Biểu đồ tăng trưởng của thai nhi trong tử cung

Âu Nhưt Luân 1

© Bộ môn Phụ Sản, Khoa Y, Đại học Y Dược TP. Hồ Chí Minh.

Mục tiêu bài giảng

Sau khi học xong, sinh viên có khả năng:

- 1. Trình bày được nguyên lý của việc dùng biểu đồ tăng trưởng để đánh giá phát triển bào thai trong tử cung
- Vẽ được vào biểu đồ tăng trưởng bằng cách dùng các thông số sinh trắc
- 3. Nhận diện được một tăng trưởng bào thai trong tử cung là bình thường hay không bình thường

Giảng viên, Phó trưởng bộ môn Phụ Sản, Đại học Y Dược TP. Hồ Chí Minh. e-mail: aunhutluan@gmail.com

GIÁ TRỊ SINH TRẮC CỦA THAI NHI KHÔNG THEO PHÂN PHỐI CHUẨN

Số liệu sinh trắc thai trong dân số chung không theo phân phối chuẩn. Chúng được khảo sát bằng trung vị và độ lệch chuẩn (standard deviation).

Trong thống kê, số liệu thu thập được được phân phối theo một kiểu nhất định. Số liệu về sinh trắc học của bào thai trong dân số chung không theo phân phối chuẩn. Vì thế, khảo sát tình trạng tăng trưởng bào thai phải được thực hiện bằng một biểu đồ, trong đó thể hiện trung vị (median) của sinh trắc, và các khoảng một hay hai độ lệch chuẩn.

Úng dụng vào theo dõi tình trạng thai, thông số sinh trắc thai được thể hiện trên một biểu đồ được dựng bởi:

- Trục hoành, có đơn vị là tuổi thai tính bằng tuần lễ tròn vô kinh đã trải qua
- Trục tung thể hiện giá trị (value) của thông số đang muốn đánh giá
- 3. Các đường bách phân vị (percentile) dùng để so sánh giá trị đã có với số liệu thống kê đã biết về dân số đã khảo sát trước đó: 3rd, 10th, 50th, 90th và 97th percentile.
 50th percentile là đường nối các giá trị trung vị của dân số được khảo sát trước đó

 $n^{\rm th}$ percentile là đường nối các giá trị mà n % dân số khảo sát có giá trị khảo sát được nằm dưới giá trị này

90th percentile trùng với + 1 độ lệch chuẩn, có nghĩa là có đến 90% dân số khảo sát có giá trị khảo sát được nằm bên dưới giá trị này

97th percentile trùng với + 2 độ lệch chuẩn, có nghĩa là có đến 97% dân số khảo sát có giá trị khảo sát được nằm bên dưới giá trị này

10th percentile trùng với - 1 độ lệch chuẩn, có nghĩa là chỉ có 10% dân số khảo sát có giá trị khảo sát được nằm bên dưới giá trị này

3rd percentile trùng với - 2 độ lệch chuẩn, có nghĩa là chỉ có 3% dân số khảo sát có giá trị khảo sát được nằm bên dưới giá trị này

2 điều kiện để sử dụng biểu đồ tăng trưởng bào thai:

- 1. Đối tượng nằm trong dân số khảo sát
- 2. Tôn trọng các mốc tính

Như vậy, nếu muốn đánh giá giá trị của một thông số so với dân số chung bằng biểu đồ thể hiện bằng các percentile, thì phải thỏa các điều kiện:

- Có được biểu đồ của dân số chung. Đối tượng khảo sát phải là thành phần trong dân số đã được khảo sát. Khảo sát sinh trắc của thai nhi Việt Nam thì phải dùng biểu đồ vẽ bằng số liêu của các thai nhi Việt Nam.
- 2. Phải áp dụng các tiêu chuẩn đã được dùng khi thiết kế xây dựng biểu đồ. Ví dụ như biểu đồ được xây dựng trên trục hoành là số tuần tuổi thai tròn đã qua thì khi áp dụng biểu đồ, tuổi thai phải được tính bằng số tuần tròn đã qua, chẳng hạn như giá trị đo được ở tuổi thai 36 tuần và 6 ngày thì phải được vẽ vào điểm có hoành độ là 36 tuần, chứ không được phép vẽ vào điểm có hoành độ là 37 tuần. Như vậy điều kiện rất quan trọng để vẽ biểu đồ là phải biết chính xác tuổi thai, qua các thông tin sớm trong thai kỳ.

Việt Nam chưa có biểu đồ tăng trưởng thai của riêng mình.

Trong điều kiện thực hành nước ta hiện nay, chúng ta hiện không có dữ liệu quốc gia về sinh trắc thai, vì thế không thể xây dựng được biểu đồ tăng trưởng thai cho riêng Việt Nam. Muốn đánh giá tăng trưởng bào thai, phải tìm được một biểu đồ gần với chúng ta nhất, và phải chấp nhận việc đánh mất tính tin cây của biểu đồ mà chúng ta định dùng.

Tại miền nam Việt Nam, bệnh viện Phụ Sản Từ Dũ có một số liệu khá lớn về sinh trắc. Các số liệu này khá gần với số liệu thu thập được bởi Norio Shinozuka trên dân số thành phố Tokyo năm 1994. Vì thế, có thể tạm chấp nhận sử dụng biểu đồ sinh trắc dựng trên số liệu của Tokyo vào năm 1994 để đánh giá tăng trưởng cho thai nhi Việt Nam.

Nhiều máy siêu âm hiện nay trang bị các số liệu từ kho dữ liệu của Hadlock. Các số liệu này khá chênh lệch so với cơ sở dữ liệu của bệnh viện Phụ Sản Từ Dũ, và có chiều hướng lớn hơn số liệu sinh trắc của thai nhi Việt Nam. Vì thế, khi sử dụng biểu đồ của Hadlock, chúng ta có nhiều nguy cơ chẩn đoán quá tay là thai nhi bị nhỏ hay bị chậm tăng trưởng, trong khi đó, bản chất nó là một thai nhi Việt Nam đang tăng trưởng bình thường.

BIỂU ĐỔ SINH TRẮC THAI THEO SHINOZUKA

Norio Shinozuka ¹ xây dựng hệ thống các biểu đồ thể hiện các giá tri khảo sát riêng rẽ. (Tokyo, 1994)

¹ Norio Shinozuka, Takashi Nakamura, Munehiro Hirayama. Standard Growth Curve of Japanese using Non-Linear Growth Model . Tokyo Metropolitan Government Maternal and Child Health Service Center. Tokyo Research Network of Perinatal Medicine. Acta Neanatoligica Japonica 30(3)433-441,1994

Norio Shinozuka xây dựng hệ thống các biểu đồ thể hiện các giá trị khảo sát riêng rẽ của đường kính lưỡng đỉnh thai (Biparietal Diameter) (BPD), chiều dài xương đùi (Femur Length) (FL), chu vi bụng (Abdominal Circumference) (AC). Cuối cùng là biểu đồ thể hiện trọng lượng thai ước tính (Estimated Fetal Weight) (EFW) theo công thức của riêng mình, dựa trên số liệu của mình.

Khi dùng biểu đồ của Shinozuka, phải dùng các giá trị đơn lẽ để điền vào biểu đồ, từ đó kết luận xem giá trị có được tương ứng với percentile nào của tuổi thai xác định đó.

Hình 1: Các biểu đồ của Norio Shinozuka

Hình 1a: Biểu đồ của BPD (mm) (3rd, 50th và 97th centile)

Hình 1b: Biểu đồ của AC (cm) (3rd, 50th và 97th centile)

Hình 1c: Biểu đồ của chiều dài xương đùi (mm) (3rd, 50th và 97th centile)

Không sử dụng EFW được tính bởi một máy siêu âm bất kỳ hay một công thức bất kỳ để điền vào biểu đồ EFW của Shinozuka.

Biểu đồ EFW của Shinozuka chỉ được điền vào bởi giá trị của lượng thai tính bằng công thức của Shinozuka.

Trọng lượng thai ước tính bằng một công thức khác với công thức của Shinozuka phải được điền vào biểu đồ EFW được xây dựng bằng chính công thức mà nó đã dùng để tính EFW.

Hình 2: Biểu đồ của trọng lượng thai ước tính (gram) 3rd, 50th và 97th percentile

Nguồn của hình 1 và hình 2: Norio Shinozuka, Takashi Nakamura, Munehiro Hirayama. Standard Growth Curve of Japanese using Non-Linear Growth Model . Tokyo Metropolitan Government Maternal and Child Health Service Center. Tokyo Research Network of Perinatal Medicine. Acta Neanatoligica Japonica 30(3)4333-441,1994

Vì thế, ví dụ như trong trường hợp chúng ta có một EFW cho bởi một máy siêu âm dùng công thức Hadlock để tính thì chúng ta buộc phải dùng biểu đồ EFW của Hadlock.

Tuy nhiên, số liệu của dân số mà Hadlock khảo sát không phù hợp với cơ sở dữ liệu Việt Nam, và đòi hỏi bạn phải hết sức thận trọng trong diễn giải kết quả và trong kết luận, nhất là kết luận thai có giới hạn tăng trưởng trong tử cung.

Hình 3: Một minh họa biểu đồ tăng trưởng khác.

Vùng SGA thể hiện các thai có kích thước nhỏ, là đối tượng cần xác định có hay không có giới hạn tăng trưởng trong tử cung.

Vùng LGA thể hiện các thai có kích thước nhỏ, là đối tượng cần xác định có hay không có thai to trong tử cung.

Dạng biểu đồ sẽ phân định được chẩn đoán

Khi so sánh với biểu đồ EFW của Shinozuka, bạn sẽ thấy có sự khác nhau của các trị số $10^{\rm th}$ và $90^{\rm th}$ percentile ở 2 biểu đồ.

Nguồn: upload.wikimedia.org

DIỄN GIẢI KẾT QUẢ BIỂU ĐÒ TĂNG TRƯỞNG

Khi vẽ vào biểu đồ tăng trưởng, điểm ghi sẽ rơi vào một trong các vùng xác định bởi các đường percentile.

10th percentile và 90th percentile là lần lượt các điểm cắt cho tầm soát thai nhỏ và thai to.

- Điểm ghi rơi vào bên dưới 10th percentile thể hiện rằng giá trị của trị số đo được ở thai nhi mà bạn đang muốn khảo sát thấp hơn (nhỏ hơn) so với giá trị mà bên dưới đó 10% dân số khảo sát đã được đo đã nhận. Nói cách khác, đây có thể là một thai nhỏ.
- Điểm ghi rơi vào bên trên 90th percentile thể hiện rằng giá trị của trị số đo được ở thai nhi mà bạn đang muốn khảo sát cao hơn (lớn hơn) so với giá trị mà bên dưới đó 90% dân số khảo sát đã được đo đã nhận. Nói cách khác, đây có thể là một thai to.

 10^{th} percentile và 90^{th} percentile thường được dùng cho mục đích tầm soát và cảnh báo.

Một điểm ghi duy nhất, hay giá trị nằm ở 10th percentile hay 90th percentile chưa đủ cho khẳng định chẳn đoán thai nhỏ hay thai to. Chúng có ý nghĩa cảnh báo.

3rd percentile và 97th percentile thường được dùng như là điểm cắt cho chẩn đoán.

- Điểm ghi rơi vào bên dưới 3rd percentile thể hiện rằng giá trị của trị số đo được ở thai nhi mà bạn đang muốn khảo sát thấp hơn (nhỏ hơn) so với giá trị mà bên dưới đó 3% dân số khảo sát đã được đo đã nhận. Nói cách khác, đây có thể là một thai có kích thước rất nhỏ. So với dân số đã khảo sát khi xây dựng biểu đồ, thì có đến 97% dân số đó có kích thước lớn hơn em bé mà bạn đang khảo sát.
- Điểm ghi rơi vào bên trên 97th percentile thể hiện rằng giá trị của trị số đo được ở thai nhi mà bạn đang muốn khảo sát cao hơn (lớn hơn) so với giá trị mà bên dưới đó 97% dân số khảo sát đã được đo đã nhận. Nói cách

khác, đây có thể là một thai có kích thước rất to. So với dân số đã khảo sát khi xây dựng biểu đồ, thì chỉ có 3% dân số đó có kích thước lớn hơn em bé mà bạn đang khảo sát.

3rd percentile và 97th percentile thường được dùng cho mục đích xác lập chẩn đoán thai giới hạn tăng trưởng trong tử cung hay thai to.

Một điểm ghi duy nhất, hay giá trị nắm ở 3rd percentile hay 97th percentile chưa đủ cho khẳng định chẩn đoán thai giới hạn tăng trưởng trong tử cung hay thai to.

Dạng của biểu đồ có ý nghĩa hơn là vị trí điểm ghi. Cần phải có nhiều điểm ghi để có ý niệm về tăng trưởng bào thai.

Thai nhi là một thực thể động, phát triển, tùy thuộc vào nhiều yếu tố như dinh dưỡng, di truyền, epigenetic, nên chỉ một điểm ghi rơi vào một vùng nào đó thì không đủ để dẫn đến thiết lập chẩn đoán.

Thông thường, dạng của biểu đồ, càng đi lên, hay càng đi xuống, rồi cắt các đường percentile, hay biểu đồ bị gãy và chuyển hướng là những biểu đồ thể hiện ý nghĩa bệnh lý.

Các dạng biểu đồ song song với các percentile thường ít có ý nghĩa bệnh lý, cho dù nó nằm bên dưới của 10^{th} percentile hay bên trên của 90^{th} percentile. Trong trường hợp này, cần phải xem xét đến nhiều yếu tố trước khi đi đến kết luận.

Hai trong các yếu tố thường thấy nhất gây ra dạng biểu đồ song song với các 10th percentile và 90th percentile là:

- 1. Đinh sai tuổi thai
- 2. Các yếu tố thượng di truyền (epigenetic) hay di truyền.

TÀI LIỆU ĐỌC THÊM

1. Obstetrics and gynecology 8th edition. Tác giả Beckmann. Hợp tác xuất bản với ACOG. Nhà xuất bản Wolters Kluwer Health 2018.