Far WesternUniversity

Faculty of Engineering

Bachelor in computer engineering

(Course of Study)

Course Title: Operating System	Credit: 3
CourseCode: CT 356	Number of lecture/week:3
Year/Semester: Third/Fifth	Tutorial/week:1
Level:Bachelor of Engineering(Computer)	Totalhours:45

Course Introduction

The course aims to explore the importance of the operating system and its function.

Course Objectives

- Write all or parts of a simple operating system that performs interrupt processing (real or simulated), CPU management (scheduling), and memory management.
- Compare several different approaches to memory management, file management and processor management and also describe various problems related to concurrent operations and their solutions.
- Explain in detail virtual address translation and distinguish it from the use of cache.
- Discuss various file system organizations and their interaction with the rest of the operating system.
- Discuss various threats to system security and compare protection mechanisms which may be used against the threats.

Through this course, Students will learn different aspects of operating system and its functions and use the idea to design operating system.

Course Outline

Specific Objectives	Contents (UNIT/CHAPTER)	Duration (Time allocated)
Introduction to	1	6hr
Operating System	Operating system and functions, Evolution,	
	Types of Operating System(Batch,	
	Interactive, Real Time), Booting, OS	
	Structures (Monolithic, Microkernel,	
	Layered, Virtual Machine), System Call,	
	Shell commands and programming,	
	Examples of OS	
Process	Chapter2. Process	8hr
Management	Management	
_	Introduction to Process (Process description, states and PCB),	

	Concept of Thread and	
	Multithreading, Scheduling (preemptive and non preemptive) , Scheduling criteria, Scheduling	
	algorithms used in batch system,	
	interactive system and real time	
	system, Multiprocessor Scheduling	
Process	Chapter3. Process	5hr
Communication	Communication and	
and	Synchronization	
Synchronization	Principles of Concurrency, Mutual	
	Exclusion and critical section, Mutual	
	Exclusion with Busy waiting, Semaphores	
	and Mutex, Message Passing and	
	Monitors, Classical Inter Process	
	Communication problems: Producers	
	Consumer problem, Dining Philosopher	
Mamary	problem, Sleeping Barber Problem	8hr
Memory Management	Chapter4. Memory Management:	OIII
Management	Background, Basic Hardware for	
	managing Memory, Address binding,	
	Swapping, Contiguous allocation (based	
	on fixed and variable partitions),	
	Relocation and protection problems,	
	Fragmentation, Non-contiguous allocation	
	(Paging + hardware support,	
	Segmentation) ,Multilevel Paging, Paging	
	with Segmentation, Page Faults and Page	
	Replacement Algorithms, Demand Paging,	
5 " '	Thrashing	
Deadlock	Chapter5. Deadlock	5hr
Management	Management Introduction, Deadlock	
	Conditions, Deadlock Handling	
	Strategies, Deadlock Detection,	
	Prevention, Avoidance, Ignorance,	
	Recovery	
File System	Chapter6. File System and I/o	8hr
Management	Management	
	File system structure, Implementation,	
	Partition and mounting, Allocation methods	
	(Contiguous, Linked List, Indexed), Free space	
	Management (Bit vector, Linked list, Grouping, Counting), File System	
	Performance, Efficiency reliability and file	
	sharing, Principle of I/O Hardware and	
	Software, I/O Software Layers, D isk Arm	
	Scheduling, Error Handling	

System Security	Chapter7. System Security	5hr
System security	Principle of least privilege, Threats and vulnerabilities, Protection mechanisms - access and capability control, Attacks, Cryptography and Encryption Algorithms, User (subject) authentication, Levels of security in "trusted"	5
	systems, The confinement problem	

Project work

If a single project is used, it should involve the writing of an operating system, most likely for a simulated machine. Such a project would be worked on by teams of students (2 or 3 per team) and needs to include authentication, memory management, device handling, CPU scheduling and some form of resource conflict (preferably over files).

If multiple small projects are used, they need to encompass the same topics or provide equivalent alternatives, such as interprocess communication instead of resource conflict or thread management instead of CPU scheduling. Small projects may be worked on by students individually or in pairs.

Tutorials/Assignments

Four to five class assignments will be provided to the students along with class works in classes.

Practical

Each practical lab is fully instructed and the lab manual consists of stepwise instruction necessary for carrying out lab work. Each lab consists of sets of questions that has to be answered and submitted to the instructor via eLearning.

SN	Topics	Hours	Remarks
1	Unix Commands and Shell Programming	3	
2	Process Scheduling Algorithms	3	
3	Bankers Algorithms	3	
4	Process Synchronization, Semaphores	3	
5	Page Replacement Algorithms	3	
6	Access control and Privilege, Authentication	3	

References

- Silberschatz, Galvin, & Gagne, Operating Systems Concepts, Seventh Edition, Wiley, 2005
- Stalling William, "Operating Systems", 6th Edition, Pearson Education
- Andrew S. Tanenbaum, "Modern Operating Systems", 3 rd Edition, PHI
- Charles Crowley, "Operating Systems: A Design-oriented Approach", TMH

Evaluationscheme

The questions will cover all the chapters in the syllabus. The evaluation scheme will be as possible as indicated in the table below:

Chapters	Hours	Marks distribution* (Tentative %)
Chapter 1. Introduction	6	14
Chapter 2. Process Management	8	18
Chapter 3. Process Communication and	5	10
Synchronization		
Chapter 4. Memory Management	8	18
Chapter 5. Deadlock Management	5	10
Chapter 6. File and I/O Management	8	18
Chapter 7. System Securities	5	12

^{*} There may be minor variation in marks distribution

Internal Evaluation (Marks Weightage)		Final Exam (Marks Weightage)	Tota l	Remarks
Assessment/Class Performance/Attendance/Quizzes/ Tutorials/Presentation	Practica l			
20	20	60	100	Internal marks will be of 20 if there are practicals in the course (20 marks will be allocated for Practicals)