2023~2024 学年福建百校联考高三正月开学考

化 学

全卷满分100分,考试时间75分钟。

注意事项:

- 1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。
- 2. 请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非 答题区域均无效。
- 3. 选择题用 2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。
- 4. 考试结束后,请将试卷和答题卡一并上交。

可能用到的相对原子质量:H1 C12 N14 O16 S32 K39 Fe 56 Cu 64 Se 79 Re 186

- 一、选择题:本题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 宣纸是中国传统的古典书画用纸。下列关于宣纸的传统制作工艺中涉及化学变化的步骤是

- 2. 磷酸奥司他韦是临床常用的抗病毒药物,常用于甲型和乙型流感治疗,其中间体结构简式如图所示。关于该中间体的说法错误的是
 - A.1 mol 该中间体最多能与 1 mol H₂ 发生加成反应
 - B. 分子中含有 3 个手性碳原子
 - C. 分子中采取 sp3 杂化方式的元素有 3 种
 - D. 该中间体中含氧官能团的名称为醚键、酯基、酮羰基
- 3. 下列过程中的化学反应,相应的离子方程式书写错误的是
 - A. 饱和碳酸钠溶液中通人足量二氧化碳产生沉淀: 2Na⁺+CO₃⁻+H₂O+CO₂ —2NaHCO₃ ↓
 - B. 硝酸银溶液中加入过量氨水: Ag++2NH₃ H₂O = [Ag(NH₃)₂]++2H₂O
 - C. 草酸溶液中滴入酸性高锰酸钾溶液: 5C₂O₄²⁻+2MnO₄⁻+16H⁺ -10CO₂ ↑ +2Mn²⁺+8H₂O
 - D. 1 L 0. 1 mol·L⁻¹ FeI₂ 溶液中通人 2. 24 L(标准状况)Cl₂:2I⁻+Cl₂ —I₂+2Cl⁻

- 4. X、Y、Z、W 为原子序数依次增大的短周期主族元素,X 的一种核素没有中子,基态 Y 原子的 p 轨道上的电子排布处于半充满状态,Z 的单质是植物光合作用的产物之一,W 与 Z 同族。下列说法错误的是
 - A. 键角:YX₃<X₂Z
 - B. 简单氢化物的稳定性: Z>Y
 - C. 元素的第一电离能:Y>Z>W
 - D. X、Y、Z 三种元素组成的化合物可能是酸、碱或盐
- 5. $[Cu(NH_s)_4]SO_4$ 常用作杀虫剂、媒染剂,在碱性镀铜中也常用作电镀液的主要成分,也是高效、安全的广谱杀菌剂,还可用作植物生长激素。设 N_{Λ} 为阿伏加德罗常数的值,下列说法正确的是
 - A. 0.1 mol [Cu(NH₃)₄]²⁺含有的质子数为 7N_A
 - B. 57 g [Cu(NH₃)₄]SO₄ 固体中含有的离子数为 0.25N_A
 - C. 0.1 mol [Cu(NH₃)₄]SO₄ 固体中含有的 σ键数为 1.6N_A
 - D. NH₃、SO²⁻ 的 VSEPR 模型均为四面体形
- 6. 下列实验操作、现象和所得出的结论均正确的是

١,	75 关 选 床 下 5 次 次 7 6 万 万 万 万 万 元 师 万 元						
	选项	实验操作、现象	结论				
	A	取两支试管,均加人 $4 \text{ mL } 0.01 \text{ mol} \cdot \text{L}^{-1} \text{ KMnO}_4$ 酸性溶液,然后向一支试管中加人 $0.01 \text{ mol} \cdot \text{L}^{-1} \text{ H}_2\text{C}_2\text{O}_4$ 溶液 2 mL ,向另一支试管中加入 $0.01 \text{ mol} \cdot \text{L}^{-1} \text{ H}_2\text{C}_2\text{O}_4$ 溶液 4 mL ,第一支试管中褪色时间较长	H ₂ C ₂ O ₄ 浓度越大,反应速 率越快				
	В	检验 FeCl ₂ 溶液中是否含有 Fe ²⁺ 时,向 FeCl ₂ 溶液中滴入 2 滴 K ₃ [Fe(CN) ₆](铁氰化钾)溶液,产生蓝色沉淀	原溶液中含有 Fe ²⁺				
	С	取两支试管,均加入等体积等浓度的双氧水,然后向试管①中加入 $0.01 \text{ mol} \cdot L^{-1} \text{ FeCl}_3$ 溶液 2 mL ,向试管②中加入 $0.01 \text{ mol} \cdot L^{-1} \text{ CuCl}_2$ 溶液 2 mL ,试管①产生气泡快	加人 FeCl。溶液时,双氧水分解反应的活化能较大				
	D	在氨水中滴入酚酞溶液,加热一段时间,溶液红色先变深后变浅	升高温度,一水合氨的电离程度先增大后减小				

7. 碱式碳酸锌 $[Zn_3(OH)_4CO_3]$ 广泛应用于橡胶、塑料等行业。以含锌废液(主要成分为 $ZnSO_4$,含少量的 Fe^{2+} 和 Mn^{2+})为原料制备碱式碳酸锌的流程如下:

下列说法错误的是

- A. "除锰"时, Mn²⁺被氧化的离子方程式为 Mn²⁺ +S₂O₈²⁻ +2H₂O = MnO₂ ↓ +2SO₄²⁻ +4H⁺
- B. "试剂 X"可以是 ZnO、Zn(OH)2 或 ZnCO3
- C. "沉锌"时,消耗的 Zn2+和 HCO3 的物质的量之比为 3:2
- D. "滤液"中的溶质主要是(NH4)2SO4
- 8. 叔丁醇(沸点 82 ℃)和浓盐酸反应制备 2-甲基-2-氯丙烷(沸点 52 ℃)的过程如下:

已知:2-甲基-2-氯丙烷的密度为 0.8420 g·cm⁻³。

下列说法正确的是

- A. "搅拌"的目的是为了增大反应物中活化分子的百分数,从而加快反应速率
- B. 用 5%Na₂CO₃ 溶液洗涤,分液时先将有机层从分液漏斗上口倒出
- C. 第一、二次水洗的主要目的是分别除去有机层中的盐酸、碳酸钠
- D. 蒸馏收集 2-甲基-2-氯丙烷时,应选用球形冷凝管

9. 一种清洁、低成本的三步法氯碱工艺工作原理的示意图如下,下列说法正确的是

A. 第三步中 a 为直流电源的正极

- B. 第一步生产 NaOH 的总反应为 4Na_{0.44} MnO₂ + xO₂ + 2xH₂ O = 4Na_{0.44-x} MnO₂ + 4xNaOH
- C. 第二步为原电池,正极质量增加,负极质量减少
- D. 第三步外电路上每转移 4 mol 电子,电解池中有 4 mol HCl 被电解
- 10. 常温下,某同学在两个相同的特制容器中分别加入 20 mL 0.4 mol·L⁻¹ Na₂CO₃ 溶液和 40 mL 0.2 mol·L⁻¹ NaHCO₃ 溶液,再分别用 0.4 mol·L⁻¹ 盐酸滴定,利用 pH 计和压力 传感器检测,得到如图曲线

下列说法正确的是

- A. 水的电离程度:e 点<f 点
- B. 当滴加盐酸的体积为 V_1 mL 时(a 点、b 点),所发生的反应用离子方程式表示为 $HCO_3^- + H^+ \longrightarrow H_2O + CO_2^{\uparrow}$
- C. 若用与盐酸等物质的量浓度的醋酸溶液滴定,则曲线甲中 c 点位置不变
- D. c(20,8.3) 点处, $c(HCO_3^-)+2c(H_2CO_3)+c(H^+)=(0.2+10^{-5.7})$ mol·L⁻¹
- 二、非选择题:本题共4小题,共60分。
- 11. (15 分)利用粗硫酸镍晶体(含 Cu²+、Ni²+、Fe²+、Fe³+、Ca²+、Zn²+等杂质)制备硫酸镍晶体 (NiSO₄ 6H₂O)、ZnSO₄ 溶液和胆矾(CuSO₄ 5H₂O)的工艺流程如下:

已知:25 ℃时,有关金属离子浓度为 0.1 mol·L⁻¹时形成氢氧化物沉淀的 pH 范围如下:

金属离子	Cu ²⁺	Fe ²⁺	Fe³-ŀ	Ca ²⁺	Zn ²⁺	Ni ²⁺
开始沉淀的 pH	4. 2	6.3	1.5	11.8	6. 2	6.9
沉淀完全的 pH	6.7	8.3	2.8	13.8	8. 2	8, 9

回答下列问题:

- (1)基态 Cu 原子的价层电子排布式为
- (2) H_2O_2 分子结构如图所示,两个氢原子犹如在半展开的书的两页上,两个氧原子在书的夹缝上,书页夹角为 $93^{\circ}51'$,两个 O—H 键与 O—O 键的夹角为 $96^{\circ}52'$,则 H_2O_2 是分子(填"极性"或"非极性")。

- (3)向"溶液 1"中通人稍过量的 H₂S,发生主要反应的离子方程式为
- (4)向"溶液 2"中加入 Ni(OH)。的原因是_______(结合离子方程式解释)。
- (5)若"溶液 3"中 Ca^{2+} 的浓度为 0.002 $mol \cdot L^{-1}$,取等体积的 NiF_2 溶液与该溶液混合 ,反应结束时要使 $c(Ca^{2+}) < 1 \times 10^{-5-} mol \cdot L^{-1}$,则所加 NiF_2 溶液的浓度至少为_____ $mol \cdot L^{-1}$ 「已知室温下 $K_{sp}(CaF_2) = 4 \times 10^{-11}$]。
- (6)室温下选择萃取剂 HR,其萃取原理为:nHR+M"+→→MR, +nH+,溶液的 pH 对几种离子的萃取率的影响如图所示,则萃取锌时,应控制 pH 的范围为 3~4,原因是_____。试剂 a 为

(7)由铁、钾、硒形成的一种超导材料,其长方体晶胞结构如图 1 所示。

- ①该超导材料的化学式是_____
- ②该晶胞参数 a=0.4 nm, c=1.4 nm。该晶体密度 $\rho=$ _______ g·cm⁻³(列出计算式,阿伏加德罗常数用 N_A 表示)。
- ③该晶胞在 エッ 平面投影如图 2 所示,将图 2 补充完整。
- 12. (15 分)铼(Re)是具有重要军事战略意义的金属。NH, ReO, 是制备高纯度 Re 的原料,实验室用 Re₂ O₇ 制备 NH, ReO, 的装置如图所示。

已知: I. Re_2O_7 易溶于水,溶于水后生成 $HReO_4$; $HReO_4$ 与 H_2S 反应生成 Re_2S_7 。 有关物质的溶解度 S 见下表:

温度/℃	S[(NH ₄) ₂ SO ₄]/g	S(NH ₄ ReO ₄)/g
20	75. 4	6.1
30	78.0	32.3

II.2NH₄ReO₄ = -定条件 2NH₃ ↑ + H₂O+Re₂O₇;

 $NH_3 + H_3BO_3 = NH_3 \cdot H_3BO_3$;

 $NH_3 \cdot H_3BO_3 + HCl = NH_4Cl + H_3BO_3$.

回答	7	1	BE	
	N 7711	1111	54H	

(2)NH₄ReO₄的制备

- ①反应开始前先向装置 C 中三颈烧瓶内加入一定量的 (填化学式)和 H₂O;
- ②关闭 ,打开 ,装置 C 中三颈烧瓶内生成 Re₂S₇;
- ③关闭 K_1 ,打开 K_2 ,通人 N_2 一段时间,通人 N_2 的目的是
- ④关闭 K_2 ,打开 K_3 ,滴入足量 H_2O_2 的氨水溶液,生成 NH_4 ReO_4 和 $(NH_4)_2$ SO_4 ,反应的 化学方程式为
- ⑤反应结束后,将 C 中溶液经 ____、__、__、过滤、乙醇洗涤、干燥,得到 NH, ReO, 晶体。
- (3)下列装置可用作装置单元 X 的是 (填标号)。

- (4)取wg NH₄ReO₄样品,在加热条件下使其分解,产生的氨气用硼酸(H₃BO₃)溶液吸收。 吸收液用浓度为c mol·L⁻¹的盐酸滴定,消耗盐酸V mL。NH₄ReO₄的纯度为 _____(已知:NH₄ReO₄的相对分子质量为268)。若加热温度过高,NH₄ReO₄分解产生 N₂,会导致 NH₄ReO₄ 纯度测量值 (填"偏大""偏小"或"无影响")。
- 13. (15 分)钛合金是航天航空工业的重要材料。钛铁矿的主要成分为钛酸亚铁(FeTiO₃)。由 钛铁矿制备人造金红石(TiO₂),发生的反应有:

反应①: $FeTiO_3(s)+C(s)\Longrightarrow Fe(s)+TiO_2(s)+CO(g)$ $\Delta H_1=+181 \text{ kJ} \cdot \text{mol}^{-1}$ 反应②: $FeTiO_3(s)+CO(g)\Longrightarrow Fe(s)+TiO_2(s)+CO_2(g)$ $\Delta H_2=+8.5 \text{ kJ} \cdot \text{mol}^{-1}$ 回答下列问题:

- (1)已知 C(s)的燃烧热 $\Delta H = -393.5 \text{ kJ} \cdot \text{mol}^{-1}$,则表示 CO(g)燃烧热的热化学方程式为
- (2)—定温度下,在VL 恒容密闭容器中加入mg FeTiO₃(s)和wg C(s),经过t min 反应达到平衡,测得c(CO)=a mol· L^{-1} ,c(CO₂)=b mol· L^{-1} 。

 - ②该条件下,当密闭容器中下列物理量不再发生变化时,不能说明该反应体系达到平衡状态的是_____(填标号)。
 - A. 混合气体的压强
 - B. 混合气体的密度
 - C. 混合气体的总物质的量
 - D. FeTiO₃(s)和 Fe(s)的反应速率(单位:mol·min¹)之比等于化学计量数之比

圖

緎

要

K

图

涨

部

邸

③保持温度不变,将容器体积压缩至原来的一半,达到新平衡时 c(CO)为 (填标号)。