北京大学数学科学学院期末试题

2011 - 2012 学年 第二学期

考试科目	: 数	学分析		_ =	考试	时间:	12 年	06 月	12日
姓名	í:	*		- × ⁷	学	号:	* · · · · · · · · · · · · · · · · · · ·		
本计题共	: 1 1	道大颢藩公	100	4					

- 1. (15) 叙述函数列 $\{f_n(x)\}$ 在 (0,1) 一致有界和一致收敛到 0 的定义; 现设函数列 $\{f_n(x)\}$ 在 (0,1) 不一致收敛, f(x) 在 (0,1) 连续且处处大于 0, 试问 $\{f_n(x)f(x)\}$ 在 (0,1) 是否必定不一致收敛? (说明理由)
- 2. (10) 设 $f_n(x)(n = 1, 2, ...)$ 在区间 I 一致连续且函数列 $\{f_n(x)\}$ 在 I 一致 收敛到 f(x). 证明 f(x) 在 I 一致连续.
- 3. (10) 证明 $f(x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n^2+1}$ 在区间 $(0, 2\pi)$ 内具有连续导函数.
- 4. (10) 设 f(x) 在 $[0, +\infty)$ 连续. 证明: 存在多项式序列 $\{p_n(t)\}$, 使得 $\{P_n(e^{-x})\}$ 在 $[0, +\infty)$ 一致收敛到 f(x) 的充分必要条件是 $\lim_{x\to +\infty} f(x)$ 存在.
- 5. (10) 设函数项级数 $\sum_{n=1}^{+\infty} u_n(x)$ 在区间 I 上一致收敛,证明:对该函数项级数适当加括号后得到的函数项级数可在 I 上绝对一致收敛.
- 6. (10) 求 $\cos^2 x$ 在 x = 1 处的 Taylor 级数.
- 7. (10) 求 $\sum_{n=0}^{+\infty} \frac{(n+1)^2}{2^n}$ 的和.
- 8. (10) 写出一个定义在 $[-\pi,\pi]$ 上的函数 $f(x) \neq 0$, 使得它的 Fourier 级数在 $[0,\pi]$ 一致收敛到 0. (不要求计算它的 Fourier 级数但要证明该函数满足要求)
- 9. (15) 求 f(x) = |x| $(x \in [-\pi, \pi])$ 的 Fourier 级数以及该 Fourier 级数在 $[-\pi, \pi]$ 的和函数,并求 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}$ 的和.