Understanding Server Hardware

Module 2: Hardware Identification

Glenn Berry Glenn@SQLskills.com

Introduction

- Gathering information about your hardware
 - Very important to know type, configuration and status of components
- Hardware identification tools
 - msinfo32, CPU-Z
- Using server management tools
 - Dell Open System Management Administrator (OMSA)
- Understanding server model numbers
 - Dell, HP
- Identifying Intel and AMD processors
 - Current Intel and AMD processor numbering
- Understanding your server's limits
 - Licensing limits, physical limits

Gathering Information About Your Hardware

What brand and model of server do you have?

- Very important information
 - Lets you determine how many processor sockets are supported
 - Lets you determine number of memory and PCI-E slots
 - Lets you determine number of internal drive bays

What exact processor(s) are installed?

- Important measure of performance and scalability
- Can be very important for software licensing purposes
 - Example: Oracle 11g, SQL Server 2012 Enterprise Edition

What expansion cards are installed?

- RAID controller, host bus adapter (HBA), network interface card (NIC)
- Determines the ultimate input/output capability of the server

Hardware Identification Tools

Windows system properties dialog

- Included with all recent versions of Windows
 - Processor type and rated speed, amount of physical RAM

msinfo32

- Included with all recent versions of Windows
 - System manufacturer, model, main BIOS version
 - Processor model, speed, amount of physical RAM

CPU-Z

- Free tool to identify processor(s) and memory details
 - Shows current processor clock speed
 - Available from www.cpuid.com

Server Management Tools

Hardware vendors have proprietary server-management tools

- Dell Open Server Management Administrator (OMSA)
 - Must be installed on the host server,
 - Browser interface
 - Gives you exact details about server configuration and condition
 - What memory slots are populated with what size DIMM modules
 - What expansion slots are populated with what devices
 - Details about logical drives managed by RAID controllers
 - BIOS and firmware versions, service code
 - Temperature and operating status for components
- HP Integrated Lights-Out (iLO)
 - Makes it possible to perform activities on a server from a remote location
 - The iLO card has a separate network connection and IP address
 - Lets you reset the server
 - Power up the server

Understanding Dell Server Model Numbers

Dell server model numbers

- First character is form-factor
 - □ R = Rack-mounted, T = Tower, M = Blade
- Second character is position in server lineup
 - Higher numbers are higher-end server models
- Third character is server generation
 - □ 1 is 11th generation, 2 is 12th generation
- Fourth character indicates processor vendor
 - 0 is Intel, while 5 is AMD

Example: Dell PowerEdge R720

- R indicates rack-mounted
- 7 indicates position in overall server lineup
- 2 indicates 12th generation
- 0 indicates Intel-based

Understanding HP Server Model Numbers

HP server model numbers

- First two characters are form-factor and product line
 - □ DL = Rack-mounted, ML = Tower, BL = Blade, SL = Specialized
- Third character is number of sockets
 - \Box 1 = 1 socket, 3 = 2 sockets, 5 = 4 sockets, 9 = 8 sockets
- Forth character is position in family lineup
 - Higher number corresponds with higher position
- Fifth character indicates processor vendor
 - 0 is Intel, while 5 is AMD

Example: HP DL580 G7

- DL indicates rack-mounted
- 5 indicates four sockets
- 8 indicates position in family lineup
- 0 indicates Intel-based
- G7 indicates 7th generation

Identifying Your Processor(s)

- Use msinfo32, Windows system properties, or CPU-Z
 - You need to know the processor vendor and exact model number
 - The exact details matter for evaluating the processor
- Will be either Intel or AMD for Windows-based servers
 - Once you know vendor/model number, find details on the vendor's web site
 - Intel
 - Intel Ark Database http://intel.ly/NERBsZ
 - □ AMD
 - AMD Opteron processor numbers http://bit.ly/NERJc8

Decoding Xeon E3, E5 and E7 Processor Numbers

- Example: Intel Xeon E5-2690
- First two characters identifies the product line
 - E3 is single-socket, E5 is dual or quad-socket
 - E7 can be two, four, eight, or more sockets
- Third character is the "wayness"
 - Wayness means maximum CPUs in a node.
 - Can be 1, 2, 4, or 8
- Forth character is socket type
- Fifth and sixth character are processor SKU
 - Higher numbers equate to higher position in product line
- Optional seventh character of L means low-power processor
- Future V2 or V3 suffix identifies processor generation
 - Example: Intel Xeon E3-1290V2

Intel Xeon E3-E7 Processor Number Examples

- Xeon E3-1290V2
 - Single-socket, 22nm Ivy Bridge processor
- Xeon E5-2648L
 - Two-socket, 32nm Sandy Bridge-EP processor, low-power version
- Xeon E5-4650
 - Four-socket, 32nm Sandy Bridge-EP processor
- Xeon E7-2870
 - Two-socket, 32nm Westmere-EX processor
- Xeon E7-4830
 - Four-socket, 32nm Westmere-EX processor
- Xeon E7-8870
 - Eight-socket, 32nm Westmere-EX processor

Decoding Intel Xeon Legacy Processor Numbers

- Example: Intel Xeon X5570
- First character is processor description
 - X is performance, E is mainstream, L is power-optimized
- Second character is the product family
 - 3 is single-processor, 5 is dual-processor, 7 is multi-processor
- Third character is processor generation
 - Higher numbers equate to newer generations
 - This is also related to the product family
- Forth and fifth character indicate processor SKU
 - Higher numbers equate to higher position in product line
 - Higher numbers generally mean higher performance

Intel Xeon Legacy Processor Number Examples

Xeon X3480

One-socket, performance, 45nm Lynnfield processor

Xeon E5440

Two-socket, mainstream, 45nm Harpertown processor

Xeon X5570

Two-socket, performance, 45nm Nehalem-EP processor

Xeon L5640

Two-socket, power-optimized, 32nm Westmere-EP processor

Xeon X7460

Four-socket, performance, 45nm Dunnington processor

Xeon X7560

Four-socket, performance, 45nm Nehalem-EX processor

References for Intel Xeon Processor Information

- Intel Xeon processor numbering
 - http://intel.ly/SUasp3
- Intel ARK database
 - Xeon E7 family
 - http://intel.ly/PzhElb
 - Xeon E5 family
 - http://intel.ly/SUhKZY
 - Xeon E3 family
 - http://intel.ly/PzhlNy

Decoding AMD Opteron Processor Numbers

- Modern AMD Opteron processors are in three series
 - □ 3000 series
 - Entry-level, single-socket servers
 - \Box 4000 series
 - Mid-range, one and two-socket servers
 - □ 6000 series
 - High-performance two, four, and higher socket servers
- The processor number may also have a two-character suffix
 - SE means performance optimized, high-powered
 - HE means low-power
 - EE means lowest-power
- Example: Opteron 6284 SE

AMD Opteron Processor Number Examples

- Opteron 6284 SE
 - Performance-optimized, 32nm Interlagos processor
- Opteron 6262 HE
 - Low-power, 32nm Interlagos processor
- Opteron 6174
 - 45nm Magny-Cours processor
- Opteron 4256 EE
 - Lowest-power, 32nm Valencia processor
- Opteron 4184
 - 45nm Lisbon processor
- Opteron 3260 HE
 - Low-power, 32nm Zurich processor

Understanding Your Server's License Limits

Windows license limits

- Tied to Windows version and edition
 - Maximum RAM
 - Maximum number of processor sockets
 - Maximum number of logical processor cores

Application license limits

- Tied to version and edition of application
 - Can limit RAM, processor sockets, number of processor cores

Stay aware of license limits as you size hardware

- Don't oversize hardware above license limits
 - Example: 128GB RAM on server with Windows Server 2008 R2 Standard
- Don't undersize hardware under license limits
 - Example: 16GB RAM on server with SQL Server 2012 Enterprise Edition

Understanding Your Server's Physical Limits

Physical limits on several key items

- How many physical processor sockets does the server have?
 - Limits on performance and scalability
 - Limits how much RAM can be installed
- How many memory slots does the server have?
 - Limits how much RAM can be installed
- How many PCI-E expansion slots does the server have?
 - Limits total I/O capacity is available
 - Used for NICs, HBAs, RAID controllers, PCI-E storage devices
- How many internal drive bays does the server have?
 - Limits on internal I/O performance and storage space
- How much electrical power usage does the server require?
 - Can your rack or data center handle the electrical load and cooling load?

Summary

- It is extremely important to understand how to identify hardware
 - Helps you understand your current capacity, scalability, and performance
 - Helps you evaluate component upgrades and possible new purchases
- Server vendor and model identification
 - Important to help understand the age and capabilities of a server
 - Number and type of processors installed
 - Amount and type of RAM installed
 - Number and type of PCI-E expansion slots
 - Number and type of internal drive bays
- Processor vendor and model identification
 - Important to help understand the performance and scalability of a server
 - Can also be very important for software licensing purposes
 - Can help you justify purchasing a new server

What is Next?

Module 3 will cover hardware evaluation

- Understanding your workload
- Application benchmarks
- Component benchmarks
- Understanding hardware tradeoffs