2024 Data Mining

HW₁

Task introduction

- PM2.5 prediction
 - Implement linear regression using only numpy to predict the value of PM2.5
 - pandas, csv and matplotlib are available for data analysis and pre-processing

- Requirement
 - Upload your submission to Kaggle
 - Submit a report and your source code to E3

Deadine is 4/16 (Tue.) 23:59, no late submission

Dataset

Hsinchu meteorological observation data form Central Weather Bureau.

- train.csv
 - Climate data for the first 20 days of each month.
 - <u>link</u>

- test.csv
 - Sample continuous data for 10 hours from the remaining 10 days of each month. Use data from the first 9 hours as features and PM 2.5 from the last hour as the target.
 - <u>link</u>

Training Data

Location	Date	ItemName	0	1	2	3	4	5	6
Hsinchu	1/1 0:00	AMB_TEMP	11.1	11.2	11.4	11.5	11.6	11.7	11.9
Hsinchu	1/1 0:00	CH4	2.01	1.99	2	2.02	2.03	2.02	2.02
Hsinchu	1/1 0:00	CO	0.31	0.28	0.28	0.33	0.32	0.26	0.25
Hsinchu	1/1 0:00	NMHC	0.1	0.1	0.08	0.09	0.1	0.07	0.07
Hsinchu	1/1 0:00	NO	1.5	1.4	1.4	1.5	1.4	1.3	1.4
Hsinchu	1/1 0:00	NO2	11.9	10.4	9.8	12.1	12.4	9.2	8.5
Hsinchu	1/1 0:00	NOx	13.5	11.9	11.2	13.7	13.9	10.6	10
Hsinchu	1/1 0:00	O3	21.6	25.1	25.6	22.4	21.1	26.5	25.4
Hsinchu	1/1 0:00	PM10	38	29	27	24	29	22	26
Hsinchu	1/1 0:00	PM2.5	25	24	13	14	15	12	10
Hsinchu	1/1 0:00	RAINFALL	0	0	0	0	0	0	0
Hsinchu	1/1 0:00	RH	64	65	63	63	63	63	63
Hsinchu	1/1 0:00	SO2	#	2.1	2.1	1.8	1.1	0.7	0.8
Hsinchu	1/1 0:00	THC	2.11	2.09	2.08	2.11	2.13	2.09	2.09
Hsinchu	1/1 0:00	WD_HR	38	41	49	54	50	44	38
Hsinchu	1/1 0:00	WIND_DIREC	53	46	43	54	50	40	36
Hsinchu	1/1 0:00	WIND_SPEED	3	3.4	2.7	3	2.6	2.7	2.4
Hsinchu	1/1 0:00	WS_HR	2.6	2.4	2.5	2.5	2.1	2.1	2.1

• #,*,x,A, represented as an invalid value.

ItemName

ItemName (English)	ItemName (Chinese)	Units of measurement	
AMB_TEMP	溫度	°C	
CH4	甲烷	ppm	
co	一氧化碳	ppm	
NMHC	非甲烷碳氫化合物	ppm	
NO	一氧化氮	ppb	
NO2	二氧化氮	ppb	
NOx	氮氧化物	ppb	
03	臭氧	ppb	
PM10	懸浮微粒	μg/m3	
PM2.5	細懸浮微粒	μg/m3	
RAINFALL	兩量	mm	
RH	相對濕度	%	
SO2	二氧化硫	ppb	
THC	總破氫化物	ppm	
WD_HR	小時風向值	degrees	
WIND_DIREC	風向	degrees	
WIND_SPEED	風速	m/sec	
WS_HR	小時風速值	m/sec	

Testing Data

										_	
index_0	AMB_TE	18.2	17.8	17.5	17.5	17.7	18.1	18.2	18.7	20.3	
index_0	CH4	2.41	2.61	2.65	2.87	2.25	2.24	2.45	2.59	2.24	
index_0	CO	0.77	0.74	0.63	0.6	0.36	0.31	0.48	1.01	1.05	
index_0	NMHC	0.29	0.34	0.34	0.37	0.18	0.15	0.24	0.43	0.35	
index_0	NO	6.8	11.1	9.6	13.6	3.1	2.4	17.8	49.5	41.1	
index_0	NO2	30.9	28.2	25.9	22.8	16.5	15.8	21.3	25	26.1	
index_0	NOx	37.7	39.3	35.6	36.4	19.6	18.3	39.1	74.5	67.2	
index_0	03	4.1	2	1.9	1.8	7.4	6.2	2.2	3	6.3	
index_0	PM10	53	50	36	39	23	21	22	25	36	
index_0	PM2.5	35	35	24	28	15	11	14	17	17	
index_0	RAINFAI	0	0	0	0	0	0	0	0	0	
index_0	RH	84	85	85	85	81	77	77	76	69	
index_0	SO2	2.8	1.9	1.9	1.9	1	1.5	2.2	3.5	4.1	
index_0	THC	2.7	2.95	2.99	3.24	2.43	2.39	2.69	3.02	2.59	
index_0	WD_HR	140	145	169	177	96	111	93	242	3	
index_0	WIND_D	120	115	173	155	104	173	74	303	289	
index_0	WIND_SI	0.4	0.5	0.4	0.4	0.5	0.6	0.7	0.5	1	
index_0	WS_HR	0.5	0.4	0.3	0.3	0.8	0.4	0.5	0.2	0.4	
$index_1$	AMB_TE	20.5	20.4	20.2	20	19.6	19.4	19.5	19.9	21.3	
$index_1$	CH4	2.33	2.37	2.66	2.56	2.32	2.27	2.39	2.5	2.45	
index_1	co	0.68	0.64	0.69	0.63	0.4	0.36	0.5	0.79	0.92	

Kaggle Submission

- Kaggle link
- Display team name : <student ID>
- Submission format
 - A 245*2 .csv file, first row is for the column name and the last 244 rows for your result.
 - Column name must be index and answer.
 - <u>sample submission</u>
- There is one simple bassline and one strong bassline. Beat them to achieve a higher score.

#	Team	Members	Score	Entries	Last
1	Strong Baseline		3.92580		
1	Simple Baseline		5.22389		

1	Α	В	C
1	index	answer	
2	index_0	0	
3	index_1	0	
4	index_2	0	
5	index_3	0	
6	index_4	0	
7	index_5	0	
8	index 6	Λ	

Kaggle Submission

- The scoring metric is RMSE.
- You can submit at most 5 times each day.
- You can choose 3 of the submissions to be considered for the private leaderboard, or will otherwise default to the best public scoring submissions.
 - You can only view your private leaderboard score after the competition has ended.
- Public leaderboard is calculated with 50% of the test data, and private leaderboard is calculated with other 50% of the test data, so the final standings may be different.
- Please tune your model parameters using your own validation set instead of adjusting parameters based on the public leaderboard. Otherwise, it's easy to overfit, leading to poor performance on the private leaderboard.

Change your team name

Remember to change the team name to <student ID>, or there will be a deduction of 5 points for HW 1.

9

Report Submission

Answer the following 3 questions:

- 1. How do you select features for your model input, and what preprocessing did you perform?
- 2. Compare the impact of different amounts of training data on the PM2.5 prediction accuracy. Visualize the results and explain them.
- 3. Discuss the impact of regularization on PM2.5 prediction accuracy.

Please answer the questions in detail to receive full points for each question.

Grading policy

- Kaggle (70%)
 - 30% based on the public leaderboard score and 70% based on the private leaderboard score
 - Leaderboard score consists of basic score and ranking score
 - Basic score:

Over strong baseline: 55

Over simple bassline: 40

Under simple baseline: 25

Ranking score:

15-(15/N)*(ranking-1), N=numbers of people in the interval

- Report (30%)
 - 10 for each quesiton

E3 Submission

Submit your source code and report to E3 before 4/16 (Tue.) 23:59.

No late submission!

- Format
 - source code : HW1_<student ID>.py or HW1_<student ID>.ipynb
 - report : HW1_<student ID>.pdf

If you have any question about HW 1, please feel free to contact with TA: WEI-LING HSU through email weiling.hsu.cs11@nycu.edu.tw

Have Fun!

