CORRIGÉ DU DEVOIR SURVEILLÉ 1

Exercice 1 - Électron dans un champ magnétique

(d'après Centrale MP 2016)

- 1. Dimension d'une charge électrique : $I = \frac{dq}{dt}$ soit $I = \frac{\lfloor q \rfloor}{T} \Leftrightarrow \lfloor q \rfloor = IT$
- ightharpoonup Dimension d'une force : $F = ma = m\frac{dv}{dt}$ soit $[F] = MLT^{-2}$
- > Dimension du champ magnétique : $F_m = qvB$ soit $[B] = \frac{\lfloor F \rfloor}{\lceil a \rceil v \rceil} = \frac{MLT^{-2}}{ITLT^{-1}}$ $[B] = MI^{-1}T^{-2}$: B s'exprime en $\underline{\text{kg.A-1.s-2}}$ ou en $\underline{\text{Tesla}}$ (T)
- 2. Dimension d'une énergie : $E = \frac{1}{2}mv^2$ soit $[E] = ML^2T^{-2}$
- ightharpoonup Dimension d'une puissance : $P = \frac{dE}{dt}$ soit $\left[P\right] = \frac{\left[E\right]}{T} = ML^2T^{-3}$
- 3. $\left[\varepsilon_{0}\right] = I^{2}T^{4}M^{-1}L^{-3}$, $\left[e\right] = \left[q\right] = IT$, $\left[c\right] = \left[v\right] = \overline{LT^{-1}}$
- \triangleright Équation aux dimensions : $[P] = \left| \frac{2}{3} \right| \left| \frac{1}{4\pi} \left| \left[\varepsilon_0 \right]^{-1} \left[e \right]^{\alpha} \left[c \right]^{\beta} \left(\frac{\lfloor v \rfloor}{T} \right)^{\beta} \right|$

 $M\!L^{2}T^{-3} = I^{-2}T^{-4}M^{1}L^{3}\left(IT\right)^{\alpha}\left(LT^{-1}\right)^{\beta}\left(LT^{-2}\right)^{\gamma} \iff M\!L^{2}T^{-3} = I^{-2+\alpha}T^{-4+\alpha-\beta-2\gamma}M\!L^{3+\beta+\gamma}$

$$\begin{cases} \text{pour } M: 1=1 \\ \text{pour } L: 2=3+\beta+\gamma \\ \text{pour } T: -3=-4+\alpha-\beta-2\gamma \\ \text{pour } I: 0=-2+\alpha \end{cases} \Leftrightarrow \begin{cases} \beta+\gamma=-1 \\ \beta+2\gamma=-1+\alpha=1 \\ \alpha=2 \end{cases} \begin{cases} \gamma=2 \\ \beta=-3 \\ \alpha=2 \end{cases}$$

$$P = \frac{2}{3} \frac{1}{4\pi\varepsilon_0} \frac{e^2}{c^3} \left(\frac{dv}{dt}\right)^2$$

- 4. Dimension de la pulsation : $\left[\omega_{C}\right] = \frac{\left[e T B\right]}{\left[m\right]} = \frac{ITMI^{-1}T^{-2}}{M}$ soit $\left[\omega_{C}\right] = T^{-1}$.
- ightharpoonup Une pulsation s'écrit : $\left|\omega_{C}=rac{2\pi}{T_{C}}\right|$ où T_{C} est une période, soit $\left[\omega_{C}\right]=T^{-1}$

5.
$$\left[\Delta\right] = \frac{\left[6\pi\right]\varepsilon_0\left]c\right]^3\left[B\right]}{\left[e\right]\left[\omega_C\right]^3} = \frac{I^2T^4M^{-1}L^{-3}\left(LT^{-1}\right)^3MI^{-1}T^{-2}}{ITT^{-3}} = T$$

 Δ est homogène à un <u>temps</u> : c'est une durée caractéristique, notée τ , de la décroissance du rayon de la trajectoire de l'électron (due à la perte d'énergie par rayonnement) qui varie selon $e^{-\frac{r}{\tau}}$

Exercice 2. Arc-en-ciel (d'après Banque PT 2010)

- 1. <u>Hypothèses de l'optique géométrique</u>: On décrit la propagation de la lumière en <u>ne tenant pas compte de sa nature ondulatoire</u>, grâce à des lignes orientées perpendiculaires au front d'onde: ce sont les <u>rayons lumineux</u>, qui matérialisent la direction de propagation de l'onde. Il y a <u>indépendance des rayons lumineux</u> et ils peuvent être étudiés séparément.
- \triangleright <u>Limites de l'optique géométrique</u>: L'approximation de l'optique géométrique est valable en l'absence de phénomène de diffraction, i.e. tant que <u>la longueur</u> d'onde λ est très petite devant les dimensions du milieu.
- 2. Dans le vide:

Couleur	Violet	Rouge
λ_0 (nm)	400	630-800

3. Dans un milieu matériel : $\lambda_{milieu} = \frac{\lambda_0}{n} \le \lambda_0$

avec $n = \frac{c}{v} \ge 1$ <u>l'indice de réfraction</u> du milieu, c : célérité de la lumière dans le vide et v : vitesse de propagation dans le milieu

4. Lois de Snell-Descartes :

Les rayons réfléchi (dans le milieu d'indice n_1) et réfracté (dans le milieu d'indice n_2) sont dans le plan d'incidence.

ightharpoonup L'angle i_1 entre la normale et le rayon incident est opposé à l'angle r entre la normale et le rayon réfléchi : $r=-i_1$

L'angle i_1 entre la normale et le rayon incident et l'angle i_2 entre la normale et le rayon réfracté vérifient : $n_1 \sin(i_1) = n_2 \sin(i_2)$

5. Trajet du rayon lumineux sur la figure ci-dessous.

En $I: \sin(i_1) = n \sin(r_1)$ et n > 1 d'où $|r_1| < |i_1|$ en $J: \sin(i_2) = n \sin(r_2)$ et n > 1 d'où $|r_2| < |i_2|$

- 6. Réfraction en I: déviation : $D_1 = r_1 i_1$ (1)
- ightharpoonup Triangle *OIJ* isocèle : $r_2 = -r_1$ (2)

- ightharpoonup 3ème loi de Snell-Descartes en $J: \sin(i_2) = n\sin(r_2)$ soit $\sin(i_2) = -n\sin(r_1)$ (3)
- ightharpoonup 3ème loi de Snell-Descartes en I: $\sin(i_1) = n\sin(i_1) = -n\sin(i_2)$ soit $i_2 = -i_1$ (4)
- ightharpoonup Réfraction en J : déviation : $D_2 = i_2 r_2$ (5)
- ightharpoonup Avec (5), (4) et (2) : $D_2 = -i_1 + r_1$ (6)
- ightharpoonup Déviation totale : relation de Chasles : $D = (\overrightarrow{u_1}, \overrightarrow{u_3}) = (\overrightarrow{u_1}, \overrightarrow{u_2}) + (\overrightarrow{u_2}, \overrightarrow{u_3}) = D_1 + D_2$ Avec (1) et (6): $D = r_1 - i_1 - i_1 + r_1$ soit $D = 2(r_1 - i_1)$
- 7. $3^{\text{ème}}$ loi de Snell-Descartes en $I: \sin(i_1) = n\sin(r_1) \Leftrightarrow r_1 = \sin^{-1}\left(\frac{\sin(i_1)}{n}\right)$

$$D = 2 \left(\sin^{-1} \left(\frac{\sin(i_1)}{n} \right) - i_1 \right) = 26 \text{ deg}$$

On vérifie bien sur le schéma que D > 0

- 8. Valeurs algébriques des angles :
- \triangleright Triangle *OIJ* isocèle : $\alpha = -r$
- \triangleright Réflexion en J (2ème loi de Snell-Descartes) : $\beta = -\alpha = r$
- ightharpoonup Triangle *OJK* isocèle : $\gamma = -\beta = -r$
- ightharpoonup 3ème loi de Snell-Descartes en K: $\sin(\delta) = n\sin(\gamma) = n\sin(r) = -n\sin(r)$ et 3ème loi de Snell-Descartes en $I: n\sin(r) = \sin(i)$, d'où : $\sin(\delta) = -\sin(i)$ et $\delta = -i$
- 9. Déviations pour chaque réfraction / réflexion

- ightharpoonup Réfraction en $I: D'_1 = r i$
- ightharpoonup Réflexion en $J: D'_2 = -\pi \alpha + \beta = -\pi + 2r$
- ightharpoonup Réfraction en $K: D'_3 = \delta \gamma = -i + r = r i$
- ► <u>Déviation totale</u>: $D = D'_1 + D'_2 + D'_3$ soit $D = -\pi 2i + 4r$ 10. On a $D_1 = \pi + D = -2i + 4r = 2(2r i)$
- ➤ Dans le triangle rectangle *OII*': $x = \frac{h}{R} = \sin(i)$ soit $i = \arcsin(x)$
- ightharpoonup Loi de Snell-Descartes en $I: n\sin(r) = \sin(i) = x$ soit $r = \arcsin\left(\frac{x}{n}\right)$

$$D_1(x) = 2\left(2\arcsin\left(\frac{x}{n}\right) - \arcsin(x)\right)$$

11.
$$D_1(x)$$
 passe par un extrémum si $\left(\frac{dD_1}{dx}\right)_{x_m} = 0$

$$\frac{dD_1(x)}{dx} = 2\left(2\frac{d\arcsin\left(\frac{x}{n}\right)}{dx} - \frac{d\arcsin(x)}{dx}\right) = 2\left(2\frac{\frac{x}{n}}{\sqrt{1-\frac{x^2}{n^2}}} - \frac{x}{\sqrt{1-x^2}}\right)$$

$$\frac{dD_1(x)}{dx} = 2\left(2\frac{x}{\sqrt{n^2-x^2}} - \frac{x}{\sqrt{1-x^2}}\right) = 2x\left(\frac{2}{\sqrt{n^2-x^2}} - \frac{1}{\sqrt{1-x^2}}\right)$$

$$\left(\frac{dD_1}{dx}\right)_{x_m} = 0 \Leftrightarrow x_m = 0 \text{ ou } \frac{2}{\sqrt{n^2-x_m^2}} - \frac{1}{\sqrt{1-x_m^2}} = 0$$

La solution $x_m = 0$ n'ayant pas d'intérêt (les rayons sont en incidence normale), on en déduit que la solution recherchée vérifie :

$$\frac{2}{\sqrt{n^2 - x_m^2}} = \frac{1}{\sqrt{1 - x_m^2}} \Leftrightarrow \frac{4}{n^2 - x_m^2} = \frac{1}{1 - x_m^2} \Leftrightarrow 4 - 4x_m^2 = n^2 - x_m^2$$

$$4 - n^2 = 3x_m^2 \Leftrightarrow x_m^2 = \frac{4 - n^2}{3} \text{ soit } x_m = \sqrt{\frac{4 - n^2}{3}}$$

12. Positions relatives du soleil, de la pluie et de l'observateur pour pouvoir observer des arcs-en-ciel :

- 13. <u>L'arc externe</u> correspond à la plus grande des deux valeurs de déviation, soit D_{2m} , i.e. lorsqu'il y a <u>deux réflexions</u> dans la goutte d'eau; <u>l'arc interne</u> correspond à la plus petite des deux valeurs de déviation, soit D_{1m} , i.e. lorsqu'il y a <u>une seule réflexion</u> dans la goutte d'eau.
- Sachant que de l'énergie lumineuse est perdue par réfraction aux points où il y a réflexion (ce n'est pas une réflexion totale, les deux phénomènes coexistent), <u>le plus lumineux</u> des deux arcs est celui où il n'y a qu'une seule réflexion, à savoir <u>l'arc primaire</u> (c'est celui qu'on observe le plus souvent!)

14. <u>Loi de Cauchy</u>: $n = A + \frac{B}{\lambda_0^2}$, où λ_0 est la longueur d'onde dans le vide : n diminue

lorsque λ_0 augmente.

 \triangleright Arc primaire: l'angle sous lequel est vu l'arc est D_1 tel que:

$$D_1(x) = 2\left(2\arcsin\left(\frac{x}{n}\right) - \arcsin(x)\right)$$

 D_1 augmente si n diminue, i.e. si λ_0 augmente : en partant de l'intérieur de l'arc, les couleurs vont du violet au rouge.

 \triangleright Arc secondaire: l'angle sous lequel est vu l'arc est D_2 tel que:

$$D_1(x) = \pi - 6\arcsin\left(\frac{x}{n}\right) + 2\arcsin(x)$$

 D_2 augmente si n augmente, i.e. si λ_0 diminue : en partant de l'intérieur de l'arc, les couleurs vont du rouge au violet (il est inversé par rapport à l'arc primaire).

Arc-en-ciel primaire (à gauche) et arcs primaire et secondaire (à droite)

Exercice 3. Deux miroirs en coin

1. Points conjugués : $A \xrightarrow{M_1} A_1 \xrightarrow{M_2} A'$.

 \triangleright A est un <u>objet réel</u> pour M_1 . <u>L'image virtuelle</u> A_1 est symétrique de A par rapport au plan du miroir M_1 .

- \triangleright A_1 est un <u>objet réel</u> pour M_2 . <u>L'image virtuelle</u> A' est symétrique de A_1 par rapport au plan du miroir M_2 .
- 2. L'équation de M_1 est y=-x. Par symétrie, les coordonnées de A_1 sont $\left(x_{A_1}=-y_A,y_{A_1}=-x_A\right)$.
- $ightharpoonup \overline{\text{L'équation de } M_2 \text{ est } y = x \text{. Par symétrie, les coordonnées de } A' \text{ sont}$ $\left(x_{A'} = y_{A_1}, y_{A'} = x_{A_1}\right) \text{Donc} \left[\left(x_{A'} = -x_A, y_{A'} = -y_A\right)\right]$
- 3. Il s'agit d'une rotation de π autour de O (symétrie centrale de centre O).
- 4. Relation de conjugaison : $A \xrightarrow{M_2} A_2 \xrightarrow{M_1} A$ ". On constate que A' = A'
- 5. Le rayon ne se réfléchit qu'une seule fois s'il est en <u>incidence normale</u> par rapport à M_1 ou à M_2 : il est alors <u>réfléchi normalement</u> au miroir qu'il rencontre et se trouve donc <u>parallèle au second miroir</u> (qu'il ne rencontre jamais). C'est également le cas pour le <u>rayon passant par O</u>.
- 6. Rayon incident AI sur M_2 : il se réfléchit de façon symétrique par rapport à la normale à M_2 en I tel que $r_1 = -i_1$ (loi de Snell-Descartes): il émerge en passant virtuellement par A_2 (cf. figure ci-dessus).
- ightharpoonup Ce rayon atteint M_1 en J et se réfléchit de façon symétrique par rapport à la normale à M_1 en J tel que $r_2=-i_2$: il émerge en passant virtuellement par A"
- 7. Déviation D_1 sur le miroir M_2 : $D_1 = \pi i_1 + r_1 = \pi 2i_1$ car $r_1 = -i_1$
- ightharpoonup Déviation D_2 sur le miroir M_1 : $D_2=\pi-i_2+r_2=\pi-2i_2$ car $r_2=-i_2$
- \triangleright <u>Déviation tota</u>le : $D = D_1 + D_2 = 2\pi 2(i_1 + i_2)$
- ightharpoonup Triangle JA_2A ' isocèle donc $\gamma=\beta$. Or, $\gamma=-r_2=i_2$ et $\beta=\frac{\pi}{2}-\alpha$ avec $\alpha=-r_1=i_1$

D'où
$$i_2 = \frac{\pi}{2} - \alpha = \frac{\pi}{2} - i_1 \iff i_1 + i_2 = \frac{\pi}{2}$$

 $\underline{Autre\ m\acute{e}thode}: \text{triangle\ rectangle}\ OIJ:\ \pi = \frac{\pi}{2} + \left(\frac{\pi}{2} - i_2\right) + \left(\frac{\pi}{2} + r_1\right)\ \text{et}\ r_1 = -i_1$

$$\pi = \pi + \frac{\pi}{2} - \left(i_2 + i_1\right) \Leftrightarrow i_1 + i_2 = \frac{\pi}{2}$$

- ightharpoonup Déviation totale: $D = 2\pi 2(i_1 + i_2) = 2\pi 2\frac{\pi}{2}$ soit $D = \pi$
- On vérifie sur la construction que le rayon émergent est <u>parallèle</u> au rayon incident, de <u>sens opposé</u>.