上海交通大学报告模板示例文档

某某

2025年6月6日

目 录

第1章 高等数学2笔记

1.1 重积分

1.1.1 重积分的概念和性质

1.1.1.1 二重积分的概念

定义:

设 D 是平面上的有界闭区域,f(x,y) 为 D 上的有界函数,I 为实数。若对 D 的任意 分割 $\Delta D_1, \Delta D_2, \cdots, \Delta D_n$,任取 $(\xi_i, \eta_i) \in \Delta D_i (i = 1, ..., n)$,作和 $\sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$ ($\Delta \sigma_i$ 为 D_i 的面积),总有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i = I$$

其中 $\lambda = \max_{1 \le i \le n} \{d_i\}$, d_i 是小区域 ΔD_i 的直径,则称函数 f(x, y) 在 D 上**可积**,记为 $f \in R(D)$; 极限值 I 称为 f(x, y) 在 D 上的二重积分,记作

$$\iint\limits_D f(x,y)\,\mathrm{d}\sigma.$$

- ∬ 积分号
- D 积分区域
- f(x, y) 被积函数
- dσ 面积元素(微元)
- 二重积分的几何意义 当被积函数大于 0 时,二重积分是柱体体积 当被积函数小于 0 时,二重积分是柱体体积的负值 一般的,为曲顶柱体体积的代数和
 - 可积的充分条件 **定理**: 若函数 f(x,y) 在区域 D 上连续,则 $f(x,y) \in D$ 。
 - -f(x,y) 在 D 上的可积性及积分值与其在 D 内**有限条光滑曲线**上的定义无关

1.1.1.2 二重积分的性质

- 1. $\iint_D d\sigma = \iint_D 1 d\sigma = A_D$ (D的面积)。
- 2. **线性性:** 设 $f,g \in R(D)$, α,β 是任意常数,则 $\alpha f + \beta g \in R(D)$,且

$$\iint_{D} (\alpha f + \beta g) d\sigma = \alpha \iint_{D} f d\sigma + \beta \iint_{D} g d\sigma$$

3. **区域可加性:** 若 $f \in R(D)$ 且积分区域 D 分为内部不相交的子区域 D_1, D_2 ,则

$$\iint\limits_{D} f(x, y) d\sigma = \iint\limits_{D_1} f(x, y) d\sigma + \iint\limits_{D_2} f(x, y) d\sigma$$

4. **保序性:** 若 $f, g \in R(D)$, 且当 $(x, y) \in D$ 时, $f(x, y) \leq g(x, y)$, 则

$$\iint\limits_D f(x, y) \, \mathrm{d}\sigma \le \iint\limits_D g(x, y) \, \mathrm{d}\sigma$$

- **推论 1:** 若 $f \in R(D)$, 则 $|f(x,y)| \in R(D)$, 且

$$\left| \iint\limits_{D} f(x, y) \, d\sigma \right| \le \iint\limits_{D} |f(x, y)| \, d\sigma$$

- 推论 2: 若 $f \in R(D)$, 且当 $(x,y) \in D$ 时, $m \le f(x,y) \le M$, 则

$$mA_D \le \iint_D f(x, y) d\sigma \le MA_D$$

- 推论 3: 若 $f \in R(D)$, 且当 $(x,y) \in D$ 时, $f(x,y) \ge 0$, 则

$$\iint\limits_{D} f(x, y) \, \mathrm{d}\sigma \ge 0$$

5. **积分中值定理:** 若 $f(x,y) \in C(D)$, $g(x,y) \in R(D)$, 且 g 在 D 上不变号,则 $\exists \xi, \eta \in D$, 使得

$$\iint\limits_{D} f(x, y)g(x, y) d\sigma = f(\xi, \eta) \iint\limits_{D} g(x, y) d\sigma$$

- **推论:** 若 $f(x,y) \in C(D)$,则存在 $(\xi,\eta) \in D$,使得

$$\iint\limits_D f(x, y) \, d\sigma = f(\xi, \eta) A_D$$

称 $f(\xi,\eta) = \frac{\iint_D f d\sigma}{A_D}$ 为函数 f(x,y) 在有界闭区域 D 上的**平均值**

1.1.2 二重积分的计算

1.1.2.1 直角坐标系下的计算

当二重积分存在时,可利用平行于坐标轴的直线来划分积分区域 D,此时,面积元素

$$d\sigma = dxdy$$

故二重积分在直角坐标系下可表示为

$$\iint\limits_{D} f(x, y) d\sigma = \iint\limits_{D} f(x, y) dxdy$$

x 型正则区域

$$D = \{(x, y) \mid \varphi_1(x) \le y \le \varphi_2(x), a \le x \le b\}$$

化为先 y 后 x 的二次积分

$$\iint_{D} f(x, y) \, dxdy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \, dy \right] dx$$
$$\equiv \int_{a}^{b} f(x, y) \, dxdy$$

y型正则区域

$$D = \{(x, y) \mid \varphi_1(y) \le x \le \varphi_2(y), c \le y \le d\}$$

化为先x后y的二次积分

$$\iint_{D} f(x, y) \, dxdy = \int_{c}^{d} \left[\int_{\varphi_{1}(y)}^{\varphi_{2}(y)} f(x, y) \, dx \right] dy$$
$$\equiv \int_{c}^{d} f(x, y) \, dxdy$$

一般区域的二重积分 分割成若干个正则子区域,利用积分区域可加性,分别在子区域上积分后求和

直角坐标计算二重积分的步骤

1. **画出积分区域** D 的草图,并**确定类型** 2. 按照所确定的类型**表示区域** D 3. **化二重积分为二次积分**(注意上下限)4. **计算**二重积分

1.1.2.2 极坐标系下的计算

当积分区域的边界曲线或被积函数用极坐标表示较为简单时,可用极坐标来计算二 重积分。

面积元素 Δσ 在极坐标下为

$$\Delta \sigma = r dr d\theta$$

从直角坐标到极坐标时的二重积分变换公式为

$$\iint\limits_{D} f(x, y) d\sigma = \iint\limits_{D} f(r \cos \theta, r \sin \theta) r dr d\theta$$

若积分区域 D 可表示为 $\{(r,\theta) \mid r_1(\theta) \le r \le r_2(\theta), \alpha \le \theta \le \beta\}$,则

$$\iint\limits_{D} f(x, y) d\sigma = \int\limits_{\alpha}^{\beta} d\theta \int\limits_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr$$

1.1.2.3 二重积分的变量代换

定理.

设变换
$$T:$$
 $\begin{cases} x=x(u,v) \\ y=y(u,v) \end{cases}$ 有连续偏导数,且满足 $J=\frac{\partial(x,y)}{\partial(u,v)}\coloneqq\begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$ (Jacobi 行列式) \neq

0,而 $f(x,y) \in C(D)$,则

$$\iint\limits_D f(x, y) d\sigma = \iint\limits_{D^*} f(x(u, v), y(u, v)) |J| dudv$$

- 在定理条件下,变换
$$T$$
 一定存在逆变换 T^{-1} :
$$\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$
 ,且 $\frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(u,v)} = 1$

有时,借助此式求J较为简单

- 当 Jacobi 行列式仅在区域 D^* 内个别点上或个别曲线上为 0 时,定理结论仍成立 -

在广义极坐标
$$\begin{cases} x = ar\cos\theta \\ y = br\sin\theta \end{cases}$$
 下, $J = abr$

1.1.3 三重积分

1.1.3.1 三重积分的定义

定义:

设 Ω 是 \mathbb{R}^3 中的有界闭区域,三元函数 f(x,y,z) 在 Ω 上有界,I 为实数。若将 Ω 任意分割成 n 个小区域 $\Delta\Omega_1, \Delta\Omega_2, \ldots, \Delta\Omega_n$,任取 $(\varepsilon_i, \eta_i, \xi_i) \in \Delta\Omega_i$ $(i = 1, 2, \ldots, n)$,作和 $\sum_{i=1}^n f(\varepsilon_i, \eta_i, \xi_i) \Delta V_i$,(ΔV_i 是 $\Delta \Omega_i$ 的体积),总有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\varepsilon_i, \eta_i, \xi_i) \Delta V_i = I$$

其中 $\lambda = \max_{1 \le i \le n} \{d_i\}$, $d_i \in \Delta\Omega_i$ 的直径,则称函数 f(x, y, z) 在 Ω 上可积,记为 $f \in R(\Omega)$; I 称为 f(x, y, z) 在 Ω 上的三重积分,记作

$$\iiint\limits_{\Omega} f(x,y,z)\,\mathrm{d}V$$

其中 V_{Ω} 是区域 Ω 的体积

- 若 f(x,y,z) 表示占有三维空间区域 Ω 的物体的体密度函数,则 $\iiint_{\Omega} f(x,y,z) \, dV$ 给出了物体的**质量** - 类似二重积分,三重积分具有线性性,区域可加性,保序性以及推论和积分中值定理,并且有 $\iiint_{\Omega} \, dV = V_{\Omega}$

1.1.3.2 直角坐标系下的计算

直角坐标系下,由于 dV = dxdydz,故

$$\iiint\limits_{\Omega} f(x, y, z) \, dV = \iiint\limits_{\Omega} f(x, y, z) \, dx dy dz$$

柱线法(坐标面投影法) 设 Ω 是以曲面 $z = z_1(x, y)$ 为底,曲面 $z = z_2(x, y)$,而侧面 是母线平行于 z 轴的柱体所围成的区域

设 Ω 在 xOy 面上的投影区域为 D_1 , 则 Ω 可表示为

$$\Omega = \{(x, y, z) \mid (x, y) \in D_1, z_1(x, y) \le z \le z_2(x, y), (x, y) \in D\}$$

则物体总质量为

$$\iint_{D} \left(\int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) \, \mathrm{d}z \right) \mathrm{d}x \mathrm{d}y$$

故有

$$\iiint\limits_{\Omega} f(x, y, z) dV = \iint\limits_{D_1} dx dy \int\limits_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz$$

截面法(坐标轴投影法) 设区域 Ω 在 z 轴上的投影区间为 $[h_1,h_2]$,即 Ω 介于平面 $z=h_1$ 和 $z=h_2$ 之间,过 z 处且垂直于 z 轴的平面截 Ω 得截面区域 D_z ,则 Ω 可表示为

$$\Omega = \{(x, y, z) \mid h_1 \le z \le h_2, (x, y) \in D_z\}$$

物体总质量为

$$\int_{h_1}^{h_2} \left(\iint_{D_z} f(x, y, z) \, dx dy \right) dz$$

故有

$$\iiint\limits_{\Omega} f(x, y, z) \, dV = \int\limits_{h_1}^{h_2} dz \iint\limits_{D_z} f(x, y, z) \, dx dy$$

1.1.3.3 三重积分的变量代换

定理.

设变换
$$T:$$

$$\begin{cases} x=x(u,v,w) \\ y=y(u,v,w) \end{cases}$$
 有连续偏导数,且满足 $J=\frac{\partial(x,y,z)}{\partial(u,v,w)}\neq 0$,而 $f(x,y,z)\in \mathbb{Z}$

 $C(\Omega)$,则

$$\iiint\limits_{\Omega} f(x, y, z) dV = \iiint\limits_{\Omega^*} f(x(u, v, w), y(u, v, w), z(u, v, w)) |J| du dv dw$$

柱面坐标系下的计算 柱面坐标系,实际上就是将x,v坐标转换为极坐标

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

其 Jacobi 行列式为

$$J = \frac{\partial(x, y, z)}{\partial(r, \theta, z)} = \begin{vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$

则柱面积分积分公式为

$$\iiint_{\Omega} f(x, y, z) dV = \iiint_{\Omega^*} f(r \cos \theta, r \sin \theta, z) r dr d\theta dz$$

球面坐标系下的计算 球面坐标系,实际上就是将x,y,z坐标转换为球坐标

$$\begin{cases} x = \rho \sin \varphi \cos \theta \\ y = \rho \sin \varphi \sin \theta \\ z = \rho \cos \varphi \end{cases}$$

其 Jacobi 行列式为

$$J = \frac{\partial(x, y, z)}{\partial(\rho, \varphi, \theta)} = \begin{vmatrix} \sin \varphi \cos \theta & \rho \cos \varphi \cos \theta & -\rho \sin \varphi \sin \theta \\ \sin \varphi \sin \theta & \rho \cos \varphi \sin \theta & \rho \sin \varphi \cos \theta \\ \cos \varphi & -\rho \sin \varphi & 0 \end{vmatrix} = \rho^2 \sin \varphi$$

则球面积分积分公式为

$$\iiint\limits_{\Omega} f(x, y, z) dV = \iiint\limits_{\Omega^*} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^2 \sin \varphi d\rho d\varphi d\theta$$

1.1.4 重积分的应用

1.1.4.1 重积分的几何应用

平面图形的面积

$$A(D) = \iint_D d\sigma = \iint_D dx dy$$

立体的体积

$$V(\Omega) = \iiint_{\Omega} dV = \iiint_{\Omega} dx dy dz$$

曲面的面积 设空间曲面 $S: z = f(x, y), (x, y) \in D$ 。 则曲面 S 的面积为

$$A(S) = \iint\limits_{D} \sqrt{1 + z_x^2 + z_y^2} \, \mathrm{d}x \mathrm{d}y$$

1.1.4.2 重积分的物理应用

质心 体密度为 $\rho(x,y)$ 的物体占据空间 Ω , 其质心坐标为

$$\begin{cases} \bar{x} = \frac{\iiint_{\Omega} x \rho(x, y, z) \, dV}{\iiint_{\Omega} \rho(x, y, z) \, dV} \\ \bar{y} = \frac{\iiint_{\Omega} y \rho(x, y, z) \, dV}{\iiint_{\Omega} \rho(x, y, z) \, dV} \\ \bar{z} = \frac{\iiint_{\Omega} z \rho(x, y, z) \, dV}{\iiint_{\Omega} \rho(x, y, z) \, dV} \end{cases}$$

转动惯量 设物体的密度为 $\rho(x,y,z)$,则物体分别关于 x, y, z 轴的转动惯量为

$$\begin{cases} I_x = \iiint_{\Omega} \rho(x, y, z)(y^2 + z^2) \, dV \\ I_y = \iiint_{\Omega} \rho(x, y, z)(x^2 + z^2) \, dV \\ I_z = \iiint_{\Omega} \rho(x, y, z)(x^2 + y^2) \, dV \end{cases}$$

引力

$$\begin{split} \mathrm{d}\vec{F} &= G \frac{m_0 \mathrm{d}m}{r^3} \vec{r} \\ &= G \frac{m_0 \rho(x, y, z) \mathrm{d}V}{r^3} \cdot (x - x_0, y - y_0, z - z_0) \\ &= \left(\mathrm{d}F_x, \mathrm{d}F_y, \mathrm{d}F_z \right) \end{split}$$

1.2 曲线积分和曲面积分

1.2.1 第一类曲线积分和曲面积分

1.2.1.1 第一类曲线积分的概念

定义:

设 C 是 xOy 面上的一条光滑曲线弧,函数 f(x,y) 是定义在 C 上的有界函数,在 C 上任意插入分点 $A = A_0, A_1, \ldots, A_{n-1}, A_n = B$,将其分成 n 个小弧段,记第 i 个小弧段的弧长为 Δs_i ,在第 i 个小段上任取点 (ϵ_i, η_i) ,和式 $\sum_{i=1}^n f(\epsilon_i, \eta_i) \Delta s_i$,当 $\lambda = \max_{1 \le i \le n} \{\Delta s_i\} \to 0$ 时,有确定的极限值 I,即

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\epsilon_i, \eta_i) \Delta s_i = I$$

则称函数 f(x,y) 在曲线 C 上可积,并将此极限值 I 称为函数 f(x,y) 在曲线 C 上的第一类曲线积分,记作 $\int_C f(x,y) \, \mathrm{d} s$,即

$$I = \int_{C} f(x, y) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\epsilon_{i}, \eta_{i}) \Delta s_{i}$$

- 第一类曲线积分的几何含义为柱面的面积 - $\int_C ds = \int_C 1 ds = s_C$ - 若 C 是封闭曲线,即 C 的二端点重合,则记第一类曲线积分为 $\oint_C f(x,y) ds$

1.2.1.2 第一类曲线积分的性质

与曲线方向无关 若曲线 C 的端点为 A 和 B, f(x,y) 在曲线 C 上可积,则

$$\int_{\widehat{AB}} f(x, y) \, ds = \int_{\widehat{BA}} f(x, y) \, ds$$

线性性 若 f,g 在曲线 C 上可积, α,β 是任意常数, 则 $\alpha f + \beta g$ 在曲线 C 上可积, 且

$$\int_{C} (\alpha f + \beta g) ds = \alpha \int_{C} f(x, y) ds + \beta \int_{C} g(x, y) ds$$

路径可加性 若曲线 C 由两段光滑曲线 C_1 和 C_2 首尾连接而成,则 f(x,y) 在曲线 C 上可积,等价于 f(x,y) 在曲线 C_1 和 C_2 上均可积,且

$$\int_{C} f(x, y) ds = \int_{C_{1}} f(x, y) ds + \int_{C_{2}} f(x, y) ds$$

中**值定理** 设函数 f 在光滑曲线 C 上连续,则 $\exists (\epsilon, \eta) \in C$,使得

$$\int_C f(x, y) \, \mathrm{d}s = f(\epsilon, \eta) \cdot s_C$$

其中 s_C 是曲线段 C 的长度

1.2.1.3 第一类曲线积分的计算

设函数 f(x,y) 在光滑曲线 C 上连续,C 的参数方程为 $\begin{cases} x=x(t) \\ y=y(t) \end{cases}$, $t\in[a,b]$,满 足 x'(t), y'(t) 连续,且 $x'(t)^2+y'(t)^2\neq 0$,则

$$\int_{C} f(x, y) ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

- 右端积分限应 a < b - 当曲线 C 形式为 y = y(x), $x \in [a,b]$ 时,则 $\int_C f(x,y) \, \mathrm{d}s = \int_a^b f(x,y(x)) \sqrt{1+y'^2(x)} \, \mathrm{d}x$ - 当曲线 C 为极坐标 $r = r(\theta)$, $\theta \in [\alpha,\beta]$ 时,则 $\int_C f(x,y) \, \mathrm{d}s = \int_\alpha^\beta f(r(\theta)\cos\theta,r(\theta)\sin\theta) \sqrt{r(\theta)^2+r'^2(\theta)} \, \mathrm{d}\theta$

1.2.2 第二类曲线积分与曲面积分

1.2.2.1 第二类曲线积分的概念

定义:

设 C 为平面光滑定向曲线 $(A \to B)$,且向量值函数 $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ 在 C 上有界, \vec{e}_{τ} 为 C 上点 (x,y) 处于定向一致的单位切向量,若

$$\int_C \vec{F}(x,y) \cdot \vec{e}_\tau \, \mathrm{d}s$$

存在,则称为**向量值函数** \vec{F} **在定向曲线** C 上的曲线积分或第二类曲线积分 若 $\vec{e}_{\tau}(x,y) = (\cos\alpha,\cos\beta)$,则

$$\int_{C} \vec{F}(x, y) \cdot \vec{e}_{\tau} \, ds = \int_{C} P(x, y) \cos \alpha + Q(x, y) \cos \beta \, ds$$

$$= \int_{C} P(x, y) \cos \alpha \, ds + \int_{C} Q(x, y) \cos \beta \, ds$$

$$= \int_{C} P(x, y) \, dx + Q(x, y) \, dy$$

这是对坐标的曲线积分

记 $\vec{r} = (x, y)$, 则 $d\vec{r} = \vec{e}_{\tau} ds$ 称为**定向弧微分**

从而有向量形式的第二类曲线积分

$$\int_{C} \vec{F}(x, y) \cdot d\vec{r} = \int_{C} \vec{F} \cdot d\vec{r}$$

第二类曲线积分的性质 第二类曲线积分与曲线方向有关,即

$$\int_{\widehat{AB}} \vec{F}(x, y) \cdot d\vec{r} = -\int_{\widehat{BA}} \vec{F}(x, y) \cdot d\vec{r}$$

此外线性性与对定向积分路径的可加性等仍然成立

第二类曲线积分的计算 若曲线 C 为 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$, $t: \alpha \to \beta$

起点 A 对应 α , 终点 B 对应 β

考察 $\int_C P dx + Q dy = \int_C \vec{F} \cdot \vec{e}_\tau ds$, 沿曲线 C 有 $\vec{F} = (P(x(t), y(t)), Q(x(t), y(t)))$, 则

$$\int_{C} P dx + Q dy = \int_{\alpha}^{\beta} P(x(t), y(t)) dx(t) + Q(x(t), y(t)) dy(t)$$

1.2.2.2 第二类曲面积分的概念

双侧曲面 定义:

若点 P 沿曲面 S 上任何不越过曲面边界的连续闭曲线移动后回到起始位置时,法向量 \vec{n} 保持原来的指向,则称 S 为**双侧曲面**

典型的, Mobius 面不是双侧曲面

选定双侧曲面 S 一侧为正向,称为**正侧**,记为 S^+ ,其相反侧记作 S^-

双侧曲面定侧 若 S: z = z(x, y), $(x, y) \in D_{xy}$, $\vec{n}_0 = (\cos \alpha, \cos \beta, \cos \gamma) = \pm \frac{(-z_x, -z_y, 1)}{\sqrt{1 + z_x^2 + z_y^2}}$ 若选取 $\vec{n}_0 = (\cos \alpha, \cos \beta, \cos \gamma) = \frac{(-z_x, -z_y, 1)}{\sqrt{1 + z_x^2 + z_y^2}}$, 则说明 $\cos \gamma > 0$,选取了曲面的上侧一般的

$$\begin{cases} \cos \alpha > 0 \Leftrightarrow 前侧 \cos \alpha < 0 \Leftrightarrow 后侧 \\ \cos \beta > 0 \Leftrightarrow 右侧 \cos \beta < 0 \Leftrightarrow 左侧 \\ \cos \gamma > 0 \Leftrightarrow 上侧 \cos \gamma < 0 \Leftrightarrow 下侧 \end{cases}$$

习惯上选取曲面片的上侧为 S^+ ; 对于封闭曲面,选取外侧为 S^+ 对于向量值函数 $\vec{F} = (P, O, R)$

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} P \, dx \, dy + Q \, dy \, dz + R \, dz \, dx$$

第二类曲面积分的性质 第二类曲面积分与在曲面的哪一侧积分有关

$$\iint_{S^+} P \, \mathrm{d}x \, \mathrm{d}y + Q \, \mathrm{d}y \, \mathrm{d}z + R \, \mathrm{d}z \, \mathrm{d}x = -\iint_{S^-} P \, \mathrm{d}x \, \mathrm{d}y + Q \, \mathrm{d}y \, \mathrm{d}z + R \, \mathrm{d}z \, \mathrm{d}x$$

此外第二类曲面积分也具有线性性和可加性等性质

1.2.2.3 第二类曲面积分的计算

合一投影法

$$\iint_{S^+} P \, \mathrm{d}x \, \mathrm{d}y + Q \, \mathrm{d}y \, \mathrm{d}z + R \, \mathrm{d}z \, \mathrm{d}x = \iint_{D_{xy}} \left(-P z_x - Q z_y + R \right) \, \mathrm{d}x \, \mathrm{d}y$$

分面投影法 分 $P \, dx dy$, $Q \, dy dz$, $R \, dz dx$ 三个部分进行积分 常在部分曲面垂直坐标轴时进行

公式法 常用于参数方程确定的曲面

设 $S: \vec{r} = (x(u, v), y(u, v), z(u, v)),$ 其中 $(u, v) \in D_{uv}$, 则

$$\iint_{S^+} \vec{F} \cdot d\vec{S} = \iint_{D_{uv}} \vec{F} \cdot (\vec{r}_u \times \vec{r}_v) dudv$$

1.2.3 Green 公式及其应用

1.2.3.1 Green 公式

连通区域及其边界方向 设 D 为平面区域,若 D 内的任意一条闭曲线所围的区域都落 在 D 内,则称 D 是单连通的,否则称 D 为复连通的

当点沿区域边界朝一个方向前进时,区域总在它的左侧,则将此方向规定为边界曲线 C 的正向,记为 C^+ ,与 C^+ 相反方向为 C

Green 公式 定理:

设有界闭区域 D 由分段光滑曲线 C 围成,函数 P(x,y), Q(x,y) 在 D 上有一阶连续偏导数,则

$$\oint_{C_{+}} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy$$

- 对于复连通区域 D,Green 公式仍然成立,但需将 C 分成若干个单连通区域 D_i ,并对每个区域应用 Green 公式 - 公式也可以记为 $\oint_{C^+} P \, \mathrm{d} x + Q \, \mathrm{d} y = \iint_D \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} \, \mathrm{d} x \, \mathrm{d} y$

Green 公式的向量形式

$$\oint_{C^+} \vec{F} \cdot d\vec{r} = \iint_{D} \nabla \times \vec{F} \, dx dy$$

1.2.3.2 曲线积分与路径无关的条件

定义:

设 P(x,y), Q(x,y) 在区域 D 内连续,若对 D 内任意两点 A, B 以及 D 内连接 A, B 的任意二分段光滑曲线 C_1 , C_2 ,均有

$$\int_{C_1} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{C_2} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

则称曲线积分 $\int_C P dx + Q dy$ 在 D 内**与路径无关** 定理:

设函数 P, Q 在单连通区域 D 上有连续偏导数,则下述四命题等价

- 1. 在 D 内的任一条分段光滑闭曲线 C 上,有 $\int_C P dx + Q dy = 0$
- 2. 曲线积分 $\int_C P dx + Q dy$ 在 D 内与路径无关
- 3. 存在 D 上的可微函数 u(x,y) 使得 du = P dx + Q dy,此时称 u(x,y) 为 P dx + Q dy 的一个**原函数**
- 4. $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 在 D 内恒成立

1.2.3.3 全微分求积与全微分方程

设函数 P, Q 在单连通区域 D 上有连续偏导数,且 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,则 P dx + Q dy 为某函数 u 的全微分,且取定 $(x_0, y_0) \in D$

$$u(x, y) = u(x_0, y_0) + \int_{(x_0, y_0)}^{(x, y)} P \, dx + Q \, dy, \quad (x, y) \in D$$

从而全体函数为 u(x, y) + C

称求 P dx + Q dy 的原函数的过程为**全微分求积**

若 P dx + Q dy 是某二元函数的全微分,称方程

$$P(x, y) dx + Q(x, y) dy = 0$$

为全微分方程

求出一个原函数 u(x,y), 则方程的通解为 u(x,y) = C, 其中 C 是任意常数

1.2.4 Gauss 公式和 Stokes 公式

1.2.4.1 Gauss 公式

定理:

设函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在空间有界闭区域 Ω 上有连续偏导数, Ω 的 边界是光滑或分片光滑的闭曲面 Σ ,则

$$\iint\limits_{\Sigma^+} P \, \mathrm{d}x \mathrm{d}y + Q \, \mathrm{d}y \mathrm{d}z + R \, \mathrm{d}z \mathrm{d}x = \iiint\limits_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

 $- \diamondsuit P = \frac{x}{3}$, $Q = \frac{y}{3}$, $R = \frac{z}{3}$,则可导出 $V_{\Omega} = \frac{1}{3} \oiint_{\Sigma^{+}} x \, dy dz + y \, dz dx + z \, dx dy$,即体积公式 - 使用 Gauss 公式时,注意 Σ^{+} 的方向应与 Ω 的外侧一致

向量形式的 Gauss 公式

$$\iint_{\Sigma^+} \vec{F} \cdot d\vec{S} = \iiint_{Q} \nabla \cdot \vec{F} \, dx \, dy \, dz$$

1.2.4.2 通量和散度

通量 若给定向量场

$$\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

则称曲面积分

$$\Phi = \iint_{\Sigma^+} \vec{F} \cdot d\vec{S} = \iint_{\Sigma^+} P \, dx \, dy + Q \, dy \, dz + R \, dz \, dx$$

为向量场 \vec{F} 在通过定侧曲面 Σ^+ 的**通量**

散度 称

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

为向量场 \vec{F} 的**散度** 则 Gauss 公式可写为

$$\Phi = \bigoplus_{\Sigma^+} \vec{F} \cdot d\vec{S} = \iiint_{\Omega} \operatorname{div} \vec{F} \, dV$$

1.3 级数

1.3.1 数项级数

1.3.1.1 数项级数的概念

定义:

给定数列 $\{a_n\}$, 和式

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

称为 (无穷)级数, a_n 称为级数的通项 (或一般项)

 $-S_n = \sum_{k=1}^n a_k$ 称为级数 $\sum_{n=1}^\infty a_n$ 的前 n 项**部分和** $-\sum_{k=n+1}^\infty a_k$ 称为级数 $\sum_{n=1}^\infty a_n$ 的**余** 项级数

定义:

- 若级数 $\sum_{n=1}^{\infty} a_n$ 的部分和数列 $\{S_n\}$ 收敛,且 $\lim_{n\to\infty} S_n = S$,则称级数 $\sum_{n=1}^{\infty} a_n$ **收敛**,S 称为级数 $\sum_{n=1}^{\infty} a_n$ 的和,记作 $\sum_{n=1}^{\infty} a_n = S$ - 若部分和数列 $\{S_n\}$ 发散,则称级数 $\sum_{n=1}^{\infty} a_n$ 发散

常用结论:

等比数列
$$\sum_{n=1}^{\infty} aq^{n-1} \begin{cases}$$
收敛于 $\frac{a}{1-q}$, $|q| < 1$ 发散 , $|q| \ge 1$

1.3.1.2 数项级数的基本性质

基本性质

- 1. 若常数 $\alpha \neq 0$,则级数 $\sum_{n=1}^{\infty} a_n$ 与级数 $\sum_{n=1}^{\infty} \alpha a_n$ 有相同敛散性
- 2. **线性性:** 若级数 $\sum_{n=1}^{\infty} a_n = S$, $\sum_{n=1}^{\infty} b_n = T$, 则 $\forall \alpha, \beta \in \mathbb{R}$, 有 $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha S + \beta T$
- 3. 可加性: 将级数增加、删减或改换有限项,不改变级数的敛散性
- 4. **结合律:** 若级数收敛于 S,则将相邻若干项添加括号所成新级数仍收敛于 S 其本质是部分和数列收敛于 S,则子列均收敛于 S 加括号后级数收敛 \Rightarrow 原级数收敛 加括号后级数发散 \Rightarrow 原级数发散

级数收敛的必要条件 定理:

若 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n\to\infty} a_n = 0$

- 若 $\lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ 发散 - 若 $\lim_{n\to\infty} a_n = 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ 收敛,比如调和级数

1.3.2 正项级数敛散性

1.3.2.1 正项级数

定义:

若级数 $\sum_{n=1}^{\infty} a_n$ 满足 $a_n > 0$ $(n \in \mathbb{N}^+)$,则称此级数为**正项级数**

定理:(收敛原理)

正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛 \Leftrightarrow 是其部分和数列 $\{S_n\}$ 有上界,即 $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}^+ : S_n \leq M$

p 级数

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} 收敛 , p > 1 \\ 发散 , p \le 1 \end{cases}$$

1.3.2.2 正项级数敛散性判别法

比较判别法 定理:

设正项级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 满足 $a_n \leq b_n$ ($\forall n \in \mathbb{N}^+$), 则 $\sum_{n=1}^{\infty} b_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} a_n$ 收敛, $\sum_{n=1}^{\infty} a_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty} b_n$ 发散

- 条件 $\forall n \in \mathbb{N}^+ a_n \leq b_n$ 可改为 $\exists N, C > 0, \forall n \in \mathbb{N}^+ \forall n \geq N a_n \leq C b_n$ - 使用该判别法时需要有参照级数,常选**等比级数**或 p **级数**作参照

比较判别法(极限形式) 定理:

正项级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 满足 $\lim_{n\to\infty} \frac{a_n}{b_n} = l$

- 当 $0 < l < +\infty$ 时, $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 同敛散 - 当 l = 0 时, $\sum_{n=1}^{\infty} b_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} a_n$ 收敛 - 当 $l = +\infty$ 时, $\sum_{n=1}^{\infty} b_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty} a_n$ 发散

通常使用 $b_n = \frac{1}{n^p}$ 作为参照物,因为我们此时在分析无穷小 a_n 的阶

比值判别法(d'Alembert 判别法) 定理:

若**正项级数** $\sum_{n=1}^{\infty} a_n$ 满足 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$,则

- 当 $0 \le l < 1$ 时, $\sum_{n=1}^{\infty} a_n$ 收敛 - 当 l > 1 时, $\sum_{n=1}^{\infty} a_n$ 发散 - 当 l = 1 时,判别法失效

Stirling 公式: $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2n\pi}$ $(n \to \infty)$

当 a_n 是一些乘积构成或含 n! 时,可以考虑比值法

根值判别法(Cauchy 判别法) 定理:

若正项级数 $\sum_{n=1}^{\infty} a_n$ 满足 $\lim_{n\to\infty} \sqrt[n]{a_n} = l$,则

- 1. 当 $0 \le l < 1$ 时, $\sum_{n=1}^{\infty} a_n$ 收敛
- 2. 当 $1 < l \le +\infty$ 时, $\sum_{n=1}^{\infty} a_n$ 发散
- 3. 当 l=1 时,判别法失效

当 a_n 中含有n次方时,可以考虑使用根值法

比值法和根值法实际上可看作是在将级数与等比级数作比较,均只能判断收敛速度不慢于等比级数的级数。当所求级数存在时,可称级数为拟等比级数

根值法优于比值法

$$-\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l \implies \lim_{n\to\infty} \sqrt[n]{a_n} = l - \lim_{n\to\infty} \sqrt[n]{a_n} = l \implies \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$$

积分判别法 定理:

设 $\sum_{n=1}^{\infty} a_n$ 为**正项级数**,若非负函数 f(x) 在 $[1,+\infty)$ 上**单调递减**,且 $a_n = f(n)$ ($\forall n \in \mathbb{N}^+$),则级数 $\sum_{n=1}^{\infty} a_n$ 与反常积分 $\int_{1}^{+\infty} f(x) dx$ 有相同的敛散性

- 条件 $[1, +\infty)$ 可改为 $[a, +\infty)$ (a > 1)

1.3.3 任意项级数的敛散性

任意项级数

正负项分布是任意的级数

1.3.3.1 交错级数敛散性的判别法

交错级数 定义:

各项正负相间的级数称为交错级数,其形式为

$$\pm \sum_{n=1}^{\infty} (-1)^{n-1} a_n \quad (\sharp \, \psi \, a_n > 0)$$

Leibniz 判别法 定理:

若交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n \ (a_n > 0)$ 满足:

- 1. $a_{n+1} \le a_n$ (n = 1, 2, ...)
- $2. \lim_{n\to\infty} a_n = 0$

则级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,且其余项级数满足

$$\left| \sum_{k=n+1}^{\infty} a_k \right| \le a_{n+1}$$

我们称满足定理条件的级数为 Leibniz 型级数

1.3.3.2 Abel 判别法和 Dirichlet 判别法

定理: (Abel 判别法)

若 $\{a_n\}$ 单调且有界, $\sum_{n=1}^{\infty} b_n$ 收敛,则 $\sum_{n=1}^{\infty} a_n b_n$ 收敛

定理: (Dirichlet 判别法)

若 $\{a_n\}$ 单调趋于 0, $\sum_{n=1}^{\infty} b_n$ 的部分和数列有界,则 $\sum_{n=1}^{\infty} a_n b_n$ 收敛

1.3.3.3 绝对收敛与条件收敛

定义:

设 $\sum_{n=1}^{\infty} a_n$ 为任意项级数

- 1. 若级数 $\sum_{n=1}^{\infty} |a_n|$ 收敛,则称级数 $\sum_{n=1}^{\infty} a_n$ 为**绝对收敛**
- 2. 若 $\sum_{n=1}^{\infty} |a_n|$ 发散,而 $\sum_{n=1}^{\infty} a_n$ 收敛,则称 $\sum_{n=1}^{\infty} a_n$ 条件收敛 定理•

若 $\sum_{n=1}^{\infty} a_n$ 绝对收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛

常用结论:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \begin{cases} \text{绝对收敛} &, p > 1 \\ \text{条件收敛} &, 0$$

定理: (绝对收敛与条件收敛的本质)

- 1. 绝对收敛的级数,可以改变任意项的顺序,其收敛性与和均不变(即满足加法交换律)
- 2. 条件收敛的级数,总可以适当改变项的顺序,使其按照任意预定的方式收敛或者 发散

1.3.4 函数项级数

定义:

设函数列 $\{u_n(x)\}(n=1,2,...)$ 在数集 X 上有定义,则称形式和

$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

为**函数项级数**,其中 $u_n(x)$ 称为**通项** 定义:

若数项级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛,则 x_0 为函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的一个**收敛点**,否则称为**发散点**,全体收敛点所组成的集合 I 称为**收敛域**

定义

记 $S_n(x) = \sum_{k=1}^n u_k(x)$ 为 $\sum_{n=1}^\infty u_n(x)$ 的前 n 项**部分和** (**函数**),记 $r_n(x) = \sum_{k=n+1}^\infty u_k(x)$ 为**余和**

定义:

对于收敛域 I 中的任意一点 x,记 $\sum_{n=1}^{\infty} u_n(x)$ 的和为 S(x),称此函数 S(x) 为 $\sum_{n=1}^{\infty} u_n(x)$ 的**和函数**

显然,
$$\forall x \in I$$
, $\lim_{n \to +\infty} S_n(x) = S(x)$, $\lim_{n \to +\infty} r_n(x) = 0$

1.3.5 幂级数

1.3.5.1 幂级数及其收敛半径

在函数项级数中,最简单及最重要的级数形如

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \ldots + a_n (x - x_0)^n + \ldots$$

称为**幂级数**,其中常数项 $a_0, a_1, \ldots, a_n, \ldots$ 称为幂级数的**系数** 幂级数更一般的形式为 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$

Abel 定理

1. 若幂级数 $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ 在 $x = x_0 (x \neq 0)$ 收敛,则当 |x| < |