LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Chap 1 Notes: Exploring Data by Graphical Methods

J. Harner A. Billings

Department of Statistics West Virginia University

Stat 211 Fall 2007

Outline

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Science of Statistics

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categorical Data

Sect 1.4: Frequency Histograms

Sect 1.5: Density Histograms

Sect 1.6: Misusing Statistics

What is Statistics?

Statistics The science of collecting, organizing, and analyzing data for the purpose of estimation and making inferences.

Data Values which arise from observing characteristics on a selected group (sample) of individuals.

Variables Characteristics or attributes observed on each individual.

Population The group from which the individuals are selected.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Science of

Sect 1.2: Displaying

Sets of Numbers

Data

Histograms

Types of Data

Variables can be classified into one of two types:

Numerical: Variables whose values represent quantities.

Categorical: Variables whose values are non-numeric.

Examples:

- Age
- Height
- Weight
- Gender

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Science of Statistics

Sets of Numbers

Data

Sect 1.4: Frequen Histograms

Sect 1.5: Density Histograms

ort 1.6: Misusing Statistics

Numeric Variables

Numeric variables can be further classified as:

Discrete: Variables which usually arise by counting.

Continuous: Variables which usually arise by

measuring.

Values of discrete variables are generally natural numbers, i.e., non-negative integers represented by $\{0,1,2,\ldots\}$.

Values of continuous variables are real numbers (technically represented by decimals) contained in a range or interval.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Science of Statistics

Sect 1.2: Displaying Small Sets of Numbers

Data Caraphing Gategoria

Histograms

Numeric Variable Examples

Examples: Discrete variables

- Number of cars in a parking lot
- Student credit hours
- Number of books you own

Examples: Continuous variables

- ► Height of a person
- Amount of time spent studying
- Weight of an apple

Question: Is the variable "Age" discrete or continuous?

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Science of Statistics

Sect 1.2: Displaying Sn Sets of Numbers

Data

Sect 1.4: Frequen

Categorical Variables

Values of categorical variables are non-numeric.

Categorical variables can be classified as:

Categorical: Values are unordered.

Ordered: Values possess a natural ordering.

An ordered categorical variable is also said to be ranked.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Science of Statistics

Sets of Numbers

Data

Histograms

Sect 1.5: Density Histograms

ect 1.6: Misusing Statistics

Categorical Variable Examples

Examples: Categorical variables

- Gender
- Blood Type
- Zip code

Examples: Ordered variables

- Class rank
- Course grade
- ► Taste test (bad · · · good)

Question: Are "phone number" and "student ID" categorical?

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Science of Statistics

Sect 1.2: Displaying S Sets of Numbers

Data Sect 1.3: Grapning Gate

Sect 1.4: Frequen

Post 1 E. Donoity Hi

Branches of Statistics

The two major branches of statistics are:

Descriptive Statistics Use graphical displays and numeric summaries to represent data.

Inferential Statistics Use analytic methods and the theory of probability to draw conclusions or make decisions.

LifeStats

J. Harner, A. Billings

Sect 1.1: The Science of Statistics

Displaying Small Sets of Numbers

The following elementary plot types are suitable for small data sets:

- 1. Dotplots: a dot represents each value of a numerical variable.
- 2. Stem-and-leaf plot (stemplot): each value is represented by a stem and a leaf.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categorica Data

Sect 1.4: Frequency Histograms

Dotplots

The dotplot shows how the numerical variable values are distributed for small data sets.

For this plot to be useful, the values should:

- have repeated values;
- be concentrated within a relatively small interval.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics
Sect 1.2: Displaying Small

Sets of Numbers
Sect 1.3: Graphing Categorica

Sect 1.4: Frequency Histograms

Sect 1.5: Density Histograms

ect 1.6: Misusing Statistics

Dotplots: Example

```
Height (in.) of students
62 71 65 68 64
72 66 68 70 67
67 68 64 65 68
```


LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Si

Sect 1.2: Displaying Small Sets of Numbers

Data

Sect 1.4: Frequency Histograms

Sect 1.5: Density Histogram

Sect 1.6: Misusing Statistics

Stem-and-Leaf Plots (Stemplots)

Represents the data using the actual digits that make up the data.

- ► The leading digit(s) becomes the stem.
- ▶ The trailing digit(s) comprise the leaf.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categorical Data

Histograms
Sect 1.5: Density Histograms

Sect 1.5: Density Histograms Sect 1.6: Misusing Statistics

Stemplot: Example

Math 126 Exam Grades

76	74	82	96	66	76
93	86	84	62	82	75
58	71	73	79	65	80

Stem (tens)	
5	8
6	8 625 6465139 26420 63
7	6465139
8	26420
9	6 3

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods Sect 1.1: The Science of

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categoric Data

Histograms

Stemplot: Example

Data

1.3 2.4 1.7 3.2 5.6

Stem (ones)	Leaf (tenths)
1	3 7
2	4
3	2
4	
5	6

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categorica Data

Sect 1.4: Frequency Histograms

Sect 1.5: Density Histogram

Sact 1.6: Micueina Statistics

Back-to-Back Stem and Leaf

Tables 1.6–1.8 (p. 21 of the text)

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: 7

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categor Data

Histograms

Outlier Example

Outlier: an observation whose value is unusual or extreme.

Speed of cars on High St.

Stem (tens)	Leaf (ones)
1*	3 4
1.	5896 1321
2*	1321
2.	5
HI	71

71 is an outlier.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods Sect 1.1: The Science of

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categorica
Data

Histograms

Grouped Frequency Table

Frequencies are tabulated for each value of the categorical variable.

Example: Pet Ownership

Value	Frequency
Pet owner	9
Non-pet owner	7

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics
Sect 1.2: Displaying Smal

Sect 1.3: Graphing Categorical Data

Histograms

Grouped Frequency Table: Example

Stat 211 Spring 2006 grade distribution:

Grade	Frequency
Α	23
В	29
С	22
D	7
F	12
W	23

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sets of Numbers
Sect 1.3: Graphing Categorical

Data Sect 1.4: Frequency

Sect 1.5: Density Histograms

Sort 1.6: Misusing Statistics

Bar Chart

A bar chart (graph) represents a categorical variable by showing the frequency of each category as proportionally-sized rectangles.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sect 1.2: Displaying Small Sets of Numbers

Sect 1.3: Graphing Categorical Data

Histograms

Bar Chart: Example

U.S. Coal Production by State

State	Millions of Tons
WV	172.0
PA	189.2
KY	154.8
WY	223.6
Other	120.4

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods Sect 1.1: The Science of

Sect 1.2: Displayin

Sect 1.3: Graphing Categorical Data

Histograms
Sect 1.5: Density Histograms

Pareto Chart

A Pareto chart is a bar chart with the bars arranged from the tallest to shortest.

Example: US Coal Production

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Statistics

Sect 1.2: Displaying Sma

Sect 1.3: Graphing Categorical Data

Histograms

Sect 1.5: Density I

ect 1.6: Misusing Statistics

Pie Chart

A pie chart shows the amount of data that belongs to each category as a proportional part of a circle.

Example: US Coal Production

Coal Production

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sect 1.3: Graphing Categorical

Sect 1.4: Frequency

Sect 1.5: Density Histogram

Sort 1.6: Misusing Statistics

Grouped Frequency Distribution

A grouped frequency distribution is a list (or table) which pairs ranges of values of a numerical variable with their frequencies (counts). Each range is called a class.

Rules for constructing a grouped frequency distribution:

- 1. Each class should be the same width, unless there is a good reason for groups of unequal width.
- Classes should not overlap.
- 3. Each observation should fall into one, and only one, class.
- Between 3 and 15 classes should be used.

LifeStats

J. Harner, A. Billings

Histograms

Sect 1.4: Frequency

Grouped Frequency Distribution: Example

Math 126 Exam Scores

Class	Frequency
50–59	1
60-69	3
70–79	7
80-89	5
90-100	2

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sets of Numbers

Sect 1.3: Graphing Categorica

Sect 1.4: Frequency Histograms

Frequency Histogram

A frequency histogram is a graphical representation of a frequency distribution.

Example: Math 126 Exam Scores (continued)

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sets of Numbers
Sect 1.3: Graphing Categorical

Sect 1.3: Graphing Categorica
Data
Sect 1.4: Frequency

Histograms Sect 1.5: Density Histograms

Sect 1.5: Density Histograms Sect 1.6: Misusing Statistics

Shape of a Distribution: Symmetry

LifeStats

J. Harner, A. Billings

Sect 1.4: Frequency Histograms

Shape of a Distribution: Skewness

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sets of Numbers

Sect 1.3: Graphing Categorica
Data

Sect 1.4: Frequency Histograms Sect 1.5: Density Histogram

Sect 1.5: Density Histograms
Sect 1.6: Misusing Statistics

Shape of a Distribution: Continuous

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics
Sect 1.2: Displaying Sma

Sect 1.3: Graphing Categorica

Sect 1.4: Frequency Histograms

Relative Frequency Histogram

A relative frequency histogram is a histogram in which the vertical axis represents percentages or proportions.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sets of Numbers

Data

Histograms

Sect 1.5: Density Histograms

and 1.6: Misusing Statistics

Relative Frequency Histogram: Example

Math 126 Exam Scores

Class	Freq	Rel Freq	Percent
50–59	1	0.056	5.6
60–69	3	0.167	16.7
70–79	7	0.389	38.9
80-89	5	0.278	27.8
90–100	2	0.111	11.1

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods Sect 1.1: The Science of

ect 1.2: Displaying Small lets of Numbers

Data

Histograms

Density Histogram

A density histogram is a histogram whose vertical axis is scaled so that the sum of the areas of its rectangles is 1.

Note: If the sample size (*n*) is large, a density histogram can be used to estimate the distribution of the population from which the data was obtained.

Constructing a density histogram:

- Compute the proportion (percent) of observations in each class.
- Divide the proportion (percent) associated with each class by the width of that class (this yields the proportion (percent) of the observations associated with each unit of the measurement scale).
- 3. Draw the histogram using the values computed in step 2.

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics
Sect 1.2: Displaying Small

Sect 1.3: Graphing Categorica Data

ect 1.4: Frequency

Density Histogram: Example

Math 126 Exam Scores

Class	Freq	Percent	Percent/Unit Score
50–59	1	5.6	0.56%
60-69	3	16.7	1.67%
70–79	7	38.9	3.89%
80-89	5	27.8	2.78%
90–100	2	11.1	1.01%

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods Sect 1.1: The Science of

Sets of Numbers

Data Categoric

Histograms
Sect 1.5: Density Histograms

Ungrouped Frequency Distribution

An ungrouped frequency distribution is a list (or table) which pairs each value of a discrete numerical variable with its frequencies (counts).

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sets of Numbers Sect 1.3: Graphing Categorical

Data

Sect 1.5: Density Histograms

Ungrouped Frequency Histogram

Number of Pets

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Statistics

Sets of Numbers

Data

Sect 1.4: Frequency Histograms

Sect 1.5: Density Histograms

Sect 1.6: Misusing Statistics

Graphical Distortions

- The area fallacy
- The missing baseline
- ► The Combination Graph

LifeStats

J. Harner, A. Billings

Chap.1 Notes: Exploring Data by Graphical Methods

Sect 1.1: The Statistics

> Sect 1.2: Displaying Small Sets of Numbers

Data Cate

Sect 1.4: Frequency Histograms

Sect 1.5: Density Histogram

Sect 1.6: Misusing Statistics