Els logaritmes

Potències de 10

```
0.0001 0.001 0.01 0.1 1 10 100 1000 10000 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4}
```



```
log 0.0001 log 0.001 log 0.01 log 0.1 log 1 log 10 log 100 log 1000 log 1000 
-4 -3 -2 -1 0 1 2 3 4
```

Per exemple, $\log 0.01 = -2$

Potències de 2

1	2	4	8	16	32	64	128	256	512	1024
20	21	2 ²	2 ³	24	2 ⁵	26	2^{7}	28	29	210

log ₂ 1	log ₂ 2	log ₂ 4	log ₂ 8	log ₂ 16	log ₂ 32	log ₂ 64	log ₂ 128	log ₂ 256	log ₂ 512	log ₂ 1024
0	1	2	3	4	5	6	7	8	9	10

Per exemple, $log_2 512 = 9$

Definició de logaritme

$$\log_b a = x$$

$$b^x = a$$

Exemples:

$$log_2 8 = 3$$

$$2^3 = 8$$

$$log_3 81 = 4$$

$$3^4 = 81$$

$$\log_{1/2} 1 = 0$$

$$(1/2)^0 = 1$$

$$log_5 5 = 1$$

$$5^1 = 5$$

El logaritme existeix si a>0, b>0.

Amb la calculadora

Tenim dues tecles, log i In

El logaritme decimal

 $log a = log_{10} a$ té base 10

El logaritme Neperià

In a = log_e a té base el número e

Per logaritmes amb altre base

Fórmula del canvi de base

$$\log_2 8 = \frac{\log 8}{\log 2} = 3$$

Dos tipus d'equacions

Equacions amb potències

$$x^3 = 1000$$

La incògnita està en la base

Equacions amb exponencials

$$10^x = 1000$$

La incògnita està en l'exponent

Dos tipus d'equacions

Equacions amb potències

$$x^3 = 1000$$

La incògnita està en la base

Es resolen amb Radicals

Equacions amb exponencials

$$10^x = 1000$$

La incògnita està en l'exponent

Es resolen amb Logaritmes

Dos tipus d'equacions

Equacions amb potències

$$x^3 = 1000$$

La incògnita està en la base

Es resolen amb Radicals

$$x = \sqrt[3]{1000} = 10$$

Equacions amb exponencials

$$10^x = 1000$$

La incògnita està en l'exponent

Es resolen amb Logaritmes

$$x = \log_{10} 1000 = 3$$

Equacions exponencials

Resol
$$2 \cdot 7^x = 100$$

1. Aïllam l'exponencial

$$7^x = \frac{100}{2} \qquad 7^x = 50$$

2. Resolem aplicant la definició de logaritme

$$7^x = 50 \qquad \qquad x = \log_7 50$$

3. Calculam el valor amb la calculadora

$$x = \log_7 50 = \frac{\log 50}{\log 7} = 2.01038$$

Aplicacions dels logaritmes

Els logaritmes s'utilitzen en ...

- Mesura de la intensitat del renou dB (decibels)
- Intensitat dels terratrèmols (Escala de Richter)
- Grau d'acidesa d'una substància (el pH)
- Representació de gràfics en escala logarítmica
- etc...

Vegeu el vídeo:

https://www.youtube.com/watch?v=dIQv-dWbppo