

Parallel Computing

Exercise 2

Andres Rodriguez, 30th April 2015

Homework 1 - Remember

✓ Deadline

30.04.2015 - 11:59:pm

✓ E-mail

Andres Rodriguez <u>a.rodriguez-escobar@tu-braunschweig.de</u>

✓ Content

ZIP file including - Source code

- Written report as *.pdf file

Remember

Next Monday 4th of April is Exercise

Area of a Trapezoid

$$A = \frac{1}{2} (a+b) * h$$

$$a = x_0$$

$$b = x_n$$

$$h = (b - a) / N$$

$$\int_{a}^{b} f(x) dx = Tr_0 + Tr_1 + \dots + Tr_{n-1} + Tr_n$$

$$a = x_0$$

$$b = x_n$$

$$h = (b - a) / N$$

$$\int_{a}^{b} f(x) dx = \frac{1}{2} (f(x_{0}) + f(x_{1})) * h + \frac{1}{2} (f(x_{1}) + f(x_{2})) * h + \dots + \frac{1}{2} (f(x_{n-2}) + f(x_{n-1})) * h + \frac{1}{2} (f(x_{n-1}) + f(x_{n})) * h$$

$$a = x_0$$

 $b = x_n$
 $h = (b - a) / N$

$$\int_{a}^{b} f(\mathbf{x}) d\mathbf{x} = h * \left[\frac{1}{2} f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-2}) + f(x_{n-1}) + \frac{1}{2} f(x_n) \right]$$

Th = num of threads

Interval [a,b] is fragmented in *Th* sub intervals

Trapezoid in f(x) = N

Number of points in x = N-1

Number of points in x per thread = (N-1)/Th

$$\int_{a}^{e} = \int_{a}^{b} + \int_{b}^{c} + \int_{c}^{d} + \int_{d}^{e}$$

OpenMP - Implementation

Matrix-Vector Multiplication

#pragma parallel for private (j)

*

Thread 1

Thread 2

$$\hat{l} = 4$$

$$\hat{l} = 6$$

$$\hat{I} = 7$$

$$\hat{l} = 8$$

OpenMP - Implementation

