

Eötvös Loránd Tudományegyetem Informatikai Kar Numerikus Analízis Tanszék

Analízis 1

Programtervező informatikus BSc Esti tagozat

Kovács Sándor

előadás + gyakorlat

(Hétfő, $16^{00} - 17^{30}$: DT-0.804, Ea) (Hétfő, $17^{45} - 18^{30}$: DT-0.311, Gy)

(Hétfő, $17^{45} - 18^{30}$: DT-0.220, Gy) (Hétfő, $18^{30} - 19^{15}$: DT-0.220, Gy)

Tudnivalók

- 1. A tárgy követelményrendszere
- 2. Vizsgatematika
- 3. Vizsgatételek
- 4. Segédanyagok:
 - A görög ábécé és a fraktúra
 - Matematikai alapozás
 - Elemi függvények
 - Hiperbolikus függvények és inverzeik
 - Valós-valós függvények határértéke
 - MacTutor History of Mathematics archive
- 5. Ajánlott olvasmányok:
 - Kovács Sándor: Matematikai alapozás
 - Schipp Ferenc: Analízis I.
 - Simon Péter: Bevezetés az analízisbe I.
 - Szili László: Analízis feladatokban I.
- 6. A félév tematikája:
 - 1. oktatási hét (2024. 02. 12.):

Előadás.

- A valós számok axiómái.
- Halmazok korlátossága.
- A binomiális télel.
- A háromszög-egyenlőtlenségek.
- A szuprémum elv.
- Arkhimédész tétele.
- A Cantor-tétel.

Gyakorlat.

2. oktatási hét (2024. 02. 19.):

Előadás.

- A Barrow-Bernoulli-egyenlőtlenség.
- Számok számtani, négyzetes, mértani és harmonikus közepe.

- A harmonikus, a mértani és a számtani közép közötti egyenlőtlenségek.
- A Cauchy-Bunykovszkij-egyenlőtlenség.
- A mégyzetes és a számtani közép közötti egyenlőtlenség.
- A Minkowszki-egyenlőtlenség.
- Függvények.
- Halmaz függvény szerinti képe, ősképe.

Gyakorlat.

3. oktatási hét (2024. 02. 26.):

Előadás.

- Függvények inverze.
- Függvények kompozíciója.
- Valós-valós függvények elemi tulajdonságai.
- A sorozat fogalma.

Gyakorlat.

4. oktatási hét (2024. 03. 04.):

Előadás.

- Sorozatok monotonitása.
- Sorozatok korlátossága.
- A környezet fogalma.
- A részsorozat fogalma.
- Minden valós számsorozatnak van monoton részsorozata.
- Konvergens sorozatok.
- A konvergencia és a koráltosság kapcsolata.
- Részsorozat konvergenciája.

Gyakorlat.

5. oktatási hét (2024. 03. 11.):

Előadás.

- Nullsorozatok.
- Műveletek konvergens sorozatokkal.
- A konvergencia és a rendezés kapcsolata.
- A Sandwich-tétel.
- Sorozatok alsó és felső burkolója.
- A mozgólépcső-elv.
- Az Euler-féle szám.
- Kibővített értelemben vett határérték.
- Törtek határértéke.
- A mértani sorozat határértéke.

Gyakorlat.

6. oktatási hét (2024. 03. 18.):

Előadás.

- A Bolzano-Weierstraß-féle kiválasztási tétel.
- Cauchy-sorozatok.
- A Cauchy-féle konvergenciakritérium.
- A nullsorozatokra vonatkozó hányados- és gyökkritérium.
- Rekurzív sorozatok.
- Gyökvonás.

Gyakorlat.

7. oktatási hét (2024. 03. 25.)

Előadás: 1. zárthelyi dolgozat

Gyakorlat.

13. oktatási hét (2024. 05. 13.)

Előadás: 2. zárthelyi dolgozat

Gyakorlat.

A Függelék

B Függelék

1. oktatási hét

Az előadás anyaga

Elöljáróban felelevenítjük az \mathbb{R} valós számtesttel kapcsolatos alapvető tudnivalókat. Legyen tehát $\mathbb{R} \neq \emptyset$ olyan halmaz, amelyre igazak az alábbiak.

- I. **Testaxiómák.** Megadhatók olyan $0, 1 \in \mathbb{R}$, $0 \neq 1$ elemek, ill. bármely $x, y \in \mathbb{R}$ esetén léteznek az $x + y \in \mathbb{R}$ és az $x \cdot y \in \mathbb{R}$ ($xy \in \mathbb{R}$) szimbólummal jelölt elemek úgy, hogy tetszőleges $a, b, c \in \mathbb{R}$ választással
 - 1. a + b = b + a és ab = ba (kommutativitás),
 - 2. (a+b)+c=a+(b+c) és (ab)c=a(bc) (asszociativitás),
 - 3. $a + 0 = a \text{ és } a \cdot 1 = a$
 - 4. alkalmas $(-\alpha) \in \mathbb{R}$ elemmel $\alpha + (-\alpha) = 0, 1$
 - 5. ha b \neq 0, akkor alkalmas $\frac{1}{b} \in \mathbb{R}$ elemmel b $\cdot \frac{1}{b} = 1$,
 - 6. $(a + b) \cdot c = a \cdot c + b \cdot c$ (disztrubutivitás).
- II. Rendezési axiómák. Létezik egy $\leq \subset \mathbb{R}^2$ (kisebb-egyenlőnek nevezett) teljes rendezés:
 - 1. $a \le \text{reláció reflexív}$, azaz bármely $a \in \mathbb{R}$ esetén $a \le a$;
 - 2. a \leq reláció **antiszimmetrikus**, azaz bármely $a, b \in \mathbb{R}$ esetén

$$(a \le b \land b \le a) \Longrightarrow a = b,$$

3. a < reláció **tranzitív**, azaz bármely $a, b, c \in \mathbb{R}$ esetén

$$(a \le b \land b \le c) \implies a \le c,$$

4. a < reláció **dichotom**, azaz bármely $a, b \in \mathbb{R}$ esetén

$$a < b \qquad \lor \qquad b < a.$$

III. **Teljességi axióma** (**Dedekind-axióma** vagy **szétválasztási axióma**). Ha valamely $\emptyset \neq A, B \subset \mathbb{R}$ halmazok esetén tetszőleges $\alpha \in A$ és tetszőleges $b \in B$ esetén $\alpha \leq b$, akkor alkalmas $\xi \in \mathbb{R}$ számmal

$$a \le \xi \le b$$
 $(a \in A, b \in B)$.

¹Tetszőleges $a, b \in \mathbb{R}$ esetén az $a - b := a + (-b) \in \mathbb{R}$ szám az a és b különbsége.

²Tetszőleges $b \in \mathbb{R}$, ill. $0 \neq b \in \mathbb{R}$ esetén az $\frac{a}{b} := a \cdot \frac{1}{b} \in \mathbb{R}$ szám az a és b hányadosa.

Megjegyzések.

1. A részletek mellőzésével annyit jegyzünk meg csupán, hogy a fenti axiómarendszernek van (és lényegében egyetlen) modellje.³

2. A valós számokkal kapcsolatos minden (eddig tanult, vagy később sorra kerülő) "manipuláció" az axiómákból felépíthető, levezethető stb.⁴ Ezt az utat nem fogjuk bejárni, így pl. a továbbiakban ismertnek tételezzük fel az alábbi speciális számhalmazokat:

 $\begin{array}{lll} \mathbb{N}_0 &:=& \{0,1,2,\ldots\} & \text{a term\'eszetes sz\'amok halmaza,} \\ \mathbb{N} &:=& \{1,2,\ldots\} & \text{a pozit\'iv term\'eszetes sz\'amok halmaza,} \\ \mathbb{Z} &:=& \mathbb{N}_0 \cup \{x \in \mathbb{R} : -x \in \mathbb{N}_0\} & \text{az eg\'esz sz\'amok halmaza,} \\ \mathbb{Q} &:=& \left\{\frac{p}{q} \in \mathbb{R} : \; p,q \in \mathbb{Z}, \, q \neq 0\right\} & \text{a racion\'alis sz\'amok halmaza.} \end{array}$

Az intervallumokat a eddigi tanulmányainkban megszokott módon fogjuk értelmezni és jelölni. Ha $a,b,c,d\in\mathbb{R}: a\leq b,c\leq d$, akkor

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}, (c,d) := \{x \in \mathbb{R} : c < x < d\}, (c,d) := \{x \in \mathbb{R} : c < x \le d\}, [c,d) := \{x \in \mathbb{R} : c \le x < d\}.$$

Az így definiált halmazokat rendre zárt, nyílt, balról nyílt és jobbról zárt, balról zárt és jobbról nyílt intervallumnak nevezzük.

- 3. A rendezési axiómáknak köszönhetően tudjuk a valós számokat **számegyenes**en ábrázolni és az egyenlőtlenségekre vonatkozó, ismert szabályokat igazolni. A teljességi axióma garantálja, hogy a számegyenesen történő ábrázoláskor annak egyik pontja sem marad ki.
- 4. A szétválasztási axióma elnevezést szemlélteti az alábbi ábra:

Azt is mondhatjuk, hogy a ξ valós szám "szétválasztja" az A és a B halmazt.

$$x \cdot y = 0$$
 \iff $(x = 0 \lor y = 0)$

ekvivalencia.

³Hasonló a helyzet, mint mondjuk pl. a sakkjáték esetén: azt is a szabályai (axiómái) határozzák meg, és független attól, hogy fejben vagy bábokkal, asztalon, homokban, stb. játsszák, vagy pl. attól, hogy a bábok fából, aranyból stb. készültek-e.

⁴Pl. \mathbb{R} -ben teljesül a **nullosztómentes**ség: bármely $x, y \in \mathbb{R}$ szám esetén igaz az

5. A valós számok egyértelmű jellemzésére mindhárom axiómára szükség van. A testaxiómák pl. nem elegendőek a valós számok halmazának pontos megadására, hiszen van olyan test, amelynek csak két eleme van. Legyen ui. $\mathbb{T} := \{0, 1\}$, majd értelmezzük \mathbb{T} -n az alábbi műveleteket:

+	0	1
0	0	1
1	1	0

	0	1
0	0	0
1	0	1

Továbbá, a racionális számok \mathbb{Q} halmaza olyan test, amire ugyan igazak a rendezési axiómák, de a teljességi axióma nem. Ha ui.

$$A:=\left\{r\in\mathbb{Q}:\; r>0\, \text{\'es}\, r^2<2\right\}, \qquad \text{ill.} \qquad B:=\left\{r\in\mathbb{Q}:\; r>0\, \text{\'es}\, r^2>2\right\},$$

akkor nincsen az A és a B halmazokat elválasztó ℚ-beli ξ szám.

- 6. Idézzük fel a **teljes indukció**⁵ elvét: legyen $\mathcal{H} \subset \mathbb{N}_0$ olyan halmaz, amelyre⁶
 - $0 \in \mathcal{H}$,
 - bármely $n \in \mathcal{H}$ esetén $n + 1 \in \mathcal{H}$.

Ekkor $\mathcal{H}=\mathbb{N}_0$. A fent nevezett elv némi általánosítását tartalmazza az alábbi

Tétel. Legyen $\mathfrak{m}\in\mathbb{Z}$. Tegyük fel, hogy minden $\mathfrak{m}\leq\mathfrak{n}\in\mathbb{Z}$ számra adott valamely $\mathcal{A}(\mathfrak{n})$ állítás, és azt tudjuk, hogy

- A(m) igaz,
- ha A(n) igaz, akkor A(n+1) is igaz.

Ekkor az $\mathcal{A}(n)$ állítás igaz minden $m \leq n \in \mathbb{Z}$ számra.

Az ún. teljes indukciós bizonyítások illusztrálására tekintsük a következő, az elemi tanulmányokból is jól ismert állítást:

$$\sum_{k=0}^{n} k = 0 + 1 + \ldots + (n-1) + n = \frac{n(n+1)}{2} \qquad (n \in \mathbb{N}_0).$$
 (1)

Legyen ekkor

$$\mathcal{H} := \{ n \in \mathbb{N}_0 : (1) \text{ igaz} \}.$$

⁵Vö. Augustus de Morgan (Madura, 1806. június 27. – London, 1871. március 18.)

⁶Ilyenkor azt mondjuk, hogy \mathcal{H} induktív halmaz.

Világos, hogy $0 \in \mathcal{H}$, azaz "(1) igaz n = 0-ra". Nem nehéz belátni, hogy ha $n \in \mathcal{H}$, azaz "(1) igaz valamilyen $n \in \mathbb{N}_0$ számra", akkor $n + 1 \in \mathcal{H}$, más szóval "(1) igaz n + 1-re is". Ui. a feltevésünk miatt

$$\sum_{k=0}^{n+1} k = \sum_{k=0}^{n} k + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2} = \frac{(n+1)(n+1+1)}{2}.$$

Későbbi tanulmányainkban többször előkerül a

$$\sum_{k=0}^{n} q^{k} = 1 + q + \ldots + q^{n-1} + q^{n} = \frac{1 - q^{n+1}}{1 - q} \qquad (n \in \mathbb{N}_{0}, 1 \neq q \in \mathbb{R})$$
 (2)

állítás, amelynek igaz volta – a $0^0 := 1$ megállapodást figyelembe véve – pl. teljes indukcióval szintén belátható. Ha ui.

$$\mathcal{H} := \{ n \in \mathbb{N}_0 : (2) \text{ igaz} \},$$

akkor nyilván $0 \in \mathcal{H}$, azaz "(2) igaz n = 0-ra". Ha pedig $n \in \mathcal{H}$, azaz "(2) igaz valamilyen $n \in \mathbb{N}_0$ számra", akkor $n + 1 \in \mathcal{H}$, hiszen

$$1 + q + \dots + q^{n-1} + q^n + q^{n+1} = \frac{1 - q^{n+1}}{1 - q} + q^{n+1} = \frac{1 - q^{n+1} + q^{n+1} - q^{n+2}}{1 - q} =$$
$$= \frac{1 - q^{n+2}}{1 - q} = \frac{1 - q^{n+1+1}}{1 - q}.$$

Bizonyos átalakítások könnyebb megértéséhez igen hasznos a⁷

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+2) \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 2 \cdot 1} = \prod_{i=1}^{k} \frac{n-k+i}{i}$$

 $(k,n\in\mathbb{N}_0,\,k\le n)$ binomiális együtthatókat használó, tetszőleges $n\in\mathbb{N}_0$, ill. $a,b\in\mathbb{R}$ esetén fennálló binomiális tétel:

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^{n} = \sum_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}, \quad (3)$$

amelynek igaz volta egyrészt a binomiális együtthatókra fennálló

$$\binom{n}{0} = \frac{n!}{0! \cdot n!} = 1 = \frac{n!}{n! \cdot 0!} = \binom{n}{n},$$

 $^{^7 \}text{Valamely } n \in \mathbb{N}_0 \text{ eset\'en, ha } n = 0 \text{, akkor } n! := 1 \text{, ha pedig } n > 0 \text{, akkor } n! := 1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n.$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \frac{n!}{(n-k)![n-(n-k)]!} = \binom{n}{n-k},$$

ill.

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{n!(k+1)n!(n-k)}{(k+1)!(n-k)!} =$$

$$= \frac{n!(n+1)}{(k+1)!((n+1)-(k+1))!} = \frac{(n+1)!}{(k+1)!((n+1)-(k+1))!} = \binom{n+1}{k+1}$$

azonosságokból, másrészt pedig a teljes indukció elvéból következik. Valóban, ha

• n = 0, akkor

$$(a+b)^0 = 1 = {0 \choose 0} a^0 b^0 = \sum_{k=0}^{0} {0 \choose k} a^{0-k} b^k.$$

• valamely $n \in \mathbb{N}_0$ esetén fennáll a (3) egyenlőség, akkor $(a + b)^{n+1} =$

$$= (a+b)(a+b)^{n} = (a+b) \cdot \sum_{k=0}^{n} {n \choose k} a^{n-k} b^{k} =$$

$$= \sum_{k=0}^{n} {n \choose k} a^{n+1-k} b^{k} + \sum_{k=0}^{n} {n \choose k} a^{n-k} b^{k+1} = \sum_{k=0}^{n} {n \choose k} a^{n+1-k} b^{k} + \sum_{k=1}^{n+1} {n \choose k-1} a^{n+1-k} b^{k} =$$

$$= {n \choose 0} a^{n+1} + \sum_{k=1}^{n} {n \choose k} + {n \choose k-1} a^{n+1-k} b^{k} + {n \choose n} b^{n+1} =$$

$$= {n+1 \choose 0} a^{n+1} + \sum_{k=1}^{n} {n+1 \choose k} a^{n+1-k} b^{k} + {n+1 \choose n+1} b^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} a^{n+1-k} b^{k}.$$

A (3) egyenlőség persze más módon is belátható. Mivel

$$(a+b)^n = \underbrace{(a+b)\cdot\ldots\cdot(a+b)}_{n-\text{szer}}$$

és a jobb oldalon a "beszorzáskor" a disztributív szabály ("minden tagot minden taggal") következtében az n zárójel mindegyikéből vagy az α -t vagy a b-t kell választani, ezeket össze kell szorozni, majd a kapott szorzatokat össze kell adni, ezért $(\alpha + b)^n$ olyan összeggel egyenlő, amelynek mindenn tagja $\alpha^{n-k}b^k$ alakú, ahol $k \in \{0,1,\ldots,n\}$. Ez a tag annyiszor szerepel, ahányszor az n számú b közül k számú b-t választunk ki, amelyről belátható, hogy $\binom{n}{k}$.

7. Emlékeztetünk az azonos hatványok különbségeinek szorzattá való alakíthatóságára, amelynek igen fontos következményei vannak. Ha $n \in \mathbb{N}$ és $a, b \in \mathbb{R}$, akkor

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-1}b + \dots + ab^{n-2} + b^{n-1}) = (a - b)\sum_{k=1}^{n} a^{n-k}b^{k-1}.$$

Így pl.

(a) ha $a, b \in \mathbb{R}$: 0 < b < a, továbbá $n \in \mathbb{N}$, akkor

$$a^{n} [a - (n+1)(a-b)] < b^{n+1},$$
 (4)

hiszen

$$a^{n+1} - b^{n+1} = (a-b)(a^n + a^{n-1}b + \dots + ab^{n-1} + b^n) <$$

$$< (a-b)(a^n + a^{n-1}a + \dots + aa^{n-1} + a^n) = (a-b)(n+1)a^n.$$

(b) ha $1 \neq q \in \mathbb{R}$, akkor bármely $n \in \mathbb{N}_0$ index esetén

$$1 - q^{n+1} = 1^{n+1} - q^{n+1} = (1 - q)(1 + q + \dots + q^n) \qquad / \Longrightarrow \quad (2)/.$$

Definíció. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Azt mondjuk, hogy a \mathcal{H} halmaz

• alulról korlátos, ha van olyan $k \in \mathbb{R}$, hogy bármely $x \in \mathcal{H}$ esetén $x \geq k$:

$$\exists\, k\in\mathbb{R}\,\,\forall\, x\in\mathcal{H}:\quad x>k.$$

Az ilyen k számot a \mathcal{H} halmaz **alsó korlát**jának nevezzük.

• **felülről korlátos**, ha van olyan $K \in \mathbb{R}$, hogy bármely $x \in \mathcal{H}$ esetén $x \leq K$:

$$\exists K \in \mathbb{R} \ \forall x \in \mathcal{H}: \quad x \leq K.$$

Az ilyen K számot a \mathcal{H} halmaz **felső korlát**jának nevezzük.

• korlátos, ha alulról és felülről is korlátos.

Példa. A

$$\mathcal{H}:=\left\{rac{1}{n}\in\mathbb{R}:\;n\in\mathbb{N}
ight\}$$

hamaz alulról is és felülről is korlátos, a 0, ill. az 1 alsó, ill. felső korlátja \mathcal{H} -nak:

$$0 < \frac{1}{n} \le 1$$
 $(n \in \mathbb{N}).$

Megjegyzések.

- 1. Ha a K szám felső korlátja \mathcal{H} -nak, akkor bármely K \leq L \in \mathbb{R} szám is felső korlátja \mathcal{H} -nak. Ha tehát H felülről korlátos, akkor végtelen sok felső korlátja van.
- 2. Ha a k szám alsó korlátja \mathcal{H} -nak, akkor bármely $k \geq l \in \mathbb{R}$ szám is alsó korlátja \mathcal{H} -nak. Ha tehát \mathcal{H} alulról korlátos, akkor végtelen sok alsó korlátja van.
- 3. Az, hogy a \mathcal{H} hamaz felülről nem korlátos, azt jelenti, hogy bármely $K \in \mathbb{R}$ esetén van olyan $x \in \mathcal{H}$, amelyre x > K.
- 4. Az, hogy a \mathcal{H} hamaz alulról nem korlátos, azt jelenti, hogy bármely $k \in \mathbb{R}$ esetén van olyan $x \in \mathcal{H}$, amelyre x < k.
- 5. A \mathcal{H} halmaz pontosan akkor korlátos, ha

$$\exists M \in \mathbb{R}$$
, hogy $\forall x \in \mathcal{H}$ esetén $|x| < M$,

ahol valamely $x \in \mathbb{R}$ esetén

$$|x| := \begin{cases} x & (x \ge 0), \\ -x & (x < 0). \end{cases}$$

Ezzel kapcsolatban belátható az alábbi

Tétel (háromszög-egyenlőtlenségek). Bármely $a, b \in \mathbb{R}$ szám esetén fennállnak az az alábbi becslések.

i)
$$|a+b| \le |a|+|b|$$
, ii) $||a|-|b|| \le |a-b|$ (5)

Bizonyítás.

1. lépés. Az abszolút érték definíciója alapján

$$-|a| \le a \le |a|$$
 és $-|b| \le b \le |b|$.

Összeadva a fenti egyenlőtlenségeket azt kapjuk, hogy

$$-(|a| + |b|) \le a + b \le |a| + |b|. \tag{6}$$

Mivel minden $x, y \in \mathbb{R}, y \ge 0$ esetén

$$|x| \le y \qquad \iff \qquad -y \le x \le y,$$
 (7)

ezért ennek felhasználásával (6)-ből i) adódik.

2. lépés. Az i) egyenlőtlenség alapján

$$|\mathfrak{a}| = |(\mathfrak{a} - \mathfrak{b}) + \mathfrak{b}| \le |\mathfrak{a} - \mathfrak{b}| + |\mathfrak{b}| \qquad \Longrightarrow \qquad |\mathfrak{a}| - |\mathfrak{b}| \le |\mathfrak{a} - \mathfrak{b}|,$$

$$|\mathbf{b}| = |(\mathbf{b} - \mathbf{a}) + \mathbf{a}| \le |\mathbf{b} - \mathbf{a}| + |\mathbf{a}| \qquad \Longrightarrow \qquad |\mathbf{b}| - |\mathbf{a}| \le |\mathbf{a} - \mathbf{b}|.$$

Tehát

$$-|a-b| \le |a| - |b| \le |a-b|,$$

és így (7) felhasználásával kapjuk a bizonyítandó egyenlőtlenséget: ii)-t.

Megjegyzések.

- 1. Valamely számhalmazt megadó kifejezésből az esetek többségében nehéz látni a halmaz szerkezetét, ezért a korlátosságának vizsgálata általában nem egyszerű feladat. Ennek megoldásához gyakran használhatjuk a következő ötletet: valamilyen "alkalmas" módon átalakítjuk a szóban forgó kifejezést (ilyen átalakításokra a gyakorlaton példákat fogunk mutatni). Ezután már számos esetben könnyen megfogalmazható sejtés az alsó, ill. a felső korlátokra vonatkozóan. Ezek bizonyításához (sokszor triviális) egyenlőtlenségek fennállását kell majd belátnunk.
- 2. Sok esetben hasznos lehet halmazok szerkezetének feltárására az alábbi átalakítás ismerete: bármely $(a,b,c,d,x\in\mathbb{R}:c\neq 0,x\neq -d/c)$ esetén

$$\frac{ax+b}{cx+d} = \frac{a}{c} \cdot \frac{x+\frac{b}{a}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \frac{x+\frac{d}{c}+\frac{b}{a}-\frac{d}{c}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{c}}\right] = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{c}}\right] = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{c}}\right] = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{c}}\right] = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{ac}}\right] = \frac{a}{c} \cdot \left[1+\frac{\frac{bc-ad}{ac}}{x+\frac{d}{ac}}\right] = \frac{a}{c} \cdot \left[1+\frac{a}{ac}\right] = \frac{a}{c} \cdot$$

$$= \frac{a}{c} + \frac{\frac{bc - aa}{c}}{\frac{c}{cx + d}} = \frac{a}{c} + \frac{bc - ad}{c} \cdot \frac{1}{cx + d}$$

vagy

$$\frac{ax+b}{cx+d} = \frac{a}{c} \cdot \frac{acx+bc}{acx+ad} = \frac{a}{c} \cdot \frac{acx+ad+bc-ad}{acx+ad} = \frac{a}{c} \cdot \left(1 + \frac{bc-ad}{acx+ad}\right) =$$

$$= \frac{a}{c} + \frac{1}{c} \cdot \frac{bc-ad}{cx+d} = \frac{a}{c} + \frac{bc-ad}{c} \cdot \frac{1}{cx+d}.$$

Definíció. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Azt mondjuk, hogy a \mathcal{H} halmaznak **van**

• maximuma vagy legnagyobb eleme, ha

$$\exists \alpha \in \mathcal{H}$$
, hogy $\forall x \in \mathcal{H}$ esetén $x \leq \alpha$.

Ekkor az α számot a \mathcal{H} halmaz **maximum**ának vagy **legnagyobb elem**ének nevezzük és a max \mathcal{H} szimbólummal jelöljük.

• minimuma vagy legkisebbb eleme, ha

$$\exists \beta \in \mathcal{H}$$
, hogy $\forall x \in \mathcal{H}$ esetén $x \geq \beta$.

Ekkor a β számot a \mathcal{H} halmaz **minimum**ának vagy **legkisebb elem**ének nevezzük és a min \mathcal{H} szimbólummal jelöljük.

Megjegyzések.

- 1. Ha a \mathcal{H} halmaznak van maximuma, akkor max \mathcal{H} egyben felső korlátja \mathcal{H} -nak.
- 2. Ha a \mathcal{H} halmaznak van minimuma, akkor min \mathcal{H} egyben alsó korlátja \mathcal{H} -nak.
- 3. A \mathcal{H} halmaznak pontosan akkor nincsen maximuma, ha bármely \mathcal{H} -beli eleménél van nagyobb \mathcal{H} -beli elem:

$$\exists \max \mathcal{H} \iff \forall \alpha \in \mathcal{H}$$
-hoz $\exists x \in \mathcal{H}$, hogy $x > \alpha$.

4. A \mathcal{H} halmaznak pontosan akkor nincsen minimuma, ha bármely \mathcal{H} -beli eleménél van kisebb \mathcal{H} -beli elem:

$$\exists \min \mathcal{H} \qquad \iff \qquad \forall \beta \in \mathcal{H}\text{-hoz } \exists x \in \mathcal{H}, \text{ hogy } x < \beta.$$

Példák.

1. A

$$\mathcal{H}:=\left\{rac{1}{n}\in\mathbb{R}:\ n\in\mathbb{N}
ight\}$$

halmazn esetén $\max(\mathcal{H})=1$, ui. $1\in\mathcal{H}$ és bármely $n\in\mathbb{N}$ esetén $\frac{1}{n}\leq 1$. A \mathcal{H} halmaznak nincsen minimuma, hiszen

$$\forall \alpha \in \mathcal{H} \ \exists n \in \mathbb{N}: \quad \alpha = \frac{1}{n} > \frac{1}{n+1} \in \mathcal{H}.$$

2. A

$$\mathcal{H} := \left\{1 - \frac{1}{n} \in \mathbb{R}: \ n \in \mathbb{N}\right\}$$

halmazn esetén $\min(\mathcal{H})=0$, ui. $0\in\mathcal{H}$ és bármely $n\in\mathbb{N}$ esetén $0\leq 1-\frac{1}{n}$. A \mathcal{H} halmaznak nincsen maximuma, hiszen

$$\forall \beta \in \mathcal{H} \ \exists n \in \mathbb{N}: \quad \beta = 1 - \frac{1}{n} < 1 - \frac{1}{n+1} \in \mathcal{H}.$$

A következő, alapvető fontosságú tétel azt mondja ki, hogy minden (nem-üres) felülről korlátos halmaz felső korlátai között van legkisebb, azaz a **felső korlátok halmazának van minimuma**.

Tétel (szuprémum-elv). Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Ha a \mathcal{H} halmaz felülről korlátos, akkor felső korlátai között van legkisebb: az

 $F := \{K \in \mathbb{R} : K \text{ felső korlátja } \mathcal{H}\text{-nak}\}$

halmaznak van minimuma.

Bizonyítás. Legyen

$$A := \mathcal{H}$$
 és $B := F$.

Ekkor $A \neq \emptyset$ és $B \neq \emptyset$, továbbá

$$\forall \alpha \in A \quad \text{\'es} \quad \forall b \in B \quad \text{eset\'en} \quad \alpha \leq b.$$

A teljességi axióma következtében így alkalmas $\xi \in \mathbb{R}$ számmal

$$a \le \xi \le b$$
 $(a \in A, b \in B)$.

Erre a $\xi \in \mathbb{R}$ számra igaz, hogy

- ξ felső korlátja \mathcal{H} -nak, hisze minden $\alpha \in A$ esetén $\alpha \leq \xi$;
- ξ a \mathcal{H} felső korlátai közül a legkisebb, ui. ha b felső korlátja \mathcal{H} -nak (azaz $b \in B$), akkor $b \ge \xi$.

Mindez azt jelenti, hogy ξ a \mathcal{H} halmaz legkisebb felső korlátja.

A fentiek értelemszerű módosításával kapjuk az előző állításnak az alsó korlátokra vonatkozó párját.

Tétel. Legyen $\emptyset \neq \mathcal{H} \subset \mathbb{R}$. Ha a \mathcal{H} halmaz alulról korlátos, akkor, akkor alsó korlátai között van legnagyobb: a

 $\{k \in \mathbb{R} : k \text{ alsó korlátja } \mathcal{H}\text{-nak}\}$

halmaznak van maximuma.

Definíció.

- 1. A felülről korlátos $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ számhalmaz legkisebb felső korlátját a számhalmaz **felső** határának, más szóval szuprémumának vagy lényeges felső korlátjának nevezzük és a sup \mathcal{H} szimbólummal jelöljük.
- 2. Az alulról korlátos $\emptyset \neq \mathcal{H} \subset \mathbb{R}$ számhalmaz legnagyobb alsó korlátját a számhalmaz **alsó határ**ának, más szóval **infimum**ának vagy **lényeges alsó korlát**jának nevezzük és az inf \mathcal{H} szimbólummal jelöljük.

Példák.

1. A $\mathcal{H} := [-1, 1]$ halmaz esetében

$$\inf(\mathcal{H}) = \min(\mathcal{H}) = -1, \quad \sup(\mathcal{H}) = \max(\mathcal{H}) = 1;$$

2. A $\mathcal{H} := (-1, 1]$ halmaz esetében

$$\inf(\mathcal{H}) = -1$$
, $\nexists \min(\mathcal{H})$, $\operatorname{ill.} \sup(\mathcal{H}) = \max(\mathcal{H}) = 1$.

Megjegyzések.

- 1. Világos, hogy
 - (a) $\exists \min \mathcal{H} \iff \inf \mathcal{H} \in \mathcal{H}$. Ebben az esetben inf $\mathcal{H} = \min \mathcal{H}$.
 - (b) $\exists \max \mathcal{H} \iff \sup \mathcal{H} \in \mathcal{H}$. Ebben az esetben $\sup \mathcal{H} = \max \mathcal{H}$.
- 2. Az inf $\mathcal{H} = \alpha$ állítás azt jelenti, hogy
 - α a \mathcal{H} halmaz alsó korlátja:

$$\forall x \in \mathcal{H}: \quad x \geq \alpha,$$

• bármely α -nál nagyobb szám \mathcal{H} -nak már nem alsó korlátja:

$$(\forall \alpha > \alpha \; \exists x \in \mathcal{H}: \quad x < \alpha) \qquad \Longleftrightarrow \qquad (\forall \epsilon > 0 \; \exists x \in \mathcal{H}: \quad x < \alpha + \epsilon).$$

$$\exists x \in \mathcal{H}$$

$$\alpha \qquad x \quad \alpha + \epsilon \quad \mathbb{R}$$

- 3. A sup $\mathcal{H} = \beta$ állítás azt jelenti, hogy
 - β a \mathcal{H} halmaz ferlső korlátja:

$$\forall x \in \mathcal{H}: \quad x < \beta,$$

• bármely β -nál kisebb szám \mathcal{H} -nak már nem felső korlátja:

$$(\forall b < \beta \ \exists x \in \mathcal{H}: \quad x > b) \qquad \Longleftrightarrow \qquad (\forall \epsilon > 0 \ \exists x \in \mathcal{H}: \quad x > \beta - \epsilon).$$

$$\frac{\exists x \in \mathcal{H}}{\beta - \epsilon \quad x \quad \beta \quad \mathbb{R}}$$

4. Célszerű kiterjeszteni az alsó és felső határ fogalmát nem korlátos halmazokra. Ehhez kibővítjük a valós számok halmazát két elemmel, amelyeket plusz, ill. mínusz végtelennek nevezünk és a +∞, ill. −∞ szimbólumokkal jelölünk. Szokás ezeket ideális elemeknek is nevezni, és ugyanúgy, mint a valós számok esetében a + előjelet gyakran elhagyjuk. A valós számok ezekkel bővített halmazára az

$$\overline{\mathbb{R}}:=\mathbb{R}\cup\{+\infty,-\infty\}$$

jelölést használjuk. Ha valamely halmaz felülről nem korlátos, akkor azt fogjuk mondani, hogy felső határa $+\infty$, ha pedig alulról nem korlátos, akkor definició szerint alsó határa legyen $-\infty$.

5. A < relációt terjesszük ki a valós számok ideális elemekkel bővített $\overline{\mathbb{R}}$ halmazára az alábbiak szerint. Legyen

$$\forall x \in \mathbb{R}: -\infty < x < +\infty$$
.

A most bevezetett szóhasználattal élve azt mondhatjuk, hogy egy halmaz pontosan akkor felülről korlátos, ha sup $\mathcal{H}<+\infty$, és pontosan akkor alulról korlátos, ha inf $\mathcal{H}>-\infty$.

6. A korábbról ismert ún. **véges intervallum**ok mellett használni fogjuk az alábbi ún. **végtelen intervallum**okat is:

$$(a, +\infty) := \{x \in \mathbb{R} : x > a\}, \quad [a, +\infty) := \{x \in \mathbb{R} : x \ge a\},$$

$$(-\infty, b) := \{x \in \mathbb{R} : x < b\}, \quad (-\infty, b] := \{x \in \mathbb{R} : x \le b\}.$$

Ezekkel összhangban a valós számok és az ideális elemekkel kibővített valós számok halmazát a

$$(-\infty,\infty):=\mathbb{R}, \qquad [-\infty,\infty]:=\overline{\mathbb{R}}$$

végtelen intervallumokkal is jelöljük.

A felső határ fogalma felhasználható a pozitív valós számok valós kitevőjű hatványainak értelmezésére.

Definíció. Legyen $\alpha \in (0, +\infty)$ és $x \in \mathbb{R}$. Ha

• a > 1, akkor

$$a^{x} := \sup\{a^{r} \in \mathbb{R} : x \geq r \in \mathbb{Q}\};$$

- a = 1, akkor $a^x := 1$;
- $0 < \alpha < 1$, akkor

$$a^{x} := \left(\frac{1}{a}\right)^{-x}$$
.

Tétel (Arkhimédész). Bármely $0 < a \in \mathbb{R}$, illetve $b \in \mathbb{R}$ számhoz van olyan n (pozitív) természetes szám, hogy $b < n \cdot a$:

 $\forall a > 0 \text{ és } \forall b \in \mathbb{R} \text{ esetén } \exists n \in \mathbb{N}, \text{ hogy } b < n \cdot a.$

Bizonyítás. Az állításal ellentétben tegyük fel, hogy

$$\exists a > 0 \text{ \'es } \exists b \in \mathbb{R}, \text{ hogy } \forall n \in \mathbb{N} : b \geq n \cdot a.$$

Legyen

$$\mathcal{H} := \{ n \cdot \alpha \in \mathbb{R} : n \in \mathbb{N} \}.$$

Ekkor $\mathcal{H} \neq \emptyset$ és \mathcal{H} felülről korlátos, hiszen bármely $\mathfrak{n} \in \mathbb{N}$ esetén $\mathfrak{n} \cdot \mathfrak{a} \leq \mathfrak{b}$. A szuprémum-elv szerint

$$\exists \sup \mathcal{H} =: \xi \in \mathbb{R}.$$

Ekkor ξ a legkisebb felső korlátja a \mathcal{H} halmaznak, tehát ξ – a nem felső korlát. Ez azt jelenti, hogy

$$\exists m \in \mathbb{N} : m \cdot a > \xi - a \iff (m+1) \cdot a > \xi.$$

Azonban $(m+1) \cdot \alpha \in \mathcal{H}$, tehát $(m+1) \cdot \alpha \leq \xi$, hiszen ξ felső korlátja a \mathcal{H} halmaznak, ami a fentiek miatt nem lehetséges.

Következmények.

- 1. (**Eudoxosz-tétel.**)⁸ $\forall \varepsilon > 0$ -hoz $\exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$ ui. $\forall \varepsilon > 0$ -hoz $\exists n \in \mathbb{N} : 1 < n \cdot \varepsilon$.
- 2. Az \mathbb{N} halmaz felülről nem korlátos, ui. $\forall x \in \mathbb{R}$ számhoz $\exists n \in \mathbb{N} : x < n \cdot 1 = n$.
- 3. Bármely intervallumban van racionális és irracionális szám: tetszőleges $a, b \in \mathbb{R}$, a < b esetén

$$(a,b) \cap \mathbb{Q} \neq \emptyset$$
 és $(a,b) \cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$, (8)

sőt minden intervallumban végtelen sok racionális és irracionális szám van. A (8)-beli első állítás igen könnyen belátható. Ha ui. $a, b \in \mathbb{R}$: a < b, akkor

0 ≤ a < b esetén Arkhimédész tételének felhasználásával azt kapjuk, hogy alkalmas n ∈ N
esetén

$$\frac{1}{n}$$
 < b - a.

Ismét az Arkhimédész-téelt használva látható, hogy van olyan $\mathfrak{m} \in \mathbb{N}$, amelyre

$$a<\frac{m}{n}$$
.

Legyen

$$k := \min \left\{ x \in \mathbb{N} : \ a < \frac{x}{n} \right\}.$$

Ekkor

$$\frac{k-1}{n} \leq a < \frac{k}{n}$$

ahonnan

$$\frac{k}{n} - a \le \frac{1}{n}$$
, ill. $\frac{k}{n} - a \le \frac{k}{n} - \frac{k-1}{n} = \frac{1}{n} < b - a$

következik, így $\frac{k}{n} \in \mathbb{Q}$ következtében igaz az állítás.

- $a < b \le 0$ esetén $0 \le -b < -a$, így az iméntiek következtében alkalmas $r \in \mathbb{Q}$ számmal -b < r < -a, azaz a < -r < b.
- a < 0 < b, akkor $0 \in \mathbb{Q}$ miatt az állítás bizonyítottnak tekinthető.

⁸Knidoszi Eudoxosz, görög matematikus, író, filozófus, geográfus (i.e. 408?– i.e. 355?)

Tétel [Cantor]. Minden $n \in \mathbb{N}$ szám esetén legyenek adottak az $a_n, b_n \in \mathbb{R}$, $a_n \leq b_n$ végpontok, és tegyük fel, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \quad (n \in \mathbb{N}).$$

Ekkor

$$\bigcap_{n=1}^{\infty} [a_n, b_n] := \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset,$$

azaz egymásba skatulyázott korlátos és zárt intervallumok közös része nem üres.

Bizonyítás.

1. lépés. Belátjuk, hogy bármely $n \in \mathbb{N}$ index esetén

$$a_n \le a_{n+k} \qquad (k \in \mathbb{N}_0).$$
 (9)

Valóban, ha

- k=0, akkor az egyenlőtlenség nyilvánvaló: $\alpha_n=\alpha_{n+0}$.
- k = 1, akkor az egyenlőtlenség a tétel feltételeiben szereplő $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$ tartalmazás triviális következménye.
- $\bullet \ n \in \mathbb{N}$ és valamilyen $k \in \mathbb{N}_0$ mellet (9) teljesül, akkor az előbbiek következtében

$$a_{n+k} \le a_{(n+k)+1} = a_{n+(k+1)}$$

miatt $a_n \le a_{n+(k+1)}$ is igaz. Ezzel (teljes indukcióval) beláttuk (9)-at.

Ugyanígy látható be, hogy bármely $n \in \mathbb{N}$ index esetén

$$b_n \geq b_{n+k}$$
 $(k \in \mathbb{N}_0)$.

2. lépés. Belátjuk, hogy

$$a_n \le b_m \qquad (m, n \in \mathbb{N}).$$
 (10)

Valóban,

i) ha $n \le m$, akkor $a_n \le a_m \le b_m$,

ii) ha m < n, akkor $\alpha_n \leq b_n \leq b_m.$

3. lépés. Legyen ezután

$$A := \{a_n \mid n \in \mathbb{N}\}$$
 és $B := \{b_n \mid n \in \mathbb{N}\}.$

Ekkor a fentiek szerint A felülről korlátos, és a B halmaz minden eleme felső korlátja A-nak. Ha tehát $\alpha:=\sup A$, akkor bármely $n\in\mathbb{N}$ esetén egyrészt $a_n\leq\alpha$, másrészt pedig $\alpha\leq b_n$. Következésképpen tetszőleges $n\in\mathbb{N}$ esetén $\alpha\in[a_n,b_n]$, azaz

$$\alpha \in \bigcap_{n=1}^{\infty} [a_n, b_n].$$

Megjegyezzük, hogy ha a fenti tételben az intervallumokra akár a korlátosságot, akár a zártságot nem követeljük meg, akkor az állítás nem igaz:

$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right] = \emptyset = \bigcap_{n=1}^{\infty} [n, +\infty].$$

A gyakorlat anyaga

Feladat. Igazoljuk az abszolútértékre vonatkozó ún. **sokszög-egyenlőtlenség**et, azaz mutassuk meg, hogy ha $n \in \mathbb{N}$ és $x_1, \ldots, x_n \in \mathbb{R}$, akkor

$$|x_1 + \ldots + x_n| \le |x_1| + \ldots + |x_n|$$

teljesül!

Útm.

- **1. lépés.** n = 1 esetén igaz az állítás: $|x_1| \le |x_1|$.
- **2. lépés.** Tegyük fel, hogy valamely $n \in \mathbb{N}$ esetén

$$|x_1 + \ldots + x_n| \le |x_1| + \ldots + |x_n|$$

teljesül, majd legyen $x_{n+1} \in \mathbb{R}$. Ekkor (vö. (5))

$$|x_1 + \ldots + x_n + x_{n+1}| = |(x_1 + \ldots + x_n) + x_{n+1}| \le |x_1 + \ldots + x_n| + |x_{n+1}| \le$$

 $\le |x_1| + \ldots + |x_n| + |x_{n+1}|.$

Feladat. Tetszőleges $n \in \mathbb{N}$ esetén számítsuk ki az

$$S := 1 + 11 + 111 + 1111 + \ldots + \underbrace{1 \ldots 1}_{n \text{ darab}}$$

összeget!

Útm. Mivel

$$1 + 11 + 111 + \dots + \underbrace{1 \dots 1}_{n \text{ darab}} = 1 + (10 + 1) + (10^{2} + 10 + 1) + \dots + (10^{n-1} + 10^{n-2} + \dots + 10 + 1),$$

továbbá (2) következtében

$$\underbrace{1\dots 1}_{k \text{ darab}} = 10^{k-1} + 10^{k-2} + \dots + 10 + 1 = \frac{10^k - 1}{10 - 1} \qquad (k \in \{2, \dots, n\}),$$

így (2) ismételt felhasználásával

$$S = 1 + \sum_{k=2}^{n} \frac{10^{k} - 1}{10 - 1} = 1 + \frac{1}{9} \cdot \left\{ \frac{10^{n+1} - 1}{10 - 1} - 10 - 1 - (n - 1) \right\} =$$

$$= 1 + \frac{1}{9} \cdot \frac{10^{n+1} - 1 - 99 - 9n + 9}{9} = \frac{10^{n+1} - 10 - 9n}{81}$$

adódik.

Feladat. Az előadáson bebizonyított (4) egyenlőtlenség felhasználásával lássuk be, hogy tetszőleges $n \in \mathbb{N}$ indexre

1.
$$\left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1}, \qquad 2. \quad 2 \le \left(1 + \frac{1}{n}\right)^n < 4.$$
 (11)

Útm.

1. Legyen

$$a := 1 + \frac{1}{n}$$
, ill. $b := 1 + \frac{1}{n+1}$.

Ekkor a > b > 0, így az előző feladat alapján

$$\left(1+\frac{1}{n}\right)^{n}\underbrace{\left(1+\frac{1}{n}-(n+1)\left(1+\frac{1}{n}-1-\frac{1}{n+1}\right)\right)}_{-1}<\left(1+\frac{1}{n+1}\right)^{n+1}.$$

A bal oldalon a második tényező 1, így a kívánt egyenlőtlenséget kapjuk.

2. 1. lépés. n = 1 esetén

$$\left(1+\frac{1}{1}\right)^1=2,$$

és az előző egyenlőtlenség alapján minden $2 < n \in \mathbb{N}$ számra

$$2<\left(1+\frac{1}{n}\right)^n.$$

2. lépés. Legyen

$$a := 1 + \frac{1}{2n}$$
 és $b := 1$.

Ekkor a > b > 0, ezért az előző feladat alapján

$$\left(1 + \frac{1}{2n}\right)^{n} \underbrace{\left(1 + \frac{1}{2n} - (n+1)\left(1 + \frac{1}{2n} - 1\right)\right)}_{=\frac{1}{2}} < 1.$$

A bal oldalon a második tényező $\frac{1}{2}$. Kettővel szorozva és négyzetre emelve

$$\left(1+\frac{1}{2n}\right)^{2n}<4$$

adódik. Az első feladat miatt minden $n \in \mathbb{N}$ esetén

$$\left(1 + \frac{1}{2n-1}\right)^{2n-1} < \left(1 + \frac{1}{2n}\right)^{2n} < 4$$

teljesül. Ebből pedig már következik a bizonyítandó egyenlőtlenség.

Megjegyzés. Az is könnyen belátható, hogy

$$\left(1+\frac{1}{n}\right)^n<3\qquad (n\in\mathbb{N}),$$

ui. a binomiális tétel felhasználásával azt kapjuk, hogy ha $3 \le n \in \mathbb{N}$, akkor

$$\left(1 + \frac{1}{n}\right)^{n} =$$

$$= \sum_{k=0}^{n} {n \choose k} \cdot \frac{1}{n^{k}} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^{k}} = \sum_{k=0}^{n} \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!n^{k}} =$$

$$= \sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \le$$

$$\le \sum_{k=0}^{n} \frac{1}{k!} = 1 + 1 + \sum_{k=2}^{n} \frac{1}{k!} < 2 + \sum_{k=2}^{n} \frac{1}{k(k-1)} = 2 + \sum_{k=2}^{n} \frac{k - (k-1)}{k(k-1)} = 2 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right) =$$

$$= 2 + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) + \dots + \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{2}\right) = 2 + 1 - \frac{1}{n} < 3.$$

Házi feladat. Lássuk be, hogy bármely $n \in \mathbb{N}$ esetén fennállnak az alábbi egyenlőségek!

1.
$$\sum_{k=1}^{n} k^2 = 1^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

2.
$$\sum_{k=1}^{n} k^3 = 1^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{k=1}^{n} k\right)^2$$
;

3.
$$\sum_{k=1}^{n} \frac{1}{k \cdot (k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}.$$

Útm.

1. Teljes indukciót használva látható, hogy

•
$$n = 1$$
 esetén

$$\sum_{k=1}^{1} k^2 = 1^2 = 1 = \frac{1 \cdot (1+1)(2 \cdot 1+1)}{6}.$$

• ha valamely $n \in \mathbb{N}$ esetén

$$\sum_{k=1}^{n} k^2 = 1^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6},$$

akkor

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 =$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} = \frac{(n+1)[n(2n+1) + 6(n+1)]}{6} =$$

$$= \frac{(n+1)[2n^2 + 7n + 6]}{6} = \frac{(n+1)(n+2)(2n+3)}{6} =$$

$$= \frac{(n+1)(n+1+1)(2(n+1)+1)}{6}.$$

2. Teljes indukciót használva látható, hogy

• n = 1 esetén

$$\sum_{k=1}^{1} k^3 = 1^3 = 1 = \frac{1^2(1+1)^2}{4}.$$

• ha valamely $n \in \mathbb{N}$ esetén

$$\sum_{k=1}^{n} k^3 = 1^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4},$$

akkor

$$\begin{split} \sum_{k=1}^{n+1} k^3 &= \sum_{k=1}^n k^3 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3 = \\ &= \frac{n^2(n+1)^2 + 4(n+1)^3}{4} = \frac{(n+1)^2[n^2 + 4(n+1)]}{4} = \frac{(n+1)^2(n+2)^2}{4} = \\ &= \frac{(n+1)^2(n+1+1)^2}{4}. \end{split}$$

- 3. Két módszerrel is belátjuk az egyenlőtlenség teljesülését:
 - **1. módszer.** Világos, hogy bármely $n \in \mathbb{N}$ esetén

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{k+1-k}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) =$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = \dots =$$

$$= 1 - \frac{1}{n+1} = \frac{n+1-1}{n+1} = \frac{n}{n+1}.$$

- 2. módszer. Teljes indukcióval.
 - n = 1 esetén

$$\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1(1+1)} = \frac{1}{2} = \frac{1}{1+1}.$$

• Tegyük fel, hogy valamely $n \in \mathbb{N}$ esetén

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

Ekkor

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} =$$

$$= \frac{n(n+2)+1}{(n+1)(n+2)} = \frac{n^2+2n+1}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{n+2} =$$

$$= \frac{n+1}{n+1+1}.$$

Házi feladat. Döntsük el, hogy melyik szám nagyobb!

1.
$$(1,000001)^{1000000}$$
 vagy 2

vagy 2 2.
$$1000^{1000}$$
 vagy 1001^{999} .

Útm. Mivel

$$2 \leq \left(1 + \frac{1}{n}\right)^n < 3 \quad (n \in \mathbb{N}) \qquad \text{\'es} \qquad 2 = \left(1 + \frac{1}{n}\right)^n \quad \Longleftrightarrow \quad n = 1,$$

ezért

$$(1,000001)^{1000000} = \left(1 + \frac{1}{10^6}\right)^{10^6} > 2$$

ill.

$$1001^{999} = \frac{1001^{999}}{1000^{1000}} \cdot 1000^{1000} = \left(\frac{1001}{1000}\right)^{1000} \cdot \frac{1000^{1000}}{1001} = \left(1 + \frac{1}{1000}\right)^{1000} \cdot \frac{1000^{1000}}{1001} < \frac{3 \cdot \frac{1000^{1000}}{1001}}{1001} < \frac{1000^{1000}}{1001}.$$

Házi feladat. Mi a hiba az alábbi okoskodásban?

"**Tétel.** Létezünk. (A marslakók egzisztencia-tétele.)

Bizonygatás. A teljúti indukció felhasználásával annak az állításnak az igazságát fogjuk belátni, hogy ha bolygók valamely n-elemű halmazának egyikén van élet, akkor mindegyikén van $(n \in \mathbb{N})$. Innen már következik, hogy egzisztenciánk nem megalapozatlan. Világos, hogy n = 1 esetén igaz az állítás. Tegyük fel most, hogy valamely $n \in \mathbb{N}$ esetén igaz az állítás, és legyen adott n + 1 darab bolygó: B_1, \ldots, B_{n+1} . Tegyük fel, hogy valamelyiken van élet. Az általánosság megszorítása nélkül ezt választhatjuk B_1 -nek. Ekkor az n darab B_1, \ldots, B_n bolygó közül egyen van élet, így az indukciós feltevés értelmében mindegyiken, pl. B_2 -n is. Tekintsük a következő n bolygót: B_2, \ldots, B_{n+1} . Egyiküön van élet $(B_2$ -n), így ismét az indukciós feltevés értelmében mindegyiken van élet. Így tehát a B_1, \ldots, B_{n+1} bolygók mindegyikén van élet. Q. E. D."

Útm. Ha $\mathcal{A}(n)$ jelöli azt az állítást, hogy

a bolygók valamely n-elemű halmazának egyikén van élet, akkor mindegyikén van,

akkor a következőt láttuk be:

- $\mathcal{A}(1)$ igaz;
- ha valamely $2 \le n \in \mathbb{N}$ esetén $\mathcal{A}(n)$ igaz, akkor $\mathcal{A}(n+1)$ is igaz.

Innen nem következik, hogy bármely $n \in \mathbb{N}$ esetén $\mathcal{A}(n)$ igaz, hiszen nem láttuk be az

$$\mathcal{A}(1) \implies \mathcal{A}(2)$$

implikáció igazságát, sem pedig azt, hogy A(2) igaz.

2. oktatási hét

Az előadás anyaga

Tétel (Barrow-Bernoulli-egyenlőtlenség). Ha $n \in \mathbb{N}_0$ és $h \in [-2, +\infty)$, akkor

$$(1+h)^n \ge 1+nh,$$

és egyenlőség pontosan akkor van, ha h = 0 vagy $n \in \{0, 1\}$.

Bizonyítás.

0. lépés. Világos, hogy ha n = 0, akkor igaz az egyenlőtlenség: egyenlőség áll fenn, ui.

$$(1+h)^0 = 1 = 1 + 0 \cdot h.$$

A továbbiakban feltehetjük tehát, hogy $1 \leq n \in \mathbb{N}_0$, azaz $n \in \mathbb{N}$.

1. lépés. Legyen h = -2. Ekkor a

$$(-1)^n > 1 - 2n$$

egyenlőtlenséget kell bebizonyítanunk. Ez nyilvánvalóan teljesül, ui. n = 1 esetén

$$(-1)^1 = 1 - 2 \cdot 1$$

ill. ha $2 \le n \in \mathbb{N}$, akkor 1 - 2n < -1, hiszen ez a 2 < 2n egyenlőtlenséggel egyenértékű.

2. lépés. Legyen $h \in (-2, -1)$. Világos, hogy ha n = 1, akkor teljesül a becslés, sőt egyenlőség van. Ha $2 \le n \in \mathbb{N}$, akkor legyen

$$\epsilon := -h - 1 \qquad (\leftrightarrow \quad \epsilon \in (0, 1)).$$

Így

$$(1+h)^n = (-\epsilon)^n > -1 > 1-n-n\epsilon = 1+n(-1-\epsilon) = 1+nh.$$

3. lépés. Legyen $h \in [-1, +\infty)$. Ha x := 1 + h, akkor az

$$\boldsymbol{a}^{n}-\boldsymbol{b}^{n}=\left(\boldsymbol{a}-\boldsymbol{b}\right)\left(\boldsymbol{a}^{n-1}+\boldsymbol{a}^{n-2}\boldsymbol{b}+\ldots+\boldsymbol{a}\boldsymbol{b}^{n-2}+\boldsymbol{b}^{n-1}\right) \qquad (\boldsymbol{a},\boldsymbol{b}\in\mathbb{R},\,\boldsymbol{n}\in\mathbb{N})$$

azonosságot felhasználva azt kapjuk, hogy

$$x^{n} - 1 - n(x - 1) = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1) - n(x - 1) =$$

$$= (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1 - n),$$

ezért, ha

• $h \ge 0$, azaz $x \ge 1$, akkor

$$x-1 \ge 0$$
 és $x^{n-1} + x^{n-2} + ... + x + 1 \ge n$,

• ha pedig $-1 \le h \le 0$, azaz $0 \le x \le 1$, akkor

$$x-1 < 0$$
 és $x^{n-1} + x^{n-2} + ... + x + 1 < n$.

Ennélfogva

$$x^n-1-n(x-1)\geq 0,$$
 azaz $x^n\geq 1+n(x-1),$ így $(1+h)^n\geq 1+nh$.

Megjegyezzük, hogy ez az eset teljes indukcióval is belátható.

• Ha n = 1, akkor

$$(1+h)^1 = 1+h = 1+1 \cdot h$$
. \checkmark

• Ha valamely $n \in \mathbb{N}$ esetén

$$(*) (1+h)^n \ge 1 + nh,$$

akkor

$$\begin{aligned} &(1+h)^{n+1} &= & (1+h)^n \cdot (1+h) \overset{(*), \, 1+h \ge 0}{\ge} (1+nh) \cdot (1+h) = 1+h+nh+nh^2 = \\ &= & 1+(n+1)h+nh^2 \overset{nh^2 \ge 0}{\ge} 1+(n+1)h. \quad \checkmark \end{aligned}$$

4. lépés. A

$$h = 0$$
 vagy $n = 1$

esetben nyilván teljesül az egyenlőség. Tegyük fel, hogy alkalmas $2 \le n \in \mathbb{N}$ esetén

$$(1+h)^n = 1 + nh.$$

Ekkor h = 0, ugyanis ismét az

$$a^{n} - b^{n} = (a - b) (a^{n-1} + a^{n-2}b + \ldots + ab^{n-2} + b^{n-1})$$
 $(a, b \in \mathbb{R}, n \in \mathbb{N})$

azonosságot felhasználva azt kapjuk, hogy

$$(1+h)^n = 1 + nh \quad \Longleftrightarrow \quad (1+h)^n - 1^n = nh \quad \Longleftrightarrow \quad h \cdot \sum_{k=1}^n (1+h)^{n-k} = h \cdot n$$

miatt sem h > 0 sem pedig h < 0 nem lehetséges, mert különben

$$\sum_{k=1}^{n} (1+h)^{n-k} > n, \quad \text{ill.} \quad 0 \le \sum_{k=1}^{n} (1+h)^{n-k} < n$$

teljesülne, ami nyilvánvalóan nem igaz.

Megjegyzések.

- 1. A Bernoulli-egyenlőtlenségről Jakob Bernoulli egy könyvéből latinul (1670), és Isaac Barrow-tól angolul (1669) olvashatunk.
- 2. Megmutatható, hogy a h < -2 esetben már nem igaz az egyenlőtlenség.
- 3. Alkalmazás: az

$$f(x) := (1 + x)^n$$
 $(-2 < x \in \mathbb{R}; n \in \mathbb{N})$

függvény grafikonja nem megy a 0-beli érintője alá, ui.

$$y = f(0) + f'(0)(x - 0) = 1 + n(1 + 0)^{n-1}x = 1 + nx < (1 + x)^n = f(x).$$

Definíció. Adott $n \in \mathbb{N}$ esetén

1. az $x_1,\ldots,x_n\in\mathbb{R}$ számok **számtani** vagy **aritmetikai közep**ét az alábbi módon értelmezzük:

$$A_n := \frac{x_1 + \ldots + x_n}{n} = \frac{1}{n} \sum_{k=1}^n x_k;$$

2. az $x_1, \ldots, x_n \in \mathbb{R}$ számok **négyzetes** vagy **kvadratikus közep**ét így értelmezzük:

$$Q_n := \sqrt{\frac{x_1^2 + \ldots + x_n^2}{n}} = \sqrt{\frac{1}{n} \sum_{k=1}^n x_k^2};$$

3. a $0 \le x_1, \dots, x_n \in \mathbb{R}$ számok **mértani** vagy **geometriai közep**t az alábbi módon értelmezzük:

$$G_n := \sqrt[n]{x_1 \cdot \ldots \cdot x_n} = \sqrt[n]{\prod_{k=1}^n x_k};$$

4. a $0 < x_1, \dots, x_n \in \mathbb{R}$ számok **harmonikus közep**t így értelmezzük:

$$H_n := \frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} = \frac{n}{\sum_{k=1}^n \frac{1}{x_k}}.$$

Megjegyezzük, hogy

- 1. a fenti definícióban a közép elnevezés jogos, hiszen egyszerű becsléssel belátható, hogy ha $n \in \mathbb{N}$ és
 - (a) $x_1, \ldots, x_n \in \mathbb{R}$, akkor

$$\min\{x_1,\ldots,x_n\} \leq A_n \leq \max\{x_1,\ldots,x_n\};$$

(b) $0 \le x_1, \dots, x_n \in \mathbb{R}$, akkor

$$\min\{x_1,\ldots,x_n\} \leq Q_n \leq \max\{x_1,\ldots,x_n\};$$

(c) $0 \le x_1, \ldots, x_n \in \mathbb{R}$, akkor

$$\min\{x_1,\ldots,x_n\} \leq G_n \leq \max\{x_1,\ldots,x_n\};$$

(d) $0 < x_1, \dots, x_n \in \mathbb{R}$, akkor

$$\min\{x_1,\ldots,x_n\} \leq H_n \leq \max\{x_1,\ldots,x_n\}.$$

2. $0 < x_1, \dots, x_n \in \mathbb{R}$, akkor igaz a

$$H_n \leq G_n \leq A_n \quad \Leftrightarrow \quad H_n^n \leq G_n^n \leq A_n^n \quad \Leftrightarrow \quad \left(\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}}\right)^n \leq x_1 \cdot \ldots \cdot x_n \leq \left(\frac{x_1 + \ldots + x_n}{n}\right)^n$$

ekvivalencia-lánc.

Tétel (a mértani közép és a számtani közép közötti egyenlőtlenség).

Bármely $n \in \mathbb{N}$, ill. $0 \le x_1, \dots, x_n \in \mathbb{R}$ esetén

$$\boxed{G_n = \sqrt[n]{\prod_{k=1}^n x_k} = \sqrt[n]{x_1 \cdot \ldots \cdot x_n} \leq \frac{x_1 + \ldots + x_n}{n} = \boxed{\frac{1}{n} \sum_{k=1}^n x_k = A_n},}$$

és egyenlőség pontosan az $x_1 = \dots = x_n$ esetben teljesül.

Bizonyítás. Több lépésben bizonyítunk.

0. lépés. Ha n=1, akkor az egyenlőtlenség nyilvánvalóan teljesül, sőt egyenlőség van. Ha pedig n=2, akkor

$$\sqrt{x_1x_2} \le \frac{x_1 + x_2}{2} \qquad \Longleftrightarrow \qquad 0 \le \left(\frac{x_1 + x_2}{2}\right)^2 - x_1x_2 = \frac{x_1^2 - 2x_1x_2 + x_2^2}{4} = \left(\frac{x_1 - x_2}{2}\right)^2,$$

és egyenlőség pontosan az $x_1 = x_2$ esetben áll fenn.

1. lépés. Legyen $2 \le n \in \mathbb{N}$. Ha valamely $k \in \{1, \dots, n\}$ esetén $x_k = 0$, akkor az egyenlőtlenség triviálisan teljesül. Tegyük fel tehát, hogy bármely $k \in \{1, \dots, n\}$ esetén $x_k > 0$. Mivel

$$\frac{A_n}{A_{n-1}} > 0$$
, azaz $\frac{A_n}{A_{n-1}} - 1 > -1$,

ezért alkalmazható a Bernoulli-egyenlőtlenség:

$$\left(\frac{A_{n}}{A_{n-1}}\right)^{n} = \left(1 + \underbrace{\frac{A_{n}}{A_{n-1}} - 1}_{:=h}\right)^{n} \ge 1 + n\left(\frac{A_{n}}{A_{n-1}} - 1\right) = \frac{A_{n-1} + nA_{n} - nA_{n-1}}{A_{n-1}} = \frac{nA_{n} - (n-1)A_{n-1}}{A_{n-1}} = \frac{x_{n}}{A_{n-1}},$$

azaz

$$A_n^n \geq x_n \cdot A_{n-1}^{n-1}$$
.

Így

$$A_n^n \ge x_n \cdot A_{n-1}^{n-1} \ge x_n \cdot x_{n-1} \cdot A_{n-2}^{n-2} \ge \ldots \ge x_n \cdot x_{n-1} \cdot \ldots \cdot x_2 \cdot A_1^1 = x_n \cdot x_{n-1} \cdot \ldots \cdot x_2 \cdot x_1 = G_n^n.$$

2. lépés. Nyilvánvaló, hogy ha $x_1 = \ldots = x_n$, akkor $A_n = G_n$. Ha $2 \le n \in \mathbb{N}$ és bizonyos $0 \le x_1, \ldots, x_n \in \mathbb{R}$ esetén fennáll az $A_n = G_n$ egyenlőség, továbbá az x_1, \ldots, x_n számok nem mind egyenlők egymással, azaz van közöttük legalább két különböző:

$$\exists i, j \in \{1, \ldots, n\}: \quad x_i \neq x_j,$$

akkor az 1. lépésben belátottak alapján

$$\sqrt{x_ix_j} < \frac{x_i + x_j}{2}, \qquad \text{azaz} \qquad x_ix_j < \left(\frac{x_i + x_j}{2}\right)^2 = \frac{x_i + x_j}{2} \cdot \frac{x_i + x_j}{2}.$$

Ezért

$$G_n = \sqrt[n]{\prod_{k=1}^n x_k} \sqrt[n]{\frac{x_i + x_j}{2} \cdot \frac{x_i + x_j}{2} \prod_{\substack{k=1 \\ k \notin \{i,j\}}}^n x_k} \le$$

$$\leq \frac{1}{n} \left(\frac{x_i + x_j}{2} + \frac{x_i + x_j}{2} + \sum_{\substack{k=1 \ k \notin \{i,j\}}}^{n} x_k \right) = \frac{1}{n} \sum_{k=1}^{n} x_k = A_n,$$

ami ellentmond az $A_n = G_n$ feltételnek.

Tétel (a harmonikus közép és a mértani közép közötti egyenlőtlenség).

Tetszőleges $n \in \mathbb{N}$, ill. $0 < x_1, \ldots, x_n \in \mathbb{R}$ esetén

$$\boxed{G_n = \sqrt[n]{\prod_{k=1}^n x_k}} = \sqrt[n]{x_1 \cdot \ldots \cdot x_n} \ge \frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} = \boxed{\frac{n}{\sum_{k=1}^n \frac{1}{x_k}}} = H_n},$$

és egyenlőség pontosan az $x_1 = \ldots = x_n$ esetben van.

Bizonyítás. A mértani közép és a számtani közép közötti egyenlőtlenséget felhasználásával azt kapjuk, hogy

$$H_n^n = \left(\frac{n}{\sum_{k=1}^n \frac{1}{x_k}}\right)^n = \left(\frac{1}{\frac{1}{n}\sum_{k=1}^n \frac{1}{x_k}}\right)^n = \frac{1}{\left(\frac{1}{n}\sum_{k=1}^n \frac{1}{x_k}\right)^n} \le \frac{1}{\prod_{k=1}^n \frac{1}{x_k}} = \prod_{k=1}^n x_k = G_n^n,$$

és egyenlőség pontosan akkor van, ha $\frac{1}{x_1}=\ldots=\frac{1}{x_n}$, azaz ha $x_1=\ldots=x_n$ teljesül.

Megjegyzés. A

• Ha $2 \le n \in \mathbb{N}$ és az $x_1, \dots, x_n \in [0, +\infty)$ számok nem mind egyenlők egymással, akkor

$$G_n < A_n,$$
 azaz $\sqrt[n]{x_1 \cdot \ldots \cdot x_n} < \frac{x_1 + \ldots + x_n}{n},$

• Ha $2 \le n \in \mathbb{N}$ és az $x_1, \ldots, x_n \in (0, +\infty)$ számok nem mind egyenlők egymással, akkor

$$H_n < G_n, \qquad \text{azaz} \qquad \frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} < \sqrt[n]{x_1 \cdot \ldots \cdot x_n}.$$

Tétel. (Cauchy-Bunyakovszkij-egyenlőtlenség). Bármely $n \in \mathbb{N}, x_k, y_k \in \mathbb{R}$ $(k \in \{1, \dots, n\})$ esetén

$$\left| \sum_{k=1}^{n} x_k y_k \right| \le \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2}, \tag{12}$$

és egyenlőség pontosan akkor van, ha alkalmas $\mu \in \mathbb{R}$ számmal

$$y_k = \mu x_k \quad (k \in \{1, \dots, n\}) \qquad \text{vagy} \qquad x_k = \mu y_k \quad (k \in \{1, \dots, n\}).$$

Bizonyítás.

1. lépés. Legyen

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(\lambda) := \sum_{k=1}^{n} (\lambda x_k - y_k)^2.$$

Ekkor minden $\lambda \in \mathbb{R}$ esetén $f(\lambda) \geq 0$, továbbá

$$f(\lambda) = \sum_{k=1}^{n} \left\{ \lambda^2 x_k^2 - 2\lambda x_k y_k + y_k^2 \right\} = \left(\sum_{k=1}^{n} x_k^2 \right) \lambda^2 - 2 \left(\sum_{k=1}^{n} x_k y_k \right) \lambda + \sum_{k=1}^{n} y_k^2.$$

Ha
$$\sum_{k=1}^{n} x_k^2 = 0$$
, azaz

$$x_k=0 \qquad (k\in\{1,\ldots,n\}),$$

akkor az állítás nyilvánvalóan igaz. Ha $\sum_{k=1}^{n} x_k^2 > 0$, akkor f olyan másodfokú polinom, amely csak nemnegatív értékeket vesz fel, így diszkriminánsa nempozitív:

$$4\left(\sum_{k=1}^{n} x_k y_k\right)^2 - 4\left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right) \le 0,$$

amiből a

$$\sqrt{x^2} = |x| \qquad (x \in \mathbb{R})$$

azonosság felhasználásával kapjuk a bizonyítandó egyenlőtlenséget.

2. lépés. Ha van olyan $\mu \in \mathbb{R}$, amellyel

$$y_k = \mu x_k \quad (k \in \{1, \dots, n\}) \qquad \text{vagy} \qquad x_k = \mu y_k \quad (k \in \{1, \dots, n\}),$$

akkor

$$\left| \sum_{k=1}^{n} x_k y_k \right| = \left| \mu \sum_{k=1}^{n} x_k^2 \right| = |\mu| \sum_{k=1}^{n} x_k^2, \qquad \sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} y_k^2} = |\mu| \sum_{k=1}^{n} x_k^2$$

vagy

$$\left| \sum_{k=1}^n x_k y_k \right| = \left| \mu \sum_{k=1}^n y_k^2 \right| = |\mu| \sum_{k=1}^n y_k^2, \qquad \qquad \sqrt{\sum_{k=1}^n x_k^2} \sqrt{\sum_{k=1}^n y_k^2} = |\mu| \sum_{k=1}^n y_k^2,$$

azaz egyenlőség van. Tegyük fel, hogy (12)-ben egyenlőség van. Ha $x_1=\ldots=x_n=0$, akkor az

$$x_1 = \mu y_1, \quad x_2 = \mu y_2, \quad \dots, \quad x_n = \mu y_n$$

egyenlőségek a $\mu := 0$ számmal teljesülnek. Ha az x_1, \dots, x_n számok nem mindegyike 0:

$$x_1^2 + \ldots + x_n^2 > 0$$
,

akkor az f másodfokú polinomnak – lévén, hogy diszkriminánsa nulla – pontosan egy valós gyöke van, azaz pontosan $\mu \in \mathbb{R}$ szám van, amelyre

$$0 = f(\mu) = \sum_{k=1}^{n} (\mu x_k - y_k)^2.$$

Ez pedig csak úgy lehetséges, ha bármely $k \in \{1, ..., n\}$ esetén

$$(\mu x_k - y_k)^2 = 0 \qquad \Longleftrightarrow \qquad \mu x_k - y_k = 0 \qquad \Longleftrightarrow \qquad y_k = \mu x_k.$$

Tétel (Minkowszki-egyenlőtlenség). Ha $n \in \mathbb{N}$, ill. $x_1, \ldots, x_n \in \mathbb{R}$ és $y_1, \ldots, y_n \in \mathbb{R}$, akkor

$$\sqrt{\sum_{k=1}^{n} (x_k + y_k)^2} \le \sqrt{\sum_{k=1}^{n} x_k^2} + \sqrt{\sum_{k=1}^{n} y_k^2},$$

és egyenlőség pontosan akkor van, ha alkalmas $\mu \in \mathbb{R}$ számmal

$$y_k = \mu x_k \quad (k \in \{1, \dots, n\}) \qquad \text{vagy} \qquad x_k = \mu y_k \quad (k \in \{1, \dots, n\}).$$

Bizonyítás. A Cauchy-Bunyakovszkij-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\begin{split} \sum_{k=1}^{n} (x_k + y_k)^2 &= \sum_{k=1}^{n} \left(x_k^2 + 2x_k y_k + y_k^2 \right) = \sum_{k=1}^{n} x_k^2 + 2 \sum_{k=1}^{n} x_k y_k + \sum_{k=1}^{n} y_k^2 \leq \\ &\leq \sum_{k=1}^{n} x_k^2 + 2 \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2} + \sum_{k=1}^{n} y_k^2 = \left(\sqrt{\sum_{k=1}^{n} x_k^2} + \sqrt{\sum_{k=1}^{n} y_k^2} \right)^2. \end{split}$$

Mindkét oldalból gyököt vonva a bizonyítandó egyenlőtlenséget kapjuk. Az egyenlőségre vonatkozó állítás ugyanúgy látató be, mint a Cauchy-Bunyakovszkij-egyenlőtlenség esetében.

Tétel (négyzetes és a számtani közép közötti egyenlőtlenség). Ha $n \in \mathbb{N}$, ill. $x_1, \ldots, x_n \in \mathbb{R}$, akkor

$$\frac{1}{n}\sum_{k=1}^n x_k \leq \sqrt{\frac{1}{n}\sum_{k=1}^n x_k^2}, \qquad \text{azaz} \qquad \frac{x_1+\ldots+x_n}{n} \leq \sqrt{\frac{x_1^2+\ldots+x_n^2}{n}},$$

és egyenlőség pontosan akkor van, ha $0 \le x_1 = \ldots = x_n$.

Bizonyítás. Legyen

$$y_k := \frac{1}{n} \qquad (k \in \{1, \dots, n\}),$$

és alkalmazzuk a Cauchy-Bunyakovszij-egyenlőtlenséget:

$$\begin{split} \frac{1}{n} \sum_{k=1}^{n} x_k &= \sum_{k=1}^{n} x_k y_k \leq \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} y_k^2} = \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\sum_{k=1}^{n} \frac{1}{n^2}} = \sqrt{\sum_{k=1}^{n} x_k^2} \cdot \sqrt{\frac{n}{n^2}} = \\ &= \sqrt{\sum_{k=1}^{n} x_k^2}. \end{split}$$

Emlékeztető.

Ha ∅ ≠ A, B, akkor az A halmazból a B halmazba leképező függvényt úgy adunk meg, hogy
 A bizonyos elemeihez hozzárendeljük a B valamelyik elemét. Jelölés: f ∈ A → B. Például

$$\sqrt{\mathbf{n}} \in \mathbb{R} \to \mathbb{R}, \quad \sin \in \mathbb{R} \to \mathbb{R}.$$

• Az f függvény értelmezési tartományán, ill. értékkészletén: a

$$\mathcal{D}_f := \{ x \in A : \exists y \in B : y = f(x) \}, \quad \text{ill. az} \quad \mathcal{R}_f := \{ y \in B : \exists x \in A : y = f(x) \}$$

halmazt értjük. B neve: **képhalmaz**. Ha $\mathcal{D}_f = A$, akkor azt írjuk, hogy $f : A \to B$. Valamely $x \in \mathcal{D}_f$ esetén az f(x) elemet az f függvény x helyen felvett **helyettesítési érték**ének nevezzük.

• Ha f és g függvény, akkor

$$f = g$$
 : \iff $(\mathcal{D}_f = \mathcal{D}_g =: \mathcal{D}$ és $f(x) = g(x)$ $(x \in \mathcal{D})$.

Példa.

$$\mathcal{D}_{1/2} = [0, +\infty), \qquad \mathcal{R}_{1/2} = [0, +\infty), \qquad \mathcal{D}_{\sin} = \mathbb{R}, \qquad \mathcal{R}_{\sin} = [-1, 1].$$

Megjegyezzük, hogy

 $f \in A \to B$: \iff f olyan függvény, amelyre $\mathcal{D}_f \subset A$, $\mathcal{R}_f \subset B$;

 $f:A\to B$: \iff f olyan függvény, amelyre $\mathcal{D}_f=A,\ \mathcal{R}_f\subset B.$

Definíció. Legyen A, B, C halmaz, C \subset A, továbbá f: A \to B és g: C \to B olyan függvények, amelyekre

$$f(x) = g(x) \qquad (x \in C).$$

Ekkor azt mondjuk, hogy a g függvény az f függvény C halmazra való **leszűkítés**e. Jelben: $g =: f|_{C}$.

Definíció. Valamely $f \in A \rightarrow B$ függvény

• és $\mathcal{H} \subset A$ halmaz esetén a \mathcal{H} halmaz f által létesített **kép**én az

$$f[\mathcal{H}] := \{f(x) \in B : x \in \mathcal{H}\} = \{y \in B \mid \exists x \in \mathcal{H} : y = f(x)\}\$$

halmazt értettük (speciálisan $f[\emptyset] := \emptyset$).

ullet és ${\cal H}\subset {\sf B}$ halmaz esetén a ${\cal H}$ halmaz f által létesített **őskép**én az

$$f^{-1}[\mathcal{H}] := \{ x \in \mathcal{D}_f : \ f(x) \in \mathcal{H} \}$$

halmazt értettük (speciálisan $f^{-1}[\emptyset] := \emptyset$).

Megjegyezések.

- 1. Szóhasználat:
 - $f[\mathcal{H}]$ az a B-beli halmaz, amelyet az f(x) függvényértékek "befutnak", ha x "befutja" a \mathcal{H} halmaz elemeit;
 - az $f[\mathcal{H}]$ a B azon y elemeit tartalmazza, amelyekhez van olyan $x \in \mathcal{H}$, hogy y = f(x).
- 2. Az f függvény értékkészlete értelmezási tartománynak f által létesített képe és f értelmezési tartományna az értékkészletének f által létesített ősképe:

$$f[\mathcal{D}_f] = \mathcal{R}_f \qquad \text{\'es} \qquad f^{-1}[\mathcal{R}_f] = \mathcal{D}_f.$$

3. Adott $f \in A \rightarrow B$ függvény és $b \in B$ esetén az

$$f(x) = b \quad (x \in A) \tag{13}$$

egyenlet megoldásainak nevezzük az f⁻¹ [{b}] halmaz elemeit. Azt mondjuk továbbá, hogy

- a (13) egyenletnek nincsen megoldása ((13) nem oldható meg), ha $f^{-1}[\{b\}] = \emptyset$;
- (13) megoldása egyértelmű, ha f⁻¹ [{b}] egyelemű halmaz.

Példa. Meghatározzuk a $\mathcal{H} := [1, 2]$ halmaz

$$f(x) := x^2 \qquad (x \in \mathbb{R})$$

függvény által létesített képét. Az ábrából sejthető, hogy

$$f[1,2] = [1,4].$$

Biz. A definíció alapján

$$f\big[[1,2]\big] = \big\{ x^2 \in \mathbb{R} \mid 1 \le x \le 2 \big\} = \big\{ y \in \mathbb{R} \mid \exists x \in [1,2] : y = x^2 \big\}.$$

Azt kell tehát meghatározni, hogy x^2 milyen értékek vesz fel, ha x "befutja" az [1,2] intervallum pontjait. Mivel

$$1 \le x \le 2$$
 \Longrightarrow $1 \le x^2 \le 4$, azaz $x^2 \in [1,4]$,

ezért

$$f[[1,2]] \subset [1,4].$$
 (14)

A kérdés ezek után az, hogy az x^2 függvényértékek vajon teljesen "befutják-e" az egész [1,4] intervallumot, ha x "befutja" az [1,2] intervallum pontjait, vagyis igaz-e a fordított irányú

$$[1,4] \subset f[[1,2]]$$
 (15)

tartalmazás is. Az előzőek alapján ez azzal egyenértékű, hogy

$$\forall y \in [1, 4] \text{ számhoz } \exists x \in [1, 2]: \quad \text{hogy} \quad y = x^2.$$
 (16)

Ennek az egyenletnek a megoldása $x_{\pm} = \pm \sqrt{y}$. Mivel $1 \le y \le 4$, ezért $1 \le \sqrt{y} \le 2$, így $x_{+} \in [1, 2]$. Ez pedig azt jelenti, hogy a (16) állítás, tehát a vele egyenértékű (15) tartalmazás is igaz. (14) és (15) alapján a két halmaz egyenlő, azaz f[1, 2] = [1, 4].

Példa. Meghatározzuk a $\mathcal{H} := [1, 4]$ halmaz

$$f(x) := x^2 \qquad (x \in \mathbb{R})$$

függvény által létesített ősképét. Az ábrából sejthető, hogy $f^{-1}[[1,4]] = [-2,-1] \cup [1,2]$.

Biz. A definíció alapján

 $f^{-1}[[1,4]] = \{x \in \mathbb{R} \mid x^2 \in [1,4]\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 4\}.$

Így

 $f^{-1}\big\lceil [1,4] \big\rceil$ az $1 \leq x^2 \leq 4$ egyenlőtlenségrendszer megoldáshalmaza. Mivel

$$1 \le x^2 \le 4$$
 \iff $1 \le |x| \le 2$ \iff $1 \le x \le 2$ vagy $-2 \le x \le -1$ \iff $x \in [-2, -1] \cup [1, 2],$

ezért beláttuk azt, hogy

$$f^{-1}[[1,4]] = [-2,-1] \cup [1,2].$$

Példa. Az

$$f(x) := 3 + 2x - x^2 \qquad (x \in \mathbb{R})$$

függvény és a $\mathcal{H}:=\{0\}$ halmaz esetében meghatározzuk az $f[\mathcal{H}]$ és az $f^{-1}[\mathcal{H}]$ halmazt. Mivel $0\in\mathcal{D}_f=\mathbb{R}$, ezért

$$f[\{0\}] = \left\{3 + 2x - x^2 \in \mathbb{R} : x \in \{0\}\right\} = \left\{3 + 2x - x^2 \in \mathbb{R} : x = 0\right\} = \{3\},$$

továbbá

$$f^{-1}[\{0\}] = \left\{x \in \mathbb{R}: \ 3 + 2x - x^2 \in \{0\}\right\} = \left\{x \in \mathbb{R}: \ 3 + 2x - x^2 = 0\right\} = \{-1; 3\},$$

hiszen

$$3 + 2x - x^2 = 0 \qquad \Longleftrightarrow \qquad x = 1 \pm \sqrt{1 + 3}. \quad \blacksquare$$

1. ábra. Az $\mathbb{R} \ni x \mapsto 3 + 2x - x^2$ függvény grafikonja.

A gyakorlat anyaga

Feladat. Vizsgáljuk a \mathcal{H} halmazt korlátosság, sup \mathcal{H} , inf \mathcal{H} , max \mathcal{H} , min \mathcal{H} szempontjából!

1.
$$\mathcal{H} := \left\{ \frac{1}{x} \in \mathbb{R} : x \in (0, 1] \right\}$$

$$1. \ \mathcal{H}:=\left\{\frac{1}{x}\in\mathbb{R}: \ x\in(0,1]\right\}; \qquad 2. \ \mathcal{H}:=\left\{\frac{5n+3}{8n+1}\in\mathbb{R}: \ n\in\mathbb{N}_0\right\};$$

$$3. \ \mathcal{H}:=\left\{\frac{x+1}{2x+3}\in\mathbb{R}:\ 0\leq x\in\mathbb{R}\right\}; \ \ 4. \ \ \mathcal{H}:=\left\{\sqrt{x+1}-\sqrt{x}\in\mathbb{R}:\ 0\leq x\in\mathbb{R}\right\};$$

5.
$$\mathcal{H}:=\left\{\frac{2x^2+1}{5x^2+2}\in\mathbb{R}:\ x\in\mathbb{R}\right\}.$$

Útm.

• \mathcal{H} alulról korlátos, ugyanis 0 nyilván alsó korlátja \mathcal{H} -nak, sőt minden $x \in (0, 1]$ esetén 1.

$$\frac{1}{x} \ge \frac{1}{1} = 1,$$

ezért 1 is alsó korlátja \mathcal{H} -nak. Mivel x = 1 esetén

$$\frac{1}{x} = \frac{1}{1} = 1 \in \mathcal{H},$$

ezért *H*-nak van legkisebb eleme (minimuma):

$$\min \mathcal{H} = 1$$
, igy $\inf \mathcal{H} = \min \mathcal{H} = 1$.

• Ha x elég közel van 0-hoz, akkor $\frac{1}{2}$ értéke igen nagy. Így sejthető, hogy a \mathcal{H} halmaz felülről nem korlátos. Ennek megmutatásához azt kell belátni, hogy

$$\forall K \in \mathbb{R}$$
-hoz $\exists x \in (0,1]$: $\frac{1}{x} > K$.

Legyen K > 0 tetszőlegesen rögzített szám. Ekkor

$$\frac{1}{x} > K$$
, ha $0 < x < \frac{1}{K}$.

Így pl. az x := $\frac{1}{K+1}$ < 1 megfelelő, ami azt mutatja, hogy a ${\cal H}$ halmaz felülről nem korlátos.

Megjegyzés. A kapott eredmények az $\frac{1}{x}$ (x > 0) függvény grafikonjáról is leolvashatók:

2. A \mathcal{H} halmaz szerkezetének feltárásához először az

$$\frac{5n+3}{8n+1}$$

törtet a gyakorlat elején leírt módon átalakítjuk. Világos, hogy bármely $n \in \mathbb{N}_0$ esetén

$$\frac{5n+3}{8n+1} = \frac{5}{8} \cdot \frac{n+\frac{3}{5}}{n+\frac{1}{8}} = \frac{5}{8} \cdot \frac{n+\frac{1}{8}+\frac{3}{5}-\frac{1}{8}}{n+\frac{1}{8}} = \frac{5}{8} + \frac{5}{8} \cdot \frac{19}{40} \cdot \frac{1}{n+\frac{1}{8}} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} > \frac{5}{8}$$

vagy

$$\frac{5n+3}{8n+1} = \frac{5}{8} \cdot \frac{40n+24}{40n+5} = \frac{5}{8} \cdot \frac{40n+5+19}{40n+5} = \frac{5}{8} \cdot \left(1 + \frac{19}{40n+5}\right) =$$
$$= \frac{5}{8} + \frac{5}{8} \cdot \frac{19}{40n+5} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} > \frac{5}{8}.$$

• Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\frac{5n+3}{8n+1} = \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8n+1} \le \frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8 \cdot 0 + 1} = 3,$$

ezért

$$\max \mathcal{H} = \sup \mathcal{H} = 3,$$

ui. 3 felső korlát és $3 \in \mathcal{H}$.

• inf $\mathcal{H}=\frac{5}{8},$ ui. $\frac{5}{8}$ alsó korlát és minden $\epsilon>0$ -hoz van olyan $N\in\mathbb{N}_0,$ hogy

$$\frac{5}{8} + \frac{19}{8} \cdot \frac{1}{8N+1} < \frac{5}{8} + \varepsilon \qquad \iff \qquad N > \frac{1}{8} \left(\frac{19}{8\varepsilon} - 1 \right)$$

és

$$N := \max \left\{ 0, \left\lceil \left(\frac{19}{8\epsilon} - 1 \right) \frac{1}{8} \right\rceil + 1 \right\}$$

ilyen. Világos, hogy ∄ min H, mivel

$$\forall \alpha \in \mathcal{H}: \quad \alpha > \inf \mathcal{H} = \frac{5}{8}.$$

3. A ${\cal H}$ halmaz szerkezetének feltárásához először az

$$\frac{x+1}{2x+3}$$

törtet a gyakorlat elején leírt módon átalakítjuk. Világos, hogy bármely $0 \le x \in \mathbb{R}$ esetén

$$\frac{x+1}{2x+3} = \frac{1}{2} \cdot \frac{2x+2}{2x+3} = \frac{1}{2} \cdot \frac{2x+3-1}{2x+3} = \frac{1}{2} \cdot \left(1 - \frac{1}{2x+3}\right) = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3} \tag{17}$$

• Mivel bármely $0 \le x \in \mathbb{R}$ esetén

$$\frac{x+1}{2x+3} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2x+3} \ge \frac{1}{2} - \frac{1}{4 \cdot 0 + 6} = \frac{1}{2} - \frac{1}{6} = \frac{1}{3},$$

ezért inf $\mathcal{H}=\min\mathcal{H}=\frac{1}{3},$ ui. $\frac{1}{3}$ alsó korlát és $\frac{1}{3}\in\mathcal{H}.$

• Látható, hogy $\frac{1}{2}$ felső korlát. Belátjuk, hogy sup $\mathcal{H} = \frac{1}{2}$. Ehhez azt kell megmutatni, hogy

$$\forall \, \varepsilon > 0 \, \exists \, x \ge 0 : \quad \frac{1}{2} - \frac{1}{4x + 6} > \frac{1}{2} - \varepsilon.$$

Ez azzal egyenértékű, hogy $\frac{1}{4x+6} < \epsilon$, azaz hogy $\frac{1}{\epsilon} - 6 < 4x$. Ilyen $x \ge 0$ nyilván létezik. Mivel $\frac{1}{2} \notin \mathcal{H}$, ezért $\nexists \max \mathcal{H}$.

Megjegyzés. Függvénytranszformációval az

$$\frac{1}{x} \qquad (0 \neq x \in \mathbb{R})$$

függvény grafikonjából a (17) azonosság felhasználásával ábrázolhatjuk az

$$\frac{x+1}{2x+3} \qquad \left(-\frac{3}{2} \neq x \in \mathbb{R}\right)$$

függvény grafikonját. A kapott eredmények arról is leolvashatók:

4. A nevező "gyöktelenítésével" azt kapjuk, hogy bármely $0 \le x \in \mathbb{R}$ esetén

$$\sqrt{x+1} - \sqrt{x} = \left(\sqrt{x+1} - \sqrt{x}\right) \cdot \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}.$$
 (18)

 \bullet Látható, hogy ${\cal H}$ korlátos halmaz, hiszen 0 triviális alsó korlát, továbbá

$$\sqrt{x+1} + \sqrt{x} \ge 1$$
 $(0 \le x \in \mathbb{R})$

következtében

$$0 \le \sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}} \le 1 \qquad (0 \le x \in \mathbb{R}).$$

• A (18) egyenlőtlenség jobb oldali egyenlőtlenségében x = 0 esetén egyenlőség áll fenn, ami azt jelenti, hogy

$$\max \mathcal{H} = 1$$
, ezért $\sup \mathcal{H} = \max \mathcal{H} = 1$ is fennáll.

- Az inf \mathcal{H} , illetve a min \mathcal{H} meghatározásához tekintsük a (18) formula jobb oldalát. Nagy x-ekre a tört nevezője nagy, a tört értéke tehát kicsi, sőt elég nagy x-ekre a tört értéke tetszőlegesen közel lesz 0-hoz. Sejthető tehát, hogy inf $\mathcal{H} = 0$. **Biz.**
 - **1. lépés.** Láttuk, hogy 0 egy alsó korlátja \mathcal{H} -nak. \checkmark
 - **2. lépés.** Megmutatjuk, hogy 0-nél nincsen nagyobb alsó korlátja \mathcal{H} -nak, azaz

$$\forall \varepsilon > 0 \text{-hoz } \exists x \ge 0: \quad \mathcal{H} \ni \sqrt{x+1} - \sqrt{x} < \varepsilon.$$
 (19)

Mivel

$$0<\sqrt{x+1}-\sqrt{x}=\frac{1}{\sqrt{x+1}+\sqrt{x}}<\ (x>0\ \text{feltehető})\ <\frac{1}{\sqrt{x}}<\epsilon,\quad \text{ha } x>\frac{1}{\epsilon^2},$$

így a (19) állítás teljesül tetszőleges $x > \frac{1}{\varepsilon^2}$ számra. Ez azt jelenti, hogy 0 valóban a legnagyobb alsó korlátja a \mathcal{H} halmaznak.

5. A \mathcal{H} halmaz szerkezetének feltárásához először az

$$\frac{2x^2 + 1}{5x^2 + 2}$$

törtet a gyakorlat elején leírt módon átalakítjuk. Világos, hogy bármely $x \in \mathbb{R}$ esetén

$$\frac{2x^2+1}{5x^2+2} = \frac{2}{5} \cdot \frac{10x^2+5}{10x^2+4} = \frac{2}{5} \cdot \frac{10x^2+4+1}{10x^2+4} = \frac{2}{5} \cdot \left(1 + \frac{1}{10x^2+4}\right) = \frac{2}{5} + \frac{1}{25x^2+10}.$$

• Mivel tetszőleges $x \in \mathbb{R}$ esetén

$$\frac{2}{5} + \frac{1}{25x^2 + 10} \le \frac{2}{5} + \frac{1}{25 \cdot 0^2 + 10} = \frac{2}{5} + \frac{1}{10} = \frac{1}{2},$$

ezért

$$\sup \mathcal{H} = \max \mathcal{H} = \frac{1}{2}.$$

• Látható, hogy $\frac{2}{5}$ alsó korlát. Belátjuk, hogy inf $\mathcal{H} = \frac{2}{5}$. Ehhez azt kell megmutatni, hogy

$$\forall \, \varepsilon > 0 \, \exists \, x \in \mathbb{R} : \quad \frac{2}{5} + \varepsilon > \frac{2}{5} + \frac{1}{25x^2 + 10}.$$

Ez azzal egyenértékű, hogy

$$\epsilon > \frac{1}{25x^2 + 10}, \qquad \text{azaz hogy} \qquad 25x^2 + 10 > \frac{1}{\epsilon}.$$

Ilyen $x \in \mathbb{R}$ nyilván létezik, hiszen \mathbb{R} felülről nem korlátos. Mivel $\frac{2}{5} \notin \mathcal{H}$, ezért $\nexists \min \mathcal{H}$.

Házi feladat. Vizsgáljuk a \mathcal{H} halmazt korlátosság, sup \mathcal{H} , inf \mathcal{H} , max \mathcal{H} , min \mathcal{H} szempontjából!

1.
$$\mathcal{H}:=\left\{\frac{2x+3}{3x+1}\in\mathbb{R}:\ x\in\mathbb{Z}\right\};$$

$$2. \mathcal{H} := \left\{ \frac{5x-1}{2x+3} \in \mathbb{R} : x \in [3,+\infty) \right\}.$$

Útm.

1. A ${\cal H}$ halmaz szerkezetének feltárásához először az

$$\frac{2x+3}{3x+1}$$

törtet a gyakorlat elején leírt módon átalakítjuk. Világos, hogy bármely $x \in \mathbb{Z}$ esetén

$$\frac{2x+3}{3x+1} = \frac{2}{3} \cdot \frac{6x+9}{6x+2} = \frac{2}{3} \cdot \frac{6x+2+7}{6x+2} = \frac{2}{3} \cdot \left(1 + \frac{7}{6x+2}\right) =$$
$$= \frac{2}{3} + \frac{2}{3} \cdot \frac{7}{6x+2} = \frac{2}{3} + \frac{7}{3} \cdot \frac{1}{3x+1}.$$

• Ha x < 0, akkor $\frac{7}{3} \cdot \frac{1}{3x+1} < 0$, míg $x \ge 0$ esetén

$$0\leq \frac{7}{3}\cdot \frac{1}{3x+1}\leq \frac{7}{3}.$$

Ezért

$$\frac{2x+3}{3x+1} \le \frac{2}{3} + \frac{7}{3} = 3$$

és x = 0-ra

$$\frac{2x+3}{3x+1}=3$$
.

Tehát az \mathcal{H} halmaznak van maximuma és max $\mathcal{H}=3$, következésképpen sup $\mathcal{H}=3$.

• Ha x = -1, akkor

$$\frac{2x+3}{3x+1} = -\frac{1}{2}.$$

Lássuk be, hogy

$$\frac{2x+3}{3x+1} \ge -\frac{1}{2} \qquad (x \in \mathbb{Z})$$

teljesül. Ui. ez azzal egyenértékű, hogy

$$\frac{2x+3}{3x+1} + \frac{1}{2} = 7 \cdot \frac{x+1}{3x+1} \ge 0 \qquad (x \in \mathbb{Z}),$$

ami igaz. Tehát

$$\min \mathcal{H} = \inf \mathcal{H} = -1/2$$
.

2. A ${\mathcal H}$ halmaz szerkezetének feltárásához először az

$$\frac{5x-1}{2x+3}$$

törtet a gyakorlat elején leírt módon átalakítjuk. Világos, hogy bármely $3 \leq x \in \mathbb{Z}$ esetén

$$\frac{5x-1}{2x+3} = \frac{5}{2} \cdot \frac{10x-2}{10x+15} = \frac{5}{2} \cdot \frac{10x+15-17}{10x+15} = \frac{5}{2} \cdot \left(1 - \frac{17}{10x+15}\right) = \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x+3}.$$

• Mivel tetszőleges $3 \le x \in \mathbb{R}$ esetén

$$\frac{14}{9} = \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2 \cdot 3 + 3} \le \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x + 3},$$

ezért

$$\inf \mathcal{H} = \min \mathcal{H} = \frac{14}{9}.$$

• Látható, hogy $\frac{5}{2}$ felső korlát. Belátjuk, hogy sup $\mathcal{H}=\frac{5}{2}$. Ehhez azt kell megmutatni, hogy

$$\forall \, \varepsilon > 0 \, \exists \, x \in [3, +\infty): \quad \frac{5}{2} - \frac{17}{2} \cdot \frac{1}{2x+3} > \frac{5}{2} - \varepsilon.$$

Ez azzal egyenértékű, hogy

$$\frac{17}{2} \cdot \frac{1}{2x+3} < \varepsilon$$
, azaz hogy $\frac{17}{2\varepsilon} - 3 < 2x$.

Ilyen $x \in [3, +\infty)$ nyilván létezik, hiszen $[3, +\infty)$ felülrőlnem korlátos. Mivel $\frac{5}{2} \notin \mathcal{H}$, ezért $\nexists \max \mathcal{H}$.

3. oktatási hét

Az előadás anyaga

Definíció. Valamely $f \in A \rightarrow B$ függvény

• invertálható (injektív vagy egy-egyértelmű), ha

$$\forall x,y \in \mathcal{D}_f: (x \neq y) \implies f(x) \neq f(y)$$
.

Ekkor az

$$f^{-1}:\mathcal{R}_f\to\mathcal{D}_f,\quad f^{-1}(y)=x:\quad f(x)=y$$

függvényt f inverzének nevezzük.

- szürjektív, ha $\mathcal{R}_f = B$.
- bijektív vagy kölcsönösen egyértelmű, ha injektív és szürjektív.

Példa. Az ábrán látható

$$f := \{(a, j), (b, h), (c, i)\}$$

függvény invertálható, és inverze az

$$f^{-1} := \{(j, a), (h, b), (i, c)\}$$

függvény, de az $f : A \rightarrow B$ függvény nem bijektív.

Egy $f: A \to B$ bijektív leképezés párba állítja az A és B halmaz elemeit: a két halmaz elemszáma megegyezik. Ekkor azt mondjuk, hogy az A és B halmaz **azonos számosságú**.

A fenti ábra bal oldala példa injektív függvényre, a jobb oldalán lévő f pedig nem injektív.

Példa. Megmutatjuk, hogy az

$$f(x) := \frac{3x+2}{x-1} \qquad (1 \neq x \in \mathbb{R})$$

függvény injektív, majd kiszámítjuk inverzét. Mivel minden $1 \neq x \in \mathbb{R}$ számra

$$f(x) = 3 \cdot \frac{3x+2}{3x-3} = 3 \cdot \frac{3x-3+5}{3x-3} = 3 \cdot \left(1 + \frac{5}{3x-3}\right) = 3 + \frac{5}{x-1},$$
 (20)

ezért

$$f(x) = f(y) \qquad \Longleftrightarrow \qquad 3 + \frac{5}{x-1} = 3 + \frac{5}{y-1} \qquad \Longleftrightarrow \qquad x = y,$$

azaz f invertálható. Az inverz függvény meghatározásához f értékkészletét kell megállapítani. (20) alapján sejthető, hogy

$$\mathcal{R}_f = \mathbb{R} \setminus \{3\}$$
.

Biz.:

- Világos, hogy $3 \notin \mathcal{R}_f$, hiszen bármely $1 \neq x \in \mathbb{R}$ esetén $\frac{5}{x-1} \neq 0$, így (20) alapján $\mathcal{R}_f \subset \mathbb{R} \setminus \{3\}$.
- Most megmutatjuk, hogy $\mathcal{R}_f \supset \mathbb{R}\setminus \{3\}$, azaz bármely $y \in \mathbb{R}\setminus \{3\}$ esetén van olyan $x \in \mathcal{D}_f = \mathbb{R}\setminus \{1\}$, hogy f(x) = y. Valóban, ha $y \in \mathbb{R}\setminus \{3\}$, akkor

$$f(x) = y$$
 \iff $3 + \frac{5}{x - 1} = y$ \iff $x = 1 + \frac{5}{y - 3} = \frac{y + 2}{y - 3}$

és $x \neq 1$ miatt $x \in \mathcal{D}_f$.

Tehát

$$f^{-1}: \mathbb{R}\setminus \{3\} \to \mathbb{R}\setminus \{1\}, \qquad f^{-1}(y):=\frac{y+2}{y-3}.$$

Megjegyzések.

1. Valamely $f \in A \to B$ függvény esetében f invertálhatóságát több különböző módon is le lehet írni:

- f invertálható \iff $\forall u, v \in \mathcal{D}_f$ esetén $u \neq v \implies f(u) \neq f(v)$;
- f invertálható \iff $\forall u, v \in \mathcal{D}_f$ esetén $f(u) = f(v) \implies u = v$;
- f invertálható $\iff \forall y \in \mathcal{R}_f$ -hez pontosan egy olyan $x \in \mathcal{D}_f$ van, amelyre f(x) = y.
- 2. Ha alkamas $u, v \in \mathcal{D}_f$, $u \neq v$ esetén f(u) = f(v), akkor f nem invertálható (nem injektív).
- 3. Ha \mathcal{D}_f nem egyelemű, viszont \mathcal{R}_f egyelemű (valódi konstans függvény), akkor f nem invertálható, hiszen

$$\exists x,y \in \mathcal{D}_f,\, x \neq y: \quad f(x) = f(y).$$

4. A definícióból látható, hogy

$$\mathcal{D}_{f^{-1}} = \mathcal{R}_f$$
 és $\mathcal{R}_{f^{-1}} = \mathcal{D}_f$.

5. Felhívjuk a figyelmet egy, a jelölésekkel kapcsolatos látszólagos következetlenségre. Az $f^{-1}[\mathcal{H}]$ szimbólum tetszőleges f függvény esetén a \mathcal{H} halmaz f által létesített ősképét jelölte. Azonban, ha f invertálható függvény, akkor ugyanezzel jelöltük – a fogalmilag igencsak különböző dolgot, nevezetesen – a \mathcal{H} halmaz f^{-1} inverz függvény által létesített képét. Ez azért nem vezet félreértéshez – sőt némiképp egyszerűsíti a bevezetett jelelöléseket –, mert minden invertálható f függvény és minden $\mathcal{H} \subset \mathcal{R}_f$ esetén a \mathcal{H} halmaz f által létesített ősképe – azaz az $\{x \in \mathcal{D}_f : f(x) \in \mathcal{H}\}$ halmaz – megegyezik a \mathcal{H} halmaz f^{-1} inverz függvény által létesített képével – azaz az

$$\left\{f^{-1}(y)\in\mathcal{R}_{f^{-1}}:\,y\in\mathcal{H}\right\}$$

halmazzal.

Definíció. Legyen $f \in A \rightarrow B$, $g \in C \rightarrow D$, ill.

$$\mathcal{H} := \{ x \in \mathcal{D}_g : g(x) \in \mathcal{D}_f \} \neq \emptyset.$$

Ekkor az f (külső) és a g (belső) függvény **összetett függvény**nek (**kompozíció**jának) nevezzük az alábbi függvényt:

$$f \circ g : \mathcal{H} \to D$$
, $(f \circ g)(x) := f(g(x))$.

Megjegyzések.

- 1. A definícióból nyilvánvaló, hogy $\mathcal{D}_{f\circ g}=g^{-1}\left[\mathcal{R}_g\cap\mathcal{D}_f\right]$, illetve $\mathcal{R}_g\subset\mathcal{D}_f$ esetén $\mathcal{D}_{f\circ g}=\mathcal{D}_g$.
- 2. Ha f $\in \mathbb{R} \to \mathbb{R}$ invertálható függvény, akkor

$$\left(f^{-1}\circ f\right)(x)=x \qquad (x\in \mathcal{D}_f), \qquad \qquad \left(f\circ f^{-1}\right)(y)=y \qquad (y\in \mathcal{R}_f).$$

3. Ha f, $g \in \mathbb{R} \to \mathbb{R}$ olyan invertálható függvények, amelyekre $\mathcal{R}_g = \mathcal{D}_f$ és $\mathcal{R}_f = \mathcal{D}_g$ teljesül, akkor $f \circ g$ is invertálható és

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$
.

4. A kompozíció-képzés nem kommutatív, hiszen pl. az

$$f(x) := \sqrt{1-x} \quad (x \in (-\infty,1]) \qquad \text{és a} \qquad g(x) := x^2 \quad (x \in \mathbb{R})$$

függvények esetében f \circ g \neq g \circ f. Valóban,

a

$$\mathcal{D}_{f\circ g} = \{x \in \mathcal{D}_g: \ g(x) \in \mathcal{D}_f\} = \left\{x \in \mathbb{R}: \ x^2 \in (-\infty,1]\right\} = [-1,1] \neq \emptyset$$

halmazzal, ha $x \in \mathcal{D}_{f \circ g}$, akkor

$$(f \circ g)(x) = (f(g(x)) = \sqrt{1 - g(x)} = \sqrt{1 - x^2},$$

azaz az f és a g kompizíciója:

$$f \circ g : [-1, 1] \to \mathbb{R}, \qquad (f \circ g)(x) = \sqrt{1 - x^2};$$

 $\begin{array}{c} \bullet \ a \\ \\ \mathcal{D}_{g\circ f} = \{x \in \mathcal{D}_f : \ f(x) \in \mathcal{D}_g\} = \left\{x \in (-\infty,1] : \ \sqrt{1-x} \in \mathbb{R}\right\} = (-\infty,1] \neq \emptyset \\ \end{array}$

halmazzal, ha $x \in \mathcal{D}_{q \circ f}$, akkor

$$(g \circ f)(x) = (g(f(x))) = g(\sqrt{1-x}) = (\sqrt{1-x})^2 = 1-x,$$

azaz a g és az f függvény kompozíciója pedig

$$g \circ f : (-\infty, 1] \to \mathbb{R}, \qquad (g \circ f)(x) = 1 - x.$$

Definíció. Valós-valós függvényeknek nevezzük az $f \in \mathbb{R} \to \mathbb{R}$ típusú függvényeket.

A valós-valós függvények sajátossága, hogy hozzárendelési szabályuk gyakran képlettel adható meg. Alapvetően három különböző jelölés használatos valamely valós-valós függvény megadására, pl:

- $f: \mathbb{R} \to \mathbb{R}$, $f(x) := \sin(x)$,
- $f: \mathbb{R} \ni x \mapsto \sin(x) \in \mathbb{R}$,
- $f(x) := \sin(x) \ (x \in \mathbb{R}).$

A valós-valós függvényeknek egy másik fontos sajátossága az, hogy sok esetben szemléltethetők síkbeli Descartes-féle koordináta-rendszerben. Ezzel kapcsolatos az alábbi

Definíció.

A

$$\begin{split} \text{graph}(f) &:= & \left\{ (x, f(x)) \in \mathbb{R}^2 \mid x \in \mathcal{D}_f \right\} = \\ &= & \left\{ (x, y) \in \mathbb{R}^2 \colon x \in \mathcal{D}_f, \ y = f(x) \right\} \end{split}$$

halmazt az f függvény **grafikon**jának vagy **gráf**jának nevezzük.

Definíció. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ valós-valós függvény

• korlátos, ha f értékkészlete korlátos, azaz

$$\exists K \in \mathbb{R}, \text{ hogy } \forall x \in \mathcal{D}_f \text{ eset\'en } \quad |f(x)| \leq K.$$

• felülről korlátos, ha f értékkészlete felülről korlátos, azaz

$$\exists K \in \mathbb{R}, \text{ hogy } \forall x \in \mathcal{D}_f \text{ eset\'en } f(x) \leq K.$$

• alulról korlátos, ha f értékkészlete alulról korlátos, azaz

$$\exists k \in \mathbb{R}, \text{ hogy } \forall x \in \mathcal{D}_f \text{ eset\'en } \quad f(x) \geq k.$$

Megjegyzések.

- 1. Nyilvánvaló, hogy valamely $f \in \mathbb{R} \to \mathbb{R}$ valós-valós függvény pontosan akkor korlátos, ha felülről is és alulról is korlátos.
- 2. A valós-valós függvények közül azok korlátosak, amelyeknek grafikonja két vízszintes vonal közé szorítható. Pl. az

$$f(x) := \cos(x) \qquad (x \in \mathbb{R})$$

függvény korlátos, hiszen

$$|\cos(x)| \le 1$$
 $(x \in \mathbb{R})$.

azaz

$$-1 \le \cos(x) \le 1$$
 $(x \in \mathbb{R}).$

Definíció. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ valós-valós függvény

• monoton növekvő (jelben f /), ha

$$\forall x, y \in \mathcal{D}_f, \ x < y \ \text{eset\'en} \ f(x) \le f(y),$$

• monoton csökkenő (jelben f \), ha

$$\forall x, y \in \mathcal{D}_f$$
, $x < y$ esetén $f(x) \ge f(y)$,

• szigorúan monoton növekvő (jelben f ↑), ha

$$\forall x, y \in \mathcal{D}_f, x < y \text{ esetén } f(x) < f(y),$$

• szigorúan monoton csökkenő (jelben f ↓), ha

$$\forall x, y \in \mathcal{D}_f$$
, $x < y$ esetén $f(x) > f(y)$,

• (szigorúan) monoton, ha (szigorúan) monoton növekvő vagy csökkenő.

Megjegyzések.

1. Ha az $f:(a,b)\to\mathbb{R}$ szigorúan monoton (növekvő/csökkenő), akkor invertálható, és f^{-1} is szigorúan monoton (növekvő/csökkenő). Mindez fordítva nem igaz, ui. pl. az

$$f:[0,1] \to \mathbb{R}, \qquad f(x) := \left\{ egin{array}{ll} x & \left(x \in \left[0, rac{1}{2}
ight)
ight), \\ rac{3}{2} - x & \left(x \in \left[rac{1}{2}, 1
ight)
ight) \end{array}
ight.$$

függvény ugyan injektív, de nem szigorúan monoton.

2. Ha $f \in \mathbb{R} \to \mathbb{R}$ invertálható függvény, akkor az f és az f^{-1} grafikonja egymásnak az y = x egyenletű egyenesre való tükörképe (vö. 2. ábra), hiszen ha valamely $(x,y) \in \mathbb{R}$ pont rajta van f grafikonján:

$$(x,y)\in \text{graph}\left\{(u,\nu)\in\mathbb{R}^2:\;u\in\mathcal{D}_f,\,\nu=f(u)\right\},$$

akkor az (y,x) pont rajta van az f^{-1} inverz grafikonján, és ha egy \mathbb{R}^2 -beli pont két koordinátáját felcseréljük, akkor a pontot az y=x egyenesre tükrözzük.

2. ábra. Az

$$x \mapsto \sqrt{x}, \quad x, \quad x'$$

függvények grafikonjai.

Megjegyezzük, hogy "átlátszó" papír felhasznállásával a tükrözés elkerülhető. Az f grafikonjának megrajzolása után rögtön láthatóvá válik inverzének grafikonja is, ha először elforgatjuk a papírt 90 fokkal az óramutató járásával megegyező irányban, majd függőlegesen megforgatjuk a papírt. Az az ábra, ami a papíron át látható, pont az f⁻¹ inverz grafikonja.

Emlékeztető. Legyen

$$f,g\in\mathbb{R}\to\mathbb{R}:\qquad \mathcal{D}:=\mathcal{D}_f\cap\mathcal{D}_q\neq\emptyset,\qquad c\in\mathbb{R},$$

majd értelmezzük a következő függvényeket:

$$cf:\mathcal{D}_f\to\mathbb{R}, \qquad (cf)(x):=cf(x)$$

$$f \pm g : \mathcal{D} \to \mathbb{R}, \quad (f \pm g)(x) := f(x) \pm g(x)$$

$$f\cdot g:\mathcal{D}\to\mathbb{R},\qquad (f\cdot g)(x):=f(x)\cdot g(x),$$

és

$$|f|:\mathcal{D}_f\to\mathbb{R},\qquad |f|(x):=|f(x)|,$$

ill. 0 $\notin \mathcal{R}_g$ esetén

$$\frac{f}{g}: \mathcal{D} \to \mathbb{R}, \qquad \left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}.$$

Példa. Az

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) := x, \qquad g: \mathbb{R} \to \mathbb{R}, \quad g(x) := |x|$$

függvények esetében meghatározzuk az f \pm g, f \cdot g, f/g, g/f függvényeket. Világos, hogy

$$\mathcal{D}_{f} \cap \mathcal{D}_{g} = \mathbb{R} \cap \mathbb{R} = \mathbb{R},$$

továbbá

$$f(x) = 0 \iff x = 0 \text{ és } g(x) = 0 \iff x = 0,$$

ezért

$$f+g:\mathbb{R}\to\mathbb{R},$$

$$(f+g)(x)=x+|x|=\left\{ \begin{array}{ll} x+x=2x & (x\geq 0),\\ x-x=0 & (x<0). \end{array} \right.$$

$$\bullet \ f-g: \mathbb{R} \to \mathbb{R},$$

$$(f-g)(x)=x-|x|=\left\{ \begin{array}{ll} x-x=0 & (x\geq 0), \\ x+x=2x & (x<0). \end{array} \right.$$

$$\begin{array}{c} \bullet \ f \cdot g : \mathbb{R} \to \mathbb{R}, \\ \\ (f \cdot g)(x) = x \cdot |x| = \left\{ \begin{array}{ll} x \cdot x = x^2 & (x \geq 0), \\ \\ x \cdot (-x) = -x^2 & (x < 0). \end{array} \right. \end{array}$$

$$\begin{array}{c} \bullet \ \frac{g}{f}: \mathbb{R}\backslash\{0\} \to \mathbb{R}, \\ \\ \left(\frac{g}{f}\right)(x) = \frac{|x|}{x} = \left\{ \begin{array}{c} \frac{x}{x} = 1 & (x > 0), \\ \frac{-x}{x} = -1 & (x < 0). \end{array} \right. \end{array}$$

3. ábra. Az f+g függvény grafikonja.

4. ábra. Az f-g függvény grafikonja.

5. ábra. Az f \cdot g függvény grafikonja.

6. ábra. Az f/g és a g/f függvények grafikonja.

A továbbiakban egy ideig a természetes számok halmazán értelmezett függvényekkel: sorozatokkal foglal-kozunk.

Definíció. Legyen $\mathcal{H} \neq \emptyset$. Ekkor az

$$x:\mathbb{N}_0 \to \mathcal{H}$$

függvényt *H*-beli sorozatnak nevezzük. Ha

$$\mathcal{H} = \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, \quad \text{ill.} \quad \mathcal{H} = \{f: f \in \mathbb{R} \to \mathbb{R}\}$$

akkor valós vagy komplex számsorozatról, illetve valós-valós függvények sorozatáról beszélünk.

Megjegyzések.

- 1. Az x(n) helyettesítési értéket az x sorozat n-edik tagjának vagy n-indexű tagjának nevezzük.
- 2. Az

$$x(n) =: x_n \qquad (n \in \mathbb{N}_0)$$

indexes jelölés bevezetésével az x sorozatra az alábbi jelölések használatosak:

$$x =: (x_n, n \in \mathbb{N}_0), \qquad x_n (n \in \mathbb{N}_0), \qquad x =: (x_n)_{n \in \mathbb{N}_0}, \qquad (x_n),$$

ill.

$$x =: (x_0, x_1, x_2, ...)$$
.

3. Sok esetben tetszőlegesen rögzített $k \in \mathbb{N}_0$ szám esetén az

$$x:\mathbb{N}_k\to\mathcal{H}$$

függvény is sorozatnak tekintendő, ahol

$$\mathbb{N}_k := \{ n \in \mathbb{N}_0 : n \ge k \} \qquad /\mathbb{N}_1 = \mathbb{N}/.$$

- 4. A továbbiakban csak valós számsorozatokkal foglalkozunk, azaz feltesszük, hogy $\mathcal{H} = \mathbb{R}$.
- 5. A függvények közötti összeadás, ill. a függvények számmal való szorzására vonatkozóan a sorozatok vektorteret (lineáris teret) alkotnak, melynek nulleleme a

$$\theta := (0, 0, 0, \ldots)$$

sorozat. A számsorozatok lineáris terét az S szimbólummal fogjuk jelölni.

Példák.

1. Legyen $c \in \mathbb{R}$, $x_n := c \ (n \in \mathbb{N}_0)$ (konstans sorozat vagy állandó sorozat),

$$x_0 = c$$
, $x_1 = c$, $x_2 = c$, $x_3 = c$, $x_4 = c$, ...

2. $x_n := n \ (n \in \mathbb{N}_0),$

$$x_0 = 0$$
, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, ...

3. $x_n := \frac{1}{n} (n \in \mathbb{N})$ (harmonikus sorozat),

$$x_1 = \frac{1}{1} = 1$$
, $x_2 = \frac{1}{2}$, $x_3 = \frac{1}{3}$, $x_4 = \frac{1}{4}$, $x_5 = \frac{1}{5}$, ...

A név eredete:

$$x_n = \frac{2}{\frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}}$$
 $(2 \le n \in \mathbb{N}),$

ui. tetszőleges $2 \leq n \in \mathbb{N}$ esetén

$$\frac{2}{\frac{1}{x_{n-1}} + \frac{1}{x_{n+1}}} = \frac{2}{n-1+n+1} = \frac{2}{2n} = \frac{1}{n} = x_n.$$

4. $x_n := \alpha + nd \ (n \in \mathbb{N}_0)$, ahol $\alpha, d \in \mathbb{R}$ (számtani sorozat),

$$x_0 = \alpha$$
, $x_1 = \alpha + d$, $x_2 = \alpha + 2d$, $x_3 = \alpha + 3d$, $x_4 = \alpha + 4d$, ...

A név eredete:

$$x_n = \frac{x_{n-1} + x_{n+1}}{2} \qquad (n \in \mathbb{N}),$$

ui. tetszőleges $n \in \mathbb{N}$ esetén

$$\frac{x_{n-1} + x_{n+1}}{2} = \frac{\alpha + (n-1)d + \alpha + (n+1)d}{2} = \frac{2\alpha + 2nd}{2} = \alpha + nd = x_n.$$

5. $x_n := \beta q^n \ (n \in \mathbb{N}_0)$, ahol $\beta, q \in \mathbb{R}$ (mértani sorozat),

$$x_0 = \beta$$
, $x_1 = \beta q$, $x_2 = \beta q^2$, $x_3 = \beta q^3$, $x_4 = \beta q^4$, ...

A név eredete: ha β , q > 0, akkor

$$x_n = \sqrt{x_{n-1} \cdot x_{n+1}}$$
 $(n \in \mathbb{N}),$

ui. tetszőleges $n \in \mathbb{N}$ esetén

$$\sqrt{x_{n-1}\cdot x_{n+1}} = \sqrt{\beta\cdot q^{n-1}\cdot \beta\cdot q^{n+1}} = \sqrt{\beta^2\cdot q^{2n}} = \beta\cdot q^n = x_n.$$

6.
$$x_n := (-1)^n \frac{4n^2 + 2n + 1}{3n^3 + 6}$$
 $(n \in \mathbb{N}_0),$

$$x_0 = \frac{1}{6}$$
, $x_1 = -\frac{7}{9}$, $x_2 = \frac{21}{30}$, $x_3 = -\frac{43}{87}$, $x_4 = \frac{73}{198}$, $x_5 = -\frac{211}{381}$, ...

7.
$$x_n := \left(1 + \frac{1}{n}\right)^n (n \in \mathbb{N}),$$

$$x_1 = \left(1 + \frac{1}{1}\right)^1 = 2$$
, $x_2 = \left(1 + \frac{1}{2}\right)^2$, $x_3 = \left(1 + \frac{1}{3}\right)^3$, $x_4 = \left(1 + \frac{1}{4}\right)^4$, ...

8.
$$x_n := \sum_{k=1}^n \frac{1}{k} (n \in \mathbb{N})$$
 (harmonikus sor),

$$x_1 = 1$$
, $x_2 = 1 + \frac{1}{2}$, $x_3 = 1 + \frac{1}{2} + \frac{1}{3}$, $x_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$, ...

9.
$$x_n := \sum_{k=1}^n (-1)^k \frac{1}{k} \ (n \in \mathbb{N})$$
 (alternáló harmonikus sor),

$$x_1 = -1$$
, $x_2 = -1 + \frac{1}{2}$, $x_3 = -1 + \frac{1}{2} - \frac{1}{3}$, $x_4 = -1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4}$, ...

$$10. \ x_n := \sum_{k=0}^n q^k \ (n \in \mathbb{N}_0) \ (\text{m\'ertani sor}),$$

$$x_0 = 1$$
, $x_1 = 1 + q$, $x_2 = 1 + q + q^2$, $x_3 = 1 + q + q^2 + q^3$, ...

11.
$$x_n := \sum_{k=1}^n \frac{1}{k^2} (n \in \mathbb{N})$$

$$x_1 = 1$$
, $x_2 = 1 + \frac{1}{4}$, $x_3 = 1 + \frac{1}{4} + \frac{1}{9}$, $x_4 = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16}$, ...

12.
$$x_n := \sum_{k=0}^n \frac{1}{k!} (n \in \mathbb{N}_0)$$

$$x_0 = 1$$
, $x_1 = 1 + 1$, $x_2 = 1 + 1 + \frac{1}{2}$, $x_3 = 1 + 1 + \frac{1}{2} + \frac{1}{6}$, $x_4 = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24}$, ...

13.
$$x_0 := c$$
,

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) \qquad (n \in \mathbb{N}_0),$$

ahol $0 < c \in \mathbb{R}$. Ha c = 2, akkor

$$x_1 = 1.5, \qquad x_2 \approx 1.416 \qquad \text{\'es} \qquad (x_2)^2 \approx 2.$$

A valós számsorozatokat kétféle módon is szemléltethetjük. Mivel ezek speciális valós-valós függvények, ezért a különálló pontokból álló grafikonjukat ábrázolhatjuk a koordináta-rendszerben. Másrészt a sorozat tagjait – értékei szerint – elhelyezhetjük a számegyenesen. Mindkét személtetési módot megmutatjuk az

$$x_n:=\frac{(-1)^n}{n} \qquad (n\in \mathbb{N})$$

sorozat esetében:

Számegyenesen

Koordináta-rendszerben

A gyakorlat anyaga

Feladat. Igazoljuk, hogy bármely $n \in \mathbb{N}$ esetén fennáll az

$$\frac{1}{2} \le \left(1 - \frac{1}{2n}\right)^n < \frac{2}{3}$$

egyenlőtlenségpár!

Útm. Külön-külön igazoljuk az alsó, ill. a felső becslést.

• Az alsó becslés a következő módon látható be. Mivel minden $n \in \mathbb{N}$ esetén $-\frac{1}{2n} \ge -2$, ezért Bernoulli-egyenlőtlenségből

$$\left(1 - \frac{1}{2n}\right)^n \ge 1 - n \cdot \frac{1}{2n} = 1 - \frac{n}{2n} = 1 - \frac{1}{2} = \frac{1}{2}$$

következik.

• A felső becsléshez azt használjuk fel, hogy bármely $n \in \mathbb{N}$ esetén

$$\left(1 - \frac{1}{2n}\right)^n = \left(\frac{2n-1}{2n}\right)^n = \frac{1}{\left(\frac{2n}{2n-1}\right)^n} = \frac{1}{\left(\frac{2n-1+1}{2n-1}\right)^n} = \frac{1}{\left(1 + \frac{1}{2n-1}\right)^n},$$

továbbá $\frac{1}{2n-1} \ge -2$, így a Bernoulli-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\frac{1}{\left(1+\frac{1}{2n-1}\right)^n} \leq \frac{1}{1+\frac{n}{2n-1}} = \frac{2n-1}{3n-1} < \frac{2}{3} \qquad \Longleftrightarrow \qquad 6n-3 < 6n-2.$$

Feladat. Igazoljuk, hogy ha $a, b \in [0, +\infty)$: $a \le b$, akkor fennáll a

$$\sqrt{\frac{\alpha}{b+1}} + \sqrt{\frac{b}{\alpha+1}} < \frac{\alpha+b+1}{\alpha+1}$$

egyenlőtlenség!

Útm. A mértani éls a számtani közép közötti egyenlőtlenség következményeként azt kapjuk, hogy bármely $x \in [0, +\infty)$: $x \neq 1$ számra

$$\sqrt{x} = \sqrt{x \cdot 1} < \frac{1}{2}(x+1).$$

Mivel

$$0 \le a \le b$$
 \Longrightarrow $0 \le \frac{a}{b+1} < 1$,

ezért

$$\sqrt{\frac{a}{b+1}\cdot 1} + \sqrt{\frac{b}{a+1}\cdot 1} < \frac{1}{2}\left(\frac{a}{b+1}+1\right) + \frac{1}{2}\left(\frac{b}{a+1}+1\right) = 1 + \frac{1}{2}\left(\frac{a}{b+1}+\frac{b}{a+1}\right).$$

Világos, hogy

$$0 \le a \le b$$
 \iff $\frac{a}{b+1} \le \frac{b}{a+1}$,

ennélfogva

$$\sqrt{\frac{\alpha}{b+1}}+\sqrt{\frac{b}{\alpha+1}}<1+\frac{1}{2}\left(\frac{\alpha}{b+1}+\frac{b}{\alpha+1}\right)\leq 1+\frac{1}{2}\left(\frac{b}{\alpha+1}+\frac{b}{\alpha+1}\right)=\frac{\alpha+b+1}{\alpha+1}.$$

A következő feladatbeli egyenlőtlenségek fontos szerepet játszanak az

$$x_n:=\sqrt[n]{\alpha}\quad (n\in\mathbb{N},\ \alpha\in(0,+\infty)),\qquad \text{ill. az}\qquad x_n:=\sqrt[n]{n}\quad (n\in\mathbb{N})$$

sorozat konvergenciájának tárgyalásakor.

Feladat. Mutassuk meg, hogy ha

1. $n \in \mathbb{N}$ és $\alpha \in (1, +\infty)$, akkor

$$\frac{\alpha-1}{\alpha n} \leq \sqrt[n]{\alpha} - 1 \leq \frac{\alpha-1}{n};$$

2. $n \in \mathbb{N}$ és $\alpha \in (0, 1)$, akkor

$$\frac{1-\alpha}{n} \le 1 - \sqrt[n]{\alpha} \le \frac{1-\alpha}{\alpha n};$$

3. $n \in \mathbb{N}$, akkor

$$1 \leq \sqrt[n]{n} \leq 1 + 2 \cdot \frac{\sqrt{n} - 1}{n}.$$

teljesül!

Útm.

és

1. Felhasználva a mértani közép és a számtani közép, ill. a harmonikus közép és a mértani közép közötti egyenlőtlenséget azt kapjuk, hogy ha $\alpha \in (1, +\infty)$, akkor

$$\sqrt[n]{\alpha} = \sqrt[n]{1 \cdot \ldots \cdot 1 \cdot \alpha} \le \frac{(n-1) \cdot 1 + \alpha}{n} = 1 + \frac{\alpha - 1}{n}$$

$$\sqrt[n]{\alpha} = \sqrt[n]{1 \cdot \ldots \cdot 1 \cdot \alpha} \ge \frac{n}{(n-1) \cdot \frac{1}{1} + \frac{1}{\alpha}} = \frac{\alpha n}{\alpha n - \alpha + 1} =$$

$$= \frac{\alpha n - \alpha + 1 + \alpha - 1}{\alpha n - \alpha + 1} = 1 + \frac{\alpha - 1}{\alpha n - \alpha + 1} > 1 + \frac{\alpha - 1}{\alpha n}.$$

2. Ha $\alpha \in (0,1)$, akkor

$$\frac{1}{\alpha} \in (1, +\infty),$$

így az 1. felhasználásával adódik a két becslés.

3. Az első egyenlőtlenség triviális. A második:

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \ldots \cdot 1} \leq \frac{2\sqrt{n} + (n-2) \cdot 1}{n} = 1 + 2 \cdot \frac{\sqrt{n} - 1}{n}.$$

Feladat. Lássuk be, hogy ha $m, n \in \mathbb{N}$, akkor fennáll a

$$\sqrt{m} + \sqrt{m+1} + \sqrt{m+2} + \ldots + \sqrt{m+n} \le (n+1)\sqrt{m+\frac{n}{2}}$$

egyenlőtlenség!

Útm. Alkalmazzuk a Cauchy-Bunyakovszkij-egyenlőtlenséget az

$$x_k := \sqrt{m+k}, \quad y_k := 1 \qquad (k \in \{0,1,\ldots,n\})$$

szereposztással. Ekkor

$$\sum_{k=0}^n (m+k) \cdot \sum_{k=0}^n 1 \ge \left(\sqrt{m} + \sqrt{m+1} + \sqrt{m+2} + \ldots + \sqrt{m+n}\right)^2,$$

ahonnan

$$\sqrt{m} + \sqrt{m+1} + \sqrt{m+2} + \ldots + \sqrt{m+n} \leq \sqrt{\left[(n+1)m + \frac{n(n+1)}{2}\right](n+1)} = (n+1)\sqrt{m + \frac{n}{2}}$$

következik.

Házi feladat. Alkalmazzuk a mértani és a számtani közép közötti egyenlőtlenséget az alábbi számokra!

1.
$$x_k := 1 + \frac{1}{n}$$
 $(k \in \{1, ..., n\}), \quad x_{n+1} := 1$

2.
$$x_k := 1 + \frac{1}{n}$$
 $(k \in \{1, ..., n\}),$ $x_{n+1} := x_{n+2} := \frac{1}{2}.$

Útm. Ha $n \in \mathbb{N}$,

1. akkor

$$\left(1+\frac{1}{n}\right)^n = \left(1+\frac{1}{n}\right)^n \cdot 1 < \left(\frac{n\cdot\left(1+\frac{1}{n}\right)+1}{n+1}\right)^{n+1} = \left(\frac{n+1+1}{n+1}\right)^{n+1} = \left(1+\frac{1}{n+1}\right)^{n+1}.$$

2. akkor $n \ge 2$ esetén

$$\left(1+\frac{1}{n}\right)^n = 4\cdot\left(1+\frac{1}{n}\right)^n\cdot\frac{1}{2}\cdot\frac{1}{2}<4\cdot\left(\frac{n\cdot\left(1+\frac{1}{n}\right)+\frac{1}{2}+\frac{1}{2}}{n+2}\right)^{n+2} = 4\cdot\left(\frac{n+1+1}{n+2}\right)^{n+2} = 4.$$

Házi feladat. Igazoljuk, hogy ha $0 < a, b \in \mathbb{R}$ olyan számok, amelyre a + b = 1, akkor fennál az

$$\left(a + \frac{1}{a}\right)^2 + \left(b + \frac{1}{a}\right)^2 \ge \frac{25}{2}$$

egyenlőtlenség!

Útm. A számtani közép és a négyzetes közép közötti egyenlőtlenség alapján

$$\left(a + \frac{1}{a}\right)^{2} + \left(b + \frac{1}{a}\right)^{2} \ge 2 \cdot \left(\frac{a + \frac{1}{a} + b + \frac{1}{b}}{2}\right)^{2} = 2 \cdot \left(\frac{1 + \frac{1}{a} + \frac{1}{b}}{2}\right)^{2} = \frac{\left(1 + \frac{a + b}{ab}\right)^{2}}{2} = \frac{\left(1 + \frac{1}{ab}\right)^{2}}{2},$$

ill. a mértani közép és a számtani közép közötti egyenlőtlenség következtében

$$\frac{\left(1 + \frac{1}{ab}\right)^2}{2} \ge \frac{\left(1 + \frac{1}{\left(\frac{a+b}{2}\right)^2}\right)^2}{2} = \frac{(1+4)^2}{2} = \frac{25}{2}.$$

Megjegyzések.

1. Látható, hogy egyenlőség pontosan akkor van, ha

$$a + \frac{1}{a} = b + \frac{1}{b}$$
 és $a = b$, azaz $a = b = \frac{1}{2}$.

2. Hasonlóan látható be a következő általánosítás: ha $n \in \mathbb{N}$ és

$$a_1,\ldots,a_n\in(0,+\infty):$$
 $\sum_{k=1}^n a_k=1,$

akkor

$$\sum_{k=1}^n \left(\alpha_k + \frac{1}{\alpha_k}\right)^2 \geq \frac{(1+n^2)^2}{n}.$$

Házi feladat. Mutassuk meg, hogy igazak az alábbi állítások!

1. Ha $a, b \in \mathbb{R}$, akkor

$$(a^2 + b^2)(a^4 + b^4) \ge (a^3 + b^3)^2$$
.

2. Bármely $2 \le n \in \mathbb{N}$ esetén

$$\sum_{k=1}^{n-1} \sqrt{n^2 - k^2} < \sqrt{\frac{3n^4}{4}}.$$

3. Tetszőleges $a, b, c, x, y, z \in \mathbb{R}$ számra

$$(a^2+b^2+c^2=25, \quad x^2+y^2+z^2=36, \quad ax+by+cz=30) \implies \frac{a+b+c}{x+y+z}=\frac{5}{6}.$$

Útm.

1. Alkalmazzuk a Cauchy-Bunyakovszkij-egyenlőtlenséget az

$$x_1 := a$$
, $y_1 := a^2$, ill. $x_2 := b$, $y_2 := b^2$

szereposztással.

2. Világos, hogy

$$\sum_{k=1}^{n-1} \sqrt{n^2 - k^2} < \sqrt{\frac{3n^4}{4}} \qquad \iff \qquad \frac{1}{n^2} \sum_{k=1}^{n-1} \sqrt{n^2 - k^2} < \frac{\sqrt{3}}{2}.$$

Alkalmazzuk a Cauchy-Bunyakovszkij-egyenlőtlenséget, ill. a tetszőleges $n \in \mathbb{N}$ esetén fennálló

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

azonosságot:

$$\begin{split} \frac{1}{n^2} \sum_{k=1}^{n-1} \sqrt{n^2 - k^2} &= \frac{1}{n^2} \sum_{k=1}^{n-1} \sqrt{n - k} \sqrt{n + k} < \frac{1}{n^2} \sqrt{\sum_{k=1}^{n-1} (n - k)} \sqrt{\sum_{k=1}^{n-1} (n + k)} = \\ &= \frac{1}{n^2} \sqrt{\frac{n(n-1)}{2}} \sqrt{\frac{3n}{2}(n-1)} = \frac{\sqrt{3}}{2} \frac{n-1}{n} < \frac{\sqrt{3}}{2}. \end{split}$$

3. A Cauchy-Bunyakovszkij-egyenlőtlenség miatt

$$(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) \ge (ax + by + cz)^2$$

és egyenlőség pontosan akkor van, ha van olyan $\mu \in \mathbb{R},$ hogy

$$a = \mu x$$
, $b = \mu y$, $c = \mu z$ vagy $x = \mu a$, $y = \mu b$, $z = \mu c$.

Mivel $30^2 = 25 \cdot 36$, ezért egyenlőség van, tehát

$$a^2 + b^2 + c^2 = \mu^2(x^2 + y^2 + z^2)$$
 vagy $x^2 + y^2 + z^2 = \mu^2(a^2 + b^2 + c^2)$.

Innen

$$\mu^2 = \frac{25}{36}$$
, azaz $|\mu| = \frac{5}{6}$ vagy $\mu^2 = \frac{36}{25}$, azaz $|\mu| = \frac{6}{5}$.

Mivel

$$30 = \left\{ \begin{array}{l} ax + by + cz \\ xa + yb + zc \end{array} \right\} = \left\{ \begin{array}{l} \mu(x^2 + y^2 + z^2) \\ \mu(a^2 + b^2 + c^2) \end{array} \right\},$$

ezért

$$\mu = \frac{5}{6} \qquad vagy \qquad \mu = \frac{6}{5}.$$

Így tehtát

$$\frac{a+b+c}{x+y+z} = \left\{ \begin{array}{c} \frac{\mu(x+y+z)}{x+y+z} = \mu = \frac{5}{6}, \\ \\ \frac{a+b+c}{\mu(a+b+c)} = \frac{1}{\mu} = \frac{1}{6/5} = \frac{5}{6}. \end{array} \right\}$$

4. oktatási hét

Az előadás anyaga

Definíció. Azt mondjuk, hogy az (x_n) sorozat

- 1. **monoton növő** (jelben: (x_n) \nearrow), ha bármely $n \in \mathbb{N}_0$ index $x_n \leq x_{n+1}$;
- 2. szigorúan monoton növő (jelben: $(x_n) \uparrow$), ha bármely $n \in \mathbb{N}_0$ indexre $x_n < x_{n+1}$;
- 3. monoton fogyó vagy monoton csökkenő (jelben: (x_n)), ha bármely $n \in \mathbb{N}_0$ indexre $x_n \ge x_{n+1}$;
- 4. szigorúan monoton fogyó (jelben: $(x_n) \downarrow$), ha bármely $n \in \mathbb{N}_0$ indexre $x_n > x_{n+1}$.

Példák.

1. Tetszőleges $c \in \mathbb{R}$ esetén az

$$x_n := c$$
 $(n \in \mathbb{N}_0)$

sorozat monoton növekedő, ill. csökkenő, hiszen

$$x_{n+1} = c = x_n$$
 $(n \in \mathbb{N}_0)$.

2. Az

$$x_n := \frac{1}{n}$$
 $(n \in \mathbb{N})$

harmonikus sorozat szigorúan monoton csökkenő, ui.

$$x_{n+1} = \frac{1}{n+1} < \frac{1}{n} = x_n \qquad (n \in \mathbb{N}).$$

3. Az

$$x_n := n \qquad (n \in \mathbb{N}_0)$$

sorozat szigorúan monoton növekedő:

$$x_n = n < n + 1 = x_{n+1}$$
 $(n \in \mathbb{N}_0).$

4. Az

$$x_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{(n-2)!} + \frac{1}{(n-1)!} + \frac{1}{n!} \qquad (n \in \mathbb{N}_0)$$

sorozat szigorúan monoton növekedő, ui.

$$x_n = \sum_{k=0}^n \frac{1}{k!} < \sum_{k=0}^n \frac{1}{k!} + \frac{1}{(n+1)!} = \sum_{k=0}^{n+1} \frac{1}{k!} = x_{n+1} \qquad (n \in \mathbb{N}_0).$$

5. Az

$$x_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N}_0)$$

sorozat szigorúan monoton növekedő (vö. (11)).

Megjegyzés. Sorozatok monotonitásának vizsgálatakor igen hasznos az

$$x_{n+1} \ge x_n \quad (n \in \mathbb{N}_0) \qquad \iff \qquad x_{n+1} - x_n \ge 0 \quad (n \in \mathbb{N}_0)$$

ekvivalencia. Sőt, ha bármely $n \in \mathbb{N}_0$ indexre $x_n > 0$, akkor

$$x_{n+1} \geq x_n \quad (n \in \mathbb{N}_0) \qquad \iff \qquad \frac{x_{n+1}}{x_n} \geq 1 \quad (n \in \mathbb{N}_0).$$

Példák.

1. Tetszőleges $k \in \mathbb{N}$ esetén az

$$x_n := \frac{1}{n^k} > 0 \qquad (n \in \mathbb{N})$$

sorozat szigorúan monoton csökkenő, hiszen bármely $n \in \mathbb{N}$ indexre

$$\frac{x_{n+1}}{x_n} = \frac{1}{(n+1)^k} : \frac{1}{n^k} = \frac{n^k}{(n+1)^k} < 1.$$

2. Az

$$x_n:=\frac{1}{2^n}>0 \qquad (n\in\mathbb{N}_0)$$

sorozat szigorúan monoton csökkenő, mert tetszőleges $\mathfrak{n} \in \mathbb{N}_0$ index esetén

$$\frac{x_{n+1}}{x_n} = \frac{1}{2^{n+1}} : \frac{1}{2^n} = \frac{2^n}{2^{n+1}} = \frac{1}{2} < 1.$$

3. Az

$$x_n := \frac{2n-1}{n+1} \qquad (n \in \mathbb{N})$$

sorozat szigorúan monoton növő, ui. bármely $n \in \mathbb{N}$ indexre

$$\begin{split} x_{n+1} - x_n &= \frac{2(n+1)-1}{(n+1)+1} - \frac{2n-1}{n+1} = \frac{2n+1}{n+2} - \frac{2n-1}{n+1} = \frac{(2n+1)(n+1)-(2n-1)(n+2)}{(n+2)(n+1)} = \\ &= \frac{3}{(n+2)(n+1)} > 0. \end{split}$$

4. Az

$$x_n := \sum_{k=1}^n \frac{1}{k}$$
 $(n \in \mathbb{N})$

sorozat (harmonikus sor) szigorúan monoton növő, ui. minden $n \in \mathbb{N}_0$ indexre

$$x_{n+1} - x_n = \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{n+1} > 0.$$

A valós számsorozatok halmazának egy igen fontos részét alkotják a korlátos sorozatok.

Definíció. Azt mondjuk, hogy az (x_n) sorozat

• korlátos, ha értékkészlete, azaz az

$$\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

halmaz korlátos: alkalmas $M \in \mathbb{R}$ esetén

$$|x_n| \leq M$$
 $(n \in \mathbb{N}_0)$

teljesül.

• felülről korlátos, ha (x_n) értékkészlete felülről korlátos, azaz alkalmas $K \in \mathbb{R}$ esetén

$$x_n \leq K$$
 $(n \in \mathbb{N}_0)$.

• alulról korlátos, ha (x_n) értékkészlete alulról korlátos, azaz alkalmas $k \in \mathbb{R}$ esetén

$$x_n \geq k$$
 $(n \in \mathbb{N}_0)$.

Megjegyzések.

- 1. Nyilvánvaló, hogy egy valós számsorozat pontosn akkor korlátos, ha felülről is és alulról is korlátos.
- 2. A korlátos sorozatok halmazát az l_{∞} szimbólummal jelöljük.
- 3. Az x sorozat értékkészletének felső, illetve alsó határának segítségével értelmezhető az x sorozat felső, illetve alsó határa:

$$\sup x := \sup \{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}, \quad \text{ill.} \quad \inf x := \inf \{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}.$$

Ha tehát az x sorozat felülről nem korlátos, akkor $\sup(x) = +\infty$, ill. alulról nem korlátos, akkor $\inf(x) = -\infty$.

Példák.

1. Az

$$x_n := \frac{1}{n}$$
 $(n \in \mathbb{N})$

harmonikus sorozat korlátos, hiszen

$$0<\frac{1}{n}\leq 1$$
 $(n\in\mathbb{N}).$

2. Adott α , $d \in \mathbb{R}$ esetén az

$$x_n := \alpha + nd$$
 $(n \in \mathbb{N}_0)$

számtani sorozat pontosan akkor korlátos, ha d = 0, ui.

- d = 0 esetén tetszőleges $n \in \mathbb{N}_0$ indexre $x_n = \alpha$, következésképpen az $M := |\alpha|$ számmal teljesül a korlátosság feltétele;
- d > 0 esetén Archimédész tétele alapján minden $K \in \mathbb{R}$ esetén van olyan $n \in \mathbb{N}_0$, hogy

$$nd > K - \alpha$$
, $azaz \quad \alpha + nd > K$;

• d < 0 esetén hasonló mondható el.

3. Az

$$x_n := q^n \qquad (n \in \mathbb{N}_0)$$

mértani sorozat $|q| \le 1$ esetén korlátos, |q| > 1 esetén pedig nem korlátos, hiszen

• $a |q| \le 1$ esetben

$$|q^n| = |q|^n < 1^n = 1$$
 $(n \in \mathbb{N}_0)$;

• a |q| > 1 esetben pedig a Bernoulli-egyenlőtlenség vagy a binomiális tétel felhasználásával azt kapjuk, hogy a h := |q| - 1 > 0 számmal

$$|q^n|=|q|^n=(1+h)^n\geq 1+nh \qquad (n\in\mathbb{N}_0).$$

4. Az

$$x_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N}_0)$$

sorozat korlátos (vö. (11)).

A környezet fogalmának bevezetésével jellemezhetjük a sorozatok korlátosságát.

Definíció. Legyen $a \in \mathbb{R}$, ill. $0 < r \in \mathbb{R}$. Ekkor az a szám r-sugarú környezetének nevezzük a

$$K_r(\alpha) := (\alpha - r, \alpha + r) = \{x \in \mathbb{R} : \alpha - r < x < \alpha + r\} = \{x \in \mathbb{R} : |x - \alpha| < r\}$$

számhalmazt.

Nyilvánvaló, hogy az (x_n) sorozat pontosan akkor korlátos, ha minden tagja benne van a 0 valamely környezetében.

A későbbiekre tekintettel célszerű a környezet fogalmát kiterjeszteni a kibővített valós számok halmazára.

Definíció. Legyen $0 < r \in \mathbb{R}$. Ekkor a $+\infty$ és a $-\infty$ r-sugarú környezetének nevezzük a

$$K_r(+\infty) := \left(\frac{1}{r}, +\infty\right) \qquad \text{\'es a} \qquad K_r(-\infty) := \left(-\infty, -\frac{1}{r}\right)$$

számhalmazt.

Összefoglalva tehát:

$$K_r(\alpha) := \begin{cases} (\alpha - r, \alpha + r), & \text{ha } \alpha \in \mathbb{R} \\\\ \left(\frac{1}{r}, +\infty\right), & \text{ha } \alpha = +\infty \\\\ \left(-\infty, -\frac{1}{r}\right), & \text{ha } \alpha = -\infty. \end{cases}$$

Mivel korlátos sorozatok összege és számszorosa is korlátos, ezért l_{∞} a sorozatok \mathcal{S} terének lineáris altere. Célszerű ebben a vektortérben az \mathbb{R}^d -beli vektorok abszolút értékéhez hasonló fogalmat, a normát bevezetni.

Definíció. Tetszőleges $x=(x_n)\in l_\infty$ sorozat esetén az

$$||\mathbf{x}|| := \sup\{|\mathbf{x}_{\mathbf{n}}| \in \mathbb{R} : \mathbf{n} \in \mathbb{N}_{\mathbf{0}}\}$$

valós számot az $x = (x_n)$ sorozat **normá**jának nevezzük.

Megjegyzés. Viszonylag egyszerűen igazolható a norma alábbi tulajdonsgai. Tetszőleges $x,y \in l_{\infty}$, ill. $\alpha \in \mathbb{R}$ esetén

(N1)
$$||x|| \ge 0$$
 és $||x|| = 0$ $\iff x = \theta = (0, 0, 0, ...);$

(N2)
$$\|\alpha x\| = |\alpha| \cdot \|x\|$$
;

(N3)
$$||x + y|| \le ||x|| + ||y||$$
 és $||x - y|| \ge |||x|| - ||y|||$.

Definíció. Ha valamely $\nu: \mathbb{N}_0 \to \mathbb{N}_0$ sorozat szigorúan monoton növekedő, akkor ν -t **indexsorozat**nak nevezzük. Az indexsorozatok összességét az \mathcal{I} szimbólummal jelöljük.

Példa. Az alábbi sorozatok mind indexsorozatok.

1. $v_n := 2n \ (n \in \mathbb{N}_0)$, ui, bármely $n \in \mathbb{N}_0$ indexre

$$v_n = 2n < 2n + 2 = 2(n+1) = v_{n+1};$$

2. $v_n := n^2 \ (n \in \mathbb{N}_0)$, ui, bármely $n \in \mathbb{N}_0$ indexre

$$v_n = n^2 < (n+1)^2 = v_{n+1}$$
;

3. $\nu_n := 2^n \ (n \in \mathbb{N}_0)$, ui, bármely $n \in \mathbb{N}_0$ indexre

$$v_n = 2^n < 2 \cdot 2^n = 2^{n+1} = v_{n+1}$$

Definíció. Az $x : \mathbb{N}_0 \to \mathbb{R}$ sorozat **részsorozat**ának nevezzük az $y : \mathbb{N}_0 \to \mathbb{R}$ sorozatot, ha van olyan $v \in \mathcal{I}$, hogy $y = x \circ v$.

Példák.

1. Ha

$$x_n:=(-1)^n\quad (n\in\mathbb{N}_0)\qquad \text{\'es}\qquad \mu_n:=2n,\quad \text{ill.}\quad \nu_n:=2n+1\quad (n\in\mathbb{N}_0),$$

akkor

2024. 02. 12.

$$(x \circ \mu)_n = x_{\mu_n} = x_{2n} = 1 \quad (n \in \mathbb{N}_0), \qquad \text{ill.} \qquad (x \circ \nu)_n = x_{\nu_n} = x_{2n+1} = -1 \quad (n \in \mathbb{N}_0).$$

2. Ha

$$x_n := \frac{1}{n} \quad (n \in \mathbb{N}) \qquad \text{\'es valamely } k \in \mathbb{N} \text{ eset\'en} \qquad \nu_n := n^k \quad (n \in \mathbb{N}),$$

akkor

$$(x \circ \nu)_n = x_{\nu_n} = x_{n^k} = \frac{1}{n^k}$$
 $(n \in \mathbb{N}).$

3. Ha

$$x_n:=\frac{2n-1}{n+1}\quad (n\in\mathbb{N})\qquad \text{\'es}\qquad \mu_n:=n^2,\quad \text{ill.}\quad \nu_n:=2n-1\quad (n\in\mathbb{N}),$$

akkor

$$(x \circ \nu)_n = x_{\nu_n} = x_{n^2} = \frac{2n^2 - 1}{n^2 + 1} \quad (n \in \mathbb{N}_0), \qquad \text{ill.} \qquad (x \circ \nu)_n = x_{\nu_n} = x_{2n-1} = \frac{4n - 3}{2n} \quad (n \in \mathbb{N}).$$

Megjegyzés. Világos, hogy ha egy sorozat korlátos, akkor annak minden részsorozata is korlátos, hiszen minden $v \in \mathcal{I}$ esetén

$$\{(x \circ v)_n \in \mathbb{R}: n \in \mathbb{N}_0\} \subset \{x_n \in \mathbb{R}: n \in \mathbb{N}_0\}.$$

Ezért, ha egy sorozatnak valamely részsorozata nem korlátos, akkor maga a sorozat sem lehet korlátos. Így van ez pl. az

$$x_n := \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \ldots + \frac{1}{n-1} + \frac{1}{n}$$
 $(n \in \mathbb{N})$

sorozat (harmonikus sor) esetében is, ui. ha

$$\nu_n:=2^n \qquad (n\in \mathbb{N}),$$

akkor bármely $n \in \mathbb{N}$ indexre $(x \circ v)_n = x_{2^n} =$

$$= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^n}\right) \ge$$

$$\ge 1 + \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{n-1} \cdot \frac{1}{2^n} = 1 + n \cdot \frac{1}{2} = \frac{2+n}{2}.$$

Definíció.

Azt mondjuk, hogy az (x_n) sorozatnak az x_m tag **csúcs**a, ha bármely $m \le n \in \mathbb{N}_0$ indexre $x_n \le x_m$.

Példák.

1. Nyilvánvaló, hogy az

$$x_n := (-1)^n$$
 $(n \in \mathbb{N}_0)$

sorozat esetében bármely $n \in \mathbb{N}_0$ indexre az x_{2n} tag csúcs, de x_{2n+1} nem az.

- 2. Ha az (x_n) sorozat szigorúan monoton növekedő, akkor x_n egyetlen $n \in \mathbb{N}_0$ indexre sem csúcs.
- 3. Ha az (x_n) sorozat szigorúan monoton fogyó, akkor bármely $n \in \mathbb{N}_0$ esetén x_n csúcs.
- 4. Ha $\mathcal{N} \subset \mathbb{N}$, akkor az

$$x_n := \left\{ egin{array}{ll} 1 & (n \in \mathcal{N}), \\ \\ 1 - rac{1}{n} & (n \in \mathbb{N}_0 \backslash \mathcal{N}) \end{array} \right.$$

sorozat esetében x_n pontosan akkor csúcs, ha $n \in \mathcal{N}$.

Tétel. Bármely valós számsorozatnak van monoton részsorozata.

Bizonyítás. Valamely (x_n) sorozat esetén az alábbi két eset lehetséges.

1. eset. Tegyük fel először, hogy a csúcsok száma nem véges, azaz végtelen sok $m \in \mathbb{N}_0$ esetén x_m csúcs. A csúcsok indexeit véve olyan ν indexsorozatot kapunk, amelyre

$$x_{\nu_0} \geq x_{\nu_1} \geq \ldots \geq x_{\nu_n} \geq \ldots, \qquad \text{azaz} \qquad x_{\nu_n} \geq x_{\nu_{n+1}} \quad (n \in \mathbb{N}_0).$$

Ebben az esetben tehát az $x \circ v$ részsorozat monoton fogyó.

2. eset. Ha az x sorozatnak legfeljebb véges sok csúcsa van, azaz legfeljebb véges sok $n \in \mathbb{N}_0$ indexre igaz, hogy x_n csúcs, akkor van olyan $N \in \mathbb{N}_0$, hogy bármely $N \le n \in \mathbb{N}_0$ esetén x_n nem csúcs. Legyen $v_0 := N$. Mivel x_{v_0} nem csúcs, ezért van olyan $v_0 < m \in \mathbb{N}$ index, amelyre $x_{v_0} < x_m$.

Ha $\nu_1:=m$, akkor a keresett ν indexsorozat első két tagja már ismert. Tegyük fel, hogy $k\in\mathbb{N}_0$ és a $\nu_0<\nu_1<\ldots<\nu_k$ tagokat már definiáltuk úgy, hogy $x_{\nu_0}< x_{\nu_1}<\ldots< x_{\nu_k}$. Ekkor – lévén $x_{\nu_k}>x_{\nu_0}$ miatt x_{ν_k} nem csúcs – valamilyen $\nu_k< j\in\mathbb{N}_0$ index mellett $x_{\nu_k}< x_j$. Legyen $\nu_{k+1}:=j$. Ekkor $x_{\nu_k}< x_{\nu_{k+1}}$. Így értelmeztünk egy olyan szigorúan monoton növekedő $(\nu_n):\mathbb{N}_0\to\mathbb{N}_0$ (index)sorozatot, amellyel az (x_{ν_n}) részsorozat monoton növekedő.

A matematikai analízis egyik legfontosabb fogalma a határérték. A következőkben a határérték legegyszerűbb típusával, a sorozatok határértékével foglalkozunk. Elsőként ábrázoljuk a számegyenesen a következő sorozatokat:

A fenti három animációból jól látható, hogy

- az (x_n) sorozat a következő tulajdonsággal rendelkezik: tagjai a 0 körül "sűrűsödnek", azaz a 0 szám bármely K_{ε} sugarú környezetén kívül a sorozatnak véges számú (legfeljebb $[1/\varepsilon]^9$) tagja van.
- az (yn) sorozat a következő tulajdonsággal rendelkezik: a tagok egy része -1 körül, a másik része pedig 1 körül "sűrűsödik", továbbá bármely számnak van olyan környezete, amelyen kívül a sorozatnak végtelen sok tagja van.
- a (z_n) sorozat esetében egyetlen valós szám sincsen, amely körül "sűrűsüdne". Itt is elmondható, hogy bármely számnak van olyan környezete, amelyen kívül a sorozatnak végtelen sok tagja van. Viszont igaz, hogy a +∞ bármely K_ε sugarú környezetén kívül a sorozatnak véges számú (legfeljebb [1/ε]) tagja van.

⁹Valamely $x \in \mathbb{R}$ szám **egészrész**ének nevezzük az $[x] := \max\{m \in \mathbb{Z} : m \le x\}$ számot.

Definíció. Azt mondjuk, hogy az $x = (x_n) : \mathbb{N}_0 \to \mathbb{R}$ sorozat

1. **konvergens** (jelben $(x_n) \in \mathfrak{c}$), ha van olyan $A \in \mathbb{R}$ szám, hogy ennek bármely környezetén kívül a sorozatnak legfeljebb véges sok tagja van:

$$\exists\,A\in\mathbb{R}\ \forall\,\epsilon>0\quad \{n\in\mathbb{N}_0:\, x_n\notin K_\epsilon(A)\}\ \ (\text{legfeljebb})\ \text{v\'eges\ halmaz}. \eqno(21)$$

Ekkor az A számot az (x_n) sorozat **határérték**ének vagy **limesz**ének nevezzük és az

$$A =: \lim(x) =: \lim(x_n) := \lim_{n \to \infty} (x_n) \qquad \text{vagy az} \qquad x_n \longrightarrow A \quad (n \to \infty)$$

jelölést használjuk.

2. **divergens**, ha nem kornvergens.

Az az állítás, hogy a

$$\mathcal{H} := \{ n \in \mathbb{N}_0 : x_n \notin K_{\varepsilon}(A) \}$$

halmaznak legfeljebb véges sok eleme van avval egyenértékű, hogy van olyan $N \in \mathbb{N}_0$, pl. az $N := \max \mathcal{H}$ szám (max $\emptyset := 0$), hogy minden N-nél nemkisebb indexű tagra $x_n \in K_{\epsilon}(A)$ teljesül. Ezért az (x_n) sorozat konvergenciája, azaz a (21) állítás az alábbiakkal egyenértékű:

- $\bullet \ \exists \ A \in \mathbb{R} \ \forall \ \epsilon > 0 \ \exists \ N \in \mathbb{N}_0: \qquad N = max\{n \in \mathbb{N}_0: \ x_n \notin K_\epsilon(A)\}.$
- $\bullet \ \exists \ A \in \mathbb{R} \ \forall \epsilon > 0 \ \exists \ N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0 : \qquad (n \geq N \quad \Longrightarrow \quad x_n \in K_\epsilon(A)) \,.$
- $\exists A \in \mathbb{R} \ \forall \, \epsilon > 0 \ \exists N \in \mathbb{N}_0 \ \forall n \in \mathbb{N}_0$: $(n \ge N) \implies |x_n A| < \epsilon$.

A N indexet szokás **küszöbindex**nek is nevezni.

Példák.

1. Legyen $c \in \mathbb{R}$. Az

$$x_n := c$$
 $(n \in \mathbb{N}_0)$

sorozat konvergens és $\lim(x_n) = c$, hiszen ha $\varepsilon > 0$, akkor

$$|x_n-c|=|c-c|=0<\epsilon \qquad (n\in \mathbb{N}_0)$$

következtében minden $N \in \mathbb{N}$ esetén

$$|x_n-c|<\varepsilon$$
 $(N\leq n\in\mathbb{N}_0)$

$$\frac{|x_n-c|<\epsilon}{|x_n-A|<\epsilon} \iff -\epsilon < x_n-A < \epsilon \iff A-\epsilon < x_n < A + \epsilon.$$

79

2. Tetszőleges $k \in \mathbb{N}$ esetén az

$$x_n := \frac{1}{n^k}$$
 $(n \in \mathbb{N})$

sorozat konvergens és $\lim(x_n) = 0$, hiszen ha $\varepsilon > 0$, akkor

$$|x_n - 0| = |x_n| = \frac{1}{n^k} < \varepsilon \qquad \iff \qquad \frac{1}{\sqrt[k]{\varepsilon}} < n$$

következtében az

$$N := \left\lceil \frac{1}{\sqrt[k]{\epsilon}} \right\rceil + 1$$

választás megfelelő: bármely $N \leq n \in \mathbb{N}$ esetén $|x_n - 0| < \epsilon.$

3. Ha $q \in (-1, 1]$, akkor az

$$x_n := q^n \qquad (n \in \mathbb{N})$$

sorozat konvergens, és fennáll a

$$lim(x_n) = \left\{ \begin{array}{ll} 0 & \quad (q \in (-1,1) & \iff \quad |q| < 1), \\ \\ 1 & \quad (q = 1) \end{array} \right.$$

határérték-reláció, hiszen

- ha q = 1, akkor $x_n = 1 \ (n \in \mathbb{N})$;
- ha q = 0, akkor $x_n = 0$ $(n \in \mathbb{N})$;
- ha q \neq 0, |q| < 1, akkor $\frac{1}{|q|}$ > 1, következésképpen alkalmas 0 \in \mathbb{R} számmal

$$\frac{1}{|a|}=1+p,$$

ahonnan a Bernoulli-egyenlőtlenség felhasználásával tetszőleges $n \in \mathbb{N}$ esetén

$$\frac{1}{|q|^n} = (1+p)^n \ge 1 + np > np,$$
 azaz $|q|^n < \frac{1}{np}$

adódik. Így, ha $\varepsilon > 0$, akkor

$$N := \left[\frac{1}{\epsilon p}\right] + 1 > \frac{1}{\epsilon p}$$

mellett az $n \in \mathbb{N}_0$, $n \ge N$ egyenlőtlenségből látható, hogy

$$|x_n - 0| = |q^n - 0| = |q|^n < \frac{1}{np} < \varepsilon.$$

A határérték fogalmát szemléltetik az alábbi ábrák:

Megjegyzések.

1. Ha az (x_n) sorozat konvergens, akkor nyilván tetszőleges $k \in \mathbb{Z}$ esetén az

$$y_n := x_{n+k} \quad (n \in \mathbb{N}_0)$$

ún. **elcsúsztatott sorozat** is konvergens, és $\lim(y_n) = \lim(x_n)$.

- 2. Mit jelent az, hogy (x_n) divergens? Pl.:
 - $\forall A \in \mathbb{R} \ \exists \, \epsilon > 0 : \ \{n \in \mathbb{N} : \ x_n \notin K_{\epsilon}(A)\}$ végtelen halmaz.
 - $\bullet \ \forall \, A \in \mathbb{R} \ \exists \, \epsilon > 0 \ \forall \, N \in \mathbb{N} \ \exists \, n \in \mathbb{N} \, : \qquad (n \geq N \quad \wedge \quad |x_n A| \geq \epsilon) \, .$

Példa. Az

$$x_n := (-1)^n$$
 $(n \in \mathbb{N}_0)$

sorozat divergens, hiszen, ha $A \in \mathbb{R}$, akkor az $\varepsilon := \max\{|A+1|, |A-1|\}$ pozitív valós számmal $K_{\varepsilon}(A)$ -n kívülre végtelen sok tagja esik a sorozatnak, ui. tetszőleges $N \in \mathbb{N}_0$ esetén

- $\varepsilon = |A-1|$, $n := 2N \implies n \ge N$ és $|(-1)^n A| = |1-A| = |A-1| \ge \varepsilon$;
- $\bullet \ \ \epsilon = |A+1|, \ n := 2N+1 \quad \Longrightarrow \quad n \geq N \ \text{\'es} \ |(-1)^n A| = |-1-A| = |A+1| \geq \epsilon.$

Tétel. Ha az (x_n) sorozat konvergens, akkor pontosan egy olyan $A \in \mathbb{R}$ van, amelyre $lim(x_n) = A$.

Bizonyítás. Tegyük fel, hogy van olyan $A \neq B \in \mathbb{R}$, hogy $\lim(x_n) = B$, majd legyen

$$\rho:=|A-B|>0 \qquad \text{\'es} \qquad \epsilon:=\rho/2.$$

Ekkor

$$K_{\varepsilon}(A) \cap K_{\varepsilon}(B) = \emptyset$$
, fgy $K_{\varepsilon}(B) \subset \mathbb{R} \backslash K_{\varepsilon}(A)$.

Mivel $\lim(x_n) = A$, ezért

$$\{n \in \mathbb{N} : x_n \notin K_{\varepsilon}(A)\}$$

véges halmaz, így

$$\{n \in \mathbb{N} : x_n \in K_{\varepsilon}(B)\}$$

is véges halmaz, ami ellentmond annak, hogy $\lim(x_n) = B$.

Az alábbiakban a fentiek következményeit tárgyaljuk.

Sorozatokkal kapcsolatban szokásos a következő szóhasználat: ha egy sorozat tagjaira vonatkozó állítás legfeljebb véges sok tagot kivéve minden tagra teljesül, akkor azt mondjuk, hogy a szóban forgó állítás majdnem minden tagra, vagy majdnem minden indexre teljesül.

Tétel. Ha majdnem minden $n \in \mathbb{N}_0$ -re $x_n = y_n$, úgy (x_n) és (y_n) ekvikonvergens, azaz (x_n) pontosan akkor konvergens, ha (y_n) is konvergens, és ez utóbbi esetben

$$\lim(x_n) = \lim(y_n).$$

Bizonyítás. Ha majdnem minden $n \in \mathbb{N}_0$ indexre $x_n = y_n$, akkor

$$x_n \in K_{\epsilon}(A), \quad y_n \in K_{\epsilon}(A)$$

feltételek majdnem minden n indexre egyszerre teljesülnek, vagy egyszerre nem teljesülnek.

Tétel. Minden kornvergens sorozat korlátos: $\mathfrak{c}\subset \mathfrak{l}_{\infty}$, de van olyan korlátos sorozat, amely nem konvergens.

Bizonyítás.

1. lépés. Legyen $\epsilon:=1$, továbbá tegyük fel, hogy $(x_n)\in\mathfrak{c}$. Ekkor van olyan $N\in\mathbb{N}_0$, hogy minden $N\leq n\in\mathbb{N}_0$ indexre $|x_n-A|<1$. Így

$$|x_n| = |(x_n - A) + A| \le |x_n - A| + |A| < 1 + |A|$$
 $(N \le n \in \mathbb{N}_0).$

Legyen

$$K := \max\{|x_0|, \dots, |x_{N-1}|, 1 + |A|\}.$$

Ekkor minden $n \in \mathbb{N}_0$ indexre $|x_n| \leq K$.

2. lépés. Az

$$x_n:=(-1)^n \qquad (n\in\mathbb{N}_0)$$

sorozat korlátos, de nem konvergens.

Következmények.

1. Ha $q \in \mathbb{R}$ olyan szám, amelyre |q| > 1, akkor az

$$x_n := q^n \qquad (n \in \mathbb{N}_0)$$

mértani sorozat nem korlátos, tehát divergens.

2. Az

$$x_n := \sum_{k=1}^n \frac{1}{k} \qquad (n \in \mathbb{N})$$

sorozat divergens, hiszen az

$$x_{2^n} \geq \frac{2+n}{2} \qquad (n \in \mathbb{N})$$

részsorozata, így maga a sorozat sem korlátos, következésképpen nem is konvergens.

Tétel. Konvergens sorozat bármely részsorozata is konvergens és a határértéke az eredeti sorozat határértékével egyezik meg.

Bizonyítás. Bármely $\nu \in \mathcal{I}$ esetén a

$$P:=\{n\in\mathbb{N}:\; x_n\notin K_\epsilon(A)\},\qquad \text{ill.}\qquad Q:=\{n\in\mathbb{N}:\; x_{\nu_n}\notin K_\epsilon(A)\}$$

halmazokra P ⊃ Q. Következésképpen, ha P (legfeljebb) véges, akkor Q is az.

Következmény. Ha valamely (x_n) sorozat, ill. $\mu, \nu \in \mathcal{I}$ indxsorozatok esetén

$$\lim(x \circ \mu) = \lim(x_{\mu_n}) \neq \lim(x_{\nu_n}) = \lim(x \circ \nu),$$

akkor (x_n) divergens.

Példa. Az

$$x_n := (-1)^n \qquad (n \in \mathbb{N}_0)$$

sorozat, ill. a

$$\mu_n := 2n \quad (n \in \mathbb{N}_0) \qquad \text{\'es a} \qquad \nu_n := 2n+1 \quad (n \in \mathbb{N}_0)$$

indexsorozat esetében

$$lim(x_{\mu_n}) = lim\left((-1)^{2n}\right) = 1 \neq -1 = lim\left((-1)^{2n+1}\right) = lim(x_{\nu_n}),$$

ami ismét azt bizonyítja, hogy (x_n) divergens.

Példa. Az

$$x_n:=\frac{3\cdot 2^n+2}{2^{n+1}-1} \qquad (n\in\mathbb{N}_0)$$

sorozat konvergens és $\lim(x_n) = \frac{3}{2}$, hiszen

• ha

$$y_n := \frac{3n+2}{2n-1} \qquad (n \in \mathbb{N}_0),$$

akkor

$$\mu_n := 2^n \qquad (n \in \mathbb{N}_0)$$

indexsorozattal tetszőleges $n\in\mathbb{N}_0$ indexre $y_n=(x\circ\mu)_n=x_{2^n}.$

• ha $\varepsilon > 0$ tetszőleges, akkor

$$\left|\frac{3n+2}{2n-1}-\frac{3}{2}\right|<\epsilon\qquad\iff\qquad n>\frac{\frac{7}{2\epsilon}+1}{2},$$

így a

$$N := \left\lceil \frac{\frac{7}{2\epsilon} + 1}{2} \right\rceil + 1$$

jó választás, azaz $\lim(y_n) = \frac{3}{2}$.

A gyakorlat anyaga

Felaldat. Korlátosság és monotonitás szempontjából vizsgáljuk az alábbi sorozatokat!

1.
$$x_n := \sqrt{n} \quad (n \in \mathbb{N}_0);$$

2.
$$x_n := \frac{(-1)^n}{n+1} \quad (n \in \mathbb{N}_0);$$

3.
$$x_n := \sum_{k=0}^n \frac{1}{k!} \quad (n \in \mathbb{N}_0);$$

$$3. \ x_n := \sum_{k=0}^n \frac{1}{k!} \quad (n \in \mathbb{N}_0); \qquad \qquad 4. \ x_n := \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n \cdot n!} \quad (n \in \mathbb{N});$$

5.
$$x_n := n^2 + 1 \quad (n \in \mathbb{N}_0);$$

5.
$$x_n := n^2 + 1 \quad (n \in \mathbb{N}_0);$$
 6. $x_n := \frac{2 - 7n}{3n + 1} \quad (n \in \mathbb{N});$

7.
$$x_n := \frac{8n+3}{5n+4} \quad (n \in \mathbb{N}_0);$$
 8. $x_n := \sum_{i=1}^n \frac{1}{k^2} \quad (n \in \mathbb{N}).$

8.
$$x_n := \sum_{k=1}^n \frac{1}{k^2} \quad (n \in \mathbb{N}).$$

Útm.

- 1. Az (x_n) sorozat
 - (felülről) nem korlátos, ui. bármely $0 < K \in \mathbb{R}$ szám esetén van olyan $n \in \mathbb{N}_0$, hogy

$$x_n = \sqrt{n} > K,$$

hiszen ez azzal egyenértékű, hogy $n > K^2$, ami igaz, mert \mathbb{N}_0 felülről nem korlátos.

• szigorúan monoton növekedő, ui. \forall $n \in \mathbb{N}_0$:

$$x_n < x_{n+1} \qquad \Longleftrightarrow \qquad \sqrt{n} < \sqrt{n+1} \qquad \Longleftrightarrow \qquad n < n+1.$$

- 2. Az (x_n) sorozat
 - korlátos, ui.

$$x_n \in \left[-\frac{1}{2}, 1\right] \qquad (n \in \mathbb{N}_0);$$

nem monoton, ui.

$$x_0 = 1,$$
 $x_1 = -\frac{1}{2},$ $x_2 = \frac{1}{3}.$

3. Az (x_n) sorozat

• korlátos, ui. $x_0 = 1$, $x_1 = 2$, és bármely $2 < n \in \mathbb{N}_0$ indexre

$$x_n = 1 + 1 + \sum_{k=2}^n \frac{1}{k!} = 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=2}^n \frac{1}{k(k-1)} < 2 + 1 = 3,$$

ui.

$$\begin{split} \sum_{k=2}^{n} \frac{1}{k(k-1)} &= \sum_{k=2}^{n} \frac{k - (k-1)}{k(k-1)} = \sum_{k=2}^{n} \left\{ \frac{1}{k-1} - \frac{1}{k} \right\} = \\ &= \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n-1} \right) + \left(\frac{1}{n-1} - \frac{1}{n} \right) = \\ &= 1 - \frac{1}{n}. \end{split}$$

- szigorúan monoton növekedő (vö. előadás).
- 4. Az (x_n) sorozat
 - korlátos, ui. (vö. előző példa) \forall $n \in \mathbb{N}$: $2 < x_n < 3+1$,
 - ullet szigorúan monoton csökkenő, ui. minden $\mathfrak{n} \in \mathbb{N}$ esetén

$$\begin{split} x_{n+1} - x_n &= \sum_{k=0}^{n+1} \frac{1}{k!} + \frac{1}{(n+1)(n+1)!} - \sum_{k=0}^{n} \frac{1}{k!} - \frac{1}{nn!} = \\ &= \sum_{k=0}^{n+1} \frac{1}{k!} - \sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!} = \\ &= \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!} = \\ &= \frac{n(n+1) + n - (n+1)^2}{n(n+1)(n+1)!} = \frac{-1}{n(n+1)(n+1)!} < 0. \end{split}$$

- 5. Az (x_n) sorozat
 - ullet (felülről) nem korlátos, ui. bármely K>0 valós szám esetén van olyan $n\in\mathbb{N}_0$ index, hogy

$$x_n = n^2 + 1 > K$$

hiszen ha $K \in (0, 1)$, akkor n := 0, ha pedig $K \in [1, +\infty)$, akkor $n := [\sqrt{K - 1}] + 1$ ilyen.

• szigorúan monoton növekedő, hiszen bármely $n \in \mathbb{N}_0$ indxre

$$x_n = n^2 + 1 < (n+1)^2 + 1 = x_{n+1}$$
.

6. Mivel bármely $n \in \mathbb{N}_0$ esetén

$$x_{n} = \frac{2-7n}{3n+1} = -\frac{7}{3} \cdot \frac{21n-6}{21n+7} = -\frac{7}{3} \cdot \frac{21n+7-13}{21n+7} = -\frac{7}{3} \cdot \left(1 - \frac{13}{21n+7}\right) =$$

$$= -\frac{7}{3} + \frac{7}{3} \cdot \frac{13}{21n+7} = -\frac{7}{3} + \frac{13}{3} \cdot \frac{1}{3n+1}$$

és

$$0 < \frac{1}{3n+1} \le \frac{1}{3 \cdot 0 + 1} = 1,$$

ezért

$$-\frac{7}{3}< x_n \leq \frac{6}{3}=2 \qquad (n\in \mathbb{N}_0),$$

azaz (x_n) korlátos. Az (x_n) sorozat szigorúan monoton csökkenő, hiszen tetszőleges $n\in\mathbb{N}_0$ esetén

$$x_{n+1} - x_n = \frac{13}{3} \cdot \left(\frac{1}{3(n+1)+1} - \frac{1}{3n+1} \right) < 0.$$

7. Mivel bármely $n \in \mathbb{N}_0$ esetén

$$x_n = \frac{8}{5} \cdot \frac{40n + 15}{40n + 32} = \frac{8}{5} \cdot \frac{40n + 32 - 17}{40n + 32} = \frac{8}{5} \cdot \left(1 - \frac{17}{40n + 32}\right) = \frac{8}{5} - \frac{17}{5} \cdot \frac{1}{5n + 4},$$

ezért az (x_n) sorozat

• szigorúan monoton növekedő, hiszen

$$x_{n+1} - x_n = \left(-\frac{17}{5}\right) \left(\frac{1}{5n+9} - \frac{1}{5n+4}\right) > 0 \qquad (n \in \mathbb{N}_0);$$

• korlátos, ui.

$$0 < \frac{1}{5n+4} \le \frac{1}{5 \cdot 0 + 4} = \frac{1}{4} \quad (n \in \mathbb{N}_0),$$

így

$$\frac{8}{5} - \frac{17}{5} \cdot \frac{1}{4} = \frac{15}{20} = \frac{3}{4} \le x_n < \frac{8}{5} \qquad (n \in \mathbb{N}_0).$$

8. Az (x_n) sorozat

• szigorúan monoton növekedő, hiszen bármely $n \in \mathbb{N}$ indexre

$$x_{n+1} - x_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0;$$

 $\bullet\,$ korlátos, ui. $x_1=1$ és bármely $2\leq n\in\mathbb{N}$ indexre

$$x_n = 1 + \sum_{k=2}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \frac{1}{k(k-1)} \le 1 + 1 = 2$$

(vö. 3. feladat).

Definíció. Az $a, b \in \mathbb{R}$ számok

1. alsó burkolójának nevezzük a

$$a \wedge b := \min\{a, b\} = \begin{cases} a & (a \leq b), \\ b & (a > b) \end{cases}$$

valós számot;

2. **felső burkoló**jának nevezzük a

$$a \lor b := \max\{a, b\} = \begin{cases} a & (a \ge b), \\ b & (a < b) \end{cases}$$

valós számot.

Feladat. Igazoljuk, hogy bármely $a, b \in \mathbb{R}$ szám esetén

$$a \lor b = \frac{a+b+|a-b|}{2}$$
 és $a \land b = \frac{a+b-|a-b|}{2}$

teljesül!

Útm.

1. lépés Ha $a \ge b$, akkor

$$\frac{a + b - |a - b|}{2} = \frac{a + b - (a - b)}{2} = b = \min\{a, b\}$$

$$\frac{a+b+|a-b|}{2}=\frac{a+b+(a-b)}{2}=\alpha=\max\{a,b\}.$$

2. lépés Ha a < b, akkor

$$\frac{\alpha+b-|\alpha-b|}{2}=\frac{\alpha+b-(b-\alpha)}{2}=\alpha=\min\{\alpha,b\}$$

$$\frac{a+b+|a-b|}{2}=\frac{a+b+(b-a)}{2}=b=\max\{a,b\}.$$

5. oktatási hét

Az előadás anyaga

Definíció. Azt mondjuk, hogy az (x_n) sorozat **zérus-sorozat** vagy **nullsorozat** (jelben $(x_n) \in \mathfrak{c}_0$), ha $\lim(x_n) = 0$.

Tétel. Valamely (x_n) sorozat esetén igaz a

$$\lim(x_n) = \alpha \qquad \iff (x_n - \alpha) \in \mathfrak{c}_0$$

ekvivalencia.

Bizonyítás. A tételbeli állítás a tetszőleges $n \in \mathbb{N}$ index esetén fennálló

$$|x_n - \alpha| < \varepsilon$$
 \iff $|(x_n - \alpha) - 0| < \varepsilon$

ekvivalencia közvetlen következménye.

Következmény (majoránskritérium). Ha tetszőleges (x_n) sorozat és $(y_n) \in \mathfrak{c}_0$ esetén majdnem minden $n \in \mathbb{N}_0$ indexre $|x_n| \leq y_n$, akkor (x_n) nullsorozat, hiszen ekkor alkalmas $N \in \mathbb{N}_0$ indexre

$$-y_n \le x_n \le y_n$$
 $(N \le n \in \mathbb{N}_0),$

így a tetszőleges $\varepsilon > 0$ esetén fennálló

$$|y_n| < \varepsilon \qquad \iff \qquad -\varepsilon < y_n < \varepsilon$$

ekvivalencia következtében

$$-\varepsilon < -y_n \le x_n \le y_n < \varepsilon$$
 $(N \le n \in \mathbb{N}).$

Zérus-sorozatokra vonatkozik az alábbi

Tétel. Ha $(x_n), (y_n) \in \mathfrak{c}_0$ és $(z_n) \in \mathfrak{l}_{\infty}$, akkor

$$(x_n) + (y_n) \in \mathfrak{c}_0$$
 és $(x_n) \cdot (z_n) \in \mathfrak{c}_0$.

Bizonyítás.

1. lépés Legyen $\epsilon>0$ és $(x_n), (y_n)\in\mathfrak{c}_0.$ Ekkor alkalmas $N_x, N_y\in\mathbb{N}_0$ esetén

$$|x_n|<\frac{\epsilon}{2}\quad (N_x\leq n\in \mathbb{N}_0) \qquad \text{\'es} \qquad |y_n|<\frac{\epsilon}{2}\quad (N_y\leq n\in \mathbb{N}_0).$$

Következésképpen, ha $N:=\max\{N_x,N_y\}$, akkor tetszőleges $N\leq n\in\mathbb{N}_0$ indexre

$$|x_n + y_n| \le |x_n| + |y_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Ez pedig azt jelenti, hogy

$$(x_n) + (y_n) \in \mathfrak{c}_0.$$

2. lépés Mivel $(z_n) \in l_\infty$, ezért alkalmas $0 < M \in \mathbb{R}$ esetén

$$|z_n| \leq M$$
 $(n \in \mathbb{N}_0)$.

Mivel $(x_n) \in \mathfrak{c}_0$, ezért tetszőleges $\epsilon > 0$ számhoz van olyan $N \in \mathbb{N}_0$ index, hogy

$$|x_n|<\frac{\epsilon}{M} \qquad (N\leq n\in \mathbb{N}_0).$$

Ez azt jelenti, hogy

$$|x_n \cdot z_n| = |x_n| \cdot |z_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon$$
 $(N \le n \in \mathbb{N}_0),$

azaz

$$(x_n)\cdot(z_n)\in\mathfrak{c}_0.$$

A fenti tételbeli állításra vezethető vissza a határétrték és az algebrai műveletek kapcsolatára vonatkozó

Tétel. Legyen (x_n) , (y_n) konvergens sorozat, valamint $\lambda \in \mathbb{R}$. Ekkor

1. $(x_n) + (y_n)$ konvergens és

$$lim(x_n + y_n) = lim(x_n) + lim(y_n);$$

2. $\lambda \cdot (x_n)$ konvergens és

$$\lim(\lambda \cdot x_n) = \lambda \cdot \lim(x_n);$$

3. $(x_n) \cdot (y_n)$ konvegens és

$$lim(x_n\cdot y_n)=lim(x_n)\cdot lim(y_n);$$

4. ha $\lim(y_n) \neq 0$, úgy $\frac{(x_n)}{(y_n)}$ konvergens és

$$\lim \left(\frac{x_n}{y_n}\right) = \frac{\lim(x_n)}{\lim(y_n)}.$$

Bizonyítás. Az $(x_n), (y_n) \in \mathfrak{c}$ sorozatok esetén legyen

$$\lim(x_n) =: A$$
 és $\lim(y_n) =: B$.

Ekkor

1. $(x_n - A), (y_n - B) \in \mathfrak{c}_0$, továbbá

$$c_0 \ni (x_n - A) + (y_n - B) = (x_n + y_n) - (A + B).$$

Következésképpen

$$(x_n) + (y_n) \in \mathfrak{c}$$
 és $\lim(x_n + y_n) = A + B = \lim(x_n) + \lim(y_n)$.

2. $(x_n-A)\in\mathfrak{c}_0,$ így tetszőleges $\lambda\in\mathbb{R}$ számra

$$\mathfrak{c}_0 \ni \lambda \cdot (\mathfrak{x}_n - A) = (\lambda \mathfrak{x}_n - \lambda A).$$

Következésképpen

$$\lambda \cdot (x_n) \in \mathfrak{c} \qquad \text{\'es} \qquad \text{lim}(\lambda \cdot x_n) = \lambda \cdot A = \lambda \cdot \text{lim}(x_n).$$

3. $(x_n - A), (y_n - B) \in \mathfrak{c}_0$, továbbá

$$\mathfrak{c}_0 \ni (\mathfrak{x}_n - A)\mathfrak{y}_n + (\mathfrak{y}_n - B)A = (\mathfrak{x}_n \cdot \mathfrak{y}_n - AB).$$

Következésképpen

$$(x_n) \cdot (y_n) \in \mathfrak{c}$$
 és $\lim (x_n \cdot y_n) = A \cdot B = \lim (x_n) \cdot \lim (y_n)$.

4. **1. lépés.** Megmutatjuk, hogy az $\left(\frac{1}{y_n}\right)$ sorozat korlátos. Mivel B \neq 0, ezért a

$$\varepsilon := \frac{|B|}{2} > 0$$

számhoz a határérték értelmezése szerint van olyan $N \in \mathbb{N}_0$ index, amelyre

$$|y_n-B|<\frac{|B|}{2}$$
 $(N\leq n\in\mathbb{N}_0).$

A háromszög-egyenlőtlenség alkalmazásával így azt kapjuk, hogy bármely $N \leq n \in \mathbb{N}_0$ indexre

$$|y_n| = |B - (B - y_n)| \ge |B| - |B - y_n| > |B| - \frac{|B|}{2} = \frac{|B|}{2}.$$

Reciprokra áttérve azt kapjuk, hogy

$$\frac{1}{|y_n|} \le \frac{2}{|B|} \qquad (N \le n \in \mathbb{N}_0).$$

Ha

$$K := \max \left\{ \frac{1}{|y_0|}, \frac{1}{|y_1|}, \frac{1}{|y_2|}, \dots, \frac{1}{|y_{N-1}|}, \frac{2}{|B|} \right\},$$

akkor bármely $n \in \mathbb{N}_0$ indexre

$$\frac{1}{|y_n|} \le K,$$

$$azaz \; \frac{1}{(y_n)} \in l_\infty.$$

2. lépés. Mivel az

$$\frac{x_n}{y_n} - \frac{A}{B} = \frac{1}{y_n} \cdot (x_n - A) + \frac{A}{By_n} \cdot (B - y_n) \qquad (n \in \mathbb{N})$$

sorozat zérus-sorozat, ezért az állítás igaz.

Feladat. Legyen $q \in (-1, 1)$. Mutassuk meg, hogy az

$$x_n := \sum_{k=0}^n q^k \qquad (n \in \mathbb{N}_0)$$

sorozat (mértani sor) konvergens és számítsuk ki határértékét!

Útm.

$$\sum_{k=0}^{n} q^{n} = 1 + q + \ldots + q^{n} = \frac{1 - q^{n+1}}{1 - q} \longrightarrow \frac{1 - 0}{1 - q} = \frac{1}{1 - q} \qquad (n \to \infty).$$

Megjegyzés. A korábbi állítások következménye az

$$\mathfrak{c}_0\subset\mathfrak{c}\subset\mathfrak{l}_\infty\subset\mathcal{S}$$

tartalmazás-lánc, ahol mindegyik tér az előző valódi lineáris altere.

Tétel. Legyen $(x_n), (y_n) \in \mathfrak{c}$, ill.

$$\lim(x_n) =: A$$
 és $\lim(y_n) =: B$.

Ekkor

- 1. Ha A < B, akkor majdnem minden $n \in \mathbb{N}_0$ indexre $x_n < y_n$.
- 2. Ha majdnem minden $n \in \mathbb{N}_0$ indexre $x_n \leq y_n$, akkor $A \leq B$.

Bizonyítás.

1. Legyen

$$\varepsilon := \frac{B - A}{4} > 0.$$

Ekkor

$$A + \varepsilon < B - \varepsilon \iff A + \frac{B - A}{4} < B - \frac{B - A}{4} \iff$$

$$\iff \frac{3A + B}{4} < \frac{3B + A}{4} \iff 2A < 2B,$$

és a határérték definíciója alkalmas $N_x, N_y \in \mathbb{N}_0$ indexekre

$$A - \varepsilon < x_n < A + \varepsilon \quad (N_x \le n \in \mathbb{N}_0) \qquad \text{\'es} \qquad B - \varepsilon < y_n < B + \varepsilon \quad (N_u \le n \in \mathbb{N}_0).$$

Így, ha $N:=\max\{N_x,N_y\}$, akkor bármely $N\leq n\in\mathbb{N}_0$ indexre

$$x_n < A + \varepsilon < B - \varepsilon < y_n$$
.

2. Az állítással ellentétben tegyük fel, hogy A>B. ekkor az előző állítás felhasználásával azt kapjuk, hogy majdnem minden $n\in\mathbb{N}_0$ indexre $x_n>y_n$, ami ellentmond a feltételnek.

Tétel (Sandwich-tétel). Legyenek $(x_n), (y_n), (z_n)$ olyan számsorozatok, hogy majdnem minden $n \in \mathbb{N}_0$ indexre

$$x_n \le y_n \le z_n$$

teljesül. Ha

$$(x_n), (z_n) \in \mathfrak{c}: \qquad \lim(x_n) = \lim(z_n),$$

akkor $(y_n) \in \mathfrak{c}$ és

$$\lim(y_n) = \lim(x_n) = \lim(z_n).$$

Bizonyítás. Legyen

$$\lim(x_n) =: A := \lim(z_n).$$

Ekkor $(z_n - x_n)$ nullsorozat, másrészt majdnem minden $n \in \mathbb{N}_0$ indexre

$$0 < y_n - x_n < z_n - x_n$$

Következésképpen $(y_n - x_n)$ is nullsorozat. Ennélfogva

$$(y_n) = \underbrace{(x_n)}_{\in \mathfrak{c}} + \underbrace{(y_n - x_n)}_{\in \mathfrak{c}_0} \in \mathfrak{c}$$

és így

$$\lim(y_n) = \lim(x_n) + \lim(y_n - x_n) = A + 0 = A.$$

Példák.

1. Mivel tetszőleges $n \in \mathbb{N}$ indexre

$$0 \le \frac{\sin^2(n)}{n} \le \frac{1}{n},$$

ezért

$$\lim \left(\frac{\sin^2(n)}{n}\right) = 0.$$

2. Mivel bármely $n \in \mathbb{N}$ indexre

$$1 \le \sqrt[n]{n} \le 1 + 2 \cdot \frac{\sqrt{n} - 1}{n} = 1 + \frac{2}{\sqrt{n}} - \frac{2}{n}$$

(vö. 3. gyakorlat), ezért

$$\overline{\lim \left(\sqrt[n]{n}\right) = 1}.$$

3. Mivel tetszőleges $n \in \mathbb{N}$ esetén

$$\frac{\alpha-1}{\alpha n} \leq \sqrt[n]{\alpha} - 1 \leq \frac{\alpha-1}{n} \qquad (\alpha \in (1,+\infty)),$$

ill.

$$\frac{1-\alpha}{n} \leq 1 - \sqrt[n]{\alpha} \leq \frac{1-\alpha}{\alpha n} \qquad (\alpha \in (0,1))$$

(vö. 3. gyakorlat), ezért bármely $0 < \alpha \in \mathbb{R}$ számra

$$\lim \left(\sqrt[n]{\alpha}\right) = 1.$$

Tétel.

1. Tetszőleges $(x_n) \in \mathfrak{c}$ számsorozatra

$$(|x_n|) \in \mathfrak{c}$$
 és $\lim(|x_n|) = |\lim(x_n)|$.

2. Tetszőleges $(x_n), (y_n) \in \mathfrak{c}$ számsorozatra $(x_n \wedge y_n), (x_n \vee y_n) \in \mathfrak{c}$ és

$$lim(x_n \wedge y_n) = lim(x_n) \wedge lim(y_n), \qquad lim(x_n \vee y_n) = lim(x_n) \vee lim(y_n).$$

Bizonyítás.

1. Ha $A := \lim(x_n)$, akkor a háromszög-egyenlőtlenség alapján

$$0 \le ||x_n| - |A|| \le |x_n - A| \qquad (n \in \mathbb{N}_0).$$

 $\text{Ez azt jelenti, hogy } (|x_n|-|A|) \in \mathfrak{c}_0\text{, k\"ovetkez\'esk\'eppen } (|x_n|) \text{ koonvergens \'es } \lim(|x_n|) = |A|.$

2. Ha $A := \lim(x_n)$ és $B := \lim(y_n)$, akkor a korábbiak értelmében

$$\begin{split} \lim(x_n\vee y_n) &= \lim\left(\frac{x_n+y_n+|x_n-y_n|}{2}\right) = \frac{\lim(x_n+y_n)+\lim(|x_n-y_n|)}{2} = \\ &= \frac{\lim(x_n+y_n)+|\lim(x_n)-\lim(y_n)|}{2} = \lim(x_n)\vee\lim(y_n). \end{split}$$

A második rész igazolása hasonlóan történik HF.

Megjegyezzük, hogy

- 1. a tételbeli első állítás megfordítása nem igaz: $(1) \in \mathfrak{c}$, de $((-1)^n) \notin \mathfrak{c}$.
- 2. igaz az

$$(x_n) \in \mathfrak{c}_0 \iff (|x_n|) \in \mathfrak{c}_0$$

ekvivalelcia, hiszen

$$||x_n| - 0| = |x_n - 0|$$
 $(n \in \mathbb{N}_0).$

Tétel (mozgólépcső-elv). Legyen (x_n) monoton sorozat. Az (x_n) sorozat pontosan akkor konvergens, ha korlátos és

monoton növekedő esetben

$$\lim(x_n) = \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\};$$

• monoton csökkenő esetben

$$lim(x_n)=inf\{x_n\in\mathbb{R}:\ n\in\mathbb{N}_0\}.$$

Bizonyítás.

1. lépés Tegyük fel, hogy (x_n) monoton növekedő, majd legyen

$$\alpha := \sup\{x_n \in \mathbb{R} : n \in \mathbb{N}_0\}$$

Ekkor bármely $n \in \mathbb{N}_0$ indexre $x_n \leq \alpha$, továbbá tetszőleges $\epsilon > 0$ számhoz van olyan $N \in \mathbb{N}_0$ index, hogy $x_N > \alpha - \epsilon$. Mivel az (x_n) sorozat monoton növekedő, ezért tetszőleges $N \leq n \in \mathbb{N}_0$ indexre $x_n > \alpha - \epsilon$, azaz

$$\forall \epsilon > 0 \, \exists N \in \mathbb{N}_0 \, \forall n \in \mathbb{N}_0 \, : \qquad (n \geq N \quad \Longrightarrow \quad \alpha - \epsilon < x_n \leq \alpha).$$

Következésképpen $\lim(x_n) = \alpha$.

2. lépés Tegyük fel, hogy (x_n) monoton csökkenő. Ekkor $(-x_n)$ monoton növekedő. Felhasználva a határértékre vonatkozó műveleti szabályokat és a

$$\sup\{-x_n \in \mathbb{R}: n \in \mathbb{N}_0\} = -\inf\{x_n \in \mathbb{R}: n \in \mathbb{N}_0\}$$

azonosságot az állítás a fentiek (1. lépés) következménye.

Feladat. Mutassuk meg, hogy ha tetszőleges $n \in \mathbb{N}$ esetén

$$a_n := \left(1 + \frac{1}{n}\right)^n, \quad \text{ill.} \quad b_n := \left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1},$$

akkor az (a_n) és a (b_n) sorozat kielégíti a Cantor-féle közöspont-tétel feltételeit!

Útm.

• Bármely $n \in \mathbb{N}$ indxre $a_{n+1} - a_n > 0$, $b_{n+1} - b_n < 0$, ui. egyrészt (a_n) monoton növekedő (vö. 3. gyakorlat), másrészt pedig minden $n \in \mathbb{N}$ indexre a mértani és a számtani közép közötti egyenlőtlenség következtében

$$\frac{1}{b_n} = 1 \cdot \left(\frac{n}{n+1}\right)^{n+1} < \left(\frac{1 + (n+1) \cdot \frac{n}{n+1}}{n+2}\right)^{n+2} = \left(\frac{1+n}{n+2}\right)^{n+2} = \left(\frac{n+1}{n+2}\right)^{n+2} = \frac{1}{b_{n+1}}.$$

• Tetszőleges $n \in \mathbb{N}$ esetén

$$\mathbf{a}_{n} = \left(1 + \frac{1}{n}\right)^{n} < \left(1 + \frac{1}{n}\right)^{n} \cdot \left(1 + \frac{1}{n}\right) = \left(1 + \frac{1}{n}\right)^{n+1} = \mathbf{b}_{n};$$

• Ha $\epsilon \in \mathbb{R}$ tetszőleges és $n \in \mathbb{N}$ olyan, hogy $n > \frac{3}{\epsilon}$, akkor

$$b_n-\alpha_n=\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n}\right)^n=\left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{n}-1\right)=\left(1+\frac{1}{n}\right)^n\frac{1}{n}<\frac{3}{n}<\epsilon.$$

Így

$$\exists \mid e \in \mathbb{R}: \qquad \left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1} \quad (n \in \mathbb{N}).$$

Megjegyezzük, hogy

1. mivel bármely $n \in \mathbb{N}$ indexre $a_n < e < b_n$, azaz

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1} \qquad (n \in \mathbb{N}),$$

ezért

$$2 \le \left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{6}\right)^7 = \frac{823543}{279936} < 3.$$

az e szám¹¹ bevezetése nem így szokásos, hanem a mozgólépcső-elv felasználásával. Tudjuk ui. (vö.
 gyakorlat), hogy az

$$x_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N})$$

szigorúan monoton növekedő és korlátos. Következésképpen (x_n) konvergens és

$$(2,3) \ni e := \lim(x_n) = \sup\left\{\left(1 + \frac{1}{n}\right)^n \in \mathbb{R} : n \in \mathbb{N}\right\}.$$

3. az

$$e_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N})$$

sorozat első néhány tagja:

$$e_1 = 2;$$
 $e_2 = \frac{9}{4} = 2,25;$ $e_3 = \frac{64}{27} = 2,\dot{3}7\dot{0};$ $e_4 = \frac{625}{256} = 2,44140625.$

Később látni fogjuk, hogy

4. Nagy hiba lenne arra gondolni, hogy mivel

$$1+rac{1}{n}\longrightarrow 1 \quad (n\to\infty), \qquad \text{ez\'ert} \qquad \left(1+rac{1}{n}
ight)^n\longrightarrow 1^n=1 \quad (n\to\infty),$$

hiszen egyrészt a határérték független n-től, másrészt pedig a szorzás művelet és a határérték kapcsolatára vonatkozó tétel nem használható, hiszen az

$$\left(1+\frac{1}{n}\right)^n = \underbrace{\left(1+\frac{1}{n}\right)\cdot\left(1+\frac{1}{n}\right)\cdot\ldots\cdot\left(1+\frac{1}{n}\right)\cdot\left(1+\frac{1}{n}\right)}_{n \text{ even}}$$

¹¹A e-t Leonhard Euler (1707-1783) svájci matematikus tiszteletére **Euler-szám**nak is nevezik.

szorzatban a tényezők száma nem állandó, függ n-től.

5. Később megmutatjuk, hogy e irracionális, sőt transzcendens szám. 12

Vegyük észre, hogy bizonyos divergens sorozatok esetében a "divergencia minősőgében" különbségek mutatkoznak. Az

$$u_n := (-1)^n \cdot n \quad (n \in \mathbb{N}_0), \qquad v_n := n \quad (n \in \mathbb{N}_0) \qquad \text{ill.} \qquad w_n := -n \quad (n \in \mathbb{N}_0)$$

sorozatok pl. "másképp divergensek": a (ν_n) , ill. (w_n) sorozat esetében elmondható, hogy tetszőleges $0 < \omega \in \mathbb{R}$, ill. $0 > \alpha \in \mathbb{R}$ számnál a (ν_n) , ill. a (w_n) sorozatnak csak véges sok tagja kisebb, ill. nagyobb, míg hasonló állítás az (u_n) sorozat esetében nem igaz.

Definíció. Azt mondjuk, hogy az $x : \mathbb{N}_0 \to \mathbb{R}$ sorozatnak

1. $+\infty$ a határértéke (vagy az (x_n) sorozat a $+\infty$ -hez divergál): ha

$$\forall \omega>0 \quad \exists N\in \mathbb{N}_0 \quad \forall n\in \mathbb{N}_0: \qquad (n\geq N \quad \Longrightarrow \quad x_n>\omega).$$

Ezt az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{n\to\infty}(x_n)=+\infty\qquad \lim(x_n)=+\infty,\qquad x_n\longrightarrow +\infty\quad (n\to\infty),$$

2. $-\infty$ a határértéke (vagy az (x_n) sorozat a $-\infty$ -hez divergál):

$$\forall \alpha < 0 \quad \exists N \in \mathbb{N}_0 \quad \forall n \in \mathbb{N}_0: \qquad (n \geq N \quad \Longrightarrow \quad x_n < \alpha).$$

Ezt az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{n\to\infty}(x_n)=-\infty\qquad \lim(x_n)=-\infty,\qquad x_n\longrightarrow -\infty\quad (n\to\infty).$$

Ha a fenti két eset valamelike teljesül, akkor azt mondjuk, hogy az (x_n) sorozat tágabb értelemben konvergens.

 $^{^{12}}$ Ez azt jelenti, hogy nincs olyan egész együtthatós polinom, aminek ez a szám gyöke lenne. A $\sqrt{2}$ például irracionális, de nem transzcendens, mert $\sqrt{2}$ megoldása az $x^2-2=0$ egyenletnek. Azokat a valós számokat, amelyek valamely egész együtthatós polinomnak a gyökei **algebrai számnak** nevezzük ($\sqrt{2}$ tehát algebrai szám).

Példák.

1. Legyen $k \in \mathbb{N}$. Ekkor az

$$x_n := n^k$$
 $(n \in \mathbb{N}_0)$

tágabb értelemben konvergens, pontosabban $\lim(x_n)=+\infty$, hiszen ha $\omega>0$ tetszőleges szám, akkor

$$n^k > \omega \qquad \iff \qquad n > \sqrt[k]{\omega},$$

így

$$N := \left\lceil \sqrt[k]{\omega} \right\rceil + 1$$

jó küszöbindex.

2. Az

$$x_n := (-1)^n \cdot n \qquad (n \in \mathbb{N}_0)$$

sorozat tágabb értelemben nem konvergens, hiszen sem $\lim(x_n) = -\infty$, sem pedig $\lim(x_n) = +\infty$ nem áll fenn, hiszen a sorozatnak végtelen sok tagja negatív, ill. pozitív.

3. Ha (x_n) pozitív vagy negatív tagú nullsorozat, azaz $\lim(x_n) = 0$ és

$$x_n > 0 \quad (n \in \mathbb{N}_0)$$
 vagy $x_n < 0 \quad (n \in \mathbb{N}_0)$,

akkor

$$\lim_{n\to\infty}\left(\frac{1}{x_n}\right)=+\infty \qquad \text{vagy} \qquad \lim_{n\to\infty}\left(\frac{1}{x_n}\right)=-\infty,$$

hiszen ekkor bármely $\epsilon>0$ esetén van olyan $N\in\mathbb{N}_0$ küszöbindex, hogy minden $N\leq n\in\mathbb{N}_0$ indexre $|x_n|<\epsilon$, következésképpen

$$\frac{1}{x_n} > \frac{1}{\epsilon} \quad (\text{ha } x_n > 0), \qquad \text{ill.} \qquad \frac{1}{x_n} < -\frac{1}{\epsilon} \quad (\text{ha } x_n < 0).$$

Megjegyzés. A tágabb értelemben vett határérték igen sok vonatkozásban hasonló a "közönséges" hatrértékhez (azaz, amikor a határérték valamely valós szám). Van azonban néhány tétel, ilyen pl. a Cauchy-félekonvergenciakritérium (vö. 6. előadás), amely csak szűkebb értelemben konvergens sorozatokra teljesül.

Definíció. Azt mondjuk, hogy az $(x_n) : \mathbb{N}_0 \to \mathbb{R}$ sorozatnak van határértéke, ha

$$\exists A \in \overline{\mathbb{R}} \quad \forall \epsilon > 0 \quad \exists N \in \mathbb{N}_0 \quad \forall n \in \mathbb{N}_0 : \qquad (n \geq N \quad \Longrightarrow \quad x_n \in K_\epsilon(A)).$$

A határértékekre vonatkozó tételek és műveleti szabályok nagy része a tágabb értelemben vett határértékekre is érvényes. Ezek egyszerű megfogalmazásához kiterjesztjük az algebrai műveleteket az $\overline{\mathbb{R}}$ számhalmazra az alábbiak szerint:

$$\begin{array}{lll} a+(-\infty):=(-\infty)+a:=-\infty & (a\in[-\infty,+\infty)),\\ a+(+\infty):=(+\infty)+a:=+\infty & (a\in(-\infty,+\infty]),\\ a\cdot(+\infty):=(+\infty)\cdot a:=+\infty & (a\in(0,+\infty]),\\ a\cdot(+\infty):=(+\infty)\cdot a:=-\infty & (a\in[-\infty,0)),\\ a\cdot(-\infty):=(-\infty)\cdot a:=-\infty & (a\in(0,+\infty]),\\ a\cdot(-\infty):=(-\infty)\cdot a:=-\infty & (a\in(0,+\infty]),\\ a\cdot(-\infty):=(-\infty)\cdot a:=+\infty & (a\in(-\infty,0)),\\ \frac{a}{+\infty}:=\frac{a}{-\infty}:=0 & (a\in(-\infty,+\infty)),\\ \frac{a}{b}:=a\cdot\frac{1}{b} & ((a,b)\in(-\infty,+\infty)\times\{-\infty,+\infty\}\cup[-\infty,+\infty]\times(\mathbb{R}\setminus\{0\})). \end{array}$$

Nem értelmezzük

- $a + \infty$ és $a \infty$, ill. $a \infty$ és $a + \infty$ elemek összegét,
- a 0-nak a $+\infty$ -nel és a $-\infty$ -nel való szorzatát,
- az a/b hányadost, ha b = 0, vagy, ha $a, b \in \{-\infty, +\infty\}$.

összeg	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$
b > 0	a + b			$+\infty$	$-\infty$
b = 0				$+\infty$	$-\infty$
b < 0				$+\infty$	$-\infty$
$b = +\infty$	+∞	+∞	+∞	$+\infty$	
$b = -\infty$	$-\infty$	$-\infty$	$-\infty$		$-\infty$

szorzat	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$
b > 0				$+\infty$	$-\infty$
b = 0		$a \cdot b$			
b < 0				$-\infty$	$+\infty$
$b = +\infty$	$+\infty$		$-\infty$	$+\infty$	$-\infty$
$b=-\infty$	$-\infty$		$+\infty$	$-\infty$	+∞

hányados	a > 0	a = 0	a < 0	$a = +\infty$	$a = -\infty$
b > 0	a/b			$+\infty$	$-\infty$
b = 0					
b < 0		a/b		$-\infty$	$+\infty$
$b = +\infty$	0				
$b=-\infty$	0				

A fentiekben bevezetett értelmezéseket használva a határértékekre vonatkozó műveleti szablyok az alábbi egységes formában adhatók meg.

Tétel. Tegyük fel, hogy az $x:=(x_n),y:=(y_n):\mathbb{N}\to\mathbb{R}$ sorozatoknak van határértéke. Ha $*\in\{+,-,\cdot,/\}$ és $\lim(y_n)$ -nek a fentiek szerint van értelme, akkor az x*y sorozatnak is van határértéke és

$$\lim(x*y) = \lim(x_n) * \lim(y_n).$$

A monoton sorozatok konvergenciájára vonatkozó tétel – tágabb értelemben vett határértéket megengedve – a következőképpen módosul.

Tétel. Bármely valós monoton sorozatnak van határértéke és

$$\lim(x_n) = \sup(x_n)$$
, ha (x_n) monoton növő,

 $\lim(x_n) = \inf(x_n)$, ha (x_n) monoton fogyó.

Tétel. Ha $d \in \mathbb{N}, a_1, \ldots, a_d \in \mathbb{R}, a_d \neq 0$, továbbá

$$p(x) := a_0 + a_1 x + \ldots + a_{d-1} x^{d-1} + a_d x^d = \sum_{k=0}^d a_k x^k \qquad (x \in \mathbb{R}),$$

akkor igaz az alábbi határérték-reláció:

$$\label{eq:limp} lim(p(n)) = \left\{ \begin{array}{ll} +\infty & (\alpha_d > 0), \\ \\ -\infty & (\alpha_d < 0). \end{array} \right.$$

Bizonyítás. Világos, hogy bármely $n \in \mathbb{N}$ esetén

$$p(n) \ = \ \alpha_0 + \alpha_1 n + \ldots + \alpha_{d-1} n^{d-1} + \alpha_d n^d = n^d \cdot \left(\frac{\alpha_0}{n^d} + \frac{\alpha_1}{n^{d-1}} + \ldots + \frac{\alpha_{d-1}}{n} + \alpha_d \right) \longrightarrow$$

$$\overset{(n\to\infty)}{\longrightarrow} \ (+\infty)^d \cdot (0+0+\ldots+0+\alpha_d) = (+\infty) \cdot sgn(\alpha_d) = \left\{ \begin{array}{ll} +\infty & (\alpha_d>0), \\ \\ -\infty & (\alpha_d<0). \end{array} \right.$$

Megjegyzés. Legyen

$$P(x) := \sum_{i=0}^k \alpha_i x^i, \quad Q(x) := \sum_{j=0}^l \beta_j x^j \qquad (x \in \mathbb{R}),$$

ahol

$$\alpha_i,\beta_j\in\mathbb{R}\quad (i\in\{0,1,\ldots,k\};\; j\in\{0,1,\ldots,l\}):\qquad \alpha_k\cdot\beta_l\neq 0.$$

Legyen

$$x_n := \frac{P(n)}{Q(n)} = \frac{\alpha_k n^k + \alpha_{k-1} n^{k-1} + \ldots + \alpha_1 n + \alpha_0}{\beta_1 n^1 + \beta_{l-1} n^{l-1} + \ldots + \beta_1 n + \beta_0} =$$

$$= \quad \frac{n^k}{n^l} \cdot \frac{\alpha_k + \frac{\alpha_{k-1}}{n} + \ldots + \frac{\alpha_0}{n^k}}{\beta_l + \frac{\beta_{l-1}}{n} + \ldots + \frac{\beta_0}{n^l}} \qquad (n \in \mathbb{N}),$$

és

$$y_n := n^{k-l} \quad \text{\'es} \quad z_n := \frac{\alpha_k + \frac{\alpha_{k-1}}{n} + \ldots + \frac{\alpha_0}{n^k}}{\beta_1 + \frac{\beta_{1-1}}{n} + \ldots + \frac{\beta_0}{n^l}} \qquad (n \in \mathbb{N}).$$

Ekkor

$$\lim (z_n) = rac{lpha_k}{eta_l} \qquad \text{\'es} \qquad \lim (y_n) = \left\{ egin{array}{ll} 1 & (k=l) \\ +\infty & (k>l) \\ 0 & (k$$

Így

$$\lim \left(x_n \right) = \left\{ \begin{array}{cc} \frac{\alpha_k}{\beta_l} & (k = l), \\ \\ 0 & (k < l), \\ \\ sgn \left(\frac{\alpha_k}{\beta_l} \right) \infty & (k > l). \end{array} \right.$$

Tétel. Legyen $q \in \mathbb{R}$, és $x_n := q^n \ (n \in \mathbb{N}_0)$, akkor

$$\lim_{n \to \infty} (x_n) = \begin{cases} # & (q \le -1) \\ 0 & (q \in (-1, 1)), \\ 1 & (q = 1), \\ +\infty & (q > 1). \end{cases}$$

Bizonyítás. Ha

• q = -1, akkor (vö. korábban) (x_n) divergens. Ebben az esetben (x_n) tágabb értelemben sem konvergens, hiszen végtelen sok pozitív, ill. végtelen sok negatív előjelű tagja van.

- $q \in (-1, 1)$, akkor (vö. korábban) $\lim(x_n) = 0$;
- q = 1, akkor

$$\forall n \in \mathbb{N}_0: \quad x_n = 1 \longrightarrow \infty \qquad (n \to \infty);$$

• |q| > 1, akkor alkalmas h > 0 számmal

$$|q| = 1 + h$$
,

és így

$$|q^n| = |q|^n = (1+h)^n \ge 1 + nh > nh.$$

Ha $0 < \omega \in \mathbb{R}$ tetszőleges, akkor

$$|q^n| > nh > \omega \qquad \iff \qquad n > \frac{\omega}{h}$$

következtében $N := [\omega/h] + 1$ jó küszöbindex, azaz

$$\lim(|q^n|) = +\infty$$
.

Következésképpen

- 1. q > 1 esetén $\lim_{n \to \infty} q^n = \infty$,
- 2. q < -1 esetén pedig (q^n) tágabb értelemben sem konvergens, hiszen végtelen sor pozitív, ill. végtelen sok negatív előjelű tagja van.

A gyakorlat anyaga

Feladat. A definíció alapján lássuk be, hogy igazak az alábbi álltások!

$$1. \lim \left(\frac{1}{n^2-3}\right)=0;$$

1.
$$\lim \left(\frac{1}{n^2 - 3}\right) = 0;$$
 2. $\lim \left(\frac{n}{2n - 3}\right) = \frac{1}{2}.$

Útm.

1. Ha $3 \le n \in \mathbb{N}$, akkor

$$\left| \frac{1}{n^2 - 3} - 0 \right| = \frac{1}{n^2 - 3} < \frac{1}{n},$$

hiszen ekkor

$$\frac{1}{n^2 - 3} < \frac{1}{n} \qquad \Longleftrightarrow \qquad n < n^2 - 3$$

és

$$n^2 - 3 - n = n^2 - n - 3 = n(n-1) - 3 > 0$$
 \iff $n \ge 3$.

Ezért tetszőleges $\varepsilon > 0$ esetén az

$$N := \max\left\{3, \left[\frac{1}{\varepsilon}\right] + 1\right\}$$

választás megfelelő.

2. Ha $6 < n \in \mathbb{N}$, akkor

$$\left| \frac{n}{2n-3} - \frac{1}{2} \right| = \frac{3}{4n-6} < \frac{3}{3n} = \frac{1}{n},$$

hiszen

$$4n-6 > 3n \iff n > 6$$

Ezért tetszőleges $\varepsilon > 0$ esetén

$$N := \max\left\{7, \left\lceil \frac{1}{\epsilon} \right\rceil + 1\right\}$$

választás megfelelő.

Feladat. Sejtsük meg az alábbi sorozatok határértékét, majd a definíció alapján bizonyítsuk be a sejtést!

1.
$$x_n := \frac{1+n^2}{2+n+2n^2}$$
 $(n \in \mathbb{N}_0);$ 2. $x_n := \sqrt{n+3} - \sqrt{n+1}$ $(n \in \mathbb{N}_0).$

Útm.

1. Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{1+n^2}{2+n+2n^2} = \frac{\frac{1+n^2}{n^2}}{\frac{2+n+2n^2}{n^2}} = \frac{\frac{1}{n^2}+1}{\frac{2}{n^2}+\frac{1}{n}+2},$$

és "igen nagy n esetén $\frac{1}{n^k}$ igen kicsi, ahol k \in {1;2}", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{0+1}{0+0+2} = \frac{1}{2}.$$

Valóban,

$$\left|\frac{1+n^2}{2+n+2n^2}-\frac{1}{2}\right|=\frac{|-n|}{2(2n^2+n+2)}<\frac{n}{4n^2}=\frac{1}{4n}<\epsilon\quad\iff\quad\frac{1}{4\epsilon}< n,$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$N := \left[\frac{1}{4\epsilon}\right] + 1.$$

2. Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\sqrt{n+3} - \sqrt{n+1} \ = \ \left(\sqrt{n+3} - \sqrt{n+1}\right) \cdot \frac{\sqrt{n+3} + \sqrt{n+1}}{\sqrt{n+3} + \sqrt{n+1}} =$$

$$= \frac{2}{\sqrt{n+3} + \sqrt{n+1}}$$

és az utóbbi tört számlálója korlátos, nevezője edig nem, ezért azt sejtjük, hogy $\lim(x_n)=0$. Valóban, ha $n\in\mathbb{N}$, akkor

$$\left|\sqrt{n+3}-\sqrt{n+1}-0\right| = \frac{2}{\sqrt{n+3}+\sqrt{n+1}} < \frac{2}{\sqrt{n}+\sqrt{n}} = \frac{1}{\sqrt{n}} < \epsilon \quad \Longleftrightarrow \quad n > \frac{1}{\epsilon^2},$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$N := \left\lceil \frac{1}{\varepsilon^2} \right\rceil + 1.$$

Feladatok.

1. A határérték definíciója alapján mutassuk meg, hogy fennáll a

$$\lim \left(\frac{3n+4}{2n-1}\right) = \frac{3}{2}$$

határérték-reláció!

2. Sejtsük meg az alábbi sorozatok határértékét, majd a definíció alapján bizonyítsuk be a sejtést!

(a)
$$x_n := \frac{3n^2 - 1}{2n^2 + n + 3}$$
 $(n \in \mathbb{N}_0);$ (b) $x_n := \sqrt{n^2 + 1} - n$ $(n \in \mathbb{N}_0).$

Útm.

1. Ha $n \in \mathbb{N}$, akkor

$$\left|\frac{3n+4}{2n-1}-\frac{3}{2}\right|=\frac{11}{4n-2}<\frac{11}{n}.$$

Ezért tetszőleges $\varepsilon > 0$ esetén

$$N := \left[\frac{11}{\varepsilon}\right] + 1.$$

2. (a) Mivel bármely $n \in \mathbb{N}$ esetén

$$\frac{3n^2 - 1}{2n^2 + n + 3} = \frac{\frac{3n^2 - 1}{n^2}}{\frac{2n^2 + n + 3}{n^2}} = \frac{3 - \frac{1}{n^2}}{2 + \frac{1}{n} + \frac{3}{n^2}},$$

és "igen nagy n esetén $\frac{1}{n^k}$ igen kicsi, ahol k \in {1;2}", ezért azt sejtjük, hogy

$$\lim(x_n) = \frac{3-0}{2+0+0} = \frac{3}{2}.$$

Valóban,

$$\left|\frac{3n^2-1}{2n^2+n+3}-\frac{3}{2}\right| = \frac{|-3n-11|}{4n^2+2n+6} < \frac{3n+11}{4n^2} \leq \frac{14n}{4n^2} = \frac{7}{2n} < \epsilon \quad \Longleftrightarrow \quad \frac{7}{2\epsilon} < n,$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$N:=\left\lceil\frac{7}{2\varepsilon}\right\rceil+1.$$

(b) Mivel bármely $n \in \mathbb{N}_0$ esetén

$$\sqrt{n^2+1}-n=\left(\sqrt{n^2+1}-n\right)\cdot \frac{\sqrt{n^2+1}+n}{\sqrt{n^2+1}+n}=\frac{1}{\sqrt{n^2+1}+n},$$

és az utóbbi tört számlálója korlátos, nevezője edig nem, ezért azt sejtjük, hogy $\lim(x_n)=0$. Valóban, ha $n\in\mathbb{N}$, akkor

$$\left|\sqrt{n^2+1}-n-0\right| = \frac{1}{\sqrt{n^2+1}+n} < \frac{1}{n} < \epsilon \quad \Longleftrightarrow \quad n > \frac{1}{\epsilon},$$

ezért tetszőleges $\varepsilon > 0$ esetén

$$N := \left[\frac{1}{\varepsilon}\right] + 1.$$

Feladat. Számítsuk ki a következő sorozatok határértékét!

$$1. \ x_n := \frac{n^3 - 3n^2 + n - 1}{1 - 2n^3 + n} \quad (n \in \mathbb{N});$$

2.
$$x_n := \frac{(2-n)^7 + (2+n)^7}{(n^2+n+1)(2n+1)^5}$$
 $(n \in \mathbb{N});$

$$3. \ x_n:=\frac{1}{n^2}\cdot \sum_{k=1}^n k \quad (n\in \mathbb{N}).$$

Útm.

1. Világos, hogy tetszőlegs $n \in \mathbb{N}$ esetén

$$x_n = \frac{\frac{n^3 - 3n^2 + n - 1}{n^3}}{\frac{1 - 2n^3 + n}{n^3}} = \frac{1 - \frac{3}{n} + \frac{1}{n^2} - \frac{1}{n^3}}{\frac{1}{n^3} - 2 + \frac{1}{n^2}} \longrightarrow \frac{1 - 0 + 0 - 0}{0 - 2 + 0} = -\frac{1}{2} \quad (n \to \infty).$$

2. Bármely $n \in \mathbb{N}$ indexre

$$x_n \ = \ \frac{(2-n)^7 + (2+n)^7}{(n^2+n+1)(2n+1)^5} = \frac{\frac{(2-n)^7 + (2+n)^7}{n^7}}{\frac{(n^2+n+1)(2n+1)^5}{n^7}} = \frac{\left(\frac{2}{n}-1\right)^7 + \left(\frac{2}{n}+1\right)^7}{\left(1+\frac{1}{n}+\frac{1}{n^2}\right) \cdot \left(2+\frac{1}{n}\right)^5} \longrightarrow$$

$$\longrightarrow \frac{(0-1)^7 + (0+1)^7}{(1+0+0) \cdot (2+0)^5} = \frac{0}{32} = 0 \quad (n \to \infty).$$

$$3. \ \frac{1}{n^2} \cdot \sum_{k=1}^n k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2n} = \frac{1+1/n}{2} \longrightarrow \frac{1+0}{2} = \frac{1}{2} \quad (n \to \infty).$$

Feladat. Mutassuk meg, hogy ha $2 \le k \in \mathbb{N}$ és bármely $n \in \mathbb{N}_0$ indexre $0 \le x_n \in \mathbb{R}$, továbbá (x_n) konvergens, akkor $(\sqrt[k]{x_n})$ is konvergens és teljesül a

$$\lim \left(\sqrt[k]{x_n}\right) = \sqrt[k]{\lim (x_n)}$$

határértékreláció!

Útm. Világos, hogy $\lim (x_n) =: A \in [0, +\infty)$.

1. lépés. Ha $A \in (0, +\infty)$ és $\varepsilon > 0$ tetszőleges, akkor van olyan $N \in \mathbb{N}_0$, hogy

$$|x_n-A|<\epsilon \sqrt[k]{A^{k-1}} \qquad (N\leq n\in \mathbb{N}_0).$$

Így bármely $N \le n \in \mathbb{N}_0$ indexre

$$\left|\sqrt[k]{x_n} - \sqrt[k]{A}\right| = \left|\sqrt[k]{x_n} - \sqrt[k]{A}\right| \cdot \frac{\displaystyle\sum_{i=1}^k \sqrt[k]{x_n^{k-i}A^{i-1}}}{\displaystyle\sum_{i=1}^k \sqrt[k]{x_n^{k-i}A^{i-1}}} = \frac{|x_n - A|}{\displaystyle\sum_{i=1}^k \sqrt[k]{x_n^{k-i}A^{i-1}}} \leq \frac{|x_n - A|}{\sqrt[k]{A^{k-1}}} < \frac{\epsilon \sqrt[k]{A^{k-1}}}{\sqrt[k]{A^{k-1}}} = \epsilon,$$

tehát $\lim (\sqrt[k]{x_n}) = \sqrt[k]{A}$.

2. lépés. Ha A=0 és $\lim \left(\sqrt[k]{x_n}\right) \neq 0$, akkor van olyan $\epsilon>0$, hogy minden $N\in\mathbb{N}_0$ esetén van olyan $N\leq n\in\mathbb{N}_0$, hogy

$$|\sqrt[k]{x_n} - 0| \ge \sqrt[k]{\epsilon},$$

azaz $x_n \ge \varepsilon$, ami nem igaz.

Házi feladat. Legyen $q \in \mathbb{R}$: |q| < 1, továbbá (a_n) korlátos sorozat. Döntsük el, hogy

$$x_n := \sum_{k=0}^n a_k \cdot q^k = a_0 + a_1 \cdot q + a_2 \cdot q^2 + \ldots + a_{n-1} \cdot q^{n-1} + a_n \cdot q^n \qquad (n \in \mathbb{N}_0)$$

Cauchy-féle sorozat-e!

Útm. Mivel (a_n) korlátos, azért alkalmas $K \in \mathbb{R}$ esetén

$$|a_n| \leq K$$
 $(n \in \mathbb{N}_0)$.

Ha m, $n \in \mathbb{N}_0$ és (pl.) m > n, akkor

$$\begin{split} |x_m - x_n| &= \left| \sum_{k=n+1}^m \alpha_k \cdot q^k \right| = \left| \alpha_{n+1} \cdot q^{n+1} + \alpha_{n+2} \cdot q^{n+2} + \ldots + \alpha_{m-1} \cdot q^{m-1} + \alpha_m \cdot q^m \right| \leq \\ &\leq \left| \alpha_{n+1} \right| \cdot \left| q^{n+1} \right| + \left| \alpha_{n+2} \right| \cdot \left| q^{n+2} \right| + \ldots + \left| \alpha_{m-1} \right| \cdot \left| q^{m-1} \right| + \left| \alpha_m \right| \cdot \left| q^m \right| = \\ &= \left| \alpha_{n+1} \right| \cdot \left| q \right|^{n+1} + \left| \alpha_{n+2} \right| \cdot \left| q \right|^{n+2} + \ldots + \left| \alpha_{m-1} \right| \cdot \left| q \right|^{m-1} + \left| \alpha_m \right| \cdot \left| q \right|^m \leq \\ &\leq K \cdot \left(\left| q \right|^{n+1} + \left| q \right|^{n+2} + \ldots + \left| q \right|^{m-1} + \left| q \right|^m \right) = \\ &= K \cdot \left| q \right|^{n+1} \cdot \left(1 + \left| q \right| + \ldots + \left| q \right|^{m-n-2} + \left| q \right|^{m-n-1} \right) = \end{split}$$

Mivel $(|q|^n)$ nullsorozat, ezért tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}_0$ index, hogy

 $= K \cdot |q|^n \cdot |q| \cdot \frac{1 - |q|^{m-n}}{1 - |q|} \le K \cdot |q|^n \cdot \frac{1}{1 - |q|}.$

$$|q|^n<\frac{(1-|q|)\epsilon}{K}\qquad (N\leq n\in \mathbb{N}_0).$$

Következésképpen bármely $N \leq m, n \in \mathbb{N}_0$, indexre $|x_m - x_n| < \epsilon$, azaz (x_n) Cauchy-féle.

6. oktatási hét

Az előadás anyaga

Tétel. Legyen (x_n) olyan sorozat, amelyre $\lim(x_n) \in \{-\infty, +\infty\}$. Ekkor fennáll a

$$\left(1+\frac{1}{\chi_n}\right)^{\chi_n}\longrightarrow e \qquad (n\to\infty).$$

határérték-reláció.

Bizonyítás.

1. lépés $(x_n > 0 \ (n \in \mathbb{N}))$. Legyen

$$\mathcal{N} := \{n \in \mathbb{N}: \; x_n \geq 1\} \qquad \text{\'es} \qquad y_n := [x_n] \quad (n \in \mathcal{N}).$$

Ekkor $\lim(y_n) = +\infty$ és

$$y_n \le x_n \le y_n + 1$$
, ill. $\frac{1}{y_n} \ge \frac{1}{x_n} \ge \frac{1}{y_n + 1}$,

azaz az $n \to \infty$ határátmenetben

$$e \leftarrow \left(1 + \frac{1}{y_n}\right)^{y_n} \cdot \left(1 + \frac{1}{y_n}\right) =$$

$$= \left\lceil \left(1 + \frac{1}{y_n}\right)^{y_n + 1} \ge \left(1 + \frac{1}{x_n}\right)^{x_n} \ge \left(1 + \frac{1}{y_n + 1}\right)^{y_n} \right\rceil =$$

$$= \left(1 + \frac{1}{y_n + 1}\right)^{y_n + 1} \cdot \left(1 + \frac{1}{y_n + 1}\right)^{-1} \longrightarrow e.$$

2. lépés $(x_n < 0 \ (n \in \mathbb{N}))$. Legyen

$$y_n := -x_n - 1$$
 $(n \in \mathbb{N}).$

Ekkor az $n \to \infty$ határátmenetben

$$\left(1 + \frac{1}{x_n}\right)^{x_n} = \left(1 - \frac{1}{y_n + 1}\right)^{-y_n - 1} = \left(\frac{y_n}{y_n + 1}\right)^{-y_n - 1} = \left(\frac{y_n + 1}{y_n}\right)^{y_n + 1} =$$

$$= \left(1 + \frac{1}{y_n}\right)^{y_n} \cdot \left(1 + \frac{1}{y_n}\right) \longrightarrow e \cdot 1 = e.$$

Tétel. Legyen $A \in \mathbb{R}$, ill. (x_n) olyan sorozat, amelyre $\lim (x_n) = +\infty$. Ekkor fennáll a

$$\left(1+\frac{A}{x_n}\right)^{x_n}\longrightarrow e^A \qquad (n\to\infty).$$

határérték-reláció.

Bizonyítás. Ha

- A = 0, akkor a tétel nyilvánvalóan igaz.
- Ha $A \neq 0$, akkor minden olyan $n \in \mathbb{N}$ esetén, amelyre $x_n > |A|$, igaz, hogy $1 + \frac{A}{x_n} > 0$, és így

$$\left(1+\frac{A}{x_n}\right)^{x_n}=\left(1+\frac{1}{\frac{x_n}{A}}\right)^{\frac{x_n}{A}\cdot A}=\left[\left(1+\frac{1}{\frac{x_n}{A}}\right)^{\frac{x_n}{A}}\right]^A\longrightarrow e^A\quad (n\to\infty).$$

Megjegyezzük, hogy az

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n = e^x \qquad (x \in \mathbb{R})$$

határérték-relációnak fontos pénzügyi alkalmazása is van. Ha T forintot (kezdőtőkét) évi p%-os kamatra helyezünk el a bankban, akkor egy év után

$$T \cdot \left(1 + \frac{p}{100}\right)$$

forintot tőkénk lesz. Ha havi kamattal számítjuk az évi p%-os kamatot, akkor a tőke nagysága

$$T \cdot \left(1 + \frac{p}{12 \cdot 100}\right)^{12}$$

forint lesz egy év után. Megpróbálhatunk napi kamattal számolni, vagy akár még jobban növelni a kamatfizetési gyakoriságot. Ha a betett összegünk egy évben egyenletesen n-szer kamatozik p%-os évi kamattal,

akkor az év végén

$$T \cdot \left(1 + \frac{p}{n \cdot 100}\right)^n$$

forintot kapunk vissza. Elég nagy n esetén az előbbi képlet helyet használhatjuk az

$$T \cdot e^{p/100}$$

képletet, ami a sorozat határértéke. Ez olyan, mint ha a kamatfizetés technikailag minden időpillanatban történne. Ezért ezt **folytonos kamatozásnak** nevezik.

Feladat. Számítsuk ki az alábbi sorozatok határértékét!

1.
$$x_n := \left(\frac{6n-7}{6n+4}\right)^{3n+2} \quad (n \in \mathbb{N}_0);$$
 2. $x_n := \left(\frac{4n+3}{5n}\right)^{5n} \quad (n \in \mathbb{N});$

$$3. \ x_n := \left(\frac{3n+1}{n+2}\right)^{2n+3} \quad (n \in \mathbb{N}_0). \qquad \quad 4. \ x_n := \left(\frac{2n^2+3}{2n^2-2}\right)^{n^2-1} \quad (n \in \mathbb{N}).$$

Útm.

1. Világos, hogy

$$x_n = \left(\frac{6n+4-11}{6n+4}\right)^{3n+2} = \left(1 - \frac{11}{6n+4}\right)^{3n+2} = \sqrt{\left(1 + \frac{-11}{6n+4}\right)^{6n+4}} \longrightarrow \sqrt{\frac{1}{e^{11}}} \quad (n \to \infty).$$

2. Mivel bármely $n \in \mathbb{N}$ esetén

$$\left(\frac{4n+3}{5n}\right)^n = \left(\frac{4}{5}\right)^n \cdot \left(\frac{n+3/4}{n}\right)^n,$$

ezért

$$x_n \longrightarrow 0 \cdot e^{3/4} = 0$$
 $(n \to \infty)$.

3. Mivel

$$\frac{3n+1}{n+2} \longrightarrow 3$$
 $(n \to \infty),$

ezért az $\varepsilon := 1$ számhoz van olyan $N \in \mathbb{N}$ (küszöb)index, hogy bármely $N \leq n \in \mathbb{N}$ indexre

$$\frac{3n+1}{n+2} > 2.$$

Következésképpen az ilyen n-ekre

$$x_n = \left(\frac{3n+1}{n+2}\right)^{2n+3} > 2^{2n+3} \longrightarrow +\infty \qquad (n \to \infty),$$

$$\lim(x_n) = +\infty$$

következik.

4. Világos, hogy az $n \to \infty$ határátmenetben

$$x_n = \left(\frac{2n^2-2+5}{2n^2-2}\right)^{n^2-1} = \left(1+\frac{5}{2n^2-2}\right)^{n^2-1} = \sqrt{\left(1+\frac{5}{2n^2-2}\right)^{2n^2-2}} \longrightarrow \sqrt{e^5}.$$

Tétel. (**Bolzano-Weierstraß-féle kiválasztási tétel**). Minden korlátos sorozatnak van konvergens részsorozata.

Bizonyítás. Egy korábbi tétel szerint (vö. 3. előadás vége), bármely sorozatnak van monoton részsorozata. Így minden korlátos sorozatból kiválasztható monoton és korlátos, következésképpen konvergens részsorozat.

Definíció. Azt mondjuk, hogy az (x_n) sorozat **szabályos** vagy **Cauchy-féle**, ha

$$\forall \epsilon>0 \ \exists N\in \mathbb{N}_0 \ \forall m,n\in \mathbb{N}_0: \qquad (m,n\geq N \quad \Longrightarrow \quad |x_m-x_n|<\epsilon).$$

Példák.

1. Az

$$x_n := \sum_{k=1}^n \frac{1}{k^2} \qquad (n \in \mathbb{N})$$

sorozat esetében ha m, $n \in \mathbb{N}$: m > n, akkor

$$|x_m-x_n| = \left|\sum_{k=1}^m \frac{1}{k^2} - \sum_{k=1}^n \frac{1}{k^2}\right| = \sum_{k=n+1}^m \frac{1}{k^2} < \sum_{k=n+1}^m \frac{1}{k(k-1)} = \sum_{k=n+1}^m \left(\frac{1}{k-1} - \frac{1}{k}\right) = \sum_{k=n+1}^m \left(\frac{1}{k-1} - \frac{1}{k}$$

$$= \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \ldots + \left(\frac{1}{m-2} - \frac{1}{m-1}\right) + \left(\frac{1}{m-1} - \frac{1}{m}\right) =$$

$$=\frac{1}{n}-\frac{1}{m}<\frac{1}{n}.$$

Így tetszőleges $\epsilon>0$ esetén van olyan $N\in\mathbb{N}$ $/N:=\left[\frac{1}{\epsilon}\right]+1$, hogy ha $m,n\in\mathbb{N}$: $m,n\geq N$, akkor $|x_m-x_n|<\epsilon$, azaz (x_n) Cauchy-féle.

2. Az

$$x_n := \sum_{k=1}^n \frac{1}{k}$$
 $(n \in \mathbb{N})$

sorozat esetében

$$|x_{2n}-x_n|=\left|\sum_{k=1}^{2n}\frac{1}{k}-\sum_{k=1}^{n}\frac{1}{k}\right|=\sum_{k=n+1}^{2n}\frac{1}{k}=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geq n\cdot\frac{1}{2n}=\frac{1}{2}.$$

Így ha $\epsilon:=\frac{1}{2},$ akkor minden $N\in\mathbb{N}$ esetén van olyan $m,n\in\mathbb{N}$: $m,n\geq N,$ hogy

$$|x_{\mathfrak{m}}-x_{\mathfrak{n}}|\geq \frac{1}{2}.$$

Következésképpen (x_n) nem Cauchy-féle.

Sorozatok Cauchy-sorozat voltának kimutatásához igen gyakran hasznosnak bizonyul az alábbi

Állítás. Az (x_n) sorozat pontosan akkor Cauchy-féle, ha bármely $\epsilon>0$ esetén van olyan $N\in\mathbb{N}_0$, hogy ha $n\in\mathbb{N}_0$: $n\geq N$, akkor

$$|x_n - x_N| < \varepsilon$$
.

Bizonyítás.

1. lépés. Ha $\varepsilon > 0$ és $N \in \mathbb{N}$ olyan, hogy

$$|x_n-x_N|<\frac{\epsilon}{2}\qquad (N\leq n\in \mathbb{N}),$$

akkor bármely $m, n \in \mathbb{N}$: $m, n \ge N$ esetén

$$|x_{\mathfrak{m}}-x_{\mathfrak{n}}|=|(x_{\mathfrak{m}}-x_{\mathfrak{N}})+(x_{\mathfrak{N}}-x_{\mathfrak{n}})|\leq |x_{\mathfrak{m}}-x_{\mathfrak{N}}|+|x_{\mathfrak{N}}-x_{\mathfrak{n}}|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

2. lépés. Ha (x_n) Cauchy-féle, akkor az állítás az m := N választással nyilvánvaló.

Példa. Az

$$x_n := \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \qquad (n \in \mathbb{N})$$

sorozat esetében, ha $n, N \in \mathbb{N}$: $n \geq N$, akkor

$$(-1)^{N}(x_{n}-x_{N})=(-1)^{N}\cdot\sum_{k=N+1}^{n}\frac{(-1)^{k-1}}{k}=$$

$$= \frac{1}{N+1} - \frac{1}{N+2} + - \ldots + \frac{(-1)^{n-1+N}}{n} =$$

$$= \begin{cases} \left(\frac{1}{N+1} - \frac{1}{N+2}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) & (n+N \equiv 0 \ (2)), \\ \left(\frac{1}{N+1} - \frac{1}{N+2}\right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n-1}\right) + \frac{1}{n} & (n+N \equiv 1 \ (2)). \end{cases}$$

Mivel mindegyik zárójelben pozitív szám áll, ezért

$$(*) (-1)^{N}(x_{n} - x_{N}) \ge 0$$

és

$$|x_n - x_N| = (-1)^N (x_n - x_N) = \frac{1}{N+1} - \left\{ \frac{1}{N+2} - + \dots - \frac{(-1)^{n-1+N}}{n} \right\} =$$

$$= \frac{1}{N+1} - (-1)^{N+1} (x_n - x_{N+1}) \stackrel{(*)}{\leq} \frac{1}{N+1}.$$

Így tetszőleges $\epsilon>0$ esetén van olyan $N\in\mathbb{N}$ $/N:=\left[\frac{1}{\epsilon}-1\right]+1/$, hogy ha $n\in\mathbb{N}$: $n\geq N$, akkor $|x_n-x_N|<\epsilon$, azaz (x_n) Cauchy-féle. \blacksquare

Állítások (Cauchy-sorozatok tulajdonságai).

- 1. Minden konvergens sorozat Cauchy-féle.
- 2. Minden Cauchy-sorozat korlátos.
- 3. Ha valamely Cauchy-sorozatnak van konvergens részsorozata, akkor maga a sorozat konvergens és határértéke a részsorozat határértékével egyezik meg.

Bizonyítás.

1. Ha (x_n) konvergens, akkor alkalmas $A \in \mathbb{R}$ szám esetén tetsztőleges $\varepsilon > 0$ számhoz van olyan $N \in \mathbb{N}_0$ index, hogy ha $m, n \in \mathbb{N}_0$ olyan, hogy $m, n \geq N$, akkor

$$|x_m - A| < \frac{\varepsilon}{2}$$
 és $|x_n - A| < \frac{\varepsilon}{2}$,

ahonnan a háromszög-egyenlőtlenség felhsználásával azt kapjuk, hogy

$$|x_{\mathfrak{m}}-x_{\mathfrak{n}}|=|(x_{\mathfrak{m}}-A)+(A-x_{\mathfrak{n}})|\leq |x_{\mathfrak{m}}-A|+|A-x_{\mathfrak{n}}|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Következésképpen (x_n) Cauchy-féle.

2. A Cauchy-sorozat definíciójából az $\varepsilon := 1$ számmal azt kapjuk, hogy

$$\exists N \in \mathbb{N}_0 \ \forall m,n \in \mathbb{N}: \qquad (m,n \geq N \quad \Longrightarrow \quad |x_m - x_n| < 1).$$

Innen speciálisan az m := N választással

$$|x_n| = |(x_n - x_N) + x_N| \le |x_n - x_N| + |x_N| \le 1 + |x_N|$$

következik. Ha most

$$K := \max\{|x_0|, |x_1|, \dots, |x_{N-1}|, 1 + |x_N|\},\$$

akkor bármely $n \in \mathbb{N}_0$ indexre $|x_n| \le K$, azaz (x_n) korlátos.

3. Ha az (x_n) Cauchy-sorozat (x_{ν_n}) részsorozatára $\lim(x_{\nu_n})=A\in\mathbb{R}$, akkor bármely $\epsilon>0$ esetén van olyan $N\in\mathbb{N}_0$, hogy

$$|x_{\mathfrak{m}}-x_{\mathfrak{n}}|<\frac{\epsilon}{2} \qquad (N\leq m, n\in \mathbb{N}_{0})$$

és van olyan $M \in \mathbb{N}_0$, hogy

$$|x_{\nu_k}-A|<\frac{\epsilon}{2}\qquad (M\leq k\in\mathbb{N}_0).$$

Mivel a ν indexsorozat felülről nem korlátos, ezért van olyan $k \in \mathbb{N}_0$ index, amelyre k > N és $\nu_k > M$. Következésképpen

$$|x_n-A|=|(x_n-x_{\nu_k})+(x_{\nu_k}-A)|\leq |x_n-x_{\nu_k}|+|x_{\nu_k}-A|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \qquad (N\leq n\in \mathbb{N}_0)$$

következik, azaz (x_n) konvergens és $\lim(x_n) = A$.

Tétel (Cauchy-féle konvergenciakritérium). Az (x_n) sorozat pontosan akkor Cauchy-féle, ha konvergens.

Bizonyítás.

- **1. lépés.** A fentiekből tudjuk, hogy ha egy (x_n) sorozat konvergens, akkor Cauchy-féle is.
- **2. lépés.** Ha (x_n) Cauchy-féle, akkor a fentiek következtében (x_n) korlátos. A Bolzano-Weierstraß-féle kiválasztási tétel következtében alkalmas $v \in \mathcal{I}$ indexsorozattal $x \circ v \in \mathfrak{c}$. Legyen most

$$A := \lim(x_{\nu_n}).$$

Így a fentiek következtében $\lim(x_n) = A$.

Megjegyzések.

1. A Cauchy-féle konvergenciakritérium jelentősége többek között abban rejlik, hogy segítségével be tudjuk bizonyítani valamely sorozat konvergenciáját, snélkül, hogy ismernénk a határértékét, illetve – bizonyos esetben – könnyebben tudjuk igazolni divergenciáját, mint a definíció alapján (vö. fenti két példa).

2. A sorozatok típusainak hierarchiáját szemlélteti az alábbi ábra.

A a későbbiek szempontjából is nagyon fontos az alábbi

Tétel (a nullsorozatokra vonatkozó hányados- és gyökkritérium). Tegyük fel, hogy az

$$x_n \in (0, +\infty)$$
 $(n \in \mathbb{N}_0)$

sorozat esetében

$$0 \le \lim \left(\frac{x_{n+1}}{x_n} \right) < 1$$
 vagy $0 \le \lim \left(\sqrt[n]{x_n} \right) < 1$

teljesül. Ekkor fennál a

$$\lim (x_n) = 0$$

határérték-reláció.

Bizonyítás.

1. lépés. Legyen

$$\alpha := \lim \left(\frac{x_{n+1}}{x_n} \right)$$
.

Ekkor $0 \le \alpha < 1$. Legyen

$$q \in (\alpha, 1)$$
 és $\epsilon := q - \alpha$.

Ekkor $\epsilon>0$, így a konvergencia következtében van olyan $N\in\mathbb{N}$, hogy minden $N\leq n\in\mathbb{N}_0$ esetén

$$\left|\frac{x_{n+1}}{x_n} - \alpha\right| < \epsilon \qquad \Longrightarrow \qquad -\epsilon < \frac{x_{n+1}}{x_n} - \alpha < \epsilon \qquad \Longrightarrow \qquad 0 < \frac{x_{n+1}}{x_n} < \epsilon + \alpha = q.$$

Ezért

$$0 < \frac{x_{n+1}}{x_N} = \prod_{k=N}^n \frac{x_{k+1}}{x_k} = \frac{x_{N+1}}{x_N} \cdot \frac{x_{N+2}}{x_{N+1}} \cdot \ldots \cdot \frac{x_n}{x_{n-1}} \cdot \frac{x_{n+1}}{x_n} < q^{n-N+1} \qquad (N \le n \in \mathbb{N}) \ ,$$

azaz

$$0<\chi_{n+1}<\chi_N\cdot q^{n-N+1}\;.$$

Mivel

$$\lim (x_N \cdot q^{n-N+1}) = x_N \cdot \lim (q^{n-N+1}) = 0,$$

ezért a Sandwich-tétel következtében $\lim (x_n) = 0$.

2. lépés. Legyen

$$\beta := \lim \left(\sqrt[n]{x_n} \right)$$
.

Ekkor $0 \le \beta < 1$. Legyen

$$q \in (\beta, 1)$$
 és $\epsilon := q - \beta$.

Ekkor $\epsilon>0$, így a konvergencia következtében van olyan $N\in\mathbb{N}$, hogy minden $N\leq n\in\mathbb{N}_0$ esetén

$$|\sqrt[n]{x_n} - \beta| < \epsilon \qquad \Longrightarrow \qquad -\epsilon < \sqrt[n]{x_n} - \beta < \epsilon \qquad \Longrightarrow \qquad 0 < \sqrt[n]{x_n} < \beta + \epsilon = q.$$

Ezért

$$0 < x_n < q^n$$
 $(N \le n \in \mathbb{N}_0),$

ahonnan a Sandwich-tétel felhasználásával $\lim (x_n) = 0$ adódik.

Példák.

1. Ha $k \in \mathbb{N}$, $q \in (-1, 1)$, azaz |q| < 1 és

$$x_n := n^k \cdot q^n$$
 $(n \in \mathbb{N}_0),$

akkor az

$$(y_n) := (|x_n|)$$

sorozatra

$$0 < \sqrt[n]{y_n} = (\sqrt[n]{n})^k \cdot |q| \longrightarrow 1^k \cdot |q| = |q| < 1 \qquad (n \to \infty).$$

Kövezkezésképpen

$$\lim(y_n) = 0$$
, igy $\lim(n^k \cdot q^n) = \lim(x_n) = 0$.

2. Ha $\alpha \in \mathbb{R}$ és

$$x_n := \frac{a^n}{n!}$$
 $(n \in \mathbb{N}_0),$

akkor az

$$(y_n) := (|x_n|)$$

sorozatra $a \neq 0$ esetén

$$\frac{y_{n+1}}{y_n} = \frac{|a|^{n+1}}{(n+1)!} : \frac{|a|^n}{n!} = \frac{|a|^{n+1}}{(n+1)!} \cdot \frac{n!}{|a|^n} = \frac{|a|}{n+1} \longrightarrow 0 < 1 \qquad (n \to \infty).$$

Kövezkezésképpen (a = 0 esetén meg különösképp)

$$\lim(y_n) = 0,$$
 fgy $\lim\left(\frac{a^n}{n!}\right) = \lim(x_n) = 0.$

A matematika egyes ágaiban (diszkrét matematika, differenciaegyenletek), de az informatikában is nagy jelentőséggel bírnak az olyan sorozatok, amelyek tagjait az "előttük lévő" tag(ok) ismeretében értelmezzük. Az ilyen sorozatokat szokás **rekurzív megadású sorozat**oknak nevezni.

Példák.

1. A legenda szerint Hanoiban egy kolostorban a lámák egy falapból felfelé kiálló három rudacska egyikére fűzve n = 64 darab különböző méretű, közepén lyukas korongot kaptak Buddhától. Legalul volt a legnagyobb, felette a többi, egyre kisebb és kisebb (vö. 7. ábra).

7. ábra. Buddha korongjai

Azt a feladatot adta nekik, hogy juttassák a korngokat valamelyik másik rudacskára úgy, hogy közben csak egyet tehetnek át és semelyiket sem szabad nála kisebbre helyezni. Mire befejezik eljön a világ vége.

Feladat. Határozzuk meg azoknak a lépéseknek a minimális l_n számát, amelyek n korong $(n \in \mathbb{N})$ átrakásához szükségesek!

Útm. Ha n = 1, akkor nyilván $l_1 = 1$. Ha n = 2, akkor ahhoz, hogy az első korongot átrakhassuk az első rudacskáról a másikra, előbb a felső korongot át kell tenni egy harmadikra. Ezután átrakhatjuk az első korongot a második rúdra és a tetejére a másik korongot. Eszerint tehát

 $l_2 = 3$. Hasonló módon három korong közül a legalsó átrakásához előbb a két felsőt kell áttenni a harmadik rúdra, amihez az előbbi gondolatmenet alapján $l_2 = 3$ áthelyezést kell végrehajtanunk. Ezután átrakhatjuk a legalsó korongot a második rúdra, majd ismét két korongot kell áthoznunk a harmadik rúdról a másodikra, újabb $l_2 = 3$ lépésben. Látható tehát, hogy

$$l_3 = 2 \cdot l_2 + 1 = 7$$
.

Ugyanilyen módon látható be, hogy

$$l_4 = 2 \cdot l_3 + 1 = 15,$$
 $l_5 = 2 \cdot l_4 + 1 = 31,$

és általában

$$l_n = 2 \cdot l_{n-1} + 1 \qquad (2 \le n \in \mathbb{N}). \tag{22}$$

Az (l_n) sorozat első néhány tagjának felírásával nem nehéz megsejteni, majd teljes indukcióval igazolni, hogy

$$l_n = 2^n - 1$$
 $(n \in \mathbb{N}).$

Így tehát

$$l_{64} = 18446744073709551615 > 1.8 \cdot 10^{19}$$

lépés szükséges 64 korongnak a fenti feltételek mellett az egyik rúdról a másikra való átpakolásához. Ha meggondoljuk, hogy l₆₄ másodperc 585 milliárd év körül van, és a Naprendszer kb. 4,6 milliárd éves, akkor a világvégével kapcsolatos jóslat nem is annyira elképzelhetetlen.

Játék: Hanoi tornyai

2. Leonardo Pisano – ismert nevén Fibonacci – olasz matematikusnak 1202-ben megjelent **Liber Abaci** című könyvében szerepel a következő

Feladat. Egy ivarérett nyúlpár minden hónapban egy új nyúlpárnak ad életet: egy hímnek és egy nősténynek. A nyulak két hónapos korukra válnak ivaréretté. Egy ivarérett nyúlpártól származó nemzetségnek mekkora lesz a létszáma egy év múlva?

Útm. Kezdjük az összeszámlálást egy újszülött nyúlpárból kiindulva és tételezzük fel, hogy közben egyetlen nyúl sem pusztul el. Az első hónapban egyetlen pár nyulunk van, a másodikban szintén. A harmadik hónapban már nyilván két pár nyulunk lesz: az eredeti pár és ezeknek két hónapos korukban született újszülött párja. A negyedik hónapban az eredeti nyúlpár újabb nyúlpárnak ad életet, az elsőszülött ivadékaik még nem szülnek, így három nyúlpárunk lesz összesen.

8. ábra. Fibonacci nyulai

Az ötödik hónapban meglesz a negyedik hónap három nyúlpárja, valamint az újszülöttek, és ezek pontosan annyian lesznek, ahány nyúlpár a harmadik hónapban volt, hiszen a negyedik hónap újszülöttei még nem szülnek, de a harmadik hónap újszülöttei (az öregekkel együtt) már igen. E gondolatsort folytatva az n -edik hónapban lévő nyúlpárok F_n száma adódik egyrészt az (n-1)-edik hónapban meglévő nyúlpárok F_{n-1} számából, másrészt az újszülöttekből. Az újszülöttek száma viszont megegyezik az (n-2)-dik hónapban levő nyúlpárok számával, ugyanis pontosan azok fognak az n-edik hónapban szülni, amelyek (akár öreg, akár újszülött nyulak) az (n-2)-dik hónapban megvoltak.

A létszám alakulását a következő áblázat mutatja:

hónap	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.
megszületett párok:	0	1	1	2	3	5	8	13	21	34	55	89	144

Megjegyzések.

(a) Az F_n számokat **Fibonacci-számok**nak, az

$$F_0 := 0, \quad F_1 := 1, \quad F_n = F_{n-1} + F_{n-2} \qquad (2 \le n \in \mathbb{N}_0)$$
 (23)

rekurzív sorozatot **Fibonacci-sorozat**nak nevezzük. Az (F_n) sorozat tagjainak explicit alakja:

$$\mathsf{F}_{\mathfrak{n}} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{\mathfrak{n}} - \left(\frac{1-\sqrt{5}}{2} \right)^{\mathfrak{n}} \right) \qquad (\mathfrak{n} \in \mathbb{N}_{0}).$$

(b) Aranymetszésnek nevezzük egy szakasz olyan kettéosztását, ahol a nagyobbik rész hossza úgy

aránylik a kisebbik rész hosszához, mint a szakasz hossza a nagyobbik rész hosszához. Könnyen megmutatható, hogy egységnyi hosszú szakasz esetében ez az arány nem más, mint a

$$\lim \left(\frac{F_{n+1}}{F_n}\right)$$

határérték. Ha ui. ha a nagyobbik rész x, akkor egységnyi hosszú szakaszra:

$$\frac{1}{x} = \frac{x}{1-x}, \quad \text{amib\'ol} \quad x^2 + x - 1 = 0,$$

és ennek az egyenletnek egyetlen pozitív gyöke van:

$$x = \frac{-1 + \sqrt{5}}{2},$$

amire

$$\frac{1}{x} = \frac{2}{\sqrt{5} - 1} = \frac{2}{\sqrt{5} - 1} \cdot \frac{\sqrt{5} + 1}{\sqrt{5} + 1} = \frac{2(\sqrt{5} + 1)}{4} = \frac{\sqrt{5} + 1}{2}.$$

Az

$$u := \frac{1+\sqrt{5}}{2}, \quad \text{ill.} \quad v := \frac{1-\sqrt{5}}{2}$$

számokkal

$$\frac{F_{n+1}}{F_n} = \frac{u^{n+1} - v^{n+1}}{u^n - v^n} = \frac{u - v \cdot \left(\frac{v}{u}\right)^n}{1 - \left(\frac{v}{u}\right)^n} \longrightarrow \frac{u - 0}{1 - 0} = u \qquad (n \to \infty).$$

3. Ha $\alpha, \alpha, \beta \in \mathbb{R}$, akkor az

$$x_1 := \alpha, \quad x_{n+1} := \alpha x_n + \beta \qquad (n \in \mathbb{N})$$
 (24)

sorozat $\alpha = 1$ esetén **számtani sorozat**:

$$x_1 := \alpha$$
, $x_{n+1} := x_n + \beta$ $(n \in \mathbb{N})$

 $\beta = 0$ esetén pedig **mértani sorozat**:

$$x_1 := \alpha, \quad x_{n+1} := \alpha x_n \quad (n \in \mathbb{N}).$$

4. A Mézga-család a bankban az n = 0 időpontban K összegű kölcsönt vesz fel, amit időszakosan (havi vagy negyedéves vagy éppen éves időszakonként) törleszt. A törlesztés egy része a kamat, másik része a K tőkét csökkenti. Jelölje t_n az n-edik fizetés utáni tőketartozás nagyságát, az n-edik alkalommal

 $^{^{13}}$ HF. Mutassuk meg, hogy fennáll a $|\nu/\mu| < 1$ egyenlőtlenség!

befizetett összeget pedig jelölje b_n . Tegyük fel, hogy az egy periódusra eső p% kamatláb rögzített. Ekkor az (n+1)-edik periódus elteltével, azaz az (n+1)-edik fizetés megtörténte után a fennmaradó t_{n+1} tőketartozás összetevődik az n-edik periódus utáni t_n tőketartozásból, annak $t_n p/100$ egységkamatából, csökkentve ezek összegét a befizetett b_n összeggel:

$$t_{n+1} = t_n + t_n \cdot \frac{p}{100} - b_n,$$
 vagyis $t_{n+1} = \left(1 + \frac{p}{100}\right) \cdot t_n - b_n,$ $t_0 = K.$

Adott $k \in \mathbb{N}$ esetén k-lépéses rekurzióról beszélünk, ha a sorozat tagjait az előtte lévő k tag függvényében adjuk meg. Egylépéses rekurzó pl. a (22)-beli és a (24)-beli sorozat, kétlépéses rekurzió pl. a (23)-beli Fibonacci-sorozat. Az egylépéses rekurzió esetében a fentiket pontosítja a következő

Definíció. Legyen valamely $\mathcal{H} \neq \emptyset$ halmaz esetén adott az $f: \mathcal{H} \to \mathcal{H}$ függvény az $\alpha \in \mathcal{H}$ elem. Ekkor az

$$x_0:=a, \qquad x_{n+1}:=f(x_n) \quad (n\in \mathbb{N}_0)$$

rekurzív összefüggésnek eleget tévő $(x_n): \mathbb{N}_0 \to \mathcal{H}$ sorozatot a **kezdőtagú rekurzív megadású sorozat**nak nevezzük.

Felmerül a kérdés, hogy adott $a \in \mathcal{H}$ pont, ill. $f : \mathcal{H} \to \mathcal{H}$ függvény esetén van-e ilyen sorozat. Teljes indukcióval belátható, hogy a válasz: igen, sőt pontosan egy ilyen sorozat van (vö. A Függelék).

Példa. Legyen $2 \le m \in \mathbb{N}$, $0 < A \in \mathbb{R}$, továbbá

$$\mathcal{H}:=(0,+\infty), \qquad f(t):=\frac{1}{m}\left((m-1)t+\frac{A}{t^{m-1}}\right) \quad (t\in\mathcal{H}).$$

Látható, hogy $f: \mathcal{H} \to \mathcal{H}$, ui. a mértani és a számtani közép közötti egyenlőtlenség következtében bármely $t \in \mathcal{H}$ esetén

$$f(t) = \frac{\underbrace{\overset{1}{t} + \ldots + \overset{m-1}{t} + \frac{A}{t^{m-1}}}}{m} \ge \sqrt[m]{\frac{1}{t} \cdot \ldots \cdot \overset{m-1}{t} \cdot \frac{A}{t^{m-1}}} = \sqrt[m]{t^{m-1} \cdot \frac{A}{t^{m-1}}} = \sqrt[m]{A} > 0,$$

azaz f(t)>0. Tehát tetszőleges $\alpha,A\in(0,+\infty)$ esetén pontosan egy olyan $(x_n):\mathbb{N}_0\to(0,+\infty)$ sorozat van, amelyre

$$x_0 = \alpha, \qquad x_{n+1} = f(x_n) = \frac{1}{m} \left((m-1)x_n + \frac{A}{x_n^{m-1}} \right) \quad (n \in \mathbb{N}_0).$$
 (25)

Az alábbi feladatban megmutatjuk, hogy a (25) sorozat konvergens.

Feladat. Igazoljuk, hogy ha $0 < A \in \mathbb{R}$, akkor a (25)-beli sorozat konvergens, majd számítsuk ki határértékét!

Útm.

1. lépés. A sorozat értelmezéséből teljes indukcióval következik (**HF**), hogy bármely $n \in \mathbb{N}_0$ indexre $x_n > 0$.

2. lépés. Megmutatjuk, hogy a sorozat kvázi-monoton fogyó. Valóban, bármely $n \in \mathbb{N}_0$ indexre

$$\frac{x_{n+1}}{x_n} = \frac{1}{m} \cdot \left(m - 1 + \frac{A}{x_n^m}\right) = 1 - \frac{1}{m} + \frac{1}{m} \cdot \frac{A}{x_n^m} = 1 - \frac{1}{m} \cdot \left(1 - \frac{A}{x_n^m}\right),$$

így az

$$\frac{x_{n+1}}{x_n} \leq 1 \quad \Longleftrightarrow \quad A \leq x_n^m \qquad (n \in \mathbb{N})$$

ekvivalencia igaz voltát, illetve a mértani és a számtani közép közötti egyenlőtlenséget kihasználva azt kapjuk, hogy

$$x_{n+1}^m = \left(\frac{\overset{1}{\overset{}\overset{}\smile}{x_n} + \ldots + \overset{\overset{m-1}{\overset{}\smile}{x_n}} + \frac{A}{x_n^{m-1}}}{m}\right)^m \geq \overset{1}{\overset{}\smile}{x_n} \cdot \ldots \cdot \overset{\overset{m-1}{\overset{}\smile}{x_n}}{\overset{}\smile} \cdot \frac{A}{x_n^{m-1}} = A \qquad (n \in \mathbb{N}_0).$$

3. lépés. A fentiek azt jelentik, hogy (x_n) konvergens. Legyen $\beta := \lim(x_n)$. Ekkor a fentiek következtében $0 < A \le \beta^m$, és így $\beta > 0$. Az is igaz továbbá, hogy

$$\beta = \lim_{n \to \infty} (x_n) = \lim_{n \to \infty} (x_{n+1}) = \lim_{n \to \infty} \left(\frac{1}{m} \left((m-1)x_n + \frac{A}{x_n^{m-1}} \right) \right) = \frac{1}{m} \left((m-1)\beta + \frac{A}{\beta^{m-1}} \right),$$

azaz

$$m\beta = m\beta - \beta + \frac{A}{\beta^{m-1}}$$

Innen áterendezéssel azt kapjuk, hogy $\beta^m = A$.

A (25)-beli sorozat konvergenciája numerikusan is jól használható ún. konstruktív eljárást ad pozitív valós számok m-edik gyökének előállítására. Az is könnyen belátható, hogy ha $2 \le m \in \mathbb{N}$ és $0 < A \in \mathbb{R}$, akkor pontosan egy olyan $0 < \beta \in \mathbb{R}$ szám létezik, amelyre $\beta^m = A$. Az előbbi sorozta konvergens volta biztosítja az ilyen szám létezését. Az egyértelműséget pedig a következőképpen láthatjuk be. Ha ui. valamely

 $0 < \gamma \in \mathbb{R}$ esetén $\gamma^{m} = A$, akkor

$$0 = A - A = \beta^{m} - \gamma^{m} = (\beta - \gamma) \cdot \sum_{k=1}^{m} \beta^{m-k} \gamma^{k}.$$

Mivel tetszőleges $k \in \{0, \dots, m-1\}$ esetén $\beta^{m-k} \gamma^k > 0$, ezért

$$\sum_{k=1}^{m} \beta^{m-k} \gamma^k > 0,$$

ahonnan $\beta - \gamma = 0$, azaz $\beta = \gamma$ következik.

Rekurzív sorozatok határértékét sok esetben bizonyos leképezések fixpontjaként kaphatjuk meg. Ezzel kapcsolatban utalunk a numerikus matematikában igen fontos szerepet játszó fogalmakra, ill. tételekre (vö. B Függelék).

Megjegyzzük, hogy az m := 2, A := 2, ill. $x_0 := 2$ esetben a (25) rekurzió

$$x_0 := 2,$$
 $x_{n+1} := \frac{1}{2} \cdot \left(x_n + \frac{2}{x_n} \right)$ $(n \in \mathbb{N}_0)$

alakú. Ezt a sorozatot szokás Heron-féle vagy babiloni gyökkeresési algoritmusnak nevezni.

A gyakorlat anyaga

Feladatok.

1. Sejtsük meg az alábbi sorozatok határértékét, majd a definíció alapján bizonyítsuk be sejtésünket!

(a)
$$x_n := \frac{n^2 + 3n + 1}{n + 3}$$
 $(n \in \mathbb{N}_0);$ (b) $x_n := \frac{2 - 3n^2}{n + 1}$ $(n \in \mathbb{N}_0).$

2. Legyen $\alpha \in \mathbb{R}$. Számítsuk ki az

$$x_n := \sqrt{n^2 + n + 1} - \alpha n$$
 $(n \in \mathbb{N}_0)$

sorozat határértékét!

Útm.

1. (a) A múlt órai tétel alapján tudjuk, hogy $\lim(x_n)=+\infty$. Valóban, ha $0<\omega\in\mathbb{R}$, akkor bármely $n\in\mathbb{N}$ esetén

$$\frac{n^2+3n+1}{n+3}>\frac{n^2}{n+3}\geq \frac{n^2}{n+3n}=\frac{n}{4}>\omega \qquad \iff \qquad n>4\omega,$$

így

$$N := \max\{1, [4\omega] + 1\} = 4[\omega] + 1.$$

(b) A múlt órai tetel alapján tudjuk, hogy lim $(x_n)=-\infty$. Valóban, ha $0>\alpha\in\mathbb{R}$, akkor bármely $n\in\mathbb{N}_0$ esetén

$$\frac{2-3n^2}{n+1}<\alpha\qquad\Longleftrightarrow\qquad \frac{3n^2-2}{n+1}>-\alpha,$$

így tetszőleges $2 \le n \in \mathbb{N}$ indexre

$$\frac{3n^2-2}{n+1} = \frac{2n^2+(n^2-2)}{n+1} \geq \frac{2n^2}{n+n} = \frac{2n^2}{2n} = n$$

következtében

$$N := \max\{2, [-\alpha] + 1\}.$$

- 2. Világos, hogy
 - α < 0 esetén

$$\lim(x_n) = (+\infty) - \alpha \cdot (+\infty) = (+\infty) - (-\infty) = +\infty.$$

• $\alpha = 0$ esetén

$$\lim(x_n)=\lim(\sqrt{n^2+n+1})=+\infty.$$

Ha viszont $\alpha > 0$, akkor

$$x_n \ = \ \left(\sqrt{n^2 + n + 1} - \alpha n\right) \cdot \frac{\sqrt{n^2 + n + 1} + \alpha n}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} = \frac{n^2 + n + 1 - \alpha^2 n^2}{\sqrt{n^2 + n + 1} + \alpha n} =$$

$$= \ \frac{(1-\alpha^2)n^2+n+1}{\sqrt{n^2+n+1}+\alpha n} = \frac{\frac{(1-\alpha^2)n^2+n+1}{n}}{\frac{\sqrt{n^2+n+1}+\alpha n}{n}} = \frac{(1-\alpha^2)n+1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}+\frac{1}{n^2}}+\alpha}.$$

Világos, hogy ekkor

$$1-\alpha^2=0$$
 \iff $\alpha=1.$

Következésképpen

• $0 < \alpha < 1$ esetén

$$\lim(x_n) = \frac{(+\infty) + 1 + 0}{\sqrt{1 + 0 + 0} + \alpha} = +\infty;$$

• $\alpha = 1$ esetén bármely $n \in \mathbb{N}$ indexre

$$\lim(x_n) = \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2} + 1}} = \frac{1 + 0}{\sqrt{1 + 0 + 0} + 1} = \frac{1}{2}.$$

• $\alpha > 1$ esetén

$$\lim(x_n) = \frac{(-\infty) + 1 + 0}{\sqrt{1 + 0 + 0} + \alpha} = -\infty.$$

Feladatok.

1. Legyen $(x_n): \mathbb{N} \to [0, +\infty)$ olyan sorozat, amelyre $\lim (x_n) \in (0, +\infty)$. Mutassuk meg, hogy ekkor fennáll a

$$\lim \left(\sqrt[n]{x_n}\right) = 1$$

határérték-reláció!

2. Számítsuk ki az alábbi sorozatok határértékét!

(a)
$$x_n := \sqrt[n]{3n^5 + 2n + 1}$$
 $(n \in \mathbb{N});$ (b) $x_n := \sqrt[n]{\frac{n+1}{2n+3}}$ $(n \in \mathbb{N});$

(b)
$$x_n := \sqrt[n]{\frac{n+1}{2n+3}}$$
 $(n \in \mathbb{N})$

(c)
$$x_n := \sqrt[n]{\frac{3^n}{n!} + 2^n}$$
 $(n \in \mathbb{N});$

$$\text{(c)} \ \ x_n := \sqrt[n]{\frac{3^n}{n!} + 2^n} \quad (n \in \mathbb{N}); \qquad \qquad \text{(d)} \ \ x_n := \sqrt[n]{a^n + b^n} \quad (n \in \mathbb{N}, \ 0 < a, b \in \mathbb{R}).$$

Útm.

1. Legyen

$$\lim(x_n)=:\alpha\in(0,+\infty).$$

Ekkor

$$\exists N \in \mathbb{N} \ \forall N \leq n \in \mathbb{N}: \quad |x_n - \alpha| < \frac{\alpha}{2}.$$

Így

$$|x_n - \alpha| < \frac{\alpha}{2} \qquad \Longleftrightarrow \qquad -\frac{\alpha}{2} < x_n - \alpha < \frac{\alpha}{2} \qquad \Longleftrightarrow \qquad \frac{\alpha}{2} < x_n < \frac{3\alpha}{2}$$

következtében, ha $n \in \mathbb{N}$, $n \ge N$, akkor

$$\sqrt[n]{\frac{\alpha}{2}} < \sqrt[n]{x_n} < \sqrt[n]{\frac{3\alpha}{2}},$$

tehát a Sandwich-tétel értelmében

$$\lim \left(\sqrt[n]{x_n}\right) = 1.$$

(a) Mivel

$$\sqrt[n]{3n^5} \le \sqrt[n]{3n^5 + 2n + 1} \le \sqrt[n]{3n^5 + 2n^5 + n^5} = \sqrt[n]{6n^5} \quad (n \in \mathbb{N})$$

és

$$\sqrt[n]{3n^5} = \sqrt[n]{3} \cdot (\sqrt[n]{n})^5 \stackrel{(n \to \infty)}{\longrightarrow} 1 \cdot 1^5 = 1 = 1 \cdot 1^5 \stackrel{(n \to \infty)}{\longleftarrow} \sqrt[n]{6} \cdot (\sqrt[n]{n})^5,$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$\lim(x_n) = 1$$
.

Megjegyzés. Tetszőleges $n \in \mathbb{N}$ indexre

$$x_n = \sqrt[n]{3n^5 + 2n + 1} = \sqrt[n]{n^5 \left(3 + \frac{2}{n^4} + \frac{1}{n^5}\right)} =$$

$$= \left(\sqrt[n]{n}\right)^5 \cdot \sqrt[n]{3 + \frac{2}{n^4} + \frac{1}{n^5}} \stackrel{(n \to \infty)}{\longrightarrow} 1^5 \cdot 1 = 1,$$

hiszen

$$\lim \left(3 + \frac{2}{n^4} + \frac{1}{n^5}\right) = 3 + 0 + 0 = 3 \in (0, +\infty).$$

(b) Világos, hogy

$$\sqrt[n]{\frac{1}{5}} = \sqrt[n]{\frac{n}{5n}} = \sqrt[n]{\frac{n}{2n+3n}} \le \sqrt[n]{\frac{n+1}{2n+3}} \le \sqrt[n]{\frac{n+n}{2n}} = \sqrt[n]{1},$$

így

$$\lim \left(\sqrt[n]{\frac{1}{5}}\right) = 1 = \lim \left(\sqrt[n]{1}\right)$$

következtében

$$\lim (x_n) = 1$$
.

Megjegyzés. Tetszőleges $n \in \mathbb{N}$ indexre

$$\lim \left(\frac{n+1}{2n+3}\right) = \frac{1}{2}$$

így

$$\lim (x_n) = 1.$$

(c) Mivel

$$\lim \left(\frac{3^n}{n!}\right) = 0,$$

ezért van olyan $N\in\mathbb{N},$ hogy bármely $N\leq n\in\mathbb{N}$ indexre

$$\frac{3^n}{n!} < 1,$$

így az ilyen n-ekre

$$2 = \sqrt[n]{2^n} \le \sqrt[n]{\frac{3^n}{n!} + 2^n} \le \sqrt[n]{1 + 2^n} \le \sqrt[n]{2^n + 2^n} = \sqrt[n]{2} \cdot \sqrt[n]{2^n} = 2\sqrt[n]{2}.$$

Ezért

$$\lim\left(\sqrt[n]{2}\right)=1$$

következtében

$$\lim (x_n) = 2.$$

(d) Mivel bármely $n \in \mathbb{N}$ esetén

$$max\{\alpha,b\} = \sqrt[n]{max\{\alpha,b\}^n} \leq \sqrt[n]{\alpha^n + b^n} \leq \sqrt[n]{2 \cdot max\{\alpha,b\}^n} = \sqrt[n]{2} \cdot max\{\alpha,b\}$$

és

$$\sqrt[n]{2} \longrightarrow 1 \qquad (n \to \infty),$$

ezért a Sandwich-tétel felhasználásával azt kapjuk, hogy

$$lim(x_n) = max\{a,b\}.$$

A Függelék

Tétel (Rekurziótétel: Dedekind (1888)). Legyen H tetszőleges (nem-üres) halmaz, $h \in H$, $f: H \to H$. Ekkor pontosan egy olyan $\varphi: \mathbb{N}_0 \to H$ függvény (**sorozat**) van, amelyre

- (i) $\varphi(0) = h$;
- (ii) bármely $n \in \mathbb{N}_0$ esetén $\varphi(n+1) = f(\varphi(n))$.

Biz.

- **1. lépés.** Tegyük fel, hogy $\phi, \psi : \mathbb{N}_0 \to H$ rendelkezik a fenti tulajdonsággal. Ekkor $\phi = \psi$, ui.
 - n = 0 esetén

$$\varphi(0) = h = \psi(0);$$

• ha valamely $n \in \mathbb{N}_0$ esetén $\varphi(n) = \psi(n)$, akkor

$$\varphi(n+1) = f(\varphi(n)) = f(\psi(n)) = \psi(n+1).$$

2. lépés. Legyen

$$\mathcal{H} := \{ A \subset \mathbb{N}_0 \times H : \mathbf{i} \} (0, h) \in A, \mathbf{ii} \} \forall n \in \mathbb{N}_0 \forall k \in H : (n, k) \in A \Rightarrow (n + 1, f(k)) \in A \}.$$

Ekkor nyilvánvalóan $\mathbb{N}_0 \times H \in \mathcal{H}$ és bármely $B \in \mathcal{H}$ esetén $(0, h) \in B$, ezért

$$\mathsf{D} := \bigcap_{\mathsf{A} \in \mathcal{H}} \mathsf{A}$$

a legszűkebb $\mathbb{N}_0 \times H$ -beli halmaz, amelyre **i**) és **ii**) teljesül. Ekkor

- 1. bármely $n \in \mathbb{N}_0$ indexhez pontosan egy olyan $b \in H$ van, hogy $(n, b) \in D$ teljesül, ui.
 - n = 0 esetén (0, h) ∈ D, továbbá ha valamely h ≠ c ∈ H esetén (0, c) ∈ D, akkor D\{(0, c)} még mindig rendelkezik az i) és ii) tulajdonsággal, ami ellentmond annak, hogy D a legszűkebb ilyen halmaz.
 - ha valamely n ∈ N₀ esetén pontosan egy olyan b ∈ H van, amelyre (n, b) ∈ D, akkor az ii) tulajdonság következtében (n+1, f(b)) ∈ D. Ha valamely d ≠ f(b) ∈ H esetén (n+1, d) ∈ D volna, akkor D\{(n+1, d)} rendelkezne az ii) tulajdonsággal, ami ellentmondana annak, hogy D a legszűkebb ilyen.

2. a fentiek következtében pontosan egy olyan $\phi: \mathbb{N}_0 \to H$ függvény van, hogy

$$\text{graph}(\phi) = \{(\mathfrak{n},\mathfrak{m}) \in \mathbb{N}_0 \times H: \ \mathfrak{m} = \phi(\mathfrak{n})\} = D.$$

Ekkor

- az i) azt jelenti, hogy $\varphi(0) = h$;
- a ii) tulajdonság pedig azt, hogy $(n + 1, f(\phi(n)) \in D$, azaz

$$\phi(n+1)=f(\phi(n)) \qquad (n\in \mathbb{N}_0). \quad \blacksquare$$

Megjegyzés. Általánosítás. Legyen H halmaz, $h \in H$, $k \in \mathbb{N}$, $f: H^k \to H$. Ekkor pontosan egy olyan $\phi: \mathbb{N}_0 \to H$ függvény (**sorozat**) van, amelyre

- (i) $\varphi(0) = h$;
- (ii) bármely $n \in \mathbb{N}_0$ esetén $\phi(n+k) = f(\phi(1), \ldots, \phi(n)).$

B Függelék

Definíció. Azt mondjuk, hogy a $H \subset \mathbb{R}$ halmaz

- 1. **zárt**, ha $H = \emptyset$ vagy $H \neq \emptyset$ és tetszőleges konvergens $(x_n) : \mathbb{N}_0 \to H$ sorozatra $\lim(x_n) \in H$.
- 2. **nyílt**, ha $H^c := \mathbb{R} \setminus H$ komplementere zárt.
- 3. **kompakt**, ha bármely $(x_n): \mathbb{N}_0 \to H$ sorozat esetén van olyan $v \in \mathcal{I}$ indexsorozat, hogy $\lim(x_{v_n}) \in H$, azaz bármely H-beli sorozatnak van H-ban konvergens részsorozata.

Megjegyezzük, hogy bármely $a,b \in \mathbb{R}$: $a \le b$ esetén az [a,b] intervallum zárt halmaz (ez indokolja a "zárt" intervallum elnevezést), ugyanakkor a (0,1) (nyílt) intervallum nem zárt halmaz. Hasonlóan zárt maga az \mathbb{R} halmaz vagy pl. bármely $a \in \mathbb{R}$ esetén az

$$[a, +\infty)$$
, ill. a $(-\infty, a]$

"félegyenes".

Definíció. Valamely $\emptyset \neq H \subset \mathbb{R}$ halmaz esetén az $f: H \to H$ függvényt **kontrakció**nak nevezzük, ha alkalmas $q \in [0, 1)$ számmal

$$|f(u) - f(v)| < q \cdot |u - v|$$
 $(u, v \in H)$.

A q szám neve kontrakciós állandó.

Példák.

1. Ha H := $[1, +\infty)$ és

$$f(t):=\frac{t}{2}+\frac{1}{t}\qquad (t\in H),$$

akkor f kontrakció, ui.

bármely t ∈ H esetén (a mértani és számtani közép közötti egyenlőtlenség következtében)

$$[f(t)]^2 = 4 \cdot \frac{[f(t)]^2}{4} = 4 \cdot \left(\frac{\frac{t}{2} + \frac{1}{t}}{2}\right)^2 \ge 4 \cdot \frac{t}{2} \cdot \frac{1}{t} = \frac{4}{2} = 2 \qquad (1 \le t \in \mathbb{R}),$$

 $azaz\: (f(t)>0\: miatt)\: f(t)\geq \sqrt{2}>1;$

tetszőleges u, v ∈ H esetén

$$|f(u) - f(v)| = \left| \frac{u}{2} + \frac{1}{u} - \frac{v}{2} - \frac{1}{v} \right| = |u - v| \cdot \left| \frac{1}{2} - \frac{1}{uv} \right| < \frac{1}{2} \cdot |u - v|,$$

azaz (pl.) q := 1/2 kontrakció állandó.

2. Ha H :=
$$\left[0, \frac{1}{3}\right]$$
 és

$$f(t) := t^2 + \frac{1}{8}$$
 $(t \in H),$

akkor f kontrakció, ui.

• bármely $t \in H$ esetén

$$0 \le f(t) = t^2 + \frac{1}{8} \le \frac{1}{9} + \frac{1}{8} = \frac{17}{72} < \frac{24}{72} = \frac{1}{3},$$

azaz $f(t) \in H$;

• bármely $u, v \in H$ esetén

$$|f(u) - f(v)| = |u^2 - v^2| = |u + v| \cdot |u - v| \le \frac{2}{3} \cdot |u - v|.$$

Kontrakciók fontos szerepet játszanak pl. a közelítő számításokban (ld. **numerikus analízis**). Az alábbi tétel mintegy alapját képezi az említett alkalmazásoknak.

Tétel (fixponttétel). Tegyük fel, hogy $\emptyset \neq H \subset \mathbb{R}$ zárt halmaz és $f: H \to H$ kontrakció a $q \in [0, 1)$ kontrakciós állandóval. Ekkor

- 1. pontosan egy olyan $\alpha \in H$ szám van, amelyre $f(\alpha) = \alpha$;
- 2. bármely $u \in H$ esetén az

$$x_0 := u, \qquad x_{n+1} := f(x_n) \quad (n \in \mathbb{N}_0)$$

rekurzióval definiált (x_n) sorozat konvergens és $\lim(x_n) = \alpha$;

3. az iménti (x_n) sorozatra fennáll az

$$|x_n - \alpha| \le \frac{q^n}{1 - \alpha} \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$

egyenlőtlenség (hibabecslés).

Bizonyítás.

1. lépés A $0^0 := 1$ megállapodással megmutatjuk, hogy fennáll az

$$|x_{n+1} - x_n| \le q^n \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$
 (26)

becslés. Valóban,

- az n = 0 esetben az állítás nyilvánvaló.
- ha valamely $n \in \mathbb{N}_0$ esetén fennáll az (26) egyenlőtlenség, akkor

$$|x_{n+2}-x_{n+1}|=|f(x_{n+1})-f(x_n)|\leq q\cdot |x_{n+1}-x_n|\leq q\cdot q^n\cdot |x_1-x_0|=q^{n+1}\cdot |x_1-x_0|.$$

2. lépés Megmutatjuk, hogy az (x_n) sorozat Cauchy-féle. Ha $m, n \in \mathbb{N}_0$ és (pl.) m > n, akkor

$$\begin{split} |\mathbf{x}_m - \mathbf{x}_n| &= |(x_m - x_{m-1}) + (x_{m-1} - x_{m-2}) + \ldots + (x_{n+2} - x_{n+1}) + (x_{n+1} - x_n)| \leq \\ &\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \ldots + |x_{n+2} - x_{n+1}| + |x_{n+1} - x_n| \leq \\ &\leq q^{m-1} \cdot |x_1 - x_0| + q^{m-2} \cdot |x_1 - x_0| + \ldots + q^{n+1} \cdot |x_1 - x_0| + q^n \cdot |x_1 - x_0| = \\ &= (q^{m-1} + q^{m-2} + \ldots + q^{n+1} + q^n) \cdot |x_1 - x_0| = \\ &= q^n \cdot \left(q^{m-n-1} + q^{m-n-2} + \ldots + q + 1\right) \cdot |x_1 - x_0| = \end{split}$$

Mivel (q^n) nullsorozat, ezért tetszőleges $\epsilon>0$ számhoz van olyan $N\in\mathbb{N}_0$ index, hogy bármely

 $= q^{n} \cdot \frac{1 - q^{m-n}}{1 - q} \cdot |x_{1} - x_{0}| \le \frac{q^{n}}{1 - q} \cdot |x_{1} - x_{0}|.$

 $N \le n \in \mathbb{N}_0$ indexre

$$q^n < \frac{(1-q)\varepsilon}{|x_1-x_0|}.$$

Következésképpen bármely $N \leq m, n \in \mathbb{N}_0$ indexre $|x_m - x_n| < \epsilon$, azaz (x_n) Cauchy-féle.

3. lépés A Cauchy-féle konvergenciakritérium következtében az (x_n) sorozat konvergens is. Legyen $\alpha := \lim(x_n)$. Mivel H zárt halmaz, ezért $\alpha \in H$. Belátjuk, hogy $f(\alpha) = \alpha$. Valóban,

$$0 \leq |f(\alpha) - \alpha| = |(f(\alpha) - f(x_n)) + (f(x_n) - \alpha)| \leq |f(\alpha) - f(x_n)| + |f(x_n) - \alpha| =$$

$$= |f(\alpha) - f(x_n)| + |x_{n+1} - \alpha| \le q \cdot |x_n - \alpha| + |x_{n+1} - \alpha| \longrightarrow 0 \quad (n \to \infty)$$

csak úgy teljesülhet, ha $f(\alpha) - \alpha = 0$, azaz $f(\alpha) = \alpha$.

4. lépés Tegyük fel, hogy valamely $\beta \in H$ számra $f(\beta) = \beta$. Ekkor

$$|\alpha - \beta| = |f(\alpha) - f(\beta)| \le q \cdot |\alpha - \beta| \qquad \Longleftrightarrow \qquad (1 - q) \cdot |\alpha - \beta| \le 0.$$

Mivel $0 \le q < 1$ ezért innen $(0 \le) |\alpha - \beta| \le 0$, azaz $|\alpha - \beta| = 0$ következik. Tehát $\alpha = \beta$.

5. lépés A 2. lépésbeli

$$|x_m - x_n| \le \frac{q^n}{1 - q} \cdot |x_1 - x_0|$$
 $(m, n \in \mathbb{N}_0, m > n)$

becslés, ill a tetszőleges $n \in \mathbb{N}_0$ indexre fennálló

$$\lim_{m\to\infty}(x_m-x_n)=\alpha-x_n,\qquad\Longrightarrow\qquad \lim_{m\to\infty}(|x_m-x_n|)=|\alpha-x_n|$$

határértékreláció figyelembevételével az

$$|x_n - \alpha| \le \frac{q^n}{1-q} \cdot |x_1 - x_0| \qquad (n \in \mathbb{N}_0)$$

hibabecslés adódik. ■

A fenti tételben szereplő α számot a tételbeli f függvény **fixpontj**ának, magát a tételt **fixponttétel**nek nevezzük. Az α fixpont tehát az

$$f(x) = x$$
 $(x \in H)$

egyenletnek a megoldása. Éppen ezért a fixponttétel a közelítő számítások, módszerek (ld. numerikus

analízis) egyik legfontosabb eszköze.

Példa. Egy korábbi példában szereplő

$$f(t):=\frac{t}{2}+\frac{1}{t} \qquad (1\leq t\in \mathbb{R})$$

kontrakció esetében az f(x) = x egyenlet

$$\frac{x}{2} + \frac{1}{x} = x \qquad (1 \le t \in \mathbb{R})$$

alakú. Könnyű ellenőrizni, hogy ennek az egyenletnek egyetlen α gyöke van az $[1,+\infty)$ halmazban, nevezetesen $\alpha = \sqrt{2}$, hiszen bármely $x \in [1,+\infty)$ esetén

$$\frac{x}{2} + \frac{1}{x} = x$$
 \iff $x^2 + 2 = 2x^2$ \iff $2 = x^2$ \iff $x = \sqrt{2}$.

Ha a fixponttételt au u := 2 "kezdőértékkel" alkalmazzuk, akkor az

$$x_0 := 2,$$
 $x_{n+1} := \frac{x_n}{2} + \frac{1}{x_n} = \frac{1}{2} \cdot \left(x_n + \frac{2}{x_n}\right)$ $(n \in \mathbb{N}_0)$

sorozatot kapjuk (**Heron-féle** vagy **babiloni gyökkeresési algoritmus**). A fixponttétel következtében tehát az (x_n) sorozat konvergens és $\lim(x_n)=\sqrt{2}$, továbbá a q:=1/2 kontrakciós állandóval

$$\left|x_n - \sqrt{2}\right| \leq \frac{(1/2)^n}{1 - 1/2} \cdot |x_0 - x_1| = \frac{|2 - 3/2|}{2^{n-1}} = \frac{1}{2^n} \qquad (n \in \mathbb{N}_0).$$