Symbole

Sortiert nach Bindungsstärke.

⊨ Äquivalenz zwischen Formeln (haben der gleiche Model)

 \Leftrightarrow Äquivalente meta-sprachlichen Aussagen die wahr oder falsch sind

 $\vdash M \vdash A$, A is aus M herleitbar

= Gleichstellung zweier Prädikate/Werte

 \neg Negation eines Prädikates

 \wedge Logische Und-Operator

∨ Logische Oder-Operator

 \rightarrow Implikation

 \leftrightarrow Äquivalenz innerhalb von Formeln

∀,∃ Quantoren (Der Bindungsbereich endet so spät wie möglich)

1 Prädikatenlogik 1. Stufe

1.1 Syntax

$$\begin{array}{lll} \text{Signatur } (\mathcal{F},\mathcal{P}) & & & & \text{Variablen} \\ \mathcal{X} & := \{x_0, x_1, \ldots\} & & & \text{Menge der Funktionen} \\ \mathcal{F} & := \mathcal{F}^0 \cup \mathcal{F}^1 \cup \mathcal{F}^2 \cup \ldots & & \text{Menge der Funktionen} \\ c \in \mathcal{F}^0 & & & \text{Konstante} \\ f, g, h \in \mathcal{F}^n & & \text{n-stellige Funktionssymbole} \\ \mathcal{P} & := \mathcal{P}^0 \cup \mathcal{P}^1 \cup \mathcal{P}^2 \cup \ldots & & \text{Menge der Prädikate} \\ p, q, r \in \mathcal{P}^0 & & & \text{Konstanten} \\ P, Q, R \in \mathcal{P}^n & & \text{n-stellige Prädikatensymbole} \end{array}$$

 $(\mathbf{T1}) \ x_0, x_1, \ldots \in Term$

(T2)
$$f \in \mathcal{F}^n, t_1, \dots, t_n \in Term \Rightarrow f(t_1, \dots, t_n) \in Term$$

Speziell $c \in Term$

(T1')
$$-x \in \mathcal{X}$$

(T2')
$$\frac{\overset{\sim}{t_1,\ldots,t_n}}{f(t_1,\ldots,t_n)}f\in\mathcal{F}^n$$

$$\underline{\text{Speziell}} \ \underline{-c} c \in \mathcal{F}^0$$

1.2 Syntax der Formeln

(A0)
$$At \subseteq For$$

(A1)
$$t_1, t_2 \in Term \Rightarrow t_1 = t_2 \in At$$
 $(\frac{1}{t_1 = t_2}, t_1, t_2 \in Term)$

(A2)
$$P \in \mathcal{P}^n, t_1, \dots, t_n \in Term \Rightarrow P(t_1, \dots, t_n) \in At$$

 $p \in At$

speziell

(A3)
$$A \in For \Rightarrow (\neg A) \in For$$

(A4)
$$A, B \in For \Rightarrow (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B) \in For$$

(A5)
$$A \in For \Rightarrow (\forall xA), (\exists xA) \in For$$

 $Universelle\ Formeln$

(i) A Quantorenfrei

(ii) $\frac{A,B}{A \wedge B}$

(iii) $\frac{A,B}{A \vee B}$

(iv) $\frac{A}{\forall xA}$

Existentielle Formeln

(i) A Quantorenfrei

(ii) $\frac{A,B}{A \wedge B}$

(iii) $\frac{A,B}{A \vee B}$

(iv) $\frac{A}{\exists x A}$

Semantik 1.3

Belegung β

Interpretation I

Teilinterpretation J

 $I\subseteq J$

 $I \subseteq J$ dann gilt $J, \beta \models A \Rightarrow I, \beta \models A$

Grundbereich (Domain) $D(D_I)$

 $d \in D_I, \beta_x^d = \begin{cases} d & \text{für } x = y\\ \beta(y) & \text{für } y \neq x \end{cases}$

Erfüllbarkeit $\exists I, \beta \models A$

Unerfüllbar $\neg \exists I, \beta \models A$

Gültigkeit $\forall I, \beta \models A \ (\emptyset \models A)$

Auswertung $d_{I,\beta}$

 $\beta \{x_0, x_1, \ldots\} \to D_I$

Funktion

Zeichen f, P, p

Funktionen/Prädikate f^I, P^I, p^I

1-stellige Prädikate $P^I:D\to \{T,F\}$

(T1)
$$x_{I,\beta}$$
 : $\Leftrightarrow \beta(x)$

(T2)
$$f(t_1,\ldots,t_n)_{I,\beta}$$
 : $\Leftrightarrow f^I((t_1)_{I,\beta},\ldots,(t_n)_{I,\beta})$

(A1)
$$I, \beta \models t_1 = t_2$$
 $:\Leftrightarrow (t_1)_{I,\beta} = (t_2)_{I,\beta}$

(A2)
$$I, \beta \models P(t_1, \dots, t_n)$$
 $:\Leftrightarrow (t_1)_{I,\beta} = (t_2)_{I,\beta}$

(A3)
$$I, \beta \models \neg A$$
 : \Leftrightarrow nicht $I, \beta \models A$

$$:\Leftrightarrow I,\beta\not\models A$$

(A4)
$$I, \beta \models A \land B$$
 :\$\iff I, \beta \models A \text{ und } I, \beta \models B\$

$$I,\beta \models A \vee B \qquad \qquad :\Leftrightarrow I,\beta \models A \text{ oder } I,\beta \models B$$

$$I, \beta \models A \rightarrow B$$
 :\$\iff I, \beta \notin A \text{ oder } I, \beta \notin B\$

$$I, \beta \models A \leftrightarrow B$$
 $:\Leftrightarrow (I, \beta \not\models A \text{ und } I, \beta \not\models B) \text{ oder } (I, \beta \models A \text{ und } I, \beta \models B)$

(A5)
$$I, \beta \models \forall xA$$
 : \Leftrightarrow für alle $d \in D$ gilt $I, \beta_x^d \models A$

$$I, \beta \models \exists x A$$
 : \Leftrightarrow es gibt ein $d \in D$ für die gilt $I, \beta_x^d \models A$

2 Aussagenlogik

2.1 Prädikatenlogische Formeln

Kommutativität $A \lor B = \models B \lor A$	und $A \wedge B = \models B \wedge A$
Assoziativität $A \lor (B \lor C) = \models (A \lor B) \lor C$	und $A \wedge (B \wedge C) = \models (A \wedge B) \wedge C$
$\mathbf{Idempotenz}\ A \lor A = \models A$	$\text{und } A \wedge A = \models A$
Distributivität $A \lor (B \land C) = \models (A \lor B) \land (A \lor C)$	und $A \wedge (B \vee C) = \models (A \wedge B) \vee (A \wedge C)$
$\mathbf{de} \ \mathbf{Morgan} \ \neg (A \lor B) = \models \neg A \land \neg B$	und $\neg(A \land B) = \models \neg A \lor \neg B$
$\textbf{Doppelte Negation } \neg \neg A = \models A$	
Absorption $A \lor (A \land B) = \models A$	und $A \wedge (A \vee B) = \models A$
Neutrales Elemente $A \lor false = \models A$	und $A \wedge true = \models A$
Inverse Elemente $A \lor \neg A = \models true$	und $A \land \neg A = \models false$
Null Elemente $A \lor true = \models true$	$\text{und } A \land false = \models false$

3 Hilbert Kalkül

Variablen

$$i) \ t \in Term, FV(t) := \ \text{die Menge der in } t \ \text{auftretenden Variablen}, BV(t) = \emptyset$$

$$ii) - FV(t_1 = t_2) := FV(t_1) \cup FV(t_2)$$

$$- BV(t_1 = t_2) := \emptyset$$

$$- FV(P(t_1, \dots, t_n)) := \cup_{i=1}^n FV(t_i)$$

$$- BV(\dots) = \emptyset$$

$$- FV(\neg A) := FV(A)$$

$$- BV(\neg A) := BV(A)$$

$$- FV(A \rightarrow B) := FV(A) \cup FV(B)$$

$$- BV(A \rightarrow B) := BV(A) \cup BV(B)$$

$$- FV(\forall xA) := FV(A) \setminus \{x\}$$

$$- BV(\forall xA) := BV(A) \cup \{x\}$$

Substitutionen

(T1)
$$x[^t/_x] :\equiv t$$

 $y[^t/_x] :\equiv y$
(T2) $f(t_1, \dots, t_n)[^t/_x] :\equiv f(t_1[^t/_x], \dots, t_n[^t/_x])$
speziell $c[^t/_x] :\equiv c \quad c \in \mathcal{F}^0$
(A1) $P(t_1, \dots, t_n)[^t/_x] :\equiv P(t_1[^t/_x], \dots, t_n[^t/_x])$
(A2)
(A3) $(\neg A)[^t/_x] :\equiv \neg A[^t/_x]$
(A4) $(A \to B)[^t/_x] :\equiv (A[^t/_x] \to B[^t/_x])$
(A5) $(\forall xA)[^t/_x] :\equiv \forall xA$

$$(\forall yA)[^t/_x] :\equiv \begin{cases} \forall yA & \text{für } x \notin FV(\forall yA) \\ \forall yA[^t/_x] & \text{sonst, und } y \notin FV(t) \\ \forall zA[^t/_y][^t/_x] & \text{sonst, } z \notin FV(t) \cup FV(A), \ z \ hei\beta t \ frisch \end{cases}$$

Gentzen Kalkül

 $M \subseteq For$

 $M \vdash_G A :\equiv A \text{ ergibt sich (syntaktisch) aus } M$

 $\underline{\text{Links}}$ bzw. $\underline{\text{rechts}}$ bedeutet dass der Operator $(\rightarrow, \neg, \lor, \land)$ $\underline{\text{links}}$ bzw. $\underline{\text{rechts}}$ von der \vdash_G steht.

Axiom
$$\overline{M \cup \{A\} \vdash_G A}$$

$$\begin{array}{lll} \textbf{Links} & \textbf{Rechts} \\ \textbf{Implikation} & \frac{M \cup \{\neg C\} \vdash_G A & M \cup \{B\} \vdash_G C}{M \cup \{A \rightarrow B\} \vdash_G C} & \frac{M \cup \{A\} \vdash_G B}{M \vdash_G A \rightarrow B} \\ \textbf{Negation} & \frac{M \cup \{\neg B\} \vdash_G A}{M \cup \{\neg A\} \vdash_G B} & \frac{M \cup \{A\} \vdash_G \neg B}{M \cup \{B\} \vdash_G \neg A} \\ \textbf{Konjunktion} & \frac{M \cup \{A, B\} \vdash_G C}{M \cup \{A \land B\} \vdash_G C} & \frac{M \vdash_G A & M \vdash_G B}{M \vdash_G A \land B} \\ \textbf{Disjunktion} & \frac{M \cup \{A\} \vdash_G C & M \cup \{B\} \vdash_G C}{M \cup \{A \lor B\} \vdash_G C} & \frac{M \cup \{\neg B\} \vdash_G A}{M \vdash_G A \lor B} \end{array}$$

Resolution

Beweis durch Resolution ist ein Verfahren um zu zeigen ob eine Formel Erfüllbar ist oder nicht.

Eine Formel
$$A$$
 in KNF wenn $A = \overbrace{(k_1 \lor k_2 \lor \ldots \lor k_n)}^{\text{Klausel}} \land \ldots \land (k_1 \lor \ldots \lor k_n)$

Eine Klausel einer Formel $K_i := \{k_1, \dots, k_n\}$

Eine negiertes Literal $l \in K_i :\equiv \bar{l}$ und $\bar{l} :\equiv l$

Eine Resolvente $R := (K_i \setminus \{l\}) \cup (K_i \setminus \{\bar{l}\})$

Ein Resolutionsschritt fügt A eine Resolvente zweier Klauseln hinzu. Das Ergebnis ist Res*(A)K ist unerfüllbar wenn $\emptyset \in Res * (A)$

Hoare Kalkül

t Totale Korrektheit p Partielle Korrektheit

Zuweisungsaxiom
$${\{B[^E/_x]\}}$$
 $x = E; \{B\}$ $(= p)$

$$\overline{\{D_E \wedge B[^E/_x]\}} \quad x = E; \{B\}$$
 (= t)

$$Konsequensregel \xrightarrow{\{DE \land D[\neg/x]\}} x = E, \{D\}$$

$$A \Rightarrow B, \quad \{B\} S \{C\}, \quad C \Rightarrow D$$

$$\{A\} S \{D\}$$

$$(K)$$

Sequentielle Komposition
$$\frac{\{A\} \ S \ \{B\}, \quad \{B\} \ T \ \{C\}}{\{A\} \ S; T \ \{C\}}$$
 (sK)

$$\begin{array}{l} \textbf{Bedingte Anweisung} \ \frac{\{A \wedge B\} \ S \ \{C\}, \quad \{A \wedge \neg B\}T\{C\}}{\{A\} \ \text{if} \ (B) \ S \ \text{else} \ T\{C\}} \\ \textbf{Schleifeninvariante} \ \frac{\{A \wedge B\} \ S \ \{A\}}{\{A\} \ \text{while} \ (B) \ S \ \{A \wedge \neg B\}} \end{array} \tag{Wp}$$

Schleifeninvariante
$$\frac{\{A \wedge B\} \ S \ \{A\}}{\{A\} \ \text{while } (B) \ S \ \{A \wedge \neg B\}}$$
 (Wp)

Terminierungsgröße (1) $\forall z \in Z : \{A \land B \land t = z\}S\{A \land t < z\}$

$$\begin{array}{c} (2) \ A \wedge B \Rightarrow t \geq 0 \\ \hline \text{while } (B) \ S \ (A \wedge \neg B) \end{array}$$
 (Wt)

Abgeleitete (1) $\{C\}$ init $\{A\}$

Schlussregeln (2) $\{A \wedge B\}$ S $\{A\}$

(3)
$$A \land \neg B \Rightarrow D$$

$$\overline{\{C\} \ init \ \mathtt{while} \ (B) \ S \ \{D\}} \tag{Sp}$$

$$(1) \{C\} init \{A\}$$

$$(2) \ \forall z \in \mathbb{Z} : \{A \land B \land t = z\} \ S\{A \land B < z\}$$

(3)
$$A \wedge B \Rightarrow t > 0$$

(4)
$$A \land \neg B \Rightarrow D$$

$$\overline{\{C\} \ init \ \text{while} \ (B) \ S \ \{D\}} \qquad (St)$$

Temporale Logik (LTL)

Ein Ablauf $\pi = s_0, s_1, \ldots$ ist eine unendliche Folge von Zuständen $s_i \in S$ Eine Bewertung $L: S \to \mathfrak{P}(\mathcal{P})$

 $\mathbf{G} \square$ Globally, von jetzt an immer

 $\mathbf{F} \diamondsuit \text{ Finally, irgendwann (ab jetzt)}$

 $\mathbf{X} \circ \text{neXt}$, im nächsten Zustand

U Until

Syntax

(T1)
$$p \in \mathcal{P} \Rightarrow p \in TFor$$

(T2)
$$A, B \in TFor \Rightarrow \neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B \in TFor$$

(T3)
$$A \in TFor \Rightarrow \mathbf{G}A, \mathbf{F}A, \mathbf{X}A \in TFor$$

(T4)
$$A, B \in TFor, A \cup B \in TFor$$
 (until)

Semantik

(T1)
$$\pi \models p \text{ wenn } p \in L(s_0)$$

(T2)
$$\pi \models \neg A$$
, wenn nicht $\pi \models A$
 $\pi \models A \lor B$, wenn $\pi \models A$ oder $\pi \models B$
 $\pi \models A \land B$, wenn $\pi \models A$ und $\pi \models B$
usw

(T3)
$$\pi \models \mathbf{X}A$$
, wenn $\pi^1 \models A$
 $\pi \models \mathbf{G}A$, wenn ...
 $\pi \models \mathbf{F}A$, wenn ...

(T4)
$$\pi \models A \cup B$$
, wenn es ein $j \geq 0$ gibt mit $\pi^j \models B$ und für alle $0 \leq i < j : \pi^i \models A$