UNIVERSITY of WASHINGTON

Introduction to Machine Learning MLEARN 510A – Lesson 5

Recap of Lesson 4

- Data Preprocessing
- Dealing with Missing Data
- Detection of Outliers
- Exploratory Data Analysis
- Data Transformations
- Data Splitting

Course Outline

- Introduction to Statistical Learning
- 2. Linear Regression
- 3. Classification
- 4. Model Building, Part 1
- 5. Model Building, Part 2
- 6. Resampling Methods
- 7. Linear Model Selection and Regularization
- 8. Moving Beyond Linearity Time Series Analysis
- 9. Bayesian Analysis Frequent Itemset Mining
- 10. Dimensionality Reduction

Outline of Lesson 5

- > Feature Engineering
- Custom Feature Transformation
- Feature Selection
- Chaining Transformations Together
- Hyper-parameter Tuning
- Testing, Launching, Monitoring and Maintaining

The Machine Learning Process

Feature Engineering

- Transforming data to create features for ML models
- Most creative aspect of Data Science
- This process can be automated

Categorical Features

- Nearly always need some preprocessing
- Difficult to impute missing data
- Can generate very sparse data due to high cardinality
- > Two types:
 - Ordinal Categorical Features
 - Nominal Categorical Features

Feature Engineering – Categorical Features

Ordinal Encoding

- Label Encoding
- Ordinal Encoding

Nominal Encoding

- One Hot Encoding
- Dummy Encoding
- Mean or Target Encoding
- Frequency Encoding

	pclass	survived	age	sibsp	parch	fare	sex_female	sex_male	embarked_C	embarked_Q	embarked_S
0	1	1	29.0000	0	0	211.3375	1	0	0	0	1
1	1	1	0.9167	1	2	151.5500	0	1	0	0	1
2	1	0	2.0000	1	2	151.5500	1	0	0	0	1
3	1	0	30.0000	1	2	151.5500	0	1	0	0	1
4	1	0	25.0000	1	2	151.5500	1	0	0	0	1

Feature Engineering – Numerical Features

> Floats, Counts, Numbers

Can be readily fed into ML algorithms

Easier to impute missing data

Feature Engineering – Numerical Features

- Quantization or Binning
- Log Transformation
- Power Transforms:
 Generalization of the Log
 Transform
- Feature Scaling or Normalization
 - Min-Max Scaling
 - Standardization
 - L2 Normalization

Feature Scaling

Idea: Make sure features are on a similar scale.

Feature Engineering – Text Features

- Bag-of-Words
- Bag-of-n-Grams
- Filtering for cleaner features
 - > Stopwords
 - > Stemming
 - Parsing and Tokenization
 - > TF-IDF

Combining Features (Interaction)

- > Add
- > Subtract
- Multiply
- Ratios
- For example, given the number of rooms, number of bedrooms, we might create: Number of bedrooms/Number of rooms

Take advantage of your knowledge of data to create the right features

Feature Engineering – Date Time Features

- Number of days since a reference date
- Isolate minute, hour, day, month, day of year as separate features

December

- ➤ Is it morning, weekend, holiday, Black Friday, Christmas, free from work, school day?
- Handle the dates in user local time
- Relate the date to external events (incorporate external data), e.g. weather, traffic conditions, stock value, global purchasing on day, news on that day, etc.

Custom Feature Transformation

- There will be times when we want to write our own custom transformation for clean up or feature engineering
- Scikit Learn provides the ability to write your own transformer
- Create a class and implement three methods: fit() (returning self), transform(), and fit_transform()
- Get the last one for free by simply adding TransformerMixin as a base class

Custom Feature Transformation – Example

```
from sklearn.base import BaseEstimator, TransformerMixin
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
    def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
        self.add_bedrooms_per_room = add_bedrooms_per_room
    def fit(self, X, y=None):
        return self # nothing else to do
    def transform(self, X, y=None):
        rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
        population_per_household = X[:, population_ix] / X[:, household_ix]
        if self.add bedrooms per room:
            bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
            return np.c_[X, rooms_per_household, population_per_household,
                         bedrooms per room]
       else:
            return np.c_[X, rooms_per_household, population_per_household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
```

housing_extra_attribs = attr_adder.transform(housing.values)

Feature Selection

- > Filtering
 - Subset Selection
- Wrapper methods
 - Recursive Feature Elimination
 - Forward Feature Elimination
 - > etc...
- > Embedded methods
 - Lasso Regularization

Subset Selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Forward Stepwise Selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Forward Stepwise Selection

Forward stepwise selection example with 5 variables:

Backward Stepwise Selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Backward Stepwise Selection

Backward stepwise selection example with 5 variables:

reaching the stopping rule or running out of variables

Recursive Feature Elimination (RFE)

- Works by recursively removing attributes and building a model on those attributes that remain
- ➤ It uses the model accuracy to identify which attributes (and combination of attributes) contribute the most to predicting the target attribute

> Steps

- Train the estimator on the initial set of features
- Prune the least important features from the list of features
- Recursively repeat the process on the pruned list until stopping criteria is reached

Recursive Feature Elimination (RFE)

```
from sklearn.feature selection import RFE
     from sklearn.linear_model import LinearRegression
 3
     boston = load boston()
     X = boston["data"]
    Y = boston["target"]
     names = boston["feature_names"]
8
9
     #use linear regression as the model
10
    lr = LinearRegression()
     #rank all features, i.e continue the elimination until the last one
11
12
    rfe = RFE(lr, n features to select=1)
13
    rfe.fit(X,Y)
14
15
    print "Features sorted by their rank:"
     print sorted(zip(map(lambda x: round(x, 4), rfe.ranking_), names))
16
```

Features sorted by their rank:

```
[(1.0, 'NOX'), (2.0, 'RM'), (3.0, 'CHAS'), (4.0, 'PTRATIO'), (5.0, 'DIS'),
(6.0, 'LSTAT'), (7.0, 'RAD'), (8.0, 'CRIM'), (9.0, 'INDUS'), (10.0, 'ZN'),
(11.0, 'TAX'), (12.0, 'B'), (13.0, 'AGE')]
```


Lasso Regression

Minimize the quantity

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

- \succ Lasso uses an l_1 penalty instead of an l_2 penalty. The l_1 norm of a coefficient vector β is given by $\|\beta\|_1 = \sum |\beta_i|$
- More on this in Week 7

Feature Selection – Summary

	Pros	Cons
Filter methods	 Usually fast Intuitive (rely on well-known statistical dependency) Universal (independent of the learner) Often used as pre-processing step for other methods 	 Can easily discard relevant features Often select for highly correlated features
Wrapping methods	 Treat learner as a black box Focus on final metric as measure of variable importance 	 Can be time-consuming (especially forward feature selection, genetic algorithms)
Embedded methods	 Might be Fast Easy to incorporate as part of training for some learners 	 Approach is highly metric / learner specific

Steps Covered So Far

- Data Preprocessing
- Data Analysis
- Feature Transformation
- Feature Scaling
- Feature Engineering
- Feature Selection

Transformation Pipeline

- There are many data transformation steps that need to be executed in the right order
- ➤ Cleaning → Feature Transformation → Feature Engineering → Feature Scaling
- Fortunately, Scikit-Learn provides the Pipeline class to help with such sequences of transformations

Transformation Pipeline

- ➤ The Pipeline constructor takes a list of name/estimator pairs defining a sequence of steps
- All but the last estimator must be transformers (i.e., they must have a fit_transform() method)
- When you call the pipeline's fit() method, it calls fit_transform() sequentially on all transformers
- The output of each call as the parameter to the next call, until it reaches the final estimator, for which it just calls the fit() method

Transformation Pipeline

Hyperparameters in Learning Algorithm

- Hyper-parameters are different from the typical parameters/weights for a learning algorithm
- Weights are learned during training while hyper-parameters are set before the learning process begins
- Model hyperparameters
 - Cannot be inferred while fitting training data because they refer to model selection
 - > For example, number of layers of neural network
- Algorithm hyperparameters
 - Bear no influence on the performance of the model but affect the speed and quality of the learning process
 - For example, learning rate in Gradient Descent

Hyperparameter Tuning – Grid Search vs. Randomized Search

- Hyperparameter tuning is one of the trickiest parts in building the machine learning models
- Goal is to find a sweet setting for the model's hyperparameters

Grid Search

Exhaustive search is performed for all combinations of hyperparameters

Randomized Search

Random combinations of the hyperparameters are used to find the best solution for the built model

Validation Set for Hyperparameter Tuning

- ➤ It is important that examples from the test set are not used to make choices about the model, including its hyperparameters
- We need a validation set of examples that the training algorithm does not observe
- Split the training data into two disjoint splits
 - Training Set: Used to learn parameters of the model (not to be confused with the larger training pool)
 - Validation Set: Used to guide the selection of hyperparameters
- Typical split is 80% for training and 20% for validation

Cross Validation

- When the dataset has hundreds of thousands of examples or more, splitting into fixed training and test sets works
- However, if the dataset is too small, test error will have statistical uncertainty around the estimated average test error
- > **Solution**: Use all of the examples in the estimation of average test error at the cost of increased computational cost
- Use K-fold cross validation

Evaluate Performance on Test Set

- Once we are satisfied with the model, it is time to evaluate the final model on the test set
- Run your full_pipeline to transform the test data (call transform(), not fit_transform()!), and evaluate the final model on the test set
- You must resist the temptation to tweak the hyperparameters to make the numbers look good on the test set
- The improvements would be unlikely to generalize to new data

What's Next?

- Prelaunch phase
- Present your solution
- What worked and what did not, what assumptions were made, and what your system's limitations are)
- Document everything
- Create nice presentations with clear visualizations

Launch, Monitor and Maintain (1)

- Plug the production input data into your system and write tests
- Write monitoring code to check your system's live performance at regular intervals and trigger alerts when it drops
- Evaluate your system's performance by sampling the system's predictions. This will generally require a human analysis
- You should also make sure you evaluate the system's input data quality

Launch, Monitor and Maintain (2)

- Monitoring the inputs is particularly important for online learning systems
- Re-train your models on a regular basis using fresh data
- Automate this process as much as possible
- ➤ If your system is an online learning system, you should make sure you save snapshots of its state at regular intervals so you can easily roll back to a previously working state

The Machine Learning Process

Resources

- Chapter 2: Hands-On Machine Learning with Scikit-Learn & Tensorflow
- Machine Learning Software Engineering in Practice: An Industrial Case Study
- Data Lifecycle Challenges in Production Machine Learning: A Survey

Jupyter Notebook

Case Study

ON-BRAND STATEMENT

FOR GENERAL USE

> What defines the students and faculty of the University of Washington? Above all, it's our belief in possibility and our unshakable optimism. It's a connection to others, both near and far. It's a hunger that pushes us to tackle challenges and pursue progress. It's the conviction that together we can create a world of good. And it's our determination to Be Boundless. Join the journey at **uw.edu**.

