k – номер студента в журналі, k%n – остача від ділення k на n (так, 8%5=3)

1. З партії однотипних деталей навмання було вибрано 30шт., в кожній з яких була виміряна глибина канавки x_i . Результати спостережень наведено у вигляді інтервального статистичного ряду:

$\left(x_{i-1},x_{i}\right]$	(k; k+1]	(k+1; k+2]	(k+2; k+3]	(k+3; k+4]	(k+4; k+5]
n_{i}	4	10-(k%5)	8	5+(k%5)	3

В припущенні, що випадкова величина X – нормально розподілена, знайти з надійністю 0,95 інтервал довіри для математичного сподівання X.

2. При рівні значущості $\alpha = 0.05$ перевірити гіпотезу про однорідність двох вибірок, отриманих в результаті вимірювань діаметрів втулок, що оброблялися верстатами, використовуючи критерій інверсій.

Перша вибірка x:2.24; 2.42; 2.28; 2.31; 2.56; 2.12; 2.34; 2.15+k*0,01. Друга вибірка y: 2.22; 2.16; 2.45; 2.33; 2.53; 2.26; 2.49; 2.59-k*0,01; 2.24; 2.37.

- 3. Використовуючи критерій Смирнова, перевірити гіпотезу про те, що популяції, з яких взяті вибірки з завдання 2, однаково розподілені при рівні значущості $\alpha = 0,1$.
- 4. За рівня значущості $\alpha = 0.01$ перевірити правильність нульової гіпотези H_0 : вибірка y(з завдання 2) взята з рівномірно розподіленої на проміжку [2.1; 2.6] генеральної сукупності.
- 5. По двох незалежних вибірках, об'єми яких n=6+k%10 і m=8+k% бвідповідно, отриманих із нормально розподілених генеральних сукупностей X і Y, знайдені середні вибіркові: \bar{x} = 142.35, \bar{y} = 143.8 і варіанси: s_x^2 = 1.44 і s_y^2 = 3 + k * 0.1. Потрібно при рівні значущості α = 0,05 перевірити:
- гіпотезу про те, що математичне сподівання першої рівне a_0 =141+k*0,1 при альтернативній гіпотезі $EX \neq a_0$;
- гіпотезу про рівність математичних сподівань H_0 : EX = EY генеральних сукупностей при альтернативній гіпотезі H_1 : EX < EY;
- гіпотезу, що дисперсія другої рівна $\sigma_0^2=2.5$ при альтернативній $DY>\sigma_0^2$
- гіпотезу про рівність дисперсійдвох генеральних сукупностей H_0 : DX = DY при альтернативній H_1 : $DX \neq DY$.