SHARP

SERVICE MANUAL

SEGTDV5465S//

PAL/SECAM SYSTEM COLOUR TELEVISION

4BS-B Chassis

DV-5465S MODELS DV-5470S

In the interests of user-safety (Required by safety regulations in some countries) the set should be restored to its original condition and only parts identical to those specified should be used.

con	NTENS
Page	Page
ELECTRICAL SPECIFICATIONS	 PRINTED WIRING BOARD ASSEMBLIES 11 SCHEMATIC DIAGRAM AND
SERVICE ADJUSTMENT 4 SOLID STATE DEVICE BASE DIAGRAM 8 CHASSIS LAYOUT 9	• BLOCK DIAGRAM

ELECTRICAL SPECIFICATIONS

Power Input 220—240 V AC 50 Hz Power Consumption 60 Wi	z
Audio Power Output Rating	S
Convergence Self Converging System Focus Bi-Potential Electrostation Sweep Deflection Magnetic	c

Intermediate Frequencies • Picture IF Frequency
Aerial Input Impedance VHF/UHF75 ohm Unbalanced Tuning Ranges48.25 MHz thru 855.25 MHz CATV Special Channels

Specifications are subject to change without prior notice.

WARNING

The chassis in this receiver is partially hot. Use an isolation transformer between the line cord plug and power receptacle, when servicing this chassis.

To prevent electric shock, do not remove cover. No user — serviceable parts inside. Refer servicing to qualified service personnel.

IMPORTANT SERVICE NOTES

Maintenance and repair of this receiver should be done by qualified service personnel only.

SERVICING OF HIGH VOLTAGE SYSTEM AND PICTURE TUBE

When servicing the high voltage system, remove static charge from it by connecting a 10 k ohm Resistor in series with an insulated wire (such as a test probe) between picture tube ground tag and high voltage lead. (AC line cord should be disconnected from AC outlet.)

- 1. Picture tube in this receiver employs integral implosion protection.
- 2. Replace with tube of the same type number for continued safety.
- 3. Do not lift picture tube by the neck.
- 4. Handle the picture tube only when wearing shatterproof goggles and after discharging the high voltage completely.

X-RAY

This receiver is designed so that any X-Ray radiation is kept to an absolute minimum. Since certain malfunctions or servicing may produce potentially hazardous radiation with prolonged exposure at close range, the following precautions should be observed:

- 1. When repairing the circuit, be sure not to increase the high voltage to more than 30.0 kV, (at beam 0 μ A) for the set.
- 2. To keep the set in a normal operation, be sure to make it function on 25.5 kV \pm 1.5 kV (at beam 1100 μ A) in the case of the set. The set has been factory Adjusted to the above-mentioned high voltage.
 - .. If there is a possibility that the high voltage fluctuates as a result of the repairs, never forget to check for such high voltage after the work.
- 3. Do not substitute a picture tube with unauthorized types and/or brands which may cause excess X-ray radiation.

BEFORE RETURNING THE RECEIVER

Before returning the receiver to the user, perform the following safety checks.

- 1. Inspect all lead dress to make certain that leads are not pinched or that hardware is not lodged between the chassis and other metal parts in the receiver.
- 2. Inspect all protective devices such as non-metallic control knobs, insulating fishpapers, cabinet backs, adjustment and compartment covers or shields, isolation resistor-capacity networks, mechanical insulators etc.

SERVICE ADJUSTMENT

PIF/SIF/AGC/G2 Adjustment

1. Trap Adjustment

Adjusting Point

☐ T1201: Trap coil (Adj.-P Trap)

- 1. Connect sweep generator output to IF in (FA (1)).
- Connect response cable with detector to collector line of Q1200 (see diagram).

3. Adjust T1201 (Adj.-P Trap) so that trap is (32.4 MHz).

2. VCO Adjustment

Adjusting Point

☐ T1202: VCO adjust coil

- 1. Apply DC 2.5 V to pin (25) of IC1200 (PIF-AGC).
- Feed the following signal to pin (1) of connector (FA) in IF unit.

Frequency:

38.9 MHz (CW) ± 5 kHz

Level:

approx. 85 dB

3. Adjust T1202 so that voltage at pin (7) (AFT output) of connector (FA) in IF unit is 2.5 ± 0.2 V.

3. Separation Adjustment

Adjusting Point

☐ R1219: Separation control

 Receive the following signal from IGR stereo signal generator.

Video Signal: Colour bar (87.5% mod.)

Stereo Mode: L (unmodulated)

R (400 Hz modulated)

- * Make sure the unit is in the stereo mode with OSD (On-Screen Display) on.
- Terminate pin (3) (audio L output) of 21-pin connector with 10 kΩ impedance. Adjust separation control (R1219) until 400 Hz output waveform becomes minimum.

4. RF AGC Adjustment

Adjusting Point

☐ R1216: RF AGC control

- 1. Receive "COLOUR BAR" signal.
 - signal strength: 53 dB (terminated with 75Ω)
- Connect DC voltmeter to Test Point TP1200 (RF AGC).
- 3. Set AGC control (R1216) to maximum position (memory).
- 4. Adjust R1216 to obtain voltage of 0.1 V below maximum voltage (step 3).

5. G2 Adjustment

- 1. Receive "MONOSCOPE PATTERN" signal.
- Connect DC voltmeter with Test probe attenuator (÷ 1000) to G2 on PWB-B.
- 3. Adjust Screen control to obtain 700 V on G2.

6. Focus Adjustment

- 1. Receive "MONOSCOPE PATTERN" signal.
- Adjust Focus control to have best focus at the central area of CRT screen.

7. 110 V Adjustment

- 1. Receive "MONOSCOPE PATTERN" signal.
- 2. Connect DC voltmeter to TP700.
- 3. Adjust the R755 until the TP700 voltage becomes 100 V \pm 0.5 V.

SERVICE MODE FUNCTION

This mode function is provided to assist with the settings of those adjustments that may vary from one Picture Tube to another, or between models.

In order to use the Service Mode

- ConnectTest Pattern signal to antenna terminal.
- 2. Press main switch to off.
- 3. Press \triangle V and CH \wedge buttons and main switch to on simultaneously.
- 4. —SERVICE SOFTWARE— will appear on screen.

The required adjustments can then be made from the Remote Control Unit.

The only buttons required are the following:

 Λ CH V for movement in adjustment options menu; $\Lambda \triangle V$ are used to carry out an adjustment in said menu; ON/OFF is used to memorize a new adjustment.

Adjustment menu is as follows:

- SERVICE SOFTWARE
- CROMA-LUMA DELAY
- VERT. SHIFT
- HOR, SHIFT
- VERT. BREATHING
- VERT AMPLITUDE
- S-CORRECTION
- RED REFERENCE
- GREEN REFERENCE
- BLUE REFERENCE
- ALTER NVM POS 00 00
- ALTER NVM VAL 00 00
- AUTO INSTALLATION
- OPC VALUE (DV-5470S only)

Having finalized adjustments, to exit service mode, press main switch to off.

Adjustment Note:

The procedure for making adjustments to Vertical Corrections is as follows:

- Adjust S-CORRECTION
- Adjust VERT, SHIFT
- Adjust VERT. AMPLITUDE

GEOMETRY ADJUSTMENT PROCEDURE 100

CHROMA-LUMA DELAY

- a) Receive Philips pattern signal.
- b) When volume-up button is pressed, luma phase delays.
- c) When volume-down button is pressed, chroma phase delays.
- d) Adjust the Chroma-Luma delay.

VERT. SHIFT

- a) Receive Philips pattern signal.
- b) When volume-down button is pressed, picture moves up.
- c) When volume-up button is pressed, picture moves down.
- d) Adjust the Vertical location to obtain picture centering (fig. 1).

Fig. 1

Fig. 2

HOR. SHIFT

- a) Receive Philips pattern signal.
- b) When volume-up button is pressed, picture moves to the left.
- c) When volume-down button is pressed, picture moves to the right.
- d) Adjust the horizontal location to obtain picture centering (fig. 2).

- a) Receive Philips pattern signal.
- b) When volume-up button is pressed, vertical size of picture increases.
- c) When volume-down button is pressed, vertical size of picture decreases.
- d) Adjust the vertical size to obtain overscan (fig. 3).

Fig. 3

S-CORRECTION

- a) Receive Philips pattern signal.
- b) When volume-up button is pressed, upper and lower scanning decreases, and center scanning increases.
- c) When volume-down button is pressed, upper and lower scanning increases, and center scanning decreases.
- d) Adjust the S-correction to obtain a balance between upper, lower and center (fig. 4).

Fig. 4

The following adjustments are only required when the Picture Tube is changed.

RED REFERENCE / GREEN REFERENCE / BLUE REFERENCE

- a) Adjust G2.
- b) Tune in white pattern.
- c) Adjust colour to minimum.
- d) Position colourmeter in the center of screen.
- e) Using brightness and contrast buttons, select a luminance of ≈ 120 NITS.
- f) Operate again in Service Mode and select location RED REFERENCE / GREEN REFERENCE / BLUE REFERENCE to obtain colour coordinates:

$$X = 0.290 \pm 0.015$$

$$Y = 0.284 \pm 0.015$$

g) Exit Service Mode and check colour coordinates 'X' and 'Y' at 20 and 120-NITS. It may be necessary to repeat procedure.

NOTE:

Locations: RED REFERENCE alter 'X' coordinate; GREEN REFERENCE alter the 'Y' coordinates; BLUE REFERENCE alter the 'X' and 'Y' coordinates.

When $V \triangle \Lambda$ buttons are pressed, alter Storage Location.

When $V
ightharpoonup \Lambda$ buttons are pressed, alter Assigned value.

SOLID STATE DEVICE BASE CIAGRAM 2779 MINISTRAL CONVENIENCE OF

the think is a second parameter for the

CH-IX1412CJST CH-IX1412CJSU

CH-IX1456CJT0 CH-IX1456CJT1 VHIUPC358C/-1

ALCEPTAGE CARGON PREPRINT A DUBE REFERENCE

A CHARLETTE

RH-IX1473BMZZ RH-IX1481BMZZ

Section Section 5

RH-IX1595BMZZ

RH-IX1567BMZZ

RH-IX1424BMZZ RH-IX1446BMZZ

RH-IX1163BMZZ

RH-FX0101BMZZ

VHILA7016//-1

RH-IX1485BMZZ

RH-IX1474BMZZ RH-IX1475BMZZ

VHIKA7805PI-1

VS2SD1554//2E

20

(SMD COMPONENT)

16

(SMD COMPONENT)

RH-TX0119BMZZ

VS2SA1037KQ-1 VS2SC2412KQ-1 (SMD COMPONENT)

RH-TX0104BMZZ RH-TX0102BMZZ RH-TX0106BMZZ

VHIKIA7045P-1

RH-TX0107BMZZ

RH-TX0118BMZZ

VS25C227-D1A

DV-5465S DV-5470S DV-5470S **CHASSIS LAYOUT** S1003 S1002 MAIN UNIT CHIL 51004 VOL(-) DV-5470S ONLY PWB-A E1001 J401 S1005 D1001 D1002 Q402 R-IN L-IN VIDEO-IN \$701 Q755 101003 L701 IF/IGR UNIT VCJ/TEXT 101001 (DC) 101002 UNIT PWB-C X1001 PWB-D Q753 101005 10301 101101 IC1009 Q609 (FC) T751 (FB) TP700 (DB) --X1331 0301 TZAH PR701 T601 Q602 X1101 O 1601 Q302 0 101301 102801 CF1200 Q 0 [CF1201 IC2802 k (DA) 10201 T1202 R1219 SEPARATION **(4)** 80 1C401 1 0 3 0 2 R609 T1200 T1201 T1201 T1201 T1201 T1201 <u>a</u> 08 R1216 RF-AGC T701 X2801 0 0 0 Q404 Q704 0 Q703 0 T602 10402 0000 Q Q401 0 R755 0 SC901 10701 TU201 CRT-UNIT (K) PWB-B

DV-5465S

DV-5465S DV-5470S DV-5465S DV-5470S

PRINTED WIRING BOARD

PWB-A

DESCRIPTION OF SCHEMATIC DIAGRAM

SAFETY NOTE:

- 1. DISCONNECT THE AC PLUG FROM THE AC OUTLET BE-FORE REPLACEING PARTS.
- 2. SEMICONDUCTOR HEAT SINKS SHOULD BE REGARDED AS POTENTIAL SHOCK HAZARDS WHEN THE CHASSIS IS OPERATING.

IMPORTANT SAFETY NOTICE:

SERVICE PRECAUTION:

THE AREA ENCLOSED BY THIS LINE (== ==) IS DIRECTLY CONNECTED WITH AC MAINS VOLTAGE.

WHEN SERVICING THE AREA, CONNECT AN ISOLATING TRANSFORMER.

BETWEENTV RECEIVER AND AC LINETO ELIMINATE HAZARD OF ELECTRIC SHOCK.

NOTE:

- 1. The unit of resistance "ohm" is omitted (K=1000 ohms, M=Megaohm).
- 2. All resistors are 1/8 watt, unless otherwise noted.
- 3. All capacitors are μ F, unless otherwise noted (P= $\mu\mu$ F).
- The capacitor with Part No. RC-FZ9XXXBMNJ is designed to withstand 63V.

WAVEFORM MEASUREMENT CONDITIONS:

Colour bar generator signal of 70 dB from RF input.

CAUTION:

This circuit diagram is original one, therefore there may be a slight difference from yours.

PWB-B

PWB-C

PWB-D

DV-5465S DV-5465S DV-5470S DV-5470S

DV-5465S DV-5465S DV-5470S DV-5470S

DV-5465S DV-5470S

DV-5465S DV-5470S

MODELS DV-5465S and DV-5470S SCHEMATIC DIAGRAM IF/IGR Unit

Note: The symbol ——— means a resistor of 1/16 W.

DV-5465S DV-5465S DV-5470S DV-5470S

MODELS DV-5465S and DV-5470S SCHEMATIC DIAGRAM

CRT Socket and VCJ/TEXT Unit

Note: The symbol ——— means a resistor of 1/16 W.

PWB-B (CRT UNIT) DUNTK7092BMY7 (DV-5470S) DUNTK7092BMZ3 (DV-5465S)

DV-5465S DV-5470S DV-5470S

Tuner

NOTE: The parts here shown are supplied as an assembly but not independently.

△ VTUATEKE9-052

Remote Control Unit

NOTE: The parts here shown are supplied as an assembly but not independently.

RRMCG1023BMSA

PARTS LIST

PARTS REPLACEMENT

Replacement parts which have these special safety characteristics identified in this manual: electrical components having such features are identified by "A" in the Replacement Parts Lists. The use of a substitute replacement part which does not have the same safety characteristics as the factory recommended replacement parts shown in this service manual may create shock, fire or other hazards.

"HOW TO ORDER REPLACEMENT PARTS"

To have your order filled promptly and correctly, please furnish the following informations.

1. MODEL NUMBER

2. REF. NO.

3. PART NO.

4. DESCRIPTION

5. CODE

6. QUANTITY

ERSATZTEILLISTE

AUSTAUSCH VON TEILEN

Ersatzteile, die besondere Sicherheitseigenschften haben, sind in dieser Anleitung markiert. Elektrische Komponenten mit solchen Eigenshaften sind in den Ersatzteil durch "A" gekenn-zeichnet. Der Gebrauch von Ersatzteilen, die nicht deselben Sicherheitseigenschaften haben wie die vom Hersteller empfohlenen ud in der Bedienungsanleitung angegebenen, können zur Ursache von Blitzeinschlägen, Bränden und anderen Gefahren werden.

"WIE MAN ERSATSTEILE BESTELLT"

Damit Ihre Bestellung promt und korrekt ausgeführt wird, geben Sie bitte folgende Informationen.

1. MODELL NR.

2, REF. NR.

3. ERSATZTEIL NR.

4. BESCHREIBUNG

5. KODE

6. QUANTITÄT

MARK ★: SPARE PARTS-DELIVERY SECTION MARKIERUNG ★: ERSATZTEILE-LIEFERUNG

Ref. No.

Δ

Part No.

RCiLG0408BMZZ

Description

Code

Ref. No.

Part No.

Description

Code

PICTURETUBE

∆ V1 VB51EAL3011*N S CRT 51 cm (21")

CL S Degaussing (ADG) Coil ΑP

PWB-A DUNTK7150CJV2/V1 MAIN UNIT

TUNER

NOTE: THE PARTS HERE SHOWN ARE SUPPLIED AS AN ASSEMBLY BUT NOT INDEPENDENTLY.

△ TU201 VTUATEKE9-052 S Tuner, VHF/UHF

BK

End of PICTURETUBE ——

PRINTED WIRING BOARD ASSEMBLIES (NOT REPLACEMENT ITEM)

PWB-A	DUNTK7150CJV2	-	Main Unit	_
PWB-A	DUNTK7150CJV1	_	(DV-5465S) Main Unit	_
			(DV-5470S)	
PWB-B	DUNTK7092BMZ3	-	CRT Socket Unit	_
PWB-B	DUNTK7092BMY7	_	(DV-5465S) CRT Socket Unit	_
			(DV-5470S)	
PWB-C	DUNTK7148CJV1	-	IF/IGR Unit	_
PWB-C	DUNTK7148CJV0	_	(DV-5465S) IF/IGR Unit	_
			(DV-5470S)	
PWB-D	DUNTK7149BMV0	_	VCJ/TEXT Unit	_

End of P.W.B. ASS'Y -

INTEGRATED CIRCUITS

	IC201	RH-iX0037CEZZ	R	Zener IC		ΑĖ
	IC301	RH-iX1446BMZZ	S	Sound Output		ΑK
	IC401	VHiLA7016//-1	R	Video Switch		ΑН
	IC402	VHiLA7016//-1	R	Video Switch		ΑH
				(DV=5470S)		
	IC501	RH-iX1163BMZZ	S	Vertical Output		ΑM
	IC651	VHiKA7805Pi-1	R	5V Regulator	٠.	ΑĖ
Δ	IC701	RH-iX1424BMZZ	S	iX1424BM		ΑN
Δ	IC702	RH-FX0101BMZZ	S	Photo Coupler		ΑE
	IC751	VHiKA7805Pi-1	R	KA7805Pi		ΑE
	IC1001	RH-iX1481BMZZ	S	Microprocessor		AS
	IC1002	CH-iX1456CJT1	S	EEP-ROM (DV-5465S)		AP.
	IC1002	CH-iX1456CJT0	S	EEP-ROM (DV-5470S)		ΑP
	IC1003	CH-iX1412CJSU	S	EP-ROM (DV-5465S)		ΑU
	IC1003	CH-iX1412CJST	S	EP-ROM (DV-5470S)	:	ΑU
	IC1004	RH-iX1485BMZZ	S	Shift Resistor		AK
	IC1005	VHiUPC358C/-1	R	AFT		AD
	IC1006	RH-iX1474BMZZ	S	Input		ΑE
	IC1007	RH-iX1475BMZZ	S	Output		ΑĘ
	IC1008	VHiUPC358C/-1	R	UPC358	·i	AD
				(DV-5470S)		
	IC1009	VHiKiA7045P-1	R	KiA7045P		ΔĎ

Ref. No.	Part No.	*	Description	Code	Re	ef. No.	Part No.	*	Description	Code
PWE	B-A DUNTK	(7	150CJV2/V	′ 1			DIODES	(Cc	ontinued)	
	MAINU	NI	T (Continue	d)		D604	RH-DX0512BMZZ		1N4936	AB
		_					RH-DX0045BMZZ		1N4148	AA
	TRANS						RH-DX0045BMZZ		1N4148	AA
O200	VS2SC2412KQ-1		2SC2412	AA			RH-DX0045BMZZ	_	1N4148 1N4148	AA
Q301	RH-TX0104BMZZ		BC557	AA		D610 D611	RH-DX0045BMZZ RH-DX0045BMZZ		1N4148	AA AA
Q302	RH-TX0106BMZZ		BC547	AB AA		D612	RH-EX0408BMZZ	-	Zener Diode, 5.1V	AB
0303	VS2SC2412KQ-1		2SC2412 2SC2412	AA		D613	RH-EX0403BMZZ		Zener Diode, 22V	AB
Q304 Q401	V\$2SC2412KQ-1 RH-TX0106BMZZ		BC547	AB		D614	RH-DX0045BMZZ		1N4148	AA
Q401 Q403	RH-TX0106BMZZ		BC547	AB			VHDDAN202K/-1		DAN202K	AB
Q404	RH-TX0106BMZZ		BC547	AB		D616	VHDDAN202K/-1	R	DAN202K	АВ
Q405	VS2SC2412KQ-1		2SC2412	AA		D617	RH-DX0045BMZZ	S	1N4148	AA
Q501	RH-TX0102BMZZ		BC338	AB		D618	RH-DX0511BMZZ	S	1N4935	AB
∆ Q601	VS2SD1554//2E	R	2SD1554	AL	Δ	D701	RH-DX0502BMZZ	S	1N4005	AA
Q602	V\$2SC2271-D1A	R	2SC2271 (D)	AD	Δ	D702	RH-DX0502BMZZ	S	1N4005	AA
Q603	RH-TX0106BMZZ	S	BC547	AB	Δ	D703	RH-DX0502BMZZ	S	1N4005	AA
Q606	RH-TX0104BMZZ	S	BC557	AA	\triangle	D704	RH-DX0502BMZZ	S	1N4005	AA
Q607	RH-TX0104BMZZ	S	BC557	AA		D705	RH-EX0419BMZZ		Zener Diode, 15V	AB
Q608	RH-TX0106BMZZ	S	BC547	AB		D706	RH-DX0045BMZZ		1N4148	AA
Q609	RH-TX0104BMZZ	S	BC557	AA		D707	RH-DX0045BMZZ	_	1N4148	AA
Q610	VS2SC2412KQ-1		2SC2412	AA		D708	RH-DX0509BMZZ		DX0509BM	AB
△ Q701	RH-TX0107BMZZ		BF487	AC		D709	RH-DX0045BMZZ		1N4148	AA
△ 0702	RH-TX0106BMZZ		BC547	AB		D710	RH-DX0509BMZZ RH-DX0515BMZZ	S	DX0509BM	AB AB
△ 0.703	RH-TX0118BMZZ		BC635	AC		D711 D712	RH-DX0045BMZZ		1N4148	AA
△ Q704	RH-TX0119BMZZ		MJF18006	AL AB		D712	RH-DX0510BMZZ		DX0510BM	AB
Q755	RH-TX0102BMZZ		BC338 BC547	AB		D713	RH-DX0510BMZZ		DX0510BM	AB
Q756 Q1001	RH-TX0106BMZZ VS2SA1037KQ-1		2SA1037	AA		D715	RH-DX0510BMZZ		DX0510BM	AB
Q1001			2SC2412	AA		D751	RH-DX0246CEZZ	R		AD
	VS2SC2412KQ-1		2SC2412	AA		D752	RH-DX0512BMZZ	s	1N4936	AB
21000	VOZBOZ-FIZIKO I	• • •	(DV-5470S)			D753	RH-EX0410BMZZ	s	Zener Diode	AB
01004	VS2SC2412KQ-1	R	2SC2412	AA		D754	RH-DX0514BMZZ	S	MR852	AC
	VS2SC2412KQ-1	R	2SC2412	AA		D760	RH-DX0045BMZZ	S	1N4148	AA
Q1006		R	2SC2412	AA		D761	RH-EX0412BMZZ	S	Zener Diode, 7.5V	AB
	VS2SC2412KQ-1	R	2SC2412	AA		D762	RH-DX0502BMZZ	S	1N4005	AA
Q1008	VS2SC2412KQ-1	R	2SC2412	AA		D763	RH-DX0502BMZZ	S	1N4005	AA
Q1009	VS2SC2412KQ-1	R	2SC2412	· AA		D764	RH-DX0502BMZZ		1N4005	AA
Q1010	VS2SC2412KQ-1	R	2SC2412	AA		D765	RH-DX0502BMZZ		1N4005	AA
Q1011	VS2SA1037KQ-1	R	2SA1037	AA		D766	RH-DX0045BMZZ		1N4148	AA
	VS2SC2412KQ-1		2SC2412	AA		D770	RH-DX0045BMZZ		1N4148	AA
	VS2SC2412KQ-1		2SC2412	AA		D771	RH-DX0045BMZZ		1N4148	AA
	VS2SA1037KQ-1		2SA1037	AA		D775	RH-DX0514BMZZ		MR852 ST-BY/POW-IN	AC AC
Q1017	VS2SC2412KQ-1	R	2SC2412	AA		D1001	RH-PX0291CEZZ RH-PX0291CEZZ		STEREO	AC
							RH-PX0291CEZZ		OPC	AC
	ות	ΛΓ	DES			Digos	TITT NOZOTOLZE	•	(DV-5470S)	710
D200			1N4148	AA		D1004	RH-DX0045BMZZ	S	1N4148	ДД
D200 D501	RH-DX0045BMZZ RH-DX0501BMZZ		1N4004	AA		D1005			1N4148	AA
D501	RH-DX0501BMZZ		1N4004	AA		D1006	·		1N4148	ДД
D502	RH-EX0437BMZZ		Zener Diode, 12				RH-DX0045BMZZ		1N4148	AA
D503	RH-DX0045BMZZ		1N4148	AA			RH-DX0045BMZZ		1N4148	AA
D504	RH-DX0045BMZZ		1N4148	AA			VHDDAN202K/-1		DAN202K	. AE
D506	RH-DX0045BMZZ		1N4148	AA					(DV-5470S)	
D602	RH-DX0511BMZZ		1N4935	AB			VHDDAN202K/-1	F	DAN202K	AB
D603	RH-DX0512BMZZ		1N4936	· · AB					(DV-5470S)	

F	Ref. No.	Part No.	*		Descrip	otion	Code	Ref. No.	Part No.	*		Descrip	otion	Code
	PWE	B-A DUNTI	(7	7150	CJv:	2/V1			CAPACITOR	S	(Conti	nued)	
		MAIN U	IN	IT (C	ontir	wed)		C310	VCCCTV1HH560J		56p	50V	Ceramic	AA
_		***	_					_ C311	VCCCTV1HH560J	R	56p	50V	Ceramic	AA
		DIODES			-	•		C312	VCCCTV1HH560J	R	56p	50V	Ceramic	AA
	D1011	VHDDAN202K/-1		DAN2			AB	C315	VCEAGA1CW107M	R	100	16V	Electrolytic	AB
	D1012	VHDDAN202K/-1		DAN2			AB	C316	VCEAGA1CW107M	R	100	16V	Electrolytic	AB
	D1013	RH-DX0045BMZZ	S	1N414	8		AA	C317	VCEAGA1HW475M	R	4.7	50V	Electrolytic	AB
	D1014	RH-DX0045BMZZ	S	1N414	8		AA	C318	VCEAGA1HW226M			50V	Electrolytic	AB
	D1015	RH-DX0045BMZZ	S	1N414	8		AA	C319	VCEAGA1CW227M	R	220	16V	Electrolytic	AC
	D1016	VHDDAN202K/-1	R	DAN2	02K		AB	C320	VCEAGA1CW227M	R	220	16V	Electrolytic	AC
	D1021	VHDDAN202K/-1	R	DAN2	02K		AB	C321	VCEAGA1CW108M	R	1000	16V	Electrolytic	AD
	D1022	VHDDAN202K/-1	R	DAN2	02K	-	AB	C322	VCEAGA1CW108M	R	1000	16V	Electrolytic	AD
	D1023	RH-EX0409BMZZ	S	Zener	Diode,	5.6V	AA	C323	VCEAGA1EW477M	R	470	25V	Electrolytic	AD
	D1024	RH-DX0045BMZZ	S	1N414	8		AA	C324	VCEAGA1HW475M	R	4.7	50V	Electrolytic	AB
	D1025	RH-DX0045BMZZ	S	1N414	8		AA	Ċ325	VCKYTV1HB102K	R	1000p	50V	Ceramic	AA
						•					(DV-54	70S)		
								C326	VCKYTV1HB102K	R	1000p	50V	Ceramic	AA
		PACKAGE	D	CIRCL	JITS			شبر			(DV-54	70S)		
Δ	PR701	RMPTP0028CEZZ	R	Positiv	e Coef	ficient	AG	C332	VCKYPA2HB102K	R	1000p	500V	Ceramic	AA
				Therm	istor			C333	RC-FZ9104BMNJ		0.1	50V	Mylar	AB
	X1001	RCRSB0209BMZZ	S	Crysta	1		AG	C334	RC-FZ9104BMNJ	S	0.1	50V	Mylar	AB
								C337	VCEAGA1CW107M	R	100	16V	Electrolytic	
											-(DV-54	70S)	,	
		COILS AND T	RA	NSFO	RME	RS		C338	VCEAGA1CW107M	R	100	16V	Electrolytic	AB
	L601	RCiLZ0707BMZZ	S	Coil			АН				(DV-54)	70S)	,	
Δ	L701	RCiLF0110BMZZ	S	Line Fi	ilter		AL	C339	VCEAGA1CW476M	R		16V	Electrolytic	AB
Δ	L703	VP-CF120K0000	R	Coil, 1	2μΗ		AB	C340	VCEAGA1CW107M	R	100	16V	Electrolytic	
	L704	VP-CF3R3K0000	R	Coil, 3	.3μН		AB	C341	VCEAGA1CW107M	R	100	16V	Electrolytic	
	L705	VP-CF3R3K0000	R	Coil, 3.	.3μН		AΒ	C344	VCEAGA1CW107M			16V	Electrolytic	
	L751	RCiLP0213BMZZ	S	Coil			AF	C345	VCEAGA1CW107M			16V	Electrolytic	
	T601	RTRNZ0026PEZZ	R	Trans.			АН	C346	VCKYTV1HB102K		1000p		Ceramic	AA
Δ	T602	RTRNF2026BMZZ		Flybac	kTrans.	. (FBT)	BD	C347	VCKYTV1HB102K		1000p		Ceramic	AA
Δ	T701	RTRNZ0533BMZZ		Trans.			ΑV	C401	VCEAGA1CW476M			16V	Electrolytic	
Δ	T751	RTRNP0001BMZZ	S	Power	Trans.		AS	C402	VCCCTV1HH471J		470p	50V	Ceramic	AA
								C403	VCEAGA1CW476M		•	16V	Electrolytic	
								C404	VCEAGA1CW476M			16V	Electrolytic	
		CON	T	ROL.				C405	VCEAGA1CW107M			16V	Electrolytic	
	R755			300 (B))		AB	C406	VCKYTV1HF103Z		0.01	50V	Ceramic	AA
					,			C407	VCEAGA1CW476M			16V	Electrolytic	
			•						101110/110114/011	* 1	(DV-54)		Liectiolytic	ΑD
		CAPA	CI	TORS				C410	VCEAGA1CW337M	R		16V	Electrolytic	۸۲
	C201	VCEAGA1HW105M			50V	Electrolytic	AC		7 0 27 1 27 1 1 0 7 1 0 0 7 1 1 1	•••	(DV-547		Liectionytic	AC
	C202	VCEAGA1CW106M	R	10	16V	Electrolytic		C411	VCEAGA1CW476M	R		16V	Electrolytic	ΔR
	C203	VCKYTV1HF103Z	_	0.01	50V	_	AA	C412	VCEAGA1CW107M			16V	Electrolytic	
	C204	VCKYTV1HF103Z		0.01	50V		AA	C416	VCKYTV1HB103K		0.01	50V	Ceramic	
	C205	VCEAGA1CW106M			16V	Electrolytic		C417	VCCCTV1HH471J					AA
	C206	VCKYPA1HF103Z	_	0.01	50V	Ceramic	AA	0417	70001 V 1111147 (J	n	470p (DV-54)	50V	Ceramic	AA
	C207	VCEAGA1HW106M			50V	Electrolytic		C501	VCKYPA2HB102K	р	1000p		Coromia	Α Λ
	C208	VCCCTV1HH560J		56p	50V	Ceramic	AA	Ć503	VCEAGA1EW108M				Ceramic	AA
	C209	VCCCTV1HH560J		56p	50V	Ceramic	AA	C505				25V	Electrolytic	
	C210	VCEAGA1CW106M		•	16V	Electrolytic		C505	VCEAGA1VW477M			35V	Electrolytic	
	C210	VCKYTV1HF103Z		0.01	50V	•			RC-FZ9333BMNJ		0.033	63V	Mylar	AB
	C211	VCCCTV1HH470J					AA	C507	VCEAGA1VW107M			35V	Electrolytic	
				47p	50V	Ceramic	AA	C508	RC-FZ9684BMNJ		0.68	63V	Mylar	AD
	C306	VCEAGA1CW476M			16V	Electrolytic		C509	VCEAGA1CW107M			16V	Electrolytic	
	C307	VCCCTV1HHEE01			16V	Electrolytic		Č511	RC-FZ9105BMNJ	S		63V	Mylar	AD
	C309	VCCCTV1HH560J	n	56p	50V	Ceramic	AA	C512	VCCSTV1HL471J	R	470p	50V	Ceramic	AA

Part No. Description Code Ref. No. Part No. Description Ref. No. Code PWB-A DUNTK7150CJV2/V1 **CAPACITORS** (Continued) C757 VCKYPA2HB102K R 1000p 500V Ceramic AA **MAIN UNIT (Continued)** C758 VCEAGA1EW108M R 1000 25V Electrolytic AD

		_					C/58	VCEAGATEW 108M	н	1000	25V	Electrolytic	AD
	CAPACITOR	S	(Conti	nued)			C759	VCEAGA1EW108M	R	1000	25V	Electrolytic	AD
C601	VCKYPA1HF103Z	R	0.01	50V	Ceramic	AA	C760	VCKYPA2HB102K	R	1000p	500V	Ceramic	AA
C602	RC-FZ7683BMNJ	S	0.068	400V	Mylar	AE	C761	VCKYPA1HF103Z	R	0.01	50V	Ceramic	AA
C603	VCKYPA2HB102K	R	1000p	500V	Ceramic	AA	C762	VCEAGA1CW476M	R	47	16V	Electrolytic	AB
C604	RC-FZ0147BMZZ	S	8200p		Mylar	AE	C764	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C605	RC-KZ0006TAZZ	R	270p	2kV	Ceramic	AB	C765	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C606	VCKYPA2HB221K	R	220p	500V	Ceramic	AA	C769	VCEAGA1CW108M	R	1000	16V	Electrolytic	AD
C607	RC-FZ6334BMNJ	S	0.33	250V	Mylar	AE	C1001	VCCCTV1HH220J	R	22p	50V	Ceramic	AA
C608	RC-FZ7104BMNJ	S	0.1	400V	Mylar	AD	C1002	VCCCTV1HH220J	R	22p	50V	Ceramic	AA
C609	VCEAGA2CW105M	R	1	160V	Electrolytic	AB	C1003	VCEAGA1HW105M	R	1	50V	Electrolytic	AC
C610	RC-FZ6474BMNJ	s	0.47	250V	Mylar	AE	C1004	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C611	VCKYPA2HB102K	R	1000 p	500V	Ceramic	AA				(DV-54	170S)		
C612	VCEAGA1VW477M	R	470	35V	Electrolytic	AD	C1005	VCEAGA1AW476M	R	47	10V	Electrolytic	AA
C613	VCKYPA2HB102K	R	1000p	500V	Ceramic	AA	C1007	VCEAGA1AW476M	R	47	10V	Electrolytic	AA
C614	VCEAGA2DW106M	R	10	200V	Electrolytic	AC	C1008	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C615	RC-FZ9224BMNJ	S	0.1	63V	Mylar	AC	C1009	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C616	VCEAGA1HW106M	R	10	50V	Electrolytic	AC	C1010	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C619	VCEAGA1HW475M	R	4.7	50V	Electrolytic	AB	C1011	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C620	VCEAGA1CW106M	R	10	16V	Electrolytic	AA	C1012	VCEAGA1CW106M	R	10	16V	Electrolytic	ĄΑ
C621	VCEAGA1CW106M	R	10	16V	Electrolytic	AA	C1013	VCEAGA1HW475M	R	4.7	50V	Electrolytic	AB
C622	VCEAGA0JW107M	R	100	6.3V	Electrolytic	AB				(DV-54	170S)		
C623	VCEAGA1HW475M	R	4.7	50V	Electrolytic	AB	C1014	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C624	VCEAGA1CW476M	R	47	16V	Electrolytic	AB				(DV-54	170S)		
C625	VCEAGA1CW106M	R	10	16V	Electrolytic	AA	C1015	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
C627	RC-FZ9474BMNJ	S	0.47	63V	Mylar	AD				(DV-54	170S)		
△ C701	RC-FZ0145BMZZ	S	0.1 AC	C300V	Mylar	AD	C1016	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
△ C703	RC-KZ0029CEZZ	R	0.01 AC	C250V	Ceramic	AC				(DV-54	170S)		
△ C706	RC-KZ0029CEZZ	R	0.01 AC	250V	Ceramic	AC	C1017	VCEAGA1CW106M	R	10	16V	Electrolytic	AA
△ C707	RC-KZ0029CEZZ		0.01 AC	C250V	Ceramic	AC	C1018	VCEAGA1HW106M	R	10	50V	Electrolytic	AC
△ C708	RC-EZ0100BMZZ		100	400V	Electrolytic	AM	C1019	RC-FZ9104BMNJ		0.1	63V	Mylar	AB
△ C709	RC-KZ0029CEZZ	R	0.01 AC		Ceramic	AC	C1020	VCKYTV1HF103Z		0.01	50V	Ceramic	AA
△ C710	RC-FZ9105BMNJ		1	63V	Mylar	AD	C1022	RC-FZ9103BMNJ		0.01	63V	Mylar	AA
△ C711	RC-KZ0024CEZZ		1000p		Ceramic	AC	C1023	VCEAGA1CW226M			16V	Electrolytic	AB
△ C712	VCEAGA2AW336M		33	100V		AC	C1024	VCEAGA1CW225M			16V	-	AA
△ C714	VCKYPA2HB102K		1000p		Ceramic	AA	C1025	VCEAGA0JW107M	R	100	6.3V	Electrolytic	AB
△ C715	VCEAGA1HW106M			50V	Electrolytic								
△ C716	RC-FZ9104BMNJ		0.1	63V	Mylar	AB		DEO		-000			
△ C717	VCKYPA2HB331K		330p	500V	Ceramic	AA	0			ORS			
△ C718	RC-FZ9103BMNJ		0.01	63V	Mylar	AA	R516	VRS-VV3DB471J		470		Metal Oxide	
△ C719	VCEAGA1HW106M			50V	Electrolytic		R204	VRD-RA2HD392J		3.9k		Carbon	AA
△ C720	VCEAGA1HW475M			50V	Electrolytic		R205	VRD-RA2HD392J		3.9k		Carbon	AA
△ C721	VCKYPA1HB681K		680p	50V	Ceramic	AA	R206	VRD-RA2HD392J		3.9k		Carbon	AA
△ C725	VCEAGA1CW107M			16V	Electrolytic		R207	VRD-RA2EE331J			1/4W	Carbon	AA
△ C726	RC-KZ0156CEZZ		3300p		Ceramic	AG	R208	VRS-TV1JD101J			1/16W	Metal Oxide	
△ C727	VCKYPA1HB102K		1000p		Ceramic	AA	R305	VRD-RA2EE101J			1/4W	Carbon	AA
△ C728	RC-KZ0029CEZZ		0.01 A		Ceramic	AC	R306	VRD-RA2EE101J			1/4W	Carbon	AA
△ C743	VCKYPA1HB102K	_	1000p		Ceramic	AA	R307	VRD-RA2BE104J		100k			AA
C751	RC-EZ0258CEZZ		100	200V	Electrolytic		R308	VRD-RA2BE104J		100k			. AA
C752	VCEAAH2EW476M			250V	Electrolytic		R309	VRD-RA2BE563J			1/8W	Carbon	AA
C753	VCKYPA1HF103Z			50V	Ceramic	AA	R310				1/8W	Carbon	AA
C754	VCKYPA2HB102K				Ceramic	AA		VRD-RA2HD122J		1.2k		Carbon	AA
	VCEAGA1EW477M			25V	Electrolytic		R312	VRD-RA2HD122J		1.2k		Carbon	AA
C756	VCKYPA2HB102K	R	1000p	500V	Ceramic	ĄΑ	R313	VRD-RA2HD390J	н	39	1/2W	Carbon	AA

R	ef. No.	Part No.	*		Descri	ption C	ode	Ref.	No.	Párt No.	*		Descrip	otion	Code
	PWE	B-A DUN	TK7	150	CJV	2/V1				RESISTOR	s (Cont	inued)		
		MAIN	UN	IT (C	Conti	nued)		R	426	VRD-RA2BE560J	R	56 (DV-	1/8W 5470S)	Carbon	AA
		RESISTO	RS (Cont	tinued			R	427	VRD-RA2BE102J	R	1k	1/8W	Carbon	AA
	R314	VRD-RA2HD390		39	1/2W	Carbon	AA		428	VRS-TV1JD101J		100	1/16W	Metal Oxide	
	R315	VRS-TV1JD123J	R	12k	1/16W	Metal Oxide	AA		501	VRS-TV1JD153J		15k	1/16W	Metal Oxide	
	R316	VRS-TV1JD123J	R	12k	1/16W	Metal Oxide	AA		502	VRD-RA2HD271J		270	1/2W	Carbon	AA
	R317	VRD-RA2BE103J	R	10k	1/8W	Carbon	AA		503	VRD-RA2HDR82J	R	0.82	1/2W	Carbon	AA
	R318	VRS-TV1JD102J	R	1k	1/16W	Metal Oxide	AA	R	504	VRS-TV1JD223J	R	22k	1/16W	Metal Oxide	
	R319	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA	R	505	VRS-TV1JD153J	R	15k	1/16W	Metal Oxide	AA
	R320	VRS-TV1JD104J	R	100k	1/16W	Metal Oxide	AA	R	506	VRS-TV1JD104J	R	100k	1/16W	Metal Oxide	AA
				(DV-	5470S)			· R	509	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA
	R321	VRS-TV1JD104J	R		1/16W	Metal Oxide	ÁΑ	"R!	510	VRD-RA2BE104J	R	100k	1/8W	Carbon	AA
				(DV-	5470S)			R	511	VRS-TV1JD473J	R	47k	1/16W	Metal Oxide	
	R324	VRD-RA2BE563J	R	56k	1/8W	Carbon	AA	'R	512	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA
				(DV-	5470S)			△ 'R	513	RR-XZ0200BMZZ		1	1/2W	Fuse Resisto	rAB
	Ř325	VRD-RA2BE563J	R	56k	1/8W	Carbon	ÀΑ	R	514	VRS-TV1JD102J		1k	1/16W	Metal Oxide	
,	V .			(DV-	5470S)			R	515	VRS-TV1JD472J	R	4.7k	1/16W	Metal Oxide	ÁA
Į	Ŕ326	VRS-TV1JD124J	R	120k	1/16W	Metal Oxide	AA		517	VRS-VV3DB152J		1.5k		Metal Oxide	
	R327	VRS-TV1JD183J	R	18k	1/16W	Metal Oxide	AA		518	VRS-TV1JD392J			1/16W	Metal Oxide	
	R328	VRS-TV1JD124J	R	120k	1/16W	Metal Oxide	AA	R	519	VRD-RA2HD122J	R	1.2k	1/2W	Carbon	AA
	Ŕ329	VRS-TV1JD183J	R	18k	1/16W	Metal Oxide	AA	R	520	VRD-RA2HD122J	R	1.2k	1/2W	Carbon	AA
Δ	R330	RR-XZ0200BMZ	z s	1	1/2W	Fuse Resistor	AB	R	521	VRS-TV1JD472J	R	4.7k	1/16W	Metal Oxide	
Δ	R331	RR-XZ0200BMZ	z s	1	1/2W	Fuse Resistor		R	524	VRD-RA2HD471J		470	1/2W	Carbon	AA
	R332	VRS-TV1JD104J	R	100k	1/16W	Metal Oxide	AA	R	601	VRS-TV1JD223J	R	22k	1/16W	Metal Oxide	
	R333	VRS-TV1JD104J	R	100k	1/16W	Metal Oxide	AA		602	VRD-RA2BE102J		1k	1/8W	Carbon	AA
	R336	VRS-TV1JD101J	R	100k	1/16W	Metal Oxide	AA		603	VRD-RA2BE102J		1k	1/8W	Carbon	AA
				(DV-	5470S)				604	VRD-RA2BE391J		390	1/8W	Carbon	ÀΑ
	R337	VRS-TV1JD101J	R	-	1/16W	Metal Oxide	AA		605	VRS-SV3LB392J		3.9k		Metal Oxide	
				(DV-	5470S)				606	VRD-RA2HD392J			1/2W	Carbon	AA
	R342	VRD-RA2BE102J	R	1k	1/8W	Carbon	AA		607	VRD-RA2HD222J			1/2W	Carbon	ÁΑ
	R343	VRD-RA2BE102J		1k	1/8W	Carbon	AA		608	VRS-VV3AB332J		3.3k		Metal Oxide	
	R344	VRS-TV1JD103J		10k	1/16W		AA		609	VRW-KX3HC5R6K		5.6	5W	Cement	AD
	R345	VRS-TV1JD103J		10k	1/16W	Metal Oxide		ΔR		RR-XZ0216BMZZ		22	1/2W	Fuse Resisto	
	R346	VRD-RA2BE102J		1k	1/8W	Carbon	AA		612	VRD-RA2EE102J		1k	1/4W	Carbon	AA
	R347	VRD-RA2BE102		1k	1/8VV	Carbon	AA		613	VRN-VV3AB3R9J		3.9	1W	Metal Film	AA
	R348	VRS-TV1JD104J			1/16W	Metal Oxide			614	VRD-RA2BE472J			1/8W	Carbon	AA
	R391	VRS-TV1JD101J			1/16W	Metal Oxide			615	VRD-RA2BE102J		1k	1/8W	Carbon	AA
	R392	VRS-TV1JD101J		100	1/16W	Metal Oxide		△ R		RR-XZ0216BMZZ		22	1/2W	Fuse Resisto	
	R402	VRD-RA2HD221.		220	1/2W	Carbon	AA		621	VRS-TV1JD124J			1/16W	Metal Oxide	
	R403	VRD-RA2EE680J		68	1/4W	Carbon	AA		622	VRS-TV1JD154J			1/16W	Metal Oxide	
	R404	VRD-RA2EE820J		82	1/4VV	Carbon	AA		623	VRD-RA2EE125J			1/4W	Carbon	ĀΑ
	R405	VRD-RA2EE560J		56	1/4W	Carbon	AA		624	VRS-TV1JD124J			1/16W	Metal Oxide	
	R406	VRD-RA2EE820J		82	1/4W	Carbon	AA		625	VRS-TV1JD472J			1/16W	Metal Oxide	
	11100				5470S)	0415011	,		626	VRS-TV1JD103J			1/16W	Metal Oxide	
	R410	VRD-RA2BE103J	R	10k	1/8W	Carbon	AA		627	VRD-RA2BE152J			1/8W	Carbon	AA
	R411	VRD-RA2BE103J		10k	1/8W	Carbon	AA		628	VRS-TV1JD103J			1/16W	Metal Oxide	
	R412	VRD-RA2BE102J		1k	1/8W	Carbon	AA		629	VRD-RA2BE152J			1/8W	Carbon	AA
	R413	VRD-RA2EE821J		820	1/4W	Carbon	AA		630	VRS-TV1JD103J			1/16W	Metal Oxide	
	R414	VRS-TV1JD222J			1/16W	Metal Oxide			631	VRS-TV1JD103J			1/16W	Metal Oxide	
	R415	VRS-TV1JD2223			1/16W	Metal Oxide			632	VRS-TV1JD472J			1/16W		
	R416	VRS-TV1JD332J		3.3k 1k	1/16W	Metal Oxide			633	VRS-TV1JD472J			1/16W	Metal Oxide Metal Oxide	
	Ř417	VRD-RA2BE102J		1k	1/8W	Carbon	AA		634	VRS-TV1JD472J			1/16W	Metal Oxide	
Λ	R418	RR-XZ0110BMZZ		22	1/2W	Fuse Resistor			635	VRS-TV1JD472J			1/16W		
47	R423	RR-XZ0110BMZZ		22	1/2W	Fuse Resistor			636	VRS-TV1JD472J		4.7K	1/16VV 1/16W	Metal Oxide Metal Oxide	
Λ	H/1 1 2			1.6.	HEVV	LUSC DESISIO	CA D		UUL	VIIOTIV IJU IUZJ		1 K	er tribby		· AA

Ref. No. Part No. ★ Description Code Ref. No. Part No. ★ Description Code

PWB-A DUNTK7150CJV2/V1 MAIN UNIT (Continued)

	7	MAIN U	NI	T (C	ontin	ued)	
		RESISTORS	5 (0	Conti	inued)		
	R638	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA
	R640	VRD-RA2BE102J	R	1k	1/8W	Carbon	AA
	R641	VRS-TV1JD154J	В	150k	1/16W	Metal Oxide	AA
	R642	VRS-TV1JD225J	R	2.2M	1/16W	Metal Oxide	AA
	R643	VRN-VV3AB1R0J	R	1	1W	Metal Film	AA
	R647	VRD-RA2BE561J	R	560	1/8W	Carbon	AA
	R648	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA
Δ	R701	VRW-KX3NC8R2K	R	8.2	7W	Cement	AD
Δ	R702	VRD-RA2HD154J	R	150k	1/2W	Carbon	AA
Δ	R703	VRD-RA2HD154J	R	150k	1/2W	Carbon	AA
Δ	R704	VRD-RA2HD154J	R	150k	1/2W	Carbon	AA
Δ	R705	RR-XZ0242BMZZ	S	3.3k	1/3W	Fuse Resistor	AB
Δ	R706	VRD-RA2BE103J	R	10k	1/8W	Carbon	AA
Δ	R707	VRD-RA2BE390J	R	39	1/8W	Carbon	AA
Δ	R708	VRD-RA2HD101J	R	100	1/2W	Carbon	AA
Δ	R709	VRD-RA2BE101J	R	100	1/8W	Carbon	AA
Δ	R710	VRN-VV3DBR22J	R	0.22	2W	Metal Film	AB
Δ	R711	RR-XZ0206BMZZ	S	3.3	1/2W	Fuse Resistor	rAB
Δ	R712	RR-XZ0206BMZZ	s	3.3	1/2W	Fuse Resistor	rAB
Δ	R713	VRS-VV3DB220J	R	22	2W	Metal Oxide	AA
Δ	R714	VRD-RA2HD6R8J	R	6.8	1/2W	Carbon	AA
Δ	R715	VRD-RA2HD152J	R	1.5k	1/2W	Carbon	AA
Δ	R716	VRD-RA2BE182J	R	1.8k	1/8W	Carbon	AA
Δ	R717	VRD-RA2BE102J	R	1k	1/8W	Carbon	AA
Δ	R718	VRD-RA2BE473J	R	47k	1/8W	Carbon	AA.
Δ		VRD-RA2BE152J	R	1.5k	1/8W	Carbon	AA
Δ	R720	VRD-RA2BE154J	R	150k	1/8W	Carbon	AA
Δ	R721	VRD-RA2BE183J	R	18k	1/8W	Carbon	AA
Δ	R722	VRD-RA2BE223J	R	22k	1/8W	Carbon	AA
Δ	R723	VRD-RA2BE121J	R	120	1/8W	Carbon	AA
Δ	R724	VRC-UA2HG825K	R	8.2M	1/2W	Solid	AA
Δ	R725	VRC-UA2HG825K	R	8.2M	1/2W	Solid	AA
	R726	VRW-KX3HC102K	R	1k	5W	Cement	AD
	R754	VRD-RA2BE102J	R	1k	1/8W	Carbon	AA
	R755	See Control					
	R756	VRD-RA2BE102J	R	1k	1/8W	Carbon	AA
	R761	VRN-VV3DB1R0J	R	1	2W	Metal Film	AB
	R762	VRD-RA2BE102J	R	1k	1/8W	Carbon	AA
	R766	VRD-RA2BE222J	R	2.2k	1/8W	Carbon	AA
	R768	VRS-TV1JD472J	R	4.7k	1/16W	Metal Oxide	AA
	R770	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA
	R771	VRS-TV1JD102J	R	1k	1/16W	Metal Oxide	AA
	R775	VRD-RA2HD470J	R	47	1/2W	Carbon	AA
	R901	VRD-RA2EE820J	R	82	1/4W	Carbon	AA
	R902	VRD-RA2EE820J	R	82	1/4W	Carbon	AA
	R903	VRD-RA2EE820J	R	82	1/4W	Carbon	AA
	R904	VRD-RA2EE820J	R	82	1/4W	Carbon	AA
	R905	VRD-RA2EE102J	R	1k	1/4W	Carbon	AA
	R906	VRD-RA2EE102J	R	1k	1/4W	Carbon	AA
	R907	VRD-RA2EE102J	R	1k	1/4W	Carbon	AA
	R908	VRD-RA2EE102J	R	1k	1/4W	Carbon	AA
		WIRC TV4 ID400 I		41-	1/16/0/	Motel Ovide	

R1001 VRS-TV1JD102J

RESISTORS (Continued

	RESISTOR	RS (Cont	inued)		
R1002	VRS-TV1JD102J	R	1k	1/16W	Metal Oxide	AA
R1003	VRS-TV1JD102J	R	1k	1/16W	Metal Oxide	AA
R1004	VRS-TV1JD332J	R	3.3k	1/16W	Metal Oxide	AA
R1005	VRS-TV1JD332J	R	3.3k	1/16W	Metal Oxide	AA
R1008	VRS-TV1JD101J	R	100	1/16W	Metal Oxide	AA
R1009	VRS-TV1JD101J	R	100	1/16W	Metal Oxide	AA
R1010	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1011	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1012	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA
R1013	VRS-TV1JD472J	R	4.7k	1/16W	Metal Oxide	AA
R1014	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1015	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1016	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1017	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1018	VRS-TV1JD472J	R	4.7k	1/16W	Metal Oxide	AA
R1019	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1020	VRS-TV1JD222J	R	2.2k	1/16W	Metal Oxide	AA
R1021	VRS-TV1JD101J	R	100	1/16W	Metal Oxide	AA
R1022	VRS-TV1JD101J	R	100	1/16W	Metal Oxide	AA
R1023	VRS-TV1JD223J	R	22k	1/16W	Metal Oxide	
R1024	VRD-RA2EE471J	R	470	1/4W	Carbon	AA
R1025	VRD-RA2EE331J	R	330	1/4W	Carbon	AA
R1026	VRD-RA2BE473J	R	47k	1/8W	Carbon	AA
R1027	VRS-TV1JD472J	R	4.7k	1/16W	Metal Oxide	
R1028	VRD-RA2EE331J	R	330	1/4W	Carbon	AA
R1029	VRD-RA2BE473J	R	47k	1/4W	Carbon	AA
	*		(DV-	5470S)		
R1030	VRS-TV1JD472J	R	4.7k	1/16W	Metal Oxide	AA
			(DV-	5470S)		
R1031	VRD-RA2EE331J	R	330	1/4W	Carbon	AA
			(DV-	5470\$)		
R1032	VRS-TV1JD392J	R	3.9k	1/16W	Metal Oxide	AA
R1033	VRS-TV1JD473J	R	47k	1/16W	Metal Oxide	AA
R1034	VRS-TV1JD473J	R	47k	1/16W	Metal Oxide	AA
R1035	VRD-RA2BE222J	R	2.2k	1/8W	Carbon	AA
R1036	VRD-RA2BE222J	R	2,2k	1/8W	Carbon	AA
R1037	VRS-TV1JD102J	R	1k	1/16W	Metal Oxide	AA
			(DV-	5470S)		
R1038	VRS-TV1JD332J	R	3.3k	1/16W	Metal Oxide	AA
			(DV-	5470S)		
R1039	VRS-TV1JD152J	R	1.5k	1/16W	Metal Oxide	AA
			(DV-	5470S)		
R1040	VRS-TV1JD103J	R	10k	1/16W	Metal Oxide	AA
			(DV-	5470S)		
R1041	VRD-RA2BE123J	R	12k	1/8W	Carbon	AA
			(DV-	5470S)		
R1042	VRS-TV1JD224J	R	220	k 1/16W	Metal Oxide	AA
			(DV-	5470S)		
R1044	VRS-TV1JD273J	R		1/16W	Metal Oxide	AA
				5470S)		
R1045	VRS-TV1JD334J	R		k 1/16W	Metal Oxide	AA
R1046	VRS-TV1JD101J			1/16W	Metal Oxide	
R1047	VRS-TV1JD823J		82k		Metal Oxide	AA
R1048			22k		Metal Oxide	
R1049				k 1/16W	Metal Oxide	
						-

1/16W Metal Oxide AA

R 1k

	Part No.	*	ř	Descri	ption	Code	H	ef. No.	Part No.	*	Description	Cod
PWI	B-A DUNT	K	715	0CJv	/2/V1				MISCELLA	NE	OUS PARTS	ş.
	MAIN	JN	IIT (Conti	nued)			E1001	UBATZ0003CEZZ	J	OPC Cell	AG
			-								(DV-5470S)	
	RESISTOR							FB301	RBLN-0037CEZZ	R	Ferrite Bead	AB
R1050	VRS-TV1JD681J		680	1/16W							(DV-5470S)	
R1051	VRS-TV1JD223J		22k	1/16W	Metal Oxide			FB303	RBLN-0037CEZZ	R	Ferrite Bead	AB
R1053	VRD-RA2EE150J	н	15	1/4W	Carbon	AA		FB603	RBLN-0037CEZZ	R	Ferrite Bead	AB
DAGEE	VDC TV4 ID222 I	_	-	5470S)	** . 10		·	FB751	RBLN-0037CEZZ		Ferrite Bead	AB
R1055	VRS-TV1JD332J			1/16W	Metal Oxide	•		FB602	RBLN-0010CEZZ		Ferrite Bead	AC
R1056	VRS-TV1JD103J	н		1/16W	Metal Oxide	AA		FH701	QFSHD1009CEZZ		Fuse Holder	AΑ
D1057	VDC TV4 ID400 I			5470S)	140 10 11			FH702	QFSHD1010CEZZ		Fuse Holder	AΑ
R1057	VRS-TV1JD103J		10k	1/16W	Metal Oxide			F701	QFS-C2050BMZZ		Fuse,T2AH	ΑD
R1058	VRS-TV1JD222J	_	2.2k	.,	Metal Oxide			F751	QFS-J4021CEZZ		Fuse, IC Protector	AE
R1059	VRS-TV1JD103J		10k	1/16W	Metal Oxide		Δ	J401	QJAKG0021CEZZ		Jack -	ĀΗ
R1060	VRS-TV1JD103J		10k	1/16W	Metal Oxide			P301	QPLGN0441CEZZ		Plug 4-pin, (S)	AB
R1061	VRS-TV1JD103J		10k	1/16W	Metal Oxide			P602	QPLGN0441CEZZ		Plug 4-pin, (H)	AB
R1062	VRS-TV1JD103J		10k	1/16W	Metal Oxide			P601	QPLGN0505CEZZ		Plug 5-pin, (F)	AB
R1063	VRS-TV1JD103J		10k	1/16W	Metal Oxide			P603	QPLGN0541CEZZ			∴ AB
AR1064	VRS-TV1JD103J		10k	1/16W	Metal Oxide			P701	QPLGN0304CEZZ			: AB
R1065	VRS-TV1JD103J		10k	1/16W	Metal Oxide		Δ	P702	QPLGN0207CEZZ		Plug 2-pin, (G)	AΑ
R1066	VRS-TV1JD103J	R		1/16W	Metal Oxide			RMC1001	RRMCU0201BMZZ	-	Remote Control Receiver	AN
·R1067	VRS-TV1JD103J	R		1/16W	Metal Oxide		Δ	RY751	RRLYZ0001BMZZ		Relay	AK
R1068	VRS-TV1JD103J	R		1/16W	Metal Oxide			SC201	QSOCN1085CEZZ		Socket 10-pin, (FA)	AD
R1069	VRD-RA2BE103J		10k	1/8W	Carbon	AA		SC202	QSOCN1185CEZZ		Socket 11-pin, (FB)	ΑD
R1070	VRS-TV1JD103J		10k	1/16W	Metal Oxide			SC203	QSOCN0685CEZZ		Socket 6-pin, (FC)	AC
R1071	VRS-TV1JD473J		47k	1/16W	Metal Oxide			SC801	QSOCN1185CEZZ		Socket 11-pin, (DA)	ΑD
R1073	VRS-TV1JD821J		820	1/16W	Metal Oxide			SC802	QSOCN0885CEZZ		Socket 8-pin, (DB)	AC
R1074	VRS-TV1JD271J		270	1/16W	Metal Oxide			SC803	QSQCN0985CEZZ	R	Socket 9-pin, (DC)	AD
R1075	VRS-TV1JD103J		10k	1/16W	Metal Oxide	AA	Δ	SC901	QSOCZ0106BMZZ	S	Socket, Euro Scart	ΑE
R1076	VRD-RA2BE271J		270	1/8W	Carbon	AA			QSOCZ0100BMZZ	S	Socket	AB
R1077	VRS-TV1JD102J		1k	1/16W	Metal Oxide			SC1002	QSOCZ0101BMZZ	S	Socket	AD
R1078	VRS-TV1JD103J		10k	1/16W	Metal Oxide							
R1079	VRS-TV1JD473J		47k	1/16VV	Metal Oxide							
R1080	VRS-TV1JD103J		10k	1/16W	Metal Oxide	AA		,	•			
R1081				1/8W	Carbon	AA						
	VRS-TV1JD103J			1/16W	Metal Oxide							
R1083	VRS-TV1JD562J			1/16W	Metal Oxide	AA					-	
R1084	VRD-RA2BE392J	R	3.9k	1/8W	Carbon	AA						
	SI	ΝIT	СН									
S701	QSW-P0566CEZZ			Power		AL						
S1001	QSW-K0079GEZZ			nel (+)		AB						
	QSW-K0079GEZZ			nel (-)		AB						
	QSW-K0079GEZZ			ıd Volun		AB						
S1003	QSW-K0079GEZZ			id Volun								
3 01004	QSW-K0079GEZZ			(DV-547		AB AB						

— End of PWB-A —

PWB	_	(7092BN			PWB				JV1	/V0	
	CRT SO	CKET UN	<u> </u>			IF/IGR	_				
	TRAN	SISTORS				INTEGRA					
Q870	RH-TX0110BMZZ	S BF422		AB		VHITDA9813T-1		TDA981			AV
Q871	RH-TX0110BMZZ	S BF422		AB	IC1301	RH-iX1445BMZZ	S	ACP237	DIL		A۷
	RH-TX0110BMZZ	S BF422		AB							
Ω883	RH-TX0124BMZZ	S BF421		AB		TDA	1010	TODO			
Q885	RH-TX0124BMZZ	S BF421		AB				STORS			
Q887	RH-TX0124BMZZ	S BF421		AB		VS2SC1906//1E		2SC190			A
	Ph. 1	0050				VS2SC1906//1E		2SC190			A(
		ODES			_	VS2SC2412KQ-1		2SC241			A
	RH-DX0045BMZZ	S 1N4148		AA	Q1331	RH-TX0113BMZZ	5	H-TX01	ISBIVI		A
	RH-DX0045BMZZ	S 1N4148		AA							
D882	RH-DX0045BMZZ	\$ 1N4148		AA		D	IOD	EC			
		2011			D4004						
		COIL			D1301	RH-DX0045BMZZ	_	1N4148			A
L881	VP-CF100K0000	R Coil, 10μH		AB	D1302	RH-DX0045BMZZ		1N4148			A
	04.04	OTOBO			D1304	RH-DX0013GEZZ	н	DX0013	GE		A
		ACITORS									
•••	VCKYPA1HB821K	R 820p 50		AA		PACKA	CED	CIRCI	HT.		
	VCKYPA1HB821K	R 820p 50		AA	V4221	RCRSB0200BMZZ				MM+	Α
C873	VCKYPA1HB821K	R 820p 50		AA AD	X1331	NCN3BUZUUDIVIZZ	. 3	Ciystai,	17.73	WITIZ	^
C876	RC-KZ0023CEZZ	R 4700p 2k									
	VCEAAA2DW106M		0V Electrolytic			COILS AND	TRA	NISEOI	BME	10	
	VCKYPA1HB471K	R 470p 50		AA AA	CE1200	RFILC0061CEZZ				, 5.5 MHz	Α
C881	VCKYPA1HB471K	R 470p 50		AA		RFILC0063CEZZ				, 5.74 MHz	A
C882	VCKYPA1HB471K	R 470p 50	V Ceramic	AA	-	RFILC0003CEZZ				, 5.5 MHz	A
	DEC	ISTORS			L1201	VP-XF1R2K0000		Coil, 1.2		, 5.5 101112	Α
D077			/ Carbon	AA	L1201	VP-XF120K0000		Coil, 12	-		A
R877	VRD-RU2EE100J	R 10 1/4V R 330 1/8V		AA	L1202	VP-XF3R3K0000		Coil, 3.			A
	VRD-RA2BE331J			AA		RFILC0108BMZZ		Surface		etic	A
R880	VRD-RA2BE331J	R 330 1/8V R 330 1/8V		AA		RFILC0198CEZZ		Wave F		Stic	A
R881	VRD-RA2BE331J		Metal Oxide			RCiLi0402CEZZ		IF Coil	iitei		Α
R882	VRS-VV3DB153J	R 15k 2W		AA	T1201	RCiLD0231CEZZ		Detecti	on Coi	1	A
R883	VRD-RA2HD272J	R 2.7k 1/2V R 15k 2W	Metal Oxide		11202	HOILDOZGTOLZZ		Dottooli	011 001	•	•
R884	VRS-VV3DB153J	R 2.7k 1/2V		AA							
R885	VRD-RA2HD272J VRS-VV3DB153J	R 15k 2W	Metal Oxide			CC	NT	ROLS			
R886 R887	VRD-RA2HD272J	R 2.7k 1/2V		AA	R1216	RVR-B1007AEZZ		22k (B)	RF-AG	C	Α
R892	VRD-RA2BE102J	R 1k 1/8V		AA	R1219	RVR-M4077CEZZ		4.7k (B			Α
R893	VRD-RA2BE102J	R 1k 1/8V		AA	111210				,		
R894	VRD-RA2BE102J	R 1k 1/8V		AA							
R896	VRD-RA2BE101J	R 100 1/8V		AA		CAI	PAC	ITORS			
R899	VRD-RA2BE101J	R 100 1/8V		AA	C1201	VCKYTV1HB102K		1000p	50V	Ceramic	Α
R900	VRD-RA2BE101J	R 100 1/8V		AA	C1202	VCKYTV1HF103Z		0.01	50V	Ceramic	A
R901	VRD-RA2BE101J	R 100 1/8V		AA	C1203	VCKYTV1HF103Z		0.01	50V	Ceramic	Α
11301	VIID-IIAZDE IOIO	11 100 1101				VCKYTV1HB102k		1000p		Ceramic	Δ
	MISCELLA	NEOUS PAI	RTS		C1206	VCKYTV1HF103Z		0.01	50V	Ceramic	Α
P851	QPLGN0441CEZZ	R Plug 4-pi		AB		VCKYTV1HB102k		1000p	50V	Ceramic	Α
P852	QPLGN0541CEZZ	R Plug 5-pi		AB	C1208	RC-FZ9104BMNJ		0.1	63V	Mylar	A
A SC851	QSOCV0919CEZZ	R CRT Sock		AH	C1209	RC-FZ9224BMNJ		0.22	63V	Mylar	Α
,	2333130100122				C1210	VCEAGA1HW225			50V	Electrolytic	
7.			1 1 1 1		C1211	VCEAGA1CW107			16V	Electrolytic	
						VCEAGA1CW107			16V	Electrolytic	
		_	d of PWB-B -								Α

Ref. No. Part No. Description Code Ref. No. Part No. Description Code PWB-C DUNTK7148CJV1/V0 **RESISTORS** (Continued) R1204 VRS-TV1JD471J R 470 1/16W Metal Oxide AA IF/IGR UNIT (Continued) R1205 VRS-TV1JD270J R 27 1/16W Metal Oxide AA **CAPACITORS** (Continued) R1206 VRS-TV1JD151J R 150 1/16W Metal Oxide AA C1214 VCEAGA1CW226M R 22 16V Electrolytic AB .. R1207 R VRD-RA2EE221J 220 1/4W Carbon AA C1216 VCKYTV1HB102K R 1000p 50V Ceramic AA R1208 VRS-TV1JD102J R 1k 1/16W Metal Oxide AA C1217 VCEAGA1HW225M R 2.2 50V Electrolytic AB R1209 R VRD-RA2BE121J 120 1/8W Carbon AA C1218 VCEAGA1HW225M R 2.2 50V Electrolytic AB - R1210 VRS-TV1JD562J R 5.6k 1/16W Metal Oxide AA C1219 VCKYTV1HF103Z R 0.01 50V Ceramic AA R1211 VRS-TV1JD222J R 2.2k 1/16W Metal Oxide. AA C1220 VCEAGA1AW476M R 47 10V Electrolytic AA R1212 VRS-TV1JD271J R 270 1/16W Metal Oxide AA C1221 VCEAGA1CW476M R 47 16V Electrolytic AB R1213 VRS-TV1JD6R8J R 6.8 1/16W Metal Oxide AA C1222 VCKYTV1HF103Z R 0.01 50V Ceramic AA R1214 VRS-TV1JD151J R 150 1/16W Metal Oxide AA C1228 VCKYTV1HB102K R 1000p 50V Ceramic AΑ R1215 VRS-TV1JD561J R 560 1/16W Metal Oxide AA C1231 RC-FZ9334BMNJ S 0.33 63V Mylar AC R1216 See Controls C1233 VCCCTV1HH471J R 470p 50V Ceramic AA R1217 VRS-TV1JD221J R 220 1/16W Metal Oxide AA C1308 VCEAGA1HW474M R 0.47 50V Electrolytic AA R1219 See Controls C1310 VCEAGA1CW107M 100 R 16V Electrolytic AB R1220 VRS-TV1JD471J R. 470 1/16W Metal Oxide AA C1311 VCEAGA1CW107M VRS-TV1JD331J R 100 16V Electrolytic AB R1221 R 330 1/16W Metal Oxide AA C1330 VCKYTV1HF103Z 0.01 R 50V Ceramic AA R1225 VRS-TV1JD561J Metal Oxide AA R 560 1/16W C1331 VCEAGA1AW227M R 220 10V Electrolytic VRS-TV1JD561J AB R1226 R 560 1/16W Metal Oxide AA C1332 VCKYTV1HB102K 1000p 50V R Ceramic AA R1227 VRS-TV1JD103J R 10k 1/16W Metal Oxide AA C1334 VCCCTV1HH1R0C 1p R 50V Ceramic AA R1228 VRS-TV1JD102J R 1k 1/16W Metal Oxide AA C1335 VCCCTV1HH471J R 470p 50V Ceramic AA R1229 VRS-TV1JD391J R 390 1/16W Metal Oxide AA C1336 VCCCTV1HH100D R 10p 50V Ceramic AA R1230 VRS-TV1JD682J R 6.8k 1/16W Metal Oxide AA C1339 VCCCTV1HH270J R 27p 50V Ceramic AA R1231 VRS-TV1JD223J R 22k 1/16W Metal Oxide AA C1340 VCKYTV1HF103Z R 0.01 50V Ceramic AA R1232 Metal Oxide AA VRS-TV1JD223J R 22k 1/16W C1341 VCKYTV1HF103Z R 0.01 50V Ceramic AA R1233 VRS-TV1JD102J R 1k 1/16W Metal Oxide AA C1352 VCEAGA1HW475M R 4.7 50V Electrolytic AB R1234 VRS-TV1JD562J R 5.6k 1/16W Metal Oxide AA 0.1 C1353 VCKYTV1HF104Z R 50V Ceramic AA R1235 VRS-TV1JD101J R 100 1/16W Metal Oxide AA 680p C1354 VCCSTV1HL681J R 50V Ceramic AA R1305 VRS-TV1JD101J R 100 1/16W Metal Oxide AA C1355 VCCSTV1HL681J R 680p 50V Ceramic AA R1306 VRS-TV1JD101J 1/16W R 100 Metal Oxide AA 680p C1356 VCCSTV1HL681J R 50V Ceramic AA R1313 VRS-TV1JD103J R 1/16W Metal Oxide AA C1357 VCKYTV1HB153K R 0.015 50V VRS-TV1JD182J Ceramic AA R1314 R 1.8k 1/16W Metal Oxide AA C1358 VCKYTV1HB153K R 0.015 50V Ceramic AΑ R1316 VRS-TV1JD101J R 100 1/16W Metal Oxide AA C1359 VCKYTV1HB102K 1000p 50V Ceramic AA R1317 VRS-TV1JD101J R 1/16W 100 Metal Oxide AA VCKYTV1HB102K C1360 R 1000p 50V Ceramic AA R1318 VRS-TV1JD101J R 100 1/16W Metal Oxide AA C1363 VCKYTV1HB102K R 1000p 50V Ceramic AA R1319 VRS-TV1JD101J 1/16W R 100 Metal Oxide AA C1364 VCKYTV1HB102K R 1000p 50V Ceramic AA R1331 VRS-TV1JD102J R 1k 1/16W Metal Oxide AA C1365 VCEAGA1HW225M R 2.2 Electrolytic 50V AB R1332 VRS-TV1JD183J R 18k 1/16W Metal Oxide AA C1366 VCKYTV1HF103Z R 0.01 50V Ceramic AA R1333 VRS-TV1JD473J R 47k 1/16W Metal Oxide AA C1367 VCKYTV1HF103Z R 0.01 50V Ceramic AA R1343 VRS-TV1JD683J R 68k 1/16W Metal Oxide AA C1368 VCEAGA1CW106M R 10 16V Electrolytic AA R1345 VRS-TV1JD562J R 5.6k 1/16W Metal Oxide AA C1369 VCCCTV1HH220J R 22p 50V Ceramic AA R1346 VRS-TV1JD562J R 5.6k 1/16W Metal Oxide AA VCCCTV1HH220J C1370 R 22p 50V Ceramic AA R1347 VRS-TV1JD562J R 5.6k 1/16W Metal Oxide AA C1371 VCCCTV1HH220J R 22p 50V Ceramic AA R1348 VRS-TV1JD562J R 5.6k 1/16W Metal Oxide AA C1372 VCKYTV1HF104Z R 0.1 50V Ceramic AA R1349 VRD-RA2BE683J R 68k 1/8W Carbon AA C1373 VCEAGA1CW477M R 470 16V Electrolytic AC R1350 VRS-TV1JD561J R 560 1/16W Metal Oxide AA C1374 VCEAGA1CW106M R 10 16V Electrolytic AA R1351 VRD-RA2HD6R8J R 6.8 1/2W Carbon AA C1375 VCEAGA1HW475M R 50V 4.7 Electrolytic AB C1376 VCEAGA1HW105M R 50V Electrolytic AC MISCELLANEOUS PARTS P1200 QPLGN1085CEZZ R Plug 10-pin, (FA) AC RESISTORS P1201 QPLGN1185CEZZ Plug 11-pin, (FB) AC : R1201 VRS-TV1JD151J R 150 1/16W Metal Oxide AA P1202 QPLGN0685CEZZ R Plug 6-pin, (FC) AA R1202 VRS-TV1JD562J R 5.6k 1/16W Metal Oxide AA End of PWB-C -R1203 VRS-TV1JD222J R 2.2k 1/16W Metal Oxide AA

Ref. No.	Part No.	*	ı	Descrip	tion C	ode	Ref. No.	Part No.	*		Descrip	otion	Code
PWE	B-D DUNT	K7	149E	3MV	0		•	CAPACITOR	s (Conti	inued))	
	VCJ/TI	FYT	. I IVII.	т			C2502	RC-FZ9823BMNJ	S	0.082	63V	Mylar	AB
	VG0/11		OIVI	•			C2601	VCKYTV1HB223K	R	0.022	50V	Ceramic	AB
	INTEGRA	TED	CIRC	JITS			C2602	RC-FZ9473BMNJ		0.047	63V	Mylar	AC
IC1101	RH-iX1567BMZZ	S	SDA52	73		BG	C2603	VCKYTV1HB102K		1000p	50V	Ceramic	AA
IC2801	RH-iX1573BMZZ	S	MC400	2		BA	C2604	VCKYTV1HF473Z		0.047	50V	Ceramic	AB
IC2802	RH-iX1495BMZZ	S	MC441	40		AP	C2605	VCKYTV1HF102K		1000p		Ceramic	AA
							C2801	VCKYTV1HF104Z		0.1	50V	Ceramic	AA
							C2802	VCKYTV1HF103Z		0.01	50V	Ceramic	AA
			STORS				C2803	VCEAGA1HW225M		2.2	50V	Electrolytic	
Q1101	VS2SC2412KQ-1		2SC24			AA	C2804	VCKYTV1HB392K		3900p		Ceramic	AA AA
Q2801	VS2SC2412KQ-1		2SC24			AA	C2805	VCKYTV1HF103Z		0.01	50V 50V	Ceramic	AA
Q2802	VS2SC2412KQ-1		2SC24			AA	C2806	VCCCTV1HH470J		47p		Ceramic	
Q2803	VS2SC2412KQ-1	R	2SC24	12		AA	C2807	VCEAGA0JW107M VCKYTV1HF103Z		100 0.01	6.3V 50V	Electrolytic Ceramic	AA
							C2808 C2809	VCCCTV1HH121J		120p	50V	Ceramic	AA
		OIOD	EC				C2809	VCKYTV1HF103Z		0.01	50V	Ceramic	AA
D4404						AA	C2810	VCEAGA1CW476M		47	16V	Electrolytic	
D1101	RH-DX0045BMZZ		1N4148			AA	C2813	VCKYTV1HF104Z		0.1	50V	Ceramic	AA
D1102	RH-DX0045BMZZ		1N414			AA	C2814	VCKYTV1HF104Z		0.1	50V	Ceramic	AA
D1103 D1104	RH-DX0045BMZ2		1N414			AA	C2815	VCKYTV1HF103Z		0.01	50V	Ceramic	AA
D1104	RH-DX0045BMZZ		1N414			AA	C2816	VCEAGA1HW105M			50V	Electrolytic	
D1106	RH-EX0403BMZZ		Zener		3 9\/	AA	C2817	VCEAGA1HW105M			50V	Electrolytic	
D2601	RH-DX0045BMZZ		1N414		0.0 4	AA	C2818	VCEAGA1CW476M		47	16V	Electrolytic	
D2602	RH-DX0045BMZ2		1N414			AA	C2819	VCKYTV1HF104Z		0.1	50V	Ceramic	AA
D2801	RH-DX0045BMZ2		1N414			AA	C2820	VCKYTV1HF104Z		0.1	50V	Ceramic	AA
D2001	THE BYOU-DENIEL	- 0					C2821	VCCCTV1HH121J	R	120p	50V	Ceramic	AA
							C2822	VCEAGA1CW106M	R	10	16V	Electrolytic	: AA
	PACKAG	GED	CIRCL	JITS			C2823	VCKYTV1HB102K	R	1000p	50V	Ceramic	AA
X1101	RCRSB0214BMZ		Crysta		MHz	AH	C2824	VCKYTV1HF104Z	R	0.1	50V	Ceramic	AA
X2801	RCRSB0200BMZ		Crysta			AG	C2825	VCEAGA1HW475M	R	4.7	50V	Electrolytic	: AB
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						C2826	VCKYTV1HF103Z	R	0.01	50V	Ceramic	AA
							C2827	RC-FZ9473BMNJ	S	0.047	63V	Mylar	AC
		COI	LS				C2830	VCCCTV1HH470J	R	4 7p	50V	Ceramic	AA
L1101	VP-DF3R3K0000	R	Coil, 3	.3µН		AB	C2831	VCCCTV1HH470J	R	47p	50V	Ceramic	AA
L1102	VP-DF3R3K0000		Coil, 3			AB	C2832	VCCCTV1HH470J	R	47p	50V	Ceramic	AA
L1103	VP-DF3R3K0000	R	Coil, 3	.3μΗ		AB	C2851	VCKYTV1HF104Z	R	0.1	50V	Ceramic	AA
							C2852	VCKYTV1HF104Z	R	0.1	50V	Ceramic	AA
							C2853	VCKYTV1HF104Z	R	0.1	50V	Ceramic	AA
	CA	PAC	ITORS				C2901	VCKYTV1HF104Z	R	0.1	50V	Ceramic	AA
C1101	RC-FZ9104BMNJ	S	0.1	63V	Mylar	AB							
C1102	VCCCTV1HH220	J R	22p	50V	Ceramic	AA							
C1103	VCCCTV1HH220	J R	22p	50V	Ceramic	AA				TORS			
C1104	VCKYTV1HF104Z	R	0.1	50V	Ceramic	AA	R1101	VRS-TV1JD101J		100		Metal Oxid	
C1105	VCEAGA1CW106	SM R	10	16V	Electrolytic	AA	R1102	VRS-TV1JD101J			1/16W	Metal Oxid	
C1106	VCKYTV1HF103Z	Z R	0.01	50V	Ceramic	AA	R1103	VRS-TV1JD101J			1/16W	Metal Oxid	
C1107	VCEAGA1AW476	SM R	47	10V	Electrolytic		R1104	VRD-RA2BE472J		4.7k		Carbon	AA
C1108	VCEAGA0JW107			6.3V	Electrolytic		R1106	VRS-TV1JD101J			1/16W	Metal Oxid	
C1109	VCKYTV1HF103Z			50V	Ceramic	AA	R1107	VRS-TV1JD101J			1/16W	Metal Oxid	
C1110	VCKYTV1HF103Z			50V	Ceramic	AA	R1108	VRS-TV1JD101J			1/16W	Metal Oxid	
C1111	VCCSTV1HL101J			50V	Ceramic	AA	R1109	VRS-TV1JD101J			1/16W	Metal Oxid	
C2401	VCKYTV1HF104Z			50V	Ceramic	AA	R1110	VRS-TV1JD103J			1/16W	Metal Oxid	
C2402			0.22	50V	Ceramic	AC	R1111	VRD-RA2EE471J		470		Carbon	AA ^
C2403			100p	50V	Ceramic	AA	R1112	VRS-TV1 IDEGAL		100k		Metal Oxid	
	VCCCTV1HH101		100p	50V	Ceramic	AA	R1116	VRS-TV1JD560J			1/16W	Metal Oxid	
C2501	VCKYTV1HF1032	4" " "R	0.01	50V	Ceramic	AA	R1117	VRS-TV1JD271J	ri	270	1/10//	Metal Oxid	e AA

Part No.

Description

Code

Ref. No.

Part No.

Description

Code

Ref. No.

PWB-D DUNTK7149BMV0 MISCELLANEOUS PARTS VCJ/TEXT UNIT (Continued) RESISTORS (Continued) △ ACC701 QACCZ2100BMSA S AC Cord AR R1118 VRD-RA2BE331J R 330 1/8W Carbon AA VSP0010PBF58A R Speaker, 10cm AT R2401 VRS-TV1JD102J R 1k 1/16W Metal Oxide AA LHLDK1501BM00 S AC Cord Holder AB R2402 VRS-TV1JD821J R 820 1/16W Metal Oxide AA VRS-TV1JD221J R2501 R 220 1/16W Metal Oxide AA End of MISCELLANEOUS PARTS -R2601 VRS-TV1JD123J R 12k 1/16W Metal Oxide AA R2602 VRS-TV1JD473J R 47k 1/16W Metal Oxide AA R2603 VRS-TV1JD683J R 68k 1/16W Metal Oxide AA SUPPLIED ACCESSORIES R2605 VRD-RA2BE222J R 2.2k 1/8W Carbon R2801 VRS-TV1JD513J R 51k 1/16W Metal Oxide AA R2802 VRS-TV1JD473J R 47k 1/16W Metal Oxide AA **ACCESSORIES** R2803 VRS-TV1JD683J R 68k 1/16W Metal Oxide AA RRMCG1023BMSA S Remote Control Unit BB R2804 VRD-RA2EE470J R 47 1/4W Carbon AA R2805 VRS-TV1JD681J R 680 1/16W Metal Oxide AA ACCESSORIES (NOT REPLACEMENT ITEM) R2806 VRS-TV1JD681J R 680 1/16W Metal Oxide AA R2809 VRS-TV1JD221J R 220 1/16W Metal Oxide AA TiNS-6271BMN0 Operation Manual R2810 VRS-TV1JD221J 220 1/16W Metal Oxide AA (DV-5465S) 1/16W R2811 VRS-TV1JD221J R 220 Metal Oxide AA TINS-6270BMN0 **Operation Manual** R2812 VRS-TV1JD391J R 390 1/16W Metal Oxide AA (DV-5470S) **△** R2813 RR-XZ0110BMZZ S 68 1/3W Fuse Resistor AB UBATU0015CEZZ - Dry Batteries R2814 VRS-TV1JD681J R 680 1/16W Metal Oxide AA R2815 VRD-RA2BE101J R 100 1/8W Carbon AA End of SUPPLIED ACCESSORIES -R2816 VRD-RA2BE101J R 100 1/8W Carbon AA VRS-TV1JD472J R2817 R 4.7k 1/16W Metal Oxide AA VRS-TV1JD472J LABELS R2818 R 4.7k 1/16W Metal Oxide AA R2819 VRS-TV1JD472J R 4.7k 1/16W Metal Oxide AA (NOT REPLACEMENT ITEM) R2821 VRS-TV1JD391J R 390 1/16W Metal Oxide AA R2822 VRS-TV1JD222J R 2.2k 1/16W Metal Oxide AA TLABM5361BMZZ - Model Label (DV-5465S) TLABM5360BMZZ Model Label MISCELLANEOUS PARTS (DV-5470S) P2801 QPLGN1185CEZZ R Plug 11-pin, (DA) AC TLABV2192BMZZ - Bar Code Label P2802 QPLGN0885CEZZ R Plug 8-pin, (DB) AC (DV-5465S) P2803 QPLGN0985CEZZ R Plug 9-pin, (DC) AC TLABV2191BMZZ - Bar Code Label QPLGN0541CEZZ R Plug 5-pin, (K) ΑB (DV-5470S) SC2804 QSOCN1068BMZZ S Socket 10-pin, (SE) AE TLABK0001TAZZ - Carton Label TLABN0130BMZZ - Serial No. Label End of LABELS -PACKING PARTS (NOT REPLACEMENT ITEM) SPAKC5219BMZZ Packing Case (DV-5465S) SPAKC5218BMZZ Packing Case (DV-5470S) SSAKA1004BMZZ Polystylene Bag SPAKX4022BMZZ _ **Buffer Material** End of PWB-D — End of PACKING PARTS

Ref. No. Part No. ★ Description Code

CABINET PARTS

MODEL DV-5465S										
1	CCABA1080BMV0	s	Front Cabinet Ass'y	BH						
1-1	Not Available	-	Front Cabinet	_						
1-2	GMADT1054BMSA	S	Window	AH						
1-3	HBDGB3505BMSA	S	Badge, "SHARP"	AF						
1-4	Not Used									
1-5	JBTN-1021BMSA	S	Button, Up/Down	AC						
1-6	JBTN-1022BMSA	S	Button, Power	AD						
1-7	MSPRC0106BMFW	S	Spring, Power Button	AA						
2	GCABB1038BMKA	S	Rear Cabinet Ass'y	BE						

MODEL DV-5470S

		_		
1	CCABA1061BMV0	s	Front Cabinet Ass'y	вн
1-1	Not Available	-	Front Cabinet	_
1-2	GMADT1053BMSA	S	Window	AH
1-3	HBDGB3505BMSA	S	Badge, "SHARP"	AF
1-4	JBTN-1018BMSA	S	Button, OPC	AC
1-5	JBTN-1021BMSB	S	Button, Up/Down	AC
1-6	JBTN-1022BMSB	S	Button, Power	AD
1-7	MSPRC0106BMFW	S	Spring, Power Button	AA
2	GCABB1038BMKA	S	Rear Cabinet Ass'v	BE

Code	* Description	Ada to pe	_{.эм} . _{ээл} Memo	
)
		#VORT	* .	
1111	E0-84005	Jagow . www.		100
,	Luman. C. C.	e of the design of the		
1 1 %		, , , , , , , , , , , , , , , , , , ,		•
1)	1) 1 .	A Transaction		
<u>√</u> 1/4	mwejne to english an	HMP, FM, N	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	. 50			•
1010	instandina esi na kingkina.	Alternative States		
;	y translation and the	v videgi izmelegi e		
			AND WELL THE STATE OF THE STATE	
			garu Alfrida	
			λ .	
			į į	
				·
·. 				. – – – . – -
				·
				·
		en e		
7.				
		~		
		- -		
		-		
			-	
	-			
			~	
	- 			
	·	-	· 	~
	######################################			

SHARP