Microeconomía 1 Teoría del productor

José Ignacio Heresi

Facultad de Economía y Negocios Universidad Alberto Hurtado

Teoría del productor

- Para este capítulo usaremos Mascollel capítulo 5 secciones A a D.
- Firmas tienen una tecnología fija y exógena que convierte insumos (*inputs*) en productos (*output*).
- Los productores toman el precio de los insumos y de los productos como dados y eligen un plan de producción para maximizar beneficios.
- Supongamos hay una economía con L bienes.
- La firma diseña un plan de producción $y=(y_1,...,y_L)\in\mathbb{R}^L$, con $y_k>0$ para los productos e $y_k<0$ para los insumos.

Conjunto de posibilidades de producción

- Las posibilidades de producción de la firma están dadas por el conjunto $Y \subset \mathbb{R}^n$, con cualquier $y \in Y$ es un plan de producción factible \to este es el dato primitivo de la teoría.
- Otra manera de representar las posibilidades de producción es mediante una función de transformación $F: \mathbb{R}^n \to \mathbb{R}$, con $F(y) \leq 0$ implicando que y es factible, o sea $Y = \{y \in \mathbb{R}^n : F(y) \leq 0\}$.
- Los puntos en la frontera de este conjunto $\{y \in \mathbb{R}^n : F(y) = 0\}$ son llamados la frontera de transformación.
- Si la función F es diferenciable e \overline{y} es tal que $F(\overline{y}) = 0$, se define la tasa marginal de transformación del bien l por el bien k como

$$MRT_{lk}(\overline{y}) = -\frac{\partial F(\overline{y})/\partial y_l}{\partial F(\overline{y})/\partial y_k}$$

 Mide cuanto crece el producto neto del bien k si reduce el producto neto del bien l en una unidad.

Tasa marginal de sustitución técnica

- Para algunas tecnologías los bienes que pueden ser productos es distinto del conjunto que pueden ser insumos.
- Denotamos $q=(q_1,...,q_M)$ a los productos y $z=(z_1,...,z_{L-M})$ a los insumos.
- Si la firma produce un solo bien, tenemos la función de producción q=f(z).
- La tasa marginal de sustitución técnica de l por k en \overline{z} es (para una producción fija)

$$MRTS_{lk}(\overline{z}) = \frac{\partial f(\overline{z})/\partial z_l}{\partial f(\overline{z})/\partial z_k}$$

es decir, cuanto del insumo k se debe usar en reemplazo de una unidad de insumo l para mantener el mismo nivel de producción $\overline{q} = f(\overline{z})$.

Propiedades del conjunto de posibilidades de producción

El conjunto Y puede cumplir las siguientes propiedades (algunas son mutuamente exclusivas):

- 1. Y es no vacío: algo planifica la firma.
- 2. Y es cerrado (incluye su frontera): implica que el límite de una secuencia de tecnologías factibles es factible.
- 3. No hay comida gratis: sin insumos no hay productos.
- 4. Posibilidad de inacción: $0 \in Y$.
- 5. Libre disposición: $y \in Y$ implica $y' \in Y$ para todo $y' \leq y$.
- 6. Irreversibilidad: no se puede devolver un producto a sus insumos. Si $y \in Y$ entonces $-y \notin Y$, para $y \neq 0$.

Propiedades del conjunto de posibilidades de producción

- 7. Retornos decrecientes a escala: si $y \in Y$ implica $\alpha y \in Y$ para todo $0 \le \alpha \le 1$.
- 8. Retornos crecientes a escala: si $y \in Y$ implica $\alpha y \in Y$ para todo $\alpha \geq 1$.
- 9. Retornos constantes a escala: si $y \in Y$ implica $\alpha y \in Y$ para todo $\alpha \geq 0$.
- 10. Aditividad (o libre entrada): si $y \in Y$ e $y' \in Y$ implica $y + y' \in Y$.
- 11. Convexidad: Y es convexo.
- 12. Cono convexo: convexidad + retornos constantes a escala. Si $y, y' \in Y$, para constantes $\alpha \geq 0$ y $\beta \geq 0$, entonces $\alpha y + \beta y' \in Y$.

Propiedades del conjunto de posibilidades de producción

Algunos resultados útiles:

- Convexidad y posibilidad de inacción ⇒ retornos decrecientes.
- Retornos decrecientes a escala \implies posibilidad de inacción.
- El conjunto de producción Y es aditivo y tiene retornos decrecientes a escala si y solo si es un cono convexo.
- Si la tecnología es de un producto, Y es convexo si y solo si f(z) es cóncava.
- Si la tecnología es de un producto, Y tiene retornos constantes a escala si y solo si $f(\cdot)$ es homogénea de grado 1.

Maximización de beneficios

- Hay un vector de precios $p = (p_1, ..., p_L) >> 0$ y la firma es tomadora de precios.
- Asumimos de ahora en adelante que Y es no vacío, cerrado y hay libre disposición.
- El problema de maximización de beneficios de la firma (PMB) es

$$\max_{y} \quad p \cdot y$$

s.a. $y \in Y$

- Alternativamente, la restricción puede ser $F(y) \leq 0$.
- El valor máximo de la función es la función de beneficios $\pi(p) = Max\{p \cdot y : y \in Y\}.$
- El argumento que maximiza la función es la correspondencia de producción óptima $y(p)=\{y\in Y:p\cdot y=\pi(p)\}.$

Función de beneficios

- Pregunta: Supongamos una tecnología que produce una unidad del bien 2 usando una unidad del bien 1 (retornos constantes a escala). ¿Cuál es la producción en función de los precios?
- Si la función $F(\cdot)$ es diferenciable, entonces la condición de primer orden se puede usar para caracterizar la solución.
- Para algún $\lambda \geq 0$

$$p_l = \lambda \frac{\partial F(y^*)}{\partial y_l} \quad \forall l$$

- En notación matricial $p = \nabla F(y^*)$.
- Esto implica $\frac{p_l}{n_l} = MRT_{lt}(y^*)$ para todo l, k.

Función de beneficios

ullet Si la tecnología es de un solo producto y la función de producción es diferenciable, el problema es solo la elección de los insumos z

$$\max_{z \ge 0} \quad pf(z) - w \cdot z$$

ullet Si z^* es óptimo, entonces se cumple para todo l que

$$p\frac{\partial f(z^*)}{\partial z_l} \le w_l,$$

con igualdad si $z_i^* > 0$.

- En notación matricial $p\nabla f(z^*) \leq w$ y $[p\nabla f(z^*) w] \cdot z^* = 0$.
- Es decir, la productividad marginal del insumo l debe ser igual a su precio en términos de producto w_l/p y para cualquier par de outputs $MRTS_{lk} = \frac{w_l}{w_k}$.

Función de beneficios

- Proposición: La función de beneficios $\pi(\cdot)$ es:
 - 1. Homogénea de grado uno: $\forall \lambda > 0, \pi(\lambda p) = \pi(p)$.
 - 2. Convexa en p.
 - 3. Si Y es convexo, entonces $Y = \{ y \in \mathbb{R}^L : p \cdot y \leq \pi(p), \forall p >> 0 \}$.
- Demostración:
 - 1. Tenemos que

$$\pi(\lambda p) = \max_{y \in Y} \lambda p \cdot y$$
$$= \lambda \max_{y \in Y} p \cdot y = \lambda \pi(p)$$

2. Una función es convexa si $tf(p)+(1-t)f(p')\geq f(tp+(1-t)p')$. Fijamos p,p' y definimos $p^t=tp+(1-t)p'$ para todo $t\in[0,1]$. Sea $y^t\in y(p^t)$. Entonces

$$t\pi(p) + (1-t)\pi(p') \ge tpy^t + (1-t)p'y^t = p^ty^t = \pi(p^t)$$

3. Omitir.

Propiedades de la función de beneficios

- Proposición: La correspondencia de producción óptima $y(\cdot)$ es:
 - 1. Homogénea de grado cero: $\forall \lambda > 0, y(\lambda p) = y(p)$.
 - 2. Si Y es convexo, entonces, para todo p, el conjunto y(p) es convexo. Si Y es estríctamente convexo, entonces y(p) es un singleton (si no vacío).
 - 3. Lema de Hotelling: si $y(\overline{p})$ es un *singleton*, entonces $\pi(\cdot)$ es diferenciable en \overline{p} y $\nabla \pi(\overline{p}) = y(\overline{p})$.
 - 4. Si $y(\cdot)$ es diferenciable en \overline{p} , la matriz $Dy(\overline{p})=D^2\pi(\overline{p})$ es simétrica y semi definida positiva, con $[Dy(\overline{p})]\overline{p}=0$.

Propiedades de la correspondencia de producción óptima

Demostración:

1. Tenemos que $\pi(\lambda p)=\max_{y\in Y}\lambda p\cdot y=\lambda\max_{y\in Y}p\cdot y=\lambda\pi(p)$. Entonces, para $\lambda>0$:

$$y(p) = \{ y \in Y | p \cdot y = \pi(p) \}$$
$$= \{ y \in Y | \lambda p \cdot y = \pi(\lambda p) \}$$
$$= y(\lambda p)$$

2. Se observa que $y(p) = Y \cap \{y \in \mathbb{R}^L | p \cdot y = \pi(p)\}$. Si Y es convexo, entonces y(p) es la intersección de dos conjuntos convexos y por lo tanto es convexo.

Por contradicción, suponemos que Y es estríctamente convexo pero y(p) no es un singleton. Entonces, para cualquier $y \neq y' \in y(p)$, y'' = ty + (1-t)y' está en el interior de Y, y como y(p) es convexa, $y'' \in y(p)$. Esto es imposible para $p \neq 0$ ya que el beneficio puede aumentar en la dirección de un bien con precio positivo.

Propiedades de la correspondencia de producción óptima

- 3. Teorema de la envolvente.
- 4. Primera parte viene de la convexidad de π .

Para la segunda parte, dado que y(p) es homogénea de grado cero, tenemos $\forall \lambda>0, y(\lambda p)=y(p).$ Por lo tanto, $y(\lambda p)-y(p)=0.$ Diferenciando respecto a λ y evaluando en \overline{p} y $\lambda=1$ se obtiene el resultado.

Ley de oferta

- Ley de oferta: para todo $p,p',\ y\in y(p)$ e $y'\in y(p')$, se cumple que $(p-p')(y-y')\geq 0.$
- En esta expresión, la ley de oferta está expresada en términos no diferenciables.
- La propiedad 4. de la correspondencia de producción óptima provee el mismo resultado en términos diferenciables.
- La ley de oferta se cumple para cualquier cambio de precios (no hay efectos riqueza ya que no hay restricción presupuestaria en este problema).
- Demostración:

$$(p - p')(y - y') = (py - py') + (p'y' - p'y) \ge 0$$

Minimización de costo

- Supongamos que la firma produce un solo bien, cuya cantidad denotamos por q.
- El problema de minimización de costo de la firma es (PMC)

$$\min_{z \ge 0} \quad w \cdot z$$
s.a.
$$f(z) \ge q$$

con w>>0 es el vector de precios de los insumos y z el vector de sus cantidades.

- El valor mínimo de la función es la función de costos c(w,q).
- La solución z(w,q) es la demanda condicional de factores.

Minimización de costo

- Gráficamente, suponiendo que hay dos insumos, la solución se encuentra donde se intersecta la curva isocostos (combinaciones de insumos que generan el mismo costo) más cercana al origen con el conjunto $\{z \in \mathbb{R}^L_+: f(z) \geq q\}$.
- Si $f(\cdot)$ es diferenciable, entonces para algún $\lambda \geq 0$, se debe cumplir la condición de primer orden para cada insumo l=1,...,L-1

$$w_l \ge \lambda \frac{\partial f(z^*)}{\partial z_l}$$

con igualdad si $z_i^* > 0$.

- En notación matricial $w \ge \lambda \nabla f(z^*)$ y $[w \lambda \nabla f(z^*)]z^* = 0$.
- Si la función de producción es cóncava (Y convexo) entonces estas condiciones son necesarias y suficientes para el óptimo del PMC.
- Nuevamente, se tiene que $MRTS_{lk} = \frac{w_l}{w_k}$.

Minimización de costo

- El multiplicador de Lagrange λ representa el valor marginal de relajar la restricción.
- Por lo tanto, en este caso $\lambda = \frac{\partial c(w,q)}{\partial a}$, o sea el costo marginal de producción.
- Este problema es análogo al problema de minimización de gasto del consumidor.
- Por lo tanto, algunos de los siguientes resultados son muy similares a los ya estudiados.

Propiedades de la función de de costos

- Proposición: Sea c(w,q) es la función de costos de un solo producto con tecnología Y y función de produción $f(\cdot)$. Entonces, función de costos $c(\cdot)$ es
 - 1. Homogénea de grado uno en w y creciente en q.
 - 2. Cóncava en w.
 - 3. Si los conjuntos $\{z\geq 0: f(z)\geq q\}$ son convexos para todo q, entonces $Y=\{(-z,q): w\cdot z\geq c(w,q)\ \forall w>>0\}.$

Propiedades de la correspondencia condicional de factores

- Proposición: Sea z(w,q) la correspondencia condicional de factores al producir un solo producto con tecnología Y y función de produción $f(\cdot)$. Entonces, $z(\cdot)$ es
 - 1. Homogénea de grado cero en w.
 - 2. Si el conjunto $\{z\geq 0: f(z)\geq q\}$ es convexo, entonces z(w,q) es un conjunto convexo. Si el conjunto es estrictamente convexo, entonces z(w,q) es un *singleton*.
 - 3. Lema de Shepard: si $z(\overline{w},q)$ es un *singleton*, entonces $c(\cdot)$ es diferenciable con respecto a w en \overline{w} y $\nabla_w c(\overline{w},q) = z(\overline{w},q)$.
 - 4. Si $z(\cdot)$ es diferenciable, entonces $D_w z(\overline{w},q) = D_w^2 c(\overline{w},q)$ es simétrica y semi definida negativa, con $D_w z(\overline{w},q)\overline{w} = 0$.
 - 5. Si $f(\cdot)$ es homogénea de grado uno (retornos constantes a escala), entonces $c(\cdot)$ y $z(\cdot)$ son homogéneas de grado uno en q.
 - 6. Si $f(\cdot)$ es cóncava, entonces $c(\cdot)$ es convexa en q.

Maximización de beneficios con función de costos

 Utilizando la función de costos, podemos replantear el problema de la firma como aquel en que se maximiza el nivel de producción

$$\max_{q \ge 0} \quad pq - c(w, q)$$

La condición de primer orden es

$$p - \frac{\partial c(w, q^*)}{\partial q} \le 0$$

con igualdad si $q^* > 0$.

- En una solución interior, el precio es igual al costo marginal.
- Si c(w,q) es convexa en q, entonces la condición de primer orden es suficiente para que q^* sea el óptimo.

Tecnología, función de costos y función de oferta

- Asumimos que el vector de precio de los insumos está fijo en un valor \overline{w} .
- Seguimos analizando el caso en que se produce un solo producto.
- Denotamos $C(q) = c(\overline{w}, q)$.
- Definimos:
 - Costo variable: AC(q) = C(q)/q.
 - Costo marginal: C'(q) = dC(q)/dq.
- Normalizamos el precio del producto a p=1 y consideramos el caso de un input para graficar.
- Notar que, gráficamente, la función de costos se obtiene rotando el conjunto de producción en 90 grados.

Tecnología, función de costos y función de oferta

- El nivel (o niveles) de producción que minimiza(n) el costo costo medio es la escala eficiente, denotado \overline{q} si es único.
- Se tiene que $AC(\overline{q})=C'(\overline{q})$ para todo \overline{q} que satisface la condición $AC(\overline{q})\leq AC(q)$ para todo q.
- Una fuente importante de no convexidad son los costos fijos de instalación, los cuales pueden ser o no ser hundidos.
- La función de costo en este caso es $C(q) = C_v(q) + K$ para q > 0 ($C_v(0) = 0$), donde $C_v(q)$ es la función de costo variable.
- Si el costo fijo es hundido, C(0) > 0, o sea $C(q) = C_v(q) + K$ para $q \ge 0$.