

b> shift down;

| TI  | 1 1 | 1 | 0 |               | 0 | 0 | 0 | 0 |
|-----|-----|---|---|---------------|---|---|---|---|
| Tit | 1   | 1 | 0 | $\Rightarrow$ | 1 | 1 | 1 | 0 |
| 1   | 1   | 0 | 0 |               | 1 | 1 | 1 | 0 |
| 0   | 0   | 0 | 0 |               | 1 | 1 | 0 | 0 |

quad tree > (0011)(0001)(1000) 1

c> No,

example.

| 11 | 1 | 0 | 0 |
|----|---|---|---|
| 1  | 1 | 0 | 0 |
| 0  | 0 | 0 | 0 |
| 0  | 0 | 0 | 0 |

quadtree: 10000

shift Down;

| - |   |   |   |   |   |
|---|---|---|---|---|---|
|   | 0 | 0 | c |   | 0 |
| 1 | 1 | 1 | ( | 2 | 0 |
| 1 | 1 | 1 | 1 | ) | 0 |
|   | 0 | 0 | 1 | ) | 0 |

quadtree: (0011) 00 (1100)

## 2. Question 2.

Answer:

$$\begin{split} \vec{x}_1^1 - \vec{x}_0^1 &= R \vec{x}_1^0 + \vec{T} - (R \vec{x}_0^0 + \vec{T}) \\ &= R(\vec{x}_1^0 - \vec{x}_0^0) \\ ||\vec{x}_1^1 - \vec{x}_0^1||^2 &= (\vec{x}_1^1 - \vec{x}_0^1)(\vec{x}_1^1 - \vec{x}_0^1)^T \\ &= (R(\vec{x}_1^0 - \vec{x}_0^0))^T (R(\vec{x}_1^0 - \vec{x}_0^0)) \\ &= (\vec{x}_1^0 - x_0^0)^T R^T R(\vec{x}_1^0 - x_0^0) \\ &= (\vec{x}_1^0 - \vec{x}_0^0)^T (R^T R)(\vec{x}_1^0 - \vec{x}_0^0) \\ &= (\vec{x}_1^0 - \vec{x}_0^0)^T (\vec{x}_1^0 - \vec{x}_0^0) \\ &= ||\vec{x}_1^0 - \vec{x}_0^0||^2 \end{split}$$

Therefore,  $||\vec{x}_1^1 - \vec{x}_0^1|| = ||\vec{x}_1^0 - \vec{x}_0^0||$ .

4. There are several ways, the final region will be like the following.

Any reasonable answer is accepted.

O O Dace you get the image, you can get

| 0 | 0 | 1 | 2 | 0 |
|---|---|---|---|---|
| 0 | O | ) | フ | 3 |
| O | S | 0 | ט | 3 |
| 0 | 0 | 4 | 2 | 3 |
| 0 | 0 | 4 | Ý | } |
|   |   |   |   |   |

$$t. \quad \dot{E} : \sum_{i} \| \overrightarrow{\chi}_{i} - (SR\overrightarrow{\chi}_{i} - \overrightarrow{T}) \|^{2}$$