Отчет по лабораторной работе № 23 по курсу Практикум на ЭВМ Студент группы М8О-106Б-21 Мезенин Олег Александрович, № по списку 10 Контакты www, e-mail, icq, skype Jktu332@yandex.ru Работа выполнена: « 26 » апреля 2022 г. Преподаватель: ст. преп. каф. 806 Дубинин А.В. Входной контроль знаний с оценкой Отчет сдан « » 202 г., итоговая оценка Подпись преподавателя 1. Тема: Динамические структуры данных. Обработка деревьев 2. Цель работы: Освоить навыки в реализации структуры данных дерево и научиться составлять программы для их обработки 3. Задание (вариант № 4): Составить программу на языке Си для построения и обработки упорядоченного двоичного дерева, содержащего узлы типа enum. Основные функции реализовать в виде универсальных процедур или функций. После того, как дерево создано, его обработка должна производиться в режиме текстового меню со следующими действиями: добавление нового узла, текстовая визуализация дерева, удаление узла, определение значения листа двоичного дерева, имеющего минимальную глубину. 4. Оборудование (лабораторное): ЭВМ _______, процессор _______, имя узла сети ______ с ОП ______ Мб, НМД ______ Мб. Терминал _____ адрес _____. Принтер ______ Другие устройства Оборудование ПЭВМ студента, если использовалось: Процессор _____ с ОП _____ Мб, НМД ____ Мб. Монитор ____ Другие устройства 5. Программное обеспечение (лабораторное): Операционная система семейства _______, наименование ______ версия _____ интерпретатор команд версия Система программирования версия Редактор текстов Утилиты операционной системы Прикладные системы и программы Местонахождение и имена файлов программ и данных Программное обеспечение ЭВМ студента, если использовалось: Редактор текстов ______ версия _____ Утилиты операционной системы Прикладные системы и программы Местонахождение и имена файлов программ и данных на домашнем компьютере

6. Идея, метод, алгоритм решение задачи (в формах: словесной, псевдокода, графической [блок-схема, диаграмма, рисунок, таблица] или формальные спецификации с пред- и постусловиями)

Идея основной функции - определение значения листа, имеющего минимальную глубину - в том, чтобы найти рекурсивно узел, являющиеся терминированной вершиной и имеющий минимальную глубину. Для реализации этой функции нам понадобится структура tree_level, имеющая два поля: сам узел дерева и его глубина. Эту структуру функция должна принимать в качестве аргумента. Возвращать функция будет также значение типа tree_level.

Будем вызывать функцию рекурсивно, передавая сначала левое поддерево, затем правое, и сохранять значения соответственно в переменных left и right. При каждой передаче структуры tree_level будем увеличивать глубину на 1.

Затем будем делать четыре проверки:

- 1) Если left и right пустые, то возвращаем текущее значение структуры (значит, это лист).
- 2) Если left пустой, а right не пустой, то возвращаем right.
- 3) Если right пустой, а left не пустой, то возвращаем left.
- 4) Если left и right не пустые, то возвращаем узел с минимальным значением глубины.

Таким образом мы получим лист с минимальной глубиной. Всё, что остаётся сделать - это вывести поле значения полученного листа.

- **7. Сценарий выполнения работы** (план работы, первоначальный текст программы в черновике [можно на отдельном листе] и тесты либо соображения по тестированию)
 - 1) Выбрать предметную область для составления значений enum'a;
 - 2) Заполнить enum;
 - 3) Определить структуру дерева и функций для его обработки;
 - 4) Реализовать функции для обработки дерева;
 - 5) Реализовать основную функцию интерфейса для пользователя, используя конечный автомат;
 - 6) Реализовать функции вывода справки, вывода возможных значений enum'a, добавления нового узла, текстовой визуализация дерева, удаления узла, определения значения листа двоичного дерева, имеющего минимальную глубину;
 - 7) Протестировать программу.

L	Іункты 1	l-7	′ отчета	составляются	строго с	o (начала лав	боратс	рной	работы.

8.	Распечатка протокола преподавателем)	(подклеить листинг	окончательного	варианта программ	иы с тестовыми при	мерами, подписанный

певого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значенины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный повставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы	№	Лаб. или дом.	Дата	Время	Событие	Действие по исправлению	Примечание
Выводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значлевого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значаершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный пояставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы певого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсли в нем нет ни одного узла степени 1.							
Выводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значлевого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значвершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный пояставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсли в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значавого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значавершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значавого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значавершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значавого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значавершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значавого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значавершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значавого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значавершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значавого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значавершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значлевого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значлевершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный повставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Зыводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значавого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значавершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы цевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсии в нем нет ни одного узла степени 1.							
Выводы: Двоичное дерево, у которого для каждой вершины t_i справедливо утверждение, что все значлевого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значлевершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный пояставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы певого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревсли в нем нет ни одного узла степени 1.							
вевого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значения t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы вевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-дересли в нем нет ни одного узла степени 1.	Замеч	нания а	по	о существу ра	аботы:		
певого поддерева меньше значения вершины t_i , а все значения правого поддерева больше значения t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный поставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы певого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-дерессии в нем нет ни одного узла степени 1.							
вершины t_i , называется двоичным деревом поиска. Такое дерево предоставляет эффективный повставку и удаление элементов за $O(\log n)$. AVL-деревом называется двоичное дерево, в котором вы вевого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-дерессии в нем нет ни одного узла степени 1.							
певого и правого поддеревьев отличаются не более, чем на 1. Двоичное дерево называется В-деревски в нем нет ни одного узла степени 1.	верши	ны t_i , в	называет	гся двоичн	ым деревом поисн	ка. Такое дерево предоставляет	эффективный по
	тевого	о и прав	ого под	деревьев о	тличаются не боле	ее, чем на 1. Двоичное дерево н	называется В-дере
Недочёты при выполнении задания могут быть устранены следующим образом:							
Недочёты при выполнении задания могут быть устранены следующим образом:							
	——	ёты при	і выполн	ении задаг	ния могут быть уст	ранены следующим образом:	
		•					

9. Дневник отладки должен содержать дату и время сеансов отладки и основные события (ошибки в сценарии и программе,