Fortgeschrittene Fehlerrechnung Übungsblatt 2

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: May 5, 2024)

I. NULLHYPOTHESE

Nullhypothese: Die Ereignisse sind nach einer Poisson-Verteilung mit Mittelwert $\mu = 2,148$ verteilt.

Ereignisse	0	1	2	3	4	5	6	7	≥8
Häufigkeit	40	85	92	62	25	19	7	4	2
Poisson-Wahrscheinlichkeit	0,116717	0,250709	0,269261	0,192791	0,103529	0,044476	0,0159224	0,0048859	0,00170816
Poisson-Häufigkeit	39,217	84,2382	90,4718	64,7778	34,7857	14,9439	5,34993	1,64166	0,573941

Beobachtung: Die letzte 2 Klassen haben theoretische Häufigkeit, die kleine als 5 ist. Wir fassen deswegen die 3 letzte Klassen zusammen.

Ereignisse	0	1	2	3	4	5	≥6
Häufigkeit	40	85	92	62	25	19	13
Poisson-Wahrscheinlichkeit	0,116717	0,250709	0,269261	0,192791	0,103529	0,044476	0,0225165
Poisson-Häufigkeit	39,217	84,2382	90,4718	64,7778	34,7857	14,9439	7,56553

 χ^2 Statistik:

$$\chi^{2} = \frac{(40 - 39.217)^{2}}{39.217} + \frac{(85 - 84.2382)^{2}}{84.2382} + \frac{(92 - 90.4718)^{2}}{90.4718} + \frac{(62 - 64.7778)^{2}}{64.7778} + \frac{(25 - 34.7857)^{2}}{34.7857} + \frac{(19 - 14.9439)^{2}}{14.9439}$$

 $^{^*}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

$$+\frac{(13-7.56553)^2}{7.56553} \approx 7,92488$$

Bestimmung der Anzahl der Freiheitzgrade

Anzahl der Klassen: 7

Zwangsbedingungen: 2

Freiheitsgrade : 7 - 2 = 5

 $p ext{-Wert}$

$$p = \int_{7.92488}^{\infty} f_{\chi^2(5)}(x) \, \mathrm{d}x \approx 0,160425$$

Da der p-Wert großer als das Irrtumsniveau (=0,05) ist, ist die Poisson-Verteilung mit einer Irrtumswahrscheinlichkeit von 5% Poisson verteilt mit Mittelwert 2,148