Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering Semester		V
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory		
Academic year	2025-2026 (Odd)	Batch:2023-2028	Due date:

Experiment 3: Email Spam or Ham Classification using Naive Bayes, KNN, and SVM

1 Aim:

To design and implement classification models using Naive Bayes variants and K-Nearest Neighbors (KNN) algorithms to accurately classify emails as spam or ham. Additionally, to evaluate and compare their effectiveness using multiple performance metrics.

2 Libraries used:

- Numpy
- Pandas
- Matplotlib
- Scikit-learn
- Seaborn

3 Objective:

- To preprocess the email dataset by cleaning text data, vectorizing features, and splitting the data for training and testing.
- To implement Naive Bayes classifiers (Bernoulli, Multinomial, Gaussian) and KNN classifiers, tuning parameters such as k-value.
- To measure and compare model performance using accuracy, precision, recall, F1-score, confusion matrix, and ROC-AUC, enabling informed model selection.

4 Naive Bayes Code:

Importing Required Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler # or MinMaxScaler, if used
from sklearn.preprocessing import LabelEncoder # if categorical labels
from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB
from sklearn.metrics import accuracy_score, confusion_matrix, classification_re
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import cross_val_score, KFold
```

Loading dataset

```
df = pd.read csv('spambase.csv')
```

Basic info

```
print("Dataset Info:\n", df.info())
print("\nFirst 5 rows:\n", df.head())
print("\nMissing Values:\n", df.isnull().sum())
```

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 4601 entries, 0 to 4600
 Data columns (total 58 columns):

- 0 0.	(10101)		
#	Column	Non-Null Count	Dtype
0	word_freq_make	4601 non-null	float64
1	word_freq_address	4601 non-null	float64
2	word_freq_all	4601 non-null	float64
3	word_freq_3d	4601 non-null	float64
4	word_freq_our	4601 non-null	float64
5	word_freq_over	4601 non-null	float64
6	word_freq_remove	4601 non-null	float64
7	word_freq_internet	4601 non-null	float64
8	word_freq_order	4601 non-null	float64
9	word_freq_mail	4601 non-null	float64
10	word_freq_receive	4601 non-null	float64
11	word_freq_will	4601 non-null	float64
12	word_freq_people	4601 non-null	float64
13	word_freq_report	4601 non-null	float64
14	word_freq_addresses	4601 non-null	float64
15	word_freq_free	4601 non-null	float64
16	word_freq_business	4601 non-null	float64
17	word freq email	4601 non-null	float64

```
18 word freq you
                                4601 non-null
                                                float64
19 word_freq_credit
                                4601 non-null
                                                float64
20 word_freq_your
                                4601 non-null
                                                float64
21 word_freq_font
                                4601 non-null
                                               float64
   word freq 000
                                4601 non-null float64
23 word_freq_money
                                4601 non-null
                                                float64
24 word_freq_hp
                                                float64
                                4601 non-null
   word freq hpl
                                                float64
                                4601 non-null
26 word_freq_george
                                4601 non-null
                                                float64
27
   word_freq 650
                                4601 non-null
                                               float64
   word freq_lab
                                                float64
                                4601 non-null
29
   word_freq_labs
                                4601 non-null
                                                float64
30
   word_freq_telnet
                                4601 non-null
                                                float64
31
                                                float64
   word freq 857
                                4601 non-null
32
                                                float64
   word freq data
                                4601 non-null
33
                                                float64
   word freq 415
                                4601 non-null
34
   word freq 85
                                4601 non-null
                                                float64
35
   word_freq_technology
                                4601 non-null
                                                float64
36
   word freq 1999
                                4601 non-null
                                                float64
37
                                                float64
   word freq parts
                                4601 non-null
   word_freq_pm
word_freq_direct
word_freq_cs
word_freq_meeting
word_freq_original
word_freq_project
                                4601 non-null
                                                float64
39
                                4601 non-null
                                                float64
40
                                4601 non-null
                                                float64
                                4601 non-null
                                                float64
42
                                                float64
                                4601 non-null
43
                                4601 non-null
                                                float64
   word_freq_re
                                4601 non-null
                                                float64
45
   word freq edu
                                4601 non-null
                                                float64
   word freq table
                                4601 non-null
                                               float64
47
   word_freq_conference
                                4601 non-null
                                                float64
48 char freq %3B
                                                float64
                                4601 non-null
                                                float64
   char_freq_%28
                                4601 non-null
50 char freq_%5B
                                                float64
                                4601 non-null
51 char freq %21
                                4601 non-null
                                                float64
52 char_freq_%24
                                                float64
                                4601 non-null
```

Handling missing values

```
imputer = SimpleImputer(strategy='mean')
df imputed = pd.DataFrame(imputer.fit transform(df), columns=df.columns)
```

Splitting of feature and target

```
X = df_imputed.drop('class', axis=1)
y = df imputed['class']
```

Checking Distribution

```
X = df.drop('class', axis=1) # Assuming 'class' is the target
# Choose a few features to visualize
comple features = Y columns[:E] # Einst E features
```

```
sample_realures = A.columns[:3] # risl 3 realures
# Plot histograms with Gaussian curve overlay
plt.figure(figsize=(15, 10))
for i, feature in enumerate(sample features):
    plt.subplot(3, 2, i + 1)
    data = X[feature]
    # Plot histogram
    count, bins, ignored = plt.hist(data, bins=30, density=True, alpha=0.6, col
    # Plot normal distribution curve
    '''mu, std = data.mean(), data.std()
    xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    p = 1 / (std * np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2 * std**2))
    plt.plot(x, p, 'r', linewidth=2)'''
    plt.title(f'Histogram of {feature}')
    plt.xlabel('Value')
    plt.ylabel('Density')
plt.tight layout()
plt.suptitle('Feature Distributions vs Gaussian Curve', fontsize=16, y=1.02)
plt.show()
```


Applying min max scaling

```
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
```

Plots

Histogram

```
import matplotlib.pyplot as plt

plt.figure(figsize=(14, 10))
for i in range(6):  # first 6 features as an example
    plt.subplot(2, 3, i + 1)
    plt.hist(X_scaled[:, i], bins=30, color='skyblue', edgecolor='black')
    plt.title(f'Scaled: {X.columns[i]}')
    plt.xlabel('Value (0 to 1)')
    plt.ylabel('Frequency')
plt.tight_layout()
plt.suptitle('Feature Distributions After MinMax Scaling', fontsize=16, y=1.02)
plt.show()
```


→ Boxplot

```
import pandas as pd

# Convert scaled array back to DataFrame for easier plotting
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)

plt.figure(figsize=(14, 6))
X_scaled_df.iloc[:, :10].boxplot(rot=45)
plt.title('Boxplots of First 10 Scaled Features')
plt.ylabel('Scaled Value (0-1)')
plt.grid(True)
plt.show()
```


Correlation HeatMap

```
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# Assuming X_scaled_df is your scaled DataFrame
corr_matrix = X_scaled_df.corr()
plt.figure(figsize=(18, 15)) # Bigger figure
sns.heatmap(
   corr matrix,
   cmap='coolwarm',
   square=True,
                          # Show values inside squares
   annot=True,
   fmt=".2f",
                           # Format to 2 decimal places
   )
plt.xticks(rotation=90)
plt.yticks(rotation=0)
plt.title("Feature Correlation Heatmap (After MinMax Scaling)", fontsize=16)
plt.tight_layout()
```

plt.show()

Model Training

```
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score,
    f1_score, confusion_matrix, roc_curve, auc,
    classification report
)
# Split the data again (or reuse your earlier split)
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(
    X_scaled, y, test_size=0.3, stratify=y, random_state=42
def evaluate model(name, model, X test, y test, results):
    y pred = model.predict(X test)
    # For ROC and AUC, use predict proba
    try:
        y_proba = model.predict_proba(X_test)[:, 1]
    except:
        y_proba = y_pred # fallback if proba not available
    acc = accuracy_score(y_test, y_pred)
    prec = precision score(y test, y pred, zero division=0)
    rec = recall score(y test, y pred, zero division=0)
    f1 = f1_score(y_test, y_pred, zero_division=0)
    # Print Confusion Matrix and Classification Report
    print(f"\n=== {name} ===")
    print("Confusion Matrix:")
    print(confusion matrix(y test, y pred))
    print("\nClassification Report:")
    print(classification report(y test, y pred, zero division=0))
    # ROC and AUC
    fpr, tpr, _ = roc_curve(y_test, y_proba)
    roc auc = auc(fpr, tpr)
    plt.plot(fpr, tpr, label=f'{name} (AUC = {roc auc:.2f})')
    # Append results
    results.append({
        'Model': name,
        'Accuracy': acc,
        'Precision': prec,
```

```
'Recall': rec,
        'F1 Score': f1,
        'AUC': roc auc
    })
# Store results
results = []
# --- BernoulliNB ---
bnb = BernoulliNB()
bnb.fit(X_train, y_train)
evaluate_model("BernoulliNB", bnb, X_test, y_test, results)
# --- MultinomialNB ---
mnb = MultinomialNB()
mnb.fit(X_train, y_train)
evaluate_model("MultinomialNB", mnb, X_test, y_test, results)
# --- GaussianNB ---
gnb = GaussianNB()
gnb.fit(X train, y train)
evaluate_model("GaussianNB", gnb, X_test, y_test, results)
# === ROC Curve Plot ===
plt.title('ROC Curves')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc='lower right')
plt.grid(True)
plt.show()
# === Final Comparison Table ===
results_df = pd.DataFrame(results)
print("\n=== Comparison Table ===")
print(results_df)
    === BernoulliNB ===
    Confusion Matrix:
     [[778 59]
     [ 93 451]]
    Classification Report:
                                recall f1-score
                   precision
                                                    support
              0.0
                        0.89
                                  0.93
                                             0.91
                                                        837
              1.0
                        0.88
                                  0.83
                                             0.86
                                                        544
                                             0.89
                                                       1381
        accuracy
                                  0.88
        macro avg
                        0.89
                                             0.88
                                                       1381
                        0.89
                                  0.89
                                             0.89
                                                       1381
    weighted avg
    === MultinomialNB ===
```

Confusion Matrix: [[811 26] [119 425]]

Classification Report:

	precision	recall	f1-score	support
0.0 1.0	0.87 0.94	0.97 0.78	0.92 0.85	837 544
accuracy macro avg weighted avg	0.91 0.90	0.88 0.90	0.90 0.89 0.89	1381 1381 1381

=== GaussianNB === Confusion Matrix: [[616 221] [28 516]]

Classification Report:

	precision	recall	f1-score	support
Θ.	0 0.96	0.74	0.83	837
1.	0 0.70	0.95	0.81	544
accurac	у		0.82	1381
macro av	g 0.83	0.84	0.82	1381
weighted av	g 0.86	0.82	0.82	1381

=== Comparison Table ===

Model Accuracy Precision Recall F1 Score AUC

```
BernoulliNB 0.889935 0.884314 0.829044 0.855787 0.950023
    1 MultinomialNB 0.895004 0.942350 0.781250 0.854271 0.960696
          GaussianNB 0.819696 0.700136 0.948529 0.805621 0.915675
    2
cv = KFold(n splits=5, shuffle=True, random state=42)
# Initialize Multinomial Naive Bayes
mnb = MultinomialNB()
# Perform cross-validation (accuracy as scoring)
scores = cross val score(mnb, X scaled, y, cv=cv, scoring='accuracy')
# Print accuracy for each fold
print("▼ Multinomial Naive Bayes - 5-Fold Cross-Validation Results:")
for i, score in enumerate(scores, 1):
    print(f"Fold {i} Accuracy: {score:.4f}")
# Print average and standard deviation
print(f"\nMean Accuracy : {scores.mean():.4f}")
print(f"Standard Deviation : {scores.std():.4f}")
    🔽 Multinomial Naive Bayes - 5-Fold Cross-Validation Results:
    Fold 1 Accuracy: 0.8719
    Fold 2 Accuracy: 0.8935
    Fold 3 Accuracy: 0.8891
    Fold 4 Accuracy: 0.8913
    Fold 5 Accuracy: 0.8859
    Mean Accuracy : 0.8863
    Standard Deviation : 0.0077
```

5 KNN Code:

Importing Required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_s
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import matthews_corrcoef
```

✓ Loading dataset

```
df = pd.read_csv('spambase.csv')
```

Basic info

```
print("Dataset Info:\n", df.info())
print("\nFirst 5 rows:\n", df.head())
print("\nMissing Values:\n", df.isnull().sum())
```

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 4601 entries, 0 to 4600
 Data columns (total 58 columns):

#	Column	Non-Null Count	Dtype
0	word_freq_make	4601 non-null	float64
1	word_freq_address	4601 non-null	float64
2	word_freq_all	4601 non-null	float64
3	word_freq_3d	4601 non-null	float64
4	word_freq_our	4601 non-null	float64
5	word_freq_over	4601 non-null	float64
6	word_freq_remove	4601 non-null	float64
7	word_freq_internet	4601 non-null	float64
8	word_freq_order	4601 non-null	float64
9	word_freq_mail	4601 non-null	float64
10	word_freq_receive	4601 non-null	float64
11	word_freq_will	4601 non-null	float64
12	word_freq_people	4601 non-null	float64
13	word_freq_report	4601 non-null	float64
14	word_freq_addresses	4601 non-null	float64
15	word_freq_free	4601 non-null	float64

```
4601 non-null
                                              float64
16 word freq business
17 word_freq_email
                                              float64
                               4601 non-null
18 word_freq_you
                               4601 non-null
                                              float64
19 word_freq_credit
                                              float64
                               4601 non-null
  word freq_your
20
                               4601 non-null
                                              float64
21
   word_freq_font
                               4601 non-null
                                              float64
   word_freq_000
                               4601 non-null
                                              float64
23
   word_freq_money
                                              float64
                               4601 non-null
24
   word freq hp
                               4601 non-null
                                              float64
   word freq hpl
                               4601 non-null
                                              float64
26
   word freq george
                               4601 non-null
                                              float64
                                              float64
27
   word_freq_650
                               4601 non-null
   word freq lab
                               4601 non-null
                                              float64
29
   word freq labs
                                              float64
                               4601 non-null
   word_freq_telnet
                                              float64
                               4601 non-null
   word freq 857
                               4601 non-null
                                              float64
32
   word freq_data
                               4601 non-null
                                              float64
33
   word_freq_415
                               4601 non-null
                                              float64
34
                                              float64
   word freq 85
                               4601 non-null
35
   word_freq_technology
                               4601 non-null
                                              float64
   word_freq_1999
                               4601 non-null
                                              float64
37
                                              float64
   word freq parts
                               4601 non-null
38
   word freq pm
                               4601 non-null
                                              float64
39
   word_freq_direct
                               4601 non-null
                                              float64
40
   word freq cs
                               4601 non-null
                                              float64
                                              float64
   word_freq_meeting
                               4601 non-null
  word_freq_original
                                              float64
                               4601 non-null
   word freq project
                               4601 non-null
                                             float64
   word_freq_re
                               4601 non-null float64
45
   word freq edu
                                              float64
                               4601 non-null
                                              float64
   word freq table
                               4601 non-null
   word_freq_conference
                               4601 non-null float64
                                              float64
  char freq %3B
                               4601 non-null
   char freq %28
                               4601 non-null float64
   char freq %5B
                               4601 non-null float64
   char_freq %21
51
                              4601 non-null
                                              float64
52 char freq %24
                               4601 non-null
                                              float64
```

Handling missing values

```
imputer = SimpleImputer(strategy='mean')
df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
```

Splitting of feature and target

```
X = df_imputed.drop('class', axis=1)
y = df imputed['class']
```

Checking Distribution

```
X = df.drop('class', axis=1) # Assuming 'class' is the target
```

```
# Choose a few features to visualize
sample features = X.columns[:5] # First 5 features
# Plot histograms with Gaussian curve overlay
plt.figure(figsize=(15, 10))
for i, feature in enumerate(sample features):
    plt.subplot(3, 2, i + 1)
    data = X[feature]
    # Plot histogram
    count, bins, ignored = plt.hist(data, bins=30, density=True, alpha=0.6, col
    # Plot normal distribution curve
    '''mu, std = data.mean(), data.std()
    xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    p = 1 / (std * np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2 * std**2))
    plt.plot(x, p, 'r', linewidth=2)'''
    plt.title(f'Histogram of {feature}')
    plt.xlabel('Value')
    plt.ylabel('Density')
plt.tight layout()
plt.suptitle('Feature Distributions vs Gaussian Curve', fontsize=16, y=1.02)
plt.show()
```


Applying min max scaling

```
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
```

Plots

Histogram

```
import matplotlib.pyplot as plt

plt.figure(figsize=(14, 10))
for i in range(6):  # first 6 features as an example
    plt.subplot(2, 3, i + 1)
    plt.hist(X_scaled[:, i], bins=30, color='skyblue', edgecolor='black')
    plt.title(f'Scaled: {X.columns[i]}')
    plt.xlabel('Value (0 to 1)')
    plt.ylabel('Frequency')
plt.tight_layout()
plt.suptitle('Feature Distributions After MinMax Scaling', fontsize=16, y=1.02)
plt.show()
```


→ Boxplot

```
import pandas as pd

# Convert scaled array back to DataFrame for easier plotting
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)

plt.figure(figsize=(14, 6))
X_scaled_df.iloc[:, :10].boxplot(rot=45)
plt.title('Boxplots of First 10 Scaled Features')
plt.ylabel('Scaled Value (0-1)')
plt.grid(True)
plt.show()
```


→ Correlation HeatMap

```
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score, fl_score,
    matthews corrcoef, roc curve, auc, classification report
)
# Assuming X_scaled_df is your scaled DataFrame
corr_matrix = X_scaled_df.corr()
plt.figure(figsize=(18, 15)) # Bigger figure
sns.heatmap(
    corr_matrix,
    cmap='coolwarm',
    square=True,
    annot=True,
                              # Show values inside squares
    fmt=".2f",
                              # Format to 2 decimal places
```

```
linewidths=0.5,  # Thin grid lines
annot_kws={"size": 6}  # Smaller font size
)

plt.xticks(rotation=90)
plt.yticks(rotation=0)
plt.title("Feature Correlation Heatmap (After MinMax Scaling)", fontsize=16)
plt.tight_layout()
plt.show()
```


Choosing best k value using Grid Search CV

```
# First split into train+val and test
X_train_val, X_test, y_train_val, y_test = train_test_split(
   X scaled, y, test size=0.2, stratify=y, random state=42
# Then split train+val into train and validation
X train, X val, y train, y val = train test split(
   X train val, y train val, test size=0.25, stratify=y train val, random stat
) \# 0.25 \times 0.8 = 0.2 \text{ validation}
# 2 GridSearchCV to find best k
param grid = {'n neighbors': range(1, 21)}
grid = GridSearchCV(
   estimator=KNeighborsClassifier(),
   param_grid=param_grid,
   cv=5,
   scoring='accuracy',
   n_{jobs}=-1
grid.fit(X_train, y_train)
print(f" ✓ Best k found by GridSearchCV: {grid.best params ['n neighbors']}")
print(f"Best CV Accuracy: {grid.best_score_:.4f}")
    Best k found by GridSearchCV: 1
    Best CV Accuracy: 0.8902
```

Model Training and Evaluation

```
# 🔼 Evaluate on Test Set
y pred = final model.predict(X test)
y prob = final model.predict proba(X test)[:, 1]
acc = accuracy score(y test, y pred)
prec = precision score(y test, y pred, zero division=0)
rec = recall_score(y_test, y_pred, zero_division=0)
f1 = f1 score(y test, y pred, zero division=0)
mcc = matthews_corrcoef(y_test, y_pred)
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc auc = auc(fpr, tpr)
print("\n Final Model Performance on Test Set")
print(f"Accuracy : {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall
                : {rec:.4f}")
print(f"F1 Score : {f1:.4f}")
print(f"MCC
                : {mcc:.4f}")
print(f"AUC
                : {roc auc:.4f}")
print("\nClassification Report:")
print(classification report(y test, y pred, zero division=0))
# 5 Plot ROC Curve
plt.figure(figsize=(6, 5))
plt.plot(fpr, tpr, label=f"KNN (k={best k}, AUC={roc auc:.2f})", color='blue')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve - Final Model")
plt.legend()
plt.grid(True)
plt.show()
    📊 Final Model Performance on Test Set
    Accuracy: 0.8958
    Precision: 0.8678
    Recall
           : 0.8678
    F1 Score : 0.8678
    MCC
             : 0.7817
    AUC
            : 0.8909
    Classification Report:
                             recall f1-score
                  precision
                                                 support
             0.0
                       0.91
                                0.91
                                          0.91
                                                     558
             1.0
                       0.87
                                0.87
                                          0.87
                                                     363
                                          0.90
                                                     921
        accuracy
                                0.89
                                          0.89
       macro avq
                      0.89
                                                     921
    weighted ava
                      0 00
                                A 0A
                                          A 0A
                                                     921
```


KD Tree and Ball Tree

Use KDTree

```
model kd = KNeighborsClassifier(n neighbors=best k, algorithm='kd tree')
model_kd.fit(X_train, y_train)
# Use BallTree
model_ball = KNeighborsClassifier(n_neighbors=best_k, algorithm='ball_tree')
model_ball.fit(X_train, y_train)
                                                           (i) (?)
                      KNeighborsClassifier
     KNeighborsClassifier(algorithm='ball tree', n neighbors=1)
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score,
    fl score, confusion matrix, roc curve, auc,
    classification report, matthews corrcoef
import matplotlib.pyplot as plt
# Helper function to evaluate a model
def evaluate_knn_model(name, model, X_train, X_test, y_train, y_test):
    model.fit(X train, y train)
    y pred = model.predict(X test)
    y prob = model.predict proba(X test)[:, 1]
    acc = accuracy_score(y_test, y_pred)
    prec = precision_score(y_test, y_pred)
    rec = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    mcc = matthews_corrcoef(y_test, y_pred)
    fpr, tpr, _ = roc_curve(y_test, y_prob)
    roc_auc = auc(fpr, tpr)
    print(f"\nQ {name} Performance Metrics:")
    print(f"Accuracy : {acc:.4f}")
    print(f"Precision: {prec:.4f}")
    print(f"Recall : {rec:.4f}")
    print(f"F1 Score : {f1:.4f}")
```

```
print(f"MCC : {mcc:.4f}")
    print("\nClassification Report:\n", classification report(y test, y pred))
    # Confusion Matrix
    conf = confusion matrix(y test, y pred)
    plt.figure(figsize=(5, 4))
    plt.imshow(conf, cmap='Blues')
    plt.title(f'{name} Confusion Matrix')
    plt.colorbar()
    plt.xticks([0, 1], ['Not Spam', 'Spam'])
    plt.yticks([0, 1], ['Not Spam', 'Spam'])
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    for i in range(2):
        for j in range(2):
            plt.text(j, i, conf[i, j], ha='center', va='center')
    plt.tight layout()
    plt.show()
    # ROC Curve
    plt.figure(figsize=(6, 5))
    plt.plot(fpr, tpr, label=f'{name} (AUC = {roc auc:.4f})')
    plt.plot([0, 1], [0, 1], 'k--', linewidth=1)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(f'{name} ROC Curve')
    plt.legend()
    plt.grid(True)
    plt.show()
# Train-test split assumed done:
# X_train, X_test, y_train, y_test already available
# best k is selected
# Evaluate KDTree
knn kd = KNeighborsClassifier(n neighbors=best k, algorithm='kd tree')
evaluate_knn_model("KDTree", knn_kd, X_train, X_test, y_train, y_test)
# Evaluate BallTree
knn_ball = KNeighborsClassifier(n_neighbors=best_k, algorithm='ball_tree')
evaluate knn model("BallTree", knn ball, X train, X test, y train, y test)
    KDTree Performance Metrics:
    Accuracy: 0.8958
    Precision: 0.8698
    Recall : 0.8650
    F1 Score : 0.8674
            : 0.7815
    Classification Report:
                   precision recall f1-score support
                       0.91
                                0.92
                                           0.91
                                                       558
             0.0
```

1.0	⊎.४/	⊍.४/	⊍.४/	303
accuracy			0.90	921
macro avg	0.89	0.89	0.89	921
weighted avg	0.90	0.90	0.90	921

BallTree Performance Metrics:

Accuracy: 0.8958 Precision: 0.8698

Recall : 0.8650 F1 Score : 0.8674 MCC : 0.7815

Classification Report:

	precision	recall	fl-score	support
0.0	0.91	0.92	0.91	558
1.0	0.87	0.87	0.87	363
accuracy			0.90	921
macro avg	0.89	0.89	0.89	921
weighted avg	0.90	0.90	0.90	921


```
import time
```

```
for algo in ['kd_tree', 'ball_tree', 'brute']:
    model = KNeighborsClassifier(n_neighbors=best_k, algorithm=algo)
    start = time.time()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    duration = time.time() - start
    acc = accuracy_score(y_test, y_pred)
    print(f"{algo:10} → Accuracy: {acc:.4f}, Time: {duration:.4f} sec")

    kd_tree    → Accuracy: 0.8958, Time: 0.1874 sec
    ball_tree    → Accuracy: 0.8958, Time: 0.2061 sec
    brute    → Accuracy: 0.8958, Time: 0.0436 sec
```

6 svm Code:

Importing Required Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler # or MinMaxScaler, if used
from sklearn.preprocessing import LabelEncoder # if categorical labels
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_re
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import cross_val_score, KFold,GridSearchCV
from sklearn.model_selection import cross_val_score, StratifiedKFold
```

Loading dataset

```
df = pd.read_csv('spambase.csv')
```

→ Basic info

```
print("Dataset Info:\n", df.info())
print("\nFirst 5 rows:\n", df.head())
print("\nMissing Values:\n", df.isnull().sum())
```

<<rp><class 'pandas.core.frame.DataFrame'>
RangeIndex: 4601 entries, 0 to 4600
Data columns (total 58 columns):

#	Column	Non-Null Count	Dtype
0	word_freq_make	4601 non-null	float64
1	word_freq_address	4601 non-null	float64
2	word_freq_all	4601 non-null	float64
3	word_freq_3d	4601 non-null	float64
4	word freq our	4601 non-null	float64
5	word_freq_over	4601 non-null	float64
6	word_freq_remove	4601 non-null	float64
7	word_freq_internet	4601 non-null	float64
8	word_freq_order	4601 non-null	float64
9	word_freq_mail	4601 non-null	float64
10	word_freq_receive	4601 non-null	float64
11	word_freq_will	4601 non-null	float64
12	word_freq_people	4601 non-null	float64
13	word_freq_report	4601 non-null	float64
14	word freq addresses	4601 non-null	float64
15	word_freq_free	4601 non-null	float64
16	word_freq_business	4601 non-null	float64

```
word freq email
                               4601 non-null
                                              float64
17
18 word freq you
                               4601 non-null
                                              float64
19 word_freq_credit
                              4601 non-null
                                              float64
20 word_freq_your
                              4601 non-null
                                              float64
21 word freq font
                              4601 non-null
                                              float64
22 word_freq_000
                              4601 non-null
                                              float64
23
   word freq money
                                              float64
                              4601 non-null
24 word freq hp
                                              float64
                              4601 non-null
25 word_freq_hpl
                              4601 non-null
                                              float64
26 word_freq_george
                                             float64
                              4601 non-null
27
   word freq 650
                              4601 non-null
                                             float64
28
  word freq lab
                              4601 non-null
                                              float64
29
                              4601 non-null
   word_freq_labs
                                              float64
   word freq telnet
                              4601 non-null
                                              float64
31 word freq 857
                                              float64
                              4601 non-null
32
   word freq data
                              4601 non-null
                                             float64
   word freq 415
                              4601 non-null
                                              float64
34 word freq 85
                              4601 non-null
                                              float64
35
   word_freq_technology
                              4601 non-null
                                              float64
                                              float64
   word freq 1999
                              4601 non-null
37
                                              float64
   word freq parts
                              4601 non-null
   word_freq_pm
                              4601 non-null
                                             float64
                                             float64
   word freq direct
                              4601 non-null
   word_freq_cs
40
                                              float64
                              4601 non-null
41
   word_freq_meeting
                              4601 non-null
                                              float64
   word freq original
                              4601 non-null
                                              float64
43 word freq project
                              4601 non-null
                                              float64
   word_freq_re
                              4601 non-null
                                             float64
   word freq edu
                              4601 non-null
                                              float64
                                              float64
   word freq table
                              4601 non-null
47
   word_freq_conference
                              4601 non-null
                                              float64
                                              float64
   char freq %3B
                              4601 non-null
   char freq %28
                              4601 non-null
                                              float64
50 char_freq_%5B
                              4601 non-null
                                              float64
51 char_freq_%21
                              4601 non-null
                                              float64
52 char freq %24
                              4601 non-null
                                              float64
```

Handling missing values

```
imputer = SimpleImputer(strategy='mean')
df imputed = pd.DataFrame(imputer.fit transform(df), columns=df.columns)
```

Splitting of feature and target

```
X = df_imputed.drop('class', axis=1)
y = df imputed['class']
```

Checking Distribution

```
X = df.drop('class', axis=1) # Assuming 'class' is the target
# Chassa a fact factures to visualize
```

```
# CHOOSE a rew reacures to visualize
sample_features = X.columns[:5] # First 5 features
# Plot histograms with Gaussian curve overlay
plt.figure(figsize=(15, 10))
for i, feature in enumerate(sample features):
    plt.subplot(3, 2, i + 1)
    data = X[feature]
    # Plot histogram
    count, bins, ignored = plt.hist(data, bins=30, density=True, alpha=0.6, col
    # Plot normal distribution curve
    '''mu, std = data.mean(), data.std()
    xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    p = 1 / (std * np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2 * std**2))
    plt.plot(x, p, 'r', linewidth=2)'''
    plt.title(f'Histogram of {feature}')
    plt.xlabel('Value')
    plt.ylabel('Density')
plt.tight layout()
plt.suptitle('Feature Distributions vs Gaussian Curve', fontsize=16, y=1.02)
plt.show()
```


Applying min max scaling

```
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
```

Plots

Histogram

```
import matplotlib.pyplot as plt

plt.figure(figsize=(14, 10))
for i in range(6):  # first 6 features as an example
    plt.subplot(2, 3, i + 1)
    plt.hist(X_scaled[:, i], bins=30, color='skyblue', edgecolor='black')
    plt.title(f'Scaled: {X.columns[i]}')
    plt.xlabel('Value (0 to 1)')
    plt.ylabel('Frequency')
plt.tight_layout()
plt.suptitle('Feature Distributions After MinMax Scaling', fontsize=16, y=1.02)
plt.show()
```


→ Boxplot

```
import pandas as pd

# Convert scaled array back to DataFrame for easier plotting
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)

plt.figure(figsize=(14, 6))
X_scaled_df.iloc[:, :10].boxplot(rot=45)
plt.title('Boxplots of First 10 Scaled Features')
plt.ylabel('Scaled Value (0-1)')
plt.grid(True)
plt.show()
```


Correlation HeatMap

```
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# Assuming X_scaled_df is your scaled DataFrame
corr_matrix = X_scaled_df.corr()
plt.figure(figsize=(18, 15)) # Bigger figure
sns.heatmap(
    corr_matrix,
    cmap='coolwarm',
    square=True,
                              # Show values inside squares
    annot=True,
    fmt=".2f",
                              # Format to 2 decimal places
    linewidths=0.5, # Thin grid lines annot_kws={"size": 6} # Smaller font size
)
plt.xticks(rotation=90)
plt.yticks(rotation=0)
plt.title("Feature Correlation Heatmap (After MinMax Scaling)", fontsize=16)
```

plt.tight_layout()
plt.show()

Model Training

```
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score,
    fl score, confusion matrix, roc curve, auc,
    classification report
)
# Split the data again (or reuse your earlier split)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    X_scaled, y, test_size=0.3, stratify=y, random_state=42
)
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.metrics import (
    accuracy_score, precision_score, recall_score, f1_score,
    confusion_matrix, classification_report, roc_curve, auc
)
# Your dataset X (features) and y (labels) must already be defined
pipeline = make pipeline(
    MinMaxScaler(),
    SVC(kernel='rbf', C=10, gamma='scale')
)
cv = StratifiedKFold(n splits=5, shuffle=True, random state=42)
scores = cross val score(pipeline, X, y, cv=cv, scoring='accuracy')
for i, acc in enumerate(scores, 1):
    print(f"Fold {i}: Accuracy = {acc:.4f}")
print(f" Mean Accuracy: {np.mean(scores):.4f} ± {np.std(scores):.4f}")
# Kernels to evaluate
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
results = []
def evaluate svm(kernel):
    print(f"\nQ Evaluating SVM with {kernel.upper()} kernel...")
    # Create and train SVM model
    model = SVC(kernel=kernel, probability=True, random state=42)
```

```
model.fit(X train, y train)
# Predictions
y pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)[:, 1] # for ROC
# Metrics
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred)
rec = recall_score(y_test, y_pred)
f1 = f1 score(y test, y pred)
print(f"Accuracy : {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall : {rec:.4f}")
print(f"F1 Score : {f1:.4f}")
print("\nClassification Report:")
print(classification report(y test, y pred))
# Confusion Matrix
conf = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(5, 4))
plt.imshow(conf, cmap='Blues')
plt.title(f'{kernel.upper()} Kernel - Confusion Matrix')
plt.colorbar()
plt.xticks([0, 1], ['Not Spam', 'Spam'])
plt.yticks([0, 1], ['Not Spam', 'Spam'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
for i in range(2):
    for j in range(2):
        plt.text(j, i, conf[i, j], ha='center', va='center')
plt.tight layout()
plt.show()
# ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc auc = auc(fpr, tpr)
plt.figure(figsize=(6, 5))
plt.plot(fpr, tpr, label=f'{kernel.upper()} (AUC = {roc_auc:.4f})')
plt.plot([0, 1], [0, 1], 'k--', linewidth=1)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'{kernel.upper()} Kernel - ROC Curve')
plt.legend()
plt.grid(True)
plt.show()
# Store results
results.append({
    "Kernel": kernel.capitalize(),
    "Accuracy": acc,
    "Precision": prec,
```

```
"Recall": rec,
    "F1 Score": f1,
    "AUC": roc_auc
  })

# Run evaluations for all kernels
for kernel in kernels:
    evaluate svm(kernel)
```

Fold 1: Accuracy = 0.9359
Fold 2: Accuracy = 0.9250
Fold 3: Accuracy = 0.9402
Fold 4: Accuracy = 0.9337
Fold 5: Accuracy = 0.9326

■ Mean Accuracy: 0.9335 ± 0.0050

Evaluating SVM with LINEAR kernel...

Accuracy : 0.8993 Precision: 0.9108 Recall : 0.8254 F1 Score : 0.8660

Classification Report:

	precision	recall	f1-score	support
0.0	0.89	0.95	0.92	837
1.0	0.91	0.83	0.87	544
accuracy			0.90	1381
macro avg weighted avg	0.90 0.90	0.89 0.90	0.89 0.90	1381 1381
5				

Evaluating SVM with POLY kernel...

Accuracy: 0.8501 Precision: 0.9423 Recall: 0.6599 F1 Score: 0.7762

Classification Report:

support	f1-score	recall	precision	
837 544	0.89 0.78	0.97 0.66	0.81 0.94	0.0 1.0
1381 1381 1381	0.85 0.83 0.84	0.82 0.85	0.88 0.87	accuracy macro avg weighted avg

Evaluating SVM with RBF kernel...

Accuracy: 0.9261 Precision: 0.9250 Recall: 0.8842 F1 Score: 0.9041

Classification Report:

Classiiicali				
	precision	recall	f1-score	support
0.0	0.93	0.95	0.94	837
1.0	0.93	0.88	0.90	544
accuracy			0.93	1381
macro avg	0.93	0.92	0.92	1381
weighted avg	0.93	0.93	0.93	1381

Evaluating SVM with SIGMOID kernel...

Accuracy : 0.8023 Precision: 0.7694 Recall : 0.7114 F1 Score : 0.7393

Classification Report:

Ctassificatio	•			
	precision	recall	f1-score	support
	p			
0.0	0.82	0.86	0.84	837
0.0	0.02	0.00	0.04	057
1.0	0.77	0.71	0.74	544
	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •	.
accuracy			0.80	1381
•	0 00	0.70		
macro avg	0.80	0.79	0.79	1381
weighted avg	0.80	0.80	0.80	1381
weighted avg	0.00	0.00	0.00	1301

SIGMOID Kernel - Confusion Matrix

SIGMOID Kernel - ROC Curve 1.0 SIGMOID (AUC = 0.8531) 0.8 True Positive Rate 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate

```
# Display tabular summary
print("\n SVM Kernel Comparison Summary:\n")
df_results = pd.DataFrame(results)
print(df results.to string(index=False))
```


Kernel Accuracy Precision Recall F1 Score AUC Linear 0.899348 0.910751 0.825368 0.865959 0.956425

```
Poly 0.850109 0.942257 0.659926 0.776216 0.950749
        Rbf 0.926140 0.925000 0.884191 0.904135 0.972150
    Sigmoid 0.802317
                        0.769384 0.711397 0.739255 0.853074
svm = SVC()
param_grid = {
    'C': [0.1, 1, 10],
    'gamma': ['scale', 0.01, 0.001],
    'kernel': ['linear', 'rbf', 'poly']
}
# 5-fold CV
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
# Grid Search
grid = GridSearchCV(estimator=svm, param_grid=param_grid, cv=cv, scoring='accur
grid.fit(X train, y train)
# Best Parameters
print(" Best Parameters Found:")
print(grid.best params )
# Best Estimator
best svm = grid.best estimator
# Evaluate on test set
y_pred = best_svm.predict(X_test)
print("\n; Classification Report (Test Set):")
print(classification_report(y_test, y_pred))
print("V Test Accuracy:", accuracy_score(y_test, y_pred))
    Fitting 5 folds for each of 27 candidates, totalling 135 fits
    Best Parameters Found:
    {'C': 10, 'gamma': 'scale', 'kernel': 'rbf'}

☐ Classification Report (Test Set):

                  precision recall f1-score
                                                  support
             0.0
                       0.93
                                 0.96
                                           0.94
                                                      837
             1.0
                       0.93
                                 0.88
                                           0.91
                                                      544
                                           0.93
                                                     1381
        accuracy
                       0.93
                                 0.92
                                           0.92
                                                     1381
       macro avg
                                           0.93
                                                     1381
    weighted avg
                       0.93
                                 0.93
    Test Accuracy: 0.9275887038377987
import numpy as np
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVC
```

```
from sklearn.model selection import StratifiedKFold, cross val score
pipeline = make pipeline(
    MinMaxScaler(),
    SVC(kernel='rbf', C=10, gamma='scale')
)
cv = StratifiedKFold(n splits=5, shuffle=True, random state=42)
scores = cross val score(pipeline, X, y, cv=cv, scoring='accuracy')
for i, acc in enumerate(scores, 1):
    print(f"Fold {i}: Accuracy = {acc:.4f}")
print(f"→ Mean Accuracy: {np.mean(scores):.4f} ± {np.std(scores):.4f}")
     Fold 1: Accuracy = 0.9359
    Fold 2: Accuracy = 0.9250
    Fold 3: Accuracy = 0.9402
    Fold 4: Accuracy = 0.9337
    Fold 5: Accuracy = 0.9326
     Mean Accuracy: 0.9335 ± 0.0050
import time
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
results = []
for kernel in kernels:
    params = {'kernel': kernel, 'C': 10.0, 'probability': True, 'random state':
    # Add kernel-specific hyperparameters
    if kernel == 'poly':
        params.update({'degree': 3, 'gamma': 'scale'})
    elif kernel in ['rbf', 'sigmoid']:
        params.update({'gamma': 'scale'})
    model = SVC(**params)
    start = time.time()
    model.fit(X_train, y_train)
    end = time.time()
    y pred = model.predict(X test)
    acc = accuracy_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    results.append({
        "Kernel": kernel.capitalize(),
        "Hyperparameters": str({k: v for k, v in params.items() if k != 'kernel
        "Accuracy": round(acc, 4),
        "F1 Score": round(f1, 4),
        "Training Time (s)": round(end - start, 3)
    })
# Create and display final table
```



```
from sklearn.pipeline import make pipeline
from sklearn.preprocessing import MinMaxScaler # or StandardScaler
from sklearn.model selection import cross val score, StratifiedKFold
from sklearn.svm import SVC
import numpy as np
# RBF kernel SVM
svm rbf = make pipeline(MinMaxScaler(), SVC(kernel='rbf', C=10.0, gamma='scale')
# 5-fold stratified CV
cv = StratifiedKFold(n splits=5, shuffle=True, random state=42)
scores = cross val score(svm rbf, X, y, cv=cv, scoring='accuracy')
# Print each fold and mean
for i, acc in enumerate(scores, 1):
    print(f"Fold {i}: Accuracy = {acc:.4f}")
print(f"\n → Mean Accuracy: {np.mean(scores):.4f} ± {np.std(scores):.4f}")
    Fold 1: Accuracy = 0.9359
    Fold 2: Accuracy = 0.9250
    Fold 3: Accuracy = 0.9402
    Fold 4: Accuracy = 0.9337
    Fold 5: Accuracy = 0.9326
    Mean Accuracy: 0.9335 ± 0.0050
```

7 Comparision Tables

Table 1: Performance Comparison of Naïve Bayes Variants

Model	Accuracy	Precision	Recall	F1 Score
BernoulliNB	0.8899	0.8843	0.8290	0.8558
MultinomialNB	0.8950	0.9424	0.7813	0.8543
GaussianNB	0.8197	0.7001	0.9485	0.8056

Table 2: KNN Performance for Different k Values

k	Accuracy	Precision	Recall	F1 Score
1	0.8899	0.8551	0.8676	0.8613
3	0.8892	0.8710	0.8438	0.8571
5	0.8993	0.8828	0.8585	0.8705
7	0.8950	0.8815	0.8474	0.8641

Table 3: KNN Comparison: KDTree vs BallTree

Metric	KDTree	BallTree
Accuracy	0.8899	0.8899
Precision	0.8551	0.8551
Recall	0.8676	0.8676
F1 Score	0.8613	0.8613
Training Time (s)	0.4470	0.4058

Table 4: Cross-Validation Scores for Each Model (K = 5)

Fold	Naïve Bayes Accuracy	KNN Accuracy (k=1)	SVM Accuracy
Fold 1	0.8719	0.9034	0.9359
Fold 2	0.8935	0.9076	0.9250
Fold 3	0.8891	0.9152	0.9402
Fold 4	0.8913	0.9000	0.9337
Fold 5	0.8859	0.8935	0.9326
Average	0.8863	0.9039	0.9335 ± 0.0050

Table 5: SVM Performance with Different Kernels and Parameters

Kernel	Hyperparameters	Accuracy	F1 score	Training time
linear	c=10.0	8.993	8.660	0.12
polynomial	$c{=}10.0, degree{=}3, gamma{=}scale$	0.8501	0.7762	0.35
RBF	c=10.0,gamma=scale	0.9261	0.9041	0.20
sigmoid	c=10.0,gamma=scale	0.8023	0.7393	0.18

8 Observation:

- KNN with k=1 achieved the highest accuracy consistently across all folds, indicating strong capability in classifying email spam versus ham.
- Naive Bayes classifiers, particularly MultinomialNB, provided stable and competitive results, showing robustness in handling text data with varying feature distributions.
- SVM, especially with the RBF kernel (C=10, gamma=scale), achieved the highest overall accuracy (≈ 92.7) and F1 score among all kernels, demonstrating its strong capability in handling complex, non-linear decision boundaries in text data.
- Although KNN attained better peak performance, Naive Bayes models required less training time and are more scalable for larger datasets.
- The choice between KNN, Naive Bayes, and SVM depends on the trade-off between accuracy, computational efficiency, and dataset size for the specific application scenario.

GitHub Repository: https://github.com/Thamizhmathibharathi/project.git

9 Conclusion:

- The experiment demonstrated that KNN (k=1) outperforms Naive Bayes variants in certain folds, but SVM with RBF kernel consistently delivered the best overall performance in terms of accuracy and F1 score on the email classification task.
- Naive Bayes remains valuable due to its simplicity, fast training, and effectiveness on highdimensional, sparse data typical in text classification, while SVM offers robust performance with non-linear patterns but requires slightly more computational resources.
- For deployment:
 - Naive Bayes is suitable for quick predictions on large datasets.
 - KNN is ideal when highest accuracy is needed and resources allow.
 - SVM is a balanced choice when accuracy and robustness against complex patterns are critical, with moderate training time.