Statistik 1

Seminar

Einheit 1

02.05.2025 | Janika Saretzki, MSc.

Kontakt

Janika Saretzki, MSc.

Lehrstuhl für Psychologische Methodenlehre

Infanteriestraße 11a · 80797 München

janika.saretzki@charlotte-fresenius-uni.de

Zoom-Sprechstunde (bitte per E-Mail anmelden):

Meeting-ID: 581 191 5591

Kenncode: 975646

Publikationen Commitment to Research Transparency

Kurzvorstellung

Janika Saretzki, MSc.

Akademische Laufbahn

- <u>Seit 10/2023: Wissenschaftliche Mitarbeiterin</u>, Institut für Psychologie, Lehrstuhl für Psychologische Methodenlehre, Charlotte Fresenius Hochschule München, Deutschland
- <u>Seit 05/2023: Gastwissenschaftlerin</u>, Institut für Psychologie, Lehrstuhl für Psychologische Methodenlehre und Diagnostik, Ludwig-Maximilians-Universität München, Deutschland
- <u>Seit 09/2022: Projektmitarbeiterin und Doktorandin</u>, Institut für Psychologie, Lehrstuhl für Differentielle Psychologie (Creative Cognition Lab), Karl-Franzens-Universität Graz, Österreich

Forschungsschwerpunkte

- Psychometrische Erfassung kreativen Potenzials
- Unterstützung bei Forschungsfragen in Klinischer Psychologie und Psychotherapie

Organisatorisches

Seminaraufbau

Geblocktes Seminar mit insgesamt 5 Einheiten zu je 1.5 Stunden

Ziel

<u>Vertiefung und Anwendung</u> der in der Vorlesung erlernten Inhalte

Ablauf

- Eigenständiges Rechnen
- Gemeinsame Besprechung der Aufgaben im Plenum
- Mischung aus:
 - Händischen Berechnungen
 - Interpretation von R-Outputs
- Bereitstellung von Musterlösungen auf studynet

Wichtig: Wiederholen Sie die Vorlesungsinhalte der vorangegangenen Woche **vor** dem Seminar! Nur so profitieren Sie bestmöglich von den Übungen.

Benötigte Materialien

- Laptop oder Tablet zur Ansicht der Übungsfolien (studynet)
- Übungsaufgaben der jeweiligen Woche (studynet)
- Papier und Stift **oder** Tablet für händische Berechnungen
- Nicht-programmierbarer Taschenrechner
- Formelsammlung (studynet)
- @ Motivation und hohe Frustrationstoleranz

Vertieftes Üben

- Folien ersetzen nicht den Vorlesungs- bzw. Seminarbesuch
- Learnr-Übungsaufgaben, Statistik-Trainer (studynet)

Hausaufgaben & Tutorium

Hausaufgaben

- Bereitstellung von Aufgaben zum jeweiligen Thema (studynet)
- Optional, kein Teil der Studienleistung
- Zur Klausurvorbereitung dringend empfohlen!
- Musterlösungen werden auf studynet hochgeladen

Tutorium

- Findet am Ende des Semesters statt
- Inhalte:
 - o Wiederholung von Vorlesungs- und Seminarinhalten
 - o Händisches Rechnen der behandelten Aufgabenformate
- Termine werden noch bekannt gegeben (voraussichtlich zwei Blöcke à 5 Stunden)

Termine

Einheit 1 Einheit 2	02.05.25 15.05.25	14:45-16:15 Uhr 13:05-15:30 Uhr	A + B A + B	HS Audimax / P3 HS Audimax / P3
Einheit 3	12.06.25	13:05-15:30 Uhr	Α	HS P5 005
Einheit 3	13.06.25	13:50-16:15 Uhr	В	HS P1 105
Einheit 4	26.06.25	13:05-15:30 Uhr	Α	HS P5 005
Einheit 4	27.06.25	13:50-16:15 Uhr	В	HS P1 105
Einheit 5	17.07.25	13:05-15:30 Uhr	Α	HS P5 005
Einheit 5	18.07.25	13:50-16:15 Uhr	В	HS P1 105

Prüfungsleistung

Klausur (90 Minuten)

- 1/3 geschlossene Fragen (z.B. Multiple Choice)
- 2/3 offene Fragen und Rechenaufgaben
- Taschenrechner erforderlich!
- Formelsammlung:
 - Gedruckte Version wird gestellt
 - Zusätzlich eigene handgeschriebene Formelsammlung erlaubt

Studienleistung

- Im Rahmen des Seminars sind fünf Studienleistungen zu bearbeiten
- Jede Studienleistung ist bis spätestens zum Tag vor dem jeweils nächsten Seminartermin einzureichen
- Einreichung per E-Mail an janika.saretzki@charlotte-fresenius-uni.de
- Musterlösungen werden nach Abgabe auf studynet bereitgestellt
 - → Zum Bestehen des Moduls ist das erfolgreiche Absolvieren aller fünf Studienleistungen und der Klausur erforderlich!

Hinweise zu Rechenaufgaben

- Endergebnis (auf 2 Nachkommastellen gerundet) zählt für die Benotung
 - o Ganze Zahlen müssen nicht künstlich auf zwei Nachkommastellen erweitert werden (z.B. 12 statt 12.00)
 - ∘ Rechenweg aufschreiben empfohlen → ermöglicht Teilpunkte bei Fehlern
- Umgang mit Nachkommastellen bei Zwischenergebnissen
 - o a) Exakte Zahlen weiterverwenden (z.B. Zwischenergebnis direkt im Taschenrechner speichern)
 - o b) Zwischenergebnis auf zwei Nachkommastellen runden
 - ab x.xx45 wird aufgerundet
 - o unter x.xx45 wird abgerundet
 - → Wichtig: Innerhalb einer Aufgabe eine Methode wählen und konsistent bleiben!
 - → Bei Rechenwegsangabe: kurz notieren, ob exakte oder gerundete Werte verwendet wurden.

Beispielaufgabe

 $7 \div 3 \times 1000$

- Mit exakten Zahlen: 2333.33
- Mit gerundetem Zwischenschritt: $2330\,\mathrm{oder}\,2330.00$

(Schritt 1: $7 \div 3 = 2.33$, Schritt 2: 2.33×1000)

→ Beide Ergebnisse sind korrekt!

APA-konforme Angabe von Statistiken

- APA = American Psychological Association
- Internationale Fachgesellschaft für Psychologie
- Gibt offizielle Publikationsrichtlinien heraus (derzeit: 7. Auflage, 2020)
- Richtlinien betreffen u.a. Zitierweise, Formatierung von Texten, Darstellung von Tabellen, Abbildungen
- In der Praxis: Formatvorgaben variieren je nach Fachzeitschrift oder Verlag
- An der Hochschule wird APA als Standard für Seminar- und Abschlussarbeiten verwendet

Warum APA-Richtlinien?

- Einheitliche und transparente Darstellung wissenschaftlicher Ergebnisse
- Erleichtert das Lesen, Verstehen und Vergleichen von Studien
- Weit verbreiteter Standard in der Psychologie und angrenzenden Fächern

→ Zur offiziellen **APA Website**

PES-STUDIE PSYCHISCHE ENTWICKLUNG VON STUDIERENDEN

- **PES-Studie**: Studie der CFH zur psychischen Entwicklung von Studierenden
- Ziel: Psychisches Befinden von Studierenden verschiedener Studiengänge über den Studienverlauf hinweg untersuchen;
 Vergleich Psychologiestudierende vs. Studierende anderer Studiengänge.
- Erhebungsmethode: längsschnittliche Erhebung (Online-Fragebogen-Studie),
 1x/pro Semester
 - → Bei Teilnahme erhalten Sie 1 VP (Versuchspersonenstunde)!

PES-STUDIE PSYCHISCHE ENTWICKLUNG VON STUDIERENDEN

JETZT teilnehmen und 1 VP erhalten!

PES-STUDIE | SOPHIE NAGL, M.SC.

PES-Studie

HOCHSCHULE
UNIVERSITY OF PSYCHOLOGY

Psychische Entwicklung von Studierenden

Wie geht es euch wirklich?

Du bist im ersten Bachelorsemester & möchtest 6 VP-Stunden sammeln oder einen 50€-Gutschein gewinnen?

Dann nimm jetzt an unserer Online-Fragebogen-Studie teil!

Durch regelmäßige Teilnahme (1x pro Semester) kannst du:

- bis zu 6 VPs
- -oder einen von mehreren 50€-Amazon-Gutscheinen gewinnen.

Ziel der Studie

Wir möchten das psychische Befinden von Studierenden diverser Studiengänge über das Studium hinweg untersuchen.

Teilnahmevoraussetzungen:

- eingeschriebene/r StudentIn im ersten Bachelor-Semester
- mind. 18 Jahre alt
- deutsche Sprache in Wort und Schrift

Für weitere Rückfragen könnt ihr euch geme an uns wenden: Sophie Nagl (M.Sc.) & Sara Vragolic (B.Sc.) Wissenschaftliche Mitarbeiteinnen der Charlotte-Fresenius Hochschule Infanteriestratbe 11a, 80797 München –emait: pes-

Wiederholung

Wiederholung

Deskriptive Statistik

Häufigkeiten

Maße der zentralen Tendenz

Deskriptive Statistik

Was macht Deskriptive Statistik?

- Bereitet Informationen über erfasste Merkmale auf
- Einzelwerte werden zu statistischen Kennwerten **zusammengefasst**
- Ziel: Beschreibung der Daten mittels Kennwerten, Graphiken, Tabellen, Diagrammen
- Bezieht sich auf die konkret untersuchte Stichprobe

Beispiele

- Betrachtung der Verteilung von Häufigkeiten
- Maße der zentralen Tendenz
 - Modalwert, Median, Mittelwert
- Streuungsmaße
 - o Varianz, Standardabweichung, Quartilabstand

Häufigkeiten

- Ziel: Daten effizient zusammenfassen
- Häufigkeit: Anzahl der Ausprägungen eines Merkmals
- z.B. zur Beschreibung der Stichprobe in klinischer Studie
- Man unterscheidet **absolute** (n) vs. **relative** (%) Häufigkeit (vs. **kumulierte** Häufigkeit)
- Absolute und relative Häufigkeit **beide wichtig** für das Verständnis von Daten
- In Publikationen werden i.d.R. beide angegeben und oft im Format n(%) berichtet
- Kumulierte Häufigkeit: Aufsummierte Werte der Häufigkeiten bis zu einer bestimmten Kategorie
- Kumulierte Häufigkeit zeigt, wie viele Fälle bis zu einer bestimmten Ausprägung erreicht wurden

Häufigkeiten

Maße der zentralen Tendenz

Median

Wert, der eine Datenreihe in zwei gleich große Hälften teilt → Wert in der Mitte einer Verteilung

$$Mdn= ext{'}egin{cases} rac{x_{(rac{n}{2})}^{+x_{(rac{n}{2}+1)}}}{2} & ext{falls n gerade} \\ x_{(rac{n+1}{2})} & ext{falls n ungerade} \end{cases}$$

Modus / Modalwert

Der/die am häufigsten vorkommende/n Wert/e einer Verteilung

Arithmetisches Mittel / Mittelwert

Durchschnittswert einer Verteilung

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$ar{x} = rac{1}{n} \sum_{j=1}^k x_j' \cdot f_j$$

 x_j^\prime = mögliche Merkmalsausprägungen

 f_j = absolute Häufigkeit der jeweiligen Merkmalsausprägung

$$ar{x}=rac{n_1\cdotar{x}_1+n_2\cdotar{x}_2}{n_1+n_2}$$

→ Gemeinsamer Mittelwert über zwei Gruppen / Teilstichproben

Übungsaufgaben

Übungsaufgabe 1

Manuel hat vergangene Woche sein Abschlusszeugnis erhalten.

Das Zeugnis beinhaltet folgende Noten:

Fragestellung:

- a) Was sind die absolute und relative Häufigkeit der Note 1?
- b) Was sind die absolute und relative Häufigkeit der Note 4?
- c) Was sind die absolute und relative Häufigkeit der Note 3?

Auftrag:

Erstellen Sie

- eine **geordnete Urliste** und
- eine tabellarische Übersicht, welche die absoluten, relativen und kumulierten Häufigkeiten enthält.

Bitte beantworten Sie die Teilfragen in ganzen Sätzen.

1. Aufgabe

1. Schritt: geordnete Urliste:

1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4
$$\rightarrow N = 12$$

2. Schritt: Ermittlung der absoluten und relativen Häufigkeiten

a) Absolute und relative Häufigkeit der Note 1:

- absolute Häufigkeit der Note 1: H(1) = 3
- ullet relative Häufigkeit: $rac{
 m absolute\,H\ddot{a}ufigkeit}{
 m Gesamtanzahl}=rac{3}{12}=0.250=25.0\%$

Die Note 1 wurde in Manuels Zeugnis insgesamt dreimal vergeben, was einem relativen Anteil von 25.0% entspricht.

b) Absolute und relative Häufigkeit der Note 4:

- absolute Häufigkeit der Note 4: H(4) = 2
- relative Häufigkeit: $\frac{2}{12}=0.167=16.7\%$

Die Note 4 wurde in Manuels Zeugnis insgesamt zweimal vergeben, was einem relativen Anteil von 16.7% entspricht.

c) Absolute und relative Häufigkeit der Note 3:

- absolute Häufigkeit der Note 3: H(3) = 4
- relative Häufigkeit: $\frac{4}{12}=0.333=33.3\%$

Die Note 3 wurde in Manuels Zeugnis insgesamt viermal vergeben, was einem relativen Anteil von 33.3% entspricht.

Tabellarische Übersicht der absoluten, relativen und kumulierten Häufigkeit

Zeugnisnoten	Absolute Häufigkeiten	Relative Häufigkeiten	Kumulierte Häufigkeiten
1	3	25,0%	25,0%
2	3	25,0%	50,0%
3	4	33,3%	83,3%
4	2	16,7%	100%

Tabellarische Übersicht der absoluten, relativen und kumulierten Häufigkeit

Zeugnisnoten	Absolute Häufigkeiten	Relative Häufigkeiten	Kumulierte Häufigkeiten
1	3	25,0%	25,0%
2	3	25,0%	50,0%
3	4	33,3%	83,3%
4	2	16,7%	100%

Tabelle 1Absolute, relative und kumulierte Häufigkeiten der Zeugnisnoten

Zeugnisnoten	Absolute Häufigkeiten	Relative Häufigkeiten	Kumulierte Häufigkeiten
1	3	25.0%	25.0%
2	3	25.0%	50.0%
3	4	33.3%	83.3%
4	2	16.7%	100%

Übungsaufgabe 2

- a) Bilden Sie die **Summe** für die Variable "absolvierte Klausuren" (Verwendung **korrekter Notation**!)
- b) Bilden Sie die Summe für die **ersten 4 Personen** der Variable "absolvierte Klausuren" mit **entsprechender Formelnotation**.
- c) Bilden Sie die Summe für die **letzten 3 Personen** der Variable **absolvierte Klausuren** mit **entsprechender Formelnotation**.
- d) Wie hoch ist der **relative Anteil** an **weiblichen Studentinnen** in der Stichprobe?
- e) Berechnen Sie die Lösung für folgende Formel für die Variable absolvierte Klausuren:

$$\sum_{i=1}^{10} (96 - Z_i)$$

Hinweis: Die Variable **Geschlecht (X)** ist als Faktor kodiert: 1 = weiblich, 2 = männlich.

ID	Geschlecht (X)	Alter (Y)	absolvierte Klausuren (Z)
1	1	21	2
2	1	22	5
3	2	20	1
4	2	19	2
5	1	18	0
6	1	25	0
7	1	27	0
8	2	30	2
9	2	26	4
10	1	32	5

a)
$$\sum_{i=1}^{10} Z_i = 2+5+1+2+0+0+0+2+4+5=21$$

b)
$$\sum_{i=1}^4 Z_i = 2+5+1+2=10$$

c)
$$\sum_{i=8}^{10} Z_i = 2+4+5=11$$

d) Weiblich (X = 1): 1, 1, 1, 1, 1, 1 \rightarrow Anzahl = 6

$$\frac{6}{10} = 0.600 = 60.0\%$$

Der relative Anteil der weiblichen Studentinnen an der Gesamtgruppe liegt bei 60.0%.

e)
$$\sum_{i=1}^{10} (96-Z_i) =$$

$$(96-2) + (96-5) + (96-1) + (96-2) + (96-0) + (96-0) + (96-0) + (96-2) + (96-4) + (96-5) = 939$$

Übungsaufgabe 3

- a) Welches Skalenniveau haben Geschlecht, Alter und absolvierte Klausuren?
- b) Stellen Sie fest, ob es sich um eine **gerade oder ungerade** Anzahl an Beobachtungen handelt.
- c) Ordnen Sie die Urliste für das Alter.
- d) Ermitteln Sie den **Median** für die Variable **Alter**.
- e) Ermitteln Sie den/die Modalwert/e für die Variable absolvierte Klausuren.
- f) Ermitteln Sie das arithmetische Mittel für die Variable absolvierte Klausuren.

ID	Geschlecht (X)	Alter (Y)	absolvierte Klausuren (Z)
1	1	21	2
2	1	22	5
3	2	20	1
4	2	19	2
5	1	18	0
6	1	25	0
7	1	27	0
8	2	30	2
9	2	26	4
10	1	32	5

a) Geschlecht = **Nominalskala**, Alter & absolvierte Klausuren = **Verhältnisskala** (metrisch)

b)
$$N=10 \rightarrow \text{gerade}$$

c) Geordnete Urliste (Alter): 18, 19, 20, 21, 22, 25, 26, 27, 30, 32

d)
$$Mdn=rac{x_{(rac{n}{2})}+x_{(rac{n}{2}+1)}}{2}=rac{x_{5}+x_{6}}{2}=rac{22+25}{2}=23.5$$

e) Modalwerte der absolvierten Klausuren: 0 und 2

f)
$$rac{\sum\limits_{i=1}^{n}Z_{i}}{n}=rac{21}{10}=2.10$$

ID	Geschlecht (X)	Alter (Y)	absolvierte Klausuren (Z)
1	1	21	2
2	1	22	5
3	2	20	1
4	2	19	2
5	1	18	0
6	1	25	0
7	1	27	0
8	2	30	2
9	2	26	4
10	1	32	5

Übungsaufgabe 4

- a) Wie verändert sich der Median nach einer zusätzlichen Beobachtung von **Alter = 33**?
- b) Visualisieren Sie die Verteilung der **relativen Häufigkeiten** von **absolvierte Klausuren** als **Histogramm**.
- c) Was wäre eine **charakteristische Beschreibung** der Verteilung?
- d) Zu welchem Wert addiert sich die **Gesamtfläche des Histogramms**?
- e) Warum würde man eine entsprechende Visualisierung für das **Geschlecht** als **Balkendiagramm** zeichnen?

ID	Geschlecht (X)	Alter (Y)	absolvierte Klausuren (Z)
1	1	21	2
2	1	22	5
3	2	20	1
4	2	19	2
5	1	18	0
6	1	25	0
7	1	27	0
8	2	30	2
9	2	26	4
10	1	32	5

a) Neue geordnete Urliste: 18, 19, 20, 21, 22, 25, 26, 27, 30, 32, 33

$$N = 11 \rightarrow \text{ungerade}$$

$$Mdn=x_{rac{n+1}{2}}=x_6=25.0$$

ID	Geschlecht (X)	Alter (Y)	absolvierte Klausuren (Z)
1	1	21	2
2	1	22	5
3	2	20	1
4	2	19	2
5	1	18	0
6	1	25	0
7	1	27	0
8	2	30	2
9	2	26	4
10	1	32	5

b) Verteilung von "absolvierte Klausuren" als Histogramm (relative Häufigkeiten)

ID	Geschlecht (X)	Alter (Y)	absolvierte Klausuren (Z)
1	1	21	2
2	1	22	5
3	2	20	1
4	2	19	2
5	1	18	0
6	1	25	0
7	1	27	0
8	2	30	2
9	2	26	4
10	1	32	5

c) Bimodal / zweigipflig, leicht linksschief

d) Gesamtfläche = 1

e) Kategorien auf der x-Achse → daher Balkendiagramm (nicht Histogramm)

Herzlichen Dank für Ihre Aufmerksamkeit!