# ARM®-based 32-bit MCU, up to 64KB Flash, 8 timers, ADC & comm. interfaces, 1.8-5.5V

#### **Features**

- ARM® 32-bit Cortex-M0 CPU, frequency up to 48 MHz
- Memories
  - ♦ 16/32/64KB of Flash memory
  - ♦ 4/8 KB SRAM
- CRC calculation unit
- Reset and power management
  - ♦ Digital and I/Os supply: VDD = 1.8 5.5V
  - ♦ Analog supply: VDDA = 1.8 5.5V
  - ♦ Power-on/Power down reset(POR/PDR)
  - ♦ Programmable voltage detector(PVD)
  - ♦ Low power modes: Sleep, Stop, Standby
- Clock management
  - ♦ 4 to 24 MHz crystal oscillator
  - ♦ 32 kHz oscillator for RTC with calibration
  - ♦ Internal 8 MHz RC oscillator
  - ♦ Internal 40 kHz RC oscillator
  - ♦ PLL use for CPU clock
- Up to 39 fast I/Os
  - ♦ All mappable on external interrupt vectors
  - ♦ With 5V tolerant capability when power supply is 3V
- DMA controller
  - ♦ 5 channel
  - ♦ Support peripherals: TIMER/ADC/SPI/I<sup>2</sup>C/USART
- One 12-bit, 1.0 us ADC(up to 10 channels)
  - ♦ Conversion range: 0 to 5.5 V
  - ♦ Embedded temp sensor
- 10 timers
  - ♦ One 16-bit advanced-control timer for timer for six channel PWM output
  - ♦ Six 16-bit timers, with up to four IC/OC,OCN, usable for IR control decoding
  - ♦ Independent and system watchdog timers
  - ♦ SysTick timer
- Communication interfaces
  - → Two I<sup>2</sup>C interfaces supporting Fast Mode Plus(1Mbit/s) with 20mA current sink, SMBus/PMBus and wakeup
  - → Two USARTs supporting master synchronous SPI and modem control, one with ISO7816 interface LIN, IrDA, auto baud rate detection and wakeup feature
  - ♦ Two SPIs(50 Mbit/s) with 4 to 16 programmable bit frames, one with I<sup>2</sup>S interface multiplexed
- HDMI CEC, wakeup on header reception
- Debug mode
  - ♦ Serial wire debug(SWD)
- 96-bit unique ID
- Packages
  - → TSSOP20
  - ♦ LQFP32
  - ♦ LQFP48

# **Contents**

| 1 | Introdu    | uction                                                                                  | 4  |
|---|------------|-----------------------------------------------------------------------------------------|----|
| 2 | Descri     | otion                                                                                   | 5  |
| 3 | Function   | onal overview                                                                           | 7  |
|   | 3.1        | ARM® Cortex-M0 core                                                                     | 7  |
|   | 3.2        | Memories                                                                                | 7  |
|   | 3.3 I      | Boot modes                                                                              | 7  |
|   | 3.4        | Cyclic redundancy check calculation unit (CRC)                                          | 7  |
|   | 3.5 I      | Power management                                                                        | 7  |
|   | 3.5        | .1 Power supply                                                                         | 8  |
|   | 3.5        | .2 Power supply supervisors                                                             | 8  |
|   | 3.5        | .3 Voltage regulator                                                                    | 8  |
|   | 3.5        | .4 Low-power modes                                                                      | 8  |
|   | 3.6        | Clocks and startup                                                                      | 9  |
|   | 3.7        | GPIO                                                                                    | 10 |
|   | 3.8        | Direct memory access controller (DMA)                                                   | 10 |
|   | 3.9 I      | nterrupts and events                                                                    |    |
|   | 3.9        |                                                                                         |    |
|   | 3.9        | 1 ,                                                                                     |    |
|   | 3.10       | Analog-to-digital converter (ADC)                                                       | 11 |
|   | 3.1        | 0.1 Temperature sensor (TS)                                                             |    |
|   | _          | 0.2 Internal voltage reference (V <sub>REFINT</sub> )                                   |    |
|   | 3.11       | Fimers and watchdogs                                                                    |    |
|   | 3.1        | 1.1 Advanced-control timer (TIM1)                                                       |    |
|   | 3.1        | 1.2 General-purpose timers (TIM2/3/14/16/17)                                            |    |
|   | 3.1        | 1.3 Independent watchdog (IWDG)                                                         |    |
|   | _          | 1.4 System window watchdog (WWDG)                                                       |    |
|   |            | 1.5 SysTick timer                                                                       |    |
|   |            | Real-time clock (RTC) and backup registers                                              |    |
|   |            | nter-integrated circuit interface (I2C)                                                 |    |
|   |            | Universal synchronous / asynchronous receiver / transmitter (USART)                     |    |
|   |            | Serial peripheral interface (SPI) / Inter-integrated sound interface (I <sup>2</sup> S) |    |
|   |            | High-definition multimedia interface (HDMI) – consumer electronics control (CEC)        |    |
|   |            | Clock recovery system (CRS)                                                             |    |
|   |            | Serial wire debug port (SWJ-DP)                                                         |    |
| 4 |            | s and pin descriptions                                                                  |    |
| 5 |            | ry mapping                                                                              |    |
| 6 |            | cal characteristics                                                                     |    |
|   | 6.1        | Parameter conditions                                                                    |    |
|   | 6.1        |                                                                                         |    |
|   | 6.1        | - 7,                                                                                    |    |
|   | 6.1        | <i>7</i> 1                                                                              |    |
|   | 6.1        | 5 1                                                                                     |    |
|   | 6.1        | - Pro O-                                                                                |    |
|   | 6.1        |                                                                                         |    |
|   | 6.1<br>6.2 | .7 Current consumption measurement                                                      |    |
|   | 6.3        | Operating conditions                                                                    |    |
|   | 6.3        |                                                                                         |    |
|   | 6.3        | · · · ·                                                                                 |    |
|   | 6.3        |                                                                                         |    |
|   | 6.3        | ·                                                                                       |    |
|   | 6.3        |                                                                                         |    |
|   | 0.5        | Cappiy Carrette Characteristics                                                         |    |

### FCM32F030x

|    | 6.3.6           | Wakeup time from low-power mode        | 31 |
|----|-----------------|----------------------------------------|----|
|    | 6.3.7           | External clock source characteristics  | 32 |
|    | 6.3.8           | Internal clock source characteristics  |    |
|    | 6.3.9           | PLL characteristics                    | 33 |
|    | 6.3.10          | Memory characteristics                 | 33 |
|    | 6.3.11          | EMC characteristics                    | 34 |
|    | 6.3.12          | Electrical sensitivity characteristics | 34 |
|    | 6.3.13          | I/O current injection characteristics  | 35 |
|    | 6.3.14          | I/O port characteristics               | 35 |
|    | 6.3.15          | NRST pin characteristics               | 37 |
|    | 6.3.16          | ADC characteristics                    | 37 |
|    | 6.3.17          | Temperature sensor characteristics     | 38 |
| 7  | Package inform  | nation                                 | 39 |
|    | 7.1 LQFP        | 48 package information                 | 39 |
|    | 7.2 LQFP        | 32 package information                 | 41 |
|    |                 | P20 package information                |    |
| 8  |                 | mation                                 |    |
| 9  | Revision histor | ry                                     | 45 |
| 10 | Others          |                                        | 46 |

# 1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the FCM32x030x microcontrollers.

For information on the arm Cortex-M0 core, please refer to the Cortex-M0 Technical Reference Manual, available from the <a href="https://www.arm.com">www.arm.com</a> website.



# 2 Description

The FCM32x030x microcontrollers incorporate the high-performance arm Cortex-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 64 Kbytes of Flash memory and 8 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (I<sup>2</sup>C, SPI/I<sup>2</sup>S, USART and HDMI-CEC), 12-bit ADC, five 16-bit General-purpose timers, one 16-bit advanced-control PWM timer.

The FCM32x030x microcontrollers operate in the -40 to +85C and -40 to +105C temperature ranges, from a 1.8 to 5.5 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The FCM32x030x microcontrollers include devices in several different packages ranging from 20 pins to 48 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the FCM32x030x microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

FCM32x030x medium-density device features and peripheral counts

|            | Peripheral             | FCM32F030F4 | FCM32F030K6  | FCM32F030C6 | FCM32F030C8 |  |  |
|------------|------------------------|-------------|--------------|-------------|-------------|--|--|
| F          | -lash(Kbytes)          | 16          | 32           | 32          | 64          |  |  |
| S          | RAM(Kbytes)            |             | 4            |             | 8           |  |  |
| Timers     | Advanced control       |             | 1 (1         | 6-bit)      |             |  |  |
|            | General purpose        |             | 6 (1         | 6-bit)      |             |  |  |
|            | Basic                  | -           | <del>-</del> | -           | 1           |  |  |
| Comm.      | SPI/I2S <sup>(1)</sup> | 1/1         | 1/1          | 2/2         | 2/2         |  |  |
| interfaces | I2C                    |             | 1            |             |             |  |  |
|            | USART                  |             | 2            |             |             |  |  |
|            | CAN                    | 0           |              |             |             |  |  |
|            | CEC                    | 0           |              |             |             |  |  |
|            | 12-bit ADC             | 1 1         |              |             |             |  |  |
| (num       | nber of channels)      | (11)        | (12)         |             |             |  |  |
|            | GPIOs                  | 15          | 26           | 39          |             |  |  |
| Max        | CPU frequency          | 48 MHz      |              |             |             |  |  |
|            | Flash Turbo            | -           |              |             |             |  |  |
| Ор         | erating voltage        | 1.8~5.5V    |              |             |             |  |  |
| Opera      | ating temperature      | -40~85      |              |             |             |  |  |
|            | Packages               | TSSOP20     | LQFP32       | LQF         | P48         |  |  |

SPI1/2 interfaces can be used either in SPI mode or in I<sup>2</sup>S audio mode.

#### **Block diagram** POWER Serial Wire SWCLK SWDIO V<sub>DDIO</sub> VOLT.REG 3.3 V TO 1.8 V Debug Vss as AF opl Flash GPL @ V<sub>DDIO</sub> CORTEX-M0 CPU 32 bits V<sub>DDUSB</sub>OKIN SUPPLY SUPERVISION POR ◀ NRST Reset < V<sub>DDA</sub> V<sub>SSA</sub> SRAM POR/PDR Int -SRAM @ VDDA Bus matrix NVIC PVD RC HS 14 MHz RC HS 8 MHz @ V<sub>DDIO</sub> GP DMA PLL -5 channels OSC\_IN (PF0) XTAL OSC RC LS 4-32 MHz OSC\_OUT (PF1) RC HS 48MHz Ind. Window WDG Power PA[15:0] GPIO port A ► AHBPCLK → APBPCLK → ADCCLK → CECCLK → USARTCLK Controller - V<sub>BAT</sub> PB[15:0] GPIO port B RESET & CLOCK OSC32\_IN OSC32\_OUT PC[15:13] GPIO port C XTAL32 kHz AHB → HCLK → FCLK → USBCLK Backup RTC ▶ 1 TAMPER-RTC reg (ALARM OUT) RTC interface CRS PF[11,1:0] GPIO port F 4 channels 3 compl. channels CRC **PWM TIMER 1** PAD 8 groups of BRK, ETR input as AF Touch Analog switches 4 channels 4 ch., ETR as AF Sensing TIMER 2 32-bit Controller AHB SYNC 4 ch., ETR as AF APB TIMER 3 EXT. IT 89 AF WKUP TIMER 14 1 channel as AF USB D+, D-USB PHY SRAM @ V<sub>DDUSB</sub> 1 channel TIMER 16 1 compl, BRK as AF WIndow WDG 1 channel 1 compl, BRK as AF TIMER 17 ► IR\_OUT as AF DBGMCU MOSI/SD MISO/MCK RX, TX,CTS, RTS, USART1 SPI1/I2S1 CK as AF SCK/CK NSS/WS as AF SYSCFG IF RX, TX,CTS, RTS, USART2 CK as AF MOSI SPI2 MISO SCL, SDA, SMBA (20 mA for FM+) SCK 12C1 NSS as AF as AF Temp. HDMI-CEC CEC as AF sensor 10 AD inputs ADC VDDA VSSA @ V<sub>DDA</sub>

# 3 Functional overview

#### 3.1 ARM® Cortex-M0 core

ARM® Cortex-M0 is a generation of arm 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM® Cortex-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an arm core, with memory sizes usually associated with 8- and 16-bit devices.

### 3.2 Memories

The device has he following features:

- 4/8 KB of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states
- The non-volatile memory is divided into two arrays:
  - 16/32/64 KB of embedded Flash memory for programs and data
  - Option Bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features(SWD) and boot in RAM selection disabled

#### 3.3 Boot modes

At startup, the boot pin and boot selector option bits are used to select one of the three boot options:

- Boot from User Flash memory
- Boot from System Memory
- Boot from embedded SRAM

The boot pin is shared with the standard GPIO and can be disabled through the boot selector option bits. The boot loader is located in System Memory.

# 3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

# 3.5 Power management



### 3.5.1 Power supply

- VDD = 1.8 5.5V: external power supply for I/Os and the internal regulator. It is provided externally through VDD pins.
- VDDA = 1.8 5.5V: external analog power supply for ADC, Reset blocks, RC oscillator and PLL. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be established first.

### 3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 1.8 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold ( $V_{POR/PDR}$ ) without the need for an external reset circuit.

- The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD.
- The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD.

The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the  $V_{PVD}$  threshold. An interrupt can be generated when VDD drops below the  $V_{PVD}$  threshold and/or when VDD is higher than the  $V_{PVD}$  threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

### 3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (RUN)
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

In Standby mode, it is put in LPR mode. In this mode, MCU core and SRAM, SFRs and most peripherals stopped, the contents of the registers and SRAM are not lost.

# 3.5.4 Low-power modes

The FCM32x030x microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- Sleep mode
  - In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
- Stop mode
  - Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.5 V domain are stopped, the PLL, the HIS RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or low power mode.
  - The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I<sup>2</sup>C1, USART1, USB or the CEC.
  - The CEC, USART1 and I<sup>2</sup>C1 peripherals can be configured to enable the HIS RC oscillator so as to get clock for processing incoming data. If this is used when the voltage regulator is put in low power mode,

6//

the regulator is first switched to normal mode before the clock is provided to the given peripheral.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator enter LPR mode. PLL, the HIS RC and the HSE crystal oscillators are also switched off. The content of SRAM and registers are retained.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

### 3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary.

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and APB domains is 48 MHz.

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.



#### **3.7 GPIO**

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

# 3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-

peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14) and ADC.

### 3.9 Interrupts and events

### 3.9.1 Nested vectored interrupt controller (NVIC)

The FCM3F030x family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved

# 3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect and external line with a pulse width shorter than the internal APB2 clock period. Up to 38 GPIOs can be connected to the 16 external lines.

# 3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 10 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

6/1

# 3.10.1 Temperature sensor (TS)

The temperature sensor (TS) generates a voltage V<sub>SENSE</sub> that varies linearly with temperature.

The temperature sensor is internally connected to the ADC\_IN16 input channel which is used to convert the sensor output voltage into a digital value.

# 3.10.2 Internal voltage reference (VREFINT)

The internal voltage reference (V<sub>REFINT</sub>) provides a stable (bandgap) voltage output for the ADC. V<sub>REFINT</sub> is internally connected to the ADC IN17 input channel.

## 3.11 Timers and watchdogs

The FCM32x030x devices include up to 5 general-purpose timers and an advanced control timer.

#### Timer feature comparison

| Timer<br>type       | Timer           | Counter resolution | Counter<br>type      | Prescaler factor | DMA request generation | CCP<br>channels | Complementary outputs |
|---------------------|-----------------|--------------------|----------------------|------------------|------------------------|-----------------|-----------------------|
| Advanced<br>control | TIM1            | 16-bit             | Up, down,<br>Up/down | 1~65536          | Yes                    | 4               | Yes                   |
| General<br>purpose  | TIM2            | 16-bit             | Up, down,<br>Up/down | 1~65536          | Yes                    | 4               | No                    |
|                     | TIM3            | 16-bit             | Up, down,<br>Up/down | 1~65536          | Yes                    | 4               | No                    |
|                     | TIM14           | 16-bit             | Up                   | 1~65536          | No                     | 1               | No                    |
|                     | TIM15           | 16-bit             | Up                   | 1~65536          | Yes                    | 2               | No                    |
|                     | TIM16,<br>TIM17 | 16-bit             | Up                   | 1~65536          | Yes                    | 1               | Yes                   |

# 3.11.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for

### 3.11.2 General-purpose timers (TIM2/3/14/15/16/17)

There are five general-purpose timers embedded in the FCM32x030x devices. Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

#### **TIM2/3**

FCM32x030x devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization of event chaining.

TIM2 and TIM3 are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

#### **TIM14**

This timer is based on a 16-bit auto-reload up counter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode.

#### TIM15/16/17

Both timers are based on a 16-bit auto-reload up counter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 can work together.

They have a complementary output with dead-time generation and independent interrupt request generation.

Their counters can be frozen in debug mode.

# 3.11.3 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit down counter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

# 3.11.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit down counter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PLCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.



### 3.11.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter.

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source (HCLK or HCLK/8)

### 3.12 Real-time clock (RTC) and backup registers

The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system or power reset, or at wake up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatic correction for 28, 29 (leap year), 30, and 31 day of the month
- Programmable alarm with wakeup from Stop and Standby mode capability
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- · Two anti-tamper detection pins with programmable filter
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision

The RTC clock sources can be:

- A 32768 Hz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32

# 3.13 Inter-integrated circuit interface (I2C)

The I<sup>2</sup>C interface can operate in multimaster or slave modes. It can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1Mbit/s) with 20mA output drive.

They supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). It also includes programmable analog and digital noise filters.

In addition, I<sup>2</sup>C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1. It also has a clock domain independent from the CPU clock, allowing the I<sup>2</sup>C1 to wake up the MCU from Stop mode on address match. The I<sup>2</sup>C peripherals can be served by the DMA controller.

#### FCM32x030x I<sup>2</sup>C implementation

| I <sup>2</sup> C features                                  | I <sup>2</sup> C1 | I <sup>2</sup> C2 |
|------------------------------------------------------------|-------------------|-------------------|
| 7-bit addressing mode                                      | Υ                 | Υ                 |
| 10-bit addressing mode                                     | Υ                 | Υ                 |
| Standard mode (up to 100 kbit/s)                           | Υ                 | Υ                 |
| Fast mode (up to 400 kbit/s)                               | Υ                 | Υ                 |
| Fast Mode Plus with 20mA output drive I/Os (up to 1Mbit/s) | Υ                 | Υ                 |



| Independent clock | Υ | - |
|-------------------|---|---|
| SMBus             | Υ | - |
| Wakeup from STOP  | Υ | - |

# 3.14 Universal synchronous / asynchronous receiver / transmitter (USART)

The device embeds two universal synchronous/asynchronous receivers/transmitters (USART1, USART2) which communicate at speeds up to 12.5 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also SmartCard communication (ISO7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock domain independent to the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

#### FCM32x030x USART implementation

| USART modes/ features                       | USART1 | USART2 |
|---------------------------------------------|--------|--------|
| Hardware flow control for modem             | Υ      | Υ      |
| Continuous communication using DMA          | Υ      | Υ      |
| Multiprocessor communication                | Υ      | Υ      |
| Synchronous mode                            | Υ      | Υ      |
| Smartcard mode                              | Υ      | -      |
| Single-wire half-duplex communication       | Υ      | Υ      |
| IrDA SIR ENDEC block                        | Υ      | -      |
| LIN mode                                    | Υ      | -      |
| Dual clock domain and wakeup from Stop mode | Υ      | -      |
| Receiver timeout interrupt                  | Υ      | -      |
| Modbus communication                        | Υ      | =      |
| Auto baud rate detection                    | Υ      | -      |
| Driver Enable                               | Υ      | Υ      |

# 3.15 Serial peripheral interface (SPI) / Inter-integrated sound interface (I<sup>2</sup>S)

Two standard I<sup>2</sup>S interface (multiplexed with SPI) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency.

#### FCM32x030x SPI/I<sup>2</sup>S implementation

| SPI features | SPI1 | SPI2 |
|--------------|------|------|



| Hardware CRC calculation | Υ | Υ |
|--------------------------|---|---|
| Rx/Tx FIFO               | Υ | Υ |
| NSS pulse mode           | Υ | Υ |
| I <sup>2</sup> S mode    | Υ | Υ |
| TI mode                  | Υ | Υ |

# 3.16 High-definition multimedia interface (HDMI) – consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

# 3.17 Clock recovery system (CRS)

The FCM32x030x embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS\_SYNC pin or generated by user software.

# 3.18 Serial wire debug port (SWJ-DP)

An ARM SWJ-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU, and support SWD.

# 4 Pinouts and pin descriptions







Legend/abbreviations used in the pinout table

|           | Legend/abbreviations used in the pinout table |                                                                                                                                       |                                                             |  |  |  |  |
|-----------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
| Na        | me                                            | Abbreviation                                                                                                                          | Definition                                                  |  |  |  |  |
| Pin r     | name                                          | Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name |                                                             |  |  |  |  |
|           |                                               | S                                                                                                                                     | Supply pin                                                  |  |  |  |  |
| Pin       | type                                          | I                                                                                                                                     | Input only pin                                              |  |  |  |  |
|           |                                               | I/O                                                                                                                                   | Input / output pin                                          |  |  |  |  |
|           |                                               | FT                                                                                                                                    | 5 V tolerant I/O                                            |  |  |  |  |
|           |                                               | FTf 5 V tolerant I/O, FM+ capable                                                                                                     |                                                             |  |  |  |  |
| I/O otr   | ucture                                        | TTa                                                                                                                                   | TTa 5 V tolerant I/O directly connected to ADC              |  |  |  |  |
| 1/0 811   | ucture                                        | TC                                                                                                                                    | Standard 5 V I/O                                            |  |  |  |  |
|           |                                               | В                                                                                                                                     | Dedicated BOOT0 pin                                         |  |  |  |  |
|           |                                               | RST                                                                                                                                   | Bidirectional reset pin with embedded weak pull-up resistor |  |  |  |  |
| No        | tes                                           | Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.                                     |                                                             |  |  |  |  |
| Pin       | Alternate functions                           | Functions selected through GPIOx_AFR registers                                                                                        |                                                             |  |  |  |  |
| functions | Additional functions                          | Functions directly                                                                                                                    | selected/enabled through peripheral registers               |  |  |  |  |

FCM32x030x pin definitions

| F      | Pin nun | nber    |                                       |          |               |       | Pin fur                                                                                                          | ections                                    |
|--------|---------|---------|---------------------------------------|----------|---------------|-------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| LQFP48 | LQFP32  | TSSOP20 | Pin name<br>(function after<br>reset) | Pin Type | I/O structure | Notes | Alternate functions                                                                                              | Additional functions                       |
| 1      | -       | -       | VDD                                   | S        |               |       | Complementary                                                                                                    | power supply                               |
| 2      | -       | -       | PC13                                  | I/O      | тс            | (1)   | -                                                                                                                | RTC_TAMP1,<br>RTC_TS,<br>RTC_OUT,<br>WKUP2 |
| 3      | -       | -       | PC14-OSC32_IN<br>(PC14)               | I/O      | тс            | (1)   | -                                                                                                                | OSC32_IN                                   |
| 4      | -       | -       | PC15-OSC32_OUT<br>(PC15)              | I/O      | TC            | (1)   | -                                                                                                                | OSC32_OUT                                  |
| 5      | 2       | 2       | PF0-OSC_IN<br>(PF0)                   | I/O      | FT            |       | I2C1_SDA <sup>(5)</sup>                                                                                          | OSC_IN                                     |
| 6      | 3       | 3       | PF1-OSC_OUT<br>(PF1)                  | I/O      | FT            |       | I2C1_SCL <sup>(5)</sup>                                                                                          | OSC_OUT                                    |
| 7      | 4       | 4       | NRST                                  | I/O      | RST           |       | Device reset input / i                                                                                           | •                                          |
| 8      | -       | -       | VSSA                                  | S        |               |       | Analog                                                                                                           | ground                                     |
| 9      | 5       | 5       | VDDA                                  | S        |               |       | Analog pov                                                                                                       | ver supply                                 |
| 10     | 6       | 6       | PA0                                   | I/O      | TTa           |       | USART1_CTS <sup>(2)</sup> ,<br>USART2_CTS <sup>(3)(5)</sup> ,<br>USART4_TX <sup>(5)</sup>                        | ADC_IN0,<br>RTC_TAMP2,<br>WKUP1            |
| 11     | 7       | 7       | PA1                                   | I/O      | TTa           |       | USART1_RTS <sup>(2)</sup> ,<br>USART2_RTS <sup>(3)(5)</sup> ,<br>EVENTOUT,<br>USART4_RX <sup>(5)</sup>           | ADC_IN1                                    |
| 12     | 8       | 8       | PA2                                   | I/O      | ТТа           |       | USART1_TX <sup>(2)</sup> ,<br>USART2_TX <sup>(3)(5)</sup> ,<br>TIM15_CH1 <sup>(3)(5)</sup>                       | ADC_IN2                                    |
| 13     | 9       | 9       | PA3                                   | I/O      | TTa           |       | USART1_RX <sup>(2)</sup> ,<br>USART2_RX <sup>(3)(5)</sup> ,<br>TIM15_CH2 <sup>(3)(5)</sup>                       | ADC_IN3                                    |
| 14     | 10      | 10      | PA4                                   | I/O      | TTa           |       | SPI1_NSS,<br>USART1_CK <sup>(2)</sup><br>USART2_CK <sup>(3)(5)</sup> ,<br>TIM14_CH1,<br>USART6_TX <sup>(5)</sup> | ADC_IN4                                    |
| 15     | 11      | 11      | PA5                                   | I/O      | TTa           |       | SPI1_SCK,<br>USART6_RX <sup>(5)</sup>                                                                            | ADC_IN5                                    |
| 16     | 12      | 12      | PA6                                   | I/O      | TTa           |       | SPI1_MISO,<br>TIM3_CH1,<br>TIM1_BKIN,<br>TIM16_CH1,<br>EVENTOUT<br>USART3_CTS <sup>(5)</sup>                     | ADC_IN6                                    |

### FCM32F030x

| 17 | 13 | 13 | PA7  | I/O | ТТа |     | SPI1_MOSI,<br>TIM3_CH2,<br>TIM14_CH1,<br>TIM1_CH1N,<br>TIM17_CH1,<br>EVENTOUT                                                                                        | ADC_IN7   |
|----|----|----|------|-----|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 18 | 14 | -  | PB0  | I/O | TTa |     | TIM3_CH3,<br>TIM1_CH2N,<br>EVENTOUT,<br>USART3_CK <sup>(5)</sup>                                                                                                     | ADC_IN8   |
| 19 | 15 | 14 | PB1  | I/O | TTa |     | TIM3_CH4,<br>TIM14_CH1,<br>TIM1_CH3N,<br>USART3_RTS <sup>(5)</sup>                                                                                                   | ADC_IN9   |
| 20 | -  | -  | PB2  | I/O | FT  | (6) | -                                                                                                                                                                    | -         |
| 21 | -  | -  | PB10 | I/O | FT  |     | SPI2_SCK <sup>(5)</sup> ,<br>I2C1_SCL <sup>(2)</sup> ,<br>I2C2_SCL <sup>(3)(5)</sup> ,<br>USART3_TX <sup>(5)</sup>                                                   | -         |
| 22 | -  | -  | PB11 | I/O | FT  |     | I2C1_SDA <sup>(2)</sup> ,<br>I2C2_SDA <sup>(3)(5)</sup> ,<br>EVENTOUT,<br>USART3_RX <sup>(5)</sup>                                                                   | -         |
| 23 | 16 | -  | VSS  | S   |     |     | Grou                                                                                                                                                                 | und       |
| 24 | 17 | 16 | VDD  | S   |     |     | Digital pow                                                                                                                                                          | er supply |
| 25 | -  | -  | PB12 | I/O | FT  |     | SPI1_NSS <sup>(2)</sup> ,<br>SPI2_NSS <sup>(3)(5)</sup> ,<br>TIM1_BKIN,<br>EVENTOUT,<br>USART3_CK <sup>(5)</sup>                                                     | -         |
| 26 | -  | -  | PB13 | I/O | FT  |     | SPI1_SCK <sup>(2)</sup> ,<br>SPI2_SCK <sup>(3)(5)</sup> ,<br>I2C2_SDA,<br>TIM1_CH1N,<br>USART3_CTS <sup>(5)</sup>                                                    | -         |
| 27 | -  | -  | PB14 | I/O | FT  |     | SPI1_MISO <sup>(2)</sup> ,<br>SPI2_MISO <sup>(3)(5)</sup> ,<br>I2C2_SDA <sup>(5)</sup> ,<br>TIM1_CH2N,<br>TIM15_CH1 <sup>(3)(5)</sup> ,<br>USART3_RTS <sup>(5)</sup> | -         |
| 28 | -  | -  | PB15 | I/O | FT  |     | SPI1_MOSI <sup>(2)</sup> ,<br>SPI2_MOSI <sup>(3)(5)</sup> ,<br>TIM1_CH3N,<br>TIM15_CH1N <sup>(3)(5)</sup> ,<br>TIM15_CH2 <sup>(3)(5)</sup>                           | RTC_REFIN |
| 29 | 18 | -  | PA8  | I/O | FT  |     | USART1_CK,<br>TIM1_CH1,<br>EVENTOUT,<br>MCO                                                                                                                          | -         |
| 30 | 19 | 17 | PA9  | I/O | FT  |     | USART1_TX,<br>TIM1_CH2,<br>TIM15_BKIN <sup>(3)(5)</sup><br>I2C1_SCL <sup>(2)(5)</sup>                                                                                | -         |

### FCM32F030x

| 31 | 20 | 18 | PA10            | I/O | FT  |     | USART1_RX,<br>TIM1_CH3,<br>TIM17_BKIN<br>I2C1_SDA <sup>(2)(5)</sup>                                     | -           |
|----|----|----|-----------------|-----|-----|-----|---------------------------------------------------------------------------------------------------------|-------------|
| 32 | 21 | -  | PA11            | I/O | FT  |     | USART1_CTS,<br>TIM1_CH4,<br>EVENTOUT,<br>I2C2_SCL <sup>(5)</sup>                                        | -           |
| 33 | 22 | -  | PA12            | I/O | FT  |     | USART1_RTS,<br>TIM1_ETR,<br>EVENTOUT,<br>I2C2_SDA <sup>(5)</sup>                                        | -           |
| 34 | 23 | 19 | PA13<br>(SWDIO) | I/O | FT  | (7) | IR_OUT,<br>SWDIO                                                                                        | -           |
| 35 | -  | -  | PF6             | I/O | FT  | (4) | I2C1_SCL <sup>(2)</sup> ,<br>I2C2_SCL <sup>(3)</sup>                                                    | -           |
| 36 | -  | -  | PF7             | I/O | FT  | (4) | I2C1_SDA <sup>(2)</sup> ,<br>I2C2_SDA <sup>(3)</sup>                                                    | -           |
| 37 | 24 | 20 | PA14<br>(SWCLK) | I/O | FT  | (7) | USART1_TX <sup>(2)</sup> ,<br>USART2_TX <sup>(3)(5)</sup> ,<br>SWCLK                                    | -           |
| 38 | 25 | -  | PA15            | I/O | FT  |     | SPI1_NSS, USART1_RX <sup>(2)</sup> , USART2_RX <sup>(3)(5)</sup> , USART4_RTS <sup>(5)</sup> , EVENTOUT | -           |
| 39 | 26 | -  | PB3             | I/O | FT  |     | SPI1_SCK,<br>EVENTOUT,<br>USART5_TX <sup>(5)</sup>                                                      | -           |
| 40 | 27 | -  | PB4             | I/O | FT  |     | SPI1_MISO,<br>TIM3_CH1,<br>EVENTOUT,<br>TIM17_BKIN <sup>(5)</sup> ,<br>USART5_RX <sup>(5)</sup>         | -           |
| 41 | 28 | -  | PB5             | I/O | FT  |     | SPI1_MOSI,<br>I2C1_SMBA,<br>TIM16_BKIN,<br>TIM3_CH2,<br>USART5_CK_RTS <sup>(5)</sup>                    | -           |
| 42 | 29 | -  | PB6             | I/O | FTf |     | I2C1_SCL,<br>USART1_TX,<br>TIM16_CH1N                                                                   | -           |
| 43 | 30 | -  | PB7             | I/O | FTf |     | I2C1_SDA,<br>USART1_RX,<br>TIM17_CH1N,<br>USART4_CTS <sup>(5)</sup>                                     | -           |
| 44 | 31 | 1  | BOOT0           | I   | В   |     | Boot memor                                                                                              | y selection |
| 45 | -  | -  | PB8             | I/O | FTf | (7) | I2C1_SCL,<br>TIM16_CH1                                                                                  | -           |
| 46 | -  | -  | PB9             | I/O | FTf |     | I2C1_SDA,<br>IR_OUT,<br>SPI2_NSS <sup>(5)</sup> ,<br>TIM17_CH1,<br>EVENTOUT                             | -           |

| 47 | 32 | 15 | VSS | S |  | Ground               |
|----|----|----|-----|---|--|----------------------|
| 48 | 1  | 16 | VDD | S |  | Digital power supply |

- 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
  - The speed should not exceed 2 MHz with a maximum load of 30 pF.
  - These GPIOs must not be used as current sources (e.g. to drive an LED).
- 2. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware).
- 3. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin and internal pull-down on SWCLK pin are activated.

### Alternate functions selected through GPIOA\_AFR registers for port A

| Pin name | AF0                | AF1        | AF2          | AF3        | AF4       | AF5       | AF6      | AF7 |
|----------|--------------------|------------|--------------|------------|-----------|-----------|----------|-----|
| PA0      | -                  | USART2_CTS | TIM2_CH1_ETR | TSC_G1_IO1 | -         | -         | -        | -   |
| PA1      | EVENTOUT           | USART2_RTS | TIM2_CH2     | TSC_G1_IO2 | -         | -         | -        | -   |
| PA2      | -                  | USART2_TX  | TIM2_CH3     | TSC_G1_IO3 | -         | -         | -        | -   |
| PA3      | -                  | USART2_RX  | TIM2_CH4     | TSC_G1_IO4 | -         | -         | -        | -   |
| PA4      | SPI1_NSS,I2S1_WS   | USART2_CK  | USB_NOE      | TSC_G2_IO1 | TIM14_CH1 | -         | -        | -   |
| PA5      | SPI1_SCK,I2S1_CK   | CEC        | TIM2_CH1_ETR | TSC_G2_IO2 | -         | -         | -        | -   |
| PA6      | SPI1_MISO,I2S1_MCK | TIM3_CH1   | TIM1_BKIN    | TSC_G2_IO3 | -         | TIM16_CH1 | EVENTOUT | -   |
| PA7      | SPI1_MOSI,I2S1_SD  | TIM3_CH2   | TIM1_CH1N    | TSC_G2_IO4 | TIM14_CH1 | TIM17_CH1 | EVENTOUT |     |
| PA8      | MCO                | USART1_CK  | TIM1_CH1     | EVENTOUT   | CRS_SYNC  | -         | -        | -   |
| PA9      | -                  | USART1_TX  | TIM1_CH2     | TSC_G4_IO1 | I2C1_SCL  | MCO       | -        | -   |
| PA10     | TIM17_BKIN         | USART1_RX  | TIM1_CH3     | TSC_G4_IO2 | I2C1_SDA  | -         | -        | -   |
| PA11     | EVENTOUT           | USART1_CTS | TIM1_CH4     | TSC_G4_IO3 | CAN_RX    | I2C1_SCL  | -        | -   |
| PA12     | EVENTOUT           | USART1_RTS | TIM1_ETR     | TSC_G4_IO4 | CAN_TX    | I2C1_SDA  | -        | -   |
| PA13     | SWDIO              | IR_OUT     | USB_NOE      | -          | -         | -         | -        |     |
| PA14     | SWCLK              | USART2_TX  | -            | -          | -         | -         | -        | -   |
| PA15     | SPI1_NSS,I2S1_WS   | USART2_RX  | TIM2_CH1_ETR | EVENTOUT   | -         | USB_NOE   |          |     |

### Alternate functions selected through GPIOA\_AFR registers for port B

| Pin name | AF0                | AF1                     | AF2        | AF3        | AF4    | AF5                     | AF6 | AF7 |
|----------|--------------------|-------------------------|------------|------------|--------|-------------------------|-----|-----|
| PB0      | EVENTOUT           | TIM3_CH3                | TIM1_CH2N  | TSC_G3_IO2 | -      | -                       | -   | -   |
| PB1      | TIM14_CH1          | TIM3_CH4                | TIM1_CH3N  | TSC_G3_IO3 | -      | -                       | -   | -   |
| PB2      | -                  | -                       | -          | TSC_G3_IO4 | ı      | -                       | -   | -   |
| PB3      | SPI1_SCK,I2S1_CK   | EVENTOUT                | TIM2_CH2   | TSC_G5_IO1 | -      | -                       | -   | -   |
| PB4      | SPI1_MISO,I2S1_MCK | TIM3_CH1                | EVENTOUT   | TSC_G5_IO2 | -      | TIM17_BKIN              | -   | -   |
| PB5      | SPI1_MOSI,I2S1_SD  | TIM3_CH2                | TIM16_BKIN | I2C1_SMBA  | -      | -                       | -   | -   |
| PB6      | USART1_TX          | I2C1_SCL                | TIM16_CH1N | TSC_G5_IO3 | -      | -                       | -   | -   |
| PB7      | USART1_RX          | I2C1_SDA                | TIM17_CH1N | TSC_G5_IO4 | -      | -                       | -   | -   |
| PB8      | CEC                | I2C1_SCL                | TIM16_CH1  | TSC_SYNC   | CAN_RX | -                       | -   | -   |
| PB9      | IR_OUT             | I2C1_SDA                | TIM17_CH1  | EVENTOUT   | CAN_TX | SPI2_NSS                | -   | -   |
| PB10     | CEC                | I2C2_SCL <sup>(1)</sup> | TIM2_CH3   | TSC_SYNC   | -      | SPI2_SCK                | -   | -   |
| PB11     | EVENTOUT           | I2C2_SDA <sup>(1)</sup> | TIM2_CH4   | -          | -      | -                       | -   | -   |
| PB12     | SPI2_NSS,I2S2_WS   | EVENTOUT                | TIM1_BKIN  | -          | ı      | -                       | -   | -   |
| PB13     | SPI2_SCK,I2S2_CK   | -                       | TIM1_CH1N  | -          | -      | I2C2_SCL <sup>(1)</sup> | -   | -   |
| PB14     | SPI2_MISO,I2S2_MCK | -                       | TIM1_CH2N  | -          | -      | I2C2_SDA <sup>(1)</sup> | -   | -   |
| PB15     | SPI2_MOSI,I2S2_SD  | -                       | TIM1_CH3N  | -          | -      | -                       | =   | _   |

<sup>(1)</sup> It is for I2C1 when only one I2C implement

### Alternate functions selected through GPIOA\_AFR registers for port F

| Pin name | AF0      | AF1      | AF2 | AF3 | AF4 | AF5 | AF6 | AF7 |
|----------|----------|----------|-----|-----|-----|-----|-----|-----|
| PF0      | CRS_SYNC | I2C1_SDA | -   | -   | -   | -   | -   | -   |
| PF1      | -        | I2C1_SCL | -   | -   | -   | -   | -   | -   |



# 5 Memory mapping

To the difference of FCM32x030x4/x6/x8, the code memory spaces end at 0x08003FFF, 0x08007FFF and 0x0800FFFF, respectively.

FCM32x030x4/x6/x8 peripheral register boundary addresses

| Bus  | Boundary address          | Size    | Peripheral             |
|------|---------------------------|---------|------------------------|
|      | 0x4800 1800 – 0x5FFF FFFF | ~384 MB | -                      |
|      | 0x4800 1400 - 0x4800 17FF | 1KB     | GPIOF                  |
|      | 0x4800 0C00 - 0x4800 13FF | 2KB     | -                      |
| AHB2 | 0x4800 0800 - 0x4800 0BFF | 1KB     | GPIOC                  |
|      | 0x4800 0400 - 0x4800 07FF | 1KB     | GPIOB                  |
|      | 0x4800 0000 - 0x4800 03FF | 1KB     | GPIOA                  |
|      | 0x4002 4400 – 0x47FF FFFF | ~128MB  | -                      |
|      | 0x4002 4000 – 0x4002 43FF | 1KB     | TSC                    |
|      | 0x4002 3400 - 0x4002 3FFF | ЗКВ     | -                      |
|      | 0x4002 3000 - 0x4002 33FF | 1KB     | CRC                    |
|      | 0x4002 2400 – 0x4002 2FFF | ЗКВ     | -                      |
| AHB1 | 0x4002 2000 – 0x4002 23FF | 1KB     | Flash memory interface |
|      | 0x4002 1400 – 0x4002 1FFF | ЗКВ     | -                      |
|      | 0x4002 1000 – 0x4002 13FF | 1KB     | RCC                    |
|      | 0x4002 0400 – 0x4002 0FFF | ЗКВ     | -                      |
|      | 0x4002 0000 – 0x4002 03FF | 1KB     | DMA                    |
|      | 0x4001 8000 – 0x4001 FFFF | 32KB    | -                      |
|      | 0x4001 5C00 - 0x4001 7FFF | 9КВ     | -                      |
|      | 0x40015800 - 0x40015BFF   | 1KB     | DBGMCU                 |
|      | 0x4001 4C00 - 0x4001 57FF | ЗКВ     | -                      |
|      | 0x4001 4800 - 0x4001 4BFF | 1KB     | TIM17                  |
|      | 0x4001 4400 - 0x4001 47FF | 1KB     | TIM16                  |
|      | 0x4001 4000 - 0x4001 43FF | 1KB     | TIM15                  |
|      | 0x4001 3C00 - 0x4001 3FFF | 1KB     | -                      |
|      | 0x4001 3800 - 0x4001 3BFF | 1KB     | USART1                 |
|      | 0x4001 3400 - 0x4001 37FF | 1KB     | -                      |
|      | 0x4001 3000 - 0x4001 33FF | 1KB     | SPI1/I2S1              |
|      | 0x4001 2C00 - 0x4001 2FFF | 1KB     | TIM1                   |
|      | 0x4001 2800 - 0x4001 2BFF | 1KB     | -                      |
| 4.00 | 0x4001 2400 - 0x4001 27FF | 1KB     | ADC                    |
| APB  | 0x4001 0800 - 0x4001 23FF | 7KB     | -                      |
|      | 0x4001 0400 - 0x4001 07FF | 1KB     | EXTI                   |
|      | 0x4001 0000 - 0x4001 03FF | 1KB     | SYSCFG                 |
|      | 0x4000 8000 – 0x4000 FFFF | 32KB    | -                      |

### FCM32F030x

| 0x4000 7C00 - 0x4000 7FFF | 1KB | -       |
|---------------------------|-----|---------|
| 0x4000 7800 - 0x4000 7BFF | 1KB | CEC     |
| 0x4000 7400 - 0x4000 77FF | 1KB | -       |
| 0x4000 7000 - 0x4000 73FF | 1KB | PWR     |
| 0x4000 6C00 – 0x4000 6FFF | 1KB | CRS     |
| 0x4000 6800 - 0x4000 6BFF | 1KB | -       |
| 0x4000 6400 - 0x4000 67FF | 1KB | CAN     |
| 0x4000 6000 - 0x4000 63FF | 1KB | USB RAM |
| 0x4000 5C00 - 0x4000 5FFF | 1KB | USB     |
| 0x4000 5800 - 0x4000 5BFF | 1KB | I2C2    |
| 0x4000 5400 - 0x4000 57FF | 1KB | I2C1    |
| 0x4000 4800 - 0x4000 53FF | 3KB | -       |
| 0x4000 4400 - 0x4000 47FF | 1KB | USART2  |
| 0x4000 3C00 - 0x4000 43FF | 2KB | -       |
| 0x4000 3800 - 0x4000 3BFF | 1KB | SPI2    |
| 0x4000 3400 - 0x4000 37FF | 1KB | -       |
| 0x4000 3000 - 0x4000 33FF | 1KB | IWDG    |
| 0x4000 2C00 - 0x4000 2FFF | 1KB | WWDG    |
| 0x4000 2800 - 0x4000 2BFF | 1KB | RTC     |
| 0x4000 2400 - 0x4000 27FF | 1KB | -       |
| 0x4000 2000 – 0x4000 23FF | 1KB | TIM14   |
| 0x4000 1800 - 0x4000 1FFF | 2KB | -       |
| 0x4000 1400 - 0x4000 17FF | 1KB | TIM7    |
| 0x4000 1000 - 0x4000 13FF | 1KB | TIM6    |
| 0x4000 0800 - 0x4000 0FFF | 2KB | -       |
| 0x4000 0400 - 0x4000 07FF | 1KB | TIM3    |
| 0x4000 0000 - 0x4000 03FF | 1KB | TIM2    |
|                           |     |         |

# 6 Electrical characteristics

### 6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to Vss.

### 6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at  $T_A = 25C$  and  $T_A = T_A$ max (given by the selected temperature range).

# 6.1.2 Typical values

Unless otherwise specified, typical data are based on T<sub>A</sub>=25C, VDD=VDDA=3.3V. They are given only as design guidelines and are not tested.

### 6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

# 6.1.4 Loading capacitor



# 6.1.5 Pin input voltage



## 6.1.6 Power supply scheme

Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

## **6.1.7 Current consumption measurement**



# 6.2 Absolute maximum ratings

Exposure to maximum rating conditions for extended periods may affect device reliability.

#### **Voltage characteristics**

| Symbol                              | Ratings                        | Min  | Max | Unit |
|-------------------------------------|--------------------------------|------|-----|------|
| $V_{DD}$ - $V_{SS}$                 | External main supply voltage   | -0.3 | 5.8 | ٧    |
| V <sub>DDIO2</sub> -V <sub>SS</sub> | External I/O supply voltage    | -0.3 | 5.8 | ٧    |
| $V_{DDA}$ - $V_{SS}$                | External analog supply voltage | -0.3 | 5.8 | V    |

### FCM32F030x

| $V_{DD}$ - $V_{DDA}$              | Allowed voltage difference for V <sub>DD</sub> > <sub>VDDA</sub> | -                    | 0.3                     | V  |
|-----------------------------------|------------------------------------------------------------------|----------------------|-------------------------|----|
| V <sub>BAT</sub> -V <sub>SS</sub> | External backup supply voltage                                   | -0.3                 | 5.8                     | V  |
| V <sub>IN</sub>                   | Input voltage on FT and FTf pins                                 | V <sub>SS</sub> -0.3 | V <sub>DDIOx</sub> +0.3 | V  |
|                                   | Input voltage on TTa pins                                        | V <sub>SS</sub> -0.3 | 5.8                     | V  |
|                                   | Input voltage on any other pins                                  | V <sub>SS</sub> -0.3 | 5.8                     | V  |
| $ \triangle V_{DDx} $             | Variations between different V <sub>DD</sub> power               | -                    | 50                      | mV |
|                                   | pins                                                             |                      |                         |    |
| <sub>VSSx</sub> -V <sub>SS</sub>  | Variations between all the different ground                      | -                    | 50                      | mV |
|                                   | pins                                                             |                      |                         |    |
| V <sub>ESD</sub> (HBM)            | Electrostatic discharge voltage                                  |                      | 3000                    | V  |

# **6.3 Operating conditions**

# 6.3.1 General operating conditions

### **General operating conditions**

| Symbol             | Parameter                    | Conditions                | Min      | Max                     | Unit |
|--------------------|------------------------------|---------------------------|----------|-------------------------|------|
| $f_{\text{HCLK}}$  | Internal AHB clock frequency | -                         | 0        | 48                      | MHz  |
| $f_{PCLK}$         | Internal APB clock frequency | -                         | 0        | 48                      | MHz  |
| $V_{DD}$           | Standard operating voltage   | -                         | 1.8      | 5.5                     | ٧    |
| $V_{\text{DDIO2}}$ | I/O supply voltage           |                           | 1.65     | 5.5                     | ٧    |
| $V_{DDA}$          | Analog operating voltage     |                           | $V_{DD}$ | 5.5                     | V    |
| $V_{BAT}$          | Backup operating voltage     |                           | 2.1      | 5.5                     | V    |
| V <sub>IN</sub>    | I/O input voltage            | TC and RST I/O            | -0.3     | V <sub>DDIOx</sub> +0.3 |      |
|                    |                              | TTa I/O                   | -0.3     | V <sub>DDA</sub> +0.3   | V    |
|                    |                              | FT and FTf I/O            | -0.3     | 5.5                     |      |
| P <sub>D</sub>     | Power dissipation at TA=85C  | LQFP48                    | -        | 350                     | mW   |
|                    |                              | UFQFPN48                  | -        | 600                     |      |
|                    |                              | LQFP32                    |          | 350                     |      |
|                    |                              | UFQFPN32                  |          | 500                     |      |
|                    |                              | UFQFPN28                  |          | 170                     |      |
|                    |                              | TSSOP20                   |          | 250                     |      |
| TA                 | Ambient temperature for the  | Maximum power dissipation | -40      | 85                      | С    |
|                    | suffix 6 version             | Low power dissipation     | -40      | 105                     |      |
|                    | Ambient temperature for the  | Maximum power dissipation | -40      | 105                     | С    |
|                    | suffix 7 version             | Low power dissipation     | -40      | 125                     |      |
| TJ                 | Junction temperature range   | Suffix 6 version          | -40      | 105                     | С    |
|                    |                              | Suffix 7 version          | -40      | 125                     |      |

# 6.3.2 Operating conditions at power-up/power-down

| Symbol            | Parameter           | Conditions | Min | Max | Unit |
|-------------------|---------------------|------------|-----|-----|------|
| t <sub>VDD</sub>  | VDD rise time rate  | -          | 0   | ∞   |      |
|                   | VDD fall time rate  |            | 20  | ∞   | us/V |
| t <sub>VDDA</sub> | VDDA rise time rate | -          | 0   | ∞   |      |
|                   | VDDA fall time rate |            | 20  | ∞   |      |

# 6.3.3 Embedded reset and power control block characteristics

### Embedded reset and power control block characteristics

| Symbol                | Parameter           | Conditions   | Min  | Тур  | Max  | Unit |
|-----------------------|---------------------|--------------|------|------|------|------|
| V <sub>POR/PDR</sub>  | Power on/down reset | Falling edge | 1.51 | 1.58 | 1.65 | V    |
|                       | threshold           | Rising edge  | 1.54 | 1.62 | 1.70 |      |
| V <sub>PDRhyst</sub>  | PDR hysteresis      | -            | -    | 40   | -    | mV   |
| t <sub>RSTTEMPO</sub> | Reset temporization | -            | 1.5  | 2.5  | 4.5  | ms   |

### Programmable voltage detector characteristics

| Symbol               | Parameter               | Conditions   | Min  | Тур  | Max  | Unit |
|----------------------|-------------------------|--------------|------|------|------|------|
| $V_{\text{PVD0}}$    | PVD threshold 0         | Falling edge | 1.59 | 1.67 | 1.75 |      |
|                      |                         | Rising edge  | 1.75 | 1.83 | 1.91 |      |
| V <sub>PVD1</sub>    | PVD threshold 1         | Falling edge | 1.75 | 1.83 | 1.91 |      |
|                      |                         | Rising edge  | 1.90 | 1.98 | 2.06 |      |
| V <sub>PVD2</sub>    | PVD threshold 2         | Falling edge | 1.90 | 1.98 | 2.06 |      |
|                      |                         | Rising edge  | 2.06 | 2.14 | 2.22 |      |
| V <sub>PVD3</sub>    | PVD threshold 3         | Falling edge | 2.06 | 2.14 | 2.22 |      |
|                      |                         | Rising edge  | 2.21 | 2.29 | 2.37 |      |
| $V_{PVD4}$           | PVD threshold 4         | Falling edge | 2.21 | 2.29 | 2.37 | V    |
|                      |                         | Rising edge  | 2.35 | 2.43 | 2.51 |      |
| V <sub>PVD5</sub>    | PVD threshold 5         | Falling edge | 2.35 | 2.43 | 2.51 |      |
|                      |                         | Rising edge  | 2.49 | 2.57 | 2.65 |      |
| V <sub>PVD6</sub>    | PVD threshold 6         | Falling edge | 2.49 | 2.57 | 2.65 |      |
|                      |                         | Rising edge  | 2.64 | 2.72 | 2.80 |      |
| V <sub>PVD7</sub>    | PVD threshold 7         | Falling edge | 2.64 | 2.72 | 2.80 |      |
|                      |                         | Rising edge  | 2.80 | 2.88 | 2.96 |      |
| V <sub>PVDhyst</sub> | PVD hysteresis          | -            | -    | 160  | -    | mV   |
| I <sub>DD(PVD)</sub> | PVD current consumption | -            |      | 0.15 |      | uA   |

# 6.3.4 Embedded reference voltage

### **Embedded internal reference voltage**

| Symbol                  | Parameter                                                     | Conditions                                                                        | Min  | Тур  | Max  | Unit  |
|-------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|------|------|------|-------|
| $V_{REFINT}$            | Internal reference voltage                                    | -40C <ta<+105< td=""><td>1.22</td><td>1.23</td><td>1.24</td><td>V</td></ta<+105<> | 1.22 | 1.23 | 1.24 | V     |
| t <sub>START</sub>      | ADC_IN17 buffer startup time                                  | -                                                                                 |      | -    | 10   | us    |
| t <sub>S_vrefint</sub>  | ADC sampling time when reading the internal reference voltage | -                                                                                 | 8    | -    | -    | us    |
| $\triangle V_{REFINNT}$ | Internal reference voltage spread over the temperature range  | V <sub>DDA</sub> =3V                                                              | -    | -    | 10   | mV    |
| $T_{\text{Coeff}}$      | Temperature coefficient                                       | -                                                                                 | -100 | -    | 100  | ppm/C |

# **6.3.5 Supply current characteristics**

#### Typical current consumption (VDD+VDDA @ 3.6V)

| Symbol                            | Parameter                | Conditions                                       | Min | Тур  | Max | Unit |
|-----------------------------------|--------------------------|--------------------------------------------------|-----|------|-----|------|
| I <sub>DD</sub> +I <sub>DDA</sub> | Run from Flash<br>memory | ash All peripherals enabled, HSI 8MHz            |     | 3.7  |     | mA   |
|                                   |                          | All peripherals enabled, HSI48                   |     | 15.0 |     |      |
|                                   | Stop mode                | Regulator in low-power mode, all oscillators OFF |     | 6.2  |     | uA   |
|                                   | Standby mode             | Regulator in low-power mode, all oscillators OFF |     | 6.0  |     | uA   |

# 6.3.6 Wakeup time from low-power mode

### Low-power mode wakeup timings

| Symbol               | Parameter                | Conditions                  | Min | Тур       | Max | Unit |
|----------------------|--------------------------|-----------------------------|-----|-----------|-----|------|
| t <sub>WUSTOP</sub>  | Wakeup from stop mode    | Regulator in run mode       | -   | 2.8       | 5   |      |
| t <sub>START</sub>   |                          | Regulator in low power mode |     | 4.6       | 10  | us   |
| twustanndby          | Wakeup from standby mode | -                           | -   | 50        | -   |      |
| t <sub>WUSLEEP</sub> | Wakeup from sleep mode   | -                           | 4 S | YSCLK cyc | les |      |

# **6.3.7 External clock source characteristics**

### High-speed external user clock characteristics

| Symbol               | Parameter                            | Min                    | Тур | Max                    | Unit |
|----------------------|--------------------------------------|------------------------|-----|------------------------|------|
| f <sub>HSE_EXT</sub> | User external clock source frequency | -                      | 8   | 32                     | MHz  |
| $V_{HSEH}$           | OSC_IN input pin high level voltage  | 0.7*V <sub>DDIOx</sub> | -   | $V_{DDIOx}$            | ٧    |
| V <sub>HSEL</sub>    | OSC_IN input pin low level voltage   | VSS                    | -   | 0.3*V <sub>DDIOx</sub> |      |
| t <sub>W(HSEH)</sub> | OSC_IN high or low time              | 15                     | -   | -                      | ns   |
| tw(HSEL)             |                                      |                        |     |                        |      |
| t <sub>r(HSE)</sub>  | OSC_IN rise or fall time             | -                      | -   | 20                     |      |
| $t_{\text{f(HSE)}}$  |                                      |                        |     |                        |      |

### Low-speed external user clock characteristics

| Symbol               | Parameter                             | Min                    | Тур    | Max                    | Unit |
|----------------------|---------------------------------------|------------------------|--------|------------------------|------|
| f <sub>LSE_EXT</sub> | User external clock source frequency  | -                      | 32.768 | 1000                   | KHz  |
| V <sub>LSEH</sub>    | OSC32_IN input pin high level voltage | 0.7*V <sub>DDIOx</sub> | -      | V <sub>DDIOx</sub>     | V    |
| V <sub>LSEL</sub>    | OSC32_IN input pin low level voltage  | VSS                    | -      | 0.3*V <sub>DDIOx</sub> |      |
| t <sub>W(LSEH)</sub> | OSC32_IN high or low time             | 450                    | -      | -                      | ns   |
| t <sub>W(LSEL)</sub> |                                       |                        |        |                        |      |
| t <sub>r(LSE)</sub>  | OSC32_IN rise or fall time            | -                      | -      | 50                     |      |
| t <sub>f(LSE)</sub>  |                                       |                        |        |                        |      |

### **HSE** oscillator characteristics

| Symbol               | Parameter                   | Conditions                 | Min | Тур  | Max | Unit |
|----------------------|-----------------------------|----------------------------|-----|------|-----|------|
| f <sub>OSC_IN</sub>  | Oscillator frequency        | -                          | 4   | 8    | 20  | MHz  |
| RF                   | Feedback resistor           | -                          | -   | 200  | -   | ΚΩ   |
| I <sub>DD</sub>      | HSE current consumption     | VDD=3.3V, Rm=45 $\Omega$ , |     | 0.57 |     | mA   |
|                      |                             | CL=10pF@8MHz               |     |      |     |      |
| g <sub>m</sub>       | Oscillator transconductance | Startup                    | 10  | -    | -   | mA/V |
| t <sub>SU(HSE)</sub> | Startup time                | VDD is stabilized          | -   | 2    | -   | ms   |

### LSE oscillator characteristics (f<sub>LSE</sub>=32.768KHz)

| Symbol               | Parameter               | Conditions                       | Min | Тур | Max | Unit |
|----------------------|-------------------------|----------------------------------|-----|-----|-----|------|
| I <sub>DD</sub>      | LSE current consumption | low drive capability             |     | 360 |     |      |
|                      |                         | medium-low drive capability      |     | 450 |     | nA   |
|                      |                         | medium-high drive capability     |     | 540 |     |      |
|                      |                         | high drive capability            |     | 700 |     |      |
| g <sub>m</sub>       | Oscillator              | low drive capability             | 5   | -   | -   |      |
|                      | transconductance        | medium-low drive capability      | 8   |     |     | uA/V |
|                      |                         | medium-high drive capability     | 15  |     |     |      |
|                      |                         | high drive capability            | 25  |     |     |      |
| t <sub>SU(LSE)</sub> | Startup time            | V <sub>DDIOx</sub> is stabilized | -   | 2   | -   | S    |

# 6.3.8 Internal clock source characteristics

### **HSI48** oscillator characteristics

| Symbol                  | Parameter                          | Conditions        | Min   | Тур  | Max  | Unit |
|-------------------------|------------------------------------|-------------------|-------|------|------|------|
| f <sub>HSI48</sub>      | Frequency                          | -                 |       | 48   |      | MHz  |
| TRIM                    | HSI48 user-trimming step           | -                 |       | 0.15 |      | %    |
| DuCy                    | Duty cycle                         | -                 | 45    | -    | 55   | %    |
| ACC <sub>HSI48</sub>    | Accuracy of the HSI48              | TA=-40 to 105 @SS | -1.84 |      | 2.00 | %    |
|                         | oscillator(factory calibrated)     | TA=-40 to 105@TT  | -1.58 |      | 1.76 |      |
|                         |                                    | TA=-40 to 105@FF  | -1.24 |      | 1.72 |      |
| t <sub>SU(HSI48)</sub>  | HSI48 oscillator startup time      | -                 |       |      | 6    | us   |
| I <sub>DDA(HSI48)</sub> | HSI48 oscillator power consumption | -                 |       | 643  | 801  | uA   |

#### LSI oscillator characteristics

| Symbol                | Parameter                        | Conditions | Min  | Тур | Max  | Unit |
|-----------------------|----------------------------------|------------|------|-----|------|------|
| f <sub>LSI</sub>      | Frequency                        | -          | 31.9 | 40  | 55.5 | KHz  |
| t <sub>SU(LSI)</sub>  | LSI oscillator startup time      | -          |      |     | 100  | us   |
| I <sub>DDA(LSI)</sub> | LSI oscillator power consumption | -          |      | 400 |      | nA   |

## 6.3.9 PLL characteristics

#### **PLL** characteristics

| Symbol                | Parameter                   | Min | Тур | Max | Unit |
|-----------------------|-----------------------------|-----|-----|-----|------|
| f <sub>PLL_IN</sub>   | PLL input clock             | 1   | 8   | 24  | MHz  |
| t <sub>PLL_OUT</sub>  | PLL multiplier output clock | 16  |     | 96  | MHz  |
| t <sub>LOCK</sub>     | PLL lock time               | 30  |     | 100 | us   |
| I <sub>DDA(PLL)</sub> | PLL power consumption       |     |     | 350 | uA   |
| Jitter <sub>PLL</sub> | Cycle-to-cycle jitter       |     |     | 300 | ps   |

# **6.3.10** Memory characteristics

### Flash memory characteristics

| Symbol             | Parameter               | Conditions     | Min | Тур | Max | Unit |
|--------------------|-------------------------|----------------|-----|-----|-----|------|
| t <sub>PROG</sub>  | 16-bit programming time | TA=-40 to +125 |     |     | 20  | us   |
| t <sub>ERASE</sub> | Page(1KB) erase time    |                |     |     | 10  | ms   |
| t <sub>ME</sub>    | Mass erase time         |                |     |     | 40  | ms   |
| I <sub>DD</sub>    | Supply current          | Write mode     |     |     | 3.5 | mA   |
|                    |                         | Erase mode     |     |     | 2   | mA   |



| N <sub>END</sub> | Endurance      | TA=-40 to +125 | 20  |  | kcycle |
|------------------|----------------|----------------|-----|--|--------|
| t <sub>RET</sub> | Data retention | TA=25C         | 100 |  | Year   |

# 6.3.11 EMC characteristics

#### **EMC** characteristics

| Symbol     | Parameter                                                         | Conditions                  | Level/Class |
|------------|-------------------------------------------------------------------|-----------------------------|-------------|
| $V_{FESD}$ | Voltage limits to be applied on any I/O pin                       | VDD=3.3V, LQFP48, TA=25C,   | 3B          |
|            | to induce a functional disturbance                                | f <sub>HCLK</sub> =48 MHz,  |             |
|            |                                                                   | conforming to IEC 61000-4-2 |             |
| $V_{EFTB}$ | Fast transient voltage burst limits to be                         | VDD=3.3V, LQFP48, TA=25C,   | 4B          |
|            | applied through 100pF on V <sub>DD</sub> and V <sub>SS</sub> pins | f <sub>HCLK</sub> =48 MHz,  |             |
|            | to induce a functional disturbance                                | conforming to IEC 61000-4-4 |             |

#### **EMI** characteristics

| Symbol | Parameter  | Conditions         | Monitored frequency | Max vs.[f <sub>HSE</sub> /f <sub>HCLK</sub> ] | Unit |
|--------|------------|--------------------|---------------------|-----------------------------------------------|------|
|        |            |                    | band                | 8/48 MHz                                      |      |
| SEMI   | Peak level | VDD=3.6V, TA=25C,  | 0.1 to 30MHz        | -9                                            |      |
|        |            | LQFP48 package     | 30 to 130MHz        | 9                                             | dBuV |
|        |            | compliant with IEC | 130 MHz to 1GHz     | 17                                            |      |
|        |            | 61967-2            | EMI level           | 3                                             | -    |

# **6.3.12** Electrical sensitivity characteristics

### **ESD** absolute maximum ratings

| 202 0000100 110011180                                 |                                                               |                                                                                                                                                                  |                                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |
|-------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                             | Conditions                                                    | Packages                                                                                                                                                         | Class                                                                                                                                                                         | Maxi<br>value                                                                                                                                                                                                                 | Unit                                                                                                                                                                                                                                    |
| Electrostatic discharge voltage (human body model)    | TA=+25C, conforming to JESD22-A114                            | All                                                                                                                                                              | 2                                                                                                                                                                             | 3000                                                                                                                                                                                                                          | ٧                                                                                                                                                                                                                                       |
| Electrostatic discharge voltage (charge device model) | TA=+25C, conforming                                           | All                                                                                                                                                              | C6                                                                                                                                                                            | 1000                                                                                                                                                                                                                          | ٧                                                                                                                                                                                                                                       |
|                                                       | Parameter  Electrostatic discharge voltage (human body model) | Parameter Conditions  Electrostatic discharge voltage (human body model) TA=+25C, conforming to JESD22-A114  Electrostatic discharge voltage TA=+25C, conforming | ParameterConditionsPackagesElectrostatic discharge voltage<br>(human body model)TA=+25C, conforming<br>to JESD22-A114AllElectrostatic discharge voltageTA=+25C, conformingAll | Parameter  Conditions  Packages  Class  Electrostatic discharge voltage (human body model)  Electrostatic discharge voltage  TA=+25C, conforming to JESD22-A114  Electrostatic discharge voltage  TA=+25C, conforming All  C6 | Parameter Conditions Packages Class Maxi value  Electrostatic discharge voltage (human body model)  Electrostatic discharge voltage TA=+25C, conforming to JESD22-A114  Electrostatic discharge voltage TA=+25C, conforming All C6 1000 |

# **6.3.13** I/O current injection characteristics

### I/O current injection susceptibility

| Symbol           | Parameter        | Functional su      | sceptibility       | Unit |
|------------------|------------------|--------------------|--------------------|------|
|                  |                  | Negative injection | Positive injection |      |
| I <sub>INJ</sub> | Injected current | -5                 | +5                 | mA   |

# 6.3.14 I/O port characteristics

#### I/O static characteristics

| Symbol           | Parameter        | Conditions                       | Min                           | Тур | Max                           | Unit |
|------------------|------------------|----------------------------------|-------------------------------|-----|-------------------------------|------|
| V <sub>IL</sub>  | Low level input  | TC and TTa I/O                   |                               |     | 0.3*V <sub>DDIOx</sub>        | V    |
|                  | voltage          | FT and FTf I/O                   |                               |     | 0.475*V <sub>DDIOx</sub> -0.2 |      |
|                  |                  | All I/Os                         |                               |     | 0.3*V <sub>DDIOx</sub>        |      |
| V <sub>IH</sub>  | High level input | TC and TTa I/O                   | 0.445*V <sub>DDIOx</sub> +0.4 |     |                               | V    |
|                  | voltage          | FT and FTf I/O                   | 0.5*V <sub>DDIOx</sub> +0.2   |     |                               |      |
|                  |                  | All I/Os                         | 0.7*V <sub>DDIOx</sub>        |     |                               |      |
| V <sub>hys</sub> | Schmitt trigger  | TC and TTa I/O                   |                               | 200 |                               | mV   |
|                  | hysteresis       | FT and FTf I/O                   |                               | 100 |                               |      |
| I <sub>Ikg</sub> | Input leakage    | TC,FT and FTf I/O                |                               |     | ±0.1                          | uA   |
|                  | current          | TTa in digital mode              |                               |     |                               |      |
|                  |                  | $V_{SS} <= V_{IN} <= V_{DDIOx}$  |                               |     |                               |      |
|                  |                  | TTa in digital mode              |                               |     | 1                             |      |
|                  |                  | $V_{DDIOx} <= V_{IN} <= V_{DDA}$ |                               |     |                               |      |
|                  |                  | TTa in analog mode               |                               |     | $\pm 0.2$                     |      |
|                  |                  | $V_{SS} <= V_{IN} <= V_{DDA}$    |                               |     |                               |      |
|                  |                  | FT and FTf I/O                   |                               |     | 10                            |      |
|                  |                  | $V_{DDIOx} <= V_{IN} <= 5V$      |                               |     |                               |      |
| R <sub>PU</sub>  | Weak pull-up     | V <sub>IN</sub> =V <sub>SS</sub> |                               | 40  |                               | ΚΩ   |
|                  | resistor         |                                  |                               |     |                               |      |
| R <sub>PD</sub>  | Weak pull-down   | $V_{IN}$ =- $V_{DDIOX}$          |                               | 40  |                               | ΚΩ   |
|                  | resistor         |                                  |                               |     |                               |      |
| C <sub>IO</sub>  | I/O pin          |                                  |                               | 5   |                               | pF   |
|                  | capacitance      |                                  |                               |     |                               |      |

#### **Output voltage characteristics**

| Symbol          | Parameter                                | Conditions                 | Min                     | Max | Unit |
|-----------------|------------------------------------------|----------------------------|-------------------------|-----|------|
| V <sub>OL</sub> | Output low level voltage for an I/O pin  | CMOS port                  | -                       | 0.4 | V    |
| V <sub>OH</sub> | Output high level voltage for an I/O pin | I <sub>IO</sub>   = 8mA    | V <sub>DDIOx</sub> -0.4 | -   |      |
|                 |                                          | V <sub>DDIOx</sub> >= 2.7V |                         |     |      |

### FCM32F030x

| $V_{OL}$           | Output low level voltage for an I/O pin     | TTL port                   | -                       | 0.4 | ٧ |
|--------------------|---------------------------------------------|----------------------------|-------------------------|-----|---|
| V <sub>OH</sub>    | Output high level voltage for an I/O pin    | I <sub>IO</sub>   = 8mA    | 2.4                     | -   |   |
|                    |                                             | V <sub>DDIOx</sub> >= 2.7V |                         |     |   |
| V <sub>OL</sub>    | Output low level voltage for an I/O pin     | I <sub>IO</sub>   = 20mA   | -                       | 1.3 | V |
| V <sub>OH</sub>    | Output high level voltage for an I/O pin    | V <sub>DDIOx</sub> >= 2.7V | V <sub>DDIOx</sub> -1.3 | -   |   |
| V <sub>OL</sub>    | Output low level voltage for an I/O pin     | I <sub>IO</sub>   = 6mA    | -                       | 0.4 | ٧ |
| V <sub>OH</sub>    | Output high level voltage for an I/O pin    | V <sub>DDIOx</sub> >= 2.7V | V <sub>DDIOx</sub> -0.4 | -   |   |
| V <sub>OL</sub>    | Output low level voltage for an I/O pin     | I <sub>IO</sub>   = 4mA    | -                       | 0.4 | ٧ |
| V <sub>OH</sub>    | Output high level voltage for an I/O pin    | V <sub>DDIOx</sub> >= 2.7V | V <sub>DDIOx</sub> -0.4 | -   |   |
| V <sub>OLFm+</sub> | Output low level voltage for an FTf I/O pin | I <sub>IO</sub>   = 20mA   | -                       | 0.4 | ٧ |
|                    | in FM+ mode                                 | V <sub>DDIOx</sub> >= 2.7V |                         |     |   |
|                    |                                             | I <sub>IO</sub>   = 10mA   | -                       | 0.4 |   |

### I/O AC characteristics

| OSPEEDRy     | Symbol                  | Parameter               | Conditions                                         | Min | Max     | Unit |
|--------------|-------------------------|-------------------------|----------------------------------------------------|-----|---------|------|
| [1:0]        | ,                       | . arameter              | Contantions                                        |     | - Trian |      |
| x0           | f <sub>max(IO)out</sub> | Maximum frequency       | C <sub>L</sub> =50pF, V <sub>DDIOx</sub> >=2V      | -   | 2       | MHz  |
|              | t <sub>f(IO)out</sub>   | Output fall time        |                                                    | -   | 38      | ns   |
|              | t <sub>r(IO)out</sub>   | Output rise time        |                                                    | -   | 39      |      |
| 01           | f <sub>max(IO)out</sub> | Maximum frequency       | C <sub>L</sub> =50pF, V <sub>DDIOx</sub> >=2V      | -   | 10      | MHz  |
|              | t <sub>f(IO)out</sub>   | Output fall time        |                                                    | -   | 25      | ns   |
|              | t <sub>r(IO)out</sub>   | Output rise time        |                                                    | -   | 25      |      |
| 11           | f <sub>max(IO)out</sub> | Maximum frequency       | C <sub>L</sub> =30pF, V <sub>DDIOx</sub> >=2.7V    | -   | 50      |      |
|              |                         |                         | C <sub>L</sub> =50pF, V <sub>DDIOx</sub> >=2.7V    | -   | 30      | MHz  |
|              |                         |                         | C <sub>L</sub> =50pF, 2V<=V <sub>DDIOx</sub> <2.7V | -   | 20      |      |
|              | t <sub>f(IO)out</sub>   | Output fall time        | C <sub>L</sub> =30pF, V <sub>DDIOx</sub> >=2.7V    | -   | 6.5     |      |
|              |                         |                         | C <sub>L</sub> =50pF, V <sub>DDIOx</sub> >=2.7V    | -   | 9       |      |
|              |                         |                         | C <sub>L</sub> =50pF, 2V<=V <sub>DDIOX</sub> <2.7V | -   | 15.5    | ns   |
|              | t <sub>r(IO)out</sub>   | Output rise time        | C <sub>L</sub> =30pF, V <sub>DDIOx</sub> >=2.7V    | -   | 6.6     |      |
|              |                         |                         | C <sub>L</sub> =50pF, V <sub>DDIOx</sub> >=2.7V    | -   | 8.6     |      |
|              |                         |                         | C <sub>L</sub> =50pF, 2V<=V <sub>DDIOx</sub> <2.7V | -   | 39      |      |
| Fm+          | f <sub>max(IO)out</sub> | Maximum frequency       | C <sub>L</sub> =50pF, V <sub>DDIOx</sub> >=2V      | -   | 2       | MHz  |
| configuratio | t <sub>f(IO)out</sub>   | Output fall time        |                                                    | -   | 15.5    | ns   |
| n            | t <sub>r(IO)out</sub>   | Output rise time        |                                                    | -   | 39      |      |
| -            | t <sub>EXTIpw</sub>     | Pulse width of external | -                                                  | 10  | -       | ns   |
|              |                         | signals detected by the |                                                    |     |         |      |
|              |                         | EXTI controller         |                                                    |     |         |      |

# **6.3.15** NRST pin characteristics

### NRST pin characteristics

| Symbol                 | Parameter                               | Conditions                                                                 | Min           | Тур | Max     | Unit |
|------------------------|-----------------------------------------|----------------------------------------------------------------------------|---------------|-----|---------|------|
| V <sub>IL(NRST)</sub>  | NRST input low level voltage            | -                                                                          | -             | -   | 0.3*VDD | V    |
| V <sub>IH(NRST)</sub>  | NRST input high level voltage           | -                                                                          | 0.445*VDD+0.4 | -   | -       |      |
| V <sub>hys(NRST)</sub> | NRST Schmitt trigger voltage hysteresis | -                                                                          | -             | 200 | -       | mV   |
| $R_{PU}$               | Weak pull-up resistor                   | V <sub>IN</sub> =V <sub>SS</sub>                                           | -             | 40  | -       | ΚΩ   |
| $V_{F(NRST)}$          | NRST input filtered pulse               | -                                                                          | -             | -   | 100     | ns   |
| V <sub>NF(NRST)</sub>  | NRST input not filtered                 | 2.7 <vdd<3.6< td=""><td>300</td><td>-</td><td>-</td><td>ns</td></vdd<3.6<> | 300           | -   | -       | ns   |
|                        | pulse                                   | 2.0 <vdd<3.6< td=""><td>500</td><td>-</td><td>-</td><td></td></vdd<3.6<>   | 500           | -   | -       |      |

# 6.3.16 ADC characteristics

#### **ADC** characteristics

| Symbol               | Parameter                          | Conditions              | Min  | Тур | Max       | Unit               |
|----------------------|------------------------------------|-------------------------|------|-----|-----------|--------------------|
| $V_{DDA}$            | Analog supply voltage              | -                       | 1.8  | 3.3 | 5.5       | V                  |
| I <sub>DD(ADC)</sub> | Current consumption of the ADC     | V <sub>DDA</sub> =3.3V  | -    | 1.1 | -         | mA                 |
| f <sub>ADC</sub>     | ADC clock frequency                | -                       | -    | -   | 16        | MHz                |
| fs                   | Sampling rate                      | 12-bit resolution       | 0.03 | -   | 1         | MHz                |
| f <sub>TRIG</sub>    | External trigger frequency         | 12-bit resolution       | -    | -   | 18        | 1/f <sub>ADC</sub> |
| V <sub>AIN</sub>     | Conversion voltage range           |                         | 0    |     | $V_{DDA}$ | V                  |
| R <sub>t</sub>       | Input resistor during sampling     | V <sub>DDA</sub> =3V    |      | 0.5 |           | kΩ                 |
| Cs                   | Internal sample and hold capacitor |                         |      | 26  | 30        | рF                 |
| ts                   | Sampling time                      | f <sub>ADC</sub> =16MHz | 4    | -   | -         | 1/f <sub>ADC</sub> |
| t <sub>STAB</sub>    | Stabilization time                 |                         | 32   | -   | -         | 1/f <sub>ADC</sub> |
| t <sub>CONV</sub>    | Total conversion time              | 12-bit resolution       |      | 12  |           | 1/f <sub>ADC</sub> |

#### **ADC** accuracy

| Symbol | Parameter                    | Conditions                         | Тур  | Max       | Unit |
|--------|------------------------------|------------------------------------|------|-----------|------|
| ET     | Total unadjusted error       | f <sub>PCLK</sub> =48MHz,          | ±1.5 | -         | LSB  |
| EO     | Offset error                 | $f_{ADC}$ =16MHz,RAIN<10k $\Omega$ | ±1.5 | ±3.0      |      |
| EG     | Gain error                   | V <sub>DDA</sub> =3V to 3.6V       | ±2   | ±5        |      |
| ED     | Differential linearity error | TA=25C                             | ±0.6 | ±1.5      |      |
| EL     | Integral linearity error     |                                    | ±1.5 | $\pm 3.0$ |      |



### **Analog Input Equivalent Circuit**



$$Rs = \frac{Tsamp}{10 * Cs} - Rt$$

### $R_{AIN}$ max for $f_{ADC} = 16$ MHz

| T <sub>s</sub> (cycles) | t <sub>s</sub> (us) | RAIN max (kΩ) |
|-------------------------|---------------------|---------------|
| 4                       | 0.35                | 0.33          |
| 7.5                     | 0.47                | 1.1           |
| 13.5                    | 0.84                | 2.3           |
| 28.5                    | 1.78                | 5.4           |
| 41.5                    | 2.59                | 8.1           |
| 55.5                    | 3.47                | 11.1          |
| 71.5                    | 4.47                | 14.4          |
| 239.5                   | 14.97               | 49.4          |

# **6.3.17** Temperature sensor characteristics

#### **TS characteristics**

| Symbol              | Parameter                                      | Min   | Тур   | Max  | Unit |
|---------------------|------------------------------------------------|-------|-------|------|------|
| T <sub>L</sub>      | V <sub>SENSE</sub> linearity with temperature  | -     | ±1    | ±2   | С    |
| Avg_Slope           | Average slope                                  | 4.2   | 4.28  | 4.36 | mV/C |
| V30                 | Voltage at 30C                                 | 1.423 | 1.425 | 1.43 | V    |
| tSTART              | ADC_IN16 buffer startup time                   | 1     | -     | 5    | us   |
| t <sub>S_temp</sub> | ADC sampling time when reading the temperature | 4     | -     | -    | us   |

# 7 Package information

# 7.1 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

### LQFP48 package outline



### LQFP48 package mechanical data

| Cumbal | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|--------|-------------|-------|-------|-----------------------|--------|--------|
| Symbol | Min         | Тур   | Max   | Min                   | Тур    | Max    |
| Α      | -           | -     | 1.600 | -                     | -      | 0.0630 |
| A1     | 0.050       | -     | 0.150 | 0.0020                | -      | 0.0059 |
| A2     | 1.350       | 1.400 | 1.450 | 0.0531                | 0.0551 | 0.0571 |
| b      | 0.170       | 0.220 | 0.270 | 0.0067                | 0.0087 | 0.0106 |
| С      | 0.090       | -     | 0.200 | 0.0035                | -      | 0.0079 |
| D      | 8.800       | 9.000 | 9.200 | 0.3465                | 0.3543 | 0.3622 |
| D1     | 6.800       | 7.000 | 7.200 | 0.2677                | 0.2756 | 0.2835 |
| D3     | -           | 5.500 | -     | -                     | 0.2165 | -      |
| E      | 8.800       | 9.000 | 9.200 | 0.3465                | 0.3543 | 0.3622 |
| E1     | 6.800       | 7.000 | 7.200 | 0.2677                | 0.2756 | 0.2835 |
| E3     | -           | 5.500 | -     | -                     | 0.2165 | -      |
| e      | -           | 0.500 | -     | -                     | 0.0197 | -      |
| L      | 0.450       | 0.600 | 0.750 | 0.0177                | 0.0236 | 0.0295 |
| L1     | -           | 1.000 | -     | -                     | 0.0394 | -      |
| k      | 0°          | 3.5°  | 7°    | 0°                    | 3.5°   | 7°     |
| ccc    | -           | -     | 0.080 | -                     | -      | 0.0031 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

# 7.2 LQFP32 package information

LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.

### LQFP32 package outline



LQFP32 package mechanical data

| Cumhal | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|--------|-------------|-------|-------|-----------------------|--------|--------|
| Symbol | Min         | Тур   | Max   | Min                   | Тур    | Max    |
| Α      | -           | -     | 1.600 | -                     | -      | 0.0630 |
| A1     | 0.050       | -     | 0.150 | 0.0020                | -      | 0.0059 |
| A2     | 1.350       | 1.400 | 1.450 | 0.0531                | 0.0551 | 0.0571 |
| b      | 0.300       | 0.370 | 0.450 | 0.0118                | 0.0146 | 0.0177 |
| С      | 0.090       | -     | 0.200 | 0.0035                | -      | 0.0079 |
| D      | 8.800       | 9.000 | 9.200 | 0.3465                | 0.3543 | 0.3622 |
| D1     | 6.800       | 7.000 | 7.200 | 0.2677                | 0.2756 | 0.2835 |
| D3     | -           | 5.600 | -     | -                     | 0.2205 | -      |
| E      | 8.800       | 9.000 | 9.200 | 0.3465                | 0.3543 | 0.3622 |
| E1     | 6.800       | 7.000 | 7.200 | 0.2677                | 0.2756 | 0.2835 |
| E3     | -           | 5.600 | -     | -                     | 0.2205 | -      |
| e      | -           | 0.800 | -     | -                     | 0.0315 | -      |
| L      | 0.450       | 0.600 | 0.750 | 0.0177                | 0.0236 | 0.0295 |
| L1     | -           | 1.000 | -     | -                     | 0.0394 | -      |
| k      | 0°          | 3.5°  | 7°    | 0°                    | 3.5°   | 7°     |
| ссс    | -           | -     | 0.100 | -                     | -      | 0.0039 |

<sup>1.</sup> Values in inches are converted from mm and rounded to 4 decimal digits.

# 7.3 TSSOP20 package information

TSSOP20 is a 20-lead thin shrink small-outline, 6.5 x 4.4 mm, 0.65 mm pitch, package.



### TSSOP20 package outline

TSSOP20 package mechanical data

| Cumhal            | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|-------------------|-------------|-------|-------|-----------------------|--------|--------|
| Symbol            | Min.        | Тур.  | Max.  | Min.                  | Тур.   | Max.   |
| Α                 | -           | -     | 1.200 | -                     | -      | 0.0472 |
| A1                | 0.050       | -     | 0.150 | 0.0020                | -      | 0.0059 |
| A2                | 0.800       | 1.000 | 1.050 | 0.0315                | 0.0394 | 0.0413 |
| b                 | 0.190       | -     | 0.300 | 0.0075                | -      | 0.0118 |
| С                 | 0.090       | -     | 0.200 | 0.0035                | -      | 0.0079 |
| D <sup>(2)</sup>  | 6.400       | 6.500 | 6.600 | 0.2520                | 0.2559 | 0.2598 |
| Е                 | 6.200       | 6.400 | 6.600 | 0.2441                | 0.2520 | 0.2598 |
| E1 <sup>(3)</sup> | 4.300       | 4.400 | 4.500 | 0.1693                | 0.1732 | 0.1772 |
| е                 | -           | 0.650 | -     | -                     | 0.0256 | -      |
| L                 | 0.450       | 0.600 | 0.750 | 0.0177                | 0.0236 | 0.0295 |
| L1                | -           | 1.000 | -     | -                     | 0.0394 | -      |
| k                 | 0°          | -     | 8°    | 0°                    | -      | 8°     |
| aaa               | -           | -     | 0.100 | -                     | -      | 0.0039 |

<sup>1.</sup> Values in inches are converted from mm and rounded to four decimal digits.

# 8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest FCM sales office.





# 9 Revision history

| Date       | Revision | Changes                                                             |
|------------|----------|---------------------------------------------------------------------|
| 2020/1/17  | 0.1      | Initial release                                                     |
| 2020/4/7   | 0.2      | Table of CH 2: SPI/USART/I2C number change to 2; RAM change to 8KB; |
|            |          | Add register map at CH 5;                                           |
|            |          | Add electronical characteristics at CH 6                            |
| 2020/4/8   | 0.21     | Fix error of 6.3.8 LSI I <sub>DDA(LSI)</sub> unit to nA             |
| 2020/5/21  | 0.22     | Change SPI number to 2                                              |
| 2020/7/15  | 0.23     | Add V <sub>REFINT</sub> min/max value                               |
|            |          | Change SPI number to 1 for device with pin number < =32             |
|            |          | Add index                                                           |
| 2020/8/26  | 0.24     | Add package information                                             |
| 2020/9/8   | 0.25     | Add pin description and ordering information                        |
| 2020/11/1  | 0.26     | Remove 64-PIN info;                                                 |
|            |          | 6.3.10 t <sub>ERASE</sub> change from 5ms to 10ms                   |
| 2020/11/25 | 0.27     | Add TIM15                                                           |
| 2020/11/26 | 0.28     | 6.3.16 Add RAIN max table                                           |

# 10 Others

