三端变阻器实验报告

自动化系

李昭阳 2021013445

本次实验使用了万用表15028054、台式万用表16044694、电路实验箱11029492、直流电源21039189。并采用如下电路原理图 $^{[1]}$ 进行了四组不同负载电阻(R_{fz})条件下,负载电压(U_{fz})与三端变阻器并联入负载端的阻值(R_2)的关系。

由于此电路图所示实际电路在较小负载电阻($R_{fz}=100\,\Omega$)时三端变阻器调压效果不理想,故采用改进电路图 $^{[2]}$ 如下。

进行电路的改进后,不仅获得了更好的调压效果,还使得所绘制图像的线性性更强。 (详见实验结果与数据分析)

	R_{fz}/Ω U_{fz}/V	0	100	200	300	400	500	600	700	800	900	1000
ĺ	ω	0.00	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
ſ	10k	0.00	0.20	0.39	0.59	0.78	0.98	1.17	1.37	1.58	1.78	2.00
	1k	0.00	0.18	0.35	0.50	0.65	0.80	0.97	1.15	1.38	1.65	2.00
	100	0.00	0.10	0.15	0.19	0.24	0.29	0.35	0.45	0.62	0.95	2.00
ſ	100(改讲)	0.00	0.71	0.85	0.92	0.96	1.00	1.03	1.07	1.14	1.28	2.00

本次实验的原始数据

在本次实验过程中,三端变阻器各档位电阻差为 $100\,\Omega$,最大电阻为 $1000\,\Omega$ 。同时,三端变阻器在与电源相连的两端始终保持 $U_s=2V$,故对其进行归一化处理得到如下结果。

R_2/R_0 R_{fz}/Ω U_{fz}/U_s	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
ω	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
10k	0.00	0.10	0.20	0.30	0.39	0.49	0.59	0.69	0.79	0.89	1.00
1k	0.00	0.09	0.18	0.25	0.33	0.40	0.49	0.58	0.69	0.83	1.00
100	0.00	0.05	0.08	0.10	0.12	0.15	0.18	0.23	0.31	0.48	1.00
100(改进)	0.00	0.36	0.43	0.46	0.48	0.50	0.52	0.54	0.57	0.64	1.00

原始数据的归一化处理

对归一化后的数据进行曲线拟合(拟合曲线不经过所有数据点),得到如下曲线。

由图可知,为使调压特性在 $R_2/R_0=0.5$ 时, $U_{\rm fz}/U_{\rm s}>0.4$, $R_{\rm fz}/R_0>1.0$ 。其理论推导如下:

干路电流
$$I = \frac{U_s}{R_1 + \frac{R_2 R_{f^2}}{R_2 + R_{f^2}}}$$
,又因为 $R_2/R_0 = 0.5$,所以

$$rac{U_s}{U_f z} = rac{R_2 R_f z}{R_0 (R_f z + R_2) - R_2^2}$$

又因为 $U_{fz}/U_{s}>0.4$,则上式>0.4,解得 $R_{fz}/R_{0}>1$

实验结论

改进前电路

此类电路对于大负载 $(R_{fz}/R_0 \ge 10)$ 有较好的调压性能,即当负载端趋近于断路时, U_{fz}/U_s 与 R_2/R_0 成近似的线性关系,且趋向程度越大,线性关系越明显。

当负载变为小电阻时($R_{fz}/R_0 \leq 0.1$),若 $R_2/R_0 > 0.3$,则调压对改变 U_{fz} 的作用不明显,解决此类问题可以选用改进的电路。

改进后电路

此类电路对小负载($R_{fz}/R_0 \leq 0.1$)调压效果较改进前更好,其原理是通过电桥将误差分散到了前后两部分,故对 $R_2/R_0 \geq 0.3$ 的部分有更好的调压性能。

但本电路在 $R_2/R_0<0.3$ 时调压效果较差,同时当 R_2 趋向于0时,其线性性丢失严重,调压特性较改进前电路差。

思考题

1. 对于改进前电路,由前文(实验结果与数据分析)推导可知,

$$rac{U_s}{U_f z} = rac{R_2 R_f z}{R_0 (R_f z + R_2) - R_2^2}$$

则令
$$x = U_{fz}/U_{s}$$
, $y = R_{2}/R_{0}$, $k = R_{fz}/R_{0}$,

$$y_{\dot{\mathbb{H}}}=rac{kx}{-x^2+x+k}$$

对其求微分可得,

$$rac{\mathrm{d}\mathrm{y}_{ec{\mathbb{H}}}}{\mathrm{d}x} = rac{kx^2 + k^2}{(-x^2 + x + k)^2}$$

对于改进后的电路,

$$rac{U_s}{U_f z} = rac{rac{R_2 R_f z}{R_f z + R_2}}{rac{R_2 R_f z}{R_f z + R_2} + rac{R_1 R}{R_1 + R}}$$

引入x, y, k,

$$y_{ ext{fi}} = rac{-x^2 + (k+1)x}{-2x^2 + 2x + k}$$

对其求微分可得,

$$rac{\mathrm{dy}_{ extstyle is}}{\mathrm{d}x} = rac{2kx^2 - 2kx + k^2 + k}{(-2x^2 + 2x + k)^2}$$

对前后进行绘图,得

由于两个曲线在趋近于0和1时变化量过大,将 $x \in [0.1, 0.8]$ 的区域放大进行绘图,得,

斜率的稳定程度代表 $U_{\rm fz}/U_{\rm s}$ 与 R_2/R_0 的线性程度,线性程度越高,代表调压效果越好。由图可知,与改进前的方案相比,改进后的方案在 R_2/R_0 趋向于0或1时调压效果较差,在 R_2/R_0 \in [0.3, 0.9]时调压效果较好。

2. 由实验数据图可得,对于改进前电路而言, $R_{\rm fz}/R_0$ 越大时调压效果越好,所以为获得实用的调压效果,应当尽量使 $R_{\rm fz}/R_0$ 趋近于无穷。

(以上两个思考题在实验结论部分已做过更为详细的解释)

创新性思考

1. 若调压效果不理想,是否有比改进型电路更为优越的电路选择?

在微电子电路的层面上可以引入电压跟随器,在负反馈的作用下, R_2 改变不会使得干路总电阻变化(恒为 R_0),电压跟随器输出的电压与电源电压的比值($U_{\rm fz}/U_{\rm s}$)与 R_2/R_0 相等。

创新型电路的更大优势在于其电源内阻的分压始终不变,故在实验过程中可以避免对电压源的不断调整。

理论推导

假设 $R_2/R_0 = a$,

$$I_{\mp}=rac{U_s}{R_0}$$

则计算R2分得的电压得,

$$U_2 = \frac{R_2}{R_0} U_s$$

又因为 $U_2 = U_{fz}$,所以,

$$U_{fz}=rac{R_2}{R_0}U_s=aU_s$$

即,

$$rac{U_f z}{U_s} = rac{R_2}{R_0} = a$$

创新型电路图

创新型电路图

4、8端接入另一个外加电源(在本图中对主电路无影响故省略)

实验感悟

通过本次实验,我了解了三端变阻器调压效果与R_{fz}/R₀的关系,这将为我今后选用变阻器提供实验理论依据。同时我还通过改进电路了解了电路改进的思维方式,并且在微电子电路层面上创新出了自己对三端变阻器的改进方法。整体上,这次实验提升了我对电路原理的认识且锻炼了我创新性的思维,很有意义与趣味。

但在本次实验过程中出现过一些小失误。首先我事先对实验精度没有准确的估计,最开始时将数据精确至小数点后五位,造成了没有必要的运算,降低了效率。然后在实验初期也出现过思维的错误,如将(U_s-U_2)认定为 U_{fz} (事实上 $U_{fz}=U_2$)。这些问题很快被我发现并进行了解决,但仍应提出自我批评以确保下次实验顺利进行。

参考与引用

- [1]《电路原理实验——三端变阻器》,李臻,2022
- [2]《电路原理实验——三端变阻器》,李臻,2022

附录: 原始数据手写记录

