r_k\} = (-\infty, r_k) \cup (r_k, +\infty).$$

显然 U_k 是开集并且

$$\bigcap_{k=1}^{\infty} U_k = \mathbb{R} \setminus \mathbb{Q}.$$

因此 $\mathbb{R}\setminus\mathbb{Q}$ 是 \mathbb{R} 上的 \mathcal{G}_{δ} 集. 假设 \mathbb{Q} 也是 \mathcal{G}_{δ} 集, 则存在一列开集 $\{V_{k}\}_{k=1}^{\infty}$,使得

$$\mathbb{Q} = \bigcap_{k=1}^{\infty} V_k.$$

每个 V_k 包含 \mathbb{Q} , 故必在 \mathbb{R} 中稠密, 由 Baire 定理可知集合

$$\left(\bigcap_{k=1}^\infty U_k\right)\bigcap\left(\bigcap_{k=1}^\infty V_k\right)$$

在 ℝ 中稠密, 然而

$$\left(\bigcap_{k=1}^{\infty}U_{k}\right)\bigcap\left(\bigcap_{k=1}^{\infty}V_{k}\right)=\left(\mathbb{R}\setminus\mathbb{Q}\right)\cap\mathbb{Q}=\varnothing.$$

矛盾, 从而假设不成立, 说明 \mathbb{Q} 不是 \mathcal{G}_{δ} 集, 由于任一映射的连续点集都是 \mathcal{G}_{δ} 集, 所以不存在函数 $f: \mathbb{R} \to \mathbb{R}$ 使得 $\mathrm{Cont}(f) = \mathbb{Q}$.

(b) 容易验证该函数是周期为 1 的函数, 因此只需要考虑该函数在区间 [0,1] 上的情况:

首先, f 在无理数点处连续: 任意取定 $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, 有 $f(x_0) = 0$. 对于 $\forall \varepsilon > 0$, 在 [0,1] 上至多只有有限个 $\frac{p}{q}$ 使得 $f(\frac{p}{q}) = \frac{1}{q} \geq \varepsilon$, 取 $\delta > 0$, 使得 $U(x_0, \delta)$ 不包含上述有限个有理数 (这样的 δ 显然是可以取到的), 则当 $x \in U(x_0, \delta)$ 时,

$$|f(x) - f(x_0)| = |f(x)| < \varepsilon.$$

其次, f 在有理数点处不连续: 同理可证.

因此 $Cont(f) = \mathbb{R} \setminus \mathbb{Q}$.

(c) 参见 Elements of functional analysis by Francis P65.

假设 $f = \mathbb{1}_{\mathbb{Q}}$ 是第一纲的, 则由定理 6.1.7 知 $\mathrm{Cont}(f)$ 是 \mathbb{R} 中稠密的 \mathcal{G}_{δ} 集, 但是 f 在任意点处都不连续, 从而矛盾, 故 $f = \mathbb{1}_{\mathbb{Q}}$ 不是第一纲的. 取

$$f_m(x) = \lim_{n \to +\infty} \cos(m!\pi x)^{2n}.$$

由定义知 $(f_m)_{m\geq 1}$ 是一列第一纲的函数, 下面我们证明 $(f_m)_{m\geq 1}$ 逐点收敛到 f:

- 若 $x \in \mathbb{Q}$, 则可表示为 $x = \frac{p}{q}$, 当 $m \ge q$ 时, $m!\pi x = k\pi \Rightarrow f_m(x) = \lim_{n \to \infty} 1 = 1 = \mathbb{1}_{\mathbb{Q}}(x)$.

综上知 $\lim_{m\to\infty} f_m = \mathbb{1}_{\mathbb{Q}}$.

2. 证明局部紧的 Hausdorff 空间是 Baire 空间.

证明: 设 X 是局部紧的 Hausdorff 空间, 我们来证明 X 是 Baire 空间:

已有定理: 局部紧的 Hausdorff 空间中每一点都有一个紧邻域基.

设 $\{U_n\}_{n\geq 1}$ 是一列在 X 中稠密的开子集, 且 $D=\bigcap_{n\geq 1}U_n$, 设 U 是任一非空开集, 需证 $D\cap U\neq\varnothing$

因为 $U \cap U_1$ 是非空开集, 所以存在非空开集 V_1 , 使得 \bar{V}_1 紧且

$$\bar{V}_1 \subset U \cap U_1$$

因为 $V_1 \cap U_2$ 是非空开集, 所以存在非空开集 V_2 , 使得 \bar{V}_2 紧且

$$\bar{V}_2 \subset V_1 \cap U_2 \subset U \cap U_1 \cap U_2$$

. . .

因为 $V_{n-1} \cap U_n$ 是非空开集, 所以存在非空开集 V_n , 使得 \bar{V}_n 紧且

$$\bar{V}_n \subset V_{n-1} \cap U_n \subset U \cap U_1 \cap \cdots \cap U_n$$

依此可以得到一列开集 $\{V_n\}$ 使得 $\{\bar{V}_n\}$ 是单调递减的紧集列, 故

$$\bigcap_{n\geq 1} \bar{V}_n \neq \varnothing$$

所以

$$D \cap U = \left(\bigcap_{n \ge 1} U_n\right) \cap U \ne \emptyset$$

这就说明了 D 在 X 中稠密, 因此 X 是 Baire 空间.

- **3.** (a) 设 $f: \mathbb{R} \to \mathbb{R}$ 是可微函数. 证明: Cont(f') 是 \mathbb{R} 上稠密的 \mathcal{G}_{δ} 集.
- (b) 设 $f: \mathbb{R}^2 \to \mathbb{R}$ 连续且在 \mathbb{R}^2 上存在偏导数 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$. 证明: f 的可微点包含 \mathbb{R}^2 中一个稠密的 \mathcal{G}_δ 集.

证明: (a) 记

$$g_n(x) = n \left[f\left(x + \frac{1}{n}\right) - f(x) \right].$$

则 $(g_n)_{n\geq 1}$ 是 \mathbb{R} 上的连续函数序列且对于任意 $x\in\mathbb{R}$, 有

$$\lim_{n \to \infty} g_n(x) = f'(x).$$

由定理 6.1.7 知 Cont(f') 是 \mathbb{R} 中稠密的 \mathcal{G}_{δ} 集.

(b) 因为

$$\frac{\partial f(x,y)}{\partial x} = \lim_{n \to \infty} n \left[f\left(x + \frac{1}{n}, y\right) - f(x,y) \right] \stackrel{\triangle}{=} \lim_{n \to \infty} F_n(x,y).$$

且 $F_n(x,y) \in C(\mathbb{R}^2)$, 所以 $\frac{\partial f(x,y)}{\partial x}$ 的连续点集是稠密的 \mathcal{G}_{δ} 集, 记为 G_x ; 同理 $\frac{\partial f(x,y)}{\partial y}$ 的连续点集也是稠密的 \mathcal{G}_{δ} 集, 记为 G_y . 令 $G = G_x \cap G_y$, 则 G 也是稠密的 \mathcal{G}_{δ} 集, 并且 f 在 G 上可微.

- **4.** 设 E 和 F 都是 Banach 空间, (u_n) 是 $\mathcal{B}(E,F)$ 的序列. 证明下列命题等价:
- (a) $(u_n(x))$ 在每个 $x \in E$ 处收敛.
- (b) $A \subset E$ 且 span(A) 在 E 中稠密, $(u_n(a))$ 在每个 $a \in A$ 处收敛, 且 (u_n) 有界.

证明: $(a) \Rightarrow (b)$ 是显然的, 下证 $(b) \Rightarrow (a)$, 即证 $\forall x \in E \setminus A$, $(u_n(x))$ 收敛: 因为 $(u_n(a))$ 在每个 $a \in A$ 处收敛, 所以 $(u_n(a))$ 在每个 $a \in \operatorname{span}(A)$ 处收敛, 因为 $\operatorname{span}(A)$ 在 E 中稠密, 所以存在 $(x_m)_{m\geq 1} \subset \operatorname{span}(A)$, 使得 $x_m \to x(m \to \infty)$, 显然 $(x_m)_{m\geq 1}$ 是 E 中的 Cauchy 序

列.

$$\lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} u_n \left(\lim_{m \to \infty} x_m \right)$$

$$= \lim_{n \to \infty} \lim_{m \to \infty} u_n(x_m)$$

$$= \lim_{m \to \infty} \lim_{n \to \infty} u_n(x_m)$$

$$= \lim_{m \to \infty} y_m$$

下面我们只需要证明 $\lim_{m\to\infty} y_m$ 存在, 结合 F 是 Banach 空间可知只需要证明 (y_m) 是 F 中 Cauchy 序列即可, 而这个结论通过下式即得:

$$||y_m - y_k|| = |\lim_{n \to \infty} u_n(x_m) - \lim_{n \to \infty} u_n(x_k)|$$

$$= |\lim_{n \to \infty} u_n(x_m - x_k)|$$

$$\leq \liminf_{n \to \infty} ||u_n|| \cdot ||x_m - x_k||$$
(注意 $(x_m)_{m \ge 1}$ 是Cauchy序列)

5. 设 E, F 都是 Banach 空间, $u \in \mathcal{B}(E, F)$ 并满足 $u(B_E)$ 在 B_F 中稠密.

- (a) 计算 ||u||.
- (b) 证明: $u(B_E) = B_F$. 因此 u 是满射.
- (c) 设 $v \in B(E/\ker u, F)$ 并满足 $v \circ q = u$, 这里 $q: E \to E/\ker u$ 是商映射. 证明: v 是从 $E/\ker u$ 到 F 上的等距映射.

证明: (a) 因为 $u(B_E)$ 在 B_F 中稠密, 所以 $B_F \subset \overline{u(B_E)} = \overline{B_F}$, 又由 u 连续知 $u(\overline{B_E}) \subset \overline{u(B_E)}$, 故

$$\|u\| = \sup_{x \in \overline{B_E}} \|u(x)\| = \sup_{u(x) \in u(\overline{B_E})} \|u(x)\| \leq \sup_{u(x) \in \overline{u(B_E)}} \|u(x)\| = \sup_{u(x) \in \overline{B_F}} \|u(x)\| = 1.$$

任意 $\varepsilon > 0$, $\exists y \in B_F$, 使得 $||y|| \ge 1 - \varepsilon$, 对于上述 $y \in B_F$, $\exists x \in \overline{B_E}$, 使得 $||u(x) - y|| \le \varepsilon$, 故

$$||u(x)|| \ge ||y|| - ||u(x) - y|| \ge 1 - 2\varepsilon.$$

由 ε 的任意性知 ||u|| = 1.

- (b) 因为 $B_F \subset u(B_E)$, 故利用教材证明开映射定理的方法 (将那里的 $\frac{1}{2}$ 改为 $\frac{1}{K}$, 并让 $K \to \infty$) 可以说明 $B_F \subset u(B_E)$, 又因为 $u(B_E) \subset B_F$, 故 $u(B_E) = B_F$, 从而 u 是满射. \square
- **6.** 设 E 是 Banach 空间, F 和 G 都是 E 的闭向量子空间, 并且 F+G 也是闭向量子空间. 证明: 存在一个常数 $C \geq 0$, 使得 $\forall x \in F+G$, 存在 $(f,g) \in F \times G$, 满足

$$x = f + g, ||f|| \le C||x||, ||g|| \le C||x||.$$

证明: 考虑乘积 Banach 空间 $F \times G$ (赋予范数 $\|(f,g)\| = \|f\| + \|g\|$) 和 Banach 空间 F + G (范数即为 E 中范数). 映射

$$u: F \times G \to F + G, \; (f,g) \mapsto f + g$$

为连续线性的满射,由开映射定理, $u(B_{F\times G}(0,1))$ 为 F+G 中含原点的开集, 取常数 c>0, 使得 $B_{F+G}(0,c)\subset u(B_{F\times G}(0,1))$. 则对于任意 $x\in F+G$ 且 $\|x\|< c$, 存在 $f\in F$, $g\in G$ 且 $\|f\|+\|g\|<1$, 使得 x=f+g.

对于一般的 $x \in F + G$, 任取 0 < c' < c, 由于 $x = \frac{\|x\|}{c'} \left(\frac{c'}{\|x\|}x\right)$, 其中 $\left\|\frac{c'}{\|x\|}x\right\| = c' < c$, 故存在 $f' \in F$, $g' \in G$, 使得 $\frac{c'}{\|x\|}x = f' + g'$ 且 $\|f'\| + \|g'\| < 1$. 令 $f = \frac{\|x\|}{c'}f'$, $g = \frac{\|x\|}{c'}g'$, 则 x = f + g 且

$$||f|| + ||g|| = \frac{||x||}{c'} (||f'|| + ||g'||) < \frac{1}{c'} ||x||.$$

由 c' 的任意性即得 $||f|| + ||g|| \le \frac{1}{c}||x||$. 再令 $C = \frac{1}{c}$ 即证所需.