

## **DISTANCE LEARNING PROGRAMME**

(Academic Session: 2015 - 2016)

## NURTURE TEST SERIES / JOINT PACKAGE COURSE TARGET: PRE-MEDICAL 2017

Test Type: ALL INDIA OPEN TEST (MAJOR) Test Pattern: AIPMT

**TEST DATE: 21 - 02 - 2016** 

| ANSWER KEY |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Que.       | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| Ans.       | 4   | 3   | 4   | 4   | 2   | 3   | 3   | 1   | 4   | 2   | 2   | 1   | 2   | 3   | 2   | 2   | 2   | 2   | 4   | 4   |
| Que.       | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| Ans.       | 3   | 1   | 3   | 2   | 1   | 2   | 4   | 2   | 1   | 3   | 2   | 3   | 4   | 1   | 1   | 2   | 3   | 2   | 4   | 1   |
| Que.       | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| Ans.       | 2   | 4   | 3   | 2   | 3   | 2   | 2   | 4   | 4   | 2   | 2   | 2   | 2   | 1   | 2   | 1   | 1   | 2   | 2   | 3   |
| Que.       | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| Ans.       | 2   | 1   | 3   | 2   | 4   | 3   | 2   | 2   | 1   | 3   | 3   | 1   | 3   | 3   | 3   | 1   | 4   | 4   | 2   | 3   |
| Que.       | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| Ans.       | 2   | 4   | 1   | 2   | 1   | 1   | 4   | 1   | 1   | 1   | 2   | 2   | 2   | 2   | 3   | 4   | 1   | 3   | 1   | 4   |
| Que.       | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| Ans.       | 3   | 4   | 1   | 4   | 4   | 2   | 1   | 1   | 4   | 4   | 4   | 4   | 2   | 2   | 4   | 2   | 1   | 3   | 2   | 2   |
| Que.       | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| Ans.       | 3   | 1   | 3   | 3   | 4   | 1   | 2   | 3   | 1   | 1   | 2   | 3   | 3   | 3   | 3   | 1   | 2   | 2   | 4   | 1   |
| Que.       | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| Ans.       | 2   | 4   | 1   | 3   | 1   | 2   | 2   | 1   | 1   | 4   | 4   | 4   | 2   | 3   | 4   | 2   | 2   | 3   | 2   | 2   |
| Que.       | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| Ans.       | 3   | 3   | 1   | 4   | 2   | 4   | 1   | 3   | 1   | 1   | 2   | 2   | 2   | 3   | 3   | 4   | 4   | 1   | 4   | 3   |

## HINT - SHEET

1. 
$$a = \frac{dv}{dt} = v\frac{dv}{dx}$$
$$= 2(x \sin x + \cos x) [2 \sin x + 2x \cos x - 2 \sin x]$$

At 
$$x = \frac{\pi}{2}$$
,  $a = 4\left[\frac{\pi}{2}(1) + 0\right]\left[1 + \frac{\pi}{2}(0) - 1\right] = 0$ 

2. 
$$a_{au} = \frac{v_f - v_i}{t_f - t_i} = \frac{0 - 10}{4 - 2} = -5 \text{m/s}^2$$

**4.** momentum before = momentum after explosion explosion

$$0 = m_2 v_2 - m_1 v_1$$

$$v_1 \leftarrow \bigcirc \qquad \bigcirc \qquad v_2 \Rightarrow \frac{v_1}{v_2} = \frac{m_2}{m_1} = \left(\frac{r_2}{r_1}\right)^3 = \frac{8}{1}$$

5. 
$$PV = nRT = \frac{m}{M_w}RT$$

 $\Rightarrow$  For same P, V  $\propto$  m

There fore  $m_1 > m_2$ 

**6.** 
$$\frac{K_f}{K_i} = \left(\frac{p_f}{p_i}\right)^2 \implies \frac{p_f}{p_i} = \sqrt{0.81} = 0.9$$



7.



Let time taken by first chestnut to reach ground be t then

$$15 = 10 t + \frac{1}{2}(10) t^{2}$$

$$\Rightarrow t^{2} + 2t - 3 = 0 \Rightarrow t^{2} + 3t - t - 3 = 0$$

$$\Rightarrow t = 1 s$$

In this time second chestnut must have to reach ground.

Therefore 
$$20 = u(1) + \frac{1}{2}(10)(1)^2 \Rightarrow u = 15\text{m/s}$$

**8.** Let both blocks move together so

$$a_c = \frac{20-2}{2+4} = 3 \text{ m/s}^2 \text{ (leftward)}$$

for upper block

$$f - 2 = 2$$
 (3)  $\Rightarrow f = 8$  N

Which is less than limiting friction (i.e. 10N) so our assumption is correct.

9.



$$F - Mg = Mg \Rightarrow F = 2 Mg$$

$$FR = I\alpha = \frac{MR^2}{2}\alpha$$

$$\Rightarrow F = \frac{M}{2}(R\alpha) \Rightarrow \frac{2(2Mg)}{M} = R\alpha$$

$$\Rightarrow R\alpha = 4g$$

10.  $\therefore$  Produce 4 beats  $\therefore$  f = 288 ± 4 = 292 or 284 cps By waxing beats  $\downarrow$  so f = 292 cps.

11. KE = 
$$\frac{1}{2}$$
 mv<sup>2</sup>

$$\Rightarrow$$
 unit of KE = (unit of mass)  $\left(\frac{\text{unit of length}}{\text{unit of time}}\right)^2$ 

= 
$$(100 \text{ g}) \left(\frac{1\text{cm}}{10\text{s}}\right)^2 = 1 \text{ g cm}^2/\text{s}^2$$

$$= 1 erg$$

12. By using  $v^2 = u^2 + 2as$  for relative motion  $(0)^2 = (v_1 + v_2)^2 + 2(-a_1 - a_2) s_{min}$ 

$$\Rightarrow s_{\min} = \frac{\left(v_1 + v_2\right)^2}{2\left(a_1 + a_2\right)}$$

13. Here 
$$\frac{dv}{dt} = -1 = -\mu g \Rightarrow \mu = 0.1$$

14. 
$$I = \frac{Ma^2}{4} + M\left(\frac{a}{2}\right)^2 = \frac{Ma^2}{2}$$

Now 
$$I_0 = \frac{Ma^2}{2} + M \left( \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} \right)^2$$

$$=\frac{Ma^2}{2} + \frac{Ma^2}{2} = Ma^2 = 2I$$

**15.** At x = 0,  $y = a \sin \omega t$  so  $y' = -a \sin \omega t$  at x = 0

16. 
$$P = \frac{a - t^2}{bx} = \frac{a\left(1 - \frac{t_2}{a}\right)}{bx}$$

$$\Rightarrow \left[\frac{a}{b}\right] = [Px] = [(ML^{-1}T^{-2}) \ (L)] = ML^{0}T^{-2}$$

17. To catch 
$$(v_y)_A = (v_y)_B$$
  
 $\Rightarrow v \sin 37^\circ = 30$ 

$$\Rightarrow$$
 v =  $\frac{30}{3/5}$  = 50 m/s

Time taken = 
$$\frac{200}{\text{v}\cos 37^{\circ}}$$
 = 5 s.



18. By using work energy theorem,  $W = \Delta KE$ 

$$W_{gravity} + W_{air-drag} = \frac{1}{2} m (v^2 - u^2)$$

$$\Rightarrow mgh + W_{air-drag} = \frac{1}{2} m (1.96 gh - 0^2)$$
$$\Rightarrow W_{air-drag} = -0.02 mgh$$

19. For solid sphare, 
$$I_{min} = \frac{2}{5} MR^2$$

**20.** apparent frequency, 
$$\mathbf{n'} = \left(\frac{\mathbf{v} + \mathbf{v_0}}{\mathbf{v}}\right)^{\mathbf{n}}$$

% increase = 
$$\frac{n'-n}{n} \times 100 = \left(\frac{v_0}{v}\right) \times 100$$
  
=  $\left(\frac{v/5}{v}\right) \times 100 = 20\%$ 

**22.** 
$$\vec{a} = \frac{d\vec{v}}{dt} = 4\hat{j}$$
 and at  $t = 1s$ ,  $\vec{v} = 3\hat{i} + 4\hat{j}$ 



from diagram 
$$a_t = 4 \cos\theta = 4\left(\frac{4}{5}\right) = \frac{16}{5}$$

$$a_v = 4 \sin\theta = 4 \left(\frac{3}{5}\right) = \frac{12}{5}$$

Therefore  $\frac{a_t}{a_v} = \frac{4}{3}$ 

23. Total energy = 
$$KE + PE$$
 $\uparrow \quad \uparrow$ 

Information-II Information-II

24. 
$$\tau = I\alpha$$
  
 $\Rightarrow 10 \times (30 \times 10^{-2}) + 9 \times (30 \times 10^{-2}) - 12 \times (5 \times 10^{-2}) = 5100 \alpha$   
 $\Rightarrow \alpha = 10^{-3} \text{ rad/s}^2$ 

 $\Rightarrow$  No. of maximum = 16

**26.** 
$$\sum \vec{F}_i = 4\hat{j} + 2\hat{k} \implies \text{moves in Y-Z plane.}$$

28. acceleration = 
$$0 \Rightarrow \text{force} = 0 \Rightarrow \frac{dU_{(x)}}{dx} = 0$$

**30.** Use T 
$$\alpha$$
 R<sup>3/2</sup>.

31. 
$$: F = -\frac{dU}{dx}$$

:. Force is negative when x is between B and C.

32. Given that 
$$v = \frac{u}{n}$$

Direction for minimum drift is shown below.



$$\therefore \text{ Required angle} = \frac{\pi}{2} + \theta = \frac{\pi}{2} + \sin^{-1}\left(\frac{1}{n}\right)$$

33. 
$$E_k \propto t \Rightarrow u^2 \propto t \Rightarrow u \propto \sqrt{t}$$

$$a = \frac{du}{dt} \implies a \propto \frac{1}{\sqrt{t}} \implies F \propto \frac{1}{\sqrt{t}}$$

34. 
$$e_A \sigma A T_A^4 = e_B \sigma A T_B^4 \Rightarrow \frac{T_A}{T_B} = \left(\frac{e_B}{e_A}\right)^{\frac{1}{4}}$$

35. By COME, 
$$-\frac{GMm}{R} + E_{required} = -\frac{GMm}{2(3R)}$$

$$\Rightarrow E_{\text{required}} = \frac{5 \,\text{GMm}}{6R}$$



**36.** Required component = 
$$(\vec{v} \cdot \hat{a})\hat{a}$$

$$\begin{split} &= \left[ \left( 6\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 2\hat{\mathbf{k}} \right) \cdot \left( \frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}} \right) \right] \left[ \frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}} \right] \\ &= 2 \left( \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} \right). \end{split}$$

## **37.** F.B.D. of the wedge



So 
$$F_{Net} = 0$$

38. 
$$Y_{cm} = \frac{2m(0) + 2m(D) + m(2D)}{5m} = \frac{4}{5}D$$

39. It is clear that 
$$T_B > T_A$$
,  $T_B > T_C$  and  $W_{AB} > W_{BC}$  therefore  $U_B > U_A$ .

40. At maximum extension, 
$$v_{3kg} = v_{6kg} = v_{cm} = \frac{6(2) + 3(-1)}{6 + 3} = 1 \text{m/s (right)}$$

By COME,

$$\frac{1}{2}(6)(2)^{2} + \frac{1}{2}(3)(1)^{2} = \frac{1}{2}(200)x_{m}^{2} + \frac{1}{2}(6+3)(1)^{2}$$

$$\Rightarrow x_{m} = 0.3 \text{ m} = 30 \text{ cm}.$$

- **41.** Speed is zero at t = 4 s.
- **43.** Change in momentum = Impulse

= 
$$\int Fdt$$
  
= Area of graph  
=  $10 \times 5 + \frac{1}{2} \times 10 \times 4$   
= 70 N s.

44. 
$$\frac{\theta_1 - \theta_2}{t} = k \left( \frac{\theta_1 + \theta_2}{2} - \theta_0 \right)$$

$$\Rightarrow \frac{0.1}{5} = k (50 - 30) & \frac{0.1}{t} = k (40 - 30)$$

$$\Rightarrow t = 10 \text{ s.}$$

$$45. Mg = kx$$



$$\Rightarrow \frac{k}{m} = \frac{YA}{\ell m} = \frac{g}{x}$$

or 
$$\frac{m}{k} = \frac{\ell m}{YA} = \frac{x}{g}$$

$$T = 2\pi \sqrt{\frac{x}{g}} = 2\pi \sqrt{\frac{m}{k}}$$

$$\Rightarrow$$
  $T = 2\pi \sqrt{\frac{m\ell}{YA}}$ 

**54.** In  $B_2H_6$  only four terminal H-atom are replaced.

**61.** At high pressure = P + 
$$\frac{n^2a}{V^2} \approx P$$

$$(P) (V - nb) = nRT$$

$$PV - Pb = RT$$

$$PV = RT + Pb$$

**62.** 
$$Ag_2CrO_4 \rightleftharpoons 2Ag^+ + CrO_4^{2-}$$
  
 $K_{sp} = [Ag^+]^2 [CrO_4^{2-}]$ 

$$[Ag^+] = \sqrt{\frac{K_{sp}}{[CrO_4^{2-}]}} = \sqrt{\frac{1.9 \times 10^{-12}}{0.1}}$$

$$= \sqrt{19 \times 10^{-12}}$$

$$=4.35\times10^{-6}\,\mathrm{M}$$

$$K_{sp} = [Ag^+] [Cl^-]$$
  
 $K_{sp} = (4.35 \times 10^{-6}) \times [Cl^-]$ 

$$[Cl^{-}] = \frac{1.7 \times 10^{-10}}{4.35 \times 10^{-6}}$$

$$[C1^{-}] =$$





72. 29g of H<sub>2</sub>SO<sub>4</sub> present in 100g of solution

$$M = \frac{x(In g.) \times 1000}{M\omega \times V(In mL)}$$

$$3.6 = \frac{29 \times 1000}{98 \times \frac{100}{d}}$$

78. 
$$CaH_2 + H_2O \longrightarrow Ca(OH)_2 + H_2(g)$$
  
 $Al + NaOH \longrightarrow NaAlO_2 + H_2(g)$   
 $Zn + dil H_2SO_4 \longrightarrow ZnSO_4 + H_2(g)$ 

79. 
$$\begin{array}{c}
CI \\
CH_2-CH_3 \\
\hline
O
\end{array}$$
 + HCI

F.R.S.R

**86.** 
$$\frac{P \times V_{\text{total}}}{RT} = \frac{P_1 V_1}{RT} + \frac{P_2 V_2}{RT} + \frac{P_3 V_3}{RT}$$

$$V_{\text{total}} = V_1 + V_2 + V_3$$

**88.** Mg<sup>+2</sup> does not impart colour to the flame due to high ionisation energy.

**106.** NCERT Pg. # 133

**107.** NCERT Pg. # 111,112,114

**114.** Module No.1 Pg. # 187 (Eng.), 205 (Hindi)

**116.** NCERT Pg. # 103

**124.** NCERT Pg. # 35

**141.** NCERT Pg. # 33

**149.** NCERT Pg. # 308, Para-20.2.2 (Eng.), Pg. # 307, Para-20.2.2 (Hindi)

**154.** NCERT XI Pg. # 90,91,96