ЛЕКЦИЯ 6. ГЕОМЕТРИЧЕСКИЕ ВЕКТОРЫ

- 1. Вектор, как направленный отрезок.
- 2. Линейные операции над векторами: умножение вектора на число; сложение векторов и их свойства.
 - 3. Проекция вектора на ось. Свойства проекции.
- 4. Канонические базисы \vec{i} и \vec{j} на плоскости и \vec{i} , \vec{j} , \vec{k} в пространстве. Условие коллинеарности двух векторов. Декартовы координаты вектора.
 - 5. Деление вектора в заданном соотношении.

6.1. Вектор, как направленный отрезок

Пусть на плоскости заданы две точки A и B.

Определение 1. Отрезок называется *направленным*, если принят во внимание порядок, в котором заданы его концы

Две точки A и B на плоскости задают 2 различных направленных отрезка AB и BA.

АА – нулевой направленный отрезок, так как его начало и конец совпадают.

Ненулевые направленные отрезки AB и CD называются одинаково направленными, если одинаково направлены лучи AB и CD.

Определение 2. Два направленных отрезка AB и CD, расположенные на одной прямой считаются *равными*, если равны отрезки AB и CD, а лучи AB и CD задают одинаковые направления.

Если же отрезки AB и CD не расположены на одной прямой, то они считаются *равными*, если середины отрезков AD и BC совпадают, что равносильно тому, что четырехугольник ABCD - параллелограмм, а лучи AB и CD задают одинаковые направления.

Определение 3. Направленные отрезки называют *связанными* (или *закреплен- ными*) *векторами*.

Определение 4. Вектором (или свободным вектором) называется класс всех равных между собой направленных отрезков $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},...$ Класс всех нулевых направленных отрезков называется нулевым вектором (или $\stackrel{\rightarrow}{0}$)

Определение 5. Длиной (или **модулем**) вектора \overrightarrow{AB} называется длина направленного отрезка AB.

Длина вектора $\stackrel{
ightarrow}{AB}$ обозначается $\stackrel{
ightarrow}{AB}$.

Определение 6. Вектор называется единичным, если его длина равна единице.

Единичный вектор называется *ортом*, обозначается $\stackrel{\rightarrow}{a^0}$, $\left|\stackrel{\rightarrow}{a^0}\right| = 1$.

Отложить вектор $\stackrel{\rightarrow}{a}$ от точки A означает построить направленный отрезок $\stackrel{\rightarrow}{AB}$, входящий в класс направленных отрезков, образующих класс $\stackrel{\rightarrow}{a}$.

Рассмотрим вектор $\stackrel{'}{a}$. Отложим от точки A направленный отрезок $\stackrel{\longrightarrow}{AB}$. Для этого зададим прямую, параллельную вектору $\stackrel{\longrightarrow}{a}$ и проходящую через точку A .

Вектор \overrightarrow{BA} называется вектором противоположным вектору \overrightarrow{a} и обозначается $\overrightarrow{-a}$

Отложить вектор $\stackrel{\rightarrow}{a}$ от точки A означает построить направленный отрезок $\stackrel{\rightarrow}{AB}$, входящий в класс направленных отрезков, образующих класс $\stackrel{\rightarrow}{a}$.

Определение 7. Векторы \vec{a} и \vec{b} называются **коллинеарными**, если существует прямая, которой они параллельны.

Векторы $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$, $\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{c}$, $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{c}$ коллинеарны.

Вектор \vec{d} не коллинеарен ни одному из векторов \vec{a} , \vec{b} , \vec{c} .

Определение 8. Векторы a, b и c называются **компланарными**, если существует плоскость, которой они параллельны.

Векторы $\stackrel{\rightarrow}{AB}$, $\stackrel{\rightarrow}{CD}$, $\stackrel{\rightarrow}{EF}$ — компланарны.

Векторы \overrightarrow{MN} , \overrightarrow{AB} и \overrightarrow{EF} не компланарны.

6.2. Линейные операции над векторами:

умножение вектора на число; сложение векторов и их свойства.

1. Сумма векторов.

Пусть заданы два вектора $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$.

Отложим эти векторы последовательно от некоторой точки A, как показано на рисунке

Вектор $\stackrel{\rightarrow}{AC}$ называется $\stackrel{\pmb{cymmoй}}{a}$ векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$.

Обозначается $\vec{a} + .$

Этот способ построения суммы векторов называется правилом треугольника.

Свойства суммы векторов

$$\mathbf{1}^{\circ}. \ \overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}.$$

2°.
$$\vec{a} + (-a) = \overset{\rightarrow}{0}$$
.

3°. Коммутативность сложения $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$.

Это свойство позволяет при нахождении суммы векторов пользоваться правилом параллелограмма.

4°.
$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$
.

Пусть заданы векторы $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{c}$.

Отложим последовательно эти векторы от некоторой точки A, как показано на рисунке.

По определению суммы $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$.

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD} = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$$
.

С другой стороны,

Тем самым доказано, что сложение векторов ассоциативно:

$$(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$$

Аналогично определяется сумма любого числа векторов – это есть вектор, который замыкает ломаную, построенную из заданных векторов.

Определение 9. *Разностью* векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ называется такой вектор $\stackrel{\rightarrow}{x}$, что $\stackrel{\rightarrow}{b+x=a}$.

2. Умножение вектора на число

Определение 10. *Произведением* вектора $\stackrel{\rightarrow}{a}$ на некоторое отличное от нуля число $\lambda \in \mathbf{R}$ называется вектор $\stackrel{\rightarrow}{\lambda a}$, такой что

1) $\overrightarrow{\lambda a} \mid \stackrel{\rightarrow}{a}$, причем, если $\lambda > 0$, то векторы $\overrightarrow{\lambda a}$ и $\stackrel{\rightarrow}{a}$ одинаково направлены (сонаправлены), если $\lambda < 0$, то векторы $\stackrel{\rightarrow}{\lambda a}$ и $\stackrel{\rightarrow}{a}$ противоположно направлены.

$$2) \begin{vmatrix} \overrightarrow{\lambda} a \\ \begin{vmatrix} \overrightarrow{\lambda} a \end{vmatrix} = |\lambda| \cdot \begin{vmatrix} \overrightarrow{\lambda} \\ a \end{vmatrix}.$$

Свойства умножения вектора на число

1°.
$$1 \cdot \overrightarrow{a} = \overrightarrow{a}$$
.

2°.
$$\alpha \cdot (\overrightarrow{\beta a}) = (\alpha \beta) \cdot \overrightarrow{a}, \ \alpha, \beta \in \mathbf{R}$$
.

3°.
$$\alpha \cdot (\overrightarrow{a} + \overrightarrow{b}) = \alpha \cdot \overrightarrow{a} + \alpha \cdot \overrightarrow{b}, \ \alpha \in \mathbf{R}$$
.

4°.
$$(\alpha + \beta) \cdot \overrightarrow{a} = \alpha \cdot \overrightarrow{a} + \beta \cdot \overrightarrow{a}, \ \alpha, \beta \in \mathbf{R}$$
.

Утверждение 1. Если вектор $\stackrel{\rightarrow}{b}$ коллинеарен вектору $\stackrel{\rightarrow}{a}$, то существует такое число $\lambda \in \mathbf{R}$, что $\stackrel{\rightarrow}{b} = \lambda \stackrel{\rightarrow}{a}$.

6.3. Проекция вектора на ось. Свойства проекции

Определение 11. Осью называется прямая с заданной на ней ориентацией.

Пусть задана ось, назовем которую l и вектор $\stackrel{\longrightarrow}{AB}$. Опустим из концов A и $\stackrel{\longrightarrow}{B}$ перпендикуляры на ось l, получим некоторый направленный отрезок $\stackrel{\longrightarrow}{A'B'}$.

Определение 12. Проекцией вектора $\stackrel{\rightarrow}{a}$ на ось l называется число, равное длине направленного отрезка $\stackrel{\rightarrow}{A'B'}$ и взятое со знаком «+», если исходный вектор $\stackrel{\rightarrow}{AB}$ сонаправлен с осью l и со знаком «-», если вектор $\stackrel{\rightarrow}{AB}$ противоположно направлен оси l.

Основные свойства проекций

1°. пр $_{l}\stackrel{\rightarrow}{AB}=\begin{vmatrix} \overrightarrow{AB} \\ \cdot \cos \alpha,$ где α — угол между вектором и осью.

2°.
$$\operatorname{Trp}_l(\overrightarrow{AB} + \overrightarrow{BC}) = \operatorname{Trp}_l(\overrightarrow{AB}) + \operatorname{Trp}_l(\overrightarrow{BC})$$
.

6.4. Канонические базисы \vec{i} и \vec{j} на плоскости и \vec{i} , \vec{j} , \vec{k} в пространстве.

Условие коллинеарности векторов. Декартовы координаты вектора

Выберем на плоскости декартову прямоугольную систему координат Oxy. Пусть $\stackrel{\rightarrow}{i}$ и $\stackrel{\rightarrow}{j}$ - единичные векторы, идущие в положительном направлении осей Ox и Oy.

Векторы \vec{i} и \vec{j} взаимно перпендикулярны и имеют единичную длину. Пару векторов \vec{i} , \vec{j} называют *ортонормированным базисом* на плоскости.

Зададим вектор $\stackrel{\rightarrow}{a}$, начало которого совпадает с началом координат O, а конец находится в некоторой точке A.

Пусть $AB \mid \mid$ оси Oy, $AC \mid \mid$ оси Ox — проекции вектора $\stackrel{\rightarrow}{a}$ на координатные оси.

Видим, что вектор $\stackrel{\rightarrow}{O\!A} = \stackrel{\rightarrow}{O\!B} + \stackrel{\rightarrow}{O\!C}$.

 $\overrightarrow{OB}\mid\mid\overrightarrow{i}$, $\overrightarrow{OC}\mid\mid\overrightarrow{j}$, значит, согласно утверждению 1, найдутся такие числа x и y, что $\overrightarrow{OB}=x\cdot\overrightarrow{i}$, $\overrightarrow{OC}=y\cdot\overrightarrow{j}$.

Тогда $\overrightarrow{a} = x \overrightarrow{i} + y \overrightarrow{j}$ — разложение векто-

 $\stackrel{
ightarrow}{\mathbf{pa}}\stackrel{
ightarrow}{a}$ по векторам $\stackrel{
ightarrow}{i}$ и $\stackrel{
ightarrow}{j}$.

Коэффициенты x, y в разложении вектора по базисным векторам определены однозначно.

Эти коэффициенты называются координатами вектора a на плоскости. Записывается в виде $\vec{a}=(x,y)$. Заметим, что координаты вектора \vec{a} , берущего свое начало в начале системы координат совпадают с координатами точки A на плоскости.

Выберем в пространстве декартову прямоугольную систему координат Oxyz. Пусть \vec{i} , \vec{j} , \vec{k} – единичные векторы, идущие в положительном направлении осей Ox, Oy, Oz.

Векторы \vec{i} , \vec{j} , \vec{k} взаимно перпендикулярны и имеют единичную длину. Пару векторов \vec{i} , \vec{j} , \vec{k} называют *ортонормированным базисом* в пространстве.

Зададим вектор \overrightarrow{a} , начало которого совпадает с началом координат O, а конец находится в некоторой точке A. Рассмотрим проекции вектора \overrightarrow{a} на координатные оси - OB, OC, OD.

Видим, что вектор

$$\overrightarrow{a} = \overrightarrow{OA} = \overrightarrow{OD} + \overrightarrow{OF} = \overrightarrow{OD} + (\overrightarrow{OB} + \overrightarrow{OC}).$$
 $\overrightarrow{OB} \mid \mid \overrightarrow{i}, \overrightarrow{OC} \mid \mid \overrightarrow{j}, \overrightarrow{OD} \mid \mid \overrightarrow{k}$ значит, согласно утверждению 1, найдутся такие числа x, y, z что $\overrightarrow{OB} = x \cdot \overrightarrow{i}, \overrightarrow{OC} = y \cdot \overrightarrow{j},$ $\overrightarrow{OD} = z \cdot \overrightarrow{k}$.

Так же, как и на плоскости, коэффициенты x, y, z в разложении вектора по базисным векторам определены однозначно.

Эти коэффициенты называются координатами вектора $\stackrel{\rightarrow}{a}$ в пространстве. Записывается в виде $\stackrel{\rightarrow}{a}=(x,y,z)$.

Заметим, что координаты вектора $\stackrel{\rightarrow}{a}$, берущего свое начало в начале системы координат совпадают с координатами точки A в пространстве.

Определение 13. Вектор \overrightarrow{OA} , идущий из начала координат в точку A называется paduyc-вектором точки A.

Теорема 1. Два вектора $\overrightarrow{a} = (x_1, y_1, z_1)$ $\overrightarrow{b} = (x_2, y_2, z_2)$ равны тогда и только тогда, когда равны их координаты. То есть $\overrightarrow{a} = \overrightarrow{b} \Leftrightarrow x_1 = x_2, y_1 = y_2, z_1 = z_2$

Теорема 2. Пусть заданы два вектора $\vec{a}=(x_1,y_1,z_1)$ и $\vec{b}=(x_2,y_2,z_2)$ и некоторое число $\lambda \neq 0$, $\lambda \in \mathbf{R}$.

1) При сложении векторов их координаты складываются:

$$\overrightarrow{a} + \overrightarrow{b} = (x_1 + x_2, y_1 + y_2, z_1 + z_2).$$

2) При умножении вектора на число каждая координата этого вектора умножается на это число:

$$\overrightarrow{\lambda a} = (\lambda x_1, \lambda y_1, \lambda z_1).$$

Теорема 3. Векторы $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Доказательство.

Пусть заданы два коллинеарных вектора $\vec{a}=(x_1,y_1,z_1)$ и $\vec{b}=(x_2,y_2,z_2)$, при этом $\vec{b}\neq 0$. Согласно утверждению $1\vec{a}=\lambda\cdot\vec{b}$ или $(x_1,y_1,z_1)=(\lambda x_2,\lambda y_2,\lambda z_2)$, т.е. $x_1=\lambda x_2,y_1=\lambda y_2,z_1=\lambda z_2$. Откуда следует $\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}=\dfrac{z_1}{z_2}$ (*).

Пусть координаты векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ пропорциональны $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$, тогда существует λ такое что $\stackrel{\rightarrow}{a} = \lambda \cdot \stackrel{\rightarrow}{b}$, т.е. векторы коллинеарны. Что и требовалось доказать.

Декартовы координаты вектора

Выберем в пространстве декартову прямоугольную систему координат Oxyz, с базисом $\stackrel{\rightarrow}{i}$, $\stackrel{\rightarrow}{j}$, $\stackrel{\rightarrow}{k}$.

Пусть в пространстве заданы две точки своими координатами $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$. Радиусвекторы \overrightarrow{OM}_1 и \overrightarrow{OM}_2 этих точек имеют координаты $\overrightarrow{OM}_1=(x_1,y_1,z_1)$ и $\overrightarrow{OM}_2=(x_2,y_2,z_2)$.

Это означает, что в разложении по базису $\overrightarrow{OM}_1 = x_1 \stackrel{\rightarrow}{i} + y_1 \stackrel{\rightarrow}{j} + z_1 \stackrel{\rightarrow}{k}$ и $\overrightarrow{OM}_2 = x_2 \stackrel{\rightarrow}{i} + y_2 \stackrel{\rightarrow}{j} + z_2 \stackrel{\rightarrow}{k}$. $\overrightarrow{M_1M_2} = \overrightarrow{OM}_2 - \overrightarrow{OM}_1 = (x_2 - x_1) \stackrel{\rightarrow}{i} + (y_2 - y_1) \stackrel{\rightarrow}{j} + (z_2 - z_1) \stackrel{\rightarrow}{k}$. Таким образом, $\overrightarrow{M_1M_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$.

Утверждение 1. Длина вектора $\stackrel{\rightarrow}{a}=(x_1,y_1,z_1)$, заданного своими координатами вычисляется по формуле $\begin{vmatrix} \rightarrow \\ a \end{vmatrix} = \sqrt{x_1^2 + y_1^2 + z_1^2}$.

6.5. Деление отрезка в заданном соотношении

Выберем в пространстве декартову прямоугольную систему координат Oxyz, с базисом $\stackrel{\rightarrow}{i}$, $\stackrel{\rightarrow}{j}$, $\stackrel{\rightarrow}{k}$. Пусть задан отрезок M_1M_2 и точка $M(x_0,y_0,z_0)$ делит отрезок M_1M_2 в отношении λ , считая от точки M_1 . Найдем координаты точки M .

Это означает, что
$$\frac{\left|M_{1}M\right|}{\left|MM_{2}\right|}=\lambda$$
. Это условие можно переписать в виде $\overrightarrow{M_{1}M}=\lambda\cdot\overrightarrow{MM_{2}}$. (**) $\overrightarrow{M_{1}M}=(x_{0}-x_{1})\overrightarrow{i}+(y_{0}-y_{1})\overrightarrow{j}+(z_{0}-z_{1})\overrightarrow{k}$ $\overrightarrow{MM_{2}}=(x_{2}-x_{0})\overrightarrow{i}+(y_{2}-y_{0})\overrightarrow{j}+(z_{2}-z_{0})\overrightarrow{k}$

Перепишем соотношение (**), заменив векторы их разложением по базису:

$$(x_0 - x_1) \stackrel{\rightarrow}{i} + (y_0 - y_1) \stackrel{\rightarrow}{j} + (z_0 - z_1) \stackrel{\rightarrow}{k} = \lambda (x_2 - x_0) \stackrel{\rightarrow}{i} + \lambda (y_2 - y_0) \stackrel{\rightarrow}{j} + \lambda (z_2 - z_0) \stackrel{\rightarrow}{k}$$
 Согласно теореме 1,

$$\begin{cases} x_{0} - x_{1} = \lambda x_{2} - \lambda x_{0} \\ y_{0} - y_{1} = \lambda y_{2} - \lambda y_{0} \Rightarrow \begin{cases} x_{0} + \lambda x_{0} = \lambda x_{2} + x_{1} \\ y_{0} + \lambda y_{0} = \lambda y_{2} + y_{1} \Rightarrow \end{cases} \begin{cases} x_{0}(1 + \lambda) = \lambda x_{2} + x_{1} \\ y_{0}(1 + \lambda) = \lambda y_{2} + y_{1} \Rightarrow \end{cases} \begin{cases} x_{0} = \frac{\lambda x_{2} + x_{1}}{(1 + \lambda)} \\ y_{0} = \frac{\lambda y_{2} + y_{1}}{(1 + \lambda)} \\ z_{0} = \frac{\lambda y_{2} + y_{1}}{(1 + \lambda)} \end{cases}$$