|                                                                                                          | Teste de Matemática A                  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                          | 2022 / 2023                            |
| Teste N.º 2                                                                                              |                                        |
| Matemática A                                                                                             |                                        |
| Duração do Teste: 90 minutos                                                                             |                                        |
|                                                                                                          |                                        |
| 11.º Ano de Escolaridade                                                                                 |                                        |
| Nome do aluno:                                                                                           | N.º: Turma:                            |
|                                                                                                          |                                        |
|                                                                                                          |                                        |
| Utilize apenas caneta ou esferográfica de tinta azul                                                     | ou preta.                              |
| Não é permitido o uso de corretor. Risque aquilo qu                                                      | ue pretende que não seja classificado. |
| É permitido o uso de calculadora.  Apresente apenas uma resposta para cada item.                         |                                        |
| As cotações dos itens encontram-se no final do enu                                                       | unciado.                               |
|                                                                                                          |                                        |
|                                                                                                          |                                        |
| Na resposta aos itens de escolha múltipla, selecion respostas, o número do item e a letra que identifica | • •                                    |
| Na resposta aos restantes itens, apresente todos os<br>justificações necessárias. Quando, para um resu   | •                                      |

apresente sempre o valor exato.

- **1.** Na figura estão representados, num referencial o.n. 0xy, a circunferência trigonométrica e o triângulo [ABC]. Sabe-se que:
  - ullet a reta r é tangente à circunferência no ponto de coordenadas (1,0);
  - ullet o ponto A pertence ao terceiro quadrante e à circunferência;
  - o ponto B é o ponto da reta r com ordenada igual à do ponto A;



•  $\alpha$  é a amplitude, em radianos, do ângulo orientado que tem por lado origem o semieixo positivo Ox e por lado extremidade a semirreta  $\dot{O}A$ ,  $\alpha \in \left]\pi, \frac{3\pi}{2}\right[$ .



**1.1.** Mostre que a área do triângulo [ABC] pode ser dada, em função de  $\alpha$ , por:

$$A(\alpha) = \frac{\operatorname{sen} \alpha}{2} \left( -2 + \cos \alpha + \frac{1}{\cos \alpha} \right)$$

**1.2.** Para uma certa posição do ponto A, sabe-se que  $\cos\left(-\frac{\pi}{2} - \alpha\right) = \frac{3}{5}$ .

Sem recurso à calculadora, determine, para essa posição do ponto A, o valor exato da área do triângulo [ABC]. Apresente o resultado sob a forma de fração irredutível.

1.3. Considere, para um certo valor de  $\alpha_1$  (compreendido entre  $\frac{9\pi}{8}$  e  $\frac{11\pi}{8}$ ), a área do triângulo [ABC]. Sabe-se que, quando esse valor de  $\alpha_1$  aumenta  $\frac{\pi}{8}$  radianos, a área do triângulo [ABC]triplica.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de  $\alpha_{1}$ , sabendo que no intervalo considerado esse valor existe e é único.

Apresente o resultado com aproximação às centésimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

**2.** De dois ângulos, de amplitudes  $\alpha$  e  $\beta$ , sabe-se que  $\alpha \in \left] -\frac{3\pi}{2}, -\pi\right[$  e  $\beta \in \left] \frac{3\pi}{2}, 2\pi\right[$ .

Então, pode afirmar-se que:

- **(A)** sen  $\alpha \times \cos \beta < 0$
- **(B)**  $tg \alpha \times tg \beta < 0$
- (C)  $\cos \alpha + \sin \beta > 0$
- **(D)**  $\operatorname{sen} \alpha \operatorname{sen} \beta > 0$
- 3. Em cada uma das figuras seguintes, está representado, na circunferência trigonométrica, o lado extremidade de um ângulo cujo lado origem é o semieixo positivo 0x.

Em qual das figuras esse ângulo pode ter 4 radianos de amplitude?

(A)



(B)



(C)



(D)



**4.** Seja  $\alpha \in ]-\pi, 0[$ .

Sabe-se que  $tg(\pi - \alpha) = -2$ .

Determine, o mais simplificado possível, o valor exato de:

$$\cos(-\pi - \alpha) - \operatorname{tg}(-\alpha) + \operatorname{sen}\left(\frac{\pi}{2} - \alpha\right) + \cos\left(\alpha + \pi\right)$$

**5.** Considere a função f definida por:

$$f(x) = \frac{1}{1 - \lg^2(2x)}$$

Considere as seguintes proposições:

- (I)  $D_f = \mathbb{R} \setminus \left\{ x : x = \frac{\pi}{4} + \frac{k\pi}{2} \lor x = \frac{\pi}{8} + \frac{k\pi}{4}, k \in \mathbb{Z} \right\}.$
- (II)  $\frac{\pi}{2}$  é período da função f.

Em relação às proposições anteriores, podemos afirmar que:

- (A) são ambas verdadeiras.
- (B) são ambas falsas.
- (C) apenas (I) é verdadeira.
- (D) apenas (II) é verdadeira.
- **6.** Considere a função f, de domínio  $\mathbb{R}\setminus \left\{x: x=\frac{\pi}{2}+k\pi, \ k\in\mathbb{Z}\right\}$ , definida por:

$$f(x) = (\cos x + \lg x)^2 + (1 - \sin x)^2$$

Utilizando processos exclusivamente analíticos, resolva as alíneas seguintes.

6.1. Mostre que:

$$\forall x \in D_f, f(x) = 1 + \frac{1}{\cos^2 x}$$

- **6.2.** Estude a função f quanto à paridade.
- **6.3.** Resolva, em  $\mathbb{R}\setminus \left\{x: x=\frac{\pi}{2}+k\pi, k\in\mathbb{Z}\right\}$ , a equação f(x)=3.
- 7. Na figura está representada, em referencial o.n. Oxy, a circunferência de equação:



Sabe-se que:

- o ponto C é o centro da circunferência;
- A e B são dois pontos da circunferência;
- o arco de circunferência AB tem comprimento  $\frac{10\pi}{3}$ .

Determine o valor do produto escalar  $\overrightarrow{CA} \cdot \overrightarrow{BC}$ .



**8.** Considere, num referencial o.n. 0xy, uma reta r de inclinação  $\alpha$ . Sabe-se que  $\cos \alpha = -\frac{1}{\sqrt{10}}$ . Qual pode ser a equação reduzida de uma reta perpendicular à reta r?

**(A)** 
$$y = 3x$$

**(B)** 
$$y = -3x$$

**(C)** 
$$y = \frac{1}{3}x$$

**(B)** 
$$y = -3x$$
 **(C)**  $y = \frac{1}{3}x$  **(D)**  $y = -\frac{1}{3}x$ 

**9.** Na figura está representado o cubo [ABCDEFGH].

Fixado um determinado referencial o.n. *0xyz*, tem-se:

- $E(7,11,4) \in F(10,5,6)$ ;
- a reta BD definida pela equação:

$$(x, y, z) = (3, -9, -1) + k(-1, 9, 4), k \in \mathbb{R}$$



**9.1.** Qual das equações seguintes define uma reta perpendicular à reta *BD* e que passa no ponto *F*?

**(A)** 
$$(x, y, z) = (10, 5, 6) + k(-4, 0, 1), k \in \mathbb{R}$$

**(B)** 
$$(x, y, z) = (10, 5, 6) + k(-6, 2, 3), k \in \mathbb{R}$$

**(C)** 
$$(x, y, z) = (7, 2, 0) + k(-1, -1, 2), k \in \mathbb{R}$$

**(D)** 
$$(x, y, z) = (-16, 3, 4) + k(13, 1, 1), k \in \mathbb{R}$$

- **9.2.** Resolva este item sem recorrer à calculadora. Determine as coordenadas do vetor  $\overline{BE}$ .
- **9.3.** Determine a amplitude do ângulo *OEF*.

Apresente o resultado em graus arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

**FIM** 

## **COTAÇÕES**

|      | Item                |      |    |    |    |    |      |      |      |    |    |      |      |      |       |
|------|---------------------|------|----|----|----|----|------|------|------|----|----|------|------|------|-------|
|      | Cotação (em pontos) |      |    |    |    |    |      |      |      |    |    |      |      |      |       |
| 1.1. | 1.2.                | 1.3. | 2. | 3. | 4. | 5. | 6.1. | 6.2. | 6.3. | 7. | 8. | 9.1. | 9.2. | 9.3. | TOTAL |
| 15   | 15                  | 15   | 10 | 10 | 15 | 10 | 15   | 15   | 15   | 15 | 10 | 10   | 15   | 15   | 200   |