Fizyka układów złożonych Zjawiska emergentne — dynamika populacji

Krzysztof Malarz

Ewolucję (znormalizowanej do rozmiaru zamieszkiwanej niszy ekologicznej) liczebności populacji można śledzić zakładając proste odwzorowanie gęstości tej populacji x_n w dyskretnych krokach czasowych n. Naturalnym założeniem wydaje się przyjęcie, z jednej strony, wzrostu tej gęstości proporcjonalnie do jej aktualnej gęstości x_n ale z drugiej strony pamiętanie o skończonej pojemności zamieszkiwanej niszy. To ostatnie założenie każe uzależnić ewolucję populacji od pozostałego wolnego miejsca w układzie $(1-x_n)$. Wiedzie to do modelu dynamiki populacji z ewolucją układu daną równaniem logistycznym

$$x_{n+1} = rx_n(1 - x_n), (1)$$

gdzie paramter układu $r \in [1, 4]$ steruje tempem namnażania populacji.

Naszym zadaniem jest przebadania ewolucji czasowej układu przy różnych wartościach parametru r.

Zadanie 1 (40 pkt.): Na początek, przy ustalonym r oglądnijmy ewolucję układu przy różnych wartościach początkowych gęstości populacji x_0 . Załóżmy r=2 oraz początkowe gęstości $x_0=0,1;0,2;\cdots;0,9$. Na wspólnym wykresie proszę nakreślić ewolucję układu w pierwszych pięćdziesięcu krokach czasowych przy różnych wartościach x_0 . Spodziewaną wartość graniczną

$$x^* = \lim_{n \to \infty} x_n \tag{2}$$

(o ile istnieje) dostaniemy rozwiązując równanie $x^* = rx^*(1-x^*)$. Dlaczego widzimy tylko jedną z nich?

Zadanie 2 (30 pkt.): Wydłużmy czas obserwacji do stu kroków, ustalmy wartość początkową $x_0 = 0.5$. Powtarzamy obserwację ewolucji układu dla różnych $r \in \{1; 2; 3; 3.5; 3.55; 3.6\}$.

Zadanie 3 (30 pkt.): Wydłużamy czas obserwacji do dziesięciu tysięcy kroków, interesuje na zapamiętanie tylko tysiąca ostatnich kroków. Wartości r zmieniamy od 1 do 4 co 0,01. Na wspólnym wykresie pokazujemy uzyskane końcowe wartości $\{x_{9001}, x_{9002}, \cdots, x_{10000}\}$ od r.