Exercise 7

Kai Schneider

June 22, 2021

Task 1 Linear function approximation

a.)

With linear function approximation we have a value function with the following form:

$$\hat{\mathbf{v}}(s, w) = w^T x(s) = \sum_{i=1}^d w_i x_i(s)$$

For tabular methods we can write all $x_i(s)$ as $x_i(s) = [0 \dots \underbrace{v(s)}_{i-th \text{ entry}} \dots 0]^T$

This way our value function can be written the same as for the linear function approximating with the weight vector w = [1...1].

This way the tabular version is only a special case of the linear function approximation with the dim(w) = |S|.

b.)

Sarsa:
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \delta_t$$
 with $\delta_t = [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$

I: tabular

For the tabular case we can directly use the formula given in the slides (v05s15):

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

II: function approximation

For state-action values we have the following update rule for weights in control:

$$w_{t+1} \leftarrow w_t + \alpha [U_t - \hat{q}(S_t, A_t, w)] \nabla \hat{q}(S_t, A_t, w)$$

with $U_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, w)$ for one-step SARSA

plugged in we get:
$$w_{t+1} \leftarrow w_t + \alpha [R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, w) - \hat{q}(S_t, A_t, w)] \nabla \hat{q}(S_t, A_t, w)$$

III: linear function approximation

With the value function beeing $\hat{v}(s, w) = w^T x(s)$ for the linear case and the update formula for the linear TD $w \leftarrow w + \alpha [R_{t+1} + \gamma w^T x(S_{t+1}) - w^T x(S_t)] x(S_t)$ we can get:

$$w_{t+1} \leftarrow w_t + \alpha [R_{t+1} + \gamma w^T x(S_{t+1}, A_{t+1}) - w^T x(S_t, A_t)] x(S_t, A_t)$$