

Introduction to Chicoma

Peter Lamborn Lena M. Lopatina

Chicoma Mountain

- Highest point in the Jemez Mountains (11,561')
- Mostly within Santa Clara Pueblo
- Visible from many parts of Los Alamos and surrounding area

Agenda

- Basics
 - Getting Assistance
 - About this Training
 - Accessing the Cluster
- System Overview
- Filesystems
- Applications
 - Programming Environment
 - Building Applications
 - Running Applications
- Helpful Tools
- Idiosyncrasies

Basics

- Getting Assistance
- About this Training
- Accessing the Cluster

Getting Assistance

Help Resources Available

- Contact Consult at 665-4444 Option 3 (option 2 is Askit)
 - Monday-Friday 8am-12pm, 1pm-5pm
- Email support also available at <u>consult@lanl.gov</u>
 - Very quick response time
- Consult is in close contact with other teams and can get assistance when subject matter experts are needed
- Documentation available online at hpc.lanl.gov/index.php
 - https://hpc.lanl.gov/platforms/chicoma.html
- You can request help in porting your applications to Chicoma from the ic-help@lanl.gov mailing list

About this Training

About this Training

- This Training assumes you are familiar with
 - Other HPC clusters
 - Basic Linux commands
- After this training you will be able to
 - Access Chicoma
 - Start using Chicoma
- You will still need to
 - Adapt your applications to Chicoma
 - Make changes related to Cray Software
 - Learn GPU specific programming
 - GPU Programming Course
 - February 2nd
 - <u>hpctraining.lanl.gov</u>

Accessing the Cluster

Getting a Chicoma Account

- Part of the IC proposal process
 - https://icp.lanl.gov/
- Principal Investigators add group members
 - https://hpcaccounts.lanl.gov/project_approvers/membership_editor

Logging into Chicoma

- Located in an enclave within the Turquoise network
 - o localmachine> ssh wtrw.lanl.gov
 - enter cryptocard password
 - o wtrw> ssh ch-fe

How to Copy Data to Chicoma

- All transfers must be initiated outside of Chicoma
 - o scp -r <dir> <user>@wtrw:ch-fe:/lustre/scratch5/<user>/.
 - o scp <user>@wtrw:ch-fe:/lustre/scratch5/<user>/<file> .
 - o rsync -rLpt -e 'ssh <user>@wtrw ssh'
 ch-fe:/lustre/scratch5/<user>/<dir> .
 - o rsync -rLpt <dir> -e 'ssh <user>@wtrw ssh'
 ch-fe:/lustre/scratch5/<user>/.
- Lustre directories planned to be cross mounted in February
- Can use ar-tn nodes to move files from scratch4 to scratch5

System Overview

Cray Shasta System

- CrayOS
 - Derived from SUSE
- Cray System Management (CSM)
 - Designed to minimize downtime
 - Fewer operations require full system reboots

Hardware at a High Level

- Two Partitions
 - Standard
 - 2 AMD EPYC 7H12 Processors
 - GPU
 - 1 AMD EPYC 7713 Processor
 - 4 NVIDIA A100 Tensor Core GPUs
- HPE/Cray Slingshot10 interconnect 200Gb/s

Standard Partition

- 2 AMD EPYC 7H12 processors
 - Rome
 - o 512 GB RAM per node
 - 64 cores per chip 128 cores total
 - 2.6 GHz clock rate
- 560 nodes

Comparison to Grizzly

Chicoma	Grizzly
128 Cores	36 Cores
512 GB RAM	128 GB RAM
2.6 GHz	2.1 GHz
L3 Cache: 256MB	45 MB
5.3 TF/s	1.2 TF/s max per node
DDR4-3200	DDR4-2400
8 memory channels	4 memory channels
per socket mem bandwidth: 204.8 GB/s	per socket mem bandwidth: 76.8 GB/s
PCI Express 4.0x128	PCI Express 3.0x(x16 per socket)
(S) Loo Aleman	

GPU Partition per Node:

- 1 AMD EPYC 7713 processor
 - Rome
 - 512 GB RAM per node
 - o 64 cores
 - 2.0 GHz clock rate
- 4 NVIDIA A100 Tensor Core GPUs
 - Peak FP64 9.7 TFLOPS per GPU
 - Peak FP32 19.5 TFLOPS per GPU
 - o GPU memory Bandwidth 1,555 GB/s
- 40 GB of memory per GPU
 - o 96 Nodes
- 80 GB of memory per GPU
 - o 22 Nodes

Comparison to Kodiak

Chicoma (118 nodes)	Kodiak (133 nodes)
64 Cores	36 Cores
512 GB	275/550 GB
2.0 GHz	2.1 GHz
4 NVIDIA A100s	4 NVIDIA P100s
9.7 TFLOPS (FP64) per A100	5.3 TFLOPS (FP64) per P100
40/80 GB	17 GB
1,555 GB/s	720 GB/s

Tensor Core

- NVIDIA A100s have a Tensor Core
- Separate Hardware focused on Machine Learning applications
- Uses floats with less precision and better speed
- Float: <Sign>*<Mantissa>*10<Exponent>

Using Tensor Core

- Must program specifically for the Tensor Core
- cuBLAS
 - https://docs.nvidia.com/cuda/cublas/index.html
- cuTensor
 - https://docs.nvidia.com/cuda/cutensor/index.html
- Warp-level synchronization
 - https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

Filesystems

Filesystems accessible from Chicoma

- NFS spaces
 - Home directories
 - Project directories
- Scratch (Lustre) space
 - o scratch4
 - o scratch5

NFS Filesystems on Chicoma

- Same NFS spaces as other Turquoise machines
 - Home directories
 - Project spaces
- Since filesystems are cross mounted, will see same files on other turquoise clusters
- Should be used for
 - Editing files
 - Source code
 - Configuration files
 - Low throughput IO
- snapshot directories will be accessible

Lustre on Chicoma

- /lustre/scratch5/<user>
 - 14 PB capacity
 - Estimated to be mounted on other Turquoise clusters in February
- /lustre/scratch4/turquoise/<user>
 - 14 PB capacity
 - Estimated to be mounted on Chicoma in February
- Should be used for
 - Large files
 - Application output
 - Application input
 - High throughput IO
- Files eligible for purging if not accessed for 60 days

Applications

- **Programming Environment**
- **Building Applications**
- **Running Applications**

Programming Environment

Programming Environment Modulefile Guide

module list	Lists loaded modulefiles
module avail	Displays all available modulefiles, their version defaults, and categories
module load <modulefile></modulefile>	Loads modulefile
module unload <modulefile></modulefile>	Unloads modulefile
<pre>module swap <modulefile1> <modulefile2></modulefile2></modulefile1></pre>	Unloads modulefile1 and loads modulefile2
module purge	Unloads all modulefiles from your environment
	**(may cause trouble on a Cray, better to swap!)
module show <modulefile></modulefile>	Information on the modulefile

Programming Environments

- Programming Environments are provided by HPE-Cray:
 - Cray, AMD Optimizing C/C++ Compiler, Intel OneAPI, GNU, Nvidia-SDK
- Loading a PrgEnv-<env> modulefile loads the CPE environment built in support of the compiler it's based upon (cray, aocc, intel, gnu, nvidia)
 - module swap PrgEnv-<current> PrgEnv-<new>
- PrgEnv-cray is the environment default login environment

PrgEnv Command Examples

```
plamborn@ch-fe2:~> module avail PrgEnv
PrgEnv-aocc/8.0.0(default) PrgEnv-cray/8.0.0(default) PrgEnv-qnu/8.0.0(default)
                                                                            PrgEnv-intel/8.0.0(default) PrgEnv-nvidia/8.0.0(default)
plamborn@ch-fe2:~> module list
Currently Loaded Modulefiles:
 1) cce/11.0.4
                                           5) craype-network-ofi
                                                                                     9) cray-mpich/8.1.5
                                           6) cray-dsmml/0.1.5
                                                                                   10) cray-libsci/21.05.1.1
 2) craype/2.7.7
                                           7) perftools-base/21.05.0
 3) craype-x86-rome
                                                                                   11) PrgEnv-cray/8.0.0
 4) libfabric/1.11.0.4.71
                                           8) xpmem/2.2.40-7.0.1.0_2.7__g1d7a24d.shasta
plamborn@ch-fe2:~> module show PrgEnv-gnu
/opt/cray/pe/modulefiles/PrgEnv-gnu/8.0.0:
conflict
               PrgEnv-amd
conflict
               PrgEnv-aocc
conflict
               PrgEnv-cray
conflict
              PrgEnv-gnu
conflict
              PrgEnv-intel
conflict
               PrgEnv-nvidia
               PE ENV GNU
setenv
               gcc_already_loaded 0
setenv
module
               load gcc
module
               switch cray-libsci cray-libsci/21.05.1.1
module
               switch cray-mpich cray-mpich/8.1.5
module
               load craype
```

module load crav-libsci CRAY PRGENVGNU loaded setenv

load craype-x86-rome load craype-network-ofi

load perftools-base

load cray-dsmml

load crav-mpich

load xpmem

module

module module

module

module

module

Building Applications

Commands to Invoke Compilers

- All of the programing environments use the same commands to compile
 - These are the convenience wrappers
- Will use the correct compiler, libraries, linking, and MPI for the current module list
- CC
 - C programs
- CC
 - C++ programs
- ftn
 - Fortran Programs

Compile and Run

```
(base) plamborn@ch-fel:/lustre/scratch5/plamborn/core affinity> salloc -N 2 --qos=debug --reservation=debug -p standard
salloc: Granted job allocation 215979
salloc: Waiting for resource configuration
salloc: Nodes nid[001012-001013] are ready for job
bash: /etc/bashrc: No such file or directory
bash: .bashrc: No such file or directory
(base) plamborn@nid001012:/lustre/scratch5/plamborn/core affinity> cc -fopenmp xthi.c -o xthi
(base) plamborn@nid001012:/lustre/scratch5/plamborn/core affinity> srun -N 2 -n 4 ./xthi
Hello from rank 1, thread 0, on nid001012. (core affinity = 64-127,192-255)
Hello from rank 1, thread 1, on nid001012. (core affinity = 64-127,192-255)
Hello from rank 3, thread 0, on nid001013. (core affinity = 64-127,192-255)
Hello from rank 3, thread 1, on nid001013. (core affinity = 64-127,192-255)
Hello from rank 0, thread 0, on nid001012. (core affinity = 0-63,128-191)
Hello from rank 0, thread 1, on nid001012. (core affinity = 0-63,128-191)
Hello from rank 2, thread 0, on nid001013. (core affinity = 0-63,128-191)
Hello from rank 2, thread 1, on nid001013. (core affinity = 0-63,128-191)
(base) plamborn@nid001012:/lustre/scratch5/plamborn/core affinity>
```


Verbose Compilation

- Using the '-v' option will show you what the wrapper is doing
- Can be used for debugging

#include <...> search starts here:

```
(base) plamborn@nid001016:/lustre/scratch5/plamborn/core affinity> cc -v -fopenmp xthi.c -o xthi
Cray clang version 13.0.0 (24b043d62639ddb4320c86db0b131600fdbc6ec6)
Target: x86 64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/cray/pe/cce/13.0.0/cce-clang/x86 64/share/../bin
Found candidate GCC installation: /opt/cray/pe/gcc/8.1.0/snos/lib/gcc/x86 64-suse-linux/8.1.0
Selected GCC installation: /opt/cray/pe/qcc/8.1.0/snos/lib/qcc/x86 64-suse-linux/8.1.0
Candidate multilib: .;@m64
Selected multilib: .;@m64
 "/opt/cray/pe/cce/13.0.0/cce-clang/x86 64/bin/clang-13" -cc1 -triple x86 64-unknown-linux-gnu -mllvm -cray-omp-opt-fork-
call -mllvm -cray-omp-parallel-opt-call -mllvm -cray-openmp-rename-outlined -fcray-gpu -flocal-restrict -mllvm -cray-enha
nced-asm=1 -fenhanced-asm=1 -mllvm -cray-enhanced-ir=1 -fenhanced-ir=1 -fomp-local-offload-table -ffortran -emit-obj -mre
lax-all --mrelax-relocations -disable-free -main-file-name xthi.c -mrelocation-model static -mframe-pointer=all -fmath-er
rno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu znver2 -debugger-tuning=gdb -v -fcoverage-compil
ation-dir=/lustre/scratch5/plamborn/core affinity -resource-dir /opt/cray/pe/cce/13.0.0/cce-clang/x86 64/lib/clang/13.0.0
 -isystem /opt/cray/pe/cce/13.0.0/cce-clang/x86 64/lib/clang/13.0.0/include -isystem /opt/cray/pe/cce/13.0.0/cce/x86 64/i
nclude/craylibs -D CRAY X86 ROME -D CRAYXT COMPUTE LINUX TARGET -I /opt/cray/pe/mpich/8.1.11/ofi/cray/10.0/include -I
 /opt/cray/pe/dsmml/0.2.2/dsmml//include -I /opt/cray/pe/libsci/21.08.1.2/CRAY/9.0/x86 64/include -I /opt/cray/xpmem/2.2.
40-7.0.1.0 2.7 gld7a24d.shasta/include -internal-isystem /opt/cray/pe/cce/13.0.0/cce-clang/x86 64/lib/clang/13.0.0/inclu
de -internal-isystem /usr/local/include -internal-isystem /opt/cray/pe/gcc/8.1.0/snos/lib/gcc/x86 64-suse-linux/8.1.0/../
../../x86 64-suse-linux/include -internal-externc-isystem /include -internal-externc-isystem /usr/include -fdebug-comp
ilation-dir=/lustre/scratch5/plamborn/core affinity -ferror-limit 19 -fcray-openmp -fcray-omp-opt-fork -fcray-omp-paralle
l-opt -fcray-openmp-rename-outlined-funcs -fopenmp -fgnuc-version=4.2.1 -fcolor-diagnostics -faddrsig -D GCC HAVE DWARF2
CFI ASM=1 -o /tmp/xthi-ae7e30.o -x c xthi.c
clang -ccl version 13.0.0 based upon LLVM 13.0.0 default target x86 64-unknown-linux-gnu
ignoring nonexistent directory "/opt/cray/pe/gcc/8.1.0/snos/lib/gcc/x86 64-suse-linux/8.1.0/../../../x86 64-suse-linux
/include"
ignoring nonexistent directory "/include"
ignoring duplicate directory "/opt/cray/pe/cce/13.0.0/cce-clang/x86 64/lib/clang/13.0.0/include"
#include "..." search starts here:
```


Running Jobs

Slurm: Partition Selection

- Jobs are Managed through Slurm
- Select Partition
 - Your project may have an allocation on just one partition
 - o -p standard
 - o -p gpu
 - GPU partition not yet available
 - Estimated for February
 - To select which memory size
 - -C gpu80
 - -C gpu40
 - If you do not select
 - gpu40 will be allocated first
 - may get some of both types
 - Have to use account specific to partition
 - -A proj_name> for standard
 - -A <proj_name>_g for gpu

Scheduling Limits

- Limits similar to Grizzly
 - Standard QOS
 - no node limit
 - 16 hours
 - Debug QOS
 - 4 nodes
 - 2 hours
 - priority boost
 - Long QOS -- need special permission to use
 - 4 nodes
 - 7 days
 - Standby QOS
 - no node limit
 - 48 hours
 - preemptable
 - either partition
 - less effect on your 'fairshare'

Slurm: Example Commands

- salloc -p standard -N 2 -t 2:00:00 --account=<prj_name>
 --qos=standard
- salloc -p gpu -N 8 -C gpu40 -t 12:00:00
 --account=<prj_name> --qos=standby
- salloc -p standard -N 3 -t 1:00:00 --qos=debug
 --reservation=debug
- srun -n 4 ./<exe name>

Helpful Tools

Available Profilers

- Tools to analysis the performance of your application
- Cray Perftools
 - The Performance Tools module sets up environments for CrayPat, Apprentice2 and Reveal
 - o `module load perftools-base; which app2; which pat_run; which reveal`
- Allinea MAP
 - o `module load forge; map`
 - GUI or Command Line profiler

Available Debuggers

- Tools to find bugs in your application
- Totalview
 - o `module load totalview; totalview`
 - o GUI
- Allinea DDT
 - o `module load forge; ddt`
 - o GUI
- Valgrind
 - `module load valgrind` or `module load valgrind4hpc`
 - Primarily for memory leaks
 - Command line
- STAT
 - GUI or Command Line
- GDB4HPC
 - o `module load gdb4hpc; gdb4hpc`
 - Command Line

Chicoma Idiosyncrasies

Cray Systems have Hugepages Modules

- Controls how much memory is read at a time
 - Virtual memory pages
- Regular pages are 4 KB
- Additional sizes available on Chicoma
 - 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB
 - o 128 MB 256 MB 512 MB
 - o 1 GB 2 GB
- None loaded by default
- module avail craype-hugepages

Hugepage Usage

- If your application clusters memory
 - But in larger groups that 4 KB
 - Hugepages are a benefit
 - On previous systems hugepages had an advantage for MPI performance
 - Aries NIC used hugepages exclusively
 - Translated buffer before storing in NIC memory
 - Chicoma currently uses Mellanox chips and will eventually use Cassini
 - Slingshot interconnect
 - Cassini cards may show the same benefit
- If you compile with any hugepages module
 - At runtime, application will use currently loaded size
- For more information "man intro hugepages"

Other Differences

- Module differences
 - Start with PrgEnv-<type>
 - Use of "module purge" is not recommended
- Two partitions
 - o -p standard
 - o -p gpu
 - two types of gpu nodes
 - -C gpu40
 - -C gpu80

Wrap Up

Help Resources Available

- Contact Consult at 665-4444 Option 3 (option 2 is Askit)
 - Monday-Friday 8am-12pm, 1pm-5pm
- Email support also available at <u>consult@lanl.gov</u>
 - Very quick Response time
- Consult is in close contact with other teams and can get assistance when subject matter experts are needed
- Documentation available online at hpc.lanl.gov/index.php
 - https://hpc.lanl.gov/platforms/chicoma.html
- You can request help in porting your applications to Chicoma from the ic-help@lanl.gov mailing list

