INSTITUTO TECNOLÓGICO DE AERONÁUTICA

Disciplina: Introdução à Pesquisa Operacional

Professor: Antônio Augusto Chaves

Aluna: Ana Paula dos Santos Gularte

Resolução de Listas de Exercícios em aula

Exercício 1 - Problema

EXERCÍCIO 1. Em uma fazenda deseja-se fazer 10.000 Kg de ração com o menor custo possível. De acordo com as recomendações do veterinário dos animais da fazenda, a mesma deve conter 15% de proteína, um mínimo de 8% de fibra, e no mínimo 1.100 calorias por quilo de ração e no máximo 2.250 calorias por quilo. Para se fazer a ração, estão disponíveis quatro ingredientes cujas características técnico-econômicas estão mostrados na Tabela abaixo (dados são dados em %, exceto calorias e custo).

	Proteína	Fibra	Calorias/Kg	Custo/Kg
Cevada	6,9	6	1.760	30
Aveia	8,5	11	1.700	48
Soja	9	11	1.056	44
Milho	27,1	14	1.400	56

A ração deve ser feita contendo no mínimo 20% de milho e no máximo 12% de soja. Formule um modelo de Programação Linear para o problema.

VARIÁVEIS:

c: massa de cevada

a: massa de aveia

s: massa de soja

m: massa de milho

Obs.: Todas as massas estão em kg.

OBJETIVO: Minimizar o custo, dado por

$$30*c + 48*a + 44*s + 56*m$$

RESTRIÇÕES:

```
c + a + s + m = 10000 (Conservação de massa)
```

1760*c + 1700*a + 1056*s + 1400*m >= 1100*10000 (Mínimo 1.100 calorias por quilo)

1760*c + 1700*a + 1056*s + 1400*m <= 2250*10000 (Máximo 2.250 calorias por quilo)

m >= 0.2*10000 (Mínimo 20% de milho)

s <= 0.12*10000 (Máximo 12% de soja)

c, a, s, m >= 0 (Massas não negativas)

Exercício 1 - Solução Python (PulP)


```
E1 = pulp.LpProblem("E1",pulp.LpMinimize)
## Declara Variáveis
c = pulp.LpVariable('c', lowBound=0, cat='Continuous')
a = pulp.LpVariable('a', lowBound=0, cat='Continuous')
s = pulp.LpVariable('s', lowBound=0, cat='Continuous')
m = pulp.LpVariable('m', lowBound=0, cat='Continuous')
## Função Objetivo
E1+= 30*c + 48*a + 44*s + 56*m
## Constraints
E1+= c + a + s + m == 10000
E1+=6.9*c+8.5*a+9*s+27.1*m==15*10000
E1+= 6*c + 11*a + 11*s + 14*m >= 8*10000
E1+= 1760*c + 1700*a + 1056*s + 1400*m >= 1100*10000
E1+= 1760*c + 1700*a + 1056*s + 1400*m <= 2250*10000
E1+= m >= 0.2*10000
E1+= 5 \le 0.12*10000
E1
```

```
## Solução
E1.solve()
pulp.LpStatus[E1.status]
'Optimal'
## Resultado das Variáveis
for variable in E1.variables():
    print ("{} = {}".format(variable.name, variable.varValue))
## Resultado da Função Objetivo
print (pulp.value(E1.objective))
a = 0.0
c = 5990.099
m = 4009.901
5 = 0.0
404257,426
```

Exercício 2 - Problema

EXERCÍCIO 2. Uma empresa responsável pelo abastecimento semanal de um certo produto ao Rio de Janeiro e a São Paulo, pretende estabelecer um plano de distribuição do produto a partir dos centros produtores situados em Belo Horizonte, Ribeirão Preto e São José dos Campos. As quantidades semanalmente disponíveis em Belo Horizonte, Ribeirão Preto e São José dos Campos são 70, 130 e 120 toneladas respectivamente. O consumo semanal previsto deste produto é de 180 toneladas no Rio de Janeiro e 140 toneladas em São Paulo. Os custos de transporte, em \$/tonelada, de cada centro produtor para cada centro consumidor está dado abaixo:

	Rio de Janeiro	São Paulo
Belo Horizonte	13	25
Ribeirão Preto	25	16
São José dos Campos	15	40

Considerando que o objetivo da empresa é minimizar seu custo total de transporte, formule um modelo de Programação Linear para o problema.

ÍNDICES DAS CIDADES:

- 1 Belo Horizonte
- 2 Ribeirão Preto
- **3** São José dos Campos
- **4 -** Rio de Janeiro
- **5** São Paulo

VARIÁVEIS:

Xij: quantidade de toneladas que saem da cidade i e vão para cidade j

OBJETIVO: Minimizar o custo, dado por

13*X14 + 25*X15 + 25*X24 + 16*X25 + 15*X34 + 40*X35

RESTRIÇÕES:

X14 + X15 <= 70 (Quantidade disponível semanalmente em Belo Horizonte)

X24 + X25 <= 130 (Quantidade disponível semanalmente em Ribeirão Preto)

X34 + X35 <= 120 (Quantidade disponível semanalmente em São José dos Campos)

X14 + X24 + X34 = 180 (Consumo semanal do Rio de Janeiro)

X15 + X25 + X35 = 140 (Consumo semanal de São Paulo)

X14, X15, X24, X25, X34, X35 >= **0** (Massas não negativas)

Exercício 2 - Solução Python (PulP)


```
E2 = pulp.LpProblem("E2",pulp.LpMinimize)
## Declara Variáveis
X14 = pulp.LpVariable('X14', lowBound=0, cat='Continuous')
X15 = pulp.LpVariable('X15', lowBound=0, cat='Continuous')
X24 = pulp.LpVariable('X24', lowBound=0, cat='Continuous')
X25 = pulp.LpVariable('X25', lowBound=0, cat='Continuous')
X34 = pulp.LpVariable('X34', lowBound=0, cat='Continuous')
X35 = pulp.LpVariable('X35', lowBound=0, cat='Continuous')
## Funcão Objetivo
E2+= 13*X14 + 25*X15 + 25*X24 + 16*X25 + 15*X34 + 40*X35
## Constraints
E2+= X14 + X15 <= 70
E2+= X24 + X25 <= 130
E2+= X34 + X35 <= 120
E2+= X14 + X24 + X34 == 180
E2+= X15 + X25 + X35 == 140
E2
```

```
## Solução
E2.solve()
pulp.LpStatus[E2.status]
'Optimal'
## Resultado das Variáveis
for variable in E2.variables():
    print ("{} = {}".format(variable.name, variable.varValue))
## Resultado da Função Objetivo
print (pulp.value(E2.objective))
X14 = 60.0
X15 = 10.0
X24 = 0.0
X25 = 130.0
X34 = 120.0
X35 = 0.0
4910.0
```

Exercício 3 - Problema

EXERCÍCIO 3. Na produção de unidades de quatro tipos de produtos, são utilizadas duas máquinas. O tempo utilizado na fabricação de cada unidade, de cada tipo de produto, em cada uma das duas máquinas, está dado da tabela abaixo.

Máquina	Produto 1	Produto 2	Produto 3	Produto 4
1	2	3	4	2
2	3	2	1	2

O custo total de produção de uma unidade de cada produto é diretamente proporcional ao tempo de uso da máquina. Considere que o custo por hora para as máquinas 1 e 2 são \$10 e \$15 respectivamente. O total de horas disponíveis para todos os produtos nas máquinas 1 e 2 são 500 e 380 respectivamente. Se o preço de venda, por unidade, dos produtos 1, 2, 3 e 4 é de \$65, \$70, \$55 e \$45, formule o problema como um modelo de Programação Linear com o objetivo de maximizar o lucro líquido total.

VARIÁVEIS:

Xij: quantidade de produtos do tipo j que são produzidos pela máquina do tipo i

OBJETIVO: Maximizar o lucro, que é a receita menos o custo, dado por

SOMA em i,j de (Pj - Tij*Ci)*Xij, sendo

Pj - preço da unidade do produto j

Tij - tempo que a máquina i leva pra produzir o produto j

Ci - custo da hora da máquina i

RESTRIÇÕES:

2*X1 + 3*X2 + 4*X3 + 2*X4 <= 500 (Tempo total disponível para máquina 1)

3*X1 + 2*X2 + 1*X3 + 2*X4 <= 380 (Tempo total disponível para máquina 2)

X1, X2, X3, X4 >= 0 e inteiras

Exercício 3 - Solução Python (PulP)


```
## Declara Variáveis
X1 = pulp.LpVariable('X1', lowBound=0, cat='Integer')
X2 = pulp.LpVariable('X2', lowBound=0, cat='Integer')
X3 = pulp.LpVariable('X3', lowBound=0, cat='Integer')
X4 = pulp.LpVariable('X4', lowBound=0, cat='Integer')

## Função Objetivo
E3+=(65-2*10-3*15)*X1 + (70-3*10-2*15)*X2 + (55-4*10-1*15)*X3 + (45-2*10-2*15)*X4

## Constraints
E3+= 2*X1 + 3*X2 + 4*X3 + 2*X4 <= 500
E3+= 3*X1 + 2*X2 + 1*X3 + 2*X4 <= 380
E3
```

```
1 ## Solução
2 E3.solve()
3 pulp.LpStatus[E3.status]
```

```
## Resultado das Variáveis
for variable in E3.variables():
    print ("{} = {}".format(variable.name, variable.varValue))

## Resultado da Função Objetivo
print (pulp.value(E3.objective))
```

```
X1 = 0.0

X2 = 166.0

X3 = 0.0

X4 = 0.0

1660.0
```

^{&#}x27;Optimal'

Exercício 4 - Problema

EXERCÍCIO 4. Uma companhia de aviação está considerando a compra de aviões de passageiros de 3 tipos: de pequeno curso, de curso médio e de longo curso. O preço de compra seria de \$6,7M para cada avião de longo curso, \$5M para aviões de médio curso e \$3,5M para aviões de pequeno curso. A diretoria autorizou um gasto máximo de \$150M para estas compras, independentemente de quais aviões serão comprados. As viagens aéreas em todos os tipos de aviões, fazem prever que os aviões andarão sempre lotados. Estima-se que o lucro anual líquido seria de \$0,42M para cada avião de longo curso, \$0,30M para avião de médio curso e \$0,23M para avião de pequeno curso. A companhia terá pilotos treinados para pilotar 30 novos aviões. Se somente aviões de pequeno curso forem comprados, a divisão de manutenção estaria apta a manter 40 novos aviões. Cada avião de médio curso gasta 1/3 a mais de manutenção do que o dispendido por um avião de pequeno curso e o de longo curso 2/3 a mais. As informações acima foram obtidas por uma análise preliminar do problema. Uma análise mais detalhada será feita posteriormente. No entanto, usando os dados acima como uma primeira aproximação, a diretoria da empresa deseja conhecer quantos aviões de cada tipo deveriam ser comprados se o objetivo é maximizar o lucro. Formule um modelo de Programação Linear para este problema. (M = 1.000.000)

VARIÁVEIS:

L - Quantidade de aviões de longo curso

M - Quantidade de aviões de médio curso

P - Quantidade de aviões de pequeno curso

OBJETIVO: Maximizar o lucro, dado por

0.42*L + 0.30*M + 0.23*P

RESTRIÇÕES:

Se X é o dinheiro disponível para manutenção, então as manutenções dos aviões de pequeno, médio e longo cursam custam, respectivamente, X/40, X/30 e X/24.

 $L*X/24 + M*X/30 + P*X/40 <= X \rightarrow (1/24)*L + (1/30)*M + (1/40)*P <= 1$ (Manutenção) L + M + P <= 30 (Quantidade de pilotos) L, M, P >= e inteiros

Exercício 4 - Solução Python (PulP)


```
E4 = pulp.LpProblem("E4",pulp.LpMaximize)
## Declara Variáveis
L = pulp.LpVariable('L', lowBound=0, cat='Integer')
M = pulp.LpVariable('M', lowBound=0, cat='Integer')
P = pulp.LpVariable('P', lowBound=0, cat='Integer')
## Função Objetivo
E4+=0.42*L+0.30*M+0.23*P
## Constraints
E4+= (1/24)*L + (1/30)*M + (1/40)*P <= 1
E4+=L+M+P <=30
E4+=6.7*L + 5*M + 3.5*P <= 150
E4
```

```
## Solução
E4.solve()
pulp.LpStatus[E4.status]
'Optimal'
## Resultado das Variáveis
for variable in E4.variables():
    print ("{} = {}".format(variable.name, variable.varValue))
## Resultado da Função Objetivo
print (pulp.value(E4.objective))
L = 14.0
M = 0.0
P = 16.0
9.56
```

Exercício 5 - Problema

EXERCÍCIO 5. Uma empresa tem 3 fábricas com ociosidade na produção. Todas as 3 fábricas tem capacidade de produzir um certo produto e a gerência decidiu usar uma parte da ociosidade na produção deste produto. O produto pode ser feito em 3 tamanhos: grande, médio e pequeno, que dão um lucro líquido de \$12, \$10 e \$9 respectivamente. As fábricas 1, 2 e 3 tem capacidade de fabricar 500, 600 e 300 unidades do produto respectivamente, independentemente do tamanho a ser produzido. Há, no entanto, limitação do espaço para estocagem. As fábricas 1, 2 e 3 tem 9000, $8000 \text{ e } 3500 \text{ } m^2 \text{ de área para estocagem respectivamente. Cada unidade de tamanho grande, médio e$ pequeno necessita de 20, 15 e 12 m^2 respectivamente. O Departamento de Vendas indicou que 600, 800 e 500 unidades dos tamanhos grande, médio e pequeno, respectivamente, podem ser vendidas por dia. De maneira a manter uma certa uniformidade, a gerência decidiu que a percentagem do uso das capacidades ociosas das 3 fábricas devem ser iguais. A gerência deseja saber quanto de cada tamanho deve ser produzido em cada fábrica de maneira que o lucro seja máximo. Formule um modelo de Programação Linear para este problema.

O QUE QUEREMOS? Quanto de cada tamanho deve ser produzido em cada fábrica de maneira que o lucro seja máximo.

VARIÁVEIS:

Xij: quantidade a ser produzida do produto no tamanho j, (j = Grande, Médio, Pequeno) na fábrica i, (i = 1, 2, 3)

GF1 = Produto Grande na Fábrica 1

GF2 = Produto Grande na Fábrica 2

GF3 = Produto Grande na Fábrica 3

MF1 = Produto Médio na Fábrica 1

MF2 = Produto Médio na Fábrica 2

MF3 = Produto Médio na Fábrica 3

PF1 = Produto Pequeno na Fábrica 1

PF2 = Produto Pequeno na Fábrica 2

PF3 = Produto Pequeno na Fábrica 3

FUNÇÃO OBJETIVO: Maximizar o lucro, dado por

12*(GF1+GF2+GF3) + 10*(MF1+MF2+MF3) + 9*(PF1+PF2+PF3)

RESTRIÇÕES:

Estocagem

20*GF1 + 15*MF1 + 12*PF1 <= 9000m²

20*GF2 + 15*MF2 + 12*PF2 <= 8000m²

20*GF3 + 15*MF3 + 12*PF3 <= 3500m²

Demanda

GF1 + GF2 + GF3 <= 600 unidades

MF1 + MF2 + MF3 <= 800 unidades

PF1 + PF2 + PF3 <= 500 unidades

Percentagem iguais das Capacidades Ociosas

(GF1 + MF1 + PF1)/500 == (GF2 + MF2 + PF2)/600

(GF1 + MF1 + PF1)/500 == (GF3 + MF3 + PF3)/300

(GF2 + MF2 + PF2)/600 == (GF3 + MF3 + PF3)/300

Não negatividade

GF1, GF2, GF3, MF1, MF2, MF3, PF1, PF2, PF3 >= 0 e inteiros

Exercício 5 - Solução Excel (OpenSolver)

Restrito a:

	FAB1	20	15	12	9000	<=	9000	
ESTOCAGEM	FAB2	20	15	12	8000	<=	8000	m^2
	FAB3	20	15	12	3500	<=	3500	
	G	1	0	0	368	<=	[≤] 600	
DEMANDA	M	0	1	0	476	<=	800	unidades
	Р	0	0	1	500	<=	500	

Exercício 5 - Solução Python (PulP)


```
E5 = pulp.LpProblem("E5",pulp.LpMaximize)
## Declara Variáveis
GF1 = pulp.LpVariable('GF1', lowBound=0, cat='Integer')
GF2 = pulp.LpVariable('GF2', lowBound=0, cat='Integer')
GF3 = pulp.LpVariable('GF3', lowBound=0, cat='Integer')
MF1 = pulp.LpVariable('MF1', lowBound=0, cat='Integer')
MF2 = pulp.LpVariable('MF2', lowBound=0, cat='Integer')
MF3 = pulp.LpVariable('MF3', lowBound=0, cat='Integer')
PF1 = pulp.LpVariable('PF1', lowBound=0, cat='Integer')
PF2 = pulp.LpVariable('PF2', lowBound=0, cat='Integer')
PF3 = pulp.LpVariable('PF3', lowBound=0, cat='Integer')
## Funcão Objetivo
E5+= 12*(GF1+GF2+GF3) + 10*(MF1+MF2+MF3) + 9*(PF1+PF2+PF3)
## Constraints
# Estocagem
E5+= 20*GF1 + 15*MF1 + 12*PF1 <= 9000
E5+= 20*GF2 + 15*MF2 + 12*PF2 <= 8000
E5+= 20*GF3 + 15*MF3 + 12*PF3 <= 3500
# Demanda
E5+= GF1 + GF2 + GF3 <= 600
E5+= MF1 + MF2 + MF3 <= 800
E5+= PF1 + PF2 + PF3 <= 500
# Percentagem das Capacidades Ociosas
E5+= (GF1 + MF1 + PF1)/500 == (GF2 + MF2 + PF2)/600
E5+= (GF1 + MF1 + PF1)/500 == (GF3 + MF3 + PF3)/300
E5+= (GF2 + MF2 + PF2)/600 == (GF3 + MF3 + PF3)/300
E5
```

```
## Solução
E5.solve()
pulp.LpStatus[E5.status]
'Optimal'
## Resultado das Variáveis
for variable in E5.variables():
    print ("{} = {}".format(variable.name, variable.varValue))
## Resultado da Função Objetivo
print (pulp.value(E5.objective))
GF1 = 363.0
GF2 = 1.0
GF3 = 4.0
MF1 = 112.0
MF2 = 360.0
MF3 = 4.0
PF1 = 5.0
PF2 = 215.0
PF3 = 280.0
13676.0
```

Exercício 5 - Solução para o Cliente

Fabricação de produtos com tamanhos variados utilizando a capacidade ociosa das fábricas de maneira que o lucro seja máximo, conforme tabela abaixo:

	Produto Grande	Produto Médio	Produto Pequeno
Fábrica 1	363	112	5
Fábrica 2	1	360	215
Fábrica 3	4	4	280

^{*}Quantidade de produtos fabricados.

Além disso, a fabricação dos produtos atende a área para estocagem de cada fábrica de 9.000m² da fábrica1, 8.000m² da fábrica2 e 3.500m² da fábrica3.

A demanda diária prevista pela área de vendas foi atendida em 61% para o tamanho de produto G, 60% para o tamanho M e 100% para o tamanho P.

Também foi atendida a uniformidade atendendo a solicitação da gerência em manter a igualdade da percentagem do uso das capacidades ociosas das fábricas, ficando em: 96% de ocupação de cada uma das fábricas.

Lucro total da produção diária: \$ 13.676,00.

Exercício 6 - Problema

EXERCÍCIO 6. Um investidor pode investir dinheiro em duas atividades A e B disponíveis no início dos próximos 5 anos. Cada \$1 investido em A no começo de um ano retorna \$1,40 (um lucro de \$0,40) dois anos mais tarde (a tempo de imediato reinvestimento). Cada \$1 investido em B no início de um ano retorna \$1,70, três anos mais tarde. Existem ainda 2 atividades C e D que estarão disponíveis no futuro. Cada \$1 investido em C no início do segundo ano retorna \$2,00, quatro anos mais tarde. Cada \$1 investido em D no começo do quinto ano, retorna \$1,30 um ano mais tarde. O investidor tem \$10.000. Ele deseja conhecer como investir de maneira a maximizar a quantidade de dinheiro acumulado no início do sexto ano.

Formule um modelo de Programação Linear para este problema. Considere que não há inflação.

VARIÁVEIS

```
SI = Saldo Inicial
```

SI_to_A1 = Saldo Inicial para A no ano 1

SI_to_A2 = Saldo Inicial para A no ano 2

SI_to_A3 = Saldo Inicial para A no ano 3

SI_to_A4 = Saldo Inicial para A no ano 4

SI_to_B1 = Saldo Inicial para B no ano 1

SI_to_B2 = Saldo Inicial para B no ano 2

SI_to_B3 = Saldo Inicial para B no ano 3

SI_to_C2 = Saldo Inicial para C no ano 2

SI_to_D5 = Saldo Inicial para D no ano 5

VARIÁVEIS

A1_to_A3 = De A no ano 1 para A no ano 3

A2_to_A4 = De A no ano 2 para A no ano 4

A3_to_A5 = De A no ano 3 para A no ano 5

A4_to_SF = De A no ano 4 para o Saldo Final

A5_to_D5 = De A no ano 5 para D no ano 5

A5_to_SF = De A no ano 5 para o Saldo Final

VARIÁVEIS

B1_to_B4 = De B no ano 1 para B no ano 4

B2_to_B5 = De B no ano 2 para B no ano 5

B3_to_SF = De B no ano 3 para o Saldo Final

B4_to_SF = De B no ano 4 para o Saldo Final

B5_to_D5 = De B no ano 5 para D no ano 5

B5_to_SF = De B no ano 5 para o Saldo Final

C2_to_SF = De C no ano 2 para o Saldo Final

D5_to_SF = De D no ano 5 para o Saldo Final

SF = Saldo Final

FUNÇÃO OBJETIVO: Maximizar SF

RESTRIÇÕES

$$SI == 10000$$

#NÓ SALDO INICIAL

RESTRIÇÕES

#NÓ A1

SI_to_A1 == A1_to_A3

#NÓ A2

SI_to_A2 == A2_to_A4

#NÓ A3

SI_to_A3 + 1.4*A1_to_A3 == A3_to_A5

#NÓ A4

SI_to_A4 + 1.4*A2_to_A4 == A4_to_SF

#NÓ A5

1.4*A3_to_A5 == A5_to_D5 + A5_to_SF

RESTRIÇÕES

#NÓ B1 **SI_to_B1 == B1_to_B4** #NÓ B2 **SI_to_B2 == B2_to_B5** #NÓ B3 **SI_to_B3 == B3_to_SF** #NÓ B4 1.7*B1_to_B4 == B4_to_SF

#NÓ B5

RESTRIÇÕES

#NÓ C2

SI_to_C2 == C2_to_SF

#NÓ D5

SI_to_D5 + A5_to_D5 + B5_to_D5 == D5_to_SF

#NÓ SALDO FINAL

Exercício 6 - Solução Python (PulP)


```
E6 = pulp.LpProblem("E6",pulp.LpMaximize)
## Declara Variáveis
SI = pulp.LpVariable('SI', lowBound=0, cat='Continuous')
SI to A1 = pulp.LpVariable('SI to A1', lowBound=0, cat='Continuous')
SI to A2 = pulp.LpVariable('SI to A2', lowBound=0, cat='Continuous')
SI to A3 = pulp.LpVariable('SI to A3', lowBound=0, cat='Continuous')
SI to A4 = pulp.LpVariable('SI to A4', lowBound=0, cat='Continuous')
SI to B1 = pulp.LpVariable('SI to B1', lowBound=0, cat='Continuous')
SI to B2 = pulp.LpVariable('SI to B2', lowBound=0, cat='Continuous')
SI to B3 = pulp.LpVariable('SI to B3', lowBound=0, cat='Continuous')
SI to C2 = pulp.LpVariable('SI to C2', lowBound=0, cat='Continuous')
SI to D5 = pulp.LpVariable('SI to D5', lowBound=0, cat='Continuous')
A1 to A3 = pulp.LpVariable('A1 to A3', lowBound=0, cat='Continuous')
A2 to A4 = pulp.LpVariable('A2 to A4', lowBound=0, cat='Continuous')
A3 to A5 = pulp.LpVariable('A3 to A5', lowBound=0, cat='Continuous')
A4 to SF = pulp.LpVariable('A4 to SF', lowBound=0, cat='Continuous')
A5 to D5 = pulp.LpVariable('A5 to D5', lowBound=0, cat='Continuous')
A5 to SF = pulp.LpVariable('A5 to SF', lowBound=0, cat='Continuous')
B1 to B4 = pulp.LpVariable('B1 to B4', lowBound=0, cat='Continuous')
B2 to B5 = pulp.LpVariable('B2 to B5', lowBound=0, cat='Continuous')
B3 to SF = pulp.LpVariable('B3 to SF', lowBound=0, cat='Continuous')
B4 to SF = pulp.LpVariable('B4 to SF', lowBound=0, cat='Continuous')
B5 to D5 = pulp.LpVariable('B5 to D5', lowBound=0, cat='Continuous')
B5 to SF = pulp.LpVariable('B5 to SF', lowBound=0, cat='Continuous')
C2 to SF = pulp.LpVariable('C2 to SF', lowBound=0, cat='Continuous')
D5 to SF = pulp.LpVariable('D5 to SF', lowBound=0, cat='Continuous')
SF = pulp.LpVariable('SF', lowBound=0, cat='Continuous')
## Função Objetivo
E6+= SF
```

Exercício 6 - Solução Python (PulP)


```
## Constraints
E6+= SI == 10000
#NÓ SALDO INTCIAL
E6+= SI == SI to A1 + SI to A2 + SI to A3 + SI to A4 + SI to B1 + SI to B2 + SI to B3 + SI to C2 + SI to D5
E6+= SI to A1 == A1 to A3 \#NOO A1
E6+= SI to A2 == A2 to A4 #NÓ A2
E6+= SI to A3 + 1.4*A1 to A3 == A3 to A5 \#NO A3
E6+= SI to A4 + 1.4*A2 to A4 == A4 to SF #NÓ A4
E6+= 1.4*A3 to A5 == A5 to D5 + A5 to SF \#NO = A5
E6+= SI to B1 == B1 to B4 #NÓ B1
E6+= SI to B2 == B2 to B5 #NÓ B2
E6+= SI to B3 == B3 to SF #NÓ B3
E6+= 1.7*B1 \text{ to } B4 == B4 \text{ to } SF \#NOB4
E6+= 1.7*B2 to B5 == B5 to D5 + B5 to SF \#NOB5
E6+= SI to C2 == C2 to SF #NÓ C2
E6+= SI to D5 + A5 to D5 + B5 to D5 == D5 to SF #NÓ D5
#NÓ SALDO FINAL
E6+= A5 to SF + 1.4*A4 to SF + 2*C2 to SF + 1.3*D5 to SF + 1.7*B3 to SF + B4 to SF + B5 to SF == SF
```

```
## Solução
E6.solve()
pulp.LpStatus[E6.status]
```

^{&#}x27;Optimal'

Exercício 6 - Solução Python (PulP)


```
## Resultado das Variáveis
for variable in E6.variables():
    print ("{} = {}".format(variable.name, variable.varValue))

## Resultado da Função Objetivo
print (pulp.value(E6.objective))
```

```
A1 to A3 = 10000.0
A2 \text{ to } A4 = 0.0
A3 to A5 = 14000.0
A4 to SF = -0.0
A5 to D5 = 19600.0
A5 to SF = 0.0
B1 to B4 = 0.0
B2 to B5 = 0.0
B3 to SF = 0.0
B4 to SF = 0.0
B5 to D5 = 0.0
B5 to SF = 0.0
C2 to SF = 0.0
D5 to SF = 19600.0
SF = 25480.0
SI = 10000.0
SI to A1 = 10000.0
SI to A2 = 0.0
SI to A3 = 0.0
SI to A4 = 0.0
SI to B1 = 0.0
SI to B2 = 0.0
SI to B3 = 0.0
SI to C2 = 0.0
SI to D5 = 0.0
25480.0
```

Exercício 6 - Solução para o Cliente

Valor de \$25.480 no início do sexto ano.

Investir em A e mudar para D no início do quinto ano.

Exercício 7 - Problema

EXERCÍCIO 7. Com seus conhecimentos do curso, um aluno calcula que poderia se preparar com perfeição para o exame de uma certa disciplina D_1 em 20 horas de estudo intensivo. Para uma outra disciplina D_2 ele precisa de 25 horas. Para passar, ele precisa obter no mínimo 50 pontos (num máximo de 100) em cada uma delas. Além disso, ele deseja alcançar a maior média ponderada possível, sendo 3 e 5 os pesos de D_1 e D_2 respectivamente. Ele dispõe de apenas 30 horas para estudar.

Formule o problema como um modelo de Programação Linear, a fim de obter a distribuição das horas de estudo, considerando proporcionalidade entre o esforço e o rendimento de seus estudos.

O QUE QUEREMOS? Qual a <u>distribuição das horas de estudo</u> em cada disciplina é necessário levando em consideração o esforço e o rendimento dos estudos.

VARIÁVEIS:

D1 = horas de estudos dedicados a disciplina 1

D2 = horas de estudos dedicados a disciplina 2

OBJETIVO: Maximizar o tempo, dado por

15*D1 + 20*D2/8

RESTRIÇÕES:

Quantidade total de horas disponíveis para estudo: D1 + D2 = 30

Mínimo 50 pontos em cada disciplina para passar: 5*D1 >= 50; 4*D2 >= 5

D1, **D2** >= **0** e inteiras

Exercício 7 - Solução Python (PulP)


```
1 ## Solução
2 E7.solve()
3 pulp.LpStatus[E7.status]

'Optimal'

1 ## Resultado das Variáveis
2 for variable in E7.variables():
3  print ("{} = {}".format(variable.name, variable.varValue))

4  ## Resultado da Função Objetivo
6 print (pulp.value(E7.objective))

D1 = 10.0
D2 = 20.0
68.75
```

SOLUÇÃO PARA O CLIENTE CONFORME ABAIXO:

Montar para um aluno a distribuição das suas horas de estudo em duas disciplinas, levando em consideração a disponibilidade de tempo de 30 horas, os pesos e a quantidade mínima de 50 pontos para passar em cada uma nas disciplinas com a maior média pondera.

Total da média ponderada: 68.75, com a distribuição de 10 horas para a disciplina 1 e 20 horas para a disciplina 2.

Exercício 8 - Problema

EXERCÍCIO 8. Uma companhia deseja obter uma nova liga metálica com 30% de chumbo, 20% de zinco e 50% de estanho a partir de alguns minérios tendo as seguintes propriedades:

	Minérios					
Propriedades	1	2	3	4	5	
Chumbo (%)	30	10	50	10	50	
Zinco (%)	60	20	20	10	10	
Estanho (%)	10	70	30	80	40	
Custo $(\$Kg)$	8,5	6	8,9	5,7	8,8	

O objetivo é determinar as proporções destes minérios que deveriam ser misturados para produzir a nova liga com o menor custo possível. Formule este problema como um modelo de Programação Linear.

O QUE QUEREMOS? Qual é a <u>proporção de cada minério</u> que deveriam ser misturados para produzir a nova liga com o <u>menor custo possível</u>.

VARIÁVEIS:

Xj = Proporção de 1Kg dos minérios j que devem ser misturados, j = 1, 2, 3, 4, 5.

M1 = 1Kg de Minério que deve ser utilizado em uma unidade de mistura do tipo 1

M2 = 1Kg de Minério que deve ser utilizado em uma unidade de mistura do tipo 2

M3 = 1Kg de Minério que deve ser utilizado em uma unidade de mistura do tipo 3

M4 = 1Kg de Minério que deve ser utilizado em uma unidade de mistura do tipo 4

M5 = 1Kg de Minério que deve ser utilizado em uma unidade de mistura do tipo 5

FUNÇÃO OBJETIVO: Minimizar o custo, dado por

$$8,5*M1 + 6*M2 + 8,9*M3 + 5,7*M4 + 8,8*M5$$

RESTRIÇÕES:

Composição (Pelo menos 30% de Chumbo, 20% de Zinco e 50% de Estanho)

$$0.3*M1 + 0.1*M2 + 0.5*M3 + 0.1*M4 + 0.5*M5 = 0.3$$

$$0.6*M1 + 0.2*M2 + 0.2*M3 + 0.1*M4 + 0.1*M5 = 0.2$$

$$0.1*M1 + 0.7*M2 + 0.3*M3 + 0.8*M4 + 0.4*M5 = 0.5$$

Soma dos minérios resulta em 1Kg de mistura

$$M1 + M2 + M3 + M4 + M5 = 1$$

Os minérios podem ser utilizados ou não

Não negatividade

M1, M2, M3, M4, M5
$$\geq$$
 0

Exercício 8 - Solução Excel (OpenSolver)

	•	
	ER	
 	_	
 		_

PROPRIEDADES	1	2	3	4	5
Proporções da	0.11	0.00	0.44	0.44	0.00
nova liga	0,11	0,00	0,44	0,44	0,00

FO MIN Custo	R\$ 8,60	R\$ 6,00	R\$ 8,90	R\$ 5,70	R\$ 8,80	min R\$ 7,44]	
30% Chumbo	30%	10%	50%	10%	50%	30%	=	30%
20% Zinco	60%	20%	20%	10%	10%	20%		≥ 20%
50% Estanho	10%	70%	30%	80%	40%	50%	=	50%

Exercício 8 - Solução Python (PulP)


```
E8 = pulp.LpProblem("E8",pulp.LpMinimize)
## Declara Variáveis
M1 = pulp.LpVariable('M1', lowBound=0, cat='Continuous')
M2 = pulp.LpVariable('M2', lowBound=0, cat='Continuous')
M3 = pulp.LpVariable('M3', lowBound=0, cat='Continuous')
M4 = pulp.LpVariable('M4', lowBound=0, cat='Continuous')
M5 = pulp.LpVariable('M5', lowBound=0, cat='Continuous')
## Funcão Objetivo
E8+=8.5*M1 + 6*M2 + 8.9*M3 + 5.7*M4 + 8.8*M5
## Constraints
# Nova liga a partir dos minérios existentes
E8+= M1 + M2 + M3 + M4 + M5 == 1
# Proporções de minérios (30% Chumbo, 20% Zinco e 50% Estanho)
E8+=0.3*M1+0.1*M2+0.5*M3+0.1*M4+0.5*M5==0.3
E8+=0.6*M1+0.2*M2+0.2*M3+0.1*M4+0.1*M5==0.2
E8+=0.1*M1 + 0.7*M2 + 0.3*M3 + 0.8*M4 + 0.4*M5 == 0.5
# Os minérios podem ser utilizados ou não
E8+= M1 >= 0
E8+= M2 >= 0
E8+= M3 >= 0
E8+= M4 >= 0
E8+= M5 >= 0
E8
```

```
## Solução
2 E8.solve()
3 pulp.LpStatus[E8.status]

'Optimal'

1 ## Resultado das Variáveis
2 for variable in E8.variables():
    print ("{} = {}".format(variable.name, variable.varValue))

## Resultado da Função Objetivo
print (pulp.value(E8.objective))

M1 = 0.11111111
```

```
M1 = 0.11111111
M2 = 0.0
M3 = 0.44444444
M4 = 0.44444444
M5 = 0.0
7.4333333258999999
```

Exercício 8 - Solução para o Cliente

Produção de uma nova liga com o menor custo conforme abaixo:

A nova liga é produzida ao menor custo possível misturando 11% do Minério 1, 44% do Minério 3 e 44% do Minério 4, além disso, a mistura contém 30% de Chumbo, 20% de Zinco e 50% de Estanho.

Custo total de produção da nova liga é: 7,44 \$/Kg.

Exercício 9 - Problema

EXERCÍCIO 9. Para um bar que funciona 24 horas por dia, a seguinte quantidade de empregados é necessária:

Hora do dia	Nº mínimo de empregados
2 - 6	4
6 - 10	8
10 - 14	10
14 - 18	7
18 - 22	12
22 - 2	4

Cada empregado trabalha 8 horas consecutivas por dia. O objetivo é achar o menor número necessário de empregados de modo que a necessidade mínima acima seja obedecida. Formule o problema como um modelo de P.Linear O objetivo é determinar as proporções destes minérios que deveriam ser misturados para produzir a nova liga com o menor custo possível.

Formule este problema como um modelo de Programação Linear.

VARIÁVEIS:

E_6_14 = Escala de Trabalho 6hrs - 14hrs E_14_22 = Escala de Trabalho 14hrs - 22hrs E_22_6 = Escala de Trabalho 22hrs - 6hrs

FUNÇÃO OBJETIVO:

Minimizar empregados

E_6_14 + E_14_22 + E_22_6

RESTRIÇÕES:

```
# Hora do dia 2 - 6
E9+=0*E_6_14+0*E_14_22+1*E_22_6>=4
# Hora do dia 6 - 10
E9+= 1*E_6_14 + 0*E_14_22 + 0*E_22_6 >= 8
# Hora do dia 10 - 14
E9+= 1*E_6_14 + 0*E_14_22 + 0*E_22_6 >= 10
# Hora do dia 14 - 18
E9+= 0*E_6_14 + 1*E_14_22 + 0*E_22_6 >= 7
# Hora do dia 18 - 22
E9+= 0*E_6_14 + 1*E_14_22 + 0*E_22_6 >= 12
# Hora do dia 22 - 2
E9+=0*E_6_14+0*E_14_22+1*E_22_6>=4
```

Exercício 9 - Solução Excel (OpenSolver)

A forma que as escalas são construídas pode alterar a necessidade de contratação mínima de empregados. Conseguimos contratar 4 empregados a menos montando a escala certa.

Exercício 9 - Solução Python (PulP)


```
E9 = pulp.LpProblem("E9",pulp.LpMinimize)
## Declara Variáveis
E 6 14 = pulp.LpVariable('E 6 14', lowBound=0, cat='Integer')
E 14 22 = pulp.LpVariable('E 14 22', lowBound=0, cat='Integer')
E_22_6 = pulp.LpVariable('E_22_6', lowBound=0, cat='Integer')
## Funcão Obietivo
E9+= E 6 14 + E 14 22 + E 22 6
## Constraints
E9+= 0*E 6 14 + 0*E 14 22 + 1*E 22 6 >= 4 #Hora do dia 2 - 6
E9+= 1*E 6 14 + 0*E 14 22 + 0*E 22 6 >= 8 # Hora do dia 6 - 10
E9+= 1*E 6 14 + 0*E 14 22 + 0*E 22 6 >= 10 # Hora do dia 10 - 14
E9+= 0*E 6 14 + 1*E 14 22 + 0*E 22 6 >= 7 # Hora do dia 14 - 18
E9+= 0*E_6_14 + 1*E_14_22 + 0*E_22_6 >= 12 # Hora do dia 18 - 22
E9+= 0*E 6 14 + 0*E 14 22 + 1*E 22 6 >= 4 # Hora do dia 22 - 2
```

```
## Solução
E9.solve()
pulp.LpStatus[E9.status]

'Optimal'

## Resultado das Variáveis
for variable in E9.variables():
    print ("{} = {}".format(variable.name, variable.varValue))

## Resultado da Função Objetivo
print (pulp.value(E9.objective))

E_14_22 = 12.0
E 22 6 = 4.0
```

E 6 14 = 10.0

26.0

Exercício 9 - Solução para o Cliente

Montar 3 escalas de trabalho conforme abaixo:

Escala de Trabalho 6hrs - 14hrs: contratar 10 empregados

Escala de Trabalho 14hrs - 22hrs: contratar 12 empregados

Escala de Trabalho 22hrs - 6hrs: contratar 4 empregados

Total de contratações: 26 empregados

Exercício 10 - Problema

EXERCÍCIO 10. Uma fábrica descontinuou a produção de um produto que não estava dando lucro. Isto criou uma considerável capacidade de produção ociosa. A gerência está considerando em usar esta capacidade ociosa em um ou mais, de 3 produtos, os quais chamaremos de produtos 1, 2 e 3. A capacidade disponível das máquinas que poderiam limitar a saída está dada na tabela abaixo:

	Tempo disponível
Tipo de Máquina	(em máquinas-hora por semana)
A	500
В	350
C	150

O número de máquinas-hora necessárias para cada produto é:

Tipo de Máquina	Produto 1	Produto 2	Produto 3
A	9	3	5
В	5	4	0
C	3	0	2

O Departamento de Vendas indicou que o potencial de vendas para os produtos 1 e 2 excedem a taxa máxima de produção e que o potencial de vendas para o produto 3 é de 20 unidades por semana. O lucro unitário seria de \$30, \$12 e \$15 respectivamente para os produtos 1, 2 e 3. Quanto se deve fabricar dos produtos 1, 2 e 3 de maneira que o lucro seja máximo?

Formule o problema como um modelo de Programação Linear.

VARIÁVEIS:

P1 = Produto 1

P2 = Produto 2

P3 = Produto 3

FUNÇÃO OBJETIVO:

Maximizar lucro semanal 30*P1 + 12*P2 + 15*P3

RESTRIÇÕES:

Disponibilidade Máquina A

9*P1 + 3*P2 + 5*P3 <= 500

Disponibilidade Máquina B

5*P1 + 4*P2 + 0*P3 <= 350

Disponibilidade Máquina C

3*P1 + 0*P2 + 2*P3 <= 150

Demanda P3

1*P3 <= 20

Exercício 10 - Solução Excel (OpenSolver)

	P1	P2	Р3
İ	26	i 55	i 20
		_	
	>=	>=	>=

FO MAX \$30,00 \$12,00 \$15,00 **\$1.740,00**

Máquina A	9	3	5
Máquina B	5	4	0
Máquina C	3	0	2
Demanda P3			1

Exercício 10 - Solução Python (PulP)


```
E10 = pulp.LpProblem("E10",pulp.LpMaximize)
## Declara Variáveis
P1 = pulp.LpVariable('P1', lowBound=0, cat='Integer')
P2 = pulp.LpVariable('P2', lowBound=0, cat='Integer')
P3 = pulp.LpVariable('P3', lowBound=0, cat='Integer')
## Função Objetivo
E10+= 30*P1 + 12*P2 + 15*P3
## Constraints
E10+= 9*P1 + 3*P2 + 5*P3 <= 500 # Disponibilidade Máquina A
E10+= 5*P1 + 4*P2 + 0*P3 <= 350 # Disponibilidade Máquina B
E10+= 3*P1 + 0*P2 + 2*P3 <= 150 # Disponibilidade Máquina C
E10+= 1*P3 <= 20 # Demanda P3
```

```
## Solução
E10.solve()
pulp.LpStatus[E10.status]

'Optimal'

## Resultado das Variáveis
for variable in E10.variables():
    print ("{} = {}".format(variable.name, variable.varValue))

## Resultado da Função Objetivo
print (pulp.value(E10.objective))

P1 = 26.0
P2 = 55.0
P3 = 20.0
1740.0
```

Exercício 10 - Solução para o Cliente

Produzir conforme abaixo:

Produto 1: 26 unidades

Produto 2: 55 unidades

Produto 3: 20 unidades

Lucro máximo semanal: \$1.740,00

Exercício 11 - Problema

EXERCÍCIO 11. O departamento de marketing de uma empresa estuda a forma mais econômica de aumentar em 30% as vendas de seus dois produtos P1 e P2. As alternativas são:

- Investir em um programa institucional com outras empresas do mesmo ramo. Esse programa deve proporcionar um aumento de 3% nas vendas de cada produto, para cada \$1.000,00 investidos.
- Investir diretamente na divulgação dos produtos. Cada \$1.000.00 investidos em P1 retornam um aumento de 4% nas vendas, enquanto que para P2 o retorno é de 10%.

A empresa dispõe de \$10.000,00 para esse empreendimento. Quanto deverá destinar a cada atividade? Formule o problema como um modelo de Programação Linear.

VARIÁVEIS:

Unidade: \$mil

```
PRO_INST_P1 = Prog. Inst. no Prod. 1
PRO_INST_P2 = Prog. Inst. no Prod. 2
DIVULGA_P1 = Divulgação do Prod. 1
DIVULGA_P2 = Divulgação do Prod. 2
```

FUNÇÃO OBJETIVO:

```
Valor alvo = 60
```

```
3*PRO_INST_P1 + 3*PRO_INST_P2 + 4*DIVULGA _P1 + 10*DIVULGA _P2 == 60
```

RESTRIÇÕES:

```
# Orçamento mil $
PRO_INST_P1 + PRO_INST_P2 + DIVULGA_P1 +
DIVULGA_P2 <= 10

# Crescimento Produto 1
3*PRO_INST_P1 + 4*DIVULGA_P1 == 30

# Crescimento Produto 1
3*PRO_INST_P2 + 10*DIVULGA_P2 == 30</pre>
```

Exercício 11 - Solução Excel (OpenSolver)

Exercício 11 - Solução Python (PulP)


```
E11 = pulp.LpProblem("E11",pulp.LpMaximize)
## Declara Variáveis
PRO_INST_P1 = pulp.LpVariable('PRO_INST_P1', lowBound=0, cat='Integer')
PRO_INST_P2 = pulp.LpVariable('PRO_INST_P2', lowBound=0, cat='Integer')
DIVULGA_P1 = pulp.LpVariable('DIVULGA_P1', lowBound=0, cat='Integer')
DIVULGA_P2 = pulp.LpVariable('DIVULGA P2', lowBound=0, cat='Integer')
## Função Objetivo
E11+= 3*PRO INST P1 + 3*PRO INST P2 + 4*DIVULGA P1 + 10*DIVULGA P2 == 60
## Constraints
E11+= PRO INST P1 + PRO INST P2 + DIVULGA P1 + DIVULGA P2 <= 10 # Orçamento mil $
E11+= 3*PRO INST P1 + 4*DIVULGA P1 == 30
E11+= 3*PRO INST P2 + 10*DIVULGA P2 == 30
## Solução
E11.solve()
pulp.LpStatus[E11.status]
```

'Infeasible'

Exercício 11 - Solução para o Cliente

Para aumentar em 30% as vendas de P1 e P2, o orçamento terá que crescer de \$10.000 para \$10.500 e ele deverá ser investido integralmente na divulgação dos produtos.

Exercício 12 - Problema

EXERCÍCIO 12. Um moinho fabrica produtos agrícolas para gado, ovelhas e galinhas. Esses produtos são fabricados a partir de quatro ingredientes: milho, calcário, soja e farinha de peixe, os quais contém os seguintes nutrientes: vitamina, proteína, cálcio e gordura. As quantidades dos nutrientes em cada quilo dos ingredientes é dado na Tabela abaixo:

	Nutrientes						
Ingredientes	Vitamina	Proteína	Cálcio	Gordura			
Milho	8	10	6	8			
Calcário	6	5	10	6			
Soja	10	12	6	6			
Farinha de peixe	4	8	6	9			

O moinho foi contratada para produzir 10, 6 e 8 toneladas métricas de alimentos para gado, ovelhas e galinhas, respectivamente. Por causa de escassez, uma quantidade limitada de ingredientes está disponível - 6 toneladas de milho, 10 toneladas de calcário, 4 toneladas de soja e 5 toneladas de farinha de peixe. O preço por quilo destes ingredientes é respectivamente \$0, 20, \$0, 12, \$0, 24 e \$0, 12. As quantidades máximas e mínimas por quilo dos vários nutrientes que são permitidas estão resumidas na Tabela abaixo.

	Nutrientes							
	Vitamina		Proteína Cálcio		lcio	Gordura		
Produtos	Min	Max	Min	Max	Min	Max	Min	Max
Gado	6	∞	6	∞	7	∞	4	8
Ovelhas	6	∞	6	∞	6	∞	4	6
Galinhas	4	6	6	∞	6	∞	4	6

Considerar restrição MÁXIMA → de Gordura 8 para os três produtos.

Formule este problema de minimizar os custos totais por um modelo de Programação Linear.

O QUE QUEREMOS? Quanto de massa de produto deve ser produzido para cada animal de maneira que o custo seja seja mínimo.

VARIÁVEIS:

Mij: quantidade a ser produzida dos ingredientes i, (i = Milho, Calcário, Soja, Farinha de Peixe) para os animais j, (j = Gado, Ovelha, Galinha))

MGado = Ingrediente Milho para o Gado

CGado = Ingrediente Calcário para o Gado

SGado = Ingrediente soja para o Gado

FGado = Ingrediente Farinha de Peixe para o Gado

MOvelha = Ingrediente Milho para a Ovelha

COvelha = Ingrediente Calcário para a Ovelha

SOvelha = Ingrediente Soja para a Ovelha

FOvelha = Ingrediente Farinha de Peixe para a Ovelha

MGalinha = Ingrediente Milho para a Galinha

CGalinha = Ingrediente Calcário para a Galinha

SGalinha = Ingrediente Soja para a Galinha

FGalinha = Ingrediente Farinha de Peixe para a Galinha

FUNÇÃO OBJETIVO: Minimizar o custo, dado por

RESTRIÇÕES:

Demanda dos produtos em toneladas métricas

MGado + CGado + SGado + FGado <= 10000

MOvelha + COvelha + SOvelha + FOvelha <= 6000

MGalinha + CGalinha + SGalinha + FGalinha <= 8000

Restrição de ingredientes em toneladas métricas

MGado + MOvelha + MGalinha <= 6000

CGado + COvelha + CGalinha <= 10000

SOvelha + SGalinha + SGado <= 4000

FGado + FOvelha + FGalinha <= 5000

RESTRIÇÕES:

VITAMINA permitida conforme tabela nutricional do animal

8*MGado + 6*CGado + 10*SGado + 4*FGado >= 6*10*1000

8*MOvelha + 6*COvelha + 10*SOvelha + 4*FOvelha >= 6*6*1000

8*MGalinha + 6*CGalinha + 10*SGalinha + 4*FGalinha >= 4*8*1000

8*MGalinha + 6*CGalinha + 10*SGalinha + 4*FGalinha <= 6*8*1000

PROTEÍNA permitida conforme tabela nutricional do animal

10*MGado + 5*CGado + 12*SGado + 8*FGado >= 6*10*1000

10*MOvelha + 5*COvelha + 12*SOvelha + 8*FOvelha >= 6*6*1000

10*MGalinha + 5*CGalinha + 12*SGalinha + 8*FGalinha >= 6*8*1000

CÁLCIO permitida conforme tabela nutricional do animal

6*MGado + 10*CGado + 6*SGado + 6*FGado >= 7*10*1000

6*MOvelha + 10*COvelha + 6*SOvelha + 6*FOvelha >= 6*6*1000

6*MGalinha + 10*CGalinha + 6*SGalinha + 6*FGalinha >= 6*8*1000

RESTRIÇÕES:

GORDURA permitida conforme tabela nutricional do animal

```
8*MGado + 6*CGado + 6*SGado + 9*FGado >= 4*10*1000
```

- 8*MOvelha + 6*COvelha + 6*SOvelha + 9*FOvelha >= 4*6*1000
- 8*MGalinha + 6*CGalinha + 6*SGalinha + 9*FGalinha >= 4*8*1000
- 8*MGado + 6*CGado + 6*SGado + 9*FGado <= 8*10*1000
- 8*MOvelha + 6*COvelha + 6*SOvelha + 9*FOvelha <= 8*6*1000
- 8*MGalinha + 6*CGalinha + 6*SGalinha + 9*FGalinha <= 8*8*1000

Exercício 12 - Solução Python (PulP)


```
E12 = pulp.LpProblem("E12",pulp.LpMinimize)
## Declara Variáveis
MGado = pulp.LpVariable('MGado', lowBound=0, cat='Continuous')
CGado = pulp.LpVariable('CGado', lowBound=0, cat='Continuous')
SGado = pulp.LpVariable('SGado', lowBound=0, cat='Continuous')
FGado = pulp.LpVariable('FGado', lowBound=0, cat='Continuous')
MOvelha = pulp.LpVariable('MOvelha', lowBound=0, cat='Continuous')
COvelha = pulp.LpVariable('COvelha', lowBound=0, cat='Continuous')
SOvelha = pulp.LpVariable('SOvelha', lowBound=0, cat='Continuous')
FOvelha = pulp.LpVariable('FOvelha', lowBound=0, cat='Continuous')
MGalinha = pulp.LpVariable('MGalinha', lowBound=0, cat='Continuous')
CGalinha = pulp.LpVariable('CGalinha', lowBound=0, cat='Continuous')
SGalinha = pulp.LpVariable('SGalinha', lowBound=0, cat='Continuous')
FGalinha = pulp.LpVariable('FGalinha', lowBound=0, cat='Continuous')
## Função Objetivo
E12+= 0.2*(MGado + MOvelha + MGalinha) + 0.12*(CGado + COvelha + CGalinha) \
        + 0.24*(SOvelha + SGalinha + SGado) + 0.12*(FGado + FOvelha + FGalinha)
## Constraints
# Demanda dos produtos em kilos
E12+= MGado + CGado + SGado + FGado == 10000
E12+= MOvelha + COvelha + SOvelha + FOvelha == 6000
E12+= MGalinha + CGalinha + SGalinha + FGalinha == 8000
# Restrição de ingredientes em kilos
E12+= MGado + MOvelha + MGalinha <= 6000
E12+= CGado + COvelha + CGalinha <= 10000
E12+= SOvelha + SGalinha + SGado <= 4000
E12+= FGado + FOvelha + FGalinha <= 5000
```

```
# VITAMINA permitida conforme tabela nutricional do animal - Por Kilo
E12+= 8*MGado + 6*CGado + 10*SGado + 4*FGado >= 6*10*1000
E12+= 8*MOvelha + 6*COvelha + 10*SOvelha + 4*FOvelha >= 6*6*1000
E12+= 8*MGalinha + 6*CGalinha + 10*SGalinha + 4*FGalinha >= 4*8*1000
E12+= 8*MGalinha + 6*CGalinha + 10*SGalinha + 4*FGalinha <= 6*8*1000
# PROTEÍNA permitida conforme tabela nutricional do animal
E12+= 10*MGado + 5*CGado + 12*SGado + 8*FGado >= 6*10*1000
E12+= 10*MOvelha + 5*COvelha + 12*SOvelha + 8*FOvelha >= 6*6*1000
E12+= 10*MGalinha + 5*CGalinha + 12*SGalinha + 8*FGalinha >= 6*8*1000
# CÁLCIO permitida conforme tabela nutricional do animal
E12+= 6*MGado + 10*CGado + 6*SGado + 6*FGado >= 7*10*1000
E12+= 6*MOvelha + 10*COvelha + 6*SOvelha + 6*FOvelha >= 6*6*1000
E12+= 6*MGalinha + 10*CGalinha + 6*SGalinha + 6*FGalinha >= 6*8*1000
# GORDURA permitida conforme tabela nutricional do animal
E12+= 8*MGado + 6*CGado + 6*SGado + 9*FGado >= 4*10*1000
E12+= 8*MOvelha + 6*COvelha + 6*SOvelha + 9*FOvelha >= 4*6*1000
E12+= 8*MGalinha + 6*CGalinha + 6*SGalinha + 9*FGalinha >= 4*8*1000
E12+= 8*MGado + 6*CGado + 6*SGado + 9*FGado <= 8*10*1000
E12+= 8*MOvelha + 6*COvelha + 6*SOvelha + 9*FOvelha <= 8*6*1000
E12+= 8*MGalinha + 6*CGalinha + 6*SGalinha + 9*FGalinha <= 8*8*1000
E12
```

Exercício 12 - Solução Python (PulP)


```
## Solução
E12.solve()
pulp.LpStatus[E12.status]
```

'Optimal'

```
## Resultado das Variáveis
for variable in E12.variables():
    print ("{} = {}".format(variable.name, variable.varValue))

## Resultado da Função Objetivo
print (pulp.value(E12.objective))
```

```
CGado = 2500.0

CGalinha = 6153.8462

COvelha = 1346.1538

FGado = 1500.0

FGalinha = 1230.7692

FOvelha = 2269.2308

MGado = 6000.0

MGalinha = 0.0

MOvelha = 0.0

SGado = 0.0

SGadinha = 615.38462

SOvelha = 2384.6154

3720.00000047999997
```

Exercício 12 - Solução para o Cliente

Fabricação de produtos com quantidade de massa de ingredientes diversificado para cada animal de maneira que o custo da produção seja mínimo, conforme tabela abaixo:

	Gado	Ovelha	Galinha	Escassez
Milho	6.000	0	0	6.000
Calcário	2.500	1.346	6.154	10.000
Soja	0	2.385	615	3.000
Farinha de Peixe	1.500	2.269	1.231	5.000
Demanda	10.000	6.000	8.000	

Além disso, a fabricação dos produtos atende a restrição de escassez utilizando as quantidades limitadas de ingredientes disponíveis.

A demanda contratada de produção também foi atendida em 100% para os três produtos contratados, Gado 10.000Kg, Ovelha 6.000Kg e Galinha 8.000Kg.

Por fim, respeitando as quantidades mínimas e máximas nutricionais conforme especificado pelo cliente.

Custo total da produção: 3.720,00 \$/Kg.

Exercício 13 - Problema

5. Um avião deve ser carregado de modo a maximizar a receita total. Considere que há cinco itens que podem ser levados e que a empresa recebe 50 centavos por quilograma carregado, mais um valor extra (fixo), que depende do item. O avião pode carregar até 2000 kg e até 20 m³. Outros dados pertinentes estão na tabela a seguir.

Item	Peso (kg)	Volume (m ³)	Valor extra
1	1000	7	\$ 700
2	1100	10	\$800
3	700	10	\$ 1100
4	800	8	\$ 1000
5	500	5	\$ 700

Quais itens devem ser carregados?

O QUE QUEREMOS? Quais itens devem ser carregados no avião de modo que o <u>lucro seja máximo</u>.

DEFINIÇÃO DAS VARIÁVEIS:

	I I E IV3										
		1		2		3		4		5	AVIÃO
	Valor Extra \$	700		800		1100		1000		700	
	Valor por Kilo \$	500		550		350		400		250	
	Valor Total	1200		1350		1450		1400		950	CAPACIDADE
RESTRIÇÕES	Peso Kg	1000		1100		700		800		500	2000 Kg
	Volume m³	7		10		10		8		5	20 m³

ITEMS

FUNÇÃO OBJETIVO: Maximizar o lucro, dado por

RESTRIÇÕES:

Peso

1000*X1 + 1100*X2 + 700*X3 + 800*X4 + 500*X5 <= 2000Kg

Volume

 $7*X1 + 10*X2 + 10*X3 + 8*X4 + 5*X5 \le 20m^3$

Xi ∈ B, ∀i

Exercício 13 – Solução (LPSolve)

Os ítens X3 e X4 devem ser carregados no avião.

Lucro máximo: \$ 2.850,00.

Exercício 14 - Problema

6. Cinco locais (A, B, C, D, e E) precisam de uma peça grande para finalizar a construção de uma máquina, e as cinco peças existentes estão em cinco armazéns diferentes. As quilometragens entre os locais e os armazéns estão no seguinte quadro.

	Local						
Armazém	A	В	C	D	E		
1	230	200	210	240	220		
2	190	210	200	200	190		
3	200	180	240	220	210		
4	220	180	210	230	220		
5	210	190	200	220	210		

Determine o programa de expedição que minimiza a distância total no transporte das peças.

Exercício 14 - Modelagem

O QUE QUEREMOS? <u>Transportar peças do armazém</u> para o <u>local de construção da máquina</u> de modo que a distância no transporte das peças <u>seja a menor possível</u>.

FUNÇÃO OBJETIVO: Minimizar a distância do transporte das peças, dado por

Exercício 14 - Modelagem

RESTRIÇÕES:

Cada armazém pode ter 1 peça enviada

$$X1A + X1B + X1C + X1D + X1E = 1$$

$$X2A + X2B + X2C + X2D + X2E = 1$$

$$X3A + X3B + X3C + X3D + X3E = 1$$

$$X4A + X4B + X4C + X4D + X4E = 1$$

$$X5A + X5B + X5C + X5D + X5E = 1$$

Cada local pode ter 1 peça recebida

$$X1A + X2A + X3A + X4A + X5A = 1$$

$$X1B + X2B + X3B + X4B + X5B = 1$$

$$X1C + X2C + X3C + X4C + X5C = 1$$

$$X1D + X2D + X3D + X4D + X5D = 1$$

$$X1E + X2E + X3E + X4E + X5E = 1$$

Xi ∈ B, ∀i

Exercício 14 – Solução Excel (OpenSolver)

			LOCAL		
ARMAZÉM	Α	В	С	D	E
1	230	200	210	240	220
2	190	210	200	200	190
3	200	180	240	220	210
4	220	180	210	230	220
5	210	190	200	220	210

Armazém 1 irá transportar para o local C, o 2 para D, o 3 para A, o 4 para B e o 5 para E.

Distância total no transporte: 1000 Km

		Α		В		C		D		Ε	
1	b	0	b	0	b	1	b	0	b	0	
2	b	0	b	0	b	0	b	1	b	0	
3	b	1	b	0	b	0	b	0	b	0	
4	b	0	b	1	b	0	b	0	b	0	
5	b	0	b	0	b	0	b	0	b	1	

Restrições	1	l 1	. 1	1	1
	= 1	l 1	. 1	1	1

1000 Função Objetivo Minimizar a distância

Exercício 15 - Problema

7. Uma empresa possui três fábricas (F1, F2 e F3), que enviam um tipo de produto a três clientes diferentes (C1, C2 e C3). A capacidade de produção de cada fábrica, a demanda de cada cliente e o custo unitário de transporte do produto estão na tabela a seguir.

	С1	C2	C3	Capacidade
F1	10	15	12	1800
F2	17	14	20	1400
F3	15	10	11	1300
Demanda	1200	1700	1600	

Além dos custos que dependem da quantidade de itens transportados, cada carga que sai de uma fábrica em direção a um cliente diferente possui um custo fixo de \$12000, \$11000 e \$13000 para as fábricas F1, F2 e F3, respectivamente. Qual é o custo mínimo que a empresa pode ter? E como ela deve fazer o transporte do produto?

Exercício 15 - Modelagem

Variáveis Binárias:

(0 não ativa; 1 ativa)

Fábrica 1

F1_C1 =

ATIVA F1 PARA C1

F1_C2 =

ATIVA_F1_PARA_C2

F1 C3 =

ATIVA_F1_PARA_C3

Fábrica 2

F2 C1 =

ATIVA_F2_PARA_C1

F2_C2 =

ATIVA F2 PARA C2

F2 C3 =

Variáveis Inteiras:

(qtd. de itens transportados)

Fábrica 1

 $C1_F1 = C1_RECEBE_DE_F1$

 $C2_F1 = C2_RECEBE_DE_F1$

C3_F1 = C3_RECEBE_DE_F1

Fábrica 2

C1_F2 = C1_RECEBE_DE_F2

C2 F2 = C2 RECEBE DE F2

 $C3_F2 = C3_RECEBE_DE_F2$

Fábrica 3

 $C1_F3 = C1_RECEBE_DE_F3$

C2 F3 = C2 RECEBE DE F3

C3 F3 = C3 RECEBE DE F3

Variáveis Inteiras de Custo:

(\$ variável e \$ fixo)

Custos

CV = CUSTO_VARIÁVEL

CF = CUSTO FIXO

Exercício 15 - Modelagem

MINIMIZAR Função Objetivo = CV + CF

Custos

```
CV == 10*C1_F1 + 17*C1_F2 + 15*C1_F3 + 15*C2_F1 + 14*C2_F2 + 10*C2_F3 + 12*C3_F1 + 20*C3_F2 + 11*C3_F3
CF == 12000*(F1_C1 + F1_C2 + F1_C3) + 11000*(F2_C1 + F2_C2 + F2_C3) + 13000*(F3_C1 + F3_C2 + F3_C3)
```

```
C1_F1 <= 10000*F1_C1
C2_F1 <= 10000*F1_C2
C3_F1 <= 10000*F1_C3
C1_F2 <= 10000*F2_C1
C2_F2 <= 10000*F2_C2
C3_F2 <= 10000*F2_C3
C1_F3 <= 10000*F3_C1
C2_F3 <= 10000*F3_C2
```

C3_F3 <= **10000***F3_C3

Capacidade de Produção

Demanda dos Clientes

C1_F1 + C1_F2 + C1_F3 == **1200** C2_F1 + C2_F2 + C2_F3 == **1700** C3_F1 + C3_F2 + C3_F3 == **1600**

10000: usado para PERMITIR o transporte dos itens APENAS se a FÁBRICA FOR ATIVADA para o CLIENTE.

Exercício 15 - Solução Excel (OpenSolver)

Variáveis Binárias:

(0 não ativa; 1 ativa)

Variáveis Inteiras:

(qtd. de itens transportados)

Variáveis Inteiras de Custo:

(\$ variável e \$ fixo)

<u>Fábrica 1</u>

Fábrica 1

$$C1_F1 = 1.200$$

C2
$$F1 = 0$$

$$C3_{F1} = 600$$

Custos

Fábrica 2

$$F2 C2 = 1$$

$$F2_C3 = 0$$

Fábrica 2

$$C1_F2 = 0$$

$$C2 F2 = 1.400$$

$$C3_{F2} = 0$$

MINIMIZAR Função Objetivo

<u>Fábrica 3</u>

$$F3_C2 = 1$$

$$F3_C3 = 1$$

Fábrica 3

$$C1_F3 = 0$$

$$C2_F3 = 300$$

$$C3 F3 = 1.000$$

Exercício 16 - Problema

9. Um empresa de telefonia possui \$ 7,4 milhões destinados à construção de até seis antenas de celular para cobrir a maior população possível em 9 comunidades contíguas. As comunidades cobertas por cada uma das antenas e os custos de construção estão listados abaixo.

Antena	Comunidades cobertas	Custo (\$ milhões)
1	1, 2, 4	2,2
2	2, 3, 6	2,3
3	6, 8	2,5
4	4, 5, 6, 7	4,1
5	3, 5, 6, 8, 9	4,8
6	1, 3, 4, 7, 9	5,1

A tabela a seguir mostra a população, em milhares de habitantes, em cada uma das comunidades.

Comunidade	1	2	3	4	5	6	7	8	9
População	5	8	6	7	9	13	11	7	4

Quais antenas devem ser construídas? Quais comunidades estarão cobertas?

Exercício 16 - Modelagem

VARIÁVEIS:

Xi - Variável binária, igual a 1 se a antena i foi construída e 0 caso contrário

Yi - Variável binária, igual a 1 se a comunidade i foi coberta e 0 caso contrário

OBJETIVO:

Maximizar o número de pessoas atendidas, dado por (em milhares)

5*Y1 + 8*Y2 + 6*Y3 + 7*Y4 + 9*Y5 + 13*Y6 + 11*Y7 + 7*Y8 + 4*Y9

RESTRIÇÕES:

 $X4 + X5 - 2*Y5 \le 0$

2.2*X1 + 2.3*X2 + 2.5*X3 + 4.1*X4 + 4.8*X5 + 5.1*X6 <= 7.4 (Custo)

CADA PAR SEGUINTE DE RESTRIÇÕES "AMARRA" OS Y'S COM OS X'S CORRESPONDENTES. A ORDEM É DA COMUNIDADE 1 ATÉ A COMUNIDADE 9, RESPECTIVAMENTE

X4 + X5 - Y5 >= 0

$$X1 + X6 - 2*Y1 <= 0$$
 $X1 + X6 - Y1 >= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X2 + X3 + X4 + X5 - 4*Y6 <= 0$ $X4 + X6 - 2*Y7 <= 0$ $X4 + X6 - 2*Y7 <= 0$ $X3 + X5 - 2*Y8 <= 0$ $X3 + X5 - 2*Y8 <= 0$ $X3 + X5 - Y8 >= 0$ $X1 + X4 + X6 - 3*Y4 <= 0$ $X1 + X4 + X6 - Y4 >= 0$ $X5 + X6 - 2*Y9 <= 0$ $X5 + X6 - Y9 >= 0$

Exercício 16 – Solução (LPSolve)


```
LPSolve IDE - 5.5.2.5
      Edit Search Action View
                                  Options 4 1
      | | 🚰 🖟 🔏 🖊 📗 | 🗠 🗠 | 🖊 🚰 😘
   Source 🔳 Matrix 🗷 Options 🙆 Result
   1 /* Função Objetivo */
   2 max: 5 j 1 + 8 j 2 + 6 j 3 + 7 j 4 + 9 j 5 + 13 j 6 + 11 j 7 + 7 j 8 + 4 j 9;
   4 /* Restrições */
   5 \ 2.2 \times 1 + 2.3 \times 2 + 2.5 \times 3 + 4.1 \times 4 + 4.8 \times 5 + 5.1 \times 6 \le 7.4;
   \epsilon \times 1 + \times 6 - 2 \text{ j } 1 <= 0;
   7 \times 1 + \times 6 - 1 \text{ j } 1 >= 0;
   8 \times 1 + \times 2 - 2 \div 2 <= 0;
   9 \times 1 + \times 6 - 1 \text{ j } 2 >= 0;
  10 \times 2 + \times 5 + \times 6 - 3 \text{ j } 3 \le 0;
  11 \times 2 + \times 5 + \times 6 - 1 \text{ j } 3 >= 0;
  12 x 1 + x 4 + x 6 - 3 j 4 <= 0;
  13 x 1 + x 4 + x 6 - 1 j 4 >= 0;
  14 \times 4 + \times 5 - 2 \text{ j } 5 \le 0;
  15 \times 4 + \times 5 - 1 j 1 >= 0;
  16 \times 2 + \times 3 + \times 4 + \times 5 - 4 \stackrel{.}{1} 6 <= 0;
  17 \times 2 + \times 3 + \times 4 + \times 5 - 1 \neq 6 >= 0;
  18 \times 4 + \times 6 - 2 \dot{j} 7 <= 0;
  19 \times 4 + \times 6 - 1 \dot{j} 7 >= 0;
  20 x_3 + x_5 - 2 j 8 \le 0;
  21 \times 3 + \times 5 - 1 \ j \ 8 >= 0;
  22 \times 5 + \times 6 - 2 \neq 9 \le 0;
  24 /* Tipo das Variáveis */
  25 bin j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, x_1, x_2, x_3, x_4, x_5, x_6;
```


Portanto, devem ser construídas as antenas 1 e 5, que cobrirão as comunidades 1, 2, 3, 4, 5, 6, 8 e 9, totalizando 59 mil habitantes.

Exercício 17 - Problema

2) Considere o problema da mochila abaixo:

$$\max 9x_1 +7x_2 +5x_3 +2x_4$$
s.a. $5x_1 +4x_2 +3x_3 +2x_4 \le 7$
 $x_1, x_2, x_3, x_4 = 0 \text{ ou } 1$

Usando o método Branch-and-bound determina a solução ótima do problema. Elabore uma maneira sistemática e fácil de se obter a relaxação linear para este problema.

Exercício 17 - Modelagem

ITENS											
	X1	X2	Х3	X4							
	1	2	3	4		CAPACIDAD					
Valor por Kilo \$	9	7	5	2							
Peso (massa) Kg	5	4	3	2	<=	7					
Valor Relativo	1,80	1,75	1,67	1,00							
RELAXAÇÃO	1	2/4	0	0		12,5					

Solução viável para o problema relaxado, no entanto não é uma solução ótima para o problema original, pois a solução precisa ser inteira.

Uma maneira sistemática para a relaxação é calcular o valor relativo das variáveis, ou seja, a relação entre o benefício e o peso e ordenar os valores em ordem crescente. Dessa forma, quanto maior for essa relação melhor é o candidato para entrar na mochila. Considerando essa sequência, é só ir acrescentando na mochila as variáveis até o limite da capacidade e fracionar quando necessário.

Exercício 17 - Modelagem

Sendo assim, a ordem de escolha das variáveis será: 1,2,3,4.

RAMIFICAÇÃO 1	1	0	2/3	0	X2 = 0	12,3
KAWIIFICAÇAO I	3/5	1	0	0	X2 = 1	12,4
RAMIFICAÇÃO 2	0	1	1	0	X1 = 0	12,0
KAWIIFICAÇAU 2	1	1	0	0	X1 = 1	
RAMIFICAÇÃO 3	1	0	0	1	X3 = 0	11,0
RAWIIFICAÇÃO 3	1	0	1	0	X3 = 1	

Não é uma solução otima, pois nem todas as variáveis são binárias.

Não é uma solução otima, pois nem todas as variáveis são binárias.

Solução ótima para o problema, pois a solução é inteira para todas as variáveis. Infactível, pois ultrapassa a capacidade.

Solução ótima para o problema, pois a solução é inteira para todas as variáveis. Infactível, pois ultrapassa a capacidade.

EXPLORAÇÃO DE 7 NÓS. SOLUÇÃO ÓTIMA = 12

X1 = 0

X2 = 1

X3 = 1

X4 = 0

Exercício 17 – Solução (LPSolve)

No Solver a exploração foi de 3 NÓS.

Na resolução manual a exploração foi de **7 NÓS**.

Exercício 18 - Problema

3) Considere o problema abaixo:

max
$$6x_1 + 9x_2 + 7x_3$$

suj. $3x_1 + 5x_2 + 4x_3 \le 14$
 $x_1, x_2, x_3 \ge 0$ e inteiros

Usando o método Branch-and-bound determina a solução ótima do problema.

Exercício 18 – Solução (LPSolve)

Exploração máxima foi de <u>4 NÓS</u>.

Solução ótima 27.

$$x1 = 3$$
, $x2 = 1$ e $x3 = 0$

Exercício 19 - Problema

Exercício 4.9 Suponha que uma empresa transportadora de cargas possui três caminhões que estão atualmente nas posições 1 e 2 da rede rodoviária de uma cidade esquematizada a seguir. No nó 1 estão dois caminhões da empresa e no nó 2 está o terceiro caminhão. Um novo pedido de frete foi solicitado na localidade 6. Para este pedido, são necessários três caminhões. Além disso, a carga precisa ser retirada no máximo dentro de 50 minutos, pois depois desse prazo não é mais possível estacionar o caminhão próximo do local, por problemas de tráfego. Determine se a empresa transportadora poderá atender a este pedido. Os números ao lado de cada arco representam o número de minutos para um caminhão percorrer o arco.

Exercício 19 - Solução Excel (OpenSolver)

- 2 caminhões saindo do nó 1 até o nó 6.

TEMPO TOTAL: 30 MINUTOS

						Restrições				
Início	Fim	Car	minho	Tempo (min)		Grafo (Vértices)	Fluxo		Início = 1 e Fim = -1	
	1 2	b	0	20		1	. 1	=	1	Caminhão A e B saíndo do ponto 1
	1 3	b	0	30		2	0	=	0	
	1 5	b	1	30		3	0	_	= 0	
	2	þ	0	40		4	0	=	0	
	2 3	b b	0	20		5	-1	=	-1	
	3	þ	0	10						
	3 5	b	0	20						
	4 6	b	0	10		Tempo total	30		≤ 50	
	5 6	b min	0	40						
	Min Tempo	· · · · ·	30							
	Tempo tota	al par	ra o car	minhão A + B	30					

Exercício 19 - Solução Excel (OpenSolver)

1 caminhão saindo do nó 2 até o nó 6.

TEMPO TOTAL: 40 MINUTOS

					Restrições						
Fim	Cam	inho	Tempo (min)		Grafo (Vértices)	Fluxo		Início =	1 e Fim = -1		
2	b	0	20		1	0	=		0		
3	b	0	30		2	1	=		1	Caminhão C saín	do do ponto 2
5	b	0	30		3	0		=	0		
4	b	0	40		4	0	=		0		
3	b	1	20		5	-1	=		-1		
4	b	0	10								
5	b	1	20								
		0	10		Tempo total	40	<-	≤	50		
6	b min	0	40								
Min Tempo		40									
Tempo tota	para	o car	minhão C	40							
	2 3 5 4 3 4 5 6 Min Tempo	2 b 3 b 5 b 4 b 3 b 4 b 5 b 6 b 6 b Min Tempo	2 b 0 3 b 0 5 b 0 4 b 0 3 b 1 4 b 0 5 b 1 6 b 0 6 b 0 Min Tempo 40	2 b 0 20 3 b 0 30 5 b 0 30 4 b 0 40 3 b 1 20 4 b 0 10 5 b 1 20 6 b 0 10 6 b 0 40	Fim Caminho Tempo (min) 2 b 0 20 3 b 0 30 5 b 0 30 4 b 0 40 3 b 1 20 4 b 0 10 5 b 1 20 6 b 0 10 Min Tempo 40 Min Tempo Tempo (min) 20 40 40 40 40 Min Tempo Tempo (min) 40 40 40 40 A0 A0 A0 A0 A0 A0	2 b 0 20 1 3 b 0 30 2 5 b 0 30 30 3 4 b 0 40 4 3 b 1 20 5 4 b 0 10 5 b 1 20 6 b 0 10 Tempo total Min Tempo 40	Fim Caminho Tempo (min) Grafo (Vértices) Fluxo 2 b 0 20 1 0 3 b 0 30 2 1 5 b 0 30 3 0 4 b 0 40 4 0 3 b 1 20 5 -1 4 b 0 10 10 10 10 5 b 1 20 2 10	Fim Caminho Tempo (min) Grafo (Vértices) Fluxo 2 b 0 20 1 0 = 3 b 0 30 2 1 = 5 b 0 30 3 0 - 4 b 0 40 4 0 = 3 b 1 20 5 -1 = 4 b 0 10	Fim Caminho Tempo (min) Grafo (Vértices) Fluxo Início = 2 b 0 20 1 0 = 1 0 = 1 = <	Fim Caminho Tempo (min) Grafo (Vértices) Fluxo Início = 1 e Fim = -1 2 b 0 20 1 0 = 0 3 b 0 30 2 1 = 1 5 b 0 30 3 0 - = 0 4 b 0 40 4 0 = 0 0 3 b 1 20 5 -1 = -1 -1 4 b 0 10 <	Fim Caminho Tempo (min) Grafo (Vértices) Fluxo Início = 1 e Fim = -1 Início = 1 e Fim = -1 2 b 0 20 30 1 0 = 0 0 3 b 0 30 30 3 0 = 0 1 Caminhão C saín 4 b 0 40 4 0 = 0 0 0 3 b 1 20 5 -1 = 0 -1 -1 4 b 0 10 10 -1 -1 -1 5 b 1 20 -1 -1 -1 -1 6 b 0 10 Tempo total 40 -1 -1 -1 Min Tempo 40 -1 -1 -1 -1 -1

Exercício 19 - Solução para o Cliente

2 caminhões saindo do nó 1 até o nó 6 + 1 caminhão saindo do nó 2 até o nó 6.
 TEMPO TOTAL: 70 MINUTOS

A EMPRESA TRANSPORTADORA NÃO PODERÁ ATENDER ESSE PEDIDO, POIS VIOLA A RESTRIÇÃO DE TEMPO MÁXIMO SOLICITADA PELO CLIENTE DE 50 MINUTOS.

INSTITUTO TECNOLÓGICO DE AERONÁUTICA

Contato

Ana Paula dos Santos Gularte

linkedin.com/in/ana-paula-santos-gularte-66b90526 Jaraguá do Sul, SC anasantospoa@gmail.com (47) 99753-8080

OBRIGADA!