Разнобой с тригоформой

Факт. Каждое комплексное число можно представить в виде $z = r(\cos\varphi + i \cdot$ $\sin \varphi$).Причем r определяется единственным образом, а φ — с точностью до 360° (если число не равно нулю). Число r называется модулем, а φ — аргументом комплексного числа.

Два комплексных числа равны, если их модули равны, если их модули совпадают, а аргументы отличаются на число, кратное 360° .

Упражнение 1. Представьте в тригонометрической форме числа 2, 3i, 1+i, 1-i $\sqrt{3}i$.

Упражнение 2. Найдите произведение и частное двух комплксных чисел в тригонометрической форме записи. Что происходит с аргументами и модулями этих чисел?

Таким образом складывать и вычитать комплексные числа удобно в алгебраической форме. А делить и умножать в тригонометрической.

Упражнение 3. Пусть r — модуль комплексного числа z. Докажите, что r^2 = $z \cdot \overline{z}$.

Упражнение 4 (Формула Муавра). а) Пусть $z = r(\cos \varphi + i \cdot \sin \varphi)$, тогда для любого целого n

$$z^n = r^n(\cos n\varphi + i \cdot \sin n\varphi).$$

- б) Вычислите $(1 \sqrt{3}i)^{2014}$.
 - 1. Пусть $z = r(\cos \varphi + i \cdot \sin \varphi)$ и $n \in \mathbb{N}$. Найдите $z^{\frac{1}{n}}$.
- 2. Докажите, что если два натуральных числа представляются в виде суммы двух квадратов, то их произведение также представляется в виде суммы двух квадратов.

Определение 1. Корнями n-ой степени из единицы называется множество корней уравнения $x^n - 1 = 0$.

- **3.** а) Выпишите, чему равны все корни n-ой степени из единицы. Нарисуйте их на комплексной плоскости. Чему равно их произвдение?
- б) Докажите, что сумма векторов, исходящих из центра правильного многоугольника к его вершинам равна 0.
- **4.** Докажите неравенства для любых вещественных чисел $x_1, \ldots, x_n, y_1, \ldots y_n$:
- a) $(x_1x_2 + y_1y_2)^2 \le (x_1^2 + y_1^2)(x_2^2 + y^2);$ 6) $(\sum x_i^2)(\sum y_i^2) \ge (\sum x_iy_i)^2;$
- в) пусть числа неотрицательные, тогда $\frac{x_1^2}{u_1} + \ldots + \frac{x_n^2}{u_2} \geqslant \frac{(x_1 + \ldots + x_n)^2}{y_1 + \ldots + y_n}$. А вот и задачи:)
- **5.** Клетки шахматной доски 8 × 8 занумерованы по диагоналям, идущим влево вниз, начиная с верхнего левого угла: 1; следующая диагональ - 2, 3; следующая - 4, 5, 6; и так далее(предпоследняя диагональ - 62, 63; последняя - 64). Петя

Разнобой с тригоформой

расставил на доске 8 фишек так, чтобы в каждой строке и в каждом столбце оказалось по одной фишке. Затем он переставил фишки так, чтобы каждая фишка попала на клетку с большим номером. Могло ли по-прежнему в каждой строке и в каждом столбце оказаться по одной фишке?

- **6.** Головоломка представляет собой два цикла из а) 7; б) 8 шариков каждый, имеющих один общий шарик. Можно поворачивать каждый цикл. Можно ли добиться произвольного расположения шариков?
- 7. Какое наибольшее количество нулей может быть в десятичной записи числа $\left[\frac{m}{n}\right]$, где m-1000-значное число, в записи которого нет нулей, а n- натуральное число, не превосходящее m?