Geometric Noise Augmentation for Roof Graph Reconstruction

Date: 10/07/2025

1. Objective & Background

This report details the recent development and implementation of a new, stateful geometric noise augmentation pipeline for our roof graph reconstruction model. The primary objective is to create a more realistic simulation of errors found in data from automated line detectors, thereby improving the model's robustness and its ability to perform fine-grained geometric refinement.

Initial augmentation strategies, while effective, were based on a static topology approach that did not fully capture the progressive nature of data degradation. The work in this reporting period has centered on replacing that system with a dynamic, cumulative, and threshold-based noise model.

2. A New Paradigm: Cumulative, Threshold-Based Noise

The core of the recent work is a complete re-architecture of the on-the-fly data augmentation process. This new paradigm moves away from independent probabilities and instead simulates a gradual "destruction" process over a diffusion-like schedule (T=10).

How It Works:

 Per-Edge Effective Noise: For each training instance, a maximum "destruction level" is randomly selected. Then, for each timestep t in the diffusion schedule, every edge calculates its own effective_noise level. This value is a function of the global destruction level, the timestep t, and a randomly assigned, per-edge sensitivity. This ensures that some edges degrade faster than others, mimicking real-world conditions.

- 2. **Cumulative Topology:** The state of the graph at timestep t is directly derived from the state at t-1. This is a critical departure from the previous model. If an edge is deleted or subdivided at t=5, it remains in that state for all subsequent steps (t=6, 7, ...).
- 3. **Threshold-Based Augmentations:** Destructive topological changes are no longer triggered by simple probabilities. Instead, they occur when an edge's effective_noise level surpasses a specific, configurable threshold. This creates a clear, causal link between the noise level and the severity of the damage.
 - Edge Deletion: An edge is removed from the graph if its noise level exceeds geom_noise_delete_edge_threshold.
 - Edge Subdivision (Breaking): An edge is fragmented into multiple smaller segments if its noise level exceeds geom_noise_subdivide_edge_threshold.
 - Edge Duplication: An edge is copied with a slight random offset if its noise level exceeds geom_noise_duplicate_edge_threshold.

Feature	Previous Static Model	New Cumulative Model	Benefit of New Model
Topology	Decided once, upfront. Fixed for all timesteps.	Evolves at each timestep. Cumulative changes.	More realistic simulation of progressive data corruption.
Trigger Mechanism	Independent probabilities (geom_noise_p).	effective_noise crossing a set threshold (geom_noise_*_threshold).	Creates a direct, causal link between noise level and type of error.
Noise Correlation	Coordinate and topological noise were independent.	All noise types (coordinate, deletion, etc.) are driven by the same effective_noise.	More realistic, as severe coordinate noise often correlates with topological errors.

3. Initial Results & Observations

Figure 1: Examples of Cumulative Noise Augmentation

4. Future Work on Augmentation

Several areas for refinement and expansion have been identified:

- **Tuning Noise Thresholds:** The current thresholds for deletion, subdivision, and duplication are initial estimates. Systematic hyperparameter tuning is needed to find the optimal values that best mimic real-world detector error patterns.
- False Positive/Negative Augmentation: The framework can be extended to address more complex errors. Initial concepts, currently disabled, include:
 - False Negative Repair: Intelligently adding new line segments to fill gaps where a
 detector may have failed. An experimental grid-based vector system was
 prototyped for this purpose.
 - False Positive Deletion: Developing a mechanism to identify and remove entirely spurious edges that have no basis in the ground truth.
- Integrating Advanced Augmentations: The ultimate goal is to create a true end-to-end cleaning tool. This will involve seamlessly integrating the false positive/negative augmentations into the cumulative noise pipeline, allowing the model to learn not just how to refine geometry, but also how to correct the fundamental topology of the graph.