Packet 2: Functions of Random Variables

Chap 5.3 Several Independent Random Variables

Change of	of variable f	ormula o	can be	applied	to	multiple	random	variables,	but the	e derivatio	n
becomes	challenging	when the	ne dim	ension g	ets	high.					

Knowing the expectation and variance could be much easier than knowing the exact density function.

Expectation is a measure of the average behavior of an experiment.

Variance is a measure of the uncertainty.

Independence: $X_1, X_2, ..., X_n$ are independent if

Basic Properties:

1. If a and b are constants,

$$E(aX + b) = aE(X) + b$$

$$Var(aX + b) = a^2 Var(X)$$

2. For any transformation u(X),

$$Var(u(X)) = E[u(X)^2] - E[u(X)]^2$$

3. For transformations $u_1(X_1)$, $u_2(X_2)$, ... $u_n(X_n)$,

$$E[u_1(X_1) + u_2(X_2) + \dots + u_n(X_n)] = E[u_1(X_1)] + E[u_2(X_2)] + \dots + E[u_n(X_n)]$$

4. If $X_1, X_2, \dots X_n$ are independent,

$$E[u_1(X_1) \times u_2(X_2) \times ... \times u_n(X_n)] = E[u_1(X_1)] \times E[u_2(X_2)] \times ... \times E[u_n(X_n)]$$

5. If $X_1, X_2, \dots X_n$ are independent,

$$Var[u_1(X_1) + u_2(X_2) + \dots + u_n(X_n)] = Var[u_1(X_1)] + Var[u_2(X_2)] + \dots + Var[u_n(X_n)]$$

Example 1: X_1, X_2 are independent, $X_1 \sim N(1, 1), X_2 \sim N(-1, 1)$.

- 1. $E(X_1 + X_2) =$
- 2. $E(X_1X_2) =$
- 3. $Var(X_1 + X_2) =$
- 4. $P(X_1 < 0.5, X_2 > -0.5) =$

Example 2 (Theorem 5.3-2): $X_1, X_2, ... X_n$ are independent random variables with respective means, $\mu_1, \mu_2, ..., \mu_n$, and variances, $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$. What is the mean and the variance of $Y = \sum_{i=1}^n a_i X_i$?

Chap 5.4 The Moment Generating Function

The moment-generating function of a random variable is an alternative specification of a probability distribution.

It is particularly useful in finding the exact distribution of $Y = \sum_{i=1}^{n} a_i X_i$ if $X_1, X_2, \dots X_n$ are independent.

$$M_Y(t) = E(e^{tY}).$$

Example 1 (5.4-1): X_1 and X_2 are independent discrete random variables, both follow Uniform distributions on $\{1, 2, 3, 4\}$. What is the distribution of $Y = X_1 + X_2$?

Interpretation of the Moment Generating Function:

Example 2 (Theorem 5.4-1): If $X_1, X_2, ... X_n$ are independent random variables with m.g.f. $M_{X_i}(t) = E(e^{X_i t})$, then $Y = \sum_{i=1}^n a_i X_i$ has m.g.f. $M_Y(t) = \prod_{i=1}^n E(e^{a_i X_i t})$. Proof:

Example 3 (Theorem 5.4-2): If $X_1, X_2, ... X_n$ are independent χ^2 random variables with $r_1, r_2, ..., r_n$ degrees of freedom. X_i has p.d.f.

$$f_i(x) = \frac{1}{\Gamma(r_i/2)2^{r_i/2}} x^{r_i/2-1} e^{-x/2}, x > 0,$$

then

$$Y = \sum_{i=1}^{n} X_i \sim \chi^2(\sum_{i=1}^{n} r_i).$$

Proof: