Minimizing the Bag-of-Ngrams Difference for Non-Autoregressive Neural Machine Translation

Chenze Shao¹², Jinchao Zhang³, Yang Feng^{12*}, Fandong Meng³ and Jie Zhou³

¹ Key Laboratory of Intelligent Information Processing,

Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)

² University of Chinese Academy of Sciences

³ Pattern Recognition Center, WeChat AI, Tencent Inc, China

邵晨泽

2019.12.22

Motivation

- NAT: generate target words independently
- The cross-entropy loss is not suitable for NAT
 - cannot model target-side sequential dependency properly
 - Requires strict alignment, hard for NAT
 - Overcorrection, repeated tokens

Reference: I must get up and start working now.

Translation: I have to get up and start working.

Overcorrection: I have to up up start start working.

Motivation

- Minimize the bag-of-ngrams difference for NAT
 - Model sequential dependency: evaluate NAT outputs on n-gram level
 - Outputs may not be aligned with the reference: optimize bag-of-ngrams
- Bag-of-ngrams correlates well with the translation quality

Reference: I must get up and start working now.

Translation: I have to get up and start working.

- Minimizing the Bag-of-Ngrams Difference
 - Define Bag-of-Ngrams (BoN) of NAT
 - Give a method to calculate BoN
 - Choose a distance metric to measure the BoN Difference
 - Give a method to calculate the metric
 - Bag-of-Ngrams difference as training objective

• Bag-of-Ngrams (BoN): a vector of size V^n , where V is the vocabulary size. Each entry represents the number of occurrences of an n-gram \mathbf{g} in sentence \mathbf{Y} :

$$BoN_{\mathbf{Y}}(\mathbf{g}) = \sum_{t=0}^{n} 1\{y_{t+1:t+n} = \mathbf{g}\}\$$

- How to define the BoN of NMT?
- Consider all possible translations, the expected BoN

$$BoN_{\theta}(\boldsymbol{g}) = \sum_{\boldsymbol{Y}} P(\boldsymbol{Y}|\boldsymbol{X}, \theta) \cdot BoN_{\boldsymbol{Y}}(\boldsymbol{g})$$

- BoN definition $\operatorname{BoN}_{\theta}(\boldsymbol{g}) = \sum_{\boldsymbol{Y}} P(\boldsymbol{Y}|\boldsymbol{X}, \theta) \cdot \operatorname{BoN}_{\boldsymbol{Y}}(\boldsymbol{g})$
- The first difficulty: exponentially large search space
- Use the property of NAT: probabilities at different positions are independent

$$BoN_{\theta}(\boldsymbol{g}) = \sum_{\boldsymbol{Y}} P(\boldsymbol{Y}|\boldsymbol{X}, \theta) \cdot \sum_{t=0}^{T-n} 1\{y_{t+1:t+n} = \boldsymbol{g}\}$$
$$= \sum_{t=0}^{T-n} \prod_{i=1}^{n} p(y_{t+i} = g_i|\boldsymbol{X}, \theta).$$

- Calculate the BoN difference between NAT and reference (L₁, L₂, cosine, etc.)
- The second difficulty: Vn n-grams, costly to calculate and store all of them
- How to simplify?
 - The BoN of NAT is dense.
 - The BoN of reference is very sparse, only a few entries are non-zero.
 - Use the sparsity to simplify the calculation of L₁ distantce

• Intuition: a sentence of length T has T-n+1 n-grams:

$$\sum_{\mathbf{g}} \operatorname{BoN}_{\mathbf{Y}}(\mathbf{g}) = \sum_{t=0}^{T-n} \sum_{\mathbf{g}} 1\{y_{t+1:t+n} = \mathbf{g}\} = T - n + 1.$$

$$\sum_{\mathbf{g}} \operatorname{BoN}_{\theta}(\mathbf{g}) = \sum_{\mathbf{g}} \sum_{\mathbf{Y}} P(\mathbf{Y}|\mathbf{X}, \theta) \cdot \operatorname{BoN}_{\mathbf{Y}}(\mathbf{g})$$

$$= \sum_{\mathbf{Y}} P(\mathbf{Y}|\mathbf{X}, \theta) \cdot \sum_{\mathbf{g}} \operatorname{BoN}_{\mathbf{Y}}(\mathbf{g}) = T - n + 1.$$
(9)

• L₁ distantce: only consider n-grams in the reference

$$\begin{aligned} &\operatorname{BoN-}L_1 = \sum_{\boldsymbol{g}} |\operatorname{BoN}_{\theta}(\boldsymbol{g}) - \operatorname{BoN}_{\hat{\boldsymbol{Y}}}(\boldsymbol{g})| \\ &= \sum_{\boldsymbol{g}} (\operatorname{BoN}_{\theta}(\boldsymbol{g}) + \operatorname{BoN}_{\hat{\boldsymbol{Y}}}(\boldsymbol{g}) - 2\min(\operatorname{BoN}_{\theta}(\boldsymbol{g}), \operatorname{BoN}_{\hat{\boldsymbol{Y}}}(\boldsymbol{g})) \\ &= 2(T - n + 1 - \sum_{\boldsymbol{g}} \min(\operatorname{BoN}_{\theta}(\boldsymbol{g}), \operatorname{BoN}_{\hat{\boldsymbol{Y}}}(\boldsymbol{g}))). \end{aligned}$$

• Normalize the L₁ distance to range [0,1]

$$\mathcal{L}_{BoN}(\theta) = \frac{\text{BoN-}L_1}{2(T-n+1)}$$

- BoN-FT: fine-tune the pre-trained NAT model
- BoN-Joint: combine the BoN loss and cross-entropy loss

$$\mathcal{L}_{joint}(\theta) = \alpha \cdot \mathcal{L}_{MLE}(\theta) + (1 - \alpha) \cdot \mathcal{L}_{BoN}(\theta)$$

BoN-Joint+FT: joint training and fine-tuning

		IWSLT'16 En-De		WMT'16 En-Ro			WMT'14 En-De			
		$En \rightarrow$	speedup	secs/b	\mid En \rightarrow	$Ro \rightarrow$	speedup	$En \rightarrow$	$\mathrm{De}{ ightarrow}$	speedup
AR	b=1	28.64	$1.09 \times$	0.20	31.93	31.55	$1.23 \times$	23.77	28.15	1.13×
	b=4	28.98	$1.00 \times$	0.20	32.40	32.06	$1.00 \times$	24.57	28.47	$1.00 \times$
NAT Models	NAT-FT (Gu et al. 2017)	26.52	15.6×	_	27.29	29.06	_	17.69	21.47	_
	IRNAT(iter=2) (2018)	24.82	$6.64 \times$	_	27.10	28.15	$7.68 \times$	16.95	20.39	$8.77 \times$
	IRNAT(adaptive) (2018)	27.01	$1.97 \times$	_	29.66	30.30	$2.73 \times$	21.54	25.43	$2.38 \times$
	NAT-REG (Wang et al. 2019)	_	_	_	_	_	_	20.65	24.77	$27.6 \times$
	Reinforce-NAT (Shao et al. 2019)	25.18	$8.43 \times$	13.40	27.09	27.93	$9.44 \times$	19.15	22.52	$10.73 \times$
Our Models	NAT-Base	24.13	$8.42 \times$	0.62	25.96	26.49	$9.41 \times$	16.05	19.46	$10.76 \times$
	BoN-FT $(n=2)$	25.03	$8.44 \times$	1.41	27.21	27.95	$9.50 \times$	19.27	23.20	$10.72 \times$
	BoN-Joint (n =2, α =0.1)	25.63	$8.39 \times$	1.49	28.12	29.03	$9.44 \times$	20.75	24.47	$10.79 \times$
	BoN-Joint+FT (n =2, α =0.1)	25.72	$8.40 \times$	1.41	28.31	29.29	$9.51 \times$	20.90	24.61	$10.77 \times$

- 1. BoN-FT outperforms Reinforce-NAT: faster and better
- 2. BoN-Joint achieves considerable improvements over BoN-FT
- 3. BoN-Joint+FT achieves about 5 BLEU improvements on WMT14 EN<->DE

- The correlation between BoN difference and translation quality?
 - WMT14 En->De dev set, randomly divide the 3000 sentences to 30 groups of size 100
 - Calculate the cross-entropy loss, BoN-L₁ loss and BLEU score on each group
 - The pearson correlation between BLEU score and losses:

Loss function	CE	n=1	n=2	n=3	n=4
Correlation	0.37	0.56	0.70	0.67	0.61

- The effect of sentence length?
- Divide the devset evenly to short and long sentences
- Calculate the correlation on each part
- Performance of the cross-entropy loss drops sharply, where the BoN loss is robust to long sentences

	all	short	long
Cross-Entropy	0.37	0.52	0.21
BoN (n=2)	0.70	0.79	0.81

- WMT14 En->De dev set
- BLEU performance on different length buckets

Thanks