Birla Insititute of Technology & Science – Pilani, K.K. Birla Goa Campus First Semester 2020-21

PHY F313 Lab test-1 (Open Book) Time: 120 mins

Computational Physics 19 th September 2020

1. An object falling vertically through air is subjected to viscous forces as well as gravity. Assume that an object of mass m = 0.1Kg is dropped from a height $h_0 = 10m$. The height of the object h(t) after t seconds is (assuming damping force to be proportional to velocity):

$$h(t) = h_0 - \frac{mg}{h}t + \frac{m^2g}{h^2}(1 - e^{-bt/m})$$
(1)

 $b = 1.9 \times 10^{-4} Kgs^{-1}$ is the damping constant¹. Acceleration due to gravity varies over the surface of the earth due to many factors - non-spherical shape, rotation, height above sea-level. Its variation from the earth's uniformly standard value is depicted below (see figure) from results obtained by NASA's Grace mission².

In today's exercise you have to determine the time of fall for the above mass to reach the ground at different cities around the world.

- (a) Write down the equation whose roots will give you the time taken t_{fall} for mass to reach the ground.
- (b) Write a code to implement **Secant method** for finding roots.
- (c) Test your code for a f(x) whose roots are known to you. In the answer sheet you will be required to describe the test that you carried out.
- (d) Find the time of fall t_{fall} at the following cities around the world. The values of g are given in table below

City	Value of g (m/sec^2)
Helsinki	9.825
Toronto	9.807
Kuala-Lampur	9.776

Accuracy of t_{fall} value you compute is important here. It should be good enough to distinguish between time of falls at the above cities. Calculate your t_{fall} to an accuracy such t_{fall} differs

¹Ref: Determining the damping coefficient of a simple pendulum oscillating in air, Luis A Ladino & Hermilda S Rondón, Physics Education, Vol. 52, 2017

²Ref: Wikipedia

at these 3 cities by at least 2 significant figures. While terminating Secant method you should bear this in mind.

Note: In the final answer sheet (templated uploaded on Quanta) along with value of t_{fall} you also have to write down your initial two guesses in Secant method & the termination value for $|x_{n+1}-x_n|$. Additionally you also have to describe the test results.

UPLOAD THE FINAL ANSWER SHEET & YOUR CODE