MPEI 2015-2016

Aula 4

Variáveis aleatórias

Motivação

- A probabilidade é uma função sobre conjuntos (eventos)
 - Utilização das ferramentas da análise matemática (ex: derivação) não é imediata
 - Especialmente se o resultado do experimento não forem números
- Se conseguirmos mapear do espaço de amostragem
 (S) para a recta real facilita o uso das ferramentas de análise e aritmética
- Na maioria dos casos o mapeamento não é artificial
 - Muitas vezes não nos interessa os eventos mas uma grandeza numérica relacionada
 - Exemplo: número de caras em N lançamentos

Conceito

- A probabilidade é uma função sobre eventos (conjuntos)
- Um mapeamento do espaço amostral S para a recta real facilita/permite o uso das ferramentas da análise e aritmética
- Muitas vezes nem sequer é artificial pois aquilo que nos interessa não são eventos específicos mas alguma grandeza numérica relacionada
 - Exemplo:
 - N lançamentos consecutivos de uma moeda equilibrada
 - Muitas vezes não nos interessa a sequência concreta de caras e coroas mas sim um valor numérico como, por exemplo, o número de caras
 - Temos assim uma função que mapeia S em {1,2,...,N}
- Uma função deste tipo, que mapeia o espaço amostral na recta real é designada de VARIÁVEL ALEATÓRIA

Variável Aleatória - Definição

• Uma variável aleatória escalar X é formalmente definida como sendo um mapeamento de um espaço amostral S para a

recta real

– A qualquer elemento ω de S associa-se uma imagem $X(\omega)$ na recta real

Caso contínuo

 Se os conjuntos que representam os eventos forem contínuos, o mapeamento é para um segmento da recta real

A e B são acontecimentos equivalentes

Tipos de Variáveis aleatórias

- Discreta: se os valores que a variável aleatória pode assumir forem finitos
 - ou infinitos mas contáveis
 - Exemplo: número de acessos por minuto a uma página web
- Contínua: se os valores que pode assumir formarem um ou vários intervalos disjuntos
 - Exemplo: Duração de uma conferência no Skype
- Mista: onde se verificam os atributos que definem os 2 tipos anteriores

Tipos

• Discreta/contínua ou mista?

VA	Tipo ? (D,/C,/M)
Número de palavras com erro numa página	
Atraso com que chega às aulas TP	
Número de caixas abertas no supermercado	
Tempo de espera numa caixa de supermercado	
Número de páginas relevantes para uma procura num motor de pesquisa (ex: Google)	
Número de "bugs" num módulo de código	

Caracterizando as variáveis aleatórias

Parte 1

VAs discretas

- Uma va discreta escalar X é especificada por:
- Conjunto de valores que pode assumir x_i , i = 1,2,...
- E pela sua função de probabilidade de massa

$$p_{x}(x_{i}) = P(X = x_{i})$$

Onde $P(X = x_i) = P(w: X(w) = x_i)$ i.e. A probabilidade do evento cujos resultados w satisfazem $X(w) = x_i$

• • •

Os axiomas da probabilidade implicam:

•
$$p_x(x_i) \geq 0$$

•
$$\sum_i p_x(x_i) = 1$$

Função probabilidade de massa – exemplo

- Lançamento de dado equilibrado e X igual ao número que sai
- X:

va discreta $x_i = \{1, 2, 3, 4, 5, 6\}$ $p_x(x_i) = 1/6$

%% Matlab

xi = 1:6; p=ones(1,6)/6; stem(xi,p), xlabel('x'), ylabel('px(x)');

Função distribuição acumulada (discreta)

 VA discreta pode ser especificada também pela sua função distribuição acumulada (fda), definida como

•
$$F_X = p_X(X \le x) = \sum_{i:x_i \le x} p_X(x_i)$$

Dos axiomas e corolários:
 É uma função não decrescente

$$\lim_{x\to-\infty}F_X(x)=0$$

$$\lim_{x\to\infty}F_X(x)=1$$

Para uma va discreta a fda é uma função em escada

Exemplo de fda

Χ

Outro exemplo VA discreta

 Cada símbolo transmitido num sistema de transmissão pode ser interpretado como uma va que toma os valores x1=0 com probabilidade p e x2=1 com probabilidade 1-p

MPEI 2015 MIECT/LEI

VA contínua

- Também pode ser especificada pela sua fda (função distribuição acumulada)
 - A definição é idêntica para o caso contínuo e discreto

$$F_X(x) = Prob(X \le x)$$

- Que para va contínuas é contínua
- Propriedades:

$$0 \le F_X(x) \le 1$$

$$\lim_{x \to \infty} F_X(x) = 1$$

$$\lim_{x \to -\infty} F_X(x) = 0$$

$$a < b \Rightarrow F_X(a) \le F_X(b)$$

$$P[a < X \le b] = F_X(b) - F_X(a)$$

VA contínua

• Pode ser especificada pela sua função densidade probabilidade $f_X(x)$

fdp em português pdf em Inglês

•
$$f_X(x) = \frac{dF_X(x)}{dx}$$

Função DENSIDADE probabilidade

- $f_X(x)$ não é uma probabilidade ...
 - Apenas define os valores de probabilidade quando integrada num intervalo

•
$$p(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

• $f_X(x)dx$ é a probabilidade da va X pertencer ao intervalo (x,x+dx), sendo dx um acréscimo infinitesimal

$$f_X(x) \equiv \frac{prob}{dx}$$
 \rightarrow daí o nome "densidade"

Função distribuição acumulada

•
$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$

Exemplo de par fdp fda

Função densidade de Probabilidade

•
$$p(a < X \le b) = \int_a^b f_X(x) dx$$

- A probabilidade é a área debaixo da curva
- Área total da curva =1

Tópicos da aula (resumo)

Variável aleatória (conceito e definição)

- Caracterização de variáveis aleatórias
 - Função probabilidade de massa (fpm) e função densidade de probabilidade (fdp)
 - Função de distribuição acumulada (fda)

Para saber mais...

Link(s)

http://www.stat.berkeley.edu/~stark/SticiGui/Text/r andomVariables.htm

 Capítulo 3 do livro "Probabilidades e Processos Estocásticos", F. Vaz Próxima aula, a 5ª, continuação da caracterização de variáveis aleatórias (incluindo Distribuições mais relevantes para MPEI)