

Disusun oleh : Team Coach

Kode Materi : KM-04-01 KM-04-02

KM-04-03

Al dengan Python

Pengenalan

Agenda Hari Ini

Reading & Writing File

Operasi Matematika & NumPy

Pandas & Statistik Deskriptif

Visualisasi Data

Session I Reading & Writing File

Menggunakan fungsi "**open**"

2

Menulis File

1) Fungsi Open

Fungsi **open** memungkinkan Anda untuk melakukan operasi file (*file handling*), seperti:

- Read membaca sebuah file (kode mode: r)
- Write menulis sebuah file (kode mode: w)
- Append menambah isi sebuah file (kode mode: a)

Terdapat 2 struktur:

- 1) menggunakan file object, dan
- 2) menggunakan with

1) Fungsi Open

1.1 Menggunakan **file object** pada fungsi **open** Struktur:

1) Fungsi Open

1.2 Menggunakan with pada fungsi open Struktur:

2) Menulis File

2. Menulis File

Write → untuk me-rewrite file, jadi menghapus isi sebelumnya

Append → menambahkan teks saja, **tidak menghapus** isi sebelumnya

Let's Code!

Link Google Colab : https://bit.ly/LatihanPythonDasar
Save copy di drive kamu (jika menggunakan google colab) atau download ipynb file jika menggunakan jupyter

Session IINumPy Library

Library Python untuk membantu operasi matematika

Image Source: https://numpy.org/

1) Contoh Penggunaan

Meng-import library NumPy:

import **numpy** as **np**

Membuat 1D array (vektor)a = np.array([3, 1, 5, 6])

Membuat 2D array (matriks)

$$A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])$$

begitupun 3D (tensor)

2) Indexing & Slicing (Pemisahan)

Index array NumPy dimulai dari 0

Array 1D (vektor)

$$a = np.array([3, 1, 5, 6])$$

$$\begin{pmatrix} 3 \\ 1 \\ 5 \\ 6 \end{pmatrix}$$

$$a[1] = 1$$

$$a[2] = 5$$

banyaknya entri → a.size : 4

dimensi array → a.ndim : 1 (menunjukkan vektor)

ukuran array \rightarrow **a.shape** : (4,)

2) Indexing & Slicing (Pemisahan)

Array 1D (vektor)

$$a = np.array([3, 1, 5, 6])$$

a[0] = 3 a[1] = 1 a[2] = 5

Slicing:

a[1:]: array([1, 5, 6])

a[1:3]: array([1, 5])

a[:3] : array([3, 1, 5])

2) Indexing & Slicing (Pemisahan)

Array 2D (matriks)

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

banyaknya entri → **A.size**: 9

dimensi array → **A.ndim** : 2 (menunjukkan matriks)

ukuran array \rightarrow **A.shape**: (3,3)

$$A[0][2] = 3$$

$$A[0, 2] = 3$$

$$A[2][0] = 7$$

$$A[2, 0] = 7$$

2) Indexing & Slicing (Pemisahan)

Array 2D (matriks)

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Slicing:

A[1] : array([4,5,6])

A[1, 1:]: array([5, 6])

A[:2] : array([[1, 2, 3], [4, 5, 6]])

A[:2, 1] : array([2, 5])

$$A[0][2] = 3$$

$$A[0, 2] = 3$$

$$A[2][0] = 7$$

$$A[2, 0] = 7$$

3) Operasi Matematika

A) Penjumlahan/Pengurangan Array & Dot Product Vektor

Misal:

A = np.array([[1, 2], [7,8]])

B = np.array([[3, 5], [1,6]])

2*A : array([[2, 4], [14, 16]])

2+A : array([[3, 4], [9, 10]])

A+B : array([[4, 7], [8, 14]])

A-B : array([[-2, -3], [6, 2]])

Misalkan:

C D
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ $C \cdot D = 1 \\ 1 \times 3 + 2 \times 5 = 13$

Perkalian dot product vektor:

np.dot(C, D)

3) Operasi Matematika

B) Perkalian Matriks

Perkalian antar entri

$$\begin{bmatrix} 1 & 2 \\ 7 & 8 \end{bmatrix} * \begin{bmatrix} 3 & 5 \\ 1 & 6 \end{bmatrix} = \\ A & B \\ 1x3 & 2x5 \\ 7x1 & 8x6 \end{bmatrix} = \begin{bmatrix} 3 & 10 \\ 7 & 48 \end{bmatrix}$$

A*B: array([[3, 10], [7, 48]])

Perkalian matriks A & B

$$AB = \begin{pmatrix} (1x3)+(2x1) & (1x5)+(2x6) \\ (7x3)+(8x1) & (7x5)+(8x6) \end{pmatrix}$$

np.matmul(A, B): array([[5, 17], [29, 83]])

3) Operasi Matematika

C) Operasi Matematika Lainnya

- mean → np.mean(A)
- median \rightarrow np.median(A)
- nilai maksimum → np.max(A)
- sorting \rightarrow np.sort(A)
- transpose → np.transpose(A)
- determinan \rightarrow np.linalg.det(A)
- invers → np.linalg.inv(A)
- eigen value & vector → np.linalg.eig(A)
- generate matriks yg entrinya 0 semua ukuran pxq→ np.zeros(p,q)
- generate matriks identitas ukuran pxp → np.identity(p)

Let's Code!

Link Google Colab : https://bit.ly/LatihanPythonDasar
Save copy di drive kamu (jika menggunakan google colab) atau download ipynb file jika menggunakan jupyter

Session III Pandas Library

Library Python untuk membantu membaca dan analisis data di python

Image Source: https://commons.wikimedia.org/wiki/File:Pandas_logo.svg

1) Mengenal DataFrame

DataFrame dapat diibaratkan seperti spreadsheet/file excel dalam Python

No	Nama	Jml Tabungan (perbulan)	usia
1	Entong	12000	16
2	Eneng	10000	17
3	Bobby	9000	25
4	Amir	15000	26
5	Rendi	9900	23

Contoh DataFrame Anggota Koperasi Sukanabung

1) Mengenal DataFrame

Contoh pembuatan/konstruksi dataframe:

import **pandas** as **pd** df1 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=['a', 'b', 'c'])

atau

df1=pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})

Hasil konstruksi:

	а	b	С
0	1	2	3
1	4	5	6
2	7	8	9

1) Mengenal DataFrame

Menambahkan kolom baru dalam DataFrame: df1['d'] = [3, 5, 6]

	а	b	С	d
0	1	2	3	3
1	4	5	6	5
2	7	8	9	6

Sesudah

1) Mengenal DataFrame

Mengambil kolom tertentu dalam DataFrame: df1[['a','d']]

	а	b	С	d
0	1	2	3	3
1	4	5	6	5
2	7	8	9	6

DataFrame Awal

	а	d
0	1	3
1	4	5
2	7	6

Hasil Pengambilan

1) Mengenal DataFrame

Memilih sebagian dari DataFrame (berdasarkan nilai entry-nya), misalnya memilih yang entri kolom a > 2: df1[df1['a']>2]

	а	b	С	d
0	1	2	3	3
1	4	5	6	5
2	7	8	9	6

DataFrame Awal

	а	b	С	d
1	4	5	6	5
2	7	8	9	6

Hasil Pemilihan

1) Mengenal DataFrame

Memilih sebagian dari DataFrame (berdasarkan indexnya), misalnya memilih yang entri indexnya [0:2, 0:3]: df1.iloc[0:2, 0:3]

-	а	b	С	d
0	1	2	3	3
1	4	5	6	5
2	7	8	9	6

DataFrame Awal

	а	b	С
0	1	2	3
1	4	5	6

Hasil Pemilihan

2) Meng-import Data ke DataFrame

csv file dari local computer :

csv file dari web tertentu :

xls file dari local computer :

```
xls_path = 'data/data.xlsx'
xls_df = pd.read_excel(xls_path)
```

json file dari web tertentu:

3) Membuat Analisis Data

Misal, df = pd.read_csv(csv_path). Analisis data **numerik**:

statistik deskriptif: df.describe()

	"^"
	"Age"
count	18.000000
mean	34.666667
std	7.577055
min	23.000000
25%	30.000000
50%	32.500000
75%	38.750000
max	53.000000

histogram : df.hist()

3) Membuat Analisis Data

Misal, df = pd.read_csv(csv_path)

Analisis data **non-numerik**: df.describe(include=["object", "bool"])

	Name	"Sex"
count	18	18
unique	18	2
top	Bert	"M"
freq	1	11

Contoh Hasil Analisis Data Non-Numerik

Let's Code!

Link Google Colab : https://bit.ly/LatihanPythonDasar
Save copy di drive kamu (jika menggunakan google colab) atau download ipynb file jika menggunakan jupyter

Extra Session

Visualisasi Data

Visualisasi Data

Library Python yang paling sering digunakan untuk visualisasi data:

Image Source: https://matplotlib.org/

Image Source: https://seaborn.pydata.org/

Let's Code!

Link Google Colab : https://bit.ly/LatihanPythonDasar
Save copy di drive kamu (jika menggunakan google colab) atau download ipynb file jika menggunakan jupyter

