Enabling Virtual Memory Research on RISC-V with a Configurable TLB Hierarchy for the Rocket Chip Generator

Nikos Ch. Papadopoulos, Vasileios Karakostas, Konstantinos Nikas, Nectarios Koziris, Dionisios N. Pnevmatikatos

ncpapad@cslab.ece.ntua.gr

National Technical University of Athens

School of Electrical and Computer Engineering Computing Systems Laboratory

Motivation

Explore RISC-V ISA and Rocket Chip Generator

- Vanilla L1 TLB is fully-associative
 - May impact the critical path
 - #entries vs resource usage tradeoff
- Vanilla L2 TLB is direct-mapped
 - May impact the miss rate
- We want to lift these restrictions and enable:
 - Configurable L1 and L2 TLBs
 - From direct mapped up to fully-associative structures

Outline

- Background
 - Rocket Chip Generator
 - RISC-V Virtual Memory support
- Configurable TLB Hierarchy features
- Methodology
 - Hardware & Software Development Flow
- Performance and Area Results
- Related & Future work
- Conclusions

Rocket Chip Generator

- SoC Generator that produces Synthesizable RTL
 - Written in Chisel
 - Rocket core or BOOM (Berkeley Out-of-Order Machine)
 - Parameterized Tiles, Caches, Accelerators, etc.
- Library of processor parts and utilities
 - Replacement policies
 - Branch predictors
 - ...and many more

RV64-Sv39 Paging Scheme

- 39-bit (512GB) virtual address space
- 3-level page table
- Supports 4KB base pages
 - But also 2MB, 1GB superpages
- 27-bit VPN \rightarrow 44-bit PPN
 - 12-bit page offset for 4KB pages
- SATP register
 - Stores the root of the page table

Physical Address

Existing MMU in Rocket Chip Generator

- Fully-associative L1 TLB
 - Separate Data/Instr L1 TLB
 - Vector of Registers
 - Fast & small (32-128 entries)
- Direct-mapped L2 TLB
 - SyncReadMem
 - Slower but larger (128-1024)
- Fully-associative PTW Cache
 - Vector of Registers
 - Keeps non-leaf nodes

Configurable TLB hierarchy in Rocket

- Kept the same overall structure
 - Lookups, refill, replacement policies, flushing
- Added about 70 LoC for the L1 TLB
- 50 LoC for the L2 TLB
- Implementation in two different editions of the RCG
 - Apr 2018 version
 - Supports Xilinx ZCU102
 - January 2020 version

Hardware Development Flow

Implementation

- Chisel & FIRRTL checks
- Syntax errors, unconnected wires, etc.

Testing

- Verilator: Cycle-accurate Simulator
- Chisel debug statements
- Assembly tests

Evaluation

- Generate bitstream for the Xilinx ZCU102
- Run tests and benchmarks using Buildroot

Software Flow

Freedom-U-SDK by Sifive

SW for the Freedom Unleashed

Buildroot

- Minimal embedded distribution
- Easy to add custom packages

• Linux kernel 4.15

- Cross-compilation for RISC-V
- Berkeley Boot Loader (BBL)
 - Sets up performance counters (cycles, TLB misses)
 - Boots linux

L1 | L2 TLB Contributions

Configurable L1 | L2 TLB

Organization

Parameterization

Replacement policies

Other features

Fully-assoc | Direct-mapped

#Entries

PseudoLRU/Random | No policy

Sectored L1 TLB entries

Any associativity

#Sets, #Ways (pow2)

Pseudo LRU/Random setassociative alternatives

Sectored L1 TLB entries are supported too

Evaluation Metrics

- FPGA Resource Usage
 - Lookup-Tables (LUTs), Flip-Flops (FFs), Block RAM (BRAMs)
- Performance Metrics
 - SPEC2006 benchmarks (with test input set)
 - Misses-per-kilo-Instructions (MPKI)
 - Instructions-per-cycle (IPC)

Evaluation Scenarios

Conf. No	DTLB	ITLB	L2 TLB
Ι	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- Configurations resembling well-known architectures
 - Conf III → ARM Cortex A57
 - Conf IV → Intel Skylake
 - Conf V → Intel Skylake (swapped I/D TLB sizes)

FPGA resource usage evaluation

Configuration	I	II	III	IV	V
Frequency (Mhz)	189	187	186	188	186

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
\mathbf{V}	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- Results for L1 Data and Instruction TLBs
- Most TLB misses come from data accesses
- Several benchmarks show similar behavior across configurations
- But larger L1 DTLB may improve performance
- mcf stresses the TLB hierarchy the most

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
\mathbf{V}	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- Results for L1 Data and Instruction TLBs
- Most TLB misses come from data accesses
- Several benchmarks show similar behavior across configurations
- But larger L1 DTLB may improve performance
- mcf stresses the TLB hierarchy the most

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
\mathbf{V}	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- Results for L1 Data and Instruction TLBs
- Most TLB misses come from data accesses
- Several benchmarks show similar behavior across configurations
- But larger L1 DTLB may improve performance
- mcf stresses the TLB hierarchy the most

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
\mathbf{V}	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- Results for L1 Data and Instruction TLBs
- Most TLB misses come from data accesses
- Several benchmarks show similar behavior across configurations
- But larger L1 DTLB may improve performance
- mcf stresses the TLB hierarchy the most

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- L2 TLB misses are rare for most benchmarks
- Larger L2 TLB reach may reduce page walks
 - Configurations IV and V
- mcf improves significantly as L2 TLB increases

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
\mathbf{V}	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- L2 TLB misses are rare for most benchmarks
- Larger L2 TLB reach may reduce page walks
 - Configurations IV and V
- mcf improves significantly as L2 TLB increases

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
\mathbf{V}	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- L2 TLB misses are rare for most benchmarks
- Larger L2 TLB reach may reduce page walks
 - Configurations IV and V
- mcf improves significantly as L2 TLB increases

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
V	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

- L2 TLB misses are rare for most benchmarks
- Larger L2 TLB reach may reduce page walks
 - Configurations IV and V
- mcf improves significantly as L2 TLB increases

Conf. No	DTLB	ITLB	L2 TLB
I	32-way, 32 entries	32-way, 32 entries	-
II	32-way, 32 entries	32-way, 32 entries	4-way, 128 entries
III	32-way, 32 entries	32-way, 32 entries	4-way, 512 entries
IV	8-way, 64 entries	8-way, 128 entries	8-way, 1024 entries
\mathbf{V}	8-way, 128 entries	8-way, 64 entries	8-way, 1024 entries

System Performance Evaluation (IPC)

Benchmark	I	II	III	IV	V
mcf	0.13	-	7.7 %	15.4 %	15.4 %
gobmk	0.44	-	-	2.3 %	2.3 %
hmmer	0.58	-	-	-	-
sjeng	0.55	1.8 %	1.8 %	1.8 %	3.6 %
libquantum	0.44	-	-	-	-
h264ref	0.77	1.4~%	1.4 %	2.6 %	2.6 %
omnetpp	0.35	2.9 %	5.7 %	5.7 %	5.7 %
astar	0.36	-	-	2.8 %	2.8 %
xalancbmk	0.36	2.8 %	8.3 %	8.3 %	8.3 %
bzip2	0.51	2.0 %	4.0~%	5.9 %	5.9 %
gcc	0.44	2.2 %	2.2 %	4.5 %	4.5 %

System Performance Evaluation (IPC)

Benchmark	Ι	II	III	IV	V
mcf	0.13	-	7.7 %	15.4 %	15.4 %
gobmk	0.44	-	-	2.3 %	2.3 %
hmmer	0.58	-	-	-	-
sjeng	0.55	1.8 %	1.8 %	1.8 %	3.6 %
libquantum	0.44	-	-	-	-
h264ref	0.77	1.4 %	1.4 %	2.6 %	2.6 %
omnetpp	0.35	2.9 %	5.7 %	5.7 %	5.7 %
astar	0.36	-	-	2.8 %	2.8 %
xalancbmk	0.36	2.8 %	8.3 %	8.3 %	8.3 %
bzip2	0.51	2.0 %	4.0~%	5.9 %	5.9 %
gcc	0.44	2.2 %	2.2 %	4.5 %	4.5 %

System Performance Evaluation (IPC)

Benchmark	I	II	III	IV	V
mcf	0.13	-	7.7 %	15.4 %	15.4 %
gobmk	0.44	-	-	2.3 %	2.3 %
hmmer	0.58	-	-	-	-
sjeng	0.55	1.8 %	1.8 %	1.8 %	3.6 %
libquantum	0.44	-	-	-	-
h264ref	0.77	1.4 %	1.4 %	2.6 %	2.6 %
omnetpp	0.35	2.9 %	5.7 %	5.7 %	5.7 %
astar	0.36	-	-	2.8 %	2.8 %
xalancbmk	0.36	2.8 %	8.3 %	8.3 %	8.3 %
bzip2	0.51	2.0 %	4.0~%	5.9 %	5.9 %
gcc	0.44	2.2 %	2.2 %	4.5 %	4.5 %

... Further Evaluation

- Unfortunately the Xilinx ZCU102 board reserves only 512MB RAM for the PL thus limiting the benchmarks we could run
 - Older Rocket Chip commit
- Correctness evaluation of the more recent RC edition
- We plan on moving to Firesim
 - Evaluation with SPEC2017 and other benchmarks
 - + Multicore benchmarking
- BOOM performance evaluation

Related & Future Work

- Research/Develop new MMU features
 - Direct Segments [ISCA'13]
 - Coalesced/Clustered TLBs [MICRO'12, HPCA'14]
 - Redundant Memory Mappings [ISCA'15]
 - Hybrid TLB Coalescing [ISCA'17]
- Reduce resource usage in FPGA simulation
 - TLBs are CAMs → FPGA-hostile structure

Conclusions

- Enabled further configurability in the Rocket Chip Generator
- Our design can output any L1/L2 TLB organization/size
- Evaluated resource usage & application performance
- Feel free to review our work in github!
 - https://github.com/ncppd/rocket-chip

Thank you!

