Name PID

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Electrical and Computer Engineering Department ECE 65 – Spring 2021

Components and Circuits lab

Midterm Exam3

You should submit your handwritten solutions in a PDF format to Gradescope by Tuesday, 6/1, at 11:59 pm (Pacific Time).

Name PID

In the design of the following two stage BJT amplifier, assume $\beta = 100$, $V_A = 100V$, $V_{D0} = 0.7V$ and $V_T = 25mV$. Also assume the capacitors are short in the signal circuit. Ignore the early effect in Bias circuit calculations.

- a) Design the circuit (find the values of R_1 , R_2 , R_3 , and R_4) such that
 - $I_{C1} = I_{C2} = 1 \, mA$
 - The input resistances of the first and second stages, R_{i1} and R_{i2} , are both equal to $2 k\Omega$.
 - The DC node voltages at the collector of transistor 1 and transistor 2 are both greater than 5 V.

Note that the same resistors, R_1 , R_2 , R_3 , and R_4 , are used in both stages. To show your work, answer the following questions.

- b) Draw the circuit and add your calculated resistor values to the schematic.
- c) What are the DC base, collector, and emitter node voltages in your designed circuit? Find them for both transistors.
- d) What are the values of g_m , r_{π} , and r_o for each transistor?
- e) Draw the signal circuit.

Name PID

f) What are the output resistances values for each stage (R_{o1}, R_{o2}) in your designed amplifier circuit?

- g) What the total circuit voltage gain $(A = \frac{v_o}{v_{sig}})$? You can either solve the signal circuit from part (e) or use the voltage amplifier model.
- h) If $v_{sig} = 0.005 \sin(2\pi \times 1000t)$ (V), draw the waveforms for the output voltage (v_o) and the instantaneous (total of AC and DC) collector and emitter node voltages in each transistor.

This is a design problem, so the answers will not be unique. Show your work.