Convex optimization overview

Mathématiques Informatique et Statistique Appliquées (MISA) Université d'Antananarivo

Mathematical optimization problem

minimize
$$f_0(x)$$

s.t $f_i(x) \le 0$, $i = 1,..., m$
 $g_i(x) = 0$, $i = 1,..., p$

- $\triangleright x \in \mathbb{R}^n$ is the optimization variable
- $ightharpoonup f_0$ is the **objective or cost function**
- ► f_i are the **inequality constraint** functions
- $ightharpoonup h_i$ are the **equality constraint** functions

- x represents some action like:
 - trades in a portfolio
 - airplane control surface deflections
 - schedule or assignment
 - resource allocation
 - transmitted signal
- ▶ Constraints limit actions or impose conditions on outcome.
- ▶ The smaller the objective $f_0(x)$, the better. It might be
 - ► total cost (or negative profit)
 - deviation from desired or target outcome
 - fuel use
 - risk

Examples

Engineering design

- x represents a design (of a circuit, device, structure,...).
- Constraints come from manufacturing process and performance requirements.
- ▶ The objective $f_0(x)$ is combination of cost, weight, power.

Statistics/machine learning

- x represents the parameters in a model.
- ► Constraints impose requirements on model parameters(e.g., nonnegativity).
- The objective $f_0(x)$ is the prediction error on some observed data(and possibly a term that penalizes model complexity).

Inversion

- \triangleright x is something we want to estimate/reconstruct, given some measurement y.
- Constraints come from prior knowledge about x.
- \triangleright Objective $f_0(x)$ measures deviation between predicted and actual measurements.

Worst-case analysis (pessimization)

- x represents actions or parameters out of our control(and possibly under the control of an adversary).
- Constraints limit the possible values of the parameters.
- Minimizing $-f_0(x)$ finds worst possible parameter values.

- ▶ Optimization problems are everywhere.
- ▶ But most of them are **intractable** (cannot be solved).
- ▶ there is an exception : convex optimization problems which can (generally) be solved.

Convex optimization problem

minimize
$$f_0(x)$$

s.t $f_i(x) \leq 0, i = 1,..., m$
 $Ax = b$

- $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable
- $ightharpoonup f_i, i = 0, ..., m$ are convex functions.
- ► The equality constraints are affine.

Motivations

- ▶ Beautiful, nearly complete theory (duality, optimality conditions...)
- ► Effective algorithms and methods (in theory and in practice)
 - get global solution
 - polynomial complexity
- Conceptual unification of many methods
- ► Lots of applications
 - machine learning, statisticsl
 - finance
 - supply chain, revenue management, advertising
 - control
 - signal processing (image, sound ...)
 - networking
 - circuit design
 - combinatorial optimization
 - quantum mechanics
 - flux-based analysis

The approach

- ► Recognize/formulate problems as a convex optimization problem
- ► Then, you can (usually) solve it (numrically).

Some tricks:

- change of variables
- ▶ approximation of true objective, constraints
- relaxation: ignore terms or constraints you can't handle

Solvers

Medium-scale

- ▶ 1000s–10000s variables, constraints
- reliably solved by interior-point methods on single machine(especially for problems in standard cone form), exploit problem sparsity
- not quite a technology, but getting there
- ▶ used in control, finance, engineering design, ...

Large-scale

- ► 100k 1B variables, constraints
- solved using custom often problem specific methods (limited memory BFGS, stochastic subgradient, block coordinate descent, operator splitting methods)
- require custom implementation, tuning for each problem
- used in machine learning, image processing,

Modeling languages

- ▶ high level language support for convex optimization
 - describe problem in high level language
 - description automatically transformed to a standard form
 - solved by standard solver, transformed back to original form
- implementations:
 - YALMIP, CVX (Matlab)
 - CVXPY (Python)
 - Convex.jl (Julia)
 - CVXR (R)