Hướng dẫn bài tập Vi tích phân 1 Tuần 2

Ngày 22 tháng 1 năm 2024

Giới hạn của hàm số

Giới han của hàm số

Giả sử hàm số f(x) xác định khi x gần số a nhưng có thể không xác định tại a. Ta nói "giới hạn của hàm số f(x) khi x tiến gần lại a là L", nếu f(x) gần L tùy ý miễn x đủ gần a nhưng không bằng a, và viết

$$\lim_{x \to a} f(x) = L$$

Giới hạn một phía

Chúng ta viết

$$\lim_{x \to a^{-}} f(x) = L$$

và nói rằng giới hạn bên trái của f(x) khi x tiến đến a (hay giới hạn của f(x) khi x tiến tới a từ phía bên trái) bằng L nếu ta có thể cho f(x) nhận các giá trị gần tùy ý L bằng cách cho x đủ gần với a và x bé hơn a.

Định nghĩa chính xác về giới hạn

Điểm a được gọi là một $\operatorname*{\emph{diểm}}$ tụ hay một $\operatorname*{\emph{diểm}}$ giới hạn của D nếu mọi khoảng mở của $\mathbb R$ chứa a đều chứa một điểm của D khác a.

Định nghĩa

Cho f là hàm số xác định trên tập D và a là một điểm tụ của D. Ta nói giới hạn của f(x) khi x tiến đến a là L, kí hiệu

$$\lim_{x \to a} f(x) = L$$

nếu với mọi số $\epsilon>0$ cho trước, tồn tại $\delta>0$ sao cho với mọi $x\in D$, nếu $0<|x-a|<\delta$ thì $|f(x)-L|<\epsilon$.

Định nghĩa chính xác về giới hạn

Định nghĩa giới hạn bên trái

$$\lim_{x \to a^{-}} f(x) = L$$

nếu với mọi số $\epsilon>0$ tồn tại một số $\delta>0$ sao cho nếu $a-\delta < x < a$ thì $|f(x)-L| < \epsilon.$

Định nghĩa giới hạn bên phải

$$\lim_{x \to a^+} f(x) = L$$

nếu với mọi số $\epsilon>0$ tồn tại một số $\delta>0$ sao cho nếu $a < x < a + \delta$ thì $|f(x) - L| < \epsilon.$

Giới hạn của hàm số

Quy tắc giới hạn

Giả sử c là một hằng số và các giới hạn $\lim_{x\to a}f(x)$ và $\lim_{x\to a}g(x)$ tồn tại. Khi đó.

- $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$

4□ ► 4□ ► 4 □ ► 4 □ ► 900

Giới hạn của hàm số

Định lý giới hạn kẹp

Nếu $f(x) \leq g(x) \leq h(x)$ khi x gần a (có thể ngoại trừ tại a) và nếu

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

thì

$$\lim_{x \to a} g(x) = L.$$

Bài 1. Cho đồ thi hàm q như sau, xác định giá trị của mỗi giới han sau nếu nó tồn tai. Nếu nó không tồn tai, hãy giải thích vì sao.

- (a) $\lim_{t \to 0^{-}} g(t)$ (b) $\lim_{t \to 0^{+}} g(t)$ (c) $\lim_{t \to 0} g(t)$

- (d) $\lim_{t \to 2^-} g(t)$ (e) $\lim_{t \to 2^+} g(t)$ (f) $\lim_{t \to 2} g(t)$

(g) g(2)

(h) $\lim_{t\to 4} g(t)$

Bài 2. Cho đồ thị hàm g như sau, xác định giá trị của mỗi giới hạn sau nếu nó tồn tại. Nếu nó không tồn tại, hãy giải thích vì sao.

(a) $\lim_{x\to 2^-} g(x)$

- (b) $\lim_{x \to 2^+} g(x)$
- (c) $\lim_{x\to 2} g(x)$

- (d) $\lim_{x \to 5^{-}} g(x)$
- (e) $\lim_{x \to 5^{+}} g(x)$
- (f) $\lim_{x\to 5} g(x)$

Bài 3. Tính các giới hạn sau nếu có.

a.
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3}$$
, b. $\lim_{x \to -3} \frac{x^2 - x + 6}{x + 3}$

Bài 4. Tính giới hạn sau nếu có.

a).
$$\lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right)$$

- b). $\lim_{h \to 0} \frac{\sqrt{100 + h} 10}{h}$
- c). $\lim_{t \to 0} \frac{(x+t)^3 x^3}{t}$

Bài 5. Chứng minh rằng $\lim_{x\to 0^+} \sqrt{x} \left(1 + \sin^2(2\pi/x)\right) = 0.$

Bài 6. Nếu
$$4x-9 \leq f(x) \leq x^2-4x+7$$
 với $x \geq 0$. Tìm $\lim_{x \to 4} f(x)$.

Bài 7. Tính giới hạn sau nếu có. Nếu không tồn tại giới hạn hãy giải thích vì sao.

$$\lim_{x \to 3} \left(2x + |x - 3| \right)$$

Bài 8. Sử dụng đồ thị f đã cho để tìm một số δ sao cho

nếu
$$0<|x-3|<\delta$$
 thì $\left|f(x)-2\right|<0.5$

Hàm số liên tục

Định nghĩa

Một hàm số f được gọi là **liên tục tại** a nếu

$$\lim_{x \to a} f(x) = f(a)$$

Từ định nghĩa trên, để f liên tục tại a thì

- $oldsymbol{0}$ f(a) phải xác định
- $\mathbf{2} \lim_{x \to a} f(x)$ tồn tại
- $\lim_{x \to a} f(x) = f(a).$

Hàm số liên tục

Định nghĩa

Một hàm số f được gọi là **liên tục phải tại** a nếu

$$\lim_{x \to a^+} f(x) = f(a)$$

và f được gọi là **liên tục trái tại** a nếu

$$\lim_{x \to a^{-}} f(x) = f(a).$$

Định lý giá trị trung gian

Giả sử f liên tục trên đoạn [a,b] và N là một số bất kỳ nằm giữa f(a) và f(b), trong đó $f(a) \neq f(b)$. Khi đó tồn tại một số c nằm trong khoảng (a,b) sao cho f(c)=N.

Bài 1.

- (a) Từ đồ thị của f, cho biết những điểm gián đoạn của f và giải thích tại sao.
- (b) Tại những điểm xét trong phần (a), cho biết f có liên tục bên trái hay bên phải hay không?

Bài 2. Sử dụng định nghĩa về tính liên tục và các tính chất của giới hạn để chứng minh hàm số liên tục tại một số a cho trước.

$$f(x) = (x + 2x^3)^4, \quad a = -1$$

Bài 3. Sử dụng định nghĩa về tính liên tục và các tính chất của giới hạn để chứng minh hàm số liên tục trên khoảng đã cho.

$$f(x) = \frac{2x+3}{x-2}, \quad (2,\infty)$$

15 / 17

Bài 4. Sử dụng tính liên tục để tìm giới hạn

$$\lim_{x \to 4} \frac{5 + \sqrt{x}}{\sqrt{5 + x}}$$

Bài 5. Sử dụng tính liên tục để tìm giới hạn

$$\lim_{x \to \pi} \sin\left(x + \sin x\right)$$

Bài 6. Tìm những điểm mà hàm số f bị gián đoạn. Tại những điểm nào trong số những điểm này, hàm f liên tục trái, phải hay không liên tục bên nào cả. Vẽ đồ thị hàm f.

$$f(x) = \begin{cases} 1+x^2 & \text{n\'eu } x \leq 0 \\ 2-x & \text{n\'eu } 0 < x \leq 2 \\ (x-2)^2 & \text{n\'eu } x > 2 \end{cases}$$

Bài 7. Chứng minh các phương trình sau có nghiệm trên khoảng được chỉ ra

$$\sqrt[3]{x} = 1 - x$$
, $(0, 1)$

Bài 8. Chứng minh các phương trình sau có ít nhất một nghiệm

$$\cos x = x^3$$