微积分 A2 期中考试样题参考解答

一. 填空题(每空3分,共15题)(请将答案直接填写在试题纸横线上!)

1.
$$\lim_{(x,y)\to(0,0)} (1+x^2+y^2)^{\frac{x^2+2}{x^2+y^2}} = \underline{\hspace{1cm}}_{\circ}$$

解答: e²

2. 已知函数
$$f(x,y)$$
 在点 (2,1) 处的微分 $df = 2dx + dy$, 则 $\lim_{t\to 0} \frac{f(2+2t,1+t) - f(2,1)}{t} = _____$ 。

解答:5

解答: 2

4. 设 f 为可微且 f'(0) = 1 ,则函数 $z(x, y) = xy + f(\frac{y}{x})$ 在点 (1,0) 处的微分 $dz = \underline{\hspace{1cm}}$ 解答: 2dy

5. 从 $(u_0, v_0) = (2,1)$ 的邻域到 $(x_0, y_0) = (3,4)$ 的邻域中,向量值函数 $\begin{cases} x = u + v \\ y = u^2 v^2 \end{cases}$ 有可微的逆向量值函数 $\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$,则 $\frac{\partial u}{\partial x}(3,4) = \underline{\qquad}$ 。

解答· ?

6. 设函数 $f(u,v) \in \mathbb{C}^{(1)}$, 函数 w(x,y,z) = f(x-y,x-z), 则 grad $w = \underline{\hspace{1cm}}$ 。

解答: $(f'_u + f'_v, -f'_u, -f'_v)$

7. 已知函数 $f(x,y) = x^2 - xy + y^2$ 在点 (1,1) 处沿**单位向量** l 的方向导数 $\frac{\partial f}{\partial l}$ (1,1) = 0 , 则

解答: $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ 或 $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

8. $\frac{1}{x+y}$ 在点 (1,0) 处带 Peano 余项的二阶 Taylor 展开式为 _______。

解答: $1 - (x - 1 + y) + (x - 1 + y)^2 + o(\rho^2)$, 其中 $\rho^2 = (x - 1)^2 + y^2$.

或
$$3-3(x+y)+(x+y)^2+o(\rho^2)$$

9. 曲线
$$\begin{cases} x = e^t \\ y = 2\sin t + \cos t \ \text{在 } t = 0 \text{ 所对应的点处的切线方程为} \\ z = 1 + e^{3t} \end{cases}$$

解答:
$$\begin{cases} x = 1 + t \\ y = 1 + 2t \\ z = 2 + 3t \end{cases}$$
 或等价形式
$$\frac{x - 1}{1} = \frac{y - 1}{2} = \frac{z - 2}{3}$$

10. 曲面
$$2x^2 + 3y^2 + z^2 = 9$$
 和曲面 $3x^2 + y^2 - z^2 = 0$ 的交线在点 $(1, -1, 2)$ 处的法平面方程为__。

解答:
$$8(x-1)+10(y+1)+7(z-2)=0$$
 或者 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} + s \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}$

11. 曲面
$$e^z + xy - z = 3$$
 在点 $(2,1,0)$ 处的法线方程为_____。

解答:
$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{0}$$

12. 已知
$$z = z(x, y)$$
 由方程 $x^2 + 2y^2 + 3z^2 - 2xy - z - 7 = 0$ 确定的一个隐函数,则 $z = z(x, y)$ 的 驻点 $(x_0, y_0) =$ ______。

解答: (0,0)

13. 读
$$I(y) = \int_{y}^{y^2} e^{x^2 y} dx$$
,则 $I'(1) =$ _______。

解答: e

14.
$$\lim_{y \to +\infty} \int_{1}^{+\infty} \frac{e^{-xy}}{1+x^{2}} dx = \underline{\qquad}_{\circ}$$

解答: 0

15. 所有 2 阶实数矩阵
$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$
 组成一个 4 维线性空间 V ,定义向量值函数 $\mathbf{f}: V \to V$,
$$\mathbf{f}(X) = X^2 \, , \, \text{则} \, \mathbf{f}(X) \, \text{在} \, X_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{处全微分为} \underline{\hspace{1cm}}$$
。

解答:
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} dX + (dX) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \vec{\mathbf{y}} \begin{pmatrix} 2 dx_{11} & dx_{12} \\ dx_{21} & 0 \end{pmatrix} \vec{\mathbf{y}} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} dx_{11} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} dx_{12} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} dx_{21},$$

这里
$$dX = \begin{pmatrix} dx_{11} & dx_{12} \\ dx_{21} & dx_{22} \end{pmatrix}$$

二. 计算题 (每题 10 分, 共 4 题) (请写出详细的计算过程和必要的根据!)

16. 设
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0) \end{cases}$$
, 回答以下问题:

- (I) 函数 f(x,y) 在原点处是否连续,说明理由;
- (II) 函数 f(x,y) 在原点处沿任意给定的方向u=(a,b) ($a^2+b^2=1$) 的方向导数是否存在? 若存在,求出这个方向导数,若不存在,说明理由;
- (III) 函数 f(x,y) 在原点处是否可微,若可微,求出这个微分,若不可微,说明理由。

解: (I) 函数 f(x,y) 在原点 (0,0) 处连续。这是因为当 $(x,y) \to (0,0)$ 时,我们有

$$|f(x,y) - f(0,0)| = \frac{|x||y|^3}{x^2 + y^2} \le \frac{\sqrt{x^2 + y^2}\sqrt{x^2 + y^2}^3}{x^2 + y^2} = x^2 + y^2 \to 0$$

(II) 函数 f(x,y) 在原点 (0,0) 处沿任意给定的方向 u = (a,b) $(a^2 + b^2 = 1)$ 的方向导数是存在且为零。理由如下.

$$\frac{f(ta,tb)-f(0,0)}{t} = \frac{t^4ab^3}{t^3(a^2+b^2)} = tab^3 \to 0 , \quad \stackrel{\text{def}}{=} t \to 0 \text{ Prior}$$

注: 也可先按(III)中证得 $\nabla f(0,0) = 0$,从而 $\frac{\partial f}{\partial \mathbf{I}}(0,0) = \nabla f_{(0,0)}(\mathbf{I}) = 0$ 。

(III) 当 $(x,y) \rightarrow (0,0)$ 时

$$|f(x,y)-f(0,0)| = \frac{|x||y|^3}{x^2+y^2} \le \frac{\sqrt{x^2+y^2}\sqrt{x^2+y^2}^3}{x^2+y^2} = x^2+y^2 = o(\sqrt{x^2+y^2}),$$

因此函数 f(x,y) 在原点 (0,0) 处可微,且 df(0,0)=0。解答完毕.

17. 已知方程 $2z - e^z + 1 + \int_y^{x^2} \sin(t^2) dt = 0$ 在 $(x_0, y_0, z_0) = (1, 1, 0)$ 的某个邻域中确定了一个隐函数 z = z(x, y)。 求 $\frac{\partial^2 z}{\partial x \partial y}(1, 1)$ 。

解: 令
$$F(x,y,z) = 2z - e^z + 1 + \int_y^{x^2} \sin(t^2) dt$$
, 则
$$\frac{\partial F}{\partial x} = 2x \sin(x^4), \quad \frac{\partial F}{\partial y} = -\sin(y^2), \quad \frac{\partial F}{\partial z} = 2 - e^z,$$
代入 $(1,1,0)$ 得到 $\frac{\partial F}{\partial x}(1,1,0) = 2\sin 1, \quad \frac{\partial F}{\partial y}(1,1,0) = -\sin 1, \quad \frac{\partial F}{\partial z}(1,1,0) = 1$ 。

因此
$$\frac{\partial z}{\partial x}(1,1) = -\frac{\frac{\partial F}{\partial x}(1,1,0)}{\frac{\partial F}{\partial z}(1,1,0)} = -2\sin 1$$
, $\frac{\partial z}{\partial y}(1,1) = -\frac{\frac{\partial F}{\partial y}(1,1,0)}{\frac{\partial F}{\partial z}(1,1,0)} = \sin 1$.

在恒等式F(x,y,z(x,y))=0两边对y求导,得到

$$0 = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial y} = -\sin(y^2) + (2 - e^z) \frac{\partial z}{\partial y}$$

再对x求导,得到

$$0 = -e^{z} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + (2 - e^{z}) \frac{\partial^{2} z}{\partial x \partial y}$$

或者对
$$\frac{\partial z}{\partial y}(x, y) = -\frac{\frac{\partial F}{\partial y}(x, y, z(x, y))}{\frac{\partial F}{\partial z}(x, y, z(x, y))}$$
 求导得到

$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{\left(\frac{\partial^2 F}{\partial x \partial y} + \frac{\partial^2 F}{\partial z \partial y} \frac{\partial z}{\partial x}\right) \frac{\partial F}{\partial z} - \frac{\partial F}{\partial y} \left(\frac{\partial^2 F}{\partial x \partial z} + \frac{\partial^2 F}{\partial z^2} \frac{\partial z}{\partial x}\right)}{\left(\frac{\partial F}{\partial z}\right)^2} = \frac{\frac{\partial F}{\partial y} \frac{\partial^2 F}{\partial z^2} \frac{\partial z}{\partial x}}{\left(\frac{\partial F}{\partial z}\right)^2}$$

代入 (1,1,0) 得到,解得 $\frac{\partial^2 z}{\partial x \partial y}(1,1) = \frac{\partial z}{\partial y}(1,1) \frac{\partial z}{\partial x}(1,1) = -2\sin^2 1 = \cos 2 - 1$. 解答完毕.

18. 设实数
$$a \ge 0$$
, 求 $\int_0^{+\infty} \frac{1 - e^{-ax}}{xe^x} dx$.

解: 记
$$I(a) = \int_0^{+\infty} \frac{1 - e^{-ax}}{xe^x} dx$$
。 因为 $\frac{\partial}{\partial a} \left(\frac{1 - e^{-ax}}{xe^x} \right) = e^{-(a+1)x}$,且当 $a \ge 0$ 时, $\int_0^{+\infty} e^{-(a+1)x} dx$ 一致

收敛,所以 $I'(a) = \int_0^{+\infty} e^{-(a+1)x} dx = \frac{1}{a+1}$ 。 又因为 I(0) = 0, 所以 $I(a) = \ln(a+1)$ 。 解答完毕.

19. 设
$$f(x, y) = x^3 + y^3 - 3xy$$
。

(I) 求 f 在平面 R^2 所有极值;

(II) 求 f 在曲线 $x^2 - xy + y^2 = 1$ 上的最大值和最小值。

解: (I)
$$\frac{\partial f}{\partial x} = 3x^2 - 3y$$
, $\frac{\partial f}{\partial y} = 3y^2 - 3x$, 解得全部驻点: (0,0),(1,1)。

$$A = \frac{\partial^2 f}{\partial x^2} = 6x$$
, $B = \frac{\partial^2 f}{\partial x \partial y} = -3$, $C = \frac{\partial^2 f}{\partial y^2} = 6y$,

f 在 (1,1) 处 Hesse 矩阵正定,所以 f (1,1) = -1 为极小值;

f 在 (0,0) 处, $AC - B^2 = -9 < 0$,Hesse 矩阵不定,故 (0,0) 不是极值点。(也可从 $f(x,0) = x^3$ 知 (0,0) 不是极值点。)

(II) 曲 线 $x^2 - xy + y^2 = 1$ 上 , $x^2 + y^2 = 1 + xy \le 1 + \frac{x^2 + y^2}{2}$, 所以 $x^2 + y^2 \le 2$ 。 从而 $\{(x,y) | x^2 - xy + y^2 = 1\}$ 是有界闭集。 f 连续,在 $\{(x,y) | x^2 - xy + y^2 = 1\}$ 上存在最大值和最小值。用 Lagrange 乘子法,考虑函数 $F(x,y,\lambda) = x^3 + y^3 - 3xy - \lambda(x^2 - xy + y^2 - 1)$ 。

$$\begin{cases} \frac{\partial F}{\partial x} = 3x^2 - 3y - \lambda(2x - y) = 0 & (1) \\ \frac{\partial F}{\partial y} = 3y^2 - 3x - \lambda(-x + 2y) = 0 & (2) \\ \frac{\partial F}{\partial z} = -(x^2 - xy + y^2 - 1) = 0 & (3) \end{cases}$$

解得 x=1, y=1或 x=-1, y=-1 或 $x=\frac{1\pm\sqrt{5}}{4}$, $y=\frac{1\mp\sqrt{5}}{4}$

$$f(1,1) = -1$$
, $f(-1,-1) = -5$, $f(\frac{1 \pm \sqrt{5}}{4}, \frac{1 \mp \sqrt{5}}{4}) = \frac{5}{4}$

所以 f(x, y) 曲线 $x^2 - xy + y^2 = 1$ 上的最大值为 $\frac{5}{4}$,最小值为 -5 。

注: 许多同学解方程组(1)(2)(3)时, 漏掉了最后两组解 $(x,y) = \frac{1}{4}(1 + \sqrt{5}, 1 - \sqrt{5}),$

 $\frac{1}{4}(1-\sqrt{5},1+\sqrt{5})$. 以下我们来具体求解这个方程组. 方程(1)加方程(2)得 $3(x^2+y^2)-3(x+y)-\lambda(x+y)=0$ 即 $3(x^2+y^2)=(\lambda+3)(x+y)$ (4)

将方程(1)减去方程(2)得 $3(x^2-y^2)-3(y-x)-3\lambda(x-y)=0$

即 $(x-y)[(x+y)+(1-\lambda)]=0$. 令 x-y=0, 即 x=y. 代入方程(3)得 $x^2=1$, 即 $x=\pm 1$. 由此得方程组的前两组解 (x,y)=(1,1), (-1,-1).

再令
$$(x + y) + (1 - \lambda) = 0$$
, 即 $x + y = \lambda - 1$ (5)

将方程(5)代入方程(4)
$$3(x^2 + y^2) = (\lambda + 3)(\lambda - 1)$$
 (6)

对方程(5)两边平方得 $x^2 + y^2 + 2xy = (\lambda - 1)^2$. 该方程与方程(3)联立, 即

$$\begin{cases} x^2 + y^2 + 2xy = (\lambda - 1)^2 \\ x^2 + y^2 - xy = 1 \end{cases}$$

可解得
$$3(x^2 + y^2) = (\lambda - 1)^2 + 2$$
 (7)

由方程(6)和方程(7)得 $(\lambda + 3)(\lambda - 1) = (\lambda - 1)^2 + 2$. 解之得 $\lambda = \frac{3}{2}$. 将 $\lambda = \frac{3}{2}$ 代入方程(5)得 $x + y = \frac{1}{2}$. 该方程与方程(3)联立

$$\begin{cases} x + y = 1/2 \\ x^2 + y^2 - xy = 1 \end{cases}$$

解上述方程组不难得到方程组(1)(2)(3)的另外两组解 $(x,y) = \frac{1}{4}(1 + \sqrt{5}, 1 - \sqrt{5}),$

 $\frac{1}{4}(1-\sqrt{5},1+\sqrt{5})$. 注解完毕.

三. 证明题(请写出详细的证明过程!)

- 20. (8分) 设 $f: \mathbf{R} \to \mathbf{R}$ 连续,满足 $f(0) \neq -1$, $\int_0^1 f(x) dx = 0$ 。
- (I) 证明存在 $t_0=1$ 的邻域 U 和 $x_0=0$ 的邻域 V 以及 $\mathbf{C}^{(1)}$ 函数 $g:U\to V$ 使得对任意 $(t,x)\in U\times V\,,\quad \int_x^t f(u)\mathrm{d}u=x\, \mathrm{当且仅}\,\mathrm{d}x=g(t)\,.$

(II) 求g'(1)。

(I) 证明:
$$\diamondsuit F(t,x) = \int_{x}^{t} f(u) du - x$$
。 $F(1,0) = \int_{0}^{1} f(u) du - 0 = 0$, $\frac{\partial F}{\partial x}(1,0) = -f(0) - 1 \neq 0$,

所以根据隐函数定理存在 $t_0=1$ 的邻域 U 和 $x_0=0$ 的邻域 V 以及 C^1 函数 $g:U\to V$,

使得对任意 $(t,x) \in U \times V$, F(t,x) = 0 (即 $\int_x^t f(u) du = x$) 当且仅当 x = g(t)。

(II)解: 对恒等式
$$\int_{g(t)}^{t} f(u) du = g(t)$$
 求导得到 $f(t) - f(g(t))g'(t) = g'(t)$,从而 $g'(1) = \frac{f(1)}{f(0) + 1}$ 。

21. (7 分)设 $f \in C^{(0)}[0,1]$ 且 f(x) > 0, $\alpha > 0$ 。根据参数 α 的不同值,研究函数 $g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} \mathrm{d}x \quad (y \in [0, +\infty))$ 的连续性,并证明你的结论。

结论: 当 $0 < \alpha \le 1$ 时,g(y)在 $(0,+\infty)$ 上连续,在y = 0处不连续;当 $1 < \alpha$ 时,g(y) 在 $[0,+\infty)$ 上连续。

证明: 对于 $(0,+\infty)$ 的任何有界闭子区间 $[\delta,N]$, $\frac{y^{\alpha}f(x)}{x^2+y^2}$ 在[0,1]× $[\delta,N]$ 上(一致)连续,所

以 $g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} dx$ 在 $(0, +\infty)$ 上连续。以下讨论 y = 0 处的连续性,并设 $0 \le y < 1$ 。

当
$$y = 0$$
 时, $\frac{y^{\alpha} f(x)}{x^2 + y^2} = 0$,所以 $g(0) = 0$ 。

因为 $f \in C^{(0)}[0,1]$,所以 f(x) 在 [0,1] 上存在最大值 M 和最小值 m 。又因为 f(x) > 0,所以 $0 < m \le f(x) \le M$ 。

当
$$0 < \alpha \le 1$$
 时, $\frac{y^{\alpha} f(x)}{x^2 + y^2} \ge \frac{yf(x)}{x^2 + y^2} \ge \frac{my}{x^2 + y^2}$,所以

$$g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} dx \ge m \int_0^1 \frac{y}{x^2 + y^2} dx = m \arctan \frac{1}{y} \to \frac{m\pi}{2} > 0, \quad \stackrel{\underline{w}}{=} y \to 0^+$$

因此
$$g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} dx$$
 在 $y = 0$ 处不连续;

当
$$1 < \alpha$$
 时, $0 \le \frac{y^{\alpha} f(x)}{x^2 + y^2} \le \frac{M y^{\alpha - 1} y}{x^2 + y^2}$,所以

$$0 \le g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} dx \le M y^{\alpha - 1} \int_0^1 \frac{y}{x^2 + y^2} dx = M y^{\alpha - 1} \arctan \frac{1}{y} \to 0 = g(0) ,$$

所以
$$g(y) = \int_0^1 \frac{y^{\alpha} f(x)}{x^2 + y^2} dx$$
 在 $y = 0$ 处连续。