Matrices and Determinants

AI24BTECH11015 - Harshvardhan Patidar

Section-A — JEE Advanced/ IIT-JEE

- 3) Fill in the Blanks:
 - v) How many 3×3 matrices M with entries from (0,1,2) are there, for which the sum of the diagonal entries of M^TM is 5?
 - i) 126
 - ii) 198
 - iii) 162
 - iv) 135

(JEEAdv.2017)

w) Let
$$M = \begin{bmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$$

Where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real numbers, and I is the 2×2 identity matrix. If a* is the minimum of the set $(\alpha(\theta): \theta \in [0, 2\pi))$ and b* is the minimum of the set $(\beta(\theta): \theta \in [0, 2\pi))$. Then the value of $a^* + b^*$ is

(JEEAdv.2019)

- 4) MCQs with More than One Correct
 - $a\alpha + b$ $\begin{vmatrix} b & c \\ a\alpha + b & b\alpha + c \end{vmatrix}$ a) The determinant $b\alpha + c$ is

equal to zero, if

- i) *a*, *b*, *c* are in A.P.
- ii) a, b, c are in G.P.
- iii) a, b, c are in H.P.
- iv) α is a root of the equation $ax^2+bx+c=0$
- v) $(x \alpha)$ is a factor of $ax^2 + bx + c$

(1986 - 2Marks)

b) If
$$\begin{vmatrix} 6i & -3i & 1\\ 4 & 3i & -1\\ 20 & 3 & i \end{vmatrix} = x + iy$$
, then
i) $x = 3, y = 1$

ii)
$$x = 1, y = 3$$

iii)
$$x = 0, y = 3$$

iv)
$$x = 0, y = 0$$

(1998 - 2Marks)

1

- c) Let M and N be two 3×3 non-singulr skewsymmetric matrices such that MN = NM. If P^{T} denotes the transpose of P, then $M^2N^2\left(M^TN^{-1}\right)^{-1}\left(MN^{-1}\right)^T$ is equal to
 - i) M²
 - ii) $-N^2$
 - iii) -M²
 - iv) MN

(2011)

- d) If the adjoint of a 3×3 matrix P is $\begin{bmatrix} 1 & 1 & 7 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$, then the possible value(s) of the determinant of P is (are)
 - i) -2
 - ii) -1
 - iii) 1
 - iv) 2

(2012)

- e) For 3×3 matrices M and N, which of the following statement(s) is (are) NOT correct?
 - i) N^TMN is symmetric or skew symmetric, according as M is symmetric or skew symmetric
 - ii) MN-NM is skew symmetric for all matrices M and N.
 - iii) MN is symmetric for all symmetric matrices M and N.
 - iv) (ad jM)(ad jN) = adj(MN) for all invertible matrices M and N.

(*JEEAdv*.2013)

f) Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = p_{ij}$ be a $n \times n$ matrix with $p_{ij} = \omega^{i+j}$. Then $p^2 \neq 0$, when n =

- i) 57
- ii) 55
- iii) 58
- iv) 56

(*JEEAdv*.2013)

- g) Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if
 - i) The first column of M is the transpose of the second row of M
 - ii) The second row of M is the transpose of the first column of M
 - iii) *M* is a diagonal matrix with non-zero entries in the main diagonal
 - iv) The product of entries in the main diagonal of M is not the square of an integer (JEEAdv.2014)
- h) Let M and N be two 3×3 matrices such that MN = NM. Further, if $M \neq N^2$ and $M^2 = N^4$, then
 - i) determinant of $(M^2 + N^2)$ is 0
 - ii) there is 3×3 non-zero matrix U such that $(M^2 + MN^2)U$ is the zero matrix
 - iii) determinant of $(M^2 + MN^2) \ge 1$
 - iv) determinant of $(M^2 + MN^2)U$ equals the zero matrix then U is the zero matrix

(JEEAdv.2014)

- i) Which of the following values of α satisfy the equation $\begin{vmatrix} (1+\alpha)^2 & (1+2\alpha)^2 & (1+3\alpha)^2 \\ (2+\alpha)^2 & (2+2\alpha)^2 & (2+3\alpha)^2 \\ (3+\alpha)^2 & (3+2\alpha)^2 & (3+3\alpha)^2 \end{vmatrix} = -648\alpha ?$
 - i) -4
 - ii) 9
 - iii) -9
 - iv) 4

(JEEAdv.2015)

- j) Let *X* and *Y* be two arbitrary, 3 × 3, non-zero, skew-symmetric matrices and Z be an arbitrary 3 × 3, non-zero, symmetric matrix. Then which of the following matrices is (*are*) skew symmetric?
 - i) $Y^3Z^4 Z^4Y^3$
 - ii) $X^{44} + Y^{44}$
 - iii) $X^4Z^3 Z^3X^4$
 - iv) $X^{23} + Y^{23}$

(JEEAdv.2015)

k) Let $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in \mathbb{R}$. Suppose

Q= $[q_{ij}]$ is a matrix such that PQ=kI, where $k \in \mathbb{N}$, $k \neq 0$ and I is the identity matrix of order 3. If $q_{23} = -\frac{k}{8}$ and $det(Q) = \frac{k^2}{2}$, then

- i) a = 0, k = 8
- ii) 4a k + 8 = 0
- iii) $\det (\operatorname{Padj}(Q)) = 2^9$
- iv) $\det (Qadj(P)) = 2^{13}$

(JEEAdv.2016)

1) Let $a, \lambda, \mu, \in \mathbb{R}$. Consider the system of linear equations

$$ax + 2y = \lambda$$

$$3x - 2y = \mu$$

Which of the following statement(*s*) is (*are*) correct?

- i) If a = -3, then the system has infinitely many solutions for all value of λ and μ .
- ii) If $a \neq -3$, then the system has unique solution for all values of λ and μ .
- iii) If $\lambda + \mu = 0$, then the system has infinitely many solutions for a = -3.
- iv) If $\lambda + \mu \neq 0$, then the system has no solution for a = -3

(JEEAdv.2016)

m) Which of the following is (are) not the square of a 3×3 matrix with real entries?

i)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
ii)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
ii)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$v) \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(JEEAdv.2017)