Tytonidae Tympanometry

Applying Machine Learning to predict hearing loss using wideband tympanometry

Di Yao Karan Rebello Anitha Raghupathy Cheng Nian 22795234 22868277 22773933 23053313

Aminul Islam Daniel Chegwidden 22884375 21282744

October 2021

https://github.com/danielchegwidden/tytonidae-tympanometry

Contents

1	Tytonidae Tympanometry	3
2	Models. Models.	3
3	Finding Number 1	3
4	Looking Ahead	3
5	Contribution	4

1 Tytonidae Tympanometry

The Tytonidae Tympaometry (TyTy) project was born out of a need for audiologists to better understand wideband tympanometry (WBT). WBT data is used to classify ears as either normal, or with conductive conditions such as Otitis Media. The subjects in this data are children, and not identifying conductive conditions has consequences throughout their life. The societal cost of these conditions is estimated at \$20,000 across 10 years as children struggle to learn and engage at school amongst other effects.

TyTy attempts to use WBT data to improve the classification accuracy of the current receiver operating characteristic (ROC) analysis that is performed, as well as provide audiologists with insights as to how to better analyse the large quantities of data that is being generated. If this is achieved, then clinicians are able to spend less time analysing data, and more time interacting with patients, resulting in more patients being seen and better care being delivered.

To Add: Data

2 Models. Models. Models.

The Machine Learning approach that attempted to beat the ROC results involved Logistic Regression, Support Vector Machines, Decision Trees, Random Forests, and K-Nearest Neighbour as the modelling approaches taken. These were selected as having good classification applications, as well as a variety of complexity and interpretability.

To Add: Results

3 Finding Number 1

To Add: Results Comparison, Explainability Considerations

4 Looking Ahead

5 Contribution

To Add: Gantt Charts

Member	Number	Project Tasks	Skills
Di Yao	22795234	 Research Wideband Absorbance Data and scope the project Review code and approve changes using Pull Requests Perform modelling using K-Nearest Neighbour and then Random Forest 	Python Machine Learning Git and GitHub
Karan Rebello	22868277	 Research Wideband Absorbance Data and scope the project Review code and approve changes using Pull Requests Perform modelling using Random Forest 	Python Machine Learning
Anitha Raghupathy	22773933	 Research Wideband Absorbance Data and scope the project Review code and approve changes using Pull Requests Perform modelling using Support Vector Machines 	Python Machine Learning
Cheng Nian	23053313	 Data Cleaning and Transformations including pressure-matching function Review code and approve changes using Pull Requests Perform modelling using Support Vector Machines 	Python Machine Learning
Aminul Islam	22884375	 Data Cleaning and Transformations Perform modelling using Logistic Regression 	Python Machine Learning

Daniel Chegwidden	21282744	1. Create GitHub Repos-	Team Leadership
		itory and set up applica-	Meeting Organisation
		ble automation and struc-	Python
		ture around Commits and	Machine Learning
		Pull Requests	Git and GitHub
		2. Manage code integra-	Software Engineering
		tion to ensure a workable	
		code base was maintained	
		and applicable functions	
		and structures were in	
		place to support consistent	
		and reproduceable analy-	
		sis	
		3. Review code and ap-	
		prove changes using Pull	
		Requests	
		4. Perform modelling us-	
		ing Decision Tree	