Two Dimensional Phase Retrieval from Local Measurements

BP^a, RS^a, Mark Iwen^b, and Aditya Viswanathan^c

^aUC San Diego

^bDepartment of Mathematics, and Department of Computational Mathematics, Science and Engineering (CMSE), Michigan State University, East Lansing, MI, 48824, USA ^cDepartment of Mathematics and Statistics, University of Michigan – Dearborn, Dearborn, MI, 48128, USA

ABSTRACT

2D or not 2D, that is the tribe called question

Keywords: Phase Retrieval, Local Measurements, Two Dimensional Imaging, Ptychography

1. INTRODUCTION

In this paper we consider the problem of approximately recovering an unknown two dimensional sample transmission function $q: \mathbb{R}^2 \to \mathbb{C}$ with compact support, $\operatorname{supp}(q) \subset [0,1]^2$, from phaseless Fourier measurements of the form

$$|(\mathcal{F}[aS_{x_0,y_0}q])(u,v)|^2, \quad (u,v) \in \Omega \subset \mathbb{R}^2, \quad (x_0,y_0) \in \mathcal{L} \subset [0,1]^2$$
 (1)

where \mathcal{F} denotes the 2 dimensional Fourier transform, $a: \mathbb{R}^2 \to \mathbb{C}$ is a known illumination function from an illuminating beam, S_{x_0,y_0} is a shift operator defined by $(S_{x_0,y_0}q)(x,y):=q(x-x_0,y-y_0)$, Ω is a finite set of sampled frequencies, and \mathcal{L} is a finite set of shifts. When the illuminating beam is sharply focussed one can further assume that a is also (effectively) compactly supported within a smaller region $[0,\delta']^2$ for $\delta' \ll 1$. This is known as the *ptychographic imaging problem* and is of great interest in the physics community (see, e.g., Rodenburg?). Herein we will make the further assumption that all the utilized shifts of q also have their supports contained in $[0,1]^2$. That is, that

$$\bigcup_{(x_0,y_0)\in\mathcal{L}}\operatorname{supp}\left(S_{x_0,y_0}q\right)\subseteq[0,1]^2$$

holds. Note that this assumption can always be achieved via rescaling.

Discretizing (??) using periodic boundary conditions we obtain a finite dimensional problem aimed at recovering an unknown matrix $Q \in \mathbb{C}^{d \times d}$ from phaseless measurements of the form

$$\left| \frac{1}{d^2} \sum_{j=1}^d \sum_{k=1}^d A_{j,k} \left(S_\ell Q S_{\ell'}^* \right)_{j,k} e^{\frac{-2\pi i}{d} (ju+kv)} \right|^2$$
 (2)

where $A \in \mathbb{C}^{d \times d}$ is a known measurement matrix representing our illuminating beam, and $S_\ell : \mathbb{C}^d \mapsto \mathbb{C}^d$ is the discrete circular shift operator defined by $(S_\ell \mathbf{x})_j := x_{j+\ell \mod d}$ for all $\mathbf{x} \in \mathbb{C}^d$ and $j, \ell \in [d] := \{1, \ldots, d\}$. Herein we will make the simplifying assumption that our original illuminating beam function a is not only sharply focused, but also separable. Using this assumption we let weighted measurement matrix be $\frac{1}{d^2}A := \mathbf{ab}^*$ where $\mathbf{a}, \mathbf{b} \in \mathbb{C}^d$ both have $a_j = b_j = 0$ for all $j \in [d] \setminus \{1, \ldots, \delta\}$. Here $\delta \in \mathbb{Z}^+$ is much smaller than d.

Further author information: (Send correspondence to Rayan Saab)

Rayan Saab: E-mail: R-ditty doggy doo

Using the small support and separability of $\frac{1}{d^2}A := ab^*$ we can now rewrite the measurements (??) as

$$\left| \sum_{j=1}^{\delta} \sum_{k=1}^{\delta} a_{j} \overline{b_{k}} \left(S_{\ell} Q S_{\ell'}^{*} \right)_{j,k} e^{\frac{-2\pi i}{d} (ju+kv)} \right|^{2} = \left| \sum_{j=1}^{\delta} \sum_{k=1}^{\delta} \overline{a_{j}} e^{\frac{2\pi i j u}{d}} b_{k} e^{\frac{2\pi i k v}{d}} \left(S_{\ell} Q S_{\ell'}^{*} \right)_{j,k} \right|^{2}$$

$$= \left| \left\langle S_{\ell} Q S_{\ell'}^{*}, \mathbf{a}_{u} \mathbf{b}_{v}^{*} \right\rangle_{HS} \right|^{2}$$

$$(3)$$

where $\mathbf{a}_u, \mathbf{b}_v \in \mathbb{C}^d$ are defined by $(a_u)_j := \overline{e^{\frac{-2\pi \mathrm{i} j u}{d}} a_j}$ and $(b_v)_k := \overline{e^{\frac{2\pi \mathrm{i} k v}{d}} b_k}$ for all $j, k \in [d]$. Continuing to rewrite (??) we can now see that our discretized measurements will all take the form of

$$\left|\left\langle S_{\ell}QS_{\ell'}^{*},\mathbf{a}_{u}\mathbf{b}_{v}^{*}\right\rangle_{\mathrm{HS}}\right|^{2} = \left|\operatorname{Trace}\left(\mathbf{b}_{v}\mathbf{a}_{u}^{*}S_{\ell}QS_{\ell'}^{*}\right)\right|^{2} = \left|\operatorname{Trace}\left(S_{\ell'}^{*}\mathbf{b}_{v}\left(S_{\ell}^{*}\mathbf{a}_{u}\right)^{*}Q\right)\right|^{2} = \left|\left\langle Q,S_{\ell}^{*}\mathbf{a}_{u}\left(S_{\ell'}^{*}\mathbf{b}_{v}\right)^{*}\right\rangle_{\mathrm{HS}}\right|^{2}$$
(4)

for a finite set of frequencies $(u, v) \in \Omega \subset \mathbb{R}^2$ and shifts $(\ell, \ell') \in \mathcal{L} \subseteq [d] \times [d]$.

Motivated by ptychographic imaging we propose a new efficient numerical scheme for solving discrete phase retrieval problems using measurements of type (??) herein.

OUTLINE OF REMAINING SECTIONS HERE!!!!

2. AN EFFICIENT METHOD FOR SOLVING THE DISCRETE 2D PHASE RETRIEVAL PROBLEM

In this section we present a lifted formulation? of the discrete 2D phase retrieval from local measurements of type (??). We then use this lifted formulation to rapidly solve for $Q \in \mathbb{C}^{d \times d}$ using a modified variant of the BlockPR agorithm.?,? More specifically, we will consider the collection of measurements given by

$$y_{(\ell,\ell',u,v)} := \left| \left\langle Q, S_{\ell}^* \mathbf{a}_u \mathbf{b}_v^* S_{\ell'} \right\rangle_{\mathrm{HS}} \right|^2$$

for all $(\ell, \ell', u, v) \in [d]^2 \times [2\delta - 1]^2$ herein.* Thus, we collect a total of $D := (2\delta - 1)^2 \cdot d^2$ measurements, where each measurement is due to a vertical and horizontal shift of a rank one 2D illumination pattern $\mathbf{a}_u \mathbf{b}_v^*$. As above, the inner product is the Hilbert-Schmidt inner product.

Let $X \in \mathbb{C}^{d \times d}$ and consider measurements of the form

$$y_I = |\langle X, S_{\ell}^* \mathbf{m}_j \mathbf{m}_{j'}^* S_{\ell'} \rangle_{HS}|^2$$

where the inner product is the Hilbert-Schmidt inner product. Here, $S_{\ell}: \mathbb{C}^d \mapsto \mathbb{C}^d$ and \mathbf{m}_j are as usual, and $I=(j,j',\ell,\ell')$ is a multi-index with $j,j'\in [2\delta-1]$, and $\ell,\ell'\in [d]_0$. Define the multi-index set $\mathcal{I}=[2\delta-1]^2\times [d]_0^2$ and note that, .

Let \mathcal{P} be the projection onto the span of

$$\left\{ \overrightarrow{(S_{\ell}^* \mathbf{m}_j)^T \otimes (S_{\ell'}^* \mathbf{m}_{j'})^*} \cdot (\overrightarrow{(S_{\ell}^* \mathbf{m}_j)^T \otimes (S_{\ell'}^* \mathbf{m}_{j'})^*} \right\}_{(j,j',\ell,\ell')},$$

i.e., \mathcal{P} is analogous to T_{δ} from our last paper (as will become apparent shortly). Note that each of our measurements y_I is of the form $|\langle X, \mathbf{ab}^* \rangle|^2$ where $\mathbf{a}, \mathbf{b} \in \mathbb{C}^d$. So, denoting by $\overrightarrow{X} \in \mathbb{C}^{d^2}$ the (matlab-style)

^{*}For any $n \in \mathbb{Z}^+$ we will let $[n] := \{1, 2, 3, \dots, n\} \subset \mathbb{Z}^+$.

vectorization of X, and by $A \otimes B$ the Kronecker product of A and B, we can write

$$|\langle X, \mathbf{a}\mathbf{b}^* \rangle_{HS}|^2 = |\operatorname{Tr}(\mathbf{b}\mathbf{a}^*X)|^2$$

$$= |\mathbf{a}^*X\mathbf{b}|^2 = |\langle \overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*}, \overrightarrow{X} \rangle_{\ell_2^{d^2}}|^2$$

$$= \left(\langle \overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*}, \overrightarrow{X} \rangle_{\ell_2^{d^2}}\right)^* \cdot \langle \overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*}, \overrightarrow{X} \rangle_{\ell_2^{d^2}}$$

$$= \overrightarrow{X}^* \overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*} (\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*})^* \overrightarrow{X}$$

$$= \operatorname{Tr}\left(\overrightarrow{X}\overrightarrow{X}^* \overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*} (\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*})^*\right)$$

$$= \left\langle \overrightarrow{X}\overrightarrow{X}^*, \overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*} (\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*})^* \right\rangle_{HS}$$
(5)

Accordingly, let \mathcal{A} be the linear operator given by

$$\mathcal{A}: (\mathbb{C}^{d^2 \times d^2}) \to \mathbb{R}^D$$

$$Z \mapsto \left(\left\langle Z, \overline{(S_{\ell}^* \mathbf{m}_j)^T \otimes (S_{\ell'}^* \mathbf{m}_{j'})^*} (\overline{(S_{\ell}^* \mathbf{m}_j)^T \otimes (S_{\ell'}^* \mathbf{m}_{j'})^*})^* \right\rangle_{HS} \right)_{(j,j',\ell,\ell') \in \mathcal{I}}$$

$$(6)$$

To generalize our theorem from the ACHA submission, we need (at least) two ingredients: The spectral gap of the adjacency matrix $\mathcal{P}(\mathbb{11}^*)$ and the condition number of the linear operator \mathcal{A} .

2.1 Spectral gap of the adjacency matrix $\mathcal{P}(\mathbb{1}\mathbb{1}^*)$

Here note that the doubly indexed vertices $(i,j),(i',j')\in[d]\times[d]$ are connected by an edge if and only if

$$|i - i'| \mod d < \delta$$
 and $|j - j'| \mod d < \delta$.

That is, the graph is the tensor-product of two identical graphs, each with adjacency matrix $T_{\delta}(\mathbf{e}_d\mathbf{e}_d^*)$. So that now

$$\mathcal{P}(\mathbf{e}_{d^2}\mathbf{e}_{d^2}^*) = T_{\delta}(\mathbf{e}_d\mathbf{e}_d^*) \otimes T_{\delta}(\mathbf{e}_d\mathbf{e}_d^*).$$

Using the fact that the eigenvalues of the Kronecker product are the pairwise products of the eigenvalues of the individual matrices, the spectral gap is now $\mathcal{O}(\frac{\delta^4}{d^2})$.

2.2 Condition number of the linear operator A

We will show that $\mathcal{A} = \mathcal{M} \otimes \mathcal{M}$ for an appropriate linear operator $\mathcal{M} : T_{\delta}(\mathbb{C}^{d \times d}) \to \mathbb{R}^{d(2\delta - 1)}$.

Observation 1:

Recall that each row of the matrix representation of \mathcal{A} from (??) is a vectorized version of a rank-1 matrix of the form $\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*}$ ($\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*}$)* as can be seen in (??), appropriately restricted (but let's worry about that later). Now, observe that

$$\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*} (\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*})^* = (b_1 \mathbf{a}^*, ..., b_d \mathbf{a}^*)^T (\bar{b}_1 \mathbf{a}, ..., \bar{b}_d \mathbf{a})$$

so that the entries of the rank-1 matrix $\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*}$ $(\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*})^*$ can be multi-indexed via

$$(\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*} (\overrightarrow{\mathbf{b}^T \otimes \mathbf{a}^*})^*)_{m,n,m',n'} = b_m \bar{a}_n \bar{b}_{m'} a_{n'} = b_m \bar{b}_{m'} \bar{a}_n a_{n'}.$$

$$(7)$$

On the other hand, note that

$$\overrightarrow{\mathbf{a}^T \otimes \mathbf{a}^*} (\overrightarrow{\mathbf{b}^T \otimes \mathbf{b}^*})^* = (a_1 \mathbf{a}^*, ..., a_d \mathbf{a}^*)^T (\bar{b}_1 \mathbf{b}, ..., \bar{b}_d \mathbf{b})$$

so that

$$(\overrightarrow{\mathbf{a}^T \otimes \mathbf{a}^*} (\overrightarrow{\mathbf{b}^T \otimes \mathbf{b}^*})^*)_{n',n,m',m} = b_m \overline{b}_{m'} \overline{a}_n a_{n'}.$$
(8)

Comparing (??) and (??) and noting that m, n and m', n' all range over the same set we see that (??) and (??) are the same up-to a permutation.

Observation 2:

In our case, each row of \mathcal{A} corresponds to some $\mathbf{a} = S_{\ell'}^* \mathbf{m}_{j'}$ and $\mathbf{b} = S_{\ell}^* \mathbf{m}_{j}$, where every combination of $(j, j', \ell, \ell') \in \mathcal{I}$ is taken. That is, every row of \mathcal{A} is a permutation of (a vectorized version) of

$$\overrightarrow{(S_{\ell}^*\mathbf{m}_j)^T \otimes (S_{\ell}^*\mathbf{m}_j)^*} (\overrightarrow{(S_{\ell'}^*\mathbf{m}_{j'})^T \otimes (S_{\ell'}^*\mathbf{m}_{j'})^*})^*$$

for some $(j, j', \ell, \ell') \in \mathcal{I}$. In other words we have a permutation of the Kronecker product of

$$\mathcal{M}: X \in \mathbb{C}^{d \times d} \mapsto (\langle X, (S_{\ell}^* \mathbf{m}_j) (S_{\ell}^* \mathbf{m}_j)^* \rangle)_{j,\ell}$$

with itself.

ACKNOWLEDGMENTS

This work was supported in part by NSF DMS-1416752.