Narrative Conservatism

Juan Manuel García Lara, Beatriz García Osma, Fengzhi Zhu

Universidad Carlos III de Madrid bgosma@emp.uc3m.es

The University of Manchester

March 10, 2021

Research Question

• Is narrative disclosure conservative?

Research Question

• Is narrative disclosure conservative?

Definition

• Narrative conservatism: narratives that reflect bad news in a **timelier**, more **news-consistent**, and **complete** manner than good news.

Research Question

• Is narrative disclosure conservative?

Definition

 Narrative conservatism: narratives that reflect bad news in a timelier, more news-consistent, and complete manner than good news.

Findings

- Using 8-K and 10-Q data (1994-2019), we find evidence of narrative conservatism.
- Narratives are timelier (shorter time lag), more tone-consistent (content sentiment agrees with sign of news), and have more words, more graphs, more items, and more exhibits in reaction to bad news than to good news, where news is measured by returns as in Basu (1997).

Additional Findings

- Greater narrative conservatism
 - in voluntary disclosures (compared to mandatory) and MD&A sections (compared to the notes to financial statements).
 - in firms with more intangibles and R&D
 - where managers have incentives to disclose bad news.

Additional Findings

- Greater narrative conservatism
 - in voluntary disclosures (compared to mandatory) and MD&A sections (compared to the notes to financial statements).
 - in firms with more intangibles and R&D
 - where managers have incentives to disclose bad news.
- Pervasive property of narratives in period studied

Additional Findings

- Greater narrative conservatism
 - in voluntary disclosures (compared to mandatory) and MD&A sections (compared to the notes to financial statements).
 - in firms with more intangibles and R&D
 - where managers have incentives to disclose bad news.
- Pervasive property of narratives in period studied
- Greater narrative conservatism in firms with low (high) conditional (unconditional) conservatism

Additional Findings

- Greater narrative conservatism
 - in voluntary disclosures (compared to mandatory) and MD&A sections (compared to the notes to financial statements).
 - in firms with more intangibles and R&D
 - where managers have incentives to disclose bad news.
- Pervasive property of narratives in period studied
- Greater narrative conservatism in firms with low (high) conditional (unconditional) conservatism

Contribution

- Extend literature on accounting conservatism by defining and documenting the existence of narrative conservatism.
- Explore the links between recognition and narrative disclosure.
- Add to debate on whether managers withhold bad news.
- Add to literature on narrative properties of SEC filings.

Theoretical Framework: Conservatism

Accounting Conservatism

- Recognition (Beaver and Ryan, 2005; Ball and Shivakumar, 2005)
 - Conditional: ex post or news dependent, "higher degree of verification to recognize good news as gains than to recognize bad news as losses," (Basu, 1997, p. 7) leading to earnings that recognize bad news in a timelier and more complete manner than good news.
 - Unconditional: ex ante or news independent. Aspects of the accounting process (measurement and recognition criteria at the inception of assets and liabilities), leading to a persistent understatement of net assets.

Theoretical Framework: Conservatism

Accounting Conservatism

- Recognition (Beaver and Ryan, 2005; Ball and Shivakumar, 2005)
 - Conditional: ex post or news dependent, "higher degree of verification to recognize good news as gains than to recognize bad news as losses," (Basu, 1997, p. 7) leading to earnings that recognize bad news in a timelier and more complete manner than good news.
 - Unconditional: ex ante or news independent. Aspects of the accounting
 process (measurement and recognition criteria at the inception of assets
 and liabilities), leading to a persistent understatement of net assets.
- What role narrative disclosure?
 - Prior work focuses on recognition, little is known about conservative disclosure (Kothari et al., 2009, p.243).
 - A "committment to timely disclosure of bad news need not come exclusively through financial statement recognition" (Guay and Verrecchia, 2018, p. 73-74):

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

• Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

- Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).
- An economic event can be recognized if it satisfies all:
 - Definition, measurability, relevance, and reliability criteria

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

- Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).
- An economic event can be recognized if it satisfies all:
 - Definition, measurability, relevance, and reliability criteria
- Even if criteria are met, annual reports are still annual (low frequency and lack of timeliness). Information may need to be disclosed earlier.

"Although financial statements have essentially the same objectives as financial reporting, some useful information is better provided by financial statements and some is better provided, or can only be provided, by notes to financial statements or by supplementary information or other means of financial reporting." (FASB 1984, par.7)

Reporting requirements (e.g., FASB, IASB)

- Recognition: depictions in numbers with captions on the face of the financial statements (Schipper, 2007).
- An economic event can be recognized if it satisfies all:
 - Definition, measurability, relevance, and reliability criteria
- Even if criteria are met, annual reports are still annual (low frequency and lack of timeliness). Information may need to be disclosed earlier.
- <u>Disclosure</u>: possibility to *timely* convey information that fails to meet certain recognition criteria
 - Displays in the notes and supporting schedules that accompany financial statements (Schipper, 2007); but also:
 - 10-Qs, 8-Ks, press releases, conference calls, social media, etc.

- Role of narratives in accounting conservatism
 - Supplement information that cannot be recognized
 - Explain/complement/provide details of recognized line items

Role of narratives in accounting conservatism

- Supplement information that cannot be recognized
- Explain/complement/provide details of recognized line items

Narrative conservatism

Narratives that reflect economic losses (bad news) in a timelier, more news-consistent and complete manner than economic gains (good news).

Role of narratives in accounting conservatism

- Supplement information that cannot be recognized
- Explain/complement/provide details of recognized line items

Narrative conservatism

Narratives that reflect economic losses (bad news) in a timelier, more news-consistent and complete manner than economic gains (good news).

• Narratives may <u>not</u> be conservative:

- Strategic disclosure and bad news hoarding/smoothing (e.g., Kothari et al., 2009; Ge and Lennox, 2011; Segal and Segal, 2016; Chapman et al., 2019).
- "Full disclosure," (Guay and Verrecchia, 2018) may imply greater timeliness and completeness of good news disclosure, if all bad news are recognized.

Theoretical Framework: Timeliness

Asymmetric Timeliness

- Timeliness implies that disclosure is made in time to be able to influence users' decisions.
- Managers may delay bad news disclosure to mitigate its negative economic consequences (Chambers and Penman, 1984; Niessner, 2015; Segal and Segal, 2016; Brockbank and Hennes, 2018).
- Managers may accelerate good news disclosure to increase insider profitability (Khalilov and García Osma, 2020).

Theoretical Framework: Timeliness

Asymmetric Timeliness

- Timeliness implies that disclosure is made in time to be able to influence users' decisions.
- Managers may delay bad news disclosure to mitigate its negative economic consequences (Chambers and Penman, 1984; Niessner, 2015; Segal and Segal, 2016; Brockbank and Hennes, 2018).
- Managers may accelerate good news disclosure to increase insider profitability (Khalilov and García Osma, 2020).

H1a: Asymmetric Timeliness

Narrative disclosure is timelier in response to bad news than to good news.

Theoretical Framework: Asymmetric News-consistency

News-consistency

- News-consistency implies that disclosure agrees with the underlying economic event in content sentiment.
- Tone influences how information is perceived or processed, and thus it can be employed both to inform or mislead (Davis et al., 2012; Li, 2010; Huang et al., 2014).
- Firms may deploy a uniformly positive tone in both good and bad news disclosure, resulting in higher news-consistency in good news disclosure
 - "A careful manager might use 90% positive words in dismissing an employee." (Loughran and McDonald, 2016, p.1206)

Theoretical Framework: Asymmetric News-consistency

News-consistency

- News-consistency implies that disclosure agrees with the underlying economic event in content sentiment.
- Tone influences how information is perceived or processed, and thus it can be employed both to inform or mislead (Davis et al., 2012; Li, 2010; Huang et al., 2014).
- Firms may deploy a uniformly positive tone in both good and bad news disclosure, resulting in higher news-consistency in good news disclosure
 - "A careful manager might use 90% positive words in dismissing an employee." (Loughran and McDonald, 2016, p.1206)

H1b: Asymmetric News-Consistency

Narrative disclosure is more news-consistent in response to bad news than to good news.

Theoretical Framework: Asymmetric Completeness

Completeness

- Completeness implies that disclosure includes all necessary information for a user to understand the underlying economic event.
 - Disclosure reduces information asymmetry: lowers CoC and increases liquidity (Diamond and Verrecchia, 1991; Diamond, 1985; Leuz and Verrecchia, 2000)
- Good news disclosure may be completer, relative to bad news, to boost performance (Teoh et al., 1998; Lang and Lundholm, 2000).
- Bad news disclosure may be more complete, relative to good news, to avoid litigation risk (Skinner, 1994, 1997; Marinovic and Varas, 2016).

Theoretical Framework: Asymmetric Completeness

Completeness

- Completeness implies that disclosure includes all necessary information for a user to understand the underlying economic event.
 - Disclosure reduces information asymmetry: lowers CoC and increases liquidity (Diamond and Verrecchia, 1991; Diamond, 1985; Leuz and Verrecchia, 2000)
- Good news disclosure may be completer, relative to bad news, to boost performance (Teoh et al., 1998; Lang and Lundholm, 2000).
- Bad news disclosure may be more complete, relative to good news, to avoid litigation risk (Skinner, 1994, 1997; Marinovic and Varas, 2016).

H1c: Asymmetric Completeness

Narrative disclosure is more complete in response to bad news than to good news.

Research Design: Proxies

Narrative Disclosure Corpora

 Corpora: 8-K filings because they (a) are more credible, (b) have higher reporting threshold and (c) are more timely than other corporate communication channels.

Proxies for Textual Properties and News

- Timeliness: reporting time lag, defined as the number of days elapsed between the news release date and the filing date of the studied disclosure
- News-consistency: the marginal change of tone in response to increase (good news) or decrease (bad news) in stock market returns.
- Completeness: the total number of 8-K words, filings, items, exhibits and graphs
- News: stock returns (Basu, 1997).

Research Design: Model

Model Specification

$$TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$$
 (1)

Figure 1: 8-K Matching Process

Research Design: Data

Data source: Compustat, CRSP and I/B/E/S

Table 1. Sample Selection Process

	Numer of	observations
Retrieved from EDGAR		1,540,911
After matching with Compustat and CRSP data		442,575
(-) Number of obs. from utility and financial firms	112,729	
(-) Number of firm-quarters with missing values in SIC, SIZE, MTB, LEV,		
or with non-positive total assets or book value of equity or common shares outstanding,		
or with common share price less than \$1	46,865	
(-) Number of obs. with total words less than 1% percentile (133 words)	2,785	
(-) Number of obs. that are reversals of previous news day	5,160	
(-) Number of obs. with negative or larger than 99% percentile TLAG	154,861	
After dropping obs. with missing values in key variables and screening		120,175
After merging with IBES and Compustat Segment data (Full 8-K sample)		83,464

Results: Summary Statistics

Table 2. Panel A: Summary Statistics 8-K

	count	mean	std	min	25%	50%	75%	max
Textual Variables								
tlag	83464	15	17	0	2	9	21	93
TLAG	83464	2.076	1.311	0.000	1.099	2.303	3.091	4.543
TONE	83464	-0.312	7.226	-97.851	-2.632	0.000	3.704	45.929
nw	83464	1207	6015	133	260	346	566	264704
NW	83464	6.074	0.874	4.898	5.565	5.849	6.340	12.486
n8k	83464	1	0	1	1	1	1	4
N8K	83464	0.707	0.076	0.693	0.693	0.693	0.693	1.609
nitem	83464	2	1	1	2	2	2	16
NITEM	83464	1.093	0.272	0.693	1.099	1.099	1.099	2.833
nexhibit	83464	1	1	0	1	1	1	59
NEXHIBIT	83464	0.668	0.430	0.000	0.693	0.693	0.693	4.094
ngraph	83464	2	9	0	0	0	1	464
NGRAPH	83464	0.424	0.785	0.000	0.000	0.000	0.693	6.142
Financial Variables								
DRET	83464	0.002	0.084	-0.929	-0.035	-0.003	0.037	3.085
Δ DRET	83464	-0.013	0.160	-9.062	-0.108	-0.045	0.092	3.023
BN	83464	0.536	0.499	0	0	1	1	1
SIZE	83464	6.805	1.816	3.023	5.508	6.698	7.977	11.587
MTB	83463	3.818	4.607	0.250	1.488	2.431	4.175	32.077
LEV	83039	0.211	0.191	0.000	0.018	0.186	0.340	0.732
AF	75810	0.044	0.112	-0.568	0.024	0.051	0.080	0.416
AFE	82548	-0.012	0.062	-0.438	-0.007	0.000	0.003	0.134
BUSSEG	83464	1.057	0.602	0.693	0.693	0.693	1.386	2.890
GEOSEG	83464	1.132	0.710	0.693	0.693	0.693	1.386	3.258
EARN	83454	-0.005	0.059	-0.296	-0.007	0.010	0.021	0.101
STD_EARN	83105	0.024	0.038	0.001	0.005	0.011	0.025	0.243

Results: Summary Statistics Continued

Table 2. Panel B: Summary Statistics by 8-K Item

Item	count	percent	tlag	TONE	nw	n8k	nitem	nexhibit	ngraph
			- 0	t 23, 200	1				gp
1: Changes in Control	2712	8.35%	17	-1.01	1076	1.04	3.48	1.05	0.47
of Registrant	10-1	4004	0.0				0.0-	4 -0	0.04
2: Acquisition or Disposition of Assets	4074	12.55%	22	-4.35	7146	1.04	3.05	1.59	0.31
3: Bankruptcy or	54	0.17%	28	-3.84	12217	1.11	1.56	1.74	0.00
Receivership									
4: Changes in Registrant's Certifying Accountant	383	1.18%	24	-9.64	1217	1.03	1.82	0.95	0.02
5: Other Events	8909	27.44%	20	-2.94	4272	1.02	1.81	1.34	0.10
6: Resignation of	34	0.10%	23	-9.34	9247	1.03	2.21	2.03	0.06
Registrant's Directors									
 Financial Statements and Exhibits 	10942	33.70%	20	-3.18	5169	1.02	2.33	1.58	0.38
8: Change in Fiscal Year	71	0.22%	29	-2.15	6068	1.01	1.66	1.63	0.03
9: Reg FD	2966	9.13%	16	-1.28	549	1.04	1.94	1.10	1.35
10: Amendments to the	6	0.02%	27	0.09	289	1.17	3.50	1.00	7.17
Registrant's Code of Ethics									
11: Temporary Suspension	18	0.06%	20	-3.40	310	1.06	2.83	0.89	0.00
of Trading									
12: Results of Operation	2303	7.09%	16	-0.62	329	1.04	3.86	1.12	0.54
		After Augu	st 23, 1	2004 (incl	uded)				
1: Registrant's Business	10825	7.58%	15	-3.44	839	1.08	2.85	1.84	1.48
and Operations									
2: Financial Information	31595	22.11%	13	1.02	463	1.05	2.41	1.30	2.19
2.02: Results of Operation	27022	18.91%	12	1.95	404	1.05	2.29	1.22	2.28
3: Securities and	1728	1.21%	13	-4.26	1129	1.12	3.69	2.41	1.92
Trading Markets									
4: Matters Related	478	0.33%	16	-10.32	770	1.09	2.32	1.19	0.57
to Accountants									
and Financial									
Statements 5: Corporate Governance	19494	13.64%	16	0.09	587	1.06	2.06	0.96	0.65
and Management	19494	13.04%	16	0.09	981	1.06	2.06	0.96	0.65
6: Asset-Backed Securities	2	0.00%	7	2.20	200	1.00	2.00	1.00	0.00
7: Reg FD	11844	8.29%	11	0.33	562	1.09	2.65	1.36	8.97
8: Other Events	13009	9.11%	12	-0.85	569	1.09	2.46	1.38	1.98
 Financial Statements and Exhibits 	53896	37.72%	13	0.49	500	1.05	2.41	1.39	3.00

Results: Is 8-K Narrative Disclosure Conservative?

Table 3. Is 8-K Narrative Disclosure Conservative?

Dep. Variables	(1) TLAG	(2) TLAG	(3) TONE	(4) TONE
		O COMMENT		
Δ DRET	1.913***	2.007***	-1.744***	-1.171**
	(11.44)	(10.83)	(-2.86)	(-2.07)
BN	-0.021	-0.026	-0.120*	-0.125
	(-1.13)	(-1.15)	(-1.71)	(-1.64)
(Pred. Sign)	(-)	(-)	(+)	(+)
Δ DRET×BN	-2.966***	-3.182***	2.893***	1.849**
	(-8.42)	(-7.55)	(2.70)	(1.97)
SIZE		0.051***		0.115*
		(4.56)		(1.76)
MTB		0.002		-0.009
		(1.22)		(-1.08)
LEV		-0.007		-0.592
		(-0.11)		(-1.45)
EARN		-0.231*		3.059**
		(-1.70)		(2.51)
STD_EARN		-0.165		-2.705**
		(-0.72)		(-2.17)
BUSSEG		-0.028		-0.015
		(-1.52)		(-0.12)
GEOSEG		0.016		0.131
		(0.91)		(1.18)
AF		0.020		-0.019
		(0.20)		(-0.04)
AFE		0.045		1.713**
		(0.41)		(2.57)
Constant	-2.816***		-5.598**	-5.921***
Compone	(-10.16)	(-10.85)	(-2.47)	(-2.71)
	(23.20)	(25.00)	(=.41)	(=.11)
Observations	83,464	75,360	83,464	75,360
Adjusted R-squared	0.131	0.132	0.151	0.147
Aujustea Tesquarea	0.101	0.102	0.101	0.141

 $TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_i \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_i \beta_i CONTROLS_{i,t} + \epsilon_{i,t} + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_i \beta_i CONTROLS_{i,t} + \epsilon_{i,t} + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_i \beta_i CONTROLS_{i,t} + \epsilon_{i,t} + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} + \beta_3 \Delta DRET$

Results: Is 8-K Narrative Disclosure Conservative?

Table 3. Is 8-K Narrative Disclosure Conservative? (Continued)

Dep. Variables		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
BN (-1.78) (-0.71) (-3.43) (-3.64) (-3.71) (-2.99) (-3.04) (-3.03) (-5.02) (-0.06) (-0	Dep. Variables	NW	NW	N8K	N8K	NITEM	NITEM	NEXHIBIT	NEXHIBIT	NGRAPH	NGRAPH
BN	Δ DRET	-0.086*	-0.042	-0.034***	-0.039***	-0.075***	-0.079***	-0.105***	-0.110***	-0.151***	-0.212***
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-1.78)	(-0.71)			(-3.34)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BN	-0.015**	-0.015**	-0.002**	-0.003**	-0.004	-0.004	-0.003	-0.002	0.001	-0.001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-2.04)	(-2.19)		(-2.43)	(-1.13)	(-1.05)			(0.16)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
SIZE 0.018** 0.001 -0.02 -0.03 0.004 (213) (-0.84) (-0.70) (-0.58) (-0.69) MTB (-0.02) -0.000 -0.000 -0.002** -0.003** LEV (-0.02) -0.008** -0.021** -0.007 (-0.08) LEV (-0.05) (-2.43) (-1.68) (-0.32) (-0.01) EARN (-0.05) (-2.43) (-1.68) (-0.32) (-0.01) STD_EARN (-3.31*** -0.001 0.009** -0.112 -0.064 STD_EARN (-3.33*** -0.004 -0.098** -0.112 (-0.87) STD_EARN (-3.33*** -0.004 -0.098** -0.112 (-0.23** BUSSEG (-0.008 0.000 0.002 0.003 -0.005 GEOSEG (-0.071) (0.21) (-0.39) (0.42) (-0.31) AF (-0.026 0.004 0.015 0.029 -0.075 AFE (-0.047) (0.52)	Δ DRET×BN										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(2.02)		(3.34)		(2.84)		(3.46)		(4.06)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SIZE										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MTB										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LEV										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EARN										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STD_EARN										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DUGGEG										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BUSSEG										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	anoana										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GEOSEG										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AT										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AP										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATTE										
Constant $-7.291**** -7.295**** -0.688**** -0.684**** -0.872**** -0.843**** -0.506**** -0.459**** 0.051 0.096*** -0.459***$	AFE										
	Comptont	7.001***		0.000***		0.070***		0.500***		0.051	
	Constant										
() () () () () () () () () ()		(-27.57)	(-28.75)	(-190.40)	(-120.16)	(-25.72)	(-22.63)	(-4.91)	(-4.26)	(1.01)	(1.44)
Observations 83.464 75.360 83.464 75.360 83.464 75.360 83.464 75.360 83.464 75.360	Observations	83.464	75.360	83.464	75.360	83.464	75 360	83.464	75 360	83.464	75 360
Adjusted R-squared 0.443 0.427 0.021 0.024 0.139 0.142 0.109 0.107 0.256 0.263											

$$TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \sum \beta_n CONTROLS_{i,t} + \sum \beta_n CONTROLS_{i,t}$$

Results: Robustness Checks

- Our evidence of narrative conservatism is robust to
 - excluding 8-K items on results of operations that contain quarterly or annual financial statements (Segal and Segal, 2016);
 - using an alternative 8-K reporting time lag definition (Carter and Soo, 1999; Niessner, 2015; Chapman et al., 2019);
 - excluding a priori bad news 8-K items (Segal and Segal, 2016);

Additional Analyses: 10-Qs

Table 4. Panel A. Narrative Conservatism in Quarterly Reports

	4.1	(-)	(-)	6.0
Dep. Variables	TONE	(2) TONE	(3) NW	(4) NW
QRET	-0.371***	0.095	-0.039***	-0.040***
•	(-2.78)	(0.69)	(-3.54)	(-3.54)
NEG	-0.077	-0.075	-0.004	-0.005
	(-1.59)	(-1.52)	(-0.95)	(-1.08)
(Pred. Sign)	(+)	(+)	(+)	(+)
QRET×NEG	2.274***	1.191***	0.140***	0.094***
•	(8.19)	(5.20)	(6.56)	(5.12)
SIZE		0.540***		-0.027***
		(6.36)		(-3.25)
MTB		0.046***		0.005***
		(3.79)		(5.18)
LEV		-1.212**		-0.293***
		(-2.48)		(-10.11)
EARN		14.674***		0.635***
		(5.54)		(3.80)
STD_EARN		-7.233***		-0.654***
		(-4.68)		(-6.85)
BUSSEG		0.468**		-0.019
		(2.22)		(-1.50)
GEOSEG		0.319*		0.020*
		(1.82)		(1.81)
AF		-3.316***		-0.043
		(-4.40)		(-1.07)
AFE		3.339***		0.168***
		(4.60)		(3.02)
Constant	-18.117***	-21.970***	-8.224***	-8.082***
	(-38.84)	(-36.79)	(-267.21)	(-156.81)
Observations	116,156	116,156	116,156	116,156
Adjusted R-squared	0.586	0.597	0.695	0.698

 $TEX_{i,t} = \beta_0 + \beta_1 QRET_{i,t} + \beta_2 NEG_{i,t} + \beta_3 QRET_{i,t} \times NEG_{i,t} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t} \qquad (2)$

Additional Analyses: MD&A and NFS in 10-Qs

Table 4. Panel B. Narrative Conservatism 10-Q Sections

Dep. Variables	TO	NE	N	W
	(1)	(2)	(3)	(4)
Section	MDA	NFS	MDA	NFS
QRET	0.109	0.297	-0.055***	-0.033*
	(0.64)	(1.15)	(-4.34)	(-1.70)
NEG	-0.123**	0.014	-0.012***	-0.005
	(-1.98)	(0.17)	(-3.05)	(-1.01)
(Pred. Sign)	(+)	(+)	(+)	(+)
QRET×NEG	1.423***	0.882*	0.102***	0.055*
	(4.54)	(1.88)	(4.18)	(1.65)
SIZE	0.626***	0.900***	-0.030***	-0.013
	(4.26)	(5.14)	(-3.36)	(-1.01)
MTB	0.021	0.054**	0.003**	0.004***
	(1.12)	(2.21)	(2.41)	(3.28)
LEV	-0.213	-0.802	-0.189***	-0.362***
	(-0.33)	(-0.94)	(-5.32)	(-5.88)
EARN	17.163***	12.079***	0.470**	0.693***
	(5.26)	(5.69)	(2.16)	(3.83)
STD_EARN	-8.090***	-6.020**	-0.547***	-0.816***
	(-4.64)	(-2.20)	(-3.35)	(-6.19)
BUSSEG	-0.065	-0.159	-0.057***	-0.031
	(-0.23)	(-0.45)	(-2.93)	(-1.58)
GEOSEG	0.052	0.999***	0.063***	0.036**
	(0.16)	(2.61)	(3.01)	(1.98)
AF	1.979*	-0.343	0.140	-0.073
	(1.86)	(-0.22)	(1.61)	(-0.95)
AFE	7.938***	4.137***	0.227***	0.243***
	(7.81)	(3.74)	(3.20)	(3.56)
Constant	-7.264*	-12.393**	-7.167***	-7.224***
	(-1.84)	(-2.57)	(-15.46)	(-18.08)
Observations	48,089	48.089	48.089	48,089
Adjusted R-squared	0.559	0.579	0.734	0.816

 $TEX_{i,t} = \beta_0 + \beta_1 QRET_{i,t} + \beta_2 NEG_{i,t} + \beta_3 QRET_{i,t} \times NEG_{i,t} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t} \qquad (2)$

Additional Analyses: Voluntary and Mandatory Disclosure

Table 5. Narrative Conservatism in Voluntary and Mandatory Disclosure

Dep. Variables	TL	AG	TONE		
Disclosure Type	(1) VD	(2) MD	(3) VD	(4) MD	
Δ DRET	2.375***	0.672***	-1.704**	-1.214	
	(8.39)	(3.79)	(-2.43)	(-0.72)	
BN	-0.063*	0.011	-0.040	-0.121	
	(-1.96)	(0.49)	(-0.45)	(-0.54)	
(Pred. Sign)	(-)	(-)	(+)	(+)	
Δ DRET×BN	-4.176***	-0.831***	3.446***	1.337	
	(-6.55)	(-3.54)	(2.81)	(0.62)	
SIZE	0.057***	0.016	0.113	-0.100	
	(3.48)	(1.15)	(1.49)	(-0.76)	
MTB	0.004*	-0.003	-0.004	0.004	
	(1.91)	(-1.30)	(-0.32)	(0.17)	
LEV	-0.004	0.060	-0.812**	-0.529	
	(-0.05)	(0.69)	(-2.09)	(-0.62)	
EARN	-0.221	-0.378*	3.053**	3.373*	
	(-1.05)	(-1.80)	(2.12)	(1.82)	
STD_EARN	-0.307	0.314	-3.427**	-1.409	
	(-1.09)	(0.80)	(-2.12)	(-0.61)	
BUSSEG	-0.030	-0.014	0.025	-0.006	
	(-1.26)	(-0.53)	(0.17)	(-0.02)	
GEOSEG	0.029	-0.012	0.165	0.040	
	(1.23)	(-0.56)	(1.33)	(0.20)	
AF	0.045	0.101	-0.326	0.916	
	(0.30)	(0.80)	(-0.58)	(0.81)	
AFE	0.076	-0.369**	1.360*	1.551	
	(0.51)	(-2.16)	(1.83)	(1.10)	
Constant	-2.768***	-3.997***	-4.618*	-5.168	
	(-7.65)	(-15.53)	(-1.70)	(-1.06)	
Observations	53,460	21,900	53,460	21,900	
Adjusted R-squared	0.155	0.116	0.194	0.136	

 $TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$ (1)

Additional Analyses: Voluntary and Mandatory Disclosure

Table 5. Narrative Conservatism in Voluntary and Mandatory Disclosure (Con
--

Dep. Variables	N	W	N	sK	NII	EM	NEXI	HBIT	NGRA	PH
Disclosure Type	(5) VD	(6) MD	(7) VD	(8) MD	(9) VD	(10) MD	(11) VD	(12) MD	(13) VD	(14) MD
Δ DRET	-0.156**	0.039	-0.063***	-0.051	-0.048***	-0.020*	-0.092**	-0.017	-0.153***	0.030
	(-2.37)	(0.31)	(-2.72)	(-1.08)	(-4.07)	(-1.65)	(-2.25)	(-0.18)	(-2.64)	(0.47)
BN	-0.018**	0.002	-0.004	-0.007	-0.002	-0.002	-0.003	0.000	-0.017	0.010
	(-2.14)	(0.13)	(-0.99)	(-1.08)	(-1.59)	(-1.59)	(-0.39)	(0.01)	(-1.61)	(1.02)
(Pred. Sign)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
$\Delta DRET \times BN$	0.210**	0.003	0.093***	0.045	0.070***	0.026	0.175***	0.050	0.133	0.031
	(2.18)	(0.02)	(2.91)	(0.75)	(5.44)	(1.60)	(2.86)	(0.47)	(1.61)	(0.42)
SIZE	0.011	0.035***	0.003	-0.003	-0.001	-0.001	0.000	0.005	0.006	-0.003
	(1.18)	(2.64)	(0.90)	(-0.63)	(-0.50)	(-0.88)	(0.04)	(0.45)	(0.56)	(-0.41)
MTB	0.000	-0.004**	-0.000	-0.001	-0.000	0.000**	-0.002***	-0.001	-0.003**	-0.001
	(0.02)	(-2.20)	(-0.16)	(-0.75)	(-1.01)	(1.99)	(-2.67)	(-0.93)	(-2.02)	(-0.69)
LEV	-0.102**	0.073	-0.033**	0.004	-0.012**	-0.001	-0.021	-0.026	-0.004	-0.008
	(-2.42)	(1.02)	(-2.30)	(0.16)	(-2.57)	(-0.22)	(-1.00)	(-0.51)	(-0.08)	(-0.22)
EARN	0.302***	0.270	0.047	0.103	-0.003	-0.009	0.109*	0.054	-0.110	0.054
	(2.72)	(1.42)	(1.20)	(1.34)	(-0.23)	(-0.99)	(1.94)	(0.44)	(-1.17)	(0.58)
STD_EARN	-0.254*	-0.021	-0.096*	-0.078	-0.004	-0.018	-0.014	-0.255	0.373**	-0.136
	(-1.94)	(-0.08)	(-1.69)	(-0.81)	(-0.25)	(-0.91)	(-0.17)	(-1.34)	(2.17)	(-1.10)
BUSSEG	-0.004	-0.025	0.006	-0.017**	0.000	0.000	0.012*	-0.027*	-0.015	0.001
	(-0.26)	(-1.11)	(1.35)	(-2.02)	(0.28)	(0.10)	(1.71)	(-1.75)	(-0.69)	(0.11)
GEOSEG	0.008	0.004	-0.004	0.003	0.002	0.003**	-0.022***	0.008	-0.018	-0.006
	(0.67)	(0.20)	(-0.87)	(0.33)	(1.28)	(2.54)	(-3.67)	(0.55)	(-0.92)	(-0.57)
AF	-0.033	0.013	0.003	0.005	0.002	0.001	0.026	0.031	-0.087	-0.073
	(-0.43)	(0.18)	(0.13)	(0.15)	(0.17)	(0.09)	(0.74)	(0.37)	(-1.08)	(-1.57)
AFE	0.013	-0.266**	0.034	-0.080	-0.019**	0.022**	0.005	-0.192**	-0.170*	-0.022
	(0.16)	(-2.05)	(1.17)	(-1.64)	(-2.33)	(2.19)	(0.12)	(-2.17)	(-1.77)	(-0.35)
Constant	-6.786***	-8.541***	-0.889***	-0.839***	-0.687***	-0.693***	-0.436***	-0.585***	0.000	-0.020
	(-28.58)	(-14.52)	(-18.87)	(-10.34)	(-96.80)	(-130.77)	(-4.01)	(-2.98)	(0.00)	(-0.44)
Observations	53,460	21,900	53,460	21,900	53,460	21,900	53,460	21,900	53,460	21,900
Adjusted R-squared	0.448	0.505	0.212	0.073	0.040	-0.023	0.162	0.139	0.360	0.141

 $TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_i \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$

(1)

Additional Analyses: Trends in Narrative Conservatism

Figure 2 illustrates the time trend of narrative conservatism. X axis represents fiscal year and Y axis represents significant β 3s obtained from yearly regressions as specified by Equation (1). Insignificant β 3s are replaced with zero.

Additional Analyses: Narrative and Conditional Conservatism

Table 6. Narrative Conservatism and Conditional Conservatism

Dep. Variables	TL	AG	TO	ONE
CONS.	(1) LOW	(2) HIGH	(3) LOW	(4) HIGH
ΔDRET	2.647***	1.775***	-2.473**	-0.206
	(9.71)	(11.56)	(-2.33)	(-0.31)
BN	-0.051*	-0.009	-0.186	-0.079
	(-1.91)	(-0.33)	(-1.54)	(-0.80)
(Pred. Sign)	(-)	(-)	(+)	(+)
Δ DRET×BN	-4.639***	-2.687***	3.553**	0.549
	(-8.75)	(-8.84)	(2.17)	(0.54)
SIZE	0.087***	0.030**	0.092	0.101
	(4.69)	(2.12)	(0.92)	(1.07)
MTB	-0.000	0.003	0.018	-0.005
	(-0.09)	(1.09)	(0.81)	(-0.38)
LEV	-0.002	-0.082	-0.937*	-0.581
	(-0.02)	(-0.94)	(-1.81)	(-0.90)
EARN	0.031	-0.306	1.008	3.218**
	(0.13)	(-1.61)	(0.46)	(2.53)
STD_EARN	-0.041	-0.030	-2.801	-3.046***
	(-0.13)	(-0.10)	(-1.19)	(-2.65)
BUSSEG	-0.026	-0.025	-0.059	-0.046
	(-1.14)	(-0.78)	(-0.36)	(-0.23)
GEOSEG	0.034	0.004	0.031	0.253
	(1.55)	(0.18)	(0.22)	(1.56)
AF	0.153	-0.028	0.022	0.067
	(1.22)	(-0.22)	(0.03)	(0.10)
AFE	0.059	0.032	2.629***	0.810
	(0.34)	(0.21)	(2.75)	(0.83)
Constant	-2.845***	-2.492***	-0.198	-0.826
	(-17.51)	(-23.87)	(-0.25)	(-1.38)
Observations	38,881	35,134	38,881	35,134
Adjusted R-squared	0.139	0.120	0.133	0.154

 $TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_i \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$ (1)

Additional Analyses: Narrative and Conditional Conservatism

Table 6. Narrative	Conservatism and	Conditional	Conservatism	(Continued)	
--------------------	------------------	-------------	--------------	-------------	--

Dep. Variables	NW		N	N8K		NITEM		NEXHIBIT		NGRAPH	
CONS.	(5) LOW	(6) HIGH	(7) LOW	(8) HIGH	(9) LOW	(10) HIGH	(11) LOW	(12) HIGH	(13) LOW	(14) HIGH	
Δ DRET	-0.090	-0.015	-0.047***	-0.042***	-0.104***	-0.061**	-0.171***	-0.078*	-0.304***	-0.168***	
	(-0.89)	(-0.21)	(-4.04)	(-2.73)	(-2.93)	(-2.30)	(-3.12)	(-1.68)	(-2.93)	(-3.34)	
BN	-0.012	-0.022**	-0.002	-0.004**	-0.006	-0.002	-0.003	0.001	-0.011	0.002	
	(-1.00)	(-2.13)	(-1.31)	(-2.57)	(-1.15)	(-0.32)	(-0.41)	(0.08)	(-0.78)	(0.16)	
(Pred. Sign)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	
Δ DRET×BN	0.095	-0.025	0.066***	0.052**	0.127***	0.085**	0.281***	0.130**	0.391***	0.244***	
	(0.66)	(-0.25)	(4.01)	(2.51)	(2.89)	(2.00)	(3.62)	(2.14)	(3.20)	(4.30)	
SIZE	0.024**	0.013	-0.001	-0.000	-0.004	0.003	-0.012*	0.011	-0.003	-0.002	
	(2.10)	(1.29)	(-0.79)	(-0.19)	(-1.26)	(0.86)	(-1.95)	(1.54)	(-0.29)	(-0.20)	
MTB	-0.001	-0.003	-0.000	-0.000	-0.000	-0.001	-0.000	-0.003***	0.001	-0.004**	
	(-0.47)	(-1.62)	(-0.07)	(-0.87)	(-0.16)	(-1.54)	(-0.29)	(-3.16)	(0.41)	(-2.40)	
LEV	-0.074	0.035	-0.006	-0.010	-0.014	-0.016	-0.019	0.005	0.054	-0.047	
	(-1.30)	(0.63)	(-1.03)	(-1.63)	(-0.66)	(-0.94)	(-0.60)	(0.16)	(0.76)	(-0.97)	
EARN	0.263	0.486***	0.008	0.001	0.097	0.051	0.007	0.152**	0.003	-0.074	
omp name	(1.33)	(4.91)	(0.33)	(0.06)	(1.58)	(1.30)	(0.07)	(2.41)	(0.02)	(-0.89)	
STD_EARN	-0.155	-0.335**	0.021	-0.021*	0.049	-0.162***	0.095	-0.186**	0.544**	0.077	
puggpg	(-0.89)	(-2.32)	(0.88)	(-1.76)	(0.67)	(-3.04)	(0.61)	(-1.98)	(2.07)	(0.48)	
BUSSEG	-0.006	-0.015	-0.000	0.001	-0.003	0.007	-0.001	0.002	-0.017	0.039*	
	(-0.45)	(-0.82)	(-0.19)	(0.75)	(-0.51)	(1.15)	(-0.12)	(0.18)	(-0.85)	(1.70)	
GEOSEG	0.019	0.010	0.002	0.003*	0.002	-0.002	-0.006	-0.006	0.005	-0.036*	
	(1.59)	(0.67)	(1.41)	(1.85)	(0.37)	(-0.29)	(-0.67)	(-0.63)	(0.26)	(-1.78)	
AF	-0.013	-0.024	0.001	0.010	0.018	0.006	0.053	-0.009	-0.100	-0.057	
	(-0.16)	(-0.43)	(0.08)	(0.96)	(0.50)	(0.32)	(1.02)	(-0.17)	(-1.26)	(-0.86)	
AFE	-0.020	-0.085	-0.011	-0.009	-0.016	-0.017	-0.141**	-0.081	-0.140	-0.142*	
	(-0.23)	(-0.88)	(-1.09)	(-1.05)	(-0.47)	(-0.48)	(-2.53)	(-1.58)	(-1.28)	(-1.88)	
Constant	-6.223***	-6.067***	-0.699*** (-69.04)	-0.700***	-1.058***	-1.089*** (-51.80)	-0.563***	-0.684***	-0.442***	-0.330***	
	(-66.29)	(-94.80)	(-69.04)	(-110.27)	(-35.28)	(-51.80)	(-11.01)	(-14.53)	(-4.52)	(-6.45)	
Observations	38,881	35,134	38,881	35,134	38,881	35,134	38,881	35,134	38,881	35,134	
Adjusted R-squared	0.362	0.437	0.029	0.029	0.133	0.164	0.097	0.117	0.267	0.272	

 $TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t} + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} + \delta_3 \Delta DRET_{i,t-t$

Additional Analyses: Narrative and Unconditional Conservatism

Dep. Variables	TL	AG	TONE		
	(1)	(2)	(3)	(4)	
Panel A: Intangible Assets	LOW	HIGH	LOW	HIGH	
$\Delta DRET$	1.975***	3.026***	-1.205	-2.647**	
	(11.64)	(9.89)	(-1.23)	(-2.07)	
BN	-0.032	-0.130***	-0.193	-0.060	
	(-1.13)	(-4.26)	(-1.17)	(-0.38)	
(Pred. Sign)	(-)	(-)	(+)	(+)	
Δ DRET×BN	-3.181***	-6.326***	1.044	5.773**	
	(-10.61)	(-13.28)	(0.82)	(2.42)	
Constant	-3.065***	-3.588***	-0.478	-3.469	
	(-3.58)	(-6.35)	(-0.06)	(-1.18)	
Observations	29,136	31,806	29,136	31,806	
Adjusted R-squared	0.118	0.146	0.132	0.123	
Panel B: R&D Expenses	LOW	HIGH	LOW	HIGH	
Δ DRET	1.651***	1.946***	-0.209	-1.566	
	(6.85)	(7.52)	(-0.30)	(-1.33)	
BN	0.011	-0.025	-0.149	-0.058	
	(0.26)	(-0.91)	(-1.20)	(-0.50)	
(Pred. Sign)	(-)	(-)	(+)	(+)	
Δ DRET×BN	-2.426***	-2.983***	-0.325	2.432*	
	(-5.65)	(-7.03)	(-0.39)	(1.66)	
Constant	-2.520***	-2.678***	-1.751	-5.212	
	(-4.66)	(-5.07)	(-0.25)	(-1.43)	
Observations	19,740	22,608	19,740	22,608	
Adjusted R-squared	0.106	0.143	0.184	0.115	

 $TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum_{i} \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$

Additional Analyses: Narrative and Unconditional Conservatism

Table 7. Narrative	Conservatism an	d Unconditional	Conservatism	(Continued)
--------------------	-----------------	-----------------	--------------	-------------

Dep. Variables	NW		N8K		NITEM		NEXHIBIT		NGRAPH	
	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Panel A: Intangible Assets	LOW	HIGH	LOW	HIGH	LOW	HIGH	LOW	HIGH	LOW	HIGH
Δ DRET	0.041	-0.142	-0.033***	-0.042***	-0.098***	-0.053	-0.087	-0.195***	-0.148**	-0.467***
	(0.48)	(-1.02)	(-2.74)	(-2.90)	(-2.62)	(-1.25)	(-1.54)	(-2.95)	(-2.17)	(-3.88)
BN	-0.002	-0.029*	-0.002	-0.000	-0.007	-0.003	-0.000	-0.007	-0.001	-0.018
	(-0.13)	(-1.92)	(-1.10)	(-0.19)	(-0.83)	(-0.45)	(-0.04)	(-0.80)	(-0.07)	(-1.17)
(Pred. Sign)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Δ DRET×BN	-0.042	0.059	0.049***	0.076***	0.118*	0.048	0.135	0.272***	0.219**	0.622***
	(-0.34)	(0.32)	(3.01)	(3.48)	(1.95)	(0.76)	(1.51)	(2.72)	(2.14)	(3.18)
Constant	-6.439***	-7.127***	-0.692***	-0.692***	-0.745***	-0.890***	-0.314	-0.456***	0.156*	-0.173
	(-20.69)	(-21.31)	(-94.98)	(-64.07)	(-11.47)	(-14.91)	(-1.50)	(-2.71)	(1.79)	(-1.36)
Observations	29,136	31,806	29,136	31,806	29,136	31,806	29,136	31,806	29,136	31,806
Adjusted R-squared	0.385	0.315	0.022	0.036	0.144	0.133	0.113	0.088	0.257	0.282
Panel B: R&D Expenses	LOW	HIGH	LOW	HIGH	LOW	HIGH	LOW	HIGH	LOW	HIGH
Δ DRET	-0.068	0.005	-0.054***	-0.031**	-0.120***	-0.007	-0.137**	-0.047	-0.050	-0.348***
	(-0.69)	(0.06)	(-2.60)	(-2.55)	(-3.08)	(-0.23)	(-1.98)	(-1.00)	(-0.63)	(-4.77)
BN	-0.017	-0.005	-0.008***	-0.001	-0.006	0.005	-0.003	0.013	0.011	-0.020
	(-1.23)	(-0.44)	(-3.60)	(-0.38)	(-0.84)	(1.02)	(-0.23)	(1.59)	(0.56)	(-1.53)
(Pred. Sign)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Δ DRET×BN	0.032	-0.010	0.054*	0.049***	0.137**	0.043	0.177**	0.197***	0.128*	0.388***
	(0.24)	(-0.08)	(1.95)	(4.22)	(2.03)	(1.03)	(2.22)	(3.08)	(1.71)	(4.30)
Constant	-7.250***	-7.660***	-0.657***	-0.676***	-0.795***	-0.852***	-0.476***	-0.400**	0.394**	-0.109
	(-8.77)	(-18.41)	(-25.93)	(-63.28)	(-10.34)	(-12.76)	(-3.74)	(-2.21)	(2.07)	(-1.01)
Observations	19,740	22,608	19,740	22,608	19,740	22,608	19,740	22,608	19,740	22,608
Adjusted R-squared	0.491	0.355	0.005	0.009	0.156	0.130	0.129	0.092	0.255	0.253

$$TEX_{i,t} = \beta_0 + \beta_1 \Delta DRET_{i,t-tlag} + \beta_2 BN_{i,t-tlag} + \beta_3 \Delta DRET_{i,t-tlag} \times BN_{i,t-tlag} + \sum \beta_n CONTROLS_{i,t} + \epsilon_{i,t}$$

Conclusions

Summary...

- We provide evidence that narratives reflect bad news in a more complete, news-consistent, and timely manner than good news.
- We document greater narrative conservatism in the MD&A section and in voluntary disclosure.
- Narrative conservatism is pervasive and greater in firms with low conditional conservatism, and high unconditional conservatism.
- We find greater narrative conservatism in settings where managers have strong incentives to disclose bad news.