

Visions to Products

Wie die Dinge sprechen lern(t)en...und sich trotzdem nicht verstehen

Dr. Christoph Rathfelder

Hahn-Schickard, Villingen-Schwenningen

Hahn-Schickard

Angewandte Forschung, Entwicklung + Fertigung

für die Industrie

Haushalt 2015: ~ 17,5 Mio. €(~ 5 Mio. € Industrie)

Mitarbeiter 2015: 152 FTE (172 Personen)

Zertifiziert nach DIN EN ISO 9001:2008

Teil der Innovationsallianz Baden-Württemberg

Hahn-Schickard, Freiburg

Lab-on-a-Chip Design + Foundry, Mikroanalysesysteme, Mikroelektronik

Hahn-Schickard, Stuttgart

Mikrotechnik, Aufbau- und Verbindungstechnik, Mikromontage

Mikrosystemtechnik, MEMS-Foundry, Sensorentwicklung, Kommunikations- und Informationstechnik, CPS und Industrie 4.0

Gestensteuerung und Überwachung

Visions to Products

"So lern(t)en Sensoren das Sprechen"

Am Beispiel des Thermometers

Historie der Temperaturmessung Analoge Thermometer

15. Jahrhundert

- Galileo Galilei
- Wasserbasis

16. Jahrhundert

- Daniel Gabriel Fahrenheit
- Quecksilber
- Messskalen

17. Jahrhundert

- Zeigerthermometer
- BiMetall-basiert

Historie der Temperaturmessung Digitale Thermometer

20. Jahrhundert

- Digitale Datenverarbeitung und -aufbereitung
- Physikalischer Effekt
 - Widerstandsveränderung
 - > Infrarot
- Darstellung über Display

- Abgeschlossene Systeme
- Schnittstelle "nur" zum Menschen

Historie der Temperaturmessung Kommunizierende Thermometer

Ende 20. Jahrhundert

- Sensoreinheit getrennt von darstellendem bzw.
 verarbeitendem Endgerät
- Digitale Schnittstelle
 - > Funk
 - Drahtgebunden
 - > Oft proprietär

- Meist Punkt zu Punkt-Verbindung
- Geschlossenes Gesamtsystem

Historie der Temperaturmessung Vernetzte Thermometer

21. Jahrhundert

- Multisensorsysteme
- Standardisierte Schnittstellen
 - ➤ EnOcean, Z-Wave, Zigbee, ...
- Kommunikation mit Smart-Home Plattform
- Integrierbar in unterschiedliche Anwendungsfälle / Systeme

- Sensor und verarbeitendes System sind unabhängig
- Flexible Systeme und Anwendungsfälle

Babylonisches Problem

Kommunikation benötigt

- Ein gemeinsames Verständnis
- Eine gemeinsame Sprache

Stetiges Wachstum vernetzter und kommunizierender Sensoren

- Industrie 4.0
- Smart Home
- Internet der Dinge

Das "Babylonische Problem" bei Sensorsystemen

- Gemeinsame Verständnis und Sprache für die Beschreibung von Sensorinformationen
- Vereinfachte und schnellere Realisierung der Kommunikationsschnittstellen

Ziele von SensIDL

Unterstützung für Software-Entwickler

- Embedded-Entwickler des Sensorsystems
- Desktop- und App-Entwickler als Empfänger

Vereinfachung und Automatisierung

- Werkzeugunterstützung
- Code-Generierung
- Beschreibung als Dokumentation mit Mehrwert

Steigerung der Effizienz und Qualität

- Automatisierung wiederkehrender Aufgaben
- Fokussierung auf anwendungsspezifische Aufgaben

SensIDL Ergebnisse

Werkzeug Überblick

Basistechnologien für SensIDL

SensIDL Werkzeug

- Plugin für Eclipse
- Integrierte Werkzeugkette

SensIDL Sprache

- Domänenspezifische Sprache für die Sensorbeschreibung
- Textuelle Editoren auf Basis von Xtext

SensIDL Code-Generatoren

Code Templates basierend auf Xtend

Datenbeschreibung mit Excel

Auszug:

Datenstrukturen E- Meter: Von Sensor> Datenbank (Messwerte)																	
Byte1 Gerätetyp (dezimal)	Byte2 Record-Typ (dezimal)	Byte3 Data	Byte4 Data	Byte5 Data	Byte6 Data	Byte7 Data	Byte8 Data	Byte9 Data	Byte10 Data	Byte11 Data	Byte12 Data	Byte13 Data	Byte14 Messung	Beschreibung	Messra	te1/s	Übertragungsrate (Häufigkeit) 1/s
10 (E-Meter)	1	U-L1(Vrms) (signed int16) (LSB MSB)	I-L1(Arms) (float) (LSB MSB)			P-L1(Wrms) (float) (LSB MSB)			•	cos Phi L1 signed int8 (ohne Einheit)	Messung Nr. (int8)	Phase L1	1		1 Oder auf Anfrage Backend-Syste,		
10 (E-Meter)	2	U-L2 (Vrms) (signed int16) (LSB MSB)	I-L2 (Arms) (float) (LSB MSB)			P-L2 (Wrms) (float) (LSB MSB)				cos Phi L2 int8 (ohne Einheit)	Messung Nr. (int8)	Phase L2	1		1 Oder auf Anfrage Backend-Syste,		
10 (E-Meter)	,6	U-L3 (Vrms) (signed int16)	I-L3 (Arms) (float)			P-L3 (Wrms) (float) (LSB MSB)				cos Phi L3 int 8 (ohne Einheit)	Messung Nr. (int8)	Phase L3 1			1 Oder auf Anfrage Backend-Syste,		
10 (E-Meter)	4	×	I-N (Arms) (float) (LSB MSB)				н				cos Phi L3 int8 (ohne Einheit)	Messung Nr. (int8)	Nulleiter Strom	Nurwenn vo	orhanden	(nur wenn vorhanden) 1 Oder auf Anfrage Backend-Syste,	
10 (E-Meter)	5	W-L1(kWh) (f (LSB MS	W-L2(kW (LSB							/-L3 (kWh) (float) (LSB MSB)		Bezogene Energiemenge L1,L2,L3	1		Nur auf Anforderung (siehe Record 30)		
10 (E-Meter)	6	(signed int16) (LSB MSB)		d int16) MSB)	(signed						(signed int16) (LSB MSB)		Nich definiert	н		Nur auf Anforderung (siehe Record 30)	
U-L1 (Vrms) (signed int16) (LSB MSB)			I-L1 (Arms) (float) (LSB MSB)								P-L1 (Wrms) (float) (LSB MSB)					ni L1 signed int8 e Einheit)	

SensIDL Editor


```
emeter.sidl 🔀
 1 sensorInterface eMeter /**Interface for devices measuring electronic current.*/ {
          encoding: SENSIDL BINARY, endianness: BIG ENDIAN, alignment: 1 BIT
          sensorData {
 3⊝
             dataSet Conductor uses Info /**Data description of Conductor*/{
 40
                 recordType as UINT8 value= "1"/**Distinct type for this data set.*/
                 voltage as INT16 in V
 6
                 current as FLOAT in A
                 power as FLOAT in W
                 powerFactor as UINT16 in Dimensionless adjusted by linear mapping [0;255]=> [0;1]
 9
                 identicator as UINT8 /**Identifier to correlate measurements for different conductor
10
11
12
             dataSet NeutralConductor uses Info /**Data description of NeutralConductor*/ {
13<sub>@</sub>
                 recordType as UINT8 value= "4" /**Distinct type for this data set.*/
14
15
                 current as FLOAT in A
                 powerFactor as UINT16 in Dimensionless
16
17
18
             dataSet Energy uses Info /**Data description of Energy*/ {
19⊕
                 recordType as UINT8 value= "5" /**Distinct type for this data set.*/
20
                 11 as INT16 in kW /**Energy amount for conductor L1.*/
21
                 12 as FLOAT in kW /**Energy amount for conductor L2.*/
22
                 13 as FLOAT in kW /**Energy amount for conductor L3.*/
23
24
```

Gebündelte Forschungskompetenz

BADEN-WÜRTTEMBERG

FZI Forschungszentrum Informatik

- **Software Engineering**
- Software-Architekturen
- Modellgetriebene **Entwicklung**
- **House of Living Labs**

Institut für Mikro- und Informationstechnik

- **Embedded Software**
- **Energie-effiziente** Sensorsysteme
- **Drahtlose Kommunikation**
- Kompetenzzentrum Industrie 4.0

SensIDL Projekt

SensIDL Werkzeug

- Beschreibung von Sensorschnittstellen
- Generierung des Implementierungs-Code
- Einsatz modellgetriebener Techniken
- Open-Source Werkzeug basierend auf Eclipse
 - → http://www.sensidl.de

Ausblick

- Initiale Förderung bis Nov. 2016
- Anwendung in verschiedenen Use-Cases
- Weitere Kooperationen
 - z.B. Eclipse Vorto

Vielen Dank für die Aufmerksamkeit

Dr.-Ing.

Christoph Rathfelder

Head of Application Engineering

Hahn-Schickard Wilhelm-Schickard-Str. 10 78052 Villingen-Schwenningen

christoph.rathfelder@hahn-schickard.de +49 7721 943-161

