SET COVERING MACHING FOR SNPS DISCOVERY

Vivien Goepp

March, 23rd 2020 CBIO Meeting 1. Short reminder on GWAS

Goal of Genome-wise association studies (GWAS)

- Goal: Discover gene mutations linked to a disease.
- GWAS will not provide: causality relations or biological understanding of a disease.
- Applications to common diseases:
 - ▶ Inflammatory Bowel Diseases
 - ► Auto-immune diseases
 - ► Metabolic diseases (T2 diabetes, obesity, BMI)
 - Multiple sclerosis
 - ► Cancer

The CD/CV hypothesis

- Common diseases are partly caused by common variants
- Consequence: each mutation can only have a *small effect*

Allele Frequency

Source: Bush et al (2012)

Linkage disequilibrium

 $Linkage\ disequilibrium\ (LD):$ correlation between close-by alleles on the genome

Source: Bush et al (2012)

Linkage disequilibrium

Idea of using single nucleotide polymorphisms (SNPs):

- SNP: Single nucleotide polymorphism
- There are many high-LD blocks on the genome
- We can use SNPs as markers of an LD block

GWAS

- Gather $n \sim 10^3$ individuals
- Observe the phenotype:
 - ► quantitative (BMI, cholesterol, height)
 - ▶ or qualitative (case-control for common disease).
- Observe the genotype of $p \sim 10^6 \text{ SNPs}$

- Gather $n \sim 10^3$ individuals
- Observe the phenotype:
 - ► quantitative (BMI, cholesterol, height)
 - ▶ or qualitative (case-control for common disease).
- Observe the genotype of $p \sim 10^6 \text{ SNPs}$

Source: Ikram et al (2010)

Epistasis and interactions between SNPs

• Epistasis: "The masking of the effects of one variant by another" (Bateson 1909).

Epistasis and interactions between SNPs

- Epistasis: "The masking of the effects of one variant by another" (Bateson 1909).
- Examples

Examples of biological causes for epistasis (Source: Lehner 2011)

Epistasis and interactions between SNPs

- Epistasis: "The masking of the effects of one variant by another" (Bateson 1909).
- Examples

Examples of biological causes for epistasis (Source: Lehner 2011)

- The genetic mutations are in interaction
- Need to consider SNPs jointly

We do feature selection with:

•
$$\frac{p}{n} \sim 1000$$

We do feature selection with:

- $\frac{p}{n} \sim 1000$
- Correlation between features (SNPs)

We do feature selection with:

- $\frac{p}{n} \sim 1000$
- Correlation between features (SNPs)
- Interaction between features

We do feature selection with:

- $\frac{p}{n} \sim 1000$
- Correlation between features (SNPs)
- Interaction between features

Very small statistical power

2. Set covering machines for SNPs discovery

Encoding of SNP alleles

Each SNP has value $\in \{aa, aA, AA\}$.

Genotype	Dominant	Recessive	Allelic dosage	One-hot
aa	0	0	0	100
aA	1	0	1	010
AA	1	1	2	001

Encoding of SNP alleles

Each SNP has value $\in \{aa, aA, AA\}$.

Genotype	Dominant	Recessive	Allelic dosage	One-hot
aa	0	0	0	100
aA	1	0	1	010
AA	1	1	2	001

We will use one-hot encoding \rightarrow binary features

Setting of the set covering machine (SCM)

- $y_i \in \{0, 1\}$ (case/control GWAS)
- $x_{i,j} \in \{0,1\}$ (one-hot encoding)
- $p \gg n$ with true model assumed to be $very\ sparse$

Setting of the set covering machine (SCM)

- $y_i \in \{0, 1\}$ (case/control GWAS)
- $x_{i,j} \in \{0,1\}$ (one-hot encoding)
- $p \gg n$ with true model assumed to be very sparse

• SCM learns a boolean function of the features:

$$f(\mathbf{x}) = \bigwedge_{j \in \mathcal{R}} h_j(\mathbf{x}),$$

where $\mathcal{R} \in \text{is the set of rules to learn.}$

• Here a rules h_j is the one-hot encoding of a SNP.

Setting of the set covering machine (SCM)

- $y_i \in \{0, 1\}$ (case/control GWAS)
- $x_{i,j} \in \{0,1\}$ (one-hot encoding)
- $p \gg n$ with true model assumed to be very sparse

• SCM learns a boolean function of the features:

$$f(\mathbf{x}) = \bigwedge_{j \in \mathcal{R}} h_j(\mathbf{x}),$$

where $\mathcal{R} \in \text{is the set of rules to learn.}$

- Here a rules h_j is the one-hot encoding of a SNP.
- SCM only learns a conjunction of SNPs to explain the phenotype.

Haussler algorithm:

- Assume there is a combination of features that perfectly classifies the dataset: $\mathbf{y} = \bigwedge_{j \in \mathcal{R}} h_j$
- How to find the sparsest possible combination of features?
- Only consider rules that correctly classify *all* positive examples $(y_i = 1)$.

• Example: what conjunction of h_j s equals \mathbf{y} ?

	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
$\mathcal N$	0	1	0	0	1
(negative examples)	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	1	1	1
(positive examples)	1	1	1	1	1

• Example: what conjunction of h_j s equals \mathbf{y} ?

	\mathbf{y}	h_1	h_2	h_3	h_4	$h_2 \wedge h_3$
	0	0	0	1	1	0
٨٢	0	1	0	0	1	0
JV	0	1	1	0	0	0
	0	1	1	1	0	0
T)	1	1	1	1	1	1
Ρ	1	1	1	1	1	1

• Example: what conjunction of h_j s equals \mathbf{y} ?

	\mathbf{y}	h_1	h_2	h_3	h_4	$h_2 \wedge h_3$
	0	0	0	1	1	0
٨٢	0	1	0	0	1	0
<i>J</i> V	0	1	1	0	0	0
	0	1	1	1	0	0
D	1	1	1	1	1	1
P	1	1	1	1	1	1

• Smallest number of sets $\{1\}$, $\{1,2\}$, $\{2,3\}$, $\{3,4\}$ whose union is $\{1,2,3,4\}$.

• Example: what conjunction of h_j s equals \mathbf{y} ?

	\mathbf{y}	h_1	h_2	h_3	h_4	$h_2 \wedge h_3$
	0	0	0	1	1	0
۸.	0	1	0	0	1	0
JV	0	1	1	0	0	0
	0	1	1	1	0	0
	1	1	1	1	1	1
P	1	1	1	1	1	1

- Smallest number of sets $\{1\}$, $\{1,2\}$, $\{2,3\}$, $\{3,4\}$ whose union is $\{1,2,3,4\}$.
- This is the set cover problem (NP hard)

• Example: what conjunction of h_j s equals \mathbf{y} ?

	\mathbf{y}	h_1	h_2	h_3	h_4	$h_2 \wedge h_3$
	0	0	0	1	1	0
۸.	0	1	0	0	1	0
JV	0	1	1	0	0	0
	0	1	1	1	0	0
	1	1	1	1	1	1
P	1	1	1	1	1	1

- Smallest number of sets $\{1\}$, $\{1,2\}$, $\{2,3\}$, $\{3,4\}$ whose union is $\{1,2,3,4\}$.
- This is the set cover problem (NP hard)
- \bullet We use a greedy approach

Set covering machine

We choose the rule with maximum usefulness:

$$U_h = |\mathcal{A}_h| - q|\mathcal{B}_h|,$$

 \mathcal{A}_h : negative examples correctly classified \mathcal{B}_h : positive examples uncorrectly classified

Set covering machine

We choose the rule with maximum usefulness:

$$U_h = |\mathcal{A}_h| - q|\mathcal{B}_h|,$$

 \mathcal{A}_h : negative examples correctly classified \mathcal{B}_h : positive examples uncorrectly classified

- We allow errors on positive examples
- q controls this error

	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
٨٢	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
	1	1	0	1	1
\mathcal{P}	1	1	0	0	1

	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
\mathcal{N}	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
———	1	1	0	1	1
P	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2

	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
$\Lambda /$	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
r	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0

	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
٨٢	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
P	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	0	1	2

	\mathbf{y}	h_1	h_2	h_3	h_4
	0	0	0	1	1
٨٢	0	1	0	0	1
<i>J</i> V	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
P	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	0	1	2

•
$$\mathcal{R} \leftarrow \{h_4\}$$

	\mathbf{y}	h_1	h_2	h_3	h_4
N	0	0	0	1	1
	0	1	0	0	1
	0	1	1	0	0
	0	1	1	1	0
$\overline{\mathcal{P}}$	1	1	0	1	1
	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	0	1	2

- $\mathcal{R} \leftarrow \{h_4\}$ $\mathcal{N} \leftarrow \mathcal{N} \setminus \mathcal{A}_{h_4}$

	\mathbf{y}	h_1	h_2	h_3	h_4
N	0	0	0	1	1
	0	1	0	0	1
	0	1	1	0	0
	0	1	1	1	0
\mathcal{P}	1	1	0	1	1
	1	1	0	0	1
	$ \mathcal{A}_h $	1	2	2	2
	$ \mathcal{B}_h $	0	2	1	0
	\mathcal{U}_h	1	0	1	2

- $\mathcal{R} \leftarrow \{h_4\}$
- $\mathcal{N} \leftarrow \mathcal{N} \setminus \mathcal{A}_{h_4}$
- $\mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{B}_{h_4}$

	\mathbf{y}	h_1	h_2	h_3
Λ.	0	0	0	1
JV	0	1	0	0
\mathcal{P}	1	1	0	1
P	1	1	0	0

	\mathbf{y}	h_1	h_2	h_3
\mathcal{N}	0	0	0	1
	0	1	0	0
\mathcal{P}	1	1	0	1
	1	1	0	0
	$ \mathcal{A}_h $	1	2	1

	\mathbf{y}	h_1	h_2	h_3
\mathcal{N}	0	0	0	1
	0	1	0	0
$\overline{\mathcal{P}}$	1	1	0	1
	1	1	0	0
	$ \mathcal{A}_h $	1	2	1
	$ \mathcal{B}_h $	0	2	1

	\mathbf{y}	h_1	h_2	h_3
\mathcal{N}	0	0	0	1
	0	1	0	0
\mathcal{P}	1	1	0	1
,	1	1	0	0
	$ \mathcal{A}_h $	1	2	1
	$ \mathcal{B}_h $	0	2	1
	\mathcal{U}_h	1	0	1

Stopping criteria

- We have finished the job: $\mathcal{N} = \emptyset$
- Early stopping: $|\mathcal{R}| \geq s$ with parameter $s \geq 1$
- There remains only useless rules: $|A_h| = |B_h| = 0$

Computation time

- Each greedy step is fast to compute:
 - ▶ Let $\mathcal{I}_{\mathcal{N}}$ be the (current) indices of the negative examples.
 - ▶ $|A_h| = |I_N| \sum_{i \in I_N} x_{i,j}$ if h is the presence rule of feature j
 - Similar for $|\mathcal{B}_h|$.

Computation time

- Each greedy step is fast to compute:
 - ▶ Let $\mathcal{I}_{\mathcal{N}}$ be the (current) indices of the negative examples.
 - \blacktriangleright $|\mathcal{A}_h| = |\mathcal{I}_{\mathcal{N}}| \sum_{i \in \mathcal{I}_{\mathcal{N}}} x_{i,j}$ if h is the presence rule of feature j
 - Similar for $|\mathcal{B}_h|$.
- Overall complexity $\mathcal{O}(|\mathcal{R}|ns)$

Computation time

- Each greedy step is fast to compute:
 - ▶ Let $\mathcal{I}_{\mathcal{N}}$ be the (current) indices of the negative examples.
 - $|\mathcal{A}_h| = |\mathcal{I}_{\mathcal{N}}| \sum_{i \in \mathcal{I}_{\mathcal{N}}} x_{i,j}$ if h is the presence rule of feature j
 - Similar for $|\mathcal{B}_h|$.
- Overall complexity $\mathcal{O}\left(|\mathcal{R}|ns\right)$
- Limited memory usage

Upper bound on the risk (1/2)

 ${
m SCM}$ is a sample compression algorithm

- Given a model f learnt by an SCM, there exist
 - ▶ a set of individuals $\mathcal{Z} \in \{1, \dots, n\}$
 - a message string σ containing additional information, such that h can be reconstructed from \mathcal{Z} .

Upper bound on the risk (1/2)

SCM is a sample compression algorithm

- Given a model f learnt by an SCM, there exist
 - ▶ a set of individuals $\mathcal{Z} \in \{1, \dots, n\}$
 - \blacktriangleright a message string σ containing additional information, such that h can be reconstructed from \mathcal{Z} .
- Then there exists a bound on the risk

$$R(h) = \mathbb{E}_{(\mathbf{x},y) \sim D} \left[\mathbb{1}_{f(\mathbf{x}) \neq y} \right].$$

Upper bound on the risk (1/2)

 ${
m SCM}$ is a sample compression algorithm

- Given a model f learnt by an SCM, there exist
 - ▶ a set of individuals $\mathcal{Z} \in \{1, \dots, n\}$
 - \blacktriangleright a message string σ containing additional information, such that h can be reconstructed from \mathcal{Z} .
- Then there exists a bound on the risk

$$R(h) = \mathbb{E}_{(\mathbf{x},y)\sim D} \left[\mathbb{1}_{f(\mathbf{x})\neq y}\right].$$

• Marchand and Sokolova (2006) established that:

$$\mathbb{P}\left(\forall S \sim D, \forall h, R(h) \leq \varepsilon(h, S, \delta)\right) \geq 1 - \delta$$

- ε depends on \mathcal{Z} and the of classif. errors made on $S \setminus \mathcal{Z}$.
- ε does not depend on p.

Upper bound on the risk (2/2)

Consequences:

- The bound does not depend on p: theoretical performance guarantee
- It can be used for hyperparameter selection (Marchand et Shawe-Taylor, 2002).

Conclusion

- Set covering machine
 - ▶ learns a boolean conjunction of SNPs
 - ► runs fast
 - does not suffer from $p \gg n$
- However there are other issues:
 - ▶ Many SNPs can have same U_h : which one to choose?
 - Only conjunctions of SNPs

THANK YOU

References

- SCM: Marchand, M. and Shawe-Taylor, J., The set covering machine, JMLR, 2002
- Risk bound for SCM: Marchand, M and Sokolova, M., Learning with Decision Lists of Data-Dependent Features, JMLR, 2005
- GWAS: Bush, W, Moore, J., Lewitter, F., and Kann, M., *Chapter* 11: Genome-Wide Association Studies, Plos Comp. Biol., 2012
- Epistasis: Lehner, B., Molecular mechanisms of epistasis within and between genes, Trends in Gen., 2011

Appendix: Sample compression bound

$$\varepsilon(h, S, \delta) = 1 - \exp\left(\frac{-1}{n - |\mathcal{Z}| - r} \left[\log\binom{m}{|\mathcal{Z}|} + \log\binom{m - |\mathcal{Z}|}{r}\right] + \left|h|\log(2\mathcal{N}(\mathcal{Z})) + \log\Omega\right]\right)$$

- with $\Omega = \frac{\pi^6(|h|+1)^2(r+1)^2(|\mathcal{Z}|+1)^2}{216\delta}$,
- where r is the number of classif. errors on $S \setminus \mathcal{Z}$.