

F.E. (Sem. – II) (Revised in 2007-08 Course) Examination, May/June 2012 APPLIED MATHEMATICS – II

Duration: 3 Hours Total Marks: 100

Instructions: 1) Attempt any five questions, at least one from each Module.

2) Assume suitable data if necessary.

MODULE - I

1. a) Assuming the validity of differentiation under the integral evaluate

$$\int_{0}^{\infty} e^{x} \log_{e}(1 + a^{2}e^{-\frac{zx}{L}}) dx.$$

b) Find the perimeter of the loop of the curve $x = t^2 - 5$, $y = \frac{t}{3}(3 - t^2)$.

c) The curve $r = 2a \cos \theta$ is revolved about the x-axis, find the surface area of the solid generated.

2. a) Show that $\bar{r}(t) = Ate^{2t}\bar{i} + Be^{3t}\bar{j}$, satisfies $\frac{d\bar{r}^2}{dt^2} - 4\frac{d\bar{r}}{dt} + 4\bar{r} = 0$.

b) Find the unit tangent vectors \overline{T} and principal normal \overline{N} for

$$r(t) = (2t^2 + 3)\bar{i} + (5 - t^2)\bar{j}$$
 at $t = 1$.

c) State and prove Serret-Fernet formula.

MODULE - II

3. a) Evaluate
$$\int_{0}^{1} \int_{0}^{1} ye^{xy+2y} dxdy$$

b) Write a single integral and integrate $\int_{-1}^{0} \int_{-y}^{1} 2y + 3dxdy + \int_{0}^{1} \int_{y^{2}}^{1} 2y + 3dxdy$

c) Evaluate $\iint r \sin \theta + 3 dr d\theta$ over the region $1 \le r \le 2 \cos \theta$.

6

4. a) Find the volume of the solid generated by the revolution of the loop of the curve $y^2 = (x^2 - 4)(x^2 - 1)$ about the x-axis.

8

b) Evaluate $\int_{0}^{1} \int_{-\sqrt{1-z}}^{\sqrt{1-\frac{2z}{z}}} \int_{x^{2}}^{1-z} 3xdydxdz.$

6

c) Find the volume of the region bounded by the coordinate planes and the plane 2x + y + 3z = 6.

6

MODULE - III

5. a) Define gradient of a scalar field. Show that the gradient at a point is the normal to the level surface of the scalar field.

6

b) Show that the vector field

 $\overline{F} = (3z^2 \cos y + e^2 \cos x)\overline{i} - 3xz^2 \sin y\overline{j} + (6xz \cos y + e^2 \sin y)\overline{k}$ is irrotational. Find its potential function.

8

c) Evaluate $\int_{c}^{xy} + 2z^2 ds$ where c is the line from (1, 1, 0) and (2, 1, 3).

6

6. a) Verify Green theorem in the plane for $\int (xy+2)dx + (3x^2 + y)dy$ where C is the boundary of the region enclosed by y = 2x and y = 0 and x = 1.

8

b) Verify Stoke's theorem for $F = 2x\overline{i} + (3y^2 + z)\overline{j} + 2yz\overline{k}$, over the surface of the tetrahedron bounded by the coordinate planes and the plane 2x + y + 3z = 6 above the xy plane.

12

MODULE-IV

7. Solve the following differential equations:

20

a)
$$\frac{dy}{dx} = e^{2x-3y} + e^{-3y} \cos 2x$$

b) $\frac{dy}{dx} + y \tan x = y^3 \cos x$

c)
$$\frac{dy}{dx} = \frac{2x - y + 4}{x - 3y + 1}$$

d) $(xy + 2x^2y^2)ydx + (xy - x^2y^2)xdy = 0$.

8. Solve the following differential equations:

a)
$$(D^2 + 4D + 5)y = 3e^{2x} + 5x^2$$

b)
$$(D^3 + 4D^2 + D - 2)y = 3\sin^2 x + 2$$

c)
$$(D^2 + 1)y = \sec x$$

d)
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos(\log_e(1+x))$$
.