Peking University

Name of Course: 线性代数-A

Prof. 赵玉凤

严绍恒, Shaoheng Yan **ID:** 2400017416

Date: 2024年10月9日

矩阵的秩作业

问题 1 现在有主对角线占优矩阵 $B_{s\times s}$ 与一个列向量组 $C_{s\times n-s}$,二者并置构成矩阵 A。证明 A 的秩为 s。

证明 设 B 有特征值 λ ,且对应特征向量 β 。记 $|\beta_k| = \max\{|\beta_1|, \cdots, |b_k|\}$:

$$B\beta = \lambda\beta$$

$$\sum_{i=1}^{s} B_{ki}\beta_{i} = \lambda\beta_{k}$$

$$\lambda = \sum_{i=1}^{s} B_{ki} \frac{\beta_{i}}{\beta_{k}}$$

$$|\lambda| \ge |B_{kk}| - \sum_{i \ne k} |B_{ki}|$$

$$> 0$$

从而 $\det(\operatorname{diag}(\lambda))=\det {\bf B}\neq 0$, ${\bf B}$ 的每个行向量线性无关。从而扩充为 ${\bf \gamma}$ 后亦线性无关,行向量组 ${\bf A}$ 的秩为 s。

问题 2 设向量组 $\alpha_1, \dots, \alpha_s$ 可以线性表示 β ,且不能被 $\alpha_1, \dots, \alpha_{s-1}$ 线性表示。证明:rank $\{\alpha_1, \dots, \alpha_s\} = \text{rank } \{\alpha_1, \dots, \beta\}$.

证明 由题设, $\{\alpha_j\}(j \neq s)$ 与 α_s 必然线性无关。择出 $\{\alpha_i\}(i \neq s)$ 中的最大线性无关组 $\{\alpha_i\}$:

$$\sum k_i \boldsymbol{\alpha}_i = \boldsymbol{\beta}$$
 det $(\boldsymbol{\alpha}_1 \cdots \boldsymbol{\alpha}_s)$ = $\frac{\partial}{\partial \boldsymbol{\beta}} \det \left(\boldsymbol{\alpha}_1 \cdots \sum \frac{k_i}{k_s} \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_s \right) = \det \left(\boldsymbol{\alpha}_1 \cdots \boldsymbol{\beta}_k \right) \neq 0$

从而二者等秩。证毕。