CONTENTS 1

Classification I

Yifei Sun, Runze Cui

Contents

Logistic regression and its cousins	3
glm	9
Penalized logistic regression	4
GAM	Ę
MARS	6
tidymodels	12

CONTENTS 2

```
library(caret)
library(glmnet)
library(tidymodels)
library(mlbench)
library(pROC)
library(pdp)
library(vip)
library(AppliedPredictiveModeling)
```

We use the Pima Indians Diabetes Database for illustration. The data contain 768 observations and 9 variables. The outcome is a binary variable diabetes. We start from some simple visualization of the data.

The data is divided into two parts (training and test).

```
set.seed(1)
data_split <- initial_split(dat, prop = 0.75)

# Extract the training and test data
training_data <- training(data_split)
testing_data <- testing(data_split)</pre>
```

Logistic regression and its cousins

glm

```
contrasts(dat$diabetes)
       pos
## neg
         0
## pos
         1
glm.fit <- glm(diabetes ~ .,
               data = training_data,
               family = binomial(link = "logit"))
We first consider the simple classifier with a cut-off of 0.5 and evaluate its performance on the test data.
test.pred.prob <- predict(glm.fit, newdata = testing_data,</pre>
                           type = "response")
test.pred <- rep("neg", length(test.pred.prob))</pre>
test.pred[test.pred.prob > 0.5] <- "pos"</pre>
confusionMatrix(data = as.factor(test.pred),
                 reference = testing_data$diabetes,
                 positive = "pos")
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction neg pos
##
          neg 55 16
##
          pos
                9 18
##
                   Accuracy: 0.7449
##
                     95% CI : (0.6469, 0.8276)
##
##
       No Information Rate: 0.6531
##
       P-Value [Acc > NIR] : 0.03334
##
##
                      Kappa: 0.4085
##
    Mcnemar's Test P-Value: 0.23014
##
##
##
               Sensitivity: 0.5294
##
               Specificity: 0.8594
            Pos Pred Value: 0.6667
##
            Neg Pred Value: 0.7746
##
##
                 Prevalence: 0.3469
            Detection Rate: 0.1837
##
##
      Detection Prevalence: 0.2755
##
         Balanced Accuracy: 0.6944
##
##
          'Positive' Class : pos
##
We then plot the test ROC curve. You may also consider a smoothed ROC curve.
roc.glm <- roc(testing_data$diabetes, test.pred.prob)</pre>
plot(roc.glm, legacy.axes = TRUE, print.auc = TRUE)
```


We can also fit a logistic regression using caret. This is to compare the cross-validation performance with other models, rather than tuning the model.

Penalized logistic regression

Penalized logistic regression can be fitted using glmnet. We use the train function to select the optimal tuning parameters.

GAM 5

```
model.glmn$bestTune
##
      alpha
               lambda
## 40
         0 0.08816269
myCol <- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
             superpose.line = list(col = myCol))
plot(model.glmn, par.settings = myPar, xTrans = function(x) log(x))
                                   Mixing Percentage
                            0.3
                                                                   0.9
        0
                                               0.6
         0.05
                            0.35 -
                                               0.65
                                                                   0.95 \odot
        0.1
               \odot
                            0.4
                                               0.7
        0.15
                            0.45
                                               0.75 -
        0.2
                            0.5
                                               8.0
        0.25
                            0.55
                                               0.85 -
ROC (Cross-Validation)
    8.0
    0.7
    0.6
    0.5
            -8
                              -6
                                                -4
                                                                 -2
                               Regularization Parameter
```

GAM

```
## .outcome ~ s(pregnant) + s(pressure) + s(age) + s(triceps) +
##
       s(glucose) + s(insulin) + s(mass) + s(pedigree)
##
## Estimated degrees of freedom:
## 1.04 1.00 2.68 2.38 1.00 4.34 1.44
## 1.00 total = 15.89
## UBRE score: -0.1596863
plot(model.gam$finalModel, select = 3)
     2
      0
s(age, 2.68)
     -5
     -10
           20
                           30
                                            40
                                                            50
                                                                             60
```

MARS

age

coef(model.mars\$finalModel)

```
(Intercept)
                                           h(187-glucose)
##
                 3.7745918129
##
                                            -0.0491408053
##
                    h(32-age)
                                             h(35.7-mass)
                -0.2453779688
                                             -0.1892759329
##
## h(146-glucose) * h(32-age) h(130-insulin) * h(age-32)
##
                 0.0017986652
                                            -0.0051382452
##
     h(glucose-187) * insulin
##
                -0.0006838935
```


vip(model.mars\$finalModel, type = "rss")

see vi_model.earth for details on different types of variable importance of MARS

res <- resamples(list(GLM = model.glm,

```
GLMNET = model.glmn,
                     GAM = model.gam,
                     MARS = model.mars))
summary(res)
##
## Call:
## summary.resamples(object = res)
## Models: GLM, GLMNET, GAM, MARS
## Number of resamples: 10
##
## ROC
##
              Min.
                     1st Qu.
                                Median
                                           Mean
                                                  3rd Qu.
## GLM
         0.7722222\ 0.8187500\ 0.8608333\ 0.8628860\ 0.8904971\ 0.9824561
## GLMNET 0.7900000 0.8250000 0.8690789 0.8683392 0.8986111 0.9824561
                                                                       0
## GAM
         0.7800000\ 0.8102778\ 0.8232895\ 0.8522865\ 0.8819444\ 0.9700000
                                                                      0
##
  MARS
         0.6888889 0.8219444 0.8542105 0.8560497 0.8879167 0.9850000
                                                                       0
##
## Sens
##
              Min. 1st Qu.
                              Median
                                                3rd Qu. Max. NA's
                                         Mean
## GLM
         0.8000000 0.8500 0.8750000 0.8892105 0.9000000
## GLMNET 0.8421053 0.8625 0.9000000 0.9092105 0.9375000
                                                                0
## GAM
```

```
0.7500000 0.8500 0.8973684 0.8734211 0.9000000
## MARS
                                                                   0
##
## Spec
               Min. 1st Qu.
                               Median
##
                                           Mean
                                                  3rd Qu.
                                                                Max. NA's
                      0.525 0.6500000 0.6355556 0.7000000 0.8888889
## GLM
          0.444444
## GLMNET 0.3333333
                      0.500 0.6000000 0.5600000 0.6666667 0.7000000
                                                                        0
## GAM
          0.3333333
                      0.500 0.5777778 0.5944444 0.7000000 0.7777778
## MARS
          0.3333333
                      0.600 0.6333333 0.6233333 0.7000000 0.7777778
bwplot(res, metric = "ROC")
GLMNET
   GLM
  MARS
             0
```

Now let's look at the test data performance.

0.75

0.80

0.70

GAM

0.85

ROC

0.90

0.95


```
## using plot.roc
# plot(roc.glm, legacy.axes = TRUE)
# plot(roc.glmn, col = 2, add = TRUE)
# plot(roc.gam, col = 3, add = TRUE)
# plot(roc.mars, col = 4, add = TRUE)
# legend("bottomright", legend = pasteO(modelNames, ": ", round(auc,3)),
# col = 1:4, lwd = 2)
```

tidymodels

```
set.seed(1)
cv_folds <- vfold_cv(training_data, v = 10)

# # Model specification for Penalized Logistic Regression
# glmnet_spec <- logistic_reg(penalty = tune(), mixture = tune()) %>%
# set_engine("glmnet") %>%
# set_mode("classification")

# # Define the workflow
# glmnet_grid_set <- parameters(penalty(range = c(-8, -1), trans = log_trans()),
# mixture(range = c(0, 1)))</pre>
```

```
# glmnet_grid <- grid_regular(glmnet_grid_set, levels = c(50, 21))</pre>
# # Set up the workflow
# glmnet_workflow <- workflow() %>%
  add_model(glmnet_spec) %>%
    add_formula(diabetes ~ .)
#
# # Tune the model
# glmnet_tune <- tune_grid(</pre>
  glmnet_workflow,
   resamples = cv_folds,
   grid = glmnet_grid
# )
#
# # CV plot
# autoplot(glmnet_tune, metric = "roc_auc")
# glmnet_tune %>% show_best(metric = "roc_auc")
# qlmnet_best <- select_best(qlmnet_tune, metric = "roc_auc")</pre>
# final_glmnet_spec <- glmnet_spec %>%
  update(penalty = glmnet_best$penalty,
           mixture = glmnet_best$mixture)
#
#
\# glmnet\_fit \leftarrow fit(final\_glmnet\_spec, formula = diabetes \sim ., data = training\_data)
# glmnet_model <- extract_fit_engine(glmnet_fit)</pre>
# Model specification for GAM
gam_spec <- gen_additive_mod(select_features = tune()) %>%
  set_engine("mgcv") %>%
  set_mode("classification")
# Set up the workflow
gam_workflow <-
  workflow() %>%
  add_model(gam_spec,
            formula = diabetes ~ s(pregnant) + s(glucose) + s(pressure) + s(triceps) +
                              s(insulin) + s(mass) + s(pedigree) + s(age)) %>%
 add formula(diabetes ~ .)
gam res <-
  gam_workflow %>% tune_grid(resamples = cv_folds)
show best(gam res, metric = "roc auc")
## # A tibble: 2 x 7
     select_features .metric .estimator mean
                                                   n std_err .config
                                                      <dbl> <chr>
     <lgl>
                     <chr>
                             <chr>
                                         <dbl> <int>
## 1 TRUE
                                                  10 0.0303 Preprocessor1_Model2
                     roc_auc binary
                                         0.824
## 2 FALSE
                                         0.813
                                                  10 0.0347 Preprocessor1_Model1
                     roc_auc binary
```

```
# Update the model specification
final_gam_spec <- gam_spec %>%
  update(select_features = TRUE)
gam_fit <- fit(final_gam_spec,</pre>
                formula = diabetes ~ s(pregnant) + s(glucose) + s(pressure) + s(triceps) +
                              s(insulin) + s(mass) + s(pedigree) + s(age),
               data = training_data)
gam_model <- extract_fit_engine(gam_fit)</pre>
gam_model
##
## Family: binomial
## Link function: logit
##
## Formula:
## diabetes ~ s(pregnant) + s(glucose) + s(pressure) + s(triceps) +
##
       s(insulin) + s(mass) + s(pedigree) + s(age)
##
## Estimated degrees of freedom:
## 4.78 7.17 0.00 2.23 1.31 2.08 1.30
## 7.96 total = 27.83
## UBRE score: -0.2067444
plot(gam_fit$fit, select = 8)
      2
s(age,7.96)
      0
     -5
           20
                            30
                                            40
                                                             50
                                                                              60
                                               age
# Model specification for MARS
mars_spec <- mars(num_terms = tune(),</pre>
                   prod_degree = tune()) %>%
  set_engine("earth") %>%
  set_mode("classification")
```



```
mars_tune %>% show_best()
```

```
## # A tibble: 5 x 8
    num_terms prod_degree .metric .estimator mean
                                                        n std_err .config
                                                            <dbl> <chr>
##
        <int>
                     <int> <chr>
                                   <chr>>
                                              <dbl> <int>
## 1
            6
                         1 roc_auc binary
                                              0.832
                                                       10 0.0245 Preprocessor1_Mo~
## 2
            5
                         3 roc_auc binary
                                              0.831
                                                       10 0.0211 Preprocessor1_Mo~
```

```
## 3
                          4 roc_auc binary
             5
                                               0.829
                                                         10 0.0226 Preprocessor1_Mo~
## 4
             4
                          4 roc_auc binary
                                               0.828
                                                         10 0.0278 Preprocessor1_Mo~
## 5
                                                         10 0.0252 Preprocessor1_Mo~
             7
                          1 roc_auc binary
                                               0.827
mars_best <- select_best(mars_tune, metric = "roc_auc")</pre>
final_mars_spec <- mars_spec %>%
  update(num_terms = mars_best$num_terms,
         prod degree = mars best$prod degree)
mars_fit <- fit(final_mars_spec, formula = diabetes ~ ., data = training_data)</pre>
mars_model <- extract_fit_engine(mars_fit)</pre>
coef(mars_model)
##
      (Intercept)
                       h(32-age)
                                    h(35.7-mass) h(pregnant-4) h(glucose-119)
##
       0.17445366
                     -0.21630436
                                     -0.18104446
                                                      1.65845335
                                                                     0.05210362
##
   h(pregnant-3)
##
      -1.44048229
Test data performance
predict_mars <- predict(mars_fit, new_data = testing_data, type = "prob")</pre>
eval_data <- data.frame(truth = testing_data$diabetes, mars_prob = predict_mars$.pred_pos)
roc_auc(data = eval_data, truth = truth, mars_prob, event_level = "second")$.estimate
## [1] 0.7925092
```