7.1 Kombinatorika (a diskrétní matematika)

Kombinatorika

Základní kombinatorická pravidla

Součtu

Lze-li množinu M rozdělit na n po dvou disjunktních podmnožin M_i , kde i=1,2,3,...,n, potom počet prvků množiny M je součtem počtů prvků jednotlivých množin M_i .

Součinu

Počet uspořádaných k – tic, jejichž první člen je možné vybrat n_1 způsoby, druhý člen n_2 způsoby, ... až k – tý člen n_k způsoby, je roven $n_1 \cdot n_2 \cdot ... \cdot n_k$.

Varianta

Počet prvků kartézského součinu množin A, B je roven $|A| \cdot |B| = a \cdot b$.

Definice 7.1.1

Mějme n-prvkovou množinu a $k \in N, k \le n$.

Potom uspořádaným k – ticím navzájem různých prvků z n – prvkové množiny říkáme variace k – té třídy z n – prvků (k – prvkové variace z n – prvků). Jejich počet označujeme $V_k(n)$ či V(k,n).

Neuspořádaným k – ticím navzájem různých prvků z n – prvkové množiny, tedy k – prvkovým podmnožinám n – prvkové množiny, říkáme kombinace k – té třídy z n – prvků (k – prvkové kombinace z n – prvků). Jejich počet označujeme $K_k(n)$ či K(k,n).

Věta 7.1.1

Pro počet variací k – té třídy z n – prvků platí:

$$V(k,n) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)$$

Pro počet kombinací k – té třídy z n – prvků platí:

$$K(k,n) = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1)}{k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1}$$

Definice 7.1.2

Uvažujme případ k = n. Potom uspořádanou n – tici navzájem různých prvků z n – prvkové množiny nazýváme permutací (pořadím) množiny. Jejich počet $V_n(n)$ označujeme P(n).

Proto
$$P(n) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1$$

Protože každá množina má právě jednu nula prvkovou podmnožinu, tedy prázdnou množinu, má smysl určovat čísla V(k,n), K(k,n) a P(k) i pro k=0.

Zřejmě
$$V(0,n) = K(0,n) = V(0,0) = K(0,0) = P(0) = 1$$
.

Definice 7.1.3

Pro všechna přirozená čísla n označme $P(n) = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 3 \cdot 2 \cdot 1 = n!$ (čteme n faktoriál).

Odtud

$$V(k,n) = \frac{n!}{(n-k)!}$$
 $K(k,n) = \frac{n!}{k!(n-k)!}$ $P(n) = n!$

Pro obecnou platnost těchto vztahů je vhodné dodefinovat 0!=1.