(3)

21 Ross-154 is one of the closest stars to the Sun. The graph shows how the power radiated from Ross-154 depends upon wavelength λ .

(a) (i) Show that the surface temperature of Ross-154 is about 3000 K.

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|
 |
| | | | | | | | | | | | | | | | |
|
 |
|
 |

(ii)	A website states that the luminosity of Ross-154 is less than 0.5% of the	e
	luminosity of the Sun, L_{Sun} .	

Evaluate whether this statement is correct.

radius of Ross-154 =
$$1.18 \times 10^8$$
 m
 $L_{\text{Sun}} = 3.83 \times 10^{26}$ W

(5)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
|
 |

(b) Scientists have observed an Earth-type planet in orbit around Ross-154. The radius of the orbit is 0.096AU.

Calculate the time for this planet to make one orbit of Ross-154.

$$1\,AU = 1.50 \times 10^{11} m$$
 mass of Ross-154 = $3.38 \times 10^{29} kg$

(3)

Time for one orbit =

(Total for Question 21 = 11 marks)