Combinatorial Optimization Problem: Model and Implementation

Dang Xuan Vuong, Le Anh Tuan, Le Van Cuong, Pham Quang Dung

December 13, 2019

Contents

1	Introduction		1	
2 Case study		у	3	
	2.1	Capac	citated Vehicle Routing Time Windows Problem	3
		2.1.1	Problem description	3
		2.1.2	General Model	3
		2.1.3	Simplify the problem	4
		2.1.4	Constrained Programming Model	5
		2.1.5	Mixed Integer Programming Model	6

iv CONTENTS

Chapter 1

Introduction

This document describes combinatorial optimization problems including models (mixed integer programming, constraint programming) and its implementation by MIP solver, CP solver, CBLS solver, etc.

Chapter 2

Case study

2.1 Capacitated Vehicle Routing Time Windows Problem

2.1.1 Problem description

The are N delivery requests. The *i-th* request require us to ship an item with a weight of w(i) to location i in period of time between e(i) and l(i). Unloading item i require a period of time equal to d(i). We use K trucks for delivering. The k-th truck has capacity c(k), start working time at e(k) and finish working time at l(k). Travel distance and travel time between location i and location j respectively are d(i, j) and d(i, j). We need to establish a route for the trucks to meet all the requests so that the total travel distance of the trucks is minimal.

2.1.2 General Model

Graph G = (V, E). Set of vertices $V = \{0, 1, 2, ..., N\}$ represents depot (vertex 0) and locations to delivery (vertex 1, 2, ..., N). Each vertex in $\{1, 2, ..., N\}$ has:

• w(i): weight of item.

- e(i): the earliest delivery time.
- l(i): the latest delivery time.
- d(i): delivering duration.

Set of edges $E = \{(i, j) \mid i, j \in V\}$ represents paths between 2 locations (or depot and a location). Each edge $(i, j) \in E$ has:

- d(i, j): travel distance between location (or depot) i and location (or depot) j.
- t(i, j): travel time between location (or depot) i and location (or depot) j.

There are K trucks for delivering. Truck k (k = 1, 2, ..., K) has

- c(k): capacity of the truck (total weight of items on the truck cannot exceed its capacity).
- e(k): start working time.
- l(k): end working time.

We need to find a route for trucks on graph G that satisfies the conditions:

- The *i-th* item is delivered to location i from e(i) to l(i), including unloading time d(i).
- The k-th truck start working from vertex 0 after e(k) and go back vertex 0 before l(e).
- The k-th truck never carry over c(k) of item weight.
- Total travel distance of the trucks is minimal.

2.1.3 Simplify the problem

Before going into specific solving models, we will simplify the problem by adding some hypotheses.

2.1. CAPACITATED VEHICLE ROUTING TIME WINDOWS PROBLEM5

- Each request *i* is served by only one truck *k*. So, we can't split item into multiple pieces and the trucks can't exchange item in working period.
- Each truck k leave depot only once after starting working time and go back before finishing working time.
- Direct path between location *i* and location *j* is the best choice (in both sense of distance and time travel) if we want to travel from *i* to *j*.

2.1.4 Constrained Programming Model

To create this below Constrained Programming Model formulations, we need to include hypotheses at section 2.1.3:

Variables

- $X(k, i, j) \in \{0, 1\}$ in which X(k, i, j) = 1 indicates that truck k traverse from point i to point j $(\forall k \in \{1, \ldots, K\}, i, j \in \{0, 1, \ldots, N\}).$
- $Z(k,i) \in \{0,1\}$ in which Z(k,i) = 1 indicates that truck k serve i-th request $(\forall k \in \{1,\ldots,K\}, i,j \in \{0,1,\ldots,N\}).$
- $Y_a(k,i)$: the time when truck k arrives location i.
- $Y_s(k,i)$: the time when truck k truck start delivering at location i.
- $Y_d(k,i)$: the time when truck k truck leaves location i.

Constraints

$$X(k, i, j) = 1 \implies Y_d(k, i) + t(i, j) = Y_a(k, j)$$
 (2.1)

$$Z(k,i) = 1 \implies Y_s(k,i) + d(i) = Y_d(k,i)$$
 (2.2)

$$Z(k,i) = 1 \implies Y_s(k,i) \ge Y_a(k,i) \tag{2.3}$$

$$Z(k,i) = 1 \implies Y_s(k,i) \ge e(i)$$
 (2.4)

$$Z(k,i) = 1 \implies Y_a(k,i) \le l(i)$$
 (2.5)

$$\sum_{i} X(k, i, j) = Z(k, j), \forall k, j$$
(2.6)

$$\sum_{k} Z(k,j) = 1, \forall j \tag{2.7}$$

$$\sum_{i} X(k,i,j) = \sum_{i} (K,j,i), \forall j,k$$
(2.8)

$$\sum_{i} X(k, i, 0) \le K, \forall k \tag{2.9}$$

$$Y_d(k,0) \ge e(k) \tag{2.10}$$

$$X(k, i, 0) = 1 \implies Y_d(k, i) + t(i, 0) \le l(k), \forall k, i$$
 (2.11)

$$\sum_{i} Z(k,i) \times w(i) \le c(k), \forall k$$
 (2.12)

Objective functions

$$\sum_{k,i,j} X(k,i,j) \times d(i,j) \to min \tag{2.13}$$

2.1.5 Mixed Integer Programming Model

We also use Constrained Programming Model formulations at section 2.1.4 with transforming inferred relation constraints to create below Mixed Integer Programming Model formulations.

Constraints

- Suppose we has a very large constant M and an infinitesimal positive constant ϵ .
- Constraint 2.1 is equivalent with 2 below constraints:

$$Y_d(k,i) + t(i,j) + M \times (X(k,i,j) - 1) \ge Y_d(k,j)$$
 (2.14)

$$Y_d(k,i) + t(i,j) + M \times (X(k,i,j) - 1) \le Y_a(k,j)$$
 (2.15)

2.1. CAPACITATED VEHICLE ROUTING TIME WINDOWS PROBLEM?

• Constraint 2.2 is equivalent with 2 below constraints:

$$Y_s(k,i) + d(i) + M \times (X(k,i,j)) \ge Y_d(k,i)$$
 (2.16)

$$Y_s(k,i) + d(i) + M \times (X(k,i,j)) \le Y_d(k,i)$$
 (2.17)

• Constraint 2.3 is equivalent with below constraint:

$$Y_s(k,i) \times Z(k,i) \ge Y_a(k,i) \times Z(k,i) \tag{2.18}$$

 \bullet Constraint 2.4 is equivalent with below constraint:

$$Y_s(k,i) \times Z(k,i) \ge e(i) \times Z(k,i) \tag{2.19}$$

 \bullet Constraint 2.5 is equivalent with below constraint:

$$Y_a(k,i) \times Z(k,i) \le l(i) \times Z(k,i) \tag{2.20}$$

• Constraint 2.11 is equivalent with below constraint:

$$(Y_d(k,i) + t(i,0)) \times X(k,i,0) \le l(k) \times X(k,i,0)$$
 (2.21)