Probabilidade e Estatística Aula 3 – Convergência estocástica

Luis A. F. Alvarez

1 de fevereiro de 2025

VETORES ALEATÓRIOS

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade.
- Um vetor aleatório $\mathbf{Y}: \Omega \mapsto \mathbb{R}^k$ é uma função tal que cada coordenada $\mathbf{Y}_I: \Omega \mapsto \mathbb{R}, \ I=1,\ldots,k$, é uma variável aleatória real.
- Um vetor aleatório induz uma distribuição de probabilidade sobre $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$, dada por $\mathbb{P}_{\mathbf{Y}}[B] = \mathbb{P}[\mathbf{Y}^{-1}(A)]$, $A \in \mathcal{B}(\mathbb{R}^k)$.
- Pelo lema do π -sistema, essa distribuição de probabilidade é carectarizada pela função de distribuição $F_Y: \mathbb{R}^k \mapsto [0,1]$, dada por:

$$F_{Y}(c) := \mathbb{P}_{Y}\left[\prod_{l=1}^{k}(-\infty, c_{k}]\right], \quad c \in \mathbb{R}^{k}.$$

Convergência quase-certa

- Seja $(\Omega, \Sigma, \mathbb{P})$ um espaço de probabilidade, e $\mathbf{Y}_1, \mathbf{Y}_2, \ldots$ uma sequência de vetores aleatórios.
- Dizemos que Y_n converge quase-certamente para um vetor aleatório Y, denotado por $Y_n \stackrel{\text{q.c.}}{\to} Y$, se:

$$\mathbb{P}[\{\omega: \mathbf{Y}_n(\omega) \nrightarrow \mathbf{Y}(\omega)\}] = 0.$$

- Sequência de funções \boldsymbol{Y}_n convergem (ponto a ponto), a não ser num conjunto de pontos de probabilidade zero.

LEMA

 $\mathbf{Y}_n \overset{q.c.}{\to} \mathbf{Y}$ se, e somente se, para todo $\epsilon > 0$:

$$\mathbb{P}\left[\limsup_{n}\{\omega:\|\boldsymbol{Y}_{n}(\omega)-\boldsymbol{Y}(\omega)\|>\epsilon\}\right]=0.$$

Convergência em probabilidade

- Dizemos que \mathbf{Y}_n converge em probabilidade para um vetor aleatório \mathbf{Y} , denotado por $\mathbf{Y}_n \overset{p}{\to} \mathbf{Y}$, se, para todo $\epsilon > 0$:

$$\lim_{n\to\infty} \mathbb{P}\left[\left\{\omega: \|\boldsymbol{Y}_n(\omega) - \boldsymbol{Y}(\omega)\| > \epsilon\right\}\right] = 0.$$

LEMA

Se $\mathbf{Y}_n \stackrel{q.c.}{\to} \mathbf{Y}$, então $\mathbf{Y}_n \stackrel{p}{\to} \mathbf{Y}$.

Convergência em distribuição

- Dizemos que \mathbf{Y}_n converge em distribuição para um vetor aleatório \mathbf{Y} , denotado por $\mathbf{Y}_n \overset{d}{\to} \mathbf{Y}$, se as funções de distribuição dos \mathbf{Y}_n , $\{F_{\mathbf{Y}_n}\}_{n\in\mathbb{N}}$, convergem para a função de distribuição $F_{\mathbf{Y}}$ nos pontos em que $F_{\mathbf{Y}}$ é contínua.
 - Isto é, $\lim_n F_{Y_n}(c) = F_{Y}(c)$ para todo c em que F_{Y} é contínua.
 - Conjunto de pontos em que uma função de distribuição é descontínua é enumerável \Longrightarrow se há convergência em distribuição, então, para qualquer $c \in \mathbb{R}^k$, é sempre possível encontrar um $c' \geq c$ em que a função de distribuição converge.

LEMA

Se $\mathbf{Y}_n \stackrel{p}{\to} \mathbf{Y}$, então $\mathbf{Y}_n \stackrel{d}{\to} \mathbf{Y}$.

Lema (Trecho do Lema Portmanteau)

 $\mathbf{Y}_n \stackrel{d}{ o} \mathbf{Y}$ se, e somente se, para qualquer $f: \mathbb{R}^k \mapsto \mathbb{R}$ contínua e limitada.

$$\mathbb{E}[f(\mathbf{Y}_n)] \to \mathbb{E}[f(\mathbf{Y})].$$

Convergência em L^p

- Dizemos que \boldsymbol{Y}_n converge para um vetor aleatório \boldsymbol{Y} na norma L^p , denotado por $\boldsymbol{Y}_n \overset{L_p}{\to} \boldsymbol{Y}$, se $\|\boldsymbol{Y}_n \boldsymbol{Y}\|_p \to 0$.
- Pela desigualdade de Markov, convergência em L_p implica convergência em probabilidade.
 - Recíproca não é, no geral, verdadeira.

TEOREMA DO MAPA CONTÍNUO

TEOREMA

Seja $(\boldsymbol{X}_n)_n$ uma sequência de vetores aleatórios, \boldsymbol{X} um vetor aleatório, e $f: \mathbb{R}^k \mapsto \mathbb{R}^l$ uma função contínua num conjunto C do domínio tal que: $\mathbb{P}[\{\omega: \boldsymbol{X}(\omega) \in C\}] = 1$. Então:

- 1. $\mathbf{X}_n \stackrel{q.c.}{\to} \mathbf{X} \implies f(\mathbf{X}_n) \stackrel{q.c.}{\to} f(\mathbf{X}).$
- 2. $\mathbf{X}_n \stackrel{p}{\to} \mathbf{X} \implies f(\mathbf{X}_n) \stackrel{p}{\to} f(\mathbf{X})$.
- 3. $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X} \implies f(\mathbf{X}_n) \stackrel{d}{\to} f(\mathbf{X}).$
 - Modos de convergência quase certa, em probabilidade e distribuição são preservados por transformações contínuas.

RESULTADOS ADICIONAIS E LEMA DE SLUTSKY

LEMA

- 1. Se $X_n \stackrel{d}{\to} X$ e $||X_n Y_n|| \stackrel{p}{\to} 0$, então $Y_n \stackrel{d}{\to} X$.
- 2. Se $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{p}{\to} c$, onde $c \in \mathbb{R}^k$ é constante, então $(X_n, Y_n) \stackrel{d}{\to} (X, c)$.
- 3. Se $X_n \stackrel{p}{\to} X$ e $Y_n \stackrel{p}{\to} Y$, então $(X_n, Y_n) \stackrel{p}{\to} (X, Y)$.

COROLÁRIO (LEMA DE SLUTSKY)

Sejam $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{p}{\to} c$, duas sequências de variáveis aleatórias ou vetores aleatórios, onde c é constante, então:

- $X_n + Y_n \stackrel{d}{\rightarrow} X + c$.
- $X_n \cdot Y_n \stackrel{d}{\to} X \cdot c$.
- Se $c \neq 0$, $X_n/Y_n \stackrel{d}{\rightarrow} X/c$.

Notação O e o para sequências não estocásticas

- Sejam $(x_n)_n$ e $(y_n)_n$ duas sequências de **números reais**.
- Dizemos que $x_n = o(y_n)$ se $\lim_{n \to \infty} \frac{x_n}{y_n} = 0$.
- Dizemos que $x_n = O(y_n)$ se existem C > 0 e $K \in \mathbb{N}$ tais que: $|x_n| \le C|y_n|$, para todo $n \ge K$.
 - Nesse caso, a razão $\frac{x_n}{y_n}$ é limitada.

Notação O_p e o_p para sequências estocásticas

- Sejam X_n e Y_n sequências de variáveis aleatórias.
- Dizemos que $X_n = o_p(Y_n)$ se $\frac{X_n}{Y_n} \stackrel{P}{\to} 0$.
- Dizemos que $X_n=O_p(Y_n)$ se, para todo $\epsilon>0$, existem M>0 e $K\in\mathbb{N}$ tais que:

$$\mathbb{P}[|X_n| > M|Y_n|] \le \epsilon, \forall n \ge K.$$

- Nesse caso, dizemos que $\left| \frac{X_n}{Y_n} \right|$ é limitada em probabilidade.

Notação O_p e o_p : propriedades

LEMA

- $-o_p(1) + o_p(1) = o_p(1).$
- $o_p(1) + O_p(1) = O_p(1)$.
- $O_p(1)o_p(1) = o_p(1)$.
- $-\frac{1}{(1+o_{P}(1))}=O_{P}(1)$
- $o_p(Y_n) = Y_n o_p(1)$.
- $O_p(Y_n) = Y_n O_p(1).$
- $o_p(O_p(1)) = o_p(1)$.
- Se X_n converge em distribuição, $X_n = O_p(1)$.
- Seja $\phi : \mathbb{R}^k \mapsto \mathbb{R}$ uma função tal que $\phi(\mathbf{0}) = 0$. Se $X_n \stackrel{p}{\to} \mathbf{0}$, então, para qualquer p > 0:
 - A Se $R(h) = o(\|h\|^p)$ quando $h \to 0$, então $R(\boldsymbol{X_n}) = o_p(\|\boldsymbol{X_n}\|^p)$.
 - B Se $R(h) = O(\|h\|^p)$ quando $h \to 0$, então $R(\boldsymbol{X_n}) = O_p(\|\boldsymbol{X_n}\|^p)$.

MÉTODO DELTA

- Seja X_n uma sequência de vetores aleatórios.
- Suponha que existe uma sequência de números reais $r_n \to \infty$, uma constante $\theta \in \mathbb{R}^k$ e um vetor aleatório \boldsymbol{S} tais que: $r_n(\boldsymbol{X}_n \theta) \stackrel{d}{\to} \boldsymbol{S}$.
 - Nesse caso, $X_n \stackrel{p}{\to} \theta$ (por quê?).
- Será que podemos calcular $r_n(\psi(\boldsymbol{X}_n) \psi(\theta))$ para uma transformação $\psi : \mathbb{R}^k \mapsto \mathbb{R}^l$?
 - Interpretação estatística: derivar a distribuição em amostras grandes de uma estatística a partir de outra estatística.

Lema (Método Delta)

Se ψ é continuamente diferenciável numa vizinhança de θ , então:

$$r_n(\psi(\mathbf{X}_n) - \psi(\theta)) \stackrel{d}{\to} \nabla_{\mathbf{X}} \psi(\theta) S$$
,

onde $\nabla_{\mathsf{x}}\psi(\theta)$ é o Jacobiano de ψ avaliado em θ

Função geradora de momentos

- Seja X uma variável aleatória real. Definimos a função geradora de momentos, $M: \mathcal{S} \mapsto \mathbb{R}_+$, $\mathcal{S} \subseteq \mathbb{R}$, como a função dada por.

$$M(s) = \mathbb{E}[\exp(sX)], \quad s \in \mathcal{S},$$

onde S é o conjunto de pontos em que a esperança $\mathbb{E}[\exp(sX)]$ é finita.

Proposição

Se existe $\epsilon > 0$ tal que $(-\epsilon, \epsilon) \subseteq \mathcal{S}$, então X possui todos os momentos (i.e. $\mathbb{E}[|X|^j] < \infty$ para todo $j \in \mathbb{N}$), a expansão de Taylor infinita de M(s) em torno de 0 é exata para $|s| < \epsilon$, i.e.

$$M(s) = \sum_{j=0}^{\infty} M^{(j)}(0) \frac{s^j}{j!},$$

e as derivadas em zero podem ser calculadas por diferenciação sob a integral, resultando em $M^{(j)}(0)=\mathbb{E}[X^j]$ para todo $j\in\mathbb{N}$.

FUNÇÃO CARACTERÍSTICA

- Dificuldade de utilizar função característica é que nem sempre ela está disponível numa vizinhança do zero.
- Por esse motivo, definimos uma função alternativa, conhecida como função característica.
- Seja X um vetor aleatório de dimensão k. Sua função característica é dada por $\phi: \mathbb{R}^k \mapsto \mathbb{C}$, definida por:

$$\phi(s) = \mathbb{E}[e^{is'\boldsymbol{X}}] = \mathbb{E}[\cos(s'\boldsymbol{X})] + i\mathbb{E}[\sin(s'\boldsymbol{X})]$$

- Função está sempre bem-definida, para todo $s \in \mathbb{R}^k$ (por quê?).
- Propriedade útil 1: se \boldsymbol{X} é escalar (k=1), e $\mathbb{E}[|\boldsymbol{X}|^j] < \infty$ para $j \in \mathbb{N}$ então ϕ é j-vezes diferenciável no zero, com j-ésima derivada dada por diferenciação sob a integral, resultando em $\phi^{(j)}(0) = i^j \mathbb{E}[\boldsymbol{X}^j]$.
- Propriedade útil 2: se \boldsymbol{X} e \boldsymbol{Y} são vetores aleatórios independentes, $\mathbb{E}[\exp(is'(\boldsymbol{X}+\boldsymbol{Y}))] = \mathbb{E}[\exp(is'\boldsymbol{X})]\mathbb{E}[\exp(is'\boldsymbol{Y})].$

CARACTERIZAÇÕES COM BASE EM FUNÇÕES CARACTERÍSTICA

 Funções características apresentam propriedades poderosas de caracterização de distribuições, que coletamos (sem demonstrar) abaixo.

Proposição

- 1. Dois vetores aleatórios, **X** e **Y**, possuem funções distribuição iguais se, e somente se, suas funções características são idênticas.
- 2. Uma sequência de vetores aleatórios \mathbf{X}_n convergem em distribuição para um vetor aleatório \mathbf{Y} se, e somente se, as funções características de \mathbf{X}_n convergem para a função característica de \mathbf{Y} pontualmente em todo $s \in \mathbb{R}^k$, i.e. $\phi_{\mathbf{X}_n}(s) \to \phi_{\mathbf{Y}}(s)$ para todo $s \in \mathbb{R}^k$.

COROLÁRIO (DISPOSITIVO DE CRÁMER-WOLD)

 $\boldsymbol{X}_n \stackrel{d}{\to} \boldsymbol{X}$ se, e somente se, $t' \boldsymbol{X}_n \stackrel{d}{\to} t' \boldsymbol{X}$ para todo $t \in \mathbb{R}^k$.

LEI FORTE DOS GRANDES NÚMEROS

- Dizemos que uma sequência de vetores aleatórios X_1, X_2, \ldots é independente e identicamente distribuída (iid) se os vetores aleatórios são independentes (i.e. suas σ -álgebras geradas são independentes) e se suas funções distribuição F_{X_i} coincidem.
 - Pelo lema do π -sistema, a lei induzida por cada \pmb{X}_j sobre $\mathcal{B}(\mathbb{R}^k)$ é igual.

Proposição (Lei forte de Kolmogorov)

Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias iid em $L^1(\Omega, \Sigma, \mathbb{P})$. Então existe $\mu \in \mathbb{R}$ tal que $\mathbb{E}[X_j] = \mu$ para todo $j \in \mathbb{N}$ e, quando $n \to \infty$:

$$\frac{1}{n}\sum_{j=1}^n X_j \stackrel{q.c.}{\to} \mu.$$

LEI FRACA DOS GRANDES NÚMEROS

COROLÁRIO (LEI FRACA DE KHINCHINE)

Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias iid em $L^1(\Omega, \Sigma, \mathbb{P})$. Então temos quando $n \to \infty$:

$$\frac{1}{n}\sum_{i=1}^n X_j \stackrel{p}{\to} \mathbb{E}[X_1].$$

Proposição (Lei fraca de Markov)

Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias em $L^2(\Omega, \Sigma, \mathbb{P})$, não correlacionadas e tais que $\sup_{j \in \mathbb{N}} \mathbb{V}[X_j] < \infty$. Se $\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^n \mathbb{E}[X_j]$ existe em \mathbb{R} , então, denotando esse limite por μ , temos, quando $n \to \infty$:

$$\frac{1}{n}\sum_{i=1}^n X_j \stackrel{p}{\to} \mu.$$

TEOREMA CENTRAL DO LIMITE

Proposição

Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias iid em $L^2(\Omega, \Sigma, \mathbb{P})$. Então, denotando por $\mu = \mathbb{E}[X_1]$ e $\sigma^2 = \mathbb{V}[X_1]$, temos, quando $n \to \infty$:

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n (X_1 - \mu) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2),$$

onde $\mathcal{N}(0,\sigma^2)$ denota uma variável aleatória com distribuição normal com média zero e variância σ^2 .