Math 4324 Closed sets

Hand in Friday, February 16.

- **1.** In \mathbb{R} let $A = \{1/k : k \in \mathbb{N}\}.$
- **a.** If \mathbb{R} has the standard topology, what is the boundary of A, and what is the set of limit points of A. Show that your answers are correct.

The boundary points of A are the set $A \cup \{0\}$. This is shown as for all points of A are in ∂A as for any $1/n \in A$ any neighborhood O of 1/n we have $1/n \in \mathbb{R} \cap O$. Now as O is open then there exists a basis element B such that $x \in B$ and as this is the standard topology we have B = (a,b) for some $a,b \in \mathbb{R}$ with a < x < b. We have $(a+x)/2 \in O \cap A^c$ therefore $A \subset \partial A$. For any neighborhood O containing 0 that again as O is open there exists a basis element (a,b) with $a,b \in \mathbb{R}$ and a < 0 < b and for some $n \in \mathbb{N}$ we have 1/n < b hence $1/n \in O \cap A \neq \emptyset$ additionally we have for some $c \in \mathbb{R}$ where $c \notin A$ with 0 < c < b that $c \in O \cap A^c \neq \emptyset$. Now assume $x \in \mathbb{R}$ with $x \notin A \cup \{0\}$. Then if x < 0 we immediately have an neighborhood (x-1,0) with $(x-1,0) \cap A = \emptyset$ like wise if x > 0 then we have the neighborhood (1,x+1) with $(1,x+1) \cap A = \emptyset$. If 0 < x < 1 we have for some $n \in \mathbb{N}$ that 1/(n+1) < x < 1/n we have the neighborhood of x (1/(n+1), 1/n) with $A \cap (1/(n+1), 1/n) = \emptyset$. This shows that $A \cup \{0\} = \partial A$.

We have that the limit point of A is $\{0\}$. This is shown as let O be an neighborhood of 0. Then as it is open we have a basis element $(a,b) \subset O$ where $a,b \in \mathbb{R}$ with a < 0 < b. We have that there exists $n \in \mathbb{N}$ such that 0 < 1/n < b therefore $1/n \in O$ which shows that 0 is a limit point. We have no element of A is a limit point as for all $1/n \in A$ we have a neighborhood (a,b) with $a,b \in \mathbb{R}$ where $1/n \in (a,b)$ but $1/(n+1), 1/(n-1) \not\in (a,b)$ with the condition n > 1. This shows that no element of A is a limit point. Lastly assume $x \in \mathbb{R} \setminus (\{0\} \cup A)$ then if x < 0 we have the neighborhood (x-1,0) with $(x-1,0) \cap A = \emptyset$ and for x > 0 we have the neighborhood (1,x+1) with $(1,x+1) \cap A = \emptyset$. If 0 < x < 1 then for some $n \in \mathbb{N}$ we have (1/(n+1),1/n) with $x \in (1/(n+1),1/n)$ but $(1/(n+1),1/n) \cap A = \emptyset$. This implies that the only limit point of A is $\{0\}$.

b. If \mathbb{R} has the upper limit topology, what is the boundary of A, and what is the set of limit points of A. Show that your answers are correct.

The boundary for \mathbb{R} is A.

Let $1/n \in A$ then for any neighborhood O of 1/n we have $1/n \in O \cap A$ therefore $O \cap A \neq \emptyset$. Now as O is open we have a basis element with $(a,1/n] \subset O$ with $a \in \mathbb{R}$ and a < 1/n. Then consider the intersection $O \cap A^c$ as $(a+\frac{1}{n})/2 \in (a,1/n) \subset O$ and $(a+\frac{1}{n})/2 \in A^c$ that $O \cap A^c \neq \emptyset$. This implies that $A \subset \partial A$. Now let $x \in \mathbb{R}$ if $x \leq 0$ then we have the neighborhood (x-1,0] and $(x-1,0] \cap A = \emptyset$. If x > 1 then we have the neighborhood (1,x+1] with $(1,x+1] \cap A = \emptyset$. If 0 < x < 1 then we have the neighborhood (a,x] where $a \in \mathbb{R}$ where $(a,x] \cap A = \emptyset$ this a exists as for some $n \in \mathbb{N}$ we have 1/(n+1) < a < x < 1/n. This shows $A = \partial A$.

We have that there are no limit points of A.

Let $1/n \in A$ then we have the neighborhood (1/(n+1), 1/n] then as $(1/(n+1), 1/n) \cap A = \{1/n\}$ we have no element of A is a limit point. Now suppose $x \in \mathbb{R}$ if $x \le 0$ then we have the neighborhood (x-1,0] with $(x-1,0] \cap A = \emptyset$ if x > 1 then (1,x] is a neighborhood of x and $(1,x] \cap A = \emptyset$. If 0 < x < 1 then we have the neighborhood (a,x] where $a \in \mathbb{R}$ and $(a,x] \cap A = \emptyset$ such an a exists as for some $n \in \mathbb{N}$ the inequality is true 1/(n+1) < a < x < 1/n. This implies that there are no limit points of A with the upper limit topology.

- **2.** Let A and B be subsets of a topological space X.
 - **a.** If $A \subset B$, show that $\overline{A} \subset \overline{B}$.

Proof. Assume A and B are subsets of a topological space X with $A \subset B$. Then we have $\bar{A} = A \cup A' \subset B \cup A'$. Let $x \in A'$ then for all neighborhoods O of x we have $O \cap A \setminus \{x\} \neq \emptyset$ as $A \subset B$ then $O \cap B \setminus \{x\} \neq \emptyset$ hence $x \in B'$. This implies $A' \subset B'$ so we have $\bar{A} = A \cup A' \subset B \cup B' = \bar{B}$.

b. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Proof. As $\overline{A \cup B} = A \cup B \cup (A \cup B)'$ we just need to show $(A \cup B)' = A' \cup B'$. Let $x \in (A \cup B)'$ then for all neighborhoods O of x we have $O \cap (A \cup B) \setminus \{x\} \neq \emptyset$. Then

$$(1) \qquad O \cap (A \cup B) \setminus \{x\} = (O \cap A) \cap \{x\}^c \cup (O \cap B) \cap \{x\}^c = (O \cap A \setminus \{x\}) \cup (O \cap B \setminus \{x\})$$

this shows that $x \in A' \cup B'$ hence $(A \cup B)' \subset A' \cup B'$. Then for the other inclusion the equation (1) also holds hence $A' \cup B' \subset (A \cup B)'$ which implies $(A \cup B)' = A' \cup B'$. Then we have $\overline{A \cup B} = (A \cup B) \cup (A \cup B)' = A \cup B \cup A' \cup B' = (A \cup A') \cup (B \cup B') = \overline{A} \cup \overline{B}$.

3. a. Give an example of a topological space X and subsets A and B for which $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$. Show that your example has the asserted property.

Let \mathbb{R} be a topological space with the standard topology. Let the two sets be the open interval (0,1) and (1,2) then we have (0,1)'=[0,1] as for any $x\in(0,1)$ any neighborhood O of x we have a basis element (a,b) where $a,b\in\mathbb{R}$ with $x\in(a,b)\subset U$ and as $(a,b)\cap(0,1)\setminus\{x\}\neq\emptyset$ then we have x is a limit point. Now to show that $0\in(0,1)'$ we have for any neighborhood O of 0 that there exists a basis element (a,b) with $a,b\in\mathbb{R}$ and a<0< b such that $(a,b)\subset U$ then $(a,b)\cap(0,1)\setminus\{0\}\neq\emptyset$ as $b/2\in(0,1)$. To show $1\in(0,1)'$ for any neighborhood O of 1 we have a element of the basis (a,b) where $a,b\in\mathbb{R}$ with a<1< b and $(a,b)\subset O$. Then we have $(a,b)\cap(0,1)\neq\emptyset$ as there exists a real number c with a< c<1. This shows that $1\in(0,1)'$. For any real number $r\in\mathbb{R}\setminus[0,1]$ if r<0 we have the neighborhood (r-1,0) and $(r-1,0)\cap(0,1)=\emptyset$ which shows that it is not a limit point. If r>1 then we have the neighborhood (1,r+1) and $(1,r+1)\cap(0,1)=\emptyset$. This shows that the limit points of (0,1) are [0,1]. From the definition of closure we have $(0,1)=(0,1)\cup[0,1]=[0,1]$. A similar argument gives that (1,2)'=[1,2]. Now as $(0,1)\cap(1,2)=\emptyset$. We have $(0,1)\cap(1,2)=\emptyset$ and $(0,1)\cap(1,2)=1$ hence they are not equal. n

b. Give an example of a topological space X and a collection of subsets $\{A_j: j \in \mathbb{N}\}$ for which

$$\bigcup_{j\in\mathbb{N}} \overline{A_j}$$

is not equal to

$$\overline{\bigcup_{j\in\mathbb{N}}A_j}.$$

Show that your example has the asserted property.

Claim that $A_i = \{1/j\}$ has this property in the Real numbers with the standard topology.

Proof. From problem (1a) we have that the limit point of $\bigcup_{j\in\mathbb{N}}A_j$ is 0. By the definition of complement $\overline{\bigcup_{j\in\mathbb{N}}A_j}=(\bigcup_{j\in\mathbb{N}}A_j)\cup(\bigcup_{j\in\mathbb{N}}A_j)'=\{1/n:n\in\mathbb{N}\}\cup\{0\}$. But for each $\overline{A_j}=A_j\cup A_j'$ we have $A'=\emptyset$ which follows from (1a) therefore we have $\overline{A_j}=A_j$ which implies $\bigcup_{j\in\mathbb{N}}\overline{A_j}=\{1/n:n\in\mathbb{N}\}$ but this set does not contain 0 hence $\overline{\bigcup_{j\in\mathbb{N}}A_j}\neq\bigcup_{j\in\mathbb{N}}\overline{A_j}$.

4. Show that if X is a Hausdorff topological space and Y is a finite subset of X, then Y has no limit points.

Proof. Suppose X is a Hausdorff topological space and $Y = \{y_1, ..., y_n\}$ is a finite subset of X. Then for any $x \in X$ construct the set $\bigcap_{j=1}^n X_j$ where $x \in X_j$ but if $y_j \neq x$ then $y_j \notin X_j$ such a set exists based off the assumption X is Hausdorff topological space. Then we have $\bigcap_{j=1}^n X_j$ is a neighborhood of x as it contains x and finite sets are open. As $\bigcap_{j=1}^n X_j \cap Y \subset \{x\}$ this shows that no element of X is a limit point which completes the proof.

5. a. If X is an infinite set with the finite complement topology and if Y is a finite subset of X, what are the limit points of Y? Show that your answer is correct.

Claim that the limit points of Y is the emptyset.

Proof. Assume that X is an infinite set with the finite complement topology and Y is a finite subset of X. Now let $x \in X$ then we have that $(X \setminus Y) \cup \{x\}$ is a neighborhood as it it's complement is finite and contains x but as $((X \setminus Y) \cup \{x\}) \cap Y = \{x\}$ we have x is not a limit point. As it was chosen arbitrarily we have $Y' = \emptyset$

b. If X is an infinite set with the finite complement topology and if Y is an infinite subset of X, what are the limit points of Y? Show that your answer is correct.

Claim it is all of X

Proof. Let X,Y be as definined. Then let $x \in X$ we have that any neighborhood O of x contains an infinite number of elements of Y as if it only contained a finite number of elements of Y then $X \setminus O$ would not be countable because it would at least contain an infinite number of elements of Y. Therefore we have $O \cap Y \neq \emptyset$. Hence X is a limit point and as X was arbitrarily chosen from X we have that Y' = X.

6. a. Let X be the product of countably many copies of \mathbb{R} , i.e. $X = \prod_{j \in \mathbb{N}} X_j$, where each X_j is \mathbb{R} with the standard topology. Let Y be the subset of X of elements $\vec{x} = (x_1, x_2, ...)$ for which at most finitely many of the entries x_j are nonzero. If we give X the box topology, what is the closure of Y? Show that your answer is correct.

Claim is that $\bar{Y} = Y$

Proof. Let X,Y be as definition. From the definition of closure if we prove that $Y' \subset Y$ then that proves the claim. Let $\vec{x} \in X \setminus Y$ then consider the neighborhood $O = \prod_{j \in \mathbb{N}} u_j$ where $u_j = \begin{cases} (0,\pi_j(\vec{x})+1) & \text{if } \pi_j(\vec{x}) \neq 0 \\ (-1,1) & \text{if } \pi_j(\vec{x}) = 0 \end{cases}$ we have O does not contain zero an infinite number of times based on $\vec{x} \notin Y$. But as each element of Y contains zero an infinite number of times we have $U \cap Y = \emptyset$. This implies that $Y' \neq X \setminus Y$ which implies that $Y' \subset Y$ so $\bar{Y} = Y \cup Y' = Y$ which completes the proof.

b. Let X be the product of countably many copies of \mathbb{R} , i.e. $X = \prod_{j \in \mathbb{N}} X_j$, where each X_j is \mathbb{R} with the standard topology. Let Y be the subset of X of elements $\vec{x} = (x_1, x_2, ...)$ for which at most finitely many of the entries x_j are nonzero. If we give X the product topology, what is the closure of Y? Show that your answer is correct.

Claim that Y' = X

Proof. Assume that X,Y are defined as above. Then let $\vec{x} \in X$ then for any neighborhood U of x as this is the product topology for some $N \in \mathbb{N}$ we have for all $n \in \mathbb{N}$ with n > N that $U_n = \mathbb{R}$. Then we have the element $\vec{y} \in Y$ where $\pi_j(\vec{y}) = \pi_j(\vec{x})$ for $j \in \mathbb{N}$ with $j \leq N$ and zero for the rest. Then we have $\vec{y} \in U \cap Y \neq \emptyset$. This shows that Y' = X hence $\vec{Y} = Y \cup Y' = X$.