Mike Reppert

October 9, 2019

We learned about **pump-probe spectroscopy**:

We learned about **pump-probe spectroscopy**:

Setup:

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\bullet \ \Delta OD = \text{``pump on''} \text{``pump off''}$

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse
- Two pathways:

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse
- Two pathways:
 - Rephasing: $-k_1 + k_2 + k_3$

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse
- Two pathways:
 - Rephasing: $-k_1 + k_2 + k_3$
 - Nonrephasing: $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$

Today: 2D Spectroscopy!

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse
- Two pathways:
 - Rephasing: $-k_1 + k_2 + k_3$
 - Nonrephasing: $k_1 k_2 + k_3$
- As a function of time-delay:

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse
- Two pathways:
 - Rephasing: $-k_1 + k_2 + k_3$
 - Nonrephasing: $k_1 k_2 + k_3$
- As a function of time-delay:
 - Does not oscillate at high frequencies

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse
- Two pathways:
 - Rephasing: $-k_1 + k_2 + k_3$
 - Nonrephasing: $k_1 k_2 + k_3$
- As a function of time-delay:
 - Does not oscillate at high frequencies
 - Monitors dissipation

We learned about **pump-probe spectroscopy**:

- Setup:
 - Two pulsed lasers cross in a sample
 - $\Delta OD =$ "pump on" "pump off"
- Third-order process
 - Two interactions with "pump" pulse
 - One interaction with "probe" pulse
- Two pathways:
 - Rephasing: $-k_1 + k_2 + k_3$
 - Nonrephasing: $k_1 k_2 + k_3$
- As a function of time-delay:
 - Does not oscillate at high frequencies
 - Monitors dissipation
 - Not sensitive to dephasing

2D Spectroscopy: Big Idea

Pump-probe signal is determined by integrating $\mathbf{R}^{(3)}(\pm\omega_1,0,\omega)$ over ω_1 :

$$S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$$

2D Spectroscopy: Big Idea

Pump-probe signal is determined by integrating $\mathbf{R}^{(3)}(\pm\omega_1,0,\omega)$ over ω_1 :

$$S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$$

Wouldn't it be great if we could measure $\mathbf{R}^{(3)}(\omega_1,0,\omega)$ without integrating over the first interaction frequency?

2D Spectroscopy: Big Idea

Pump-probe signal is determined by integrating $\mathbf{R}^{(3)}(\pm\omega_1,0,\omega)$ over ω_1 :

$$S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$$

Wouldn't it be great if we could measure $\mathbf{R}^{(3)}(\omega_1,0,\omega)$ without integrating over the first interaction frequency?

We can! 2D spectroscopy gives (in principle) the **full** third-order response tensor.

2D Spectroscopy: "Three-pulse pump-probe"

 Key Idea: By scanning the time delay between the first two interactions, we get excitation frequency information

Fuller and Ogilvie, *Ann. Rev. Phys. Chem.*, 2015 66, 667-690

2D Spectroscopy: "Three-pulse pump-probe"

- Key Idea: By scanning the time delay between the first two interactions, we get excitation frequency information
- Setup: Two common geometries

Fuller and Ogilvie, *Ann. Rev. Phys. Chem.*, 2015 66, 667-690

2D Spectroscopy: "Three-pulse pump-probe"

- Key Idea: By scanning the time delay between the first two interactions, we get excitation frequency information
- Setup: Two common geometries
 - Pump-probe

Fuller and Ogilvie, *Ann. Rev. Phys. Chem.*, 2015 66, 667-690

2D Spectroscopy: "Three-pulse pump-probe"

- Key Idea: By scanning the time delay between the first two interactions, we get excitation frequency information
- Setup: Two common geometries
 - Pump-probe
 - Box-CARS

Fuller and Ogilvie, *Ann. Rev. Phys. Chem.*, 2015 66, 667-690

2D Spectroscopy: "Three-pulse pump-probe"

- Key Idea: By scanning the time delay between the first two interactions, we get excitation frequency information
- Setup: Two common geometries
 - Pump-probe
 - Box-CARS
- Applications: By directly resolving both excitation and response, we can directly monitor energy-transfer dynamics

Fuller and Ogilvie, *Ann. Rev. Phys. Chem.*, 2015 66, 667-690

Flavors of 2D Spectroscopy

Double Quantum Coherence:

Beats at $2\omega_o$ in τ_2 : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

Flavors of 2D Spectroscopy

Double Quantum Coherence:

Beats at $2\omega_o$ in τ_2 : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

Nonrephasing:

Decays with *dissipation* in τ_2 : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3$$

Flavors of 2D Spectroscopy

Double Quantum Coherence:

Beats at $2\omega_o$ in τ_2 : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

Nonrephasing:

Decays with *dissipation* in τ_2 : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3$$

Rephasing (photon echo):

Decays with dissipation in τ_2 : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = -\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3$$

2D Correlation Spectrum: One oscillator

2D Correlation Spectrum = Rephasing + Nonrephasing surfaces. Directly measured in pump-probe geometry.

2D Correlation Spectrum: One oscillator

2D Correlation Spectrum = Rephasing + Nonrephasing surfaces. Directly measured in pump-probe geometry.

- $(\omega_1, \omega_3) =$ (Excitation, Detection)
- Diagonal width feels both homogeneous and inhomogeneous broadening
- Anti-diagonal width feels only homogeneous broadening
- τ_2 feels dissipation **not** dephasing

Homogeneous

Inhomogeneous

 Frequency probed by pulse 3 depends on time delay between 1 & 2 → Signal

- Frequency probed by pulse 3 depends on time delay between $1 \& 2 \rightarrow Signal$
- Excitation of one mode alters frequencies of coupled modes \rightarrow Cross peaks

- Frequency probed by pulse 3 depends on time delay between $1 \& 2 \rightarrow \mathsf{Signal}$
- ullet Excitation of one mode alters frequencies of coupled modes ightarrow Cross peaks
- Interference between different modes → "Quantum" beats

2D Correlation Spectra: Two Oscillators

Cross-peaks in 2D spectra indicate site-to-site **coupling** and **energy transfer**.

2D Correlation Spectra: Two Oscillators

Cross-peaks in 2D spectra indicate site-to-site **coupling** and **energy transfer**.

Classical Interpretation:

2D Correlation Spectra: Two Oscillators

Cross-peaks in 2D spectra indicate site-to-site **coupling** and **energy transfer**.

Classical Interpretation: TBD

Take-Home Points

2D Spectroscopy is a generalization of pump-probe spectroscopy, where both **excitation** and **detection** frequencies are resolved.

Four basic types of 2D spectrum:

- Double-Quantum Coherence
- Nonrephasing
- Rephasing
- Correlation = R + NR

Diagonal vs. **Antidiagonal** linewidths distinguish homogeneous and inhomogeneous broadening

Cross-peaks indicate coupling and energy transfer