

10/563656

IAP15 Rec'd PCT/PTO 05 JAN 2006

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to:
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450, on 5 January 2006

QUINE INTELLECTUAL PROPERTY LAW GROUP, P.C.

By Deborah Berwick
Deborah Berwick

Attorney Docket No. 54-000510US
Client Ref. No. 1002.1 US / AMB0100P

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

J. Christopher Anderson et al.

Examiner: Unassigned

Application No.: Not Yet Known

Art Unit: Unassigned

Filed: 5 January 2006

STATEMENT ACCOMPANYING
SEQUENCE LISTING

For: **COMPOSITIONS OF
ORTHOGONAL GLUTAMYL-TRNA
AND AMINOACYL- TRNA
SYNTHETASE PAIRS AND USES
THEREOF**

Mail Stop Sequence Listing
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

The undersigned hereby states that the Sequence Listing submitted concurrently herewith does not include matter which goes beyond the content of the application as filed and that the information recorded on the diskette submitted concurrently herewith is identical to the written Sequence Listing.

Respectfully submitted,

Edward J. DesJardins, Ph.D.
Reg. No. 51,162

5 January 2006
Date

QUINE INTELLECTUAL PROPERTY LAW GROUP, P.C.
P.O. BOX 458
Alameda, CA 94501
Ph.: (510) 337-7871 / Fax (510) 337-7877

EJD:db

54-000510US.ST25.txt
SEQUENCE LISTING

<110> The Scripps Research Institute
 Anderson, J C
 Schultz, Peter G
 Santoro, Stephen

<120> COMPOSITIONS OF ORTHOGONAL GLUTAMYL-tRNA AND AMINOACYL-tRNA
 SYNTHETASE PAIRS AND USES THEREOF

<130> 54-000510PC

<140> PCT/US 04/021813
 <141> 2004-07-07

<160> 111

<170> PatentIn version 3.2

<210> 1
 <211> 78
 <212> RNA
 <213> Aeropyrum pernix

<400> 1		
gccgcgguaug uauagcccg cccaguauagc gggccucucg agcccugac ccggguucaa	60	
aucccgccg cggtcacca	78	

<210> 2
 <211> 78
 <212> RNA
 <213> Aeropyrum pernix

<400> 2		
gccgcgguaug uauagcccg cccaguauagc gggccuuuucg agcccugac ccggguucaa	60	
aucccgccg cggtcacca	78	

<210> 3
 <211> 78
 <212> RNA
 <213> Archaeoglobus fulgidus

<400> 3		
gcuccggugg uguagcccg ccaaucauac gggacucucg aucccgugac ccggguucaa	60	
aucccgccg gagcacca	78	

<210> 4
 <211> 78
 <212> RNA
 <213> Archaeoglobus fulgidus

<400> 4		
gcuccggugg uguagcccg ccaaucauuc cggccuuuucg agccggcgac ccggguucaa	60	
aucccgccg gagcacca	78	

<210> 5
 <211> 78
 <212> RNA
 <213> Halobacterium sp.

54-000510US.ST25.txt

<400>	5	gcuccguugg uguaguccgg ccaaucaucu ugcccucuca cggcaaggac uaggguucaa	60
		aucccugacg gagcacca	78
<210>	6		
<211>	78		
<212>	RNA		
<213>	Halobacterium sp.		
<400>	6	gcucgguugg uguaguccgg ccaaucaugu ugcccuuucg agccgacgac caggguucaa	60
		aucccugacc gagcacca	78
<210>	7		
<211>	78		
<212>	RNA		
<213>	Methanobacterium thermautotrophicus		
<400>	7	gcuccgguaug uguaguccgg ccaaucauuu cggccuuucg agccgaagac ucggguucaa	60
		aucccgcccg gagcacca	78
<210>	8		
<211>	78		
<212>	RNA		
<213>	Methanococcus jannaschii		
<400>	8	gcuccggugg uguaguccgg ccaaucaugc gggccuuucg agcccgcgac ccggguucaa	60
		aucccgcccg gagcacca	78
<210>	9		
<211>	78		
<212>	RNA		
<213>	Methanococcus maripaludis		
<400>	9	gcuccagugg uguaguccgg ccaaucaucc ggcccuuucg aggccgggac ucggguucaa	60
		aucccgccug gagcacca	78
<210>	10		
<211>	78		
<212>	RNA		
<213>	Methanosarcina mazei		
<400>	10	gcuccgauag uguagcucgg ccaaucauuc aggacucuca cuccugcgac ugggguucaa	60
		auccccaucg gagcacca	78
<210>	11		
<211>	78		
<212>	RNA		
<213>	Methanosarcina mazei		
<400>	11	gcuccgguaug uguaguccgg ccaaucauuc cggccuuucg agccgaagac ucggguucga	60

54-000510US.ST25.txt

aucccgccg gagcacca	78
<210> 12	
<211> 78	
<212> RNA	
<213> Pyrobaculum aerophilum	
<400> 12	
cagccgguaug ucuagcccg acaaggaaugc gggccucucg agcccugac ccggguucaa	60
aucccgccg gggcacca	78
<210> 13	
<211> 78	
<212> RNA	
<213> Pyrococcus abyssi	
<400> 13	
gcgccggugg uguagcccg ucaaaucaugc gggacucucg aucccgcgac ccggguucaa	60
aucccgccg gggcacca	78
<210> 14	
<211> 78	
<212> RNA	
<213> Pyrococcus abyssi	
<400> 14	
gcgccggugg uguagcccg ucaaacaugc gggccuuuucg agcccgcgcc ccggguucaa	60
aucccgccg gggcacca	78
<210> 15	
<211> 78	
<212> RNA	
<213> Pyrococcus furiosus	
<400> 15	
gcgccggugg uguagcccg ucaaaucaugc gggacucucg aucccgcgac ccggguucaa	60
aucccgccg gggcacca	78
<210> 16	
<211> 78	
<212> RNA	
<213> Pyrococcus furiosus	
<400> 16	
gcgccggugg uguagcccg ucaaacaugc gggccuuuucg agcccgcgcc ccggguucaa	60
aucccgccg gggcacca	78
<210> 17	
<211> 78	
<212> RNA	
<213> Pyrococcus horikoshii	
<400> 17	
gcgccggugg uguagcccg ucaaaucaugc gggacucucg aucccgcgac ccggguucaa	60
aucccgccg gggcacca	78

54-000510US.ST25.txt

<210> 18
<211> 78
<212> RNA
<213> *Pyrococcus horikoshii*

<400> 18
gccccggugg uguagcccg ccaaacaugc gggccuuuucg agcccgcgcc ccggguucaa 60
aucccgcccg gggcacca 78

<210> 19
<211> 77
<212> RNA
<213> *Sulfolobus solfataricus*

<400> 19
gcccgcggugg uuuagcccg ucagaaugcg ggccucucga gcccugugacc cggguucaa 60
ucccgccgc ggcacca 77

<210> 20
<211> 77
<212> RNA
<213> *Sulfolobus solfataricus*

<400> 20
gcccgcggugg uuuagcccg ucagaaugcg ggccuuuucga gcccugugacc cggguucaa 60
ucccgccgc ggcacca 77

<210> 21
<211> 77
<212> RNA
<213> *Sulfolobus tokodaii*

<400> 21
gcccgcgguaag uauagcccg ucaguaugcg ggccucucaa gcccuguggcc cggguucaa 60
ucccgccgc ggcacca 77

<210> 22
<211> 78
<212> RNA
<213> *Sulfolobus tokodaii*

<400> 22
gcccgcgguaag uauagcccg ucaagcacgc gggccuuuucg agcccugugac ccggguucaa 60
aucccgcccg cgacacca 78

<210> 23
<211> 78
<212> RNA
<213> *Thermoplasma acidophilum*

<400> 23
gcucccgugg uguaguuccgg ccaagcaauua gggacucuca aucccccgac ucggguucaa 60
aucccgaccg gagcacca 78

54-000510US.ST25.txt

<210> 24
<211> 78
<212> RNA
<213> *Thermoplasma acidophilum*

<400> 24
gcuccggugg uguaguccgg acaagcaaua cggccuuuucg agccgacgac cuggguccaa 60
aucccgccg gagcacca 78

<210> 25
<211> 78
<212> RNA
<213> *Thermoplasma volcanium*

<400> 25
gcuccggugg uguaguccgg ccaagcaaua gggacucuca aucccccgac ucggguccaa 60
aucccgaccg gagcacca 78

<210> 26
<211> 78
<212> RNA
<213> *Thermoplasma volcanium*

<400> 26
gcuccggugg uguaguccgg acaagcaaua cggccuuuucg agccgacgac cuggguccaa 60
aucccgccg gagcacca 78

<210> 27
<211> 78
<212> RNA
<213> *artificial*

<220>
<223> *consensus tRNA*

<400> 27
gcycggugg uguagccgg ccaakcaugc gggccuyucg agcccgcgac ccggguucaa 60
aucccgccg grgcacca 78

<210> 28
<211> 78
<212> RNA
<213> *artificial*

<220>
<223> *mutant tRNA*

<400> 28
gccccggugg uguagccgg ccaagcaugc gggccucuua agcccgcgac ccggguucaa 60
aucccgccg gggcacca 78

<210> 29
<211> 76
<212> RNA
<213> *Aeropyrum pernix*

<400> 29
agccggugc ucuagcggcc caggaugcgg ggcucuggcc cccgugacccg ggguucgaa 60

54-000510US.ST25.txt

ccccgccccgg cuacca	76
<210> 30	
<211> 76	
<212> RNA	
<213> <i>Aeropyrum pernix</i>	
<400> 30	
agccgggucg ucuagcggcc caggaugcgg gguuuuggcc cccgugaccc ggguucgaaau	60
cccgccccgg cuacca	76
<210> 31	
<211> 76	
<212> RNA	
<213> <i>Archaeoglobus fulgidus</i>	
<400> 31	
agccccgugg gguagcgguc aauccugccg gacucuggau ccggcgacgc cgguucgaaau	60
ccggccgggg cuacca	76
<210> 32	
<211> 76	
<212> RNA	
<213> <i>Archaeoglobus fulgidus</i>	
<400> 32	
agccccgugg uguagcgguc aaucaugcgg gccuuuggag cccgcgaccg ggguucgaaau	60
cccccgcgggg cuacca	76
<210> 33	
<211> 76	
<212> RNA	
<213> <i>Halobacterium sp.</i>	
<400> 33	
agucccguag gguaguggcc aauccugaag cciucugggg gciucgacgg aaguucgaaau	60
cuuccccggga cuacca	76
<210> 34	
<211> 76	
<212> RNA	
<213> <i>Halobacterium sp.</i>	
<400> 34	
agucccguag uguaguggcc aaucauaugg gccuuuggag cccacgacgg cgguucgaaau	60
ccgccccggga cuacca	76
<210> 35	
<211> 75	
<212> RNA	
<213> <i>Methanobacterium thermautotrophicus</i>	
<400> 35	
agucccguag gguaauggca auccugaugg acucuggauc caucgauagc gguucgacuc	60
cgcucgggac uacca	75

54-000510US.ST25.txt

<210> 36
<211> 75
<212> RNA
<213> *Methanobacterium thermautotrophicus*

<400> 36
agucccgugg gguaguggua auccugcugg gcuuuggacc cggcgacagc gguucgacuc 60
cgcucgggac uacca 75

<210> 37
<211> 76
<212> RNA
<213> *Methanococcus jannaschii*

<400> 37
agcccggugg uguaguggcc uaucauccgg ggcuuuggac cccgggaccg cgguucgaa 60
ccgcgcggg cuacca 76

<210> 38
<211> 76
<212> RNA
<213> *Methanococcus maripaludis*

<400> 38
agcccaguag uguaguggcc aaucauccgu gccuuuggag caugggaccg cgguucgaa 60
ccgcgcuggg cuacca 76

<210> 39
<211> 76
<212> RNA
<213> *Methanopyrus kandleri*

<400> 39
agggccgugg gguagcgguc uauccugcgg ggcuuuggac cccgcgaccc cgguucaaau 60
ccggcggcc cuacca 76

<210> 40
<211> 76
<212> RNA
<213> *Methanosaarcina mazei*

<400> 40
agccccguag uguagugguc aaucaugcgg gacucuggau ccugcaaccu cgguucgaa 60
ccgugccggg cuacca 76

<210> 41
<211> 76
<212> RNA
<213> *Methanosaarcina mazei*

<400> 41
aguccuguag gguagugguc aauccuuucgg gccuuuggag cccgggacag cgguucgaa 60
ccgcucagga cuacca 76

54-000510US.ST25.txt

<210> 42

<211> 75

<212> RNA

<213> *Pyrobaculum aerophilum*

<400> 42

agcccgguucg ucuagcggcc aggaugcggg gcucuggacc ccguggcccg gguucgaauc 60

ccggccgggc uacca 75

<210> 43

<211> 76

<212> RNA

<213> *Pyrobaculum aerophilum*

<400> 43

agcccgguucg ucuagcggcc aaggauugcgg ggcuuuggac cccguggccc ggguucgaauc 60

cccgccgggg cuacca 76

<210> 44

<211> 76

<212> RNA

<213> *Pyrococcus abyssi*

<400> 44

agccccgugg uguagcggcc aagcaugcgg gacucuggau cccgcgaccg ggguucgaauc 60

ccccgcgggg cuacca 76

<210> 45

<211> 76

<212> RNA

<213> *Pyrococcus abyssi*

<400> 45

agccccgugg uguagcggcc aagcaugcgg gacuuuggau cccgcgaccc ggguucgaauc 60

cccgccgggg cuacca 76

<210> 46

<211> 76

<212> RNA

<213> *Pyrococcus furiosus*

<400> 46

agccccgugg uguagcggcc aagcaugcgg gacucuggau cccgcgaccg ggguucgaauc 60

ccccgcgggg cuacca 76

<210> 47

<211> 76

<212> RNA

<213> *Pyrococcus furiosus*

<400> 47

agccccgugg uguagcggcc aagcaugcgg gacuuuggau cccgcgaccc ggguucgaauc 60

cccgccgggg cuacca 76

<210> 48

<211> 76

54-000510US.ST25.txt

<212> RNA
<213> *Pyrococcus horikoshii*

<400> 48
agccccgugg uguagcggcc aagcaugcgg gacucuggau cccgcgaccg ggguucgaaau 60
ccccgcgggg cuacca 76

<210> 49
<211> 76
<212> RNA
<213> *Pyrococcus horikoshii*

<400> 49
agcccccggg uguagcggcc aagcaugcgg gacuuuggau cccgcgaccc ggguucgaaau 60
cccgccgggg cuacca 76

<210> 50
<211> 76
<212> RNA
<213> *Sulfolobus solfataricus*

<400> 50
agccggguag ucuagugguc aaggauccag ggcucuggcc ccugggacca ggguucgaaau 60
cccugcccg cg cuacca 76

<210> 51
<211> 76
<212> RNA
<213> *Sulfolobus solfataricus*

<400> 51
agccggguag ucuagugguc aaggauccag ggcuuuggcc ccugggacca ggguucgaaau 60
cccugcccg cg cuacca 76

<210> 52
<211> 76
<212> RNA
<213> *Sulfolobus tokodaii*

<400> 52
agccggguag ucuagugguc aaggauccag ggcucuggcc ccucggaccu ggguucaaau 60
cccagcccg cg cuacca 76

<210> 53
<211> 76
<212> RNA
<213> *Sulfolobus tokodaii*

<400> 53
agccggguag ucuagugguc aaggauccag ggcuuuggcc ccucggaccu ggguucaaau 60
cccagcccg cg cuacca 76

<210> 54
<211> 76
<212> RNA
<213> *Thermoplasma acidophilum*

54-000510US.ST25.txt

<400>	54					
agcccugugg	uguaguggcc	aagcauuuaug	ggcucuggac	ccaucgacgg	caguucgaaau	60
cugcccaggg	cuacca					76
<210>	55					
<211>	76					
<212>	RNA					
<213>	Thermoplasma acidophilum					
<400>	55					
agcccugugg	uguaguggac	aagcauuuug	gacuuuggau	ccaaagacgg	caguucgaaau	60
cugcccaggg	cuacca					76
<210>	56					
<211>	76					
<212>	RNA					
<213>	Thermoplasma volcanium					
<400>	56					
agcccugugg	uguagcgcc	aagcauuuaug	ggcucuggac	ccaucgacgg	caguucgaaau	60
cugcccaggg	cuacca					76
<210>	57					
<211>	76					
<212>	RNA					
<213>	Thermoplasma volcanium					
<400>	57					
agcccugugg	uguaguggac	aagcauuuug	gacuuuggau	ccaaacgacgg	caguucgaaau	60
cugcccaggg	cuacca					76
<210>	58					
<211>	76					
<212>	RNA					
<213>	artificial					
<220>						
<223>	consensus tRNA					
<400>	58					
agccccgugg	uguagyggcc	aagcaugcgg	grcuyuggay	cccgcgaccg	sgguucgaaau	60
ccscgcgggg	cuacca					76
<210>	59					
<211>	76					
<212>	RNA					
<213>	artificial					
<220>						
<223>	mutant tRNA					
<400>	59					
agccccgugg	uguagcgcc	aagcaugcgg	ggcucuaaac	cccgcgaccg	ggguucgaaau	60
cccccgcgggg	cuacca					76

54-000510US.ST25.txt

<210> 60
<211> 76
<212> RNA
<213> artificial

<220>
<223> mutant tRNA

<400> 60
agccccgugg uguagcggcc aagcacgcgg ggcucuaaac cccgcgaccg ggguucgaaau 60
ccccgcgggg cuacca 76

<210> 61
<211> 78
<212> RNA
<213> artificial

<220>
<223> consensus tRNA

<400> 61
gcycggugg uguagcccgg ccaakcaugc gggccuyucg agcccgcgac ccggguucaa 60
aucccgcccg grgcacca 78

<210> 62
<211> 76
<212> RNA
<213> artificial

<220>
<223> consensus tRNA

<400> 62
agccccgugg uguagyggcc aagcaugcgg grcuyuggay cccgcgaccg sgguucgaaau 60
ccscgcgggg cuacca 76

<210> 63
<211> 78
<212> RNA
<213> artificial

<220>
<223> mutant tRNA

<400> 63
gccccggugg uguagcccgg ccaagcaugc gggccucuaa agcccgcgac ccggguucaa 60
aucccgcccg gggcacca 78

<210> 64
<211> 76
<212> RNA
<213> artificial

<220>
<223> mutant tRNA

<400> 64
agccccgugg uguagcggcc aagcaugcgg ggcucuaaac cccgcgaccg ggguucgaaau 60
ccccgcgggg cuacca 76

54-000510US.ST25.txt

<210> 65
<211> 76
<212> RNA
<213> artificial

<220>
<223> mutant tRNA

<400> 65
agcccccugg uguagcggcc aagcacgcgg ggcucuaaac cccgcgaccg ggguucgaaau 60
ccccgcgggg cuacca 76

<210> 66
<211> 78
<212> RNA
<213> artificial

<220>
<223> mutant tRNA

<220>
<221> misc_feature
<222> (10)..(10)
<223> n is a, c, g, or u

<220>
<221> misc_feature
<222> (28)..(28)
<223> n is a, c, g, or u

<400> 66
gccccggugn uguagcccg ccaagcangc gggccucuaa agcccgcgac ccggguucaa 60
aucccgccg gggcacca 78

<210> 67
<211> 78
<212> RNA
<213> artificial

<220>
<223> mutant tRNA

<400> 67
gccccggugg uguagcccg ccaagcacgc gggccucuaa agcccgcgac ccggguucaa 60
aucccgccg gggcacca 78

<210> 68
<211> 1656
<212> DNA
<213> Archaeoglobus fulgidus

<400> 68
gtgaaagaag tcataatgaa atacgttagtt cagaacgccg caaagtacgg aaaagccagt 60
gaaaaggctg taatgggaa ggtgatggca gaaaatccag aactcagaaa aaaagctaaa 120
gaggtccttg aactcgtaaa ggagtgcatt accgagttcg aagcgtttc tgaagaagta 180
aggaaggagc taatcaaaaa atacagcatg gatagcgaag ctaaaaggga gttggagacg 240

54-000510US.ST25.txt

aagaagcttc cagagcttga	gggggcttag	aaaggaaaag	ttgtatgag	attcgctcct	300
aatccaaacg gtccacctac	actcggttct	gctaggggaa	taatcgtaa	cggtaatac	360
gcgaagatgt acgaagggaa	gtacattatc	aggtttgacg	atacagaccc	cagaaccaag	420
agaccgatga ttgaggccta	cgagtggtac	ctagaggaca	ttgaatggct	cggttacaag	480
cctgacgagg ttatcacgc	ctcaagaagg	attcccattct	actacgatta	tgcaagaaag	540
cttataaaaa tggcaaagc	ctacacctgc	ttctgcagtc	aggaggagtt	caagaagttc	600
agggacagtg gtgaggagtg	cccacacaga	aacatcagcg	tcgaggatac	acttgaagtc	660
tgggagagaa tgcttgaagg	agactatgag	gaaggagaag	tcgttcttag	aattaagacg	720
gatatgcgcc acaaggatcc	ggcaataagg	gactgggtgg	cttcaggat	aataaaggaa	780
tcacatcctc tcgttgggaa	taaatatgtt	gtctatccca	cactcgattt	tgaatctgct	840
atagaggatc accttttagg	cataacgcac	attatcaggg	gtaaggactt	aattgattct	900
gagaggaggc agagatacat	ctacgagtt	tttggctgga	tttacccat	tacaaagcac	960
tggggcaggg taaaatctt	cgaattcggg	aagctatcga	cttcttcaat	taagaaggat	1020
attgaaaggg gtaagtatga	gggctggat	gacccaaggc	tgccaacctt	gagagccttc	1080
aggaggagag gatttgagcc	tgaagccata	aagagcttct	tccttcgct	gggagttggc	1140
gagaacgacg ttccgtcag	tctcaagaat	cttacgctg	agaacaggaa	aatcatcgat	1200
cgcaaggcaa accgttactt	tttcatttgg	gggcccgtga	agattgaaat	cgttaacctg	1260
ccggagaaga aagaggtcga	gctcccgctg	aatccgcaca	cggcgagaa	gagaaggctg	1320
aaaggtgaaa gaactatata	tgttacaaaa	gacgacttcg	agaggttcaa	agggcaggtt	1380
gtaaggctga aggacttctg	caacgttctg	cttgcgaga	aggcagagtt	catgggttt	1440
gagcttgagg gggtaagaa	gggaagaac	ataatccact	ggcttcctga	gagcgaggct	1500
atcaagggca agtttatcgg	cgaaaggaa	gcggaaaggc	ttgtggagag	aaacgcagtt	1560
agagatgtcg ggaaagtctgt	gcagttcgag	agatttgctt	tctgtaaagt	agagtctgct	1620
gacgaggaac tggtcgcggt	gtacacgcac	ccgtga			1656

<210> 69
<211> 551
<212> PRT
<213> Archaeoglobus fulgidus

<400> 69

Val Lys Glu Val Ile Met Lys Tyr Val Val Gln Asn Ala Ala Lys Tyr
1 5 10 15

Gly Lys Ala Ser Glu Lys Ala Val Met Gly Lys Val Met Ala Glu Asn
20 25 30

Pro Glu Leu Arg Lys Lys Ala Lys Glu Val Leu Glu Leu Val Lys Glu
35 40 45

54-000510US.ST25.txt

Cys Ile Thr Glu Phe Glu Ala Leu Ser Glu Glu Val Arg Lys Glu Leu
50 55 60

Ile Lys Lys Tyr Ser Met Asp Ser Glu Ala Lys Arg Glu Leu Glu Thr
65 70 75 80

Lys Lys Leu Pro Glu Leu Glu Gly Ala Glu Lys Gly Lys Val Val Met
85 90 95

Arg Phe Ala Pro Asn Pro Asn Gly Pro Pro Thr Leu Gly Ser Ala Arg
100 105 110

Gly Ile Ile Val Asn Gly Glu Tyr Ala Lys Met Tyr Glu Gly Lys Tyr
115 120 125

Ile Ile Arg Phe Asp Asp Thr Asp Pro Arg Thr Lys Arg Pro Met Ile
130 135 140

Glu Ala Tyr Glu Trp Tyr Leu Glu Asp Ile Glu Trp Leu Gly Tyr Lys
145 150 155 160

Pro Asp Glu Val Ile Tyr Ala Ser Arg Arg Ile Pro Ile Tyr Tyr Asp
165 170 175

Tyr Ala Arg Lys Leu Ile Glu Met Gly Lys Ala Tyr Thr Cys Phe Cys
180 185 190

Ser Gln Glu Glu Phe Lys Lys Phe Arg Asp Ser Gly Glu Glu Cys Pro
195 200 205

His Arg Asn Ile Ser Val Glu Asp Thr Leu Glu Val Trp Glu Arg Met
210 215 220

Leu Glu Gly Asp Tyr Glu Glu Gly Glu Val Val Leu Arg Ile Lys Thr
225 230 235 240

Asp Met Arg His Lys Asp Pro Ala Ile Arg Asp Trp Val Ala Phe Arg
245 250 255

Ile Ile Lys Glu Ser His Pro Leu Val Gly Asp Lys Tyr Val Val Tyr
260 265 270

Pro Thr Leu Asp Phe Glu Ser Ala Ile Glu Asp His Leu Leu Gly Ile
275 280 285

Thr His Ile Ile Arg Gly Lys Asp Leu Ile Asp Ser Glu Arg Arg Gln
290 295 300

Arg Tyr Ile Tyr Glu Tyr Phe Gly Trp Ile Tyr Pro Ile Thr Lys His
305 310 315 320

54-000510US.ST25.txt

Trp Gly Arg Val Lys Ile Phe Glu Phe Gly Lys Leu Ser Thr Ser Ser
325 330 335

Ile Lys Lys Asp Ile Glu Arg Gly Lys Tyr Glu Gly Trp Asp Asp Pro
340 345 350

Arg Leu Pro Thr Leu Arg Ala Phe Arg Arg Arg Gly Phe Glu Pro Glu
355 360 365

Ala Ile Lys Ser Phe Phe Leu Ser Leu Gly Val Gly Glu Asn Asp Val
370 375 380

Ser Val Ser Leu Lys Asn Leu Tyr Ala Glu Asn Arg Lys Ile Ile Asp
385 390 395 400

Arg Lys Ala Asn Arg Tyr Phe Phe Ile Trp Gly Pro Val Lys Ile Glu
405 410 415

Ile Val Asn Leu Pro Glu Lys Lys Glu Val Glu Leu Pro Leu Asn Pro
420 425 430

His Thr Gly Glu Lys Arg Arg Leu Lys Gly Glu Arg Thr Ile Tyr Val
435 440 445

Thr Lys Asp Asp Phe Glu Arg Leu Lys Gly Gln Val Val Arg Leu Lys
450 455 460

Asp Phe Cys Asn Val Leu Leu Asp Glu Lys Ala Glu Phe Met Gly Phe
465 470 475 480

Glu Leu Glu Gly Val Lys Lys Gly Lys Asn Ile Ile His Trp Leu Pro
485 490 495

Glu Ser Glu Ala Ile Lys Gly Lys Val Ile Gly Glu Arg Glu Ala Glu
500 505 510

Gly Leu Val Glu Arg Asn Ala Val Arg Asp Val Gly Lys Val Val Gln
515 520 525

Phe Glu Arg Phe Ala Phe Cys Lys Val Glu Ser Ala Asp Glu Glu Leu
530 535 540

Val Ala Val Tyr Thr His Pro
545 550

<210> 70
<211> 1635
<212> DNA
<213> Aeuropyrum pernix

<400> 70
atgtcaatgc tcctagggga ccatcctgag ctttaggagta gggcgaggga gatagcctcc
Page 15

54-000510US.ST25.txt

ctggctgcaa	gggtcgtgga	gcaggtgaac	agcatccctg	ctggcgagca	gaagaggctc	120
ctctcagaac	agtatccgga	gctagcgagg	tttgaagagc	agcgcgagaa	aggcgataaa	180
ggcctacccc	cgctgcccgg	ggccgtggaa	ggcagggtca	agctgaggtt	cgcggccaaac	240
ccagactttg	tgatacacat	gggcaacgct	aggccggcca	tagtgaacca	cgagtacgcc	300
aggatgtata	aggggaggat	ggtgctgcgg	ttcgaagaca	cagaccctag	gacaaagact	360
cccctacggg	aggcgtacga	cctcatccgc	caggacctca	agtggcttgg	cgtttcctgg	420
gacgaggagt	acatccagag	cctcaggatg	gaggtcttct	acagcgtagc	cagaaggct	480
atagagcggg	ggtgcgccta	cgtcgacaac	tgtggagag	aggtaagga	gctgctctcg	540
cgtggagagt	attgtccgac	cagggatctt	ggcccccagg	ataatctgga	gctgtttgag	600
aagatgctt	aggagagtt	ttacgagggg	gaggcttgg	tgaggatgaa	gacggacccg	660
cgccacccca	accccagcct	gagggactgg	gtggccatga	ggattataga	cacggagaaa	720
cacccccacc	ccctcgtggg	gagcaggtac	ctggtgtggc	cgacctataa	cttcgcccgtc	780
agcgtcgacg	accacatgtat	ggagataacc	cacgtgctca	gggtaagga	gcaccagctg	840
aacaccgaga	agcagcttgc	cgtctacagg	tgtatggct	ggaggccgccc	gtacttcatc	900
cacttcggca	ggctaaagct	ggaggggttt	atactgagca	agagcaagat	aagaaagctc	960
ctcgaagaga	ggccaggaga	gttcatgggc	tacgacgacc	cccgcttcgg	cacgatagcc	1020
gggctgagga	ggaggggtgt	gctggcgag	gccataagac	agataatact	cgaggtgggg	1080
gtcaagccca	cggacgctac	aataagctgg	gcaaacctgg	cggccgctaa	taggaagctg	1140
ctggacgagc	gggcggacag	gataatgtat	gtcgaagacc	ccgtttagat	ggaggtcgag	1200
ctggcccagg	tggagtgcag	agccgcggag	ataccgttcc	acccgagccg	cccccagagg	1260
aagaggagga	taacttgtg	cacggggac	aaggttctcc	tcacaaggga	ggacgcagta	1320
gagggtaggc	aactgaggct	catgggccta	tcaaacttca	ccgtcagccca	aggcatattg	1380
agggaggtgg	atcccagcct	cgagtatgcg	aggagaatga	agctacctat	agtacaatgg	1440
gtgaagaagg	gcggagaagc	tagcgttagag	gtactcgagc	ccgtcgagct	ggagctcagg	1500
aggcaccagg	gctacgctga	ggacgctatt	aggggctatg	gggtttagacag	ccgcctacag	1560
ttttaaggt	acggtttgt	gagggtagac	agcgtgaaag	acgggtctta	cagggtgata	1620
tacacacaca	agtag					1635

<210> 71
<211> 544
<212> PRT
<213> Aeuropyrum pernix
<400> 71

Met Ser Met Leu Leu Gly Asp His Pro Glu Leu Arg Ser Arg Ala Arg
1 5 10 15

Glu Ile Ala Ser Leu Ala Ala Arg Val Val Glu Gln Val Asn Ser Met
Page 16

54-000510US.ST25.txt
20 25 30

Pro Ala Gly Glu Gln Lys Arg Leu Leu Ser Glu Gln Tyr Pro Glu Leu
35 40 45

Ala Arg Phe Glu Glu Gln Arg Glu Lys Gly Asp Lys Gly Leu Pro Pro
50 55 60

Leu Pro Gly Ala Val Glu Gly Arg Val Lys Leu Arg Phe Ala Pro Asn
65 70 75 80

Pro Asp Phe Val Ile His Met Gly Asn Ala Arg Pro Ala Ile Val Asn
85 90 95

His Glu Tyr Ala Arg Met Tyr Lys Gly Arg Met Val Leu Arg Phe Glu
100 105 110

Asp Thr Asp Pro Arg Thr Lys Thr Pro Leu Arg Glu Ala Tyr Asp Leu
115 120 125

Ile Arg Gln Asp Leu Lys Trp Leu Gly Val Ser Trp Asp Glu Glu Tyr
130 135 140

Ile Gln Ser Leu Arg Met Glu Val Phe Tyr Ser Val Ala Arg Arg Ala
145 150 155 160

Ile Glu Arg Gly Cys Ala Tyr Val Asp Asn Cys Gly Arg Glu Gly Lys
165 170 175

Glu Leu Leu Ser Arg Gly Glu Tyr Cys Pro Thr Arg Asp Leu Gly Pro
180 185 190

Glu Asp Asn Leu Glu Leu Phe Glu Lys Met Leu Glu Gly Glu Phe Tyr
195 200 205

Glu Gly Glu Ala Val Val Arg Met Lys Thr Asp Pro Arg His Pro Asn
210 215 220

Pro Ser Leu Arg Asp Trp Val Ala Met Arg Ile Ile Asp Thr Glu Lys
225 230 235 240

His Pro His Pro Leu Val Gly Ser Arg Tyr Leu Val Trp Pro Thr Tyr
245 250 255

Asn Phe Ala Val Ser Val Asp Asp His Met Met Glu Ile Thr His Val
260 265 270

Leu Arg Gly Lys Glu His Gln Leu Asn Thr Glu Lys Gln Leu Ala Val
275 280 285

Tyr Arg Cys Met Gly Trp Arg Pro Pro Tyr Phe Ile His Phe Gly Arg

54-000510US.ST25.txt

290

295

300

Leu Lys Leu Glu Gly Phe Ile Leu Ser Lys Ser Lys Ile Arg Lys Leu
 305 310 315 320

Leu Glu Glu Arg Pro Gly Glu Phe Met Gly Tyr Asp Asp Pro Arg Phe
 325 330 335

Gly Thr Ile Ala Gly Leu Arg Arg Arg Gly Val Leu Ala Glu Ala Ile
 340 345 350

Arg Gln Ile Ile Leu Glu Val Gly Val Lys Pro Thr Asp Ala Thr Ile
 355 360 365

Ser Trp Ala Asn Leu Ala Ala Asn Arg Lys Leu Leu Asp Glu Arg
 370 375 380

Ala Asp Arg Ile Met Tyr Val Glu Asp Pro Val Glu Met Glu Val Glu
 385 390 395 400

Leu Ala Gln Val Glu Cys Arg Ala Ala Glu Ile Pro Phe His Pro Ser
 405 410 415

Arg Pro Gln Arg Lys Arg Arg Ile Thr Leu Cys Thr Gly Asp Lys Val
 420 425 430

Leu Leu Thr Arg Glu Asp Ala Val Glu Gly Arg Gln Leu Arg Leu Met
 435 440 445

Gly Leu Ser Asn Phe Thr Val Ser Gln Gly Ile Leu Arg Glu Val Asp
 450 455 460

Pro Ser Leu Glu Tyr Ala Arg Arg Met Lys Leu Pro Ile Val Gln Trp
 465 470 475 480

Val Lys Lys Gly Gly Glu Ala Ser Val Glu Val Leu Glu Pro Val Glu
 485 490 495

Leu Glu Leu Arg Arg His Gln Gly Tyr Ala Glu Asp Ala Ile Arg Gly
 500 505 510

Tyr Gly Val Asp Ser Arg Leu Gln Phe Val Arg Tyr Gly Phe Val Arg
 515 520 525

Val Asp Ser Val Glu Asp Gly Val Tyr Arg Val Ile Tyr Thr His Lys
 530 535 540

<210> 72

<211> 1716

<212> DNA

<213> Methanosa*r*cina mazaei

54-000510US.ST25.txt

<400>	72					
atgacccctaa	gtcctgaaga	tattaaaata	attgaaaaat	acgcttca	aatgctgt	60
aaatacggaa	aagccccaca	gcccaaagct	gttatggta	aagttatgg	ggaatgtccc	120
cagttgaggg	ctgaccagg	cgggttatct	gctcccttg	aaaatatagt	ttcagaaatt	180
gctaaaggaa	accctgaagc	ctggaaagcc	cgcctgtcgg	aaatcgctcc	cgagcttata	240
gaggctctga	gtgtaaagaa	agagcctgac	aaaggcttaa	aaccttta	gggagccgaa	300
accggtaagg	ttgtaatgcg	cttgccccca	aatcccaacg	gacccgcaac	cctggaaagt	360
tcaagggaa	tggttgtcaa	ttccgagttat	gtaaaagtgt	ataaaggaaa	gtttatcctg	420
cgcttgatg	acactgaccc	tgatataaag	cgtcccatgc	tcgaagccta	tgactggtag	480
atggacgact	ttaaatggct	cgggttgtg	cctgaccagg	ttgtacgtgc	ctctgaccgt	540
ttcccgattt	attacgatta	tgcaagaaaa	ctgattgaga	tggaaaagc	ctatgtctgt	600
ttctgtaaag	gagaagactt	caaaaggtta	aaagactcca	aaaaggcctg	ccctcacagg	660
gacacagacc	ctgaagaaaa	ccttatgcac	tggaaaaaga	tgcttgccgg	agaatatgaa	720
gaccagcagg	ctgttctgcg	cataaagacc	gatatacagc	acaaagaccc	tgcacttcgg	780
gactggggag	cattcaggat	tagaaaaatg	tcccacccac	gccctgagat	tggaaataaa	840
tacatcgct	ggcccttct	ggactttgca	ggtgctatcg	aagaccacga	gctcggtatg	900
acccacatca	tccgggtaa	agaccttac	gacagtgaaa	aacggcagac	atacattac	960
aaatacttcg	gctggacata	ccgaaaaca	actcactgg	gcagggtaaa	gatccatgag	1020
ttcggaaagt	tcagcacaag	taccctgcgt	aaagctatcg	aatccggaga	atacagcggc	1080
tgggacgacc	ccgcctgcc	gacaataagg	gcaatcaggc	gccgtgaat	taggctgaa	1140
gctctcaaaa	agttcatgtat	agaaatgg	gtcggatga	ccgatgtgag	catcagcatg	1200
gaatctcttt	atgccgagaa	ccgcaaaatc	gtggaccgg	ttgcaaaccg	ctatttctt	1260
gtctggacc	ctgtggagct	tgaaattgaa	ggtatgaaac	ctgtggtcgc	aaaggtcccc	1320
cgtcacccaa	cagaccatgc	aagaggaatg	agggaaatct	ctatcgaaaa	taagttctt	1380
gtctgtccg	aggacattga	aaagctcaat	gtagttctg	tcctccgctt	aaaagatctc	1440
tgcaacgtt	aaattacttc	ccttccccg	ctgcgggtta	agcgctccga	aacctctctc	1500
gaagacctca	aaaaagcaaa	aggaaaaatc	atccactgg	tgccggttga	tggattcct	1560
gtgaaagtct	gcgggccaga	ggcgatatc	gaagggacag	gagaacgcgg	gatcgagacc	1620
gagcttgata	atattgtcca	gttgaacgc	ttcggttct	gcaggatcga	cgccgtagac	1680
ggagaaaaatg	tcgtggcgta	cttgctcac	aatga			1716

<210> 73

<211> 571

<212> PRT

<213> *Methanosarcina mazaei*

<400> 73

Met Thr Leu Ser Pro Glu Asp Ile Lys Ile Ile Glu Lys Tyr Ala Leu

Page 19

1

5

10

15

Gln Asn Ala Val Lys Tyr Gly Lys Ala Pro Gln Pro Lys Ala Val Met
20 25 30

Gly Lys Val Met Gly Glu Cys Pro Gln Leu Arg Ala Asp Pro Ser Gly
35 40 45

Val Ser Ala Ala Leu Glu Asn Ile Val Ser Glu Ile Ala Lys Gly Asn
50 55 60

Pro Glu Ala Trp Glu Ala Arg Leu Ser Glu Ile Ala Pro Glu Leu Ile
65 70 75 80

Glu Ala Leu Ser Val Lys Lys Glu Pro Asp Lys Gly Leu Lys Pro Leu
85 90 95

Glu Gly Ala Glu Thr Gly Lys Val Val Met Arg Phe Ala Pro Asn Pro
100 105 110

Asn Gly Pro Ala Thr Leu Gly Ser Ser Arg Gly Met Val Val Asn Ser
115 120 125

Glu Tyr Val Lys Val Tyr Lys Gly Lys Phe Ile Leu Arg Phe Asp Asp
130 135 140

Thr Asp Pro Asp Ile Lys Arg Pro Met Leu Glu Ala Tyr Asp Trp Tyr
145 150 155 160

Met Asp Asp Phe Lys Trp Leu Gly Val Val Pro Asp Gln Val Val Arg
165 170 175

Ala Ser Asp Arg Phe Pro Ile Tyr Tyr Asp Tyr Ala Arg Lys Leu Ile
180 185 190

Glu Met Gly Lys Ala Tyr Val Cys Phe Cys Lys Gly Glu Asp Phe Lys
195 200 205

Arg Leu Lys Asp Ser Lys Lys Ala Cys Pro His Arg Asp Thr Asp Pro
210 215 220

Glu Glu Asn Leu Met His Trp Glu Lys Met Leu Ala Gly Glu Tyr Glu
225 230 235 240

Asp Gln Gln Ala Val Leu Arg Ile Lys Thr Asp Ile Glu His Lys Asp
245 250 255

Pro Ala Leu Arg Asp Trp Gly Ala Phe Arg Ile Arg Lys Met Ser His
260 265 270

Pro Arg Pro Glu Ile Gly Asn Lys Tyr Ile Val Trp Pro Leu Leu Asp
Page 20

54-000510US.ST25.txt
275 280 285

Phe Ala Gly Ala Ile Glu Asp His Glu Leu Gly Met Thr His Ile Ile
290 295 300

Arg Gly Lys Asp Leu Ile Asp Ser Glu Lys Arg Gln Thr Tyr Ile Tyr
305 310 315 320

Lys Tyr Phe Gly Trp Thr Tyr Pro Lys Thr Thr His Trp Gly Arg Val
325 330 335

Lys Ile His Glu Phe Gly Lys Phe Ser Thr Ser Thr Leu Arg Lys Ala
340 345 350

Ile Glu Ser Gly Glu Tyr Ser Gly Trp Asp Asp Pro Arg Leu Pro Thr
355 360 365

Ile Arg Ala Ile Arg Arg Arg Gly Ile Arg Ala Glu Ala Leu Lys Lys
370 375 380

Phe Met Ile Glu Met Gly Val Gly Met Thr Asp Val Ser Ile Ser Met
385 390 395 400

Glu Ser Leu Tyr Ala Glu Asn Arg Lys Ile Val Asp Pro Val Ala Asn
405 410 415

Arg Tyr Phe Phe Val Trp Asn Pro Val Glu Leu Glu Ile Glu Gly Met
420 425 430

Lys Pro Val Val Ala Lys Val Pro Arg His Pro Thr Asp His Ala Arg
435 440 445

Gly Met Arg Glu Ile Ser Ile Glu Asn Lys Val Leu Val Cys Ala Glu
450 455 460

Asp Ile Glu Lys Leu Asn Val Gly Ser Val Leu Arg Leu Lys Asp Leu
465 470 475 480

Cys Asn Val Glu Ile Thr Ser Leu Ser Pro Leu Arg Val Lys Arg Ser
485 490 495

Glu Thr Ser Leu Glu Asp Leu Lys Lys Ala Lys Gly Lys Ile Ile His
500 505 510

Trp Val Pro Val Asp Gly Ile Pro Val Lys Val Cys Gly Pro Glu Gly
515 520 525

Asp Ile Glu Gly Thr Gly Glu Arg Gly Ile Glu Thr Glu Leu Asp Asn
530 535 540

Ile Val Gln Phe Glu Arg Phe Gly Phe Cys Arg Ile Asp Ala Val Asp

545

550

555

560

Gly Glu Asn Val Val Ala Tyr Phe Ala His Lys
 565 570

<210> 74
<211> 1662
<212> DNA
<213> Methanobacterium thermoautotrophicum

<400>	74						
gtgggccag	tggaggacct	tgtctacagg	tacgcactcc	tgaacgctgt	gaaacacagg	60	
ggaaggc aa	acccggggc	cgtcatgggg	gccgtcatga	gcaacgaacc	tgaactcagg	120	
aagatggc gc	cccaggtt aa	ggaagcagtt	gaggccgctg	tttagaggg	taacagttt a	180	
agccccgagg	agcagcagca	ggagatggag	aggctgggc	tttagatcac	cgagaggaaa	240	
cagaagaagc	ggaagggtct	aagggactg	gccggggtga	agggtgaggt	ggtcctcagg	300	
ttcgccccca	accccagcgg	acccctccac	ataggccatg	caagggccgc	gatcctcaac	360	
catgaatatg	caaggaaata	tgacggcagg	ctcatcctca	ggatagagga	cacggacccc	420	
cgcagggtt g	acccggaggc	ctacgatatg	attccagccg	acctttagt g	gctggcggtt	480	
aatgggatg	agacagttat	ccagagcgcac	cgcattggaaa	cctactatg	gtacacagag	540	
aaactcatag	agaggggtgg	tgcgtatgta	tgcacatgca	ggccggagga	gttcaggaa	600	
ctcaagaaca	ggggagaggc	ctgtcaactgc	aggtcccttg	gtttcaggga	gaacctccag	660	
cgtggaggg	aatgttcga	gatgaaggag	ggctcagccg	tttgtgaggt	taaaacggac	720	
ctgaaccacc	caaaccctgc	cataagagac	tgggtctcaa	tgaggatcgt	tgaggcagag	780	
cacccacgca	ccggtacacg	ctacagggtc	tacccatg	tgaacttctc	agtggcggtt	840	
gatgaccacc	tccttggcgt	gacacacg	ctgaggggta	aggaccac	ggcaaacaga	900	
gagaagcagg	agtacctcta	caggcac	ggctgggagc	cccccaatt	cataactac	960	
gggcgcctga	agatggacga	cgttgca	agcaccc	gggcccgtg	gggcac	1020	
aggggtgagt	attctggatg	ggacgaccca	cgcctcg	ccctgagg	cattgcaagg	1080	
aggggtatac	gaccggaggc	cataagaaag	ttaatgg	aaatcg	cggt aaagatagca	1140	
gattccacaa	tgagctggaa	gaagatctac	ggcctcaaca	ggagcatc	cgaagaggag	1200	
gccaggaggt	acttcttgc	tgcagatc	gtttaactt	aagtgg	tttacccg	1260	
cctgtcaggg	ttgaaaggcc	cctacaccc	gaccac	ctg	gggtactt	1320	
gaactgaggg	gtgaggtgta	cctgcccggc	gatgac	ggaaagg	acc gctgcgc	1380	
atagacgcgg	ttaacgtat	ctactctgg	ggtgaa	actg	tgagg	catc	1440
gaggaggccc	gtgaactcgg	cgcttcaatg	atacactgg	tccctgc	aga gtccgc	1500	
gaggccgagg	tcatcatg	ggacgcctcc	agggtgagg	gagtcat	cgaa ggctgac	1560	
tcagaactgg	aggttgatg	tgttgtcag	ttgagaggt	tcggcttc	gc ccgc tggat	1620	
tctgcaggcc	caggaatgg	cttctactat	gcccacaat	ga		1662	

54-000510US.ST25.txt

<210> 75
<211> 553
<212> PRT
<213> Methanobacterium thermoautotrophicum

<400> 75

val val Pro Val Glu Asp Leu Val Tyr Arg Tyr Ala Leu Leu Asn Ala
1 5 10 15

val Lys His Arg Gly Arg Ala Asn Pro Gly Ala Val Met Gly Ala val
20 25 30

Met Ser Asn Glu Pro Glu Leu Arg Lys Met Ala Pro Gln val Lys Glu
35 40 45

Ala Val Glu Ala Ala Val Glu Arg Val Asn Ser Leu Ser Pro Glu Glu
50 55 60

Gln Gln Gln Glu Met Glu Arg Leu Gly Leu Glu Ile Thr Glu Arg Lys
65 70 75 80

Gln Lys Lys Arg Lys Gly Leu Arg Glu Leu Ala Gly val Lys Gly Glu
85 90 95

val Val Leu Arg Phe Ala Pro Asn Pro Ser Gly Pro Leu His Ile Gly
100 105 110

His Ala Arg Ala Ala Ile Leu Asn His Glu Tyr Ala Arg Lys Tyr Asp
115 120 125

Gly Arg Leu Ile Leu Arg Ile Glu Asp Thr Asp Pro Arg Arg Val Asp
130 135 140

Pro Glu Ala Tyr Asp Met Ile Pro Ala Asp Leu Glu Trp Leu Gly val
145 150 155 160

Glu Trp Asp Glu Thr Val Ile Gln Ser Asp Arg Met Glu Thr Tyr Tyr
165 170 175

Glu Tyr Thr Glu Lys Leu Ile Glu Arg Gly Gly Ala Tyr val Cys Thr
180 185 190

Cys Arg Pro Glu Glu Phe Arg Glu Leu Lys Asn Arg Gly Glu Ala Cys
195 200 205

His Cys Arg Ser Leu Gly Phe Arg Glu Asn Leu Gln Arg Trp Arg Glu
210 215 220

Met Phe Glu Met Lys Glu Gly Ser Ala val val Arg Val Lys Thr Asp
225 230 235 240

54-000510US.ST25.txt

Leu Asn His Pro Asn Pro Ala Ile Arg Asp Trp Val Ser Met Arg Ile
245 250 255

Val Glu Ala Glu His Pro Arg Thr Gly Thr Arg Tyr Arg Val Tyr Pro
260 265 270

Met Met Asn Phe Ser Val Ala Val Asp Asp His Leu Leu Gly Val Thr
275 280 285

His Val Leu Arg Gly Lys Asp His Leu Ala Asn Arg Glu Lys Gln Glu
290 295 300

Tyr Leu Tyr Arg His Leu Gly Trp Glu Pro Pro Glu Phe Ile His Tyr
305 310 315 320

Gly Arg Leu Lys Met Asp Asp Val Ala Leu Ser Thr Ser Gly Ala Arg
325 330 335

Glu Gly Ile Leu Arg Gly Glu Tyr Ser Gly Trp Asp Asp Pro Arg Leu
340 345 350

Gly Thr Leu Arg Ala Ile Ala Arg Arg Gly Ile Arg Pro Glu Ala Ile
355 360 365

Arg Lys Leu Met Val Glu Ile Gly Val Lys Ile Ala Asp Ser Thr Met
370 375 380

Ser Trp Lys Lys Ile Tyr Gly Leu Asn Arg Ser Ile Leu Glu Glu Glu
385 390 395 400

Ala Arg Arg Tyr Phe Phe Ala Ala Asp Pro Val Lys Leu Glu Val Val
405 410 415

Gly Leu Pro Gly Pro Val Arg Val Glu Arg Pro Leu His Pro Asp His
420 425 430

Pro Glu Ile Gly Asn Arg Val Leu Glu Leu Arg Gly Glu Val Tyr Leu
435 440 445

Pro Gly Asp Asp Leu Gly Glu Gly Pro Leu Arg Leu Ile Asp Ala Val
450 455 460

Asn Val Ile Tyr Ser Gly Gly Glu Leu Arg Tyr His Ser Glu Gly Ile
465 470 475 480

Glu Glu Ala Arg Glu Leu Gly Ala Ser Met Ile His Trp Val Pro Ala
485 490 495

Glu Ser Ala Leu Glu Ala Glu Val Ile Met Pro Asp Ala Ser Arg Val
500 505 510

54-000510US.ST25.txt

Arg Gly Val Ile Glu Ala Asp Ala Ser Glu Leu Glu Val Asp Asp Val
 515 520 525

Val Gln Leu Glu Arg Phe Gly Phe Ala Arg Leu Asp Ser Ala Gly Pro
 530 535 540

Gly Met Val Phe Tyr Tyr Ala His Lys
 545 550

<210> 76
 <211> 1713
 <212> DNA
 <213> Pyrococcus horikoshii

<400> 76		
atggatgtgg aaaagatagc tctcaaacat gcccattatta atgcaattga gcattggaggt	60	
aaggctaatac ttaaggccgt catcgtaaa gtgctcgcg agaaccctga gcttaggccc	120	
agggccaagg agataattcc cataattaat aaggtagtgg aagaggtcaa ctcactagca	180	
agggatgagc agctggaaaa gcttaaggat atatatccag agtactttga aaagaaggaa	240	
gagaagaagg aaaagaaggg actaccttt cttcctaaag cagagaaagg caaggtcggt	300	
actcgctttg ctccaaatcc agatggtgct tttcacctgg gtaatgcaag ggccgcaata	360	
cttagttatg aatacgccaa gatgtacggt gggaatgttta tactccgctt tgatgatacc	420	
gatccaaaag tcaagaggcc tgaacccata ttctacaaga tgataattga agatctagag	480	
tggcttgaa taaagccaga tgaaatagtg tacgctagtg atagactcga aatttactac	540	
aagtacgctg aggaactaat aaaaatgggt aaagcatatg tctgcacttg tcctccagag	600	
aagttcagag agcttagaga taagggatt ccatgtccgc atagagatga gcctgtggaa	660	
gttcagctcg agcgctggaa gaagatgtta aacggcgaat ataaagaagg agaagctgtt	720	
gtaaggataa agactgactt aaatcaccctt aatcctgcgg ttagggattt gccccactt	780	
agaataatttgcata accggaaata agtacagggt atggcctctc	840	
tacaattttgcata cctcagcgat tgatgatcac gagcttggag ttacccatat cttccgtggaa	900	
caggagcactg ccgagaacga gactagacag aggtatatct acgagtactt tggttggag	960	
tatccgtca cgatccatca cggaggcgtt agcatagagg gagttttttt aagcaaatcc	1020	
aagacaagga aaggaataga agaaggtaag tatctcggtt gggatgatcc taggcttgaa	1080	
acgataagag ctttggggag gagggattt cttcctgaag ccataaaaga attgatcata	1140	
gaagttggat tgaagaaaag tgacgcacg atcagttggg agaatctggc agcgataaac	1200	
agaaaaacttg ttgatccat tgcataataga tatttttttgcata cccatccatgcata	1260	
gaagtcgaag gggctcctga atttatagca gagataccgc ttcatcctga ccattccatgcata	1320	
aggggcgtta gaaggcttaa gttcaacttca gaaagacctg tttacgtttc gaaagacgtt	1380	
ttgaatctct taaaaccagg caattttgtg aggttaaagg atctttcaa tggaaatatga aattgcaaaag	1440	
cttgaagttg gagacaaaat aagagctagg ttctacagct ttgaatatga aattgcaaaag	1500	

54-000510US.ST25.txt

aagaacaggt ggaagatgg tcaactgggtt accgaaggta gaccctgtga ggttataatt 1560
cctgaaggag acgagcttgt agtgaggaag ggattgctcg agaaggatgc caaagttcaa 1620
gttaacgaaa tagtccagtt tgaacgttgc ggtttgtaa ggatagacag aattgagggg 1680
gataaaagtta tcgcaatata tgctcacaag taa 1713

<210> 77
<211> 570
<212> PRT
<213> Pyrococcus horikoshii

<400> 77

Met Asp Val Glu Lys Ile Ala Leu Lys His Ala Leu Ile Asn Ala Ile
1 5 10 15

Glu His Gly Gly Lys Ala Asn Leu Lys Ala Val Ile Gly Lys Val Leu
20 25 30

Gly Glu Asn Pro Glu Leu Arg Pro Arg Ala Lys Glu Ile Ile Pro Ile
35 40 45

Ile Asn Lys Val Val Glu Glu Val Asn Ser Leu Ala Arg Asp Glu Gln
50 55 60

Leu Glu Lys Leu Lys Asp Ile Tyr Pro Glu Tyr Phe Glu Lys Lys Glu
65 70 75 80

Glu Lys Lys Glu Lys Lys Gly Leu Pro Leu Leu Pro Lys Ala Glu Lys
85 90 95

Gly Lys Val Val Thr Arg Phe Ala Pro Asn Pro Asp Gly Ala Phe His
100 105 110

Leu Gly Asn Ala Arg Ala Ala Ile Leu Ser Tyr Glu Tyr Ala Lys Met
115 120 125

Tyr Gly Gly Lys Phe Ile Leu Arg Phe Asp Asp Thr Asp Pro Lys Val
130 135 140

Lys Arg Pro Glu Pro Ile Phe Tyr Lys Met Ile Ile Glu Asp Leu Glu
145 150 155 160

Trp Leu Gly Ile Lys Pro Asp Glu Ile Val Tyr Ala Ser Asp Arg Leu
165 170 175

Glu Ile Tyr Tyr Lys Tyr Ala Glu Glu Leu Ile Lys Met Gly Lys Ala
180 185 190

Tyr Val Cys Thr Cys Pro Pro Glu Lys Phe Arg Glu Leu Arg Asp Lys
195 200 205

54-000510US.ST25.txt

Gly Ile Pro Cys Pro His Arg Asp Glu Pro Val Glu Val Gln Leu Glu
210 215 220

Arg Trp Lys Lys Met Leu Asn Gly Glu Tyr Lys Glu Gly Glu Ala Val
225 230 235 240

Val Arg Ile Lys Thr Asp Leu Asn His Pro Asn Pro Ala Val Arg Asp
245 250 255

Trp Pro Ala Leu Arg Ile Ile Asp Asn Pro Asn His Pro Arg Thr Gly
260 265 270

Asn Lys Tyr Arg Val Trp Pro Leu Tyr Asn Phe Ala Ser Ala Ile Asp
275 280 285

Asp His Glu Leu Gly Val Thr His Ile Phe Arg Gly Gln Glu His Ala
290 295 300

Glu Asn Glu Thr Arg Gln Arg Tyr Ile Tyr Glu Tyr Phe Gly Trp Glu
305 310 315 320

Tyr Pro Val Thr Ile His His Gly Arg Leu Ser Ile Glu Gly Val Val
325 330 335

Leu Ser Lys Ser Lys Thr Arg Lys Gly Ile Glu Glu Gly Lys Tyr Leu
340 345 350

Gly Trp Asp Asp Pro Arg Leu Gly Thr Ile Arg Ala Leu Arg Arg Arg
355 360 365

Gly Ile Leu Pro Glu Ala Ile Lys Glu Leu Ile Ile Glu Val Gly Leu
370 375 380

Lys Lys Ser Asp Ala Thr Ile Ser Trp Glu Asn Leu Ala Ala Ile Asn
385 390 395 400

Arg Lys Leu Val Asp Pro Ile Ala Asn Arg Tyr Phe Phe Val Ala Asp
405 410 415

Pro Ile Pro Met Glu Val Glu Gly Ala Pro Glu Phe Ile Ala Glu Ile
420 425 430

Pro Leu His Pro Asp His Pro Glu Arg Gly Val Arg Arg Leu Lys Phe
435 440 445

Thr Pro Glu Arg Pro Val Tyr Val Ser Lys Asp Asp Leu Asn Leu Leu
450 455 460

Lys Pro Gly Asn Phe Val Arg Leu Lys Asp Leu Phe Asn Val Glu Ile
465 470 475 480

54-000510US.ST25.txt

Leu Glu Val Gly Asp Lys Ile Arg Ala Arg Phe Tyr Ser Phe Glu Tyr
485 490 495

Glu Ile Ala Lys Asn Arg Trp Lys Met Val His Trp Val Thr Glu
500 505 510

Gly Arg Pro Cys Glu Val Ile Ile Pro Glu Gly Asp Glu Leu Val Val
515 520 525

Arg Lys Gly Leu Leu Glu Lys Asp Ala Lys Val Gln Val Asn Glu Ile
530 535 540

Val Gln Phe Glu Arg Phe Gly Phe Val Arg Ile Asp Arg Ile Glu Gly
545 550 555 560

Asp Lys Val Ile Ala Ile Tyr Ala His Lys
565 570

<210> 78
<211> 1728
<212> DNA
<213> Sulf

<400> 78 ttgatggaat taaatgaatt acgagaaaact atttataaaat atgctttca aaatgcggta 60
aagcataatg gcaaagccga aacgggtcca gtgatgagta agattatagc ggagaggccg 120
gaattaagat caaatgctag agaaattgta aagattatca aggagatcat agaacaagtt 180
aactcattaa ctttagagca gcagtttaact gaaattaaag caaagtatcc agagtttata 240
gaagagaaga agcatgaaga aaaaagaaaa gtgttgcac ctcttcctaa tgttaaagga 300
caagtagtaa ctagatttgccctaattccg gatggtcctc ttcatttagg taacgcaagg 360
tctgcgatttc tatcttacga atacgctaaa atgtataacg gtaagttcat actgagggtt 420
gatgatacag atcctaaggtaaaaaggcca attctagatg catatgattt gattaaggag 480
gatctaaaat ggctggaaat taaatggaa caagaacttt acgcttcgga aaggctcgag 540
ttatactata agtacgctcg gtatttgata gaaaaaggat atgcgtatgt tgatacatgt 600
gatagtagta ttttcaggaa gtttagggat agtagaggtt aaatgaaaga gccagaatgt 660
ttacatagga gctcttcacc agagagtaat ctggagctgt ttgaaaaat gctaggagga 720
aagttaaag aaggagaagc tgtggtagg ttaaagaccg atctatcgga tccagatcca 780
tctcaaatacg attgggtaat gcttagaata attgatactg ctaaaaatcc tcattcacg 840
gtagggagca agtattgggt atggcctacc tataactttg cttctataat agatgatcat 900
gaacttggaa ttactcatgt actgagagct aaggagcata tgtcaaatac agaaaagcag 960
agatacattt ctgagtagat gggatggaa tttccagagg tcttacagtt tggaagacta 1020
agacttgaag gttttatgat gagtaagtctg aaaataagag gaatgtttaga gaagggtacc 1080
aataqqqatq atcctaqtat qccaacttta gctggactca gaagaagagg aatcttacca 1140

54-000510US.ST25.txt

gatacaaatta aagacgtaat aattgatgtc ggagtaaagg taactgatgc tactataagt	1200
tttgagaaca ttgccgcaat taataggaaa aaactagatc cggttagctaa aagaataatg	1260
tttggaaaag atgcagaaga atttagcgtc gagctacctg aatcactaaa tgctaaaata	1320
ccttaattc cctctaaaca agaaatgaat agaactatta ttgtcaatcc aggagataaa	1380
atttttagat aatctaacga tgcagaagat aatagtatac taaggtaat ggaattatgc	1440
aatgttaaag ttgataagca taatcgtaag ctcatatttc acagcaaaac gtagacgag	1500
gctaagaaag tcaatgcaa gatagttcaa tggtaaaat caaatgaaaa agtaccagta	1560
atggtagaga aagcggaaag agatgagata aaaatgataa atggttatgc tgaaaaata	1620
gcagcagatt tggagataga cgaatttacc gatttggatt tgtaagagta	1680
gataggaaag atgagaatat gctacgtgtt gtattctcac acgactga	1728

<210> 79

<211> 575

<212> PRT

<213> **Sulfolobus solfataricus**

<400> 79

Leu Met Glu Leu Asn Glu Leu Arg Glu Thr Ile Tyr Lys Tyr Ala Leu			
1	5	10	15

Gln Asn Ala Val Lys His Asn Gly Lys Ala Glu Thr Gly Pro Val Met		
20	25	30

Ser Lys Ile Ile Ala Glu Arg Pro Glu Leu Arg Ser Asn Ala Arg Glu		
35	40	45

Ile Val Lys Ile Ile Lys Glu Ile Ile Glu Gln Val Asn Ser Leu Thr		
50	55	60

Leu Glu Gln Gln Leu Thr Glu Ile Lys Ala Lys Tyr Pro Glu Leu Leu			
65	70	75	80

Glu Glu Lys Lys His Glu Glu Lys Arg Lys Val Leu Pro Pro Leu Pro		
85	90	95

Asn Val Lys Gly Gln Val Val Thr Arg Phe Ala Pro Asn Pro Asp Gly		
100	105	110

Pro Leu His Leu Gly Asn Ala Arg Ser Ala Ile Leu Ser Tyr Glu Tyr		
115	120	125

Ala Lys Met Tyr Asn Gly Lys Phe Ile Leu Arg Phe Asp Asp Thr Asp		
130	135	140

Pro Lys Val Lys Arg Pro Ile Leu Asp Ala Tyr Asp Trp Ile Lys Glu			
145	150	155	160

54-000510US.ST25.txt

Asp Leu Lys Trp Leu Gly Ile Lys Trp Glu Gln Glu Leu Tyr Ala Ser
165 170 175

Glu Arg Leu Glu Leu Tyr Tyr Lys Tyr Ala Arg Tyr Leu Ile Glu Lys
180 185 190

Gly Tyr Ala Tyr Val Asp Thr Cys Asp Ser Ser Ile Phe Arg Lys Phe
195 200 205

Arg Asp Ser Arg Gly Lys Met Lys Glu Pro Glu Cys Leu His Arg Ser
210 215 220

Ser Ser Pro Glu Ser Asn Leu Glu Leu Phe Glu Lys Met Leu Gly Gly
225 230 235 240

Lys Phe Lys Glu Gly Glu Ala Val Val Arg Leu Lys Thr Asp Leu Ser
245 250 255

Asp Pro Asp Pro Ser Gln Ile Asp Trp Val Met Leu Arg Ile Ile Asp
260 265 270

Thr Ala Lys Asn Pro His Pro Arg Val Gly Ser Lys Tyr Trp Val Trp
275 280 285

Pro Thr Tyr Asn Phe Ala Ser Ile Ile Asp Asp His Glu Leu Gly Ile
290 295 300

Thr His Val Leu Arg Ala Lys Glu His Met Ser Asn Thr Glu Lys Gln
305 310 315 320

Arg Tyr Ile Ser Glu Tyr Met Gly Trp Glu Phe Pro Glu Val Leu Gln
325 330 335

Phe Gly Arg Leu Arg Leu Glu Gly Phe Met Met Ser Lys Ser Lys Ile
340 345 350

Arg Gly Met Leu Glu Lys Gly Thr Asn Arg Asp Asp Pro Arg Leu Pro
355 360 365

Thr Leu Ala Gly Leu Arg Arg Arg Gly Ile Leu Pro Asp Thr Ile Lys
370 375 380

Asp Val Ile Ile Asp Val Gly Val Lys Val Thr Asp Ala Thr Ile Ser
385 390 395 400

Phe Glu Asn Ile Ala Ala Ile Asn Arg Lys Lys Leu Asp Pro Val Ala
405 410 415

Lys Arg Ile Met Phe Val Lys Asp Ala Glu Glu Phe Ser Val Glu Leu
420 425 430

54-000510US.ST25.txt

Pro Glu Ser Leu Asn Ala Lys Ile Pro Leu Ile Pro Ser Lys Gln Glu
435 440 445

Met Asn Arg Thr Ile Ile Val Asn Pro Gly Asp Lys Ile Leu Ile Glu
450 455 460

Ser Asn Asp Ala Glu Asp Asn Ser Ile Leu Arg Leu Met Glu Leu Cys
465 470 475 480

Asn Val Lys Val Asp Lys His Asn Arg Lys Leu Ile Phe His Ser Lys
485 490 495

Thr Leu Asp Glu Ala Lys Lys Val Asn Ala Lys Ile Val Gln Trp Val
500 505 510

Lys Ser Asn Glu Lys Val Pro Val Met Val Glu Lys Ala Glu Arg Asp
515 520 525

Glu Ile Lys Met Ile Asn Gly Tyr Ala Glu Lys Ile Ala Ala Asp Leu
530 535 540

Glu Ile Asp Glu Ile Val Gln Phe Tyr Arg Phe Gly Phe Val Arg Val
545 550 555 560

Asp Arg Lys Asp Glu Asn Met Leu Arg Val Val Phe Ser His Asp
565 570 575

<210> 80

<211> 4813

<212> DNA

<213> artificial

<220>

<223> pACKO-A184TAG

<220>

<221> misc_feature

<222> (3749)..(3749)

<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (3769)..(3769)

<223> n is a, c, g, or t

<400> 80

gaactccgga tgagcattca tcaggcgggc aagaatgtga ataaaggccg gataaaactt 60

gtgcttattt ttctttacgg tcttaaaaaa ggccgtataa tccagctgaa cggctctggtt 120

ataggtacat tgagcaactg actgaaaatgc ctcaaatgt tcttacgat gccattggga 180

tatatcaacg gtggtatatc cagtgattt tttctccatt ttagcttcct tagctcctga 240

aaatctcgat aactcaaaaa atacgcccgg tagtgatctt atttcattat ggtgaaagtt 300

ggaacctctt acgtgccgat caacgtctca tttcgccaa aagttggccc agggcttccc 360

54-000510US.ST25.txt

ggtatcaaca gggacaccag gatttattta ttctgcgaag tcatctccg tcacaggtat	420
ttattcggcg caaagtgcgt cgggtgatgc tgccaactta ctgatttagt gtatgatggt	480
gttttgagg tgctccagtg gcttctgttt ctatcagctg tccctcctgt tcagctactg	540
acggggtgtt gcgtaacggc aaaagcaccc ccggacatca gcgcctaggg agtgtatact	600
ggcttactat gttggcactg atgagggtgt cagtgaagtg cttcatgtgg caggagaaaa	660
aaggctgcac cggcgtcga gcagaatatg tgatacagga tatattccgc ttcctcgctc	720
actgactcgc tacgctcggt cgttcgaactg cggcagcgg aaatggctta cgaacggggc	780
ggagatttcc tggaaagatgc caggaagata cttAACAGGG aagtgagagg gccgcggcaa	840
agccgtttt ccataggctc cgcggccctg acaagcatca cgaatctga cgctcaaatc	900
agtggtggcg aaaccgcaca ggactataaa gataccaggc gtttccccct ggcggctccc	960
tcgtgcgctc tcctgttcct gccttcgggt ttaccgggt cattccgctg ttatggccgc	1020
gtttgtctca ttccacgcct gacactcagt tccgggtagg cagttcgctc caagctggac	1080
tgtatgcacg aaccccccgt tcagtcgcac cgctgcgcct tatccggtaa ctatcgctt	1140
gagtccaaacc cggaaagaca tgcaaaagca ccactggcag cagccactgg taattgattt	1200
agaggagttt gtcttgaagt catgcgccgg ttaaggctaa actgaaagga caagtttgg	1260
tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc agagaacctt	1320
cggaaaaccg ccctgcaagg cgggttttc gtttcagag caagagatta cgcgcagacc	1380
aaaacgatct caagaagatc atcttattaa tcagataaaa tatttctaga tttcagtgc	1440
atttatctct tcaaattgttag cacctgaagt cagccccata cgatataagt tgtaattctc	1500
atgtttgaca gcttatcatc gataagcttt aatgcggtag tttatcacag ttaaattgct	1560
aacgcagtca ggcaccgtgt atgaaatcta acaatgcgcct catcgatcatc ctcggcaccg	1620
tcaccctgga tgctgttaggc ataggcttgg ttatgcgggt actgcggggc ctcttgcggg	1680
atatcggttt ctttagacgtc aggtggact ttccggggaa atgtgcgcgg aacccttattt	1740
tgtttatttt tctaaataca ttcaaattatg tatccgctca tgagacaata accctgataa	1800
atgcttcaat aatattgaaa aaggaagagt atgagtattt aacatttccg tgcgcctt	1860
attccctttt ttgcggcatt ttgccttcct gttttgctc acccagaaac gctggtaaaa	1920
gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgact ggatctcaac	1980
agcggtaaga tccttgagag ttttcggccca gaagaacgtt ttccaatgtat gagcactttt	2040
aaagttctgc tatgtggcgc ggtattatcc cgtgttgcgt ccgggcaaga gcaactcggt	2100
cggccatac actattctca gaatgacttg gttgagttact caccagtac agaaaagcat	2160
cttacggatg gcatgacagt aagagaatta tgcagtgcgt ccataaccat gagtgataac	2220
actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttgc	2280
cacaacatgg gggatcatgt aactgcgcctt gatcgttggg aaccggagct gaatgaagcc	2340
ataccaaacg acgagcgtga caccacgatg ctttaggcaa tggcaacaac gttgcgc当地	2400

54-000510US.ST25.txt

ctattaactg gcgaactact tactctagct tcccgccaac aattaataga ctggatggag	2460
gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct	2520
gataaatctg gagccggtaa gcgtgggtct cgccgtatca ttgcagcact gggggccagat	2580
ggtaagccct cccgtatcgt agttatctac acgacgggaa gtcaggcaac tatggatgaa	2640
cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggca ccaccaccac	2700
caccactaac ccgggaccaa gtttactcat atatactta gattgattt aaacttcatt	2760
ttaatttaa aaggatctag gtgaagatcc ttttgataa tctcatgacc aaaatccctt	2820
aacggcatgc accattcctt gcggcggcgg tgctcaacgg cctcaaccta ctactggct	2880
gcttcctaatt gcaggagtcg cataagggag agcgtctggc gaaaggggaa tgtgctgca	2940
ggcgattaag ttgggtaacg ccagggtttt cccagtcacg acgttgtaaa acgacggcca	3000
tgcccaagct taaaaaaaaaat ctttagcttt cgctaaggat ctgcagttat aatcttttc	3060
taattggctc taaaatctt ataagttctt cagctacagc attttttaaa tccattggat	3120
gcaattcctt atttttaaat aaactctcta actcctcata gctattaact gtcaaatctc	3180
caccaaattt ttctggcctt tttatggta aaggatattc aaggaagtat ttagctatct	3240
ccattattgg atttccttca acaactccag ctggcagta tgctttctt atcttagccc	3300
taatctcttc tggagagtca tcaacagcta taaaattccc ttttgaagaa ctcatcttc	3360
cttctccatc caaaccggt aagacagggt tgtgaataca aacaacctt tttggtaaaa	3420
gctccctgc taacatgtgt attttctct gctccatccc tccaaactgca acatcaacgc	3480
ctaaataatg aatatcatta acctgcatta ttggatagat aacttcagca acctttggat	3540
tttcatcctc tcttgctata agtccatac tccttcttgc tcttttaag gtagttttta	3600
aagccaatct atagacattc agtgtataat ctttatcaag ctggattca gcgttacaag	3660
tattacacaa agtttttat gttgagaata ttttttgat ggggcgccac ttattttga	3720
tcgttcgctc aaagaagcgg cggcaggnt gttttctt tcaccagtna gacggcaac	3780
agaacgccat gagcggcctc atttcttatt ctgagttaca acagtccgca cgcgtgtccg	3840
gtagctcctt ccggtggcg cgggcattga ctatcgctc cgcaactatg actgtcttct	3900
ttatcatgca actcgtagga caggtgccgg cagccccaa cagcccccg gccacggggc	3960
ctgccaccat acccacgccc aaacaagcgc cctgcaccat tatgttccgg atctgcatcg	4020
caggatgctg ctggctaccc tgtggAACAC ctacatctgt attaacgaag cgctaaccgt	4080
ttttatcagg ctctggagg cagaataaat gatcatatcg tcaattatta cctccacggg	4140
gagagcctga gcaaactggc ctcaaggcatt tgagaagcac acggtcacac tgcttccgg	4200
agtcaataaa ccggtaaacc agcaatagac ataagcggct atttaacgac cctgcccgt	4260
accgacgacc gggtcgaatt tgctttcgaa tttctgcccatt catccgctt attatcactt	4320
attcaggcgt agcaccaggc gtttaagggc accaataact gcctaaaaaa aattacgccc	4380
cggccctgcca ctcatcgctc tactgttgta attcattaag cattctgccc acatggaaagc	4440

54-000510US.ST25.txt

catcacagac ggcatgatga acctgaatcg ccagcggcat cagcaccttg tcgccttgcg	4500
tataatattt gcccatggtg aaaacggggg cgaagaagtt gtccatattt gccacgttt	4560
aatcaaaact ggtgaaactc acccaggat tggctgagac gaaaaacata ttctcaataa	4620
accctttagg gaaataggcc aggtttcac cgtaacacgc cacatcttgc gaatatatgt	4680
gtagaaaactg ccggaaatcg tcgtggatt cactccagag cgatgaaaac gtttcagtt	4740
gctcatggaa aacggtgtaa caagggtgaa cactatccc tatcaccagc tcaccgtctt	4800
tcattgccat acg	4813

<210> 81
<211> 4338
<212> DNA
<213> artificial

<220>
<223> pACKO-Bla

<220>
<221> misc_feature
<222> (3274)..(3274)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (3294)..(3294)
<223> n is a, c, g, or t

<400> 81	
gaactccgga tgagcattca tcaggcgggc aagaatgtga ataaaggccg gataaaactt	60
gtgcttattt ttcttacgg tcttaaaaaa ggccgtataa tccagctgaa cggctgggtt	120
ataggtacat tgagcaactg actgaaatgc ctcaaaatgt tctttacgt gccattggga	180
tatatcaacg gtgttatatc cagtatttt tttctccatt ttagcttcct tagctcctga	240
aaatctcgat aactaaaaa atacgcccgg tagtgatctt atttcattat ggtgaaagtt	300
ggaacctctt acgtgccat caacgtctca tttcgccaa aagttggccc agggcttccc	360
ggtatcaaca gggacaccag gatttattta ttctgcaag tgatcttcgg tcacaggtat	420
ttattcggcg caaagtgcgt cgggtgatgc tgccaactta ctgatggatgt gtatgatgg	480
gtttttgagg tgctccagtg gcttctgtt ctatcgatg tccctcctgt tcagctactg	540
acgggggtggt gcgtaacggc aaaagcacccg ccggacatca ggcgtacgg agtgtataact	600
ggcttactat gttggcactg atgagggtgt cagtgaagtg cttcatgtgg caggagaaaa	660
aaggctgcac cggtgcgta gcagaatatg tgatacagga tatattccgc ttccctcgctc	720
actgactcgc tacgctcggt cggtcgactg cggcgacgg aaatggctta cgaacggggc	780
ggagatcc tggaaatgc caggaagata cttaacaggg aagtgagagg gccgcggcaa	840
agccgtttt ccataggctc cgccccctg acaagcatca cggaaatctga cgctcaaatc	900
agtggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggcggctccc	960

54-000510US.ST25.txt	
tcgtgcgctc	1020
tcctgttccct gccttcgggt ttaccggtgt cattccgctg ttatggccgc	
gtttgtctca ttccacgcct gacactcagt tccggtagg cagttcgctc caagctggac	1080
tgtatgcacg aaccccccgt tcagtcgcac cgctgcgcct tatccggtaa ctatcgctt	1140
gagtccaacc cgaaaagaca tgcaaaagca ccactggcag cagccactgg taattgattt	1200
agaggagttt gtcttgaagt catgcgcgg ttaaggctaa actgaaagga caagtttgg	1260
tgactgcgct cctccaagcc agttacctcg gttcaaagag ttggtagctc agagaacctt	1320
cgaaaaaaccg ccctgcaagg cggtttttc gttttcagag caagagatta cgccgcagacc	1380
aaaacgatct caagaagatc atcttattaa tcagataaaa tatttctaga tttcagtgca	1440
atttatctct tcaaattgttag cacctgaagt cagccccata cgatataagt tgtaattctc	1500
atgtttgaca gcttatcatc gataagcttt aatgcggtag tttatcacag ttaaattgct	1560
aacgcagtca ggcaccgtgt atgaaatcta acaatgcgct catcgatcatc ctgcgcaccg	1620
tcaccctgga tgctgttaggc ataggcttgg ttatgccggt actgcccggc ctcttgcggg	1680
atatcggttt cttagacgtc aggtggcact ttccggggaa atgtgcgcgg aacccttatt	1740
tgtttatttt tctaaataca ttcaaataatg tatccgctca tgagacaata accctgataa	1800
atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgcctt	1860
attccctttt ttgcggcatt ttgccttcct gttttgctc acccagaaac actagtgcag	1920
caatggcaac aacgttgcgc aaactattaa ctggcgaact acttactcta gcttccggc	1980
aacaattaat agactggatg gaggcggata aagttgcagg accacttctg cgctcggccc	2040
ttccggctgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg tctcgcggta	2100
tcattgcagc actggggcca gatggtaagc cctccgtat cgtagttatc tacacgacgg	2160
ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt gcctcactga	2220
ttaagcattt gtaacccggg accaagtttta ctcatatata ctttagattt atttaaaact	2280
tcatttttaa tttaaaagga tctaggtgaa gatcctttt gataatctca tgaccaaata	2340
cccttaacgg catgcaccat tccttgcggc ggccgtgctc aacggcctca acctactact	2400
gggctgcttc ctaatgcagg agtgcataa gggagagcgt ctggcgaag gggatgtgc	2460
tgcaaggcga ttaagttggg taacgccagg gttttccag tcacgacgtt gtaaaacgac	2520
ggccagtgcc aagctaaaaa aaaatcctta gcttcgcta aggatctgca gttataatct	2580
ctttctaatt ggctctaaaaa tctttataag ttcttcagct acagcatttt ttaaatccat	2640
tggatgcaat tccttatttt taaataaaact ctctaactcc tcatacgctat taactgtcaa	2700
atctccacca aatttttctg gccttttat ggttaaagga tattcaagga agtatttagc	2760
tatctccatt attggatttc cttcaacaac tccagctggg cagttatgcct tctttatctt	2820
agccctaatac tcttctggag agtcatcaac agctataaaa ttcccttttgg aagaactcat	2880
ctttccttct ccatccaaac ccgttaagac agggttgtga atacaaacaa cttttttgg	2940
taaaagctcc cttgcttaaca tgtgttatttt tctctgcctcc atccctccaa ctgcaacatc	3000

54-000510US.ST25.txt

aacgcctaaa	taatgaatat	cattaacctg	cattattgga	tagataactt	cagcaacctt	3060
tggattttca	tcctctcttg	ctataagttc	catactcctt	cttgctcttt	ttaaggtagt	3120
ttttaaagcc	aatctataga	cattcagtgt	ataatcctta	tcaagctgga	attcagcggt	3180
acaagtatta	cacaaagttt	tttatgttga	gaatattttt	ttgatggggc	gccacttatt	3240
tttgatcggt	cgctcaaaga	agcggcgcca	gggntgtttt	tctttcacc	agtnagacgg	3300
gcaacagaac	gccatgagcg	gcctcatttc	ttattctgag	ttacaacagt	ccgcaccgct	3360
gtccggtagc	tccttccggt	gggcgcgggg	catgactatc	gtcgccgcac	ttatgactgt	3420
cttcttatac	atgcaactcg	taggacaggt	gccggcagcg	cccaacagtc	ccccggccac	3480
ggggcctgcc	accataccca	cgccgaaaca	agcgcctgc	accattatgt	tccggatctg	3540
catcgcgaga	tgctgctggc	taccctgtgg	aacacctaca	tctgtattaa	cgaagcgcta	3600
accgtttta	tcaggctctg	ggagggcagaa	taaatgatca	tatcgtaat	tattacctcc	3660
acggggagag	cctgagcaaa	ctggcctcag	gcatttgaga	agcacacggt	cacactgctt	3720
ccggtagtca	ataaacccgt	aaaccagcaa	tagacataag	cggctattta	acgaccctgc	3780
cctgaaccga	cgaccgggtc	gaatttgctt	tcgaatttct	gccattcatc	cgcttattat	3840
cacttattca	ggcgtagcac	caggcgttta	agggcaccaa	taactgcctt	aaaaaaattta	3900
cgcggccccc	tgccactcat	cgcagtactg	ttgttaattca	ttaagcattc	tgccgacatg	3960
gaagccatca	cagacggcat	gatgaacctg	aatgcgcagc	ggcatcagca	cttgtcgcc	4020
ttgcgtataa	tatttgccta	tggtaaaaac	gggggcgaag	aagttgtcca	tattggccac	4080
gtttaaatca	aaactggtga	aactcaccca	gggattggct	gagacgaaaa	acatattctc	4140
aataaaaccct	ttagggaaat	aggccaggtt	ttcaccgtaa	cacgccacat	cttgcgaata	4200
tatgtgtaga	aactgccgga	aatcgctgt	gtattcactc	cagagcgatg	aaaacgtttc	4260
agtttgctca	tggaaaacgg	tgtacaagg	gtgaacacta	tcccatatca	ccagctcacc	4320
gtcttcatt	gccatacg					4338

<210> 82
<211> 2271
<212> DNA
<213> artificial

<220>
<223> pKQ

<400> 82
atggatccga gctcgagatc tgcagctggt accatatggg aattcgaagc ttggcccgaa 60
acaaaaactc atctcagaag aggatctgaa tagcgccgtc gaccatcatc atcatcatca 120
ttgagttaa acggtctcca gcttggctgt tttggcggat gagagaagat tttcagcctg 180
atacagatta aatcagaacg cagaagcggt ctgataaaac agaatttgcc tggcggcagt 240
agcgcggtgtgg tcccacctga ccccatgccc aactcagaag taaaaacgccc tagcgccgat 300
ggtagtgtgg ggtctcccca tgcgagagta gggactgcc aggcatcaaa taaaacgaaa 360

54-000510US.ST25.txt

ggctcagtcg	aaagactggg	ccttcgttt	tatctgttgt	ttgtcggtga	acgatatctg	420
cttttctcg	cgaattaatt	ccgcttcgca	acatgtgagc	aaaaggccag	caaaaggcca	480
ggaaccgtaa	aaaggccgcg	ttgctggcgt	ttttccatag	gctccgcccc	cctgacgagc	540
atcacaaaaa	tcgacgctca	agtcagaggt	ggcgaaaccc	gacaggacta	taaagatacc	600
aggcgttcc	ccctggaagc	tccctcgtgc	gctctccgt	tccgaccctg	ccgcttaccg	660
gataccctgtc	cgccttctc	ccttcggaa	gcgtggcgct	ttctcatagc	tcacgctgt	720
ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	ctgtgtgcac	gaacccccc	780
ttcagcccga	ccgctgcgcc	ttatccggta	actatcgct	tgagtccaac	ccggtaagac	840
acgacttatac	gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	900
gcggtgctac	agagttctt	aagtggtggc	ctaactacgg	ctacactaga	aggacagtat	960
ttggtatctg	cgctctgctg	aagccagtt	ccttcggaaa	aagagtttgt	agctcttgat	1020
ccggcaaaca	aaccaccgct	ggtagcggtg	gttttttgt	ttgcaagcag	cagattacgc	1080
gcagaaaaaa	aggatctcaa	gaagatcctt	tgatctttc	tacggggtct	gacgctcagt	1140
ggaacgaaaa	ctcacgttaa	gggattttgg	tcatgagtt	tgtctcaaaa	tctctgtatgt	1200
tacattgcac	aagataaaaa	tatatcatca	tgaacaataa	aactgtctgc	ttacataaac	1260
agtaatacaa	gggggtttat	gagccatatt	caacggaaa	cgtcttgctc	gaggccgcga	1320
ttaaattcca	acatggatgc	tgatttat	gggtataaaat	gggctcgcga	taatgtcggg	1380
caatcaggtg	cgacaatcta	tcgattgtat	gggaagcccg	atgcgccaga	gttgtttctg	1440
aaacatggca	aaggttagcgt	tgccaatgat	gttacagatg	agatggtcag	actaaactgg	1500
ctgacggaat	ttatgcctct	tccgaccatc	aagcattta	tccgtactcc	tgatgatgca	1560
tggttactca	ccactgcgat	ccccggaaa	acagcattcc	aggtattaga	agaatatcct	1620
gattcaggtg	aaaatattgt	tgatgcgt	gcagtgttcc	tgccgggtt	gcattcgatt	1680
cctgtttgt	attgtcctt	taacagcgat	cgcgtat	gtctcgctca	ggcgcaatca	1740
cgaatgaata	acggtttgg	tgatgcgagt	gatttgatg	acgagcgtaa	tggctggcct	1800
gttgaacaag	tctggaaaga	aatgcataag	ctttgccat	tctcaccgga	ttcagtcgtc	1860
actcatggtg	atttctact	tgataacctt	attttgacg	aggggaaatt	aatagttgt	1920
attgatgttg	gacgagtcgg	aatcgacagac	cgataccagg	atcttgccat	cctatggAAC	1980
tgcctcggt	agtttctcc	ttcattacag	aaacggctt	ttcaaaaata	tggattgtat	2040
aatcctgata	tgaataaatt	gcagttcat	ttgatgctcg	atgagtttt	ctaatcagaa	2100
ttggtaatt	ggtttaaca	ctggcagagc	attacgctga	cttgacggga	cggcggctt	2160
gttgaataaa	tcgaacttt	gctgagttga	aggatcctcg	ggagttgtca	gcctgtcccg	2220
cttataagat	catacgccgt	tatacgttgt	ttacgctt	aggaattaac	c	2271

<210> 83
<211> 38
<212> DNA

54-000510US.ST25.txt

<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 83		
ggagagaaga ctacatgaaa gaagtcataa tgaaatac		38
<210> 84		
<211> 38		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 84		
cgttagaaga ctgaattcgg attttggtca cgggtgcg		38
<210> 85		
<211> 36		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 85		
gctatcacac catggcgatg ctcctagggg accatc		36
<210> 86		
<211> 40		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 86		
gatcagtcag aattcttact tgtgtgtta tatcaccctg		40
<210> 87		
<211> 33		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 87		
ggagacgtct cacatggaag agaagatatt gcc		33
<210> 88		
<211> 36		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 88		
cgttacgtct cgaattttat ctatgtgcat agcaac		36

54-000510US.ST25.txt

<210> 89	
<211> 33	
<212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	
<400> 89	
ggagacgtct cacatgacct taagtccctga aga	33
<210> 90	
<211> 43	
<212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	
<400> 90	
cgttacgtct cgaattttat ttatgagcaa agtacgccac gac	43
<210> 91	
<211> 33	
<212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	
<400> 91	
ggagacgtct ctcatggtgc cagtggagga cct	33
<210> 92	
<211> 38	
<212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	
<400> 92	
cgttacgtct ctaattttat ttgtggcat agtagaag	38
<210> 93	
<211> 33	
<212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	
<400> 93	
ggaaagggtct ctcatggatg tggaaaagat agc	33
<210> 94	
<211> 36	
<212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	

54-000510US.ST25.txt

<400> 94		
gagtaggtct ctaattttac ttgtgagcat atattg		36
<210> 95		
<211> 36		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 95		
gctactgcac catggattt aatgaattac gagaac		36
<210> 96		
<211> 38		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 96		
gactcagtag aattcattag tcgtgtgaga atacaaca		38
<210> 97		
<211> 48		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 97		
cggaaattcgc cccgggtggtg tagcccgcc aagcatgcgg gcctctaa		48
<210> 98		
<211> 67		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 98		
aaactgcagt ggtccccgg ccgggatttg aaccgggttc gcgggcttta gagggccgca		60
tgcttgg		67
<210> 99		
<211> 58		
<212> DNA		
<213> artificial		
<220>		
<223> oligonucleotide primer		
<400> 99		
cggaaattcag ccccggtggtg tagcggccaa gcatgcgggg ctctaaaccc cgcgaccg		58
<210> 100		

54-000510US.ST25.txt

<211> 55
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 100
aaactgcagt ggtagcccg cgggattcg aacccggtc gcggggtta gagcc 55

<210> 101
<211> 58
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 101
cggaattcag ccccgtggtg tagcgccaa gcacgcgggg ctctaaaccc cgcgaccg 58

<210> 102
<211> 55
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 102
aaactgcagt ggtagcccg cgggattcg aacccggtc gcggggtta gagcc 55

<210> 103
<211> 48
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<220>
<221> misc_feature
<222> (18)..(18)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (36)..(36)
<223> n is a, c, g, or t

<400> 103
cggaattcgc cccgtgntg tagcccgcc aagcangcgg gcctctaa 48

<210> 104
<211> 18
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 104
ggacagcggt gcggactg 18

54-000510US.ST25.txt

<210> 105
<211> 18
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 105
gtgctcaacg gcctcaac 18

<210> 106
<211> 38
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 106
aggcttttaa ccatggcaaa aatcaaaaact cgcttcgc 38

<210> 107
<211> 33
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 107
acgtgagagg aattctgctg atttcgcgt tca 33

<210> 108
<211> 48
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 108
cgtagaaga ctgaattggg gtgagtgtac accgcgacca gttcctcg 48

<210> 109
<211> 40
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer

<400> 109
cgttacgtct cgaattctta tgagcaaagt acgccacgac 40

<210> 110
<211> 38
<212> DNA
<213> artificial

<220>

54-000510US.ST25.txt

<223> oligonucleotide primer
<400> 110
cgttacgtct ctaattttg tgggcatagt agaagacc 38

<210> 111
<211> 39
<212> DNA
<213> artificial

<220>
<223> oligonucleotide primer
<400> 111
gagtaggtct ctaattcttg tgagcatata ttgcgataa 39

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.