6 Ordinary differential equations (ODEs)

6.1 Introduction and definitions

What is an ODE?

- ▶ **ODEs** are typically used to mathematically describe the **evolution** of some dynamical variable of interest.
- Examples: Newtonian radiative cooling, radioactive decay

$$\frac{\mathrm{d}q}{\mathrm{d}t}(t) = R(q(t), t)$$

- Such equations occur in CFD when integral bulk quantities are diagnosed.
 - mass of water accumulated in a pumped storage power plant
 - amount of H_2 stored in a gas bottle
 - modulation of heat stored in a thermal facility

What is an ODE? (cont'd)

$$\frac{\mathrm{d}q}{\mathrm{d}t}(t) = R(q(t), t)$$

- ▶ The derivative dq/dt of a physical variable q represents a *rate of change* that is equal to a rate function R. This general formulation constitutes a first-order **differential equation**.
- ► A differential equation is said to be **ordinary**, when it depends on *one parameter only*, here time *t*.

Numerical solution of an ODE

- We have learned about numerical differentiation and integration in the previous lectures and exercises by applying discretization methods (FDM, quadrature formulas).
- We now strive to apply these methods formulating an algorithm that numerically solves an ordinary differential equation. This is called numerical integration of an ODE.

General strategy for numerical integration of an ODE I

1. Formally integrate the ODE over one time step $\Delta t = t^{n+1} - t^n$, where n is the present and n+1 the future time.

$$\int_{t^n}^{t^{n+1}}rac{\mathsf{d} q}{\mathsf{d} t}\,\mathsf{d} t=q(t^{n+1})-q(t^n)\equiv q^{n+1}-q^n$$

2. **Apply a quadrature rule** to the right-hand side. A simple *explicit Euler method* (lower sum) yields

$$\int_{t^n}^{t^{n+1}} R(q(t),t) dt \approx R(q(t^n),t^n) \cdot \Delta t$$

General strategy for numerical integration of an ODE II

3. Rearrange by solving for the unknown 'future' value(s).

$$q^{n+1}-q^n=R\big(q(t^n),t^n\big)\cdot\Delta t$$

$$\Rightarrow \qquad \underbrace{q^{n+1}}_{\mathsf{new}} = \underbrace{q^n}_{\mathsf{old}} + \underbrace{\Delta t \cdot R(q(t^n), t^n)}_{\mathsf{update}}$$

4. Prescribe the initial condition.

$$q \leftarrow q^0$$

5. **Iterate** by incrementing n until the desired time $t = t_{end}$ is reached.

$$t \leftarrow t + \Delta t$$
$$n \leftarrow n + 1$$

6 Ordinary differential equations (ODEs)6.2 ODE systems

What is a system of ODEs?

In CFD, systems of ordinary differential equations occur by spatial discretization of the conservation equations for mass, momentum, and energy.

Every nodal value, like $\rho_{i,j,k,}(t)$, $u_{i,j,k}(t)$, $v_{i,j,k}(t)$, $w_{i,j,k}(t)$, ..., becomes a **function of time** with an associated *rate equation*.

▶ ODEs for *neighboring* nodal values located at $i, i \pm 1, ...;$ $j, j \pm 1, ...;$ $k, k \pm 1, ...$ are **coupled** by the right-hand sides R as result of the discrete *finite-differencing stencils*.

Numerical integration of ODE systems

- ➤ We follow the procedure outlined for a *single* ODE, but apply it *simultaneously* to **all** differential equations of the system.
- ► The equations of the system are hence integrated together 'in parallel'.

Example: A rank-2 system of coupled ODEs

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t)=y(t)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = -k \cdot x(t)$$

Example: Numerical integration of 2 coupled ODEs

1. Integrate over $\Delta t = t^{n+1} - t^n$ and discretize using, for example, an explicit Euler method (lower sum) for the right-hand side

$$x^{n+1} - x^n \approx y^n \cdot \Delta t$$

$$y^{n+1} - y^n \approx -k \cdot x^n \cdot \Delta t$$

2. Rearrange each equation solving for terms with n+1

$$x^{n+1} = x^n + \Delta t \cdot y^n$$
$$y^{n+1} = y^n - \Delta t \cdot k \cdot x^n$$

3. We need to prescribe two initial conditions, one for x and one for y

$$x \leftarrow x^0$$
$$v \leftarrow v^0$$

4. Insert all of the above into the previously developed update algorithm

$$t \leftarrow t + \Delta t$$
$$n \leftarrow n + 1$$

6 Ordinary Differential Equations

6.3 Example: Lorenz system with chaotic dynamics

Prelude on instabilities

Instability = unrestricted growth of a perturbation

- ► Stability region:
 - (De-)stabilizing effects are **physically** governed by *viscous* and *inertial* forces in the flow. Their (im-)balance is expressed by the Reynolds (*Re*) number.
 - Also numerical algorithms provide (de-)stabilizing effects. In CFD, this is often—but <u>not</u> exclusively!—expressed in terms of a Courant–Friedrichs–Levy (CFL) number.
- ▶ Instability mechanisms are vast ... more will follow in advanced lectures ond fluid mechanics and CFD.
- A developing instability often provides a possible route to *turbulence*. This can be induced by numerical errors that may trigger physical flow instabilities.

Textbook example: Kelvin-Helmholtz shear instability

(https://commons.wikimedia.org/w/index.php?curid=575598)

2-D LES with OpenFOAM (Re = 1335) exhibiting pile-up of numerical errors followed by physical instability.

Video: anim_kh-chan_OFles2d.mp4

from: J. R. Johnson et al., Kelvin Helmholtz instability in planetary magnetospheres. Space Sci. Rev., 184:1-31, 2014.

Laboratory experiment of the Kelvin-Helmholtz instability: https://www.youtube.com/watch?v=UbAfvcaYr00 (M. Hallworth & G. Worster, University of Cambridge, UK)

Bénard instability (unstable buoyancy stratification)

▶ The flow due to the instability is called *Rayleigh–Bénard convection*.

Rayleigh and Prandtl number:
$$Ra = \frac{g \alpha \Delta T H^3}{v \Gamma}$$

INSTABILITY

c) Turbulence

adapted from: A. Juel, University of Manchester, UK, 2012 13251 - CFD 0

Lorenz' view on chaotic Rayleigh-Bénard convection

- ► **Reference:** E. N. Lorenz (1963), "Deterministic nonperiodic flow", J. Atmos. Sci., **20**:130
- ► Lorenz aimed to study bulk flow properties of Rayleigh–Bénard convection, in particular, the emergence of nonperiodic flow as route to chaos and turbulence.
- ► The basis is the Navier-Stokes equations for a Newtonian fluid assuming small flow velocities and the Boussinesq limit of weak density and temperature fluctuations.
- ► Lorenz simplified (spatially integrated) the governing equations obtaining one equation for the "temperature", one for the "buoyancy", and another for the "kinetic energy".
- ► Control parameters are proportional to the Prandtl number, the Rayleigh number, and the height of the fluid layer.

Dr. rer. nat. Marten Klein 13251 – CFD 0

15

The Lorenz system

► The **Lorenz system** is given by the following 3 coupled ordinary rate equations:

$$\frac{dx}{dt} = s \cdot (y - x)$$

$$\frac{dy}{dt} = (r - z) \cdot x - y$$

$$\frac{dz}{dt} = x \cdot y - b \cdot z$$

- **Dimensionless dynamical variables:** x(t), y(t), z(t)
- **▶** Dimensionless control parameters: *s*, *r*, *b*

6 Ordinary Differential Equations

6.4 Numerical solution of the Lorenz system

Numerical solution of the Lorenz system

Details? See Exercise 06!

Lorenz attractor for the parameters b = 8/3, r = 28, s = 10 using initial conditions $x^0 = -8$, $y^0 = -1$, $z^0 = 33$.

18

Keywords

- ▶ ODE
- Systems of ODEs
- ► Explicit numerical integration of ODEs
- ► Lorenz system