RGPVONLINE.COM

MCSE/MSE-101

M. E./M. Tech. (First Semester) EXAMINATION, June 2013

ADVANCED COMPUTATIONAL MATHEMATICS

Time: Three Hours

Maximum Marks: 70

Note: Attempt any five questions.

1. (a) (i) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by

$$T(x, y, z) \tau = \begin{pmatrix} y+z \\ y-x \end{pmatrix}$$

Taking $\{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ as the basic in \mathbb{R}^3 , determine the matrix of T.

- (ii) Let $A = \{\theta_1, \theta_2, ..., \theta_n\}$ be a finite set in a vector space V. Then show that either A is linearly independent or some UK is a linear combination of the preceding vectors $\theta_1, \theta_2, ..., \theta_{k-1}$.
- (b) Define Heaviside unit step function. Using this find
 - (i) L(H(t-a)) and $L\{H(t-a)-H(t-b)\}$
 - (ii) $L(t^3 rt + 5 + 3 \sin 2t)$.
- 2. (a) Solve $\frac{\partial^2 z}{\partial x^2} + 4 \frac{\partial^2}{\partial y^2} = 0$ using separation of variables method.

RGPVONLINE.COM

(b) (i) Solve the equation $u_{xx} + u_{yy} = 0$ in the domain of following figuring using Gaus-Seidel's method: (upto 5 iterations)

- (ii) Define Haar transform and give an example.
- 3. (a) (i) A bag contains 10 white and 15 black balls. Two balls are drain succession without replacement. What is the probability t first is white and second is black?
 - (ii) State the extension of multiplication theorem for probability of events of random nature.
- (b) (i) Show that central moment of a Poisson distribution satisfy following recurrence relation:

$$\mu_{r+1} = \lambda \left(r \mu_{r-1} + \frac{d\mu_r}{d\lambda} \right).$$

- (ii) A die is thrown repeatedly until an ace turns up. Find expected number of throws necessary.
- 4. (a) (i) Define Stochastic Process, Markov Process.
 - (ii) Consider the following Markov chain

$$P = \begin{pmatrix} 0.2 & 0.8 \\ 0.6 & 0.4 \end{pmatrix}$$

Determine $a^{(1)}$, $a^{(4)}$, given that $a^{(0)} = (0.7, 0.3)$.

- (b) Customers at a box office window, being managed by a single m arrive according to a Poisson input process with a mean rate of 30 hour. The time required to serve a customer has an exponential distribution with a mean of 2 minutes. Find the average waiting time of a customer.
- 5. (a) (i) Let $\tilde{A}(x) = \{(3, 0.5), (5, 0.4), (7, 0.6)\}$ $\tilde{B}(x) = \{(3, 1), (5, 0.6)\}$

Then find the fuzzy sets given by:

$$\tilde{A} \times \tilde{B}, \tilde{A} + \tilde{B}, \tilde{A} \oplus \tilde{B}, \tilde{A} - \tilde{B}.$$

(ii) Show that Yager's union operator satisfy

$$\mu_{\tilde{A}} \cup \tilde{B}(x) = \mu_{\tilde{A}(x)} \text{ for } \mu_{\tilde{B}}(x) = 0.$$

(b) Let $x = \{1, 2, 3, 4\}$ and "small integer" be defined $\tilde{A} = \{(1, 1), (2, 0.5), (3, 0.4), (4, 0.2)\}$ and let the fuzzy relation "alm equal" be defined as:

		1	2	3	4
$ ilde{R}$:	1	1	0.8	0	0
	2	0.8	1	0.8	0
	3	0	0.8	1	0.8
	4	0	0	0.8	1

Find the membership of the fuzzy set B = "rather small integers".

6. (a) Use the method of separation of variables to solve the equation:

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + 4$$
, when $u(x, 0) = 6e^{-3x}$.

(b) Solve Laplace's equation for the square region shown below the boundary values being indicated there

7. (a) Find the Fourier transform of

(i)
$$f(x) = \begin{cases} 1 & |x| < a \\ 0 & |x| > a \end{cases}$$

(ii)
$$p(x) = \frac{1}{x^2 + a^2}$$

- (b) (i) Show that $F[f(ax)] = \frac{1}{a}F(w/a)$, a > 0
 - (ii) A coin is tossed, then a die is thrown. Find the probability of obtaining a "6" given that head came up.
- B. (a) Give different MATLAB functions and their applications.
 - (b) If $\lambda \in F$ is a characteristic root of TEA(V), then show that for any polynomial $q(x) \in F\{x\}$, $q(\lambda)$ is a characteristic root of q(T).