

王石嵘

February 17, 2020

Contents

3	The	Harti	ee-rock Approximation
	3.1	The H	F Equations
		3.1.1	The Coulomb and Exchange Operators
		3.1.2	The Fock Operator
			Ex 3.1
	3.2	Deriva	ation of the HF Equations
		3.2.1	Functional Variation
		3.2.2	Minimization of the Energy of a Single Determinant
			Ex 3.2
			Ex 3.3
		3.2.3	The Canonical HF Equations
	3.3	00	retation of Solutions to the HF Equations
	0.0	3.3.1	Orbital Energies and Koopmans' Theorem
		0.0.1	Ex 3.4
			Ex 3.5
			Ex 3.6
		3.3.2	Brillouin's Theorem
			The HF Hamiltonian
		3.3.3	Ex 3.7
	9.4	D	Ex 3.8
	3.4		cted Closed-shell HF: The Roothaan Equations
		3.4.1	Closed-shell HF: Restricted Spin Orbitals
		0.40	Ex 3.9
		3.4.2	Introduction of a Basis: The Roothaan Equations
			Ex 3.10
		3.4.3	The Charge Density
			Ex 3.11
			Ex 3.12
			Ex 3.13
		3.4.4	Expression for the Fock Matrix
			Ex 3.14
		3.4.5	Orthogonalization of the Basis
			Ex 3.15
			Ex 3.16
		3.4.6	The SCF Procedure
		3.4.7	Expectation Values and Population Analysis
			Ex 3.17
			Ex 3.18
	3.5	Model	Calculations on H_2 and HeH^+
		3.5.1	The 1s Minimal STO-3G Basis Set
			Ex 3.19
			Ex 3.20
		3.5.2	STO-3G H ₂

		Ex 3.21	1
		Ex 3.22	1
		Ex 3.23	1
		Ex 3.24	2
		Ex 3.25	2
		Ex 3.26	2
		Ex 3.27	2
	3.5.3	An SCF Calculation on STO-3G HeH ⁺	2
		Ex 3.28	2
		Ex 3.29	2
3.6	Polyat	omic Basis Sets	3
	3.6.1	Contracted Gaussian Functions	3
	3.6.2	Minimal Basis Sets: STO-3G	3
	3.6.3	Double Zeta Basis Sets: 4-31G	3
		Ex 3.30	3
	3.6.4	Polarized Basis Sets: 6-31G* and 6-31G**	
	0.0	Ex 3.31	
3.7	Some	Illustrative Closed-shell Calculations	
	3.7.1	Total Energies	
	0.,	Ex 3.32	
	3.7.2	Ionization Potentials	
	3.7.3	Equilibrium Geometries	
	3.7.4	Population Analysis and Dipole Moments	
3.8		tricted Open-shell HF: The Pople-Nesbet Equations	
0.0	3.8.1	Open-shell HF: Unrestricted Spin Orbitals	
	0.0.1	Ex 3.33	
		Ex 3.34	
		Ex 3.35	
	3.8.2	Introduction of a Basis: The Pople-Nesbet Equations	
	3.8.3	Unrestricted Density Matrices	
	0.0.0	Ex 3.36	
		Ex 3.37	
		Ex 3.38	
		Ex 3.39	
	3.8.4	Expression for the Fock Matrices	
	3.8.5	Solution of the Unrestricted SCF Equations	
	0.0.0	Ex 3.40	
	3.8.6	Illustrative Unrestricted Calculations	
	5.0.0	Ex 3.41	
	3.8.7	The Dissociation Problem and Its Unrestricted Solution	
	9.0.1	Ex 3.42	
		Ex 3.43	
		Ex 3.44	
			J

3 The Hartree-Fock Approximation

3.1 The HF Equations

3.1.1 The Coulomb and Exchange Operators

3.1.2 The Fock Operator

Ex 3.1

$$\left\langle \chi_{i} \left| \hat{f} \left| \chi_{j} \right\rangle = \left\langle \chi_{i}(1) \left| h(1) + \sum_{b} \left[\mathscr{J}_{b}(1) - \mathscr{K}_{b}(1) \right] \right| \chi_{j}(1) \right\rangle$$

$$= \left[i |h| j \right] + \sum_{b \neq j} \left[\left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(2) \chi_{j}(1) \right\rangle - \left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(1) \chi_{j}(2) \right\rangle \right] \right]$$

$$= \left[i |h| j \right] + \sum_{b \neq j} \left(\left[i j |bb \right] - \left[i b |bj \right] \right)$$

$$(3.1.1)$$

Since

$$[ij|jj] - [ij|jj] = 0 (3.1.2)$$

we have

$$\left\langle \chi_{i} \middle| \hat{f} \middle| \chi_{j} \right\rangle = \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left(\left\langle ib \middle| jb \right\rangle - \left\langle ib \middle| bj \right\rangle \right)$$
$$= \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left\langle ib \middle\| jb \right\rangle \tag{3.1.3}$$

3.2 Derivation of the HF Equations

3.2.1 Functional Variation

3.2.2 Minimization of the Energy of a Single Determinant

Ex 3.2 Take the complex conjugate of

$$\mathscr{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab})$$
(3.2.1)

we have

$$\mathscr{L}[\{\chi_{\alpha}\}]^* = E_0[\{\chi_{\alpha}\}]^* - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([a|b]^* - \delta_{ab}^*)$$
(3.2.2)

i.e.

$$\mathcal{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([b|a] - \delta_{ab})$$
(3.2.3)

thus

$$\sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab}) = \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^{*}([b|a] - \delta_{ab}) = \sum_{b}^{N} \sum_{a}^{N} \varepsilon_{ab}^{*}([a|b] - \delta_{ba})$$
(3.2.4)

٠.

$$\varepsilon_{ba} = \varepsilon_{ab}^* \tag{3.2.5}$$

Ex 3.3 :

$$[\delta \chi_a | h | \chi_a] = [\chi_a | h | \delta \chi_a]^* \tag{3.2.6}$$

$$[\chi_a \delta \chi_a | \chi_b \chi_b] = [\delta \chi_a \chi_a | \chi_b \chi_b]^*$$
(3.2.7)

$$[\chi_a \chi_a | \chi_b \delta \chi_b] = [\chi_a \chi_a | \delta \chi_b \chi_b]^* \tag{3.2.8}$$

$$[\chi_a \chi_b | \chi_b \delta \chi_a] = [\chi_b \delta \chi_a | \chi_a \chi_b] = [\delta \chi_a \chi_b | \chi_b \chi_a]^*$$
(3.2.9)

$$[\chi_a \chi_b | \delta \chi_b \chi_a] = [\delta \chi_b \chi_a | \chi_a \chi_b] = [\chi_a \delta \chi_b | \chi_b \chi_a]^*$$
(3.2.10)

٠.

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] + [\chi_a \chi_a | \delta \chi_b \chi_b])$$

$$- \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_b | \chi_b \chi_a] + [\chi_a \chi_b | \delta \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.11)

while

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_a | \delta \chi_b \chi_b] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_b | \delta \chi_a \chi_a] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_a | \chi_b \chi_b]$$
(3.2.12)

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_b | \delta \chi_b \chi_a] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_a | \delta \chi_a \chi_b] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_b | \chi_b \chi_a]$$
(3.2.13)

thus

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] - [\delta \chi_a \chi_b | \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.14)

3.2.3 The Canonical HF Equations

3.3 Interpretation of Solutions to the HF Equations

3.3.1 Orbital Energies and Koopmans' Theorem

Ex 3.4

$$f_{ij} = \langle \chi_i | f | \chi_j \rangle = \langle i | h | j \rangle + \sum_b \langle ib | jb \rangle$$
(3.3.1)

$$f_{ji}^* = \langle \chi_j | f | \chi_i \rangle^* = \langle j | h | i \rangle^* + \sum_b \langle jb \| ib \rangle^*$$

$$= \langle i | h | j \rangle + \sum_b \langle ib \| jb \rangle$$

$$= f_{ij}$$
(3.3.2)

thus the Fock operator is Hermitian.

$$\begin{split} & \operatorname{IP} = ^{N-2} E - E_{0} \\ & = \sum_{a \neq c,d} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab \parallel ab \rangle - \left[\sum_{a} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle \right] \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \frac{1}{2} \sum_{a \neq c,d} \langle ac \parallel ac \rangle - \frac{1}{2} \sum_{a \neq c,d} \langle ad \parallel ad \rangle - \frac{1}{2} \sum_{b \neq c,d} \langle cb \parallel cb \rangle - \frac{1}{2} \sum_{b \neq c,d} \langle db \parallel db \rangle - \langle cd \parallel cd \rangle \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \sum_{a \neq c,d} \langle ac \parallel ac \rangle - \sum_{a \neq c,d} \langle ad \parallel ad \rangle - \langle cd \parallel cd \rangle \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \left(\sum_{a \neq c} \langle ac \parallel ac \rangle - \langle dc \parallel dc \rangle \right) - \left(\sum_{a \neq d} \langle ad \parallel ad \rangle - \langle cd \parallel cd \rangle \right) - \langle cd \parallel cd \rangle \\ & = - \varepsilon_{c} - \varepsilon_{d} + \langle cd \mid cd \rangle - \langle cd \mid dc \rangle \end{split}$$

Ex 3.6

$${}^{N}E_{0} - {}^{N+1}E^{r} = \sum_{a} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle$$

$$- \left[\sum_{a} \langle a \mid h \mid a \rangle + \langle r \mid h \mid r \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle + \frac{1}{2} \sum_{b} \langle rb \parallel rb \rangle + \frac{1}{2} \sum_{a} \langle ar \parallel ar \rangle \right]$$

$$= - \langle r \mid h \mid r \rangle - \frac{1}{2} \sum_{b} \langle rb \parallel rb \rangle - \frac{1}{2} \sum_{b} \langle br \parallel br \rangle$$

$$= - \langle r \mid h \mid r \rangle - \sum_{b} \langle rb \parallel rb \rangle$$

$$(3.3.4)$$

3.3.2 Brillouin's Theorem

3.3.3 The HF Hamiltonian

Ex 3.7 Suppose \mathcal{H}_0 commutes with \mathcal{P}_n ,

$$\mathcal{H}_{0} |\Psi_{0}\rangle = \mathcal{H}_{0} \frac{1}{\sqrt{N!}} \sum_{n}^{N!} (-1)^{p_{n}} \mathcal{P}_{n} \left\{ \sum_{i}^{N} f(i) \chi_{j}(1) \cdots \chi_{k}(N) \right\}$$

$$= \frac{1}{\sqrt{N!}} \sum_{n}^{N!} (-1)^{p_{n}} \mathcal{P}_{n} \left\{ (\varepsilon_{j} + \cdots + \varepsilon_{k}) \chi_{j}(1) \cdots \chi_{k}(N) \right\}$$

$$= \sum_{n} \varepsilon_{n}$$
(3.3.5)

Now we show \mathcal{H}_0 commutes with \mathcal{P}_n , for example, \mathcal{P}_{ab}

$$\mathscr{P}_{ab}\mathscr{H}_0 = \mathscr{P}_{ab}(\dots + f(a) + \dots + f(b) + \dots) = (\dots + f(b) + \dots + f(a) + \dots) \mathscr{P}_{ab} = \mathscr{H}_0\mathscr{P}_{ab} \quad (3.3.6)$$

Ex 3.8

$$\mathcal{V} = \sum_{i}^{N} \sum_{j>i}^{N} \mathcal{O}_2 - \sum_{i}^{N} \sum_{b}^{N} [\mathcal{G}_b(i) - \mathcal{K}_b(i)]$$
(3.3.7)

thus

$$\langle \Psi_{0} \mid \mathcal{V} \mid \Psi_{0} \rangle = \sum_{i}^{N} \sum_{j>i}^{N} \langle \Psi_{0} \mid \mathscr{O}_{2} \mid \Psi_{0} \rangle - \sum_{i}^{N} \sum_{b}^{N} [\langle \Psi_{0} \mid \mathscr{G}_{b}(i) - \mathscr{K}_{b}(i) \mid \Psi_{0} \rangle]$$

$$= \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} \langle ab \parallel ab \rangle - \sum_{i}^{N} \sum_{b}^{N} [\langle ib \mid ib \rangle - \langle ib \mid bi \rangle]$$

$$= -\frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} \langle ab \parallel ab \rangle$$
(3.3.8)

3.4 Restricted Closed-shell HF: The Roothaan Equations

3.4.1 Closed-shell HF: Restricted Spin Orbitals

$$\varepsilon_{i} = (i|h|i) + \sum_{b}^{N} (\langle ib | ib \rangle - \langle ib | bi \rangle)
= (i|h|i) + \sum_{c}^{N/2} (\langle ic | ic \rangle - \langle ic | ci \rangle) + \sum_{\bar{c}}^{N/2} (\langle i\bar{c} | i\bar{c} \rangle - \langle i\bar{c} | \bar{c}i \rangle)$$
(3.4.1)

Assume χ_j has α spin, since assuming α or β is identical

$$\varepsilon_{i} = (i|h|i) + \sum_{c}^{N/2} \left[(ic|ic) \langle \alpha | \alpha \rangle \langle \alpha | \alpha \rangle - (ic|ci) \langle \alpha | \alpha \rangle \langle \alpha | \alpha \rangle \right] + \sum_{c}^{N/2} \left[(ic|ic) \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle - (ic|ci) \langle \alpha | \beta \rangle \langle \beta | \alpha \rangle \right]$$

$$= (i|h|i) + \sum_{c}^{N/2} \left[2(ic|ic) - (ic|ci) \right]$$

$$= (i|h|i) + \sum_{c}^{N/2} (2J_{ib} - K_{ib})$$
(3.4.2)

3.4.2 Introduction of a Basis: The Roothaan Equations

Ex 3.10

$$(\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C})_{\mu\nu} = \sum_{i} \sum_{j} C_{\mu i}^{\dagger} S_{ij} C_{j\nu}$$

$$= \sum_{i} \sum_{j} C_{i\mu}^{*} \langle \phi_{i} | \phi_{j} \rangle C_{j\nu}$$

$$= \langle \phi_{\mu} | \phi_{\nu} \rangle$$

$$= \delta_{\mu\nu}$$
(3.4.3)

thus

$$\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C} = \mathbf{1} \tag{3.4.4}$$

3.4.3 The Charge Density

Ex 3.11

$$\rho(\mathbf{r}) = \langle \Psi_0 \mid \hat{\rho}(\mathbf{r}) \mid \Psi_0 \rangle
= \sum_{i}^{N} \frac{1}{N!} \sum_{I}^{N!} \sum_{J}^{N!} (-1)^{p_I} (-1)^{p_J} \int d\mathbf{x}_1 \cdots d\mathbf{x}_N \hat{\mathcal{P}}_I \{ \chi_1(1) \cdots \chi_N(N) \}^* \delta(\mathbf{r}_i - \mathbf{r}) \hat{\mathcal{P}}_J \{ \chi_1(1) \cdots \chi_N(N) \}
(3.4.5)$$

Since $\{\chi_m\}$ are orthogonal,

$$\rho(\mathbf{r}) = \sum_{i}^{N} \frac{1}{N!} \sum_{I}^{N!} \int d\mathbf{x}_{1} \cdots d\mathbf{x}_{N} \hat{\mathscr{P}}_{I} \{\chi_{1}(1) \cdots \chi_{N}(N)\}^{*} \delta(\mathbf{r}_{i} - \mathbf{r}) \hat{\mathscr{P}}_{I} \{\chi_{1}(1) \cdots \chi_{N}(N)\}
= \sum_{i}^{N} \frac{1}{N!} (N - 1)! \sum_{s}^{N} \int d\mathbf{x}_{i} \chi_{s}^{*}(\mathbf{x}_{i}) \delta(\mathbf{r}_{i} - \mathbf{r}) \chi_{s}(\mathbf{x}_{i})
= \sum_{i}^{N} \frac{1}{N} \cdot 2 \sum_{s}^{N/2} \int d\mathbf{r}_{i} \phi_{s}(\mathbf{r}_{i}) \delta(\mathbf{r}_{i} - \mathbf{r}) \phi_{s}(\mathbf{r}_{i})
= \sum_{i}^{N} \frac{2}{N} \sum_{s}^{N/2} \phi_{s}(\mathbf{r}) \phi_{s}(\mathbf{r})
= N \frac{2}{N} \sum_{s}^{N/2} \phi_{s}(\mathbf{r}) \phi_{s}(\mathbf{r})
= 2 \sum_{s}^{N/2} \phi_{s}(\mathbf{r}) \phi_{s}(\mathbf{r})$$
(3.4.6)

Ex 3.12 From Ex 3.10, we have

$$\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C} = \mathbf{1} \tag{3.4.7}$$

i.e.

$$\sum_{i}^{K} \sum_{j}^{K} C_{i\mu}^{*} S_{ij} C_{j\nu} = \delta_{\mu\nu}$$
 (3.4.8)

thus

$$(\mathbf{PSP})_{\mu\sigma} = \sum_{\nu}^{K} \sum_{\lambda}^{K} P_{\mu\nu} S_{\nu\lambda} P_{\lambda\sigma}$$

$$= 4 \sum_{\nu}^{K} \sum_{\lambda}^{K} \sum_{a}^{N/2} C_{\mu a} C_{\nu a}^{*} S_{\nu\lambda} \sum_{b}^{N/2} C_{\lambda b} C_{\sigma b}^{*}$$

$$= 4 \sum_{a}^{N/2} \sum_{b}^{N/2} C_{\mu a} \left(\sum_{\nu}^{K} \sum_{\lambda}^{K} C_{\nu a}^{*} S_{\nu\lambda} C_{\lambda b} \right) C_{\sigma b}^{*}$$

$$= 4 \sum_{a}^{N/2} \sum_{b}^{N/2} C_{\mu a} \delta_{ab} C_{\sigma b}^{*}$$

$$= 4 \sum_{a}^{N/2} C_{\mu a} C_{\sigma a}^{*}$$

$$= 2 P_{\mu\sigma}$$
(3.4.9)

thus

$$\mathbf{PSP} = 2\mathbf{P} \tag{3.4.10}$$

Ex 3.13 Eq. 3.122 shows

$$f(\mathbf{r}_1) = h(\mathbf{r}_1) + \sum_{a}^{N/2} \int d\mathbf{r}_2 \psi_a^*(\mathbf{r}_2) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \psi_a(\mathbf{r}_2)$$
(3.4.11)

thus

$$f(\mathbf{r}_{1}) = h(\mathbf{r}_{1}) + \sum_{a}^{N/2} \int d\mathbf{r}_{2} \sum_{\sigma} C_{\sigma a}^{*} \phi_{\sigma}^{*}(\mathbf{r}_{2}) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \sum_{\lambda} C_{\lambda a} \phi_{\lambda}(\mathbf{r}_{2})$$

$$= h(\mathbf{r}_{1}) + \sum_{\sigma} \sum_{\lambda} \left(\sum_{a}^{N/2} C_{\sigma a}^{*} C_{\lambda a} \right) \int d\mathbf{r}_{2} \phi_{\sigma}^{*}(\mathbf{r}_{2}) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_{2})$$

$$= h(\mathbf{r}_{1}) + \frac{1}{2} \sum_{\sigma,\lambda} P_{\lambda \sigma} \int d\mathbf{r}_{2} \phi_{\sigma}^{*}(\mathbf{r}_{2}) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_{2})$$

$$(3.4.12)$$

3.4.4 Expression for the Fock Matrix

Ex 3.14 In expression $(\mu\nu|\lambda\sigma)$, there are three interchangeable pairs, i.e. $\mu \leftrightarrow \nu$, $\lambda \leftrightarrow \sigma$, and $\mu\nu \leftrightarrow \lambda\sigma$. Thus $(\mu\nu|\lambda\sigma)$ has an 8-fold symmetry. Similarly, $(\mu\mu|\lambda\sigma)$, $(\mu\nu|\mu\nu)$, $(\mu\mu|\sigma\sigma)$ has 2-fold symmetry, and $(\mu\mu|\mu\nu)$, $(\mu\mu|\mu\mu)$ has 1-fold symmetry.

Therefore, the number of unique 2e integrals is

expression	number	K = 100
${(\mu\nu \lambda\sigma)}$	K(K-1)(K-2)(K-3)/8	11763675
$(\mu\mu \lambda\sigma)$	K(K-1)(K-2)/2	485100
$(\mu\nu \mu\lambda)$	K(K-1)(K-2)/2	485100
$(\mu u \mu u)$	K(K-1)/2	4950
$(\mu\mu \sigma\sigma)$	K(K-1)/2	4950
$(\mu\mu \mu u)$	K(K-1)	9900
$\mu\mu \mu\mu$	K	100

thus the total number is 12753775.

3.4.5 Orthogonalization of the Basis

Ex 3.15 ∵

$$\mathbf{U}^{\dagger}\mathbf{S}\mathbf{U} = \mathbf{s} \tag{3.4.13}$$

: .

$$\mathbf{SU} = \mathbf{Us} \tag{3.4.14}$$

i.e.

$$\sum_{\nu} S_{\mu\nu} U_{\nu i} = U_{\mu i} s_i \tag{3.4.15}$$

thus

$$\sum_{\mu} U_{\mu i}^* \sum_{\nu} S_{\mu \nu} U_{\nu i} = \sum_{\mu} U_{\mu i}^* U_{\mu i} s_i \tag{3.4.16}$$

$$\sum_{\mu} \sum_{\nu} U_{\mu i}^* \langle \phi_{\mu} | \phi_{\nu} \rangle U_{\nu i} = s_i \sum_{\mu} |U_{\mu i}|^2$$
(3.4.17)

Suppose

$$\phi_i' = \sum_{\nu} U_{\nu i} \phi_{\nu} \tag{3.4.18}$$

thus

$$\langle \phi_i' | \phi_i' \rangle = s_i \sum_{\mu} |U_{\mu i}|^2 \tag{3.4.19}$$

. .

$$\langle \phi_i' | \phi_i' \rangle > 0 \qquad |U_{\mu i}|^2 > 0$$
 (3.4.20)

: .

$$s_i > 0 \tag{3.4.21}$$

Ex 3.16

• (3.174)

Since (ϕ, ϕ', ψ) are row vectors)

$$\psi = \phi \mathbf{C} \tag{3.4.22}$$

$$\psi = \phi' \mathbf{C}' = \phi \mathbf{X} \mathbf{C}' \tag{3.4.23}$$

we have

$$\mathbf{C} = \mathbf{XC'} \tag{3.4.24}$$

i.e.

$$\mathbf{C}' = \mathbf{X}^{-1}\mathbf{C} \tag{3.4.25}$$

• (3.177)

$$F'_{\mu\nu} = \langle \phi'_{\mu} \mid f \mid \phi'_{\nu} \rangle$$

$$= \left\langle \sum_{i} \phi_{i} X_{i\mu} \mid f \mid \sum_{j} \phi_{j} X_{j\nu} \right\rangle$$

$$= \sum_{i} \sum_{j} X_{i\mu}^{*} X_{j\nu} \langle \phi_{i} \mid f \mid \phi_{j} \rangle$$

$$= \sum_{i} \sum_{j} X_{i\mu}^{*} F_{ij} X_{j\nu}$$
(3.4.26)

i.e.

$$\mathbf{F}' = \mathbf{X}^{\dagger} \mathbf{F} \mathbf{X} \tag{3.4.27}$$

3.4.6 The SCF Procedure

3.4.7 Expectation Values and Population Analysis

Ex 3.17 From (3.148) in the textbook, we get

$$F_{\mu\nu} = H_{\mu\nu}^{\text{core}} + G_{\mu\nu} = H_{\mu\nu}^{\text{core}} + \sum_{a}^{N/2} [2(\mu\nu|aa) - (\mu a|a\nu)]$$
 (3.4.28)

thus

$$E_{0} = \sum_{a}^{N/2} [2h_{aa} + \sum_{b}^{N/2} (2J_{ab} - K_{ab})]$$

$$= 2\sum_{a}^{N/2} (a|h|a) + \sum_{a}^{N/2} \sum_{b}^{N/2} [2(aa|bb) - (ab|ba)]$$

$$= 2\sum_{a}^{N/2} \sum_{\mu} \sum_{\nu} C_{\mu a}^{*} C_{\nu a} (\mu|h|\nu) + \sum_{a}^{N/2} \sum_{b}^{N/2} \left[2\sum_{\mu} \sum_{\nu} C_{\mu a}^{*} C_{\nu a} (\mu\nu|bb) - \sum_{\mu} \sum_{\nu} C_{\mu a}^{*} C_{\nu a} (\mu b|b\nu) \right]$$

$$= \sum_{\mu} \sum_{\nu} P_{\nu \mu} H_{\mu \nu}^{\text{core}} + \frac{1}{2} \sum_{b}^{N/2} \sum_{\mu} \sum_{\nu} [2P_{\nu \mu} (\mu\nu|bb) - P_{\nu \mu} (\mu b|b\nu)]$$

$$= \sum_{\mu} \sum_{\nu} P_{\nu \mu} [H_{\mu \nu}^{\text{core}} + \frac{1}{2} G_{\mu \nu}]$$

$$= \frac{1}{2} \sum_{\mu} \sum_{\nu} P_{\nu \mu} [H_{\mu \nu}^{\text{core}} + F_{\mu \nu}]$$

$$(3.4.29)$$

Ex 3.18 For symmetrically orthogonalized basis,

$$\mathbf{C}' = \mathbf{S}^{1/2}\mathbf{C} \tag{3.4.30}$$

thus

$$P'_{\mu\nu} = 2\sum_{a}^{N/2} C'_{\mu a} C'^*_{\nu a}$$

$$= 2\sum_{a}^{N/2} \sum_{i} S^{1/2}_{\mu i} C_{ia} \sum_{j} S^{1/2*}_{\nu j} C^*_{ja}$$

$$= \sum_{i} \sum_{j} S^{1/2}_{\mu i} \left(2\sum_{a}^{N/2} C_{ia} C^*_{ja} \right) S^{1/2*}_{\nu j}$$

$$= \sum_{i} \sum_{j} S^{1/2}_{\mu i} P_{ij} S^{1/2*}_{\nu j}$$

$$= \sum_{i} \sum_{j} S^{1/2}_{\mu i} P_{ij} S^{1/2}_{j\nu}$$
(3.4.31)

i.e.

$$\mathbf{P}' = \mathbf{S}^{1/2} \mathbf{P} \mathbf{S}^{1/2} \tag{3.4.32}$$

thus

$$\sum_{\mu} (\mathbf{S}^{1/2} \mathbf{P} \mathbf{S}^{1/2})_{\mu\mu} = \sum_{\mu} \mathbf{P}'_{\mu\mu}$$
 (3.4.33)

3.5 Model Calculations on H₂ and HeH⁺

3.5.1 The 1s Minimal STO-3G Basis Set

Ex 3.19

$$\phi_{1s}^{GF}(\alpha, \mathbf{r} - \mathbf{R}_{A})\phi_{1s}^{GF}(\alpha, \mathbf{r} - \mathbf{R}_{B}) = \left(\frac{2\alpha}{\pi}\right)^{3/4} e^{-\alpha|\mathbf{r} - \mathbf{R}_{A}|^{2}} \left(\frac{2\beta}{\pi}\right)^{3/4} e^{-\beta|\mathbf{r} - \mathbf{R}_{B}|^{2}}$$

$$= \left(\frac{2\alpha}{\pi}\right)^{3/4} \left(\frac{2\beta}{\pi}\right)^{3/4} e^{-\alpha|\mathbf{r} - \mathbf{R}_{A}|^{2} - \beta|\mathbf{r} - \mathbf{R}_{B}|^{2}}$$

$$= \left(\frac{2\alpha}{\pi}\right)^{3/4} \left(\frac{2\beta}{\pi}\right)^{3/4} \exp\left(-\left[(\alpha + \beta)|\mathbf{r}|^{2} - 2\mathbf{r} \cdot (\alpha\mathbf{R}_{A} + \beta\mathbf{R}_{B}) + \alpha|\mathbf{R}_{A}|^{2} + \beta|\mathbf{R}_{B}|^{2}\right]\right)$$

$$(3.5.1)$$

Let

$$p = \alpha + \beta$$
 $\mathbf{R}_P = \frac{\alpha \mathbf{R}_A + \beta \mathbf{R}_B}{\alpha + \beta}$ (3.5.2)

we have

$$\phi_{1s}^{GF}(\alpha, \mathbf{r} - \mathbf{R}_A)\phi_{1s}^{GF}(\alpha, \mathbf{r} - \mathbf{R}_B) = \left(\frac{2\alpha}{\pi} \frac{\beta}{\pi}\right)^{3/4} \exp\left(-\left[p|\mathbf{r}|^2 - 2\mathbf{r} \cdot (p\mathbf{R}_P) + \alpha|\mathbf{R}_A|^2 + \beta|\mathbf{R}_B|^2\right]\right)$$

$$= \left(\frac{2\alpha}{\pi} \frac{2\beta}{\pi}\right)^{3/4} \exp\left(-\left[p|\mathbf{r} - \mathbf{R}_P|^2 - p|\mathbf{R}_P|^2 + \alpha|\mathbf{R}_A|^2 + \beta|\mathbf{R}_B|^2\right]\right)$$

$$= \left(\frac{2\alpha\beta/p}{\pi}\right)^{3/4} \left(\frac{2p}{\pi}\right)^{3/4} e^{-p|\mathbf{r} - \mathbf{R}_P|^2} \exp\left(p|\mathbf{R}_P|^2 - \alpha|\mathbf{R}_A|^2 - \beta|\mathbf{R}_B|^2\right)$$
(3.5.3)

Let

$$\phi_{1s}^{GF}(\alpha, \mathbf{r} - \mathbf{R}_A)\phi_{1s}^{GF}(\alpha, \mathbf{r} - \mathbf{R}_B) = K_{AB} \left(\frac{2p}{\pi}\right)^{3/4} e^{-p|\mathbf{r} - \mathbf{R}_P|^2}$$
(3.5.4)

thus

$$K_{AB} = \left(\frac{2\alpha\beta/p}{\pi}\right)^{3/4} \exp\left(p|\mathbf{R}_{P}|^{2} - \alpha|\mathbf{R}_{A}|^{2} - \beta|\mathbf{R}_{B}|^{2}\right)$$

$$= \left(\frac{2\alpha\beta/p}{\pi}\right)^{3/4} \exp\left(\frac{1}{p}(\alpha^{2}|\mathbf{R}_{A}|^{2} + \beta^{2}|\mathbf{R}_{B}|^{2} + 2\alpha\beta\mathbf{R}_{A} \cdot \mathbf{R}_{B}) - \alpha|\mathbf{R}_{A}|^{2} - \beta|\mathbf{R}_{B}|^{2}\right)$$

$$= \left(\frac{2\alpha\beta/p}{\pi}\right)^{3/4} \exp\left(\frac{1}{p}\left(\alpha^{2}|\mathbf{R}_{A}|^{2} + \beta^{2}|\mathbf{R}_{B}|^{2} + 2\alpha\beta\mathbf{R}_{A} \cdot \mathbf{R}_{B} - p\alpha|\mathbf{R}_{A}|^{2} - p\beta|\mathbf{R}_{B}|^{2}\right)\right)$$

$$= \left(\frac{2\alpha\beta/p}{\pi}\right)^{3/4} \exp\left(\frac{1}{p}\left(-\alpha\beta|\mathbf{R}_{A}|^{2} - \alpha\beta|\mathbf{R}_{B}|^{2} + 2\alpha\beta\mathbf{R}_{A} \cdot \mathbf{R}_{B}\right)\right)$$

$$= \left(\frac{2\alpha\beta}{p\pi}\right)^{3/4} \exp\left(-\frac{\alpha\beta}{p}|\mathbf{R}_{A} - \mathbf{R}_{B}|^{2}\right)$$
(3.5.5)

Ex 3.20 At r = 0,

$$\phi_{1s}^{\text{CGF}}(\zeta = 1.0, \text{STO-1G}) = 0.267656$$
 (3.5.6)

$$\phi_{1s}^{\text{CGF}}(\zeta = 1.0, \text{STO-2G}) = 0.389383$$
 (3.5.7)

$$\phi_{1s}^{\text{CGF}}(\zeta = 1.0, \text{STO-3G}) = 0.454\,986$$
 (3.5.8)

while

$$\phi_{1s}^{SF}(\zeta = 1.0) = \frac{1}{\sqrt{\pi}} = 0.56419 \tag{3.5.9}$$

3.5.2 STO-3G H_2

Ex 3.21

$$\phi_{1s}^{CGF}(\zeta = 1.0, STO-1G) = \phi_{1s}^{GF}(0.270950)$$
 (3.5.10)

Since $\alpha = \alpha_{(\zeta=1.0)} \times \zeta^2$,

$$\phi_{1s}^{\text{CGF}}(\zeta = 1.24, \text{STO-1G}) = \phi_{1s}^{\text{GF}}(0.416613)$$
 (3.5.11)

thus

$$S_{12} = K_{AB} \left(\frac{2 \cdot 2\alpha}{\pi}\right)^{3/4} \int d\mathbf{r} \, e^{-2\alpha |\mathbf{r} - \mathbf{R}_{P}|^{2}}$$

$$= \left(\frac{2\alpha}{2\pi}\right)^{3/4} e^{-\frac{\alpha}{2}R^{2}} \left(\frac{2 \cdot 2\alpha}{\pi}\right)^{3/4} \int d\mathbf{r} \, e^{-2\alpha |\mathbf{r} - \mathbf{R}_{A}|^{2}}$$

$$= \left(\frac{2\alpha}{\pi}\right)^{3/2} e^{-\frac{\alpha}{2}R^{2}} 4\pi \int dr r^{2} e^{-2\alpha r^{2}}$$

$$= \left(\frac{2\alpha}{\pi}\right)^{3/2} e^{-\frac{\alpha}{2}R^{2}} 4\pi \frac{\sqrt{\pi}}{8\sqrt{2}\alpha^{3/2}}$$

$$= e^{-\frac{\alpha}{2}R^{2}}$$
(3.5.12)

At R = 1.4, $\alpha = 0.416613$,

$$S_{12} = 0.6648 \tag{3.5.13}$$

Ex 3.22 Let

$$\psi_1 = c_1(\phi_1 + \phi_2) \qquad \psi_2 = c_2(\phi_1 - \phi_2) \tag{3.5.14}$$

$$1 = \langle \phi_1 | \psi_1 \rangle = c_1^2 (S_{11} + S_{12} + S_{21} + S_{22})$$

= $c_1^2 (2 + 2S_{12})$ (3.5.15)

٠.

$$c_1 = [2(1+S_{12})]^{-1/2} (3.5.16)$$

$$1 = \langle \phi_2 | \psi_2 \rangle = c_2^2 (S_{11} - S_{12} - S_{21} + S_{22})$$

= $c_2^2 (2 - 2S_{12})$ (3.5.17)

: .

$$c_2 = [2(1 - S_{12})]^{-1/2} (3.5.18)$$

Ex 3.23 Suppose

$$\psi_1 = c_1(\phi_1 + \phi_2) \qquad \psi_2 = c_2(\phi_1 - \phi_2)$$
 (3.5.19)

thus

$$\mathbf{H}^{\text{core}}\mathbf{C} = \mathbf{SC}\boldsymbol{\varepsilon} \tag{3.5.20}$$

$$\begin{pmatrix} H_{11}^{\text{core}} & H_{12}^{\text{core}} \\ H_{21}^{\text{core}} & H_{22}^{\text{core}} \end{pmatrix} \begin{pmatrix} c_1 & c_2 \\ c_1 & -c_2 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} c_1 & c_2 \\ c_1 & -c_2 \end{pmatrix} \begin{pmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{pmatrix}$$
(3.5.21)

$$\begin{pmatrix} (H_{11}^{\text{core}} + H_{12}^{\text{core}})c_1 & (H_{11}^{\text{core}} - H_{12}^{\text{core}})c_2 \\ (H_{21}^{\text{core}} + H_{22}^{\text{core}})c_1 & (H_{21}^{\text{core}} - H_{22}^{\text{core}})c_2 \end{pmatrix} = \begin{pmatrix} (S_{11} + S_{12})c_1\varepsilon_1 & (S_{11} - S_{12})c_2\varepsilon_2 \\ (S_{21} + S_{22})c_1\varepsilon_1 & (S_{21} - S_{22})c_2\varepsilon_2 \end{pmatrix}$$
(3.5.22)

: .

$$\begin{cases} \varepsilon_1 = (H_{11}^{\text{core}} + H_{12}^{\text{core}})/(1 + S_{12}) \\ \varepsilon_2 = (H_{11}^{\text{core}} - H_{12}^{\text{core}})/(1 - S_{12}) \end{cases}$$
(3.5.23)

$$\varepsilon_1 = (-1.1204 - 0.9584)/(1 + 0.6593) = -1.2528$$
 (3.5.24)

$$\varepsilon_2 = (-1.1204 + 0.9584)/(1 - 0.6593) = -0.4755$$
 (3.5.25)

Ex 3.24

$$P_{\mu\nu} = 2\sum_{a}^{N/2} C_{\mu a} C_{\nu a}^* = 2C_{\mu 1} C_{\nu 1}^*$$
(3.5.26)

∴.

$$\mathbf{P} = 2 \begin{pmatrix} C_{11}C_{11}^* & C_{11}C_{21}^* \\ C_{21}C_{11}^* & C_{21}C_{21}^* \end{pmatrix}
= 2 \begin{pmatrix} [2(1+S_{12})]^{-1/2}[2(1+S_{12})]^{-1/2} & [2(1+S_{12})]^{-1/2}[2(1+S_{12})]^{-1/2} \\ [2(1+S_{12})]^{-1/2}[2(1+S_{12})]^{-1/2} & [2(1+S_{12})]^{-1/2}[2(1+S_{12})]^{-1/2} \end{pmatrix}
= (1+S_{12})^{-1} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
(3.5.27)

For H_2^+ ,

$$\mathbf{P}_{\mathbf{H}_2^+} = \frac{1}{2} (1 + S_{12})^{-1} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 (3.5.28)

Ex 3.25

$$F_{\mu\nu} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda\sigma} P_{\lambda\sigma} \left[(\mu\nu|\sigma\lambda) - \frac{1}{2} (\mu\lambda|\sigma\nu) \right]$$
$$= H_{\mu\nu}^{\text{core}} + (1 + S_{12})^{-1} \sum_{\lambda\sigma} \left[(\mu\nu|\sigma\lambda) - \frac{1}{2} (\mu\lambda|\sigma\nu) \right]$$
(3.5.29)

٠.

$$F_{11} = H_{11}^{\text{core}} + (1 + S_{12})^{-1} \left[(11|11) - \frac{1}{2} (11|11) + (11|21) - \frac{1}{2} (11|21) + (11|12) - \frac{1}{2} (12|11) + (11|22) - \frac{1}{2} (12|21) \right]$$

$$= H_{11}^{\text{core}} + (1 + S_{12})^{-1} \left[\frac{1}{2} (11|11) + (11|21) + (11|22) - \frac{1}{2} (12|21) \right]$$

$$(3.5.30)$$

Ex 3.26

Ex 3.27

3.5.3 An SCF Calculation on STO-3G HeH⁺

Ex 3.28

$$\mathbf{X}_{\text{Schmidt}}^{\dagger} \mathbf{S} \mathbf{X}_{\text{Schmidt}} = \begin{pmatrix} 1 & 0 \\ -S_{12}/\sqrt{1 - S_{12}^2} & 1/\sqrt{1 - S_{12}^2} \end{pmatrix} \begin{pmatrix} 1 & S_{12} \\ S_{12} & 1 \end{pmatrix} \begin{pmatrix} 1 & -S_{12}/\sqrt{1 - S_{12}^2} \\ 0 & 1/\sqrt{1 - S_{12}^2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & S_{12} \\ 0 & \sqrt{1 - S_{12}^2} \end{pmatrix} \begin{pmatrix} 1 & -S_{12}/\sqrt{1 - S_{12}^2} \\ 0 & 1/\sqrt{1 - S_{12}^2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(3.5.31)

thus the Schmidt transformation produces orthonormal basis.

Ex 3.29

$$E_0(R \to \infty) = \frac{1}{2} \sum_{\nu} \sum_{\nu} P_{\nu\mu}(R \to \infty) [2H_{\mu\nu}^{\text{core}} + G_{\mu\nu}]$$
 (3.5.32)

where

$$P_{\nu\mu}(R \to \infty) = \begin{pmatrix} 2 & 0\\ 0 & 0 \end{pmatrix} \tag{3.5.33}$$

$$G_{\mu\nu} = \sum_{\lambda} \sum_{\sigma} P_{\lambda\sigma}(R \to \infty) \left[(\mu\nu|\sigma\lambda) - \frac{1}{2} (\mu\lambda|\sigma\nu) \right]$$
$$= 2 \left[(\mu\nu|\phi_1\phi_1) - \frac{1}{2} (\mu\phi_1|\phi_1\nu) \right]$$
(3.5.34)

thus

$$E_{0}(R \to \infty) = \frac{1}{2} \sum_{\mu} \sum_{\nu} P_{\nu\mu}(R \to \infty) [2H_{\mu\nu}^{\text{core}} + G_{\mu\nu}]$$

$$= \frac{1}{2} \times 2[2H_{11}^{\text{core}} + G_{11}]$$

$$= 2(T_{11} + V_{11}^{1}) + 2\left[(\phi_{1}\phi_{1}|\phi_{1}\phi_{1}) - \frac{1}{2}(\phi_{1}\phi_{1}|\phi_{1}\phi_{1}) \right]$$

$$= 2T_{11} + 2V_{11}^{1} + (\phi_{1}\phi_{1}|\phi_{1}\phi_{1})$$
(3.5.35)

3.6 Polyatomic Basis Sets

3.6.1 Contracted Gaussian Functions

3.6.2 Minimal Basis Sets: STO-3G

3.6.3 Double Zeta Basis Sets: 4-31G

Ex 3.30 The outer basis function

$$\phi_{1s}^{"}(\mathbf{r}) = g_{1s}(0.298073, \mathbf{r}) \tag{3.6.1}$$

The inner basis function

$$\phi_{1s}'(\mathbf{r}) = N[0.46954g_{1s}(1.242567, \mathbf{r}) + 0.15457g_{1s}(5.782948, \mathbf{r}) + 0.02373g_{1s}(38.47497, \mathbf{r})]$$
(3.6.2)

Renormalize it, we get

$$N = 1.689 \tag{3.6.3}$$

thus

$$\phi_{1s}'(\mathbf{r}) = 0.79330g_{1s}(1.242567, \mathbf{r}) + 0.26115g_{1s}(5.782948, \mathbf{r}) + 0.04009g_{1s}(38.47497, \mathbf{r})$$
(3.6.4)

3.6.4 Polarized Basis Sets: 6-31G* and 6-31G**

Ex 3.31

	С	Η	total
STO-3G	5	1	36
4-31G	9	2	66
6-31G* (Cartesian)	15	2	102
6-31G** (Cartesian)	15	5	120

3.7 Some Illustrative Closed-shell Calculations

3.7.1 Total Energies

Ex 3.32 Reaction I

basis	$\Delta E/$ a.u.	$\Delta E/(\mathrm{kcal/mol})$	
STO-3G	-0.061	-38.28	
4-31G	-0.069	-43.30	
6-31G*	-0.045	-28.24	exoergic
6-31G**	-0.055	-34.51	
HF-limit	-0.051	-32.00	

Reaction II

basis	$\Delta E/$ a.u.	$\Delta E/(\mathrm{kcal/mol})$	
STO-3G	0.186	116.72	endoergic
4-31G	-0.114	-71.54	
6-31G*	-0.088	-55.22	orroomeria
6-31G**	-0.095	-59.61	exoergic
$\operatorname{HF-limit}$	-0.097	-60.87	

The contribution of zero-point vibrations to the energy change of reaction I would be $-0.37 \,\text{kcal/mol}$, to the energy change of reaction II would be $17.78 \,\text{kcal/mol}$. Thus the effect of zero-point vibrations should not be ignored.

- 3.7.2 Ionization Potentials
- 3.7.3 Equilibrium Geometries
- 3.7.4 Population Analysis and Dipole Moments
- 3.8 Unrestricted Open-shell HF: The Pople-Nesbet Equations
- 3.8.1 Open-shell HF: Unrestricted Spin Orbitals

Ex 3.33

$$f^{\alpha}(1) = \int d\omega_{1}\alpha^{*}(\omega_{1}) \left[h(1) + \sum_{a} \int d\mathbf{x}_{2}\chi_{a}^{*}(2)r_{12}^{-1}(1 - \hat{\mathscr{P}}_{12})\chi_{a}(2) \right] \alpha(\omega_{1})$$

$$= h(1) + \sum_{a}^{N_{\alpha}} \left[\int d\omega_{1}\alpha^{*}(\omega_{1}) \int d\mathbf{x}_{2}\chi_{a}^{*}(2)r_{12}^{-1}\chi_{a}(2)\alpha(\omega_{1}) - \int d\omega_{1}\alpha^{*}(\omega_{1}) \int d\mathbf{x}_{2}\chi_{a}^{*}(2)r_{12}^{-1}\chi_{a}(1)\alpha(\omega_{2}) \right]$$

$$+ \sum_{a}^{N_{\beta}} \left[\int d\omega_{1}\alpha^{*}(\omega_{1}) \int d\mathbf{x}_{2}\chi_{a}^{*}(2)r_{12}^{-1}\chi_{a}(2)\alpha(\omega_{1}) - \int d\omega_{1}\alpha^{*}(\omega_{1}) \int d\mathbf{x}_{2}\chi_{a}^{*}(2)r_{12}^{-1}\chi_{a}(1)\alpha(\omega_{2}) \right]$$

$$= h(1) + \sum_{a}^{N_{\alpha}} \left[\int d\mathbf{r}_{2}\psi_{a}^{\alpha^{*}}(\mathbf{r}_{2})r_{12}^{-1}\psi_{a}^{\alpha}(\mathbf{r}_{2}) - \int d\mathbf{r}_{2} \int d\omega_{2} \int d\omega_{1}\alpha^{*}(\omega_{1})\alpha^{*}(\omega_{2})\psi_{a}^{\alpha^{*}}(\mathbf{r}_{2})r_{12}^{-1}\psi_{a}^{\alpha}(\mathbf{r}_{1})\alpha(\omega_{2}) \right]$$

$$+ \sum_{a}^{N_{\beta}} \left[\int d\mathbf{r}_{2}\psi_{a}^{\beta^{*}}(\mathbf{r}_{2})r_{12}^{-1}\psi_{a}^{\beta}(\mathbf{r}_{2}) - \int d\mathbf{r}_{2} \int d\omega_{2} \int d\omega_{1}\alpha^{*}(\omega_{1})\beta^{*}(\omega_{2})\psi_{a}^{\beta^{*}}(\mathbf{r}_{2})r_{12}^{-1}\psi_{a}^{\beta}(\mathbf{r}_{1})\beta(\omega_{1})\alpha(\omega_{2}) \right]$$

$$= h(1) + \sum_{a}^{N_{\alpha}} \left[\int d\mathbf{r}_{2}\psi_{a}^{\alpha^{*}}(\mathbf{r}_{2})r_{12}^{-1}\psi_{a}^{\alpha}(\mathbf{r}_{2}) - \int d\mathbf{r}_{2}\psi_{a}^{\alpha^{*}}(\mathbf{r}_{2})r_{12}^{-1}\psi_{a}^{\alpha}(\mathbf{r}_{1}) \right] + \sum_{a}^{N_{\beta}} \left[\int d\mathbf{r}_{2}\psi_{a}^{\beta^{*}}(\mathbf{r}_{2})r_{12}^{-1}\psi_{a}^{\beta}(\mathbf{r}_{2}) - 0 \right]$$

$$= h(1) + \sum_{a}^{N_{\alpha}} \left[J_{a}^{\alpha}(1) - K_{a}^{\alpha}(1) \right] + \sum_{a}^{N_{\beta}} J_{a}^{\beta}(1)$$

$$(3.8.1)$$

Ex 3.34

$$E_{0} = \sum_{a} h_{aa} + \frac{1}{2} \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\alpha}} (J_{ab}^{\alpha\alpha} - K_{ab}^{\alpha\alpha}) + \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\beta}} J_{ab}^{\alpha\beta}$$

$$= h_{11}^{\alpha} + h_{22}^{\alpha} + h_{11}^{\alpha} + J_{12}^{\alpha\alpha} - K_{12}^{\alpha\alpha} + J_{11}^{\alpha\beta} + J_{21}^{\alpha\beta}$$
(3.8.2)

$$\varepsilon_{i}^{\alpha} = (\psi_{i}^{\alpha}(1)|h(1) + \sum_{a}^{N_{\alpha}} [J_{a}^{\alpha}(1) - K_{a}^{\alpha}(1)] + \sum_{a}^{N_{\beta}} J_{a}^{\beta}(1)|\psi_{i}^{\alpha}(1))$$

$$= h_{ii}^{\alpha} + \sum_{a}^{N_{\alpha}} [J_{ia}^{\alpha\alpha} - K_{ia}^{\alpha\alpha}] + \sum_{a}^{N_{\beta}} J_{ia}^{\alpha\beta} \tag{3.8.3}$$

$$\varepsilon_{i}^{\beta} = (\psi_{i}^{\beta}(1)|h(1) + \sum_{a}^{N_{\alpha}} \left[J_{a}^{\beta}(1) - K_{a}^{\beta}(1) \right] + \sum_{a}^{N_{\beta}} J_{a}^{\alpha}(1)|\psi_{i}^{\beta}(1))$$

$$= h_{ii}^{\beta} + \sum_{a}^{N_{\alpha}} \left[J_{ia}^{\beta\beta} - K_{ia}^{\beta\beta} \right] + \sum_{a}^{N_{\beta}} J_{ia}^{\beta\alpha}$$
(3.8.4)

Since

$$E_{0} = \sum_{a} h_{aa} + \frac{1}{2} \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\alpha}} (J_{ab}^{\alpha\alpha} - K_{ab}^{\alpha\alpha}) + \frac{1}{2} \sum_{a}^{N_{\beta}} \sum_{b}^{N_{\beta}} (J_{ab}^{\beta\beta} - K_{ab}^{\beta\beta}) + \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\beta}} J_{ab}^{\alpha\beta}$$
(3.8.5)

we have

$$E_0 = \sum_{i}^{N_{\alpha}} \varepsilon_i^{\alpha} + \sum_{i}^{N_{\beta}} \varepsilon_i^{\beta} - \frac{1}{2} \sum_{i}^{N_{\alpha}} \sum_{a}^{N_{\alpha}} (J_{ia}^{\alpha\alpha} - K_{ia}^{\alpha\alpha}) - \frac{1}{2} \sum_{i}^{N_{\beta}} \sum_{a}^{N_{\beta}} (J_{ia}^{\beta\beta} - K_{ia}^{\beta\beta}) - \sum_{i}^{N_{\beta}} \sum_{a}^{N_{\alpha}} J_{ia}^{\beta\alpha}$$
(3.8.6)

3.8.2 Introduction of a Basis: The Pople-Nesbet Equations

3.8.3 Unrestricted Density Matrices

Ex 3.36

$$\int d\mathbf{r} \rho^{S}(\mathbf{r}) = \int d\mathbf{r} \left[\rho^{\alpha}(\mathbf{r}) - \rho^{\beta}(\mathbf{r}) \right]$$
(3.8.7)

$$=N_{\alpha}-N_{\beta}\tag{3.8.8}$$

Since

$$\left\langle \hat{\mathscr{S}}_z \right\rangle = \frac{1}{2} (N_\alpha - N_\beta)$$
 (3.8.9)

we get

$$\int d\mathbf{r} \rho^S(\mathbf{r}) = 2 \left\langle \hat{\mathscr{S}}_z \right\rangle \tag{3.8.10}$$

Ex 3.37

$$\rho^{\alpha}(\mathbf{r}) = \sum_{a}^{N_{\alpha}} \psi_{a}^{\alpha*}(\mathbf{r}) \psi_{a}^{\alpha}(\mathbf{r})$$

$$= \sum_{a}^{N_{\alpha}} \sum_{\nu} C_{\nu a}^{\alpha*} \phi_{\nu}^{*}(\mathbf{r}) \sum_{\mu} C_{\mu a}^{\alpha} \phi_{\mu}(\mathbf{r})$$

$$= \sum_{\nu} \sum_{\mu} \left[\sum_{a}^{N_{\alpha}} C_{\nu a}^{\alpha*} C_{\mu a}^{\alpha} \right] \phi_{\nu}^{*}(\mathbf{r}) \phi_{\mu}(\mathbf{r})$$
(3.8.11)

Let

$$P^{\alpha}_{\mu\nu} = \sum_{\alpha}^{N_{\alpha}} C^{\alpha*}_{\nu a} C^{\alpha}_{\mu a} \tag{3.8.12}$$

thus

$$\rho^{\alpha}(\mathbf{r}) = \sum_{\nu} \sum_{\mu} P^{\alpha}_{\mu\nu} \phi_{\mu}(\mathbf{r}) \phi^{*}_{\nu}(\mathbf{r})$$
(3.8.13)

The formulation for β spin is similar.

Ex 3.38

$$\langle \mathcal{O}_{1} \rangle = \sum_{i}^{N} \langle \chi_{i} | h | \chi_{i} \rangle$$

$$= \sum_{i}^{N_{\alpha}} (\psi_{i}^{\alpha} | h | \psi_{i}^{\alpha}) + \sum_{i}^{N_{\beta}} (\psi_{i}^{\beta} | h | \psi_{i}^{\beta})$$

$$= \sum_{i}^{N_{\alpha}} \sum_{\nu} \sum_{\mu} C_{\nu a}^{\alpha*} (\phi_{\nu} | h | \phi_{\mu}) C_{\mu a}^{\alpha} + \sum_{i}^{N_{\beta}} \sum_{\nu} \sum_{\mu} C_{\nu a}^{\beta*} (\phi_{\nu} | h | \phi_{\mu}) C_{\mu a}^{\beta}$$

$$= \sum_{\nu} \sum_{\mu} P_{\mu \nu}^{\alpha} (\phi_{\nu} | h | \phi_{\mu}) + \sum_{\nu} \sum_{\mu} P_{\mu \nu}^{\beta} (\phi_{\nu} | h | \phi_{\mu})$$

$$= \sum_{\nu} \sum_{\mu} P_{\mu \nu}^{T} (\phi_{\nu} | h | \phi_{\mu})$$

$$(3.8.14)$$

Ex 3.39

$$\langle \hat{\rho}^{S} \rangle = \langle \Psi_{0} | \hat{\rho}^{S} | \Psi_{0} \rangle$$

$$= \frac{1}{N!} \sum_{i,j}^{N!} (-1)^{p_{i}} (-1)^{p_{j}} \int d\mathbf{x}_{1} \cdots d\mathbf{x}_{N} \hat{\mathscr{P}}_{i} \{ \chi_{1}(1) \cdots \chi_{N}(N) \} \sum_{m}^{N} 2\delta(\mathbf{r}_{m} - \mathbf{R}) s_{z}(m) \hat{\mathscr{P}}_{j} \{ \chi_{1}(1) \cdots \chi_{N}(N) \}$$

$$= \frac{2}{N!} \sum_{i}^{N} \sum_{m}^{N} \int d\mathbf{x}_{1} \cdots d\mathbf{x}_{N} \hat{\mathscr{P}}_{i} \{ \chi_{1}(1) \cdots \chi_{N}(N) \} \delta(\mathbf{r}_{m} - \mathbf{R}) s_{z}(m) \hat{\mathscr{P}}_{i} \{ \chi_{1}(1) \cdots \chi_{N}(N) \}$$

$$= \frac{2}{N} \sum_{s}^{N} \sum_{m}^{N} \int d\mathbf{x}_{m} \chi_{s}^{*}(m) \delta(\mathbf{r}_{m} - \mathbf{R}) s_{z}(m) \chi_{s}(m)$$

$$= \frac{2}{N} \sum_{m}^{N} \left[\sum_{s}^{N} \int d\mathbf{r}_{m} \psi_{s}^{\alpha*}(m) \delta(\mathbf{r}_{m} - \mathbf{R}) s_{z}(m) \psi_{s}^{\alpha}(m) + \sum_{s}^{N\beta} \int d\mathbf{r}_{m} \psi_{s}^{\beta*}(m) \delta(\mathbf{r}_{m} - \mathbf{R}) s_{z}(m) \psi_{s}^{\beta}(m) \right]$$

$$= \frac{2}{N} \sum_{m}^{N} \left[\frac{1}{2} \sum_{s}^{N\alpha} \int d\mathbf{r}_{m} \psi_{s}^{\alpha*}(m) \delta(\mathbf{r}_{m} - \mathbf{R}) \psi_{s}^{\alpha}(m) - \frac{1}{2} \sum_{s}^{N\beta} \int d\mathbf{r}_{m} \psi_{s}^{\beta*}(m) \delta(\mathbf{r}_{m} - \mathbf{R}) \psi_{s}^{\beta}(m) \right]$$

$$= \frac{2}{N} N \left[\frac{1}{2} \sum_{s}^{N\alpha} \psi_{s}^{\alpha*}(\mathbf{R}) \psi_{s}^{\alpha}(\mathbf{R}) - \frac{1}{2} \sum_{s}^{N\beta} \psi_{s}^{\beta*}(\mathbf{R}) \psi_{s}^{\beta}(\mathbf{R}) \right]$$

$$= 2 \left[\frac{1}{2} \rho^{\alpha}(\mathbf{R}) - \frac{1}{2} \rho^{\beta}(\mathbf{R}) \right]$$

$$= \rho^{S}(\mathbf{R})$$
(3.8.15)

where

$$\rho^{S}(\mathbf{R}) = \sum_{\nu} \sum_{\mu} P_{\nu\mu}^{S} \phi_{\mu}^{*}(\mathbf{R}) \phi_{\nu}(\mathbf{R})$$

$$= \sum_{\nu} (\mathbf{P}^{S} \mathbf{A})_{\nu\nu}$$

$$= \operatorname{tr}(\mathbf{P}^{S} \mathbf{A})$$
(3.8.16)

3.8.4 Expression for the Fock Matrices

3.8.5 Solution of the Unrestricted SCF Equations

$$E_{0} = \sum_{a}^{N_{\alpha}} h_{aa}^{\alpha} + \sum_{a}^{N_{\beta}} h_{aa}^{\beta} + \frac{1}{2} \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\alpha}} (J_{ab}^{\alpha\alpha} - K_{ab}^{\alpha\alpha}) + \frac{1}{2} \sum_{a}^{N_{\beta}} \sum_{b}^{N_{\beta}} (J_{ab}^{\beta\beta} - K_{ab}^{\beta\beta}) + \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\beta}} J_{ab}^{\alpha\beta}$$

$$= \sum_{\mu} \sum_{\nu} P_{\nu\mu}^{\alpha} H_{\mu\nu}^{\text{core}} + \sum_{\mu} \sum_{\nu} P_{\nu\mu}^{\beta} H_{\mu\nu}^{\text{core}} + \frac{1}{2} \sum_{\mu} \sum_{\nu} \sum_{\lambda} \sum_{\sigma} P_{\nu\mu}^{\alpha} P_{\sigma\lambda}^{\alpha} [(\mu\nu|\lambda\sigma) - (\mu\sigma|\lambda\nu)]$$

$$+ \frac{1}{2} \sum_{\mu} \sum_{\nu} \sum_{\lambda} \sum_{\sigma} P_{\nu\mu}^{\beta} P_{\sigma\lambda}^{\beta} [(\mu\nu|\lambda\sigma) - (\mu\sigma|\lambda\nu)] + \sum_{\mu} \sum_{\nu} \sum_{\lambda} \sum_{\sigma} P_{\nu\mu}^{\alpha} P_{\sigma\lambda}^{\beta} (\mu\nu|\lambda\sigma)$$

$$= \sum_{\mu} \sum_{\nu} P_{\nu\mu}^{\alpha} \left\{ H_{\mu\nu}^{\text{core}} + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\sigma\lambda}^{\alpha} [(\mu\nu|\lambda\sigma) - (\mu\sigma|\lambda\nu)] + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\sigma\lambda}^{\alpha} (\mu\nu|\lambda\sigma) \right\}$$

$$+ \sum_{\mu} \sum_{\nu} P_{\nu\mu}^{\beta} \left\{ H_{\mu\nu}^{\text{core}} + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\sigma\lambda}^{\beta} [(\mu\nu|\lambda\sigma) - (\mu\sigma|\lambda\nu)] + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} P_{\sigma\lambda}^{\alpha} (\mu\nu|\lambda\sigma) \right\}$$

$$= \sum_{\mu} \sum_{\nu} P_{\nu\mu}^{\alpha} \left\{ H_{\mu\nu}^{\text{core}} + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} [P_{\sigma\lambda}^{T} (\mu\nu|\lambda\sigma) - P_{\sigma\lambda}^{\alpha} (\mu\sigma|\lambda\nu)] \right\}$$

$$+ \sum_{\mu} \sum_{\nu} P_{\nu\mu}^{\beta} \left\{ H_{\mu\nu}^{\text{core}} + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} [P_{\sigma\lambda}^{T} (\mu\nu|\lambda\sigma) - P_{\sigma\lambda}^{\alpha} (\mu\sigma|\lambda\nu)] \right\}$$

$$+ \sum_{\mu} \sum_{\nu} P_{\nu\mu}^{\beta} \left\{ H_{\mu\nu}^{\text{core}} + \frac{1}{2} \sum_{\lambda} \sum_{\sigma} [P_{\sigma\lambda}^{T} (\mu\nu|\lambda\sigma) - P_{\sigma\lambda}^{\alpha} (\mu\sigma|\lambda\nu)] \right\}$$

$$(3.8.17)$$

while

$$F_{\mu\nu}^{\alpha} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\lambda} \left[P_{\lambda\sigma}^{T}(\mu\nu|\sigma\lambda) - P_{\lambda\sigma}^{\alpha}(\mu\lambda|\sigma\nu) \right]$$
 (3.8.18)

$$F_{\mu\nu}^{\beta} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} \left[P_{\lambda\sigma}^{T}(\mu\nu|\sigma\lambda) - P_{\lambda\sigma}^{\beta}(\mu\lambda|\sigma\nu) \right]$$
(3.8.19)

thus

$$E_{0} = \sum_{\mu} \sum_{\nu} \left\{ P_{\nu\mu}^{\alpha} \left[\frac{1}{2} H_{\mu\nu}^{\text{core}} + \frac{1}{2} F_{\mu\nu}^{\alpha} \right] + P_{\nu\mu}^{\beta} \left[\frac{1}{2} H_{\mu\nu}^{\text{core}} + \frac{1}{2} F_{\mu\nu}^{\beta} \right] \right\}$$

$$= \frac{1}{2} \sum_{\mu} \sum_{\nu} \left[P_{\nu\mu}^{T} H_{\mu\nu}^{\text{core}} + P_{\nu\mu}^{\alpha} F_{\mu\nu}^{\alpha} + P_{\nu\mu}^{\beta} F_{\mu\nu}^{\beta} \right]$$
(3.8.20)

3.8.6 Illustrative Unrestricted Calculations

Ex 3.41

$$\left\langle \hat{\mathscr{S}}^{2} \right\rangle = \left\langle c_{1}^{2} \Psi + c_{2}^{4} \Psi \right| \hat{\mathscr{S}}^{2} \left| c_{1}^{2} \Psi + c_{2}^{4} \Psi \right\rangle$$

$$= \frac{3}{4} c_{1}^{2} + \frac{15}{4} c_{2}^{2}$$

$$= \frac{3}{4} (1 - c_{2}^{2}) + \frac{15}{4} c_{2}^{2}$$

$$= \frac{3}{4} + 3c_{2}^{2}$$
(3.8.21)

thus

basis	$\left\langle \hat{\mathscr{S}}^{2}\right angle$	c_2	${\rm contamination}/\%$
STO-3G	0.7652	0.07118	0.5067
4-31G	0.7622	0.06377	0.4067
6-31G*	0.7618	0.06272	0.3933
6-31G**	0.7614	0.06164	0.3800

3.8.7 The Dissociation Problem and Its Unrestricted Solution

$$\langle \psi_1^{\alpha} | \psi_1^{\alpha} \rangle = \langle \cos \theta \psi_1 + \sin \theta \psi_2 | \cos \theta \psi_1 + \sin \theta \psi_2 \rangle = \cos \theta^2 + \sin \theta^2 = 1 \tag{3.8.22}$$

$$\langle \psi_2^{\alpha} | \psi_2^{\alpha} \rangle = \langle -\sin\theta\psi_1 + \cos\theta\psi_2 | -\sin\theta\psi_1 + \cos\theta\psi_2 \rangle = \sin\theta^2 + \cos\theta^2 = 1$$
 (3.8.23)

$$\langle \psi_1^{\alpha} | \psi_2^{\alpha} \rangle = \langle \cos \theta \psi_1 + \sin \theta \psi_2 | -\sin \theta \psi_1 + \cos \theta \psi_2 \rangle = -\cos \theta \sin \theta + \sin \theta \cos \theta = 0 \tag{3.8.24}$$

thus $\{\psi_1^{\alpha}, \psi_2^{\alpha}\}$ is orthonormal. Similarly conclusion can be derived for β orbitals.

Ex 3.43 For R = 1.4,

$$\begin{split} \eta &= \frac{h_{22} - h_{11} + J_{22} - J_{12} + 2K_{12}}{J_{11} + J_{22} - 2J_{12} + 4K_{12}} \\ &= \frac{(\varepsilon_2 - 2J_{12} + K_{12}) - (\varepsilon_1 - J_{11}) + J_{22} - J_{12} + 2K_{12}}{J_{11} + J_{22} - 2J_{12} + 4K_{12}} \\ &= \frac{\varepsilon_2 - \varepsilon_1 + J_{11} + J_{22} - 3J_{12} + 3K_{12}}{J_{11} + J_{22} - 2J_{12} + 4K_{12}} \\ &= \frac{0.6703 + 0.5782 + 0.6746 + 0.6975 - 3 \times 0.6636 + 3 \times 0.1813}{0.6746 + 0.6975 - 2 \times 0.6636 + 4 \times 0.1813} notag \\ &= 1.524 > 1 \end{split} \tag{3.8.25}$$

thus unrestricted solution does not exist for this case. For R=4.0,

$$\eta = \frac{\varepsilon_2 - \varepsilon_1 + J_{11} + J_{22} - 3J_{12} + 3K_{12}}{J_{11} + J_{22} - 2J_{12} + 4K_{12}} \\
= \frac{0.0916 + 0.2542 + 0.5026 + 0.5259 - 3 \times 0.5121 + 3 \times 0.2651}{0.5026 + 0.5259 - 2 \times 0.5121 + 4 \times 0.2651} notag$$

$$\theta = \arccos(\sqrt{\eta}) = 0.6900 = 39.53^{\circ}$$
(3.8.29)

$$\lim_{R \to \infty} |\Psi_{0}\rangle = \frac{1}{2} \left[|\psi_{1}\bar{\psi}_{1}\rangle - |\psi_{2}\bar{\psi}_{2}\rangle - \sqrt{2} |^{3}\Psi_{1}^{2}\rangle \right]
= \frac{1}{2} \left[|\psi_{1}\bar{\psi}_{1}\rangle - |\psi_{2}\bar{\psi}_{2}\rangle - (|\psi_{1}\bar{\psi}_{2}\rangle - |\psi_{2}\bar{\psi}_{1}\rangle) \right]
= \frac{1}{2} \left[\frac{1}{2} |(\phi_{1} + \phi_{2})(\bar{\phi}_{1} + \bar{\phi}_{2})\rangle - \frac{1}{2} |(\phi_{1} - \phi_{2})(\bar{\phi}_{1} - \bar{\phi}_{2})\rangle - \left(\frac{1}{2} |(\phi_{1} + \phi_{2})(\bar{\phi}_{1} - \bar{\phi}_{2})\rangle - \frac{1}{2} |(\phi_{1} - \phi_{2})(\bar{\phi}_{1} + \bar{\phi}_{2})\rangle \right) \right]
= \frac{1}{4} (|\phi_{1}\bar{\phi}_{1}\rangle + |\phi_{1}\bar{\phi}_{2}\rangle + |\phi_{2}\bar{\phi}_{1}\rangle + |\phi_{2}\bar{\phi}_{2}\rangle) - \frac{1}{4} (|\phi_{1}\bar{\phi}_{1}\rangle - |\phi_{1}\bar{\phi}_{2}\rangle - |\phi_{2}\bar{\phi}_{1}\rangle + |\phi_{2}\bar{\phi}_{2}\rangle)
- \frac{1}{4} \left[(|\phi_{1}\bar{\phi}_{1}\rangle - |\phi_{1}\bar{\phi}_{2}\rangle + |\phi_{2}\bar{\phi}_{1}\rangle - |\phi_{2}\bar{\phi}_{2}\rangle) - (|\phi_{1}\bar{\phi}_{1}\rangle + |\phi_{1}\bar{\phi}_{2}\rangle - |\phi_{2}\bar{\phi}_{1}\rangle - |\phi_{2}\bar{\phi}_{2}\rangle) \right]
= \frac{1}{2} (|\phi_{1}\bar{\phi}_{2}\rangle + |\phi_{2}\bar{\phi}_{1}\rangle) - \frac{1}{4} (-2 |\phi_{1}\bar{\phi}_{2}\rangle + 2 |\phi_{2}\bar{\phi}_{1}\rangle)
= |\phi_{1}\bar{\phi}_{2}\rangle$$
(3.8.30)