Report of Analysis

Huang LiChuang of Wie-Biotech

Contents

1	第一部分	1											
	1.1 ETCM 中药丹参的化合物以及靶点基因	1											
	1.1.1 获取 ETCM 网站数据	1											
	1.1.2 获取 HERB 网站数据	2											
	1.1.3 获取 PubChem 数据库关于化合物的别名	2											
	1.1.4 以 HERB 的数据补充 ETCM 的数据	2											
	1.1.5 总结	3											
2	第二部分	3											
	2.1 在 genecards 网站上检索胃癌相关的基因	3											
3	第三部分												
	3.1 使用 CellMiner 数据库的 NCI-60 数据集	5											
	3.2 药物敏感性分析												
4	第四部分	7											
	4.1 使用 BiomaRt 注释靶点基因	7											
	4.2 蛋白互作和 Hubgenes 筛选	13											
	4.2.1 蛋白互作	13											
	4.2.2 Hubgenes 筛选	14											
	4.3 使用 clusterProfiler 富集分析	15											
\mathbf{R}	eference	24											

1 第一部分

1.1 ETCM 中药丹参的化合物以及靶点基因

1.1.1 获取 ETCM 网站数据

通过编写 R 函数以快速获取 ETCM 网站的中药和对应靶点数据。

丹参的 96 种化合物和相关靶基因概览。其中、靶点基因(非重复)共 216 个。(对应文件为 ./96_components.txt, ./components_and_target_genes.csv)

```
## # A tibble: 532 x 3
##
      components
                               genes links
      <chr>
                               <chr> <chr>
##
   1 Sitosterol, Î' -Sitosterol AKR1C1 /ETCM/index.php/Home/Index/jyjb_details.html?gene=AKR1C1
##
   2 Sitosterol,Î' -Sitosterol AKR1C2 /ETCM/index.php/Home/Index/jyjb_details.html?gene=AKR1C2
##
   3 Sitosterol, Î' -Sitosterol AR
##
                                       /ETCM/index.php/Home/Index/jyjb_details.html?gene=AR
##
   4 Sitosterol, Î' -Sitosterol CLEC4E /ETCM/index.php/Home/Index/jyjb_details.html?gene=CLEC4E
   5 Sitosterol,Î' -Sitosterol ESR1
                                       /ETCM/index.php/Home/Index/jyjb_details.html?gene=ESR1
   6 Sitosterol,Î' -Sitosterol ESR2
                                       /ETCM/index.php/Home/Index/jyjb_details.html?gene=ESR2
   7 Sitosterol,Î' -Sitosterol GABRA1 /ETCM/index.php/Home/Index/jyjb_details.html?gene=GABRA1
   8 Sitosterol, Î'-Sitosterol GABRA2 /ETCM/index.php/Home/Index/jyjb_details.html?gene=GABRA2
##
   9 Sitosterol,Î' -Sitosterol GABRA3 /ETCM/index.php/Home/Index/jyjb_details.html?gene=GABRA3
## 10 Sitosterol, Î' -Sitosterol GABRA4 /ETCM/index.php/Home/Index/jyjb details.html?gene=GABRA4
## # i 522 more rows
```


由于 ETCM 缺少相当一部分化合物的靶点数据,因而使用 HERB 数据库补充。(对于丹参,HERB 包含更多的化合物)(对应文件为./HERB_compounds_target.tsv)

1.1.3 获取 PubChem 数据库关于化合物的别名

ETCM 数据库是个封闭的网站,不包含和任何其它数据库相同的 ID 信息。为了以 HERB 数据库的靶点数据补充 ETCM 的化合物靶点数据,根据 PubChem CID (HERB 数据库提供) 搜索 PubChem 获得化合物的别名。(对应文件为 ./synos.tsv)

1.1.4 以 HERB 的数据补充 ETCM 的数据

以下是可以在 HERB 找到靶点基因的化合物,但是在 ETCM 找不到靶点基因的化合物:

```
##
            cid
                                syno
   1: 11425923 Dihydrotanshinone I
##
   2: 11600642
                           Danshensu
##
    3:
          68081
                     Isoimperatorin
##
##
   4: 44425165 Neocryptotanshinone
         160254
                   Cryptotanshinone
##
    5:
  6: 11629084
                       Danshensuan B
##
   7:
##
        3082765
                   Dehydromiltirone
  8:
         626608 Isocryptotanshinone
##
  9:
         622085
                    Przewaquinone B
##
## 10:
         126072
                       Tanshindiol C
                         Salvilenone
## 11:
         389885
## 12: 5321622
                         Tanshinol A
## 13:
                        Tanshinone I
         114917
```

尽管如此,由于 ETCM 缺乏其他数据库的索引,还是有一部分的化合物不知道来源,所以无法从其他数据库得到靶点基因的补充:

##	[1]	"Methylene Tanshinquinone"	"Dihydroisotanshinone I"	"Tanshinlactone"
##	[4]	"Salvianolic Acid B"	"Danshexinkum D"	"Danshexinkum A"
##	[7]	"Methyl Tanshinonate"	"Ethyl Lithospermate"	"Salvinone"
##	[10]	"Isotanshinoneii B"	"Prgewaquinone A"	"Danshenol A"
##	[13]	"Danshenspiroketallactone"	"Danshenxinkun A"	"Danshenxinkun B"
##	[16]	"Danshenxinkun C"	"Danshenxinkun D"	"Î" 1-Dehydrotanshino
##	[19]	"Dihydroisotanshinone I"	"1,2-Dihydrotanshiquinone"	"Epidanshenspiroketal:
##	[22]	"3- $\hat{1}$ ' -Hydroxymethylenetanshiquinone'	' "3Î '-Hydroxytanshinone Iia"	"3Î' -Hydroxytanshi:
##	[25]	"Isotanshinone I"	"Isotanshinone Iia"	"Lithospermate B"
##	[28]	"Magnesium Lithospermate B"	"Methyl Tanshinonate"	"Monomethyl Lithosper
##	[21]	"Nortanshinone"	UCalmiamalia Aaid DU	UG-1
		Not cansillione	"Salvianolic Acid B"	"Salvianolic Acid C"
##		"Salvianolic Acid G"	"Salvinone"	"Tanshindiol A"
	[34]			

1.1.5 总结

HERB 数据库包含更多的化合物和靶点信息,所以以下分析以 HERB 数据库为主。HERB 记录的丹参的化合物有 330 个,能找到靶点基因信息的化合物有 187 个。(对应文件为 ./HERB_compounds_of_danshen.xlsx,./HERB_targets_of_compounds.xlsx)

2 第二部分

2.1 在 genecards 网站上检索胃癌相关的基因

在网站 Genecards 检索胃癌,获取相关数据后,根据 Relevance score 进行筛选 (> 5)。

所有胃癌相关基因概览,基因数量为 4475 (对应文件为 ./all_gastric_Cancer_related_genes.csv)

## # A tibble: 4,475 x	8
------------------------	---

#	#	Gene.Symbol	Description	Category	${\tt Uniprot.ID}$	Gifts	GC.Id	Re
#	#	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>	
#	#	1 CDH1	Cadherin 1	Protein Coding	P12830	56	GC16P068737	
#	#	2 BRCA2	BRCA2 DNA Repair Associated	Protein Coding	P51587	54	GC13P032315	
#	#	3 BRCA1	BRCA1 DNA Repair Associated	Protein Coding	P38398	57	GC17M043044	
#	#	4 TP53	Tumor Protein P53	Protein Coding	P04637	60	GC17M007661	
#	#	5 APC	APC Regulator Of WNT Signaling Pathway	Protein Coding	P25054	56	GC05P112707	
#	#	6 CHEK2	Checkpoint Kinase 2	Protein Coding	096017	61	GC22M028687	
#	#	7 PALB2	Partner And Localizer Of BRCA2	Protein Coding	Q86YC2	51	GC16M023603	
#	#	8 ATM	ATM Serine/Threonine Kinase	Protein Coding	Q13315	60	GC11P108222	
#	#	9 MLH1	MutL Homolog 1	Protein Coding	P40692	56	GC03P036993	

i 4,465 more rows

根据丹参靶点基因过滤数据集,即,将筛选过胃癌基因数据和丹参数据根据基因合并。

韦恩图见 Figure 1,说明: 韦恩图分三个区域,左侧加上中间区域对应 187 个化合物所有靶点基因;中间区 域加上右侧区域对应所有胃癌相关基因。(对应文件为 ./figs/venn_plot.pdf)

Figure 1: 靶点基因和胃癌相关基因交集韦恩图

187 个化合物和胃癌相关基因的交集数据概览(包含交集基因以及对应化合物), 化合物和靶 点基因一一对应, 化合物共 187 个, 非重复基因 273 个, 与上述韦恩图一致。(对应文件为 ./gastric_Cancer_related_genes_Intersect_with_targetGenes_components.csv)

##	#	Α	tibble:	2,083	Х	9
----	---	---	---------	-------	---	---

##		components	Gene.Symbol	Description	Category	Uniprot.ID	Gifts	GC.Id I
##		<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>
##	1	(-)-Epicedrol	ACHE	Acetylchol~	Protein~	P22303	53	GC07~
##	2	(-)-Epicedrol	DPP4	Dipeptidyl~	Protein~	P27487	56	GC02~
##	3	(-)-beta-Phellandrene	ACHE	Acetylchol~	Protein~	P22303	53	GC07~
##	4	(-)-beta-Phellandrene	DPP4	Dipeptidyl~	Protein~	P27487	56	GC02~
##	5	(-)-beta-Phellandrene	NR3C1	Nuclear Re~	Protein~	P04150	56	GC05~
##	6	(-)-beta-Phellandrene	PRSS1	Serine Pro~	Protein~	P07477	52	GC07~
##	7	$(1\mathtt{R}, 4\mathtt{R}, 5\mathtt{S}) - 1 - \mathtt{isopropyl} - 4 - \mathtt{methyl} - 4 - \mathtt{bicyc} \sim$	ACHE	Acetylchol~	Protein~	P22303	53	GC07~
##	8	$(1\mathtt{R}, 4\mathtt{R}, 5\mathtt{S}) - 1 - \mathtt{isopropyl} - 4 - \mathtt{methyl} - 4 - \mathtt{bicyc} \sim$	DPP4	Dipeptidyl~	Protein~	P27487	56	GC02~
##	9	$(1\mathtt{R}, 4\mathtt{S}, 4\mathtt{a}\mathtt{R}, 8\mathtt{a}\mathtt{R}) - 4 - \mathtt{isopropyl} - 1, 6 - \mathtt{dimethy} \sim$	ACHE	Acetylchol~	Protein~	P22303	53	GC07~
##	10	$(1\mathtt{R}, 4\mathtt{S}, 4\mathtt{aR}, 8\mathtt{aR}) - 4 - \mathtt{isopropyl} - 1, 6 - \mathtt{dimethy} \sim$	AR	Androgen R~	Protein~	P10275	58	GCOX~
##	# i	i 2,073 more rows						

3 第三部分

3.1 使用 CellMiner 数据库的 NCI-60 数据集

下载并预处理 NCI-60 的数据以备药物敏感性分析。

Cisplatin 活性数据,包含60个癌细胞的活性 IC50 Z-score:

A tibble: 1 x 61

Drug name` `BR:MCF7` `BR:MDA-MB-231` `BR:HS 578T` `BR:BT-549` `BR:T-47D` `CNS:SF-268` `CNS:SF-295 <chr> <chr>> <chr> <chr> <chr> <chr>> <chr> ## 1 Cisplatin 0.26 -1.8 -0.56 -0.29 -1.32 1.42 1.15

i 51 more variables: `CNS:SNB-75` <chr>, `CNS:U251` <chr>, `CO:COLO 205` <chr>, `CO:HCC-2998` <chr

`CO:HCT-15` <chr>, `CO:HT29` <chr>, `CO:KM12` <chr>, `CO:SW-620` <chr>, `LE:CCRF-CEM` <chr>, `LE
`LE:K-562` <chr>, `LE:MOLT-4` <chr>, `LE:RPMI-8226` <chr>, `LE:SR` <chr>, `ME:LOX IMVI` <chr>, `LE

`ME:M14` <chr>, `ME:SK-MEL-2` <chr>, `ME:SK-MEL-28` <chr>, `ME:SK-MEL-5` <chr>, `ME:UACC-257` <chr

`ME:MDA-MB-435` <chr>, `ME:MDA-N` <chr>, `LC:A549/ATCC` <chr>, `LC:EKVX` <chr>, `LC:HOP-62` <chr

`LC:NCI-H226` <chr>, `LC:NCI-H23` <chr>, `LC:NCI-H322M` <chr>, `LC:NCI-H460` <chr>, `LC:NCI-H522

`OV:OVCAR-3` <chr>, `OV:OVCAR-4` <chr>, `OV:OVCAR-5` <chr>, `OV:OVCAR-8` <chr>, `OV:SK-OV-3` <ch

NCI-60 表达数据,包含 60 个癌细胞的基因表达数据 (FPKM):

A tibble: 270 x 67

##		`Gene name d`	`Entrez gene io	d e`	`Chromosome f`	`Start f`	`End f`	`Cytoband f`	`BR:MCF7`	`BR:M
##		<chr></chr>	<0	dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	
##	1	PARK7	11	1315	1	8021713	8045342	1p36.23	5.42	
##	2	PIK3CD	Ę	5293	1	9711789	9789172	1p36.2	0.132	
##	3	MTOR	2	2475	1	11166587	11322608	1p36.2	2.54	
##	4	CTRC	11	1330	1	15764937	15773153	1p36.21	0	
##	5	CASP9		842	1	15817895	15851285	1p36.21	0.669	
##	6	LCK	3	3932	1	32716839	32751768	1p34.3	0	
##	7	AKR1A1	10	0327	1	46016454	46035723	1p33-p32	3.38	
##	8	JUN	3	3725	1	59246462	59249785	1p32-p31	0.76	
##	9	GCLM	2	2730	1	94350755	94375154	1p22.1	1.02	
##	10	VCAM1	7	7412	1	101185195	101204601	1p32-p31	0	

i 260 more rows

i 58 more variables: `BR:BT-549` <dbl>, `BR:T-47D` <dbl>, `CNS:SF-268` <dbl>, `CNS:SF-295` <dbl>,

`CNS:SNB-19` <dbl>, `CNS:SNB-75` <dbl>, `CNS:U251` <dbl>, `CO:COLO 205` <dbl>, `CO:HCC-2998` <db

`CO:HCT-15` <dbl>, `CO:HT29` <dbl>, `CO:KM12` <dbl>, `CO:SW-620` <dbl>, `LE:CCRF-CEM` <dbl>, `LE

`LE:K-562` <dbl>, `LE:MOLT-4` <dbl>, `LE:RPMI-8226` <dbl>, `LE:SR` <dbl>, `ME:LOX IMVI` <dbl>, `I

`ME:M14` <dbl>, `ME:SK-MEL-2` <dbl>, `ME:SK-MEL-28` <dbl>, `ME:SK-MEL-5` <dbl>, `ME:UACC-257` <d

`ME:MDA-MB-435` <dbl>, `ME:MDA-N` <dbl>, `LC:A549/ATCC` <dbl>, `LC:EKVX` <dbl>, `LC:HOP-62` <dbl

3.2 药物敏感性分析

将药物活性数据和基因表达数据关联分析 (Pearson)。

其中有显著性意义的有 39 个基因 (p < 0.05), 可视化见 Figure 2 (对应文件为 figs/pearsonTest.pdf)。 这意味着,与顺铂协作的靶点基因有 39 个。

Figure 2: 关联性分析回归曲线图

将这 39 个显著基因的分析数据与 187 个化合物及其靶点基因数据合并,得到作用于显著基因的化合物数据。 关联性分析(Pearson)结果概览(已包含基因和对应化合物数据),(对应文件为./pearsonTest_allResults.csv,

./pearsonTest_results_with_components.csv) 其中,协同顺铂靶基因的化合物共有 73 个。

A tibble: 117 x 11

##		name	cor	<pre>p.value</pre>	components	Description	${\tt Category}$	${\tt Uniprot.ID}$	Gifts	GC.Id 1
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>
##	1	AHR	-0.283	0.0287	kaempferol	Aryl Hydrocarbo~	Protein~	P35869	53	GC07~
##	2	BAX	0.267	0.0393	aloeemodin	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	3	BAX	0.267	0.0393	cryptotanshinone	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	4	BAX	0.267	0.0393	kaempferol	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	5	BAX	0.267	0.0393	rhein	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	6	BAX	0.267	0.0393	aucubin	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	7	BAX	0.267	0.0393	tanshinone i	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	8	BAX	0.267	0.0393	beta-sitosterol	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	9	BAX	0.267	0.0393	protocatechuic acid	BCL2 Associated~	Protein~	Q07812	57	GC19~
##	10	BCL2L1	-0.256	0.0480	15,16-dihydrotanshinone i	BCL2 Like 1	Protein~	Q07817	54	GC20~

i 107 more rows

4 第四部分

4.1 使用 BiomaRt 注释靶点基因

使用 R 包 biomaRt 获取靶点基因的 Entrezgene id 以便后续分析。

```
## # A tibble: 39 x 3
     ensembl_gene_id entrezgene_id hgnc_symbol
##
                             <int> <chr>
##
     <chr>
  1 ENSG00000106546
                               196 AHR
## 2 ENSG00000087088
                               581 BAX
## 3 ENSG00000171552
                              598 BCL2L1
## 4 ENSG00000129473
                             599 BCL2L2
## 5 ENSG0000183625
                             1232 CCR3
## 6 ENSG00000175315
                              1474 CST6
## 7 ENSG00000162438
                            11330 CTRC
## 8 ENSG0000141086
                             1506 CTRL
## 9 ENSG00000277571
                              1991 ELANE
## 10 ENSG0000012061
                              2067 ERCC1
```

将注释数据与筛选的化合物的靶点基因数据合并,并按照化合物分组。

各个化合物包含的显著性靶点基因数量信息:

i 29 more rows

[1] 1

```
## $`(2R)-3-(3,4-dihydroxyphenyl)-2-[(Z)-3-(3,4-dihydroxyphenyl)acryloyl]oxy-propionic acid`
## [1] 1
##
## $`(2S,3S)-2-(3,4-dihydroxyphenyl)-7-hydroxy-4-[(E)-3-hydroxy-3-oxoprop-1-enyl]-2,3-dihydrobenzofuran
```

```
##
## $\(6S)-6-(hydroxymethyl)-1,6-dimethyl-8,9-dihydro-7H-naphtho[8,7-g]benzofuran-10,11-dione\)
## [1] 1
##
## $`(E)-3-(3-hydroxy-4,5-dimethoxy-phenyl)acrylic acid`
## [1] 1
##
## $`(E)-3-[2-(3,4-dihydroxyphenyl)-7-hydroxy-benzofuran-4-yl]acrylic acid`
## [1] 1
##
## $`(R)-p-Menth-1-en-4-ol`
## [1] 2
##
## $`1-methyl-8,9-dihydro-7H-naphtho[5,6-g]benzofuran-6,10,11-trione`
## [1] 1
##
## $`1,2-DT-Quinone`
## [1] 1
## $`1,2,5,6-tetrahydrotanshinone`
## [1] 1
##
## $`15,16-dihydrotanshinone i`
## [1] 1
##
## $`2-isopropyl-8-methylphenanthrene-3,4-dione`
## [1] 1
##
## $`3-beta-Hydroxymethyllenetanshiquinone`
## [1] 1
##
## $`3beta-Hydroxytanshinone IIA`
## [1] 1
## $`3 -hydroxytanshinone a`
## [1] 1
##
## $`4-methylenemiltirone`
## [1] 1
##
## $`7-oxoroyleanone2`
## [1] 1
```

```
##
## $aloeemodin
## [1] 3
##
## $`alpha-amyrin`
## [1] 2
##
## $aucubin
## [1] 1
##
## $`beta-sitosterol`
## [1] 4
##
## $`caffeic acid`
## [1] 2
## $carnosol
## [1] 2
## $`chlorogenic acid`
## [1] 1
##
## $cryptotanshinone
## [1] 3
##
## $cyanidol
## [1] 1
##
## $`dan-shexinkum b`
## [1] 1
##
## $`dan-shexinkum d`
## [1] 1
## $`Danshenol A`
## [1] 1
##
## $danshensu
## [1] 1
##
## $`Dehydrotanshinone II A`
## [1] 1
```

```
##
## $dihydroisotanshinone
## [1] 1
##
## $dihydrotanshinlactone
## [1] 1
## $`dihydrotanshinone i`
## [1] 2
##
## $dihydrotanshinone
## [1] 1
##
## $dimethyllithospermate
## [1] 1
## $DTY
## [1] 1
##
## $EIC
## [1] 1
##
## $`ferulic acid`
## [1] 1
##
## $formyltanshinone
## [1] 1
##
## $GLY
## [1] 2
##
## $`isoferulic acid`
## [1] 2
## $`isotanshinone i`
## [1] 1
##
## $kaempferol
## [1] 5
##
## $labiatenicacid
## [1] 1
```

```
##
## $Methylenetanshinquinone
## [1] 1
##
## $methylrosmarinate
## [1] 1
## $methyltanshinonate
## [1] 1
##
## $`Mono-O-methylwightin`
## [1] 1
##
## $Nortrachelogenin
## [1] 1
## $`oleanolic acid`
## [1] 2
##
## $`palmitic acid`
## [1] 3
##
## $PHA
## [1] 1
##
## $Poriferasterol
## [1] 1
##
## $`prolithospermic acid`
## [1] 1
##
## $`protocatechuic acid`
## [1] 2
## $`przewalskin a`
## [1] 1
##
## $`przewalskin b`
## [1] 1
##
## $`Przewaquinone B`
## [1] 1
```

```
##
## $`przewaquinone f`
## [1] 1
##
## $rhein
## [1] 1
##
## $`Rosemary acid`
## [1] 1
##
## $rutin
## [1] 2
##
## $`Sal A`
## [1] 2
## $`salvianic acid c`
## [1] 1
## $`salvianolic acid a`
## [1] 4
##
## $Salvigenin
## [1] 1
##
## $`salvilenone `
## [1] 1
##
## $Tanshilactone
## [1] 1
##
## $tanshinaldehyde
## [1] 1
## $`Tanshinol A`
## [1] 1
##
## $`tanshinone i`
## [1] 18
##
## $`tanshinone `
## [1] 1
```

##

\$`Z-8-Hexadecen-1-ol acetate`

[1] 1

除了 tanshinone i, 其他化合物都不超过 5 个靶点基因。

4.2 蛋白互作和 Hubgenes 筛选

4.2.1 蛋白互作

R 包 STRINGdb 提供网站https://www.string-db.org/的 API, 用以绘制蛋白质互作网络。可视化的蛋白质互作网络图为见图3 (对应文件为 figs/protein_interaction.pdf)

Figure 3: 药物敏感性基因的蛋白质互作图

4.2.2 Hubgenes 筛选

利用 Cytoscape 的插件 CytoHubba¹ 提供的 MCC 算法计算 Hub 基因得分(这里 MCC 算法被集成到 R 中,独立计算)。

以下为结果概览: (对应文件为 ./tanshinone.iMCC_score.xlsx)

A tibble: 18 x 15

##		genes	MCC_score	STRING_id	cor	p.value	components	Description	Category	Uniprot.ID	Gifts	GC.Id
##		<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<chr></chr>
##	1	PPARG	13	9606.ENS~	-0.396	0.00173	tanshinon~	Peroxisome~	Protein~	P37231	60	GC03~
##	2	ITGAM	12	9606.ENS~	0.338	0.00834	tanshinon~	Integrin S~	Protein~	P11215	54	GC16~
##	3	ST14	9	9606.ENS~	-0.290	0.0247	tanshinon~	ST14 Trans~	Protein~	Q9Y5Y6	55	GC11~
##	4	PRSS8	9	9606.ENS~	-0.297	0.0210	tanshinon~	Serine Pro~	Protein~	Q16651	52	GC16~
##	5	TMPRS~	9	9606.ENS~	-0.350	0.00604	tanshinon~	Transmembr~	Protein~	015393	54	GC21~
##	6	ELANE	9	9606.ENS~	0.310	0.0161	tanshinon~	Elastase, ~	Protein~	P08246	58	GC19~
##	7	TMPRS~	8	9606.ENS~	-0.361	0.00462	tanshinon~	Transmembr~	Protein~	Q9NRS4	46	GC11~
##	8	HGF	7	9606.ENS~	0.360	0.00475	tanshinon~	Hepatocyte~	Protein~	P14210	58	GC07~
##	9	ITGA6	7	9606.ENS~	-0.365	0.00417	tanshinon~	Integrin S~	Protein~	P23229	57	GC02~
##	10	CTRL	7	9606.ENS~	0.401	0.00148	tanshinon~	Chymotryps~	Protein~	P40313	47	GC16~
##	11	TMPRS~	3	9606.ENS~	0.323	0.0118	tanshinon~	Transmembr~	Protein~	Q6ZMR5	43	GC04~
##	12	GRB7	3	9606.ENS~	-0.366	0.00401	tanshinon~	Growth Fac~	Protein~	Q14451	50	GC17~
##	13	KLK6	2	9606.ENS~	-0.359	0.00491	tanshinon~	Kallikrein~	Protein~	Q92876	51	GC19~
##	14	MYBL2	1	9606.ENS~	0.280	0.0305	tanshinon~	MYB Proto-~	Protein~	P10244	49	GC20~
##	15	BAX	1	9606.ENS~	0.267	0.0393	tanshinon~	BCL2 Assoc~	Protein~	Q07812	57	GC19~
##	16	CST6	1	9606.ENS~	-0.272	0.0355	tanshinon~	Cystatin E~	Protein~	Q15828	48	GC11~
##	17	CTRC	1	9606.ENS~	0.325	0.0112	tanshinon~	Chymotryps~	Protein~	Q99895	52	GC01~
##	18	ERCC1	NA	9606.ENS~	0.260	0.0444	tanshinon~	ERCC Excis~	Protein~	P07992	53	GC19~

i 2 more variables: ensembl_gene_id <chr>, entrezgene_id <int>

将结果可视化, 见 Figure 4

Figure 4: MCC score of gene targets of Tanshinone i

4.3 使用 clusterProfiler 富集分析

tanshinone i 的富集分析用 MCC top 10 的靶点基因进行,其他化合物的靶点基因直接以关联分析筛选过的基因富集。

以下为 tanshinone i 的 KEGG 和 GO 富集图:

Figure 5: KEGG enrichment

Figure 6: GO enrichment

图片数量较多,不一一展示 (KEGG 富集共 73 个, GO 富集共 73)。(对应文件为 ./enrichGO, ./enrichKEGG) 对富集图的解释,可以参考文献 2 。

说明: KEGG 富集分析都有结果; 但是对于 GO 富集分析 (BP, CC 或 MF) 中, 个别化合物有靶点基因, 但未映射到通路中的基因, 所以无结果, 这些是 (TRUE 表示有结果, 而 FALSE 表示无结果):

```
## $\(2R)-3-(3,4-dihydroxyphenyl)-2-[(Z)-3-(3,4-dihydroxyphenyl)acryloyl]oxy-propionic acid\
```

BP CC MF

TRUE TRUE TRUE

##

BP CC MF

TRUE TRUE TRUE

##

\$\(6S)-6-(hydroxymethyl)-1,6-dimethyl-8,9-dihydro-7H-naphtho[8,7-g]benzofuran-10,11-dione

```
ΒP
       CC
##
              MF
## TRUE TRUE TRUE
##
## $`(E)-3-(3-hydroxy-4,5-dimethoxy-phenyl)acrylic acid`
       CC
    BP
## TRUE TRUE TRUE
##
## $`(E)-3-[2-(3,4-dihydroxyphenyl)-7-hydroxy-benzofuran-4-yl]acrylic acid`
       CC
## TRUE TRUE TRUE
##
## $`(R)-p-Menth-1-en-4-ol`
    BP CC
              MF
##
## TRUE TRUE TRUE
##
## $`1-methyl-8,9-dihydro-7H-naphtho[5,6-g]benzofuran-6,10,11-trione`
           CC
   TRUE FALSE TRUE
##
##
## $`1,2-DT-Quinone`
   BP CC
## TRUE TRUE TRUE
##
## $`1,2,5,6-tetrahydrotanshinone`
    BP CC
## TRUE TRUE TRUE
##
## $`15,16-dihydrotanshinone i`
    BP CC MF
## TRUE TRUE TRUE
##
## $`2-isopropyl-8-methylphenanthrene-3,4-dione`
##
    BP
        CC
              MF
## TRUE TRUE TRUE
## $`3-beta-Hydroxymethyllenetanshiquinone`
       CC
    BP
              MF
##
## TRUE TRUE TRUE
## $`3beta-Hydroxytanshinone IIA`
    BP
         CC
##
              MF
## TRUE TRUE TRUE
```

```
##
## $`3 -hydroxytanshinone a`
## BP CC
              MF
## TRUE TRUE TRUE
## $`4-methylenemiltirone`
   BP
         CC
## TRUE TRUE TRUE
## $`7-oxoroyleanone2`
           CC
     BP
## TRUE FALSE TRUE
##
## $aloeemodin
   BP CC
## TRUE TRUE TRUE
## $`alpha-amyrin`
   BP CC
## TRUE TRUE TRUE
##
## $aucubin
   BP
       CC
## TRUE TRUE TRUE
## $`beta-sitosterol`
   BP CC
## TRUE TRUE TRUE
##
## $`caffeic acid`
   BP CC
## TRUE TRUE TRUE
##
## $carnosol
    BP CC
## TRUE TRUE TRUE
##
## $`chlorogenic acid`
     BP
           CC
##
                 MF
## TRUE FALSE TRUE
```

##

\$cryptotanshinone

```
## BP CC MF
```

TRUE TRUE TRUE

##

\$cyanidol

BP CC MF

TRUE TRUE TRUE

##

\$`dan-shexinkum b`

BP CC MF

TRUE TRUE TRUE

##

\$`dan-shexinkum d`

BP CC MF

TRUE TRUE TRUE

##

\$`Danshenol A`

BP CC MF

TRUE TRUE TRUE

##

\$danshensu

BP CC MF

TRUE TRUE TRUE

##

\$`Dehydrotanshinone II A`

BP CC MF

TRUE TRUE TRUE

##

\$dihydroisotanshinone

BP CC MF

TRUE TRUE TRUE

##

\$dihydrotanshinlactone

BP CC MF

TRUE TRUE FALSE

##

\$`dihydrotanshinone i`

BP CC MF

TRUE TRUE TRUE

##

\$dihydrotanshinone

BP CC MF

TRUE TRUE TRUE

```
##
## $dimethyllithospermate
    BP
         CC
               MF
## TRUE TRUE TRUE
##
## $DTY
    BP
         CC
## TRUE TRUE TRUE
##
## $EIC
    BP
        CC
               MF
## TRUE TRUE TRUE
##
## $`ferulic acid`
    BP
        CC
## TRUE TRUE TRUE
## $formyltanshinone
    BP
        CC
## TRUE TRUE TRUE
##
## $GLY
##
    BP
         CC
## TRUE TRUE TRUE
## $`isoferulic acid`
        CC
    BP
               MF
## TRUE TRUE TRUE
##
## $`isotanshinone i`
    BP
        CC
               MF
## TRUE TRUE TRUE
##
## $kaempferol
     ВP
         CC
## TRUE TRUE TRUE
##
## $labiatenicacid
     ΒP
##
            CC
##
  TRUE FALSE TRUE
##
```

\$Methylenetanshinquinone

```
## BP CC MF
## TRUE TRUE TRUE
##
## $methylrosmarinate
## BP CC MF
## TRUE TRUE TRUE
## $methyltanshinonate
## BP CC MF
## TRUE TRUE TRUE
##
## $`Mono-O-methylwightin`
## BP CC MF
## TRUE TRUE TRUE
##
## $Nortrachelogenin
   BP CC
## TRUE TRUE TRUE
##
## $`oleanolic acid`
## BP CC MF
## TRUE TRUE TRUE
##
## $`palmitic acid`
## BP CC MF
## TRUE TRUE TRUE
##
## $PHA
##
   BP CC MF
## TRUE TRUE TRUE
##
## $Poriferasterol
     BP CC
##
                MF
## TRUE FALSE TRUE
## $`prolithospermic acid`
## BP CC MF
## TRUE TRUE TRUE
## $`protocatechuic acid`
```

BP CC

TRUE TRUE TRUE

MF

```
##
## $`przewalskin a`
     BP
           CC
                 MF
##
##
  TRUE FALSE TRUE
##
## $`przewalskin b`
     BP
           CC
## TRUE FALSE TRUE
## $`Przewaquinone B`
   BP CC
              MF
## TRUE TRUE TRUE
##
## $`przewaquinone f`
    BP CC
              MF
## TRUE TRUE TRUE
## $rhein
   BP CC
## TRUE TRUE TRUE
##
## $`Rosemary acid`
     BP
           CC
##
## TRUE FALSE TRUE
## $rutin
   BP CC
## TRUE TRUE TRUE
##
## $`Sal A`
   BP CC
##
## TRUE TRUE TRUE
##
## $`salvianic acid c`
    BP
         CC
## TRUE TRUE TRUE
##
## $`salvianolic acid a`
   BP CC
              MF
## TRUE TRUE TRUE
```

##

\$Salvigenin

```
ΒP
          CC
               MF
##
## TRUE TRUE TRUE
##
## $`salvilenone
     BP
          CC
##
               MF
## TRUE TRUE TRUE
##
## $Tanshilactone
     BP
          CC
## TRUE TRUE TRUE
##
## $tanshinaldehyde
     BP
          CC
               MF
##
## TRUE TRUE TRUE
##
## $`Tanshinol A`
     ΒP
          CC
## TRUE TRUE TRUE
##
## $`tanshinone i`
##
     BP
          CC
               MF
## TRUE TRUE TRUE
##
## $`tanshinone `
          CC
     ΒP
               MF
## TRUE TRUE TRUE
##
## $`Z-8-Hexadecen-1-ol acetate`
     ΒP
          CC
               MF
## TRUE TRUE TRUE
```

Reference

- 1. Chin, C.-H. et~al. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC~Systems~Biology~8,~S11~(2014).
- 2. Liu, Y. et al. Integrative analyses of biomarkers and pathways for adipose tissue after bariatric surgery. Adipocyte 9, 384–400 (2020).