

Образовательный центр МГТУ им. Н.Э. Баумана

Выпускная квалификационная работапо курсу "Data Science Pro"

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Бобрович Татьяна Александровна

14 апреля 2024 года

Постановка задачи

1	Изучить предметную область провести разведочный анализ данных
2	Разделить данные на тренировочную и тестовую выборки выполнить препроцессинг (предобаботку)
3	Подготовить модели для подбора сравнить модели с гиперпараметрами по умолчанию
4	Подобрать гиперпараметры с помощью с помощью поиска по сетке с перекрестной проверкой
<u>5</u>	Сравнить модели после подбора гиперпараметров и выбрать лучшую, разработать приложение

Разведочный анализ данных

Предложенные для исследования наборы данных (DataSet)

X_bp.xlsx

- 1. Имеет индекс и 10 признаков
- 2. 1023 строки

X_nlp .xlsx

- 1. Имеет индекс и 3 признака
- 2. 1040 строк

Полученный набор данных в результате объединения по индексу

- 1. Имеется 13 признаков
- 2. 1023 строки

Разведочный анализ данных

Название	Файл	Тип данных	Непустых значений	Уникальных значений
Соотношение матрица-	X_bp	float64	1023	1014
наполнитель				
Плотность, кг/м3	X_bp	float64	1023	1013
модуль упругости, ГПа	X_bp	float64	1023	1020
Количество отвердителя, м.%	X_bp	float64	1023	1005
Содержание эпоксидных	X_bp	float64	1023	1004
групп,%_2				
Температура вспышки, С_2	X_bp	float64	1023	1003
Поверхностная плотность,	X_bp	float64	1023	1004
г/м2				
Модуль упругости при	X_bp	float64	1023	1004
растяжении, ГПа				
Прочность при растяжении,	X_bp	float64	1023	1004
МПа				
Потребление смолы, г/м2	X_bp	float64	1023	1003
Угол нашивки, град	X_nup	int64	1023	2
Шаг нашивки	X_nup	float64	1023	989
Плотность нашивки	X_nup	float64	1023	988

	Среднее	Стандартное отклонение	Минимум	Максимум	Медиана
Соотношение матрица-наполнитель	2.9304	0.9132	0.3894	5.5917	2.9069
Плотность, кг/м3	1975.7349	73.7292	1731.7646	2207.7735	1977.6217
модуль упругости, ГПа	739.9232	330.2316	2.4369	1911.5365	739.6643
Количество отвердителя, м.%	110.5708	28.2959	17.7403	198.9532	110.5648
Содержание эпоксидных групп, %_2	22.2444	2.4063	14.2550	33.0000	22.2307
Температура вспышки, С_2	285.8822	40.9433	100.0000	413.2734	285.8968
Поверхностная плотность, г/м2	482.7318	281.3147	0.6037	1399.5424	451.8644
Модуль упругости при растяжении, ГПа	73.3286	3.1190	64.0541	82.6821	73.2688
Прочность при растяжении, МПа	2466.9228	485.6280	1036.8566	3848.4367	2459.5245
Потребление смолы, г/м2	218.4231	59.7359	33.8030	414.5906	219.1989
Угол нашивки, град	44.2522	45.0158	0.0000	90.0000	0.0000
Шаг нашивки	6.8992	2.5635	0.0000	14.4405	6.9161
Плотность нашивки	57.1539	12.3510	0.0000	103.9889	57.3419

Гистограммы распределения и диаграммы

Количественные, вещественные, положительные, нормально распределенные

Угол нашивки — категориальный, бинарный

Графики рассеяния точек

Выбросы наблюдаются

Зависимостей нет

Матрица корреляции

1.00

- 0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

Гистограмма распределения и диаграмме «ящик сусами»

модуль упругости, ГПа: 3s=2 iq=2

250 500

100

80

20

Соотношение матрица-наполнитель: 3s=0 iq=6

Плотность, кг/м3: 3s=3 iq=9

модуль упругости, ГПа

750 1000 1250 1500 1750 2000

Предобработка данных

Предобработка данных:

- ✓ Исключение выбросов:
- Посчитаем количество значений методом 3 сигм и методом межквартильных расстояний;
- Исключим выбросы методом 3 сигм ;
- Проверим результат;
- Проверим чистоту датасета от выбросов ;
- Построим все возможные графики.
- ✓ Нормализация данных:
- Нормализуем данные MinMaxScaler()

```
df norm.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 11 columns):
     Column
                                      Non-Null Count Dtype
     Соотношение матрица-наполнитель 1000 non-null float64
     Плотность, кг/м3
                                     1000 non-null
                                                     float64
     модуль упругости, ГПа
                                     1000 non-null float64
     Количество отвердителя, м.%
                                     1000 non-null
                                                     float64
     Содержание эпоксидных групп,% 2 1000 non-null
                                                     float64
     Температура вспышки, С 2
                                                     float64
                                      1000 non-null
     Поверхностная плотность, г/м2
                                     1000 non-null
                                                     float64
     Потребление смолы, г/м2
                                                     float64
     Угол нашивки, град
                                                     float64
                                                      float64
                                      1000 non-null
                                                     float64
     Плотность нашивки
dtypes: float64(11)
memory usage: 86.1 KB
# Категориальные данные при нормализации преобразовались в 0 и 1 и можно не применять OneHotEncoding
df norm['Угол нашивки, град'].unique ()
array([0., 1.])
```


Рассмотренные модели

- 1. Линейная регрессия
- 2. Метод опорных векторов для регрессии
- 3. Метод k-ближайших соседей
- 4. Деревья решений
- 5. Градиентный бустинг
- 6. Случайный лес
- 7. Нейронная сеть

Модели прогноза «Модуль упругости при растяжении, Гпа»

Модели прогноза «Модуль упругости при растяжении, Гпа»

	Perpeccop	MAE
0	RandomForest	2.578553
1	Linear Regression	2.510989
2	KNeighbors	2.803555
3	Support Vector	3.505371
4	GradientBoosting	2.586746
5	DecisionTree	3.506381
6	$Random Forest 1_Grid Search CV$	2.537475
7	KNeighbors1_GridSearchCV	2.768574
8	DecisionTree1_GridSearchCV	2.527006

Random Forest Regressor Results Train:

Linear Regression Results Train:

K Neighbors Regressor Results Train:

Test score: 0.40

Random Forest Regressor Results:

Linear Regression Results:

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

Test score: 0.24

K Neighbors Regressor Results Train:

Test sco

 RF_MAPE: 0.03
 lr_MAPE: 0.03
 KNN_MAPE: 0.04

 RF_MSE: 10.19
 lr_MSE: 9.63
 KNN_MSE: 12.45

 RF_RMSE: 3.19
 lr_RMSE: 3.10
 KNN_RMSE: 3.53

 Test score: -0.07
 Test score: -0.01
 Test score: -0.30

Support Vector Regression Results Train: Gradient Boosting Regressor Results Train: Decision Tree Regressor Results Train: Test score: 0.91 Test score: 0.49 Test score: 1.00

core: 0.91 Test score: 0.49 Test score: 1.0

Support Vector Regression Results: Gradient Boosting Regressor Results: Decision Tree Regressor Results: SVR_MAE: 4 GRR_MAF: 3 DTR_MAE: 4

 SVR_MAE: 4
 GBR_MAE: 3
 DTR_MAE: 4

 SVR_MAPE: 0.05
 GBR_MAPE: 0.04
 DTR_MSE: 20.67

 SVR_MSE: 19.65
 GBR_MSE: 10.25
 DTR_RMSE: 4.55

 SVR_RMSE: 4.43
 GBR_RMSE: 3.20
 DTR_MAPE: 0.05

 Test score: -1.05
 Test score: -0.07
 Test score: -1.16

По умолчанию

После подбора гиперпараметров

Модели прогноза «Прочность при растяжении, МПа, Гпа»

Модель соотношения матрицанаполнитель

ИНС MLPRegressor из библиотеки sklearn

MAE3: 0.7694991587628883 MSE3: 0.9045963312234566 RMSE3: 0.9511026922595985

Результаты работы

В результате исследования предложенных заказчиком датасетов различными методами, зависимостей, позволяющих обучить эффективную модель не получено

- 1. Недостаточное количество данных: если датасет слишком маленький, модель может не иметь достаточно информации для обучения.
- 2. Низкое качество данных: если данные содержат ошибки, пропуски или неточности, модель может быть затруднено обучиться.
- 3. Неподходящий выбор модели: некоторые модели могут быть неэффективными для конкретного типа данных или задачи.
- 4. Недостаточное исследование признаков: возможно, не все признаки были правильно обработаны или использованы при построении модели.
- 6. Недостаточное понимание задачи: иногда недостаточное понимание целей и требований заказчика может привести к неправильному подходу к построению модели.
- 5. Недостаточное исследование гиперпараметров: выбор оптимальных гиперпараметров модели также может оказать значительное влияние на ее эффективность.

do.bmstu.ru

