4. Sea ABC un triángulo cuyo ángulo A es mayor que 90° . Las rectas simétricas de BC con respecto a AB y a AC se cortan en D. Demostrar que la recta DA contiene al circuncentro del triángulo ABC.

Solución del director.

Tracemos lo pedido.

$$\angle ABD = \angle CBA, \angle ACB = \angle DCA$$

Así A es el incentro del triángulo CDB.

Si trazamos la mediatriz de AB, cortará a la recta DA en E.

Estudiemos el triángulo isósceles EAB. $\angle EAB = \angle ADE + \angle ABD$ por ser ángulo exterior del triángulo DAB

Así $\angle EBC = \angle EDB$.

Si trazamos la mediatriz de CA, obtenemos un punto de corte E* de la misma con la recta AD.

Por similitud con el razonamiento anterior es: $\angle ECB = \angle EDC$.

Por tanto E* =E y es un punto de la circunferencia circunscrita a BCD, y EC=EB=EA

Luego E es el circuncentro de ABC, c.q.d.

Ricardo Barroso Campos. Jubilado, Sevilla