Introduction to VPNs

What Is a Virtual Private Network (VPN)?

A Remote Access VPN secures connections for remote users, such as mobile users or telecommuters, to corporate LANs over shared service provider networks

Wireless: A New Big Driver for VPNs

- An access point (AP) is a shared device
- Remember the performance issues of shared hubs
- Bridges, and other devices allow for interconnection
- Protocols and applications work seamlessly

Basic VPN Terms

Router to Router VPN Gateway (Extranet)

VPN Client to Router VPN via Dial-Up (Access VPN)

Other Vendors to Router VPN (Extranet)

Router to VPN Firewall Gateway (Extranet)

VPN Client to Router VPN Network (Intranet)

Using Site-to-Site VPNs

Using Remote-Access VPNs

Remote Access Client

- Cisco VPN Clients (IPSec)
- Microsoft Win 9x/NT/2000/XP (LTTPP)
- Thire-party VPN client (PPTP)

Remote Access Gateway

- Cisco WAN Router
- Cisco Secure PIX Firewall
- Or IPSec or PPTP aware device to provide firewall/VPN Tunnel Termination

VPN Components

VPN Security

What a VPN Must Provide

Network Security Model

Data Security Assurance Model (CIA)

Confidentiality

- Benefit
- Ensures data privacy
- Shuns
- Sniffing
- Replay

Integrity

Benefit

Ensures data is unaltered during transit

Shuns

Alteration

Replay

Authentication

Benefit

Ensures identity of originator or recipient of data

Shuns

Impersonation

Replay

Data Confidentiality and Data Integrity Depend on Encryption and Encapsulation

VPN Technology Options

What Is an IPSec VPN?

Internet Protocol Security

- A set of security protocols and algorithms used to secure IP data at the network layer
- IPSec provides data confidentiality (encryption), integrity (hash), authentication (signature/certificates) of IP packets while maintaining the ability to route them through existing IP networks

Advantages of IPSec

Access VPNs

IPSec Key Points

- IPSec can ensure the confidentiality and/or the authenticity of IP packets
- The key points are

Two modes of propagation (transport and tunnel)

Security associations (SAs)

Two types of header (ESP and AH)

IPSec Framework

ESP—Encapsulating Security Payload

AH—Authentication Header

AES—Advanced Encryption Standard

MD5, SHA—Authentication

DH—Diffie-Hellman Identifier to Derive the Share Secret

Two Types of IPSec Security Protocols

Authentication Header

All Data in Cleartext

- Ensures data integrity
- Provides origin authentication ensures packets definitely came from peer router

- Uses keyed-hash mechanism
- Does **not** provide confidentiality (no encryption)
- Provides optional replay protection

Encapsulating Security Payload

Data Payload Is Encrypted

Router B

- Data confidentiality (encryption)
- Limited traffic flow confidentiality
- Data integrity

- Optional data origin authentication
- Anti-replay protection
- Does not protect IP header

IP Header with IPSec Information

IPSec in a Standards World

IKE Benefits an IPSec Environment

- Ensure confidential communications in an unsecured network
- Also known as the Key Management Nightmare!!!

IPSec: Building a Connection

Two-phase protocol:

Phase 1 exchange: two peers establish a secure, authenticated channel with which to communicate; Main mode or Aggressive mode accomplishes a Phase 1 exchange

Phase 2 exchange: security associations are negotiated on behalf of IPSec services; Quick mode accomplishes a Phase 2 exchange

 Each phase has its SAs: ISAKMP SA (Phase 1) and IPSec SA (Phase 2)

How Does IKE/IPSec Work?

ISAKMP Main, Quick and Aggressive Modes

What Is a Web/SSL VPN?

Web/SSL VPN Features

Feature

- Access to internal web sites (HTTP/HTTPS) including filtering
- Access to internal Windows (CIFS) File Shares
- TCP port forwarding for legacy application support
- Access to e-mail via POP, SMTP, and IMAP4 over SSL

Web/SSL VPN and IPSec Comparison

WebVPN

- Uses a standard web browser to access the corporate network
- SSL encryption native to browser provides transport security
- Application accessed through browser portal
- Limited client/server application accessed using applets

IPSEC VPN

- Uses purpose built client software for network access
- Client provides encryption and desktop security
- Client establishes seamless connection to network
- All application are accessible through their native interface

What Is a PPTP VPN?

Point to Point Tunneling Protocol

- PPTP is a network protocol used in the implementation of Virtual Private Networks (VPN); RFC 2637 is the PPTP technical specification
- PPTP works on a client server model; PPTP clients are included by default in Microsoft Windows and also available for both Linux and Mac OS X; newer VPN technologies like L2TP and IPSec may replace PPTP someday, but PPTP/MPPE remains a popular network protocol especially on Windows computers

VPN Technology Options

Benefits of PPTP

- PPoE is point-point protocol over Ethernet
- Single tunnel between end-points: Single device support (GRE = generic routing encapsulation)
- Six bytes over overhead when compression used
- No tunnel authentication
- With RADIUS server supports authentication and accounting
- CHAP V2 fixes password, masquerading, and encryption weakness
- 40 or 128 bit RC4 packet encryption

Is PPTP Secure? Yes

CHAP V2 Authentication with 40 or 128 bit RC4 Encryption

VPN Technology Comparison

PPTP—Point to Point Tunneling Protocol—Layer 2—Multiprotocol
L2TP/IPSec—Layer 2 Tunneling Protocol—Multiprotocol—Encryption and Authentication
IPSec—IP Security—Layer 3—IP Protocol—Encryption and Authentication
SSL—Secure Sockets Layer—Layer 6/7—Application—Encryption and Authentication

Summary

- Demonstration
- Introduction to VPNs
- VPN Security (IPSec, PPTP, SSL)
- VPN Technology Comparison
- VPN Group Exercise