Design and Evaluation Of Solar Thermal Compressor

Presented By:

Thani Aswanth
Vinay Kumar Reddy
Kirthi Vardhan

Guided By:

Dr Laltu Chandra

Contents

- Motivation
- System Design
- Thermodynamic Cycle
- Control System Designing
- Heat Flux Measuring Unit

Motivation

☐ Conventional Path

It can run without electricity

System Design

Step 1

Step I)

- a) Heating in vessel 1 to attain 200° C, 15 bar
- b) On reaching (a) valve V1 will open, allowing steam to pass to vessel 2, builds P= 15 bar, piston does not moves till then.

Step 2

• Step II) V₁ closes; Steam works on piston, isentropic expansion, Final P= 8 bar (assuming volume doubling)

Step 3

Step III)

- a) Valve V₂ opens, steam moves to vessel 2.
- b) Steam is condensed to P= 0.75 bar, T= 90 °C. Suction Valve opens to make fluid enter from suction line.

Step 4

Step IV)

Electric Pump, pumps back the water from P \sim 0.75 bar to P = 15 bar, isentropically

- This model has been developed by the concept of Steam Engine and Reciprocating Compressor.
- We have planned to operate this on this thermodynamic Cycle (ideal case)-

																										d				

- 2-3) Isentropic expansion in piston
- 3-4) Isochoric heat removal
- 4-1) Isentropic compression in pump

System Highlights

- ☐ Electrical Input to Pump is 2-3 % of mechanical work extracted.
- ☐ Expected net efficiency of system 10-15 %
- ☐ Challenges-
- Non Uniformity.
- Cant be readily used in industries.

Can play extremely crucial role in Domestic Appliances

Control System Designing

System

Control System Designing

- Transient analysis reduce settling time.
- Steady State analysis minimize steady state error.
- Root Locus, Nyquist and Bode Plot for calculating Kp, Ki & Kd.
- As feedback we will take pressure.

Control System Designing (Valves)

- Pneumatic Valves with Actuator (figure shown below) To control flow rate of fluid between containers.
- Controlling variables for actuator signal Pressure, Temperature and flow rate. We will add new variables as the design develops further.

Design of the device that measures solar heat flux

Heat Flux Measuring Device Aim

- 1. Design flux measuring device for more than one sun condition. (capacity till 100 kW)
- 2. Plot the curves of temperature vs time of radiation exposure
- 3. Calculation of incident heat flux where area through which radiation is coming is known.

We know energy equation is-

$$\overset{\circ}{E}$$
 in $+\overset{\circ}{E}_{arrho}-\overset{\circ}{E}$ out $=\overset{\circ}{E}$ st

Here assumptions are-

$$\overset{\circ}{E}_{\mathcal{E}}=0$$

$$\overset{\circ}{E}_{out} = loss$$

and

$$\overset{\circ}{E}_{st}=\overset{\circ}{m}C_{P}\Delta T$$

Here Cp is varying with temperature change.

Losses are of two types here-

Reflective losses (when rays are going back out)

Convective losses (due to outside air)

Design

- We are using Cu as device material as Cu has high conductivity and can get uniform temperature earliest.
- Reflected beam is a diffused beam. So to minimize view angle and to increase the area of absorption we are curving the walls in a way that we get maximum efficiency.
- Black body material is another important aspect for this experiment
- Insulation is key factor to reduce convective losses.

following are the description of some black body materials-

Materials for black body

Thank You!!!

