

Clasificación de Neumonía en Imágenes de RayosX

Esta presentación describe los resultados de un proyecto de clasificación de imágenes de rayos X de tórax para detectar neumonía utilizando redes neuronales convolucionales.

by Pedro Alejandro Bestard Hernández

Problema de Estudio

La neumonía es una infección respiratoria común que afecta los pulmones. La detección temprana es crucial para un tratamiento efectivo.

Diagnóstico Preciso

La clasificación de imágenes de rayos X puede ayudar a los médicos a diagnosticar la neumonía de manera más rápida y precisa.

Intervención Temprana

La detección temprana permite una intervención médica oportuna, lo que puede mejorar los resultados del paciente.

Conjunto de Datos

El conjunto de datos utilizado en este proyecto consistió en imágenes de rayos X de tórax de pacientes con y sin neumonía.

Número de Imágenes

El conjunto de datos de entrenamiento incluye 5,232 imágenes de rayos X, con 3,883 imágenes de casos de neumonía y 1,349 imágenes de casos saludables. El conjunto test cuenta con 624 imágenes en total.

Origen de Datos

Las imágenes fueron obtenidas de Kaggle y es un dataset del 2018 liberado para estudios de investigación.

Preprocesamiento

Las imágenes se preprocesaron para estandarizar dimensiones, ajustar escala numérica y generar nuevas imágenes a partir de pequeñas perturbaciones (data augmentation)

Arquitectura del Modelo

El modelo utilizado fue una red neuronal convolucional (CNN) diseñada para la clasificación de imágenes médicas.

1

3 Capas de Convolución

Las capas convolucionales extraen características de las imágenes, como bordes y texturas.

2

2 Capas de Agrupación (Poooling)

Las capas de agrupación reducen el tamaño de las características, mejorando la eficiencia computacional.

3

Funciones de Activación (relu y sigmoid al final)

Las funciones de activación introducen no linealidad al modelo, mejorando su capacidad para aprender patrones complejos.

Clasificación

4

La capa final del modelo predice la probabilidad de que una imagen corresponda a una clase de neumonía o salud.

```
model = Sequential()

model.add(Conv2D(filters=32, kernel_size=3, input_shape=image_shape, activation='relu',))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(filters=64, kernel_size=3, activation='relu',))
model.add(Conv2D(filters=64, kernel_size=3, activation='relu',))
model.add(MaxPooling2D(pool_size=2))
model.add(Flatten())
model.add(Dense(128))
model.add(Dense(128))
model.add(Dropout(0.5))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Convance(1))
model.add(Dense(1))
model.add(Convance(1))
model.ad
```

El entrenamiento se comportó muy bien y se descarta sobreajuste dadas las métricas obtenidas:

Accuracy: 0.926

Val_Accuracy: 0.8878

Validación y Conclusiones

El modelo logró una alta precisión en la clasificación de imágenes de rayos X para detectar neumonía aunque si se contara con más recursos computacionales se pudieran probar arquitecturas más complejas (pre diseñadas quizás) y además entrenar con mayor resolución en las imágenes buscando optimizar la clasificación.

	Precisión	Recall	F1-Score
O (Sano)	0.95	0.67	0.78
1 (Neumonía)	O.83	O.98	O.9
Accuracy			0.86