

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2022

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و30 د

الموضوع الأول

التمرين الأول: (04 نقاط)

الدالة العددية المعرّفة على \mathbb{R} بتمثيلها البياني (C_f) في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f) ، $(O;\vec{i},\vec{j})$ مماس (C_f) مماس في النقطة ذات الفاصلة O كما هو مبيّن في الشكل المقابل.

- (T) بقراءة بيانية: عيّن f'(0) و f'(0) و أعط معادلة للمماس (f'(0)
- f(x)=x+m : ناقش بيانيا، حسب قيم الوسيط الحقيقي m، عدد حلول المعادلة: (2
 - $f(x) = (x^2 + a)e^x + b$ بيّن أنّ a = 1 و b = -1 و a = 1
- . الدالة العددية المعرّفة على \mathbb{R} بين أنّ الدالة $g(C_g)$ و $g(x)=(x^2+1)e^{|x|}-1$ بين أنّ الدالة g (وجية ثم اشرح كيفية إنشاء g) انطلاقا من g0 انطلاقا من g1 انطلاقا من g3 المعلم السابق.

التمرين الثانى: (04 نقاط)

أجب بصحيح أو خاطئ مع التبرير في كلّ حالة من الحالات التالية:

 $f(x) = \frac{x^2 - x + \ln x}{x}$: ب $= [0; +\infty[$ بالدالة العددية المعرّفة على $= (1, +\infty[$

 $+\infty$ عند f عند المائل لمنحنى الدالة y=x-1

 $\ln(2x-1) + \ln(2x+1) = \ln 3$... (E) : x نعتبر المعادلة (E) ذات المجهول الحقيقي \mathbb{R} للمعادلة (E) حلان متمايزان في

 $F(x) = x + \ln(1 + e^{-2x})$ و $f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$ ب ب \mathbb{R} ب الدالة العدديتان المعرّفتان على \mathbb{R} ب الدالة أصلية للدالة $f(x) = x + \ln(1 + e^{-2x})$ و $f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$ ب دالة أصلية للدالة $f(x) = x + \ln(1 + e^{-2x})$

 $u_n=rac{n+1}{n}$ كما يلي: \mathbb{N}^* كما يلي: (u_n) (4

 $\ln 2022$ هي $\ln u_1 + \ln u_2 + \dots + \ln u_{2022}$: قيمة المجموع

التمرين الثالث: (05 نقاط)

المستوى منسوب إلى المعلم المتعامد المتجانس $(O;\vec{i},\vec{j})$ ، $(O;\vec{i},\vec{j})$ المستقيمان المعرفان كما يلي

. (
$$\Delta$$
): $y = -\frac{1}{2}x + 1$ (D) : $y = x$

اختبار في مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

$$u_{n+1}=-rac{1}{2}u_n+1$$
 و $u_0=-4$: المتتالية العددية (u_n) معرّفة على $u_0=-4$

- ا أنقل الشكل المقابل على ورقة الإجابة ثم مثّل على حامل محور u_3 ورقة u_2 ، u_1 ، u_0 : الفواصل الحدود التمثيل u_3 و u_2 ، u_1 ، u_0 :
 - . أ- هل المتتالية (u_n) رتيبة (u_n) برّر إجابتك (2

$$(u_n)$$
 ضع تخمينا حول تقارب المتتالية $-$

$$v_n = \left(u_n - \frac{2}{3}\right)^2$$
: بالمتتالية العددية المعرّفة على \mathbb{N} بالمتتالية العددية المعرّفة على (v_n)

$$v_0$$
 بيّن أنّ المتتالية (v_n) هندسية أساسها $\frac{1}{4}$ ثم احسب أ

$$\lim_{n \to +\infty} v_n$$
 واستنتج أنّ v_n متقاربة. وأ $\lim_{n \to +\infty} v_n$ بدلالة v_n ثم احسب

$$v_0 \times v_1 \times \dots \times v_{n-1} = \left(\frac{14}{3}\right)^{2n} \times \left(\frac{1}{2}\right)^{n^2-n}$$
 ، n عدد طبیعي (4

التمرين الرابع: (07 نقاط)

$$g(x) = \frac{2x^2 - 2x - 1}{x^2} + \ln x$$
: ب]0; +∞[باكة العددية المعرّفة على]0; +∞[باكة العددية المعرّفة على يا

$$[0;+\infty]$$
بيّن أنّ الدّالة g متزايدة تماما على بيّن أنّ الدّالة و

$$1,2<\alpha<1,3$$
 حيث أنّ المعادلة $g(x)=0$ تقبل حلا وحيدا α

$$]0; +\infty[$$
 على $g(x)$ على $g(x)$

$$f(x) = \left(\frac{1}{x} - 2 - \ln x\right)e^{-x}$$
: ب $[0; +\infty[$ بالمعرّفة على $[0; +\infty[$ بالمعرّفة على المعرّفة على المعرّفة على (Π

$$\left(O;\overrightarrow{i},\overrightarrow{j}
ight)$$
 تمثيلها البياني في المستوى المنسوب إلى المعلم المتعامد المتجانس و $\left(C_f
ight)$

$$\lim_{x \to \infty} f(x) = \lim_{x \to +\infty} f(x) = 0$$
 ثم احسب (1) أ- بيّن أنّ (1)

ب- فسر النتيجتين السابقتين بيانيا.

$$f'(x) = \frac{g(x)}{e^x}$$
 ، موجب تماما ، موجب عدد حقیقی x عدد حقیقی عدد کلّ عدد (2

- استنتج اتجاه تغیّر الدّالة f وشکّل جدول تغیّراتها.

$$(f(\alpha) \simeq -0.4$$
 و $f(0.65) \simeq 0$: نأخذ) (C_f) و (3

$$F(x) = e^{-x}(2 + \ln x)$$
 بالدّالة العددية المعرّفة على $[0; +\infty[$ بيا الدّالة العددية المعرّفة على $[0; +\infty[$

$$]0;+\infty$$
ال المجال على المجال F دالة أصلية للدالة f على المجال المجال أ

$$0 < \lambda < \frac{1}{2}$$
 :عدد حقیقی یحقق $S(\lambda) = \int_{\lambda}^{1/2} f(x) dx$ ب- نضع

احسب $S(\lambda)$ ثم فسّر النتيجة بيانيا.

الموضوع الثانى

التمرين الأول: (04 نقاط)

الدالة العددية المعرفة على $[-1;+\infty[$ بـ: $]-1;+\infty[$ عدد حقيقي. f(x)=a الدالة العددية المعرفة على f(x)=a

كما هو مبيّن في الشكل المقابل.

$$(T)$$
 بقراءة بيانية، عيّن $f'(0)$ وأعط معادلة للمماس (1

$$a=1$$
 بيّن أنّ (2

ناقش بیانیا، حسب قیم الوسیط الحقیقی
$$m$$
، عدد وإشارة $f(x)+x-m=0$

$$g$$
 الدالة العددية المعرفة على $g(-1) = |x+1| - 1 - 2\ln |x+1|$ بين أنه من أجل كلّ عدد حقيقي x يختلف عن $g(x) = |x+1| - 1 - 2\ln |x+1|$ ثم فسّر النتيجة بيانيا. $g(x) = g(x)$ ، $g(x) = g(x)$ من أجل كلّ عدد حقيقي x من $g(x) = f(x)$ ، $g(x) = f(x)$ ، $g(x) = f(x)$ من أجل كلّ عدد حقيقي x من $g(x) = f(x)$ ، $g(x) = f(x)$ ، $g(x) = f(x)$ من أجل كلّ عدد حقيقي x من $g(x) = f(x)$ ، $g(x) = f(x)$

ج- أنشئ (C_g) في المعلم السابق.

التّمرين الثاني: (04 نقاط)

عيّن الاقتراح الصّحيح الوحيد من بين الاقتراحات الثّلاثة في كل حالة من الحالات التالية مع التّبرير:

:ديمة
$$I = \int_{1}^{2} (x-1)e^{x^2-2x} dx$$
 عيث $I = \int_{1}^{2} (x-1)e^{x^2-2x} dx$ عيث (1

$$\frac{e+1}{2e} \quad (\Rightarrow \qquad \qquad \frac{e-1}{2e} \quad (\Rightarrow \qquad \qquad \frac{e-$$

$$1 - \frac{1}{e}$$
 (5

$$v_n = u_n + \alpha$$
 ، $u_{n+1} = \frac{1}{3}u_n + 3$ ، $u_0 = 3$: ب \mathbb{N} على المعرفتّان العدديتان العدديتان المعرفتّان على (u_n) (2

حيث α عدد حقيقي. قيمة العدد الحقيقي α حتّى تكون المتتالية (v_n) هندسية هي:

$$\frac{2}{9}$$
 (÷

 (C_f)

$$\frac{9}{2}$$
 (ب

$$-\frac{9}{2}$$
 (1)

 $\ln(x+1) \le f(x) \le e^x - 1$: موجب تماما عددية تُحقق، من أجل كلّ عدد حقيقي x موجب تماما f

$$\lim_{x \to 0} \frac{f(x)}{x}$$
 هي:

$$y'' = 2 - \frac{1}{x^2} \cdot \dots \cdot (E) : (E)$$
 is it is it is it is it. (4

H'(1)=2 و الذي يُحقق H(1)=4 على H'(1)=3 عبارة الحل H للمعادلة H'(1)=3 على H'(1)=3

$$H(x) = x^2 - x + 4 - \ln x$$
 (\Rightarrow $H(x) = x^2 - x + 1 + \ln x$ (\Rightarrow $H(x) = x^2 - x + 4 + \ln x$ (\Rightarrow

اختبار في مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

التمرين الثالث: (05 نقاط)

$$\begin{cases} u_0 \times u_2 = e^2 \\ \ln u_1 + \ln u_7 = -4 \end{cases}$$
 المتتالية الهندسيّة المعرّفة على $\mathbb N$ وحدودها موجبة تماما حيث:

$$(u_n)$$
 المتتالية u_1 والأساس u_1 والأساس $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ هن أجل كلّ عدد طبيعي

$$S_n = u_0 + u_1 + \dots + u_n$$
 :حيث S_n المجموع (2

$$v_{n+1}=v_n+u_n$$
 ، n ومن أجل كلّ عدد طبيعي $v_0=e^3$: المعرّفة بـ: $v_0=e^3$ المعرّفة بـ: $v_0=e^3$ المعرّفة بـ: $v_0=e^3$ المعرّفة بـ: $v_n=\frac{e^{3-n}-e^4}{1-e}$ ، $v_n=\frac{e^{3-n}-e^4}{1-e}$.

$$\frac{1}{e}v_n = \frac{1}{1-e}(u_n - e^3)$$
 ، n عدد طبیعی در المجموع $S'_n = \frac{1}{e}v_0 + \frac{1}{e}v_1 + \dots + \frac{1}{e}v_n$: عبتر المجموع $S'_n = \frac{1}{1-e}[S_n - (n+1)e^3]$ ، n عدد طبیعی $S'_n = \frac{1}{1-e}[S_n - (n+1)e^3]$ ، n عدد طبیعی $S'_n = \frac{1}{1-e}[S_n - (n+1)e^3]$

التّمرين الرّابع: (07 نقاط)

الدّالة العدديّة المعرّفة على
$$\mathbb{R}$$
 بنياني في المستوى $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$ بنياني في المستوى $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$ بنياني في المستوى المنسوب إلى المعلم المتعامد المتجانس $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$

$$\lim_{x \to -\infty} f(x) = +\infty$$
 وبيّن أنّ $\lim_{x \to +\infty} f(x)$ احسب (1

$$+\infty$$
 عند C_f عند $y=-2x+4$ عند Δ بالنسبة إلى Δ

$$0$$
 أكتب معادلة لـ T مماس الفاصلة C_f مماس معادلة لـ (4

$$\left(f\left(-\ln 4\right)\simeq -3,2\ g\left(-1,9\right)\simeq 0\right)$$
 و $\left(-1,9\right)\simeq 0$ على المجال على المجال $\left(C_{f}\right)$ المجال $\left(C_{f}\right)$ على المجال $\left(C_{f}\right)$ المجال $\left(C_{f}\right)$ على المجال $\left(C_{f}\right)$

لسابق.
$$h$$
 الدالة المعرّفة على \mathbb{R} بـ: $P(C_h)$ به $P(x) = -\frac{1}{2}e^{-2x} + \frac{9}{2}e^{-x} + 2x - 2$ به المعلم السابق. $P(C_h)$ الدالة المعرّفة على $P(C_h)$ به الدالة المعرّفة على $P(C_h)$ به المعلم السابق. $P(C_h)$ اعتمادًا على $P(C_h)$ اعتماد على $P(C_h)$ اعتمادًا على $P(C_h)$ اعتماد على $P(C_h$

انتهى الموضوع الثاني