Theory of Computation Notes

paraphrased by Tyler Wright

An important note, these notes are absolutely **NOT** guaranteed to be correct, representative of the course, or rigorous. Any result of this is not the author's fault.

Contents

1	$Th\epsilon$	Basic	es of Computation
	1.1	Decisi	on Problems
		1.1.1	Decomposing Decision Problems
	1.2	Alpha	bets
		1.2.1	Strings
		1.2.2	The Set of Strings
		1.2.3	Substrings and Concatenation
2	Fin	ite Sta	te Automaton
2			
	2.1		ministic Finite State Automaton
		2.1.1	Product Automaton
	2.2	Non-d	leterministic Finite State Automaton
	2.3	Langu	lages
		2.3.1	Regular Languages
		2.3.2	The Intersection of Regular Languages
	2.4	Epsilo	on Closure
		2.4.1	Simulating NFA with DFA

1 The Basics of Computation

1.1 Decision Problems

A decision problem is a problem which has a Yes or No answer.

1.1.1 Decomposing Decision Problems

A decision problem can be decomposed into two sets, the Yes and No instances of the problem.

1.2 Alphabets

An alphabet is finite set whose members are called symbols (or equivalently letters or characters).

1.2.1 Strings

A string (or equivalently word) over an alphabet Σ is a finite sequence of symbols from Σ . The sequence may be empty, such sequences are denoted by ϵ . The amount of symbols in a string w is denoted by |w|.

1.2.2 The Set of Strings

The set of all strings over Σ is denoted by Σ^* .

1.2.3 Substrings and Concatenation

For two strings v, w, v is a substring of w if it appears consecutively in w.

We write vw to denotes v concatenated with w and for k in $\mathbb{Z}_{>0}$, we say v^k is the k-fold concatenation of v with itself (k copies of v).

2 Finite State Automaton

2.1 Deterministic Finite State Automaton

A deterministic finite state automaton (DFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where:

Q = any finite set, called the states,

 $\Sigma =$ any alphabet,

 $\delta \in \{Q \times \Sigma \to Q\}$ is the the transition function,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is the set of accept states.

We say that M accepts a word w in Σ if there is a sequence of states r_0, \ldots, r_n in Q satisfying:

- $r_0 = q_0$
- $\bullet \ \delta(r_i, w_{i+1}) = r_{i+1},$
- r_n is in F.

2.1.1 Product Automaton

For the two DFA:

$$M_1 = \langle Q_1, \Sigma, \delta_1, q_1, F_1 \rangle, M_2 = \langle Q_2, \Sigma, \delta_2, q_2, F_2 \rangle,$$

the product automaton M is:

$$M = M_1 \times M_2 = \langle Q, \Sigma, \delta, q_0, F \rangle$$

where:

$$Q = Q_1 \times Q_2$$

$$\delta((p_1, p_2), a) = (\delta_1(p_1, a), \delta_2(p_2, a)),$$

$$q_0 = (q_1, q_2),$$

$$F = F_1 \times F_2.$$

2.2 Non-deterministic Finite State Automaton

A non-deterministic finite state automaton (NFA) is identical to a DFA except our transition function is from $Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ where Σ_{ϵ} is an alphabet Σ with the empty word added.

Transitioning on the empty word doesn't consume a letter of our input word and arbitrary choices are made by the automaton when choices present themselves. We have that a word is accepted in an NFA if and only if there is at least one computation where the word is accepted.

2.3 Languages

For a DFA M, the language set of M denoted by L(M) is the maximal set of words in the alphabet of M such that for each w in L(M), M accepts w. We say M recognises a language A if L(M) = A.

2.3.1 Regular Languages

A language is regular if it is recognised by some DFA.

2.3.2 The Intersection of Regular Languages

For the two DFA M_1 and M_2 with languages A and B (resp.), we have that $A \cap B$ is recognised by $M_1 \times M_2$ the product automaton.

2.4 Epsilon Closure

For the NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, and $R \subseteq Q$, we define the epsilon closure of R to be:

$$E(R) := \left\{ q \in Q : \begin{array}{c} \text{where there is a series of transitions solely over} \\ \epsilon \text{ from some } r \text{ in } R \text{ to } q \end{array} \right\}$$

2.4.1 Simulating NFA with DFA

We can simulate an arbitrary NFA:

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$

with a DFA:

$$M' = \langle Q', \Sigma_{\epsilon}, \delta', q'_0, F' \rangle$$

where:

$$Q' = \mathcal{P}(Q),$$

 $\delta'(q, a) = \{q : \text{for some } r \in R, q \in E(\delta(r, a))\}$
 $q'_0 = E(\{q_0\}),$
 $F' = \{q' \in Q' : \text{for some } q \in q', q \in F\}.$