Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [1]: # Dependencies and Setup
import pandas as pd

# File to Load (1 directory up in Resources folder where the jupyter notebook is running)
school_data_to_load = ".../Resources/schools_complete.csv"
student_data_to_load = ".../Resources/students_complete.csv"

# Read School and Student Data File and store into Pandas Data Frames
school_data = pd.read_csv(school_data_to_load)
student_data = pd.read_csv(student_data_to_load)

# Combine the data into a single dataset
school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name"])
school_data_complete.head()
```

Out[1]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	type	size	budget
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	District	2917	1910635
1	1	Victor Smith	М	12th	Huang High School	94	61	0	District	2917	1910635
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	District	2917	1910635
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	District	2917	1910635
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	District	2917	1910635

District Summary

· Calculate the total number of schools

- Calculate the total number of students
- Calculate the total budget
- · Calculate the average math score
- Calculate the average reading score
- Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Create a dataframe to hold the above results
- · Optional: give the displayed data cleaner formatting

```
In [2]:
        #Total number of schools
        Total Schools = school data["school name"].count()
        #Total number of students
        Total Students = student data["Student ID"].count()
        #Total Budget
        Total Budget = school data["budget"].sum()
        #Average Math Score
        Average Math score = student data["math score"].mean()
        #Average Reading Score
        Average Reading score = student data["reading score"].mean()
        #overall average score
        overall average score = (Average Math score+Average Reading score)/2
        # %passing Math
        Total Passed math = student data.loc[(student data["math score"] >= 70)]
        Percent Passing Math = (Total Passed math["Student ID"].count())*100/Total Students
        # %passing reading
        Total Passed Reading = student data.loc[(student data["reading score"] >= 70)]
        Percent Passing reading = (Total Passed Reading["Student ID"].count())*100/Total Students
        #Data Frame to hold the summary values
        District summary df = pd.DataFrame({"Total Schools":[Total Schools],
                                            "Total Students":[Total Students],
                                            "Total Budget":[Total Budget],
                                            "Average Math Score": [Average Math score],
                                            "Average Reading Score": [Average Reading score],
                                             "% Passing Math":[Percent Passing Math],
                                             "% Passing Reading":[Percent Passing reading],
                                             "% Overall Passing Rate":[overall average score]})
        #formatting values
        District summary df["Total Students"] = District summary df["Total Students"].map("{:,}".format)
        District summary df["Total Budget"] = District summary df["Total Budget"].astype(float).map("${:,.2f}".format)
        District summary df
```

Out[2]:

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
0	15	39,170	\$24,649,428.00	78.985371	81.87784	74.980853	85.805463	80.431606

School Summary

- Create an overview table that summarizes key metrics about each school, including:
 - School Name
 - School Type
 - Total Students
 - Total School Budget
 - Per Student Budget
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)
- · Create a dataframe to hold the above results

Top Performing Schools (By Passing Rate)

Sort and display the top five schools in overall passing rate

```
#School data grouped by School name
In [3]:
        school data grouped = school data complete.groupby("school name")
        #School Type - get the first value in the group, since one school will have only one type.
        School Type = school data grouped["type"].first()
        #Total Students
        Total Students by school = school data grouped["Student ID"].count()
        #Total School Budget - get the first value in the group, since one school will have a single value for budget
        Total School Budget = school data grouped["budget"].first()
        #Per Student Budget
        Per Student budget = Total School Budget/Total Students by school
        #Average Math Score
        Average Math score = school data grouped["math score"].mean()
        #Average Reading Score
        Average Reading score = school data grouped["reading score"].mean()
        # %passing Math
        All Math Passed = school data complete.loc[(school data complete["math score"] >= 70)]
        All Math Passed by school = All Math Passed.groupby(['school name'])
        Percent Passing Math by school = (All Math Passed by school["Student ID"].count()*100)/Total Students by school
        # %passing Reading
        All Reading Passed = school data complete.loc[(school_data_complete["reading_score"] >= 70)]
        All Reading Passed by school = All Reading Passed.groupby(['school name'])
        Percent Passing Reading by school = (All Reading Passed by school["Student ID"].count()*100)/Total Students by s
        # Overall Passing rate
        Overall Passing rate = (Percent Passing Math by school+Percent Passing Reading by school)/2
        #Data Frame to hold the School summary values
        School summary df = pd.DataFrame({"School Type":School Type,
                                           "Total Students": Total Students by school,
                                           "Total School Budget": Total School Budget,
                                           "Per Student Budget": Per Student budget,
                                           "Average Math Score": Average Math score,
                                           "Average Reading Score": Average Reading score,
                                           "% Passing Math":Percent Passing Math by school,
```

Out[3]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828	95.586652
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869	95.290520
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946	95.270270
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965	95.265668
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641	95.203679

Bottom Performing Schools (By Passing Rate)

Sort and display the five worst-performing schools

In [4]:

#Sorting by OverAll Passing rate and displaying bottom 5 performing schools

Bottom_Performing_schools = formatted_school_summary.sort_values("% Overall Passing Rate", ascending=True)

Bottom_Performing_schools.head(5)

Out[4]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055	73.293323
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234	73.363852
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421	73.500171
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432	73.639992
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014	73.804308

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

```
In [5]: # Average Math Score for 9th Grade
        School math score 9th = school data complete.loc[(school data complete["grade"] == "9th")]
        School math score 9th by school = School_math_score_9th.groupby(['school_name'])
        School math score average 9th = School math score 9th by school["math score"].mean()
        # Average Math Score for 10th Grade
        School math score 10th = school data complete.loc[(school data complete["grade"] == "10th")]
        School math score 10th by school = School math score 10th.groupby(['school name'])
        School math score average 10th = School math score 10th by school["math score"].mean()
        # Average Math Score for 11th Grade
        School math score 11th = school data complete.loc[(school data complete["grade"] == "11th")]
        School_math_score_11th_by_school = School_math_score 11th.groupby(['school name'])
        School math score average 11th = School math score 11th by school["math score"].mean()
        # Average Math Score for 11th Grade
        School math score 12th = school data_complete.loc[(school_data_complete["grade"] == "12th")]
        School math score 12th by school = School math score 12th.groupby(['school name'])
        School math score average 12th = School math score 12th by school["math score"].mean()
        # Creating a dataframe to hold Math Average score results
        Math Scores by Grade df = pd.DataFrame({"9th":School math score average 9th,
                                                 "10th": School math score average 10th,
                                                "11th": School math score average 11th,
                                                "12th":School math_score_average_12th})
        #Formatting
        Math Scores by Grade df.index.name = None
        Math Scores by Grade df
```

Out[5]:

	9th	10th	11th	12th	
Bailey High School	77.083676	76.996772	77.515588	76.492218	
Cabrera High School	83.094697	83.154506	82.765560	83.277487	
Figueroa High School	76.403037	76.539974	76.884344	77.151369	
Ford High School	77.361345	77.672316	76.918058	76.179963	
Griffin High School	82.044010	84.229064	83.842105	83.356164	

	9th	10th	11th	12th
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Score by Grade

• Perform the same operations as above for reading scores

```
In [6]:
        # Average Reading Score for 9th Grade
        School reading score 9th = school data complete.loc[(school data complete["grade"] == "9th")]
        School reading score 9th by school = School reading score 9th.groupby(['school name'])
        School reading score average 9th = School reading score 9th by school["reading score"].mean()
        # Average Reading Score for 10th Grade
        School reading score 10th = school data complete.loc[(school data complete["grade"] == "10th")]
        School reading score 10th by school = School reading score 10th.groupby(['school name'])
        School reading score average 10th = School reading score 10th by school["reading score"].mean()
        # Average Reading Score for 11th Grade
        School reading score 11th = school data complete.loc[(school data complete["grade"] == "11th")]
        School reading score 11th by school = School reading score 11th.groupby(['school name'])
        School reading score average 11th = School reading score 11th by school["reading score"].mean()
        # Average Reading Score for 11th Grade
        School reading score 12th = school data complete.loc[(school data complete["grade"] == "12th")]
        School reading score 12th by school = School reading score 12th.groupby(['school name'])
        School reading score average 12th = School reading score 12th by school["reading score"].mean()
        # Creating a dataframe to hold Reading Average score results
        reading Scores by Grade df = pd.DataFrame({"9th":School reading score average 9th,
                                                "10th":School reading_score_average_10th,
                                                "11th": School reading score average 11th,
                                                "12th": School reading score average 12th})
        #Formatting
        reading Scores by Grade df.index.name = None
        reading Scores by Grade df
```

Out[6]:

	9th	10th	11th	12th	
Bailey High School	81.303155	80.907183	80.945643	80.912451	
Cabrera High School	83.676136	84.253219	83.788382	84.287958	
Figueroa High School	81.198598	81.408912	80.640339	81.384863	

	9th	10th	11th	12th
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

```
In [7]: # Sample bins. Feel free to create your own bins.
spending_bins = [0, 585, 615, 645, 675]
group_names = ["<$585", "$585-615", "$615-645", "$645-675"]</pre>
```

Out[8]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
Spending Ranges (Per Student)					
< \$585	83.455399	83.933814	93.460096	96.610877	95.035486
\$585-615	83.599686	83.885211	94.230858	95.900287	95.065572
\$615-645	79.079225	81.891436	75.668212	86.106569	80.887391
\$645-675	76.997210	81.027843	66.164813	81.133951	73.649382

Scores by School Size

· Perform the same operations as above, based on school size.

```
In [9]: | # Sample bins. Feel free to create your own bins.
         size bins = [0, 1000, 2000, 5000]
         group names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"]</pre>
In [10]: # categorize the school summary dataframe by adding School Size Range and use bins,
         #based on Total Students which is same as the school size
         School summary df["School Size"] = pd.cut(School summary df["Total Students"], size bins, labels = group names)
         # Creating a new data frame to hold Average scores from the School Summary dataFrame with School Size
         Scores with school size = School summary df.loc[:,["School Size",
                                                                "Average Math Score",
                                                                "Average Reading Score",
                                                                "% Passing Math",
                                                                "% Passing Reading",
                                                                "% Overall Passing Rate"]]
         #Scores grouped by school size
         Scores grouped by school size = Scores with school size.groupby("School Size")
         #school performances averages based on School Size
         Scores_grouped_by_school_size.mean()
```

Out[10]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
School Size					
Small (<1000)	83.821598	83.929843	93.550225	96.099437	94.824831
Medium (1000-2000)	83.374684	83.864438	93.599695	96.790680	95.195187
Large (2000-5000)	77.746417	81.344493	69.963361	82.766634	76.364998

Scores by School Type

• Perform the same operations as above, based on school type.

Out[11]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing Rate
School Type					
Charter	83.473852	83.896421	93.620830	96.586489	95.103660

66.548453

80.799062

73.673757

80.966636

In []:

District

76.956733